7

Alternating Current

Instantaneous, RMS and Average Values

- (i) Instantaneous value of alternating current $I = I_0 \sin \omega t$ or $I = I_0 \cos \omega t$
- (ii) Peak value of a.c. = I_0
- (iii) Alternating emf. = $E = E_0 \sin \omega t$ or $E = E_0 \cos \omega t$
- (iv) Mean or average value of a.c.

$$I_m$$
 or $I_a = \frac{2I_0}{\pi} = 0.637I_0$ for half cycle
= 0 for full cycle.

(v) R.m.s. value of ac $I_{\text{rms}} = I_0 / \sqrt{2} = 0.707 I_0$.

Phase Difference

- (i) If the emf leads the current by $\pi/2$, the reactance is called purely inductive.
- (ii) If the emf lags behind the current by $\pi/2$, the reactance is called purely capacitive.

If the emf is in phase with the current, the circuit is called purely resistive.

Sign Convension

Sign for phase difference (ϕ) between I and E for series LCR circuit:

- ϕ is positive, when $X_L > X_C$
- ϕ is negative, when $X_I > X_C$
- ϕ is zero, when $X_I = X_C$

Resonance

(i) The LCR circuit is said to be resonance when

$$X_L = X_C$$
 i.e., when $\omega L = \frac{1}{\omega C}$ and $\omega = \omega_0 = \frac{1}{\sqrt{LC}}$ is called resonance frequency.

- (ii) At series resonant frequency, $\omega_0 = \frac{1}{\sqrt{LC}}$, we have:
 - (a) Z = R = minimum value of impedance.
 - (b) $I_0 = E_0/R = \text{maximum value of peak current.}$
 - (c) $\phi = 0$ i.e., I and E are in phase with each other.
 - (d) V_L is equal and opposite to V_C .
 - (e) Potential drop across C and L together is zero.
 - (f) $E = V_R$

Energy Stored

- (i) Energy stored in an inductor: $U = \frac{1}{2}LI_0^2$
- (ii) Energy stored in a capacitor: $U = \frac{1}{2}CV^2 = \frac{1}{2}\frac{q_0^2}{C} = \frac{1}{2}q_0V$

Power in AC Circuit

(i) The power in LCR circuit is given by

$$P = EI = E_0 I_0 \sin \omega t \sin (\omega t - \phi).$$

Power in LCR circuit consists of two components

(a) Virtual power component = $\frac{1}{2}E_0I_0\cos(2\omega t + \phi)$. It has frequency twice as that of A.C. Its value over the

It has frequency twice as that of A.C. Its value over the complete cycle is zero

- (b) Real power component $=\frac{1}{2}E_0I_0\cos\phi$. It dissipates power and $\cos\phi$ is called power factor.
- (ii) Inductive reactance: $X_L = \omega L$

Capacitive reactance: $X_C = \frac{1}{\omega C}$

Reactance: $X = X_L - X_C = \omega L - \frac{1}{\omega C}$

Impedance

(i) Impedance of *LCR* circuit: $Z = \sqrt{R^2 + (X_L - X_C)^2}$

$$= \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)}$$

$$\tan \phi = \frac{V_L - V_C}{V_R} = \frac{IX_L - IX_C}{IR}$$

$$=\frac{X_L - X_C}{R} = \frac{\omega L - \frac{1}{\omega C}}{R}$$

Power,
$$P = E_{\text{rms}} \times i_{\text{rms}} \times \frac{R}{Z}$$

(ii) Band width = $\omega_2 - \omega_1 = 2\Delta\omega$

(iii) Sharpness of resonance = $\frac{\omega_0}{2\Delta\omega} = \frac{\omega_0 L}{R}$

(iv) Q factor: $Q = \frac{\text{Voltage across } L \text{ or } C}{\text{Applied voltage}}$

$$Q = \frac{\omega_0 L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Transformer

(i)
$$\frac{E_s}{E_p} = \frac{N_s}{N_P} = k \text{ (say) (transformer ratio)}$$

- (ii) For step up transformer, k > 1 and for step down transformer, k < 1
- (iii) For step up transformer, $N_s > N_p$, therefore, $E_s > E_p$. And for the step down $N_s < N_p$ therefore, $E_s < E_p$.

(iv) The efficiency of the transformer is given by:

$$\eta = \frac{Output\ power}{Input\ power}$$

If I_p and I_s be the currents in the primary and secondary circuit, then

$$\eta = \frac{E_s I_s}{E_p I_p}$$

For ideal transformer $\eta = 1 = 100\%$. Therefore,

$$E_s I_s = E_p I_p \text{ or } \frac{I_s}{I_p} = \frac{N_p}{N_s} = \frac{1}{k}$$

Hence, for step up transformer, current in the secondary is less than that in the primary $(I_s < I_p)$ and in a step down transformer, we have $I_s > I_p$.

JEE (XII) Module-2