# Распределенные алгоритмы. Spark MLlib. Стохастический градиентный спуск.

#### Содержание:

- Стохастический градиентный спуск
- Алгоритм распределенного стохастического градиентного спуска в Spark MLlib
- Реализация алгоритмов в Spark MLlib
- Список литературы

#### Стохастический градиентный спуск

Функция потерь (целевая функция) на множестве данных D (тренировочная выборка размера n):

$$L(y, x, \theta) = \sum_{(x,y) \in D} l(y, x, \theta),$$

где x — вектор признаков; y — целевое значение;  $\theta$  — неизвестные значения параметров; для линейной регрессии:

$$l(y, x, \theta) = (y - x^T \theta)^2$$
.

В стохастическом градиентном спуске подстройка параметров осуществляется на основе одного экземпляра данных:

$$\theta \leftarrow \theta - \eta \nabla l(v, x, \theta)$$
.

где  $\eta$  — скорость обучения;

$$\nabla l(y, x, \theta) = (y - x^T \theta) x.$$

Весь процесс оптимизации целевой функции можно представить в виде итеративного алгоритма 1.

Алгоритм 1. SGD (без проверки на сходимость)

| 1 | initialize $(\theta, \eta)$                              | Инициализация   |
|---|----------------------------------------------------------|-----------------|
| 2 | for <i>i</i> in 1 <i>T</i> :                             | Количество эпох |
| 3 | shuffle(D)                                               | Перетасовка     |
| 4 | for $(x, y)$ in $D$ :                                    |                 |
| 5 | $\theta \leftarrow \theta - \eta \nabla l(y, x, \theta)$ |                 |
| 6 | return $\theta$                                          |                 |

Мини-пакеты (mini-batch):

$$\theta \leftarrow \theta - \eta \cdot \sum_{(x,y) \in \mathcal{B}} \nabla l(y,x,\theta),$$

где  $\mathcal B$  - случайная выборка из множества тренировочных данных некоторого фиксированного размера m, как правило,  $m \ll n$ 

Если стохастический градиентный спуск используется для задачи регрессии, то значение предсказания  $(\hat{y})$  для некоторого входного вектора признаков (x) вычисляется как

$$\hat{y} = x^T \hat{\theta}$$
,

где  $\hat{ heta}$  – оценка параметров модели посредством стохастического градиентного спуска.

## Алгоритм распределенного стохастического градиентного спуска в Spark MLlib

В общем виде при распределенном стохастическом градиентном спуске данные D разбиваются на P частей, каждая из которых обрабатывается отдельно. В этом случае подстройка параметров на основное мини-пакетов может быть получена следующим образом:

$$\theta \leftarrow \theta - \eta \cdot \sum_{p=1}^{P} \sum_{(x,y) \in \mathcal{B}^p} \nabla l(y,x,\theta),$$

где  $\mathcal{B}^p$  – случайная выборка в части p.

Данный подход реализован в Spark MLlib, краткий алгоритм которого приведен ниже.

#### Алгоритм 2. SGD: Spark mini-batch

| , , | Whoparis 2. 30b. Spark fillin batch                                               |                                                    |  |
|-----|-----------------------------------------------------------------------------------|----------------------------------------------------|--|
| 1   | initialize $(\theta, \eta)$                                                       |                                                    |  |
| 2   | for <i>i</i> in 1 <i>T</i> :                                                      | Количество эпох                                    |  |
| 3   | $broadcast(\theta)$                                                               | Параметры рассылаются на все узлы                  |  |
| 4   | for $p$ in 1 $P$ in parallel:                                                     |                                                    |  |
| 5   | $\mathcal{B}^p \leftarrow \text{sample}(D^p, batch_{size})$                       | Случайная выборка из $D^p$ размером $batch_{size}$ |  |
| 6   | $\operatorname{grad}_p \leftarrow 0$                                              |                                                    |  |
| 7   | for $(x, y)$ in $\mathcal{B}^p$ :                                                 |                                                    |  |
| 8   | $\operatorname{grad}^p \leftarrow \operatorname{grad}^p + \nabla l(y, x, \theta)$ |                                                    |  |
| 9   | collect(grad <sup>1</sup> ,,grad <sup>P</sup> )                                   | Градиенты от $P$ частей собираются на мастере      |  |
| 10  | $\theta \leftarrow \theta - \eta \cdot \sum_{p=1}^{P} \operatorname{grad}^{p}$    |                                                    |  |
| 11  | return $	heta$                                                                    |                                                    |  |

Более детальный вариант представлен далее в алгоритмах 3-6.

Алгоритм 3. Spark RDD API. SGD. Gradient Descent

| 1  | $load(D, step, iter_{max}, batch_{fraction}, convTol)$                                                               |                                 |
|----|----------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 2  | $\theta \leftarrow 0; i \leftarrow 1; converged \leftarrow false$                                                    |                                 |
| 3  | while (not <i>converged</i> ) and $(i \leq iter_{max})$                                                              |                                 |
| 4  | $broadcast(\theta)$                                                                                                  |                                 |
| 5  | $\mathcal{B} \leftarrow \text{sampleEachPartition}(D, batch_{fraction})$                                             | RDD                             |
| 6  | for $p$ in 1 $P$ in parallel:                                                                                        | Для каждой части ${\mathcal B}$ |
| 7  | $\operatorname{grad}^p \leftarrow 0; loss^p \leftarrow 0; count^p \leftarrow 0$                                      |                                 |
| 8  | for $(x, y)$ in $\mathcal{B}^p$ :                                                                                    |                                 |
| 9  | $(\operatorname{grad}, \operatorname{loss}) \leftarrow \operatorname{gradient}(x, y, \theta, \operatorname{grad}^p)$ |                                 |
| 10 | $\operatorname{grad}^p \leftarrow \operatorname{grad}^p + \operatorname{grad}$                                       |                                 |
| 11 | $loss^p \leftarrow loss^p + loss$                                                                                    |                                 |

| 12 | $count^p \leftarrow count^p + 1$                                                             |  |
|----|----------------------------------------------------------------------------------------------|--|
| 13 | $collect((grad^1, loss^1, count^1),, (grad^P, loss^P, count^P))$                             |  |
| 14 | for <i>p</i> in 1 <i>P</i> :                                                                 |  |
| 15 | $grad \leftarrow grad + grad^p$                                                              |  |
| 16 | $loss \leftarrow loss + loss^p$                                                              |  |
| 17 | $batch_{size} \leftarrow batch_{size} + count^p$                                             |  |
| 18 | $(\theta, 0) \leftarrow \mathbf{updater}(\theta, \operatorname{grad}/batch_{size}, step, i)$ |  |
| 19 | $\theta^{prev} \leftarrow \theta^{current}$                                                  |  |
| 20 | $\theta^{current} \leftarrow \theta$                                                         |  |
| 21 | $converged \leftarrow isConverged(\theta^{prev}, \theta^{current}, convTol)$                 |  |
| 22 | $i \leftarrow i + 1$                                                                         |  |
| 23 | $return(\theta)$                                                                             |  |

#### Алгоритм 4. Spark RDD API. SGD. Gradient

|   | <u> </u>                              |
|---|---------------------------------------|
| 1 | load(x, y, w, grad)                   |
| 2 | $diff \leftarrow x^T w - y$           |
| 3 | $grad \leftarrow grad + diff \cdot x$ |
| 4 | $loss \leftarrow diff \cdot diff/2$   |
| 5 | return(grad, loss)                    |

### Алгоритм 5. Spark RDD API. SGD. Updater

| 1 | load(w, grad, step, i)             |
|---|------------------------------------|
| 2 | $\eta \leftarrow step/\sqrt{i}$    |
| 3 | $w \leftarrow w - \eta \cdot grad$ |
| 4 | return(w, 0)                       |

# Алгоритм 6. Spark RDD API. SGD. Проверка на сходимость

| 1 | $load(\theta^{prev}, \theta^{current}, convTol)$            |
|---|-------------------------------------------------------------|
| 2 | $vecDiff \leftarrow \ \theta^{prev} - \theta^{current}\ $   |
| 3 | if $vecDiff < convTol \cdot max(\ \theta^{current}\ , 1)$ : |
| 4 | return(true)                                                |
| 5 | return(false)                                               |

# Реализация алгоритмов в Spark MLlib



Рисунок 1 – Диаграмма классов реализации линейной регрессии в Spark MLlib RDD API



Рисунок 2 — Диаграмма последовательности для обучения и предсказания посредством линейной регрессии в Spark MLlib RDD API

```
Листинг 1. Spark MLlib RDD API. Linear Regression with SGD
@Since("0.8.0")
class LinearRegressionWithSGD private[mllib] (
    private var stepSize: Double,
    private var numIterations: Int,
    private var regParam: Double,
    private var miniBatchFraction: Double)
  extends GeneralizedLinearAlgorithm[LinearRegressionModel] with Serializable {
 private val gradient = new LeastSquaresGradient()
  private val updater = new SimpleUpdater()
  @Since("0.8.0")
  override val optimizer = new GradientDescent(gradient, updater)
    .setStepSize(stepSize)
    .setNumIterations(numIterations)
    .setRegParam(regParam)
    .setMiniBatchFraction(miniBatchFraction)
   * Construct a LinearRegression object with default parameters: {stepSize: 1.0,
   * numIterations: 100, miniBatchFraction: 1.0}.
  @Since("0.8.0")
  \texttt{@deprecated("Use ml.regression.LinearRegression or LBFGS", "2.0.0")}
  def this() = this(1.0, 100, 0.0, 1.0)
  override protected[mllib] def createModel(weights: Vector, intercept: Double) = {
   new LinearRegressionModel(weights, intercept)
@Since("0.8.0")
@DeveloperApi
abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel]</pre>
  extends Logging with Serializable {
```

```
@Since("0.8.0")
def optimizer: Optimizer
protected def createModel(weights: Vector, intercept: Double): M
@Since("0.8.0")
def run(input: RDD[LabeledPoint]): M = {
 run(input, generateInitialWeights(input))
@Since("1.0.0")
def run(input: RDD[LabeledPoint], initialWeights: Vector): M = {
  val weightsWithIntercept = optimizer.optimize(data, initialWeightsWithIntercept)
  val intercept = if (addIntercept && numOfLinearPredictor == 1) {
   weightsWithIntercept(weightsWithIntercept.size - 1)
  } else {
   0.0
  var weights = if (addIntercept && numOfLinearPredictor == 1) {
   Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1))
  } else {
   weightsWithIntercept
  createModel(weights, intercept)
}
```

```
Листинг 2. Spark MLlib RDD API. Linear Regression with SGD. Gradient
@DeveloperApi
class LeastSquaresGradient extends Gradient {
  override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = {
   val diff = dot(data, weights) - label
   val loss = diff * diff / 2.0
   val gradient = data.copy
   scal(diff, gradient)
   (gradient, loss)
 override def compute(
     data: Vector,
      label: Double,
     weights: Vector,
     cumGradient: Vector): Double = {
   val diff = dot(data, weights) - label
   axpy(diff, data, cumGradient)
   diff * diff / 2.0
```

```
| Листинг 3. Spark MLlib RDD API. Linear Regression with SGD. Updater
| @DeveloperApi | class SimpleUpdater extends Updater {
| override def compute(| weightsOld: Vector, gradient: Vector, gradient: Vector, stepSize: Double, iter: Int, regParam: Double): (Vector, Double) = {
| val thisIterStepSize = stepSize / math.sqrt(iter) | val brzWeights: BV[Double] = weightsOld.asBreeze.toDenseVector brzAxpy(-thisIterStepSize, gradient.asBreeze, brzWeights) |
| (Vectors.fromBreeze(brzWeights), 0) | }
| }
```

#### Листинг 4. Spark MLlib RDD API. Linear Regression with SGD. Gradient Descent

```
@DeveloperApi
object GradientDescent extends Logging {
  def runMiniBatchSGD(
      data: RDD[(Double, Vector)],
      gradient: Gradient,
      updater: Updater,
      stepSize: Double,
      numIterations: Int,
      regParam: Double,
      miniBatchFraction: Double,
      initialWeights: Vector,
      convergenceTol: Double): (Vector, Array[Double]) = {
    var previousWeights: Option[Vector] = None
    var currentWeights: Option[Vector] = None
    val numExamples = data.count()
    // Initialize weights as a column vector
    var weights = Vectors.dense(initialWeights.toArray)
    val n = weights.size
     * For the first iteration, the regVal will be initialized as sum of weight squares
     * if it's L2 updater; for L1 updater, the same logic is followed.
    var regVal = updater.compute(
      weights, Vectors.zeros(weights.size), 0, 1, regParam). 2
    var converged = false // indicates whether converged based on convergenceTol
    var i = 1
    while (!converged && i <= numIterations) {</pre>
      val bcWeights = data.context.broadcast(weights)
      // Sample a subset (fraction miniBatchFraction) of the total data
      // compute and sum up the subgradients on this subset (this is one map-reduce)
      val (gradientSum, lossSum, miniBatchSize) = data.sample(false, miniBatchFraction, 42 + i)
        .treeAggregate((BDV.zeros[Double](n), 0.0, 0L))(
          seqOp = (c, v) => {
            // c: (grad, loss, count), v: (label, features)
            val 1 = gradient.compute(v._2, v._1, bcWeights.value, Vectors.fromBreeze(c._1))
            (c._1, c._2 + 1, c._3 + 1)
          combOp = (c1, c2) \Rightarrow \{
            // c: (grad, loss, count)
            (c1._1 + c2._1, c1._2 + c2._2, c1._3 + c2._3)
      bcWeights.destroy(blocking = false)
      if (miniBatchSize > 0) {
         * lossSum is computed using the weights from the previous iteration
         * and regVal is the regularization value computed in the previous iteration as well.
        stochasticLossHistory += lossSum / miniBatchSize + regVal
        val update = updater.compute(
         weights, Vectors.fromBreeze(gradientSum / miniBatchSize.toDouble),
          stepSize, i, regParam)
        weights = update._1
        regVal = update. \overline{2}
        previousWeights = currentWeights
currentWeights = Some(weights)
        if (previousWeights != None && currentWeights != None) {
          converged = isConverged(previousWeights.get,
            currentWeights.get, convergenceTol)
      } else {
        logWarning(s"Iteration ($i/$numIterations). The size of sampled batch is zero")
      i += 1
    }
```

```
logInfo("GradientDescent.runMiniBatchSGD finished. Last 10 stochastic losses %s".format(
    stochasticLossHistory.takeRight(10).mkString(", ")))

(weights, stochasticLossHistory.toArray)

}

private def isConverged(
    previousWeights: Vector,
    currentWeights: Vector,
    convergenceTol: Double): Boolean = {
    // To compare with convergence tolerance.
    val previousBDV = previousWeights.asBreeze.toDenseVector
    val currentBDV = currentWeights.asBreeze.toDenseVector

    // This represents the difference of updated weights in the iteration.
    val solutionVecDiff: Double = norm(previousBDV - currentBDV)

solutionVecDiff < convergenceTol * Math.max(norm(currentBDV), 1.0)
}
</pre>
```

#### Список литературы

Source Code of MLlib for RDD API. URL:
 <a href="https://github.com/apache/spark/tree/master/mllib/src/main/scala/org/apache/spark/mllib">https://github.com/apache/spark/tree/master/mllib/src/main/scala/org/apache/spark/mllib</a>