Elaborazione dello spettro gamma

Spettro del Ra226

- ✓ Spettro del Ra226 in equilibrio con i suoi figli
 - Bi214
 - Pb214
- ✓ Acquisito con un Ge(Li)

Figure 12-19 Pulse height spectrum recorded from a 18 cm³ Ge(Li) detector for gamma rays emitted by ²²⁶Ra in equilibrium with its daughters. Gamma-ray energies and yields are given in Table 12-3. (From F. Adams and R. Dams, *Applied Gamma-Ray Spectrometry*, 2nd ed. Copyright 1970 by Pergamon Press, Ltd. Used with permission.)

Operazioni principali

- ✓ Individuazione dei picchi presenti
- ✓ Determinazione della loro posizione
- ✓ Determinazione delle energie corrispondenti
- ✓ Calcolo dell'area netta dei picchi
- ✓ Identificazione dei picchi e dei radionuclidi presenti
- ✓ Calcolo dell'attività
- ✓ Correzioni per il decadimento (eventuali)

Tipi di elaborazione

- ✓ Elaborazione manuale
 - Spettri semplici
 - Tools on-line: selezione ROI, markers, scala
 - · Tools off-line: SW analisi dati
- ✓ Elaborazione mediante computer
 - Programmi SW in grado di effettuare automaticamente le operazioni principali di elaborazione dello spettro

Individuazione dei picchi

✓ Effettuata visivamente su una rappresentazione grafica dello spettro

- ✓ Riconoscimento dell'esistenza dei picchi, determinazione dei canali di inizio e fine, posizione approssimata dei centroidi
- ✓ Problema legato all'individuazione di picchi molto piccoli, confusi con le fluttuazioni del fondo

Picchi e rumore

✓ Difficolta' di rivelare la presenza di un picco a causa del rumore

✓ Nei tre spettri la statistica e' la stessa, cambia la risoluzione energetica

Determinazione della posizione dei picchi

- ✓ Individuazione visiva
 - Accuratezza ± 0.5 canali
- √ Fit gaussiano del picco mediante programmi
 di analisi off-line
 - Accuratezza ± 0.05 canali

Sorgenti di calibrazione

TABLE 12-1 Gamma Rays Used as Energy Calibration Standards^a

Source	Energy (keV)	Source	Energy (keV)
²⁴¹ Am	59.536 ± 0.001	¹⁹² Ir	468.060 ± 0.010
¹⁰⁹ Cd	88.034 ± 0.010	Ann; kilation	511.003 ± 0.002
¹⁸² Ta	100.106 ± 0.001	207 Bi	569.690 ± 0.030
⁵⁷ Co	122.046 ± 0.020	²⁰⁸ T1	583.139 ± 0.023
¹⁴⁴ Ce	133.503 ± 0.020	¹⁹² Ir	604.378 + 0.020
⁵⁷ Co	136.465 ± 0.020	¹⁹² Ir	612.430 ± 0.020
¹⁴¹ Ce	145.442 ± 0.010	¹³⁷ Cs	661.615 + 0.030
¹⁸² Ta	152.435 ± 0.004	⁵⁴ Mn	834.840 + 0.050
¹³⁹ Ce	165.852 ± 0.010	**Y	898.023 ± 0.065
¹⁸² Ta	179.393 ± 0.003	²⁰⁷ Bi	1063.655 ± 0.040
¹⁸² Ta	222.110 ± 0.003	⁶⁰ Co	1173.231 ± 0.030
²¹² Pb	238.624 ± 0.008	²² Na	1274.550 ± 0.040
²⁰³ Hg	279.179 ± 0.010	⁶⁰ Co	1332.508 ± 0.015
¹⁹² Ir	295.938 ± 0.010	¹⁴⁰ La	1596.200 ± 0.040
¹⁹² Ir	308.440 ± 0.010	¹²⁴ Sb	1691.022 ± 0.040
192 Ir	316.490 ± 0.010	88 Y	1836.127 ± 0.050
^{131}I	364.491 ± 0.015	²⁰⁸ Tl	2614.708 ± 0.050
¹⁹⁸ Au	411.792 ± 0.008	²⁴ Na	2754.142 ± 0.060

[&]quot;The primary X-ray standard: Tungsten $K - \alpha_1 = 59.31918 \pm 0.00035$ keV (from Greenwood et al.). ⁵⁴

Source: Values from Gunnink et al.55

Area sotto il picco

- ✓ Il numero di eventi che contribuiscono al full energy counts peak si determina sottraendo il per fondo ed il continuum
- ✓ Per il fondo si esegue un'acquisizione senza sorgente
- ✓ Per il continuum, una interpolazione lineare tra i valori del continuum ai lati del picco rappresenta l'approccio piu' semplice
- ✓ Per risolvere picchi vicini o parzialmente sovrapposti, in genere si esegue un fit sulla porzione di picco che puo' essere risolta e si assume che il resto del picco possa essere descritto dalla funzione di fit.

Metodo di Covell

✓ Stima del Fondo

$$F = \frac{C(A) + C(B)}{2} \cdot N$$

✓ Area netta del picco

$$A_{\mathcal{N}} = \sum_{i=0}^{\mathcal{N}-1} C(A+i) - \frac{C(A)+C(B)}{2} \cdot \mathcal{N}$$

Varianza

Dato che i conteggi seguono la statistica di Poisson, ponendo:

$$S = \sum_{i=0}^{N-1} C(A+i)$$

sara'

$$\sigma^2 = S$$

La varianza di A_N sara':

$$\sigma^2(A_N) = S + F \cdot \frac{N}{2}$$

Metodo dei canali adiacenti

✓ Metodo piu' accurato

 Si prendono m canali prima e dopo il picco, se ne fanno le rispettive medie e su quelle si calcola il fondo

$$F = \frac{Mi + Mf}{2} \cdot N$$

$$Mi = \frac{1}{m} \sum_{i=0}^{m-1} C(A - i)$$

$$Mf = \frac{1}{m} \sum_{i=0}^{m-1} C(B + i)$$

Picchi multipli

✓ Varianza

$$\sigma^2(An) = S + F \cdot \frac{N}{2m}$$

- ✓ Diminuisce all'aumentare di m
- ✓ m pero' deve essere nelle vicinanze del picco
 - Compromesso: 5<m<10
- ✓ Funziona anche per multipletti

Fig. 26. — Valutazione dell'area netta delle singole componenti di un doppietto in base al metodo descritto nel testo. L'area netta della prima componente risulterà pari alla somma dei canali da C1 a C2, diminuita dall'area F1. Analogamente per la seconda componente.

Analisi statistica

- ✓ Discriminare picchi molto piccoli dal fondo
 - Verificare che $A_{\rm N}$ sia significativamente diverso da zero, al livello di probabilita' considerato (Confidence Level)
 - · Dovra' quindi essere:

$$A_{N} > t \cdot \sigma (A_{N})$$
 $A_{N} > t \cdot \sqrt{S + \frac{FN}{2m}}$

 Un picco che soddisfi questa relazione per un valore del t di Student corrispondente ad un dato livello di probabilita' avra' pari probabilita' di essere un "vero" picco