

广东专插本

十年真题

高等数学真题强化

□ 广东第一本集10年真 题的真题集,通过真题 了解往年的命题趋势, 预测考点,熟悉题型。

吕言教育专插本出品

目录

厂东省	2009年普通高等学校本科插班生招生考试	《高等数学》	4
广东省	2010年普通高等学校本科插班生招生考试	《高等数学》	7
广东省	2011年普通高等学校本科插班生招生考试	《高等数学》	10
广东省	2012年普通高等学校本科插班生招生考试	《高等数学》	13
广东省	2013年普通高等学校本科插班生招生考试	《高等数学》	16
广东省	2014年普通高等学校本科插班生招生考试	《高等数学》	19
广东省	2015年普通高等学校本科插班生招生考试	《高等数学》	23
广东省	2016年普通高等学校本科插班生招生考试	《高等数学》	26
广东省	2017年普通高等学校本科插班生招生考试	《高等数学》	29
	2018年普通高等学校本科插班生招生考试		
广东省	2019年普通高等学校本科插班生招生考试	《高等数学》	36
			La III. de Verranne
ピナル	2000 左並泽京然坐於大利托斯井初井 水平	// 六 左左 松4 244 W	\$ 4. # # # # # # # # # # # # # # # # # # #
	2009 年普通高等学校本科插班生招生考试		
	2009 年普通高等学校本科插班生招生考试2010 年普通高等学校本科插班生招生考试		
广东省		《高等数学》	参考答案41
广东省 广东省	2010年普通高等学校本科插班生招生考试	《高等数学》	参考答案41 参考答案43
广东省 广东省 广东省	2010年普通高等学校本科插班生招生考试 2011年普通高等学校本科插班生招生考试	《高等数学》《高等数学》《高等数学》	参考答案
广东省 广东省 广东省	2010年普通高等学校本科插班生招生考试 2011年普通高等学校本科插班生招生考试 2012年普通高等学校本科插班生招生考试	《高等数学》《高等数学》《高等数学》《高等数学》	参考答案 .41 参考答案 .43 参考答案 .47 参考答案 .51
广东东东东东东东东东东	2010年普通高等学校本科插班生招生考试 2011年普通高等学校本科插班生招生考试 2012年普通高等学校本科插班生招生考试 2013年普通高等学校本科插班生招生考试	《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》	参考答案 .41 参考答案 .43 参考答案 .47 参考答案 .51 参考答案 .54
广广广广广广广广广广广广广	2010年普通高等学校本科插班生招生考试 2011年普通高等学校本科插班生招生考试 2012年普通高等学校本科插班生招生考试 2013年普通高等学校本科插班生招生考试 2014年普通高等学校本科插班生招生考试	《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》	参考答案 .41 参考答案 .43 参考答案 .51 参考答案 .54 参考答案 .57
广广广广广广广广广	2010年普通高等学校本科插班生招生考试 2011年普通高等学校本科插班生招生考试 2012年普通高等学校本科插班生招生考试 2013年普通高等学校本科插班生招生考试 2014年普通高等学校本科插班生招生考试 2015年普通高等学校本科插班生招生考试	《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》	参考答案 41 参考答案 43 参考答案 51 参考答案 54 参考答案 57 参考答案 61
广广广广广广广广广	2010年普通高等学校本科插班生招生考试 2011年普通高等学校本科插班生招生考试 2012年普通高等学校本科插班生招生考试 2013年普通高等学校本科插班生招生考试 2014年普通高等学校本科插班生招生考试 2015年普通高等学校本科插班生招生考试 2016年普通高等学校本科插班生招生考试	《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》《高等数学》	参考答案 41 参考答案 43 参考答案 51 参考答案 54 参考答案 57 参考答案 61 参考答案 64

广东省 2009 年普通高等学校本科插班生招生考试

高等数学

一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分,每小题只有一个选项符合题目要求)

A. -1

C. 3

D. ∞

2.
$$\operatorname{KR} \lim_{x\to 0} \left(x \sin \frac{2}{x} + \frac{2}{x} \sin x \right) = ($$

A. 0 B. 1 C. 2 3、下列函数中,在点 x = 0 处连续但不可导的是(

A. y = |x|

C. $y = \ln x$

D. $y = \frac{1}{x-1}$

4、积分 $\int \cos x f'(1-2\sin x)dx = ($)

A. $2f(1-2\sin x) + C$ B. $\frac{1}{2}f(1-2\sin x) + C$

C. $-2f(1-2\sin x) + C$ D. $-\frac{1}{2}f(1-2\sin x) + C$

5、改变二次积分 $I = \int_{01} dx \int_{0x_2} f(x, y) dy$ 的积分次序,则 I = ()

A. $\int_{0}^{1} dy \int_{\sqrt{y}}^{0} f(x, y) dx$ B. $\int_{01} dy \int_{1}^{\sqrt{y}} f(x, y) dx$

C. $\int_{0}^{1} dy \int_{\sqrt{y}}^{1} f(x, y) dx$ D. $\int_{01} dy \int_{0}^{\sqrt{y}} f(x, y) dx$

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

6、若当 $x \to 0$ 时, $\sqrt{1 - ax_2} - 1 \sim 2x_2$,则常数 a =______

7、曲线 $y = \frac{\ln(1+x)}{x}$ 的水平渐近线方程是_____

8、若曲线 $\begin{cases} x = kt - 3t^2, \\ v = (1 + 2t)^2 \end{cases}$ 在t = 0 处的切线斜率为 1,则常数 k =

9、已知二元函数 z = f(x, y) 的全微分 $dz = y_2 dx + 2xy dy$, 则 $\frac{\partial^2 z}{\partial x \partial y} =$

三、计算题(本大题共8小题,每小题6分,共48分)

11、计算极限
$$\lim_{x\to 0} \left(\frac{1}{x} \int_{0}^{x} e^{t^2} dt - \frac{1}{x} \right)$$

12、设
$$f(x) = \begin{cases} \frac{1}{x(1)^2}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$
用导数定义计算 $f'(0)$

13、己知函数 f(x) 的导数 $f'(x) = x \ln(1+x_2)$, 求 f''(1)

15、计算定积分
$$\int_{-1}^{1} \frac{|x| + \frac{3}{x^2}}{1 + \frac{2}{x^2}} dx$$

16、设隐函数
$$z = f(x, y)$$
 由方程 $x_y + z_3 + x_z = 0$ 所确定,求 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$

17、计算二重积分
$$\iint_D \frac{(2\sqrt{x^2+y^2}-1)^3}{\sqrt{x^2+y^2}} dxdy$$
 ,其中积分区域 $D:\ 1 \le x_2+y_2 \le 4$

18、求微分方程 y'' + y' - 6y = 0 满足初始条件 $y|_{x=0} = 1, y|_{x=0} = -8$ 的特解。

四、综合题 (大题共 2 小题, 第 19 小题 10 分, 第 20 小题 12 分, 共 22 分)

- 19、用G表示由曲线 $y = \ln x$ 及直线 x + y = 1, y = 1围成的平面图形。
 - (1) 求G的面积;
 - (2) 求G 绕 y 轴旋转一周而成的旋转体的体积。

- 20、设函数 $f(x) = x_2 + 4x 4x \ln x 8$
 - (1) 判断 f(x) 在区间(0,2) 上的图形的凹凸性,并说明理由;
 - (2) 证明: 当0 < x < 2时,有f(x) < 0

广东省 2010 年普通高等学校本科插班生招生考试

高等数学

—,	选择题	(本大题共	5 题,	每小题	3分,	共	15 分,	每小题只有-	一个选项符合题目要求	:)
----	-----	-------	------	-----	-----	---	-------	--------	------------	----

1、ţ	 投函数 $y = f(x)$ 的定义域为 $(-\infty, +\infty)$,	则函数 $y = \frac{1}{2} [f(x) - f(-x)]$ 在其定义域上是()
-----	---	---	---

- A. 偶函数
- B. 奇函数
- C. 周期函数
- D. 有界函数

2、
$$x = 0$$
 是函数 $f(x) = \begin{cases} \frac{1}{x}, & x < 0 \\ 0, & x \ge 0 \end{cases}$ 的 ()

A. 连续点

B. 第一类可去间断点

C. 第一类跳跃间断点

- D. 第二类间断点
- 3、当 $x \rightarrow 0$ 时,下列无穷小量中,与 x 等价的是(
 - A. $1-\cos x$

B.
$$\sqrt{1+x_2}-1$$

- C. $ln(1+x) + x_2$
- D. $e_{x_2} 1$

4、若函数
$$f(x)$$
 在区间[a,b] 上连续,则下列结论中正确的是()

- A. 在区间(a, b) 内至少存在一点 ξ , 使得 f()=0
- B. 在区间(a, b) 内至少存在一点 ξ , 使得 $f(\xi) = 0$
- C. 在区间(a, b) 内至少存在一点 ξ , 使得 $f(b) f(a) = f'(\xi)(b-a)$
- D. 在区间(a,b) 内至少存在一点 ξ , 使得 $\int_a^b f(x)dx = f(\xi)(b-a)$

5、设
$$f(x+y, xy) = x_2 + y_2 - xy$$
,则 $\frac{\partial f(x, y)}{\partial y} = ($)

- A. 2y-x
- B. -1 C. 2x y D. -3

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

6、设
$$a, b$$
 为常数,若 $\lim_{(x)} \frac{ax_2}{x+1} + bx = 2$,则 $a+b=$ _____

7、圆 $x_2 + y_2 = x + y$ 在(0, 0) 点处的切线方程是 ____

8、由曲线 $y=\frac{1}{x}$ 和直线 x=1, x=2 及 y=0 围成的平面图形绕 x 轴旋转一周所构成的几何体的体积

9、微分方程 y "-5y '-14y = 0 的通解是 y = ______

三、计算题(本大题共 8 小题,每小题 6 分,共 48 分)

11、计算
$$\lim_{x \to \frac{\pi}{2}} \frac{\ln x \ln x}{(\pi - 2x)^2}$$

13、已知点(1,1) 是曲线 $y = a e^{\frac{1}{x}} + b x^2$ 的拐点,求常数a, b 的值。

14、计算不定积分
$$\int \frac{\cos x}{1-\cos x} dx$$

15、计算定积分
$$\int_{1}^{\ln 10} \sqrt{e_x - 1} dx$$

16、求微分方程
$$\frac{dy}{dx} + \frac{y}{x} = \sin x$$
 的通解。

17、已知隐函数
$$z = f(x, y)$$
 由方程 $x^z - xy_2 + z_3 = 1$ 所确定,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

18、计算二重积分
$$_{D}^{\int\int}$$
 $2\,xy\,dx\,dy$,其中 D 是由抛物线 $y=x_2+1$ 和直线 $y=2x$ 及 $x=0$ 围成的区域。

四、综合题(本大题共 2小题,第 19小题 10分,第 20小题 12分,共 22分)

19、求函数
$$\varphi(x) = \int_0^x \int_0^x f(t-1)dt$$
 的单调增减区间和极值。

20、已知
$$(1+\frac{2}{x})$$
x 是函数 $f(x)$ 在区间 $(0,+\infty)$ 内的一个原函数,

(1) 求
$$f(x)$$
; (2) 计算 $\int_{1}^{+\infty} f(2x) dx$

广东省 2011 年普通高等学校本科插班生招生考试

高等数学

一、选择题(本大题共 5 题,每小题 3 分,共 15 分,每小题只有一个选项符合题目要求)

1	下列极限运算中,	正确的是()
Τ,	1	止哪的定し)

$$\lim_{x \to \infty} \frac{\sin x}{x} = 1$$

B.
$$\lim_{x\to 0} e^x = \infty$$

$$\lim_{x\to 0^-} e^{\frac{1}{x}} = 0$$

D.
$$\lim_{x \to 0} \frac{|x|}{x} = 1$$

$$f(x) = \begin{cases} (1+ax)^{\frac{1}{x}}, & x > 0 \\ (2+x, & x \le 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a = ($

$$A. - ln 2$$

3、已知 f(x) 的二阶导数存在,且 f(2)=1, f'(2)=0 ,则 x=2 是函数 $F(x)=(x-2)_2f(x)$ 的()

4、已知
$$\int_{1}^{2} x f(x) dx = 2$$
,则 $\int_{0}^{3} f(\sqrt{x+1}) dx = ($)

A. 1

5、已知
$$f(x, y) = \begin{cases} \frac{\sin(2x^2 - y^2)}{y}, & y \neq 0 \\ 0, & y = 0 \end{cases}$$
 (t)

A. -1

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

6、当
$$x \to \infty$$
 时, $\frac{kx}{(2x+3)_4}$ 与 $\frac{1}{3}$ 是等价无穷小,则常数 $k = \underline{\qquad \qquad }$

7、设
$$f(x) = \begin{cases} x = t - t_3 \\ y = 2t \end{cases}$$
 则 $\frac{dy}{dx}\Big|_{t=0} =$ ______

8、已知函数
$$f(x)$$
 在 $\left(-\infty, +\infty\right)$ 内连续,且 $y = \int_0^{2x} f(\frac{1}{2}t)dt - 2\int (1+f(x))dx$,则 $y' = \underline{\hspace{1cm}}$

9、已知二元函数
$$z = \frac{4x - 3y}{y_2} (y \neq 0)$$
,则 $\frac{\partial_2 z}{\partial x \partial y} - \frac{\partial_2 z}{\partial y \partial x} = \underline{\hspace{1cm}}$

10、设平面区域 D 由直线
$$y = x$$
, $y = 2x$ 及 $x = 1$ 所围成,则二重积分 $\iint_D x d\sigma =$ ______

三、计算题(本大题共 8 小题,每小题 6 分,共 48 分)

11、计算
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{x+1}{\sin x}\right)$$

12、已知函数
$$f(x)$$
 的 $n-1$ 阶导数 $f_{(n-1)}(x) = \ln(\sqrt{1+e_{-2x}-e_{-x}})$,求 $f_{(n)}(0)$ 。

13、求曲线
$$y = x - \arctan kx(k < 0)$$
 的凹凸区间和拐点。

14、计算不定积分
$$\int \frac{1}{x_2\sqrt{x_2-1}} dx \ (x>1)$$

15、设
$$f(x) = \begin{cases} \frac{x^2}{1+x^2}, & x > 0 \\ |x \cos x, & x \le 0 \end{cases}$$
 $f(x) =$ 计算定积分 $\int_{-\pi}^{1} f(x) dx$

16、求微分方程 y''+2y'+10y=0 满足初始条件 y = 0 = 0, y' = 0 = 3 的特解。

_

17、已知二元函数 $z = (3x + y)2^y$,求偏导数 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$

四、综合题 (本大题共 2 小题, 第 19 题 10 分, 第 20 题 12 分, 共 22 分)

- 19、过坐标原点作曲线 $y = e_x$ 的切线l ,切线l 与曲线 $y = e_x$ 及 y 轴围成的平面图形记为G 求: (1) 切线l 的方程;
 - (2) *G* 的面积;
 - (3) G绕 x轴旋转所得旋转体体积。

- (1) 求函数 y = f(x) 的表达式;
- (2) 证明: 函数 y = f(x) 在区间 $(0,\pi)$ 内单调递减。

广东省 2012 年普通高等学校本科插班生招生考试

高等数学

	웃 녹은 사 취소 비원	- J. 日新	左 1. 服 a ハ	# 4 N	左 1. 服口士	·个选项符合题目要求)
—.	电圳优性制	5 / 17 紀以。	光小殿 3分。	++ 15分。	一 班小郎只有一	小洗坝社合殿日要米)

1、已知三个数列 $\{a_n\}$ 、 $\{b_n\}$ 和 $\{c_n\}$ 满足 $a_n \leq b_n \leq c \atop n \in N^+$),且 $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} c_n = c$ (a,b 为常数,

且 a < c),则数列 $\{b_n\}$ 必定()

- A. 有界
- B. 无界 C. 收敛
- D. 发散

2、
$$x = 0$$
 是函数 $f(x) = \begin{cases} (1^{-2x})^{\frac{1}{x}}, & x < 0 \text{ in } (1^{x})^{\frac{1}{x}}, & x < 0 \text{ in } (1^{-2x})^{\frac{1}{x}}, & x < 0 \text{ in } (1^{-2x})^{\frac{1}{x}}, & x < 0 \text{ in } (1^{-2x})^{\frac{1}{x}}, & x$

- A. 连续点
- B. 可去间断点 C. 跳跃间断点
- 3、极限 $\lim_{x \to \infty} 2x \sin \frac{3}{x} = ($)
 A. 0 B. 2 C. 3

- 4、如果曲线 $y = ax \frac{x^2}{x+1}$ 的水平渐近线存在,则常数 a = (
 - A. 2

- 5、设 f(x,y) 为连续函数,将极坐标形式的二次积分 $I=\int_0^{\frac{\pi}{4}}d\theta\int_0^1 f(r\cos\theta,r\sin\theta)rdr$ 化为直角坐标形

A.
$$\int_0^{\frac{\sqrt{2}}{2}} dx \int_x^{\sqrt{1-x^2}} f(x, y) dy$$

式,则 I= (

B.
$$\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy$$

c.
$$\int_0^{\frac{\sqrt{2}}{2}} dy \int_y^{\sqrt{1-y^2}} f(x, y) dx$$

D.
$$\int_0^{\sqrt{2}} dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$$

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

6、设
$$f(x)$$
 在点 x_0 处可导,且 $f'(x_0)=3$,则 $\lim_{\Delta x \to 0} \frac{f(x_0-2\Delta x)-f(x_0)}{\Delta x} = \underline{\hspace{1cm}}$

7、若
$$f(x) = \int \frac{\tan x}{x} dx$$
,则 $f''(\pi) =$ ______

8、若曲线
$$y = x_3 + ax_2 + bx + 1$$
 有拐点 $(-1,0)$, 则常数 $b = _____$

9、广义积分
$$\int_{-\infty}^{0} \frac{e^{x}}{1+e^{x}} dx =$$

- 10、设函数 $f(\mu)$ 可微,且 $f'(0) = \frac{1}{2}$,则 $z = f(4x_2 y_2)$ 在点(1,2) 处的全微分 $dz \Big|_{(1,2)} =$
- 三、计算题(本大题共8小题,每小题6分,共48分)

11、计算
$$\lim_{(x \to +\infty} \frac{1}{+x}$$
) $\lim_{\ln x}$

12、设函数
$$y = f(x)$$
 由参数方程
$$\begin{cases} x = \ln(\sqrt{\beta + t_2} + t) & \frac{dy}{dx} \text{ (结果要化为最简形式)}. \\ y = 3 + t_2 & \text{所确定, 求 } dx \end{cases}$$

$$\frac{\overline{x}}{x}_{+\arctan x}$$
 的单调区间和极值。

14、求不定积分
$$\int \ln(1+x_2)dx$$

15、设
$$f(x) = \begin{cases} \frac{3 \times 4}{x e} + 1, -\frac{1}{2} \le x \le \frac{1}{2} \\ \frac{1}{2}, & x > \frac{1}{2} \end{cases}$$
,利用定积分的换元法求定积分 $\int_{\frac{1}{2}}^{2} f(x-1) dx$

16、求微积分方程 y'' - 4y' + 13y = 0 满足初始条件 $y|_{x=0} = 1$, $y|_{x=0} = 8$ 的特解。

_

17、已知二元函数
$$z = x(2y+1)x$$
, 求 $\frac{\partial 2z}{\partial y \partial x}\Big|_{\substack{x=1\\y=1}}$

18、计算二重积分 $\iint_D \sqrt{y^2 - x} d\sigma$, 其中 D 是由曲线 $y = \sqrt{x}$ 及直线 y = 1, x = 0 围成的闭区域。

四、综合题 (大题共 2 小题, 第 19 小题 12 分, 第 20 小题 10 分, 共 22 分)

- 19、已知C 经过点 M (1,0),且曲线C 上任意点 $P(x,y)(x \neq 0)$ 处的切线斜率与直线OP (O 为坐标原点)的斜率之差等于 ax (常数 a > 0)
 - (1)求曲线C的方程;
 - (2)试确定 a 的值,使曲线C 与直线 y = ax 围成的平面图形的面积等于 3

20、若当 $x \to 0$, 函数 $f(x) = \int_0^x 2^{t-3t+a} dt$ 与 x 是等价无穷小量;

- (1)求常数 a 的值;
- (2)证明: $\frac{1}{2} \le f(2) \le 8$

广东省 2013 年普通高等学校本科插班生招生考试

高等数学

一、	单项选择题	(本大题共 5	小题,	每小题 3	分,	共 15 分	,每小题只有一个	个选项符合题目要求》
----	-------	---------	-----	-------	----	--------	----------	------------

	ata o a t			
1、	当 $x \rightarrow 0$ 时,	下列尤穷小量中,	与 x 不等价的无穷小量是()

- A. ln(x+1) B. arcsin x
 - C. $1-\cos x$
- D. $\sqrt{1+2x}-1$

2、曲线 $y = \frac{1}{r_2 - 1}$ ()

A. 只有水平渐近线

- B. 只有铅垂渐近线
- C. 既有水平渐近线也有铅锤渐近线
- D. 无渐近线

3、下列函数中,在区间[-1,1]上满足罗尔(Rolle)定理条件的是(

- A. $y = x^{\frac{2}{3}}$
- B. y = |x|
- C. $y = x^{\frac{4}{3}}$

4、设函数 $f(x) = x \sin x + \cos x$, 则下列结论正确的是(

- A. f(0)是f(x)的极小值, $f\overset{\underline{\pi}}{\underset{2}{\longleftarrow}}$ 是f(x)的极大值 B. f(0)是f(x)的极大值, $f\overset{\underline{\pi}}{\underset{2}{\longleftarrow}}$ 是f(x)的极小值 C. f(0)和 $f\overset{\underline{\pi}}{\underset{2}{\longleftarrow}}$ 1都是f(x)的极小值 D. f(0)和 $f\overset{\underline{\pi}}{\underset{2}{\longleftarrow}}$ 1都是f(x)的极大值 2

5、若函数 f(x) 和 F(x) 满足 $F(x) = f(x)(x \in R)$,则下列等式成立的是()

- A. (理2 °) (理2 °) °
- B. (걘2 ˚) (걘2 ˚) ˚o
- C. (祖2 °) (祖2 °) °

D.
$$\int \frac{1}{x} f(2\ln x + 1) dx = \frac{1}{2} F(2\ln x + 1) + C$$

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

- 6、要使函数 $f(x) = \frac{1}{x-1} \frac{2}{x_2-1}$ 在 x = 1 处连续,应补充定义 f(1) = 2
- 7、曲线 $\begin{cases} x = 3t \\ y = \tan t \end{cases}$, 在t = 0相应的点处的切线方程是 y =______

9、已知平面图形
$$G = \{(x, y) | x \ge 1, 0 \le y \le \frac{1}{x} \}$$
, 将图形 G 绕 x 轴旋转一周而成的旋转体体积 $V =$ ______

10、设 D 为圆环域:
$$1 \le x_2 + y_2 \le 4$$
 ,则二重积分 $\iint_D \frac{1}{\sqrt{x_2 + y_2}} d\sigma =$ ______

三、计算题(本大题共8小题,每小题6分,共48分)

11、计算
$$\lim_{x\to\infty} x \sin(e^{\frac{1}{x}} - 1)$$

12、已知函数 f(x) 具有连续的一阶导数,且 Γ 求常数 a 和b 的值,使

$$\lim_{x\to 0} \frac{af(x)+bf(2x)-f(0)}{x} = 0$$

13、求由方程
$$xy \ln y + y = e_{2x}$$
 所确定的隐函数在 $x = 0$ 处的导数 $\frac{dy}{dx}\Big|_{x=0}$

$$14$$
、求曲线 $\ln \sqrt{\frac{1}{2}}$ 广的凹、凸区间及其拐点坐标

15、计算不定积分
$$\int \frac{\sin_3 x dx}{\cos_2 x}$$

16、计算定积分
$$\int_0^2 \frac{x}{(x+2)\sqrt{x+1}} dx$$

_

17、求二元函数 $z = \int_0^{xy} \frac{2}{e^{-t}} dt$ 的全微分 dz 及二阶偏导数 $\frac{\partial zz}{\partial x \partial y}$

18、求微分方程 y''-2 y'+(1-k) y = 0 (其中常数 k ≥ 0)的通解。

四、综合题(本大题共 2 小题, 第 19 小题 10 分, 第 20 小题 12 分, 共 22 分)

19、交换二次积分
$$I = \int_0^1 dx \int_{ex}^e \frac{(2x+1)(2y^{+1})}{\ln y + 1} dy$$
 的积分次序,并求 I 的值。

20、已知 f(x) 是定义在区间 $(0, +\infty)$ 上的非负可导函数,且曲线 y=f(x) 与直线 y=0, x=0 及 $x=t(t\geq 0)$ 围成的曲边梯形的面积为 f(t)-t 2

(1)求函数 f(x)

(2)证明: 当
$$x > 0$$
 时, $f(x) > x^2 + \frac{x^3}{3}$

广东省 2014 年普通高等学校本科插班生招生考试

高等数学

-、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分,每小题只有一个选项符合题目要求)

1、设函数
$$f(x) = \begin{cases} x+2, & x<0, \\ 1, & x=0, 则下列结论正确的是() \\ 2+3x, & x>0, \end{cases}$$

- A. $\lim_{x \to 0} f(x) = 1$ B. $\lim_{x \to 0} f(x) = 2$ C. $\lim_{x \to 0} f(x) = 3$ D. $\lim_{x \to 0} f(x)$ 不存在
- 2、函数 $y = \frac{x}{x + 2\sin x}$ 的图形的水平渐近线是()

- A. y = 0 B. $y = \frac{1}{3}$ C. $y = \frac{1}{2}$ 3、曲线 $y = \ln x + \frac{1}{2}x_2 + 1$ 的凸区间是()
 - A. $(-\infty, -1)$ B. (-1, 0) C. (0, 1) D. $(1, +\infty)$

4、已知 $\arctan x_2$ 是函数 f(x) 的一个原函数,则下列结论中,不正确. . . 的是(

A.
$$f(x) = \frac{2x}{1+x_4}$$

B. 当 $x \to 0$ 时, f(x) 和 x 是同阶无穷小量

$$\text{C. } \int_0^{+\infty} f(x) dx = \frac{\pi}{2}$$

$$\int f(2x)dx = \arctan 4x_2 + C$$

5、交换二次积分 $I = \int_0^1 dx \int_{x^2}^1 f(x, y) dy$ 的积分次序,则 I = ()

$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f(x, y) dx$$

B.
$$\int_0^1 \int_0^1 f(x, y) dx$$

C.
$$\int_{y_2}^1 f(x,y)dx$$

B.
$$\int_{0}^{1} dy \int_{\sqrt{y}}^{1} f(x, y) dx$$
D.
$$\int_{0}^{1} dy \int_{0}^{y^{2}} f(x, y) dx$$

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

$$\lim_{6 \to \infty} \frac{\sqrt{4n^2 + 3n + 1}}{n} = \underline{\hspace{1cm}}$$

7、 $f(x) = x_2 + 2x - 1$ 在区间[0,2]上应用拉格朗日中值定理时,满足定理要求的 $\xi=_1$

8、若由参数方程
$$\begin{cases} x = \ln \cos t \\ y = a \sec t \end{cases}$$
 所确定的函数 $y = y(x)$ 是微分方程 $\frac{dy}{dx} = y + e^{-x}$ 的解,则常数 $a = \underline{\qquad}$

9、设二元函数
$$z = \ln(xy)$$
 ,则 $\frac{\partial_2 z}{\partial x \partial y} =$ _____

10、微积分方程
$$y'' + y' - 12y = 0$$
 的通解是 $y = _____$

三、计算题(本大题共 8 小题,每小题 6 分,共 48 分)
$$11$$
、求极限 $\lim_{x\to 0}(\frac{1}{x}+\frac{1}{e^{-x}-1})$

12、设
$$y = x \arcsin x - \sqrt{1 - x^2}$$
,求 $y'' = 0$

13、求函数
$$f(x) = \log_4(4x + 1) - \frac{1}{2}x - \log_4 2$$
的单调区间和极值。

14、计算不定积分
$$\int \frac{1}{(x+2)\sqrt{x+3}} dx$$

15、设函数
$$f(x) = \frac{2}{3}x^{\frac{3}{2}}$$

- (1) 求曲线 y = f(x) 上相应于 $0 \le x \le 1$ 的弧段长度 S;
- (2) 求由曲线 y=f(x) 和直线 x=0, x=1及 y=0 围成的平面图绕 x 轴旋转而成的旋转体积 V_x

16、已知三元函数 f(u,v,w) 具有连续偏导数,且 $f_v-f_w\neq 0$,若二元函数 z=z(x,y) 是由三元方程 f(x-y,y-z,z-x)=0 所确定的隐函数,计算 $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}$

17、计算二重积分
$$\iint_{D} (x_2 + y_2) d\sigma$$
, 其中积分区域 $D = \{(x, y) \mid x_2 + y_2 \ge 1, |x| \le 2, |y| \le 2\}$

18、求微分方程 $(1+x_2)$ dy $-(x-x\sin 2y)$ dx = 0 满足初始条件 y x=0=0 的特解。

四、综合题(本大题共 2 小题, 第 19 小题 10 分, 第 20 小题 12 分, 共 22 分)

19、已知函数
$$f(x) = \begin{cases} (1 + 3x^2)^{\frac{1}{x^2}} \sin 3x + 1, & x \neq 0 \\ (1 + 3x^2)^{\frac{1}{x^2}} \sin 3x + 1, & x \neq 0 \end{cases}$$
 位在 $x = 0$ 处连续。

- (1) 求常数 a 的值;
- (2) 求曲线 y = f(x) 在点(0, a) 处的切线方程。

- (1) 求 $f'(e_2)$;
- (2) 计算定积分 $\int_{1}^{e^{2}} \frac{1}{x} f(x) dx$

广东省 2015 年普通高等学校本科插班生招生考试

高等数学

一、	单项选择题	(本大题共	5小题,	每小题 3分,	共 15 分,	毎小题只有一ク	个选项符合题目要求)
----	-------	-------	------	---------	---------	---------	------------

					- 1 312 313		
1、	若当 x →	0时,	$kx + 2x_2 + 3x_3$	与 x 是等价无穷小,	则常数 $k=$: (

A.0

B. 1

C.2

D.3

2、己知函数 f(x) 在 o

 x_0 处**有**,f $x_0 = 1$,则下列结论正确的是(

 $A.x_0$ 为 f(x) 的极小值点

B. x_0 为 f(x) 的极大值点

 $C.x_0$ 不是 f(x) 的极值点 $D.(x_0, f(x_0))$ 是曲线 y=f(x) 的拐点

3、设 F(x) 是 f(x) 的一个原函数,C为任意实数,则 $\int f(2x)dx = ($

A. F(x) + C B. F(2x) + C C. $\frac{1}{2}F(2x) + C$ D. 2F(2x) + C

4、若函数 $f(x) = \sqrt{1-x_2+kx}$ 区间[0,1] 上满足罗尔(Rolle)定理的条件,则常数 k= (

B. 0

C.1

5、下列级数中,收敛的是(

D. $\sum_{1}^{\infty} \left[\left(\frac{3}{4} \right)^{n} + \frac{1}{n} \right]$

二、填空题(本大题 5小题,每小题 3分,共 15分)

6、曲线 $y = \begin{pmatrix} 1 - \frac{5}{5} \\ x \end{pmatrix}$ 的水平渐进线为 $y = \underline{\qquad}$

7、设函数 y = f(x) 由参数方程 $\begin{cases} x = \tan t, & \text{所确定, } y | dy \\ y = t_3 + 2t \end{cases}$

9、微分方程 y'-xy=0 满足初始条件

的特解为 y=____

10、设函数 $f(x) = \log_2 x(x>0)$,则 $\lim_{\Delta x \to 0} \frac{f(x-\Delta x) - f(x)}{\Delta x} =$ _

三、计算题(本大题共 8 小题,每小题 6 分,共 48 分)

11、已知函数
$$f(x) = \begin{cases} \frac{\sin 2(x-1)}{x-1}, & x < 1, \\ a, & x = 1, \text{ 在点 } x = 1 \text{ 处连续,求常数} a \text{ 和} b \text{ 的值。} \\ x+b, & x > 1, \end{cases}$$

12、求极限 $\lim_{x\to 0} \frac{\arctan x - x}{\frac{3}{x}}$

13、设
$$y = \frac{e_x}{e_x + 1}$$
,求 $y'' |_{x=0}$

14、计算不定积分
$$\int \frac{\sqrt{x+2}}{x+3} dx$$

15、求由曲线 $y=x\cos 2x$ 和直线 y=0, x=0 五围成的平面图形的面积。 及 4

16、将二次积分
$$I = \int_{-dx}^{1} \int_{0}^{\sqrt{1-x_2}} e_{x_2+y_2} dy$$
 化为极坐标形式的二次积分,并计算 I 的值。

17、求微分方程 y'' + 2y' + 5y = 0满足初始条件 $|y|_{x=0} = 2$, $y'_{x=0} = 0$ 的特解。

_

18、判定级数
$$\sum_{n=1}^{\infty} \frac{n_2}{3_n+1}$$
 的收敛性。

四、综合题 (大题共 2 小题, 第 19 小题 12 分, 第 20 小题 10 分, 共 22 分)

- 19、设二元函数 z = f(x, y) $x_y \ln x (x > 0, x \neq 1)$,平面区域 $D = \{(x, y) 2 \le x \le e, -1 \le y \le 1\}$
 - (1) 求全微分 dz;
 - (2) $\Re \iint_D f(x, y) d\sigma$

20、己知 f(x) 是定义在 R 上的单调递减的可导函数,且 f(1) = 2 ,函数 $F(x) = \int_0^x f(t) dt = x_2 = 1$

- (1) 判别曲线 y = F(x) 在 R上的凹凸性,并说明理由;
- (2) 证明: 方程 F(x) = 0 在区间(0, 1) 内有且仅有一个实根。

广东省 2016 年普通高等学校本科插班生招生考试

高等数学

单项选择题(本大题共 5 小题,每小题 3 分,共 15 分,每小题只有一个选项符合题目要求)

1、若函数
$$f(x) = \begin{cases} 3x + a, & x \ge 1 \\ x + 1, & x < 1 \end{cases}$$
 在点 $x = 1$ 处连续,则常数 $a = ($

A. -1

2、己知函数
$$f(x)$$
 满足 $\lim_{\Delta x \to 0} \frac{f(x_0 + 3\Delta x) - f(x_0)}{\Delta x} = 6$,则 $f'(x_0) = ($

A. 1

B. 2

3、若点(1, 2) 为曲线 $y = ax_3 + bx_2$ 的拐点,则常数 a 与b 的值应分别为(

A. -1和3

B.3和 -1

C.-2和6

4、设函数 f(x) 在区间[-1,1]上可导,C 为任意实数,则 $\int \sin x f'(\cos x) dx = ($

A. $\cos x f(\cos x) + C$ B. $-\cos x f(\cos x) + C$ C. $f(\cos x) + C$ D. $-f(\cos x) + C$

5、己知常数项级数 u_n 的部分和 $S_n = \frac{n}{n+1} (n \in N_*)$,则下列常数项级数中,发散的是(

A.
$$\sum_{n=1}^{\infty} 2u_n$$

A. $\sum_{n=1}^{\infty} 2u_n$ B. $\sum_{n=1}^{\infty} (u_n + u_{n+1})$ C. $\sum_{n=1}^{\infty} (u_n + \frac{1}{n})$ D. $\sum_{n=1}^{\infty} [u_n - (\frac{3}{5})^n]$

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

6、极限
$$\lim_{x \to \infty} x \sin \frac{3}{x} =$$

7、设
$$y = \frac{x}{1 + x_2}$$
, 则 $dy |_{x=0} = \underline{\hspace{1cm}}$

8、设二元函数
$$P=x$$
 lnxy y 则 $\frac{\partial y}{\partial y \partial x} =$ _____

8、设二元函数
$$P=x \ln xyy$$
 则 $\hat{f}^2\vec{y} =$ 9、设平面区域 , $\begin{vmatrix} 2 & 2 \le 1 \end{vmatrix}$,则 $\iint_D (x_2 + y_2) d\sigma =$ _____

10、椭圆曲线
$$\frac{x_2}{4} + y_2 = 1$$
 围成的平面图形绕 x 轴旋转一周而成的旋转体体积 $V =$ ______

三、计算题(本大题共 8 小题,每小题 6 分,共 48 分)

11、求极限
$$\lim_{x\to 0} (\frac{1}{x_2} - \frac{\sin x}{x_3})$$

12、求曲线 $3x_2 + y + e_{xy} = 2$ 在点(0, 1) 处的切线方程

13、求不定积分
$$\int \frac{1}{\sqrt{x(1-x)}} dx$$

14、计算定积分 $\int_{01} x \, 2x \, dx$

15、设z = uv,而u = 2x + y v = x,求 $\frac{\partial z}{\partial x}\Big|_{\substack{x=1 \ y=0}}$ 和 $\frac{\partial z}{\partial y}\Big|_{\substack{x=1 \ y=0}}$

16、设平面区域
$$D$$
 由曲线 $xy=1$ 和直线 $y=x$ 及 $x=2$ 围成,计算二重积分 $\iint_D \frac{x}{d\sigma y_2}$

17、已知函数 $y=e_{2x}$ 是微分方程 y''-2y'+ay=0的一个特解,求常数 a的值,并求该微分方程的通解

_

18、己知函数 $\sum_{n=1}^{\infty} u_n$ 满足, $u_{n+1} = \frac{1}{3} (1 + \frac{1}{n})_n u_n (n \in N*)$, 且 $u_1 = 1$, 判定级数 $\sum_{n=1}^{\infty} u_n$ 的收敛性。

- 四、综合题(本大题共 2 小题, 第 19 小题 10 分, 第 20 小题 12 分, 共 22 分)
- 19、设函数 $f(x) = \ln(1+x) x + \frac{\pm}{2}x_2$, 证明:
- (1) 当 $x \rightarrow 0$ 时, f(x) 是比 x 高阶的无穷小量;
- (2) $\stackrel{\text{def}}{=} x > 0$ iff, f(x) > 0

- 20、已知定义在区间 $[0, +\infty)$ 上的非负可导函数 f(x) 满足 $f^2(x) = \int_0^{x+1+f^2(t)} dt(x) \ge 0$
- (1) 判断函数 f(x) 是否存在极值,并说明理由;
- (2) 求f(x)

广东省 2017 年普通高等学校本科插班生招生考试

高等数学

单项选择题(本大题共 5 小题,每小题 3 分,共 15 分,每小题只有一个选项符合题目要求)

1	下列极限等式不正确的是()
Τ,	トグル双限寺丸小上畑 印定 し	

A.
$$\lim_{n \to +\infty} e^{-n} = 0$$

B.
$$\lim_{n \to \infty} e^{\frac{1}{n}} = 1$$

C.
$$\lim_{x \to 1} \frac{x - 1}{2 - 1} = 0$$

$$\lim_{n \to 0} x \sin \frac{1}{x} = 0$$

2、若
$$\lim_{(1+x\to\infty} \frac{a}{x}$$
) $x = 4$,则常数 $a = ($)

3、设F(x) 是可导函数 f(x) 的一个原函数,C 为任意常数,则下列等式不正确的是(

A.
$$\int f'(x)dx = f(x) + C$$
B.
$$\int f(x)dx = f(x)$$

B.
$$[f(x)dx]' = f(x)$$

$$C. \int f(x)dx = F(x) + C$$

C.
$$\int f(x)dx = F(x) + C$$
 D.
$$\int F(x)dx = f(x) + C$$

4、已知函数f(x) 在区间[0,2]上连续,且 $\int_{0}^{2} xf(x)dx = 4$,则 $\int_{0}^{4} f(\sqrt{x})dx = ($)

5、将二次积分 $I = \int_{1}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x^2 + y^2) dy$ 化为极坐标形式的二次积分,则 I = ()

A. $\int_{0}^{\pi} d\theta \int_{0}^{1} rf(r^2) dr$ B. $\int_{0}^{\pi} d\theta \int_{0}^{1} f(r^2) dr$

A.
$$\int_0^{\pi} d\theta \int_0^1 rf(r^2) dr$$

B.
$$\int_0^{\pi} d\theta \int_0^1 f(r^2) dr$$

B.
$$\int_{0}^{2\pi} d\theta \int_{0}^{1} rf(r^{2}) dr$$

$$D. \int_0^{2\pi} d\theta \int_0^1 f(r_2) dr$$

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

6、已知当
$$x \to 0$$
时, $f(x) \sim 2x$,则 $\lim_{x \to 0} \frac{\sin 6x}{f(x)} =$ ______

7、若常数
$$p > 1$$
,则广义积分 $\int_{1}^{+\infty} \frac{1}{x_{p}} dx =$ ______

8、设二元函数
$$z = f(x, y)$$
 的全微分为 $dz = \frac{-y}{x^2} dx + \frac{1}{x} dy$,则 $\frac{\partial^2 z}{\partial x \partial y} = \underline{\hspace{1cm}}$

10、级数
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 的和为_____

三、计算题(本大题共 8 小题,每小题 6 分,共 48 分)

$$e_{3x} - 3x_{-1}$$
11、求极限 $\lim_{x\to 0} 1 - \cos^x$

12、设
$$y = x_{x_2}(x > 0)$$
, 求 y'

13、设函数
$$f(x) = \int_1^x \sqrt{(t-1)^2 + 1} dx$$
, 求曲线 $y = f(x)$ 的凹凸区间和拐点。

14、求不定积分 $\int x \cos(x+2)dx$

_

15、已知
$$(x-y)^3 + z + \tan z = 0$$
,计算 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$

16、求二重积分 $\iint_D e^{x_3} d\sigma$,其中 D 是由曲线 $y=x_2$ 和直线 x=1 及 y=0 围成的有界闭区域。

17、若曲线经过点(0,1),且该曲线上任一点(x,y)处的切线斜率为 2y+ex,求这条曲线的方程。

18、判定级数
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2} + \frac{4}{n!}\right)$$
 的敛散性。

_

四、综合题 (本大题共 2 小题, 第 19 小题 10 分, 第 20 小题 12 分, 共 22 分)

19、设函数
$$f(x) = \sqrt{1+x}$$
 1+ x 2

- (1) 求曲线 y = f(x) 的水平渐近线方程;
- (2) 求由曲线 y=f(x) 和直线 x=0, =1 及 y=0 围成的平面图形绕 x 轴旋转而成的旋转体体积V。

1

- 20、已知函数 $f(x) = \arctan x$
 - (1) 证明: 当 x > 0 时,恒有 $f(x) + f(\frac{1}{x}) = \frac{\pi}{2}$;
 - (2) 试问方程 f(x) = x 在区间 $(0,+\infty)$ 内有几个实根?

广东省 2018 年普通高等学校本科插班生招生考试

高等数学

	가는 <u>사도</u> / 하 구스 타로	.i. H#				个选项符合题目要求》
 -	中、川光神剣	八八型)。	- #H/N	# 15 7 7.	##小脚 只有一	小块加铁合脚目带水
•	——~XXUJ+KX	, J , VEZ)	H-11/102 0 // 1	/\ 10 /J ;	14 / J / KD / Y / D	

1,
$$\lim_{x \to 0} (3x \sin \frac{1}{x} + \frac{\sin x}{x}) = ($$

- C. 3

2、设函数
$$f(x)$$
 具有二阶导数,且 $f'(0) = -1$, $f''(1) = 0$, $f'''(0) = -1$, $f'''(1) = 3$,则下列结论正确的是()

A. 点 x = 0 是 f(x) 的极小值点

B. 点 x=0 是 f(x) 的极大值点

C. 点 x=1 是 f(x) 的极小值点

D. 点 x=1 是 f(x) 的极大值点

3、已知 $\int f(x)dx = x^2 + C$,其中C 为任意常数,则 $\int f(x)dx = ($)

- A. $x_5 + C$ B. $x_4 + C$ C. $\frac{1}{2}x_4 + C$ D. $\frac{2}{3}x_3 + C$

5、已知 $D = \{(x,y) | 4 \le x^2 + y^2 \le 9 \}$,则 $\iint_D \frac{1}{\sqrt{x^2 + y^2}} d\sigma = ($)

- A. 2π

- B. 10π C. $2\pi \ln \frac{3}{2}$ D. $4\pi \ln \frac{3}{2}$

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

6、已知
$$\begin{cases} x = \log_3 t \\ y = 3t \end{cases}$$
 ,则 $\frac{dy}{dx}|_{t=1} =$ ______

7. $\int_{2}^{2} (|x| + \sin x) dx =$ _____

8.
$$\int_0^{+\infty} e^{1-2x} dx =$$

9、二元函数 $z = x_{y+1}$ 当 x = e, y = 0 时的全微分 $dz \Big|_{x=e} =$

10、微分方程 $x_2dy = ydx$ 满足初始条件 $y|_{x=1} = 1$ 的特解为 y =

三、计算题(本大题共8 小题,每小题6分,共48分)

11、确定常数
$$a,b$$
 的值,使函数 $f(x) = \begin{cases} \frac{x+a}{x^2+1}, & x < 0, \\ b, & x = 0, \text{ 在点 } x = 0 \end{cases}$ 处连续。
$$\begin{pmatrix} 2 \\ 1 \\ 1 + x \end{pmatrix}, & x > \overline{0}, \end{cases}$$

12.
$$x \lim_{x \to 0} \left(\frac{1}{x} - \frac{\ln(1+x)}{x} \right)$$

13、求由方程
$$(1+y_2)$$
 arctan $y = xex$ 所确定的隐函数的导数 $\frac{dy}{dx}$

14、已知
$$\ln(1+x_2)$$
 是函数 $f(x)$ 的一个原函数,求 $\int x f'(x) dx$

15、求由曲线
$$y=1+\frac{\sqrt{x}}{1+x}$$
 和直线 $y=0, x=0$ 及 $x=1$ 所围成的平面图形的面积 A 。

16、已知二元函数
$$z = \frac{xy}{1+y_2}$$
,求 $\frac{\partial z}{\partial y}$, $\frac{\partial 2z}{\partial y\partial x}$

_

17、求
$$\iint_D \sqrt{1-\frac{x}{y}} d\sigma$$
, 其中 D 是由直线 $y=x$ 和 $y=1,y=2$ 及 $x=0$ 所围成的闭区域。

18、判定级数 $\sum_{i=1}^{\infty} \frac{n}{|\sin n| + 2n}$ 的收敛性。

- 19、已知函数 f(x) 满足 f''(x) 4f(x) = 0, 且曲线 y = f(x) 在点(0,0) 处的切线与直线 y = 2x + 1平行。
- (1) 求 f(x);
- (2) 求曲线 y = f(x) 的凹凸区间与拐点。

20、已知函数
$$f(x) = \int_0^x \cos t^2 dt$$

- (1) 求 f'(0);
- (2) 判断函数 f(x) 的奇偶性,并说明理由;
- (3) 证明: 当 x > 0 时, $f(x) > x \frac{(1+\lambda)x_3}{3\lambda}$, 其中常数 $\lambda > 0$

广东省 2019 年普通高等学校本科插班生招生考试

高等数学

单项选择题(本大题共 5 小题,每小题 3 分,共 15 分,每小题只有一个选项符合题目要求)

1、函数
$$f(x) = \frac{x_2 - x}{x_2 + x - 2}$$
 的间断点是

A.
$$x = -2 \, \pi x = 0$$

B.
$$x = -2 \, \pi x = 1$$

C.
$$x = -1$$
 和 $x = 2$

$$D. x = 0$$
 和 $x = 1$

2、设函数
$$f(x) = \begin{cases} x+1, x < 0 \\ 2, x = 0 \\ \cos x, x > 0 \end{cases}$$
 则 $\lim_{x \to 0} f(x)$

3、已知
$$\int f(x)dx = \tan x + C$$
, $\int g(x)dx = 2x + C$, C 为任意常数,则下列等式正确的是

A.
$$\int [f(x) + g(x)] dx = 2x \tan x + C$$
 B. $\int \frac{f(x)}{g(x)} dx = 2x \tan x + C$

$$B. \int \frac{f(x)}{g(x)} dx = 2^{-x} \tan x + C$$

$$C. \int f[g(x)]dx = \tan(2x) + C$$

$$D. \int [f(x) + g(x)] dx = \tan x + 2x + C$$

4、下列级数收敛的是

A.
$$\sum_{n=1}^{\infty} e^{\frac{1}{n}}$$

B.
$$\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n$$

$$c. \sum_{n=1}^{\infty} \begin{pmatrix} \frac{2}{3} - \frac{1}{n_3} \end{pmatrix}$$

D.
$$\sum_{n=1}^{\infty} \left[\left(\frac{2}{3} \right)^n + \frac{1}{n} \right]$$

5、已知函数
$$f(x) = ax + \frac{b}{x}$$
 在点 $x = -1$ 处取得极大值,则常数 a , b 应满足条件

A.
$$a - b = 0$$
, $b < 0$

B.
$$a - b = 0$$
, $b > 0$

C.
$$a + b = 0$$
, $b < 0$

D.
$$a + b = 0$$
, $b > 0$

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

6、曲线
$$\begin{cases} x = t_3 + 3t \\ y = \arctan t \end{cases}$$
 ,则 $t = 0$ 的对应点处切线方程为 $y =$ ______

7、微分方程
$$ydx + xdy = 0$$
 满足初始条件 y

- 8、若二元函数 z = f(x, y) 的全微分 $dz = e_x \sin y dx + e_x \cos y dy$, 则 $\frac{\partial_2 z}{\partial x \partial y} = \underline{\hspace{1cm}}$
- 9、设平面区域 $D = (\{x,y\} \ 0 \le y \le x, 0 \le x \le 1\}$,则 $\iint Dx dx dy =$ ______

10、已知
$$\int_1^t f(x)dx = t\sin\frac{\pi}{t}(t>1)$$
,则 $\int_1^{+\infty} f(x)dx =$ ______

- 三、计算题(本大题共8小题,每小题6分,共48分)

12、设
$$y = \frac{x_x}{2x+1}(x > 0)$$
,求 dy dx

14、计算定积分
$$\int_{-\frac{1}{2}}^{0} x \sqrt{2x+1} dx$$

15、设
$$x-z=e_{xyz}$$
,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

吕言专插本-高等数学真题

16、计算二重积分
$$\iint_D \ln(x_2 + y_2) d\sigma$$
,其中平面区域 $D = \{(x, y) | x_2 + y_2 \le 4\}$

_

17、已知函数
$$\sum_{n=1}^{\infty}$$
 $_{n}$ 和 $\sum_{n=1}^{\infty}$ $b_{_{n}}$ 满足 0 $\leq a_{_{n}} \leq b_{_{n}}$,且 $_{_{\square}}$ $_{\square}$ $_{\square}$ $_{\square}$ $_{\square}$ $_{\square}$ $_{\square}$ $_{\square}$ $_{\square}$ 为定级数 $\sum_{n=1}^{\infty}$ $_{n}$ 的收敛性。

18、设函数
$$f(x)$$
 满足 $\frac{df(x)}{-x} = x$, 求曲线 $y = f(x)$ 的凹凸区间。

四、综合题(本大题共 2 小题, 第 19 小题 10 分, 第 20 小题 12 分, 共 22 分)

- 19、已知连续函数 $\varphi(x)$ 满足 $\varphi(x)=1+x+\int_0^x t\varphi(t)dt+x\int_x^0 \varphi(t)dt$
 - (1) 求 $\varphi(x)$;
 - (2) 求由曲线 $y = \varphi(x)$ 和 $x = 0, x = \frac{\pi}{2}$ 及 y = 0 围成的图形绕 x 轴旋转所得立体的体积。
- 20、设函数 $f(x) = x \ln(1+x) (1+x) \ln x$
 - (1) 证明: f(x) 在区间 $(0,+\infty)$ 内单调减少;
 - (2) 比较数值 20182019与20192018的大小,并说明理由。

广东省 2009 年普通高等学校本科插班生招生考试

高等数学•参考答案

- 一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)
- 二、填空题(本大题共 5 小题,每个空 3 分,共 15 分)

7.
$$y = 0$$
 8. 4 9. 2 y

10.
$$e_x - 1$$

三、计算题(本大题共8小题,每小题6分,共48分)

11. 解: 原式=
$$\lim_{x \to 0} \frac{\int_0^x e^{t^2} dt - x}{x} = \lim_{x \to 0} \frac{e^{x^2} - 1}{3x} = \lim_{x \to 0} \frac{2xe^{x^2}}{6x} = \lim_{x \to 0} \frac{e^{x^2}}{3} = \frac{1}{3}$$

12.
$$\text{MF:} \quad f'(0) = \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x (1 + 2\Delta x_2)^{\frac{1}{\Delta x_2}} - 0}{\Delta x} = \lim_{\Delta x \to 0} (1 + 2\Delta x_2)^{\frac{1}{\Delta x_2}}$$
$$= \lim_{\Delta x \to 0} [(1 + 2\Delta x_2)^{\frac{1}{2\Delta x_2}}]^2 = e_2$$

13.
$$\text{MF}: : f''(x) = \ln(1+x^2) + \frac{2x}{1+x^2},$$

$$f'''(x) = \frac{2x}{1+x^2} + \frac{4x(1+x^2)}{-(1+x^2)} = \frac{2x}{1+x^2} + \frac{4x}{(1+x^2)^2}$$

$$\therefore f'''(1) = 2$$

15.
$$M: : \frac{1}{x_3} \to \text{Asim}, \quad \int_{1}^{1} \frac{1}{x_3} dx = 0$$

$$\frac{1}{1+x_2} \to \text{Asim}, \quad \int_{-1}^{1} \frac{1}{1+x_2} dx = 0$$

$$\frac{1}{1+x_2} \to \text{Asim}, \quad \int_{-1}^{1} \frac{1}{1+x_2} dx = 2 \int_{0}^{1} \frac{1}{x} dx = 2 \int_{0}^{1} \frac{1}{1+x_2} dx = 2 \int_{0}^{1} \frac{1}{1+x_$$

故原式 =
$$\int_{-11} \frac{|x|}{1+x^2} dx + \int_{-11} \frac{x^3}{1+x^2} dx = \ln 2$$

16. $M: \mathcal{C}(x, y, z) = x_y + z_3 + x_2, M$

$$F'_{x} = yx^{y-1} + z$$
, $F'_{y} = x^{y} \ln x$, $F'_{z} = 3z^{2} + x$.

所以
$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'} = -\frac{yx}{3z^2 + x} + \frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'} = -\frac{xy\ln x}{3z^2 + x}$$

17. 解: 设 $x = r \cos \theta$, $y = r \sin \theta$,

则原式=
$$\int_{02\pi} d\theta \int_{12} (2r-1) 3 dr = 2\pi \int_{12} (2r-1) 3 dr$$

= $\frac{\pi}{4} (2r-1)^4 \Big|_{1}^{2} = \frac{81\pi}{4} - \frac{\pi}{4} = 20\pi$

- 18. 解: 因为微分方程的特征方程为 $r^2 + r 6 = 0$, 解得 $\frac{r}{1} = -3$, $\frac{r}{2} = 2$
 - :. 微分方程的通解为 $y = c_1 e_{-3x} + c_2 e_{2x}$

∴
$$y' = -3c_1e_{-3x} + 2c_2e_{2x}$$
, ∴ $f(y)_{x=0} = \frac{c}{1} + \frac{c}{2} = 1$,

$$y'|_{x=0} = -3c_1 + 2c_2 = -8$$
, 解得 $c_1 = 2$, $c_2 = -1$,

故特解为 $y = 2e_{-3x} - e_{2x}$

四、综合题(本大题共 2 小题, 第 19 小题 10 分, 第 20 小题 12 分, 共 22 分)

- 20. 解: (1) : $f'(x) = 2x + 4 4 \ln x 4 = 2x 4 \ln x$ $f''(x) = 2 \frac{4}{x}$ 当 0 < x < 2 时, f''(x) < 0,所以 f(x) 在(0,2)上的图形是凸的。
 - (2) :当 0 < x < 2 时, f''(x) < 0, $\therefore f'(x)$ 在 (0, 2]上单调减少,由此知:

当
$$0 < x < 2$$
 时,有 $f'(x) > f'(2) = 4 - 4 \ln 2 > 0$

故 f(x) 在区间 (0, 2] 上单调增加.

因此当
$$0 < x < 2$$
 时,有 $f(x) < f(2) = 4 + 8 - 8 \ln 2 - 8 = 4 - 8 \ln 2 = 4 - 4 \ln 4 < 0$

广东省 2010 年普通高等学校本科插班生招生考试

高等数学•参考答案

一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)

5. D

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

- 7. x + y = 0 8. $\frac{\pi}{2}$ 9. $y = C e^{-2x} + C e^{7x}$

三、计算题(本大题共8小题,每小题6分,共48分)

11.
$$mathred{m}$$
: $mathred{\mathbb{R}}$: $mathred{\mathbb{R}}$: $mathred{\mathbb{R}}$: $mathred{\mathbb{R}}$: $mathred{\mathbb{R}}$: $mathred$: $math$

12.
$$\Re$$
: $f'(0) = \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x^2 \sin \frac{2}{\Delta x} + \sin 2\Delta x}{\Delta x}$

$$= \lim_{\Delta x \to 0} (\Delta x \sin \frac{2}{\Delta x} + \frac{\sin 2\Delta x}{\Delta x}) = 0 + \lim_{\Delta x \to 0} \frac{\sin 2\Delta x}{\Delta x} = 2 \lim_{\Delta x \to 0} \frac{\sin 2\Delta x}{2\Delta x} = 2$$

又因为
$$y' = -\frac{a}{x_2}e^{\frac{1}{x}} + 2bx$$
, $y'' = \frac{2a}{x_3}e^{\frac{1}{x}} + \frac{a}{x_4}e^{\frac{1}{x}} + 2b$

所以, 由题意知 2ae + ae + 2b = 3ae + 2b = 0②

由①和②解得
$$a = -\frac{2}{e}, b = 3$$

14.解一: 原式=
$$\int \frac{\cos x (1 + \cos x) dx}{\sin 2 x} = \int \frac{\cos x}{\sin 2 x} dx + \int \cot^2 x dx = \int \frac{1}{\sin 2 x} d \sin x + \int (\csc^2 x - 1) dx$$

= $-\frac{1}{\sin x} - \cot x - x + C$

解二: 原式=
$$\int \frac{1-\sin{2\frac{x}{2}}}{2\sin{2\frac{x}{2}}} dx = \frac{1}{2} \int \csc^{2}{\frac{x}{2}} dx - \int dx = \int \csc^{2}{\frac{x}{2}} d\left(\frac{x}{2}\right) - \int dx = -\frac{x}{\cot{\frac{x}{2}}} - x + C$$

15.
$$\Re$$
: $\diamondsuit \sqrt{e_x - 1} = t$, $\Im x = \ln(1 + t_2)$, $dx = \frac{2t}{1 + t^2} dt$

所以
$$\int_{\ln 5}^{\ln 10} \sqrt{e^x - 1} dx = \int_2^3 \frac{2t^3}{1 + t^2} dt = 2\int_2^3 dt - 2\int_2^3 \frac{dt}{1 + t^2} = 2 - 2(\arctan 3 - \arctan 2)$$

<sub>16.
$$\text{M}$$</sub>: $y = e^{-\int_{-x}^{1} dx} (\int_{\sin x} e^{\int_{-x}^{1} dx} dx + C)$

$$= e^{-\ln x} \left(\int \sin x e^{\ln x} dx + C \right) = \frac{1}{x} (-x \cos x + \int \cos x dx + C) = -\cos x + \frac{\sin x}{x} + \frac{C}{x} + \frac$$

17.解:设 $F(x, y, z) = x_z - xy_2 + z_3 - 1$,则

$$F'_x = zx_{z-1} - y_2$$
, $F'_y = -2xy$, $F'_z = x_z \ln x + 3z_2$

所以
$$\frac{\partial z}{\partial x} = -\frac{F'}{F'z} = \frac{y_2 - zx^{z-1}}{x^z \ln x + 3z^2}, \frac{\partial z}{\partial y} = -\frac{F'}{F'z} = \frac{2xy}{x^z \ln x + 3z^2}$$

$$\iint\limits_{D} 2xy \, dx \, dy = \int_{01} dx \int_{2xx}^{2} dx = \int_{0}^{1} xy \, dy = \int_{0}^{1} xy \, dx = \int_{0}^{1} x(x_4 + 1 - 2x_2) \, dx$$

$$= \int_0^1 xy^2 \Big|_{2x}^{x^2+1} dx = \int_0^1 x(x^2+1-2x^2) dx = \frac{1}{2} \int_{01} (x^2-1)^2 dx^2 = \frac{1}{6} (x^2-1)^3 \Big|_0^1 = \frac{1}{6}$$

四、综合题(本大题共 2 小题, 第 19 小题 10 分, 第 20 小题 12 分, 共 22 分)

19.
$$\Re : \ \varphi(x) = \int_0^x f(t-1)dt \ \dot{\Xi}(-\infty, +\infty) \ \bot \ \exists \ \exists \ \varphi'(x) = x(x-1)$$

令
$$\varphi'(x) = x(x-1) = 0$$
, 得驻点 $\frac{x}{1} = 0, \frac{x}{2} = 1$

列表

X	$(-\infty, 0)$	0	(0,1)	1	(1,+∞)
φ'(<i>x</i>)	+	0	_	0	+
$\varphi(x)$	単调増	极大值	单调减	极小值	单调增

极大值
$$\varphi(0) = 0$$
,极小值 $\varphi(1) = \int_0^1 x(x-1)dx = -\frac{1}{6}$

20.44:
$$(1) f(x) = [(1 + \frac{2}{x}) x]' = [e^{x \ln(1 + \frac{2}{x})}]'$$

$$= e^{x \ln(1+\frac{2}{x})} \left| \ln(1+\frac{2}{x}) + x \cdot \frac{1}{1+\frac{2}{x}} (-\frac{2}{x}) \right| = (x+\frac{2}{x})^x \left[\ln(x+\frac{2}{x}) - \frac{2}{x+2} \right]$$

$$(2)\int_{1}^{+\infty} f(2x) dx = \frac{1}{2} \int_{1}^{+\infty} f(2x) d(2x) \underbrace{(-\frac{1}{2} + \frac{1}{2} + \frac{1$$

$$= \frac{1}{2} (1 + \frac{2}{t})_t \Big|_{t=2\infty} = \frac{1}{2} \lim_{t \to +\infty} (1 + \frac{2}{t})_t - 2 = \frac{1}{2} \lim_{t \to +\infty} (1 + \frac{2}{t})^{\frac{t}{2}} - 2 = \frac{1}{2} e^2 - 2$$

广东省 2011 年普通高等学校本科插班生招生考试

高等数学•参考答案

一、单项选择题(本大题共 5 小题,每个空 3 分,共 15 分)

- 二、填空题(本大题共 5 小题,每个空 3 分,共 15 分)
- 7. ln 2
- 8. -2 9. 0

5. A

三、计算题(本大题共8小题,每小题6分,共48分)

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{x+1}{\sin x} \right) = \lim_{x \to 0} \frac{\sin x - x_2 - x}{x \sin x} = \lim_{x \to 0} \frac{\cos x - 2x - 1}{\sin x + x \cos x} = \lim_{x \to 0} \frac{-\sin x - 2}{\cos x + \cos x - x \sin x} = \lim_{x \to 0} \frac{-2}{2} = -1.$$

12 解:

$$f^{(n)}(x) = (\ln(\sqrt{1 + e^{-2x}} - e^{-x}))' = \frac{1}{(\sqrt{1 + e^{-2x}} - e^{-x})} (\sqrt{1 + e^{-2x}} - e^{-x})' = \frac{1}{(\sqrt{1 + e^{-2x}} - e^{-x})} (\frac{-e^{-2x}}{\sqrt{1 + e^{-2x}}} + e^{-x})$$

$$= \frac{e^{-x}}{\sqrt{1 + e^{-2x}}}$$

将
$$x = 0$$
 代入上式中, 可得: $f^{(n)}(0) = \frac{\sqrt{2}}{2}$

13 函数
$$f(x) = x - \arctan kx$$
 的定义域为 $(-\infty, +\infty)$; $f'(x) = 1 - \frac{k}{1 + k \cdot 2x^2}$, $f''(x) = \frac{2k \cdot x}{(1 + k \cdot 2x^2)^2}$

令 f''(x) = 0,解得 x = 0,列表讨论如下(k<0):

х	$(-\infty,0)$	0	$(0,+\infty)$
y"	+	0	-
У	Ш	拐点	Д

在区间 $(-\infty,0)$ 内, f''(x) > 0; 在区间 $(0,+\infty)$ 内, f''(x) < 0; 所以该曲线的凸区间是 $(0,+\infty)$, 凹区间

是 $(-\infty,0)$, 拐点是(0,0)

14. 解法一:
$$\int \frac{1}{x_2 \sqrt{x_2 - 1}} dx = \int \frac{1}{x_3 \sqrt{1 - \frac{1}{x_2}}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1 - \frac{1}{x_2}}} d(1 - \frac{1}{\frac{2}{x_2}})$$

$$= \sqrt{1 - \frac{1}{x^2}} + C = \frac{\sqrt{x^2 - 1}}{x} + C$$

解法二: 令 $x = \sec t$, 则 $dx = \sec t \tan t dt (0 < t < \frac{\pi}{2})$,

$$\int \frac{1}{x^2 \sqrt{x^2 - 1}} dx = \int \frac{1}{\sec^2 t \tan t} \sec t \tan t dt$$

$$= \int \frac{1}{\sec t} dt = \int \cos t dt = \sin t + C = \frac{\sqrt{x^2 - 1}}{x} + C$$

15
$$\text{ME}$$
: $\int_{-\pi X}^{0} \cos dx = \int_{-\pi X d}^{0} \sin x = x \sin x \Big|_{-\pi}^{0} - \int_{-\pi \sin x}^{0} x dx = \cos x \Big|_{-\pi}^{0} = 2$

$$\therefore \int_0^1 \frac{x^2}{1+x^2} dx = \int_0^1 \frac{1+x^2-1}{1+x^2} dx = \int_0^1 \frac{1}{1+x^2} dx = \left[x - \arctan x\right]_0^1 = 1 - \frac{\pi}{4}$$

- 16 由微分方程的特征方程 $r_2-2r+10$; 解得 $r=1\pm 3i$
 - ∴微分方程的通解为: $y = e_x \begin{pmatrix} C \\ 1 \end{pmatrix} \cos 3x + C_2 \sin 3x$

∴由
$$y = 0$$
 = 0 得 $C_1 = 0$, ∴ $y = C_2 e_x \sin 3x$

$$y' = C_2 (e_x \sin 3x + 3e_x \cos 3x)$$
, $y'_{x=0} = 3$, $a \in C_2 = 1$

故特解为: $y = ex \sin 3x$

17 解法一:设
$$u=3x+y$$
, $v=2y$,则 $z=uv$,所以

$$\frac{\partial z}{\partial x} = \frac{\partial z \partial u}{\partial u \partial x} + \frac{\partial z \partial v}{\partial v \partial x} = v u v - 1 \cdot 3 + u v \ln u \cdot 0$$

$$= 3vu_{v-1} = 6 y(3x + y)_{2y-1}$$

$$\frac{\partial z}{\partial y} = \frac{\partial z \partial u}{\partial u \partial y} + \frac{\partial z \partial v}{\partial v \partial y} = v u_{v-1} \cdot 1 + u_v \ln u \cdot 2 = v u_{v-1} + 2u_v \ln u$$

$$= 2 y(3x + y)_{2y-1} + 2(3x + y)_{2y} \ln(3x + y)$$

$$= (3x + y)^{2} \sqrt{\frac{2y}{3x + y}} + 2\ln(3x + y)$$

解法二: $: \ln z = 2 y \ln(3x + y)$, 设 $F(x, y, z) = 2 y \ln(3x + y) - \ln z$,

则
$$F_x'(x, y, z) = \frac{6y}{3x + y}, F_y'(x, y, z) = 2y \ln(3x + y) - \frac{2y}{3x + y}, F_z'(x, y, z) = -\frac{1}{z}$$

$$\therefore \frac{\partial z}{\partial x} = -\frac{F_{x'}(x, y, z)}{F_{z'}(x, y, z)} = \frac{6y}{3x + y} (3x + y)2^{y} = 6y(3x + y)2^{y-1}$$

$$\frac{\partial z}{\partial y} = -\frac{F_{y'}(x, y, z)}{F_{z'}(x, y, z)} = \sqrt{2\ln(3x + y) + \frac{2y}{3x + y}} = (3x + y)2^{y} \left[2\ln(3x + y) + \frac{2y}{3x + y} \right]$$

18 解:由给定的二次积分可知,积分区域是在第一象限的四分之一圆,

积分区域
$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x_2}, 0 \le x \le 1\}$$
, 如图:

如图:
$$\int_{0}^{1} dx \int_{0}^{1-x^{2}} \frac{1}{1+x^{2}+y^{2}} dy = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1+r^{2}} dr$$
$$= \frac{\pi}{2} \int_{0}^{1} \frac{r}{1+r^{2}} dr = \frac{\pi \ln \left(1+r^{2}\right)}{4} \int_{0}^{1} \frac{1+r^{2}}{4} dr$$

- 四、综合题(本大题共 2 小题, 第 19 小题 12 分, 第 20 小题 10 分, 共 22 分)

∴切线
$$l$$
的方程为: $y-y_0=e^{-x^0}$ $x-x_0$,即 $(y-e^{x^0}=e^{-x^0})$ $x-x_0$,又因该切线经过原点, (故 $0-\frac{x^0}{x^0}=e^{-x^0}$ $(0-\frac{x^0}{x^0})$,解之得 $(0-\frac{x^0}{x^0})$,解之得 $(0-\frac{x^0}{x^0})$,

::切点为(1,e), 故切线方程为 y=ex;

解法②: 过原点作曲线 $y=e_x$ 的 2 切线l, 设切点为 (x_0,e_{x_0}) ,

则有
$$\frac{e_0}{x} = e_{x0}$$
,即 $x_0 = 1$,因此切点为 $(1,e)$

故切线l的方程为 y-e=e(x-1), 即 y=ex。

(2) 如下图, 平面图形 G的面积 S为

$$S = \int_{0}^{1} e_{x} - ex dx \left| \left(e_{x} - \frac{1}{2} e^{x} \right) \right|_{0}^{1} = \frac{1}{2} e - 1;$$

- (3) G 绕 x 轴旋转而成的旋转体体积V 为: $V = \pi \int_0^1 (e_x)^2 dx \pi \int_0^1 (e_x)^2 dx = \frac{\pi e^2 x}{2} \Big|_0^1 \frac{\pi e^2 x^3}{3} \Big|_0^1 = \frac{\pi e^2}{6} \frac{\pi}{2}$
- 20.解: (1) 解法一: 由 $xy'=(x\cot x-1)y$ 可得 $\frac{1}{y}y'=\cot x-\frac{1}{x}$,

两边积分得 $\ln y = \ln \sin x - \ln x + \frac{C}{1}$, 化简得 $y = C \frac{\sin x}{x}$,

又:
$$y \Big|_{x=\frac{\pi}{2}} = C \cdot \frac{1}{\frac{\pi}{2}} = \frac{2}{\pi}$$
,解得 $C = 1$, ∴函数 $y = f(x)$ 的表达式为 $y = \frac{\sin x}{x}$;

解法二: $y'-(\cot x - \frac{1}{x})y = 0$,

$$\therefore y = Ce^{\int (\cot x - \frac{1}{x})dx} = Ce^{\ln \sin x - \ln x} = \frac{C\sin x}{x}$$

又:
$$y \Big|_{\substack{x=\\ 2}} = C \cdot \frac{1}{\underline{\pi}} = \frac{2}{\pi}$$
,解得 $C = 1$, ∴函数 $y = f(x)$ 的表达式为 $y = \frac{\sin x}{x}$ 。

(3) $\text{i.i.} \quad y' = \frac{x \cos x - \sin x}{x^2}, \quad \text{i.g.} \quad g(x) = x \cos x - \sin x,$

则
$$g'(x) = \cos x - x \sin x - \cos x = -x \sin x$$
,

- $:: \sin x$ 在区间 $(0,\pi)$ 内恒大于 0, 故 g'(x) < 0,
- \therefore g(x) 在区间 $(0,\pi)$ 内单调减;

$$\mathbb{X}$$
: $g(0) = 0 \cos 0 - \sin 0 = 0$,

 \therefore g(x) 在区间 $(0,\pi)$ 内恒小于0,

故
$$y' = \frac{x \cos x - \sin x}{x_2}$$
在区间 $(0,\pi)$ 内恒为负,

所以函数 y = f(x) 在区间 $(0,\pi)$ 内单调递减。

广东省 2012 年普通高等学校本科插班生招生考试

高等数学•参考答案

一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)

- 1. A 2. C 3. D 4. B 5. C
- 二、填空题(本大题共 5 小题,每个空 3 分,共 15 分)

6. -6
$$\frac{1}{7. \pi}$$
 8. 3 9. $\ln 2$ 10. $4dx - 2dy$

三、计算题(本大题共8小题,每小题6分,共48分)

11. 解: 原式=
$$\lim_{x \to +\infty} e^{\frac{-\ln(1+x)}{\ln^x}}$$
 (2分)

$$\lim_{x \to +\infty} \frac{-\ln(1+x)}{\ln x} = \lim_{x \to +\infty} \frac{-\frac{1}{1+x}}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{-x}{1+x} = -1 \tag{2}$$

∴原式 =
$$e$$
-1 (2 分)

12.
$$\Re: : \frac{dx}{dt} = \frac{1}{\sqrt{3+t_2}+t} \left[\left(\frac{1}{\sqrt{3+t_2}} + 1 \right) \right] = \frac{1}{\sqrt{3+t_2}}$$

$$\frac{dy}{dt} = \frac{t}{\sqrt{3+t_2}}. (3\,\%)$$

$$\therefore \frac{dy}{dx} = \frac{y't}{=x't} \quad t \quad (结果没有化简扣 2 分) \tag{3 分)}$$

13. 解:函数 f(x) 的定义域为 $(-\infty,+\infty)$,

$$f'(x) = e^{\frac{\pi}{4} + \arctan x} + (x - 1)e^{\frac{\pi}{4} + \arctan x} \bullet \frac{1}{1 + x^2}$$

$$= e^{\frac{\pi}{4} + \arctan x} \bullet \frac{x(x + 1)}{1 + x^2} , \qquad (2 \%)$$

∵在区间($-\infty$,-1) 内, f'(x) > 0 ; 在区间(-1,0) 内, f'(x) < 0 ;

在区间 $(0,+\infty)$ 内, f'(x) > 0,

$$\therefore f(x)$$
 的递增区间是 $(-\infty,-1)$ 及 $(0,+\infty)$, 递减区间是 $(-1,0)$ (2 分)

$$f(x)$$
 的极大值是 $f(-1) = -2$, $f(x)$ 的极小值 $f(0) = -e^{\frac{\pi}{4}}$ (2分)

14.
$$\text{M}: \int \ln(1+x^2)dx = x\ln(1+x^2) - \int \frac{2x^2}{1+x^2}dx$$
 (2 \Delta)

$$= x \ln(1+x^2) - 2 \int (1 - \frac{1}{1+x^2}) dx$$

$$= x \ln(1+x_2) - 2x + 2 \arctan x + C$$
 (4 分)

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)dt + \int_{\frac{1}{2}}^{1} f(t)dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x)dx + \int_{\frac{1}{2}}^{1} f(x)dx$$

$$= \int_{\frac{1}{2}}^{\frac{1}{2}} x^{3} e^{x_{4}} dx + \int_{\frac{1}{2}}^{1} \frac{1}{x^{2}} dx$$
 (2 $\%$)

$$=0-\frac{1}{x}\frac{1}{1}=1$$
 (2 $\%$)

16. 解: 由微分方程的特征方程
$$r_2 - 4r + 13 = 0$$
 解得 $r = 2 \pm 3i$, (2分)

所以此微分方程的通解为

$$y = e_{2x} (C_1 \cos 3x + C_2 \sin 3x)$$
 (2 $\%$)

因为 $y' = 2e_{2x}(C_1 \cos 3x + C_2 \sin 3x) + e_{2x}(-3C_1 \sin 3x + 3C_2 \cos 3x)$,

曲
$$y|_{x=0} = C_1 = 1$$
 及 $y'_{x=0} = 2C_1 + 3C_2 = 8$ 解得 $C_1 = 1, C_2 = 2$,

故所求特解为
$$y = e_{2x}(\cos 3x + 2\sin 3x)$$
 (2分)

17.
$$\Re: : \frac{\partial z}{\partial y} = 2x^2 (2y+1)^{x-1}$$
 (2 \Re)

$$\therefore \frac{\partial_2 x}{\partial y \partial x} = 4x(2y+1)_{x-1} + 2x_2(2y+1)_{x-1} \ln(2y+1)$$
 (2 \(\frac{1}{2}\))

故
$$\frac{\partial_2 z}{\partial y \partial x}\Big|_{\substack{x=1\\y=1}} = 4 + 2\ln 3$$
 (2分)

18. 解:积分区域 D 如图:

四、综合题(本大题共 2 小题, 第 19 小题 12 分, 第 20 小题 10 分, 共 22 分)

19. 解: (1)设曲线 C的方程为 y, 由题意知

$$y' - \frac{y}{x} = ax , \quad \exists \quad y |_{x=1} = 0$$

$$\exists y' - \frac{y}{x} = ax$$

$$y = e^{\int_{x}^{1} \frac{1}{dx}} (\int_{x} axe^{-\int_{x}^{1} \frac{1}{dx}} dx + C) = e^{\ln x} (\int_{x}^{1} axe^{-\ln x} dx + C)$$

$$= x(\int_{x}^{1} adx + C) = x(ax + C) ,$$

$$\exists x \in A$$

故曲线 C的方程为
$$y = ax_2 - ax = ax(x-1)$$
 (2分)

(2)如图,

由
$$ax_2 - ax = ax$$
 解得 $x = 0, x = 2$ (4分)

即
$$(ax^2 - \frac{a}{3}x_3)\Big|_0^2 = 4a - \frac{8a}{3} = \frac{8}{3}$$

解得 $a = 2$ (2分)
由题意知 $\int_0^2 (ax - ax^2 + ax)dx = \frac{8}{3}$

20. (1)解: 由题意知
$$\lim_{x\to 0} \frac{\int_0^x 2_{t3-3t+a} dt}{x} = \lim_{x\to 0} 2_{x3-3x+a} = 2_a = 1$$
, (4分)

 $\therefore a = 0$
(2)证: $f(2) = \int_0^2 2_{t3-3t} dt = \int_0^2 2_{x3-3x} dx$, —

设 $g(x) = 2_{x3-3x}$,则 $g'(x) = 2_{x3-3x}(3x2-3) \ln 2$ (2分)

 $\Leftrightarrow g'(x) = 0$,在区间(0, 2)内解得 $x = 1$
 $\therefore g(0) = 1, g(1) = \frac{1}{4}, g(2) = 4$,

 $\therefore g(x)$ 在区间[0, 2]上的最大值为 4,最小值为 $\frac{1}{4}$
由定积分的估值定理可得 $\frac{1}{2} \le \int_0^2 e^x_{-3x} dx \le 8$

所以有 $\frac{1}{2} \le f(2) \le 8$ (2分)

广东省 2013 年普通高等学校本科插班生招生考试

高等数学•参考答案

一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)

5. D

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

6.
$$\frac{1}{2}$$

7.
$$\frac{1}{\ln 3}(x-1)$$

10. 2π

三、计算题(本大题共8小题,每小题6分,共48分)

11. 解:
$$\exists \lim_{x \to \infty} \frac{\sin(e^{\frac{1}{x}} - 1)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\cos(e^{\frac{1}{x}} - 1)e^{\frac{1}{x}}(-\frac{1}{2})}{-\frac{1}{2}} = \lim_{x \to \infty} \cos(e^{\frac{1}{x}} - 1)e^{\frac{1}{x}} = 1$$

12. 解: 由题意知: af(0) + bf(0) - f(0) = 0, af'(0) + 2bf'(0) = 0

∴
$$f(0)f'(0) \neq 0$$
 即 $f(0) \neq 0, f'(0) \neq 0$,

$$\therefore a+b-1=0, a+2b=0,$$

由此解得 a = 2, b = -1.

13. 解:方法一 等式两边对 x 求导数得: $(y+xy') \ln y + xy' + y' = 2e_{2x}$

$$\mathbb{P} y'(1+x+x \ln y) = 2e_{2x} - y \ln y,$$

$$\therefore y' = \frac{dy}{dx} = \frac{2e^{2x} - y \ln y}{1 + x + x \ln y}$$

又:
$$x=0$$
 时, $y=1$,故 $\frac{dy}{dx}\Big|_{x=0}=2$.

方法二 设 $F(x) = xy \ln y + y - e_{2x}$, 则

$$F'_x = y \ln y - 2e_{2x}$$
, $F'_y = x \ln y + x + 1$,

$$\therefore \frac{dy}{dx} = \frac{F'_x}{F'_y} = -\frac{y \ln y - 2e^{2x}}{x \ln y + x + 1} = \frac{2e^{-y \ln y}}{x \ln y + x + 1}$$

又
$$: x=0$$
时, $y=1$, 故 $\frac{dy}{dx}\Big|_{x=0}=2$

14. 解:函数的定义域为 $(-\infty, +\infty)$,

$$y' = \frac{1}{\sqrt{x_2 + 4} + x} \left(\frac{1}{\sqrt{x_2 + 4}} + 1 \right) = \frac{1}{\sqrt{x_2 + 4}}, \quad y'' = \frac{-x}{(x_2 + 4)^{\frac{3}{2}}}$$

令 y''=0解得 x=0,

当 x < 0 时 y'' > 0, 当 x > 0 时 y'' < 0。

故曲线的凹区间为($-\infty$,0); 故曲线的凸区间为(0, $+\infty$);

曲线的拐点为(0, ln 2)

15. 解: 原式

$$= \int \frac{\sin^{2} x d}{\cos x} (\cos x) = \int \frac{1 - \cos^{2} x}{\cos x} d(\cos x)$$

$$= \int \frac{1}{\cos^{2} x} d(\cos x) + \int d(\cos x) = \frac{1}{\cos x} + \cos x + C$$

16. \mathbb{M} : \diamondsuit , $\sqrt{x+1} = t$, \mathbb{M} $x = t_2 - 1$, dx = 2tdt,

原式 =
$$\int_{1}^{\sqrt{3}} \frac{t^{2} - 1}{(t^{2} + 1)t} \cdot 2t dt = 2\int_{1}^{\sqrt{3}} (1 - \frac{2}{t^{2} + 1}) dt = 2(t - 2drc \tan t) \Big|_{1}^{\sqrt{3}} = 2(\sqrt{3} - 1) - \frac{\pi}{3}$$

17. 解: 因为
$$\frac{\partial z}{\partial x} = ye_{-x^2y^2}$$
, $\frac{\partial z}{\partial y} = xe_{-x^2y^2}$, 所以 $dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = ye_{-x^2y^2}dx + xe_{-x^2y^2}dy$,

$$\frac{\partial_2 z}{\partial x \partial y} = e^{-x^2y^2} + ye^{-x^2y^2} (-2x^2y) = e^{-x^2y^2} (1 - 2x^2y^2)$$

18. 解:由微分方程的特征方程
$$r_2 - 2r + 1 - k = 0$$
 解得 $r_{1,2} = \frac{2 \pm \sqrt{4 - 4(1 - k)}}{2} = 1 \pm \sqrt{k}$,

所以当 k > 0 时,方程有两个不相等的实根 $1+\sqrt{k}$ 和 $1-\sqrt{k}$;

当 k=0 时,方程有唯一实根 1

故当
$$k > 0$$
 时,通解为 $y = C e_{(1+\sqrt{k})x} + C e_{(1-\sqrt{k})x}$;

当
$$k = 0$$
 时,通解为 $y = (C + Cx)e^{-x}$.

第19题图

四、综合题(本大题共 2 小题, 第 19 小题 10 分, 第 20 小题 12 分, 共 22 分)

19. 由题设备件知,积分区域

$$D = \{(x, y) \mid 0 \le x \le 1, e \le y \le e\},$$
如图

交换积分次序得

$$I = \int_{1}^{e} \frac{dy}{dy} \int_{0}^{\ln y} \frac{(2x+1)(2y+1)}{\ln y+1} dx = \int_{1}^{e} \left[\frac{(x^{2}+1)(2y+1)}{\ln y+1} \Big|_{\ln y} \right] dy = \int_{1}^{e} (2y+1) \ln y dy = \int_{1}^{e} \ln y d(y^{2}+y)$$

$$= (y^{2}+y) \ln y \Big|_{1}^{e} - \int_{1}^{e} (y^{2}+y) \frac{1}{y} dy = (e^{2}+e) - (\frac{y}{2}+y) \Big|_{1}^{e} = \frac{e}{2} + \frac{3}{2}$$

 \int_{t}^{t} 20. 解: (1) 由题意知 $\int_{0}^{t} f(x)dx = f(t) - t_{2}$, 两边对t 求导数得: f(t) = f(t) - 2t,

且
$$f(0) = 0$$
 ,由 $f'(x) - f(t) = 2t$ 解得
$$f(t) = e \int_{dt} \int_{-\int_{dt}} \int_{(2te^{-t}dt + C) = e^{t}(2te^{-t}dt + C) = e^{t}(-2te^{-t} + 2\int e^{-t}dt + C)}$$

$$= e_{t}(-2te^{-t} - 2e^{-t} + C) = -2t - 2 + Ce_{t}.$$

由
$$f(0) = -2 + C = 0$$
, 得 $C = 2$,

所以
$$f(t) = -2t - 2 + 2e_t = 2(e_t - t - 1)$$
,

故
$$f(x) = 2(ex - x - 1), (x ≥ 0)$$
() —

(2) 设 Fx

则
$$F(x) = 2(e_x-1) - 2x - x_2$$
,

$$F''(x) = 2e_x - 2 - 2x = 2(e_x - x - 1) = f(x) > 0, (x > 0),$$

所以 F'(x) 在 $(0, +\infty)$; 内单调递增,因此,当 x > 0 时,有 F'(x) > F'(0) = 0,

由此可知 F'(x) 在 $(0, +\infty)$; 内单调递增,

() () — 故当
$$x>0$$
时,有 $F(x)>F(0)=0$,即 Fx 所以

广东省 2014 年普通高等学校本科插班生招生考试

高等数学•参考答案

一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)

5. A

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

7. 1 8.
$$-\frac{1}{2}$$
 9. 0

10.
$$C_{e^{-4x}} + C_{2}e_{3x}$$

三、计算题(本大题共8小题,每小题6分,共48分)

11.
$$mathref{m}$$
: $\Begin{aligned}
\mathbb{R} : & \mathbb{R} : \mathbb{R} = \lim_{x \to 0} \frac{e^{-x} - 1 + x}{x(e_{-x} - 1)} &= \lim_{x \to 0} \frac{-e_{-x} + 1}{e_{-x} - 1 - xe_{-x}}
\end{aligned}$

$$= \lim_{x \to 0} \frac{e^{-x}}{-e^{-x} - e^{-x} + xe^{-x}} = -\frac{1}{2}$$

12. **A**:
$$y' = \arcsin x + \frac{2x}{\sqrt{1 - x_2}}$$

(3分)

$$y'' = \frac{1}{\sqrt{1+x_2}} + \frac{2}{(1-x_2)^{\frac{3}{2}}}$$

(2分)

$$\therefore y'' | x = 0 = 3$$

(1分)

13. 解: f(x) 的定义域为($-\infty$, $+\infty$)

$$f'(x) = \frac{4x \ln 4}{(4x+1) \ln 4} - \frac{1}{2} = \frac{4x-1}{2(4x+1)}$$
 (3 \(\frac{1}{2}\))

当
$$x < 0$$
 时, $f'(x) < 0$; 当 $x > 0$ 时, $f'(x) > 0$, (3 分)

所以 f(x) 在区间($-\infty$,0] 内递减,在(0,+ ∞) 内递增; f(0) = 0 是 f(x) 的极小值。

14. 解: 令
$$\sqrt[4]{x} = t$$
,则 $x = t_2 - 3$, $dx = 2tdt$, (2 分)

原式=
$$2\int \frac{1}{t^2-1} dt = \int (\frac{1}{t-1} - \frac{1}{t+1}) dt$$

$$= \ln|t-1| - \ln|t+1| + C = \ln\left|\frac{t-1}{t+1}\right| + C = \ln\left|\frac{\sqrt{3+x}-1}{\sqrt{3+x}+1}\right| + C \tag{4 }$$

15.
$$mathref{M}$$
: $\sqrt[1]{1+x}dx = \frac{2}{3}(1+x)^{\frac{3}{2}} \begin{vmatrix} 1\\0 = \frac{2}{3}(2\sqrt{2}-1) \end{vmatrix}$ (3 $mathref{A}$)

(2)
$$V_x = \pi \int_0^1 \frac{4}{9} x_3 dx = \frac{\pi}{9} x_4 \Big|_0^1 = \frac{\pi}{9}$$
 (3 $\%$)

16.
$$M: \mathcal{H}: \mathcal{H}(x, y, z) = f(x - y, y - z, z - x) = f(u, v, w),$$

其中
$$u = x - y, v = y - z, w = z - x,$$

則 $F_x = f_u - f_w, F_y = -f_u + f_v, F_z = -f_v + f_w$

$$\therefore \frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{f_u - f_w}{f_v - f_w}, \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{-f_u + f_v}{f_v - f_w}$$
(2 分)

故
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{f_u - f_w - f_v + f_v}{f_v - f_w} = 1$$
 (4分)

17. D 如图:

记圆域 $x_2 + y_2 \le 1$ 为 D,

原式=
$$\iint_{D+D_1} (x_2 + y_2) d\sigma - \iint_D (x_2 + y_2) d\sigma$$
 (2分)

$$= \int_{2}^{2} dx \int_{2}^{2} (x^{2} + y^{2}) dy - \int_{0}^{2\pi} d\theta \int_{0}^{1} r^{3} dr$$
 (2 \(\frac{2}{2}\))

$$= \int_{-2}^{2} (4x^{2} + \frac{16}{3}) dx - \frac{1}{4} \int_{0}^{2\pi} d\theta = \frac{128}{3} - \frac{\pi}{2}$$
 (2 \(\frac{\psi}{2}\))

18. 解: 将原方程变形为
$$\frac{dy}{\cos_2 y} = \frac{x}{1+x_2} dx$$
. (2分)

两边积分得:
$$\int \frac{dy}{\cos^2 y} = \int \frac{x}{1+x^2} dx,$$

即
$$\tan y = \frac{1}{2}\ln(1+x_2) + C$$
 (5分)

又
$$: x=0$$
时, $y=0$, $: C=0$.

故原方程的特解为
$$\tan y = \frac{1}{2} \ln(1+x^2)$$
 (6分)

四、综合题(本大题共 2 小题, 第 19 小题 10 分, 第 20 小题 12 分, 共 22 分)

19. 解: (1) 根据题意得, ::
$$\lim_{x\to 0} (1+3x^2)^{\frac{1}{2}}_x = \lim_{x\to 0} \left[(1+3x^2)^{\frac{1}{3x^2}} \right]^3 = e^3$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} [(1+3x^2)^{\frac{1}{x^2}} \sin 3x + 1] = \lim_{x \to 0} (1+3x^2)^{\frac{1}{x^2}} \cdot \lim_{x \to 0} \sin 3x + 1 = e^3 \times 0 + 1 = 1$$

又
$$:$$
 $f(0) = a$,由函数 $f(x)$ 在 $x = 0$ 处连续知 $a = 1$ (4 分)

(2)
$$\lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\left(1 + 3\Delta x_2\right)^{\frac{1}{\Delta x_2}} \sin 3\Delta x + 1 - 1}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (1 + 3\Delta x^2) \frac{1}{\Delta x^2} \cdot \frac{\sin 3\Delta x}{3\Delta x} \cdot 3 = 3e,$$

$$f'(0) = 3e_3$$
.

故曲线
$$y = f(x)$$
 在点 $(0, a)$ 即 $(0,1)$ 处的切线方程为 $y = 3e_3x + 1$ (3 分)

20.
$$\text{M}$$
: (1) $f'(x) = -e \ln \int_{x}^{2x} \frac{1}{e} dx$, $f'(e^2) = -e \ln^2 \frac{e^2}{e^2} \frac{1}{e} = -e^2$ (5 $\text{ }\%$)

(2) 解—:
$$\int_{1}^{e^{2}} \frac{1}{x} f(x) dx = \int_{1}^{e^{2}} f(x) d \ln x = f(x) \ln x \Big|_{1}^{e^{2}} - \int_{1}^{e^{2}} \ln x f'(x) dx$$

$$= \int_{1}^{e_2} \ln x \cdot e^{-\ln 2x} \cdot \frac{1}{2} dx \tag{4.5}$$

$$= \frac{1}{2} \int_{1}^{e^2} e^{\ln 2} x d \ln 2 x = \frac{1}{2} e^{\ln 2} x \Big|_{1}^{e^2} = \frac{1}{2} e^4 - \frac{1}{2} = \frac{1}{2} (e^4 - 1)$$
 (3 $\%$)

解二:
$$\int_{1}^{e^{2}} \frac{1}{x} f(x) dx = \int_{1}^{e^{2}} \left(\frac{1}{x} \int_{\ln x}^{2} e^{y^{2}} dy\right) dx = \int_{1}^{e^{2}} \frac{1}{dx} \int_{\ln x}^{2} \frac{1}{x} e^{y^{2}} dy$$
 (7分)

$$= \int_{0}^{2} dy \int_{1}^{e_{y}} \frac{1}{x} e^{y^{2}} dx \tag{3.5}$$

$$=\int_0^2 (\ln xe^{y^2} \begin{vmatrix} e^y \\ 1 \end{vmatrix}) dy$$

$$= \int_0^2 y e^{y^2} dy = \frac{1}{2} e^{y^2} \Big|_0^2 = \frac{1}{2} (e^4 - 1)$$
 (2 \(\frac{1}{2}\))

广东省 2015 年普通高等学校本科插班生招生考试

高等数学•参考答案

一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)

5. D

二、填空题(本大题共 5 小题,每个空 3 分,共 15 分)

8.
$$\frac{1}{5}$$

8.
$$\frac{1}{5}$$
 9. e_2^{1x}

10.
$$-\frac{1}{x \ln 2}$$

三、计算题(本大题共8小题,每小题6分,共48分)

$$f(1) = a, (4 \%)$$

∴当
$$a=1+b=2$$
, 即 $a=2$, $b=1$ 时, $f(x)$ 在 $x=1$ 处连续。 (6分)

12.解法一:
$$\lim_{x\to 0} \frac{\arctan x - x}{x_3} = \lim_{x\to 0} \frac{\frac{1}{1+x_2} - 1}{3x_2}$$
 (3 分)

$$= \lim_{x \to 0} \frac{\frac{-2x}{(1+x_2)_2}}{6x} = -\frac{1}{3} \lim_{x \to 0} \frac{1}{(1+x_2)_2} = -\frac{1}{3}$$
 (6 $\%$)

解法二:
$$\lim_{x\to 0} \frac{\arctan x - x}{x_3} = \lim_{x\to 0} \frac{-1}{1 + x_2} - 1$$
 (3分)

$$=\lim_{x\to 0} 3(1-\frac{1}{x^2}) \qquad \frac{1}{3} \tag{6 \%}$$

13.解: : $y = x - \ln(ex + 1)$

∴
$$y' = 1 - \frac{e_x}{e_x + 1} = \frac{1}{e_x + 1}$$
 (3 $\%$)

$$y'' = \frac{-ex}{(ex+1)2}$$

故
$$y''|_{x=0} = -\frac{1}{4}$$
 (6分)

14.解: 设
$$\sqrt{x+2}=t$$
,则 $x=t_2-2$, $dx=2tdt$ (2分)

$$\therefore \int \frac{\sqrt{x+2}}{x+3} dx = \int \frac{t}{t^2+1} \cdot 2t dt \tag{2}$$

$$=2\int \frac{t^2}{t^2+1} dt = 2\int \left| \left(1 - \frac{1}{t^2+1} \right) \right| dt$$
 (4 \(\frac{1}{2}\))

=
$$2(t - \arctan t) + C = 2(\sqrt{x+2} - \arctan \sqrt{x+2}) + C$$
 (6 $\%$)

15.解: 所求面积:

$$A = \int_0^{\frac{\pi}{4}} x \cos 2x dx \tag{2 }$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{4}} x d \sin 2x = \frac{1}{2} \left(x \sin 2x \Big|_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \sin 2x dx \right)$$
 (4 $\frac{1}{2}$)

$$= \frac{\pi}{8} + \frac{1}{4} \cos 2x \Big|_{0}^{\frac{\pi}{4}} = \frac{\pi}{8} - \frac{1}{4}$$
 (6 \(\frac{\partial}{2}\))

16.解: 由给定的二次积分知,积分区域 $D = \left\{ \left[(x, y) \right] - \le x \le 1, 0 \le y \le 1, 0 \le$

(2分)

$$\therefore I = \int_0^\pi d\theta \int_0^1 e^r \cdot r dr \tag{2} \, \%$$

$$= \int_0^{\pi} \left(\frac{1}{2} e^{r_2} \Big|_0^1 \right)_{d\Theta} = \int_0^{\pi} \left(\frac{1}{2} e^{-\frac{1}{2}} \right)_{d\Theta} = \frac{\pi}{2} (e^{-1})$$
 (6 \(\frac{1}{2}\))

17.解:微分方程的特征方程为 $r_2 + 2r + 5 = 0$,

解得
$$r=-1\pm 2i$$
 (2分)

微分方程的通解为
$$y = e_{-x}(C\cos 2x + C_{2}\sin 2x)$$
 (4分)

$$y' = -e_{-x} (C_{1} \cos 2x + C_{2} \sin 2x) + e_{-x} (-2C_{1} \sin 2x + 2C_{2} \cos 2x)$$

∴
$$y|_{x=0} = {C \choose 1} = 2$$
, $y'|_{x=0} = {-C_1} + 2C_2 = 0$, 解得 ${C \choose 1} = 2$, ${C_2} = 1$

故微分方程的特解为
$$y = e^{-x} (2\cos 2x + \sin 2x)$$
 (6分)

18.解法一: 显然
$$\frac{n_2}{3_n+1} < \frac{n_2}{3_n}$$

$$\lim_{n \to \infty} \frac{(n+1)^2}{3} / \frac{n}{3} = \lim_{n \to \infty} \frac{(n+1)^2}{3} \cdot \frac{3}{n} = \lim_{n \to \infty} \frac{(n+1)^2}{3n} = \frac{1}{3} < 1$$
則由比值亩敛法知、级数 $\frac{n}{n}$ altreby

则由比值审敛法知,级数
$$\sum_{n=1}^{\infty} \frac{n^2}{n}$$
 收敛, (3分)

$$\therefore$$
由比值审敛法知,级数 $\sum_{n=1}^{\infty} \frac{n^2}{n}$ 收敛。 (6分)

解法二:
$$\lim_{n\to\infty} \frac{(n+1)^2}{3^{n+1}+1} / \frac{\frac{2}{n}}{3^{n}+1} = \lim_{n\to\infty} \frac{(n+1)^2}{n} \cdot \frac{3^{n}+1}{3^{n+1}+1} = \lim_{n\to\infty} \frac{(n+1)^2}{n} \cdot \frac{1+\frac{1}{n}}{3} = \frac{1}{3} < 1$$
 (3分)

$$\therefore$$
由比值审敛法知,级数 $\sum_{n=1}^{\infty} \frac{n^2}{n}$ 收敛。 (6分)

四、综合题(本大题共 2 小题, 第 19 小题 12 分, 第 20 小题 10 分, 共 22 分)

19.
$$\Re : (1) : \frac{\partial \overline{z}}{\partial x} = x^{y-1} + yx^{y-1} \ln x = xy-1(1+y \ln x), \frac{\partial \overline{z}}{\partial y} = x^y \ln x$$
 (4 $\%$)

$$dz = \frac{\partial \overline{z}}{\partial x}dx + \frac{\partial \overline{z}}{\partial y}dy = xy-1(1+y\ln x)dx + x^y\ln z xdy$$
 (6 \(\frac{1}{2}\))

(2)
$$\iint_{D} f(x, y) d\sigma = \int_{2}^{e} dx \int_{1}^{1} x^{y} \ln x dy$$
 (8 $\%$)

$$= \int_{e} \underbrace{\int_{y} \left(x \right)_{1}^{-1} dx}_{1}$$

$$= (10 \%)$$

$$= \int_{e} \int_{x} x - \frac{1}{x} dx = \left(\frac{1}{2} x^{2} - \ln x \right) \Big|_{e} = \frac{1}{2} e^{2} + \ln 2 - 3$$
 (12 \(\frac{1}{2}\))

20. (1) 解: : F'(x) = f(x) - 2x, F''(x) = f'(x) - 2,且由题意知 $f'(x) \le 0$ ($x \in R$)

$$\therefore F''(x) < 0 (x \in r)$$

故曲线
$$y = F(x)$$
 在 R 上是凸的。 (4分)

(2) 证: 显然 F(x) 在 R 上连续,且 F(0) = -1 < 0

$$F(1) = \int_{0}^{1} f(t)dt - 2 > \int_{0}^{1} 2dt - 2 = 0$$

$$\therefore$$
方程 $F(x) = 0$ 在区间 $(0, 1)$ 内至少有一个实根。 (7分)

由 F(x) < 0 知 F'(x) 在 R 上单调递减,

 $\therefore x < 1$ 时,有 F'(x) > F'(1) = f(1) - 2 = 0

由此知 F(x) 在(0, 1) 内单调递增。

因此方程 F(x) = 0 在(0, 1) 内至多只有一个实根,

故方程 F(x) = 0 在区间(0, 1) 内有且仅有一个实根。

(10分)

广东省 2016 年普通高等学校本科插班生招生考试

高等数学•参考答案

一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)

- 二、填空题(本大题共 5 小题,每个空 3 分,共 15 分)

6. 3 7.
$$dx$$
 8. $\frac{1}{y}$ 9. $\frac{\pi}{2}$ 10. $\frac{8\pi}{3}$

三、计算题(本大题共 8 小题,每小题 6 分,共 48 分)

11.解:
$$\lim_{x\to 0} \left(\frac{1}{x_2} - \frac{\sin x}{x_3}\right) = \lim_{x\to 0} \frac{x - \sin x}{x_3} = \lim_{x\to 0} \frac{1 - \cos x}{3x_2}$$

$$= \lim_{x\to 0} \frac{\sin x}{6x} = \frac{1}{6}$$
12.解: 等式两边对 x 求导得: $6x + \frac{dy}{dx} + e_{xy} \left(y + x \frac{dy}{dx}\right) = 0$,

$$\mathbb{E}\left[\frac{dy}{dx}(1+xe_{xy}) = -6x - ye_{xy}, \frac{dy}{dx}\right]_{x=0} = -1$$

$$\therefore \frac{dy}{dx} = \frac{-6x - ye_{xy}}{1+xe_{xy}}, \frac{dy}{dx}\Big|_{x=0} = -1$$

故曲线在点(0,1) 处的切线方程为 y-1=-(x-0), 即 y=-x+1

13.解: 设
$$\sqrt{x} = t$$
, 则 $x = t_2$, $dx = 2tdt$,

$$\therefore \int \frac{1}{\sqrt{x(1-x)}} dx = \int \frac{1}{\sqrt{1-t^2}} 2t dt ,$$

$$= 2\int \frac{1}{\sqrt{1-t^2}} dt = 2\arcsin t + c$$

$$= 2\arcsin\sqrt{x} + c.$$

15.
$$\Re$$
: $\therefore \frac{\partial z}{\partial x} = \frac{\partial z \partial u}{\partial u \partial x} + \frac{\partial z \partial v}{\partial v \partial x} = 2vu_{v-1} + u_v \ln u$

$$\frac{\partial z}{\partial y} = \frac{\partial z \partial u}{\partial u \partial y} + \frac{\partial z \partial v}{\partial v \partial y} = vu_{v-1}$$

又
$$:$$
当 $x=1$, $y=0$ 时, $u=2$, $v=1$,

$$\therefore \frac{\partial z}{\partial x}\Big|_{\substack{x=1\\y=0}} = 2 + 2\ln 2, \frac{\partial z}{\partial y}\Big|_{\substack{x=1\\y=0}} = 1$$

16.解:积分区域 D 如图所示,

$$\iint_{D} \frac{x}{y_{2}} d\sigma = \int_{1}^{2} dx \int_{\frac{1}{x}}^{x} \frac{x}{y_{2}} dy$$

$$= \frac{2\left(-\frac{x}{y}\Big|_{\frac{1}{x}}^{x}\right)}{\left(-\frac{x}{y}\Big|_{\frac{1}{x}}^{x}\right)} dx = \int_{1}^{2} (-1 + x_{2}) dx$$

$$= \left(-x + \frac{x_{3}}{3}\right)\Big|_{1}^{2} = \frac{4}{3}$$

17.
$$M: : y' = 2e_{2x}, y' = 4e_{2x},$$

由题意知:
$$4e_{2x} - 4e_{2x} + ae_{2x} = 0$$
, 即 $ae_{2x} = 0$

$$\therefore a = 0$$

当
$$a=0$$
 时,微分方程为 $y''-2y'=0$, 其特征方程为

$$r_2 - 2r = 0$$
, 解得 $r = 0$ 及 $r = 2$,

所以,微分方程的通解为
$$y = c + c e_{2x}$$

18.解: 由题意知,该级数为正项级数,用比值审敛法判定

$$\lim_{n\to\infty}\frac{u}{u_n}=\left(\lim_{n\to\infty}\frac{1}{n}+\frac{1}{n}\right)^n=\frac{e}{3},$$

∴由
$$\underline{e}$$
 < 1 可知,该级数收敛。

四、综合题(本大题共 2 小题, 第 19 小题 12 分, 第 20 小题 10 分, 共 22 分)

19.证明: (1)
$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{\ln(1+x) - x + \frac{1}{2}x_2}{x}$$
$$= \lim_{x \to 0} \frac{\frac{1}{1+x} - 1 + x}{1} = \lim_{x \to 0} \left(\frac{1}{1+x} - 1 + x\right) = 0,$$

∴当 $x \to 0$ 时, f(x) 是比 x 高阶的无穷小量。

(2) ご当
$$x \ge 0$$
时, $f'(x) = \frac{1}{1+x} - 1 + x = \frac{1 + (1+x)(x-1)}{1+x} = \frac{x^2}{1+x} \ge 0$,且等号仅在 $x = 0$ 处成立,
∴ $f(x)$ 在区间 $[0, +\infty)$ 内单调递增,

故当
$$x > 0$$
 时,有 $f(x) > f(0) = 0$

20. (1) 条件等式两边对 x 求导得

$$2f(x)f'(x) = \frac{1+f_2(x)}{1+x_2}$$
, $(x \ge 0)$

因为
$$\frac{1+f_2(x)}{1+x_2} \neq 0$$
,所以 $f'(x) \neq 0$,即 $f(x)$ 无驻点,故 $f(x)$ 不存在极值。

(注: 只要能合理说明 f(x) 是单调递增的,由此得到 f(x) 无极值的结论也对,例如:

$$f(x) \ge 0$$
, 且 $\frac{1+f^2(x)}{1+\frac{2}{x}} > 0$, 由①知, $f'(x) > 0$,所以 $f(x)$ 单调递增, 故 $f(x)$ 不存在极值。)

$$2yy' = \frac{1+y_2}{1+x_2}$$
, $\exists y|_{x=0} = 0$,

$$\mathbb{E} \frac{2ydy}{1+y_2} = \frac{1}{1+x_2} dx \;,$$

$$\int \frac{2y}{1+y_2} dy = \int \frac{1}{1+x_2} dx ,$$

$$\mathbb{P}\ln(1+y_2) = \arctan x + C,$$

故
$$1+ y^2 = e^{\arctan^x}$$
, 因此 $f(x) = y = (e^{\arctan^x} - 1)^{\frac{1}{2}} (x \ge 0)$

广东省 2017 年普通高等学校本科插班生招生考试

高等数学•参考答案

—,	单项选择题	(本大题共	5	小题,	每小题	3	分,	共	15	分	`
----	-------	-------	---	-----	-----	---	----	---	----	---	---

- 2. B 3. D 4. D

二、填空题(本大题共 5 小题,每个空 3 分,共 15 分)

- 7. $\frac{1}{p-1}$ 8. $-\frac{1}{x_2}$ 9. $C_{e^{-3x}} + C_{2}e_{3x}$
- 10. 1

三、计算题(本大题共 8 小题,每小题 6 分,共 48 分)

11.
$$\text{MF:} \quad \lim_{x \to 0} \frac{e^{3x} - 3x - 1}{1 - \cos x} = \lim_{x \to 0} \frac{e^{3x} - 3x - 1}{\frac{1}{2}x^2} = \lim_{x \to 0} \frac{3e^{3x} - 3x}{x} = \lim_{x \to 0} \frac{3 \cdot 3e^{3x}}{1} = 9$$

或者
$$\lim_{x\to 0} \frac{e^{3x} - 3x - 1}{1 - \cos x} = \lim_{x\to 0} \frac{3e^{3x} - 3x}{\sin x} = \lim_{x\to 0} \frac{9e^{3x}}{\cos x} = 9$$

12. 解: $:: y = e_{x_2 \ln x}$

$$\therefore y' = e_{x2 \ln x} (x_2 \ln x)'$$

$$= x_{x2}(2x \ln x + x) = x_{x2+1}(2 \ln x + 1)$$

13. 解: f(x) 的定义域为 $(-\infty,+\infty)$,

$$f'(x) = \sqrt{(x-1)+1}$$
, $f''(x) = \frac{x-1}{\sqrt{(x-1)^2 + 1}}$,

令
$$f''(x) = 0$$
, 解得 $x = 1$,

当
$$x < 1$$
时, $f''(x) < 0$,当 $x > 1$ 时, $f''(x) > 0$

∴曲线的凹区间为 $(1,+\infty)$,凸区间为 $(-\infty,1)$,拐点为(1,0)。

14.
$$\Re : \int x \cos(x+2) dx = \int x d \sin(x+2) = x \sin(x+2) - \int \sin(x+2) dx$$

$$= x \sin(x+2) - \int \sin(x+2)d(x+2)$$

$$= x \sin(x+2) + \cos(x+2) + C$$

$$F_x = 3(x - y)_2$$
, $F_y = -3(x - y)_2$, $F_z = 1 + \sec_2 z$,

$$\therefore \frac{\partial z}{\partial x} = -\frac{F}{F} = -\frac{3(x-y)^2}{1+\sec^2 z}, \quad \frac{\partial z}{\partial y} = -\frac{F}{F} = \frac{3(x-y)^2}{1+\sec^2 z}$$

因此,
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{-3(x-y)^2 + 3(x-y)^2}{1 + \sec^2 z} = 0$$

16. 解:积分区域如右图所示,

由被积函数的特点选择先 y 后x 的积分,即

$$D: 0 \le x \le 1, 0 \le y \le 1$$
,则

$$\iint_{D} e_{x}^{3} d\mathbf{\sigma} = \int_{0}^{1} dx \int_{0}^{x_{2}} e_{x_{3}} dy$$

$$= \int_{0}^{1} (y e_{x_{3}} \Big|_{0}^{x_{2}}) dx$$

$$= \int_{0}^{1} x_{2} e_{x_{3}} dx = \frac{1}{3} \int_{0}^{1} e_{x_{3}} dx_{3} = \frac{1}{3} e_{x_{3}} \Big|_{0}^{1}$$

$$= \frac{1}{3} (e - 1)$$

17、设曲线方程为y = y(x), 由题意可知,

$$y' = 2y + e_x$$
, $\exists y |_{x=0} = 1$

$$\therefore y'-2y=e_x,$$

$$\therefore y = e^{\int_{2dx} dx} + C$$

$$= e^{\int_{2dx} dx} + C$$

$$X: y|_{x=0} = -1 + C = 1, C = 2,$$

:.曲线方程为 $y = -e_x + 2e_{2x}$

18. 由题
$$\sum_{n=1}^{\infty} \left(\frac{1}{n_2} + \frac{4_n}{n!} \right) = \sum_{n=1}^{\infty} \frac{1}{n_2} + \sum_{n=1}^{\infty} \frac{4_n}{n!}$$
,体积为

其中
$$\sum_{n=1}^{\infty} \frac{1}{n_2}$$
为 p 的级数, 故 $\sum_{n=1}^{\infty} \frac{1}{n_2}$ 收敛;

对于级数
$$\sum_{n=1}^{\infty} \frac{4_n}{n!}$$
,

$$\lim_{x\to\infty} \frac{a}{a} = \lim_{x\to\infty} \frac{4^{n+1}}{(n+1)!} \times \frac{n!}{4} = \lim_{x\to\infty} \frac{4}{n+1} = 0 < 1$$

$$\therefore \sum_{n=1}^{\infty} \frac{4^n}{n!} 收敛;$$

故由级数的基本性质可知原级数 $\sum_{n=1}^{\infty} \left(\frac{1}{n_2} + \frac{4n}{n!}\right)$ 收敛。

四、综合题 (本大题共 2 小题, 第 19 小题 10 分, 第 20 小题 12 分, 共 22 分)

19. (1) :
$$\lim_{x \to +\infty} \frac{\sqrt{x+1}}{1+x^2} = \lim_{x \to +\infty} \frac{1+\frac{1}{x^2}}{1+\frac{x^1}{x^2}} = 1$$
,

$$\lim_{x \to -\infty} \frac{\sqrt{x+1}}{1+x_2} = \lim_{x \to -\infty} \frac{1}{\sqrt{1+\frac{1}{x_2}}} = -1,$$

∴曲线 y=f(x) 的水平渐近线方程为 y=1及 y=-1

(2) 当 $0 \le x \le 1$ 时, f(x) > 0, 故所求旋转体体积为

$$V = \pi \int_{0}^{1} \left(\frac{1 + \frac{x}{x^{2}}}{\sqrt{1 + x^{2}}}\right) dx$$

$$= \pi \int_{0}^{1} \frac{1 + 2x + x^{2}}{1 + x^{2}} dx = \int_{0}^{1} \pi \frac{2x}{1 + x^{2}} dx$$

$$= \pi \left[\ln(1 + x^{2})\right]_{0}^{1} = \pi(1 + \ln 2)$$

∴
$$\pm x > 0$$
 时, $F(x) = C$,

$$\nabla : F(x) = \arctan 1 + \arctan 1 = \frac{\pi}{2}$$

∴ 当
$$x > 0$$
 时, $F(x) = \frac{\pi}{2}$

$$\mathbb{P} f(x) + f(\frac{1}{x}) = \frac{\pi}{2}$$

(2) $\mbox{$\ensuremath{\ensuremath{\mbox{$|}}}$} G(x) = f(x) - x = \arctan \frac{1}{x} - x \ (x > 0),$

则G(x)在区间 $(0,+\infty)$ 内连续。

$$G'(x) = \frac{1}{1+\frac{1}{x_2}}(-\frac{1}{x_2})-1 = -\frac{1}{1+x_2}-1 < 0$$

 $\therefore G(x)$ 在区间 $(0,+\infty)$ 内单调递减,

由此可知,方程G(x) = 0 即 f(x) = x 在区间 $(0,+\infty)$ 内至多只有一个实根。

$$\lim_{x\to 0^+} G(x) = \lim_{x\to 0^+} (\arctan\frac{1}{x} - x) = \frac{\pi}{2}$$

$$(\vec{D}G(\frac{1}{\sqrt{3}}) = \arctan\sqrt{3} - \frac{1}{\sqrt{3}} = \frac{\pi}{3} - \frac{1}{\sqrt{3}} > 0)$$

$$\lim_{x \to +\infty} G(x) = \lim_{x \to +\infty} (\arctan \frac{1}{x} - x) = -\infty,$$

$$(\vec{D}G(1) = \arctan 1 - 1 = \frac{\pi - 1}{4} < 0)$$

∴方程G(x) = 0 在区间 $(0,+\infty)$ 内至少有一个实根。

综上所述,方程G(x) = 0 即 f(x) = x 在区间 $(0,+\infty)$ 内有且仅有一个实根。

广东省 2018 年普通高等学校本科插班生招生考试

高等数学•参考答案

广东省 2018 年普通高等学校本科插班生招生考试

高等数学・参考答案

一、单项选择题(本大题共5小题,每小题3分,共15分) 1. B 2. C 3. D 4. C 二、填空题(本大题共5小题,每小题3分,共15分) 8. $\frac{e}{3}$ 9. dx + edy10. $e^{1-\frac{1}{x}}$ 三、计算题(本大题共8小题,每小题6分,共48分) 11. \Re : $\lim_{x\to 0^-} \frac{x+a}{x^2+1} = a$ $\lim_{x \to 0^{+}} \left(1 + \frac{2}{x}\right)^{x} = e^{\lim_{x \to 0^{+}} x \ln\left(1 + \frac{2}{x}\right)} = e^{\lim_{x \to 0^{+}} \frac{\ln\left(1 + \frac{2}{x}\right)}{\frac{1}{x}}} = e^{\lim_{x \to 0^{+}} \frac{1}{1 + \frac{2}{x}} \cdot \left(\frac{2}{x^{2}}\right)} = e^{0} = 1$ f(x)在x = 0 处连续, a = b = 1 $12. \quad \text{$\mathbb{H}^2$: } \lim_{x\to 0} \left(\frac{1}{x} - \frac{\ln(1+x)}{x^2}\right) = \lim_{x\to 0} \frac{x - \ln(1+x)}{x^2} = \lim_{x\to 0} \frac{1 - \frac{1}{1+x}}{2x} = \lim_{x\to 0} \frac{x}{2x(1+x)} = \lim_{x\to 0} \frac{1}{2(1+x)} = \frac{1}{2} = \lim_{x\to 0} \frac{1}{2x} = \lim_{$ 13. 解: 今 $f(x,y) = (1+y^2) \arctan y - xe^x$ $f_x(x,y) = -x - xe^x, \ f_y(x,y) = 2y \arctan y + 1$ $\therefore \frac{dy}{dx} = -\frac{f_X}{f_Y} = \frac{e^X + xe^X}{2y \arctan y + 1}$ 14. \mathbb{A} : $\int xf'(x)dx = \int xdf(x) = xf(x) - \int f(x)dx \dots$ ① $: \ln(1+x^2)$ 是函数f(x)的一个原函数 $\therefore f(x) = \frac{2x}{1+x^2}$ $\therefore \ \ \textcircled{1} = x \cdot \frac{2x}{1+x^2} - \int \frac{2x}{1+x^2} dx = \frac{2x^2}{1+x^2} - \ln(1+x^2) + C$ 15. \hat{R} : $A = \int_0^1 \left(1 + \frac{\sqrt{x}}{1+x}\right) dx \xrightarrow{\frac{4}{3}\sqrt{x} = t} \int_0^1 \left(2t + \frac{2t^2}{1+t^2}\right) dt = \int_0^1 (2t+2) dt - \int_0^1 \frac{2}{1+t^2} dt$

 $= 3 - 2 \cdot (\arctan t)_0^1 = 3 - 2 \cdot \frac{\pi}{4} = 3 - \frac{\pi}{2}$

16. 解:
$$\frac{\partial z}{\partial y} = \frac{x(1+y^2)-xy\cdot 2y}{(1+y^2)^2} = \frac{x-xy^2}{(1+y^2)^2}$$

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{1-y^2}{(1+y^2)^2}$$

17. 解:
$$\iint_{D} \sqrt{1 - \frac{x}{y}} d\sigma = \int_{1}^{2} dy \int_{0}^{y} \sqrt{1 - \frac{x}{y}} dx$$
$$= \int_{1}^{2} \left[\left(-\frac{2}{3} y \left(1 - \frac{x}{y} \right)^{\frac{2}{3}} \right)_{0}^{y} \right] dy$$
$$= \int_{1}^{2} \frac{2}{3} y dy$$
$$= \frac{1}{3} y^{2} |_{1}^{2}$$
$$= 1$$

18. 解:
$$\because \frac{n}{|\sin n| + 2^n} < \frac{n}{2^n}$$
, $\diamondsuit u_n = \frac{n}{2^n}$

$$\because \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{n+1}{2^{n+1}} \cdot \frac{2^n}{n} = \lim_{n \to \infty} \frac{n+1}{2n} = \frac{1}{2} < 1$$
由比值判别法知 $\sum_{n=1}^{\infty} \frac{n}{2^n}$ 收敛,因此由比较判别法知 $\sum_{n=1}^{\infty} \frac{n}{|\sin n| + 2^n}$ 收敛

四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)

19. 解: (1) 把
$$f''(x) - 4f(x) = 0$$
化为 $y'' - 4y = 0$
其特征方程为 $r^2 - 4 = 0$,解得 $r_{1,2} = \pm 2$
 $\therefore y = C_1 e^{2x} + C_2 e^{-2x}$
由题意: $y|_{x=0} = 0$, $y'|_{x=0} = 2$
 $\therefore \begin{cases} C_1 + C_2 = 0 \\ 2C_1 - 2C_2 = 2 \end{cases}$ 解得 $\begin{cases} C_1 = \frac{1}{2} \\ C_2 = -\frac{1}{2} \end{cases} \therefore f(x) = \frac{1}{2}e^{2x} - \frac{1}{2}e^{-2x} \end{cases}$

(2)
$$f'(x) = e^{2x} + e^{-2x}$$
, $f''(x) = 2e^{2x} - 2e^{-2x}$
令 $f''(x) = 0$, 解得 $x = 0$
当 $x < 0$ 时, $y'' < 0$ 当 $x > 0$ 时, $y'' > 0$
故 $f(x)$ 的凸区间为 $(-\infty,0)$, 凹区间为 $(0,+\infty)$, 拐点为 $(0,0)$

吕言专插本-高等数学真题

20. 解: (1) 由题得
$$f'(x) = \cos x^2$$
, ∴ $f'(0) = 1$

得证。

(2)
$$f(-x) = \int_0^{-x} \cos t^2 dt \Longrightarrow \int_0^x \cos u^2 d(-u) = -\int_0^x \cos u^2 d(u) = -f(x)$$
 故 $f(x)$ 为奇函数

广东省 2019 年普通高等学校本科插班生招生考试

高等数学•参考答案

- 1 P
- 2. A
- 3. D
- 4. C
- 5. B

二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)

- 6. $\frac{1}{3}$ *x*
- 7. <u>2</u>
- 8. $e_x \cos y$
- 9. <u>1</u>
- 10.π

三、计算题(本大题共8小题,每小题6分,共48分)

11.解:原式 =
$$\lim_{x\to 0} \frac{e_x - \cos x}{2x}$$

$$=\lim_{x\to 0}\frac{e_x+\sin x}{2}=\frac{1}{2}$$

12.
$$M: : y = \frac{x_x}{2x+1}$$

$$\therefore \ln y = x \ln x - \ln(2x + 1)$$

$$\therefore \frac{y}{y} = \ln x + 1 - \frac{2}{2x+1}$$

$$\therefore \frac{dy}{dx} = (\ln x + 1 - \frac{2}{2x+1}) \bullet \frac{x^x}{2x+1}$$

13.解:

$$\int \frac{2+x}{1+x^2} dx$$

$$= 2\int \frac{1}{1+x^2} dx + \frac{1}{2} \int \frac{1}{1+x^2} d(1+x^2)$$

$$= 2 \arctan x + \frac{1}{2} \ln(1+x^2) + C$$

$$=\frac{1}{2} \cdot \frac{1}{5} \cdot \left(\frac{1}{5} \cdot \frac{1}{5} \cdot \frac{3}{15}\right) = -\frac{1}{15}$$

15.设 $f(x, y, z) = x - z - e_{xyz}$

$$\therefore f_x(x, y, z) = 1 - ye_{xyz}$$

$$f_y(x, y, z) = -xze_{xyz}$$

$$f_z(x, y, z) = -1 - xye_{xyz}$$

$$\therefore \frac{\partial z}{\partial x} = \frac{1 - yze^{xyz}}{1 + xye^{xyz}}, \frac{\partial z}{\partial y} = -\frac{xze_{xyz}}{1 + xye_{xyz}}$$

16.解: 由题意得1 ≤ r ≤ 2, 0 ≤ θ ≤ π

∴原式 =
$$\int_0^{2x} d^{-2} 2 \ln r \cdot r dr$$

= $\int_0^{2x} (4 \ln 2 - \frac{3}{2}) d\theta$
= $(4 \ln 2 - \frac{3}{2}) \theta \Big|_0^{2\pi}$
= $\pi (8 \ln 2 - 3)$

17 解:由题意得
$$\frac{b}{b} = \frac{(n+1)_4}{3n_4 + 2n - 1}$$

$$\therefore \lim_{x \to \infty} \frac{b}{b} = \lim_{x \to \infty} \frac{(n+1)^4}{3n_4 + 2n - 1} = \frac{1}{3} < 1$$

由比值判别法可知 $\sum_{n=t}^{\infty}$ "收敛;

$$\because 0 < a_x < b_x$$
,由比较判别法得 $\sum_{n=t}^{\infty} n$ 也收敛。

18. 解:
$$: \frac{df(x)}{de_{-x}} = x$$

$$\therefore df(x) = x \bullet de_{-x}$$

$$\therefore f'(x) = -xe_{-x}$$

$$\therefore f'(x) = e_{-x}(x-1)$$

 $\therefore f(x)$ 的凹区间为 $(1,\infty)$, 凸区间为 $(-\infty,1)$

四、综合题(本大题共 2 小题, 第 19 小题 10 分, 第 20 小题 12 分, 共 22 分) 19 解:

(1) 由题意得
$$\varphi'(x) = 1 + x\varphi(x) + \int_{x\varphi(t)dt}^{0} - x\varphi(x) = \underline{1} + \int_{x\varphi(t)dt}^{0}$$

$$\therefore \varphi''(x) = -\varphi(x) \quad \therefore \varphi''(x) + \varphi(x) = 0$$

$$\therefore y'' + 1 = 0$$
, $\therefore \alpha = 0$, $\beta = 1$

$$\varphi(x) = \frac{C}{1}\cos x + C_2\sin x \,, \quad \varphi'(x) = -C_1\sin x + C_2\cos x$$

$$\therefore \varphi(0) = 1, \varphi'(0) = 1, \quad \therefore \frac{C}{1} = 1, C_2 = 1$$

$$\therefore \varphi(x) = \cos x + \sin x$$

(2) 由题意得

$$V_{x} = \pi \int_{0}^{\pi} (\cos x + \sin x) dx$$
$$= \pi \int_{0}^{\pi} (1 + \sin 2x) dx$$
$$= \pi \left(x - \frac{1}{2} \cos 2x \right) \Big|_{0}^{\pi}$$

$$=\frac{\pi^2}{2}+\pi$$

20. 解:

(1) 证明:

$$f(x) = x \ln (1+x) - (1+x) \ln x$$

$$\therefore f'(x) = \ln(1+x) - \ln x + \frac{x}{1+x} - \frac{1+x}{x} = \ln(1+x) - \ln x - \left(\frac{1}{x+1} + \frac{1}{x}\right)$$

证明
$$\ln (1+x) - \frac{\ln x - (1}{1+x} + \frac{1}{x}) < 0$$
即可

即证
$$\ln (1+x) - \ln x < \left(\frac{1}{1+x} + \frac{1}{x}\right)$$

令 $g(x) = \ln x$, $\because g(x)$ 在 $(0,+\infty)$ 上连续可导,由拉格朗日中值定理得

$$\ln(1+x) - \ln x = \frac{\ln(1+x) - \ln x}{1+x-x} = g'(\xi) = \frac{1}{\xi}, \quad \exists (x < \xi < 1+x)$$

$$\therefore x < \xi < 1 + x$$

$$\therefore 0 < \frac{1}{1+x} < \frac{1}{\xi} < \frac{1}{x}$$

:
$$f(x) = \ln (+x) - \ln x - \left(\frac{1}{1+x} + \frac{1}{x}\right) < 0$$

- $\therefore f(x)$ 在 $(0,\infty)$ 上单调递减。
- $(2) \quad 2018_{2019} < 2019_{2018}$

证明:设
$$a=2019,b=2018$$

$$\therefore 2019_{2018} = a_b, 2018_{2019} = b_a$$

比较 ab和ba大小即可

假设 $b_a > a_b$, $\therefore a \ln b > b \ln a$

$$\therefore$$
只需要证明 $\frac{\ln b}{b} > \frac{\ln a}{a}$

$$\therefore a > b > e, \ \therefore 1 - \ln x < 0, \ \therefore g(x) < 0$$

$$\therefore g(x)$$
在 $(0,\infty)$ 单调递减, $\therefore g(b) > g(a)$

即
$$\frac{\ln b}{b} > \frac{\ln a}{a}$$
 成立