CPSC 5021 In-Class Exercise (SQL) Solution

The database below stores data for a consulting company that tracks all charges to projects. The charges are based on the hours each employee works on each project. The structure and contents of the database are shown below.

Table name: EMPLOYEE

EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_INITIAL	EMP_HIREDATE	JOB_CODE	EMP_YEAR
101	News	John	G	2000-11-08	502	12
102	Senior	David	Н	1989-07-12	501	23
103	Arbough	June	Е	1996-12-01	500	16
104	Ramoras	Anne	K	1987-11-15	501	25
105	Johnson	Alice	K	1993-02-01	502	19
106	Smithfield	William	S	2004-06-22	500	8
107	Alonzo	Maria	D	1993-10-10	501	8
108	Washington	Ralph	В	1991-08-22	501	21

(Note: In table "EMPLOYEE", JOB_CODE is the foreign key that references JOB_CODE in table "JOB".)

Table name: JOB

JOB_CODE	JOB_DESCRIPTION	JOB_CHG_HOUR	JOB_LAST_UPDATE
500	Programmer	35.75	2009-11-20
501	System Analyst	96.75	2009-11-20
502	Database Designer	125.00	2010-03-24
503	Electrical Engineer	84.50	2009-11-20

Table name: ASSIGNMENT

ASSIGN_NUM	ASSIGN_DATE	PROJ_NUM	EMP_NUM	ASSIGN_JOB	ASSIGN_CHG_HR	ASSIGN_HOURS
1001	2012-03-22	18	103	500	84.50	3.5
1002	2012-03-22	18	102	501	84.50	5.9
1003	2012-03-22	25	108	501	96.75	2.2
1004	2012-03-22	22	102	501	96.75	4.2
1005	2012-03-22	18	103	500	84.50	0.9
1006	2012-03-23	25	107	501	105.00	4.3
1007	2012-03-23	18	108	501	96.75	3.4
1008	2012-03-23	22	104	501	96.75	2.8
1009	2012-03-23	15	103	500	84.50	6.1
1010	2012-03-23	22	105	502	105.00	4.7
1011	2012-03-24	25	106	500	110.50	4.9
1012	2012-03-24	15	101	502	125.00	3.1
1013	2012-03-24	22	108	501	110.50	2.7
1014	2012-03-24	22	105	502	125.00	3.5

(Note: In table "ASSIGNMENT", the foreign key is EMP_NUM, ASSIGN_JOB and PROJ_NUM. EMP_NUM references EMP_NUM in table "EMPLOYEE"; ASSIGN_JOB references JOB_CODE in table "JOB"; PROJ_NUM references PROJ_NUM in table "PROJECT".).

Table name: PROJECT

PROJ_NUM	PROJ_NAME	PROJ_VALUE	PROJ_BALANCE	EMP_NUM
15	Evergreen	1453500.00	1002350.00	103
18	Amber Wave	3500500.00	2110346.00	108
22	Rolling Tide	805000.00	500345.20	102
25	Starlight	2850500.00	2309880.00	107

(Note: EMP_NUM in this table records the ID for a project's manager. It is a foreign key which references EMP_NUM in table "EMPLOYEE")

Given the structure and contents of the database, use SQL commands to answer questions below.

(1) Write the SQL code that will create the table structures for the table EMPLOYEE, JOB, ASSIGNMENT, and PROJECT, separately. The table structures are summarized below.

EMPLOYEE

ATTRIBUTE NAME	DATA TYPE
EMP_NUM	CHAR(3)
EMP_LNAME	VARCHAR(15)
EMP_FNAME	VARCHAR(15)
EMP_INITIAL	CHAR(1)
EMP_HIREDATE	DATE
JOB_CODE	CHAR(3)
EMP_YEAR	SMALLINT

JOB

ATTRIBUTE NAME	DATA TYPE
JOB_CODE	CHAR(3)
JOB_DESCRIPTION	VARCHAR(50)
JOB_CHG_HOUR	DECIMAL(5, 2)
JOB_LAST_UPDATE	DATE

ASSIGNMENT

ATTRIBUTE NAME	DATA TYPE
ASSIGN_NUM	CHAR(4)
ASSIGN_DATE	DATE
PROJ_NUM	CHAR(2)
EMP_NUM	CHAR(3)
ASSIGN_JOB	CHAR(3)
ASSIGN_CHG_HR	DECIMAL(5, 2)
ASSIGN_HOURS	DECIMAL(3, 1)

PROJECT

ATTRIBUTE NAME	DATA TYPE
PROJ_NUM	CHAR(2)
PROJ_NAME	VARCHAR(50)
PROJ_VALUE	DECIMAL(12, 2)
PROJ_BALANCE	DECIMAL(12, 2)
EMP_NUM	CHAR(3)

Sol:

```
create table job (
   job_code char(3),
   job_description varchar(50),
   job_chg_hour decimal(5,2),
   job_last_update date,
   primary key(job_code)
);

create table employee (
   emp_num_char(3) primary key,
   emp_lname varchar(15) not null,
   emp_fname varchar(15) not null,
   emp_initial char(1),
   emp_hiredate date,
   job_code char(3),
   emp_year smallint,
   foreign key (job_code) references job(job_code)
);
```

```
create table project (
 proj_num char(2) not null,
 proj_name varchar(50) not null,
 proj_value decimal(12,2) not null,
 proj_balance decimal(12,2) not null,
 emp_num char(3) not null,
 primary key(proj_num),
 foreign key (emp_num) references employee(emp_num)
create table assignment (
 assign_num char(4) not null,
 assign_date date not null,
 proj_num char(2) not null,
 emp num char(3) not null,
 assign job char(3) not null,
 assign_chg_hr decimal(5,2) not null,
 assign_hours decimal(3,1) not null,
 primary key(assign_num),
 foreign key(proj_num) references project(proj_num),
 foreign key(emp_num) references employee(emp_num),
 foreign key(assign job) references job(job code)
);
```

(2) Write the SOL code to enter data in each table.

Sol:

```
insert into job values ('500', 'Programmer', 35.75, '2009-11-20');
insert into job values ('501', 'System Analyst', 96.75, '2009-11-20'),
('502', 'Database Designer', 125.00, '2010-03-24'),
('503', 'Electrical Engineer', 84.50, '2009-11-20');
insert into employee values ('101', 'News', 'John', 'G', '2000-11-08', '502', 12);
insert into employee values ('102', 'Senior', 'David', 'H', '1989-07-12', '501', 23),
('103', 'Arbough', 'June', 'E', '1996-12-01', '500', 16),
('104', 'Ramoras', 'Anne', 'K', '1987-11-15', '501', 25),
('105', 'Johnson', 'Alice', 'K', '1993-02-01', '502', 19),
('106', 'Smithfield', 'William', 'S', '2004-06-22', '500', 8),
('107', 'Alonzo', 'Maria', 'D', '1993-10-10', '501', 8),
('108', 'Washington', 'Ralph', 'B', '1991-08-22', '501', 21);
insert into project values ('15', 'Evergreen', 1453500.00, 1002350.00, '103'),
('18', 'Amber Wave', 3500500.00, 2110346.00, '108'),
('22', 'Rolling Tide', 805000.00, 500345.20, '102'),
('25', 'Starlight', 2850500.00, 2309880.00, '107');
insert into assignment values ('1001', '2012-03-22', '18', '103', '500', 84.50, 3.5),
('1002', '2012-03-22', '18', '102', '501', 84.50, 5.9),
('1003', '2012-03-22', '25', '108', '501', 96.75, 2.2),
('1004', '2012-03-22', '22', '102', '501', 96.75, 4.2),
(1005', 2012-03-22', 18', 103', 500', 84.50, 0.9),
('1006', '2012-03-23', '25', '107', '501', 105.00, 4.3);
(the subsequent rows are skipped here)
```

(3) Write the SQL code that will list all attributes in the EMPLOYEE table for a job code of 502.

Sol:

```
SELECT *
FROM employee
WHERE JOB_CODE = '502';
```

(4) Write the SQL code that will list values of "PROJ NUM""PROJ NAME" of the PROJECT table.

```
select proj_num, proj_name from project;
```

(5) Write the SQL code that will list all attributes in the ASSIGNMENT table with ASSIGN_HOURS > 3

sol:

```
select * from assignment where assign_hours > 3;
```

(6) Write the SQL code that will list ASSIGN_NUM, ASSIGN_DATE, ASSIGN_CHG_HR*ASSIGN_HOURS (note: name this product as assign_charge) in the table ASSIGNMENT with ASSIGN DATE later than 2012-03-21.

sol:

select assign_num, assign_date, assign_chg_hr * assign_hours as assign_charge from assignment where assign_date > '2012-03-21';

(7) Write the SQL code that will list all attributes in the table "PROJECT" with PROJ_NUM = 22 or PROJ_NUM = 25.

Sol:

```
select * from project
where proj_num = 22
or proj_num = 25;
```

(8) Write the SQL code required to list all employees whose last names start with Smith.

Sol:

```
select * from employee where emp_lname like 'Smith%';
```

(9) Write the SQL code to select from the table "JOB" all jobs which job_code value appear in the EMPLOYEE table.

Sol:

```
select * from job
where job_code in
(select job_code from employee);
```

(10) Write the SQL code that will produce a listing for the data in the EMPLOYEE table in descending order by EMP_YEAR.

Sol:

```
select * from employee order by emp_year desc;
```

(11) Write the SQL code that will list only the distinct EMP NUM in the table "ASSIGNMENT". Sol: select distinct emp_num from assignment; (12) Write the SQL code to find the average PROJ VALUE in the table "PROJECT". Sol: select avg(proj_value) from project; (13) Write the SQL code to count the number of distinct EMP NUM in the table "ASSIGNMENT". Sol: select count(distinct emp_num) from assignment; (14) Write the SQL code to list all attributes of the project that has the largest amount of PROJ_VALUE. Sol: select * from project where proj_value = (select max(proj_value) from project); (15) Write the SQL code to list all attributes of the project(s) which PROJ_VALUE is higher than the average PROJ_VALUE. Sort the result by PROJ_BALANCE in ascending order. select * from project Sol: where proj_value > (select avg(proj_value) from project) order by proj_balance asc; (16) Write the SQL code to find the numbers of employees that each project has been assigned to. sol: SELECT proj_num, COUNT(DISTINCT emp_num) FROM assignment GROUP BY proj_num; (17) Write the SQL code to list the EMP_NUM and the number of projects s/he has been assigned to for employees who has been assigned to at least 2 projects. Sol: SELECT emp_num, COUNT(DISTINCT proj_num) as workload FROM assignment

> GROUP BY emp_num HAVING (workload >= 2)

(18) Write the SQL code to change the job code to 501 for the person whose employee number (EMP_NUM) is 107.

Sol: UPDATE employee
SET JOB_CODE = '501'
WHERE EMP_NUM = '107'

(19) Write the SQL code to delete the row for William Smithfield, who was hired on June 22, 2004, and whose job code is 500.

Sol:

DELETE FROM employee
WHERE EMP_LNAME = 'Smithfield'
AND EMP_FNAME = 'William'
AND EMP_HIREDATE = '2004-06-22'
AND JOB_CODE = '500';

(20) Write the SQL code to create a copy of EMPLOYEE, naming the copy EMP_1. Then write the SQL code that will add the attributes EMP_PCT and PROJ_NUM to its structure. The EMP_PCT is the bonus percentage to be paid to each employee. The new attribute characteristics are:

EMP_PCT DECIMAL(4, 2) PROJ_NUM CHAR(3)

```
Solution A:
```

CREATE TABLE EMP_1 (

EMP_NUM CHAR(3) NOT NULL UNIQUE,

EMP_LNAME VARCHAR(15) NOT NULL,

EMP_FNAME VARCHAR(15) NOT NULL,

EMP_INITIAL CHAR(1),

EMP HIREDATE DATE NOT NULL,

JOB_CODE CHAR(3) NOT NULL,

EMP YEAR SMALLINT,

PRIMARY KEY (EMP NUM),

FOREIGN KEY (JOB_CODE) REFERENCES JOB (JOB_CODE));

INSERT INTO EMP_1 SELECT * FROM EMPLOYEE;

ALTER TABLE EMP_1 ADD (EMP_PCT DECIMAL(4,2)), ADD (PROJ NUM CHAR(3));

Solution B:

CREATE TABLE EMP_1 AS SELECT * FROM employee;

ALTER TABLE EMP_1

ADD (EMP_PCT DECIMAL (4,2)),

ADD (PROJ_NUM CHAR(3)),

ADD PRIMARY KEY (EMP NUM),

ADD FOREIGN KEY (JOB_CODE) REFERENCES JOB(JOB_CODE);

(21) Write the SQL code that will change the EMP_YEAR to 14 for employees who were hired before January 1, 1994, and whose job code is at least 501.

UPDATE employee SET emp_year = 14 WHERE EMP_HIREDATE <= '1994-01-01' AND JOB_CODE >= '501';