

Kardinalitas Himpunan

Kardinalitas Himpunan

Sebelumnya....

Himpunan A dikatakan berhingga (*finite*) apabila A memuat tepat n anggota, dengan $n \in \mathbb{N}_0$.

Kardinalitas Himpunan

DEFINISI

Himpunan A dan B mempunyai kardinalitas sama (|A| = |B|) jika dan hanya jika ada korespondensi satu-satu dari A ke B.

Jika terdapat **fungsi injektif** dari himpunan **A** ke **B**, kardinalitas himpunan **A** dikatakan kurang dari atau sama dengan kardinalitas himpunan **B**, dinyatakan dengan **|A|≤|B|**.

Countability

DEFINISI

Sebuah himpunan **S** dikatakan **countable** apabila:

- Himpunan berhingga (finite), atau
- Himpunan mempunyai kardinalitas yang sama dengan himpunan bilangan bulat positif (Z+).

Kardinalitas S yang merupakan himpunan countably infinite dinyatakan dengan $κ_0$ (aleph null), $|S| = κ_0$.

Jika sebuah himpunan tak berhingga S uncountable, |S| = c ("continuum")

Contoh: Infinite Countable Set

Tunjukkan bahwa himpunan bilangan bulat ganjil positif $A = \{1, 3, 5, 7, ...\}$ bersifat **countable**

Karena himpunan **A** infinite, harus ditunjukkan fungsi korespondensi satu-satu dari himpunan bilangan bulat positif **Z**⁺ ke **A**. Dengan kata lain, tunjukkan $|A| = |Z^+| = \lambda_0$.

Kita ambil fungsi $f: \mathbb{Z}^+ \to \mathbb{A}$, dengan f(n) = 2n - 1. Kemudian, tunjukkan bahwa f bijektif:

- Injektif: jika f(n) = f(m), maka 2n 1 = 2m 1. Kita dapatkan n = m.
- Surjektif: misalnya t adalah bilangan bulat positif ganjil. Maka, t memiliki selisih 1 dengan sebuah bilangan bulat positif genap 2k, dengan k adalah bilangan natural. Sehingga t = 2k 1 = f(k).

Terbukti bahwa A countable. A countably infinite dan $|A| = \kappa_0$.

Summary: countability untuk infinite sets

Himpunan tak berhingga **S** dikatakan *countable* jika dan hanya jika mempunyai kardinalitas yang sama dengan himpunan **Z**+

$$|S| = |Z^+| = \kappa_0$$

Dengan kata lain...

S countable jika dan hanya jika ada fungsi bijeksi (korespondensi satusatu) dari himpunan Z+ ke himpunan S.

Dengan kata lain...

S countable jika dan hanya jika kita dapat membentuk barisan dari elemenelemen yang ada di S.

Teorema

Teorema 1

Misalkan A dan B adalah dua himpunan dengan A ⊆ B. Apabila B bersifat countable, maka A juga bersifat countable.

Teorema 2

Misalkan A dan B adalah dua himpunan dengan A ⊆ B. Apabila A bersifat uncountable, maka B juga bersifat uncountable.

Teorema 3

Misalkan A dan B adalah dua himpunan. Jika A dan B bersifat countable, maka A U B juga bersifat countable.

Uncountable Sets

Tunjukkan bahwa himpunan bilangan riil R adalah uncountable!

Bukti Kontradiksi:

Kita asumsikan bahwa **R** bersifat **countable**. Oleh karena itu, himpunan bagian bilangan riil antara **0** dan **1** juga bersifat **countable**. Jadi, kita dapat membuat **list/barisan** bilangan riil antara **0** dan **1**, yaitu \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 , \mathbf{r}_4 , ...

Misal, representasi desimalnya adalah:

dengan, $d_{ij} \in \{0, 1, 2, ..., 9\}$

$$\mathbf{r_1} = 0.d_{11}d_{12}d_{13}d_{14} ...$$
 $\mathbf{r_2} = 0.d_{21}d_{22}d_{23}d_{12} ...$
 $\mathbf{r_3} = 0.d_{31}d_{32}d_{33}d_{34} ...$
 $\mathbf{r_4} = 0.d_{41}d_{42}d_{43}d_{44} ...$

. . .

Uncountable Sets

Kita bisa bangun bilangan riil baru $\mathbf{r} = \mathbf{0.d_1d_2d_3d_4...}$, dengan aturan berikut:

- d_i = 1, jika d_{ii} ≠ 1
- $d_i = 0$, jika $d_{ii} = 1$

Contoh: apabila:

$$\mathbf{r_1} = 0.$$
 2 0 1 4 8 ...

$$\mathbf{r_2} = 0.$$
 1 6 8 4 7 ...

$$\mathbf{r_3} = 0.$$
 0 3 1 5 3 ...

$$\mathbf{r_4} = 0.$$
 0 0 3 9 ...

. . .

Uncountable Sets

```
d_1 = 1 karena d_{11} = 2 \neq 1.
```

$$d_2 = 1$$
 karena $d_{11} = 6 \neq 1$.

$$d_3 = 0$$
 karena $d_{11} = 1 \neq 1$.

$$d_4 = 1$$
 karena $d_{11} = 3 \neq 1$.

. . .

Kita dapatkan $\mathbf{r} = \mathbf{0.1101...}$, yang kita ketahui bahwa \mathbf{r} berada di antara $\mathbf{0}$ dan $\mathbf{1}$. Akan tetapi, semua \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 ,... tidak akan pernah sama dengan \mathbf{r} karena digit ke- \mathbf{n} pada \mathbf{r} dan \mathbf{r}_n selalu berbeda.

Artinya, kita menemukan bilangan riil antara 0 dan 1, tetapi tidak ada di dalam daftar barisan tersebut.

Akibatnya, asumsi bahwa bilangan riil antara **0** dan **1** dapat dibentuk list/barisan adalah salah.

Jadi, himpunan bilangan riil antara **0** dan **1** adalah *uncountable*. Setiap himpunan yang mempunyai subset *uncountable*, maka ia *uncountable*. Jadi, **R bersifat uncountable**.