# **Target-SQL Business Case Study**

**Question 1:** Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

#### Solution:

Sub question 1: Data type of columns in a table

| orde   | rs Q QUERY ▼ +                    | SHARE 🛅   | COPY E SN | IAPSHOT   |
|--------|-----------------------------------|-----------|-----------|-----------|
| SCHEMA | DETAILS PREVIEW                   | LINEAGE   |           |           |
| ₩ Fil  | Iter Enter property name or value |           |           |           |
|        | Field name                        | Туре      | Mode      | Collation |
|        | order_id                          | STRING    | NULLABLE  |           |
|        | customer_id                       | STRING    | NULLABLE  |           |
|        | order_status                      | STRING    | NULLABLE  |           |
|        | order_purchase_timestamp          | TIMESTAMP | NULLABLE  |           |
|        | order_approved_at                 | TIMESTAMP | NULLABLE  |           |
|        | order_delivered_carrier_date      | TIMESTAMP | NULLABLE  |           |
|        | order_delivered_customer_date     | TIMESTAMP | NULLABLE  |           |
|        | order_estimated_delivery_date     | TIMESTAMP | NULLABLE  |           |

Data types of Orders table

Data types of Customer table

Sub question 2: Time period of which the data is given



The orders table is used to find the first and last dates of orders placed, thereby giving us an idea that the data spans from September 2016 to October 2018.

# Sub question 3: Cities and States of customer ordered during the give period

# Result:

| Row | customer_id //             | customer_city // | customer_state |
|-----|----------------------------|------------------|----------------|
| 1   | 00012a2ce6f8dcda20d059ce9  | osasco           | SP             |
| 2   | 000161a058600d5901f007fab  | itapecerica      | MG             |
| 3   | 0001fd6190edaaf884bcaf3d49 | nova venecia     | ES             |
| 4   | 0002414f95344307404f0ace7  | mendonca         | MG             |
| 5   | 000379cdec625522490c315e7  | sao paulo        | SP             |
| 6   | 0004164d20a9e969af783496f  | valinhos         | SP             |
| 7   | 000419c5494106c306a97b56   | niteroi          | RJ             |
| 8   | 00046a560d407e99b969756e   | rio de janeiro   | RJ             |
| 9   | 00050bf6e01e69d5c0fd612f1b | ijui             | RS             |
| 10  | 000598caf2ef4117407665ac3  | oliveira         | MG             |

There are 99441 distinct customers in Brazil who have ordered from Target during the 2016-2018 period.

# **Question 2:** In-depth Exploration:

- 1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?
- 2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

#### Solution:

Sub question 1: Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
Query:

SELECT

EXTRACT (YEAR from o.order_purchase_timestamp) as YEAR,

EXTRACT (MONTH from o.order_purchase_timestamp) as MONTH,

ROUND(SUM(price+freight_value),2) as SALE_VALUE,

count(DISTINCT o.order_id) as no_of_orders

FROM `targetproject.orders` as o

JOIN `targetproject.order_items` as oi

ON o.order_id = oi.order_id

GROUP BY YEAR , MONTH

ORDER BY YEAR, MONTH
```

# Result:

| Row | YEAR // | MONTH // | SALE_VALUE / | no_of_orders // |
|-----|---------|----------|--------------|-----------------|
| 1   | 2016    | 9        | 354.75       | 3               |
| 2   | 2016    | 10       | 56808.84     | 308             |
| 3   | 2016    | 12       | 19.62        | 1               |
| 4   | 2017    | 1        | 137188.49    | 789             |
| 5   | 2017    | 2        | 286280.62    | 1733            |
| 6   | 2017    | 3        | 432048.59    | 2641            |
| 7   | 2017    | 4        | 412422.24    | 2391            |
| 8   | 2017    | 5        | 586190.95    | 3660            |
| 9   | 2017    | 6        | 502963.04    | 3217            |
| 10  | 2017    | 7        | 584971.62    | 3969            |
| 11  | 2017    | 8        | 668204.6     | 4293            |
| 12  | 2017    | 9        | 720398.91    | 4243            |

# Insights:

- It can be seen that there is a gradual increase in the sales value and orders month on month and also from 2017 to 2018. So there certainly is a growing market for the online retail industry in Brazil.
- We notice that there is a sudden increase in sales in the month of Nov, 2017 and then again in January,2018. However, there isn't sufficient data to compare the numbers between the years and draw absolute conclusions.

• In the year 2018 from January to August, each month has a sale value over 10 lakhs, except for February. This could be due to the Rio Carnival/Festival that happens every year around February when the Brazilians are busy with the festival preparations and saving up for travel and such.

#### Recommendations:

 Brazil is a growing market for e-commerce and the company should continue operations and consider expanding to all parts of the country.

Sub question 2: What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

#### Time slots taken:

```
Dawn – 5AM to 7AM

Morning – 7AM to 12 PM

Afternoon – 12 PM to 4PM

Evening – 4PM to 8PM

Night – 8PM to 12AM

Midnight – 12AM to 5AM
```

# Query:

```
SELECT
 time of day,
 count(order_id) as no_of_orders
FROM
(SELECT
 order id,
 time(order_purchase_timestamp) as order_time,
   WHEN time(order purchase timestamp) BETWEEN "05:00:00" AND "07:00:00"
THEN "Dawn"
   WHEN time(order_purchase_timestamp) BETWEEN "07:00:01" AND "12:00:00"
THEN "Morning"
   WHEN time(order_purchase_timestamp) BETWEEN "12:00:01" AND "16:00:00"
THEN "Afternoon"
   WHEN time(order_purchase_timestamp) BETWEEN "16:00:01" AND "20:00:00"
 THEN "Evening"
   WHEN time(order_purchase_timestamp) BETWEEN "20:00:01" AND "23:59:59"
 THEN "Night"
   ELSE "Mid night"
 END as time of day
FROM `targetproject.orders`)as xx
GROUP BY time_of_day
ORDER BY no_of_orders DESC;
```

## Result:

| Row | time_of_day | no_of_orders |
|-----|-------------|--------------|
| 1   | Afternoon   | 25537        |
| 2   | Evening     | 24575        |
| 3   | Night       | 22349        |
| 4   | Morning     | 21738        |
| 5   | Mid night   | 4552         |
| 6   | Dawn        | 690          |

# Insights:

 As we can see from the result, Brazilians love to shop pretty much any time during the waking hours. However, maximum orders are in the afternoon to evening hours i.e between 12 noon and 8 in the evening.

# Recommendations:

• The company could consider rolling out Flash Sales or Special Offers exclusive between these times in order to attract more customer and/or to increase the order value of current customers.

# **Question 3:** Evolution of E-commerce orders in the Brazil region:

- 1. Get month on month orders by states
- 2. Distribution of customers across the states in Brazil

#### Solution:

Sub question 1: Get month on month orders by state

```
Query:
```

```
SELECT
    c.customer_state,
    EXTRACT(YEAR FROM o.order_purchase_timestamp) as year,
    EXTRACT(MONTH FROM o.order_purchase_timestamp) as month,
    COUNT(o.order_id) as no_of_orders
FROM `targetproject.orders` as o
JOIN `targetproject.customer` as c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state, year, month
ORDER BY c.customer_state, year, month;
```

#### Result: Preview 1

| Row | customer_state | year // | month // | no_of_orders // |
|-----|----------------|---------|----------|-----------------|
| 1   | AC             | 2017    | 1        | 2               |
| 2   | AC             | 2017    | 2        | 3               |
| 3   | AC             | 2017    | 3        | 2               |
| 4   | AC             | 2017    | 4        | 5               |
| 5   | AC             | 2017    | 5        | 8               |
| 6   | AC             | 2017    | 6        | 4               |
| 7   | AC             | 2017    | 7        | 5               |
| 8   | AC             | 2017    | 8        | 4               |
| 9   | AC             | 2017    | 9        | 5               |
| 10  | AC             | 2017    | 10       | 6               |
| 11  | AC             | 2017    | 11       | 5               |
| 12  | AC             | 2017    | 12       | 5               |
|     |                |         |          |                 |

# Preview 2

| Row | customer_state | year // | month // | no_of_orders |
|-----|----------------|---------|----------|--------------|
| 101 | CE             | 2017    | 1        | 9            |
| 102 | CE             | 2017    | 2        | 13           |
| 103 | CE             | 2017    | 3        | 28           |
| 104 | CE             | 2017    | 4        | 43           |
| 105 | CE             | 2017    | 5        | 62           |
| 106 | CE             | 2017    | 6        | 47           |
| 107 | CE             | 2017    | 7        | 53           |
| 108 | CE             | 2017    | 8        | 73           |
| 109 | CE             | 2017    | 9        | 77           |
| 110 | CE             | 2017    | 10       | 66           |
| 111 | CE             | 2017    | 11       | 108          |
| 112 | CE             | 2017    | 12       | 81           |
|     |                |         |          |              |

Insights: As we see in Preview 1, there isn't a proper trend in the number of orders in State AC however as we see in Preview 2, there is a growing trend in number of orders in State CE. But as we saw earlier, Brazil does show an overall growing trend in e-commerce market.

# Sub question 2: Distribution of customers across the states in Brazil

# Query:

```
SELECT customer_state,
    count(customer_id) as No_of_customers
FROM `targetproject.customer`
GROUP BY customer_state
ORDER BY No_of_customers DESC
```

# Result:

| Row | customer_state | No_of_customer | Row | customer_state | No_of_customer |
|-----|----------------|----------------|-----|----------------|----------------|
| 1   | SP             | 41746          | 16  | MS             | 715            |
| 2   | RJ             | 12852          | 17  | PB             | 536            |
| 3   | MG             | 11635          | 18  | PI             | 495            |
| 4   | RS             | 5466           | 19  | RN             | 485            |
| 5   | PR             | 5045           | 20  | AL             | 413            |
| 6   | SC             | 3637           | 21  | SE             | 350            |
| 7   | BA             | 3380           | 22  | TO TO          | 280            |
|     |                |                | 23  | RO             | 253            |
| 8   | DF             | 2140           | 24  | AM             | 148            |
| 9   | ES             | 2033           | 25  | AC             | 81             |
| 10  | GO             | 2020           | 26  | AP             | 68             |
| 11  | PE             | 1652           | 27  | RR             | 46             |

**Question 4:** Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

- Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment\_value" column in payments table
- 2. Mean & Sum of price and freight value by customer state

#### Solution:

Sub question 1: Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment\_value" column in payments table

# Query:

```
WITH data_2017 AS
(SELECT
 EXTRACT (YEAR from o.order_purchase_timestamp) AS Year,
 EXTRACT (MONTH from o.order_purchase_timestamp) AS Month,
 ROUND(SUM(p.payment_value),2) AS Monthly_sales_2017
FROM `targetproject.orders` AS o
JOIN `targetproject.payments` AS p
ON o.order_id = p.order_id
GROUP BY Year , Month
HAVING Year = 2017 AND Month IN (1,2,3,4,5,6,7,8)
ORDER BY Year , Month),
data_2018 AS
(SELECT
 EXTRACT (YEAR from o.order purchase timestamp) AS Year,
 EXTRACT (MONTH from o.order_purchase_timestamp) AS Month,
 ROUND(SUM(p.payment_value),2) AS Monthly_sales 2018
FROM `targetproject.orders` AS o
JOIN `targetproject.payments` AS p
ON o.order_id = p.order_id
GROUP BY Year , Month
HAVING Year = 2018 AND Month IN (1,2,3,4,5,6,7,8)
ORDER BY Year , Month)
SELECT data 2017. Year as Year 2017, data 2018. Year as Year 2018,
  data 2017. Monthly sales 2017,
  ROUND((Monthly sales 2017 - LAG(Monthly sales 2017,1,0) OVER(ORDER BY data 2017.Month))/
LAG(Monthly_sales_2017,1) OVER(ORDER BY data_2017.Month) * 100,2) as Pct_increase_in_2017,
 Monthly sales 2018,
  ROUND((Monthly_sales_2018 - LAG(Monthly_sales_2018,1,0) OVER(ORDER BY data_2017.Month))/
LAG(Monthly_sales_2018,1) OVER(ORDER BY data_2017.Month) * 100,2) as Pct_increase_in_2018,
 ROUND((Monthly_sales_2018 - Monthly_sales_2017)/ Monthly_sales_2017 *100,2) AS Pct_increa
se_2017_2018
FROM data_2017
JOIN data 2018
ON data 2017.Month = data 2018.Month
ORDER BY Month
```

#### Result:

| Row / | Year_2017 | Year_2018 | Month | Monthly_sales_2017 | Pct_increase_in_2017 | Monthly_sales_2018 | Pct_increase_in_2018 | Pct_increase_2017_2018 |
|-------|-----------|-----------|-------|--------------------|----------------------|--------------------|----------------------|------------------------|
| 1     | 2017      | 2018      | 1     | 138488.04          | nuli                 | 1115004.18         | nuli                 | 705.13                 |
| 2     | 2017      | 2018      | 2     | 291908.01          | 110.78               | 992463.34          | -10.99               | 239.99                 |
| 3     | 2017      | 2018      | 3     | 449863.6           | 54.11                | 1159652.12         | 16.85                | 157.78                 |
| 4     | 2017      | 2018      | 4     | 417788.03          | -7.13                | 1160785.48         | 0.1                  | 177.84                 |
| 5     | 2017      | 2018      | 5     | 592918.82          | 41.92                | 1153982.15         | -0.59                | 94.63                  |
| 6     | 2017      | 2018      | 6     | 511276.38          | -13.77               | 1023880.5          | -11.27               | 100.26                 |
| 7     | 2017      | 2018      | 7     | 592382.92          | 15.86                | 1066540.75         | 4.17                 | 80.04                  |
| 8     | 2017      | 2018      | 8     | 674396.32          | 13.84                | 1022425.32         | -4.14                | 51.61                  |

# Insights:

- In 2017, we see that there is a huge jump in sales from January to February and February to March, this could be due to the initial surge to try out a newly introduced e-commerce segment in Brazil. However, we see that in the last 3 months that there is a change averaging around 14%
- In 2018, we see that a major fluctuation happens again in the months of January, February and March.
- The fluctuations in Quarter 1 in both the years could be due to the Rio Carnival.
- A year to year comparison shows that there is a significant increase in sales in 2018 when compared to 2017.

#### Recommendation:

Continue e-commerce operations in Brazil

Sub question 2: Mean and Sum of price and freight value by customer state

# Query:

```
SELECT c.customer_state,

ROUND(SUM(oi.price),2) AS total_price_per_state,

ROUND(AVG(oi.price),2) AS average_price_per_state,

ROUND(SUM(oi.freight_value),2) AS total_freight_per_state,

ROUND(AVG(oi.freight_value),2) AS average_freight_per_state,

ROUND(SUM(oi.price + oi.freight_value),2) AS total_cost_per_state,

ROUND(AVG(oi.price + oi.freight_value),2) AS average_cost_per_state,

RANK() OVER(ORDER BY ROUND(SUM(oi.price + oi.freight_value),2) DESC ) AS state_ranking

FROM `targetproject.order_items` AS oi

JOIN `targetproject.orders` AS o

ON oi.order_id = o.order_id

JOIN `targetproject.customer` AS c

ON o.customer_id = c.customer_id

GROUP BY c.customer_state

ORDER BY average_cost_per_state DESC
```

## Result:

| Row | customer_state | total_price_per_state | average_price_per_state_/ | total_freight_per_state_/ | average_freight_per_state_ | total_cost_per_state_/ | average_cost_per_state | state_ranking / |
|-----|----------------|-----------------------|---------------------------|---------------------------|----------------------------|------------------------|------------------------|-----------------|
| 1   | PB             | 115268.08             | 191.48                    | 25719.73                  | 42.72                      | 140987.81              | 234.2                  | 16              |
| 2   | AL             | 80314.81              | 180.89                    | 15914.59                  | 35.84                      | 96229.4                | 216.73                 | 20              |
| 3   | AC             | 15982.95              | 173.73                    | 3686.75                   | 40.07                      | 19669.7                | 213.8                  | 25              |
| 4   | RO             | 46140.64              | 165.97                    | 11417.38                  | 41.07                      | 57558.02               | 207.04                 | 23              |
| 5   | PA             | 178947.81             | 165.69                    | 38699.3                   | 35.83                      | 217647.11              | 201.53                 | 13              |
| 6   | PI             | 86914.08              | 160.36                    | 21218.2                   | 39.15                      | 108132.28              | 199.51                 | 18              |
| 7   | AP             | 13474.3               | 164.32                    | 2788.5                    | 34.01                      | 16262.8                | 198.33                 | 26              |
| 8   | TO             | 49621.74              | 157.53                    | 11732.68                  | 37.25                      | 61354.42               | 194.78                 | 22              |
| 9   | RR             | 7829.43               | 150.57                    | 2235.19                   | 42.98                      | 10064.62               | 193.55                 | 27              |
| 10  | RN             | 83034.98              | 156.97                    | 18860.1                   | 35.65                      | 101895.08              | 192.62                 | 19              |

# Insights:

• The average price of the above states are high and so is the average freight. However, when we see the state ranking based on total cost they fall between 13 and 27. This means that they are in bottom half of the states who contribute to total sales in Brazil.

### Recommendations:

- The company can consider reduction in freight charges in order to attract more customers because customers tend avoid making purchases if the freight charges or shipping charges are high.
  - This could be achieved by setting up a warehouse around these areas so as to reduce shipping charges. However, the cost of setting up a warehouse and running it must not outweigh the potential increase in sales revenue.
  - An alternative is to provide free shipping for orders above a certain value.

#### Question 5: Analysis on sales, freight and delivery time

- 1. Calculate days between purchasing, delivering and estimated delivery
- 2. Find time\_to\_delivery & diff\_estimated\_delivery. Formula for the same given below:
  - time\_to\_delivery = order\_purchase\_timestamporder delivered customer date
  - diff\_estimated\_delivery = order\_estimated\_delivery\_dateorder\_delivered\_customer\_date
- 3. Group data by state, take mean of freight\_value, time\_to\_delivery, diff\_estimated\_delivery
- 4. Sort the data to get the following:
  - a) Top 5 states with highest/lowest average freight value sort in desc/asc limit 5
  - b) Top 5 states with highest/lowest average time to delivery
  - c) Top 5 states where delivery is really fast/ not so fast compared to estimated date

#### Solution:

## Query: Top 5 states with highest/lowest average freight value

```
SELECT temp.customer_state,
 AVG(temp.freight_value) AS average_freight,
 AVG(temp.time_to_delivery) AS average_time_to_delivery,
 AVG(temp.diff_estimated_delivery) AS average_diff_estimated_delivery
FROM
(SELECT c.customer state,
 freight value,
 DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp,DAY) AS time_to_delivery,
 DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY) AS diff_estima
ted delivery
FROM `targetproject.orders` AS o
JOIN `targetproject.order_items` AS oi
ON o.order_id = oi.order_id
JOIN `targetproject.customer` AS c
ON o.customer id = c.customer id) AS temp
GROUP BY temp.customer state
                                                      For lowest -
ORDER BY average_freight DESC
                                              ORDER BY average_freight ASC
LIMIT 5
```

#### Result:

| Row | customer_state | average_freight // | average_time_to_delivery | average_diff_estimated_delivery_ |
|-----|----------------|--------------------|--------------------------|----------------------------------|
| 1   | RR             | 42.984423076       | 27.826086956521738       | 17.434782608695652               |
| 2   | PB             | 42.723803986       | 20.119453924914676       | 12.15017064846416                |
| 3   | RO             | 41.069712230       | 19.282051282051292       | 19.080586080586084               |
| 4   | AC             | 40.073369565       | 20.329670329670336       | 20.010989010989018               |
| 5   | PI             | 39.147970479       | 18.931166347992352       | 10.682600382409184               |



Top 5 highest average freight value

Top 5 lowest average freight value

# Query: Top 5 states with highest/lowest average time to delivery

```
SELECT temp.customer state,
 AVG(temp.freight_value) AS average_freight,
  AVG(temp.time_to_delivery) AS average_time_to_delivery,
  AVG(temp.diff_estimated_delivery) AS average_diff_estimated_delivery
(SELECT c.customer_state,
 freight value,
 DATE DIFF(order delivered customer date, order purchase timestamp,DAY) AS time to delivery,
 DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY) AS diff_estima
ted_delivery
FROM `targetproject.orders` AS o
JOIN `targetproject.order_items` AS oi
ON o.order_id = oi.order_id
JOIN `targetproject.customer` AS c
ON o.customer_id = c.customer_id) AS temp
GROUP BY temp.customer_state
                                                                For lowest -
ORDER BY average_time_to_delivery DESC <</pre>
                                                    ORDER BY average_time_to_delivery ASC
LIMIT 5
```

#### Result:

| Row | customer_state // | average_freight // | average_time_to_delivery / | average_diff_estimated_delivery_ |
|-----|-------------------|--------------------|----------------------------|----------------------------------|
| 1   | RR                | 42.984423076       | 27.826086956521738         | 17.434782608695652               |
| 2   | AP                | 34.006097560       | 27.753086419753075         | 17.4444444444443                 |
| 3   | AM                | 33.205393939       | 25.963190184049076         | 18.975460122699381               |
| 4   | AL                | 35.843671171       | 23.992974238875881         | 7.9765807962529349               |
| 5   | PA                | 35.832685185       | 23.301707779886126         | 13.37476280834913                |

Top 5 highest average time to delivery

| Row / | customer_state // | average_freight // | average_time_to_delivery / | average_diff_estimated_delivery |
|-------|-------------------|--------------------|----------------------------|---------------------------------|
| 1     | SP                | 15.147275390       | 8.25960855241909           | 10.26559438451439               |
| 2     | PR                | 20.531651567       | 11.480793060718735         | 12.533899805275263              |
| 3     | MG                | 20.630166806       | 11.515522180072811         | 12.397151041263502              |
| 4     | DF                | 21.041354945       | 12.501486199575384         | 11.274734607218704              |
| 5     | SC                | 21.470368773       | 14.520985846754517         | 10.6688628599317                |

Top 5 average time to delivery

# Query: Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
SELECT temp.customer_state,
 AVG(temp.freight_value) AS average_freight,
 AVG(temp.time_to_delivery) AS average_time_to_delivery,
 AVG(temp.diff_estimated_delivery) AS average_diff_estimated_delivery
FROM
(SELECT c.customer_state,
 freight_value,
 DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp,DAY) AS time_to_delivery,
 DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY) AS diff_estima
ted_delivery
FROM `targetproject.orders` AS o
JOIN `targetproject.order_items` AS oi
ON o.order_id = oi.order_id
JOIN `targetproject.customer` AS c
ON o.customer_id = c.customer_id) AS temp
GROUP BY temp.customer_state
                                                                   For fast -
ORDER BY average_diff_estimated_delivery DESC <
                                                        ORDER BY average_diff_estimated_
                                                                 _delivery ASC
```

#### Result:

| Row / | customer_state | average_freight // | average_time_to_delivery | average_diff_estimated_delivery_ |
|-------|----------------|--------------------|--------------------------|----------------------------------|
| 1     | AC             | 40.073369565       | 20.329670329670336       | 20.010989010989018               |
| 2     | RO             | 41.069712230       | 19.282051282051292       | 19.080586080586084               |
| 3     | AM             | 33.205393939       | 25.963190184049076       | 18.975460122699381               |
| 4     | AP             | 34.006097560       | 27.753086419753075       | 17.4444444444443                 |
| 5     | RR             | 42.984423076       | 27.826086956521738       | 17.434782608695652               |

Top 5 not so fast delivery compared to estimated time

| Row | customer_state | average_freight // | average_time_to_delivery | average_diff_estimated_delivery |
|-----|----------------|--------------------|--------------------------|---------------------------------|
| 1   | AL             | 35.84367117        | 23.992974238875881       | 7.9765807962529349              |
| 2   | MA             | 38.25700242        | 21.203750000000017       | 9.109999999999923               |
| 3   | SE             | 36.65316883        | 20.97866666666651        | 9.1653333333333276              |
| 4   | ES             | 22.05877659        | 15.192808988764023       | 9.7685393258427116              |
| 5   | BA             | 26.36395893        | 18.774640238935675       | 10.119467825142538              |

Top 5 fast delivery compared to estimated time

# **Question 6:** Payment type analysis:

- 1. Month over Month count of orders for different payment types
- 2. Count of orders based on the no. of payment instalments

#### Solution:

Sub-question 1: Month over month count of orders for different payment types

# Query:

```
SELECT *,
    count_of_orders - LAG(count_of_orders,1,0) OVER(PARTITION BY payment_type, year
    ORDER BY month) as MoM_count

FROM

(SELECT
    payment_type,
    EXTRACT(YEAR FROM order_purchase_timestamp) as year,
    EXTRACT(MONTH FROM order_purchase_timestamp) as month,
    count(p.order_id) as count_of_orders
FROM `targetproject.payments` as p
    JOIN `targetproject.orders` as o
    ON p.order_id = o.order_id
    GROUP BY payment_type, year, month) as temp

ORDER BY payment_type, year, month
```

#### Result:

| Row | payment_type | year // | month // | count_of_orders | MoM_count |
|-----|--------------|---------|----------|-----------------|-----------|
| 1   | UPI          | 2016    | 10       | 63              | 63        |
| 2   | UPI          | 2017    | 1        | 197             | 197       |
| 3   | UPI          | 2017    | 2        | 398             | 201       |
| 4   | UPI          | 2017    | 3        | 590             | 192       |
| 5   | UPI          | 2017    | 4        | 496             | -94       |
| 6   | UPI          | 2017    | 5        | 772             | 276       |
| 7   | UPI          | 2017    | 6        | 707             | -65       |
| 8   | UPI          | 2017    | 7        | 845             | 138       |
| 9   | UPI          | 2017    | 8        | 938             | 93        |
| 10  | UPI          | 2017    | 9        | 903             | -35       |
| 11  | UPI          | 2017    | 10       | 993             | 90        |
| 12  | UPI          | 2017    | 11       | 1509            | 516       |

# Insights:

 According to the results, majority number of orders were paid through credit card followed by UPI, vouchers and debit card.

# Recommendations:

• The company could consider tying up with banks and UPI platforms to provide discounts and offers to customers.

# Sub question 2: Count of orders based on the no. of payment instalments

# Query:

```
WITH installment_details AS

(SELECT
    *,
    sum(payment_installments) OVER(PARTITION BY order_id) as total_payment_installments,
FROM `targetproject.payments`)

SELECT
    total_payment_installments,
    count(DISTINCT order_id) as count_of_orders
FROM installment_details
GROUP BY total_payment_installments
ORDER BY count_of_orders DESC
```

# Result:

| Row | total_payment_ir | count_of_orders |
|-----|------------------|-----------------|
| 1   | 1                | 46264           |
| 2   | 2                | 13605           |
| 3   | 3                | 10709           |
| 4   | 4                | 7223            |
| 5   | 5                | 5295            |
| 6   | 10               | 5224            |
| 7   | 8                | 4239            |
| 8   | 6                | 3967            |
| 9   | 7                | 1689            |
| 10  | 9                | 693             |
| 11  | 12               | 146             |
| 12  | 11               | 129             |

# Insights:

• Though the highest count goes to a one-time payment mode or single installment, majority customers still prefer to pay in installments.