TMT4110 KJEMI

LØSNINGSFORSLAG TIL ØVING NR. 12, VÅR 2011

Oppgave 1

a)

2-metyl-propan (isobutan)

sykloheksan

fenol

b)

H₃C-CH₂-CH=CH₂

1-buten

Oppgave 2

a)

Alkoholer: R–OH. Aldehyder: R–C(=O)–H med O dobbeltbinding til C og H enkeltbinding til C. Ketoner: R–C(=O)–R'. Etere: R–O–R'.

b)

Sykliske hydrokarboner har en (eller flere) ringer av C hvor det er enkeltbindinger mellom hvert av C-atomene. Aromatiske hydrokarboner har en 6-ring av C med vekselvis enkelt- og dobbeltbindinger i ringen, eller mer korrekt resonans-struktur mellom C-atomene.

1-isopropy1-3-metyl syldohehoan:

Hetyl propyleter: CH3-0-CH2-CH3-CH3

2-pertanon: 0 Hac-C-CHz-CHz-CHz

Oppgave 3

a)

Elektronegativitet: Et atoms evne til å trekke på elektroner. Øker mot høyre og avtar svakt nedover i det periodiske system.

b)

c)

CH₄: Ideelt tetraeder, bindingsvinkel 109,5°.

H₂O: Tetraedisk plassering av 4 elektronpar, bøyd molekyl, det ikke-bindende elektronparet trenger større plass, bindingsvinkel mindre enn 109,5°.

BF₃: 3 elektronpar plassert med 120° vinkel, trigonalt plant molekyl.

XeF₄: 6 elektronpar rundt sentralatomet, oktaedrisk plassert, plankvadratisk molekyl fordi de to frie elektronparene plasseres over og under molekylplanet. Bindingsvinkel 90°.

SO₂: 3 elektronpar rundt sentralatomet, trigonal plan geometri, bøyd molekyl, det ikkebindende elektronparet trenger større plass, bindingsvinkel mindre enn 120°.

d)

H₂O og SO₂

e)

Hybridisering i 3-metyl-2-heksen: De to karbonatomene ved dobbeltbindingen sp², de fem andre har sp³ hybridisering.

Oppgave 4

i) eten (etylen):

a)

Monomer:

Polymer:

polyeten (polyetylen): (-CH₂-CH₂-)_n

 CH_3

ii) propen (propylen): CH₂=CH-CH₃

polypropen (polypropylen): $(-CH_2-CH-)_n$

iii) vinylklorid: CH₂=CHCl PVC: (-CH₂-CHCl-)_n

 $CH_2=CH_2$

Ved addisjonspolymerisasjon bindes monomere sammen ved hjelp av en ny binding. Denne forutsetter at monomeren har en dobbeltbinding, hvor den ene kan brytes.

Oppgave 5

a)

En termoplast kan omformes ved smelting, mens herdeplaster får en endelig form når den stivner.

b)

Binding mellom molekylkjedene. Gjør plasten til en herdeplast.

Oppgave 6

a)

Addisjonspolymerisasjon: Monomerene henger seg sammen uten at noe blir borte. Kondensasjonspolymerisasjon: Ved dannelse av bindingen mellom monomerene spaltes av et lite molekyl, normalt vann.

b)

OH-gruppene i alkoholen binder seg til hver sin syregruppe, og de to syregruppene binder seg til hver sin alkohol. Dette gir lange kjeder eller ringer.

c)
Samme som i oppgave 6b, men med NH₂ i stedet for OH.

H O C
$$+ (CH_{2})_{6}N$$
 H O O $+ (CH_{2})_{6}N$ H H O O $+ (CH_{2})_{6}N$ H $+ (CH_{2})_{6}N$ $+ (CH_$

d) R-OH + R'-COOH \rightarrow R'-COO-R + H₂O R-NH₂ + R'-COOH \rightarrow R'-CONH-R + H₂O

e)

At flere ulike monomere kombineres sammen, plastkjedene inneholder deler av minst to ulike polymere.