Técnicas multivariadas Análisis de conglomerados (Cluster)

Mario J. P. López

Departamento de Matemáticas Programa de Estadística Universidad El Bosque

2020

Objetivo

- Agrupar conjuntos de datos/individuos multivariados
- Los grupos obtenidos deben ser lo más homogéneos dentro y lo más heterogéneos entre sí

Pasos

- Selección de una medida de proximidad entre individuos
- 2 Selección de un algoritmo de agrupamiento

Proximidad entre individuos

- Considere una matriz de datos, \boldsymbol{X} $(n \times p)$, con n individuos y p variables
- Una medida de distancias entre individuos, D, es una matriz de la forma:

$$D_{(n \times n)} = \begin{pmatrix} d_{11} & d_{12} & \cdots & d_{1n} \\ d_{21} & d_{22} & \cdots & d_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1} & d_{n2} & \cdots & d_{nn} \end{pmatrix}$$

si $d_{ii'}$ son distancias entonces D mide disimilaridad y si $d_{ii'}$ son proximidades entonces D mide similaridad.

Ejemplo

$$d_{ii'} = \begin{cases} ||x_i - x_{i'}||_2, & \text{disimilaridad} \\ \max_{i,i'} \{d_{ii'}\} - d_{ii'}, & \text{similaridad} \end{cases}$$

- \bullet En el primer caso, valores grandes de $d_{ii'}$ indican mayor heterogeneidad
- \bullet En el segundo caso, valores grandes de $d_{ii'}$ indican mayor homogeneidad

Ejemplo

En el caso de variables contínuas se define la norma L_r , $r \ge 1$

$$d_{ii'} = ||x_i - x_{i'}||_r = \left(\sum_{j=1}^p |x_{ij} - x_{i'j}|^r\right)^{1/r}$$

- r = 2: norma euclídea,
- r = 1: Manhattan.

Ejemplo

La norma L_2 con métrica $A\ (A>0)$ es

$$d_{ii'}^2 = ||x_i - x_{i'}||_A = (x_i - x_{i'})^\top A (x_i - x_{i'})$$

- si $A = I_p \rightarrow L_2$
- si $A={
 m diag}\left(s_1^2,s_2^2,...,s_p^2\right)\to L_2$ no depende de las unidades de medida

Ejemplo

El coeficiente de correlación entre individuos, denominado correlación Q, es una medida de proximidad.

$$d_{ii'} = \frac{\sum_{j=1}^{p} (x_{ij} - \bar{x}_i) (x_{i'j} - \bar{x}_i')}{\left[\sum_{j=1}^{p} (x_{ij} - \bar{x}_i)^2 \sum_{j=1}^{p} (x_{i'j} - \bar{x}_i')^2\right]^{1/2}}$$

donde

$$\bar{x}_i = \frac{\sum_{j=1}^p x_{ij}}{p}$$

es el promedio sobre todas las variables de un individuo.

Datos binarios

Sea $x_i^\top = \left(x_{i1}, x_{i2}, ..., x_{ip}\right)$ con $x_{ij} \in \{0, 1\},$ definiendo

$$a_1 = \sum_{j=1}^{p} I(x_{ij} = x_{i'j} = 1),$$
 $a_2 = \sum_{j=1}^{p} I(x_{ij} = 0, x_{i'j} = 1)$

$$a_3 = \sum_{j=1}^{p} I(x_{ij} = 1, x_{i'j} = 0), \qquad a_4 = \sum_{j=1}^{p} I(x_{ij} = x_{i'j} = 0)$$

$$\Rightarrow d_{ii'} = \frac{a_1 + \delta a_4}{a_1 + \delta a_4 + \lambda (a_2 + a_3)}$$
 (similaridad)

Similaridad

• Concordancia simple: si $\delta = \lambda = 1$

$$d_{ii'} = \frac{(a_1 + a_4)}{p}$$

• Jaccard: si $\delta = 0, \lambda = 1$

$$d_{ii'} = \frac{a_1}{(a_1 + a_2 + a_3)}$$

Disimilaridad

• Binary (usada por R):

$$1 - J = \frac{a_2 + a_3}{a_1 + a_2 + a_3}$$

Algoritmos de agrupamiento

- Jerárquicos:
 - aglomerativos: vecino más cercano, ward,...
 - divisivos
- No jerárquicos:
 - particionamento: k-medias, k-medoides,...
 - mixtura de distribuciones
 - estimación de densidades

Algoritmo aglomerativo

- construir la partición más fina
- 2 calcular la matriz de distancias
- o encontrar los grupos con menor distancia
- unir esos dos grupos en un solo grupo
- calcular la distancia entre los nuevos grupos y obtener la matriz de distancias reducida

Repetir hasta tener un solo grupo con todos los individuos

Medidas de distancia

La medida de distancia entre los nuevos grupos define el algoritmo. Para $x_i \in A$ y $x_{i'} \in B$:

• Single Linkage (Nearest Neighbor)

$$D(A, B) = \min \{d(x_i, x_{i'})\}$$

• Complete Linkage (Farthest Neighbor)

$$D(A, B) = \max \{d(x_i, x_{i'})\}$$

Average Linkage

$$D(A, B) = \frac{1}{n_A n_B} \sum_{i=1}^{n_A} \sum_{i=1}^{n_B} d(x_i, x_{i'})$$

Medidas de distancia

• Centroid

$$D(A,B) = d(\bar{x}_A, \bar{x}_B)$$

Teniendo en cuenta que luego de que dos cluster, A y B, se unen

$$\bar{x}_{AB} = \frac{n_A \bar{x}_A + n_B \bar{x}_B}{n_A + n_B}$$

 \bullet Median: en lugar de usar \bar{x}_{AB} en el método Centroid usa

$$m_{AB} = \frac{1}{2} \left(\bar{x}_A + \bar{x}_B \right)$$

Medidas de distancia

ullet Ward: une los grupos A y B con mínimo incremento de

$$I_{AB} = SSE_{AB} - (SSE_A + SSE_B)$$

donde

$$SSE_{A} = \sum_{i=1}^{n_{A}} (x_{i} - \bar{x}_{A})^{\top} (x_{i} - \bar{x}_{A})$$

$$SSE_{B} = \sum_{i=1}^{n_{B}} (x_{i} - \bar{x}_{B})^{\top} (x_{i} - \bar{x}_{B})$$

$$SSE_{AB} = \sum_{i=1}^{n_{AB}} (x_{i} - \bar{x}_{AB})^{\top} (x_{i} - \bar{x}_{AB})$$

Método k-Means

- El objetivo es minimizar la variabilidad dentro de grupos
- El número de grupos es preestablecido
- La variabilidad dentro de grupos se puede medir como

$$W(C_k) = \sum_{x_i \in C_k} ||x_i - \bar{x}_k||^2, \quad k = 1, ..., G$$

donde

- x_i es cada individuo que pertenece a un grupo C_k
- \bullet \bar{x}_k es el centroide o vector de promedios de cada grupo

Algoritmo

- 1 Indicar el número de grupos, G, a formar,
- \odot Seleccionar G individuos de forma aleatoria (centroide inicial),
- 3 Asignar los individuos al centroide más cercano de acuerdo a la distancia euclídea, $W(\cdot)$,
- Calcular los nuevos centroides como el vector de promedios de cada grupo.
 - Repetir los pasos 3 y 4 hasta convergencia.

Referencias

- ► Johnson, R., Wichern, D.

 Applied Multivariate Statistical Analysis.
 6th ed. Pearson, 2007.
- Mardia, K., Kent, J., Bibby, J. Multivariate Analysis. Academic Press, 1995.
- Rencher, A.

 Methods of Multivariate Analysis.

 2nd ed. Willey, 2002.