Lógica da Programação

Ex. 4.7) Pore rode ume des tipificações $T \vdash H: \sigma \text{ do } Ex. 3.70$,

determine $d(T \vdash H: G)$

(vi) Contento tipificação à Church

 $\frac{x: \mathcal{T} \rightarrow \sigma, y: \mathcal{T} + x \quad \mathcal{T} \rightarrow \sigma}{Abs} \frac{x. \quad \mathcal{T} \rightarrow \sigma, y: \mathcal{T} + y: \mathcal{T}}{x: \quad \mathcal{T} \rightarrow \sigma, y: \mathcal{T} + y: \mathcal{T}} \xrightarrow{Abs} \frac{x. \quad \mathcal{T} \rightarrow \sigma, y: \mathcal{T} + y: \mathcal{T}}{x: \quad \mathcal{T} \rightarrow \sigma + \lambda y. \quad xy: \quad \mathcal{T} \rightarrow \sigma} \xrightarrow{Abs} \frac{x: \quad \mathcal{T} \rightarrow \sigma, y: \mathcal{T} + y: \mathcal{T}}{x: \quad \mathcal{T} \rightarrow \sigma + \lambda y. \quad xy: \quad \mathcal{T} \rightarrow \sigma} \xrightarrow{Abs} \frac{x: \quad \mathcal{T} \rightarrow \sigma, y: \mathcal{T} \rightarrow \sigma}{x: \quad \mathcal{T} \rightarrow \sigma, y: \mathcal{T} \rightarrow \sigma} \xrightarrow{Abs} \frac{x: \quad \mathcal{T} \rightarrow \sigma, y: \mathcal{T} \rightarrow \sigma}{x: \quad \mathcal{T} \rightarrow \sigma, y: \mathcal{T} \rightarrow \sigma} \xrightarrow{Abs} \frac{x: \quad \mathcal{T} \rightarrow \sigma, y: \mathcal{T} \rightarrow \sigma}{x: \quad \mathcal{T} \rightarrow \sigma, y: \mathcal{T} \rightarrow \sigma} \xrightarrow{Abs} \frac{x: \quad \mathcal{T} \rightarrow \sigma, y: \mathcal{T} \rightarrow \sigma}{x: \quad \mathcal{T} \rightarrow \sigma, y: \mathcal{T} \rightarrow \sigma} \xrightarrow{\mathcal{T} \rightarrow \sigma} \xrightarrow{\mathcal{T}$

 $\frac{=}{\alpha:d\mathcal{V} \to d\sigma, y:d\mathcal{T} \Rightarrow d\mathcal{T} \to d\sigma} \xrightarrow{A_{x}^{*}} \frac{A_{x}^{*}}{\alpha:d\mathcal{T} \to d\sigma, y:d\mathcal{T} \Rightarrow d\mathcal{T} \to E}$ $\frac{g_{C}:d\mathcal{T} \to d\sigma, y:d\mathcal{T} \Rightarrow d\sigma}{g_{C}:d\mathcal{T} \to d\sigma, y:d\mathcal{T} \Rightarrow d\sigma} \to I^{y}$ $\frac{g_{C}:d\mathcal{T} \to d\sigma}{g_{C}:d\mathcal{T} \to d\sigma} \to I^{y}$

 $\frac{E_{3}(. Y.2)}{(i)} \text{ (ame tipification que permite estrair o 1-termo)}$ $\frac{(i)}{(i)} \lambda_{3} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3} \nabla^{3} \nabla^{3} \nabla^{3} \times y \text{ i originate de a}$ $\frac{\lambda_{2}}{(i)} \times \nabla^{3} \nabla^{3}$

 $t_{(ermo)}^{(0)} = \lambda_{2c}^{(0)} = \lambda_{3c}^{(0)} + \lambda_{3c}^{(0)} + \lambda_{3c}^{(0)} = \lambda_{3c}^{(0)} + \lambda_{3c}^{(0)} +$

Contrevergroco:

do mão é tautologia => o mão é hobitado

Ex. 4.87

a)
$$(e_1 \rightarrow e_0) \rightarrow e_0$$
 mão é hobitado?
Atensendo a 4.7, beste $\rightarrow 5 \text{ trv}$
que $d((e_1 \rightarrow e_0) \rightarrow e_0) = (r_1 \rightarrow r_0) \rightarrow r_0$
não é toutologia.

Tome -re uma velorogo v tel que $v(\gamma_0) = 0 = v(\gamma_1)$, dode que poro tel v, $v((\gamma_1 \rightarrow \gamma_0) \rightarrow \gamma_0) = 0$.

Berto provor que $d(a_0 \rightarrow a_0) \rightarrow a_0)$ não é toutologia. (tome-re v tol que) $v(r_0)=0$

$$\frac{x : a_0 \rightarrow a_0 \vdash x : e_0 \rightarrow a_0}{x : a_0 \rightarrow a_0 \vdash x : a_0} \rightarrow a_0 \vdash x : a_0 \rightarrow a_0 \vdash x : a_0 \rightarrow a_0 \vdash x : a_0 \rightarrow a_0$$

c) e_0 noo é hobitodo no rontexto $\{x: e_1 \rightarrow e_0, y: e_2 \rightarrow e_1\}$

Tendo em conta une contradição.

suponhomos, In. Thiseo.

Assim (usando e regra ABS, $\gamma: \mathbf{a}_2 \rightarrow \mathbf{e}_1 \vdash \lambda \mathbf{x}^{\mathbf{e}_1 \rightarrow \mathbf{e}_0}, M: (\mathbf{e}_1 \rightarrow \mathbf{e}_0) \rightarrow \mathbf{e}_0.$

Novemente pulo ABS,

$$\vdash \lambda y^{a_2 \rightarrow a_1}, \lambda x^{a_1 \rightarrow a_0}, h: (a_2 \rightarrow a_1) \rightarrow ((a_1 \rightarrow a_0) \rightarrow a_0)$$

Anim, por 4.7, d(T) et autologie, o que nou é verdede $(v(r_0) = 0, v(r_1) = 0, v(r_2) = 0).$

(Survivio típico de teste)

$$\ell_1 = ((r_0 \rightarrow r_1) \rightarrow r_0);$$

$$\ell_2 = ((r_0 \rightarrow r_1) \rightarrow r_1)$$

1 Indicor deriveção D do requente => (2 em DNP; (som dones de hinóteres) $A_{x} \xrightarrow{\gamma_{x} : (\ell_{1}, \gamma : r_{0} \rightarrow r_{1} \rightarrow r_{0} \rightarrow r_{1})} \xrightarrow{\chi_{x} : (\ell_{1}, \gamma : r_{0} \rightarrow r_{1} \rightarrow r_{0})} E$ $\frac{x : \ell_{11} y : r_{0} \rightarrow r_{11} \Rightarrow r_{1}}{x : \ell_{1} \Rightarrow \ell_{2}} \rightarrow I^{x}$ $\Rightarrow \ell_{1} \rightarrow \ell_{2}$

$$Ax = \frac{x}{x \cdot (2, y) \cdot ... \Rightarrow (2, y) \cdot (2, y) \cdot$$

Determinar o 1- termo enociedo e D

$$t_{e_{n_0}(D)} = \lambda x^{te_1} \lambda y^{t(r_0 \rightarrow r_1)} y(xy)$$

b) $t(\ell_1 \rightarrow \ell_2)$ e hobitodo?

Sin: tomo (D) et un habitante de $t(\ell_1 \rightarrow \ell_2)$

$$(\beta \vdash t_{ermo}(D) : t(\ell_1 \rightarrow \ell_2))$$

C) Mortror que $\ell_2 \rightarrow \ell_1$ nov é teoremo de DNP c e dizer re $t(\ell_2 \rightarrow \ell_2)$ é hobitado.

 $\ell_2 \rightarrow \ell_1$ noo é toutologie (...) $(v(r_0) = 0 \times v(r_1) = 0)$

- « lez » l'a noo pode ser teoreme de DNPc.
- os => l2 > l1 nor é derivavel en DNP; "
- « t(l2 → l1) não pode rer habitado.