COMP9334 Capacity Planning for Computer Systems and Networks

Assignment Project Exam Help

Week 5Ahttps://eduassistpro.githulatio/n (2). Independent replicat edu_assist_pro/interval.

COMP9334

Week 4B

Two topics

- How to structure discrete event simulation of queues
- How to use the Python random library to generate random numbers for inter-arrival and service times

Assignment Project Exam Help

- You should be a
 - Many types of https://eduassistpro.github.io/
 - Single-server or multi-server hat edu_assist_pro
 - Different queueing disciplines
 - Many inter-arrival time and service time distributions
- However, there are a number of problems ...

Problem: data interpretation, simulation length

Week 4B's revision problem #1. The problem asks you to:

> use 4 different simulation end times: 1000, 5000, 10000, 50000

> runs

 Figure on the right sh the solution

response time for each run

- The red horizontal line shows the theoretical
- What observations can you make?

COMP9334 T1, 2021

Problem: How do we compare 2 alternative choices?

Week 4B's Revision
 Problem #2. The question
 asks you to simulate each of
 the following 2 queues 10
 times:

• M/M/1 queue with \$\frac{1}{8}\signification{\frac{1}{2}}{\text{Project Exam Help}}\$

• M/M/2 queue with $\lambda = \mu = 0.5$

From Queueing theory, we expect the M/M/1 system to have a lower mean response time but do the simulation results suggest that?

Analysis of simulation results

A very important topic but it is very often ignored

Simulating is computer program

Writing a computer program

correctness of the program

ning the simulation once and present

https://eduassistpro.github.io/

Add WeChat edu_assist_pro Verifying the correctness of the s important

am is

It is equally important to do sound statistical analysis on the simulation results obtained

T1, 2021 5

This lecture

- Analysis of simulation results
- How to choose simulation parameters?
 - How long should I simulate for?
 - How many times should I repeat the simulation?
- Confidence interigalment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Analysis of simulation data

- There are many statistical methods to analyse data depending on the situation
- We will focus on analysing steady state mean value only Assignment Project Exam Help
- For example, wehttps://eduassistpro.gith@b.topdy state mean response

 Add WeChat edu_assist_pro
- Recall that we talked about
 - Transient and steady state behaviour of queue in Week 2B
 - Steady state of Markov chain in Week 3B

What is steady state? (1)

- Let us simulate an M/M/1 queue with
 - Arrival rate $\lambda = 0.7$
 - Service rate μ = 1
 - Simulation ends when master clock is 50000s
- In this simulation we receive the response time for each job
 - Let X(k) = Res
 - The next page https://eduassistpro.githubyio/
- Let N denote the Anymore of apedu assistmy ation
 - N = 35000 for our simulation
- In Week 5A, we computed the mean response time using

$$\frac{X(1)+X(2)+...+X(N)}{N}$$

Response time continuously changes over time

- This graph
 shows response
 time of X(k) of
 the k-th job
 where k = 1 to
 35000
- Note response time continuously varies
- Response time does not settle to a constant value
- But mean response time does settle

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

What is steady state? (2)

Let us instead compute the running mean M(k) where

$$M(k) = \frac{X(1) + X(2) + \dots + X(k)}{k}$$

• For example, if k = 5, then

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- Thus M(5) is the mean response time of the first 5 jobs
- In general, M(k) is the mean response time of the first k jobs
- Let us plot M(k) see the next slide

Transient behaviour versus steady state behaviour

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

T1, 2021 **COMP9334** 11

Transient removal: Introduction (1)

- The early part of the simulation displays transient (= nonsteady state behaviour)
- The later part of the simulation converges or fluctuates around the steady state value
- Since we are integrested in the should not use t steady state value, we steady state value https://eduassistpro.github.io/
- We should removed the Weathsieedu_assist_optly use the steady state part to compute the mean
- One method to identify the transient part is to use visual inspection
 - Note: In the previous slide, we have the theoretical value to guide us but in practice you don't, you will learn a transient removal method based on batch means in Revision Problem 5A

Transient removal: Introduction (2)

 Let us assume that the first m jobs constitute the transient part and there are N jobs altogether, we should revise the formula to compute the mean to

Assignment Project Exam Help

https://eduassistpro.github.io/

- Note: We used too simple a met ______ pute the mean in Weck 4B but I didn't want to complic _____ that time!
- Important: You must run the simulation long enough so that you have a good number of data points (or jobs) in the steady state part.

Independent replications

- Assume that we carry out simulations to find out what the steady state mean response time of a queueing system is
 - Important note: We cannot get exact answer from simulation
 - We express sairgmmento Presouts Exam Help is a probability of 95% that the m e interval [3.1,3.3].
 - We call the int https://eduassistpro.githeubeion/terval.
- Independent replications: Rep ulation a number of times using *different* sets of random numbers
- Why independent replications?
 - Independent replications allow us to use statistical method to estimate a confidence interval of steady state mean response time

Example: Independent replications

- We want to use simulation to estimate the mean response time of an M/M/1 queue with
 - Arrival rate $\lambda = 0.7$
 - Service rate μ = 1
 - Simulation ends when master clock is 16000s
- We repeat the signment of the the random number https://eduassistpro.github.io/
- For each indepe
 - We record the resident edu_assist_pro
 - Remove the transient part
 - Compute the mean response time using the steady state section
- We obtain 30 different estimates of the mean response time, one from each independent experiment
- These independent estimates allow us to find a confidence interval

T1, 2021 **COMP9334** 15

Example (Cont'd)

- The blue circles show the estimated mean response time from the 30 independent experiments
- The red line is the spream Project Exam Help confidence interval
 - There is a 95% pro https://eduassistpro.github.io/
 the true mean response time that
 we want to estimate is in the Chat edu_assist_pro
 interval [3.30,3.62]
- The green line is the theoretical mean response time (which you should not normally know).

Computing the confidence interval (1)

- Assume that you do n independent replications
- In each replication, you remove the transient part and compute an estimate of the mean steady state response time
 - Let us call Acusi entimenta from the Exaplication T(k)
- Compute the sa https://eduassistpro.github.io/

Add WeChat edu_assist_pro

And the sample standard deviation

$$\hat{S} = \sqrt{\frac{\sum_{i=1}^{n} (\hat{T} - T(i))^2}{n-1}}$$

Note: for sample standard deviation, *(n-1)* is in the denominator, *not n*.
See also the note on p.21.

Computing confidence interval (2)

• There is a probability $(1-\alpha)$ that the mean response time that you want to estimate lies in the interval

$$[\hat{T} - t_{n-1,1-\frac{\alpha}{2}} \frac{\hat{S}}{\sqrt{n}}, \hat{T} + t_{n-1,1-\frac{\alpha}{2}} \frac{\hat{S}}{\sqrt{n}}]$$
Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

with (n-1) degrees of freedom

• If α is 0.05, then it means there is a 0.95 probability that the mean response time is in the calculated confidence interval

Computing confidence interval (3)

ullet The value $\,t_{n-1,1-rac{lpha}{2}}\,$ can be obtained from looking up

the Student t distribution table

- Note: A Student t table has been provided on the web site Assignment Project Exam Help
- There are also phttps://eduassistpro.github.io/
 - In Python
 Add WeChat edu_assist_pro

In Matlab, you can use tinv(1-alpha/2,n-1)

Example: Independent replications (cont'd) $t_{n-1,1-\frac{\alpha}{2}}$

- Five replications with mean response times:
 - 0.31, 0.37, 0.34, 0.36, 0.39
- The sample mean of (n =) 5 replications = 0.354
- The sample standard deviation of 5 replications is 0.0305
- If we want to consistent Broject Frame Helpterval, $\alpha = 0.05$
 - Since we did 5 in https://eduassistpro.github.io/ nd.want.95% confidence interval, we use t_{4,0.975}

Add WeChat edu_assist_pro

• From the t-distribution table, the value of $t_{4,0.975}$ is 2.776, the 95% confidence interval is

$$\left[0.354 - 2.776 \frac{0.0305}{\sqrt{5}}, 0.354 - 2.776 \frac{0.0305}{\sqrt{5}}\right] = [0.316, 0.392]$$

$$[\hat{T} - t_{n-1,1-\frac{\alpha}{2}} \frac{\hat{S}}{\sqrt{n}}, \hat{T} + t_{n-1,1-\frac{\alpha}{2}} \frac{\hat{S}}{\sqrt{n}}]_{-1}$$

20

Sample program and caution

- The sample program comp_confidence_interval.py shows you how you can do the calculations on the previous slide using Python libraries numpy and scipy.stats
- Caution: We An exighton country of ecsal maple steholard deviation

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

which means you need to divide by (n-1), not divide by n. Some Python functions divide by (n-1) by default but some others need to use an option. See the sample program. If in doubt, use a simple example to check.

More on confidence interval

Confidence interval

$$[\hat{T} - t_{n-1,1-\frac{\alpha}{2}} \frac{\hat{S}}{\sqrt{n}}, \hat{T} + t_{n-1,1-\frac{\alpha}{2}} \frac{\hat{S}}{\sqrt{n}}]$$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

mid-point \hat{T}

What happens if you make n bigger, i.e. do more independent replications?

$$t_{n-1,1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$$

What can we get from simulation?

- If your queueing problem has a mathematical solution, you will get one value for the steady state mean response time
- If you simulate a queue to try to estimate the mean response times signment broken by the steady state me https://eduassistpro.github.io/
- Simulation can only by the Chatedu_assistenterval of what you want to estimate
- You can reduce the confidence interval by doing many independent replications!

Choice of simulation parameters (1)

- Simulation parameters
 - Length of simulation
 - Number of replications
 - Accuracy

Assignment Project Exam Help

- Unfortunately, th
 to choose them. You
 will need to do shttps://eduassistpro.github.io/
 - If the length of simulation is not edu_assist_provill need to increase it
 - If the number of replications is not enough to give you the desired accuracy, you will need to increase it

Choice of simulation parameters (2)

- Length of simulation
 - Must be longer than the transient
 - Should have a good number of data point in the steady state part
 - Hard to say what "good" is. Get a few hundred if you can. The more the better but of course your simulation will run longer
 Assignment Project Exam Help
- Number of replichttps://eduassistpro.github.io/
 - You may want to have 5 replic
 rt with
 - After removing the charge chat edu_assist file of the control of your estimate.
 - Compare the width of your confidence interval with your desired accuracy. If the confidence interval that you have obtained is too wide, you will need to increase the number of replications.
 - Progressively (basically by trial-and-error), increase the number of replications until you get the desired level of accuracy

Summary

- Simulation is not just a computer programming exercise
- You need to make sure that your program is correct
- It is also important to analyse your results statistically
- Methods discussed include
 - Transient removal technique Project Exam Help
 - Confidence int https://eduassistpro.github.io/
 - Determining n

Add WeChat edu_assist_pro

References

- The primary reference is Law and Kelton, "Simulation Modelling and Analysis"
 - Transient removal, Sections 9.1, 9.2 and 9.5
 - Replication method, Section 9.5.2
- Raj Jain, "The Art of Computer Systems Performance Analysis" has materials on
 - Transient removarmethods, Section 25.3 Help
 - Calculating confi
- https://eduassistpro.github.io/ matical background If you are intere on confidence intervalvated assistiopretc., a possible reference is Wackerly et al. " al Statistics with Applications".

COMP9334 T1, 2021 27