QUI022 - Química	Pontuação ↓		
Data: 17/09/2024	Questões: 3	Pontos totais: 25	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	10	
2	5	
3	10	
Total:	25	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas com essa folha anexa.
- 3. A Tabela Periódica dos Elementos está ao final da prova.

Valores de eletronegatividade de Pauling (χ) .

Elemento	χ	Elemento	χ	Elemento	χ	Elemento	χ
F	3,98	О	3,44	Cl	3,16	N	3,04
Br	2,96	I	2,66	\mathbf{S}	2,58	\mathbf{C}	$2,\!55$
Н	2,20	Р	2,19	В	2,04	Si	1,90

1. (10 pontos) Os sulfonilditiocarbimatos de potássio são sais muito versáteis, com propriedades complexantes e nucleofílicas atrativas para diversas rotas de síntese química.

R = Alquil, aril

- (a) Indique a hibridação dos átomos de nitrogênio e de carbono do ditiocarbimato de potássio e coloque as cargas formais faltantes nos átomos, se existirem.
- (b) A ligação C=N da propan-2-imina, cuja fórmula estrutural é mostrada abaixo, quando analisada por Espectroscopia no Infravermelho (FTIR), possui vibração relacionada a uma banda em $\sim 1665~\rm cm^{-1}$.

Em contrapartida, a ligação C=N dos sulfonilditiocarbimatos, quando analisada pela mesma técnica, possui vibração relacionada a uma banda em $\sim 1260~\rm cm^{-1}$, indicando que possui um caráter acentuado de ligação simples comparada à C=N da propan-2-imina. Justifique essa observação experimental.

Resposta:

Em (a), a hibridação do nitrogênio e do carbono é sp^2 . As cargas formais faltantes são negativas e ambas estão nos átomos de enxofre com hibridação sp^3 .

Em (b), o caráter de ligação simples da C=N é devido a conjugação- sp^3,π^* que ocorre na porção ditiocarbimato entre os átomos de enxofre carregados negativamente e a ligação C=N. No caso, as formas canônicas que mais contribuem para o híbrido são aquelas contendo o átomo de nitrogênio negativo, evidenciando o caráter acentuado de ligação simples da ligação.

2. (5 pontos) Peptídeos e proteínas são polímeros biológicos formados por ligações entre diferentes aminoácidos. A ligação entre eles se dá pelo grupo amino de um aminoácido com o grupo ácido carboxílico de outro aminoácido, também chamada de ligação amídica ou peptídica. A fórmula estrutura geral de um peptídeo é mostrada abaixo.

$$\begin{array}{c|c} Ligação \ am{\text{idica}} \\ \hline \\ H_2N & H_2N \\ \hline \\ O & R' \end{array}$$

Considere o seguinte par de peptídeos:

Peptídeo A

Peptídeo B

Qual dos dois você esperaria que fosse mais solúvel em água?

Resposta:

O **peptídeo** A seria mais solúvel em água devido ao maior número de ligações de hidrogênio que o composto pode fazer quando comparado ao **peptídeo** B.

3. (10 pontos) A anilina – i.e., aminobenzeno – produz um sal de arildiazônio quando reagida com nitrito de sódio – NaNO₂ – na presença de ácido clorídrico – HCl – à 0 °C. Esse sal de arildiazônio pode produzir halobenzenos ou azobenzeno, conforme mostrado a seguir.

$$X = F, Cl, Br, I$$

$$NH_2 \xrightarrow{NaNO_2} \xrightarrow{HCl, 0 \text{ °C}} N_2^+ Cl^-$$

$$Sal de arildiazônio$$

$$Azobenzeno$$

- (a) Desenhe a estrutura completa do sal de arildiazônio, com pares de elétrons não-ligantes e cargas formais, e indique as hibridações dos átomos de nitrogênio no sal.
- (b) Sabe-se que, quanto maior a deslocalização eletrônica de um composto orgânico, maior a chance desse composto apresentar cor. Além disso, dentre os **halobenzenos** e o **azobenzeno**, sabe-se que apenas um é colorido. Considerando as informações fornecidas e as estruturas dos compostos, qual deles apresenta cor?

Resposta:

Em (a), ambos os nitrogênio possuem hibridação sp. O nitrogênio mais distante do anel possui um par de elétrons não-ligante e carga formal zero. O outro nitrogênio possui carga formal +1.

Em (b), o azobenzeno apresenta cor (laranja) e os halobenzenos são incolores. Isso se dá pela maior deslocalização eletrônica promovida pela conjugação- π , π * de ambos os anéis aromáticos com a ligação N=N.

