Диффузия гелия через оболочку резинового шарика

Дмитрий Павлов, 790 16 июня 2018 г.

Содержание

1	Дис	ффузия гелия.	3
	1.1	Предыстория	3
	1.2	Задание	3
	1.3	Оборудование	3
	1.4	Начальные данные и предположения	
2	Реп	пение.	3
3	Про	оведение эксперимента.	5
	3.1	Параметры эксперимента:	5
	3.2	Коэффициент диффузии:	5
		3.2.1 Найдем зависимость силы давления груза на весы от времени:	6
		3.2.2 Вычисление коэффициента диффузии	8
	3.3	Погрешности измерений	8
		3.3.1 Погрешность углового коэффициента:	8
		3.3.2 Погрешность вычисления коэффициента диффузии:	9
	3.4	Вывод для коэффициента диффузии:	10
	3.5	Проникал ли воздух в шарик?	10
4	Фол	гографии эксперимента.	12

1 Диффузия гелия.

1.1 Предыстория.

Воздушный шарик, накачанный гелием, относительно быстро сдувается (за несколько часов его объём уменьшается в два раза). Это связано с диффузией гелия через резиновую оболочку шарика. Плотность потока j гелия (число молекул, проникающих через единичную площадку резины в единицу времени) определяется законом Фика:

$$j = D\frac{\Delta n}{\delta},\tag{1}$$

где D — коэффициент диффузии гелия через резину, δ — толщина оболочки надутого шарика, $\Delta n = n - n_0$ — разность концентрации n гелия внутри шарика и n_0 вне.

1.2 Задание.

Определим коэффициент диффузии D гелия через резину. Считаем, что шарик проницаем только для гелия, то есть воздух не проникает внутрь шарика. Позже убедимся в этом экспериментально. Опишем причины этого явления.

1.3 Оборудование.

- Три резиновых шарика с гелием;
- Весы;
- Груз №1 и груз №2;
- Бумажная измерительная лента;
- Секундомер;

1.4 Начальные данные и предположения.

Молярная масса воздуха и гелия: $\mu_{\text{воз}} = 29 \frac{\Gamma}{\text{моль}}$, $\mu_{\text{He}} = 4 \frac{\Gamma}{\text{моль}}$. Плотность резины $\rho_{\text{рез}} = 1.05 \frac{\Gamma}{\text{см}^3}$, ускорение свободного падения $g = 9.8 \frac{M}{\text{c}^2}$. Считаем, что при надувании шарика плотность резины не меняется и утечкой гелия через узел можно пренебречь.

2 Решение.

Пусть S — площадь поверхности шарика, V — его объём, ρ_0 — плотность воздуха, ρ_{He} — плотность гелия. За время t через поверхность шарика в атмосферу выйдет

$$\Delta N = jSt = \frac{DSnt}{\delta} = \frac{DSNt}{V\delta} \tag{2}$$

молекул гелия (внутри шарика концентрация $n=\frac{N}{V}$, вне шарика концентрацию гелия считаем равной нулю: $n_0=0$). За небольшое время относительное уменьшение объёма $\frac{\Delta V}{V}=\frac{\Delta N}{N}=\frac{DSt}{V\delta}$. Соответственно, относительное уменьшение подъёмной силы $F_{\text{под}}=$

 $(
ho_0 -
ho_{He})Vg$ равно: $\frac{\Delta F_{
m nog}}{F} = \frac{\Delta V}{V} = \frac{SDt}{V\delta}$. Тогда $\Delta F_{
m nog} = \frac{DSFt}{V\delta} = \frac{DS(
ho_0 -
ho_{He})gt}{\delta}$. Последняя формула даёт закон изменения подъёмной силы с течением времени: $\Delta F_{
m nog} = \Delta F_{
m nog}(t)$.

Рисунок 1 — Шарик, заполненный гелием и груз

Прикрепим к шарику, заполненному гелием, груз и взвесим его на весах (Рисунок 1). Сила тяжести груза превышает подъёмную силу шарика. Груз давит на весы с силой равной разности силы тяжести, действующей на груз, оболочку и нить, и подъёмной силы шарика $P=mg-F_{\rm nog}$. Поскольку с течением времени подъёмная сила уменьшается, то показания весов увеличиваются по закону

$$m(t) = \frac{F}{g} = m_0 + \beta t, \tag{3}$$
 где $\beta = \frac{DS(\rho_0 - \rho_{He})}{\delta}.$

Коэффициент β можно определить экспериментально по наклону графика m(t). Зная β , коэффициент D рассчитываем по формуле:

$$D = \frac{\beta \delta}{S(\rho_0 - \rho_{He})}. (4)$$

Толщина δ измеряется делением массы растягивающейся поверхности на её площадь и на плотность резины:

$$\delta = \frac{m_{\rm ob}}{S\rho_{\rm pes}}.$$

Площадь поверхности шара оценим, считая её полусферой и конусом:

$$S = \frac{1}{2}(\pi d^2 + \pi l d),\tag{5}$$

где d - диаметр обхвата шарика, l - длина ребра.

Для оценки толщины резины δ измерим массу растягивающейся части шарика m и поделим на площадь и плотность (объем резины при растяжении считаем неизменным).

Плотность воздуха: $\rho_0 = \frac{\mu_{\text{воз}}p_0}{RT} = 1{,}16 \frac{\text{кг}}{\text{м}^3}$. Плотность гелия $\rho_{He} = 0{,}16 \frac{\text{кг}}{\text{м}^3}$. Искомый коэффициент диффузии (ориентировочно):

$$D = 1 \cdot 10^{-7} \frac{\text{cm}^2}{\text{c}}.$$

3 Проведение эксперимента.

3.1 Параметры эксперимента:

• ускорение свободного падения: $g = 9.81 \frac{M}{c^2}$;

• масса груза №1: $m_1 = 11,27 \pm 0,01$ г;

• масса груза №2: $m_2 = 16,77 \pm 0,01$ г;

• масса шарика: m = 1, 8 г;

• плотность резины: $1,2 \frac{\Gamma}{c_{M}^{3}}$.

Таблица 1 – Параметры шариков

Номер шарика	1	2	3
Обхват лентой, см	64	84	66
Радиус, см	10,19	13,37	10,5
Образующая конуса, см	17,6	27	18,2
Высота конуса, см	14,4	24,4	14,8
Площадь шарика, см ²	1216	2257	1292
Толщина, мм	0,0123	0,00664	0,0116

Радиус вычислен из значения обхвата ленты по формуле: $R=\frac{L}{2\pi}$

Высота конуса найдена по теореме Пифагора из значений радиуса и образующей:

$$h = \sqrt{l^2 - R^2}$$

Площадь $S=\frac{1}{2}(\pi d^2+\pi l d)$, где d - диаметр шарика, l - образующая конуса

Толщина найдена по формуле $\delta = \frac{m}{S \cdot \rho}$

3.2 Коэффициент диффузии:

Коэффициент диффузии найдем с помощью закона Фика, для этого нужно экспериментально найти количество покидающих за секунду шарик молекул (Δn и δ известны). Заметим что со временем шарик уменьшается в размерах, значит, из закона Архимеда $F=g\rho V$, должна меняться подъемная сила, действующая на шарик. Зависимость $F_{\rm apx}(t)$ можно найти с помощью груза и весов, весы будут показывать силу давления груза, к которому привязан шарик. Со стороны шарика на груз действует изменяющаяся со временем сила. Изменение этой силы можно представить как

$$\Delta M(t) = \beta \cdot t = DS \frac{\rho_0 - \rho_{He}}{\delta} t,$$

где β - угол наклона графика $\Delta M(t)$. Его можно найти построив график зависимости силы давления груза, к которому привязан шарик, от времени.

3.2.1 Найдем зависимость силы давления груза на весы от времени:

Проведем три серии измерений. В первой серии используем груз №1, во втором – груз №2, в третьем – груз №1.

Таблица 2 – Показания весов, измеряющих массу груза, первое измерение

т, г	6,65	6,72	6,76	6,8	6,83	6,87	6.93	7,00	7,04	7,11	7,24	7,39
t, мин	0	4	8	12	16,25	20	25	30	35	40	50	65

Таблица 3 – Показания весов, измеряющих массу груза, второе измерение

т, г	8,09	8,27	8,36	8,45	8,53	8,78	9,00	9,18	9,35	9,51	9,68	10,04
t, мин	0	5	7,45	10	12	19.25	25	30	35	40	45	55

Таблица 4 – Показания весов, измеряющих массу груза, третье измерение

т, г	8,82	8,86	8,36	8,92	8,96	9,00	9,04	9,1	9,15	9,23	9,29	9,34
t, мин	0	4	8,5	12	16	20	26	30	35	40	45	50

Рисунок 2 – График зависимости массы шарика с грузом от времени в 1 измерении

Рисунок 3 – График зависимости массы шарика с грузом от времени в 2 измерении

Рисунок 4 – График зависимости массы шарика с грузом от времени в 3 измерении

Рассчитаем по МНК коэффициент наклона графиков. Полученные результаты представлены в таблице 5.

Таблица 5 – Угол наклона графика

	Угол наклона β , г/мин
Шарик №1	0,0113
Шарик №2	0,0351
Шарик №3	0,0113

3.2.2 Вычисление коэффициента диффузии

Воспользуемся соотношением:

$$D = \frac{\beta \delta}{S(\rho_0 - \rho)},$$

где толщина стенки $\delta = \frac{m_{
m o6}}{S
ho_{
m pes}}$.

Получаем значения коэффициента диффузия: таблица 6.

Таблица 6 – Коэффициент диффузии для каждого шарика

	Площадь, см ²	Толщина стенок, мм	Коэффициент диффузии $10^{-7} \frac{\mathrm{cm}^2}{\mathrm{c}}$
Шарик №1	1216,75	0,0123	1,91
Шарик №2	2257,56	0,00664	1,74
Шарик №3	1292,64	0,0116	1,69

3.3 Погрешности измерений

3.3.1 Погрешность углового коэффициента:

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2}$$

Таблица 7 – Расчет случайной погрешности по МНК

	$\langle x^2 \rangle$	$\langle y^2 \rangle$	$\langle x \rangle^2$	$\langle y \rangle^2$	k	$\sigma_k, 10^{-4}$	ε	ε , %
Шарик №1	996,9218	48,2777	647,0664	48,2330	0,0113	0,66	0,0058	0,6
Шарик №2	841,2554	80,2184	558,9284	79,8640	0,0354	4,4	0,012	1,2
Шарик №3	817,8541	82,6447	570,0156	82,6129	0,0113	1,8	0,016	1,6

3.3.2 Погрешность вычисления коэффициента диффузии:

Коэффициент диффузии находим по формуле:

$$D = \frac{\beta \delta}{S(\rho_0 - \rho)},$$

где δ и S находили по формулам:

$$\begin{split} \delta &= \frac{m_{\text{o6}}}{S\rho_{\text{pe3}}} \\ S &= \frac{1}{2}(\pi d^2 + \pi l d). \end{split}$$

Таблица 8 – Причины погрешности

Измерение	Значение	Абс. погрешность	Отн. погрешность
Обхват лентой	64 см	0,5 мм	$7.8 \cdot 10^{-4}$
	84 см	0,5 мм	$5.9 \cdot 10^{-4}$
	66 см	0,5 мм	$7.6 \cdot 10^{-4}$
Образующая конуса	17,6 см	0,5 мм	$2.8 \cdot 10^{-3}$
	27 см	0,5 мм	$1.8 \cdot 10^{-3}$
	18,2 см	0,5 мм	$2.7 \cdot 10^{-3}$

Погрешность измерения площади шарика:

$$\sigma(S) = S\sqrt{2^2(\frac{\sigma(d)}{d})^2 + (\frac{\sigma(l)}{l})^2 + (\frac{\sigma(d)}{d})^2}$$

Таблица 9 – Погрешность измерения площади

	Значение	Абс. погрешность	Отн. погрешность	Отн. погрешность,%
Шарик № 1	$1216,75 \text{ cm}^2$	4 cm^2	0,003	0,3%
Шарик № 2	$2257,56 \text{ cm}^2$	5 cm ²	0,002	0,2%
Шарик № 3	$1292,64 \text{ cm}^2$	4 cm^2	0,003	0,3%

Погрешность измерения толщины оболочки равна погрешности измерения площади:

$$\frac{\sigma(\delta)}{\delta} = \frac{\sigma(S)}{S}.$$

Тогда погрешность измерения диффузии:

$$\sigma(D) = D\sqrt{\left(\frac{\sigma(\beta)}{\beta}\right)^2 + \left(\frac{\sigma(\delta)}{\delta}\right)^2 + \left(\frac{\sigma(S)}{S}\right)^2}.$$

Основной вклад в погрешность измерения коэффициента диффузии вносит погрешность измерения угла наклона β , найденная при помощи МНК.

Таблица 9 – Погрешность измерения коэффициента диффузии

	Значение	Абс. погрешность	Отн. погрешность	Отн. погрешность
Шарик № 1	$1.91 \cdot 10^{-7} \frac{\text{cm}^2}{\text{c}}$	$1.34 \cdot 10^{-9} \frac{\text{cm}^2}{\text{c}}$	0,007	0,7%
Шарик № 2	$1.74 \cdot 10^{-7} \frac{\text{cm}^2}{\text{c}}$	$2.09 \cdot 10^{-9} \frac{\text{cm}^2}{\text{c}}$	0,012	1,2%
Шарик № 3	$1.69 \cdot 10^{-7} \frac{\text{cm}^2}{\text{c}}$	$2.7 \cdot 10^{-9} \frac{\text{cm}^2}{\text{c}}$	0,016	1,6%

3.4 Вывод для коэффициента диффузии:

В результате эксперимента вычислили коэффициент диффузии гелия через оболочку резинового шарика:

$$D = (178 \pm 2) \cdot 10^{-9} \frac{\text{cm}^2}{\text{c}}$$
$$\varepsilon(D) = 1, 1\%.$$

Это сходится по порядку с коэффициентом диффузии гелия через полиэтилен:

Значения констант проницаемости, а также диффузии и растворимости гелия и аргона в полиэтилене (толщина 0,4 мм) при 25° при различных дозах облучения

		Гелий		Аргон			
Доза, Мрад	P·1010 cm²/cm²/ceĸ··cm/cm. pt. ct.	D·107 см²/сек	о 10° см³/см³/см. рт. ст.	P.1010 cm³/cm³/cek· cm/cm. pt. ct.	D-10 ⁷ см³/сек	σ·10 ³ см³/см/³см. рт. ст.	
			0.50	1	- 10		
100	2,6	4,9 3,5	0,53	2,40	2,40	1,00	
100	2,0	5,5	0,57	1 00	1.00	4.40	
270			. 0.00	1,80	1,60	1,12	
420	2,6	3,2	0,80	1,40	1,30	1,08	
600	_	_		1,15	1,10	1,04	
800	2,5	3,1	0,80	0,51	1,30	0,40	

Исследование диффузионных процессов в некоторых полимерах 1960 г. стр 1337 http://polymsci.ru/static/Archive/1960/VMS_1960_T2_9/VMS_1960_T2_9_1335-1348.pdf

3.5 Проникал ли воздух в шарик?

Чтобы убедиться в том, что в шарик не попадает воздух, оценим объем шарика №1 в конце эксперимента. Если воздух не проникал в шарик в ходе эксперимента, то подъемная сила, вычисленная по формуле для силы Архимеда (в предположении, что в шарике гелий) и измеренная экспериментально, должны быть равны. Объём шарика рассчитаем, разбив его на полусферу и конус: $V = \frac{\pi d^2}{12} (d + \sqrt{l^2 - (d/2)^2})$.

Учитывая предыдущие значения для шара №1, а также вычисляя по теореме Пифагора высоту конуса, находим объем:

$$V = \frac{\pi(8, 1 \cdot 2)^2}{12} (8, 1 \cdot 2 + \sqrt{12, 4^2 - (8, 1)^2} = 1758 \text{cm}^3$$

Величину подъемной силы измерим таким образом: придержим шарик, чтобы измерить массу груза. Она равна 11,27г. Масса пустого шарика - 1,8г. Тогда подъемная сила в конце эксперимента (через 1 час) равна 11,27г - 1,8г - 7,39г = 2,08г. Найдем силу Архимеда:

$$F_{\mathrm{Apx}} = \rho_{\mathrm{Bo3}} gV,$$

$$m_{\text{пол}} = 1,98\Gamma$$

То есть в пределах погрешности шарик по-прежнему заполнен гелием.

4 Фотографии эксперимента.

