HSE and University of London Double Degree Programme in Data Science and Business Analytics

Elements of Econometrics, 2023-2024

Classteacher: Ksenia Kasianova.

Class 24: Panel data

Problem 1

Explain how the covariance matrix of the random vector is structured in case of Feasible GLS for Random Effects Models.

Problem 2

A researcher analyzes the impact of a law allowing civilians to possess firearms on crime rates. He has panel data on 40 regions of a country over 20 years. D is a variable that is equal to one if in a given region in a given year there is a law allowing the possession of firearms, and zero otherwise. X and W are some control variables. Y - number of crimes in the region (thousands per year).

The researcher estimated 4 equations: equations 1-2 using a fixed effects model; Equations 3-4 - using a random effects model.

The results are presented in the table below.

Model evaluation results. Dependent variable - $\ln Y$

Model	Model 1	Model 2	Model 3	Model 4
Estimation method	FE	FE	RE	RE
D	-0.50	-0.50	-0.60	-0.40
	(0.04)	(0.05)	(0.01)	(0.02)
X	0.32	0.21	0.05	0.04
	(0.02)	(0.02)	(0.04)	(0.04)
W	-0.05	-0.06	-0.09	-0.10
	(0.01)	(0.01)	(0.02)	(0.02)
Individual effects	Yes	Yes	Yes	Yes
Time dummy variables	No	Yes	No	Yes
Number of observations	800	800	800	800
R^2	0.657	0.780	-	-
P-Hausman test value	-	-	0.002	0.004
P-value of equality test				
zero coefficients for fixed-	_	0.001	-	0.008
tive time variables				

Note: Here and in all subsequent tables, robust standard errors are given in parentheses below the coefficient estimates.

- a. Select the best model from the proposed list. Justify your choice.
- b. For the selected model, check the statistical significance of the coefficient for the variable D and, if it turns out to be significant, give its meaningful interpretation.

Problem 3

Consider a model based on panel data:

$$y_{it} = \beta x_{it} + \mu_i + u_{it}; \quad i = 1, 2, \dots, n; \quad t = 1, 2, \dots, T.$$

Prove that, given data for two periods (T=2), the within-group estimate (within estimator) of the parameter β coincides with the model estimate in first differences.

Problem 4

Consider a model based on panel data:

$$y_{it} = \theta x_{it} + \mu_i + u_{it}; \quad i = 1, 2, \dots, 100; \quad t = 1, 2, 3,$$

where u_{it} are independent identically normally distributed quantities with zero mathematical expectation and variance equal to σ^2 ; μ_i is the individual fixed effect of the *i*-th object (unobserved variable).

The researcher obtains an estimate of the θ parameter using intragroup transformation of the initial data and application to the transformed data using the ordinary least squares method (within estimation).

- a. Assuming x_{it} to be deterministic quantities, calculate the variance of the resulting parameter estimate θ (express it explicitly in terms of σ^2 and x_{it} , i = 1, 2, ..., 100, t = 1, 2, 3).
- b. Based on the results of the previous paragraph, explain in which of the two cases described below the accuracy of estimating the parameter θ will be higher:
- 1. The value of the regressor x for each object varies slightly from year to year, but within each year it differs greatly from object to object.
- 2. The value of the regressor x for each object varies greatly from year to year, but within each year it differs slightly from object to object.

Problem 5 Consider a model based on panel data:

$$y_{it} = \theta y_{it-1} + \mu_i + \varepsilon_{it}; \quad i = 1, 2, \dots, n; \quad t = 1, 2, 3,$$

where ε_{it} are independent identically normally distributed quantities with zero mathematical expectation; μ_i is the individual fixed effect of the *i*-th object (unobserved variable). Such a model is called dynamic because it contains a dependent variable on the right side of the equation.

- a. The researcher obtains an estimate of the θ parameter using a first difference model. Explain why this assessment would be invalid in this case.
 - b. Suggest a way to obtain a consistent estimate for the parameter θ .