Conteúdo

Inteligência Artificial

Luís A. Alexandre

UBI

Ano lectivo 2018-19

Representação do conhecimento Introdução Lógica de Primeira Ordem Regras Redes semânticas Ontologias Semantic Web BC versus BD Raciocínio Leitura recomendada

2 / 44

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 1 / 44 Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19

Representação do conhecimento Representação do conhecimento Introdução

Conteúdo

Representação do conhecimento

Introdução Lógica de Primeira Ordem Regras Rodos comânticas Ontologias
Semantic Web
BC versus BD
Raciocínio

Introdução

- Nesta aula iremos estudar como efetuar a representação de conhecimento (RC).
- ▶ Queremos representar conhecimento para que depois o agente possa raciocinar a partir desse conhecimento.
- ► As abordagens de RC estão normalmente associadas a um motor de raciocínio ou inferência que usa o conhecimento armazenado para deduzir novo conhecimento.

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 3 / 44 Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 4 / 44

Representação do conhecimento Introdução

Formalismos para RC

Conteúdo

Exemplos de formalismos para RC:

- ▶ lógica de primeira ordem (LPO)
- regras
- redes semânticas (RS)
- ontologias

Representação do conhecimento

Introdução

Lógica de Primeira Ordem

Regras

Redes semânticas

Ontologias Semantic Web BC versus BD Raciocínio

Leitura recomendad

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 5 / 44
Representação do conhecimento Lógica de Primeira Ordem

Luís A. Alexandre (UBI)

Inteligência Artificial

Ano lectivo 2018-19

-19 6 / 44

Representação do conhecimento Lógica de Primeira Ordem

Representação do conhecimento Lógica de Primeira Ordem

LPO

▶ Uma dada RC tem associado um equilíbrio que é preciso gerir: mais expressividade implica normalmente maior complexidade.

- ▶ O formalismo mais poderoso que iremos estudar (com maior expressividade) é a lógica de primeira ordem (LPO).
- ▶ Problemas com LPO:
 - difícil de usar
 - pouco prático de implementar

Lógica proposicional

- ▶ Antes de chegarmos à LPO, temos a LP.
- ▶ A LP é um ramo da Lógica que trata o estudo das proposições.
- Uma proposição pode ser construida a partir de outras com o auxílio de conetivas lógicas: negação, conjunção, disjunção, implicação, etc..
- ▶ Tem origem no século 3 A.C.
- Exemplo:

Premissa 1: Se está a chover então está nublado.

Premissa 2: Está a chover. Conclusão: Está nublado.

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 7 / 44 Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 8 / 44

Lógica proposicional: sintaxe

Lógica proposicional

- ► Tanto as premissas como a conclusão são exemplos de proposições.
- ▶ A conclusão é obtida usando uma regra de inferência (nesta caso, modus ponens).
- ▶ Podemos representar as proposições por letras, P="Está a chover", Q="Está nublado" e reescrever o exemplo assim:

Premissa 1: $P \Rightarrow Q$

Premissa 2: P Conclusão: Q

► A gramática formal da lógica proposicional no formato BNF (Backus-Naur Form):

```
Proposição Atómica | Proposição Complexa
        Proposição
 ProposiçãoAtómica
                           True | False | Símbolo
                           P | Q | R | ...
           Símbolo
ProposiçãoComplexa
                           ¬ Proposição
                            (Proposição ∧ Proposição)
                            (Proposição ∨ Proposição)
                            (Proposição ⇒ Proposição)
                            (Proposição ⇔ Proposição)
```

Ano lectivo 2018-19 Luís A. Alexandre (UBI) Inteligência Artificial Representação do conhecimento Lógica de Primeira Ordem

9 / 44

Luís A. Alexandre (UBI)

Inteligência Artificial

Ano lectivo 2018-19

10 / 44

Representação do conhecimento Lógica de Primeira Ordem

LP0

- ▶ A LPO amplia as capacidades da LP com a inclusão de quantificadores, funções, predicados, variáveis, etc. Comparar gramáticas.
- ▶ Enguanto que a LP trabalha apenas com factos, a LPO acrescenta objetos e suas relações.
- ► Exemplo da definição duma função:

$$Bipede(a) \Rightarrow \exists p_1, p_2, c : Perna(p_1) \land Perna(p_2) \land Corpo(c) \land$$

$$ParteDe(p1, a) \land ParteDe(p2, a) \land ParteDe(c, a) \land$$

$$Ligado(p_1, c) \land Ligado(p_2, c) \land$$

$$p_1 \neq p_2 \land [\forall p_3 Perna(p_3) \land ParteDe(p_3, a) \Rightarrow (p_3 = p_1 \lor p_3 = p_2)]$$

Lógica de primeira ordem: sintaxe

▶ A gramática formal da lógica de primeira ordem no formato BNF:

```
ProposicãoAtómica
         Proposição
                               (Proposição Conectiva Proposição)
                              Quantificador Variável, ... Proposição
                               ¬ Proposição
                              Predicado(Termo,...) | Termo = Termo
Proposição Atómica
                              Função(Termo,...)
              Termo
                               Constante
                              Variável
          Conectiva
                               \Rightarrow | \land | \lor | \Leftrightarrow
      Quantificador
                              \forall \mid \exists
          Constante
                              A \mid X_1 \mid Ana \mid \dots
            Variável
                              a | x | s | . . .
          Predicado
                              Antes | TemCor | Chover | . . .
             Função
                              Bipede | PaiDe | . . .
```

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 11 / 44 Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 12 / 44

LPO: categorias

- ▶ O conceito de **categoria** é fundamental para a representação de conhecimento. Permite agrupar vários objetos dentro de uma só entidade (a categoria).
- Na LPO temos 2 formas de representar categorias: predicados e objetos.
- ► Exemplo usando predicados: *BolasBasket*(*BB*9)
- ► Exemplo usando objetos: **reificar** (tornar num objeto) a categoria, BolasBasket, e depois dizemos Membro(BB9, BolasBasket).

- Podemos representar a função membro com o símbolo ∈, resultando o exemplo anterior em BB9 ∈ BolasBasket
- Para dizer que uma categoria é sub-classe de outra: Subconjunto(BolasBasket, Bolas), ou BolasBasket ⊂ Bolas
- ▶ Os membros duma categoria possuem uma propriedade: $x \in Bolas \Rightarrow Esferico(x)$
- ▶ Reconhecer membros duma categoria a partir das suas propriedades: $Laranja(x) \land Esferico(x) \land Diametro(x) = 25 \Rightarrow x \in BolasBasket$

Luís A. Alexandre (UBI) Inteligência Artificial Representação do conhecimento Regras

Ano lectivo 2018-19 13 / 44

Luís A. Alexandre (UBI)

LPO: categorias

Inteligência Artificial

Ano lectivo 2018-19

14 / 44

Representação do conhecimento Re

Regras

Conteúdo

Representação do conhecimento

Introdução Lógica de Primeira Ordem Regras

Redes semânticas

Ontologias Semantic Web BC versus BD Raciocínio

Regras

- ▶ Uma outra forma de representar conhecimento é a partir de regras do tipo SE-ENTÃO.
- ► Exemplo: SE *x* > 37 ENTÃO *y* onde *x* poderia representar uma medição de temperatura e *y* uma ação como tomar um anti-pirético.
- As regras são tipicamente usadas nos sistemas periciais.

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 15 / 44 Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 16 / 44

Representação do conhecimento Regras

Representação do conhecimento F

Sistemas periciais

- Usados em domínios muito específicos onde existem normalmente peritos humanos.
- As regras usadas são do tipo: SE x ENTÃO y
- ► O x é a condição e o y o consequente.
- Uma regra dispara se a condição for verdadeira.
- ► Estão divididos em dois sub-sistemas: a base de conhecimento (BC) e o motor de inferência.
- ► A BC guarda factos e regras.
- ▶ O SP pode fazer **dedução**: cada consequente é um novo facto.
- ▶ Ou fazer **reação**: cada consequente é uma ação.

► Vantagens dos SP:

Sistemas periciais

- O formato das regras é intuitivo e permite explicar as conclusões obtidas.
- ▶ Fácil de manter: não é necessário escrever código para alterar as regras.
- Fácil e rápido fazer protótipos.
- ► Desvantagens:
 - ▶ Obtenção de conhecimento: o tempo dos peritos é valioso.
 - ▶ Desempenho: corriam originalmente em sistemas interpretados (lisp).

Luís A. Alexandre (UBI) Inteligência Artificial And Representação do conhecimento Regras

Ano lectivo 2018-19 17 / 44

Luís A. Alexandre (UBI)

Inteligência Artificial

Ano lectivo 2018-19

18 / 44

Representação do conhecimento Reg

Sistemas periciais: exemplo

- ▶ R1: SE x anda na estrada ENTÃO x é um transporte
- ▶ R2: SE x anda na estrada E x tem 2 rodas E x tem motor ENTÃO x é uma mota
- ▶ R3: SE x anda na estrada E x tem 2 rodas E x não tem motor ENTÃO x é uma bicicleta
- ▶ R4: SE x anda na estrada E x tem 4 rodas E x tem 5 lugares ENTÃO x é um carro de passageiros
- ▶ R5: SE x anda na estrada E x tem mais de 4 rodas ENTÃO x é um pesado

Sistemas periciais

- ▶ Os SPs devem ser usados quando:
 - faça sentido economicamente;
 - peritos humanos não estejam sempre disponíveis;
 - o problema requeira raciocínio simbólico.

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 19 / 44 Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 20 / 44

Representação do conhecimento Redes semânticas

▶ Uma RS é um **grafo** que representa relações semânticas entre

Conteúdo

Representação do conhecimento

Redes semânticas

Cão Vértebras Peixe

Inteligência Artificial Luís A. Alexandre (UBI) Representação do conhecimento Redes semânticas Ano lectivo 2018-19 21 / 44

23 / 44

Luís A. Alexandre (UBI)

Redes semânticas

conceitos.

Inteligência Artificial

Ano lectivo 2018-19

Água

22 / 44

Representação do conhecimento

Redes semânticas

- ▶ A ideia original duma rede semântica apareceu em 1906 por Charles S. Peirce, com o nome de "grafo existencial".
- ▶ Existem muitas variantes de RS mas todas permitem representar objetos, categorias de objetos e as relações entre eles.
- ▶ As RS tipicamente não têm todo o poder expressivo da LPO. Mas têm a vantagem de serem simples e o processo de inferência transparente.

Redes semânticas: exemplo

Pêlo

Ano lectivo 2018-19 Luís A. Alexandre (UBI) Inteligência Artificial

Representação do conhecimento Redes semânticas

Redes semânticas

- ► Exemplo de inferência:
 - "Como se diagnostica um Small_Cell_lung_cancer?"
 - ► Encontramos esse nodo da RS e procuramos uma aresta relativa a diagnóstico: não tem. Logo vamos seguir a aresta is_a
 - ► Chegamos a Primary_lung_cancer que também não tem aresta relativa a diagnóstico. Seguimos aresta is_a.
 - ► Chegamos a Lung_cancer que tem aresta sobre diagnóstico: usa-se um Lung cancer diagnoses.

Redes semânticas

- ► As **relações** nas RS são binárias apenas, pois estão codificadas em arestas.
- ► Conseguimos representar relações entre 2 elementos facilmente, mas como fazer quando as relações envolvem mais que 2 elementos?
- ▶ Para resolver este problema o que se faz é reificar a proposição.
- ► Exemplo: como representar a seguinte proposição numa RS: "A Ana tomou o voo 1725 ontem de Lisboa para o Porto"?

Luís A. Alexandre (UBI)

Inteligência Artificial

Ano lectivo 2018-19

26

Representação do conhecimento

26 / 44

Redes semânticas

Luís A. Alexandre (UBI)

- ► Alguns problemas com as RS:
 - ▶ são pesadas do ponto de vista computacional pois para responder a questões é necessário fazer a travessia da rede.

Inteligência Artificial

Representação do conhecimento Redes semânticas

- ► falta alguma capacidade de expressão: quantificadores, negação, entre outras.
- ▶ A Google tem uma RS chamada "Knowledge Graph" que em 2012 continha 570 milhões de objetos e 18 mil milhões de factos e relações entre esses objetos.
- ► Está disponível uma API que permite extrair informação desta RS (https://developers.google.com/knowledge-graph).

Conteúdo

Ano lectivo 2018-19

25 / 44

Representação do conhecimento

Introdução Lógica de Primeira Ordem Regras

Ontologias

Semantic Web BC versus BD Raciocínio

_eitura recomendada

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 27 / 44 Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 28 / 4

- Uma ontologia é uma representação de entidades e das suas relações.
- ► As ontologias são escritas usando linguagens próprias para descrição de ontologias.
- ▶ Uma ontologia pode ser **visualizada** num grafo.

Luís A. Alexandre (UBI) Inteligência Artificial Representação do conhecimento Ontologias

Ano lectivo 2018-19

29 / 44

Ontologia

Componentes duma ontologia

- Indivíduos: instâncias ou objetos
- Classes: conjuntos, coleções conceitos, tuplos de objetos ou de coisas.
- ▶ Atributos: aspetos, características, propriedades ou parâmetros de objetos ou classes
- ▶ Relações: formas segundo as quais indivíduos e classes se relacionam.
- ▶ Restrições: descrições formais que devem ser verdade para que uma dada afirmação seja aceite.
- ▶ Regras: afirmações com a forma SE-ENTÃO que descrevem uma inferência lógica.
- Axiomas: afirmações (inclui regras) que contêm toda a teoria descrita pela ontologia.
- ▶ Eventos: alterações de atributos ou relações.

Ontologia versus rede semântica

- Qual a diferença entre uma ontologia e uma rede semântica?
 - ▶ A RS é uma notação gráfica usada para representar conhecimento com os nodos e arestas de um grafo.
 - ▶ Uma ontologia é a representação de conceitos dentro de um domínio e das suas relações, de forma explicita e formal, que pode ser visualizada como um grafo, mas que existe sem qualquer relação com um grafo.

Ano lectivo 2018-19 Ano lectivo 2018-19 Luís A. Alexandre (UBI) Inteligência Artificial 31 / 44 Luís A. Alexandre (UBI) Inteligência Artificial 32 / 44 Representação do conhecimento Semantic Web

Representação do conhecimento Semantic Web

Conteúdo

Representação do conhecimento

Introdução Lógica de Primeira Ordem Regras Redes semânticas Ontologias
Semantic Web
BC versus BD
Raciocínio

Semantic Web

- ► Mais recentemente, a SW surge integrando RC e raciocínio recorrendo a linguagens baseadas em XML.
- ► A SW é uma **extensão da web** que possibilita a partilha de dados entre aplicações, empresas e comunidades.
- ▶ Isto é conseguido **adicionando meta-dados** às páginas web, em formatos que são legíveis por máquinas.
- Isto permite que agentes / motores de pesquisa, consigam um acesso aos dados mais fácil e mais rico, resultando num maior número de tarefas realizáveis.

Luís A. Alexandre (UBI) Inteligência Artificial
Representação do conhecimento Semantic Web

Ano lectivo 2018-19 33 / 44

Luís A. Alexandre (UBI)

Inteligência Artificial

Representação do conhecimento Semantic Web

Ano lectivo 2018-19

19 34 / 44

Semantic Web

- ► A Resource Description Framework (RDF) permite representar conhecimento.
- ▶ A Web Ontology Language (OWL) adiciona semântica e permite o uso de sistemas de raciocínio automáticos, como os classificadores.
- Enquanto que:
 - ▶ o HTML descreve documentos e ligações entre documentos,
 - ▶ a RDF + OWL + XML conseguem descrever entidades arbitrárias como pessoas, componentes de automóveis ou uma festa de aniversário, e as suas relações.

Semantic Web

- ► A ideia é adicionar uma camada de significado (semântica) sobre a internet.
- ► A abordagem básica usa palavras contidas nas páginas para construir índices para depois permitir a pesquisa com os motores de busca.
- ► Com a SW, são criadas **ontologias** de conceitos.

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 35 / 44 Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 36 / 44

Representação do conhecimento Semantic Web

Representação do conhecimento Semantic Web

RDF

- ▶ A RDF é uma família de especificações para modelar dados.
- ► A ideia é semelhante à entidade-relacionamento das BDs ou aos diagramas de classes do UML.
- Na RDF fazem-se afirmações sob a forma de expressões sujeito-predicado-objeto.
- Estas expressões são chamadas triplos.
- ▶ O sujeito representa um recurso; o predicado representa a relação entre o sujeito e o objeto.
- ▶ Exemplo: representar "o céu tem cor azul", usando RDF.
 - ▶ o sujeito é "o céu"
 - ▶ o predicado é "tem a cor"
 - ▶ o objeto é "azul"
- ▶ Na prática o RDF é um modelo abstrato que possui vários formatos de serialização e assim a forma de escrever o triplo varia com o formato.

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 37 / 44

Representação do conhecimento Semantic Web

RDF

Exemplo http://www.w3schools.com/XML/xml_rdf.asp

Title	Artist	Country	Company	Price	Year
Empire Burlesque	Bob Dylan	USA	Columbia	10.90	1985
Hide your heart	Bonnie Tyler	UK	CBS Records	9.90	1988

<?xml version="1.0"?> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:cd="http://www.recshop.fake/cd#"> <rdf:Description rdf:about="http://www.recshop.fake/cd/Empire Burlesque"> <cd:artist>Bob Dylan</cd:artist> <cd:country>USA</cd:country> <cd:company>Columbia</cd:company> <cd:price>10.90</cd:price> <cd:year>1985</cd:year> </rdf:Description> <rdf:Description rdf:about="http://www.recshop.fake/cd/Hide your heart"> <cd:artist>Bonnie Tyler</cd:artist> <cd:country>UK</cd:country> <cd:company>CBS Records</cd:company> <cd:price>9.90</cd:price> <cd:year>1988</cd:year> </rdf:Description> </rdf:RDF>

Luís A. Alexandre (UBI)

Identifique os sujeitos, predicados e objetos deste exemplo.

RDF

- Existem múltiplos formatos de serialização, entre eles:
 - ► Turtle
 - N-Triples
 - N-Quads
 - JSON-LD
 - Notation3 (N3)
 - ► RDF/XML (o primeiro formato standard para RDF)
- Note-se que o RDF não é suposto ser lido por humanos, apenas por máquinas.

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 38 / 44

Representação do conhecimento Semantic Web

Web Ontology Language

- ▶ A OWL (e não WOL!) é uma linguagem que permite escrever ontologias.
- ▶ A versão mais recente é de 2009 e chama-se OWL 2.
- ► Exemplo da representação da classe limonada em OWL2 XML (sem preâmbulos nem definições de prefixos):

Ano lectivo 2018-19

40 / 44

```
<Ontology ontologyIRI="http://example.com/limonada.owl" ... >
  <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
  <Declaration>
    <Class IRI="Limonada"/>
    </Declaration>
  </Ontology>
```

BC versus BD

- Porque não usar uma base de dados (BD) para armazenar o conhecimento para um agente de IA?
 - ▶ Uma BD é muito boa para guardar informação quando sabemos quais as características (atributos) que queremos guardar relativas aos dados.
 - ▶ Em IA, **não sabemos** muitas vezes todas as possíveis características que irão ser medidas: conforme o agente vai recolhendo conhecimento do mundo este tem que ser guardado.

Luís A. Alexandre (UBI) Inteligência Artificial Representação do conhecimento

Tipos de Raciocínio

Ano lectivo 2018-19 41 / 44

Inteligência Artificial

Ano lectivo 2018-19

42 / 44

Leitura recomendada

▶ Senso-comum: raciocínio informal que usa regras aprendidas pela experiência (heurísticas).

- ▶ Não-monótono: usado quando os factos podem mudar.
 - Ex.: SE o vento sopra ENTÃO as cortinas abanam.
 - Quando o vento parar as cortinas deixam de abanar. Se usarmos o raciocínio monótono, uma vez que o vento soprasse e concluíssemos que as cortinas abanam, esse facto seria retido mesmo que o vento parasse de soprar.
 - ▶ No raciocínio não-monótono existe um mecanismo que verifica se o que levou um facto a ser verdade se mantém verdade. Se passar a falso, então os factos concluídos a partir desse facto são removidos.

Tipos de Raciocínio

- ▶ Inferência: chamamos inferência ao processo de derivação de novo conhecimento a partir de conhecimento já existente. Na IA o componente do sistema que faz inferência é o motor de inferência.
- ▶ **Dedutivo**: nova informação é deduzida a partir de informação com relação lógica. Ex.: Todos os homens são mortais. Sócrates é homem. Deduzimos: Sócrates é mortal.
- ▶ **Indutivo**: partir de um conjunto de observações e generalizar. Ex.: Todos os corvos que vi até hoje são pretos. Induzo: Todos os corvos são pretos.
- ▶ **Abdutivo**: é uma forma de dedução que permite inferência plausível. Ex.: Ela leva guarda-chuva se chover. Hoje ela leva guarda-chuva. Conclusão: Hoje está a chover.
- ▶ Analogia: fazer analogias entre duas situações. Ex.: guiar um camião é semelhante a guiar um carro, mas claro que tem algumas diferenças.

Luís A. Alexandre (UBI)

Leitura recomendada

- - ▶ https://en.wikipedia.org/wiki/Knowledge representation and reasoning
 - http://www.zeepedia.com/read.php?knowledge_ representation_and_reasoning_artificial_intelligence
 - ► Introdução ao RDF: https://www.w3.org/TR/rdf-syntax
 - ► Introdução à OWL 2: https://www.w3.org/TR/owl2-overview
 - ▶ Russell e Norvig, sec. 12.5.

Ano lectivo 2018-19 Ano lectivo 2018-19 Luís A. Alexandre (UBI) Inteligência Artificial 43 / 44 Luís A. Alexandre (UBI) Inteligência Artificial