

MTH 372 Hw 2

Due Thursday, 9/16/2021.

Solutions are required, not just answers. Unsupported answers will recieve little or no credit.

Read Chapters 4.5 of Huber.

p.28 #4.2 Suppose $Y \sim \text{Unif}[0, 10]$.

- (a) Find $P(Y \in [3, 7])$.
- (b) Find $P(Y \in [6, 12])$.

#4.4 Suppose that $U = (U_1, U_2)$ is uniformly chosen over the region $\{(x; y) : x \ge 2, 0 \le y \le 1/x^2\}$.

- $\{(x,y): x \ge 2, 0 \le y \le 1/x \}$
 - (a) What is $P(U_1 \leq 5)$?
 - (b) What is $P(U_2 \ge .01)$?

#4.5 (revised) Let U_1 and U_2 be independent uniform random variables over [0, 1]. What is the chance that $5 U_2 < U_1$?

#4.8 Suppose that (U_1, U_2) is uniform over the quadrilateral region with vertices (0, 0); (0, 1); (2, 2); (2, 0). Prove that U_1 and U_2 are not independent. (Hint: Start by drawing a picture.

#5.2 Suppose $U \sim \text{Unif}([0, 1])$ and W = 1/U.

- (a) Find $P(W \ge 2)$.
- (b) Find $P(W \ge -2)$.

#5.4 Let $U \sim \text{Unif}([-1,1])$. Find the cdf of U^3 .

#5.10 Suppose that (U_1, U_2) is uniform over the quadrilateral region with vertices (0, 0); (0, 1); (2, 2); and (2, 0). Find the cdf of U_1 .

#5.12 Suppose $T \sim \text{Exp}(2)$. Find and graph $F_T(t)$.

p.28 #4.2 Suppose $Y \sim \text{Unif}[0, 10]$.

(a) Find $P(Y \in [3, 7])$.

(b) Find $P(Y \in [6, 12])$

P(Y + [6,12]) = P(Y + [6,10] U Y + (10,12])

= P(Y+[4,10]) + P(Y+(10,12]) As (10,12] & sl., P(Y+(10,12]) =0

°° P(YE[0,12]) = P(YE[0,10]) = 10-6 = 10 = 3

P1760)=1

