

Algoritmos UFCD 0804 - 1.1

Nelson Santos nelson.santos.0001376@edu.atec.pt

Agenda

- Conceitos Genéricos
 - Resolução de problemas;
 - Tipos de Soluções
 - Algoritmos
- Ambiente de desenvolvimento (Portugol webstudio)
 - Instalação e descrição

- Problemas do dia a dia. Como resolver???
 - 1. Identificar o problema.
 - 2. Compreender o problema.
 - 3. Identificar e listar as alternativas para resolver o problema.
 - 4. Selecionar a melhora alternativa.
 - 5. Detalhar/desenvolver a solução escolhida.
 - 6. Avaliar a solução.

Resolução de problemas

Problemas do dia a dia. Como resolver???

1. Identificar o problema:

- Só é possível resolver um problema caso se saiba que exista e se consiga identificar;
- Numa sala de aulas, normalmente o problema vem identificado em forma de enunciado (texto);
- No desenvolvimento de software é necessário identificar claramente quais os objetivos de uma aplicação. O que é que o utilizador final pretende que esta faça;

Resolução de problemas

• Problemas do dia a dia. Como resolver???

2. Compreender o problema:

 Compreender a envolvente (ambiente), nomeadamente os processos, pessoas e sistemas envolvidos;

- Problemas do dia a dia. Como resolver???
 - 3. Identificar e listar as alternativas para resolver o problema.
 - Todas as possíveis soluções;
 - A lista deve ser tão completa possível;
 - Lições aprendidas;
 - Outros exemplos;

- Problemas do dia a dia. Como resolver???
 - 4. Selecionar a melhor solução.
 - Avaliar os prós e contras de cada possível solução;
 - Todas as soluções devem ser exequíveis;

- Problemas do dia a dia. Como resolver???
 - 5. Detalhar/desenvolver a solução escolhida.
 - Listar as ações/instruções a efetuar;
 - Ordenar de forma sequencial (passo a passo);
 - As instruções devem ser compreendidas e exequíveis;

Resolução de problemas

- Problemas do dia a dia. Como resolver???
 - 5. Detalhar/desenvolver a solução escolhida.

Ingredientes Preparação 500gr de bacalhau desfiado 1. Corte 1 cebola em meias luas. demolhado 1 cebola grande 2. Coloque azeite no fundo de uma frigideira alta, a aquecer, junte a cebola e o louro e deixe refogar. 2/3 dente de alho 3. Deite o bacalhau sobre um pano e esprema a água do descongelamento, no lava-loiça. A seguir, dê uma 300gr de batata palha frita amassadela para desfiar mais. 1 folha de louro 4. Pique os dentes de alho, junte à frigideira e mexa. Junte o bacalhau, calque e misture bem com a Azeite q.b. cebola. 6 ovos + 2 gemas 5. Afaste a frigideira do lume, junte metade das batatas palha frita e misture. 1 mão cheia de azeitonas pretas 6. Parta os ovos para dentro de uma taça, coloque 1 gole de água, tempere de sal e pimenta e bata bem. 7. Retire o louro da frigideira, junte os ovos e misture bem (se estiver muito líquido, pode levar ao lume um pouco). 8. Junte a salsa picada e as azeitonas.

- Problemas do dia a dia. Como resolver???
 - 5. Detalhar/desenvolver a solução escolhida.

Resolução de problemas

• Problemas do dia a dia. Como resolver???

6. Avaliar

- Verificar que o resultado era o esperado/pretendido
- Caso não seja, as fases anteriores devem ser revistas

Resolução de problemas - exercício 1

O Pastor, o Lobo, a Ovelha e a Couve:

- Um pastor pretende atravessar um rio, num barco onde só cabe ele e um dos restantes 3 elementos.
- Pode fazer as viagens que quiser, mas não deve perder nenhum, o que pode ser difícil, já que, se ele não estiver presente, a ovelha como a couve, ou o lobo come a ovelha;

Resolução de problemas - solução exercício 1

O Pastor, o Lobo, a Ovelha e a Couve:

Detalhe da solução encontrada:

1. da: Pastor + ovelha;

2. Volta: Pastor;

3. da: Pastor + lobo;

4. Volta: Pastor + ovelha;

5. da: Pastor + couve;

6. Volta: Pastor;

7. da: Pastor + ovelha

8.Fim

Resolução de problemas - exercício 2

Torre de Hanoi

 Mover todos os discos para o pino da direita, com a mesma configuração que se encontram no 1º pino: número de movimentos mínimos: n2 – 1 = 15;

Resolução de problemas - solução exercício 2

Torre de Hanoi

- Solução:
 - 1. D4->T2;
 - 2. D3->T3;
 - 3. D4 -> T3;
 - 4. D2->T2;
 - 5. D4->T1;
 - 6. D3->T2;
 - 7. D4->T2;
 - 8. D1->T3;
 - 9. D4->T3;
 - 10.D3 -> T1;

Resolução de problemas

- Tipos de soluções?
- Todos os problemas podem ser resolvidos com soluções sequenciais?
- Aprender Inglês?
- Como maximizar as minhas vendas numa determinada área?

Soluções Algorítmicas

Soluções heurísticas

Resolução de problemas

- Soluções heurísticas
 - São soluções baseadas no raciocínio, na analise, no conhecimento e experiência. No campo computacional enquadra-se na área da Inteligência Artificial e *Machine Learning*;
 - Humanos ainda melhor que as máquinas....

Soluções Algorítmicas

Soluções heurísticas

Resolução de problemas

- Soluções Algorítmicas
 - São soluções baseadas num conjunto seriado de passos;
 - Máquinas melhor que os Humanos....
- Soluções Mistas
 - Normalmente, as mais comuns. Decomposição de problemas complexos;

Soluções Algorítmicas

Soluções heurísticas

Resolução de problemas

- Soluções Algorítmicas
 - São soluções baseadas num conjunto seriado de passos;
 - Máquinas melhor que os Humanos....
- Soluções Mistas
 - Normalmente, as mais comuns. Decomposição de problemas complexos;

Soluções Algorítmicas

Soluções heurísticas

Conceitos importantes

Solução

Instruções realizadas que conduzem ao resultado final esperado;

Algoritmo

 Uma sequência ordenada e finita de passos (instruções) para resolver um determinado problema;

Programa

Instruções que conduzem a uma solução, usando uma linguagem de programação

Regras importantes:

Para o desenvolvimento de um algoritmo eficiente é necessário obedecermos a algumas premissas básicas no momento de sua construção:

- Definir ações simples e sem ambiguidade;
- Organizar as ações de forma ordenada;
- Estabelecer as ações dentro de uma sequência finita de passos.

• Constituição de um algoritmo

Os algoritmos são capazes de realizar tarefas como:

- 1. Ler e escrever dados;
- 2. Avaliar expressões algébricas, relacionais e lógicas;
- 3. Tomar decisões com base nos resultados das expressões avaliadas;
- 4. Repetir um conjunto de ações de acordo com uma condição;

Algoritmo 1 Exemplo de Pseudocódigo.

```
leia (x,y) {Esta linha é um comentário}

se x>y então

escreva ("x é maior")

senão

se y>x então

escreva ("y é maior")

senão

escreva ("x e y são iguais")

fim-se

fim-se
```


Constituição de um algoritmo:

1. Entrada:

• São fornecidas as informações necessárias para que o algoritmo possa ser executado. Estas informações podem ser fornecidas no momento em que o programa está sendo executado ou podem estar embutidas dentro do mesmo.

2. Processamento:

3. Saída:

Constituição de um algoritmo:

1. Entrada:

2. Processamento:

 São avaliadas todas as expressões algébricas, relacionais e lógicas, assim como todas as estruturas de controle existentes no algoritmo (condição e/ou repetição).

3. Saída:

Constituição de um algoritmo:

- 1. Entrada:
- 2. Processamento:
- 3. Saída:
 - Todos os resultados do processamento (ou parte deles) são enviados para um ou mais dispositivos de saída, como: monitor, impressora, ou até mesmo a própria memoria do computador.

Ambiente de desenvolvimento

Portugol

- Versão web
- https://dgadelha.github.io/Portugol-Webstudio/

• Flowchart:

- https://app.diagrams.net/ (utilização online)
- Apresentação do ambiente de trabalho

- Linguagem Natural;
- Linguagem máquina;
- Linguagem Programação;
- Pseudocódigo;
- Flowchart (Diagramas de fluxo)

Representação de um Algoritmo:

- Linguagem Natural
 - A linguagem natural é a maneira como expressamos nosso raciocínio e trocamos informação. Como é a expressão da cultura de uma sociedade, desenvolvida através das gerações e em diferentes situações, raramente constitui um sistema de regras rígidas que possa ser implementada numa máquina ou que possa ser transcrita logicamente.

Representação de um Algoritmo:

Representação de um Algoritmo:

Representação de um Algoritmo:

Representação de um Algoritmo:

Representação de um Algoritmo:

Simbolos	Significado	Exemplo
	Processamento em geral	x ←x+1
	Leitura/Escrita de dados	Escreve x
	Inicio/Fim de Processamento	Inicio
	Linha de Fluxo	
0	Conector de Fluxos	→
\Diamond	Decisão condicional	X>5
	Escolha múltipla	Caso x
	Subprograma	Rotina x

Representação de um Algoritmo:

Pseudocódigo

Algoritmo em linguagem natural	Algoritmo em lógica computacional
Início 1. Inserir valores 30, 67 e 100. 2. Subtrair de 67 de 100. 3. Dividir o resultado da subtração por 30. 4. Exibir o resultado. Fim	Início 1. Leia os valores A, B e C. 2. s ← B - C. 3. res <= s/30 4. Escreva o resultado Fim

Representação de um Algoritmo:

- Pseudocódigo:
 - O Pseudocódigo é uma maneira intermédia entre a linguagem natural e uma linguagem de programação de representar um algoritmo. Utiliza um conjunto restrito de palavras-chave, em geral na língua nativa do programador, que tem equivalentes nas linguagens de programação.
 - O Pseudocódigo não requer todo a rigidez da sintaxe necessária numa linguagem de programação, permitindo que o formando se foque na logica do algoritmo e não no formalismo da sua representação.

Representação de um Algoritmo:

• Pseudocódigo:

Representação de um Algoritmo:

- Pseudocódigo Portugol:
 - Portugol é uma pseudolinguagem que permite ao programador pensar no problema em si e não no equipamento que irá executar o algoritmo. Deve ser considerado a sintaxe (em relação à forma) e a semântica (em relação ao conteúdo ou seu significado). Em Portugol a sintaxe é definida pela linguagem e a semântica depende do significado que quer se dar ao algoritmo.

Portugol

```
programa
    //comentário de linha
     * Comentário em bloco bloco
     * pode ter vária linhas
     funcao inicio()
          escreva("Olá Mundo")
```

A **Abordagem Estruturada** é uma abordagem sistemática na construção de SW que possui como princípios:

- A separação das definições de dados e de programa (estruturas de dados e de controle);
- 2. A conceção descendente ou "Top-Down"
- 3. Refinamento progressivo;

Portugol – Exercício 1

Objetivo: "Este é o meu primeiro algoritmo em Portugol"

3 Questões

PALMELA

Edifício ATEC · Parque Industrial da Volkswagen Autoeuropa 2950-557 · Quinta do Anjo

Tel. 212 107 300 | info@atec.pt

PORTO

Edifício Siemens · Av. Mário Brito (EN107), nº 3570 · Freixieiro 4456-901 · Perafita

Tel. 220 400 500 | infoporto@atec.pt

