Equation Kuramoto-Sivashinsky in orbits periodic Relative

Ruslan L. Davidchack Evangelos Siminos and

School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, U.K.

The Kuramoto-Sivashinsky partial differential equation (KSe):

$$u_t = 2uu_x - u_{xxx} - u_{xx} ,$$

 $\in [0, L]$ with periodic boundary conditions u(0, t) = u(L, t).

Appears in the description of

- hydrodynamic instabilities in laminar flame fronts,
- reaction-diffusion systems,
- the interface between two viscous fluids,
- the evolution of liquid falling films.

Our motivation for KSe study

It is one of the simplest PDE's that exhibit spatiotemporal chaos.

Our approach

Use dynamical system language and tools.

- Phase space dynamics,
- (equilibria, periodic orbits, their stable/unstable manifolds) Organization of dynamics by invariant objects
- Role of symmetries:

relative periodic orbits. relative equilibria Γ invariance

Goal

statistical quantities for specific system size. Apply Periodic Orbit Theory to predict

Phase space v.s. physical space

system of ∞ -many, nonlinearly coupled ODE's ∞ -dimensional dynamical system Transform to Fourier space:

 $d\text{-}\mathrm{dimensional}$ system of nonlinearly coupled ODE's only a finite number of modes active Truncate system: Dissipation:

KSe for L=22.0

equilibrium, 3-cell equilibrium, 1-cell traveling wave waves are shown decaying to a Unstable Equilibria and Relative Equilibria (travel-22.0. From left to right: 2-cell -u(-x,t) counteru(x,t)(to the left) and it's typical chaotic state. part. The traveling ing waves) for L =

= 22.0. The black line represents the family of Unstable manifold of 2-cell equilibrium of KSe for lation operator, while the purple line represents the librium to a 3-cell equilibrium. The connection splits the manifold into two parts, colored blue and green 2-cell equilibria obtained by application of the transfamily of 3-cell equilibria. The red trajectory represents the heteroclinic connection from a 2-cell equihere.

= u(x,t) for time period T and Relative Periodic Orbits satisfying the condition spatial displacement Δ . $u(x + \Delta, t + T)$

Future

- Construct symbolic dynamics
- Find all periodic and relative periodic orbits up to a given period
- Use trace formulas that incorporate continous symmetries

References

- [1] F. Christiansen, P. Cvitanović, and V. Putkaradze. Spatiotemporal chaos in terms of unstable recurrent patterns. Nonlinearity, 10:55, 1997.
- P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay. *Chaos: Classical and Quantum*. Niels Bohr Institute, Copenhagen, 2005. ChaosBook.org.
- [3] Y. Kuramoto and T. Tsuzuki. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. *Progr. Theor. Phys.*, 55:365, 1976.
- E. Siminos, P. Cvitanović, and R. L. Davidchack. Relative periodic orbits in Kuramoto-Sivashinsky equation. In preparation, 2006. Y. Lan and P. Cvitanović. Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics. In preparation, 2006. [4] $\overline{\Sigma}$
- G. I. Sivashinsky. Nonlinear analysis of hydrodynamical instability in laminar flames I. Derivation of basic equations. Acta Astr., 4:1177, 1977.