Ayudantía 1 - Algoritmos y Complejidad Análisis numérico, búsqueda de raíces y análisis de convergencia

Sassy Complexes

1. Análisis númerico

Métodos computacionales aproximados para obtener soluciones. Para obtener resultados relevantes, hay que tener en cuenta que existen muchas fuentes de error:

- 1. Significancia del modelo. (El modelo es una sobre-simplificacion de la realidad)
- 2. Los parametros del modelo no se conocen de forma precisa.
- 3. Se usan aproximaciones numéricas para resolver el modelo. (por ejemplo, $\pi = \frac{333}{106}$)
- 4. Errores de redondeo. Un computador no puede alojar números con infinitos decimales.

Nos interesan los puntos 3 y 4

1.1. Error

Sea $x \in \mathbb{R}$ y x^* una aproximación de x, se definene:

Error Absoluto: $|x^* - x|$ Error Relativo: $\frac{|x^* - x|}{|x|}$

Por ejemplo, 1000 es una aproximación de 1024 con error absoluto de 24 y error relativo de 0,023.

Diremos que la aproximación tiene **k** dígitos significativos si el error relativo es menor que 10^{-k+1} . Para nuestro caso k = 2 por que $0,023 < 10^{-2+1}$: tenemos 2 cifras significativas.

1.2. Propagación del error

Suponga que usted conoce y quiere calcular y = f(x) pero solo consigue obtener la aproximación y^* . Para cuantificar el error podemos utilizar **Forward error** o **Backward error**.

1.2.1. Forward Error

Es el error entre el valor aproximado y el real, ya sea absoluto o relativo. Pero como no conocemos el valor de y preciso (y por que aveces tampoco conocemos la f(x) real), tenemos que aproximarlo.

Puede aproximar f(x) con una serie de Taylor centrada en x, luego:

$$|y^* - y| \approx |f'(x)| \cdot |\Delta x|$$

Luego usted puede encontrar la cota del error.

1.2.2. Backward Error

Aqui usted sabe que y^* es el resultado de $f(x^*)$, buscamos el mínimo Δx tal que:

$$y^* = f(x + \Delta x)$$

Ese Δx es el error hacia atras. Decimos que un algoritmo es estable hacia atras si ese Δx es "pequeño" respecto a todos los x de entrada.

1.3. Estabilidad y condicionamiento

Una técnica de cálculo es **estable** si errores intermedios se arreglan en el camino. En caso contrario, es decir, si se amplifica el error, la técnica se dice **inestable**.

Un problema se dice **mal condicionado** si pequeños cambios en los datos de entrada causan grandes cambios en la salida.

Note que el condicionamiento y la inestabilidad son cosas diferentes. El condicionamiento depende del problema y la inestabilidad del algoritmo.

2. Búsqueda de raíces

Las raíces de una función f son los puntos x^* tal que $f(x^*) = 0$.

Intentamos encontrar dichos puntos sabiendo que podemos evaluar f(x) en cualquier momento, y a veces también f'(x).

Esto también nos sirve, por ejemplo, para igualar dos funciones f(x) y g(x), pues encontrar los puntos en que se igualen equivale a encontrar las raíces de la función h(x) = f(x) - g(x).

Existen varios algoritmos para lograr esto, trabajaremos con dos grupos:

- 1. Los que buscan directamente una solución para f(x) = 0, reduciendo cada vez más, de manera iterativa, el intervalo donde se puede encontrar.
- 2. Los que se aprovechan de otras funciones cuyos puntos fijos coinciden con las raíces de f. Un punto fijo x_p de una función g cumple con la propiedad de $x_p = g(x_p)$.

3. Métodos de Bracketing

3.1. Método de la bisección

Del teorema del **valor medio** se deduce que si una función f(x) es continua y de un punto x = a a otro x = b cambia de signo, hay una raíz $x^* \in [a, b]$.

Si se conoce la existencia de una raíz en el intervalo [a,b] (por ejemplo, si los signos de f(a) y f(b) son distintos) se puede evaluar $f(\frac{a+b}{2})$ para descartar una de las dos mitades del intervalo (la que tenga signos iguales).

Este proceso se pude repetir para ir *atrapando* a la raíz en un intervalo cada vez más pequeño. Cuando nos cansemos de hacer pequeño el intervalo, tomamos la mitad del mismo como aproximación de x^* . Suena lógico el que si en algún momento evaluamos f(x) y nos da 0, hemos encontrado la raíz exacta, pero no siempre ocurre.

Si se realizan n iteraciones, f se evaluará n+2 veces y el error máximo será:

$$|x - x^{\star}| = \frac{b - a}{2^n} \cdot \frac{1}{2}$$

Si la aproximación x hecha de x^* se hace en la mitad del último intervalo encontrado, el error no puede ser mayor a la mitad de dicho intervalo.

Pregunta: Calcule cuantas iteraciones son necesarias para lograr una precisión de *k* números decimales usando el método de la bisección cuando se parte con el intervalo [2,7].

Respuesta: El tamaño del intervalo tras n pasos será $\frac{b-a}{2^n}$ y el error máximo $x_n - x^*$ será la mitad de eso (porque siempre colocaremos x_n en la mitad del intervalo en el paso actual.

Que la presición sea mayor a k números decimales equivale a que el error sea menor que $0.5 \cdot 10^{-k}$. Entonces tenemos que lograr:

$$\begin{aligned} e_n &< 0.5 \cdot 10^{-k} \\ \frac{7-2}{2^{n+1}} &< 0.5 \cdot 10^{-k} \\ \frac{5}{2^{n+1}} &< 0.5 \cdot 10^{-k} \\ 2^{-(n+1)} &< 10^{-k-1} \\ -(n+1) &< \log_2(10^{-k-1}) \\ -n &< \log_2(10^{-k-1}) + 1 \\ n &> (k+1)\log_2(10) - 1 \end{aligned}$$

3.2. Método regula-falsi

En este método se traza una secante entre los puntos x_0 y x_1 , obteniendo el punto x_2 que sería la intersección de la secante con el eje x. Si x_2 no es solución, hacemos $x_1 = x_2$ y repetimos lo anterior.

$$x_2 = x_1 - f(x_1) \frac{x_1 - \mathbf{x_0}}{f(x_1) - f(\mathbf{x_0})}$$
$$x_1 = x_2$$

Lo que se encuentra en **negrita** es lo único fijo en nuestra formula, es decir x_0 viene siendo el inicio de nuestro intervalo, además notar que $f(x_0)$ es fijo.

Si la función es más cercana a la recta entre estos dos puntos (osea, no tiene sesgo, o dicho de otra forma, no está muy abultada) convergerá más rápido que el método de la bisección, si no, convergerá peor, pues sólo descartará la parte más corta del intervalo.

4. Iteraciones de punto fijo

Los puntos fijos de una función g son los x_p tal que $g(x_p) = x_p$. Algunas funciones convergen a un punto fijo cuando se aplican muchas veces sobre si mismas, por ejemplo:

$$\cos(\cos(\cos(\cos(\cos(\alpha))...)))) = \frac{1}{\sqrt{2}} \quad \alpha \in \mathbb{R}$$

Siempre podemos trasformar cualquier problema f(x) = 0 a uno g(x) = x, simplemente realizando las operaciones correctas. La forma más sencilla de hacer esto es:

$$f(x) = 0$$
$$f(x) + x = x$$
$$g(x) = x$$

Sin embargo, no todas convergen al punto fijo, ni todas necesariamente tienen uno. Pero si convergen a algo, será a un punto fijo.

4.1. Método de la secante

Similar a Regula Falsi, pero este no mantienen puntos fijos, ambos x_0 y x_1 varían. Los puntos en cada iteración se obtienen de la siguiente forma:

$$x_2 = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

$$x_1 = x_0$$

$$x_1 = x_2$$
$$x_0 = x_1$$

Las iteraciones quedarían de la siguiente forma:

$$x_{n+2} = x_{n+1} - f(x_{n+1}) \frac{x_{n+1} - x_n}{f(x_{n+1}) - f(x_n)}$$

4.2. Método de la tangente

Se escoge un valor arbitrario x_0 que se encuentre cerca del cero, luego se traza una tangente en ese punto, y calculamos x_1 , que es la intersección de la tangente con el eje x. Los puntos en cada iteración se obtienen de la siguiente forma:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_0 = x_1$$

5. Análisis de convergencia

A la hora de elegir un método es importante saber a qué velocidad nos estamos acercando a la solución, o qué condiciones se requieren para que converjan.

Para tener una idea de la velocidad de convergencia buscamos una relación entre el error en un paso $n \to \infty$, $e_n = x_n - x^*$ y en el siguiente $e_{n+1} = x_{n+1} - x^*$.

■ **Convergencia lineal**: Un método convergerá linealmente con razón *M* si:

$$\lim_{n\to\infty} \left| \frac{e_{n+1}}{e_n} \right| = M$$

Siempre que M sea menor que 1, si no, el error crecerá.

■ **Convergencia cuadrática**: Un método convergerá cuadráticamente con razón *S* si:

$$\lim_{n \to \infty} \left| \frac{e_{n+1}}{e_n^2} \right| = S$$

Siendo S cualquier valor (cuando no hay convergencia cuadrática el límite se hace ∞). Si se evalúa la convergencia lineal de estos métodos, resultará ser 0.

• Convergencia (en general): Se dice que hay convergencia de orden p si se puede demostrar que:

$$\left| \lim_{n \to \infty} \left| \frac{e_{n+1}}{(e_n)^p} \right| \le C$$

para alguna C > 0.

A veces no hay convergencia cuadrática pero se puede demostrar que lo anterior se cumple para 1 , en tal caso se llama**convergencia super-lineal**. Si <math>p > 1, entonces M = 0.

4

Problema: Calcular la convergencia lineal del método de la bisección.

Respuesta: Si el intervalo inicial era [A, B], tras el paso n vemos que el tamaño del intervalo será $\frac{B-A}{2^n}$ y el error máximo $x_n - x^*$ a lo más será $\frac{B-A}{2^n}$ y que la aproximación en el paso n, se coloca en la mitad del intervalo pequeño. Al comparar los errores máximos en n y n+1, resulta:

$$\frac{e_{n+1}}{e_n} = \frac{\frac{B-A}{2^{n+2}}}{\frac{B-A}{2^{n+1}}} = \frac{1}{2}$$

5.1. Convergencia lineal de iteraciones de punto fijo

Lo clave es que el error de la aproximación n+1 está relacionado con la aproximación anterior, por ejemplo, si se trata de una iteración de punto fijo $e_{n+1} = x_{n+1} - x^* = g(x_n) - x^*$.

Usando Taylor:

$$g(x_n) = g(x^*) + g'(x^*)(x_n - x^*) + O((x_n - x^*)^2)$$

$$x_{n+1} = g(x^*) + g'(x^*)(x_n - x^*)$$

$$x_{n+1} = x^* + g'(x^*)(x_n - x^*)$$

$$x_{n+1} - x^* = g'(x^*)(x_n - x^*)$$

$$\frac{x_{n+1} - x^*}{x_n - x^*} = g'(x^*)$$

$$\frac{e_{n+1}}{e_n} = g'(x^*)$$

Sabemos que un método converge linealmente si es que:

$$\lim_{n\to\infty}\left|\frac{e_{n+1}}{e_n}\right|<1$$

Por lo tanto, un método convergerá si:

$$|g'(x^*)| < 1$$

Si demostramos que $|g'(x^*)| < 1$ sabremos que al menos en un intervalo cerca de la solución los x_n convergen. Esto se llama *convergencia local*.

El problema es que generalmente no sabemos el valor de x^* (de hecho eso es lo que queremos buscar al principio), pero podemos demostrar que un intervalo que contiene la raíz cumple con |g'(x)| < 1.

Ejercicio Se busca resolver el siguiente problema $f(x) = x^3 + x - 1 = 0$ para lo cual se descubren las siguientes iteraciones de punto fijo:

$$x = 1 - x^{3} = g(x)$$

$$x = \sqrt[3]{1 - x} = g(x)$$

$$x = \frac{1 + 2x^{3}}{1 + 3x^{2}} = g(x)$$

Comprobar si hay convergencia local en las raíces de f(x), que son los puntos fijos de cada una de estas g(x).

Respuesta Se deben derivar cada g(x) y comprobar si el valor absoluto de la derivada es menor a 1.

5.2. Convergencia cuadrática del método de newton

Sea x^* una solución de la función f, x_n la solución aproximada en la iteración n. Usando Taylor se obtiene:

$$f(x^*) = f(x_n) + f'(x_n)(x^* - x_n) + \frac{f''(x_n)(x^* - x_n)^2}{2} + O((x^* - x_n)^3)$$

$$0 = f(x_n) + f'(x_n)(x^* - x_n) + \frac{f''(x_n)(x^* - x_n)^2}{2}$$

$$-f(x_n) = f'(x_n)(x^* - x_n) + \frac{f''(x_n)(x^* - x_n)^2}{2}$$

$$-\frac{f(x_n)}{f'(x_n)} = x^* - x_n + \frac{f''(x_n)(x^* - x_n)^2}{2f'(x_n)}$$

$$x_n - \frac{f(x_n)}{f'(x_n)} = x^* + \frac{f''(x_n)(x^* - x_n)^2}{2f'(x_n)}$$

$$x_{n+1} = x^* + \frac{f''(x_n)(x^* - x_n)^2}{2f'(x_n)}$$

$$x_{n+1} - x^* = \frac{f''(x_n)(x^* - x_n)^2}{2f'(x_n)}$$

$$\frac{x_{n+1} - x^*}{(x_n - x^*)^2} = \frac{f''(x_n)}{2f'(x_n)}$$

Y vemos que convergerá cuadráticamente con radio $\left|\frac{f''(x_n)}{2f'(x_n)}\right|$ siempre que dicho radio sea un número, osea, el método de Newton converge cuadráticamente cuando:

$$\lim_{n\to\infty} f'(x_n) = f'(x^*) \neq 0$$

6. Problemas

1. Demostrar que 1,2,3 son puntos fijos de la siguiente función:

$$f(x) = \frac{x^3 + x - 6}{6x - 10}$$

Respuesta: Resuelva el sistema para f(x) = x, si sus puntos son fijos, van a converger en esta iteración de punto fijo.

2. Encontrar la razón de convergencia lineal de las siguientes funciones para iteración de punto fijo:

$$g_1(x) = \frac{2x-1}{x^2}$$
 al punto fijo $x = 1$
 $g_2(x) = cos(x) + x + 1$ al punto fijo $x = \pi$
 $g_3(x) = e^{2x} - 1$ al punto fijo $x = 0$

Respuesta : Obtenga las derivadas:

$$g'_{1}(x) = \frac{2-2x}{x^{3}}$$

$$g'_{2}(x) = -\sin(x) + 1$$

$$g'_{3}(x) = 2e^{2x}$$

Y se evalúe...

$$g_1'(1) = \frac{2-2}{1^3} = 0$$

$$g_2'(\pi) = -\sin(\pi) + 1 = 1$$

$$g_3'(0) = 2e^{2\cdot 0} = 2$$

Ni $g_2(x)$ ni $g_3(x)$ convergen linealmente, pues $M \ge 1$. Por otro lado, puesto que M = 0 para $g_1(x)$, es candidata para un orden de convergencia mayor que lineal.

$$g_1''(x) = \frac{4x - 6}{x^4}$$
$$g_1''(1) = \frac{4 - 6}{1^4} = 2 < \infty$$

 $g_1(x)$ converge cuadraticamente.

3. Encuentre el resultado de $\frac{N}{D}$ sin usar la division.

Respuesta: Entontrar la division de *N* por *D* equivale a encontrar la raiz de:

$$f(y) = D - \frac{N}{y}$$

4. Encuentre la raíz cuadrada de *x*

Respuesta: Encontrar \sqrt{x} equivale a encontrar la solución de:

$$y^2 = x$$

Que es la busqueda de ceros de:

$$f(y) = y^2 - x$$

5. Suponga que utiliza el método de la bisección para obtener una raíz de $\frac{1}{x}$. ¿Qué sucede?

Respuesta: El método falla pues la función no es continua ni diferenciable en torno al 0.

6. Para calcular $\sqrt{2}$ los *antiguos* babilonios utilizaban, sin saberlo, la siguiente iteración de punto fijo:

$$x = \frac{x + \frac{2}{x}}{2}$$

Y comenzaban con x = 1, sabían que si $1 \le x < 2$ la respuesta se encontraba entre x y $\frac{2}{x}$, así que sacaban el promedio entre los dos números para obtener el siguiente x. Se puede ver la obtención de g(x):

$$x = \sqrt{2}$$

$$x^{2} = 2$$

$$2x^{2} = x^{2} + 2$$

$$2x = x + \frac{2}{x}$$

$$x = \frac{x + \frac{2}{x}}{2}$$

- a) Demuestre que este método converge cuadráticamente.
- b) ¿Puede expresar esta iteración de punto fijo como un método de Newton y calcular el radio de convergencia cuadrática?
- c) Expanda su método para encontrar la raíz de cualquier número n.

Respuesta:

a) Primero, calculamos la primera derivada y verificamos que sea cero.

$$g'(x) = \frac{1 - \frac{2}{x^2}}{2}$$
$$g'(\sqrt{2}) = \frac{1 - \frac{2}{2^2}}{2} = 0$$

Luego, calculamos la segunda derivada. Si es menor a infinito, entonces es cuadrática.

$$g''(x) = \frac{2}{x^3}$$
$$g''(\sqrt{2}) = \frac{1}{\sqrt{2}} < \infty$$

Por lo tanto, es cuadrática.

b) Si, es Newton-Raphson, estamos buscando el cero de $f(x) = x^2 - 2$, se puede extender con Newton. Para encontrar el radio de convergencia, podemos usar el método anterior (usando limite) o lo que encontramos al analizar Newton con Taylor.

$$\lim_{n \to \infty} \left| \frac{e_{n+1}}{e_n^2} \right| = \left| \frac{f''(x_n)}{2f'(x_n)} \right| = \frac{1}{2x} = \frac{1}{2\sqrt{2}}$$

- c) Cambie $f(x) = x^2 2$ por $f(x) = x^2 y$.
- 7. Considere la iteración de punto fijo $x_{n+1} = 2x_n ax_n^2$, donde a es una constante positiva.
 - a) ¿Cuál es el punto fijo, si lo hay?
 - b) ¿Para qué valores de a para los que hay punto fijo converge cerca del punto fijo?

Respuesta:

a) Un punto fijo es la solución de la ecuación:

$$x = 2x - ax^{2}$$
$$0 = x - ax^{2}$$
$$= x(1 - ax)$$

Uno de los puntos fijos es x = 0, el otro es x = 1/a.

b) Sabemos que la iteración $x_{n+1} = g(x_n)$ converge a x^* si $|g'(x^*)| < 1$. En nuestro caso, $g(x) = 2x - ax^2$, con g'(x) = 2 - 2ax. Veamos los dos puntos fijos:

 $x^* = 0$: Acá $g'(x^*) = 2$, nunca converge a él.

$$x^* = \frac{1}{a}$$
: Tenemos:

$$g'(x^*) = 2 - 2a \cdot \frac{1}{a}$$
$$= 0$$

La convergencia es superlineal. Nuestra expansión estándar es:

$$g(x_{n+1}) = g(x^*) + g'(x^*)(x_n - x^*) + \frac{1}{2}g''(x^*)(x_n - x^*)^2$$

$$+ O((x_n - x^*)^3)$$

$$x^* + e_{n+1} = g(x^*) + g'(x^*)e_n + \frac{1}{2}g''(x^*)e_n^2 + O(e_n^3)$$

$$e_{n+1} = -ae_n^2 + O(e_n^3)$$

La convergencia es cuadrática.