Perspective projection

Mechanical creation of a perspective image, Albrecht Dürer, 1525

Overview of next two lectures

- The pinhole projection model
 - Qualitative properties
 - Perspective projection matrix
- Cameras with lenses
 - Depth of focus
 - Field of view
 - Lens aberrations

Let's design a camera

Idea 1: put a piece of film in front of an object Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

Pinhole camera

- Captures pencil of rays all rays through a single point: aperture, center of projection, focal point, camera center
- The image is formed on the image plane

Pinhole cameras everywhere

Tree shadow during a solar eclipse

photo credit: Nils van der Burg

http://www.physicstogo.org/index.cfm

Dimensionality reduction: from 3D to 2D

3D world

Point of observation

2D image

What is preserved?

Straight lines, incidence

What is not preserved?

Angles, lengths

Modeling projection

- To compute the projection P' of a scene point P, form the visual ray connecting P to the camera center O and find where it intersects the image plane
 - All scene points that lie on this visual ray have the same projection in the image
 - Are there scene points for which this projection is undefined?

Modeling projection

The coordinate system

- The optical center (O) is at the origin
- The image plane is parallel to xy-plane (perpendicular to z axis)

Projection equations

Derived using similar triangles:

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$$

Projection of a line

 What if we have another line in the scene parallel to the first one?

Vanishing points

- Each direction in space has its own vanishing point
 - All lines going in that direction converge at that point
 - Exception: directions parallel to the image plane

Vanishing points

- Each direction in space has its own vanishing point
 - All lines going in that direction converge at that point
 - Exception: directions parallel to the image plane
- What about the vanishing line of a plane?

The horizon

- Vanishing line of the ground plane
 - All points at the same height as the camera project to the horizon
 - Points higher than the camera project above the horizon
 - Provides way of comparing height of objects

The horizon

Perspective cues

Perspective cues

Perspective cues

Comparing heights

Measuring height

Perspective in art

Masaccio, *Trinity*, Santa Maria Novella, Florence, 1425-28

One of the first consistent uses of perspective in Western art

Perspective distortion

What does a sphere project to?

Image source: F. Durand

Perspective distortion

What does a sphere project to?

Perspective distortion

- The exterior columns appear bigger
- The distortion is not due to lens flaws
- Problem pointed out by Da Vinci

Perspective distortion: People

Modeling projection

Projection equation:
$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$$

Homogeneous coordinates

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$$

Is this a linear transformation?

no—division by z is nonlinear

Trick: add one more coordinate:

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 $(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

homogeneous image coordinates

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$
Slide by Steve Seitz

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \implies (f\frac{x}{z}, f\frac{y}{z})$$
divide by the third coordinate

In practice: lots of coordinate transformations...

Orthographic Projection

Special case of perspective projection

Distance from center of projection to image plane is infinite

- Also called "parallel projection"
- What's the projection matrix?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$