Multivibrators

A MULTIVIBRATOR is an electronic circuit that generates square, rectangular, pulse waveforms, also called nonlinear oscillators or function generators.

Multivibrator is basically a two amplifier circuits arranged with regenerative feedback.

There are three types of Multivibrator:

Astable Multivibrator: Circuit is not stable in either state—it continuously oscillates from one state to the other. (Application in Oscillators)

Monostable Multivibrator: One of the state is stable but the other is not. (Application in Timer)

Bistable Multivibrator: Circuit is stable in both the state and will remain in either state indefinitely. The circuit can be flipped from one state to the other by an external event or trigger. (Application in Flip flop)

Astable Multivibrators

- ➤ The astable circuit has no stable state. With no external signal applied, the transistors alternately switch from cutoff to saturation at a frequency determined by the RC time constants of the coupling circuits.
- ➤ Astable multivibrator circuit consist of two cross coupled RC amplifiers.

Consists of two amplifying devices cross-coupled by resistors and capacitors. Typically, R2 = R3, R1 = R4, C1 = C2 and R2 >> R1.

- □□ The circuit has two states
- ✓ State 1: V_{C1} LOW, V_{C2} HIGH, Q1 ON (saturation) and Q2 OFF.
- ✓ State 2: V_{C1} HIGH, V_{C2} LOW, Q1 OFF and Q2 ON (saturation).
- □□ It continuously oscillates from one state to the other.

Astable Multivibrators

- ➤ When the circuit is first powered up, neither transistor is ON.
- \triangleright Both V_{B1} and V_{B2} rise via base resistor R₃ and R₂ respectively. Any one of the transistor will conduct faster than other due to some circuit imbalance. We can not say which transistor will turn on first so for analysis purpose we assume Q1 conducts first and Q2 off (C₁ is fully charged).
- \triangleright Since Q1 conducts and Q2 off hence Vc1 = 0V and Vc2 = V_{CC}. state1

Astable Multivibrators

Charging $C_2(T_2 = R_4C_2)$

Discharging $C_1(T1 = R_2C_1)$

5

- \gt Since Q1 conducts and Q2 off hence Vc1 = 0V and Vc2 = V_{CC}. Due to higher voltage at V_{c2}, capacitor C₂ will be charged via R₄ (low resistance path because R₄ <R₂). C₁ (which was charged earlier, and can not hold the charge for indefinite period) starts discharging via R₂ (high resistance path because R₂>R₁). Time taken to discharge C₁(T₁ = R₂C₁) > time taken to charge C₂ (T₂ =R₄C₂)
- \triangleright When C_2 is fully charged then left plate of C_2 will be at $-V_{cc}$ which switch off the Q1. When C_1 is fully discharged then left plate of C_1 will be at $+V_{cc}$ which switch on the Q2. State 2

Switching time & Frequency for Astable Multivibrators

- \triangleright Time period of wave depends only upon the discharge of capacitors C_1 and C_2 .
- \triangleright Consider V_{B2} during discharge of C₂: $V_{B2} = V_{CC} i_{C1}R_2$
- ➤ Since the capacitor C₁ charged up to V_{CC}, the initial discharge current will be

$$i_{C1} = \frac{V_{CC} + V_{CC}}{R_2}$$
 Current decays exponentially with a time constant of R₂C₁

$$V_{B2} = V_{CC} - 2V_{CC}(e^{-t/R_2C_1})$$
 Transistor will switch when $V_{B2} = 0V$ (actually 0.7V for Si which is small compare to V_{CC})

$$0 = V_{CC} - 2V_{CC}(e^{-t/R_2C_1})$$

$$2e^{-t/R_2C_1} = 1$$

$$0 = V_{CC} - 2V_{CC}(e^{-t/R_2C_1})$$

$$2e^{-t/R_2C_1} = 1$$

$$t = T_2 = R_2C_1 \ln(2)$$

where T2 is the off time for transistor Q_2

Switching time & Frequency for Astable Multivibrators

➤ Similarly off time for transistor Q₁ can be obtained.

$$t = T_1 = R_3 C_2 \ln(2)$$

> Total time period T:

$$T = T_1 + T_2 = [R_3C_2 + R_2C_1]\ln(2) = 0.694(R_3C_2 + R_2C_1)$$

- > If R2 = R3 = R, C1 = C2 = C then T = 1.4RC
- Frequency of oscillation is given by

$$f = \frac{1}{T} = \frac{0.7}{RC}$$

Monostable Multivibrators

- \succ One of the state is stable but the other is not. For that capacitive path between V_{C2} and V_{B1} removed.
- ➤ In stable state any one transistor conducts and other is off.
- ➤ Application of external trigger change the state.
- When the external signal goes high
- \checkmark V_{B2} charges up to V_{CC} through R₂
- ✓ After a certain time T, V_{B2}=V_{ON}, Q2 turns on
- √ V_{C2} pulled to 0V, Q1 turns off.
- > Enters state 1 and remains there
- ➤ When V_{B2} is momentarily pulled to ground by an external signal
- √ V_{C2} rises to V_{CC}
- ✓ Q1 turns on
- √ V_{C1} pulled to 0V

Bistable Multivibrators

- Both capacitors removed
- ✓ Stable for either state 1 or 2
- ✓ Can be forced to either state by Set or Reset signals
- > If Set is low,
- ✓ Q1 turns off
- \checkmark V_{C1} (Vout) and V_{B2} rises towards V_{CC}
- ✓ Q2 turns on
- √ V_{C2} pulled to 0V
- √ V_{B1} is latched to 0V
- ✓ Circuit remains in state 2 until Reset is low
- ➤ If Reset is low
- √ Similar operation
- ✓ Circuit remains in state 1 until Set is low
 - ➤ Behave as an RS flip-flop (memory element)

Some Important terms

Duty Cycle duty cycle is defined as the ratio of pulse duration to pulse period.

The pulse duration is τ ; this is how long the pulse remains high (amplitude=1 in the figure). The pulse period is T; this is the duration of one complete cycle, and is just the inverse of the frequency in Hz (f = 1/T).

$$D = \tau / T$$