Tiny MD Laboratorio 2 Vectorización

Fernando Blanco Ignacio J. Chevallier-Boutell

Detalles computacionales

Computadora	ID	Microarq.	Cores	Base	Turbo	Cache
Desktop	Intel Core i5-4460	Haswell	4	$3.20~\mathrm{GHz}$	$3.40~\mathrm{GHz}$	$6~\mathrm{MB}$
Jupiterace	Intel Xeon E5-2680 v4	Broadwell	14	$2.40~\mathrm{GHz}$	$3.30~\mathrm{GHz}$	$35~\mathrm{MB}$

Nuevo punto cero

- A: -O2 -march=native -funroll-loops.
- B: -O3 -march=native -funroll-loops.
- C: -O3 -march=native -funroll-loops.
- D: -Ofast -march=native -ffast-math -funrollloops -floop-block

Función	Desktop (-O0)	Jupiterace (-O0)	Jupiterace (D)
Forces	67.88%	68.19%	96.12%
Minimum image	29.44%	29.50%	<u> </u>
Velocity verlet	0.90%	0.86%	0.35%

Nuevo punto cero

Cantidad de partículas:

 $2916 \rightarrow 5324$

$AoS \rightarrow SoA$

```
fxyz[i + 0] += fr * rx;
                          fxyz[i] \leftarrow fr * rx;
fxyz[i + 1] += fr * ry;
                          fxyz[i + N] += fr * ry;
fxyz[i + 2] += fr * rz;
                          fxyz[i + 2*N] += fr * rz;
fxyz[j + 0] -= fr * rx;
                          fxyz[j] = fr * rx;
fxyz[j + 1] -= fr * ry;
                          fxyz[j + N] = fr * ry;
fxyz[j + 2] = fr * rz;
                          fxyz[j + 2*N] -= fr
```

AoS

SoA

$AoS \rightarrow SoA$

Cantidad de partículas:

5324 → 6912

Energía potencial: una segunda métrica

- SoA ayuda a la autovectorización del compilador.
- SoA+ISPC mejoran en más de un 50 % los GFLOPS respecto a AoS
- \bullet 2916 \rightarrow 5324 \rightarrow 6912
- El código no se ha roto