LAB Logbook

Ela Dogruyol - 2351343

Lab 1

For the Lab 1 in Week 1, students were asked to create a vector using np.arange method and doing some changes on that vector to be able to practice NumPy and Python.

Firstly, because my student ID is 2351343, I created a vector of 43 elements. Secondly, I changed this matrix into a 2-d array with 1 row using **reshape** method. Thirdly, I used NumPy's **empty_like** method and **slicing** to be able to create an independent array and save the values of the matrix to that independent array. I checked the **shape** attribute values of both matrixes. I printed all results at the end of the steps.

My code and results:

2) Matrix is changed into a to 2-d array with 1 row.

```
In [23]: 1 vector = vector.reshape(43,1)
2 print(vector)
                                                      [[ 0] [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 10] [ 11] [ 12] [ 13] [ 14] [ 15] [ 16] [ 17] [ 18] [ 19] [ 20] [ 23] [ 24] [ 25] [ 26] [ 27] [ 28] [ 30] [ 31] [ 34] [ 35] [ 36] [ 37] [ 38] [ 36] [ 37] [ 38] [ 37] [ 38] [ 39] [ 41] [ 42] [ 42] [
```

3) The constructed array is saved into another array.

4) Shape attribute value is checked for both arrays

```
In [26]: 1 print(vector.shape) 2 print(new_array_2d.shape) (43, 1) (43, 1)
```

Lab 2

For the Lab 2 in Week 2, Pandas and its main functions are studied. According to requirements, "adult data mini.csv" is used and some operations is done.

Firstly, n is determined as 3 (n=3) because of my student ID. Secondly, data is grouped by "relationship" and "hours-per-week". In other words, "relationship" column is grouped based on the "hours-per-week" column values. Thirdly, "hours-per-week" column values is reduced by n=3. At this step, the function "change_data(x)" is created and used. To apply this function to the dataset, apply() method is used and original DataFrame is updated. Lastly, grouping by "relationship" and reduced "hours-per-week" operation is done again.

My code and results:

1) Data is grouped by 'relationship' and 'hours-per-week'. (group 'relationship' based on 'hours-per-week')

```
In [49]: 1 group_by_hours = data.groupby(['relationship', 'hours-per-week'])
2 group_by_hours.size()

Out[49]: relationship hours-per-week
Husband 13.0 1
40.0 2
45.0 1
80.0 1
Not-in-family 16.0 1
40.0 2
50.0 2
Own-child 30.0 1
Wife 40.0 2
dtype: int64
```

2) In order to change values of the original DataFrame, a function is created. Then, all values of 'hours-per-week' is reduced by 3 (because n=3).

```
In [50]: 1    def change_data(x):
        return x - 3
3
4    data['hours-per-week'] = data['hours-per-week'].apply(change_data)
        data
```

Out[50]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	Answer	IsHo
0	39	State-gov	77516.0	Bachelors	13.0	Never- married	Adm- clerical	Not-in- family	White	Male	2174.0	NaN	37.0	United- States	<=50K	
1	50	Self-emp- not-inc	83311.0	Bachelors	13.0	Married- civ- spouse	Exeo- managerial	Husband	White	Male	0.0	0.0	10.0	United- States	<=50K	
2	38	Private	215646.0	HS-grad	9.0	Divorced	Handlers- cleaners	Not-in- family	White	Male	0.0	NaN	37.0	United- States	<=50K	
3	53	Private	234721.0	11th	7.0	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male	0.0	NaN	37.0	United- States	<=50K	
4	28	Private	338409.0	Bachelors	13.0	Married- civ- spouse	Prof- specialty	Wife	Black	Female	0.0	NaN	37.0	Cuba	<=50K	
5	37	Private	284582.0	Masters	14.0	Married- civ- spouse	Exeo- managerial	Wife	White	Female	0.0	NaN	37.0	United- States	<=50K	
6	49	Private	160187.0	9th	5.0	Married- spouse- absent	Other- service	Not-in- family	Black	Female	0.0	0.0	13.0	Jamaica	<=50K	
7	52	Self-emp- not-inc	209642.0	HS-grad	9.0	Married- civ- spouse	Exec- managerial	Husband	White	Male	0.0	0.0	42.0	United- States	>50K	
8	31	Private	45781.0	Masters	14.0	Never- married	Prof- specialty	Not-in- family	White	Female	14084.0	NaN	47.0	United- States	>50K	
10	37	Private	280464.0	Some- college	10.0	Married- civ- spouse	Exec- managerial	Husband	Black	Male	0.0	NaN	77.0	United- States	>50K	
12	23	Private	122272.0	Bachelors	13.0	Never- married	Adm- clerical	Own-child	White	Female	0.0	NaN	27.0	United- States	<=50K	
13	32	Private	205019.0	Assoc- acdm	12.0	Never- married	Sales	Not-in- family	Black	Male	0.0	NaN	47.0	United- States	<=50K	
14	40	Private	121772.0	Assoc-voc	11.0	Married- civ- spouse	Craft-repair	Husband	Asian- Pac- Islander	Male	0.0	NaN	37.0	?	>50K	
15	25	Private	NaN	Some- college	NaN	NaN	NaN	NaN	White	Male	0.0	NaN	NaN	NaN	NaN	
<																>

3) Grouping is done again with 'relationship' and reduced 'hours-per-week'.

```
In [51]: 1 group_by_reduced_hours = data.groupby(['relationship', 'hours-per-week'])
2 group_by_reduced_hours.size()

Out[51]: relationship hours-per-week
Husband 10.0 1
37.0 2
42.0 1
77.0 1
Not-in-family 13.0 1
37.0 2
47.0 2
Own-child 27.0 1
Wife 37.0 2
dtype: int64
```

Lab 3

<u>Lab 4</u>

<u>Lab 5</u>

<u>Lab 6</u>

<u>Lab 7</u>

<u>Lab 8</u>

<u>Lab 9</u>

<u>Lab 10</u>

<u>Lab 11</u>

<u>Lab 12</u>