

Dear students; I wish you best of luck for your final TU exam. I have prepared these 5 sets to prepare Mathematics I. You solve these sets as an “Final Assignment” as a part of your practical marks

St. Xavier's College
Bachelor of Science in Computer Science and Information Technology

Semester: First

Course No:MTH-112

Course Title: Mathematics I

Send up examination 2018(2074)

Sub: Mathematics

Full Marks: 80

Time: 3 hrs

Pass Marks: 32

Candidates are required to give their answers in their own words as far as practicable.

Set1

Group A

(3 x 10 = 30)

Attempt any three questions.

1. (a) A function is defined by $f(x) = \begin{cases} 1-x, & \text{if } x \leq -1 \\ x^2 & \text{if } x > -1 \end{cases}$ [5]

Evaluate $f(-3)$; $f(-1)$ and $f(0)$ and sketch the graph.

(b) Prove that the limit $\lim_{x \rightarrow 0} \frac{|x|}{x}$ does not exist. [5]

2. (a) Sketch the curve : $\frac{2x^2}{x^2 - 1}$ [5]

(b) Estimate the area between the curve $y = e^x$ and the lines $x = 0$ and $x = 1$, using rectangle method. [5]

3. (a) Show that the volume of a sphere of radius r is $\frac{4}{3}\pi r^3$. [4]

(b) Define initial value problem. Solve: $x^2 y'' + xy' = 1$, $x > 0$, $y'(1) = 0$ and $y(1) = 0$. [6]

4. (a) Find the torsion, normal and curvature of helix curve: $(2\cos t)\vec{i} + (2\sin t)\vec{j} + 3t\vec{k}$. [6]

(b) Show that the curvature of a circle of radius a is $1/a$. [4]

Group B

(10 x 5 = 50)

Attempt any ten questions.

5. Determine whether each of the following functions is even, odd, or neither even nor odd.

(a) $y = x^5 + x$ (b) $y = 1 - x^4$ (c) $y = 2x - x^2$

6. Define continuity of a function at a point $x = a$. Show that the function $f(x) = 1 - \sqrt{1 - x^2}$ is continuous on the interval $[-1, 1]$.

7. Verify the Rolle's theorem for $f(x) = x^3 - x^2 - 6x + 2$ in $[0, 3]$.

8. Find the third approximation x_3 to the root of the equation $f(x) = x^3 - 6x - 5$ setting $x_0 = 2$.

9. Evaluate: $\int_{-\infty}^0 x e^x dx.$

10. Find the volume of the solid obtained by rotating about y - axis the region between $y = x$ and $y = x^2$.

11. Solve: $y'' + y' - 6y = 0, x > 0, y'(0) = 0 \text{ and } y(0) = 1.$

12. Find the curvature of the twisted cubic $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ at a general point and at $(0, 0, 0)$.

13. Show that the series $\sum_{n=0}^{\infty} \frac{1}{1+n^2}$ converges.

14. Calculate: $\iint_R f(x, y) dA$ for $r = f(x, y) = x^2 y - 2xy, R : -2 \leq x \leq 0, 0 \leq y \leq 3.$

15. Find the partial derivatives of $f(x, y) = x^3 + x^2 y^3 - 2y^2$ at $(2, 1).$

Set2

Group A

(3 x 10 = 30)

Attempt any three questions.

1. (a) A function is defined by $f(x) = \begin{cases} 1+x, & \text{if } x \leq 1 \\ x^2 & \text{if } x > 1 \end{cases}$ [5]
 Evaluate $f(3); f(1)$ and $f(0)$ and sketch the graph.

(b) Prove that the limit $\lim_{x \rightarrow 0} |x|$ exists then find its value [5]

2. (a) Sketch the curve : $f(x) = \frac{x^2}{\sqrt{x+1}}.$ [5]
 (b) Estimate the area between the curve $y = x^2$ and the lines $x = 0$ and $x = 1,$ using rectangle method. [5]

3. (a) Find the volume of the solid obtained by rotating about the x -axis the region under the curve $y = \sqrt{x}$ from 0 to 1. [4]
 (b) Define order of a differential equation.
 Solve: $\frac{du}{dt} = \frac{2t + \sec^2 t}{2u}, u(0) = -5.$ [6]

4. (a) Find the the unit normal and binormal vectors for the circular helix $(\cos t) \vec{i} + (\sin t) \vec{j} + t \vec{k}.$ [6]
 (b) Show that $x^2 + y^2 + z^2 + 4x - 6y + 2z + 6 = 0$ is the equation of a sphere, and find its center and radius. [4]

Group B

(10 x 5 = 50)

Attempt any ten questions.

5. Determine whether each of the following functions is even, odd, or neither even nor odd.
 (a) $y = x^5 + x$ (b) $y = 1 - x^4$ (c) $y = 2x - x^2$

6. Find an equation of the tangent line to the parabola $y = 2x - x^2$ at the point $P(1, 1).$

7. Where is the function $f(x) = |x|$ differentiable?

8. Starting with $x_1 = 2,$ find the third approximation x_3 to the root of the equation $f(x) = x^3 - 2x - 5.$

9. State Net change theorem. A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

(a) Find the displacement of the particle during the time period $1 \leq t \leq 4$.
 (b) Find the distance traveled during this time period.

10. Find the length of the arc of the semi-cubical parabola $y^2 = x^3$ between the points $(1, 1)$ and $(4, 8)$.

11. Define homogeneous second-order linear differential equation.
 Solve: $y'' + y = 0$, $x > 0$, $y'(0)=3$ and $y(0)=2$.

12. Find a vector perpendicular to the plane that passes through the points $P(1, 4, 6)$, $Q(-2, 5, -1)$ and $R(1, -1, 1)$.

13. Determine whether the series $\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$ converges or diverges.

14. Evaluate the iterated integrals. $\int_0^3 \int_1^2 x^2 y dy dx$ and $\int_1^2 \int_0^3 x^2 y dx dy$.

15. Find the length of the arc of the circular helix with vector equation
 $\vec{r}(t) = (\cos t) \vec{i} + (\sin t) \vec{j} + t \vec{k}$ from the point $(1, 0, 0)$ to the point $(1, 0, 2\pi)$.

Set3

Group A

(3 x 10 = 30)

Attempt any three questions.

1. (a) A function is defined by $f(x) = \begin{cases} x+2, & \text{if } x < 0 \\ 1-x & \text{if } x \geq 0 \end{cases}$ [5]

Find domain and sketch the graph.

(b) Evaluate the limit $t \xrightarrow{\lim} 0$ $\frac{\sqrt{t^2 + 9} - 3}{t^2}$. [5]

2. (a) Sketch the curve : $f(x) = x e^x$. [5]

(b) Estimate the area of the region bounded above by $y = e^x$, bounded below by $y = x$ and bounded on the sides by $x = 0$ and $x = 1$. [5]

3. (a) Find the volume of the solid obtained by rotating the region bounded by , $y = x^3$, $y = 8$ and $x = 0$ about the y-axis. [4]

(b) Define degree of a differential equation. Solve the differential equation : $\frac{dy}{dx} = \frac{x^2}{y^2}$ and

hence find the solution of this equation that satisfies the initial condition $y(0) = 2$. [6]

4. (a) Find a vector equation and parametric equations for the line that passes through the point $(5, 1, 3)$ and is parallel to the vector $\vec{i} + 4\vec{j} - 2\vec{k}$. Find two other points on the line. [6]

(b) If $\vec{a} = \vec{i} + 2\vec{j} - 3\vec{k}$ and $\vec{b} = 4\vec{i} + 7\vec{k}$, find the unit vector along $2\vec{a} + 3\vec{b}$. [4]

Group B

(10 x 5 = 50)

Attempt any ten questions.

5. Determine whether each of the following functions is even, odd, or neither even nor odd.

(a) $y = x^5 + x$ (b) $y = 1 - x^4$ (c) $y = 2x - x^2$

6. Find the horizontal and vertical asymptotes of the graph of the function $f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$.

7. Suppose that $f(0) = -3$ and $f'(x) \leq 5$ for all values of x . How large can $f(2)$ possibly be?

8. Find the curvature of the parabola $y = x^2$ at the points $(0, 0)$, $(1, 1)$ and $(2, 4)$

9. Evaluate: $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx.$

10. Find the length of the arc of the parabola $y^2 = x$ from the points (0, 0) and (1, 1).

11. Define non-homogeneous second-order linear differential equation.

Solve: $y'' + y' - 2y = x^2.$

12. Find the Maclaurin series of the function $f(x) = e^x$ and its radius of convergence.

13. Find the distance between two parallel planes $10x + 2y - 2z = 5$ and $5x + y - z = 1$.

14. Evaluate: $\iint_R f(x, y) dA$ for $f(x, y) = y \sin(xy)$, $R = [1, 2] \times [0, \pi]$.

15. Use the scalar triple product to show that the vectors, $\vec{a} = \vec{i} + 4\vec{j} - 7\vec{k}$, $\vec{a} = 2\vec{i} - \vec{j} + 4\vec{k}$ and $\vec{a} = -9\vec{j} + 18\vec{k}$ are coplanar.

Set4

Group A

(3 x 10 = 30)

Attempt any three questions.

1. (a) A function is defined by $f(x) = \frac{3x + |x|}{x}$ [5]

Evaluate domain and sketch the graph.

(b) If $f(x) = \begin{cases} \sqrt{x-4}, & \text{if } x > 4 \\ 8-2x & \text{if } x < 4 \end{cases}$, determine whether limit exists or not. [5]

2. (a) Sketch the curve : $f(x) = \frac{\cos x}{2 + \sin x}$. [5]

(b) Estimate the area between the curve $y = \frac{1}{x}$ and the lines $x = 0$ and $x = 1$, using Trapezoidal rule. [5]

3. (a) The region enclosed by the curves $y = x$ and $y = x^2$ and is rotated about the x-axis.

Find the volume of the resulting solid. [4]

(b) Define orthogonal trajectories. Find the orthogonal trajectories of the family of curves $x = ky^2$, where k is an arbitrary constant. [6]

4. (a) Find parametric equations and symmetric equations of the line that passes through the points A(2, 4, -3) and B(3, -1, 1). At what point does this line intersect the -plane? [6]

(b) Find the direction angles of the vector $\langle 1, 2, 3 \rangle$. [4]

Group B

(10 x 5 = 50)

Attempt any ten questions.

5. Determine whether each of the following functions is even, odd, or neither even nor odd.

(a) $y = x^5 + x$ (b) $y = 1 - x^4$ (c) $y = 2x - x^2$

6. Define continuity of a function at a point $x = a$. Show that the function $f(x) = 1 - \sqrt{1 - x^2}$ is continuous on the interval $[-1, 1]$.

7. Evaluate the following, using L Hospital's Rule $\lim_{x \rightarrow 0} \frac{\tan x - x}{x^3}$.

8. A cylindrical can is to be made to hold 1 L of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can.

9. Evaluate: $\int_0^1 \ln x \, dx.$

10. Find the arc length function for the curve $y = x^2 - \frac{1}{8} \ln x$ taking the point P(1, 1) as the starting point.

11. What is the solution of non-homogeneous second-order linear differential equation.

Solve: $y'' - 4y = xe^x + \cos 2x.$

12. Find the Maclaurin's series for the function $f(x) = x \cos x.$

13. Find the sum of the series $\sum_{n=1}^{\infty} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right).$

14. Find the angle between the planes $x + y + z = 1$ and $x - 3y + 2z = 1.$ Find symmetric equations for the line of intersection L of these two planes.

15. Find the second partial derivatives of $f(x, y) = x^3 + x^2 y^3 - 2y^2.$

Set5

Group A

(3 x 10 = 30)

Attempt any three questions.

1. (a) A function is defined by $f(x) = \sqrt{x-5}$ [5]
Find domain and sketch the graph.

(b) Prove that the limit $\lim_{x \rightarrow 0} x^2 \sin \frac{1}{x} = 0.$ [5]

2. (a) Sketch the curve : $f(x) = \ln(4 - x^2).$ [5]
(b) Estimate the area between the curve $y = e^{x^2}$ and the lines $x = 0$ and $x = 1,$ using Simpson's rule. [5]

3. (a) Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y = 2x^2 - x^3$ and $y = 0.$ [4]

(b) Define differential equation. Solve: $x \ln x = y(1 + \sqrt{3 + y^2})$ y' if $y(1) = 1.$ [6]

4. (a) Show that the lines and with parametric equations

$$\begin{aligned} x &= 1 + t & y &= -2 + 3t & z &= 4 - t \\ x &= 2s & y &= 3 + s & z &= -4 + 4s \end{aligned}$$
 are **skew lines**; that is, they do not intersect and are not parallel (and therefore do not lie in the same plane) [6]

(b) Find the scalar projection and vector projection of $\vec{b} = \langle 1, 1, 2 \rangle$ onto $\vec{a} = \langle -2, 3, 1 \rangle$ [4]

Group B

(10 x 5 = 50)

Attempt any ten questions.

5. Determine whether each of the following functions is even, odd, or neither even nor odd.

(a) $y = x^5 + x$ (b) $y = 1 - x^4$ (c) $y = 2x - x^2$

6. Define indeterminate forms. Evaluate the following: $\lim_{x \rightarrow 0^+} x^x.$

7. Find an equation of the plane that passes through the points P(1, 3, 2), Q(3, -1, 6) and R(5, 2, 0).

8. A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a

straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

9. For what value of P, the integral $\int_1^{\infty} \frac{1}{x^P} dx$ is convergent?

10. The curve $y = \sqrt{4 - x^2}$, $-1 \leq x \leq 1$, is an arc of the circle $x^2 + y^2 = 4$. Find the area of the surface obtained by rotating this arc about the x-axis.

11. Solve: $y'' + y = e^x + x^3$, $y'(0) = 0$ and $y(0) = 2$.

12. Find the point at which the line with parametric equations,
 $x = 2 + 3t$ $y = -4t$ $z = 5 + t$, intersects the plane
 $4x + 5y - 2z = 18$.

13. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(1+n)}$ converges, find its sum.

14. Find the volume of the solid that is bounded by the elliptic paraboloid $x^2 + 2y^2 + z = 16$, the planes $x = 2$ and $y = 2$, and the three coordinate planes.

15. Find an equation of the plane through the point $(2, 4, -1)$ with normal vector $\langle 2, 3, 4 \rangle$. Find the intercepts and sketch the plane.

Best of luck!!!!!!