Teoria dei Giochi – Prova del 9 Dicembre 2015 CONSEGNARE UN UNICO FOGLIO A4 SCRITTO SU ENTRAMBE LE FACCIATE UN PUNTO IN MENO PER OGNI FACCIATA IN PIU'

Cognome, Nome, Numero di Matricola:

Esercizio 1 (Tempo risoluzione stimato: 30 min) Considera il seguente gioco. Tu puoi scegliere un carattere tra i seguenti tre: $\{w,y,z\}$; il tuo avversario può scegliere una stringa di 8 lettere tra le seguenti cinque: $\{xyyyyyww, wwzzzxxx, xxxxxxxx, xxxxxwwww, zzzxxxx\}$. Se il tuo avversario ha scelto una stringa che non contiene il tuo carattere vinci un euro; se invece il tuo avversario ha scelto una stringa che contiene il tuo carattere ripetuto $h \ge 1$ volte, perdi h euro.

1.1 Considera l'*estensione in strategia mista* del gioco. Formula i problemi di programmazione lineare che tu e il tuo avversario dovete risolvere per individuare, ciascuno, la propria strategia conservativa (non è richiesto di risolvere tali programmi).

Considera quindi le seguenti strategie per te:

•
$$\xi_1^i = \frac{1}{3} \ \forall i = 1, \dots, 3$$

•
$$\xi_1^1 = 0$$
, $\xi_1^2 = \frac{2}{5}$ e $\xi_1^3 = \frac{3}{5}$

e le seguenti strategie per il tuo avversario:

•
$$\xi_2^j = \frac{1}{5} \ \forall j = 1, \dots, 5$$

•
$$\xi_2^1 = 0 \; \xi_2^1 2 = \xi_2^3 = \xi_2^4 = \xi_2^5 = \frac{1}{4}$$
.

•
$$\xi_2^1 = \frac{2}{5}, \xi_2^2 = \frac{3}{5}, \xi_2^3 = 0, \xi_1^4 = 0 \text{ e } \xi_2^5 = 0$$

(al solito indichiamo con $\xi_1 = (\xi_1^1, \dots, \xi_1^3)$ il vettore stocastico associato alle 3 possibili strategie pure del primo giocatore, e con $\xi_2 = (\xi_2^1, \dots, \xi_2^5)$ il vettore stocastico associato alle 5 possibili strategie pure del secondo giocatore). Per ciascuna di queste strategie, indica quanto paga, nel caso peggiore, il giocatore (tu o il tuo avversario) che la utilizza. (Giustifica brevemente la risposta).

- **1.2** Qualcuna delle strategie indicate al punto 1.1 è conservativa? (Giustifica brevemente la risposta).
- **1.3** Quali sono gli equilibri di Nash del gioco in strategia mista? (Se non è possibile individuarli, spiega perché non è possibile).
- **1.4** Qual è il valore del gioco in strategia mista? (Se non è possibile individuarlo, spiega perché non è possibile).

Soluzione La tua matrice C dei payoff in forma di costo è la seguente

$$\begin{pmatrix}
2 & 2 & -1 & 4 & -1 \\
5 & -1 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 & 3
\end{pmatrix}$$

Se indichiamo con c_{ij} l'elemento alla riga i e la colonna j di tale matrice, il problema di programmazione lineare che devi risolvere per individuare la tua strategia conservativa è il seguente:

 $\min z$

$$z \ge \sum_{i=1}^{3} c_{ij} \xi_1^i \quad j = 1, \dots, 5$$

$$\xi_1^i \ge 0 \ i = 1, \dots, 3$$

$$\sum_{i=1}^{3} \xi_1^i = 1$$

- il valore ottimo di questo programma, in corrispondenza a $\xi_1^i = \frac{1}{3} \ \forall i = 1, \dots, 3 \ \text{è} \ z = 2$. Quindi, se utilizzi questa strategia, perdi, nel caso peggiore, (in media) 2 euro per ogni round del gioco.
- il valore ottimo di questo programma, in corrispondenza a $\xi_1^1 = 0$, $\xi_1^2 = \frac{2}{5}$ e $\xi_1^3 = \frac{3}{5}$ e $\xi_1^5 = 0$ è $z = \frac{7}{5}$. Quindi, se utilizzi questa strategia, perdi, nel caso peggiore, (in media) $\frac{7}{5}$ euro per ogni round del gioco.

Il problema di programmazione lineare che deve risolvere il tuo avversario per individuare la sua strategia conservativa è il seguente:

max w

$$w \le \sum_{j=1}^{5} c_{ij} \xi_{2}^{j} \quad i = 1, \dots, 3$$
$$\xi_{2}^{j} \ge 0 \quad j = 1, \dots, 5$$
$$\sum_{i=1}^{5} \xi_{2}^{j} = 1$$

- il valore ottimo di questo programma, in corrispondenza a $\xi_2^j = \frac{1}{5} \ \forall j = 1, \dots, 5 \ \text{è} \ \frac{1}{5}$. Quindi, il tuo avversario, se utilizza questa strategia, vince, nel caso peggiore, in media $\frac{1}{5}$ di euro per ogni round del gioco.
- il valore ottimo di questo programma, in corrispondenza a $\xi_2^1 = 0$ $\xi_2^1 = \xi_2^3 = \xi_2^4 = \xi_2^5 = -1$ è -1. Quindi, il tuo avversario, se utilizza questa strategia, paga, nel caso peggiore, in media 1 euro per ogni round del gioco.
- il valore ottimo di questo programma, in corrispondenza a $\xi_2^1 = \frac{2}{5}, \xi_2^2 = \frac{3}{5}, \xi_2^3 = 0, \xi_1^4 = 0$ e $\xi_2^5 = 0$ è $\frac{7}{5}$. Quindi, il tuo avversario, se utilizza questa strategia, vince, nel caso peggiore, in media $\frac{7}{5}$ euro per ogni round del gioco.

Segue che sono conservative solo la tua seconda strategia e la terza strategia del tuo avversario. Segue anche che il valore del gioco è $\frac{7}{5}$. Infine, naturalmente, la coppie di strategie conservative individuate determina un equilibrio di Nash.

Esercizio 2 (Tempo risoluzione stimato: 10 min) Si consideri il problema dell'House Allocation Problem. Per ognuna delle seguenti affermazioni indicare se è vera o falsa. Non è richiesto di giustificare la risposta, ma è prevista una penalità per le risposte sbagliate.

Si supponga che tutti i giocatori $j \neq 1$ abbiano al primo posto della propria graduatoria la casa posseduta dal giocatore 1. Qualunque sia la graduatoria del giocatore 1, in ogni soluzione stabile il giocatore 1 resta nella propria casa \Box VERO \Box FALSO

FALSO

Si supponga che tutti i giocatori $j \neq 1$ abbiano all'ultimo posto della propria graduatoria la casa posseduta dal giocatore 1. Qualunque sia la graduatoria del giocatore 1, in ogni soluzione stabile il giocatore 1 resta nella propria casa \Box VERO \Box FALSO

VERO

Si supponga che tutti i giocatori abbiano la stessa graduatoria delle case. Qualunque sia la graduatoria, in ogni soluzione stabile, ogni giocatore resta nella propria casa □ VERO □ FALSO

VERO

Esercizio 3 (Tempo risoluzione stimato: 15 min) Si consideri la seguente matrice dei payoff per un gioco in forma di minimizzazione, dove *y* è un qualunque numero intero (positivo o negativo):

		Giocatore 2		
		A	В	C
Giocatore 1	D	6+y, $3+y$	6, -y	4,2
	E	4,4	3 - y, 6 + y	3,3
	F	5+y,-2y	5,4	-y,5

3.1 Dire per quali valori di y esistono equilibri di Nash del gioco (se ne esistono) e quali sono.

$$(F,B)$$
 se $y \le -2$; (F,A) se $-2 \le y \le -1$; (E,C) se $y = -3$.

3.2 Per ciascun giocatore, dire per quali valori di y esistono strategie debolmente dominanti (se ve ne sono) e quali sono.

F è debolmente dominante se $-3 \le y \le -2$. Non esistono strategie debolmente dominanti per il secondo giocatore

3.3 Porre adesso y = 0 e dire quali sono i vettori di strategie ottimi deboli secondo Pareto (se ve ne sono) in questo caso.

Non è richiesto di giustificare alcuna risposta.

Esercizio 4 (Tempo risoluzione stimato: 5 min) Si consideri la seguente matrice dei payoff per un gioco in forma di minimizzazione, dove a è un qualunque numero reale (positivo o negativo):

		Giocatore 2	
		A	В
Giocatore 1	C	$-a,3a-a^2$	0,0
	D	6a, -6a	$a^2 + 4, -8$

4.1 Fornire uno o più valori di *a* per cui l'estensione in strategia mista del gioco ammette almeno un equilibrio di Nash oppure dire che non ne esistono. Non è richiesto di giustificare la risposta.

Un gioco antagonistico finito ammette sempre un equilibrio di Nash in strategia mista. Per a=2 il gioco è antagonistico.

Esercizio 5 (Tempo risoluzione stimato: 15 min) In un parlamento siedono 10 deputati di cui 3 provengono da una regione *A* e 7 da una regione *B*. L'approvazione di ogni legge richiede il voto di almeno 2 deputati di *A* e almeno 5 deputati di *B*. Determinare il valore di Shapley di ciascun deputato oppure spiegare perchè non è possibile determinarlo. Giustificare la risposta.

È facile vedere che si tratta di un gioco cooperativo semplice in cui il valore di una coalizione è 1 se la coalizione fa approvare una decisione, 0 altrimenti. Per determinare il valore di Shapley per questo gioco cooperativo conviene utilizzare la formula:

$$S_i(v) = \frac{\text{\# permutazioni tali che: la coalizione } A_p^i \text{ vince e la coalizione } A_p^i \setminus i \text{ perde}}{n!}$$

Prendiamo in considerazione una deputata di *BA*. Le permutazioni in cui ella è determinante sono tutte quelle in cui questa si trova: in posizione settima, ottava e nona.

Segue quindi che il valore di Shapley ciascun deputato di A è pari a:

$$S_A(v) = \frac{\binom{2}{1}8! + \binom{2}{1}\binom{7}{1}2!7! + \binom{2}{1}\binom{7}{2}3!6!}{10!}$$

.

Il valore di Shapley di ciascun deputato di A è quindi pari a $S_B(v) = \frac{1-3S_A(v)}{7}$. Esercizio 6 (Tempo risoluzione stimato: 10 min) Per ognuna delle seguenti affermazioni indicare se è vera o falsa. Non è richiesto di giustificare la risposta, ma è prevista una penalità per le risposte sbagliate. In un gioco strett. competitivo ogni stato del gioco è ottimo debole secondo Pareto □ VERO □ FALSO VERO: segue banalmente dalla definizione. In un gioco antagonistico ogni stato del gioco è ottimo debole secondo Pareto \square VERO \square FALSO VERO: segue banalmente dalla definizione. Nell'estensione in strategia mista di un gioco antagonistico finito esiste sempre una strategia debolmente \square VERO \square FALSO dominante per ogni giocatore FALSO: esiste sempre una strategia conservativa. Siano (x_1, x_2) e (y_1, y_2) due stati di un gioco antagonistico tali che $x_1 + x_2 \neq y_1 + y_2$. Allora non è possibile che (x_1,x_2) e (y_1,y_2) siano entrambi equilibri di Nash ☐ VERO ☐ FALSO Era una domanda mal posta – ignorata durante la correzione.