Tsinghua-Berkeley Shenzhen Institute Information Inference Fall 2017

Coursework 6

YOUR NAME June 11, 2021

• Acknowledgments: This template takes some materials from course CSE 547/Stat 548, University of Washington: https://courses.cs.washington.edu/courses/cse547/17sp/index.html. If you refer to other materials in your homework, please list here.

- Collaborators: I finish this template by myself. If you finish your homework all by yourself, make a similar statement. If you get help from others in finishing your homework, state like this:
 - 1.2 (b) was solved with the help from _____.
 - Discussion with _____ helped me finishing 1.3.

You may use enumerate to generate answers for each question:

- 6.1. Type of commonly used notations. Use another enumerate to start generate answers for sub-questions:
 - (a) Use \$ \$ to get an inline equation: $\mathbb{P}(A) = \mathbb{E}[\mathbb{1}_A(\omega)]$.
 - (b) Use equation to have equation in display math mode:

$$\frac{a+b}{2} \ge \sqrt{ab} \tag{1}$$

- (c) Use \eqref to get reference for equations: (1) holds when $a \ge 0, b \ge 0$.
- (d) Now we would introduce some commonly used notations:
 - i. Use \mathbb{P} , \mathbb{R} , \mathbb{E} .
 - ii. Use $$$ \mathbf{A}, \mathcal{X}, \mathcal{X}, \mathcal{Y}, \mathcal{X}, \mathcal{X}, \mathcal{X}, \mathcal{X}. $$$
 - iii. Use \underline{x}, \underline{y} to type vectors \underline{x}, y .
 - iv. Use \mathsf{x}, \mathsf{y}, \mathsf{z} to type random variables x, y, z. For simplicity, I have defined several macros so you could simply type \rvx, \rvy, \rvz. Don't forget \$ \$!
 - v. Thanks to these macros, we could have $\mathbb{R}, \mathbb{E}[x], \operatorname{Var}(y), \mathbb{P}(A), \perp, 1$ by typing \reals, \E[\rvx], \Var(\rvy), \Prob(A),\independent, \1.
 - vi. Now you can use \ux, \uy, \uz to type vectors $\underline{x}, \underline{y}, \underline{z}$, and use \urvx, \urvy, \urvz to type random vectors $\underline{x}, \underline{y}, \underline{z}$.
 - vii. Remember that $P_{\mathsf{x}|\mathsf{y}}(x|y) \triangleq \mathbb{P}(\mathsf{x} = x|\mathsf{y} = y)$.

 α Writing $\mathbb{P}(x)$ is wrong. \mathbb{P} should only operate on events. β x is a random variable, while x is a real number.

- (e) You may find https://en.wikibooks.org/wiki/LaTeX useful.
- (f) Writing LATEX online may be easier for beginners:
 - i. ShareLaTeX: https://www.sharelatex.com/.
 - ii. Overleaf: https://www.overleaf.com/.
- 6.2. You may need aligned equations for your homework, here are several examples:

Total propability rule:

$$\begin{split} \mathbb{P}(\mathbf{x} = x) &= \sum_{y \in \mathcal{Y}} \mathbb{P}(\mathbf{x} = x, \mathbf{y} = y) \\ &= \sum_{y \in \mathcal{Y}} \mathbb{P}(\mathbf{x} = x | \mathbf{y} = y) \, \mathbb{P}(\mathbf{y} = y), \end{split}$$

or

$$\begin{split} &P_{\mathbf{x}}(x) \\ &= \sum_{y \in \mathcal{Y}} P_{\mathbf{x} \mathbf{y}}(x,y) \\ &= \sum_{y \in \mathcal{Y}} P_{\mathbf{x} | \mathbf{y}}(x|y) P_{\mathbf{y}}(y). \end{split}$$

Indicator function:

$$\mathbb{1}_{A}(\omega) = \begin{cases} 1, & \text{if } \omega \in A, \\ 0, & \text{if } \omega \notin A. \end{cases}$$

6.3. You may need to add figure and source codes in your homework. Figure 1 is an example that compares the empirical distribution (histogram) and probability density function of the Gaussian random variable.

The source code to plot Figure 1 could be found in Appendix A. Here are the core codes:

4 [cnt, x_hist] = hist(data, nbins); % not to plot, only to get emperical distribution.

6 cnt = cnt / n / (x_hist(2) - x_hist(1)); % normalization, be careful :)

 $7 \mid \mathsf{bar}(\mathsf{x}_{-}\mathsf{hist}, \mathsf{cnt}); % \mathsf{plot} \mathsf{the} \mathsf{hist} \mathsf{using} \mathsf{bar}()$

To understand line 6, note that if we have n samples of x denoted by $x^{(i)}, i = 1, 2, \dots, n$, then the probability density function p_x could be estimated as

$$\begin{aligned} p_{\mathbf{x}}(x_0) &= \left. \frac{\mathrm{d}}{\mathrm{d}x} \, \mathbb{P}(\mathbf{x} \leq x) \right|_{x=x_0} \\ &\approx \left. \frac{\mathbb{P}(x_0 - \Delta x < \mathbf{x} \leq x_0)}{\Delta x} \right. \\ &\approx \left. \frac{1}{n\Delta x} \sum_{i=1}^n \mathbb{1}_{x^{(i)} \in (x_0 - \Delta x, x_0]} \right. \end{aligned}$$

Figure 1: Gaussian PDF and histogram of samples

6.4. An example of hypothesis testing:

$$\log \frac{\mathbb{P}(\mathsf{H} = H_1 | \mathsf{y} = y)}{\mathbb{P}(\mathsf{H} = H_0 | \mathsf{y} = y)} \mathop{\stackrel{\hat{\mathsf{H}} = H_1}{\gtrless}}_{\hat{\mathsf{H}} = H_0} \gamma$$

A Source code

Source code for plotting Figure 1 is shown as follows.

```
n = 1e6; % n samples
   data = randn(1e6, 1); % Generate n Random Gaussian samples.
   nbins = 50; % bins in your histogram
3
   [cnt, x_hist] = hist(data, nbins); % not to plot, only to get
        emperical distribution.
5
   figure;
   cnt = cnt / n / (x_hist(2) - x_hist(1)); % normalization, be
        careful :)
   bar(x_hist, cnt); % plot the hist using bar()
8
   hold on;
9
   x = -5 : 0.1 : 5;
   plot(x, normpdf(x), 'r', 'linewidth', 2);
   legend(\{'\$\hat{p}_{x}\}(x), '\$p_{x}\}(x), '\$p_{x}, 'Interpreter',
         'LaTeX', 'fontsize', 15);
   xlabel('$x$', 'Interpreter', 'LaTeX', 'fontsize', 15); % You may
12
        change the size accordingly
   ylabel('$p_{x}}(x)$', 'Interpreter', 'LaTeX', 'fontsize', 15);
   | title(\langle your-title-here \rangle)|
```

Listing 1: FigurePlot