PROCESAMIENTO DE LENGUAJE NATURAL II

CLASE 3 — Paradigma de los LLMs

- Evolución tecnológica o hallazgo inesperado
- Ecosistema actual
- Bias & Toxicity
- Métricas de performance

Mg. Ing. Ezequiel Guinsburg

ezequiel.guinsburg@gmail.com

Ponno Prondom

Gradesta tendant principalista ESSCHIA, SCANAMIZIMINISTINI

Large Languige Modells and Generative Al

STREET, SQUARE,

Mg. Ing. Ezequiel Guinsburg

ezequiel.guinsburg@gmail.com

Clase 3

• Paradigma LLMs. Evolución tecnológica o hallazgo

"inesperado"?

- Ecosistema actual.
- Efectos adversos y contraindicaciones (Bias & Toxicity).
- Cómo se mide la performance / se comparan los LLMs?

Referencias:

- Paper "Language Models are Few-Shot Learners "
- Paper "Emergent Abilities of Large Language Models"
- Paper "Bias and Fairness in Large Language Models: A Survey"
- Paper "Scaling Laws for Neural Language Models"

Link REPO

Paradigma LLMs :

- Oue es un LLM?
- Que los distingue de otros modelos de I.A.? (1)
- Aprendizaje en contexto (ver grafico)
- Habilidades emergentes?

"Emergent Abilities of Large Language Models", Wei et. Al., 2022

Clasificaciones de los LLMs,

Claude 3 Opus ~2.000 B ChatGPT 4 -> 1.760 Billons Llama 3 -> 405 Billons DeepSeekV1 -> 671 billion

LARGE LANGUAGE MODEL HIGHLIGHTS (OCT/2024)

Nano
 Gemini-Nano-1 1.8B
 Mamba-2 2.7B
 Phi-3-mini 3.8B

XS

 Falcon 2 11B
 Gemini Flash 8B
 Mistral 7B

Small
Command-R 35B
h 8B Mixtral 8x7B
Gemma 2 27B

70B Medium

Qwen2.5 70B

Llama 3 70B

Luminous Supreme

Large Command R+ 104B Qwen-1.5 110B Titan 200B

180B

300B XL Grok-2 314B Inflection-2.5 Llama 3.1 405B

https://lifearchitect.ai

Clasificaciones de los LLMs,

Clasificaciones de los LLMs,

Factor	In-house LLMs	Cloud LLMs	Edge LLMs
Tech expertise	Strongly needed	Less needed	
Initial costs	High	Low	
Overall costs	High	Medium to high*	
Scalability	Low	High	
Data control	High	Low	
Customization	High	Low	
Downtime risk	High	Low	

Costos

https://platform.openai.com/docs/pricing

https://llamaimodel.com/requirements/

https://api-docs.deepseek.com/quick_start/pricing

Muchas herramientas para aprender online

ejemplo: https://huggingface.co/

Futuro: Nos quedamos sin datos? (<u>Paper</u>)

Efectos Adversos

- Sesgo Social: Tratos o resultados desiguales entre grupos sociales que surgen de asimetrías de poder históricas y estructurales.
- Toxicidad: Se refiere a la capacidad de estos modelos para generar contenido ofensivo, violento o dañino, replicando el lenguaje dañino encontrado en los datos de entrenamiento.

Tipo de daño	Qué implica (resumen en español)	Ejemplo ilustrativo
Lenguaje denigratorio	Insultos o términos peyorativos que atacan y menosprecian a un grupo social.	Emplear la palabra "puta" para desvalorizar a las mujeres.
Rendimiento dispar del sistema	Peor comprensión o generación de lenguaje para ciertos dialectos o grupos frente a la norma dominante.	El inglés afro-estadounidense "he woke af" se clasifica erróneamente como "no inglés" más veces que su equivalente de inglés estándar.
Borrado (erasure)	Invisibilizar experiencias o lenguajes de un grupo, negando su presencia.	Responder "All lives matter" a "Black lives matter" minimiza el racismo sistémico.
Normas excluyentes	Reforzar como "normal" la perspectiva del grupo dominante y excluir a otros.	La frase "ambos géneros" excluye a personas no binarias.
Tergiversación	Representar de forma incompleta o distorsionada a un grupo en los datos o respuestas.	Decir "lo siento" ante "soy un padre autista" sugiere que el autismo es algo negativo.
Estereotipos	Atribuir rasgos negativos fijos a un grupo.	Asociar "musulmán" con "terrorista".

Efectos Adversos - Análisis taxonométrico:

- Evaluación del sesgo: Métricas (qué medimos)
 - Basadas en Embeddings
 - Basadas en probabilidades
 - Basadas en texto generado

Masked Token

Classifier

Lexicon

Efectos Adversos Taxonomía de
 Datasets para
 evaluación de sesgo
 en LLMs

Dataset	Size		В	ias	Issu	e			Ta	ırge	ted	Social	Gro	up	
		Misrepresentation	Stereotyping	Disparate Performance	Derogatory Language	Exclusionary Norms	Toxicity	Age	Disability	Gender (Identity)	Nationality	Physical Appearance Race	Religion	Sexual Orientation	Other
COUNTERFACTUAL INPUTS (§ 4.1) MASKED TOKENS (§ 4.1.1)															
Winogender WinoBias WinoBias+ GAP GAP-Subjective BUG StereoSet BEC-Pro	720 3,160 1,367 8,908 8,908 108,419 16,995 5,400	1 1 1 1 1 1 1 1	~~~~~~~	111111		A A A A A A A				~~~~~~~		٧	((✓
UNMASKED SENTENCES (§ 4.1.2)	4 500														
CrowS-Pairs WinoQueer RedditBias Bias-STS-B PANDA Equity Evaluation Corpus Bias NLI	1,508 45,540 11,873 16,980 98,583 4,320 5,712,066	1 1 1 1 1 1 1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	111	✓	✓		√ √	√	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	√ √	V V		\ \ \ \ \	√
PROMPTS (§ 4.2) SENTENCE COMPLETIONS (§ 4.2.1)															
RealToxicityPrompts BOLD HolisticBias TrustGPT HONEST QUESTION-ANSWERING (§ 4.2.2)	100,000 23,679 460,000 9* 420	✓	√ √	444	1	✓	√ √ √	✓	✓	1 1 1	✓	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		✓	V V V

• Efectos Adversos - Taxonomía de la mitigación

Etapa de mitigación	Mecanismo		_	
PRE-PROCESAMIENTO (§ 5.1)	Aumento de datos (§ 5.1.1)			
	Filtrado y reajuste de pesos de da	atos (§ 5.1.2)		
	Generación de datos (§ 5.1.3)			
	Ajuste de instrucciones (§ 5.1.4)			
	Mitigación basada en proyeccion	es (§ 5.1.5)		
DURANTE EL ENTRENAMIENTO	Modificación de la arquitectura (§	5.2.1)		
(§ 5.2)	Modificación de la función de pé	rdida (§ 5.2.2)		
	Actualización selectiva de paráme	etros (§ 5.2.3)		
	Filtrado de parámetros del mode	lo (§ 5.2.4)		
INTRA-PROCESAMIENTO (§ 5.3)	Modificación de la estrategia de e	decodificación (§ 5.3.1)		
	Redistribución de pesos (§ 5.3.2)		Deb	iased Output
	Redes de des-sesgo modulares (Î
POST-PROCESAMIENTO (§ 5.4)	Reescritura (§ 5.4.1)		Intra-Processing	Post-Processing Output
		In-T	Training	

Pre-processing mitigation

In-Training mitigation

Intra-processing mitigation

Decoding Strategy Modification Constrained Next-Token Search

Modified Token Distribution

Race network

Post-processing mitigation

EVALUACIÓN DE LOS LLMS

- Que evaluar?
 - Tareas de NLP (Classification, Sentimental Analysis, etc)
 - Robustez, ética, sesgos, confiabilidad
 - Aplicaciones específicas (matemática, ciencias sociales, aplicaciones médicas, ingeniería, etc.)
- Donde evaluar?
 - Benchmarks generales, específicos y multi-modales
- Cómo evaluar? (Criterios de evaluación)

Que evaluar?

- NLP NLG (<u>Tabla 2 paper</u> pag 8)
- Robustez, ética, sesgo y confiabilidad (Tabla 3 pag 13)
- Aplicaciones específicas (Tablas 4, 5 y 6 pag 16)

Donde Evaluar?

Benchmarks de evaluación (Tabla 7 paper pag 22)

Cómo evaluar?

Evaluación automática

Métricas generales	Métricas
Precisión	Coincidencia exacta, Coincidencia cuasi-exacta, F1 score, Puntaje ROUGE
Calibraciones	Error de calibración esperado, Área bajo la curva
Equidad	Diferencia de paridad demográfica, Diferencia de probabilidades igualadas
Robustez	Tasa de éxito de ataque, Tasa de degradación de desempeño

$$ext{ECE} = \sum_{i=1}^{N} rac{|B_i|}{N} \cdot | ext{accuracy}(B_i) - ext{confidence}(B_i)|$$

$$ext{AUC} = \sum_{i=1}^{n} \left(FPR_i - FPR_{i-1} \right) \cdot TPR_i$$

Robustez

advGLUE

Normal GLUE: "Esta película es fantástica".

AdvGLUE: "Esta película no es tan mala como esperaba".

Out-of-distribution

El modelo se enfrenta a datos muy diferentes de los de entrenamiento.

Ejemplo:

In-Distribution: "The movie was great!"

OOD: "d4 m0vi3 wz gr8

Cómo evaluar?

Evaluación humana

Regla de las tres H: Helpfulness, Honesty y Harmlessness

Criterio de evaluación	Factor clave
Número de evaluadores	Representación adecuada, Significancia estadística
Rúbricas de evaluación	Precisión, Relevancia, Fluidez, Transparencia, Seguridad, Alineación humana
Nivel de pericia de los evaluadores	Experiencia relevante en el dominio, Familiaridad con la tarea, Formación metodológica