

Hoofdstuk 9

Afgeleiden II

9.1 Afgeleide en afleidbaarheid

- 9.1.1 Limietdefinitie van de afgeleide
- 9.1.2 Afleidbaarheid
- 9.1.3 Continuïteit en afleidbaarheid

9.2 Afgeleiden berekenen

- 9.2.1 Afgeleide van een product van functies
- 9.2.2 Afgeleide van een quotiënt van twee functies
- 9.2.3 Afgeleide van f^q met q rationaal

Opdracht 1 bladzijde 182

Stel een formule op voor de volgende afgeleiden m.b.v. de limietdefinitie.

$$1 \frac{d}{dx} \left(\frac{1}{x^2} \right)$$

$$f(x) = \frac{1}{x^2}$$

$$= \lim_{x \to a} \frac{\frac{1}{x^2} - \frac{1}{a^2}}{x - a}$$

$$= \lim_{x \to a} \frac{a^2 - x^2}{x^2 a^2 (x - a)}$$

$$= \lim_{x \to a} \frac{-(x - a)(x + a)}{x^2 a^2 (x - a)}$$

$$= -\frac{2a}{a^4}$$

 $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

2
$$\frac{d}{dx}(\sqrt{x})$$

$$f(x) = \sqrt{x}$$

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
$$= \lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a}$$

$$= \lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{(\sqrt{x} + \sqrt{a})(\sqrt{x} + \sqrt{a})}$$

$$\Rightarrow \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}$$

$$\Rightarrow \frac{d}{dx} \left(\frac{1}{x^2} \right) = -\frac{2}{x^3}$$

 $=-\frac{2}{3^3}$

Opdracht 2 bladzijde 183

De functie f wordt bepaald door een meervoudig voorschrift:

$$f: x \mapsto \begin{cases} 1 - x^3 & \text{als } x < 1 \\ 0 & \text{als } x = 1 \\ x^2 - 1 & \text{als } x > 1 \end{cases}$$

Met de rekenregels voor afgeleiden kan f' snel bepaald worden voor x < 1 en x > 1:

$$f': x \mapsto \begin{cases} -3x^2 & \text{als } x < 1\\ 2x & \text{als } x > 1 \end{cases}$$

We onderzoeken nu waaraan f'(1) gelijk is.

1 Bereken $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$. We noemen dit de linkerafgeleide van f in 1.

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{1 - x^3}{x - 1} = \lim_{x \to 1} \frac{-(x - 1)(x^2 + x + 1)}{x - 1} \stackrel{\frac{0}{0}}{=} \lim_{x \to 1} -(x^2 + x + 1) = -3$$

2 De linkerraaklijn t_i is de rechte door P met de linkerafgeleide als richtingscoëfficiënt. Het is de limietstand van de rechten $Q_i P$ met $Q_i \rightarrow P$ en Q_i links van P op de grafiek van f.

Geef een vergelijking van
$$t_{_{I}}$$
.

$$t_L \leftrightarrow y - f(1) = -3(x - 1)$$

 $\leftrightarrow y = -3x + 3$

3 Bereken de rechterafgeleide $\lim_{\substack{x \to 1 \\ >}} \frac{f(x) - f(1)}{x - 1}$ en geef een vergelijking van de rechterraaklijn t_R aan de grafiek van f in P.

$$\lim_{\substack{x \to 1 \\ x \to 1}} \frac{f(x) - f(1)}{x - 1} = \lim_{\substack{x \to 1 \\ x \to 1}} \frac{x^2 - 1}{x - 1} = \lim_{\substack{x \to 1 \\ x \to 1}} \frac{(x - 1)(x + 1)}{x - 1} \stackrel{\frac{0}{0}}{=} \lim_{\substack{x \to 1 \\ x \to 1}} (x + 1) = 2$$

$$\boldsymbol{t}_{R} \! \longleftrightarrow \boldsymbol{y} = 2(\boldsymbol{x} - 1)$$

$$\leftrightarrow$$
 y = 2x - 2

Opdracht 3 bladzijde 188

De functie f is gegeven door haar grafiek. Bepaal grafisch de (linker-, rechter-) afgeleide van f in -1, indien f daar afleidbaar is.

y = f(x)2 1 -1 ∉ dom f, f is dus noch links-, noch rechtsafleidbaar in -1 en dus ook niet afleidbaar in -1.

_2 -12

De functie f is niet continu in –1, wel rechtscontinu.

De functie f is niet afleidbaar in -1.

De linkerafgeleide bestaat niet en de rechterafgeleide is −1 (rico rechte).

De functie f is continu voor x = -1 en $t \leftrightarrow x = -1$ is de verticale raaklijn aan de grafiek van f in het punt (-1, 1). Dit betekent dat f niet afleidbaar is in -1. Zowel de linkerafgeleide als de rechterafgeleide bestaan niet.

De functie f is continu voor x = -1. Ze vertoont een 'knik' in (-1, 2). De functie is niet afleidbaar in dat punt. De rechterafgeleide is 1 en de linkerafgeleide is $-\frac{2}{3}$ (rico rechte)

Opdracht 4 bladzijde 188

Beschouw de functie
$$f: x \mapsto \begin{cases} 2x & \text{als } x < -3 \\ 2x - 1 & \text{als } x \ge -3 \end{cases}$$

Teken de hellinggrafiek van f. Gebruik daartoe de limietdefinitie om te onderzoeken wat er gebeurt voor x = -3.

•
$$f'(x) = 2 \text{ voor } x < -3$$

 $f'(x) = 2 \text{ voor } x > -3$

• Voor x = -3 geldt:

$$\lim_{x \to -3} \frac{f(x) - f(-3)}{x + 3} = \lim_{x \to -3} \frac{2x + 7}{x + 3} \stackrel{\frac{1}{0}}{=} -\infty$$

$$\lim_{\substack{x \to -3 \\ x \to -3}} \frac{f(x) - f(-3)}{x + 3} = \lim_{\substack{x \to -3 \\ x \to -3}} \frac{2x - 1 + 7}{x + 3} = \lim_{\substack{x \to -3 \\ x \to -3}} \frac{2(x + 3)}{x + 3} \stackrel{\frac{0}{0}}{=} \lim_{\substack{x \to -3 \\ x \to -3}} 2 = 2$$

f is niet afleidbaar in -3.

• Hellinggrafiek:

Opdracht 5 bladzijde 189

Onderzoek de afleidbaarheid van de volgende functies in de gegeven x-waarde.

1
$$f: x \mapsto \begin{cases} 1-x^2 & \text{als } x \leq 1 \\ x^2-1 & \text{als } x > 1 \end{cases}$$
 in 1

•
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{1 - x^2}{x - 1} = \lim_{x \to 1} \frac{-(x - 1)(x + 1)}{x - 1} \stackrel{0}{=} \lim_{x \to 1} (-(x + 1)) = -2$$

•
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} \stackrel{0}{=} \lim_{x \to 1} (x + 1) = 2$$

• Daar de linkerafgeleide van f in 1 verschillend is van de rechterafgeleide van f in 1, bestaat de afgeleide van f in 1 niet en is f dus niet afleidbaar in 1.

2
$$f: x \mapsto \begin{cases} \sqrt{x} & \text{als } 0 \le x \le 1 \\ \frac{1}{4}x^2 + \frac{3}{4} & \text{als } x > 1 \end{cases}$$
 in 1

•
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} \stackrel{\frac{0}{0}}{=} \lim_{x \to 1} \frac{\sqrt{x} - 1}{(\sqrt{x} - 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$

•
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{\frac{1}{4}x^2 + \frac{3}{4} - 1}{x - 1} = \lim_{x \to 1} \frac{\frac{1}{4}x^2 - \frac{1}{4}}{x - 1} \stackrel{0}{=} \lim_{x \to 1} \frac{\frac{1}{4}(x - 1)(x + 1)}{x - 1}$$
$$= \lim_{x \to 1} \left[\frac{1}{4}(x + 1) \right] = \frac{1}{2}$$

• De linkerafgeleide van f in 1 is gelijk aan de rechterafgeleide van f in 1, dus is f afleidbaar in 1 en f'(1) = $\frac{1}{2}$.

Opdracht 6 bladzijde 191

De functie f is gegeven door haar grafiek.

Is f afleidbaar, links afleidbaar of rechts afleidbaar in 1, 2, 3, ..., 7?

X	afleidbaar	links afleidbaar	rechts afleidbaar
1	✓		V
2	✓	✓	✓
3		✓	✓
4			✓
5		✓	
6			✓
7			

Opdracht 7 bladzijde 192

Beschouw twee functies f en g.

1 Maak gebruik van de limietdefinitie $(f+g)'(a) = \lim_{x \to a} \frac{(f+g)(x) - (f+g)(a)}{x-a}$

om formeel aan te tonen dat (f+g)'(x) = f'(x) + g'(x) voor alle inwendige punten x van het domein van f en g waarvoor f en g afleidbaar zijn (somregel voor afgeleiden).

$$(f+g)'(a) = \lim_{x \to a} \frac{(f+g)(x) - (f+g)(a)}{x-a}$$
 definitie afgeleide
$$= \lim_{x \to a} \frac{f(x) + g(x) - f(a) - g(a)}{x-a}$$
 definitie somfunctie
$$= \lim_{x \to a} \left[\frac{f(x) - f(a)}{x-a} + \frac{g(x) - g(a)}{x-a} \right]$$

$$= \lim_{x \to a} \frac{f(x) - f(a)}{x-a} + \lim_{x \to a} \frac{g(x) - g(a)}{x-a}$$
 rekenregels limieten
$$= f'(a) + g'(a)$$
 f en g afleidbaar in a

$$\Rightarrow$$
 $(f+g)'(x) = f'(x) + g'(x)$

2 Toon op dezelfde manier aan dat voor een willekeurige $r \in \mathbb{R}$ geldt: $(r \cdot f)' = r \cdot f'$ (veelvoudregel voor afgeleiden).

$$(r \cdot f)'(a) = \lim_{x \to a} \frac{(r \cdot f)(x) - (r \cdot f)(a)}{x - a}$$
 definitie afgeleide
$$= \lim_{x \to a} \frac{r \cdot f(x) - r \cdot f(a)}{x - a}$$
 definitie veelvoudfunctie
$$= \lim_{x \to a} r \cdot \frac{f(x) - f(a)}{x - a}$$

$$= r \cdot \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 rekenregels limieten
$$= r \cdot f'(a)$$
 f is afleidbaar in a

$$\Rightarrow$$
 $(r \cdot f)'(x) = r \cdot f'(x)$

Dit bevestigt de rekenregels die we in hoofdstuk 6 al aantoonden via een meer intuïtieve interpretatie van 'naderen tot'.

Opdracht 8 bladzijde 194

Stel f, g, h en i functies die afleidbaar zijn in een bepaald open interval. Toon aan dat in dat interval geldt:

1
$$(f \cdot g \cdot h)' = f' \cdot g \cdot h + f \cdot g' \cdot h + f \cdot g \cdot h'$$

 $(f \cdot g \cdot h)' = (f \cdot (g \cdot h))'$
 $= f' \cdot (g \cdot h) + f \cdot (g \cdot h)'$ productregel
 $= f' \cdot g \cdot h + f \cdot (g' \cdot h + g \cdot h')$ productregel
 $= f' \cdot g \cdot h + f \cdot g' \cdot h + f \cdot g \cdot h'$
2 $(f \cdot g \cdot h \cdot i)' = f' \cdot g \cdot h \cdot i + f \cdot g' \cdot h \cdot i + f \cdot g \cdot h' \cdot i + f \cdot g \cdot h \cdot i'$
 $(f \cdot g \cdot h \cdot i)' = (f \cdot g \cdot h) \cdot i'$ productregel
 $= (f' \cdot g \cdot h)' \cdot i + (f \cdot g \cdot h) \cdot i'$ productregel
 $= (f' \cdot g \cdot h + f \cdot g' \cdot h + f \cdot g \cdot h') \cdot i + f \cdot g \cdot h \cdot i'$ oef 1
 $= f' \cdot g \cdot h \cdot i + f \cdot g' \cdot h \cdot i + f \cdot g \cdot h' \cdot i + f \cdot g \cdot h \cdot i'$

Opdracht 9 bladzijde 194

1
$$\frac{d}{dx}((2x^2+3)\cdot(3x+5))$$

= $4x(3x+5) + (2x^2+3)\cdot 3$
= $12x^2 + 20x + 6x^2 + 9$
= $18x^2 + 20x + 9$
2 $\frac{d}{dx}((x-2)\cdot(x^2+2x+4))$
= $x^2 + 2x + 4 + (x-2)(2x+2)$
= $x^2 + 2x + 4 + 2x^2 - 2x - 4$
= $3x^2$
of
 $\frac{d}{dx}((x-2)(x^2+2x+4))$
= $\frac{d}{dx}(x^3-8)$
= $3x^2$

3
$$\frac{d}{dx}(x \cdot (2x^3 + 3x + 1) \cdot (x - 3))$$

= $(2x^3 + 3x + 1)(x - 3) + x(6x^2 + 3)(x - 3) + x(2x^3 + 3x + 1)$
 $x^2 - 3x$
= $2x^4 - 6x^3 + 3x^2 - 9x + x - 3 + 6x^4 - 18x^3 + 3x^2 - 9x + 2x^4 + 3x^2 + x$
= $10x^4 - 24x^3 + 9x^2 - 16x - 3$
4 $\frac{d}{dx}((1+x)\cdot(2-3x)\cdot(4+2x))$
= $(2-3x)(4+2x) - 3(1+x)(4+2x) + 2(1+x)(2-3x)$
= $8+4x-12x-6x^2-12-6x-12x-6x^2+4-6x+4x-6x^2$
= $-18x^2-28x$

Opdracht 10 bladzijde 194

1
$$\frac{d}{dx}((-4x+1)^2)$$

= $2(-4x+1) \cdot (-4)$
= $-8(-4x+1)$
= $8(4x-1)$
2 $\frac{d}{dx}((2x^3+3x-1)^4)$
= $4(2x^3+3x-1)^3(6x^2+3)$
= $12(2x^2+1)(2x^3+3x-1)^3$
3 $\frac{d}{dx}((2x+3)\cdot(2-3x)^2)$
= $2(2-3x)^2+(2x+3)\cdot 2(2-3x)(-3)$
= $2(2-3x)(2-3x-6x-9)$
= $2(2-3x)(-9x-7)$
= $-2(2-3x)(-9x-7)$
= $2(3x-2)(9x+7)$

4
$$\frac{d}{dx} \Big[((-2x-1)\cdot(x^3+4))^3 \Big]$$

= $3((-2x-1)(x^3+4))^2(-2(x^3+4)+(-2x-1)\cdot 3x^2)$
= $3((-2x-1)(x^3+4))^2(-2x^3-8-6x^3-3x^2)$
= $3((-2x-1)(x^3+4))^2(-8x^3-3x^2-8)$
= $-3((-2x-1)(x^3+4))^2(8x^3+3x^2+8)$
5 $\frac{d}{dx} \Big(2x+3\cdot(x^2-1)^5 \Big)$
= $2+3\cdot 5(x^2-1)^4\cdot 2x$
= $2+30x(x^2-1)^4$
6 $\frac{d}{dx} \Big((x^2-2)^5(x^2+2)^5 \Big)$
= $\frac{d}{dx} (x^4-4)^5$
= $5(x^4-4)^4\cdot 4x^3$
= $20x^3(x^4-4)^4$

Opdracht 11 bladzijde 197

$$1 \frac{d}{dx} \left(\frac{3x-2}{2-x} \right)$$

$$= \frac{3(2-x) + (3x-2)}{(2-x)^2}$$

$$= \frac{6-3x+3x-2}{(2-x)^2}$$

$$= \frac{4}{(2-x)^2}$$

$$2 \frac{d}{dx} \left(\frac{4}{x^7}\right)$$

$$= 4 \frac{d}{dx} (x^{-7})$$

$$= -28x^{-8}$$

$$= -\frac{28}{x^8}$$

$$\frac{d}{dx} \left(\frac{x^3 - 1}{x^3 + 1} \right)$$

$$= \frac{3x^2(x^3 + 1) - (x^3 - 1)3x^2}{(x^3 + 1)^2}$$

$$= \frac{3x^2(x^3 + 1 - x^3 + 1)}{(x^3 + 1)^2}$$

$$= \frac{6x^2}{(x^3 + 1)^2}$$

$$4 \frac{d}{dx} \left(\frac{x^2}{x - 4} \right)$$

$$= \frac{2x(x - 4) - x^2}{(x - 4)^2}$$

$$= \frac{x^2 - 8x}{(x - 4)^2}$$

$$5 \frac{d}{dx} \left(\frac{4x^2 - 2}{5} \right)$$

$$= \frac{d}{dx} \left(\frac{4}{5}x^2 - \frac{2}{5} \right)$$

$$= \frac{8}{5}x$$

6
$$\frac{d}{dx} \left(\frac{4x^2 - 2}{5x + 1} \right)$$

$$= \frac{8x(5x + 1) - (4x^2 - 2)5}{(5x + 1)^2}$$

$$= \frac{40x^2 + 8x - 20x^2 + 10}{(5x + 1)^2}$$

$$= \frac{20x^2 + 8x + 10}{(5x + 1)^2}$$

Opdracht 12 bladzijde 198

$$\frac{d}{dx} \left(\frac{(2x-1)^2}{x^3} \right)^2$$

$$= \frac{d}{dx} \left(\frac{(2x-1)^4}{x^6} \right)$$

$$= \frac{4(2x-1)^3 \cdot 2 \cdot x^6 - (2x-1)^4 \cdot 6x^5}{x^{12}}$$

$$= \frac{2(2x-1)^3 x^5 \cdot (4x-3(2x-1))}{x^{12}}$$

$$= \frac{2(2x-1)^3 (-2x+3)}{x^7}$$

$$\frac{d}{dx} \left(\frac{3x-2}{(-2x+5)^3} \right) \\
= \frac{3(-2x+5)^3 - (3x-2) \cdot 3(-2x+5)^2(-2)}{(-2x+5)^6} \\
= \frac{3(-2x+5)^2(-2x+5+2(3x-2))}{(-2x+5)^6} \\
= \frac{3(4x+1)}{(-2x+5)^4}$$

$$3 \frac{d}{dx} \left(\left(\frac{3 - 7x^2}{2} \right)^5 \right)$$

$$= 5 \left(\frac{3 - 7x^2}{2} \right)^4 \cdot \left(-\frac{7}{2} \cdot 2x \right)$$

$$= \frac{5}{16} (3 - 7x^2)^4 \cdot (-7x)$$

$$= -\frac{35}{16} x (3 - 7x^2)^4$$

4
$$\frac{d}{dx} \left((x^2 - 1) \cdot \left(x + \frac{1}{x} \right) \right)$$

= $2x \left(x + \frac{1}{x} \right) + (x^2 - 1) \left(1 - \frac{1}{x^2} \right)$
= $2x^2 + 2 + x^2 - 1 - 1 + \frac{1}{x^2}$
= $3x^2 + \frac{1}{x^2}$
= $\frac{3x^4 + 1}{x^2}$

Opdracht 13 bladzijde 198

Gegeven de functie $f: x \mapsto \frac{1}{x}$.

1 Stel een vergelijking op van de raaklijn t aan de grafiek van f in het punt P(a, f(a)).

$$f'(x) = -\frac{1}{x^2}$$

$$t \leftrightarrow y - \frac{1}{a} = -\frac{1}{a^2}(x - a)$$

$$t \leftrightarrow y = -\frac{1}{a^2}x + \frac{2}{a}$$

2 Bepaal de snijpunten S en T van t met de x-as en met de y-as.

Snijpunt met de x-as:

$$y = 0 \Rightarrow x = \frac{2}{a} \cdot a^2 = 2a$$
 S(2a, 0)

Snijpunt met de y-as:

$$x = 0 \Rightarrow y = \frac{2}{a}$$
 $T\left(0, \frac{2}{a}\right)$

3 Toon aan dat P het midden is van [TS].

Midden [TS]:
$$M\left(\frac{2a+0}{2}, \frac{0+\frac{2}{a}}{2}\right)$$

= $M\left(a, \frac{1}{a}\right)$
= $P(a,f(a))$

4 Toon aan dat de oppervlakte van de driehoek *OST* onafhankelijk is van *a*.

Oppervlakte
$$\triangle$$
 OST = $\frac{|OS| \cdot |OT|}{2}$
= $\frac{2|a| \cdot \frac{2}{|a|}}{2}$
= 2

 \Rightarrow de oppervlakte is onafhankelijk van a.

Opdracht 14 bladzijde 200

$$\mathbf{1} \quad \frac{d}{dx} \left(\sqrt{4x - 1} \right)$$

$$= \frac{1}{2\sqrt{4x - 1}} \cdot 4 = \frac{2}{\sqrt{4x - 1}}$$

$$2 \frac{d}{dx} \left(\sqrt{7x^2 - 13x + 2} \right)$$

$$= \frac{14x - 13}{2\sqrt{7x^2 - 13x + 2}}$$

$$3 \frac{d}{dx} \left(\sqrt{(2x-3)^3} \right)$$

$$= \frac{d}{dx} \left((2x - 3)^{\frac{3}{2}} \right) = \frac{3}{2} (2x - 3)^{\frac{1}{2}} \cdot 2 = 3\sqrt{2x - 3}$$

$$4 \frac{d}{dx} \left(\sqrt{\frac{x+1}{x-1}} \right)$$

$$= \frac{1}{2\sqrt{\frac{x+1}{x-1}}} \cdot \frac{x-1-(x+1)}{(x-1)^2} = \frac{-1}{\sqrt{(x+1)(x-1)^3}}$$

$$5 \frac{d}{dx} \left(\sqrt[3]{(x^2 - 4)^2} \right)$$

$$= \frac{d}{dx} \left((x^2 - 4)^{\frac{2}{3}} \right) = \frac{2}{3} (x^2 - 4)^{-\frac{1}{3}} \cdot 2x = \frac{4x}{3\sqrt[3]{x^2 - 4}}$$

$$\mathbf{6} \quad \frac{d}{dx} \left(\sqrt[4]{\frac{4x}{2x-1}} \right)$$

$$= \frac{d}{dx} \left(\left(\frac{4x}{2x - 1} \right)^{\frac{1}{4}} \right) = \frac{1}{4} \left(\frac{4x}{2x - 1} \right)^{-\frac{3}{4}} \cdot \frac{4(2x - 1) - 4x \cdot 2}{(2x - 1)^2}$$

$$= \frac{1}{4} \left(\frac{2x - 1}{4x} \right)^{\frac{3}{4}} \cdot \frac{-4}{(2x - 1)^2} = \frac{-1}{(2x - 1)^2} \cdot \sqrt[4]{\left(\frac{2x - 1}{4x} \right)^3}$$

$$= -\frac{1}{\sqrt[4]{2^6} x^3 (2x - 1)^5} = -\frac{1}{2\sqrt[4]{4x^3 (2x - 1)^5}}$$

Opdracht 15 bladzijde 200

De rechte $t \leftrightarrow y = mx + 1$ is een raaklijn aan de grafiek van de functie met voorschrift $f(x) = \sqrt[3]{x}$.

•
$$f(x) = \sqrt[3]{x} = x^{\frac{1}{3}} \implies f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$$

•
$$t \leftrightarrow y - \sqrt[3]{x_0} = \frac{1}{3}x_0^{-\frac{2}{3}}(x - x_0)$$
 met raakpunt $P(x_0, \sqrt[3]{x_0})$
 $y = \frac{1}{3}x_0^{-\frac{2}{3}}x - \frac{1}{3}x_0^{\frac{1}{3}} + x_0^{\frac{1}{3}}$
 $y = \frac{1}{3}x_0^{-\frac{2}{3}}x + \frac{2}{3}x_0^{\frac{1}{3}}$

• Nu is y = mx + 1, dus moet

$$m = \frac{1}{3}x_0^{-\frac{2}{3}} \qquad \text{en} \qquad \qquad \frac{2}{3}x_0^{\frac{1}{3}} = 1$$

$$\Rightarrow x_0^{\frac{1}{3}} = \frac{3}{2}$$

$$\Rightarrow x_0 = \frac{27}{8}$$

$$\Rightarrow m = \frac{1}{3}\left(\frac{27}{8}\right)^{-\frac{2}{3}} = \frac{1}{3}\left(\frac{8}{27}\right)^{\frac{2}{3}} = \frac{1}{3} \cdot \frac{4}{9} = \frac{4}{27}$$

Opdracht 16 bladzijde 203

Is de functie f afleidbaar, links afleidbaar en/of rechts afleidbaar in a?

1
$$f: x \mapsto \sqrt{(x^2 - 1)^2}$$
 $a = -1$

$$\lim_{x \to -1} \frac{\sqrt{(x^2 - 1)^2} - 0}{x + 1} = \lim_{x \to -1} \frac{x^2 - 1}{x + 1}$$

$$= \lim_{x \to -1} \frac{(x - 1)(x + 1)}{x + 1} \stackrel{\stackrel{0}{=}}{=} \lim_{x \to -1} (x - 1) = -2$$

$$\lim_{\substack{x \to -1 \\ x \to -1}} \frac{\sqrt{(x^2 - 1)^2}}{x + 1} = \lim_{\substack{x \to -1 \\ x \to 1}} \frac{-(x^2 - 1)}{x + 1}$$

$$= \lim_{\substack{x \to -1 \\ x \to -1}} \frac{-(x - 1)(x + 1)}{x + 1} \stackrel{\stackrel{0}{=}}{=} \lim_{\substack{x \to -1 \\ x \to -1}} -(x - 1) = 2$$

f is niet afleidbaar in –1, wel links afleidbaar (linkerafgeleide is –2) en rechts afleidbaar (rechterafgeleide is 2).

$$\mathbf{2} \quad f: x \longmapsto |x^3| \qquad \qquad a = 0$$

$$|x^3| = \begin{cases} x^3 & \text{als } x \ge 0 \\ -x^3 & \text{als } x < 0 \end{cases}$$

$$\lim_{x \to 0} \frac{|x^3|}{x} = \lim_{x \to 0} \frac{-x^3}{x} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0} (-x^2) = 0$$

$$\lim_{x \to 0} \frac{|x^3|}{x} = \lim_{x \to 0} \frac{x^3}{x} = \lim_{x \to 0} x^2 = 0$$

f is afleidbaar in 0, want de linkerafgeleide in 0 is gelijk aan de rechterafgeleide in 0.

$$f'(0) = 0$$

$$\mathbf{3} \quad f: x \longmapsto \sqrt[3]{x-5} \qquad \qquad a = 1$$

$$\lim_{x \to 5} \frac{\sqrt[3]{x-5}}{x-5} \stackrel{0}{=} \lim_{x \to 5} \frac{1}{\sqrt[3]{(x-5)^2}} \stackrel{\frac{1}{0^+}}{=} + \infty$$

$$\lim_{x \to 5} \frac{\sqrt[3]{x-5}}{x-5} \stackrel{0}{=} \lim_{x \to 5} \frac{1}{\sqrt[3]{(x-5)^2}} \stackrel{\frac{1}{0^+}}{=} + \infty$$

f is niet afleidbaar in 5, ook niet links afleidbaar en rechts afleidbaar.

Er is een verticale raaklijn aan de grafiek van f in (5, 0).

4
$$f: x \mapsto \begin{cases} 2 & \text{als } x \le 2 \\ 3 & \text{als } x > 2 \end{cases}$$
 $a = 2$

$$\lim_{x\to 2} \frac{2-2}{x-2} = 0$$

$$\lim_{\substack{x \to 2 \\ > >}} \frac{3-2}{x-2} = \lim_{\substack{x \to 2 \\ > >}} \frac{1}{x-2} = +\infty$$

f is niet afleidbaar in 2, enkel links afleidbaar in 2.

5
$$f: x \mapsto \begin{cases} 1-2x & \text{als } x < -2 \\ -2x & \text{als } x \ge -2 \end{cases}$$
 $a = -2$

$$\lim_{x \to -2} \frac{1 - 2x - 4}{x + 2} = \lim_{x \to -2} \frac{-2x - 3}{x + 2} \stackrel{\frac{1}{0}}{=} -\infty$$

$$\lim_{x \to -2} \frac{-2x - 4}{x + 2} = \lim_{x \to -2} \frac{-2(x + 2)}{x + 2} \stackrel{\frac{0}{0}}{=} \lim_{x \to -2} (-2) = -2$$

f is niet afleidbaar in – 2, enkel rechts afleidbaar in –2.

6
$$f: x \mapsto \begin{cases} x^2 - 4 & \text{als } x \le 3 \\ -x^2 + 12x - 22 & \text{als } x > 3 \end{cases}$$

$$\lim_{x \to 3} \frac{x^2 - 4 - 5}{x - 3} = \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} \stackrel{0}{=} \lim_{x \to 3} (x + 3) = 6$$

$$\lim_{x \to 3} \frac{-x^2 + 12x - 22 - 5}{x^2 - 9} = \lim_{x \to 3} \frac{-x^2 + 12x - 27}{x - 3} = \lim_{x \to 3} \frac{-(x - 9)(x - 3)}{x - 3}$$

$$\stackrel{0}{=} \lim_{x \to 3} (-(x - 9)) = 6$$

f is afleidbaar in 3, de linkerafgeleide en de rechterafgeleide zijn gelijk aan 6.

$$f'(3) = 6$$

Opdracht 17 bladzijde 203

Gegeven de functie
$$f: x \mapsto \begin{cases} x^3 & \text{als } x < 0 \\ x^2 & \text{als } x \ge 0 \end{cases}$$
.

Toon aan dat f'(0) bestaat maar f''(0) niet.

•
$$\lim_{x \to 0} \frac{x^3}{x} = \lim_{x \to 0} x^2 = 0$$

$$\lim_{x \to 0} \frac{x^3}{x} = \lim_{x \to 0} x^2 = 0$$

$$\Rightarrow f'(0) = 0$$
•
$$f'(x) = \begin{cases} 3x^2 & \text{als } x < 0 \\ 0 & \text{als } x = 0 \\ 2x & \text{als } x > 0 \end{cases}$$

$$\lim_{x \to 0} \frac{3x^2}{x} = \lim_{x \to 0} (3x) = 0$$

$$\lim_{x \to 0} \frac{2x}{x} = \lim_{x \to 0} 2 = 2$$

 \Rightarrow f"(0) bestaat niet want de linkerafgeleide is verschillend van de rechterafgeleide.

Opdracht 18 bladzijde 203

De hellinggrafiek van de functie f is getekend. f is continu in haar domein [-3, 5] en f(-3) = -2. Teken de grafiek van f.

Opdracht 19 bladzijde 204

Geef telkens het voorschrift van een functie f waarvoor geldt:

1 f is afleidbaar in $\mathbb{R} \setminus \{3\}$

Voorbeeld:
$$f(x) = \frac{1}{x-3}$$

2 f is continu in \mathbb{R} en de linker- en rechterafgeleide van f in 2 zijn verschillend

Voorbeeld:
$$f(x) = |x - 2|$$

3 f is continu in \mathbb{R} , niet afleidbaar in -1 en er is een verticale raaklijn aan de grafiek van f voor x = -1

Voorbeeld:
$$f(x) = \sqrt{|x+1|}$$

4 f is afleidbaar in $\mathbb{R} \setminus \{-4, 2\}$, links afleidbaar in -4 en rechts afleidbaar in 2

Voorbeeld:
$$f(x) = \begin{cases} 0 & \text{als } x \leq -4 \\ 1 & \text{als } -4 < x < 2 \\ 2 & \text{als } x \geq 2 \end{cases}$$

Opdracht 20 bladzijde 204

Gegeven de functie
$$f: x \mapsto \begin{cases} ax + 2 & \text{als } x < -2 \\ x^2 & \text{als } x \ge -2 \end{cases}$$
.

Voor welke waarde(n) van a is f afleidbaar in -2? Verklaar.

• f moet continu zijn in –2 om er afleidbaar te zijn.

$$\Rightarrow a \cdot (-2) + 2 = (-2)^2$$
$$\Rightarrow a = -1$$

• Voor a = -1 is
$$\lim_{x \to -2} \frac{-x + 2 - 4}{x + 2} = \lim_{x \to -2} \frac{\frac{0}{0}}{x + 2} = -1$$
en
$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2} = \lim_{x \to -2} \frac{(x + 2)(x - 2)}{x + 2} \stackrel{\frac{0}{0}}{=} -4$$

⇒ Linker- en rechterafgeleide zijn verschillend.

Voor geen enkele waarde van a is f afleidbaar in −2.

Opdracht 21 bladzijde 204

Voor welke waarde(n) van a en b is de functie $f: x \mapsto \begin{cases} x^2 + ax & \text{als } x < 1 \\ -x^3 + ax^2 + b & \text{als } x \geqslant 1 \end{cases}$ afleidbaar voor

alle waarden van x?

- f moet continu zijn in 1 dus $1^2 + a \cdot 1 = -1^3 + a + b$ $\Rightarrow b = 2$
- Voor b = 2 is

$$\lim_{\substack{x \to 1 \\ x \to 1}} \frac{x^2 + ax - 1 - a}{x - 1} = \lim_{\substack{x \to 1 \\ 0 \\ = 2 + a}} \frac{(x + 1)(x - 1) + a(x - 1)}{x - 1}$$

$$= 2 + a$$
en $\lim_{x \to 1} \frac{-x^3 + ax^2 + 2 - 1 - a}{x - 1}$

$$= \lim_{x \to 1} \frac{(x - 1)(-x^2 + (a - 1)x + a - 1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{(x - 1)(-x^2 + (a - 1)x + a - 1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{(a - 1)(-x^2 + (a - 1)x + a - 1)}{x - 1}$$

$$= -1 + a - 1 + a - 1 = 2a - 3$$

Linker- en rechterafgeleide zijn gelijk als $2 + a = 2a - 3 \iff a = 5$. Voor a = 5 en b = 2 is f afleidbaar voor alle $x \in \mathbb{R}$.

Opdracht 22 bladzijde 204

Is de functie f afleidbaar, links afleidbaar en/of rechts afleidbaar in 0?

1
$$f: x \mapsto 4x - x \cdot |x|$$

$$f(x) = 4x - x \cdot |x| = \begin{cases} 4x + x^2 & \text{als } x < 0 \\ 4x - x^2 & \text{als } x \geqslant 0 \end{cases}$$

•
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{4x + x^2}{x} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0} \frac{x(4+x)}{x} = \lim_{x \to 0} (4+x) = 4$$

•
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{4x - x^2}{x} \stackrel{\circ}{=} \lim_{x \to 0} \frac{x(4 - x)}{x} = \lim_{x \to 0} (4 - x) = 4$$

De functie is afleidbaar in 0 en f'(0) = 0.

De functie is afleidbaar in 0 en f'(0) = 0.

3
$$f: x \mapsto \frac{|x|}{x^2 + 1}$$

$$f(x) = \frac{|x|}{x^2 + 1} = \begin{cases} \frac{x}{x^2 + 1} & \text{als } x \ge 0 \\ \frac{-x}{x^2 + 1} & \text{als } x < 0 \end{cases}$$
• $\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{\frac{-x}{x^2 + 1}}{x} \stackrel{0}{=} \lim_{x \to 0} \frac{-1}{x^2 + 1} = -1$

$$f(x) - f(0)$$
 $\frac{x}{x^2 + 1} = \frac{0}{0}$ 1.1

•
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{\frac{x}{x^2 + 1}}{x} = \lim_{x \to 0} \frac{1}{x^2 + 1} = 1$$

f is links afleidbaar in 0, de linkerafgeleide is -1.

f is rechts afleidbaar in 0, de rechterafgeleide is 1.

f is niet afleidbaar in 0.

4
$$f: x \mapsto ||x-2|+|x+2||$$

Voor
$$x \to 0$$
 is $|x-2| = -x + 2$ en $|x+2| = x + 2$,

zodat
$$f(x) = |-x + 2 + x + 2| = 4$$
.

f is afleidbaar in 0 en f'(0) = 0.

5
$$f: x \mapsto x + \sqrt{|x|}$$

$$f(x) = \begin{cases} x + \sqrt{-x} & \text{als } x < 0 \\ x + \sqrt{x} & \text{als } x \ge 0 \end{cases}$$

•
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{x + \sqrt{-x}}{x} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0} \frac{x \left(1 - \frac{1}{\sqrt{-x}}\right)}{x} = \lim_{x \to 0} \left(1 - \frac{1}{\sqrt{-x}}\right) \stackrel{\frac{-1}{0^+}}{=} -\infty$$

•
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{x + \sqrt{x}}{x} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0} \frac{x \left(1 + \frac{1}{\sqrt{x}}\right)}{x} = \lim_{x \to 0} \left(1 + \frac{1}{\sqrt{x}}\right) \stackrel{\frac{1}{0^+}}{=} + \infty$$

f is niet afleidbaar in 0, ook niet links afleidbaar in 0 en niet rechts afleidbaar in 0.

Opdracht 23 bladzijde 205

Als
$$f(1) = 4$$
, $g(1) = -2$, $f'(1) = \frac{1}{2}$ en $g'(1) = -1$, bepaal dan $h'(1)$ als

1
$$h(x) = (f \cdot g)(x)$$

 $h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
 $h'(1) = f'(1) \cdot g(1) + f(1) \cdot g'(1)$
 $= \frac{1}{2} \cdot (-2) + 4 \cdot (-1)$

=-5

2
$$h(x) = \left(\frac{f}{g}\right)(x)$$

 $h'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$
 $h'(1) = \frac{f'(1) \cdot g(1) - f(1) \cdot g'(1)}{(g(1))^2}$
 $= \frac{\frac{1}{2} \cdot (-2) - 4 \cdot (-1)}{(-2)^2}$
 $= \frac{3}{4}$

3
$$h(x) = \left(\frac{g}{f - g}\right)(x)$$

$$h'(x) = \frac{g'(x)(f(x) - g(x)) - g(x)(f'(x) - g'(x))}{(f(x) - g(x))^2}$$

$$h'(1) = \frac{g'(1)(f(1) - g(1)) - g(1)(f'(1) - g'(1))}{(f(1) - g(1))^2}$$

$$= \frac{-1(4 + 2) + 2(\frac{1}{2} + 1)}{(4 + 2)^2}$$

$$= \frac{-6 + 3}{36}$$

$$= \frac{-3}{36}$$

$$= -\frac{1}{12}$$

4
$$h(x) = [g(x)]^3$$

 $h'(x) = 3(g(x))^2 \cdot g'(x)$
 $h'(1) = 3(g(1))^2 \cdot g'(1)$
 $= 3 \cdot (-2)^2 \cdot (-1)$
 $= -12$

5
$$h(x) = \sqrt{f(x)}$$

 $h'(x) = \frac{1}{2\sqrt{f(x)}} \cdot f'(x)$
 $h'(1) = \frac{1}{2\sqrt{f(1)}} \cdot f'(1)$
 $= \frac{1}{2\sqrt{4}} \cdot \frac{1}{2}$
 $= \frac{1}{8}$

6
$$h(x) = \frac{2x}{f(x)}$$

 $h'(x) = \frac{2 \cdot f(x) - 2x \cdot f'(x)}{(f(x))^2}$
 $h'(1) = \frac{2 \cdot f(1) - 2 f'(1)}{(f(1))^2}$
 $= \frac{2 \cdot 4 - 2 \cdot \frac{1}{2}}{4^2}$
 $= \frac{7}{16}$

Opdracht 24 bladzijde 205

Druk h'(x) uit in functie van f(x), f'(x), g(x) en g'(x) als

$$h'(x) = \frac{f(x) \cdot g(x)}{f(x) + g(x)}$$

$$h'(x) = \frac{(f'(x) \cdot g(x) + f(x) \cdot g'(x))(f(x) + g(x)) - f(x) \cdot g(x)(f'(x) + g'(x))}{(f(x) + g(x))^{2}}$$

$$= \frac{f'(x) \cdot g(x) \cdot f(x) + f'(x) \cdot (g(x))^{2} + (f(x))^{2} \cdot g'(x) + f(x) \cdot g(x) \cdot f'(x) - f(x) \cdot g(x) \cdot f'(x)}{(f(x) + g(x))^{2}}$$

$$= \frac{f'(x) \cdot (g(x))^{2} + g'(x) \cdot (f(x))^{2}}{(f(x) + g(x))^{2}}$$

2
$$h(x) = \frac{g(x)}{[f(x)]^2}$$

 $h'(x) = \frac{g'(x) \cdot (f(x))^2 - g(x) \cdot 2f(x) \cdot f'(x)}{(f(x))^4}$
 $= \frac{g'(x) \cdot f(x) - 2g(x) \cdot f'(x)}{(f(x))^3}$

Opdracht 25 bladzijde 205

Bereken

1
$$\frac{d}{dx}((1-3x)\cdot(2x-5)) = -3(2x-5) + (1-3x)\cdot 2$$

= -6x + 15 + 2 - 6x
= -12x + 17

2
$$\frac{d}{dx}((x^2-4)\cdot(x^2+x)) = 2x(x^2+x) + (x^2-4)(2x+1)$$

= $2x^3 + 2x^2 + 2x^3 + x^2 - 8x - 4$
= $4x^3 + 3x^2 - 8x - 4$

$$\frac{d}{dx}\left(\left(x+\frac{1}{x}\right)\cdot\left(1+x+\frac{1}{x}\right)\right) = \left(1-\frac{1}{x^2}\right)\left(1+x+\frac{1}{x}\right) + \left(x+\frac{1}{x}\right)\left(1-\frac{1}{x^2}\right)$$

$$= 1+x+\frac{1}{x}-\frac{1}{x^2}-\frac{1}{x}-\frac{1}{x^3}+x-\frac{1}{x}+\frac{1}{x}-\frac{1}{x^3}$$

$$= 1+2x-\frac{1}{x^2}-\frac{2}{x^3}$$

$$4 \frac{d}{dx} \left(\left(x + \sqrt[3]{x} \right) \cdot (1 - x) \right) = \left(1 + \frac{1}{3} x^{-\frac{2}{3}} \right) (1 - x) + \left(x + x^{\frac{1}{3}} \right) (-1)$$

$$= 1 - x + \frac{1}{3} x^{-\frac{2}{3}} - \frac{1}{3} x^{\frac{1}{3}} - x - x^{\frac{1}{3}}$$

$$= 1 - 2x - \frac{4}{3} \sqrt[3]{x} + \frac{1}{3 \sqrt[3]{x^2}}$$

$$\frac{d}{dx}((x^{-2} - x^{-1}) \cdot (x^3 + 9)) = (-2x^{-3} + x^{-2})(x^3 + 9) + (x^{-2} - x^{-1})3x^2
= -2 - 18x^{-3} + x + 9x^{-2} + 3 - 3x
= 1 - 2x + \frac{9}{x^2} - \frac{18}{x^3}$$

Opdracht 26 bladzijde 205

$$\frac{d}{dx} \left(\frac{1}{2 - 5x} \right) = -\frac{-5}{(2 - 5x)^2} = \frac{5}{(2 - 5x)^2}$$

$$\frac{d}{dx} \left(\frac{4}{1 - \sqrt{x}} \right) = -\frac{4}{(1 - \sqrt{x})^2} \cdot \frac{-1}{2\sqrt{x}} = \frac{2}{\sqrt{x}(1 - \sqrt{x})^2}$$

3
$$\frac{d}{dx} \left(\frac{-2x}{1-6x} \right) = \frac{-2(1-6x)+2x\cdot(-6)}{(1-6x)^2} = \frac{-2+12x-12x}{(1-6x)^2} = \frac{-2}{(1-6x)^2}$$

$$4 \frac{d}{dx} \left(\frac{x^2 + 2}{x^4 - 2} \right) = \frac{2x(x^4 - 2) - (x^2 + 2) \cdot 4x^3}{(x^4 - 2)^2} = \frac{2x^5 - 4x - 4x^5 - 8x^3}{(x^4 - 2)^2}$$
$$= \frac{-2x^5 - 8x^3 - 4x}{(x^4 - 2)^2} = \frac{-2x(x^4 + 4x^2 + 2)}{(x^4 - 2)^2}$$

$$\frac{d}{dx} \left(\frac{x^2 - 3x + 2}{-x^2 + x + 1} \right) = \frac{(2x - 3)(-x^2 + x + 1) - (x^2 - 3x + 2)(-2x + 1)}{(-x^2 + x + 1)^2} \\
= \frac{-2x^3 + 2x^2 + 2x + 3x^2 - 3x - 3 + 2x^3 - x^2 - 6x^2 + 3x + 4x - 2}{(-x^2 + x + 1)^2} \\
= \frac{-2x^2 + 6x - 5}{(-x^2 + x + 1)^2}$$

Opdracht 27 bladzijde 206

1
$$\frac{d}{dx}((-4x^3+x)^6) = 6(-4x^3+x)^5(-12x^2+1)$$

$$\frac{d}{dx} \left((x^3 + 1)^2 \cdot (x^2 - 4)^3 \right) = 2(x^3 + 1) \cdot 3x^2 (x^2 - 4)^3 + (x^3 + 1)^2 \cdot 3(x^2 - 4)^2 \cdot 2x$$

$$= 6x(x^3 + 1)(x^2 - 4)^2 \left(x(x^2 - 4) + x^3 + 1 \right)$$

$$= 6x(x^3 + 1)(x^2 - 4)^2 (2x^3 - 4x + 1)$$

$$\frac{d}{dx} \left(\left(\frac{x^2 + x}{4} \right)^{-3} \right) = -3 \left(\frac{x^2 + x}{4} \right)^{-4} \cdot \left(\frac{1}{4} (2x + 1) \right)$$
$$= \frac{-3(2x + 1) \cdot 4^4}{4(x^2 + x)^4}$$
$$= \frac{-192(2x + 1)}{(x^2 + x)^4}$$

$$4 \frac{d}{dx} \Big[((-2x+3)\cdot(x^3+4))^3 \Big]$$

$$= 3((-2x+3)(x^3+4))^2 \cdot (-2(x^3+4)+(-2x+3)\cdot 3x^2)$$

$$= 3((-2x+3)(x^3+4))^2 (-2x^3-8-6x^3+9x^2)$$

$$= 3((-2x+3)(x^3+4))^2 (-8x^3+9x^2-8)$$

$$\mathbf{5} \quad \frac{d}{dx} \left[\left(\frac{(1-x)^3}{(2x-1)^2} \right)^3 \right] = 3 \left(\frac{(1-x)^3}{(2x-1)^2} \right)^2 \cdot \frac{3(1-x)^2(-1)(2x-1)^2 - (1-x)^3 \cdot 2(2x-1) \cdot 2}{(2x-1)^4} \\
= 3 \left(\frac{(1-x)^3}{(2x-1)^2} \right)^2 \cdot \frac{-(1-x)^2(2x-1)(3(2x-1)+4(1-x))}{(2x-1)^4} \\
= 3 \left(\frac{(1-x)^3}{(2x-1)^2} \right)^2 \cdot \frac{-(1-x)^2(2x+1)}{(2x-1)^3} \\
= \frac{-3(1-x)^8(2x+1)}{(2x-1)^7}$$

Opdracht 28 bladzijde 206

$$1 \frac{d}{dx} \left(\sqrt{1 - 6x - x^2} \right) = \frac{-6 - 2x}{2\sqrt{1 - 6x - x^2}} = \frac{-3 - x}{\sqrt{1 - 6x - x^2}}$$

$$\frac{d}{dx} \left(\sqrt[3]{3x^2 - 4x^3} \right) = \frac{d}{dx} \left((3x^2 - 4x^3)^{\frac{1}{3}} \right)$$

$$= \frac{1}{3} (3x^2 - 4x^3)^{-\frac{2}{3}} \cdot (6x - 12x^2)$$

$$= \frac{2x - 4x^2}{\sqrt[3]{(3x^2 - 4x^3)^2}}$$

$$\frac{d}{dx} \left(\frac{-4}{\sqrt{7x - 1}} \right) = -4 \frac{d}{dx} \left((7x - 1)^{-\frac{1}{2}} \right)$$

$$= -4 \cdot \left(-\frac{1}{2} \right) (7x - 1)^{-\frac{3}{2}} \cdot 7$$

$$= \frac{14}{\sqrt{(7x - 1)^3}}$$

$$\frac{d}{dx} \left(\sqrt{\frac{2 - 5x^2}{2 + 5x^2}} \right) = \frac{1}{2\sqrt{\frac{2 - 5x^2}{2 + 5x^2}}} \cdot \frac{-10x(2 + 5x^2) - (2 - 5x^2) \cdot 10x}{(2 + 5x^2)^2}$$

$$= \frac{-10x(2 + 5x^2 + 2 - 5x^2)}{2\sqrt{(2 - 5x^2)(2 + 5x^2)^3}}$$

$$= \frac{-20x}{\sqrt{(2 - 5x^2)(2 + 5x^2)^3}}$$

$$\frac{d}{dx} \left(\sqrt[5]{\frac{2-5x}{2x}} \right) = \frac{d}{dx} \left(\left(\frac{2-5x}{2x} \right)^{\frac{1}{5}} \right) = \frac{1}{5} \left(\frac{2-5x}{2x} \right)^{-\frac{4}{5}} \cdot \frac{1}{2} \cdot \frac{-5 \cdot x - (2-5x)}{x^2} \right)$$

$$= \frac{1}{5} \cdot \left(\frac{2-5x}{2x} \right)^{-\frac{4}{5}} \cdot \frac{1}{2} \cdot \frac{-2}{x^2}$$

$$= -\frac{1}{5} \cdot \left(\frac{2-5x}{2x} \right)^{-\frac{4}{5}} \cdot \frac{1}{x^2}$$

$$= -\frac{1}{5x^2} \sqrt[5]{\left(\frac{2x}{2-5x} \right)^4} = -\frac{1}{5} \sqrt[5]{\frac{16}{x^6(2-5x)^4}}$$

Opdracht 29 bladzijde 206

Bepaal een vergelijking van de raaklijn t aan de grafiek van f in het punt P.

1
$$f: x \mapsto \frac{6}{x-1}$$
 in $P(3, f(3))$

$$f(x) = \frac{6}{x-1}$$
 $f(3) = 3$

$$f'(x) = -\frac{6}{(x-1)^2}$$

$$f'(3) = -\frac{3}{2}$$

$$t \leftrightarrow y - 3 = -\frac{3}{2}(x - 3)$$

$$t \leftrightarrow y = -\frac{3}{2}x + \frac{15}{2}$$

2
$$f: x \mapsto \frac{4x+5}{x^2}$$
 in $P(-1, f(-1))$

$$f(x) = \frac{4x + 5}{x^2}$$
 $f(-1) = 1$

$$f'(x) = \frac{4x^2 - (4x + 5)2x}{x^4} = \frac{2x(2x - 4x - 5)}{x^4} = \frac{2(-2x - 5)}{x^3}$$

$$f'(-1) = 6$$

$$t \leftrightarrow y - 1 = 6(x + 1)$$

$$t \leftrightarrow y = 6x + 7$$

3
$$f: x \mapsto \sqrt{-x^2 + 4x}$$
 in $P(2, f(2))$

$$f(x) = \sqrt{-x^2 + 4x}$$

$$f(2) = 2$$

$$f'(x) = \frac{-2x + 4}{2\sqrt{-x^2 + 4x}}$$

$$2\sqrt{-x^2 + 4x} = \frac{-x + 2}{\sqrt{-x^2 + 4x}}$$

$$f'(2) = 0$$

$$t \leftrightarrow y - 2 = 0$$

$$t \leftrightarrow y = 2$$

Opdracht 30 bladzijde 206

Beschouw de kromme met vergelijking $x^2y + 3y - 4 = 0$.

De waarde van de afgeleide y' in het punt van de kromme met x = 3 is

A
$$\frac{-1}{6}$$

B (

c $\frac{1}{6}$

D 1

(bron © toelatingsproef arts-tandarts)

$$x^2y + 3y - 4 = 0$$

$$\Leftrightarrow$$
 y(x² + 3) = 4

$$\Leftrightarrow y = 4(x^2 + 3)^{-1}$$

$$\Rightarrow y' = -4(x^2 + 3)^{-2} \cdot 2x$$

$$=\frac{-8x}{(x^2+3)^2}$$

Als x = 3, dan is y' =
$$\frac{-24}{144} = -\frac{1}{6}$$
.

Antwoord A is juist.

Opdracht 31 bladzijde 206

De raaklijn t aan de grafiek van de functie $f: x \mapsto \frac{\sqrt{3} \cdot x}{4-x}$ snijdt de positieve x-as onder een hoek van 30°.

Bepaal de coördinaat van het raakpunt T. Geef alle oplossingen.

- Stel T(a,f(a))
- rico t = tan 30°

$$f'(a) = \frac{\sqrt{3}}{3}$$

•
$$f'(x) = \frac{\sqrt{3}(4-x) - \sqrt{3}x(-1)}{(4-x)^2} = \frac{4\sqrt{3}}{(4-x)^2}$$

•
$$\frac{4\sqrt{3}}{(4-a)^2} = \frac{\sqrt{3}}{3}$$

$$\overset{\mathsf{a}\neq 4}{\Leftrightarrow} 12 = (4-\mathsf{a})^2$$

$$\Leftrightarrow$$
 4 – a = $\pm 2\sqrt{3}$

$$\Leftrightarrow$$
 a = 4 ± 2 $\sqrt{3}$

$$\Rightarrow T_1(4+2\sqrt{3},-2-\sqrt{3})$$

$$\Rightarrow T_2(4-2\sqrt{3},2-\sqrt{3})$$

$$f(4+2\sqrt{3}) = \frac{\sqrt{3}(4+2\sqrt{3})}{4-4-2\sqrt{3}} = -2-\sqrt{3}$$

$$f(4-2\sqrt{3}) = \frac{\sqrt{3}(4-2\sqrt{3})}{4-4+2\sqrt{3}} = 2-\sqrt{3}$$

Opdracht 32 bladzijde 207

Het punt P(a, f(a)) ligt op de grafiek van de functie $f: x \mapsto k \cdot \sqrt{x}$ met $k \neq 0$.

V is het voetpunt van de loodlijn uit P op de y-as.

De raaklijn in P aan de grafiek van f snijdt de y-as in het punt Q.

Bepaal de verhouding $\frac{|OQ|}{|OV|}$.

•
$$V(0,f(a)) = V(0,k\sqrt{a})$$

•
$$f'(x) = \frac{k}{2\sqrt{x}}$$

$$t \leftrightarrow y - k\sqrt{a} = \frac{k}{2\sqrt{a}}(x - a)$$

$$t \leftrightarrow y = \frac{k}{2\sqrt{a}}x - \frac{1}{2}k\sqrt{a} + k\sqrt{a}$$

$$t \leftrightarrow y = \frac{k}{2\sqrt{a}}x + \frac{1}{2}k\sqrt{a}$$

$$x = 0 \implies y = \frac{1}{2}k\sqrt{a}$$

 $\implies Q\left(0, \frac{1}{2}k\sqrt{a}\right)$

•
$$\frac{|OQ|}{|OV|} = \frac{\left|\frac{1}{2}k\sqrt{a}\right|}{\left|k\sqrt{a}\right|} = \frac{1}{2}$$

Opdracht 33 bladzijde 207

Gegeven is de functie $f: x \mapsto \frac{x^2 + ax + b}{x - 2}$.

Bepaal a en b als de raaklijn in het punt P(0, -1) van de grafiek van f horizontaal is.

• De raaklijn in P(0,-1) is horizontaal $\Rightarrow f'(0) = 0$.

•
$$f'(x) = \frac{(2x+a)(x-2) - (x^2 + ax + b)}{(x-2)^2}$$

$$f'(0) = \frac{-2a - b}{4} = 0 \iff 2a + b = 0$$
 (1)

•
$$f(0) = -1 \Leftrightarrow \frac{b}{-2} = -1 \Leftrightarrow b = 2$$
 (2)

(2) in (1):
$$a = -\frac{b}{2} = -1$$

$$\Rightarrow$$
 a = -1 en b = 2

Opdracht 34 bladzijde 207

Toon aan dat de grafieken van de functies $f: x \mapsto \frac{x^3}{x-1}$ en $g: x \mapsto ax^2$ met $a \neq 0$ elkaar raken in de oorsprong.

• $f(0) = g(0) = 0 \implies$ de grafieken snijden elkaar in de oorsprong.

•
$$f'(x) = \frac{3x^2(x-1)-x^3}{(x-1)^2} \implies f'(0) = 0$$

$$g'(x) = 2ax \implies g'(0) = 0$$

⇒ de grafieken raken elkaar in de oorsprong

Opdracht 35 bladzijde 207

De grafieken van de functies $f: x \mapsto ax^3 + bx^2 + cx + d$ en $g: x \mapsto \frac{4}{x-2}$ raken elkaar in de punten P(0, -2) en Q(4, 2).

Bepaal a, b, c en d.

•
$$f'(x) = 3ax^2 + 2bx + c$$

 $g'(x) = \frac{-4}{(x-2)^2}$

- Er geldt:
 - 1) $f(0) = g(0) \implies d = -2$ (1)
 - 2) $f'(0) = g'(0) \implies c = -1$ (2)
 - 3) $f(4) = g(4) \implies 64a + 16b + 4c + d = 2$ $(1) en (2) \implies 64a + 16b = 8$ (3)

4)
$$f'(4) = g'(4) \implies 48a + 8b + c = -1$$

 $\stackrel{(2)}{\Rightarrow} 48a + 8b = 0$ (4)

Uit (3) en (4) volgt: $a = -\frac{1}{4}$ en $b = \frac{3}{2}$

Besluit:
$$a = -\frac{1}{4}$$
, $b = \frac{3}{2}$, $c = -1$ en $d = -2$

Opdracht 36 bladzijde 207

Van de functies f en g zijn de functiewaarden en de afgeleiden in -2 en in 2 gegeven.

x	f(x)	g(x)	f'(x)	g'(x)
-2	1	2	7	2
2	3	4	-1	-3

1 Bereken
$$F'(2)$$
 als $F(x) = \frac{f(x)}{x+1}$.

$$F'(x) = \frac{f'(x)(x+1) - f(x)}{(x+1)^2}$$

$$F'(2) = \frac{-1 \cdot 3 - 3}{9} = -\frac{2}{3}$$

2 Bereken
$$G'(-2)$$
 als $G(x) = \frac{1}{\sqrt{g(x)}}$.

$$G'(x) = -\frac{1}{2} (g(x))^{-\frac{3}{2}} \cdot g'(x) = -\frac{g'(x)}{2(g(x))^{\frac{3}{2}}}$$

$$G'(-2) = -\frac{2}{2 \cdot 2^{\frac{3}{2}}} = \frac{-1}{\sqrt{2^3}} = -\frac{1}{2\sqrt{2}}$$

3 Bereken
$$H'(2)$$
 als $H(x) = \left(\frac{f(x)}{x \cdot g(x)}\right)^3$.

$$H'(x) = 3\left(\frac{f(x)}{x \cdot g(x)}\right)^2 \cdot \frac{f'(x) \cdot x \cdot g(x) - f(x)(g(x) + x \cdot g'(x))}{(x \cdot g(x))^2}$$

$$H'(2) = 3\left(\frac{3}{2 \cdot 4}\right)^2 \cdot \frac{-1 \cdot 2 \cdot 4 - 3(4 + 2 \cdot (-3))}{(2 \cdot 4)^2}$$

$$= 3 \cdot \frac{9}{64} \cdot \frac{-8 + 6}{64}$$

$$= 3 \cdot \frac{9}{64} \cdot \frac{-1}{32}$$

$$= -\frac{27}{2048}$$

Opdracht 37 bladzijde 207

Van de afleidbare functies f en g weet je dat $g(x) = (x^2 + 2x + 3) \cdot f(x)$, f(0) = 5 en

$$\lim_{x\to 0}\frac{f(x)-5}{x}=4.$$

Bepaal g'(0).

$$g'(x) = (2x + 2)f(x) + (x^{2} + 2x + 3)f'(x)$$

$$g'(0) = 2 \cdot f(0) + 3 \cdot f'(0)$$

$$= 2 \cdot 5 + 3 \cdot 4$$

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x) - 5}{x} = 4$$

= 22

Opdracht 38 bladzijde 207

Beschouw de kromme K bepaald door de vergelijking $y = x^{\frac{3}{2}}$.

Welk punt van deze kromme ligt het dichtst bij het punt met coördinaat $(\frac{1}{2}, 0)$?

$$\mathbf{B} \left(\frac{1}{2}, \left(\frac{1}{2} \right)^{\frac{3}{2}} \right)$$

$$\mathbf{c} \left(\frac{1}{3}, \left(\frac{1}{3} \right)^{\frac{3}{2}} \right)$$

B
$$\left(\frac{1}{2}, \left(\frac{1}{2}\right)^{\frac{3}{2}}\right)$$
 C $\left(\frac{1}{3}, \left(\frac{1}{3}\right)^{\frac{3}{2}}\right)$ **D** $\left(\frac{1}{4}, \left(\frac{1}{4}\right)^{\frac{3}{2}}\right)$ **E** (1,1)

(bron © ijkingstoets burgerlijk ingenieur)

Noem het punt op de kromme P(a, f(a)).

Voor dit punt moet gelden dat t⊥PA en dus rico t · rico PA = -1.

•
$$y = x^{\frac{3}{2}} \implies y' = \frac{3}{2}x^{\frac{1}{2}}$$

$$\Rightarrow$$
 rico $t = \frac{3}{2} \cdot a^{\frac{1}{2}}$

• rico PA =
$$\frac{-a^{\frac{3}{2}}}{\frac{1}{2}-a}$$
 met $P(a, a^{\frac{3}{2}})$ en $A(\frac{1}{2}, 0)$

• rico
$$t \cdot rico PA = -1$$

$$\Leftrightarrow \frac{3}{2} \cdot a^{\frac{1}{2}} \cdot \frac{-a^{\frac{3}{2}}}{\frac{1}{2} - a} = -1$$

$$\Leftrightarrow -\frac{3}{2} \cdot \frac{-a^2}{\frac{1}{2} - a} = -1$$

$$a \neq \frac{1}{2}$$

$$a \neq \frac{1}{2}$$

$$\Leftrightarrow 3a^2 = 1 - 2a$$

$$\Leftrightarrow 3a^2 + 2a - 1 = 0$$

$$\Leftrightarrow a = \frac{1}{3} \text{ of } a = 1$$
 $a > 0$

$$\Rightarrow P\left(\frac{1}{3}, \left(\frac{1}{3}\right)^{\frac{3}{2}}\right)$$

⇒ antwoord C is juist

Opdracht 39 bladzijde 207

Stel V(x) is het voorschrift van een veeltermfunctie met graad groter of gelijk aan 2.

1 Toon aan: als V(x) deelbaar is door $(x-a)^2$, dan is V(a) = V'(a) = 0.

Als V(x) deelbaar is door $(x - a)^2$, dan is

 $V(x) = (x - a)^2 Q(x)$ met Q(x) een veelterm met graad ≥ 0 .

$$V'(x) = 2(x - a) Q(x) + (x - a)^2 Q'(x).$$

$$\Rightarrow$$
 V(a) = V'(a) = 0

2 De veelterm $V(x) = x^4 + 2x^3 + 4x^2 + ax + b$ is deelbaar door $(x + 2)^2$.

Bepaal a en b.

Er geldt dat V(-2) = V'(-2) = 0

$$\Rightarrow \begin{cases} 16 - 16 + 16 - 2a + b = 0 \\ -32 + 24 - 16 + a = 0 \end{cases}$$

$$\Rightarrow \begin{cases} a = 24 \\ b = 2a - 16 = 32 \end{cases}$$

$$\Rightarrow$$
 a = 24 en b = 32

Opdracht 40 bladzijde 207

Welk punt van de grafiek van de functie $f: x \mapsto \frac{16}{x^4}$, getekend in een orthonormaal assenstelsel,

ligt het dichtst bij de oorsprong in het eerste kwadrant?

• We noemen het gevraagde punt P: $P\left(x_0, \frac{16}{x_0^4}\right)$ en de raaklijn in P aan de grafiek van f noemen we t.

•
$$f'(x) = -\frac{64}{x^5}$$
 \Rightarrow rico $t = f'(x_0) = -\frac{64}{x_0^5}$

• Nu geldt: rico OP =
$$\frac{\frac{16}{x_0^4}}{x_0} = \frac{16}{x_0^5}$$

• OP
$$\perp$$
 t \Leftrightarrow rico OP \cdot rico t = -1

$$\Rightarrow \frac{16}{x_0^5} \cdot \left(\frac{-64}{x_0^5}\right) = -1$$

$$\Leftrightarrow x_0^{10} = 16 \cdot 64 = 1024 = 2^{10}$$

$$\Leftrightarrow x_0 = 2 \text{ of } x_0 = -2$$

P ligt in het eerste kwadraat, dus x₀ = 2
 ⇒ P(2,1)

Opdracht 41 bladzijde 207

Een kogel met een straal van 5 cm valt in een paraboolvormige schotel met

vergelijking
$$f(x) = \frac{1}{8}x^2$$

met x en $f(x)$ in cm.

Is er onder de kogel nog plaats voor een vlieg?

 Daar de y-as een symmetrias is van de paraboolvormige schotel, ligt het middelpunt van de bol (kogel met straal 5 cm) op de y-as.

Een dwarsdoorsnede met een vlak door de y-as zal de bol snijden volgens een cirkel c en de schotel volgens de parabool p \leftrightarrow y = $\frac{1}{8}$ x². Het middelpunt van de cirkel ligt dan op de y-as.

• Stel M(0,h) het middelpunt van de cirkel en T het gemeenschappelijk raakpunt in het kwadrant van de cirkel en de parabool.

•
$$T \in p : T\left(x_0, \frac{1}{8}x_0^2\right)$$

 $T \in c \iff |TM| = 5$
 $\iff (x_0 - 0)^2 + \left(\frac{1}{8}x_0^2 - h\right)^2 = 25$ (1)

• Noem t de raaklijn aan p in T:

rico t =
$$f'(x_0) = \frac{1}{4}x_0$$

• rico MT =
$$\frac{\frac{1}{8}x_0^2 - h}{x_0}$$

$$t \perp MT \iff \frac{\frac{1}{8}x_0^2 - h}{x_0} = \frac{-4}{x_0}$$

$$\Leftrightarrow \frac{1}{8}x_0^2 - h = -4$$
 (2)

• Uit (1) en (2) berekenen we h.

Uit (2):
$$x_0^2 = 8h - 32$$

In (1): $8h - 32 + (h - 4 - h)^2 = 25$
 $\Leftrightarrow h = \frac{41}{8}$

• Onder de kogel blijft dus nog een ruimte over waarvan de maximale hoogte $\left(\frac{41}{8} - 5\right)$ cm = $\frac{1}{8}$ cm = 0,125 cm = 1,25 mm is.

⇒ Nee, de maximale hoogte tussen de kogel en de schotel is maar 1,25 mm.

Opdracht 42 bladzijde 208

Stel V(x) is het voorschrift van een veeltermfunctie met graad groter dan of gelijk aan 2.

Toon aan: als V(a) = V'(a) = 0, dan is V(x) deelbaar door $(x - a)^2$.

- Uit V(a) = 0 volgt dat V(x) = (x a)q(x) met $gr(q(x)) \ge 1$.
- $V'(x) = q(x) + (x a) \cdot q'(x)$ met $qr(q'(x)) \ge 0$.
- Nu is V'(a) = 0, dus q(a) = 0.

Hieruit volgt dat $q(x) = (x - a) \cdot q^*(x)$ met $gr(q^*(x)) \ge 0$.

• Er geldt dus dat $V(x) = (x - a) \cdot (x - a) \cdot q^*(x)$ = $(x - a)^2 \cdot q^*(x)$

 \Rightarrow V(x) is deelbaar door (x – a)².

Opdracht 43 bladzijde 208

Bewijs de quotiëntregel voor afgeleiden met behulp van de limietdefinitie van de afgeleide, in plaats van door terug te vallen op de productregel:

$$\left(\frac{f}{g}\right)'(a) = \lim_{x \to a} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a)}{x - a}$$

Stel dat f en g afleidbaar zijn in a en g(a) \neq 0.

$$= \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a} \cdot g(a) - \frac{g(x) - g(a)}{x - a} \cdot f(a)}{g(x)g(a)}$$
 eigenschap breuken
$$= \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} g(a) - \lim_{x \to a} \frac{g(x) - g(a)}{x - a} \cdot \lim_{x \to a} f(a)}{\lim_{x \to a} g(x) \cdot \lim_{x \to a} g(a)}$$
 rekenregels limieten
$$= \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{(g(a))^2}$$
 f en g afleidbaar in a, g(a) $\neq 0$, g afleidbaar in a en dus continu in a, dus is $\lim_{x \to a} g(x) = g(a)$

Hieruit volgt de rekenregel

$$\left(\frac{f}{q}\right)' = \frac{f' \cdot g - f \cdot g'}{q^2}$$

Opdracht 44 bladzijde 209

Voor welke x-waarden van het domein zijn de volgende functies niet afleidbaar?

1
$$f: x \mapsto \sqrt[3]{x^2 - 4}$$

dom $f = \mathbb{R}$
 $f(x) = (x^2 - 4)^{\frac{1}{3}}$
 $f'(x) = \frac{1}{3}(x^2 - 4)^{-\frac{2}{3}} \cdot 2x$
 $= \frac{2x}{3(x^2 - 4)^{\frac{2}{3}}}$
 $= \frac{2x}{3\sqrt[3]{(x^2 - 4)^2}}$

f is niet afleidbaar in -2 en in 2. In die punten is er een verticale raaklijn.

2
$$f: x \mapsto |9 - 4x^2|$$

dom $f = \mathbb{R}$

$$f(x) = |9 - 4x^{2}| = \begin{cases} 9 - 4x^{2} & \text{als } -\frac{3}{2} \le x \le \frac{3}{2} \\ 4x^{2} - 9 & \text{als } x < -\frac{3}{2} \text{ of } x > \frac{3}{2} \end{cases}$$

•
$$\lim_{x \to -\frac{3}{2}} \frac{4x^2 - 9}{x + \frac{3}{2}} = \lim_{x \to -\frac{3}{2}} \frac{(2x - 3)(2x + 3)}{\frac{2x + 3}{2}} \stackrel{0}{=} \lim_{x \to -\frac{3}{2}} 2(2x - 3) = -12$$

•
$$\lim_{x \to -\frac{3}{2}} \frac{9 - 4x^2}{x + \frac{3}{2}} = \lim_{x \to -\frac{3}{2}} \frac{\frac{(3 - 2x)(3 + 2x)}{2}}{\frac{2x + 3}{2}} \stackrel{\frac{0}{0}}{=} \lim_{x \to -\frac{3}{2}} 2(3 - 2x) = 12$$

•
$$\lim_{\substack{x \to \frac{3}{2} \\ < 2}} \frac{9 - 4x^2}{x - \frac{3}{2}} = \lim_{\substack{x \to \frac{3}{2} \\ < 2}} \frac{(3 - 2x)(3 + 2x)}{\frac{2x - 3}{2}} \stackrel{\stackrel{0}{=}}{=} \lim_{\substack{x \to \frac{3}{2} \\ < 2}} -2(3 + 2x) = -12$$

•
$$\lim_{\substack{x \to \frac{3}{2} \\ > 2}} \frac{4x^2 - 9}{x - \frac{3}{2}} = \lim_{\substack{x \to \frac{3}{2} \\ > 2}} \frac{(2x - 3)(2x + 3)}{\frac{2x - 3}{2}} \stackrel{0}{=} \lim_{\substack{x \to \frac{3}{2} \\ > 2}} 2(2x + 3) = 12$$

f is niet afleidbaar in $-\frac{3}{2}$ en $\frac{3}{2}$ (linkerafgeleide \neq rechterafgeleide).

3
$$f: x \mapsto \sqrt{2x^4 - 7x^2 + 5}$$

• dom f =
$$\left] -\infty, -\sqrt{\frac{5}{2}} \right] \cup [-1,1] \cup \left[\frac{5}{2}, +\infty \right[$$

•
$$f'(x) = \frac{8x^3 - 14x}{2\sqrt{2}x^4 - 7x^2 + 5} = \frac{4x^3 - 7x}{\sqrt{2}x^4 - 7x^2 + 5}$$

 $2x^4 - 7x^2 + 5 = 0 \iff x = \pm 1 \text{ of } x = \pm \sqrt{\frac{5}{2}}$
 $-1, 1, -\sqrt{\frac{5}{2}}, \sqrt{\frac{5}{2}}$ zijn geen nulpunten teller.

⇒ f is niet afleidbaar in –1, 1, –
$$\sqrt{\frac{5}{2}}$$
, $\sqrt{\frac{5}{2}}$ (verticale raaklijn)

4
$$f: x \mapsto \sqrt[4]{(x^3-8)^2}$$

• dom $f = \mathbb{R}$

•
$$f(x) = \sqrt{|x^3 - 8|} = \begin{cases} \sqrt{x^3 - 8} & \text{als } x \ge 2\\ \sqrt{8 - x^3} & \text{als } x < 2 \end{cases}$$

$$\lim_{\substack{x \to 2 \\ x \to 2}} \frac{\sqrt{8 - x^3} - 0}{x - 2} = \lim_{\substack{x \to 2 \\ x \to 2}} \frac{\sqrt{2 - x} \cdot \sqrt{4 + 2x + x^2}}{-\sqrt{(x - 2)^2}} = \lim_{\substack{x \to 2 \\ x \to 2}} \frac{\sqrt{4 + 2x + x^2}}{-\sqrt{2 - x}} \stackrel{\text{o}^{-}}{=} -\infty$$

$$\lim_{\substack{x \to 2 \\ x \to 2}} \frac{\sqrt{x^3 - 8} - 0}{x - 2} = \lim_{\substack{x \to 2 \\ x \to 2}} \frac{\sqrt{x - 2} \cdot \sqrt{4 + 2x + x^2}}{\sqrt{(x - 2)^2}} = \lim_{\substack{x \to 2 \\ x \to 2}} \frac{\sqrt{4 + 2x + x^2}}{\sqrt{x - 2}} \stackrel{\text{o}^{-}}{=} +\infty$$

f is niet afleidbaar in 2 (verticale raaklijn).

Opdracht 45 bladzijde 209

1
$$\frac{d}{dx}$$
 $((x+2)\cdot(x+4)\cdot(x+6))$
= $(x+4)(x+6) + (x+2)(x+6) + (x+2)(x+4)$
= $x^2 + 10x + 24 + x^2 + 8x + 12 + x^2 + 6x + 8$
= $3x^2 + 24x + 44$

$$2 \frac{d}{dx} \left(\sqrt{(3x^2 - x + 2)^3} \right)$$

$$= \frac{d}{dx} \left[(3x^2 - x + 2)^{\frac{3}{2}} \right]$$

$$= \frac{3}{2} (3x^2 - x + 2)^{\frac{1}{2}} \cdot (6x - 1)$$

$$= \frac{3}{2} (6x - 1)\sqrt{3x^2 - x + 2}$$

3
$$\frac{d}{dx} \left(\left(\frac{x^2 + 3}{x} \right) \cdot \left(\frac{x^4 - 1}{x^3} \right) \right)$$

$$= \frac{d}{dx} \left(\frac{x^6 - x^2 + 3x^4 - 3}{x^4} \right)$$

$$= \frac{d}{dx} (x^2 - x^{-2} + 3 - 3x^{-4})$$

$$= 2x + 2x^{-3} + 12x^{-5}$$

$$= 2x + \frac{2}{x^3} + \frac{12}{x^5}$$

$$\left(= \frac{2x^6 + 2x^2 + 12}{x^5} \right)$$

$$4 \frac{d}{dx} \left(\frac{(2x^2 + x - 1)^3}{3x^4} \right)$$

$$= \frac{1}{3} \frac{d}{dx} \left(\frac{(2x^2 + x - 1)^3}{x^4} \right)$$

$$= \frac{1}{3} \cdot \frac{3(2x^2 + x - 1)^2 \cdot (4x + 1)x^4 - (2x^2 + x - 1)^3 \cdot 4x^3}{x^8}$$

$$= \frac{1}{3} \cdot \frac{x^3(2x^2 + x - 1)^2 \left(3x(4x + 1) - 4(2x^2 + x - 1)\right)}{x^8}$$

$$= \frac{(2x^2 + x - 1)^2(4x^2 - x + 4)}{3x^5}$$

Opdracht 46 bladzijde 209

De grafieken van de functies $f: x \mapsto \frac{1}{4}x^3 + ax^2 + b$ en $g: x \mapsto \sqrt{25 - x^2}$ raken elkaar in het punt P(3,4).

Bepaal a en b.

•
$$f'(x) = \frac{3}{4}x^2 + 2ax$$

 $g'(x) = \frac{-2x}{2\sqrt{25 - x^2}} = \frac{-x}{\sqrt{25 - x^2}}$

• Er geldt:

1)
$$f(3) = g(3) \implies \frac{27}{4} + 9a + b = 4 \iff 9a + b = -\frac{11}{4}$$
 (1)

2)
$$f'(3) = g'(3) \implies \frac{27}{4} + 6a = -\frac{3}{4} \iff a = -\frac{5}{4}$$
 (2)

(2) in (1) geeft
$$b = -\frac{11}{4} + 9 \cdot \frac{5}{4} = \frac{17}{2}$$

Besluit:
$$a = -\frac{5}{4}$$
 en $b = \frac{17}{2}$

Opdracht 47 bladzijde 209

Gegeven de functie $f: x \mapsto 2x + 3 \cdot \sqrt[3]{(x-2)^2}$ en de punten P(-6, f(-6)) en Q(3, f(3)).

1 Is f afleidbaar in 2?

$$f'(x) = 2 + 3 \cdot \frac{2}{3}(x - 2)^{-\frac{1}{3}} = 2 + \frac{2}{\sqrt[3]{x - 2}}$$

f is niet afleidbaar in 2 want 2 is een nulpunt van de noemer van de eerste afgeleide (verticale raaklijn).

2 Is PQ een raaklijn aan de grafiek van f? Toon aan.

$$\frac{P(-6,0)}{Q(3,9)}$$
 rico $PQ = \frac{9}{9} = 1$

rico t = 2 +
$$\frac{2}{\sqrt[3]{x-2}}$$
 = 1

$$\Leftrightarrow \frac{2}{\sqrt[3]{x-2}} = -1$$

$$x \neq 2$$
 $\sqrt[3]{x-2} = -2$

$$\Leftrightarrow x-2=-8$$

$$\Leftrightarrow x = -6$$

 \Rightarrow Het raakpunt is P(-6,0).

De raaklijn is bijgevolg $t \leftrightarrow y = x + 6$.

$$Q(3,9) \in t \text{ want } 9 = 3 + 6$$

⇒ PQ is een raaklijn aan de grafiek van f.

Opdracht 48 bladzijde 209

Opdracht 48 bladzijde 209

Bepaal a en b zodat de functie $f: x \mapsto \begin{cases} \frac{1}{2}x^3 & \text{als } x \leq 2 \\ ax + b & \text{als } x > 2 \end{cases}$ afleidbaar is in 2.

• f is afleidbaar, dus continu in 2

$$\Rightarrow \frac{1}{2} \cdot 2^3 = 2a + b \iff b = 4 - 2a \tag{1}$$

• Voor b = 4 - 2a

$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{\frac{1}{2}x^3 - 4}{x - 2} \stackrel{0}{=} \lim_{x \to 2} \frac{\frac{1}{2}(x - 2)(x^2 + 2x + 4)}{x - 2} = 6$$

en
$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{ax + 4 - 2a - 4}{x - 2} \stackrel{\frac{0}{0}}{=} \lim_{x \to 2} \frac{a(x - 2)}{x - 2} = a$$

f is afleidbaar in $2 \Leftrightarrow a = 6$

Uit (1) volgt dan: b = -8

Besluit: a = 6 en b = -8

Opdracht 49 bladzijde 210

Van de functies f en g zijn de functiewaarden en de afgeleiden in 2 en 3 gegeven.

x	f(x)	g(x)	f'(x)	g'(x)
2	4	3	8	-4
3	2	-5	6	1

1 Bereken F'(2) als $F(x) = f(x) \cdot g(x)$.

$$F'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$F'(2) = 8 \cdot 3 + 4 \cdot (-4) = 8$$

2 Bereken G'(3) als $G(x) = \frac{2x+1}{f(x)}$.

$$G'(x) = \frac{2f(x) - (2x + 1)f'(x)}{(f(x))^2}$$

$$G'(3) = {2 \cdot 2 - 7 \cdot 6 \over 2^2} = {-38 \over 4} = -{19 \over 2}$$

3 Bereken H'(2) als $H(x) = \sqrt{(f(x))^2 + (g(x))^2}$.

$$H'(x) = \frac{2f(x) \cdot f'(x) + 2g(x) \cdot g'(x)}{2\sqrt{(f(x))^2 + (g(x))^2}}$$
$$= \frac{f(x) \cdot f'(x) + g(x) \cdot g'(x)}{\sqrt{(f(x))^2 + (g(x))^2}}$$

$$H'(2) = \frac{4 \cdot 8 + 3 \cdot (-4)}{\sqrt{16 + 9}} = 4$$

Opdracht 50 bladzijde 210

Beschouw het cartesiaans vlak met het punt met coördinaat (a, b) waarbij a > 0 en b > 0.

Beschouw verder een variabele rechte met richtingscoëfficiënt k door dit punt.

De oppervlakte van het gebied ingesloten door deze rechte, de positieve x-as en de positieve y-as, bereikt een minimale waarde

A als
$$k = \frac{b}{a}$$

B als
$$k = -\frac{b}{a}$$

C als
$$k = \frac{a}{b}$$

A als
$$k = \frac{b}{a}$$
 B als $k = -\frac{b}{a}$ **C** als $k = \frac{a}{b}$ **D** als $k = -\frac{a}{b}$ **E** nooit

(bron © ijkingstoets burgerlijk ingenieur)

 De rechte I heeft een vergelijking y = kx + q met k < 0.

P(a,b) ligt op de rechte, dus:

$$b = ka + q \implies q = b - ka$$

Dus geldt: $I \leftrightarrow y = kx + b - ka$

Snijpunt I met de y-as: (0, b – ka)

Snijpunt I met de x-as:

$$0 = kx + b - ka$$

$$kx = ka - b$$

$$x = a - \frac{b}{k} \implies \left(a - \frac{b}{k}, 0\right)$$

• Oppervlakte A(k) =
$$\frac{\left(a - \frac{b}{k}\right)(b - ka)}{2}$$

$$= \frac{1}{2}\left(ab - ka^2 - \frac{b^2}{k} + ab\right)$$

$$= \frac{1}{2}\left(2ab - ka^2 - \frac{b^2}{k}\right)$$

$$A'(k) = \frac{1}{2}\left(-a^2 + \frac{b^2}{k^2}\right)$$

$$= \frac{b^2 - a^2k^2}{2k^2}$$

$$k \qquad -\frac{b}{a}$$

$$A'(k) \qquad -0 \qquad + \frac{b}{a}$$

$$A(k) \qquad \longrightarrow \min \qquad \nearrow \qquad k < 0$$

De oppervlakte bereikt een minimum voor $k = -\frac{b}{a}$.

Antwoord B is het juiste.

Opdracht 51 bladzijde 210

Bepaal m > 0 zodat de grafiek van de functie $f: x \mapsto \frac{8}{x} (\sqrt{x} - m)$ raakt aan de rechte $t \leftrightarrow y = \frac{1}{4}x$.

•
$$f'(x) = -\frac{8}{x^2} (\sqrt{x} - m) + \frac{8}{x} \cdot \frac{1}{2\sqrt{x}}$$
$$= -\frac{8}{x^2} \sqrt{x} + \frac{8m}{x^2} + \frac{4\sqrt{x}}{x^2}$$
$$= \frac{8m - 4\sqrt{x}}{x^2}$$

• Voor het raakpunt $P(x_0, f(x_0))$ geldt:

$$f'(x_0) = \frac{8m - 4\sqrt{x_0}}{x_0^2} = \frac{1}{4}$$

$$t \leftrightarrow y - \frac{8}{x_0} (\sqrt{x_0} - m) = \frac{1}{4} (x - x_0)$$
(1)

• t gaat door de oorsprong

$$\Rightarrow -\frac{8}{x_0} \left(\sqrt{x_0} - m \right) = -\frac{1}{4} x_0$$

$$\Leftrightarrow 32(\sqrt{x_0} - m) = x_0^2 \tag{2}$$

• (1) en (2):
$$\begin{cases} 32m - 16\sqrt{x_0} = x_0^2 & (3) \\ 32\sqrt{x_0} - 32m = x_0^2 & \\ \Rightarrow 32m - 16\sqrt{x_0} = 32\sqrt{x_0} - 32m \\ \Leftrightarrow 48\sqrt{x_0} = 64m & \\ \Leftrightarrow \sqrt{x_0} = \frac{4}{3}m & \end{cases}$$

In (3):
$$32m - 16 \cdot \frac{4}{3}m = \left(\frac{4}{3}m\right)^4$$

 $32m - \frac{64}{3}m = \frac{256}{81}m^4$
 $m - \frac{2}{3}m = \frac{8}{81}m^4$
 $\frac{1}{3}m = \frac{8}{21}m^4$
 $\frac{1}{3}m\left(1 - \frac{8}{27}m^3\right) = 0$
 $\stackrel{m>0}{\Rightarrow} m^3 = \frac{27}{8}$
 $m = \frac{3}{2}$

