08/904,809

Not furnished

Exp Mail EV335610938US USAN 09/895,814

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 98/37418 G01N 33/574, 33/577, C07K 16/30, A61K **A2** (43) International Publication Date: 27 August 1998 (27.08.98) 39/395, 47/48, C12Q 1/68, G01N 33/543 (21) International Application Number: PCT/US98/03690 (81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, (22) International Filing Date: 25 February 1998 (25.02.98) GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (30) Priority Data: 08/806,596 25 February 1997 (25.02.97) US (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent

US

US

(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).

1 August 1997 (01.08.97)

9 February 1998 (09.02.98)

(72) Inventors: XU, Jiangchun; 15805 Southeast 43rd Place, Bellevue, WA 98006 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US).

(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).

Published

Without international search report and to be republished upon receipt of that report.

(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent

(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,

GA, GN, ML, MR, NE, SN, TD, TG).

(54) Title: COMPOUNDS FOR IMMUNODIAGNOSIS OF PROSTATE CANCER AND METHODS FOR THEIR USE

(57) Abstract

Compounds and methods for diagnosing prostate cancer are provided. The inventive compounds include polypeptides containing at least a portion of a prostate tumor protein. The inventive polypeptides may be used to generate antibodies useful for the diagnosis and monitoring of prostate cancer. Nucleic acid sequences for preparing probes, primers, and polypeptides are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					a		
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
. BY	Belarus	IS	(celand	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Ci	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	-,,	Limoaowe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

COMPOUNDS FOR IMMUNODIAGNOSIS OF PROSTATE CANCER AND METHODS FOR THEIR USE

TECHNICAL FIELD

The present invention relates generally to the treatment and monitoring of prostate cancer. The invention is more particularly related to polypeptides comprising at least a portion of a prostate protein. Such polypeptides may be used for the production of compounds, such as antibodies, useful for diagnosing and monitoring the progression of prostate cancer, and possibly other tumor types, in a patient.

BACKGROUND OF THE INVENTION

Prostate cancer is the most common form of cancer among males, with an estimated incidence of 30% in men over the age of 50. Overwhelming clinical evidence shows that human prostate cancer has the propensity to metastasize to bone, and the disease appears to progress inevitably from androgen dependent to androgen refractory status, leading to increased patient mortality. This prevalent disease is currently the second leading cause of cancer death among men in the U.S.

In spite of considerable research into diagnosis and therapy of the disease, prostate cancer remains difficult to detect and to treat. Commonly, treatment is based on surgery and/or radiation therapy, but these methods are ineffective in a significant percentage of cases. Two previously identified prostate specific proteins - prostate specific antigen (PSA) and prostatic acid phosphatase (PAP) - have limited diagnostic and therapeutic potential. For example, PSA levels do not always correlate well with the presence of prostate cancer, being positive in a percentage of non-prostate cancer cases, including benign prostatic hyperplasia (BPH). Furthermore, PSA measurements correlate with prostate volume, and do not indicate the level of metastasis.

Accordingly, there remains a need in the art for improved and diagnostic methods for prostate cancer.

SUMMARY OF THE INVENTION

The present invention provides methods for immunodiagnosis of prostate cancer, together with kits for use in such methods. Polypeptides are disclosed which comprise at least an immunogenic portion of a prostate tumor protein or a variant of said protein that differs only in conservative substitutions and/or modifications, wherein the prostate tumor protein comprises an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-11, 115-171, 173-175, 177, 179-224 and variants thereof. Such polypeptides may be usefully employed in the diagnosis and monitoring of prostate cancer.

In one specific aspect of the present invention, methods are provided for detecting prostate cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that is capable of binding to one of the above polypeptides; and (b) detecting in the sample a protein or polypeptide that binds to the binding agent. In preferred embodiments, the binding agent is an antibody, most preferably a monoclonal antibody.

In related aspects, methods are provided for monitoring the progression of prostate cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that is capable of binding to one of the above polypeptides; (b) determining in the sample an amount of a protein or polypeptide that binds to the binding agent; (c) repeating steps (a) and (b); and comparing the amounts of polypeptide detected in steps (b) and (c).

Within related aspects, the present invention provides antibodies, preferably monoclonal antibodies, that bind to the inventive polypeptides, as well as diagnostic kits comprising such antibodies, and methods of using such antibodies to inhibit the development of prostate cancer.

The present invention further provides methods for detecting prostate cancer comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with a first and a second oligonucleotide primer in a polymerase chain reaction, at least one of the oligonucleotide primers being specific for a DNA molecule that encodes one of the above polypeptides; and (c) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers. In a preferred embodiment, at least one of the

generate antibodies that detect the presence or absence of prostate cancer. Such modified sequences may be prepared and tested using, for example, the representative procedures described herein.

As used herein, a "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

A nucleotide "variant" is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or additions. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (DNA, 2:183, 1983). Nucleotide variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant nucleotide sequences preferably exhibit at least about 70%, more preferably at least about 80% and most preferably at least about 90% identity to the recited sequence. Such variant nucleotide sequences will generally hybridize to the recite nucleotide sequence under stringent conditions. As used herein, "stringent conditions" refers to prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65 °C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1X SSC, 0.1% SDS at 65 °C and two washes of 30 minutes each in 0.2X SSC, 0.1% SDS at 65 °C.

"Polypeptides" as used herein also include combination, or fusion, polypeptides. A "combination polypeptide" is a polypeptide comprising at least one of the above immunogenic portions and one or more additional immunogenic prostate tumor-specific sequences, which are joined via a peptide linkage into a single amino acid chain. The sequences may be joined directly (i.e., with no intervening amino acids) or may be joined by way of a linked sequence (e.g., Gly-Cys-Gly) that does not significantly diminish the immunogenic properties of the component polypeptides.

The prostate tumor proteins of the present invention, and DNA molecules encoding such proteins, may be isolated from prostate tumor tissue using any of a variety of methods well known in the art. DNA sequences corresponding to a gene (of a portion thereof) encoding one of the inventive prostate tumor proteins may be isolated from a prostate tumor cDNA library using a subtraction technique as described in detail below. Examples of such DNA sequences are provided in SEQ ID Nos: 1-107, 109-111, 115-171, 173-175, 177 and 179-224. Partial DNA sequences thus obtained may be used to design oligonucleotide primers for the amplification of full-length DNA sequences in a polymerase chain reaction (PCR), using techniques well known in the art (see, for example, Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Erlich ed., PCR Technology, Stockton Press, NY, 1989). Once a DNA sequence encoding a polypeptide is obtained, any of the above modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (DNA, 2:183, 1983).

The prostate tumor polypeptides disclosed herein may also be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain (see, for example, Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963). Equipment for automated synthesis of polypeptides is commercially available from

...

oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA molecule having a partial sequence selected from the group consisting of SEQ ID Nos: 2-3, 5-107, 109-11, 115-171, 173-175, 177 and 179-224.

In a further aspect, the present invention provides a method for detecting prostate cancer in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a DNA molecule that encodes one of the above polypeptides; and (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe. Preferably, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule having a partial sequence selected from the group consisting of SEQ ID Nos:: 2-3, 5-107, 109-11, 115-171, 173-175, 177 and 179-224.

In related aspects, diagnostic kits comprising the above oligonucleotide probes or primers are provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the immunodiagnosis and monitoring of prostate cancer. The inventive compositions are generally polypeptides that comprise at least a portion of a prostate tumor protein. Also included within the present invention are molecules (such as an antibody or fragment thereof) that bind to the inventive polypeptides. Such molecules are referred to herein as "binding agents."

In particular, the subject invention discloses polypeptides comprising at least a portion of a human prostate tumor protein, or a variant thereof such a protein, wherein the prostate tumor protein includes an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-11, 115-171, 173-175, 177, 179-224, the complements of said nucleotide sequences and variants thereof. As used herein, the term "polypeptide"

encompasses amino acid chains of any length, including full length proteins, wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising a portion of one of the above prostate proteins may consist entirely of the portion, or the portion may be present within a larger polypeptide that contains additional sequences. The additional sequences may be derived from the native protein or may be heterologous, and such sequences may be immunoreactive and/or antigenic.

As used herein, an "immunogenic portion" of a human prostate tumor protein is a portion that is capable of eliciting an immune response in a patient inflicted with prostate cancer and as such binds to antibodies present within sera from a prostate cancer patient. Immunogenic portions of the proteins described herein may thus be identified in antibody binding assays. Such assays may generally be performed using any of a variety of means known to those of ordinary skill in the art, as described, for example, in Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988. For example, a polypeptide may be immobilized on a solid support (as described below) and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, ¹²⁵I-labeled Protein A. Alternatively, a polypeptide may be used to generate monoclonal and polyclonal antibodies for use in detection of the polypeptide in blood or other fluids of prostate cancer patients.

The compositions and methods of the present invention also encompass variants of the above polypeptides and DNA molecules. A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the therapeutic, antigenic and/or immunogenic properties of the polypeptide are retained. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity to the identified polypeptides. For prostate tumor polypeptides with immunoreactive properties, variants may, alternatively, be identified by modifying the amino acid sequence of one of the above polypeptides, and evaluating the immunoreactivity of the modified polypeptide. For prostate tumor polypeptides useful for the generation of diagnostic binding agents, a variant may be identified by evaluating a modified polypeptide for the ability to

suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, CA), and may be operated according to the manufacturer's instructions.

Alternatively, any of the above polypeptides may be produced recombinantly by inserting a DNA sequence that encodes the polypeptide into an expression vector and expressing the protein in an appropriate host. Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as CHO cells. The DNA sequences expressed in this manner may encode naturally occurring polypeptides, portions of naturally occurring polypeptides, or other variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in substantially pure form (i.e., the polypeptides are homogenous as determined by amino acid composition and primary sequence analysis). Preferably, the polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. In certain embodiments, described in more detail below, the substantially pure polypeptides are incorporated into pharmaceutical compositions or vaccines for use in one or more of the methods disclosed herein.

In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known prostate antigen, together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the first and second polypeptides.

A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding the first and second polypeptides into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames

of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons require to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

Polypeptides and/or fusion proteins of the present invention may be used to generate binding agents, such as antibodies or fragments thereof, that are capable of detecting metastatic human prostate tumors. Binding agents of the present invention may generally be prepared using methods known to those of ordinary skill in the art, including the representative procedures described herein. Binding agents are capable of differentiating between patients with and without prostate cancer, using the representative assays described

herein. In other words, antibodies or other binding agents raised against a prostate tumor protein, or a suitable portion thereof, will generate a signal indicating the presence of primary or metastatic prostate cancer in at least about 20% of patients afflicted with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without primary or metastatic prostate cancer. Suitable portions of such prostate tumor proteins are portions that are able to generate a binding agent that indicates the presence of primary or metastatic prostate cancer in substantially all (i.e., at least about 80%, and preferably at least about 90%) of the patients for which prostate cancer would be indicated using the full length protein, and that indicate the absence of prostate cancer in substantially all of those samples that would be negative when tested with full length protein. The representative assays described below, such as the two-antibody sandwich assay, may generally be employed for evaluating the ability of a binding agent to detect metastatic human prostate tumors.

The ability of a polypeptide and/or fusion protein prepared as described herein to generate antibodies capable of detecting primary or metastatic human prostate tumors may generally be evaluated by raising one or more antibodies against the polypeptide (using, for example, a representative method described herein) and determining the ability of such antibodies to detect such tumors in patients. This determination may be made by assaying biological samples from patients with and without primary or metastatic prostate cancer for the presence of a polypeptide that binds to the generated antibodies. Such test assays may be performed, for example, using a representative procedure described below. Polypeptides that generate antibodies capable of detecting at least 20% of primary or metastatic prostate tumors by such procedures are considered to be useful in assays for detecting primary or metastatic human prostate tumors. Polypeptide specific antibodies may be used alone or in combination to improve sensitivity.

Polypeptides and/or fusion proteins capable of detecting primary or metastatic human prostate tumors may be used as markers for diagnosing prostate cancer or for monitoring disease progression in patients. In one embodiment, prostate cancer in a patient may be diagnosed by evaluating a biological sample obtained from the patient for the level of

one or more of the above polypeptides, relative to a predetermined cut-off value. As used herein, suitable "biological samples" include blood, sera, urine and/or prostate secretions.

The level of one or more of the above polypeptides may be evaluated using any binding agent specific for the polypeptide(s). A "binding agent," in the context of this invention, is any agent (such as a compound or a cell) that binds to a polypeptide as described above. As used herein, "binding" refers to a noncovalent association between two separate molecules (each of which may be free (i.e., in solution) or present on the surface of a cell or a solid support), such that a "complex" is formed. Such a complex may be free or immobilized (either covalently or noncovalently) on a support material. The ability to bind may generally be evaluated by determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to "bind" in the context of the present invention when the binding constant for complex formation exceeds about 10³ L/mol. The binding constant may be determined using methods well known to those of ordinary skill in the art.

Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome with or without a peptide component, an RNA molecule or a peptide. In a preferred embodiment, the binding partner is an antibody, or a fragment thereof. Such antibodies may be polyclonal, or monoclonal. In addition, the antibodies may be single chain, chimeric, CDR-grafted or humanized. Antibodies may be prepared by the methods described herein and by other methods well known to those of skill in the art.

There are a variety of assay formats known to those of ordinary skill in the art for using a binding partner to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In a preferred embodiment, the assay involves the use of binding partner immobilized on a solid support to bind to and remove the polypeptide from the remainder of the sample. The bound polypeptide may then be detected using a second binding partner that contains a reporter group. Suitable second binding partners include antibodies that bind to the binding partner/polypeptide complex. Alternatively, a competitive assay may be utilized, in which a

polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding partner after incubation of the binding partner with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding partner is indicative of the reactivity of the sample with the immobilized binding partner.

The solid support may be any material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 μ g, and preferably about 100 ng to about 1 μg, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a second antibody (containing a reporter group) capable of binding to a different site on the polypeptide is added. The amount of second antibody that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20™ (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is that period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with prostate cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of antibody to reporter group may be achieved using standard methods known to those of ordinary skill in the art.

The second antibody is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound second antibody is then removed and bound second antibody is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of prostate cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without prostate cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for prostate cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for prostate cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the antibody is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized antibody as the sample passes through the membrane. A second, labeled antibody then binds to the antibodypolypeptide complex as a solution containing the second antibody flows through the membrane. The detection of bound second antibody may then be performed as described above. In the strip test format, one end of the membrane to which antibody is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second antibody and to the area of immobilized antibody. Concentration of second antibody at the area of immobilized antibody indicates the presence of prostate cancer. Typically, the concentration of second antibody at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of antibody immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1µg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount of biological sample.

Of course, numerous other assay protocols exist that are suitable for use with the antigens or antibodies of the present invention. The above descriptions are intended to be exemplary only.

In another embodiment, the above polypeptides may be used as markers for the progression of prostate cancer. In this embodiment, assays as described above for the diagnosis of prostate cancer may be performed over time, and the change in the level of reactive polypeptide(s) evaluated. For example, the assays may be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, prostate cancer is progressing in those patients in whom the level of polypeptide detected by the binding agent increases over time. In contrast, prostate cancer is not progressing when the level of reactive polypeptide either remains constant or decreases with time.

Antibodies for use in the above methods may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the antigenic polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep and goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield,

such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Monoclonal antibodies of the present invention may also be used as therapeutic reagents, to diminish or eliminate prostate tumors. The antibodies may be used on their own (for instance, to inhibit metastases) or coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.

Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the

catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S. Patent No. 4,671,958, to Rodwell et al.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Patent No. 4,569,789, to Blattler et al.).

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing

nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.

Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify prostate tumor-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a prostate tumor protein of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a DNA molecule encoding a prostate tumor protein of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

As used herein, the term "oligonucleotide primer/probe specific for a DNA molecule" means an oligonucleotide sequence that has at least about 80%, preferably at least about 90% and more preferably at least about 95%, identity to the DNA molecule in question. Oligonucleotide primers and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the oligonucleotide primers comprise at least about 10 contiguous nucleotides of a DNA molecule having a sequence selected from SEQ ID Nos: 1-107, 109-111, 115-171, 173-175, 177 and 179-224. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a DNA molecule having a sequence provided in SEQ ID Nos: 1-107, 109-111, 115-171, 173-175, 177 and 179-224. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al. *Ibid*; Ehrlich, *Ibid*). Primers or probes may

thus be used to detect prostate tumor-specific sequences in biological samples, including blood, semen, prostate tissue and/or prostate tumor tissue.

Polypeptides of the present invention that comprise an immunogenic portion of a prostate tumor protein may also be used for immunotherapy of prostate cancer, wherein the polypeptide stimulates the patient's own immune response to prostate tumor cells. In further aspects, the present invention provides methods for using one or more of the immunoreactive polypeptides encoded by a DNA molecule having a sequence provided in SEQ ID NO: 1-107, 109-111, 115-171, 173-175, 177 and 179-224 (or DNA encoding such polypeptides) for immunotherapy of prostate cancer in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease. Accordingly, the above immunoreactive polypeptides may be used to treat prostate cancer or to inhibit the development of prostate cancer. The polypeptides may be administered either prior to or following surgical removal of primary tumors and/or treatment by administration of radiotherapy and conventional chemotherapeutic drugs.

In these aspects, the polypeptide is generally present within a pharmaceutical composition and/or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. The vaccines may comprise one or more of such polypeptides and a non-specific immune response enhancer, such as an adjuvant, biodegradable microsphere (e.g., polylactic galactide) or a liposome (into which the polypeptide is incorporated). Pharmaceutical compositions and vaccines may also contain other epitopes of prostate tumor antigens, either incorporated into a combination polypeptide (i.e., a single polypeptide that contains multiple epitopes) or present within a separate polypeptide.

Alternatively, a pharmaceutical composition or vaccine may contain DNA encoding one or more of the above polypeptides, such that the polypeptide is generated in situ. In such pharmaceutical compositions and vaccines, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Appropriate nucleic acid

expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an epitope of a prostate cell antigen on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Hoch et al., PNAS 86:317-321, 1989; Flexner et al., Ann. N.Y. Acad. Sci. 569:86-103, 1989; Flexner et al., Vaccine 8:17-21, 1990; U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, Biotechniques 6:616-627, 1988; Rosenfeld et al., Science 252:431-434, 1991; Kolls et al., PNAS 91:215-219, 1994; Kass-Eisler et al., PNAS 90:11498-11502, 1993; Guzman et al., Circulation 88:2838-2848, 1993; and Guzman et al., Cir. Res. 73:1202-1207, 1993. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in published PCT application WO 90/11092, and Ulmer et al., Science 259:1745-1749, 1993, reviewed by Cohen, Science 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

Routes and frequency of administration, as well as dosage, will vary from individual to individual and may parallel those currently being used in immunotherapy of other diseases. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 10 doses may be administered over a 3-24 week period. Preferably, 4 doses are administered, at an interval of 3 months, and booster administrations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that is effective to raise an immune response (cellular and/or humoral) against prostate tumor cells in a treated patient. A suitable immune response is at least 10-50% above the basal (i.e., untreated) level. In general, the amount of polypeptide present in a dose (or produced in situ by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from

about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 μ g. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.01 mL to about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a lipid, a wax and/or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and/or magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic glycolide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Any of a variety of non-specific immune response enhancers may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a nonspecific stimulator of immune response, such as lipid A, Bordella pertussis or Mycobacterium tuberculosis. Such adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI) and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ).

Polypeptides disclosed herein may also be employed in *ex vivo* treatment of prostate cancer. For example, cells of the immune system, such as T cells, may be isolated from the peripheral blood of a patient, using a commercially available cell separation system, such as CellPro Incorporated's (Bothell, WA) CEPRATE™ system (see U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO 89/06280; WO 91/16116 and WO 92/07243). The separated cells are stimulated with one or more of the immunoreactive polypeptides contained within a delivery vehicle, such as a microsphere, to provide antigen-specific T cells. The population of tumor antigen-specific T cells is then expanded using standard techniques and the cells are administered back to the patient.

22

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

EXAMPLE 1

ISOLATION AND CHARACTERIZATION OF PROSTATE TUMOR POLYPEPTIDES

This Example describes the isolation of prostate tumor polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library was constructed from prostate tumor poly A⁺ RNA using a Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning kit (BRL Life Technologies, Gaithersburg, MD 20897) following the manufacturer's protocol. Specifically, prostate tumor tissues were homogenized with polytron (Kinematica, Switzerland) and total RNA was extracted using Trizol reagent (BRL Life Technologies) as directed by the manufacturer. The poly A⁺ RNA was then purified using a Qiagen oligotex spin column mRNA purification kit (Qiagen, Santa Clarita, CA 91355) according to the manufacturer's protocol. First-strand cDNA was synthesized using the NotI/Oligo-dT18 primer. Double-stranded cDNA was synthesized, ligated with EcoRI/BAXI adaptors (Invitrogen, San Diego, CA) and digested with NotI. Following size fractionation with Chroma Spin-1000 columns (Clontech, Palo Alto, CA 94303), the cDNA was ligated into the EcoRI/NotI site of pCDNA3.1 (Invitrogen) and transformed into ElectroMax *E. coli* DH10B cells (BRL Life Technologies) by electroporation.

Using the same procedure, a normal human pancreas cDNA expression library was prepared from a pool of six tissue specimens (Clontech). The cDNA libraries were characterized by determining the number of independent colonies, the percentage of clones that carried insert, the average insert size and by sequence analysis. The prostate tumor library contained 1.64×10^7 independent colonies, with 70% of clones having an insert and the average insert size being 1745 base pairs. The normal pancreas cDNA library contained 3.3×10^6 independent colonies, with 69% of clones having inserts and the average insert size

being 1120 base pairs. For both libraries, sequence analysis showed that the majority of clones had a full length cDNA sequence and were synthesized from mRNA, with minimal rRNA and mitochondrial DNA contamination.

cDNA library subtraction was performed using the above prostate tumor and normal pancreas cDNA libraries, as described by Hara et al. (*Blood*, 84:189-199, 1994) with some modifications. Specifically, a prostate tumor-specific subtracted cDNA library was generated as follows. Normal pancreas cDNA library (70 μ g) was digested with EcoRI, NotI, and SfuI, followed by a filling-in reaction with DNA polymerase Klenow fragment. After phenol-chloroform extraction and ethanol precipitation, the DNA was dissolved in 100 μ l of H₂O, heat-denatured and mixed with 100 μ l (100 μ g) of Photoprobe biotin (Vector Laboratories, Burlingame, CA). As recommended by the manufacturer, the resulting mixture was irradiated with a 270 W sunlamp on ice for 20 minutes. Additional Photoprobe biotin (50 μ l) was added and the biotinylation reaction was repeated. After extraction with butanol five times, the DNA was ethanol-precipitated and dissolved in 23 μ l H₂O to form the driver DNA.

To form the tracer DNA, 10 μg prostate tumor cDNA library was digested with BamHI and XhoI, phenol chloroform extracted and passed through Chroma spin-400 columns (Clontech). Following ethanol precipitation, the tracer DNA was dissolved in 5 μl H₂O. Tracer DNA was mixed with 15 μl driver DNA and 20 μl of 2 x hybridization buffer (1.5 M NaCl/10 mM EDTA/50 mM HEPES pH 7.5/0.2% sodium dodecyl sulfate), overlaid with mineral oil, and hear-denatured completely. The sample was immediately transferred into a 68 °C water bath and incubated for 20 hours (long hybridization [LH]). The reaction mixture was then subjected to a streptavidin treatment followed by phenol/chloroform extraction. This process was repeated three more times. Subtracted DNA was precipitated, dissolved in 12 μl H₂O, mixed with 8 μl driver DNA and 20 μl of 2 x hybridization buffer, and subjected to a hybridization at 68 °C for 2 hours (short hybridization [SH]). After removal of biotinylated double-stranded DNA, subtracted cDNA was ligated into BamHI/XhoI site of chloramphenicol resistant pBCSK⁺ (Stratagene, La Jolla, CA 92037) and transformed into ElectroMax *E. coli* DH10B cells by electroporation to generate a prostate tumor specific subtracted cDNA library(prostate subtraction 1.

To analyze the subtracted cDNA library, plasmid DNA was prepared from 100 independent clones, randomly picked from the subtracted prostate tumor specific library and grouped based on insert size. Representative cDNA clones were further characterized by DNA sequencing with a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A (Foster City, CA). Six cDNA clones, hereinafter referred to as F1-13, F1-12, F1-16, H1-1, H1-9 and H1-4, were shown to be abundant in the subtracted prostate-specific cDNA library. The determined 3' and 5' cDNA sequences for F1-12 are provided in SEQ ID NO: 2 and 3, respectively, with determined 3' cDNA sequences for F1-13, F1-16, H1-1, H1-9 and H1-4 being provided in SEQ ID No: 1 and 4-7, respectively.

The cDNA sequences for the isolated clones were compared to known sequences in the gene bank using the EMBL and GenBank databases (release 96). Four of the prostate tumor cDNA clones, F1-13, F1-16, H1-1, and H1-4, were determined to encode the following previously identified proteins: prostate specific antigen (PSA), human glandular kallikrein, human tumor expression enhanced gene, and mitochondria cytochrome C oxidase subunit II. H1-9 was found to be identical to a previously identified human autonomously replicating sequence. No significant homologies to the cDNA sequence for F1-12 were found.

Subsequent studies led to the isolation of a full-length cDNA sequence for F1-12. This sequence is provided in SEQ ID NO: 107, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 108.

To clone less abundant prostate tumor specific genes, cDNA library subtraction was performed by subtracting the prostate tumor cDNA library described above with the normal pancreas cDNA library and with the three most abundant genes in the previously subtracted prostate tumor specific cDNA library: human glandular kallikrein, prostate specific antigen (PSA), and mitochondria cytochrome C oxidase subunit II. Specifically, 1 µg each of human glandular kallikrein, PSA and mitochondria cytochrome C oxidase subunit II cDNAs in pCDNA3.1 were added to the driver DNA and subtraction was performed as described above to provide a second subtracted cDNA library hereinafter referred to as the "subtracted prostate tumor specific cDNA library with spike".

Twenty-two cDNA clones were isolated from the subtracted prostate tumor specific cDNA library with spike. The determined 3' and 5' cDNA sequences for the clones referred to as J1-17, L1-12, N1-1862, J1-13, J1-19, J1-25, J1-24, K1-58, K1-63, L1-4 and L1-14 are provided in SEQ ID Nos: 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23, 24-25, 26-27 and 28-29, respectively. The determined 3' cDNA sequences for the clones referred to as J1-12, J1-16, J1-21, K1-48, K1-55, L1-2, L1-6, N1-1858, N1-1860, N1-1861, N1-1864 are provided in SEQ ID Nos: 30-40, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to three of the five most abundant DNA species, (J1-17, L1-12 and N1-1862; SEQ ID Nos: 8-9, 10-11 and 12-13, respectively). Of the remaining two most abundant species, one (J1-12; SEQ ID NO:30) was found to be identical to the previously identified human pulmonary surfactant-associated protein, and the other (K1-48; SEQ ID NO:33) was determined to have some homology to R. norvegicus mRNA for 2-arylpropionyl-CoA epimerase. Of the 17 less abundant cDNA clones isolated from the subtracted prostate tumor specific cDNA library with spike, four (J1-16, K1-55, L1-6 and N1-1864; SEQ ID Nos:31, 34, 36 and 40, respectively) were found to be identical to previously identified sequences, two (J1-21 and N1-1860; SEQ ID Nos: 32 and 38, respectively) were found to show some homology to non-human sequences, and two (L1-2 and N1-1861; SEQ ID Nos: 35 and 39, respectively) were found to show some homology to known human sequences. No significant homologies were found to the polypeptides J1-13, J1-19, J1-24, J1-25, K1-58, K1-63, L1-4, L1-14 (SEQ ID Nos: 14-15, 16-17, 20-21, 18-19, 22-23, 24-25, 26-27, 28-29; respectively).

Subsequent studies led to the isolation of full length cDNA sequences for J1-17, L1-12 and N1-1862 (SEQ ID NOS: 109-111, respectively). The corresponding predicted amino acid sequences are provided in SEQ ID NOS: 112-114.

In a further experiment, four additional clones were identified by subtracting a prostate tumor cDNA library with normal prostate cDNA prepared from a pool of three normal prostate poly A+ RNA (prostate subtraction 2). The determined cDNA sequences for these clones, hereinafter referred to as U1-3064, U1-3065, V1-3692 and 1A-3905, are provided in SEQ ID NO: 69-72, respectively. Comparison of the determined sequences with those in the gene bank revealed no significant homologies to U1-3065.

A second subtraction with spike (prostate subtraction spike 2) was performed by subtracting a prostate tumor specific cDNA library with spike with normal pancreas cDNA library and further spiked with PSA, J1-17, pulmonary surfactant-associated protein, mitochondrial DNA, cytochrome c oxidase subunit II, N1-1862, autonomously replicating sequence, L1-12 and tumor expression enhanced gene. Four additional clones, hereinafter referred to as V1-3686, R1-2330, 1B-3976 and V1-3679, were isolated. The determined cDNA sequences for these clones are provided in SEQ ID NO:73-76, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to V1-3686 and R1-2330.

Further analysis of the three prostate subtractions described above (prostate subtraction 2, subtracted prostate tumor specific cDNA library with spike, and prostate subtraction spike 2) resulted in the identification of sixteen additional clones, referred to as 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1G-4734, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4810, 1I-4811, 1J-4876, 1K-4884 and 1K-4896. The determined cDNA sequences for these clones are provided in SEQ ID NOS: 77-92, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to 1G-4741, 1G-4734, 1I-4807, 1J-4876 and 1K-4896 (SEQ ID NOS: 79, 81, 87, 90 and 92, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4807, 1J-4876, 1K-4884 and 1K-4896, provided in SEQ ID NOS: 179-188 and 191-193, respectively, and to the determination of additional partial cDNA sequences for 1I-4810 and 1I-4811, provided in SEQ ID NOS: 189 and 190, respectively.

An additional subtraction was performed by subtracting a normal prostate cDNA library with normal pancreas cDNA (prostate subtraction 3). This led to the identification of six additional clones referred to as 1G-4761, 1G-4762, 1H-4766, 1H-4770, 1H-4771 and 1H-4772 (SEQ ID NOS: 93-98). Comparison of these sequences with those in the gene bank revealed no significant homologies to 1G-4761 and 1H-4771 (SEQ ID NOS: 93 and 97, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1G-4761, 1G-4762, 1H-4766 and 1H-4772 provided in SEQ

ID NOS: 194-196 and 199, respectively, and to the determination of additional partial cDNA sequences for 1H-4770 and 1H-4771, provided in SEQ ID NOS: 197 and 198, respectively.

Subtraction of a prostate tumor cDNA library, prepared from a pool of polyA+RNA from three prostate cancer patients, with a normal pancreas cDNA library (prostate subtraction 4) led to the identification of eight clones, referred to as 1D-4297, 1D-4309, 1D.1-4278, 1D-4283, 1D-4283, 1D-4304, 1D-4296 and 1D-4280 (SEQ ID NOS: 99-107). These sequences were compared to those in the gene bank as described above. No significant homologies were found to 1D-4283 and 1D-4304 (SEQ ID NOS: 103 and 104, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1D-4309, 1D.1-4278, 1D-4288, 1D-4283, 1D-4304, 1D-4296 and 1D-4280, provided in SEQ ID NOS: 200-206, respectively.

cDNA clones isolated in prostate subtraction 1 and prostate subtraction 2, described above, were colony PCR amplified and their mRNA expression levels in prostate tumor, normal prostate and in various other normal tissues were determined using microarray technology (Synteni, Palo Alto, CA). Briefly, the PCR amplification products were dotted onto slides in an array format, with each product occupying a unique location in the array. mRNA was extracted from the tissue sample to be tested, reverse transcribed, and fluorescent-labeled cDNA probes were generated. The microarrays were probed with the labeled cDNA probes, the slides scanned and fluorescence intensity was measured. This intensity correlates with the hybridization intensity. Two novel clones (referred to as P509S and P510S) were found to be over-expressed in prostate tumor and normal prostate and expressed at low levels in all other normal tissues tested (liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon). The determined cDNA sequences for P509S and P510S are provided in SEQ ID NO: 223 and 224, respectively. Comparison of these sequences with those in the gene bank as described above, revealed some homology to previously identified ESTs.

28

EXAMPLE 2

DETERMINATION OF TISSUE SPECIFICITY OF PROSTATE TUMOR POLYPEPTIDES

Using gene specific primers, mRNA expression levels for the representative prostate tumor polypeptides F1-16, H1-1, J1-17, L1-12, F1-12 and N1-1862 were examined in a variety of normal and tumor tissues using RT-PCR.

Briefly, total RNA was extracted from a variety of normal and tumor tissues using Trizol reagent as described above. First strand synthesis was carried out using 1-2 μ g of total RNA with SuperScript II reverse transcriptase (BRL Life Technologies) at 42 $^{\circ}$ C for one hour. The cDNA was then amplified by PCR with gene-specific primers. To ensure the semi-quantitative nature of the RT-PCR, β -actin was used as an internal control for each of the tissues examined. First, serial dilutions of the first strand cDNAs were prepared and RT-PCR assays were performed using β -actin specific primers. A dilution was then chosen that enabled the linear range amplification of the β -actin template and which was sensitive enough to reflect the differences in the initial copy numbers. Using these conditions, the β -actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase treatment and by assuring a negative PCR result when using first strand cDNA that was prepared without adding reverse transcriptase.

mRNA Expression levels were examined in four different types of tumor tissue (prostate tumor from 2 patients, breast tumor from 3 patients, colon tumor, lung tumor), and sixteen different normal tissues, including prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach, testes, bone marrow and brain. F1-16 was found to be expressed at high levels in prostate tumor tissue, colon tumor and normal prostate, and at lower levels in normal liver, skin and testes, with expression being undetectable in the other tissues examined. H1-1 was found to be expressed at high levels in prostate tumor, lung tumor, breast tumor, normal prostate, normal colon and normal brain, at much lower levels in normal lung, pancreas, skeletal muscle, skin, small intestine, bone marrow, and was not detected in the other tissues tested. J1-17 and L1-12 appear to be specifically over-expressed in prostate, with both genes being expressed at high levels in prostate tumor and normal prostate but at low to undetectable levels in all the other tissues

examined. N1-1862 was found to be over-expressed in 60% of prostate tumors and detectable in normal colon and kidney. The RT-PCR results thus indicate that F1-16, H1-1, J1-17, N1-1862 and L1-12 are either prostate specific or are expressed at significantly elevated levels in prostate.

Further RT-PCR studies showed that F1-12 is over-expressed in 60% of prostate tumors, detectable in normal kidney but not detectable in all other tissues tested. Similarly, R1-2330 was shown to be over-expressed in 40% of prostate tumors, detectable in normal kidney and liver, but not detectable in all other tissues tested. U1-3064 was found to be over-expressed in 60% of prostate tumors, and also expressed in breast and colon tumors, but was not detectable in normal tissues.

RT-PCR characterization of R1-2330, U1-3064 and 1D-4279 showed that these three antigens are over-expressed in prostate and/or prostate tumors.

Northern analysis with four prostate tumors, two normal prostate samples, two BPH prostates, and normal colon, kidney, liver, lung, pancrease, skeletal muscle, brain, stomach, testes, small intestine and bone marrow, showed that L1-12 is over-expressed in prostate tumors and normal prostate, while being undetectable in other normal tissues tested. J1-17 was detected in two prostate tumors and not in the other tissues tested. N1-1862 was found to be over-expressed in three prostate tumors and to be expressed in normal prostate, colon and kidney, but not in other tissues tested. F1-12 was found to be highly expressed in two prostate tumors and to be undetectable in all other tissues tested.

The micro-array technology described above was used to determine the expression levels of representative antigens described herein in prostate tumor, breast tumor and the following normal tissues: prostate, liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon. L1-12 was found to be over-expressed in normal prostate and prostate tumor, with some expression being detected in normal skeletal muscle. Both J1-12 and F1-12 were found to be over-expressed in prostate tumor, with expression being lower or undetectable in all other tissues tested. N1-1862 was found to be expressed at high levels in prostate tumor and normal prostate, and at low levels in normal large intestine and normal colon, with expression being undetectable in all other tissues tested. R1-2330 was found to

be over-expressed in prostate tumor and normal prostate, and to be expressed at lower levels in all other tissues tested. 1D-4279 was found to be over-expressed in prostate tumor and normal prostate, expressed at lower levels in normal spinal cord, and to be undetectable in all other tissues tested.

Example 3

ISOLATION AND CHARACTERIZATION OF PROSTATE TUMOR POLYPEPTIDES BY PCR-BASED SUBTRACTON

A cDNA subtraction library, containing cDNA from normal prostate subtracted with ten other normal tissue cDNAs (brain, heart, kidney, liver, lung, ovary, placenta, skeletal muscle, spleen and thymus) and then submitted to a first round of PCR amplification, was purchased from Clontech. This library was subjected to a second round of PCR amplification, following the manufacturer's protocol. The resulting cDNA fragments were subcloned into the vector pT7 Blue T-vector (Novagen, Madison, WI) and transformed into XL-1 Blue MRF' *E. coli* (Stratagene). DNA was isolated from independent clones and sequenced using a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A.

Fifty-nine positive clones were sequenced. Comparison of the DNA sequences of these clones with those in the gene bank, as described above, revealed no significant homologies to 25 of these clones, hereinafter referred to as P5, P8, P9, P18, P20, P30, P34, P36, P38, P39, P42, P49, P50, P53, P55, P60, P64, P65, P73, P75, P76, P79, and P84. The determined cDNA sequences for these clones are provided in SEQ ID NO:41-45, 47-52 and 54-65, respectively. P29, P47, P68, P80 and P82 (SEQ ID NO:46, 53 and 66-68, respectively) were found to show some degree of homology to previously identified DNA sequences. To the best of the inventors' knowledge, none of these sequences have been previously shown to be present in prostate.

Further studies using the PCR-based methodology described above resulted in the isolation of more than 180 additional clones, of which 23 clones were found to show no significant

homologies to known sequences. The determined cDNA sequences for these clones are provided in SEQ ID NO: 115-123, 127, 131, 137, 145, 147-151, 153, 156-158 and 160. Twenty-three clones (SEQ ID NO: 124-126, 128-130, 132-136, 138-144, 146, 152, 154, 155 and 159) were found to show some homology to previously identified ESTs. An additional ten clones (SEQ ID NO: 161-170) were found to have some degree of homology to known genes. An additional clone, referred to as P703, was found to have five splice variants. The determined DNA sequence for the variants referred to as DE1, DE13 and DE14 are provided in SEQ ID NOS: 171, 175 and 177, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 172, 176 and 178, respectively. The DNA sequences for the splice variants referred to as DE2 and DE6 are provided in SEQ ID NOS: 173 and 174, respectively.

mRNA Expression levels for representative clones in tumor tissues (prostate (n=5), breast (n=2), colon and lung) normal tissues (prostate (n=5), colon, kidney, liver, lung (n=2), ovary (n=2), skeletal muscle, skin, stomach, small intestine and brain), and activated and non-activated PBMC was determined by RT-PCT as described above. Expression was examined in one sample of each tissue type unless otherwise indicated.

P9 was found to be highly expressed in normal prostate and prostate tumor compared to all normal tissues tested except for normal colon which showed comparable expression. P20 was found to be highly expressed in normal prostate and prostate tumor, compared to all twelve normal tissues tested. A modest increase in expression of P20 in breast tumor (n=2), colon tumor and lung tumor was seen compared to all normal tissues except lung (1 of 2). Increased expression of P18 was found in normal prostate, prostate tumor and breast tumor compared to other normal tissues except lung and stomach. A modest increase in expression of P5 was observed in normal prostate compared to most other normal tissues. However, some elevated expression was seen in normal lung and PBMC. Elevated expression of P5 was also observed in prostate tumors (2 of 5), breast tumor and one lung tumor sample. For P30, similar expression levels were seen in normal prostate and prostate tumor, compared to six of twelve other normal tissues tested. Increased expression was seen in breast tumors, one lung tumor sample and one colon tumor sample, and also in normal PBMC. P29 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5

of 5) compared to the majority of normal tissues. However, substantial expression of P29 was observed in normal colon and normal lung (2 of 2). P80 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to all other normal tissues tested, with increased expression also being seen in colon tumor.

Further studies using the above methodology resulted in the isolation of twelve additional clones, hereinafter referred to as 10-d8, 10-h10, 11-c8, 7-g6, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3, 8-h11, g-f12 and g-f3. The determined DNA sequences for 10-d8, 10-h10, 11-c8, 8-d4, 8-d9, 8-h11, g-f12 and g-f3 are provided in SEQ ID NO: 207, 208, 209, 216, 217, 220, 221 and 222, respectively. The determined forward and reverse DNA sequences for 7-g6, 8-b5, 8-b6 and 8-g3 are provided in SEQ ID NO: 210 and 211; 212 and 213; 214 and 215; and 218 and 219, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to the sequences of 7-g6 and g-f3. The clones 10-d8, 11-c8 and 8-h11 were found to show some homology to previously isolated ESTs, while 10-h10, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3 and g-f12 were found to show some homology to previously identified genes.

EXAMPLE 4 SYNTHESIS OF POLYPEPTIDES

Polypeptides may be synthesized on an Applied Biosystems 430A peptide synthesizer using **FMOC** chemistry with HPTU (O-Benzotriazole-N,N,N',N'tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following

lyophilization of the pure fractions, the peptides may be characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANTS: Xu, Jiangchun Dillon, Davin C.
- (ii) TITLE OF INVENTION: COMPOUNDS FOR IMMUNODIAGNOSIS OF PROSTATE CANCER AND METHODS FOR THEIR USE
 - (iii) NUMBER OF SEQUENCES: 224
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SEED and BERRY LLP
 - (B) STREET: 6300 Columbia Center, 701 Fifth Avenue
 - (C) CITY: Seattle
 - (D) STATE: WA
 - (E) COUNTRY: USA
 - (F) ZIP: 98104
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 23-FEB-1998
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Maki, David J.
 - (B) REGISTRATION NUMBER: 31,392
 - (C) REFERENCE/DOCKET NUMBER: 210121.428C3
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (206) 622-4900
 - (B) TELEFAX: (206) 682-6031
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 814 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATCAAATCTG	AGGGTTGTCT	GGAGGACTTC	AATACACCTC	CCCCCATAGT	GAATCAGCTT	12
CCAGGGGGTC	CAGTCCCTCT	CCTTACTTCA	TCCCCATCCC	ATGCCAAAGG	AAGACCCTCC	18
CTCCTTGGCT	CACAGCCTTC	TCTAGGCTTC	CCAGTGCCTC	CAGGACAGAG	TGGGTTATGT	24
TTTCAGCTCC	ATCCTTGCTG	TGAGTGTCTG	GTGCGTTGTG	CCTCCAGCTT	CTGCTCAGTG	30
CTTCATGGAC	AGTGTCCAGC	ACATGTCACT	CTCCACTCTC	TCAGTGTGGA	TCCACTAGTT	360
CTAGAGCGGC	CGCCACCGCG	GTGGAGCTCC	AGCTTTTGTT	CCCTTTAGTG	AGGGTTAATT	42
GCGCGCTTGG	CGTAATCATG	GTCATAACTG	TTTCCTGTGT	GAAATTGTTA	TCCGCTCACA	486
ATTCCACACA	ACATACGAGC	CGGAAGCATA	AAGTGTAAAG	CCTGGGGTGC	CTAATGAGTG	540
ANCTAACTCA	CATTAATTGC	GTTGCGCTCA	CTGNCCGCTT	TCCAGTCNGG	AAAACTGTCG	600
TGCCAGCTGC	ATTAATGAAT	CGGCCAACGC	NCGGGGAAAA	GCGGTTTGCG	TTTTGGGGGC	660
TCTTCCGCTT	CTCGCTCACT	NANTCCTGCG	CTCGGTCNTT	CGGCTGCGGG	GAACGGTATC	720
ACTCCTCAAA	GGNGGTATTA	CGGTTATCCN	NAAATCNGGG	GATACCCNGG	AAAAAANTTT	780
AACAAAAGGG	CANCAAAGGG	CNGAAACGTA	AAAA			814

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 816 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ACAGAAATGT	TGGATGGTGG	AGCACCTTTC	TATACGACTT	ACAGGACAGC	AGATGGGGAA	60
TTCATGGCTG	TTGGAGCAAT	AGAACCCCAG	TTCTACGAGC	TGCTGATCAA	AGGACTTGGA	120
CTAAAGTCTG	ATGAACTTCC	CAATCAGATG	AGCATGGATG	ATTGGCCAGA	AATGAAGAAG	180
AAGTTTGCAG	ATGTATTTGC	AAAGAAGACG	AAGGCAGAGT	GGTGTCAAAT	CTTTGACGGC	240
ACAGATGCCT	GTGTGACTCC	GGTTCTGACT	TTTGAGGAGG	TTGTTCATCA	TGATCACAAC	300
AAGGAACGGG	GCTCGTTTAT	CACCAGTGAG	GAGCAGGACG	TGAGCCCCCG	CCCTGCACCT	360
CTGCTGTTAA	ACACCCCAGC	CATCCCTTCT	TTCAAAAGGG	ATCCACTAGT	TCTAGAAGCG	420
GCCGCCACCG	CGGTGGAGCT	CCAGCTTTTG	TTCCCTTTAG	TGAGGGTTAA	TTGCGCGCTT	480
GGCGTAATCA	TGGTCATAGC	TGTTTCCTGT	GTGAAATTGT	TATCCGCTCA	CAATTCCCCC	540
AACATACGAG	CCGGAACATA	${\tt AAGTGTTAAG}$	CCTGGGGTGC	CTAATGANTG	AGCTAACTCN	600
CATTAATTGC	GTTGCGCTCA	CTGCCCGCTT	TCCAGTCGGG	AAAACTGTCG	TGCCACTGCN	660
TTANTGAATC	NGCCACCCC	CGGGAAAAGG	CGGTTGCNTT	TTGGGCCTCT	TCCGCTTTCC	720
TCGCTCATTG	ATCCTNGCNC*	CCGGTCTTCG	GCTGCGGNGA	ACGGTTCACT	CCTCAAAGGC	780
GGTNTNCCGG	TTATCCCCAA	ACNGGGGATA	CCCNGA			816

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 773 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CTTTTGAAAG AAGGGATGGC TGGGGTGTTT AACAGCAGAG GTGCAGGGCG GGGGCTCACC TCCTGCTCCT CACTGGTGAT AAACGAGCCC CGTTCCTTGT TGTGATCATG ATGAACAACC

TOOMORRAG	ma					
ICCICAAAAG	TCAGAACCGG	AGTCACACAG	GCATCTGTGC	CGTCAAAGAT	TTGACACCAC	18
TCTGCCTTCG	TCTTCTTTGC	AAATACATCT	ር ሮል እ አ <i>ር</i> ጥጥረጥ	TOTAL A TOTAL	TGGCCAATCA	
TOCATOOTOA	MCMC3 mmcce		GCMMCIICI	TCTTCATTTC	TGGCCAATCA	24
ICCAIGCICA	TCTGATTGGG	AAGTTCATCA	GACTTTAGTC	CANNTCCTTT	GATCAGCAGC	300
TCGTAGAACT	GGGGTTCTAT	TGCTCCAACA	GCCATGAATT	CCCCATCTC	TGTCCTGTAA	
GTCGTATAGA	A ACCROOMOG	16618661	occurowit i	CCCCMICIGO	TGTCCTGTAA	360
CICCIAIAGA	MAGGIGCICC	ACCATCCAAC	ATGTTCTGTC	CTCGAGGGGG	GGCCCGGTAC	420
CCAATTCGCC	CTATANTGAG	TCGTATTACG	CGCGCTCACT	GGCCGTCGTT	TTP CN 3 CCTC	
GTGACTGGGA	AAACCCTCCC	COMMA CONTR		GGCCG1CG11	TIACAACGTC	480
	MACCCIGGG	CGTTACCAAC	TTAATCGCCT	TGCAGCACAT	CCCCCTTTCG	540
CCAGCTGGGC	GTAATANCGA	AAAGGCCCGC	ACCGATCGCC	CTTCCAACAG	TTCCCCCACT	
GAATGGGNAA	ATCCCACCCC	CCTCTTTT CCC	GGG1	- CIICCAACAG	TIGCGCACCT	600
3.55555	AIGGGACCCC	CCIGITACCG	CGCATTNAAC	CCCCGCNGGG	TTTNGTTGTT	660
ACCCCCACNT	NNACCGCTTA	CACTTTGCCA	GCGCCTTANC	GCCCGCTCCC	THE PROPERTY OF THE PROPERTY O	200
CTTCCCTTCC	TTTCNCNCCN	CTTTCCCCCCC	CCCCCCCCC	CNTCAAACCC	TITCHCCTTT	720
	- 1 1 CIVCINC CIN	CITICCCCCC	GGGTTTCCCC	CNTCAAACCC	CNA	77.3

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 828 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CCTCCTGAGT	CCTACTGACC	TGTGCTTTCT	GGTGTGGAGT	CCAGGGCTGC	T1 CC1 11 1 CC	
AATGGGCAGA	CACAGGTGTA	ጥር ርግር እ አጥር ጥጥ	TOTORON	GTATAATTTC	TAGGAAAAGG	60
TCGGAACACT	CCCTCTCTCTCT	CAACACTOII	ICIGAAAIGG	GTATAATTTC	GTCCTCTCCT	120
ACCORDECTE	GGCIGICICI	GAAGACTTCT	CGCTCAGTTT	CAGTGAGGAC	ACACACAAAG	180
ACGTGGGTGA	CCATGTTGTT	TGTGGGGTGC	AGAGATGGGA	GGGGTGGGGC	CCACCCTGGA	240
AGAGTGGACA	GTGACACAAG	GTGGACACTC	TCTACAGATC	ACTGAGGATA	AGCTGGAGCC	300
ACAATGCATG	AGGCACACAC	ACAGCAAGGA	TGACNCTGTA	AACATAGCCC	ACCCTCTCCT	360
GNGGGCACTG	GGAAGCCTAN	ATNAGGCCGT	GAGCANAAAG	AAGGGGAGGA	TCG2 GT2 GTT	
CTANAGCGGC	CGCCACCGCG	GTGGANCTCC	AMCTTMMCCT	CCCTTTAGTG	TCCACTAGTT	420
GCGCGCTTCC	Chiny years	GEGGANCICC	ANCITIGIT	CCCTTTAGTG	AGGGTTAATT	480
3000001100	CNIAATCATG	GTCATANCTN	TTTCCTGTGT	GAAATTGTTA	TCCGCTCACA	540
ATTCCACACA	ACATACGANC	CGGAAACATA	AANTGTAAAC	CTGGGGTGCC	TAATGANTGA	600
CTAACTCACA	TTAATTGCGT	TGCGCTCACT	GCCCGCTTTC	CAATCNGGAA	Δαασασσσσα	660
CCNCTTGCAT	TNATGAATCN	GCCAACCCCC	GGGGAAAACG	GTTTGCGTTT	TCCTGTCTTG	
TCCGCTTCCT	CMCTCAMTTA	NECCOMICIO	BOSSESS	GITIGCGTTT	TGGGCGCTCT	720.
ACCUCATOCA	CNCTCANTIA	NICCCINCNC	TCGGTCATTC	CGGCTGCNGC	AAACCGGTTC	780
ACCNCCTCCA	AAGGGGGTAŢ	TCCGGTTTCC	CCNAATCCGG	GGANANCC		828
						320

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 834 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TTTTTTTTTT	ጥጥጥጥ አርጥር አ	TACATOCAAT	TTATTARA		GATAGCACAT	
	TITIACION	INGNIGGNAI	TIATIAAGCT	TTTCACATGT	GATAGCACAT	60
AGTTTTAATT	GCATCCAAAG	TACTAACAAA	AACTCTAGCA	ATCAACAATC	GCAGCATGTT	100
ם א אידי אידי די ב	N N TT C N A C N C C	mamaa		MICARGAAIG	GCAGCAIGII	120
I I I I I I I I I I I I I I I I I I	AATCAACACC	IGIGGCTTTT	AAAATTTGGT	TTTCATAAGA	TAATTTATAC	180
TGAAGTAAAT	CTAGCCATGC	מממממדדדד	TCCTTTTACCT	G1.G00G3.1.GG	TTGGCAGTTA	100
·		************	IGCITIAGGI	CACTCCAAGC	TTGGCAGTTA	240

ACATTTGGCA	TAAACAATAA	TAAAACAATC	ACAATTTAAT	AAATAACAAA	TACAACATTG	300
TAGGCCATAA	TCATATACAG	TATAAGGAAA	AGGTGGTAGT	GTTGAGTAAG	CAGTTATTAG	360
AATAGAATAC	CTTGGCCTCT	ATGCAAATAT	GTCTAGACAC	TTTGATTCAC	TCAGCCCTGA	420
CATTCAGTTT	TCAAAGTAGG	AGACAGGTTC	TACAGTATCA	TTTTACAGTT	TCCAACACAT	480
TGAAAACAAG	TAGAAAATGA	TGAGTTGATT	TTTATTAATG	CATTACATCC	TCAAGAGTTA	540
			AAGTTATATT			600
			TGAAGACAAC			660
			CTNAACTTTC			720
			CTGGAACATT			780
TGTTATTTTG	TTAAAAATTA	AATTTTAACC	TGGTGGAAAA	ATAATTTGAA	ATNA	834

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 818 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TTTTTTTTTT	TTTTTTTTT	AAGACCCTCA	TCAATAGATG	GAGACATACA	GAAATAGTCA	60
AACCACATCT	ACAAAATGCC	AGTATCAGGC	GGCGGCTTCG	AAGCCAAAGT	GATGTTTGGA	120
TGTAAAGTGA	AATATTAGTT	GGCGGATGAA	GCAGATAGTG	AGGAAAGTTG	AGCCAATAAT	180
GACGTGAAGT	CCGTGGAAGC	CTGTGGCTAC	AAAAAATGTT	GAGCCGTAGA	TGCCGTCGGA	240
AATGGTGAAG	GGAGACTCGA	AGTACTCTGA	GGCTTGTAGG	AGGGTAAAAT	AGAGACCCAG	300
TAAAATTGTA	ATAAGCAGTG	CTTGAATTAT	TTGGTTTCGG	TTGTTTTCTA	TTAGACTATG	360
GTGAGCTCAG	GTGATTGATA	CTCCTGATGC	GAGTAATACG	GATGTGTTTA	GGAGTGGGAC	420
TTCTAGGGGA	TTTAGCGGGG	TGATGCCTGT	TGGGGGCCAG	TGCCCTCCTA	GTTGGGGGGT	480
AGGGGCTAGG	CTGGAGTGGT	AAAAGGCTCA	GAAAAATCCT	GCGAAGAAAA	AAACTTCTGA	540
GGTAATAAAT	AGGATTATCC	CGTATCGAAG	GCCTTTTTGG	ACAGGTGGTG	TGTGGTGGCC	600
TTGGTATGTG	CTTTCTCGTG	TTACATCGCG	CCATCATTGG	TATATGGTTA	GTGTGTTGGG	660
TTANTANGGC	CTANTATGAA	GAACTTTTGG	ANTGGAATTA	AATCAATNGC	TTGGCCGGAA	720
			NGGGTCTGGG			780
		NTGNATCCCT				818

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

${\tt TTTTTTTTT}$	TTTTTTTTT	TGGCTCTAGA	GGGGGTAGAG	GGGGTGCTAT	AGGGTAAATA	60
CGGGCCCTAT	TTCAAAGATT	TTTAGGGGAA	TTAATTCTAG	GACGATGGGT	ATGAAACTGT	120
GGTTTGCTCC	ACAGATTTCA	GAGCATTGAC	CGTAGTATAC	CCCCGGTCGT	GTAGCGGTGA	180
AAGTGGTTTG	GTTTAGACGT	CCGGGAATTG	CATCTGTTTT	TAAGCCTAAT	GTGGGGACAG	240
CTCATGAGTG	CAAGACGTCT	TGTGATGTAA	TTATTATACN	AATGGGGGCT	TCAATCGGGA	300

CTA CTA CTCA	3 ==========					
GIACIACTCG	ATTGTCAACG	TCAAGGAGTC	GCAGGTCGCC	TGGTTCTAGG	AATAATGGGG	360
GAAGTATGTA	GGAATTGAAG	ATTAATCCCC	CCTACTCCCT	Office Company of	GTTCAATACC	
) mmccmccaca	7.777777	HI IMMICCOC	CGIMGICGGI	GTTCTCCTAG	GTTCAATACC	420
ATTGGTGGCC	AATTGATTTG	ATGGTAAGGG	GAGGGATCGT	TGAACTCGTC	ፐርፕጥልጥርጥልል	480
AGGATNCCTT	NGGGATGGGA	ACCONTAGENTA A	CCACEANGCA		GCANGATATT	400
	MOCGAIGGGA	AGGCNATNAA	GGACTANGGA	TNAATGGCGG	GCANGATATT	540
TCAAACNGTC	TCTANTTCCT	GAAACGTCTG	AAATGTTAAT	AANAATTAAN	مس لا مدين الأراب الأرا	
ር ል ል ጥለተጥጥለተለታረ	CAAAACCCCC	T3 C3 CC3 CT3		THE TAXABLE TAXABLE	IIINGIIAII	600
Ourill I IIIIO	GAAAAGGGCI	TACAGGACTA	GAAACCAAAT	ANGAAAANTA	ATNNTAANGG	660
CNTTATCNTN	AAAGGTNATA	ACCNCTCCTA	TNATCCCACC	CAATNGNATT	acaan aran	
A CNI A TITIC CIA TI	Magaan	61111	IMITOCOACC	CUMINGWAII	CCCCACNCNN	720
ACNALIGGAL	NCCCCANTIC	CANAAANGGC	CNCCCCCCGG	TGNANNCCNC	CTTTTGTTCC	780
CTTNANTGAN	GGTTATTCNC	CCCTNGCNTT	ATCANCC			
		CCCINGCNII	WI CHINCC			817

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 799 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CATTTCCGGG	TTTACTTTCT	AAGGAAAGCC	GAGCGGAAGC	TGCTAACGTG	GGAATCGGTG	60
CATAAGGAGA	ACTTTCTGCT	GGCACGCGCT	AGGGACAAGC	GGGAGAGCGA	CTCCGAGCGT	120
CTGAAGCGCA	CGTCCCAGAA	GGTGGACTTG	GCACTGAAAC	AGCTGGGACA	CATCCGCGAG	180
TACGAACAGC	GCCTGAAAGT	GCTGGAGCGG	GAGGTCCAGC	AGTGTAGCCG	CGTCCTGGCC	240
TGGGTGGCCG	ANGCCTGANC	CGCTCTGCCT	TGCTGCCCCC	ANGTGGGCCG	CCACCCCCTTC	
ACCTGCCTGG	GTCCAAACAC	TGAGCCCTGC	TGGCGGACTT	CAACCAMAAC	CCACCCCCIG	300
GGATTTTGCT	CCTANANTAA	GGCTCATCTG	GGCCTCCCCC	CCCCCC CCCC	CCCCACANGG	360
TCTTTGANGT	GAGCCCCATG	TCCATCTGGG	CONCERCE	CCCCCACCTG	GTTGGCCTTG	420
CTCCTTACAA	CCACAANTATIC	CCCATCTGGG	CCACTGTCNG	GACCACCTTT	NGGGAGTGTT	480
CANCACACA	AMOGAGONATO	CCCGGCTCCT	CCCGGAAACC	ANTCCCANCC	TGNGAAGGAT	540
TOCOMPONE CAM	ATCCACTNNT	NCTANAACCG	GCCNCCNCCG	CNGTGGAACC	CNCCTTNTGT	600
TCCTTTTCNT	TNAGGGTTAA	TNNCGCCTTG	GCCTTNCCAN	NGTCCTNCNC	NTTTTCCNNT	660
GITNAAATTG	TTANGCNCCC	NCCNNTCCCN	CNNCNNCNAN	CCCGACCCNN	ANNTTNNANN	720
NCCTGGGGGT	NCCNNCNGAT	TGACCCNNCC	NCCCTNTANT	TGCNTTNGGG	NNCNNTGCCC	780
CTTTCCCTCT	NGGGANNCO		4		,	799
						,,,,

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 801 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

* ~~~~~~		*	•			
ACGCCTTGAT	CCTCCCAGGC	TGGGACTGGT	TCTGGGAGGA	GCCGGGCATG	CTGTGGTTTG	. 60
TAANGATGAC	ACTCCCAAAG	GTGGTCCTGA	CAGTGGCCCA	GATGGACATG	GGGCTCACCT	
G11001010			- TOUCOCK	ONIGONCAIG	GGGCTCACCT	120
CAAGGACAAG	GCCACCAGGT	GCGGGGGCCG	AAGCCCACAT	GATCCTTACT	CTATGAGCAA	180
AATCCCCTGT	CCCCCCTTCT	CCMMCAACMC	00000			100
	GGGGGCTTCT	CCIIGAAGIC	CGCCANCAGG	GCTCAGTCTT	TGGACCCANG	240
CAGGTCATCC	COMMONICATO	CA A CONCOCCO	COMONNO			440
CHOOLCHIGG	GGIIGINGNC	CAACTGGGGG	CCNCAACGCA	AAANGGCNCA	GGGCCTCNGN	300
CACCCATCCC	***********	M3 G3			TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	300
CACCCATCCC	ANGACGCGGC	TACACTNCTG	GACCTCCCNC	TCCACCACTT	TCATGCGCTG	360
						300

TTCNTACCCG	CGNATNTGTC	CCANCTGTTT	CNGTGCCNAC	TCCANCTTCT	NGGACGTGCG	420
CTACATACGC	CCGGANTCNC	NCTCCCGCTT	TGTCCCTATC	CACGTNCCAN	CAACAAATTT	480
CNCCNTANTG	CACCNATTCC	CACNTTTNNC	AGNTTTCCNC	NNCGNGCTTC	CTTNTAAAAG	540
GGTTGANCCC	CGGAAAATNC	CCCAAAGGGG	GGGGGCCNGG	TACCCAACTN	CCCCTNATA	600
GCTGAANTCC	CCATNACCNN	GNCTCNATGG	ANCCNTCCNT	TTTAANNACN	TTCTNAACTT	660
GGGAANANCC	CTCGNCCNTN	CCCCCNTTAA	TCCCNCCTTG	CNANGNNCNT	CCCCCNNTCC	720
NCCCNNNTNG	GCNTNTNANN	CNAAAAAGGC	CCNNNANCAA	TCTCCTNNCN	CCTCANTTCG	780
CCANCCCTCG	AAATCGGCCN	C			,	801

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 789 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CAGTCTATNT	GGCCAGTGTG	GCAGCTTTCC	CTGTGGCTGC	CGGTGCCACA	TGCCTGTCCC	60
ACAGTGTGGC	CGTGGTGACA	GCTTCAGCCG	CCCTCACCGG	GTTCACCTTC	TCAGCCCTGC	120
AGATCCTGCC	CTACACACTG	GCCTCCCTCT	ACCACCGGGA	GAAGCAGGTG	TTCCTGCCCA	180
AATACCGAGG	GGACACTGGA	GGTGCTAGCA	GTGAGGACAG	CCTGATGACC	AGCTTCCTGC	240
CAGGCCCTAA	GCCTGGAGCT	CCCTTCCCTA	ATGGACACGT	GGGTGCTGGA	GGCAGTGGCC	300
TGCTCCCACC	TCCACCCGCG	CTCTGCGGGG	CCTCTGCCTG	TGATGTCTCC	GTACGTGTGG	360
TGGTGGGTGA	GCCCACCGAN	GCCAGGGTGG	TTCCGGGCCG	GGGCATCTGC	CTGGACCTCG	420
CCATCCTGGA	TAGTGCTTCC	TGCTGTCCCA	NGTGGCCCCA	TCCCTGTTTA	TGGGCTCCAT	480
TGTCCAGCTC	AGCCAGTCTG	TCACTGCCTA	TATGGTGTCT	GCCGCAGGCC	TGGGTCTGGT	540
CCCATTTACT	TTGCTACACA	GGTANTATTT	GACAAGAACG	ANTTGGCCAA	ATACTCAGCG	600
TTAAAAAATT	CCAGCAACAT	TGGGGGTGGA	AGGCCTGCCT	CACTGGGTCC	AACTCCCCGC	660
TCCTGTTAAC	CCCATGGGGC	TGCCGGCTTG	GCCGCCAATT	TCTGTTGCTG	CCAAANTNAT	720
GTGGCTCTCT	GCTGCCACCT	GTTGCTGGCT	GAAGTGCNTA	CNGCNCANCT	NGGGGGGTNG	780
GGNGTTCCC						789

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 772 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CCCACCCTAC	CCAAATATTA	GACACCAACA	CAGAAAAGCT	AGCAATGGAT	TCCCTTCTAC	60
TTTGTTAAAT	AAATAAGTTA	AATATTTAAA	TGCCTGTGTC	TCTGTGATGG	CAACAGAAGG	120
ACCAACAGGC	CACATCCTGA	TAAAAGGTAA	GAGGGGGGTG	GATCAGCAAA	AAGACAGTGC	180
${\tt TGTGGGCTGA}$	GGGGACCTGG	TTCTTGTGTG	TTGCCCCTCA	GGACTCTTCC	CCTACAAATA	240
ACTTTCATAT	GTTCAAATCC	CATGGAGGAG	TGTTTCATCC	TAGAAACTCC	CATGCAAGAG	300
CTACATTAAA	CGAAGCTGCA	GGTTAAGGGG	CTTANAGATG	GGAAACCAGG	TGACTGAGTT	360
TATTCAGCTC	CCAAAAACCC	TTCTCTAGGT	GTGTCTCAAC	TAGGAGGCTA	GCTGTTAACC	420

CTGAGCCTGG	GTAATCCACC	TGCAGAGTCC	CCGCATTCCA	GTGCATGGAA	CCCTTCTGGC	480
CTCCCTGTAT	AAGTCCAGAC	TGAAACCCCC	TTGGAAGGNC	TCCAGTCAGG	CAGCCCTANA	
AACTGGGGAA	AAAAGAAAAG	GACGCCCCAN	CCCCCACCTC	TOCANOTAGO	CACCTCAACA	540
GCACAGGGTG	GCAGCAAAAA	AACCACTTTA	CCCCCAGCIG	IGCANCTACG	NGGGGGGGCA	600
ACCCCGGCAC	CCCMANGGGG	COUNTRACTOR	CITIGGCACA	AACAAAAACT	NGGGGGGCA	660
CCCCMCCAC	CCCNANGGGG	GITAACAGGA	ANCNGGGNAA	CNTGGAACCC	AATTNAGGCA	720
GGCCCNCCAC	CCCMAATNTT	GCTGGGAAAT	TTTTCCTCCC	CTAAATTNTT	TC	772

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 751 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCCCCAATTC	CAGCTGCCAC	ACCACCCACG	GTGACTGCAT	TAGTTCGGAT	GTCATACAAA	60
AGCTGATTGA	AGCAACCCTC	TACTTTTTGG	TCGTGAGCCT	TTTGCTTGGT	GCAGGTTTCA	120
TTGGCTGTGT	TGGTGACGTT	GTCATTGCAA	CAGAATGGGG	GAAAGGCACT	GTTCTCTTTC	180
AAGTANGGTG	AGTCCTCAAA	ATCCGTATAG	TTGGTGAAGC	CACAGCACTT	GAGCCCTTTC	240
ATGGTGGTGT	TCCACACTTG	AGTGAAGTCT	TCCTGGGAAC	CATAATCTTT	CTTCATCCCA	300
GGCACTACCA	GCAACGTCAG	GGAAGTGCTC	AGCCATTGTG	GTGTACACCA	AGGCGACCAC	360
AGCAGCTGCN	ACCTCAGCAA	TGAAGATGAN	GAGGANGATG	AAGAAGAACG	TCNCCACCAC	420
ACACTTGCTC	TCAGTCTTAN	CACCATANCA	GCCCNTGAAA	ACCAANANCA	AACACCACUA	480
CNCCGGCTGC	GATGAAGAAA	TNACCCCNCG	TTGACAAACT	TGCATGGCAC	TCCCANCCAC	
AGTGGCCCNA	AAAATCTTCA	AAAAGGATGC	CCCATCNATT	GACCCCCCAA	ATCCCCA CTC	540
CCAACAGGGG	CTGCCCCACN	CNCNNAACGA	TGANCCNATT	CNACAACATC	THOUTGOTTO	600
TNATNAACNT	GAACCCTGCN	TNGTGGCTCC	TGTTCAGGNC	CMICCCCCC	INCNIGGICT	660
AANGAACTCN	GAAGNCCCCA	CNGGANANNC	G	CININGGCCTGA	CTTCTNAANN	720
		C. CC. HAMING	9			751

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 729 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID. NO:13:

*						
GAGCCAGGCG	TCCCTCTGCC	TGCCCACTCA	GTGGCAACAC	CCGGGAGCTG	TTTTGTCCTT	60
TGTGGANCCT	CAGCAGTNCC	CTCTTTCAGA	ACTCANTGCC	AAGANCCCTG	AACAGGAGCC	120
ACCATGCAGT	GCTTCAGCTT	CATTAAGACC	ATGATGATCC	TCTTCAATTT	GCTCATCTTT	180
CTGTGTGGTG	CAGCCCTGTT	GGCAGTGGGC	ATCTGGGTGT	CAATCGATGG	GGCATCCTTT	240
CTGAAGATCT	TCGGGCCACT	GTCGTCCAGT	GCCATGCAGT	TTGTCAACGT	GGGCTACTTC	300
CTCATCGCAG	CCGGCGTTGT	GGTCTTAGCT	CTAGGTTTCC	TGGGCTGCTA	TGGTGCTAAG	360
ACTGAGAGCA	AGTGTGCCCT	CGTGACGTTC	TTCTTCATCC	TCCTCCTCAT	CTTCATTGCT	420
GAGGTTGCAA	TGCTGTGGTC	GCCTTGGTGT	ACACCACAAT	GGCTGAGCAC	TTCCTGACGT	480
TGCTGGTAAT	GCCTGCCATC	AANAAAAGAT	TATGGGTTCC	CAGGAANACT	TCACTCAAGT	540
GTTGGAACAC	CACCATGAAA	GGGCTCAAGT	GCTGTGGCTT	CNNCCAACTA	TACGGATTTT	600

600

660

720

GAAGANTCAC CTACTTCAAA GAAAANAGTG CCTTTCCCCC ATTTCTGTTG CAATTGACAA ACGTCCCCAA CACAGCCAAT TGAAAACCTG CACCCAACCC AAANGGGTCC CCAACCANAA ATTNAAGGG	660 720 729
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 816 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(b) Totodoot: Tilledi	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
TGCTCTTCCT CAAAGTTGTT CTTGTTGCCA TAACAACCAC CATAGGTAAA GCGGGCGCAG	60
TGTTCGCTGA AGGGGTTGTA GTACCAGCGC GGGATGCTCT CCTTGCAGAG TCCTGTGTCT	120
GGCAGGTCCA CGCAGTGCCC TTTGTCACTG GGGAAATGGA TGCGCTGGAG CTCGTCAAAG	180
CCACTCGTGT ATTTTCACA GGCAGCCTCG TCCGACGCGT CGGGGCAGTT GGGGGTGTCT	240
TCACACTCCA GGAAACTGTC NATGCAGCAG CCATTGCTGC AGCGGAACTG GGTGGGCTGA	300
CANGTGCCAG AGCACACTGG ATGGCGCCTT TCCATGNNAN GGGCCCTGNG GGAAAGTCCC	360
TGANCCCCAN ANCTGCCTCT CAAANGCCCC ACCTTGCACA CCCCGACAGG CTAGAATGGA	420
ATCTTCTTCC CGAAAGGTAG TTNTTCTTGT TGCCCAANCC ANCCCCNTAA ACAAACTCTT	480
GCANATCTGC TCCGNGGGGG TCNTANTACC ANCGTGGGAA AAGAACCCCA GGCNGCGAAC	540
CAANCTTGTT TGGATNCGAA GCNATAATCT NCTNTTCTGC TTGGTGGACA GCACCANTNA	600
CTGTNNANCT TTAGNCCNTG GTCCTCNTGG GTTGNNCTTG AACCTAATCN CCNNTCAACT	660
GGGACAAGGT AANTNGCCNT CCTTTNAATT CCCNANCNTN CCCCCTGGTT TGGGGTTTTN	720
CNCNCTCCTA CCCCAGAAAN NCCGTGTTCC CCCCCAACTA GGGGCCNAAA CCNNTTNTTC CACAACCCTN CCCCACCCAC GGGTTCNGNT GGTTNG	780
CACAACCEIN CCCCACCCAC GGGIICNGNI GGIING	816
(2) INFORMATION FOR SEQ ID NO:15:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 783 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(11) MOLEGIE D. DUD.	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
CCAAGGCCTG GGCAGGCATA NACTTGAAGG TACAACCCCA GGAACCCCTG GTGCTGAAGG	60
ATGTGGAAAA CACAGATTGG CGCCTACTGC GGGGTGACAC GGATGTCAGG GTAGAGAGGA	120
AAGACCCAAA CCAGGTGGAA CTGTGGGGAC TCAAGGAANG CACCTACCTG TTCCAGCTGA	180
CAGTGACTAG CTCAGACCAC CCAGAGGACA CGGCCAACGT CACAGTCACT GTGCTGTCCA	240
CCAAGCAGAC AGAAGACTAC TGCCTCGCAT CCAACAANGT GGGTCGCTGC CGGGGCTCTT	300
TCCCACGCTG GTACTATGAC CCCACGGAGC AGATCTGCAA GAGTTTCGTT TATGGAGGCT	360
GCTTGGGCAA CAAGAACAAC TACCTTCGGG AAGAAGAGTG CATTCTANCC TGTCNGGGTG	420
TGCAAGGTGG GCCTTTGANA NGCANCTCTG GGGCTCANGC GACTTTCCCC CAGGGCCCCT	480
CCATGGAAAG GCGCCATCCA NTGTTCTCTG GCACCTGTCA GCCCACCCAG TTCCGCTGCA	540

NCAATGGCTG CTGCATCNAC ANTTTCCTNG AATTGTGACA ACACCCCCCA NTGCCCCCAA

CCCTCCCAAC AAAGCTTCCC TGTTNAAAAA TACNCCANTT GGCTTTTNAC AAACNCCCGG

CNCCTCCNTT TTCCCCNNTN AACAAAGGGC NCTNGCNTTT GAACTGCCCN AACCCNGGAA

740

TCTNCCNNGG AAAAANTNCC CCCCCTGGTT CCTNNAANCC CCTCCNCNAA ANCTNCCCCC	780
	783
(2) INFORMATION FOR SEQ ID NO:16:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 801 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
/**	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
GCCCCAATTC CAGCTGCCAC ACCACCCACG GTGACTGCAT TAGTTCGGAT GTCATACAAA	60
AGCTGATTGA AGCAACCCTC TACTTTTTGG TCGTGAGCCT TTTGCTTGGT GCAGGTTTCA	120
TIGGCTGTGT TGGTGACGTT GTCATTGCAA CAGAATGGGG GAAAGGCACT GTTCTCTTTG	180
AAGTAGGGTG AGTCCTCAAA ATCCGTATAG TTGGTGAAGC CACAGCACTT GAGCCCTTTC	240
ATGGTGGTGT TCCACACTTG AGTGAAGTCT TCCTGGGAAC CATAATCTTT CTTGATGGCA	300
GGCACTACCA GCAACGTCAG GAAGTGCTCA GCCATTGTGG TGTACACCAA GGCGACCACA	360
GCAGCTGCAA CCTCAGCAAT GAAGATGAGG AGGAGGATGA AGAAGAACGT CNCGAGGGCA	420
CACTTGCTCT CCGTCTTAGC ACCATAGCAG CCCANGAAAC CAAGAGCAAA GACCACAACG	480
CCNGCTGCGA ATGAAAGAAA NTACCCACGT TGACAAACTG CATGGCCACT GGACGACAGT	540
TGGCCCGAAN ATCTTCAGAA AAGGGATGCC CCATCGATTG AACACCCANA TGCCCACTGC	600
CNACAGGGCT GCNCCNCNC GAAAGAATGA GCCATTGAAG AAGGATCNTC NTGGTCTTAA	660
TGAACTGAAA CCNTGCATGG TGGCCCCTGT TCAGGGCTCT TGGCAGTGAA TTCTGANAA	720
AAGGAACNGC NTNAGCCCCC CCAAANGANA AAACACCCCC GGGTGTTGCC CTGAATTGGC	780
GGCCAAGGAN CCCTGCCCCN G	801
(2) INFORMATION FOR SEQ ID NO:17:	
	•
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 740 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(***)	•
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
CECO CO COMPANIA CONTRACTOR OF	
GTGAGAGCCA GGCGTCCCTC TGCCTGCCCA CTCAGTGGCA ACACCCGGGA GCTGTTTTGT	60
CCTTTGTGGA GCCTCAGCAG TTCCCTCTTT CAGAACTCAC TGCCAAGAGC CCTGAACAGG	120
AGCCACCATG CAGTGCTTCA GCTTCATTAA GACCATGATG ATCCTCTTCA ATTTGCTCAT	180
CTTTCTGTGT GGTGCAGCCC TGTTGGCAGT GGGCATCTGG GTGTCAATCG ATGGGGCATC	240
CTTTCTGAAG ATCTTCGGGC CACTGTCGTC CAGTGCCATG CAGTTTGTCA ACGTGGGCTA	300
CTTCCTCATC GCAGCCGGCG TTGTGGTCTT TGCTCTTGGT TTCCTGGGCT GCTATGGTGC	360
TAAGACGGAG AGCAAGTGTG CCCTCGTGAC GTTCTTCTTC ATCCTCC TCATCTTCAT	420
TGCTGAAGTT GCAGCTGCTG TGGTCGCCTT GGTGTACACC ACAATGGCTG AACCATTCCT	480
GACGITGCTG GTANTGCCTG CCATCAANAA AGATTATGGG TTCCCAGGAA AAATTCACTC	540
AANTNITGGAA CACCNCCAIG AAAAGGGCIC CAATIICIGN IGGCIICCCC AACIATACCG	600
GAATTITGAA AGANTONCCC TACTICCAAA AAAAAANANI IGCCITINCC CCCNTICTGI	660
TGCAATGAAA ACNTCCCAAN ACNGCCAATN AAAACCTGCC CNNNCAAAAA GGNTCNCAAA	720
CAAAAAANT NNAAGGGTTN	740

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 802 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CCGCTGGTTG	CGCTGGTCCA	GNGNAGCCAC	GAAGCACGTC	AGCATACACA	GCCTCAATCA	60
CAAGGTCTTC	CAGCTGCCGC	ACATTACGCA	GGGCAAGAGC	CTCCAGCAAC	ACTGCATATG	. 120
GGATACACTT	TACTTTAGCA	GCCAGGGTGA	CAACTGAGAG	GTGTCGAAGC	TTATTCTTCT	180
GAGCCTCTGT	TAGTGGAGGA	AGATTCCGGG	CTTCAGCTAA	GTAGTCAGCG	TATGTCCCAT	240
AAGCAAACAC	TGTGAGCAGC	CGGAAGGTAG	AGGCAAAGTC	ACTCTCAGCC	AGCTCTCTAA	300
CATTGGGCAT	GTCCAGCAGT	TCTCCAAACA	CGTAGACACC	AGNGGCCTCC	AGCACCTGAT	360
GGATGAGTGT	GGCCAGCGCT	GCCCCCTTGG	CCGACTTGGC	TAGGAGCAGA	AATTGCTCCT	420
GGTTCTGCCC	TGTCACCTTC	ACTTCCGCAC	TCATCACTGC	ACTGAGTGTG	GGGGACTTGG	480
GCTCAGGATG	TCCAGAGACG	TGGTTCCGCC	CCCTCNCTTA	ATGACACCGN	CCANNCAACC	540
GTCGGCTCCC	GCCGANTGNG	TTCGTCGTNC	CTGGGTCAGG	GTCTGCTGGC	CNCTACTTGC	600
AANCTTCGTC	NGGCCCATGG	AATTCACCNC	ACCGGAACTN	GTANGATCCA	CTNNTTCTAT	660
AACCGGNCGC	CACCGCNNNT	GGAACTCCAC	TCTTNTTNCC	TTTACTTGAG	GGTTAAGGTC	720
ACCCTTNNCG	TTACCTTGGT	CCAAACCNTN	CCNTGTGTCG	ANATNGTNAA	TCNGGNCCNA	780
TNCCANCONC	ATANGAAGCC	NG				802

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 731 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CNAAGCTTCC	AGGTNACGGG	CCGCNAANCC	TGACCCNAGG	TANCANAANG	CAGNCNGCGG	60
GAGCCCACCG	TCACGNGGNG	GNGTCTTTAT	NGGAGGGGC	GGAGCCACAT	CNCTGGACNT	120
CNTGACCCCA	ACTCCCCNCC	NCNCANTGCA	GTGATGAGTG	CAGAACTGAA	GGTNACGTGG	180
CAGGAACCAA	GANCAAANNC	TGCTCCNNTC	CAAGTCGGCN	NAGGGGGCGG	GGCTGGCCAC	240
-GCNCATCCNT	CNAGTGCTGN	AAAGCCCCNN	CCTGTCTACT	TGTTTGGAGA	ACNGCNNNGA	300
CATGCCCAGN	GTTANATAAC	NGGCNGAGAG	TNANTTTGCC	TCTCCCTTCC	GGCTGCGCAN	360
CGNGTNTGCT	TAGNGGACAT	AACCTGACTA	CTTAACTGAA	CCCNNGAATC	TNCCNCCCCT	420
CCACTAAGCT	CAGAACAAAA	AACTTCGACA	CCACTCANTT	GTCACCTGNC	TGCTCAAGTA	480
AAGTGTACCC	CATNCCCAAT	GTNTGCTNGA	NGCTCTGNCC	TGCNTTANGT	TCGGTCCTGG	540
GAAGACCTAT	CAATTNAAGC	TATGTTTCTG	ACTGCCTCTT	GCTCCCTGNA	ACAANCNACC	600
CNNCNNTCCA	AGGGGGGGNC	GGCCCCCAAT	CCCCCAACC	NTNAATTNAN	TTTANCCCCN	660
CCCCCNGGCC	${\tt CGGCCTTTTA}$	CNANCNTCNN	NNACNGGGNA	AAACCNNNGC	TTTNCCCAAC	720
NNAATCCNCC	T .					731

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 754 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

TTTTTTTTT	TTTTTTTTT	TAAAAACCCC	CTCCATTNAA	TGNAAACTTC	CGAAATTGTC	60
CAACCCCCTC				CAAACCCAAN		120
				NANGAAAGTT		180
TNANCTTNAA	TNCCTGGAAA	CCNGTNGNTT	CCAAAAATNT	TTAACCCTTA	ANTCCCTCCG	240
AAATNGTTNA	NGGAAAACCC	AANTTCTCNT	AAGGTTGTTT	GAAGGNTNAA	TNAAAANCCC	300
NNCCAATTGT	TTTTNGCCAC	GCCTGAATTA	ATTGGNTTCC	GNTGTTTTCC	ΝΤΤΑΔΑΔΝΔΑ	360
				CCGANTTTTT		420
GANCCCNCGG	GAATTAACGG	GGNNNNTCCC	TNTTGGGGGG	CNGGNNCCCC	CCCCNTCGG	480
GGTTNGGGNC	AGGNCNNAAT	TGTTTAAGGG	TCCGAAAAAT	CCCTCCNAGA	AAAAANCTC	540
CCAGGNTGAG	NNTNGGGTTT	NCCCCCCCC	CANGGCCCCT	CTCGNANAGT	TGGGGTTTCC	600
GGGGCCTGGG	ATTTTTTTC	CCCTNTTNCC	TCCCCCCCC	CCNGGGANAG	ACCULATION OF	660
TTTGNTCNNC	GGCCCCNCCN	AAGANCTTTN	CCGANTTNAN	TTAAATCCNT	CCCTMCCCCA	
		GGCCCCCTNN		TIMMICCNI	GCCINGGCGA	720
						754

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 755 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ATCANCCCAT	GACCCCNAAÇ	NNGGGACCNC	TCANCCGGNC	NNNCNACCNC	CGGCCNATCA	60
NNGTNAGNNC	ACTNCNNTTN	NATCACNCCC	CNCCNACTAC	GCCCNCNANC	CNACGCNCTA	120
NNCANATNCC	ACTGANNGCG	CGANGTNGAN	NGAGAAANCT	NATACCANAG	NCACCANACN	180
				NTGNANCCTC		240
NNCNNCANAT	GATTTTCCTN	ANCCGATTAC	CCNTNCCCCC	TANCCCCTCC	CCCCCAACNA	300
CGAAGGCNCT	GGNCCNAAGG	NNGCGNCNCC	CCGCTAGNTC	CCCNNCAAGT	CNCNCNCCTA	360
AACTCANCCN	NATTACNCGC	TTCNTGAGTA	TCACŢCCCCG	AATCTCACCC	TACTCAACTC	420
AAAAANATCN	GATACAAAAT	AATNCAAGCC	TGNTTATNAC	ACTNTGACTG	GGTCTCTATT	480
				TCNCCAATTT		540
CTTTCNGACA	GCATNTTTTG	GTTCCCNNTT	GGGTTCTTAN	NGAATTGCCC	TTCNTNGAAC	600
GGGCTCNTCT	TTTCCTTCGG	TTANCCTGGN	TTCNNCCGGC	CAGTTATTAT	TTCCCNTTTT	660
				CTTGAAAACG	GCCCCCTGGT	720
AAAAGGTTGT	TTTGANAAAA	TTTTTGTTTT	GTTCC			755

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 849 base pairs

- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

TTTTTTTTT	TTTTTANGTG	TNGTCGTGCA	GGTAGAGGCT	TACTACAANT	GTGAANACGT	60
ACGCTNGGAN	TAANGCGACC	CGANTTCTAG	GANNCNCCCT	AAAATCANAC	TGTGAAGATN	120
ATCCTGNNNA	CGGAANGGTC	ACCGGNNGAT	NNTGCTAGGG	TGNCCNCTCC	CANNNCNTTN	180
CATAACTCNG	NGGCCCTGCC	CACCACCTTC	GGCGGCCCNG	NGNCCGGGCC	CGGGTCATTN	240
GNNTTAACCN	CACTNNGCNA	NCGGTTTCCN	NCCCCNNCNG	ACCCNGGCGA	TCCGGGGTNC	300
TCTGTCTTCC	CCTGNAGNCN	ANAAANTGGG	CCNCGGNCCC	CTTTACCCCT	NNACAAGCCA	360
CNGCCNTCTA	NCCNCNGCCC	CCCCTCCANT	NNGGGGGACT	GCCNANNGCT	CCGTTNCTNG	420
NNACCCCNNN						480
TGCGTTNTTG						540
CNCNNCGNNG						600
NCCCTCNCNC	NGNCGNANCN	CTCCNCCNCC	GTCTCANNCA	CCACCCCGCC	CCGCCAGGCC	660
NTCANCCACN (GGNNGACNNG	NAGCNCNNTC	GCNCCGCGCN	GCGNCNCCCT	CGCCNCNGAA	720
CTNCNTCNGG (CCANTNNCGC	TCAANCCNNA	CNAAACGCCG	CTGCGCGGCC	CGNAGCGNCC	780
NCCTCCNCGA (GTCCTCCCGN	CTTCCNACCC	ANGNNTTCCN	CGAGGACACN	NNACCCCGCC	840
NNCANGCGG						849

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 872 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

			;	!		
GCGCAAACTA	TACTTCGCTC	GNACTCGTGC	GCCTCGCTNC	TCTTTTCCTC	CGCAACCATG	60
TCTGACNANC	CCGATTNGGC	NGATATCNAN	AAGNTCGANC	AGTCCAAACT	GANTAACACA	120
CACACNCNAN	AGANAAATCC	NCTGCCTTCC	ANAGTANACN	ATTGAACNNG	AGAACCANGC	180
NGGCGAATCG	TAATNAGGCG	TGCGCCGCCA	ATNTGTCNCC	GTTTATTNTN	CCAGCNTCNC	240
CTNCCNACCC	TACNTCTTCN	NAGCTGTCNN	ACCCCTNGTN	CGNACCCCCC	NAGGTCGGGA	300
TCGGGTTTNN	NNTGACCGNG	CNNCCCCTCC	CCCCNTCCAT	NACGANCONC	CCGCACCACC	360
NANNGCNCGC	NCCCCGNNCT	CTTCGCCNCC	CTGTCCTNTN	CCCCTGTNGC	CTGGCNCNGN	420
ACCGCATTGA	CCCTCGCCNN	CTNCNNGAAA	NCGNANACGT	CCGGGTTGNN	ANNANCGCTG	480
TGGGNNNGCG	TCTGCNCCGC	GTTCCTTCCN	NCNNCTTCCA	CCATCTTCNT	TACNGGGTCT	540
CCNCGCCNTC	TCNNNCACNC	CCTGGGACGC	TNTCCTNTGC	CCCCCTTNAC	TCCCCCCCTT	600
CGNCGTGNCC	CGNCCCCACC	NTCATTTNCA	NACGNTCTTC	ACAANNNCCT	GGNTNNCTCC	660
CNANCNGNCN	GTCANCCNAG	${\tt GGAAGGGNGG}$	GGNNCCNNTG	NTTGACGTTG	NGGNGANGTC	720
CGAANANTCC	TCNCCNTCAN	CNCTACCCCT	CGGGCGNNCT	CTCNGTTNCC	AACTTANCAA	780
NTCTCCCCCG	NGNGCNCNTC	TCAGCCTCNC	CCNCCCCNCT	CTCTGCANTG	TNCTCTGCTC	840
TNACCNNTAC	GANTNTTCGN	CNCCCTCTTT	CC			872

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 815 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GCATGCAAGC	TTGAGTATTC	TATAGNGTCA	CCTAAATANC	TTCCCNTD 2 m		
MCTCMCTTCC	TOTOTO A A A TO	CENTROLICA	CCIMAMIANC	TIGGCNTAAT	CATGGTCNTA	60
NCIGNCIICC	IGIGICAAAT	GTATACNAAN	TANATATGAA	TCTNATNTGA	CAAGANNGTA	120
TCNTNCATTA	GTAACAANTG	TNNTGTCCAT	CCTGTCNGAN	CANATTCCCA	TNNATTNCCM	180
CGCATTCNCN	GCNCANTATN	TAATNGGGAA	NTCNNNTNNN	NCACCMMCAT		
GCNCCCTGAC	TGGNAGAGAT	CCAMMANDEC	TAT CTATAL TIME	MCACCIMICAT	CTATCHINCC	240
TANTAGE	IGGNAGAGAI	GGATNANTTC	TNNTNTGACC	NACATGTTCA	TCTTGGATTN	300
AANANCCCCC	CGCNGNCCAC	CGGTTNGNNG	CNAGCCNNTC	CCAAGACCTC	СТСТССАССТ	360
AACCTGCGTC	AGANNCATCA	AACNTGGGAA	ACCCGCNNCC	AMOMENTARON	VOIDER	
GATCCCGTCC	V C C Manager a C C) MOOCOON CO.	ACCCGCIVINCC	AMGINNAAGT	NGNNNCANAN	420
GATCCCGTCC	AGGNIINACC	ATCCCTTCNC	AGCGCCCCT	TTNGTGCCTT	ANAGNGNAGC	480
GTGTCCNANC	CNCTCAACAT	GANACGCGCC	AGNCCANCCG	CAATTNGGCA	CAATCTCCMC	540
GAACCCCCTA	GGGGGANTNA	TNCAAANCCC	CAGGATTGTC	CMCMCANCA	CHAIGICGNC	
CCCNCCCTAC	CONTRACTOR	22.012221000	CAGGATIGIC	CNCNCANGAA	ATCCCNCANC	600
CCCNCCCIAC	CCNNCTTIGG	GACNGTGACC	AANTCCCGGA	GTNCCAGTCC	GGCCNGNCTC	660
CCCCACCGGT	NNCCNTGGGG	GGGTGAANCT	CNGNNTCANC	CNGNCGAGGN	MTCCNIA ACCA	
ACCGGNCCTN	GGNCGAANNG	AMCMMTCMCA	AGNGCCNCNT	CONCOAGGI	NICGNAAGGA	720
MCCNIA CAICAIM	* Chicarating	ANCINITORION	AGNGCCNCNT	CGTATAACCC	CCCCTCNCCA	780
MCCIMCIONI	AGNITUCCCCC	CNGGGTNCGG	AANGG			815
						313

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 775 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

			3			
CCGAGATGTC	TCGCTCCGTG	GCCTTAGCTG	TGCTCGCGCT	ACTCTCTCTT	TCTGGCCTGG	60
AGGCTATCCA	GCGTACTCCA	AAGATTCAGG	TTTACTCAČG	TCATCCAGCA	GAGAATGGAA	120
AGTCAAATTT	CCTGAATTGC	TATGTGTCTG	GGTTTCATCC	ATCCGACATT	GAANTTGACT	180
TACTGAAGAA	TGGANAGAGA	ATTGAAAAAG	TGGAGCATTC	AGACTTGTCT	TTCACCAACC	240
ACTGGTCTTT	CTATCTCNTG	TACTACACTG	AATTCACCCC	CACTGAAAAA	CATCACCAAGG	
CCTGCCGTGT	GAACCATGTG	ACTTTGTCAC	AGCCCAAGAT	AGTTAAGTCC	CATCCACACA	300
TGTAAGCAGN	CNNCATGGAA	GTTTGAAGAT	GCCGCATTTG	CATTCCATCA	ATTOGAGACA	360
CTGCTTGCTT	GCNTTTTAAT	ANTGATATGC	NTATACACCC	TACCCUTTUAN	ATTCCAAATT	420
TGTAGGGGTT	ACATNANTGT	TCNCNTNGGA	CATGATCTTC	CTTTATA	GNCCCCAAAT	480
AATTGCCCGT	CNCCCNGTTN	NGAATGTTTC	CNNAACCACG	CITIATAANT	CCNCCNTTCG	540
TCTTACGGAA	GGGCCTGGGC	CMCTTTMCAA	GGTTGGGGGA	GTTGGCTCCC	CCAGGTCNCC	600
CCNCCCNCCA	CNNTCTTCNG	MICHCAM	GGIIGGGGA	ACCNAAAATT	TCNCTTNTGC	660
NCCTTNNCTA	THAT CLICKS	NNCNCANTIT	GGAACCCTTC	CNATTCCCCT	TGGCCTCNNA	720
IIIICIA	WANAVACTIN.	MAANCGINGC	NAAANNTTTN	ACTTCCCCCC	TTACC	775

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 820 base pairs
 - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

ANATTANTAC	AGTGTAATCT	TTTCCCAGAG	GTGTGTANAG	CCAACGCCCC	СТАСАСССАТ	60
		,				60
CCCANAGATA	NCTTATANCA	ACAGTGCTTT	GACCAAGAGC	TGCTGGGCAC	ATTTCCTGCA	120
GAAAAGGTGG	CGGTCCCCAT	CACTCCTCCT	CTCCCATAGC	CATCCCAGAG	GGGTGAGTAG	180
	TTCGGTGGGA					240
NTGATGACCA	TGGGCGGGAG	CGAGCCTCTT	CCCTGNACCG	GGGTGGCANA	NGANAGCCTA	300
NCTGAGGGGT	CACACTATAA	ACGTTAACGA	CCNAGATNAN	CACCTGCTTC	AAGTGCACCC	360
TTCCTACCTG	ACNACCAGNG	ACCNNNAACT	GCNGCCTGGG	GACAGCNCTG	GGANCAGCTA	420
ACNNAGCACT	CACCTGCCCC	CCCATGGCCG	TNCGCNTCCC	TGGTCCTGNC	AAGGGAAGCT	480
CCCTGTTGGA	ATTNCGGGGA	NACCAAGGGA	NCCCCCTCCT	CCANCTGTGA	AGGAAAANN	540
GATGGAATTT	TNCCCTTCCG	GCCNNTCCCC	TCTTCCTTTA	CACGCCCCCT	NNTACTCNTC	600
TCCCTCTNTT	NTCCTGNCNC	ACTTTTNACC	CCNNNATTTC	CCTTNATTGA	TCGGANNCTN	660
GANATTCCAC	TNNCGCCTNC	CNTCNATCNG	NAANACNAAA	NACTNTCTNA	CCCNGGGGAT	720
GGGNNCCTCG	NTCATCCTCT	CTTTTTCNCT	ACCNCCNNTT	CTTTGCCTCT	CCTTNGATCA	780
TCCAACCNTC	GNTGGCCNTN	CCCCCCNNN	TCCTTTNCCC			820

- (2) INFORMATION FOR SEQ ID NO:27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 818 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

					•		
	${\tt TCTGGGTGAT}$	GGCCTCTTCC	TCCTCAGGGA	CCTCTGACTG	CTCTGGGCCA	AAGAATCTCT	60
	TGTTTCTTCT	CCGAGCCCCA	GGCAGCGGTG	ATTCAGCCCT	GCCCAACCTG	ATTCTGATGA	120
•	CTGCGGATGC	TGTGACGGAC	CCAAGGGGCA	AATAGGGTCC	CAGGGTCCAG	GGAGGGGCGC	180
	CTGCTGAGCA	CTTCCGCCCC	TCACCCTGCC	CAGCCCCTGC	CATGAGCTCT	GGGCTGGGTC	240
	TCCGCCTCCA	GGGTTCTGCT*	CTTCCANGCA	NGCCANCAAG	TGGCGCTGGG	CCACACTGGC	300
	TTCTTCCTGC	CCCNTCCCTG	GCTCTGANTC	TCTGTCTTCC	TGTCCTGTGC	ANGCNCCTTG	360
	GATCTCAGTT	TCCCTCNCTC	ANNGAACTCT	GTTTCTGANN	TCTTCANTTA	ACTNTGANTT	420
	TATNACCNAN	TGGNCTGTNC	TGTCNNACTT	TAATGGGCCN	GACCGGCTAA	TCCCTCCCTC	480
	NCTCCCTTCC	ANTTCNNNNA	ACCNGCTTNC	CNTCNTCTCC	CCNTANCCCG	CCNGGGAANC	540
	CTCCTTTGCC	CTNACCANGG	GCCNNNACCG	CCCNTNNCTN	GGGGGCNNG	GTNNCTNCNC	600
	CTGNTNNCCC	CNCTCNCNNT	TNCCTCGTCC	CNNCNNCGCN	NNGCANNTTC	NCNGTCCCNN	660
	TNNCTCTTCN	NGTNTCGNAA	NGNTCNCNTN	TNNNNNGNCN	NGNTNNTNCN	TCCCTCTCNC	720
	CNNNTGNANG	TNNTTNNNNC	NCNGNNCCCC	NNNNCNNNNN	NGĞNNNTNNN	TCTNCNCNGC	780
	CCCNNCCCCC	NGNATTAAGG	CCTCCNNTCT	CCGGCCNC			818

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 731 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

48

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

		GTANGGGATT				60
TCCCAACATG	ANGGTGNNGT	TCTCTTTTGA	ANGAGGGTTG	NGTTTTTANN	CCNGGTGGGT	120
GATTNAACCC	CATTGTATGG	AGNNAAAGGN	TTTNAGGGAT	TTTTCGGCTC	TTATCAGTAT	180
NTANATTCCT	GTNAATCGGA	AAATNATNTT	TCNNCNGGAA	AATNTTGCTC	CCATCCGNAA	240
ATTNCTCCCG	GGTAGTGCAT	NTTNGGGGGN	CNGCCANGTT	TCCCAGGCTG	СТАНААТССТ	300
ACTAAAGNTT	NAAGTGGGAN	TNCAAATGAA	אַ אַ ררייאואור אַ ר	ACACMATCOM	TA COCCA CTC	
		11.0.111.0.11	MICCINICAC	AGAGNATCCN	TACCCGACTG	360
TNNNTTNCCT	TCGCCCTNTG	ACTCTGCNNG	AGCCCAATAC	CCNNGNGNAT	GTCNCCCNGN	420
NNNGCGNCNC	TGAAANNNNC	TCGNGGCTNN	GANCATCANG	GGGTTTCGCA	TCAAAAGCNN	480
CGTTTCNCAT	NAAGGCACTT	TNGCCTCATC	CAACCNCTNG	CCCTCNNCCA	TTTNGCCCTC	540
MCCTTCMCCT	A CCCCTATATION C	(MICCOMPRIME)	G 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		11111000010	240
MOGITCHCCI	ACGC INM ING	CNCCTNNNTN	GANATTTTNC	CCGCCTNGGG	NAANCCTCCT	600
GNAATGGGTA	GGGNCTTNTC	TTTTNACCNN	GNGGTNTACT	AATCNNCTNC	ACGCNTNCTT	660
TCTCNIACCCC	CCCCCmmmmm	CAAMOOOANO	GGGYY			000
		CAATCCCANC	GGCNAATGGG	GTCTCCCCNN	CGANGGGGGG	720
NNNCCCANNC	C					221
						731

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 822 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

ACTAGTCCAG	TGTGGTGGAA	TTCCATTGTG	TTGGGGNCNC	TTCTATGANT	ANTNTTAGAT	60
CGCTCANACC	TCACANCCTC	CCNACNANGC	CTATAANGAA	NANNAATAGA	NCTGTNCNNT	120
ATNTNTACNC	TCATANNCCT	CNNNACCCAC	TCCCTCTTAA	CCCNTACTGT	GCCTATNGCN	180
TNNCTANTCT	NTGCCGCCTN	CNANCCACCN	GTGGGCCNAC	CNCNNGNATT	CTCNATCTCC	240
TCNCCATNTN	GCCTANANTA	NGTNCATACC	CTATACCTAC	NCCAATGCTA	NNNCTAANCN	300
TCCATNANTT	ANNNTAACTA	CCACTGACNT	NGACTTTCNC	ATNANCTOCT	AATTTGAATC	360
TACTCTGACT	CCCACNGCCT	ANNNATTAGC	ANCNTCCCCC	NACNATNTCT	CAACCAAATC	420
NTCAACAACC	TATCTANCTG	TTCNCCAACC	NTTNCCTCCG	ATCCCCNNAC	AACCCCCCCTC	480
CCAAATACCC	NCCACCTGAC	NCCTAACCCN	CACCATCCCG	GCAAGCCNAN	CCNCATTAN	540
CCACTGGAAT	CACNATNGGA	NAAAAAAAAC	CCNAACTCTC	TANCNOMAT	CTCCCTAANA	600
AATNCTCCTN	NAATTTACTN	NCANTNCCAT	CAANCCCACN	TCAAACINAI	CICCCIAANA	
TANATCCCTT	СТТТССАААА	CCNACCCTTT	ANNICCCACN	CTTTTICCCCC	CCCCTGTTTT	660
CCMAATCAAC	CITICOAAAA	CUMCCCITT	ANNINCCCAAC	CTTTNGGGCC	CCCCCNCTNC	720
CCNMAIGAAG	GNUNCCUAAT	CNANGAAACG	NCCNTGAAAA	ANCNAGGCNA	ANANNNTCCG	780
CANATCCTAT	CCCTTANTTN	GGGGNCCCTT	NCCCNGGGCC	CC		822

- (2) INFORMATION FOR SEQ ID NO:30:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

49

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

CGGCCGCCTG	CTCTGGCACA	TGCCTCCTGA	ATGGCATCAA	AAGTGATGGA	CTGCCCATTG	60
CTAGAGAAGA	CCTTCTCTCC	TACTGTCATT	ATGGAGCCCT	GCAGACTGAG	GGCTCCCCTT	120
GTCTGCAGGA	TTTGATGTCT	GAAGTCGTGG	AGTGTGGCTT	GGAGCTCCTC	ATCTACATNA	180
			GCCTCCCCCT			240
			CCAGNANGAC			300
			TTGACACCAT			360
GGCCGTGGGA	TCCACTANTT	CTANAACGGN	CGCCACCNCG	GTGGGAGCTC	CAGCTTTTGT	420
TCCCNTTAAT	GAAGGTTAAT	TGCNCGCTTG	GCGTAATCAT	NGGTCANAAC	TNTTTCCTGT	480
GTGAAATTGT	TTNTCCCCTC	NCNATTCCNC	NCNACATACN	AACCCGGAAN	CATAAAGTGT	540
TAAAGCCTGG	GGGTNGCCTN	NNGAATNAAC	TNAACTCAAT	TAATTGCGTT	GGCTCATGGC	600
CCGCTTTCCN	TTCNGGAAAA	CTGTCNTCCC	CTGCNTTNNT	GAATCGGCCA	CCCCCNGGG	660
AAAAGCGGTT	TGCNTTTTNG	GGGGNTCCTT	CCNCTTCCCC	CCTCNCTAAN	CCCTNCGCCT	720
CGGTCGTTNC	NGGTNGCGGG	GAANGGGNAT	NNNCTCCCNC	NAAGGGGGNG	AGNNNGNTAT	780
CCCCAAA						787
						, , ,

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 799 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

	TTTTTTTTT	TTTTTTTGGC	GATGCTACTG	TTTAATTGCA	GGAGGTGGGG	GTGTGTGTAC	60
	CATGTACCAG	GGCTATTAGA	AGCAAGAAGG	AAGGAGGGAG	GGCAGAGCGC	CCTGCTGAGC	120
	AACAAAGGAC	TCCTGCAGCC	TTCTCTGTCT	GTCTCTTGGC	GCAGGCACAT	GGGGAGGCCT	180
-	CCCGCAGGGT	GGGGGCCACC	AGTCCAGGGG	TGGGAGCACT	ACANGGGGTG	GGAGTGGGTG	240
	GTGGCTGGTN	CNAATGGCCŢ	GNCACANATC	CCTACGATTC	TTGACACCTG	GATTTCACCA	300
	GGGGACCTTC	TGTTCTCCCA	NGGNAACTTC	NTNNATCTCN	AAAGAACACA	ACTGTTTCTT	360
	CNGCANTTCT	GGCTGTTCAT	GGAAAGCACA	GGTGTCCNAT	TTNGGCTGGG	ACTTGGTACA	420
	TATGGTTCCG	GCCCACCTCT	CCCNTCNAAN	AAGTAATTCA	CCCCCCCCN	CCNTCTNTTG	480
	CCTGGGCCCT	TAANTACCCA	CACCGGAACT	CANTTANTTA	TTCATCTTNG	GNTGGGCTTG	540
	NTNATCNCCN	CCTGAANGCG	CCAAGTTGAA	AGGCCACGCC	GTNCCCNCTC	CCCATAGNAN	600
	NTTTTNNCNT	CANCTAATGC	CCCCCNGGC	AACNATCCAA	TCCCCCCCN	TGGGGGCCCC	660
	AGCCCANGGC	CCCCGNCTCG	GGNNNCCNGN	CNCGNANTCC	CCAGGNTCTC	CCANTCNGNC	720
	CCNNNGCNCC	CCCGCACGCA	GAACANAAGG	NTNGAGCCNC	CGCANNNNNN	NGGTNNCNAC	780
	CTCGCCCCCC	CCNNCGNNG					799

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 789 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	60
TTTTNCCNAG	GGCAGGTTTA	TTGACAACCT	CNCGGGACAC	AANCAGGCTG	GGGACAGGAC	120
GGCAACAGGC	TCCGGCGGCG	GCGGCGGCGG	CCCTACCTGC	GGTACCAAAT	NTGCAGCCTC	180
	TGATNTTCCT					240
	CTGGGATTTN					300
	AGTGGTNTTA					360
	CATCTGGTCT					420
	ATCATNACTC					480
	TTNNCGGGGT					540
	TTGNGGCCCN					600
	CCCAAATCCT					660
TGGNNGGCAA	GNTGGNTCCC	CCTTCGGGCC	CCCGGTGGGC	CCNNCTCTAA	NGAAAACNCC	720
NTCCTNNNCA	CCATCCCCCC	NNGNNACGNC	TANCAANGNA	TCCCTTTTTT	TANAAACGGG	780
CCCCCCNCG						789

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 793 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GACAGAACAT	GTTGGATGGT	GGAGCACCTT	TCTATACGAC	TTACAGGACA	GCAGATGGGG	.60
AATTCATGGC	TGTTGGAGCA	ATANAACCCC	AGTTCTACGA	GCTGCTGATC	AAAGGACTTG	120
GACTAAAGTC	TGATGAACTT	CCCAATCAGA	TGAGCATGGA	TGATTGGCCA	GAAATGAANA	180
	AGATGTATTT					240
GCACAGATGC	CTGTGTGACT	CCGGTTCTGA	CTTTTGAGGA	GGTTGTTCAT	CATGATCACA	300
ACAANGAACG	GGGCTCGTTT	ATCACCANTG	AGGAGCAGGA	CGTGAGCCCC	CGCCCTGCAC	360
	AAACACCCCA					420
GGNCGCCACC	GCGGTGGAGC	TCCAGCTTTT	GTTCCCTTTA	GTGAGGGTTA	ATTGCGCGCT	480
TGGCGTAATC	ATGGTCATAN	CTGTTTCCTG	TGTGAAATTG	TTATCCGCTC	ACAATTCCAC	540
ACAACATACG	ANCCGGAAGC	ATNAAATTTT	AAAGCCTGGN	GGTNGCCTAA	TGANTGAACT	600
NACTCACATT	AATTGGCTTT	GCGCTCACTG	CCCGCTTTCC	AGTCCGGAAA	ACCTGTCCTT	660
GCCAGCTGCC	NTTAATGAAT	CNGGCCACCC	CCCGGGGAAA	AGGCNGTTTG	CTTNTTGGGG	720
CGCNCTTCCC	GCTTTCTCGC	TTCCTGAANT	CCTTCCCCCC	GGTCTTTCGG	CTTGCGGCNA	780
ACGGTATCNA	CCT					793

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 756 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GCCGCGACCG	GCATGTACGA	GCAACTCAAG	GGCGAGTGGA	ACCGTAAAAG	CCCCAATCTT	60
ANCAAGTGCG	GGGAANAGCT	GGGTCGACTC	AAGCTAGTTC	TTCTGGAGCT	CAACTTCTTG	120
	GGACCAAGCT					180
ATCGGGGCCC	AATGGAGCAT	CCTACGCAAN	GACATCCCCT	CCTTCGAGCG	CTACATGGCC	240
	GCTACTACTT					300
CAGCTCTTGG	GCCTCAACCT	CCTCTTCCTG	CTGTCCCAGA	ACCGGGTGGC	TGANTNCCAC	360
ACGGANTTGG	ANCGGCTGCC	TGCCCAANGA	CATACANACC	AATGTCTACA	TCNACCACCA	420
GTGTCCTGGA	GCAATACTGA	TGGANGGCAG	CTACCNCAAA	GTNTTCCTGG	CCNAGGGTAA	480
CATCCCCCGC	CGAGAGCTAC	ACCTTCTTCA	TTGACATCCT	GCTCGACACT	ATCAGGGATG	540
AAAATCGCNG	GGTTGCTCCA	GAAAGGCTNC	AANAANATCC	TTTTCNCTGA	AGGCCCCCGG	600
ATNCNCTAGT	NCTAGAATCG	GCCCGCCATC	GCGGTGGANC	CTCCAACCTT	TCGTTNCCCT	660
TTACTGAGGG	TTNATTGCCG	${\tt CCCTTGGCGT}$	TATCATGGTC	ACNCCNGTTN	CCTGTGTTGA	720
AATTNTTAAC	CCCCCACAAT	TCCACGCCNA	CATTNG			756

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 834 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GGGGATCTCT	ANATCNACCT	GNATGCATGG	TTGTCGGTGT	GGTCGCTGTC	GATGAANATG	60
AACAGGATCT	TGCCCTTGAA	GCTCTCGGCT	GCTGTNTTTA	AGTTGCTCAG	TCTGCCGTCA	120
TAGTCAGACA	CNCTCTTGGG	CAAAAAACAN	CAGGATNTGA	GTCTTGATTT	CACCTCCAAT	180
AATCTTCNGG	GCTGTCTGCT	CGGTGAACTC	GATGACNANG	GGCAGCTGGT	TGTGTNTGAT	240
AAANTCCANC	ANGTTCTCCT	TGGTGACCTC	CCCTTCAAAG	TTGTTCCGGC	CTTCATCAAA	300
CTTCTNNAAN	ANGANNANCC	CANCTTTGTC	GAGCTGGNAT	TTGGANAACA	CGTCACTGTT	360
GGAAACTGAT	CCCAAATGGT	ATGTCATCCA	TCGCCTCTGC	TGCCTGCAAA	AAACTTGCTT	420
GGCNCAAATC	CGACTCCCCN	TCCTTGAAAG	AAGCCNATCA	CACCCCCTC	CCTGGACTCC	480
NNCAANGACT	CTNCCGCTNC	CCCNTCCNNG	CAGGGTTGGT	GGCANNCCGG	GCCCNTGCGC	540
TTCTTCAGCC	AGTTCACNAT	NTTCATCAGC	CCCTCTGCCA	GCTGTTNTAT	TCCTTGGGGG	600
GGAANCCGTC	TCTCCCTTCC	TGAANNAACT	TTGACCGTNG	GAATAGCCGC	GCNTCNCCNT	660
ACNTNCTGGG	CCGGGTTCAA	ANTCCCTCCN	TTGNCNNTCN	CCTCGGGCCA	TTCTGGATTT	720
NCCNAACTTT	TTCCTTCCCC	CNCCCCNCGG	NGTTTGGNTT	TTTCATNGGG	CCCCAACTCT	780
GCTNTTGGCC	ANTCCCCTGG	GGGCNTNTAN	CNCCCCCTNT	GGTCCCNTNG	GGCC	834

- (2) INFORMATION FOR SEQ ID NO:36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 814 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

3NSOWOTH -WA 0027410A2 1 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CGGNCGCTTT	CCNGCCGCGC	CCCGTTTCCA	TGACNAAGGC	TCCCTTCANG	TTAAATACNN	60
CCTAGNAAAC	ATTAATGGGT	TGCTCTACTA	ATACATCATA	CNAACCAGTA	AGCCTGCCCA	120
			GAAGAAAGGC			180
			NCGGCTGAAT			240
AATGGAAAA A	AAAAATAAAC	AANAGGTTTT	GTTCTCATGG	CTGCCCACCG	CAGCCTGGCA	300
CTAAAACANC	CCAGCGCTCA	CTTCTGCTTG	GANAAATATT	CTTTGCTCTT	TTGGACATCA	360
			CCAGCTGGGC			420
			CAAAAGTCTC			480
			ANANTACCCN			540
			TAAGACCCAT			600
			GGGTCCCANT			
			TGANATCCCC			660
			NCTGAAAGCA			720
	AGAAGGTCTN			CNATTCCCTN	GGCNCCNAAN	780
JOHOLNG I CA	NOVEO ICIN	NOMMMAACCA	CNCIN			814

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 760 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

			TTGCCATAAC			60
			CAGCGCGGGA			120
			TCACTGGGGA			180
TCNAANCCAC	TCGTGTATTT	TTCACANGCA	GCCTCCTCCG	AAGCNTCCGG	GCAGTTGGGG	240
GTGTCGTCAC	ACTCCACTAA	ACTGTCGATN	CANCAGCCCA	TTGCTGCAGC	GGAACTGGGT	300
GGGCTGACAG	GTGCCAGAAC	ACACTGGATN	GGCCTTTCCA	TGGAAGGCC	TGGGGGAAAT	360
CNCCTNANCC	CAAACTGCCT	CTCAAAGGCC	ACCTTGCACA	CCCCGACAGG	CTAGAAATGC	420
ACTCTTCTTC	CCAAAGGTAG	TTGTTCTTGT	TGCCCAAGCA	NCCTCCANCA	AACCAAAANC	480
TTGCAAAATC	TGCTCCGTGG.	GGGTCATNNN	TACCANGGTT	GGGGAAANAA	ACCCGGCNGN	540
			ATCCTCCTGT			600
			CNCTNGGGTG			660
ACTGGAAAAA	GGTANGTGCC	TTCCTTGAAT	TCCCAAANTT	CCCCTNGNTT	TGGGTNNTTT	720
		TNTTCCCCCC			1000111111	760
						760

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 724 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

CAAATTAATT	TTGGANTTTA	AATTAAATNT	TNATTNGGGG	AANAANCCAA	ATGTNAAGAA	180
AATTTAACCC	ATTATNAACT	TAAATNCCTN	GAAACCCNTG	GNTTCCAAAA	ATTTTTAACC	240
CTTAAATCCC	TCCGAAATTG	NTAANGGAAA	ACCAAATTCN	CCTAAGGCTN	TTTGAAGGTT	300
NGATTTAAAC	CCCCTTNANT	TNTTTTNACC	CNNGNCTNAA	NTATTTNGNT	TCCGGTGTTT	360
TCCTNTTAAN	CNTNGGTAAC	TCCCGNTAAT	GAANNNCCCT	AANCCAATTA	AACCGAATTT	420
TTTTTGAATT	GGAAATTCCN	NGGGAATTNA	CCGGGGTTTT	TCCCNTTTGG	GGGCCATNCC	480
CCCNCTTTCG	${\tt GGGTTTGGGN}$	NTAGGTTGAA	TTTTTNNANG	NCCCAAAAA	NCCCCCAANA	540
AAAAAACTCC	CAAGNNTTAA	TTNGAATNTC	CCCCTTCCCA	GGCCTTTTGG	GAAAGGNGGG	600
TTTNTGGGGG	CCNGGGANTT	CNTTCCCCCN	TTNCCNCCCC	CCCCCNGGT	AAANGGTTAT	660
NGNNTTTGGT	TTTTGGGCCC	CTTNANGGAC	CTTCCGGATN	GAAATTAAAT	CCCCGGGNCG	720
GCCG						724

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 751 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

TTTTTTTTT TTTTTCTTTG CTCACATTTA ATTTTTATTT TGATTTTTTT TAATGCTGCA	60
CAACACAATA TTTATTTCAT TTGTTTCTTT TATTTCATTT TATTTGTTTG CTGCTGCTGT 1:	20
TTTATTTATT TTTACTGAAA GTGAGAGGGA ACTTTTGTGG CCTTTTTTCC TTTTTCTGTA 18	80
GGCCGCCTTA AGCTTTCTAA ATTTGGAACA TCTAAGCAAG CTGAANGGAA AAGGGGGTTT 24	40
CGCAAAATCA CTCGGGGGAA NGGAAAGGTT GCTTTGTTAA TCATGCCCTA TGGTGGGTGA 30	00
TTAACTGCTT GTACAATTAC NTTTCACTTT TAATTAATTG TGCTNAANGC TTTAATTANA 36	60
CTTGGGGGTT CCCTCCCCAN ACCAACCCCN CTGACAAAAA GTGCCNGCCC TCAAATNATG 42	20
TCCCGGCNNT CNTTGAAACA CACNGCNGAA NGTTCTCATT NTCCCCNCNC CAGGTNAAAA 48	08
TGAAGGGTTA CCATNTTTAA CNCCACCTCC ACNTGGCNNN GCCTGAATCC TCNAAAANCN 54	40
CCCTCAANCN AATTNCTNNG CCCCGGTCNC GCNTNNGTCC CNCCCGGGCT CCGGGAANTN 60	00
	60
•	20
NNNNCNCCTC CNCTNGTCCN NAATCNCCAN C 75	51

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 753 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GTGGTATTTT	CTGTAAGATC	AGGTGTTCCT	CCCTCGTAGG	TTTAGAGGAA	ACACCCTCAT	60
AGATGAAAAC	CCCCCGAGA	CAGCAGCACT	GCAACTGCCA	AGCAGCCGGG	GTAGGAGGGG	120
CGCCCTATGC	ACAGCTGGGC	CCTTGAGACA	GCAGGGCTTC	GATGTCAGGC	TCGATGTCAA	180
TGGTCTGGAA	GCGGCGGCTG	TACCTGCGTA	GGGGCACACC	GTCAGGGCCC	ACCAGGAACT	240
TCTCAAAGTT	CCAGGCAACN	TCGTTGCGAC	ACACCGGAGA	CCAGGTGATN	AGCTTGGGGT	300

CGGTCATAAN CGCGGTGGCG TCGTCGCTGG GAGCTGGCAG GGCCTCCCGC AGGAAGGCNA ATAAAAGGTG CGCCCCGCA CCGTTCANCT CGCACTTCTC NAANACCATG ANGTTGGGCT CNAACCCACC ACCANNCCGG ACTTCCTTGA NGGAATTCCC AAATCTCTTC GNTCTTGGGC	360 420
TTCTNCTGAT GCCCTANCTG GTTGCCCNGN ATGCCAANCA NCCCCAANCC CCGGGGTCCT	480
AAANCACCCN CCTCCTCNTT TCATCTGGGT TNTTNTCCCC GGACCNTGGT TCCTCTCAAG	540
GGANCCCATA TCTCNACCAN TACTCACCNT NCCCCCCCNT GNNACCCANC CTTCTANNGN	600
TTCCCNCCCG NCCTCTGGCC CNTCAAANAN GCTTNCACNA CCTGGGTCTG CCTTCCCCCC	660
THE CONTROL OF THE CO	720
The second secon	753
(2) INFORMATION FOR SEQ ID NO:41:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 341 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
ACTATATCCA TCACAACAGA CATGCTTCAT CCCATAGACT TCTTGACATA GCTTCAAATG	·. 60
AGTGAACCCA TCCTTGATTT ATATACATAT ATGTTCTCAG TATTTTGGGA GCCTTTCCAC	120
TTCTTTAAAC CTTGTTCATT ATGAACACTG AAAATAGGAA TTTGTGAAGA GTTAAAAAGT	180
TATAGCTTGT TTACGTAGTA AGTTTTTGAA GTCTACATTC AATCCAGACA CTTAGTTGAG	240
TGTTAAACTG TGATTTTTAA AAAATATCAT TTGAGAATAT TCTTTCAGAG GTATTTTCAT	300
TTTTACTTTT TGATTAATTG TGTTTTATAT ATTAGGGTAG T	341
(2) INFORMATION FOR SEQ ID NO:42:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 101 base pairs	
(B) TYPE: hucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	•
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(III) CROLLIEU HOMO DUPLCHE	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
ACTTACTGAA TTTAGTTCTG TGCTCTTCCT TATTTAGTGT TGTATCATAA ATACTTTGAT	
STITCAAACA TITAGIICIG IGCICTICCI TATTIAGIGI IGTATCATAA ATACTITGAT	60
	101
(2) INFORMATION FOR SEQ ID NO:43:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 305 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D)	TOPOLOGY:	linear
-----	-----------	--------

- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo spiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

ACATCTTTGT	TACAGTCTAA	GATGTGTTCT	TAAATCACCA	TTCCTTCCTG	GTCCTCACCC	60
TCCAGGGTGG	TCTCACACTG	TAATTAGAGC	TATTGAGGAG	TCTTTACAGC	AAATTAAGAT	120
TCAGATGCCT	TGCTAAGTCT	AGAGTTCTAG	AGTTATGTTT	CAGAAAGTCT	AAGAAACCCA	180
CCTCTTGAGA	GGTCAGTAAA	GAGGACTTAA	TATTTCATAT	CTACAAAATG	ACCACAGGAT	240
TGGATACAGA	ACGAGAGTTA	TCCTGGATAA	CTCAGAGCTG	AGTACCTGCC	CGGGGGCCGC	300
TCGAA						305

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 852 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

ACATAAATAT	CAGAGAAAAG	TAGTCTTTGA	AATATTTACG	TCCAGGAGTT	CTTTGTTTCT	60
GATTATTTGG	TGTGTGTTTT	${\tt GGTTTGTGTC}$	CAAAGTATTG	GCAGCTTCAG	TTTTCATTTT	120
. CTCTCCATCC	TCGGGCATTC	TTCCCAAATT	TATATACCAG	TCTTCGTCCA	TCCACACGCT	180
	TCTTTTGTAG					240
TGCTGTTGTT	CTTCTTTTTA	CCCCATAGCT	GAGCCACTGC	CTCTGATTTC	AAGAACCTGA	300
AGACGCCCTC	AGATCGGTCT	TCCCATTTTA	TTAATCCTGG	GTTCTTGTCT	GGGTTCAAGA	360
	GATGAATTCC					420
ACTTGGCAGG	GGGGTCTTGC	TCCTTTTTCA	TATCAGGTGA	CTCTGCAACA	GGAAGGTGAC	480
TGGTGGTTGT	CATGGAGATC	TGAGCCCGGC	AGAAAGTTTT	GCTGTCCAAC	AAATCTACTG	540
TGCTACCATA	GTTGGTGTCA	TATAAATAGT	TCTNGTCTTT	CCAGGTGTTC	ATGATGGAAG	600
GCTCAGTTTG	TTCAGTCTTG	ACAATGACAT	TGTGTGTGGA	CTGGAACAGG	TCACTACTGC	660
ACTGGCCGTT	CCACTTCAGA	TGCTGCAAGT	TGCTGTAGAG	GAGNTGCCCC	GCCGTCCCTG	720
CCGCCCGGGT	GAACTCCTGC	AAACTCATGC	TGCAAAGGTG	CTCGCCGTTG	ATGTCGAACT	780
CNTGGAAAGG	GATACAATTG	GCATCCAGCT	GGTTGGTGTC	CAGGAGGTGA	TGGAGCCACT	840
CCCACACCTG	GT					852

(2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 234 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

ACAACAGACC	CTTGCTCGCT	AACGACCTCA	TGCTCATCAA	GTTGGACGAA	TCCGTGTCCG	60
AGTCTGACAC	CATCCGGAGC	ATCAGCATTG	CTTCGCAGTG	CCCTACCGCG	GGGAACTCTT	120
GCCTCGTTTC	TGGCTGGGGT	CTGCTGGCGA	ACGGCAGAAT	GCCTACCGTG	CTGCAGTGCG	180
TGAACGTGTC	GGTGGTGTCT	GAGGAGGTCT	GCAGTAAGCT	CTATGACCCG	CTGT	234

- (2) INFORMATION FOR SEQ ID NO:46:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 590 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

ACTTTTTATT	TAAATGTTTA	TAAGGCAGAT	CTATGAGAAT	GATAGAAAAC	ATGGTGTGTA	60
ATTTGATAGC	AATATTTTGG	AGATTACAGA	GTTTTAGTAA	TTACCAATTA	CACAGTTAAA	120
AAGAAGATAA	TATATTCCAA	GCANATACAA	AATATCTAAT	GAAAGATCAA	GGCAGGAAAA	180
TGANTATAAC	TAATTGACAA	TGGAAAATCA	ATTTTAATGT	GAATTGCACA	TTATCCTTTA	240
				CAAACAGTGT		300
CAGGATAAAN	AACTGAAGGG	CANAAAGAAT	TAATTTTCAC	TTCATGTAAC	NCACCCANAT	360
				GGAAGTANTC		420
				CCTCTGGAGA		480
				GATGAAAAAG	GACACATGCT	540
GCCTTCCTTT	GAGGAGACTT	CATCTCACTG	GCCAACACTC	AGTCACATGT		590
				•		

- (2) INFORMATION FOR SEQ ID NO:47:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 774 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

GCTTCACTGC TTGAAACTTA AATGGATGTG GGACANAATT TTCTGTAATG ACCCTGAGGG	180
CATTACAGAC GGGACTCTGG GAGGAAGGAT AAACAGAAAG GGGACAAAGG CTAATCCCAA	240
AACATCAAAG AAAGGAAGGT GGCGTCATAC CTCCCAGCCT ACACAGTTCT CCAGGGCTCT	300
CCTCATCCCT GGAGGACGAC AGTGGAGGAA CAACTGACCA TGTCCCCAGG CTCCTGTGTG	360
CTGGCTCCTG GTCTTCAGCC CCCAGCTCTG GAAGCCCACC CTCTGCTGAT CCTGCGTGGC	420
CCACACTCCT TGAACACACA TCCCCAGGTT ATATTCCTGG ACATGGCTGA ACCTCCTATT	480
CCTACTTCCG AGATGCCTTG CTCCCTGCAG CCTGTCAAAA TCCCACTCAC CCTCCAAACC	540
ACGGCATGGG AAGCCTTTCT GACTTGCCTG ATTACTCCAG CATCTTGGAA CAATCCCTGA	600
TTCCCCACTC CTTAGAGGCA AGATAGGGTG GTTAAGAGTA GGGCTGGACC ACTTGGAGCC	660
AGGCTGCTGG CTTCAAATTN TGGCTCATTT ACGAGCTATG GGACCTTGGG CAAGTNATCT	720
TCACTTCTAT GGGCNTCATT TTGTTCTACC TGCAAAATGG GGGATAATAA TAGT	774
(2) INFORMATION FOR SEQ ID NO:48:	
(i) SEQUENCE CHARACTERISTICS:	•
(A) LENGTH: 124 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
,	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
CANNAL AND	
CANAAATTGA AATTTTATAA AAAGGCATTT TTCTCTTATA TCCATAAAAT GATATAATTT	60
TTGCAANTAT ANAAATGTGT CATAAATTAT AATGTTCCTT AATTACAGCT CAACGCAACT TGGT	120
1991	124
(2) INFORMATION FOR SEQ ID NO:49:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 147 base pairs	•
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
· •	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
GCCGATGCTA CTATTTTATT GCAGGAGGTG GGGGTGTTTT TATTATTCTC TCAACAGCTT	60
TGTGGCTACA GGTGGTGTCT GACTGCATNA AAAANTTTTT TACGGGTGAT TGCAAAAATT	120
TTAGGGCACC CATATCCCAA GCANTGT	147
•	/
(2) INFORMATION FOR SEQ ID NO:50:	•
(i) SEQUENCE CHARACTERISTICS:	•

(A) LENGTH: 107 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
ACATTAAATT AATAAAAGGA CTGTTGGGGT TCTGCTAAAA CACATGGCTT GATATATTGC ATGGTTTGAG GTTAGGAGGA GTTAGGCATA TGTTTTGGGA GAGGGGT	60 107
(2) INFORMATION FOR SEQ ID NO:51:	-
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 204 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
ETCCTAGGAA GTCTAGGGGA CACACGACTC TGGGGTCACG GGGCCGACAC ACTTGCACGG CGGGAAGGAA AGGCAGAGAA GTGACACCGT CAGGGGGAAA TGACAGAAAG GAAAATCAAG GCCTTGCAAG GTCAGAAAGG GGACTCAGGG CTTCCACCAC AGCCCTGCCC CACTTGGCCA CCTCCCTTTT GGGACCAGCA ATGT	60 120 180 204
(2) INFORMATION FOR SEQ ID NO:52:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 491 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
CANAAGATAA CATTTATCTT ATAACAAAAA TTTGATAGTT TTAAAGGTTA GTATTGTGTA GGTATTTTC CAAAAGACTA AAGAGATAAC TCAGGTAAAA AGTTAGAAAT GTATAAAAACA CCATCAGACA GGTTTTTAAA AAACAACATA TTACAAAATT AGACAATCAT CCTTAAAAAA AAACTTCTT GTATCAATTT CTTTTGTTCA AAATGACTGA CTTAANTATT TTTAAATATT CCANAAACAC TTCCTCAAAA ATTTTCAANA TGGTAGCTTT CANATGTNCC CTCAGTCCCA	60 120 180 240
TGTTGCTCA GATAAATAAA TCTCGTGAGA ACTTACCACC CACCACAAGC TTTCTGGGGC	300 360
TGCAACAGT GTCTTTTCTT TNCTTTTTCT TTTTTTTTTT TTACAGGCAC AGAAACTCAT	420

CAATTTTATT TGGATAACAA AGGGTCTCCA AATTATATTG AAAAATAAAT CCAAGTTAAT ATCACTCTTG T	480 491
(2) INFORMATION FOR SEQ ID NO:53:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 484 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
ACATAATTTA GCAGGGCTAA TTACCATAAG ATGCTATTTA TTAANAGGTN TATGATCTGA GTATTAACAG TTGCTGAAGT TTGGTATTTT TATGCAGCAT TTTCTTTTTG CTTTGATAAC ACTACAGAAC CCTTAAGGAC ACTGAAAATT AGTAAGTAAA GTTCAGAAAC ATTAGCTGCT CAATCAAATC TCTACATAAC ACTATAGTAA TTAAAACGTT AAAAAAAAGT GTTGAAATCT GCACTAGTAT ANACCGCTCC TGTCAGGATA ANACTGCTTT GGAACAGAAA GGGAAAAANC AGCTTTGANT TTCTTTGTGC TGATANGAGG AAAGGCTGAA TTACCTTGTT GCCTCTCCCT AATGATTGGC AGGTCNGGTA AATNCCAAAA CATATTCCAA CTCAACACTT CTTTTCCNCG TANCTTGANT CTGTGTATTC CAGGANCAGG CGGATGGAAT GGGCCAGCCC NCGGATGTTC CANT	60 120 180 240 300 360 420 480
(2) INFORMATION FOR SEQ ID NO:54:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 151 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	•
ACTAAACCTC GTGCTTGTGA ACTCCATACA GAAAACGGTG CCATCCCTGA ACACGGCTGG CCACTGGGTA TACTGCTGAC AACCGCAACA ACAAAAACAC AAATCCTTGG CACTGGCTAG TCTATGTCCT CTCAAGTGCC TTTTTGTTTG T	60 120 151
(2) INFORMATION FOR SEQ ID NO:55:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 91 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
ACCTGGCTTG TCTCCGGGTG GTTCCCGGCG CCCCCCACGG TCCCCAGAAC GGACACTTTC GCCCTCCAGT GGATACTCGA GCCAAAGTGG T	60 91
(2) INFORMATION FOR SEQ ID NO:56:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 133 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
GGCGGATGTG CGTTGGTTAT ATACAAATAT GTCATTTTAT GTAAGGGACT TGAGTATACT TGGATTTTTG GTATCTGTGGGGGGA CGGTCCAGGA ACCAATACCC CATGGATACC AAGGGACAAC TGT (2) INFORMATION FOR SEQ ID NO:57:	60 120 133
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 147 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:	
ACTCTGGAGA ACCTGAGCCG CTGCTCCGCC TCTGGGATGA GGTGATGCAN GCNGTGGCGC GACTGGGAGC TGAGCCCTTC CCTTTGCGCC TGCCTCAGAG GATTGTTGCC GACNTGCANA TCTCANTGGG CTGGATNCAT GCAGGGT	60 120 147
(2) INFORMATION FOR SEQ ID NO:58:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 198 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: cDNA	
÷	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
	ACAGGGATAT AGGTTINAAG TTATTGINAT TGTAAAATAC ATTGAATTTT CTGTATACTC TGATTACATA CATTTATCCT TTAAAAAAAGA TGTAAATCTT AATTTTTATG CCATCTATTA ATTTACCAAT GAGTTACCTT GTAAATGAGA AGTCATGATA GCACTGAATT TTAACTAGTT TTGACTTCTA AGTTTGGT	60 120 180 198
	(2) INFORMATION FOR SEQ ID NO:59:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
	ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAACTC ACTCAATTTT CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTTCTGAA TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGACCCAG CAGAAGGAAT CTATTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT TTTCGTCTTT ATTGGACTTC TTTGAAGAGT	60 120 180 240 300 330
•	(2) INFORMATION FOR SEQ ID NO:60:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
	ACCGTGGGTG CCTTCTACAT TCCTGACGGC TCCTTCACCA ACATCTGGTT CTACTTCGGC GTCGTGGGCT CCTTCCTCTT CATCCTCATC CAGCTGGTGC TGCTCATCGA CTTTGCGCAC TCCTGGAACC AGCGGTGGCT GGGCAAGGCC GAGGAGTGCG ATTCCCGTGC CTGGT	60 120 175
	(2) INFORMATION FOR SEQ ID NO:61:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 154 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	
ACCCCACTT TCCTCCTGTG AGCAGTCTGG ACTTCTCACT GCTACATGAT GAGGGTGAGT GGTTGTTGCT CTTCAACAGT ATCCTCCCCT TTCCGGATCT GCTGAGCCGG ACAGCAGTGC TGGACTGCAC AGCCCCGGGG CTCCACATTG CTGT	60 120 154
(2) INFORMATION FOR SEQ ID NO:62:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:	
CGCTCGAGCC CTATAGTGAG TCGTATTAGA	30
(2) INFORMATION FOR SEQ ID NO:63:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 89 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	4
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ_ID NO:63:	
ACAAGTCATT TCAGCACCCT TTGCTCTTCA AAACTGACCA TCTTTTATAT TTAATGCTTC	60 89
(2) INFORMATION FOR SEQ ID NO:64:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 97 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:	
ACCGGAGTAA CTGAGTCGGG ACGCTGAATC TGAATCCACC AATAAATAAA GGTTCTGCAG AATCAGTGCA TCCAGGATTG GTCCTTGGAT CTGGGGT	60 97
(2) INFORMATION FOR SEQ ID NO:65:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 377 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE:</pre>	
ACAACAANAA NTCCCTTCTT TAGGCCACTG ATGGAAACCT GGAACCCCCT TTTGATGGCA GCATGGCGTC CTAGGCCTTG ACACAGCGGC TGGGGTTTGG GCTNTCCCAA ACCGCACACC CCAACCCTGG TCTACCCACA NTTCTGGCTA TGGGCTGTCT CTGCCACTGA ACATCAGGGT TCGGTCATAA NATGAAATCC CAANGGGGAC AGAGGTCAGT AGAGGAAGCT CAATGAGAAA GGTGCTGTTT GCTCAGCCAG, AAAACAGCTG CCTGGCATTC GCCGCTGAAC TATGAACCCG TGGGGGTGAA CTACCCCCAN GAGGAATCAT GCCTGGGCGA TGCAANGGTG CCAACAGGAG GGGCGGGAGG AGCATGT	60 120 180 240 300 360 377
(2) INFORMATION FOR SEQ ID NO:66:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 305 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
ACGCCTTTCC CTCAGAATTC AGGGAAGAGA CTGTCGCCTG CCTTCCTCCG TTGTTGCGTG	60

AGAACCCGTG TGCCCCTTCC CACCATATCC ACCCTCGCTC CATCTTTGAA CTCAAACACG	120
AGGAACTAAC TGCACCCTGG TCCTCTCCCC AGTCCCCAGT TCACCCTCCA TCCCTCACCT	180
TCCTCCACTC TAAGGGATAT CAACACTGCC CAGCACAGGG GCCCTGAATT TATGTGGTTT	240
TTATATATTT TTTAATAAGA TGCACTTTAT GTCATTTTTT AATAAAGTCT GAAGAATTAC	300
TGTTT	305
(2) INFORMATION FOR SEQ ID NO:67:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 385 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
•	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:	
ACTACACACA CTCCACTTGC CCTTGTGAGA CACTTTGTCC CAGCACTTTA GGAATGCTGA	60
GGTCGGACCA GCCACATCTC ATGTGCAAGA TTGCCCAGCA GACATCAGGT CTGAGAGTTC	120
CCCTTTAAA AAAGGGGACT TGCTTAAAAA AGAAGTCTAG CCACGATTGT GTAGAGCAGC	180
TGTGCTGTGC TGGAGATTCA CTTTTGAGAG AGTTCTCCTC TGAGACCTGA TCTTTAGAGG	240
CTGGGCAGTC TTGCACATGA GATGGGGCTG GTCTGATCTC AGCACTCCTT AGTCTGCTTG	300
CCTCTCCCAG GGCCCCAGCC TGGCCACACC TGCTTACAGG GCACTCTCAG ATGCCCATAC	360
CATAGTTTCT GTGCTAGTGG ACCGT	385
(2) INFORMATION FOR SEQ ID NO:68:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 73 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
ACTTAACCAG ATATATTTTT ACCCCAGATG GGGATATTCT TTGTAAAAAA TGAAAATAAA	60
GTTTTTTAA TGG	73
(2) INFORMATION FOR SEQ ID NO:69:	
(i) SEQUENCE CHARACTERISTICS:	•
(A) LENGTH: 536 base pairs	

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

ACTAGTCCAG TO	GTGGTGGAA	TTCCATTGTG	TTGGGGGCTC	TCACCCTCCT.	CTCCTGCAGC	60
TCCAGCTTTG TO	GCTCTGCCT	CTGAGGAGAC	CATGGCCCAG	CATCTGAGTA	CCCTGCTGCT	120
CCTGCTGGCC AC	CCCTAGCTG	TGGCCCTGGC	CTGGAGCCCC	AAGGAGGAGG	ATAGGATAAT	180
CCCGGGTGGC AT	ICTATAACG	CAGACCTCAA	TGATGAGTGG	GTACAGCGTG	CCCTTCACTT	240
CGCCATCAGC GA	AGTATAACA	AGGCCACCAA	AGATGACTAC	TACAGACGTC	CGCTGCGGGT	300
ACTAAGAGCC AC	GCAACAGA	CCGTTGGGGG	GGTGAATTAC	TTCTTCGACG	TAGAGGTGGG	360
CCGAACCATA TO	GTACCAAGT	CCCAGCCCAA	CTTGGACACC	TGTGCCTTCC	ATGAACAGCC	420
AGAACTGCAG A	AGAAACAGT	TGTGCTCTTT	CGAGATCTAC	GAAGTTCCCT	GGGGAGAACA	480
GAANGTCCCT GO	GTGAAATC	CAGGTGTCAA	GAAATCCTAN	GGATCTGTTG	CCAGGC	536

- (2) INFORMATION FOR SEQ ID NO:70:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 477 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

ATGACCCCTA	ACAGGGGCCC	TCTCAGCCCT	CCTAATGACC	TCCGGCCTAG	CCATGTGATT	60
TCACTTCCAC	TCCATAACGC	TCCTCATACT	AGGCCTACTA	ACCAACACAC	TAACCATATA	120
CCAATGATGG	CGCGATGTAA	CACGAGAAAG	CACATACCAA	GGCCACCACA	CACCACCTGT	180
CCAAAAAGGC	CTTCGATACG	GGATAATCCT	ATTTATTACC	TCAGAAGTTT	TTTTCTTCGC	240
AGGGATTTTT	CTGAGCCTTT	TACCACTCCA	GCCTAGCCCC	TACCCCCAA	CTAGGAGGGC	300
ACTGGCCCCC	AACAGGCATC	ACCCCGCTAA	ATCCCCTAGA	AGTCCCACTC	CTAAACACAT	360
CCGTATTACT	CGCATCAGGA	GTATCAATCA	CCTGAGCTCA	CCATAGTCTA	ATAGAAAACA	420
ACCGAAACCA	${\tt AATTATTCAA}$	AGCACTGCTT	ATTACAATTT	TACTGGGTCT	CTATTTT	477

- (2) INFORMATION FOR SEQ ID NO:71:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 533 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

00	
AGAGCTATAG GTACAGTGTG ATCTCAGCTT TGCAAACACA TTTTCTACAT AGATAC	GTACT 60
AGGTATTAAT AGATATGTAA AGAAAGAAAT CACACCATTA ATAATGGTAA GATTGO	GTTTA 120
TGTGATTTTA GTGGTATTTT TGGCACCCTT ATATATGTTT TCCAAACTTT CAGCAC	GTGAT 180
ATTATTTCCA TAACTTAAAA AGTGAGTTTG AAAAAGAAAA TCTCCAGCAA GCATCT	CATT 240
TAAATAAAGG TTTGTCATCT TTAAAAATAC AGCAATATGT GACTTTTTAA AAAAGC	TGTC 300
AAATAGGTGT GACCCTACTA ATAATTATTA GAAATACATT TAAAAACATC GAGTAC	CCTCA 360
AGTCAGTTTG CCTTGAAAAA TATCAAATAT AACTCTTAGA GAAATGTACA TAAAAG	SAATG 420
CTTCGTAATT TTGGAGTANG AGGTTCCCTC CTCAATTTTG TATTTTTAAA AAGTAC	CATGG 480
TAAAAAAAA AATTCACAAC AGTATATAAG GCTGTAAAAT GAAGAATTCT GCC	533
(2) INFORMATION FOR SEQ ID NO:72: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 511 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

TATTACGGAA AAACACACCA CATAATTCAA CTANCAAAGA ANACTGCTTC AGGGCGTGTA 60 AAATGAAAGG CTTCCAGGCA GTTATCTGAT TAAAGAACAC TAAAAGAGGG ACAAGGCTAA 120 AAGCCGCAGG ATGTCTACAC TATANCAGGC GCTATTTGGG TTGGCTGGAG GAGCTGTGGA 180 AAACATGGAN AGATTGGTGC TGGANATCGC CGTGGCTATT CCTCATTGTT ATTACANAGT 240 GAGGTTCTCT GTGTGCCCAC TGGTTTGAAA ACCGTTCTNC AATAATGATA GAATAGTACA CACATGAGAA CTGAAATGGC CCAAACCCAG AAAGAAAGCC CAACTAGATC CTCAGAANAC 360 GCTTCTAGGG ACAATAACCG ATGAAGAAAA GATGGCCTCC TTGTGCCCCC GTCTGTTATG 420 ATTTCTCTCC ATTGCAGCNA NAAACCCGTT CTTCTAAGCA AACNCAGGTG ATGATGGCNA 480 AAATACACCC CCTCTTGAAG NACCNGGAGG A 511

(2) INFORMATION FOR SEQ ID NO:73:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 499 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

CAGTGCCAGC A	ACTGGTGCCA	GTACCAGTAC	CAATAACAGT	GCCAGTGCCA	GTGCCAGCAC	60
CAGTGGTGGC 3	TTCAGTGCTG	GTGCCAGCCT	GACCGCCACT	CTCACATTTG	GGCTCTTCGC	120
TGGCCTTGGT (180
CAAGTGAGAT						240

CTCAGAAACC	TACTCAACAC	AGCACTCTAG	GCAGCCACTA	TCAATCAATT	GAAGTTGACA	300
CTCTGCATTA	AATCTATTTG	CCATTTCTGA	AAAAAAAA	AAAAAAAGGG	CGGCCGCTCG	360
ANTCTAGAGG	GCCCGTTTAA	ACCCGCTGAT	CAGCCTCGAC	TGTGCCTTCT	ANTTGCCAGC	420
CATCTGTTGT	TTGCCCCTCC	CCCGNTGCCT	TCCTTGACCC	TGGAAAGTGC	CACTCCCACT	480
GTCCTTTCCT	AANTAAAAT					499
(2) INFORM	ATION FOR SE	EQ ID NO:74	:			
(i) S	EOUENCE CHAP	RACTERISTICS	3:			

- (A) LENGTH: 537 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

TTTCATAGGA	GAACACACTG	AGGAGATACT	TGAAGAATTT	GGATTCAGCC	GCGAAGAGAT	60
TTATCAGCTT	AACTCAGATA	AAATCATTGA	AAGTAATAAG	GTAAAAGCTA	GTCTCTAACT	120
TCCAGGCCCA	CGGCTCAAGT	GAATTTGAAT	ACTGCATTTA	CAGTGTAGAG	TAACACATAA	180
CATTGTATGC	ATGGAAACAT	GGAGGAACAG	TATTACAGTG	TCCTACCACT	CTAATCAAGA	2.40
AAAGAATTAC	AGACTCTGAT	TCTACAGTGA	TGATTGAATT	CTAAAAATGG	TAATCATTAG	300
GGCTTTTGAT	TTATAANACT	TTGGGTACTT	ATACTAAATT	ATGGTAGTTA	TACTGCCTTC	360
CAGTTTGCTT	GATATATTTG	TTGATATTAA	GATTCTTGAC	TTATATTTTG	AATGGGTTCT	420
ACTGAAAAAN	GAATGATATA	TTCTTGAAGA	CATCGATATA	CATTTATTTA	CACTCTTGAT	480
TCTACAATGT	AGAAAATGAA	GGAAATGCCC	CAAATTGTAT	GGTGATAAAA	GTCCCGT	537

- (2) INFORMATION FOR SEQ ID NO:75:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 467 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

CAAANACAAT	TGTTCAAAAG	ATGCAAATGA	TACACTACTG	CTGCAGCTCA	CAAACACCTC	60
TGCATATTAC	ACGTACCTCC	TCCTGCTCCT	CAAGTAGTGT	GGTCTATTTT	GCCATCATCA	120
CCTGCTGTCT	GCTTAGAAGA	ACGGCTTTCT	GCTGCAANGG	AGAGAAATCA	TAACAGACGG	180
TGGCACAAGG	AGGCCATCTT	TTCCTCATCG	GTTATTGTCC	CTAGAAGCGT	CTTCTGAGGA	240
TCTAGTTGGG	CTTTCTTTCT	GGGTTTGGGC	CATTTCANTT	CTCATGTGTG	TACTATTCTA	300
TCATTATTGT	ATAACGGTTT	TCAAACCNGT	GGGCACNCAG	AGAACCTCAC	TCTGTAATAA	360
CAATGAGGAA	TAGCCACGGT	GATCTCCAGC	ACCAAATCTC	TCCATGTTNT	TCCAGAGCTC	420
CTCCAGCCAA	CCCAAATAGC	CGCTGCTATN	GTGTAGAACA	TCCCTGN		467

11000000- MIO 000741040 I

(2) INFORMATION	FOR	SEO	ID	NO:76:
----	---------------	-----	-----	----	--------

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

AAGCTGACAG	CATTCGGGCC	GAGATGTCTC	GCTCCGTGGC	CTTAGCTGTG	CTCGCGCTAC	60
			GTACTCCAAA			120
ATCCAGCAGA	GAATGGAAAG	TCAAATTTCC	TGAATTGCTA	TGTGTCTGGG	TTTCATCCAT	180
			GAGAGAGAAT			240
			ATCTCTTGTA			300
CTGAAAAAGA	TGAGTATGCC	TGCCGTGTGA	ACCATGTGAC	TTTGTCACAG	CCCAAGATNG	360
TTNAGTGGGA	TCGANACATG	TAAGCAGCAN	CATGGGAGGT			400

- (2) INFORMATION FOR SEQ ID NO:77:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 248 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo Sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

CTGGAGTGCC TTGGTGTTTC AAGCCCCTGC AGGAAGCAGA ATGCACCTTC TGAGG	GCACCT 60
CCAGCTGCCC CGGCGGGGA TGCGAGGCTC GGAGCACCCT TGCCCGGCTG TGAT	rgcrgc 120
CAGGCACTGT TCATCTCAGC TTTTCTGTCC CTTTGCTCCC GGCAAGCGCT TCTGC	CTGAAA 180
GTTCATATCT GGAGCCTGAT GTCTTAACGA ATAAAGGTCC CATGCTCCAC CCGAI	AAAAAA 240
AAAAAAA	248

(2) INFORMATION FOR SEQ ID NO:78:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 201 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

ACTAGTCCAG TGTGGTGGAA TTC	CCATTGTG TTGGGCCCAA	CACAATGGCT	ACCTTTAACA	60
TCACCCAGAC CCCGCCCTGC CCC	GTGCCCCA CGCTGCTGCT	AACGACAGTA	TGATGCTTAC	120
TCTGCTACTC GGAAACTATT TTT	TATGTAAT TAATGTATGC	TTTCTTGTTT	ATAAATGCCT	180
GATTTAAAAA ААААААААА А				201

(2) INFORMATION FOR SEQ ID NO:79:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 552 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

${\tt TCCTTTTGTT}$	AGGTTTTTGA	GACAACCCTA	GACCTAAACT	GTGTCACAGA	CTTCTGAATG	60
${\tt TTTAGGCAGT}$	GCTAGTAATT	TCCTCGTAAT	GATTCTGTTA	TTACTTTCCT	ATTCTTTATT	120
CCTCTTTCTT	CTGAAGATTA	ATGAAGTTGA	AAATTGAGGT	GGATAAATAC	AAAAAGGTAG	180
TGTGATAGTA	TAAGTATCTA	AGTGCAGATG	AAAGTGTGTT	ATATATATCC	ATTCAAAATT	240
ATGCAAGTTA	GTAATTACTC	AGGGTTAACT	AAATTACTTT	AATATGCTGT	TGAACCTACT	300
CTGTTCCTTG	GCTAGAAAAA	ATTATAAACA	GGACTTTGTT	AGTTTGGGAA	GCCAAATTGA	360
TAATATTCTA	TGTTCTAAAA	GTTGGGCTAT	ACATAAANTA	TNAAGAAATA	TGGAATTTTA	420
TTCCCAGGAA	TATGGGGTTC	ATTTATGAAT	ANTACCCGGG	ANAGAAGTTT	TGANTNAAAC	480
CNGTTTTGGT	TAATACGTTA	ATATGTCCTN	AATNAACAAG	GCNTGACTTA	TTTCCAAAAA	540
AAAAAAAAA	AA					552

- (2) INFORMATION FOR SEQ ID NO:80:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 476 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

ACAGGGATTT	GAGATGCTAA	GGCCCCAGAG	ATCGTTTGAT	CCAACCCTCT	TATTTTCAGA	60
GGGGAAAATG	GGGCCTAGAA	GTTACAGAGC	ATCTAGCTGG	TGCGCTGGCA	CCCCTGGCCT	120
CACACAGACT	CCCGAGTAGC	TGGGACTACA	GGCACACAGT	CACTGAAGCA	GGCCCTGTTT	180
GCAATTCACG	TTGCCACCTC	CAACTTAAAC	ATTCTTCATA	TGTGATGTCC	TTAGTCACTA	240
AGGTTAAACT	TTCCCACCCA	GAAAAGGCAA	CTTAGATAAA	ATCTTAGAGT	ACTTTCATAC	300

TCTTCTAAGT CCTCTTCCAG CCTCACTTTG AGTCCTCCTT GGGGGTTGAT AGGAANTNTC	360
TCTTGGCTTT CTCAATAAAA TCTCTATCCA TCTCATGTTT AATTTGGTAC GCNTAAAAAT	420
GCTGAAAAAA TTAAAATGTT CTGGTTTCNC TTTAAAAAAA AAAAAAAA AAAAAA	476
MANAMA MANAMA	4/6
(2) INFORMATION FOR SEQ ID NO:81:	4
•	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 232 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	
TTTTTTTTTG TATGCCNTCN CTGTGGNGTT ATTGTTGCTG CCACCCTGGA GGAGCCCAGT	60
TICTTCTGTA TCTTTCTTTT CTGGGGGATC TTCCTGGCTC TGCCCCTCCA TTCCCAGCCT	120
CTCATCCCCA TCTTGCACTT TTGCTAGGGT TGGAGGCGCT TTCCTGGTAG CCCCTCAGAG	180
ACTCAGTCAG CGGGAATAAG TCCTAGGGGT GGGGGGTGTG GCAAGCCGGC CT	232
	232
(2) INFORMATION FOR SEQ ID NO:82:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 383 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
· · · · · · · · · · · · · · · · · · ·	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	
ACCORDED TO A TOTAL OF THE STATE OF THE STAT	
AGGCGGGAGC AGAAGCTAAA GCCAAAGCCC AAGAAGAGTG GCAGTGCCAG CACTGGTGCC	60
AGTACCAGTA CCAATAACAT GCCAGTGCCA GTGCCAGCAC CAGTGGTGGC TTCAGTGCTG	120
FTGCCAGCCT GACCGCCACT CTCACATTTG GGCTCTTCGC TGGCCTTGGT GGAGCTGGTG	180
CAGCACCAG TGGCAGCTCT GGTGCCTGTG GTTTCTCCTA CAAGTGAGAT TTTAGATATT	240
FITAATCCTG CCAGTCTTTC TCTTCAAGCC AGGGTGCATC CTCAGAAACC TACTCAACAC	300
AGCACTCTNG GCAGCCACTA TCAATCAATT GAAGTTGACA CTCTGCATTA AATCTATTTG	360
CATTTCAAA AAAAAAAA AAA	383
2) TVTORMETERS	
2) INFORMATION FOR SEQ ID NO:83:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 494 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA	•
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:	
ACCGAATTGG GACCGCTGGC TTATAAGCGA TCATGTCCTC CAGTATTACC TCAACGAGCA	60
GGGAGATCGA GTCTATACGC TGAAGAAATT TGACCCGATG GGACAACAGA CCTGCTCAGC	120
CCATCCTGCT CGGTTCTCCC CAGATGACAA ATACTCTCGA CACCGAATCA CCATCAAGAA	180
ACGCTTCAAG GTGCTCATGA CCCAGCAACC GCGCCCTGTC CTCTGAGGGT CCTTAAACTG	240
ATGTCTTTTC TGCCACCTGT TACCCCTCGG AGACTCCGTA ACCAAACTCT TCGGACTGTG	300
AGCCCTGATG CCTTTTTGCC AGCCATACTC TTTGGCNTCC AGTCTCTCGT GGCGATTGAT	360
TATGCTTGTG TGAGGCAATC ATGGTGGCAT CACCCATNAA GGGAACACAT TTGANTTTTT	420
TTTCNCATAT TTTAAATTAC NACCAGAATA NTTCAGAATA AATGAATTGA AAAACTCTTA	480
AAAAAAAAA AAAA	494
(2) INFORMATION FOR SEQ ID NO:84:	
, a,	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 380 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	•
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:	
. SCTGGTAGCC TATGGCGTGG CCACGGANGG GCTCCTGAGG CACGGGACAG TGACTTCCCA	60
AGTATCCTGC GCCGCGTCTT CTACCGTCCC TACCTGCAGA TCTTCGGGCA GATTCCCCAG	120
BAGGACATGG ACGTGGCCCT CATGGAGCAC AGCAACTGCT CGTCGGAGCC CGGCTTCTGG	180
GCACACCCTC CTGGGGCCCA GGCGGGCACC TGCGTCTCCC AGTATGCCAA CTGGCTGGTG	240
STGCTGCTCC TCGTCATCTT CCTGCTCGTG GCCAACATCC TGCTGGTCAC TTGCTCATTG	300
CATGTTCAG TTACACATTC GGCAAAGTAC AGGGCAACAG CNATCTCTAC TGGGAAGGCC	360
AGCGTTNCCG CCTCATCCGG	380
2) INFORMATION FOR SEQ ID NO:85:	
(i) SEQUENCE CHARACTERISTICS:	•
(A) LENGTH: 481 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

GAGTTAGCTC	CTCCACAACC	TTGATGAGGT	CGTCTGCAGT	GGCCTCTCGC	ምምሮ <u>እ</u> ሞእ ሮርርር	_
TNCCATCGTC	ATACTGTAGG	ייייינירט ררא	CCTCCTCCAT	CTTGGGGCGG	COLLEGE	60
GGAAACTCTC	AATCAACTCA	CCCCCNIAMIA	AACCTCCTGCAT	CIIGGGGGG	CTAATATCCA	120
TCTCAAACCA	MOTOGRADICA	CCGTCNATNA	AACCTGTGGC	TGGTTCTGTC	TTCCGCTCGG	180
TGTGAAAGGA	TCTCCAGAAG	GAGTGCTCGA	TCTTCCCCAC	ACTTTTGATG	ACTTTATTGA	240
GTCGATTCTG	CATGTCCAGC	AGGAGGTTGT	ACCAGCTCTC	TGACAGTGAG	GTCACCAGCC	300
CTATCATGCC	NTTGAACGTG	CCGAAGAACA	CCGAGCCTTG	TGTGGGGGGT	GNAGTCTCAC	360
CCAGATTCTG	CATTACCAGA	NAGCCGTGGC	AAAAGANATT	GACAACTCGC	CCAGGNNGNA	420
AAAGAACACC	TCCTGGAAGT	GCTNGCCGCT	CCTCGTCCNT	TGGTGGNNGC	COMMISSION	
T			COLCOLCCIVI	TOGTOGNINGC	GCNTNCCTTT	480
- ,						481

(2) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 472 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

* * * * * * * * * * * * * * * * * * * *						
AACATCTTCC	TGTATAATGC	TGTGTAATAT	CGATCCGATN	TTGTCTGCTG	AGAATTCATT	60
ACTTGGAAAA	GCAACTTNAA	GCCTGGACAC	TGGTATTAAA	ATTCACAATA	TGCAACACTT	120
TAAACAGTGT	GTCN NTCTCC	TO COMMA COM	MCMC3 MC3 CC		TOCHACACIT	120
TITLE CACTOI	GICARICIGC	ICCCTTACTT	TGTCATCACC	AGTCTGGGAA	TAAGGGTATG	180
CCCTATTCAC	ACCTGTTAAA	AGGGCGCTAA	GCATTTTTGA	TTCAACATCT	TTTTTTTGA	240
CACAAGTCCG	AAAAAAGCAA	AAGTAAACAG	ተተመተመ Δ ተተመ	GTTAGCCAAT	TO A COMPANIE	
Chroconona	3.0003.0000		***************************************	GITAGCCAAT	TCACTTTCTT	300
CAIGGGACAG	AGCCATTTGA	TTTAAAAAGC	AAATTGCATA	ATATTGAGCT	TTGGGAGCTG	360
ATATNTGAGC	GGAAGANTAG	רכידידידיכידיא כידי	TCACCACACA	CAACTCCTTT		
Mammar and		CCITICIACI	ICACCAGACA	CAACTCCTTT	CATATTGGGA	420
TGTTNACNAA	AGTTATGTCT	CTTACAGATG	GGATGCTTTT	GTGGCAATTC	TG	472

(2) INFORMATION FOR SEQ ID NO:87:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 413 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

AGAAACCAGT	ATCTCTNAAA	ACAACCTCTC	ATACCTTGTG	GACCTAATTT	TGTGTGCGTG	60
TGTGTGTGCG	CGCATATTAT	ATAGACAGGC	ACATCTTTTT	TACTTTTGTA	AAAGCTTATG	120
CCTCTTTGGT	ATCTATATCT	GTGAAAGTTT	TAATGATCTG	CCATAATGTC	TTGGGGACCT	180
TTGTCTTCTG	TGTAAATGGT	ACTAGAGAAA	ACACCTATNT	TATGAGTCAA	TCTAGTTNGT	240
TTTATTCGAC	ATGAAGGAAA	TTTCCAGATN	ACAACACTNA	CAAACTCTCC	CTTGACTAGG	300
GGGGACAAAG	AAAAGCANAA	CTGAACATNA	GAAACAATTN	CCTGGTGAGA	AATTNCATAA	360

ACAGAAATTG GGTNGTATAT TGAAANANNG CATCATTNAA ACGTTTTTTT TTT	413
(2) INFORMATION FOR SEQ ID NO:88:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 448 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:	
CGCAGCGGGT CCTCTCTATC TAGCTCCAGC CTCTCGCCTG CCCCACTCCC CGCGTCCCGC GTCCTAGCCN ACCATGGCCG GGCCCCTGCG CGCCCCGCTG CTCCTGCTGG CCATCCTGGC CGTGGCCCTG GCCGTGAGCC CCGCGGCCGG CTCCAGTCCC GGCAAGCCGC CGCGCCTGGT GGGAGGCCCA TGGACCCCGC GTGGAAGAAG AAGGTGTGCG GCGTGCACTG GACTTTGCCG TCGGCNANTA CAACAAACCC GCAACNACTT TTACCNAGCN CGCGCTGCAG GTTGTGCCGC CCCAANCAAA TTGTTACTNG GGGTAANTAA TTCTTGGAAG TTGAACCTGG GCCAAACNNG TTTACCAGAA CCNAGCCAAT TNGAACAATT NCCCCTCCAT AACAGCCCCT TTTAAAAAAGG GAANCANTCC TGNTCTTTC CAAATTTT	60 120 180 240 300 360 420 448
(2) INFORMATION FOR SEQ ID NO:89:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 463 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:	
GAATTTTGTG CACTGGCCAC TGTGATGGAA CCATTGGGCC AGGATGCTTT GAGTTTATCA GTAGTGATTC TGCCAAAGTT GGTGTTGTAA CATGAGTATG TAAAAATGTCA AAAAATTAGC	60 120
AGAGGTCTAG GTCTGCATAT CAGCAGACAG TTTGTCCGTG TATTTTGTAG CCTTGAAGTT	180
CTCAGTGACA AGTTNNTTCT GATGCGAAGT TCTNATTCCA GTGTTTTAGT CCTTTGCATC	240
TTTNATGTTN AGACTTGCCT CTNTNAAATT GCTTTTGTNT TCTGCAGGTA CTATCTGTGG	300
TTTAACAAAA TAGAANNACT TCTCTGCTTN GAANATTTGA ATATCTTACA TCTNAAAATN	360
AATTCTCTCC CCATANNAAA ACCCANGCCC TTGGGANAAT TTGAAAAANG GNTCCTTCNN	420
AATTCNNANA ANTTCAGNTN TCATACAACA NAACNGGANC CCC	463
(2) INFORMATION FOR SEQ ID NO:90:	

(i) SEQUENCE CHARACTERISTICS:

......

(A) LENGTH: 400 base pairs(B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

AGGGATTGAA	GGTCTNTTNT	ACTGTCGGAC	TGTTCANCCA	CCAACTCTAC	AAGTTGCTGT	60
CTTCCACTCA	CTGTCTGTAA	GCNTNTTAAC	ССУСУСТСТУ	TCTTCATAAA	TAGAACAAAT	• • •
TCTTCACCAC	TCACATCOTTC	TA CCA COMPO	CCAGACIGIA	ICIICAIAAA	TAGAACAAAT	120
TCTTCACCAG	TCACATCTTC	TAGGACCTTT	TTGGATTCAG	TTAGTATAAG	CTCTTCCACT	180
TCCTTTGTTA	AGACTTCATC	TGGTAAAGTC	TTAAGTTTTG	TAGAAAGGAA	TTTAATTGCT	240
CGTTCTCTAA	CAATGTCCTC	TCCTTGAAGT	ATTTGGCTGA	ACAACCCACC	TNAAGTCCCT	
TTGTGCATCC	מידי א א מידיידי די א	TA COOR A OR C	CCCACTON	ACAACCCACC	INAAGICCCI	300
Claractice	MITTINAMIA	IACTIAATAG	GGCATTGGTN	CACTAGGTTA	AATTCTGCAA	360
GAGTCATCTG	TCTGCAAAAG	TTGCGTTAGT	ATATCTGCCA			400

- (2) INFORMATION FOR SEQ ID NO:91:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 480 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

GAGCTCGGAT	CCAATAATCT	TTGTCTGAGG	GCAGCACACA	TATNCAGTGC	CATGGNAACT	60
GGTCTACCCC	ACATGGGAGC	AGCATGCCGT	AGNTATATAA	GGTCATTCCC	TGAGTCAGAC	120
ATGCCTCTTT	GACTACCGTG	TGCCAGTGCT	GGTGATTCTC	ACACACCTCC	NNCCGCTCTT	180
TGTGGAAAAA	CTGGCACTTG	NCTGGAACTA	GCAAGACATC	ACTURCACCICC	TCACCCACGA	
GACACTTGAA	AGGTGTAACA	AAGCGACTCT	TGCATTCCTT	TTTCTCCCC	CGGCACCAGT	240
TGTCAATACT	AACCCGCTGG	TTTCCCTCCA	TCACATTGCII	CAMCAGA	TCTGGATACA	300
TCTCCTGACA	GTACTGAAGA	ACTITICATION	TCACATITGI	GATCTGTAGC	TCTGGATACA	360
NGATCACCTT	CCCATTTCCC	ACTICITOTI	TIGITICAAA	AGCAACTCTT	GGTGCCTGTT	420
CAGGII	CCCATTTCCC	AGICCGAATG	TTCACATGGC	ATATNTTACT	TCCCACAAAA	480

- (2) INFORMATION FOR SEQ ID NO:92:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 477 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

ATACAGCCCA	NATCCCACCA	CGAAGATGCG	CTTGTTGACT	GAGAACCTGA	TGCGGTCACT	60
GGTCCCGCTG	TAGCCCCAGC	GACTCTCCAC	CTGCTGGAAG	CGGTTGATGC	TGCACTCCTT	120
CCCACGCAGG	CAGCAGCGGG	GCCGGTCAAT	GAACTCCACT	CGTGGCTTGG	GGTTGACGGT	180
TAANTGCAGG	AAGAGGCTGA	CCACCTCGCG	GTCCACCAGG	ATGCCCGACT	GTGCGGGACC	240
TGCAGCGAAA	CTCCTCGATG	GTCATGAGCG	GGAAGCGAAT	GANGCCCAGG	GCCTTGCCCA	300
GAACCTTCCG	CCTGTTCTCT	GGCGTCACCT	GCAGCTGCTG	CCGCTNACAC	TCGGCCTCGG	360
ACCAGCGGAC	AAACGGCGTT	GAACAGCCGC	ACCTCACGGA	TGCCCANTGT	GTCGCGCTCC	420
AGGAACGGCN	CCAGCGTGTC	CAGGTCAATG	TCGGTGAANC	CTCCGCGGGT	AATGGCG	477

(2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 377 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

GAACGGCTGG	ACCTTGCCTC	GCATTGTGCT	GCTGGCAGGA	ATACCTTGGC	AAGCAGCTCC	60
AGTCCGAGCA	GCCCCAGACC	GCTGCCGCCC	GAAGCTAAGC	CTGCCTCTGG	CCTTCCCCTC	120
CGCCTCAATG	CAGAACCANT	AGTGGGAGCA	CTGTGTTTAG	AGTTAAGAGT	GAACACTGTN	180
TGATTTTACT	TGGGAATTTC	CTCTGTTATA	TAGCTTTTCC	CAATGCTAAT	TTCCAAACAA	240
CAACAACAAA	ATAACATGTT	TGCCTGTTNA	GTTGTATAAA	AGTANGTGAT	TCTGTATNTA	300
AAGAAAATAT	TACTGTTACA	TATACTGCTT	GCAANTTCTG	TATTTATTGG	TNCTCTGGAA	360
ATAAATATAT	TATTAAA					377

(2) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 495 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

CCCTTTGAGG	GGTTAGGGTC	CAGTTCCCAG	TGGAAGAAAC	AGGCCAGGAG	AANTGCGTGC	60
CGAGCTGANG	CAGATTTCCC	ACAGTGACCC	CAGAGCCCTG	GGCTATAGTC	TCTGACCCCT	120
CCAAGGAAAG	ACCACCTTCT	GGGGACATGG	GCTGGAGGGC	AGGACCTAGA	GGCACCAAGG	180
GAAGGCCCCA	TTCCGGGGCT	GTTCCCCGAG	GAGGAAGGGA	AGGGGCTCTG	TGTGCCCCC	240
ACGAGGAANA	GGCCCTGANT	CCTGGGATCA	NACACCCCTT	CACGTGTATC	CCCACACAAA	300

TGCAAGCTCA	CCAAGGTCCC	CTCTCAGTCC	CTTCCCTACA	<u>ሮሮሮፕሮ</u> ል አ <i>ሮሮሮ</i>	NCACTGGCCC	
ACACCCACCC	AGANCANCCA	CCCCCCAMCC	COLLEGE	CCCIGAACGG	NCACIGGCCC	360
maar amama	HOMICHICCA	CCCGCCAIGG	GGAATGTNCT	CAAGGAATCG	CNGGGCAACG	420
TGGACTCTNG	TCCCNNAAGG	GGGCAGAATC	TCCAATAGAN	GGANNGAACC	CTTGCTNANA	480
AAAAAAAANA	ΑΑΑΑ				CIICCIMANA	400
		•				495

- (2) INFORMATION FOR SEQ ID NO:95:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 472 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

COMMITTEE COMMITTEE						
GGTTACTTGG	TTTCATTGCC	ACCACTTAGT	GGATGTCATT	TAGAACCATT	TTGTCTGCTC	60
CCTCTGGAAG	CCTTGCGCAG	AGCGGACTTT	GTA A TTGTTG	GAGAATAACT	222222	
m1			GIRRIIGIIG	GAGAATAACT	GCTGAATTTT	120
TAGCTGTTTT	GAGTTGATTC	GCACCACTGC	ACCACAACTC	AATATGAAAA	CTATTTNACT	180
ጥልጥጥልጥጥልጥ	CTTCTCAAAA	CERTAGRAM			CINTIINACI	100
TULLIALIA	CIIGIGAAAA	GIATACAATG	AAAATTTTGT	TCATACTGTA	ጥጥጥ ልጥር እ አርጥ	240
ΔΤΓΩΤΓΩΝΝΝ	CCAATACATA	Ma ma ma man			+ I IIII CIMOI	240
WI CHI CHINA	GCAATAGATA	TATATTCTTT	TATTATGTTN	AATTATGATT	GCC Δጥጥ Δጥጥ Δ	300
ΔΤΡΟΘΟΡΙΑΝΑΝ	TOTO A COLOR	1 Managament			CCCALIMITA	300
ATCOGCAAAA	IGIGGAGTGT	ATGITCTTT	CACAGTAATA	TATGCCTTTT	GTAACTTCAC	360
ጥጥርርርጥጥ አጥጥጥ	TO A TOTAL OF THE A STATE OF	G3 3 000 3 00 5 0			GIAMCIICAC	300
IIGGIIAIII	TATIGIAAAT	GAATTACAAA	ATTCTTAATT	TAAGAAAATG	GTANGTTATA	420
דע ע היהודיע ע היהודיע	TA AUTOCOOM				CIMIGITALA	. 420
TITMITICAM	TAATITCTT	CCTTGTTTAC	GTTAATTTTG	AAAAGAATGC	ΔΤ	472
					T. I	4/2

- (2) INFORMATION FOR SEQ ID NO:96:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 476 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

CTGDAGCATT	ጥርጥጥር እ እ እ ርጥ	WHITE CONT.				
CTOARGCAII	ICIICAAACI	INTUTACTTT	TGTCATTGAT	ACCTGTAGTA	AGTTGACAAT	60
GTGGTGAAAT	TTCAAAATTA	TATGTAACTT	CTACTAGTTT	TACTTTCTCC	CCCAAGTCTT	120
TTTTAACTCA	ጥር ልጥጥጥጥ ልጥ የ	ACACACAATC	CACAACOONAM	T101110100	CCCMGTCTT	
Ammommos os		ACACACAMIC	CAGAACTTAT	TATATAGCCT	CTAAGTCTTT	180
ATTCTTCACA	GTAGATGATG	AAAGAGTCCT	CCAGTGTCTT	GNGCANAATG	TTCTAGNTAT	240
AGCTGGATAC	ATACNGTGGG	AGTTCTATAA	ልርጥሮልጥአ ሮሮጥ	CACTICICALOR	171 3 002 3 3 3 2	
ጥርጥርጥጥ አርጥር	TO A A COCOCOCA	CC3 C3 CTC3	ACTUATACCI	CAGIGGGACT	NAACCAAAAT	300
TGTGTTAGTC	TCAATTCCTA	CCACACTGAG	GGAGCCTCCC	AAATCACTAT	ATTCTTATCT	360
GCAGGTACTC	CTCCAGAAAA	ACNGACAGGG	CAGGCTTGCA	TGAAAAAAGTM	A C A TI CTC C CCT	400
ТАСАААСТСТ	ስጥር የተመሰረ ነው የተመሰረ ነ	NIA MOROGRAMA	2200222001	TOWNWARTIN	ACATCIGCGI	420
TACAAAGTCT	AICTICCICA	MANGICIGIN	AAGGAACAAT	TTAATCTTCT	AGCTTT	476

(2) INFORMATION FOR SEQ ID NO:97:

(i) SEQUENCE	CHARACTERISTICS
١.	, 52002462	CILCUCTERTAILES

- (A) LENGTH: 479 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

ACTCTTTCTA ATGCTG	ATAT GATCTTGAGT	ATAAGAATGC	ATATGTCACT	AGAATGGATA	60
AAATAATGCT GCAAACT	TTAA TGTTCTTATG	CAAAATGGAA	CGCTAATGAA	ACACAGCTTA	120
CAATCGCAAA TCAAAA	CTCA CAAGTGCTCA	TCTGTTGTAG	ATTTAGTGTA	ATAAGACTTA	180
GATTGTGCTC CTTCGGA	ATAT GATTGTTTCT	CANATCTTGG	GCAATNTTCC	TTAGTCAAAT	240
CAGGCTACTA GAATTCT	GTT ATTGGATATN	TGAGAGCATG	AAATTTTTAA	NAATACACTT	300
GTGATTATNA AATTAAT	CAC AAATTTCACT	TATACCTGCT	ATCAGCAGCT	AGAAAAACAT	360
NTNNTTTTTA NATCAA	GTA TTTTGTGTTT	GGAANTGTNN	AAATGAAATC	TGAATGTGGG	420
TTCNATCTTA TTTTTTC	CCN GACNACTANT	TNCTTTTTTA	GGGNCTATTC	TGANCCATC	479

- (2) INFORMATION FOR SEQ ID NO:98:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 461 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

AGTGACTTGT	CCTCCAACAA	AACCCCTTGA	TCAAGTTTGT	GGCACTGACA	ATCAGACCTA	60
TGCTAGTTCC	TGTCATCTAT	ŢCGCTACTAA	ATGCAGACTG	GAGGGGACCA	AAAAGGGGCA	120
TCAACTCCAG	CTGGATTATT	TTGGAGCCTG	CAAATCTATT	CCTACTTGTA	CGGACTTTGA	180
AGTGATTCAG	TTTCCTCTAC	GGATGAGAGA	CTGGCTCAAG	AATATCCTCA	TGCAGCTTTA	240
TGAAGCCACT	CTGAACACGC	TGGTTATCTA	GATGAGAACA	GAGAAATAAA	GTCAGAAAAT	300
				TGAACCTTCT		360
				CGTTTATGAA	CTGACCACCC	420
TTTGGAATAA	TCTTGACGCT	CCTGAACTTG	CTCCTCTGCG	A		461

- (2) INFORMATION FOR SEQ ID NO:99:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 171 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:	
GTGGCCGCGC GCAGGTGTTT CCTCGTACCG CAGGGCCCCC TCCCTTCCCC AGGCGTCCCT CGGCGCCTCT GCGGGCCCGA GGAGGAGCGG CTGGCGGGTG GGGGGAGTGT GACCCACCCT CGGTGAGAAA AGCCTTCTCT AGCGATCTGA GAGGCGTGCC TTGGGGGTAC C	60 120 171
(2) INFORMATION FOR SEQ ID NO:100:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 269 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:	
CGGCCGCAAG TGCAACTCCA GCTGGGGCCG TGCGGACGAA GATTCTGCCA GCAGTTGGTC CGACTGCGAC GACGGCGCG GCGACAGTCG CAGGTGCAGC GCGGGCGCCT GGGGTCTTGC AAGGCTGAGC TGACGCCGCA GAGGTCGTGT CACGTCCCAC GACCTTGACG CCGTCGGGGA CAGCCGGAAC AGAGCCCGGT GAAGCGGGAG GCCTCGGGG ACGGCCCCCGGGAAC GCAGGTGCAG GCCCCTCGGG AAGGGCGGCC CGAGAGATAC GCAGGTGCAG GTGGCCGCC	60 120 180 240 269
(2) INFORMATION FOR SEQ ID NO:101:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 405 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	٠
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:	
TTGATTGGTT TGTCTTTATG GGGGCGGGGT GGGGTAGGGG AAACGAAGCA AATAACATGG AGTGGGTGCA CCCTCCCTGT AGAACCTGGT TACAAAGCTT GGGGCAGTTC ACCTGGTCTG TGACCGTCAT TTTCTTGACA TCAATGTTAT TAGAAGTCAG GATATCTTT AGAGAGTCCA CTGTTCTGGA GGGAGATTAG GGTTTCTTGC CAAATCCAAC AAAATCCACT GAAAAAGTTG GATGATCAGT ACGAATACGG ACCGATATTTG TGATATACGG TAGATACCACT GAAAAAGTTG	60 120 180 240 300 360 405

(2) INFORMATION FOR SEQ ID NO:102:

(i	١	SECUENCE	CHARACTERISTICS:
L	. 1	SECUENCE	CHARACTERISTICS:

- (A) LENGTH: 470 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTTT	TTTTTTTTT	TTTTTTTTTT	60
GGCACTTAAT	CCATTTTTAT	TTCAAAATGT	CTACAAATTT	AATCCCATTA	TACGGTATTT	120
TCAAAATCTA	AATTATTCAA	ATTAGCCAAA	TCCTTACCAA	ATAATACCCA	AAAATCAAAA	180
ATATACTTCT	TTCAGCAAAC	TTGTTACATA	AATTAAAAAA	ATATATACGG	CTGGTGTTTT	240
CAAAGTACAA	TTATCTTAAC	ACTGCAAACA	TTTTAAGGAA	СТААААТААА	AAAAAACACT	. 300
CCGCAAAGGT	TAAAGGGAAC	AACAAATTCT	TTTACAACAC	CATTATAAAA	ATCATATCTC	360
AAATCTTAGG	GGAATATATA	CTTCACACGG	GATCTTAACT	TTTACTCACT	TTGTTTATTT	420
TTTTAAACCA	TTGTTTGGGC	CCAACACAAT	GGAATCCCCC	CTGGACTAGT		470

- (2) INFORMATION FOR SEQ ID NO:103:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 581 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

	${\bf TTTTTTTTT}$	TTTTTTTGA	CCCCCTCTT	ATAAAAAACA	AGTTACCATT	TTATTTTACT	60
	TACACATATT	TATTTTATAA	TTGGTATTAG	ATATTCAAAA	GGCAGCTTTT	AAAATCAAAC	120
	TAAATGGAAA	CTGCCTTAGA	TACATAATTC	TTAGGAATTA	GCTTAAAATC	TGCCTAAAGT	180
	GAAAATCTTC	TCTAGCTCTT	TTGACTGTAA	ATTTTTGACT	CTTGTAAAAC	ATCCAAATTC	240
	ATTTTTCTTG	TCTTTAAAAT	TATCTAATCT	TTCCATTTTT	TCCCTATTCC	AAGTCAATTT	300
	GCTTCTCTAG	CCTCATTTCC	TAGCTCTTAT	CTACTATTAG	TAAGTGGCTT	TTTTCCTAAA	360
•	AGGGAAAACA	GGAAGAGAAA	TGGCACACAA	AACAAACATT	TTATATTCAT	ATTTCTACCT	420
	ACGTTAATAA	AATAGCATTT	TGTGAAGCCA	GCTCAAAAGA	AGGCTTAGAT	CCTTTTATGT	480
	CCATTTTAGT	CACTAAACGA	TATCAAAGTG	CCAGAATGCA	AAAGGTTTGT	GAACATTTAT	540
	TCAAAAGCTA	ATATAAGATA	TTTCACATAC	TCATCTTTCT	G		581

- (2) INFORMATION FOR SEQ ID NO:104: -
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 578 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

TTTTTTTTTT	TTTTTTTTT	TTTTTCTCTT	CTTTTTTTT	GAAATGAGGA	TCGAGTTTTT	60
CACTCTCTAG	ATAGGGCATG	AAGAAAACTC	ATCTTTCCAG	CTTTAAAATA	ACAATCAAAT	120
CTCTTATGCT	ATATCATATT	TTAAGTTAAA	CTAATGAGTC	ACTGGCTTAT	CTTCTCCTGA	180
AGGAAATCTG	TTCATTCTTC	TCATTCATAT	AGTTATATCA	AGTACTACCT	TGCATATTGA	240
GAGGTTTTTC	TTCTCTATTT	ACACATATAT	TTCCATGTGA	ATTTGTATCA	AACCTTTATT	300
TTCATGCAAA	CTAGAAAATA	ATGTTTCTTT	TGCATAAGAG	AAGAGAACAA	TATAGCATTA	360
CAAAACTGCT	CAAATTGTTT	GTTAAGTTAT	CCATTATAAT	TAGTTGGCAG	GAGCTAATAC	420
AAATCACATT	TACGACAGCA	ATAATAAAAC	TGAAGTACCA	GTTAAATATC	CAAAATAATT	480
AAAGGAACAT	${\tt TTTTAGCCTG}$	GGTATAATTA	GCTAATTCAC	TTTACAAGCA	TTTATTAGAA	540
TGAATTCACA	TGTTATTATT	CCTAGCCCAA	CACAATGG			578

- (2) INFORMATION FOR SEQ ID NO:105:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 538 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

TTTTTTTTTT	TTTTTCAGTA	ATAATCAGAA	CAATATTTAT	TTTTATATTT	AAAATTCATA	60
GAAAAGTGCC	TTACATTTAA	TAAAAGTTTG	TTTCTCAAAĠ	TGATCAGAGG	AATTAGATAT	120
GTCTTGAACA	CCAATATTAA	TTTGAGGAAA	ATACACCAAA	ATACATTAAG	TAAATTATTT	180
AAGATCATAG	AGCTTGTAAG	TGAAAAGATA	AAATTTGACC	TCAGAAACTC	TGAGCATTAA	240
			GACTTCTTGC			300
GGGGTGTCAC	TGGTAAACCA	ACACATTCTG	AAGGATACAT	TACTTAGTGA	TAGATTCTTA	360
TGTACTTTGC	TAATACGTGG	ATATGAGTTG	ACAAGTTTCT	CTTTCTTCAA	TCTTTTAAGG	420
			TACGCATACT			480
AGATATGTTT	CCTTTGCCAA	TATTAAAAAA	ATAATAATGT	TTACTACTAG	TGAAACCC	538

- (2) INFORMATION FOR SEQ ID NO:106:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 473 base pairs
 - (B) TYPE: nucleic acid -
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

TTTTTTTTT	TTTTTTAGTC	AAGTTTCTAT	TTTTATTATA	ATTAAAGTCT	TGGTCATTTC	60
ATTTATTAGC	TCTGCAACTT	ACATATTTAA	ATTAAAGAAA	CGTTTTAGAC	AACTGTACAA	120
TTTATAAATG	TAAGGTGCCA	TTATTGAGTA	ATATATTCCT	CCAAGAGTGG	ATGTGTCCCT	180
TCTCCCACCA	ACTAATGAAC	AGCAACATTA	GTTTAATTTT	ATTAGTAGAT	ATACACTGCT	240
GCAAACGCTA	ATTCTCTTCT	CCATCCCCAT	GTGATATTGT	GTATATGTGT	GAGTTGGTAG	300
AATGCATCAC	AATCTACAAT	CAACAGCAAG	ATGAAGCTAG	GCTGGGCTTT	CGGTGAAAAT	360
AGACTGTGTC	TGTCTGAATC	AAATGATCTG	ACCTATCCTC	GGTGGCAAGA	ACTCTTCGAA	420
CCGCTTCCTC	AAAGGCGCTG	CCACATTTGT	GGCTCTTTGC	ACTTGTTTCA	AAA	473

(2) INFORMATION FOR SEQ ID NO:107:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1621 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

CGCCATGGCA	CTGCAGGGCA	TCTCGGTCAT	GGAGCTGTCC	GGCCTGGCCC	CGGGCCCGTT	60
CTGTGCTATG	GTCCTGGCTG	ACTTCGGGGC	GCGTGTGGTA	CGCGTGGACC	GGCCCGGCTC	120
CCGCTACGAC	GTGAGCCGCT	TGGGCCGGGG	CAAGCGCTCG	CTAGTGCTGG	ACCTGAAGCA	180
GCCGCGGGGA	GCCGCCGTGC	TGCGGCGTCT	GTGCAAGCGG	TCGGATGTGC	TGCTGGAGCC	240
CTTCCGCCGC	GGTGTCATGG	AGAAACTCCA	GCTGGGCCCA	GAGATTCTGC	AGCGGGAAAA	300
TCCAAGGCTT	ATTTATGCCA	GGCTGAGTGG	ATTTGGCCAG	TCAGGAAGCT	TCTGCCGGTT	360
AGCTGGCCAC	GATATCAACT	ATTTGGCTTT	GTCAGGTGTT	CTCTCAAAAA	TTGGCAGAAG	420
TGGTGAGAAT	CCGTATGCCC'	CGCTGAATCT	CCTGGCTGAC	TTTGCTGGTG	GTGGCCTTAT	480
GTGTGCACTG	GGCATTATAA	TGGCTCTTTT	TGACCGCACA	CGCACTGACA	AGGGTCAGGT	540
CATTGATGCA	AATATGGTGG	AAGGAACAGC	ATATTTAAGT	TCTTTTCTGT	GGAAAACTCA	600
GAAATCGAGT	CTGTGGGAAG	CACCTCGAGG	ACAGAACATG	TTGGATGGTG	GAGCACCTTT	660
CTATACGACT	TACAGGACAG	CAGATGGGGA	ATTCATGGCT	GTTGGAGCAA	TAGAACCCCA	720
GTTCTACGAG	CTGCTGATCA	AAGGACTTGG	ACTAAAGTCT	GATGAACTTC	CCAATCAGAT	780
GAGCATGGAT	GATTGGCCAG	AAATGAAGAA	GAAGTTTGCA	GATGTATTTG	CAAAGAAGAC	840
GAAGGCAGAG	TGGTGTCAAA	TCTTTGACGG	CACAGATGCC	TGTGTGACTC	CGGTTCTGAC	900
TTTTGAGGAG	GTTGTTCATC	ATGATCACAA	CAAGGAACGG	GGCTCGTTTA	TCACCAGTGA	960
GGAGCAGGAC	GTGAGCCCCC	GCCCTGCACC	TCTGCTGTTA	AACACCCCAG	CCATCCCTTC	1020
TTTCAAAAGG	GATCCTTTCA	TAGGAGAACA	CACTGAGGAG	ATACTTGAAG	AATTTGGATT	1080
CAGCCGCGAA	GAGATTTATC	AGCTTAACTC	AGATAAAATC	ATTGAAAGTA	ATAAGGTAAA	1140
AGCTAGTCTC	TAACTTCCAG	GCCCACGGCT	CAAGTGAATT	TGAATACTGC	ATTTACAGTG	1200
TAGAGTAACA	CATAACATTG	TATGCATGGA	AACATGGAGG	AACAGTATTA	CAGTGTCCTA	1260
CCACTCTAAT	CAAGAAAAGA	ATTACAGACT	CTGATTCTAC	AGTGATGATT	GAATTCTAAA	1320
AATGGTTATC	ATTAGGGCTT	TTGATTTATA	AAACTTTGGG	TACTTATACT	AAATTATGGT	1380
AGTTATTCTG	CCTTCCAGTT	TGCTTGATAT	ATTTGTTGAT	ATTAAGATTC	TTGACTTATA	1440
TTTTGAATGG	GTTCTAGTGA	AAAAGGAATG	ATATATTCTT	GAAGACATCG	ATATACATIT	1500
ATTTACACTC	TTGATTCTAC	AATGTAGAAA	ATGAGGAAAT	GCCACAAATT	GTATGGTGAT	1560

100000 AMO 00774040 F

AAAAGTCACG	TGAAACAAAA	AAAAAAAAA	АААААААА	ασασασασ	АААААААА	1.000
A					пиничнициц	1620
- •						1621

- (2) INFORMATION FOR SEQ ID NO:108:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 382 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

Met Ala Leu Gln Gly Ile Ser Val Met Glu Leu Ser Gly Leu Ala Pro Gly Pro Phe Cys Ala Met Val Leu Ala Asp Phe Gly Ala Arg Val Val Arg Val Asp Arg Pro Gly Ser Arg Tyr Asp Val Ser Arg Leu Gly Arg 40 Gly Lys Arg Ser Leu Val Leu Asp Leu Lys Gln Pro Arg Gly Ala Ala 55 Val Leu Arg Arg Leu Cys Lys Arg Ser Asp Val Leu Leu Glu Pro Phe Arg Arg Gly Val Met Glu Lys Leu Gln Leu Gly Pro Glu Ile Leu Gln 90 Arg Glu Asn Pro Arg Leu Ile Tyr Ala Arg Leu Ser Gly Phe Gly Gln 105 Ser Gly Ser Phe Cys Arg Leu Ala Gly His Asp Ile Asn Tyr Leu Ala 120 Leu Ser Gly Val Leu Ser Lys Ile Gly Arg Ser Gly Glu Asn Pro Tyr . **j** 135 Ala Pro Leu Asn Leu Leu Ala Asp Phe Ala Gly Gly Leu Met Cys 155 Ala Leu Gly Ile Ile Met Ala Leu Phe Asp Arg Thr Arg Thr Asp Lys 165 170 Gly Gln Val Ile Asp Ala Asn Met Val Glu Gly Thr Ala Tyr Leu Ser 185 Ser Phe Leu Trp Lys Thr Gln Lys Ser Ser Leu Trp Glu Ala Pro Arg 200 Gly Gln Asn Met Leu Asp Gly Gly Ala Pro Phe Tyr Thr Thr Tyr Arg 215 Thr Ala Asp Gly Glu Phe Met Ala Val Gly Ala Ile Glu Pro Gln Phe 230 Tyr Glu Leu Leu Ile Lys Gly Leu Gly Leu Lys Ser Asp Glu Leu Pro Asn Gln Met Ser Met Asp Asp Trp Pro Glu Met Lys Lys Lys Phe Ala 265 Asp Val Phe Ala Lys Lys Thr Lys Ala Glu Trp Cys Gln Ile Phe Asp 280 Gly Thr Asp Ala Cys Val Thr Pro Val Leu Thr Phe Glu Glu Val Val

(2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1524 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

GGCACGAGGC TGCGCCAGGG CCTGAGCGGA GGCGGGGGCA GCCTCGCCAG CGGGGGCCCC 60 GGGCCTGGCC ATGCCTCACT GAGCCAGCGC CTGCGCCTCT ACCTCGCCGA CAGCTGGAAC CAGTGCGACC TAGTGGCTCT CACCTGCTTC CTCCTGGGCG TGGGCTGCCG GCTGACCCCG 180 GGTTTGTACC ACCTGGCCG CACTGTCCTC TGCATCGACT TCATGGTTTT CACGGTGCGG 240 CTGCTTCACA TCTTCACGGT CAACAAACAG CTGGGGCCCA AGATCGTCAT CGTGAGCAAG 300 ATGATGAAGG ACGTGTTCTT CTTCCTCTTC TTCCTCGGCG TGTGGCTGGT AGCCTATGGC 360 GTGGCCACGG AGGGGCTCCT GAGGCCACGG GACAGTGACT TCCCAAGTAT CCTGCGCCGC 420 GTCTTCTACC GTCCCTACCT GCAGATCTTC GGGCAGATTC CCCAGGAGGA CATGGACGTG GCCCTCATGG AGCACAGCAA CTGCTCGTCG GAGCCCGGCT TCTGGGCACA CCCTCCTGGG 540 GCCCAGGCGG GCACCTGCGT CTCCCAGTAT GCCAACTGGC TGGTGGTGCT GCTCCTCGTC 600 ATCTTCCTGC TCGTGGCCAA CATCCTGCTG GTCAACTTGC TCATTGCCAT GTTCAGTTAC 660 ACATTCGGCA AAGTACAGGG ÇAACAGCGAT CTCTACTGGA AGGCGCAGCG TTACCGCCTC 720 ATCCGGGAAT TCCACTCTCG GCCCGCGCTG GCCCCGCCCT TTATCGTCAT CTCCCACTTG 780 CGCCTCCTGC TCAGGCAATT GTGCAGGCGA CCCCGGAGCC CCCAGCCGTC CTCCCCGGCC 840 CTCGAGCATT TCCGGGTTTA CCTTTCTAAG GAAGCCGAGC GGAAGCTGCT AACGTGGGAA 900 TCGGTGCATA AGGAGAACTT TCTGCTGGCA CGCGCTAGGG ACAAGCGGGA GAGCGACTCC 960 GAGCGTCTGA AGCGCACGTC CCAGAAGGTG GACTTGGCAC TGAAACAGCT GGGACACATC 1020 CGCGAGTACG AACAGCGCCT GAAAGTGCTG GAGCGGGAGG TCCAGCAGTG TAGCCGCGTC 1080 CTGGGGTGGG TGGCCGAGGC CCTGAGCCGC TCTGCCTTGC TGCCCCCAGG TGGGCCGCCA CCCCCTGACC TGCCTGGGTC CAAAGACTGA GCCCTGCTGG CGGACTTCAA GGAGAAGCCC CCACAGGGGA TTTTGCTCCT AGAGTAAGGC TCATCTGGGC CTCGGCCCCC GCACCTGGTG 1260 GCCTTGTCCT TGAGGTGAGC CCCATGTCCA TCTGGGCCAC TGTCAGGACC ACCTTTGGGA 1320 GTGTCATCCT TACAAACCAC AGCATGCCCG GCTCCTCCCA GAACCAGTCC CAGCCTGGGA 1380 GGATCAAGGC CTGGATCCCG GGCCGTTATC CATCTGGAGG CTGCAGGGTC CTTGGGGTAA CAGGGACCAC AGACCCCTCA CCACTCACAG ATTCCTCACA CTGGGGAAAT AAAGCCATTT 1500 CAGAGGAAAA AAAAAAAAA AAAA 1524

(2) INFORMATION FOR SEQ ID NO:110:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3410 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

		•				
GGGAACCAG	CTGCACGCGC	TGGCTCCGGG	TGACAGCCGC	GCGCCTCGGC	CAGGATCTGA	60
GIGATGAGAC	: GTGTCCCCAC	: TGAGGTGCCC	CACAGCAGCA	GGTGTTGAGC	ATCCCCTCAC	120
AAGCTGGACC	: GGCACCAAAG	GGCTGGCAGA	AATGGGCGCC	TGGCTGATTC	CTACCACTO	180
GGCGGCAGCA	AGGAGGAGAG	GCCGCAGCTI	CTGGAGCAGA	GCCGAGACGA	Δασασσσσσ	240
GAGTGCCTGA	ACGGCCCCCT	' GAGCCCTACC	CGCCTGGCCC	ACTATECTCC	ACACCCTCTC	300
GGTGAGCCGC	: CTGCTGCGGC	ACCGGAAAGC	CCAGCTCTTG	CTGGTCAACC	ጥርርጥ አለርርጥጥ	360
TGGCCTGGAG	GIGIGITTGG	CCGCAGGCAT	' CACCTATGTG	CCGCCTCTGC	TOCTOCAROT	420
GGGGTAGAG	GAGAAGTTCA	TGACCATGGT	' GCTGGGCATT	GGTCCAGTGC	TRECECTOR	480
CIGIGICCCG	CICCTAGGCT	CAGCCAGTGA	CCACTGGCGT	GGACGCTATG	GCCGCCGCCC	540
GCCCTTCATC	TGGGCACTGT	CCTTGGGCAT	CCTGCTGAGC	CTCTTTCTCA	TCCCNACCCC	600
CGGCTGGCTA	GCAGGGCTGC	TGTGCCCGGA	TCCCAGGCCC	CTGGAGCTGG	СУСФССФСУФ	660
CCTGGGCGTG	GGGCTGCTGG	ACTTCTGTGG	CCAGGTGTGC	TTCACTCCAC	TGGAGGCCCT	720
GCTCTCTGAC	CTCTTCCGGG	ACCCGGACCA	CTGTCGCCAG	GCCTACTCTG	TCTATCCCTT	780
CATGATCAGT	CTTGGGGGCT	GCCTGGGCTA	CCTCCTGCCT	GCCATTGACT	GGGACACCAG	840
TGCCCTGGCC	CCCTACCTGG	GCACCCAGGA	GGAGTGCCTC	TTTGGCCTGC	ጥሮል ሮሮሮ ሞሮአሞ	900
CTTCCTCACC	TGCGTAGCAG	CCACACTGCT	GGTGGCTGAG	GAGGCAGCGC	TGGGCCCCAC	960
CGAGCCAGCA	GAAGGGCTGT	CGGCCCCCTC	CTTGTCGCCC	CACTGCTGTC	CATGCCGGGG	1020
CCGCTTGGCT	TTCCGGAACC	TGGGCGCCCT	GCTTCCCCGG	CTGCACCAGC	TGTGCTGCCC	1080
CATGCCCCGC	ACCCTGCGCC	GGCTCTTCGT	GGCTGAGCTG	TGCAGCTGGA	TCCCACTCAT	1140
GACCTTCACG	CTGTTTTACA	CGGATTTCGT	GGGCGAGGGG	CTGTACCAGG	GCGTGCCCAC	1200
AGCTGAGCCG	GGCACCGAGG	CCCGGAGACA	CTATGATGAA	GGCGTTCGGA	TGGGCAGCCT	1260
GGGGCTGTTC	CTGCAGTGCG	CCATCTCCCT	GGTCTTCTCT	CTGGTCATGG	ACCGGCTGGT	1320
GCAGCGATTC	GGCACTCGAG	CAGTCTATTT	GGCCAGTGTG	GCAGCTTTCC	CTGTGGCTGC	1380
CGGTGCCACA	TGCCTGTCCC	ACAGTGTGGC	CGTGGTGACA	GCTTCAGCCG	CCCTCTCTCCC	1440
GTTCACCTTC	TCAGCCCTGC	AGATCCTGCC	CTACACACTG	GCCTCCCTCT	ACCACCGGA	1500
GAAGCAGGTG	TTCCTGCCCA	AATACCGAGG	GGACACTGGA	GGTGCTAGCA	GTGAGGAGAG	1560
CCTGATGACC	AGCTTCCTGC	CAGGCCCTAA	GCCTGGAGCT	CCCTTCCCTA	ATGGACACCT	1620
GGGTGCTGGA	GGCAGTGGCC	TGCTCCCACC	TCCACCCGCG	CTCTGCGGGG	CCTCTCCCCTC	1680
TGATGTCTCC	GTACGTGTGG	TGGTGGGTGA	GCCCACCGAG	GCCAGGGTGG	TTCCGGGGGG	1740
GGGCATCTGC	CTGGACCTCG	CCATCCTGGA	TAGTGCCTTC	CTGCTGTCCC	ACCTCCCCCC	1800
ATCCCTGTTT	ATGGGCTCCA	TTGTCCAGCT	CAGCCAGTCT	GTCACTGCCT	ΔΤΔΤΩΩΤΩΤΩ	1860
TGCCGCAGGC	CTGGGTCTGG	TCGCCATTTA	CTTTGCTACA	CAGGTAGTAT	ፕፕሮ ልሮአ አርአሮ	1920
CGACTTGGCC	AAATACTCAG	CGTAGAAAAC	TTCCAGCACA	TTGGGGTGGA	GGGCCTGCCT	1980
CACTGGGTCC	CAGCTCCCCG	CTCCTGTTAG	CCCCATGGGG	CTGCCGGGGCT	GGCCGCCNGT	2040
TTCTGTTGCT	GCCAAAGTAA	TGTGGCTCTC	TGCTGCCACC	CTGTGCTGCT	CACCTCCCTA	2100
GCTGCACAGC	TGGGGGCTGG	GGCGTCCCTC	TCCTCTCC	CCAGTCTCTA	GGGCTGCCTC	
ACTGGAGGCC	TTCCAAGGGG	GTTTCAGTCT	GGACTTATAC	AGGGAGGCCA	GAAGGGCTCG	2160
ATGCACTGGA	ATGCGGGGAC	TCTGCAGGTG	GATTACCCAG	GCTCAGGGTT	AACAGCTAGC	2220
CTCCTAGTTG	AGACACACCT	AGAGAAGGGT	TTTTGGGAGC	TGAATAAACT	САСТСАССТС	2280
GTTTCCCATC	TCTAAGCCCC	TTAACCTGCA	GCTTCGTTTA	ATGTAGCTCT	TGCATGGGAG	2340
TTTCTAGGAT	GAAACACTCC	TCCATGGGAT	TTGAACATAT	GACTTATTTC	TAGGGGAACA	2400
					ADAMODOURI	2460

GTCCTGAGGG	GCAACACACA	AGAACCAGGT	CCCCTCAGCC	CACAGCACTG	TCTTTTTGCT	2520
GATCCACCCC	CCTCTTACCT	TTTATCAGGA	TGTGGCCTGT	TGGTCCTTCT	GTTGCCATCA	2580
CAGAGACACA	GGCATTTAAA	TATTTAACTT	ATTTATTTAA	CAAAGTAGAA	GGGAATCCAT	2640
TGCTAGCTTT	TCTGTGTTGG	TGTCTAATAT	TTGGGTAGGG	TGGGGGATCC	CCAACAATCA	2700
GGTCCCCTGA	GATAGCTGGT	CATTGGGCTG	ATCATTGCCA	GAATCTTCTT	CTCCTGGGGT	2760
CTGGCCCCCC	AAAATGCCTA	ACCCAGGACC	TTGGAAATTC	TACTCATCCC	AAATGATAAT	2820
TCCAAATGCT	GTTACCCAAG	GTTAGGGTGT	TGAAGGAAGG	TAGAGGGTGG	GGCTTCAGGT	2880
CTCAACGGCT	TCCCTAACCA	CCCCTCTTCT	CTTGGCCCAG	CCTGGTTCCC	CCCACTTCCA	2940
CTCCCCTCTA	CTCTCTCTAG	GACTGGGCTG	ATGAAGGCAC	TGCCCAAAAT	TTCCCCTACC	3000
CCCAACTTTC	CCCTACCCCC	AACTTTCCCC	ACCAGCTCCA	CAACCCTGTT	TGGAGCTACT	3060
GCAGGACCAG	AAGCACAAAG	TGCGGTTTCC	CAAGCCTTTG	TCCATCTCAG	CCCCCAGAGT	3120
ATATCTGTGC	TTGGGGAATC	TCACACAGAA	ACTCAGGAGC	ACCCCCTGCC	TGAGCTAAGG	3180
GAGGTCTTAT	CTCTCAGGGG	GGGTTTAAGT	GCCGTTTGCA	ATAATGTCGT	CTTATTTATT	3240
TAGCGGGGTG	AATATTTTAT	ACTGTAAGTG	AGCAATCAGA	GTATAATGTT	TATGGTGACA	3300
AAATTAAAGG	CTTTCTTATA	TGTTTAAAAA	AAAAAAAAA	АААААААА	AAAAAAAAA	3360
AAAAAAAARA	AAAAAAAAA	AAAAAAAAA	AAAAAATAA	AAAAAAAAA		3410

(2) INFORMATION FOR SEQ ID NO:111:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1289 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

AGCCAGGCGT	CCCTCTGCCT	GCCCACTCAG	TGGCAACACC	CGGGAGCTGT	TTTGTCCTTT	60
GTGGAGCCTC	AGCAGTTCCC	TCTTTCAGAA	CTCACTGCCA	AGAGCCCTGA	ACAGGAGCCA	120
CCATGCAGTG	CTTCAGCTTC	ATTAAGACCA	TGATGATCCT	CTTCAATTTG	CTCATCTTTC	180
TGTGTGGTGC	AGCCCTGTTG	GCAGTGGGCA	TCTGGGTGTC	AATCGATGGG	GCATCCTTTC	240
TGAAGATCTT	CGGGCCACTĠ	TCGTCCAGTG	CCATGCAGTT	TGTCAACGTG	GGCTACTTCC	300
TCATCGCAGC	CGGCGTTGTG	GTCTTTGCTC	TTGGTTTCCT	GGGCTGCTAT	GGTGCTAAGA	360
CTGAGAGCAA	GTGTGCCCTC	GTGACGTTCT	TCTTCATCCT	CCTCCTCATC	TTCATTGCTG	420
AGGTTGCAGC	TGCTGTGGTC	GCCTTGGTGT	ACACCACAAT	GGCTGAGCAC	TTCCTGACGT	480
TGCTGGTAGT	GCCTGCCATC	AAGAAAGATT	ATGGTTCCCA	GGAAGACTTC	ACTCAAGTGT	540
GGAACACCAC	CATGAAAGGG	CTCAAGTGCT	GTGGCTTCAC	CAACTATACG	GATTTTGAGG	600
ACTCACCCTA	CTTCAAAGAG	AACAGTGCCT	TTCCCCCATT	CTGTTGCAAT	GACAACGTCA	660
CCAACACAGC	CAATGAAACC	TGCACCAAGC	AAAAGGCTCA	CGACCAAAAA	GTAGAGGGTT	720
GCTTCAATCA	GCTTTTGTAT	GACATCCGAA	CTAATGCAGT	CACCGTGGGT	GGTGTGGCAG	780
CTGGAATTGG	${\tt GGGCCTCGAG}$	CTGGCTGCCA	TGATTGTGTC	CATGTATCTG	TACTGCAATC	840
TACAATAAGT	CCACTTCTGC	CTCTGCCACT	ACTGCTGCCA	CATGGGAACT	GTGAAGAGGC	900
ACCCTGGCAA	GCAGCAGTGA	TTGGGGGAGG	GGACAGGATC	TAACAATGTC	ACTTGGGCCA	960
GAATGGACCT	GCCCTTTCTG	CTCCAGACTT	GGGGCTAGAT	AGGGACCACT	CCTTTTAGCG	1020
ATGCCTGACT	TTCCTTCCAT	TGGTGGGTGG	ATGGGTGGGG	GGCATTCCAG	AGCCTCTAAG	1080
GTAGCCAGTT	CTGTTGCCCA	TTCCCCCAGT	CTATTAAACC	CTTGATATGC	CCCCTAGGCC	1140
TAGTGGTGAT	CCCAGTGCTC	TACTGGGGGA	TGAGAGAAAG	GCATTTTATA	GCCTGGGCAT	1200
AAGTGAAATC	AGCAGAGCCT	CTGGGTGGAT	GTGTAGAAGG	CACTTCAAAA	TGCATAAACC	1260
TGTTACAATG	$\mathtt{AAAAAAAA}$	AAAAAAAA		·		1289

- (2) INFORMATION FOR SEQ ID NO:112:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 315 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:
 - Met Val Phe Thr Val Arg Leu Leu His Ile Phe Thr Val Asn Lys Gln 1 5 10 15
 - Leu Gly Pro Lys Ile Val Ile Val Ser Lys Met Met Lys Asp Val Phe 20 25 30
 - Phe Phe Leu Phe Phe Leu Gly Val Trp Leu Val Ala Tyr Gly Val Ala 35 40 45
 - Thr Glu Gly Leu Leu Arg Pro Arg Asp Ser Asp Phe Pro Ser Ile Leu 50 55 60
 - Arg Arg Val Phe Tyr Arg Pro Tyr Leu Gln Ile Phe Gly Gln Ile Pro 65 70 75 80
 - Gln Glu Asp Met Asp Val Ala Leu Met Glu His Ser Asn Cys Ser Ser 85 90 95
 - Glu Pro Gly Phe Trp Ala His Pro Pro Gly Ala Gln Ala Gly Thr Cys 100 105 110
 - Val Ser Gln Tyr Ala Asn Trp Leu Val Val Leu Leu Leu Val Ile Phe 115 120 125
 - Leu Leu Val Ala Asn Ile Leu Leu Val Asn Leu Leu Ile Ala Met Phe 130 135 140
 - Ser Tyr Thr Phe Gly Lys Val Gln Gly Asn Ser Asp Leu Tyr Trp Lys 145 150 155 160
 - Ala Gln Arg Tyr Arg Leu Ile Arg Glu Phe His Ser Arg Pro Ala Leu 165 170 175
 - Ala Pro Pro Phe Ile Val Ile Ser His Leu Arg Leu Leu Leu Arg Gln 180 * 185 190
 - Leu Cys Arg Arg Pro Arg Ser Pro Gln Pro Ser Ser Pro Ala Leu Glu 195 200 205
 - His Phe Arg Val Tyr Leu Ser Lys Glu Ala Glu Arg Lys Leu Leu Thr

210 215 220

Trp Glu Ser Val His Lys Glu Asn Phe Leu Leu Ala Arg Ala Arg Asp 225 230 235 240

Lys Arg Glu Ser Asp Ser Glu Arg Leu Lys Arg Thr Ser Gln Lys Val 245 250 255

Asp Leu Ala Leu Lys Gln Leu Gly His Ile Arg Glu Tyr Glu Gln Arg
260 265 270

Leu Lys Val Leu Glu Arg Glu Val Gln Gln Cys Ser Arg Val Leu Gly 275 280 285

Trp Val Ala Glu Ala Leu Ser Arg Ser Ala Leu Leu Pro Pro Gly Gly 290 295 300

Pro Pro Pro Pro Asp Leu Pro Gly Ser Lys Asp 305 310 315

(2) INFORMATION FOR SEQ ID NO:113:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 553 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

Met Val Gln Arg Leu Trp Val Ser Arg Leu Leu Arg His Arg Lys Ala 1 10 15

Gln Leu Leu Val Asn Leu Leu Thr Phe Gly Leu Glu Val Cys Leu
20 25 30

Ala Ala Gly Ile Thr Tyr Val Pro Pro Leu Leu Glu Val Gly Val
35 40 45

Glu Glu Lys Phe Met Thr Met Val Leu Gly Ile Gly Pro Val Leu Gly
50 55 60

Leu Val Cys Val Pro Leu Leu Gly Ser Ala Ser Asp His Trp Arg Gly 65 70 75 80

Arg Tyr Gly Arg Arg Pro Phe Ile Trp Ala Leu Ser Leu Gly Ile 85 90 95

Leu Leu Ser Leu Phe Leu Ile Pro Arg Ala Gly Trp Leu Ala Gly Leu 100 105 110

390

Leu Cys Pro Asp Pro Arg Pro Leu Glu Leu Ala Leu Leu Ile Leu Gly Val Gly Leu Leu Asp Phe Cys Gly Gln Val Cys Phe Thr Pro Leu Glu 130 135 Ala Leu Leu Ser Asp Leu Phe Arg Asp Pro Asp His Cys Arg Gln Ala 150 Tyr Ser Val Tyr Ala Phe Met Ile Ser Leu Gly Gly Cys Leu Gly Tyr 165 170 Leu Leu Pro Ala Ile Asp Trp Asp Thr Ser Ala Leu Ala Pro Tyr Leu 180 185 Gly Thr Gln Glu Glu Cys Leu Phe Gly Leu Leu Thr Leu Ile Phe Leu Thr Cys Val Ala Ala Thr Leu Leu Val Ala Glu Glu Ala Ala Leu Gly 210 215 Pro Thr Glu Pro Ala Glu Gly Leu Ser Ala Pro Ser Leu Ser Pro His 230 Cys Cys Pro Cys Arg Ala Arg Leu Ala Phe Arg Asn Leu Gly Ala Leu 250 Leu Pro Arg Leu His Gln Leu Cys Cys Arg Met Pro Arg Thr Leu Arg 260 Arg Leu Phe Val Ala Glu Leu Cys Ser Trp Met Ala Leu Met Thr Phe Thr Leu Phe Tyr Thr Asp Phe Val Gly Glu Gly Leu Tyr Gln Gly Val 295 Pro Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg His Tyr Asp Glu Gly Val Arg Met Gly Ser Leu Gly Leu Phe Leu Gln Cys Ala Ile Ser Leu 330 Val Phe Ser Leu Val Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg 340 345 Ala Val Tyr Leu Ala Ser Val Ala Ala Phe Pro Val Ala Ala Gly Ala 360 Thr Cys Leu Ser His Ser Val Ala Val Val Thr Ala Ser Ala Ala Leu 370 Thr Gly Phe Thr Phe Ser Ala Leu Gln Ile Leu Pro Tyr Thr Leu Ala

Ser Leu Tyr His Arg Glu Lys Gln Val Phe Leu Pro Lys Tyr Arg Gly
405 410 415

Asp Thr Gly Gly Ala Ser Ser Glu Asp Ser Leu Met Thr Ser Phe Leu 420 425 430

Pro Gly Pro Lys Pro Gly Ala Pro Phe Pro Asn Gly His Val Gly Ala
435
440
445

Gly Gly Ser Gly Leu Leu Pro Pro Pro Pro Ala Leu Cys Gly Ala Ser 450 455 460

Ala Cys Asp Val Ser Val Arg Val Val Val Gly Glu Pro Thr Glu Ala 465 470 475 480

Arg Val Val Pro Gly Arg Gly Ile Cys Leu Asp Leu Ala Ile Leu Asp
485
490
495

Ser Ala Phe Leu Leu Ser Gln Val Ala Pro Ser Leu Phe Met Gly Ser 500 505 510

Ile Val Gln Leu Ser Gln Ser Val Thr Ala Tyr Met Val Ser Ala Ala 515 520 525

Gly Leu Gly Leu Val Ala Ile Tyr Phe Ala Thr Gln Val Val Phe Asp 530 540

Lys Ser Asp Leu Ala Lys Tyr Ser Ala 545 550

(2) INFORMATION FOR SEQ ID NO:114:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

Met Gln Cys Phe Ser Phe Ile Lys Thr Met Met Ile Leu Phe Asn Leu 1 5 10 15

Leu Ile Phe Leu Cys Gly Ala Ala Leu Leu Ala Val Gly Ile Trp Val 20 25 30

Ser Ile Asp Gly Ala Ser Phe Leu Lys Ile Phe Gly Pro Leu Ser Ser 35 40 45

Ser Ala Met Gln Phe Val Asn Val Gly Tyr Phe Leu Ile Ala Ala Gly

}

50

55

60

Val Val Val Phe Ala Leu Gly Phe Leu Gly Cys Tyr Gly Ala Lys Thr 65 70 75 80

Glu Ser Lys Cys Ala Leu Val Thr Phe Phe Phe Ile Leu Leu Leu Ile 85 90 95

Phe Ile Ala Glu Val Ala Ala Ala Val Val Ala Leu Val Tyr Thr Thr 100 105 110

Met Ala Glu His Phe Leu Thr Leu Leu Val Val Pro Ala Ile Lys Lys 115 120 125

Asp Tyr Gly Ser Gln Glu Asp Phe Thr Gln Val Trp Asn Thr Thr Met 130 135 140

Lys Gly Leu Lys Cys Cys Gly Phe Thr Asn Tyr Thr Asp Phe Glu Asp 145 150 155 160

Ser Pro Tyr Phe Lys Glu Asn Ser Ala Phe Pro Pro Phe Cys Cys Asn 165 170 175

Asp Asn Val Thr Asn Thr Ala Asn Glu Thr Cys Thr Lys Gln Lys Ala 180 185 190

His Asp Gln Lys Val Glu Gly Cys Phe Asn Gln Leu Leu Tyr Asp Ile
195 200 205

Arg Thr Asn Ala Val Thr Val Gly Gly Val Ala Ala Gly Ile Gly Gly 210 215 220

Leu Glu Leu Ala Ala Met Ile Val Ser Met Tyr Leu Tyr Cys Asn Leu 225 235 240

Gln

(2) INFORMATION FOR SEQ ID NO:115:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 366 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo Sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

GCTCTTTCTC TCCCCTCCTC TGAATTTAAT TCTTTCAACT TGCAATTTGC AAGGATTACA	6
CATTTCACTG TGATGTATAT TGTGTTGCAA AAAAAAAAA GTGTCTTTGT TTAAAATTAC	12
TTGGTTTGTG AATCCATCTT GCTTTTTCCC CATTGGAACT AGTCATTAAC CCATCTCTGA	18
ACTGGTAGAA AAACATCTGA AGAGCTAGTC TATCAGCATC TGACAGGTGA ATTGGATGGT	24
TCTCAGAACC ATTTCACCCA GACAGCCTGT TTCTATCCTG TTTAATAAAT TAGTTTGGGT	30
TCTCTACATG CATAACAAAC CCTGCTCCAA TCTGTCACAT AAAAGTCTGT GACTTGAAGT	36
TTAGTC	36
•	
(2) INFORMATION FOR SEQ ID NO:116:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 282 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(5) 1010-1011 2111-011	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:	
ACAAAGATGA ACCATTTCCT ATATTATAGC AAAATTAAAA TCTACCCGTA TTCTAATATT	60
GAGAAATGAG ATNAAACACA ATNTTATAAA GTCTACTTAG AGAAGATCAA GTGACCTCAA	120
AGACTTTACT ATTTTCATAT TTTAAGACAC ATGATTTATC CTATTTTAGT AACCTGGTTC	180
ATACGTTAAA CAAAGGATAA TGTGAACAGC AGAGAGGATT TGTTGGCAGA AAATCTATGT	240
FCAATCTNGA ACTATCTANA TCACAGACAT TTCTATTCCT TT	282
(2) INFORMATION FOR SEQ ID NO:117:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 305 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
,	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:	
ACACATGTCG CTTCACTGCC TTCTTAGATG CTTCTGGTCA ACATANAGGA ACAGGGACCA	60
PATTTATCCT CCCTCCTGAA ACAATTGCAA AATAANACAA AATATATGAA ACAATTGCAA	120
ATTAAGGCAA AATATATGAA ACAACAGGTC TCGAGATATT GGAAATCAGT CAATGAAGGA	180
PACTGATCCC TGATCACTGT CCTAATGCAG GATGTGGGAA ACAGATGAGG TCACCTCTGT	240
GACTGCCCCA GCTTACTGCC TGTAGAGAGT TTCTANGCTG CAGTTCAGAC AGGGAGAAAT	300
TGGGT	305
•	

(2) INFORMATION FOR SEQ ID NO:118:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 71 base pairs

(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
Total Sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:	
(MI) BEGORNER BESCRIFTION: SEQ ID NO:118:	
ACCAAGGTGT NTGAATCTCT GACGTGGGGA TCTCTGATTC CCGCACAATC TGAGTGGAAA	
AANTCCTGGG T	60
	71
(2) INFORMATION FOR SEQ ID NO:119:	
(2) INTOGRATION FOR SEQ ID NO:II9:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 212 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:	
ACTCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAGC CCAAACCACA	60
GAAAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANTT TGCCACCAAC	
AGTAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAANC GGAATTAANT	120
AATGGANTCA AGANACTCCC AGGCCTCAGC GT	180
•	212
(2) INFORMATION FOR SEQ ID NO:120:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 90 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(11)	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	
CTCGTTGCA NATCAGGGGC CCCCCAGAGT CACCGTTGCA GGAGTCCTTC TGGTCTTGCC	60
TCCGCCGGC GCAGAACATG CTGGGGTGGT	
	90
2) INFORMATION FOR SEQ ID NO:121:	
(i) SEQUENCE CHARACTERISTICS:	
· · · · · · · · · · · · · · · · · · ·	

(A) LENGTH: 218 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:	
TGTANCGTGA ANACGACAGA NAGGGTTGTC AAAAATGGAG AANCCTTGAA GTCATTTTGA GAATAAGATT TGCTAAAAGA TTTGGGGCTA AAACATGGTT ATTGGGAGAC ATTTCTGAAG ATATNCANGT AAATTANGGA ATGAATTCAT GGTTCTTTTG GGAATTCCTT TACGATNGCC AGCATANACT TCATGTGGGG ATANCAGCTA CCCTTGTA	120 180 218
(2) INFORMATION FOR SEQ ID NO:122:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 171 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:	
TAGGGGTGTA TGCAACTGTA AGGACAAAAA TTGAGACTCA ACTGGCTTAA CCAATAAAGG CATTTGTTAG CTCATGGAAC AGGAAGTCGG ATGGTGGGGC ATCTTCAGTG CTGCATGAGT CACCACCCCG GCGGGTCAT CTGTGCCACA GGTCCCTGTT GACAGTGCGG T	60 120 171
(2) INFORMATION FOR SEQ ID NO:123:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 76 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:	
TGTAGCGTGA AGACNACAGA ATGGTGTGTG CTGTGCTATC CAGGAACACA TTTATTATCA TTATCAANTA TTGTGT	60 76
(2) INFORMATION FOR SEQ ID NO:124:	

(ii) MOLECULE TYPE: cDNA

(A) ORGANISM: Homo sapiens

(vi) ORIGINAL SOURCE:

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:	
ACCTTTCCCC AAGGCCAATG TCCTGTGTGC TAACTGGCCG GCTGCAGGAC AGCTGCAATT CAATGTGCTG GGTCATATGG AGGGGAGGAG ACTCTAAAAT AGCCAATTTT ATTCTCTTGG TTAAGATTTG T	12: 13:
(2) INFORMATION FOR SEQ ID NO:125:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 432 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:	
ACTTTATCTA CTGGCTATGA AATAGATGGT GGAAAATTGC GTTACCAACT ATACCACTGG CTTGAAAAAG AGGTGATAGC TCTTCAGAGG ACTTGTGACT TTTGCTCAGA TGCTGAAGAA CTACAGTCTG CATTTGGCAG AAATGAAGAT GAATTTGGAT TAAATGAGGA TGCTGAAGAT TTGCCTCACC AAACAAAGT GAAACAACTG AGGAAAAATT TTCAGGAAAA AAGACAGTGG CTCTTGAAGT ATCAGTCACT TTTGAGAATG TTTCTTAGTT ACTGCATACT TCATGGATCC CATGGTGGGG GTCTTGCATC TGTAAGAATG GAATTGATTT TGCTTTTGCA AGAATCTCAG CAGGAAACAT CAGAACCACT ATTTCTTAGC CCTCTGTCAG AGCAAACCTC AGTGCCTCTC CTCTTTGCTT GT	60 120 180 240 300 360 420
(2) INFORMATION FOR SEQ ID NO:126:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 112 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:	
ACACAACTTG AATAGTAAAA TAGAAACTGA GCTGAAATTT CTAATTCACT TTCTAACCAT AGTAAGAATG ATATTTCCCC CCAGGGATCA CCAAATATTT ATAAAAATTT GT	60 112
(2) INFORMATION FOR SEQ ID NO:127:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 54 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	٠
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:	
ACCACGAAAC CACAAACAAG ATGGAAGCAT CAATCCACTT GCCAAGCACA GCAG	54
(2) INFORMATION FOR SEQ ID NO:128:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 323 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:	
ACCTCATTAG TAATTGTTTT GTTGTTTCAT TTTTTTCTAA TGTCTCCCCT CTACCAGCTC ACCTGAGATA ACAGAATGAA AATGGAAGGA CAGCCAGATT TCTCCTTTGC TCTCTGCTCA TTCTCTCTGA AGTCTAGGTT ACCCATTTTG GGGACCCATT ATAGGCAATA AACACAGTTC CCAAAGCATT TGGACAGTTT CTTGTTGTGT TTTAGAATGG TTTTCCTTTT TCTTAGCCTT TTCCTGCAAA AGGCTCACTC AGTCCCTTGC TTGCTCAGTG GACTGGGCTC CCCAGGGCCT AGGCTGCCTT CTTTTCCATG TCC	60 120 180 240 300 323
(2) INFORMATION FOR SEQ ID NO:129:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	·
(ii) MOLEGUED WARD - DV	

XISTOCIO: -WO 923741842 I

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

ACATACATGT GT	'GTATATTT	ጥጥል ል ልጥአጥሮል	COORDINATION) (TCTCTC)	_	
TCAAAAAAA G		TIMMINICA	CITITGIATE	ACTCTGACTT	TTTAGCATAC	60
TGAAAACACA CT	AACATAAT	TTNTGTGAAC	CATGATCAGA	TACAACCCAA	ልጥሮ እጥጥሮ እጥ ሮ	100
TAGCACATTC AT	רדכדכס דס ו	MAAACATACC	ma s ammers a		ATCATICATO	120
CATALANA	CICIONIA	MANAGATAGG	TGAGTTTCAT	TTCCTTCACG	TTGGCCAATG	180
GATAAACAAA GT						100
						192

- (2) INFORMATION FOR SEQ ID NO:130:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 362 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

Omcommen	
CTCTTTGACA	60
CCCCTGACAA	120
የሞልጥሞአርሞአ አ	180
TINITAGINA	
FAACTTTATA 2	240
AGCACTTTAT :	300
33365355	
AAAAGTAATG 3	360
3	362
	TTATTAGTAA TAACTTTATA AGCACTTTAT AAAAGTAATG

- (2) INFORMATION FOR SEQ ID NO:131:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 332 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

CTTTTTGAAA	GATCGTGTCC	ACTCCTGTGG	ACATCTTGTT	TTAATCCACT	TTCCCATGCA	
GTANGACTGG	TATGGTTGCA	GCTGTCCAGA	תמעע עעעעע	TOTALOGNOT	CAAAATGAGA	60
GTTCTCCCAC	OMMOGGGGGG	GCIGICCAGA	TAAAAACATT	TGAAGAGCTC	CAAAATGAGA	120
GITCICCCAG	GTTCGCCCTG	CTGCTCCAAG	TCTCAGCAGC	AGCCTCTTTT	AGGAGGCATC	180
TTCTGAACTA	GATTAAGGCA	GCTTGTAAAT	CTGATGTGAT	TTGGTTTATT	ልጥሮሮ አአርጥአ አ	240
CTTCCATCTG	TTATCACTGG	AGAAAGCCCA	CACTCCCCAN	CACUTATI	GATTGTGGGC	
ATANAAGGAT	TCCCTCinco	TORRAGECCA	GACICCCCAN	GACNGGTACG	GATTGTGGGC	300
MINIMAGGAI	TGGGTGAAGC	TGGCGTTGTG	GT			332

(2) INFORMATION FOR SEQ ID NO:132:

(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 322 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(II) MODECODE IIPE: CDMA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:	
A COMMUNICACIÓN MANDACIONAL DE LA COMPUNICACIÓN DE LA COMPUNICACIÓ	
ACTITIGCCA TITIGTATAT ATAAACAATC TIGGGACATT CICCIGAAAA CTAGGIGICC	60
AGTGGCTAAG AGAACTCGAT TTCAAGCAAT TCTGAAAGGA AAACCAGCAT GACACAGAAT CTCAAATTCC CAAACAGGGG CTCTGTGGGA AAAATGAGGG AGGACCTTTG TATCTCGGGT	120
TTTAGCAAGT TAAAATGAAN ATGACAGGAA AGGCTTATTT ATCAACAAAG AGAAGAGTTG	180
GGATGCTTCT AAAAAAAACT TTGGTAGAGA AAATAGGAAT GCTNAATCCT AGGGAAGCCT	240 300
GTAACAATCT ACAATTGGTC CA	300
•	322
(2) INFORMATION FOR SEQ ID NO:133:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 278 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:	
ACAAGCCTTC ACAAGTTTAA CTAAATTGGG ATTAATCTTT CTGTANTTAT CTGCATAATT	60
CTTGTTTTC TTTCCATCTG GCTCCTGGGT TGACAATTTG TGGAAACAAC TCTATTGCTA	120
CTATTTAAAA AAAATCACAA ATCTTTCCCT TTAAGCTATG TTNAATTCAA ACTATTCCTG	180
CTATTCCTGT TTTGTCAAAG AAATTATATT TTTCAAAATA TGTNTATTTG TTTGATGGGT	240
CCCACGAAAC ACTAATAAAA ACCACAGAGA CCAGCCTG	278
(2) INFORMATION FOR SEQ ID NO:134:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 121 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA

(A) ORGANISM: Homo sapiens

(vi) ORIGINAL SOURCE:

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:134:
------	----------	--------------	-----	----	---------

GTTTANAAAA CTTGTTTAGC TCCA	FAGAGG AAAGAATGTT	AAACTTTGTA	TTTTAAAACA	60
TGATTCTCTG AGGTTAAACT TGGT	TTTCAA ATGTTATTTT	TACTTGTATT	TTGCTTTTGG	120
T				121

- (2) INFORMATION FOR SEQ ID NO:135:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 350 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

		•				
ACTTANAACC	ATGCCTAGCA	CATCAGAATC	CCTCAAAGAA	CATCAGTATA	ATCCTATACC	60
ATANCAAGTG	GTGACTGGTT	AAGCGTGCGA	CAAAGGTCAG	CTGGCACATT	ACTTGTGTGC	120
AAACTTGATA	CTTTTGTTCT	AAGTAGGAAC	TAGTATACAG	TNCCTAGGAN	TGGTACTCCA	180
GGGTGCCCCC	CAACTCCTGC	AGCCGCTCCT	CTGTGCCAGN	CCCTGNAAGG	AACTTTCGCT	240
TTCCCAACCA	CAAGCCCTGG	GCCATGCTAC	CTGCAATTGG	CTGAACAAAC	GTTTGCTGAG	300
TICCCAAGGA	IGCAAAGCCT	GGTGCTCAAC	TCCTGGGGCG	TCAACTCAGT		350

- (2) INFORMATION FOR SEQ ID NO:136:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 399 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

TGTACCGTGA	AGACGACAGA	AGTTGCATGG	CAGGGACAGG	GCAGGGCCGA	GGCCAGGGTT	60
GCTGTGATTG	TATCCGAATA	NTCCTCGTGA	GAAAAGATAA	TGAGATGACG	TGAGCAGCCT	120
GCAGACTTGT	GTCTGCCTTC	AANAAGCCAG	ACAGGAAGGC	CCTGCCTGCC	TTGGCTCTGA	180
CCTGGCGGCC	AGCCAGCCAG	CCACAGGTGG	GCTTCTTCCT	TTTGTGGTGA	CAACNCCAAG	240
AAAACTGCAG	AGGCCCAGGG	TCAGGTGTNA	GTGGGTANGT	GACCATAAAA	CACCAGGTGC	300
TCCCAGGAAC	CCGGGCAAAG	GCCATCCCCA	CCTACAGCCA	GCATGCCCAC	TGGCGTGATG	360
GGTGCAGANG	GATGAAGCAG	CCAGNTGTTC	TGCTGTGGT			399

- (2) INFORMATION FOR SEQ ID NO:137:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 165 base pairs

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	V.,	
	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:	
	ACTGGTGTGG TNGGGGGTGA TGCTGGTGGT ANAAGTTGAN GTGACTTCAN GATGGTGTGT	60
	GGAGGAAGTG TGTGAACGTA GGGATGTAGA NGTTTTGGCC GTGCTAAATG AGCTTCGGGA	120
	TTGGCTGGTC CCACTGGTGG TCACTGTCAT TGGTGGGGTT CCTGT	165
	(2) THEORY FOR GRO TO NO 120	
	(2) INFORMATION FOR SEQ ID NO:138:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 338 base pairs	
•	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(b) Istoliott. Iffical	
	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:	
	ACTICA CITICA ATICOGA CAMITI CA CAACAAA TICAAAA CACAAAA CACAAAAA	
	ACTCACTGGA ATGCCACATT CACAACAGAA TCAGAGGTCT GTGAAAACAT TAATGGCTCC TTAACTTCTC CAGTAAGAAT CAGGGACTTG AAATGGAAAC GTTAACAGCC ACATGCCCAA	60
	TGCTGGGCAG TCTCCCATGC CTTCCACAGT GAAAGGGCTT GAGAAAAATC ACATCCAATG	120
	TCATGTGTTT CCAGCCACAC CAAAAGGTGC TTGGGGTGGA GGGCTGGGGG CATANANGGT	180
	CANGCCTCAG GAAGCCTCAA GTTCCATTCA GCTTTGCCAC TGTACATTCC CCATNTTTAA	240
	AAAAACTGAT GCCTTTTTTT\TTTTTTTTTTTTTTTTTTTTTTTTTTT	300 338
	ARABACIGAT GCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	330
	(2) INFORMATION FOR SEQ ID NO:139:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 382 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:	
	CCCAATCHIC CHITTHICACA TOTOCHURGO CHATACOCCA COCCA COCCA	
	GGGAATCTTG GTTTTTGGCA TCTGGTTTGC CTATAGCCGA GGCCACTTTG ACAGAACAAA GAAAGGGACT TCGAGTAAGA AGGTGATTTA CAGCCAGCCT AGTGCCCGAA GTGAAGGAGA	60
	ATTCAAACAG ACCTCGTCAT TCCTGGTGTG AGCCTGGTCG GCTCACCGCC TATCATCTGC	120
	ATTERMENT RELIEGIENT TECTOGIGIE AGECTOGIEG GETEACEGEE TATEATETEE	180

ATTTGCCTTA CTCAGGTGCT ACCGGACTCT GGCCCCTGAT GTCTGTAGTT TCACAGGATG	240
CCTTATTTGT CTTCTACACC CCACAGGGCC CCCTACTTCT TCGGATGTGT TTTTAATAAT	300
GTCAGCTATG TGCCCCATCC TCCTTCATGC CCTCCCTCCC TTTCCTACCA CTGCTGAGTG	360
GCCTGGAACT TGTTTAAAGT GT	382
(2) INFORMATION FOR SEQ ID NO:140:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 200 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLEGINE MUDE DNA	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:	
ACCAAANCTT CTTTCTGTTG TGTTNGATTT TACTATAGGG GTTTNGCTTN TTCTAAANAT	60
ACTITICATI TAACANCIII TGITAAGIGI CAGGCIGCAC TIIGCICCAI ANAATTAIIG	120
TTTTCACATT TCAACTTGTA TGTGTTTGTC TCTTANAGCA TTGGTGAAAT CACATATTTT	180
ATATTCAGCA TAAAGGAGAA	200
(2) INFORMATION FOR SEQ ID NO:141:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 335 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(6)	
(ii) MOLECULE TYPE: cDNA	-
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:	
TOTAL TOTAL CONTROL OF THE PROPERTY OF THE PRO	60
ACTITATITT CAAAACACTC ATATGITGCA AAAAACACAT AGAAAAATAA AGTITGGTGG	120
GGGTGCTGAC TAAACTTCAA GTCACAGACT TTTATGTGAC AGATTGGAGC AGGGTTTGTT	180
ATGCATGTAG AGAACCCAAA CTAATTTATT AAACAGGATA GAAACAGGCT GTCTGGGTGA AATGGTTCTG AGAACCATCC AATTCACCTG TCAGATGCTG ATANACTAGC TCTTCAGATG	240
TTTTTCTACC AGTTCAGAGA TNGGTTAATG ACTANTTCCA ATGGGGAAAA AGCAAGATGG	300
ATTCACAAAC CAAGTAATTT TAAACAAAGA CACTT	335
MITCHCHAMC CHAGINATII IMMCMAMON CACII	555

(2) INFORMATION FOR SEQ ID NO:142:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 459 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:	,
ACCAGGTTAA TATTGCCACA TATATCCTTT CCAATTGCGG GCTAAACAGA CGTGTATTTA GGGTTGTTTA AAGACAACCC AGCTTAATAT CAAGAGAAAT TGTGACCTTT CATGGAGTAT CTGATGGAGA AAACACTGAG TTTTGACAAA TCTTATTTTA TTCAGATAGC AGTCTGATCA CACATGGTCC AACAACACTC AAATAATAAA TCAAATATNA TCAGATGTTA AAGATTGGTC TTCAAACATC ATAGCCAATG ATGCCCCGCT TGCCTATAAT CTCTCCGACA TAAAACCACA TCAACACCTC AGTGGCCACC AAACCATTCA GCACAGCTTC CTTAACTGTG AGCTGTTTGA AGCTACCAGT CTGAGCACTA TTGACTATNT TTTTCANGCT CTGAATAGCT CTAGGGATCT CAGCANGGGT GGGAGGAACC AGCTCAACCT TGGCGTANT	60 120 180 240 300 360 420 459
(2) INFORMATION FOR SEQ ID NO:143:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 140 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:	
ACATTTCCTT CCACCAAGTC AGGACTCCTG GCTTCTGTGG GAGTTCTTAT CACCTGAGGG AAATCCAAAC AGTCTCTCCT AGAAAGGAAT AGTGTCACCA ACCCCACCCA TCTCCCTGAG ACCATCCGAC TTCCCTGTGT	60 120 140
(2) INFORMATION FOR SEQ ID NO:144:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:	
ACTTCAGTAA CAACATACAA TAACAACATT AAGTGTATAT TGCCATCTTT GTCATTTCT ATCTATACCA CTCTCCCTTC TGAAAACAAN AATCACTANC CAATCACTTA TACAAATTTG AGGCAATTAA TCCATATTTG TTTTCAATAA GGAAAAAAAG ATGT	60 120 164
(2) INFORMATION FOR SEQ ID NO:145:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 303 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:	
ACGTAGACCA TCCAACTTG TATTTGTAAT GGCAAACATC CAGNAGCAAT TCCTAAACAA ACTGGAGGGT ATTTATACCC AATTATCCCA TTCATTAACA TGCCCTCCTC CTCAGGCTAT GCAGGACAGC TATCATAAGT CGGCCCAGGC ATCCAGATAC TACCATTTGT ATAAACTTCA GTAGGGGAGT CCATCCAAGT GACAGGTCTA ATCAAAGGAG GAAATGGAAC ATAAGCCCAG TAGTAAAAATN TTGCTTAGCT GAAACAGCCA CAAAAGACTT ACCGCCGTGG TGATTACCAT CAA	60 120 180 240 300 301
(2) INFORMATION FOR SEQ ID NO:146:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 327 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	•
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:	
ACTGCAGCTC AATTAGAAGT GGTCTCTGAC TTTCATCANC TTCTCCCTGG GCTCCATGAC ACTGGCCTGG AGTGACTCAT TGCTCTGGTT GGTTGAGAGA GCTCCTTTGC CAACAGGCCT CCAAGTCAGG GCTGGGATTT GTTTCCTTTC CACATTCTAG CAACAATATG CTGGCCACTT CCTGAACAGG GAGGGTGGA GGAGCCAGCA TGGAACAAGC TGCCACTTTC TAAAGTAGCC AGACTTGCCC CTGGGCCTGT CACACCTACT GATGACCTTC TGTGCCTGCA GGATGGAATG CAGGGGTGAG CTGTGTGACT CTATGGT	60 120 180 240 300 327
2) INFORMATION FOR SEQ ID NO:147:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 173 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	

(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:147:
------	----------	--------------	-----	----	---------

ACATTGTTTT	TTTGAGATAA	AGCATTGANA	GAGCTCTCCT	TAACGTGACA	CAATGGAAGG	60
ACTGGAACAC	ATACCCACAT	CTTTGTTCTG	AGGGATAATT	TTCTGATAAA	GTCTTGCTGT	120
ATATTCAAGC	ACATATGTTA	TATATTATTC	AGTTCCATGT	TTATAGCCTA	GTT	173

- (2) INFORMATION FOR SEQ ID NO:148:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 477 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

ACAACCACTT	TATCTCATCG	AATTTTTAAC	CCAAACTCAC	TCACTGTGCC	TTTCTATCCT	60
ATGGGATATA	TTATTTGATG	CTCCATTTCA	TCACACATAT	ATGAATAATA	CACTCATACT	120
GCCCTACTAC	CTGCTGCAAT	AATCACATTC	CCTTCCTGTC	CTGACCCTGA	AGCCATTGGG	180
${\tt GTGGTCCTAG}$	TGGCCATCAG	TCCANGCCTG	CACCTTGAGC	CCTTGAGCTC	CATTGCTCAC	240
NCCANCCCAC	CTCACCGACC	CCATCCTCTT	ACACAGCTAC	CTCCTTGCTC	TCTAACCCCA	300
TAGATTATNT	CCAAATTCAG	TCAATTAAGT	TACTATTAAC	ACTCTACCCG	ACATGTCCAG	360
CACCACTGGT	AAGCCTTCTC	CAGCCAACAC	ACACACACAC	ACACNCACAC	ACACACATAT	420
CCAGGCACAG	GCTACCTCAT	CTTCACAATC	ACCCCTTTAA	TTACCATGCT	ATGGTGG	477

- (2) INFORMATION FOR SEQ ID NO:149:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 207 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

ACAGTTGTAT	TATAATATCA	AGAAATAAAC	TTGCAATGAG	AGCATTTAAG	AGGGAAGAAC	60
TAACGTATTT	TAGAGAGCCA	AGGAAGGTTT	CTGTGGGGAG	TGGGATGTAA	GGTGGGGCCT	120
GATGATAAAT	AAGAGTCAGC	CAGGTAAGTG	GGTGGTGTGG	TATGGGCACA	GTGAAGAACA	180
TTTCAGGCAG	AGGGAACAGC	AGTGAAA	•		•	207

- (2) INFORMATION FOR SEQ ID NO:150:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 111 base pairs

(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(2) Totologi. Tillear	
(ii) MOLECULE TYPE: cDNA	-•
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(wi) GROVENAGE	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:	
ACCTTGATTT CATTGCTGCT CTGATGGAAA CCCAACTATC TAATTTAGCT AAAACATGGG	
CACTTAAATG TGGTCAGTGT TTGGACTTGT TAACTANTGG CATCTTTGGG T	60
	111
(2) INFORMATION FOR SEQ ID NO:151:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 196 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(b) TOPOLOGI: Tinear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:	
AGCGCGGCAG GTCATATTGA ACATTCCAGA TACCTATCAT TACTCGATGC TGTTGATAAC	
AGCAAGATGG CTTTGAACTC AGGGTCACCA CCAGCTATTG GACCTTACTA TGAAAACCAT	60
GGATACCAAC CGGAAAACCC CTATCCCGCA CAGCCCACTG TGGTCCCCAC TGTCTACCAC	120
GTGCATCCGG CTCAGT	180 196
(2) TWOODWINES	130
(2) INFORMATION FOR SEQ ID NO:152:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 132 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:	
, Dayounch Description: SEQ ID NO:152:	
ACAGCACTTT CACATGTAAG AAGGGAGAAA TTCCTAAATG TAGGAGAAAG ATAACAGAAC	60
CITCCCCTTT TCATCTAGTG GTGGAAACCT GATGCTTTAT GTTGACAGGA ATAGAACCAG	60 120
GAGGGAGTTT GT	132
(2) INPODMATION FOR THE TRUE AND THE	

(i) SEQUENCE CHARACTERISTICS:

105

(A) LENGTH: 285 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:	
ACAANACCCA NGANAGGCCA CTGGCCGTGG TGTCATGGCC TCCAAACATG AAAGTGTCAG CTTCTGCTCT TATGTCCTCA TCTGACAACT CTTTACCATT TTTATCCTCG CTCAGCAGGA GCACATCAAT AAAGTCCAAA GTCTTGGACT TGGCCTTGGC TTGGAGGAAG TCATCAACAC CCTGGCTAGT GAGGGTGCGG CGCCGCTCCT GGATGACGC ATCTGTGAAG TCGTGCACCA GTCTGCAGGC CCTGTGGAAG CGCCGTCCAC ACGGAGTNAG GAATT	60 120 180 240 285
(2) INFORMATION FOR SEQ ID NO:154:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 333 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:	
ACCACAGTCC TGTTGGGCCA GGGCTTCATG ACCCTTTCTG TGAAAAGCCA TATTATCACC ACCCCAAATT TTTCCTTAAA TATCTTTAAC TGAAGGGGTC AGCCTCTTGA CTGCAAAGAC CCTAAGCCGG TTACACAGCT AACTCCCACT GGCCCTGATT TGTGAAATTG CTGCTGCCTG ATTGGCACAG GAGTCGAAGG TGTTCAGCTC CCCTCCTCCG TGGAACGAGA CTCTGATTTG AGTTTCACAA ATTCTCGGGC GACCTCGTCA TTGCTCCTCT GAAATAAAAT CCGGAGAATG GTCAGGCCTG TCTCATCCAT ATGGATCTTC CGG	120 180 240 300 333
(2) INFORMATION FOR SEQ ID NO:155:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 308 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

ACTGGAAATA ATAAAACCCA CATCACAGTG TTGTGTCAAA GATCATCAGG GCATGGATGG GAAAGTGCTT TGGGAACTGT AAAGTGCCTA ACACATGATC GATGATTTT GTTATAATAT TTGAATCACG GTGCATACAA ACTCTCCTGC CTGCTCCTCC TGGGCCCCAGCCCC ATCACAGCTC ACTGCTCTGT TCATCCAGGC CCAGCATGTA GTGGCTGATT CTTCTTGGCT GCTTTTAGCC TCCANAAGTT TCTCTGAAGC CAACCAAACC TCTANGTGTA AGGCATGCTG GCCCTGGT	120 180 240 300 308
(2) INFORMATION FOR SEQ ID NO:156:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 295 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:	
ACCTTGCTCG GTGCTTGGAA CATATTAGGA ACTCAAAATA TGAGATGATA ACAGTGCCTA TTATTGATTA CTGAGAGAAC TGTTAGACAT TTAGTTGAAG ATTTTCTACA CAGGAACTGA GAATAGGAGA TTATGTTTGG CCCTCATATT CTCTCCTATC CTCCTTGCCT CATTCTATGT CTAATATATT CTCAATCAAA TAAGGTTAGC ATAATCAGGA AATCGACCAA ATACCAATAT AAAACCAGAT GTCTATCCTT AAGATTTCA AATAGAAAAC AAATTAACAG ACTAT	60 120 180 240 295
(2) INFORMATION FOR SEQ ID NO:157:	٠
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 126 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:	
ACAAGTTTAA ATAGTGCTGT CACTGTGCAT GTGCTGAAAT GTGAAATCCA CCACATTTCT BAAGAGCAAA ACAAATTCTG TCATGTAATC TCTATCTTGG GTCGTGGGTA TATCTGTCCC CTTAGT	60 120 126
(2) INFORMATION FOR SEQ ID NO:158:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 442 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
ID: INFUNCT: LIBERT	

- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

ACCCACTGGT	CTTGGAAACA	CCCATCCTTA	ATACGATGAT	TTTTCTGTCG	TGTGAAAATG	60
AANCCAGCAG	GCTGCCCCTA	GTCAGTCCTT	CCTTCCAGAG	AAAAAGAGAT	TTGAGAAAGT	120
GCCTGGGTAA	TTCACCATTA	ATTTCCTCCC	CCAAACTCTC	TGAGTCTTCC	CTTAATATTT	180
CTGGTGGTTC	TGACCAAAGC	AGGTCATGGT	TTGTTGAGCA	TTTGGGATCC	CAGTGAAGTA	240
NATGTTTGTA	GCCTTGCATA	CTTAGCCCTT	CCCACGCACA	AACGGAGTGG	CAGAGTGGTG	300
CCAACCCTGT	TTTCCCAGTC	CACGTAGACA	GATTCACAGT	GCGGAATTCT	GGAAGCTGGA	360
NACAGACGGG	CTCTTTGCAG	AGCCGGGACT	CTGAGANGGA	CATGAGGGCC	TCTGCCTCTG	420
TGTTCATTCT	CTGATGTCCT	GT	•			442

- (2) INFORMATION FOR SEQ ID NO:159:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 498 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

ACTTCCAGGT	AACGTTGTTG	TTTCCGTTGA	GCCTGAACTG	ATGGGTGACG	TTGTAGGTTC	60
	ACTGAGGTTG					120
	ACTGTTGTTG					180
	GGANTTGAGC					240
TGCTGTGGTG	CCGGGANGTG	AANGTGTTGT	GTCACTTGAG	CTTGGCCAGC	TCTGGAAAGT	300
	TCCTGAAGGC					360
	CTGCTGTGGG					420
TCAGGTAANA	ATGTGGTTTC	AGTGTCCCTG	GGCNGCTGTG	GAAGGTTGTA	NATTGTCACC	480
AAGGGAATAA	GCTGTGGT					498

- (2) INFORMATION FOR SEQ ID NO:160:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 380 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEO ID NO:1	(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:160
--	------	----------	--------------	-----	----	--------

ACCTGCATCC	AGCTTCCCTG	CCAAACTCAC	AAGGAGACAT	CAACCTCTAG	ACAGGGAAAC	60
AGCTTCAGGA	TACTTCCAGG	AGACAGAGCC	ACCAGCAGCA	АААСАААТАТ	TCCCATGCCT	120
CCACCATCCC	******				TCCCATGCCT	120
GGAGCAIGGC	ATAGAGGAAG	CIGANAAATG	TGGGGTCTGA	GGAAGCCATT	TGAGTCTGGC	180
CACTAGACAT	CTCATCACCC	አ ርጥጥር ጥር ጥር አ	NON CAMPOOCO	G3.MG3.0	GATGCCTCTC	100
	CICAICAGCC	ACTIGIGIGA	AGAGATGCCC	CATGACCCCA	GATGCCTCTC	240
CCACCCTTAC	CTCCATCTCA	CACACTTGAG	CTTTCCACTC	TOTAL A A TOTAL	TAACATCCTG	
		G. C. C. T. GAG	CITICCACIC	IGIATAATTC	TAACATCCTG	300
GAGAAAAATG	GCAGTTTGAC	CGAACCTGTT	CACAACGGTA	GAGGCTGATT	TCTAACGAAA	360
COOCO	63366666			GAGGCIGATI	ICIAACGAAA	360
CIIGIAGAAT	GAAGCCTGGA					380
						200

(2) INFORMATION FOR SEQ ID NO:161:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 114 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:

ACTCCACATC CCCTCTGAGC AGGCGGTTGT CGTTCAAGGT GTATTTGGCC TTGCCTGTCA 60 CACTGTCCAC TGGCCCCTTA TCCACTTGGT GCTTAATCCC TCGAAAGAGC ATGT 114

- (2) INFORMATION FOR SEQ ID NO:162:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 177 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:

ACTITCTGAA TCGAATCAAA TGATACTTAG TGTAGITTTA ATATCCTCAT ATATATCAAA 60 GTTTTACTAC TCTGATAATT TTGTAAACCA GGTAACCAGA ACATCCAGTC ATACAGCTTT 120 TGGTGATATA TAACTTGGCA ATAACCCAGT CTGGTGATAC ATAAAACTAC TCACTGT 177

- (2) INFORMATION FOR SEQ ID NO:163:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 137 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(II) MODECULE TIPE: CDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:	
CATTTATACA GACAGGCGTG AAGACATTCA CGACAAAAAC GCGAAATTCT ATCCCGTGAC CANAGAAGGC AGCTACGGCT ACTCCTACAT CCTGGCGTGG GTGGCCTTCG CCTGCACCTT CATCAGCGGC ATGATGT	60 120 137
(2) INFORMATION FOR SEQ ID NO:164:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 469 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:	•
CTTATCACAA TGAATGTTCT CCTGGGCAGC GTTGTGATCT TTGCCACCTT CGTGACTTTA TGCAATGCAT CATGCTATTT CATACCTAAT GAGGGAGTTC CAGGAGATTC AACCAGGAAA TGCATGGATC TCAAAGGAAA CAAACACCCA ATAAACTCGG AGTGGCAGAC TGACAACTGT GAGACATGCA CTTGCTACGA AACAGAAATT TCATGTTGCA CCCTTGTTTC TACACCTGTG GGTTATGACA AAGACAACTG CCAAAGAATC TTCAAGAAGG AGGACTGCAA GTATATCGTG GTGGAGAAGA AGGACCCAAA AAAGACCTGT TCTGTCAGTG AATGGATAAT CTAATGTGCT TCTAGTAGGC ACAGGGCTCC CAGGCCAGGC CTCATTCTCC TCTGGCCTCT AATAGTCAAT GATTGTGTAG CCATGCCTAT CAGTAAAAAG ATNTTTGAGC AAACACTTT (2) INFORMATION FOR SEQ ID NO:165:	
(A) LENGTH: 195 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:	
ACAGTTTTT ATANATATCG ACATTGCCGG CACTTGTGTT CAGTTTCATA AAGCTGGTGG ATCCGCTGTC ATCCACTATT CCTTGGCTAG AGTAAAAATT ATTCTTATAG CCCATGTCCC TGCAGGCCGC CCGCCCGTAG TTCTCGTTCC AGTCGTCTTG GCACACAGGG TGCCAGGACT TCCTCTGAGA TGAGT	60 120 180 195

(2) INFORMATION FOR SEQ ID NO:166:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 383 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:	
ACATCTTAGT AGTGTGGCAC ATCAGGGGGC CATCAGGGTC ACAGTCACTC ATAGCCTCGC CGAGGGTCGGA GTCCACACCA CCGGTGTAGG TGTGCTCAAT CTTGGGCTTG GCGCCCACCT GTGGAAAGAG GATATGCTGC ACACACATGT CCACAAAGCC TGTGAACTCG CCAAAGAATT GTTGCAGACC AGCCTGAGCA AGGGGCGGAT GTTCAGCTTC AGCTCCTCCT TCGTCAGGTG GATGCCAACC TCGTCTANGG TCCGTGGGAA GCTGGTGTCC ACNTCACCTA CAACCTGGGC GANGATCTTA TAAAGAGGCT CCNAGATAAA CTCCACGAAA CTTCTCTGGG AGCTGCTAGT NGGGGGCCTTT TTGGTGAACT TTC	6 12 18 24 30 36 38
(2) INFORMATION FOR SEQ ID NO:167:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 247 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA	-
<pre>(vi) ORIGINAL SOURCE:</pre>	
CAGAGCCAG ACCTTGGCCA TAAATGAANC AGAGATTAAG ACTAAACCCC AAGTCGANAT GGAGCAGAA ACTGGAGCAA GAAGTGGGCC TGGGGCTGAA GTAGAGACCA AGGCCACTGC CATANCCATA CACAGAGCCA ACTCTCAGGC CAAGGCNATG GTTGGGGCAG ANCCAGAGAC CCAATCTGAN TCCAAAGTGG TGGCTGGAAC ACTGGTCATG ACANAGGCAG TGACTCTGAC GANGTC	60 120 180 240 247
2) INFORMATION FOR SEQ ID NO:168:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 273 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(ii) MOLECULE TYPE: cDNA

(D) TOPOLOGY: linear

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:

ACTTCTAAGT	TTTCTAGAAG	TGGAAGGATT	GTANTCATCC	TGAAAATGGG	TTTACTTCAA	60
AATCCCTCAN	CCTTGTTCTT	CACNACTGTC	TATACTGANA	GTGTCATGTT	TCCACAAAGG	120
GCTGACACCT	GAGCCTGNAT	TTTCACTCAT	CCCTGAGAAG	CCCTTTCCAG	TAGGGTGGGC	180
AATTCCCAAC	TTCCTTGCCA	CAAGCTTCCC	AGGCTTTCTC	CCCTGGAAAA	CTCCAGCTTG	240
AGTCCCAGAT	ACACTCATGG	GCTGCCCTGG	GCA			273

(2) INFORMATION FOR SEQ ID NO:169:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 431 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:

ACAGCCTTGG	CTTCCCCAAA	CTCCACAGTC	TCAGTGCAGA	AAGATCATCT	TCCAGCAGTC	60
AGCTCAGACC	AGGGTCAAAG	GATGTGACAT	CAACAGTTTC	TGGTTTCAGA	ACAGGTTCTA	120
CTACTGTCAA	ATGACCCCCC	ATACTTCCTC	AAAGGCTGTG	GTAAGTTTTG	CACAGGTGAG	180
GGCAGCAGAA	AGGGGGTANT	TACTGATGGA	CACCATCTTC	TCTGTATACT	CCACACTGAC	240
CTTGCCATGG	GCAAAGGCCC	CTACCACAAA	AACAATAGGA	TCACTGCTGG	GCACCAGCTC	300
ACGCACATCA	CTGACAACCG	GGATGGAAAA	AGAANTGCCA	ACTTTCATAC	ATCCAACTGG	360
AAAGTGATCT	GATACTGGAT	TCTTAATTAC	CTTCAAAAGC	TTCTGGGGGC	CATCAGCTGC	420
TCGAACACTG	A					431

(2) INFORMATION FOR SEQ ID NO:170:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 266 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

ACCTGTGGGC	TGGGCTGTTA	TGCCTGTGCC	GGCTGCTGAA	AGGGAGTTCA	GAGGTGGAGC	60
TCAAGGAGCT	CTGCAGGCAT	TTTGCCAANC	CTCTCCANAG	CANAGGGAGC	AACCTACACT	120
CCCCGCTAGA	AAGACACCAG	ATTGGAGTCC	TGGGAGGGG	AGTTGGGGTG	GGCATTTGAT	180
GTATACTTGT	CACCTGAATG	AANGAGCCAG	AGAGGAANGA	GACGAANATG	ANATTGGCCT	240
TCAAAGCTAG	GGGTCTGGCA	GGTGGA				266

(2) INFORMATION FOR SEQ ID NO:171:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1248 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:

GGG3 GGG3 3 3						
GGCAGCCAAA	TCATAAACGG	CGAGGACTGC	AGCCCGCACT	CGCAGCCCTG	GCAGGCGGCA	60
CTGGTCATGG	AAAACGAATT	GTTCTGCTCG	GGCGTCCTGG	TGCATCCGCA	GTGGGTGCTG	120
TCAGCCGCAC	ACTGTTTCCA	GAAGTGAGTG	CAGAGCTCCT	ACACCATCGG	GCTGGGCCTG	180
CACAGTCTTG	AGGCCGACCA	AGAGCCAGGG	AGCCAGATGG	TGGAGGCCAG	CCTCTCCGTA	240
CGGCACCCAG	AGTACAACAG	ACCCTTGCTC	GCTAACGACC	TCATGCTCAT	CAAGTTGGAC	300
GAATCCGTGT	CCGAGTCTGA	CACCATCCGG	AGCATCAGCA	TTGCTTCGCA	GTGCCCTACC	360
GCGGGGAACT	CTTGCCTCGT	TTCTGGCTGG	GGTCTGCTGG	CGAACGGCAG	AATGCCTACC	420
GTGCTGCAGT	GCGTGAACGT	GTCGGTGGTG	TCTGAGGAGG	TCTGCAGTAA	GCTCTATGAC	480
CCGCTGTACC	ACCCCAGCAT	GTTCTGCGCC	GGCGGAGGGC	AAGACCAGAA	GGACTCCTGC	540
AACGGTGACT	CTGGGGGGCC	CCTGATCTGC	AACGGGTACT	TGCAGGGCCT	TGTGTCTTTC	600
GGAAAAGCCC	CGTGTGGCCA	AGTTGGCGTG	CCAGGTGTCT	ACACCAACCT	CTGCAAATTC .	660
ACTGAGTGGA	TAGAGAAAAC	CGTCCAGGCC	AGTTAACTCT	GGGGACTGGG	AACCCATGAA	720
			ATTCAGGAAT			780
			CCCTCCTCCC			840
			CCAGACCCCC			900
CCAGGAGTCC	AGCCCCTCCT	CCCTCAGACC	CAGGAGTCCA	GACCCCCCAG	CCCCTCCTCC	960
CTCAGACCCA	GGGGTCCAGG	CCCCCAACCC	CTCCTCCCTC	AGACTCAGAG	GTCCAAGCCC	1020
CCAACCCNTC	ATTCCCCAGA	CCCAGAGGTC	CAGGTCCCAG	CCCCTCNTCC	CTCAGACCCA	1080
GCGGTCCAAT	GCCACCTAGA	CTNTCCCTGT	ACACAGTGCC	CCCTTGTGGC	ACGTTGACCC	1140
			CCCTTTCCCC			1200
AAGAGAAGNG	СААААААА	ААААААААА	АДАДАДАДА	AAAAAAA		1248
			* -			

- (2) INFORMATION FOR SEQ ID NO:172:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 159 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiers
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:

Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro 1 5 10 15

420

480

540

600

660

720

1	Leu	Leu	Ala	Asn 20	Asp	Leu	Met	Leu	11e 25	Lys	Leu	Asp	Glu	Ser 30	Val	Ser	
(Glu	Ser	Asp 35	Thr	Ile	Arg	Ser	Ile 40	Ser	Ile	Ala	Ser	Gln 45	Cys	Pro	Thr	
	Ala	Gly 50	Asn	Ser	Cys	Leu	Val 55	Ser	Gly	Trp	Gly	Leu 60	Leu	Ala	Asn	Gly	
	Arg 55	Met	Pro	Thr	Val	Leu 70	Gln	Cys	Val	Asn	Val 75	Ser	Val	Val	Ser	Glu 80	
C	3lu	Val	Cys	Ser	Lys 85	Leu	Tyr	Asp	Pro	Leu 90	Tyr	His	Pro	Ser	Met 95	Phe	
	Cys	Ala	Gly	Gly 100	Gly	Gln	Xaa	Gln	Xaa 105	Asp	Ser	Cys	Asn	Gly 110	Asp	Ser	
C	Sly	Gly	Pro 115	Leu	Ile	Cys	Asn	Gly 120	Tyr	Leu	Gln	Gly	Leu 125	Val	Ser	Phe	
G	Sly	Lys 130	Ala	Pro	Cys	Gly	Gln 135	Val	Gly	Val	Pro	Gly 140	Val	Tyr	Thr	Asn	
	eu .45	Cys	Lys	Phe	Thr	Glu 150	Trp	Ile	Glu	Lys	Thr 155	Val	Gln	Ala	Ser		
(2) IN	FOR	MATI	ON F	OR S	SEQ. I	D NC	:173	} :									
	(i)	(A) (B) (C)	ENCE LEN TYP STR	IGTH: PE: F LANDE	126 ucle	5 ba ic a S: s	se p cid ingl	airs			·			•			
(i	i)	MOLE	CULE	TYF	E: c	DNA				2							
(v	·i)		INAL ORG				sapi	ens									
(x	i)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	173:						•	
GGCAGC TCGGGC TACACC	GTC ATC	C TG G GG	GTGC CTGG	ATCC GCCT	GCA GCA	GTGG CAGT	GTG CTT	CTGT GAGG	CAGC CCGA	CG C	ACAC AGAG	TGTT CCAG	T CC G GA	AGAA GCCA	CTCC GATG	. ,	120 180
GTGGAG CTCATG																	240 300
ATTGCT																	360

GCGAACGGTG AGCTCACGGG TGTGTGTCTG CCCTCTTCAA GGAGGTCCTC TGCCCAGTCG

CGGGGGCTGA CCCAGAGCTC TGCGTCCCAG GCAGAATGCC TACCGTGCTG CAGTGCGTGA

ACGTGTCGGT GGTGTCTGAG GAGGTCTGCA GTAAGCTCTA TGACCCGCTG TACCACCCCA

GCATGTTCTG CGCCGGCGGA GGGCAAGACC AGAAGGACTC CTGCAACGGT GACTCTGGGG

GGCCCCTGAT CTGCAACGGG TACTTGCAGG GCCTTGTGTC TTTCGGAAAA GCCCCGTGTG

GCCAAGTTGG CGTGCCAGGT GTCTACACCA ACCTCTGCAA ATTCACTGAG TGGATAGAGA

AAACCGTCCA	GGCCAGTTAA	CTCTGGGGAC	TGGGAACCCA	TGAAATTGAC	CCCCAAATAC	780
ATCCTGCGGA	AGGAATTCAG	GAATATCTGT	TCCCAGCCCC	TCCTCCCTCA	GGCCCAGGAG	840
TCCAGGCCCC	CAGCCCCTCC	TCCCTCAAAC	CAAGGGTACA	GATCCCCAGC	CCCTCCTCCC	900
TCAGACCCAG	GAGTCCAGAC	CCCCCAGCCC	CTCCTCCCTC	AGACCCAGGA	GTCCAGCCCC	960
TCCTCCNTCA						1020
GAGGCCCCCA						1080
CAGACCCAGA	GGTNNAGGTC	CCAGCCCCTC	TTCCNTCAGA	CCCAGNGGTC	CAATGCCACC	1140
TAGATTTTCC	CTGNACACAG	TGCCCCCTTG	TGGNANGTTG	ACCCAACCTT	ACCAGTTGGT	1200
TTTTCATTTT	TNGTCCCTTT	CCCCTAGATC	CAGAAATAAA	GTTTAAGAGA	NGNGCAAAA	1260
AAAAA				o i i i i i i i i i i i i i i i i i i i	HOHOCAAAAA	1265
						1265

(2) INFORMATION FOR SEQ ID NO:174:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1459 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

					GGGCTGGGCC	60
TGCACAGTCT	TGAGGCCGAC	CAAGAGCCAG	GGAGCCAGAT	GGTGGAGGCC	AGCCTCTCCG	120
TACGGCACCC	AGAGTACAAC	AGACCCTTGC	TCGCTAACGA	CCTCATGCTC	ATCAAGTTGG	180
	GTCCGAGTCT					240
CCGCGGGGAA	CTCTTGCCTC	GTTTCTGGCT	GGGGTCTGCT	GGCGAACGGT	GAGCTCACGG	300
GTGTGTGTCT	GCCCTCTTCA	AGGAGGTCCT	CTGCCCAGTC	GCGGGGGCTG	ACCCAGAGCT	360
	GGCAGAATGC					420
NGAGGTCTGC	ANTAAGCTCT	ATGACCCGCT	GTACCACCCC	ANCATGTTCT	GCGCCGGCGG	480
	CAGAAGGACT					540
CAGGGAAGGG	TGGAGAAGGĠ	GGAGACAGAG	ACACACAGGG,	CCGCATGGCG	AGATGCAGAG	600
	ACACAGGGAG					660
	GAATAAAGAG					720
AGAAACACAC	ACACATAGAA	ATGCAGTTGA	CCTTCCAACA	GCATGGGGCC	TGAGGGCGGT	780
	CAATAGAAAA					840
ATAGCCTACT	GTTGACGGGG	AGCCTTACCA	ATAACATAAA	TAGTCGATTT	ATGCATACGT	900
	CATGATATAC				TACACAGTTC	960
GTCTGTGAAT	TTTTTTAAAT	TGTTGCAACT	CTCCTAAAAT	TTTTCTGATG	TGTTTATTGA	1020
AAAAATCCAA	GTATAAGTGG	ACTTGTGCAT	TCAAACCAGG	GTTGTTCAAG	GGTCAACTGT	1080
GTACCCAGAG	GGAAACAGTG	ACACAGATTC	ATAGAGGTGA	AACACGAAGA	GAAACAGGAA	1140
AAATCAAGAC	TCTACAAAGA	GGCTGGGCAG	GGTGGCTCAT	GCCTGTAATC	CCAGCACTTT	1200
GGGAGGCGAG	GCAGGCAGAT	CACTTGAGGT	AAGGAGTTCA	AGACCAGCCT	GGCCAAAATG	1260
GTGAAATCCT	GTCTGTACTA	AAAATACAAA	AGTTAGCTGG	ATATGGTGGC	AGGCGCCTGT	1320
	ACTTGGGAGG					1380
GAAGTGAGTT	GAGATCACAC	CACTATACTC	CAGCTGGGGC	AACAGAGTAA	GACTCTGTCT	1440
САААААААА				·		1459

(2) INFORMATION FOR SEQ ID NO:175:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1167 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

GCGCAGCCCT	GGCAGGCGGC	ACTGGTCATG	GAAAACGAAT	TGTTCTGCTC	GGGCGTCCTG	60
GTGCATCCGC	AGTGGGTGCT	GTCAGCCGCA	CACTGTTTCC	AGAACTCCTA	CACCATCGGG	120
CTGGGCCTGC	ACAGTCTTGA	GGCCGACCAA	GAGCCAGGGA	GCCAGATGGT	GGAGGCCAGC	180
CTCTCCGTAC	GGCACCCAGA	GTACAACAGA	CTCTTGCTCG	CTAACGACCT	CATGCTCATC	240
AAGTTGGACG	AATCCGTGTC	CGAGTCTGAC	ACCATCCGGA	GCATCAGCAT	TGCTTCGCAG	300
TGCCCTACCG	CGGGGAACTC	TTGCCTCGTN	TCTGGCTGGG	GTCTGCTGGC	GAACGGCAGA	360
ATGCCTACCG	TGCTGCACTG	CGTGAACGTG	TCGGTGGTGT	CTGAGGANGT	CTGCAGTAAG	420
CTCTATGACC	CGCTGTACCA	CCCCAGCATG	TTCTGCGCCG	GCGGAGGGCA	AGACCAGAAG	480
GACTCCTGCA	ACGGTGACTC	TGGGGGGCCC	CTGATCTGCA	ACGGGTACTT	GCAGGGCCTT	540
GTGTCTTTCG	GAAAAGCCCC	GTGTGGCCAA	CTTGGCGTGC	CAGGTGTCTA	CACCAACCTC	600
TGCAAATTCA	CTGAGTGGAT	AGAGAAAACC	GTCCAGNCCA	GTTAACTCTG	GGGACTGGGA	660
ACCCATGAAA	TTGACCCCCA	AATACATCCT	GCGGAANGAA	TTCAGGAATA	TCTGTTCCCA	720
GCCCCTCCTC	CCTCAGGCCC	AGGAGTCCAG	GCCCCCAGCC	CCTCCTCCCT	CAAACCAAGG	780
GTACAGATCC	CCAGCCCCTC	CTCCCTCAGA	CCCAGGAGTC	CAGACCCCCC	AGCCCCTCNT	840
CCNTCAGACC	CAGGAGTCCA	GCCCCTCCTC	CNTCAGACGC	AGGAGTCCAG	ACCCCCCAGC	900
CCNTCNTCCG	TCAGACCCAG	GGGTGCAGGC	CCCCAACCCC	TCNTCCNTCA	GAGTCAGAGG	960
TCCAAGCCCC	CAACCCCTCG	TTCCCCAGAC	CCAGAGGTNC	AGGTCCCAGC	CCCTCCTCCC	1020
TCAGACCCAG	CGGTCCAATG	CCACCTAGAN	TNTCCCTGTA	CACAGTGCCC	CCTTGTGGCA	1080
NGTTGACCCA	ACCTTACCAG	TTGGTTTTTC	ATTTTTTGTC	CCTTTCCCCT	AGATCCAGAA	1140
ATAAAGTNTA	AGAGAAGCGC	AAAAAA				1167

- (2) INFORMATION FOR SEQ ID NO:176:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 205 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp 1 5 10 15

Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu 20 25 30

Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val

		35					40					45			
Glu	Ala 50	Ser	Leu	Ser	Val	Arg 55	His	Pro	Glu	Tyr	Asn 60	Arg	Leu	Leu	Le
Ala 65	Asn	Asp	Leu	Met	Leu 70	Ile	Lys	Leu	Asp	Glu 75	Ser	Val	Ser	Glu	Se 80
Asp	Thr	Ile	Arg	Ser 85	Ile	Ser	Ile	Ala	Ser 90	Gln	Cys	Pro	Thr	Ala 95	Gl
Asn	Ser	Cys	Leu 100	Val	Ser	Gly	Trp	Gly 105	Leu	Leu	Ala	Asn	Gly 110	Arg	Me
Pro	Thr	Val 115	Leu	His	Cys	Val	Asn 120	Val	Ser	Val	Val	Ser 125	Glu	Xaa	Va:
Cys	Ser 130	Lys	Leu	Tyr	Asp	Pro 135	Leu	Tyr	His	Pro	Ser 140	Met	Phe	Cys	Ala
Gly 145	Gly	Gly	Gln	Asp	Gln 150	Lys	Asp	Ser	Cys	Asn 155	Gly	Asp	Ser	Gly	Gl _y 160
Pro	Leu	Ile	Cys	Asn 165	Gly,	Tyr	Leu	Gln	Gly 170	Leu	Val	Ser	Phe	Gly 175	Lys
Ala	Pro	Cys	Gly 180	Gln	Leu	Gly	Val	Pro 185	Gly	Val	Tyr	Thr	Asn 190	Leu	Cys
Lys	Phe	Thr 195	Glu	Trp	Ile	Glu	Lys	Thr	Val	Gln	Xaa	Ser			

(2) INFORMATION FOR SEQ ID NO:177:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH; 1119 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

GCGCACTCGC	AGCCCTGGCA	GGCGGCACTG	GTCATGGAAA	ACGAATTGTT	CTGCTCGGGC	60
GTCCTGGTGC	ATCCGCAGTG	GGTGCTGTCA	GCCGCACACT	GTTTCCAGAA	CTCCTACACC	120
ATCGGGCTGG	GCCTGCACAG	TCTTGAGGCC	GAĆCAAGAGC	CAGGGAGCCA	GATGGTGGAG	180
GCCAGCCTCT	CCGTACGGCA	CCCAGAGTAC	AACAGACCCT	TGCTCGCTAA	CGACCTCATG	240
CTCATCAAGT	TGGACGAATC	CGTGTCCGAG	TCTGACACCA	TCCGGAGCAT	CAGCATTGCT	300
TCGCAGTGCC	CTACCGCGGG	GAACTCTTGC	CTCGTTTCTG	GCTGGGGTCT	GCTGGCGAAC	360
GATGCTGTGA	TTGCCATCCA	GTCCCAGACT	GTGGGAGGCT	${\tt GGGAGTGTGA}$	GAAGCTTTCC	420
CAACCCTGGC	AGGGTTGTAC	CATTTCGGCA	ACTTCCAGTG	CAAGGACGTC	CTGCTGCATC	480

CTCACTGGGT	GCTCACTACT	GCTCACTGCA	TCACCCGGAA	CACTGTGATC	AACTAGCCAG	540
CACCATAGTT	CTCCGAAGTC	AGACTATCAT	GATTACTGTG	TTGACTGTGC	TGTCTATTGT	600
ACTAACCATG	CCGATGTTTA	GGTGAAATTA	GCGTCACTTG	GCCTCAACCA	TCTTGGTATC	660
CAGTTATCCT	CACTGAATTG	AGATTTCCTG	CTTCAGTGTC	AGCCATTCCC	ACATAATTTC	720
TGACCTACAG	AGGTGAGGGA	TCATATAGCT	CTTCAAGGAT	GCTGGTACTC	CCCTCACAAA	- 780
TTCATTTCTC	CTGTTGTAGT	GAAAGGTGCG	CCCTCTGGAG	CCTCCCAGGG	TGGGTGTGCA	840
GGTCACAATG	ATGAATGTAT	GATCGTGTTC	CCATTACCCA	AAGCCTTTAA	ATCCCTCATG	900
CTCAGTACAC	CAGGGCAGGT	CTAGCATTTC	TTCATTTAGT	GTATGCTGTC	CATTCATGCA	960
ACCACCTCAG	GACTCCTGGA	TTCTCTGCCT	AGTTGAGCTC	CTGCATGCTG	CCTCCTTGGG	1020
GAGGTGAGGG	AGAGGGCCCA	${\tt TGGTTCAATG}$	GGATCTGTGC	AGTTGTAACA	CATTAGGTGC	1080
TTAATAAACA	${\tt GAAGCTGTGA}$	TGTTAAAAAA	АААААААА		•	1119

(2) INFORMATION FOR SEQ ID NO:178:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 164 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp 1 5 10 15

Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu 20 25 30

Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val

Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu 50 55 60

Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser 65 70 75 80

Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly 85 90 95

Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Asp Ala Val
100 105 110

Ile Ala Ile Gln Ser Xaa Thr Val Gly Gly Trp Glu Cys Glu Lys Leu 115 120 125

Ser Gln Pro Trp Gln Gly Cys Thr Ile Ser Ala Thr Ser Ser Ala Arg 130 135 140

Thr Ser Cys Cys Ile Leu Thr Gly Cys Ser Leu Leu Leu Thr Ala Ser

145	150		155	1	.60
Pro Gl	y Thr Leu				
(2) INFORMA	TION FOR SEQ ID NO:17	9:		•	
(A (B (C	SEQUENCE CHARACTERIST LENGTH: 250 base pa TYPE: nucleic acid STRANDEDNESS: singl TOPOLOGY: linear	irs			
(xi)	SEQUENCE DESCRIPTION	: SEQ ID NO	:179:		
GCAGCTGCCC GCCAGGCACT AAGTTCATAT AAAAAAAAAA	TTGGTGTTTC AAGCCCCTGGCCGGCGGGGGGGGGGGGGG	C TCGGAGCACO F CCCTTTGCTO C GAATAAAGGT	C CTTGCCCGGC C CCGGCAAGCG C CCCATGCTCC	TGTGATTGCT	60 120 180 240 250
(2) INFORMATION FOR SEC) ID NO:180:	:		
(A) (B) (C)	EQUENCE CHARACTERIST: LENGTH: 202 base partype: nucleic acid STRANDEDNESS: single TOPOLOGY: linear	irs			
			•		
(xi)	SEQUENCE DESCRIPTION:	SEQ ID NO:	180:		
TCACCCAGAC CTCTGCTACT TGATTTAAAA	TGTGGTGGAA TTCCATTGTG CCCGCCCCTG CCCGTGCCCC CGGAAACTAT TTTTATGTAA AAAAAAAAAAA) INFORMATION FOR SEQ	C ACGCTGCTGC TTAATGTATG	TAACGACAGT	ΔΤCΔΤCCTTΔ	60 120 180 202
(A) (B) (C)	EQUENCE CHARACTERISTI LENGTH: 558 base pai TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear	rs			
(xi) :	SEQUENCE DESCRIPTION:	SEQ ID NO:	181:		
AATGTTTAGG (TTATTCCTCT (GGTAGTGTGA (AAATTATGCA (CTACTCTGTT (NAGGTTTKKG AGACAMCCCK CAGTGCTAGT AATTTCYTCG TTCTTCTGAA GATTAATGAA TAGTATAAGT ATCTAAGTGC AGTTAGTAAT TACTCAGGGT CCTTGGCTAG AAAAAATTAT	TÄATGATTCT GTTGAAAATT AGATGAAAGT TAACTAAATT AAACAGGACT	GTTATTACTT GAGGTGGATA GTGTTATATA ACTTTAATAT TTGTTAGTTT	TCCTNATTCT AATACAAAA TATCCATTCA GCTGTTGAAC GGGAAGCCAA	60 120 180 240 300 360
ATTGATAATA	TTCTATGTTC TAAAAGTTGG	GCTATACATA	ΑΑΤΤΑΤΤΑΔΟ	A A TOCCAM	430

119	
TTTTATTCCC AGGAATATGG KGTTCATTTT ATGAATATTA CSCRGGATAG AWGTWTGAGT AAAAYCAGTT TTGGTWAATA YGTWAATATG TCMTAAATAA ACAAKGCTTT GACTTATTTCCAAAAAAAAA AAAAAAAA	2 48 2 54 55
(2) INFORMATION FOR SEQ ID NO:182:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 479 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:	
ACAGGGWTTK GRGGATGCTA AGSCCCCRGA RWTYGTTTGA TCCAACCCTG GCTTWTTTTC AGAGGGGAAA ATGGGGCCTA GAAGTTACAG MSCATYTAGY TGGTGCGMTG GCACCCCTGG CSTCACACAG ASTCCCGAGT AGCTGGGACT ACAGGCACAC AGTCACTGAA GCAGGCCCTG TTWGCAATTC ACGTTGCCAC CTCCAACTTA AACATTCTTC ATATGTGATG TCCTTAGTCA CTAAGGTTAA ACTTTCCAC CCAGAAAAGG CAACTTAGAT AAAATCTTAG AGTACTTTCA TACTMTTCTA AGTCCTCTTC CAGCCTCACT KKGAGTCCTM CYTGGGGGTT GATAGGAANT NTCTCTTGGC TTTCTCAATA AARTCTCTAT YCATCTCATG TTTAATTTGG TACGCATARA AWTGSTGARA AAATTAAAAT GTTCTGGTTY MACTTTAAAA ARAAAAAAA AAAAAAAAA	120 180 240 300 360
(2) INFORMATION FOR SEQ ID NO:183: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 384 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:	
AGGCGGGAGC AGAAGCTAAA GCCAAAGCCC AAGAAGAGTG GCAGTGCCAG CACTGGTGCC AGTACCAGTA CCAATAACAG TGCCAGTGCC AGTGCCAGCA CCAGTGGTGG CTTCAGTGCT GGTGCCAGCCC TGCACCATTT GGGCTCTTCG CTGGCCTTGG TGGAGCTGGT GCCAGCACCA GTGGCAGCTC TGGTGCCTGT GGTTCTCCT ACAAGTGAGA TTTTAGATAT TGTTAATCCT GCCAGTCTT CTCTTCAAGC CAGGGTGCAT CCTCAGAAAC CTACTCAACA CAGCACTCTA GGCAGCCACT ATCAATCAAT TGAAGTTGAC ACTCTGCATT ARATCTATTT GCCATTTCAA	60 120 180 240 300 360 384
(2) INFORMATION FOR SEQ ID NO:184:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 496 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:	

AGGGAGATCG	AGTCTATACG	CTGAAGAAAT	ምምር እ ሮሮሮሮ አ ም	CCCACACAC	ACCTGCTCAG	
CCCATCCTCC	TCCCTTCTC	CCLCLCCC	IIGACCCGAI	GGGACAACAG	ACCTGCTCAG	120
	reagricies	CCAGATGACA	AATACTCTSG	ACACCGAATC	ACCATCAAGA	180
AACGCTTCAA	GGTGCTCATG	ACCCAGCAAC	CGCGCCCTGT	CCTCTGAGGG	TCCCTTAAAC	240
TGATGTCTTT	TCTGCCACCT	GTTACCCCTC	GGAGACTCCG	TAACCAAACT	CTTCGGACTG	
TGAGCCCTGA	ጥር ር ር ር ጥጥጥ ነው ነው	CCACCCAMAC	TOTAL COO	IAACCAAACT	CTTCGGACTG	300
A MORA MORAMA	7000111110	CCAGCCATAC	TCTTTGGCAT	CCAGTCTCTC	GTGGCGATTG	360
ATTATGCTTG	TGTGAGGCAA	TCATGGTGGC	ATCACCCATA	AAGGGAACAC	ATTTGACTTT	420
TTTTTCTCAT	ATTTTAAATT	ACTACMAGAW	ТАТТИМАСАИ	Myyyucyman	GAAAAACTST	
TAAAAAAAAA	ΔΔΔΔΔΔ		21122111210711	MANATOWALL	GAAAAACTST	480
	THE PERSON NAMED IN COLUMN 1					496

(2) INFORMATION FOR SEQ ID NO:185:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 384 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

(2) INFORMATION FOR SEQ ID NO:186:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 577 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

GAGTTAGCTC CTCCACAACC	TTC A TC A CCT	00m0m0a2 ***			
GAGTTAGCTC CTCCACAACC	TIGATGAGGT	CGTCTGCAGT	GGCCTCTCGC	TTCATACCGC	60
TNCCATCGTC ATACTGTAGG	TTTGCCACCA	CYTCCTGGCA	TOTTGGGGGG	CONTRARMO	100
CCAGGAACT CTCAATCAAC	Mar agamaar		1011000000	GCNIAAIAII	120
CCAGGAAACT CTCAATCAAG	TCACCGTCGA	TGAAACCTGT	GGGCTGGTTC	TGTCTTCCGC	180
TCGGTGTGAA AGGATCTCCC	AGAAGGAGTG	CTCGATCTTC	CCCA CA CIDION	MONMON COMM	
ATTCACTCCA TOCOTCCATO	227222222		CCCACACITI	TGATGACTTT	240
ATTGAGTCGA TTCTGCATGT	CCAGCAGGAG	GTTGTACCAG	CTCTCTGACA	GTGAGGTCAC	300
CAGCCCTATC ATGCCGTTGA	MCGTGCCGAA	GARCACCGAG	CCTTCTCTCT		
CTCACCCACA MECEGGATER		OMICACCOAG	CCITGIGIGG	GGGKKGAAGT	360
CTCACCCAGA TTCTGCATTA	CCAGAGAGCC	GTGGCAAAAG	ACATTGACAA	ACTCGCCCAG	420
GTGGAAAAAG AMCAMCTCCT (CCARCTCCTN	CCCCCTCCTC	COCHOOSE		
TCCTTTTTC3 C 3 C3		GCCGCICCIC	GTCMGTTGGT	GGCAGCGCTW	480
TCCTTTTGAC ACACAAACAA	GTTAAAGGCA	TTTTCAGCCC	CCAGAAANTT	GTCATCATCC	540
AAGATNTCGC ACAGCACTNA	TCCAGTTCCC	מת ג גיייים ג			240
in the state of th	ICCAGIIGGG	ATTMAAT			577

(2) INFORMATION FOR SEQ ID NO:187:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 534 base pairs
- (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

AACATCTTCC	TGTATAATGC	TGTGTAATAT	CGATCCGATN	TTGTCTGSTG	AGAATYCATW	60
ACTKGGAAAA	GMAACATTAA	AGCCTGGACA	CTGGTATTAA	AATTCACAAT	ATGCAACACT	120
TTAAACAGTG	TGTCAATCTG	CTCCCYYNAC	TTTGTCATCA	CCAGTCTGGG	AAKAAGGGTA	180
TGCCCTATTC	ACACCTGTTA	AAAGGGCGCT	AAGCATTTTT	GATTCAACAT	CTTTTTTTT	240
GACACAAGTC	CGAAAAAAGC	AAAAGTAAAC	AGTTATYAAT	TTGTTAGCCA	ATTCACTTTC	300
TTCATGGGAC	AGAGCCATYT	GATTTAAAAA	GCAAATTGCA	TAATATTGAG	CTTYGGGAGC	360
TGATATTTGA	GCGGAAGAGT	${\bf AGCCTTTCTA}$	CTTCACCAGA	CACAACTCCC	TTTCATATTG	420
GGATGTTNAC	${\tt NAAAGTWATG}$	TCTCTWACAG	ATGGGATGCT	TTTGTGGCAA	TTCTGTTCTG	480
AGGATCTCCC	AGTTTATTTA	CCACTTGCAC	AAGAAGGCGT	TTTCTTCCTC	AGGC	534

(2) INFORMATION FOR SEQ ID NO:188:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 761 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:

AGAAACCAGT	ATCTCTNAAA	ACAACCTCTC	ATACCTTGTG	GACCTAATTT	TGTGTGCGTG	60
TGTGTGTGCG	CGCATATTAT	ATAGACAGGC	ACATCTTTTT	TACTTTTGTA	AAAGCTTATG	120
CCTCTTTGGT	ATCTATATCT	GTGAAAGTTT	${\tt TAATGATCTG}$	CCATAATGTC	TTGGGGACCT	180
TTGTCTTCTG	TGTAAATGGT	ACTAGAGAAA	ACACCTATNT	TATGAGTCAA	TCTAGTTNGT	240
TTTATTCGAC	ATGAAGGAAA	TTTCCAGATN	ACAACACTNA	CAAACTCTCC	CTKGACKARG	300
GGGGACAAAG	AAAAGCAAAA	CTGAMCATAA	RAAACAATWA	CCTGGTGAGA	ARTTGCATAA	360
ACAGAAATWR	GGTAGTATAT	TGAARNACAG	CATCATTAAA	${\tt RMGTTWTKTT}$	WTTCTCCCTT	420
			TAATGCCAAG			480
			GTGGTGGGCC			540
CTGACTGATA	AAGCTGTACA	AATAAGCAGT	GTGCCTAACA	AGCAACACAG	TAATGTTGAC	600
ATGCTTAATT	CACAAATGCT	AATTTCATTA	TAAATGTTTG	CTAAAATACA	CTTTGAACTA	660
TTTTTCTGTN	TTCCCAGAGC	TGAGATNTTA	GATTTTATGT	AGTATNAAGT	GAAAAANTAC	720
GAAAATAATA	ACATTGAAGA	AAANANAAA	AAAAAAAAA	A		761

(2) INFORMATION FOR SEQ ID NO:189:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 482 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

TTTTTTTTT	TTTGCCGATN	CTACTATTTT	ATTGCAGGAN	GTGGGGGTGT	ATGCACCGCA	60
CACCGGGGCT	ATNAGAAGCA	AGAAGGAAGG	AGGGAGGCA	CAGCCCCTTG	CTGAGCAACA	120
AAGCCGCCTG	CTGCCTTCTC	TGTCTGTCTC	CTGGTGCAGG	CACATGGGGA	GACCTTCCCC	180

AAGGCAGGGG	CCACCAGTCC	AGGGGTGGGA	ATACAGGGGG	TGGGANGTGT	GCATAAGAAG	240
TGATAGGCAC	AGGCCACCCG	GTACAGACCC	CTCGGCTCCT	GACAGGTNGA	TTTCGACCAG	300
${\tt GTCATTGTGC}$	CCTGCCCAGG	CACAGCGTAN	ATCTGGAAAA	GACAGAATGC	TTTCCTTTTC	360
AAATTTGGCT	NGTCATNGAA	NGGGCANTTT	TCCAANTTNG	GCTNGGTCTT	GGTACNCTTG	420
GTTCGGCCCA	GCTCCNCGTC	CAAAAANTAT	TCACCCNNCT	CCNAATTGCT	TGCNGGNCCC	480
CC						482

(2) INFORMATION FOR SEQ ID NO:190:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 471 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

TTTTTTTTT	TTTTAAAACA	GTTTTTCACA	ACAAAATTTA	TTAGAAGAAT	AGTGGTTTTG	60
AAAACTCTCG	CATCCAGTGA	GAACTACCAT	ACACCACATT	ACAGCTNGGA	ATGTNCTCCA	120
AATGTCTGGT	CAAATGATAC	AATGGAACCA	TTCAATCTTA	CACATGCACG	AAAGAACAAG	180
CGCTTTTGAC	ATACAATGCA	СААААААА	AGGGGGGGG	GACCACATGG	ATTAAAATTT	240
TAAGTACTCA	TCACATACAT	TAAGACACAG	TTCTAGTCCA	GTCNAAAATC	AGAACTGCNT	300
TGAAAAATTT	CATGTATGCA	ATCCAACCAA	AGAACTTNAT	TGGTGATCAT	GANTNCTCTA	360
CTACATCNAC	CTTGATCATT	GCCAGGAACN	AAAAGTTNAA	ANCACNCNGT	ACAAAAANAA	420
TCTGTAATTN	ANTTCAACCT	CCGTACNGAA	AAATNTTNNT	TATACACTCC	C	471

(2) INFORMATION FOR SEQ ID NO:191:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

GAGGGATTGA	AGGTCTGTTC	TASTGTCGGM	CTGTTCAGCC	ACCAACTCTA	ACAAGTTGCT	60
GTCTTCCACT	CACTGTCTGT	${\bf A}{\bf A}{\bf G}{\bf C}{\bf T}{\bf T}{\bf T}{\bf T}{\bf T}{\bf A}$	ACCCAGACWG	TATCTTCATA	AATAGAACAA	120
ATTCTTCACC	AGTCACATCT	TCTAGGACCT	TTTTGGATTC	AGTTAGTATA	AGCTCTTCCA	180
CTTCCTTTGT	TAAGACTTCA	TCTGGTAAAG	TCTTAAGTTT	TGTAGAAAGG	AATTYAATTG	240
CTCGTTCTCT	AACAATGTCC	TCTCCTTGAA	GTATTTGGCT	GAACAACCCA	CCTAAAGTCC	300
CTTTGTGCAT	CCATTTTAAA	TATACTTAAT	${\tt AGGGCATTGK}$	TNCACTAGGT	TAAATTCTGC	360
AAGAGTCATC	TGTCTGCAAA	AGTTGCGTTA	GTATATCTGC	CA		402

(2) INFORMATION FOR SEQ ID NO:192:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

GAGCTCGGAT	CCAATAATCT	TTGTCTGAGG	GCAGCACACA	TATNCAGTGC	CATGGNAACT	60
GGTCTACCCC	ACATGGGAGC	AGCATGCCGT	AGNTATATAA	GGTCATTCCC	TGAGTCAGAC	120
ATGCYTYTTT	GAYTACCGTG	TGCCAAGTGC	TGGTGATTCT	YAACACACYT	CCATCCCGYT	180
CTTTTGTGGA	AAAACTGGCA	CTTKTCTGGA	ACTAGCARGA	CATCACTTAC	AAATTCACCC	240
ACGAGACACT	TGAAAGGTGT	AACAAAGCGA	YTCTTGCATT	GCTTTTTGTC	CCTCCGGCAC	300
CAGTTGTCAA	TACTAACCCG	CTGGTTTGCC	TCCATCACAT	TTGTGATCTG	TAGCTCTGGA	360
TACATCTCCT	GACAGTACTG	AAGAACTTCT	TCTTTTGTTT	CAAAAGCARC	TCTTGGTGCC	420
TGTTGGATCA	GGTTCCCATT	TCCCAGTCYG	AATGTTCACA	TGGCATATTT	WACTTCCCAC	480
AAAACATTGC	GATTTGAGGC	TCAGCAACAG	CAAATCCTGT	TCCGGCATTG	GCTGCAAGAG	540
CCTCGATGTA	GCCGGCCAGC	GCCAAGGCAG	GCGCCGTGAG	CCCCACCAGC	AGCAGAAGCA	600
G						601

(2) INFORMATION FOR SEQ ID NO:193:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 608 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:

•	ATACAGCCCA	NATCCCACCA	CGAAGATGCG	CTTGTTGACT	GAGAACCTGA	TGCGGTCACT	60
	GGTCCCGCTG	TAGCCCCAGC	GACTCTCCAC	CTGCTGGAAG	CGGTTGATGC	TGCACTCYTT	120
	CCCAACGCAG	GCAGMAGCGG	GSCCGGTCAA	TGAACTCCAY	TCGTGGCTTG	GGGTKGACGG	180
	TKAAGTGCAG	GAAGAGGCTG	ACCACCTCGC	GGTCCACCAG	GATGCCCGAC	TGTGCGGGAC	240
	CTGCAGCGAA	ACTCCTCGAT	GGTCATGAGC	GGGAAGCGAA	TGAGGCCCAG	GGCCTTGCCC	300
	AGAACCTTCC	GCCTGTTCTC	TGGCGTCACC	TGCAGCTGCT	GCCGCTGACA	CTCGGCCTCG	360
	GACCAGCGGA	CAAACGGCRT	TGAACAGCCG	CACCTCACGG	ATGCCCAGTG	TGTCGCGCTC	420
	CAGGAMMGSC	ACCAGCGTGT	CCAGGTCAAT	GTCGGTGAAG	CCCTCCGCGG	GTRATGGCGT	480
	CTGCAGTGTT	TTTGTCGATG	TTCTCCAGGC	ACAGGCTGGC	CAGCTGCGGT	TCATCGAAGA	540
	GTCGCGCCTG	CGTGAGCAGC	ATGAAGGCGT	TGTCGGCTCG	CAGTTCTTCT	TCAGGAACTC	600
	CACGCAAT			.4			608
		,					

(2) INFORMATION FOR SEQ ID NO:194:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 392 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

GAACGGCTGG	ACCTTGCCTC	GCATTGTGCT	TGCTGGCAGG	GAATACCTTG	GCAAGCAGYT	60
CCAGTCCGAG	CAGCCCCAGA	CCGCTGCCGC	CCGAAGCTAA	GCCTGCCTCT	GGCCTTCCCC	120
TCCGCCTCAA	TGCAGAACCA	GTAGTGGGAG	CACTGTGTTT	AGAGTTAAGA	GTGAACACTG	180
TTTGATTTTA	CTTGGGAATT	TCCTCTGTTA	TATAGCTTTT	CCCAATGCTA	ATTTCCAAAC	240
AACAACAACA	AAATAACATG	TTTGCCTGTT	AAGTTGTATA	AAAGTAGGTG	ATTCTGTATT	300
TAAAGAAAAT	ATTACTGTTA	CATATACTGC	TTGCAATTTC	TGTATTTATT	GKTNCTSTGG	360
AAATAAATAT	AGTTATTAAA	GGTTGTCANT	CC			3 9 Ż

(2) INFORMATION FOR SEQ ID NO:195:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 502 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

CCSTTKGAGG GGTKAGGKY	C CACETOCCA	OTTO C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
COCACCECC COLICAGON	C CAGILICCGA	GIGGAAGAAA	CAGGCCAGGA	GAAGTGCGTG	60
CCGAGCTGAG GCAGATGTT	C CCACAGTGAC	CCCCAGAGCC	STGGGSTATA	GTYTCTCACC	120
CCTCNCAAGG AAAGACCAC	'S TTCTGGGGAC	ATCCCCCTCCA	0000100100		
AACCCAACCC CCCAE	o recededad	AIGGGCIGGA	GGGCAGGACC	TAGAGGCACC	180
AAGGGAAGGC CCCATTCCC	G GGSTGTTCCC	CGAGGAGGAA	GGGAAGGGC	TCTGTGTGCC	240
CCCCASGAGG AAGAGGCCC	T GAGTCCTGGG	ATCAGACACC	CCTTCACCTC	Mamagaga es	
CAAATGCAAG CTCAGGAAG	C MCCCCMcmc	TT CAUACACC	CCITCACGIG	TATCCCCACA	300
CAAATGCAAG CTCACCAAG	G TUCCUTUTCA	GTCCCCTTCC	STACACCCTG	AMCGGCCACT	360
GSCSCACACC CACCCAGAG	C ACGCCACCCG	CCATGGGGAR	TGTGCTCAAG	CARTCCCMCC	
GCARCGTGGA CATCTNGTC	C CYCYYCCCC	Clare and a	TOTOCICANG	GARICGCNGG	420
GCARCGTGGA CATCTNGTC	DDDDDAADAD J	CAGAATCTCC	AATAGANGGA	CTGARCMSTT	480
GCTNANAAAA AAAAANAAA	A AA				502
					202

(2) INFORMATION FOR SEQ ID NO:196:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 665 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

${\tt GGTTACTTGG}$	TTTCATTGCC	ACCACTTAGT	GGATGTCATT	TAGAACCATT	TTGTCTGCTC	60
CCTCTGGAAG	CCTTGCGCAG	AGCGGACTTT	GTAATTGTTG	GAGAATAACT	GCTGAATTTT	120
WAGCTGTTTK	GAGTTGATTS	GCACCACTGC	ACCCACAACT	TCAATATGAA	AACYAWTTGA	180
ACTWATTTAT	TATCTTGTGA	AAAGTATAAC	AATGAAAATT	TTGTTCATAC	ΤGΤΔΤΤΚΔΤΟ	240
AAGTATGATG	AAAAGCAAWA	GATATATATT	CTTTTATTAT	GTTAAATTAT	GATTCCCATT	300
ATTAATCGGC	AAAATGTGGA	GTGTATGTTC	TTTTCACAGT	AATATATGCC	ጥጥጥርጥል ል ርጥ	360
TCACTTGGTT	ATTTTATTGT	AAATGARTTA	CAAAATTCTT	AATTTAAGAR	AATGGTATGT	420
WATATTTATT	TCATTAATTT	CTTTCCTKGT	TTACGTWAAT	TTTGAAAAGA	WTGCATGATT	480
TCTTGACAGA	AATCGATCTT	GATGCTGTGG	AAGTAGTTTG	ACCCACATCC	CTATGAGTTT	540
TTCTTAGAAT	GTATAAAGGT	TGTAGCCCAT	CNAACTTCAA	AGAAAAAAT	GACCACATAC	600
TITGCAATCA	GGCTGAAATG	TGGCATGCTN	TTCTAATTCC	AACTTTATAA	ACTAGCAAAN	660
AAGTG						665

(2) INFORMATION FOR SEQ ID NO:197:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 492 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

TTTTNTTTTT	TTTTTTTTGC	AGGAAGGATT	CCATTTATTG	TGGATGCATT	TTCACAATAT	60
ATGTTTATTG	GAGCGATCCA	TTATCAGTGA	AAAGTATCAA	GTGTTTATAA	NATTTTTAGG	120
AAGGCAGATT	CACAGAACAT	${\tt GCTNGTCNGC}$	TTGCAGTTTT	ACCTCGTANA	GATNACAGAG	180
AATTATAGTC	NAACCAGTAA	ACNAGGAATT	TACTTTTCAA	AAGATTAAAT	CCAAACTGAA	240
CAAAATTCTA	CCCTGAAACT	TACTCCATCC	AAATATTGGA	ATAANAGTCA	GCAGTGATAC	300
ATTCTCTTCT	GAACTTTAGA	TTTTCTAGAA	AAATATGTAA	TAGTGATCAG	GAAGAGCTCT	360
TGTTCAAAAG	TACAACNAAG	CAATGTTCCC	TTACCATAGG	CCTTAATTCA	AACTTTGATC	420
CATTTCACTC	CCATCACGGG	AGTCAATGCT	ACCTGGGACA	CTTGTATTTT	GTTCATNCTG	480
ANCNTGGCTT	AA					492

(2) INFORMATION FOR SEQ ID NO:198:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 478 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

	•					
TTTNTTTTGN	ATTTCANTCT	GTANNAANTA	TTTTCATTAT	GTTTATTANA	AAAATATNAA	60
TGTNTCCACN	ACAAATCATN	TTACNTNAGT	AAGAGGCCAN	CTACATTGTA	CAACATACAC	120
TGAGTATATT	TTGAAAAGGA	CAAGTTTAAA	GTANACNCAT	ATTGCCGANC	ATANCACATT	180
TATACATGGC	TTGATTGATA	TTTAGCACAG	CANAAACTGA	GTGAGTTACC	AGAAANAAAT	240
NATATATGTC	AATCNGATTT	AAGATACAAA	ACAGATCCTA	TGGTACATAN	CATCNTGTAG	300
GAGTTGTGGC	TTTATGTTTA	CTGAAAGTCA	ATGCAGTTCC	TGTACAAAGA	GATGGCCGTA	360
						420
						478
NATATATGTC GAGTTGTGGC	AATCNGATTT TTTATGTTTA TACCTCTACT	AAGATACAAA CTGAAAGTCA CCATGGTTAA	ACAGATCCTA ATGCAGTTCC GAATCGTACA	TGGTACATAN TGTACAAAGA CTTATGTTTA	CATCNTGTAG GATGGCCGTA CATATGTNCA	300 360 420

(2) INFORMATION FOR SEQ ID NO:199:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 482 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

AGTGACTTGT	CCTCCAACAA	AACCCCTTGA	TCAAGTTTGT	GGCACTGACA	ATCAGACCTA	60
TGCTAGTTCC	TGTCATCTAT	TCGCTACTAA	ATGCAGACTG	GAGGGGACCA	AAAAGGGGCA	120
TCAACTCCAG	CTGGATTATT	TTGGAGCCTG	CAAATCTATT	CCTACTTGTA	CGGACTTTGA	180
AGTGATTCAG	TTTCCTCTAC	GGATGAGAGA	CTGGCTCAAG	AATATCCTCA	TGCAGCTTTA	240
TGAAGCCNAC	TCTGAACACG	CTGGTTATCT	NAGATGAGAA	NCAGAGAAAT	AAAGTCNAGA	300
			CTGGGGACCA			360
ANGGACTTTA	AGAANAAACT	ACCACATGTN	TGTNGTATCC	TGGTGCCNGG	CCGTTTANTG	420
AACNTNGACN	NCACCCTTNT	GGAATANANT	CTTGACNGCN	TCCTGAACTT	GCTCCTCTGC	480
GA						482

(2) INFORMATION FOR SEQ ID NO:200:

509

126

(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 270 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(a) Totobodi. Illicat	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:	
·	
CGGCCGCAAG TGCAACTCCA GCTGGGGCCG TGCGGACGAA GATTCTGCCA GCAGTTGGTC	60
CGACTGCGAC GACGGCGGC GCGACAGTCG CAGGTGCAGC GCGGCGCCCT GGGGTCTTCC	120
AAGGCTGAGC TGACGCCGCA GAGGTCGTGT CACGTCCCAC GACCTTGACG CCGTCGCCCA	180
CAGCCGGAAC AGAGCCCGGT GAANGCGGGA GGCCTCGGGG AGCCCCTCGG GAAGGCCGCC	240
CCGAGAGATA CGCAGGTGCA GGTGGCCGCC	270
	•
(2) INFORMATION FOR SEQ ID NO:201:	
(i) OROMENOR CONTRACTOR	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 419 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(a) 131 32331. IImaal	
(Xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:	
·	
TTTTTTTTT TTTTGGAATC TACTGCGAGC ACAGCAGGTC AGCAACAAGT TTATTTTGCA	60
GCTAGCAAGG TAACAGGGTA GGGCATGGTT ACATGTTCAG GTCAACTTCC TTTGTCGTCG	120
TIGATIGGTT TGTCTTTATG GGGGCGGGGT GGGGTAGGGG AAANCGAAGC AMAANTAACA	180
TGGAGTGGGT GCACCCTCCC TGTAGAACCT GGTTACNAAA GCTTGGGGCA GTTCACCTGG	240
TCTGTGACCG TCATTTTCTT GACATCAATG TTATTAGAAG TCAGGATATC TTTTAGAGAG	300
TCCACTGTNT CTGGAGGGAG ATTAGGGTTT CTTGCCAANA TCCAANCAAA ATCCACNTGA	360
AAAAGTTGGA TGATNCANGT ACNGAATACC GANGGCATAN TTCTCATANT CGGTGGCCA	419
(2) INFORMATION FOR SEQ ID NO:202:	
/ Intolder for SEQ ID NO:202:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 509 base pairs	
(B) TYPE: nucleic acid	ı
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:	
TTTNT-T	
TTTNTTTTTT TTTTTTTTT TTTTTTTTT TTTTTTTT	60
TGGCACTTAA TCCATTTTTA TTTCAAAATG TCTACAAANT TTNAATNCNC CATTATACNG GTNATTTTNC AAAATCTAAA NNTTATTCAA ATNTNACGGA AANTGCTTAA	120
GTNATTTTNC AAAATCTAAA NNTTATTCAA ATNTNAGCCA AANTCCTTAC NCAAATNNAA TACNCNCAAA AATCAAAAAT ATACNTNTCT TTCAGCAAAC TTNGTTACAT AAATTAAAAA	180
AATATATACG GCTGGTGTTT TCAAAGTACA ATTATCTTAA CACTGCAAAC ATNTTTNNAA	240
GGAACTAAAA TAAAAAAAAA CACTNCCGCA AAGGTTAAAG GGAACAACAA ATTCNTTTTA	300
CAACANCNNC NATTATAAAA ATCATATCTC AAATCTTAGG GGAATATATA CTTCACACNG	360
COLUMNIA CONTROL CONTR	420

GGATCTTAAC TTTTACTNCA CTTTGTTTAT TTTTTTANAA CCATTGTNTT GGGCCCAACA

CAATGGNAAT NCCNCCNCNC TGGACTAGT

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

TTTTNTTTTT	TTTTTTTTGC	AGGAAGGATT	CCATTTATTG	TGGATGCATT	TTCACAATAT	60
ATGTTTATTG	${\tt GAGCGATCCA}$	TTATCAGTGA	AAAGTATCAA	GTGTTTATAA	NATTTTTAGG	120
AAGGCAGATT	CACAGAACAT	GCTNGTCNGC	TTGCAGTTTT	ACCTCGTANA	GATNACAGAG	180
AATTATAGTC	NAACCAGTAA	ACNAGGAATT	TACTTTTCAA	AAGATTAAAT	CCAAACTGAA	240
CAAAATTCTA	CCCTGAAACT	TACTCCATCC	AAATATTGGA	ATAANAGTCA	GCAGTGATAC	300
ATTCTCTTCT	GAACTTTAGA	TTTTCTAGAA	AAATATGTAA	TAGTGATCAG	GAAGAGCTCT	360
TGTTCAAAAG	TACAACNAAG	CAATGTTCCC	TTACCATAGG	CCTTAATTCA	AACTTTGATC	420
CATTTCACTC	CCATCACGGG	AGTCAATGCT	ACCTGGGACA	CTTGTATTTT	GTTCATNCTG	480
ANCNTGGCTT	AA					492

(2) INFORMATION FOR SEQ ID NO:198:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 478 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

TTTNTTTTGN	ATTTCANTCT	GTANNAANTA	TTTTCATTAT	GTTTATTANA	AAAATATNAA	60
TGTNTCCACN	ACAAATCATN	TTACNTNAGT	AAGAGGCCAN	CTACATTGTA	CAACATACAC	120
TGAGTATATT	TTGAAAAGGA	CAAGTTTAAA	GTANACNCAT	ATTGCCGANC	ATANCACATT	180
TATACATGGC	TTGATTGATA	TTTAGCACAG	CANAAACTGA	GTGAGTTACC	AGAAANAAAT	240
NATATATGTC	AATCNGATTT	AAGATACAAA	ACAGATCCTA	TGGTACATAN	CATCNTGTAG	300
GAGTTGTGGC	TTTATGTTTA	CTGAAAGTCA	ATGCAGTTCC	TGTACAAAGA	GATGGCCGTA	360
AGCATTCTAG	TACCTCTACT	CCATGGTTAA	GAATCGTACA	CTTATGTTTA	CATATGTNCA	420
GGGTAAGAAT	TGTGTTAAGT	NAANTTATGG	AGAGGTCCAN	GAGAAAAATT	TGATNCAA	478

(2) INFORMATION FOR SEQ ID NO:199:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 482 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

AGTGACTTGT	CCTCCAACAA	AACCCCTTGA	TCAAGTTTGT	GGCACTGACA	ATCAGACCTA	60
TGCTAGTTCC	TGTCATCTAT	TCGCTACTAA	ATGCAGACTG	GAGGGGACCA	AAAAGGGGCA	120
TCAACTCCAG	CTGGATTATT	TTGGAGCCTG	CAAATCTATT	CCTACTTGTA	CGGACTTTGA	180
AGTGATTCAG	TTTCCTCTAC	GGATGAGAGA	CTGGCTCAAG	AATATCCTCA	TGCAGCTTTA	240
TGAAGCCNAC	TCTGAACACG	CTGGTTATCT	NAGATGAGAA	NCAGAGAAAT	AAAGTCNAGA	300
AAATTTACCT	GGANGAAAAG	AGGCTTTNGG	CTGGGGACCA	TCCCATTGAA	CCTTCTCTTA	360
ANGGACTTTA	AGAANAAACT	ACCACATGTN	TGTNGTATCC	TGGTGCCNGG	CCGTTTANTG	420
AACNTNGACN	NCACCCTTNT	GGAATANANT	CTTGACNGCN	TCCTGAACTT	GCTCCTCTGC	480
GA						482

(2) INFORMATION FOR SEQ ID NO:200:

CAATGGNAAT NCCNCCNCNC TGGACTAGT

509

126	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 270 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:	٠
CAGCCGGAAC AGAGCCCGCA GAGGTCGTGT CACGTCCCAC GACCTTGACG CCGTCGGGGA CAGCCGGAAC AGAGCCCGGT GAANGCGGGA GGCCTCGGGG AGCCCCTCGG GAAGGGCGGC CCGAGAGATA CGCAGGTGCA GGTGGCCGCC	60 120 180 240 270
(2) INFORMATION FOR SEQ ID NO:201:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 419 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:	٠,
TIGATIGGIT TGTCTTTATG GGGGCGGGGT GGGGTAGGGG AAANCGAAGC ANAANTAACA TGGAGTGGGT GCACCCTCCC TGTAGAACCT GGTTACNAAA GCTTGGGGCA GTTCACCTGG TCTGTGACCG TCATTTTCTT GACATCAATG TTATTAGAAG TCAGGATATC TTTTAGAGAG TCCACTGTNT CTGGAGGGAG ATTAGGGTTT CTTGCCAANA TCCAANCAAA ATGGACHTGA	60 20 80 40 00
AAAAGTTGGA TGATNCANGT ACNGAATACC GANGGCATAN TTCTCATANT CGGTGGCCA 4 (2) INFORMATION FOR SEQ ID NO:202:	19
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 509 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:	
GTNATTTTIC AAAATCTAAA NNTTATTCAA ATNTNAGCCA AANTCCTTAC NCAAATNNAA TACNCNCAAA AATCAAAAAT ATACNTNTCT TTCAGCAAAC TTNGTTACAT AAATTAAAAA AATATATACG GCTGGTGTTT TCAAAGTACA ATTATCTTAA CACTGCAAAC ATNTTTNAA GGAACTAAAA TAAAAAAAAA CACTNCCGCA AAGGTTAAAG GGAACAAA ATTTTTNAA GGAACTAAAA TAAAAAAAAA CACTNCCGCA AAGGTTAAAG GGAACAAA ATTTTTNAA	0
GGATCTTAAC TTTTACTNCA CTTTGTTTAT TTTTTTANAA CCATTGTNTT GGGCCCAACA	0
CAATGGNAAT NCCNCCNGNG TOGA CT	U

(2) INFORMATION FOR SEQ ID NO:203:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 583 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:

TTTTTTTTT	TTTTTTTTGA	CCCCCCTCTT	ATAAAAAACA	AGTTACCATT	TTATTTTACT	60
TACACATATT	TATTTTATAA	TTGGTATTAG	ATATTCAAAA	GGCAGCTTTT	AAAATCAAAC	120
TAAATGGAAA	CTGCCTTAGA	TACATAATTC	TTAGGAATTA	GCTTAAAATC	TGCCTAAAGT	180
GAAAATCTTC	TCTAGCTCTT	TTGACTGTAA	ATTTTTGACT	CTTGTAAAAC	ATCCAAATTC	240
ATTTTTCTTG	TCTTTAAAAT	TATCTAATCT	TTCCATTTTT	TCCCTATTCC	AAGTCAATTT	300
GCTTCTCTAG	CCTCATTTCC	TAGCTCTTAT	CTACTATTAG	TAAGTGGCTT	TTTTCCTAAA	360
AGGGAAAACA	GGAAGAGANA	ATGGCACACA	AAACAAACAT	TTTATATTCA	TATTTCTACC	420
TACGTTAATA	AAATAGCATT	TTGTGAAGCC	AGCTCAAAAG	AAGGCTTAGA	TCCTTTTATG	480
TCCATTTTAG	TCACTAAACG	ATATCNAAAG	TGCCAGAATG	CAAAAGGTTT	GTGAACATTT	540
ATTCAAAAGC	TAATATAAGA	TATTTCACAT	ACTCATCTTT	CTG		583

(2) INFORMATION FOR SEQ ID NO:204:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 589 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:

TTTTTTTTTTT	TTTTTTTTT	TTTTTTTNCTC	TTCTTTTTTT	TTGANAATGA	GGATCGAGTT	60
TTTCACTCTC	TAGATAGGGC	ATGAAGAAAA	CTCATCTTTC	CAGCTTTAAA	ATAACAATCA	120
AATCTCTTAT	GCTATATCAT	ATTTTAAGTT	AAACTAATGA	GTCACTGGCT	TATCTTCTCC	180
TGAAGGAAAT	CTGTTCATTC	TTCTCATTCA	TATAGTTATA	TCAAGTACTA	CCTTGCATAT	240
TGAGAGGTTT	TTCTTCTCTA	TTTACACATA	TATTTCCATG	TGAATTTGTA	TCAAACCTTT	300
ATTTTCATGC	AAACTAGAAA	${\bf ATAATGTNTT}$	CTTTTGCATA	AGAGAAGAGA	ACAATATNAG	360
CATTACAAAA	CTGCTCAAAT	TGTTTGTTAA	GNTTATCCAT	TATAATTAGT	TNGGCAGGAG	420
CTAATACAAA	TCACATTTAC	NGACNAGCAA	TAATAAAACT	GAAGTACCAG	TTAAATATCC	480
AAAATAATTA	AAGGAACATT	TTTAGCCTGG	GTATAATTAG	CTAATTCACT	TTACAAGCAT	540
TTATTNAGAA	TGAATTCACA	TGTTATTATT	CCNTAGCCCA	ACACAATGG		589.

(2) INFORMATION FOR SEQ ID NO:205:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 545 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

TTTTTTTT	TTTTTTCAGT	AATAATCAGA	ACAATATTTA	TTTTTTATATT	TAAAATTCAT	60
AGAAAAGTGC	CTTACATTTA	ATAAAAGTTT	GTTTCTCAAA	GTGATCAGAG	GAATTAGATA	120
TNGTCTTGAA	CACCAATATT	AATTTGAGGA	AAATACACCA	AAATACATTA	AGTAAATTAT	180
TTAAGATCAT	AGAGCTTGTA	AGTGAAAAGA	TAAAATTTGA	CCTCAGAAAC	TCTGAGCATT	240
AAAAATCCAC	TATTAGCAAA	TAAATTACTA	TGGACTTCTT	GCTTTAATTT	TGTGATGAAT	300
			TGAAGGATAC			360
			GTTGACAAGT			420
AAGGGGCNGA	NGAAATGAGG	AAGAAAAGAA	AAGGATTACG	CATACTGTTC	TTTCTATNGG	480
	TATGTTTCCT	TTGCCAATAT	TAAAAAAATA	ATAATGTTTA	CTACTAGTGA	540
AACCC						545

(2) INFORMATION FOR SEQ ID NO:206:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 487 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:

TTTTTTTTT	TTTTTTAGTC	AAGTTTCTNA	TTTTTATTAT	AATTAAAGTC	TTGGTCATTT	60
CATTTATTAG	CTCTGCAACT	TACATATTTA	AATTAAAGAA	ACGTTNTTAG	ACAACTGTNA	120
CAATTTATAA	ATGTAAGGTG	CCATTATTGA	GTANATATAT	TCCTCCAAGA	GTGGATGTGT	180
CCCTTCTCCC	ACCAACTAAT	GAANCAGCAA	CATTAGTTTA	ATTTTATTAG	TAGATNATAC	240
ACTGCTGCAA	ACGCTAATTC	TCTTCTCCAT	CCCCATGTNG	ATATTGTGTA	TATGTGTGAG	300
TTGGTNAGAA	TGCATCANCA	ATCTNACAAT	CAACAGCAAG	ATGAAGCTAG	GCNTGGGCTT	360
		CTGTCTGAAT				420
	ACCGCTTCCT	CAAAGGCNGC	TGCCACATTT	GTGGCNTCTN	TTGCACTTGT	480
TTCAAAA						487

(2) INFORMATION FOR SEQ ID NO:207:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 332 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:

TGAATTGGCT	AAAAGACTGC	ATTTTTANAA	CTAGCAACTC	TTATTTCTTT	CCTTTAAAAA	60
TACATAGCAT	TAAATCCCAA	ATCCTATTTA	AAGACCTGAC	AGCTTGAGAA	GGTCACTACT	120
GCATTTATAG	GACCTTCTGG	TGGTTCTGCT	GTTACNTTTG	AANTCTGACA	ATCCTTGANA	180
ATCTTTGCAT	GCAGAGGAGG	TAAAAGGTAT	TGGATTTTCA	CAGAGGAANA	ACACAGCGCA	240
				GGCTCATGGG	TGGGACATGG	300
AAAAGAAGGC	AGCCTAGGCC	CTGGGGAGCC	CA			332

- (2) INFORMATION FOR SEQ ID NO:208:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 524 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:	
AGGGCGTGGT GCGGAGGGCG TTACTGTTTT GTCTCAGTAA CAATAAATAC AAAAAGACTG GTTGTGTCC GGCCCCATCC AACCACGAAG TTGATTTCTC TTGTGTGCAG AGTGACTGAT TTTAAAGGAC ATGGAGCTTG TCACAATGTC ACAATGTCAC AGTGTGAAGG GCACACTCAC TCCCGCGTGA TTCACATTTA GCAACCAACA ATAGCTCATG AGTCCATACT TGTAAATACT TTTGGCAGAA TACTTNTTGA AACTTGCAGA TGATAACTAA GATCCAAGAT ATTTCCCAAA GTAAATAGAA GTGGGTCATA ATATTAATTA CCTGTTCACA TCAGCTTCCA TTTACAAGTC ATGAGCCCAG ACACTGACAT CAAACTAAGC CCACTTAGAC TCCTCACCAC CAGTCTGTCC TGTCATCAGA CAGGAGGCTG TCACCTTGAC CAAATTCTCA CCAGTCAATC ATCTATCCAA AAACCATTAC CTGATCCACT TCCGGTAATG CACCACCTTG GTGA	60 120 180 240 300 360 420 480 524
(2) INFORMATION FOR SEQ ID NO:209:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 159 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:	
GGGTGAGGAA ATCCAGAGTT GCCATGGAGA AAATTCCAGT GTCAGCATTC TTGCTCCTTG TGGCCCTCTC CTACACTCTG GCCAGAGATA CCACAGTCAA ACCTGGAGCC AAAAAGGACA CAAAGGACTC TCGACCCAAA CTGCCCCAGA CCCTCTCCA	60 120 159
(2) INFORMATION FOR SEQ ID NO:210:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 256 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:	
ACTCCCTGGC AGACAAAGGC AGAGGAGAGA GCTCTGTTAG TTCTGTGTTG TTGAACTGCC ACTGAATTTC TTTCCACTTG GACTATTACA TGCCANTTGA GGGACTAATG GAAAAACGTA TGGGGAGAGATT TTANCCAATT TANGTNTGTA ÁATGGGGAGA CTGGGGCAGG CGGGAGAGAT TTGCAGGGTG NAAATGGGAN GGCTGGTTTG TTANATGAAC AGGGACATAG GAGGTAGGCA CCAGGATGCT AAATCA	60 120 180 240 256
(2) INFORMATION FOR SEQ ID NO:211:	

(I) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 264 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:211:	
ACATTGTTTT TTTGAGATAA AGCATTGAGA GAGCTCTCCT TAACGTGACA CAATGGAAGG	6
ACTGGAACAC ATACCCACAT CTTTGTTCTG AGGGATAATT TTCTGATAAA GTCTTGCTGT	. 12
ATATTCAAGC ACATATGTTA TATATTATTC AGTTCCATGT TTATAGCCTA GTTAAGGAGA	
GGGGAGATAC ATTCNGAAAG AGGACTGAAA GAAATACTCA AGTNGGAAAA CAGAAAAAGA	18
AAAAAAGGAG CAAATGAGAA GCCT	24
AMMANGGAG CAAATGAGAA GCCT	26
(2) INFORMATION FOR SEQ ID NO:212:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 328 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(2) Totobodi. Timedi	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:	
ACCCAAAAAT CCAATGCTGA ATATTTGGCT TCATTATTCC CANATTCTTT GATTGTCAAA	6(
GGATTTAATG TTGTCTCAGC TTGGGCACTT CAGTTAGGAC CTAAGGATGC CAGCCGGCAG	
GTTTATATAT GCAGCAACAA TATTCAAGCG CGACAACAGG TTATTGAACT TGCCCGCCAG	120
TINA A TETRA DECAGARACA TATICAAGGG CGACAACAGG TTATIGAACT TGCCCGCCAG	180
TTNAATTTCA TTCCCATTGA CTTGGGATCC TTATCATCAG CCAGAGAGAT TGAAAATTTA	240
CCCCTACNAC TCTTTACTCT CTGGANAGGG CCAGTGGTGG TAGCTATAAG CTTGGCCACA	300
ITTTTTTTC CTTTATTCCT TTGTCAGA	328
(2) INFORMATION FOR SEQ ID NO:213:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 250 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:	
ACTTATGAGC AGAGCGACAT ATCCNAGTGT AGACTGAATA AAACTGAATT CTCTCCAGTT	60
PAAAGCATTG CTCACTGAAG GGATAGAAGT GACTGCCAGG AGGGAAAGTA AGCCAAGGCT	
CATTATGCCA AAGGANATAT ACATTTCAAT TCTCCAAACT TCTTCCTCAT TCCAAGAGTT	120
PTCAATATTT COATCAACOT COTCATANG CATCATANG CATCATANG	180
TTCAATATTT GCATGAACCT GCTGATAANC CATGTTAANA AACAAATATC TCTCTNACCT	240
TCTCATCGGT	250
(2) INFORMATION FOR SEQ ID NO:214:	
(a) THEOMETICA FOR DEG ID NO. 12TH;	

(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 444 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:	
ACCCAGAATC CAATGCTGAA TATTTGGCTT CATTATTCCC AGATTCTTTG ATTGTCAAAG	60
GATTTAATGT TGTCTCAGCT TGGGCACTTC AGTTAGGACC TAAGGATGCC AGCCGGCAGG	120
TTTATATATG CAGCAACAAT ATTCAAGCGC GACAACAGGT TATTGAACTT GCCCGCCAGT	180
TGAATTTCAT TCCCATTGAC TTGGGATCCT TATCATCAGC CANAGAGATT GAAAATTTAC	240
CCCTACGACT CTTTACTCTC TGGAGAGGGC CAGTGGTGGT AGCTATAAGC TTGGCCACAT	300
TTTTTTTCC TTTATTCCTT TGTCAGAGAT GCGATTCATC CATATGCTAN AAACCAACAG	360
AGTGACTTT ACAAAATTCC TATAGANATT GTGAATAAAA CCTTACCTAT AGTTGCCATT	420
ACTTTGCTCT CCCTAATATA CCTC	444
(2) INFORMATION FOR SEQ ID NO:215:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 366 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:	
ACTTATGAGC AGAGCGACAT ATCCAAGTGT ANACTGAATA AAACTGAATT CTCTCCAGTT	60
TAAAGCATTG CTCACTGAAG GGATAGAAGT GACTGCCAGG AGGGAAAGTA AGCCAAGGCT	120
CATTATGCCA AAGGANATAT ACATTTCAAT TCTCCAAACT TCTTCCTCAT TCCAAGAGTT	180
TTCAATATTT GCATGAACCT GCTGATAAGC CATGTTGAGA AACAAATATC TCTCTGACCT	240
TCTCATCGGT AAGCAGAGGC TGTAGGCAAC ATGGACCATA GCGAANAAAA AACTTAGTAA	3'00
TCCAAGCTGT TTTCTACACT GTAACCAGGT TTCCAACCAA GGTGGAAATC TCCTATACTT	360
GGTGCC	366
(2) INFORMATION FOR SEQ ID NO:216:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 260 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	•
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:	
CTGTATAAAC AGAACTCCAC TGCANGAGGG AGGGCCGGGC CAGGAGAATC TCCGCTTGTC	60
CAAGACAGGG GCCTAAGGAG GGTCTCCACA CTGCTNNTAA GGGCTNTTNC ATTTTTTTAT	
TAATAAAAAG TNNAAAAGGC CTCTTCTCAA CTTTTTTCCC TTNGGCTGGA AAATTTAAAA	180
MCANAN MCCONING CONTROL OF THE CONTROL TIME CONTROL TO A MANITA AND THE CONTROL TO THE CONTROL T	100

AATTCTTCCT TCCCTCCTTT	260
(2) INFORMATION FOR SEQ ID NO:217:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 262 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:217:	
ACCTACGTGG GTAAGTTTAN AAATGTTATA ATTTCAGGAA NAGGAACGCA TATAATTGTA TCTTGCCTAT AATTTCTAT TTTAATAAGG AAATAGCAAA TTGGGGTGGG GGGAATGTAG GGCATTCTAC AGTTTGAGCA AAATGCAATT AAATGTGGAA GGACAGCACT GAAAAATTTT ATGAATAATC TGTATGATTA TATGTCTCTA GAGTAGATTT ATAATTAGCC ACTTACCCTA ATATCCTTCA GGTAGATTT ATAATTAGCC ACTTACCCTA	60 120 180 240 262
(2) INFORMATION FOR SEQ ID NO:218:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 205 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:	
ACCAAGGTGG TGCATTACCG GAANTGGATC AANGACACCA TCGTGGCCAA CCCCTGAGCA CCCCTATCAA CTCCCTTTTG TAGTAAACTT GGAACCTTGG AAATGACCAG GCCAAGACTC AGGCCTCCCC AGTTCTACTG ACCTTTGTCC TTANGTNTNA NGTCCAGGGT TGCTAGGAAA ANAAATCAGC AGACACAGGT GTAAA	60 120 180 205
(2) INFORMATION FOR SEQ ID NO:219:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 114 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:	
FACTGTTTTG TCTCAGTAAC AATAAATACA AAAAGACTGG TTGTGTTCCG GCCCCATCCA	60 114
(2) INFORMATION FOR SEC ID NO. 220	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 93 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	٠
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:	
ACTAGCCAGC ACAAAAGGCA GGGTAGCCTG AATTGCTTTC TGCTCTTTAC ATTTCTTTTA AAATAAGCAT TTAGTGCTCA GTCCCTACTG AGT	60 . 93
(2) INFORMATION FOR SEQ ID NO:221:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 167 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:	
ACTANGTGCA GGTGCGCACA AATATTTGTC GATATTCCCT TCATCTTGGA TTCCATGAGG TCTTTTGCCC AGCCTGTGGC TCTACTGTAG TAAGTTTCTG CTGATGAGGA GCCAGNATGC CCCCCACTAC CTTCCCTGAC GCTCCCCANA AATCACCCAA CCTCTGT	60 120 167
(2) INFORMATION FOR SEQ ID NO:222:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 351 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:	
AGGCCGTGGT GCGGAGGGCG GTACTGACCT CATTAGTAGG AGGATGCATT CTGGCACCCC GTTCTTCACC TGTCCCCCAA TCCTTAAAAG GCCATACTGC ATAAAGTCAA CAACAGATAA ATGTTTGCTG AATTAAAGGA TGGATGAAAA AAATTAATAA TGAATTTTTG CATAATCCAA TTTTCTCTTT TATATTTCTA GAAGAAGTTT CTTTGAGCCT ATTAGATCCC GGGAATCTTT TAGGTGAGCA TGATTAGAGA GCTTGTAGGT TGCTTTTACA TATATCTGGC ATATTTGAGT CTCGTATCAA AACAATAGAT TGGTAAAGGT GGTATTATTG TATTGATAAG T	60 120 180 240 300 351
2) INFORMATION FOR SEQ ID NO:223	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 383 base pairs(B) TYPE: nucleic acid	

(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

AAAACAAACA AA						60
TGGTAATTAT GG	TCAATTTA A	ATWRTRTTKT	GGGGCATTTC	CTTACATTGT	CTTGACAAGA	120
TTAAAATGTC TG	TGCCAAAA 1	PTTTGTATTT	TATTTGGAGA	CTTCTTATCA	AAAGTAATGC	180
TGCCAAAGGA AG	TCTAAGGA A	ATTAGTAGTG	TTCCCMTCAC	TTGTTTGGAG	TGTGCTATTC	240
TAAAAGATTT TG	ATTTCCTG G	GAATGACAAT	TATATTTTAA	CTTTGGTGGG	GGAAANAGTT	300
ATAGGACCAC AG			GTAAATTAAT	CTTTTATTGC	ACTTGTTTTG	360
ACCATTAAGC TA	TATGTTTA A	AAA				383

(2) INFORMATION FOR SEQ ID NO:224

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 320 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:224

60
120
180
240
300
320

CLAIMS

- 1. A method for detecting prostate cancer in a patient, comprising:
- (a) contacting a biological sample obtained from the patient with a binding agent which is capable of binding to a polypeptide, the polypeptide comprising an immunogenic portion of a prostate protein or a variant thereof, wherein said protein comprises an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224, the complements of said nucleotide sequences and variants of said nucleotide sequences; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting prostate cancer in the patient.
- 2. The method of claim 1 wherein the binding agent is a monoclonal antibody.
- 3. The method of claim 2 wherein the binding agent is a polyclonal antibody.
- 4. A method for monitoring the progression of prostate cancer in a patient, comprising:
- (a) contacting a biological sample obtained from the patient with a binding agent that is capable of binding to a polypeptide, said polypeptide comprising an immunogenic portion of a prostate protein or a variant thereof, wherein said protein comprises an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224, the complements of said nucleotide sequences and variants of said nucleotide sequences;
- (b) determining in the sample an amount of a protein or polypeptide that binds to the binding agent;
 - (c) repeating steps (a) and (b); and

- (d) comparing the amount of polypeptide detected in steps (b) and (c) to monitor the progression of prostate cancer in the patient.
- 5. A monoclonal antibody that binds to a polypeptide comprising an immunogenic portion of a prostate protein or a variant thereof, wherein said protein comprises an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 8-29, 41-45, 47-52, 54-65, 70, 73, 74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209-211, 220, 222-224, the complements of said nucleotide sequences variants of said nucleotide sequences.
- 6. A method for inhibiting the development of prostate cancer in a patient, comprising administering to the patient a therapeutically effective amount of a monoclonal antibody according to claim 5.
- 7. The method of claim 6 wherein the monoclonal antibody is conjugated to a therapeutic agent.
 - 8. A method for detecting prostate cancer in a patient comprising:
 - (a) obtaining a biological sample from the patient;
- (b) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotides is specific for a DNA molecule encoding a polypeptide comprising an immunogenic portion of a prostate protein or of a variant thereof, said protein comprising an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224, the complements of said nucleotide sequences variants of said nucleotide sequences; and
- (c) detecting in the sample a DNA sequence that amplifies in the presence of the oligonucleotide primers, thereby detecting prostate cancer.

- 9. The method of claim 8, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA molecule having a sequence selected from SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224.
 - 10. A diagnostic kit comprising:
 - (a) one or more monoclonal antibodies of claim 5; and
 - (b) a detection reagent.
 - 11. A diagnostic kit comprising:
- (a) one or more monoclonal antibodies that bind to a polypeptide encoded by a DNA molecule having a nucleotide sequence selected from the group consisting of SEQ ID Nos: 5-7, 30-40, 46, 53, 66-69, 71, 72, 75-78, 80, 82-86, 88, 89, 91, 94-96, 98-102, 105, 106, 161-170, 179, 180, 182-187, 189, 190, 192, 195-197, 199-202, 205, 206, 208, 212-219, 221, the complements of said sequences and variants of said nucleotide sequences; and
 - (b) a detection reagent.
- 12. The kit of claims 10 or 11 wherein the monoclonal antibodies are immobilized on a solid support.
- 13. The kit of claim 12 wherein the solid support comprises nitrocellulose, latex or a plastic material.
- 14. The kit of claims 10 or 11 wherein the detection reagent comprises a reporter group conjugated to a binding agent.
- 15. The kit of claim 14 wherein the binding agent is selected from the group consisting of anti-immunoglobulins, Protein G, Protein A and lectins.
- 16. The kit of claim 14 wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.

- 17. A diagnostic kit comprising at least two oligonucleotide primers, at least one of the oligonucleotide primers being specific for a DNA molecule encoding a polypeptide comprising an immunogenic portion of a prostate protein or a variant thereof, said protein comprising an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224, the complements of said nucleotide sequences and variants of said nucleotide sequences.
- 18. A diagnostic kit of claim 17 wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA molecule having a sequence selected from SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224.
 - 19. A method for detecting prostate cancer in a patient, comprising:
 - (a) obtaining a biological sample from the patient;
- (b) contacting the biological sample with an oligonucleotide probe specific for a DNA molecule encoding a polypeptide comprising an immunogenic portion of a prostate protein or a variant thereof, said protein comprising an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224, the complements of said nucleotide sequences and variants of said nucleotide sequences; and
- (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting prostate cancer in the patient.
- 20. The method of claim 19 wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule having a sequence selected from the group consisting of SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224.
- 21. A diagnostic kit comprising an oligonucleotide probe specific for a DNA molecule encoding a polypeptide comprising an immunogenic portion of a prostate

protein or a variant thereof, said protein comprising an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224, the complements of said nucleotide sequences variants of said nucleotide sequences.

22. The diagnostic kit of claim 21, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule having a sequence selected from the group consisting of SEQ ID Nos: 2-3, 5-107, 109-111, 115-171, 173-175, 177 and 179-224.

Ī *

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
G01N 33/574, 33/577, C07K 16/30, A61K 39/395, 47/48, C12Q 1/68, G01N 33/543

(11) International Publication Number:

WO 98/37418

(4.

A2

(43) International Publication Date:

27 August 1998 (27.08.98)

(21) International Application Number:

PCT/US98/03690

(22) International Filing Date:

25 February 1998 (25.02.98)

(30) Priority Data:

08/806,596 25 February 1997 (25.02.97) US 08/904,809 1 August 1997 (01.08.97) US 09/020,747 9 February 1998 (09.02.98) US

(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: XU, Jiangchun; 15805 Southeast 43rd Place, Bellevue, WA 98006 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US).

(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US). (81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: COMPOUNDS FOR IMMUNODIAGNOSIS OF PROSTATE CANCER AND METHODS FOR THEIR USE

(57) Abstract

Compounds and methods for diagnosing prostate cancer are provided. The inventive compounds include polypeptides containing at least a portion of a prostate tumor protein. The inventive polypeptides may be used to generate antibodies useful for the diagnosis and monitoring of prostate cancer. Nucleic acid sequences for preparing probes, primers, and polypeptides are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Figland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Моласо	TD	Chad
BA	Bosnia and Herzegovina	. GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	*****	Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA.	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Ameri
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	
CH	Switzerland	KG	Kyrgyzstan	. NO	Norway	ZW	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	244	Zimbabwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
G01N 33/574, 33/577, C07K 16/30, A61K 39/395, 47/48, C12Q 1/68, G01N 33/543

(11) International Publication Number:

WO 98/37418

(43) International Publication Date:

27 August 1998 (27.08.98)

(21) International Application Number:

PCT/US98/03690

A3

(22) International Filing Date:

25 February 1998 (25.02.98)

(30) Priority Data:

08/806,596 25 February 1997 (25.02.97) US 08/904,809 1 August 1997 (01.08.97) US 09/020,747 9 February 1998 (09.02.98) US

(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: XU, Jiangchun; 15805 Southeast 43rd Place, Bellevue, WA 98006 (US). DILLON, Davin, C.: 21607 N.E. 24th Street, Redmond, WA 98053 (US).

(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US). (81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 25 February 1999 (25.02.99)

(54) Title: COMPOUNDS FOR IMMUNODIAGNOSIS OF PROSTATE CANCER AND METHODS FOR THEIR USE

(57) Abstract

Compounds and methods for diagnosing prostate cancer are provided. The inventive compounds include polypeptides containing at least a portion of a prostate tumor protein. The inventive polypeptides may be used to generate antibodies useful for the diagnosis and monitoring of prostate cancer. Nucleic acid sequences for preparing probes, primers, and polypeptides are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotha	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LŲ	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	ÜA	Ukraine
BK	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2	Zimozowe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PC., US 98/03690

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 G01N33/574 G01N G01N33/577 C07K16/30 G01N33/543 C12Q1/68 A61K39/395 A61K47/48 According to International Patent Classification (IPC) or to both national classification and IPC 8. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C120 C07K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 96 21671 A (UNIV COLUMBIA ; FISHER PAUL 1-10. B (US); SHEN RUOQUIAN (US)) 18 July 1996 12-22 see the whole document Α EL-SHIRBINY A M: "PROSTATIC SPECIFIC 1-10. ANTIGEN" 12-22 ADVANCES IN CLINICAL CHEMISTRY, vol. 31, 1994, pages 99-133, XP000617158 see the whole document A WO 93 14775 A (WRIGHT GEORGE L JR) 5 1-10, 12-22 August 1993 see the whole document -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive stop when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. focument published prior to the international filing date but later than the priority date claimed "2" document member of the same patent family Date of the sotual completion of the international search Date of mailing of the international search report 3 0 DEC 1998 31 August 1998 Name and mailing address of the ISA **Authorized officer** European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijewijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Hagenmaier, S Fax: (+31-70) 340-3016

MCCOOL -MAC 00274+042 1 .

Internetanal Application No PC1, JS 98/03690

CICootto	POCHARITY OF	PC1, JS 98/03690
Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 94 09820 A (SLOAN KETTERING INST CANCER; ISRAELI RON S (US); HESTON WARREN D W) 11 May 1994 see the whole document	1-10, 12-22
A	WO 95 04548 A (JENNER TECHNOLOGIES) 16 February 1995 see the whole document	1-10, 12-22
A	ROBSON C N ET AL: "IDENTIFICATION OF PROSTATIC ANDROGEN REGULATED GENES USING THE DIFFERENTIAL DISPLAY TECHNIQUE" PROCEEDINGS OF THE ANNUAL MEETING OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, TORONTO, MAR. 18 - 22, 1995, no. MEETING 86, 18 March 1995, AMERICAN ASSOCIATION FOR CANCER RESEARCH, page 266 XP002019344 see the whole document	1-10, 12-22
	BLOK L J ET AL: "ISOLATION OF CDNAS THAT ARE DIFFERENTIALLY EXPRESSED BETWEEN ANDROGEN-DEPENDENT AND ANDROGEN-INDEPENDENT PROSTATE CARCINOMA CELLS USING DIFFERENTIAL DISPLAY PCR" PROSTATE, vol. 26, no. 4, April 1995, pages 213-224, XP000611577 see the whole document	1-10, 12-22
	ALEXEYEV ET AL.: "IMPROVED ANTIBIOTIC-RESISTANCE GENE CASSETTES AND OMEGA ELEMENTS FOR E.COLI VECTOR CONSTRUCTION AND IN VITRO DELETION/INSERION MUTAGENESIS" GENE, vol. 160, 1995, pages 63-67, XP002076033 & DATABASE EMBL AC: U35129, 1995 "pBSL141" see abstract	1-10, 12-22
,A	DATABASE EMBL AC: AA453562, 11 June 1997 HILLIER ET AL.: "HOMO SAPIENS CDNA CLONE 788180" XP002075910 see abstract	1-10, 12-22

l' national application No.

PCT/US 98/03690

Boxi	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 6 and 7 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This Inter	national Searching Authority found multiple inventions in this international application, as follows:
see	FURTHER INFORMATION sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all earchable claims.
2. A	is all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment fany additional fee. !
3. A ac	s only some of the required additional search fees were timely paid by the applicant, this International Search Report overs only those claims for which fees were paid, specifically claims Nos.:
	o required additional search fees were timely paid by the applicant. Consequently, this International Search Report is stricted to the invention first mentioned in the claims; it is covered by claims Nos.: -10, 12-22 (all partially)
Remark on	Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-10,12-22 (all partially)

Invention 1:
Methods and diagnostic kits for detecting and monitoring prostate cancer comprising either a binding agent capable of binding to a polypeptide encoded by a DNA molecule with Seq.ID 2 or oligonucleotide primers specific for a DNA molecule with Seq. ID 2 as well as an monoclonal antibody binding to a prostate protein encoded by a DNA molecule with Seq. ID 2 used in a method for inhibiting development of prostate cancer.

2. Claims: 1-10,12-22 (all partially)

Inventions 2-130:

Methods and diagnostic kits for detecting and monitoring prostate cancer comprising either a binding agent capable of binding to a polypeptide encoded by a DNA molecule with Seq.ID 3 or oligonucleotide primers specific for a DNA molecule with Seq. ID 3 as well as an monoclonal antibody binding to a prostate protein encoded by a DNA molecule with Seq. ID 3 used in a method for inhibiting development of prostate cancer.

...ibidem for Seq. ID 8-29, 41-45,47-52,54-65,70,73,74,79,81,87,90,92,93,97,103,104,107,1 15-160,171,181,188,191,193,194,198,203,204,207,209-211,220,22 2-224.

3. Claims: 1-4.8.9.11-22 (all partially)

Inventions 131-215:

Methods and diagnostic kits for detecting and monitoring prostate cancer comprising either a binding agent capable of binding to a polypeptide encoded by a DNA molecule with Seq.ID 5 or oligonucleotide primers specific for a DNA molecule with Seq. ID 5 as well as an monoclonal antibody binding to a prostate protein encoded by a DNA molecule with Seq. ID 5 used in a method for inhibiting development of prostate cancer.

...ibidem for each of Seq. ID 6,7,30-40,46,53,66-69,71,72,75-78,80,82-86,88,89,91,94-96,98-102,105,106,161-170,179,180,182-187,189,190,192,195-197,198-2 02,205,206,208,212-219.

mation on patent family members

Internation No PC1, JS 98/03690

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9621671	A	18-07-1996	AU CA EP	4751196 A 2209941 A 0804458 A	31-07-1996 18-07-1996 05-11-1997
WO 9314775	Α	05-08-1993	CA	2106487 A	01-08-1993
WO 9409820	A	11-05-1994	CA EP JP US	2147499 A 0668777 A 8506005 T 5538866 A	11-05-1994 30-08-1995 02-07-1996 23-07-1996
WO 9504548	A	16-02-1995	AU AU CA EP JP	686660 B 7631294 A 2168952 A 0721345 A 9504000 T	12-02-1998 28-02-1995 16-02-1995 17-07-1996 22-04-1997

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)