Math 111C HW3

Zih-Yu Hsieh

April 21, 2025

1

Question 1 Let H/F be a field extension and $f(x), g(x) \in F[x]$. Suppose K_1 , K_2 are splitting fields of f(x) and g(x) respectively, contained in H. Prove that $K_1K_2 := K_1(K_2)$ is a splitting field of the polynomial f(x)g(x).

Pf:

Since K_1 is a splitting field of f(x) and K_2 is a splitting field of g(x), then the following two statements are true:

$$\exists a \in F, \ a_1, ..., a_n \in K_1, \quad f(x) = a(x - a_1)...(x - a_n)$$

 $\exists b \in F, \ b_1, ..., b_m \in K_2, \quad g(x) = b(x - b_1)...(x - b_m)$

In particular, $K_1 = F(a_1, ..., a_n)$ and $K_2 = F(b_1, ..., b_m)$ based on what we've proven in class.

Then, since $K_1 \subseteq K_1(K_2)$, $a_1, ..., a_n \in K_1(K_2)$; similarly, for all $q \in K_2$, since $1 \cdot q = q \in K_1(K_2)$, then $K_2 \subseteq K_1(K_2)$, hence $b_1, ..., b_m \in K_1(K_2)$.

Because $K_1(K_2)$ contains all roots of f(x) in K_1 , and all roots of g(x) in K_2 , hence f(x)g(x) also splits completely over $K_1(K_2)$ (since f(x), g(x) both split completely due to the existence of all roots). In particular, the factorization is given as follow, up to unit associates:

$$f(x)g(x) = ab(x - a_1)...(x - a_n) \cdot (x - b_1)...(x - b_m)$$

Now, to consider the splitting field of f(x)g(x), say $E/F \subseteq K_1(K_2)/F$. From the statements proven in class, given the roots of f(x)g(x) above, we know $E = F(a_1, ..., a_n, b_1, ..., b_m) = (F(a_1, ..., a_n))(b_1, ..., b_m) = K_1(b_1, ..., b_m)$.

Which, $K_1(b_1,...,b_m)$ by definition, is the smallest field within $K_1(K_2)$ that's containing both K_1 and the set $\{b_1,...,b_m\}$; however, since $F \subseteq K_1(b_1,...,b_m)$, while $K_2 = F(b_1,...,b_m)$ is defined to be the smallest field containing both F and $\{b_1,...,b_m\}$, then sicne $K_1(b_1,...,b_2)$ contains both, we must have $K_2 = F(b_1,...,b_m) \subseteq K_1(b_1,...,b_2)$.

Lastly, since K_1 , $K_2 \subseteq K_1(b_1,...,b_2)$, while $K_1(K_2)$ is the smallest field in $K_1(K_2)$ containing both K_1 and K_2 , then $K_1(b_1,...,b_m)$ containing both K_1, K_2 implies $K_1(K_2) \subseteq K_1(b_1,...,b_m)$, showing that $K_1(K_2) = K_1(b_1,...,b_m) = E$.

Hence, $K_1(K_2)$ is in fact a splitting field of $f(x)g(x) \in F[x]$.

Question 2 Define the set of algebraic numbers \mathbb{A} to be the set of all complex numbers which are algebraic over \mathbb{Q} . Show that \mathbb{A}/\mathbb{Q} is an infinite algebraic extension.

Pf:

We'll prove this via contradiction. Suppose \mathbb{A}/\mathbb{Q} is a finite extension, say $[\mathbb{A}:\mathbb{Q}] = n < \infty$. Then, for any $\alpha \in \mathbb{A}$, since the list $1, \alpha, \alpha^2, ..., \alpha^n \in \mathbb{A}/\mathbb{Q}$ has length (n+1), while \mathbb{A} as a \mathbb{Q} -vector space has dimension n, then the above list is linearly dependent, showing that there exists $a_0, a_1, ..., a_n \in \mathbb{Q}$, such that the following is true:

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Q}[x], \quad f(\alpha) = \sum_{k=0}^n a_k \alpha^k = 0$$

Now, take the minimal polynomial of α over \mathbb{Q} (denoted as $m_{\alpha,\mathbb{Q}}(x) \in \mathbb{Q}[x]$), since α is a root of f(x) defined above, then $m_{\alpha,\mathbb{Q}}(x) \mid f(x)$, showing that $\deg(m_{\alpha,\mathbb{Q}}) \leq \deg(f) \leq n$. So, all $\alpha \in \mathbb{A}/\mathbb{Q}$ should have minimal polynomial with degree at most n.

However, here is a counterexample: Consider a prime number p > n, and the polynomial $x^p - p \in \mathbb{Q}[x]$: Since over \mathbb{Z} , it satisfies the Eisenstein Criterion (the leading coefficient is 1, not divisible by p; the rest of the coefficients are 0 and p, which are divisible by p; and p is not divisible by p^2), hence $x^p - p$ is irreducible over \mathbb{Q} (and it is also monic).

Now, consider the element $p^{1/p} \in \mathbb{A}$: Since it satisfies $(p^{1/p})^p - p = p - p = 0$, then it is a root of $x^p - p$. Then, because $x^p - p$ is monnic and irreducible over \mathbb{Q} , it is in fact the minimal polynomial of $p^{1/p} \in \mathbb{A}$.

Yet, the proposed polynomial has degree p > n, while it is a minimal polynomial of some elements in \mathbb{A} , which supposedly should have degree at most n, then this forms a contradiction.

Hence, the assumption is false, \mathbb{A}/\mathbb{Q} must be an infinite extension.

3 (not done)

Question 3 Let $n \in \mathbb{N}$ and μ_n be the (multiplicative) group of n^{th} roots of unity in \mathbb{C} . A generator of μ_n is called a primitive n^{th} root of unity. Let $F_n \subseteq \mathbb{C}$ be the splitting field of $x^n - 1$ over \mathbb{Q} .

- (a) If ζ_n is any primitive n^{th} root of unity, prove that $F_n = \mathbb{Q}(\zeta_n)$.
- (b) Prove that any complex root of $m_{\zeta_n,\mathbb{Q}}(x)$ is also a primitive n^{th} root of unity.
- (c) Prove that $[F_n : \mathbb{Q}] \leq \phi(n)$ where |phi is the famous Euler's totient function.

Pf:

(a) Given that ζ_n is a primitive n^{th} root of unity, then $\langle \zeta_n \rangle = \mu_n$ (since it generates the whole μ_n). So, for any $\alpha \in \mu_n$, $\alpha = \zeta_n^k$ for some $k \in \mathbb{Z}$, proving that $\alpha \in \mathbb{Q}(\zeta_n)$. Hence, since $\mathbb{Q}(\zeta_n)$ contains all n^{th} roots of unity (all roots of $x^n - 1$ over \mathbb{C}), then $x^n - 1$ can be splitted completely over $\mathbb{Q}(\zeta_n)$, which the splitting field of $x^n - 1$, $F_n \subseteq \mathbb{Q}(\zeta_n)$.

On the other hand, since $\mathbb{Q} \subseteq F_n$, while $F_n \subseteq \mathbb{C}$ is the splitting field of $x^n - 1$, in particular, it must contain all roots of $x^n - 1$, which $\zeta_n \in F_n$.

Then, since $\mathbb{Q}(\zeta_n)$ is the smallest field in \mathbb{C} , containing both \mathbb{Q} and ζ_n , then because F_n contains both collections, $\mathbb{Q}(\zeta_n) \subseteq F_n$.

This proves that $F_n = \mathbb{Q}(\zeta_n)$.

(b) Not done

(c) Recall that in group theory, given a finite cyclic group $\langle a \rangle$ with order $|\langle a \rangle| = n$, then any $a^k \in \langle a \rangle$ is a generator of $\langle a \rangle$ iff $\gcd(k,n) = 1$. Then, since $|\mu_n| = |\langle \zeta_n \rangle| = n$, all the primitive n^{th} roots of unity in μ_n (the generators) must be in the form ζ_n^k , where $k \in \mathbb{Z}_n$ satisfies $\gcd(k,n) = 1$.

This implies that the number of primitive roots of unity for μ_n is precisely given by $\phi(n)$ (or, the number of elements in \mathbb{Z}_n that is coprime to n).

Now, from **part** (b), since we've proven that $m_{\zeta_n,\mathbb{Q}}(x)$ must have all of its roots being primitive n^{th} roots of unity, then it can have at most $\phi(n)$ roots, showing that $\deg(m_{\zeta_n,\mathbb{Q}}) \leq \phi(n)$.

Finally, since $F_n = \mathbb{Q}(\zeta_n)$, while $\mathbb{Q}(\zeta_n) \cong \mathbb{Q}[x]/(m_{\zeta_n,\mathbb{Q}}(x))$, then since $[\mathbb{Q}[x]/(m_{\zeta_n,\mathbb{Q}}(x)): \mathbb{Q}] = \deg(m_{\zeta_n,\mathbb{Q}}) \leq \phi(n)$, then $[F_n : \mathbb{Q}] = [\mathbb{Q}(\zeta_n): \mathbb{Q}] \leq \phi(n)$.

4 (not done)

Question 4 Let $f(x) = x^n - 2 \in \mathbb{Q}[x]$ with $n \in \mathbb{N}$. Let $\alpha \in \mathbb{C}$ be any n^{th} root of 2 and $\zeta_n = e^{2\pi i/n}$. Let $E \subseteq \mathbb{C}$ be the splitting field of f(x) over \mathbb{Q} .

- (a) Show that $E = \mathbb{Q}(\alpha, \zeta_n)$.
- (b) Let $n \geq 3$. Prove that $E \neq \mathbb{Q}(\alpha)$ and $E \neq \mathbb{Q}(\zeta_n)$.

Pf:

5 (not done)

Question 5

- (a) Find $[\mathbb{Q}(\sqrt[10]{2}):\mathbb{Q}(\sqrt{2})]$.
- (b) Prove that $x^5 2$ is irreducible over $\mathbb{Q}(\sqrt{2})[x]$.

Pf:

(a) First, consider the extension $\mathbb{Q}(\sqrt[10]{2})/\mathbb{Q}$: Given $x^{10} - 2 \in \mathbb{Z}[x] \subseteq \mathbb{Q}[x]$, since with prime p = 2, $x^{10} - 2$ satisfies the Eisenstein Criterion, then it is in fact irreducible over $\mathbb{Q}[x]$.

Now, since $\sqrt[10]{2}$ satisfies $(\sqrt[10]{2})^{10} - 2 = 2 - 2 = 0$, it is a root of $x^{10} - 2$. Then, because $x^{10} - 2$ is monic and irreudicible, it must be the minimal polynomial of $\sqrt[10]{2}$ over \mathbb{Q} . So, this implies that $\mathbb{Q}(\sqrt[10]{2}) \cong \mathbb{Q}[x]/(x^{10} - 2)$, which $[\mathbb{Q}(\sqrt[10]{2}) : \mathbb{Q}(\sqrt{2})] = [\mathbb{Q}[x]/(x^{10} - 2) : \mathbb{Q}] = 10$ (the degree of $x^{10} - 2$). Then, because $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[10]{2})$ (since $(\sqrt[10]{2})^5 = \sqrt{2}$, proving that both $\mathbb{Q}, \{\sqrt{2}\} \subseteq \mathbb{Q}(\sqrt[10]{2})$; then $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[10]{2})$, then by the theorem proven in class, we know:

$$10 = \left[\mathbb{Q}(\sqrt[10]{2}) : \mathbb{Q}(\sqrt{2})\right] = \left[\mathbb{Q}(\sqrt[10]{2}) : \mathbb{Q}(\sqrt{2})\right] \cdot \left[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}\right]$$

Now, because of the same arument about Eisenstein Criterion, $x^2-2 \in \mathbb{Q}[x]$ is irreducible, and since $\sqrt{2}$ is a root of it, while x^2-2 is being both irreducible and monic, then it is in fact the minimal polynomial of $\sqrt{2}$ over \mathbb{Q} . Then, $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[x]/(x^2-2)$, showing that $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = [\mathbb{Q}[x]/(x^2-2):\mathbb{Q}] = 2$.

Hence, we get the following:

$$10 = [\mathbb{Q}(\sqrt[10]{2}) : \mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt[10]{2}) : \mathbb{Q}(\sqrt{2})] \cdot 2$$

$$\implies [\mathbb{Q}(\sqrt[10]{2}) : \mathbb{Q}(\sqrt{2})] = 5$$

(b)