Interpretable Machine Learning

Inherently Interpretable Models - Motivation

Learning goals

- Why should we use interpretable models?
- Advantages and disadvantages of interpretable models

MOTIVATION

- Achieving interpretability by using interpretable models is the most straightforward approach
- Classes of models deemed interpretable:
 - (Generalized) linear models (LM, GLM)
 - Generalized additive models (GAM)
 - Decision trees
 - Rule-based learning
 - Model-based boosting / component-wise boosting
 - ..

 For inherently interpretable models some additional model-agnostic interpretation methods not required
 → Eliminates a source of error

- For inherently interpretable models some additional model-agnostic interpretation methods not required
 Eliminates a source of error

- For inherently interpretable models some additional model-agnostic interpretation methods not required → Eliminates a source of error
- Interpretable models often simple
- Some interpretable models estimate monotonic effects → Simple to explain as larger feature values always lead to higher (or smaller) outcomes (e.g., GLMs)

- For inherently interpretable models some additional model-agnostic interpretation methods not required
 Eliminates a source of error
- Some interpretable models estimate monotonic effects
 Simple to explain as larger feature values always lead to higher (or smaller) outcomes (e.g., GLMs)
- Many people are familiar with simple interpretable models

 | Increase trust familiar with sample interpretable models
 | Increase trust familiar with sample interpretable models
 | Increase trust familiar with simple interpretable models | Increase trust familiar with simple interpretable models | Increase trust familiar with simple interpretable models | Increase trust familiar with simple interpretable models | Increase trust familiar with simple interpretable models | Increase trust familiar with simple models | I
 - \rightsquigarrow Increases trust, facilitates communication of results

Often require assumptions about data / model structure
 → If assumptions are wrong, models may perform bad

- Often require assumptions about data / model structure
 → If assumptions are wrong, models may perform bad
- Interpretable models may also be hard to interpret, e.g.:
 - Linear model with lots of features and interactions
 - Decision trees with huge tree depth

- Often require assumptions about data / model structure
 → If assumptions are wrong, models may perform bad
- Interpretable models may also be hard to interpret, e.g.:
 - Linear model with lots of features and interactions
 - Decision trees with huge tree depth

- Often require assumptions about data / model structure
 → If assumptions are wrong, models may perform bad
- Interpretable models may also be hard to interpret, e.g.:
 - Linear model with lots of features and interactions
 - Decision trees with huge tree depth

- Often do not automatically model complex relationships due to limited flexibility e.g., high-order main or interaction effects need to be specified manually in a LM
- Inherently interpretable models do not provide all types of explanations
 Methods providing other types of explanations still useful (e.g., counterfactual explanations)

FURTHER COMMENTS

- Some argue that interpretable models should be preferred Rudin 2019
 - ...instead of explaining uninterpretable models post-hoc
 - Can sometimes work out by spending enough time and energy on data pre-processing or manual feature engineering

FURTHER COMMENTS

- Some argue that interpretable models should be preferred Rudin 2019
 - ...instead of explaining uninterpretable models post-hoc
 - Can sometimes work out by spending enough time and energy on data pre-processing or manual feature engineering
- → Drawback: Hard to achieve for data for which end-to-end learning is crucial e.g., hard to extract good features for image / text data
 → information loss = bad performance

FURTHER COMMENTS

- Some argue that interpretable models should be preferred Rudin 2019
 - ...instead of explaining uninterpretable models post-hoc
 - Can sometimes work out by spending enough time and energy on data pre-processing or manual feature engineering
- → Drawback: Hard to achieve for data for which end-to-end learning is crucial e.g., hard to extract good features for image / text data
 → information loss = bad performance
- Often there is a trade-off between interpretability and model performance

RECOMMENDATION

- Start with most simple model that makes sense for application at hand
- Gradually increase complexity if performance is insufficient
 will usually lower interpretability and require additional interpretation methods
- Choose the most simple, sufficient model (Occam's razor)

Bike Data, 4-fold CV

Model	RMSE	R^2
LM	800.15	0.83
Tree	981.83	0.74
Random Forest	653.25	0.88
Boosting (tuned)	638.42	0.89