The Valuation of Storage

Long Zhao McCombs School of Business, University of Texas - Austin

Joint work with Kumar Muthuraman and Stathis Tompaidis

December 3, 2014

Examples of Storage

- Silos Agricultural Commodities
- Tanks Oil
- Caverns Natural Gas
- \bullet Lake Reservoirs and Dams Water \Rightarrow Electricity.

Historical Prices

Future Prices

Future Prices

Price Dynamics

- Schwartz (1997)
- Schwartz and Smith (2000)
- Routledge, Seppi and Spatt(2000)
- Jaillet, Ronn and Tompaidis (2004)

Mismatch Between Production and Consumption

Production and Consumption of Natural Gas

Constraints of Storage

- Transaction costs.
- Depreciation.
- Limited delivery rate.
- Finite capacity.

Storage Valuation

- Fackler and Livingston (2002)
- Hodges (2004)
- Chen and Forsyth (2008,2010)
- Boogert and Jong (2008)
- Thompson, Davison and Rasmussen (2009)
- Secomandi (2010)

Method

- Continuous Time Singular Control ⇒ 2-d HJB equation.
- HJB equation (free boundary problem) is very hard to solve.
- Moving boundary method is used in 1 dimension.
 - Start with an initial guess and iteratively improve it until convergence.
 - \bullet A sequence of fixed boundary problems \to free boundary problem

1 Dimension VS 2 Dimensions

- Muthuraman and Kumar (2006)
- Chockalingam and Muthuraman (2007,2010)
- Muthuraman and Zha (2008)
- Feng and Muthuraman (2010)

Overview of Results

- Methodology.
 - Fixed boundary problem is solved efficiently.
 - Moving boundary method is generalized to 2 dimensions.
- Value of storage.
 - The value of storage with non-trivial transaction costs and finite capacity is calculated.
 - The optimal strategy is found.

Model

One factor model

$$dS_t = \kappa (\mu - \ln S_t) S_t dt + \sigma S_t dW_t$$

• By Ito's formula, $X_t = \ln(S_t)$ is an Ornstein-Uhlenbeck process,

$$dX_t = \kappa(\alpha - X_t)dt + \sigma dW_t.$$

where $\alpha = \mu - \sigma^2/(2\kappa)$.

Model

• Storage level at time t is Q_t . L_t , U_t represent cumulative injections and withdrawals at time t.

$$dQ_t = dL_t - dU_t$$

- ullet Admissible if $Q_t \in \left(Q_{min}, Q_{max}
 ight) \ \ orall t \geq 0.$
- Costs of injection and withdrawal, $\lambda(Q_t)$ and $\mu(Q_t)$, are monotone and bounded.

Model

• Objective: to maximize discounted infinite-horizon cash flows.

$$V(x,q) = \max_{(L,U)\in\mathcal{U}} \mathbb{E}_{x,q} \left(\int_0^\infty e^{-\beta t} (e^{X_t} - \mu(Q_t^{(1)})) dU_t - \int_0^\infty e^{-\beta t} (e^{X_t} + \lambda(Q_t^{(2)})) dL_t \right)$$
(1)

where $X_0 = x$ and $Q_0 = q$.

$$\mu = 0, \ \lambda = 0 \ \mathsf{and} \ \beta = 0$$

$$\mu = 0, \ \lambda = 0 \ \text{and} \ \beta = 0$$

$$\mu = 0, \ \lambda = 0 \ \mathbf{but} \ \beta > 0$$

$$\mu =$$
Constant $> 0, \ \lambda =$ Constant $> 0 \$ and $\beta > 0$

$\mu =$ Constant $> 0, \ \lambda =$ Constant > 0 and $\beta > 0$

$$V(s) = \sup_{ au \in \mathcal{T}} \mathbb{E}_s \{ e^{-eta au} \left(S_{ au} - \mu
ight) \}$$
 $V(0+) = 0$ If $V(s) - (s+\lambda) < 0$, do not buy at Price s . $V(0+) - (0+\lambda) = -\lambda < 0$.

$\mu =$ Constant $> 0, \ \lambda =$ Constant $> 0 \$ and $\beta > 0 \$

Figure : Small λ

Figure : Large λ

Observation

Observation

When the price is high enough, regardless of storage, selling is the optimal strategy.

$$\mu(q)\downarrow, \ \lambda(q)\uparrow \ {\sf and} \ \ eta>0$$

The Hamilton-Jacobi-Bellman Equation

• Dynamic programming arguments and Ito's formula yield the Hamilton-Jacobi-Bellman (HJB) equation.

$$\max\left(\mathcal{L}V, \frac{\partial V}{\partial q} - (e^{x} + \lambda(q)), -\frac{\partial V}{\partial q} + (e^{x} - \mu(q))\right) = 0$$

with
$$\mathcal{L}V = \frac{1}{2}\sigma^2 \frac{\partial^2 V}{\partial x^2} + \alpha(\kappa - x)\frac{\partial V}{\partial x} - \beta V$$
.

 A verification theorem assures us that a function that solves the HJB equation is the value function for the original control problem and a policy that achieves this value function is the optimal policy.

The Hamilton-Jacobi-Bellman Equation

 Assume V is known and the change of policy at one point (x_0, q_0) won't affect it. Now at (x_0, q_0) , ϵ is bought at price e^{x_0} . The average buying profit is

$$\frac{[V(x_0, q_0 + \epsilon) - V(x_0, q_0)] - \epsilon(e^x + \lambda(q))}{\epsilon} \xrightarrow{\epsilon \to 0} \frac{\partial V}{\partial q} - (e^x + \lambda(q))$$

- $\mathcal{L}V(x,q)$: holding profit at (x,q).
- $\frac{\partial V}{\partial q}(x,q) (e^x + \lambda(q))$: buying profit at (x,q).
- $-\frac{\partial V}{\partial q}(x,q) + (e^x \mu(q))$: selling profit at (x,q).
- HJB equation.

$$\max\left(\mathcal{L}V, rac{\partial V}{\partial q} - (e^{x} + \lambda(q)), -rac{\partial V}{\partial q} + (e^{x} - \mu(q))
ight) = 0$$

Holding, Selling and Buying Regions

regions.

• The state space $(x,q) \in \mathbb{R}^2_+$ is divided into three kinds of

- ullet Holding region: holding profit = 0, selling & buying profit < 0
- ullet Selling region: selling profit =0, holding & buying profit <0
- ullet Buying region: buying profit =0, holding & selling profit <0

Solving the Fixed Boundary Problem

Model

• In the holding region

$$\frac{1}{2}\sigma^2 \frac{\partial^2 V}{\partial x^2} + \alpha(\kappa - x) \frac{\partial V}{\partial x} - \beta V = 0$$

• Defining $y = \kappa(x - \alpha)^2/\sigma^2$, we have

$$y\frac{\partial^2 V}{\partial y^2} + (0.5 - y)\frac{\partial V}{\partial y} - \frac{\beta}{2\kappa}V = 0$$

which is the Kummer Equation. The solution is the sum of hypergeometric1F1 and the hypergeometricU functions.

$$V(x,q) = A(q)$$
HyperGeoU $\left(\frac{\beta}{2\kappa}, \frac{1}{2}, \frac{\kappa}{\sigma^2}(x-\alpha)^2\right)$
+ $B(q)$ HyperGeo1F1 $\left(\frac{\beta}{2\kappa}, \frac{1}{2}, \frac{\kappa}{\sigma^2}(x-\alpha)^2\right)$

Boundary conditions can determine A(q) and B(q)

- Challenges
 - Initial guess.
 - 2 dimensions.
 - Direction.
 - Distance.

Idea: Start with an initial guess and iteratively improve it until convergence.

- Challenges
 - Initial guess.
 - 2 dimensions.
 - Direction.
 - Distance.

Theorem

When the price is high enough, regardless of storage, selling is the optimal strategy.

- Challenges
 - Initial guess.
 - 2 dimensions.
 - Direction.
 - Distance.

Figure: Initial Guess

- Challenges
 - Initial guess.
 - 2 dimensions.
 - Direction.
 - Distance.

Figure: Initial Guess

- Challenges
 - Initial guess.
 - 2 dimensions.
 - Direction.
 - Distance.

Figure: Initial Guess

Algorithm

- **1** Begin with selling at very high price for all q > 0.
- Move selling and buying boundaries along price x alternatively until convergence.

Distance

Sell

Figure: Current Policy

Distance

Sell

Figure : Current Policy

Figure : Selling Profit

Distance

Sell

Figure : Current Policy

Figure : After Movement

Buy

Figure : Current Policy

Buy

Figure: Current Policy

Figure: Buying Profit

Buy

Figure: Current Policy

Figure : After Movement

Theorem

Each movement improves value function. Namely

$$\Delta V^{n+1} = V^{n+1} - V^n > 0.$$

Theorem

Each movement improves value function. Namely

$$\Delta V^{n+1} = V^{n+1} - V^n > 0.$$

Theorem

Each movement improves value function. Namely

$$\Delta V^{n+1} = V^{n+1} - V^n > 0.$$

Theorem

Each movement improves value function. Namely $\Delta V^{n+1} = V^{n+1} - V^n > 0$.

- $\mathcal{L}\Delta V^{n+1}(x,0) = 0 \ \forall x \in \mathbb{R}.$ $\Rightarrow \Delta V^{n+1}(x,0) = 0.$
- $\mathcal{L}V = \frac{1}{2}\sigma^2 \frac{\partial^2 V}{\partial x^2} + \alpha(\kappa x) \frac{\partial V}{\partial x} \beta V$ Maximum Principle $\Rightarrow \Delta V_a^{n+1}(x,q) \ge 0$

Theorem

The boundaries can be kept moving.

Proof.

$$\Leftrightarrow (-V_{q}^{n+1}(x,q) + (e^{x} - \mu(q))_{x}|_{S^{n+1}} < 0$$

$$\Leftrightarrow (-V_{q}^{n+1}(x,q) + e^{x})_{x}|_{S^{n+1}} < 0$$

$$\Leftrightarrow (-V_{q}^{n+1}(x,q) + V_{q}^{n}(x,q))_{x}|_{S^{n+1}} < 0$$

$$\Leftrightarrow (\Delta V_{q}^{n+1}(x,q))_{x}|_{S^{n+1}} > 0$$

Extensions

- Seasonality and Finite time.
- Depreciation.
- Random injection and withdrawal.
- Buying and selling price follows different but related stochastic processes.