

	WYPEŁNIA ZDAJĄCY	Miejsce na naklejkę.
KOD	PESEL	Sprawdź, czy kod na naklejce to E-100 .
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

EGZAMIN MATURALNY Z MATEMATYKI Poziom rozszerzony

DATA: 2 czerwca 2021 r. GODZINA ROZPOCZĘCIA: 14:00 CZAS PRACY: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

WYPEŁNIA ZESPÓŁ NADZORUJĄCY		
Uprawnienia zdającego do:		
dostosowania zasad oceniania		
dostosowania w zw. z dyskalkulią		
nieprzenoszenia zaznaczeń na kartę.		

EMAP-R0-**100**-2106

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 25 stron (zadania 1–15). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Odpowiedzi do zadań zamkniętych (1–4) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 6. W zadaniu 5. wpisz odpowiednie cyfry w kratki pod treścią zadania.
- 7. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (6–15) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 8. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 9. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 10. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 11. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

W każdym z zadań od 1. do 4. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Wartość wyrażenia $\left(\left(\sqrt{3}-1\right)^2-\left(\sqrt{3}+1\right)^2\right)^3$ jest równa

A. 512

B. 0

C. $-24\sqrt{3}$

D. $-192\sqrt{3}$

Zadanie 2. (0-1)

Granice
$$\lim_{n\to\infty}\frac{an^2+bn+4}{n+1}$$
 i $\lim_{n\to\infty}\frac{n+1}{an^2+bn+4}$ są równe. Stąd wynika, że

A. a = 0 i b = 0

B.
$$|a| = 1$$
 i $b = 0$

C. |a| = 1 i |b| = 1

D.
$$a = 0$$
 i $|b| = 1$

Zadanie 3. (0-1)

Wektory $\vec{a}=[m-2,m+2]$ oraz $\vec{b}=[m^{1,5},2^{1,5}]$ mają równe długości wtedy i tylko wtedy, gdy

A. m = 0 lub m = 4

B. m = 0 lub m = 2

C. m = 2

D. m = 2 lub m = 4

Zadanie 4. (0-1)

Na rysunku przedstawiono fragment wykresu pewnej funkcji f określonej dla każdej liczby rzeczywistej x. Jeden z podanych poniżej wzorów jest wzorem tej funkcji. Wskaż wzór funkcji f.

 $\mathbf{A.}\ f(x) = 2\sin(2x)$

 $\mathbf{B.}\ f(x) = 2\pi \cdot \sin(2x)$

 $\mathbf{C}.\,f(x)=2\sin\left(\frac{x}{2}\right)$

 $\mathbf{D.}\ f(x) = 2\pi \cdot \sin\left(\frac{x}{2}\right)$

BRUDNOPIS (nie podlega ocenie)

Zadanie 5. (0-2)

Wynikiem dzielenia wielomianu $5x^3-7x^2-4x-4$ przez dwumian x-2 jest trójmian kwadratowy postaci ax^2+bx+c .

W poniższe kratki wpisz kolejno – od lewej do prawej – wartości współczynników a, b oraz c.

Zadanie 6. (0-3)

Niech $\log_2 9 = c$. Wykaż, że $\log_3 54 = \frac{3c+2}{c}$.

Zadanie 7. (0-3)

Dany jest trójkąt ABC. Na boku AB tego trójkąta obrano punkty D, E i F tak, że |AD| = |DE| = |EF| = 2|FB|. Na bokach AC i BC obrano – odpowiednio – punkty G i H tak, że $DG \parallel EC$ oraz $FH \parallel EC$ (zobacz rysunek). Wykaż, że jeżeli pole trójkąta FBH jest równe S, to pole trójkąta ADG jest równe SS.

Zadanie 8. (0-4)

Rozwiąż równanie $2\cos^2 x - \cos x = \sin(2x) - \sin x$ w przedziale $(0, 2\pi)$.

Zadanie 9. (0-4)

Dane są prosta k o równaniu x-2y=0 i prosta l o równaniu 2x+y-1=0. Punkt P leży na prostej o równaniu y=x+4. Odległość punktu P od prostej k jest dwa razy większa niż odległość punktu P od prostej l. Oblicz współrzędne punktu P.

Zadanie 10. (0-4)

Dany jest sześcian ABCDEFGH o krawędzi długości 2. Punkt S jest środkiem krawędzi DH (zobacz rysunek). Oblicz miarę najmniejszego kąta wewnętrznego trójkąta CFS.

Zadanie 11. (0-4)

W pewnym telewizyjnym programie bierze udział trzech sportowców i pewna liczba aktorów. W trakcie tego programu uczestnicy siadają na fotelach w rzędzie, naprzeciw prowadzącego (liczba foteli jest równa liczbie uczestników). Prawdopodobieństwo zdarzenia polegającego na tym, że cała trójka sportowców będzie siedziała obok siebie przy losowym wyborze miejsc jest równe $\frac{1}{15}$. Oblicz, ilu aktorów bierze udział w tym programie.

Zadanie 12. (0-5)

Wyznacz wszystkie wartości parametru m, dla których równanie

$$(x-3)(x^2 + (m-1)x - 6m^2 + 2m) = 0$$

ma dokładnie dwa rozwiązania.

Zadanie 13. (0-5)

Dana jest funkcja f określona wzorem $f(x) = \frac{x^3 + k}{x}$ dla każdej liczby rzeczywistej $x \neq 0$. Oblicz wartość k, dla której prosta o równaniu y = -x jest styczna do wykresu funkcji f.

Zadanie 14. (0-5)

Na okręgu jest opisany czworokąt ABCD. Bok AD tego czworokąta jest dwa razy dłuższy od boku AB, a przekątna BD ma długość równą 6. Ponadto spełnione są następujące warunki:

$$cos(\angle ADB) = \frac{7}{8}$$
, $|\angle BCD| = 90^{\circ}$ oraz $|AB| > \sqrt{15}$.

Oblicz długość boku BC tego czworokąta.

Zadanie 15. (0-7)

Rozpatrujemy wszystkie trójkąty prostokątne ABC o przeciwprostokątnej AB i obwodzie równym 4. Niech x = |AC|.

a) Wykaż, że pole P trójkąta ABC jako funkcja zmiennej x jest określone wzorem

$$P(x) = \frac{x(4-2x)}{4-x}$$

- b) Wyznacz dziedzinę funkcji P.
- c) Oblicz długości boków tego z rozpatrywanych trójkątów, który ma największe pole. Oblicz to największe pole.

BRUDNOPIS (nie podlega ocenie)

