Decidable Languages

Recall that:

A language L is Turing-Acceptable if there is a Turing machine M that accepts L

Also known as: Turing-Recognizable or Recursively-enumerable languages

Turing-Acceptable

For any input string W:

$$w \in L \quad \square \rightarrow \quad M \quad \text{halts in an accept state}$$

$$w \notin L \longrightarrow M$$
 halts in a non-accept state or loops forever

Definition:

A language L is decidable if there is a Turing machine (decider) M which accepts L and halts on every input string

Also known as recursive languages

Turing-Decidable

For any input string W:

$$w \in L \longrightarrow M$$
 halts in an accept state

$$w \notin L \implies M$$
 halts in a non-accept state

Observation:

Every decidable language is Turing-Acceptable

Sometimes, it is convenient to have Turing machines with single accept and reject states

These are the only halting states

That result to possible halting configurations

We can convert any Turing machine to have single accept and reject states

Old machine

Multiple accept states

New machine

One accept state

Do the following for each possible halting state:

Old machine

Multiple reject states

New machine

For all tape symbols \mathcal{X} not used for read in the other transitions of q_i

One reject state

For a decidable language L:

For each input string, the computation halts in the accept or reject state

For a Turing-Acceptable language L:

It is possible that for some input string the machine enters an infinite loop A computational problem is decidable if the corresponding language is decidable

We also say that the problem is solvable

Problem: Is number x prime?

Corresponding language:

$$PRIMES = \{1, 2, 3, 5, 7, ...\}$$

We will show it is decidable

Decider for PRIMES:

On input number X:

Divide X with all possible numbers between 2 and \sqrt{X}

If any of them divides X

Then reject

Else accept

the decider Turing machine can be designed based on the algorithm

Problem: Does DFA M accept the empty language $L(M) = \emptyset$?

```
Corresponding Language: (Decidable)
```

 $EMPTY_{DFA} =$

 $\{\langle M \rangle : M \text{ is a DFA that accepts empty language } \emptyset \}$

Description of DFA M as a string (For example, we can represent M as a binary string, as we did for Turing machines)

Decider for EMPTY_{DFA}:

On input $\langle M \rangle$:

Determine whether there is a path from the initial state to any accepting state

Reject (M) Decision:

Accept $\langle M \rangle$

DFA M

Problem: Does DFA M accept a finite language?

Corresponding Language: (Decidable)

FINITE_{DFA} =

 $\{\langle M \rangle : M \text{ is a DFA that accepts a finite language}\}$

Decider for $FINITE_{DFA}$: On input $\langle M \rangle$:

Check if there is a walk with a cycle from the initial state to an accepting state

Problem: Does DFA M accept string W?

```
Corresponding Language: (Decidable)
```

 $A_{DFA} = \{\langle M, w \rangle : M \text{ is a DFA that accepts string } w\}$

Decider for ADFA:

On input string $\langle M, w \rangle$:

Run DFA M on input string W

```
If M accepts W

Then accept \langle M, W \rangle (and halt)

Else reject \langle M, W \rangle (and halt)
```

Problem: Do DFAs M_1 and M_2 accept the same language?

```
Corresponding Language: (Decidable)
EQUAL_{DFA} = \{\langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are DFAs that accept} 
the same languages}
```

Decider for EQUALDEA:

On input
$$\langle M_1, M_2 \rangle$$
:

Let L_1 be the language of DFA M_1 Let L_2 be the language of DFA M_2

Construct DFA M such that:

$$L(M) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$$

(combination of DFAs)

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \varnothing$$

$$L_1 \cap \overline{L_2} = \varnothing \quad \text{and} \quad \overline{L_1} \cap L_2 = \varnothing$$

$$L_1 = L_2$$

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) \neq \emptyset$$

$$L_1 \cap \overline{L_2} \neq \emptyset$$

$$L_1 \setminus L_2$$

$$L_1 \not\subset L_2$$

or
$$L_1 \cap L_2 \neq \emptyset$$

$$L_2 \not\subset L_1$$

$$L_1 \neq L_2$$

Therefore, we only need to determine whether

$$L(M) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$$

which is a solvable problem for DFAs: $EMPTY_{DFA}$

Theorem:

If a language L is decidable, then its complement \overline{L} is decidable too

Proof:

Build a Turing machine M' that accepts \overline{L} and halts on every input string (M') is decider for \overline{L}

Transform accept state to reject and vice-versa

MM' q'_{reject} q_{accept} q'_{accept} q_{reject}

Turing Machine M^{\prime}

```
On each input string W do:
```

- 1. Let M be the decider for L
- 2. Run M with input string w If M accepts then reject If M rejects then accept

Accepts \overline{L} and halts on every input string

Undecidable Languages

Undecidable Languages

An undecidable language has no decider:

Any Turing machine that accepts L

does not halt on some input string

We will show that:

There is a language which is Turing-Acceptable and undecidable

We will prove that there is a language L:

- · L is Turing-acceptable
- \overline{L} is not Turing-acceptable (not accepted by any Turing Machine)

the complement of a decidable language is decidable

Therefore, L is undecidable

Non Turing-Acceptable L

Consider alphabet $\{a\}$

```
Strings of \{a\}^+:
a, aa, aaa, aaaa, ...
a^1 \ a^2 \ a^3 \ a^4 \ ...
```

Consider Turing Machines that accept languages over alphabet $\{a\}$

They are countable:

$$M_1, M_2, M_3, M_4, \dots$$

(There is an enumerator that generates them)

Each machine accepts some language over $\{a\}$

Note that it is possible to have

$$L(M_i) = L(M_j)$$
 for $i \neq j$

Since, a language could be accepted by more than one Turing machine

Example language accepted by $\,M_{i}\,$

$$L(M_i) = \{aa, aaaa, aaaaaaa\}$$

$$L(M_i) = \{a^2, a^4, a^6\}$$

Binary representation

	a^1	a^2	a^3	a^4	a^5	a^6	a^7	• • •
$L(M_i)$	0	1	0	1	0	1	0	• • •

Example of binary representations

	a^1	a^2	a^3	a^4	• • •
$L(M_1)$	0	1	0	1	• • •
$L(M_2)$	1	0	0	1	• • •
$L(M_3)$	0	1	1	1	• • •
$L(M_4)$	0	0	0	1	• • •

Consider the language

$$L = \{a^i : a^i \in L(M_i)\}$$

L consists of the 1's in the diagonal

Consider the language \overline{L}

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

$$L = \{a^i : a^i \in L(M_i)\}$$

 \overline{L} consists of the 0's in the diagonal

Theorem:

Language \overline{L} is not Turing-Acceptable

Proof:

Assume for contradiction that

 \overline{L} is Turing-Acceptable

Let M_k be the Turing machine that accepts $\overline{L}: L(M_k) = \overline{L}$

$$M_k \neq M_i$$
 for any i

Because either:

$$a^i \in L(M_k)$$

 $a^l \notin L(M_k)$

$$a^i \notin L(M_i)$$

$$a^i \in L(M_i)$$

the machine $\,M_{k}\,$ cannot exist

L is not Turing-Acceptable

Non Turing-Acceptable

We will prove that the language

$$L = \{a^i : a^i \in L(M_i)\}$$

There is a Turing machine that accepts \boldsymbol{L}

Each machine that accepts L doesn't halt on some input string

Theorem: The language

$$L = \{a^i : a^i \in L(M_i)\}$$

Is Turing-Acceptable

Proof: We will give a Turing Machine that accepts $\,L\,$

Turing Machine that accepts L

For any input string W

- Suppose $w = a^i$
- \cdot Find Turing machine \boldsymbol{M}_i (using the enumerator for Turing Machines)
- \cdot Simulate M_i on input string a^l
- If M_i accepts, then accept w

End of Proof

Therefore:

Turing-Acceptable

$$L = \{a^i : a^i \in L(M_i)\}$$

Not Turing-acceptable

$$\overline{L} = \{a^i : a^i \notin L(M_i)\}$$

Theorem:
$$L = \{a^i : a^i \in L(M_i)\}$$
 is undecidable

Proof: If L is decidable the complement of a decidable language is decidable. Then \overline{L} is decidable

However, \overline{L} is not Turing-Acceptable! Contradiction!!!

Not Turing-Acceptable T Turing-Acceptable Decidable