HIP Research Group Activities and Roadmap

Pekka Nikander, Ericsson Research Nomadic Lab Tom Henderson, Boeing Phantom Works

Presentation outline

- HIP in a nutshell
 - Positioning and WG work
- A potential HIP roadmap
 - RG deployment plan
- Current activities
 - RG work
- Concluding remarks

Presentation outline

- HIP in a nutshell
 - What is HIP?
 - A brief history of HIP
 - Motivation; related WGs and RGs
 - WG work summary
- A potential HIP roadmap
- Current activities
- Concluding remarks

What is HIP?

- HIP = Host Identity Protocol
- A proposal to separate identifier from locator at the network layer of the TCP/IP stack
 - A new name space of public keys
 - A protocol for discovering and authenticating bindings between public keys and IP addresses
 - Secured using signatures and keyed hashes

The Idea

- A new Name Space of Host Identifiers (HI)
 - Public crypto keys!
 - Presented as 128-bit long hash values, Host ID Tags (HIT)
- Sockets bound to HIs, not to IP addresses
- His translated to IP addresses in the kernel

More detailed layering

Base exchange

Based on SIGMA family of key exchange protocols

Responder Initiator HIT_I, HIT_R or NULL HIT_I, [HIT_R, puzzle, DH_R, HI_R]_{sig} solve $[HIT_I, HIT_R, solution, DH_I, \{HI_I\}]_{sig}$ puzzle verify, $[HIT_I, HIT_R, authenticator]_{sig}$ authenticate User data messages ESP protected TCP/UDP, no explicit HIP header draft-ietf-hip-base-02.txt, draft-jokela-hip-esp-00.txt

7

Other core components

- Per-packet identity context
 - Indirectly, through SPI if ESP (or SRTP) is used
 - Directly, e.g., through an explicit shim header
- A mechanism for resolving identities to addresses
 - DNS-based, if FQDNs used by applications
 - Or distributed hash tables (DHTs) based

A Brief History of HIP

- 1999: idea discussed briefly at the IETF
- 2001: two BoFs, no WG created at that time
- 02-03: development in the corridors
- 2004: WG and RG created
- Now: base protocol more or less ready
 - Four interoperating implementations
- More work needed on mobility, multi-homing,
 NAT traversal, infrastructure, and other issues

Motivation

- Not to standardise a solution to a problem
 - No explicit problem statement
- Exploring the consequences of the id / loc split
 - Try it out in real life, in the live Internet
- A different look at many problems
 - Mobility, multi-homing, end-to-end security, signalling, control/data plane separation, rendezvous, NAT traversal, firewall security, ...

Motivating architectural factors

- A "reachability" solution across NATs
 - New "waist" for the protocol stack
- Built-in security
 - Implicit channel bindings
 - connect(HIT) provides a secured connection to the identified host
 - Puzzle-based DoS protection
- Integrated mobility and end-host multi-homing

Related WGs and RGs

WG summary

- HIPWG is chartered to produce experimental RFCs:
 - Base protocol, use of ESP
 - Mobility and multi-homing
 - DNS resource record(s)
 - Registration protocol, (simple) rendezvous server
- However, we need to understand the implications of deploying HIP on a large scale
 - Changes to hosts and host management
 - Additional network infrastructure
- This latter topic is the focus of the HIP RG

Presentation outline

- HIP in a nutshell
- A potential HIP roadmap
 - Initial exploration
 - Early infrastructure
 - Enhanced Infrastructure
 - Early markets: HIP as a vertical solution
- Current activities
- Concluding remarks

Initial exploration

- Pair-wise host-to-host deployment
 - e.g. my laptop and my personal server
- HITs typically stored in /etc/hosts

```
192.0.2.1 myserver
43bc:4521:4933:956c:3445:956d:ed23:3420 myserver
```

- Initial public test servers in the Internet
 - hipserver.hiit.fi

Initial exploration

hipserver.hiit.fi

Initial exploration: Requirements

- Host:
 - Install HIP on the host operating system
 - Linux: HIPL or Boeing HIP
 - BSD: HIP4BSD (FreeBSD; MacOS X soon)
 - Windows: Boeing HIP (cygwin based)
 - Configure HITs in /etc/hosts
 - Configure applications to refer to HITs
- Network: none

Initial exploration: Benefits

- End-to-end security between client and server
 - Trust based on static configuration
- Client mobility and multi-homing
 - Even across IPv4 / IPv6 boundaries
- IPv4 / IPv6 API-level interoperability
- Protection against CPU / memory DoS attacks
- Soon: Client-side NAT traversal
 - For plain client—server TCP / UDP protocols

Initial exploration: Challenges

- Per-host management of a new name space
 - Policy configuration
 - Semantics for unsuccessful handshakes
 - Management of keys and address bindings
 - Privacy management
- Address resolution from HIT to IP address without any infrastructure
 - Must be explicitly configured

Early infrastructure

- Pair-wise deployment between early adopters
 - e.g. my laptop and your experimental server
- Store HITs in the DNS as AAAA RRs
 - Look like non-routable IPv6 addresses
 - Returned as the last entry in an RR set
- Experimental rendezvous (Hi³) at PlanetLab
 - Infrastructure for passing HIP packets

Early infrastructure

Early infrastructure: Requirements

- Host:
 - No new significant requirements
 - Maybe an update of the HIP software
- Infrastructure on the network:
 - Store HITs to DNS as AAAA records
 - Install experimental rendezvous servers
- Routers and NATs:
 - no changes

Early infrastructure: (Additional) benefits

- Opportunistic security between participants
 - Perhaps build trust with DNSSEC
- Simultaneous mobility; i.e., mobile servers
- Increases the cost of some flooding DoS attacks
 - Potential attacker needs to solve the HIP puzzle before getting the real IP address
- NAT traversal for both client and server
 - Unlikely to work for symmetric NATs

Enhanced infrastructure

- Internet-wide experimental deployment
 - Stable rendezvous service
 - Store HITs in the DNS using new RRs
- Benefits as before but larger audience
- Results to be reported in HIP RG experiment report
 - Input to the IETF community

Markets take over: HIP on selected vertical markets

- Potential markets
 - Multi-homed road warriors
 - Operations and management
 - Military or dual-use systems
 - High-availability systems
 - Mobile public networks
 - e.g., municipal 802.11 networks

Presentation outline

- HIP in a nutshell
- A potential HIP roadmap
- Current activities
 - NAT traversal or layer 3.5 connectivity
 - Upper layer identifiers
 - Hi^3 and other DHT-based rendezvous
 - Separating control and data traffic
- Concluding remarks

NAT traversal

- Legacy NAT traversal
 - Apply ideas from STUN/ICE/STUNT... to HIP
 - UDP tunneling
 - Short term solution with a clear exit strategy
- SPI-NAT or architected NAT
 - Make NAT aware of HIP messages
 - Allow servers to register at the NAT
 - Learn mappings for HITs and ESP SPIs

Upper layer identifiers

- Backward compatible APIs
 - Current APIs form a major legacy asset
 - HIP allows almost all applications to continue unmodified (no recompilation required)
 - Q: Use HITs / IP addrs / both as the ULID?
- New APIs
 - Host vs. Session vs. Service identifiers?
 - Using delegation?

Hi^3 and DHT-based rendezvous

Separating control and data

- Originally HIP was tightly bound to ESP, using ESP as the data encapsulation protocol
- ESP split from the base specification
 - Allow other encapsulations in the future
 - Maybe even plain TCP / UDP w/ null encaps
- Fast / slow path separation at middle boxes
- Optionally different locators for control / data

Summary

- HIP WG producing components for experimental deployment:
 - base protocol, ESP, mobility & multi-homing,
 DNS, registration, rendezvous
- HIP RG preparing for real life experiments
- On-going RG work items:
 - NAT, ULIDs and APIs, Hi³ / DHT based rendezvous, separation of control and data

Concluding remarks

- Base protocol ready for early exploration
 - Interoperating OSS implementations available
- Open questions looking for answers
 - Impact: on hosts, routers, other infra
 - Architectural questions: ULIDs, resolution, separation of control and data, ...
 - New functionality: DDoS protection, moving networks, MANETs, ...