

असाधारण

EXTRAORDINARY

भाग III—खण्ड 4 PART III—Section 4

प्राधिकार से प्रकाशित

PUBLISHED BY AUTHORITY

ਸ਼ਂ. 344] No. 344] नई दिल्ली, मंगलवार, दिसम्बर 31, 2013/ पौष 10, 1935 NEW DELHI, TUESDAY, DECEMBER 31, 2013/PAUSA 10, 1935

केन्द्रीय विद्युत प्राधिकरण

अधिसूचना

नई दिल्ली, 30 दिसम्बर, 2013

राष्ट्रीय विद्युत योजना

फा. सं.—सीईए/पीएलजी/आईआरपी/2/10/2013.— विद्युत अधिनियम, 2003 (जिसे इसके बाद अधिनियम कहा जाएगा) की धारा 3 की उप—धारा (4) द्वारा प्रदत्त शक्तियों का प्रयोग करते हुए केन्द्रीय विद्युत प्राधिकरण एतद्द्वारा राष्ट्रीय विद्युत योजना (जिसे इसके बाद योजना कहा जाएगा) को अधिसूचित करता है । योजना के खंड—1 में उत्पादन एवं संबंधित पहलू शामिल किए गए हैं तथा खण्ड—2 में संचारण और संबंधित पहलू शामिल किए गए हैं । अधिनियम की धारा 3 की उप—धारा (4) में दिए गए निरूपण के अनुसार, यह योजना राष्ट्रीय विद्युत नीति के अनुरूप है जिसमें 11वीं योजना विस्तार से शामिल है तथा 12वीं एवं 13वीं योजनाओं की भावी योजनाएं शामिल हैं । योजना परिशिष्ट—1 (खण्ड—1) तथा परिशिष्ट—2 (खण्ड—2) में संलग्न हैं ।

तपन कुमार बारई, सचिव, के.वि.प्रा.

[विज्ञापन-III/4/असा./186-बी/13]

5495 GI/2013 (1)

राष्ट्रीय विद्युत योजना

(भाग-।)

उत्पादन

[विद्युत अधिनियम, 2003 की धारा 3 (4) के अंतर्गत केन्द्रीय विद्युत प्राधिकरण की बाध्यता की पूर्ति में]

> भारत सरकार विद्युत मंत्रालय केन्द्रीय विद्युत प्राधिकरण

नवम्बर 2012

शब्द संक्षेप

शब्द संक्षेप	विस्तार				
एसी	अल्टरनेटिव करेंट				
एजी एण्ड एसपी	त्वरित उत्पादन और आपूर्ति कार्यक्रम				
एएचडब्ल्यूआर	एडवांस्ड हैवी वाटर रिएक्टर				
एम्स	अखिल भारतीय आयुर्विज्ञान संस्थान				
एएमडी	परमाणु खनिज निदेशालय				
एपीएम	प्रशासित कीमत तंत्र				
एआरईपी	त्वरित ग्रामीण विद्युतीकरण कार्यक्रम				
बीएआरसी	भाभा परमाणु अनुसंधान केन्द्र				
बीसीयूएम, बीसीएम, बीएम ³	बिलियन क्यूबिक मीटर				
बीईई	ऊर्जा कार्यकुशलता ब्यूरो				
बीएफपी	बॉयलर फीड पम्प				
भेल	भारत हैवी इलेक्ट्रिकल्स लिमिटेड				
बीएसईएस	बॉम्बे उपनगरीय विद्युत आपूर्ति				
बीयू	बिलियन यूनिट				
सी एण्ड आई	नियंत्रण और इंस्ट्रूमेंटेशन				
सीएडी एण्ड सीएएम	कंप्यूटर एडेड डिजाइन एण्ड कंप्यूटर एडेड मैनेजमेंट				
सीएजीआर	मिश्रित वार्षिक वृद्धि दर				
सीबीआईपी	केन्द्रीय कृषि और ऊर्जा बोर्ड				
सीबीएम	कोल बेड मिथेन				
सीसीईए	आर्थिक कार्यों पर मंत्रिमंडल समिति				
सीसीजीटी	कंबाइंड साइकल गैस टर्बाइन				
सीडी	काम्पैक्ट डिस्क				
सीडीएसी	प्रगत संगणन विकास केन्द्र				
सीडीएम	स्वच्छ विकास तंत्र				
सीईए	केन्द्रीय विद्युत प्राधिकरण				
सीएफबीसी	सर्कुलेटिंग फ्लूडाइज्ड बेड कंब्शन				
सीएफएल	कंपेक्ट फ्लोरेसेंट लैंप				
सीएफआरआई	केन्द्रीय ईंधन अनुसंधान संस्थान				
सीआईएल	कोल इंडिया लिमिटेड				
सीएलए	केन्द्रीय ऋण सहायता				
सीपीपी	कैप्टिव पावर प्रोड्यूसर				
सीपीआरआई	केन्द्रीय विद्युत अनुसंधान संस्थान				
सीपीएसयू	केन्द्रीय सार्वजनिक क्षेत्र उपक्रम				
सीआरएस	करोड़				
सीएस	केन्द्रीय क्षेत्र				
सीएसआईआर	वैज्ञानिक और औद्योगिक अनुसंधान परिषद				
सीएसएमआरएस	केन्द्रीय मृदा एवं सामग्री अनुसंधान स्टेशन				
सीडब्ल्यूसी	केन्द्रीय जल आयोग				
डीएई	परमाणु ऊर्जा विभाग				
डीसी	डायरेक्ट करेंट				
डीडीजी	विकेन्द्रीकृत वितरित उत्पादन				

डीजीएच	महानिदेशक हाइड्रोकार्बन				
डीजी सेट	डीजल जनरेटिंग सेट				
डिस्कॉम	वितरण कंपनी				
डीएमएलएफ	डेटा मैनेजमेंट लोड फोरकास्टिंग				
डीओपीट <u>ी</u>	कार्मिक और प्रशिक्षण विभाग				
डीपीआर	विस्तृत परियोजना रिपोर्ट				
डीएसएम	मांग – पक्ष प्रबंधन				
डीएसटी	विज्ञान और प्रौद्योगिकी विभाग				
डीएसटीएटीसीओएम	डिस्ट्रीब्यूशन स्टेटिक कंपेन्शेसन				
डीवीसी	दामोदर वैली कॉर्पोरेशन				
डीवीआर	डाइनेमिक वोल्टेज रेस्टोरर				
ईए 2003	विद्युत अधिनियम, 2003				
ईसीआईएल	इलेक्ट्रोनिक कॉर्पोरेशन ऑफ इंडिया लिमिटेड				
ईजीईएएस	विद्युत उत्पादन विस्तार विश्लेषण प्रणाली				
ईएनएस	एनर्जी नॉट सर्व्ड				
ईपीएस	इलेक्ट्रिक पावर सर्वे				
ईआरडीए	विद्युत अनुसंधान और विकास संघ				
ईएससीओ	ऊर्जा सेवा कंपनी				
ईएसपी	इलेक्ट्रो स्ट्रेटिक प्रेसीपिटेटर				
ईपीसी	इंजीनियरिंग प्रोक्योरमेंट कॉट्रेक्ट				
एफएयूपी	फ्लाई ऐश यूटिलाइजेशन प्रोग्राम				
एफबीसी	फ्लूडाइज्ड बेड कंब्शन				
एफओ	फोर्स्ड आउटेज				
एफओआर	नियामकों का फोरम				
जीसीवी	ग्रॉस कैलोरिफिक वैल्यू				
जीडीपी	सकल घरेलू उत्पाद				
जीएचजी	ग्रीन हाउस गैस				
जीआईएस	गैस इंसुलेटेड स्विच गियर				
जीपीएस	भौगोलिक अवस्थिति प्रणाली				
जीआर	सामान्य समीक्षा				
जीएसपीसी	गुजरात स्टेट पेट्रोलियम कॉर्पोरेशन				
जीटी	गैस टर्बाइन				
जीडब्ल्यूई	गीगा वाट (विद्युत)				
एचबीजे	हजीरा – बीजापुर – जगदीशपुर (पाइपलाइन)				
एचएफओ	हैवी फ्यूल ऑयल				
एचईपी	हाइड्रो इलेक्ट्रिक प्रोजेक्ट				
एचपीएस	हैवी पेट्रोलियम स्टॉक				
एचआरडी	मानव संसाधन विकास				
एचएसडी	हाई स्पीड डीजल				
एचटी	हाई टेंशन				
एचवीडीएस	हाई वोल्टेज वितरण प्रणाली				
आईडी	इंड्यूस्ड ड्राफ्ट				

आईईपी	एकीकृत ऊर्जा नीति					
आईजीसीएआर	इंदिरा गांधी परमाणु अनुसंधान केन्द्र					
आईजीसीसी	इंटीग्रेटेड गैसीफिकेशन कंबाइंड साइकल					
आईआईएससी	भारतीय विज्ञान संस्थान					
आईआईटी	प्रौद्योगिकी संस्थान					
आईपीपी	स्वतंत्र विद्युत उत्पादक					
आईएस	भारतीय मानक					
आईएससीसी	इंटीग्रेटेड सोलर कंबाइंड साइकल					
आईएसओ	अंतर्राष्ट्रीय मानक संगठन					
आईएसपीएचएएन	इंटीग्रेटेड सिस्टम प्लानिंग					
आईटी	सूचना प्रौद्योगिकी					
केसीएएल	किलो कैलोरी					
केजी	किलोग्राम					
केकेएनपीपी	कुंडनकुलम परमाणु ऊर्जा परियोजना					
केडब्ल्यू	किलो वाट					
केडब्ल्यूएच	किलो वाट घंटा					
एलईपी	जीवन विस्तार कार्यक्रम					
एलएफ	लोड फैक्टर					
एलएनजी	तरल प्राकृतिक गैस					
एलओए	अधिनिर्णय का पत्र					
एलओएलपी	लोड लाभप्रदता					
एलपी	लीनियर प्रोग्रामिंग					
एलआरवीआई	लॉस रिडक्शन एण्ड वोल्टेज इंप्रूवमेंट					
एलएसएचएस	लो सल्फर हैवी स्टॉक					
एलटी	लो टेंशन					
एलडब्ल्यूआर	लाइट वाटर रिएक्टर					
एमएपीएस	मद्रास परमाणु ऊर्जा स्टेशन					
एमसीएफसी	मदर कार्बोनेट फ्यूल सेल					
एमसीएम	मिलियन क्यूबिक मीटर					
एमएचडी	मैग्नेटो हाइड्रो डायनामिक्स					
एमएमएससीएमडी	मिलियन मीट्रिक स्टैंडर्ड क्यूबिक मीटर पर डे					
एमएनआरई	नवीन एवं नवीकरणीय ऊर्जा मंत्रालय					
एमएनपी	न्यूनतम आवश्यकता कार्यक्रम					
एमओईएफ	पर्यावरण और वन मंत्रालय					
एमओपी	विद्युत मंत्रालय					
एमटी	मिलियन टन					
एमटीओई	मिलियन टन ऑयल इक्विलेंट					
एमयू	मिलियन यूनिट					
एमडब्ल्यू	मेगा वाट					
एमडब्ल्यूई	मेगा वाट इलेक्ट्रिक					
एनएपीएस	नरौरा परमाणु ऊर्जा स्टेशन					
एनसीपीएस	नेशनल कैपिटल पावर स्टेशन					
एनडीटी	नॉन डेस्ट्रक्टिव टेस्ट					

एनईपी	राष्ट्रीय विद्युत नीति				
एनएफसी	न्यूक्लियर फ्यूल कॉम्पलेक्स				
एनएचपीसी	नेशनल हाइड्रो इलेक्ट्रिक पावर कॉर्पोरेशन				
एनएमडीएस	नेशनल मिनरल डवलपमेंट कॉर्पोरेशन				
एनएमएल	नेशनल मेटालर्जिकल लैबोरेटरी				
एनओ _{एक्स}	नाइट्रोजन के ऑक्साइड				
एनपीसी	राष्ट्रीय उत्पादकता परिषद				
एनपीसीआईएल	न्यूक्लियर पावर कॉर्पोरेशन ऑफ इंडिया लि.				
एनपीटीआई	राष्ट्रीय विद्युत प्रशिक्षण संस्थान				
एनटीसी	परमाण् प्रशिक्षण केन्द्र				
एनटीपीसी	नेशनल थर्मल पावर कॉर्पोरेशन				
ओसीजीटी	ओपन साइकल गैस टर्बाइन				
ओजीआईपी	ऑर्जिनल गैस इन प्लेस				
ओ एण्ड एम	प्रचालन और रख रखाव				
पीएएफसी	फोस्फोरिक एसिड फ्यूल सेल				
पीसी	पल्वराइज्ड कोल				
पीएफबीसी	प्रेसराइज्ड फ्लूडाइज्ड बेड कंब्शन				
पीएफसी	पावर फाइनेंस कॉर्पोरेशन				
पीएफआर	आरंभिक संभाव्यता रिपोर्ट				
पीजीसीआईएल	पावर ग्रिड कॉर्पोरेशन इंडिया लिमिटेड				
पीएच	हाइड्रोजन आयन सांद्रण				
पीआईई	उत्कृष्टा में भागीदार				
पीआईबी	सार्वजनिक निवेश बोर्ड				
पीएचडब्ल्यूआर	प्रेसराइज्ड हैवी वाटर रिएक्टर				
पीएलएफ	प्लांट लोड फैक्टर				
पीएमजीवाई	प्रधानमंत्री ग्रामोदय योजना				
पीएमआई	विद्युत प्रबंधन संस्थान				
पीएमओ	प्रधानमंत्री कार्यालय				
पीपीएम	पार्ट्स पर मिलियन				
पीएस	निजी क्षेत्र				
पीएससी	उत्पादन साझा संविदा				
पीएसपी	पावर सप्लाई पोजिशन				
पीएसएस	पम्प स्टोरेज स्कीम				
पीएसयू	सार्वजनिक क्षेत्र उपक्रम				
आर एण्ड डी	अनुसंधान एवं विकास				
आर एण्ड एम	नवीनीकरण और आधुनिकीकरण				
आरएपीपी	राजस्थान ऐटमिक पावर प्रोजेक्ट				
आरएपीएस	राजस्थान ऐटमिक पावर स्टेशन				
आरईबी	क्षेत्रीय विद्युत बोर्ड				
आरईसी	ग्रामीण विद्युतीकरण निगम				
आरईडीबी	ग्रामीण विद्युत वितरण बैक बोन				
आरएचई	ग्रामीण परिवार विद्युतीकरण				

आरएलए	रेसिडुअल लाइफ असेसमेंट
आरएम	आरक्षित मार्जिन
एसएएआरसी	क्षेत्रीय सहयोग के लिए दक्षिण एशियाई संघ
एसईबी	राज्य विद्युत बोर्ड
एसईआरसी	राज्य विद्युत नियामक आयोग
एसओजी	स्वीकृत और जारी
एसओ _{एक्स}	सल्फर ऑक्साइड
एसपीआईसी	साउदर्न पेट्रो इंडिया केमिकल्स लिमिटेड
एसपीएम	सस्पेंडेड पार्टिकुलेट मैटर
एसएस	राज्य क्षेत्र
एसएसबी	सोलिड स्टेट ब्रेकर
एसएसटीएस	सोलिड स्टेट ट्रांसफर स्विचेज
एसटीपीपी	सुपर थर्मल पावर प्लांट
एसटीपीएस	सुपर थर्मल पावर स्टेशन
एसटीयूएस	राज्य पारेषण कंपनियां
टी एण्ड डी	पारेषण और वितरण
टीएपीपी	तारापुर परमाणु ऊर्जा परियोजना
टेएपीएस	तारापुर परमाणु ऊर्जा स्टेशन
टीआईएफएसी	प्रौद्योगिकी सूचना पूर्वानुमान और मूल्यांकन परिषद
टीओयू	उपयोग का समय
टीपीएस	थर्मल पावर स्टेशन
यूसीआईएल	यूरेनियम कॉर्पोरेशन ऑफ इंडिया लि.
यूएमपीपी	अल्ट्रा मेगा पावर प्रोजेक्ट
यूएन	संयुक्त राष्ट्र
यूएनडीपी	संयुक्त राष्ट्र विकास कार्यक्रम
यूटी	संघ राज्य
वीईआई	ग्राम विद्युतीकरण अवसंरचना
डब्ल्यूबीपीडीसीएल	पश्चिम बंगाल विद्युत विकास निगम लि.

अध्याय 1

प्रस्तावना

1.0 पृष्ठभूमि

विद्युत क्षेत्र की वृद्धि और विकास हमारे देश के आर्थिक विकास में महत्वपूर्ण भूमिका अदा करता है। विद्युत के उत्पादन में वृद्धि के परिणामस्वरूप आगामी पंचवर्षीय योजनाओं में अर्थव्यवस्था के सभी क्षेत्रों में विद्युत का सघन प्रयोग किया जाएगा। 31 मार्च, 2012 की स्थिति के अनुसार कुछ वर्षों में पावर प्लांटों (विद्युत कंपनियों) की स्थापित क्षमता बढ़कर लगभग 1,99,877 मेगावाट हो गई है जो वर्ष 1950 में महज 1713 मेगावाट थी। इसी प्रकार वर्ष 2011-12 में विद्युत का उत्पादन भी लगभग 5.1 बिलियन यूनिट से बढ़कर 877 बिलियन यूनिट हो गया है। देश में प्रति व्यक्ति विद्युत की खपत भी 1950 में 15 किलोवाट से बढ़कर वर्ष 2011 में लगभग 819 किलोवाट हो गई है। लगभग 95% गांवों का विद्युतीकरण कर दिया गया है। हालांकि देश में लगातार मांग और आपूर्ति के बीच अंतर बना हुआ है तथा वर्ष 2011-12 के दौरान ऊर्जा और अधिकतम कमी क्रमश: 8.5% और 10.6% के आसपास रही। वर्तमान में जारी आरजीजीवीवाई (राजीव गांधी ग्रामीण विद्युतीकरण योजना) में यह परिकल्पना की गई है कि ग्रामीण क्षेत्रों के परिवार को बिजली उपलब्ध कराई जाए। भारत में बिजली की प्रति व्यक्ति खपत विश्व की तुलना में औसतन 24% है तथा चीन और ब्राजील का प्रतिशत क्रमश: 35% और 28% है।

1.1 विद्युत अधिनियम और राष्ट्रीय विद्युत नीति

1.1.1 विद्युत अधिनियम, 2003 और राष्ट्रीय विद्युत योजना से संबंधित विलेख

विद्युत अधिनियम, 2003 में ऐसे समर्थकारी विधान का प्रावधान किया गया है जो उपभोक्ताओं के हितों को ध्यान में रखते हुए पारदर्शी और प्रतियोगी परिवेश में विद्युत क्षेत्र के विकास की दृष्टि से अनुकूल है।

विद्युत अधिनियम, 2003 की धारा 3 (4) के अनुसार केंद्रीय विद्युत प्राधिकरण को राष्ट्रीय विद्युत नीति के अनुसार एक राष्ट्रीय विद्युत योजना तैयार करने और पांच वर्ष में एक बार ऐसी योजना को अधिसूचित करने की आवश्यकता है। मसौदा योजना प्रकाशित की गई और लाइसेंसधारकों, उत्पादन कंपनियों और जनता से एक निर्धारित समयाविध के भीतर उनके सुझाव और आपित्तयां आमंत्रित की गईं। इस योजना को केन्द्र सरकार का अनुमोदन प्राप्त करने के पश्चात अधिसूचित किया जाना है। राष्ट्रीय विद्युत नीति में यह विलेख किया गया है कि केंविप्रा द्वारा तैयार की गई और केन्द्र सरकार द्वारा अनुमोदित योजना का इस्तेमाल संभावित उत्पादन कंपनियों, पारेषण कंपनियों और पारेषण/वितरण लाइसेंसधारकों द्वारा एक संदर्भ दस्तावेज के रूप में किया जा सकता है।

1.1.2 राष्ट्रीय विद्युत नीति और राष्ट्रीय विद्युत योजना से संबंधित विलेख

राष्ट्रीय विद्युत नीति के लक्ष्य और उद्देश्य निम्नानुसार हैं :

- विद्युत अभिगम आगामी पांच वर्ष में सभी परिवारों के लिए उपलब्ध होगी।
- विद्युत की उपलब्धता 2012 तक संपूर्ण मांग पूरी की जाए। ऊर्जा और अधिकतम मांग के समय इसकी
 कमी की समस्या को दूर किया जाए और पर्याप्त मात्रा में आरक्षित बिजली (स्पिनिंग रिजर्व) उपलब्ध हो।
- दक्ष ढंग से और उचित दरों पर विनिर्दिष्ट मानकों पर आधारित विश्वसनीय और गुणवत्तायुक्त बिजली की आपूर्ति।

- प्रति व्यक्ति विद्युत की उपलब्धता को वर्ष 2012 तक 1000 यूनिट से अधिक किया जाए।
- वर्ष 2012 तक एक उत्कृष्ट विशेषता के रूप में न्यूनतम एक यूनिट प्रति परिवार प्रतिदिन की जीवनदायी खपत सुनिश्चित की जाए।
- विद्युत क्षेत्र का वित्तीय कायाकल्प और वाणिज्यि व्यवहार्यता।
- उपभोक्ताओं के हितों की रक्षा।

नीति के अनुसार राष्ट्रीय विद्युत योजना पांच वर्ष के अल्पकालिक ढांचे के लिए तैयार की जाएगी जब कि उसमें 15 वर्ष की संभावित योजनाओं की परिकल्पना के साथ साथ निम्नलिखित तथ्य शामिल होंगे :

- विभिन्न क्षेत्रों के लिए अल्पकालिक और दीर्घकालिक मांग संबंधी पूर्वानुमान;
- उत्पादन और पारेषण की मितव्ययिता, प्रणाली की हानियों, लोड केन्द्र की आवश्यकताओं, ग्रिड स्थिरता, आपूर्ति की सुरक्षा, वोल्टेज प्रोफाइल सहित विद्युत की गुणवत्ता आदि तथा पुनर्वास और पुनर्स्थापना सहित पर्यावरण संबंधी पहलुओं को ध्यान में रखते हुए उत्पादन और पारेषण के क्षेत्र में क्षमता अभिवृद्धि के लिए सुझाए गए क्षेत्र/स्थान;
- पारेषण प्रणालियों के प्रकार और प्रचुर मात्रा में उनकी आवश्यकता सिहत राष्ट्रीय ग्रिड के विकास और पारेषण प्रणाली के साथ ऐसे संभावित स्थानों को जोड़ना;
- दक्ष उत्पादन, पारेषण और वितरण के लिए उपलब्ध विभिन्न प्रौद्योगिकियां; और
- मितव्ययिता पर आधारित ईंधन के विकल्प, ऊर्जा सुरक्षा और पर्यावरण संबंधी पहलू।

इस नीति में यह भी उल्लेख किया गया है कि राष्ट्रीय विद्युत योजना तैयार करते समय केंद्रीय विद्युत प्राधिकरण सभी पणधारकों से परामर्श करेगा, जिसमें राज्य सरकारें शामिल हैं और राज्य सरकारें संगत राज्यों के स्तर पर वितरण लाइसेंसधारकों तथा एसटीयू सिहत सभी पणधारकों के सहयोग से यह कार्य करेंगी। अल्पकालिक और दीर्घकालिक मांग का मूल्यांकन करने के लिए आविधक रूप से किए जाने वाले अध्ययनों के दौरान वितरण कंपनियों द्वारा लगाए गए पूर्वानुमानों को अपेक्षित महत्व दिया जाएगा। केंद्रीय विद्युत प्राधिकरण ऐसे संस्थानों और एजेंसियों से भी संपर्क करेगा जो विशेष रूप से मांग संबंधी पूर्वानुमान लगाने के क्षेत्र में कार्यरत हैं। अर्थव्यवस्था के विभिन्न क्षेत्रों के लिए अनुमानित मांग दरों को भी मांग संबंधी पूर्वानुमान लगाते समय ध्यान में रखा जाएगा।

इस नीति में यह भी उल्लेख किया गया है कि 85% की स्थापित क्षमता की संपूर्ण उपलब्धता सुनिश्चित करने के अलावा राष्ट्रीय स्तर पर कम से कम 5% आरक्षित विद्युत का प्रावधान किए जाने की आवश्यकता है जिससे कि ग्रिड सुरक्षा और विद्युत आपूर्ति की गुणवत्ता तथा विश्वसनीयता सुनिश्चित की जा सके।

नीति में उल्लेख किया गया है कि विद्युत के उत्पादन हेतु कंपनियों की लागत प्रभावशीलता स्थापित हो जाने पर दक्ष प्रौद्योगिकियों जैसे सुपर क्रिटिकल प्रौद्योगिकी, आईजीसीसी आदि; और बड़ी क्षमता वाली यूनिटों की परंपरा धीरे धीरे शुरू की जाएगी।

1.2 सरकार द्वारा शुरू किए गए विभिन्न प्रयास

1.2.1 टैरिफ आधारित बोली प्रक्रिया के जरिए विद्युत परियोजनाओं का विकास

भारत में विद्युत क्षेत्र में प्रतिस्पर्धा को बढ़ावा देना विद्युत अधिनियम, 2003 (अधिनियम) के प्रमुख उद्देश्यों में से एक है। वितरण लाइसेंसधारकों द्वारा विद्युत की प्रतिस्पर्धात्मक खरीद से अपेक्षा है कि विद्युत खरीद की संपूर्ण लागत कम होगी और इससे विद्युत बाजारों का विकास सुकर बनेगा।

अधिनियम की धारा 61 और 62 में टैरिफ संबंधी विनियम और उत्पादन, पारेषण, व्हीलिंग तथा विद्युत की फुटकर बिक्री के लिए टैरिफ का निर्धारण उपयुक्त आयोग द्वारा किए जाने संबंधी प्रावधान किए गए हैं। अधिनियम की धारा 63 में उल्लेख किया गया है कि

"धारा 62 में निहित किसी भी बात के होते हुए भी उपयुक्त आयोग को ऐसे टैरिफ को अपनाना होगा जो केन्द्र सरकार द्वारा जारी किए गए दिशानिर्देशों के अनुसार पारदर्शी बोली प्रक्रिया के जरिए निर्धारित किया गया है"

टैरिफ आधारित बोली प्रक्रिया के जरिए विद्युत की खरीद को सुकर बनाने के लिए 5 जनवरी, 2006 को टैरिफ नीति जारी की गई। जनवरी, 2006 में भारत सरकार द्वारा अधिसूचित की गई नई टैरिफ नीति के अनुसार सभी वितरण कंपनियों (डिस्कॉम) के लिए 6 जनवरी, 2011 से प्रतिस्पर्धात्मक टैरिफ आधारित बोली प्रक्रिया के जरिए विद्युत की खरीद अनिवार्य कर दी गई। मामला 1 और मामला 2 बोली प्रक्रिया के अंतर्गत राज्यों द्वारा विद्युत परियोजनाओं का विकास निम्नानुसार किया जा सकता है:

- (i) जहां क्रेता द्वारा स्थान, प्रौद्योगिकी अथवा ईंधन विनिर्दिष्ट नहीं किया जाता **है (केस 1)**;
- (ii) जल विद्युत परियोजनाएं, लोड केन्द्र परियोजनाएं अथवा स्थान विशेष पर आधारित अन्य परियोजनाएं जिनके लिए विशिष्ट ईंधन आवंटित किया जाता है जैसे कैप्टिव खानें उपलब्ध हैं, और जो क्रेता टैरिफ आधारित बोली प्रक्रिया के जरिए स्थापित करना चाहता है (केस 2)।

विद्युत मंत्रालय द्वारा वितरण लाइसेंसधारकों द्वारा विद्युत की खरीद के लिए दिशानिर्देश और और मानक बोली दस्तावेज जारी किए गए हैं। हरियाणा, उत्तर प्रदेश, गुजरात, महाराष्ट्र आदि में बहुत सी परियोजनाएं टैरिफ आधारित प्रतियोगी बोली प्रक्रिया के जरिए कार्यान्वित की जा रही हैं (केस 1/केस 2)।

1.2.2 अल्ट्रा मेगा पावर परियोजनाओं का विकास

टैरिफ आधारित प्रतियोगी बोली प्रक्रिया के अंतर्गत लगभग 4000 मेगावाट क्षमता वाली कोयला आधारित अल्ट्रा मेगा पावर परियोजनाओं (यूएमपीपी) के विकास हेतु सरकार द्वारा एक पहल शुरू की गई है। अल्ट्रा मेगा पावर परियोजनाओं की स्थापना या तो घरेलू कोयला पर आधारित पिट हेड स्थलों पर अथवा आयात किए गए कोयला पर आधारित तटवर्ती स्थानों में की जाएगी। स्थानीय कोयला पर आधारित यूएमपीपी के लिए परियोजना विकासकर्ता को कोयला ब्लाक भी आवंटित किया जाएगा। इसका उद्देश्य तेजी से क्षमता अभिवृद्धि करना और उपभोक्ताओं के लिए मितव्ययिता के पैमाने के आधार पर विद्युत की लागत को कम करना है। चार अल्ट्रा मेगा पावर परियोजनाएं विकासकर्ताओं को पहले ही सौंपी जा चुकी हैं, जिनका चयन टैरिफ आधारित प्रतियोगी बोली प्रक्रिया के जरिए किया गया। पहले से हस्तांतरित की जा चुकी यूएमपीपी में गुजरात स्थित मुंद्रा यूएमपीपी, मध्य प्रदेश में सासन यूएमपीपी, आंध्र प्रदेश में कृष्णापट्टनम यूएमपीपी और झारखंड में तिलैया यूएमपीपी शामिल हैं। मुंद्रा और सासन यूएमपीपी का निर्माण कार्य भी शुरू हो गया है। मुंद्रा यूएमपीपी की 800 मेगावाट क्षमता वाली पहली और दूसरी यूनिट का निर्माण कार्य क्रमश: 8.1.2012 और 10.7.2012 को लगभग साथ साथ पूरा किया गया और क्रमश: 7 मार्च, 2012 तथा 30 जुलाई 2012 को दोनों यूनिटों का वाणिज्यिक प्रचालन शुरू किया गया। मुंद्रा यूएमपीपी की 800 मेगावाट क्षमता वाली तीसरी यूनिट की स्थापना 6.10.2012 को पूरी की गई। मुंद्रा

यूएमपीपी की 800 मेगावाट क्षमता वाली शेष बची यूनिटों तथा और सासन यूएमपीपी की 660 मेगावाट क्षमता वाली सभी 6 यूनिटों की स्थापना 12वीं पंचवर्षीय योजना के दौरान होने की आशा है। तिलैया यूएमपीपी के लिए भूमि अधिग्रहण और अन्य आरंभिक कार्य जारी हैं। तिलैया यूएमपीपी की 660 मेगावाट क्षमता वाली पांच यूनिटों की स्थापना 12वीं पंचवर्षीय योजना अविध के दौरान अधिसूचित है और 660 मेगावाट क्षमता वाली एक यूनिट की स्थापना 13वीं पंचवर्षीय योजना अविध के दौरान अधिसूचित है।

कृष्णापट्टनम अल्ट्रा मेगा पावर परियोजना का विकासकर्ता अर्थात मैसर्स कोस्टल आंध्र पावर लिमिटेड ने निर्माण कार्य प्रारंभ कर दिया था, परंतु उसने इंडोनेशिया सरकार के नए विनियम को कारण बताते हुए निर्माण कार्य रोक दिया है। जिसमें संबद्ध कंपनियों को बेंच मार्क से कम कीमत पर बिक्री सिहत कोयले की बिक्री को रोकने का प्रावधान किया गया। एपीएसपीडीसीएल जो कि अग्रणी खरीददार है, ने सीएपीएल को निलंबन नोटिस जारी किया है। सीएपीएल दिल्ली उच्च न्यायालय ने दिनांक 2.7.2012 को सीएपीएल की याचिका खारिज कर दी है। सीएपीएल ने दिल्ली उच्च न्यायालय की संभागीय बेंच के साथ साथ माध्यस्थम के लिए भारतीय माध्यस्थम परिषद का भी दरवाजा खटखटाया है। मामला न्यायालय के विचाराधीन है।

मूल रूप से चिह्नित की गई नौ अल्ट्रा मेगा पावर परियोजनाओं के अलावा कुछ राज्यों में अतिरिक्त यूएमपीपी की स्थापना के लिए भी कुछ राज्य सरकारों से अनुरोध प्राप्त हुए हैं :

- i) आंध्र प्रदेश में -4000 मेगा वाट क्षमता वाली दूसरी यूएमपीपी
- ii) उड़ीसा में 4000 मेगावाट क्षमता वाली दो अतिरिक्त यूएमपीपी
- iii) गुजरात में 4000 मेगावाट क्षमता वाली दूसरी यूएमपीपी
- iv) झारखंड में 4000 मेगावाट क्षमता वालीदूसरी यूएमपीपी
- *v*) तमिलनाडु में 4000 मेगावाट क्षमता वालीदूसरी यूएमपीपी
- vi) बिहार में 4000 मेगावाट क्षमता वाली यूएमपीपी

उपर्युक्त अतिरिक्त यूएमपीपी के लिए स्थल का चयन/खोज का कार्य संबंधित राज्य सरकारों के परामर्श से चल रहा है। मूल रूप से परिकल्पित नौ यमएमपीपी और अतिरिक्त सात यूएमपीपी की अद्यतन स्थिति अनुबंध -1.1 में दी गई है।

1.2.3 कैप्टिव कोयला ब्लाकों का आवंटन

देश में कोयले का उत्पादन विभिन्न कारणों से विद्युत क्षेत्र की बढ़ रही मांग के साथ गित नहीं पकड़ रहा है। देश में कोयला खानों के विकास में विलंब इसके प्रमुख कारणों में से एक है। इसके परिणामस्वरूप कोयले के आयात की आवश्यकता बढ़ गई। इसके अलावा 11वीं पंचवर्षीय योजना के दौरान की गई क्षमता अभिवृद्धि और 12वीं पंचवर्षीय योजना और उससे आगामी पंचवर्षीय योजनाओं के दौरान बड़े क्षमता अभिवृद्धि कार्यक्रम तथा पिछली कुछ पंचवर्षीय याजनाओं के दौरान परिकल्पना से परे वास्तिवक क्षमता अभिवृद्धि के कारण स्थिति और भी गंभीर हो गई है और घरेलू कोयले की मांग और आपूर्ति के बीच अंतर और अधिक बढ़ गया है। इसलिए यह निश्चय किया गया है कि परियोजना के विकासकर्ताओं को कैप्टिव प्रयोग के लिए कोयला ब्लॉकों का आवंटन किया जाए। पिट हेड आधार पर स्थापित की जा रही सभी यूएमपीपी को कोयला ब्लॉक आवंटितकर दिए गए हैं।

विभिन्न विद्युत कंपनियों को आवंटित कोयला ब्लाकों की संख्या और कोयला ब्लाकों के भूगर्भीय आरक्षित भंडारों के विवरण नीचे तालिका 1.1 में दिए गए :

तालिका: 1.1 विद्युत क्षेत्र को आबंटित कैप्टिव कोयला ब्लॉकों के आबंटन संबंधी विवरण

विद्युत कंपनी	कोयला ब्लॉक	भू-गर्भीय आरक्षित भंडार <i>(</i> मीट्रिक टन <i>)</i>
सीपीएसयू	14	7752
राज्य क्षेत्र को विद्युत कंपनियां	45	13566.88
यूएमपीपी	10	4520.91
निजी क्षेत्र	19	3754.03
जोड़	88	29593.22

45.15 मिलियन मीट्रिक टन प्रति वर्ष उत्पादन क्षमता वाले 16 कोयला ब्लॉक प्रचालनरत हैं। 36 कोयला ब्लॉकों (आरक्षित भंडार 12659 मीट्रिक टन) के लिए खनन योजना अनुमोदित कर दी गई है। 12वीं पंचवर्षीय योजना के लिए क्षमता अभिवृद्धि के लक्ष्यों को प्राप्त करने के लिए कैप्टिव खान वाले कोयला ब्लॉकों का प्राथमिकता के आधार पर विकास किया जाना चाहिए।

1.2.4 नई जल विद्युत नीति

जल विद्युत का त्वरित विकास सुनिश्चित करने के उद्देश्य से सरकार द्वारा एक नई जल विद्युत नीति की घोषणा की गई है। इस नीति के अनुसार राज्य सरकारों को निजी क्षेत्रों के लिए संभावित स्थल आबंटित (अधिनिर्णित) करने के लिए एक पारदर्शी प्रक्रिया अपनानी होगी। संबंधित निजी विकासकर्ता को मौजूदा प्रक्रिया जैसे डीपीआर तैयार करना और अन्य सांविधिक स्वीकृतियां प्राप्त करना और फिर परियोजना के लिए टैरिफ के निर्धारण हेतु उपयुक्त नियामक से पहल करना आदि को अपनाना होगा। परियोजनाओं की स्थापना में होने वाले विलंब से विद्युत की व्यापारिक बिक्री कम होगी। स्थानीय क्षेत्र विकास निधि और परियोजना से प्रभावित परिवारों को प्रोत्साहन देने के लिए भी प्रावधान किए गए हैं। नई जल विद्युत नीति विकासकर्ता को बिक्री योग्य विद्युत के अधिकतम 40% तक की व्यापारिक बिक्री के माध्यम से अपनी अतिरिक्त लागतों की वसूली करने में सक्षम बनाती है। इसके अलावा कल्याण योजनाओं अतिरिक्त अवसंरचना और सामुदायिक सुविधाओं के सृजन हेतु स्थानीय क्षेत्र विकास के लिए परियोजना से 1% मुफ्त विद्युत आबंटित की जानी है। राज्य सरकारों से भी अपेक्षा की जाती है कि वे भी स्थानीय क्षेत्र विकास के लिए अपनी 12% मुफ्त बिजली से उतनी ही अर्थात 1% विद्युत का योगदान देगी।

1.2.5 पारेषण क्षेत्र में निजी क्षेत्र की प्रतिभागिता

पावरग्रिड के साथ संयुक्त उद्यम और प्रतियोगी बोली प्रक्रिया के माध्यम से पारेषण प्रणाली प्रदाता (टीएसपी) के चयन के जिए निजी क्षेत्र की प्रतिभागिता के लिए अंतर राज्य पारेषण क्षेत्र खोला गया। पारेषण का कार्य एक लाइसेंस पर आधारित कार्यकलाप है और पीजीसीआईएल केंद्रीय क्षेत्र की एक पारेषण कंपनी होने के कारण मानद लाइसेंसधारक के रूप में कार्य करता है। इसलिए संयुक्त उद्यम (जेवी) कंपनियों को पारेषण लाइसेंस की स्वीकृति के लिए केंद्रीय विद्युत नियामक आयोग से पहल करनी पड़ी थी। विशेष ट्रांसिमशन परियोजनाओं के विकास हेतु टोरेंट पावरग्रिड कंपनी लि., जेपी पावरग्रिड लि., पारबती कोलडाम ट्रांसिमशन कंपनी लि., तीस्ता वैली पावर ट्रांसिमशन लि. और नार्थ ईस्ट ट्रांसिमशन कंपनी लिमिटेड को लाइसेंस स्वीकृत किए गए। तत्पश्चात विद्युत मंत्रालय में पारेषण परियोजनाओं के विकास में प्रतिस्पर्धा बढ़ाने के लिए दिशानिर्देश तथा पारेषण सेवाओं के लिए टैरिफ आधारित बोली प्रक्रिया दिशानिर्देश के साथ साथ बाजारी मार्ग के जिए पारेषण सेवाओं की खरीद के लिए मानक बोली दस्तावेज जारी किए।

प्रतियोगी बोली प्रक्रिया के लिए पारेषण परियोजनाओं का चयन करते समय बोली प्रक्रिया को पूरा करने के लिए लगभग एक वर्ष के आगामी समय (लीड टाइम) को भी ध्यान में रखा जाए। आरएफपी चरण से पहले सभी संभावनाएं तलाश की जानी चाहिए क्योंकि टैरिफ बोलियां आमंत्रित करनेके बाद उनमें कोई भी संशोधन करना संभव नहीं होता है। टैरिफ आधारित बोली प्रक्रिया के जिरए चयनित पारेषण सेवा प्रदाता बाद में कंपनी का अधिग्रहण करता है और फिर उसे पारेषण लाइसेंस और आयोग द्वारा बाजार से पता लगाए गए टैरिफ की स्वीकृति लेनी होती है और इसी बीच उसे वित्तीय समापन भी करना होता है।

विद्युत मंत्रालय ने प्रतियोगी बोली प्रक्रिया के जिए कार्यान्वित की जाने वाली परियोजनाओं की पहचान और बोली प्रक्रिया समन्वयक को मार्गदर्शन प्रदान करने के लिए सीईआरसी के सदस्य की अध्यक्षता में एक उच्च अधिकार प्राप्त समिति गठित की है। विद्युत मंत्रालय ने आरईसी और पीएफसी को बोली प्रक्रिया समन्वयक नियुक्त किया है। दस अंतर – राज्य पारेषण परियोजनाओं का वर्तमान में कार्यान्वयन प्रतियोगी बोली प्रक्रिया के जिरए किया जा रहा है। उनमें से दो परियोजनाएं पावरग्रिड को सौंपी गई हैं और शेष बची परियोजनाएं निजी क्षेत्र की कंपनियों द्वारा कार्यान्वित की जा रही है।

1.2.6 जलवायु परिवर्तन के लिए राष्ट्रीय कार्य योजना

जलवायु परिवर्तन पर राष्ट्रीय कार्य योजना (एनएपीसीसी) का शुभारंभ प्रधानमंत्री द्वारा जून, 2008 में किया गया। एनएपीसीसी में स्वच्छ प्रौद्योगिकियों का प्रयोग करते हुए स्थायी विकास को बढ़ावा देने की अपेक्षा की गई है। इस योजना का उद्देश्य भारत के ग्रीन हाउस गैस उत्सर्जन को विकसित देशों की तुलना में कम करना है। इस योजना का कार्यान्वयन 8 मिशनों के जरिए किया जाएगा जो जलवायु परिवर्तन के संदर्भ में महत्वपूर्ण लक्ष्यों को हासिल करने के लिए बहुआयामी, दीर्घकालिक और एकीकृत रणनीतियों का प्रतिनिधित्व करेंगे।

उपर्युक्त लक्ष्य यूएनएफसीसी में उल्लिखित समान परंतु भिन्न जिम्मेदारियां और संगत क्षमताओं के सिद्धांत पर आधारित एक प्रभावी, सहयोगात्मक और समग्र वैश्विक पहल शुरू करने से संबंधित है।

यदि विकसित देश यूएनएफसीसी के अंतर्गत अपनी प्रतिबद्धताओं को पूरा करते हैं और विकासशील देशों को अतिरिक्त वित्तीय संसाधन तथा जलवायु की दृष्टि से अनुकूल प्रौद्योगिकियां हस्तांतरित करते हैं तो भारत के प्रयास सफल होंगे।

एनएपीसीसी ने निम्नलिखित आठ राष्ट्रीय मिशनों की पहचान की है:

- राष्ट्रीय सौर मिशन
- उन्नत ऊर्जा दक्षता के लिए राष्ट्रीय मिशन
- स्थायी पर्यावास पर स्थायी मिशन
- राष्ट्रीय जल मिशन
- हिमालयी पारिस्थितिकी तंत्र को बचाए रखने के लिए राष्ट्रीय मिशन
- "हरित भारत" के लिए राष्ट्रीय मिशन
- स्थायी कृषि के लिए राष्ट्रीय मिशन
- जलवायु परिवर्तन के लिए रणनीतिक ज्ञान पर राष्ट्रीय मिशन

जवाहरलाल नेहरू राष्ट्रीय सौर मिशन - सौर भारत निर्माण की दिशा में

राष्ट्रीय सौर मिशन भारत सरकार की एक महत्वपूर्ण पहल है और राज्य सरकारों को भारत की ऊर्जा सुरक्षा संबंधी चुनौती का सामना करते समय पारिस्थितिकीय दृष्टि से स्थायी वृद्धि को बढ़ावा देना चाहिए। यह जलवायु परिवर्तन की चुनौती का सामना करने के लिए वैश्विक स्तर पर किए जा रहे प्रयासों में भारत के एक बड़े योगदान के रूप में सिद्ध होगा। राष्ट्रीय सौर मिशन का उद्देश्य सौर ऊर्जा के क्षेत्र में वैश्विक स्तर पर भारत को अग्रणी देश के रूप में स्थापित करना है, इसके लिए यथासंभव संपूर्ण देश में इसे लागू करने के लिए नीतिगत शर्तें तैयार की गई हैं।

इस मिशन के अंतर्गत तीन चरण वाली पहल की जानी थी, ये तीन चरण क्रमश: 11वीं पंचवर्षीय योजना की शेष अविध और 12वीं पंचवर्षीय योजना का पहला वर्ष (2012-13 तक) चरण-1 के रूप में, 12वीं पंचवर्षीय योजना के शेष चार वर्ष (2013-17) चरण-2 के रूप में और 13वीं पंचवर्षीय योजना (2017-22) चरण-3 के रूप में निर्धारित किए गए हैं। प्रत्येक पंचवर्षीय योजना की समाप्ति पर और 12वीं तथा 13वीं पंचवर्षीय योजनाओं की मध्याविध में इस दिशा में की गई प्रगति का मूल्यांकन किया जाएगा और घरेलू तथा वैश्विक दोनों स्तरों पर उभरते हुए लागत और प्रौद्योगिकीय रुझानों के आधार पर आगामी चरणों के लिए क्षमता और लक्ष्यों की समीक्षा की जाएगी। यदि अपेक्षित स्तर तक लागत कम नहीं होती है अथवा यह अनुमान की तुलना में अधिक तेजी से बढ़ती है तो यह प्रयास किया जाएगा कि सरकार को अधिक सब्सिडी न देनी पड़े। मिशन का नितांत आवश्यक उद्देश्य देश में केन्द्रीकृत और विकेन्द्रीकृत दोनों स्तरों पर सौर प्रौद्योगिकी को बढ़ावा देने के लिए अनुकूल वातावरण तैयार करना है। प्रथम चरण (2013 तक) में सोलर थर्मल के क्षेत्र में लो हैंगिंग तकनीक को अपनाने पर जोर दिया जाएगा; वाणिज्यिक ऊर्जा के अभिगम के बिना जनसमुदाय को सेवा प्रदान करने के लिए ऑफ-ग्रिड प्रणालियों को बढ़ावा देने और ग्रिड आधारित प्रणालियों की अपेक्षित क्षमता अभिवृद्धि पर भी जोर दिया जाएगा। दूसरे चरण में आरंभिक वर्षों के अनुभव को ध्यान में रखते हुए देश में उन्तत और प्रतिस्पर्धात्मक सौर ऊर्जा इस्तेमाल के लिए अनुकूल स्थितियां निर्मित करने हेतु तेजी से क्षमता बढ़ाई जाएगी।

इस उद्देश्य को प्राप्त करने के लिए मिशन के लक्ष्य निम्नानुसार हैं:

- 2022 तक 20,000 मेगावाट सौर विद्युत के नियोजन हेतु एक समर्थकारी नीतिगत ढांचा सृजित करना
- 2013 तक तीन वर्ष के भीतर 1000 मेगावाट क्षमता वाला ग्रिड-संबद्ध सौर विद्युत उत्पादन बढ़ाना; ऐसी विद्युत कंपनियों जिन्हें प्राथमिकता के आधार पर टैरिफ में छूट प्रदान की जाती है, द्वारा नवीकरणीय खरीद

बाध्यता के अनिवार्य इस्तेमाल के जिए 2017 तक 3000 मेगावाट की अतिरिक्त क्षमता स्थापित करना। यह क्षमता दोगुनी से भी अधिक हो सकती है – बढ़े हुए और बेहतर अंतर्राष्ट्रीय वित्तीय सहायता तथा प्रौद्योगिकी हस्तांतरण के आधार पर यह 2017 तक 10,000 मेगावाट की स्थापित क्षमता तक या उससे अधिक भी हो सकती है। वर्ष 2022 के लिए 20,000 मेगावाट अथवा उससे अधिक का महत्वाकांक्षी लक्ष्य पहले दो चरणों के दौरान प्राप्त "सीख/अनुभव" पर आधारित होगा, जो यदि सफल रहते हैं तो इस बात को नकारा नहीं जा सकता कि भविष्य में सौर ऊर्जा के लिए भी ग्रिड- प्रतियोगी स्थितियां अवश्य निर्मित होंगी। अंतर्राष्ट्रीय वित्तीय सहायता और प्रौद्योगिकी की उपलब्ध के आधार पर इस संधिकाल/परिवर्तन के दौर को उपयुक्त ढंग से बढ़ाया जा सकता है।

- सौर विनिर्माण क्षमता, विशेष रूप से सोलर थर्मल हेतु स्थानीय उत्पादन और बाजार में अग्रणी रहने के लिए अनुकूल स्थितियां निर्मित करना।
- 2017 तक 10,000 मेगावाट और 2022 तक 20,000 मेगावाट के लक्ष्य को प्राप्त करने के लिए ऑफ ग्रिड अनुप्रयोगों के लिए कार्यक्रमों को बढ़ावा देना।
- 2017 तक 15 मिलियन और 2022 तक 20 मिलियन वर्ग मीटर सोलर थर्मल संग्रहण क्षेत्र का लक्ष्य हासिल करना।
- 2022 तक ग्रामीण क्षेत्रों के लिए 20 मिलियन सोलर लाइटिंग प्रणालियों का नियोजन करना।

1300 मेगावाट के प्रथम चरण के कार्यान्वयन हेतु रणनीति

- अनावंटित विद्युत के साथ 1000 मेगावाट की बंडलिंग
- राज्यों को रूफ टॉप की प्रतिपूर्ति

1.2.7 11वीं योजना (2007-12) के दौरान पुनर्गठित त्वरित विद्युत विकास और सुधार कार्यक्रम (आर-एपीडीआरपी)

भारत सरकार ने एक केंद्रीय क्षेत्र योजना के रूप में संशोधित निंबंधन और शर्तों के साथ 11वीं पंचवर्षीय योजना के दौरान पुनर्गठित त्वरित विद्युत विकास और सुधार कार्यक्रम (आर-एपीडीआरपी) के कार्यान्वयन हेतु मंजूरी प्रदान की है। इस कार्यक्रम का प्रमुख उद्देश्य स्थायी रूप से हानि को कम करने के संदर्भ में वास्तविक प्रदर्शनीय निष्पादन करना है।

पुनर्गठित एपीडीआरपी कार्यक्रम को 51,577 करोड़ रुपए के परिव्यय के साथ अनुमोदित किया गया।

इसके अंतर्गत 30,000 (विशेष श्रेणी के अंतर्गत आने वाले राज्यों के मामले में 10,000) से अधिक जनसंख्या वाले शहरी क्षेत्रों, कस्बों और शहरों को शामिल किए जाने का प्रस्ताव है। इसके अलावा कुछ ऐसे ग्रामीण क्षेत्र जहां उच्च लोड घनत्व के साथ साथ महत्वपूर्ण लोड है, में घरेलू और औद्योगिक फीडरों से कृषि फीडरों को अलग करने का कार्य और उच्च वोल्टेज वितरण प्रणाली (11 केवी) का कार्य भी शुरू किया जाएगा। इसके अलावा ऐसे कस्बों/क्षेत्रों, जिनके लिए 10वीं पंचवर्षीय योजना के दौरान परियोजनाएं स्वीकृत की गई हैं, उनके लिए भी आरएपीडीआरपी के अंतर्गत 11वीं योजना के लिए केवल तभी विचार किया जाएगा जब या तो पहले से स्वीकृत परियोजनाएं पूरी हो गई हैं अथवा उनको निर्धारित समयाविध के पहले बंद कर दिया गया हो।

इस योजना के अंतर्गत परियोजनाएं दो भागों में शुरू की जाएंगी। भाग-क में ऊर्जा लेखांकन/लेखाकरण हेतु आधार लाइन डेटा और आईटी अनुप्रयोगों तथा आईटी आधारित उपभोक्ता सेवा केन्द्रों की स्थापना हेतु परियोजनाएं शामिल होंगी और भाग-ख में नियमित वितरण सुदृढ़ीकरण परियोजनाएं शामिल होंगी।

11वीं पंचवर्षीय योजना में आरएपीडीआरपी के लिए नोडल एजेंसी के रूप में पावर फाइनेंस कॉर्पोरेशन (पीएफसी) इस कार्यक्रम के सुचारु रूप से कार्यान्वयन के लिए आवश्यक सहायता प्रदान करेगा।

1.2.8 राजीव गांधी ग्रामीण विद्यतीकरण योजना (आरजीजीवीवाई)

केन्द्र सरकार ने ग्रामीण विद्युत अवसंरचना और घरेलू विद्युतीकरण के लिए 4 अप्रैल, 2005 को राजीव गांधी ग्रामीण विद्युतीकरण योजना का शुभारंभ किया। यह योजना आगामी पांच वर्ष में सभी परिवारों को विद्युत अभिगम सुलभ कराने के लिए राष्ट्रीय न्यूनतम साझा कार्यक्रम (एनसीएमपी) के लक्ष्यों को प्राप्त करने के लिए शुरू की गई। इस योजना का उद्देश्य 1,25000 विद्युत रहित गावों और पुरवों का विद्युतीकरण करना और 7.8 करोड़ घरों में विद्युत कनेक्शन उपलब्ध कराना है। योजना की अनुमानित लागत (11वीं पंचवर्षीय योजना सहित) लगभग 16,0000 करोड़ रुपए थी और 10वीं पंचवर्षीय योजना अविध के दौरान चरण-1 में पूंजीगत सब्सिडी के लिए 5000 करोड़ रुपए की राशि निर्धारित की गई थी।

इस योजना के अंतर्गत 90% पूंजीगत सब्सिडी निम्नलिखित के प्रावधान हेतु परियोजना की संपूर्ण लागत के लिए प्रदान की जाएगी :

- प्रत्येक ब्लाक में कम से कम 33/11 केवी (अथवा 66/11 केवी) वाली ग्रामीण विद्युत अवसंरचना बैकबोन (आरईडीबी)
- प्रत्येक गांव/पर्यावास में कम से कम एक वितरण ट्रांसफार्मर के साथ ग्रामीण विद्युतीकरण अवसंरचना (वीईआई)
- जहां ग्रिड आपूर्ति या तो संभव नहीं है अथवा लागत प्रभावी नहीं है, वहां विकेन्द्रीकृत वितरित उत्पादन (डीडीजी) प्रणाली

11वीं योजना में आरजीजीवीवाई के अंतर्गत विकेन्द्रीकृत वितरित उत्पादन (डीडीजी) के जरिए ग्रामीण विद्युतीकरण के लिए दिशानिर्देश अनुमोदित कर दिए गए हैं और उन्हें 12 जनवरी, 2009 के कार्यालय ज्ञापन संख्या 44/1/2007-आरई के जरिए परिचालित किया गया है।

भारत सरकार ने सभी परिवारों को विद्युत उपलब्ध कराने, लगभग 1.15 लाख विद्युत रहित गांवों के विद्युतीकरण और 2012 तक 2.34 करोड़ बीपीएल परिवारों को विद्युत के कनेक्शन मुहैया कराने के लक्ष्य को प्राप्त करने के लिए 28,000 करोड़ रुपए की पूंजीगत सब्सिडी के साथ 11वीं पंचवर्षीय योजना में इस योजना को जारी रखने के लिए अनुमोदन प्रदान किया है। इसके अलावा आरजीजीवीवाई 12वीं पंचवर्षीय योजना के दौरान भी जारी रहेगी।

1.2.9 स्वदेशी उपस्कर विनिर्माण क्षमता विस्तार

11वीं पंचवर्षीय योजना के दौरान क्षमता अभिवृद्धि की आवश्यकता को पूरा करने और उसके बाद भी मौजूदा विनिर्माताओं की विनिर्माण क्षमता बढ़ाने तथा नए वेंडरों को प्रोत्साहित करने के लिए देश में मुख्य प्लांट उपस्कर विनिर्माण क्षमता उपयुक्त रूप से बढ़ाने के लिए हर संभव प्रयास किए गए हैं। स्वदेशी विनिर्माण सुविधाओं की स्थापना के लिए भारत सरकार से प्रोत्साहन के आधार पर बहुत से नए विनिर्माता आगे आए हैं और वे वाष्प

जनरेटर तथा टर्बाइन जनरेटर के लिए विनिर्माण सुविधाएं स्थापित कर रहे हैं। इन नए वेंडरों में निम्नलिखित वेंडर शामिल हैं:

- 1. एल एण्ड टी-एमएचआई
- 2. तोशीबा-जेएसडब्ल्यू
- 3. एल्सटम-भारत फोर्ज
- 4. गैमन अंसाल्डो
- 5. बीजीआर-हिताची
- *6.* डूसन
- 7. थर्मेक्स-बैबकॉक
- 8. सेथर वेसल-रिले पावर

उपर्युक्त सहयोगियों से यह निष्कर्ष निकाला जा सकता है कि देश में मेन प्लांट उपस्करों के विनिर्माण के लिए पर्याप्त क्षमता मौजूद है।

केंविप्रा ने सुपर क्रिटीकल व्यायलर और टर्बाइन जनरेटरों के पूर्तिकर्ताओं की पूर्व-अर्हता संबंधी आवश्यकताओं की पहले ही समीक्षा कर ली है जिससे कि नई कंपनियों के प्रवेश को सुकर बनाया जा सके और केंद्र तथा राज्य क्षेत्र की विद्युत कंपनियों द्वारा अपनाए जाने के लिए इनकी सिफारिाश की है। स्वदेशी स्तर पर विनिर्माण को बढ़ावा देने और सुपर क्रिटिकल प्रौद्योगिकी के हस्तांतरण के उद्देश्य से एनटीपीसी और डीवीसी की परियोजनाओं के लिए सुपर क्रिटिकल प्रौद्योगिकी वाली 660 मेगावाट की 11 यूनिटों की एक साथ निविदा प्रक्रिया शुरू की गई है जिसमें स्वदेशी स्तर पर विनिर्माण चरण को अनिवार्य बनाया गया है।

पावर प्लांटों के लिए बकाया प्लांट उपस्करों की आवश्यकता की का भी एक मूल्यांकन किया गया है और मौजूदा वेंडरों की विनिर्माण क्षमता बढ़ाने के साथ साथ नए वेंडरों को प्रोत्साहित करने के लिए भी प्रयास किए जा रहे हैं।

बीओपी खंड में निवेश आकृष्ट करने के उद्देश्य से विद्युत क्षेत्र के लिए बीओपी की दीर्घकालीन आवश्यकता के बारे में उद्योग जगत को संवेदनशील बनाना नितांत आवश्यक है। विद्युत मंत्रालय और केंद्रीय विद्युत प्राधिकरण ने पहले ही बीओपी की आवश्यकता के बारे में उद्योग जगत को संवेदनशील बनाने के लिए सीआईआई के सहयोग से एक पहल शुरू कर दी है।

बीओपी कोई उच्च प्रौद्योगिकी क्षेत्र नहीं है और यदि किसी वेंडर को अन्य अवसंरचना परियोजनाओं के क्रियान्वयन का अनुभव है तो वह बीओपी क्रियान्वयन क्षमताएं विकसित कर सकता है। इस बात पर इसलिए विचार किया गया है कि जिससे कि मौजूदा बीओपी निर्माताओं पर अत्यधिक भार न पड़े। केंद्रीय विद्युत प्राधिकरण ने बीओपी वेंडरों की पूर्व अर्हता संबंधी आवश्यकताओं की समीक्षा पहले ही कर ली है और केंद्रीय विद्युत प्राधिकरण द्वारा विभिन्न बीओपी पैकेजों के लिए पूर्व अर्हता रिपोर्ट को अंतिम रूप दिया गया है। इसके लिए पणधारकों के साथ भी परामर्श किया गया है। केंविप्रा की सिफारिशों को राज्य तथा केंद्रीय क्षेत्र की विद्युत कंपनियों द्वारा अपनाए जाने के लिए उन्हें अग्रेषित किया गया है।

1.2.10 ऊर्जा कार्यकुशलता ब्यूरो (बीईई) द्वारा मांग पक्ष प्रबंधन संबंधी पहल

इस तथ्य को स्वीकार करते हुए कि ऊर्जा का दक्षतापूर्वक उपयोग और इसका संरक्षण मांग और पूर्ति के बीच अंतर समाप्त करने के लिए सबसे अधिक लागत प्रभावी विकल्प है, भारत सरकार ने ऊर्जा संरक्षण (ईसी) अधिनियम, 2001 का अधिनियमन किया है और ऊर्जा कार्यकुशलता ब्यूरो (बीईई) की स्थापना की है।

अधिनियम में यह प्रावधान किया गया है कि देश में ऊर्जा की दृष्टि से कुशल सेवाओं के लिए संस्थागत और सुदृढ़ प्रदायगी तंत्र स्थापित किया जाए और यह भी प्रावधान किया गया है कि विभिन्न निकायों/संगठनों के बीच नितांत आवश्यक समन्वय स्थापित किया जाए। ऊर्जा कार्यकुशलता ब्यूरो नीतिगत कार्यक्रमों के कार्यान्वयन और ऊर्जा संरक्षण संबंधी कार्यकलापों के कार्यान्वयन हेतु समन्वय स्थापित करने के लिए जिम्मेदार होगा।

ऊर्जा कार्यकुशलता ब्यूरो का मिशन भारतीय अर्थव्यवस्था की ऊर्जा निर्भरता को घटाने के प्राथमिक उद्देश्य के साथ ऊर्जा संरक्षण अधिनियम के संपूर्ण ढांचे के भीतर स्व-विनियमित और बाजार सिद्धांतों पर आधारित नीति और रणनीतियां विकसित करना है।

विद्युत संरक्षण अधिनियम के अनिवार्य प्रावधान

- ऊर्जा व्यवसायियों की ऊर्जा प्रबंधन और ऊर्जा लेखांकन क्षमताओं का सुदृढ़ीकरण
- ऊर्जा लेखाकारों का अधिप्रमाणन
- विभिन्न औद्योगिक क्षेत्रों के लिए शर्तों का निर्धारण
- नामित उपभोक्ताओं द्वारा अनिवार्य ऊर्जा लेखापरीक्षाएं संचालित करना।
- राज्य द्वारा नामित एजेंसियों की अधिसूचना
- अधिसूचित ऊर्जा खपत वाले उपस्कर और उपकरणों के लिए मानक एवं लेबलिंग
- 500 किलोवाट अथवा उससे अधिक संबद्ध लोड वाली नई वाणिज्यिक बिल्डिंगों के लिए ऊर्जा संरक्षण बिल्डिंग कोड

कार्यक्रम और उपाय

ऊर्जा कार्यकुशलता ब्यूरो (बीईई) ने महत्वपूर्ण क्षेत्रों की पहले ही पहचान कर ली है और एक विस्तृत योजना तैयार की है, जिसमें ऊर्जा के दक्षतापूर्वक प्रयोग और इसके संरक्षण को बढ़ावा देने के लिए परियोजनाओं और कार्यक्रमों के कार्यान्वयन हेतु ब्यूरो द्वारा किए जाने वाले संबद्ध कार्यकलापों की सूची दी गई है। इस कार्य योजना का शुभारंभ नई दिल्ली में आयोजित नई सहस्त्राब्दि में ऊर्जा संरक्षण के लिए रणनीतियां विषयक अंतर्राष्ट्रीय सम्मेलन के दौरान 23 अगस्त, 2002 को माननीय प्रधानमंत्री द्वारा की गई। कार्य योजना में अन्य बातों के साथ निम्नलिखित बातें शामिल हैं:

- ऊर्जा संरक्षण के लिए भारतीय औद्योगिक कार्यक्रम
- मांग पक्ष प्रबंधन
- मानक और लेबलिंग कार्यक्रम
- बिल्डिंग और स्थापनाओं में ऊर्जा दक्षता
- ऊर्जा संरक्षण बिल्डिंग कोड

- व्यावसायिक प्रमाणन और अधिप्रमाणन
- नियम पुस्तक (मैन्युअल) और आचार संहिता (कोड)
- ऊर्जा दक्षता नीतिगत अनुसंधान कार्यक्रम
- ऊर्जा सेवाओं के लिए प्रदायगी तंत्र
- स्कूल शिक्षा आदि

1.2.11 मानव संसाधन विकास - किसी आईटीआई को अपनाने विषयक योजना

11वीं पंचवर्षीय योजना के दौरान और उसके पश्चात जनशक्ति आवश्यकता को पूरा करने के लिए मानव संसाधन विकास को उच्च प्राथमिकता दी जा रही है और विद्युत क्षेत्र से जुड़े कार्मिकों को प्रशिक्षण दिया जा रहा है। मुल्यवान मानव संसाधानों को आकर्षित करने, सद्पयोग करने, विकसित करने और उनके संरक्षण के लिए एक बहुत व्यापक और सारगर्भित पहल की गई है। ऐसा अनुमान लगाया गया है कि 12वीं पंचवर्षीय योजना के दौरान विद्युत उपस्करों के निर्माण, प्रचालन और रख रखाव के लिए लगभग एक मिलियन अतिरिक्त कामगार, पर्यवेक्षक और इंजीनियरों की आवश्यकता होगी। विशेष रूप से विनिर्दिष्ट कौशल वाले तकनीशियनों की भारी संख्या में आवश्यकता होगी। आपूर्ति और मांग के बीच अंतर को कम करने के लिए "किसी आईटीआई को अपनाना" विषयक एक योजना इस उद्देश्य से शुरू की गई है ताकि परियोजना क्षेत्र के आसपास कुशल जनशक्ति तैयार की जा सके। यहां तक कि हमारे पास पर्याप्त संख्या में आईटीआई तो उपलब्ध हैं, परंतु कार्यशाला सुविधाओं के संबंध में मौजूदा अवसंरचना और पर्याप्त संख्या में संकाय सदस्य (फैकल्टी) उपलब्ध नहीं हैं। गुणवत्तायुक्त तकनीशियन तैयार करने की नितांत आवश्यकता है। इस योजना के अनुसार विद्युत परियोजनाओं के विकासकर्ताओं को अपनी परियोजनाओं के आसपास आईटीआई द्वारा प्रशिक्षित लोगों को अपनाना है अथवा उस क्षेत्र में नए आईटीआई स्थापित करने हैं जिससे कि विद्युत परियोजनाओं के निर्माण और प्रचालन तथा रख रखाव के क्षेत्र में कौशल विकसित करने के लिए स्थानीय जनता को अवसर उपलब्ध कराया जा सके। केंद्रीय क्षेत्र के सार्वजनिक उपक्रमों में कुछ आईटीआई को पहले ही अंगीकार कर लिया है। निजी क्षेत्र को भी प्रोत्साहित किया जा रहा है कि वे विद्युत क्षेत्र के त्वरित विकास के लिए बड़ी संख्या में आवश्यक जनशक्ति तैयार करने में सहयोग करें।

1.2.12 वितरण योजना के लिए राष्ट्रीय विद्युत निधि (एनईएफ) का सृजन

राज्यों की पारेषण और वितरण कंपनियों में मौजूदा संसाधन संकट के कारण उप पारेषण और वितरण क्षेत्र में निवेश पिछड़ा हुआ है। उत्पादन और पारेषण तथा वितरण योजनाओं का ब्रेकअप सामान्यत: 50:50 होगा। हालांकि उत्पादन क्षेत्र में अपेक्षाकृत अधिक निवेश किया जा रहा है और अंतर्राज्य पारेषण प्रणाली और वितरण प्रणाली में अपेक्षित अनुपात की तुलना में काफी कम मात्रा में निवेश किया जा रहा है। राज्य की विद्युत कंपनियों को अपनी पारेषण और वितरण अवसंरचना में सुधार के लिए वित्तीय सहायता प्रदान करने हेतु राष्ट्रीय विद्युत निधि (एनईएफ) का सृजन किया गया है।

1.2.13 आईटी आधारित परियोजना निगरानी

विद्युत परियोजनाओं के निर्माण की निगरानी करना बहुत किठन कार्य है क्योंकि इसके साथ साथ समानांतर रूप से बहुत से कार्यकलाप चलते रहते हैं। मैन्युअल प्रणाली द्वारा किसी विद्युत परियोजना के क्रियान्वयन की प्रगति की निगरानी करना काफी लंबे समय तक संभव नहीं है। प्रभावी निगरानी प्रणाली स्थापित करने के लिए सूचना प्रौद्योगिकी आधारित निगरानी को बढ़ावा दिया गया है। 11वीं पंचवर्षीय योजना में क्रियान्वित की जा रही केवल कुछ ही परियोजनाओं की निगरानी वर्तमान में आईटी आधारित प्रणाली के जरिए की जा रही है जो परियोजना

की दिन प्रतिदिन की प्रगति से अवगत कराती है। बाधाओं की पहचान करने और परियोजना क्रियान्वयन में मौजूदा बाधाओं को दूर करने के लिए समय पर कार्रवाई करने हेतु इस आईटी आधारित प्रणाली को सभी जारी परियोजनाओं के लिए लागू किए जाने की आवश्यकता है।

1.3 केंद्रीय विद्युत प्राधिकरण द्वारा विद्युत आयोजना

केंद्रीय विद्युत प्राधिकरण (केंविप्रा) की स्थापना विद्युत (आपूर्ति) अधिनियम, 1948 की धारा 3 के अंतर्गत की गई और यह विद्युत अधिनियम, 2003 के अंतर्गत इसे सौंपे गए कार्यों का निष्पादन करता आ रहा है। केंविप्रा देश में विद्युत क्षेत्र के विकास और संपूर्ण आयोजना के लिए जिम्मेदार है। केंविप्रा एक ऐसा तकनीकी संगठन है जो केन्द्र सरकार को विद्युत के उत्पादन, पारेषण, वितरण, व्यापार और सदुपयोग से जुड़े मुद्दों पर सलाह और सहायता प्रदान करता है। केंविप्रा को केन्द्र और राज्य नियामक आयोगों, राज्य सरकारों, लाइसेंधारकों, उत्पादन कंपनियों को ऐसे सभी मामलों, जिनमें परामर्श अपेक्षित है अथवा ऐसे किसी मामले, जो विद्युत प्रणाली के दक्षतापूर्वक प्रचालन में उन्हें सक्षम बनाएगा, पर परामर्श देने का दायित्व सौंपा गया है। केंविप्रा को विद्युत अधिनियम, 2003 के अनुसार सौंपे गए कुछ अन्य कार्यकलापों में विद्युत प्लांटों के निर्माण हेतु तकनकी मानक विनिर्दिष्ट करना; विद्युत प्लांटों और लाइनों के निर्माण, प्रचालन और रख-रखाव के लिए संरक्षा आवश्यकताएं; पारेषण लाइनों के प्रचालन और रख रखाव के लिए ग्रिड संबंधी मानक और विद्युत के पारेषण और आपूर्ति के लिए मीटर लगाने हेतु शर्ते तैयार करना शामिल हैं।

1.4 11वीं पंचवर्षीय योजना के लिए राष्ट्रीय विद्युत योजना

केंद्रीय विद्युत प्राधिकरण द्वारा 10वीं पंचवर्षीय योजना की समीक्षा, 11वीं पंचवर्षीय योजना के लिए विस्तृत योजना और 12वीं पंचवर्षीय योजना के लिए संभावित योजना को शामिल करते हुए नवंबर, 2004 में राष्ट्रीय विद्युत योजना तैयार की गई और सभी पणधारकों को परिचालित करने के साथ साथ 15 मार्च, 2005 तक उनकी टिप्पिणयां आमंत्रित करते हुए केंद्रीय विद्युत प्राधिकरण की वेबसाइट पर भी अपलोड की गई, तत्पश्चात टिप्पिणयां आमंत्रित करने की तिथि 15 अप्रैल, 2005 तक बढ़ाई गई। केंविप्रा को विभिन्न पणधारकों से मसौदा राष्ट्रीय विद्युत योजना पर टिप्पिणयां प्राप्त हुईं। विभिन्न पणधारकों से प्राप्त विविध टिप्पिणयों और सुझावों पर विचार करने के पश्चात प्राधिकरण द्वारा इस योजना को अंतिम रूप दिया गया। अंत में जुलाई, 2007 में सरकार द्वारा यह योजना अनुमोदित की गई ओर तीन अगस्त, 2007 की गजट संख्या 159 के अंतर्गत इसे भारत के राजपत्र में अधिसूचित किया गया। इस योजना की समीक्षा आगामी अध्याय में दी गई है।

1.5 देश में वर्तमान विद्युत परिदृश्य

स्थापित क्षमता

31 मार्च, 2012 की स्थिति के अनुसार देश की स्थापित क्षमता 1,99,877 मेगावाट थी, जो नीचे प्रदर्श 1.1 में दर्शायी गई है:

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 21

प्रदर्श 1.1 अखिल भारतीय स्तर पर स्थापित क्षमता (31 मार्च, 2012 की स्थिति के अनुसार)

*31.10.2012 की स्थिति के अनुसार देश की वर्तमान स्थापित क्षमता 2,09,276 मेगावाट है।

देश में नवीकरणीय ऊर्जा स्रोतों से विद्युत उत्पादन की अपार संभावनाएं हैं। इन संभावनाओं का लाभ उठाने के लिए भारत सरकार द्वारा हर संभव प्रयास किए जा रहे हैं। 31 मार्च, 2012 की स्थिति के अनुसार नवीकरणीय ऊर्जा स्रोतों से विद्युत की स्थापित क्षमता 24,503 मेगावाट है। नवीकरणीय ऊर्जा स्रोतों से कुल स्थापित क्षमता में 16,896.6 मेगावाट पवन ऊर्जा, 3410.52 मेगावाट लघु जल विद्युत परियोजनाओं, 3255.01 मेगावाट बायोमास पावर और बायोमास गैसीफायर से तथा 941.31 मेगावाट सौर पावर और शहरी तथा औद्योगिक अपशिष्ट के रूप में शामिल हैं। विंड टर्बाइन पावर प्लांट की स्थापित क्षमता के संदर्भ में विश्व में भारत का 5वां स्थान है।

प्रदर्श *1.2* 31 मार्च, 2013 की स्थिति के अनुसार अखिल भारतीय स्तर पर स्थापित क्षमता (नवीकरणीय)

विभिन्न स्रोतों से भारत में स्थापित और उत्पादन क्षमता की वृद्धि नीचे प्रदर्श 1.3, 1.4 और तालिका 1.2 में दी गई है।

तालिका 1.2 विद्युत उत्पादन की वृद्धि

योजना/वर्ष	उत्पादन	वृद्धि दर (%)	मिश्रित वृद्धि (%)
	I	 8वीं योजना	I
1992-93	301.07	5.0	6.61
1993-94	323.53	7.5	
1994-95	351.03	8.5	
1995-96	380.08	8.3	
1996-97	394.80	3.9	
	I	 9वीं योजना	1
1997-98	420.62	6.5	5.47
1998-99	448.37	6.6	
1999-2000	480.68	7.2	
2000-01	499.55	3.9	
2001-02	515.25	3.1	
		10th Plan	
2002-03	531.61	3.2	5.16
2003-04	558.34	5.0	
2004-05	587.42	5.2	
2005-06	617.51	5.1	
2006-07	662.52	7.3	
	I	11वीं योजना	I
2007-08	704.47	6.3	5.77
2008-09	723.79	2.7	

2009-10	771.60	6.6
2010-11	811.10	5.1
2011-12	877.00	8.1

प्रदर्श *1.3*

प्रदर्श *1.4*

वर्तमान (2011-12) में देश की कुल स्थापित क्षमता में कोयला आधारित क्षमता का बड़ा योगदान (57%) है और यह कुल विद्युत उत्पादन के लगभग 70% के बराबर है। उपर्युक्त के अलावा एक मेगावाट और उससे अधिक क्षमता वाले कैप्टिव पावर प्लांटों की स्थापित क्षमता वर्ष 2012-13 के अंत में 36,511 मेगावाट के आसपास रही। वर्ष 2011-12 के दौरान कैप्टिव पावर प्लांटों से 114.2 बिलियन यूनिट विद्युत उत्पादन किया गया।

विद्युत आपूर्ति की वास्तविक स्थिति

पिछले 5 वर्षों से देश में बिजली की कमी बढ़ती जा रही है। वर्ष 2007-08 (11वीं पंचवर्षीय योजना का पहला वर्ष) के दौरान अधिकतम जरूरत के समय विद्युत की कमी (पीक डेफिसिट) लगभग 18,000 मेगावाट (16.5%) और देश में औसत ऊर्जा कमी लगभग 78 बिलियन यूनिट (11%) थी। वर्ष 2008-09 (11वीं पंचवर्षीय योजना का दूसरा वर्ष) के दौरान अधिकतम जरूरत के समय विद्युत की कमी (पीक डेफिसिट) लगभग 13,000 मेगावाट (12%) और देश में औसत ऊर्जा कमी लगभग 86 बिलियन किलोवाट (11%) थी। वर्ष 2009-10 (11वीं पंचवर्षीय योजना का तीसरा वर्ष) के दौरान अधिकतम जरूरत के समय विद्युत की कमी (पीक डेफिसिट) लगभग 15,157 मेगावाट (13.8%) और देश में औसत ऊर्जा कमी लगभग 84 बिलियन किलोवाट (10.1%) थी। वर्ष 2010-11 (11वीं पंचवर्षीय योजना का चौथा वर्ष) के दौरान अधिकतम जरूरत के समय विद्युत की कमी (पीक डेफिसिट) लगभग 12,031 मेगावाट (9.8%) और देश में औसत ऊर्जा कमी लगभग 73 बिलियन किलोवाट (8.5%) थी। 11वीं पंचवर्षीय योजना के सीमांत वर्ष (2011-12) के दौरान देश में विद्युत आपूर्ति की स्थित की संक्षिप्त जानकारी तालिका 1.3 में नीचे दी गई है:

तालिका 1.3 अखिल भारतीय स्तर पर विद्युत आपूर्ति की वास्तविक स्थिति (2011-12)

*(*अप्रैल, *2011*- मार्च, *2012*)

	पीक <i>(</i> मेगावाट <i>)</i>	ऊर्जा <i>(</i> बिलियन किलोवाट <i>)</i>
आवश्यकता	1,30,006	937
उपलब्धता	1, 16, 191	857
<i>(-)</i> कमी <i>/(+)</i> अधिशेष	(-) 13,815	(-) 79
(%)	(-) 10.6%	(-) 8.5 %

7वीं, 8वीं, 9वीं, 10वीं और 11वीं पंचवर्षीय योजनाओं के अंत में देश में ऊर्जा की अधिकतम आवश्यकता (पीक) और कमी के विवरण नीचे तालिका 1.4 में दिए गए हैं :

तालिका *1.4* पिछली पंचवर्षीय योजनाओं के दौरान विद्युत आपूर्ति की स्थिति संबंधी विवरण

क्षेत्र/	अधिकतम	अधिकतम	अधिशेष/	अधिशेष/	কৰ্जা	কর্जা	अधिशेष/	अधिशेष/
	मांग	उपलब्धता	कमी	कमी	आवश्यकता	उपलब्धता	कमी	कमी
राज्य/ संघ राज्य	<i>(</i> मेगावाट <i>)</i>	<i>(</i> मेगावाट <i>)</i>	<i>(</i> मेगावाट <i>)</i>		(मेगा यूनिट)	मेगा यूनिट	<i>(</i> मेगावाट <i>)</i>	
				(%)				(%)
7वीं पंचवर्षीय योजना के अंत में	40385	33658	-6727	-16.7	247762	228151	-19611	-7.9

(1989-90)								
8वीं पंचवर्षीय योजना के अंत में	63853	52376	-11477	-18.0	413490	365900	-47590	-11.5
(1996-97)								
9वीं पंचवर्षीय योजना के अंत में	78441	69189	-9252	-11.8	522537	483350	-39187	-7.5
(2001-02)								
10वीं पंचवर्षीय योजना के अंत में	100715	86818	-13897	-13.8	690587	624495	-66092	-9.6
(2006-07)								
11वीं पंचवर्षीय योजना								
2007-08	108866	90793	-18073	-16.6	705724	628016	-77708	-11.0
2008-09	109809	96685	-13124	-12.0	774,324	689,021	-85,303	-11.0
2009-10	119166	104009	-15157	-13.8	830594	746644	-83950	-10.1
2010-11	122287	110256	-12031	-9.8	861591	788355	-73236	-8.5
2011-12	1,30,006	1, 16, 191	-13,815	-10.6	9,37,199	8,57,886	-79,313	-8.5

वार्षिक इलेक्ट्रिक लोड फैक्टर

वार्षिक इलेक्ट्रिक लोड फैक्टर प्रणाली में उपलब्ध ऊर्जा और ऐसी ऊर्जा के अनुपात के रूप में होता है जो प्रणाली द्वारा पूरे वर्ष के दौरान वार्षिक अधिकतम लोड को पूरा करने की स्थिति में आवश्यक होती है। यह घटक लोड की विभिन्न श्रेणियों के सदुपयोग करने के तरीकों (पैटर्न) पर निर्भर करता है। वार्षिक इलेक्ट्रिक लोड फैक्टर वर्ष 2000-2001 से 80% के आसपास बना हुआ है। ऐसा इसलिए संभव हो सका है क्योंकि प्रणाली में हमेशा कमी मौजूद रही और विभिन्न राज्यों में लोड स्टैगरिंग, विशेष रूप से विभिन्न कृषि समूहों को आवश्यकतानुसार विद्युत की आपूर्ति जैसे उपाय किए गए। चूंकि यह कमी बढ़ती जा रही है, अत: वार्षिक इलेक्ट्रिक लोड फैक्टर के भी बढ़ते हुए रुझान देखने को मिले। ये रुझान प्रदर्श 1.5 में नीचे दर्शाए गए हैं:

प्रदर्श *1.5* प्रणाली लोड फैक्टर में परिवर्तन

आरक्षित मार्जिन और हाइड्रो थर्मल मिश्रण

किसी प्रणाली के आरक्षित मार्जिन को प्राप्त किए गए अधिकतम लोड के प्रतिशत के रूप में स्थापित क्षमता और प्राप्त किए गए अधिकतम लोड के बीच अंतर के रूप में परिभाषित किया जाता है। यह घटक बहुत से मानदंडों पर निर्भर करता है, जिनमें से प्रमुख मानदंड विद्युत उत्पादन का तरीका अर्थात हाइड्रो, थर्मल और नवीकरणीय और उत्पादन स्टेशनों की उपलब्धता पर निर्भर करता है। अन्य देशों में आरक्षित मार्जिन 16% से लेकर 75% के बीच अलग अलग है।

उत्पादन के क्षेत्र में हाइड्रो-थर्मल मिश्रण के प्रतिशत में आंशिक वृद्धि हुई है और यह वर्ष 2001-02 में 25.4% से बढ़कर 31 मार्च, 2007 की स्थिति के अनुसार लगभग 27.82% हो गया है और इसके बाद इसमें कुछ कमी आती रही और अब 31 मार्च, 2012 की स्थिति के अनुसार यह लगभग 22.23% है। यह मुख्य रूप से 11वीं पंचवर्षीय योजना के दौरान भारी मात्रा में ताप विद्युत क्षमता अभिवृद्धि के परिणामस्वरूप संभव हुआ है। हालांकि आरक्षित मार्जिन में वर्ष 2001-02 में 49.74% की तुलना में वर्ष 2009-10 में 38.33% की कमी हुई है और वर्ष 2011-12 तक एक बार फिर यह बढ़कर 50.94% हो गया है। इससे संबंधित जानकारी प्रदर्श 1.6 में नीचे दी गई है:

प्रदर्श 1.6 आरक्षित मार्जिन और हाइड्रो थर्मल मिश्रण

आरिक्षत मार्जिन में यह कमी वर्ष 2001-02 में 69.9% थर्मल पीएलएफ में वर्ष 2011-12 में 73.23% की वृद्धि के परिणामस्वरूप हुई है जो प्रौद्योगिकीय सुधार तथा थर्मल मशीनों के प्रचालन और रख-रखाव की प्रक्रियाओं तथा उच्चतर दक्षता मानदंडों के फलस्वरूप संभव हुआ है। वर्ष 2011-12 के दौरान अब तक का अधिकतम आरिक्षत मार्जिन यह दर्शाता है कि ईंधन की कमी के कारण बड़े थर्मल प्लांटों (क्षमताएं) का प्रचालन नहीं हो पा रहा है। इससे संबंधित विवरण प्रदर्श 1.7 में नीचे दिए गए हैं।

प्रदर्श *1.7* आरक्षित मार्जिन और पीएलएफ का अंतर

गैस प्लांटों का भी प्लांट लोड फैक्टर वर्ष 2000-01 में 48% से बढ़कर 2009-10 में 65% हो गया। वर्ष 2009-10 के दौरान गैस प्लांटों के पीएलएफ में वृद्धि केजी बेसिन से अतिरिक्त मात्रा में गैस की उपलब्धता के कारण संभव हुई। हांलािक केजी डी6 बेसिन से गैस का उत्पादन कम होने के कारण 2011-12 के दौरान गैस प्लांट लोड फैक्टर में काफी कमी हो गई। हालांिक ईंधन की कमी के कारण वर्ष 2000-01 में 82% का आंकड़ा छूने वाला परमाणु लोड फैक्टर वर्ष 2007-08 में घटकर 46.5% हो गया, परंतु 2011-12 में यह बढ़कर 73.9% हो गया है। हालांिक आरिक्षत मार्जिन पर इसका केवल मामूली प्रभाव पड़ा है क्योंिक देश की स्थापित क्षमता में परमाणु क्षमता का बहुत ही कम योगदान है। ऐसी आशा की जाती है कि थर्मल विद्युत उत्पादन की प्रौद्योगिकी में सुधार और बड़े आकार वाली यूनिटें स्थापित किए जाने के साथ साथ गैस तथा परमाणु ईंधन की बेहतर उपलब्धता से भविष्य में आरिक्षत मार्जिन में भी सुधार होने की संभावना है। हालांिक ईंधन की कमी के साथ साथ नवीकरणीय क्षमताओं में बेहतर वृद्धि के कारण आरिक्षत मार्जिन भी बढ़ सकता है।

उत्साहजनक विशेषता यह है कि पिछले कुछ वर्षों में आरक्षित मार्जिन में कमी हो रही, इसके बावजूद भी हाइड्रो थर्मल मिक्स के परिणाम बहुत ही कम अंतर के साथ सामने आए हैं। इसका आशय यह है कि थर्मल स्टेशनों के पीएलएफ में वृद्धि के कारण आरक्षित मार्जिन में मुख्य रूप से कमी होती है। बजाय इसके कि स्थापित क्षमता के हाइड्रो थर्मल मिक्स को घटनाने से आरक्षित मार्जिन बढ़ता है। सामान्यत: ऐसा कहा जाता है कि आरक्षित मार्जिन का हाइड्रो थर्मल मिक्स नवीकरणीय – थर्मल मिक्स के साथ प्रत्यक्ष संबंध है। जैसे ही इस प्रकार के मिश्रण में वृद्धि होती है आरक्षित मार्जिन भी बढ़ जाता है।

1.6 12वीं पंचवर्षीय योजना की राष्ट्रीय विद्युत योजना

अधिनियम और नीति में किए गए संशोधनों के अनुसार केंद्रीय विद्युत प्राधिकरण ने 12वीं पंचवर्षीय योजना के लिए राष्ट्रीय विद्युत योजना, 13वीं पंचवर्षीय योजना के लिए संभावित योजना और 11वीं योजना के कार्यान्वयन की स्थिति पर एक समीक्षात्मक योजना तैयार की है। मसौदा एनईपी सभी पणधारकों की टिप्पणियों / सुझावों के लिए उन्हें परिचालित की गई, उनके सुझावों को एनईपी में उपयुक्त तरीके से शामिल किया गया है। पणधारकों से प्राप्त टिप्पणियों की एक प्रति अनुबंध 1.2 में संलग्न है।

अनुबंध *1.1*

अल्ट्रा मेगा पावर परियोजनाओं की स्थिति

豖.	यूएमपीपी/राज्य का	क्षमता	कोयला	आपूर्ति का	स्थिति
सं.	नाम	<i>(</i> मेगावाट <i>)</i>	स्रोत		
	मूल रूप से परिकल्पित	9 यूएमपीपी	की स्थिति	•	
1	सासन यूएमपीपी/मध्य प्रदेश	6x660	कैप्टिव ब्लॉक में अमरौली छत्रसाल	ोहर, मोहर विस्तार,	मैसर्स रिलायंस पावर लिमिटेड को 7 अगस्त

			6 ;	
2	मुंद्रा यूएमपीपी/ गुजरात	5x800	आयातित कोयला	परियोजना का अधिनिर्णय और हस्तांतरण मैसर्स टाटा पावर लिमिटेड को 24 अप्रैल 2007 को किया गया। परियोजना निर्माणाधीन है। मुंद्रा यूएमपीपी की 800 मेगावाट वाली पहली और दूसरी यूनिटों का सिंक्रोनाइजेशन क्रमश: 8.1.2012 और 10.7.2012 को किया गया और 7 मार्च, 2012 तथा 30 जुलाई 2012 से इन यूनिटों का वाणिज्यिक प्रचालन शुरू किया गया। शेष बची 3 यूनिटों की स्थापना 12वीं पंचवर्षीय योजना में किए जाने की आशा है।
3	कृष्णापट्टनम यूएमपीपी/आंध्र प्रदेश	6x660	आयातित कोयला	परियोजना का अधिनिर्णय और हस्तांतरण 29 जनवरी, 2008 को मैसर्स रिलायंस पावर लिमिटेड को किया गया। कृष्णापट्टनम यूएमपीपी के विकासकर्ता – मैसर्स कोस्टल आंध्रा पावर लिमिटेड (सीएजीपीएल) ने निर्माण कार्य शुरू कर दिया था, परंतु उसने इंडोनेशिया सरकार द्वारा कोयले की कीमत संबंधी नए विनियम जारी किए जाने का कारण बताते हुए निर्माण कार्य रोक दिया है। प्रमुख खरीददार (एमपीएसपीडीसीएल) द्वारा निलंबन नोटिस के विरुद्ध सीएपीएल द्वारा जारी की गई याचिका को दिल्ली उच्च न्यायालय ने खारिज कर दिया है। सीएपीएल ने दिल्ली उच्च न्यायालय की संभागीय बेंच के साथ साथ मध्यस्थता के लिए भारतीय माध्यस्थम परिषद से भी पहल की है। मामला विचाराधीन है।
4	तिलैया यूएमपीपी/ झारखंड	6x660	कैप्टिव कोयला ब्लॉक केरंदरी बी और सी	परियोजना का अधिनिर्णय और हस्तांतरण
5	यूएमपीपी/उड़ीसा	4000	ब्लॉक मीनाक्षी, मीनाथी बी और	परियोजना के विकासकर्ता के चयन हेतु अर्हता के लिए अनुरोध (आरएफ क्यू)

विकासकर्ता के चयन हेतु
अनुरोध (आरएफ क्यू) मई
कर दिए गए हैं। आरएफक्यू
करने की तारीख बढ़ाई गई
प्योजना के लिए आवंटित
ब्लॉकों के लिए एमओईएफ
• • • • •
प्त नहीं हुई है क्योंकि उसे
के अंतर्गत रखा गया था।
लिए स्थल का चयन कर
है। पावर प्लांट के लिए
गोर्ट को अंतिम रूप दिया जा
बोली दस्तावेजों (एसबीडी)
जाने के पश्चात आरएफक्यू
गे।
के विरोध के कारण स्थल का
ा जा सका है।
ाद्री में निर्धारित किए गए
ोय लोगों द्वारा किए जा रहे
ारण अंतिम रूप नहीं दिया
ia (प्रकाशम जिला) में
ia (प्रकाशम जिला) में लिए स्थल की पहचान की
ia (प्रकाशम जिला) में
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की गई है। ने में स्थल (अंतर्देशी स्थल)
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की गई है। ने में स्थल (अंतर्देशी स्थल)
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की गई हैं। ले में स्थल (अंतर्देशी स्थल) ली गई है।
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की गई है। ने में स्थल (अंतर्देशी स्थल)
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की गई हैं। ले में स्थल (अंतर्देशी स्थल) ली गई है।
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की माई हैं। ले में स्थल (अंतर्देशी स्थल) ली गई है।
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की गई है। की जा रही है। स्थल की पहचान कर ली गई। ता अध्ययन प्रगति पर है।
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की माई हैं। ले में स्थल (अंतर्देशी स्थल) ली गई है।
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की गई है। की जा रही है। स्थल की पहचान कर ली गई। ता अध्ययन प्रगति पर है। की जा रही है।
ंव (प्रकाशम जिला) में लिए स्थल की पहचान की धिग्रहण की प्रक्रिया शुरू कर स्थल (तटवर्ती स्थल) की गई है। की जा रही है। स्थल की पहचान कर ली गई। ता अध्ययन प्रगति पर है।

अनुबंध- *1.2*

विभिन्न पणधारकों से प्राप्त टिप्पणियां/सुझाव

क्र. सं.	(कंपनी/संगठन/ व्यक्ति विशेष) से प्राप्त	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
1. 2.	टिप्पणियां चुंगथंग हाइड्रो पावर प्राइवेट लिमिटेड वर्तसिला इंडिया लि.	विद्युत परियोजना को शामिल करना जिसे कंपनी द्वारा मार्च, 2017 से पहले स्थापित करने की अपेक्षा है।	
		और गैस इंजन का उल्लेख करने, डेटा/ सूचना को अद्यतन करने के सुझाव। इसके अलावा यह भी सुझाव दिया गया कि 5 मेट्रो शहरों में लगभग 2000 मेगावाट पीकिंग क्षमता वाले प्लांट (प्रत्येक 400 मेगावाट) की स्थापना की बजाय इसे कई बड़े शहरों में वितरित किया जाना चाहिए (20 शहरों में सभी जगह 100 मेगावाट के रूप में)	अद्यतन सूचना/डेटा शामिल कर सकते हैं, जिसमें गैस इंजन से संबंधित जानकारी उपयुक्त ढ़ग से दी जाएगी। शुरुआत में हम 5 मेट्रो शहरों में 400 मेगावाट पीकिंग क्षमता को बनाए रख सकते हैं। जहां तक वितरित रूप से पीकिंग पावर प्लांटों की स्थापना का संबंध है, तो पीकिंग पावर प्लांट पर कार्यबल की बैठक में व्यक्त किए गए विचारों को शामिल करने पर विचार किया जाए।
3	इंडियन विंड पावर एसोसिएशन	(क) कैप्टिव पावर ग्रहकों को प्रोत्साहित करना : 1.4.2012 से भूतलक्षी प्रभाव से आयकर अधिनियम के अंतर्गत त्वरित मूल्यहास का लाभ पुनः बहाल करना। कैप्टिव ग्राहक नियामक आयोगों द्वारा निर्धारित आरपीओ नहीं भर सकते हैं। (ख) विद्युत बोर्ड को पवन विद्युत की बिक्री करने वाले उत्पादकों को प्रोत्साहन (ग) विद्युत परियोजना के विकासकर्ताओं को प्रोत्साहन : विद्युत की कमी और समस्या झेल रहे राज्यों में पवन विद्युत परियोजनाओं की स्थापना हेतु की गई खरीद पर वैट और सीएसटी से छूट (घ) विंड पावर से संबंधित अन्य सामान्य मुद्दे	सभी मुद्दों/समस्याओं के साथ साथ एसोसिएशन द्वारा दिए गए सुझाव के अनुसार विंड पावर से संबंधित प्रोत्साहन टॉप के मुद्दे पर एमएनआरई द्वारा विचार किया जाए। जहां तक एनईपी का संबंध है, 12वीं और 13वीं पंचवर्षीय योजना के लिए एमएनआरई द्वारा प्रस्तुत किए गए आरईएस कार्यक्रम पर विचार किया गया है।
4.	ललितपुर पावर जनरेशन कंपनी	<i>3x660</i> मेगावाट क्षमता वाली ललितपुर	परियोजना के लिए ईंधन संपर्क तय नहीं किए गए हैं, इस प्रकार

क्र. सं.	(कंपनी/संगठन/ व्यक्ति	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
	विशेष) से प्राप्त		
	टिप्पणियां	पावर जनरेशन कंपनी को श्रेणी (ग) के बजाय श्रेणी (क) सूची में शामिल किया जाए, जिसके लिए बीटीजी हेतु आदेश प्रस्तुत कर दिए गए हैं और सभी स्वीकृतियां प्राप्त कर ली गई हैं।	परियोजना को शेल्फ में बनाए
5.	पावर सिस्टम ऑपरेशन कॉर्पोरेशन लिमिटेड	(i) एनईपी को एक संभावित योजना के रूप में तैयार किए जाने की आवश्यकता है, जिसमें कम से कम एक दशक की प्रगति/घटनाक्रम को शामिल किया जाना चाहिए और इसमें 15 वर्ष की संभावित तस्वीर प्रस्तुत की जानी चाहिए।	पंचवर्षीय योजना तथा संभावित 13वीं पंचवर्षीय योजना अर्थात
		(ii) योजना को लोकप्रिय बनाने के लिए कार्यशालाएं / रोडशो आयोजित किए जाने चाहिए।	, ,
		(iii) एनईपी पहले की तरह बिक्री आधार पर उपलब्ध कराए जाने के बजाय सार्वजनिक डोमेन में उपलब्ध होनी चाहिए।	(iii) एनईपी को भारत के राजपत्र में प्रकाशित किया जाना है। राजपत्र में अधिसूचना के पश्चात एनईपी को केंविप्रा की वेबसाइट पर अपलोड करने का निर्णय लिया जा सकता है। (iv) जल विद्युत परियोजनाओं पर
		(iv) योजना के अंतर्गत भावी पंप स्टोरेज योजनाओं पर जोर दिया जाना चाहिए।	उनकी स्थिति के आधार पर एनईपी में शामिल करने के लिए विचार किया गया है।
		(v) 12वीं पंचवर्षीय योजना में कोयला आधारित प्लान की बड़ी क्षमता अभिवृद्धि (लगभग 66 जीडब्ल्यू) को ध्यान में रखते हुए विद्युत की कमी के परिणामस्वरूप जल के संकट को इस दस्तावेज में विशेष रूप से उल्लिखित करने की आवश्यकता है।	(v) थर्मल परियोजनाओं के लिए जल की उपलब्धता एक समस्या है और इसे एनईपी में शामिल किया गया है, जिसे आगे विशेष रूप से उल्लिखित किया जाएगा। हालांकि वर्तमान में कार्यान्वित की जा रही परियोजनाओं के लिए जल आवंटन कर दिया गया है।
		<i>(vi)</i> मामला-1, मामला-2 और मर्चेंट	<i>(vi)</i> इस सूचना को योजना में

क्र. सं.	(कंपनी/संगठन/ व्यक्ति विशेष) से प्राप्त टिप्पणियां	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
		प्लांटों के विवरण दिए जाएं।	शामिल नहीं किया जा सकता है क्योंकि यह गतिशील प्रकृति की सूचना है।
		(vii) कोयला उपलब्ध न होने की स्थिति में योजना बी तैयार की जाए।	(vii) कोयला आधारित क्षमता के बिना कोई भी व्यवहार्य योजना तैयार नहीं की जा सकती है। इसके साथ साथ कोल इंडिया लिमिटेड से भी अपने उत्पादन में सुधार करने के लिए अनुरोध किया गया है।
		(viii) मौसमवार विवरण सहित राज्यवार लोड और आईसी स्थिति को शामिल किया जाए।	(viii) अखिल भारतीय स्तर पर योजना बनाई जा रही है। राज्यों को विद्युत के संबंध में समझौते करने हैं। मामला-1, मामला-2 बोलियों के जरिए
		(ix) डेटा/सूचना को अद्यतन करने से संबंधित विभिन्न पैरा/अध्यायों पर अन्य टिप्पणियां।	(ix) उपयुक्त तरीके से शामिल/अद्यतन किए जाएं
6.	झबुआ पावर लिमिटेड	मध्य प्रदेश में कोयला आधारित टीपीएस झबुआ पावर लिमिटेड (1x660 मेगावाट) को भी 12वीं पंचवर्षीय योजना सूची में शामिल किया जाना चाहिए।	```
7.	चैम्बर ऑफ स्मॉल इंडस्ट्री एसोसिएशन	(i) 30,000 मेगावाट की उच्चतर नवीकरणीय क्षमता शामिल करना। कोयले की कमी को ध्यान में रखते हुए अधिक मात्रा में कोयले का आयात, परिवहन समस्या और भूमि अधिग्रहण आदि। (ii) 2.5 से 3% के बीच स्पिनिंग रिजर्व बनाए रखना।	नवीकरणीय क्षमता एमएनआरई कार्यक्रम के अनुसार है। उच्च नवीकरणीय परिदृश्य तैयार किया गया है। राष्ट्रीय विद्युत नीति के अनुसार स्पिनिंग रिजर्व (5%) रखने के लिए योजना बनाई जा रही है।
		(iii) टी एण्ड डी हानियों को 12% तक घटाना। (iv) सूक्ष्म, लघु और मध्यम उद्यमों में	

क्र. सं.	(कंपनी/संगठन/ व्यक्ति	नियाणियों का सारांश	नगरा निकोण/शननोस्न
क्र. स.	(कपना/संगठन/ व्यक्ति विशेष) से प्राप्त टिप्पणियां	ाटप्याणया का सारास	हमारा दृष्टिकोण/अवलोकन
		प्रयुक्त ऊर्जा के 5.57% तक ऊर्जा खपत को कम करना। (v) ऐसे क्षेत्र जहां आर एण्ड डी हानियां अधिक हैं, में ऊर्जा टैरिफ 10% अधिक होना चाहिए।	
8.	इंडियन विंड एनर्जी एसोसिएशन	(i) सोलर और विंड क्षेत्र को सर्वाधिक प्राथमिकता दी जानी चाहिए। (ii) सौर ऊर्जा क्षेत्र की तरह विंड पावर को भी उतनी ही मान्यता दी जानी चाहिए। (iii) पवन ऊर्जा के लिए नीतिगत उपाय जैसे त्विरत मूल्यहास आदि शामिल किए जाएं। (iv) ऑनशोर क्षमता लगभग 1 लाख मेगावाट (80 एमटीएस हब ऊंचाई पर) है जो सीडब्ल्यूईटी द्वारा लगाए गए अनुमान 45,000 मेगावाट (50 एमटीएस हब ऊंचाई पर) की तुलना में काफी अधिक है। (v) संभावित पवन क्षमता और क्षमता अभिवृद्धि के मुद्दे का एनईपी में उचित ढंग से समाधान किया जाना चाहिए। पवन ऊर्जा के लिए भी नीति तैयार की जानी चाहिए।	एनईपी में पवन क्षमता अभिवृद्धि कार्यक्रम एमएनआरई से प्राप्त इनपुट के अनुसार तैयार किया जा रहा है। प्रोत्साहन आदि से संबंधित अन्य मुद्दों को एमएनआरई के साथ उठाया जा सकता है।
9.	डा. भरत झुनझुनवाला, भूतपर्वू प्रोफेसर, आईआईएम बंगलौर	(i) ऐसा प्रतीत होता है कि लगभग 80,000 मेगावाट क्षमता अभिवृद्धि का लक्ष्य लगभग 3 रुपए प्रति किलोवाट के वर्तमान मूल्य पर मांग अनुमानों पर आधारित है, जबिक यह लगभग 6 रुपए	***

क्र. सं.	(कंपनी/संगठन/ व्यक्ति विशेष) से प्राप्त	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
	टिप्पणियां	प्रति किलोवाट के विद्युत मूल्य पर आधारित होना चाहिए (पर्यावरण संबंधी बाह्य समस्याओं को ध्यान में रखते हुए)।	
		(ii) देश में केवल उतनी ही विद्युत का उत्पादन और खपत होनी चाहिए जो विद्युत के वास्तविक मूल्य पर वाणिज्यिक रूप से न्यायोचित हो। वास्तविक मांग वर्तमान में बाजार में मौजूदा मांग की तुलना में कम होगी। मांग को तदनुसार कम किया जाना चाहिए।	(ii) हमारा प्रयास राष्ट्रीय विद्युत नीति के अनुसार संपूर्ण मांग को पूरा करना है।
		(iii) हमारी अर्थव्यवस्था की ऊर्जा निर्भरता धीरे धीरे कम हो रही है। संभावित मांग का अनुमान लगाते समय इस बात को ध्यान में नहीं रखा गया है। इसे भी ध्यान में रखा जाए।	(iii) ऊर्जा तीव्रता को ध्यान में रखा गया है।
		(iv) कोयले की कमी को ध्यान में रखते हुए यह आवश्यक है कि खपत की विभिन्न श्रेणियों को प्राथमिकता देने के लिए एक प्रणाली विकसित की जाए और कम खपत वाले उपभोक्ताओं से पहले अधिक खपत करने वाले उपभोक्ताओं की मांग को पूरा करने के लिए एक प्रणाली तैयार की जाए।	<i>(iv)</i> सहमत नहीं हो सकते हैं।
		(v) जल विद्युत को कम कार्बन रणनीति के भाग के रूप में बढ़ावा दिया जा रहा है। हाइड्रो पावर से कार्बन उत्सर्जन थर्मल पावर की तुलना तीन गुना कम है।	(v) सहमत नहीं हो सकते हैं।
		(vi) पर्यावरण संबंधी बाह्य समस्याओं की अनदेखी करने वाली वर्तमान नीति उत्पादक राज्यों के लिए भेदभावपूर्ण है क्योंकि पर्यावरण संबंधी अधिकांश लागत उत्पादक राज्यों द्वारा ही वहन की जाती है जबकि इसका लाभ खपत करने वाले राज्यों को मिलता है।	(vi) इस मुद्दे को अलग से उठाए जाने की आवश्यकता है।

क्र. सं.	(कंपनी/संगठन/ व्यक्ति विशेष) से प्राप्त टिप्पणियां	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
		(vii) संबद्ध कोयला खदानों वाले थर्मल प्लांटों के लिए यह आवश्यक है कि वे खदान क्षेत्र के आसपास पूरक वनीकरण करें।	(vii) कुछ खानों में किया जा रहा है, सामान्य प्रक्रिया के रूप में अपनाने की आवश्यकता है।
		(viii) दिन के समय विद्युत मूल्य के लिए स्पष्ट नीति बनाए जाने की आवश्यकता है जिससे कि गैस और जल विद्युत पर लोड कम किया जा सके।	(viii) विभिन्न राज्यों में टीओडी मीटरिंग और स्मार्ट ग्रिड संकल्पना शुरू की जा रही है।
		(ix) जल विद्युत प्लांटों के लिए लागत आधारित (प्लस) टैरिफ के परिणामस्वरूप संपूर्ण पूंजीगत लागत कम हो रही है। यह सुझाव दिया जाता है कि लेखापरीक्षा प्रणाली अथवा बेंचमार्क प्राइसिंग प्रणाली शुरू की जाए।	(ix) टीईसी के लिए केंविप्रा में प्राप्त सभी परियोजनाओं के लिए लागत अनुमानों की जांच बेंचमार्क कीमतों के आधार पर की जाती है।
10.	स्पिक इलेक्ट्रिक पावर कॉर्पोरेशन (प्रा.) लिमिटेड	12वीं पंचवर्षीय योजना के दौरान तूतीकोरन चरण-// में 1x525 मेगावाट टीपीएस परियोजना को शामिल किया गया।	परियोजनाओं के शेल्फ में शामिल किया जा सकता है।
11.	तीस्ता हाइड्रो पावर लिमिटेड	12वीं पंचवर्षीय योजना सूची में उत्तरी सिक्किम में भीमक्योंग हाइड्रो पावर परियोजना (99 मेगावाट) को शामिल किया जाए।	इसके लिए ईसी अभी प्राप्त किया जाना है। जून, 2016 तक इसकी स्थापना का बहुत ही महत्वाकांक्षी लक्ष्य है। इस परियोजना को 12वीं पंचवर्षीय योजना के शेल्फ में शामिल किया जा सकता है।
12	पीटीसी	(i) अग्रिम तौर पर 12वीं पंचवर्षीय योजना के लक्ष्यों को पहले ही निर्धारित किया जाए जिससे कि लक्ष्य को पूरा करने के लिए विद्युत कंपनियां समय पर कार्रवाई कर सकें।	(i) 12वीं पंचवर्षीय योजना के लक्ष्यों को योजना आयोग द्वारा
		(ii) संपूर्ण विद्युत क्षेत्र की वाणिज्यिक व्यवहार्यता के लिए वितरण क्षेत्र पर विशेष रूप से ध्यान दिया जाए।	(ii) वितरण के क्षेत्र में राज्यों को महत्वपूर्ण भूमिका निभानी होती है।

क्र. सं.	(कंपनी/संगठन/ व्यक्ति विशेष) से प्राप्त टिप्पणियां	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
		(iii) आयोजना एकीकृत ऊर्जा नीति के अनुसार की जानी चाहिए और ऊर्जा मिश्रण में गैस की अधिक हिस्सेदारी पर विचार किया जाना चाहिए।	ध्यान में रखते हुए पहले से
		(iv) गैस/कोयला आधारित परियोजनाओं के पीपीए की अवधि 15-18 वर्ष रखने के बजाय ईंधन आपूर्ति करार के अनुसार निर्धारित की जानी चाहिए और अध्याय 14 के अनुच्छेद 6.4 में आवश्यक संशोधन किया जाना चाहिए।	(iv) बोली दस्तावेजों में विद्युत मंत्रालय द्वारा आवश्यक संशोधन किए जा रहे हैं।
		(v) प्रतियोगी बोली प्रक्रिया के जरिए आवंटित परियोजनाओं के समक्ष ईंधन की समस्याओं के साथ साथ अन्य पहलुओं से जुड़ी समस्याएं हैं अत: एनईपी में उनका समाधान किया जाना चाहिए।	(v) विद्युत क्षेत्र की समस्याओं, विशेष रूप से ईंधन संबंधी मुद्दों को एनईपी में शामिल किया गया है।
		(vi) जलाशय प्रकार की जल विद्युत परियोजनाओं पर जोर दिया जाए और आर एण्ड आर संबंधी समस्याओं को हल किया जाए।	(vi) जलाशय पर आधारित जल विद्युत प्लांट को बढ़ावा देने के लिए व्यवस्था में अतिरिक्त सामग्री और आर एण्ड आर संबंधी मुद्दों को शामिल किया जाए।
		(vii) पंप स्टोरेज प्लांटों (पीएसपी) परियोजनाओं की संभावनाओं का बेहतर ढंग से सदुपयोग किया जाना चाहिए। वर्तमान में इसका केवल 5% ही उपयोग किया जा रहा हे।	(vii) यथाव्यवहार्य सीमा तक पीएसएस प्लांटों की आयोजना तैयार की जा रही है।
		(viii) उन कारणों की जांच की जानी चाहिए कि डीएसएम संबंधी उपायों का अपेक्षा से कम/कार्यान्वयन क्यों नहीं	(viii) डीएसएम उपायों के कार्यान्वयन में राज्यों को सक्रिय भूमिका निभानी होगी।

क्र. सं.	(कंपनी/संगठन/ व्यक्ति विशेष) से प्राप्त टिप्पणियां	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
		किया जा रहा है।	
13.	एमबी पावर (छत्तीसगढ़) लिमिटेड	12वीं पंचवर्षीय योजना में छत्तीसगढ़ 2x660 मेगावाट टीपीएस को शामिल करने के लिए अनुरोध किया है।	हम परियोजनाओं के शेल्फ में इसे शामिल कर सकते हैं।
14.	लाचुंग हाइड्रो पावर प्राइवेट लिमिटेड	12वीं पंचवर्षीय योजना में नॉर्थ सिक्किम की 99वे मेगावाट लाचुंग हाइड्रो परियोजना को शामिल किया जाए।	ईसी अभी प्राप्त नहीं हुआ है। 12वीं पंचवर्षीय योजना के लिए महत्वाकांक्षी लक्ष्य है। हम इसे परियोजनाओं के शेल्फ में शामिल कर सकते हैं।
15	पावर रिसर्च एण्ड डवलपमेंट कंसल्टेंट्स प्राइवेट लिमिटेड	एनईपी के विभिन्न अध्यायों में किए गए बहुत से सुधार/सुझाव प्राय: वर्तनी संबंधी तुटियों, डेटा अद्यतनीकरण, पेज ब्रेक, टेबल नंबिरंग से संबंधित हैं। कुछ टिप्पणियां निम्नानुसार हैं: (i) मांग पूर्वानुमान लगाने के लिए आर्थिक गणना पर आधारित पहल पर विचार किए जाने की आवश्यकता है। (ii) 12वीं एवं 13वीं पंचवर्षीय योजना के लिए मांग के संबंध में घटिया परिदृश्य प्रस्तुत किया गया है और वह दोनों के लिए समान है। अत: इसमें संशोधन किया जाए। (iii) भाग 4.3 (पेज 57) में दिए अनुसार वितरित उत्पादन को लोड सेंटर के पास नहीं होना चाहिए। (iv) पवन ऊर्जा की लागत कोयला आधारित उत्पादन के समतुल्य है परंतु अन्य गैर पारंपरिक मामलों में इसे उत्पादन के अन्य प्रकार के रूप में माना गया है (भाग 5.2.2, पेज 92)। (v) पीकिंग प्लांट लोड सेंटर के पास नहीं होना चाहिए (पेज 92 और 231)। (vi) ग्रिड कोड से एलओएलपी 2% है।	अवलोकनों/सुझावों को उपयुक्त

क्र. सं.	(कंपनी/संगठन/ व्यक्ति विशेष) से प्राप्त टिप्पणियां	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
		जबिक हम 1% एलओएलपी अपना रहे हैं और 0.15% ईएनएस का सत्यापन करने की आवश्यकता है।	
		(vii) 800/600 मेगावाट और 500/250/210/200 मेगावाट क्षमता वाली यूनिटों के लिए कोयला आधारित यूनिटों के पीएलएफ को 85% तक संशोधित किया जा सकता है (भाग 6.3.6 पेज 105)। (viii) आरक्षित मार्जिन शब्द के बदले में आरक्षित क्षमता शब्द का इस्तेमाल किया	
16	टाटा प्रोजेक्ट लिमिटेड	गया (पेज नं.224)। ईपीसी कार्यों के लिए बोली हेतु पात्र घोषित किए जाने के संबंध में बोलीदाताओं के लिए पूर्व अर्हता मानदंडों में संशोधन करने का सुझाव दिया गया है।	इस मुद्दे को अलग से उठाया जाए।
17	हरियाणा पावर जनरेशन कंपनी लिमिटेड	12वीं पंचवर्षीय योजना में डीसीआरटीपीपी द्वारा 1x660 मेगावाट विस्तार परियोजना को शामिल किया जाए।	ईसी अभी प्राप्त किया जाना है। परियोजनाओं के शेल्फ में इसे शामिल किया जा सकता है।
18	यूपी पावर ट्रांसमिशन कॉर्पोरेशन लिमिटेड	लितपुर टीपीएस (3x660), भोगनीपुर टीपीएस-1 (2x660+2x660 मेगावाट), संडीता टीपीएस (2x660), मेजा // (2x660) घाटमपुर (3x660 मेगावाट), जवाहरपुर (3x660) को 12वीं एवं 13वीं पंचवर्षीय योजनाओं में शामिल किया जाए।	योजना आयोग द्वारा निर्धारित किए गए लक्ष्य के अनुसार 12वीं पंचवर्षीय योजना के दौरान स्थापना हेतु जिन परियोजनाओं की योजना बनाई गई है, केवल उन्हें ही 12वीं योजना सूची में शामिल किया जा सकता है। हालांकि उत्तर प्रदेश द्वारा जिन परियोजनाओं की योजना बनाई गई है, को परियोजनाओं के शेल्फ में शामिल किया जा सकता है।
19.	सिंदया पावर	सिर्काझी, तमिलनाडु में 2x660 मेगावाट कॉस्टर आधारित टीपीएस को 12वीं एवं 13वीं योजना सूची में शामिल किया जाए।	ईसी अभी प्राप्त किया जाना है। इसे परियोजनाओं के शेल्फ में शामिल किया जा सकता है।

सनिश्चित किए जाने की आवश्यकता है दस	एफएसए, पीपीए, मानक बोली दस्तावेजों में संशोधन, ईंधन की कमी। ई और एफ संबंधी स्वीकृतियां जल्दी प्राप्त करने
20. विद्युत उत्पादक संघ (i) एफएसए पर हस्ताक्षर – यह एप सुनिश्चित किए जाने की आवश्यकता है दस्	दस्तावेजों में संशोधन, ईंधन की कमी। ई और एफ संबंधी
सुनिश्चित किए जाने की आवश्यकता है	दस्तावेजों में संशोधन, ईंधन की कमी। ई और एफ संबंधी
वाले प्लांटों के लिए एफएसए पर हस्ताक्षर प्लांट की स्थापना से कम से कम एक माह पहले हो जाने चाहिए। (ii) एफएसए पर हस्ताक्षर के लिए पीपीए की पूर्व शर्त :- नए मॉडल एफएसए के अनुसार करार पर हस्ताक्षर करने के लिए दीर्घकालिक पीपीए एक अनिवार्य आवश्यकता है। हालांकि कोयला संपर्क के अधिनिर्णय के समय इस बात को नोट किया जाए कि वितरण कंपनियों के साथ दीर्घकालिक पीपीए की संप	अदि से संबंधित एपीपी द्वारा उठायी गई समस्याओं / दिए गए बहुत से सुझावों का समाधान उपयुक्त फोरमों पर किए जाने की आवश्यकता है। इन मुद्दों का अलग से समाधान किया जा सकता है। संपादकीय परिवर्तन उपयुक्त ढंग से किए जाएं।

क्र. सं.		/ व्यक्ति	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
	विशेष) से टिप्पणियां	प्राप्त		
			हस्ताक्षर करने की अनुमित इस शर्त के अनुसार प्रदान की जाए कि एफएसए के अनुसार कोयला की वास्तविक आपूर्ति में पीपीए पर हस्ताक्षर हो जाने के पश्चात अपेक्षित तेजी लाई जाएगी। (iv) प्रतियोगी बोली प्रक्रिया के अवसरों की कमी रही है। इस बात को नोट किया जाए कि ऐसे बहुत से राज्य हैं जिन्होंने यहां तक कि बोलियां भी आमंत्रित नहीं की हैं और दक्षिण क्षेत्र में घाटे के बावजूद भी अभी तक एक भी बोली पूरी नहीं की गई है। यह अनिवार्य है कि ऐसी स्थितियां निर्मित की जाएं जो राज्यों को विद्युत खरीद बोलियां आमंत्रित करने में समर्थ बना सकें, जिससे कि ऐसी परियोजनाएं जिनकी स्थापना पहले ही कर दी गई है अथवा निकट भविष्य में जिनकी स्थापना होने वाली है, उनके लिए पीपीए पर हस्ताक्षर किए जा सकें। हालांकि, मामला 1 बोली प्रक्रिया अवसरों की कमी को ध्यान में रखते हुए ऐसी बहुत सी परियोजनाएं हैं, जिनकी स्थापना होने वाली है और उनके पास एलओए उपलब्ध है, परंतु वे पीपीए के अभव में विद्युत उत्पादन में सक्षम नहीं होंगीं। विद्युत की गंभीर कमी वाली ऐसी स्थिति में सुलभ समाधान यह है कि ऐसी परियोजनाओं को धारा 62 के अंतर्गत टैरिफ निर्धारण के लिए संबंधित राज्य और नियामकों से पहल करने की अनुमित प्रदान की जाए, ताकि उन्हें कोयला प्राप्त होने लगे और विद्युत का उत्पादन शुरू किया जा सके। (v) नए एफएसए में वास्तविक परिवर्तन क) कम से कम 80% निर्धारित कोयला आवश्यकता ख) मार्च, 2009 के पहले हस्ताक्षरित एफएसए को यथावत रखने की आवश्यकता है।	

क्र. सं.	(कंपनी/संगठन/ व्यक्ति विशेष) से प्राप्त टिप्पणियां	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
	टिप्पणिया	ग) एफएसए पर हस्ताक्षर से पहले पीपीए क्रियान्वित करने की आवश्यकता पर मामला-1 अवसरों के अभाव को ध्यान में रखते हुए विचार किए जाने की आवश्यकता है और जब तक विद्युत मंत्रालय द्वारा अविशष्ट मूल्य संबंधी मुद्दों का समाधान नहीं कर लिया जाता है, तब तक निश्चित रूप से इस नीति को बनाए रखा जाना चाहिए। सबसे खराब स्थिति में यिद एफएसए के अंतर्गत कोयले की आपूर्ति समझौते के अनुरूप निर्धारित क्षमता के अनुसार हो जाती है, तो दीर्घकालीन पीपीए को बनाए रखा जाना चाहिए। (vi) मर्चेंट प्लाटों पर एक स्पष्ट नीति होनी चाहिए क्योंकि संपूर्ण देश में मर्चेंट प्लांटों की स्थापना की जा रही है। यिद दीर्घकालिक पीपीए की पूर्व शर्त के कारण उन्हें बाद में ईधन की आपूर्ति बंद कर दी जाती है, तो परियोजना के बंद होने का खतरा पैदा हो जाएगा। (vii) एफएसए के अनुसार 80% आवश्यक कोयले की आपूर्ति की जाती है और आयात किए गए कोयले को 86% पीएलएफ पर प्लांट प्रचालित करने के लिए मिश्रित किया जाता है। अधिक परिवर्ती लागत के कारण विद्युत कंपनियां उसका भुगतान करने में समर्थ नहीं हैं/उसका भुगतान करने में समर्थ नहीं हैं/उसका भुगतान करने में समर्थ नहीं हैं। नए और पुराने पीपीए में ईधन की लागत को शामिल करने के लिए ब्लैंडिंग पर सुस्पष्ट नीति की सिफारिश की जानी चाहिए। (viii) राष्ट्रीय टैरिफ नीति के अनुसार 1 जनवरी, 2011 से विद्युत की खरीद	
		प्रतियोगी बोली प्रक्रिया के जरिए की	

क्र. सं.	(कंपनी/संगठन/ व्यक्ति	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
	विशेष) से प्राप्त निकाणियां		
	टिप्पणियां	जानी है। विकासकर्ता 25 वर्ष के लिए पण्य वस्तु मूल्य और इससे जुड़े जोखिम को बर्दाश्त नहीं कर सकता है। अत: नए मानक बोली दस्तावेजों में ईंधन की लागत को अनिवार्य रूप से शामिल किया जाना चाहिए। गैस आधारित पावर परियोजनाओं से विद्युत की खरीद के लिए अलग बोली दस्तावेज अधिसूचित किए जाने की आवश्यकता है क्योंकि इन परियोजनाओं के जोखिम कोयला आधारित परियोजनाओं की तुलना में काफी अलग हैं। (ix) ई और एफ स्वीकृतियों में तेजी लाना : उपलब्ध ऊर्जा पर कोयले की अनुपलब्धता के बड़े प्रभाव को ध्यान में रखते हुए विद्युत मूल्य (जो कोयला की लगातार कमी के कारण और अधिक बढ़ सकता है), के साथ साथ पूंजी लागत भी बढ़ जाएगी। यह नितांत आवश्यक है कि कोयला धारक क्षेत्रों को आवश्यक सुरक्षा उपायों के साथ वन संबंधी स्वीकृति शीघ्र प्रदान की जाए। प्रक्रियागत विलंब को कम करने की आवश्यकता है परंतु सुरक्षा उपायों के साथ कोई समझौता न किया जाए। जहां एक ओर नो-गो नीति को हटाए जाने जैसी कार्रवाई की जाती है, वहीं दूसरी ओर कोयला ब्लॉकों के साथ साथ विद्युत परियोजनाओं के लिए ई और एफ स्वीकृतियों के संबंध में समानांतर रूप से आवश्यक कार्रवाई करने की अनुमति प्रदान की जाती है। अभी भी कुछ ऐसी परियोजनाएं हैं जो पूर्ववर्ती नो-गो क्षेत्रों में आती हैं, उनके	
		संबंध में शीघ्र स्वीकृतियां प्रदान किए जाने की आवश्यकता है।	
21	अथेना पावर लिमिटेड	परियोजना का नाम ''अथेना छत्तीसगढ़ पावर लिमिटेड'' – 600 मेगावाट करने के लिए अनुरोध किया गया है।	हम परियोजना के नाम और स्थापित क्षमता में परिवर्तन के लिए सहमत हैं।
	श्री एन. प्रदीप कुमार, पावर कंपनी ऑफ कर्नाटक लिमिटेड	एनईपी में बहुत सी टंकण संबंधी त्रुटियों, संरेखण त्रुटियों और कुछ अन्य सुधारों के लिए सुझाव दिया गया है।	सुझाव/संशोधनों को उपयुक्त ढंग से शामिल किया गया है।

क्र. सं.	(कंपनी/संगठन/ व्यक्ति विशेष) से प्राप्त टिप्पणियां	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
23	नीपको	(i) 12वीं पंचवर्षीय योजना के लिए नीपको द्वारा तैयार की गई योजनाएं एनईपी के अनुरूप हैं। तथापि 13वीं पंचवर्षीय योजना के लिए कुल 1851 मेगावाट क्षमता वाली अन्य	
		परियोजनाओं को 13वीं योजना सूची में शामिल किया जाना चाहिए। (ii) 46 मेगावाट एजीटीपी संयुक्त चक्र विस्तार परियोजना को 12वीं योजना सूची में शामिल करने के लिए अनुरोध किया गया है।	(ii) केवल ऐसी परियोजनाओं को 12वीं योजना सूची में शामिल किया गया है जिनके लिए गैस आपूर्ति सुनिश्चित है।
		(iii) पूर्वात्तर क्षेत्र में आर एण्ड एम परियोजनाओं से संबंधित अद्यतन सूचना उपलब्ध कराई गई है और उसे एनईपी में तदनुसार अद्यतन करने के लिए अनुरोध किया गया है।	<i>(iii)</i> अद्यतन किया जा रहा है।
24	एनएचपीसी लिमिटेड	(i) 11वीं पंचवर्षीय योजना में जल विद्युत परियोजनाओं के कार्यान्वयन में विलंब के लिए कुछ बड़े मुद्दों / चिंताओं, कारणों पर बहुत से सुझाव दिए गए और 12वीं पंचवर्षीय योजना में जल विद्युत विकास में तेजी लाने के लिए कुछ उपाय सुझाए गए हैं।	इन्हें शामिल कर सकते हैं और एनएचपीसी की परियोजनाओं की स्थिति को अद्यतन किया जा
		(ii) प्रतिवेदन दिया गया है कि 12वीं पंचवर्षीय योजना सूची में एनएचपीसी लिमिटेड की तीन परियाजनाएं शामिल की जाएं। हालांकि ऐसी परियोजनाओं को सूचीबद्ध नहीं किया जा सकता है, जिनकी निर्धारित तिथि निकल गई है।	(ii) चूंकि अब 11वीं पंचवर्षीय योजना अवधि समाप्त हो गई है। अत: जिन परियोजनाओं की निर्धारित तिथि निकल गई उन्हें 12वीं योजना में सूचीबद्ध किया जा सकता है।
		(iii) एनएचपीसी ने 12वीं पंचवर्षीय योजना के लिए 4480 मेगावाट क्षमता वाली जल विद्युत परियाजनाओं की सूची उपलब्ध कराई है और अनुरोध किया है कि इन्हें 12वीं योजना सूची में शामिल किया जाए।	(iii) 12वीं योजना की परियोजनाएं योजना आयोग के लक्ष्य के अनुसार हैं।

क्र. सं.	(कंपनी/संगठन/ व्यक्ति	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
	विशेष) से प्राप्त टिप्पणियां		
		(iv) जल विद्युत विकास में तेजी लाने के लिए बहुत से सुझाव जैसे जल विद्युत परियोजनाओं के लिए पर्यावरण एवं वन तथा वन्य जीव स्वीकृतियां प्रदान करने के लिए एकल खिड़की प्रणाली, विकासात्मक/डीपीआर से संबंधित कार्यों, नदी बेसिन का संचित प्रभाव अध्ययन, नदी बेसिन में अवसंरचना विकास, धनाढ्य राज्यों में जल विद्युत उपस्करों की विनिर्माण यूनिटों की स्थापना, पूर्वोत्तर क्षेत्र से विद्युत निष्क्रमण के लिए राष्ट्रीय ग्रिड, पूर्वोत्तर क्षेत्र में अग्रिम रूप से पूरक वनीकरण आदि के संचालन हेतु पहले से तथा अलग से वन संबंधी स्वीकृति आदि	सुझावों को उपयुक्त फोरम पर
		सुझाव दिए गए हैं। (v) वन भूमि के परिवर्तन की लागत का मूल्यांकन करने के लिए इसके अपफ्रंट भुगतान और इसके निवल वर्तमान मूल्य (एनपीवी) की समीक्षा किए जाने की समीक्षा है क्योंकि इसके कारण जल विद्युत योजनाओं के भंडारण हेतु उन पर बड़ा वित्तीय बोझ पड़ता है और परियोजनाएं आकर्षक नहीं रह जाती हैं। इसके लिए उपयुक्त नितगत परिवर्तन	(v) समुचित कार्रवाई सुनिश्चित की जाए
		आवश्यक हैं। (vi) निजी विकासकर्ताओं की समस्याओं को ध्यान में रखते हुए बड़ी जल विद्युत परियोजनाओं का विकास केवल पीएसयू के माध्यम से किया जाना चाहिए ताकि विद्युत की लागत के संबंध में जवाबदेही तय की जा सके, पर्यावरण संबंधी जागरूकता, स्थानीय जनता और अंतिम प्रयोक्ताओं के लाभ सुनिश्चित किए जा सकें।	(vi) नई जल विद्युत नीति को ध्यान में रखते हुए बड़ी जल विद्युत परियोजनाएं पीएसयू के लिए आरक्षित करना कठिन प्रतीत होता है।
25	आशा पावर कॉर्पोरेशन प्राइवेट लिमिटेड	(i) कंपनी की 35 मेगावाट क्षमता वाली गैस आधारित परियोजना, जिसका निर्माण उन्नत चरण पर है, को 11वीं योजना में शामिल किया जाए। (ii) 12वीं योजना के अंतर्गत 6	ऐसी गैस परियोजनाओं को 12वीं योजना सूची में शामिल किया गया है जिनके लिए स्थानीय स्तर पर सुदृढ़ ईंधन संपर्क स्थापित हैं।

क्र. सं.	(कंपनी/संगठन/ व्यक्ति विशेष) से प्राप्त टिप्पणियां	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
		अतिरिक्त गैस इंजन और एक एसटीजी शामिल किया जाए	
26	एमपी पावर मैनेजमेंट कंपनी लिमिटेड	कोई टिप्पणी नहीं	
27	डब्ल्यू.बी. स्टेट इलेक्ट्रिसिटी डिस्ट्रीब्यूशन कंपनी लिमिटेड	डब्ल्यूबीएसईडीसीएल की परियोजनाओं के संबंध में डेटा अद्यतनीकीरण/आर एण्ड एम की स्थिति से अवगत कराया गया है और एनईपी में उसे अद्यतन करने का अनुरोध किया गया है।	हम सहमत हैं।
28	शंकर शर्मा, विद्युत नीति विश्लेषक	(i) पर्याप्त मात्रा में ईंधन सुनिश्चित करने में किठनाई, भूमि अधिग्रहण संबंधी समस्याएं, बड़े पैमाने पर विस्थापन के लिए स्थानीय लोगों का विरोध और लोगों के बीच पर्यावरण के संबंध में अपेक्षित स्तर की जागरूकता न होने से उच्च क्षमता अभिवृद्धि के लक्ष्यों को प्राप्त करने में सदैव बाधाएं बनी रहेंगी। अत: भावी योजनाओं के लिए केंविप्रा के वृद्धि लक्ष्य में इन बाधाओं पर स्पष्ट रूप से चर्चा किए जाने की आवश्यकता है।	योजना आयोग द्वारा क्षमता अभिवृद्धि कार्यक्रम के लिए लक्ष्य निर्धारित करते समय इन समस्याओं पर विचार किया गया
		(ii) 10-20 वर्षों के लिए विद्युत की मांग संबंधी पूर्वानुमानों को हमारे समाज के सभी स्तरों की आवश्यकता के यथार्थ मूल्यांकन से जोड़ा जाना चाहिए, ताकि वे विद्युत क्षेत्र का जवाबदेह प्रबंधन सुनिश्चित करने में योगदान देंगे।	(ii) अब तक केंविप्रा की ईपीएस रिपोर्ट में अनुमानित मांग वास्तविक मांग के अनुरूप है और स्वीकार्य सीमा के अंदर है। अत: 18वीं ईपीएस रिपोर्ट में लगाए गए मांग संबंधी पूर्वानुमानों को 12वीं/13वीं योजना अवधि के दौरान विद्युत आयोजना हेतु अपनाया गया है।
		(iii) जीडीपी की अधिकतम संकल्पना के साथ भावी मांग का पूर्वानुमान लगाने की बजाय देश में गरीबी उन्मूलन के लिए आवश्यक विद्युत की न्यूनतम राशि इस उद्देश्य से निर्धारित की जानी चाहिए। समाज ग्रिड पर बड़ी क्षमता अभिवृद्धि वहन नहीं कर सकता है और अतिरिक्त मांग का देश के आर्थिक विकास में योगदान संभव नहीं है। बड़े पैमाने पर	(iii) देश के लगभग सभी राज्यों में विद्युत की मौजूदा कमी की स्थिति में और जहां लाखों लोग विद्युत की आधारभूत आवश्यकता से वंचित हैं, ऐसी स्थिति में देश को लोगों की अपेक्षाओं को पूरा करने के लिए प्रयास करना चाहिए। इसके अलावा विद्युत हमारी अर्थव्यवस्था के महत्वपूर्ण

क्र. सं.	(कंपनी/संगठन/ व्यक्ति विशेष) से प्राप्त	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
	टिप्पणियां		
		क्षमता अभिवृद्धि के लिए समाज पर सामाजिक, आर्थिक और पर्यावरणीय लागत बहुत अधिक होगी अत: यह आवश्यक है कि संपूर्ण मांग उस सीमा तक रखी जाए, जिसका आसानी से प्रबंधन किया जा सके।	समाज के सभी वर्गों की मांग को पूरा करने के लिए अवश्य उपलब्ध होनी चाहिए।
		(iv) यदि मौजूदा अवसंरचना का इष्टतम सदुपयोग किया जाता है तो विद्युत क्षेत्र को बहुत अधिक क्षमता अभिवृद्धि करने की आवश्यकता है। 2021 तक आवश्यक अतिरिक्त पावर के लिए नवीकरणीय ऊर्जा स्रोतों से योजना बनाई जाए।	(iv) मौजूदा क्षमताओं से अतिरिक्त बिजली मिल सकती है, बशर्ते कि पर्याप्त मात्रा में ईंधन सुनिश्चित किया जाए। एमएनआरई ने 12वीं और 13वीं योजना में लगभग 30,000 मेगावाट की अतिरिक्त आरईएस क्षमता के लिए योजना तैयार की है।
		(V) उत्पादन संबंधी आयोजना के लिए समाज के प्रति परियोजना की लागत (प्रत्यक्ष और अप्रत्यक्ष दोनों लागत) को परियोजना के विकासकर्ताओं की ही वित्तीय लागत के बजाय मानदंड के रूप में माना जाना चाहिए। 12वीं और 13वीं योजना के लिए कम कार्बन उत्सर्जन रणनीति भारी मात्रा में अतिरिक्त जीएचजी उत्सर्जन होने से व्यर्थ सिद्ध होगी, क्योंकि बड़ी संख्या में पावर प्लांट स्थापित किए जाने की योजना बनाई गई है।	(v) हां, कुल उत्सर्जन तो बढ़ जाएगा परंतु नवीकरणीय ऊर्जा स्रोतों की हिस्सेदारी बढ़ने दक्ष उपाय अपनाए जाने के कारण उत्सर्जन की तीव्रता कम होगी। देश के लिए विद्युत आयोजना देश में उपलब्ध ईंधन संसाधन पर निर्भर करती है और कोयले पर हमारी निर्भरता निकट भविष्य में भी जारी रहेगी।
		(vi) आगामी 25-30 वर्षों में कोयला आधारित पावर प्लांटों को हटाने के लिए परिभाषित योजनाएं बनायी जाएं।	(vi) सहमति व्यक्त नहीं की जा सकती
29	चलकुडी पुजहा संरक्षण समिति	(i) केंविप्रा की मसौदा योजना स्थायी वृद्धि योजना के अनुरूप नहीं है। फिर भी यदि इसे कार्यान्वित किया गया तो यह देश के पारिस्थितिकीय आपदा की तरफ तेजी से ले जाएगी। योजना में उल्लेख किया गया है कि पारंपरिक स्रोतों में से जल विद्युत और परमाणु विद्युत ऊर्जा के स्वच्छ स्रोत हैं, अत: इन्हें प्राथमिकता दी जाए। यह अत्यधिक चिंताजनक है।	(i) यद्यपि आरईएस की योजना बनाई जा रही है और उत्साहपूर्वक उसका कार्यान्वयन किया जा रहा है, परंतु उत्पादन के पारंपरिक स्रोतों के बिना बड़ी मांग को पूरा नहीं किया जा सकता है, जिनसे जीएचजी उत्सर्जन/आर एण्ड आर से संबंधित मुद्दे और अन्य संबद्ध समस्याएं जुड़ी हैं। पर्यावरणीय और सामाजिक मुद्दों के आधार पर

क्र. सं.	(कंपनी/संगठन/ व्यक्ति	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
	विशेष) से प्राप्त		
	टिप्पणियां	-1 	
		बड़ी जल विद्युत परियोजनाओं से विस्थापन, जलमग्नता बढ़ती है और मीथेन गैस का उत्सर्जन होता है।	विद्युत की उपलब्धता अथवा अनुपलब्धता के बीच देश के विकल्प पर बड़े पैमाने पर बहस आवश्यक है।
		(ii) मांग पूर्वानुमानों में बचत संभावनाओं पर विचार नहीं किया गया है। अधिकांश परिवारों के लिए प्रतिमाह 1000 यूनिट बिजली उपलब्ध कराना अथवा महज दिखावे को उत्पादन आयोजना के लिए मानदंड के रूप में नहीं माना जाएगा। औद्योगिक क्षेत्र की वर्तमान वृद्धि दुर्भाग्यवश भावी पीढि़यों को उनकी मांग पूरा करने की क्षमता के साथ समझौता कर रही है।	(ii) डीएसएम उपायों और बीईई के ऊर्जा कार्यकुशलता उपायों को ध्यान में रखते हुए बचत संभावनाओं पर आयोजना तैयार करते समय ध्यान रखा गया है। विद्युत का दुरुपयोग अपेक्षित नहीं है परंतु उद्योग जगत/वाणिज्यिक स्थापनाओं की मांग को देश के संपूर्ण आर्थिक विकास के लिए पूरा किया जाना चाहिए।
		(iii) जल विद्युत प्लांटों से संबद्ध समस्याओं को ध्यान में रखते हुए यह सुझाव दिया गया है कि सरकार को सभी नई जल विद्युत परियोजनाओं पर तत्काल एक निलंबन आदेश जारी करना चाहिए और मौजूदा जल विद्युत परियोजनाओं के विस्तृत और सहयोगात्मक कार्योत्तर विश्लेषण पर विचार करना चाहिए।	(iii) जैसा पहले भी उल्लेख किया गया है कि देश को जल विद्युत की आवश्यकता है और इससे संबंधित समस्याओं/मुद्दों का उपयुक्त ढंग से समाधान करना होगा।
30	अंतर्राष्ट्रीय नदियां	(i) एनईपी में विद्युत उत्पादन के लिए उच्च प्राथमिकता के रूप में जल विद्युत परियोजना के लिए प्रस्ताव देने से पहले जल विद्युत के घटते हुए निष्पादन और जलाशयों से जीएचजी के उत्सर्जन की समस्याओं का निदान किया जाए। (ii) योजना में थर्मल पावर प्लांटों की तरह जल विद्युत प्लांटों की डि-किमशिनिंग की आवश्यकता का भी उल्लेख किया जाए। (iii) दस हजार मेगावाट क्षमता वाली हिमालयन बेल्ट में प्रस्तावित लगभग सभी जल विद्युत परियोजनाएं पीक लोड उत्पादन के लिए प्रस्तावित की जा रही	प्राथमिकता देश में अपनाई गई कम कार्बन वृद्धि रणनीति के अनुसार तय की गई है। (ii) निर्णय किया जाए (iii) भारत में पीक और ऊर्जा दोनों की कमी है। अत: पीकिंग पावर प्लांटों की भी आयोजना तैयार
		उत्पादन के लिए प्रस्तावित की जा रही हैं। पीकिंग जल विद्युत प्लांटों की पर्यावरण और सामाजिक समस्याएं बहुत	किए जाने की आवश्यकता है।

क्र. सं.	(कंपनी/संगठन/ व्यक्ति विशेष) से प्राप्त टिप्पणियां	टिप्पणियों का सारांश	हमारा दृष्टिकोण/अवलोकन
		अधिक होती हैं। अत: पीकिंग पावर के लिए जल विद्युत पर निर्भरता पर पुन: विचार करने और घटने की आवश्यकता है। (iv) यह गलत जानकारी दी गई है कि टिहरी को छोड़कर कोई भी पीकिंग स्टेशन निर्माणाधीन नहीं है (खंड 13.5)। तीस्ता चरण- v एक पीकिंग पावर प्लांट है। (v) पर्यावरण वन स्वीकृतियों की पहचान बाधाओं के रूप में की गई है (अध्याय 14 खंड 3 प्रमुख मुद्दे)। पर्यावरण वन मंत्रालय से स्वीकृति दर 99% है। योजना में सिफारिश की जा रही है; पर्यावरण और सामाजिक लागत के संदर्भ में जानकारी दी गई है। यह सिफारिश हटाई	(iv) इस लाइन को संशोधित किया जाए (v) यद्यपि पर्यावरण और वन स्वीकृति दर अधिक है, परंतु स्वीकृति प्राप्त होने में अधिक समय लगता है। इसके परिणामस्वरूप परियोजनाओं में विलंब होता है और परियोजना लागत बढ़ जाती है। इस पैराग्राफ की उपयुक्त शब्दावली पर विचार किया जाए।
31	ए. राजा राव, सेवानिवृत्त कार्यकारी निदेशक, भेल	, , , ,	सभी वर्गों के उपभोक्ताओं को गुणवत्ता युक्त विद्युत की आपूर्ति सुनिश्चित करने के साथ साथ देश में मांग को पूरा करने के लिए 12वीं पंचवर्षीय योजना में 0.2% के कम एलओएलपी को अपनाया
32	जैकलीन जोहानिस	कुछ सुझाव (वर्तसिला द्वारा दिए गए सुझावों की तरह (उपर्युक्त क्रम संख्या 2) दिए गए हैं।	S S
33	भाखड़ा बेस मैनेजमेंट बोर्ड	भाखड़ा एलबी के लिए आर एण्ड एम संबंधी अद्यतन डेटा को छोड़कर कोई भी टिप्पणी नहीं दी गई है।	डेटा अद्यतन किया जाए
34.	एचईआरएम प्रभाग, केंविप्रा	तालिका 4.7,4.8 और अनुबंध 4.3 को अद्यतन कर दिया गया है।	अद्यतन सूचना को एनईपी में शामिल कर लिया गया है।

अध्याय 2

11वीं पंचवर्षीय योजना (2007-12) में क्षमता अभिवृद्धि की समीक्षा

2.0 प्रस्तावना

11वीं पंचवर्षीय योजना के लिए क्षमता अभिवृद्धि की आयोजना राष्ट्रीय विद्युत नीति के लक्ष्य और उद्देश्यों को ध्यान में रखते हुए बनाई गई। 11वीं पंचवर्षीय योजना के लिए निर्धारित क्षमता अभिवृद्धि लक्ष्य 78,700 मेगावाट था, जो कि 10वीं पंचवर्षीय योजना के दौरान हासिल किए गए वास्तविक लक्ष्य की तुलना में लगभग 3 गुना था। इतने बड़े लक्ष्य को प्राप्त करने के लिए समय पर आदेश प्रस्तुत करने, विनिर्माण क्षमता सुदृढ़ करने, कुशल जनशक्ति और निर्माण मशीनरी, समय पर सांविधिक स्वीकृतियां और क्रियान्वयन एजेंसियों के बीच बेहतर निगरानी और समन्वय आवश्यक है। इस अध्याय में क्षमता अभिवृद्धि के विवरण और विद्युत परियोजनाओं के समय पर क्रियान्वयन में आने वाली बाधाओं को दूर करने के लिए किए जा रहे प्रयासों को शामिल किया गया है।

2.1 11वीं पंचवर्षीय योजना का लक्ष्य

राष्ट्रीय विद्युत नीति के प्रमुख उद्देश्यों में से एक उद्देश्य यह है कि वर्ष 2012 तक विद्युत की संपूर्ण मांग को पूरा किया जाए और पीकिंग विद्युत तथा ऊर्जा कमी को दूर किया जाए। इसके अलावा स्थापित क्षमता की संपूर्ण उपलब्धता को 85% तक बढ़ाया जाए और कम से कम 5% का स्पिनिंग रिजर्व सृजित किए जाने की आवश्यकता है। साथ ही वर्ष 2012 तक विद्युत की प्रति व्यक्ति उपलब्धता को भी 1,000 किलोवाट घंटा से अधिक किया जाए। 11वीं पंचवर्षीय योजना के दौरान मूर्तरूप दी जाने वाली विभिन्न परियोजनाओं के कार्यान्वयन की संभाव्यता पर विचार करते हुए और इन उद्देश्यों को पूरा करने की दिशा में 11वीं योजना के लिए 78,700 मेगावाट क्षमता अभिवृद्धि का लक्ष्य निर्धारित किया गया, जिसके विवरण

तालिका 2.1 और प्रदर्श 2.1 से 2.2 में नीचे दिए गए हैं।

तालिका 2.1 11वीं पंचवर्षीय योजना के लिए क्षमता अभिवृद्धि लक्ष्य

आंकड़े मेगावाट में केन्द्रीय निजी स्रोत राज्य कुल हाइड़ो 8654 3482 3491 15627 थर्मल 24840 23301 11552 59693 न्युक्लियर 3380 3380 जोड़ 36874 26783 15043 78700

प्रदर्श 2.1

प्रदर्श 2.2

11वीं पंचवर्षीय योजना में क्षमता अभिवृद्धि के लिए तैयारी

2.2.1 स्वदेशी विनिर्माण क्षमता: विद्युत प्लांट उपस्करों के सबसे बड़े पूर्तिकर्ता होने के नाते बीएचईएल को 11वीं योजना के लिए प्रमुख आदेश प्राप्त होने की आशा थी। सीईए का अनुमान था कि बीएचईएल को 50% से अधिक उत्पादन क्षमता के आदेश प्राप्त होंगे और विद्युत परियोजनाओं के क्रियान्वयन तथा समय पर आपूर्ति के लिए विद्युत क्षेत्र काफी हद तक बीएचईएल पर ही निर्भर था। सीईए ने 11वीं पंचवर्षीय योजना की क्षमता अभिवृद्धि संबंधी आवश्यकताओं को पूरा करने के लिए बीएचईएल की तैयारी की समीक्षा की। 11वीं पंचवर्षीय योजना की शुरुआत से पहले सीईए के दलों ने बीएचईएल के कार्यों का दौरा किया और विद्युत क्षेत्र की आवश्यकताओं तथा विद्युत क्षेत्र की बढ़ती हुई आवश्यकता को पूरा करने के लिए उनकी विस्तार योजनाओं के बारे में बीएचईएल के कार्यपालकों के साथ विस्तृत चर्चाएं कीं। सीईए ने मार्च, 2007 की अपनी रिपोर्ट में विनिर्माण क्षमता के सुदृढ़ीकरण, कुछ आइटमों के विनिर्माण की आउटसोर्सिंग के लिए तैयार की गई सूची में वेंडरों की सुख्या बढ़ाने, डिजाइन और इंजीनियरिंग तथा परियोजना क्रियान्वयन के क्षेत्र में कुशल जनशक्ति तैयार करने, महत्वपूर्ण आइटमों जैसे फोर्जिंग, कास्टिंग, हाई प्रेशर ब्वायलर सामग्री, जिनके लिए वैश्विक स्तर पर ही कुछ पूर्तिकर्ता उपलब्ध हैं, के लिए अग्रिम खरीद कार्रवाई शुरू करने, पट्टे पर आधारित निर्भरता की बजाय पर्याप्त मात्रा में विनिर्माण मशीनरी की खरीद और सूचना प्रौद्योगिकी आधारित निगरानी की सिफारिश की। बीएचईएल की सुदृहीकरण योजना पर चर्चा करने के लिए बीएचईएल के साथ समीक्षा बैठकों का भी आयोजन किया गया।

- 2.2.2 11वीं पंचवर्षीय योजना के दौरान कार्यान्वित की जाने वाली योजनाओं के लिए कोयला संपर्क स्थापित करने के लिए भी कार्रवाई शुरू की गई। मामले को पर्यावरण एवं वन मंत्रालय के साथ भी उठाया गया ताकि 11वीं पंचवर्षीय योजना के लिए चिह्नित परियोजनाओं के संदर्भ में पर्यावरण और वन स्वीकृति प्राथमिकता के आधार पर प्राप्त की जा सके।
- 2.2.3 11वीं पंचवर्षीय योजना के दौरान विद्युत क्षेत्र की आवश्यकताओं के बारे में विद्युत कंपनियां, आईपीपी और उद्योग जगत को संवेदनशील बनाने के लिए सीईए द्वारा 4 और 5 जुलाई, 2007 को 11वीं योजना और उसके पश्चात विद्युत क्षेत्र के त्वरित विकास के लिए महत्वपूर्ण इनपुट जुटाने के उद्देश्य से एक अंतर्राष्ट्रीय सम्मेलन आयोजित किया गया। सीईए ने 11वीं पंचवर्षीय योजना के कार्यान्वयन हेतु आवश्यक उत्पादन पारेषण और वितरण के लिए विभिन्न प्रकार के उपस्कर और सामग्री की आवश्यकता से अवगत कराया। अंतर्राष्ट्रीय सम्मेलन की प्रमुख सिफारिशों में मुख्य प्लांट और शेष प्लांटों दोनों की विनिर्माण क्षमता का सुदृढीकरण, समय पर आदेश प्रस्तुत करना, बोली प्रक्रिया में नई कंपनियों की प्रतिभागिता सुनिश्चित करने के लिए पूर्व अर्हता संबंधी आवश्यकताओं की समीक्षा, स्थानीय लोगों के बील कौशल विकसित करने के उद्देश्य से परियोजना क्षेत्र के आसपास परियोजना विकासकर्ता द्वारा आईटीआई योजना को अपनाने के साथ साथ कुशल जनशक्ति तैयार करने हेतु उपाय, मानकीकरण आदि शामिल हैं। इन सिफारिशों के संदर्भ में चेन्नई, चंडीगढ़ और मुम्बई में आयोजित क्षेत्रीय कार्यशालाओं द्वारा अनुवर्ती कार्रवाई की गई। इन सम्मेलनों के दौरान उद्योग जगत से जुड़े लोगों को अपनी विनिर्माण क्षमता बढ़ाने के लिए आकृष्ट करने के साथ साथ विद्युत क्षेत्र की आवश्यकता को पूरा करने के लिए इन क्षेत्रों नए उद्यमियों को प्रोत्साहित किया गया। इस संदर्भ में सामने आने वाली बाधाओं पर भी चर्चा की गई और इन समस्याओं के निदान हेतु एक रणनीति निर्धारित की गई।
- 2.2.4 भारत सरकार ने डा. किरीत पारेख, तत्कालीन सदस्य (ऊर्जा), योजना आयोग की अध्यक्षता में बकाया प्लांटों के लिए अतिरिक्त वेंडरों के विकास हेतु भी एक समिति गठित की। समिति की प्रमुख सिफारिशें संक्षेप में नीचे दी गई हैं:
- (क) बीओपी (अथवा बीओपी की ईपीसी) के लिए आदेश मुख्य प्लांट और उपस्करों के लिए आदेश प्रस्तुत करने की तारीख से छ: माह के भीतर प्रस्तुत किए जाने चाहिए।
- (ख) कुछ पूर्तिकर्ताओं द्वारा अधिक संख्या में संविदाएं करने की घटनाओं को रोकने के लिए और समय पर परियोजना निष्पादित न करने की स्थिति में परिसमापन क्षति को बढ़ाया जाना चाहिए।
- (ग) केन्द्रीय विद्युत प्राधिकरण बीओपी वेंडरों के लिए पूर्व अर्हता संबंधी आवश्यकताओं को फरवरी, 2008 के अंत तक अंतिम रूप देगा।
- (घ) केन्द्रीय विद्युत प्राधिकरण और एनटीपीसी को अगस्त, 2008 के अंत तक प्रगतिशील ढंग से बीओपी के विभिन्न पैकेजों के मानकीकरण/उनके लिए विस्तृत डिजाइन मानदंडों के लिए दिशानिर्देशों को अंतिम रूप देने की कार्रवाई पूरी करनी है।
- (ड.) परियोजना के विकासकर्ताओं द्वारा कुशल जनशक्ति की उपलब्धता सुनिश्चित करने के लिए क्षमता निर्माण किया जाए।
- (च) इस बात की जांच की जाए कि घरेलू पूर्तिकर्ता और विदेशी पूर्तिकर्ताओं को समान रूप से अवसर उपलब्ध कराया गया है या नहीं।

2.3 11वीं पंचवर्षीय योजना के लिए लक्ष्यों का मध्यावधि मूल्यांकन

जैसा ऊपर उल्लेख किया गया है 11वीं योजना के दौरान 78,700 मेगावाट क्षमता अभिवृद्धि का लक्ष्य निर्धारित किया गया। योजना आयोग के मध्याविध मूल्यांकन (एमटीए) के अनुसार ऐसी संभावना है कि विभिन्न कारणों अर्थात मुख्य प्लांट के लिए आदेश प्रस्तुत करने में विलंब, सिविल कार्यों की धीमी प्रगति, कमजोर और प्रतिकूल भूगर्भीय स्थितियों आदि के कारण 21,802 मेगावाट क्षमता वाली कुछ परियोजनाएं 11वीं पंचवर्षीय योजना के

दौरान पूरी नहीं होंगी। इसके अलावा कुछ अतिरिक्त परियोजनाएं जिन्हें वास्तविक रूप से 11वीं योजना में शामिल नहीं किया गया था, की भी 11वीं योजना के दौरान लाभ के लिए पहचान की गई है, इसके लिए परियोजना कार्यान्वयन की प्रक्रिया में तेजी लाने और निर्माण अनुसूची को संक्षिप्त करने का सुझाव दिया गया है। यह विकासकर्ताओं और अन्य पणधारकों के साथ मिलकर विद्युत मंत्रालय और सीईए द्वारा किए गए असाधारण प्रयासों के परिणामस्वरूप ही संभव हुआ है। इन अतिरिक्त परियोजनाओं की कुल क्षमता 5156 मेगावाट है।

उपर्युक्त के आधार पर मध्याविध मूल्यांकन (एमटीए) के अनुसार 11वीं योजना के दौरान संभावित क्षमता अभिवृद्धि का लक्ष्य 62,374 मेगावाट निर्धारित किया गया। चिह्नित की गई अतिरिक्त परियोजनाओं और 11वीं पंचवर्षीय योजना में पूरी न की जा सकने वाली परियोजनाओं की संक्षिप्त जानकारी नीचे तालिका 2.2 में दी गई है।

तालिका 2.2 11वीं पंचवर्षीय योजना के दौरान संभावित लाभों के लिए अतिरिक्त क्षमता/11वीं पंचवर्षीय योजना में पूरी न की जा सकने वाली क्षमता का सारांश

	आकड़े मेगावाट में
11वीं योजना का क्षमता अभिवृद्धि लक्ष्य (क)	78,700
निर्घारित लक्ष्य से पीछे (ख)	21,802
बकाया क्षमता (ग)	56,898
लक्ष्य में शामिल किए अनुसार परियोजनाओं की क्षमता में परिवर्तन (घ) अनपरा सी की क्षमता में वृद्धि सुजेन सीसीजीटी की क्षमता में वृद्धि मेत्र विस्तार की क्षमता में वृद्धि	320
लक्ष्य से परे 11वीं योजना के दौरान संभावित क्षमता अभिवृद्धि	5,156
कुल क्षमता (च) = (ग+घ+ड.)	62,374

मध्यावधि मूल्यांकन (एमटीए) के अनुसार 11वीं योजना के दौरान संभावित क्षमता अभिवृद्धि 62374 मेगावाट है। 62,374 मेगावाट के इस क्षमता अभिवृद्धि लक्ष्य का सारांश नीचे तालिका 2.3 में दिया गया है।

तालिका 2.3 11वीं पंचवर्षीय योजना के दौरान मध्यावधि मूल्यांकन लक्ष्य का संक्षिप्त विवरण (राज्यवार और प्रकारवार)

(आंकड़े मेगावाट में)

	हाइड्रो	कुल थर्मल		थर्मल	विवरण	-यूक्लियर -यूक्लियर	जोड़	
केन्द्रीय क्षेत्र	2922	14920	13430	750	740	0	3380	21222
राज्य क्षेत्र	2854	18501	14735	450	3316	0	0	21355
प्राइवेट क्षेत्र	2461	17336	13725	1080	2531	0	0	19797
अखिल-भारतीय	8237	50756.9	41890	2280	6587	0	3380	62374

2.4 11वीं पंचवर्षीय योजना के दौरान वास्तविक क्षमता अभिवृद्धि

11वीं पंचवर्षीय योजना के दौरान 54,964 मेगावाट क्षमता स्थापित की गई है। 11वीं पंचवर्षीय योजना के दौरान स्थापित क्षमता के वर्षवार/ईंधनवार और क्षेत्रवार विवरण तालिका 2.4 और 2.5 में नीचे दिए गए हैं:

तालिका 2.4

(आंकड़े मेगावाट में)

प्रकार	2007-08	2008-09	2009-10	2010-11	2011-12	कुल
हाइड्रो	2,423	969	39	690	1,423	5,544
थर्मल	6,620	2,485	9,106	11,251	19,079	48,540
न्यूक्लियर	220	0	440	220	2,000	880
जोड़	9,263	3,454	9,585	12,161	20,502	54,964

तालिका 2.5 11वीं पंचवर्षीय योजना के दौरान वास्तविक क्षमता अभिवृद्धि का प्रकारवार और क्षेत्रवार सारांश

क्षेत्र	हाइड्रो (मेगावाट)		थ्र	र्नल (मेगावाट)	न्यूक्लियर (मेगावाट)	कुल क्षमता (मेगावाट)	
		कोयला	गैस	लिग्नाइट	जोड़		
केन्द्रीय क्षेत्र	1550	11550	740	500	12790	880	15220
राज्य क्षेत्र	2702	11695	1885	450	14030	0	16732
निजी क्षेत्र	1292	18649	2530	540	21720	0	23012
अखिल भारतीय स्तर	5544	41894	5156	1490	48540	880	54964

11वीं पंचवर्षीय योजना के लिए क्षमता अभिवृद्धि लक्ष्य/उपलब्धि के राज्यवार/क्षेत्रवार विवरण का सारांश अनुबंध 2.1 में दिया गया है।

2.4.1 वर्षवार लक्ष्य और वास्तविक क्षमता अभिवृद्धि (2007-12)

11वीं योजना (2007-12) के दौरान संशोधित कार्यक्रम/लक्ष्य तथा वास्तविक उपलब्धियों का सारांश नीचे दिया गया है।

तालिका 2.6 11वीं योजना के दौरान क्षमता अभिवृद्धि का लक्ष्य / उपलब्धि

(आंकड़े मेगावाट में)

	हाइड्रो		थ	र्मल	न्यूरि	के लयर	जोड़		
	लक्ष्य	वास्तविक	लक्ष्य	वास्तविक	लक्ष्य	वास्तविक	लक्ष्य	वास्तविक	
2007-08	2372	2423	8907	6620	660	220	12039	9263	
2008-09	1097	969	5773	2485	660	0	7530	3454*	
2009-10	845	39	13002	9106	660	440	14507	9585	
2010-11	1,346	690	17,793	11,251	1,220	220	20,359	12161	
2011-12	1,990	1423	13,611	19,079	2,000	0	17601	20502	

^{*}सीईए/एमओपी द्वारा स्थापना की परिभाषा में परिवर्तन के कारण कम उपलब्धि

11वीं योजना के दौरान स्थापित वास्तविक क्षमता की तुलना में निर्धारित तारीख से पीछे/क्षमता अभिवृद्धि का सारांश तालिका 2.7 में दिया गया है।

तालिका 2.7

(आंकड़े मेगावाट में)

'	"""
क्षमता अभिवृद्धि लक्ष्य (क)	78,700
लक्ष्य से पीछे (ख)	33,415
शेष क्षमता (ग) = (क-ख)	45,285
क्षमता के लक्ष्य में परिवर्तन (घ)	405
अनपरा 'ग' की क्षमता को 1000 मेगावाट से 1200 मेगावाट तक बढ़ाना - 200	
सुजन सीसीजीटी की क्षमता को 1128 मेगावाट से 1148 मेगावाट तक बढ़ाना - 20	
उडुप्पी टीपीपी की क्षमता को 1015 मेगावाट से 1200 मेगावाट तक बढ़ाना - 185	
मूल लक्ष्य से कुल क्षमता (ग+घ)	45,690
11वीं योजना कार्यक्रम से इतर स्थापित अतिरिक्त क्षमता	9,274
कुल क्षमता (च) = (ग+घ+ड.)	54,964

मूल लक्ष्य 78,700 मेगावाट, मध्याविध मूल्यांकन लक्ष्य 62,374 मेगावाट और वास्तविक क्षमता अभिवृद्धि 54,964 के अनुसार 11वीं योजना की परियोजनाओं की तुलनात्मक सूची अनुबंध-2.2 में दी गई है:

2.4.2 11वीं योजना के दौरान परियोजनाओं की स्थापना में विलंब के कारण

- आदेश प्रस्तुत करने में विलंब मुख्य रूप से सिविल कार्यों और बकाया प्लांटों (बीओपी) के लिए।
- मुख्य प्लांट और बीओपी के लिए सामग्री की आपूर्ति में विलंब और आपूर्ति क्रमबद्ध न होना।
- उन्निर्माण और स्थापना के लिए कुशल जनशक्ति की कमी।
- परियोजना विकासकर्ता और संविदाकार तथा उनके उप वेंडर / उप संविदाकारों के बीच संविदागत विवाद।
- निर्माण मशीनरी का अपर्याप्त नियोजन।
- ईंधन (गैस और न्यूक्लियर) की कमी।
- भूमि अधिग्रहण।
- विश्वसनीय निर्माण विद्युत आपूर्ति और भारी उपस्करों की परिवहन संबंधी बाधाओं जैसी अपर्याप्त अवसंरचना सुविधाएं।

2.5 कैप्टिव पावर प्लांटों से क्षमता अभिवृद्धि

देश में विभिन्न प्रकार के अलग अलग आकार वाले सह उत्पादन पावर प्लांटों सहित बड़ी संख्या में कैप्टिव प्लांट उपलब्ध हैं, जिनका सदुपयोग संसाधन, उद्योग और आंतरिक विद्युत खपत के लिए किया जाता है। बहुत से उद्योगों ने विश्वसनीय और गुणवत्ता युक्त विद्युत आपूर्ति सुनिश्चित करने के लिए अपने कैप्टिव पावर प्लांट स्थापित किए हैं। कुछ प्लांटों की स्थापना वैकल्पिक यूनिटों के रूप में भी गई है और उनका प्रचालन केवल आकस्मिक स्थितियों के दौरान ही किया जाता है जब ग्रिड उपलब्ध नहीं होती है। कैप्टिव पावर प्लांटों से अधिशेष पावर, यदि कोई है, को विद्युत अधिनियम, 2003 के अनुसार ग्रिड को उपलब्ध कराया जा सकता है, क्योंकि इसके लिए भेदभाव रहित मुक्त अभिगम का प्रावधान किया गया है।

कैप्टिव पावर प्लांट विनिर्माताओं, उद्योगों और अन्य स्रोतों से प्राप्त सूचना के आधार पर कैप्टिव पावर प्लांटों से संभावित क्षमता अभिवृद्धि लगभग 14176 मेगावाट है। इसके वर्षवार विवरण नीचे **प्रदर्श 2.3** में दिए गए हैं :

प्रदर्श 2.3

31 मार्च 2012 की स्थिति के अनुसार कैप्टिव पावर प्लांटों (1 मेगावाट और उससे अधिक क्षमता वाले) की स्थापित क्षमता लगभग 36500 मेगावाट है। 31 मार्च, 2011 की स्थिति के अनुसार कैप्टिव पावर प्लांटों की स्थापित क्षमता में 10.9% की वृद्धि दर्ज की गई और यह बढ़कर 32900 मेगावाट हो गई है। वर्ष 2010-11 के दौरान कैप्टिव पावर प्लांटों (1 मेगावाट और उससे अधिक क्षमता वाले) से ऊर्जा उत्पादन लगभग 114 बिलियन यूनिट था और इसमें वर्ष 2009-10 के दौरान 106 बिलियन यूनिट की तुलना में लगभग 7.5% की वृद्धि दर्ज की गई है। कैप्टिव पावर प्लांटों से वर्ष 2010-11 के दौरान 14.2 बिलियन अधिशेष पावर राष्ट्रीय ग्रिड में फीड की गई।

2.6 11वीं पंचवर्षीय योजना के दौरान ग्रिड से अंत:संबद्ध नवीकरणीय ऊर्जा स्रोत

11वीं पंचवर्षीय योजना नवीकरणीय विद्युत स्रोतों से 14,000 मेगावाट की क्षमता अभिवृद्धि की परिकल्पना की गई है। स्रोतवार विवरण नीचे तालिका 2.8 में दिए गए हैं :

तालिका 2.8
11वीं पंचवर्षीय योजना के दौरान ग्रिड से अंत:संबद्ध नवीकरणीय ऊर्जा स्रोत

(आंकड़े मेगावाट में)

स्रोत/ प्रणाली	11वीं योजना के लिए लक्ष्य
विंड पावर	10,500
बायोमास पावर & बायोमास गैसीफायर	2,100
लघु हाइड्रो (25 मेगावाट तक)	1400
जोड़	14,000

स्रोत एमएनआरई

प्रदर्श 2.4

10वीं पंचवर्षीय योजना के अंत में नवीकरणीय विद्युत स्रोतों की स्थापित क्षमता 7760 मेगावाट थी जिसमें जबिक 11वीं योजना के अंत में स्थापित क्षमता 24914 मेगावाट है। 11वीं पंचवर्षीय योजना के दौरान नवीकरणीय विद्युत स्रोतों से 14000 मेगावाट क्षमता का लक्ष्य निर्धारित किया था। 11वीं पंचवर्षीय योजना के दौरान ग्रिड से अंत:संबद्ध नवीकरणीय ऊर्जा स्रोतों के लिए 14000 मेगावाट के उपर्युक्त लक्ष्य में वितरित नवीकरणीय विद्युत प्रणाली (डीआरपीएस) से 1,000 मेगावाट की प्रस्तावित क्षमता अभिवृद्धि शामिल नहीं है। इस प्रकार 11वीं पंचवर्षीय योजना के दौरान नवीकरणीय विद्युत स्रोतों से 17,154 मेगावाट क्षमता अभिवृद्धि की गई।

2.7 अगस्त, 2008 में सीईए/एमओपी द्वारा स्थापना की परिभाषा में परिवर्तन

स्थापना/क्षमता अभिवृद्धि केवल तभी मानी जाएगी जब न्यूक्लियर प्लांट और जलाशय आधारित जल विद्युत स्टेशनों को छोड़कर नेम प्लेट रेटिंग पर किसी यूनिट द्वारा विद्युत उत्पादन क्षमता का प्रदर्शन करने के पश्चात ही मानी जाएगी। क्षमता अभिवृद्धि की तारीख ऐसी तारीख होगी जब निम्नलिखित शर्तें पूरी कर ली जाएंगी:

A. थर्मल (कोयला, गैस, लिग्नाइट)

 यूनिट के सुरक्षित प्रचालन हेतु आवश्यक सभी प्लांट और उपस्करों का निर्माण और स्थापना पूरी हो जाती है।

- ii. प्रचालन हेतु प्रायोगिक परीक्षण शुरू कर दिया जाता है।
- iii. यूनिट ने निर्धारित ईंधन से पूर्णत: रेटित भार का लक्ष्य प्राप्त कर लिया है।
- iv वाणिज्यिक प्रचालन की तारीख।

B. हाइड्रो

- i. प्रचालन हेतु प्रायोगिक परीक्षण शुरू कर दिया है।
- ii. यूनिट ने पूरी तरह से रन ऑफ रिवर स्टेशनों और तालाब युक्त रन ऑफ रिवर स्टेशनों के मामले में पूर्णत: रेटित क्षमता प्राप्त कर ली हो।
- iii. यूनिट ने स्टोरेज पावर स्टेशनों के मामले में मौजूदा जलाशय स्तर के अनुरूप डिजाइन की गई क्षमता अथवा पूर्णत: रेटित क्षमता का लक्ष्य प्राप्त कर लिया हो।
- iv वाणिज्यिक प्रचालन की तारीख

ग. न्यूक्लियर

न्यूक्लियर यूनिटों को स्थापित केवल तभी घोषित किया जाएगा जब प्लांट प्राधिकारी द्वारा उसे "वाणिज्यिक रूप से प्रचालनरत" घोषित कर दिया जाता है।

इससे पहले यूनिट को केवल ग्रिड के साथ सिंक्रोनाइजेशन के लिए ही स्थापित माना जाता है।

2.8 : विद्युत क्षेत्र के विकास में प्रमुख बाधाएं और इन चुनौतियों का सामना करने के लिए सरकार द्वारा शुरू की गई रणनीति

• मुख्य प्लांट की विनिर्माण क्षमता बढ़ाना

बीएचईएल ने अपनी विनिर्माण क्षमता को 6,000 मेगावाट प्रतिवर्ष से बढ़ाकर 15,000 मेगावाट प्रति वर्ष करने के लिए अपनी अवसंरचना का सुदृढ़ीकरण किया है और इसे 20000 मेगावाट प्रति वर्ष तक बढ़ाने के लिए आवश्यक इंतजाम कर रहा है।

सीईए द्वारा सुपर क्रिटिकल ब्वॉयलर टर्बाइन जनरेटर के लिए पूर्व अर्हता आवश्यकताओं की समीक्षा की गई है और आपूर्ति बढ़ाने तथा प्रतिस्पर्धा को प्रोत्साहित करने के लिए विनिर्माण क्षेत्र में नई कंपनियों के पदार्पण को बढ़ावा देने के उद्देश्य से विद्युत कंपनियों को संशोधित सलाह जारी की गई। इस दिशा में एक बड़ा प्रयास यह रहा कि स्टीम जनरेटर और टर्बाइन जनरेटर के लिए विनिर्माण सुविधाओं की स्थापना हेतु बहुत से नए विनिर्माताओं ने रुचि दिखाई है और वे आगे आए हैं। इनमें निम्नलिखित शामिल हैं:

- 1. एल एण्ड टी-एमएचआई
- 2. तोशीबा-जेएसडब्ल्यू
- 3. अल्सटम-भारत फोर्ज
- 4. अंसाल्डो कैल्डी-गेमन
- 5. बीजीआर-हिताची
- 6. डोव
- 7. थर्मेक्स-बैबकॉक
- 8. सेथर वेसल्स

बीएचईएल और विभिन्न संयुक्त उद्यमों की उत्पादन अनुसूचियों के आधार पर ऐसा महसूस किया जाता है कि जहां तक मुख्य प्लांट उपस्करों का संबंध है, तो देश में पर्याप्त विनिर्माण क्षमता उपलब्ध होगी।

संयुक्त उद्यम	ब्वॉयलर	टर्बाइन –	अभ्युक्तियां
		जनरेटर	
एल एण्ड टी	4000 मेगावाट	4000	 ब्वॉयलर और टर्बाइन का उत्पादन प्रारंभ
एमएचआई		मेगावाट	
अल्सटम-भारत फोर्ज	-	5000	• टर्बाइन के विनिर्माण हेतु सभी विनिर्माण सुविधाएं जून, 2013
		मेगावाट	तक पूरी की जाएं
तोशीबा-जेएसडब्ल्यू	-	3000	• सभी विनिर्माण सुविधाएं अप्रैल, 2013 तक पूरी की जाएं
		मेगावाट	
गेमन-अंसाल्डो	4000 मेगावाट	-	• सुविधाओं को पूरा करने की संभावित तारीख दिसंबर, 2012
			(2000 मेगावाट) और दिसंबर, 2014 (अतिरिक्त 2000
			मेगावाट)
थर्मेक्स-बैबकॉक और	3000 मेगावाट		• सभी विनिर्माण सुविधाएं मार्च, 2013 तक पूरी की जाएं
विलकॉक्स			
बीजीआर-हिताची	5 ब्वॉलयर प्रति		• सभी विनिर्माण सुविधाएं जनवरी, 2013 तक पूरी की जाएं
ब्वॉयलर्स प्राइवेट लिमिटेड	वर्ष (~3000		
।लामटड	मेगावाट		
बीजीआर हिताची		5 टर्बाइन	• सभी विनिर्माण सुविधाएं जुलाई, 2014 तक पूरी की जाएं
टर्बाइन जनरेटर प्राइवेट लिमिटेड		जनरेटन प्रति	
।लामटड		वर्ष (~3000	
		मेगावाट	
दूसन चेन्नई वर्क्स	2200 मेगावाट		• डीसीडब्ल्यू प्राइवेट लिमिटेड दूसन, कोरिया लिमिटेड की 100%
प्राइवेट लिमिटेड	*(सब क्रिटिकल		स्वामित्व वाली एक सहायक कंपनी है जिसकी स्थापना भारत में 20.7.2007 को की गई।
	्र और सुपर		या. १.२००७ का का गई। मौजूदा सुविधा – चेन्नई : अधिग्रहीत की गई अतिरिक्त सुविधा
	क्रिटिकल दोनों)		कांचीपुरम जिले का मन्नूर गांव
			अतिरिक्त सुविधाओं से उत्पादन सितंबर, 2012 तक शुरू किया
			जाए

• बीओपी वेंडरों की विनिर्माण क्षमता बढ़ाना

देश में बीओपी वेंडर सीमित संख्या में थे। पिछले कुछ वर्षों में ऐसा देखा गया है कि कुछ प्लांटों की स्थापना बीओपी में विलंब के कारण नहीं की जा सकी, जबिक उनके मुख्य पलांटों का कार्य पूरा कर लिया था। इस समस्या से निजात पाने के लिए बीओपी जैसे कोल हैंडलिंग प्लांट, ऐश हैंडलिंग प्लांट, जल उपचार प्लांट आदि के लिए वेंडर आधार का विस्तार करने की आवश्यकता के प्रति उद्योग जगत को संवेदनशील बनाने हेतु कार्रवाई शुरू की गई है। उद्योग जगत को अपनी विनिर्माण क्षमताओं को बढ़ाने के साथ साथ इन क्षेत्रों में नए उद्यमियों को प्रोत्साहित किया गया है। बीओपी के नए वेंडरों के लिए अर्हता संबंधी आवश्यकताओं में छूट प्रदान की गई है जिससे कि बोली प्रक्रिया के लिए नए वेंडर भी अर्हक हो सकें। बीओपी प्रणालियों के मानकीकरण और बीओपी संबंधी आदेशों का एक गतिशील डेटाबेस बनाए रखने के लिए किसी केन्द्रीय संगठन को अधिदेशित करने पर विचार किया जा रहा है। एनटीपीसी ने विद्युत क्षेत्र के लिए आवश्यक कास्टिंग, फोर्जिंग, फिटिंग और हाई प्रेसर पाइपिंग के विनिर्माण हेतु एक संयुक्त उद्यम कंपनी को बढ़ावा देने के लिए भारत फोर्ज लिमिटेड के साथ एक समझौता ज्ञापन (एमओय) पर हस्ताक्षर किए हैं।

एनपीसी और एल एण्ड टी ने भी फोर्जिंग के विनिर्माण हेतु एक संयुक्त उद्यम स्थापित करने का प्रस्ताव दिया है, जो न्यूक्लियर प्लांट आवश्यकताओं के अलावा थर्मल पावर परियोजनाओं की भी आवश्यकताओं को पूरा करेगा।

• निर्माण एजेंसियां

निर्माण एजेंसियों की संख्या बढ़ाने की आवश्यकता पर भी जोर दिया जा रहा है। पावर प्लांटों और अन्य अवसंरचना परियोजनाओं के लिए इंजीनियरिंग, अधिप्राप्ति और विनिर्माण (ईपीसी) से संबंधित कार्यों के निष्पादन हेतु एनटीपीसी और बीएचईएल ने एक संयुक्त उद्यम गठित किया है। इस संयुक्त उद्यम को अभी हाल ही में बीओपी के लिए कुछ आदेश प्राप्त हुए हैं। मेकेनिकल उपस्करों के साथ सिविल निर्माण की नवीनतम पद्धतियों और जनशक्ति का इष्टतम सदुपयोग जैसी पद्धतियों को अपनाने की आवश्यकता है।

• जटिल सामग्री

सीआरजीओ स्टील हायर ग्रेड सीआरएनजीओ और थिक ब्वॉयलर स्टील प्लेट को छोड़कर प्रमुख सामग्री की कमी प्रतीत नहीं होती है।

ट्रांसफार्मर के विनिर्माण हेतु सामान्यत: कोल्ड रोल्ड ग्रेन ओरिएंटेड (सीआरजीओ) स्टील का प्रयोग किया जाता है। सीआरजीओ स्टील की कमी वैश्विक स्तर पर है और भारत में गुणवत्तायुक्त सीआरजीओ स्टील की अनुपलब्धता के परिणामस्वरूप ट्रांसफार्मर की आपूर्ति में विलंब होता है। इस समस्या से निजात पाने के लिए विद्युत प्रणालियों के विस्तार हेतु आवश्यक जटिल महत्वपूर्ण सामग्री (इनपुट) की समय पर उपलब्धता सुनश्चित करने के लिए प्रयास किए जा रहे हैं। महत्वपूर्ण जटिल इनपुट जैसे ब्वॉयलर गुणवत्ता प्लेट, पी91 पाइपिंग, सीआरजीओ सीट स्कीम के लिए वेंडर विकसित करने हेतु प्रयास शुरू किए जा रहे हैं। आयात की जाने वाली सामग्री के लिए अग्रिम आयोजना का सुझाव दिया गया है। टर्बाइन/जनरेटरों की कास्टिंग और फोर्जिंग के लिए विनिर्माण क्षमताओं के विकास का भी सुझाव दिया गया है। बीएचईएल से अनुरोध किया गया है कि वह फोर्जिंग और कास्टिंग जैसे जटिल उपस्करों की खरीद के लिए अग्रिम तौर पर कार्रवाई करे क्योंकि इनकी खरीद में काफी अधिक समय लगता है, जिससे कि किसी यूनिट की स्थापना में लगने वाले समय को कम किया जा सके। इस मामले को सरकार के साथ उठाया गया कि जटिल फोर्जिंग और कास्टिंग की अग्रिम खरीद हेतु बीएचईएल को सलाह जारी की जाए। तदनुसार वित्त मंत्रालय द्वारा बीएचईएल को एक सलाह जारी की गई है, जिससे कि जटिल फोर्जिंग और कास्टिंग की अग्रिम खरीद प्रक्रिया को सुकर बनाया जा सके।

• विद्युत क्षेत्र में जनशक्ति और प्रशिक्षण सुविधाएं

देश में कुशल जनशक्ति की कमी है। यह अनुमान लगाया गया था कि 11वीं पंचवर्षीय योजना के दौरान विनिर्माण प्रचालन और विद्युत उपस्करों के रखरखाव के लिए लगभग 1 मिलियन अतिरिक्त कामगार, पर्यवेक्षक और इंजीनियरों की आवश्यकता होगी। विशेष रूप से विनिर्दिष्ट कौशल वाले तकनीशियनों की भारी संख्या में आवश्यकता होगी। उपर्युक्त समस्या को हल करने के लिए मानव संसाधन विकास एवं विद्युत क्षेत्र के कार्मिकों के प्रशिक्षण को उच्च प्राथमिकता दी जा रही है। महत्वपूर्ण मानव संसाधनों को आकर्षित करने, उनका सदुपयोग करने, विकास और संरक्षण करने के लिए एक बहुत ही व्यापक और सारगर्भित पहल शुरू की गई है। आपूर्ति और मांग के बीच अंतर को दूर करने के लिए "किसी आईटीआई को अपनाना" नामक एक योजना शुरू की गई है। इसका उद्देश्य नए तकनीशियनों को प्रशिक्षित करना और मौजूदा तकनीशियनों के कौशल को अद्यतन करना है। इस योजना के अनुसार विद्युत परियोजना के विकासकर्ताओं द्वारा परियोजनाओं के आसपास मौजूदा आईटीआई को गोद लिया जाता है।

केन्द्रीय विद्युत प्राधिकरण ने अभी हाल ही में उत्पादन और पारेषण परियोजनाओं की परियोजना लागत में परियोजना क्षेत्र में और उसके आसपास कौशल विकास की लागत को शामिल करने के लिए राष्ट्रीय विद्युत नीति, टैरिफ नीति और प्रतियोगी बोली प्रक्रिया दिशानिर्देशों में परिवर्तन करने के लिए विद्युत मंत्रालय से सिफारिश की है। सीईए द्वारा सीईआरसी से भी अनुरोध किया गया है कि वह उत्पादन और पारेषण टैरिफ में एक पास थ्रू के रूप में परियोजना क्षेत्र में और उसके आसपास मानव संसाधन विकास की लागत पर विचार करे। ऐसा प्रस्ताव किया गया है कि इस मद के लिए प्रावधान को वास्तविक व्यय तक अथवा परियोजना लागत के एक पूर्व विनिर्दिष्ट प्रतिशत, जो भी कम है, तक सीमित किया जाना चाहिए।

• सूचना प्रौद्योगिक आधारित निगरानी

सूचना प्रौद्योगिकी आधारित निगरानी एक ऐसी प्रणाली है जो निगरानी की जा रही परियोजना और कार्यक्रमों के बारे में सभी सूचना वास्तविक समय आधार पर प्राप्त करने में समर्थ बनाती है, इस प्रकार यह प्रबंधन के विभिन्न स्तरों पर रिपोर्ट किए जाने वाले बहुत से महत्वपूर्ण मुद्दों, लागत वृद्धि और अन्य संबंधित पहलुओं को उजागर करने में सहायक है।

इसका सदुपयोग जारी विद्युत परियोजनाओं की दैनिक प्रगित की निगरानी करने और विभिन्न एजेंसियों से स्वीकृतियां प्राप्त करने की प्रक्रिया में तेजी लाने के लिए किया जाए। यह प्रणाली बीओपी/अन्य उपस्करों के समय पर आदेश प्रस्तुत करने में भी सहायक होगी। यह प्रणाली संबंधित प्राधिकारी को इस बात से भी सावधान कर सकती है कि यदि कोई परियोजना निर्धारित अनुसूची के अनुसार नहीं चल रही है तो उसके द्वारा क्या उपयुक्त कार्रवाई की जानी चाहिए।

सॉफ्टवेयर के प्रयोग से सूचना प्रौद्योगिकी आधारित निगरानी प्रणाली विभिन्न भौगोलिक अवस्थितियों से एक साथ ऑनलाइन अपडेशन को सुकर बनाने के लिए एल 1 और एल 2 स्तर के नेटवर्कों को मास्टर नेटवर्क के साथ एकीकृत करेगी। सभी परियोजनाओं और कार्यक्रमों की संक्षिप्त डैसबोर्ड सूचना वास्तविक समय आधार पर प्राप्त की जा सकती है। इस प्रकार यह प्रणाली यह सुनिश्चित करने में भी सहायक होगी कि कौन सी परियोजनाएं विलंब से चल रही हैं/देर से पूरी होंगी और किनका प्रचालन निर्धारित बजट से अधिक बजट पर किया जा रहा है। यह प्रणाली अन्य बातों के साथ साथ निम्नलिखित के साथ भी सहायक होगी।

- इंजीनियरिंग विभाग द्वारा प्रत्येक ड्राइंग जारी करने/अनुमोदन प्रदान करने की वास्तविक तारीख का ऑनलाइन अद्यतनीकरण इस ढंग से सुनिश्चित करना कि सभी संबंधितों द्वारा उसका आसानी से अभिगम किया जा सके।
- उन परिवहन/संभार तंत्र संबंधी कार्यकलापों की ऑनलाइन निगरानी को समर्थ बनाना जो परियोजनाओं की समय पर स्थापना के लिए महत्वपूर्ण हैं।
- कमजोर परियोजना निष्पादन और कार्यकलापों के अनुचित क्रम की निगरानी करना
- परियोजना विलंब, लागत बढ़ना
- अनुसूची और सामग्री प्रदायगी पर नजर रखना
- लागत बढ़ना, सामग्री की लागत बढ़ने से अज्ञात विवक्षाएं
- संसाधनों का अपर्याप्त प्रयोग, गलत कौशल मिश्रण, परियोजना विलंब

प्रभावी परियोजना निगरानी और कार्यान्वयन के लिए सभी परियोजनाओं से आईटी आधारित निगरानी प्रणाली को लागू करने के लिए अनुरोध किया गया। हालांकि कुछ ही परियोजनाओं ने इसे लागू किया है। इसे सभी परियोजनाओं द्वारा लागू करना आवश्यक है।

केन्द्रीय विद्युत प्राधिकरण ने वेब आधारित अंतरापृष्ठ के जिरए देश में विभिन्न विद्युत उत्पादन, पारेषण और वितरण कंपनियों से केन्द्रीय रूप से डेटा संग्रहण के लिए एकीकृत प्रबंधन प्रणाली-। (आईएमएस-।) कार्यान्वित की है। सीईए ने आईएमएस से संबंधित इनपुट फॉर्मेट और रिपोर्टों को अनुमोदित कर दिया है और संगत संगठनों से इनपुट फार्मेट में इसे लागू करने की तारीख प्राप्त की जा रही है।

सीईए निम्नलिखित व्यापक उद्देश्यों के साथ आईएमएस-।। को भी कार्यान्वित करने वाला है:-

- विद्युत परियोजनाओं के क्रियान्वयन की अधिक सघन और व्यापक सूचना प्रौद्योगिकी आधारित निगरानी।
- प्रणाली की विश्वसनीयता और उपलब्धता बढ़ाने के लिए मौजूदा डेटा सेंटर में पर्याप्त मात्रा में कर्मचारी उपलब्ध कराना और एक अलग आपदा रिकवरी डेटा सेंटर तैयार करना।
 चूंकि 12वीं पंचवर्षीय योजना के दौरान स्थापित की जाने वाली बहुत सी परियोजनाएं बड़े आकार वाली होंगी, अत: जारी परियोजनाओं से संबंधित उत्पादन रिपोर्ट और निगरानी की दृष्टि से सूचना प्रौद्योगिकी आधारित निगरानी प्रणाली उपयोगी साबित होगी।

• ईंधन संबंधी बाधाएं

- 💠 कुछ परियोजनाओं में कोयला, गैस और न्यूक्लियर ईंधन की अनुपलब्धता के कारण विलंब हुआ है।
- ❖ आंध्र प्रदेश में कोनासीमा (445मेगावाट) और गौथामी (464 मेगावाट), जो स्थापना के लिए तैयार थीं, परंतु गैस की अनुपलब्धता के कारण उनके प्रचालन में विलंब हुआ। अब इन परियोजनाओं के लिए केजी डी6 बेसिन से गैस आवंटित कर दी गई है और इनकी स्थापना 2009-10 के दौरान पूरी कर ली गई है।
- 220 मेगावाट क्षमता वाली आरएपीपी यूनिट 5 और 6 की स्थापना पहले ही कर ली गई है क्योंकि इन यूनिटों के लिए अब आयातित न्यूक्लियर ईंधन उपलब्ध है।

❖ उपर्युक्त के अलावा गैस की अनुपलब्धता के कारण 11वीं पंचवर्षीय योजना के दौरान कुछ गैस आधारित विद्युत परियोजनाओं की स्थापना नहीं की जा सकीं। गुजरात में हजीरा सीसीजीटी (351 मेगावाट) गैस विद्युत परियोजना की स्थापना 11वीं पंचवर्षीय योजना के दौरान (मार्च, 2012) में की गई जो वर्तमान में गैस की अनुपलब्धता के कारण बंद पड़ी हुई है।

• संविदागत विवाद

10वीं पंचवर्षीय योजना अविध के दौरान निर्धारित मूल्य संविदा आधार पर सौंपी गई। बहुत सी संविदाएं आवश्यक सामग्री (इनपुट) के मूल्य में अनापेक्षित वृद्धि के कारण बुरी तरह प्रभावित हुई। सीईए ने सभी विद्युत कंपनियों को भविष्य में ऐसी सभी संविदाएं, जिनके कार्यान्वयन की अविध काफी लंबी है, निर्धारित मूल्य संविदा आधार पर न सौंपने की सलाह दी। विद्युत कंपनियों के मार्गदर्शन हेतु उपयुक्त मूल्य गणना सूत्र के साथ एक मॉडल संविदा दस्तावेज परिचालित किया गया।

विद्युत मंत्रालय और केन्द्रीय विद्युत प्राधिकरण द्वारा नई दिल्ली में दिनांक 16 नवंबर, 2007 को "जल विद्युत परियोजनाओं के त्वरित विकास के लिए संविदा प्रबंधन" विषय पर आयोजित एक दिवसीय अंतर्राष्ट्रीय सम्मेलन के दौरान यह गणना की गई कि मौजूदा संविदा दस्तावेजों और प्रबंधन प्रणालियों/प्रक्रियाओं में खामियां हैं, जिनके परिणवामस्वरूप संविदागत के बाद पैदा होते हैं और जल विद्युत परियोजनाओं का विकास प्रभावित होता है। सभी पणधारकों द्वारा अपनाए जाने के लिए दिशानिर्देश के रूप में मानक दस्तावेज तैयार करने की आवश्यकता महसूस की गई।

इसके अनुक्रम में विद्युत मंत्रालय, भारत सरकार द्वारा केन्द्रीय विद्युत प्राधिकरण के चेयरपर्सन की अध्यक्षता में एक कार्यबल गठित किया गया, जिसमें विद्युत कंपनियों, विकासकर्ताओं के प्रतिनिधि और परामर्शदाताओं को सदस्य के रूप में शामिल किया गया। निर्माण उद्योग विकास परिषद (सीआईडीसी) की सेवाएं इस प्रयोजन से ली गईं।

मसौदा दस्तावेज को अंतिम रूप दिया गया है और स्वीकृति के लिए विद्युत मंत्रालय को भेजा गया है। मानक बोली दस्तावेजों (एसबीडी) में महत्वपूर्ण घटकों/संकल्पनाओं को शामिल करने के साथ साथ निम्नलिखित तथ्यों को भी शामिल किया गया है:

- i. जोखिम रजिस्टर: ऐसा देखा जाता है कि ज्यादातर जल विद्युत परियोजनाओं के विकास में संविदागत मुद्दों के कारण विलंब होता है, जो विशेष रूप से अज्ञात स्थितियों के परिणामस्वरूप उत्पन्न होने वाले जोखिम व्यय को साझा करने के कारण पैदा होते हैं। एक जोखिम रजिस्टर प्रोफार्मा तैयार किया गया है, जिसमें जल विद्युत परियोजनाओं के समक्ष सामान्यत: पैदा होने वाले विभिन्न प्रकार के जोखिमों को साझा करने/आवंटित करने का प्रावधान किया गया है। ऐसी अपेक्षा है कि इस प्रोफार्मा को अपनाने से नियोक्ता और संविदाकारों के बीच संविदागत विवाद काफी हद तक कम हो जाएंगे।
- ii. संस्थागत माध्यस्थम व्यवस्था: तेजी से और दक्षतापूर्वक विवाद निपटान सुनिश्चित करने के लिए संस्थागत विवाद समाधान तंत्र का प्रस्ताव किया गया है, जो वैश्विक स्तर पर उभरकर सामने आ रही सर्वश्रेष्ठ प्रक्रियाओं पर आधारित है। वैश्विक स्तर पर दुर्घटनाओं की क्षतिपूर्ति और दावों के निष्पक्ष एवं समय पर निर्धारण पर अधिक जोर दिए जाने के कारण संस्थागत माध्यस्थम तंत्र की ओर रुझान बढ़ा है जो विवादों के समय पर समाधान के लिए अपेक्षाकृत अधिक जवाबदेह और पारदर्शी प्रक्रिया सुनिश्चित करने में सहायक है।
- iii. उपयुक्त ढंग से शामिल किए गए/संशोधित किए गए अन्य मुद्दों के साथ साथ इसमें निम्नलिखित मुद्दों को भी शामिल किया गया है:
 - संसाधन के बेकार होने की स्थिति में दावा,
 - लागत नियंत्रण,
 - दावों के लिए प्रक्रियाएं,
 - कीमत समायोजन फार्मूला,
 - प्रोत्साहन बोनस,
 - संविदा के निलंबन /निर्धारित समय से पहले समाप्ति पर भुगतान

iv. समीक्षा समिति का प्रावधान – मध्याविध संशोधन के लिए मानक बोली दस्तावेजों (एसबीडी) और अन्य दस्तावेजों की आविधक समीक्षा के उद्देश्य से एक समीक्षा समिति के गठन का प्रस्ताव किया गया है। कानूनी विधीक्षा के पश्चात मानक बोली दस्तावेजों को अंतिम रूप दिया गया है और विद्युत मंत्रालय को भेजे गए हैं।

• मानकीकरण: केन्द्रीय विद्युत प्राधिकरण द्वारा थर्मल परियोजनाओं के डिजाइन और इंजीनियरिंग तथा कार्यान्वयन में लगने वाले समय को कम करने के उद्देश्य से सब क्रिटिकल प्रौद्योगिकी के साथ 500 मेगावाट और उससे अधिक क्षमा वाले स्टीम जनरेटर और टर्बाइन जनरेटर के लिए मानक विनिर्देश तैयार किए गए। सुपरिक्रिटिकल यूनिटों और बकाया प्लांटों (बीओपी) के लिए भी मानक विनिर्देश तैयार किए जा रहे हैं।

अनुबंध 2.1

11वीं पंचवर्षीय योजना की राज्यवार/क्षेत्रवार क्षमता अभिवृद्धि लक्ष्य/उपलब्धियां लक्ष्य मध्यावधि मुल्यांकन (एमटीए)													
		ला	त्य - 78 ,	700 मेगा	वाट					31.03.2012 तक उपलब्धियां			
		_			_		Ī	2,374 मे		_			
क्र.सं.	राज्य / संघाशासित क्षेत्र	सीएस	एसएस	पीएस	जोड़	सीएस	एसएस	पीएस	जोड़	सीएस	एसएस	पीएस	जोड़
1	दिल्ली	0	1500	0	1500	0	1500	108	1608	0	750	108	858
2	हरियाणा	1500	1800	0	3300	1500	1800	0	3300	1000	1800	660	3460
3	हिमाचल प्रदेश	2763	210	1462	4435	751	0	1362	2113	0	0	1292	1292
4	जम्मू और कश्मीर	449	450	0	899	449	450	0	899	120	450	0	570
5	पंजाब	0	500	0	500	0	500	0	500	0	500	0	500
6	राजस्थान	690	1790	1080	3560	690	1290	1080	3060	690	1290	540	2520
7	उत्तर प्रदेश	980	2000	1600	4580	980	1000	1800	3780	980	250	2850	4080
8	उत्तराखंड	1520	304	330	2154	400	304	0	704	400	304	0	704
9	चंड <u>ी</u> गढ़	0	0	0	0	0	0	0	0	0	0	0	0
	उप जोड़ उत्तरी क्षेत्र	7902	8554	4472	20928	4770	6 84 4	4350	15964	3190	5344	5450	13984
10	छत्तीसगढ़	3980	1750	1600	7330	2000	250	1600	3850	3320	250	1833	5403
11	गुजरात	0	2782	2448	5230	0	2282	5248	7530	0	1090	7168	8258
12	महाराष्ट्र	1740	2500	1450	5690	740	2500	2110	5350	740	2500	2236	5476
13	मध्य प्रदेश	520	2210	400	3130	520	710	400	1630	520	710	0	1230
14	गोवा	0	0	0	0	0	0	0	0	0	0	0	0
15	दमण एवं दीव	0	0	0	0	0	0	0	0	0	0	0	0
16	दादर एवं नगर हवेली	0	0	0	0	0	0	0	0	0	0	0	0
	उप जोड़ पश्चिमी क्षेत्र	6240	9242	5898	21380	3260	5742	9358	18360	4580	4550	11237	20367
17	आंध्र प्रदेश	1000	3064	909	4973	1000	2204	1275	4479	1000	2154	1425	4579
18	कर्नाटक	440	1480	1615	3535	440	1480	1615	3535	440	1480	1800	3720
19	केरल	0	160	0	160	0	100	0	100	0	100	0	100
20	तमिलनाडु	5000	1252	0	6252	4000	1952	0	5952	750	92	0	842
21	पांडिचेरी	0	0	0	0	0	0	0	0	0	0	0	0
	उप जोड़ दक्षिणी क्षेत्र	6440	5956	2524	14920	5440	5736	2890	14066	2190	3826	3225	9241
22	बिहार	4390	0	0	4390	1000	0	0	1000	1000	0	0	1000
23	झारखंड	3050	0	0	3050	1500	0	1050	2550	1000	0	1050	2050
24	उड़ीसा	0	150	600	750	0	150	1200	1350	0	150	1800	1950
25	 सिक्किम	510	0	1299	1809	510	0	699	1209	510	0	0	510

	जोड़	36874	26783	15043	78700	21222	21355	19797	62374	15220	16732	23012	54964
35	लक्षद्वीप	0	0	0	0	0	0	0	0	0	0	0	0
34	अण्डमान निकोबार द्वीप समूह	0	0	0	0	0	0	0	0	0	0	0	0
उप	जोड़ उत्तरी पश्चिमी क्षेत्र	4100	161	0	4261	500	163	0	663	0	142	0	142
33	त्रिपुरा	750	0	0	750	0	0	0	0	0	21	0	21
32	नागालैंड	0	0	0	0	0	0	0	0	0	0	0	0
31	मेघालय	0	124	0	124	0	126	0	126	0	84	0	84
30	मिजोरम	0	0	0	0	0	0	0	0	0	0	0	0
29	मणिपुर	0	0	0	0	0	0	0	0	0	0	0	0
28	असम	750	37	0	787	500	37	0	537	0	37	0	37
27	अरुणाचल प्रदेश	2600	0	0	2600	0	0	0	0	0	0	0	0
	उप जोड़ पूर्वी क्षेत्र	12192	2870	2149	17211	7252	2870	3199	13321	5260	2870	3100	11230
26	पश्चिम बंगाल	4242	2720	250	7212	4242	2720	250	7212	2750	2720	250	5720

सीएस : केन्द्रीय क्षेत्र; एसएस : राज्य क्षेत्र ; पीएस : स्थापित

अनुबंध-2.2 11वीं पंचवर्षीय योजना के दौरान स्थापित परियोजनाओं की सूची

क्र. सं.	प्लांट का नाम	राज्य	एजेंसी	क्षेत्र	स्थिति	ईंधन का प्रकार	क्षमता (मेगावाट)	78,700 मेगावाट के अनुसार क्षमता	62,374 मेगावाट के अनुसार क्षमता	स्थापित क्षमता
	केन्द्रीय क्षेत्र									
1	चन्द्रपुरा यूनिट-7,8	झारखंड	डीवीसी	केन्द्रीय क्षेत्र	स्थापित	कोयला	500	500	500	500
2	मेजिया यूनिट-6	पश्चिम बंगाल	डीवीसी	केन्द्रीय क्षेत्र	स्थापित	कोयला	250	250	250	250
3	मेजिया पीएच II यूनिट 7,8	पश्चिम बंगाल	डीवीसी	केन्द्रीय क्षेत्र	स्थापित	कोयला	1000	1000	1000	1000
4	कोडरमा यूनिट 1	झारखंड	डीवीसी	केन्द्रीय क्षेत्र	स्थापित	कोयला	500	500	500	500
5	कोडरमा यूनिट 2	झारखंड	डीवीसी	केन्द्रीय क्षेत्र	निर्माणाधीन	कोयला	500	500	500	
6	दुर्गापुर स्टील यूनिट 1	पश्चिम बंगाल	डीवीसी	केन्द्रीय क्षेत्र	स्थापित	कोयला	500	500	500	500
7	दुर्गापुर स्टील यूनिट 2	पश्चिम बंगाल	डीवीसी	केन्द्रीय क्षेत्र	स्थापित	कोयला	500	500	500	500
8	रघुनाथपुर पीएच-l यूनिट 1,2	पश्चिम बंगाल	डीवीसी	केन्द्रीय क्षेत्र	निर्माणाधीन	कोयला	1200	1200	1200	
9	बोकारो विस्तार	झारखंड	डीवीसी	केन्द्रीय क्षेत्र	निर्माणाधीन	कोयला	500	500		
10	कामेंग जल विद्युत परियोजना	अरुणाचल प्रदेश	नीपको	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	600	600		
11	ओंकारेश्वर जल विद्युत परियोजना	मध्य प्रदेश	एनएचडी सी	केन्द्रीय क्षेत्र	स्थापित	हाइड्रो	520	520	520	520

क्र. सं.	प्लांट का नाम	राज्य	एजेंसी	क्षेत्र	स्थिति	ईंधन का प्रकार	क्षमता (मेगावाट)	78,700 मेगावाट के अनुसार क्षमता	62,374 मेगावाट के अनुसार क्षमता	स्थापित क्षमता
12	तीस्ता V यूनिट 1,2,3 जल विद्युत परियोजना	सिक्किम	एनएचपी सी	केन्द्रीय क्षेत्र	स्थापित	हाइड्रो	510	510	510	510
13	सेवा-II यूनिट1,3,2 जल विद्युत परियोजना	जम्मू और कश्मीर	एनएचपी सी	केन्द्रीय क्षेत्र	स्थापित	हाइड्रो	120	120	120	120
14	चमेरा-III जल विद्युत परियोजना	हिमाचल प्रदेश	एनएचपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	231	231	231	
15	पार्बती - II जल विद्युत परियोजना	हिमाचल प्रदेश	एनएचपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	800	800		
16	पार्बती - III जल विद्युत परियोजना	हिमाचल प्रदेश	एनएचपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	520	520	520	
17	उरी-II जल विद्युत परियोजना	जम्मू और कश्मीर	एनएचपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	240	240	240	
18	नीमू बाजगो जल विद्युत परियोजना	जम्मू और कश्मीर	एनएचपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	45	45	45	
19	छुटक जल विद्युत परियोजना	जम्मू और कश्मीर	एनएचपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	44	44	44	
20	तीस्ता लो डैम-III जल विद्युत परियोजना	पश्चिम बंगाल	एनएचपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	132	132	132	
21	तीस्ता लो डैम -IV जल विद्युत परियोजना	पश्चिम बंगाल	एनएचपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	160	160	160	
22	सुबंश्री लोअर जल विद्युत परियोजना	अरुणाचल प्रदेश	एनएचपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	2000	2000		
23	बरसिंगसर एलआईजी यूनिट1,2	राजस्थान	एनएलसी	केन्द्रीय क्षेत्र	स्थापित	लिग्नाइट	250	250	250	250
24	नेवेली- II एलआईजी यूनिट1	तमिलनाडु	एनएलसी	केन्द्रीय क्षेत्र	स्थापित	लिग्नाइट	250	250	250	250
25	नेवेली - II एलआईजी यूनिट2	तमिलनाडु	एनएलसी	केन्द्रीय क्षेत्र	निर्माणाधीन	लिग्नाइट	250	250	250	
26	तूतीकोरीन संयुक्त उद्यम	तमिलनाडु	एनएलसी	केन्द्रीय क्षेत्र	निर्माणाधीन	कोयला	1000	1000		
27	कैगा यूनिट-3,4	कर्नाटक	एनपीसी	केन्द्रीय क्षेत्र	स्थापित	न्यूक्लियर	440	440	440	440
28	आरएपीपी यूनिट-5,6	राजस्थान	एनपीसी	केन्द्रीय क्षेत्र	स्थापित	न्यूक्लियर	440	440	440	440
29	कुडनकुलम यूनिट 1,2	तमिलनाडु	एनपीसी	केन्द्रीय क्षेत्र	निर्माणाधीन	न्यूक्लियर	2000	2000	2000	
30	पीएफबीआर (कलपक्कम)	तमिलनाडु	एनपीसी	केन्द्रीय क्षेत्र	निर्माणाधीन	न्यूक्लियर	500	500	500	
31	रत्नगिरि (दाभोल) संयुक्त उद्यम	महाराष्ट्र	एनटीपी सी	केन्द्रीय क्षेत्र	स्थापित	गैस/एलए नजी	740	740	740	740
32	सिपत-॥ यूनिट4,5	छत्तीसगढ़	एनटीपी सी	केन्द्रीय क्षेत्र	स्थापित	कोयला	1000	1000	1000	1000
33	सिपत -l यूनिट1,2	छत्तीसगढ़	एनटीपी सी	केन्द्रीय क्षेत्र	स्थापित	कोयला	1320	1320		1320
34	सिपत । यूनिट3	छत्तीसगढ़	एनटीपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	कोयला	660	660		
35	भिलाई संयुक्त उद्यम यूनिट 1,2	छत्तीसगढ़	एनटीपी सी	केन्द्रीय क्षेत्र	स्थापित	कोयला	500	500	500	500
36	कोरबा III यूनिट-7	छत्तीसगढ़	एनटीपी सी	केन्द्रीय क्षेत्र	स्थापित	कोयला	500	500	500	500
37	कहलगांव II यूनिट 6 , 7	बिहार	एनटीपी सी	केन्द्रीय क्षेत्र	स्थापित	कोयला	1000	1000	1000	1000

क्र. सं.	प्लांट का नाम	राज्य	एजेंसी	क्षेत्र	स्थिति	ईंधन का	क्षमता (मेगावाट)	78,700 मेगावाट	62,374 मेगावाट	स्थापित क्षमता
						प्रकार	(4141413)	के अनुसार क्षमता	के अनुसार क्षमता	4//4/
38	दादरी विस्तार यूनिट- 5,6	उत्तर प्रदेश	एनटीपी सी	केन्द्रीय क्षेत्र	स्थापित	कोयला	980	980	980	980
39	इंदिरागांधी टीपीपी (झज्जर) संयुक्त उद्यम	हरियाणा	एनटीपी सी	केन्द्रीय क्षेत्र	स्थापित	कोयला	1000	1000	1000	1000
40	यूनिट1,2 इंदिरागांधी टीपीपी (झज्जर) संयुक्त उद्यम यूनिट3	हरियाणा	एनटीपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	कोयला	500	500	500	
41	पूर्वानट ऽ फरक्का -III यूनिट-6	पश्चिम बंगाल	एनटीपी सी	केन्द्रीय क्षेत्र	स्थापित	कोयला	500	500	500	500
42	सिम्हाद्री विस्तार यूनिट- 3,4	आन्ध्र प्रदेश	एनटीपी सी	केन्द्रीय क्षेत्र	स्थापित	कोयला	1000	1000	1000	1000
43	बोंगईगांव टीपीपी यूनिट 1-3	असम	एनटीपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	कोयला	750	750	500	
44	लोहरी नागपाला जल विद्युत परियोजना	उत्तराखंड	एनटीपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	600	600		
45	तपोवन विष्णुगढ़ जल विद्युत परियोजना	उत्तराखंड	एनटीपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	520	520		
46	कोलदाम जल विद्युत परियोजना	हिमाचल प्रदेश	एनटीपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	800	800		
47	मौदा टीपीपी यूनिट1,2	महाराष्ट्र	एनटीपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	कोयला	1000	1000		
48	बाइ-। यूनिट 1,2,3	बिहार	एनटीपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	कोयला	1980	1980		
49	बाइ ॥ यूनिट1	बिहार	एनटीपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	कोयला	660	660		
50	नबीनगढ़ संयुक्त उद्यम् यूनिट-1,2,3	बिहार	एनटीपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	कोयला	750	750		
51	वेल्लूर (एन्नोर) संयुक्त उद्यम यूनिट 1	तमिलनाडु	एनटीपी सी	केन्द्रीय क्षेत्र	स्थापित	कोयला	500	500	500	500
52	वेल्लूर (एन्नोर) संयुक्त उद्यम यूनिट 2	तमिलनाडु	एनटीपी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	कोयला	500	500	500	
53	त्रिपुरा गैस आईएलएफएस संयुक्त उद्यम	त्रिपुरा	ओएनजी सी	केन्द्रीय क्षेत्र	निर्माणाधीन	गैस/एलए नजी	726	750		
54	रामपुर जल विद्युत परियोजना	हिमाचल प्रदेश	एसजेवीए नएल	केन्द्रीय क्षेत्र	निर्माणाधीन	हाइड्रो	412	412		
55	कोटेश्वर यूनिट 1-4	उत्तराखंड	टीएचडी सी	केन्द्रीय क्षेत्र	स्थापित	हाइड्रो	400	400	400	400
	उप जोड़ (केन्द्रीय क्षेत्र)							35824	21222	15220
	राज्य क्षेत्र									
1	जुराला प्रिया यूनिट 1-6	आन्ध्र प्रदेश	एपी जेनको	राज्य क्षेत्र	स्थापित	हाइड्रो	234	234	234	234
2	रायलसीमा यूनिट4,5	आन्ध्र प्रदेश	एपी जेनको	राज्य क्षेत्र	स्थापित	कोयला	420	420	420	420
3	विजयवाड़ा टीपीपी एसटी-IV, यूनिट1	आन्ध्र प्रदेश	एपी जेनको	राज्य क्षेत्र	स्थापित	कोयला	500	500	500	500
4	काकतिया टीपीपी	आन्ध्र प्रदेश	एपी जेनको	राज्य क्षेत्र	स्थापित	कोयला	500	500	500	500

क्र. सं.	प्लांट का नाम	राज्य	एजेंसी	क्षेत्र	स्थिति	ईंधन का प्रकार	क्षमता (मेगावाट)	78,700 मेगावाट के अनुसार क्षमता	62,374 मेगावाट के अनुसार क्षमता	स्थापित क्षमता
5	कोथागुडेम एसटी-VI	आन्ध्र प्रदेश	एपी जेनको	राज्य क्षेत्र	स्थापित	कोयला	500	500	500	500
6	नागार्जुन सागर टीआर	आन्ध्र प्रदेश	एपी जेनको	राज्य क्षेत्र	निर्माणाधीन	हाइड्रो	50	50	50	
7	लोवर जुराला यूनिट 1-6 जल विद्युत परियोजना	आन्ध्र प्रदेश	एपी जेनको	राज्य क्षेत्र	निर्माणाधीन	हाइड्रो	240	240		
8	पुलीछिंतला जल विद्युत परियोजना	आन्ध्र प्रदेश	एपी आईडी	राज्य क्षेत्र	निर्माणाधीन	हाइड्रो	120	120		
9	काकतिया विस्तार यूनिट1	आन्ध्र प्रदेश	एपी जेनको	राज्य क्षेत्र	निर्माणाधीन	कोयला	500	500		
10	लकवा उब्ल्यूएच	असम	एपीजीसी एल	राज्य क्षेत्र	स्थापित	गैस/एलए नजी	37.2	37.2	37.2	37.2
11	कोरबा पूर्व विस्तार यूनिट2	छत्तीसगढ़	सीएसईबी	राज्य क्षेत्र	स्थापित	कोयला	250	250	250	250
12	मरवाह टीपीपी यूनिट 1,2	छत्तीसगढ़	सीएसईबी	राज्य क्षेत्र	निर्माणाधीन	कोयला	1000	1000		
13	कोरबा पश्चिम विस्तार पीएच III	छत्तीसगढ़	सीएसईबी	राज्य क्षेत्र	निर्माणाधीन	कोयला	500	500		
14	प्रगति-III (बवाना) जीटी- 1,2 एसटी-1	दिल्ली	पीपीसीए ल	राज्य क्षेत्र	स्थापित	गैस/एलए नजी	750	750	750	750
15	प्रगति-III (बवाना) जीटी -3,4 & एसटी-2	दिल्ली	पीपीसीए ल	राज्य क्षेत्र	निर्माणाधीन	गैस/एलए नजी	750	750	750	
16	कुत्च लिग्नाइट टीपीएस	गुजरात	जीएसई सीएल	राज्य क्षेत्र	स्थापित	लिग्नाइट	75	75	75	75
17	धुर्वन एसटी	गुजरात	जीएसई सीएल	राज्य क्षेत्र	स्थापित	गैस/एलए नजी	40	40	40	40
18	उतरन सीसीपीपी- जीटी+एसटी	गुजरात	जीएसई सीएल	राज्य क्षेत्र	स्थापित	गैस/एलए नजी	374	374	374	374
19	सूरत लिग्नाइट विस्तार यूनिट3,4	गुजरात	जीआईपी सीएल	राज्य क्षेत्र	स्थापित	लिग्नाइट	250	250	250	250
20	उकाई विस्तार यूनिट6	गुजरात	जीएसई सीएल	राज्य क्षेत्र	निर्माणाधीन	कोयला	490	490	490	
21	जीएसईजी हजीरा विस्तार	गुजरात	जीएसई सीएल	राज्य क्षेत्र	स्थापित	गैस/एलए नजी	351	351	351	351
22	पीआईपीएबीएवी संयुक्त उद्यम सीसीजीटी	गुजरात	जीएसई सीएल	राज्य क्षेत्र	निर्माणाधीन	गैस/एलए नजी	702	702	702	
23	सिक्का टीपीपी विस्तार	गुजरात	जीएसई सीएल	राज्य क्षेत्र	निर्माणाधीन	कोयला	500	500		
24	यमुना नगर यूनिट1,2	हरियाणा	एचपीजी सीएल	राज्य क्षेत्र	स्थापित	कोयला	600	600	600	600
25	राजीव गांधी टीपीएस (हिसार) यूनिट1,2	हरियाणा	एचपीजी सीएल	राज्य क्षेत्र	स्थापित	कोयला	1200	1200	1200	1200
26	यूएचएल - III जल विद्युत परियोजना	हिमाचल प्रदेश	एचपीजे वीवीएनए ल	राज्य क्षेत्र	निर्माणाधीन	हाइड्रो	100	100		
27	सवारा कुडु जल विद्युत परियोजना	हिमाचल प्रदेश	पीवीसी	राज्य क्षेत्र	निर्माणाधीन	हाइड्रो	110	110		
28	बगलिहार-l यूनिट1,2,3 जल विद्युत परियोजना	जम्मू और कश्मीर	जेकेपीडी सी	राज्य क्षेत्र	स्थापित	हाइड्रो	450	450	450	450
29	वराही विस्तार यूनिट1,2 जल विद्युत परियोजना	कर्नाटक	केपीसीए ल	राज्य क्षेत्र	स्थापित	हाइड्रो	230	230	230	230

क्र. सं.	प्लांट का नाम	राज्य	एजेंसी	क्षेत्र	स्थिति	ईंधन का प्रकार	क्षमता (मेगावाट)	78,700 मेगावाट के अनुसार क्षमता	62,374 मेगावाट के अनुसार क्षमता	स्थापित क्षमता
30	बेल्लारी टीपीपी यूनिट 1,2	कर्नाटक	केपीसीए ल	राज्य क्षेत्र	स्थापित	कोयला	1000	1000	1000	1000
31	रायचूर यूनिट 8	कर्नाटक	केपीसीए ल	राज्य क्षेत्र	स्थापित	कोयला	250	250	250	250
32	कुटियाड़ी विस्तार यूनिट1,2 जल विद्युत परियोजना	केरल	केएसईबी	राज्य क्षेत्र	स्थापित	हाइड्रो	100	100	100	100
33	पल्लीवसल जल विद्युत परियोजना	केरल	केएसईबी	राज्य क्षेत्र	निर्माणाधीन	हाइड्रो	60	60		
34	घाटघर पीएसएस यूनिट1,2	महाराष्ट्र	जीओएम आईडी	राज्य क्षेत्र	स्थापित	हाइड्रो	250	250	250	250
35	पारस विस्तार यूनिट1,2	महाराष्ट्र	एमएसपी जीसीएल	राज्य क्षेत्र	स्थापित	कोयला	500	500	500	500
36	न्यू पर्ली विस्तार यूनिट-2	महाराष्ट्र	एमएसपी जीसीएल	राज्य क्षेत्र	स्थापित	कोयला	250	250	250	250
37	खपेर खेड़ा विस्तार	महाराष्ट्र	एमएसपी जीसीएल	राज्य क्षेत्र	स्थापित	कोयला	500	500	500	500
38	भुसावल टीपीपी यूनिट4,5	महाराष्ट्र	एमएसपी जीसीएल	राज्य क्षेत्र	स्थापित	कोयला	1000	1000	1000	1000
39	मिंतडू चरण-I जल विद्युत परियोजना	मेघालय	एमईएसई बी	राज्य क्षेत्र	स्थापित	हाइड्रो	84	84	84	84
40	मिंतडू चरण-l अतिरिक्त यूनिट	मेघालय	एमईएसई बी	राज्य क्षेत्र	निर्माणाधीन	हाइड्रो	42		42	
41	न्यू अमतरु जल विद्युत परियोजना	मेघालय	एमईएसई बी	राज्य क्षेत्र	निर्माणाधीन	हाइड्रो	40	40		
42	बिरसिंहपुर विस्तार	मध्य प्रदेश	एमपीजी सीएल	राज्य क्षेत्र	स्थापित	कोयला	500	500	500	500
43	अमरकंटक यूनिट-5	मध्य प्रदेश	एमपी जेनको	राज्य क्षेत्र	स्थापित	कोयला	210	210	210	210
44	मालवा टीपीपी यूनिट1,2	मध्य प्रदेश	एमपी जेनको	राज्य क्षेत्र	निर्माणाधीन	कोयला	1000	1000		
45	सतपुड़ा विस्तार यूनिट- 1,2	मध्य प्रदेश	एमपीपी जीसीएल	राज्य क्षेत्र	निर्माणाधीन	कोयला	500	500		
46	बालीमेल जल विद्युत परियोजना एसटी-II यूनिट7,8	ORISS A	ओएचपी सी	राज्य क्षेत्र	स्थापित	हाइड्रो	150	150	150	150
47	जीएचटीपीपी-II यूनिट- 3,4	PयूनिटN JAB	पीएसईबी	राज्य क्षेत्र	स्थापित	कोयला	500	500	500	500
48	गिराल लिग्नाइट यूनिट- 2	राजस्थान	आरआरवी यूएनएल	राज्य क्षेत्र	स्थापित	लिग्नाइट	125	125	125	125
49	छाबड़ा टीपीएस यूनिट- 1,2	राजस्थान	आरआरवी यूएनएल	राज्य क्षेत्र	स्थापित	कोयला	500	500	500	500
50	कोटा टीपीपी यूनिट7	राजस्थान	आरआरवी यूएनएल	राज्य क्षेत्र	स्थापित	कोयला	195	195	195	195
51	सूरतगढ़ विस्तार यूनिट6	राजस्थान	आरआरवी यूएनएल	राज्य क्षेत्र	स्थापित	कोयला	250	250	250	250
52	धौलपुर जीटी 2+एसटी	राजस्थान	आरआरवी यूएनएल	राज्य क्षेत्र	स्थापित	गैस/एलए नजी	220	220	220	220
53	कालीसिंध टीपीएस यूनिट1	राजस्थान	आरआरवी यूएनएल	राज्य क्षेत्र	निर्माणाधीन	कोयला	600	500		

क्र. सं.	प्लांट का नाम	राज्य	एजेंसी	क्षेत्र	स्थिति	ईंधन का प्रकार	क्षमता (मेगावाट)	78,700 मेगावाट के अनुसार क्षमता	62,374 मेगावाट के अनुसार क्षमता	स्थापित क्षमता
54	वलत्थूर विस्तार	तमिलनाडु	टीएनईबी	राज्य क्षेत्र	स्थापित	गैस/एलए नजी	92.2	92.2	92.2	92.2
55	भवानी विस्तार &	तमिलनाडु	टीएनईबी	राज्य क्षेत्र	निर्माणाधीन	हाइड्रो	60	60	60	
56	मेत्तूर विस्तार यूनिट1	तमिलनाडु	टीएनईबी	राज्य क्षेत्र	निर्माणाधीन	कोयला	600	500	600	
57	उत्तर चेन्नई विस्तार यूनिट1,2	तमिलनाडु	टीएनईबी	राज्य क्षेत्र	निर्माणाधीन	कोयला	1200	600	1200	
58	बारामूड़ा जीटी	त्रिपुरा		राज्य क्षेत्र	स्थापित	गैस/एलए नजी	21			21
59	मनेरी भाली जल विद्युत परियोजना	उत्तराखंड	यूजेवीएन एल	राज्य क्षेत्र	स्थापित	हाइड्रो	304	304	304	304
60	पारीछा विस्तार यूनिट- 5,6	उत्तर प्रदेश	यूपीआर वीयूएनए ल	राज्य क्षेत्र	निर्माणाधीन	कोयला	500	500	500	
61	हरदुआगंज विस्तार यूनिट-8	उत्तर प्रदेश	यूपीआर वीयूएनए ल	राज्य क्षेत्र	स्थापित	कोयला	250	250	250	250
62	हरदुआगंज विस्तार यूनिट-9	उत्तर प्रदेश	यूपीआर वीयूएनए ल	राज्य क्षेत्र	निर्माणाधीन	कोयला	250	250	250	
63	अनपरा –डी यूनिट1,2	उत्तर प्रदेश	यूपीआर वीयूएनए ल	राज्य क्षेत्र	निर्माणाधीन	कोयला	1000	1000		
64	पुरुलिया पीएसएस	पश्चिम बंगाल	डब्ल्यूबीए सईबी	राज्य क्षेत्र	स्थापित	हाइड्रो	900	900	900	900
65	सगरदिघी यूनिट 1,2	पश्चिम बंगाल	डब्ल्यूबी पीडीसीए ल	राज्य क्षेत्र	स्थापित	कोयला	600	600	600	600
66	संतलडीह यूनिट5	पश्चिम बंगाल	डब्ल्यूबी पीडीसीए ल	राज्य क्षेत्र	स्थापित	कोयला	250	250	250	250
67	संतलडीह विस्तार -यूनिट 6	पश्चिम बंगाल	डब्ल्यूबी पीडीसीए ल	राज्य क्षेत्र	स्थापित	कोयला	250	250	250	250
68	बकरेश्वर यूनिट 4,5	पश्चिम बंगाल	डब्ल्यूबी पीडीसीए ल	राज्य क्षेत्र	स्थापित	कोयला	420	420	420	420
69	दुर्गापुर विस्तार यूनिट 7	पश्चिम बंगाल	डीपीएल	राज्य क्षेत्र	स्थापित	कोयला	300	300	300	300
	उप जोड़ (राज्य क्षेत्र)							26783	21355	16732
	निजी क्षेत्र									
1	कोनासीमा जीटी+एसटी	आन्ध्र प्रदेश	कोनासी मा पावर	निजी क्षेत्र	स्थापित	गैस/एलए नजी	445	445	445	445
2	गौतमी	आन्ध्र प्रदेश	गौतमी पावर	निजी क्षेत्र	स्थापित	गैस/एलए नजी	464	464	464	464
3	कोंडापल्ली सीसीपीपी पीएच-II जीटी+एसटी	आन्ध्र प्रदेश	लैंको	निजी क्षेत्र	स्थापित	गैस/एलए नजी	366		366	366
4	रायगढ़ टीपीपी पीएच-I, यूनिट-1, 2; पीएच II यूनिट 3,4	छत्तीसगढ़	जिंदल पावर	निजी क्षेत्र	स्थापित	कोयला	1000	1000	1000	1000
5	लैंको अमरकंटक यूनिट1,2	छत्तीसगढ़	लैंको	निजी क्षेत्र	स्थापित	कोयला	600	600	600	600

क्र. सं.	प्लांट का नाम	राज्य	एजेंसी	क्षेत्र	स्थिति	ईंधन का प्रकार	क्षमता (मेगावाट)	78,700 मेगावाट के बनुसार क्षमता	62,374 मेगावाट के अनुसार क्षमता	स्थापित क्षमता
6	रिठाला सीसीपीपी (जीटी1+जीटी2+एसटी)	दिल्ली	एनडीपीए ल	निजी क्षेत्र	स्थापित	गैस/एलए नजी	108.0		108.0	108.0
7	सुजेन टोरेंट ब्लॉक I, II & III	गुजरात	टोरेंट	निजी क्षेत्र	स्थापित	गैस/एलए नजी	1147.5	1128	1147.5	1147. 5
8	मुद्रा टीपीपी पीएच-I, यूनिट 1-4	गुजरात	अदानी पावर	निजी क्षेत्र	स्थापित	कोयला	1320	1320	1320	1320
9	मुद्रा टीपीपी पीएच-॥ यूनिट1,2	गुजरात	अदानी पावर	निजी क्षेत्र	स्थापित	कोयला	1320		1320	1320
10	मुद्रा टीपीपी पीएच-॥। यूनिट-1	गुजरात	अदानी पावर	निजी क्षेत्र	स्थापित	कोयला	660		660	660
11	मुद्रा टीपीपी पीएच-॥। यूनिट-2,3	गुजरात	अदानी पावर	निजी क्षेत्र	स्थापित	कोयला	1320			1320
12	अल्ट्रा मेगा मुद्रा यूनिट1	गुजरात	टाटा पावर	निजी क्षेत्र	स्थापित	कोयला	800		800	800
13	अल्लाइन दुहांगन यूनिट1,2	हिमाचल प्रदेश	एडीएचपी आईएल	निजी क्षेत्र	स्थापित	हाइड्रो	192	192	192	192
14	करचम वांग्तू यूनिट1-4	हिमाचल प्रदेश	जेपीकेसी एल	निजी क्षेत्र	स्थापित	हाइड्रो	1000	1000	1000	1000
15	मलाना जल विद्युत परियोजना II यूनिट1,2	हिमाचल प्रदेश	एवरेस्ट पावर	निजी क्षेत्र	स्थापित	हाइड्रो	100	100	100	100
16	बुधिल जल विद्युत परियोजना	हिमाचल प्रदेश	लांको	निजी क्षेत्र	निर्माणाधीन	हाइड्रो	70	70	70	
17	सोरंग जल विद्युत परियोजना	हिमाचल प्रदेश	हिमाचल सोरंग पावर	निजी क्षेत्र	निर्माणाधीन	हाइड्रो	100	100		
18	मैथन आरबीसी संयुक्त उद्यम यूनिट1,2*	झारखंड	आईपीपी	निजी क्षेत्र	स्थापित	कोयला	1050	1050	1050	1050
19	तोरंगल्लू यूनिट1,2	कर्नाटक	जेएसड ब्ल्यू एनर्जी	निजी क्षेत्र	स्थापित	कोयला	600	600	600	600
20	उडुप्पी टीपीपी (लैंको नागार्जुन यूनिट1,2	कर्नाटक	एनपीसी∟	निजी क्षेत्र	स्थापित	कोयला	1200	1015	1015	1200
21	ट्रोम्बे टीपीएस	महाराष्ट्र	टाटा पावर	निजी क्षेत्र	स्थापित	कोयला	250	250	250	250
22	जेएसडब्ल्यू एनर्जी रत्नगिरियूनिट1-4	महाराष्ट्र	जेएसड ब्ल्यू	निजी क्षेत्र	स्थापित	कोयला	1200	1200	1200	1200
23	बरोरा टीपीएस यूनिट1,2,3,4	महाराष्ट्र	वर्धा पावर कंपनी	निजी क्षेत्र	स्थापित	कोयला	540			540
24	तिरोदा टीपीपी पीएच-। यूनिट1	महाराष्ट्र	अदानी पावर	निजी क्षेत्र	निर्माणाधीन	कोयला	660		660	
25	महेश्वर 1-10	मध्य प्रदेश	एसएमए चपीसीए ल	निजी क्षेत्र	निर्माणाधीन	हाइड्रो	400	400	400	
26	स्टर्लाइट टीपीपी यूनिट 2,1	उड़ीसा	स्टर्लाइट एनर्जी	निजी क्षेत्र	स्थापित	कोयला	1200	600	1200	1200
27	स्टर्लाइट टीपीपी यूनिट3	उड़ीसा	स्टर्लाइट एनर्जी	निजी क्षेत्र	स्थापित	कोयला	600			600

क्र. सं.	प्लांट का नाम	राज्य	एजेंसी	क्षेत्र	स्थिति	ईंधन का प्रकार	क्षमता (मेगावाट)	78,700 मेगावाट के अनुसार क्षमता	62,374 मेगावाट के अनुसार क्षमता	स्थापित क्षमता
28	जलिप्पा लिग्नाइट यूनिट 1-4	राजस्थान	राज वेस्ट पावर	निजीक्षेत्र	स्थापित	लिग्नाइट	540	540	540	540
29	जलिप्पा लिग्नाइट यूनिट 5-8	राजस्थान	राज वेस्ट पावर	निजीक्षेत्र	निर्माणाधीन	लिग्नाइट	540	540	540	
30	तीस्ता III	सिक्किम	तीस्ता ऊर्जा	निजी क्षेत्र	निर्माणाधीन	हाइड्रो	1200	1200	600	
31	छुजाचेन	सिक्किम	जेएटीआई	निजी क्षेत्र	निर्माणाधीन	हाइड्रो	99	99	99	
32	श्रीनगर	उत्तराखंड	जीवीके	निजी क्षेत्र	निर्माणाधीन	हाइड्रो	330	330		
33	महत्मा गांधी (झज्जर) टीपीपी यूनिट1	हरियाणा	सीएलपी	निजी क्षेत्र	स्थापित	कोयला	660			660
34	कसाइपल्ली टीपीपी	सीएचजी	एसीबी इंडिया	निजी क्षेत्र	स्थापित	कोयला	135			135
35	एसवी पावर टीपीपी	सीएचजी	एसवी पावर	निजी क्षेत्र	स्थापित	कोयला	63			63
36	मिहान टीपीपी	एमएएच	अभिजीत एनर्जी	निजी क्षेत्र	स्थापित	कोयला	246			246
37	कटघोड़ा टीपीपी यूनिट1	सीएचजी	एसीबी इंडिया	निजी क्षेत्र	स्थापित	कोयला	35			35
38	सिम्हापुरी एनर्जी प्राइवेट लिमिटेड यूनिट1	आन्ध्र प्रदेश	मधुकन परियोज नाएं	निजी क्षेत्र	स्थापित	कोयला	150			150
39	सलाया टीपीपी यूनिट 1	जीयूजे	एस्सार पावर	निजी क्षेत्र	स्थापित	कोयला	600			600
40	रोसा एसटी-l यूनिट1,2	उत्तर प्रदेश	रिलायंस पावर	निजी क्षेत्र	स्थापित	कोयला	600	600	600	600
41	रोसा एसटी-II यूनिट1,2	उत्तर प्रदेश	रिलायंस पावर	निजी क्षेत्र	स्थापित	कोयला	600			600
42	अनपरा-सी यूनिट1,2	उत्तर प्रदेश	लैंको	निजी क्षेत्र	स्थापित	कोयला	1200	1000	1200	1200
43	खम्बरखेड़ा यूनिट 1,2	उत्तर प्रदेश	बजाज एनर्जी	निजी क्षेत्र	स्थापित	कोयला	90			90
44	मकसूदपुर यूनिट 1,2	उत्तर प्रदेश	बजाज एनर्जी	निजी क्षेत्र	स्थापित	कोयला	90			90
45	बरखेड़ा टीपीपी यूनिट 1,2	उत्तर प्रदेश	बजाज एनर्जी	निजी क्षेत्र	स्थापित	कोयला	90			90
46	कुंडार्की टीपीपी यूनिट1,2	उत्तर प्रदेश	बजाज एनर्जी	निजी क्षेत्र	स्थापित	कोयला	90			90
47	उतराला टीपीपी यूनिट1,2	उत्तर प्रदेश	बजाज एनर्जी	निजी क्षेत्र	स्थापित	कोयला	90			90
48	बज-बज-विस्तार	पश्चिम बंगाल	सीईएस सी	निजी क्षेत्र	स्थापित	कोयला	250	250	250	250
	उप जोड़ (निजी क्षेत्र)							16093	19797	23012
	जोड़ (11वीं योजना)							78700	62374	54964

^{*}नोट: आरबीसी (1050 मेगावाट) को केन्द्रीय क्षेत्र के लक्ष्य 78,700 मेगावाट में शामिल किया गया। अब यह परियोजना निजी क्षेत्र में है। सी: केन्द्रीय क्षेत्र; एस : राज्य क्षेत्र ; पी : निजी क्षेत्र ; कमीशंड: स्थापित; यूसी : निर्माणाधीन

अध्याय 3

विद्युत के लिए मांग पूर्वानुमान

3.0 पृष्ठभूमि

हमारी अर्थव्यवस्था के विभिन्न क्षेत्रों की भावी विद्युत आवश्यकता को पूरा करने के लिए आवश्यक उत्पादन क्षमता अभिवृद्धि की आयोजना के लिए मांग का मूल्यांकन करना एक अनिवार्य पूर्व अर्हता है। योजनागत परियोजनाओं का प्रकार और अवस्थित काफी हद तक परियोजना के परिमाण, स्थानिक वितरण के साथ-साथ दिन, मौसम और वार्षिक आधार पर मांग के परिवर्तन पर निर्भर करते हैं। अत: भविष्य के लिए क्षमता अभिवृद्धि हेतु विश्वसनीय आयोजना भावी मांग के परिशृद्ध मूल्यांकन पर अत्यधिक निर्भर करती है।

राष्ट्रीय विद्युत नीति में यह भी उल्लेख किया गया है कि सीईए राष्ट्रीय विद्युत योजना तैयार करते समय विभिन्न क्षेत्रों के लिए अल्पकालिक और दीर्घकालिक मांग पूर्वानुमान प्रस्तुत करेगा ।

3.1केन्द्रीय विद्युत प्राधिकरण द्वारा मांग मूल्यांकन-विद्युत पावर सर्वेक्षण (ईपीएस रिपोर्ट)

केन्द्रीय विद्युत प्राधिकरण द्वारा विद्युत पावर सर्वेक्षण समिति गठित की जाती है। इसमें विद्युत क्षेत्र के विभिन्न पणधारकों का प्रतिनिधित्व होता है। यह समिति पीक विद्युत लोउ और विद्युत ऊर्जा आवश्यकता दोनों के संदर्भ में विद्युत की मांग का पूर्वानुमान लगाती है। सीईए नियमित रूप से विद्युत पावर सर्वेक्षण रिपोर्ट जारी करता रहा है। इस समिति द्वारा जारी की गयी नवीनतम रिपोर्ट 18वीं ईपीएस रिपोर्ट है जिसे प्रिंट कराया जा रहा है। इस रिपोर्ट में प्रत्येक राज्य, संघ राज्य, क्षेत्र और अखिल भारतीय स्तर पर विद्युत की मांग का वर्षवार विस्तृत पूर्वानुमान दिया जाता है। यह पूर्वानुमान 12वीं पंचवर्षीय योजना के अंत में अर्थात् 2016-17 लगाए जाएंगे और युटिलिटी प्रणालियों के लिए 13वीं और 14 वीं पंचवर्षीय योजना के सीमांत वर्ष अर्थात् 2021-22 और 2026-27 के लिए अनुमानित और संभावित विद्युत मांग को शामिल किया जाएगा। देश की मांग पर 12वीं और 13वीं योजना के दौरान डीएसएम और ऊर्जा संरक्षण उपायों के प्रभाव को 18वीं ईपीएस मांग को अंतिम रूप देते समय उपयुक्त ढंग से ध्यान में रखा गया है।

18वीं ईपीएस मसौदा रिपोर्ट, जो अभी हाल ही में जारी की गयी है में सरकार (सरकारों) द्वारा बनाई गई राष्ट्रीय/राज्य स्तरीय नीतियों के उद्देश्यों और लक्ष्यों को पूरा करने के लिए विभिन्न विशेषताएं शामिल की गयी हैं। कृषि, औद्योगिक, वाणिज्यिक क्षेत्रों के साथ-साथ घरेलू स्थापनाओं में उच्च दक्षता और डीएसएम उपायों को बढ़ावा देने के लिए विद्युत मांग पूर्वानुमान तैयार करते समय अपेक्षित ध्यान दिया गया है। इसके अलावा विभिन्न राज्यों/संघ राज्यों के साथ परामर्श से मूल्यांकित टी एण्ड डी हानि कम करने विषयक लक्ष्यों के आधार पर भी ईपीएस के पूर्वानुमानों की गणना की गयी है। दीर्घकालीन पूर्वानुमान वर्ष 2016-17 और 2021-22 तक टी एण्ड डी हानियों को क्रमश: 18.9% और 15.4% तक कम करने पर आधारित हैं।

3.2मांग परिदृश्य

बहुत से मांग परिदृश्य की गणना की गयी है और उनमें से सही विकल्प चुना जाना है जिससे कि 12वीं और 13वीं पंचवर्षीय योजनाओं के लिए सर्वाधिक परिशुद्ध उत्पादन क्षमता अभिवृद्धि कार्यक्रम तैयार करने हेतु आयोजना अध्ययन करने के लिए सबसे उपयुक्त मांग पूर्वानुमान को अपनाया जा सके। इस अध्याय में विश्लेषित विभिन्न संभावित मांग परिदृश्य निम्नानुसार हैं:-

परिदृश्य: 1

वर्ष 2009-10 तक वास्तविक मांग और फिर 12वीं योजना में पिछले कुछ वर्षों की वास्तविक संचित वृद्धि दर(सीएजीआर) लागू करना और फिर 13वीं योजना में ईपीएस वृद्धि दर को लागू करना ।

परिदृश्य : 2

वर्ष 2009-10 तक वास्तविक मांग के साथ 9% की जीडीपी वृद्धि दर और 12वीं तथा 13वीं योजनाओं के दौरान 0.8 प्रत्यास्थता।

परिदृश्य : 3

वर्ष 2009-10 तक वास्तविक मांग के साथ 9% की जीडीपी वृद्धि दर और 12वीं योजना के दौरान 0.9 प्रत्यास्थता तथा 13वीं योजना के दौरान 0.8 प्रत्यास्थता ।

परिदृश्य : 4

वर्ष 2009-10 तक वास्तविक मांग के साथ 9% की जीडीपी वृद्धि दर और और 12वीं तथा 13वीं योजनाओं के दौरान 0.95 प्रत्यास्थता।

परिदृश्य : 5

वर्ष 2009-10 तक वास्तविक मांग के साथ 9% की जीडीपी वृद्धि दर और 12वीं योजना के दौरान 1.0 प्रत्यास्थता तथा 13वीं योजना के दौरान 0.9 प्रत्यास्थता ।

परिदृश्य : 6

18वीं ईपीएस के अनुसार मांग पूर्वानुमान

12वीं और 13वीं पंचवर्षीय योजना के अंत तक वर्षवार ऊर्जा आवश्यकता पूर्वानुमान के विवरण तालिका 3.1 एवं 3.2 में नीचे दिये गये हैं :

तालिका 3.1 12वीं योजना के लिए ऊर्जा आवश्यकता पूर्वानुमान का परिदृश्य

	परि1	जीआर	परि2	जीआर	परि3	जीआर	परि4	जीआर	परि5	जीवार	परि-6
वर्ष	वास्तविक ईआर (2009-10 तक) वास्तविक सीएजीआर के साथ	%	वास्तविक ईआर (2009- 10 तक) और 9% जीडीपी; 0.8 प्रत्यास्थता	%	वास्तविक ईवार (2009- 10 तक) & 9% जीडीपी;	%	वास्तविक ईआर (2009- 10 तक) & 9% जीडीपी; 0.95 प्रत्यास्थता	%	वास्तविक ईआर (2009- 10 तक) & 9% जीडीपी;	%	18 वीं ईपीएस
					प्रत्यास्थता		_		प्रत्यास्थता		
	वृद्धि		वृद्धि		वृद्धि		वृद्धि		वृद्धि		
2003-04	559264		559264		559264		559264		559264		
2004-05	591373		591373		591373		591373		591373		
2005-06	631554		631554		6 31554		631554		631554		
2006-07	690587		690587		690587		690587		690587		

2007-08	739343		739343		739343		739343		739343		
2008-09	777039		777039		777039		777039		777039		
2009-10	830594		830594		830594		830594		830594		
2010-11	890123		890397		897872		901610		905347		
2011-12	953919		954505		970600		978697		986829		9 29111
2012-13	1022287	7.17	1023230	7.2	1049218	8.1	1062376	8.6	1075643	9.0	1007694
2013-14	1095555		1096902		1134205		1153209		1172451		1084610
2014-15	1174074		1175879		1226076		1251809		1277972		1167731
2015-16	1258221		126054 3		1325388		1358838		1392989		1257589
2016-17	1348399		1351302		1432744		1475019		1518358	•	1354874

तालिका **3.2** 13वीं योजना के लिए ऊर्जा आवश्यकता पूर्वानुमान का परिदृश्य

वर्ष	परि1	जीआर	परि2	जी आर	परि3	जी आर	परि4	जी आर	परि5	जी आर	परि-6
	वास्तविक ईआर (2009- 10 तक) वास्तविक सीएजीआर के साथ	%	वास्तविक ईआर (2009-10 तक) और 9% जीडीपी; 0.8	%	वास्तविक ईआर (2009-10 तक) & 9% जीडीपी; 0.9 प्रत्यास्थता	%	वास्तविक ईआर (2009- 10 तक) & 9% जीडीपी; 0.95	%	वास्तविक ईआर (2009- 10 तक) & 9% जीडीपी; 1.0	%	18वीं ईपीएस
	वृद्धि		प्रत्यास्थता वृद्धि		वृद्धि		प्रत्यास्थता वृद्धि		प्रत्यास्थता वृद्धि		
2017 19	_				_	7.0	_		_		4450000
2017-18	1443326	7.1	1448595	7.2	1535902	7.2	1601133	8.6	1641345	8.1	1450982
2018-19	1544936		1552894		1646487		1738030		1774294		1552008
2019-20	1653700		1664703		1765034		1886631		1918012		1660783
2020-21	1770120		1784561		1892116		2047938		2073371		1778109
2021-22	1894736		1913050		2028348		2223037		2241314		1904861

उपर्युक्त पूर्वानुमानों में डीएसएम और ऊर्जा दक्षता उपायों से बचत शामिल नहीं हैं जबिक 18वीं ईपीएस रिपोर्ट के पूर्वानुमानों में इस बचत को शामिल किया गया है। वर्ष 2009-10 में वास्तविक लोड घटक 79.5% था। अतीत में मांग अनुमान के अनुरूप नहीं बढ़ी है और अन्य विभिन्न कारणों से अनुमान के अनुरूप लोड घटक का घटता हुआ रूझान देखने को नहीं मिला है। अत: यह आवश्यक होगा कि लोड घटक में काफी कमी के साथ जीडीपी वृद्धि दर परिदृश्य का अनुमान लगाया जाए। अत: वर्ष 2016-17 के लिए पीक मांग का पूर्वानुमान लगाते समय लगभग 78% के लोड घटक का विचार किया गया है।

ऊपर विचार किए गए विभिन्न परिदृश्यों में ऊर्जा आवश्यकता और पीक मांग का सारांश और वर्ष 2016-17 तक 78% और 2021-22 तक 76% लोड घटक का सारांश निम्नानुसार है:

तालिका 3.3 विभिन्न मांग परिदृश्य –ऊर्जा आवश्यकता और पीक मांग (ऊर्जा संरक्षण और डीएसएम उपायों के प्रभाव के बिना)

जीडीपी वृद्धि दर	जीडीपी / विद्युत प्रत्यास्थता	ऊर्जा आवश्यकता (मेगा किलोवाट घंटा)	ऊर्जा आवश्यकता (मेगा किलोवाट घंटा)	पीक मांग (मेगा बाट)	पीक मांग (मेगा वाट)
		2016-17	2021-22	2016-17	2021-22
वास्तविक ऊर्जा	0.80	1351302	1913050	197767	287348
आवश्यकता (2009-10 तक) 9% वृद्धि दर के	0.90/0.8 12वीं/ 13वीं योजनाओं में	1432744	2028348	209686	304667
साथ	0.95	1475019	2223037	215873	333910
	1.0/0.9 12वीं/13वीं योजनाओं में	1518358	2241314	222216	336655
वास्तविक ऊर्जा आवश	थकता (2009-10	1348399	1894736	202535	284598
तक) वास्तविक वृद्धि	कि) वास्तविक वृद्धि दर के साथ				
18वीं ईपीएस		1354874	1904861	199540	283470

बीईई के ऊर्जा दक्षता उपायों और डीएसएम कार्यक्रम के कारण पीक मांग में कमी और ऊर्जा आवश्यकता संबंधी बचत को ध्यान में रखते हुए 12वीं पंचवर्षीय योजना के अंत में ऊर्जा आवश्यकता में लगभग 60 बिलियन यूनिट और पीक मांग में लगभग 12,000 मेगावाट की कमी की गयी और 13वीं योजना के अंत में उपर्युक्त में से प्रत्येक परिदृश्य (18वीं ईपीएस को छोड़कर) पीक मांग में 15,000 मेगावाट की कमी की गयी। इस प्रकार संशोधित किये गये मांग संबंधी आंकड़े नीचे तालिका में दिये गये हैं:

तालिका 3.4 विभिन्न मांग परिदृश्य –ऊर्जा आवश्यकता और पीक मांग (ऊर्जा संरक्षण और डीएसएम उपायों के प्रभाव को ध्यान में रखते हुए)

जीडीपी वृद्धि दर	जीडीपी / विद्युत प्रत्यास्थता	ऊर्जा आवश्यकता (मेगा	ऊर्जा आवश्यकता (मेगा	पीक मांग (मेगा वाट)	पीक मांग (मेगा बाट)
	.,,,,,,,,,	किलोवाट घंटा)	किलोवाट घंटा)		
		2016-17	2021-22	2016-17	2021-22
वास्तविक ऊर्जा	0.80	1321972	1877313	185967	272348
आवश्यकता (2009-10 तक) 9 % वृद्धि दर के साथ	0.90/0.8 12वीं/ 13वीं योजनाओं में	1403414	1992611	197686	289667
	0.95	1445689	2187300	203873	318910
	1.0/0.9 12वीं/ 13वीं योजनाओं में	1489028	2205577	210216	321655
वास्तविक ऊर्जा आवश्यकता	(2009-10 तक)	1319069	1858999	190535	269598
वास्तविक वृद्धि दर के साथ					
18वीं ईपीएस*		1354874	1904861	199540	283470

*बीईई के ऊर्जा कार्यक्षमता उपायों और डीएस कार्यक्रमों के परिणामस्वरूप पीक मांग और ऊर्जा आवश्यकता में कमी को 18वीं ईपीएस आंकड़ों से कम नहीं किया गया है क्योंकि 18वीं ईपीएस पीक मांग और ऊर्जा आवश्यकता की गणना करते समय इनको पहले ही ध्यान में रखा गया है।

3.3 अनुशंसित मांग परिदृश्य

12वीं और 13वीं योजना अविध के लिए क्षमता अभिवृद्धि आवश्यकता का मूल्यांकन करने के उद्देश्य से उत्पादन आयोजना अध्ययनों के लिए उपर बताए गए पिरदृश्यों के अलावा 18वीं ईपीएस पूर्वानुमानों के संगत मांग पर विचार किया गया है। इन मांग पूर्वानुमानों पर इसलिए विचार किया गया क्योंकि ये विभिन्न पणधारकों वाली विद्युत सर्वेक्षण समिति द्वारा लगाए गए भार पूर्वानुमानों की विस्तृत और व्यवस्थित पहल पर आधारित हैं। ये पूर्वानुमान लगाने के लिए आंशिक अंतिम प्रयोग पद्धित को अपनाया गया है। ऊर्जा दक्षता और मांग पक्ष प्रबंधन उपायों के आंशिक प्रभाव की गणना करते समय मांग पूर्वानुमानों में गैर प्रतिबंधित मांग के पूर्वानुमान लगाए जाते हैं। गैर प्रतिबंधित मांग पर आधारित उत्पादन आयोजना अध्ययन को अनिवार्य और आवश्यक समझा गया। हालांकि ऊर्जा कार्यकुशलता ब्यूरों के सघन प्रयासों और अन्य पहलों, जिनमें सरकार द्वारा शुरू किए गए विभिन्न प्रयासों के परिणामस्वरूप विद्युत क्षेत्र में हो रहे ढांचागत परिवर्तनों को ध्यान में रखा गया है, के अतिरिक्त प्रभाव पर इस परिदृश्य में विचार नहीं किया गया है।

वर्ष 2012-13 से 2021-22 के लिए पीक मांग और ऊर्जा आवश्यकता संबंधी संगत पूर्वानुमान के वर्षवार/राज्यवार/क्षेत्रवार विवरण **अनुबंध 3.1** में दिये गए हैं। 12वीं पंचवर्षीय योजना के अंत (2026-27) तक देश में पीक मांग और ऊर्जा आवश्यकता के लिए दीर्घकालीन पूर्वानुमान का संक्षिप्त विवरण तालिका 3.5 में नीचे दिया गया है

तालिका 3.5	
वर्ष 2026-27 के लिए दीर्घकालीन पू	रूर्वानु मा न

क्षेत्र/प्रायद्वीप	ऊर्जा आवश्यकता (बीयू)	पीक लोड (जीडब्ल्यू)
उत्तरी क्षेत्र	840.67	121.98
पश्चिमी क्षेत्र	757.32	120.62
दक्षिणी क्षेत्र	727.91	118.76
पूर्वी क्षेत्र	349.41	53.05
पूर्वोत्तर क्षेत्र	33.95	6.17
अंडमान और निकोबार द्वीपसमूह	0.71	0.125
लक्षद्वीप	0.08	0.023
अखिल भारतीय स्तर	2710	400.7

उत्पादन आयोजना कार्रवाई के उद्देश्य से 12वीं और 13वीं योजना के अंत तक अपनाए जाने हेतु 18वीं ईपीएस रिपोर्ट के अनुसार मांग पूर्वानुमान निम्नानुसार हैं:

तालिका 3.6 उत्पादन आयोजना अध्ययनों के लिए अपनायी गयी मांग

	ऊर्जा आवश्यकता वृद्धि	पीक लोड (मेगावाट)
2016-17	1354874	199540
(12वीं योजना का सीमांत वर्ष)		
2021-22	1904861	283470
(13वीं योजना का सीमांत वर्ष)		

एकीकृत ऊर्जा नीति में पीक मांग का अनुमान घटती हुई लोड फैक्टर प्रणाली के अनुसार लगाया गया है, अर्थात् 2010 तक 76%, 2011-12 से 2015-16 के लिए 74% 2016-17 से 2021-22 और उसके बाद के लिए 72% है और ये मांग वर्ष 2004-05 तक वास्तविक खपत पर आधारित हैं तथा इनमें कैप्टिव मांग भी शामिल है। दूसरी ओर 18वीं ईपीएस रिपोर्ट के मांग पूर्वानुमान 2009-10 तक वास्तविक मांग पर आधारित हैं और ये विद्युत कंपनियों के मांग पूर्वानुमान के अनुरूप हैं। 18वीं ईपीएस रिपोर्ट के मांग पूर्वानुमानों में मांग पक्ष प्रबंधन तथा ऊर्जा कार्यकुशलता ब्यूरो द्वारा प्रस्तावित ऊर्जा संरक्षण उपायों को भी ध्यान में रखा गया है। अत: उत्पादन आयोजना के उद्देश्य से 18वीं ईपीएस रिपोर्ट के मांग पूर्वानुमानों को भी ध्यान में रखा जाए।

3.4 उपसंहार

 12वीं पंचवर्षीय योजना अविध के लिए क्षमता अभिवृद्धि कार्यक्रम के मूल्यांकन और 13वीं पंचवर्षीय योजना के लिए आवश्यक संभावित क्षमता अभिवृद्धि के लिए 18वीं ईपीएस मांग आंकड़ों को अपनाया जाए क्योंकि ईपीएस द्वारा किया गया मांग मूल्यांकन सभी पणधारकों को शामिल करते हुए अंतिम प्रयोक्ता पद्धित पर आधारित एक व्यापक कार्रवाई है।

• 18वीं ईपीएस मांग आंकड़ों को ध्यान में रखते हुए 12वीं और 13वीं योजनाओं के लिए अधिकतम क्षमता अभिवृद्धि की गणना की गई है। तत्पश्चात् अलग-अलग मौसम में मांग संबंधी घट-बढ़ के लिए भी पूर्वानुमान (पीक और ऑफ पीक) लगाए गए हैं ताकि यह सुनिश्चित किया जा सके कि अधिकतम क्षमता अभिवृद्धि से सभी मौसमों में मांग को पूरा किया जा सके।

अनुबंध 3.1

अखिल भारतीय और राज्यवार/संघ राज्यवार पूर्वानुमान पावर स्टेशन बसवार पर पीक विद्युत भार (केवल विद्युत कंपनियां) (यू/आर) 2012-13 से 2021-22

गेगातार में

			12वीं योजन	T				13वीं ये	ोजना	मेगावाट
राज्य/संघ राज्य	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22
दिल्ली	5290	5547	5818	6101	6398	6849	7335	7857	8419	9024
हरियाणा	7291	7944	8655	9429	10273	11006	11749	12526	13356	14244
हिमाचल प्रदेश	1459	1558	1665	1778	1900	2022	2151	2288	2434	2589
जम्मू और कश्मीर	2471	2523	2577	2631	2687	2917	3180	3481	3825	4217
पंजाब	10292	10770	11271	11794	12342	12826	13228	13648	14089	14552
राजस्थान	9396	10360	11422	12594	13886	14957	16004	17137	18364	19692
उत्तर पदेश	14152	15993	18073	20424	23081	25547	27832	30331	33067	36061
उत्तराखंड	1716	1824	1938	2060	2189	2315	2449	2591	2741	2901
चंडीगढ़	352	370	387	406	426	450	475	501	529	559
उत्तरी क्षेत्र	44033	47758	51799	56181	60934	6 5686	70276	75238	80620	86461
गोआ	622	666	712	762	815	880	949	1024	1105	1191
गुजरात	13047	14350	15782	17358	19091	20486	21942	23503	25177	26973
छत्तीसगढ़	3534	3792	4070	4367	4687	5028	5385	5755	6162	6599
मध्य प्रदेश	10299	11102	11967	12899	13904	14934	15803	16734	17732	18802
महाराष्ट्र	22368	23795	25313	26928	28645	29983	32122	34431	36926	39622
दादर और नागर हवेली	693	749	809	874	944	1006	1072	1142	1217	1297
दमन और दीव	380	394	409	425	441	469	500	533	567	605
पश्चिमी क्षेत्र	46909	50300	53936	57835	62015	65871	70383	75223	80441	86054
आंध्र प्रदेश	15553	17044	18681	20476	22445	24271	26246	28382	30693	33194
कर्नाटक	9742	10473	11258	12102	13010	13964	14945	16005	17159	18403
केरल	3701	3922	4157	4405	4669	4931	5198	5479	5777	6093
तमिलनाडु	14174	15736	17497	19489	20816	22375	24057	25876	27838	29975
पुदुचेरी	533	555	579	604	630	659	690	722	754	782
दक्षिणी क्षेत्र	39850	43623	47752	52273	57221	6 1525	66111	71063	76413	82199
बिहार	2843	3277	3777	4354	5018	5660	6398	7250	8236	9306
झारखंड	3452	3727	4010	4301	4616	4948	5262	5598	5957	6341
उड़ीसा	4397	4686	4994	5322	5672	5866	6066	6289	6515	6749
पश्चिम बंगाल	8289	9052	9887	10798	11793	12882	13964	15124	16369	17703
सिक्किम	117	123	130	137	144	148	159	164	170	176

			12वीं योजन	T				13वीं ये	जना	
राज्य/संघ राज्य	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22
पूर्वी क्षेत्र	16638	18291	20109	22106	24303	26320	28411	30710	33226	35928
असम	1300	1414	1537	1671	1817	1946	2080	2222	2373	2534
मणिपुर	180	212	249	294	346	373	399	428	460	497
मेघालय	338	362	388	415	445	475	505	529	551	596
नागालैंड	145	154	164	174	185	201	216	233	251	271
त्रिपुरा	254	274	294	317	340	365	389	415	442	472
अरुणाचल प्रदेश	111	117	123	129	135	142	150	158	167	177
मिजोरम	174	197	223	252	285	302	314	325	338	352
पूर्वोत्तर क्षेत्र	2214	2382	2563	2757	2966	3169	3370	3579	3800	4056
अंडमान और निकोबार	59	61	63	65	67	71	75	79	84	89
लक्षद्वीप	8	9	10	10	11	12	14	15	16	18
अखिल भारत	143967	156208	169491	183902	199540	214093	229465	246068	264041	283470

अखिल भारतीय और राज्यवार/संघ राज्यवार पूर्वानुमान पावर स्टेशन बसवार पर विद्युत ऊर्जा आवश्यकता (केवल विद्युत कंपनियां) (यू/आर) 2012-13 से 2021-22

मिलियन यूनिट में

			12वीं योजना					13वीं योजना		
राज्य/संघ राज्य	2012-13	2013-14	2014-15	2015-16	2016-17	1017-18	2018-19	2019-20	2020-21	2021-22
दिल्ली	29100	31011	33047	35217	37529	40176	43023	46085	49382	52930
हरियाणा	40750	44254	48060	52193	56681	60725	64820	69108	73688	78586
हिमाचल प्रदेश	8974	9421	9891	10384	10901	11546	12228	12948	13710	14514
जम्मू और कश्मीर	14425	14872	15333	15808	16298	17180	18172	19282	20516	21884
पंजाब	51595	55567	59844	64450	69410	73032	76245	79626	83186	86941
राजस्थान	54243	59382	65007	71166	77907	83914	89792	96149	103030	110483
उत्तर पदेश	93148	102924	113727	125664	138854	152571	164997	178488	193136	209046
उत्तराखंड	10735	11207	11700	12214	12751	13466	14223	15025	15874	16774
चंडीगढ़	1767	1859	1956	2058	2165	2286	2414	2549	2692	2842
उत्तरी क्षेत्र	304737	330497	358565	389153	422498	454897	485914	519260	555214	594000
गोआ	3641	3912	4204	4517	4853	5205	5572	5966	6386	6837
गुजरात	82331	88254	94603	101409	108704	116649	124937	133825	143360	153582
छत्तीसग <u>ढ़</u>	17703	19146	20707	22396	24222	25989	27833	29743	31850	34106

			12वीं योजना					13वीं योजना		
राज्य/संघ राज्य	2012-13	2013-14	2014-15	2015-16	2016-17	1017-18	2018-19	2019-20	2020-21	2021-22
मध्य प्रदेश	56763	61448	66519	72010	77953	83988	89152	94699	100657	107060
महाराष्ट्र	140736	147402	154383	161695	169353	175870	187034	199001	211836	225606
दादर और नागर हवेली	4977	5276	5593	5930	6286	6665	7064	7488	7937	8413
दमन और दीव	2375	2479	2587	2700	2817	2976	3143	3320	3508	3706
पश्चिमी क्षेत्र	308527	327917	348597	370655	394188	417342	444735	474042	505534	539310
आंध्र प्रदेश	93189	101231	109968	119458	129767	140324	151743	164093	177454	191912
कर्नाटक	58513	63001	67833	73036	78637	83917	89285	95059	101309	108012
केरल	20516	21889	23354	24917	26584	28080	29595	31198	32895	34691
तमिलनाडु	91625	97865	104529	111648	119251	128177	137815	148237	159475	171718
<u>पु</u> दुचेरी	3024	3155	3293	3436	3586	3755	3929	4109	4295	4452
दक्षिणी क्षेत्र	266867	287141	308977	332495	357826	384252	412367	442696	475426	510786
बिहार	16529	19096	22062	25489	29447	32964	36982	41590	46883	52975
झारखंड	21309	22844	24407	25990	27691	29592	31381	33287	35318	37482
उड़ीसा	26265	28374	30652	33113	35772	36999	38262	39667	41089	42566
पश्चिम बंगाल	51021	55288	59912	64923	70352	76511	82571	89033	95927	103283
सिक्किम	440	461	482	504	528	544	581	601	622	645
पूर्वी क्षेत्र	115564	126063	137515	150018	163790	176611	189777	204178	219839	236952
असम	6392	6953	7562	8225	8947	9615	10313	11058	11852	12699
मणिपुर	737	840	956	1089	1241	1405	1571	1760	1975	2219
<u> </u>	1749	1861	1981	2108	2243	2396	2553	2678	2794	3029
नागालैंड	692	725	760	796	834	895	954	1019	1088	1163
	1029	1112	1201	1297	1401	1514	1628	1751	1883	2026
अरुणाचल प्रदेश	524	531	538	545	552	580	611	644	681	721
मिजोरम	503	588	686	801	936	1031	1112	1196	1287	1388
पूर्वोत्तर क्षेत्र	11628	12609	13684	14862	16154	17435	18743	20106	21560	23244
अंडमान और निकोबार	328	337	347	356	366	390	415	443	473	505
लक्षद्वीप	43	45	47	49	52	55	57	59	62	65
अखिल भारत	1007694	1084610	1167731	1257589	1354874	1450982	1552008	1660783	1778109	1904861

अध्याय 4 ग्रीनहाउस गैस (जीएचजी) उपशमन के लिए प्रयास और उपाय

4.0 प्रस्तावना

मानव – जिनत जलवायु परिवर्तन वैश्विक विकास प्रयासों के लिए काफी खतरा पैदा कर रहा है। इसलिए मानव जिनत जलवायु परिवर्तन के उपशमन और न्यूनीकरण के वैश्विक प्रयास भारत के राष्ट्रीय हित के अनुरूप हैं। बृहत्त अर्थव्यवस्था पैमाने पर भारत में कार्बन डाईऑक्साइड (सीओ2) सबसे कम होती है जो विश्व में प्रति व्यक्ति CO_2 उत्सर्जनों से सबसे कम है, विश्व में औसतन प्रति व्यक्ति 4.29 मीट्रिक टन की तुलना में भारत में प्रति व्यक्ति लगभग 1.37 मीट्रिक टन (स्रोत – आईईए विश्व ऊर्जा सांख्यिकी) और संयुक्त राज्य अमेरिका में प्रति व्यक्ति जीडीपी (जीडीपी के सीओ $_2$ उत्सर्जन टन में) के संबंध में अन्य अर्थव्यवस्थाओं की तुलना में भारत का निष्पादन भी बहुत अच्छा रहा है। 1992 के यूएनएफसीसी कन्वेंशन पर हस्ताक्षर करके भारत जलवायु परिवर्तन के लिए 'साझा लेकिन अलग–अलग दायित्व'' के सिद्धांत की पृष्टि करता है।

सरकार की एकीकृत ऊर्जा नीति रिपोर्ट में प्रस्तावित पहल और योजनाओं में सीओ2 की सघनता में गिरावट होना दिखाया गया है जबिक तेजी से बढ़ रही अर्थव्यवस्था की मांग को पूरा करने के लिए ग्रामीण पहुंच का व्यापक विस्तार और विद्युत उत्पादन में वृद्धि हो रही है। भारत को ऐसे नीतिपरक विकल्पों का आकलन और विकास करने की आवश्यकता है जिनसे अतिरिक्त निवेश और प्रौद्योगिक हस्तांतरण को सुविधाजनक बनाकर इसके विकास और वृद्धि के साथ समझौता किए बिना जलवायु परिवर्तन से संबंधित चिंताओं का समाधान होता है। भारत के पास अपने विकासपथ में कार्बन सघनता को नियंत्रित करते हुए विकास में तेजी लाने के पर्याप्त अवसर हैं। इसे विद्युत क्षमता के सृजन में सुधार करके, विद्युत क्षेत्र में तकनीकी क्षति को कम करके विभिन्न क्षेत्रों में ऊर्जा क्षमता को बढ़ाकर, जल विद्युत और नवीकरणीय संभाव्यता का विकास करके तथा नई प्रौद्योगिकियों को अधिकाधिक अपनाकर "न्यून कार्बन" और आर्थिक निष्पादन के बीच पर्याप्त सामंजस्य बनाकर प्राप्त किया जा सकता है। इसके अलावा ऐसे कई और विकास फायदे हैं जिन्हें भारत बेहतर रूप से तैयार न्यून कार्बन रणनीति जिसमें ऊर्जा सुरक्षा, वितरित नवीकरणीय अनुप्रयोगों तथा शहरों और घरों में स्वच्छ वायु के जिरए ग्रामीण पहुंच के साथ प्राप्त कर सकता है। संक्षेप में न्यून कार्बन विकास रणनीति स्वास्थ्य सुधार, उत्पादकता और जीवन गुणवत्ता के लिए एक अवसर हो सकता है।

जलवायु परिवर्तन पर राष्ट्रीय कार्य योजना (एनएपीसीसी) में जलवायु परिवर्तन से निपटने के लिए भारत की रणनीति और भारत के विकासपथ की पारिस्थितिकीय स्थिरता बढ़ाने का वर्णन किया गया है। जलवायु परिवर्तन के संदर्भ में मुख्य लक्ष्य प्राप्त करने के लिए बहु-आयामी, दीर्घकालीन और एकीकृत रणनीतियों से आठ राष्ट्रीय मिशन राष्ट्रीय कार्य योजना का कोर बनता है, जिनमें से दो राष्ट्रीय सौर मिशन और बढ़ी हुई ऊर्जा क्षमता पर मिशन हैं।

विद्युत उत्पादन के लिए ईंधन का विकल्प जीएचजी के उपशमन के लिए एक मुख्य कारक है। अनुकूल स्रोत होने के कारण नवीकरणीय ऊर्जा स्रोत को यथासंभव प्रोत्साहित किया जा रहा है। पारंपरिक स्रोतों के मामले में जल और आणविक विकल्प हैं। विद्युत उत्पादन के लिए गैस को कोयले और लिग्नाइट से अच्छा माना जाता है। कोयला आधारित सृजन के मामले में उच्च क्षमता के प्रौद्योगिकी विकल्पों को बढ़ावा दिया जा रहा है क्योंकि क्षमता और कार्बन उत्सर्जनन के मध्य एक विपरीत सह संबंध है। विभिन्न प्रकार के विद्युत संयंत्रों के लिए कार्बन डाईआक्साइड (CO₂) उत्सर्जन का विवरण निम्नलिखित है:

विद्युत संयंत्र का प्रकार	विशिष्ट CO 2 उत्सर्जन टी CO 2/ एमडब्ल्यूएच
कोयला	1.04
लिग्नाइट	1.28
गैसी – सीसी	0.43
गैस – ओसी	0.66
गैस इंजन (केवल विद्युत)	0.46
गैस इंजन (सीएचपी)	0.22
तेल	0.66
डीजल इंजन	0.59
डीजल ओसी	0.69
नाफ्ता	0.61
हाइड्रो	0
आणविक	0
पवन	0
सौर	0

क्षमता में सुधार को छोड़कर इसके आविष्कार से लेकर मूलभूत विद्युत उत्पादन प्रौद्योगिकी में कोई बड़ा परिवर्तन नहीं हुआ है। आज भी कोयले की तापन ऊर्जा की काफी मात्रा विद्युत उत्पादन प्रक्रिया में नष्ट हो जाती है। विद्युत की बढ़ती हुई आवश्यकता को पूरा करने के लिए बड़े प्रौद्योगिकीय नवोदभव करने होंगे ताकि जीवाश्म ईंधन से अधिकतम ऊर्जा उपलब्ध हो सके। इस प्रकार पर्यावरणीय अवक्रमण की समस्या से निपटने के लिए इंजीनियरों और तकनीशियनों के सम्मुख एक चुनौती होगी। ताप विद्युत केन्द्रों के सम्मुख दूसरी समस्या कोयले में राख का अनुपात और उत्सर्जन के संबंध में कठोर पर्यावरणीय मानकों की है।

आज थर्मल सृजन कार्बन डाईआक्साइड, कार्बन मोनोऑक्साइड (एसओएक्स) के उत्सर्जन के जरिए वातावरणीय प्रदूषण हो रहा है। जीएचजी को कम करने के लिए नई प्रौद्योगिकी विकसित करनी होगी। यह पूरे विश्व में इंजीनियरों और प्रौद्योगिकीविदों के सामने एक बड़ी चुनौती है।

4.1 उत्पादन से कार्बन उत्सर्जन – वर्तमान स्थिति

आईईए ऊर्जा सांख्यिकी – 2011 की रिपोर्ट के अनुसार भारत की प्रति व्यक्ति कार्बन डाईआक्साइड उत्सर्जन की मात्रा प्रति व्यक्ति केवल 1.37 टन है जो विश्व में न्यूनतम में से है। विश्व में प्रति व्यक्ति कार्बन डाईआक्साइड उत्सर्जन लगभग 4.29 टन के लगभग है और अमेरिका में सबसे अधिक 16.9 टन है। विश्व में भारत कुल सीओ $_2$ उत्सर्जन का लगभग उत्सर्जन करता है।

अक्टूबर, 2012 के अंत तक भारत की स्थापित उत्पादन क्षमता लगभग 2,09,276 मेगावाट है। ताप सृजन पर स्थापित क्षमता लगभग 67% है, जिसमें से कोयले का योगदान 85% है।

नीचे तालिका 4.1 में देश के पांच क्षेत्रीय ग्रिडों में जीवाश्म ईंधन विद्युत केन्द्रों के लिए भारित औसत विशिष्ट उत्सर्जन दर्शाए गए हैं। यह स्पष्ट है कि विभिन्न जीवाश्म ईंधनों में से कोयले और लिग्नाइट सबसे अधिक उत्सर्जन दर (टीसीओ₂/एमडब्ल्यूएच) है।

तालिका 4.1 वित्त वर्ष 2010-11 में जीवाश्म ईंधन फायर्ड स्टेशनों के लिए भारित औसत विशिष्ट उत्सर्जन (आंकड़े – टन सीओ₂/एमडब्ल्यूएच में)

	कोयला	डीजल	गैस	लिग्नाइट	नाफ्था	तेल
भारत	1.06	0.55	0.44	1.44	0.39	0.64

(सभी आंकड़े निवल उत्पादन पर आधारित हैं)

यह उल्लेख किया जाता है कि 2008-09 से 2010-11 की अवधि के दौरान भारत की सीओ₂ उत्सर्जन दर का रुख निम्नलिखित तालिका और ग्राफ में दर्शाया गया है।

तालिका 4.2

भारित औसत उत्सर्जन दर (टन सीओ2/एमडब्ल्यूएच) (आयात सहित)

2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11
0.85	0.84	0.81	0.80	0.79	0.82	0.81	0.79

चित्र 4.1

4.2 पहल/उपाय

विद्युत उत्पादन क्षेत्र के विकास के लिए की जा रही **बड़ी पहलें** कोयला आधारित विद्युत स्टेशनों की क्षमता बढ़ाने से संबंधित है। ये पहले निम्नानुसार हैं :

- उच्च वाष्प पैरामीटरों सहित यूनिट आकार की वृद्धि
- प्रौद्योगिकी विकास उच्च यूनिट आकार और स्वच्छ कोयला प्रौद्योगिकियां अपनाना
 - सुपर क्रिटिकल प्रौद्योगिकी 2 प्रतिशत प्वाइंट क्षमता लाभ संभाव्यता
 - अल्ट्रा अति महत्वपूर्ण प्रौद्योगिकी 800 मेगावाट सुपर क्रिटिकल से ऊपर 0.75% अतिरिक्त क्षमता।
 - एकीकृत गैसीफिकेशन प्रौद्योगिकी 40-45%
- आर एण्ड एम तथा पुराने विद्युत स्टेशनों की आयु बढ़ाना निधियों की कमी को दूर करने के लिए सीडीएम के लाभ का विस्तार करना
- ऊर्जा दक्षता सुधार
- पुरानी अक्षम इकाइयों को हटाना
- कोयला की गुणवत्ता में सुधार

अन्य उपायों में ये शामिल हैं:

- टी एंड डी हानियों में कमी लाना 2006-2007 में अखिल भारतीय स्तर पर टी एण्ंड डी हानियां
 28.65% थीं। इसे 15% तक लाने का उद्देश्य है।
- ऊर्जा के उपयोग में कुशलता बरतना
- कोयला परिवहन में कटौती के लिए पिटहेड स्टेशनों की स्थापना

टी एंड डी हानियों को कम करने से होने वाले लाभों के संबंध में योजना के वॉल्यूम-।। में चर्चा की जाएगी।

4.2.1 उच्चतर वाष्प पैरामीटरों के साथ इकाई आकार में वृद्धि

भारत में विद्युत क्षेत्र में पिछले कुछ दशकों में त्वरित प्रौद्योगिकीय विकास देखा गया। कोयला आधारित प्लांट की सबसे बड़ी आकार वाली यूनिट जो 1950 के दशक में मात्र 30 मेगावाट क्षमता वाली थी, जो 60 के दशक में बढ़कर 60 मेगावाट तथा 70 के दशक में 110/120/140 मेगावाट हो गई। तत्पश्चात 1977 में 200 मेगावाट रिशयन इकाई (एलएमजेड) सितंबर, 1977 में आरंभ की गई तथा 1983 में सीमेंस की केडब्ल्यू डिजाइन को आरंभ किया गया। 1984 में 500 मेगावाट क्षमता वाली यूनिट आरंभ की गई। इकाई आकार में वृद्धि वाष्प पैरामीटरों (दाब एवं तापमान) तथा क्षमता से संबंधित थीं। बढ़ी हुई क्षमता का आशय कम जीएचजी उत्सर्जन से है। सुधरे पैरामीटरों और विभिन्न इकाइयों की डिजाइन क्षमता नीचे तालिका 4.3 में दर्शाई गई है:

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 87

तालिका 4.3 विभिन्न इकाई आकार और मुख्य पैरामीटर

यूनिट आकार	M/s. दाब	MS/RH तापमान	सकल डिजाइन दक्षता
एमडब्ल्यू	किलोग्राम/cm²	°C	(%)
30-50	60	482	28.20
60-100	90	535	31.30
210 एलएमजेड	130	535/535	35.63
210 केडब्ल्यूयू	150	535/535	37.04
250	150	535/535	38.3
500	169	538/538	38.6
660	247	538/565	39.5
		565/593	40.5
800	247	565/593	40.5

आज 210/250 मेगावाट और 500 मेगावाट भारतीय ऊर्जा उद्योग की रीढ़ है और कुल कोयला आधारित स्थापित क्षमता का 75% से अधिक है। 11वीं योजना के दौरान 660 मेगावाट की 8 सुपर क्रिटिकल इकाइयों और 800 मेगावाट की एक इकाई कुल 6080 मेगावाट वाली इकाइयों की स्थापना की गई। 12वीं योजना के दौरान यह योजना है कि सुपर क्रिटिकल प्रौद्योगिकी वाली 660 मेगावाट तथा 800 मेगावाट के प्रतिशत में 13वीं योजना में और अधिक वृद्धि होगी और 13वीं योजना के दौरान सभी कोयला आधारित क्षमता केवल सुपरिक्रिटिकल प्रौद्योगिकी की होने की आशा है।

1960 और 1970 के दशकों के आरंभ में प्राइम मूवर्स के तौर पर गैस टर्बाइन का उपयोग करके विश्व में बड़े पैमाने पर विद्युत उत्पादन किया गया। ऐसा मूलरूप से प्रौद्योगिकी विकास के कारण हुआ क्योंकि नए और उत्तम किस्म के ताप सह्य एलॉय का विनिर्माण हुआ, जिसके फलस्वरूप उच्चतर फायरिंग तापमान हुआ और फलस्वरूप उच्चतर चक्र क्षमताएं विकसित हुई। विनिर्माण प्रौद्योगिकियों के विकास के आधार पर गैस टर्बाइन (जीटीएस) आमतौर पर मानक आकारों में विनिर्मित की जाती हैं। अब जीटीएस 250 मेगावाट रेंज तक उपलब्ध है। ओपन साइकिल प्रचालन लगभग 35% की उत्पादन क्षमता पैदा करते हैं और मिश्रित साइकिल मोड में लगभग 53% की क्षमता सृजित करते हैं। चूंकि गैस टर्बाइन में स्वच्छ ईधन (प्राकृतिक गैस, एलएनजी, डिस्टिलेट तेल, नाफता) का उपयोग किया जाता है, अत: जीटी आधारित संयंत्र विद्युत उत्पादन के लिए पर्यावरण के अधिक अनुकूल हैं। क्षमता वृद्धि आवश्यकताओं के एक भाग की पूर्ति हेतु 12वीं योजना के दौरान और उसके बाद भी गैस आधारित संयंत्रों की स्थापना को बढ़ावा दिए जाने की आवश्यकता है।

तथापि, गैस की उपलब्धता एक बड़ा मुद्दा है जो अधिकतम क्षमता पर विद्यमान गैस टर्बाइन स्टेशनों के परिचालन को प्रतिकूल रूप से प्रभावित कर रहा है। नए गैस आधारित विद्युत संयंत्रों का विकास देश में प्राकृतिक गैस की उपलब्धता पर आधारित होगा।

4.2.2 स्वच्छ कोयला प्रौद्योगिकियों की शुरुआत

सुपरक्रिटिकल प्रौद्योगिकी :

कोल फायर्ड थर्मल जनरेशन की क्षमता में और अधिक वृद्धि करने के लिए सुपरिक्रिटिकल प्रौद्योगिकी की शुरुआत की जा रही है। धातु-विज्ञान की प्रगित और अच्छे माल की उपलब्धता होने से नाजुक बिन्दुओं से परे उच्चतर पैरामीटरों को अपनाने से सब-क्रिटिकल इकाइयों पर लगभग 2% का क्षमता लाभ संभव है जिससे सीओ2 एनओх और एसओ х के उत्सर्जनों में कमी हुई है। अपनाए गए वाष्प पैरामीटरों पर निर्भर करते हुए, सुपरिक्रिटिकल प्रौद्योगिकी से लगभग 4% कोयले की बचत तथा परंपरागत सब-क्रिटिकल इकाइयों की तुलना में उत्सर्जनों में समरूप कमी हो सकती है। केन्द्रीय, राज्य तथा निजी क्षेत्र में पहले ही 660 मेगावाट तथा 800 मेगावाट की कई सुपरिक्रिटिकल का निर्माण किया जा रहा है तथा 660 मेगावाट की 8 सुपरिक्रिटिकल इकाइयों तथा 800 मेगावाट की एक इकाई की 11वीं पंचवर्षीय योजना के दौरान पहले ही स्थापना की जा चुकी है। देश में प्रारंभिक सुपरिक्रिटिकल इकाइयां टर्बाइन इनलेट में 246 किग्रा/सीएम, 535/565 डिग्री से. के वाष्प पैरामीटरों पर आधारित थीं, लेकिन कुछ इकाइयां जिन्होंने निर्माण कार्य हाल ही में शुरू किया है, ने 565/593 डिग्री सें. के उच्चतम वाष्प तापमान अपनाया है। कार्यान्वित की जा रही अल्ट्रा मेगा परियोजनाओं के लिए सुपरिक्रिटिकल प्रौद्योगिकी को अनिवार्य बनाया गया है।

बीएचईएल ने क्रमश: सुपरिक्रिटिकल बॉयलरों और टर्बो जेनरेटरों के विनिर्माण के लिए पहले ही मैसर्स आल्स्टम और सीमेंस के साथ सहयोग किया है। स्वदेशी विनिर्माण क्षमता बढ़ाने के उद्देश्य से भारत में उपकरण विनिर्माण शुरू करने के लिए अंतर्राष्ट्रीय विनिर्माताओं को आकर्षित करने के लिए प्रयास किए गए हैं। इसके लिए एल एंड टी ने पहले ही भारत में सुपर क्रिटिकल बॉयलरों और टर्बाइनों के विनिर्माण के लिए एमएचआई जापान के साथ जेवी कंपनी बनाई है। भारत फोर्ज- आल्स्टन, जेएसडब्ल्यू - तोशिबा थमेक्स – बेबकॉक और जीबी इंडस्ट्रीज – अंसाल्डो अन्य संयक्त उद्यमों की देश में सपरिक्रिटिकल उपकरणों के विनिर्माण के लिए स्थापना की गई है।

एनटीपीसी और डीवीसी की विभिन्न परियोजनाओं के लिए 660 मेगावाट की ग्यारह सुपरिक्रिटिकल इकाइयों का बल्क ऑर्डर देने का एक प्रस्ताव भारत सरकार ने अनुमोदित किया है। इस प्रस्ताव में देश में सुपरिक्रिटिकल इकाइयों का निर्माण करने वाले आपूर्तिकर्ताओं की अनिवार्य शर्तों की परिकल्पना की गई है। इससे स्वदेशी विनिर्माण शुरू करने के लिए नए संयुक्त उद्यमों के लिए कुछ प्रारंभिक आदेश मिलने सुनिश्चित होंगे। 660 मेगावाट की ऐसी 11 इकाइयों की 9 परियोजनाओं के बल्क टेंडरिंग का आर्डर दे दिया गया है और शेष 2 परियोजनाओं के लिए शीघ्र ही आर्डर दिए जाने की आशा है। 800 मेगावाट इकाइयों के लिए अनिवार्य चरणबद्ध स्वदेशी विनिर्माण के साथ बल्ड टेंडरिंग की प्रकिया चल रही है।

सुपरक्रिटिकल संयंत्रों के लिए स्वदेशी उत्पादन सुविधाओं की स्थापना करना और ऐसी इकाइयों के स्वदेशी घटकों में वृद्धि करने से भविष्य में उनकी लागत में कभी आने की संभावना है। आशा है कि 12वीं योजना के दौरान कुल कोयला आधारित क्षमता वृद्धि लगभग 69,280 मेगावाट होगी जिसमें से 24,920 मेगावाट (36%) सपरक्रिटिकल इकाइयों पर आधारित है।

अल्ट्रा सुपरक्रिटिकल प्रौद्योगिकी

अल्ट्रा सुपरिक्रिटिकल प्रौद्योगिकी का ऊर्जा 600/600 डिग्री सेंटीग्रेट के उच्चतर वाष्प तापमान को अपनाना है। अल्ट्रा–सुपरिक्रिटिकल प्रौद्योगिकी को जापान तथा कुछ यूरोपीय देशों ने पहले ही अपना लिया है। कहा जाता है कि चीन में कुछ अद्यतन इकाइयां भी सुपर-क्रिटिकल प्रौद्योगिकी पर आधारित हैं। वाष्प तापमान को 700 डिग्री सेंटीग्रेट करने के अंतर्राष्ट्रीय प्रयास जारी हैं तथा विभिन्न आर एंड डी कार्यक्रमों के जरिए आवश्यक प्रौद्योगिकी विकास किया जा रहा है। 700 डिग्री सेंटीग्रेट के संयंत्रों से 50% से अधिक क्षमता प्राप्त हो सकती है।

भारतीय परिदृश्य में सुपरक्रिटिकल इकाइयों की अधिक क्षमता 12वीं योजना के अंत तक होगी और सुपरक्रिटिकल इकाइयों की अधिक विनिर्माण क्षमता क्षेत्र में आने वाली बीएचईएल और जेवी कंपनियों के जिरए प्राप्त की जाएगी। इस प्रकार, लगभग 600/600-620 डिग्री सेंटीग्रेट के वाष्प पैरामीटरों के साथ अल्ट्रा-सुपर

क्रिटिकल प्रौद्योगिकी को आरंभ करने पर संगत तकनीकी आर्थिक पर आधारित विशिष्ट स्थलों के लिए विचार किया जा सकेगा। इसके अलावा, नए जेवी के अंतर्राष्ट्रीय पार्टनर अल्ट्रा सुपरक्रिटिकल संयंत्रों के विनिर्माता हैं और 13वीं योजना में भारत में इस प्रौद्योगिकी को अनुबंधित कर सकते हैं।

सर्कुलेटिंग फ्लुडाइज्ड बेड कंब्स्टन (सीएफबीसी) प्रौद्योगिकी

उच्च सल्फर रिफाइनरी अवशेष, लिग्नाइट आदि के लिए भारत में सीएफबीसी प्रौद्योगिकी को क्रमिक रूप से नियोजित किया गया है। उच्च सल्फर लिग्नाइट को फाइरिंग के लिए 125 मेगावाट सीएफबीसी इकाइयों की स्थापना की गई है। नेवेली लिग्नाइट कॉर्पोरेशन अपनी एनएलसी टीपीएस-।। विस्तार परियोजना के लिए 250 मेगावाट सीएफबीसी बॉयलर स्थापित कर रहा है। सीएफबीसी की पूरी तकनीकी जानकारी और वाणिज्यिक प्रबंध (लाइसेंसी) देश में मौजूद है और 250 मेगावाट तक सीएफबीसी बॉयलर देश में ही निर्मित किए जा रहे हैं।

आईजीसी प्रौद्योगिकी

आईजीसीसी (एकीकृत गैसीफिकेशन कंबाइंड साइकल) गैसीफायरों में कोयले के गैसीफिकेशन के जिए विद्युत उत्पादन संबंधित है जहां साइनगैस पैदा की जाती है जिसे सफाई के बाद विद्युत उत्पादन के लिए टर्बाइन कंबाइंड साइकिल प्रणालियों में प्रयुक्त किया जाता है। इस समय अंतर्राष्ट्रीय रूप से आईजीसीसी संयंत्रों की क्षमता की तुलना सुपरिक्रिटिकल संयंत्रों से की जाती है लेकिन प्रौद्योगिकी में परंपरागत पल्वराइज्ड कोयला प्रौद्योगिकी की बजाय उच्चतर क्षमता प्राप्त करने की संभाव्यता है।

बहुत न्यून ऐश कोयला या पेट्रोलियम आधारित ईंधन के लिए आईजीसीसी को अंतर्राष्ट्रीय स्तर पर अपनाया गया है। देश में उपलब्ध न्यून गैस और पेट्रोलियम आधारित ईंधन से हमारे प्रयास अधिकतर प्रौद्योगिकी पर केन्द्रित हैं जो भारतीय उच्च ऐश कोयला का उपयोग कर सकते हैं। उच्च ऐश भारतीय कोयला का उपयोग करके विकासशील आईजीसीसी प्रौद्योगिकी में अंतर्राष्ट्रीय सहयोग की मांग की जा रही है, जिसका उपयोग इस समय हमारे थर्मल पावर स्टेशनों में विद्युत उत्पादन के लिए किया जा रहा है। स्वदेशी आईजीसीसी प्रौद्योगिकी विकसित करने के लिए कार्रवाई की जा रही है। बीएचईएल भारतीय कोयले के गैसीफिकेशन पर अनुसंधान कर रहा है और 125 मेगावाट आईजीसीसी आधारित संयंत्र की स्थापना करने के लिए एपीईजीएनसीओ के साथ एक समझौता ज्ञापन पर हस्ताक्षर किए हैं। तथापि, पूर्व में किए गए अध्ययनों के परिणामों से भारतीय कोयला की उच्च ऐश मात्रा के कारण आईजीसीसी प्रौद्योगिकी के साथ क्षमता में किसी सुधार का संकेत नहीं मिलता है।

4.2.3 थर्मल पावर स्टेशनों का नवीनीकरण एवं आधुनिकीकरण

बैकग्राउंड

विद्यमान पुराने विद्युत स्टेशनों का नवीकरण और आधुनिकीकरण (आर एंड एम) तथा उनकी आयु बढ़ाने से कम समयाविध में कम लागत पर अतिरिक्त विद्युत उत्पादन का अवसर मिलता है। उत्पादन में सुधार के अलावा इससे पर्यावरणीय उत्सर्जनों का सुधार और उपलब्धता, सुरक्षा और विश्वसनीयता में भी सुधार होता है।

भारतीय विद्युत क्षेत्र में नवीकरण और आधुनिकीकरण योजनाओं के द्वारा कार्बन डाईआक्साइड उत्सर्जन कम करने की व्यापक संभाव्यता है। सीडीएम के लामों को विभिन्न आर एंड एम योजनाओं, विशेषकर ऊर्जा क्षमता सुधार के लिए निधियों की कमी को दूर करने के लिए प्राप्त किया जा सकता है क्योंकि ये योजनाएं कार्बन डाईआक्साइड उत्सर्जनों का उपशमन करेंगी और जीवाश्म ईंधन की बचत होगी।

आर एंड एम कार्यक्रम को देश में 163 थर्मल इकाइयों को शामिल करते हुए 34 ताप विद्युत स्टेशनों के लिए एक केन्द्रीय प्रायोजित कार्यक्रम के रूप में 1984 में शुरू किया गया था। इस कार्यक्रम को वर्ष 1992 में सफलतापूर्वक पूरा किया गया था और लगभग प्रति वर्ष 10,000 एमयू अतिरिक्त उत्पादन प्राप्त किया गया था।

44 ताप विद्युत स्टेशनों के लिए चरण-।। आर एंड एम कार्यक्रम था। 1990-91 में शुरू किया गया था। विद्युत वित्त निगम (पीएफसी) द्वारा आर एंड एम कार्यों के लिए राज्य विद्युत बोर्डों को ऋण सहायता प्रदान की जानी थी। तथापि, निधियां उपलब्ध न होने तथा राज्य विद्युत बोर्डों (एसईबी) की खराब वित्तीय स्थिति के कारण यह कार्यक्रम प्रगति नहीं कर सकता।

आर एंड एम कार्यक्रम को 8वीं, 9वीं, 10वीं तथा 11वीं योजना अविधयों में लगातार कार्यान्वित किया गया लेकिन विभिन्न कारणों जैसे बंदी के लिए इकाइयों की अनुपलब्धता, माल की आपूर्ति में विलंब, निधियों की कमी, आर एंड एम कार्यों को शुरू करने के लिए एजेंसियों की कमी आदि जैसे विभिन्न कारणों से 10वीं योजना के बाद सीमित सफलता मिली।

4.2.3.1 11वीं योजना के दौरान आर एंड एम/एलई कार्यक्रम का गठन और उपलब्धियां

11वीं योजना के दौरान कार्यक्रम का सार और अनंतिम उपलब्धि का सारांश नीचे तालिका में दिया गया है : एलई/आर एण्ड एम कार्यक्रम- 11वीं योजना (2007-12) के दौरान उपलब्धियां

क्र.सं.	विवरण	राज्य	ा क्षेत्र	केन्द्रीय क्षेत्र		कुल (राष	ज्य क्षेत्र +
						केन्द्रीय क्षेत्र)	
		इकाइयों की संख्या	क्षमता (मेगावाट)	इकाइयों की संख्या	(क्षमता (मेगावाट)	इकाइयों की संख्या	क्षमता (मेगावाट)
1.	एलई कार्यक्रम						
	(उपलब्धि)	33	4524	20	2794	53	7318
	(उपलब्धि)	10	1024	3	267	13	1291
2.	आर एण्ड एम						
	(कार्यक्रम)	27	6015	49	12950	76	18965
	(उपलब्धि)	20	4485	39	10370	59	14855
	कुल (कार्यक्रम)	60	10539	69	15744	129	26283
	(उपलब्धि)	30	5509	42	10637	72	16146

12वीं योजना के लिए कार्यक्रम

12वीं योजना के अंतर्गत कुल 12066 मेगावाट क्षमता की 70 थर्मल इकाइयों के संबंध में उनकी मियाद बढ़ाने के कार्य की पहचान की गई। इसमें राज्य क्षेत्र से 38 इकाइयां (6820 मेगावाट) तथा केन्द्रीय क्षेत्र से 32 इकाइयां (5246 मेगावाट) शामिल हैं। केन्द्रीय क्षेत्र की इन 32 इकाइयों में से एनटीपीसी की 28 (4456 मेगावाट) तथा डीवीसी की 4 इकाइयां (840 मेगावाट) हैं। उपर्युक्त के अलावा, 12वीं योजना के दौरान आर एंड एम 65

इकाइयों (261 मेगावाट) पर भी पहचान की गई, इनमें से 37 इकाइयां (12,890 मेगावाट), एनटीपीसी से हैं और 8 इकाइयां (261 मेगावाट) एनईईपीसीओ से हैं। शेष 20 इकाइयां (4150 मेगावाट) राज्य विद्युत क्षेत्र से हैं।

तालिका 4.5 12वीं योजना (2012-17) के दौरान थर्मल इकाइयों का आर एंड एम/एलई कार्यक्रम

क्र.सं.	विवरण	राज्	य क्षेत्र	केन्द्रीय क्षेत्र		जोड़ (राज्य क्षेत्र + केन्द्रीय क्षेत्र)	
		इकाइयों की संख्या	क्षमता (मेगावाट)	इकाइयों की संख्या	(क्षमता (मेगावाट)	इकाइयों की संख्या	क्षमता (मेगावाट)
1.	एलई कार्य	38	6820	32	5246	70	12066
2.	आर एण्ड एम कार्य	20	4150	45	13151	65	17301
	एलई आर एण्ड एम का जोड़	58	10970	77	18397	135	29367

12वीं योजना के दौरान मियाद बढ़ाने और आर एण्ड एम के लिए पहचानी गई इकाइयों की सूची क्रमश: अनुबंध 4.1 और 4.2 में दी गई है।

13वीं योजना (2017-2022) के दौरान एलई और आर एंड एम के लिए संभावित कंडीडेट इकाइयां 13वीं योजना आर एंड एम/एलई कार्यक्रम (संभावित कंडीडेट इकाइयां)

तालिका 4.6 13वीं योजना आर एंड एम/एलई कार्यक्रम (संभावित कंडीडेट इकाइयां)

कार्यक्रम का नाम	का नाम राज्य क्षेत्र केन्द्रीय क्षेत्र		क्षेत्र	13वीं योजना के व इकाइयां (राज्य + के	दौरान कुल पहचानी गई ज्द्रीय क्षेत्र)	
	इकाइयों की संख् या	क्षमता (मेगावाट)	इकाइयों की संख्या	(क्षमता (मेगावाट)	इकाइयों की संख्या	क्षमता (मेगावाट)
एलई						
कोयला	55	12130	16	3940	71	160 70
गैस	6	672	5	765.71	11	1438
उपजोड़	61	12802	21	4706	82	17508
आर एण्ड एम						
कोयला	16	3560	6	2420	22	5980
गैस			6	1172	6	1172
उप जोड़	16	3560	12	3592	28	7152
सकल जोड़	77	16362	33	8298	110	24660

आर एंड एम कार्यक्रम के लिए भावी विजन

अब तक आर एंड एम क्रियाकलाप उनके परिचालन को बनाए रखने, संयंत्र की उपलब्धता में सुधार और उनकी परिचालन अविध बढ़ाने के लिए पुरानी, छोटी आकार की इकाइयों तक सीमित थीं। तथापि, ऐसी इकाइयां बहु अक्षम थीं और विभिन्न परिचालनात्मक समस्याओं से ग्रस्त हैं, ऐसी इकाइयों को धीरे-धीरे बंद करने का उद्देश्य है।

आज 81% कोयला/लिग्नाइट आधारित स्थापित क्षमता की 200/210/250 मेगावाट तथा 500 मेगावाट इकाइयां (61655 मेगावाट) की इकाइयां भारतीय विद्युत क्षेत्र की रीढ़ हैं। 200/210 मेगावाट की अनेक मशीनें और 500 मेगावाट की कुछ मशीनें 15-25 वर्ष या अधिक समय से परिचालनरत हैं। क्षमता एकीकृत आर एंड एम के जरिए ऐसी मशीनें प्रौद्योगिकी गहन आर एंड एम के जरिए निष्पादन बढ़ाने के लिए अच्छा अवसर प्रदान करती हैं। क्षमता एकीकृत आर एंड एम/एलई योजना को परिभाषित और कार्यान्वयन हेत् संयंत्र विशिष्ट ऊर्जा ऑडिट अध्ययन करने का प्रस्ताव है। इस समय तीन विद्युत स्टेशन अर्थात बोकारो 'बी' टीपीएस (3X210 मेगावाट), कोलाघाट टीपीएस (3X210 मेगावाट) और नासिक टीपीएस इकाई-3 (1X210 मेगावाट) ने जर्मन सरकार के द्विपक्षीय सहयोग से क्षमता एकीकृत आर एंड एम अध्ययन के लिए पहचान की है। उपर्युक्त सभी इकाइयों के लिए व्यवहार्यता अध्ययन तैयार करने हेत् संविदा दी गई है। इसके अलावा, कुछ इकाइयां जैसे बंदेल टीपीएस इकाई-5 (210 मेगावाट) तथा कोराडी टीपीएस इकाई-। (210 मेगावाट) और पानीपत टीपीएस (2X110 मेगावाट) ने भी विश्व बैंक सहायता के जरिए क्षमता एकीकृत आर एंड एम के लिए पहचान की है। बंदेल टीपीएस इकाई-5 के लिए मुख्य संयंत्र पैकेज हेत् मैसर्स दुसान हैवी इंडस्ट्री एंड कंस्ट्रक्शन कंपनी लिमिटेड को एलओए जारी किया गया। कोराडी टीपीएस इकाई-6 के मामले में बोली प्राप्त हो गई है और इसका आकलन किया जा रहा है। विस्तृत अध्ययन करने के पश्चात पानीपत टीपीएस की इकाई 3 एवं 4 की मियाद बढ़ाने के लिए तकनीकी आर्थिक व्यवहार्यता स्थापित नहीं का सकी और एचपीजीसीएल बोर्ड ने इन इकाइयों में आर एंड एम कार्य नहीं करने का निर्णय लिया। बाह्य सहायता से ऊर्जा क्षम आर एंड एम कार्यक्रम को कुछ इकाइयों में भी शुरू करने का इरादा है।

क्षमता वृद्धि और एंड एम के लिए विश्व बैंक द्वारा सीईए को तकनीकी सहायता

विश्व बैंक भारत में ऊर्जा क्षम आर एंड एम में बाधाओं को दूर करने के लिए कोल फायर्ड जनरेशन रिहैबिलिटेशन परियोजना के अंतर्गत सीईओ की जीईएफ अनुदान के भाग के तौर पर 1.1 मिलियन अमरीकी डालर की सहायता प्रदान कर रहा है। भारत में आर एंड एम हस्तक्षेप की बाधाओं को दूर करने, कार्यान्वयन के लिए बाजार विकसित करने और आर एंड एम के क्षेत्र में सीईए की संस्थागत क्षमता को सुदृढ़ करने से संबंधित अध्ययन करने के लिए इस योजना को परामर्शदाताओं की नियुक्ति के जिए कार्यान्वित किया जाएगा। सभी परामर्शदाताओं की नियुक्ति कर दी गई है।

4.2.4 हाइड्रो इलेक्ट्रिक पावर परियोजनाओं के लिए नवीकरण, आधुनिकीकरण और अद्यतनीकरण

विद्यमान पुरानी हाइड्रो इलेक्ट्रिक पावर परियोजनाओं का नवीकरण तथा आधुनिकीकरण और अवधि बढ़ाने एवं अपरेटिंग करने (आर एम एंड यू) एक अच्छा विकल्प माना जाता है क्योंकि इसमें कम लागत आती है और ग्रीन फील्ड जल विद्युत परियोजनाओं की स्थापना करने की बजाय शीघ्र लक्ष्य प्राप्त किया जा सकता है। जल विद्युत उत्पादन बढ़ाने और विद्यमान जल विद्युत परियोजनाओं की उपलब्धता में सुधार करने के उदेश्य से

जल विद्युत उत्पादन बढ़ाने और विद्यमान जल विद्युत परियोजनाओं की उपलब्धता में सुधार करने के उद्देश्य से भारत सरकार ने विद्यमान इलेक्ट्रिक पावर परियोजनाओं के आर एंड एम पर जोर दिया है।

हाइड्रो इलेक्ट्रिक पावर परियोजनाओं के लाभ को समझते हुए भारत सरकार ने 1987 में एक राष्ट्रीय समिति और 1998 में एक स्थायी समिति गठित की। तत्पश्चात, इन समितियों ने आर एंड एम के अंतर्गत कार्यान्वयन के लिए परियोजनाओं / योजनाओं की पहचान की। देश में हाइड्रो इलेक्ट्रिक पावर परियोजनाओं के आर एंड एम के लिए राष्ट्रीय परिप्रेक्ष्य योजना दस्तावेज वर्ष 2000 के दौरान सीईए में तैयार की जिसमें 11वीं योजना के अंत तक अर्थात वर्ष 2011-12 में कार्यान्वयन पूर्ण करने के लिए विभिन्न परियोजनाओं/योजनाओं की पहले ही पहचान कर ली।

11वीं योजना का सारांश नीचे तालिका 4.7 में दिया गया है। हाइड्रो आर एंड एम, मियाद बढ़ाना तथा अद्यतनीकरण योजनाओं और नियोजित परियोजनाओं, पूर्ण किया गया कार्य तथा 12वीं योजना में जिन पर काम चल रहा है, का विवरण नीचे **तालिका 4.8** में दिया गया है।

तालिका 4.7 आर एंड एम तथा मियाद बढ़ाने तथा कार्यक्रम का अद्यतनीकरण और 11वीं योजना हाइड्रो का सारांश

विवरण	आर एण्ड एम	एलई तथा अपरेटिंग
शामिल परियोजनाओं की संख्या	13	5
क्षमता (मेगावाट)	3363.2	1458.00
अनुमानित लागत (करोड़ रूपए)	4	412.83
किया गया व्यय (करोड़ रूपए) 31.03.2012 तक	:	294.84
लक्षित लाभ (मेगावाट)	-	826
प्राप्त वास्तविक लाभ	-	735

तालिका 4.8

आर एंड एम तथा मियाद बढ़ाने तथा कार्यक्रम का अद्यतनीकरण और 12वीं योजना हाइड़ो का सारांश

विवरण	आर एण्ड एम	एलई एवं ऑपरेटिंग	
शामिल परियोजनाओं की संख्या	7	36	
क्षमता (मेगावाट)	2583.25	4084.50	
अनुमानित लागत (करोड़ रूपए)	4433.67		
किया गया व्यय (करोड़ रूपए) 31.03.2012 तक	994.72		
लक्षित लाभ (मेगावाट)	-	3773.25	
विवरण	-	-	

संक्षिप्तियां : एमडब्ल्यू – मेगावाट; आरईएस, – रेस्टोरेशन; यू – अपरेटिंग; एलई– लाइफ एक्सटेंशन। 12वीं योजना के दौरान जिन हाइड्रो परियोजनाओं पर विचार किया गया, वे अनुबंध 4.3 में दी गई हैं।

4.2.5 12 पुराने और अक्षम थर्मल प्लांट्स को बंद करना

पुराने और अक्षम थर्मल प्लांट्स को बंद करना और उनके स्थान पर नए और अधिक सक्षम इकाइयों की स्थापना करना। ईंधन के उपयोग और जीएचजी उत्सर्जनों को कम करने का एक प्रभावी तरीका है। 11वीं योजना के दौरान 3,000 मेगावाट क्षमता का लक्ष्य था जिसे छोड़ दिया गया। इसमें 100 मेगावाट से कम आकार की कोयला और लिग्नाइट इकाइयां शामिल थीं।

12वीं योजना के दौरान लगभग 4,000 मेगावाट की क्षमता वाली इकाइयों को बंद करने का प्रस्ताव है, जिसमें 100 मेगावाट आकार से कम की कोयला और लिग्नाइट की शेष इकाइयां, 30 वर्ष से अधिक पुराने गैस संयंत्र (1987 और उससे पहले के) और 110 मेगावाट क्षमता की कुछ कोयला इकाइयां शामिल हैं। 13वीं योजना के दौरान, 4,000 मेगावाट क्षमता को बंद करने पर विचार किया गया जिसमें 200 मेगावाट से कम की कमी कोयला इकाइयां (1982 से पूर्व स्थापित) और 1992 से पूर्व स्थापित गैस इकाइयां (20 वर्ष से अधिक पुरानी) शामिल हैं।

4.2.6 उत्पादन और ऊर्जा कार्यकुशलता उपाय

उस परिस्थिति में जब भारत अपनी विकास प्रक्रिया में तेजी लाने का प्रयास करता है और ऊर्जा की बढ़ती हुई मांग का सामना कर रहा होता है तब हमारी ऊर्जा नीति में संरक्षण और ऊर्जा सक्षम उपायों की महत्वपूर्ण भूमिका होती है। ऊर्जा संरक्षण का एक राष्ट्रीय आंदोलन आने वाले वर्षों में ऊर्जा आपूर्ति प्रणालियों में नए निवेश की आवश्यकता को काफी कम कर सकता है। ऊर्जा संरक्षण एक उद्देश्य है जिसमें देश का प्रत्येक नागरिक योगदान कर

सकता है चाहे घर हो या फैक्ट्री, छोटी मोटी दुकान हो या बड़ा वाणिज्यिक भवन, किसान या कार्यालय में काम करने वाला प्रत्येक उपयोगकर्ता का उत्पादक अपने लाभ तथा देश के हित में इस प्रयास को करे।

भारत सरकार ने पहले ही ऊर्जा संरक्षण अधिनियम, 2001 (ईसी अधिनियम) अधिनियमित किया है जो अर्थव्यवस्था के सभी क्षेत्रों में ऊर्जा क्षमता के संवर्धन के लिए अति-आवश्यक कानूनी ढांचा और संस्थागत प्रबंध प्रदान करता है। इस ईसी अधिनियम के अंतर्गत दिनांक 19.3.2007 की सरकारी अधिसूचना के द्वारा ताप विद्युत केन्द्रों को पहले ही नामोदिष्ट उपभोक्ता के रूप में घोषित किया गया है।

विद्युत केन्द्रों के लिए ईसी अधिनियम के अंतर्गत निम्नलिखित कुछ संगत उपबंध नामोदिष्ट उपभोक्ता रूप में हैं:

- 1. ऊर्जा क्षमता और संरक्षण क्रियाकलापों के प्रभारी उर्जा प्रबंधक को नामोदिष्ट या नियुक्त करना;
- 2. किसी मान्य ऊर्जा लेखापरीक्षक द्वारा ऊर्जा लेखा-परीक्षा करना;
- 3. प्रयुक्त ऊर्जा और मान्यता प्राप्त ऊर्जा लेखा-परीक्षकों की सिफारिश पर की गई कार्रवाई के बारे में सूचना प्रस्तुत करना;
- 4. ऊर्जा खपत के मानदण्डों का अनुपालन

केन्द्रीय विद्युत प्राधिकरण ने भी सभी ताप विद्युत केन्द्रों में ऊर्जा सक्षम प्रकोष्ठों के सृजन पर कार्रवाई शुरू की है। केन्द्रीय विद्युत प्राधिकरण ने भी मैसर्स जीआईजेड, जर्मनी के सहयोग से भारत जर्मन ऊर्जा कार्यक्रम (आईजीईएन) के अंतर्गत इन प्रकोष्ठों द्वारा अपेक्षित प्रशिक्षण आवश्यकताओं को अंतिम रूप दिया है। आईजीईएन कार्यक्रम के अंतर्गत इन ऊर्जा सक्षम प्रकोष्ठों के प्रभावी कार्यकरण के लिए ऊर्जा क्षमता पर विभिन्नक्षेत्रीय कार्यशालाएं / सेमिनार आयोजित किए जा रहे हैं।

अद्यतन प्रौद्योगिकियों को शामिल करके और परिचालनरत विद्युत केन्द्रों की क्षमता बढ़ाने के उद्देश्य से देश में विद्युत केन्द्रों की जिटल परिचालनात्मक समस्याओं से निपटने के उद्देश्य से भारत – जर्मन ऊर्जा मंच के अंतर्गत भारतीय विद्युत क्षेत्र के लिए एक उत्कृष्टता वृद्धि केन्द्र (ईईसी) स्थापित करने का प्रस्ताव था, सीईए, बीईई तथा जीआईजेड के मध्य 8 सितंबर, 2011 को कार्यान्वयनकरार पर हस्ताक्षर किए गए थे।

ईईसी के उद्देश्य निम्नलिखित हैं:

- क. विद्युत के सभी क्षेत्रों में वेहत पद्धतियों में भागीदार होना और व्यापक आधारित विशेषज्ञता प्रदान करना।
- ख. उत्कृष्टता की आवश्यकता के प्रति जागरूकता पैदा करना
- ग. प्रौद्योगिकीय विकास के लिए प्लेटफार्म हेतु उद्योगों के साथ परस्पर संपर्क के लिए एक ठोस,
- घ. सामान्य चुनौतियों की पहचान करना, सामान्य समाधान विकसित करना और विद्युत क्षेत्र के लिए संपर्क का एक केन्द्र बिन्दु प्रदान करना,
- ङ. विद्युत क्षेत्र में शीर्ष विशेषज्ञों के लिए एक प्लेटफार्म मुहैया करना

सोसाइटी पंजीकरण अधिनियम 1860 की संख्या XXI के अंतर्गत उत्कृष्टता वृद्धि केन्द्र एक सोसाइटी के रूप में विकसित किया गया है जो नवंबर, 2010 को दिल्ली के राष्ट्रीय राजधानी क्षेत्र पर लागू है। इस केन्द्र ने अपना कार्य सीबीआईपी भवन, मालचा मार्ग, चाणक्यपुरी, नई दिल्ली से आरंभ कर दिया है। सीईए के चेयरपर्सन ईईसी की शासी निकाय के अध्यक्ष हैं। सोसाइटी के शासी निकाय में सीईए, एनटीपीसी, बीईई, वीजीबी, जर्मनी तथा जीआईजेड के सदस्य शामिल हैं। जीआईजेड, जर्मनी बीएमयू जर्मनी की निधियों से प्रस्तावित ईईसी के क्रियाकलापों में सहायता कर रहा है। वीजीबी, जर्मनी तथा अन्य यूरोपीय देशों में उपलब्ध ज्ञान और विशेषज्ञता में भागीदार होकर ईईसी की सहायता करेगा।

ईईसी अलाभकारी सदस्यों वाली सोसाइटी है। सदस्य बनाने का कार्य प्रगति पर है। कई संगठन जैसे बीएचईएल, जे एंड के पावर डवलपमेंट कॉर्पोरेशन, एनटीपीसी; हिताची, ईओएन, स्टील रत्नागिरि पावर, सीपीआरआई आदि ने पहले भी सदस्यता के लिए ईईसी से संपर्क किया है। ईईसी ने पैट स्कीम के विषय पर कोलकाता में एक क्षेत्रीय कार्यशाला का आयोजन किया है। भविष्य में और अधिक क्षेत्रीय कार्यशालाएं आयोजित करने का प्रस्ताव है।

4.2.7 संसाधनों का कुशल प्रयोग

संसाधनों के प्रयोग में कार्यकुशलता एक महत्वपूर्ण घटक है क्योंकि यह सीमित संसाधनों से अधिक उत्पादक आउटपुट को बढ़ावा देने के साथ-साथ पर्यावरण में कार्बन फुटप्रिंट को घटाता है।

सह-उत्पादन विद्युत और उपयोगी ऊष्मा दोनों के पारस्परिक उत्पादन के लिए किसी ऊष्मा इंजन अथवा पावर स्टेशन के इस्तेमाल से किया जाता है। सह-उत्पादन में ईंधन का प्रयोग तापीय गतिशीलता के साथ कुशल ढंग से किया जाता है। पारंपरिक पावर प्लांट कूलिंग टावरों, ईंधन गैस अथवा अन्य किसी साधन के रूप में पर्यावरण में विद्युत उत्पादन के किसी सह-उत्पाद के रूप में सृजित ऊष्मा उत्सर्जित करते हैं। संयुक्त ऊष्मा और विद्युत (सीएचपी) घरेलू अथवा औद्योगिक ऊष्मन प्रक्रियाओं के लिए सह उत्पाद के रूप में ऊष्मा अवशोषित करती है। जब ऊष्मा का प्रयोग स्थल पर ही अथवा उसके बहुत निकट किया जा सकता हो, तो ऐसी स्थिति में सीएचपी सर्वाधिक कुशल साधन माना जाता है। जब ऊष्मा का अधिक दूरी तक पारगमन किया जाता है तो ऐसी स्थिति में संपूर्ण कार्यकुशलता घट जाती है।

मिश्रित प्रशीतन, तापन और पावर (सीसीएचपी)

सीमेंट संयंत्र, रासायनिक उद्योग, वस्त्र संयंत्र आदि जैसी बड़ी औद्योगिक इकाइयां कई वर्षों से अपने कैप्टिव विद्युत संयंत्रों से बिजली ले रहे हैं। इनमें से कई इकाइयों के पास प्रोसेस स्टीम या चिल्लिंग की आवश्यकताओं की पूर्ति के लिए अपशिष्ट हीट रिकवरी भी है।

गत कुछ वर्षों में आईटी कॉम्पलेक्स, डेटासेंटर, आधुनिक इकाई अड्डों आदि के रूप में बड़े वाणिज्यिक भवनों की संख्या में वृद्धि हुई है, जिनकी बिजली की आवश्यकता बहुत अधिक होती है क्योंकि ये भवन पूर्णतया वातानुकूलित होते हैं। इसलिए बिजली की आवश्यकता बहुत अधिक होती है। उनके संकेन्द्रण भार अपशिष्ट तापन से उनके वातानुकूलन भार के एक भाग के उपयोग की संभावना के कारण ये कंबाइंड तापन और प्रशीतन सोल्यूशन के लिए अच्छे होते हैं। इसके अलावा, उनके अलग-अलग बिजली भार के कारण ये परिचालनात्मक फ्लेक्सिबिलिटी की अधिक मांग करते हैं। 25 मेगावाट भार से अधिक वाणिज्यिक उपभोक्ताओं के लिए स्वस्थाने विद्युत उत्पादन करना अनिवार्य होना चाहिए और न्यूनतम 60% थर्मल क्षमता का प्रदर्शन करना चाहिए। ऊपर वर्णित प्रोत्साहनों के कारण इसका अनुपालन कठिन नहीं होगा।

भवन स्वामी द्वारा कैप्टिव विद्युत संयंत्र के तौर पर सीएचपी संयंत्रों की स्थापना की जा सकती है। ऐसे कुछ भवन मिलकर एक ग्रुप कैप्टिव विद्युत संयंत्र स्थापित कर सकते हैं। ऐसे संयंत्रों से ऊर्जा को "डीम्ड नवीकरणीय ऊर्जा" के रूप में देखा जाएगा और उत्पादनकर्ताओं को ग्रिड या विद्युत क्षेत्रों से अधिक बिजली निर्यात करने का अधिकार की अनुमित होगी।

ऐसे "विदइन द फेंस" सीसीएचपी संयंत्रों के लिए प्राकृतिक गैस (स्वच्छ) के उपयोग में यदि अधिक नहीं तो बराबर के अवसर मौजूद हैं। आवंटन को सावधानीपूर्वक बांटने और सीएचपी अनुप्रयोगों के लिए प्राकृतिक गैस के उपयोग को प्रतिबंधित करना जो कम से कम 60% की क्षमता दे सकते हैं।

4.2.8 वितरित उत्पादन

वितरित क्षमता सभी क्षेत्रों/राज्यों में फैले जनरेशन का स्थान है। अक्सर वे पवन, बायोगैस, सौर या गैस/डीजल इंजन के रूप में है। वितरित उत्पादन के मुख्य लाभ निम्नलिखित हैं :

• कम पारेषण क्षति

वितरित फ्लेक्सिबल जनरेशन खपत और भार केन्द्रों के निकट स्थित होते हैं। इसलिए पारेषण हानियां न्यूनतम होती हैं।

• कम पारेषण निवेश

यूएमपीपी से संबद्ध पारेषण लाइन प्रणाली बनाने के लिए एक करोड़ रुपए मेगावाट आवश्यकता की तुलना में पारेषण निवेश को न्यूनतम किया जाता है।

• त्वरित क्षमता वर्धन

यह बड़े संयंत्रों से अधिक संख्या में छोटे संयंत्रों की ओर शिफ्ट करना समर्थ बनाता है अर्थात 25-200 मेगावाट की रेंज में। ये त्वरित क्षमतावर्धन को समर्थ बनाते हैं। ये संयंत्र आमतौर पर मानकीकृत विद्युत जनरेटिंग ब्लॉक का प्रयोग करते हैं और उच्च पिफेब्रिकेशन और माड्युलाइजेशन नियोजित करते हैं। इसके कारण साइट वर्क के समय में काफी कमी हुई और इस प्रकार, स्टार्ट-अप का समय काफी कम है।

• न्यून वास्तविक संवेदनशीलता तथा जोखिम उपशमन

न्यून वास्तिवक संवेदनशील तथा जोखिम उपशमन विश्वसनीयता में वृद्धि करने, गुणवत्ता में सुधार करने, पारेषण लागत कम करने, अधिग्रहण लागत कम करने के अलावा व्यापक भौगोलिक क्षेत्र में उत्पादन के बिन्दुओं का विस्तार करके वितरित उत्पादन वैद्युत प्रणाली की नाजुकता को कम करता है। यदि बड़े केन्द्रीकृत संयंत्र प्राकृतिक आपदाओं या आतंकवाद से प्रभावित होते हैं तो प्रभाव तत्काल और अधिक हो सकता है क्योंकि विद्युत आपूर्ति का बड़ा हिस्सा सिस्टम से छूट जाता है। वितरित संयंत्रजो विभिन्न साइटों से छोटी मात्रा में बिजली उत्पादन सुनिश्चित करते हैं, इस कमजोरी को दूर करते हैं और सिस्टम की सहायता में सुधार करते हैं। शहरी समूह जिनके पास अत्यधिक संवेदनशील या रणनीतिक महत्व के कई प्रतिष्ठान होते हैं, विशेषकर जोखिम उपशमन से लाभान्वित होंगे जो ऐसे वितरित फ्लेक्सिबिलिटी जनरेशन प्रदान करते हैं।

• त्वरित वित्तीय बंदी

जिन परियोजनाओं का निवेश कम होता है उन्हें वित्तीय रूप से शीघ्र ही बंद किया जा सकता है।

• कम भूमि की आवश्यकता, न्यूनतम जल उपयोग

वितरित उत्पादन प्रौद्योगिकियों से क्षेत्र फुटप्रिंट प्रति मेगावाट में काफी कमी आती है। ये अधिक जल की खपत नहीं करते हैं और प्राकृतिक संसाधनों पर भार नहीं डालते हैं।

• बेहतर ग्रिड सहायता

वितरित उत्पादन बेहतर ग्रिड सहायता प्रदान करता है और आईलैंड स्कीमें कास्केड ट्रिपिंग से लोड केन्द्रों को पृथक कर सकती हैं।

4.2.9 कोयला गुणवत्ता सुधार :

कोयला विशेषताओं का विद्युत उत्पादन के लिए उपलब्ध भारतीय कोयला कुल मिलाकर घटिया गुणवत्ता का होता है, जिसमें राख की अधिक मात्रा होती है, जिसके फलस्वरूप विद्युत संयंत्रों की क्षमता कम हो जाती है। भारतीय विद्युत संयंत्रों के लिए उपलब्ध कोयले का औसत कुल क्लोरिफिक मान 3000-4500 के सीएल/क्रिलोग्राम की रेंज में है, जिसमें राख की मात्रा 40% तक है। कोल वाशिंग या न्यून ऐश आयातित कोयला द्वारा बेनिफिसिएटेड कोयले का उपयोग कुछ स्टेशनों में किया जा रहा है। बेनिफिसिएटेड कोयले के उपयोग से न केवल संयंत्र के निष्पादन में सुधार होगा बल्कि न्यून कार्बन उत्सर्जन होंगे और इससे समग्र परिचालन और रखरखाव लागतों में कमी होगी। कई संयंत्रों ने धुले हुए कोयले का प्रयोग करना शुरू कर दिया है और ये आयातित कोयले से ब्लेंडिंग की प्रक्रिया में है जिससे उनके संयंत्र के निष्पादन में सुधार होगा।

पर्यावरण एवं वन मंत्रालय ने एक अधिसूचना जारी की है जिसके अनुसार पिटहेड से 1000 किलोमीटर के अंदर स्थित संयंत्रों, शहरी, संवेदनशील और अत्यधिक प्रदूषित क्षेत्रों में अवस्थित थर्मल पावर संयंत्रों के लिए यह आवश्यक है कि वे कच्चा माल या ब्लेंडेड या बेनिफिसिएटेड कोयले का प्रयोग करें जिसमें राख की मात्रा प्रति वर्ष औसतन 34% से अधिक न हो।

भारतीय कोयला धोने के लिए कम अनुकूल है, इसलिए इसे किठन वर्गीकृत किया गया है क्योंकि धुलाई याल्ड छोटा होता है। अत: धुलाई और ईल्ड की लागत को अधिकतम करने के उद्देश्य से उपयुक्त तकनीकी समाधान खोलने होंगे। फ्लूडाइज्ड बेड कंबस्टन (एफबीसी) बॉयलरों को बिजली उत्पादन के लिए धुलाई की लागत में किफायत के लिए रद्दी का उपयोग करके किया जा सकता है। कई निजी वाशरियां वाशरी रद्दी पर आधारित लघु क्षमता एफबीसी इकाइयों की स्थापना कर रहे हैं।

इस समय, लगभग 323 मिलियन टन की कुल कोयला खपत में से धुले कोयले की मात्रा केवल 33 मिलियन टन है। कोयला खनन, धुलाई के लिए निजी और सरकारी विद्युत कंपनियों को कोयला ब्लॉक आवंटन में तेजी आएगी। बड़े आकार की सुपरक्रिटिकल इकाइयां धुले/आयातित कोयले का उपयोग करेंगी।

4.3 भारत में नवीकरणीय ऊर्जा स्रोतों से उत्पादन

नवीकरणीय ऊर्जा स्रोत का उपयोग परंपरागत ऊर्जा स्रोतों से कहीं अधिक बेहतर विकल्प है। तथापि, विशेष मामले में उनकी गुणवत्ता सीमित है। और ये बिजली कंपनियों की मांग को पूरा करने में सक्षम नहीं हैं। इसके अलावा, ये आमतौर पर अलग किस्म पर आधारित गैर प्रेषणीय ऊर्जा प्रदान करते हैं और इस प्रकार सिस्टम की व्यस्ततम मांग पूरा करने के लिए इन पर निर्भर नहीं रहा जा सकता है। ये सामान्यतया 15% से 20% की समग्र पीएलएफ (कुल क्षमता पर आधारित पीएलएफ और सभी नवीकरणीय स्रोतों से ऊर्जा की मात्रा) पर चलती हैं। इसमें अतिरिक्त, विद्युत उत्पादन प्रौद्योगिकियां मंहगी होती हैं जिससे उत्पादन बिजली शुल्क बढ़ जाता है। तथापि, अपने अंतर्निहित खूबियों के कारण इन विद्युत स्रोतों के विकास को प्रोत्साहित किया जा रहा है और उत्पादित विद्युत को ग्रिड में पहुंचाया जाता है।

4.3.1 नवीकरणीय की संभाव्यता

नवीकरणीय ऊर्जा स्रोतों के विकास पर बल दिया जा रहा है जो न केवल एक नवीकरणीय स्रोत है बल्कि पर्यावरणीय रूप से हितकर भी है। नवीकरणीय ऊर्जा स्रोत मंत्रालय ने स्वयं 45,0000 मेगावाट पवन ऊर्जा की संभावना का अनुमान लगाया है। अपरंपरागत ऊर्जा स्रोतों के अन्य रूप बायोमास, सूक्ष्म और लघु हाइड्रो (केनल फाल्स का उपयोग करके क्योंकि इससे सिविल कार्यों की लागत न्यूनतम होती है) के तौर पर ज्वारीय विद्युत और सौर ऊर्जा हैं। ये उन दूर-दराज के स्थानों में जहां ग्रिड का विस्तार करना बहुत कठिन और अधिक लागत का होता है, की मांग पूरा करने के लिए वितरित उत्पादन के रूप में भी व्यवहार्य होते हैं। अल्प समय में इन स्रोतों का उपयोग विशेषकर भौगोलिक रूप से क्षेत्रों में मांग-आपूर्ति अंतर को कम करना है। आज, परंपरागत ऊर्जा की पूंजी लागत पवन ऊर्जा को छोड़कर प्रति केडब्ल्यू आधार पर परंपरागत स्रोतों से काफी अधिक है। तथापि, उनकी व्यवहार्यता तभी स्थापित हो सकती है यदि वित्तीय लाभ विश्लेषण के स्थान पर आर्थिक लागत लाभ विश्लेषण प्रतिस्थापित किया जाए।

नवीकरणीय ऊर्जा स्रोत मंत्रालय द्वारा प्रस्तुत सूचना के अनुसार देश में पवन लघु हाइड्रो, सौर अपशिष्ट से ऊर्जा और बायोमास जैसे नवीकरणीय ऊर्जा स्रोतों से विद्युत उत्पादन के लिए कुल अनुमानित मध्याविध संभाव्यता (2032) लगभग 1,83,000 मेगावाट है, जैसा कि नीचे तालिका 4.9 में दर्शाया गया है।

तालिका 4.9

(आंकड़े मेगावाट में)

स्रोत/ प्रणाली	अनुमानित मध्यावधि (2032) संभावना
पवन विद्युत	45,000
जैव विद्युत (कृषि अवशेष और पौध रोपण)	61,000
को सह-उत्पादन अवसाब	5,000
लघु हाइड्रो (25 मेगावाट तक)	15,000
अपशिष्ट से ऊर्जा	7,000
सौर फोटोवोल्टेक	50,000*
जोड़	1,83,000

*राष्ट्रीय सौर मिशन के उद्देश्य के अनुसार 2030 तक 1,00,000 मेगावाट सौर उत्पादन क्षमता और 2050 तक 2,00,000 मेगावाट क्षमता स्थापित की जाएगी।

4.3.2 नवीकरणीय ऊर्जा स्रोतों का विकास

नवीकरणीय ऊर्जा को जलवायु परिवर्तन संबंधी भारत की राष्ट्रीय कार्य योजना में उपयुक्त रूप से मुख्य स्थान दिया गया है। जलवायु परिवर्तन पर अंतर-सरकारी पैनल-आईपीसीसी) ने अपनी चौथी रिपोर्ट में इंगिद किया है, "जलवायु परिवर्तन के उपशन के लिए प्रौद्योगिकियां उपलब्ध हैं, तथापि इन्हें उपयुक्त नीति और वित्तीय सहायता की आवश्यकता है। नवीकरणीय ऊर्जा परियोजनाओं के लिए व्यापक बाजार संभावाव्यता और एक अपेक्षाकृत सुविकसित औद्योगिक, वित्तपोषण और व्यवसाय के कारण स्वच्छ विकास तंत्र (सीडीएम) परियोजनाओं और प्रौद्योगिकी नवोद्भव के लिए पर्याप्त अवसर प्रदान करता है। आमतौर पर सोडियम और उभरता हुआ कार्बन बाजार की नवीकरणीय ऊर्जा परियोजनाओं की वित्तीय व्यवहार्यता में योगदान करने की संभाव्यता है हालांकि उन्हें पूरी तरह व्यवहार्य बनाना आवश्यक नहीं है।

विद्युत अधिनियम, 2003 में भी बिजली ग्रिड और अकेली प्रणालियों के लिए नवीकरणीय ऊर्जा प्रौद्योगिकियों की भूमिका को मान्यता दी गई है। यह राज्य विद्युत विनियामक आयोगों (एसईआरसी) को नवीकरणीय ऊर्जा को बढ़ावा देने और वितरण लाइसेंसी के एक भाग नवीकरणीय क्षेत्र में बिजली खरीदने का अधिकार देता है। राष्ट्रीय विद्युत नीति में भी कहा गया है कि अपारंपरिक ऊर्जा स्रोतों का पूरी तरह दोहन किया जाए और एसईआर सी द्वारा इन स्रोतों का पूरा उपयोग और सतत विकास किया जाए। टैरिफ नीति में भी एसईआरसी द्वारा नर्धारित किए जाने हेतु टैरिफ के लिए लागू किए जाने के लिए नवीकरणीय स्रोतों से ऊर्जा का न्यूनतम प्रतिशत अनिवार्य है। इस प्रकार, विद्युत अधिनियम, राष्ट्रीय विद्युत नीति और भारत सरकार की टैरिफ नीति में ऐसे स्रोतों से बिजली खरीदने के लिए किसी वितरण कंपनी की बाध्यता प्रणाली के जरिए नवीकरणीय स्रोतों का विकास करने की बात कही गई है। ये पहले भारत में विकरण ऊर्जा क्षेत्र के संवर्धन के लिए बड़ा बढ़ावा देते हैं।

11वीं योजना के अंत अर्थात 31.3.2012 तक नवीकरणीय ऊर्जा स्रोतों से कुल स्थापित क्षमता 24,914 मेगावाट थी। पवन टर्बाइन विद्युत संयंत्रों की स्थापित क्षमता के संदर्भ में विश्व में भारत का पांचवां स्थान है, नवीकरणीय स्रोतों से 11वीं योजना के लिए क्षमता वृद्धि लक्ष्य 14,000 मेगावाट (सौर मिशन के अंतर्गत प्रस्तावित सौर क्षमता को छोड़कर) है।

12वीं और 13वीं योजना के दौरान नवीकरणीय स्रोतों से क्षमता वृद्धि 11वीं योजना क्षमतावृद्धि से अधिक होने का अनुमान है। सौर और पवन आधारित विद्युत संयंत्रों की स्थापना के लिए नवीकरणीय ऊर्जा स्रोत मंत्रालय द्वारा कई पहले की गई हैं। 12वीं और 13वीं योजना के दौरान नवीकरणीय से क्रमश: लगभग 29,500 मेगावाट और 30,500 मेगावाट क्षमता अभिवृद्धि का अनुमान है। 11वीं योजना के आरंभ में अर्थात 31.3.2007 तक नवीकरणीय ऊर्जा स्रोतों से 7,761 मेगावाट लेकर 11वीं, 12वीं तथा 13वीं योजनाओं के अंत तक नवीकरणीय ऊर्जा स्रोतों की क्षमता क्रमश: 24,914 मेगावाट, 54,414 मेगावाट तथा 84,914 मेगावाट होने का अनुमान है। 11वीं योजना और उससे आगे नवीकरणीय क्षमता वृद्धि का वर्णन निम्नलिखित चित्र में दर्शाई गई है:

नवीकरणीय ऊर्जा स्रोत मंत्रालय के परिप्रेक्ष्य के अनुसार 12वीं और 13वीं योजना अविधयों के दौरान 60,000 मेगावाट की क्षमतावृद्धि की परिकल्पना की गई है। इन अनुमानों में ग्रिड इंटरेक्टिव सौर विद्युत के जिरए जलवायु परिवर्तन पर राष्ट्रीय कार्य योजना ने प्रस्तावित सौर मिशन के अंतर्गत एक थ्रष्ट क्षेत्र के रूप में बड़े पैमाने पर सौर विद्युत उत्पादन की पहचान की है। इस योजना में 2020 तक 20,000 मेगावाट सौर विद्युत का संकेतात्मक लक्ष्य की परिकल्पना की गई है।

4.4 सौर ऊर्जा का विकास

4.4.1 प्रस्तावना

विद्युत उत्पादन के सभी अपारंपरिक स्रोतों में से भारत में सौर ऊर्जा सबसे अधिक उपलब्ध और ऊर्जा का प्रचुर स्रोत है। भारत एक उष्णकटिबंधीय देश है, यहां प्रचुर धूप है, इसलिए विद्युत उत्पादन के लिए सौर ऊर्जा का आसानी से प्राप्त की जा सकती है। ग्रिड से जुड़ी विद्युत और वितरित विद्युत विकल्प क्षेत्रों में ग्रामीण विद्युतीकरण के लिए विद्युत विकल्पों पर विचार करते समय यह विशेष रूप से लाभदायक है।

अन्य नवीकरणीय और गैर जीवाश्म विकल्पों जैसे आण्विक तथा पवन ऊर्जा और बायोमास के क्षेत्राधिकार में विस्तार करने की आवश्यकता को स्वीकार करते हुए कुल ऊर्जा में सौर ऊर्जा के अंश में पर्याप्त वृद्धि करने के लिए जलवायु परिवर्तन हेतु राष्ट्रीय कार्य योजना के अंतर्गत एक राष्ट्रीय सौर मिशन आरंभ किया गया है।

ऊर्जा उपयोग की सौर प्रौद्योगिकी की प्रगति विभिन्न कारणों मुख्यतया उच्च पूंजी लागत और सौर प्रतिष्ठानों के लिए अधिक भूमि की आवश्यकता के कारण धीमी रही है। एक और बाधा इसकी उपलब्धता केवल ऊर्जा उपयोग हेतु दिन के समय ही होती है जिससे भंडारण पद्धति के लिए अतिरिक्त उच्च लागत की आवश्यकता पड़ती है। प्रभावी भूमिका निभाने के लिए किसी भी प्रौद्योगिकी के लिए "मिशन मोड" में क्षमता निर्माण करना आवश्यक

है। तदनुसार निकट भविष्य में स्थायित्व को ध्यान में रखते हुए सौर ऊर्जा की प्राप्ति अधिक प्रभावी तरीके से करने का प्रयास किए जा रहे हैं।

नवीकरणीय ऊर्जा स्नोत मंत्रालय ने मेगावाट क्षमता ग्रिड इंटरेक्टिव सौर ऊर्जा संयंत्रों की स्थापना के लिए मार्च, 2008 में एक नई योजना शुरू की है। इस परियोजना के अंतर्गत मंत्रालय सौर प्रकाश बोल्टीय से उत्पादित बिजली के लिए प्रति केडब्ल्यूएच अधिकतम 12 रुपए का उत्पादन आधारित प्रोत्साहन और सौर थर्मल विद्युत संयंत्रों के जिरए उत्पादित बिजली के लिए प्रति केडब्ल्यूएच अधिकतम 10 रुपए का उत्पादन आधारित प्रोत्साहन देगा और 1 एमडब्ल्यूपी तथा अधिक की क्षमता के एक ग्रिड इंटरेक्टिव सौर विद्युत संयंत्र में संप्रेषित करता है। यह प्रोत्साहन दस वर्षों की अवधि के लिए निर्धारित दर पर परियोजना डेवलेपरों को प्रदान किया जाएगा और इसका निर्धारण सौर विद्युत उत्पादनकर्ता को बिजली कंपनी द्वारा प्रदत्त टैरिफ को ध्यान में रखते हुए किया जाएगा। यह कार्यक्रम 11वीं योजना अवधि के दौरान सौर विद्युत की 50 एमडब्ल्यूपी की कुल स्थापित क्षमता तक सीमित होगा और प्रत्येक राज्य को 10 एमडब्ल्यूपी के कुल क्षमता तक स्थापित करने की अनुमित दी जाएगी।

4.4.2 सौर ऊर्जा के लिए भारत में संभावना

भूमध्य रेखा से नजदीक होने के कारण भारत पर्याप्त सूर्य की रोशनी प्राप्त करता है। भरत की भूमि क्षेत्र पर लगभग 5,000 ट्रिलियन केडब्ल्यूएच ऊर्जा पड़ती है और अधिकांश भाग प्रतिदिन प्रति वर्ग किलोमीटर 4-7 केडब्ल्यूएच प्राप्त करते हैं। बिना भंडारण सुविधा के 1 मेगावाट सौर क्षमता प्रति वर्ष 1.6 मि.यू. का उत्पादन करता है। भारत में उन राज्यों में सौर ऊर्जा की संभाव्यता है जहां पर्याप्त सूर्य की रोशनी पड़ती है, विशेषकर राजस्थान, गुजरात, आंध्र प्रदेश, तमिलनाडु और लद्दाख। सौर संभाव्यता का एक मानचित्रण उपलब्ध है, जिसका उपयोग सौर प्रतिष्ठानों की स्थापना के समय किया जाता है।

4.4.3 सौर ऊर्जा से विद्युत - प्रौद्योगिकी विकल्प

सौर विद्युत का आशय सूर्य की ऊर्जा से उत्पादित विद्युत है। सूर्य के प्रकाश को मुख्य रूप से दो प्रकार की प्रौद्योगिकियों अर्थात फोटोवोल्टेक (पीवी) सेल और सोलर थर्मल या कंसंट्रेटिंग सोलर पावर (सीएसपी) प्रौद्योगिकी का प्रयोग कर विद्युत में निम्नानुसार परिवर्तित किया जा सकता है:

- (i) सोलर फोटोवोल्टेक पैनल
- (ii) सोलर थर्मल (सीएसपी और हीटिंग) जिसमें पैराबोलिक ट्रफ, पावर टावर डिस डिजाइन और फ्रेशनेल रिफलेक्टर शामिल होते हैं।

प्रत्येक प्रौद्योगिकी के अपने गुणधर्म, विशेषताएं और त्रुटियां होती हैं। अपनी आवश्यकता और उपलब्ध इनपुट के आधार पर न्यायिक विकल्प चुनने की आवश्यकता होती है।

4.4.4 सोलर फोटोवोल्टेक (पीवी) प्रौद्योगिकी

सोलर सेल अथवा फोटोवोल्टेक सेल एक ऐसा उपकरण है जो फोटोवोल्टेक प्रभाव द्वारा सूर्य के प्रकाश को सीधे विद्युत में परिवर्तित करता है। सेलों की असेम्बली का प्रयोग सोलर पैनल, सोलर मॉड्यूल अथवा फोटोवोल्टेक ऐर्रे तैयार करने के लिए किया जाता है। सोलर सेलों को प्राय: विद्युत संबद्ध होते हैं और एक मॉड्यूल के रूप में तैयार किए जाते हैं। फोटोवोल्टेक मॉड्यूलों में प्राय: आगे की ओर (सन अप) कांच की एक सीट लगी होती है जो प्रकाश को गुजरने की अनुमित प्रदान करती है। साथ ही बहुत से तत्वों (वर्षा, बर्फबारी आदि) से सेमीकंडक्टर वेफर की रक्षा करता है। सोलर सेल सामान्यत: किसी भी मॉड्यूल में क्रमबद्ध ढंग से जुड़े रहते हैं जो ऐडीटिव वोल्टेज सृजित करते हैं। यदि इन सेलों को समानांतर रूप से जोड़ा जाए तो संभवत: उच्च करेंट प्राप्त होगा। इसलिए मॉड्यूलों को या तो क्रमबद्ध से अथवा समानांतर रूप से अथवा दोनों रूपों में जोड़ा जाता है, जिससे कि अपेक्षित पीक डीसी वोल्टेज करेंट के साथ किसी ऐर्रे का सुजन किया जा सके।

सौर ऊर्जा से उत्पादित विद्युत का व्यवहारिक प्रयोग सुनिश्चित करने के लिए इस विद्युत को प्राय: इनवर्टरों (ग्रिड से जुड़ी पीवी प्रणालियों) का प्रयोग करते हुए विद्युत ग्रिड में फीड किया जाता है; एकांत प्रणालियों में ऊर्जा के भंडारण हेतु बैट्रियों का प्रयोग किया जाता है जो तत्काल आवश्यक नहीं होता। पीवी का प्रयोग मुख्य रूप से छोटे और मध्यम आकार वाले अनुप्रयोगों को विद्युत प्रदान करने के लिए किया जाता है, इनका प्रयोग एकल सोलर सेल

द्वारा विद्युत प्राप्त करने वाले कल्कुलेटर से लेकर किसी फोटो वोल्टेक ऐर्रे द्वारा विद्युत प्राप्त करने वाले ऑफ – ग्रिड होम में किया जाता है। व्यापक पैमाने पर उत्पादन के लिए सीएसपी प्लांट मानक के रूप में स्थापित किए गए हैं। हालांकि वर्तमान में बहु-मेगावाट पीवी प्लांटों की स्थापना सामान्य होती जा रही है।

मानक क्रिस्टेलाइन सिलिकॉन मॉड्यूल जैसे नए विकल्पों में सॉइंग, पतली फिल्म (CdTe, जीआईजीएस, एमॉर्फस Si, माइक्रोक्रिस्टेलाइन Si), कनेक्टर मॉड्यूल, सिल्वर सेल और सतत प्रिंटिंग प्रक्रियाओं के बजाय वेफर कास्टिंग शामिल होती है। मितव्ययिता मान के कारण सोलर पैनलों की लागत अपेक्षाकृत कम होती है, इसलिए लोग इनका प्रयोग करते हैं और अधिक मात्रा में इनकी खरीद होती है- विनिर्माता मांग को पूरा करने के लिए उत्पादन बढ़ा देते हैं। उपर्युक्त के मद्देनजर ऐसी उम्मीद है कि आने वाले वर्षों में इनकी लागत कम होती जाएगी।

4.4.5 सोलर थर्मल प्रौद्योगिकी

इस प्रौद्योगिकी में सौर ऊर्जा को थर्मल ऊर्जा में परिवर्तित किया जाता है, जिसे बाद में टर्बाइन द्वारा विद्युत ऊर्जा में परिवर्तित किया जाता है जिसे बाद में टर्बाइन द्वारा वैद्युत ऊर्जा में परिवर्तित किया जाता है। तीन थर्मल प्रौद्योगिकियों अर्थात पाराबोलिक ट्रो, पावर टावर और डिश/इंजन की तुलना की विशेषताएं निम्नलिखित है:

- > टावर और ट्रो तकनीक 30-200 मेगावाट आकार में ऐसे बड़े और जुड़े ग्रिड सर्वोत्तर उपयुक्त होते हैं जहां डिश/इंजन प्रणालियां मॉड्युलर होती हैं और इनका प्रयोग एकल डिश अनुप्रयोगों या डिश फार्मों में समूह बनाया जाता है तािक बड़ी बहु-मेगावाट परियोजनाएं बनाई जा सकें
- पैराबोलिक थ्रूज आज सबसे उपलब्ध परिपक्व सौर विद्युत प्रौद्योगिकी है और इस प्रौद्योगिकी का उपयोग निकट अविध में नियोजन के लिए प्रयुक्त किए जाने की संभावना है। सिद्ध हुई प्रौद्योगिकी का प्रदर्शन किया जाना है और और कम लागत तैयार हो सकती है।
- निकट भविष्य में केवल कम लागत वाले और दक्ष थर्मल भंडारण सुविधायुक्त पावर टावर ही स्थापित होंगे जो प्रेषणयोग्य, उच्च क्षमता घटक, सौर विद्युत के लिए इस्तेमाल किए जाऐंगे। हालांकि उनके प्रचालन और रखरखाव के लिए मोल्टेन-सॉल्ट प्रौद्योगिकी प्रदर्शित करने और कम लागत वाले हेलियोस्टेट का विकास आवश्यक है।
- डिश की मॉड्युलर प्रकृति उन्हें लघु, उच्च मान अनुप्रयोगों की अनुमित देती है, तथापि डिश/इंजन प्रणालियों के लिए कम से कम एक वाणिज्यिक इंजन विकास की आवश्यकता होती है।
- टावर और डिश ट्रा टाइप की तुलना में कम लागत पर उच्चतर सौर से विद्युत क्षमताएं प्राप्त करने का अवसर प्रदान करते हैं, लेकिन अनिश्चितता बनी रहती है कि क्या इन प्रौद्योगिकियों से आवश्यक पूंजी लागत कटौती और उपलब्धता में सुधार लाया जा सकता है।

4.4.6 भारत में सौर विद्युत के लिए लक्ष्य एवं उद्देश्य

जेएनएनएसएम के अनुसार राष्ट्रीय सौर मिशन का उद्देश्य यथाशीघ्र देश में इसके प्रसार के लिए नीति परिस्थितियां बनाकर भारत को सौर ऊर्जा में एक वैश्विक नेतृत्व के रूप में स्थापित करना है। यह मिशन 11वीं योजना की शेष अविध तथा 12वीं योजना के प्रथम वर्ष (2012-13 तक) चरण-। के रूप में 12वीं योजना के शेष 4 वर्ष (2013-17) चरण-।। के रूप में तथा 13वीं योजना चरण-।।। दृष्टिकोण अपनाएगा।

प्रत्येक योजना के अंत में और 12वीं तथा 13वीं योजनाओं की मध्याविध में बढ़ती हुई लागत और प्रौद्योगिक रुख, घरेलू और वैश्विक दोनों के आधार पर प्रगति का आकलन, बाद के चरणों के लिए क्षमता और लक्ष्यों की समीक्षा की जाएगी। इसका उद्देश्य यह है कि यदि अनुमोदित लागत कम नहीं होती है तथा आशा से अधिक लागत आने पर आर्थिक सहायता से सरकार को बचाना होगा।

मिशन का तत्काल उद्देश्य देश में केन्द्रीयकृत और विकेन्द्रीकृत दोनों ही स्तर पर सौर प्रौद्योगिकी लाने के लिए समर्थकारी पर्यावरण की स्थापना करने पर ध्यान के केन्द्रित करना है। प्रथम चरण (2013 तक) में सौर थर्मल में लो-हैंगिंग विकल्पों को अनाने; वाणिज्यिक ऊर्जा तक पहुंचे बिना आबादी की सेवा के लिए आफ-ग्रिड प्रणालियों को बढ़ावा देने और ग्रिड आधारित प्रणालियों में मध्यम क्षमता वर्धन पर ध्यान दिया जाएगा। दूसरे चरण में प्रारंभिक वर्षों के अनुभव को ध्यान में रखते हुए देश में ऊर्जा बढ़ाने और प्रतिस्पर्धी सौर ऊर्जा में तेजी लाने के लिए क्षमता में तेजी से वृद्धि करनी होगी।

इसे प्राप्त करने के लिए मिशन के लक्ष्य निम्नलिखित हैं:

- 2022 तक 20,000 मेगावाट सौर ऊर्जा के लिए समर्थकारी नीति ढांचा सृजित करना
- 2013 तक तीन वर्षों के अंदर 1000 मेगावाट ग्रिड-कनेक्टेड सौर विद्युत उत्पादन की क्षमता करना। वरीयता टैरिफ वाली बिजली कंपनियों द्वारा नवीकरणीय खरीद बाध्यता के अनिवार्य उपयोग के जिए 2017 तक अतिरिक्त 3000 मेगावाट क्षमतावृद्धि। यह क्षमता दोगुनी से अधिक हो सकती है। 2017 तक स्थापित ऊर्जा 10,000 मेगावाट तक पहुंच सकती है या बढ़ी हुई तथा समर्थित अंतर्राष्ट्रीय वित्त और प्रौद्योगिकी अंतरण पर आधारित इससे भी अधिक क्षमता प्राप्त की जा सकती है। 20,000 मेगावाट की 2022 का महत्वाकांक्षी लक्ष्य प्रथम दो चरणों के अनुभव पर निर्भर होगा और सफल होने पर ग्रिड प्रतिस्पर्धी सौर विद्युत की परिस्थितियां हो सकती हैं। लेनदेन को उपयुक्त रूप से अंतर्राष्ट्रीय वित्त तथा प्रौद्योगिकी की उपलब्धता के आधार पर बढ़ाया जा सकता है।
- स्वदेशी उत्पादन और विपणन नेतृत्व के लिए सौर विनिर्माण क्षमता विशेषकर सौर थर्मल के लिए अनुकूल परिस्थितियां पैदा करना।
- 2017 तक 1000 मेगावाट और 2022 तक 2000 मेगावाट क्षमता प्राप्त करने के लिए ऑफ-ग्रिड अनुप्रयोगों के कार्यक्रमों को बढ़ावा देना
- 2017 तक 15 मिलियन वर्ग मीटर सौर थर्मल एकत्र क्षेत्र और 2022 तक 20 मिलियन वर्ग मीटर एकत्र क्षेत्र का लक्ष्य प्राप्त करना।
- 2022 तक ग्रामीण क्षेत्रों के लिए 20 मिलियन सौर लाइटिंग प्रणालियां नियोजित करना।

4.4.7 मिशन रणनीति (चरण-। और 2)

प्रथम चरण में 2022 तक राष्ट्रीय सौर मिशन के उद्देश्य प्राप्त करने के लिए व्यापक नीति ढांचो की घोषणा की जाएगी। नीति की घोषणा से अनुसंधान घरेलू विनिर्माण और सौर विद्युत उत्पादन के विकास में निवेश के लिए उद्योगों और डेवलेपरों को आकर्षित करने के लिए आवश्यक वातावरण बनेगा और इस प्रकार घरेलू सौर उद्योग के लिए महत्वपूर्ण परिणाम प्राप्त होंगे। यह मिशन राज्य सरकारों, विनियामकों, विद्युत कंपनियों और स्थानीय स्वशासन निकायों के साथ घनिष्ठ रूप से कार्य करेगा ताकि यह सुनिश्चित हो सके कि निर्धारित किए जा रहे क्रियाकलाप और नीति ढांचे को प्रभावी रूप से कार्यान्वित किया जा सके। चूंकि कुछ राज्य सरकारों ने सौर पर पहले ही पहलों की घोषणा कर दी है, इसलिए मिशन शीघ्र और आक्रामक शुरुआत करने के लिए एक उपयुक्त पारगमन ढांचा तैयार करेगा।

क. बिजली कंपनियों से संबंधित अनुप्रयोग : सौर ग्रिड का निर्माण करना

सौर विद्युत को बढ़ावा देने के लिए मुख्य चालक विशिष्ट सौर घटक के साथ विद्युत कंपनियों के लिए अधिदेशित एक नवीकरणीय खरीद बाध्यता (आरपीओ) के जिए होगा। सौर खरीद बाध्यता को धीरे धीरे बढ़ाया जाएगा जबिक सौर विद्युत खरीद के लिए निर्धारित टैरिफ में आगे कमी आएगी।

ख. निम्न 80° सें. चुनौती - सौर एकत्रकर्ता

यह मिशन अपने प्रथम दो चरणों में सौर तापन प्रणालियों को बढ़ावा देगा जो पहले ही प्रमाणित प्रौद्योगिकी का इस्तेमाल कर रहे हैं और वाणिज्यिक रूप से व्यवहार्य हैं। यह मिशन यह सुनिश्चित करने के लिए कि अनुप्रयोग, घरेलू तथा औद्योगिक, 80 डिग्री सें. से नीचे सौरीकृत होते हैं। मिशन की मुख्य रणनीति इस उद्देश्य को पूरा करने के लिए जरूरी नीति परिवर्तन करेगा।

- सबसे पहले बिल्डिंग बाईलॉज और राष्ट्रीय भवन कोड में शामिल करके सोलर हीटरों को अनिवार्य बनाएं।
- दूसरा, प्रमाणन और सौर ताप अनुप्रयोगों के विनिर्माण की रेटिंग के लिए प्रभावी क्रियाविधि लागू करना,
- तीसरा स्थानीय एजेंसियों और विद्युत कंपनियों के जिए इन अलग अलग उपकरणों सुविधाजनक बनाना और बढ़ावा देना, तथा
- चौथा, उच्चतर क्षमता प्राप्त करने और लागत कम करके उदार ऋण देकर प्रौद्योगिकी उन्नयन और विनिर्माण क्षमता को सहायता प्रदान करना।

ग. ऑफ ग्रिड अवसर – विद्युत से बंचित गरीबों के घरों में विद्युत पहुंचाना

सौर विद्युत के लिए एक मुख्य अवसर विकेन्द्रीकृत और आफ ग्रिड अनुप्रयोगों में निहित है। दूर दराज के क्षेत्रों में जहां जहां ग्रिड न तो व्यवहार्य है और न ही लागत प्रभावी वहां सौर ऊर्जा अनुप्रयोग लागत प्रभावी होती है, वे यह सुनिश्चित करते हैं कि जिन लोगों की पहुंच रोशनी और विद्युत तक नहीं है उन्हें विद्युत उपलब्ध कराई जाए। मुख्य समस्या उपयुक्त सरकारी सहायता के जिए इन अनुप्रयोगों में उच्च शुरुआती लागत के लिए अधिकतम वित्तीय नीति प्राप्त करना है। इस समय बाजार आधारित और माइक्रो क्रेडिट आधारित स्कीमों ने इस क्षेत्र में सीमित बढ़त हासिल की है। सरकार ने वित्तीय पहलों और संवर्धनात्मक स्कीमों के जिए विकेन्द्रित अनुप्रयोगों को बढ़ावा दिया है। यद्यपि, सौर मिशन ने 2017 तक के लिए 1000 मेगावाट का लक्ष्य रखा है जो छोटा प्रतीत होता हो, लेकिन लाखों घरों में यह पहुंचकर परिवर्तन लाएगा। नीति से प्रभावकारिता में सुधार के लिए विद्यमान स्कीमों पर नई स्कीमों से सीखने को मिलेगा। इस मिशन का निम्नलिखित उद्देश्य है:

• लगभग 10,000 गावों एवं घरों को कवर करने के लिए नवीनीकरण ऊर्जा स्रोत मंत्रालय के जारी दूर दराज के ग्रामीण विद्युतीकरण कार्यक्रम के अंतर्गत सौर प्रकाश प्रणालियां उपलब्ध कराना है। रोशनी के उद्देश्य से सौर लाइटों के प्रयोग को बस्तियों में ग्रिड बिजली की पहुंच के बिना बढ़ावा दिया जाएगा और चूंकि अधिकतर बस्तियां दूरस्थ आदिवासी बस्तियां हैं, इसलिए 90% आर्थिक सहायता की जाती है। आर्थिक सहायता और सृजित उत्पादन का इस्तेमाल स्केल प्रमाद के जिरए स्वदेशीकरण और कीमतों को कम करने में किया जाएगा। अन्य गांवों जो ग्रिड से जुड़े हैं, के लिए सौर ऊर्जा को निम्न लागत ऋण के प्रस्ताव के लिए बैंकों द्वारा बाजार मोड के जिरए बढ़ावा दिया जाएगा।

• लक्षद्वीप, अंडमान और निकोबार द्वीप समूह, जम्मू और कश्मीर के सीमा क्षेत्र जैसे विशेष श्रेणी राज्यों और दूर दराज के कठिन परिस्थिति वाले राज्यों में अकेले सौर विद्युत संयंत्रों की स्थापना करना। सीमांत क्षेत्रों को भी इसमें शामिल किया जाएगा।

अन्य आफ ग्रिड सौर अनुप्रयोगों को भी प्रोत्साहित किया जाएगा। इसमें डीजल और अन्य जीवाश्म ईंधन के उपयोगद्वारा फिलहाल पूरी की जा रही है विद्युत, तापन और प्रशीतन ऊर्जा आवश्यकताओं को पूरा करने के लिए हाइब्रिड प्रणालियां भी शामिल हैं। इन उपायों में अभी बदलाव की आवश्यकता है ताकि लागतों में कमी लाई जा सके लेकिन मुख्य चुनौती उद्यमियों के लिए बाजार विकसित करने हेतु समर्थकारी ढांचा और सहायता प्रदान करना है।

विद्यालयों और होस्टलों में पठन में सहायता करने, कंप्यूटरों को चलाने में और ऊर्जा, मध्य प्रदेश में वनों के बेहतर प्रबंधन में सहायता करने, गुजरात में दुग्ध प्रशीतन संयंत्रों में बिजली देने, झारखंड में तसर रीलिंग में शामिल महिला स्व-सहायता प्रबंधन नए क्षेत्रों के कुछ उदाहरण हैं जिन पर देश में परीक्षण करने का प्रयास किया जा रहा है। यह मिशन सौर ऊर्जा के ऐसे नवीन प्रयोगों को बढ़ावा देने के लिए 30% तक पूंजी सहायता (जो कुछ समय बाद कम हो जाएगा) देने पर विचार किया जाएगा।

बैंक में निरंतर ब्याज बनाए रखने के उद्देश्य से भारतीय नवीकरणीय ऊर्जा विकास एजेंसी (इरेडा) के जिए उदार पुन: वित्त देने का प्रस्ताव है, जिसके लिए सरकार बजटीय सहायता देगी। इसके बदले इरेडा एनएफबीसी और बैंकों को इस शर्त पर पुनवित्त देगा कि यह उपभोक्ता को अधिक से अधिक 5% ब्याज दर पर उधार देगा, जिसका इस्तेमाल दस वर्षों की अवधि के लिए पुन: वित्त कार्यों के लिए किया जाएगा और अंत में यह निधियां इरेडा को भविष्य में नवीकरणीय ऊर्जा परियोजनाओं के लिए अंतरित की गई मानी जाएगी।

घ. विनिर्माण क्षमताएं : नवोदभव, विस्तार और प्रसार

इस समय भारत का अधिकतर सौर उद्योग सिलिकन वेफर सिहत महत्वपूर्ण कच्चे माल के आयात पर निर्भर है। भारत को एक सौर ऊर्जा हब में बदलने में प्रणाली घटकों कि संतुलन सिहत कम लागत, उच्च गुणवत्ता में नेतृत्व की भूमिका शामिल होगी। सिलिकन सामग्री के देश में ही निर्माण सिहत पीवी विनिर्माण संयंत्रों को बढ़ावा देने के लिए विशेष प्रोत्साहन पैकेज (एसआईपी) नीति का सकारात्मक कार्यान्वयन आवश्यक होगा।

न्यून तापमान सौर कलेक्टरों का पहले ही देश में विनिर्माण हो रहा है तथापि न्यून तापमान के लिए उन्नत सौर कलेक्टरों और मध्यम तथा उच्च तापमान अनुप्रयोगों के लिए सौर संकेंद्रण और उनके घटकों का संकेन्द्रण विनिर्माण क्षमताएं बनाने की आवश्यकता है। एसआईपी के समान और थर्मल प्रणालियों/उपायों के लिए विनिर्माण संयंत्रों की स्थापना करने के लिए एक प्रोत्साहन पैकेज पर विचार किया जा सकता है।

एसएमई क्षेत्र सौर प्रणालियों के लिए विभिन्न घटकों और प्रणालियों के विनिर्माण के लिए रीढ़ के रूप में है। सुविधाओं का विस्तार करने, प्रौद्योगिकी उन्नयन और कार्यशील पूंजी के लिए उदार ऋण देकर इसकी सहायता की जाएगी। इरेडा इस सहायता को पुन: वित्त ऑपरेशन के जरिए यह सहायता देगा।

यह सुनिश्चित किया जाए कि प्रौद्योगिकी अंतरण विदेशी स्रोतों से सरकार और निजी खरीद में की जाती है।

ड. सौर भारत के लिए अनुसंधान और विकास : अनुसंधान और अनुप्रयोग के लिए परिस्थितियां पैदा करना

प्रमुख आर एंड डी पहल में इन पर ध्यान केन्द्रित किया जाता है : सबसे पहले विद्यमान सामग्रियों, उपकरणों और अनुप्रयोगों में क्षमता सुधार तथा शेष प्रणालियों की लागत में कमी करने पर, एकीकरण और सर्वोत्तम से संबंधित मामलों का समाधान करके नए अनुप्रयोग करने पर; दूसरा लागत प्रभावी भंडारण प्रौद्योगिकियां विकसित करने पर जो परिवर्तनशील और भंडारण बाधाओं, दोनों का समाधान करेगा तथा बेहतर सांद्रकों के उपयोग के द्वारा स्थान सघनता पर लक्षित करने, नैनो-प्रौद्योगिकी के अनुप्रयोग तथा बेहतर सामग्रियों का उपयोग। यह मिशन प्रौद्योगिकी तटस्थ होगा जो प्रौद्योगिकी विजेताओं का निर्धारण करने के लिए प्रौद्योगिकीय नवोदभव और बाजार परिस्थितियों की अनुमति देगा।

जारी परियोजनाओं, अनुसंधान क्षमताओं तथा संसाधनों की उपलब्धता और अंतर्राष्ट्रीय सहयोग की संभावनाओं को ध्यान में रखते हुए रणनीति का सर्वेक्षण करने के लिए एक सौर अनुसंधान परिषद की स्थापना की जाएगी। अनुपयुक्त और आर एंड डी दोनों सेक्टरों के लिए विस्तारित और बड़ा सौर ऊर्जा कार्यक्रम को सहायता देने के लिए कौशल श्रृंखला पर एक महत्वाकांक्षी मानव संसाधन विकास कार्यक्रम तैयार किया जाएगा। चरण-। में मिशन के दीर्घकालीन आर एंड डी तथा एचआरडी योजना के भाग के रूप में विभिन्न सौर ऊर्जा प्रौद्योगिकियों पर प्रशिक्षण प्राप्त करने के लिए कम से कम 1000 युवा वैज्ञानिकों और इंजीनियरों को प्रोत्साहन दिया जाएगा। प्रौद्योगिकी विकास और लागत कटौती को बढ़ावा देने के लिए प्रायोगिक प्रदर्शन परियोजनाओं को मिशन की आर एंड डी प्राथमिकताओं के साथ घनिष्ठ रूप से जोड़ा जाएगा, अत: मिशन में नवीकरणीय ऊर्जा स्रोत मंत्रालय: द्वारा पहले ही शुरू की गई परियोजनाओं और कॉरपोरेट निवेशकों द्वारा स्थापित की जाने वाली परियोजनाओं के अतिरिक्त चरण-। में निम्नलिखित प्रदर्शन परियोजनाओं को स्थापित करने की परिकल्पना की गई है।

- 1. 4-6 घंटे की भंडारण क्षमता वाला 50-100 मेगावाट सौर थर्मल संयंत्र (जो सुबह और सायंकाल के व्यस्त समय की पूर्ति कर सके)।
- 2. एक 100 मेगावाट पेराबोलिक ट्रू प्रौद्योगिकी आधारित सौर थर्मल संयंत्र।
- 3. परिवर्तनशील एवं स्थान की दिक्कतों के समाधान के लिए कोयला, गैस या बायोमास के साथ 100-150 मेगावाट हाइबिड संयंत्र।
- 4. वर्किंग फ्लूड तथा अन्य उभरती हुई प्रौद्योगिकियों के रूप में मोल्टेन साल्ट/स्टीम के साथ/उसके बिना सेंट्रल रिसीवर प्रौद्योगिकी पर आधारित 20-50 मेगावाट सौर संयंत्र।
- 5. नेट मीटरिंग वाले चुनिंदा सरकारी भवनों एवं **प्रति**ष्ठानों पर ग्रिड से जुड़ी रूफ-टाप पीवी प्रणालियां
- 6. दिन के समय और ग्रीष्मकालीन व्यस्त समय भार की पूर्ति के लिए सौर आधारित स्पेस-कूलिंग और प्रशीतन प्रणालियां।

ऊपर वर्णित विन्यास और क्षमताएं संकेतात्मक हैं और विभिन्न स्टेकहोल्डरों के साथ परामर्श करने के बाद निश्चित की जाएगी। सौर विद्युत प्रदर्शन संयंत्रों की स्थापना के लिए बोली प्रक्रिया अपनाई जाएगी जिससे सौर विद्युत के लिए टैरिफ निर्धारित करने हेतु बेहतर मूल्य प्राप्ति में मदद मिलेगी। यह सुनिश्चित किया जाएगा कि स्वदेशी घटक अधिक से अधिक हो। बोली दस्तावेजों में प्रौद्योगिकी अंतरण खंड भी होगा। आशा है कि इन संयंत्रों की स्थापना 12वीं योजना अवधि में की जाएगी।

4.4.8 प्रस्तावित रोडमैप

ग्रिड से जुड़ी तथा वितरित और वाणिज्यिक ऊर्जा सेवाओं का आफ-ग्रिड प्रावधान के लिए सौर उत्पादित विद्युत को व्यापक स्तर पर नियोजित करने की इच्छा है। अनुप्रयोग सेगमेंटों में नियोजन की परिकल्पना की गई है जैसा कि नीचे तालिका 4-9 में दर्शाया गया है :

	9		4	_
ता	3	का	4.	9

新 .	अनुप्रयोग सेगमेंट	चरण-I के लिए लक्ष्य	चरण-II के लिए लक्ष्य	चरण-III के लिए लक्ष्य
सं.		(2010-13)	(2013-17)	(2017-22)
1.	सौर कलेक्टर	7 मिलियन वर्गमीटर	15 मिलियन वर्गमीटर	20 मिलियन वर्गमीटर
2.	ऑफ ग्रिड सौर अनुप्रयोग	200 मेगावाट	1000 मेगावाट	2000 मेगावाट
3.	रूफ टाप सहित युटिलिटी ग्रिड विद्युत	1,000-2000 मेगावाट	4000-10,000 मेगावाट	20000 मेगावाट

4.4.9. नीतिगत और विनियामक ढांचा

इस मिशन का उद्देश्य नीति और विनियामक पर्यावरण सृजित करना है जो एक पूर्व निर्धारित ढांचा प्रदान करता है जिससे सौर ऊर्जा अनुप्रयोगों में तेजी से और अधिक पूंजीगत निवेश होता है और तकनीकी नवोदभव और लागत कम करने को बढ़ावा मिलता है।

यद्यपि आगे चलकर यह मिशन कम समय में सौर विद्युत के विकास के लिए क्षेत्र विशिष्ट कानूनी और विनियामक ढांचे की स्थापना करेगा फिर भी विद्युत अधिनियम, 2003 के विद्यमान ढांचे के अंतर्गत मिशन के क्रियाकलापों को निर्धारित करना आवश्यक होगा। विद्युत अधिनियम में पहले ही नवीकरणीय की भूमिका प्रदत्त है, लेकिन मिशन के अंतर्गत गतिविधियों की मात्रा और महत्व को देखते हुए विशिष्ट संशोधन करना आवश्यक होगा। राष्ट्रीय टैरिफ नीति, 2006 में राज्य बिजली विनियामक आयोगों (एसईआरसी) के लिए ऊर्जा के नवीकरणीय स्रोतों से ऊर्जा का न्यूनतम प्रतिशत खरीदना निर्धारित है। इसमें क्षेत्र में ऐसे संसाधनों की उपलब्धता और खुदरा टैरिफ पर इसके प्रभाव को ध्यान में रखा जाएगा। राष्ट्रीय टैरिफ नीति, 2006 में यह अधिदेशित करने के लिए संशोधन किया जाएगा कि राज्य विद्युत विनियामक सौर विद्युत की खरीद के लिए प्रतिशत निर्धारित करे। राज्यों के लिए सौर विद्युत खरीद बाध्यता चरण-। में 0.25% से शुरू होकर 2022 तक 3% तक हो सकती है। यह विशिष्ट नवीकरणीय ऊर्जा प्रमाण (आरईसी) तंत्र के साथ बिजली कंपनियों और सौर विद्युत उत्पादन कंपनियों को अपनी सौर विद्युत खरीद बाध्यताओं को पुराकरने की अनुमित प्राप्त होगी।

केन्द्रीय विद्युत विनियामक आयोग ने वर्तमान लागत और प्रौद्योगिकी चलन को ध्यान में रखते हुए सौर विद्युत की खरीद के लिए फीड-इन-टैरिफ के निर्धारण के लिए हाल ही में दिशानिर्देश जारी किए हैं। सीईआरसी ने यह भी शर्त रखी है कि विद्युत खरीद करार जो बिजली कंपनियां सौर विद्युत प्रमोटरों के साथ करेंगी। 25 वर्ष की अविध के लिए किया जाएगा।

"सोलर इंडिया "को शीघ्र शुरू करने और इसमें तेजी लाने को बढ़ावा देने के उद्देश्य से विद्युत मंत्रालय, एनटीपीसी और केन्द्रीय विद्युत प्राधिकरण के सहयोग से एक योजना शुरू की जा रही है। सीधे तौर पर सौर विद्युत की ऑफ-टेक होगी और सरकार पर वित्तीय भार न्यूनतम करेगी।

कई निवेशक सौर आधारित विद्युत संयंत्रों की स्थापना करने के इच्छुक हैं। तथापि, आईपीसी द्वारा बिजली की बिक्री बिजली की उच्च लागत और वितरण कंपनियों से टैरिफ वसूली के कारण एक मुद्दा हो सकता है।

अधिक संख्या में सौर विद्युत परियोजनाओं की स्थापना के लिए प्रोत्साहन देने के उद्देश्य से टैरिफ पर प्रभाव को न्यूनतम करते समय विभिन्न विकल्पों का पता लगाया गया था। एक विकल्प केन्द्रीय स्टेशनों के सस्ते आवंटित न किए गए कोटा में से बिजली सिहत सौर विद्युत को बंडल करना और इस बंडल विद्युत को सीईआरसी द्वारा नियंत्रित कीमत पर राज्य वितरण बिजली कंपनियों को बेचना है। बंडलिंग के प्रयोजन के लिए विद्युत खरीद

किसी निगम द्वारा की जानी है और राज्य विद्युत वितरण कंपनियों को पुन: बिक्री की जानी है। इस प्रकार का कार्य विद्यमान सांविधिक उपबंधों के अनुसार किसी ट्रेडिंग कंपनी/डिस्कॉम द्वारा किया जा सकता है।

एनटीपीसी के पास विद्युत की ट्रेडिंग के व्यवसाय में लगी एनटीपीसी विद्युत व्यापार निगम लिमिटेड (एनवीवीएन) नामक पूर्ण स्वामित्व वाली एक सहायक कंपनी है। सौर विद्युत डेवलेपरों के साथ विद्युत खरीद करार करने के लिए एनवीवीएन को विद्युत मंत्रालय द्वारा एक नोडल एजेंसी के रूप में नामोदिष्ट किया जाएगा। पीपीए पर उन डेवलेपरों के साथ हस्ताक्षर किए जाएंगे जो सौर परियोजनाओं की स्थापना करे जा रहे हैं और ग्रिड से 33 किलोवोल्ट स्तर और उससे अधिक जुड़े हैं। पीपीए 5 वर्षों की अविध के लिए वैध होगा। प्रति मेगावाट सौर विद्युत स्थापित क्षमता जिसके लिए एनवीवीएन द्वारा हस्ताक्षर किए गए हैं, के लिए एनटीपीसी स्टेशनों के आवंटित न किए गए कोटे विद्युत मंत्रालय उतने ही मेगावाट क्षमता आवंटित करेगा।

एनवीवीएन इस बिजली को बंडल करेगा और इस बंडल बिजली को सीईआरसी विनायमकों द्वारा निश्चित पर बनेगा। बाजार दर में मूल्य काफी उतार चढ़ाव होने के मामले में सरकार स्थिति की समीक्षा करेगा।

जब एनवीवीएन संगठित बिजली की आपूर्ति वितरण बिजली कंपनियों को करेगी, तो वे बिजली वितरण कंपनियां विनियामक प्राधिकरणों द्वारा निर्धारित किए अनुसार अपने आरपीओ की पूर्ति के लिए संगठित बिजली के एक भाग का उपयोग करने के लिए हकदार होंगी। इस बारे में सीईआरसी उपयुक्त दिशानिर्देश जारी कर सकता है। प्रथम चरण के अंत में और सौर विद्युत को समाविष्ट करने के लिए प्रदर्शित इच्छुक प्रमाणित वित्तीय स्थिति वाली अच्छा निष्पादन कर रही बिजली कंपनियों को इस योजना में शामिल किया जाएगा यदि इसे चरण-।। में विस्तारित करने का निर्णय किया गया हो।

इस योजना के अंतर्गत सौर विद्युत परियोजनाओं के विकास की मांग करते समय चरणबद्ध रूप से स्वदेशीकरण की आवश्यकता का विशेष रूप से उल्लेख किया जाएगा ताकि चरणबद्ध रूप से स्वदेशीकरण को व्यवहार्य बनाया जा सके। मुख्य घटकों और सेगमेंट के टैरिफ और कर का उपयुक्त रूप से निर्धारण किया जाएगा ताकि स्वदेशीकरण की प्रक्रिया को बढ़ावा दिया जा सके।

परंपरागत विद्युत और डीजल आधारित जनरेटरों को बदलने के लिए यह मिशन रूफ टाप सौर पीवी और एलटी/11 के वी, ग्रिड से जुड़े अन्य सौर विद्युत संयंत्रों को प्रोत्साहन देगा। सौरपीवी रूफ टॉप उपकरणों के ऑपरेटर की ऑपरेटर द्वारा की गई सौर विद्युत खपत और ग्रिड में पहुंचाई गई सौर विद्युत दोनों पर सीईआरसी द्वारा निर्धारित फीड-इन-टैरिफ प्राप्त करने के पात्र होंगे। बिजली कंपनियां खपत की गई परंपरागत बिजली और ग्रिड में पहुंचाई गई बिजली, जो भी लागू हो, पर कुल बचत के लिए डेबिट/क्रेडिट करेंगी। सीईआरसी द्वारा निर्धारित सौर टैरिफ 5.50/केडब्ल्यूएच 3% प्रति वर्ष वृद्धि सहित के बेस मूल्य के बीच के अंतर घाटे को पाटने के लिए बिजली कंपनियों को उत्पादन आधारित प्रोत्साहन दिया जाएगा। बिजली कंपनी और रूफ टाप पीवी ऑपरेटर के बीच

राज्य सरकारों को क्षमता सृजन सुविधाजनक सुनिश्चित करने के लिए बिजली कंपनियों के संयंत्र स्थापित करने के लिए समर्पित अवसंरचना के साथ सौर उत्पादन को बढ़ावा देने को भी प्रोत्साहित किया जाएगा।

वित्तीय प्रोत्साहन

यह भी सिफारिश की जाती है कि विशेष पूंजीगत उपस्करों, क्रिटिकल सामग्री, संघटकों और परियोजना संबंधी आयात के लिए सीमा शुल्क और उत्पाद शुल्क में छूट प्रदान की जाए।

4.4.10 भारत में सौर विनिर्माण

एक मिशन उद्देश्य अग्रणी सौर प्रौद्योगिकियों और 2020 तक स्थापित क्षमता के 45 जीडब्ल्यू समतुल्य लक्ष्य के सौर विनिर्माण (मान श्रृंखला के आर-पार) में वैश्विक नेतृत्व की भूमिका लेना है, जिसमें प्रति वर्ष लगभग 2 जीडब्ल्यू क्षमता सौर सेल बनाने के लिए पोली सिलिकान सामग्री के लिए समर्थित विनिर्माण क्षमता की स्थापना करना भी शामिल है। भारत के पास पहले ही लगभग 700 मेगावाट की पीवी मॉड्यूल विनिर्माण क्षमता है, जिसमें अगले कुछ वर्षों में वृद्धि होने की संभावना है। सिलिकान सामग्री के विनिर्माण के लिए वर्तमान स्वदेशी क्षमता की संभावना है। सिलिकान सामग्री के विनिर्माण के लिए वर्तमान स्वदेशी क्षमता की संभावना है। सिलिकान सामग्री के विनिर्माण के लिए वर्तमान स्वदेशी क्षमता बहुत कम है; तथापि, सार्वजनिक और निजी क्षेत्र

में कुछ संयंत्रों की स्थापना किए जाने की संभावना है। इस समग्र, सौर थर्मल विद्युत परियोजनाओं के लिए कोई स्वदेशी क्षमता नहीं है, इसलिए सौर थर्मल विद्युत संयंत्रों की मांग को पूरा करने के लिए कंस्ट्रेटर कलेक्टर्स, रिसीवर्स और अन्य घटकों के विनिर्माण के लिए नई सुविधाओं की आवश्यकता पड़ेगी। स्थापित क्षमता लक्ष्य को प्राप्त करने के लिए मिशन निम्नलिखित सिफारिश करता है:

- स्थानीय मांग सृजन : सौर उत्पादन और बड़े सरकारी प्रायोगिक/कार्यक्रमों के लिए उचित प्रोत्साहन द्वारा समर्थित 20 जीडब्ल्यू योजना से सौर उत्पादन के लिए भारतीय बाजार को आकर्षित करेगा।
- वित्त पोषण और प्रोत्साहन : सेज जैसे प्रोत्साहन विनिर्माण पार्कों को प्रदान किए जाएं जिसमें निम्नलिखित शामिल हैं :
 - 🌣 पूंजीगत उपकरणों, कच्चे माल पर शून्य आयात शुल्क और उत्पादन शुल्क में छूट,
 - 🔅 कम ब्याज दर पर ऋण, प्राथमिक क्षेत्र लेंडिंग
 - एकीकृत विनिर्माण संयंत्रों की स्थापना के लिए विशेष प्रोत्साहन पैकेज (सिप्स) के अंतर्गत प्रोत्साहन; (i) पोली सिलिकान सामग्री से सौर माड्यूल तक; और (ii) पतली फिल आधारित मॉड्यूल विनिर्माण संयंत्र। सूचना प्रौद्योगिकी विभाग की सिप योजना के अंतर्गत सौर फोटोवोल्टेक के डोमेन में 15 आवेदन हैं, जिनमें सेल विनिर्माण (क्रिस्टेलिन और पतली फिल्म दोनों) और अन्यों के साथ साथ पोली-सिलिकान शामिल हैं। इन 15 कंपनियों द्वारा अनुमानित मिश्रित क्षमता से वर्ष 2022 तक 8-10 जीडब्ल्यू सौर विद्युत का उत्पादन होगा जो निर्यात के परिकलन के बाद भी मिशन के लक्ष्यों को पूरा करने के लिए पर्याप्त होगा।
 - उच्च मानक सुनिश्चित करने के लिए ऊर्जा कार्यकुशलता ब्यूरो के स्टार रेटिंग कार्यक्रम के अंतर्गत सौर घटकों को शामिल करने की सिफारिश भी की जाती है।

सीएसपी प्रणालियों और उनके घटकों के विनिर्माण के लिए इसी तरह के प्रोत्साहनों की आवश्यकता होगी। देश में सोलर थर्मल विनिर्माण को बढ़ावा देने के लिए नीति बनाने हेतु एक समिति गठित की जाए।

- <u>व्यवसाय करने की सुगमता</u>: राज्यों के परामर्श से सभी संबंधित अनुमितयों के लिए एकल खिड़की मंजूरी तैयार करना।
- अवसंरचना और पारिस्थितिकी प्रणाली इनेबलर: 2-3 बड़े सौर विनिर्माण तकनीकी पार्क तैयार करना जिसमें विनिर्माण इकाइयां (सौर मान श्रृंखला में), आवास, कार्यालय तथा अनुसंधान संस्थान शामिल होंगे। ये 24x7 विद्युत और जल आपूर्ति करेंगे और इन्हें उन बड़े शहरी केन्द्रों के आसपास अवस्थित किया जाएगा जो बंदरगाहों और एयर पोर्ट आदि से बेहतर ढंग से जुड़े हैं जिससे कि यह सुनिश्चित किया जा सके कि आयातित कच्चा माल और उच्च गुणवत्ता युक्त इंजीनियरिंग प्रतिभाएं उन्हें तेजी से सुलभ कराई जा सकें।

4.4.11 अनुसंधान और विकास

यह मिशन सौर ऊर्जा के क्षेत्र में बड़ा अनुसंधान और विकास कार्यक्रम शुरू करेगा, जो मौजूदा अनुप्रयोगों की दक्षता में सुधार करने, शेष संयंत्र प्रणालियों की लागत कम करने, हाइब्रिड सह-उत्पादन का परीक्षण करने और परिवर्तनीय बाधाओं, स्थान की उपलब्धता तथा सुविधाजनक एवं लागत प्रभावी भंडारण की कमी जैसी बाधाओं को दूर करने पर ध्यान आकृष्ट करेगा।

अनुसंधान और विकास रणनीति में 5 वर्गों को शामिल करते हुए कार्रवाई की जाएगी अर्थात i) नई सामग्री प्रक्रिया और अनुप्रयोगों के नवोदभव और विकास के लिए संभावित दीर्घकालिक आधारभूत अनुसंधान, ii) प्रणालियों/उपकरणों के निष्पादन, स्थायित्व तथा लागत प्रतिस्पर्धा में सुधार के लिए मौजूदा प्रक्रियाओं, सामग्री और प्रौद्योगिकी को उन्नत बनाने के उद्देश्य से अनुप्रयुक्त अनुसंधान, iii) निष्पादन, प्रचालनीयता और लागत पर फीडबैक प्राप्त करने के लिए हाइब्रिड के साथ साथ पारंपरिक विद्युत प्रणालियों के अलग अलग विन्यास का क्षेत्रीय मूल्यांकन करने के उद्देश्य से प्रौद्योगिकी वैधीकरण और प्रदर्शन परियोजनाएं, iv) पीपीपी मोड में

अनुसंधान और विकास अवसंरचना का विकास, और v) उदभव (इनक्यूबेशन) और प्रारंभ करने (स्टार्ट-अप) के लिए सहायता।

आर एंड ई नीति की सहायता के लिए मिशन में निम्नलिखित शामिल हो सकते हैं:

- समग्र प्रौद्योगिकी नीति के मार्गदर्शन हेतु एक उच्च स्तरीय अनुसंधान परिषद की स्थापना करना, जिसमें विख्यात वैज्ञानिक, तकनीकी विशेषज्ञ और शैक्षिक तथा अनुसंधान संस्थानों, उद्योगों सरकार और सिविल सोसाइटी के प्रतिनिधि शामिल होंगे। परिषद अपने कार्य में सहायता के लिए इस क्षेत्र में विख्यात अंतर्राष्ट्रीय विशेषज्ञों को आमंत्रित कर सकती है। अधिक त्वरित प्रौद्योगिकीय नवोदभव और लागत में कमी लाने के लिए परिषद प्रौद्योगिकी रोडमैप की समीक्षा और अद्यतन करेगी।
- अनुसंधान परिषद द्वारा प्रतिपादित प्रौद्योगिकी विकास योजना के कार्यान्वयन के लिए एक राष्ट्रीय उत्कृष्टता केन्द्र की स्थापना की जाएगी जो इसके सचिवालय में रूप में कार्य करेगा। यह विभिन्न आर एंड डी केन्द्रों के कार्य को समन्वय करेगा, अनुसंधान निष्कर्षों की वैधता करेगा और सौर उद्योग के लिए मानक और विनिर्देशन विकसित करने के लिए जांच और प्रमाणन हेतु एक शीर्ष केन्द्र के रूप में काम करेगा। यह परिकल्पना की गई है कि नवीकरणीय ऊर्जा स्रोत मंत्रालय का सौर ऊर्जा केन्द्र राष्ट्रीय उत्कृष्टता केन्द्र का हिस्सा बनेगा।
- राष्ट्रीय उत्कृष्टता केन्द्र के साथ समन्वय करके यह अनुसंधान परिषद और आरएंडडी की विद्यमान संस्थागत क्षमताओं की सूची बनाएगा और उत्कृष्टता केन्द्रों का एक नेटवर्क स्थापित करेगा। प्रत्येक केन्द्र अपनी प्रमाणिक क्षमता के आर एंड डी क्षेत्र पर ध्यान देगा। ये केन्द्र अनुसंधान संस्थानों, शैक्षिक संस्थाओं या निजी क्षेत्र की कंपनियों में भी स्थापित हो सकते हैं। इन्हें सौर प्रौद्योगिकी विकास योजना के विभिन्न घटकों के लिए बोली के लिए प्रोत्साहित किया जाएगा और प्रमाणित क्षमता के साथ विदेशी सहयोग सहित अन्य संस्थाओं के साथ सहयोग करके सहयोगात्मक दृष्टिकोण अपना सकते हैं।
- एनसीई विदेशी आर एंड डी संस्थाओं और उच्च तकनीक वाली कंपनियों सहित विभिन्न उत्कृष्टता केन्द्रों में नेटवर्किंग के लिए एक राष्ट्रीय प्लेटफार्म प्रदान करेगा।
- एनसीई निष्पादन से जुड़े सौर आर एंड डी कार्यक्रमों की सहायता के लिए फंडिंग एजेंसी के रूप में कार्य करेगा। इसमें मिशन उद्देश्य के संगत क्षेत्रों में पायलट प्रदर्शन परियोजनाओं का निधियन या सह-निधियन शामिल होगा। निधियन पर्याप्त, पूर्वानुमान के अनुरूप और 5-10 वर्ष की अवधि तक के लिए होना चाहिए।
- एनसीई अंतर्राष्ट्रीय अनुसंधान संस्थानों, विदेशों के अनुसंधान समूहों, हाईटेक स्टाट्र-अप कंपनियों और बहु-उद्देश्यीय कार्यक्रमों (जैसे वे जो यूएनएफसीसीसी के अंतर्गत वर्तमान बातचीत से उभरे हों), के साथ मुख्य अंतर्रापृष्ठ होगा।
- एनसीई, आईएमडी, इसरो और अन्य संबंधित एजेंसियों के साथ समन्वय करेगा, जमीनी स्तर या रोधन विशेषकर देश के उच्च संभावित सौर क्षेत्रों में विस्तृत मानचित्रण के साथ अन्य एजेंसियों के साथ सहयोग करेगा। सही और विश्वसनीय आंकड़े सभी सौर अनुप्रयोगों विशेषकर संकेन्द्रित सौर विद्युत (सीएसपी) के लिए एक महत्वपूर्ण अपेक्षा है।
- सौर प्रौद्योगिकी विकास योजना तैयार करने में अनुसंधान परिषद नवीकरणीय ऊर्जा स्रोत मंत्रालय, विज्ञान और प्रौद्योगिकी विभाग, पृथ्वी विज्ञान मंत्रालय और अन्य एजेंसियों तथा संस्थाओं की चल रही और प्रस्तावित पहलों की समीक्षा करेगा और उन्हें उपयुक्त समझे जाने पर अपनी योजना में शामिल करेगा।

उदभवन और स्टार्ट-अप को सहायता प्रदान करने के उद्देश्य से मिशन निगरानी, नेटवर्किंग और वित्तीय सहायता के जरिए सौर ऊर्जा स्टार्ट अप और एसएमई को शामिल करने के लिए आईआईएम, अहमदाबाद में स्थित इनोवेशन केन्द्र, इनक्यूबेशन और उद्यमशील (सीआईआईई) जैसे संस्थाओं के साथ काम करेगा। आगामी 5 वर्षों में

पूरे भारत में कम से कम 50 स्टार्ट-अप विकासशील और नियोजन में सहायता करने के उद्देश्य से एक कोष की स्थापना की जा सकती है। इसका प्रबंधन किसी पेशेवर कंपनी द्वारा किया जाएगा। यह कोष एक उद्यम कोष होगा और इसका परिचालन एक हब और स्पोक माडल के रूप में किया जाएगा और व्यावसायिक कंपनी कोष क्रियाकलापों का समन्वय करेगी तथा कोष को चलाने के लिए समान संस्थाओं की पहचान भी करेगी। इस कोष से स्टार्ट अप, उद्यमियों और आर एंड डी के लिए इनवेटरों और नई सौर प्रौद्योगिकियों और साथ ही नवीन और अद्वितीय माडल सृजित करने के लिए वित्तीयसहायता (इक्विटी/ऋण) उपलब्ध करेगा, जिसका सभी क्षेत्रों जिसमें उपभोक्ता, एसएमई और वाणिज्यिक उपयोग के लिए भारत में सौर संबंधी प्रौद्योगिकी में वृद्धि और प्रयोग करने की संभावना है। इस पहल से निजी सार्वजनिक भागीदारी माडल आदर्श होगी, जिससे इच्छुक उद्यमियों के लिए जोखिमपूर्ण पूंजी प्रदान किया जा सकेगा। इससे निजी स्टेकहोल्डरों से सरकार की धनराशि से कम से कम 10% की राशि प्राप्त होगी। कोष में सरकारी सहायता से होनेवाली आय को इस क्षेत्र में इनक्यूबेशन को और आगे बढ़ावा दिया जाएगा।

यह मिशन सीएसआईआर की ओपेन सोर्स ड्रग डिस्कवरी प्लेटफार्म की तर्ज पर ओप सोर्स सौर विकास पहल प्रारंभ करने के लिए सीएसआईआर के साथ सहयोग करने की संभावना का पता भी लगायेगा।

4.4.12 मिशन के कार्यान्वयन हेतु संस्थागत व्यवस्थाएं

इस मिशन को एक स्वायत्तशासी सौर ऊर्जा प्राधिकरण द्वारा नवीन या नवीकरणीय ऊर्जा मंत्रालय के मौजूदा ढांचे के अंतर्गत अभिगम सौर मिशन द्वारा कार्यान्वित किया जाएगा। प्राधिकरण/ मिशन सचिवालय प्रौद्योगिकी विकास की निगरानी, प्रोत्साहन की समीक्षा और समायोजन, निधियन अपेक्षाओं का प्रबंधन और प्रयोगिक परियोजनाओं के निष्पादन के लिए उत्तरदायी होगा। यह मिशन अपने कार्यक्रम की स्थिति पर जलवायु परिवर्तन पर प्रधानमंत्री परिषद को रिपोर्ट करेगा।

स्वायत्त तथा अभिगम मिशन के व्यापक उद्देश्यों में निम्नलिखित शामिल होंगे :

- i) राष्ट्रीय सौर मिशन के कार्यान्वयन की निगरानी के लिए नवीन और नवीकरणीय ऊर्जा मंत्री की अध्यक्षता वाले एक मिशन संचालन दल की स्थापना की जाएगी, जिसमें सभी संबंधित मंत्रालयों और अन्य स्टेकहोल्डरों के प्रतिनिधि शामिल होंगे। मिशन संचालन दल को राष्ट्रीय सौर मिशन के अंतर्गत शामिल सभी योजनाओं के लिए विभिन्न योजनाओं/परियोजनाओं/नीतियों और संबंधित वित्तीय मापदंड अनुमोदित करने का अधिकार होगा। मिशन के संचालन दल को जारी योजनाओं के संबंध में मापदंडों में संशोधन/विचलन करने का भी अधिकार है।
- ii) सचिव, नवीन और नवीकरणीय ऊर्जा मंत्रालय की अध्यक्षता वाली मिशन कार्यकारी समिति मिशन संचालन ग्रुप द्वारा अनुमोदित परियोजनाओं के कार्यान्वयन की समय समय पर पुनरीक्षा करेगा।
- iii) विख्यात वैज्ञानिक की अध्यक्षता में एक अधिकार प्राप्त सौर अनुसंधान परिषद, मिशन को सभी आर एंड डी, प्रौद्योगिकी और क्षमता निर्माण संबंधी मामलों पर राय देगा। इसके अलावा, उद्योग सलाहकार परिषद मिशन को औद्योगिक विकास, प्रौद्योगिकी अंतरण/आमेलन/संयुक्त उद्यम, प्रोत्साहन और निवेश संबंधी सभी मामलों पर सलाह देगा।
- iv) अपर सचिव के रैंक में मिशन निदेशक मिशन सचिवालय का अध्यक्ष होगा और मिशन के दिन प्रतिदिन कार्यों के प्रति और समयबद्ध तरीके से निर्धारित लक्ष्य प्राप्त करने के लिए उत्तरदाई होगा। मिशन सचिवालय में अन्य वैज्ञानिकों, विशेषज्ञों और परामर्शदाताओं सहित संयुक्त सचिव/वैज्ञानिक 'जी' स्तर के अधिकारी होंगे।

4.4.13 सौर प्रतिष्ठापन के लिए स्थान और भूमि

एक विशेष प्रकार के सौर प्रतिष्ठापन की स्थापना करने के लिए उपयुक्त स्थल और पर्याप्त भूमि का पता लागाना हमारी सबसे पहली प्राथमिकता है। सौर ऊर्जा का उपयोग निम्निलखित तरीके से किया जा सकता है :

- i) सोलर थर्मल का उपयोग घरेलू, वाणिज्यिक और औद्योगिक अनुप्रयोगों के लिए प्रोसेस तापन के रूप में किया जा रहा है
- ii) सौर विद्युत का उपयोग डीडीजी मोड में किया जा रहा है
- iii) सौर विद्युत को बिजली कंपनियों की ग्रिड प्रणाली में पहुंचाया जा रहा है।

विकल्प (i.) और (ii) के मामले में सौर अवस्थापना के लिए स्थल और प्रयोक्ता/प्रयोक्ता ग्रुप के परिसरों की भूमि या रूफ टाप होगी।

तथापि, विकल्प (iii) के मामले में, अवस्थापना का स्थल संभवतया ग्रिड सिस्टम की परिधि में होगा। चूंकि ग्रिड में पहुंचाई जाने वाली उत्पादित विद्युत की कनेक्टिविटी भी एक मुद्दा होगा। यदि स्थल विद्युत स्टेशन या उप स्टेशन से दूर हो तो ग्रिड में विद्युत पहुंचाने के लिए अतिरिक्त केबल/लाइनें बिछानी होंगी। अत: यह समझा गया है कि उत्पादन केन्द्रों या ग्रिड उप केन्द्रों में सौर अवस्थापन बेहतर विकल्प है। यदि वह व्यवहार्य न हो तो इस प्रयोजन के लिए वैकल्पिक बंजर भूमि की पहचान की जाए।

इस समय देश में स्थापित क्षमता लगभग 2,10,000 मेगावाट है। 12वीं योजना के दौरान लगभग 88,000 मेगावाट की क्षमता स्थापित की जा रही है और 13वीं योजना के दौरान लगभग 1 लाख मेगावाट की क्षमता की संभावना है। इस पूरी क्षमता में भंडारण उपकरणों का उपयोग किए बिना वास्तविक समय में सौर स्थापनाओं से उत्पादित बिजली को खपाने की बड़ी संभाव्यता है।

4.4.14 मानव संसाधन विकास

सौर ऊर्जा का त्वरित और बड़े पैमाने पर विस्तार करने के लिए अंतर्राष्ट्रीय स्तर की तकनीकी रूप से सक्षम जनशक्ति में सहगामी वृद्धि करने की आवश्यकता होगी। देश में पहले ही कुछ क्षमता मौजूद है, हालांकि सही संख्या स्थापित किए जाने की आवश्यकता है।

तथापि, यह परिकल्पना की गई है कि मिशन मोड़ अविध के अंत में सोलर उद्योग कुशल क्षेत्र में कम से कम 100,000 प्रशिक्षित और विशेषीकृत कार्मिकों को नियोजित करेगा। इनमें इंजीनियरिंग मैनेजमेंट और आर एंडडी कार्य शामिल होंगे।

मानव संसाधन विकास के लिए निम्नलिखित कदम आवश्यक हैं :

• आईआईटी और प्रमुख इंजीनियरिंग कॉलेजों को सरकार की वित्तीय सहायता से सौर ऊर्जा में विशेषीकृत पाठ्यक्रम बनाने और विकसित करने में शामिल किया जाएगा। ये पाठ्यक्रम बीटेक, एमटेक और पीएचडी स्तर के होंगे। कुछ आईआईटी और इंजीनियरिंग कॉलेज और विश्वविद्यालय स्नातक और स्नातकोत्तर स्तर पर सौर ऊर्जा का पाठ्यक्रम पढ़ा रहे हैं। कुछ आईआईटी और इंजीनियरिंग कॉलेजों ने ऊर्जा अध्ययन केन्द्र स्थापित किए हैं। इन उपायों को आगे और सुदृढ़ किया जाएगा। इसके अलावा फील्ड अवस्थापनाओं और बिक्री सेवा नेटवर्क के पश्चात हेतु कुशल जनशक्ति आवश्यकता की पूर्ति हेतु तकनिशियनों के लिए देशव्यापी प्रशिक्षण कार्यक्रम और विशेष कार्यक्रम चलाए जाएंगे। श्रम मंत्रालय के अंतर्गत शिक्षा और प्रशिक्षण महानिदेशालय कुशल जनशक्ति तैयार करने के उद्देश्य से तकनीशियनों के लिए पाठ्यक्रम सामग्री हेतु प्रशिक्षण की सेवा और रख रखाव करेगा। नवीन और नवीकरणीय ऊर्जा मंत्रालय ने श्रम मंत्रालय के साथ इस क्रियाकलाप को पहले ही शुरू कर दिया है और एक अल्पकालीन मॉड्यूल वर्तमान शिक्षा सत्र के दौरान शुरू किया जाना है। इसके अलावा, उद्योग कुशल कार्य दल तैयार करने के लिए कुछ आईआईटी के साथ भी कार्य कर रहा है।

• विदेश में विश्व स्तरीय संस्थाओं में सौर ऊर्जा में 100 चयनित इंजीनियरों/प्रौद्योगिकीविदों और वैज्ञानिकों को प्रशिक्षण देने का एक सरकारी अध्येयतावृत्ति कार्यक्रम आरंभ किया जाएगा। 10 वर्षों के लिए क्रमिक रूप से कम हो रहे स्तरों को बनाए रखने की आवश्यकता है। इसे जारी द्विपक्षीय कार्यक्रमों के अंतर्गत शामिल किया जाएगा। एक संस्थान से दूसरे संस्थान प्रबंध भी विकसित किए जाएंगे। अध्येयतावृत्ति सौर ऊर्जा में दो स्तरों में होगी (i) अनुसंधान और उच्चतर डिग्री (एम.टेक), नवीन और नवीकरणीय ऊर्जा मंत्रालय इस संबंध में पहले ही एक अध्येयतावृत्ति कार्यक्रम कार्यान्वित कर रहा है, जिसमें अनेक शैक्षिक संस्थानों के छात्रों को शामिल किया जाएगा। रोजगार के अवसर प्रदान करने के लिए इसे उद्योगों के परामर्श से किया जा सकता है। ऊर्जा विज्ञान और इंजीनियरिंग विभाग तथा नैनो इलेक्ट्रिकी में इसके उत्कृष्टता केंद्र से आईआईटी, मुम्बई में राष्ट्रीय फोटोवोल्टेक अनुसंधान और शिक्षा केन्द्र की स्थापना करने पर विचार किया जा रहा है।

4.4.15 एमएनआरई द्वारा स्थापित कार्यबल

सौर विद्युत संयंत्रों, को ताप/हाइड्रो इलेक्ट्रिक पावर संयंत्रों के साथ एकीकरण करने और सौर रूप टाप प्रणालियों को ग्रिड के साथ जोड़ने की संभाव्यता से संबंधित मामलों की जांच करने के लिए नवीन और नवीनीकरण ऊर्जा मंत्रालय ने अध्यक्ष, केन्द्रीय विद्युत प्राधिकरण की अध्यक्षता में एक कार्यबल गठित किया है। इस कार्यबल में नवीन और नीवीनीकरण ऊर्जा मंत्रालय, विद्युत मंत्रालय, एनटीपीसी, एनएचपीसी, बीएचईएल, आरआरईसीएल, आरआरयूवीएनएल, जीएचईसीएल, जीईडीए और केपीसीएल के प्रतिनिधि शामिल हैं। कार्यबल का उद्देश्य विद्युत संयंत्रों, कोयला आधारित, गैस आधारित और हाइड्रो विद्युत स्टेशनों, प्रत्येक में एक एक सौर संयंत्र स्थापित करने के लिए कार्यान्वयन योग्य परियोजना रिपोर्ट तैयार करना है। परियोजना रिपोर्ट में सामग्री के पूरे बिल, लागत अनुमान, ऊर्जा की गणना, ऊर्जा की गणना की प्रणाली और वाणिज्यिक व्यवहार्यता सिद्ध करने की व्यवहार्यता शामिल होगी।

उपदलों का गठन (i) स्थान की उपलब्धता के संबंध में सौर उत्पादन की व्यवहार्यता, भावी बाधाओं और अनुप्रयोग क्षेत्रों की व्यवहार्यता (ii) सौर प्रौद्योगिकी विकल्प और प्रौद्योगिकी आर्थिकी (iii) कनेक्टिविटी और सौ संयंत्रों की मीटरिंग की व्यवस्था के विशिष्ट क्षेत्रों की जांच करने के लिए की गई है।

उप दलों द्वारा निम्नलिखित रिपोर्टें तैयार की गई थी और ये रिपोर्टें सीईए की वेबसाइट पर उपलब्ध हैं।

- ग्रिड इंटेरेक्टिव रूफटाप सोलर पीवी सिस्टम पर
- उप दल-। की रिपोर्ट दिसंबर, 2009
- सेवा भवन के लिए ग्रिड इंटेरेक्टिव रूफटाप सोलर पीवी सिस्टम की उपदल विनिर्देशन दिसंबर, 2009
- थर्मल/जल विद्युत स्टेशनों के साथ सौर प्रणालियों की उप दल-।। और ।।। एकीकरण की रिपोर्ट जनवरी, 2010

उप दल-। द्वारा लेह में 5 मेगावाट सौर संयंत्र स्थापित करने के लिए एक व्यवहार्यता रिपोर्ट भी तैयार की गई और इस रिपोर्ट को सचिव, नीवन और नवीकरणीय ऊर्जा मंत्रालय को भेजी गई।

4.4.16 निधियों की आवश्यकता

सौर अवस्थापनों के विकास में एक मुख्य बाधा उच्च पूंजी लागत है जिससे पारंपरिक ऊर्जा स्रोतों का उपयोग करके पैदा की गई बिजली की तुलना में अधिक टैरिफ आता है। अनुमान है कि सौर अवस्थापनाओं की पूंजी लागत लगभग 20 करोड़ रु./मेगावाट है। सोलर थर्मल सीमित रूप से कम अर्थात् लगभग 18 करोड़ रु./मेगावाट है। तथापि, अनुमान है कि लागत में कमी आएगी क्योंकि प्रौद्योगिकी स्थापित हो जाती है और समय के साथ साथ

ऑर्डर की मात्रा में बढ़ोत्तरी हो जाती है। आशा है कि 11वीं योजना के दौरान जो लागत लगभग 20 करोड़ रुपए/मेगावाट है, वह 12वीं योजना के दौरान कम होकर 16 करोड़ रूपए/मेगावाट और 13वीं योजना के दौरान 12 करोड़ रूपए/मेगावाट हो जाएगी।

	पहला चरण	दूसरा चरण	तीसरा चरण
	(2008-13)	(2013-17)	(2017-22)
स्थापित क्षमता (सौर) मेगावाट में	1000	10000	20,000
मेगावाट योजना के दौरान क्षमता अभिवृद्धि	1000	9000	10,000
मेगावाट के अनुसार निधि की आवश्यकता (करोड़ रु.)	20	16	12
निधि आवश्यकता (करोड़ रु.)	20,000	1,44,000	1,20,000

जेएनएनएसएम के अनुसार मिशन के लिए निधियों की आवश्यकता को निम्नलिखित स्रोतों से पूरी की जाएगी:

- i) नवीन और नवीकरणीय ऊर्जा मंत्रालय के अंतर्गत स्थापित राष्ट्रीय और सौर मिशन के अंतर्गत क्रियाकलापों के लिए बजटीय सहायता;
- ii) यूएनएफसीसीसी फ्रेमवर्क के अंतर्गत अंतर्राष्ट्रीय निधियां जिससे मिशन के लक्ष्यों को बढ़ाया जा सकेगा। मिशन नीति में सौर ऊर्जा के प्रयोग में वृद्धि करने और देश में वित्तीय बाधाओं और खर्च वहन करने की चुनौती को ध्यान में रखकर करने के दोहरे उद्देश्य को ध्यान में रखा गया है जहां अधिकांश लोगों तक बुनियादी बिजली तक पहुंच नहीं है और वे निर्धन हैं और उच्च लागत वहन नहीं कर सकते। चरण-I के लिए निधियों की आवश्यकता और प्रबंध का निर्धारण 11वीं योजना के अंत में प्राप्त प्रगति की समीक्षा करने और बिजली कंपनी स्केल सौर विद्युत की क्षमता निर्माण के लिए अपनाए गए माडल की क्षमता के विश्लेषण के पश्चात किया जाएगा।

अनुबंध-4.1

12वीं योजना के दौरान जीवन विस्तार कार्य के लिए यूनिट कार्यक्रम

1. राज्य क्षेत्र

क्र.सं	राज्य	सेवा का नाम	स्टेशन का नाम	इकाई	स्थापना	क्षमता	Make		एलएमजेड
				सं.	वर्ष	(मेगावाट)	ब्वॉयलर	टीजी	केडब्ल्यूयू
उत्तर्र	ो क्षेत्र								
1	उत्तर प्रदेश	यूपीआरवीयूएनएल	ओबरा	10	1977	200	भेल	भेल	एलएमजेड
2	उत्तर प्रदेश	यूपीआरवीयूएनएल	ओबरा	11	1977	200	भेल	भेल	एलएमजेड
3	उत्तर प्रदेश	यूपीआरवीयूएनएल	ओबरा	12	1981	200	भेल	भेल	एलएमजेड
4	उत्तर प्रदेश	यूपीआरवीयूएनएल	ओबरा	13	1982	200	भेल	भेल	एलएमजेड
5	उत्तर प्रदेश	यूपीआरवीयूएनएल	हरदूगंज	7	1978	110	भेल	भेल	
6	उत्तर प्रदेश	यूपीआरवीयूएनएल	परिछा	1	1984	110	भेल	भेल	
7	उत्तर प्रदेश	यूपीआरवीयूएनएल	परिछा	2	1985	110	भेल	भेल	
	उप जोड़			7		1130			
8	पंजाब	पीएसपीसीएल	भटिंडा	3	1978	110	भेल	भेल	
9	पंजाब	पीएसपीसीएल	भटिंडा	4	1979	110	भेल	भेल	
	उप जोड़			2		220			
10	हरियाणा	एचपीजीसीएल	पानीपत	3	1985	110	भेल	भेल	
11	हरियाणा	एचपीजीसीएल	पानीपत	4	1985	110	भेल	भेल	
	उप जोड़			2		220			
	उप जोड़ उत्त	री क्षेत्र		11		1570			
पश्चिम	नी क्षेत्र			I	<u> </u>	<u> </u>	1		
12	महाराष्ट्र	महाजेनको	नाशिक	3	1979	210	भेल	भेल	एलएमजेड
13	महाराष्ट्र	महाजेनको	नाशिक	4	1980	210	भेल	भेल	एलएमजेड
14	महाराष्ट्र	महाजेनको	कोराडी	5	1978	210	भेल	भेल	एलएमजेड
15	महाराष्ट्र	महाजेनको	कोराडी	6	1982	200	भेल	भेल	एलएमजेड
16	महाराष्ट्र	महाजेनको	भुसावल	2	1979	210	भेल	भेल	एलएमजेड
17	महाराष्ट्र	महाजेनको	भुसावल	3	1982	210	भेल	भेल	एलएमजेड
18	महाराष्ट्र	महाजेनको	चंद्रपुर	1	1983	210	भेल	भेल	एलएमजेड
19	महाराष्ट्र	महाजेनको	चंद्रपुर	2	1984	210	भेल	भेल	एलएमजेड
20	महाराष्ट्र	महाजेनको	पर्ली	3	1980	210	भेल	भेल	एलएमजेड
	उप जोड़			9		1880			

सेवा का नाम स्टेशन का नाम क्षमता क्र.सं राज्य इकाई स्थापना एलएमजेड / Make सं. वर्ष (मेगावाट) टीजी ब्वॉयलर केडब्ल्यूयू कोरबा (पश्चिम बंगाल) छत्तीसगढ़ सीएसईबी भेल भेल केडब्ल्यू 1 21 1983 210 कोरबा (पश्चिम बंगाल) छत्तीसगढ़ सीएसईबी भेल भेल 2 केडब्ल्यू 1984 210 22 उप जोड़ 2 420 एमपीपीजीसीएल मध्य प्रदेश भेल एलएमजेड भेल सतपुड़ा 23 6 1979 200 एमपीपीजीसीएल मध्य प्रदेश भेल भेल एलएमजेड सतपुड़ा 7 24 1979 210 उप जोड़ 2 410 उप जोड़ पश्चिमी क्षेत्र **17** 3530 दक्षिणी क्षेत्र तमिलनाडु टीएनईबी तूतीकोरीन भेल एलएमजेड भेल 25 1 210 1979 टीएनईबी तृतीकोरीन तमिलनाडु 2 भेल भेल एलएमजेड 26 1980 210 उप जोड़ 2 420 डा. एन.टी. टीपीएस आंध्र प्रदेश एपीगेनको भेल एलएमजेड 1 भेल 27 1979 210 (विजयवाड़ा) डा. एन.टी. टीपीएस आंध्र प्रदेश एपीगेनको भेल एलएमजेड 2 भेल 210 28 1980 (विजयवाड़ा) उप जोड़ 2 420 केपीसीएल कर्नाटक भेल रायचूर भेल केडब्ल्यूयू 29 1 1985 210 कर्नाटक केपीसीएल भेल भेल रायचूर केडब्ल्यूयू 30 2 1986 210 उप जोड़ 2 420 उप जोड़ दक्षिणी क्षेत्र 6 1260 बिहार बीएसईबी बरौनी भेल भेल 31 6 1983 110 बीएसईबी बरौनी बिहार भेल भेल 7 1985 32 110 केबीयूएनएल बिहार भेल मुजफ्फरपुर भेल 33 1 1985 110 बिहार केबीयूएनएल भेल भेल मुजफ्फरपुर 2 34 1986 110 उप जोड़ 4 440 पश्चिमी बंगाल | डब्ल्यूबीपीडीसीएल एवीबी कोलघाट भेल एलएमजेड 35 1 1990 210 डब्ल्यूबीपीडीसीएल एवीबी पश्चिमी बंगाल कोलघाट भेल एलएमजेड 2 1985 210 36 डब्ल्यूबीपीडीसीएल एवीबी पश्चिमी बंगाल कोलघाट एलएमजेड भेल 3 210 37 1984 पश्चिमी बंगाल डब्ल्यूबीपीडीसीएल बंडेल एवीबी भेल एलएमजेड 5 210 38 1982 उप जोड़ 4 840 उप जोड़ पूर्वी क्षेत्र 8 1280

क्र.सं	राज्य	सेवा का नाम	स्टेशन का नाम	इकाई सं.	स्थापना वर्ष	क्षमता (मेगावाट)	Make ब्वॉयलर	टीजी	एलएमजेड / केडब्ल्यूयू
	उप जोड़ राज्य	क्षेत्र		38		6820			

2.	 केन्द्रीय क्षेत्र							
क्र. सं.	सेवा का नाम	स्टेशन का नाम	इकाई	स्थापना	क्षमता		esd	एलएमजेड /
			सं.	वर्ष	(मेगावाट)	ब्वॉयलर	टीजी	केडब्ल्यूयू
1	डीवीसी	बोकारो 'बी'	1	1986	210	एबीएल	भेल	एलएमजेड
2	डीवीसी	बोकारो 'बी'	2	1990	210	एबीएल	भेल	एलएमजेड
3	डीवीसी	बोकारो 'बी'	3	1993	210	एबीएल	भेल	एलएमजेड
4	डीवीसी	दुर्गापुर	4	1982	210	भेल	भेल	एलएमजेड
	उप जोड़		4		840			
5	एनटीपीसी	बदरपुर	4	1978	210	भेल	भेल	एलएमजेड
6	एनटीपीसी	बदरपुर	5	1981	210	भेल	भेल	एलएमजेड
7	एनटीपीसी	सिंगरौली एसटीपीएस	1	1982	200	भेल	भेल	एलएमजेड
8	एनटीपीसी	सिंगरौली एसटीपीएस	2	1982	200	भेल	भेल	एलएमजेड
9	एनटीपीसी	सिंगरौली एसटीपीएस	3	1983	200	भेल	भेल	एलएमजेड
10	एनटीपीसी	सिंगरौली एसटीपीएस	4	1983	200	भेल	भेल	एलएमजेड
11	एनटीपीसी	सिंगरौली एसटीपीएस	5	1984	200	भेल	भेल	एलएमजेड
12	एनटीपीसी	कोरबा एसटीपीएस	1	1983	200	भेल	भेल	केडब्ल्यूयू
13	एनटीपीसी	कोरबा एसटीपीएस	2	1983	200	भेल	भेल	केडब्ल्यूयू
14	एनटीपीसी	कोरबा एसटीपीएस	3	1984	200	भेल	भेल	केडब्ल्यूयू
15	एनटीपीसी	रामागुंडम एसटीपीएस	1	1984	200	अंसाल्डो	अंसाल्डो	केडब्ल्यूयू
16	एनटीपीसी	रामागुंडम एसटीपीएस	2	1984	200	अंसाल्डो	अंसाल्डो	केडब्ल्यूयू
17	एनटीपीसी	रामागुंडम एसटीपीएस	3	1984	200	अंसाल्डो	अंसाल्डो	केडब्ल्यूयू
	उप जोड़ एनटीपीसी		13		2620			

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 117

एलई गैस आधारित केन्द्रीय क्षेत्र

क्र.सं.	संस्था का नाम	स्टेशन का नाम	इकाई	स्थापना	क्षमता	मेक
			संख्या	वर्ष	(मेगावाट)	
1	एनटीपीसी	दादरी जीटी	जीटी-1	1992	131	एसआईईएमईएनएस
2	एनटीपीसी	दादरी जीटी	जीटी-2	1992	131	एसआईईएमईएनएस
3	एनटीपीसी	दादरी जीटी	जीटी-3	1992	131	एसआईईएमईएनएस
4	एनटीपीसी	दादरी जीटी	जीटी-4	1992	131	एसआईईएमईएनएस
5	एनटीपीसी	औरइया जीटी	जीटी-1	1989	111.19	एमएचआई, जापान
6	एनटीपीसी	औरइया जीटी	जीटी-2	1989	111.19	एमएचआई, जापान
7	एनटीपीसी	औरइया जीटी	जीटी-3	1989	111.19	एमएचआई, जापान
8	एनटीपीसी	औरइया जीटी	जीटी-4	1989	111.19	एमएचआई, जापान
9	एनटीपीसी	कवास जीटी	जीटी-1	1992	106	जीई
10	एनटीपीसी	कवास जीटी	जीटी-2	1992	106	जीई
11	एनटीपीसी	कवास जीटी	जीटी-3	1992	106	जीई
12	एनटीपीसी	कवास जीटी	जीटी-4	1992	106	जीई
13	एनटीपीसी	गंधार जीटी	जीटी-1	1994	131	एबीबी
14	एनटीपीसी	गंधार जीटी	जीटी-2	1994	131	एबीबी
15	एनटीपीसी	गंधार जीटी	जीटी-3	1994	131	एबीबी
	उप जोड़ (गैस आधारित)				1785.8	

उप जोड़ एनटीपीसी	28	4406
उप जोड़ केन्द्रीय क्षेत्र	32	5246

12वीं योजना का जोड़ (एलई) :

यूनिट की संख्या : 70

क्षमता (मेगावाट): 12066

अनुबंध -4.2

12वीं योजना के अंतर्गत आर एण्ड एम कार्यों के लिए थर्मल यूनिट कार्यक्रम

3. राज्य क्षेत्र

क्र.सं.	राज्य	सेवा का नाम	स्टेशन का	यूनिट	स्थापन	क्षमता	N	/lake
			नाम	संख्या	वर्ष	(मेगावाट)	ब्वॉयलर	टीजी
उत्तरी ह	क्षेत्र							
1	उत्तर प्रदेश	यूपीआरवीयूएनएल	अनपरा	1	1986	210	भेल	भेल
2	उत्तर प्रदेश	यूपीआरवीयूएनएल	अनपरा	2	1986	210	भेल	भेल
3	उत्तर प्रदेश	यूपीआरवीयूएनएल	अनपरा	3	1988	210	भेल	भेल
4	उत्तर प्रदेश	यूपीआरवीयूएनएल	अनपरा 'B'	4	1993	500	एमएचआई	तोशीबा
5	उत्तर प्रदेश	यूपीआरवीयूएनएल	अनपरा 'B'	5	1994	500	एमएचआई	तोशीबा
6	उत्तर प्रदेश	यूपीआरवीयूएनएल	ओबरा	7	1974	100	भेल	भेल
	उप जोड़			6		1730		
7	पंजाब	पीएसईबी	रोपड़	1	1984	210	भेल	भेल
8	पंजाब	पीएसईबी	रोपड़	2	1985	210	भेल	भेल
9	पंजाब	पीएसईबी	रोपड़	5	1992	210	भेल	भेल
10	पंजाब	पीएसईबी	रोपड़	6	1993	210	भेल	भेल
	उप जोड़			4		840		
11	हरियाणा	एचपीजीसीएल	पानीपत	5	1993	210	भेल	भेल
कुल उत्त	ारी क्षेत्र			11		2780		
पश्चिमी			l	I	ı	·		
12	गुजरात	जीएसईसीएल	वनकबोरी	1	1982	210	भेल	भेल
13	गुजरात	जीएसईसीएल	वनकबोरी	2	1983	210	भेल	भेल
14	गुजरात	जीएसईसीएल	उकाई	3	1979	200	भेल	भेल
15	गुजरात	जीएसईसीएल	उकाई	4	1979	200	भेल	भेल
	उप जोड़			4		820		
16	राजस्थान	आरआरवीयूएनएल	कोटा	1	1983	110	भेल	भेल-स्कोदा
17	राजस्थान	आरआरवीयूएनएल	कोटा	2	1983	110	भेल	भेल- स्कोदा
	उप जोड़			2		220		
कुल पश्रि	धेमी क्षेत्र			6		1040		
पूर्वी क्षेत्र	Г							
18	झारखंड	जेएसईबी	पतरातू	9	1984	110	भेल	भेल

19	झारखंड	जेएसईबी	पतरातू	10	1986	110	भेल	भेल
	उपजोड़			2		220		
20	पश्चिमी बंगाल	डीपीएल	दुर्गापुर	6	1985	110	एवीबी	भेल
कुल पूर्वी	कुल पूर्वी क्षेत्र			3		330		
कुल राज्य क्षेत्र			20		4150			

2. केन्द्रीय क्षेत्र – कोयला आधारित यूनिट

7 एनटीपीसी रामागुंडम एसटीपीएस 5 1989 500 भेल 8 एनटीपीसी रामागुंडम एसटीपीएस 6 1989 500 भेल 9 एनटीपीसी फरक्का चरण-॥ 4 1992 500 अंसाल्डो 10 एनटीपीसी फरक्का चरण-॥ 5 1994 500 अंसाल्डो 11 एनटीपीसी टांडा 2 1989 110 भेल 12 एनटीपीसी ऊंचाहार 1 1988 210 भेल 13 एनटीपीसी ऊंचाहार 2 1989 210 भेल 14 एनटीपीसी ऊंचाहार 3 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1999 210 भेल 16 एनटीपीसी ऊंचाहार 1 1987 210 थेल	भेल भेल भेल भेल यूएसएसआर भेल
2 एनटीपीसी सिंगरौली एसटीपीएस 7 1987 500 भेल 3 एनटीपीसी एसटीपीएस 4 1987 500 भेल 4 एनटीपीसी एसटीपीएस 5 1988 500 भेल 5 एनटीपीसी एसटीपीएस 6 1988 500 भेल 6 एनटीपीसी रामागुंडम एसटीपीएस 5 1989 500 भेल 8 एनटीपीसी रामागुंडम एसटीपीएस 6 1989 500 भेल 9 एनटीपीसी फरक्का चरण-॥ 4 1992 500 अंसाल्डो 10 एनटीपीसी फरक्का चरण-॥ 5 1989 500 अंसाल्डो 11 एनटीपीसी टांडा 2 1989 110 भेल 12 एनटीपीसी ऊंचाहार 1 1988 210 भेल 13 एनटीपीसी ऊंचाहार 2 1989 210 भेल 14 एनटीपीसी ऊंचाहार 3 1999 210 भेल 15 एनटीपीसी ऊंचाहार	भेल भेल भेल भेल भेल यूएसएसआर
3 एनटीपीसी एसटीपीएस 4 1987 500 भेल 4 एनटीपीसी एसटीपीएस 5 1988 500 भेल 5 एनटीपीसी एसटीपीएस 6 1988 500 भेल 6 एनटीपीसी रामागुंडम एसटीपीएस 4 1989 500 भेल 7 एनटीपीसी रामागुंडम एसटीपीएस 6 1989 500 भेल 8 एनटीपीसी फरक्का चरण-॥ 4 1992 500 अंसाल्डो 9 एनटीपीसी फरक्का चरण-॥ 5 1994 500 अंसाल्डो 10 एनटीपीसी फरक्का चरण-॥ 5 1989 110 भेल 12 एनटीपीसी ऊंचाहार 1 1988 210 भेल 13 एनटीपीसी ऊंचाहार 2 1989 210 भेल 14 एनटीपीसी ऊंचाहार 4 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1999 210 भेल 16 एनटीपीसी ऊंचाहार <t< td=""><td>भेल भेल भेल यूएसएसआर</td></t<>	भेल भेल भेल यूएसएसआर
4 एनटीपीसी एसटीपीएस 5 1988 500 भेल 5 एनटीपीसी एसटीपीएस 6 1988 500 भेल 6 एनटीपीसी रामागुंडम एसटीपीएस 4 1989 500 भेल 7 एनटीपीसी रामागुंडम एसटीपीएस 6 1989 500 भेल 8 एनटीपीसी रामागुंडम एसटीपीएस 6 1989 500 भेल 9 एनटीपीसी फरक्का चरण-॥ 4 1992 500 अंसाल्डो 10 एनटीपीसी फरक्का चरण-॥ 5 1994 500 अंसाल्डो 11 एनटीपीसी टांडा 2 1989 110 भेल 12 एनटीपीसी ऊंचाहार 1 1988 210 भेल 13 एनटीपीसी ऊंचाहार 2 1989 210 भेल 14 एनटीपीसी ऊंचाहार 4 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1987 210 भेल 16 एनटीपीसी विंधा प्राप्ता प्	भेल भेल यूएसएसआर
5 एनटीपीसी एसटीपीएस 6 1988 500 भेल 6 एनटीपीसी रामागुंडम एसटीपीएस 4 1989 500 भेल 7 एनटीपीसी रामागुंडम एसटीपीएस 6 1989 500 भेल 8 एनटीपीसी फरक्का चरण-॥ 4 1992 500 अंसाल्डो 9 एनटीपीसी फरक्का चरण-॥ 5 1994 500 अंसाल्डो 10 एनटीपीसी फरक्का चरण-॥ 5 1989 110 भेल 11 एनटीपीसी ऊंचाहार 1 1988 210 भेल 12 एनटीपीसी ऊंचाहार 2 1989 210 भेल 13 एनटीपीसी ऊंचाहार 3 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1999 210 भेल 16 एनटीपीसी विध्याचल 1 1987 210 यूएसएसआर 2	भेल यूएसएसआर
6 एनटीपीसी रामागुंडम एसटीपीएस 4 1988 500 यूएसएसआर 2 7 एनटीपीसी रामागुंडम एसटीपीएस 5 1989 500 भेल 8 एनटीपीसी रामागुंडम एसटीपीएस 6 1989 500 भेल 9 एनटीपीसी फरक्का चरण-॥ 4 1992 500 अंसाल्डो 10 एनटीपीसी फरक्का चरण-॥ 5 1994 500 अंसाल्डो 11 एनटीपीसी टांडा 2 1989 110 भेल 12 एनटीपीसी ऊंचाहार 1 1988 210 भेल 13 एनटीपीसी ऊंचाहार 2 1989 210 भेल 14 एनटीपीसी ऊंचाहार 3 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1987 210 भेल 16 एनटीपीसी विध्वाचल 1 1987 210 यूएसएसआर 2	यूएसएसआर
7 एनटीपीसी रामागुंडम एसटीपीएस 5 1989 500 भेल 8 एनटीपीसी रामागुंडम एसटीपीएस 6 1989 500 भेल 9 एनटीपीसी फरक्का चरण-॥ 4 1992 500 अंसाल्डो 10 एनटीपीसी फरक्का चरण-॥ 5 1994 500 अंसाल्डो 11 एनटीपीसी टांडा 2 1989 110 भेल 12 एनटीपीसी ऊंचाहार 1 1988 210 भेल 13 एनटीपीसी ऊंचाहार 2 1989 210 भेल 14 एनटीपीसी ऊंचाहार 3 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1999 210 भेल 16 एनटीपीसी विध्याचल 1 1987 210 यूएसएसआर 2	
8 एनटीपीसी रामागुंडम एसटीपीएस 6 1989 500 भेल 9 एनटीपीसी फरक्का चरण-॥ 4 1992 500 अंसाल्डो 10 एनटीपीसी फरक्का चरण-॥ 5 1994 500 अंसाल्डो 11 एनटीपीसी टांडा 2 1989 110 भेल 12 एनटीपीसी ऊंचाहार 1 1988 210 भेल 13 एनटीपीसी ऊंचाहार 2 1989 210 भेल 14 एनटीपीसी ऊंचाहार 3 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1999 210 भेल 16 एनटीपीसी विंध्याचल 1 1987 210 यूएसएसआर यू	भेल
9 एनटीपीसी फरक्का चरण-॥ 4 1992 500 अंसाल्डो 10 एनटीपीसी फरक्का चरण-॥ 5 1994 500 अंसाल्डो 11 एनटीपीसी टांडा 2 1989 110 भेल 12 एनटीपीसी ऊंचाहार 1 1988 210 भेल 13 एनटीपीसी ऊंचाहार 2 1989 210 भेल 14 एनटीपीसी ऊंचाहार 3 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1999 210 भेल 16 एनटीपीसी विंध्याचल 1 1987 210 यूएसएसआर ए	
10 एनटीपीसी फरक्का चरण-॥ 5 1994 500 अंसाल्डो 11 एनटीपीसी टांडा 2 1989 110 भेल 12 एनटीपीसी ऊंचाहार 1 1988 210 भेल 13 एनटीपीसी ऊंचाहार 2 1989 210 भेल 14 एनटीपीसी ऊंचाहार 3 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1999 210 भेल 16 एनटीपीसी विंध्याचल 1 1987 210 यूएसएसआर यू	भेल
11 एनटीपीसी टांडा 2 1989 110 भेल 12 एनटीपीसी ऊंचाहार 1 1988 210 भेल 13 एनटीपीसी ऊंचाहार 2 1989 210 भेल 14 एनटीपीसी ऊंचाहार 3 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1999 210 भेल 16 एनटीपीसी विंध्याचल 1 1987 210 यूएसएसआर यू	भेल
12 एनटीपीसी ऊंचाहार 1 1988 210 भेल 13 एनटीपीसी ऊंचाहार 2 1989 210 भेल 14 एनटीपीसी ऊंचाहार 3 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1999 210 भेल 16 एनटीपीसी विंध्याचल 1 1987 210 यूएसएसआर यू	भेल
13 एनटीपीसी ऊंचाहार 2 1989 210 भेल 14 एनटीपीसी ऊंचाहार 3 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1999 210 भेल 16 एनटीपीसी विंध्याचल 1 1987 210 यूएसएसआर यू	भेल
14 एनटीपीसी ऊंचाहार 3 1999 210 भेल 15 एनटीपीसी ऊंचाहार 4 1999 210 भेल 16 एनटीपीसी विंध्याचल 1 1987 210 यूएसएसआर यू	भेल
15 एनटीपीसी ऊंचाहार 4 1999 210 भेल 16 एनटीपीसी विंध्याचल 1 1987 210 यूएसएसआर यू	भेल
16 एनटीपीसी विंध्याचल 1 1987 210 यूएसएसआर यू	भेल
53344	भेल
<u> </u>	यूएसएसआर
17 एनटीपीसी विंध्याचल 2 1988 210 यूएसएसआर य	यूएसएसआर
18 एनटीपीसी विंध्याचल 3 1989 210 यूएसएसआर य	यूएसएसआर
विंध्याचल	
19 एनटीपीसी विंध्याचल 4 1989 210 यूएसएसआर य	यूएसएसआर
20 एनटीपीसी विंध्याचल 5 1990 210 यूएसएसआर य	यूएसएसआर
21 एनटीपीसी विंध्याचल 6 1991 210 यूएसएसआर य	यूएसएसआर
22 एनटीपीसी विंध्याचल 7 1999 500 भेल	भेल
23 एनटीपीसी विंध्याचल 8 2000 500 भेल	भेल

क्र.सं.	संस्था	पावर स्टेशन का नाम	यूनिट	स्थापना वर्ष	क्षमता	ब्वॉयलर का	टीजी का मेक
			सं.		(मेगावाट)	मेक	
24	एनटीपीसी	सिम्हाद्री	1	2002	500	भेल	भेल
25	एनटीपीसी	सिम्हाद्री	2	2002	500	भेल	भेल
26	एनटीपीसी	तलचर एसटीपीएस	1	1995	500	भेल	भेल
27	एनटीपीसी	तलचर एसटीपीएस	2	1996	500	भेल	भेल
28	एनटीपीसी	दादरी	1	1991	210	भेल	भेल
29	एनटीपीसी	दादरी	2	1992	210	भेल	भेल
30	एनटीपीसी	दादरी	3	1993	210	भेल	भेल
31	एनटीपीसी	दादरी	4	1994	210	भेल	भेल
32	एनटीपीसी	रिहंद एसटीपीएस फेज-					
		III	1	1988	500	भेल	भेल
33	एनटीपीसी	रिहंद एसटीपीएस फेज-					
		l III	2	1989	500	भेल	भेल
34	एनटीपीसी	कहलगांव	1	1992	210	भेल	भेल
35	एनटीपीसी	कहलगांव -	2	1994	210	भेल	भेल
36	एनटीपीसी	कहलगांव	3	1995	210	भेल	भेल
37	एनटीपीसी	कहलगांव	4	1996	210	भेल	भेल
	उप जोड़		37		12890		

गैस आधारित यूनिट

क्र.सं.	सेवा का नाम	स्टेशन का नाम	यूनिट का	स्थापना	क्षमता	मेक
			नाम	वर्ष	(मेगावाट)	
1	नीपको	कथलगुरी सीसीजीटी	जीटी-1	1995	33.50	मित्सुबिशी, जापान
2	नीपको	कथलगुरी सीसीजीटी	जीटी-2	1995	33.50	मित्सुबिशी, जापान
3	नीपको	कथलगुरी सीसीजीटी	जीटी-3	1995	33.50	मित्सुबिशी, जापान
4	नीपको	कथलगुरी सीसीजीटी	जीटी-4	1995	33.50	मित्सुबिशी, जापान
5	नीपको	कथलगुरी सीसीजीटी	जीटी-5	1996	33.50	मित्सुबिशी, जापान
6	नीपको	कथलगुरी सीसीजीटी	जीटी-6	1996	33.50	मित्सुबिशी, जापान
7	नीपको	कथलगुरी सीसीजीटी	एसटी-1	1998	30.00	भेल
8	नीपको	कथलगुरी सीसीजीटी	एसटी-2	1998	30.00	भेल
	उप जोड़		8		261.00	
कुल केन्द्रीय क्षेत्र		45		13151		

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 121

12वीं योजना का जोड़ (आर एण्ड एम) :

यूनिटों की संख्या: 65

क्षमता (मेगावाट) : 17301

12वीं योजना का जोड़ (एलई+आरएण्डएम) 135

क्षमता (मेगावाट) 29367

संक्षिप्तियां: आर एण्ड एम– नवीनीकरण एवं आधुनिकीकरण;. यू – अपरेटिंग; एलई – जीवन विस्तार ; आरईएस – रेस्टोरेशन; मेगावाट – मेगावाट; सीएस-केन्द्रीय क्षेत्र: एसएस- राज्य क्षेत्र

\$ - क्रम संख्या 2 पर देहर के लिए स्थापित क्षमता (Ph.b) और क्रम सं. 21 पर नागझरी (यूनिट 4-6) को कुल योग में शामिल नहीं किया गया है क्योंकि इनकी गणना क्रमश: क्र.सं. 1 और 6 के लिए पहले ही कर दी गई है। संक्षिप्तियां: आर एण्ड एम- नवीनीकरण और आधुनिकीकरण; यू – अपरेटिंग; एलई – जीवन विस्तार ; आरईएस – रेस्टोरेशन; मेगावाट – मेगावाट; सीएस-केन्द्रीय क्षेत्र: एसएस- राज्य \$ - क्रम संख्या 10 पर देहर के लिए स्थापित क्षमता (Ph.A) और क्रम सं. 22 पर नागझरी (यूनिट 4-6), क्रम संख्या 4 पर चिल्ला और क्रम संख्या 56 पर खोदरी (Ph.B) को कुल योग में शामिल नहीं किया गया है क्योंकि इनकी गणना क्रमश: क्र.सं. 1, 21, 37 और 3 में पहले ही कर दी गई है।

संक्षिप्तियां: आर एण्ड एम- नवीनीकरण और आधुनिकीकरण;

आर एम एण्ड यू– नवीनीकरण , आधुनिकीकरण और अपरेटिंग,

आरएम एण्ड एलई – नवीनीकरण , आधुनिकीकरण और जीवन विस्तार

आरएमयू एण्ड एलई– नवीनीकरण , आधुनिकीकरण, अपरेटिंग और जीवन विस्तार ;

आरएण्डएम + आरईएस -नवीनीकरण और आधुनिकीकरण + रेस्टोरेशन;

आरएम एण्ड एलई+आरईएस.- नवीनीकरण , आधुनिकीकरण और जीवन विस्तार + रेस्टोरेशन;

आरएम एण्ड यू+आरईएस. – नवीनीकरण , आधुनिकीकरण और अपरेटिंग + रेस्टोरेशन.

मेगावाट – मेगावाट; आरईएस – रेस्टोरेशन; यू – अपरेटिंग; एलई – जीवन विस्तार

अनुबंध 4.3 12वीं योजना के दौरान 31.3.2012 तक की उपलब्धियों के लिए हाइड्रो आर एण्ड एम, जीवन विस्तार और अपरेटिंग योजनाओं के लिए राज्यवार कार्यक्रम

新 .	परियोजना	सीएस/एसएस		(करो	ड़ रु. में)	लाभ	श्रेणी	अनुपालन
सं.	एजेंसी		क्षमता (मेगावाट)	अनुमानित लागत (प्रावधान)	वास्तविक व्यय	(मेगावाट)		का वर्ष
जारी	 ː योजना – कार्यान्वर	 यन के अंतर्गत	I			-1		
हिमा	चल प्रदेश							
1	भाखड़ा एलबी, बीबीएमबी	सीएस	5x108	489.77	222.15 (31.3.2012 की स्थिति के अनुसार)	540.00 (एलई) + 90.00 (U)	आरएमयू और एलई	2014-15
2	बस्सी, एचपीएसईबी	एसएस	3x16.5+ 1x15	119.83	109.97 (31.3.2012	6.0(U)+ 60 (एलई)	आरएमयू और एलई	2012-13
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1210		की स्थिति के अनुसार)	०० (५४१३)		
जम्मू	्एण्ड कश्मीर	-1	I.	l		1	1	
3	चेन्नई जे एण्ड केपीडीसी	एसएस	5x4.66	39.14	3.98 (31.3.2012 की स्थिति के अनुसार)	23.30 (एलई)	आर एम एण्ड एलई	2013-14
4	संबल, सिंध, जे एण्ड केपीडीसी	एसएस	2x11.3	34.17	18.89 (31.3.2012 की स्थिति के अनुसार)	-	आर एंड एम	2012-13
5	लोअर झेलम जे एण्ड केपीडीसी	एसएस	3x35	101.30	78.25 (31.3.2012 की स्थिति के अनुसार)	15.00 (आरईएस)	आर एंड एम+ आरईएस	2012-13
उत्त	र प्रदेश							
6	ओबरा, यूपीजेवीएनएल	एसएस	3x33	43.14	12.7 (31.03.12 तक)	99.00 (एलई)	आर एम एण्ड एलई	2015-16

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 123

परियोजना सीएस/एसएस स्थापित श्रेणी अनुपालन लाभ 豖. (करोड़ रु. में) एजेंसी सं. क्षमता का वर्ष (मेगावाट) अनुमानित वास्तविक (मेगावाट) लागत व्यय (प्रावधान) एसएस आर एम एण्ड 7 रिहंद, 6x50 132.20 62.62 300.00 2015-16 एलई यूपीजेवीएनएल (आरईवी) (31.03.12 (एलई) तक) उत्तराखंड आर एम एण्ड एसएस पथरी. 20.40 3x6.8 92.82 13.8 2013-14 एलई यूजेवीएनएल (31.03.12)(एलई) आंध्र प्रदेश श्रीसैलम आरबी, आर एंड एम एसएस 7x110 16.70 13.36 2012-13 एपीजेनको (31.3.2012 की स्थिति के अनुसार) आर एंड एम एसएस लोवर सिलेरू, 4x115 8.75 2012-13 10 6.66 एपीजेनको (31.3.2012 की स्थिति के अनुसार) नागार्जुन सागर, एसएस आर एण्ड एम 1x110+ 33.35 13.90 2012-13 11 एपीजेनको 7x100.8 (31.03.2012 तक) कर्नाटक नागझारी, एसएस आर एम एण्ड U 2x150+ 45.22 51.99 45.00 2013-14 12 यूनिट-4 से 6, 1x135 (31.03.2012 (U) केपीसीएल तक) केरल सबीरीगिरि, आरएमयू और एसएस 13 5x55+ 96.95 300.00 2012-13 104.36 केएसईबी एलई (एलई) + 1x60 (31.03.2012 35.00(U) तक) एसएस आर एंड एम 2x37.5 11.70 5.45 14 इदमलायार, 2012-13 केएसईबी (31.3.2012 की स्थिति के अनुसार)

豖.	परियोजना	सीएस/एसएस	स्थापित	(करो	ड़ रु. में)	लाभ	श्रेणी	अनुपालन
सं.	एजेंसी	it	क्षमता (मेगावाट)	अनुमानित लागत (प्रावधान)	नास्तविक व्यय	(मेगावाट)		का वर्ष
15	पारिंगल-कुथू,	एसएस	4x8	96.10	2.34	32.00	आर एम एण्ड	2015-16
	केएसईबी				(31.3.2012	(एल ई)+	एलई	
	,				की स्थिति के	4 (U)		
					अनुसार)	(0)		
तमिष	् नाडु				-			
16	पेरियार,	एसएस	3x35+	161.18	114.28	140.00	आरएमयू और	2013-14
	टीएनईबी		1x42		(31.03.2012	(एलई) +	एलई	
					तक)	28.00(U)		
1श्चि	म बंगाल							
17	मैथन,	सीएस	2x20	49.05	3.76	40.00 (एलई)	आर एम एण्ड	2016-17
	यूनिट-1 और 3,				(31.3.2012		एलई	
	डीवीसी				की स्थिति के			
					अनुसार)			
18	जलढाका	एसएस	3x9	88.62	74.28	27.00(एलई)	आर एम एण्ड	2012-13
	स्टेशन-I,				(31.3.2012		एलई	
	डब्ल्यूएसईबी				की स्थिति के			
					अनुसार)			
उड़ीस	1		T	T	1	T		T
19	रेंगाली क् रेप-परिश	एसएस	1x50	47.50	14.67	50(एलई)	आर एम एण्ड	2012-13
	ओएचपीसी				(31.3.2012		एलई	
					की स्थिति के			
					अनुसार)			
20	हीराकुंड-II,	एसएस	3x24	125.52	58.73	72.00 (एलई)	आर एम एण्ड	2014-15
	ओएचपीसी				(31.3.2012		एलई	
					की स्थिति के			
					अनुसार)			
ייינונ	<u> </u>							
असम 21	। कोपिली, नीपको	सीएस	2x50 +	66.42	9.25		आर एण्ड एम	2013-14
- '	स्तारा, भागभग	, .	2x50	JU.72	(31.3.2012		और यूनिट 1 और	
			2300		(31.3.2012 की स्थिति के		2 का रिफर्बिसमें	
			1	<u> </u>	त्रम । स्वास क		- 0.000	

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 125

豖.	परियोजना	सीएस/एसएस	स्थापित	स्थापित (करोड़ रु. में)		लाभ	श्रेणी	अनुपालन
सं.	एजेंसी		क्षमता (मेगावाट)	अनुमानित लागत (प्रावधान)	वास्तविक व्यय	(मेगावाट)		का वर्ष
					अनुसार)			
22	खानदोंग, नीपको	सीएस	2x25	25.05	10.15 (31.3.2012	50.00 (एलई)	आर एम एण्ड एलई	2014-15
					की स्थिति के अनुसार)			
	उप जोड़ (क)		4683	1932	966	1977		
	योजनाएं – निविदा	प्रक्रियाधीन						
•	और कश्मीर 	пэнэ	0.0.	04.05	0.00	/2	भार गाग गाग्र	0040 47
23	गांडेरबल, जे एण्ड केपीडीसी	एसएस	2x3+ 2x4.5	21.95	8.23 (31.3.2012 की स्थिति के अनुसार)	9.00 (एलई)	आर एम एण्ड एलई	2016-17
उत्तर	। ∶प्रदेश				137			
24	माताटीला, यूपीजेवीएनएल	एसएस	3x10.2	10.29	1.00 (31.3.2012 की स्थिति के अनुसार)	30.6 (एलई)	आर एम एण्ड एलई	2013-14
उत्तर					, ,			
25	खातिमा, यूजेवीएनएल	एसएस	3x13.8	256.76	17.26 (31.3.2012 की स्थिति के अनुसार)	41.40 (एलई)	आर एम एण्ड एलई	2014-15
26	चिल्ला चरण-ख यूजेवीएनएल	एसएस	4x36	472.00	-	28.8(U) + 144(एलई)	आरएमयू और एलई	2015-16
27	धकरानी, यूजेवीएनएल	एसएस	3x11.25	113.18	-	33.75 (एलई)	आर एम एण्ड एलई	2015-16
28	धालीपुर, यूजेवीएनएल	एसएस	3x17	113.71	-	51.00 (एलई)	आर एम एण्ड एलई	2015-16
29	तिलोथ, यूजेवीएनएल	एसएस	3x30	163.75	-	90 (एलई)	आर एम एण्ड एलई	2015-16

豖.	परियोजना एजेंसी	सीएस/एसएस	स्थापित	(करो	ड़ रु. में)	लाभ	श्रेणी	अनुपालन
सं.			क्षमता (मेगावाट)	अनुमानित लागत (प्रावधान)	वास्तविक व्यय	(मेगावाट)		का वर्ष
30	कुल्हल, यूजेवीएनएल	एसएस	3x10	115.44	-	30(एलई)	आर एम एण्ड एलई	2015-16
31	चिब्रो, यूजेवीएनएल	एसएस	4x60	201.25	-	240(एलई)	आर एम एण्ड एलई	2015-16
32	खोद्री यूजेवीएनएल	एसएस	4x30	165.85	-	120(एलई)	आर एम एण्ड एलई	2015-16
 ामिल	 ानाडु	l		l	l	<u> </u>	1	
33	शोलायर-I, टीएनईबी	एसएस	2x35	40.68	-	14.00(U) + 70.00 (एलई)	आरएमयू और एलई	2016-17
झारख	ंड							
34	पंचेट, यूनिट-1, डीवीसी	सीएस	1x40	58.22	1.99 (31.3.2012 की स्थिति के अनुसार)	40.00 (एलई)	आर एम एण्ड एलई	2016-17
उड़ीस	π		I		1	l		l
35	हीराकुंड-I यूनिट 5 एण्ड 6, ओएचपीसी	एसएस	2x37.5	296.83	0.25 (31.3.2012 की स्थिति के अनुसार)	75.00 (एलई)	आर एम एण्ड एलई	2014-15
36	बालीमेला, ओएचपीसी	एसएस	6x60	160	-	360(एलई)	आर एम एण्ड एलई	2016-17
	उप जोड़ (ख)		1340.75	2189.91	28.73	1377.55		
	योजनाएं – आरएला	् ए अध्ययन के अध		ı	1			
	वल प्रदेश	п	0.66	40.40		00.00	2117 1111 11112	001115
37	गिरि, एचपीएसईबी	एसएस	2x30	48.48	-	60.00 (एलई)	आर एम एण्ड एलई	2014-15
आंध्र	प्रदेश							
38	माचकुंड , एपीजेनको	एसएस	3x17	124.45	-	15.25 (U)	आरएमयू और एलई	2016-17

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 127

क्र. सं.	परियोजना एजेंसी	सीएस/एसएस		(करो	ड़ रु. में)	लाभ	श्रेणी	अनुपालन
		π	क्षमता (मेगावाट)	अनुमानित लागत	वास्तविक व्यय	(मेगावाट)		का वर्ष
				(प्रावधान)				
			(स्टेशन-I)			+		
			और			114.75		
			3x21.25			(एलई)		
			(स्टेशन-II)					
केरल	1	T	<u> </u>	T	T	1		
39	शोलायार,	एसएस	3x18	54.00	0.044	54.00	आर एम एण्ड	2016-17
	केएसईबी				(31.12.10 की स्थिति के	(एलई)	एलई	
					अनुसार)			
40	कुट्टियाडी,	एसएस	3x25	25.00	-	75.00	आर एम एण्ड	2016-17
-	केएसईबी					(एल ई)	एलई	
	उपजोड़ (ग)		304	252	0.044	319		
				ZJZ	0.011	313		
	ो योजनाएं – आरएर प्रोक्त	नए अध्ययन क अ	धान					
आंध्र 44		एसएस	4x60	40.00			आर एंड एम	2046 47
41	अपर सिलेरू, एपीजेनको	3/13/1	4X00	10.00	-	-	3117 30 311	2016-17
	(प्राजगयम							
नमिक	 जार							
ताम ु 42	कोडयार चरण-I,	एसएस	1x60	30.00	_	60.00 (एलई)	आर एम एण्ड	2015-16
74	टीएनईबी	7,, 7,,	1700	30.00	_	00.00 (९५१३)	एलई	2010-10
	्रा <u>र्</u> गर्या							
43	कोडयार चरण-II,	एसएस	1x40	19.94	_	40.0(एलई)	आर एम एण्ड	2015-16
40	टीएनईबी	7,, 7,,	1740	13.34	_	40.0(९४१३)	एलई	2013-10
	उप जोड़ (ग)		040	F0.04		400.00		
			340	59.94	-	100.00		
	जोड़ (क्रम्बरणरण)		6667.75	4433.67	994.72	3773.25		
	(क+ख+ग+ग)					[266.05(U)		
						+ 3492.20		
						(एलई)		
						+		
						15(आरईएस)		

संक्षिप्तियां:

आर एण्ड एम- नवीनीकरण और आधुनिकीकरण;
आर एम एण्ड यू - नवीनीकरण, आधुनिकीकरण और ऑपरेटिंग
आर एम एण्ड एलई - नवीनीकरण, आधुनिकीकरण और जीवन विस्तार
आरएमयू एण्ड एलई - नवीनीकरण, आधुनिकीकरण, अपरेटिंग और जीवन विस्तार
आर एण्ड एम+आरईएस -नवीनीकरण और आधुनिकीकरण + रेस्टोरेशन;
आर एम एण्ड एलई+आरईएस- नवीनीकरण, आधुनिकीकरण और जीवन विस्तार + रेस्टोरेशन;
आर एम एण्ड यू+आरईएस - नवीनीकरण, आधुनिकीकरण और अपरेटिंग + रेस्टोरेशन
एमडब्ल्यू - मेगावाट; आरईएस - रेस्टोरेशन; यू - अपरेटिंग; एलई - जीवन विस्तार

अध्याय 5 उत्पादन आयोजन

5.0 प्रस्तावना

देश में आर्थिक विकास उत्पादन क्षमता वृद्धि स्थापित करके बढ़ती हुई विद्युत मांग की पूर्ति करके प्राप्त की जा रही है। विद्युत मांग में बढ़ोतरी होने की आशा है लेकिन इस मांग की पूर्ति हेतु उत्पादन के लिए उपलब्ध ईंधन संसाधन सीमित हैं। इसके अलावा, उत्पादन क्षमता में वृद्धि को अकेले नहीं देखा जा सकता है और इसे एक ऐसे पर्यावरण में प्राप्त किया जाना है जो स्वरूप में स्वच्छ हरित और टिकाऊ हो। इसलिए, न्यून कार्बन वृद्धि समय की मांग है। इसकी योजना बहुत सावधानीपूर्वक बनानी चाहिए क्योंकि इसका विकास आसानी से प्राप्त नहीं किया जा सकता है।

11वीं योजना अविध तक योजना बनाने की प्रक्रिया का मुख्य केंद्र बिंदु बड़ी उत्पादन क्षमताएं जोड़ना था जिनका उद्देश्य आपूर्ति और मांग के चिरकाल से चले आ रहे अंतर को पाटना था। जब भारत के अधिकांश ग्रामीण क्षेत्रों में बिजली की पहुंच नहीं है और जबिक शहरी भारत को नियमित रूप से बिजली कटौती का सामना करना पड़ रहा है, ऐसी स्थित में आधार – भार क्षमता में वृद्धि करके "पर्याप्त विद्युत" सुनिश्चित करने पर विचार करना था। 11वीं योजना के दौरान 62,374 मेगावाट के मध्याविध लक्ष्य की तुलना में 54,964 मेगावाट की क्षमता वृद्धि प्राप्त की गई।

भविष्य में स्थिति भिन्न हो सकती है क्योंकि शहरी भारत देश के कुल जीडीपी का आधे से अधिक जीडीपी प्रदान करता है और दिन के समय में इसकी बिजली खपत अधिक होती है और सप्ताहांत में रात्रि में खपत में काफी कमी हो जाती है। यह मांग पैटर्न उन संयंत्रों के उपयुक्त नहीं होती है जो आधार के भार पर बनाए जाते हैं। इसलिए, कोयला – हाइड्रो – न्यूक्लियर आधारित भार उत्पादन क्षमता बढ़ाने को ध्यान देने की नीति यद्यपि आवश्यक हो सकती है लेकिन 12वीं योजना और उसके बाद की अविध के दौरान पर्याप्त नहीं हो सकती है। इस प्रकार, अतिरिक्त पैरामीटरों जिन पर ध्यान देने और प्लानिंग की आवश्यकता है, उपयुक्त प्रकार के विद्युत संयंत्रों के जिरए हमारे सिस्टम में व्यस्ततम समय की क्षमता में वृद्धि करके और रिजर्व मार्जिन से विद्युत प्रणाली की विश्वसनीयता और लचीलापन है।

इस अध्याय में 12वीं और 13वीं योजना अविधयों में क्षमता बढ़ाने की आवश्यकता का आकलन करने के लिए योजना में अपनाई गई उत्पादन योजना के सिद्धांतों पर प्रकाश डाला गया है। ये सिद्धांत न्यून कार्बन नीति के सिद्धांतों के अनुरूप हैं और तैयार विद्युत प्रणाली पीकिंग पावर और स्पिनिंग रिजर्व के लिए विशेष रूप की योजना बनाकर क्षमता आवश्यकता के अतिरिक्त विश्वसनीयता और लचीलेपन के अतिरिक्त पैरामीटरों की पूर्ति करने में भी सक्षम है।

5.1 भारत में विद्युत उत्पादन के विकल्प

हमारे देश में विद्युत उत्पादन के संसाधन सीमित हैं अत: इसलिए न्यून कार्बन वृद्धि नीति को अपनाया जाना है, सभी उत्पादन विकल्पों का अधिकतम उपयोग किया जाना है। न्यूनतम कार्बन उत्सर्जन को सुविधाजनक बनाने के लिए विभिन्न प्रौद्योगिक विकल्पों की भी खोज करने की आवश्यकता है। विद्युत उत्पादन के लिए ईंधन विकल्प निम्नलिखित हैं:

- परंपरागत स्रोत हाइड्रो, न्यूक्लियर, प्राकृतिक गैस, कोयला और लिग्नाइट।
- अपारंपरिक स्रोत सौर, पवन, बायोमास, ज्वारीय, जियो थर्मल, अपशिष्ट से ऊर्जा, हाइड्रोजन / ईंधन सेल आदि।

हाइड्रो और न्यूक्लियर संसाधनों सिहत स्वरूप में नवीकरणीय ऊर्जा के अपारंपरिक संसाधनों पर बल देना न्यून कार्बन वृद्धि नीति प्राप्त करने की दिशा में सबसे अधिक महत्वपूर्ण और दूरगामी पहलों में से एक है। तथापि, अपारंपरिक स्रोत आमतौर पर गैर-प्रेषणीय होते हैं और साथ ही इनसे मंहगी बिजली मिलती है, इसलिए इनका कार्यान्वयन एक सीमा तक ही सीमित रखा जाता है। विद्युत संयंत्रों की स्थापना विद्युत उत्पादन के उपर्युक्त परंपरागत स्रोतों के आधार पर की जाती है। स्रोत की रूचि प्रत्येक संयंत्र की विशेषता के आधार पर निर्भर होती है और अनेक कारकों पर निर्भरता के अनुसार ईंधन की रूचि पर निर्णय लिया जाता है। इन कारकों में मुख्य उत्पादन की मितव्ययता, ईंधन भंडार, ईंधन की उपलब्धता, संयंत्र के प्रचालन की गतिकी और पर्यावरण पर प्रभाव। इनमें विद्युत उत्पादन के अपारंपरिक स्रोतों द्वारा वृद्धि की जाती है।

5.2 उत्पादन योजना के सिद्धांत

हमारी योजना बनाने की प्रक्रिया में तीन मुख्य पहलुओं पर कार्य करना और विचार करना शामिल है:

- सतत विकास के सिद्धांतों के अनुरूप मांग पैटर्न की पूर्ति हेतु विद्युत उत्पादन क्षमता में वृद्धि
- विश्वसनीयता और लचीलापन जैसी प्रणाली की वांछित परिचालनात्मक विशेषताओं को पूरा करना (अलग
 अलग मांग की पूर्ति)।
- संसाधनों का सबसे अधिक सक्षम उपयोग अर्थात कोयला आधारित उत्पादन, मिश्रित प्रशीतन, तापन और ऊर्जा (सी सी एच पी) और वितरित उत्पादन में आधुनिकतम प्रौद्योगिकी अपनाना।

विभिन्न परियोजनाओं की मितव्ययता और स्थिति सहित इस राष्ट्रीय विद्युत योजना को तैयार करते समय व्यवहार्यता की दृष्टि से इन उपर्युक्त तीन पहलों पर विचार किया गया है।

5.2.1 संवृद्धि विकास

हमारे देश का विकास ही हमारा अंतिम लक्ष्य है जिसमें आर्थिक विकास, पर्यावरणीय गुणवत्ता और सामाजिक समानता को बनाए रखना शामिल है। इससे यह भी सुनिश्चित होगा कि हमारी भावी पीढि़यों की आवश्यकताओं के साथ समझौता किए बिना हमारी वर्तमान आवश्यकताओं को पूरा करने के लिए यह विकास किया जाता है। विद्युत विकास का महत्व और प्रासंगिकता स्वच्छ और ग्रीन पावर के अंतर्गत निहित है। इस प्रकार का विकास विद्युत उत्पादन के लिए एक उपर्युक्त ईंधन / प्रौद्योगिकी की रूचि पर निर्भर करता है। तदनुसार, इस योजना में नवीकरणीय ऊर्जा स्रोतों और साथ ही देश के सतत विकास को बढ़ावा देने वाली प्रौद्योगिकियों पर आधारित परियोजनाओं के विकास को ध्यान में रखा जाता है।

सबसे महत्वपूर्ण न्यून कार्बन नीति पहल विद्युत उत्पादन के लिए संसाधनों की रूचि है। परंपरागत संसाधनों अर्थात हाइड्रो, न्यूक्लियर और थर्मल पर आधारित योजना में क्षमता विस्तार कार्यक्रमों की क्षमता का उपयोग करके किए गए अध्ययनों के परिणामस्वरूप परियोजनाओं का चयन किया जाता है ताकि 18वीं ई पी एस रिपोर्ट में निर्धारित अनुसार मांग की पूर्ति की जा सके। इन अध्ययनों को करते समय नवीकरणीय ऊर्जा स्नोतों विद्युत और उत्पादन पर विचार किया जाता है।

योजना बनाने के उद्देश्य से अपनाई गई मांग 18वीं ई पी एस मांग अनुमान है। यह मांग प्रयोग में लाई जा रही ऊर्जाक्षम प्रौद्योगिकी उपयोग और अपनाए जा रहे ऊर्जा संरक्षण उपायों के इस्तेमाल पर आधारित है। इसलिए, अपनाई गई योजना नीति न्यून कार्बन नीति विकास के अनुरूप है।

5.2.2 परिचालनात्मक लचीलापन और विश्वसनीयता

ईंधन के स्रोत और विद्युत उत्पादन की संबंधित प्रौद्योगिकियां अनेक और विविध हैं। तदनुसार, परिचालन की प्रत्येक की अपनी विशेषता है। हमारी विद्युत प्रणाली की मांग में भी दिन के समय, मौसम, तथा स्थानिक अवस्थिति के साथ भिन्न होती है। इसलिए, हर समय भार के साथ बराबर उत्पादन के लिए न केवल पर्याप्त क्षमता की अवस्थापनाओं की आवश्यकता होती है बल्कि उत्पादन क्षमता भी किस्म के प्रति संवेदी भी होती है। अपने उत्पादन को बदलने और ऐसा करने की प्रत्येक की अपनी विशेषताएं होती हैं। तदनुसार, उत्पादन के प्रकार पर निर्णय के समय प्रणाली की इस अपेक्षा पर भी विचार किए जाने की आवश्यकता है। इसलिए विद्युत की पर्याप्तता और मात्रा के अलावा, 'विश्वसनीयता' और 'गुणवत्ता' के पहलुओं को ध्यान में रखते हुए योजना बनाने की प्रक्रिया के कार्यक्षेत्र में विस्तार करने की आवश्यकता है।

देश के लगभग सभी हिस्सों में लोड शेडिंग / बिजली कटौती होने के कारण उपभोक्ता इनवर्टरों और डीजल जेनसेटों से बैक-अप पावर का सहारा लेने के लिए बाध्य हो जाते हैं। बैक-अप बिजली लेने में एक औसत उपभोक्ता द्वारा खर्च की गई राशि प्रति केएचडब्ल्यू 50 पैसे से लेकर कई रूपयों तक होती है। 24x7 विद्युत आपूर्ति के आश्वासन के बदले उपभोक्ता अपनी बिजली खपत के लिए अधिक प्रीमियम देने का भी इच्छुक होता है जो बैक-अप पावर स्रोतों को रखने और चलाने की परिहार्य लागतों को खर्च करने के लिए उनकी आवश्यकता का निराकरण करेगा। बिजली कंपनियों द्वारा "विश्वसनीय प्रभार" के रूप में यह अतिरिक्त कीमत समर्पित पीकिंग संयंत्रों से "दिन का समय" पावर प्राप्त करने का आधार होगा।

पीकिंग संयंत्रों से उच्च कीमत उच्चतर क्षमता, पर्यावरण पर न्यून प्रभाव और इन संयंत्रों द्वारा लचीलेपन को संभव बनाने की तुलना में संतुलित होनी चाहिए। इसके अलावा, पीकिंग संयंत्र बेस-भार संयंत्रों की अल्प अविध के लिए चलेंगे, कुल मिलाकर ली गई बिजली का भारित औसत काफी अधिक नहीं होगा।

(क) विद्युत की विश्वसनीयता

विश्वसनीय विद्युत प्रणाली परिचालन के लिए स्थापित परिचालन मानदंड जैसे सिस्टम वोल्टेज का रख-रखाव तथा स्वीकार्य सीमाओं के अंतर्गत फ्रीक्वेंसी बनाए रखना जैसे मानदंडों के अनुसार जारी संतुलन की आवश्यकता होती है। दिन भर और पूरे मौसम के दौरान उपभोक्ता मांग में परिवर्तन को आवश्यक होने पर उत्पादन नियंत्रण द्वारा पूरा किया जाता है।

विश्वसनीय प्रणाली की मुख्य विशेषताएं निम्नलिखित हैं:

- सामन्य परिस्थितियों के दौरान प्रणाली को स्वीकार्य सीमाओं के अंतर्गत रखा जाता है।
- यह प्रणाली विश्वसनीय प्रासंगिकताओं के पश्चात स्वीकार्य रूप से कार्य करती है।
- यह प्रणाली अस्थिरता और प्रपात प्रभाव को सीमित रखती है जब कभी ये घटनाएं होती हैं।
- सिस्टम की सुविधाएं, सुविधा रेटिंग के अंतर्गत उन्हें परिचालित करके अस्वीकार्य क्षति से सुरक्षित रखती है।
- सिस्टम की सत्यनिष्ठा इसके नष्ट हो जाने पर तत्काल बहाल की जाती है।
- इस प्रणाली में सिस्टम घटकों के निश्चित और यथोचित प्रत्याशित आउटेज प्रणाली घटकों को ध्यान में रखकर हर समय विद्युत उपभोक्ताओं को बिजली, पावर और ऊर्जा आवश्यकताओं की आपूर्ति की क्षमता है।

सिस्टम में विश्वसनीयता हासिल करने के लिए सिस्टम में पर्याप्त रिजर्व क्षमता, चक्रण और साथ ही गैर चक्रण आवश्यकताओं की योजना तैयार की जानी है। परिचालन, स्वामित्व, माडेलिटी और रिजर्व की प्रकृति से संबंधित पहलुओं का भी निर्धारण किए जाने की आवश्यकता है। भार केंद्रों की तुलना में रिजर्व उत्पादन क्षमता का स्थान भी महत्वपूर्ण है।

राष्ट्रीय विद्युत नीति में हमारे सिस्टम में 5 प्रतिशत रिजर्व मार्जिन की शर्त है। इस पर 12वीं और 13वीं योजनाओं के दौरान प्लानिंग क्षमतावर्धन आवश्यकता के समय विचार किया गया। यह रिजर्व मार्जिन कैसे प्रदान किया जाए, इसका विवरण इस अध्याय में बाद में प्रस्तुत किया गया है ('योजना दृष्टिकोण' के खंड 5.4 के अंतर्गत)।

(ख) परिचालन का लचीलापन

बेस-लोड उत्पादन के लिए निर्दिष्ट सिस्टम में अल्प समय के अंदर मांग में बदलाव के लिए सिक्रयरूप से या सक्षमतापूर्ण प्रतिक्रिया देने के लिए विशेषताओं की कमी होगी। मांग में बदलाव के अलावा, उत्पादन में उस समय व्यापक बदलाव की संभावना रहती है जब नवीकरणीय ऊर्जा संयंत्रों का स्थापित आधार नवीकरणीय ऊर्जा स्रोतों से अपनी आवश्यकता के लिए डिस्कॉम पर बाध्यता के फलस्वरूप बढ़ जाती है (आर पी ओ की पूर्ति हेतु)। चूंि कि सिस्टम स्थिरता के लिए सभी घटनाओं में मांग के साथ बराबर के उत्पादन की आवश्यकता होती है, इसलिए परिवर्तनशील मांग के लिए त्वरित प्रतिक्रिया हेतु जेनरेटरों का लचीलापन और क्षमता उपयुक्त उत्पादन संयंत्रों के जिए सिस्टम में आरंभ की जाए। अप्रत्याशित मांग और कुछ इकाइयों की अचानक अप्रत्याशित आउटेज के कारण उत्पन्न अतिरिक्त मांग की पूर्ति हेतु सिस्टम समर्थ होना चाहिए।

भारत में राज्यों के व्यस्त समय की मांग द्विपक्षीय करारों के द्वारा अन्य राज्यों से बिजली खरीदकर या फ्रीक्वेंसी – लिक्ड मूल्यों पर असामायिक इंटरचेंज (यू आई) की प्रक्रिया द्वारा और कभी – कभी बिजली कटौती द्वारा कुछ सीमा तक पूरी की जाती है। यहां सह्य फ्रीक्वेंसी बैंड (50.2 से 49.7 हर्ट्ज) विकसित देशों में अनुमत सीमा से काफी अधिक है। तथापि, भविष्य में इस फ्रीक्वेंसी बैंड में कमी आने की संभावना है और इससे व्यस्ततम समय

की उपलब्ध मार्जिन आवश्यकता या फ्रीक्वेंसी इंटरचेंज प्रक्रिया के जिरए कमी होगी। हाइड्रो विद्युत संयंत्रों को अचानक व्यस्त समय की पूर्ति हेतु त्वरित आरंभ किया जा सकता है लेकिन यह सुविधा उन कुछ राज्यों तक सीमित है जिसके पास वर्ष भर पर्याप्त जल भंडारण होता है।

पीकिंग संयंत्र पर्यावरणीय दृष्टि से अनुकूल होने चाहिए और ये उत्सर्जन मानकों का पालन करें ताकि इन्हें लोड केंद्रों के निकट अवस्थापित किया जा सके। ये ऐसे होने चाहिए कि इन्हें तत्काल शुरू (बंद) किया जा सके और शीघ्र रैंप अप किया जा सके। विभिन्न संयंत्र भार में इनकी उच्च क्षमता और समान होनी चाहिए। ये 'बारह मासी' संयंत्र होने चाहिए और वर्ष भर उपलब्ध होने वाले ईंधन के उपयोग वाले होने चाहिए।

विद्युत प्रणाली में रिजर्व के संबंध में विदेश में विकसित विद्युत बाजारों में आकस्मिकताओं की पूर्ति हेतु कुछ रिजर्व रखने का चलन है। आवृत्ति में कमी अर्थात 0.1 से 0.2 हर्ट्ज के लिए प्रथम त्वरित प्रतिक्रिया स्वचालित उत्पादन नियंत्रण (ए जी सी) के जिरए 5 से 30 सेकिंड में किसी हाट रिजर्व संयंत्र (ग्रिड में सबसे बड़ी एकल इकाई के बराबर) आन लाइन लाना है। दूसरे कदम के रूप में तेज रिजर्व विद्युत संयंत्र (एफ आर पी पी) 4 से 15 मिनट में आरंभ किए जाते हैं और भार भरने के लिए रैंप किए जाते हैं जिसके पश्चात ए जी सी संयंत्र रिजर्व मोड को रिट्रीट करेगा। तीसरे कदम के रूप में रिजर्व विद्युत संयंत्रों को (आर आर पी पी) 45 से 60 मिनट बदला जाता है जिसके पश्चात एफ आर पी पी संयंत्र अपने स्टैंड – बाई मोड में वापस हो जाते हैं।

रिजर्व की कितपय परतें जैसे कि विकिसत देशों में योजना बनायी जाती है, में विभिन्न रिजर्वों के परिचालन की नम्यता का ध्यान भी रखा जाता है। इसलिए, हॉट रिजर्व जिन्हें सेिकंडों के अंदर ही चलाना आवश्यक है, को सामान्यतया स्वचालित उत्पादन नियंत्रण (ए जी सी) के जिरए प्रदान किया जाता है। त्वरित बदला जाने वाला रिजर्व उत्पादन स्रोत से होगा जी एस जी स्रोतों से अधिकतम में लेने के लिए 4 से 15 मिनट के अंदर रैंपिंग के समक्ष है। तथापि, रिप्लेसमेंट रिजर्व क्षमता धीमें कार्यरत उत्पादन स्रोत से हो सकती है तािक कार्यरत रिजर्वों से तेजी से अधिकार में ली जा सके। तदनुसार, प्रत्येक रिजर्व क्षमता उपयुक्त उत्पादन स्रोत से होनी चाहिए जिसमें अपेक्षित रैंप अप और रैंप डाउन विशेषताएं हों। नम्यता परिचालन प्रदान करने के लिए प्लानिंग रिजर्व के इन सिद्धांतों को अपनी प्लानिंग प्रोसेस में अपनाया गया है जिसका विवरण खंड 5.4 में दिया गया है।

5.2.3 संसाधनों का सफल उपयोग

विद्युत उत्पादन के लिए ईंधन दुर्लभ है अत: इसका उपयोग अति विवेकपूर्ण तरीके से किया जाना चाहिए। पर्यावरणीय दृष्टि से यह अनिवार्य है कि प्रति के . सीएएल ईंधन ऊर्जा उत्पादन यथासंभव अधिक है। इससे विद्युत उत्पादन प्रक्रिया के दौरान होने वाला प्रदूषण न्यूनतम होगा। संसाधनों का अधिकतम सफल उपयोग के लिए किए गए / किए जा रहे विभिन्न उपाय अर्थात कोयला आधारित उत्पादन; मिश्रित शीतल, तापन और विद्युत (सी सी एच पी) और वितरित उत्पादन के लिए आद्यतन प्रौद्योगिकी अपनाने का विवरण अध्याय -4 में दिया गया है।

5.3 प्लानिंग टूल्स – प्लानिंग माडलों का विवरण

उत्पादन से संबंधित कार्यों के लिए निम्नलिखित कंप्यूटर साफ्टवेयर माडलों का इस्तेमाल करके सी ई ए विस्तृत विस्तार कर रहा है:

- (i) एकीकृत प्रणाली प्लानिंग (आई एस पी एल ए एन)
- (ii) विद्युत उत्पादन विस्तार विश्लेषण प्रणाली (ई जी ई ए एस) प्लानिंग माडलों की प्रमुख विशेषताओं के संबंध में नीचे चर्चा की गई है।

5.3.1 एकीकृत प्रणाली प्लानिंग (आई एस पी एल ए एन) माडल

पूरी प्रणाली के लिए क्षमता और एकीकृत रूप से पारेषण लिंकेज विस्तार, दोनों के लिए विकल्पों का आकलन करने की क्षमता होनी चाहिए तािक अधिकतम समाधान प्राप्त किया जा सके। योजनाकारों के सम्मुख मुख्य समस्याएं न केवल उत्पादन क्षमता आवश्यकता और विश्वसनीयता को अधिकतम करने से संबंधित हैं बल्कि लोड केंद्रों, ईंधन परिवहन नेटवर्क और पारेषण ग्रिड के विस्तार के संबंध में संयंत्र के स्थान निर्धारण की भी है। विद्युत प्रणाली प्लानिंग आमतौर पर दीर्घकाल के लिए की जाती है और प्लानिंग माडल में यथोचित समय के अंदर और कम से कम प्रयासों से अनेक परिदृश्यों का विश्लेषण करने की क्षमता होनी चाहिए।

आई एस पी एल ए एन माडल के पास इन प्रणाली प्लानिंग मुद्दों की उत्पादन क्षमता, पारेषण नेटवर्क और ईंधन परिवहन के लिए इष्टमत विस्तार की प्रमुख विशेषताओं का विश्लेषण करने के लिए संकेतात्मक प्लानिंग औजार के रूप में इनके समाधान की क्षमता है। आई एस पी एल ए एन माडल उद्देश्य परक कार्य जिसमें परियोजना की पूंजीगत लागत जिसमें (वार्षिक), ओ एंड एम लागत (वार्षिक), ईंधन लागत, ईंधन परिवहन लागत आदि शामिल है, न्यूनीकरण पर आधारित कम विद्युत विकास योजना के अनुसार कार्य करता है।

रेखीय प्रोग्रामिंग प्रतिपादन के आधार पर यह माडल अधिक वैकल्पिक जानकारी आवधारणाओं के संबंध में इष्टतम विस्तार योजनाओं को प्रभावी रूप से तैयार करने में सक्षम है। इष्टतमीकरण का मापदंड समीक्षाधीन वर्ष के लिए कुल वार्षिक प्रणाली लागत के न्यूनतम छूट सिहत वर्तमान लागत है, इसमें सभी नई सुविधाओं (उत्पादन संयंत्र, पारेषण लाइने आदि) की वार्षिक पूंजी लागत और अनुरक्षण लागत तथा उपलब्ध न कराई गई ऊर्जा की लागत भी शामिल है।

आई एस पी एल ए एन माडल में पूर्ति की जाने वाली मांग के आधार पर कि प्रदायगी विद्युत न्यूनतम है, के आधार पर एक विशेष पी एल एफ में विद्युत संयंत्रों के परिचालन पर विचार किया जाता है। तदनुसार, मंहगे ईंधन वाले थर्मल स्टेशन न्यून पी एल एफ पर चलेंगे अर्थात केवल व्यस्त मांग अविध के दौरान और न कि व्यस्त अविध से बाहर। माडल के अनुसार, सभी डी जी आधारित स्टेशन न्यूनतम पी एल एफ पर परिचालित होंगे। कुछ गैस आधारित स्टेशन न्यून पी एल एफ पर भी परिचालित होंगे। बावजूद हरियाणा, पंजाब, राजस्थान, गुजरात, तिमलनाडु राज्यों स्थित कोयल आधारित विद्यमान कुछ लोड सेंटर और गुजरात तथा महाराष्ट्र राज्य में स्थित कुछ आयातित कोयला आधारित स्टेशन इन स्टेशनों के उच्च प्रदायगी ईंधन लागत के कारण न्यून संयंत्र लोड कारक (पी एल एफ) पर चल रहे हैं।

तथापि, कम लागत विस्तार योजना सदा व्यवहार्य योजना नहीं होती है। व्यवहार्यता की दृष्टि से भूमि, जल आदि की उपलब्धता संयंत्र की स्थापना के लिए विभिन्न मंजूरियां प्राप्त करना, मुख्य संयंत्र के लिए आर्डर देने आदि की जांच किए जाने की आवश्यकता है।

5.3.2 बिजली उत्पादन विस्तार विश्लेषण प्रणाली (ई जी ई ए एस)

विद्युत उत्पादन विस्तार विश्लेषण प्रणाली (ई जी ई ए एस) एक साफ्टवेयर पैकेज है जिसका आशय विद्युत उत्पादन विस्तार प्रणाली की विस्तार योजना बनाना है। इस प्लानिंग मॉउल में विद्युत प्रणाली का परिचालन अनुकरण संभाव्यता है। विद्युत प्रणाली में भार मात्रा और समय बदलावा दोनों के संदर्भ में है। आदर्श उत्पादन, विश्वसनीयता सूचक अर्थात संभवतया लोड की क्षति (एल ओ एल पी), ऊर्जा प्रदत्त नहीं की गई (ई एन एस) का अनुमानित मान और उद्देश्य कार्य को न्यूनतम करके किसी विस्तार विद्युत योजना के लिए रिजर्व मार्जिन, जो विद्यमान और प्रतिबद्ध उत्पादन स्टेशनों के परिचालन से जुड़ी वर्तमान लागत है, अर्थात वार्षिक / संतुलित पूंजी लागत तथा नए उत्पादन स्टेशनों की परिचालन लागत और ऊर्जा "प्रदत्त नहीं" की लागत है। ई जी ई ए एस माडल प्रत्येक ऐसी योजना के लिए अपने उद्देश्य कार्यों और विश्वसनीयता सूचकों सहित कई विस्तार योजनाएं देने के लिए सक्षम है। इष्टतम विद्युत योजना वह योजना है जिसके लिए विश्वसनीयता सूचक योजनाकार द्वारा निधारित कतिपय मापदंड के अनुरूप हों और उद्देश्य कार्य न्यूनतम हो।

ई जी ई ए एस माडल स्वरूप में संभाव्यता वाला होने के कारण यह उत्पादन विस्तार प्लानिंग की लंबी रेंज प्रदान करता है क्योंकि भविष्य में कई वर्षों तक बिजली आपूर्ति की विश्वसनीयता के बहुत उपयोगी मात्रात्मक उपाय प्रदान करता है और साथ ही विद्यमान और प्रतिबद्ध प्रणाली की कुल परिचालन लागत और नई प्रणाली को लगाने और चलाने की लागत का संकेत देता है। यद्यपि, उत्पादन क्षमता की समग्र आवश्यकता का आकलन ई जी ई ए एस का इस्तेमाल करके, परिवहन योग्य ईंधन का इस्तेमाल करने वाले उत्पादन स्टेशनों का स्थान निर्धारण आई एस पी एल ए एन का उपयोग करके किया जाता है। आई एस पी एल ए एन के अंतर्गत पारेषण प्रणाली की मुख्य विशेषताएं भी प्राप्त की जाती हैं।

5.4 आयोजना पहल

11वीं योजना से आगे एक प्लानिंग एप्रोच जिसका समग्र उद्देश्य 'ऊर्जा की पर्याप्तता' है (आधार – भार क्षमता बराबर या अधिकतम अनुमानित मांग के जरिए)। इससे अधिकांश समय के लिए प्रणाली का उप – इष्टतम

परिचालन होगा। यह बेस लोड संयंत्रों जैसे कोयला और (न्यूक्लियर ईंधन की विद्युत उत्पादन प्रौद्योगिकियों में मौजूद कमजोर टर्नडाउन क्षमताओं के कारण है। इसके अलावा, बिना व्यस्त समय के दौरान 50 प्रतिशत कम अंडर लोडिंग कोयला संयंत्रों के इस पैटर्न से उप इष्टतम पी एल एफ में परिचालनरत विद्युत संयंत्रों की कमजोर क्षमता स्तर पर हो जाता है।

अत: बेस लोड क्षमताओं, पीकिंग समाधानों और रिजर्व क्षमताओं के अधिक इष्टतम मिश्रण के लिए योजना बनाना अनिवार्य है। बेस – लोड क्षमता 'थोक विद्युत' आवश्यकता का ध्यान रखेगी – जबिक अन्य सिस्टम आपरेटर को मौसमी स्पाइक और दिन के समय के बदलाव – मांग में प्रत्याशित या अप्रत्याशित का ध्यान रखने के लिए पर्यापत रिजर्व क्षमता और महत्वपूर्ण टूल प्रदान करेगा। इस प्रकार की संतुलित प्रणाली गतिशील प्रतिक्रिया विशेषताएं अब तक उत्कृष्ट होंगी और यह उच्चतर विश्वसनीयता में योगदान करेगा क्योंकि असूचीबद्ध आंतरिक और अंतर्केत्रीय स्थानांतरण चुनौती प्रस्तुत करेंगे, इसलिए लोड और अनुगम्य समाधानों राज्य ग्रिड स्तर पर ही वरीयत: निर्धारण किया जाए और प्लान किया जाए। इससे स्थानीय पीकिंग आवश्यकताओं की त्वरित, रियल टाइम प्रतिक्रिया सुनिश्चित होगी।

प्लानिंग दृष्टिकोण निम्नलिखित क्रम में हैं:

1) अखिल भारत लोड अवधि कर्व तैयार करना

एक अखिल भारत लोड अवधि कर्व (एल डी सी) सभी राज्यों के लिए प्रति घंटा संकलन से सृजित किया गया। आंकड़ों को विभिन्न क्षेत्रीय लोड डिस्पैच केंद्रों और राज्य लोड डिस्पैच केंद्रों से गत तीन वर्षों के लिए एकत्र किए गए थे। इन आंकड़ों का विश्लेषण किया गया और शेडिंग, फ्रिक्वेंसी करेक्शन, सृजित बिजली कटौती और किन्हीं आंकड़ा त्रुटियों के संदर्भ में विसंगतियों को सही किया गया। व्यस्त समय की मांग को यूनिटी में समायोजित किया गया और अन्य हर घंटे की मांग को तदनुसार कम किया गया। यह आश्वासन दिया गया था कि अखिल भारत एल डी सी व्यस्त समय मांग और ऊर्जा की मासिक आवश्यकता दोनों की पूर्ति करता है और अंकगणितीय मॉडल का इस्तेमाल करके सी ई ए द्वारा समय – समय पर वार्षिक रूप से प्रकाशित किया जाता है। एक अद्वितीय समकक्ष अखिल भारत लोड अवधि कर्व का सृजन 2016-17 के लिए ऊर्जा आवश्यकता और पीक लोड के आधार पर किया गया। एक अनोखा लोड अवधि कर्व का वर्णन नीचे चित्र 5.2 में किया गया है:

चित्र 5.2- अखिल भारत लोड अवधि कर्व (एल डी सी) अनुमानित अखिल भारत एल डी सी 2016-17

2) उत्पादन विस्तार अध्ययन

उपर्युक्त अखिल भारत एल डी सी को ई जी ई ए एस साफ्टवेयर में जानकारी के रूप में डाला जाता है। उत्पादन विस्तार अध्ययन, हाइड्रो, नवीनीकरण, गैस और न्यूक्लियर परियोजनाओं को प्राथमिकता दी जा सके और अपने में निहित फायदों के कारण परियोजनाओं को चलाने के लिए आवश्यकता के तौर पर शुरू किया जा सके। कार्यक्रम में कार्यान्वित की जा रही कोयला आधारित परियोजनाओं की मांग आवश्यकता को पूरा करने के लिए इस कार्यक्रम में कोयला आधारित परियोजनाओं का संकेत दिया गया है। हाइड्रो और गैस आधारित परियोजनाएं जिन्हें कार्यान्वयन के विभिन्न चरणों के अंतर्गत परियोजनाओं में से 12वीं योजना के दौरान कार्यान्वित किए जाने की संभावना है, पर प्लानिंग प्रयोजन के लिए अवश्यक चलाई जाने वाली परियोजना के रूप में विचार किया गया है। 12वीं योजना में न्यूक्लियर पावर कारपोरेशन से सूचना के आधार पर न्यूक्लियर परियोजनाओं पर लाभ हेतु विचार किया गया। 12वीं योजना में चर्चित नवीकरणीय क्षमता नवीन और नवीकरणीय ऊर्जा मंत्रालय की सूचना के अनुसार है। ऊर्जा आवश्यकता की पूर्ति हेतु केवल नवीकरणीय क्षमता पर विचार किया गया और न कि व्यस्त समय की बिजली आवश्यकता पर। लागत मितव्ययता के आधार पर प्रणाली की मांग को पूरा करने के लिए उत्पादन की किस्म की लोडिंग का विवरण चित्र 5.2 में दिया गया है।

रिजर्व क्षमता

जैसा कि एन ई पी में निर्धारित है, 5 प्रतिशत स्पिनिंग रिजर्व प्रदान किया जाना है। यह 12वीं योजना के अंत तक लगभग 10,000 मेगावाट की क्षमता के अनुरूप है। इस रिजर्व क्षमता की आवश्यकता को इन संयंत्रों से नियामक उपलब्धता की तुलना में सामान्य परिचालन परिस्थितियों के अंतर्गत 5 प्रतिशत तक कोयला आधारित संयंत्रों की समान रूप से घटती उपलब्धता द्वारा योजना में शामिल किया गया है।

उपर्युक्त सभी विकल्पों का समय से बहुत त्वरित प्रतिक्रिया हुई है, इसलिए पर्याप्त रूप से हाट रिजर्व, त्वरित प्रतिस्थापन रिजर्व और प्रतिस्थापन रिजर्व प्रदान किए।

पीकिंग क्षमता

पीकिंग भार कई कारणों से होता है। इसका अनुमान लगाया जा सकता है जैसे सुबह और सायंकाल का व्यस्ततम समय। सिंचाई आवश्यकताओं को पूरा करते समय ऐसा हो सकता है जब कई हजार पंप सेट लगातार चलते हैं। शहरी भार में कितपय कारणों से बढ़ोतरी हो सकती है (उदाहरण के लिए दिल्ली में गर्मियों के ग्रीष्म वातानुकूलन भार) या पीकिंग कमजोर, नवीकरणीय ऊर्जा स्रोत जैसे पावर टरबाइनों से उत्पादन में अचानक कमी होना। त्वरित प्रतिक्रिया विशेषताओं वाले संयंत्र जो उन्हें 'आदर्श' संयंत्र बनाते हैं, का उपयोग अनुमानित दैनिक, दिन में व्यस्त समय और मौसमी व्यस्तता की आवश्यकता की पूर्ति हेतु किया जा सकता है। नम्यता प्रदान करने के लिए ग्रिड आपरेटर के हथियार का एक अभिन्न हिस्सा हो सकते हैं।

पीकिंग क्षमता त्वरित प्रतिक्रिया विद्युत संयंत्रों से आने की आवश्यकता है। इसलिए भंडारण की क्षमता वाले अग्रणी पंप्ड स्टोरेज हाइड्रो संयंत्र व्यस्तम समय में बिजली प्रदान करते हैं। इसके अलावा, गैसा आधारित / डीजल आधारित संयंत्र अर्थात ओ सी जी टी और इंजन व्यस्त समय की बिजली के लिए अनुकूल हैं। देश में बड़े भार केंद्रों में वितरित पीक क्षमता का होना भी उपयुक्त समझा गया है, इसके लिए शायद 5 महानगरों में से प्रत्येक में 400 मेगावाट क्षमता वाली गुणवत्ता, विश्वसनीय और नम्य विद्युत आपूर्ति करने के साथ 12वीं योजना के दौरान लगभग 2000 मेगावाट क्षमता अभिवृद्धि के लिए पर्याप्त होगा।

आयोजना प्रक्रिया में नवीकरणीय क्षमता

नवीकरणीय क्षमता के असंख्य अंतर्निहित लाभ हैं और इसलिए परंपरागत बिजली संयंत्रों से क्षमता वृद्धि आवश्यकता का अनुमान लगाते समय अध्ययनों में इस पर विचार किया गया है। क्षमता अभिवृद्धि अध्ययन में पवन और सौर ऊर्जा से अवश्य चलने वाले संयंत्र के रूप में प्रमुखता के साथ निर्धारित किया गया था। अपेक्षित शेष क्षमता वृद्धि का अनुमान प्रणाली की मांग की पूर्ति हेतु लगाया गया था। नवींकरणीय की संभावित उपलब्धता के अनुरूप विभिन्न परिदृश्यों का अनुमान लगाया गया। अपारंपरिक स्रोत ऊर्जा प्रेषण पर उपलब्धता न कि लगातार रीति के आधार पर विचार किया जा सकता है।

3) पुरानी थर्मल इकाइयों को बंद करना

पुराने थर्मल विद्युत संयंत्रों के संबंध में सूचना संकलित की गई थी और क्षमता वृद्धि आवश्यकता का अनुमान लगाते समय सभी अक्षम थर्मल इकाइयों को धीरे-धीरे और क्रमिक रूप से समाप्त करने पर विचार किया गया। 12वीं और 13वीं योजना के दौरान प्रत्येक 4000 मेगावाट को हटाया गया था।

4) संपूर्ण ग्रिड विफल होने के पश्चात ब्लैक स्टार्ट की सुविधा

जैसा कि ऊपर सुझाव दिया गया है कि प्रत्येक 5 महानगरों में 400 मेगावाट लगभग 2000 मेगावाट की पीकिंग क्षमता प्रदान की जा सकती है। यह सुविधा ग्रिड के विफल रहने की दशा में ब्लैक स्टार्ट अप प्रदान करने मे भी उपयोगी होगी। परिचालन की उच्च क्षमता के मिश्रित ताप और विद्युत संयंत्र ग्रिड विफल होने के तुरंत बाद ब्लैक स्टार्ट सुविधाएं प्रदान कर सकते हैं।

5) दिन के समय (टी ओ डी) टैरिफ

राष्ट्रीय विद्युत नीति और राष्ट्रीय टैरिफ नीति के अनुसार राज्य आयोगों के लिए दिन के समय (टी ओ डी) मीटिरिंग शुरू करना अनिवार्य है ताकि व्यस्ततम समय की बिजली मांग को कम किया जा सके। लोड कर्व को बराबर करने की दृष्टि से जिसके लिए व्यस्त समय की मांग को कम करना अनिवार्य है और व्यस्त समय के परे लोड की खपत बढ़ा देने / बढ़ाना वांछनीय है और इसकी प्रणाली से अपेक्षा की जाती है। इसे निम्नलिखित पद्धतियों द्वारा किया जा सकता है:

- उपभोक्तओं को व्यस्त समय से अन्यथा अपनी खपत को शिफ्ट करने के लिए प्रोत्साहन देना
- व्यस्त समय के दौरान उपभोक्ताओं को खपत करने को निरूत्साहित करना
- उपर्युक्त दोनों का मिश्रण।

उपर्युक्त पद्धतियों के लिए व्यस्त समय तक / व्यस्त समय के अलावा अलग–अलग समय के लिए अलग – अलग टैरिफ की आवश्यकता है। यह सर्वविदित है कि बिजली की कीमत को नियंत्रित करके अलग–अलग उपभोक्ताओं को दिन के एक समय से दूसरे समय में अपनी खपत को या तो कम करने / बढाने या शिफ्ट करने के लिए प्रेरित करना संभव है। अर्थात उपभोक्ता को दिन के दौरान अपनी खपत पैटर्न को बदलने के लिए प्रेरित किया जा सकता है।

मांग पक्ष प्रबंधन के लिए एक हथियार के रूप में टी ओ डी मीटरिंग के जिए व्यस्त समय की मांग में कमी करना काफी लाभदायक है, यह बिजली कंपनी को अपनी उपत्पादन विद्युत खरीद आवश्यकता जो आपूर्ति की समग्र लागत को कम करता है / विद्युत कंपनी के लिए दूसरा लाभ यह है कि कुछ पीक लोड को ऑफ पीक लोड में शिफ्ट करने के कारण प्रणाली के भार कारक में सुधार आता है जिससे लोड कर्व बराबर रहता है। बेहतर भार कारक उत्पादन स्टेशनों के संयंत्र भार कारक में सुधार लाता है और इस प्रकार उत्पादन लागत कम आती है। उपभोक्ता अंतत: व्यस्ततम समय के अलावा, कम दरों पर बिजली प्राप्त करके इससे लाभांवित होते हैं और बिजली कंपनियों की आपूर्ति लागतों में कमी करके भी लाभांवित होंगे। बिजली कटौती की घटना में भी व्यस्त समय मांग में कटौती में कमी आयेगी।

यद्यपि, टी ओ डी टैरिफ कई राज्यों में अधिक खपत वाले उपभोक्ताओं के लिए लागू है / फिर भी यह अभी खुदरा स्तर पर लागू नहीं है। टी ओ डी मीटरिंग को उन उपभोक्ताओं के लिए लागू किया जा सकता है जहां व्यस्ततम समय की बिजली की मांग को व्यस्त समय की मांग के अलावा शिफ्ट करने की संभावना होती है। खुदरा स्तर पर टी ओ डी टैरिफ लगाने के लिए सभी घरेलू उपभोक्ताओं को एक नया मीटर देना होगा जो व्यस्त समय और व्यस्त समय के अलावा खपत की गई इकाइयों को अलग–अलग कर सकेगा।

5.5 **उपसंहार**

12वीं और 12वीं योजना में क्षमता वृद्धि की योजना बनाने के काम पर इस अध्याय में वर्णित सिद्धांतों के अनुसार अध्याय-6 में किया गया है। रिजर्व / मार्जिन / क्षमता रिजर्व प्रदान करके विश्वसनीयता और व्यस्त समय तक रिजर्व आवश्यकताओं का ध्यान रखने के लिए उपयुक्त रैंप अप और रैंप-डाउन प्रतिक्रिया क्षमता प्रदान करके नम्यता उत्तरोत्तर अध्यायों में क्षमता वृद्धि की योजना बनाते समय एक महत्वपूर्ण पहलू बनता है।

अध्याय 6 12वीं और 13वीं योजना के लिए उत्पादन क्षमता अभिवृद्धि कार्यक्रम

6.0 प्रस्तावना

इस अध्याय में 12 वीं योजना के दौरान आवश्यक उत्पादन क्षमता अभिवृद्धि और 13वीं योजना के दौरान आवश्यक संभावित क्षमता अभिवृद्धि का मूल्यांकन अध्याय 5 में विस्तार से दिए गए आयोजना सिद्धांतों और मानदंडों के आधार पर किया गया है।

आवश्यक क्षमता अभिवृद्धि का मूल्यांकन करने के लिए केन्द्रीय विद्युत प्राधिकरण द्वारा अध्ययन किए गए हैं। योजना के दौरान संभावित लाभ हेतु परियोजनाओं की एक सूची (ऐसी परियोजनाएं जो पहले से विचाराधीन हैं) तैयार की गयी है जिसमें से परियोजनाओं की स्थिति के आधार पर सर्वाधिक व्यवहार्य परियोजनओं का चयन किया जाता है।

पारंपरिक ऊर्जा स्रोतों में से हाइड्रो और न्यूक्लियर स्रोतों को स्वच्छ और हरित स्रोत माना जाता है, अत: अध्ययन के दौरान इन परियोजनाओं को अनिवार्य रूप से संचालित की जाने वाली परियोजना मानते हुए प्राथमिकता दी गयी है, परंतु इसके लिए प्रत्येक परियोजना की व्यवहार्यता और वर्तमान स्थिति को ध्यान में रखा गया है। शेष बची परियोजनाओं में से थर्मल परियोजनाओं का चयन परियाजनाओं की आवश्यकता और तैयारी के आधार पर किया जाता है। गैस परियोजना की स्थापना किये जाने और गैस की पर्याप्त उपलब्धता सुनिश्चित करने के लिए प्रयास किये जाने की आवश्यकता है। पीकिंग क्षमता और आरक्षित क्षमता की आयोजना भी आयोजना सिद्धांतों के अनुसार तैयारी की गयी है। हालांकि यह सुनिश्चित करने के लिए भी आवश्यक सावधानी बरती गयी है कि आवश्यकता से अधिक क्षमता की योजना तैयार न की जाए क्योंकि हमारा जोर इष्टतम समाधान पर है।

6.1 भारत में पारंपरिक स्रोतों से उत्पादन

6.1.1 हाइड्रो

60% लोड घटक पर भारत के जल विद्युत संसाधनों का अनुमान 84 जीडब्ल्यू है। औसतन लगभग 30% के लोड घटक पर 150 जीडब्ल्यू की स्थापित क्षमता संभव है, इसमें छोटी जल विद्युत परियोजनाओं (25 मेगावाट से कम क्षमता वाली) की 15 जीडब्ल्यू क्षमता शामिल नहीं है। कम कार्बन वृद्धि रणनीति से यह सुनिश्चित होगा कि स्वच्छ जल विद्युत का अधिकतम इस्तेमाल पीक लोड को पूरा करने के लिए किया जाएगा और सभी नयी परियोजनाओं की डिजाइन इस लक्ष्य को ध्यान में रखकर तैयार की जानी चाहिए। हालांकि भारत की जल विद्युत क्षमता का पूर्ण विकास जहां एक ओर तकनीकी रूप से व्यवहार्य है, वहीं दूसरी ओर जलाधिकार, परियोजना प्रभावित लोगों के पुनर्वास और पर्यावरण संबंधी चिंताएं/मुद्दे उनके समक्ष होते हैं जिनका समाधान किया जाना चाहिए।

6.1.2 न्यूक्लियर

देश में प्राकृतिक यूरेनियम की सीमित उपलब्धता के लिए न्यूक्लियर उत्पादन भी सीमित है। परमाणु ऊर्जा विभाग ने देश में वर्ष 2020 तक 20,000 मेगावाट की स्थापित न्यूक्लियर पावर क्षमता विकसित करने की योजना बनाई है। आज की स्थिति के अनुसार, स्वदेशी ईंधन पर आधारित प्रथम चरण का कार्यक्रम प्रगति पर है और यह परिपक्व स्तर तक पहुंच गया है। 500 एमडब्ल्यूई पीएफबीआर (प्रोटोटाइप फास्ट ब्रिडर रियेक्टर) के निर्माण के साथ दूसरे चरण के कार्यक्रम का भी आगाज कर दिया गया है। ऐसी आशा की जाती है कि वर्ष 2020 तक 500 एमडब्ल्यूई या उससे अधिक क्षमता वाली चार नयी यूनिटें स्थापित की जाएंगी। तत्पश्चात् बहुत से एफबीआर स्थापित किये जाएंगे। जब एफबीआर के जरिए उपयुक्त स्तर की क्षमता स्थापित हो जाती है तो तृतीय चरण के जरिये विद्युत उत्पादन के लिए थोरियम का प्रयोग शुरू किया जाएगा और दीर्घावधि में इसका लाभ उठाया जाएगा।

यद्यपि आगामी 15 वर्षों में न्यूक्लियर ऊर्जा का योगदान कम ही रहेगा, फिर भी ऊर्जा की दृष्टि से स्वयं में पर्याप्त स्तर पर यहाँ तक कि कमजोर उत्पादन भी दीर्घावधि में लाभदायक सिद्ध होगा और इससे हमें यह सुझाव मिलता है कि थोरियम का प्रयोग करते हुए न्युक्लियर पावर के विकास की दिशा में प्रयास किए जाने चाहिए।

परमाणु सहयोग पर यूएसए और भारत के बीच '123 करार' पर हस्ताक्षर किये जाने और भारत को परमाणु ईंधन की आपूर्ति के लिए एनएसजी से छूट प्रदान किये जाने के परिणामस्वरूप यह अपेक्षा की जाती है कि देश में कुछ मित्र देशों से विदेशी प्रौद्योगिकी के साथ कुछ न्यूक्लियर प्लांट भारत में स्थापित किए जाएंगे। भारत के लिए आयातित परमाणु ईंधन और प्रौद्योगिकी की उपलब्धता न्यूक्लियर पावर प्लांटों से त्वरित क्षमता अभिवृद्धि में सहायक होगी। 11वीं/12वीं योजनाओं के दौरान आयातित प्रौद्योगिकी से रियेक्टरों का निर्माण शुरू किए जाने से यह अपेक्षा की जाती है कि 13वीं योजना से आगे उनकी स्थापना हो जाएगी। मेगाक्षमता वाले न्यूक्लियर पार्कों के विकास की भी अपेक्षा है।

6.1.3 गैस

गैस की सीमित उपलब्धता के कारण गैस आधारित स्टेशनों की भी संख्या सीमित रखी जा रही है। अत: देश में कोयला आधारित थर्मल विद्युत उत्पादन भविष्य में भी अग्रणी बना रहेगा। अत: स्वच्छ कोयला प्रौद्योगिकियों सिहत पर्यावरण की दृष्टि से अनुकूल विभिन्न प्रौद्योगिकियों के विकास पर जोर दिया जाना आवश्यक है। विद्युत उत्पादन के लिए ईंधन के विकल्प के संबंध में ऊर्जा सुरक्षा पहलुओं को ध्यान में रखते हुए स्थायी विकास के सिद्धांत लागू होंगे।

विद्युत क्षेत्र सिहत देश में गैस की बढ़ रही मांग के अनुरूप गैस की आपूर्ति और उत्पादन गित नहीं पकड़ पा रहे हैं। देश में गैस आधारित पावर स्टेशनों के लिए गैस की आपूर्ति पर्याप्त नहीं है, यहां तक कि पावर स्टेशनों के लिए पूर्व में की गयी गैस आवंटन प्रतिबद्धताओं को भी पूरा नहीं किया गया। 90% पीएलएफ पर पावर स्टेशनों को प्रचालित करने के लिए 82.04 एमएमएससीएमडी की वास्तविक आवश्यकता की तुलना में अप्रैल 2012 के दौरान 51.94 एमएमएससीएमडी औसत गैस आपूर्ति की गयी जबिक यह लगभग 56.98% पीएलएफ पर इन स्टेशनों को प्रचालित करने के लिए पर्याप्त थी।

वर्ष 2009-10 में भारत सरकार ने मौजूदा पावर प्लांटों के लिए विद्युत क्षेत्र को प्रथम चरण में केजी डी6 बेसिन के 40 एमएमएससीएमडी के कुल उत्पादन में से 18 एमएमएससीएमडी गैस आवंटित की जिससे गैस आधारित पावर स्टेशनों की मानक क्षमता का सदुपयोग करने में सहायता मिली। केजी बेसिन का उत्पादन 80 एमएमएससीएमडी तक बढ़ने की उम्मीद थी। अत: बाद में ईजीओएम ने केजी बेसिन से अतिरिक्त गैस पावर सेक्टर को थोक में आवंटित की। यह आवंटन आंध्र प्रदेश की परियोजनाओं के लिए 75% पीएलएफ और गैर एपी परियोजनाओं के लिए 70% पीएलएफ पर आधारित था। इस अतिरिक्त आवंटन में मौजूदा विद्युत परियोजनाओं के लिए फर्म आधार पर 12.29 एमएमएससीएमडी गैस और फाल बैक आधार पर 12 एमएमएससीएमडी गैस शामिल हैं. जिनमें 2009-10 के दौरान स्थापित की जानेवाली परियोजनाएं भी शामिल हैं।

हालांकि पिछले कुछ वर्षों में केजी बेसिन से घटे हुए उत्पादन के आलोक में यहां तक कि पावर प्लांटों को फर्म आधार पर आवंटित गैस की भी आपूर्ति नहीं की जा रही है और देश को भारी मात्रा में उत्पादन हानि हो रही है। अर्धहरित पावर होने के नाते गैस पावर प्लांटों को बढ़ावा देने की आवश्यकता है जिससे कि हमारे कार्बन उत्सर्जन के आंकड़े कम हो सकें, साथ ही पारंपरिक कोयला आधारित पावर प्लांटों की तुलना में गैस आधारित पावर प्लांटों के और भी अन्य कई अंतर्निहित लाभ होत हैं। वर्तमान में देश में लगभग 13,000 मेगावाट गैस आधारित क्षमता विभिन्न निर्माण चरणों पर है। परंतु वर्तमान में नये पावर प्लांटों को गैस की अनुपलब्धता देश में गैस आधारित पावर प्लांटों के विकास में एक गंभीर बाधा के रूप में उभरकर सामने आयी है। वर्तमान में मौजूदा पावर प्लांट बहुत ही कम पीएलएफ पर प्रचालित किये जा रहे हैं और कुछ पावर प्लांट गैस की अनुपलब्धता के कारण बेकार बंद पड़े हैं।

केजी बेसिन से पावर परियोजनाओं को गैस की वास्तविक आपूर्ति शुरू होने के बाद मौजूदा परियोजनाओं के विस्तार के साथ-साथ हरित क्षेत्र परियोजनाओं सहित लगभग 1,30,000 मेगावाट क्षमता वाली गैस आधारित

पावर परियोजनाओं की स्थापना हेतु बहुत से प्रस्ताव प्राप्त हुए हैं। हालांकि इन परियोजनाओं के लिए आबंटन हेतु गैस उपलब्ध नहीं है।

क्षमता अभिवृद्धि लक्ष्य को पूरा करने और कार्बन डाइऑक्साइड (CO_2) के कुल उत्सर्जन को कम करने के लिए लगभग 20,000 से 25,000 मेगावाट क्षमता वाली गैस आधारित परियोजनओं (गैस की उपलब्धता के अध्यधीन) की योजना तैयार करना आवश्यक है। गैस की अनिश्चितता को ध्यान रखते हुए 12वीं योजना के लिए दो परिदृश्य तैयार किए गए हैं। हालांकि यह सिफारिश की जाती है कि देश में विद्युत की भारी कमी को ध्यान में रखते हुए जहाँ तक घरेलू गैस आवंटन का संबंध है तो विद्युत परियोजनाओं को उच्च प्राथमिकता दी जानी चाहिए क्योंकि गैस प्लांटों से कार्बन उत्सर्जन बहुत कम मात्रा में होता है जो परोक्ष रूप से विद्युत क्षेत्र से कार्बन डाइऑक्साइड के उत्सर्जन को कम करने में सहायक सिद्ध होगा।

6.1.4 कोयला/लिग्नाइट

देश में कोयला के आरक्षित भंडार लगभग 277 बिलियन टन के आसपास है। कुल उत्पादित कोयले का लगभग 70% भाग की खपत केवल कोयला क्षेत्र में की जाती है।

हालांकि भूमि के अधिग्रहण में विभिन्न समस्याओं और स्वीकृतियां प्राप्त होने में विलंब के कारण कोयला ब्लॉकों के विकास में बहुत सी बाधाएं आती हैं। चूंकि अधिकांश कोयला ब्लॉक वन क्षेत्र में अवस्थित होते हैं अत: उनके लिए वन स्वीकृति प्राप्त करना एक बड़ी समस्या है। कैप्टिव कोयला ब्लॉक सामान्यत: अज्ञात होते हैं, इसलिए उनके विकास में अधिक समय लगता है। 11वीं पंचवर्षीय योजना के दौरान विद्युत परियोजनाओं की स्थापना की वर्तमान स्थिति और कोल इंडिया लिमिटेड की उत्पादन योजना के अनुसार 11वीं पंचवर्षीय योजना के सीमांत वर्ष में घरेलू कोयले की मांग और उपलब्धता के बीच अंतर लगभग 53 मीट्रिक टन था। उपर्युक्त कमी को पूरा करने के लिए विद्युत कंपनियों को 35 मीट्रिक टन कोयला आयात करने की सलाह दी गयी। हालांकि वर्ष 2011-12 के दौरान कोयले का वास्तविक आयात लगभग 28 मीट्रिक टन था। आयात किए गए कोयले का मिश्रण प्रौद्योगिकीय रूप से लगभग 10-15% तक ही व्यवहार्य है। अत: कोयले की कमी के परिणामस्वरूप कोयला आधारित क्षमता घट गई।

लिग्नाइट के भूगर्भीय आरक्षित भंडार अनुमानित रूप से लगभग 35.6 बिलियन टन है। लिग्नाइट सीमित स्थानों जैसे तिमलनाडु में नेवेली, गुजरात में सूरत और अकरीमोटा और राजस्थान में बरिसंगार, पलाना, बिथनोक में उपलब्ध है। 86% से अधिक संसाधन केवल तिमलनाडु राज्य में ही अवस्थित हैं जबिक शेष 14% आरिक्षित भंडार अन्य राज्यों में उपलब्ध हैं। चूंकि लिग्नाइट अपेक्षाकृत अधिक गहराई में उपस्थित है, जहां से उसका परिवहन आसानी से संभव नहीं है, अत: पिटहेड स्टेशनों में विद्युत उत्पादनों के लिए इसका इस्तेमाल आकर्षक हो सकता है। लिग्नाइट के खनन की लागत को नियंत्रित रखा जाना चाहिए जिससे कि विद्युत का उत्पादन आर्थिक दृष्टि से मितव्ययी शामिल हो सके।

6.2 विश्वसनीयता मानदंडों के लिए अपनाई गई शर्तें

12वीं और 13वीं पंचवर्षीय योजना के लिए उत्पादन आयोजना तैयार करने के लिए ईजीईएएस सॉफ्टवेयर का प्रयोग किया गया है। विद्युत प्रणाली की आयोजना इस ढंग से तैयार की गई है ताकि यह संभावित मांग को पूरा कर सके और विश्वसनीयता का अपेक्षित स्तर सुनिश्चित किया जा सके। विश्वसनीयता किसी भी प्रणाली की क्षमता का एक ऐसा मापक होती है जो निर्धारित स्थितियों में किसी भी प्रणाली के निर्धारित निष्पादन का मूल्यांकन करने में सहायक है। हमारे अध्ययनों में लोड संभाव्यता की हानि (एलओएलपी) एक ऐसा मानदंड है जिसे पीक लोड को पूरा करने में प्रणाली की क्षमता को प्रदर्शित करने के लिए अपनाया जाता है और एनर्जी नॉट सर्व्ड (ईएनएस) ऐसा मानक है जिसे प्रणाली में ऊर्जा आवश्यकता को पूरा न करने की स्थिति दर्शाने के लिए अपनाया जाता है। एलओएलपी ऐसी संभाव्यता है जो कोई प्रणाली विनिर्दिष्ट प्रचालन स्थितियों के अंतर्गत अपने पीक लोड लक्ष्य को प्राप्त करने में विफल हो जाती है। यह प्रति वर्ष दिनों अथवा प्रति वर्ष उन कार्य घंटों के अनुपात के रूप में होती है जब उपलब्ध उत्पादन क्षमता पीक मांग को पूरा करने की दृष्टि से अपर्याप्त होती है। यह सूचकांक दिशाहीन है और इसे प्रतिशत के रूप में भी व्यक्त किया जा सकता है।

ईएनएस अपेक्षित ऊर्जा की वह मात्रा है जो कुल ऊर्जा आवश्यकता के एक भाग के रूप में उपभोक्ताओं को आपूर्ति के लिए प्रणाली अक्षम हो जाती है। यह सूचकांक पुन: दिशाहीन है और इसे प्रतिशत के रूप में व्यक्त किया जा सकता है। दूसरे शब्दों में यह कहा जा सकता है कि किसी वर्ष में ऊर्जा आवश्यकता की कितनी यूनिट को पूरा नहीं किया जा सका और संगत रूप से किसी वर्ष में कितने घंटे विद्युत की मांग को पूरा नहीं किया गया। विश्व के कई देशों ने अपनी विद्युत प्रणालियों की स्थिति और प्रणाली की विश्वसनीयता के लिए उपभोक्ताओं की भुगतान क्षमता के आधार पर अपने-अपने विश्वसनीयता मानदंड अपनाए हैं। यह स्पष्ट है कि कोई भी अधिक कठोर और विश्वसनीय प्रणाली के जिरए विद्युत उत्पादन और आपूर्ति की लागत अधिक होगी, जिसका भुगतान उपभोक्ता को ही करना है। कुछ देशों में एलओएलपी के विवरण निम्नानुसार हैं:

देश का नाम	एलओएलपी(%)
कंबोडिया	1.8
लाओस	0.27
थाइलैंड	0.27
वियतनाम	0.27
हांगकांग	0.006
बांगलादेश	1.0
बेल्जियम	0.2
यूएसए	0.03
चीन	0.14

स्रोत: यह सूचना उपर्युक्त देशों की वेबसाइट से एकत्र की गई है।

अब तक भारत में अपनाए गए विश्वसनीयता आंकड़े एलओएलपी-1% और ईएनएस-0.15% हैं। ऐसी स्थिति तब बनी जब भारत के समक्ष विद्युत की भारी कमी उत्पन्न हो गई। अब ऐसी उम्मीद है कि विद्युत की कमी दूर हो जाएगी। अत: 12वीं पंचवर्षीय योजना से आगे अधिक कठोर एवं विश्वसनीय शर्तें अपनायी जाएंगी। यूएसए 0.03% एलओएलपी अपनाता है जो विकसित अर्थव्यवस्था के लिए उचित प्रतीत होती है। कुछ दक्षिण एशियाई देशों द्वारा अपनाए जाने वाले मानक एलओएलपी 0.27% है।

अत: यह प्रस्ताव किया गया है कि 12वीं पंचवर्षीय योजना से आगे आयोजना के उद्देश्य से 0.2% एलओएलपी और 0.05% ईएनएस मानक अपनाए जाएंगे।

6.3 आयोजना संबंधी शर्तें (सीईआरसी की शर्तें)

विभिन्न प्रकार की उत्पादन यूनिटों की उपलब्धता और विद्युत उत्पादन क्षमताओं का मूल्यांकन करने के लिए आयोजना अध्ययनों में परिशुद्ध निष्पादन मानदंड आवश्यक होते हैं। देश और विभिन्न क्षेत्रों की अनुमानित मांग को पूरा करने के लिए पीकिंग पावर उपलब्धता और ऊर्जा उत्पादन क्षमता महत्वपूर्ण मानदंड होते हैं। पीक जरूरत के समय विद्युत की उपलब्धता और प्लांड लोड फैक्टर ऐसे महत्वपूर्ण निष्पादन घटक हैं जो आयोजना अध्ययनों के लिए प्रयुक्त अन्य विशेषताओं में अनुषंगी विद्युत खपत, उष्मा दर, उत्पादन यूनिटों की पूंजीगत लागत आदि शामिल होती हैं। विभिन्न प्रकार की उत्पादन यूनिटों का प्रचालनगत निष्पादन अलग-अलग होता है और तदनुसार थर्मल (कोयला), संयुक्त चक्र, जल विद्युत और

न्यूक्लियर परियोजनाओं के लिए अलग-अलग शर्तें निर्धारित की जाती हैं और उनका प्रयोग किया जाता है। विभिन्न आकार वाली थर्मल यूनिटों के लिए अलग-अलग उत्पादन आयोजना शर्तें अपनायी जाती हैं और बड़े आकार अर्थात् 200 मेगावाट और उससे अधिक आकार वाली उत्पादन परियोजनाओं ने पिछले कई वर्षों से लगातार बेहतर निष्पादन प्रदर्शित किया है। 660 मेगावाट और उससे अधिक आकार वाली बड़ी यूनिटें, जो भविष्य में स्थापित की जाने वाली हैं, की स्थापना अनुषंगी विद्युत खपत के लिए 500 मेगावाट वाली यूनिटों के साथ की गई है, तथापि उष्मा दर के उद्देश्य से इन यूनिटों को एक अलग समूह में रखा गया है। संयुक्त चक्र गैस टरबाइन (सीसीजीटी) बहुत ही दक्ष यूनिटें हैं और इनकी उष्मा दर काफी कम होती है, हालांकि इनकी उपलब्धता और पीएलएफ गैस की उपलब्धता पर निर्भर करेगा। जल विद्युत यूनिटों की ऊर्जा परियोजना की डिजाइन ऊर्जा के आधार पर ली गई है।

6.3.1 पीकिंग उपलब्धता

विभिन्न प्रकार की उत्पादन यूनिटों की पीकिंग उपलब्धता (सकल) नीचे तालिका 6.1 में दी गई है:

तालिका 6.1

आंकड़े % में

	थर्मल/न्यूक्लियर/हाइड्रो पावर स्टेशनों की पीकिंग उपलब्धता (सकल)							
	यूनिट आकार	मौजूदा यूनिटें	भावी यूनिटें					
थर्मल(कोयला)	800/660 मेगावाट	-	88					
	500/250/210/200 मेगावाट	85	85					
	200 मेगावाट से कम	75	85					
	200 मेगावाट से कम, वर्तमान में 20 %	50	-					
	पीएलएफ से कम पर प्रचालनरत							
गैस आधारित	ओसीजीटी संपूर्ण आकार	90	90					
	सीसीसजीटी संपूर्ण आकार	88	88					
डीजी सेट	संपूर्ण आकार	75	75					
लिग्नाइट आधारित	संपूर्ण आकार	80	80					
न्यूक्लियर	संपूर्ण आकार	68	68					
हाइड्रो	संपूर्ण आकार	87.5	87.5					

6.3.2 अनुषंगी विद्युत खपत: शामिल की गई विभिन्न प्रकार की उत्पादन यूनिटों की अनुषंगी खपत तालिका 6.2 में दी गई है।

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 142

तालिका 6.2

l वं	ोयला आधारित पावर स्टेशन	अनुषंगी विद्युत खपत
1.	800/ 660 मेगावाट श्रेणी वाली यूनिटें	7.5%
2.	500 मेगावाट श्रेणी वाली यूनिटें	7.5%
3.	250/210/200 मेगावाट श्रेणी वाली यूनिटें	8.5%
4.	200 मेगावाट से नीचे वाली यूनिटें	12.0%
	लिग्नाइट आधारित यूनिटें	12 % <200 मेगावाट के लिए
		9 % >200 मेगावाट के लिए
II गै	स आधारित पावर स्टेशन	
1	संयुक्त चक्र	3.0%
2	मुक्त चक्र	1.0%
3	डीजी सेट/गैस ईंजन	1.0%
Ш	हाइड्रो पावर स्टेशन	0.7%
IV	न्यूक्लियर पावर स्टेशन	
	160 मेगावाट बीडब्ल्यूआर	10%
	200/220 मेगावाट पीएचडब्ल्यूआर 1000 मेगावाट एलडब्ल्यूआर	12.5%
	220/ 540 मेगावाट पीएचडब्ल्यूआर	7.8%
	500 मेगावाट एफबीआर	12.5%
		6.0%

6.3.3 मशीन उष्मा दर: विभिन्न थर्मल यूनिटों के लिए शामिल की गई मशीन उष्मा दरें (सकल) नीचे **तालिका 6.3** में दी गई हैं:

तालिका 6.3

यूनिट आकार	सकल ऊष्मा दर (केसीएएल/केडब्ल्यूएच)
800 मेगावाट	2300
660 मेगावाट	2300
500 मेगावाट	2425
200/210/250 मेगावाट केडब्ल्यूयू	2460
200/210/250 मेगावाट एलएमजेड	2500
250/210/125 मेगावाट (लिग्नाइट)	2750
100 मेगावाट	2750
50 मेगावाट श्रेणी वाली यूनिटें	3000
30 मेगावाट श्रेणी वाली यूनिटें	3300
संयुक्त चक्र गैस टरबाइन	2000
मुक्त चक्र गैस टरबाईन/डीजी सेट	2900
मुक्त चक्र गैस इंजन	2200
संयुक्त चक्र गैस इंजन	2000

6.3.4 गैस/एलएनजी की लागत और ऊष्मा मूल्य

तालिका 6.4

	लागत	कैलोरी मूल्य
ईंधन	(रू./टीएच.सीयूएम)	(केसीएएल /सीयूएम)
एलएनजी	8,000	9,800
गैस (एचवीजे)	4,400	9,500
गैस (रिलायंस)	5,760	9,500
गैस (एनईआर)	3,000	9,500

6.3.5 वित्तीय मानदंड

तालिका 6.5

क्रमांक	मद	यूनिट	मूल्य
1	डीईबीटी -पूंजीगत लागत का %	%	70
2	इक्किटी - पूंजीगत लागत का %	%	30
3	कार्यशील पूंजी - पूंजीगत लागत का %	%	6
4	ऋण पर ब्याज	%	11.5
5	इक्किटी पर लाभ	%	15.5+कर
6	कार्यशील पूंजी पर ब्याज	%	12.25
7	छूट दर	%	9.0
8	पावर प्लांट का प्रचालन और रख-रखाव प्रभार	%	2.5
9	पारेषण लाईन का प्रचालन और रख-रखाव प्रभार	%	1.5
10	मूल्यह्रास- पावर प्लांट	%	5.28 12 वर्ष के लिए

6.3.6 प्लांट लोड फैक्टर : विभिन्न प्रकार के प्लांटों के लिए शामिल किए गए थर्मल पावर स्टेशनों (कोयला और गैस आधारित) का प्लांट लोड फैक्टर नीचे **तालिका 6.6** में दिया गया है:

तालिका 6.6

थर्मल/ न्यूक्लियर पावर स्टेशन का पलांट लोड फैक्टर					
थर्मल/ न्यूक्लियर पा	वर स्टेशन का पल	ाट लोड फैक्टर			
यूनिट	पीएलएफ	अभ्युक्ति			
	(%)				
थर्मल					
कोयला आधारित					
800/660 मेगावाट	85.0	भावी यूनिटें			
500/250/210/200 मेगावाट	85.0	मौजूदा और भावी यूनिटें			
Below 100/110 मेगावाट	60	भावी यूनिटों के लिए 80%			
	40	पूर्वी क्षेत्र और पूर्वोत्त्र क्षेत्र में 20%			
		पीएलएफ से नीचे प्रचालनरत यूनिटें।			
लिग्नाइट आधारित 125/ 200/250 मेगावाट	75				
गैस आधारित					
सीसीजीटी/सीसीजीई	68.5				
ओसीजीटी/ओसीजीई	33				
न्यूक्लियर यूनिट					
संपूर्ण आकार	68	सकारात्मक क्षमता घटक			

हाइड्डो यूनिटों के लिए ऊर्जा उत्पादन किसी 90% विश्वसनीय वर्ष में निर्धारित ऊर्जा उत्पादन के अनुसार है।

6.4 12वीं पंचवर्षीय योजना के दौरान उत्पादन क्षमता विस्तार आयोजना

राष्ट्रीय लोड अंतराल कर्व के आधार पर उपर्युक्त मांग अनुमानों को पूरा करने के लिए आवश्यक स्थापित क्षमता का मूल्यांकन करने के लिए केन्द्रीय विद्युत प्राधिकरण द्वारा विद्युत उत्पादन विस्तार विश्लेषण प्रणाली (ईजीईएएस) पर एक कंप्यूटर मॉडल अध्ययन कार्यक्रम संचालित किया गया। यह अध्ययन निम्नलिखित तथ्यों पर आधारित है:

- 18वीं ईपीएस रिपोर्ट में बतायी गई अनुमानित मांग अर्थात् पीक मांग 1,99,540 मेगावाट और बस बार में ऊर्जा आवश्यकता - 1354 बिलियन यूनिट के अनुसार
- 10,000 मेगावाट का स्पिनिंग रिजर्व (राष्ट्रीय विद्युत नीति में किये गए विलेख के अनुसार 5% स्पिनिंग रिजर्व के समान)।यह प्रतिवेदन दिया गया है कि स्पिनिंग रिजर्व का यह आंकड़ा अधिक है और इसकी समीक्षा की जानी चाहिए, यह 2-3% हो सकता है। चूंकि भारत निवेश के संदर्भ में 5% स्पिनिंग रिजर्व वहन नहीं कर सकता है, अत: केन्द्रीय विद्युत प्राधिकरण के चेयरपर्सन की अध्यक्षता में गठित किए गए पीकिंग प्लांट और स्पिनिंग रिजर्व पर कार्यबल इस मुद्दे पर आवश्यक जानकारी देंगे।
- विश्वसनीयता मानदंड लोड संभाव्यता की हानि (एलओएलपी) **<0.2%** और एनर्जी नॉट सर्व्ड (ईएनएस) **< 0.05%**।
- 11वीं पंचवर्षीय योजना के दौरान निर्धारित वास्तविक क्षमता अभिवृद्धि- 54,964 मेगावाट
- 12वीं पंचवर्षीय योजना के दौरान समाप्त क्षमता लगभग 4000 मेगावाट है, जिसमें 100 मेगावाट (11वीं पंचवर्षीय योजना के दौरान पहले से समाप्त 1500 मेगावाट) से कम कोयला और लिग्नाइट आधारित शेष यूनिटें, 30 वर्ष से अधिक पुराने (अर्थात् 1987 या उससे पहले) गैस आधारित प्लांट और 110 मेगावाट वाली कुछ कोयला आधारित यूनिटें शामिल हैं।
- 1,200 मेगावाट जलविद्युत का पड़ोसी देशों से आयात
- कार्बन डाई ऑक्साइड (CO₂) के उत्सर्जन को कम करने के उद्देश्य से प्रथम प्राथमिकता संभावित जल विद्युत परियोजनाओं, फिर न्यूक्लियर और फिर गैस आधारित परियोजनाओं को दी जा रही है।
- यह सुनिश्चित करने के उद्देश्य से कि सभी मौसमों में मांग पूरी की जा रही है, मौसम आधारित अध्ययन करने के बजाय वार्षिक अध्ययन किया जा रहा है।
- अध्ययन में शामिल की गई परियोजनाएं निम्नानुसार हैं :

हाइड्रो

हमारी कम कार्बन उत्सर्जन रणनीति के अनुसार ईजीएएस अध्ययन में जलविद्युत परियोजनाओं पर अनिवार्य रूप से संचालित की जाने वाली परियोजनाओं के रूप में विचार किया गया है। विभिन्न निर्माणाधीन परियोजनाओं की स्थिति और भूगर्भीय अनिश्चितताओं, प्राकृतिक आपदाओं जैसे बाढ़, पुनस्थापना और पुनर्वास तथा पर्यावरणीय पहलुओं को ध्यान में रखते हुए ऐसा अनुमान है कि जलविद्युत परियोजनाओं के क्रियान्वयन में ऐसी समस्याएं आ सकती हैं। इस बात को आलोक में यह प्रस्ताव किया जाता है कि 12वीं पंचवर्षीय योजना के दौरान लगभग 10,897 मेगावाट जलविद्युत क्षमता अभिवृद्धि की जा सकती है। जलविद्युत परियोजनाओं के विवरण अनुबंध 6.1 में दिए गए हैं। 12वीं और 13वीं पंचवर्षीय योजना के दौरान पूरी की जा सकने वाली जलविद्युत परियोजनाओं जिनकी कुल स्थापित क्षमता 2,435 मेगावाट है, की अतिरिक्त सूची अनुबंध 6.2 में दी गई है। इसके अलावा 19,675 मेगावाट क्षमता वाली जलविद्युत परियोजनाओं की अतिरिक्त सूची तैयार की गई है, जिनका लाभ 13वीं पंचवर्षीय योजना के दौरान मिलने की संभावना है। संबंधित विवरण अनुबंध 6.8 में दिए गए हैं।

> न्यूक्लियर

न्यूक्लियर पावर कॉर्पोरेशन ऑफ इंडिया लिमिटेड द्वारा दी गई सूचना के अनुसार 5,300 मेगावाट न्यूक्लियर क्षमता अभिवृद्धि पर विचार किया गया है। इससे संबंधित विवरण **अनुबंध 6.1** में दिए गए हैं।

> थर्मल

गैस आधारित प्लांट

CO₂ के उत्सर्जन को कम करने के उद्देश्य से गैर आधारित क्षमता अभिवृद्धि को आवश्यक समझा जाता है। आधुनिक संयुक्त चक्र गैस टरबाइन (सीसीजीटी) की उच्च दक्षता कोयला आधारित प्लांटों (सुपर क्रिटिकल यूनिटों की सकल दक्षता 38-40% है) की तुलना में लगभग 55% है। गैस आधारित टरबाइन/इंजनों की स्थापना लोड सेंटर के समीप की जा सकती है। परिणामस्वरूप पारेषण प्रणाली की आवश्यकता कम हो जाएगी और इनका प्रचालन इस ढंग से किया जा सकता है जिससे कि पीक घंटों के दौरान आउटपुट को अधिकतम किया जा सके और ऑफपीक घंटों के दौरान आउटपुट न्यूनतम किया जा सके और इस प्रकार उपलब्ध गैस का इष्टतम सदुपयोग संभव हो सके।

12वीं पंचवर्षीय योजना के दौरान कोयले की कमी बढ़ सकने की संभावना को ध्यान में रखते हुए हमें 12,000 से 15,000 मेगावाट क्षमता वाली गैस आधारित परियोजनाओं की आयोजना तैयार करनी चाहिए जिससे कि क्षमता अभिवृद्धि के लक्ष्य को पूरा किया जा सके साथ ही CO₂ के उत्सर्जन को भी कम किया जा सके। देश में विद्युत की भारी कमी और गैस प्लांटों से बहुत ही कम कार्बन उर्त्सजन को ध्यान में रखते हुए जहाँ तक घरेलू गैस आवंटन का संबंध है तो यह सिफारिश की जाती है कि प्रथम प्राथमिकता विद्युत परियोजनाओं को दी जाए, जो विद्युत क्षेत्र में CO₂ के उत्सर्जन को कम करने में भी सहायक है। चूंकि गैस की उपलब्धता अनिश्चित है, इसलिए 12वीं योजना के दौरान उच्च गैस परिदृश्य में केवल 14,540 मेगावाट क्षमता वाली गैस आधारित परियोजनाओं पर ही विचार किया गया है और निम्न गैस परिदृश्य में स्थानीय स्रोतों से जिन परियोजनाओं के लिए गैस उपलब्ध है, उनसे 2,540 मेगावाट क्षमता वाली गैस आधारित परियोजनावार विवरण अनुबंध 6.1 में दिए गए हैं। इसके अलावा लगभग 13000 मेगावाट क्षमता वाली कई अन्य परियोजनाएं भी निर्माणाधीन हैं और अगर इन परियोजनाओं के लिए गैस उपलब्ध हो जाती है तो 12वीं पंचवर्षीय योजना के दौरान इनकी स्थापना की जा सकती है। इन परियोजनाओं के विवरण अनुबंध 6.6 में दिए गए हैं।

कोयला आधारित प्लांट

विनिर्दिष्ट मांग को पूरा करने के लिए शेष क्षमता अभिवृद्धि कोयला आधारित परियोजनाओं से करने का प्रस्ताव है। इस प्रकार 12वीं पंचवर्षीय योजना के दौरान भी क्षमता अभिवृद्धि के लिए प्रमुख ईंधन कोयला ही रहने की उम्मीद है। ऐसी परियोजनाओं की सूची तैयार की गई है जिनका लाभ 12वीं पंचवर्षीय योजना में प्राप्त होने की संभावना है। कोयला/लिग्नाइट आधारित 69,800 मेगावाट कुल क्षमता वाली निर्माणाधीन और 12वीं योजना के दौरान पूरी की जा सकने वाली परियोजनाओं के परियोजनवार विवरण अनुबंध 6.1 में दिए गए हैं। 33,870 मेगावाट की कुल क्षमता वाली अन्य थर्मल परियोजनाएं जो वर्तमान में निर्माणाधीन हैं और 12वीं पंचवर्षीय योजना के दौरान जिनका लाभ प्राप्त हो सकता है, के विवरण अनुबंध 6.2 में दिए गए हैं। 14,460 मेगावाट की कुल क्षमता वाली ऐसी विद्युत परियोजनाएं जिनके लिए सामूहिक निविदा जारी की गई है, की सूची अनुबंध 6.3 में दी गई है। 13,050 मेगावाट कुल क्षमता वाली कुछ विद्युत परियोजनाओं जिनके लिए मुख्य प्लांटों हेतु आदेश जारी कर दिए गए हैं, परंतु कुछ स्वीकृतियां प्राप्त नहीं हुई हैं, के परियोजनावार विवरण अनुबंध 6.4 में दिए गए

हैं। 11,200 मेगावाट की कुल क्षमता वाली परियोजनाएं जिनके लिए कोयला संबंधी करार कर लिए गए हैं, परंतु उनके मुख्य प्लांट के लिए आदेश प्रस्तुत नहीं किए गए हैं, के विवरण **अनुबंध 6.5** में दिए गए हैं। इसके अलावा कुछ परियोजनाओं के विकासकर्ताओं ने अपनी परियोजनाओं को 12वीं पंचवर्षीय योजना सूची में शामिल करने का अनुरोध किया है। 13,111 मेगावाट कुल क्षमता वाली ये परियोजनाएं आरंभिक चरण पर हैं और 12वीं पंचवर्षीय योजना में इनकी स्थापना की जा सकती है। इन परियोजनाओं के विवरण अनुबंध 6.7 में दिए गए हैं।

6.5 12वीं पंचवर्षीय योजना अध्ययन और परिणाम

विश्वसनीयता मानदंडों के अनुरूप मांग को पूरा करने के लिए 12वीं पंचवर्षीय योजना के दौरान कुल क्षमता अभिवृद्धि का मूल्यांकन करने के उद्देश्य से ईजीईएएस अध्ययन किया गया।

पूर्व में किए गए अध्ययन केवल वार्षिक मांग अनुमानों को पूरा करने के लिए आवश्यक क्षमता अभिवृद्धि का अनुमान लगाने के लिए किए गए। हालांकि इस बात पर विचार किया गया कि वार्षिक अध्ययन पर्याप्त नहीं हैं क्योंकि उनमें इस बात की संभावना समाप्त नहीं होगी कि किसी वर्ष के सभी माहों के 5 मौसम ब्लॉकों में से प्रत्येक मौसम के दौरान विश्वसनीयता मानदंड को पूरा करने के लिए प्रणाली हेतु यह क्षमता पर्याप्त होगी अथवा नहीं। माहों के पांच ब्लॉक अप्रैल से जून, जुलाई से सितंबर, अक्टूबर-नबंबर, दिसंबर-जनवरी और फरवरी-मार्च हैं। अत: मौसम आधारित अध्ययन यह सुनिश्चित करने के लिए आवश्यक समझे गए कि प्रणाली की मौसम आधारित मांग प्रत्येक ब्लॉक में इस बात के मद्देनजर पूरी की जाएगी जब माह के उपर्युक्त ब्लॉकों में से प्रत्येक ब्लॉक के दौरान जलविद्युत प्लांटों की ऊर्जा को भी ध्यान में रखा जाएगा। अत: पांचों प्रत्येक मौसम अर्थात् वर्ष के पांच माह ब्लॉकों के लिए अध्ययन किए गए, इनमें क्षमता अभिवृद्धि आवश्यकता का मूल्यांकन करने के लिए ईजीईएएस मॉडल का प्रयोग किया गया।

हाइड्रो, गैस और न्यूक्लियर आधारित क्षमता को उच्च प्राथमिकता दी जाती है, क्योंकि इनमें कम कार्बन उत्सर्जन रणनीति की दृष्टि से लाभ अंतर्निहित हैं। अत: 12वीं योजना के दौरान संभावित इन स्रोतों से क्षमता अभिवृद्धि को विभिन्न परिदृश्यों में अनिवार्य नवीकरणीय क्षमता को भी अनिवार्य रूप से संचालित की जाने वाली क्षमता के रूप में माना गया है, हालांकि केवल इस पर ही ऊर्जा आवश्यकता की पूर्ति के लिए विचार नहीं किया गया है।

12वी पंचवर्षीय योजना के दौरान क्षमता अभिवृद्धि के लिए चार परिदृश्य विकसित किए गए जो निम्नानुसार हैं :

परिदृश्य 1 – निम्न नवीकरणीय (18,500 मेगावाट), निम्न गैस (2,540 मेगावाट) (आधारभूत मामला)

परिदृश्य 2- निम्न नवीकरणीय (18,500 मेगावाट), उच्च गैस (14,540 मेगावाट)

परिदृश्य 3- उच्च नवीकरणीय (30,000 मेगावाट), उच्च गैस (14,540 मेगावाट)

परिदृश्य 4- उच्च नवीकरणीय (30,000 मेगावाट), निम्न गैस (2,540 मेगावाट)

12वीं पंचवर्षीय योजना के दौरान चारों परिदृश्य में 12,000 मेगावाट क्षमता के हाइड्रो आयात पर विचार किया गया है।

प्रत्येक मामले में विभिन्न परिदृश्यों और अध्ययन परिणाम के विवरण निम्नानुसार हैं:

परिदृश्य -1- 18वीं ईपीएस मांग – निम्न नवीकरणीय (18,500 मेगावाट), निम्न गैस (2,540 मेगावाट) आधारभूत मामला

प्रकार	12 वीं योजना के दौर	तन क्षमता आवश्यकता
	(मेगा	वाट में)
हाइड्रो		10,897
थर्मल		70,903
कोयला	67,843	
लिग्नाइट	520	
गैस	2,540	
न्यूक्लियर		5,300
कुल (पारंपरिक)		87,100
पवन		11,000
सौर		4,000
अन्य (नवीकरणीय ऊर्जा स्रोत)		3,500
कुल (नवीकरणीय ऊर्जा स्रोत)		18,500
12 वीं योजना के दौरान समापन		4,000

• परिदृश्य -2- 18वीं ईपीएस मांग – निम्न नवीकरणीय (18,500 मेगावाट), उच्च गैस (14,540 मेगावाट)

प्रकार	12 वीं योजना के दौरान क्षमता आवश्यकता (मेगावाट		
	में)		
हाइड्रो		10,897	
थर्मल		70,903	
कोयला	55,843		
लिग्नाइट	520		
गैस	14,540		
न्यूक्लियर		5,300	
कुल (पारंपरिक)		87,100	
पवन		11,000	
सौर		4,000	
अन्य (नवीकरणीय ऊर्जा स्रोत)		3,500	
कुल (नवीकरणीय ऊर्जा स्रोत)		18,500	
12 वीं योजना के दौरान समापन		4,000	

• परिदृश्य -3- 18वीं ईपीएस मांग – उच्च नवीकरणीय (30,000 मेगावाट), उच्च गैस (14,540 मेगावाट)

प्रकार	12 वीं योजना की क्षमता की आवश्यकता
	(मेगावाट में)
हाइड्रो	10,897
थर्मल	67,703
कोयला	52,643
लिग्नाइट	520
गैस	14,540
न्यूक्लियर	5,300
कुल (पारंपरिक)	83,900
पवन	15,000
सौर	10,000
अन्य (नवीकरणीय ऊर्जा स्रोत)	5,000
कुल (नवीकरणीय ऊर्जा स्रोत)	30,000
12 वीं योजना के दौरान समापन	4,000

• परिदृश्य -4- 18वीं ईपीएस मांग – उच्च नवीकरणीय (30,000 मेगावाट), निम्न गैस (2,540 मेगावाट)

प्रकार	12 वीं योजना की क्षमता	
	(मेगावाट में)	
हाइड्रो		10,897
थर्मल		66,903
कोयला+ लिग्नाइट	63,843	
लिग्नाइट	520	
गैस	2,540	
न्यूक्लियर		5,300
कुल (पारंपरिक)		83,100
पवन		15,000
सौर		10,000
अन्य (नवीकरणीय ऊर्जा स्रोत)		5,000
कुल (नवीकरणीय ऊर्जा स्रोत)		30,000
12 वीं योजना के दौरान समापन		4,000

उपर्युक्त परिदृश्यों में से परिदृश्य-1 को 12वीं योजना के दौरान क्षमता अभिवृद्धि की आयोजना के लिए आधारभूत मामले के रूप में माना गया है।

आधारभूत मामले के विवरण निम्नानुसार हैं:

12 वीं योजना का कार्यक्रम

	कुल क्षमता आवश्यकता	- 87,100 मेगावाट
	(पारंपरिक)	
	हाइड्रो	- 10,897 मेगावाट
	न्यूक्लियर	- 5,300 मेगावाट
	थर्मल	- 70,903 मेगावाट
•	कोयला+लिग्नाइट	- 68,363 मेगावाट
•	गैस	- 2,540 मेगावाट

12वीं योजना के दौरान 87,100 मेगावाट क्षमता अभिवृद्धि आवश्यक है। हालांकि निर्माणाधीन परियोजनाओं की स्थिति के आधार पर 88,537 मेगावाट की कुल क्षमता वाली ऐसी परियोजनाओं की सूची तैयार की गई है जिनका लाभ 12वीं योजना के दौरान प्राप्त होने की आशा है और यह सूची अनुबंध 6.1 के रूप में संलग्न है। इस बात का भी उल्लेख किया जा सकता है कि 12वीं योजना के दौरान संभावित लाभ के लिए सूचीबद्ध की गई परियोजनाएं वर्तमान में निर्माणाधीन हैं। उपर्युक्त के अलावा कुछ अन्य परियोजनाएं भी निर्माणाधीन/आयोजना के विभिन्न चरणों पर हैं और ऐसी आशा है कि इन परियोजनाओं की स्थापना 12वीं योजना के दौरान कर ली जाएगी। ऐसी परियोजनाओं की सूची अनुबंध 6.2 में दी गई है। इस प्रकार यदि 12वीं योजना के लिए निर्धारित की गई परियोजनाओं में अज्ञात कारणों से कोई विलंब होता है तो अन्य परियोजनाओं(बैकअप परियोजनाओं) की स्थापना 12वीं योजना के दौरान की जा सकती है। इस प्रकार 12वीं योजना के दौरान लगभग 88,000 मेगावाट की क्षमता अभिवृद्धि की प्रबल संभावना है। इसमें कोई संदेह नहीं कि इन परियोजनाओं के लिए ईधन की आवश्यकता बहुत बड़ी समस्या है और इसका समाधान करना आवश्यक है।

6.6 13वीं योजना के दौरान उत्पादन क्षमता विस्तार के लिए संभावित योजना

13वीं योजना के दौरान संभावित क्षमता अभिवृद्धि आवश्यकता का आकलन करने के लिए निम्नलिखित तथ्यों के आधार पर अध्ययन किए गए :

- मांग पर विचार 18वीं ईपीएस रिपोर्ट में दिए गए पूर्वानुमानों के अनुसार किया जाए पीक लोड 2,83,470; ऊर्जा आवश्यकता -1904 बिलियन यूनिट
- स्पिनिंग रिजर्व 5% अर्थात लगभग 14,000 मेगावाट
- विश्वसनीयता मानदंड- लोड लाभप्रदता की हानि< 0.2 **%** और प्रेषित न की गयी ऊर्जा< 0.05 %
- 11वीं पंचवर्षीय योजना के दौरान वास्तविक क्षमता अभिवृद्धि 54,964 मेगावाट है।
- संगत परिदृश्य में 12वीं योजना के लिए लगभग 87,100 मेगावाट की क्षमता अभिवृद्धि।
- 4000 मेगावाट क्षमता का समापन जिसमें 2,000 मेगावाट से कम क्षमता वाली कोयला यूनिटें (1982 से पहले स्थापित) और ऐसी गैस यूनिटें जो 1992 से पहले स्थापित (20 वर्ष से अधिक पुरानी) की गई थीं, शामिल हैं।
- पड़ोसी देशों से 8,040 मेगावाट हाइड्रो क्षमता का आयात।

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 151

6.7 13वीं योजना के संभावित क्षमता विस्तार अध्ययन परिणाम

विश्वसनीयता मानदडों के अनुरूप मांग को पूरा करने के लिए 13वीं पंचवर्षीय योजना के दौरान कुल क्षमता अभिवृद्धि आवश्यकता का मूल्यांकन करने के उद्देश्य से ईजीईएएस अध्ययन किए गए।

12वीं योजना में किए गए अध्ययनों के अनुसार मौसम संबंधी अध्ययन।

हाइड्रो, गैस और न्यूक्लियर आधारित क्षमता को उच्च प्राथमिकता दी जाती है, क्योंकि इनमें कम कार्बन उत्सर्जन रणनीति की दृष्टि से लाभ अंतर्निहित हैं। अतः इस क्षमता को विभिन्न परिदृश्यों में अनिवार्य रूप से संचालित की जाने वाली क्षमता के रूप में माना गया है।

नवीकरणीय क्षमता को अनिवार्य रूप से संचालित की जाने वाली क्षमता के रूप में भी माना गया है।

13वीं पंचवर्षीय योजना के दौरान संभावित उत्पादन क्षमता अभिवृद्धि के लिए चार परिदृश्य विकसित किए गए। ये परिदृश्य निम्नानुसार हैं:

परिदृश्य 1 - निम्न नवीकरणीय (30,500 मेगावाट), गैसरहित

परिदृश्य 2 – निम्न नवीकरणीय (30,500 मेगावाट), उच्च गैस (13,000 मेगावाट)

परिदृश्य 3 – उच्च नवीकरणीय (45,000 मेगावाट), उच्च गैस (13,000 मेगावाट)

परिदृश्य 4 – उच्च नवीकरणीय (45,000 मेगावाट), गैसरहित

उपर्युक्त अनिवार्य परियोजनाओं पर विचार करते हुए बकाया क्षमता अभिवृद्धि लक्ष्यों को कोयला आधारित परियोजनाओं से प्राप्त करने का प्रस्ताव है। ये परिदृश्य 12वीं योजना के दौरान पूरे किए गए संगत परिदृश्यों पर आधारित हैं। चारों परिदृश्यों के अनुरूप 13वीं योजना के दौरान क्षमता अभिवृद्धि आवश्यकता के विवरण नीचे दिए अनुसार हैं:

चारों परिदृश्यों में 13वीं योजना के दौरान 8,040 मेगावाट के हाइड्रो आयात पर विचार किया गया है।

• परिदृश्य -1 – निम्न नवीकरणीय (30,500 मेगावाट), गैसरहित

प्रकार	13वीं योजना के दौरान क्षमता अभिवृद्धि आवश्यकता (मेगावाट में)
हाइड्रो	12,000
थर्मल	56,400
कोयला	56,400
गैस	0
न्यूक्लियर	18,000
कुल (पारंपरिक)	86,400
वायु	11,000
सौर	16,000
अन्य (नवीकरणीय ऊर्जा स्रोत)	3,500
कुल (नवीकरणीय ऊर्जा स्रोत)	30,500
13 वीं योजना के दौरान समापन	4,000

• परिदृश्य -2 – निम्न नवीकरणीय (30,500 मेगावाट) - उच्च गैस (13,000 मेगावाट)

प्रकार	13वीं योजना के दौरान क्षमता (मेगावाट में)
हाइड्रो	12,000
थर्मल	58,200
कोयला	45,200
गैस	13,000
न्यूक्लियर	18,000
कुल (पारंपरिक)	88,200
वायु	11,000
सौर	16,000
अन्य (नवीकरणीय ऊर्जा स्रोत)	3,500
कुल (नवीकरणीय ऊर्जा स्रोत)	30,500
13 वीं योजना के दौरान समापन	4,000

• परिदृश्य -3 – उच्च नवीकरणीय (45,000 मेगावाट) – उच्च गैस (13,000 मेगावाट)

प्रकार	13वीं योजना क्षमता (मेगावाट में)
हाइड्रो	12,000
थर्मल	50,200
कोयला	37,200
गैस	13,000
न्यूक्लियर	18,000
कुल (पारंपरिक)	80,200
वायु	20,000
सौर	20,000
अन्य (नवीकरणीय ऊर्जा स्रोत)	5,000
कुल (नवीकरणीय ऊर्जा स्रोत)	45,000
13 वीं योजना के दौरान समापन	4,000

• परिदृश्य -4 – उच्च नवीकरणीय (45,000 मेगावाट) – गैसरहित

प्रकार	13वीं योजना क्षमता (मेगावाट में)
हाइड्रो	12,000

थर्मल	54,800
कोयला	54,800
गैस	0
न्यूक्लियर	18,000
कुल (पारंपरिक)	84,800
वायु	20,000
सौर	20,000
अन्य (नवीकरणीय ऊर्जा स्रोत)	5,000
कुल (नवीकरणीय ऊर्जा स्रोत)	45,000
13 वीं योजना के दौरान समापन	4,000

उपर्युक्त परिदृश्यों में से परिदृश्य-1 पर 13वीं योजना के लिए आधारभूत मामले के रूप में विचार किया गया है। 13वीं योजना के दौरान आवश्यक क्षमता अभिवृद्धि निम्नानुसार हैं:

13वीं योजना कार्यक्रम

कुल **क्षमता - 86,400** मेगावाट

(पारंपरिक)

हाइड्रो - 12,000* मेगावाट न्यूक्लियर - 18,000 मेगावाट

थर्मल - 56,400 मेगावाट

कोयला -56,400 मेगावाट

गैस - शून्य

यह उल्लेख किया जाए कि एनपीसी के कार्यक्रम के अनुसार 13वीं योजना के दौरान 18,000 मेगावाट न्यूक्लियर क्षमता पर विचार किया गया है। अगर यह क्षमता पूरी नहीं की जाती है तो इसे कोयला आधारित क्षमता से प्रतिस्थापित किया जा सकता है।

13वीं योजना के दौरान क्षमता अभिवृद्धि नवीनतम प्रौद्योगिकियों पर आधारित अधिक दक्ष यूनिटों से की जाएगी। थर्मल क्षमता अभिवृद्धि सभी मामलों में सुपर क्रिटिकल प्रौद्योगिकी वाली बड़े आकार की यूनिटों अर्थात 660/800 मेगावाट क्षमता वाली यूनिटों से की जाएगी। ये प्रयास स्वच्छ और हरित विद्युत के लिए हमारी रणनीतियों के अनुसार किए जा रहे हैं। यह सिफारिश की जाती है कि 13वीं योजना के दौरान कोयला आधारित पावर प्लांटों से क्षमता अभिवृद्धि केवल सुपर क्रिटिकल यूनिटों द्वारा ही की जानी चाहिए।

13वीं योजना के दौरान आवश्यक क्षमता अभिवृद्धि लगभग 86,400 मेगावाट के आसपास होगी। 12वीं योजना के दौरान क्षमता अभिवृद्धि के लक्ष्य को पूरा न करने वाली परियोजनाओं को 13वीं योजना के क्षमता अभिवृद्धि कार्यक्रम में शामिल किया जाएगा। इस प्रकार यह स्पष्ट है कि 13वीं योजना के दौरान भारी मात्रा में क्षमता अभिवृद्धि आवश्यक होगी जिसके लिए सभी संबंधितों द्वारा 12वीं योजना के दौरान ही अग्रिम आयोजना/अग्रिम कार्रवाई आवश्यक है।

^{*} पड़ोसी देशों के हाइड्रो प्लांटों से आयातित 8,040 मेगावाट को छोड़कर

6.8 उपसंहार

- 18वीं ईपीएस रिपोर्ट के अनुसार क्षमता अभिवृद्धि आयोजना के लिए विचार किए गए विद्युत मांग पूर्वानुमानों के विवरण निम्नानुसार हैं:
 - 12वीं योजना के अंत में पीक मांग 199,540 मेगावाट और ऊर्जा आवश्यकता 1354 बिलियन यूनिट।
 - 13वीं योजना के अंत में पीक मांग 28,3470 मेगावाट और ऊर्जा आवश्यकता 1904 बिलियन यूनिट।
- 11वीं पंचवर्षीय योजना के दौरान लगभग 54,964 मेगावाट की वास्तिवक क्षमता अभिवृद्धि के आधार पर 12वीं योजना के दौरान देश में लगभग 87,100 मेगावाट क्षमता अभिवृद्धि, एनईपी के अनुसार 5% स्पिनिंग रिजर्व, लगभग 4,000 मेगावाट क्षमता वाली पुरानी और अदक्ष थर्मल यूनिटों का समापन और सीईए द्वारा अपनाए गए 0.2% एलओएलपी और 0.05% ईएनएस के विश्वसनीयता मानदंड की आवश्यकता होगी।
- 12वीं योजना के लिए देश में कुल क्षमता अभिवृद्धि की आवश्यकता निम्नानुसार प्रस्तावित की गई है:

संपूर्ण क्षमता (नवीकरणीय को छोड़कर) - 87,100 मेगावाट

हाइड्रो - 10,897मेगावाट न्यूक्लियर - 5,300 मेगावाट थर्मल - 70,903 मेगावाट

कोयला - 67,843 मेगावाट

• लिग्नाइट - 520 मेगावाट

• गैस - 2,540 मेगावाट

विकसित की जाने वाली आवश्यक स्वदेशी क्षमता- 87,100 मेगावाट (पड़ोसी देशों से 1,200 मेगावाट के आयात का अनुमान लगाया गया है)।

• 13वीं योजना के लिए देश में कुल क्षमता अभिवृद्धि आवश्यकता निम्नानुसार प्रस्तावित है:

संपूर्ण क्षमता (नवीकरणीय को छोड़कर) - 86,400 मेगावाट

हाइड्रो - 12,000 मेगावाट न्यूक्लियर - 18,000 मेगावाट थर्मल - 56,400 मेगावाट

कोयला - 56,400 मेगावाट
 हाइड्डो आयात - 8,040 मेगावाट

• विकसित की जाने वाली आवश्यक स्वदेशी क्षमता- 87,100 मेगावाट (पड़ोसी देशों से 1,200 मेगावाट के आयात का अनुमान लगाया गया है)।

---+++----

अनुबंध 6.1 ऐसी निर्माणाधीन परियोजनाओं का सारांश जिनका लाभ 12वीं योजना (2012-17) के दौरान मिलने की संभावना है (आंकड़े मेगावाट में)

			थर्मल विवरण				जोड़
	हाइड्रो	कोयला	लिग्नाइट	गैस/ एलएनजी	कुल थर्मल	न्यूक्लियर	
मध्य क्षेत्र	6004	13800	250	827.6	14878	5300	26182
राज्य क्षेत्र	1608	12210	0	1712.0	13922	0	15530
निजी क्षेत्र	3285	43270	270	0.0	43540	0	46825
अखिल भारत	10897	69280	520	2539.6	72340	5300	88537

	सीआईएल	ब्लॉक	ब्लॉक (टीएल)	आईएमपी (कोयला)	वाशरी रिजेक्ट	आवश्यक संपर्क	जोड़
कोयला आधारित क्षमता	50504	5440	8310	4246	330	450	692 80

	2012-13	2013-14	2014-15	2015-16	2016-17	TOTAL	
मध्य क्षेत्र	6668	4992	1870	4491	8160	26182	
राज्य क्षेत्र	4048	3866	4846	2260	510	15530	
निजी क्षेत्र	7370	10445	14242	10328	4440	46825	
अखिल भारत	18086	19303	20958	17079.0	13110	88537	

हाइड्रो	802	2639	2543	1613	3300	10897
थर्मल	15284	16664	17915	15466	7010	72340
न्यूक्लियर	2000	0	500	0	2800	5300
कुल	18086	19303	20958	17079	13110	88537

ऐसी निर्माणाधीन परियोजनाओं की सूची जिनका लाभ 12वीं योजना (2012-17) के दौरान मिलने की संभावना है

क्रमांक						
	परियोजना के नाम	राज्य	विकासकर्ता	क्षेत्र	ईंधन प्रकार	क्षमता (मेगावाट में)
	2		-02-2			0.10
1	लोअर जुराला एचईपी	आंध्रप्रदेश • ्	एपीजेनको	एस	हाइड्रो	240
2	पुलिचिंताला एचईपी	आंध्रप्रदेश	एपीजेनको	एस	हाइड्रो	120
3	नागार्जुन सागर टीआर एचईपी श्री दामोदरम संजीवैय्या टीपीपी	आंध्रप्रदेश	एपीजेनको	एस	हाइड्रो	50
4	(कृष्णपट्टणम टीपीपी) यू1,2	आंध्रप्रदेश	एपीजेनको	एस	कोयला	1600
5	रायल सीमा टीपीपी यू6	आंध्रप्रदेश	एपीजेनको	एस	कोयला	600
6	थम्मिनापट्टनम टीपीपी यू3,4	आंध्रप्रदेश	मीनाक्षी एनर्जी प्राइवेट लिमिटेड	पी	कोयला	700
7	नागार्जुन कंस्ट्रक्शन कंपनी लिमिटेड पीएच-। यू-1,2	आंध्रप्रदेश	नागार्जुन कंस्ट्रक्शन कंपनी लिमिटेड	पी	कोयला	1320
8	पैनमपुरम टीपीपी यू- 1,2	आंध्रप्रदेश	थर्मल पावरटेक कॉरपोरेशन लिमिटेड	पी	कोयला	1320
9	भावनापड्डु टीपीपी यू-1,2	आंध्रप्रदेश	इस्ट कोस्ट एनर्जी	पी	कोयला	1320
10	थम्मिनापट्टनम टीपीपी यू-1,2	आंध्रप्रदेश	मीनाक्षी एनर्जी प्राइवेट लिमिटेड	पी	कोयला	300
11	सिम्हापुरी टीपीपी पीएच-।, यू 2	आंध्रप्रदेश	सिम्हापुरी एनर्जी प्राइवेट लिमिटेड	पी	कोयला	150
12	हिन्दूजा टीपीपी, यूU1-2	आंध्रप्रदेश	हिन्दुजा	पी	कोयला	1050
	उप जोड़ (अरूणाचल प्रदेश)					8770
1	पारे एचईपी	अरु. प्र.	नीपको	सी	हाइड्रो	110
2	कामेंग एचईपी	अरु. प्र.	नीपको	सी	हाइड्रो	600
3	सुबांसिरी लोअर एचईपी	अरु. प्र.	एनएचपीसी	सी	हाइड्रो	1000
	उप जोड़ (अरूणाचल प्रदेश)					1710
1	बोंगैय्यागांव टीपीपी यू 1,2,3	असम	एनटीपीसी	सी	कोयला	750
2	नामरूप सीसीजीटी	असम	एपीजीसीएल	एस	गैस	100
	उप जोड़ (असम)	जसम	्रवाजाता <u>द</u> ्य	641	1/4	850
	०१ पाइ (जर्म)					030
1	मुजफ्फरपुर(कांटी) टीपीपी यू 3,4	बिहार	एनटीपीसी जेवी	सी	कोयला	390
2	बाढ़ एसटीपीपी-। यू1,2,3	बिहार विहार	एनटीपीसी	सी	कोयला	1980
3	बाढ़ एसटीपीपी -II यू 1,2	बिहार विहार	एनटीपीसी	 सी	कोयला	1320
4	नबीनगरटीपीपी यू1-4	बिहार	एनटीपीसी जेवी	 सी	कोयला	1000
7	उप जोड़ (बिहार)	1461	र्गटामासा गमा		7/14/11	4690
	०१ माइ (म्म्हार)					7090
1	 सिपाट-। टीपीपी यू 3	छत्तीसगढ़	एनटीपीसी	सी	कोयला	660
2	कोरबा पश्चिम एसटी.III टीपीपी यू5	छत्तीसगढ़	सीएसईबी	एस	कोयला	500
3	मारवा टीपीपी यू1-2	छत्तीसगढ़	सीएसईबी	एस	कोयला	1000
4	ु अवंथा भंडार टीपीपी U1	छत्तीसगढ़	कोरबा वेस्ट कंपनी पावर लिमिटेड	' पी	कोयला	600
5	मारुती क्लिन कोल एण्ड पावर लिमिटेड टीपीपी U1	छत्तीसगढ़	मारुती क्लिन कोल एण्ड पावर लिमिटेड	पी	कोयला	300

क्रमांक	परियोजना के नाम	राज्य	विकासकर्ता	क्षेत्र	ईंधन प्रकार	क्षमता (मेगावाट में)
6	लैंको अमरकंटक टीपीपी U- 3,4	छत्तीसगढ़	लैंको अमरकंटक प्राइवेट लिमिटेड	पी	कोयला	1320
7	उचपींडा टीपीपी U1-3	छत्तीसगढ़	आर.के.एम. पावरजेन प्राइवेट लिमिटेड	पी	कोयला	1080
8	विंजकोट (दार्रमपुरा)टीपीपी U1-3	छत्तीसगढ़	एसकेएस इस्पात एण्ड पावर लिमिटेड	पी	कोयला	900
9	अकलतारा (नरियारा) टीपीपी U 1-3	छत्तीसगढ़	केएसके महानदी पावर कंपनी लिमिटेड	पी	कोयला	1800
10	कसाइपल्ली टीपीपी U 2	छत्तीसगढ़	एसीबी इंडिया	पी	कोयला	135
11	स्वास्तिक कोरबा टीपीपी U 1	छत्तीसगढ़	एसीबी इंडिया	पी	कोयला	25
12	वंदना विद्युत टीपीपी U 1,2	छत्तीसगढ़	वंदना विद्युत	पी	कोयला	270
13	बालको टीपीपी U-1,2	छत्तीसगढ़	भारत एल्युमिनियम कंपनी लिमिटेड	पी	कोयला	600
14	एथेना सिंघतराइ टीपीपी U-1	छत्तीसगढ़	एथेना छत्तीसगढ़ पावर लिमिटेड	पी	कोयला	600
15	डी बी पावर टीपीपी U-1,2	छत्तीसगढ़	डीबी पावर लिमिटेड	पी	कोयला	1200
16	टी आर एन एनर्जी टीपीपी U-1,2	छत्तीसगढ़	टी आर एन एनर्जी	पी	कोयला	600
17	रतिजा टीपीपी	छत्तीसगढ़	एसीबी इंडिया	पी	कोयला	50
18	रायगढ़ टीपीपी U1,2	छत्तीसगढ़	जिंदल पावर लिमिटेड	पी	कोयला	1200
	उप जोड़(छत्तीसगढ़)					12840
1	प्रगति-III(बवाना) सीसीजीटी	दिल्ली	पीपीसीएल	एस	गैस/LNG	750
	उप जोड़(दिल्ली)					750
1	केएपीपी U-3,4	गुजरात	एनपीसी	सी	न्यूक्लियर	1400
2	सिक्का टीपीपी एक्सटेंशन U3	गुजरात	जीएसइसील	एस	कोयला	250
3	उकाई टीपीपी एक्सटेंशन U6	गुजरात	जीएसइसील	एस	कोयला	500
4	पीपावव जेवी सीसीजीटी ब्लॉक -1,2	गुजरात	जीएसइसील	एस	गैस/एलएनजी	702
5	मुंद्रा यूएम पीपी, U 2	गुजरात	द टाटा पावर कंपनी लिमिटेड	पी	कोयला	800
6	सलाया टीपीपी U 2	गुजरात	एस्सार पावर सलाया लिमिटेड	पी	कोयला	600
	उप जोड़(गुजरात)					4252
1	पर्बती-II एचईपी	हि. प्र.	एनएचपीसी	सी	हाइड्रो	800
2	रामपुर एचईपी	हि. प्र.	एसजेवीएनएल	सी	हाइड्रो	412
3	कोलडैम एचईपी	हि. प्र.	एनटीपीसी	सी	हाइड्रो	800
4	चमेरा-॥। एचईपी	हि. प्र.	एनएचपीसी	सी	हाइड्रो	231
5	पर्बती- III एचईपी	हि. प्र.	एनएचपीसी	सी	हाइड्रो	520
6	कशांग- । एचईपी	हि. प्र.	एचपीपीसीएल	एस	हाइड्रो	65
7	यूएचएल-III एचईपी	हि. प्र.	बीवीपीसी	एस	हाइड्रो	100
8	सवारा कुड्डु एचईपी	हि. प्र.	एचपीपीसीएल	एस	हाइड्रो	111
9	कशांग ।। एण्ड & ।।। एचईपी	हि. प्र.	एचपीपीसीएल	एस	हाइड्रो	130
10	सैंज एचईपी	हि. प्र.	एचपीपीसीएल	एस	हाइड्रो	100
11	टिडॉग-l एचईपी	हि. प्र.	एनएसएल टिडांग पावर जेनरेशन लिमिटेड	पी	हाइड्रो	100
12	सोरांग एचईपी	हि. प्र.	हिमाचल सोरांग पावर प्राइवेट लिमिटेड	पी	हाइड्रो	100

क्रमांक	परियोजना के नाम	राज्य	विकासकर्ता	क्षेत्र	ईंधन प्रकार	क्षमता (मेगावाट में)
13	टैंगनु रोमई-l एचईपी	हि. प्र.	टैंगनु रोमई पावर जेनरेशन लिमिटेड	पी	हाइड्रो	44
14	बुधिल एचईपी	हि. प्र.	लैंको ग्रीन पावर प्राइवेट लिमिटेड	पी	हाइड्रो	70
	उप जोड़ (हिमालचलप्रदेश)					3583
1	इंदिरा गांधी टीपीपी (झज्जर) जेवी U-3	हरियाणा	एनटीपीसी	सी	कोयला	500
2	इंदिरा गांधी झज्जर टीपीपी U2	हरियाणा	चाइना लाइट पावर	पी	कोयला	660
	उप जोड़ (हरियाणा)					1160
1	किशन गंगा एचईपी	जम्मू कश्मीर	एनएचपीसी	सी	हाइड्रो	330
2	यूआरआई-II एचईपी	जम्मू कश्मीर	एनएचपीसी	सी	हाइड्रो	240
3	निमू बागजो एचईपी	जम्मू कश्मीर	एनएचपीसी	सी	हाइड्रो	45
4	चूटक एचईपी	जम्मू कश्मीर	एनएचपीसी	सी	हाइड्रो	44
5	बगलिहार-॥ एचईपी	जम्मू कश्मीर	जे एण्ड के स्टेट पावर डे वलपमेंट कॉरपोरेशन लिमिटेड	एस	हाइड्रो	450
	उप जोड़(जम्मू एण्ड कश्मीर)					1109
1	बोकारो टीपीपी ए ईएक्सपी U1	झारखंड	डीवीसी	सी	कोयला	500
2	कोडरमा टीपीपी U2	झारखंड	डीवीसी	सी	कोयला	500
3	माताश्री उषा टीपीपी पीएच-I U 1,2	झारखंड	कारपोरेट पावर लिमिटेड	पी	कोयला	540
4	आधुनिक पावर एण्ड नेचुरल रिसोर्सेज लिमिटेड टीपीपी U1,2	झारखंड	आधुनिक पावर एण्ड नेचुरल रिसोर्सेज लिमिटेड	पी	कोयला	540
	उप जोड़(झारखंड)					2080
1	थोट्टियार एचईपी	केरल	केएसईबी	एस	हाइड्रो	40
2	पल्लिवासल एचईपी	केरल	केएसईबी	एस	हाइड्रो	60
	उप जोड़(केरल)					100
1	विंध्याचल टीपीपी एसटी-IV U-11,12	मध्यप्रदेश	एनटीपीसी	सी	कोयला	1000
2	सतपुरा टीपीपी एक्सटेंशन U-10,11	मध्यप्रदेश	एमपीजेनको	एस	कोयला	500
3	श्री सिंघाजी टीपीपी U-1,2	मध्यप्रदेश	एमपीजेनको	एस	कोयला	1200
4	अन्नुपुर टीपीपी पीएच-l U1,2	मध्यप्रदेश	एमबी पावर (मध्य प्रदेश) लिमिटेड	पी	कोयला	1200
5	बीना टीपीपी U 1,2	मध्यप्रदेश	बीना पावर सप्लाई कंपनी लिमिटेड (जेपी ग्रुप)	पी	कोयला	500
6	ससन यूएमपीपी U 1,2	मध्यप्रदेश	रिलायंस पावर लिमिटेड	पी	कोयला	1320
7	महेश्वर एचईपी U 1-10	मध्यप्रदेश	एसएमएचपीसीएल	पी	हाइड्रो	400
8	डीबी पावर टीपीपी, सिद्धिU-1	मध्यप्रदेश	डीबी पावर (मध्य प्रदेश) लिमिटेड	पी	कोयला	660
9	झबुआ टीपीपी U1	मध्यप्रदेश	झबुआ पावर लिमिटेड	पी	कोयला	600
	उप जोड़(मध्य प्रदेश)					7380
1	मौदा टीपीपी U1,2	महाराष्ट्र	एनटीपीसी	सी	कोयला	1000
2	चंद्रपुरटीपीपी एक्सटेंशन U 8	महाराष्ट्र	एमएएचजेनको	एस	कोयला	500

क्रमांक	परियोजना के नाम	राज्य	विकासकर्ता	क्षेत्र	ईंधन प्रकार	क्षमता (मेगावाट में)
3	कोराडी टीपीपी एक्सटेंशन U 8	महाराष्ट्र	एमएएचजेनको	एस	कोयला	660
4	पर्ली टीपीपी U 3	महाराष्ट्र	एमएएचजेनको	एस	कोयला	250
5	इंडिया बुल्स- अमरावती टीपीपी पीएच-I, U1-5	महाराष्ट्र	इंडिया बुल्स पावर लिमिटेड	पी	कोयला	1350
6	इंडिया बुल्स- नासिक टीपीपी पीएच-I,U1-5	महाराष्ट्र	इंडिया बुल्स रियलटेक लिमिटेड	पी	कोयला	1350
7	धारीवाल इंफ्रास्ट्रक्चर(पी) लिमिटेड टीपीपी U1,2	महाराष्ट्र	धारीवाल इंफ्रास्ट्रक्चर(पी) लिमिटेड	पी	कोयला	600
8	ईएमसीओ वरोरा टीपीपी U 1,2	महाराष्ट्र	जीएमआर एमको एनर्जी लिमिटेड	पी	कोयला	600
9	बुतीबोरी टीपीपी पीएच -II U 1	महाराष्ट्र	विदर्भ इंडस्ट्रीज पावर लिमिटेड	पी	कोयला	300
10	लैंको महानदी, विदर्भ टीपीपी U1,2	महाराष्ट्र लैंको महानदी पावर प्राइवेट लिमिटेड		पी	कोयला	1320
11	तिरोदा टीपीपी पीएच-I U 1,2	महाराष्ट्र	अदानी पावर लिमिटेड	पी	कोयला	1320
12	तिरोदा टीपीपी पीh-II U1	महाराष्ट्र	अदानी पावर लिमिटेड	पी	कोयला	660
13	जीईपीएल टीपीपी U-1,2	महाराष्ट्र	गुप्ता एनर्जी प्राइवेट लिमिटेड	पी	कोयला	120
14	बेला टीपीपी U 1	महाराष्ट्र	आइडियल एनर्जी प्रोजेक्ट्स लिमिटेड	पी	कोयला	270
	उप जोड़(महाराष्ट्र)					10300
1	न्यू उम्त्रु एचईपी	मेघालय	एमइईसीएल	एस	हाइड्रो	40
2	मिंटडु एसटी-। एचईपी एडीडीएल यूनिट	मेघालय	एमइएसईबी	एस	हाइड्रो	42
	उप जोड़(MEGHALAYA)		3 () (82
1	तुइरियाल एचईपी	मिजोरम	नीपको	सी	हाइड्रो	60
	उप जोड़(MIZORAM)					60
1	देरांग टीपीपी U1	उड़ीसा	जिंदल इंडिया थर्मल पावर लिमिटेड	पी	कोयला	600
2	इंड बरथ एनर्जी प्राइवेट लिमिटेड टीपीपी U1,2	उड़ीसा	इंड बरथ पावर (उत्कल) लिमिटेड.	पी	कोयला	700
3	लैंको बबांध ढेनकनाल टीपीपी U 1	उड़ीसा	लैंको बबांध	पी	कोयला	660
4	के.वी.के. नीलांचल टीपीपी U 1	उड़ीसा	के.वी.के. नीलांचल पावर Pvt. लिमिटेड.	पी	कोयला	350
5	कमलंगा टीपीपी U 1-3	उड़ीसा	जीएमआर एनर्जी	पी	कोयला	1050
6	स्टरलाइट टीपीपी U 4	उड़ीसा	स्टरलाइट एनर्जी	पी	कोयला	600
	उप जोड़(उड़ीसा)					3960
1	तलवंडी साबो टीपीपी U1-3	पंजाब	वेदांत	<u>पी</u> -	कोयला	1980
2	गोइंदवल साहिब टीपीपी U1,2	पंजाब	जीवीके इंडस्ट्रीज	पी	कोयला	540
3	नभा टीपीपी U-1,2	पंजाब	एल एण्ड टी पावर डेवलपमेंट लिमिटेड	पी	कोयला	1400
	उप जोड़(पंजाब)					3920
1	आरएपीपी ∪ 7 एण्ड 8	राजस्थान	एनपीसी	सी ———	न्यूक्लियर	1400
2	कालीसिंध टीपीपी U1	राजस्थान	आरआरवीयूएनएल	एस	कोयला	600

	परियोजना के नाम	राज्य	विकासकर्ता	क्षेत्र	इँधन प्रकार	क्षमता (मेगावाट में)
3	छबरा टीपीपी एक्सटेंशन U3,4	राजस्थान	आरआरवीयूएनएल	<u> </u>	कोयला	500
4	रामगढ़ सीसीजीटी	राजस्थान	आरआरवीयूएनएल	एस	गैस	160
5	जल्लिपा कपूर्दी टीपीपी U 5-6	राजस्थान	राज वेस्ट पावर लिमिटेड		लिग्नाइट	270
	उप जोइ(राजस्थान)				,	2930
1	भस्मे एचईपी	सिक्किम	गैती इंफ्रास्ट्रक्चर लिमिटेड	पी	हाइड्रो	51
2	जोरेथांग लूप एचईपी	सिक्किम	डीएएनएस प्राइवेटलिमिटेड	पी	हाइड्रो	96
3	रंगित -IV एचईपी	सिक्किम	जलपावर कारपोरेशन लिमिटेड	पी	हाइड्रो	120
4	तिस्ता -VI एचईपी	सिक्किम	लैंको एनर्जी प्राइवेटलिमिटेड	पी	हाइड्रो	500
5	तिस्ता -।।। एचईपी	सिक्किम	तिस्ता ऊर्जा लिमिटेड	पी	हाइड्रो	1200
6	चूजाचेन एचईपी	सिक्किम	गैती इंफ्रास्ट्रक्चर लिमिटेड	पी	हाइड्रो	99
	उप जोड़(सिक्किम)					2066
1	कुडनकुलम U 1,2	तमिलनाडु	एनपीसी	सी	न्यूक्लियर	2000
2	पीएफबीआर(कलपक्कम)	तमिलनाडु	एनपीसी	सी	न्यूक्लियर	500
3	वेल्लुर(एन्नोर) टीपीपी U 2,3	तमिलनाडु	एनटीपीसी/टीएनईबी जेवी	सी	कोयला	1000
4	तूतीकोरीन टीपीपी जेवी U1,2	तमिलनाडु	एनपीटीएल (एनएलसी जेवी)	सी	कोयला	1000
5	नेवेली II टीपीपी U2	तमिलनाडु	एनएलसी	सी	लिग्नाइट	250
6	भवानी बराज एचईपी ।। & ।।।	तमिलनाडु	टीएनईबी	एस	हाइड्रो	60
7	मेट्टुर टीपीपी एक्सटेंशन U1	तमिलनाडु	टीएनईबी	एस	कोयला	600
8	नॉर्थ चेन्नई टीपीपी एक्सटेंशन U1,2	तमिलनाडु	टीएनईबी	एस	कोयला	1200
9	इंड बराथ टीपीपी U1	तमिलनाडु	इंड बराथ पावर (मद्रास) लिमिटेड	पी	कोयला	660
	उप जोड़(तमिलनाडु)					7270
1	त्रिपुरा सीसीजीटी	त्रिपुरा	ओएनजीसी जेवी	सी	गैस	726.6
2	मोनार्चक सीसीजीटी	त्रिपुरा	नीपको	सी	गैस	101
	उप जोड़(त्रिपुरा)					827.6
1	रिहंद टीपीपी-III U 5,6	उत्तर प्रदेश	एनटीपीसी	सी	कोयला	1000
2	अनपारा-डी टीपीपी U 1,2	उत्तर प्रदेश	यूपीआरवीयूएनएल	एस	कोयला	1000
3	परीक्षाटीपीपी एक्सटेंशन U-5,6	उत्तर प्रदेश	यूपीआरवीयूएनएल	एस	कोयला	500
4	हरदुआगंज टीपीपी एक्सटेंशन U-9	उत्तर प्रदेश	यूपीआरवीयूएनएल	एस	कोयला	250
5	बारा टीपीपी U1-3	उत्तर प्रदेश	प्रयागराजपावर जेनको लिमिटेड (जेपी ग्रुप)	पी	कोयला	1980
	उप जोड़(उत्तर प्रदेश)					4730
1	तपोवन विष्णुगढ़ एचईपी	उत्तराखंड	एनटीपीसी	सी	हाइड्रो	520
2	सिंगोली भटवारी एचईपी	उत्तराखंड	एल एण्ड टी उत्तरांचल हाइड्रो पावर लिमिटेड	पी	हाइड्रो	99
3	फटा वियुंग एचईपी	उत्तराखंड	लैंको एनर्जी प्राइवेट लिमिटेड.	पी	हाइड्रो	76
4	श्रीनगर एचईपी	उत्तराखंड	एएचपीको लिमिटेड	पी	हाइड्रो	330
	उप जोड़(उत्तराखंड)					1025

क्रमांक	परियोजना के नाम	राज्य	विकासकर्ता	क्षेत्र	ईंधन प्रकार	क्षमता (मेगावाट में)
1	तिस्ता लो डैम-III एचईपी	प. बंगाल	एनएचपीसी	सी	हाइड्रो	132
2	तिस्ता लो डैम -IV एचईपी	प. बंगाल	एनएचपीसी	सी	हाइड्रो	160
3	रघुनाथपुर टीपीपी U1,2	प. बंगाल	डीवीसी	सी	कोयला	1200
4	हल्दियाटीपीपी U1-2	प. बंगाल	सीईएससी	पी	कोयला	600
	उप जोड़ (प. बंगाल)					2092
	TOTAL					88537
	सी: मध्य क्षेत्र; एस: राज्य क्षेत्र; पी: निजी क्षेत्र					

अनुबंध 6.2 ऐसी अतिरिक्त निर्माणाधीन परियोजना का सारांश जिनका लाभ 12वीं योजना के दौरान प्राप्त हो सकता है

			थर्मल विवरण				
	हाइड्रो	कोयला	लिग्नाइट	गैस/ एलएनजी	कुल थर्मल	न्यूक्लियर	जोड़
मध्य क्षेत्र	2000		0	0.0	500	0	2500
राज्य क्षेत्र	80	4520	0	0.0	4520	0	4600
निजी क्षेत्र	355	28080	770	0.0	28850	0	29205
अखिल भारत	2435	33100	770	0.0	33870	0	36305

	सीआईएल	ब्लॉक	ब्लॉक (टीएल)	आईएमपी (कोयला)	वाशरी रिजेक्ट	आवश्यक संपर्क	जोड़
कोयला आधारित क्षमता	4250	16250	660	11880	60	0	33100

क्रमांक	परियोजना के नाम राज्य विकासकर्ता		क्षेत्र	ईध न प्रकार	क्षमता (मेगावाट में)	
1	ककटिया टीपीपी एसटी -II U1	आंध्रप्रदेश	एपीजेनको	एस	कोयला	600
2	सिम्हापुरी टीपीपी पीएच-I, U3,4	आंध्रप्रदेश	सिम्हापुरी एनर्जी प्राइवेट लिमिटेड.,	पी	कोयला	300
	उप जोड़(आंध्रप्रदेश)					900
1	सुबांसिरी (एल) एचईपी	अरु. प्र.	एनएचपीसी	सी	हाइड्रो	1000
	उप जोइ(अरु. प्र.)					1000
1	अकलतारा टीपीपी U-4-6	छत्तीसगढ़	केएसके महानदी पावर कंपनी लिमिटेड	पी	कोयला	1800
2	रायखेड़ा टीपीपी U-1,2	छत्तीसगढ़	जीएमआर एनर्जी	पी	कोयला	1370
3	उचपिंडा टीपीपी U4	छत्तीसगढ़	आर.के.एम. पावरजेन प्राइवेट लिमिटेड,	पी	कोयला	360
4	एथेना सिंघतराइ टीपीपी U-2	छत्तीसगढ़	एथेना छत्तीसगढ़ पावर लिमिटेड	पी	कोयला	600

क्रमांक	परियोजना के नाम	राज्य	विकासकर्ता	क्षेत्र	ईंधन प्रकार	क्षमता (मेगावाट में)
5	विंजकोट(दर्रमपुरा) टीपीपी U4	छत्तीसगढ़	एस के एस इस्पात एंड पावर लिमिटेड	पी	कोयला	300
6	वीसा टीपीपी	छत्तीसगढ़	वीसा पावर	पी	कोयला	600
7	रायगढ़ टीपीपी U3,4	छत्तीसगढ़	जिंदल पावर लिमिटेड	पी	कोयला	1200
	उप जोड़(Chhhattisgarh)					6230
1	सिक्का टीपीपी U-4	गुजरात	जीएसईसीएल	एस	कोयला	250
2	मुंद्रा यूएमपीपी, U -3,4,5	गुजरात	दि टाटा पावर कंपनी लिमिटेड	पी	कोयला	2400
3	भावनगर लिग्नाइट U-1,2	गुजरात	भावनगर एनर्जी	पी	लिग्नाइट	500
	उप जोइ(गुजरात)					3150
1	एस्सार तोरी टीपीपी U-1,2	झारखंड	एस्सार पावर	पी	कोयला	1200
2	जेएएस इंफ्रा टीपीपी	झारखंड	जेएस इंफ्रास्ट्रक्चर एण्ड पावर प्राइवेट लिमिटेड	पी	कोयला	660
3	 कारपोरेट पावर टीपीपी पीएच-II	झारखंड	कारपोरेट पावर लिमिटेड	पी	कोयला	540
	उप जोड़(झारखंड)					2400
	· 000 u o			1137		500
1	चंद्रपुर टीपीपी U-9	महाराष्ट्र	एमएएचजेनको	एस	कोयला	500
2	कोराडी टीपीपी U-9,10	महाराष्ट्र	एमएएचजेनको	एस	कोयला	1320
3	कोयना लेफ्ट बैंक पीएसएस	महाराष्ट्र	वाटर रिसोर्सेज डिपार्टमेंट (गवर्नमेंट ऑफ महाराष्ट्र)	एस	हाइड्रो	80
4	इंडिया बुल्स- अमरावती टीपीपी पीएच-II, U1-5	महाराष्ट्र	इंडिया बुल्स रियलटेक लिमिटेड	पी	कोयला	1350
5	इंडिया बुल्स- नासिक टीपीपी पीएच-II, U1-5	महाराष्ट्र	इंडिया बुल्स रियलटेक लिमिटेड	पी	कोयला	1350
6	तिरोदा टीपीपी पीएच-II U 2,3	महाराष्ट्र	अदानी पावर लिमिटेड	पी	कोयला	1320
	उप जोड़(महाराष्ट्र)					5920
1	विंध्याचल एसटीपीपी एसटी-वी U-13	मध्यप्रदेश	एनटीपीसी	सी	कोयला	500
2	महान टीपीपी U-1,2	मध्यप्रदेश	एस्सार पावर	पी	कोयला	1200
3	्र ससान यूएमपीपी U3-6	मध्यप्रदेश	 रिलायंस पावर लिमिटेड	पी	कोयला	2640
4	नाइग्री टीपीपी U-1,2	मध्यप्रदेश	 जेपी ग्रुप	पी	कोयला	1320
	उप जोड़(मध्य प्रदेश)		-			5660
1	देरांग टीपीपी U2	उड़ीसा	जिंदल इंडिया थर्मल पावर लिमिटेड	पी	कोयला	600
2	मोन्नेट मालीब्रह्माणीU1,2	उड़ीसा	मोन्नेट	पी	कोयला	1050
3	के.वी.के. नीलांचल टीपीपी U 2,3	उड़ीसा	के.वी.के. नीलांचल पावर प्राइवेट लिमिटेड.	पी	कोयला	700
4	माँ दुर्गाटीपीपी	उड़ीसा	माँ दुर्गा थर्मल पावर को लिमिटेड	पी	कोयला	60
5	लैंको बबांध – ढेनकनाल टीपीपी U-2	उड़ीसा	लैंको बबांध	पी	कोयला	660
	उप जोड़(उड़ीसा)					3070
1	कवई टीपीपी	राजस्थान	अदानी पावर लिमिटेड	पी	कोयला	1320
2	जलिपा लिग्नाइट U 7-8	राजस्थान	राज वेस्ट पावर लिमिटेड	पी	लिग्नाइट	270
3	कालीसिंध टीपीएस U2	राजस्थान	आरआरवीयूएनएल	एस	कोयला	600
	उप जोइ(Rajsthan)					2190

क्रमांक	परियोजना के नाम	राज्य	विकासकर्ता	क्षेत्र	ईंधन	क्षमता (मेगावाट
अग्नाभ	पारपाजना क नाम	राज्य	विकासकता	দাৰ	प्रकार	में)
	00: 10					
1	तसिडिंग एचईपी	सिक्किम	सिगा एनर्जी	पी	हाइड्रो	97
2	डिकचु एचईपी	सिक्किम	स्नेहा काइनेटिक पावर	पी	हाइड्रो	96
3	रंगित -II एचईपी	सिक्किम	सिक्किम हाइड्रो पावर	पी	हाइड्रो	66
4	रोंगनिचु एचईपी	सिक्किम	भारत पावर कारपोरेशन लिमिटेड	पी	हाइड्रो	96
	उप जोड़(सिक्किम)					355
1	मुटियारा टीपीपी, तुतीकोरिन, मेलामरूथुर U1-2	तमिलनाडु	कोस्टल एनर्जेन प्राइवेट लिमिटेड	पी	कोयला	1200
	उप जोइ(तमिलनाडु)					1200
1	बजाज एनर्जीटीपीपी (ललितपुर)	उत्तर प्रदेश	बजाज एनर्जी प्राइवेट लिमिटेड.	पी	कोयला	1980
	उप जोड़(उत्तर प्रदेश)					1980
1	टेहरी पीएसपी	उत्तराखंड	टीएचडीसी	С	हाइड्रो	1000
	उप जोड़(उत्तराखंड)					1000
1	डीपीएल टीपीपी U 8	प. बंगाल	दुर्गापुर प्रोजेक्ट्स लिमिटेड	एस	कोयला	250
2	सागर्दिघी टीपीपी U1,2	प. बंगाल	डब्ल्यूबीपीडीसीएल	एस	कोयला	1000
	उप जोड़(प. बंगाल)					1250
	कुल					36305

अनुबंध 6.3 विस्तृत निविदा प्रक्रिया के अधीन प्रस्तावित परियोजनाओं की सूची

क्रमांक	परियोजना के नाम	यूनिट X क्षमात(मेगावाट में)	राज्य	विकासकर्ता	क्षेत्र	ईधन प्रकार	क्षमता (मेगावाट में)
1	न्यू नबीनगर टीपीपी	3x660	बिहार	एनटीपीसी जेवी	सी	कोयला	1980
2	लारा टीपीपी	2x800	छत्तीसगढ़	एनटीपीसी	सी	कोयला	1600
3	कुडगी टीपीपी	3x800	कर्नाटक	एनटीपीसी	सी	कोयला	2400
4	सोलापुर टीपीपी	2x660	महाराष्ट्र	एनटीपीसी	सी	कोयला	1320
5	मौदा पीएच-॥ टीपीपी	2x660	महाराष्ट्र	एनटीपीसी	सी	कोयला	1320
6	गजमारा टीपीपी	2x800	उड़ीसा	एनटीपीसी	सी	कोयला	1600
7	दर्लीपाली टीपीपी	2x800	उड़ीसा	एनटीपीसी	सी	कोयला	1600
8	मेजा जेवी टीपीपी	2x660	उत्तर प्रदेश	एनटीपीसी जेवी	सी	कोयला	1320
9	रघुनाथपुर टीपीपी	2x660	प. बंगाल	डीवीसी	सी	कोयला	1320
	कुल						14460

अनुबंध 6.4 ऐसी परियोजनाओं की सूची जिनके मुख्य प्लांट के लिए आदेश प्रस्तुत कर दिए गए हैं परंतु कुछ स्वीकृतियों की प्रतीक्षा है

क्रमांक	परियोजना के नाम	राज्य	विकासकर्ता		ईंधन प्रकार	क्षमता (मेगावाट में)
				4		2000
1	कृष्णपट्टणम यूएमपीपी U1-6	आंध्रप्रदेश	रिलायंस पावर लिमिटेड	पी	कोयला	3960
2	बरौनी टीपीपी	बिहार	बीएसईबी	एस	कोयला	500
3	रायगढ़ टीपीपी (600मेगावाट+660मेगावाट)	छत्तीसगढ़	वीसा पावर	पी	कोयला	1260
4	अवंथा भंडार टीपीपी U-2	छत्तीसगढ़	कोरबा वेस्ट पावर कंपनी लिमिटेड	पी	कोयला	600
5	पीपावव टीपीपी	गुजरात	पिपावव एनर्जी लिमिटेड	पी	कोयला	600
6	येरमरुस टीपीपी	कर्नाटक	आरपीसीएल (जेवी ऑफ केपीसीएल एण्ड भेल)	एस	कोयला	1600
7	एदलापुर टीपीपी	कर्नाटक	आरपीसीएल (जेवी ऑफ केपीसीएल एण्ड भेल)	एस	कोयला	800
8	बेल्लारी टीपीपी U-3	कर्नाटक	केपीसीएल	एस	कोयला	700
9	डीबी पावर टीपीपी (सीधी) U-2	मध्य प्रदेश	डीबी पावर	पी	कोयला	660
10	नवभारत पावर प्राइवेट लिमिटेड टीपीपी U1-3	उड़ीसा	नवभारत पावर प्राइवेट लिमिटेड	पी	कोयला	1050
11	कर्चना टीपीपी	उत्तर प्रदेश	संगम पावर जेनरेशन कंपनी लिमिटेड (जेपी ग्रुप)	पी	कोयला	1320
	कुल					13050

अनुबंध 6.5 ऐसी परियोजनाएं जिनके लिए कोयला आपूर्ति हेतु करार कर लिया गया है परंतु उनके मुख्य प्लांट के लिए आदेश प्रस्तुत नहीं किए गए हैं

क्रमांक	परियोजना के नाम	राज्य	क्षेत्र	ईंधन प्रकार	क्षमता (मेगावाट में)
1	बीपीएल पावर प्रोजेक्ट्स (एपी) लिमिटेड	आंध्रप्रदेश	पी	कोयला	600
2	टीपीपी ऑफ मेसर्स वीडियोकॉन इंडस्ट्रीज लिमिटेड.	छत्तीसगढ़	पी	कोयला	660
3	धीरू पावर जेन प्राइवेट लिमिटेड	छत्तीसगढ़	पी	कोयला	1050
4	पीईएल पावर लिमिटेड अमरेली	गुजरात	पी	कोयला	500
5	तिलैया यूएमपीपी बाइ रिलायंस पावर लिमिटेड	झारखंड	पी	कोयला	3960
6	अपर्णा इंफ्रा एनर्जी	महाराष्ट्र	पी	कोयला	250
7	जीआईएनबीएचयूवीआईएसजी पावर जेनरेशन लिमिटेड 2X250	महाराष्ट्र	पी	कोयला	500
8	सेंट्रल इंडिया पावर को. लिमिटेड	महाराष्ट्र	पी	कोयला	660
9	गुप्ता एनर्जी लिमिटेड.	महाराष्ट्र	पी	कोयला	540
10	एनएसएल पावर प्राइवेट लिमिटेड	तमिलनाडु	पी	कोयला	1320
11	तिरूमलाइ टीपीपी पीइएल पावर लिमिटेड	तमिलनाडु	पी	कोयला	500
12	ओबीआरए इएक्सटीएन U-1 (यूपीआरयूवीएनएल)	उत्तर प्रदेश	एस	कोयला	660
	कुल				11200

अनुबंध 6.6 निर्माणाधीन गैस आधारित परियोजनाओं की सूची (जिनके लिए गैस आपूर्ति हेतु व्यवस्था नहीं हो पायी है)

क्रमांक	पावर स्टेशन/एजेंसी का नाम	क्षमता (मेगावाट में)	राज्य में स्थित
	मध्य क्षेत्र		
	राज्य क्षेत्र		
1	बवाना सीसीजीटी *	750	दिल्ली
2	धुव्रन एक्सटेंशन (जीएसईसीएल)	375	गुजरात
3	पीपावव जेवी सीसीजीटी	702	गुजरात
	उप जोड़(एस.एस.)	1827	
	निजी क्षेत्र		
4	वेमागिरी इएक्सपी वाई जीआरईएल	768	आंध्रप्रदेश
5	लैंको कोंडापल्ली इएक्सपी (एसटी- III)	770	आंध्रप्रदेश
6	काशीपुर सीसीजीटी (स्नावंती एनर्जी पी लिमिटेड) ।&॥	450	उत्तराखंड
7	सामलकोट एक्सपैंसन	2400	आंध्रप्रदेश
8	गेगरुपाडु ईएक्सपी (एसटी-III)I	400	आंध्रप्रदेश
9	गौतमी एसटी-॥ (फेज-।)	800	आंध्रप्रदेश
10	सीसीजीटी वाइ मेसर्स पीएसपीएल(पांडुरंगा) –पीएच-l	110	आंध्रप्रदेश
11	आरवीके(राजमुंद्री)प्राइवेट लिमिटेड	436	आंध्रप्रदेश
12	सुजेन फेज-1 यूनिट-4 मेसर्स टोरेंट	382.5	गुजरात
13	दहेज एसईजेड (टोरेंट) 3 मॉड्यूल्स	1200	गुजरात
14	सीसीजीटी वाइ मेसर्स बीटा इंफ्राटेक प्राइवेट लिमिटेड	225	उत्तराखंड
15	सीसीजीटी वाइ मेसर्स गामा इंफ्राटेक प्राइवेट प्राइवेट लिमिटेड	225	उत्तराखंड
16	सीसीपीपी वाइ मेसर्स गुरुजी पावर प्राइवेट लिमिटेड (जीपीपीएल)	110	उत्तराखंड
17	सीएचपी एट बिदार वाइ सहेली एक्सपोर्ट्स प्राइवेट लिमिटेड	70	कर्नाटक
18	सीसीजीटी एट कुट्टलम वाइ सहेली एक्सपोर्ट्स पी लिमिटेड	30	तमिलनाडु
19	लातुर सीसीपीपी वाइ हेकेट पावर सिस्टम्स पी लिमिटेड	800	महाराष्ट्र
20	सीसीपीपी वाइ मेसर्स एच एनर्जी को प्राइवेट लिमिटेड	350	महाराष्ट्र
21	सीसीजीटी वाइ मेसर्स केपीआर केमिकल्स लिमिटेड	225	आंध्रप्रदेश
22	सीसीजीटी वाइ मेसर्स पायोनियर गैस पावर लिमिटेड	400	महाराष्ट्र
23	पीपीएन एक्सपैंसन वाइ पीपीएन पावर जेनरेशन को लिमिटेड	1080	तमिलनाडु
24	गैस इंजन एट पाशमयलरम वाइ आस्था पावर	35	आंध्रप्रदेश
	उप जोड़(निजी क्षेत्र)	11266.5	
	कुल(एसएस+पीएस)	13093.5	

*बवाना सीसीजीटी की कुल क्षमता 1500 मेगावाट है जिसमें से 11वीं पंचवर्षीय योजना के दौरान 750 मेगावाट उपयोग हुआ

अनुबंध 6.7

ऐसी विद्युत परियोजनाओं की सूची जिन्हें 12वीं योजना में शामिल करने के लिए अनुरोध किया गया है

क्रमांक	परियोजना के नाम	राज्य	विकासकर्ता	क्षेत्र	ईंधन प्रकार	क्षमता (मेगावाट में)
1	एजीटीपी	त्रिपुरा	नीपको	सी	गैस	46
2	जांगीर चंपा टीपीपी	छत्तीसगढ़	एमबी पावर	पी	कोयला	1320
3	डीआरटीपीपी एक्सटेंशन (यमुना नगर)	हरियाणा	एचपीजीसीएल	एस	कोयला	660
4	तुतीकोरिन एसटी-IV	तमिलनाडु	स्पिक इलेक्ट्रिक पावर कारपोशन प्राइवेट लिमिटेड	पी	कोयला	525
5	श्रीकाजी टीपीपी	तमिलनाडु	सिंधिया पावर	पी	कोयला	1320
6	भोगनीपुर टीपीपी	उत्तर प्रदेश	लैंको	पी	कोयला	3960
7	संदिला टीपीपी	उत्तर प्रदेश	टोरेंट पावर	पी	कोयला	1320
8	घाटमपुर टीपीपी	उत्तर प्रदेश	यूपीआरवीयूएनएल एण्ड एनएलसी जेवी	एस	कोयला	1980
9	जवाहरपुर टीपीपी	उत्तर प्रदेश	यूपीआरवीयूएनएल	एस	कोयला	1980
	Total					13111

अनुबंध 6.8 ऐसी जलविद्युत परियोजनाओं की सूची जिनका लाभ 13वीं योजना के दौरान प्राप्त होने की आशा है

क्रमांक	योजना का नाम	राज्य	क्षेत्र	विकासकर्ता	क्षमता (मेगावाट में)
1	डुम्मुगुडेम	आंध्रप्रदेश	एस	एपीआइडी	320
2	पोल्लावरम एमपीपी	आंध्रप्रदेश	एस	एपीआइडी	960
3	सिंगारेड्डीपल्ली	आंध्रप्रदेश	एस	एपीआइडी	320
4	तवंग-I	अरु. प्र.	सी	एनएचपीसी	600
5	तवंग-॥	अरु. प्र.	सी	एनएचपीसी	800
6	डेमवे लोअर	अरु. प्र.	पी	एथेना डेमवे	1750
7	डिव्बिन	अरु. प्र.	पी	केएसके डिब्बिन हाइड्रो पावर प्राइवेट लिमिटेड.	120
8	सियांग लोअर	अरु. प्र.	पी	जयप्रकाश एसोसिएट्स लिमिटेड	2700
9	नियामजुंछु	अरु. प्र.	पी	भीलवाड़ा एनर्जी लिमिटेड	780
10	लोंडा (तालोंग)	अरु. प्र.	पी	जीएमआर एनर्जी लिमिटेड	225
11	नफरा	अरु. प्र.	पी	एसइडब्ल्यू	120
12	टैटो-॥	अरु. प्र.	पी	रिलायंस एनर्जी लिमिटेड	700
13	दर्द	अरु. प्र.	पी	केवीके	60
14	मागो छू	अरु. प्र.	पी	एसइडब्ल्यू	96
15	पार	अरु. प्र.r	पी	केवीके	65
16	रेगो	अरु. प्र.r	पी	टीयूएफएफ एनर्जी	141
17	डिनचैंग	अरु. प्र.	पी	केएसके	90
18	न्युक्चा रांग छू	अरु. प्र.	पी	एसइडब्ल्यू	96
19	लोवर कोपिलि	असम	एस	असम जेनको	150
20	धौला सिद्ध	हि. प्र.	सी	एसजेवीएनएल	66
21	बजोली होली	हि. प्र.	पी	जीएमआर	180
22	कुटेहर	हि. प्र.	पी	जेएसडब्ल्यू	240
23	धमवारी सुंदा	हि. प्र.	पी	धमवारी पावर प्राइवेट लिमिटेड	70

क्रमांक	योजना का नाम	राज्य	क्षेत्र	विकासकर्ता	क्षमता (मेगावाट में)
24	कशांग–IV	हि. प्र.	एस	एचपीपीसीएल	48
25	रेणुका बाँध	हि. प्र.	एस	एचपीपीसीएल	40
26	शांगटांग करचम	हि. प्र.	एस	एचपीपीसीएल	450
27	कवर	जम्मू कश्मीर	सी	एनएचपीसी	520
28	किरू	जम्मू कश्मीर	सी	एनएचपीसी	600
29	न्यू गंडेरवाल	जम्मू कश्मीर	एस	जेकेपीडीसी	93
30	गुंडिया-I	कर्नाटक	एस	केपीसीएल	200
31	गुंडिया-॥	कर्नाटक	एस	केपीसीएल	200
32	शिव समुंद्रम सीजनल एचईपी	कर्नाटक	एस	केपीसीएल	345
33	अथिरापल्ली	केरल	एस	केएसईबी	163
34	मणकुलम	केरल	एस	केएसईबी	40
35	अचेनकोविल	केरल	एस	केएसईबी	30
36	पंबार	केरल	एस	केएसईबी	40
37	लोकटक डी/एस	मणिपुर	सी	एनएचपीसी	66
38	बालीमेला डैम टो	उड़ीसा	एस	उड़ीसा एण्ड एपीजेवी	60
39	यूबीडीसी-॥।	पंजाब	पी	भीलवाड़ा एनर्जी लिमिटेड	75
40	शाहपुर कांडी	पंजाब	एस	पीएसईबी	206
41	तीस्ता -IV	सिक्किम	सी	एनएचपीसी	520
42	टिंग टिंग	सिक्किम	पी	टी टी एनर्जी	99
43	पानन	सिक्किम	पी	हिमगिरी	300
44	कुंदा पीएसएस	तमिलनाडु	एस	टीएनईबी	500
45	लता तपोवन	उत्तराखंड	सी	एनटीपीसी	171
46	विष्णुगाड पीपलकोटि	उत्तराखंड	सी	टीएचडीसी	444
47	कोटलिभेल-IA	उत्तराखंड	सी	एनएचपीसी	195
48	कोटलिभेल -IB	उत्तराखंड	सी	एनएचपीसी	320
49	कोटलिभेल -II	उत्तराखंड	सी	एनएचपीसी	530
50	रूपसियाबागर खसियाबारा	उत्तराखंड	सी	एनटीपीसी	260
51	नैतवार मोरी (देवरा मोरी)	उत्तराखंड	सी	एसजेवीएनएल	56
52	देवसारी डैम	उत्तराखंड	सी	एसजेवीएनएल	252
53	अलकनंदा (बद्रीनाथ)	उत्तराखंड	पी	जीएमआर	300
54	हनोल तिउनी	उत्तराखंड	पी	सनफ्लैग	60
55	बोगुडियार सिरकरी	उत्तराखंड	पी	जीवीके	146
56	मपांग बोगुडियार	उत्तराखंड	पी	जीवीके	200
57	पाला मनेरी	उत्तराखंड	एस	यूआईडी	480
58	अरकोट तिउनी	उत्तराखंड	एस	यूआईडी	81
59	तिउनी प्लासु	उत्तराखंड	एस	यूआईडी	72
60	बोवाला नंद प्रयाग	उत्तराखंड	एस	यूजेवीएनएल	300
61	नंद प्रयाग लंगासु	उत्तराखंड	एस	यूजेवीएनएल	100
62	तमक लता	उत्तराखंड	एस	यूजेवीएनएल	280
63	रामम -	प. बंगाल	सी25	एनटीपीसी	120
64	रामम -l	प. बंगाल	एस	डब्ल्यूबीपीडीसीएल	36
65	रामम अल्टीमेट-(IV)	प. बंगाल	एस	डब्ल्यूबीपीडीसीएल	28
	जोड़				19675

अध्याय 7

थर्मल पावर प्लांटों के लिए भूमि और जल की आवश्यकता का उपयुक्त निर्धारण

7.0 प्रस्तावना

12वीं पंचवर्षीय योजना के दौरान और उसके पश्चात देश में भारी क्षमता अभिवृद्धि की परिकल्पना की गई है। 12वीं पंचवर्षीय योजना के दौरान लगभग 88,000 मेगावाट क्षमता आवश्यक है और 13वीं पंचवर्षीय योजना के दौरान भी लगभग इतनी ही क्षमता अभिवृद्धि की जानी है। इसके लिए बहुत से कोयला और गैस आधारित पावर प्लांटों की स्थापना आवश्यक होगी। तेजी से क्षमता अभिवृद्धि लक्ष्यों को प्राप्त करने के लिए 660/800 मेगावाट क्षमता वाली सुपर क्रिटिकल यूनिटों का प्रयोग करते हुए 4000 मेगावाट आकार वाले अल्ट्रा पावर मेगा प्लांटों (यूएमपीपी) सहित बड़ी क्षमता वाले पावर प्लांटों की परिकल्पना की गई है। इनकी स्थापना विशेष रूप से पिटहेड और तटवर्ती स्थानों में की जाएगी। किसी थर्मल पावर प्लांट की स्थापना के लिए पर्याप्त मात्रा में भूमि जल की उपलब्धता महत्वपूर्ण आवश्यकता हैं।

तुलनात्मक रूप से क्षमता अभिवृद्धि की गित धीमी होने के कारण पहले भूमि की उपलब्धता कोई बड़ी बाधा नहीं थी और पावर प्लांटों की स्थापना अन्य लागू मानदंडों अर्थात कोयला और जल की आपूर्ति के आधार पर की जाती थी। हालांकि, अब चूंकि विद्युत क्षेत्र का विस्तार व्यापक पैमाने पर शुरू किया गया है, अत: भूमि की उपलब्धता भी एक बाधा बनती जा रही है और वर्तमान में योजनागत तथा भावी प्लांटों के लिए यह एक बड़ी चुनौती बनकर उभर रही है। भूमि अब महत्वपूर्ण संसाधन बन गई है और इसका अधिग्रहण अन्य प्रतिस्पर्धी क्षेत्रों तथा स्थानीय जनता के विरोध के कारण कठिन होता जा रहा है। इस पृष्ठभूमि में भूमि के अधिकतम सदुपयोग का महत्व बढ़ गया है और ऐसे प्रयास किए जा रहे हैं कि उपलब्ध भूमि में ही अधिकतम क्षमता वाले प्लांटों की स्थापना की जाए।

7.1 भूमि आवश्यकता

किसी कोयला आधारित प्लांट के लिए भूमि आवश्यकता बहुत से घटकों जैसे; प्लांट की क्षमता और यूनिट का आकार, कोयले की गुणवत्ता और इसके भंडारण की आवश्यकता, अपनाई जाने वाली सीडब्ल्यू प्रणाली के प्रकार, पानी के स्रोत और इसकी भंडारण आवश्यकता तथा प्लांट डिजाइन से जुड़े विभिन्न पहलुओं पर निर्भर करती है। कोयला आधारित प्लांटों के लिए भूमि की आवश्यकता मुख्य रूप से मुख्य प्लांट प्रणालियों/उपस्करों, ऐश डाइक, पाइप कॉरिडोर (ऐश और रॉ वाटर के लिए) और आवासीय परिसर के लिए होती है। आयातित कोयले पर आधारित प्लांटों के लिए तुलनात्मक रूप से कम भूमि की आवश्यकता होती है क्योंकि इसके लिए स्थानीय कोयले पर आधारित प्लांटों की तरह ईएसपी, कोल हैंडलिंग प्रणाली, ऐश हैंडलिंग प्रणाली और ऐश डाइक आदि के लिए भूमि आवश्यक नहीं होती है। सीडब्ल्यू प्रणाली के प्रकार अर्थात मुक्त चक्र या कूलिंग टावर सिस्टम का भी प्लांट के लिए भूमि आवश्यकता पर महत्वपूर्ण प्रभाव पड़ता है।

ऐश डाइक के लिए भूमि आवश्यकता विभिन्न पहलुओं जैसे कोयले की गुणवत्ता, ऐश निपटान की पद्धित और फ्लाई ऐश के सदुपयोग पर निर्भर करती है। पहले फ्लाई ऐश और बॉटम ऐश को पारंपरिक तरीके से पतली स्लरी के रूप में ऐश पॉड में निपटाई जाती थी, इसके लिए बड़े पॉड की आवश्यकता होती थी। हालांकि गीली स्लरी के सांद्रण में 25% तक की वृद्धि होने और अन्य प्रौद्योगिकियों जैसे एचसीएसडी (उच्च सांद्रण स्लरी निपटान) और ड्राई फ्लाई ऐश निपटान का प्रयोग शुरू किए जाने से ऐश डाइक के लिए भूमि की आवश्यकता काफी हद तक कम हो गई है। एक निर्धारित समयावधि के भीतर फ्लाई ऐश के 100% प्रगामी सदुपयोग के लिए पर्यावरण और वन मंत्रालय के निदेशानुसार ऐश डाइक में निपटान की जाने वाली ऐश की मात्रा काफी हद तक कम हो गई है। धुले हुए कोयले के प्रयोग और आयात किए गए कोयले को स्वदेशी कोयले के साथ मिलाकर उसका प्रयोग करने से भी ऐश डाइक के लिए भूमि की आवश्यकता कम हो गई है। आयातित कोयले पर आधारित नए पलांटों के लिए ऐश डाइक हेतु कम से कम भूमि आवश्यक होगी।

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 169

7.1.1 भूमि आवश्यकता को अधिकतम उपयुक्त बनाने के लिए समिति

कोयला आधारित प्लांटों पर भारी मात्रा में प्रस्तावित क्षमता अभिवृद्धि निर्भर होने की बात को ध्यान में रखते हुए थर्मल प्लांटों के लिए भूमि आवश्यकता के अधिकतम सदुपयोग की आवश्यकता महसूस की गई। चूंकि उच्च क्षमता अभिवृद्धि के लक्ष्यों को प्राप्त करने के लिए बड़े आकार वाली यूनिटों के साथ अधिक क्षमता वाले प्लांटों की स्थापना की जानी है, अत: केन्द्रीय विद्युत प्राधिकरण ने अप्रैल, 2007 में एक समिति गठित की थी जो थर्मल प्लांटों के लिए भूमि आवश्यकता संबंधी पहलू का अध्ययन करेगी और विभिन्न आकार वाले प्लांटों के लिए कम से कम भूमि आवश्यकता पर सुझाव देगी। इस समिति ने दिसंबर, 2007 में अपनी रिपोर्ट प्रस्तुत की और अपनी रिपोर्ट में विभिन्न आकार वाले तथा मिश्रित पावर प्लांटों जैसे स्वदेशी कोयला/आयातित कोयला पर आधारित, मुक्त चक्र/बंद चक्र सीडब्ल्यू प्रणाली आदि के लिए भूमि आवश्यकता संबंधी विभिन्न पहलुओं का विश्लेषण किया। समिति ने भूमि आवश्यकता से संबंधित सिफारिशें प्रस्तुत कीं जो नीचे तालिका 7.1 और 7.2 में दी गई हैं:

तालिका 7.1 स्वदेशी कोयला (पिटहेड स्टेशन)

क्र.सं.	विवरण		भूमि आवः	श्यकता (एकड़)	
			(एकड़ प्र	ाति मेगावाट)	
		2x500 3x660 6x660		6x660	5x800
		मेगावाट	मेगावाट	मेगावाट	मेगावाट
i)	मुख्य पावर प्लांट	600	850	1250	1170
		(0.6)	(0.43)	(0.32)	(0.29)
ii)	ऐश डाइक	500	855	1630	1200
iii)	अन्य सुविधाएं (पाइप कॉरिडोर एवं रॉ वाटर पंप हाउस आदि)	220	245	250	250
iv)	टाउनशिप	100	100	150	150
	कुल भूमि आवश्यकता (एकड़ में)	1420	2050	3280	2770
	(एकड़/मेगावाट)	(1.42)	(1.04)	(0.83)	(0.69)

तालिका 7.2 आयातित कोयला (तटवर्ती स्टेशन)

क्र.सं.	विवरण	911 41	भूमि आवश्यकता (एकड़)							
<i>9ν.</i> α.	19989		भू।म आवश्यकता (एकड़)							
				(एकड़ प्रति	ने मेगावाट)					
		3x660	मेगावाट	6x660	मेगावाट	5x800	मेगावाट			
		एमजीआर	एमजीआर	एमजीआर	एमजीआर	एमजीआर	एमजीआर			
		और कूलिंग	और	और कूलिंग	और	और कूलिंग	और			
		टावर के	कूलिंग	टावर के	कूलिंग	टावर के	कूलिंग			
		बिना	टावर के	बिना	टावर के	बिना	टावर के			
			साथ		साथ		साथ			
i)	मुख्य पावर प्लांट	400	570	630	880	570	840			
		(0.2)	(0.29)	(0.16)	(0.22)	(0.14)	(0.21)			
ii)	ऐश डाइक	240	240	400	400	390	390			
iii)	अन्य सुविधाएं	100	140	110	150	110	150			
	(पाइप कॉरिडोर									
	एवं रॉ वाटर पंप									
	हाउस आदि)									
iv)	टाउनशिप	100	100	150	150	150	150			
	कुल भूमि आवश्यकता	840	1050	1290	1580	1220	1530			
	(एकड़ में)									
		(0.42)	(0.53)	(0.33)	(0.4)	(0.3)	(0.38)			
	(एकड़/मेगावाट)									

समिति ने सुझाव दिया है कि ऐश डाइक और आवासीय कालोनी के लिए भूमि आवश्यकता को और कम किया जा सकता है। फ्लाई ऐश के सदुपयोग, पलांट की छोटी डिजाइन और टाउनशिप के लिए बहुमंजिला इमारत संकल्पना को अपनाकर एकीकृत परियोजनाओं की स्थापना से भूमि आवश्यकता को काफी कम किया जा सकता है।

7.2 थर्मल पावर प्लांटों में जल आवश्यकता को उपयुक्त बनाने वाली प्रौद्योगिकी (डब्ल्यूओटी)

7.2.1 प्रस्तावना

थर्मल विद्युत उत्पादन के लिए पानी एक महत्वपूर्ण इनपुट है। ऐतिहासिक रूप से थर्मल पावर प्लांट जल निकायों के आस पास स्थापित किए जाते थे और उनके लिए स्थायी आधार पर पर्याप्त मात्रा में जल की उपलब्धता सुनिश्चित की जाती थी। देश में चहुमुखी विकास और थर्मल पावर स्टेशनों की व्यापक वृद्धि के साथ जल की उपलब्धता भी कम होती जा रही है। चूंकि औद्योगिक उपयोग और विद्युत उत्पादन की तुलना में पेयजल और सिंचाई के प्रयोग हेतु जल आवंटन को प्राथमिकता दी जाती है, अत: थर्मल पावर प्लांटों को पर्याप्त मात्रा में पानी उपलब्ध नहीं हो पा रहा है। थर्मल पावर प्लांटों में जल का सदुपयोग और प्लांट से उत्सर्जित अपशिष्ट जल की रिसाइकलिंग नितांत महत्वपूर्ण हो गई है, ताकि जल के स्रोतों से कम से कम पानी लेने की आवश्यकता पड़े।

12वीं पंचवर्षीय योजना के दौरान और उसके पश्चात बड़े पैमाने पर कोयला आधारित क्षमता अभिवृद्धि की जानी है। इसके लिए कोयला आधारित पावर स्टेशनों की स्थापना हेतु बड़ी संख्या में नए स्थल आवश्यक होंगे। स्थल के चयन हेतु भूमि और जल की आवश्यकता को प्राथमिक मानदंड के रूप में माना जाता है। कोयला परिवहन की मितव्ययिता को ध्यान में रखते हुए बहुत से नए पावर प्लांटों की स्थापना पिटहेड और तटवर्ती क्षेत्रों में करने की परिकल्पना की गई है। जल की अनुपलब्धता के कारण नए स्थलों के चयन में पहले से ही समस्याएं आ रही हैं, विशेष रूप से उड़ीसा, झारखंड और छत्तीसगढ़ जैसे राज्यों में जहां कोयला प्रचुर मात्रा में उपलब्ध है, में अधिक संख्या में स्थलों की पहचान की गई है। विशेष रूप से पश्चिमी तट पर तटवर्ती क्षेत्रों का पता लगाने में भी कठिनाई हो रही है, यह समस्या भविष्य में जब और अधिक स्थलों की आवश्यकता होगी तो और भी गंभीर हो जाएगी। इस प्रकार थर्मल पावर प्लांटों के लिए स्थल के विकल्प बढ़ाने के उद्देश्य से ऐसे क्षेत्रों जहां पानी की कमी है, में पानी की आवश्यकता को न्यूनतम बनाए रखना जरूरी है।

7.2.2 प्लांट जल प्रणाली

कूलिंग जल प्रणाली सिहत प्लांट जल प्रणाली जल के स्रोत पर निर्भर करती है। कूलिंग जल प्रणाली या तो मुक्त चक्र प्रकार की अथवा कूलिंग टावर का प्रयोग करते हुए बंद चक्र मुक्त परिचालन प्रकार की हो सकती है। स्वच्छ जल स्रोतों जैसे नदी, नहर, झील और जलाशय पर आधारित सभी अंतर्देशीय प्लांटों के लिए अब यह अनिवार्य बना दिया गया है कि वे कूलिंग टावर नियोजित कर बंद चक्र कूलिंग प्रणाली की स्थापना करें। मुक्त चक्र कूलिंग प्रणाली की अनुमित केवल तटवर्ती क्षेत्रों में है। तकनीकी आर्थिक पहलुओं को ध्यान में रखते हुए तटवर्ती क्षेत्रों में समुद्री जल आधारित कूलिंग टावरों का भी प्रयोग किया जा रहा है।

प्लांटों को आपूर्त किए जाने वाले जल को विभिन्न पलांट अनुप्रयोगों के लिए उपयुक्त बनाने हेतु उपचारित करने की आवश्यकता है। अशुद्ध पानी को शुद्धीकरण प्लांट में उपचारित किया जाता है ताकि शुद्ध जल तैयार किया जा सके और उसका प्रयोग शुद्ध जल अनुप्रयोगों जैसे कूलिंग टावर मेकअप और सर्विस वाटर आदि के लिए किया जा सके। इसके अलावा उक्त जल का प्रयोग डीएम प्लांट तथा पोर्टेबल वाटर सिस्टम के लिए इनपुट जल के रूप में भी किया जाता है। डीएम प्लांट योजना में दाब फिल्टर, केसन एक्सचेंजर, डिगैसर, एरियन एक्सचेंजर और मिक्स बेड पॉलिशर जैसी जटिल संरचनाएं शामिल होती हैं। पोर्टेबल वाटल सिस्टम की योजना में फिल्ट्रेशन, क्लोरिंग डोजिंग और जल को पीने योग्य बनाने के लिए आवश्यक अन्य उपचार शामिल होते हैं। विभिन्न उपचार प्रक्रियाओं (क्लेरीफायर स्लज, फिल्टर बैक वाश और डीएम प्लांट आदि के अपशिष्ट से पुन:उत्पादन) में उत्सर्जित अपशिष्ट जल को उपयुक्त ढंग से रिसाइकल किया जाता है और यथाव्यवहार्य सीमा तक उपचार के पश्चात अथवा उपचार किए बिना उसका पुन: प्रयोग किया जाता है।

7.2.3 जल आवश्यकता

किसी थर्मल पावर प्लांट में कंडेसर कूलिंग जल प्रणाली तैयार करने और गीली ऐश के निपटान हेतु भारी मात्रा में जल की आवश्यकता होती है। जल की अन्य आवश्यकताओं में पावर साइकल मेकअप, सर्विस ऑर पोर्टेबल प्रयोग, कोल्ड डस्ट सप्रेशन आदि शामिल हैं। ऐश के निपटान हेतु कूलिंग टावर ब्लो डाउन पद्धित का प्रयोग किया जाता है।

प्लांट की जल आवश्यकता विभिन्न घटकों जैसे जल की गुणवत्ता, कंडेंशर कूलिंग प्रणाली के प्रकार, कोयला की गुणवत्ता, ऐश निपटान प्रणाली के प्रयोग, अपशिष्ट जल प्रबंधन पहलुओं पर निर्भर होती है। ऐश हैंडलिंग प्रणाली के विभिन्न मॉडलों के साथ एक साथ 1000 मेगावाट क्षमता वाले जटिल पावर प्लांट के लिए जल की खपत नीचे तालिका 7.2 में दर्शाई गई है:

तालिका 7.3

क्र.सं.	ऐश हैंडलिंग प्रणाली का प्रकार		सीडब्ल्यू प्रणाली का	प्लांट में जल की खपत
	फ्लाई ऐश	बॉटम ऐश	सीओसी**	(एम³/एच)
1	सामान्य स्वरूप – गीली	गीली	5.0	2900*
	आपातकाल – गीली			
2	सामान्य स्वरूप – शुष्क	गीली	5.0	2850
	आपातकाल – एचसीएसडी***			

नोट:

ऐसी प्रौद्योगिकियों के प्रयोग से पावर प्लांट में जल की खपत को और भी कम किया जा सकता है, जो जल की आवश्यकता को न्युनतम करने में सहायक हैं।

7.2.4 प्लांट में जल के इष्टतम सदुपयोग हेतु प्रौद्योगिकियां

जल की कमी और थर्मल विद्युत उत्पादन के लिए कम मात्रा में जल आवंटन के कारण थर्मल पावर प्लांटों में प्लांट जल प्रणाली के इष्टतम उपयोग हेतु लगातार प्रयास किए गए हैं। पिछले कुछ वर्षों के दौरान विभिन्न अनुप्रयोगों के लिए जल के सदुपयोग द्वारा जल आवश्यकता को इष्टतम बनाया गया है, इसके लिए अशुद्ध जल की गुणवत्ता ठीक करने के लिए पर्याप्त मात्रा में उपचार, विभिन्न प्रयोगों के लिए आंशिक रूप से खपत कम करने और कमतर अनुप्रयोगों के लिए प्लांट के अपशिष्ट जल के प्रयोग जैसे उपाय किए जा रहे हैं। प्लांट में जल की आवश्यकता को और अधिक इष्टतम बनाया गया है। इसके लिए ऐसी प्रौद्योगिकियों को अपनाया गया है जिनका उद्देश्य विभिन्न अनुप्रयोगों के लिए जल की खपत कम करना और प्लांट के अपशिष्ट जल की रिसाइकलिंग कर उसका अधिकतम सदुपयोग सुनिश्चित करना है। प्लांट के अपशिष्ट जल के सदुपयोग की आवश्यकता और योजनाओं को पर्यावरण और वन मंत्रालय तथा सीपीसीबी/एसपीसीबी द्वारा इस संदर्भ में जारी किए गए निदेशों को ध्यान में रखते हुए तैयार किया जाता है। अभी हाल ही में कुछ परियोजनाओं के लिए पर्यावरण और वन मंत्रालय ने ऐसे निदेश जारी किए हैं कि प्लांट की बाउंड्री से कोई भी अपशिष्ट पदार्थ बाहर नहीं आने चाहिए। इसके परिणामस्वरूप प्लांट की जल प्रणाली और प्लांट के अपशिष्ट जल का उपचार और रिसाइकलिंग नितांत आवश्यक हो गई है। थर्मल प्लांटों के लिए आवश्यक जल के इष्टतमीकरण हेतु अपनाए जाने वाले उपाय/प्रौद्योगिकियों के विवरण नीचे दिए गए हैं :

^{*} प्लांट प्रचालन की आरंभिक अवधि जब तक फ्लाई ऐश का पर्याप्त सदुपयोग सुनिश्चित नहीं कर लिया जाता है, के दौरान फ्लाई ऐश के निपटान हेतु गीली पद्धित का प्रयोग किया जाएगा और इस अवधि के दौरान अतिरिक्त जल आवश्यकता ऊपर दर्शाई गई मात्रा से अनुसार लगभग 600 एम³/एच से अधिक होगी।

^{**} सांद्रण चक्र

^{***} उच्च सांद्रण स्लरी निपटान

7.2.4.1 कूलिंग जल प्रणाली

कूलिंग जल प्रणाली कंडेंसर और ब्वॉयलर तथा टर्बाइन के अनुषंगी उपकरणों और हीट एक्सचेंजर प्लेटों से अपिशष्ट ऊष्मा को हटाने के लिए उपलब्ध कराई जाती है। कूलिंग टावर में पानी का वाष्पीकरण किया जाता है और पिरचालित किए जाने वाले जल में घुलित नमक की मात्रा को कम करने के लिए इसका इस्तेमाल किया जाता है। वाष्पीकरण, गंदगी और ब्लोडाउन के कारण होने वाली जल की हानि की प्रतिपूर्ति के लिए कूलिंग जल प्रणाली में पुरक जल प्रेषित किया जाता है।

शुष्क कूलिंग प्रणालियां, जिनमें जल का वाष्पीकरण नहीं होता है, में कंडेंसर कूलिंग प्रणाली के लिए अतिरिक्त जल की आवश्यकता नहीं होती है। इस प्रकार इनका प्रयोग काफी हद तक जल की खपत को कम करने के लिए किया जाता सकता है।

7.2.4.2 गीली कूलिंग प्रणाली में इष्टतमीकरण

गीले कूलिंग टावरों के लिए पूरक जल आवश्यक होता है। इसकी मात्रा सीडब्ल्यू प्रणाली में बनाए जाने वाले सांद्रण चक्र (सीओसी) पर निर्भर करती है। सीडब्ल्यू प्रणाली में अपनाया जाने वाला सांद्रण चक्र पूरक जल की गुणवत्ता पर निर्भर करता है। वर्तमान प्रक्रिया में कूलिंग टावर तक पूरक जल के रूप में शुद्ध जल का प्रयोग किया जाता है और इसका प्रचालन उपयुक्त रासायनिक डोजिंग के साथ 5.0 के सीओसी पर सीडब्ल्यू प्रणाली के प्रचालन हेतु किया जाता है, ताकि प्लांट की जल आवश्यकता को अधिकतम उपयुक्त बनाया जा सके। इसके लिए कम से कम 2% सीडब्ल्यू प्रवाह वाले पूरक सीटी जल की आवश्यकता होती है और सीडब्ल्यू सी प्रणाली में प्रेषित किए जाने वाले जल की मात्रा का प्रवाह 0.35% होना चाहिए।

ऐश हैंडलिंग प्लांट के लिए जल की आवश्यकता को उपलब्ध ब्लो डाउन जल से पूरा किया जाता है। यदि सीडब्ल्यू प्रणाली से उपलब्ध ब्लो डाउन जल की तुलना में ऐश हैंडलिंग प्रणाली के लिए जल की आवश्यकता कम होती है, तो शेष ब्लो डाउन जल को प्लांट के सीएमबी के लिए इस्तेमाल किया जाता है। यदि शुष्क ऐश हैंडलिंग, ऐश पॉंड जल की रिसाइकलिंग आदि पद्धतियों को अपनाने से ऐश हैंडलिंग प्लांट के लिए जल की आवश्यकता और कम हो जाती है, तो प्लांट सीएमबी के लिए अधिक मात्रा में ब्लो डाउन जल उपलब्ध होगा। ब्लो डाउन जल की मात्रा को सीडब्ल्यू प्रणाली के सीओसी को बढ़ाकर कम किया जा सकता है, इस लक्ष्य को परिचालित किए जाने वाले जल की रासायनिक विशेषताओं में उपयुक्त ढंग से सुधार करके प्राप्त किया जा सकता है।

7.2.4.3 शुष्क कूलिंग प्रणाली

शुष्क कूलिंग प्रणालियां वायु द्वारा सूक्ष्म ट्यूबों में कूलिंग कर प्रत्यक्ष रूप से वातावरण में अपशिष्ट उष्मा को पावर साइकल में प्रेषित नहीं करती हैं। गीली कूलिंग प्रणालियों, जो परिवेशी नम बल्ब तापमान के संदर्भ में प्रचालित होती हैं और जिनमें संवेदनशील तथा अंतर्निहित ऊष्मा का अंतरण शामिल होता है, से विपरीत शुष्क कूलिंग प्रणालियां परिवेशी शुष्क बल्ब तापमान के संदर्भ में प्रचालित होती हैं और इनमें केवल संवेदनशील कूलिंग ही शामिल होती हैं। शुष्क कूलिंग प्रणाली में प्राप्त टर्बाइन बैक प्रेशर लो हीट ट्रांसफर कोफिशिएंट और शुष्क बल्ब तापमान के संदर्भ में प्रचालन के कारण गीली कूलिंग प्रणाली की तुलना में काफी अधिक होता है। शुष्क कूलिंग प्रणालियों को निम्नलिखित दो श्रेणियों में व्यापक तौर पर वर्गीकृत किया जा सकता है:

- क) प्रत्यक्ष शुष्क कूलिंग प्रणाली
- ख) अप्रत्यक्ष शुष्क कूलिंग प्रणाली

प्रत्यक्ष शुष्क कूलिंग प्रणाली में एलपी टर्बाइन से बाहर निकलने वाली वाष्प को मेकेनिकल ड्राफ्ट फैन का इस्तेमाल करते हुए परिवेशी वायु द्वारा सूक्ष्म ट्यूबों वाली एक प्रणाली में प्रत्यक्ष रूप से शीतल किया जाता है। वाष्प प्रेषण प्रणाली में दाब को कम करने के लिए इन यूनिटों को एयर कूल्ड कंडेंसर (एसीसी) कहा जाता है और इन्हें टर्बाइन हॉल के समीप स्थापित करने की आवश्यकता होती है। सूक्ष्म ट्यूबों की व्यवस्था सामान्यत: "ए" फ्रेम अथवा फोर्स्ड ड्राफ्ट फैन से कवर किए गए डेल्टा के रूप में की जाती है, ताकि भूमि की आवश्यकता को कम किया जा सके।

किसी अप्रत्यक्ष शुष्क कूलिंग प्रणाली में टर्बाइन से उत्सर्जित होने वाली वाष्प को किसी कंडेंसर में जल भरकर ठंडा किया जाता है, जो पृष्ठीय प्रकार अथवा प्रत्यक्ष संपर्क प्रकार का हो सकता है और इस प्रणाली में गरम जल को प्राकृतिक ड्राफ्ट टावर का इस्तेमाल करते हुए सूक्ष्म ट्यूब बंडलों में परिवेशी वायु द्वारा ठंडा किया जाता है। चूंकि इस प्रक्रिया में जल पाइपिंग शामिल होती है, अत: ये वायु शीतलन यूनिटें मुक्त प्लांट से दूर किसी भी स्थान पर अवस्थित की जा सकती हैं। हीट एक्सचेंजर एलीमेंट की ऊर्ध्वाधर व्यवस्था टावर की परिधि के आसपास इसके आधार पर की जाती है जहां टावर शेल के अंदर की गर्म वायु को परिवेशीय वायु के साथ ठंडा किया जाता है।

शुष्क कूलिंग प्रौद्योगिकियों में उपस्कर लागत अधिक है और उच्च कंडेंशर बैक प्रेशर के कारण यूनिट का पावर आउटपुट घट जाता है, जिसके परिणामस्वरूप टर्बाइन चक्र की ऊष्म दर अधिक हो जाती है हालांकि इन प्रौद्योगिकियों में एक बेहतर प्रावधान शामिल है जिससे थर्मल पावर प्लांटों को पानी की कमी वाले क्षेत्रों में भी स्थापित किया जा सकता है। विश्व के विभिन्न भागों में काफी संख्या में बड़े आकार वाली (≥ 600 MW) यूनिटों सहित शुष्क कूलिंग प्रणालियां प्रचालनरत हैं। भारत में कुछ छोटे आकार वाले संयुक्त चक्र प्लांटों, कैप्टिव पावर प्लांटों और औद्योगिक यूनिटों के लिए भी वायु शीतल कंडेंसर उपलब्ध कराए गए हैं।

थर्मल पावर प्लांटों में कंडेंसर कूलिंग के लिए शुष्क कूलिंग प्रणालियों के अनुप्रयोग द्वारा प्लांट जल खपत को कम करने की संभावनाएं तलाशने के उद्देश्य से केन्द्रीय विद्युत प्राधिकरण ने एक समिति गठित की है, जिसमें एनटीपीसी, बीएचईएल, आरआरवीयूएनएल, महाराष्ट्रजेनको, सीईएससी और टीसीई के प्रतिनिधि शामिल हैं जो थर्मल पावर प्लांटों में कंडेंसरों के लिए शुष्क कूलिंग प्रणाली के प्रावधान की जांच करेंगे। समिति से अपेक्षा है कि वह विभिन्न तकीनीकी आर्थिक पहलुओं को ध्यान में रखते हुए थर्मल पावर प्लांटों के लिए शुष्क कूलिंग प्रणालियों के लिए उपलब्ध विकल्पों पर सुझाव दे।

7.2.5 ऐश हैंडलिंग प्रणाली

ऐश हैंडलिंग प्रणाली के लिए जल आवश्यकता को न्यूनतम करने हेतु अपनाए जा सकने वाले विभिन्न उपायों/प्रौद्योगिकियों के विवरण नीचे दिए गए हैं :

7.2.5.1 ऐश वाटर की पुन:प्राप्ति एवं प्रयोग

थर्मल पावर प्लांटों में पारंपरिक रूप से गीली ऐश निपटान प्रणाली का प्रावधान किया गया है। फ्लाई ऐश और बॉटम ऐश पतली स्लरी के रूप में नीचे बनाए गए ऐश पॉण्ड में निस्सारित होती है। पर्यावरण और वन मंत्रालय की आवश्यकता के अनुसार ऐश पॉण्ड वाटर की पुन: प्राप्ति की जाए और जल संरक्षण को ध्यान में रखते हुए ऐश हैंडलिंग प्रणाली में उसका पुन: प्रयोग किया जाए। ऐश पॉण्ड से लगभग 70% जल पुन: प्राप्त किया जा सकता है और ऐश हैंडलिंग प्लांट में उसका इस्तेमाल किया जा सकता है। इस प्रकार प्लांट की जल प्रणाली से ऐश हैंडलिंग प्लांट को आर्पूत किए जाने वाले जल की आवश्यकता इस सीमा तक घटाई जा सकती है।

7.2.5.2शुष्क ऐश निपटान

गीली ऐश निपटान के परिणामस्वरूप भूमिगत जल संदूषित होता है क्योंकि ऐश पॉण्ड से सीपेज और उसके आसपास के क्षेत्र में ऐश बंड के संभावित रिसाव की समस्या बनी रहती है। शुष्क ऐश निपटान प्रणाली से इन समस्याओं का समाधान होने के साथ साथ जल की खपत भी कम होती है और फ्लाई ऐश का सीमेंट प्लांटों, भवन सामग्री, भूमि भराव और तटबंधों के निर्माण आदि में सदुपयोग सुकर बनता है। फ्लाई ऐश के बढ़ रहे प्रगामी सदुपयोग को ध्यान में रखते हुए फ्लाई ऐश की गीली निपटान प्रणालियां धीरे धीरे समाप्त होती जा रही हैं। प्लांट जल की आवश्यकता केवल बॉटम ऐश के गीले निपटाने हेतु ही पड़ती है जो कुल ऐश उत्पादन और फ्लाई ऐश के उस भाग जिसका निपटान शुष्क रूप में नहीं किया जाता है, का लगभग 20% है।

7.2.5.3 शुष्क बॉटम ऐश हैंडलिंग

बॉटम ऐश का रख रखाव पारंपरिक रूप से जल में डूबे हुए होपर में किया जाता है और फिर पतली स्लरी के रूप में फ्लाई ऐश के साथ ऐश पॉण्ड में आगामी निपटान हेतु क्लिंकर ग्राइंडर में ग्राइंड किया जाता है। कुछ पावर प्लांटों में हाइड्रो-बिन का प्रयोग करते हुए अर्द्धशुष्क पद्धति का इस्तेमाल किया जाता है। जल संरक्षण के लिए बॉटम ऐश का शुष्क निपटान भी किया जा सकता है। शुष्क निष्कर्षण, कूलिंग और पल्वराइज्ड कोल फायर्ड ब्वॉयलर से बॉटम ऐश प्रेषण के लिए प्रौद्योगिकियां उपलब्ध हैं। भारत में इस प्रौद्योगिकी का इस्तेमाल 300 मेगावाट क्षमता वाली यूनिट के साथ एक थर्मल पावर प्लांट में किया जा रहा है।

7.2.5.4 उच्च सांद्रण स्लरी निपटान (एचसीएसडी) प्रणाली

जैसा नाम से ही पता चलता है कि एचसीएसडी के अंतर्गत कोयला आधारित थर्मल पावर प्लांट से उच्च सांद्रण वाली स्लरी के रूप में ऐश निपटान क्षेत्र में फ्लाई ऐश का निपटान किया जाता है। यह प्रक्रिया पर्यावरण की दृष्टि से अनुकूल है और इसमें लगभग 20% सांद्रण पर पतली स्लरी के परिवहन की तुलना में सकारात्मक विस्थापन पंपों पर भार नियोजित करते हुए 60% से अधिक ठोस स्लरी का निपटान शामिल है। इस प्रकार अधिक सांद्रण युक्त स्लरी निपटान क्षेत्र में एक प्राकृतिक स्लोप निर्मित करती है और इसे फैलाने के लिए यांत्रिक आवश्यकता नहीं पड़ती। इसके अलावा इस प्रकार के स्लोप पर न्यूनतम मात्रा में पानी डालने की आवश्यकता होती है और यह स्थायी रूप से शुष्क लैंडिफिल में उपयोगी है। एचसीएसडी प्रणाली में जल की खपत पतली स्लरी निपटान प्रणाली में जल की आवश्यकता की तुलना में लगभग छ: गुना कम होती है। हालांकि यदि ऐश पॉण्ड से जल की पुन: प्राप्ति को ध्यान में रखा जाता है, तो गीली निपटान पद्धित की तुलना में पानी की खपत को बहुत अधिक कम नहीं किया जा सकता।

7.2.6 न्यूनतम अपशिष्ट निस्तारण

किसी जिटल थर्मल पावर प्लांट से उत्सर्जित अपिशष्ट जल में शुद्धीकरण स्लज, फिल्टर बैक वाश, सीटी ब्लो डाउन, ब्वॉयलर ब्लो डाउन, डीएम प्लांट और कंडेंसेट पॉलिशिंग प्लांट आदि से उत्सर्जित अपिशष्ट शामिल होते हैं। किसी इष्टतम प्लांट जल योजना के लिए यह आवश्यक है कि स्लज जल और फिल्टर बैग वाश जल को रिसाइकल किया जाए और पूर्व उपचार प्लांट में उसका इस्तेमाल किया जाए और अन्य अपिशष्ट जल का उपयोग निम्न ग्रेड वाले अनुप्रयोगों के लिए यथा व्यवहार्य सीमा तक किया जाए। ऐसे अपिशष्ट जिसका सदुपयोग नहीं किया जा सकता, में सीटी ब्लो डाउन और पुन: उत्सर्जित अपिशष्ट के कारण टीडीएस की मात्रा बहुत अधिक होती है। यदि प्लांट में रिसाइकलिंग के लिए इस अपिशष्ट जल से पानी पुन: प्राप्त किया जाता है, तो इसके उपचार के लिए रिवर्स ऑस्मोसिस प्रौद्योगिकी का प्रयोग आवश्यक होगा तािक अधिकतम जल पुन: प्राप्त किया जा सके और जम जाने वाले घुलनशील पदार्थों को हटाया जा सकता है।

7.3 जल की बचत

ऊपर दी गई जानकारी से यह देखा जा सकता है कि पावर प्लांटों में जल की खपत को कम करने की अपार संभावनाएं हैं, जिन्हें मामला दर मामला आधार पर लागू किए जाने की आवश्यकता है। गीले कूलिंग टावर युक्त पावर प्लांटों के लिए जल की कटौती व्यवहारिक सीमा तक संभव उच्चतर सीओसी पर सीडब्ल्यू प्रणाली के प्रचालन द्वारा अधिकतम मात्रा में की जा सकती है। इसके लिए प्री-ट्रीटमेंट प्लांट में फिल्टर बैक वॉश और स्लज शोधन जल की रिसाइकलिंग, ऐश हैंडलिंग प्लांट में जल की खपत कम करने और अपशिष्ट जल का अधिकतम सदुपयोग जैसी पद्धतियां अपनाई जा सकती हैं। इन उपायों से प्लांट वाटर सिस्टम में लगभग 20% जल की बचत की जा सकती है। यदि शुष्क कूलिंग प्रणाली को शुष्क ऐश हैंडलिंग के साथ अपनाया जाता है तो प्लांट में जल की खपत को लगभग 80 से 85% तक घटाया जा सकता है।

----+++----

अध्याय 8 12वीं और 13वीं पंचवर्षीय योजना हेतु भारतीय विद्युत क्षेत्र के लिए कम कार्बन उत्सर्जन रणनीति

8.0 प्रस्तावना

विद्युत देश की अर्थव्यवस्था के संपूर्ण विकास के लिए सर्वाधिक महत्वपूर्ण अवसंरचनात्मक आवश्यकता है। सभी उद्योग धंधे अपने प्रचालन के लिए काफी हद तक उचित दर पर विश्वसनीय और गुणवत्तायुक्त विद्युत की उपलब्धता पर निर्भर हैं। देश की वाणिज्यिक और घरेलू विद्युत आवश्यकताएं तेजी से बढ़ती जा रही हैं। अत: मांग के अनुरूप विद्युत उपलब्ध कराना सरकार की उच्च प्राथमिकताओं में से एक है। उपभोक्ताओं, चाहे उद्योग धंधे, उद्यम, घरेलू उपभोक्ता अथवा किसान, कोई भी हों, को उनके प्रयोग के लिए विद्युत उपलब्ध कराने के लिए संपूर्ण श्रृंखला का विकास सुनिश्चित करना अनिवार्य है। इस श्रृंखला में विद्युत उत्पादन से लेकर पारेषण और सर्वाधिक उपयुक्त एवं दक्ष ढंग से विद्युत खपत के अंतिम बिंदु तक इसके वितरण का सुधार शामिल है।

विद्युत की मांग विद्युत के उत्पादन से लगातार बढ़ रही है। इसलिए देश में पीक पावर और ऊर्जा की कमी इस तथ्य के बावजूद भी कि स्वतंत्रता से अब तक उत्पादन क्षमता में कई गुना वृद्धि हुई है, अपर्याप्त उत्पादन अथवा पारेषण या वितरण सुविधाओं की कमी के कारण अभी भी बनी हुई है। देश में विद्युत की मांग औसतन लगभग 7-8% की दर से बढ़ रही है और मांग और आपूर्ति का अंतराल वर्ष दर वर्ष बढ़ता जा रहा है। देश के आर्थिक विकास और लोगों के बेहतर जीवन स्तर के लिए विश्वसनीय और किफायती विद्युत उपलब्ध कराना एक प्रमुख लक्ष्य है।

देश की अर्थव्यवस्था के विकास में इसके महत्व के अलावा यह आम आदमी की जिंदगी में भी महत्वपूर्ण भूमिका अदा करती है और जीवन की गुणवत्ता पर इसका प्रत्यक्ष प्रभाव पड़ता है। लगभग 56.5% ग्रामीण परिवारों को अभी भी विद्युत उपलब्ध नहीं है और इसी बात को ध्यान में रखते हुए हमारी सरकार ने राष्ट्रीय न्यूनतम साझा कार्यक्रम में आगामी पांच वर्षों में सभी परिवारों के विद्युतीकरण को पूरा करने का लक्ष्य निर्धारित किया है।

जहां एक ओर हमें अपनी बढ़ रही मांग को पूरा करने के लिए एक जिम्मेदार राष्ट्र के रूप में ऊर्जा की उपलब्धता बढ़ानी है, वहीं दूसरी ओर भारत ने ऊर्जा तीव्रता को कम करने के लिए कम कार्बन उत्सर्जन रणनीति अपनाने और देश के स्थायी विकास को बढ़ावा देने का निश्चय किया है। स्थायी विकास से आशय ऐसे विकास से है जो भावी पीढियों को उनकी आवश्यकताओं की पूर्ति के लिए उनकी योग्यता के साथ कोई समझौता किए बिना वर्तमान की आवश्यकताओं को पूरा करने में सहायक होता है। ग्रीनहाउस गैस उत्सर्जन को कम करने, यथाव्यवहार्य सीमा तक नवीकरणीय ऊर्जा संसाधनों का इस्तेमाल करने के उद्देश्य से हाइड्रो और न्यूक्लियर उत्पादन को बढ़ावा देने, मौजूदा पावर प्लांटों की दक्षता बढ़ाने और विद्युत उत्पादन की दक्षता बढ़ाने के लिए नई प्रौद्योगिकियों को लागू करने तथा मांग पक्ष प्रबंधन और संरक्षण पद्धतियों पर जोर दिया जा रहा है। चूंकि भविष्य में भी अधिकांश विद्युत उत्पादन कोयला आधारित पावर प्लांटों से किया जाएगा। अत: सुपर क्रिटिकल प्रौद्योगिकी को लागू करने का प्रस्ताव किया है। विद्युत उत्पादन के लिए यह प्रौद्योगिकी सब क्रिटिकल वाष्प मानदंडों के साथ पल्वराइज्ड कोल ब्वॉयलर प्रौद्योगिकी की तुलना में कोयले को अधिक दक्ष बनाएगी। विद्युत उत्पादन के लिए एकीकृत गैसीकरण संयुक्त चक्र (आईजीसीसी) प्रौद्योगिकी के इस्तेमाल के लिए व्यवहार्यता अध्ययन हेतु भी प्रयास शुरू किए गए हैं।

इस नोट में भारतीय पावर विद्युत क्षेत्र द्वारा एनएपीसीसी में उल्लिखित सरकार के उद्देश्यों के अनुरूप जीएचजी उत्सर्जन को कम करने के लिए अपनाई जा रही रणनीति के विवरण दिए गए हैं।

8.1 31.3.2012 की स्थिति के अनुसार स्थापित क्षमता

31.3.2012 की स्थिति के अनुसार कुल स्थापित क्षमता 1,99877 मेगावाट थी, जिसमें 38,990 मेगावाट हाइड्रो, 1,31,603 मेगावाट थर्मल (गैस और डीजल आधारित), 4,780 मेगावाट नयूक्लियर और 24,503 मेगावाट नवीकरणीय ऊर्जा स्रोतों से शामिल हैं। 31.3.2012 की स्थिति के अनुसार स्थापित क्षमता के प्रकारवार विवरण तालिका 8.1 और पाई चार्ट 8.1 में नीचे दर्शाए गए हैं।

तालिका 8.1 31.03.2012 तक स्थापित क्षमता

क्षेत्र	हाइड्रो (मेगावाट)		थर्मल (मेगावाट)			परमाणु (मेगावाट)	आर.ई.एस. * (मेगावाट)	कुल (मेगावाट)
		कोयला	गैस	डीजल	जोड़		(एमएनआरई)	
राज्य	27380	49457.0	4965.32	602.61	55024.93	0	3513.72	85918.65
निजी	2525.00	23450.38	6713.50	597.14	30761.02	0	20989.73	54275.75
केन्द्रीय	9085.4	39115.00	6702.23	0	45817.23	4780	0	59682.63
जोड़	38 990. 4	112022.38	18381.05	1199.75	131603.18	4780	24503.45	199877.03

- आरईएस नवीकरणीय ऊर्जा स्रोत
- 31.10.2012 की वर्तमान आईसी 2,09,276 **मेगावाट** है।

चार्ट 8.1

8.22011-12 के दौरान मिश्रित उत्पादन

वर्ष 2011-12 के दौरान ऊर्जा उत्पादन 929 बिलियन यूनिट था। इसमें 136 बिलियन यूनिट हाइड्रो (भूटान से 5.3 बिलियन यूनिट के आयात सिहत), 708 बिलियन यूनिट थर्मल (गैस और डीजल सिहत), 32 बिलियन यूनिट न्यूक्लियर और 52 बिलियन यूनिट नवीकरणीय ऊर्जा स्रोतों से शामिल है। वर्ष 2011-12 के दौरान उत्पादन विवरण नीचे दिया गया है:

तालिका 8.2 2011-12 के दौरान ऊर्जा उत्सर्जन

हाइड्रो (बीयू)	थर्मल (बीयू)	परमाणु (बीयू)	आरईएस* (बीयू)	कुल (बीय्)
136 (14.7%)	708 (76.3%)	32 (3.4%)	52(5.6%)	929(100%)

चार्ट 8.2

ऐसा देखा जा सकता है कि स्थापित क्षमता में अपशिष्ट ईंधन की हिस्सेदारी 66% है जबकि ऊर्जा उत्पादन में इसकी हिस्सेदारी 76% है जो यह दर्शाता है कि अपशिष्ट ईंधन क्षमता उच्चतर पीएलएफ पर प्रचालित की जाती रही है और इस प्रकार इसकी उत्पादन में हिस्सेदारी अधिक है। अत: यह कहा जा सकता है कि अपशिष्ट ईंधन पर आधारित विद्युत उत्पादन भारतीय विद्युत क्षेत्र की रीढ़ है।

8.311वीं योजना के दौरान क्षमता अभिवृद्धि

11वीं योजना अवधि (2007-2012) के दौरान योजना आयोग ने 78,700 मेगावाट क्षमता अभिवृद्धि का लक्ष्य निर्धारित किया था, जिसमें 15,627 मेगावाट हाइड्रो, 59693 मेगावाट थर्मल और 33,80 मेगावाट नयूक्लियर प्रोजेक्ट शामिल हैं। इसे **तालिका 8.3** में संक्षिप्त रूप से दर्शाया गया है।

तालिका 8.3

क्षेत्र	हाइड्रो	थर्मल			Nuclear	Total	
		कोयला	गैस	डीजल	जोड़		
राज्य	3482.0	19985.0	3316.4	0.0	23301.4	0.0	26783.4
निजी	3491.0	9515.0	2037.0	0.0	11552.0	0.0	15043.0
केन्द्रीय	8654.0	23350.0	1490.0	0.0	24840.0	3380.0	36874.0
जोड़	15627.0	52850.0	6843.4	0.0	59693.4	3380.0	78700.4

मध्यावधि समीक्षा के अनुसार 11वीं योजना अवधि के दौरान संभावित क्षमता अभिवृद्धि लगभग 62,374 मेगावाट थी। 11वीं योजना के दौरान 54,964 मेगावाट क्षमता स्थापित की गई। 11वीं योजना के दौरान क्षमता अभिवृद्धि के मध्यावधि लक्ष्य का ईंधनवार विवरण :

तालिका 8.4

क्षेत्र	हाइड्रो	थर्मल	परमाणु	जोड़ (मेगावाट)
केन्द्रीय	2922	14920	3380	21222
राज्य	2854	18501	0	21355
निजी	2461	17336	0	19797
जोड़	8237	50757	3380	62374
	(13.2%)	(81.4%)	(5.4%)	(100)

तालिका 8.4 (क)

क्षेत्र	हाइड्रो	थर्मल	परमाणु	जोड़ (मेगावाट)
केन्द्रीय	1550	12790	880	15220
राज्य	2702	14030	0	16732
निजी	1292	21720	0	23012
जोड़	5544	48540	880	54964
	(10.1%)	(88.3%)	(1.6%)	(100)

8.4 उत्सर्जन घटक (CO₂ का किलोग्राम/किलोवाट घंटा)

वर्ष 2010-11 के दौरान वास्तविक आंकड़ों के अनुसार उत्पादन के विभिन्न प्रकारवार ईंधन का भारित औसत उत्सर्जन (टन CO₂/मेगावाट घंटा) और नवीनतम प्रौद्योगिकी के प्रयोग से यथासंभव आंकड़े नीचे तालिका 8.5 में दर्शाए गए हैं।

तालिका 8.5 ईंधनवार भारित औसत उत्सर्जन (टन CO2/मेगावाट घंटा) *

ईंधन	2010-11 के दौरान	नवीनतम प्रौद्योगिकी के प्रयोग से
कोयला	1.06	0.88 (सुपर क्रिटिकल एचआर 2326)
गैस	0.44	0.34 (सीसीजीटी η - 53%)
		0.25 (सीसीएचपी η - 70%)
ऑयल	0.64	
डीजी सेट	0.55	
बायोमास	Co2 न्यूट्रल	Co2 न्यूट्रल

^{*} निवल उत्पादन पर परिकलित मूल्य

कुल उत्पादन के आधार पर भारतीय विद्युत क्षेत्र के लिए वर्ष 2011-12 अर्थात 11वीं योजना के अंतिम वर्ष तक कार्बन डाईऑक्साइड (CO2) का वास्तविक उत्सर्जन घटक और अधिकतम उत्सर्जन चार्ट 8.3 में दिया गया है।

चार्ट 8.3 636 0.83 650 597 0.82 580 600 0.81 548 (kg/kwh) 550 520 0.8 0.82 495 0.81 0.79 500 0.79 0.79 0.78 450 0.77 0.76 400 2006-07 2009-10 2010-11 2011-12* 2007-08 2008-09 ■ Emission Factor with Total Generation kg/kwh *Tentative ──Total Emission (MT)

यह देखा जा सकता है कि CO₂ के उत्सर्जन में वृद्धि के बावजूद भी पिछले कुछ वर्षों के दौरान उत्सर्जन घटक में कमी आई है।

8.5 विद्युत ऊर्जा आवश्यकता का पूर्वानुमान

18वीं ईपीएस रिपोर्ट के अनुसार 12वीं और 13वीं पंचवर्षीय योजना के अंत तक विद्युत ऊर्जा की आवश्यकता **चार्ट 8.4** में दर्शाई गई है।

चार्ट 8.4

उत्सर्जन को यथा व्यवहार्य सीमा तक कम रखते हुए 12वीं और 13वीं योजना के दौरान देश की विद्युत मांग को पूरा करने के लिए उत्पादन आयोजना में कम कार्बन उत्सर्जन रणनीति अपनाई गई है इसके विवरण संक्षेप में नीचे दिए गए हैं।

8.6कम कार्बन उत्सर्जन रणनीति

12वीं और 13वीं पंचवर्षीय योजना के दौरान कम कार्बन उत्सर्जन सुनिश्चित करने के लिए निम्नलिखित उपायों पर विचार किया जा रहा है।

(i) हाइड्रो पावर विकास को बढ़ावा देना

जल विद्युत परियोजनाओं के विकास में आयोजना से स्थापना तक बहुत अधिक समय लगता है अत: जल विद्युत परियोजनाओं की अग्रिम आयोजना आवश्यक है। केन्द्रीय विद्युत प्राधिकरण ने सितंबर, 2008 में 12वीं पंचवर्षीय योजना के लिए जल विद्युत विकास योजना तैयार की है। 12वीं पंचवर्षीय योजना के दौरान क्षमता अभिवृद्धि के लिए चिह्नित की गइ परियोजनाओं के संदर्भ में समय पर सांविधिक स्वीकृतियां सुनिश्चित करने के लिए हरसंभव प्रयास किए गए और 11वीं योजना अविध में ही मुख्य पैकेजों के लिए आदेश प्रस्तुत करने का प्रयास किया गया तािक 12वीं पंचवर्षीय योजना के दौरान परियोजनाओं का प्रचालन शुरू किया जा सके।

जल और जल विद्युत राज्य के अधिकार क्षेत्र में आने वाला विषय है। काफी संख्या में जल विद्युत परियोजना स्थलों का विकास सार्वजनिक और निजी कंपनियों को सौंपा गया है। ये परियोजनाएं 11वीं और 12वीं पंचवर्षीय योजनाओं के दौरान स्थापित होने की संभावना है। केन्द्रीय विद्युत प्राधिकरण सर्वे और अन्वेषण की प्रगित की निगरानी कर रहा है और विकासकर्ताओं के समन्वय से इन परियोजनाओं के निर्माण तथा विस्तृत परियोजना रिपोर्ट तैयार करने की दिशा में भी यथासंभव समन्वय और सहयोग कर रहा है।

विभिन्न जल विद्युत परियोजनाओं की स्थिति के आधार पर ऐसा अनुमान है कि 12वीं पंचवर्षीय योजना के दौरान लगभग 10,897 मेगावाट क्षमता स्थापित हो जाएगी। जल विद्युत परियोजनाओं के अंतर्निहित लाभों को

ध्यान में रखते हुए आयोजना कार्रवाई में अनिवार्य रूप से संचालित की जाने वाली परियोजनाओं के रूप में माना गया है।

(ii) सौर विद्युत सहित नवीकरणीय ऊर्जा को बढ़ावा देना

संगत राज्यों के लिए विभिन्न राज्य विद्युत नियामक आयोगों (एसईआरसी) द्वारा नवीकरणीय खरीद बाध्यताएं (आरपीओ) अधिसूचित की गई हैं। नवीकरणीय खरीद बाध्यता (आरपीओ) एक ऐसी बाध्यता है जिसके अंतर्गत राज्य विद्युत नियामक आयोग (एसईआरसी) द्वारा अधिनियम के तहत वितरण लाइसेंसधारक के क्षेत्र में कुल खपत में से नवीकरणीय ऊर्जा के न्यूनतम स्तर की खरीद हेतु उसे अधिदेशित किया जाता है। नवीकरणीय उत्पादन के विभिन्न प्रकारों के लिए राज्य विद्युत नियामक आयोगों द्वारा और नवीकरणीय ऊर्जा के लिए केन्द्रीय विद्युत नियामक आयोग द्वारा टैरिफ अधिसूचित किए जाते हैं। केन्द्रीय विद्युत नियामक आयोग द्वारा नवीकरणीय ऊर्जा के प्रयोग को बढ़ावा देने के लिए नवीकरणीय ऊर्जा प्रमाण पत्र (आरईसी) तंत्र प्रस्तावित किया गया है। आरईसी एक बाजार आधारित लिखत है जो नवीकरणीय ऊर्जा को बढ़ावा देने और नवीकरणीय ऊर्जा खरीद बाध्यता (आरपीओ) को सुकर बनाने के लिए जारी किया जाता है। आरईसी तंत्र का उद्देश्य राज्य में नवीकरणीय ऊर्जा संसाधनों की उपलब्धता और नवीकरणीय खरीद बाध्यता (आरपीओ) को पूरा करने के लिए बाध्य संगठनों की आवश्यकता के बीच अंतर को दूर करना है।

जवाहर लाल नेहरू राष्ट्रीय सौर मिशन भारत की ऊर्जा सुरक्षा चुनौती का समाधान करने के लिए पारिस्थितिकीय दृष्टि से स्थायी वृद्धि को बढ़ावा देने हेतु भारत सरकार का एक महत्वपूर्ण प्रयास है। यह जलवायु परिवर्तन की चुनौतियों का सामना करने के लिए वैश्विक स्तर पर किए जा रहे प्रयासों में भारत की ओर से भी एक बड़ा योगदान देगा और सौर विद्युत से भारत में उपलब्ध व्यापक नवीकरणीय संभावनाओं को साकार बनाएगा। विद्युत मंत्रालय और नवीन तथा नवीकरणीय ऊर्जा मंत्रालय 2013 तक एनवीवीएनएल के जिए कुल 1000 मेगावाट क्षमता वाली सौर परियोजनाओं, जिनमें कार्यक्रम के प्रथम चरण के अंतर्गत 2013 तक 200 मेगावाट रूफ टॉप सौर परियोजनाएं शामिल हैं, के विकास हेतु रणनीतियों को अंतिम रूप दे रहे हैं। इसके अलावा राज्य विद्युत नियामक आयोग सौर ऊर्जा के संदर्भ में आरपीओ विनिर्दिष्ट करेंगे तथा विद्युत मंत्रालय को राष्ट्रीय विद्युत नीति/टैरिफ नीति में आवश्यक संशोधन करने हैं।

राष्ट्रीय सौर मिशन का एक उद्देश्य वर्ष 2022 तक 20,00 मेगावाट सौर पावर के विकास हेतु समर्थकारी नीतिगत ढांचा तैयार करना है।

(iii) नए गैस आधारित उत्पादन को बढ़ावा देना

विद्युत की बढ़ रही मांग को पूरा करने और CO₂ के उत्सर्जन को कम करने के उद्देश्य से देश में गैस आधारित उत्पादन क्षमता विकसित करने की आवश्यकता है। पर्यावरण की दृष्टि से अनुकूल होने के अलावा गैस आधारित परियोजनाओं की उच्च दक्षता, कम पूर्व निर्माण अविध, कम पूंजीगत लागत होती है और इनके लिए भूमि तथा जल की कम आवश्यकता होती है। गैस आधारित परियोजनाएं आदर्श रूप से पीक आवश्यकताओं को पूरा करने के लिए उपयुक्त हैं। केन्द्रीय विद्युत प्राधिकरण ने 12वीं योजना के लिए निम्नलिखित अतिरिक्त आवश्यकता का पहले ही अनुमान लगाया है। गैस आधारित लचीली पीकिंग क्षमताओं को जोड़ने से कोयला आधारित प्लांटों की बैकिंग डाउन भी कम होगी और CO₂ का उत्सर्जन भी तुलनात्मक रूप से कम होगा।

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 183

	तारि	नेका 8.6		
12वीं योजना	के लिए	अतिरिक्त	गैस व	भावश्यकता

विवरण	गैस क्षमता मेगावाट में	70% पीएलएफ पर गैस की आवश्यकता (एमएमएससीएमडी)
सीसीएचपी क्षमता	2,000	8.0
ब्राउन फील्ड स्थलों अथवा ग्रीन फील्ड स्थलों में गैस आधारित क्षमता को शामिल करते हुए	21,000	78.0
बड़े शहरों के आसपास अवस्थिति पीकिंग गैस आधारित क्षमता	2,000	4.0 *
जोड़	25,000	90.0

^{*} पीक लोड के लिए और आकस्मिक स्थितियों में प्रतिदिन लगभग 5-6 घंटे प्रचालन हेत्

हालांकि अभी हाल ही में केजी बेसिन से गैस का उत्पादन घटने की बात को ध्यान में रखते हुए, यहां तक कि आवंटित गैस की निर्धारित मात्रा की आपूर्ति भी पावर प्लांटों को नहीं की जा रही है और देश को बहुत बड़ी उत्पादन हानि हो रही है। ज्यादातर पावर प्लांट कम पीएलफ पर प्रचालित किए जा रहे हैं और कुछ पावर प्लांट गैस की अनुपलब्धता के कारण बंद पड़े हुए हैं। वर्तमान में देश में लगभग 13,000 मेगावाट गैस आधारित क्षमता विभिन्न चरणों पर निर्माणाधीन हैं। परंतु वर्तमान में नए पावर प्लांटों को गैस की अनुपलब्धता देश में गैस पावर प्लांट के विकास में गंभीर बाधा बनी हुई है। भारत में नए गैस आधारित उत्पादन को बढ़ावा देने के लिए उचित नीतिगत सहयोग के साथ आरएलएनजी का आयात आवश्यक है।

(iv) अनिवार्य न्यूनतम दक्षता स्तर दर्शाते हुए पावर प्लांटों के निर्माण पर सीईए विनियम की अधिसूचना

इलेक्ट्रिकल प्लांट और लाइनों के निर्माण हेतु सीईए के तकनीकी विनियम अगस्त, 2010 में अधिसूचित किए गए हैं। इन विनियमों में पावर प्लांटों और पारेषण उपस्करों के अनिवार्य न्यूनतम दक्षता स्तर दर्शाए गए हैं।

(v) पुरानी और अदक्ष कोयला आधारित उत्पादन यूनिटों को बंद करना

पुराने और अदक्ष थर्मल पावर प्लांटों को बंद करके नए और अधिक दक्ष पावर प्लांट लगाने से ईंधन का प्रभावी ढंग से सदुपयोग सुनिश्चित होगा साथ ही जीएचजी उत्सर्जन को कम किया जा सकेगा। 11वीं योजना के दौरान 1500 मेगावाट क्षमता वाली पुरानी यूनिटों को बंद किया गया। इसमें 100 मेगावाट से कम क्षमता वाली कोयला और लिग्नाइट आधारित यूनिटें शामिल हैं।

12 एवं 13वीं पंचवर्षीय योजनाओं के दौरान लगभग 4,000 मेगावाट क्षमता वाली यूनिटों को बंद करने का प्रस्ताव है, जिसमें 100 मेगावाट से कम क्षमता वाली कोयला और लिग्नाइट आधारित शेष बची यूनिटें, 30 वर्ष से अधिक पुराने (1987 और उससे पहले) गैस आधारित प्लांट और 110 मेगावाट क्षमता वाली कुछ कोयला आधारित यूनिटें शामिल हैं।

(vi) राष्ट्रीय दक्षता अभिवृद्धि नवीनीकरण और आधुनिकीकरण कार्यक्रम का कार्यान्वयन

केन्द्रीय विद्युत प्राधिकरण ने 11वीं और 12वीं योजना के दौरान कार्यान्वयन हेतु एक राष्ट्रीय दक्षता अभिवृद्धि, नवीकरण और आधुनिकीकरण कार्यक्रम पहले ही तैयार कर लिया है। इसमें 11वीं योजना के दौरान 18,965 मेगावाट और 12वीं योजना के दौरान 4,971 मेगावाट क्षमता का नवीनीकरण और आधुनिकीकरण शामिल है। मौजूदा पुराने पावर स्टेशनों के नवीनीकरण और आधुनिकीकरण (आर एण्ड एम) और जीवन विस्तार (एलई) से अल्प पूर्व निर्माण अविध में कम लागत पर अतिरिक्त उत्पादन का अवसर प्राप्त होता है। उत्पादन में सुधार के अलावा पर्यावरणीय उत्सर्जन में सुधार होता है और विद्युत की उपलब्धता, सुरक्षा और विश्वसनीयता भी बढ़ती है। राज्यों को प्रोत्साहित करने के लिए नवीनीकरण और आधुनिकीकरण के लिए शटडाउन से ठीक पहले यूनिट के

उत्पादन के 50% भाग की क्षतिपूर्ति शटडाउन की सामान्य अवधि के दौरान अनावंटित कोटा से अतिरिक्त आवंटन के जिरए की जाए। उन्नत दक्षता आधारित नवीनीकरण और आधुनिकीकरण के लिए कम ब्याज दर पर वित्तीय सहायता प्रदान करने की शुरुआत की गई है।

(vii) स्वच्छ कोयला प्रौद्योगिकी को अंगीकार करना

कम कार्बन उत्सर्जन रणनीति के अनुसार भावी योजनाओं के लिए स्वच्छ कोयला प्रौद्योगिकी को अपनाया जा रहा है, जिसमें सुपर क्रिटिकल यूनिटों को बढ़ाना, आईजीसीसी, सीएफबीसी प्रौद्योगिकी को बढ़ावा देना शामिल है। 12वीं योजना के दौरान 35% कोयला आधारित क्षमता की योजना सुपर क्रिटिकल आधार पर तैयार की जा रही है और 13वीं योजना में यह प्रस्ताव किया गया है कि संपूर्ण कोयला आधारित क्षमता केवल सुपर क्रिटिकल प्रौद्योगिकी आधार पर स्थापित की जाए। इस संदर्भ में निम्नलिखित कार्रवाई की गई/किए जाने की आवश्यकता है:

कार्रवाई :

- क) सुपर क्रिटिकल उपस्करों के लिए स्वदेशी विनिर्माण क्षमता का सृजन
- ख) सुपर क्रिटिकल प्रौद्योगिकी का अंतरण सुनिश्चित करने के लिए स्वदेशी विनिर्माताओं को प्रोत्साहित करना
- ग) जारी अनिवार्य स्वदेशी विनिर्माण के साथ 11x660 मेगावाट सुपर क्रिटिकल यूनिटों के लिए एक सामूहिक निविदा प्रक्रिया। 660 मेगावाट के लिए आदेशों को अंतिम रूप देने के पश्चात शीघ्र ही 800 मेगावाट क्षमता वाली यूनिटों के लिए सामूहिक निविदा प्रक्रिया शुरू की जाए।
- **घ)** स्वदेशी विनिर्माताओं के साथ परामर्श से अनिवार्य स्वदेशी विनिर्माण सुविधाओं के साथ अल्ट्रा सुपर क्रिटिकल प्रौद्योगिकी पर आधारित परियोजनाओं के लिए सामूहिक निविदा प्रक्रिया शुरू की जाए।
- ङ) पर्यावरण और वन मंत्रालय को सलाह दी जाए कि वह 1.4.2012 से सब क्रिटिकल प्रौद्योगिकी पर आधारित कोई भी कोयला आधारित परियोजना को स्वीकृति प्रदान न करे। 13वीं योजना के दौरान सब-क्रिटिकल प्लांटों के लिए कोयला संपर्क स्थापित न किए जाएं।
- च) यह प्रस्ताव किया जाता है कि सुपर क्रिटिकल प्लांटों पर कोई सीमा शुल्क और उत्पाद शुल्क लागू नहीं होना चाहिए अर्थात मेगा पावर परियोजनाओं की तरह उत्पाद शुल्क और सीमा शुल्क की छूट इनके लिए भी प्रदान की जाए।

(viii) न्यूक्लियर विद्युत उत्पादन

देश में प्राकृतिक यूरेनियम की सीमित उपलब्धता के लिए न्यूक्लियर उत्पादन भी सीमित है। परमाणु ऊर्जा विभाग ने देश में वर्ष 2020 तक 20,000 मेगावाट की स्थापित न्यूक्लियर पावर क्षमता विकसित करने की योजना बनाई है। आज की स्थिति के अनुसार, स्वदेशी ईंधन पर आधारित प्रथम चरण का कार्यक्रम प्रगति पर है और यह परिपक्व स्तर तक पहुंच गया है। 500 एमडब्ल्यूई पीएफबीआर (प्रोटोटाइप फास्ट ब्रिडर रियेक्टर) के निर्माण के साथ दूसरे चरण के कार्यक्रम का भी आगाज कर दिया गया है। ऐसी आशा की जाती है कि वर्ष 2020 तक 500 एमडब्ल्यूई या उससे अधिक क्षमता वाली चार नयी यूनिटें स्थापित की जाएंगी। तत्पश्चात बहुत से एफबीआर स्थापित किये जाएंगे। जब एफबीआर के जरिए उपयुक्त सतर की क्षमता स्थापित हो जाती है तो तृतीय चरण के जरिये विद्युत उत्पादन के लिए थोरियम का प्रयोग शुरू किया जाएगा और दीर्घावधि में इसका लाभ उठाया जाएगा।

यद्यपि आगामी 15 वर्षों में न्यूक्लियर ऊर्जा का योगदान कम ही रहेगा, फिर भी ऊर्जा की दृष्टि से स्वयं में पर्याप्त स्तर पर यहाँ तक कि कमजोर उत्पादन भी दीर्घावधि में लाभदायक सिद्ध होगा और इससे हमें यह संकेत मिलता है कि थोरियम का प्रयोग करते हुए न्यूक्लियर पावर के विकास की दिशा में प्रयास किए जाने चाहिए।

परमाणु सहयोग पर यूएसए और भारत के बीच '123 करार' पर हस्ताक्षर किये जाने और भारत को परमाणु ईंधन की आपूर्ति के लिए एनएसजी से छूट प्रदान किये जाने के परिणामस्वरूप यह अपेक्षा की जाती है कि देश में कुछ मित्र देशों से विदेशी प्रौद्योगिकी के साथ कुछ न्यूक्लियर प्लांट भारत में स्थापित किए जाएंगे। भारत के लिए आयातित परमाणु ईंधन और प्रौद्योगिकी की उपलब्धता न्यूक्लियर पावर प्लांटों से त्वरित क्षमता अभिवृद्धि में सहायक होगी। 11वीं/12वीं योजनाओं के दौरान आयातित प्रौद्योगिकी से रियेक्टरों का निर्माण शुरू किए जाने से यह अपेक्षा की जाती है कि 13वीं योजना से आगे उनकी स्थापना हो जाएगी। मेगा क्षमता वाले न्यूक्लियर पार्कों के विकास की भी अपेक्षा है। एकीकृत ऊर्जा नीति में नयूक्लियर क्षमता अभिवृद्धि के दो परिदृश्य बताए गए हैं, जिसमें निम्न न्यूक्लियर परिदृश्य में लगभग 48,000 मेगावाट और उच्च न्यूक्लियर परिदृश्य में 68,000 मेगावाट क्षमता अभिवृद्धि की परिकल्पना वर्ष 2031-32 तक की गई है।

(ix) टी एण्ड डी हानियों को कम करने को उच्च प्राथमिकता दी जाए

अखिल भारतीय स्तर पर टी एण्ड डी हानियां बहुत अधिक अर्थात 23.97% तक हैं। टी एण्ड डी हानियों को कम करने के लिए आरएपीडीआरपी का कार्यान्वयन शुरू किया गया है, जिससे कि तकनीकी और वाणिज्यिक हानियों को कम किया जा सके। इस बात के मद्देनजर आरएपीडीआरपी के कार्यान्वयन को सर्वोच्च प्राथमिकता दी जा रही है। वितरण क्षेत्र के निजीकरण/फ्रेंचाइजी नियुक्त करने जैसी प्रक्रियाओं को प्रोत्साहित किया जाना चाहिए क्योंकि इन उपायों से एटी और सी हानियां कम हो सकती हैं।

(x) बीईई के कार्यक्रमों का कार्यान्वयन

ऊर्जा कार्यकुशलता ब्यूरो (बीईई) ने निम्नलिखित विवरण के अनुसार विद्युत ऊर्जा के दक्ष प्रयोग को बढ़ावा देने के लिए बहुत से कार्यक्रम शुरू किए हैं:

- राज्यों में ईसीबीसी का कार्यान्वयन
- नगर निगम, कृषि और भवनों में डीएसएम
- ऊर्जा की दृष्टि से संवेदनशील उद्योगों में ऊर्जा तीव्रता मानकों का प्रवर्तन और उत्सर्जन में कमी विषयक प्रमाण पत्रों की ट्रेडिंग
- सीएफएल बचत लैंप योजना
- ईएससीओ के जरिए कृषि (एजीडीएसएम) पंप दक्षता सुधार
- उपकरणों की लेबलिंग
- प्राथमिकता के आधार पर इनवर्टरों की लेबलिंग

(xi) कोल बेड मिथेन (सीबीएम) का सदुपयोग

भारत में सीबीएम, ऑयल और गैस एक्सप्लोरेशन/उत्पादन समान रूप से कुछ क्षेत्रों जैसे केम्बी बेसिन (गुजरात), बार्मर बेसिन (राजस्थान) और कावेरी बेसिन (तिमलनाडु) में एक साथ मौजूद हैं जहां एक ही बेसिन क्षेत्र में सीबीएम, ऑयल और नेचुरल गैस उपलब्ध हैं। जहां तक सीबीएम प्रचालन और ऑयल तथा गैस प्रचालन को क्षैतिज/ऊर्ध्वाधर रूप से अलग करने और उसकी तकनीकी व्यवहार्यता का संबंध है तो यह एक सुस्थापित तथ्य है कि दोनों प्रचालनों को एक साथ जारी रखा जा सकता है। तथापि इस प्रयास में कुछ व्यापक दिशानिर्देश और प्रक्रियाओं का अनुपालन किया जाना आवश्यक है। पेट्रोलियम एवं प्राकृतिक गैस मंत्रालय के अधीन महानिदेशक हाइड्रोकार्बन सीबीएम के लिए नोडल एजेंसी है। आज की तारीख तक 26 ब्लॉकों का आवंटन कर दिया गया है।

8.7 थर्मल उत्पादन क्षमता (कोयला लिग्नाइट और गैस आधारित) की दक्षता में सुधार

सुपर क्रिटिकल प्रौद्योगिकी लागू करने, नई गैस आधारित क्षमता स्थापित करने और पुरानी यूनिटों को बंद करने से 11वीं, 12वीं और 13वीं योजनाओं के अंत में थर्मल दक्षताओं में नीचे दी गई तालिका 8.7 और चार्ट 8.5 में दर्शाए अनुसार वृद्धि अपेक्षित है:

तालिका 8.7

	योजना के अंत में थर्मल क्षमता	थर्मल दक्षता (%)
10वीं योजना के अंत में (वास्तविक)	84,812	33.86
11वीं योजना के अंत में (1500 मेगावाट बंद किए जाने से)	1,31,853	35.13
13वीं योजना के अंत में (4000 मेगावाट)	1, 98,756	35.94
13वीं योजना के अंत में (4000 मेगावाट बंद किए जाने से)	2,51,156	36.94

चार्ट 8.5

थर्मल यूनिटों की दक्षता में इस वृद्धि के परिणामस्वरूप उत्सर्जन घटक भी कम होगा। इसके अलावा नीचे सूचीबद्ध विभिन्न परिदृश्यों के अंतर्गत न्यूक्लियर, हाइड्रो और नवीकरणीय संसाधनों से उत्पादन बढ़ने पर कार्बन उत्सर्जन और कम होने की अपेक्षा है।

8.812वीं एवं 13वीं योजनाओं के दौरान आवश्यक क्षमता अभिवृद्धि

12वीं और 13वीं योजना अविध के दौरान क्षमता अभिवृद्धि के लिए 4 परिदृय तैयार किए गए हैं। कम गैस के साथ सामान्य परिदृश्यों के रूप में कारोबार और कम नवीकरणीय स्रोत परिदृश्य को आधारभूत मामले के रूप में निर्धारित किया गया है। 12वीं और 13वीं योजना के दौरान आवश्यक क्षमता अभिवृद्धि की गणना ईजीईएएस सॉफ्टवेयर मॉडल का प्रयोग करते हुए किए गए आयोजना अध्ययनों के परिणामों के आधार पर की गई है।

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 187

चार अलग अलग परिदृश्यों में हाइड्रो क्षमता को 10,897 मेगावाट की व्यवहार्य क्षमता तक ही सीमित रखा गया है। पुरानी अदक्ष यूनिटों को बंद करने पर भी क्षमता अभिवृद्धि की तालिका में दिए अनुसार विचार किया गया है। ऐसा अनुमान है कि नवीकरणीय क्षमता का प्रचालन 20% पीएलएफ पर किया जाएगा।

अध्ययन के परिणामों के आधार पर 12वीं और 13वीं योजना के दौरान आवश्यक क्षमता अभिवृद्धि का सारांश **तालिका 8.8** और **8.9** में नीचे दिया गया है :

तालिका 8.8 चार क्षमता अभिवृद्धि परिदृश्य - 12वीं योजना

	एससी-1 कम गैस कम नवीकरणीय स्रोत (आधारभूत मामला)	एससी-2 उच्च गैस कम नवीकरणीय स्रोत	एससी-3 उच्च गैस उच्च नवीकरणीय स्रोत	एससी-4 कम गैस और उच्च नवीकरणीय स्रोत
हाइड्रो	10,897	10,897	10,897	10,897
न्यूक्लियर	5,300	5,300	5,300	5,300
नवीकरणीय स्रोत (सौर ऊर्जा को छोड़कर)	14,500	14,500	20,000	20,000
सौर	4,000	4,000	10,000	10,000
पुरानी और अदक्ष यूनिटों को बंद करना	4,000	4,000	4,000	4,000
गैस	2,540	14,540	14,540	2,540
कोयला	68,363	56,363	53,163	64,363
सब-क्रिटिकल	43,443	31,443	28,243	39,443
सुपर क्रिटिकल	24,920	24,920	24,920	24,920
12वीं योजना (कुल) (गैर पारंपरिक)	87,100	87,100	83,900	83,100

तालिका 8.9 क्षमता अभिवृद्धि परिदृश्य – 13वीं योजना

	एससी-1	एससी-2	एससी-3	एससी-4
	कम गैस कम	ुउच्च गैस कम	उच्च गैस उच्च	कम गैस और
	नवीकरणीय स्रोत	नवीकरणीय स्रोत	नवीकरणीय स्रोत	उच्च
	(आधारभूत			नवीकरणीय स्रोत
	मामला)			
हाइड्रो	12,000	12,000	12,000	12,000
न्यूक्लियर	18,000	18,000	18,000	18,000
नवीकरणीय स्रोत (सौर	14,500	14,500	25,000	25,000
ऊर्जा को छोड़कर)				
सौर	16,000	16,000	20,000	20,000
पुरानी और अदक्ष यूनिटों को	4000	4000	4000	4000
बंद करना				
गैस	0	13,000	13,000	0
कोयला	56,400	45,200	37,200	54,800
सब-क्रिटिकल	10,000	0	0	0
सुपर क्रिटिकल	46,400	45,200	37,200	54,800
12वीं योजना (कुल) (गैर पारंपरिक)	86,400	88,200	80,200	84,800

8.9 13वीं योजना (2021-22) के अंत तक उत्सर्जन के पूर्वानुमान

नवीकरणीय स्रोतों सहित प्रत्येक ईंधन से उत्पादन के आधार पर कार्बन फुटप्रिंट अर्थात् उत्सर्जन और उत्सर्जन घटक तीव्रता की गणना 2004-05 को आधार वर्ष मानते हुए की गई है। शामिल की गई योजनाओं के दौरान विद्युत उत्पादन वृद्धि और कुल उत्पादन से औसत उत्सर्जन घटक चार्ट 8.6 में नीचे दर्शाए गए हैं:

चार्ट 8.6 कुल उत्पादन से औसत उत्सर्जन घटक (केजी/केडब्ल्यूएच)

ऐसा देखा जा सकता है कि ऊपर बताए गए विभिन्न उपायों के कारण वर्ष 2004-5 के स्तर से चार परिदृश्यों में 13वीं योजना के सीमांत वर्ष (2021-22) तक औसत उत्सर्जन घटक में 15-20% की कमी हो सकती है। हालांकि विद्युत क्षेत्र के कुल उत्सर्जन में नीचे चार्ट 8.7 में दर्शाए अनुसार वृद्धि होगी :

चार्ट 8.7

8.10 वर्ष 2004-5 के संदर्भ में विद्युत क्षेत्र के लिए उत्सर्जन तीव्रता (जीडीपी के प्रति 10 रु. किलोग्राम CO₂) में कमी का अनुमानित प्रतिशत

वर्ष 2021-22 के लिए विद्युत क्षेत्र के उत्सर्जन के आधार पर उत्सर्जन तीव्रता का मूल्यांकन करने के लिए वर्ष 2007-08 तक जीडीपी का वास्तविक डेटा केन्द्रीय सांख्यिकी संगठन की आर्थिक सर्वेक्षण रिपोर्ट से लिया गया है और तत्पश्चात् 8% सीएजीआर पर संभावित डेटा का प्रयोग किया गया है। विद्युत क्षेत्र उत्सर्जन के आधार पर भारत की उत्सर्जन तीव्रता (CO₂ किलोग्राम प्रति 10 रु. जीडीपी) का सारांश तालिका 8.10 में नीचे दिया गया है:

तालिका 8.10 विद्युत क्षेत्र उत्सर्जन के आधार पर उत्सर्जन तीव्रता

वर्ष	जीडीपी	CO₂ उत्सर्जन (एमटी)			CO₂ किलोग्राम प्रति 10 रु. जीडीपी				
	करोड़ रुपए में	एससी-	एससी-	एससी-	एससी-	एससी-	एससी-	एससी-	एससी-
	1	1	2	3	4	1	2	3	4
2004-	2388768	462	462	462	462	0.193	0.193	0.193	0.193
05									
2006-	2871118	495	495	495	495	0.172	0.172	0.172	0.172
07									
2007-	3306735	521	521	521	521	0.158	0.158	0.158	0.158
08									
2011-	4498776	749	749	749	749	0.166	0.166	0.166	0.166
12									
2016-	6610178	1030	1013	1000	1018	0.156	0.153	0.152	0.154
17									
2021-	9712521	1330	1306	1278	1299	0.137	0.134	0.132	0.134
22									

8.11 उपसंहार

- थर्मल दक्षता 10वीं योजना के अंत (2006-07) तक 33.86% से बढ़कर 13वीं योजना के अंत (2021-22) तक 36.94% होने की उम्मीद है।
- कुल उत्पादन (नवीकरणीय स्रोतों सहित) से औसत उत्सर्जन घटक में भी वर्ष 2006-07 में 0.744 की तुलना में 2021-22 तक 0.656 की वास्तविक कमी होने की अपेक्षा है। उपर्युक्त लाभों का अनुमान लगाते समय आरएनएम जैसी रणनीतियों के प्रभाव को 13वीं योजना के लिए शामिल नहीं किया गया है।
- उत्पादन और उपभोक्ता के स्तर पर आर एण्ड एम कार्यक्रमों के साथ-साथ ऊर्जा संरक्षण उपायों में तेजी लाने के लिए प्रयास आवश्यक हैं। नवीनतम प्रौद्योगिकियों विशेष रूप से स्वच्छ कोयला प्रौद्योगिकियों को अपनाने पर विशेष रूप से जोर दिया जाना चाहिए।
- विद्युत क्षेत्र से उत्सर्जन घटक (उत्पादन के प्रति यूनिट CO₂) को कम करना व्यवहार्य है और इसे 2005 की तुलना में 2022 तक लगभग 15% तक कम किया जा सकता है। वर्ष 2004-5 के संदर्भ में 11वीं, 12वीं और 13वीं योजनाओं के अंत में सभी चारों परिदृश्यों में उत्सर्जन घटक (उत्पादन के प्रति केडब्ल्यूएच पर CO₂ का उत्सर्जन) में संभावित कमी का प्रतिशत तालिका 8.11 में नीचे दर्शाया गया है:

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 191

तालिका 8.11

परिदृश्य	10वीं योजना के अंत (2006-07) में (वास्तविक)	11वीं योजना के अंत (2011-12) में	12वीं योजना के अंत (2016-17) में	13वीं योजना के अंत (2021-22) में
परिदृश्य- 1	4.6	5.0	8.3	15.9
परिदृश्य -2			9.9	17.4
परिदृश्य -3			11.0	19.2
परिदृश्य -4			9.5	17.8

वर्ष 2004-5 के संदर्भ में 13वीं योजना के अंत (2021-22) तक विद्युत क्षेत्र के लिए उत्सर्जन तीव्रता (जीडीपी) के 10 रुपए प्रति किलोग्राम CO_2) के प्रतिशत को घटाना व्यवहार्य है और इसे 8% जीडीपी वृद्धि के अनुमान के साथ लगभग 25-30% तक घटाया जा सकता है।

अधयाय 9

12वीं पंचवर्षीय योजना के लिए महत्वपूर्ण जानकारी (इनपुट)

9.0 प्रस्तावना

किसी पावर प्लांट के सफल कार्यान्वयन हेतु यह आवश्यक है कि विद्युत विस्तार कार्यक्रम के कार्यान्वयन हेतु आवश्यक सभी इनपुट अलग-अलग विद्युत परियोजनाओं के लिए तैयार की गई आवश्यकता अनुसूची के अनुसार उपलब्ध कराए जाएं। सभी महत्वपूर्ण इनपुट समय पर उपलब्ध कराने से यह सुनिश्चत होगा कि परियोजना समय पर पूरी होगी और इस प्रकार परियोजना में विलंब की स्थिति में लागत और पूर्ण करने की समयाविध बढ़ने जैसी बाधाएं उत्पन्न नहीं होंगी।

इस अध्याय में उत्पादन क्षमता अभिवृद्धि के लिए 12वीं योजना के दौरान उपस्करों और योजना अविध के दौरान आवश्यक अन्य इनपुट जैसे उत्पादन प्लांटों के लिए आवश्यक अन्य अवसंरचना हेतु स्टील, सीमेंट, एल्युमिनियम की आवश्यकता का मूल्यांकन विस्तार से किया गया है। इस अध्याय में 12वीं योजना के दौरान विद्युत उत्पादन संबंधी विभिन्न कार्यों के क्रियान्वयन हेतु आवश्यक ईंधन, जनशक्ति और निधि आवश्यकता का भी मूल्यांकन किया गया है।

ऐसा महसूस किया जाता है कि इस अध्याय में किए गए उल्लेख के अनुसार उपस्कर, सामग्री और ईंधन की आवश्यकता के मूल्यांकन से अन्य मंत्रालयों और उद्योगों को पर्याप्त इनपुट प्राप्त होगा और विद्युत क्षेत्र की आवश्यकता के अनुसार अग्रिम कार्रवाई और अपने उत्पादन लक्ष्य निर्धारित करने तथा अग्रिम योजना तैयार करने में समर्थ होंगे।

9.1 क्षमता अभिवृद्धि कार्यक्रम

18वीं ईपीएस रिपोर्ट में दिए गए अखिल भारतीय स्तर पर मांग अनुमानों को पूरा करने के लिए आधारभूत मामले में 12वीं योजना के दौरान आवश्यक लगभग 87,100 मेगावाट क्षमता अभिवृद्धि का लक्ष्य निर्धारित किया गया है, तदनुसार योजना आयोग द्वारा यथाअनुमोदित 88,537 मेगावाट क्षमता अभिवृद्धि का लक्ष्य 12वीं योजना के लिए निर्धारित किया गया। 12वीं योजना के लिए बनाई जा रही योजना के अनुसार क्षमता अभिवृद्धि के विवरण नीचे तालिका में दिए गए हैं:

तालिका 9.1 12वीं योजना के दौरान प्रकारवार क्षमता अभिवृद्धि

(आंकड़े मेगावाट में)

मद	12वीं योजना (2012-17)
कोयला मिलग्नाइट आधारित	69,800
गैस आधारित	2,540
हाइड्रो	10,897
न्यूक्लियर	5,300
जोड़	88,537

9.2 उपस्कर

उपस्करों की आवश्यकता विद्युत परियोजनाओं की स्थापना के लिए सर्वाधिक महत्वपूर्ण इनपुट में से एक है। 11वीं योजना के दौरान मुख्य प्लांट उपस्करों के स्वदेशी स्तर पर विनिर्माण के लिए सरकार द्वारा किए गए प्रयासों के परिणामस्वरूप 12वीं योजना क्षमता अभिवृद्धि कार्यक्रम के अंतर्गत मांग को पूरा करने के लिए मुख्य प्लांट उपस्करों की घरेलू स्तर पर पर्याप्त विनिर्माण क्षमता उपलब्ध होगी। ऊर्जा सुरक्षा सुनिश्चत करने के लिए

यह नितांत महत्वपूर्ण है कि विनिर्माता किसी प्लांट के प्रचालनकाल के दौरान विश्वसनीय सेवाओं के साथ साथ कल पुर्जे भी उपलब्ध कराएंगे; तदुनसार यह आवश्यक है कि विनिर्माताओं को समान अवसर उपलब्ध कराए जाएं तािक उनके बीच बेहतर प्रतिस्पर्धा सुनिश्चित हो सके और प्रतियोगी मूल्य पर गुणवत्ता युक्त उपस्कर उपलब्ध हो सके। 11वीं योजना के दौरान बहुत सी परियोजनाएं बकाया प्लांटों के तैयार न हो पाने के कारण सिंक्रोनाइजेशन से विनिर्दिष्ट समयाविध के भीतर पूर्ण लोड प्रचालन का लक्ष्य हािसल नहीं कर सकीं।

9.2.1 मुख्य प्लांट उपस्कर

इनमें निम्नलिखित शामिल हैं:

कोयला आधारित पावर प्लांटों की श्रेणी में 12वीं/13वीं योजना और उसके पश्चात् स्थापित की जाने वाली नई क्षमताओं के लिए सुपर क्रिटिकल प्रौद्योगिकी को लागू करने का निश्चय किया गया है। घरेलू विनिर्माण सुविधाओं की स्थापना के लिए भारत सरकार द्वारा दिए जा रहे प्रोत्साहन के आधार पर स्टीम जनरेटर और टर्बाइन जनरेटर के लिए विनिर्माण सुविधाएं स्थापित करने हेतु बहुत से नए निर्माता आगे आए हैं।

- 1. एल एण्ड टी-एमएचआई
- 2. तोशीबा-जेएसडब्ल्यू
- 3. एल्सटम-भारत फोर्ज
- 4. गैमन अंसाल्डो
- 5. बीजीआर-हिताची
- 6. डूसन
- 7. थर्मेक्स-बैबकॉक
- 8. सेथर वेसल-रिले पावर

	1		
संयुक्त उद्यम	ब्वॉयलर	टर्बाइन –	अभ्युक्तियां
		जनरेटर	
एल एण्ड टी	4000 मेगावाट	4000	• ब्वॉयलर और टर्बाइन का उत्पादन प्रारंभ
एमएचआई		मेगावाट	
अल्सटम-भारत फोर्ज	-	5000	• टर्बाइन के विनिर्माण हेतु सभी विनिर्माण
		मेगावाट	सुविधाएं जून, 2013 तक पूरी की जाएं
तोशीबा-जेएसडब्ल्यू	-	3000	• सभी विनिर्माण सुविधाएं अप्रैल, 2013 तक
		मेगावाट	पूरी की जाएं
गेमन-अंसाल्डो	4000 मेगावाट	-	• सुविधाओं को पूरा करने की संभावित तारीख
			दिसंबर, 2012 (2000 मेगावाट) और दिसंबर,
			2014 (अतिरिक्त 2000 मेगावाट)
थर्मेक्स-बैबकॉक और	3000 मेगावाट		• सभी विनिर्माण सुविधाएं मार्च, 2013 तक पूरी
विलकॉक्स			की जाएं
बीजीआर-हिताची	5 बॉयलर प्रगति		• सभी विनिर्माण सुविधाएं जनवरी, 2013 तक
ब्वॉयलर्स प्राइवेट	वर्ष (~3000		पूरी की जाएं
लिमिटेड	मेगावाट		

बीजीआर हिताची टर्बाइन जनरेटर प्राइवेट लिमिटेड		5 टर्बाइन जनरेटन प्रति वर्ष (~3000 मेगावाट	सभी विनिर्माण सुविधाएं जुलाई, 2014 तक पूरी की जाएं
दूसन चेन्नई वर्क्स प्राइवेट लिमिटेड	2200 मेगावाट *(सब क्रिटिकल और सुपर क्रिटिकल)		 डीसीडब्ल्यू प्राइवेट लिमिटेड दूसन, कोरिया लिमिटेड की 100% स्वामित्व वाली एक सहायक कंपनी है जिसकी स्थापना भारत में 20.7.2007 को की गई। मौजूदा सुविधा – चेन्नई: अधिग्रहीत की गई अतिरिक्त सुविधा कांचीपुरम जिले का मन्नूर गांव अतिरिक्त सुविधाओं से उत्पादन सितंबर, 2012 तक शुरू किया जाए

इसके अलावा बीएचईएल ने 11वीं योजना के अंत (2011-12) तक अपनी विनिर्माण क्षमता को 6,000 मेगावाट प्रतिवर्ष से बढ़ाकर 15,000 मेगावाट प्रति वर्ष करने के लिए अपनी अवसंरचना का सुदृढ़ीकरण किया है। विनिर्माताओं द्वारा दी गई सूचना से यह तथ्य उभरकर सामने आए हैं कि सुपर क्रिटिकल स्टीम जनरेटर और टर्बाइन जनरेटर के लिए निम्नलिखित घरेलू क्षमताएं उपलब्ध होंगी:

2013-14 तक 2014-15 तक

एसजी (मेगावाट)	26,500	40,500
टीजी (मेगावाट)	30.020	35.020

9.2.2 प्लांट के बकाया उपकरण (बीओपी)

थर्मल पावर परियोजनाओं की समय पर स्थापना सुनिश्चित करने के लिए प्लांट के बकाया उपस्कर जैसे कोल हैंडलिंग प्लांट, ऐश हैंडलिंग प्लांट, जल उपचार प्रणाली/डीएम प्लांट, कूलिंग टावर, सीडबल्यू प्रणाली, चिमनी, प्लांट इलेक्ट्रिकल एण्ड स्विचयार्ड आदि की पहचान महत्वपूर्ण आइटमों के रूप में की गई है। क्षमता अभिवृद्धि के लक्ष्यों को प्राप्त करने के लिए बीओपी पहले भी और लगातार एक महत्वपूर्ण क्षेत्र बना हुआ है। बीओपी प्रणालियों से जुड़े जोखिमों को कम करने के लिए बीओपी प्रणालियों का मानकीकरण, परियोजनाओं के तेजी से कार्यान्वयन हेतु गुणवत्तायुक्त और बड़े वेंडर सुनिश्चित करने के लिए अर्हक आवश्यकताओं की समीक्षा, बीओपी आदेशों और उनके परिसमापन से संबंधित आधारभूत एवं गतिशील डेटा एकत्र करने के लिए किसी केन्द्रीय संगठन अधिदेशित करने जैसे उपाय किए जाने चाहिए।

यह भी महसूस किया जाता है कि मेकेनिकल उपस्करों के साथ सिविल निर्माण की नवीनतम पद्धतियों और जनशक्ति का अधिकतम सदुपयोग जैसे उपाय किए जाने की आवश्यकता है। उन्निर्माण और स्थापना चक्र को कम करने के लिए नई उन्निर्माण प्रौद्योगिकियों को अपनाने के लिए वेंडरों को प्रोत्साहित किया जाए। निर्माण और परियोजनाओं के क्रियान्वयन हेतु कुशल जनशक्ति तैयार करने के लिए संस्थागत व्यवस्था पर भी जोर दिया जाए।

सीईए द्वारा संकलित की गई सूचना के अनुसार प्रमुख बीओपी के लिए पर्याप्त संख्या में वेंडर उपलब्ध हैं। बीओपी वेंडरों के विवरण निम्नानुसार हैं :

	<u>बीओपी की संख्या</u>
<u>वेंडर</u>	
कोल हैंडलिंग सिस्टम	15
ऐश हैंडलिंग सिस्टम	13
कूलिंग टावर	12
डीएम प्लांट	18

समय पर क्षमता अभिवृद्धि सुनिश्चित करने के लिए बीओपी उपस्करों से संबंधित कुछ सुझाव निम्नानुसार हैं :

- विकासकर्ता बीओपी का कार्यान्वयन ईपीसी आधार पर कर सकते हैं।
- बीओपी वेंडरों से संबंधित सभी सूचना जैसे हाथ में मौजूद आदेश, उनके कार्यान्वयन की स्थिति आदि के लिए एक वेब आधारित पोर्टल डिजाइन और प्रबंधित करने की आवश्यकता है, ताकि परियोजना के विकासकर्ता पुख्ता सूचना के साथ निर्णय ले सकें।
- दूसरे चरण में बीओपी वेंडर और निर्माण एजेंसियों को उनके निष्पादन के आधार पर रेटिंग दी जा सकती है।
- बोली दस्तावेजों में पहले से मौजूद कार्य/बोली क्षमता आदि का उल्लेख किया जाना चाहिए।
- ईपीसी संविदाकार, विकासकर्ता के साथ साथ विनिर्माताओं द्वारा विद्युत परियोजना की आवश्यकताओं के लिए कुशल/अर्द्धकुशल श्रमिकों का प्रशिक्षण शुरू किया जाए।

9.3 महत्वपूर्ण सामग्री

विद्युत परियोजनाओं की स्थापना के लिए स्टील और सीमेंट प्रमुख सामग्री हैं। हाइड्रो और थर्मल दोनों परियोजनाओं के मामले में स्टील और सीमेंट की आवश्यकता स्थल विशेष के आधार पर होती है और सिविल इंजीनियरिंग कार्य परियोजनाओं की विशेषताओं के आधार पर अलग अलग परियोजनाओं के लिए अलग अलग होता है। थर्मल परियोजनाओं के मामले में सिविल कार्य उस स्थिति में अधिक होगा जब परियोजना की पहली यूनिट नए स्थान पर अवस्थित की जाती है। उसी स्थान पर अतिरिक्त यूनिट स्थापित करने पर सिविल कार्य अपेक्षाकृत कम होता है। हालांकि आवश्यकता का अनुमान लगाने के उद्देश्य से उपयुक्त खपत मानदंडों की गणना पहले पूरे किए गए कार्यों के साथ साथ क्रियान्वित की जा रही परियोजनाओं के संदर्भ में स्टील और सीमेंट की वास्तविक खपत के आधार पर की गई है। इस बात को ध्यान में रखते हुए 12वीं योजना में हाइड्रो और थर्मल परियोजनाओं के लिए आवश्यक स्टील और सीमेंट का मुल्यांकन केवल अनुमान पर ही आधारित होगा।

9.3.1 सामग्री आवश्यकता के लिए मानदंड

विद्युत उत्पादन परियोजनाओं के लिए इनपुट सामग्री की गणना हेतु प्रयुक्त मानदंड नीचे तालिका 9.2 में दिए अनुसार हैं:

तालिका 9.2 महत्वपूर्ण इनपुट के लिए मानदंड

(आंकड़े टन/मेगावाट)

उत्पादन परियोजनाओं के लिए इनपुट सामग्री हेतु मानदंड							
सामग्री की आवश्यकता प्रति	थर्मल		हाइड्रो	अभ्युक्तियां			
मेगावाट	कोयला/लिग्नाइट	गैस					
	आधारित	आधारित					
क)सीमेंट	150	60	956				
ख/ढांचागत स्टील	85	29	34				
ग)प्रबलित स्टील	45	24	93				
घ/स्टेनलेस स्टील	130.61	51.6	-	बंकर में प्रयुक्त			
ड.) एल्युमिनियम	0.5	0.5	0.1	विंडो, मेटल क्लैडिंग			
				वॉल, कंट्रोल रूम में			
				प्रयुक्त			

9.3.2 सामग्री की आवश्यकता

उत्पादन विस्तार योजना के अनुरूप 12वीं और 13वीं योजना के लिए महत्वपूर्ण सामग्री की आवश्यकता की गणना तालिका 9.3 और 9.4 में दिए गए मानदंडों के अनुसार की गई है :

तालिका 9.3 12वीं योजना के लिए महत्वपूर्ण इनपुट

(आंकड़े मिलियन टन में)

क्र. सं.	सामग्री	थर्मल क्ष	थर्मल क्षमता		
		कोयला और गैस आधारित लिग्नाइट आधारित 2,540 69,800 मेगावाट मेगावाट		10,897 मेगावाट	
1.	सीमेंट	10.47	0.15	10.42	21.04
2.	ढांचागत स्टील	5.93	0.07	0.37	6.37
3.	प्रबलित स्टील	3.14	0.06	1.01	4.21
4.	स्टेनलेस स्टील	9.11	0.13	0	9.24
5.	एल्युमिनियम	0.04	0.001	0.001	0.042

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 197

तालिका 9.4 13वीं योजना के लिए महत्वपूर्ण इनपुट

(आंकड़े मिलियन टन में)

क्र. सं.	सामग्री	थर्म	लि क्षमता	हाइड्रो क्षमता	जोड़
		कोयला आधारित 56,400 मेगावाट	गैस आधारित पर विचार नहीं किया गया	12000 मेगावाट	
1.	सीमेंट	8.46	0	11.47	19.93
2.	ढांचागत स्टील	4.79	0	0.41	5.2
3.	प्रबलित स्टील	2.54	0	1.12	3.66

न्यूक्लियर पावर कॉर्पोरेशन ऑफ इंडिया लिमिटेड (एनपीसीआईएल) के मूल्यांकन के आधार पर न्यूक्लियर परियोजनाओं के लिए स्टील, सीमेंट और अन्य सामग्री की आवश्यकता आयोजना उद्देश्यों से कोयला आधारित परियोजनाओं की कुल आवश्यकता के 13% मानी जाती है। उपर्युक्त को ध्यान में रखते हुए न्यूक्लियर परियोजनाओं के लिए सीईए द्वारा अनुमानित सामग्री आवश्यकता के विवरण तालिका 9.5 में दिए गए हैं।

तालिका 9.5
13वीं योजना के दौरान न्यूक्लियर परियोजनाओं हेतु महत्वपूर्ण इनपुट
(आंकड़े मिलियन टन में)

सामग्री	12वीं योजना	13वीं योजना
	5,300 मेगावाट	18,000 मेगावाट
सीमेंट	1.04	3.51
ढांचागत सीमेंट	0.58	1.99
प्रबलित स्टील	0.31	1.05

पावर प्लांट उपस्करों के विनिर्माण हेतु आवश्यक मुक्त सामग्री में कास्टिंग और फोर्जिंग, स्टील प्लेट, ढांचागत स्टील, कॉपर, सीआरजीओ/सीआरएनजीओ आदि शामिल हैं। जबिक स्टील सीमेंट, कॉपर, एल्युमिनियम आदि ऐसी सामग्री हैं जो उन्निर्माण और स्थापना तथा पारेषण और वितरण नेटवर्क के लिए आवश्यक हैं। इन महत्वपूर्ण सामग्री से संबंधित कुछ अनुमान निम्नलिखित तालिका में दिए गए हैं:

टर्बो - जनरेटर (टीजी) सेटों के लिए कास्टिंग और फोर्जिंग

बीएचईएल द्वारा उपलब्ध कराए गए विवरण के अनुसार 500/660/800 मेगावाट क्षमता वाली परियोजनाओं के लिए कास्टिंग और फोर्जिंग की औसत आवश्यकता संबंधी विवरण नीचे दिए गए हैं :

	-	_
एमटी	प्रात	सट

उपस्कर	कास्टिंग का भार	फोर्जिंग का भार
टर्बाइन	384	235
जनरेटर	3	130
जोड़	387	364

12वीं और 13वीं पंचवर्षीय योजना के लिए उपर्युक्त औसत के आधार पर थर्मल परियोजनाओं के लिए कास्टिंग और फोर्जिंग आवश्यकताओं की गणना की गई है। 12वीं योजना के लिए चिह्नित परियोजनाओं के आधार पर 12वीं योजना में 35% सुपर क्रिटिकल सेट और 13वीं योजना में 100% सुपर क्रिटिकल सेटों पर विचार किया गया है।

लाख एमटी

सामग्री	12वीं योजना	13वीं योजना		
	69,800 मेगावाट	56,400 मेगावाट		
कास्टिंग	0.40	0.33		
फोर्जिंग	0.37	0.31		

नोट : चूंकि न्यूक्लियर परियाजनाओं के लिए मानदंड प्राप्त नहीं हुए हैं अत: उनकी आवश्यकता को शामिल नहीं किया गया है। इसके अलावा हाइड्रो परियोजनाओं के लिए कास्टिंग और फोर्जिंग की आवश्यकता परियोजना विशेष पर आधारित होती है इसलिए उसे शामिल नहीं किया गया है।

आयात पर निर्भरता को कम करने के लिए भारी कास्टिंग और फोर्जिंग हेतु पर्याप्त स्वदेशी क्षमताएं विकसित करने की आवश्यकता है।

बीएचईएल द्वारा उपलब्ध कराए गए मानदंडों के विवरण के अनुसार ट्यूब और पाइप तथा थिक ब्वॉयलर क्वालिटी प्लेट (आयातित प्लेट) की आवश्यकता नीचे दी गई है। अनुमान के अनुसार 12वीं योजना में 35% सुपर क्रिटिकल सेट और 13वीं योजना में 100% सुपर क्रिटिकल सेट पर विचार किया गया है।

लाख एमटी

सामग्री	12वीं योजना	13वीं योजना
	69,800 मेगावाट	56,400 मेगावाट
ट्यूब और पाइप	7.2	5.99
थिक ब्वॉयलर क्वालिटी प्लेट	0.94	0.91

बीएचईएल द्वारा उपलब्ध कराए गए विवरण के अनुसार ट्यूब और पाइप की उपलब्धता हेतु स्वदेशी क्षमता निम्नानुसार है:

लाख मीट्रिक टन

सामग्री	12वीं योजना	13वीं योजना
ट्यूब और पाइप	3.9	4.8
थिक ब्वॉयलर क्वालिटी प्लेट	-	-

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 199

सुपर क्रिटिकल ब्वॉयलर के लिए आवश्यक उच्च एलॉय ट्यूब और पाइप (जैसे टी91/पी91, टी92/पी92 ग्रेड) और थिक प्लेटों की भारी मात्रा को ध्यान में रखते हुए देश में स्वदेशी स्तर पर इनके विनिर्माण हेतु क्षमताएं स्थापित करने की आवश्यकता है ताकि आयात पर निर्भरता कम की जा सके।

कॉपर :

आईईईएमए के अनुसार विद्युत क्षेत्र के लिए कॉपर की आवश्यकता लगभग 12.5 लाख मीट्रिक टन प्रति वर्ष होगी। इस प्रकार संपूर्ण 12वीं योजना के लिए लगभग 56 लाख मीट्रिक टन कॉपर आवश्यक होगा। इसमें सीएजीआर की वृद्धि के अनुसार लगभग 10% प्रति वर्ष की वृद्धि अपेक्षित है। कॉपर के लिए एफआईएमआई द्वारा उपलब्ध कराई गई सूचना के अनुसार 12वीं योजना के लिए क्षमता, उत्पादन और खपत के विवरण नीचे दिए गए हैं:

लाख एमटी

12 वीं योजना (2012-	क्षमता	उत्पादन	खपत
17)			
2012-13	10.0	8.0	8.8
2013-14	10.0	8.5	9.8
2014-15	15.0	13.2	11.0
2015-16	15.0	13.5	12.3
2016-17	15.0	13.7	13.3

एल्युमिनियम

एल्युमिनियम की आवश्यकता की गणना के लिए निम्नलिखित मानदंडों पर विचार किया गया है : उत्पादन स्टेशनों के लिए एल्युमिनियम हेतु मानदंड :

(एमटी प्रति मेगावाट)

सामग्री	थर्मल			हाइड्रो	अभ्युक्तियां
	कोयला आधारित	गैस आधारित	न्यूक्लियर आधारित		
एल्युमिनियम	0.5	0.5	कोयला आधारित का 130%	0.1	विंडो, मेटल क्लैडिंग वॉल, कंट्रोल रूम, कंडक्टर में प्रयुक्त

12वीं और 13वीं योजना में उत्पादन स्टेशनों के लिए एल्युमिनियम की आवश्यकता :

(आंकड़े लाख एमटी)

सामग्री	12वीं योजना				13वीं योजना			
	कोयला गैस न्यूक्लियर हाइड्रो आधारित आधारित आधारित			कोयला आधारित	गैस आधारित	न्यूक्लियर आधारित	हाइड्रो	
	69,800 मेगावाट	2,540 मेगावाट	5,300 मेगावाट	10,897 मेगावाट	56,400 मेगावाट	-	18000 मेगावाट	12000 मेगावाट
एल्युमिनियम	0.349	0.012	0.034	0.010	0.282	-	0.117	0.012
जोड़	0.405				C	0.411		

प्रथम दृष्टया सीआरजीओ और थिकर स्टील प्लेटों को छोड़कर किसी भी महत्वपूर्ण सामग्री की कमी नहीं है। इसके अलावा ट्यूब और पाइप विशेष रूप से एलॉय स्टील ट्यूब और पाइप (टी91/पी91, टी92/पी92 ग्रेड) के लिए देश में स्वदेशी विनिर्माण क्षमता पर्याप्त है, जिसके विस्तार की आवश्यकता है। विद्युत उत्पादन उपस्करों के लिए महत्वपूर्ण भारी कास्टिंग और फोर्जिंग के लिए स्वदेशी स्तर पर कुछ क्षमताएं विकसित करने के लिए निजी क्षेत्र के बड़े विनिर्माताओं द्वारा योजना बनाई जा रही है और निकट भविष्य में उनके स्थापित होने की उम्मीद है।

9.4 ईंधन आवश्यकता

विद्युत उत्पादन के लिए ईंधन की उपलब्धता अनिवार्य है। इसके अलावा ईंधन के स्रोतों का पता लगाने अथवा इसकी उपलब्धता संगठित करने के लिए यह भी आवश्यक है कि ऐसी अवसंरचना सृजित की जाए जो निर्धारित स्थान तक ईंधन को पहुंचाने में सहायक हो। खानों/बंदरगाहों तथा परियोजनाओं को पूरा करने की दृष्टि से आवश्यक परिवहन सुविधाओं का विकास भी उतना ही महत्वपूर्ण है। खानों और यहां तक कि परिवहन सुविधाओं के विकास को मूर्त रूप देने में लगने वाला समय कुछ मामलों में थर्मल पावर स्टेशनों की स्थापना में लगने वाले समय से भी अधिक होता है। इसलिए विद्युत क्षेत्र के लिए यह अनिवार्य आवश्यकता है कि लंबे समय तक कोयले की संभावित आवश्यकता का अनुमान लगाया जाए, कोयला मंत्रालय, रेलवे और पोर्ट प्राधिकारियों के साथ मिलकर समन्वित ढंग से आगामी पावर स्टेशनों के लिए कोयला खानों और परिवहन अवसंरचना का विकास किया जाए। गैस परियोजनाओं के लिए गैस परिवहन अवसंरचना भी स्थापित किए जाने की आवश्यकता है। इस लक्ष्य को ध्यान में रखते हुए ईंधन आवश्यकता का मूल्यांकन/आकलन किया गया है। थर्मल पावर स्टेशनों के लिए कोयले की आवश्यकता अनुसूचित उत्पादन, आपूर्त किए जाने वाले/किए गए कोयले की गुणवत्ता और पावर स्टेशन उपस्कर की स्थिति पर निर्भर करती है। हालांकि 12वीं योजना के सीमांत वर्ष के दौरान ईंधन की सामान्य आवश्यकता का आकलन किया गया है। इसके विवरण नीचे दिए गए हैं:

तालिका 9.6

12वीं योजना के सीमांत वर्ष के लिए ईंधन आवश्यकता			
<i>ईंधन</i> आवश्यकता			
	2016-17		
कोयला (मिलियन टन)	842		
गैस+ एलएनजी (एमएमएससीएमडी)	100*		

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 201

* यह आवश्यकता 11वीं योजना के अंत तक 18381 मेगावाट की गैस आधारित क्षमता के अनुरूप है और 12वीं योजना के लिए अतिरिक्त आवश्यकता 90% पीएलएफ पर प्रचालन के लिए लगभग 2440 मेगावाट क्षमता है। गैस की अनुपलब्धता के कारण 13,000 मेगावाट की अतिरिक्त क्षमता वाली निर्माणाधीन परियोजनाओं के लिए गैस की आवश्यकता पर विचार नहीं किया गया है।

परिवहन

विद्युत क्षेत्र की वृद्धि में परिवहन क्षेत्र महत्वपूर्ण भूमिका अदा करता है। 12वीं पंचवर्षीय योजना में क्षमता अभिवृद्धि के लक्ष्यों को प्राप्त करने के लिए विभिन्न परिवहन क्षेत्रों जैसे रेलवे, राजमार्ग और सड़क, परिवहन, पोर्ट, अंतर्देशीय जलमार्ग और गैस पाइप लाइनों का विकास महत्वपूर्ण है। 12वीं योजना के अंतिम वर्ष (2016-17) तक विद्युत कंपनियों के लिए कोयले की कुल आवश्यकता लगभग 842 मीट्रिक टन होने का अनुमान है, इसमें घरेलू और आयातित कोयले के साथ साथ कैप्टिव कोयला ब्लॉकों से कोयला शामिल है। इसके अलावा 12वीं योजना के दौरान तथा उसके बाद यूनिटों का आकार 660 मेगावाट से बढ़ाकर 800 मेगावाट तथा 1,000 मेगावाट किए जाने से भारी ओवर डाइमेंशनल कंसाइनमेंट (ओडीसी) का प्रेषण अभूतपूर्व तरीके से पोर्ट से आयातित उपकरणों को स्वदेशी विनिर्माताओं और परियोजना स्थलों तक परिवहन की आवश्यकता होगी। इसके लिए साहिसक प्रयास, नीतिगत परिवर्तन के साथ साथ सड़क, रेलवे और बंदरगाह क्षेत्रों में भार और रख रखाव के निर्देशों में आधारभूत परिवर्तन करने होंगे।

रेलवे

भारतीय रेलवे की दीर्घकालीन रणनीति के अनुसार मालभाड़े और यात्रियों के आवागमन के लिए अलग अलग डेडीकेटेड फ्रीट कॉरिडोर (डीएफजी) का निर्माण किया जाना है। वर्तमान में दो डीएफसी परियोजनाएं अर्थात पूर्वी डीएफसी (दनकुनी, पश्चिम बंगाल-लुधियाना, पंजाब) और पश्चिमी डीएफसी (जेएनपीटी), मुम्बई-दादरी, उत्तर प्रदेश) को मंजूरी प्रदान कर दी गई है। उपर्युक्त के अलावा रेलवे ने गेज परिवर्तन, नई रेलवे लाइनें, नए मार्गों का विद्युतीकरण और लोकोमोटिव और वेगन की खरीद करने की योजना बनाई है।

<u>क्यापक तौर पर रेलवे ने अवसंरचना सुजन और क्षमता निर्माण की दिशा में मध्यम और दीर्घावधि लक्ष्य (12वीं पंचवर्षीय योजना और उसके बाद) के लिए निम्नलिखित लक्ष्य निर्धारित किए हैं।</u>

तालिका 9.7

व्यापक श्रेणी	11वीं योजना के संशोधित लक्ष्य	विजन 2020 के लक्ष्य
डीएफसी सहित लाइनों का दोहरीकरण	2500	12,000 किलोमीटर.
गेत परिवर्तन	6000	12,000 किलोमीटर
नई लाइनें	2000	25,000 किलोमीटर
विद्युतीकरण	4500	14,000 किलोमीटर
बैगनों की खरीद	62000	289,136
डीजल लोकोमोटिव की खरीद	1019	5334
इलेक्ट्रिक लोकोमोटिव की खरीद	1205	4281

संभावित उच्च वृद्धि लक्ष्यों को प्राप्त करने के लिए रेलवे को क्षमता निर्माण, नेटवर्क विस्तार, उन्नयन और आधुनिकीकरण में भारी निवेश आवश्यक होगा। मौजूदा ट्रंक मार्गों और कोयले का परिवहन करने वाले अन्य मार्गों में यातायात का दबाव बहुत अधिक है। इस उच्च वृद्धि परिदृश्य को प्राप्त करने के लिए रेलवे को बड़ी तेजी से अपने नेटवर्क को सुदृढ़ करने की आवश्यकता है। मालभाड़ा यातायात के उच्च स्तर से निपटने के लिए 2020 तक आवश्यक संभावित निवेश निम्नानुसार होगा:

तालिका 9.8

विवरण	निवेश (रुपए)`
बोटलनेक की स्थिति से निपटना –	23,000 करोड़
यातायात सुविधाएं, फ्रीट बाईपास, लॉजिस्टिक पार्क आदि	
क्षमता विस्तार -	
नई लाइन,	1,80,000 करोड़
डीएफसी सहित लाइनों का दोहरीकरण/तिहरीकरण/चौहरीकरण	1,30,000 करोड़
गेज परिवर्तन विद्युतीकरण	35,000 करोड़
ावञ्चताकरण	12,600 करोड़
रोलिंग स्टॉक -	
फ्रीट वैगन,	86,740 करोड़
डीजल लोकोमोटिव,	56,007 करोड़
इलेक्ट्रिक लोकोमोटिव	64,873 करोड़
प्रौद्योगिकीय उन्नयन	
ट्रैक नवीनीकरण और 25 टन एक्सल लोड, ब्रिज	71,405 करोड़
	8,000 करोड़

रेलवे के विजन 2020 दस्तावेजों में दी गई विस्तार योजनाओं से यह विश्वास होता है कि रेलवे 12वीं पंचवर्षीय योजना और उसके पश्चात् विद्युत क्षेत्र की आवश्यकताओं को पूरा करने में सक्षम होगा, बशर्ते कि उनका विस्तार कार्यक्रम विजन दस्तावेज के अनुसार पूरा हो जाए।

अंतर्देशीय जल परिवहन

भारतीय अंतर्देशींय जलमार्ग प्राधिकरण (आईडब्ल्यूटी) ने 10460 करोड़ रुपए के अनुमानित निवेश के साथ 12वीं पंचवर्षीय योजना के दौरान राष्ट्रीय जल मार्गों/अन्य जल मार्गों के विकास, उन्नयन, आधुनिकीकरण और विस्तार की योजना बनाई है। इस बात को ध्यान में रखते हुए आईटीडब्ल्यू के जिए कोल कार्गों मूवमेंट की अपार संभावना है। यह धीरे धीरे विद्युत कंपनियों के लिए आकर्षण का केन्द्र बनता जा रहा है, विशेष रूप से आयात किए जाने वाले कोयले के परिवहन के संदर्भ में ऐसी आशा है कि एनटीपीसी की फरक्का परियोजना के लिए हिल्दिया से प्रति वर्ष लगभग 3.0 मिलियन टन कोयले का परिवहन आईटी डब्ल्यू के जिरए किया जा रहा है जो सफल है। वर्तमान में 10 पावर स्टेशन गंगा नदी के किनारे पर प्रचालित हैं और उनमें से पश्चिम बंगाल में (7) और बिहार में (3) पावर स्टेशन अवस्थित हैं। इसके अलावा 15,000 से अधिक स्थापित क्षमता वाले 11 और थर्मल पावर स्टेशनों की स्थापना बिहार और उत्तर प्रदेश राज्यों में प्रस्तावित है। उनके लिए कोयले की अनुमानित

आवश्यकता लगभग 70 मिलियन मीट्रिक टन प्रति वर्ष होगी, जिसे आईटीडब्ल्यू के जरिए पूरा किया जा सकता है।

राष्ट्रीय राजमार्ग

भारत के कुल सड़क नेटवर्क में राष्ट्रीय राजमार्ग का प्रतिशत केवल लगभग 2% है परंतु इस पर 40% से अधिक यातायात होता है। इसके परिणामस्वरूप भारी ओवर डाइमेंशनल कंसाइनमेंट (ओडीसी) का मार्ग प्रबंधन अत्यधिक चुनौतीपूर्ण और कठिन हो जाता है। सड़कों/राजमार्गों के जिरए ओडीसी के परिवहन से जुड़े बहुत से गंभीर मुद्दे हैं जैसे विभिन्न राज्यों में मोटर वाहन अधिनियम की अलग ढंग से व्याख्या परियोजना स्थलों के मार्ग में आने वाले पुलों और सड़कों की अपर्याप्त कमता, राजमार्गों में सड़क/यातायात कैरिएज की चौड़ाई कम होना, राजमार्गों पर बनाए गए टोल प्लाजा की अनुचित डिजाइन, सड़कों पर अत्यंत घुमावदार मोड़/ब्रेंड/ग्रेडिएंट और पूर्वात्तर राज्यों में अंडरपासों में अपर्याप्त ऊर्ध्वाधर निकासी विशेष रूप से उल्लेखनीय हैं। सड़कों, राजमार्गों और पुलों के लोडिंग विनिर्देशों में आवश्यक मूलभूत परिवर्तनों सिहत इन समस्याओं का तत्काल निदान आवश्यक है, इसके लिए रिपोर्ट में निम्नलिखित विशेष सिफारिशें की गई हैं:

- घरेलू कोयले की कुल निकासी के लगभग 60% भाग का परिवहन रेलवे द्वारा किया जा रहा है।
- भागीदारी का प्रतिशत 12वीं योजना के दौरान भी इतना ही बना रहेगा।
- रेलवे को प्रत्येक कोल फील्ड से कोयले की निष्कर्षण क्षमता की पृष्टि करनी होगी।
- रेलवे को तीन प्रमुख कोयला क्षेत्रों अर्थात उत्तरी कर्मपुरा, आईबी वैली और मांद रायगढ़ से कोयले के निष्कर्षण हेतु अपनी क्षमता का विस्तार करना होगा।
- कोयले के सुचारु और त्वरित निष्कर्षण हेतु कोयले के खदान से रेल शीर्ष तक वैगनों में स्वचालित लोडिंग सुविधा के साथ परिवहन हेतु कोल कनवेयर का प्रयोग किया जाना चाहिए।
- रेलवे को मालभाड़े और यात्री यातायात को अलग अलग करने के लिए प्रस्तावित डेडीकेटेड फ्रीट कॉरिडोर के कार्य में तेजी लानी होगी।
- रेलवे को यह सुनिश्चित करना होगा कि कोल अनबंडिलंग सुविधाओं वाले सभी बंदरगाहों तक रेल संपर्क स्थापित हो।
- एनटीपीसी और भारतीय अंतर्देशीय जलमार्ग प्राधिकरण (आईडब्ल्यूएआई) फरक्का टीपीएस के लिए तीन मीट्रिक टन आयातित कोयले के परिवहन हेतु एक करार पर हस्ताक्षर करेंगे। पश्चिम बंगाल और बिहार में गंगा के तट पर अवस्थित अन्य थर्मल परियोजनाओं के लिए भी ऐसी संभावनाएं तलाश की जानी चाहिए।

सुपर क्रिटिकल यूनिटों के लिए ओवर डाइमेंशन कंसाइनमेंट (ओडीसी) के परिवहन हेतु सड़क और राजमार्गों के विस्तार की आवश्यकता है। इसके लिए निम्नलिखित तथ्यों पर विचार किया जाना चाहिए :

- 49 मीट्रिक टन से अधिक भार वाले भारी प्रेषणों और हाइड्रोलिक एक्सल, ट्रेलर को शामिल करने के लिए मोटर वाहन अधिनियम में संशोधन।
- 100 मीट्रिक टन से अधिक भार वाले ओडीसी को शामिल करने के लिए आईआरसी/एमओआरटीएच द्वारा सड़कों और पुलों के लिए भार वर्गीकरण की समीक्षा।
- ओडीसी आवागमन के लिए एकल खिड़की निकासी और एकमुश्त भुगतान।
- राजमार्गों पर निर्मित टोल प्लाजा का उचित डिजाइन।
- सड़कों में तेज घुमावदार मोड़/ग्रेडिएंट को कम करने तथा अंडर पासों में पर्याप्त ऊर्ध्वाधर निकासी सुनिश्चित करने के लिए पूर्वोत्तर और पहाड़ी राज्यों में सड़क डिजाइन में परिवर्तन।

• हाइड्रो परियोजनाओं के लिए उचित पहुंच मार्गों का प्रावधान।

मौजूदा और प्रस्तावित गैस पाइप लाइन/ग्रिड

- प्राकृतिक गैस अपिशष्ट ईंधनों में तेजी से अपनाया जाने वाला प्राथिमिक ऊर्जा स्रोत है। अनुमान है कि वर्ष 2002 से 2025 के बीच इसकी खपत वर्तमान स्तर से लगभग 3-4 गुना बढ़ जाएगी। हम 1986 में असम में जब पहली बार ऑयल और गैस और पिश्चिमी समुद्र तट पर 1974 में प्रसिद्ध बॉम्बे हाई फील्ड की खोज की गई थी तब से बहुत प्रगित कर चुके हैं।
- गैस का बाजार विकसित होने से प्राकृतिक गैस के सामाजिक और आर्थिक लाभ उठाने के लिए देश में गैस पाइप लाइनों का समय पर विकास करना प्राथमिकता बन गया है। ऐसी बड़ी गैस पाइप लाइनों को जब मौजूदा गैस पाइप लाइनों के साथ एकीकृत किया जाएगा तो अनंतिम रूप से राष्ट्रीय गैस ग्रिड का निर्माण होगा। सांकेतिक राष्ट्रीय गैस ग्रिड ने मौजूदा गैस पाइपलाइनें, प्राधिकृत/योजनागत पाइप लाइनें और दूरस्थ तथा कम विकसित क्षेत्रों में उनके संपर्क शामिल होंगे।
- ईजीओएम (मंत्रियों का अधिकार प्राप्त समूह) ने देश में घरेलू गैस के वितरण और सदुपयोग के लिए गैस सदुपयोग नीति तैयार की है और गैस पाइप लाइनों से संबद्ध मौजूदा गैस आधारित और लिक्किड आधारित स्टेशनों को केजी डी6 बेसिन से प्राथमिकता के आधार पर गैस आवंटित की है। वर्तमान में लिक्किड पर प्रचालित अथवा कम सदुपयोग की जा रही उत्पादन क्षमताओं के बेहतर सदुपयोग के लिए यह आवश्यक है कि उन्हें ट्रंक/सुपर पाइप लाइन नेटवर्क के भाग के रूप में प्राथमिकता के आधार पर जोड़ा जाए।

मौजूदा गैस पाइप लाइनें

देश में वर्तमान गैस पाइप लाइन अवसंरचना लगभग 1200 किलोमीटर है, जिसकी डिजाइन क्षमता लगभग 283 एमएमएससीएमडी है। वर्तमान मुख्य ट्रंक पाइप लाइनें निम्नानुसार हैं :

- गेल के स्वामित्व में लगभग 8000 किलोमीटर पाइप लाइन हैं और वह इनका प्रचालन और रख-रखाव करता है। इसमें लगभग 150 एमएमएससीएमडी डिजाइन क्षमता वाली सुपर लाइनें (मुख्य रूप से एचबीजे – जीआरईपी – डीवीपीएल तथा डीवीपीएल-जीईआरईपी का उन्नयन और डीयूपीएल-डीपीपीएल) शामिल हैं।
- रिलायंस गैस ट्रांसपोर्टेशन इनफ्रास्ट्रक्चर लि. (आरजीटीआईएल) : रिलायंस के स्वामित्व में लगभग 1400 किलोमीटर लंबी पूर्व-पश्चिम पाइप लाइन (ईडब्ल्यूपीएल) (काकीनाड़ा-हैदराबाद-यूरान-अहमदाबाद) है, जिसकी डिजाइन क्षमता 80 एमएमएससीएमडी है, जिसका प्रचालन और रख रखाव रिलायंस ग्रुप द्वारा किया जाता है।

अन्य प्रमुख क्षेत्रीय कंपनियां :

- गुजरात स्टेट पेट्रोनट लिमिटेड (जीएसपीएल) : यह 40 एमएमएससीएमडी की डिजाइन क्षमता वाली 1200 किलोमीटर लंबी पाइप लाइन का प्रचालन और रख-रखाव करती है।
- असम गैस कंपनी लिमिटेड (एजीसीएल) : यह 08 एमएमएससीएमडी की डिजाइन क्षमता वाली 500 किलोमीटर लंबी पाइप लाइन का प्रचालन और रख-रखाव करती है।
- प्राधिकृत गैस पाइप लाइनें : 2007 में पेट्रोलियम और प्राकृतिक गैस मंत्रालय ने निम्नलिखित 9 नई ट्रंक पाइप लाइनों को प्राधिकृत किया, जिनकी कुल अनुमानित लंबाई 8700 किलोमीटर है और डिजाइन क्षमता लगभग 209 एमएमएससीएमडी है।

(क) गेल:

- दादरी-बवाना-नांगल (600 किलोमीटर)
- चेनसा-झज्जर-हिसार (400 किलोमीटर)
- जगदीशपुर-हल्दिया (2000 किलोमीटर)

- दाभोल-बंगलौर (1400 किलोमीटर)
- कोची-कांजिरकोड-बंगलौर (1100 किलोमीटर)

(ख) आरजीटीआईएल:

- काकीनाड़ा-हिल्दिया (928 किलोमीटर)
- काकीनाड़ा-चेन्नई (577 किलोमीटर)
- चेन्नई-बंगलौर-मंगलौर (538 किलोमीटर)
- चेन्नई-तूतीकोरीन (585 किलोमीटर)

ये पाइप लाइनें विकास के विभिन्न विकास चरण पर हैं।

पीएनजीआरबी की स्थापना: पेट्रोलियम और प्राकृतिक गैस नियामक बोर्ड (पीएनजीआरबी) अधिनियम, 2006 में पेट्रोलियम, पेट्रोलियम उत्पादों की रिफाइनिंग, प्रोसेसिंग, भंडारण, परिवहन, वितरण, विपणन और बिक्री एवं प्राकृतिक गैस तथा शहरी गैस वितरण (सीजीडी) से जुड़ी कंपनियों के कार्यकलापों के विनियमन हेतु एक डाउनस्ट्रीम नियामक के रूप में स्वतंत्र नियामक बोर्ड (पीएनजीआरबी) की स्थापना का प्रावधान है। इस बोर्ड की स्थापना कर दी गई है और इसने अपने कार्यकलाप जून, 2007 से शुरू कर दिए हैं। पीएनजीआरबी ने गैस के परिवहन से संबंधित कई विनियम तैयार किए हैं। पीएनजीआरबी ईओआई मार्ग के जरिए प्रतियोगी बोली प्रक्रिया के आधार पर गैस पाइप लाइनें बिछाने के लिए कंपनियों को प्राधिकृत करता है। पीएनजीआरबी को अतिरिक्त गैस पाइप लाइनों की स्थापना के लिए 06 ईओआई प्राप्त हुए हैं। पीएनजीआरबी की वेबसाइट के अनुसार ये निम्नानुसार हैं:

- (i) मल्लवारम (आंध्र प्रदेश) विजयपुर (मध्य प्रदेश) भीलवाड़ा (राजस्थान)
- (ii) मेहसाना (गुजरात) से भटिंडा (पंजाब) वाया जयपुर (राजस्थान)
- (iii) भटिंडा (पंजाब) श्रीनगर (जम्मू एवं कश्मीर)
- (iv) सूरत से पारादीप
- (v) दुर्गापुर से कोलकाता
- (vi) काकीनाड़ा से श्रीकाकुलम

बंदरगाह

12वीं योजना के दौरान लगभग 88,000 मेगावाट की अनुमानित क्षमता वृद्धि को ध्यान में रखते हुए 12वीं योजना के अंत तक आयात किए जाने वाले कोयले की मात्रा की गणना लगभग 230 मीट्रिक टन की गई है, जिसमें ऐसे पावर प्लांटों की कोयला आवश्यकता शामिल है जो पूरी तरह से आयातित कोयले पर प्रचालित किए जाएंगे। जहाजरानी मंत्रालय द्वारा जारी किए गए बंदरगाहों के लिए मैरीटाइम एजेंडा के आधार पर यह लक्ष्य निर्धारित किया गया है कि 12वीं योजना के अंत तक थर्मल और कोकिंग कोल को मिलाकर बड़े और छोटे बंदरगाहों में लगभग 476.04 मिलियन टन कोयले का रख रखाव किया जाएगा। इसके अलावा बड़े बंदरगाहों के क्षमता विस्तार और उत्पादकता स्तरों में वृद्धि के उद्देश्य से जहाजरानी मंत्रालय द्वारा बहुत से प्रयास शुरू किए जा रहे हैं, जिनमें बंदरगाहों की अवसंरचना का आधुनिकीकरण, नए बर्थ/टर्मिनलों का निर्माण, बर्थ और ड्रेजिंग के लिए विस्तार/उन्नयन परियोजनाएं, नए और आधुनिक उपस्करों की स्थापना, कार्गो हैंडलिंग ऑपरेशन का मेकनाइजेशन और कंप्यूटर सहायी प्रणालियों द्वारा ऑटोमेशन शामिल हैं। हालांकि रेल और सड़क कनेक्टिविटी में सुधार/विस्तार, विशेष रूप से अंतिम मील तक कनेक्टिविटी पर विशेष रूप से ध्यान देना होगा। इसके लिए सड़क, रेलवे और पोर्ट प्राधिकारियों के बीच बेहतर समन्वय और अंतरापृष्ठ की नितांत आवश्यकता है।

सुझाव और सिफारिशें

 पावर स्टेशनों के लिए आवश्यक आयातित और घरेलू कोयले (लगभग 150 मीट्रिक टन) का रख रखाव सुनिश्चित करने के लिए बंदरगाहों में कोयला अनलोडिंग के लिए पर्याप्त व्यवस्थाएं।

- पूर्वी तट पर पारादीप और विजाग बंदगाहों में कोयला रख रखाव सुविधाओं का विस्तार किया जाए। यह उड़ीसा में अवस्थित खानों से कोयले के निष्कर्षण हेतु आवश्यक होगा क्योंकि मौजूदा रेल मार्गों पर यातायात का दबाव बहुत अधिक है।
- सभी बड़े और अन्य महत्वपूर्ण छोटे बंदरगाहों में क्रेन सुविधाओं, सिलोस, कनवेयर और वेगन टिपलर का विस्तार कर उन्हें मेकेनाइज किया जाना चाहिए।
- पेनामेक्स अथवा केपसाइट वेसलों के रख रखाव हेतु विभिन्न बंदरगाहों में ड्राफ्ट सुविधा का विस्तार किया जाना चाहिए। ओडीसी की अनलोडिंग के लिए कम से कम दो बड़े बंदरगाहों अर्थात पश्चिमी तट पर कांडला और पूर्वी तट पर पाराद्वीप में आरओ-आरओ बर्थ सुविधाओं का सृजन किया जाना चाहिए।
- ओडीसी के रख-रखाव एवं परिवहन हेतु बंदरगाहों तक सड़क संपर्क सुनिश्चित किया जाना चाहिए।

9.5 जनशक्ति आवश्यकता

विद्युत क्षेत्र के सभी क्षेत्रों के त्वरित विकास हेतु प्रशिक्षित जनशक्ति एक अनिवार्य आवश्यकता है। इस क्षेत्र में क्षमता अभिवृद्धि की अपार संभावनाएं हैं। उद्योग जगत को इसका उत्पादन बढ़ाने और 12वीं योजना के दौरान 1,0000 मेगावाट (कैप्टिव और नवीकरणीय सहित) से अधिक के लक्ष्य को पूरा करने के लिए परियोजना क्रियान्वयन क्षमता बढ़ाने हेतु कदम उठाने चाहिए। प्रशिक्षण सुविधाओं सहित जनशक्ति विकास इतनी बड़ी क्षमता अभिवृद्धि आवश्यकता के अनुरूप होना चाहिए।

9.5.1 जनशक्ति आवश्यकता के लिए मानदंड

12वीं योजना के दौरान परियोजना निर्माण, क्रियान्वयन और उत्पादन परियोजनाओं के प्रचालन एवं रख रखाव के लिए जनशक्ति आवश्यकता का मूल्यांकन करने हेतु कुछ मानदंड अपनाए गए हैं। विवरण नीचे दिए अनुसार हैं :

नए प्लांटों के निर्माण हेतु

हाइड्रो - 10 व्यक्ति प्रति **मेगावाट** थर्मल - 8 व्यक्ति प्रति **मेगावाट** न्यक्लियर - 8 व्यक्ति प्रति **मेगावाट**

परियोजना क्रियान्वयन अवधि

हाइड्रो - 72 महीनाथर्मल - 36 महीनान्यूक्लियर - 72 महीना

उत्पादन परियोजनाओं के प्रचालन और रखरखाव हेतु

हाइड्रो - 1.9 व्यक्ति प्रति **मेगावाट** थर्मल - 1.1 व्यक्ति प्रति **मेगावाट** न्यूक्लियर - 1.9 व्यक्ति प्रति **मेगावाट**

9.5.2 12वीं योजना के दौरान जनशक्ति आवश्यकता

12वीं योजना के दौरान क्षमता अभिवृद्धि का लक्ष्य लगभग 88,000 मेगावाट है। यह अनुमान लगाया है कि उत्पादन, पारेषण और वितरण परियोजनाओं के प्रचालन और रख रखाव के लिए लगभग 4.54 लाख और निर्माण के लिए 6.55 लाख अतिरिक्त कार्मिकों की आवश्यकता होगी। 11वीं योजना के दौरान विद्युत क्षेत्र में निर्माण के लिए लगाए गए कार्मिक 12वीं योजना के दौरान भी निर्माण आवश्यकता को पूरा करने के लिए पर्याप्त होंगे। 12वीं योजना के दौरान अतिरिक्त जनशक्ति के श्रेणीवार विवरण तालिका 9.10 में नीचे दिए गए हैं:

तालिका -9.10

श्रेणी	प्रचालन और	निर्माण	जोड़
	रखरखाव		
इंजीनियर	42000	36000	78000
पर्यवेक्षक	78000	49000	127000
कुल कामगार	63000	109000	172000
अर्द्ध कुशल कामगार	68000	121000	189000
अकुशल कामगार	78000	219000	297000
गैर तकनीकी	127000	121000	248000
जोड़	454000	655000	1109000

विद्युत उद्योग के लिए महत्वपूर्ण आईटीआई ट्रेड निम्नानुसार हैं :

तालिका 9.11

ट्रेड	यूनिटों की संख्या	वार्षिक इनटेक
फिटर	8,531	1,36,496
इलेक्ट्रिशियन	8,221	1,31,536
वेल्डर	1,068	17,088
वायरमैन	2,005	32,080
टर्नर	1,773	28,368
मेकेनिक	1,157	18,512
कारपेंटर	475	7,600
शीट मेटल	285	4,560
मेसन	165	2,640
टूल और डाईमेकर	38	608
पलम्बर	448	7,168
जोड़	24,166	3,86,656

स्रोत: महानिदेशक (रोजगार एवं प्रशिक्षण)

औसत वार्षिक आवश्यकता अनुमान 40,000 है। 12वीं योजना के दौरान प्रशिक्षित जनशक्ति की भारी मात्रा में आवश्यकता और व्यापक प्रशिक्षण भार तथा विद्युत क्षेत्र में उभरकर सामने आ रही उन्नत प्रौद्योगिकियों को ध्यान में रखते हुए यह सिफारिश की जाती है कि आधुनिक और वैज्ञानिक कार्य प्रणालियों को अपनाया जाए और आधुनिक अवसंरचना का सृजन किया जाए। तदनुसार आवश्यक पाठ्य सामग्री तथा प्रशिक्षण सहायता प्रदान की जाए। इसके परिणामस्वरूप लागत और समय प्रभावी प्रशिक्षण दिया जाएगा और यह प्रशिक्षण भार – अवसंरचना अंतराल को दूर करने में भी सहायक होगा। इस प्रकार की कुछ प्रशिक्षण कार्य प्रणालियों के विवरण नीचे दिए गए हैं:

• संगठनात्मक/प्रशिक्षु की आवश्यकताओं के अनुकूल विभिन्न प्रकार के सिमुलेटरों के जरिए (अर्थात एरिया सिमुलेटर, कंपेक्ट सिमुलेटर, जेनरिक सिमुलेटर अथवा फुल-स्कोप रेपलिका सिमुलेटर आदि के जरिए)।

- पावर स्टेशन/सब स्टेशन में प्लांट विशेष पर आधारित ऑन साइट प्रशिक्षण के जरिए।
- पर्सनल कंप्यूटर आधारित स्व-अधिगम पैकेज प्रणालियों के जरिए।
- वीडियो/सीडी/फिल्मों के जरिए
- मॉक-अप प्लांट, मॉडल, रिग, जिग लाइन-अप पैनल आदि के जरिए।
- पत्राचार पाठ्यक्रम और दूरस्थ अभिगम पैकेजों के जरिए।
- वास्तविक प्लांटों अथवा पुराने/अप्रचलित उपस्करों पर 'हैंड्स-ऑन" प्रशिक्षण के जरिए रख रखाव संबंधी कौशल विकास।
- मामला अध्ययनों के जरिए।
- स्थानीय भाषा को शिक्षा का माध्यम बनाते हुए प्रशिक्षण की व्यवस्था करना और इन भाषाओं में पाठ्य सामग्री तैयार करना।

9.6 निधि आवश्यकता

12वीं योजना के दौरान लगभग 88,000 मेगावाट क्षमता अभिवृद्धि के आधार पर उत्पादन परियोजनाओं के लिए निधि आवश्यकता का मूल्यांकन/आकलन किया गया है।

निधि आवश्यकता का आकलन पिछली परियोजनाओं की लागत के आधार पर विभिन्न उत्पादन परियोजनाओं के लिए प्रति मेगावाट लागत अनुमान के आधार पर किया गया है।

उत्पादन परियोजनाओं की लागत के अनुमान हेतु पूर्वानुमानों के विवरण अनुबंध-9.1 के रूप में दिए गए हैं उपर्युक्त के आधार पर और 12वीं योजना के दौरान लगभग 88,000 मेगावाट क्षमता की अभिवृद्धि को ध्यान में रखते हुए 12वीं योजना के दौरान उत्पादन परियोजनाओं के लिए लगभग 4,13, 870 करोड़ रुपए की निधि आवश्यकता का अनुमान लगाया गया है।

इसके अलावा 12वीं योजना के दौरान 13वीं योजना की परियोजनाओं के संदर्भ में अग्रिम कार्रवाई शुरू करने के लिए भी निधियों की आवश्यकता होगी। इसके लिए 2,72, 582 करोड़ रुपए का अनुमान लगाया गया है। 12वीं योजना के दौरान क्षमता अभिवृद्धि के लिए कुल निधि आवश्यकता के विवरण निम्नानुसार हैं:

तालिका 9.12 12वीं योजना के दौरान क्षमता अभिवृद्धि के लिए कुल निधि आवश्यकता

	निधि आवश्यकता करोड़ रुपए में
12वीं योजना के लिए लगभग 88,000 मेगावाट की क्षमा अभिवृद्धि	4,13,870
13वीं योजना की परियोजनाओं के लिए अग्रिम कार्रवाई	2,72,582
12वीं योजना के दौरान उत्पादन परियोजनाओं के लिए कुल निधि आवश्यकता	6,86,452

12वीं योजना के दौरान उत्पादन परियोजनाओं के लिए कुल निधि आवश्यकता 6,86,452 करोड़ रुपए है। इस निधि आवश्यकता में पावर प्लांटों के नवीनीकरण और आधुनिकीकरण, कैप्टिव और नवीकरणीय क्षमता अभिवृद्धि के लिए आवश्यक निधियां शामिल नहीं हैं। पारेषण और वितरण क्षेत्र के लिए भी इतनी ही निधियों की आवश्यकता है।

---+++----

अनुबंध 9.1

परियोजनाओं की लागत के अनुमान हेतु पूर्वानुमान

विद्युत परियोजनाओं की अनुमानित लागत के लिए पूर्वानुमान

(आंकड़े प्रति मेगावाट करोड़ रुपए में)

		* * * * * * * * * * * * * * * * * * * *
क्र.सं.	उत्पादन योजना का प्रकार	लागत
1	थर्मल उत्पादन परियोजनाएं	6
2	हाइड्रो उत्पादन परियोजनाएं	8
3	न्यूक्लियर परियोजनाएं	10
4	कैप्टिव	5
5	सौर	13
6	पवन	6
7	अन्य नवीकरणीय ऊर्जा स्रोत	5

*उपर्युक्त लागतें वित्त वर्ष 2011-12 के मूल्य स्तरों पर आधारित हैं।

10% पूर्वोत्तर क्षेत्र की परियोजनाओं के लिए 10% अधिक लागत का पूर्वानुमान लगाया गया है।

अध्याय 10 राज्यों द्वारा एकीकृत आयोजना

10.0 पृष्ठभूमि

भारत सरकार ने विद्युत क्षेत्र के समक्ष विभिन्न समस्याओं को दूर करने के लिए तथा अधिक सिक्रय बाजार अधारित पहल अपनाने के लिए बहुत से प्रयास शुरू िकए हैं। इनमें विद्युत कंपिनयों के ढांचे में पिरवर्तन से लेकर प्रचालन पिरवेश और विद्युत क्षेत्र के लिए लागू विधायी और नियामक ढांचे शामिल हैं। सर्वाधिक महत्वपूर्ण पिरवर्तन के रूप में उत्पादन, पारेषण और वितरण के ऊर्ध्वाधर रूप से एकीकृत कारोबार को विभाजित करना और विद्युत उत्पादन, पारेषण और वितरण में निजी क्षेत्र का प्रवेश विशेष रूप उल्लेखनीय है। इन प्रयासों के पिरणामस्वरूप क्षमता अभिवृद्धि कार्यक्रम में अभूतपूर्व वृद्धि के लिए एक प्लेटफार्म तैयार करने और ग्रामीण परिवारों सिहत सभी को विद्युत उपलब्ध कराने की अपेक्षा है।

विद्युत अधिनियम, 2003 में ढांचागत सुधारों, डी-लाइसेंसिंग, ग्रामीण विद्युतीकरण पर जोर, सुधार करने वाले राज्यों के लिए प्रोत्साहन और सर्वाधिक महत्वपूर्ण विद्युत की चोरी के लिए कठोर दंड के प्रावधान सिहत अनिवार्य मीटिरांग जैसे मजबूत कदम उठाने की परिकल्पना की गई है। राष्ट्रीय विद्युत नीति और टैरिफ नीति में भी ऐसे दिशानिर्देश जारी किए गए हैं कि विद्युत क्षेत्र का विकास और प्रचालन विद्युत अधिनियम के प्रावधानों के अनुसार किया जाए।

पूर्ववर्ती राज्य विद्युत बोर्डों को अलग उत्पादन, पारेषण और वितरण कंपनियों के रूप में विभाजित किया गया है। जहां एक ओर इस प्रयास के विद्युत व्यवसाय को आर्थिक रूप से व्यवहार्य बनाने में कारगर सिद्ध होने की अपेक्षा है, वहीं दूसरी ओर उत्पादन से लेकर अंतिम प्रयोक्ता के बीच संपूर्ण विद्युत श्रृंखला की एकीकृत आयोजना तैयार करने में राज्यों की बहुत ही महत्वपूर्ण भूमिका है और इस प्रकार राज्यों को यह सुनिश्चित करना है कि मौजूदा प्रणालियां पर्याप्त हों और निर्धारित समयाविध के भीतर उनकी स्थापना की जाए। इस अध्याय में प्रत्येक राज्य द्वारा विस्तृत ढंग से की जाने वाली आयोजना के विवरण दिए गए हैं।

10.1 राज्य विद्युत बोर्ड का सुजन

देश में विद्युत आपूर्ति उद्योग की शुरुआत निजी उद्यमशील प्रयास के जिए की गई और सैद्धांतिक रूप से उत्पादन प्लांटों की स्थापना लोड केन्द्रों के समीप की गई। आपूर्ति की मितव्ययिता और विश्वसनीय बढ़ाने के लिए एकांत स्थित उत्पादन यूनिटों के प्रचालन और उन्हें ग्रिड प्रणालियों से जोड़ने की आवश्यकता 40 के दशक में महसूस की गई। विद्युत अधिनियम, 1948 के अधिनियमन के साथ विद्युत आपूर्ति उद्योग के पुनर्गठन हेतु एक विस्तृत विधान तैयार किया गया। इस अधिनियम में राज्य विद्युत बोर्डों (एसईबी) के सृजन का प्रावधान किया गया और उन्हें दक्ष एवं मितव्ययी ढंग से उत्पादन और आपूर्ति के संवर्धन और देश में विद्युत आपूर्ति सुविधाओं के विकास की जिम्मेदारी सौंपी गई। उस दौर में विद्युत के विकास के लिए निजी क्षेत्र की भूमिका न के बराबर थी और केवल अहमदाबाद, कलकत्ता और बॉम्बे में ही निजी क्षेत्र के उद्यमी इससे जुड़े थे।

10.2 विद्युत अधिनियम, 2003 और राष्ट्रीय विद्युत नीति

विद्युत अधिनियम, 2003 के अधिनियमन का उद्देश्य विगत समय में विद्युत क्षेत्र के समक्ष मौजूदा विकराल समस्याओं का समाधान करना था। अधिनियम के अंतर्गत उपभोक्ताओं के साथ-साथ विद्युत के आपूर्तिकर्ताओं के हितों को ध्यान में रखते हुए बाजार की दृष्टि से अनुकूल वातावरण में विद्युत क्षेत्र के विकास की परिकल्पना की गई है। उत्पादन के लाइसेंस भंग किए गए हैं और पारेषण और वितरण क्षेत्र में मुक्त अधिगम का विलेख किया गया है।

राष्ट्रीय विद्युत नीति विद्युत क्षेत्र को अपेक्षित महत्व दिलाने की दिशा में अधिनियम के क्रियान्वयन को सुकर बनाने के लिए एक कार्यात्मक (लीवर) उपाय के रूप में तैयार की गई।

विद्युत अधिनियम, 2003 की धारा 3 (4) के अंतर्गत केन्द्रीय विद्युत प्राधिकरण को राष्ट्रीय विद्युत नीति के अनुसार राष्ट्रीय विद्युत योजना तैयार करने के लिए अधिदेशित किया गया है। राष्ट्रीय विद्युत योजना से वास्तविक संदर्भ में विद्युत अधिनियम, 2003 के कार्यान्वयन को सुकर बनाने वाले एक सार्थक उपाय के रूप में

कार्य करने की अपेक्षा है। सीईए द्वारा तैयार की गई मसौदा योजना को सभी पणधारकों को परिचालित किया गया है साथ ही सभी लोगों से टिप्पणियां आमंत्रित करने हेतु इसे सीईए की वेबसाइट पर भी अपलोड किया गया है। प्राप्त उपयुक्त टिप्पणियों के आधार पर योजना को अंतिम रूप दिया गया है।

राष्ट्रीय विद्युत योजना विद्युत क्षेत्र की इष्टतम वृद्धि की दिशा में एक रोड मैप के रूप में कार्य करने हेतु तैयार की गई है। यह एकीकृत संसाधन आयोजना पहल पर आधारित है, जिससे कि पहले से किए गए निवेश सिहत सभी संसाधनों का अधिकतम सदुपयोग किया जा सके। यह योजना सीईए के पास उपलब्ध आधुनिक उत्पादन आयोजना सॉफ्टवेयर मॉडलों का प्रयोग करते हुए किए गए विस्तृत अध्ययनों के परिणामस्वरूप तैयार की गई है। इस परियोजना में क्षमता अभिवृद्धि के परियोजनावार विवरण के साथ-साथ प्रत्येक परियोजना के ईंधन प्रकार आदि की जानकारी दी गई। योजना में उत्पादन के साथ-साथ पारेषण संबंधी पहलुओं को भी शामिल किया गया है।

10.3 विद्युत क्षेत्र का पुनर्गठन

50 के दशक में राज्य विद्युत बोर्डों (एसईबीएस) का सृजन विद्युत क्षेत्र के विकास के लिए अत्यधिक लाभकर कदम था। प्रत्येक राज्य ने पावर प्लांट से लेकर पारेषण और वितरण नेटवर्क के लिए अपनी-अपनी एकीकृत प्रणाली विकसित की। इसके परिणामस्वरूप देश के स्थानिक रूप से वितरित क्षेत्रों में विद्युत अभिगम को सुकर बनाया जा सका।

तथापि समय के साथ राज्य विद्युत बोर्डों का निष्पादन लड़खड़ाया और वे धीरे-धीरे हानियां बढ़ने के कारण आर्थिक दृष्टि से अव्यवहार्य हो गए। इसके परिणामस्वरूप उनकी विकासात्मक योजनाएं बुरी तरह प्रभावित हुईं और राज्यों के समक्ष विद्युत की कमी धीरे-धीरे बढ़ने लगी। इसके परिणामस्वरूप सरकार राज्य विद्युत बोर्डों को उत्पादन, पारेषण और वितरण कंपनियों के रूप में विभाजित करने के लिए बाध्य हो गई और प्रत्येक कंपनी को एक अलग वित्तीय निकाय के रूप में स्थापित की गई। प्रत्येक राज्य में नियामक आयोगों का भी गठन किया गया, जिनके नियामक पर्यवेक्षण और मार्गदर्शन में प्रत्येक राज्य का प्रचालन और विकास किया गया।

राज्य विद्युत बोर्डों को भंग करने के पश्चात महसूस की गई प्रमुख समस्या यह है कि चूंकि प्रत्येक राज्य में उत्पादन, पारेषण, वितरण अलग-अलग कॉर्पोरेशनों के अधीन हैं, अत: ज्यादातर राज्यों में अल्पकालिक अथवा दीर्घकालिक योजनाएं समन्वित ढंग से तैयार नहीं की जा रही हैं। इसे देश में संपूर्ण विद्युत परिदृश्य के लिए अत्यधिक प्रतिकूल स्थिति के रूप में देखा जाता है।

पहले, प्रत्येक राज्य में विद्युत क्षेत्र का विकास सीईए द्वारा की जा रही आयोजना कार्रवाई के अनुसार किया जाता था। हालांकि, विद्युत अधिनियम, 2003 के अधिनियम के पश्चात किसी पावर प्लांट के विकासकर्ता को एक निश्चित वित्तीय सीमा से नीचे वाले थर्मल अथवा हाइड्रो पावर प्लांट की स्थापना के लिए सीईए से कोई स्वीकृति प्राप्त करना आवश्यक नहीं है। अत: ज्यादातर राज्यों के पास कोई नियमित आयोजना सिद्धांत अथवा अपने प्रणाली के लिए विकासात्मक योजनाएं नहीं हैं।

10.4 राज्यों में समन्वित आयोजना की आवश्यकता

प्रत्येक राज्य में उत्पादन पारेषण और वितरण प्रणाली के संदर्भ में समन्वित आयोजना आवश्यक है। प्रत्येक राज्य के लिए अल्पकालिक और दीर्घकालिक योजनाएं तैयार करने की आवश्यकता है। इसके कुछ विशिष्ट कारण निम्नानुसार हैं:

क) प्रत्येक राज्य में अलग-अलग लोड डिस्पैच कर्व है, जिसे आधारभूत लोड के साथ-साथ पीकिंग पावर प्लांटों की द्वारा पूरा किया जा सकता है। अत: प्रत्येक राज्य से यह अपेक्षा की जाती है कि वे यहां तक कि राष्ट्रीय ग्रिड की स्थापना के बाद भी पर्याप्त आधारभूत लोड के साथ-साथ पीकिंग उत्पादन क्षमता स्थापित करें। 10 वर्ष की अविध वाली दीर्घकालिक योजनाएं अत्यधिक महत्वपूर्ण हैं क्योंिक कुछ विद्युत परियोजनाओं, विशेष रूप से हाइड्रो परियोजनाओं की स्थापना में काफी लंबा समय लगता है। साथ ही आयोजना प्रक्रिया में यह सुनिश्चित करने की आवश्यकता है कि रन ऑफ रिवर परियोजनाओं की तुलना

- में भंडारण प्रकार की जल विद्युत परियोजनाओं के लिए संभावित स्थलों पर इनका निर्माण किया जाए क्योंकि ये परियोजनाएं पीकिंग पावर उपलब्ध कराती हैं।
- ख) उत्पादन परियोजना से संबद्ध पर्याप्त पारेषण नेटवर्क उतनी ही समयाविध में स्थापित करने की आवश्यकता है। इसके अलावा चूंकि मुक्त अभिगम के लिए अधिनियम और नीतिगत प्रावधान किए गए हैं, अत: आवश्यकतानुसार सभी उपभोक्ताओं को मुक्त अभिगम सुनिश्चित करने के लिए पर्याप्त पारेषण क्षमता सुजित करने की जरूरत है।
- ग) यद्यपि वितरण राज्य के अधिकार क्षेत्र में आने वाला विषय है, फिर भी उत्पादन तथा पारेषण प्रणाली के अनुरूप इसके लिए समन्वित आयोजना आवश्यक है। चूंकि अधिनियम में विश्वसनीय विद्युत आपूर्ति के लिए बहुत ही कठोर प्रावधान किए गए हैं, अत: वितरण प्रणाली के लिए भी आयोजना तैयार की जाए। विद्युत अधिनियम, 2003 के अनुसार वितरण कंपनी का यह प्राथमिक दायित्व है कि वह अल्पकालिक और दीर्घकालिक अध्ययनों के आधार पर अपने वितरण नेटवर्क का विकास करे, जिससे न्यूनतम लागत समाधान उपलब्ध कराने के लिए प्रणाली नेटवर्क को उपयुक्त् बनाया जा सके, आईई नियमावली के अनुसार निर्धारित सीमाओं में विभिन्न नोडों पर वोल्टेज सुनिश्चित किया जा सके, वितरण नेटवर्क में ऊर्जा हानि को कम किया जा सके और विद्युत आपूर्ति की गुणवत्ता और विश्वसनीयता में सुधार किया जा सके। एक ही क्षेत्र में बहुत सी एजेंसियां होने के कारण उपर्युक्त लक्ष्यों को पूरा करने के लिए एकीकृत आयोजना सुनिश्चित करने हेतु केवल एक एजेंसी के विकल्प की आवश्यकता है। यह एजेंसी उत्पादन, पारेषण, वितरण और अन्य एजेंसियों, यदि कोई हैं, के साथ समन्वय स्थापित करेगी। इससे एक सुदृढ़, सर्वाधिक किफायती और विश्वसनीय प्रणाली का विकास सुकर होगा।
- घ) लागत और लाभों पर विचार करने के पश्चात, नेटवर्क सूचना और कस्टमर डेटाबेस के सृजन को सुकर बनाने के लिए वितरण कंपनियों द्वारा प्राथमिकता के आधार पर आधुनिक सूचना प्रौद्योगिकीय प्रणालियों का कार्यान्वयन आवश्यक है। यह लोड प्रबंधन, गुणवत्ता में सुधार चोरी और छेड़छाड़ की घटनाओं का पता लगाने, उपभोक्ता सूचना और उचित तथा सही बिलिंग और वसूली में सहायक होंगी।

10.5 एकीकृत आयोजना के लिए प्रत्येक राज्य में एकल एजेंसी का प्रस्ताव और सिफारिश

विद्युत प्रणाली के सभी पहलुओं को शामिल करते हुए प्रत्येक राज्य में समन्वित आयोजना को सुकर बनाने के उद्देश्य यह आवश्यक है कि प्रत्येक राज्य में इस प्रयोजन से एकल नोडल एजेंसी नियुक्त की जाए। इस एजेंसी को प्रत्येक राज्य द्वारा नामित किया जाएगा। यह एजेंसी राज्य के ऊर्जा विभाग द्वारा अपने कार्यों के निष्पादन की दृष्टि से प्रभावी सिद्ध होगी। अधिनियम के अनुसार एसटीयू को संगत राज्यों में आयोजना के लिए नामित किया गया है। सीईए इस नोडल एजेंसी के लिए परामर्शदाता के रूप में कार्य करेगा क्योंकि इसके पास आयोजना के लिए आवश्यक विशेषज्ञता है और सीईए के पास इस प्रयोजन से आवश्यक उपयुक्त सॉफ्टवेयर आयोजना टूल उपलब्ध हैं।

अध्याय 11 ईंधन आवश्यकता

11.0 प्रस्तावना

विद्युत परियोजनाओं के कार्यान्वयन से पहले विद्युत परियोजना के लिए ईंधन की उपलब्धता सुनिश्चित करना आवश्यक है क्योंकि यह विद्युत परियोजना के लिए आवश्यक एक मुख्य इनपुट है। भारतीय विद्युत क्षेत्र के लिए कोयला मुख्य ईंधन है और ऐसी संभावना है कि आगामी कुछ पंचवर्षीय योजनाओं में भी कोयला विद्युत क्षेत्र के लिए प्रमुख आवश्यक ईंधन के रूप में बना रहेगा। अत: यह एक नितांत आवश्यक पहलू है कि विद्युत के उत्पादन के लिए ईंधन के रूप में प्रयुक्त कोयले की पर्याप्त मात्रा में उपलब्धता सुनिश्चित करने पर विचार करने की आवश्यकता है। कोयले की अपर्याप्त उपलब्धता से उत्पादन क्षमता प्रभावित होगी और विद्युत क्षेत्र में किए गए अंतर्निहित पूंजी व्यय के साथ साथ भारत में विद्युत की कमी की मौजूदा स्थिति और अधिक गंभीर हो जाएगी। बहुत से मौजूदा पावर प्लांटों में पर्याप्त मात्रा में कोयला उपलब्ध न होने के कारण उत्पादन हानि हो रही है। अत: विद्युत उत्पादन के लिए कोयले का आयात एक अनिवार्य आवश्यकता है। ईंधन सहित सभी आवश्यक इनपुट की समय पर आपूर्ति से यह सुनिश्चित होगा कि परियोजना समय पर पूरी होगी और विद्युत परियोजना में विलंब के मामले में लागत तथा समयाविध बढ़ने की प्रतिकृत विवक्षाएं भी उत्पन्न नहीं होंगी।

इस अध्याय में 11वीं योजना के दौरान ईंधन की उपलब्धता की विस्तृत समीक्षा की गई है, इसमें 12वीं योजना के लिए ईंधन की आवश्यकता के मूल्यांकन और 13वीं योजना के लिए सांकेतिक आवश्यकता के साथ साथ ऐसे महत्वपूर्ण मुद्दों, जिनका समाधान किया जाना आवश्यक है/कोयला क्षेत्र के समक्ष मौजूदा बाधाओं पर चर्चा की गई है। इस अध्याय में अन्य मंत्रालयों और उद्योग जगत के लिए पर्याप्त इनपुट उपलब्ध है, जिससे वे विद्युत क्षेत्र की आवश्यकता के अनुसार अपने उत्पादन लक्ष्यों आदि की आयोजना तैयार कर सकते हैं और उसे पूरा करने के लिए आवश्यक कार्रवाई कर सकते हैं।

11.1 कोयले की आवश्यकता

- 11.1.1 कोयला भारत के ऊर्जा क्षेत्र का मुख्य आधार है और इसकी हिस्सेदारी प्राथमिक वाणिज्यिक ऊर्जा आपूर्ति के 50% से अधिक है। 31.3.2012 की स्थिति के अनुसार देश की कुल विद्युत उत्पादन क्षमता (यूटिलिटी) लगभग 1,99877 मेगावाट है, जिसमें से लगभग 1,12022 मेगावाट (56%) कोयला आधारित पावर प्लांटों से उत्पन्न की जाती है। देश में उत्पादित कुल विद्युत में से लगभग 70% विद्युत कोयला आधारित थर्मल पावर स्टेशनों से उत्पन्न की जाती है जबिक कुल स्थापित क्षमता में इसकी हिस्सेदारी मात्र 56% है। विद्युत मंत्रालय द्वारा किए जा रहे विभिन्न प्रयासों को ध्यान में रखते हुए देश मे थर्मल पावर स्टेशनों के प्लांट लोड फैक्टर (पीएलएफ) में पिछले कुछ वर्षों में बड़ी तेजी से सुधार हो रहा है। वर्ष 1992-93 में 57.1% से बढ़कर 2011-12 में प्लांट लोड फैक्टर 77.32% हो गया है। इसके परिणामस्वरूप प्रति मेगावाट स्थापित क्षमता के अनुरूप कोयले की मांग भी बढ़ गई है। हालांकि ईंधन की समस्याओं के कारण कोयला आधारित प्लांटों का पीएलएफ घट रहा है। कोयले की मांग और घरेलू आपूर्ति के बीच बढ़ रहे अंतराल को ध्यान में रखते हुए यह आवश्यक हो गया है। सार्वजनिक क्षेत्र और निजी क्षेत्र दोनों में घरेलू उत्पादन का विस्तार किया जाए और 11वीं योजना के दौरान इस क्षेत्र में प्रतिस्पर्धा बढ़ाकर दक्षता लाभ प्राप्त करने के लिए सुधार प्रक्रियाओं को तेजी से लागू किया जाए।
- **11.1.2** सरकार ने नई कोयला वितरण नीति (एनसीडीपी) लागू की है, जिसके अंतर्गत कुछ श्रेणियों के उपभोक्ताओं को पहले से निर्धारित कीमतों पर आपूर्ति सुनिश्चित की जाती है और सामग्री के लिए बेहतर बाजार प्रोत्साहित करने के उद्देश्य से ई-नीलामी को भी पुन: शुरू किया गया है। 1 अप्रैल, 2009 से लागू इस नीति की प्रमुख विशेषताएं निम्नानुसार हैं:
- विद्युत कंपनियों को आपूर्ति के लिए कोयले की 100% सामान्यीकृत आवश्यकता पर विचार किया जाएगा।
- कोल इंडिया लिमिटेड द्वारा अधिसूचित मूल्य पर वाणिज्यिक रूप से प्रवर्तनीय ईंधन आपूर्ति करार (एफएसए) के जरिए कोयले की आपूर्ति।

- सीआईएल के वार्षिक उत्पादन का 10% भाग ई नीलामी के जिए उन उपभोक्ताओं को प्रस्तावित किया जाए जो उपलब्ध संस्थागत व्यवस्था के माध्यम से कोयला प्राप्त करने में सक्षम नहीं हैं।
- एफएसए में पूरे वर्ष के दौरान कोयला कंपनियों द्वारा विद्युत कंपनियों को आपूर्त किए जाने वाले कोयले की वार्षिक संविदागत मात्रा (एसीक्यू) दर्शायी जाए।

31 मार्च, 2009 के पश्चात स्थापित यूनिटों के लिए ईंधन आपूर्ति करार (एफएसए) पर हस्ताक्षर :

31 मार्च, 2009 से पहले स्थापित थर्मल पावर प्लांटों के लिए वार्षिक संविदागत मात्रा (एसीक्यू) के 90% ट्रिगर मूल्य के साथ एफएसए पर हस्ताक्षर किए गए।

31 मार्च, 2009 के बाद स्थापित थर्मल पावर प्लांटों के लिए हस्ताक्षर नहीं किए गए हैं क्योंकि सीआईएल प्राथमिक रूप से निम्नलिखित के लिए जोर दे रहा है: (क) सुनिश्चित आपूर्ति को एलओए के 50% से कम रखना और (ख) एफएसए पर 5 वर्ष के लिए हस्ताक्षर करना। 85% पीएलएफ के साथ सामान्यत: नए पावर प्लांटों के लिए एलओए से 25 वर्ष के लिए विद्युत की आपूर्ति हेतु विद्युत खरीद करार (पीपीए) करने वाले उत्पादन स्टेशनों के संदर्भ में 5 वर्ष के लिए 42.5% की संगत कोयला आपूर्ति सुनिश्चित होगी।

विद्युत मंत्रालय ने 31 मार्च, 2009 के बाद स्थापित की गई परियोजनाओं के लिए एफएसए पर हस्ताक्षर करने हेतु मामले को कोयला मंत्रालय के साथ उठाया। कीमत की पूलिंग विषयक संकल्पना के लिए भी बातचीत की जा रही है।

11.1.3 कोयला स्टॉकिंग मानदंड:

सचिव, योजना आयोग की अध्यक्षता में गठित की गई एक समिति द्वारा पावर प्लांट से पिट हेड की दूरी के आधार पर पावर स्टेशनों के लिए यथानिर्धारित कोयला स्टॉकिंग मानदंडों के विवरण नीचे दिए गए हैं:

 पिट हेड स्टेशन 	15 दिन का स्टॉक
 कोयला खदान से 500 किलोमीटर की दूरी तक 	20 दिन का स्टॉक
 कोयला खदान से 1000 किलोमीटर की दूरी तक 	25 दिन का स्टॉक
• कोयला खदान से 1000 किलोमीटर से अधिक दूरी के लिए	30 दिन का स्टॉक

11.1.4 कोयले का आयात

पहले विद्युत कंपनियों को पर्यावरण और वन मंत्रालय के अनुदेशों का अनुपालन सुनिश्चित करने के उद्देश्य से कोयला आयात करने की सलाह दी गई थी और यह अपेक्षा की गई थी कि 34% कम ऐश मात्रा वाले कोयले का प्रयोग किया जाए तथा कभी कभी आयातित कोयले के पूरक के रूप में स्वदेशी स्रोतों से प्राप्त कोयले का भी इस्तेमाल किया जाए। पूर्ववर्ती वर्षों के दौरान पावर स्टेशनों द्वारा आयात किए गए कोयले की मात्रा नीचे दी गई है:

		(मिलियन टन में)	
वर्ष	लक्ष्य	वास्तविक	
2004-05		10.0	4.5
2005-06		13.5	10.4
2006-07		20.0	9.7
2007-08		12.0	10.2
2008-09		20.0	16.1
2009-10		28.7	24.6
2010-11		47.0	30.5
2011-12		55.0	44.9

ऊपर किए गए घरेलू कोयले की मांग-आपूर्ति विश्लेषण के अनुसार 12वीं पंचवर्षीय योजना के अंत तक नॉन-कोिकंग कोयले का आयात बढ़ने की संभावना है। विद्युत क्षेत्र की मांग को पूरा करने के लिए यह आवश्यक भी है। वर्तमान पोर्ट क्षमता के आधार पर 55 किलो टन कोयले का रख-रखाव किया जा सकता है और पूर्वानुमान के अनुसार कोयले का आयात बढ़ाए जाने की स्थिति में पोर्ट क्षमता का भी विस्तार करना आवश्यक होगा। इसके अलावा आयात किए गए कोयले का प्रयोग घरेलू कोयले के साथ मिश्रित रूप से भी किया जा सकता है और इससे घरेलू कोयले को धोने की भी आवश्यकता नहीं पड़ेगी और पर्यावरण और वन मंत्रालय के अनुदेशों का अनुपालन सुनिश्चित करने के लिए पावर स्टेशनों को यह आवश्यक भी है। ऐसी स्थिति में वाशरी से निकलने वाले अपशिष्ट पदार्थों के रख रखाव की समस्या भी हल हो जाएगी। हालांकि, आयात किए गए कोयले की उच्च लागत का पावर टैरिफ पर प्रतिकूल प्रभाव पड़ेगा।

11.1.5 क्षमता अभिवृद्धि कार्यक्रम और कोयले की आवश्यकता

मौजूदा/नए स्थापित पावर प्लांटों के लिए पर्याप्त मात्रा में कोयले की आपूर्ति सुनिश्चित करना चिंता का विषय बना हुआ है। पिछले दो वर्षों अर्थात 2010-11 और 2011-12 के दौरान विद्युत क्षेत्र को कोयला आपूर्ति की स्थिति नीचे दी गई है:

(i) 2010-11 और 2011-12 की अवधि के लिए कोयला आपूर्ति की स्थिति वर्ष 2010-11 और 2011-12 के लिए स्रोतवार कार्यक्रम और कोयले की प्राप्ति संबंधी विवरण नीचे दिए अनुसार हैं:

	अप्रैल, 2010- मार्च 2011		अप्रैल 2011- मार्च, 2012			प्राप्ति में	
स्रोत	कार्यक्रम	प्राप्ति	%	कार्यक्रम	प्राप्ति	%	वृद्धि (%)
सीआईएल	335	302.8	90	347	310.4	90	2.9
एससीसीएल	30	33.6	112	32	35.4	110	5.4
कैप्टिव	20	21.4	107	22	22.4	84	5.6
आयात	47	30.5	65	55	44.9	82	47.2
ई-नीलामी					6.2		
जोड़	432	388.3	90	456	419.3	91	8.0

(ii) वर्ष 2012-13 के दौरान कोयला मांग और उपलब्धता की स्थिति:

वर्ष 2012-13 के लिए लगभग 13,735 मेगावाट के कोयला आधारित क्षमता अभिवृद्धि कार्यक्रम की परिकल्पना की गई है। स्वदेशी कोयला आधारित थर्मल यूनिटों के लिए कोयले की आवश्यकता की तुलना में स्वदेशी स्रोतों से कोयले की उपलब्धता और आयात किए जाने वाले कोयले पर आधारित पावर प्लांटों के लिए कोयले की आवश्यकता संबंधी विवरण विस्तार से नीचे दिए गए हैं:

क्र.सं.	विवरण	2012-13
1.1	स्वदेशी कोयले पर डिजाइन किए गए पावर प्लांटों के लिए कोयला आवश्यकता	476
1.2	आयातित कोयले पर डिजाइन किए गए पावर प्लांटों के लिए कोयला आवश्यकता	24
1.3	जोड़	500
2.	स्वदेशी स्रोतों से कोयले की उपलब्धता	
2.1	सीआईएल के स्रोतों से	347
2.2	एससीसीएल के स्रोतों से	35
2.3	कैप्टिव खानों से	25
2.4	स्वदेशी स्रोतों से कोयले की कुल उपलब्धता	407
3.	स्वदेशी स्रोतों से कोयले की कमी (1.1 – 2.4)	69
4.1	स्वदेशी कोयले पर डिजाइन किए गए प्लांटों के लिए कमी को पूरा करने के लिए आयात किया जाने वाला कोयला	46
4.2	आयातित कोयले पर डिजाइन किए गए प्लांटों के लिए कोयला आवश्यकता	24

उपर्युक्त से यह देखा जा सकता है कि स्वदेशी कोयले की उपलब्धता में 69 मिलियन टन की कमी है। इस कमी को पूरा करने के उद्देश्य से विद्युत कंपनियों को 46 मिलियन टन कोयला आयात करने की आवश्यकता है। इसके अलावा 24 मिलियन टन आयातित कोयला की आवश्यकता आयातित कोयले पर संचालन हेतु डिजाइन किए गए पावर स्टेशनों पर है।

(iii) 12वीं योजना

11वीं पंचवर्षीय योजना में 54,964 मेगावाट की क्षमता अभिवृद्धि को ध्यान में रखते हुए 12वीं पंचवर्षीय योजना के दौरान क्षमता अभिवृद्धि के 4 परिदृश्य, 18वीं ईपीएस रिपोर्ट में दिए गए मांग पूर्वानुमानों के आधार पर तैयार किए गए हैं। आधारभूत मामले के अनुसार 12वीं योजना के दौरान क्षमता अभिवृद्धि के विवरण निम्नानुसार हैं:

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 217

प्रदर्श 11.1 12वीं योजना के दौरान प्रकारवार क्षमता अभिवृद्धि

(आंकड़े मेगावाट में)

प्रकार	12वीं योजना के दौरान क्षमता (18वीं ईपीएस मांग+5% एसआर के साथ)
हाइड्रो	10,897
थर्मल कोयला	70,903
लिग्नाइट	67.942
गैस	67,843
	520
	2,540
न्यूक्लियर	5,300
जोड़	87,100
पवन	11,000
सौर	4,000
अन्य नवीकरणीय ऊर्जा स्रोत	3,500
जोड़ (नवीकरणीय ऊर्जा स्रोत)	18,500
12वीं योजना के दौरान समापन	4,000

12वीं योजना के दौरान कोयला की मांग और उपलब्धता

कोयला आधारित पावर स्टेशनों के लिए कोयला की उपलब्धता गंभीर चिंता का विषय है। यद्यपि अन्य पारंपरिक और गैर पारंपरिक स्रोतों से विद्युत उत्पादन अधिकतम करने के लिए जोर दिया जा रहा है, फिर भी सरकार द्वारा यथापरिकल्पित लक्षित जीडीपी को प्राप्त करने के लिए 12वीं और 13वीं पंचवर्षीय योजना के दौरान विद्युत उत्पादन का मुख्य आधार कोयला आधारित उत्पादन ही बने रहने की संभावना है। कोयला आधारित क्षमता अभिवृद्धि कार्यक्रम अन्य स्रोतों अर्थात हाइड्रो, न्यूक्लियर, गैस, लिग्नाइट और नवीकरणीय स्रोतों से विद्युत उत्पादन की उपलब्धता को ध्यान में रखते हुए तैयार किया गया है।

इस उत्पादन आवश्यकता को पूरा करने के उद्देश्य से कोयला आवश्यकता (एसपीसीसी पर 0.72 किलो कैलोरी प्रति किलोग्राम)। कोयला आवश्यकता की गणना 842 मिलियन टन की गई है। 842 मिलियन टन की कुल आवश्यकता की तुलना में आयातित कोयला आधार पर डिजाइन किए गए थर्मल पावर स्टेशनों द्वारा 54 मिलियन टन कोयला आयात किया जाना है। एससीसीएल ने लगभग 35 कोयले की उपलब्धता हेतु पृष्टि की है और लगभग 100 मिलियन टन कोयला कैप्टिव कोयला ब्लॉकों से उपलब्ध होने की संभावना है। इस प्रकार 788 मिलियन टन कोयले की उपलब्धता सीआईएल द्वारा सुनिश्चित करने की आवश्यकता है, जिसकी तुलना में उन्होंने 477 मिलियन टन कोयले की आपूर्ति के लिए प्रतिबद्धता व्यक्त की है। अत: पावर स्टेशनों की आश्यकता को पूरा करने के लिए सीआईएल से अनुरोध किया जाए कि वह अपना उत्पादन बढ़ाने के लिए आपातकालीन योजना तैयार करे। स्वदेशी कोयले की उपलब्धता/कमी के विवरण नीचे दिए गए हैं:

(i) वर्ष 2016-17 के दौरान कोयला की आवश्यकता = 842 मिलियन टन

(ii) निम्नलिखित से कोयला की उपलब्धता:

(क) सीआईएल = 477 मिलियन टन

(ख) एससीसीसीएल = 35 मिलियन टन

(ग) विद्युत कंपनियों को आवंटित कैप्टिव ब्लॉक = 100 मिलियन टन

कोयले की कुल उपलब्धता = 612 मिलियन टन

(घ) आयातित कोयले पर डिजाइन किए गए टीपीएस द्वारा

आयात किया जाने वाला कोयला = 54 मिलियन टन

कमी = 176 मिलियन टन

ऊपर बताए अनुसार कोयले की मांग और उपलब्धता के बीच उपर्युक्त अंतर को दूर करने के उद्देश्य से विद्युत कंपनियों को सीआईएल से आपूर्त किए जाने वाले कोयले की कमी को पूरा करने के लिए लगभग 117 मिलियन टन कोयला का आयात करना होगा। आयात किए जाने वाले कोयले की यह मात्रा आयातित कोयला पर डिजाइन किए गए थर्मल पावर स्टेशनों द्वारा आयात किए जाने वाले संभावित 54 मिलियन टन कोयले से अतिरिक्त होगी। अत: आयात किए जाने वाले कोयले की कुल मात्रा लगभग 171 मिलियन टन है।

11.1.6 पावर स्टेशनों को कोयला उपलब्ध कराने में समस्याएं/बाधाएं

पावर प्लांटों से अधिकतम उत्पादन सुनिश्चित करने के लिए कोयले की समय पर एवं पर्याप्त मात्रा में उपलब्धता अत्यंत महत्वपूर्ण है। इसके अलावा ईंधन के स्रोत जुटाने और इसकी उपलब्धता संगठित करने के लिए यह भी आवश्यक है कि ऐसी अवसंरचना सृजित की जाए तािक ईंधन अपेक्षित स्तर तक आसानी से पहुंच सके अत: परियोजनाओं के पूरा होते ही आवश्यकता के अनुरूप खानों/बंदरगाहों तथा अपेक्षित परिवहन सुविधाओं का विकास बहुत आवश्यक है। कभी कभी खानों और यहां तक कि परिवहन सुविधाओं को पूरा करने में लगने वाला समय थर्मल पावर स्टेशनों की स्थापना में लगने वाले समय से भी अधिक होता है। अत: विद्युत क्षेत्र के लिए यह आवश्यक है कि दीर्घावधि के लिए कोयले की संभावित आवश्यकता की जानकारी कोयला मंत्रालय, रेलवे और पोर्ट प्राधिकारियों को अग्रिम रूप से दी जाए तािक वे थर्मल पावर स्टेशनों की स्थापना के साथ साथ कोयला खदानों परिवहन अवसंरचना के समन्वित विकास हेतु आवश्यक कार्रवाई कर सकें।

11.2 भारत में कोल वाशरीज

भारत में वैश्विक स्तर पर औसतन 50% की तुलना में कुल उत्पादित कोयले का लगभग 20% कोयला धोया जाता है। भारत में लंबे समय से कोिकंग कोल तैयारियां चल रही हैं परंतु अभी हाल में पर्यावरणीय और दक्षता संबंधी पहलुओं को ध्यान में रखते हुए नॉन कोिकंग कोल को धोने की परंपरा शुरू की गई है। सड़क मार्ग से कोयले का लंबी दूरी तक परिवहन करने से आर्थिक लाभ के कारण भारत में कोयले को धोने के लिए एक आदर्श अवसर प्राप्त होता है। यद्यपि कोल वाशरी से कोयले की संपूर्ण लागत में वृद्धि होती है, परंतु परिवहन लागत की बचत, प्रचालन और रख रखाव की लागत के संदर्भ में बचत होती है और दक्षता बनी रहती है।

भारतीय खानों से कोयले का रन ऑफ माइन (आरओएम) कोयले की गुणवत्ता कोल बेड में संभावित भूगर्भीय पैटर्न के कारण गिरती जा रही है। कोयले की गुणवत्ता में इस गिरावट के परिणामस्वरूप उसे धोने की मांग बढ़ती जा रही है और भारतीय कोयला क्षेत्र के लुभावने वाशरी क्षेत्र में प्रवेश के लिए राष्ट्रीय और अंतर्राष्ट्रीय कंपनियों को प्रवेश करने के लिए बेहतर व्यापारिक अवसर प्राप्त हो रहे हैं।

1000 किलोमीटर से अधिक दूरी पर अवस्थित पावर प्लांटों के लिए 34% से कम ऐश वाले कोयले के प्रयोग से संबंधित पर्यावरण और वन मंत्रालय के दिशानिर्देशों ने परिदृश्य को पूरी तरह से बदल दिया है। 11वीं पंचवर्षीय योजना के दौरान क्षमता अभिवृद्धि में से लगभग 27% योजनागत क्षमता 1000 किलोमीटर से अधिक दूरी पर अवस्थित होगी।

चूंकि पर्यावरण ब्रिगेड से दबाव बढ़ रहा है, अत: पर्यावरण और वन मंत्रालय 1000 किलोमीटर से अधिक दूरी पर अवस्थित पावर प्लांटों में 34% धुले हुए कोयले के इस्तेमाल हेतु आवश्यक मानदंडों को घटाकर 500 किलोमीटर की दूरी पर अवस्थित पावर प्लांटों के लिए लागू करने पर विचार कर रहा है। यह कोयला धुलाई क्षेत्र में निजी व्यवसायियों के लिए बहुत सी संभावनाएं पैदा करेगा। वर्तमान में भारत में 1000 मिलियन टन से अधिक कोकिंग कोल को धोने की क्षमता मौजूद है।

सीआईएल कोल वाशरीज के विकास में अग्रणी भूमिका अदा करता रहा है, परंतु जनशक्ति की समस्याओं के साथ साथ प्रचालन लागत अधिक होने के कारण सीआईएल ने कोल वाशरीज के प्रचालन हेतु बीओएम (बिल्ड, ऑपरेट और मेनटेन) आधार पर निजी कंपनियों की सेवाएं लेने का निश्चय किया है। इसमें भारत के विभिन्न भूभागों में 22 कोल वाशरीज के विकास हेतु अंतर्राष्ट्रीय बोली प्रक्रिया के लिए योजना बनाई है। प्रथम चरण (11 कोल वाशरीज) में कोल वाशरीज के विकास हेतु प्रतियोगी बोली प्रक्रिया के तहत 66 कंपनियों ने रुचि दर्शाई है। इसने 4 वर्ष की समयाविध में अपनी मौजूदा क्षमता 120 एमटीपीए को 250 एमटीपीए तक बढ़ाने के लिए कोल वाशरीज के विकास हेतु 5,000 करोड़ रुपए की भारी राशि निर्धारित की है।

घरेलू कोयला उत्पादन के सुधार हेतु रणनीतियां

कोयला खानों की दक्षता और उत्पादकता बढ़ाने के लिए आधुनिक (स्टेट ऑफ दि आर्ट प्रौद्योगिकी का प्रयोग और संबंधित नीतिगत परिवर्तन :

स्टेट ऑफ दि आर्ट अंतर्राष्ट्रीय कोयला खनन प्रौद्योगिकी, उच्च आउटपुट – उच्च दक्षता एचईएमएम, खान सुरक्षा के लिए नई प्रौद्योगिकी आदि को अपनाने की प्रक्रिया को सुकर बनाने के लिए भारत सरकार द्वारा आयात नीतियों को और अधिक उदार बनाए जाने की आवश्यकता है। इसके अलावा कोयला क्षेत्र को भी 'करावकाश और शुल्क' आदि में छूट के साथ "अवसंरचना क्षेत्र का दर्जा दिया जाए। वैकल्पिक रूप से 5 एमटीपीए या उससे अधिक उत्पादन स्तर वाली कोयला खानों को मेगा दर्जा देते हुए कोयला क्षेत्र में भी मेगा परियोजना संकल्पना को लागू किया जाए और कर/शुल्क में छूट का लाभ प्रदान किया जाए।

कोयला खनन उद्योग के लिए आर एण्ड आर नीति

परियोजना प्रभावित लोगों की आजीविका की रक्षा के लिए आर एण्ड आर नीति तैयार की जाए। स्पष्टता और एकरूपता लाने के लिए राष्ट्रीय स्तर पर एक समान आर एण्ड आर नीति तैयार की जानी चाहिए और उसे भारत में कोयला उत्पादन करने वाली सभी कंपनियों द्वारा अपनाया जाना चाहिए। आधुनिक प्रौद्योगिकी के बढ़ रहे प्रयोग और आधुनिकीकरण, कोयला खनन प्रचालन में अधिक स्वचालन और कंप्यूटर नियंत्रण, नई खानों में कम जनशक्ति नियोजन की आवश्यकता से रोजगार के अवसर कम होंगे। अत: कोयला खनन क्षेत्र के लिए राष्ट्रीय आर एण्ड आर नीति तैयार करते समय इस पहलू को ध्यान में रखा जाए और विस्थापित लोगों के जीवकोपार्जन, उन्नति और लाभ के लिए उपयुक्त विकल्पों पर सहमति व्यक्त की जाए। इसके अलावा भूमाफियों द्वारा भूमि की क्षतिपूर्ति लागत अल्पावधि में कम करने जैसी समस्याओं से बचने के उद्देश्य से भूमि की क्षतिपूर्ति राशि को ब्याज सहित जमा राशियों – खान मालिक द्वारा सृजित उपयुक्त निधि में आंशिक रूप से अथवा संपूर्ण राशि जमा रखने, बॉण्ड आदि जारी करने जैसी उपयुक्त व्यवस्थाओं की संभावना तलाश की जाए।

अन्य उद्योगों से अलग कोयला खनन उद्योग के लिए संपूर्ण अधिगृहीत भूमि पर स्थायी फिक्चर्स की स्थापना की आवश्यक नहीं होती, अत: खनन के पश्चात कुछ भूमि का प्रयोग मिट्टी भराई और खाद आदि डालकर उचित विकास करने के पश्चात कृषि कार्य हेतु किया सकता है। कोयला खनन के लिए आर एण्ड आर नीति में एक निर्धारित अविध के लिए स्थानीय लोगों से भूमि को पट्टे पर लेना और खनन का कार्य पूर्ण होने पर उसका उचित विकास कर यथासंभव संबंधित लोगों को भूमि लौटाने जैसे अन्य पहलुओं पर विचार पर विचार किया जाए ताकि उस भूमि पर पुन: कृषि कार्य किया जा सके। निश्चित प्लॉट में खनन कार्य करने वाली एजेंसी/संगठन भूमि का उचित विकास करने और संबंधित लोगों को भूमि लौटाने के लिए जवाबदेह होगा।

कोयला खनन परियोजनाओं के विकास हेतु त्वरित स्वीकृतियां :

कोयला खनन परियोजनाओं के तेजी से क्रियान्वयन के लिए पर्यावरणीय स्वीकृति सहित विभिन्न स्वीकृतियां और अनुमित प्राप्त करने के लिए सरलीकृत प्रक्रियाओं और एकल खिड़की पहल, निवेश संबंधी निर्णय शीघ्र लेने, केन्द्र और राज्य सरकार की एजेंसियों आदि के बीच बेहतर समन्वय के संदर्भ में सरकार की सहायता आवश्यक होगी।

कैप्टिव कोयला खनन

कोयला उत्पादन, आधुनिकीकरण और दक्षता सुधार इस उद्योग में प्रतिस्पर्धा के स्तर पर निर्भर करेगा। कोयला खनन के क्षेत्र में आवश्यक निवेश जुटाने के लिए सार्वजनिक और निजी दोनों क्षेत्रों की कई कंपनियों का प्रवेश आवश्यक है। कोयला क्षेत्र में नई कंपनियों का पदार्पण इस क्षेत्र के लिए संपूर्ण रूप से लाभदायक होगा। इसीलिए इसे आवश्यक समझा जाता है। यह देश के कुल उत्पादन के 40-50% तक कैप्टिव खनन के जिए धीरे धीरे उत्पादन बढ़ाने के लिए भी आवश्यक होगा। कोयला खानों के विकास और प्रचालन हेतु अंतर्राष्ट्रीय स्तर पर प्रतिष्ठित कोयला खनन कंपनियों को भी भारत आने के लिए प्रोत्साहित किया जाए। इससे नवीनतम खनन प्रौद्योगिकी और खान सुरक्षा उपायों को लागू करने में सहायता मिलेगी।

राज्य सरकारों को कोयला के विकास में भागीदार बनाया जाना चाहिए

- खनन प्रचालन से राज्यों को प्रोत्साहित करने की आवश्यकता है।
- ii ब्लॉकों के आवंटन से पहले संबंधित राज्य सरकार से परामर्श किया जाए और उसे इस प्रक्रिया में एक पक्षकार बनाया जाए क्योंकि उनके राज्यों में कोयला खनन का प्रत्यक्ष अथवा अप्रत्यक्ष लाभ विशेष रूप से उस राज्य को ही मिलेगा।
- iii खिनज संपन्न राज्यों में भूमि अधिग्रहण, पर्यावरणीय और वन स्वीकृति से संबंधित प्रस्तावों पर आवश्यक कार्रवाई के लिए एक अलग प्रकोष्ठ (एमओयू के जिए एकल खिड़की पहल) का गठन किया जाए।
- iv कोयला संपन्न राज्यों को रॉयल्टी के अलावा समयबद्ध ढंग से खनन शुरू करने में उनके सह-प्रचालन के लिए उन्हें प्रोत्साहित किया जाए।

परियोजना कार्यान्वयन की प्रगति की निगरानी के लिए विशेष कार्यबल

कोयला खनन परियोजनाओं की प्रगित की आविधिक रूप से समीक्षा और निगरानी के लिए एक विशेष कार्यबल गठित किया जाए। यह समय पर कोयला उत्पादन सुनिश्चित करने के लिए आवश्यक स्वीकृतियां/अनुमोदन प्राप्त करने और निर्धारित समयाविध में परियोजना को पूर्ण करने में सहायता करेगा। यह निगरानी और स्थिति के रिपोर्टिंग पारदर्शी ढंग से इलेक्ट्रॉनिक रूप में की जानी चाहिए।

कोयला खानों की पर्याप्त संभावनाएं और निकाले जाने वाले आरक्षित भंडार के अनुमानों की विश्वसनीयता सुनिश्चित करना

यह व्यापक कोयला संसाधन मूल्यांकन कार्रवाई पूर्ण करने के लिए क्षेत्रीय सर्वेक्षण और ड्रिलिंग की गति बढ़ाने के लिए हमारे प्रयासों को तेज करने के उद्देश्य से आवश्यक है। अत: कोयला ब्लाकों का पता लगाने और [भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 221

जीआर तैयार करने के लिए अधिक संख्या में विशेषज्ञ एजेंसियों का पैनल तैयार करने की आवश्यकता है ताकि कोयला ब्लाकों से समयबद्ध ढंग से कोयले का उत्पादन शुरू किया जा सके।

निजी क्षेत्र द्वारा वाणिज्यिक कोयला खनन

कोयला खनन के क्षेत्र में पर्याप्त निवेश करने, कोयला के आरक्षित भंडारों का संरक्षण, खान सुरक्षा और पर्यावरण संरक्षण सुनिश्चित करने और स्थानीय श्रमिकों के लिए बेहतर जीवन स्तर सुनिश्चित करने की आवश्यकता 1971 और 1973 के दौरान कोयला खानों के राष्ट्रीयकरण का आधारभूत कारण थी।

इस संदर्भ में कोयला खानों (राष्ट्रीयकरण) संशोधन विधेयक 2000 कोयला क्षेत्र में उदारीकरण को बढ़ावा देने की दिशा में उठाया गया एक बड़ा कदम है। इससे कोयला खनन क्षेत्र में निजी कंपनियों की व्यापक भागीदारी के जिरए देश में कोयला उत्पादन के विस्तार की आवश्यकता भी पूरी होगी। लंबे समय से लंबित प्रस्तावित संशोधन विधेयक को अंतिम रूप देने के लिए शीघ्र कार्रवाई की जाए।

कोयला मूल्य की पूलिंग:

घरेलू और आयातित कोयले के मूल्य की पूलिंग विषयक संकल्पना इस तथ्य के आलोक में आवश्यक है कि मौजूदा के साथ साथ घरेलू कोयले पर आधारित प्रस्तावित पावर स्टेशनों, के लिए कोयले की आवश्यकता के अनुरूप घरेलू कोयले का उत्पादन नहीं बढ़ पा रहा है। ज्यादातर नई विद्युत कंपनियों को घरेलू कोयले की आश्यकता और उपलब्धता के बीच अंतर को दूर करने के लिए कोयला आयात करने की आवश्यकता होगी।

थर्मल पावर प्लांटों के लिए कोयले का आयात मुख्य रूप से आस्ट्रेलिया और इंडोनेशिया जैसे देशों से किया जा रहा है, जिनके कोयले का कैलोरिफिक मूल्य बहुत अधिक अर्थात 6000 से 6500 किलो सेल्सियस/किलोग्राम है और उसमें ऐश की मात्रा बहुत कम है। कोयले के आयात के लिए प्रमुख बंदरगाह मुंद्रा, विजाग, गंगावरम, एन्नोर, तूतीकोरीन और पिपावव आदि हैं। इन बंदरगाहों से पावर प्लांट स्थल, जो तटवर्ती क्षेत्रों में नहीं हैं अथवा उन राज्यों में हैं जहां ये बंदरगाह अवस्थित नहीं हैं, तक परिवहन की लागत 15,00 रुपए प्रति टन हो सकती है।

देश में विद्युत कंपनियों के लिए कोयले का परिवहन मुख्य रूप से भारतीय रेलवे द्वारा किया जा रहा है और उसके ज्यादातर रेल मार्गों पर पहले से ही यातायात का भारी दबाव है। इन बंदगाहों से मध्य भारत में अवस्थित विद्युत कंपनियों तक कोयले के परिवहन और तटवर्ती अथवा आसपास के क्षेत्रों में अवस्थित विद्युत कंपनियों से घरेलू कोयला खानों तक रेल आवागमन की सुविधा मौजूद है। इसके कारण कोयला रैकों का दोहरा आवागमन होता है और माल भाड़े पर अनावश्यक व्यय बढ़ रहा है तथा भारतीय रेलवे के नेटवर्क पर अनावश्यक ओवरलोडिंग और संभारतंत्र से जुड़ी अन्य समस्याएं पैदा होती हैं। इतनी लंबी दूरी से कोयले के परिवहन में पारगमन हानि भी बढ़ जाती है जो उत्पादन यूनिटों की बॉटम लाइन में प्रदर्शित होती है। चूंकि ईंधन की कीमत सामान्यत: टैरिफ में जोड़ दी जाती है अत: अधिक माल भाड़ा प्रभार से निश्चित रूप से टैरिफ बढ़ जाएगा और उपभोक्ताओं को बढ़ी हुई लागत पर विद्युत आपूर्ति की जाएगी। इस प्रकार इस स्थिति को यथासंभव औचित्यपूर्ण बनाने की आवश्यकता है।

इस समस्या का समाधान यह है कि विद्युत कंपनियों को ऐसे कोयला ब्लॉकों से कोयला आवंटन किया जाए जो उनके आसपास अवस्थित हैं। इससे परिवहन की लागत को कम किया जा सकता है। तटवर्ती क्षेत्रों में अवस्थित विद्युत कंपनियों से कहा जाए कि वे डिजाइन सीमाओं के अध्यधीन बंदरगाह के समीप होने के नाते अधिकांशत: आयातित कोयले का इस्तेमाल करें। कोल इंडिया लि. की ज्यादातर खानें मध्य भारत में अवस्थित हैं और अधिकांश पावर स्टेशनों से कोयला खानों तक परिवहन के लिए लगभग उतनी ही दूरी तय करनी पड़ती है। अत: ऐसी विद्युत कंपनियां जो बंदरगाहों से अधिक दूरी पर स्थित हैं, को कोल इंडिया लिमिटेड की खानों से ही कोयला आवंटित किया जाए और उनसे कहा जाए कि आयातित कोयले का प्रयोग केवल कमी के मामले में ही किया जाए तािक कोयला रैकों के अनावश्यक दोहरे संचलन से बचा जा सके।

यह एक स्वीकार्य तथ्य है कि आयातित कोयले का मूल्य उच्चतर जीसीबी की गणना के बावजूद भी घरेलू कोयले की तुलना में अधिक है, वर्तमान में यह ऊष्मा मूल्य आधार पर घरेलू कोयले की तुलना में कम से कम ढाई गुना अधिक है। यह तटवर्ती क्षेत्रों में अवस्थित विद्युत कंपनियों के लिए बाधा साबित हो सकती है। यदि उनसे अधिक मात्रा में आयातित कोयले का इस्तेमाल करने के लिए कहा जाता है तो उनकी उत्पादन लागत बढ़ जाएगी। अत: एक ऐसा मामला भी सामने आता है कि घरेलू कोयले की मांग और उपलब्धता के बीच अंतर को दूर करने के लिए कोयला आयात किया जाए और आयात पर होने वाले व्यय को सभी विद्युत कंपनियों द्वारा बराबर रूप में वहन किया जाए। तथापि यह उल्लेख किया जाए कि लागत पूलिंग की संकल्पना केवल घरेलू कोयले के लिए डिजाइन किए गए पावर स्टेशनों के लिए ही लागू होगी अथवा अन्य सभी के लिए भी। इस पूलिंग व्यवस्था में आयातित कोयले पर आधारित पावर स्टेशन और ऐसे पावर स्टेशन जिनके लिए समर्पित कोयला ब्लाक आवंटित किए गए हैं, को शामिल करने पर विचार नहीं किया जाएगा।

निम्नलिखित श्रेणियों के पावर प्लांटों के आयातित कोयले के सदुपयोग (मौजूदा स्टेशनों के लिए आयातित कोयले के साथ 15% मिश्रण और नए स्टेशनों के लिए 30% मिश्रण की शर्त के अध्यधीन) हेतु लागत पूलिंग संकल्पना के अंतर्गत उच्च प्राथमिकता दी जाए:

- तटवर्ती विद्युत स्टेशन
- ऐसे स्टेशन जहां स्वदेशी कोयले की उपलब्धता एक बड़ी बाधा है।
- ऐसे स्टेशन जो पिट हेड से बहुत अधिक दूर अवस्थित हैं।
- ऐसे स्टेशन जिन्हें ऐसी मात्रा से संबंधित पर्यावरण और वन मंत्रालय के अनुदेशों का अनुपालन सुनिश्चित करना अनिवार्य है।

यथासंभव पावर स्टेशनों में मौजूदा कोल हैंडलिंग सुविधाओं के लिए उपर्युक्त पर प्राथमिकता के आधार पर विचार किया जाए।

पूलिंग मूल्य का मूल्यांकन कोयले के ऊष्मा मूल्य (रु./िकलो कैलोरी) के आधार पर किया जाए। सीआईएल आयातित कोयले के लिए तथा विभिन्न विद्युत कंपनियों से पूंलिंग मूल्य की वसूली के लिए जिम्मेदार होगा। यह इस तथ्य के आलोक में उचित है कि नई कोयला वितरण नीति में यह उल्लेख किया गया है कि सीआईएल विद्युत कंपनियों को कोयले की सामान्य आवश्यकता का 100% उपलब्ध कराने के लिए जिम्मेदार है और आवश्यक सीमा तक कोयले का आयात बहाल किया जाए।

कोयले की ई-नीलामी

एनसीडीपी के अनुसार सीआईएल द्वारा कुल उत्पादन के कम से कम 10% भाग के लिए ई-नीलामी की व्यवस्था की जाए। यह सुनिश्चित किया जाए कि 10% मात्रा का प्रस्ताव देने से पहले एफएसए/एमओयू की प्रतिबद्धताओं को पूरा किया जाए। ऐसी खदानों जहां से कोयले के लिए ई-नीलामी की जानी है, से रेल संपर्क के मुद्दे को तत्काल उठाया जाना चाहिए।

कोयला नियामक

कोयले के अपस्ट्रीम आवंटन और उपलब्ध कोयला ब्लॉकों का पता लगाने, कोल बेड मीथेन, कोल-टू-लिक्विड और स्वस्थाने कोल गैसीफिकेशन के विनियमन हेतु एक स्वतंत्र नियामक निकाय गठित करने के लिए लंबे समय से आवश्यकता महसूस की जा रही है। एक अंतरिम उपाय के रूप में प्रस्तावित नियामक निकाय कोयला मूल्य संशोधन, अनुमोदित कर सकता है, वाणिज्यिक रूप से चालित दीर्घकालीन एफएसए के अंतर्गत विद्युत क्षेत्र को कोयले की आपूर्ति सुनिश्चित कर सकता है। दीर्घकालीन ईंधन आपूर्ति करारों के अंतर्गत कोयला मूल्यों के पुनर्निर्धारण हेतु सूत्र/सूचकांकों के विकास में सहयोग कर सकता है, प्रस्तावित ई-नीलामी की कार्रवाई की

निगरानी कर सकता है और यह सुनिश्चित कर सकता है कि ई-नीलमी के जिए निर्धारित किए जाने वाले मूल्यों में किसी तरह की त्रुटि न हो, व्यापारिक लाभ (मार्जिन) का विनियमन, मांग और आपूर्ति के बीच अंतर को दूर करने के लिए दीर्घकालीन संविदाओं के अंतर्गत आयातित कोयले की पर्याप्त मात्रा सुनिश्चित करने के लिए तंत्र विकसित करना, इस प्रकार यह सुनिश्चित करना कि ई-नीलामी और उसके पश्चात् मूल्य निर्धारण आपूर्ति की दृष्टि से बाधक बाजार में नहीं किया गया है। अंतिम रूप से यह नियामक प्रतिस्पर्धी कोयला बाजार के लिए अनुकूल वातावरण निर्मित करेगा।

प्रतियोगी बाजार विकसित हो जाने पर कीमत निर्धारण में नियामक की भूमिका यह सुनिश्चित करनी होगी कि कोयले का मुक्त और पारदर्शी विवरण सुनिश्चित किया जाए। नियामक को यह सुनिश्चित करना चाहिए कि खानों की आयोजना, डिजाइन और विकास वैज्ञानिक ढंग से किया जाए जिसमें कोयला संरक्षण को अपेक्षित महत्व देते हुए भूगर्भीय ब्लॉकों से कोयले की अधिकतम निकासी सुनिश्चित की जाए।

नियामक को प्रचालन के मानदंडों का मानकीकरण करना चाहिए, बेंचमार्क स्थापित करना चाहिए और यह सुनिश्चित करना चाहिए कि कोयला कंपनियां अपने दक्षता स्तरों को अंतर्राष्ट्रीय मानकों के अनुरूप बनाने के लिए प्रयास करें।

प्रस्तावित कोयला नियामक को कोयला खनन के निम्नलिखित पहलू भी सौंपे जाने चाहिए:

- कोयला संसाधन प्रबंधन।
- कोयला खानों में संरक्षा, स्वास्थ्य और रोजगार,
- मूल्य, कर, रॉयल्टी, मूल्यवर्धित कर, संपत्ति कर और कामगारों का वेतन,
- पर्यावरण प्रबंधन
- नीतिगत-कानूनी, जनसंपर्क, सांख्यिकीय और विवाद समाधान
- एलओए जारी करने के लिए सीआईएल को सिफारिशें
- खानों को बंद करने की योजनाओं सहित खान योजनाओं का अनुमोदन
- रेल/सड़क परिवहन को न्यूनतम करने के लिए वर्तमान संपर्कों का इष्टतमीकरण
- कैप्टिव कोयला ब्लाकों की नीलामी पर पर्यवेक्षक की भूमिका
- विवाद समाधान के लिए प्राथमिक फोरम:
- संगठनों के बीच विवाद समाधान;
- खान बंद करने आदि के संबंध में कोयला मंत्रालय/पर्यावरण एवं वन मंत्रालय द्वारा दिए गए आदेशों के कारण व्यथित संगठनों के विवाद समाधान आदि।

11.3 लिग्नाइट

ऐसा अनुमान है कि देश में लिग्नाइट का आरक्षित भंडार 40.9 बिलियन टन है, जिसमें अधिकांश तिमलनाडु राज्य में पाया जाता है। लगभग 82% लिग्नाइट के आरिक्षत भंडार तिमलनाडु और पाण्डिचेरी में अवस्थित हैं। वर्तमान में कुल आरिक्षत भंडार के कुछ प्रतिशत भाग का ही दोहन किया गया है। लिग्नाइट के आरिक्षत भंडारों के दोहन की काफी संभावनाएं बनी हुई हैं और तिमलनाडु, राजस्थान, गुजरात जैसे राज्यों के थर्मल पावर स्टेशनों में लिग्नाइट का प्रयोग लागत की दृष्टि से मितव्ययी हो सकता है क्योंकि इन क्षेत्रों में कोयले के परिवहन की अपनी सीमाएं हैं। लिग्नाइट संसाधनों का राज्यवार वितरण, लिग्नाइट की मांग और मैसर्स लिग्नाइट का पारिशन लिमिटेड (एनसीएल) द्वारा तैयार की गई उत्पादन योजना तथा राज्य विद्युत बोर्ड द्वारा लिग्नाइट की मांग और उत्पादन योजना तालिका 11.2 से 13.2 में दर्शायी गई है:

तालिका 11.1 राज्यवार लिग्नाइट के आरक्षित भंडार

राज्य	जोड़ [मिलियन टन]
तमिलनाडु	33309.53
राजस्थान	4835.29
गुजरात	2722.05
जम्मू एवं कश्मीर	27.55
अन्य (केरल, पश्चिम बंगाल)	11.44
जो ड़	40905.86

तालिका 11.2 मैसर्स निवेली लिग्नाइट कॉर्पोरेशन लिमिटेड द्वारा लिग्नाइट की मांग और उत्पादन योजना

मद	2012-13	2013-14	2014-15	2015-16	2016-17	12वीं योजना
मांग (मिलियन टन)	25.60	26.12	25.91	25.37	27.26	130.27
उत्पादन (मिलियन टन)	26.01	26.01	26.01	26.01	27.29	131.33
मांग उत्पादन अंतराल (मिलियन टन)	0.41	-0.11	0.10	0.64	0.02	1.05

12वीं पंचवर्षीय योजना अवधि के दौरान अन्य राज्य विद्युत बोर्डों और निजी कंपनियों (एनएलसी से इतर) द्वारा लिग्नाइट की संभावित मांग और उत्पादन योजना के वर्षवार विवरण तालिका 11.3 में दर्शाए गए हैं :

तालिका 11.3 राज्य विद्युत बोर्डों द्वारा लिग्नाइट की मांग और उत्पादन योजना

The state of the s						
मद	2012-13	2013-14	2014-15	2015-16	2016-17	12वीं योजना
राजस्थान राज्य विद्युत उ	उत्पादन निगम	लिमिटेड				
मांग (मिलियन टन)	8.4	8.4	10.5	10.7	10.7	48.7
उत्पादन (मिलियन टन)	5.4	6.1	10.6	13.1	13.1	48.3
मांग – उत्पादन	-3	-2.3	0.1	2.4	2.4	-0.4
अंतराल (मिलियन टन)						
गुजरात इंडस्ट्रीज पावर व	कंपनी लिमिटे ड	5				
मांग (मिलियन टन)	3.6	3.6	3.6	8.1	8.1	27.0
उत्पादन (मिलियन टन)	3.6	4.2	5	8.4	8.4	29.6
मांग – उत्पादन	0	0.6	1.4	0.3	0.3	1.4
अंतराल (मिलियन टन)						

• देश में लिग्नाइट के बड़े आरक्षित भंडार को ध्यान में रखते हुए लिग्नाइट उत्पादन के विस्तार हेतु तत्काल कदम उठाए जाने की आवश्यकता है। लिग्नाइट संसाधनों के दक्ष सदपुयोग के लिए प्रौद्योगिकीय संबंधी मुद्दों का समाधान किया जाना चाहिए।

11.4 प्राकृतिक गैस

(i) केवल एक कार्बन और चार हाइड्रोजन एटम पर प्रति मॉलिक्यूल की दर से प्राकृतिक गैस में सबसे कम कार्बन हाइड्रोजन अनुपात होता है, अत: यह पूरी तरह से जल जाती है और इसीलिए यह सभी अपशिष्ट ईंधनों में सबसे स्वच्छ ईंधन है। प्राकृतिक गैस आधुनिक औद्योगिक समाज में ईंधन की ज्यादातर आवश्यकताओं को पूरा करती है; दक्ष होने के साथ-साथ यह प्रदूषण रहित और तुलनात्मक रूप से किफायती भी है। तेल के मूल्य और आपूर्ति दोनों में आविधक अनिश्चितता और उतार चढ़ाव भी प्राकृतिक गैस को विश्व के सभी देशों में ऊर्जा बास्केट में प्राथमिक ईंधन के रूप में उभरकर सामने आने में सहायक हैं। प्राकृतिक गैस की मांग पिछले दो दशकों में बहुत तेजी से बढ़ी है।

भारत में प्राकृतिक गैस क्षेत्र का महत्व विशेष रूप से पिछले दो दशकों में बढ़ा है और इसे 21वीं सदी के ईंधन के रूप में माना जा रहा है। विद्युत क्षेत्र में प्राकृतिक गैस की मांग बढ़ी है, परंतु मांग के अनुरूप इसकी आपूर्ति की गित धीमी है।

(ii) गैस आधारित पावर प्लांटों को गैस की आपूर्ति :

देश में विद्युत क्षेत्र सहित गैस की बढ़ रही मांग के अनुरूप गैस का उत्पादन और आपूर्ति गति नहीं पकड़ पा रही है। पिछले कुछ वर्षों के दौरान गैस आधारित पावर प्लांटों को आपूर्त की गई गैस के विवरण नीचे दिए गए हैं :

तालिका 11.4

क्र. सं.	वर्ष	वर्ष के अंत में क्षमता (मेगावाट)	आवश्यक गैस (एमएमएससीएमडी)	गैस की औसत आपूर्ति (एमएमएससीएमडी)	कमी (एमएमएससीएमडी))
(1)	(2)	(3)	(4)	(5)	(6)=(4)-(5)
1	2000-01	9028.70	44.54	24.40	20.14
2	2001-02	9432.90	46.31	24.33	21.98
3	2002-03	9949.00	48.26	25.12	23.14
4	2003-04	10,154.90	49.25	25.62	23.63
5	2004-05	10,224.90	49.73	30.70	19.03
6	2005-06	10,919.62	53.38	35.37	18.01
7	2006-07	12,444.42	61.18	35.10	26.08
8	2007-08	13,408.92	65.67	38.14	27.53
9	2008-09	13,599.62	66.61	37.45	29.16
10	2009-10	15,769.27	78.09	55.45	22.64
11	2010-11	16,639.77	81.42	59.31	22.11
12	2011-12	16,926.27	81.78	55.98	25.80

केजी बेसिन (डी-6) से गैस का उत्पादन अप्रैल, 2009 से शुरू किया गया है। अब तक ईजीओएम ने केजी-डी-6 बेसिन से लगभग 80 एमएमएससीएमडी गैस के अनुमानित उत्पादन के आधार पर मौजूदा पावर प्लांटों को गैस आवंटित की है। वर्तमान में केजीजी-6 बेसिन के उत्पादन में पिछले वर्ष लगभग 60 एमएमएससीएमडी उत्पादन की तुलना में लगभग 24 एमएमएससीएमडी की कमी आई है। अन्य क्षेत्रों से भी गैस का उत्पादन इन क्षेत्रों का स्तर घटने के कारण दिन प्रतिदिन घटता जा रहा है। घरेलू स्तर पर गैस की कम उपलब्धता को ध्यान में रखते हुए देश में मौजूदा पावर प्लांटों को कम मात्रा में गैस की आपूर्ति की जा रही है। इसके परिणामस्वरूप इन पावर प्लांटों का इष्टतम सदुपयोग नहीं हो पा रहा है।

(iii) गैस की कमी के कारण उत्पादन हानि

गैस कम मात्रा में उपलब्ध हो पा रही है। इसके परिणामस्वरूप विद्युत उत्पादन की हानि हो रही है। यदि गैस आधारित पावर स्टेशनों, जिनमें वैकल्पिक ईंधन जैसे नेफ्था, एचएसडी के इस्तेमाल का विकल्प उपलब्ध है, वहां ऐसे ईंधनों का प्रयोग कर उत्पादन सुविधा का विस्तार किया गया। तरल ईंधनों की मौजूदा उच्च लागत के कारण उत्पादन लागत भी बढ़ जाती है, इन ईंधनों का प्रयोग करते हुए उत्पादन हालांकि लाभार्थियों द्वारा आवश्यकता / स्वकृति पर आधारित था। सीईए को दी गई सूचना के अनुसार गैस की उपलब्धता में कमी के कारण और 90% पीएलएफ पर पावर प्लांटों के संभावित प्रचालन के आधार पर उत्पादन की हानि के विवरण निम्नानुसार हैं:

क्र. सं.	वर्ष	वर्ष के दौरान उत्पादन	हानि (बिलियन यूनिट)
		गैस आधारित पावर स्टेशनों द्वारा सीईए को दी गई सूचना के अनुसार	90% पीएलएफ पर गैस पावर प्लांटों के संभावित प्रचालन के आधार पर
1	2004-05	7.03	23.71
2	2005-06	7.69	23.88
3	2006-07	8.06	26.33
4	2007-08	9.34	31.17
5	2008-09	11.99	33.71
6	2009-10	3.24	25.02
7	2010-11	6.39	28.27
8	2011-12	10.01	32.97

तालिका 11.5

(iv) कमी अंतराल को पूरा करने के लिए सरकार द्वारा उठाए गए कदम

भारत सरकार ने गैस आपूर्ति के विस्तार और घरेलू बाजार के लिए मांग और आपूर्ति के बीच अंतर को दूर करने के लिए एक बहुआयामी रणनीति अपनाई है। इसमें निम्नलिखित तथ्य शामिल हैं :-

- एमओपी एण्ड एनजी गैस क्षेत्रों/कुओं से प्राकृतिक गैस का उत्पादन बढ़ाने के लिए आवश्यक कदम उठा रहा है।
- एमओपी एण्ड एनजी न्यू एक्सप्लोरेशन लाइसेंसिंग पॉलिसी (एनईएलपी) के अंतर्गत देश के विभिन्न बेसिनों में एक्सप्लोरेशन और प्रोडक्शन (ई एण्ड पी) से जुड़े कार्यकलापों के लिए गैस ब्लॉकों के अधिनिर्णय द्वारा घरेलू स्रोतों से गैस की उपलब्धता बढ़ाने के लिए आवश्यक कदम उठा रहा है।

- एमओपी एण्ड जी तरल प्राकृतिक गैस (एल एण्ड जी) के रूप में गैस का आयात प्रोत्साहित कर रहा है और अंतर्राष्ट्रीय पाइप लाइन परियोजनाओं के जरिए गैस के आयात हेतु भी प्रयास कर रहा है।
- कोयला संपन्न क्षेत्रों से प्राकृतिक गैस के नए स्रोतों की संभावना तलाशने और उत्पादन शुरू करने के उद्देश्य से सरकार ने कोल बेड मीथेन (सीबीएम) नीति तैयार की है। इस नीति के अंतर्गत देश में सीबीएम की संभावनाएं तलाशने और उत्पादन के लिए आकर्षक राजकोषीय और संविदागत ढांचे का प्रावधान किया गया है।
- सरकार इन अग्रणी प्रौद्योगिकियों के विकास में निजी उद्यमियों द्वारा भूमिगत कोयला गैसीकरण (यूजीसीजी) और कोयला तरलीकरण तथा निवेश को प्रोत्साहित कर रही है। अंतिम प्रयोग के रूप में कोयला के गैसीकरण और तरलीकरण के विनिर्देशों वाली अधिसूचना 12 जुलाई, 2007 को भारत के राजपत्र में प्रकाशित की गई है।
- हाइड्रेड संसाधनों और उनके यथा व्यवहार्य वाणिज्यिक दोहन के मूल्यांकन हेतु प्राकृतिक गैस हाइड्रेड कार्यक्रम (एनजीएचपी) का कार्यान्वयन।
- भविष्य में सभी घरेलू गैसों के लिए सरकार की गैस सदुपयोग नीति को अंतिम रूप देते समय विद्युत क्षेत्र को प्राथमिकता देने के लिए सरकार से बातचीत करने के लिए भी प्रयास किए जा रहे हैं।
- केजी बेसिन (डी-6) से आरआईएल गैस के लिए आवंटन करते समय विद्युत क्षेत्र को प्राथमिकता दी गई है।
- योजना आयोग ने ''प्राकृतिक गैस मूल्यों की पूलिंग'' के लिए नीति पर सौमित्र चौधरी की अध्यक्षता में एक अंतरमंत्रालयी समिति गठित की थी। समिति ने अपनी रिपोर्ट अगस्त, 2011 में प्रस्तुत की है। समिति ने विद्युत क्षेत्र में आरएलएनजी की हिस्सेदारी बढ़ाने पर जोर दिया है।

(v) 12वीं पंचवर्षीय योजना के लिए विद्युत क्षेत्र की गैस आवश्यकता।

12वीं पंचवर्षीय योजना के दौरान विद्युत की बढ़ती हुई मांग को पूरा करने के लिए विद्युत क्षेत्र में लगभग 88,000 मेगावाट की क्षमता अभिवृद्धि आवश्यक होगी। घरेलू गैस की अनिश्चित उपलब्धता के कारण 12वीं पंचवर्षीय योजना के लिए केवल 2540 मेगावाट गैस आधारित क्षमता पर विचार किया गया है अर्थात् इसमें केवल उन परियोजनाओं को शामिल किया गया है, जिनके लिए स्थानीय स्रोतों से गैस की उपलब्धता सुनिश्चित है अथवा 11वीं योजना के दौरान पूरी न हो पाई परियोजनाओं को इसमें शामिल किया गया है। हालांकि कोयला आधारित पावर प्लांटों की तुलना में गैस आधारित पावर प्लांटों के बहुत से लाभों को ध्यान में रखते हुए और कार्बन उत्सर्जन को कम करने के उद्देश्य से गैस की उपलब्धता के आधार पर लगभग 25000 मेगावाट गैस आधारित क्षमता अभिवृद्धि के लिए योजना तैयार करने की आवश्यकता है। इसमें से अधिकांश क्षमता अभिवृद्धि आगामी 3 वर्षों में ब्राउन फील्ड साइटों अथवा ग्रीन फील्ड साइटों में की गई जहां भूमि से पहले से उपलब्ध है। वर्तमान में लगभग 13,000 मेगावाट गैस आधारित क्षमता निर्माणाधीन है और यदि गैस उपलब्ध कराई जाती है तो 12वीं योजना के आरंभिक वर्षों में यह क्षमता स्थापित की जा सकती है।

वर्ष 2012-13 के अंत तक काफी बड़ी मात्रा में कोयला आधारित क्षमता प्रचालित की जाएगी। देश की आधारभूत लोड आवश्यकता को न्यूक्लियर, पिटहेड कोयला आधारित उत्पादन और आंशिक रूप से गैर-पिटहेड कोयला आधारित उत्पादन और गैस आधारित उत्पादन से पूरा किया जाएगा। मध्यम और पीक लोड आवश्यकता को हाइड्रो, नॉन-पिटहेड कोयला आधारित उत्पादन और गैस आधारित उत्पादन से पूरा करने की आवश्यकता है। पवन, सौर और लघु जल विद्युत परियोजनाओं को "अनिवार्य रूप से जारी रखने वाले" उत्पादन के रूप में माना जाएगा और थर्मल उत्पादन को कम करके इसे शामिल किया जाएगा। इस प्रकार 12वीं योजना के दौरान और उसके बाद गैस आधारित पीकिंग पावर प्लांटों को बढ़ावा देने की आवश्यकता है। 25,000 मेगावाट की अतिरिक्त गैस आधारित क्षमता निम्नानुसार की गई है:

तालिका 11.6						
12वीं	योजना	के	दौरान	गैस	आवश्यकत	Π

विवरण	गैस क्षमता	70% पीएलएफ पर गैस आवश्यकता
	मेगावाट में	(एमएमएससीएमडी)
सीसीएचपी क्षमता	2,000	8.0
ब्राउन फील्ड साइटों अथवा ग्रीन फील्ड साइटों में गैस आधारित क्षमता	21,000	78.0
बड़े शहरों के आसपास अवस्थित पीकिंग गैस आधारित क्षमता	2,000	4.0*
जोड़	25,000	90.0

^{*} पीक लोड और आकस्मिक स्थितियों के लिए लगभग 5-6 घंटे प्रतिदिन के लिए निर्धारित प्रचालन

गैस की कमी को दूर करने के लिए घरेलू गैस की आयातित आरएलएनजी के साथ पूलिंग एक बेहतर समाधान हो सकता है। देश में मौजूदा/प्रस्तावित एलएनजी टर्मिनलों की क्षमता के आधार पर यह महसूस किया जाता है कि वर्ष 2012-13 के अंत तक विद्युत क्षेत्र के लिए अतिरिक्त 40-50 एमएमएससीएमडी गैस उपलब्ध कराई जा सकती है जो देश में लगभग 10,000 से 12,000 मेगावाट अतिरिक्त गैस आधारित पावर प्लांटों के लिए सहायक हो सकती है। एलएनजी अपेक्षाकृत मंहगा ईंधन होने के नाते इसे घरेलू गैस के साथ पूल किया जा सकता है और एक नीतिगत दिशानिर्देश के रूप में प्राकृतिक गैस का साझा पूलिंग मूल्य क्रियान्वित किया जाए। यद्यपि इससे उत्पादन की लागत बढ़ सकती है फिर भी इससे देश में गैस आधारित उत्पादन की वृद्धि को नितांत आवश्यक बल मिलेगा। गैस आधारित उत्पादन के हरित विद्युत होने के कारण इसके अंतर्निहित लाभों को ध्यान में रखते हुए नियामक आयोगों द्वारा गैस आधारित विद्युत के एक निर्धारित प्रतिशत की खरीद अनिवार्य की जाए, ताकि गैस आधारित विद्युत का अपेक्षाकृत अधिक टैरिफ निर्धारित किया जा सके और उस पर गैस के प्रेषण में बढ़ोत्तरी की जा सके।

(vi) 12वीं योजना के अंतिम वर्ष (2016-17) तक गैस की कुल आवश्यकता

11वीं योजना के अंत (31.3.2012) तक देश में कुल गैस आधारित स्थापित क्षमता 18,381 मेगावाट थी। 90% पीएलएफ पर प्रति 1000 वाट के लिए 4.8 एमएमएससीएमडी की सामान्य आवश्यकता के आधार पर इन परियोजनाओं के लिए गैस आवश्यकता की गणना 88 एमएमएससीएमडी के रूप में की गई है। 12वीं योजना के दौरान लगभग 25,000 मेगावाट की नई गैस आधारित क्षमता को बढ़ावा देने के लिए लगभग 90 एमएमएससीएमडी गैस आवश्यकता होगी। 12वीं योजना के अंतिम वर्ष के दौरान गैस आवश्यकता के विवरण नीचे तालिका में संक्षेप में दिए गए हैं:

तालिका 11.7

12 वीं योजना के अंतिम वर्ष (2016-17) के लिए गैस आवश्यकता*				
11वीं योजना के अंत तक गैस आवश्यकता (31.3.2012 की स्थिति के 88 एमएमएससीएमडी अनुसार 18,381 मेगावाट की मौजूदा क्षमता के अनुरूप)				
12वीं योजना की परियोजनाओं की आवश्यकता (25,000 मेगावाट क्षमता के लिए)	90 एमएमएससीएमडी			
12वीं योजना के अंतिम वर्ष (2016-17 तक गैस की कुल आवश्यकता)	178 एमएमएससीएमडी			

11.5 नियुक्लियर विकास

घरेलू स्तर पर यूरेनियम की कम उपलब्धता अथवा न्यूक्लियर सप्लायर ग्रुप द्वारा लगाए गए प्रतिबंधों के कारण यूरेनियम ईंधन की अंतर्राष्ट्रीय स्तर पर आपूर्ति बंद हो जाने के कारण पिछले कुछ समय से परमाणु ऊर्जा क्षमता सीमित हो गई है। अब ये प्रतिबंध हटा लिए गए हैं और हम उम्मीद कर सकते हैं कि देश में न्यूक्लियर उत्पादन क्षमता का विकास तेजी से होगा। परमाणु ऊर्जा विभाग (डीएई) ने घरेलू विनिर्माण क्षमता के आधार पर घरेलू योजना में 53,00 मेगावाट क्षमता अभिवृद्धि और 13वीं योजना के दौरान 18,000 मेगावाट क्षमता अभिवृद्धि की परिकल्पना की गई है। आयातित यूरेनियम की उपलब्धता के बावजूद भी हमें यूरेनियम खानों के घरेलू विकास को प्राथमिकता देनी चाहिए। इससे इस क्षेत्र का विकास तेजी से होगा।

भारतीय परमाणु ऊर्जा रणनीति तीन चरण वाले विकास कार्यक्रम पर आधारित है, जिसमें प्रथम चरण में पारंपरिक न्यूक्लियर रिएक्टर, द्वितीय चरण में फास्ट ब्रीडर रिएक्टर और तृतीय चरण में थोरियम आधारित रिएक्टरों का विकास शामिल है। तीसरे चरण तक सफलतापूर्वक पहुंचने से हम 2050 के पश्चात ऊर्जा की दृष्टि से अपेक्षाकृत अधिक आत्मिनिभर बन जाएंगे और भारत के व्यापक थोरियम संसाधनों का अधिकतम दोहन किया जा सकेगा। यदि हम घरेलू यूरेनियम संसाधनों पर निर्भर रहते हैं तो पहले चरण में पीएचडब्ल्यूआर से प्लांटों की क्षमता 10,000 एमडब्ल्यूई से अधिक नहीं हो सकती है। 10,000 एमडब्ल्यूई की सीमा से फास्ट ब्रीडर रिएक्टर प्रोग्राम की गति और माप सीमित होगी और इस प्रकार प्लूटोनियम का उत्पादन प्रभावित होगा जो थोरियम की दर निर्धारित करता है और जिसके आधार पर न्यूकिलियर आधारित प्लांटों का अधिकतम दोहन किया जा सकता है। एनएसजी प्रतिबंधों को हटाए जाने से यूरेनियम का आयात शुरू होगा और हमारे प्रथम चरण से कार्यक्रम का क्षमता आधार सुदृढ़ होगा। सरकार ने देश में क्षमता आधार बढ़ाने के लिए एनएसजी के सदस्यों से ईंधन और न्यूक्लियर उपस्कर आपूर्तिकर्ताओं से रिएक्टरों का आयात शुरू करने के लिए बहुत से कदम उठाए हैं। फ्रांस से 300 टन यूरेनियम कंस्ट्रेट पहले ही आयात कर लिया गया है। रिसयन फेडरेशन से 2000 टन यूरेनियम पेलेट्स की चरणबद्ध ढंग से दीर्घकालीन आपूर्ति के लिए प्रयास किए जा रहे हैं।

फास्ट ब्रीडर रिएक्टर कार्यक्रम का शुभारंभ कलपक्कम में निर्मित किए जा रहे 500 एमडब्ल्यूई फास्ट ब्रीडर रिएक्टर के आदिरूप से की गई, जिसकी स्थापना मार्च, 2012 तक होने की संभावना है। यह भारत में इस तरह की पहली परियोजना है और इसका क्रियान्वयन भावनी, सार्वजनिक क्षेत्र की एक कंपनी द्वारा किया जा रहा है, जिसकी स्थापना ऐसी परियोजनाओं और सभी भावी फास्ट ब्रीडर रिएक्टर परियोजना के कार्यान्वयन के प्रयोजन से की गई। इस परियोजना की सफलतापूर्वक स्थापना से भविष्य में भारत के न्यूक्लियर पावर कार्यक्रम के तीन चरणों में निर्धारित विकास लक्ष्यों को प्राप्त करने का मार्ग प्रशस्त होगा।

डीएई ने 13वीं योजना के दौरान स्थापना के लिए 11वीं योजना में 700 एमडब्ल्यूई पीएचडब्ल्यूआरएस क्षमता वाली 8 स्वदेशी यूनिटों पर कार्य शूरू करने की परिकल्पना की है। चार यूनिटों के लिए पहले ही अनुमोदन प्राप्त हो गया है और उनका कार्य शुरू हो गया है। इनकी स्थापना 2016/2017 में अनुसूचित है। अंतर्राष्ट्रीय सहयोग के आधार पर एलडब्ल्यूआर पर भी कार्य शुरू करने की योजना है। सरकार ने रिसयन फेडरेशन, यूएसए और फ्रांस के सहयोग से एलडब्ल्यूआरएस पर आधारित 6000-10000 एमडब्ल्यूई क्षमता वाले न्यूक्लियर पावर पार्कों की स्थापना के लिए 5 तटवर्ती साइटों के संदर्भ में सैद्धांतिक अनुमोदन प्रदान कर दिया है। इन रिएक्टरों पर वास्तविक रूप से कार्य शुरू होने के आधार पर 2032 तक प्रगामी रूप से कुल 40,000 एमडब्ल्यूई की कुल एलडब्ल्यूआरएस क्षमता अभिवृद्धि संभव है। एलडब्ल्यूआर के खपत किए गए ईंधन को पुन: संसाधित करने सुरक्षित एफबीआर तथा अतिरिक्त पीएचडब्ल्यूआर में इसके प्रयोग की योजना बनाई गई है। इससे दीर्घावधि में एफबीआर की क्षमता और अधिक बढ़ेगी तथा दीर्घावधि में ऊर्जा सुरक्षा की दिशा में भविष्य में और परमाणु ईंधन के आयात की आवश्यकता के बिना परमाणु ऊर्जा की भूमिका भी बढ़ जाएगी। इससे परमाणु ऊर्जा की भूमिका और महत्वपूर्ण हो जाएगी क्योंकि यह दीर्घावधि में हमारी ऊर्जा सुरक्षा के लिए नितांत आवश्यक होगा।

तीन चरण वाले न्यूक्लियर ऊर्जा कार्यक्रम के तीसरे चरण में थोरियम का प्रयोग करने में हमारी क्षमता विकसित करने से पहले ऐसे कई जटिल प्रौद्योगिकीय मुद्दे उभरकर सामने आएंगे, जिनका समाधान करना आवश्यक है। अतिरिक्त जनशक्ति, अनुसंधान और विकास में निवेश तथा नई सुविधाओं की आवश्यकता का स्पष्ट विश्लेषण और मूल्यांकन किए जाने की आवश्यकता है, जिसमें 11वीं पंचवर्षीय योजना की शेष अविध में शामिल किए जाने वाले घटक शामिल होंगे। इस संदर्भ में तैयार की गई अनुसूचियां गंभीर चिंता का विषय हैं।

---+++---

अध्याय 12

ऊर्जा संरक्षण और मांग पक्ष प्रबंधन

12.0 पृष्ठभूमि

भारत में क्षमता (अर्थात मेगावाट) और ऊर्जा (अर्थात एमडब्ल्यूएच) दोनों के संदर्भ में विद्युत की मांग और आपूर्ति के बीच अंतर तेजी से बढ़ रहा है।

दक्षता जिसके साथ ऊर्जा का प्रयोग किफायती सेवाएं प्रदान करने के लिए किया जाता है, में सुधार से स्थायी विकास को बढ़ावा देने और किफायत को प्रतिस्पर्धी बनाने का दोहरा लक्ष्य पूरा होता है। तेजी से घट रहे ऊर्जा संसाधनों के संरक्षण के उद्देश्य से ऊर्जा दक्षता और संरक्षण का महत्व बढ़ गया है और बढ़ी हुई आर्थिक समृद्धि के लिए ऊर्जा आवश्यकताओं को पूरा करने और दूसरी ओर वैश्विक स्तर पर जलवायु परिवर्तन के प्रभाव को न्यूनतम करने के लिए अल्प तथा मध्यावधि में ऊर्जा दक्षता को तेजी से स्वीकार किया जा रहा है और इसे एक सर्वाधिक लागत प्रभावी विकल्प माना जा रहा है। ऊर्जा कार्य कुशलता संबंधी विकल्पों से अधिक लागत वाली नई विद्युत उत्पादन क्षमता की आवश्यकता कम हो सकती है और चूंकि अधिकांश उत्पादन कोयला आधारित है अत: ऊर्जा के उत्पादन और प्रयोग से ग्रीन हाउस गैस (जीएचजी) के उत्सर्जन को भी कम किया जा सकता है।

पिछले एक दशक से भारत में ऊर्जा कार्यकुशलता पर काफी जोर दिया जा गया है और ऊर्जा तीव्रता लगभग 20-

25% घटी है परंतु अभी भी कुछ ऐसे स्थान हैं जहां बाजार की विफलताओं, सूचना, जोखिमों और विभाजित प्रोत्साहनों के कारण ऊर्जा दक्षता की अपार संभावनाएं हैं। यह भारत सरकार के जरिए ऊर्जा सरंक्षण अधिनियम और ऊर्जा कार्यकुलशलता ब्यूरो द्वारा शुरू किए गए बहुत से कार्यक्रमों के परिणामस्वरूप संभव हुआ है।

ऊर्जा संरक्षण अधिनियम (2001) भारत में सबसे महत्वपूर्ण बहु-क्षेत्रीय विधान है और इसका उद्देश्य भारत में ऊर्जा के कुशल प्रयोग को बढ़ावा देना है। इस अधिनियम में उपस्करों और उपकरणों के लिए ऊर्जा खपत मानक विनिर्दिष्ट करने, नामित उपभोक्ताओं के लिए ऊर्जा खपत संबंधी शर्तें और मानक स्थापित व निर्धारित करने, वाणिज्यिक भवनों में ऊर्जा के कुशल प्रयोग हेतु ऊर्जा संरक्षण बिल्डिंग कोड निर्धारित करने और ऊर्जा संरक्षण शर्तों और मानदंडों के लिए एक अनुपालन व्यवस्था स्थापित करने का प्रावधान किया गया है। व्यापक पैमाने पर

ऊर्जा की बचत मौजूदा नीतियों और योजनाओं के सुदृढ़ीकरण के साथ साथ 12वीं पंचवर्षीय योजना में नए क्षेत्रों तक पहुंच स्थापित कर की जा सकती है।

भारत की प्राथिमक ऊर्जा खपत 421 मिलियन टन तेल के समतुल्य (एमटीओई) (2008; अंतर्राष्ट्रीय ऊर्जी एजेंसी, 2009) है, जो वर्ष 2008 में वैश्विक स्तर पर प्राथिमक ऊर्जा खपत के लगभग 3.5% के बराबर है। प्रित व्यक्ति ऊर्जा की खपत महज 0.53 किलोग्राम तेल समतुल्य (केजीओई) है जबिक वैश्विक स्तर पर इसका औसत 1.82 केजीओई (2008; अंतर्राष्ट्रीय ऊर्जा एजेंसी, 2009) है। भारत में पर्याप्त घरेलू ऊर्जा संसाधन नहीं है और इसकी बढ़ रही ऊर्जा आवश्यकताओं को पूरा करने के लिए यह काफी हद तक आयात पर निर्भर है। अंतर्राष्ट्रीय ऊर्जा एजेंसी (आईईए) के अनुसार भारत की कुल ऊर्जा खपत में कोयला/पी की हिस्सेदारी लगभग 40% है। तत्पश्चात दहन योग्य नवीकरणीय ऊर्जा स्रोतों और अपशिष्ट पदार्थों की हिस्सेदारी लगभग 27% है। तेल की हिस्सेदारी कुल ऊर्जा खपत के लगभग 24% के बराबर है, प्राकृतिक गैस 6% हाइड्रो इलेक्ट्रिक पावर महज 2%, परमाणु ऊर्जा लगभग 1% और अन्य नवीकरणीय ऊर्जा स्रोत 0.5% से भी कम है। भारत की कुल ऊर्जा आवश्यकताओं का लगभग 50% भाग आयात से पूरा किया जाता है।

ऊर्जा कार्यकुशलता ब्यूरो (बीईई) जो विद्युत मंत्रालय का एक सांविधिक निकाय है, विभिन्न नियामक और संवर्धनात्मक उपायों के जरिए अर्थव्यवस्था में ऊर्जा दक्षता बढ़ाने और विभिन्न कार्यक्रमों/योजनाओं का नेतृत्व करने के लिए जिम्मेदार है।

इनमें से कुछ प्रयास निम्नानुसार हैं:

- क) नियामक आयोगों द्वारा विद्युत कंपनियों को ईई/बीएसएम व्यय को टैरिफ के रूप में संघटित करने की अनुमित।
- ख) विद्युत कंपनियों में ईई/डीएसएम प्रकोष्ठ का गठन।
- ग) लोड कर्व को एक जैसा बनाने के उद्देश्य से बड़े औद्योगिक और वाणिज्यिक उपभोक्ताओं के लिए टाइम ऑफ डे टैरिफ की शुरुआत।
- घ) सह-उत्पादन को बढ़ावा देने के लिए ग्रिड द्वारा सह उत्पादकों (कंपनी की घोषित त्याज्य लागतों पर) से निर्धारित मूल्य पर विद्युत की खरीद का अनिवार्य प्रवर्तन
- ङ) कुशल पंपिंग प्रणालियों को अपनाना और पंपिंग लोड को ऑफ पीक घंटों में शिफ्ट करना
- च) ऊर्जा लेखापरीक्षा आवधिक रूप से की जाए और सार्वजनिक भवनों, बड़ी स्थापनाओं (संबद्ध लोड >1 मेगावाट अथवा समतुल्य ऊर्जा प्रयोग >1एमवीए) और ऊर्जा की दृष्टि से अधिक खपत वाले उद्योगों के लिए ऊर्जा लेखापरीक्षा अनिवार्य बनाई जाए।

12.1 ऊर्जा संरक्षण की संभावनाएं

बीईई/एनपीसी रिपोर्ट 2009 के अनुसार भारत में विद्युत ऊर्जा संरक्षण और संभावनाओं की नीचे दिए अनुसार पहचान की गई है। ऐसा अनुमान है कि भारत में मांग पक्ष प्रबंधन और ऊर्जा कार्यकुशलता के जरिए विभिन्न सेक्टरों में कुल 15-20% ऊर्जा बचत की संभावनाएं हैं। भारत सरकार ने अर्थव्यवस्था की बढ़ रही मांगों को पूरा करने के लिए वहनीय मूल्य पर ऊर्जा उपलब्धता में महत्वपूर्ण वृद्धि के लिए एक व्यापक कार्यक्रम शुरू किया है। जहां एक ओर क्षमता अभिवृद्धि पर प्रमुख रूप से ध्यान केन्द्रित किया गया है, वहीं दूसरी ओर नवीकरणीय ऊर्जा, परमाणु ऊर्जा के साथ ऊर्जा दक्षता एक ऐसा प्रमुख क्षेत्र है, जिस पर स्थायी विकास सुनिश्चित करने के लिए विशेष रूप से ध्यान दिया जा रहा है। ऊर्जा कार्यकुशलता नीति का उद्देश्य एक बेहतर बाजार निर्मित करने तथा लगभग 20% की अनुमानित क्षमता अभिवृद्धि के लिए उपयुक्त स्थितियां निर्मित करना, ऊर्जा संरक्षा अधिनियम, 2001

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 233

का अधिनियमन, ऊर्जा कार्यकुशलता ब्यूरो (बीईई) की स्थापना और उन्नत ऊर्जा कार्यकुशलता के लिए राष्ट्रीय मिशन इस दिशा में शुरू किए गए कुछ महत्वपूर्ण प्रयास हैं। ऊर्जा संरक्षण और मांग पक्ष प्रबंधन से भारत में ऊर्जा की बचत के आंकड़े निम्नलिखित तालिका में दर्शाए गए हैं:

तालिका 12.1 भारत में विद्युत ऊर्जा की खपत और संरक्षण की संभावनाएं (बिलियन यूनिट में)

क्र.सं.	क्षेत्र	खपत	बचत संभावना	% बचत
1.	कृषि पंपिंग	92.33	27.79	30.09
2.	वाणिज्यिक भवन /स्थापनाएं,	9.92	1.98	19.95
	जिनका संबद्ध लोड>500			
	किलोवाट है			
3.	नगर निगम	12.45	2.88	23.13
4.	घरेलू	120.92	24.16	19.98
5.	उद्योग (एसएमई सहित)	265.38	18.57	6.99
	जोड़	501.00	75.36	15.04

स्रोत: बीईई/एनपीसी अध्ययन, 2009

12.2 ऊर्जा संरक्षण (ईसी) अधिनियम

इस तथ्य को स्वीकार करते हुए कि ऊर्जा का कुशल प्रयोग और इसका संरक्षण मांग और आपूर्ति के अंतराल को समाप्त करने का सबसे कम लागत वाला विकल्प है, भारत सरकार ने ऊर्जा संरक्षण (ईसी) अधिनियम, 2001 का अधिनियमन और ऊर्जा कार्यकुशलता ब्यूरो की स्थापना की है।

इस अधिनियम के अंतर्गत देश में ऊर्जा की दृष्टि से कुशल सेवाओं के लिए प्रदायगी व्यवस्था को संस्थागत बनाने और उसका सुदृढ़ीकरण करने का प्रावधान किया गया है और इसमें विभिन्न निकायों/संगठनों के बीच नितांत आवश्यक समन्वय स्थापित करने का भी प्रावधान किया गया है। ब्यूरो नीतिगत कार्यक्रमों के कार्यान्वयन और ऊर्जा संरक्षण संबंधी कार्यकलापों के कार्यान्वयन हेतु समन्वय स्थापित करने के लिए जिम्मेदार होगा।

बीईई का मिशन भारतीय अर्थव्यवस्था की ऊर्जा संवेदिता को कम करने के प्राथमिक उद्देश्य के साथ ऊर्जा संरक्षण अधिनियम के व्यापक ढांचे में स्वविनियमन और बाजार सिद्धांतों पर जोर देते हुए नीतियां और रणनीतियां तैयार करना है।

12.3 ईसी अधिनियम 2001 के प्रावधानों के अंतर्गत कार्यक्रम और उपाय

ऊर्जा संरक्षण और ऊर्जा दक्षता को बढ़ाने के उद्देश्य से बीईई द्वारा विभिन्न योजनाएं शुरू की गई हैं, ये निम्नानुसार हैं:

- 1. ऊर्जा संरक्षण बिल्डिंग कोड
- 2. बचत लैंप योजना
- 3. राज्य द्वारा नामित एजेंसियों का सुदृढ़ीकरण
- 4. मानक और लेबलिंग कार्यक्रम

- 5. नगर निगम का मांगपक्ष प्रबंधन (एमयूडीएसएम)
- 6. कृषि का मांग पक्ष प्रबंधन (एजीडीएसएम)
- 7. लघु और मध्यम उद्यमों (एसएमई) में ऊर्जा कार्यकुशलता और नामित उपभोक्ता
- 8. व्यावसायिक प्रमाणन और अधिप्रमाणन
- 9. नियम पुस्तक और आचार संहिताएं
- 10. ऊर्जा कार्यकुशलता नीति अनुसंधान कार्यक्रम
- 11. ऊर्जा सेवाओं के लिए प्रदायगी व्यवस्थाएं/तंत्र, और
- 12. स्कूली शिक्षा/जागरूकता आदि

12.3.1 ऊर्जा संरक्षण बिल्डिंग कोड (ईसीबीसी): 100 किलोवाट और उससे अधिक के संबद्ध लोड वाली नई वाणिज्यिक बिल्डिंगों के लिए न्यूनतम ऊर्जा निष्पादन मानक स्थापित करने के साथ साथ रिट्टोफिटिंग के जरिए मौजूदा बिल्डिंगों में ऊर्जा कार्यकुशलता को बढ़ावा देने हेतु ऊर्जा संरक्षण कोड (ईसीबीसी) का शुभारंभ 27 मई, 2007 को किया गया। वर्तमान में यह कोड कार्यान्वयन के स्वैच्छिक चरण पर है। जहां एक ओर बीईई द्वारा ईसीबीसी का विकास किया गया है, वहीं इनके प्रवर्तन का दायित्व राज्य सरकारों और शहरी स्थानीय निकायों के पास है। बहुत से राज्यों ने अपने राज्य के लिए ईसीबीसी का पहले ही संशोधन कर लिया है, जिसमें से उड़ीसा, राजस्थान, कर्नाटक, उत्तर प्रदेश, पुण्डुचेरी और उत्तराखंड ने यह कार्य पूरा कर लिया है और पंजाब, छत्तीसगढ़ और गुजरात जैसे राज्य में ईसीबीसी की प्रक्रिया का संशोधन अंतिम चरण पर है। निर्मित वातावरण में ईसीबीसी को अपनाने के लिए प्रोत्साहित करने हेतु 11वीं पंचवर्षीय योजना के दौरान बहुत से समर्थकारी उपाय किए गए। इनमें (1) ईसीबीसी विशेषज्ञ आर्कीटेक्ट का पैनल तैयार करना, (2) ईसीबीसी प्रयोक्ता गाइड, लाइटिंग के लिए टिप शीट, एनवलप, एचवीएसी, सिमुलेशन जैसी तकनीकी संदर्भ सामग्री का विकास; (3) आर्कीटेक्ट/ डिजाइन व्यवसायियों और कोड आवश्यकताओं के साथ समरूपता मूल्यांकन करने के लिए कोड अनुपालन अधिकारियों की सहायता के लिए समरूपता/अनुपालन जांच उपकरणों (ईकोनिर्माण) का विकास, (4) कोड के विभिन्न पहलुओं को शामिल करते हुए मानक ईसीबीसी प्रशिक्षण मॉड्यूल, (5) ऊर्जा कार्यकुशलता पर मसौदा राष्ट्रीय स्थायी पर्यावास मानदंड तैयार करने के लिए आवासीय और वाणिज्यिक भवनों/परिसरों के लिए न्यूनतम ऊर्जा मानक अधिदेशित करने हेतु मॉडल बिल्डिंग बाई लॉज का विकास, (6) राष्ट्रीय बिल्डिंग कोड (एनबीसी), 2005 के साथ ईसीबीसी का संतुलन स्थापित करने जैसे उपायों को अंतिम रूप दिया गया है। इसके लिए "स्थिरता के लिए पहल" नामक एक अध्याय जोड़ा गया है और व्यापक परिचालन हेतु भेजा गया है। इसके पश्चात देश में सभी भावी निर्माण में इसे अपनाया जाएगा; (7) सीपीडब्ल्यूडी की दर अनुसूची में मसौदा संशोधन किए गए हैं, ताकि ईसीबीसी की आवश्यकताओं को उसमें शामिल किए जा सके और उन्हें आगामी कार्रवाई के लिए सीपीडब्ल्यूडी को प्रस्तृत किया गया है।

"समाहारी वृद्धि के लिए कम कार्बन रणनीतियों" पर मसौदा रिपोर्ट में यह दर्शाया गया है कि नई वाणिज्यिक परिसरों के लिए ईसीबीसी को अनिवार्य बनाने और मौजूदा भवनों में ऊर्जा लेखापरीक्षा लागू करने से 12वीं योजना के दौरान शुरू की जाने वाली 75% नई वाणिज्यिक बिल्डिंगों में ईसीबीसी का अनुपालन किया जाएगा। इसी प्रकार 20% मौजूदा बिल्डिंगों में ऊर्जा लेखापरीक्षा और रिट्रोफिटिंग के जरिए वर्तमान ऊर्जा खपत में कम से कम 20% की कमी की जाएगी। इसके परिणामस्वरूप सामान्य व्यापार (बीएयू) परिदृश्य में नई और मौजूदा बिल्डिंगों में ऊर्जा प्रयोग की अनुमानित बचत लगभग 5.07 बिलियन यूनिट है।

बिल्डिंगों में ऊर्जा लेखापरीक्षा अध्ययनों से पता चला है कि सरकारी और वाणिज्यिक कार्यालयों के भवनों में ऊर्जा बचत की अपार संभावनाएं हैं। बीईई ऐसी ऊर्जा सेवा कंपनियों (ईएससीओ) के जिए मौजूदा बिल्डिंगों में ऊर्जा कार्यकुशलता उपायों के कार्यान्वयन को बढ़ावा दे रहा है, जो एक नवोन्मेषी व्यापार मॉडल उपलब्ध कराती हैं, जिसके जिरए मौजूदा बिल्डिंगों में ऊर्जा बचत की संभावनाओं का लाभ उठाया जा सकता है और बिल्डिंगों के मालिकों के समक्ष मौजूदा जोखिमों का समाधान भी किया जा सकता है।

समय समय पर और बार बार यह देखा गया है कि ऐसी बिल्डिंगों में ऊर्जा संरक्षण का लक्ष्य सुज्ञात हस्तक्षेप के जिरए प्राप्त किया जा सकता है, जो लागत प्रभावी भी है, हालांकि इन हस्तक्षेपों का कार्यान्वयन संस्थागत, प्रक्रियागत और संसाधन संबंधी बाधाओं से प्रभावित होता है, विशेष रूप से यह प्रभाव इन हस्तक्षेपों के कारण ऊर्जा की बचत का मूल्यांकन करने और गारंटी प्रदान करने में बिल्डिंगों प्रबंधकों की अक्षमता के कारण पड़ता है। इस संस्थागत बाधा का समाधान करने के उद्देश्य से ऊर्जा कार्य कुशलता ब्यूरो ने ऊर्जा कार्य कुशलता सेवाओं को संस्थागत ढंग से शुरू करने और ऊर्जा कार्यकुशलता प्रदायगी व्यवस्थाओं जैसे ऊर्जा सेवा कंपनियों (ईएससीओ) के लिए बाजार का विकास आदि को बढ़ावा देने के लिए प्रयास शुरू किए हैं, जो भवन के स्वामियों द्वारा परिकल्पित जोखिमों का समाधान करती हैं।

ईएससीओ एक ऐसा व्यवसाय मॉडल उपलब्ध कराता है, जिसके जरिए मौजूदा बिल्डिंगों में ऊर्जा बचत की संभावनाओं का पता लगाया जा सकता है और बिल्डिंग के मालिकों के समक्ष मौजूदा जोखिमों का भी समाधान किया जा सकता है। ईएससीओ द्वारा किए गए हस्तक्षेपों के जरिए ऊर्जा बचत के लक्ष्य को प्राप्त करने के लिए निष्पादन संविदा आधारित भुगतान यह सुनिश्चित करते हैं कि बचत का लक्ष्य प्राप्त किया गया है और ईएससीओ को बिल्डिंग के मालिकों द्वारा किए गए भुगतान इन बचत की उपलब्धि से संबंधित हैं। संभावित एजेंसियों जो किसी एससीओ की सेवाएं सुरक्षित करने वाली हैं, के साथ साथ वित्तीय संस्थानों के बीच विश्वसनीयता पैदा करने के उद्देश्य से बीईई निष्पादन संविदा, तकनीकी जनशक्ति की उपलब्धता, वित्तीय मजबूती आदि के आधार पर ऊर्जा कार्यकुलशलता परियोजनाओं के कार्यान्वयन में सफलता के संदर्भ में इन आवेदकों की रेटिंग प्रक्रिया के जरिए ईएससीओ के लिए एक अधिप्रमाणन कार्रवाई करता है। रेटिंग की कार्रवाई सेवी द्वारा अधिप्रमाणित एजेंसियों जैसे सीआरआईएसआईएल, सीएआरई और आईसीआरए के जरिए की जाती है। इस कार्रवाई के परिणाम सार्वजनिक तौर पर उपलब्ध कराए जाते हैं और विभिन्न राज्य सरकारों/एसडीए को भी इसकी जानकारी दी जा सकती है, ताकि उन्हें अपने संगत राज्यों में ऊर्जा कार्यकुशलता कार्यक्रमों के कार्यान्वयन में सुविधा हो सके। बीईई ने ईएससीओ से बोलियां आमंत्रित करने के लिए एसडीए/बिल्डिंग के मालिकों/राज्य सरकारों की सहायता, डीपीआर में मौजूदा खामियों को दूर करने के लिए इनवेस्टमेंट ग्रेड एनर्जी ऑडिट (आईजीईए), ऊर्जा कार्यकुशलता के कार्यान्वयन हेतु मसौदा निष्पादन संविदा, आईपीएमवीपी दिशानिर्देशों के आधार पर मानक एम और वी योजना के मूल्यांकन मैट्रिक्स के साथ प्रस्तावों के लिए अनुरोध (आरएफपी) के लिए मसौदा मानक टेम्प्लेट तैयार किए हैं।

वाणिज्यिक भवन क्षेत्र में ऊर्जा कार्यकुशलता संबंधी कार्यकलापों में तेजी लाने के उद्देश्य से बीईई ने दिन में प्रयोग किए जाने वाले भवनों, बीपीओ और शॉपिंग कॉम्प्लेक्स के लिए एक स्टार लेबलिंग कार्यक्रम (स्वैच्छिक) तैयार किया है, जो किलोवाट घंटा/वर्ग किलोमीटर/वर्ष में ऊर्जा के विशिष्ट प्रयोग के संदर्भ में बिल्डिंग के वास्तविक निष्पादन पर आधारित है। इस कार्यक्रम के तहत बिल्डिंगों को 1-5 तक स्टार स्केल रेटिंग प्रदान की जाती है। 5 स्टार लेबल प्राप्त बिल्डिंग को ऊर्जा की दृष्टि से सर्वाधिक कुशल बिल्डिंग माना जाता है। स्टार रेटिंग कार्यक्रम ऊर्जा कुशल बिल्डिंगों को सार्वजनिक मान्यता प्रदान करता है और ऐसी बिल्डिंगों के लिए "मांग पक्ष" सृजित करता है। 100 किलोवाट और उससे अधिक संबद्ध लोड वाले भवनों पर बीईई स्टार रेटिंग योजना के अंतर्गत

विचार किया जा रहा है। 12वीं योजना अवधि में स्टार रेटिंग योजना को अन्य प्रकार की बिल्डिंगों के लिए भी लागू किया जाएगा।

12.3.2 बचत लैंप योजना: देश में विद्युत की कुल मांग में आवासीय क्षेत्र की हिस्सेदारी 25.87% है। लाइटिंग लोड में आवासीय क्षेत्र की इस विद्युत मांग का लगभग 28% अंशदान है और पीक लोड में भी इसका सर्वाधिक योगदान है। आवासीय क्षेत्र में ऊर्जा बचत सीएलएफ के प्रयोग को बढ़ावा देने के लिए बीईई ने "बचत लैंप योजना (बीएलवाई) तैयार की है। बीएलवाई योजना के अंतर्गत सीएलएफ पूर्तिकर्ता द्वारा ग्रिड से जुड़े आवासीय परिवारों को अधिकतम 4 दीर्घावधि, गुणवत्ता युक्त सीएफएल वितरित की जाएंगी और उसके बदले में उनसे उतनी ही संख्या में इनकेडिसेंट लैंप्स (आईसीएल) और प्रति सीएफएल 15 रु. लिए जाएंगे। ऐसा अनुमान है कि एकल परियोजना के अंतर्गत लगभग 6 लाख सीएफएल वितरित की जा सकती हैं। बचत की गई विद्युत जो जीएचजी के उत्सर्जन का उन्मूलन करने में सहायक होगी, का इस्तेमाल सीएलएफ पूर्तिकर्ताओं द्वारा क्योटो प्रोटोकॉल की स्वच्छ विकास व्यवस्था (सीडीएम) के अंतर्गत अंतर्राष्ट्रीय बाजार में किया जाएगा।

बीएलवाई योजना के अंतर्गत सामान्यत: प्रयोग में जाए जाने वाले तीन प्रकार के आईसीएल लैंप अर्थात 40 वाट, 60 वाट और 100 वाट के बल्बों को सीएफएल द्वारा प्रतिस्थापित किया जाएगा। इस बचत लैंप योजना स्कीम को सीडीएम के साथ संबद्ध लेनदेन लागत को कम करने के लिए यूएनएफसीसीसी के सीडीएम कार्यपालक बोर्ड के साथ सीडीएम कार्यक्रम की गतिविधियों (पीओए) के रूप में पंजीकृत किया गया है। इस परियोजना के अंतर्गत तीन प्रमुख संगठनों (कंपनियों) अर्थात बीईई, विद्युत वितरण कंपनियां (डिस्कॉम) और घरों में सीएफएल की आपूर्ति के लिए निवेशकों को एक साथ मिलकर कार्य करने का अवसर दिया जाता है। सीएफएल के बाजार मूल्य और वह मूल्य जिस पर परिवारों को वितरित की जानी है, के बीच लागत अंतर को दूर करने के लिए स्वच्छ विकास व्यवस्था (सीडीएम) का लाभ उठाया जा रहा है। सीएफएल पूर्तिकर्ता (निवेशक) परियोजना लागत की वसूली अपने संगत परियोजना क्षेत्रों में ग्रीन हाउस गैस (जीएचजी) उत्सर्जन को कम करके उसकी बिक्री के जरिए करेंगे।

बीईई, जो कि समन्वयकर्ता और प्रबंधन निकाय (सीएमई) है, को यूएनएफसीसीसी (यूनाइटेड नेशंस फ्रेमवर्क कन्वेंशन फॉर क्लाइमेट चेंज) और पीओए द्वारा यथावश्यक विभिन्न प्रलेखन और प्रोटोकॉल के संबंध में आवश्यक कार्रवाई करने के लिए एक अधिकारी नियुक्त करना होगा। इसके अलावा बीएलवाई परियोजनाओं के कार्यान्वयन और सीएफएल वितरण को सुकर बनाने के लिए इस अधिकारी को राज्य की विद्युत वितरण कंपनियों और सीएफएल पूर्तिकर्ताओं के साथ लगातार संपर्क में रहना होगा। अब तक भारत के विभिन्न भागों से इस पंजीकृत अम्ब्रेला फ्रेमवर्क में 50 बीएलवाई परियोजनाओं को शामिल किया गया है। 11वीं पंचवर्षीय योजना में शामिल परियोजनाओं के अंतर्गत अभी तक 28 मिलियन सीएफएल वितरित की जा चुकी हैं और कुछ शामिल परियोजना क्षेत्रों में सीएफएल वितरण का कार्य प्रगति पर है। 11वीं पंचवर्षीय योजना के दौरान दिसंबर, 2011 तक सीएफएल के वितरण से 324.3 मेगावाट विद्युत की बचत का लक्ष्य प्राप्त किया गया है।

योजना का डिजाइन सीईआर का आधारभूत मूल्य 8 यूरो के रूप में निर्धारित कर तैयार किया गया। हालांकि अंतर्राष्ट्रीय स्तर पर जलवायु परिवर्तन संबंधी बातचीत की अनिश्चितता और यूरोप में आर्थिक मंदी के परिणामस्वरूप कार्बन बाजार की वर्तमान स्थिति बहुत अधिक आकर्षक प्रतीत नहीं होती है और सीईआर की कीमत पिछले कई माहों से 3-4 यूरो के बीच घटती-बढ़ती रही है। इस सबके अलावा ट्राई बैंड फॉस्फोर की कीमत बढ़ने के कारण सीएफएल मंहगे हो गए हैं। इन सभी घटकों के परिणामस्वरूप इस योजना की वित्तीय व्यवहार्यता प्रभावित हुई है। यह बीएलवाई के त्वरित कार्यान्वयन में एक बाधा के रूप में सामने आया है।

बीएलवाई परियोजनाओं का डेटाबेस प्रबंधन और राज्य विद्युत वितरण कंपनियों का क्षमता निर्माण तथा बीईई के कार्यकारी के साथ-साथ सीएफएल पूर्तिकर्ताओं पर 12वीं योजना में प्रमुखता के साथ ध्यान दिया जाएगा। 12वीं पंचवर्षीय योजना में किए जाने वाले प्रस्तावित कार्यकलापों में शामिल हैं: राज्य विद्युत वितरण कंपनियों की सहभागिता से वर्तमान में जारी बीएलवाई योजना का सुदृढ़ीकरण, बीएलवाई योजना के संदर्भ में जागरूकता के लिए कार्यशालाएं, पंजीकृत पीओए के अंतर्गत परियोजनाओं को शामिल करना, बीएलवाई परियोजनाओं की निगरानी और सत्यापन, यूएनएफ सीसीसी नियमों के अनुसार पीओए का अद्यतनीकरण, एलईडी बल्बों की थोक खरीद के लिए दिशानिर्देश और प्रक्रियाएं निर्धारित करना तथा योजना के अन्य क्षेत्र और एलईडी परियोजनाओं की निगरानी तथा सत्यापन।

12.3.3 राज्य द्वारा नामित एजेंसियों (एसडीए) का सुदृद्धीकरण: राज्य द्वारा नामित एजेंसियां (एसडीए) राज्य स्तर पर ऊर्जा संरक्षण उपायों के कार्यान्वयन हेतु राज्य द्वारा स्थापित सांविधिक निकाय हैं। विभिन्न राज्यों में राज्य द्वारा नामित एजेंसियों (एसडीए) को राज्य स्तर पर विभिन्न ऊर्जा कार्यकुशलता संबंधी प्रयासों को आगे बढ़ाने के संदर्भ में बहुत ही महत्वपूर्ण भूमिका अदा करने की आवश्यकता है। इस योजना का प्रमुख जोर इस बात पर है कि एसडीए का क्षमता निर्माण किया जाए जिससे कि वे ऊर्जा संरक्षण अधिनियम 2001 के अंतर्गत नियामक सहयोगात्मक और प्रवर्तन संबंधी कार्यकलाप निष्पादित करने में समर्थ बन सकें। 12वीं योजना के दौरान एसडीए कार्यक्रम का प्रमुख जोर 32 एसडीए के सुदृढ़ीकरण पर होगा जो बीईई अथवा स्वयं एसडीए द्वारा शुरू किए गए विभिन्न कार्यक्रमों और कार्यकलापों के कार्यान्वयन हेतु उन्हें सक्षम बनाएगा।

11वीं पंचवर्षीय योजना के दौरान बीईई ने राज्य द्वारा नामित एजेंसियों (एसडीए) को योजना तैयार करने, एसडीए के संस्थागत क्षमता निर्माण और संगत राज्यों में अपने नियामक, विकासात्मक और संवर्धनात्मक कार्यकलापों को तकनीकी सहायता, मार्ग दर्शन और निधियन आदि के रूप में सहयोग किया। प्रत्येक एसडीए को पंचवर्षीय ऊर्जा संरक्षण कार्य योजना विकसित करने, ईसी अधिनियम के अधिदेशों की प्रदायगी और उसके प्रावधानों के अनुरूप स्थानीय आवश्यकताओं को अनुकूल बनाने में सहायता प्रदान की गई है।

12वीं पंचवर्षीय योजना के लिए प्रस्तावित कार्यकलापों में नगर निगम (पेयजल और सीवेज उपचार), कृषि (पंपिपंग), स्ट्रीट लाइटिंग, वाणिज्यिक भवनों, सरकारी भवनों और प्रदर्शन परियोजनाओं सिहत एसएमई में अपिशष्ट ऊष्मा की प्रतिप्राप्ति जैसे क्षेत्रों में क्षेत्र विशेष पर आधारित हस्तक्षेप शामिल हैं। एसडीए के निम्नलिखित प्रयासों को सहायता प्रदान करने का प्रस्ताव है जो एसडीए की क्षमताओं को सुदृढ़ करने और संगत राज्यों में ऊर्जा कार्य कुशलता को बढ़ावा देने वाली विभिन्न परियोजनाओं और कार्याक्रमों का संचालन करने में सहायक होंगे:

- एसडीए द्वारा ऊर्जा की विशेष बचत के लिए क्षेत्रवार कार्यान्वयन हेतु सहायता
- एसडीए की ऊर्जा लेखापरीक्षकों, ऊर्जा प्रबंधकों और ईएससीओ जैसे ऊर्जा कार्यकुशलता व्यवसायियों के साथ लगातार सहभागिता
- सर्वाधिक उन्नत ऊर्जा कुशल प्रौद्योगिकी की प्रभावशीलता दर्शाने के लिए राज्यों में विभिन्न ऊर्जा कार्य कुशलता प्रदर्शन परियोजनाओं का कार्यान्वयन और राज्य के अन्य भागों में उन परियोजनाओं को लागू करने के लिए राज्य सरकारों के साथ बातचीत करना
- गांवों में एलईडी ग्राम अभियान शुरू करना और राज्य के अन्य भागों में इस परियोजना को लागू करने के लिए राज्य सरकारों के साथ बातचीत करना
- राज्यों में ऊर्जा कार्य कुशलता का प्रचार प्रसार/जागरूकता पैदा करना
- सभी पणधारकों के लिए कार्यशालाएं/ प्रशिक्षण कार्यक्रम आयोजित करना
- एसडीए के लिए क्षमता निर्माण कार्यक्रम संचालित करना

उपर्युक्त प्रस्तावित कार्यकलापों के लिए कुल 140 करोड़ रुपए की निधि आवश्यक है। ऊर्जा संरक्षण अधिनियम, 2001 के अंतर्गत दिए गए अधिदेश के अनुसार राज्य ऊर्जा संरक्षण निधि (एसईसीएफ) का गठन 24 राज्यों में पहले ही कर दिया गया है और ऊर्जा कार्यकुशलता संबंधी विभिन्न प्रयासों के लिए एसईएफसी को प्रचालनरत करने के उद्देश्य से 11वीं योजना के दौरान सभी राज्यों को निधियां जारी कर दी गई हैं। आंध्र प्रदेश, राजस्थान, छत्तीसगढ़, कर्नाटक, हरियाणा, पंजाब, केरल, हिमाचल प्रदेश और उड़ीसा की राज्य सरकारों ने भी एसईसीएफ में उतनी ही राशि का अंशदान कर दिया है और उन्हें बीईई द्वारा दूसरी किश्त भी प्रदान कर दी गई है।

12वीं योजना में सभी राज्यों में एसईसीएफ की स्थापना का प्रस्ताव है और

- राज्यों में एसईसीएफ के गठन तथा उसमें राज्य सरकारों द्वारा उतनी ही राशि का अंशदान करने के लिए एडीए के साथ बातचीत करना।
- ऊर्जा संरक्षण संबंधी विभिन्न कार्यकलापों के कार्यान्वयन और एसईसीएफ के अधीन निधि के सदुपयोग हेतु एसडीए के साथ समन्वय स्थापित करना।

12वीं योजना में राज्य ऊर्जा संरक्षण निधि में 50 करोड़ रुपए का अंशदान प्रस्तावित है।

एसडीए के सुदृढ़ीकरण और एसईसीएफ के लिए कुल 190 करोड़ रुपए की निधि आवश्यक है।

12.3.4 मानक और लेबलिंग कार्यक्रम

(क): उपस्कर और उपकरण: राष्ट्रीय ऊर्जा लेबलिंग कार्यक्रम का शुभारंभ 18 मई, 2006 को किया गया। इस योजना का प्रमुख उद्देश्य उपभोक्ता को ऊर्जा बचत के बारे में सूचनाप्रद विकल्प उपलब्ध कराना और इस प्रकार बेचे जा रहे संगत उपस्करों / उपकरणों की लागत बचत संभावनाओं के बारे में उन्हें सूचना देना है। 11वीं योजना के दौरान इस योजना के अंतर्गत आरंभ में स्वैच्छिक लेबलिंग श्रेणियों के तहत बहुत से उपकरणों को शामिल किया गया जिसमें से 4 उपकरण/उपस्कर अर्थात एसी, फ्रास्ट फ्री रेफ्रिजरेटर, टीएफएल और वितरण ट्रांसफार्मर (200 केवीए तक) को अनिवार्य लेबलिंग कार्यक्रम के लिए अधिसूचित किया गया है। स्पिलिट एसी और फ्रास्ट फ्री रेफ्रिजरेटर के लिए ऊर्जा निष्पादन मानकों को जनवरी, 2012 से पुन: अद्यतन किया गया। 11वीं योजना के दौरान मानक और लेबलिंग (एस एण्ड एल) कार्यक्रम काफी सफल रहा और इसने 31 दिसंबर, 2011 तक 7766 मेगावाट अतिरिक्त क्षमता बचत में योगदान दिया।

11वीं योजना में इस कार्यक्रम के अंतर्गत 14 उपकरणों को शामिल करने तथा 12वीं योजना में भी इस कार्यक्रम के विस्तार की परिकल्पना की गई है। ऐसा अनुमान है कि 12वीं योजना के अंत तक 27 उत्पादों (सात अनिवार्य और बीस स्वैच्छिक) को मानक और लेबलिंग योजना के अंतर्गत शामिल किया जाएगा। पांच उत्पादों पर संगत डेटा प्राप्त करने के लिए एक आधारभूत सर्वेक्षण भी किया जाएगा।

उपस्करों और उपकरणों के लिए एस एण्ड एल योजना के अंतर्गत 12वीं पंचवर्षीय योजना में प्रस्तावित कार्यकलापों में निम्नलिखित शामिल हैं:

- एस एण्ड एल कार्यक्रम में कम से कम 13 नए उपकरण और उपस्करों को शामिल करना। 12वीं योजना में कुछ इलेक्ट्रिकल उपकरणों में वैकल्पिक विद्युत हानि को कम करने पर भी जोर दिया जाएगा।
- डाइरेक्ट कूल रेफ्रिजरेटर, कलर टी.वी. और हीटर के लिए अनिवार्य लेबलिंग कार्यक्रम
- सभी पणधारकों के बीच जागरूकता पैदा करना और उनका क्षमता निर्माण करना
- एस एण्ड एल योजना में शामिल उपकरणों / उपस्करों की परीक्षण जांच, लेबल सत्यापन, बाजार प्रभाव मूल्यांकन आदि करना।
- सत्यापन और निगरानी के लिए स्वतंत्र एजेंसी के रूप में कार्य करने हेतु राज्य द्वारा नामित एजेंसियों को शामिल करना।

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 239

(ख) परिवहन क्षेत्र के लिए मानक और लेबलिंग (एस एण्ड एल)

भारत में कुल 13.3 मिलियन पैसेंजर कार (2010-11) हैं, जिनमें लगभग 9 एमटीओई की खपत की जाती है। देश में नई यात्री कारों की औसत वार्षिक बिक्री लगभग 1.1 मिलियन है। इस क्षेत्र के अंतर्गत निम्नलिखित कार्य प्रस्तावित हैं:

- वर्ष 2015-16 से 2020-21 और 2020-21 से आगे निगमित औसत ईंधन बचत (सीएएफसी) के संदर्भ में ईंधन मितव्ययिता शर्तें लागू करना
- यात्री कारों के लिए लेबलिंग कार्यक्रम शुरू करना
- मानक और लेबलिंग कार्यक्रम को अंतिम रूप देने के लिए दो और तीन पहिया वाहनों तथा वाणिज्यिक वाहनों (ट्रक और बस) के लिए तकनीकी अध्ययन

12वीं पंचवर्षीय योजना के अंत तक 4.3 एमटीओई ऊर्जा की बचत का लक्ष्य निर्धारित किया गया है।

उपर्युक्त प्रस्तावित योजनाओं के आधार पर 12वीं पंचवर्षीय योजना के दौरान मानक और लेबलिंग कार्यक्रम के लिए 200 करोड़ रुपए की निधि आवश्यकता की परिकल्पना की गई है। उपर्युक्त निवेश के आधार पर वर्ष 2016-17 में एस एण्ड एल योजना से 10.4 बिलियन यूनिट विद्युत ऊर्जा और 4.3 एमटीओई थर्मल ऊर्जा की बचत होने का अनुमान है।

(ग) सुपर एफिशिएंट इक्विमेंट प्रोग्राम (एसईईपी)

एसईई पी ऊर्जा कार्यकुशलता के लिए बाजार परिवर्तन (एमटीईई) प्रयास का एक भाग है, जो उन्नत ऊर्जा कार्य कुशलता के लिए राष्ट्रीय मिशन (एनएमईईई) के चार प्रयासों में से एक है। एमटीईईई का प्राथमिक उद्देश्य उत्पादों को अधिक वहनीय (लागत अनुकूल) बनाने के लिए नवोन्मेषी उपायों के जरिए ऊर्जा कार्य कुशल उपकरणों की ओर तेजी से रुख परिवर्तित करना है।

इस कार्यक्रम के अंतर्गत प्रमुख चुनिंदा उपकरणों के विनिर्माताओं के साथ प्रत्यक्ष रूप से जुड़कर कार्रवाई करने का प्रस्ताव किया गया है। इसके लिए सामान्यत: ऐसे विनिर्माताओं के साथ समन्वय स्थापित करने की आवश्यकता है, जिनकी इन उपकरणों के लिए बाजार में हिस्सेदारी 70-90% है।

एसईईपी के अंतर्गत विनिर्माताओं को सुपर एिफशिएंट अप्लांसेज (एसईए) के उत्पादन की बढ़ी हुई लागत के अधिकाशं भाग की प्रतिपूर्ति की जाएगी और उन्हें इस बात के लिए भी प्रोत्साहित किया जाएगा कि वे न केवल इनका उत्पादन बल्कि सामान्य उपभोक्ताओं को उचित मूल्य पर एसईए की बिक्री भी करें। जैसे-जैसे इनकी मात्रा बढ़ती जाएगी प्रोत्साहन की आवश्यकता तदनुसार कम होने का अनुमान है।

इस ढंग से यह कार्यक्रम भारत में वर्तमान में उपलब्ध उपकरणों की तुलना में अधिक कार्यकुशल उपकरण उपलब्ध कराने में सहायक होगा, इस प्रकार औसत खरीद की कार्यकुशलता और अंतर्राष्ट्रीय स्तर पर उपलब्ध सर्वाधिक कुशल प्रौद्योगिकी के बीच का अंतर भी धीरे धीरे कम होगा।

सुपर एफिशिएंट अप्लांसेज (एसईए) बीईई के 5 सितारा रेटिंग वाले उपकरणों की तुलना में 30-50% कम ऊर्जा की खपत होती है। आरंभ में एसईए की लागत अधिक होगी जो बड़े पैमाने पर उत्पादन सुविधाओं की स्थापना से धीरे धीरे कम की जा सकती है, परंतु बाजार में मांग की अनिश्चितता के कारण विनिर्माता सुपर एफिशिएंट अप्लांसेज के लिए उत्पादन लाइनों में परिवर्तन हेतु आरंभिक निवेश करने में संकोच महसूस कर रहे हैं। इन बाधाओं को नवोन्मेषी नीतिगत हस्तक्षेपों द्वारा दूर करने की आवश्यकता है।

बीईई ने एसईईपी के अंतर्गत पहले उत्पाद के रूप में सीलिंग पंखों की पहचान की है और विनिर्माताओं, प्रौद्योगिकी विकासकर्ताओं, सिविल समाज संगठनों, अनुसंधान और विकास तथा शैक्षणिक संस्थानों जैसे पणधारकों के साथ परामर्श से तकनीकी विनिर्देश, निगरानी प्रक्रिया आदि तैयार की गई है।

एसईईपी कार्यक्रम को लागू करने से सीलिंग पंखों के बाजार में महत्वपूर्ण परिवर्तन होगा। ऐसा अनुमान है कि 12वीं योजना के अंत तक लगभग 26 मिलियन एसईईए सीलिंग पंखे लगाए जाएंगे जो 12वीं योजना के अंतिम वर्ष अर्थात 2016-17 में लगभग 2.2 बिलियन यूनिट की बचत करेंगे।

12वीं योजना में एलईडी बल्बों के लिए भी एसईईपी कार्यक्रम लागू किया जाएगा। ऐसा अनुमान है कि 12वीं योजना के अंत तक लगभग 25 मिलियन एलईडी बल्ब लगाए जाएंगे जो 12वीं योजना में लगभग 2.01 बिलियन यूनिट की बचत करेंगे।

12.3.5 नगर निगम मांग पक्ष प्रबंधन (एमयूडीएसएम): वैश्विक स्तर पर बढ़ते हुए शहरीकरण के लिए नगर निगम निकायों से स्ट्रीट लाइटिंग, ठोस अपशिष्ट प्रबंधन, सीवेज उपचार और निपटान आदि जैसी सेवाएं प्रदान करने की अपेक्षा है। इन सभी कार्यकलापों में काफी मात्रा में विद्युत की खपत होती है, जो बहुत ही असामान्य और अकुशल तरीके से किए जाते हैं। कभी कभी ऊर्जा की कुल लागत नगर निगम के बजट के 50% से अधिक हो जाती है और ऊर्जा कार्य कुशलता उपायों के कार्यान्वयन से इसे कम से कम 25% तक घटाया जा सकता है। नगर निगम मांग पक्ष प्रबंधन (एमयूडीएसएम) कार्यक्रम का आधारभूत उद्देश्य शहरी स्थानीय निकायों (यूएलबी) की संपूर्ण ऊर्जा कार्य कुशलता में सुधार करना है, जिसके परिणामस्वरूप विद्युत खपत काफी कम होगी, इस प्रकार यूएलबी की लागत/व्यय कम होंगे। नगर निगम क्षेत्र की स्थिति का विश्लेषण 2007 में किया गया। इसमें 23 राज्यों/संघ राज्यों को शामिल किया गया। 23 राज्यों में फैले 171 शहरों के निष्कर्षों से पता चला कि केवल 9 शहरों में ही विशेष ऊर्जा प्रकोष्ठ मौजूद हैं। अन्य नगर निगम क्षेत्रों में न तो ऊर्जा प्रकोष्ठ मौजूद थे और न ही ऊर्जा कार्य कुशलता में सुधार के लिए डेटा संग्रहण की कोई व्यवस्था की गई थी। ऊर्जा कार्य कुशलता ब्यूरो ने देश में 175 नगर निगमों को शामिल करते हुए एक कार्यक्रम शुरू किया है, जहां ईएससीओ मोड में विस्तृत परियोजना रिपोर्ट (डीपीआर) तैयार की जाती है और ऊर्जा लेखापरीक्षा सहित उनका कार्यान्वयन किया जाता है।

यूएलबी में ऊर्जा कार्यकुशलता

• 171 शहरों में से कम से कम 38 शहरों में ऊर्जा कार्यकुशलता प्रयासों के लिए अलग बजट आवंटित किया गया है। ध्यान देने योग्य बात यह है कि इन 171 शहरों के 12,123 करोड़ रुपए के कुल बजट आवंटन में से वर्ष 2006-07 में ऊर्जा कार्यकुशलता प्रयासों के लिए विशेष रूप से मात्र 128.5 करोड़ रुपए (1.06%) आवंटित किए गए जो 2007-08 में 18430 करोड़ रुपए के कुल बजट प्रावधान में से 161.8 करोड़ रुपए के आवंटन के साथ घटकर 0.88% हो गया। ऐसा अनुमान है कि स्थिति विश्लेषण सर्वेक्षण में डेटा संग्रहण के आधार पर 12वीं योजना के लिए स्थानीय शहरी निकायों में संभावित ऊर्जा बचत 257 मिलियन यूनिट होगी।

वाटर पंपिंग में ऊर्जा कार्यकुशलता

यूएलबी की आरंभिक निवेश ग्रेड लेखापरीक्षा (आईजीए) के दौरान यह पाया गया कि कुछ समय पश्चात बहुत से वाटर पंपिंग निकायों (जल निगम/जल संस्थान/जल विभाग) को स्थानीय शहरी निकायों के कार्यक्षेत्र से अलग किया गया है। इसलिए इन निकायों का अलग स्थिति विश्लेषण किया गया। 105 शहरों में फैले 1896 वर्ग किलोमीटर क्षेत्र में 3520.65 लाख की कुल जनसंख्या वाले प्रतिनिधि जल निकायों को 19 शहरों

को शामिल करते हुए किए गए स्थिति विश्लेषण के लिए इस नमूना आधारित सर्वेक्षण के दौरान शामिल किया गया।

इस अध्ययन में वाटर पंपिंग के लिए अनुमानत: विद्युत की संपूर्ण खपत 1040 मेगा यूनिट था, जिसमें लगभग 208 मेगा यूनिट विद्युत बचत की संभावना थी।

उपर्युक्त सर्वेक्षण के आधार पर 12वीं योजना के दौरान एमयूडीएसएम योजना के लिए 25 करोड़ रुपए की निधि आवश्यकता परिकल्पित की गई है क्योंकि इस योजना के अंतर्गत देश में एमयूडीएसएम के कार्यान्वयन हेतु एक संस्थागत व्यवस्था सृजित की जाएगी। उपर्युक्त बजट जल निगम (जल निकायों) की निवेश आधारित लेखापरीक्षा और ऐसे कुछ चुनिंदा यूएलबी में ऊर्जा संरक्षण उपायों के कार्यान्वयन हेतु निर्धारित किया गया है, जिनकी डीपीआर 11वीं पंचवर्षीय योजना में तैयार कर ली गई थी।

12.3.6 कृषि मांग पक्ष प्रबंधन (एजीडीएसएम) : देश में कृषि क्षेत्र में लगभग 20% विद्युत की खपत की जाती है जो सरकार के ग्रामीण विद्युतीकरण प्रयासों के फलस्वरूप बढ़ती जा रही है। कृषि क्षेत्र में विद्युत की अधिकांश खपत पंपिंग सेटों में की जाती है जो सामान्यत: ऊर्जा कार्यकुशलता की दृष्टि से बेहतर नहीं होते हैं। चूंकि कृषि क्षेत्र के लिए टैरिफ सामान्यत: सबसे कम होते हैं और इसके लिए किसानों को अत्यधिक छुट प्रदान की जाती है, पंपिंग सेट की कार्यकुशलता में सुधार के लिए कृषि उपभोक्ताओं कोई प्रोत्साहन नहीं दिया जाता है। हालांकि विद्युत कंपनियां इन श्रेणियों के उपभोक्ताओं को बेची गई ऊर्जा के प्रति यूनिट पर किफायती मूल्य की वसूली नहीं कर पा रही हैं और इसीलिए डीएसएम उपायों के संदर्भ में इन श्रेणियों के उपभोक्ताओं को विशेष रूप से लक्षित करने की आवश्यकता है। कृषि संबंधी मांग पक्ष प्रबंधन के अंतर्गत ऐसे बहुत से अवसर उपलब्ध कराए जाते हैं, जिनसे इस क्षेत्र में विद्युत की संपूर्ण खपत को कम किया जा सकता है, भूमिगत जल निष्कर्षण की दक्षता में सुधार किया जा सकता है और इस क्षेत्र के प्रति सेवा बाध्यता का त्याग किए बिना राज्यों पर सब्सिडी के बोझ कम किया जा सकता है। कृषि क्षेत्र में ऊर्जा बचत की संभावनाओं, जो कुल ऊर्जा खपत के लगभग 20.75% (2007-08) के समतुल्य होने का अनुमान है, का लाभ उठाने के लिए 12वीं योजना में किए जाने वाले प्रस्तावित कार्यकलापों के तहत संपूर्ण योजना के दौरान स्थायी ऊर्जा कार्यकुशलता में तेजी लाने वाली प्रक्रियाओं पर जोर दिया जाएगा; प्रत्येक नए पंपिंग सेट कनेक्शन के लिए पूरे देश में व्यापक स्तर पर अनिवार्य विनियम, ईईईपीएस के लिए वित्तीय सहायता, 11वीं योजना में तैयार की गई डीपीआर का कार्यान्वयन, निगरानी और सत्यापन, मौजूदा राज्य / केन्द्र सरकार की योजनाओं में स्टार रेटिंग वाले पंपिंग सेटों के प्रयोग को सुकर बनाना, सीडीएम कार्यप्रणाली का प्रयोग/सीईआर अर्जन, परिणामों के प्रचार प्रसार हेतु रणनीतिक पहल करने पर जोर दिया जाएगा। 11वीं पंचवर्षीय योजना के दौरान कृषि डीएसएम योजना के प्रमुख प्रभावों में लगभग 20,885 पंपिंग सेटों को शामिल करते हुए 8 अलग राज्यों में 95 मेगा यूनिट की वार्षिक ऊर्जा बचत संभावना का मूल्यांकन शामिल है। महाराष्ट्र के सोलापुर क्षेत्र में 2600 पंप सेटों को शामिल करते हुए पहली कृषि डीएसएम प्रायोगिक परियोजना का कार्यान्वयन किया जा रहा है।

11वीं योजना के दौरान हासिल किए गए लक्ष्यों के आधार पर 12वीं योजना के अंत में 2.7 लाख पंप सेटों की कार्यकुशलता उन्नयन द्वारा लगभग 660 मिलियन यूनिट विद्युत की खपत कम करने का प्रस्ताव किया गया है। इस लक्ष्य को पूरा करने के लिए निम्नलिखित प्रयास प्रस्तावित हैं:

 एसडीए के जरिए नए कनेक्शन के लिए बीईई स्टार लेबलयुक्त पंप सेटों का प्रयोग अनिवार्य करने के लिए नियामक व्यवस्था (लक्ष्य – 2.5 लाख पंप सेट)

- ईईपीएस की स्थापना के लिए छोटे और मझोले किसान श्रेणी को प्रदान की गई वित्तीय सहायता के साथ स्टार रेटित ऊर्जा कुशल पंप सेट (ईईपीएस) के प्रयोग को बढ़ावा देने के लिए एसडीए/राज्य सरकारों को सहायता प्रदान करना।
- कृषि पंपिंग क्षेत्र के लिए उपलब्ध राज्य/केन्द्र सरकार की मौजूदा योजनाओं में ईईपीएस के प्रयोग को बढावा देना
- 11वीं योजना के दौरान 8 राज्यों में तैयार की गई डीपीआर के कार्यान्वयन और परियोजना ऊर्जा बचत करने के लिए निगरानी और सत्यापन प्रोटोकॉल लागू करने में सहायता प्रदान करना (लक्ष्य : 0.2 लाख पंप सेट)।
- सभी पणधारकों को तकनीकी सहायता और क्षमता विकास।
- सार्वजनिक ग्रामीण पेयजल प्रणालियों में वाटर पंपिंग प्रणालियों की ऊर्जा कार्यकुशलता में सुधार के लिए कुछ प्रदर्शन परियोजनाएं (बजटीय प्रावधान : 9.1 करोड़ रुपए)।

12वीं पंचवर्षीय योजना के अंत में यह पूर्वानुमान है कि कृषि पंपिंग सेटों के बाजारीय परिदृश्य में परिवर्तन से संगठित एसएमई क्षेत्र में पंपिंग सेटों के बड़े विनिर्माता बीईई योजनाओं/कार्यक्रमों के तहत शुरू किए गए विभिन्न प्रयासों के फलस्वरूप ऊर्जा की दृष्टि से कुशल स्टार लेबल युक्त पंप सेटों का विनिर्माण शुरू कर देंगे।

इस योजना के अंतर्गत डिस्कॉम, राज्य नियामक आयोगों, राज्य द्वारा नामित एजेंसियों, राज्य सरकारों, पंप विनिर्माताओं, ऊर्जा बचत कंपनियों, किसानों/उपभोक्ताओं आदि जैसे पणधारकों की व्यापक सहभागिता सुनिश्चित करने का प्रयास किया गया है।

12वीं योजना के अंतिम वर्ष अर्थात 2016-17 में विद्युत की अनुमानित बचत लगभग 660 मेगा यूनिट है, जिसके लिए लगभग 80 करोड़ रुपए के वित्तीय बजट की आवश्यकता है।

12.3.7 लघु और मध्यम उद्यमों (एसएमई) और नामित उपभोक्ताओं के लिए ऊर्जा कार्यकुशलता: एसएमई क्षेत्र भारतीय अर्थव्यवस्था का एक महत्वपूर्ण घटक है जो जीडीपी में 8% का महत्वपूर्ण योगदान करता है। विनिर्माण आउटपुट में इसका योगदान 45% और कुल निर्यात में 40% है। इसी प्रकार यह क्षेत्र ऊर्जा बचत में भी महत्वपूर्ण भूमिका अदा करता है, जो औद्योगिक क्षेत्र द्वारा कुल विद्युत खपत के लगभग 25% के समतुल्य है। देश में 1200 से अधिक एमएसएमई क्लस्टर मौजूद हैं, जिसमें लगभग 350-400 बड़े विनिर्माता समूह शामिल हैं, जिनमें से लगभग 180 क्लस्टर ऊर्जा संवेदी हैं। इस प्रकार एमएसएमई को ऊर्जा की दृष्टि से कुशल स्वच्छ प्रौद्योगिकियों का अधिग्रहण करने और उन्हें अपनाने, क्षमता निर्माण, विशेष रूप से जलवायु परिवर्तन के लिए राष्ट्रीय कार्य योजना (एनएपीसीसी) के संदर्भ में विशेष सहयोग प्रदान करने की आवश्यकता है। 25 उच्च ऊर्जा खपत वाले लघु और मध्यम उद्यमों में ऊर्जा कार्यकुशलता उपायों को तेजी से लागू करने के लिए बीईई ने राज्य द्वारा नामित एजेंसियों के परामर्श से देश में 25 एसएमई क्लस्टरों में नैदानिक अध्ययन शुरू किया है और क्लस्टर विशेष पर आधारित ऊर्जा कार्यकुशलता मैन्युअल/बुकलेट तथा एसएमई में ऊर्जा संरक्षण को बढ़ावा देने वाले दस्तावेज तैयार किए हैं। 12वीं योजना के दौरान किए जाने वाले प्रस्तावित कार्यकलाए/योजनाएं निम्नानुसार हैं :

- डीपीआर के कार्यान्वयन को सुकर बनाते हुए ऊर्जा कार्यकुशलता और प्रौद्योगिकी उन्नयन के लिए क्षेत्र आधारित पहल
- अखिल भारतीय स्तर पर लक्षित एसएमई क्षेत्र का ऊर्जा मानचित्रण
- एसएमई क्षेत्र में ऊर्जा कुशल प्रौद्योगिकियों को अपनाने के लिए नवोन्मेषी वित्तीय योजनाएं शुरू करना।
- तकनीकी सहायता और क्षमता निर्माण।
- एसएमई उत्पाद लेबलिंग संवर्धन योजना

यह पहल 11वीं योजना के परिणामों और निष्कर्षों की पुनरावृत्ति पर आधारित होगी। इन 25 एसएमई क्लस्टरों में ऊर्जा की कुल खपत 4468375 एमटीओई थी और अनुमानित ऊर्जा बचत की संभावना लगभग 663771

एमटीओई थी जो कुल खपत का लगभग 15% है। ऐसा रिपोर्ट किया गया है कि इन क्लस्टरों में 650 ऊर्जा कार्यकुशलता परियोजनाओं से लगभग 14,300 एमटीओई की बचत की गई। एनएसएमई के ऊर्जा संवेदी क्षेत्र द्वारा वर्ष 2016-17 में ऊर्जा की खपत 30.7 एमटीओई (अनुमानित) होगी। बचत के निर्धारित लक्ष्य (131 मेगावाट) को प्राप्त करने के लिए बीईई एसएमई में ऊर्जा कार्य कुशलता के लिए कार्यरत विभिन्न एजेंसियों/ कार्यक्रमों की सहायता से देश में विभिन्न क्लस्टरों के लगभग 1500 एसएमई में प्रत्यक्ष रूप से हस्तक्षेप कर लक्ष प्राप्त करने के लिए प्रयासरत हैं। इसमें ऊर्जा कार्यकुशल प्रौद्योगिकियों पर डीपीआर का कार्यान्वयन और एसएमई के लिए स्थानीय/प्रौद्योगिकीय सेवा प्रदाताओं का विकास, बैंकर/वित्तीय संस्थानों सहित पणधारकों का क्षमता निर्माण और परिणामों के प्रचार प्रसार के लिए रणनीतिक पहल शामिल होगी। इस रणनीति के अंतर्गत 11वीं पंचवर्षीय योजना में चयनित क्षेत्रों में व्यापक स्तर पर कार्यान्वयन सुनिश्चित करने के लिए क्लस्टर आधारित पहल को छोड़कर क्षेत्र आधारित पहल की जाएगी।

12.3.8 जागरूकता सहयोग बढ़ाने के लिए संवर्धनात्मक कार्यकलाप - ऊर्जा संरक्षण अधिनियम

ऊर्जा संरक्षण अधिनियम, 2001 के अंतर्गत सरकार और बीईई को पणधारकों के बीच ऊर्जा कार्यकुशलता और ऊर्जा संरक्षण के बारे में जागरूकता बढ़ाने के लिए कदम उठाने की अपेक्षा की गई है। इस क्रम में निम्नलिखित कार्यकलापों का कार्यान्वयन किया जा रहा है:

• राष्ट्रीय जागरूकता अभियान

बीईई और एमओपी के सामान्य जागरूकता अभियान के साथ-साथ मानक और लेबलिंग कार्यक्रम अभियान का उद्देश्य ऊर्जा बचत की आदत बनाने के लाभ और कुशलता के बारे में जनता के बीच जागरूकता फैलाना है। सामान्य जागरूकता अभियान के जिए विद्युत का औचित्यपूर्ण प्रयोग सुनिश्चित कर विद्युत की बचत के लिए लोगों को प्रेरित करने हेतु जागरूकता पैदा की जाएगी। यह अभियान ऊर्जा संरक्षण प्रयासों के लिए अग्रणी अभियान के रूप में कार्य करेगा और इसके तहत हर घंटे की आवश्यकता विषय पर जोर दिया जाएगा। लिक्षत स्रोता वर्ग तक अधिकतम पहुंच स्थापित करने के लिए एक मल्टी मीडिया आउटरीच रणनीति तैयार की गई है। योजना में मीडिया अर्थात प्रिंट, टीवी, सेटलाइट, रेडियो, सिनेमा, इंटरनेट, को शामिल करने से लोगों तक 96% पहुंच बढ़ेगी।

मल्टी मीडिया अभियान चरणबद्ध ढंग से चलाया जा रहा है: टीवी, पिंट मीडिया और रेडियो योजना का कार्यालय पहले ही कर दिया गया है। टीवी/सेटलाइट में चैनलों का चयन टीएएम रेटिंग पर आधारित है जिससे कि 5+ ओटीएस पर 65%+ पहुंच का लक्ष्य हासिल किया जा सके। प्रिंट मीडिया के लिए लोकप्रिय और अग्रणी अंग्रेजी, हिन्दी और क्षेत्रीय भाषाओं के समाचार पत्रों के साथ-साथ संपर्क पत्रिकाओं को शामिल किया गया है। रेडियो अभियान के लिए स्टेशनों का चयन इस ढंग से किया गया है ताकि अधिकतम पहुंच स्थापित की जा सके। सभी चैनलों, रेडियो स्टेशनों और समाचार पत्रों का चयन डीएवीपी की नीति के अनुसार किया गया है। साथ ही निगरानी और निष्पादन मूल्यांकन चरण बनाए जाएंगे ताकि यह सुनिश्चित किया जा सके कि योजना अपने निर्धारित लक्ष्यों को प्राप्त कर रही है।

विभिन्न मीडिया प्लेटफार्मों पर संसाधनों का आवंटन इस ढंग से किया गया है ताकि टीवी और सेटलाइट को सर्वाधिक तथा इसके बाद प्रिंट और रेडियो प्लेटफार्मों को आवंटन किया जा सके। सिनेमा और इंटरनेट के लिए भी योजना प्रस्तावित की गई है।

लक्षित क्षेत्रों और सामान्य जनता के साथ-साथ स्कूली बच्चों के बीच ऊर्जा संरक्षण के प्रति जागरूकता पैदा करने के लिए 11वीं योजना के दौरान बहुत से कार्यकलाप किए गए, जिनमें उद्योगों, भवनों, रेलवे के लिए राष्ट्रीय ऊर्जा संरक्षण पुरस्कार और स्कूली बच्चों के लिए ऊर्जा संरक्षण विषय पर पेंटिंग प्रतियोगिता शामिल है।

• राष्ट्रीय ऊर्जा संरक्षण पुरस्कार

विद्युत मंत्रालय की राष्ट्रीय ऊर्जा संरक्षण पुरस्कार योजना में लगभग उद्योग जगत के 36 क्षेत्र, थर्मल पावर स्टेशन, कार्यालयी भवन, होटल और अस्पताल, आंचलिक रेलवे, राज्य द्वारा नामित एजेंसियां, नगर निगम और बीईई के स्टार लेबलयुक्त उपकरणों के विनिर्माता शामिल होते हैं। 1999 से 2011 की अवधि के दौरान पिछले 13 वर्षों में इस पुरस्कार योजना में शामिल यूनिटों ने सामूहिक रूप से 15,789 करोड़ रुपए की बचत की है और ऊर्जा कार्यकुशलता परियोजनाओं में किए गए निवेश की 18 माह में भरपाई की गई। ऊर्जा के संदर्भ में ऊर्जा संरक्षण उपायों में शामिल यूनिटों द्वारा 17956 मिलियन किलोवाट घंटा विद्युत ऊर्जा, 31 लाख किलो लीटर तेल, 124 लाख मीट्रिक टन कोयला और 22.44 बिलियन क्यूबिक मीटर गैस की बचत की गई। प्रगामी औद्योगिक यूनिटों और अन्य स्थापनाओं ने ऊर्जा संरक्षण उपायों की लागत प्रभावशीलता को पहले ही महसूस कर लिया है और वे राष्ट्रीय ऊर्जा संरक्षण दिवस पर इस दिशा में किए गए प्रयासों के लिए संबंधित लोगों/संगठनों को सम्मानित करते हैं, अन्य हजारों यूनिटों और स्थापनाओं को एक संदेश देते हैं, जिन्होंने अभी तक ऊर्जा संरक्षण के जिए लागत प्रभावी संभावनाओं का पूर्ण लाभ प्राप्त नहीं किया है। ऐसी आशा है कि राष्ट्रीय ऊर्जा संरक्षण पुरस्कार योजना राष्ट्र व्यापी ऊर्जा संरक्षण अभियान को बढ़ावा देने और इसकी दिशा में मिलकर आगे बढ़ने के लिए अन्य ऊर्जा उपभोक्ताओं को प्रेरित करेगी।

12वीं पंचवर्षीय योजना के दौरान पहले से जारी सभी कार्यकलापों को सुदृढ़ करने और निम्नलिखित विशिष्ट कार्यकलाप शुरू करने का प्रस्ताव है:

- ऊर्जा संरक्षण पुरस्कार योजना में प्रतिभागी यूनिटों के लिए डेटाबेस का सृजन और इसका विश्लेषण
- उद्योग जगत और बिल्डिंग क्षेत्र में सर्वश्रेष्ठ प्रक्रियाओं का अनुपालन और प्रचार प्रसार
- ऊर्जा संरक्षण पर ईसी पुरस्कार और पेंटिंग प्रतियोगिता को जारी रखना
- सामान्य जनता के लिए प्रिंटिंग, इलेक्ट्रानिक और अन्य मीडिया के जिए ऊर्ज संरक्षण पर जागरूकता पैदा करना।

12वीं पंचवर्षीय योजना के अंतिम वर्ष 2016-17 में लगभग 3.42 बिलियन यूनिट विद्युत ऊर्जा और 5 एमटीओई थर्मल ईंधन की बचत का अनुमान है, जिसके लिए लगभग 100 करोड़ रुपए के वित्तीय बजट की आवश्यकता होगी।

राष्ट्रीय पेंटिंग प्रतियोगिता

जागरूकता बढ़ाने के लिए बच्चे महत्वपूर्ण लिक्षत समूह के साथ-साथ अनिवार्य पणधारक भी हैं; इसलिए विद्युत मंत्रालय और बीईई ने बच्चों के बीच जागरूकता पैदा करने के उद्देश्य से यह पहल शुरू की। विद्युत मंत्रालय ने इस अभियान के विभिन्न कार्यकलापों में से एक प्रमुख कार्यकलाप के रूप में स्कूल स्तर, राज्य और राष्ट्रीय स्तर पर कक्षा 4, 5 और 6 के बच्चों के लिए पेंटिंग प्रतियोगिता, छठवीं से आठवीं कक्षा के विद्यार्थियों के लिए स्कूल और राज्य स्तर पर निंबध लेखन प्रतियोगिता, जिला और राज्य स्तर पर नौवीं से 12वीं कक्षा के विद्यार्थियों के लिए

वाद विवाद प्रतियोगिता शुरू की है, जो न केवल विद्यार्थियों को ऊर्जा संरक्षण की आवश्यकता के बारे में जागरूक बनाया बल्कि उनके माता पिता को भी इस प्रयोजन में शामिल होने और शिक्षा प्राप्त करने का अवसर मिलेगा। यह एक ऐसा उपाय है जो घरेलू क्षेत्रों में जागरूकता पैदा करने में सहायक सिद्ध हो सकता है। वर्ष 2011 में पेंटिंग प्रतियोगिता में लगभग 58,855 स्कूलों और 2072285 विद्यार्थियों ने भाग लिया।

12.3.9 प्राप्त/अपेक्षित परिणाम

मंत्रालय ने 11वीं पंचवर्षीय योजना के अंत तक 5% ऊर्जा खपत कम करने का लक्ष्य निर्धारित किया गया है। मूल्यांकन के अनुसार ऊर्जा बचत संभावना 20,000 मेगावाट है और 11वीं योजना के लिए लगभग 10,000 मेगावाट की बचत करने की योजना बनाई गई है।

इस क्षेत्र में प्रमुख उपलब्धियां निम्नानुसार हैं :

- 🗲 12वीं जांच तक 9,368 अधिप्रमाणित ऊर्जा प्रबंधक जिसमें से 6791 अधिप्रमाणित ऊर्जा लेखापरीक्षक हैं।
- > ऊर्जा प्रबंधकों और लेखापरीक्षकों के लिए 13 राष्ट्रीय अधिप्रमाणन परीक्षाएं सफलतापूर्वक आयोजित की गईं।
- ऊर्जा व्यवसायियों की सहायता के लिए 4 मार्गदर्शिकाएं भी तैयार की गईं।
- 4 अन्योन्य क्रियात्मक वेबसाइटें तैयार की गईं।
- 32 राज्य सरकारों और संघ राज्य क्षेत्रों में अपने राज्य में ईसी अधिनियम के कार्यान्वयन हेतु राज्य द्वारा नामित एजेंसियों को अधिसूचित किया है।
- मानक और लेबलिंग योजना के परिणामस्वरूप वर्ष 2011-12 के दौरान 4611 मेगा यूनिट विद्युत की बचत की गई जो 2565 मेगावाट विद्युत उत्पादन क्षमता के समतुल्य है।
- > राष्ट्रीय ऊर्जा संरक्षण पुरस्कार कार्यक्रम में 644 प्रतिभागी यूनिटों द्वारा अलग-अलग की गई बचत के आधार पर अनुमानित त्याज्य क्षमता 504 मेगावाट के समतुल्य है।
- 11वीं योजना के दौरान बीईई के कार्यक्रमों/योजनाओं से संबंधित बचाई गई ऊर्जा के संदर्भ में उपलिब्धयां
 10,836 मेगावाट हैं।

12.4 आपूर्ति पक्ष प्रबंधन

12.4.1 देश में थर्मल यूनिटों की यूनिट क्षमता 600 मेगावाट तक है। 660/800 मेगावाट क्षमता वाली बहुत सी सुपर क्रिटिकल यूनिटों निर्माणाधीन हैं। आरंभ में सुपर क्रिटिकल यूनिटों का डिजाइन 247 किलोग्राम प्रति वर्ग सेंटीमीटर, 537/50C के साथ तैयार किया गया था। अब 272 किलोग्राम प्रति वर्ग सेंटीमीटर, 565/5930C, के मानदंडों के साथ परिकल्पना की जा रही है। उच्च वाष्प मानदंडों के साथ परिकल्पित सुपर क्रिटिकल यूनिटों की कार्यकुशलता वर्तमान में उपलब्ध 500 मेगावाट यूनिटों की कार्यकुशलता की तुलना में लगभग 5% अधिक होगी। इसके परिणामस्वरूप कोयले की खपत भी उसी अनुपात में कम होगी और ग्रीन हाउस गैस (जीएचजी) का उत्सर्जन भी कम होगा। 12वीं योजना में अधिकांश कोयला आधारित क्षमता अभिवृद्धि सुपर क्रिटिकल यूनिटों से संभावित है। 13वीं योजना के दौरान थर्मल क्षमता अभिवृद्धि केवल सुपर क्रिटिकल यूनिटों से ही की जाएगी। 100 मेगावाट अथवा उससे कम क्षमता की बहुत सी छोटी यूनिटें प्रचालनरत हैं। इन यूनिटों में से ज्यादातर का औसत पीएलएफ बहुत ही कम, यहां तक कि 50% से भी कम है। ये यूनिटें नॉन-रीहीट टाइप की हैं, जिनकी डिजाइन कार्यकुशलता बहुत ही कम है। आगामी 10 वर्षों में ऐसी यूनिटों को चरणबद्ध ढंग से बंद करने की योजना है।

- 12.4.2 देश में थर्मल पावर स्टेशनों का प्रचालन उच्च अनुषंगी विद्युत खपत और द्वितीयक ईंधन तेल की खपत पर किया जा रहा है। कमजोर प्रचालन और रख-रखाव प्रक्रियाओं के साथ इन घटकों के परिणामस्वरूप स्टेशनों की कार्यकुशलता कमजोर है। थर्मल पावर स्टेशनों पर सीईए द्वारा किए गए मानचित्रण अध्ययन से पता चला है कि पावर स्टेशनों को कमजोर कंडेंशर वैक्यूम, एचपी हीटरों की अनुपलब्धता, डीएम जल की अत्यधिक खपत, ब्वॉयलर में हवा का रिसाव ईंधन गैस का अधिक तापमान और बहुत से अन्य कारणों से अत्यधिक नुकसान हो रहा है। अधिकांश स्टेशनों को सब-ऑप्टिमल प्रचालन के कारण अत्यधिक वित्तीय हानि हो रही है और इसके परिणामस्वरूप कोयला तथा तेल की खपत बहुत अधिक है।
- 12.4.3 उच्चतर उत्पादन, ऊष्मा दर में सुधार और बहुत से थर्मल पावर स्टेशनों में विशिष्ट ईंधन तेल तथा कोयले की खपत कम करने के संदर्भ में लाभ अर्जित किए गए हैं। जहां सीईए द्वारा मानचित्रण रिपोर्ट में दी गई सिफारिशों को कार्यान्वित किया गया है।
- 12.4.4 सिफारिशों के कार्यान्वयन की नियमित आधार पर निगरानी की जा रही है। सीईए ने "थर्मल पावर स्टेशनों में ऊर्जा लेखापरीक्षा प्रकोष्ठ की स्थापना के लिए दिशानिर्देश" भी तैयार किए हैं, जिससे कि थर्मल पावर स्टेशनों को अपने स्तर पर ही ऊर्जा लेखापरीक्षा संचालित करने के लिए प्रोत्साहित किया जा सके। ऊर्जा संरक्षण अधिनियम, 2001 में यह अनिवार्य प्रावधान किया गया है कि पावर स्टेशनों की ऊर्जा लेखापरीक्षा अधिप्रमाणित ऊर्जा लेखापरीक्षकों द्वारा करवाई जाए। प्रचालनात्मक दक्षता में सुधार के लिए ऊर्जा लेखापरीक्षा और सिफारिशों के कार्यान्वयन को नियमित कार्यकलापों में शामिल किया जाए और तदनुसार आवश्यक वित्तीय व्यवस्थाएं की जाएं। भारतीय विद्युत प्रणाली में पारेषण और वितरण (टी एण्ड डी) संबंधी हानियां विश्व में सर्वाधिक हैं। वर्तमान में अखिल भारतीय स्तर पर टी एण्ड डी हानियां लगभग 27% हैं, जिसमें से अधिकांश भाग गैर तकनीकी हानियों और चोरी का है। गैर तकनीकी हानियों को थोड़ी सी अतिरिक्त लागत पर बेहतर प्रबंधन से कम किया जा सकता है। अतिरिक्त कैपिस्टर लगाकर, उपयुक्त आकार वाले ट्रांस्फार्मरों की स्थापना, एमोरफस कोर ट्रांस्फार्मरों की स्थापना, पारेषण और वितरण लाइनों का विस्तार और सुदृढ़ीकरण तथा लो वोल्टेज लाइनों की लंबाई कम करके तकनीकी हानियों को कम करने के लिए योजनाएं तैयार की गई हैं। पारेषण और वितरण हानियों को कम करने और विद्युत प्रणालियों की ऊर्जा लेखापरीक्षा के लिए जारी दिशानिर्देशों के आधार पर विद्युत कंपनियों को टी एण्ड डी हानियों को कम करने के लिए प्रोत्साहित किया गया है। इसके लिए कृषि क्षेत्र का लोड अलग कर और प्रयोग के समय (टीओयू) अलग-अलग टैरिफ आदि प्रक्रिया लागू कर कंप्यूटरीकृत प्रणाली लोड प्रबंधन के संदर्भ में योजनाओं का कार्यान्वयन किया जाए। टीओयू टैरिफ इस ढंग से डिजाइन किया जाए कि यह निम्न दर के लिए प्रोत्साहन का कार्य करे और यह उपभोक्ताओं को ऑफ पीक घंटों के दौरान ऊर्जा के अधिक उपयोग के लिए प्रोत्साहित करे। इसके अलावा पीक घंटों के दौरान ऊर्जा के अधिक प्रयोग को हतोत्साहित करने के लिए इसकी दरें अपेक्षाकृत अधिक निर्धारित की जाएं। पीक घंटों के दौरान प्रणाली के लोड को अलग और न्यूनतम करने के उद्देश्य से लोड की क्षेत्रीय स्टेगरिंग की जानी चाहिए। इन प्रयासों का तेजी से अनुपालन किया जाना चाहिए ताकि विद्युत की चोरी और अनावश्यक दुरुपयोग को रोका जा सके। उच्च वोल्टेज वितरण प्रणाली (एचवीडीएस) में टी एण्ड डी हानियों को कम करने की अपार संभावनाएं हैं अत: इसे प्रोत्साहित किया जाना चाहिए।
- 12.4.5 भारतीय विद्युत प्रणाली लगभग 100 वर्ष पुरानी है। नवीनतम प्रौद्योगिकी विकास के साथ उत्पादन और अंतिम उपभोक्ता को स्वीकार्य पर्यावरणीय सीमाओं के भीतर सर्वाधिक प्रभावी और कुशल ढंग से विद्युत की आपूर्ति प्रणाली में सुधार के की अपार संभावनाएं हैं। सर्कुलेटिंग / प्रेसराइज्ड फ्लूडाइज्ड बेड कंब्शन (सीएफबीसी

और पीएफबीसी), कोयले की धुलाई/लाभ प्रदान करना, सब स्टेशनों का कंप्यूटर आधारित उन्नयन, सुपर क्रिटिकल पल्वराज्ड फ्यूल यूनिट और इंटीग्रेटेड गैसीफिकेशन कंबाइंड साइकल (आईजीसीसी) प्लांट नवीनतम प्रौद्योगिकियों के कुछ उदाहरण हैं।

12.5 11वीं योजना के अधीन उपलब्धि

11वीं योजना के दौरान विद्युत मंत्रालय और ऊर्जा कार्यकुशलता ब्यूरो (बीईई) ने भारत में ऊर्जा कार्यकुशलता को बढ़ावा देने के लिए बहुत सी योजनाएं लागू की थीं। बीईई की योजनाओं में मानक और लेबलिंग (एस एण्ड एल), ऊर्जा संरक्षण बिल्डिंग कोड (ईसीबीसी) और मौजूदा बिल्डिंगों में ऊर्जा कार्यकुशलता, बचत लैंप योजना (बीएलवाई), एसडीए का सुदृढ़ीकरण, लघु और मध्यम उद्यमों (एसएमई) में ऊर्जा कार्यकुशलता, कृषि और नगर निगम मांग पक्ष प्रबंधन (डीएसएम) और राज्य ऊर्जा संरक्षण निधि (एसईसीएफ) में योगदान शामिल हैं।

विद्युत मंत्रालय (एमओपी) की योजनाओं में ऊर्जा संरक्षण जागरूकता, ऊर्जा संरक्षण पुरस्कार और स्कूली बच्चों के लिए ऊर्जा संरक्षण पर पेंटिंग प्रतियोगिता तथा उन्नत ऊर्जा दक्षता के लिए राष्ट्रीय मिशन (एनएमईईई) शामिल हैं। 11वीं पंचवर्षीय योजना (2007-12) में यह प्रस्ताव किया गया था कि 11वीं योजना के आरंभ में अनुमानित ऊर्जा खपत में 5% की बचत का लक्ष्य हासिल किया जाएगा।

इन योजनाओं के परिणाम उत्साहजनक रहे; बीईई और एमओपी की विभिन्न योजनाओं के अंतर्गत बहुत से कार्यकलापों के परिणामस्वरूप 10,836 मेगावाट विद्युत क्षमता की बचत की गई (सत्यापित – दिसंबर, 2011 तक)।

12.6 12वीं योजना में कंपनी आधारित मांग पक्ष प्रबंधन

मांग पक्ष प्रबंधन (डीएसएम) ऐसे उपायों का चयन, आयोजना और कार्यान्वयन है जो मांग को प्रभावित करने अथवा विद्युत मीटर के उपभोक्ता पक्ष को प्रभावित करने के उद्देश्य से शुरू किए जाते हैं। डीएसएम कार्यक्रम से विद्युत कंपनियों की ऊर्जा लागत को घटाया जा सकता है और दीर्घकाल में यह पारेषण और वितरण प्रणालियों के सुदृढ़ीकरण और उत्पादन क्षमता विस्तार की और आवश्यकता को कम कर सकता है। वितरण कंपनियों (डिस्कॉम) में डीएसएम प्रकोष्ठ की स्थापना और वहां कार्यरत कार्मिकों के क्षमता निर्माण हेतु तकनीकी सहायता प्रदान करेगा ताकि उन्हें 12वीं पंचवर्षीय योजना में डीएसएम की निम्नलिखित रणनीतियों और योजनाओं का कार्यान्वयन करने की दृष्टि से समर्थ बनाया जा सके:

(//) लोड सर्वेक्षण

किसी विद्युत कंपनी द्वारा उपभोक्ताओं के खपत पैटर्न का अध्ययन करने के लिए सामान्यत: प्रश्नावली आधारित सर्वेक्षण प्रक्रिया अपनाई जाती है। "मानक लोड सर्वेक्षण तकनीक" विकसित करने की आवश्यकता है, जिन्हें डिस्कॉम द्वारा अपनाया जाए। इसके अलावा यह भी परिकल्पना की जाती है कि डिस्कॉम को कंपनी/शहर स्तर पर लोड प्रोफाइल तैयार करना चाहिए, जिसे आवधिक आधार पर वितरण कंपनियों और बीईई की डीएसएम वेबसाइट (http://www.bee-dsm.in) पर अपलोड किया जाना चाहिए, जिसका डीएसएम योजनाएं तैयार करने और आगामी विश्लेषण में सद्पयोग किया जा सकता है।

(॥) लोड रणनीतियां

उपभोक्ता लोड प्रोफाइल संशोधित करने और इस प्रकार उनकी पीक मांग घटाने के लिए विद्युत कंपनियों द्वारा लोड रणनीतियों को अपनाया जाए। डिस्कॉम/विद्युत कंपनियों द्वारा निम्नलिखित लोड प्रबंधन रणनीतियों का प्रदर्शन किया जाए:

मांग रुझान

मांग रुझान एक ऐसा प्रयास है जिसके तहत पीक घंटों के दौरान अथवा वितरण कंपनियों द्वारा अनुरोध किए जाने पर उपभोक्ताओं द्वारा स्वैच्छिक रूप से लोड कम करके पीक घंटों के दौरान अतिरिक्त क्षमता सृजित की जाती है। लोड कम करने का लक्ष्य ऊर्जा कार्यकुशलता द्वारा अथवा लोड शिफ्टिंग उपायों से लोड घटाकर प्राप्त किया जा सकता है।

लोड प्रबंधन कार्यक्रम

- गतिशील/वास्तविक समय आधारित मूल्य निर्धारण:
 आपूर्ति और मांग की वास्तविक समय आधारित प्रणाली के आधार पर
- प्रयोग के समय पर आधारित दरें : उपभोक्ताओं को दिन के अलग अलग समय पर विद्युत के प्रयोग के लिए अलग अलग दरें प्रस्तावित की जाती हैं।
- स्वचालित/स्मार्ट मीटरिंग: गतिशील/वास्तविक समय आधारित मूल्य निर्धारण अथवा प्रयोग के समय के आधार पर दर ढांचा और तदनुसार बिलिंग प्रक्रिया का कार्यान्वयन
- वेब आधारित/संचार प्रणाली: यह एक ऐसा उपकरण है जिसका प्रयोग उपर्युक्त के साथ साथ उपभोक्ता को वास्तविक समय आधार पर मौजूदा मांग, आपूर्ति, मूल्यों और उसके लिए प्रोत्साहन तथा ऐसे विकल्पों के बारे में सूचित करने के लिए किया जाता है, जिनका प्रयोग उपभोक्ता मांग प्रबंधन के लिए करता है।

(।।।) प्रदर्शन अध्ययन

प्रत्यक्ष स्थापना कार्यक्रम जो ऊर्जा कार्यकुशलता उपायों के किसी पैकेज के लिए डिजाइन, वित्त पोषण, स्थापना संबंधी सभी सेवाएं प्रदान करता है।

(IV) उन्नत मीटरिंग

उन्नत मीटरों में ऑनलाइन संचार, परिशुद्ध मापन, स्थानीय योग्यता, लोड कनेक्ट – डिस्कनेक्ट सुविधा और उपभोक्ता की सुविधा के अनुकूल डिस्प्ले यूनिट जैसी विशेषताएं होती हैं। इस प्रौद्योगिकी को अपनाने से विशेष रूप से मांग रुझान संबंधी कार्यकलापों के लिए मांग पक्ष प्रबंधन के कार्यान्वयन में वितरण कंपनियों को सहायता मिलेगी।

(V) डीएसएम गतिविधियों के लिए वित्तीय व्यवस्था

डीएसएम उपायों और ऊर्जा कार्यकुशलता का रणनीतिक महत्व भारतीय विद्युत कंपनियों के वित्तीय नकदी प्रवाह में सुधार के लिए उनकी क्षमता पर निर्भर करता है।

इसके अलावा डीएसएम तथा मांग रुझान (डीआर) संबंधी कार्यकलापों का सदुपयोग पीक घंटों के दौरान विद्युत की मांग को कम करने के लिए किया जाता है। दूसरे शब्दों में यह कहा जा सकता है कि यह पीक घंटों के दौरान मांग को कम करके उत्पादन, पारेषण और वितरण अवसंरचना के विस्तार पर किए जाने वाले व्यय को कम करेगा। इस प्रकार यह कहा जा सकता है कि इससे निधियां मुक्त होंगी और उनका सदुपयोग पीक मांग को पूरा करने के लिए अन्यथा किया जा सकेगा। राष्ट्रीय स्तर पर लोड वृद्धि की समीक्षा डीएसएम के साथ और उसके बिना की जानी चाहिए और कम पीक वृद्धि के कारण मुक्त हुई निधियों का उपयोग डीएसएम/डीआर संबंधी कार्यकलापों के लिए किया जाना चाहिए। दूसरे शब्दों में यह कहा जा सकता है कि डीएसएम/डीआर का लक्ष्य पीक मांग को कम करना (अर्थात 0.5% से 1%) होना चाहिए और इसके कारण अवसंरचना कार्यों में की गई बचत का इस्तेमाल डीएसएम/डीआर कार्यकलापों के लिए किया जाना चाहिए।

12वीं पंचवर्षीय योजना के अंतर्गत डिस्कॉम द्वारा स्थापित डीएसएम सेल की क्षमता निर्माण के लिए तकनीकी सहायता उपलब्ध कराने हेतु निधियों की कुल आवश्यकता 300 करोड़ रुपए है।

12.7 12वीं योजना में ऊर्जा संरक्षण रणनीति

11वीं पंचवर्षीय योजना के दौरान अपनाई गई रणनीतियों के उत्साहजनक परिणाम प्राप्त होने लगे हैं। अपेक्षित ऊर्जा बचत के लक्ष्यों को हासिल करने के लिए ऊर्जा कार्यकुशलता उपायों के कार्यान्वयन की प्रक्रिया में तेजी लाने हेतु कार्यकलापों के और सुदृढीकरण के साथ साथ मौजूदा योजनाओं को आगे जारी रखना नितांत आवश्यक है।

इसके अलावा व्यापक पैमाने पर ऊर्जा की बचत औद्योगिक, वाणिज्यिक, आवासीय और कृषि क्षेत्रों में योजनाओं के सुदृढ़ीकरण के साथ साथ नए क्षेत्रों में इनके विस्तार के जिए की जा सकती है। 12वीं पंचवर्षीय योजना के अंत में अर्थात वर्ष 2016-17 के दौरान मांग पक्ष में अनुमानित ऊर्जा बचत की संभावना 44.85 बिलियन यूनिट (बस बार पर 60.16 बिलियन यूनिट के समतुल्य) है और औद्योगिक क्षेत्र में 21.3 एमटीओई के समतुल्य अतिरिक्त ऊर्जा बचत (टीपीएस सिहत) और लघु तथा मध्यम उद्यमों, परिवहन क्षेत्र और ऊर्जा संरक्षण (ईसी) पुरस्कार योजना आदि का योगदान इसमें शामिल है। 12वीं योजना के अंतर्गत विभिन्न प्रस्तावित योजनाओं के लिए ऊर्जा बचत (विद्युत और थर्मल) के निर्धारित लक्ष्य नीचे दिए गए हैं:

12.8 जलवायु परिवर्तन पर राष्ट्रीय कार्य योजना (एनएपीसीसी)

30 जून, 2008 को प्रधानमंत्री द्वारा जारी की गई जलवायु परिवर्तन पर राष्ट्रीय कार्य योजना (एनएपीसीसी) में बहुसंख्यक लोगों के जीवन स्तर में सुधार के लिए उच्च वृद्धि दर बनाए रखने और जलवायु परिवर्तन के प्रभावों से उनकी सुभेद्यता कम करने की आवश्यकता महसूस की गई। राष्ट्रीय कार्य योजना में 8 राष्ट्रीय मिशनों की रूपरेखा दी गई है जो जलवायु परिवर्तन के संदर्भ में महत्वपूर्ण लक्ष्यों को प्राप्त करने के लिए बहुआयामी, दीर्घकालिक और एकीकृत रणनीतियों का प्रतिनिधित्व करते हैं। उन्नत ऊर्जा कार्यकुशलता पर राष्ट्रीय मिशन को एनएपीसीसी के लक्ष्यों को प्राप्त करने के लिए महत्वपूर्ण मिशनों में से एक मिशन के रूप में माना जाता है। उन्नत ऊर्जा कार्यकुशलता के लिए राष्ट्रीय मिशन (एनएमईईई) के अंतर्गत भारत के विकासात्मक लक्ष्यों को बढ़ावा देने के साथ साथ जलवायु परिवर्तन के प्रतिकूल प्रभावों को समाप्त करने में सह-लाभों की पहचान करने की अपेक्षा की गई है। लागत प्रभावी ऊर्जा कार्यकुशलता और ऊर्जा संरक्षण उपाय इस संदर्भ में विशेष रूप से महत्वपूर्ण हैं। इस मिशन का आधारभूत उद्देश्य 4ई अर्थात ऊर्जा, कार्यकुशलता, समानता और पर्यावरण के उपयुक्त मिश्रण से स्थायी वृद्धि सुनिश्चित करना है।

एनएमईईई में उन्नत ऊर्जा कार्यकुशलता के निम्नलिखित <u>चार</u> प्रयासों का उल्लेख किया गया है (11वीप याजना में एमओपी और बीईई द्वारा चलाए जा रहे ऊर्जा कार्यकुशलता कार्यक्रमों के अलावा) :

- i) निष्पादन, उपलब्धि और व्यापार (**पीएटी**); के जरिए ऊर्जा संघेदी उद्याणों के लिए अद्वितीय बाजार आधारित व्यवस्था
- ii) उत्पादों क□ अधिक वहनीय बनाने के लिए नवाम्मेषी उपायों के जिरए निर्धारित क्षेत्रों में ऊर्जा की दृष्टि से कुशल उपकरणों की ओर तेजी से रुख करना (ऊर्जा कार्यकुशलता के लिए बाजार परिवर्तन (एमटीईई);
- iii) भावी ऊर्जा बचत का मूर्त रूप देते हुए सभी क्षेत्रों में माण्ण पक्ष प्रबधान कार्यक्रमों के लिए वित्तीय सहायता प्रदान करने वाले तष्ठ का सृजन (ऊर्जा कार्यकुशलता वित्त पाष्ठण प्लेटफार्म (**ईईएफपी**)

विद्युत मंत्रालय और बीईई को एनएमईईई के लिए कार्यान्वयन योजना तैयार करने का दायित्व सौंपा गया। एनएमईईई के अंतर्गत ऊर्जा कार्यकुशलता के लिए पहले से चलाए जा रहे कार्यक्रमों के अलावा उन्नत ऊर्जा कार्यकुशलता हेतु निम्नलिखित चार नए प्रयासों की चर्चा की गई है:

- (i) निष्पादन, उपलब्धि और व्यापार
- (ii) ऊर्जा कार्यकुशलता के लिए बाजार कायाकल्प (एमटीईई)
- (iii) ऊर्जा की दृष्टि से कुशल आर्थिक विकास के लिए ढांचा (एफईईईडी)

(i) निष्पादन, उपलब्धि और व्यापार (पीएटी):

यह ऊर्जा बचत के अधिप्रमाणन के जिए ऊर्जा संवेदी बड़े उद्योगों और सुविधाओं में ऊर्जा कार्यकुशलता में सुधार हेतु लागत प्रभावशीलता बढ़ाने के लिए बाजार आधारित एक व्यवस्था है, जिसका व्यापारिक उपयोग किया जा सकता है। भारत सरकार ने पीएटी योजना 30 मार्च, 2012 को अधिसूचित की और यह 1 अप्रैल, 2012 से अनिवार्य हो गई।

पीएटी योजना के प्रथम चरण अर्थात 2012-13 से 2014-15 के दौरान ऊर्जा की दृष्टि से 8 संवेदी क्षेत्रों जैसे थर्मल पावर प्लांट, एल्युमिनियम, सीमेंट, क्लोर-अलकली, फर्टिलाइजर, लोहा और स्टील, पल्प और पेपर तथा टेक्सटाइल में नामित उपभोक्ताओं को शामिल किया गया है जो वार्षिक आधार पर लगभग 165 मिलियन टन तेल समतुल्य ऊर्जा की खपत करते हैं। इस अविध में भाग लेने वाले उद्योगों के लिए प्रत्यक्ष लाभ के रूप में 6.686 मिलियन टन तेल समतुल्य ऊर्जा की बचत की गई, जो पीएटी के अंतर्गत किए गए मूल्यांकन के अनुसार इन 478 नामित उपभोक्ताओं की रिपोर्ट की गई कुल ऊर्जा खपत का लगभग 4% है।

(ii) ऊर्जा कार्यकुशलता के लिए बाजार कायाकल्प (एमटीईई):

एमटीईई ऊर्जा की दृष्टि से कुशल उपकरणों को वहनीय बनाने तथा उनके प्रति लोगों में अभिरुचि बढ़ाने के उद्देश्य से स्वच्छ विकास व्यवस्था (सीडीएम) सिहत अंतर्राष्ट्रीय वित्तीय लिखतों के इस्तेमाल पर जोर देते हुए उत्पादों को ग्राहकों के अनुकूल बनाने के लिए नवोन्मेषी उपायों के जिए नामित क्षेत्रों में ऊर्जा की दृष्टि से कुशल उपकरणों की ओर तेजी से रुख परिवर्तित करने के लिए चलाई गई एक योजना है।

सरकार 12वीं पंचवर्षीय योजना में सुपर एफिशिएंट इक्विपमेंट प्रोग्राम भी शुरू करने वाली है। इस परियोजना में पहले उपकरण के रूप में सीलिंग पंखों को शामिल किया गया है। इस कार्यक्रम के अंतर्गत पंखों के विनिर्माताओं को सुपर एफिशिएंट पंखों का उत्पादन और बिक्री करने के लिए प्रोत्साहन देने का प्रस्ताव है जो उपभोक्ताओं को छूट प्राप्त मूल्य पर बाजार में उपलब्ध सर्वाधिक कुशल पंखों की तुलना में 30-50% अधिक कुशल हैं। सभी पणधारकों जैसे पंखों के विनिर्माता, अनुसंधान और विकास संस्थान, प्रौद्योगिकी नवोन्मेषक और शैक्षणिक जगत तथा नीतिगत निकायों के साथ कई दौर की विचार विमर्श बैठकें आयोजित की गईं ताकि विनिर्देश, प्रोत्साहन ढांचा और मापन तथा सत्यापन रणनीति और इस कार्यक्रम की रूपरेखा पर चर्चा की जा सके। सुपर एफिशिएंट सीलिंग पंखों के निष्पादन विनिर्देशों को अंतिम रूप दे दिया गया है तथा और कार्यक्रम का विकास अंतिम चरण पर है।

(iii) ऊर्जा दक्षता वित्तपोषण प्लेटफार्म (ईईएफपी)

भारत में ऊर्जा कार्यकुशलता बाजार को बढ़ावा देने के लिए यह परिकल्पित किया गया है कि नीतिगत हस्तक्षेप, प्रदर्शन परियोजनाओं के कार्यान्वयन, ऊर्जा सेवा कंपनियों (ईएससीओ) को बढ़ावा देने, स्थायी संविदागत और

कानूनी दस्तावेजों का विकास एवं मानकीकरण तथा ऊर्जा कार्यकुशलता प्लेटफार्म के लिए बाजार तैयार करने हेतु महत्वपूर्ण घटक के रूप में वित्तपोषण व्यवस्था लागू करने की आवश्यकता है।

सरकार भी ऊर्जा कार्यकुशलता परियोजनाओं के मूल्यांकन हेतु सार्वजनिक क्षेत्र, बैंकों के साथ समझौता ज्ञापन और बैंक अधिकारियों के प्रशिक्षण के जिए विभिन्न ऊर्जा कार्यकुशलता वित्तपोषण प्लेटफार्मों का विस्तार कर रही है। बीईई द्वारा मैसर्स पीटीसी इंडिया लिमिटेड, मैसर्स एसआईडीबीआई, एचएसबीसी बैंक, टाटा कैपिटल और आईएफसीआई लिमिटेड के साथ ऊर्जा कार्यकुशलता परियोजनाओं के लिए वित्तपोषण को बढ़ावा देने हेतु समझौता ज्ञापन पर हस्ताक्षर किए गए हैं। 14 फरवरी, 2012 और 17 फरवरी, 2012 को क्रमश: दिल्ली और मुम्बई में पीआरजीएफ और वीसीएफईई पर वित्तीय संस्थानों के सहयोग से दो सम्मेलन आयोजित किए गए, तािक महाराष्ट्र और गुजरात के नािमत उपभोक्ताओं के लिए वित्तीय सहायता में तेजी लाई जा सके।

ऊर्जा कार्यकुशलता आर्थिक विकास (एफईईईडी) का ढांचा

सरकार भी निष्पादन संविदाओं के लिए गारंटी प्रदान कर, उद्यम पूंजी निधि उपलब्ध कराकर, ऊर्जा कार्यकुशलता पर सार्वजनिक क्षेत्र में नेतृत्व बढ़ाकर और जीवन चक्र लागत विश्लेषण के आधार पर सार्वजनिक खरीद में ऊर्जा कार्यकुशलता को बढ़ावा देते हुए ऋणदाताओं को इस बात का पुन: आश्वासन प्रदान करते हुए राजकोषीय लिखतों के साथ ऊर्जा कार्यकुशलता के लिए एक बाजार मृजित करने का प्रयास कर रही है। ऊर्जा कार्यकुशलता के लिए दो प्रकार की निधियां स्थापित की जा रही हैं। इनमें से एक ऊर्जा कार्यकुशलता के लिए आंशिक जोखिम गारंटी निधि (पीआरजीएफईई) और दूसरी ऊर्जा कार्यकुशलता के लिए उद्यम पूंजी निधि (वीसीएफईई) है।

आंशिक जोखिम गारंटी निधि (पीआरजीएफ)

पीआरजीएफ एक जोखिम साझा करने विषयक व्यवस्था है जो ऋणदाता को किसी चूक की स्थिति में ऋण के एक भाग का पुनर्भुगतान सुनिश्चित करते हुए गारंटियां प्रदान कर ऋणकर्ता के जोखिम भाग को प्रतिस्थापित करती है। पीआरजीएफ प्रतिभागी वित्तीय संस्थान (पीएफआई) द्वारा दिए गए ऋण के अधिकतम 50% भाग के लिए गारंटी प्रदान करती है।

ऊर्जा कार्यकुशलता के लिए उद्यम पूंजी निधि (वीसीएफईई)

उन्नत ऊर्जा कार्यकुशलता के लिए राष्ट्रीय मिशन के अंतर्गत भारत सरकार द्वारा यथा परिकल्पित वीसीएफईई इन बाधाओं के समाधान और देश में लंबे समय प्रतीक्षित ऊर्जा कार्यकुशलता परियोजनाओं को प्रारंभ करने में काफी कारगर साबित हो सकती है। यह निधि ऊर्जा कार्यकुशलता निवेश को जोखिम पूंजी सहायता प्रदान करती है।

12.9 अन्य संभावित क्षेत्र

वीईई द्वारा शुरू किए गए ऐसे संभावित क्षेत्र जहां ऊर्जा कार्यकुशलता की अपार संभावनाएं हैं :

त्रि-उत्पादन

वर्ष 2007 में भारत में एचवीएसी बाजार आकार लगभग 13 बिलियन किलोवाट था, जिसका लगभग 14% घरेलू क्षेत्र के लिए था। वर्ष 2004-05 में विंडो से स्पिलिट एसी का अनुपात 3:1 था और अब 1:1 है। भारत में एचवीएसी बाजार की प्रमुख विशेषता वातानुकूलन बाजार पर आधारित है।

देश के उत्तरी और केन्द्रीय भूभाग में गर्म पानी के जनरेटरों (अर्थात गीजर) के लिए बेहतर बाजार संभावनाएं हैं। भारत में हर वर्ष लगभग 1.6 मिलियन ऐसे हीटरों की बिक्री की जाती है। 1.5 किलोवाट प्रित हीटर की औसत विद्युत खपत का अनुमान लगाते हुए कुल स्थापित क्षमता लगभग 2400 मेगावाट होगी।

यह अनुमान लगाया गया है कि लगभग 3000 मेगावाट गैस आधारित पावरप सिस्टम की स्थापना भारत में पहले ही कर ली गई है। उसमें से लगभग 1000 मेगावाट अभी हाल ही में भारतीय बिल्डिंग क्षेत्र में जोड़ी गई है और 1000 मेगावाट स्थापित क्षमता में से 522 मेगावाट सह-उत्पादन/त्रिउत्पादन योजनाओं के लिए है।

भविष्य में त्रिउत्पादन और सहउत्पादन बाजार तेजी से बढ़ने की आशा है। वर्तमान बाजार आकार का अनुमान 13×10^6 किलोवाट (3.7 $\times 10^6$ टीआर) है, जिसमें से लगभग 2.3×10^6 किलोवाट (0.65 $\times 10^6$ टीआर) शीतल जल आधारित केन्द्रीय प्रणाली का प्रतिनिधित्व करता है, जो संभवतः सह उत्पादन/त्रिउत्पादन प्रणाली के लिए तत्काल लक्षित बाजार है।

अपशिष्ट से ऊष्मा की प्रतिपूर्ति

भारत में लगभग 13 मिलियन सूक्ष्म, लघु और उद्यम उद्यम हैं जो भारत में औद्योगिक उद्यमों की कुल संख्या के 80% से अधिक है। लघु उद्योगों की हिस्सेदारी कुल विनिर्माण आउटपुट में 45% है और वे अर्थव्यवस्था में कुल निर्यात के लगभग 40% का योगदान करते हैं। वे सबसे बड़े नियोक्ता हैं और लगभग 41 मिलियन लोगों को रोजगार प्रदान करते हैं तथा हाल ही में लगाए गए अनुमान के अनुसार देश के सकल घरेलू उत्पाद (जीडीपी) में इनका योगदान लगभग 8-9% है। बीईई द्वारा किए गए अध्ययन के अनुसार एसएमई क्षेत्र एक ऐसा क्षेत्र है जो 20-25% की रेंज में ऊर्जा तीव्रता कम करने की व्यापक संभावनाएं प्रदर्शित करता है। एसएमई, विशेष रूप से वे जिनके लिए कुल उत्पादन लागत का एक बड़ा भाग ऊर्जा लागत का प्रतिनिधित्व करता है, वे ऊर्जा संरक्षण कुशलता में सुधार और ऊर्जा हानि को कम करके उच्च लाभ प्राप्त कर सकते हैं, फिर भी ऐसी बहुत सी बाधाएं और बाजार की विफलताएं हैं जो इन उपायों को व्यापक स्तर पर लागू करने में बाधक हैं।

ऊर्जा लागत बढ़ने से व्यापार के लिए उत्पादन और वितरण लागत बढ़ सकती है, इसके फलस्वरूप दीर्घकालिक प्रतिस्पर्धा और लाभप्रदता प्रभावित हो सकती है। सीमित संसाधनों और जटिल प्रचालन लाभ के कारण एसएमई विशेष रूप से सुभेध (संवेदनशील) होते हैं। ऊर्जा अपव्यय को कम करने से उनकी लागत तत्काल घट सकती है परंतु वे ज्ञान के अभाव में प्रायः वित्तपोषण और समर्पित कार्मिकों पर ध्यान नहीं देते हैं, जबिक ऊर्जा कार्यकुशलता के अवसरों की पहचान और सुधार कार्यक्रमों को लागू करने के लिए इनकी आवश्यकता होती है। बचत की संभावनाओं को साधारण उपायों के जिए मूर्तरूप दिया जा सकता है, इनमें से एक कुछ क्लस्टरों में अपशिष्ट ऊष्मा की प्रतिपूर्ति हो सकता है। इसके अलावा कुछ यूनिटों में इनके प्रदर्शन के आधार पर इन्हें लागू करने की संभावनाओं का पता चलेगा क्योंकि ये यूनिटें क्लस्टरों में अवस्थित होती हैं।

उन्नत ऊर्जा कार्यकुशलता पर राष्ट्रीय मिशन (एनएमईईई) में दर्शाई गई समय सीमाओं के भीतर प्रभावी कार्यान्वयन व्यवस्था सृजित करने के उद्देश्य से मंत्रालय ने बीईई के सुदृढीकरण और एक संयुक्त उद्यम के रूप में कार्यान्वयन निगमित निकाय के सृजन द्वारा नीतिगत/नियामक दोनों स्तरों पर प्रभावी संस्थागत ढांचे के विस्तार की सिफारिश की है। इसके परिणामस्वरूप ऊर्जा कार्यकुशलता सेवा लिमिटेड (ईईएसएल) की स्थापना की गई जो केन्द्रीय क्षेत्र के चार सार्वजनिक उपक्रमों (सीपीएसय्) अर्थात नेशनल थर्मल पावर कॉर्पोरेशन लिमिटेड, पावरिगड़ कॉर्पोरेशन ऑफ इंडिया लिमिटेड, पावर फाइनेंस कॉर्पोरेशन लिमिटेड और रूरल इलेक्ट्रीफिकेशन कॉर्पोरेशन लिमिटेड द्वारा संवर्धित एक संयुक्त उद्यम कंपनी है। ईईएसएल का कंपनी अधिनियम 1956 के अंतर्गत 10 दिसंबर, 2009 को पंजीकरण किया गया है और व्यापारिक कार्यकलाप शुरू करने के लिए इसे 11 फरवरी, 2010 को प्रमाण पत्र प्राप्त हुआ। यह ऐसी पहली कंपनी है जिसकी स्थापना विशेष रूप से दक्षिण एशिया में ऊर्जा कार्यकुशलता संबंधी उपायों के कार्यान्वयन हेतु किया गया है और यह विश्व सतर पर एक अनोखा उदाहरण है।

12.10 मानव संसाधन विकास कार्यक्रम

मानवीय हस्तक्षेप के जिरए ऊर्जा बचत की व्यापक संभावना है। बीईई और एसडीए के पास यह एक बड़ा दायित्व है कि वे राष्ट्रीय ऊर्जा संरक्षण अभियान को एक जन आंदोलन बनाने और व्यापक स्तर पर समर्थन प्राप्त करने के लिए ऊर्जा कार्यकुशलता सिद्धांतों और प्रक्रियाओं (ऊर्जा संगतता) में अमूलचूल परिवर्तन के लिए लोगों को प्रेरित करें। 11वीं पंचवर्षीय योजना में बीईई अपने अभियानों को जारी रखेगा। इसके अलावा केन्द्र सरकार राज्यों में संगत अभियानों के लिए एसडीए को आंशिक निधियां उपलब्ध कराएगी।

मानव संसाधन विकास क्षेत्र में निम्नलिखित प्रयास किए जाएंगे :

- (i) क्षमता निर्माण : क) बीईई और एसडीए के भारत/विदेश में कार्यरत अधिकारी; ख) ऊर्जा संरक्षण बिल्डिंग कोड को बढ़ावा देने और उसके प्रवर्तन हेतु एसडीए, शहरी और नगर निगम निकायों के प्रमुख अधिकारी; ग) ऊर्जा संरक्षण में गति लाने के लिए उपलब्धियों, बाधाओं और रणनीतियों की समीक्षा के लिए केन्द्र और राज्य सरकार के विभागों से वरिष्ठ अधिकारियों के लिए हर वर्ष अनुस्थापन कार्यक्रम।
- (ii) नए व्यवसायियों के लिए क्षमता निर्माण : क) ऊर्जा लेखापरीक्षकों और प्रबंधकों के लिए जीवनपर्यंत प्रशिक्षण हेतु पुनश्चर्या प्रशिक्षण मॉड्यूलों का प्रस्ताव देते हुए राष्ट्रीय अधिप्रमाणन परीक्षा के जिए बीईई द्वारा 2003 से ईसी अधिनियम के अंतर्गत तैयार किए जा रहे ऊर्जा प्रबंधक और लेखापरीक्षक; ख) ऊर्जा प्रबंधक/लेखापरीक्षकों के लिए राष्ट्रीय परीक्षा में संभावित उम्मीदवारों के लिए शैक्षणिक/हेल्पलाइन सहायता।
- (iii) औद्योगिक ऊर्जा कार्यकुशल उत्पादों और प्रौद्योगिकियों के लिए उद्यमियों और प्लांट इंजीनियरों/तकनीशियनों को प्रदर्शित करने और उन्हें समझाने के लिए दो औद्योगिक स्थापनाओं में प्रदर्शन केन्द्र
- (iv) शीर्षस्थ प्रबंधन, मध्यम स्तरीय कार्यपालक और शॉप फ्लोर में काम करने वाले कार्मिकों के लिए ऊर्जा कार्यकुशलता पर अभिमुखीकरण कार्यशालाएं
- (v) ऊर्जा की दृष्टि से कुशल पंप सेटों और अन्य संगत उत्पादों का प्रदर्शन कर किसानों को प्रशिक्षण
- (vi) ईंधन की बचत करते हुए वाहन चलाने पर सड़क परिवहन में चालकों को प्रशिक्षण
- (vii) राष्ट्रव्यापी अभियान : क) मीडिया के जिरए; ख) राज्यों की राजधानियों और अन्य स्थानों पर सामान्य जनता और संस्थानों के लिए जागरूकता कार्यक्रम; ग) स्कूली बच्चों के लिए पेंटिंग प्रतियोगिता, घ) युवा क्लबों के लिए इको क्लब से जुड़े कार्यकला।
- (viii) ऊर्जा कार्यकुशलता/डीएसएम मॉड्यूलों को पाठ्यक्रम में शामिल करना : क) स्कूल; ख) तकनीकी संस्थान और इंजीनियरिंग कॉलेज: ग) एमबीए कार्यक्रमों सहित अन्य स्नातक और स्नातकोत्तर पाठ्यक्रम।

12.11 ऊर्जा संरक्षण के लिए अन्य प्रौद्योगिकियां/क्षेत्र

सर्वाधिक ऊर्जा कुशल उपकरण मॉडल प्रस्तुत करने वाले विनिर्माताओं के लिए पुरस्कार

हो सकता है उपकरण विनिर्माता कंपनियों ने ऊर्जा की दृष्टि से कुशल स्टार रेटित मॉडल का उत्पादन शुरू कर दिया हो। हालांकि वे व्यापक मॉडलों का उत्पादन करते हैं जो सस्ते और लोकप्रिय होते हैं परंतु ऊर्जा की दृष्टि से कुशल नहीं होते। ऊर्जा की दृष्टि से अधिक कुशल मॉडलों का विनिर्माण करने के लिए विनिर्माता कंपनियों को प्रोत्साहित करने के उद्देश्य से एक पुरस्कार योजना शुरू की जाएगी और यह ऊर्जा कार्यकुशलता के लिए उनकी प्रतिबद्धता को मान्यता प्रदान करेगा।

विद्युत मंत्रालय ने उद्योगों द्वारा ऊर्जा संरक्षण और कार्यकुशलता के क्षेत्र में नवोदभव और उनकी उपलब्धियों को मान्यता देने के लिए पहले ही राष्ट्रीय ऊर्जा संरक्षण पुरस्कार (एनईसीए) शुरू कर दिया है और उपर्युक्त प्रस्तावित पुरस्कार इस योजना के एक भाग के रूप में शुरू किया जा सकता है।

उर्जा कुशलता एवं अनुसंधान केन्द्र

विज्ञान और प्रौद्योगिकी विभाग (डीएसटी) के सहयोग से ऊर्जा की खपत वाले चुनिंदा क्षेत्रों के लिए 10 ऊर्जा कुशल अनुसंधान केन्द्रों की स्थापना के लिए कार्य किया जाए। भारत के लिए उपयुक्त मॉडल के आधार पर बीईई शैक्षणिक संस्थानों, विनिर्माता एसोसिएशनों और ईएससीओ से प्रस्ताव आमंत्रित कर सकता है और आरंभिक स्थापना, आरंभिक संचालन और 5 वर्ष की अविध के लिए रख रखाव लागत हेतु निधि उपलब्ध कराने का प्रस्ताव दे सकता है।

12वीं पंचवर्षीय योजना में इस कार्यकलाप के लिए वित्तीय बजट आवश्यकता 200 करोड़ रुपए है।

अन्य रणनीतियां एवं प्रयास

अन्य रणनीतियां

उत्खनन अथवा खरीद और परिवर्तन से लेकर अंतिम प्रयोग तक कार्यकलापों की संपूर्ण मूल्य श्रृंखला में एकीकृत संसाधन आयोजना अपनाने के लिए ऊर्जा और प्रौद्योगिकी उन्नयन क्षेत्र से संबंधित योजनाकारों और नियामकों को प्रोत्साहित करना।

नए क्षेत्र/प्रयास

रेलवे

भारतीय रेलवे ने ऊर्जा संरक्षण के लिए पहले बहुत से प्रयास किए हैं। हालांकि संपूर्ण रेलवे क्षेत्र में ऊर्जा कार्यकुशलता बढ़ाने के लिए अभी भी बहुत से अवसर मौजूद हैं। इस क्षेत्र में मौजूदा ऊर्जा संरक्षण संभावना के बावजूद भी यह प्रस्ताव किया जाता है कि रेल मंत्रालय के सहयोग से इसके लिए अध्ययन और विभिन्न योजनाएं शुरू की जाएं।

अतिरिक्त क्षेत्र

12वीं योजना के अंतर्गत कुछ नए क्षेत्र प्रस्तावित हैं जहां ऊर्जा खपत को कम करने की संभावनाएं मौजूद हैं, जिन्हें बीईई की मौजूदा योजनाओं के अंतर्गत वर्तमान में पर्याप्त रूप से शामिल नहीं किया जा सकता। इनमें रक्षा स्थापनाएं जैसे आयुध निर्मार्णियां (केवल स्वैच्छिक आधार पर), सार्वजनिक क्षेत्र की यूनिटों (पीएसयू) की टाउनशिप और बड़े इंजीनियरिंग और विनिर्माण उद्योग शामिल हैं।

उत्कृष्टता का प्रकाश केन्द्र

12वीं पंचवर्षीय योजना में ऊर्जा कुशल लाइटिंग प्रौद्योगिकियों को प्रदर्शित करने के लिए लाइटिंग प्रौद्योगिकियों पर आधारित एक प्रदर्शन केन्द्र (उत्कृष्टता का प्रकाश केन्द्र) के सृजन पर विचार किया जाए।

12.12 उपसंहार एवं सिफारिशें

योजना में प्रस्तावित मांग पक्ष प्रबंधन (डीएसएम) ऊर्जा कार्यकुशलता और ऊर्जा संरक्षण योजनाओं के परिणामस्वरूप 12वीं पंचवर्षीय योजना के अंतिम वर्ष अर्थात् 2016-17 में ऊर्जा बचत का लक्ष्य संभवत: 44.85 बिलियन यूनिट (उपभोक्ता पक्ष) होना चाहिए, जो बस बार पक्ष पर 60.17 बिलियन यूनिट के समतुल्य है। 12वीं योजना के अंत में इससे लगभग 12,360 मेगावाट पीकिंग क्षमता के समतुल्य विद्युत की बचत का अनुमान

है। विद्युत की बचत के अलावा उद्योगों और एसएमई, परिवहन क्षेत्र और ऊर्जा संरक्षण (ईसी) पुरस्कार में 21.30 मिलियन टन तेल समतुल्य (एमटीओई) के बराबर कुल थर्मल ऊर्जा बचत भी अपेक्षित है जिसका लक्ष्य 12वीं योजना के अंतिम वर्ष में हासिल किया जाएगा।

12वीं योजना के दौरान ऊर्जा बचत के लक्ष्य और बीईई द्वारा शुरू किए गए विभिन्न कार्यक्रमों के लिए संगत निधि आवश्यकता के संक्षिप्त विवरण निम्नलिखित तालिका में दिए गए हैं:

12वीं योजना के लिए ऊर्जा बचत लक्ष्य

क्र. सं.	क्षेत्र	योजनाएं	योजना में निधि की कुल आवश्यकता	क्षेत्र में निधि की कुल आवश्यकता	लक्षित विद्युत बचत,	लक्षित थर्मल ईंधन बचत, एमटीओई	
			(करोड़ रु. में)	(करोड़ रु. में)	बीयू		
1	कंपनी आधारित डीएसएम	विद्युत कंपनियों के लिए डीएसएम कार्यक्रम	75	75	-	-	
2	उद्योग	उद्योग	690	745	11.96	10.41	
		एसएमई	55		1.83	1.59	
3	आवासीय क्षेत्र	बचत लैंप योजना	22.50	22.50	4.40	-	
4	उपस्कर एवं उपकरण	मानक एवं लेबलिंग	133	1033	10.40	4.30	
	311/21	(एस एवं एल) एसईईपी	900		4.21	-	
5	कृषि क्षेत्र	कृषि मांग पक्ष प्रबंधन	80	80	0.70	-	
6	वाणिज्यिक क्षेत्र	मौजूदा भवनों में ईसीबी एवं ऊर्जा कार्यकुशलता	35	35	5.07	-	
7	नगर निगम क्षेत्र	नगर निगम मांग पक्ष प्रबंधन	25	25	0.47	-	
8	राज्य नामित एजेंसियां	एसडीए का सुदृढ़ीकरण	140	190	-	-	
		राज्य ऊर्जा संरक्षण निधि	50		-	-	
9	राष्ट्रीय पुरस्कार, पेंटिंग एवं जागरूकता	राष्ट्रीय पुरस्कार, पेंटिंग एवं जागरूकता	100	100	3.42	5.00	
10	नवोदभव प्रौद्योगिकियां/क्षेत्र	ऊर्जा कार्यकुशलता अनुसंधान केन्द्र	118	200	-	-	
11	एचआरडी	एचआरडी	65	288	-	-	
जोड़					44.85	21.30	
	2488.50						
मांग पक्ष पर कुल विद्युत बचत, बिलियन यूनिट					44.85		
बस बार पर कुल विद्युत बचत, बिलियन यूनिट					60.17		

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 257

12वीं योजना के लिए निम्नलिखित सिफारिशें और नए प्रयास शुरू करने का सुझाव दिया जाता है :

- ऊर्जा कार्यकुशलता ब्यूरो और विद्युत मंत्रालय द्वारा शुरू की गई योजनाओं/कार्यक्रमों को जारी रखना
- विभिन्न राज्यों में राज्य नामित एजेंसियों (एसडीए) को संगत राज्य में विभिन्न ऊर्जा कार्यकुशलता उपायों को आगे बढ़ाने के संदर्भ में महत्वपूर्ण भूमिका अदा करने की आवश्यकता है। 12वीं योजना के दौरान एसडीए कार्यक्रम का प्रमुख जोर 32 एसडीए के सुदृढ़ीकरण पर होगा जो उन्हें बीईई अथवा एसडीए द्वारा शुरू किए गए विभिन्न कार्यक्रमों/कार्यकलापों के कार्यान्वयन में समर्थ बनाएगा।
- 12वीं योजना में सभी राज्यों में राज्य ऊर्जा संरक्षण निधि (एसईसीएफ) की स्थापना करने और ऊर्जा संरक्षण संबंधी विभिन्न कार्यकलापों के कार्यान्वयन तथा एसईसीएफ के अंतर्गत निधि के सदुपयोग हेतु एसडीए के साथ बातचीत जारी रखने का प्रस्ताव है। एसईसीएफ में संगत राज्य सरकारों द्वारा इतनी ही निधि का अंशदान किया जाए।
- उपस्करों और उपकरणों के लिए मानक और लेबलिंग कार्यक्रम (एस एण्ड एल) के अंतर्गत 12वीं पंचवर्षीय योजना में प्रस्तावित कार्यकलापों में निम्नलिखत शामिल हैं:
- कम से कम 5 नए चुनिंदा उपकरणों और उपस्करों को शामिल करना। 12वीं योजना में कुछ विद्युत उपकरणों में वैकल्पिक विद्युत हानि को कम करने पर भी जोर दिया जाएगा।
- सभी पणधारकों के बीच जागरूकता पैदा करना,
- मानक और लेबलिंग योजना के अंतर्गत शामिल उपकरणों/उपस्करों के लिए परीक्षण जांच, लेबल सत्यापन, बाजार प्रभाव मूल्यांकन आदि करना; और
- 11वीं योजना के दौरान शामिल किए गए उपस्कर/उपकरणों के लिए ऊर्जा निष्पादन मानकों का उन्नयन लेबलिंग योजना के अंतर्गत निम्नलिखित कार्यकलाप प्रस्तावित हैं:
- 12वीं योजना के प्रथम वर्ष से प्रभावी ईंधन मितव्ययिता शर्तों को लागू करना,

अध्याय -13

पीकिंग पावर और आरक्षित मार्जिन की आवश्यकता

13.0 पृष्ठभूमि

राष्ट्रीय विद्युत नीति, 2005 का उद्देश्य निम्नलिखित लक्ष्य प्राप्त करना है :

- विद्युत का अभिगम सभी परिवारों के लिए विद्युत का अभिगम।
- विद्युत की उपलब्धता 2012 तक संपूर्ण मांग पूरी करना। ऊर्जा और पीकिंग कमी की समस्या को दूर किया जाए और स्पिनिंग रिजर्व उपलब्ध
- दक्ष ढंग से और उचित दरों पर विनिर्दिष्ट मानकों के अनुरूप विश्वसनीय तथा गुणवत्ता युक्त विद्युत की आपूर्ति।
- विद्युत क्षेत्र का वित्तीय कायाकल्प और वाणिज्यिक व्यवहार्यता।
- उपभोक्ताओं के हितों की रक्षा।

जहां एक ओर नीति में की गई परिकल्पना के अनुसार लक्ष्यों को प्राप्त करने के लिए बहुत कार्य किया गया है और अभी भी प्रगति जारी है, परंतु उपर्युक्त में से संपूर्ण मांग को पूरा करने, ऊर्जा और पीकिंग किमयों को दूर करने तथा स्पिनिंग रिजर्व की व्यवस्था करने जैसे लक्ष्य अभी प्राप्त किए जाने हैं। ऐसी अपेक्षा की जाती है कि यद्यपि आगामी पांच वर्षों या कुछ और वर्षों में हमारे देश में आधारभूत विद्युत भार अधिशेष हो सकता है, परंतु पीक पावर की कमी तब भी बनी रहेगी। इस परिदृश्य में आधारभूत लोड पर विद्युत स्थित में सुधार करने के लिए किए जाने वाले प्रयासों के परिणामस्वरूप अर्थव्यवस्था को अपेक्षित और लक्षित लाभ प्राप्त नहीं होंगे।

विद्युत के लिए उपभोक्ताओं की मांग दैनिक रूप से और मौसम के आधार पर बदलती रहती है। पीक समय के दौरान विद्युत की सर्वाधिक आवश्यकता (पीक लोड) होती है, परंतु विद्युत का "आधारभूत लोड" पूरे वर्ष भर आवश्यक होता है चूंकि विद्युत को आसानी से भंडारित नहीं किया जा सकता, अत: विद्युत कंपनियों को मांग, यहां तक कि सबसे गरम दिन अथवा जाड़ों के दौरान सबसे ठंडे दिन में विद्युत की अधिकतम खपत का पूर्वानुमान लगाना चाहिए और मांग को पूरा करने के लिए पर्याप्त मात्रा में विद्युत की आपूर्ति करनी चाहिए। खपत मुख्य रूप से समय और मौसम पर निर्भर करती है। विद्युत कंपनियां इस मांग को राज्य में स्थिति पावर प्लांटों और अन्य राज्यों के पावर प्लांटों से विद्युत की खरीद कर पूरा करती हैं। उपभोक्ताओं को विद्युत की निर्वाध आपूर्ति सुनिश्चित करने के लिए एक विश्वसनीय विद्युत प्रणाली तैयार करने के उद्देश्य से मांग और आपूर्ति के बीच संतुलन स्थापित करने की आवश्यकता है। मांग के विपरीत ऊर्जा का प्रयोग मापित विद्युत की कुल मात्रा है, जिसका समय आधार पर उपभोक्ताओं द्वारा उपोग किया जाता है। ऊर्जा की मांग को तीन श्रेणियों अर्थात् "बेसलोड", इंटरमीडिएट लोड" और "पीक लोड" के रूप में विभाजित किया जा सकता है। यह ठीक समय पर विद्युत उत्पादन के लिए आवश्यक पावर प्लांटों के प्रकार और संख्या निर्धारित करने में सहायक है। इनमें से एक अथवा अधिक प्रकार की मांग को पूरा करने के लिए विभिन्न प्रकार के ईंधनों अथवा ईंधन मिश्रण का प्रयोग करने वाले अलग अलग प्रकार के प्लांटों की आवश्यकता होगी।

बेसलोड प्लांट प्रणाली को आधारभूत स्तर तक विद्युत उपलब्ध कराते हैं और ये सामान्यत: बड़ी उत्पादन यूनिटों के रूप में होते हैं। बेसलोड प्लांट अधिकांशत: लगातार (लगभग 70-80% समय तक) प्रचालित किए जाते हैं। ये केवल अनुसूचित रख रखाव, सुधार कार्य अथवा गैर योजनागत आउटेज के लिए बंद किए जाते हैं। ये प्लांट पूर्ण क्षमता पर प्रचालित होने के लिए काफी समय लेते हैं और विद्युत आउटपुट बढ़ाने अथवा घटाने की इनकी क्षमता बहुत ही सीमित होती है। इसके विपरीत पीक मांग को पूरा करने के लिए स्थापित किए गए प्लांट (पीकिंग प्लांट) विद्युत के मांग के अनुरूप प्रतिक्रिया देते हैं और इनका आउटपुट बढ़ाया जा सकता है। इन प्लांटों को तुलनात्मक रूप से जल्दी बंद और चालू किया जा सकता है। हालांकि वे जटिल रूप से 20% कम समय में प्रचालित होते हैं।

पीकिंग प्लांट अधिकांशत: या तो जलाश आधारित जल विद्युत परियोजनाओं अथवा पंप स्टोरेज प्रणालियों या प्राकृतिक गैस दहन टर्बाइन/गैस इंजन के रूप में होते हैं। इंटरमीडिएट लोड प्लांटों की लागत और लचीलापन बेस और पीक लोड प्लांटों के मध्य होता है। इन प्लांटों का डिजाइन विशेष रूप से चक्रीय प्रचालन के लिए किया जाता है अथवा ये ऐसे पुराने कोयला आधारित प्लांट होते हैं जो बेसलोड प्लांटों के रूप में प्रचालित करने की दृष्टि से बहुत अधिक खर्चीले हो जाते हैं। ये सामान्यत: उच्च लोड मांग, 30 से 60% समय के दौरान प्रचालित किए जाते हैं। पीकिंग प्लांटों की तुलना में ये सामान्यत: अधिक दक्ष होते हैं और इनके लिए अपेक्षाकृत सस्ते ईंधन स्रोतों का प्रयोग किया जाता है, इस प्रकार इनकी प्रचालन लागत कम होती है।

बेसलोड उत्पादन के लिए डिजाइन की गई प्रणाली में यह विशेषता नहीं होती है कि वे कम समय में मांग के अनुरूप अपने आउटपुट को परिवर्तित करने के लिए दक्षतापूर्वक अथवा गितशील ढंग से प्रतिक्रिया दे सकें। मांग में परिवर्तन के अलावा उत्पादन में भी व्यापक विविधता अपेक्षित है, जब नवीकरणीय ऊर्जा प्लांटों का स्थापित बेस बढ़ जाता है, इसके परिणामस्वरूप डिस्कोम पर यह दबाव पड़ता है कि वे नवीकरणीय ऊर्जा स्रोतों से अपनी आवश्यकता (आरपीओ को पूरा करने) को पूरा करें। चूंकि हर समय मांग के अनुरूप उत्पादन सुनिश्चित करने के लिए प्रणाली की स्थिरता आवश्यक है, अत: उपयुक्त उत्पादन प्लांटों के जिए प्रणाली में नवीकरणीय स्रोतों के लिए परिवर्ती मांग/उपलब्धता सुनिश्चित करने के लिए जनरेटरों की क्षमता और लचीलेपन को सुनिश्चित किया जाना चाहिए।

13.1 आरक्षित क्षमता/आरक्षित मार्जिन (आरएम)

आरक्षित मार्जिन विद्युत उत्पादन की वह क्षमता है जो विद्युत कंपनियां मांग से परे अनापेक्षित आवश्यकता और शटडाउन, योजनागत और बलात दोनों को पूरा करने के लिए बनाकर रखती हैं। यह वार्षिक और पीक आवश्यकता से अतिरिक्त उत्पादन क्षमता होती है। सामान्य प्रक्रिया के अनुसार विद्युत कंपनियों को अपनी उत्पादन आयोजना में कम से कम 15% का आरक्षित मार्जिन बनाए रखना आवश्यक है। आरक्षित मार्जिन (आरएम) = (स्थापित क्षमता – पीक लोड) / पीक लोड।

अच्छा खासा आरक्षित मार्जिन रखने के बावजूद भी प्रणाली को लोड संभाव्यता की उच्च हानि होती है। यह हानि निम्नलिखित कारणों से हो रही है:

- i) बलात और अत्यधिक रख रखाव दोनों के कारण आउटेज।
- ii) नवीकरणीय स्रोतों की हिस्सेदारी, जो लगभग 10% है, से पीक घंटों के दौरान उत्पादन नहीं होता है और उनकी प्रकृति अत्यधिक गैर प्रेषणीय है।
- iii) जल विद्युत परियोजनाओं की हिस्सेदारी लगभग 23% है और जल विद्युत परियोजनाओं की ऊर्जा तुलनात्मक रूप से कम होती है।

13.2 प्रचालन रिजर्व

विद्युत प्रणाली का प्रचालन लोड के पूर्वानुमान को पूरा करने के उद्देश्य से किया जाना चाहिए। इसके अलावा विद्युत कंपनियां योजनागत लोड के लिए पूर्वानुमान लगाती हैं अथवा इसके समतुल्य विद्युत की प्रदायगी हेतु अनुसूची तैयार करती हैं। हालांकि विद्युत की वास्तविक उपलब्धता अथवा वास्तविक लोड पूर्वानुमान की तुलना में अलग हो सकता है। इसके बहुत से कारण जैसे प्रतिकूल मौसम संबंधी स्थितियां अथवा उत्पादन यूनिटों का गैर अनुसूचित आउटेज हो सकते हैं। उत्पादन और वितरण का प्रबंधन आवृत्ति नियंत्रण रिजर्व के रूप में जानी जाने वाली व्यवस्था द्वारा किया जाना चाहिए। मांग पूर्वानुमान में परिवर्तन के अनुरूप तत्काल उसे पूरा करने के लिए प्रणाली में एक निश्चित मात्रा में अधिशेष स्पिनिंग क्षमता मौजूद होनी चाहिए।

प्रणाली रिजर्व को निम्नलिखित श्रेणियों में वर्गीकृत किया जा सकता है:

- (i) प्राथमिक नियंत्रण रिजर्व अथवा अंतराल नियंत्रण रिजर्व
- (ii) द्वितीयक रिजर्व अथवा स्पिनिंग और नॉन-स्पिनिंग रिजर्व
- (iii) तृतीयक रिजर्व अथवा प्रतिस्थापन रिजर्व
- स्पिनिंग रिजर्व ऐसी अतिरिक्त उत्पादन क्षमता है जो उन जनरेटरों के विद्युत आउटपुट को बढ़ाने के लिए उपलब्ध होती है, जो विद्युत प्रणाली में पहले से जुड़े रहते हैं। ज्यादातर जनरेटरों के लिए विद्युत आउटपुट बढ़ाने का लक्ष्य टर्बाइन के रोटर पर लागू किए जाने वाले टॉर्क को बढ़ाकर प्राप्त किया जाता है। अंतराल प्रतिक्रिया रिजर्व (जिसे नियामक रिजर्व के रूप में भी जाना जाता है) आपूर्ति में हानि की एक स्वचालित प्रतिक्रिया के रूप में उपलब्ध कराया जाता है। यह आपूर्ति की हानि होने पर तत्काल उत्पन्न होता है; जनरेटर लोड बढ़ने के कारण शट डाउन हो जाते हैं। इस समस्या से निजात पाने के लिए बहुत से जनरेटरों में गर्वार लगाए जाते हैं। जनरेटरों को गित में लाने के लिए उनकी सहायता कर ये गर्वार आउटपुट अंतराल और प्रत्येक जनरेटर की पावर दोनों को कुछ स्तर तक बढ़ा देते हैं। हालांकि अंतराल प्रतिक्रिया रिजर्व प्राय: कम होता है और यह प्रणाली प्रचालक के विवेकाधिकार पर आधारित नहीं होता है, इसे प्रचालन रिजर्व के भाग के रूप में नहीं माना जाता है। प्राथमिक नियंत्रण रिजर्व का नियोजन 0-30 सेकंड के लिए किया जाता है। यदि अंतराल विचलन नियंत्रक के निष्क्रिय बैंड की तुलना में अधिक होता है तो प्राथमिक अंतराल नियंत्रण प्रणालियां सिक्रिय हो जाती हैं। प्राथमिक कंट्रोल रिजर्व का आधा भाग 15 सेकंड में प्रचालित हो जाना चाहिए और सभी रिजर्व 30 सेकंड में संपूर्ण विद्युत के साथ प्रचालित हो जाने चाहिए।
- नॉन-स्पिनिंग अथवा पूरक रिजर्व ऐसी अतिरिक्त उत्पादन क्षमता है जो वर्तमान में प्रणाली से संबद्ध नहीं होती है, परंतु थोड़े समय के बाद ही उसे ऑन लाइन चालू किया जा सकता है। एकांत विद्युत प्रणालियों में यह बामुश्किल फास्ट स्टार्ट जनरेटरों से उपलब्ध विद्युत के बराबर हो पाता है। हालांकि संबद्ध विद्युत प्रणालियों में इसमें अन्य प्रणालियों से आयातित विद्युत अथवा प्रतिवर्ती विद्युत जो वर्तमान में अन्य प्रणालियों को निर्यात की जा रही है, द्वारा अल्प सूचना पर उपलब्ध विद्युत शामिल हो सकती हैं। द्वितीयक रिजर्व को 30 सेकंड के भीतर सक्रिय हो जाना चाहिए और 15 मिनट में उन्हें पूर्ण आउटपुट के साथ प्रचालित हो जाना चाहिए। उनका परिचालन स्वचालित ढंग से होना चाहिए। द्वितीयक नियंत्रण रिजर्व को प्रणाली में आगामी खराबी के लिए प्राथमिक रिजर्व को जारी करना चाहिए।
- तृतीय रिजर्व/प्रतिस्थापन रिजर्व : तृतीयक नियंत्रण कार्रवाई प्रणाली में व्यवधान उत्पन्न होने से 15 मिनट के भीतर द्वितीयक नियंत्रण रिजर्व से मुक्त हो जानी चाहिए। ये कार्रवाई स्वचालित ढंग से होगी और इनमें से कुछ मैन्युअल करनी पड़ेगी। स्वचालित कार्रवाई उस समय जटिल ढंग से शुरू होती है जब आवृत्ति दी गई सीमाओं से नीचे चली जाती है। मैन्युअल कार्रवाई रिजर्व पावर प्लांटों (नॉन स्पिनिंग रिजर्व) को स्टार्ट कर प्रारंभ की जाती है अथवा प्रचालनरत प्लांट (स्पिनिंग रिजर्व) का लोड बढ़ाकर तृतीयक नियंत्रण मुख्य रूप से प्रचालक द्वारा शुरू की गई मैन्युअल कार्रवाई पर आधारित होता है।

वह समयाविध जितने में सभी तीन प्रकार की रिजर्व पावर प्रचालित होती है, को नीचे दिए गए डायग्राम में दर्शाया गया है :

13.3 आरक्षित प्लांटों की आवश्यकता

इष्टतम विद्युत प्रणाली में लगभग 15-20% रिजर्व प्लांट, लगभग 20-30% पीकिंग प्लांट, 10-20% मध्यवर्ती प्लांट और लगभग 50-60% बेसलोड प्लांट होने चाहिए। भारतीय विद्युत प्रणाली में भी मानक आवृत्ति नियंत्रण रिजर्व सृजित किए जाने की आवश्यकता है। ये ऐसे रिजर्व हैं जो प्राथमिक रूप से प्रणाली में वितरण को पूरा करने के लिए आरक्षित किए जाते हैं। रिजर्व को 30 सेकंड के भीतर सक्रिय किया जाना चाहिए और अगले 15 मिनट में उनसे पूर्ण आउटपुट प्राप्त होना चाहिए, ताकि प्राथमिक नियंत्रण रिजर्व को मुक्त किया जा सके। इसके लिए प्रणाली में तृतीयक रिजर्व भी होने चाहिए जो व्यवधान पैदा होने से 15 के भीतर छोटे रिजर्व का प्रभार ले सकती हैं और इन छोटे (स्केंटी) रिजर्व को मुक्त कर सकते हैं। ये सामान्यत: नॉन स्पिनिंग रिजर्व होते हैं, जिन्हें अल्प सूचना पर प्रयोग में लाया जा सकता है। अत: यह महत्वपूर्ण है कि इस बात पर चर्चा की जाए कि इन संसाधनों में से प्रत्येक की कितनी संख्या/मात्रा उपलब्ध होनी चाहिए।

13.4 विकसित देशों में मौजूदा प्रक्रियाएं

जहां तक विदेशों के विकसित विद्युत बाजारों में विद्युत प्रणाली के रिजर्व का संबंध है, तो वहां आकस्मिकताओं को पूरा करने के लिए ग्राहकों की आवश्यकता के अनुरूप कई सतह वाले रिजर्व रखे जाते हैं। आवृत्ति में हल्की सी गिरावट अर्थात् 0.1 से 0.2 हार्ट्ज के लिए प्रथम त्वरित प्रतिक्रिया स्वरूप एक हॉट रिजर्व प्लांट (ग्रिड में सबसे बड़ी एकल यूनिट के समतुल्य) 5-30 सेकंड में स्वचालित उत्पादन नियंत्रण (एजीसी) के जिरए ऑनलाइन उपलब्ध कराया जाता है। द्वितीयक चरण के रूप में फास्ट रिजर्व पावर प्लांट (एफआरपीपी) 4-15 मिनट में चालू हो जाते हैं और शीघ्र ही पूर्ण लोड पर प्रचालित होने लगते हैं, जिसके पश्चात् एजीसी प्लांट रिजर्व मोड में पुन: चालू हो जाता है। तृतीय चरण के रूप में रिप्लेसमेंट रिजर्व पावर प्लांट (आरआरपीपी) 45-60 मिनट में चालू हो जाते हैं, इसके पश्चात् एफआरपीपी प्लांट वापस स्टैंडबाई मोड में चले जाते हैं। ये रिजर्व नीचे चित्र 13.1 में दर्शाए गए हैं:

चित्र 13.1

विकसित देशों में योजनागत बहुसतही रिजर्व के तहत विभिन्न रिजर्व के प्रचालन का लचीलापन भी उपलब्ध कराया जाता है। इसीलिए हॉट रिजर्व जो सेकंड के भीतर प्रचालन हेतु आवश्यक है, सामान्यत: स्वचालित उत्पादन नियंत्रण (एजीसी) के जरिए उपलब्ध कराया जाता है। फास्ट रिप्लेसमेंट रिजर्व किसी उत्पादन स्रोत से आवश्यक होता है जो 4-15 मिनट के भीतर पूर्ण लोड पर प्रचालन हेतु सक्षम होता है और जो एजीसी स्रोतों से प्रभार ग्रहण कर सकता है। हालांकि फास्ट ऐक्टिंग रिजर्व से प्रभार ग्रहण करने के लिए अपेक्षाकृत धीमे सिक्रय उत्पादन स्रोत के लिए प्रतिस्थापन रिजर्व क्षमता का इस्तेमाल किया जाता है, तद्नुसार इन रिजर्व क्षमताओं में से प्रत्येक क्षमता उपयुक्त उत्पादन स्रोत से होनी चाहिए जिसमें उपयुक्त रैंपअप और रैंप डाउन विशेषताएं अंतर्निहित हों।

ग्रिड प्रचालक द्वारा सामान्यत: प्रयोग किया जाने वाला नियम यह है कि उनके पास ऐसी क्षमता हमेशा होनी चाहिए जिससे वे बड़ी उत्पादन यूनिट की हानि को प्रतिस्थापित कर सकें। इसे निश्चित रूप से बहुआयामी स्रोतों द्वारा प्रतिस्थापित किया जा सकता है, जिसमें आयात शामिल हैं। हाइड्रोलिक और आयात क्षमताओं के कारण उन्हें अपशिष्ट यूनिटों की आवश्यकता नहीं होती है। अपशिष्ट यूनिटें महज स्पिनिंग रिजर्व के लिए संचालित की जाती हैं (परंतु वे संभावित मांग के लिए उन्हें अग्रिम रूप से चेतावनी दे देती हैं)। न्यूक्लियर यूनिटों का प्रयोग स्पिनिंग रिजर्व के लिए नहीं किया जा सकता है। यह या तो ऑन अथवा ऑफ रहती हैं। यह सह उत्पादन अथवा मिश्चित ऊष्मा और विद्युत स्थापनाओं के लिए सही हैं।

रिजर्व पर हमारे सुझाव

- लगभग 10,000 मेगावाट क्षमता जिसे अचानक बढ़ने वाली मांग को पूरा करने के लिए अपेक्षाकृत कम पीएलएफ पर प्रचालित किया जाएगा और वे हमारे प्राथमिक नियंत्रण रिजर्व के रूप में होंगे।
- 2. पूरक रिजर्व अथवा द्वितीयक रिजर्व भंडारण वाले हाइड्रो स्टेशन, पंप स्टोरेज प्लांट और गैस इंजन हो सकते हैं जो 30 सेकंड के भीतर सक्रिय होने और 15 मिनट में पूर्ण आउटपूट प्रदान करने में सक्षम होते हैं।

3. तृतीयक रिजर्व के रूप में कुछ पुराने ऑयल अथवा कोयला आधारित स्टेशन हो सकते हैं जिन्हें मैन्युअली सक्रिय किया जा सकता है और जो नए व्यावधानों के लिए द्वितीयक रिजर्व से मुक्त होते हैं।

भारतीय प्रणालियां

देश का भार अवधि कर्व यह दर्शाता है कि पीक मांग की अवधि अपेक्षाकृत कम होने के कारण यह आर्थिक दृष्टि से व्यवहार्य नहीं होगा कि पीक मांग को पूरा करने के लिए पूरी तरह से बेस लोड स्टेशनों पर निर्भर रहा जाए। इससे इस बात का आभास होता है कि कुछ ऐसे पावर प्लांटों की स्थापना की जानी चाहिए जो केवल पीक मांग के समय ही प्रचालित होंगे। हालांकि, ऐसे प्लांटों के लिए उनकी उत्पादन लागत की वसूली हेतु अलग टैरिफ ढांचा आवश्यक होगा। मौजूदा उत्पादन प्लांटों के साथ साथ नए पीकिंग पावर प्लांटों के लिए पीक और ऑफ पीक अवधि में अलग अलग टैरिफ ढांचे से इस समस्या का काफी हद तक समाधान किया जा सकता है। नॉन पिट हेड पावर प्लांट और उच्च परिवर्ती प्रभार वाले आयातित कोयला पर आधारित तटवर्ती पावर प्लांटों में लोड मांग के आधार पर दिन के समय लोड परिवर्तित करने का विकल्प होना चाहिए। ऑफ पीक घंटों के दौरान भी ऐसे कोयला आधारित पावर प्लांट अपेक्षाकृत कम लोड पर प्रचालित किए जा सकते हैं।

निम्नलिखित चित्र में वर्ष 2016-17 के लिए अखिल भारतीय स्तर पर संभावित लोड अवधि कर्व दर्शाया गया है:

13.5 पीकिंग पावर की आवश्यकता

देश में विद्युत आपूर्ति की स्थिति लगातार यह दर्शाती है कि यहां ऊर्जा और पीकिंग पावर की कमी है। जहां एक ओर ऊर्जा की कमी यह अनिवार्य बनाती है कि बेस लोड स्टेशनों की स्थापना की जाए, वहीं दूसरी ओर पीक घंटों में विद्युत की कमी इस बात को उजागर करती है कि पीक घंटों के दौरान विद्युत की मांग को पूरा करने के लिए अलग व्यवस्था होनी चाहिए। भारतीय राज्यों में पीकिंग मांग को यथासंभव अन्य राज्यों से विद्युत की खरीद कर, उनके बीच द्विपक्षीय करार अथवा अंतराल संबद्ध मूल्यों पर गैर अनुसूचित आदान-प्रदान (यूआई) व्यवस्था और कभी-कभी लोड शेडिंग के जिरए भी की जाती है। हाइड्रो पावर प्लांटों को भी अचानक पीक मांग को पूरा करने के लिए शीघ्र चालू किया जा सकता है, परंतु यह सुविधा केवल ऐसे कुछ राज्यों तक ही सीमित है जहां पर्याप्त मात्रा में जल भंडारण की सुविधा वर्ष भर उपलब्ध है।

पीकिंग पावर तालाब/जलाशय आधारित हाइड्रो प्लांटों से आदर्श रूप से उपलब्ध कराई जा सकती है। हालांकि केवल हाइड्रो क्षमता से ही पीकिंग मांग को पूरा नहीं किया जा सकता। पीक घंटों के दौरान त्वरित प्रतिक्रिया गैस इंजन आधारित उत्पादन से उपलब्ध कराई जा सकती है क्योंकि उनमें उत्कृष्ट पीकिंग सहायता क्षमता मौजूद होती है।

चूंकि अखिल भारतीय स्तर पर और कुछ क्षेत्र विशेष में अथवा कुछ विशेष राज्यों में लगातार पीकिंग पावर की कमी बनी हुई है, अत: वहां पीकिंग पावर स्टेशनों की आवश्यकता है। इसी प्रकार इस तथ्य को ध्यान में रखते हुए कि ऊर्जा की भी लगातार कमी बनी हुई है, अत: हमें भविष्य में भी बेस लोड/इंटरमीडिएट लोड स्टेशनों में निवेश करते रहने की आवश्यकता बनी रहेगी। प्रमुख क्षमता अभिवृद्धि, हाइड्रो, कोल और नवीकरणीय ऊर्जा स्रोतों से अपेक्षित है। लघु जल विद्युत परियोजनाओं से क्षमता अभिवृद्धि मुख्यत: रन ऑफ रिवर अथवा छोटे तालाबों पर परियोजना स्थापित कर विकसित करने की योजना है। टिहरी और तीस्ता चरण-V में 1000 मेगावाट पंप स्टोरेज स्कीम को छोड़कर कोई भी पीकिंग स्टेशनों का क्रियान्वयन जारी नहीं है। इस प्रकार पीकिंग क्षमता के लिए योजना बनाने की तत्काल आवश्यकता है। यह भी अपेक्षित होगा कि मुख्यत: पीकिंग और इंटरमीडिएट लोड मांग को पूरा करने के लिए संयुक्त चक्र गैस आधारित क्षमता का प्रचालन किया जाए।

अल्पकालिक बाजार में विद्युत की मात्रा और मूल्य दोनों के संदर्भ में मौजूदा रुझान एक बार पुन: इस आवश्यकता को उजागर करते हैं कि सामान्यत: पर्याप्त उत्पादन क्षमता और विशेष रूप से पीकिंग पावर प्लांटों की स्थापना की जाए, ताकि वितरण कंपनियां बेस लोड के साथ पीकिंग लोड के लिए अपनी आवश्यताओं को पूरा करने हेतु दीर्घकालीन आयोजना तैयार कर सकें।

13.6 पीकिंग पावर उत्पादन के लिए विकल्प

अधिकतम बेस लोड क्षमता ऐसी क्षमता होती है जो तकनीकी के साथ साथ वाणिज्यिक रूप से (प्रचालन की लागत और दक्षता के संदर्भ में) लगभग पूर्ण लोड पर संचालित लोड ड्यूरेशन कर्व (एलडीसी) के तहत ऊर्जा की आपूर्ति कर सकती है। प्रवीणता क्रम में मांग को सर्वप्रथम न्यूक्लियर अथवा नवीकरणीय ऊर्जा स्रोतों अथवा रन ऑफ रिवर हाइड्रो स्टेशनों और पंप स्टोरेज हाइड्रो प्लांटों से पूरा किया जाना चाहिए जिन्हें सिंचाई आवश्यकताओं को पूरा करने के लिए पानी छोड़ना पड़ता है और जो अनिवार्य रूप से संचालित की जाने वाली परियोजनाएं हैं। तत्पश्चात पिट हेड कोयला आधारित स्टेशनों से और अंत में लोड सेंटर तथा तटवर्ती कोयला आधारित स्टेशनों और संयुक्त चक्र गैस आधारित स्टेशनों से मांग पूरी की जाए। बकाया मांग को पूरक तौर पर फिर से पीकिंग पावर प्लांटों अर्थात पीएसपी सहित स्टोरेज टाइप हाइड्रो उत्पादन स्टेशन, मुक्त चक्र गैस टर्बाइन स्टेशन और गैस आधारित रेसीप्रोकेटिंग इंजनों से पूरा किया जा सकता है।

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 265

पीकिंग प्लांट पर्यावरण की दृष्टि से अनुकूल होंगे और इनकी स्थापना के लिए उत्सर्जन मानदंडों का अनिवार्य रूप से अनुपालन किया जाना चाहिए, जिससे कि इनकी स्थापना लोड सेंटरों के समीप की जा सके। ये पावर प्लांट आवश्यकता अनुसार शीघ्र तथा आवश्यक चरणों में चालू होने (बंद होने) में सक्षम होने चाहिए तािक बढ़े हुए लोड के अनुरूप प्रचालन शीघ्र शुरू किया जा सके। उनकी दक्षता कर्व उच्च होना चाहिए ओर अलग अलग प्लांट लोड पर समान प्रचालन में सक्षम होने चाहिए। ये प्लांट हर मौसम में प्रचालित किए जा सकें और इनमें वर्ष भर उपलब्ध ईंधन का प्रयोग किया जा सके। विभिन्न प्रकार के पीिकंग पावर विकल्प और उनके वस्तुनिष्ठ कार्यकलापों के संदर्भ में उनकी न्यूनतम किफायत का तुलनात्मक विवरण तािलका 13.1 में नीचे दिया गया है:

तालिका 13.1

प्रकार	पूंजी लागत	दक्षता	स्थायी ओ	परिवर्ती ओ	ओबीजे.एफएन रु.		% परिवर्तन	
			एण्ड एम	एण्ड एम	करोड़ में			
	करोड़/मेगावाट	%	रु./किलोवाट	रु./किलोवाट	2017	विस्तारित	2017	विस्तारित
						अवधि		अवधि
गैस इंजन	3.5	43.0	842	442	49991.3	357145.2	-	-
गैस	4.0	42.2	870	442	50228.4	358514.8	0.47	0.38
(डुअल								
ईंधन)								
डीजल	3.0	43.5	1270	663	50232.9	359198.1	0.48	0.57
एचएफओ								
ओसीजीटी	3.0	37.8	876	731	50241.9	359270.5	0.50	0.60

पीक लोड प्रबंधन अल्पकालिक अवधि में बहुत ही उपयोगी हो सकता है। इसका विकास दूरस्थ मापन के जरिए पुन: किया जा सकता है और नई लोड आधारित टैरिफ प्रणाली या टाइम ऑफ डे-मीटरिंग और टैरिफ व्यवस्था अपनाई जा सकती है। हालांकि विशेष रूप से बड़े शहरों और बड़े कस्बों में पीकिंग घटों के दौरान मांग बहुत अधिक बढ़ जाती है, अत: वहां पीकिंग प्लांटों की स्थापना की जाए। ये वितरित उत्पादन प्लांट अथवा स्टैंड एलॉन प्लांट होते हैं जो पीक प्लांट की आपूर्ति करते हैं। राष्ट्रीय ग्रिड की स्थापना हो जाने के बाद वितरित प्लांटों का उद्देश्य पीक लोड और रिजर्व लोड को पूरा करना होगा। भविष्य में पीक मांग को पूरा करने के प्रमुख स्रोत के रूप में वितरित पावर प्लांटों की स्थापना की जा सकती है। पीक लोड सेवा में सर्वाधिक लाभप्रद निवेश गैस और डीजल इंजन आधारित प्लांटों और ऐरो डेरीवेटिव गैस टर्बाइन प्लांट में होगा। आंतरिक कंबशन इंजनों का सर्वाधिक सामान्य अनुप्रयोग वैकल्पिक और आरक्षित क्षमताओं को पुरा करने के लिए किया जाएगा। इन प्लांटों की स्थापना ब्लैक आउट अथवा अचानक से मांग बढ़ने की स्थिति में प्लांटों की सुरक्षा सुनिश्चित करने के लिए अस्पतालों, सुपर मार्केट, एयरपोर्ट, न्यूक्लियर पावर प्लांटों और औद्योगिक स्थापनाओं में की जाएगी। जटिल प्रकृति के डीजल इंजनों को एक मिनट में चालू किया जा सकता है और वे 3 मिनट में शीघ्र ही पूर्ण लोड पर प्रचालित हो सकते हैं। गैस इंजन दो मिनट में चालू किए जा सकते हैं और आठ मिनट के भीतर अधिकतम आउटपुट प्रदान कर सकते हैं। ऐरो डेरीवेटिव गैस टर्बाइन पांच मिनट में चालू हो सकते हैं और दस मिनट में पूर्ण आउटपुट प्रदान करने में सक्षम हैं। पीक मांग को पूरा करने के लिए इन विकल्पों पर विचार किया जा सकता है। पीकिंग पावर के लिए टैरिफ का निर्धारण केन्द्रीय विद्युत नियामक आयोग (सीईआरसी) के दिशानिर्देशों के

अनुसार किया जाए।

13.7 पीकिंग प्लांटों से संबंधित मुद्दे

पीकिंग प्लांट सामान्यत: गैस टर्बाइन/गैस इंजनों पर आधारित होते हैं और उनमें प्राकृतिक गैस का इस्तेमाल ईंधन के रूप में किया जाता है या फिर ये पंप स्टोरेज प्रणालियों के रूप में होते हैं। कुछ प्लांटों में ईंधन के रूप में पेट्रोल से निष्कर्षित तरल ईंधन जैसे डीजल ऑयल और जेट ईंधन का इस्तेमाल किया जाता है परंतु वे सामान्यत: प्राकृतिक गैस की तुलना में अधिक खर्चीले होते हैं इसलिए उनका प्रयोग सीमित मात्रा में और केवल आपात स्थिति में किया जाता है। हालांकि बहुत से पीकिंग प्लांट, जिनमें पेट्रोलियम पदार्थों का इस्तेमाल किया जाता है, उनमें बैकअप ईंधन के इस्तेमाल का भी प्रावधान होता है। मुक्त चक्र गैस टर्बाइन पावर प्लांटों की थर्मो डाइनेमिक दक्षता किसी नए प्लांट के लिए 30-42% की रेंज में होती है। लोड केन्द्रों के निकट पीकिंग प्लांटों के लिए रेसीप्रोकेटिंग गैस इंजन भी अच्छे विकल्प हैं और ये लगभग 44-48% की उच्च दक्षता प्रदान कर सकते हैं। उन यह उल्लेख किया जाता है कि सीसीजीटी भी पीकिंग स्टेशन के रूप में लोड शिफ्ट आधार पर कार्य कर सकते हैं। रन ऑफ रिवर टाइप से इतर हाइड्रो उत्पादन स्टेशनों का प्रचालन आवश्यक होने पर किया जा सकता है। इन पावर स्टेशनों में ऑफ पीक घंटों के दौरान पानी भंडारित किया जा सकता है, ताकि पीक घंटों के दौरान अधिक विद्युत उत्पादित किया जा सके। अत: इन हाइड्रो उत्पादन स्टेशनों का इस्तेमाल सामान्यत: पीकिंग पावर स्टेशनों के रूप में किया जाता है। पंप स्टोरेज हाइड्रो उत्पादन स्टेशनों का इस्तेमाल सामान्यत: पीकिंग पावर स्टेशनों के रूप में किया जाता है। पंप स्टोरेज हाइड्रो उत्पादन स्टेशनों का का पता को पूरा करने के लिए एक बेहतर विकल्प है।

इसी प्रकार हम पीक आवश्यकताओं को पूरा करने के लिए कुछ जीटी/रेसीप्रोकेटिंग गैस इंजनों की भी योजना तैयार कर सकते हैं। ऐसी अपेक्षा है कि इन प्लांटों को प्रतिदिन लगभग 6 से 8 घंटे प्रचालित किया जाएगा। यह सिफारिश की जाती है कि ऐसे प्लांटों की स्थापना मौजूदा अथवा प्रस्तावित ग्रिड के आसपास मैट्रो शहरों में की जाए। पीकिंग मांग को पूरा करने के अलावा इन प्लांटों का प्रचालन प्रणाली संबंधी आकस्मिक स्थितियों कम वोल्टेज, पारेषण संबंधी बाधाओं के समय भी किया जा सकता है, इस प्रकार मैट्रो शहरों में विद्युत आपूर्ति की विश्वसनीयता बढ़ायी जा सकती है।

ऊपर दिए गए सुझाव के अनुसार सीसीजीटी का पीकिंग मोड में प्रचालन और पीक घंटों के दौरान ओसीजीटी के प्रचालन से उच्च ऊष्मा दर तथा प्रचालन और रख रखाव लागत (सुधार कार्य और रख रखाव की उच्च लागत के कारण) बढ़ सकती है, जिसके लिए पावर प्लांट को क्षतिपूर्ति की जाएगी।

ज्यादातर संयुक्त चक्र प्लांटों में 2जीटी और 1 स्टीम टर्बाइन मॉड्यूल होते हैं। शाम के समय पीक घंटों के बाद प्रत्येक मॉड्यूल में 1जीटी को बंद करने और सुबह के समय पीक घंटों के शुरू होते ही उसे चालू करने का प्रस्ताव दिया जाता है। इस प्रकार रात्रि के समय ऐसे प्लांटों को लगभग 50% दक्षता के साथ प्रचालित किया जा सकता है। कुछ आधुनिक संयुक्त चक्र गैस आधारित प्लांटों में 1जीटी और 1एसटी के साथ एकल सेट कनिफगरेशन किया जाता है। ऐसी यूनिटों को सायंकाल पीक घंटों के पश्चात रात्रि के समय पूरी तरह से बंद रखा जा सकता है अथवा रात्रि में ऑफ पीक घंटों के दौरान आंशिक लोड के साथ प्रचालित किया जा सकता है।

घरेलू स्रोतों से गैस ग्रिड से जुड़े सीसीजीटी प्लांटों को गैस का आवंटन 70-75% पीएलएफ पर इन प्लांटों के प्रचालन के अनुरूप है। ऊपर दर्शाए गए ढंग से सीसीजीटी के चक्रीय प्रचालन से उपलब्ध गैस का अधिकतम इस्तेमाल किया जा सकेगा। वर्तमान में गैस अथॉरिटी ऑफ इंडिया लिमिटेड (गेल) पावर प्लांटों द्वारा गैस के आहरण में बहुत अधिक परिवर्तन की अनुमित प्रदान नहीं करता है। हालांकि पाइप लाइन क्षमता बढ़ने के बाद भविष्य में ऐसे परिवर्तन संभव होंगे। इस संदर्भ में मामले को गेल के साथ उठाया जाएगा।

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 267

13.8 पीकिंग टैरिफ

ऊपर दिए गए सुझाव के अनुसार सीसीजीटी का पीकिंग मोड में प्रचालन और पीक घंटों के दौरान ओसीजीटी के प्रचालन से उच्च ऊष्मा दर तथा प्रचालन और रख रखाव लागत (सुधार कार्य और रख रखाव की उच्च लागत के कारण) बढ़ सकती है, जिसके लिए पावर प्लांट को क्षतिपूर्ति की जाएगी। अत: यह स्पष्ट है कि पीकिंग पावर की लागत तुलनात्मक रूप से ऑफ पीक पावर से अधिक होगी। पीक और ऑफ पीक टैरिफ का निर्धारण करने के लिए सीईए के तत्कालीन अध्यक्ष श्री राकेश नाथ की अध्यक्षता में केन्द्रीय विद्युत नियामक आयोग द्वारा एक कार्यबल का गठन किया गया और कार्यबल ने अपनी रिपोर्ट पहले ही प्रस्तुत कर दी है। पीक और ऑफ पीक पावर के लिए अलग अलग टैरिफ की अधिसूचना लोड ड्यूरेशन कर्व को समान बनाने में सहायक होगी और अंतिम रूप से देश में विद्युत की इस मांग को पूरा करने के लिए अपेक्षाकृत कम क्षमता अभिवृद्धि की जरूरत होगी।

13.9 पीकिंग पावर प्लांटों के लिए नीतिगत प्रयास

अधिनियम में प्रावधान

पीकिंग पावर प्लांटों की स्थापना शुरू करने के लिए आरंभिक तौर पर नीतिगत सहायता की आवश्यकता होगी। ऐसे निम्नलिखित नियामक दिशानिर्देश मौजूद हैं, जिनमें इस विषय पर पहले से प्रावधान उपलब्ध हैं। विद्युत अधिनियम, 2003 के अंतर्गत संगत विनिर्देश निम्नानुसार हैं:

- i. विद्युत अधिनियम, 2003 की धारा 61 (ख), (ग) और (ड.) : यह उल्लेख किया गया है कि टैरिफ के निर्धारण हेतु निबंधन और शर्तें विनिर्दिष्ट करने में उपयुक्त आयोग का निम्नलिखित द्वारा मार्गदर्शन किया जाएगा:
 - क. वाणिज्यिक सिद्धांत
 - ख. दक्षता, संसाधनों का किफायती इस्तेमाल, बेहतर निष्पादन और अधिकतम निवेश को बढ़ावा देना
 - ग. निष्पादन में दक्षता के लिए पुरस्कृत करना।
- ii. विद्युत अधिनियम, 2003 की धारा 62 (3) : अधिनियम में कुछ विशिष्ट घटकों की सिफारिश की गई है जो विभिन्न टैरिफ का औचित्य स्थापित करने के लिए आधार साबित हो सकते हैं, ये निम्नलिखित हैं :
 - क) किसी विशेष अवधि के दौरान विद्युत की कुल खपत;
 - ख) वह समय जिसमें आपूर्ति आवश्यक है;
 - ग) आपूर्ति का स्वरूप; और
 - घ) वह उद्देश्य जिसके लिए विद्युत आपूर्ति आवश्यक है।

उपर्युक्त के आलोक में पीकिंग पावर नीति तैयार करते समय दक्षता और दक्ष निष्पादन को पुरस्कृत करने जैसे महत्वपूर्ण मुददों का विशेष रूप से उल्लेख करने की आवश्यकता है। पीक मांग के स्वरूप के अनुरूप उसे पूरा करने के लिए प्रयुक्त प्रौद्योगिकी में कुछ विशेषताएं होनी चाहिए, जो नीचे सूचीबद्ध की गई हैं:

- शीघ्र चालू होना और बंद होना
- त्वरित रैंप अप दर
- व्यापक लोड रेंज
- ब्लैक स्टार्ट क्षमता
- गैर प्रतिबंधित अप/डाउन टाइम
- ईंधन की सहूलियत
- कम उत्सर्जन

समर्पित पीकिंग पावर प्लांटों के चयन हेतु निविदा प्रक्रिया में उपर्युक्त मानदंडों के आधार पर जटिल मूल्यांकन आवश्यक है।

पीकिंग मांग के लिए विशेष रूप से समर्पित पावर प्लांट योजनागत क्षमता अभिवृद्धि के भाग के रूप में होंगे और नवीकरणीय ऊर्जा स्रोतों की तरह इनके लिए भी 2020 तक 10% स्थापित क्षमता का लक्ष्य निर्धारित किया जाए। इससे उत्पादन मिश्रण का अधिकतम इस्तेमाल होगा, जहां एक ओर "बेस लोड प्लांटों" को उच्च पीएलएफ पर प्रचालित किया जा सकता है वहीं दूसरी ओर पीकिंग पावर प्लांटों से दिन के अलग अलग समय पर चक्रीय आवश्यकताओं को पूरा किया जा सकता है और नवीकरणीय ऊर्जा प्लांटों की सुदृढ़ तकनीकि के पूरक के तौर पर इनका इस्तेमाल किया सकता है। प्रचालनात्मक और पूंजीगत व्यय के संदर्भ में इसका बड़ा लाभ मिलेगा। पीकिंग पावर आवश्यकताओं को पूरा करने के लिए गैस आधारित पावर प्लांट सबसे बेहतर विकल्प हैं। साथ ही चुंकि प्राकृतिक गैस एक विरल संसाधन है, अत: इसका इष्टतम इस्तेमाल करने की आवश्यकता है। गैस आधारित पीकिंग पावर उत्पादन के लिए यदि घरेलू ईंधन आवंटित नहीं किया जाता है तो उत्पादन की लागत अधिक होगी। अत: गैस आधारित पीकिंग पावर प्लांटों के लिए घरेलू प्राकृतिक गैस का अलग आवंटन किया जा सकता है। वितरण कंपनियों (डिस्कॉम) को उचित लागत सुनिश्चित करने के लिए पीकिंग पावर प्लांटों को निर्धारित मात्रा में घरेल गैस आवंटित की जाए। आरंभ में समर्पित पीकिंग पावर क्षमताओं के लिए लगभग 2000 मेगावाट क्षमता की परिकल्पना की जाती है, जिसके लिए लगभग 2 एमएमएससीएमडी प्राकृतिक गैस (@25% पीएलएफ) आवश्यक होगी। ऐसे पावर प्लांट पांच मैट्रो शहरों (प्रत्येक 400 मेगावाट) में स्थापित किए जाने चाहिए। इस संदर्भ में सीईए के चेयरपर्सन की अध्यक्षता में एक कार्यबल गठित किया गया है जो पीकिंग पावर प्लांटों की स्थापना से संबंधित सभी पहलुओं को देखेगा। कार्यबल की रिपोर्ट शीघ्र ही प्राप्त होने वाली है।

आवश्यक विधायी और नीतिगत सहायता

- 1. राष्ट्रीय विद्युत नीति की तरह पीकिंग पावर नीति भी अधिसूचित किए जाने की आवश्यकता है, जिसमें राज्यों की वितरण कंपनियों को विद्युत का सार्वभौमिक अभिगम (समाज के सभी वर्गों-ग्रामीण, शहरी और कृषि) और सभी को विद्युत की निर्बाध उपलब्धता सुनिश्चित कराने के लिए आवश्यक दिशानिर्देश दिए जाएंगे।
- 2. विद्युत की लागत वसूल करने के लिए चरणबद्ध ढंग से विभिन्न प्रयोक्ताओं के लिए अथवा दिन में अलग अलग समय पर अलग अलग टैरिफ की अनुमित प्रदान करते हुए यह आवश्यक है कि नियामकों को "लोड शेडिंग फ्री सिस्टम" कार्यान्वित करने के लिए अधिदेशित किया जाए।
- 3. समर्पित पीकिंग पावर प्लांटों से विद्युत की खरीद बोली दस्तावेजों में यथापरिभाषित निम्नलिखित प्लांट विशेषताओं के साथ एक नीलामी प्रणाली (मामला 2 बोली प्रक्रिया की तरह) पर आधारित होनी चाहिए :
- प्रतिदिन 6 घंटे का प्रचालन जिसमें प्रणाली को कई बार बंद और चालू किया जाता है
- 10 मिनट के भीतर स्टार्ट और पूर्ण लोड पर प्रचालन और दो मिनट के अंदर बंद होने की क्षमता सीईआरसी को मॉडल बोली दस्तावेज तैयार करने का कार्य सौंपा जा सकता है। इस संदर्भ में दो दिशानिर्देश जारी किए जा सकते हैं:-
 - (i) आधारभूत लोड के लिए डिजाइन किए गए मौजूदा पावर प्लांट पीकिंग पावर प्लांटों के रूप में सामान्यत: नीलामी प्रक्रिया में भाग नहीं लेंगे। यह इस तथ्य से उजागर होता है कि यदि मौजूदा प्लांटों के पास "पीकिंग" के अंतर्गत विद्युत आपूर्ति की अतिरिक्त क्षमता रही होती तो भारत में आज मौजूद सीमा तक विद्युत की आपूर्ति को शेड अथवा प्रतिबंधित करने की आवश्यकता ही नहीं होती। हमारे देश में ज्यादातर ग्रामीण क्षेत्रों को प्रतिदिन 4 से 6 घंटे ही विद्युत की आपूर्ति की जाती है जबकि शहरों को अलग अलग मौसम के दौरान अलग अवधि में विद्युत की कटौती का सामना करना पड़ता है।

(ii) इसके अलावा यदि मौजूदा प्लांटों को भी पीकिंग पावर की आपूर्ति हेतु अनुमित दी जाती है तो ऐसी स्थिति बन सकती है कि उत्पादन कंपिनयां वितरण कंपिनयों को बेसलोड आपूर्ति हेतु अपनी प्रतिबद्धताओं को पूरा न कर पाए और अनैतिक तरीके से लाभ प्राप्त करने के लिए देश के कुछ अन्य भागों में पीकिंग आवश्यकता को पूरा करने में समस्या पैदा हो।

इससे अपेक्षाकृत कम पूंजी लागत और उच्च दक्षता के साथ पीकिंग पावर प्लांटों के लिए उपयुक्त अतिरिक्त क्षमता भी सुनिश्चित होगी। यह सुनिश्चित करना महत्वपूर्ण है कि "पीकिंग प्लांट" और बेसलोड प्लांट के बीच अंतर रखा जाए क्योंकि दोनों तरह के प्लांटों का एक ही प्रयोजन से प्रयोग करने से पीक समय में क्षमता का विभाजन कर बेसलोड प्रचालकों के किसी वर्ग को ही लाभ पहुंचाया जा सकेगा।

1. आरंभिक वर्षों अर्थात पीकिंग पावर नीति जारी होने की तारीख से 5 वर्ष में राज्य और केन्द्रीय विद्युत नियामक सार्वजनिक अथवा निजी क्षेत्र द्वारा स्थापित पीकिंग पावर प्लांटों के रूप में स्थापित ऐसे नए प्लांटों से वितरण कंपनियों (डिस्कॉम) द्वारा विद्युत की खरीद हेतु अनुमोदन प्रदान कर सकते हैं, जिनकी प्लांट पूंजीगत लागत प्लांट के मालिक द्वारा प्रतियोगी बोली प्रक्रिया के आधार पर स्थापित की जाती है और गैस का मूल्य पास थ्रू कर दिया जाता है। केन्द्रीय विद्युत नियामक आयोग को अधिदेशित किया जाए कि वह उपयुक्त सामान्य मानदंडों के आधार पर एक मॉडल टैरिफ फॉर्मुला परिभाषि करे।

प्रभावी कार्यान्वयन योजना के साथ उपयुक्त नीतिगत उपायों से भारतीय विद्युत क्षेत्र में लोड – शेडिंग की मौजूदा समस्याएं हल हो जाएंगी और देश में 24X7 निर्बाध विद्युत आपूर्ति का मार्ग प्रशस्त होगा और इस प्रकार यह आर्थिक समृद्धि और स्थिरता को बनाए रखने में एक सार्थक कदम साबित होगा। हालांकि यह सुनिश्चित करने की आवश्यकता है कि इन उपायों के परिणामस्वरूप प्रणाली में नई क्षमता- "पीकिंग पावर प्लांटों" की स्थापना की जाए।

पीक और ऑफ-पीक घंटों की अवधि

पीक घंटा क्षमता प्रभार की दैनिक वसूली के लिए दिन के पीक घंटों की गणना थर्मल उत्पादन स्टेशनों के मामलों में 6 घंटे और हाइड्रो स्टेशन मामलों में तीन घंटे निर्धारित की जाए, इसकी घोषणा समय समय पर राष्ट्रीय लोड डिस्पैच केन्द्र द्वारा की जाए।

पीक और ऑफ पीक टैरिफ के अंतर के लिए आधार

पीक और ऑफ पीक आपूर्ति के लिए मूल्य अलग अलग होने चाहिए और टैरिफ में वास्तविक स्तर पर उत्पादन की चर लागत तथा क्षमता प्रभारों के लिए उचित क्षतिपूर्ति शामिल होनी चाहिए।

यह आवश्यक होगा कि पीक और ऑफ पीक समय में विद्युत के आहरण और आपूर्ति के बीच अंतर किया जाना चाहिए। पीक समय में विद्युत के अधिक आहरण पर ऑफ पीक समय में विद्युत के कुल आहरण की तुलना में अधिक अधिभार (अर्थात निर्धारित प्रभारों के 10-50%) वसूल किया जाना चाहिए, जिसका निर्धारण आरईबी में किया जाए।

13.10 भारत की मौजूदा समस्याएं

चूंकि भारत विद्युत के मामले में पहले से ही घाटे की स्थिति में है अत: अब तक भारत में अचानक बढ़ी हुई मांग को पूरा करने के लिए कोई भी आरक्षित पावर प्लांट नहीं है। परंतु 5% के स्पिनिंग रिजर्व के साथ भावी आयोजना तैयार करते समय और इस तथ्य को ध्यान में रखते हुए कि भारत धीरे धीरे एक प्रतियोगी बाजार बनता जा रहा है, आरक्षित प्लांटों की पहचान/निर्धारण आवश्यक है। विभिन्न पणधारकों द्वारा इस संबंध में प्रतिवेदन दिया गया है कि 5% स्पिनिंग रिजर्व के मानदंड की समीक्षा की जानी चाहिए क्योंकि भारत निवेश के संदर्भ में 5% स्पिनिंग रिजर्व वहन नहीं कर सकता। पीकिंग और रिजर्व प्लांटों के लिए स्थापित कार्यबल इस मुद्दे

पर विचार विमर्श कर रहा है और प्रणाली में स्पिनिंग रिजर्व को अपेक्षित स्तर तक कम करने का निर्णय कार्यबल की रिपोर्ट के आधार पर लिया जाए।

13.11 उपलब्ध/सुझाए गए विकल्प

भारत में आरक्षित मार्जिन रखने का एक विकल्प यह हो सकता है कि उचित नियामक सहायता के साथ आरक्षित प्लांटों का निर्माण किया जाए। दूसरा विकल्प यह हो सकता है कि प्लांटों का प्रचालन घोषित क्षमता से निम्न स्तर पर किया जाए ताकि अचानक मांग बढ़ने पर तदनुसार विद्युत उत्पादन किया जा सके। भावी योजनाओं में अतिरिक्त क्षमता की आवश्यकता के लिए अध्ययन करने हेतु आयोजना कार्रवाई में प्रणाली में 5% आरक्षित मार्जिन की आवश्यकता को पूरा करने के लिए उपलब्धता घटक को कम किया जा सकता है।

13.12 सिफारिश

यह सिफारिश की जाती है कि 12वीं योजना के दौरान कम से कम 2000 मेगावाट क्षमता वाले गैस आधारित पीकिंग पावर प्लांटों की योजना बनाई जाए। 400 मेगावाट क्षमता वाले इन प्लांटों की स्थापना भारत के 5 बड़े मैट्रो शहरों के आसपास की जाए। इन पीकिंग प्लांटों के प्रचालन से अर्जित अनुभव अन्य बड़े शहरों में अतिरिक्त पीकिंग प्लांटों के सृजन और भावी योजनाओं में अधिक क्षमता अभिवृद्धि का मार्ग प्रशस्त करेगा। विभिन्न पणधारकों द्वारा यह सुझाव दिया गया है कि प्रत्येक मैट्रो शहरों में 400 मेगावाट क्षमता वाले पावर प्लांटों के बजाय 100-150 मेगावाट क्षमता वाले छोटे पीकिंग पावर प्लांटों की स्थापना की जाए जो उचित नियामक सहायता के साथ भारत के सभी क्षेत्रों/शहरों में वितरित आधार पर स्थापित किए जाएं। पीकिंग पावर प्लांटों से संबंधित सभी मुद्दों पर विचार विमर्श के लिए केन्द्रीय विद्युत प्राधिकरण के चेयरपर्सन की अध्यक्षता में एक कार्यबल गठित किया गया है। पावर प्लांटों के आकार और स्थल के बारे में कार्यबल की रिपोर्ट के आधार पर विचार किया जाए, जो शीघ्र ही प्रस्तुत की जाने वाली है।

---+++---

अध्याय 14

उपसंहार और सिफारिशें

राष्ट्रीय विद्युत योजना में 11वीं योजना की समीक्षा, 12वीं योजना के लिए विस्तृत आयोजना और 13वीं योजना के लिए संभावित पूर्वानुमान शामिल हैं। आयोजना अध्ययन 18वीं ईपीएस रिपोर्ट में लगाए गए मांग पूर्वानुमानों को ध्यान में रखते हुए किए गए हैं। इन अध्ययनों के परिणामों के आधार पर निम्नलिखित सिफारिशें की जाती हैं:

(1) 12वीं योजना के दौरान क्षमता अभिवृद्धि आवश्यकता

- (i)- 11वीं पंचवर्षीय योजना के दौरान लगभग 54,964 मेगावाट की वास्तविक क्षमता अभिवृद्धि के आधार पर 12वीं योजना के दौरान देश में लगभग 87,100 मेगावाट क्षमता अभिवृद्धि, एनईपी के अनुसार 5% स्पिनिंग रिजर्व, लगभग 4,000 मेगावाट क्षमता वाली पुरानी और अदक्ष थर्मल यूनिटों का समापन और सीईए द्वारा अपनाए गए विश्वसनीयता मानदंड की आवश्यकता होगी। निम्न नवीकरणीय/निम्न गैस (आधारभूत मामला), निम्न नवीकरणीय/उच्च गैस, उच्च नवीकरणीय और निम्न गैस और उच्च नवीकरणीय और उच्च गैस के अनुरूप चार परिदृश्यों की गणना की गई है।
- (ii) कार्बन डाइऑक्साइड (CO₂) के कुल उत्सर्जन को कम करने के लिए हाइड्रो, गैस और न्यूक्लियर आधारित क्षमता को उच्च प्राथमिकता दी जाती है। परियोजना स्थल पर निर्माण की वास्तविक प्रगति तथा भूगर्भीय आकस्मिकताओं, प्राकृतिक आपदाओं, आर एण्ड आर तथा पर्यावरणीय समस्याओं के चलते जल विद्युत परियोजनाओं के विकास में अनिश्चितताओं को ध्यान में रखते हुए 12वीं योजना के दौरान 10,897 मेगावाट हाइड्रो क्षमता अभिवृद्धि पर विचार किया गया है। आवश्यक बकाया थर्मल क्षमता अभिवृद्धि की गणना के उद्देश्य से आयोजना अध्ययन के लिए 12वीं योजना के दौरान 18,500 मेगावाट नवीकरणीय क्षमता पर विचार किया गया है। एनपीसीआईएल द्वारा दी गई सूचना के अनुसार 5,300 मेगावाट न्यूक्लियर क्षमता अभिवृद्धि का प्रस्ताव है। 2,540 मेगावाट गैस आधारित क्षमता अभिवृद्धि पर विचार किया गया है।
- (iii) आधारभूत मामला परिदृश्य के अंतर्गत 12वीं योजना के लिए देश में कुल क्षमता अभिवृद्धि आवश्यकता की गणना निम्नानुसार की गई है :

कुल क्षमता (नवीकरणीय ऊर्जा स्रोतों को छोड़कर) - 87,100 मेगावाट

हाइड्रो - 10,897 मेगावाट **न्यूक्लियर** - 5,300 मेगावाट **थर्मल** - 70,903 मेगावाट

कोयला - 67,843 मेगावाट
 लिग्नाइट - 520 मेगावाट

• **गैस** - *2,540* मेगावाट

(iv) 12वीं योजना के लिए योजना आयोग द्वारा स्थापित 88,537 मेगावाट के लक्ष्य के अनुसार 88,537 मेगावाट की कुल क्षमता वाली परियोजनाओं की पहचान की गई है, जिनके विवरण निम्नानुसार हैं:

कुल क्षमता (नवीकरणीय ऊर्जा स्रोतों को छोड़कर) - 88,537 मेगावाट

हाइड्रो - 10,897 मेगावाट **न्यूक्लियर** - 5,300 मेगावाट **थर्मल** - 72,340 मेगावाट

• **कोयला** - *69,280* मेगावाट

- **लिग्नाइट** *520* मेगावाट
- **गैस** *2,540* मेगावाट

(2) 13वीं योजना के दौरान क्षमता अभिवृद्धि आवश्यकता

12वीं योजना के दौरान लगभग 88,000 मेगावाट की क्षमता अभिवृद्धि को ध्यान में रखते हुए 13वीं योजना के दौरान देश में लगभग 86,400 मेगावाट क्षमता अभिवृद्धि आवश्यक होगी। 12वीं योजना में 4 परिदृश्यों के अनुरूप 13वीं योजना के लिए भी चार परिदृश्य अर्थात निम्न नवीकरणीय/निम्न गैस (आधारभूत मामला), निम्न नवीकरणीय/उच्च गैस, उच्च नवीकरणीय और निम्न गैस और उच्च नवीकरणीय और उच्च की गणना की गई है।

आधारभूत मामले के अंतर्गत 13वीं योजना के लिए देश में कुल क्षमता अभिवृद्धि निम्नानुसार प्रस्तावित है :

कुल क्षमता - 86,400 मेगावाट (नवीकरणीय ऊर्जा स्रोतों को छोड़कर)

हाइड्रो - 12,000 मेगावाट न्यूक्लियर - 18,000 मेगावाट थर्मल - 56,400 मेगावाट

- कोयला *56.400* मेगावाट
- गैस 0 मेगावाट
- नवीकरणीय 30,500 मेगावाट
 हाइड्डो आयात 8,040 मेगावाट

इस बात का उल्लेख किया जाए कि एनपीसी के कार्यक्रम के अनुसार 13वीं योजना के दौरान 18,000 मेगावाट न्यूक्लियर क्षमता अभिवृद्धि पर विचार किया जा रहा है। यदि इस क्षमता अभिवृद्धि को मूर्त रूप नहीं दिया जाता है, तो इसे कोयला आधारित क्षमता से प्रतिस्थापित किया जा सकता है।

(3) महत्वपूर्ण मुद्दे

तेजी से नई क्षमता अभिवृद्धि सुनिश्चित करने के उद्देश्य से निम्नलिखित मुद्दों/समस्याओं का त्वरित समाधान किया जाए :

- भूमि और जल की उपलब्धता के संदर्भ में यह सुझाव दिया जाता है कि प्रत्येक राज्य को परियोजना पूर्ण करने के लिए अनुसूचित अवधि को कम करने के लिए संगत राज्यों में संभावित परियोजना स्थलों के लिए एक भूमि सर्वेक्षण करना चाहिए।
- लागत और समयाविध बढ़ने की घटनाओं को रोकने के लिए परियोजना के संबंध में पर्यावरणीय और वन स्वीकृति शीघ्र सुनिश्चित की जाए।
- नई विद्युत उत्पादन क्षमता की संपूर्ण मांग को पूरा करने के उद्देश्य से नए बीओपी विनिर्माताओं और मौजूदा विनिर्माताओं को अपनी क्षमता अभिवृद्धि और/अथवा विनिर्माण के विविधीरण हेतु प्रोत्साहन देना। यह इस क्षेत्र में प्रतिस्पर्धा बढ़ाने और कीमतें घटाने के लिए भी कारगर सिद्ध होगा।
- तेजी से बढ़ रही मांग को पूरा करने के लिए अधिक संख्या में उन्निर्माण और स्थापना एजेंसियों के गठन को प्रोत्साहित करना।
- सड़कों और पुलों जैसी भारी मशीनरी के संचलन हेतु संभार तंत्र में सुधार किया जाना चाहिए।
- 🗲 महत्वपूर्ण सामग्री जैसे सीमेंट, स्टील आदि उपलब्ध कराना। इसके लिए अग्रिम व्यवस्था आवश्यक है।
- विभिन्न कुशल और अकुशल जनशक्ति की आवश्यकता के अनुरूप मानव संसाधन विकास आवश्यक है।

(4) नीतिगत प्रयास

कम कार्बन उत्सर्जन रणनीति की परिधि में 12वीं और 13वीं योजना के दौरान भारी क्षमता अभिवृद्धि आवश्यकता को पूरा करने के उद्देश्य से बहुत से नीतिगत प्रयास और उपाए किए जाने की आवश्यता है। इनकी संक्षिप्त जानकारी नीचे दी गई है:

(i) केन्द्रीय विद्युत प्राधिकरण (सीईए) संपूर्ण रूप से देश के लिए एकीकृत विद्युत आयोजना तैयार करता रहा है। राज्य उत्पादन, पारेषण और वितरण के लिए राज्य आधारित आयोजना करने के लिए जिम्मेदार हैं, जिससे कि उनकी मांग को पूरा करने के लिए संसाधनों का इष्टतम सदुपयोग किया जा सके। पहले राज्य विद्युत बोर्ड जो एकीकृत निकाय हुआ करते थे वे राज्यों के लिए एकीकृत विद्युत आयोजना तैयार करते थे। राज्यों में विद्युत क्षेत्र के विभाजन और उत्पादन, पारेषण और वितरण के लिए अलग अलग कंपनियों का गठन किए जाने के बाद एकीकृत आयोजना और सीईए के साथ समन्वय स्थापित करने के लिए जिम्मेदार कोई भी एकल संगठन नहीं है।

यह प्रस्ताव किया जाता है कि प्रत्येक राज्य में उत्पादन, पारेषण और वितरण प्रणालियों की एकीकृत आयोजना किसी एकल एजेंसी द्वारा की जाए। इस व्यवस्था को सुकर बनाने के लिए प्रत्येक राज्य इस प्रयोजन से एक उपयुक्त नोडल एजेंसी नियुक्त करे जो राज्य में उत्पादन और वितरण कंपनियों के साथ समन्वय स्थापित करेगी।

- (ii) राष्ट्रीय विद्युत नीति में यह उल्लेख किया गया है कि प्रणाली में 5% के स्पनिंग रिजर्व का प्रावधान आवश्यक है। हालांकि स्पनिंग रिजर्व का प्रावधान बड़ी क्षमता के लिए लागू होता है, जो अन्यथा प्रणाली में बेकार हो जाएगी। चूंकि इसका आशय विद्युत परियोजनाओं की स्थापना में निहित भारी धनराशि से है, जिन्हें केवल आपातकालीन स्थिति में प्रचालित किए जाने की आवश्यकता होती है, अत: यह सुझाव दिया जाता है कि स्पनिंग रिजर्व की राशि को सबसे बड़े आकार वाली यूनिट + पीक लोड (1 % पर विचार किया जाए) के भाग से घटाया जाए। 12वीं योजना के लिए यह लगभग 3,000 मेगावाट के आसपास है। पीकिंग और रिजर्व प्लांट के लिए गठित कार्यबल इस मुददे पर जानकारी प्रदान करे।
- (iii) पहले 1% एलओएलपी और 0.15% ईएनएस के विश्वसनीयता मानदंडों के अनुरूप उत्पादन आयोजना कार्रवाई की गई। 12वीं और 13वीं योजना के लिए क्षमता अभिवृद्धि आयोजना तैयार करते समय विश्वसनीयता मानदंडों को और अधिक कठोर बनाया गया है और एलओएलपी तथा ईएनएस के लिए क्रमश: 0.2% और 0.05% के विश्वसनीयता मानदंड अपनाए गए हैं। यह महसूस किया जाता है कि जैसे जैसे उत्पादन क्षमता बढ़ती जाएगी। आयोजना मानदंडों को और अधिक कठोर बनाया जाना चाहिए, जिससे कि उत्पादन की विश्वसनीयता में सुधार किया जा सके।

(5) कोयले की उपलब्धता से संबंधित मुद्दे

(i) 12वीं योजना के अंत तक कोयला की आवश्यकता

इस उत्पादन आवश्यकता को पूरा करने के उद्देश्य से कोयला आवश्यकता (एसपीसीसी पर 0.72 किलो कैलोरी प्रति किलोग्राम)। कोयला आवश्यकता की गणना 842 मिलियन टन की गई है। 842 मिलियन टन की कुल आवश्यकता की तुलना में आयातित कोयला आधार पर डिजाइन किए गए थर्मल पावर स्टेशनों द्वारा 54 मिलियन टन कोयला आयात किया जाना है। एससीसीएल ने लगभग 35 मिलियन टन कोयले की उपलब्धता हेतु पृष्टि की है और लगभग 100 मिलियन टन कोयला कैप्टिव कोयला ब्लॉकों से उपलब्ध होने की संभावना है। इस प्रकार 788 मिलियन टन कोयले की उपलब्धता सीआईएल द्वारा सुनिश्चित करने की आवश्यकता है, जिसकी तुलना में उन्होंने 477 मिलियन टन कोयले की आपूर्ति के लिए प्रतिबद्धता व्यक्त की है। अत: पावर स्टेशनों की आश्यकता को पूरा करने के लिए सीआईएल से अनुरोध किया जाए कि वह अपना उत्पादन बढ़ाने के लिए आपातकालीन योजना तैयार करे। स्वदेशी कोयले की उपलब्धता/कमी के विवरण नीचे दिए गए हैं:

- (i) वर्ष 2016-17 के दौरान कोयला की आवश्यकता = 842 मिलियन टन
- (ii) निम्नलिखित से कोयला की उपलब्धता:

(क) सीआईएल = 477 मिलियन टन

(ख) एससीसीसीएल = 35 मिलियन टन

(ग) विद्युत कंपनियों को आवंटित कैप्टिव ब्लॉक = 100 मिलियन टन

कोयले की कुल उपलब्धता = 612 मिलियन टन

(घ) आयातित कोयले पर डिजाइन किए गए टीपीएस द्वारा

आयात किया जाने वाला कोयला = 54 मिलियन टन

कमी = 176 मिलियन टन

ऊपर बताए अनुसार कोयले की मांग और उपलब्धता के बीच उपर्युक्त अंतर को दूर करने के उद्देश्य से विद्युत कंपनियों को सीआईएल से आपूर्त किए जाने वाले कोयले की कमी को पूरा करने के लिए लगभग 117 मिलियन टन कोयला का आयात करना होगा। आयात किए जाने वाले कोयले की यह मात्रा आयातित कोयला पर डिजाइन किए गए थर्मल पावर स्टेशनों द्वारा आयात किए जाने वाले संभावित 54 मिलियन टन कोयले से अतिरिक्त होगी। अत: आयात किए जाने वाले कोयले की कुल मात्रा लगभग 171 मिलियन टन है।

- (ii) पावर स्टेशनों को चलाने के लिए कोयले की सीमित उपलब्धता का मामला गंभीर चिंता का विषय है। अत: निम्नलिखित प्रयास किए जाने की आवश्यकता है:
 - क. घरेलू कोयले का न्यायिक और सर्वाधिक उपयुक्त ढंग से प्रयोग। घरेलू कोयले की कमी के कारण कोयले के आयात के लिए व्यवस्था की जाए। भविष्य में केवल सुपर क्रिटिकल पावर स्टेशनों के लिए ही कोयला आवंटित करने का नीतिगत निर्णय लिया जाए।
 - ख. पावर प्लांटों को कोयला की उपलब्धता सुनिश्चित करने के लिए किए जाने वाले अन्य प्रयास निम्नानुसार हैं
 - विद्युत कंपनियों के विकासकर्ताओं, कोयला कंपनियों और अन्य उद्योगों द्वारा विदेशों में ईंधन परिसंपत्तियों का अधिग्रहण और दीर्घकालीन आधार पर कोयले के आयात हेतु व्यवस्था करना।
 - पर्याप्त कोयला रख रखाव अवसंरचना के साथ सुव्यवस्थित विशेष पोर्ट/जेट्टी का विकास।
 - बंदरगाहों पर बर्थ आवंटन में विद्युत क्षेत्र को प्राथमिकता
 - विद्युत परियोजनाओं तक कोयले के परिवहन हेतु पोर्ट, रेलवे और सड़क अवसंरचना का पर्याप्त विकास। पिटहेड से पावर प्लांट तक कोयले के परिवहन हेतु बढ़ रही आवश्यकता के अनुरूप रेलवे ट्रैकों की अतिरिक्त उपलब्धता और मौजूदा ट्रैकों/खंडों का विस्तार।
 - टीपीएस में उपलब्ध अनलोडिंग सुविधाओं के अनुरूप वैगनों की उपलब्धता।
 - एक्सप्रेस फ्रेट कोरिडोर का त्वरित कार्यान्वयन
 - खनन एजेंसियों की किमयों का पता लगाना और उन्हें दूर करने के उपाय
 - कोयला खनन सुविधाओं का उन्नयन, कोयले की अपेक्षित गुणवत्ता आदि।
 - खान शीर्ष पर पर्याप्त क्रशिंग सुविधाएं।
 - कोयला खान शीर्ष पर त्वरित लोडिंग प्रणाली/साइलोस की शीघ्र स्थापना।
 - समर्पित फ्रीट कोरिडोर के निर्माण में तेजी लाना।
 - विद्युत परियोजनाओं के लिए मामला-।। टैरिफ आधारित बोली प्रक्रिया की तरह कोयला खानों का टैरिफ आधारित बोली प्रक्रिया के जरिए आवंटन।
 - कोयला ब्लॉकों के विकास में लगने वाले समय को कम करना।
 - लागत/समय आधार पर निजी पक्षकारों को कोयला खनन का कार्य आवंटित किया जाए।
 - रेलवे का बोझ कम करने और पावर स्टेशनों की दक्षता बढ़ाने के लिए कोल वाशरीज की स्थापना।
 - कोयला ब्लॉकों का विकास।

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 275

(6) गैस की उपलब्धता से संबंधित मुद्दे और देश में गैस आधारित उत्पादन को बढ़ावा देने की आवश्यकता

(i) अब तक केजी बेसिन से उपलब्ध गैस का आवंटन मौजूदा परियोजनाओं को ही किया गया है और विद्युत क्षेत्र को उर्वरक क्षेत्र के बाद गैस आवंटन में दूसरी प्राथमिकता दी गई है। यह सिफारिश की जाती है कि देश में विद्युत की कमी और गैस प्लांटों से कम कार्बन उत्सर्जन को ध्यान में रखते हुए जहां तक घरेलू गैस का संबंध है, तो उच्च प्राथमिकता विद्युत परियोजनाओं को दी जाए, जो विद्युत क्षेत्र से CO2 के उत्सर्जन को सीमित करने में सहायक होगा। 12वीं योजना के दौरान संभावित कोयला कमी को ध्यान में रखते हुए यह आवश्यक होगा कि निर्धारित क्षमता अभिवृद्धि लक्ष्य को पूरा करने और CO2 के उत्सर्जन को कम करने के लिए आगामी 5 वर्षों में गैस आधारित परियोजनाओं से लगभग 25,000 मेगावाट क्षमता अभिवृद्धि के लिए योजना बनाई जाए।

(ii) 12वीं योजना के अंतिम वर्ष (2016-17) तक कुल गैस आवश्यकता

12वीं योजना के अंतिम वर्ष (2016-17) कुल गैस आवश्यकता लगभग 178 एमएमएससीएमडी होगी। इसके विवरण नीचे दिए गए हैं :

12 वीं योजना के अंतिम वर्ष (2016-17) के लिए गैस आवश्यकता*		
11वीं योजना के अंत तक गैस आवश्यकता	88 एमएमएससीएमडी	
<i>(</i> 31.3.2012 की स्थिति के अनुसार 18,381		
मेगावाट की मौजूदा क्षमता के अनुरूप /		
12वीं योजना की परियोजनाओं की आवश्यकता	90 एमएमएससीएमडी	
(25,000 मेगावाट क्षमता के लिए)		
12वीं योजना के अंतिम वर्ष (2016-17 तक गैस की	178 एमएमएससीएमडी	
कुल आवश्यकता)		

(iii) देश में गैस आधारित उत्पादन को बढ़ावा देने की आवश्यकता

इन पावर प्लांटों के अंतर्निहित लाभों के कारण देश में गैस आधारित उत्पादन को बढ़ावा देने की तत्काल आवश्यकता है, विवरण नीचे दिए अनुसार हैं:

देश में लोड प्रोफाइल विश्वसनीय ढंग से आवश्यकता को पूरा करने में गैस आधारित पावर प्लांटों की भूमिका :

सीईआरसी ने पंप स्टोरेज योजनाओं सिहत विभिन्न श्रेणी के पावर प्लांटों के लिए पीकिंग टैरिफ निर्धारित कर पीकिंग क्षमताओं की स्थापना को प्रोत्साहित किया है। हाइड्रो परियोजनाओं के विकास और निर्माण में अपेक्षाकृत अधिक समय लगता है और इसके परिणामस्वरूप देश की उत्पादन क्षमता में हाइड्रो पावर की हिस्सेदारी प्राय: घट जाती है। इस संदर्भ में यह उल्लेख किया जाता है कि गैस आधारित उत्पादन अन्य उपलब्ध विकल्पों की तुलना में अधिक विश्वसनीय ढंग से पीक/मध्यम लोड आवश्यकताओं को पूरा करने में महत्वपूर्ण भूमिका अदा कर सकता है।

संसाधनों-भूमि और जल पर अपेक्षाकृत कम दबाव

गैस आधारित प्लांटों के लिए कोयला आधारित प्लांटों तथा हाइड्रो क्षमताओं की तुलना में भूमि और जल की आवश्यकता कम होती है। इस प्रकार इनकी तुलना में गैस आधारित पावर प्लांटों की स्थापना से लोगों का विस्थापन भी निश्चित रूप से कम होता है।

कोयला आधारित पावर की तुलना में बेहतर पर्यावरणीय लाभ गैस आधारित विद्युत कोयला आधारित विद्युत की तुलना में अधिक स्वच्छ होती है। आधुनिक संयुक्त चक्र गैस टर्बाइन (सीसीजीटी) संयुक्त चक्र गैस इंजन (सीसीजीई) से CO_2 का उत्सर्जन 660 मेगावाट क्षमता वाली सुपर क्रिटिकल यूनिट से 0.83 किलोग्राम प्रति किलोवाट की तुलना में मात्र 0.35 किलोग्राम प्रति किलोवाट होता है।

ईंधन आपूर्ति/ईंधन सुरक्षा जोखिमों का विविधीकरण :

यद्यपि ऐसी उम्मीद थी कि केजी-डी6 बेसिन से गैस का उत्पादन शुरू होने के पश्चात घरेलू स्तर पर प्राकृतिक गैस की उपलब्धता बढ़ेगी, परंतु अभी हाल के कुछ माहों में गैस का उत्पादन एवं उपलब्धता घटी है। हालांकि प्राकृतिक गैस क्षेत्र में उपयुक्त नीतियों को अपनाने से गैस आधारित संयुक्त क्षमता अभिवृद्धि के लिए नियामक पहल से अभी भी ईंधन आपूर्ति के जोखिमों को कम करने की उम्मीद है, जिसके परिणामस्वरूप कोयले पर अत्यधिक निर्भरता भी कम होगी। यहां तक कि यदि एलएनजी के रूप में गैस के आयात की भी आवश्यकता पड़ती है, तो इससे ऐसे स्रोत बेसों का विविधीकरण होगा जहां से ऊर्जा आयात की जाएगी। इस प्रकार इससे ऊर्जा सुरक्षा जोखिमों का विविधीकरण होगा।

(iv) गैस आधारित क्षमता अभिवृद्धि को प्रोत्साहित करने के लिए अपनाए जाने वाले नीतिगत उपाय

- उच्च दक्षता वाले संयुक्त हीटिंग और कूलिंग प्लांटों सिहत गैस आधारित पावर प्लांटों को प्रोत्साहित करने के लिए आवश्यक नीतिगत प्रयास।
- सीसीएचपी प्लांटों को गैस आवंटन में प्राथमिकता।
- पीपीए की अवधि : पीपीए की अवधि 25 वर्ष रखी जाती है, गैस आधारित पावर प्लांटों के वाणिज्यिक जीवनकाल को ध्यान में रखते हुए इसे 15-18 वर्ष करने की आवश्यकता है। इसके अलावा गैस सामान्यत: पांच वर्ष की अवधि के लिए आवंटित की जाती है, अत: पीपीए पर हस्ताक्षर पांच वर्ष की अवधि के लिए किए जाने की आवश्यकता है, जिसकी प्लांट के 15-18 वर्ष के वाणिज्यिक जीवनकाल तक गैस आवंटन अवधि के विस्तार के अनुसार समय समय पर समीक्षा की जाए।
- ईंधन जोखिम को आगे बढ़ाना (पास-श्रू): प्राकृतिक गैस के लिए घरेलू और अंतर्राज्यीय बाजार यह सुझाव देता है कि गैस की उपलब्धता और/अथवा प्राकृतिक गैस के मूल्यों के संदर्भ में बहुत सी अनिश्चितताएं हैं। विकासकर्ता ऐसी आदर्श स्थिति में नहीं हैं कि वे उन जोखिमों को वहन कर सकें। अत: ईंधन की उपलब्धता और मूल्य संबंधी जोखिमों को खरीददारों द्वारा वहन किया जाए।
- जोखिम पास-श्रू को स्वीकार करना अथवा भुगतान करना : गैस आपूर्ति करारों की विशेषताओं में ईंधन केता पर उच्च स्तर की बाध्यताओं को स्वीकार करना अथवा उनका भुगतान करना प्रमुखता से शामिल किया जाता है। पीपीए में उपयुक्त सुधार करने तथा न्यूनतम ऑफटेक गारंटी के वर्तमान स्तर (अपेक्षाकृत कम) को उपयुक्त ढंग से उच्च स्तर तक लाने की आवश्यकता है। यह भी सुनिश्चित करने की आवश्यकता है कि गैस आधारित प्लांटों को प्रचालन घंटों (पीक/मध्यम लोड) के दौरान प्रेषण संबंधी जोखिम न उठाना पड़े।
- प्रतियोगी बोली प्रक्रिया संभावना के अंतर्गत पूंजी लागत और ऊष्मा दर : अत: बोली प्रक्रिया प्राथमिक रूप से प्रतिस्पर्धी क्षमता खोज प्रभार और परिवर्तन दक्षताओं (निवल ऊष्मा दर) पर आधारित होनी चाहिए। यदि कुल विद्युत उत्पादन प्रणाली के साथ गैस आधारित पीकिंग पावर को एकीकृत किया जाता है तो कार्बन उत्सर्जन को कम किया जा सकता है, भले ही यह नवीकरणीय ऊर्जा स्रोतों जैसे पवन अथवा सौर ऊर्जा की तुलना में अधिक क्यों न हो। अत: यह सुझाव दिया जाता है कि गैस आधारित पीकिंग परियोजनाओं को नवीकरणीय ऊर्जा परियोजनाओं अथवा अल्ट्रा मेगा पावर परियोजनाओं के समान

राजकोषीय लाभ प्रदान किए जाएं। विशेष रूप से इन्हें भी शून्य सीमाशुल्क और कर तथा ब्याज दर में छूट का लाभ प्रदान किया जाए।

- मध्यम अथवा पीकिंग अनुप्रयोगों के लिए तकनीकी आवश्यकताएं।
- बोली आमंत्रण में ये विशेषताएं विनिर्दिष्ट की जानी चाहिए क्योंकि इस अनुप्रयोग की विशेष प्रकृति ईंधन और प्रौद्योगिकी के विकल्प को प्रभावित करेगी। ये निम्नानुसार हैं :
- इन्हें एक दिन में कई बार बंद/चालू किया जा सकता है। दूसरे शब्दों में यह कहा जा सकता है कि इनका
 प्रचालन लोड अनुवर्ती सिद्धांत पर किया जाता है।
- कई बार बंद/चालू करने के कारण रख रखाव पर कोई प्रभाव नहीं पड़ता है।
- चालू करने से पूर्ण लोड तक 5-10 मिनट का समय
- पूर्ण लोड से शून्य लोड तक आने में शट-डाउन के लिए 5-10 मिनट का समय
- बैक-स्टार्ट क्षमता
- प्लांट के आंशिक भार प्रचालन के कारण दक्षता पर कोई प्रभाव नहीं पड़ता
- उच्च उपलब्धता >94%।

(7) ग्रीन हाउस गैस उन्मूलन रणनीति

उत्सर्जन मानकों को पूरा करने के उद्देश्य से ग्रीन हाउस गैस उन्मूलन रणनीति अपनाने की आवश्यकता है। आगामी कुछ योजना अवधि में उत्पादन क्षमता अभिवृद्धि में कोयला आधारित उत्पादन के लिए कोयला के प्रमुख स्रोत बने रहने की संभावना को ध्यान में रखते हुए प्रस्तावित कुछ प्रमुख प्रयास निम्नानुसार हैं:

- उच्च वाष्प मानदंडों के साथ यूनिट आकार बढ़ाना
- प्रौद्योगिकी विकास उच्च यूनिट आकार और स्वच्छ कोयला प्रौद्योगिकियों को अपना
 - 💸 सुपर क्रिटिकल प्रौद्योगिकी दो प्रतिशत दक्षता लाभ संभव
 - 💸 अल्ट्रा सुपर क्रिटिकल प्रौद्योगिकी 800 मेगावाट सुपर क्रिटिकल पर 0.7% की अतिरिक्त दक्षता
 - 💸 एकीकृत गैसीकरण प्रौद्योगिकी 40-45% अधिक दक्षता
- पुराने पावर स्टेशनों का नवीनीकरण और आधुनिकीकरण तथा जीवन विस्तार निधि संबंधी बाधाओं को दूर करने के लिए सीडीएम के लाभ प्रदान किए जाएं
- ऊर्जा कार्यकुशलता में सुधार करना
- पुरानी एवं आदक्ष यूनिटों को बंद करना
- कोयले की गुणवत्ता में सुधार करना

अन्य उपायों में निम्नलिखित शामिल हैं:

- टी और डी हानियों को कम करना वर्ष 2011-12 में अखिल भारतीय स्तर पर टी और डी हानियां
 23.79% थीं। इन्हें 15% तक लाने का लक्ष्य
- ऊर्जा के प्रयोग में कार्यकुशलता
- कोयले के परिवहन को कम करने के लिए पिट हेड स्टेशनों की स्थापना

(8) नवीकरणीय ऊर्जा स्रोतों का विकास

नवीकरणीय ऊर्जा को जलवायु परिवर्तन पर भारत की राष्ट्रीय योजना में उपयुक्त ढंग से प्रमुख स्थान दिया गया है। 12वीं एवं 13वीं योजनाओं के दौरान नवीन एवं नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) द्वारा लगभग 60,000 मेगावाट नवीकरणीय क्षमता अभिवृद्धि की योजना बनाई गई है।

(9) ऊर्जा संरक्षण और मांग पक्ष उपाय

विद्युत की मांग और आपूर्ति के बीच अंतर को दूर करने के लिए ऊर्जा संरक्षण और मांग पक्ष उपाय लागत प्रभावी साधन के रूप में बने रहेंगे। ऊर्जा कार्यकुशलता, ऊर्जा का संरक्षण और मांग पक्ष प्रबंधन वाली त्रिपक्षीय पहल की भारत सरकार के वर्ष 2012 तक "सभी के लिए विद्युत" उपलब्ध कराने के मिशन को प्राप्त करने में महत्वपूर्ण भूमिका होगी। इस दिशा में विद्युत क्षेत्र को इस परिवर्तन को सफल बनाने में केन्द्रीय भूमिका अदा करनी है। आपूर्ति वर्चस्व तथा क्षमता विस्तार की बजाय मौजूदा विद्युत उत्पादन स्टेशनों की प्रचालन दक्षता में सुधार, पारेषण और वितरण हानियों को कम करने और सर्वाधिक महत्वपूर्ण ढंग से अंतिम प्रयोक्ता के स्तर पर दक्षता में सुधार करने के लिए क्षमता विस्तार पर ध्यान आकृष्ट करने की आवश्यकता है। ऊर्जा कार्यकुशलता, ऊर्जा का संरक्षण और मांग पक्ष प्रबंधन पर विशेष रूप से जोर देने की आवश्यकता है।

(10) पीकिंग पावर प्लांटों की आवश्यकता

- (i) यह सिफारिश की जाती है कि 12वीं योजना के दौरान कम से कम 2000 मेगावाट गैस आधारित पीकिंग पावर प्लांटों की स्थापना की जाए जिसमें से उचित नियामक सहायता के साथ भारत के 5 प्रमुख मैट्रो शहरों में 400 मेगावाट क्षमता स्थापित की जाए। इन पीकिंग प्लांटों के प्रचालन से हासिल अनुभव अन्य बड़े शहरों में अतिरिक्त पीकिंग प्लांटों की स्थापना और भावी प्लांटों की बेहतर क्षमता का मार्ग प्रशस्त करेगा।
- (ii) पीकिंग पावर प्लांटों से संबंधित मुद्दों पर विस्तार से चर्चा करने के लिए सीईए के अध्यक्ष की अध्यक्षता में एक कार्यबल गठित किया गया है। यूनिटों के आकार और स्थानों के बारे में कार्यबल की शीघ्र ही प्रस्तुत की जाने वाली रिपोर्ट के आधार पर विचार किया जाए।

CENTRAL ELECTRICITY AUTHOIRTY NOTIFICATION

New Delhi, the 30th December, 2013

National Electricity Plan

F. No. CEA/PLG/IRP/2/10/2013.—In exercise of the powers conferred by sub-section (4) of Section 3 of the Electricity Act, 2003 (hereinafter referred to as the Act), the Central Electricity Authority hereby notifies the National Electricity Plan (hereinafter referred to as the Plan). Volume I of the Plan covers the Generation and related aspects and Volume II covers the Transmission and related aspects. As per the stipulation of sub-section (4) of Section 3 of the Act, the Plan is in accordance with the National Electricity Policy, covering 11th Plan in detail and perspective planning for 12th and 13th Plans. The Plan is annexed in Appendix I (Volume I) and Appendix II (Volume II).

T.K. BARAI, Secy. CEA
[ADVT III/4/Exty./186-B/13]

National Electricity Plan

(Volume I)

Generation

[In fulfilment of CEA's obligation under

section 3(4) of the Electricity Act, 2003]

Government of India

Ministry of Power

Central Electricity Authority

November, 2012

ACRONYMS

ACRONYMS	EXPANSION
AC	Alternating Current
AG&SP	Accelerated Generation & Supply Programme
AHWR	Advanced Heavy Water Reactor
AIIMS	All India Institute of Medical Sciences
AMD	Atomic Minerals Directorate
APM	Administered Price Mechanism
AREP	Accelerated Rural Electrification Programme
BARC	Bhabha Atomic Research Centre
Bcum, BCM, Bm ³	Billion cubic metre
BEE	Bureau of Energy Efficiency
BFP	Boiler Feed Pump
BHEL	Bharat Heavy Electricals Ltd.
BSES	Bombay Suburban Electric Supply
BU	Billion units or Billion kWh
C&I	Control & Instrumentation
CAD & CAM	Computer-Aided Design & Computer-Aided Management
CAGR	Compounded Annual Growth Rate
CBIP	Central Board of Irrigation & Power
CBM	Coal Bed Methane
CCEA	Cabinet Committee on Economic Affairs
CCGT	Combined Cycle Gas Turbine
CD	Compact Disc
CDAC	Centre for Development of Advanced Computing
CDM	Clean Development Mechanism
CEA	Central Electricity Authority
CFBC	Circulating Fluidized Bed Combustion
CFL	Compact Fluorescent Lamp
CFRI	Central Fuel Research Institute
CIL	Coal India Ltd.
CLA	Central Loan Assistance
СРР	Captive Power Producer
CPRI	Central Power Research Institute
CPSU	Central Public Sector Undertaking
Crs	Crores
CS	Central Sector
CSIR	Council for Scientific and Industrial Research
CSMRS	Central Soil & Materials Research Station
CWC	Central Water Commission
DAE	Department of Atomic Energy
DC	Direct Current
DDG	Decentralised Distributed Generation

DGH	Director General Hydro Carbon
DG Set	Diesel Generating Set
DISCOM	Distribution Company
DMLF	Data Management & Load Forecasting
DOPT	Department of Personnel & Training
DPR	Detailed Project Report
DSM	Demand - Side Management
DST	Department of Science & Technology
DSTATCOM	Distribution Static Compensation
DVC	Damodar Valley Corporation
DVR	Dynamic Voltage Restorer
EA 2003	Electricity Act 2003
ECIL	Electronic Corporation of India Ltd.
EGEAS	Electric Generation Expansion Analysis System
ENS	Energy Not Served
EPS	Electric Power Survey
ERDA	Electric Research & Development Association
ESCO	Energy Service Company
ESP	Electro Static Precipitator
EPC	Engineering Procurement Contract
FAUP	Fly Ash Utilisation Programme
FBC	Fluidised Bed Combustion
FO	Forced Outage
FOR	Forum of Regulators
GCV	Gross Calorific Value
GDP	Gross Domestic Product
GHG	Green House Gas
GIS	Gas Insulated Switchgear
GPS	Geographic Positioning System
GR	General Review
GSPC	Gujarat State Petroleum Corporation
GT	Gas Turbine
GWe	Gega Watt (Electrical)
НВЈ	Hazira-Bijapur-Jagdishpur (pipeline)
HFO	Heavy Fuel Oil
НЕР	Hydro Electric Project
HPS	Heavy Petroleum Stock
HRD	Human Resource Development
HSD	High Speed Diesel
HT	High Tension
HVDS	High Voltage Distribution System
ID	Induced Draft
IEP	Integrated Energy Policy
IGCAR	Indira Gandhi Centre for Atomic Research

IGCC	Integrated Gasification Combined Cycle
IISC	Indian Institute of Science
IIT	Indian Institute of Technology
IPP	Independent Power Producer
IS	Indian Standard
ISCC	Integrated Solar Combined Cycle
ISO	International Standard Organisation
ISPLAN	Integrated System Planning
IT	Information Technology
kCal	kilo Calorie
kg	kilogram
KKNPP	Kudankulam Nuclear Power Project
kW	kilo Watt
kWh	kilo Watt hour
LEP	Life Extension Programme
LF	Load Factor
LNG	Liquefied Natural Gas
LOA	Letter of Award
LOLP	Loss of Load Probability
LP	Linear Programming
LRVI	Loss Reduction & Voltage Improvement
LSHS	Low Sulphur Heavy Stock
LT	Low Tension
LWR	Light Water Reactor
MAPS	Madras Atomic Power Station
MCFC	Mother Carbonate Fuel Cell
Mcm	Million cubic metre
MHD	Magneto Hydro Dynamics
MMSCMD	Million Metric Standard Cubic Metre per Day
MNRE	Ministry of New & Renewable Energy
MNP	Minimum Need Programme
MoEF	Ministry of Environment & Forest
MoP	Ministry of Power
MT	Million Tonne
MToe	Million Tonnes Oil equivalent
MU	Million Units
MW	Mega Watt
MWe	Mega Watt electric
NAPS	Narora Atomic Power Station
NCPS	National Capital Power Station
NDT	Non-Destructive Test
NEP	National Electricity Policy
NFC	Nuclear Fuel Complex
NHPC	National Hydroelectric Power Corporation

NMDC	National Mineral Development Corporation
NML	National Metallurgical Laboratory
NO _X	Oxides of Nitrogen
NPC	National Productivity Council
NPCIL	Nuclear Power Corporation of India Ltd.
NPTI	National Power Training Institute
NTC	Nuclear Training Centre
NTPC	National Thermal Power Corporation
OCGT	Open Cycle Gas Turbine
OGIP	Original Gas In Place
O&M	Operation & Maintenance
PAFC	Phosphoric Acid Fuel Cell
PC	Pulverized Coal
PFBC	Pressurised Fluidized Bed Combustion
PFC	Power Finance Corporation
PFR	Preliminary Feasibility Report
PGCIL	Power Grid Corporation of India Limited
pН	Hydrogen Ion Concentration
PIE	Partnership In Excellence
PIB	Public Investment Board
PHWR	Pressurised Heavy Water Reactor
PLF	Plant Load Factor
PMGY	Pradhan Mantri Gramodaya Yojna
PMI	Power Management Institute
PMO	Prime Minister's Office
PPM	Parts Per Million
PS	Private Sector
PSC	Production Sharing Contract
PSP	Power Supply Position
PSS	Pumped Storage Schemes
PSU	Public Sector Undertaking.
R&D	Research & Development
R&M	Renovation & Modernisation
RAPP	Rajasthan Atomic Power Project
RAPS	Rajasthan Atomic Power Station
REB	Regional Electricity Board
REC	Rural Electrification Corporation
REDB	Rural Electricity Distribution Backbone
RHE	Rural Household Electrification
RLA	Residual Life Assesment
RM	Reserve Margin
SAARC	South Asian Association for Regional Corporation
SEB	State Electricity Board
SERC	State Electricity Regulatory Commission

SOG	Sanctioned & Ongoing
SO _X	Oxides of Sulphur
SPIC	Southern Petro India Chemicals Ltd.
SPM	Suspended Particulate Matter
SS	State Sector
SSB	Solid State Breakers
SSTS	Solid State Transfer Switches
STPP	Super Thermal Power Plant
STPS	Super Thermal Power Station
STUs	State Transmission Utilities
T&D	Transmission & Distribution
TAPP	Tarapur Atomic Power Project
TAPS	Tarapur Atomic Power Station
TIFAC	Technology Information Forecasting & Assessment Council
TOU	Time of Use
TPS	Thermal Power Station
UCIL	Uranium Corporation of India Ltd.
UMPP	Ultra Mega Power Project
UN	United Nations
UNDP	United Nations Development Programme
UT	Union Territory
VEI	Village Electrification Infrastructure
WBPDCL	West Bengal Power Development Corporation Limited

Chapter 1

INTRODUCTION

1.0 BACKGROUND

Growth of power sector is key to the economic development of our country. Growth in production of electricity has led to its extensive use in all the sectors of economy in the successive five years plans. Over the years the installed capacity of Power Plants (Utilities) has increased to about 1,99,877 MW as on 31.03.2012 from a meagre 1713 MW in 1950. Similarly, the electricity generation increased from about 5.1 Billion units to 877 Billion units in 2011-12. The per capita consumption of electricity in the country also increased from 15 kWh in 1950 to about 819 kWh in 2011. About 95% of the villages have been electrified. However, the country continues to have mismatch between demand and supply and experienced energy and peak shortages to the tune of 8.5% and 10.6% respectively during the year 2011-12. The ongoing RGGVY (Rajiv Gandhi Gram Vidyuthikaran Yojana) envisages access to electricity to households in rural areas. The per capita electricity consumption in India is 24% of the world's average and 35% & 28% respectively that of China and Brazil.

1.1 ELECTRICITY ACT 2003 AND NATIONAL ELECTRICITY POLICY

1.1.1 Electricity Act 2003 and Stipulations regarding National Electricity Plan

The Electricity Act, 2003 provides an enabling legislation conducive to development of the Power Sector in transparent and competitive environment, keeping in view the interest of the consumers.

As per Section 3(4) of the Electricity Act 2003, CEA is required to prepare a National Electricity Plan in accordance with the National Electricity Policy and notify such Plan once in five years. The draft plan has to be published and suggestions and objections invited thereon from licensees, generating companies and the public within the prescribed time. The Plan has to be notified after obtaining the approval of the Central Government. The National Electricity Policy stipulates that the Plan prepared by CEA and approved by the Central Government can be used by prospective generating companies, transmission utilities and transmission/distribution licensees as reference document.

1.1.2 National Electricity Policy and Stipulations regarding National Electricity Plan

The Aims and Objectives of the National Electricity Policy are as follows:

- Access to Electricity Available for all households in next five years
- Availability of Power Demand to be fully met by 2012. Energy and peaking shortages to be overcome and adequate spinning reserve to be available.
- Supply of Reliable and Quality Power of specified standards in an efficient manner and at reasonable rates.
- Per capita availability of electricity to be increased to over 1000 units by 2012.
- Minimum lifeline consumption of 1 unit/household/day as a merit good by year 2012.
- Financial Turnaround and Commercial Viability of Electricity Sector.
- Protection of consumers' interests.

As per the Policy, the National Electricity Plan would be for a short-term framework of five years while giving a 15 year perspective and would include:

• Short-term and long term demand forecast for different regions;

- Suggested areas/locations for capacity additions in generation and transmission keeping in view the economics of
 generation and transmission, losses in the system, load centre requirements, grid stability, security of supply,
 quality of power including voltage profile, etc; and environmental considerations including rehabilitation and
 resettlement;
- Integration of such possible locations with transmission system and development of national grid including type of transmission systems and requirement of redundancies; and
- Different technologies available for efficient generation, transmission and distribution.
- Fuel choices based on economy, energy security and environmental considerations.

The Policy also stipulates that while evolving the National Electricity Plan, CEA will consult all the stakeholders including state governments and the state governments would, at state level, undertake this exercise in coordination with stakeholders including distribution licensees and STUs. While conducting studies periodically to assess short-term and long-term demand, projections made by distribution utilities would be given due weightage. CEA will also interact with institutions and agencies having economic expertise, particularly in the field of demand forecasting. Projected growth rates for different sectors of the economy will also be taken into account in the exercise of demand forecasting.

The Policy stipulates that in addition to enhancing the overall availability of installed capacity to 85%, a spinning reserve of at least 5% at national level would need to be created to ensure grid security and quality and reliability of power supply.

The Policy states that efficient technologies, like super-critical technology, IGCC etc; and large size units would be gradually introduced for generation of electricity as their cost effectiveness gets established.

1.2 VARIOUS INITIATIVES OF THE GOVERNMENT

1.2.1 Development of Power Projects on Tariff Based Bidding

Promotion of competition in the electricity industry in India is one of the key objectives of the Electricity Act, 2003 (the Act). Competitive procurement of electricity by the distribution licensees is expected to reduce the overall cost of procurement of power and facilitate development of power markets.

Section 61 & 62 of the Act provide for tariff regulation and determination of tariff of generation, transmission, wheeling and retail sale of electricity by the Appropriate Commission. Section 63 of the Act states that –

"Notwithstanding anything contained in Section 62, the Appropriate Commission shall adopt the tariff if such tariff has been determined through transparent process of bidding in accordance with the guidelines issued by the Central Government."

Tariff Policy was issued on 5th January, 2006 to facilitate procurement of power on tariff based bidding. As per the new Tariff Policy notified by GOI in January, 2006, All DISCOMS are required compulsorily to procure power on competitive Tariff based bidding w.e.f from 6th January, 2011. Power projects can be developed by States under Case I and Case II bidding as follows:

- (i) Where the location, technology or fuel is not specified by the procurer (Case 1);
- (ii) For hydro-power projects, load centre projects or other location specific projects with specific fuel allocation such as captive mines available, which the procurer intends to set up under tariff based bidding process (Case 2).

Guidelines for procurement of Power by Distribution licensees and Standard Bidding Documents have been issued by the Ministry of Power. Many projects in Haryana, UP, Gujarat, Maharashtra etc, are being implemented through tariff based competitive bidding (Case 1/Case 2).

1.2.2 Development of Ultra Mega Projects

An Initiative has been launched by the Government for the development of coal based Ultra Mega Power Projects (UMPPs) of about 4,000 MW capacity each under Tariff based competitive bidding. The UMPPs will be located either at pit head based on domestic coal or at coastal locations based on imported coal. For UMPPs based on domestic coal, coal block will also be allocated to the project developer. The Objective is to achieve faster capacity addition and to minimize the cost of power to consumers due to economy of scale. Four UMPPs have already been awarded to the developers selected through tariff based competitive bidding. The UMPPs already transferred are Mundra UMPP in Gujarat, Sasan UMPP in MP, Krishnapatnam UMPP in AP and Tilaiya UMPP in Jharkhand. For the Mundra & Sasan UMPPs construction work has started. The First and Second Unit of 800 MW each of Mundra UMPP were synchronized on 8.1.2012 and 10.7.2012 respectively and achieved Commercial operation on 7th March, 2012 and 30th July, 2012 respectively. Third unit of 800 MW of Mundra UMPP was synchronized on 6-10-2012. Remaining two Units of 800 MW each of Mundra UMPP and all the six unit of 660 MW of Sasan UMPP are expected to be commissioned in 12th Plan. For Tilaiya UMPP, land acquisition and preliminary works are under progress. Five units of 660 MW of Tilaiya UMPP are scheduled for commissioning during the 12th Plan and one unit of 660 MW in 13th Plan.

The developer of Krishnapatnam Ultra Mega Power Project, namely M/s Coastal Andhra Power Ltd. had started the construction work but have since stopped the construction work citing new regulation of the Govt. of Indonesia as the reason which prohibits sale of coal, including sale to affiliate companies, below bench mark price. APSPDCL, the lead procurer, has issued termination notice to CAPL. CAPL had approached the High Court of Delhi. The Delhi High Court has dismissed the petition of CAPL on 2.7.2012. CAPL has approached Division Bench, Delhi High Court as well as Indian Arbitrator Council for Arbitration. The matter is subjudice.

In addition to nine UMPPs originally identified, request has come from some of the state governments for installation of additional UMPPs in their states. These are given below:

- i) Second UMPP in Andhra Pradesh- 4000 MW
- ii) Two Additional UMPPs of 4000 MW each in Orissa
- iii) Second UMPP in Gujarat- 4000 MW-
- iv) Second UMPP in Jharkhand.- 4000 MW
- v) Second UMPP in Tamilnadu. 4000 MW
- vi) UMPP in Bihar-4000 MW

The selection/investigation of sites for the above mentioned additional UMPPs are in process in consultation with the concerned State Governments. The status of nine UMPPs originally envisaged & additional seven UMPPs is enclosed at **Annexure 1.1.**

1.2.3 Allocation of Captive Coal Blocks

The coal production in the country has not been keeping pace with the increasing demand of the Power Sector due to various reasons, major one being delay in development of coal mines in the country. This has necessitated the need to import coal. Moreover, due to significant capacity addition achieved in 11th Plan and huge capacity addition programme during 12th Plan and beyond as compared to the actual capacity addition during the past few Plan periods has further aggravated the situation and the gap between demand and supply of domestic coal has widened. Therefore, it has been decided to allocate coal blocks to project developers for captive use. All UMPPs at pithead have been allocated coal blocks.

The number of coal blocks allocated to various utilities and the geological reserves of the blocks are given in **Table 1.1** below:

29593.22

 Utility
 Coal Blocks
 Geological Reserves (MT)

 CPSU
 14
 7752

 State Utilities
 45
 13566.88

 UMPPs
 10
 4520.91

 Private
 19
 3754.03

Table: 1.1

Details of Captive Coal Blocks Allocation to Power Sector

16 blocks having production capacity of 45.15 million tonnes per annum are under operation. Mining Plan has been approved for 36 blocks (reserve- 12659 MT). The captive mine blocks have to be developed on priority to meet the capacity addition targets for the 12th plan.

88

1.2.4 New Hydro Policy

Total

With a view to ensure accelerated development of the hydro power, a New Hydro Policy has been announced by the Government. As per this Policy, the State Governments would be required to follow a transparent procedure for awarding potential sites to the private sector. The concerned private developer would be required to follow the existing procedure such as getting DPR prepared and other statutory clearances and then approach the appropriate regulator for fixation of tariff of the project. Merchant sale of power is to reduce with delay in commissioning of the projects. Provisions have also been made for providing incentives for local area development fund and project affected families.

New Hydro Policy enables developer to recover his additional costs through merchant sale of upto a maximum of 40% of the saleable energy. Further, 1% free power from the project is to be allocated for Local Area Development for welfare schemes, creation of additional infrastructure and common facilities. The State Governments are also expected to contribute a matching 1% from their share of 12% free power for local area development.

1.2.5 Private Sector Participation in Transmission Sector

The Inter-state transmission sector was opened up for private sector participation through joint venture with POWERGRID and through selection of Transmission System Provider(TSP) through competitive bidding. Transmission is a licensed activity and PGCIL as the Central Transmission Utility is a deemed licensee. Therefore, the Central Regulatory Commission had to be approached by the joint venture (JV) companies for grant of transmission license. Torrent Powergrid Company Ltd., Jaypee Powergrid Ltd., Parbati Koldam Transmission Co. Ltd., Teesta Valley Power Transmission Ltd. and North-East Transmission Co. Ltd. were granted licenses for purpose of developing specific transmission projects. Subsequently, MoP issued Guidelines for Encouraging Competition in Development of Transmission Projects and Tariff based Competitive Bidding Guidelines for Transmission Services, as well as Standard Bid Documents for procuring transmission services through the market route.

While selecting the transmission projects for competitive bidding, the lead time requirement of about one year for completing the bidding process has to be kept in view. The scope has to be frozen before RFP stage as no modification is possible after invitation of the tariff bids. The transmission service provider selected through tariff based competitive bidding subsequently takes over the SPV company and then has to approach CERC for grant of transmission license and acceptance of market discovered tariff by the Commission, and in the meanwhile also has to achieve financial closure.

MoP has constituted an Empowered Committee headed by Member, CERC for identifying projects to be implemented through competitive bidding and providing guidance to the Bid Process Coordinator. MoP has appointed REC and PFC as Bid Process Coordinator. Ten Inter-State Transmission projects are presently under implementation through competitive bidding route. Two of them are assigned to POWERGRID and the remaining are being implemented by private companies.

1.2.6 National Action Plan for Climate Change

The National Action Plan for Climate Change (NAPCC) was launched by the Prime Minister in June 2008. NAPCC seeks to promote sustainable development through use of clean technologies. The Plan aims to limit India's greenhouse gas emissions to less than that of developed countries. The Plan will be implemented thorough eight missions which represent multi-pronged, long-term and integrated strategies for achieving key goals in the context of climate change.

The stated objective is to establish an effective, cooperative and equitable global approach based on the principle of common but differentiated responsibilities and relative capabilities enshrined in the UNFCC.

Success of India's efforts would be enhanced if the developed nations fulfil their commitments under UNFCC to transfer additional financial resources and climate friendly technologies to the developing countries.

NAPCC identifies following eight National Missions

- National Solar Mission
- National Mission for Enhanced Energy Efficiency
- National Mission on Sustainable Habitat
- National Water Mission
- National Mission for sustaining the Himalayan Ecosystem
- National Mission for a "Green India"
- National Mission for sustainable Agriculture
- National Mission on Strategic Knowledge for Climate Change

Jawaharlal Nehru National Solar Mission - Towards Building SOLAR INDIA

The National Solar Mission is a major initiative of the Government of India and State Governments to promote ecologically sustainable growth while addressing India's energy security challenge. It will also constitute a major contribution by India to the global effort to meet the challenges of climate change. The objective of the National Solar Mission is to establish India as a global leader in solar energy, by creating the policy conditions for its diffusion across the country as quickly as possible.

The Mission was to adopt a 3-phase approach, spanning the remaining period of the 11th Plan and first year of the 12th Plan (up to 2012-13) as Phase 1, the remaining 4 years of the 12th Plan (2013-17) as Phase 2 and the 13th Plan (2017-22) as Phase 3. At the end of each plan, and mid-term during the 12th and 13th Plans, there will be an evaluation of progress, review of capacity and targets for subsequent phases, based on emerging cost and technology trends, both domestic and global. The aim would be to protect Government from subsidy exposure in case expected cost reduction does not materialize or is more rapid than expected. The immediate aim of the Mission is to focus on setting up an enabling environment for solar technology penetration in the country both at a centralized and decentralized level. The first phase (up to 2013) will focus on capturing of the low-hanging options in solar thermal; on promoting off-grid systems to serve populations without access to commercial energy and modest capacity addition in grid-based systems. In the second phase, after taking into account the experience of the initial years, capacity will be aggressively ramped up to create conditions for up scaled and competitive solar energy penetration in the country.

To achieve this, the Mission targets are:

- To create an enabling policy framework for the deployment of 20,000 MW of solar power by 2022.
- To ramp up capacity of grid-connected solar power generation to 1000 MW within three years by 2013; an additional 3000 MW by 2017 through the mandatory use of the renewable purchase obligation by utilities backed with a preferential tariff. This capacity can be more than doubled reaching 10,000MW installed power by 2017 or more, based on the enhanced and enabled international finance and technology transfer. The ambitious target for 2022 of 20,000 MW or more, will be dependent on the 'learning' of the first two phases, which if successful, could lead to conditions of grid-competitive solar power. The transition could be appropriately up scaled, based on availability of international finance and technology.
- To create favourable conditions for solar manufacturing capability, particularly solar thermal for indigenous production and market leadership.
- To promote programmes for off grid applications, reaching 10000 MW by 2017 and 20000 MW by 2022.
- To achieve 15 million sq. meters solar thermal collector area by 2017 and 20 million by 2022.
- To deploy 20 million solar lighting systems for rural areas by 2022.

Strategy for implementation of first phase of 1300 MW

- Bundling of 1000 MW with unallocated power.
- Roof top reimbursement to states.

1.2.7 Restructured Accelerated Power Development and Reform Programme (R-APDRP) during XI Plan (2007-12)

The Govt. of India has accorded sanction to implement Restructured Accelerated Power Development and Reform Programme (R-APDRP) during the 11TH Plan with revised terms and conditions as a Central Sector Scheme. The focus of the programme is on actual, demonstrable performance in terms of sustained loss reduction.

Restructured APDRP was approved with an outlay of Rs. 51,577 crore.

It is proposed to cover urban areas - towns and cities with population of more than 30,000 (10,000 in case of special category states). In addition, in certain high-load density rural areas with significant loads, works of separation of agricultural feeders from domestic and industrial ones, and of High Voltage Distribution System (11kV) will also be taken up. Further, towns / areas for which projects have been sanctioned in X Plan R-APDRP shall be considered for the XI Plan only after either completion or short closure of the earlier sanctioned projects.

Projects under the scheme shall be taken up in Two Parts. Part-A shall include the projects for establishment of baseline data and IT applications for energy accounting/auditing & IT based consumer service centres and Part-B shall include regular distribution strengthening projects.

Power Finance Corporation (PFC) as nodal agency for R-APDRP in XI plan will provide necessary assistance for smooth implementation of programme.

1.2.8 Rajiv Gandhi Grameen Vidyutikaran Yojana (RGGVY)

Central Govt. has launched Rajiv Gandhi Grameen Vidyutikaran Yojana of Rural Electricity Infrastructure and Household Electrification on 4th April, 2005 for the attainment of the National Common Minimum Programme (NCMP) goal for providing access to electricity to all households in five years. The scheme aims at electrification of 125,000 un-electrified villages and un-electrified hamlets and electrification of 7.8 crore households. The estimated

cost of the scheme (including XI Plan) was Rs.16000 crores approximately and Rs.5000 crores were earmarked for capital subsidy in phase- I during the 10th Plan Period.

Under the scheme 90% capital subsidy would be provided for overall cost of the project for provision of:

- Rural Electricity Infrastructure Backbone (REDB) with at least one 33/11 KV(or 66/11 KV) substation in each block
- Village Electrification Infrastructure (VEI) with at least one distribution transformer in each village/habitation
- Decentralized Distribution Generation (DDG) System where grid supply is either not feasible or not cost effective.

Guidelines for village electrification through Decentralized Distributed Generation (DDG) under RGGVY in the XI plan have been approved and circulated vide OM No.44/1/2007-RE dated 12th January,2009.

Government of India has approved the continuation of the scheme in 11^{th} Plan for attaining the goal of providing access to electricity to all households, electrification of about 1.15 lakh unelectrified villages and electricity connections to 2.34 crore BPL households by 2012 with a capital subsidy of Rs. 28,000 crores . Further, RGGVY is to be continued during 12^{th} Plan as well.

1.2.9 Augmentation of Indigenous Equipment Manufacturing Capacity

All efforts have been made to ensure that manufacturing capacity for Main Plant equipment in the country is suitably enhanced to meet capacity addition requirement during 11th Plan and beyond by enhancing manufacturing capability of existing manufacturers and by encouraging new vendors. Based on the encouragement from Government of India for setting up domestic manufacturing facilities, a number of new manufacturers have come forward for setting up manufacturing facilities for Steam Generators and Turbine Generators. These include:

- 1. L&T-MHI
- 2. Toshiba-JSW
- 3. Alstom-Bharat Forge
- 4. Gammon Ansaldo
- 5. BGR-Hitachi
- 6. Doosan
- 7. Thermax-Babcock
- 8. Cethar Vessel-Riley Power

With above collaborations it may be concluded that country have sufficient manufacturing capability for main plant equipments

CEA has already reviewed the Pre-qualification requirement of suppliers of Super Critical boilers and turbinegenerators to facilitate entry of new players and has recommended the same for adoption by central and state power utilities. In order to promote indigenous manufacturing and transfer of technology of super critical technology, bulk tendering of 11 units of 660 MW with super critical technology for NTPC & DVC projects has been initiated with mandatory phased indigenous manufacturing.

An assessment of requirement of Balance of Plant equipment for power plants has also been carried out and efforts are being made to enhance the manufacturing capacity of existing vendors and encourage new vendors also.

It is necessary to sensitize the industry about the long term requirement of BoPs for the power sector to attract investment in BoP segment. Ministry of Power and CEA have already taken an initiative in coordination with CII to sensitize the industry about the requirement of BoPs.

BoP is not a high technology area and a vendor having experience of executing other infrastructure project could also develop BoP execution capabilities. This has been considered to avoid the overburdening the existing BoP manufacturers. CEA has already reviewed the pre-qualification requirement for BoP vendors and the pre-qualification report for the various BoP packages has been finalised by CEA in consultation with the stakeholders. The recommendations of CEA have been forwarded to all state and central power utilities for adoption.

1.2.10 Demand Side Management Initiatives by BEE

Recognizing the fact that efficient use of energy and its conservation is the least-cost option to mitigate the gap between demand and supply, Government of India has enacted the Energy Conservation (EC) Act – 2001 and established Bureau of Energy Efficiency (BEE).

The Act provides for institutionalizing and strengthening delivery mechanism for energy efficiency services in the country and provides the much-needed coordination between the various entities. The Bureau would be responsible for implementation of policy programmes and co-ordination of implementation of energy conservation activities.

The mission of BEE is to develop policy and strategies with a thrust on self- regulation and market principles, within the overall framework of the EC Act with the primary objective of reducing energy intensity of the Indian economy.

Mandatory Provisions of the EC Act

- Strengthening energy management and energy auditing capabilities of energy professionals
- Accreditation of energy auditors
- Fixation of norms for different industrial sectors
- Conduction of Mandatory energy audits by designated consumers
- Notification of State Designated Agencies
- Standards & Labelling for notified energy consuming equipment and appliances
- Energy Conservation Building Codes for new commercial buildings having connected load of 500 kW or more

PROGRAMME AND MEASURES

Bureau of Energy Efficiency (BEE) has already identified thrust areas and prepared a detailed Action Plan listing out associated activities to be carried out by it for implementing projects and programmes to promote efficient use of energy and its conservation. The Action Plan was launched by the Honourable Prime Minister on 23rdAugust, 2002 at the International Conference on Strategies for Energy Conservation in New Millennium held in New Delhi. The Action Plan, inter-alia, covers:

- Indian Industry Program for Energy Conservation
- Demand Side Management
- Standards and Labelling program
- Energy efficiency in buildings and establishments

- Energy conservation building codes
- Professional certification and accreditation
- · Manuals and codes
- Energy efficiency policy research program
- Delivery Mechanisms for energy Services
- School education etc.

1.2.11 Human Resource Development - Adopt an ITI scheme

To meet the manpower requirement during the 11th Plan and beyond, high priority is being accorded to human resource development and training of power sector personnel. A very comprehensive and pragmatic approach has been adopted to attract, utilize, develop and conserve valuable human resources. It has been estimated that an additional about 1 million workmen, supervisors and engineers would be required for Construction, Operation and Maintenance of power equipment during 12th Plan. In particular, technicians of specified skills would be required in very large numbers. To bridge the gap between supply and demand, a scheme called "Adopt an ITI" has been initiated with a view to building up of skilled work force in the vicinity of the project. Even though we have adequate ITIs, the infrastructure available in terms of workshop facilities and faculty is inadequate. It is required to be strengthened to produce quality technicians. As per this scheme, ITIs are to be adopted or new ITI established by power developers in the vicinity of their projects to provide opportunity to local population to develop skill in construction and O & M of the power projects. Central Public Sector Undertakings have already adopted some ITIs. Private sector is also being encouraged to help in developing large skilled workforce required for accelerated development of power sector.

1.2.12 Creation of National Electricity Fund(NEF) for Distribution Scheme

Investment in Sub-transmission and distribution has been lacking due to resource crunch being experienced by the State transmission and distribution utilities. The break-up of the generation and transmission & distribution schemes shall normally be 50:50. However, more investment is taking place in generation and investment in intra-state transmission system and distribution System has been much less than the desired proportion. The National Electricity Fund (NEF) has been created for providing financial support to State Power Utilities for improving their transmission & distribution infrastructure.

1.2.13 IT Based Project Monitoring

Monitoring of construction of Power Projects is very complex due to a number of activities being taken up simultaneously and in parallel. It is no longer possible to carry out monitoring of progress of execution of a power project by manual system. IT based monitoring has been promoted to have effective monitoring system. Only a few projects being undertaken in 11th Plan are presently being monitored through IT based system which gives day to day progress of the project. This needs to be replicated in all ongoing projects to identify bottlenecks and to take timely action for removal of hurdles in project execution.

1.3 POWER PLANNING BY CEA

Central Electricity Authority (CEA) was established under Section 3 of the Electricity (Supply) Act 1948 and it has continued to exercise the functions and perform duties as assigned to it under the Electricity Act 2003. CEA is responsible for overall planning & development of the Power Sector in the country. CEA is a technical organization to advise and assist the central government on matters relating to generation, transmission, distribution, trading and utilization of electricity. CEA has also been entrusted with the responsibility of advising Central and State Regulatory Commissions, State Governments, licensees, generating companies on any matter on which advice is sought or on any matter which shall enable them to operate the electrical system efficiently. Certain other functions as entrusted to CEA as per Electricity Act 2003, include specifying technical standards for construction of electrical plants; safety requirements for construction, operation and maintenance of electrical plants & lines; grid standards for operation and

maintenance of transmission lines and the conditions for installation of meters for transmission and supply of electricity.

1.4 NATIONAL ELECTRICITY PLAN FOR 11TH PLAN

The National Electricity Plan covering the review of 10th Plan, detailed plan for 11th plan and perspective plan for 12th Plan was prepared by CEA in November 2004 and was circulated to all stakeholders as well as put up on the CEA Website inviting comments by 15th March 2005, later extended to 15th April 2005. CEA received comments on draft National Electricity Plan from various stakeholders. After taking in to consideration various comments and suggestion received from various stakeholders, the plan was finalised by the Authority. The Plan was finally approved by Government in July, 2007 and it was notified in the Gazette of India vide gazette No.159 dated 3rd August, 2007. A review of the Plan is given in the next Chapter.

1.5 PRESENT POWER SCENARIO IN THE COUNTRY

Installed Capacity

The Installed Capacity of the country as on 31st March, 2012 was 1,99,877 MW as depicted in the **Exhibit 1.1** as follows:

Exhibit 1.1 – All India Installed Capacity (as on 31st March, 2012)

*The present Installed Capacity of the country as on 31.10.2012 is 2,09,276 MW

The country has significant potential of generation from renewable energy sources. All efforts are being taken by Government of India to harness this potential. The Installed capacity as on 31st March, 2012 from renewable energy sources is 24,503 MW. The Total Renewable Installed Capacity comprises of 16896.6 MW from Wind, 3410.52 MW from Small Hydro Plants, 3255.01 MW from Biomass Power & Biomass Gasifiers and 941.31 MW from Solar power & Urban & Industrial waste. India ranks fifth in the world in terms of installed capacity of wind turbine power plants.

The growth of Installed Capacity and Generation in India from various sources is shown in **Exhibit 1.3, 1.4** & **Table 1.2** below:

Table 1.2 Growth of Electricity Generation

Plan/Year	Generation	Growth rate in (%)	Compound Growth (%)
		8 th Plan	,
1992-93	301.07	5.0	6.61
1993-94	323.53	7.5	
1994-95	351.03	8.5	
1995-96	380.08	8.3	
1996-97	394.80	3.9	
	•	9 th Plan	
1997-98	420.62	6.5	5.47
1998-99	448.37	6.6	
1999-2000	480.68	7.2	
2000-01	499.55	3.9	
2001-02	515.25	3.1	
		10 th Plan	
2002-03	531.61	3.2	5.16
2003-04	558.34	5.0	
2004-05	587.42	5.2	
2005-06	617.51	5.1	
2006-07	662.52	7.3	
		11 th Plan	
2007-08	704.47	6.3	5.77
2008-09	723.79	2.7	
2009-10	771.60	6.6	
2010-11	811.10	5.1	
2011-12	877.00	8.1	

Exhibit 1.3

Exhibit 1.4

Presently (2011-12) coal based capacity contributes major part of the installed capacity (57 %) and contributes to about 70 % of the total energy generation. In addition to above, the installed capacity of captive power plants of 1MW and above is of the order of 36, 511 MW at the end of 2011-12. The energy generated from captive power plants during the year 2010-11 was 114.2 BU.

Actual Power Supply Position

The country has been facing growing shortages over the past five years. During the year 2007-08 (1st year of 11th Plan), the peak deficit was about 18,000 MW (16.5%) and the average energy shortage in the country was about 78 Billion kWh (11%). During the year 2008-09 (2nd year of 11th Plan), the peak deficit was about 13,000 MW (12%) and the average energy shortage in the country was about 86 Billion kWh (11%). During the year 2009-10 (3rd year of 11th Plan), the peak deficit was about 15,157 MW (13.8%) and the average energy shortage in the country was about 84 Billion kWh (10.1%). During the year 2010-11 (4th year of 11th Plan), the peak deficit was about 12,031 MW (9.8%)

and the average energy shortage in the country was about 73 Billion kWh (8.5 %). The power supply position in the country during terminal year of 11th Plan (2011-12) is summarized in Table 1.3 below:

Table 1.3
All-India Actual Power Supply Position (2011-12)
(April, 2011- March, 2012)

	Peak (MW)	Energy
		(Billion kWh)
Requirement	1,30,006	937
Availability	1,16,191	857
(-) Shortage/(+) Surplus	(-) 13,815	(-) 79
(%)	(-) 10.6%	(-) 8.5 %

The details of peak and energy shortages in the country at the end of 7th, 8th, 9th, 10th and 11th Plans are given in **Table 1.4** below.

Table 1.4

Details of Power Supply Position during Past Plans

Region/ State/ U.T.	Peak Demand (MW)	Peak Avail- ability (MW)	Surplus/ Deficit (MW)	Surplus/ Deficit (%)	Energy Require- ment (Mu)	Energy Avail- ability (Mu)	Surplus/ Deficit (Mu)	Surplus/ Deficit (%)
At the End of 7th Plan (1989-90)	40385	33658	-6727	-16.7	247762	228151	-19611	-7.9
At the end of 8th Plan (1996-97)	63853	52376	-11477	-18.0	413490	365900	-47590	-11.5
At the end of 9th Plan (2001-02)	78441	69189	-9252	-11.8	522537	483350	-39187	-7.5
At the End of 10th Plan (2006-07)	100715	86818	-13897	-13.8	690587	624495	-66092	-9.6
11 th Plan								
2007-08	108866	90793	-18073	-16.6	705724	628016	-77708	-11.0
2008-09	109809	96685	-13124	-12.0	774,324	689,021	-85,303	-11.0
2009-10	119166	104009	-15157	-13.8	830594	746644	-83950	-10.1
2010-11	122287	110256	-12031	-9.8	861591	788355	-73236	-8.5
2011-12	1,30,006	1,16,191	-13,815	-10.6	9,37,199	8,57,886	-79,313	-8.5

Annual Electric Load Factor

The Annual Electric Load Factor is the ratio of the energy availability in the system to the energy that would have been required during the year if the annual peak load met was incident on the system through out the year. This factor depends on the pattern of Utilization of different categories of load. The Annual Electric Load factor has remained close to 80% since 2000-01, primarily because of prevailing shortages in the system and the load staggering measure adopted in the various states particularly staggered supply to agriculture in groups. Since the shortages are rising, the Annual Electric Load Factor also illustrates an increasing trend and is depicted in the **Exhibit 1.5** as follows:

Exhibit 1.5

Variation of System Load Factor

Reserve Margin and Hydro Thermal Mix

Reserve margin of a System is defined as the difference between the Installed Capacity and the peak load met as a percentage of the Peak load met. This factor depends on a number of parameters, major ones being the mode of power generation i.e. hydro, thermal and renewable and the availability of the generating stations. Reserve Margin in other countries varies from 16% to 75%.

The Hydro thermal mix in generation has marginally increased from 25.4% in 2001-02 to about 27.82 % as on 31st March 2007 and thereafter has been decreasing and stands at 22.23 as on 31st March, 2012. This is mainly due to large thermal capacity addition during 11th Plan. However the Reserve Margin has decreased from 49.47% in 2001-02 to 38.33 % in 2009-10 and again increased to 50.94 % by year 2011-12. This is illustrated in the **Exhibit 1.6** below:

Exhibit 1.6

Variation of Reserve Margin and Hydro Thermal Mix

This reduction in Reserve Margin is on account of increase in thermal PLF from 69.9 % in 2001-02 to 73.32 % in 2011-12 on account of improvement in technology and O&M practices and higher efficiency parameters of thermal machines. The highest reserve margin so far during 2011-12, indicates large thermal capacities are unable to operate at full capacity due to fuel shortage. This is illustrated in the **Exhibit 1.7** below:

Exhibit1.7

Variation of Reserve Margin & PLF

The plant load factor of gas plant has also increased from 48 % in 2000-01 to about 65 % in 2009-10. The increase in PLF of gas plants during 2009-10 has been due to additional availability of gas from KG basin. However, gas PLF has considerable reduced during 2011-12 due to reduced gas production from KG D6 basin. The nuclear Load Factor however has reduced from 82 % in 2000-01 to 46.5% in 2007-08 due to fuel shortage, but has improved to 73.29% in 2011-12. However, this has only marginal effect on the reserve margin due to nuclear capacity being a small component in Installed Capacity. It is expected that with further improvement in technology of thermal power generation and higher unit size, as also higher availability of gas and nuclear fuel, Reserve margin is further expected to improve in future. However, due to shortage of fuel along-with the addition of substantial renewable capacities, the reserve margin may further go up.

An encouraging feature is that this decreasing Reserve Margin trend over the years has been observed in spite of the hydro thermal mix has been varying marginally. This implies that effect of increased PLF of thermal stations is more predominant in reducing the Reserve Margin than the effect of reducing hydro thermal mix of Installed Capacity to increase the Reserve Margin. In general the reserve margin has a direct correlation with Hydro-Thermal mix and renewable-thermal mix. As these mix increase the reserve margin would also increase.

1.6 12TH PLAN NATIONAL ELECTRICITY PLAN

As mandated by the Act and the Policy, CEA has prepared the National Electricity Plan for the 12th Plan, the perspective Plan for the 13th Plan and a review of the Status of implementation of the 11th Plan. The draft NEP was circulated to all Stakeholders for their comments/suggestions which have been appropriately incorporated in the Plan. A copy of comments from Stakeholders is enclosed in **Annexure 1.2.**

---+++---

Annexure 1.1

STATUS OF ULTRA MEGA POWER PROJECTS

Sl. No.	Name of UMPP/State	Capacity (MW)	Source of coal supply	Status		
A.	Status of Nine UMPPs Originally Envisaged					
1	Sasan UMPP/ Madhya Pradesh	6x660	Captive Coal blocks Mohar, Mohar Amlori Estn, Chhatrasal	Project awarded and transferred to M/s Reliance Power Ltd. on 07.08.2007. Project is under construction. All the six units are expected to be commissioned in 12 th Plan.		
2	Mundra UMPP/ Gujarat	5x800	Imported Coal	Project awarded and transferred to M/s Tata Power Ltd. Project on 24.4.2007. The Project is under construction. The First and Second Unit of 800 MW each of Mundra UMPP synchronized on 8.1.2012 and 10.7.2012 respectively and achieved Commercial operation date from 7 th March, 2012 and 30 th July, 2012. Remaining 3 Units are expected to be commissioned in 12 th Plan.		
3	Krishnapatnam UMPP/ Andhra Pradesh	6x660	Imported Coal	The Project awarded and transferred to M/s Reliance Power Ltd. on 29th January, 2008. The developer of Krishnapatnam Ultra Mega Power Project namely M/s Coastal Andhra Power Ltd(CAGPL) had started the construction work but since stopped the construction work citing new regulation of the Govt. of Indonesia on coal price as the reason. The Delhi High Court has dismissed the petition of CAPL against termination notice by the lead procurer (APSPDCL). CAPL has approached Division Bench, Delhi High Court as well as Indian Arbitrator Council for Arbitration. The matter is subjudice.		
4	Tilaiya UMPP/ Jharkhand	6x660	Captive coal block Kerandari B&C	Project awarded and transferred on 7 August 2009 to M/s Reliance Power Ltd. Construction of the plant is yet to be taken up as the land has not been handed over to the developer. As per PPA the five units of 660 MW each are scheduled to be commissioned in 12 th Plan and one unit in 13 th Plan.		
5	UMPP in Orissa	4000	Captive coal block Meenakshi, Meenakshi B & dipside of Meenakshi	Request for Qualification (RFQ) bids for selection of the Developer of the project have been received which are under evaluation.		
6	UMPP in Chhattisgarh	4000	Captive coal Block Pindrakhi & Puta Parogia	Request for Qualification (RFQ) for selection of the Developer of the project have been issued in May 2010. Date of submission of RFQ bids extended for want of clearance from MoEF for the allocated captive coal blocks is earlier categorized under category 'A'.		

Tamil Nadu power plant is under finalization. RfQ to be issued after Standard Bidding Document (SBDs) are revised. 8 UMPP in 4000 Imported coal Site could not be firmed up due to resistance by local people. 9 UMPP in 4000 Imported coal The site originally identified at Tadri could not be taken up due to agitation by local people. 8 Status of additional seven nos. UMPPS 1. Second UMPP in Andhra Pradesh Andhra Pradesh Imported Coal Site has been identified in Nayanpall village (Prakasham distt.). The process of land acquisition initiated. 2 Additional UMPP 4000 Captive coal blocks. Bankhani Bhadrak distt. 3 Additional UMPP 4000 Captive coal blocks. Ghogarpalli & Dipsite of Ghogarpalli. 4 Second UMPP in 4000 Imported Coal Site under investigation. 5 Second UMPP in 4000 Captive coal blocks. Site identified in Deogarh distt. Wate Jharkhand Second UMPP in Tamil Nadu Imported Coal Site under investigation 6 Second UMPP in Tamil Nadu Imported Coal Site under investigation		CI III IDD/	4000	T . 1 1	TEL '. 1 1 C' 1' 1 DETA . C
Second UMPP in Orissa – I	7	Cheyyur UMPP/	4000	Imported coal	The site has been finalized. REIA report for
Second UMPP in Orissa – I Additional UMPP in Orissa – II Add		Tamil Nadu			
Site could not be firmed up due to resistance by local people.					_
Maharashtara Maha					` /
Second UMPP in Additional UMPP and Additional UMPP in Orissa – II	8	_	4000	Imported coal	<u>*</u> .
Karnataka					
B Status of additional seven nos. UMPPs 1. Second UMPP in Andhra Pradesh	9	UMPP in	4000	Imported coal	
Status of additional seven nos. UMPPs		Karnataka			not be taken up due to agitation by local
1.Second UMPP in Andhra Pradesh4000Imported Coal village (Prakasham distt.). The process of land acquisition initiated.2Additional UMPP in Orissa – I4000Captive coal blocks. BankhaniThe site has been identified (coastal site) in Bhadrak distt.3Additional UMPP in Orissa – II4000Captive coal blocks. Ghogarpalli & Dipsite of Ghogarpalli.The site has been identified (Inland site) in Kalahandi distt.4Second UMPP in Gujarat4000Imported Coal Site under investigation.5Second UMPP in Jharkhand4000Captive coal blocks. Site identified in Deogarh distt. Wate availability study is under progress.6Second UMPP in Tamil Nadu4000Imported Coal Site under investigation					people.
Andhra Pradesh Andhra Pradesh Andhra Pradesh Captive coal blocks. Bankhani Additional UMPP In Orissa – II Second UMPP in Jharkhand Second UMPP in Jamil Nadu Andhra Pradesh Village (Prakasham distt.). The process of land acquisition initiated. Captive coal blocks. Bankhani Bhadrak distt. The site has been identified (Inland site) in Kalahandi distt. The site has been identified (Inland site) in Kalahandi distt. The site has been identified (Inland site) in Kalahandi distt. The site has been identified (Inland site) in Kalahandi distt. Site under investigation. Site under investigation. Site identified in Deogarh distt. Wate availability study is under progress. In Deogarh dist. Site under investigation Tamil Nadu	В	Status of additional	seven nos. UN	IPPs	
Andhra Pradesh Andhra Pradesh Andhra Pradesh Captive coal blocks. Bankhani Additional UMPP In Orissa – II Second UMPP in Jharkhand Second UMPP in Jamil Nadu Andhra Pradesh Village (Prakasham distt.). The process of land acquisition initiated. Captive coal blocks. Bankhani Bhadrak distt. The site has been identified (Inland site) in Kalahandi distt. The site has been identified (Inland site) in Kalahandi distt. The site has been identified (Inland site) in Kalahandi distt. The site has been identified (Inland site) in Kalahandi distt. Site under investigation. Site under investigation. Site identified in Deogarh distt. Wate availability study is under progress. In Deogarh dist. Site under investigation Tamil Nadu					
acquisition initiated. 2 Additional UMPP in Orissa – I Second UMPP in Jharkhand 5 Second UMPP in Tamil Nadu Additional UMPP in Ad00 Second UMPP in Tamil Nadu Additional UMPP in Ad00 Captive coal blocks. Bhadrak distt. The site has been identified (Inland site) in Bhadrak distt. The site has been identified (Inland site) in Kalahandi distt. Captive coal blocks. The site has been identified (Inland site) in Kalahandi distt. Second UMPP in Jharkhand Captive coal blocks. Site under investigation. Site under investigation	1.	Second UMPP in	4000	Imported Coal	The site has been identified in Nayanpalli
Additional UMPP 4000 Captive coal blocks. Bankhani Bhadrak distt. Bankhani Bhadrak distt. The site has been identified (coastal site) in Bhadrak distt. The site has been identified (Inland site) in Grissa – II Ghogarpalli & Kalahandi distt. The site has been identified (Inland site) in Kalahandi distt. Kalahandi distt. Kalahandi distt. The site has been identified (Inland site) in Kalahandi distt. Kalahandi distt. Kalahandi distt. Second UMPP in Gujarat 4000 Imported Coal Site under investigation. Site identified in Deogarh distt. Wate availability study is under progress. Imported Coal Site under investigation Site		Andhra Pradesh		•	village (Prakasham distt.). The process of land
in Orissa – I Additional UMPP 4000 Captive coal blocks. Ghogarpalli & Kalahandi distt. Second UMPP in Gujarat Second UMPP in Jharkhand Second UMPP in Jharkhand Georgia Additional UMPP in Jharkhand Imported Coal Site under investigation. Site identified in Deogarh distt. Wate availability study is under progress. Imported Coal Site under investigation Site under investigation Site under investigation					acquisition initiated.
Additional UMPP 4000 Captive coal blocks. Ghogarpalli & Kalahandi distt. Site under investigation. Site under investigation Captive coal blocks. Site identified in Deogarh distt. Wate availability study is under progress. Second UMPP in Tamil Nadu Imported Coal Site under investigation Site under inves	2	Additional UMPP	4000	Captive coal blocks.	The site has been identified (coastal site) in
in Orissa – II Ghogarpalli Ghogarpalli Second UMPP in Gujarat Second UMPP in Jharkhand Georgia Ghogarpalli Captive coal blocks. Site under investigation.		in Orissa – I		Bankhani	Bhadrak distt.
Dipsite of Ghogarpalli. 4 Second UMPP in Gujarat 5 Second UMPP in Jharkhand 6 Second UMPP in Tamil Nadu Dipsite of Ghogarpalli. Imported Coal Site under investigation. Site identified in Deogarh distt. Wate availability study is under progress. Site under investigation	3	Additional UMPP	4000	Captive coal blocks.	The site has been identified (Inland site) in
Dipsite of Ghogarpalli. 4 Second UMPP in Gujarat 5 Second UMPP in Jharkhand 6 Second UMPP in Tamil Nadu Dipsite of Ghogarpalli. Imported Coal Site under investigation. Site identified in Deogarh distt. Wate availability study is under progress. Site under investigation		in Orissa – II		Ghogarpalli &	Kalahandi distt.
Ghogarpalli. Second UMPP in Gujarat Second UMPP in Gujarat Second UMPP in Jharkhand Gujarat Captive coal blocks. Site identified in Deogarh distt. Wate availability study is under progress. Markhand Second UMPP in Tamil Nadu Imported Coal Site under investigation					
4Second UMPP in Gujarat4000Imported CoalSite under investigation.5Second UMPP in Jharkhand4000Captive coal blocks.Site identified in Deogarh distt. Wate availability study is under progress.6Second UMPP in Tamil Nadu4000Imported CoalSite under investigation				-	
Gujarat 5 Second UMPP in Jharkhand 6 Second UMPP in Tamil Nadu Captive coal blocks. Site identified in Deogarh distt. Wate availability study is under progress. Site under investigation Site under investigation	4	Second UMPP in	4000		Site under investigation.
5 Second UMPP in Jharkhand Captive coal blocks. Site identified in Deogarh distt. Wate availability study is under progress. 6 Second UMPP in Tamil Nadu Imported Coal Site under investigation		Gujarat		1	
Jharkhand availability study is under progress. 6 Second UMPP in Tamil Nadu Imported Coal Site under investigation	5		4000	Captive coal blocks.	Site identified in Deogarh distt. Water
6 Second UMPP in Tamil Nadu Imported Coal Site under investigation		Jharkhand		1	e
Tamil Nadu	6	Second UMPP in	4000	Imported Coal	
				r	
	7	UMPP in Bihar	4000	Captive coal blocks	Site under investigation

Annexure 1.2

COMMENTS / SUGGESTIONS RECEIVED FROM VARIOUS STAKE HOLDERS

SI. No.	Comments Received From (Company/ Organization/ Individual)	Summary of the Comments	Our Views/Observations
1.	Chungthang Hydro Power Private Limited	To include 99 MW Hydro Project in Sikkim which the company is expected to commission before March,17	May be included in shelf of projects.
2.	Wartsila India Ltd	A number of suggestions on peaking power plants and to include mention of gas engines, update data/information. Further, suggested that instead of setting up about 2000 MW peaking plant at 5 metro cities (400 MW each), it should be distributed at large nos of cities (may be 100 MW each at 20 cities).	We may include updated information/data in relevant chapter of NEP including mention of gas engines suitably. We may retain 400 MW peaking capacity at 5 metros to start with. Regarding setting up of distributed peaking power plants, views as emerged in the meeting of Task Force on Peaking Power Plant may be considered.
3	Indian Wind Power Association	(a). Encouragement to Captive Power Consumers: restoration of benefits of Accelerated depreciation under Income tax act' from 1.4.2012 retrospectively. The Captive Consumer may not full fill RPO fixed by regulatory Commissions. (b). Encouragement to Generators selling wind Power to Board. (c). Encouragement to Power Project Developers: exemption of VAT & CST on purchase made to Install wind mills in Power starved states. (d) Other Common Issues Related to Wind Power	All the issues/problems along with incentives top be given related to wind power as suggested by the association is to be looked into by MNRE. As far as NEP is concerned, RES programme as furnished by MNRE for 12 th & 13 th Plan has been considered.
4.	Lalitpur Power Generation Company	Lalitpur Power Generation Company Ltd 3x660 MW to be included in the List of Category (a) where orders for BTG placed & all Clearances are in place instead of category (c).	Project does not have fuel linkage thus we may not agree and retain the project in Shelf
5.	Power System Operation Corporation Ltd	 (i) The NEP needs to be a perspective plan covering at least one decade and it should indicate 15 year perspective picture. (ii) Workshops/road shows should be conducted to publicize the Plan. (iii) The NEP should be available in Public Domain instead of on sale as earlier. 	(i) NEP covers details of 11 th Plan & ongoing 12 th Plan & perspective 13 th Plan covering 15 year periods. (ii) Regional level meeting have been conducted and it may not be feasible to hold road shows etc (iii) NEP is to be publicized in Gazette of India. After Gazette notifications, decision for putting NEP on CEA website may be taken.

Sl. No.	Comments Received From (Company/	Summary of the Comments	Our Views/Observations
110.	Organization/ Individual)		
		 (iv) Plan should lay emphasis on future pumped storage schemes. (v) In view of larger addition of coal based plant (about 66 GW) in 12th Plan, water scarcity leading to power shortages need to be highlighted in the document. 	(iv) Hydro projects based on their status have been considered in NEP (v) Water availability for thermal projects is an issue and it has been included in the Plan which may further be highlighted. However projects being implemented have water allocation.
		(vi) To give details of Case-1, Case-2 and merchant plants	(vi) May not include in Plan as information dynamic in nature
		(vii) To have Plan B if coal not available	(vii) No viable plan can be prepared without coal based capacity. Also CIL to be requested to ramp up its production
		(viii) Statewise load and IC status to be included with season-wise details	(viii)Planning on All India basis. States to tie up power. Through Case-1, Case-2 bids.
		(ix) Other comments on various paras/chapters regarding updating of data/information	(ix) To be suitably incorporated/updated.
6.	Jhabua Power Ltd	Jhabua Power (1x660 MW) coal based TPS in M.P. should also be included in 12 th Plan list.	May be included in the shelf of projects.
7.	Chamber of Small Industry Association.	(i) To add higher renewable Capacity of 30,000 MW. Keeping in view the Coal Shortage, higher Coal Imports, Transportation Problem & Land acquisition etc. (ii).Spinning Reserve to be maintained of the level of 2.5to3%	Renewable capacity as per MNRE programme. High renewable Scenario done. Spinning Reserves (5%) are being planned as per National
		(iii)T&D Losses to be reduced to 12% (iv)Energy Consumption to be reduced to 5.75% of the energy used in Small Micro & Medium Enterprises. (v)Areas of higher R&D losses should have 10% higher energy tariffs.	Electricity Policy
8.	Indian Wind Energy Association	(i)Solar & wind Sector should be given topmost priority (ii) Greater recognition to wind Power at par with solar energy sector must be provided. (iii) To include Policy measures for wind energy like accelerated depreciation etc. (iv)On-shore potential is about 1 lakh MW (at 80 mts hub height) which is much more than what CWET had estimated roughly	Wind capacity addition programme in NEP is being taken as per the MNRE inputs. Other issues related to incentive etc can be taken up with MNRE.

Sl.	Comments Received	Summary of the Comments	Our Views/Observations
No.	From (Company/ Organization/ Individual)		
		45,000 MW (at 50 mts hub height) (v)The Issue of wind Potential and Capacity addition should be addressed property in NEP. Policy for wind energy Should in Place.	
9.	Dr Bharat Jhunjhunwala, formerly professor, IIM Banglore	(i) Target of capacity addition of about 80,000 appears to be based on demand projections at present price of about Rs 3/kwh, while it should be based on electricity price of about Rs 6/kwh (considering environmental externalities). (ii) Country should generate and consume only so much electricity that is economically justified at the true price of electricity. The true demand would be less than that is prevailing in the market at present. The demand should be accordingly scaled down. (iii) Energy intensity of our economy has been declining. This has not been taken into account in developing forecasted demand. This may be factored into. (iv) In view of the depleting coal, necessary to develop a system of prioritizing different categories of consumptions and making a system to meet the demand for high category consumers before low category consumers. (v) Hydro power being promoted as part of low carbon strategy. The carbon emission from hydro power is about three times as compared to emission from thermal. (vi) The present policy of ignoring environmental externalities is discriminatory against generating States as they bear most of the environmental cost while benefits are reaped by consuming States. (vii) Thermal plants having attached coal mines are required to reforest the mined area. (viii) There is need to make a clear cut road	(i) The demand forecast has been taken as per the 18 th EPS report. (ii) Our endeavor is to meet all the demand as per National Electricity Policy. (iii) The energy intensity has been taken into account. (iv) May not agree (v) may not agree (vi) The Issue needs to be taken up separately.
		map for time of day pricing so that load on gas and hydro is reduced. (ix) Cost plus tariff for hydro plants is leading to overall-inflating capital costs. It is suggested that a system of audit or benchmark pricing may be introduced.	vii) Being done in some mines, needs to be adopted as general practice. (viii) TOD metering and smart grid concept is being initiated in different States.
			ix) For all the projects received in CEA for TEC, cost estimates are checked based on benchmark prices.

Sl.	Comments Received	Summary of the Comments	Our Views/Observations
No.	From (Company/ Organization/ Individual)		
10.	Spic Electric Power Corporation (Pvt) Ltd.	To include the Project 1x525 MW TPS at Tuticorin Stage IV during 12 th Plan.	We may include in the shelf of projects
11.	Teesta Hydro Power Ltd	To include Bhimkyong Hydro Power project (99 MW) at North Sikkim in 12 th Plan List.	EC yet to be obtained. Very ambitious target for commissioning by June 2016. We may include in the shelf of projects.
12	PTC	 (i) Fixing of 12th Plan target to be done well in advance so as to enable utilities to initiate action to meet target. (ii)Emphasis on distribution Sector for commercial viability of entire power sector. 	 (i)The 12th Plan target is being finalized by Planning Commission. (ii) In Distribution States have
		(iii)Planning Should be in Synchronization with Integrated Energy Policy and higher share of gas in energy mix should be considered.	to play major role. (iii) In view of non availability of gas, no new gas based power plants have been
		(iv)Duration of PPA of Gas/Coal based Projects Should coincide with fuel Supply agreement not for the duration 15-18 years and necessary amendment Should be made in Article 6.4 of Chapter 14. (v) Projects allotted through Competitive	planned for 12 th Plan, except already under construction. (iv) Necessary amendment is being made by MoP in bidding documents.
		bidding facing fuel problems & on many other fronts and should be addressed in NEP. (vi)Impetus to Reservoir type hydro projects and R & R problem should be addressed.	(v)The problems of power sector specially fuel issues have been covered in NEP.
		(vii)Pumped Storage Plants (PSP) projects potential should be utilized in a great way. At present utilizing only 5% only. (viii)Examine the reasons of slower / non implementing DSM measures.	(vi) Additional material on mechanism to promote Reservoir type Hydro Plant and R&R issues may be covered. (vii) PSS plants are being planned to the extent feasible.
			(viii) States have to play proactive role in implementing the DSM measures.
13.	MB Power (Chhattisgarh) Limited.	Requested for Including 2x660 MW TPS in Chhattisgarh in 12 th Plan	We may include in the shelf of projects
14.	Lachung Hydro Power Pvt Limited	To including 99 MW Lachung Hydro project in North Sikkim in 12 th Plan.	EC is yet to be obtained. Ambitious target for 12 th Plan. We may include in the shelf of projects
15	Power Research & Development Consultants Private Limited	A number of corrections/suggestions in various chapter of NEP, mostly related to typographical errors, data updating, page breaks, table numbering etc has been made.	We may incorporate the observations/suggestions appropriately.

Sl.	Comments Received	Summary of the Comments	Our Views/Observations
No.	From (Company/ Organization/ Individual)		
		Some of the comments are as under: (i)For demand Projection econometric approach need to be considered. (ii)In demand Cheaper Scenario presented for 12 th &13 th Plan are same & need to be corrected. (iii)Distributed generation need not be near Load Center as given Section 4.3 (Page 57) (iv)Cost of wind Energy is at par with coal generation but in other Cases non Conventional is Considered with other type of generation (Section 5.2.2 Page 92). (v)Peaking Plant is not necessarily near load centre Page 92 & 231. (vi)From Grid Code LOLP is 2% where we are adopting 1% LOLP & 0.15% ENS needs to be verified. (vii)PLF of coal based units for rating 800/600 MW and 500/250/210/200 MW units Can be modified to 85% (Section 6.3.6 page 105) (viii)The word Reserve Margin can be replaced by Capacity Reserve (page no 224).	
16	Tata Project Ltd	Modifications suggested in prequalification criteria for bidders to be eligible to bid for EPC jobs	May be taken up separately.
17	Haryana Power Generation Corporation Ltd.	To include 1x660 MW Ext Project by DCRTPP in 12 th Plan.	EC is yet to be obtained. We may include in the shelf of projects
18	U.P. Power Transmission Corporation Ltd	Lalitpur TPS (3x660), Bhognipur TPS-1 (2x660+2x660 MW), Sandita TPS (2x660), Meja II (2x660) Ghatampur (3x660 MW), Jawaharpur (3x660) May be included is 12 th & 13 th plan.	Only those projects planned for commissioning during 12 th Plan as per target set by Planning Commission, is to be included in the 12 th Plan list. However, projects planned by U.P. may be included in the shelf of the projects.
19.	SINDYA POWER	2x660 MW Coaster Based TPS at Sirkazhi (Tamilnadu) may be included in the List of 12 ^{th &} 13 th Plan.	EC is yet to be obtained. We may include in the shelf of projects
20.	Association of Power Producers	(i)Signing of FSA – It needs to be ensured that FSAs for Plants which shall be Commissioned by 31.3.15. will have a FSA Singed at least a month before Commissioning. (ii)Precondition of PPA for signing FSA: - As per new model FSA, longterm PPA is a	A number of suggestions/issues raised by APP related to FSA, PPA, Revision in Standard Bidding Documents, Fuel Shortage, speedy E&F clearance etc needs to be addressed at appropriate forum.

Sl.	Comments Received	Summary of the Comments	Our Views/Observations
No.	From (Company/ Organization/		
	Individual)	requirement for signing the agreement. It	
		may however be noted at time of award of	These issues may be addressed
		coal linkage no requirement/ Condition of	separately. Editorial changes
		having a long with PPA with distribution	may be suitably incorporated
		Companies was mandated. Further the letter	
		of assurance also did not mandate any such	
		requirement /condition. when huge	
		investment have been made and contracts have been Signed on the above basis. It is	
		unfair to impose Condition seeking signing	
		long term PPA as precondition to singing of	
		FSA. FSA should not be any additional	
		condition and be aligned with there LOA and	
		conditions detailed in LOA.	
		(iii)If requirement of PPA is retained, in the	
		light of deficit situation, one can not afford to	
		have a Project Commissioned but unable to Supply Power because lack of PPAs. In such	
		a Condition developers propose that who	
		have not yet singed PPA but have	
		Commissioned /Partially Commissioned	
		/made progress in the Project be allowed to	
		enter is FSA with CIL now with a condition	
		that actual Supply of Coal as per FSA will be	
		triggered when PPA is Singed Subsequently.	
		(iv)There has been a Shortage of Competitive bidding opportunely. It is to be	
		noted that there are numerous States which	
		have not even called bids and the Southern	
		Region despite the deficit Region, is yet to	
		conclude a single bid. It is essential to create	
		conditions enabling the State to call for	
		power procurement bids so that projects	
		which have already been commissioned or likely be commissioned in the time to come	
		can have PPAs signed. However considering	
		the paucity of Case-I bidding opportunities	
		there are projects which are about to be	
		commissioned and have LOA & but would	
		not able to produce/generate power for want	
		of PPAs. In such a situation of acute power	
		defect, the solution which suggests itself is	
		allow such project to approach to concerned state & regulator to get tariff fixation under	
		section 62 so that they can start receiving	
		coal supply and generation power.	
		(v)Material Changes in New FSA	
		a) Minimum level of 80% of	
		nomination coal requirement.	
		b) FSA Singed before march, 2009	
		needs to be retained c) The requirement of PPA	
		c) The requirement of PPA execution before singing FSA	
		needs to be consider in the light	
	1	needs to be consider in the light	

CI	Comments Dessived	Summary of the Comments	Our Views/Observations
No.	From (Company/	Summary of the Comments	Our Views/Observations
SI. No.	Comments Received From (Company/ Organization/ Individual)	of lack of case-I opportunity and till the residual pricing issues are resolved by MoP to land policy certainty. In the worst case coal supply under FSA be given commensurate with the % capacity tied up upright long term PPA. (vi)There should be a clear cut policy on merchant plants. As the merchant plants are being put up across the country. If suddenly fuel is denied to them due to precondition of long term PPAs, the project would be in danger of getting stranded. (vii)80% required coal as per FSA is supplied and imported coal has to be blended to run the plant at 86% PLF. Due to higher variable Cost which utilities are unable/not willing to pay. There should be Clear cut Policy on blending making the fuel Cost a pass through in new and old PPAs should be recommended. (viii)As per National Tariff Policy Power is to be Procured through competitive bidding from 1st Jan, 2011. The developer can not bear Commodity price and quantum risk for 25 year. Therefore in new standard bidding document the fuel price has to be made pass through. A separate bidding document needs to be notified for power procurement from Gas base Power Projects as the risk of these Projects are Considerably different form Coal based Projects. (ix) Expedite E & F Clearances: In view of the huge impact of non availability of Coal on energy availability, Power prices (which will shoot up If the shortage of Coal persist) as well as Capital stranding. It is absolutely imperative that coal bearing areas are provided forest Clearances swiftly, with necessary Safeguards. The procedural delay needs to be cut but not the safeguards. While the action has been taken such as removal of No-Go Policy and allowance of parallel	Our Views/Observations
		processing of E & F Clearances for Coal blocks as well as Power projects. There are still Projects Struck under erstwhile NO-Go areas which needs to be cleared	
		expeditiously.	
21	Ad D * 1		W
21	Athena Power Ltd.	Request for change in name of project as "Athena Chattisgarh Power Limited"-600 MW.	We may agree to change the name and capacity of the project.

Sl.	Comments Received	Summary of the Comments	Our Views/Observations
No.	From (Company/ Organization/ Individual)	Summary of the comments	Our views observations
22	Shri N. Pradeep Kumar,	A number of typographical errors, alignment errors and some other corrections in NEP	The suggestions/ corrections are being addressed suitably
	Power Company of Karnataka Limited	have been suggested.	·
23	NEEPCO	(i)The projects planned by NEEPCO for 12 th Plan are matching with NEP. However, other projects totaling to 1851 MW for 13 th Plan should be included in 13 th Plan list. (ii) Requested to include 46 MW AGTP	(i)We may include projects proposed by NEEPCO in the shelf of the projects.
		combined cycle extension project in 12 th Plan. (iii) Updated information related to R&M projects in N.E have been provided and requested to updation in NEP.	(ii) only projects having assured gas supply have been included in 12 th Plan (iii) Being updated.
24	NHPC Ltd	(i) Number of suggestions on some major issues/concerns, reasons for delay in execution of hydro projects in 11 th Plan and suggestive measures to accelerate the pace of hydro development in 12 th Plan have been suggested.	(i) We may incorporate in NEP appropriately and update the status of NHPC projects.
		(ii)Represented that 3 projects of NHPC listed in 12 th Plan list. However slippages projects are not listed. (iii) NHPC has provided list of 4480 MW	(i)Since 11 th Plan is over now. The slipped projects can be listed in 12 th Plan
		hydro projects for 12 th Plan and requested to incorporate in 12 th Plan list. (iv)To accelerate pace of hydro development,	(iii) 12 th Plan projects as per Planning Commission target
		a number of suggestions viz. single window clearance for E&F and wildlife clearance to hydro projects, Separate Prior-forest clearance for carrying out Development/DPR works, Cumulative impact study of River Basin, River Basin optimization studies, Infrastructure Development in the basin, Establishment of manufacturing units of equipments in hydro rich States, National Grid to Evacuate power from Norh East, Compensatory afforestation in NE, Advanced (v)Net Present Value (NPV) and its upfront payment for assessing the cost of forest	(iv) Suggestions proposed by NHPC may be taken up at appropriate forum.
		diversion needs to be reviewed as the same have added huge financial burden on the storage hydro schemes making them unattractive. Suitable policy changes required. (vi) Keeping in view the concerns of private	(iv)Appropriate action may be decided
		developers, large hydro projects should be developed through PSUs only so that accountability towards cost of power, environmental coconscious, benefits to locals and end users may be ascertained.	(vi) In view of new hydro policy, reservation of large hydro projects to PSUs appears to be difficult

Sl. No.	Comments Received From (Company/ Organization/ Individual)	Summary of the Comments	Our Views/Observations
25	Astha Power Corporation Private Ltd	(i) 35 MW gas based power projects of the company which is in advanced stage of construction may be included in 11 th Plan. (ii) Additional 6 gas engines and 1STG under 12 th Plan	Gas projects having firm fuel linkage from local sources have been included in 12 th Plan.
26	MP Power management Company Ltd	Nil comments	
27	W.B State Electricity Distribution Co Ltd	Data updation/ status of R&M projects of WBSEDCL have been provided with request to update the same in NEP	We may agree
28	Shankar Sharma, Power Policy Analyst	(i)The difficulty in ensuring adequate fuel, land acquisition issues, peoples' opposition for large scale displacement and ever increasing levels of environmental awareness among people will all pose obstacles in achieving the high capacity addition targets. Hence there is clearly needs to factor into above constraints in CEA's growth target for future plans	(i)These constraints have been considered while deciding the targets for capacity addition programmes by CEA and Planning Commission.
		(ii) Electricity demand projection for 10 to 20 years should be linked to a realistic appraisal of need of our society at all levels which then will in turn ensure responsible management of power sector.	(ii)So far demand projected by CEA's EPS reports matches with actual demand within acceptable tolerance. Hence demand projection by 18 th EPS has been adopted for 12 th /13 Plan power planning.
		(iii)Instead of projecting future demand with GDP maximizing paradigm, the country must aim at determining the least amount of electricity required to eradicate poverty. The society may not afford huge capacity addition on grid and additional demand may not contribute to the economic development. The social. Economic & environmental cost on society for huge addition will be enormous. Therefore, there is need to keep the overall demand within manageable limit.	(iii) In power deficit situation prevailing in almost all States in the country and where millions of people are deprived with basic needs of electricity, country must strive to meet the aspiration of the people. Moreover, electricity is one of the prime movers of our economy and it must be made available to meet the demand of all segments of the society.
		(iv) Power Sector may not need a lot of additional capacity if the existing infrastructure is put to use optimally. Additional power required by 2021 may be planned from renewable sources. (v) For generation planning, total cost of the	(iv) Existing capacity can provide additional electricity, if adequate fuel is ensured. MNRE has planned for additional RES capacity of about 30,000 MW in 12 th & 13 th Plan each. (v) Yes. Total emission would

Sl.	Comments Received	Summary of the Comments	Our Views/Observations
No.	From (Company/ Organization/ Individual)		
		project (both direct &indirect cost) to the society should be the criteria instead of only the financial cost to the project developers. The low carbon growth strategy for 12 th & 13 th Plan would be negated by the huge additional GHG emission resulting from large conventional power plants planned to be added.	increase but emission intensity is coming down due increasing shares of RES and efficiency measure being adopted. Power planning of the country depends upon source of fuel available in the country and our dependence on coal would continue in near future.
		(vi) Definitive plans to phase out coal based power plants in next 25-30 years.	May not agree.
29	Chalakudy Puzha Samrakshna Samithi	(i)CEA's draft Plan does not conform to sustainable growth plan. Rather, if implemented, will take the nation on a fast track towards an ecological catastrophe. The Plan states that "Out of conventional sources, hydro and nuclear are clean source of energy, therefore been provided priority. This is highly deplorable. Large Hydro Plants displace and submerge and emit methane	(i) Even though, RES is being planned & implemented aggressively, huge power demand can not be met without conventional sources of generation which is bound to have GHG emissions /R&R issues and other associated problems. The choice of the country between power or no power on ground of environmental and social issues needs larger debate.
20		(ii) Saving potential has not been considered in demand projections. Providing electricity thousand units per month for affluent households or for mere decorative purposes shall not be criteria for generation planning. The present growth of the industry sector is unfortunately compromising on the ability of the future generations to meet their own demand. (iii) In views of problems associated with hydro plants, it has been suggested that Govt must immediately order a moratorium on all new hydro projects and go for comprehensive and participatory post-facto analysis of existing hydro projects.	(ii) Saving potential due to DSM measures and BEE's energy efficiency measures have been taken into account while planning. Wasteful use of electricity is not desirable but demand of the industry/commercial establishments have to be met for overall economic development of the country. (iii) As elaborated earlier, country needs hydro power and problems/issues associated with hydro needs to be sorted out amicably.
30	International- Rivers	(i) The Plan needs to address the GHG emissions from reservoirs and declining performance of hydropower before proposing hydropower as high priority for electricity generation.	(i) High priority of hydro plant is as per Low Carbon Growth Strategy adopted by country.
		(ii)The plan should also state the needs for decommissioning of hydro plants like	(ii) We may decide.

Sl.	Comments Received	Summary of the Comments	Our Views/Observations
No.	From (Company/	Summary of the Comments	our views/observations
110.	Organization/		
	Individual)		
	1110111101111	thermal power plants.	
		and the west primites	
		(iii) Almost all proposed hydro generation in Himalayan belt, amounting to tens of thousands of MW is being proposed for peak load generation. The environmental & social externalities of peaking hydro plants are very high. As such reliance on hydro for peaking power needs to be revisited and reduced.	(iii)India has both peak & energy shortages as such peaking power plants are also required to be planned.
		(iv)It is incorrectly stated that no peaking stations are under construction except Tehri (Section 13.5). Teesta Stage-V is a peaking power plant.	(iv) We may modify this line.
		(v) Environment & Forest clearance are identified as hurdle (Chapter 14, section-3 Major issues). The clearance rate from MOEF is 99%. The plan is making the recommendation; shows scan respect for environment and social cost. This recommendation should be deleted.	(v) Although E&F clearance rate may be high but time taken in clearance is longer leading to delay & cost overrun of the projects. Suitable rewording of this paragraph may be considered.
31	A Raja Rao, Retired Executive Director, BHEL	The concept of Loss of Load Probability (LOLP) & VOLL (Value of Lost Load) needs to be adopted in the vision part of the Smart Grid Documents. The aim of power system is to serve the needs of all classes of customer along-with quality power supply, therefore it should be given proper recognition.	Lower LOLP of 0.2 % has been adopted for 12 th Plan to meet the demand in the country with quality power supply to all segments of consumers.
32	Jacqueline, Johannes	Some corrections (same as suggested by Wartsila (S.No.2 above) have been suggested.	Being addressed as per S.No.2 above
33	Bhakra Beas Management Board	No comments except updated data of R&M for Bhakra LB has been provided.	We may update data
34.	HERM Div CEA,	Table 4.7,4.8 and Annexure 4.3 have been updated.	Updated information has been incorporated in NEP.

Chapter 2

REVIEW OF CAPACITY ADDITION IN 11TH FIVE YEAR PLAN (2007-12)

2.0 INTRODUCTION

The capacity addition for the 11th Plan was planned keeping in view the aims and objectives of the National Electricity Policy. The capacity addition target set for the 11th Plan was 78,700 MW, about quadruple of what could be actually achieved during the 10th Plan. Achieving this huge target required timely placement of orders, augmentation of manufacturing capacity, skilled manpower and construction machinery, timely statutory clearances and close monitoring & coordination between the executing agencies. This Chapter includes details of capacity addition and the efforts being made to address the constraints faced in timely execution of the power projects.

2.1 11TH PLAN TARGET

One of the major objectives of the National Electricity Policy is that demand is to be fully met by the year 2012 with all peaking and energy shortages to be removed. In addition, the overall availability of Installed Capacity is to be enhanced to 85% and a Spinning Reserve of at least 5% needs to be created. Also, the per capita availability of electricity is to be increased to over 1000 kWh by 2012. Towards fulfilling these objectives and considering the feasibility of implementation of various projects to materialize during the 11th Plan, the capacity addition target for the 11th Plan was fixed at 78,700 MW as per details given in Table 2.1 and **Exhibits 2.1 to 2.2** below:

Table 2.1

11th Plan Capacity Addition Target

SOURCE	Central	State	Private	TOTAL
Hydro	8654	3482	3491	15627
Thermal	24840	23301	11552	59693
Nuclear	3380	-	-	3380
Total	36874	26783	15043	78700

Exhibit 2.1

Exhibit 2.2

2.2 PREPARATION FOR CAPACITY ADDITION IN 11TH PLAN

- **2.2.1** Indigenous Manufacturing Capacity: BHEL being the largest supplier of power plants equipment was expected to get major orders for the 11th plan. CEA had anticipated placement of order of over 50% of generation capacity on BHEL and power sector was heavily dependent on BHEL for timely supply and execution of power projects. CEA reviewed the preparation of BHEL to meet the capacity addition requirements of the 11th plan. Before the commencement of the 11th plan, CEA teams visited the BHEL works and held detailed discussions with BHEL executives about the requirement of power sector and their plans for expansion to meet the increasing requirement of the power sector. CEA in its report of March,2007 recommended augmentation of manufacturing capacity, enhancing of vendor list to outsource manufacturing of some of the items, enhancing manpower in manufacturing, design & engineering and project execution, advance procurement action for critical items, such as forging, castings, high pressure boiler materials for which there are few suppliers world wide, procurement of adequate construction machinery instead of depending on the leased one and IT based monitoring. Review meetings were held with BHEL to discuss the augmentation plan of BHEL.
- **2.2.2** Action was also taken to arrange coal linkage for 11th plan projects. Matter was taken up with MoE&F to accord priority to identified 11th plan projects for Environment and Forest clearance.
- 2.2.3 An International Conclave on Key Inputs for Accelerated Development of Power Sector for 11th Plan & beyond was organised by CEA on 4th and 5th July,2007 to sensitise the Utilities, IPPs and the Industry about the requirement of the power sector during the 11th plan. CEA furnished the requirement of different types of equipments and materials in generation, transmission & distribution required for implementation of the 11th plan. The major recommendations of Conclave were augmentation of manufacturing capacity both for main plants and balance of plants, timely placement of orders, review of pre-qualification requirements to permit participation of new players in the bids, measures to augment skilled work force including adopt an ITI schemes by project developer around the project area to develop skills amongst the locals, standardisation, etc. These recommendations were followed by organising Regional Workshops at Chennai, Chandigarh and Mumbai. During these Conferences, the industry was impressed upon to enhance their manufacturing capacity as well as encourage new entrepreneurs in these areas to meet the requirement of the Power Sector. The constraints being faced in this regard were also discussed and a view was formed to deal with these.
- **2.2.4** Government of india also constituted a Committee under Dr Kirit Parekh then Member (Energy) Planning Commission on Development of Additional Vendors for Balance of Plants. The major recommendations of the Committee are summarized below:
- (a) Order for BOPs (or EPC of BoPs) should be placed within six months of placement of order for main plant and equipment.

- (b Liquidated damages for delay in execution of project in time should be enhanced to discourage cornering of large number of contracts by few suppliers.
- (c) CEA to finalize the pre-qualification requirements for BoP vendors by February, 2008 end.
- (d) CEA and NTPC to complete the exercise for finalizing the guidelines for standardization/ broad design criterion for various packages of BoPs progressively by the end of August, 2008.
- (e) Capacity building for availability of skilled manpower to be taken up by the project developers.
- (f) Whether a level playing field is provided to domestic supplier and foreign suppliers needs to be examined.

2.3 MID TERM APPRAISAL TARGET FOR 11TH PLAN

As mentioned above, the target set for capacity addition during the 11th Plan was 78,700 MW. As per Mid Term Appraisal (MTA) of Planning Commission, certain projects totalling to 21,802 MW were likely to slip from 11th Plan on account of various reasons viz. delay in placement of order for main plant, slow progress of civil work, poor geology etc. Further, certain additional projects which were originally not included in the 11th Plan target were identified for benefits during 11th Plan by expediting the process of project implementation and compression of the construction schedule. This has been possible through extraordinary efforts made by Ministry of Power & CEA in pursuing the developers and other Stake holders. These additional projects total to 5,156 MW.

Based on the above, capacity addition likely during 11th plan as per Mid Term Appraisal (MTA) was fixed as 62,374 MW. A Summary of the likely slippages and additional projects identified is given in Table 2.2 below:

Table 2.2 SUMMARY OF CAPACITY SLIPPING / ADDITIONAL CAPACITY FOR LIKELY BENEFITS DURING $11^{\rm TH}$ PLAN

Figures in MW

11th Plan Capacity Addition Target (A)		78,700
Slipped From Target (B)		21,802
Balance Capacity (C)		56,898
Change in Capacity of projects as included in Target (D)		320
Increase in capacity of Anpara C	200	
Increase in capacity of Sugen CCGT	20	
Increase in capacity of Mettur Ext	100	
Additional Capacity Likely during 11 th Plan Outside Targe	et (E)	5,156
Total Capacity $(F) = (C+D+E)$		62,374

Thus capacity addition likely during 11th Plan as per Mid Term Appraisal (MTA) is 62,374 MW. A Sector wise Summary of this capacity addition target of 62,374 MW is furnished in Table 2.3 below:

Table 2.3
SUMMARY STATEMENT OF MID TERM APPRAISAL TARGET DURING THE 11TH PLAN (SECTOR WISE AND TYPE WISE)

(Figs in MW)

	HYDRO	TOTAL THERMAL	Tl	HERMAI	L BREAKU	NUCLEAR	TOTAL	
CENTRAL SECTOR	2922	14920	13430	750	740	0	3380	21222
STATE SECTOR	2854	18501	14735	450	3316	0	0	21355
PRIVATE SECTOR	2461	17336	13725	1080	2531	0	0	19797
ALL-INDIA	8237	50756.9	41890	2280	6587	0	3380	62374

$\textbf{2.4} \textbf{ ACTUAL CAPACITY ADDITION DURING 11}^{\text{TH}} \textbf{ PLAN}$

A capacity of 54,964 MW has been commissioned during 11th plan. The Year wise/Fuel wise & sector-wise capacity commissioned during 11th Plan is given in Table 2.4 & Table 2.5 below:

Table 2.4

(Figures in MW)

Type	2007-08	2008-09	2009-10	2010-11	2011-12	Total
Hydro	2,423	969	39	690	1,423	5,544
Thermal	6,620	2,485	9,106	11,251	19,079	48,540
Nuclear	220	0	440	220	2,000	880
Total	9,263	3,454	9,585	12,161	20,502	54,964

Table 2.5
Summary of Type-wise and Sector-wise Actual Capacity Addition During 11th Plan

SECTOR	HYDRO (MW)		THE	RMAL (MW	V)	NUCLEAR (MW)	Total Capacity
		Coal	Gas	Lignite	Total		(MW)
CENTRAL SECTOR	1550	11550	740	500	12790	880	15220
STATE SECTOR	2702	11695	1885	450	14030	0	16732
PRIVATE SECTOR	1292	18649	2530	540	21720	0	23012
ALL-INDIA	5544	41894	5156	1490	48540	880	54964

A Summary of State-Wise /Sector-Wise capacity addition target/achievement for 11th Plan is given in **Annexure-2.1**

[भाग Ⅲ—खण्ड 4] भारत का राजपत्र : असाधारण 317

2.4.1 Year-Wise Targets & Actual Capacity Addition (2007-12)

A summary of revised programme/targets and actual achievement during 11th Plan (2007-12) is as below:

Table 2.6
Capacity addition Target/Achievement during 11th Plan

(Figures in MW)

	Hydro		Thei	rmal	Nuclear		Total	
	Target	Actual	Target	Actual	Target	Actual	Target	Actual
2007-08	2372	2423	8907	6620	660	220	12039	9263
2008-09	1097	969	5773	2485	660	0	7530	3454*
2009-10	845	39	13002	9106	660	440	14507	9585
2010-11	1,346	690	17,793	11,251	1,220	220	20,359	12161
2011-12	1,990	1423	13,611	19,079	2,000	0	17601	20502

^{*}Low achievement due to change in definition of commissioning by CEA/MoP

The summary of capacity slipped/additional capacity viz.-a-viz. actual capacity commissioned during 11th Plan is given in Table 2.7

Table 2.7

Figures in MW

Capacity Addition Target (A)	78,700
Slipped From Target (B)	33,415
Balance Capacity $(C) = (A-B)$	45,285
Change in Capacity in Target (D) Increase in capacity of Anpara 'C' from 1000 MW to 1200 MW - 200	405
Increase in capacity of Sugen CCGT from 1128 MW to 1148 MW - 20	
Increase in capacity of Udupi TPP from 1015 MW to 1200MW - 185	45.600
Total capacity from original target (C+D)	45,690
Additional Capacity commissioned outside the 11 th plan programme	9,274
Total Capacity $(F) = (C+D+E)$	54,964

A comparative list of 11th Plan projects as per original target of 78,700, Mid Term Appraisal target of 62,374 MW and actual capacity addition of 54,964 MW is furnished in **Annexure 2.2.**

2.4.2 Reasons for Delay in Commissioning of Projects during 11th Plan.

- Delay in placement of orders mainly Civil Works and Balance of Plants (BOPs)
- Delay and non-sequential supply of material for Main Plant and BoPs.
- Shortage of skilled manpower for erection and commissioning.
- Contractual dispute between project developer and contractor and their sub-vendors/sub-contractors.
- Inadequate deployment of construction machinery.
- Shortage of fuel (Gas and Nuclear).
- Land Acquisition.
- Inadequate infrastructure facilities like reliable construction power supply and constraints in transportation of heavy equipment.

2.5 CAPACITY ADDITION FROM CAPTIVE POWER PLANTS

Large number of captive plants including co-generation power plants of varied type and sizes exist in the country, which are utilized in process industry and in-house power consumption. A number of industries set up their captive plants to ensure reliable and quality power. Some plants are also installed as stand-by units for operation only during emergencies when the grid supply is not available. Surplus power, if any, from captive power plants could be fed into the grid as the Electricity Act 2003, provides for non-discriminatory open access.

A capacity addition of about 14,176 MW (tentative) from Captive plants has been achieved during 11th Plan, based on information received from captive power plant manufacturers, industries and other sources. The Year-wise details are furnished at Exhibit 2.3 below:

Exhibit 2.3

As on 31st March, 2012, the Installed Capacity of Captive Power Plants (1MW and above) is about 36,511 MW. The installed capacity has registered growth of 10.9 % over the installed captive plant capacity of 32,900 MW as on 31st March, 2011. The energy generation from captive power plants (1 MW and above) during the year 2010-11 was about 114 billion units and registered a growth of about 7.5 % in generation over generation of 106 billion units during 2009-10. During the year 2010-11, surplus power of 14.2 BU from captive was fed into the grid.

2.6 GRID INTERACTIVE RENEWABLE POWER SOURCES DURING 11^{TH} PLAN

In the 11th Plan, a capacity addition of 14,000 MW from renewable power sources has been envisaged. Source- wise details are given in Table 2.8 below:

Table 2.8

11TH PLAN TENTATIVE TARGETS FOR GRID INTERACTIVE RENEWABLE POWER

(Figures in MW)

Sources / Systems	Target for 11 th plan
Wind Power	10,500
Biomass Power & Biomass Gasifiers	2,100
Small Hydro (up to 25 MW)	1400
Total	14,000

Source MNRE

Exhibit 2.4

The Installed capacity of RES at the end of 10th plan was 7,760 MW where as total installed capacity at the end of 11th Plan is 24,914 MW. The target from RES had been fixed at 14,000 MW during 11th five year plan. The above target of 14,000 MW for grid interactive renewable power does not include proposed addition of 1000 MW from Distributed Renewable Power System (DRPS). Thus, a renewable capacity addition of 17,154 MW was achieved during 11th Plan.

2.7 CHANGES IN DEFINITION OF COMMISSIONING BY CEA/MoP IN AUG, 08

The commissioning / capacity addition shall be deemed to have taken place only after a unit has demonstrated its capability to generate power at name plate rating except for nuclear plants and reservoir based hydro stations. The date of capacity addition shall be

the date when the following conditions have been fulfilled:

A. Thermal (Coal, Gas, Lignite)

i. The construction and commissioning of all plants and equipment required for safe operation of the unit is complete.

- ii. The trial run operation has started.
- iii. The unit has touched full rated load with designated fuel.
- iv. Date of commercial operation.

B. Hydro

- i. The trial run operation has started.
- ii. The unit has achieved full rated capacity in case of purely run of river stations and run of river stations with pondage.
- iii. The unit has achieved full rated capacity or the design capacity corresponding to prevailing reservoir level in case of storage power stations.
- iv. Date of commercial operation.

C. Nuclear

Nuclear units shall be declared to have been commissioned after these are declared "Commercially operational" by plant authority.

Prior to this, a unit was considered commissioned just on synchronization with the grid.

2.8 MAJOR CONSTRAINTS IN POWER SECTOR DEVELOPMENT AND THE STRATEGY INITIATED BY THE GOVERNMENT TO MEET THESE CHALLENGES ARE AS FOLLOWS:

• Enhancing Manufacturing Capacity of Main Plant

BHEL has augmented its manufacturing capacity from 6000 MW/year to 15,000 MW/year and is in the process of augmenting its capacity further to 20,000 MW per annum.

Pre-qualifying requirements for super critical Boiler-Turbine-Generator have been reviewed by CEA and revised advisory given to utilities in order to encourage new entrants in manufacturing sector to enhance supplies and encourage competition. A major step has been that a number of new manufacturers have came forward for setting up manufacturing facilities for Steam Generators and Turbine Generators. These include:

- 1. L&T-MHI
- 2. Toshiba-JSW
- 3. Alstom-Bharat Forge
- 4. Ansaldo Caldie-Gammon
- 5. BGR-Hitachi
- 6. Dov
- 7. Thermax-Babcock
- 8. Cethar vessals.

Based on production schedules of BHEL & various JVs, it is felt that country is likely to have adequate manufacturing capacity as far as main plant equipments are concerned.

Joint Venture	Boilers	Turbine- generator	Remarks
L&T-MHI	4000 MW	4000 MW	Production for Boiler and turbine commenced
Alstom -Bharat Forge	-	5000 MW	All manufacturing facilities for manufacture of turbines to be completed by June 2013.
Toshiba- JSW	-	3000 MW	All manufacturing facilities to be completed by April- 2013
Gammon- Ansaldo	4000 MW	-	Probable date of completion of facilities December, 2012(2000 MW) and December 2014 (additional 2000 MW)

Thermax-Babcock & Wilcox	3000 MW		All manufacturing facilities to be completed by March- 2013.
BGR Hitachi Boilers Private Ltd.	5 Boiler per annum (~3000 MW		All manufacturing facilities to be completed by Jan- 2013.
BGR Hitachi Turbine generator Private Ltd.		5 Turbine generators per annum (~3000 MW	All manufacturing facilities to be completed by July- 2014.
Doosan Chennai works Pvt Ltd.	2200 MW *(Both subcritical and Supercritical		 DCW pvt ltd is 100% subsidiary of Doosan Korea, incorporated in India on 20.7.2000 Existing facility- Chennai: Additional facility acquired-Mannur village Kancheepuram district Production from additional facilities to start by Sept-2012

• Enhancing Manufacturing Capacity of BOP vendors

There were limited numbers of vendors for BOP in the country. In recent past, it has been noted that some of the plants could not be commissioned due to delay in Balance of Plants, though works in main plants were completed. To overcome the problem, action has been taken to sensitize the industry to the needs of widening the vendor base for Balance of Plants like Coal Handling Plant, Ash Handling Plants, Water treatment plant etc. Industry has been impressed upon to enhance their manufacturing capacity as well as encourage new entrepreneurs in these areas. Qualifying requirements for new vendors of BoPs have been relaxed to enable new vendors to qualify for bidding. Standardisation of BoP systems and mandating a central organisation to maintain a dynamic data base with regard to BoP order is under consideration. NTPC has signed an MOU with Bharat Forge Ltd. to promote a JV Company for manufacture of castings, forgings, fittings and high pressure piping required by the Power Sector.

NPC and L&T have also proposed to set up a JV for manufacturing of forgings, which besides the nuclear plant requirements will also cater to thermal power projects.

• Construction agencies

The need to enhance the number of construction agencies is also being stressed upon. A NTPC / BHEL JV has been firmed to take up work related to Engineering, Procurement and Construction (EPC) for power plants and other Infrastructure projects. This JV has recently obtained some orders for BOPs. The latest methods of civil construction with mechanical equipments and manpower mobilisation needs to be adopted.

• Critical Materials

There does not appear to be shortage of key materials except CRGO steel, higher grade CRNGO & thick boiler steel plates.

Cold Rolled Grain Oriented (CRGO) steel is most commonly used for manufacture of transformer. There is worldwide shortage of CRGO steel and non availability of good quality CRGO steel in India resulted in delay in supply of transformers. To overcome such problems, efforts are being made towards timely availability of Critical Key Inputs required for power system expansion. Measures are being initiated to develop vendors for critical inputs like boiler quality plates, P91 piping, CRGO sheet steel. Advanced planning has been suggested for materials to be imported. Development of manufacturing capacities for castings & forgings for turbine/ generators is also suggested. BHEL has been requested to take advance procurement action for critical equipment like forgings and castings which have a long lead time, so as to reduce time taken to commission any unit. Matter was taken up with Government of India to give advisory to BHEL for advance procurement of a critical forgings and castings. Accordingly advisory has been given by Ministry of Finance to BHEL to facilitate advance procurement action for critical forgings/castings.

Manpower and training facilities in Power Sector

There is shortage of skilled manpower in the country. It was been estimated that an additional about 1 million workmen, supervisors and engineers would be required for Construction, Operation and Maintenance of power equipment during 11th Plan. In particular, technicians of specified skills would be required in very large numbers. To overcome the above problem, high priority is being accorded to human resource development and training of power sector personnel. A very comprehensive and pragmatic approach has been adopted to attract, utilize, develop and conserve valuable human resources. To bridge the gap between supply and demand, a scheme called "Adopt an ITI"

has been initiated with a view to train new technicians and to upgrade the skills of existing ones. As per this scheme, ITIs are to be adopted by power developers in the vicinity of their projects.

CEA has recently recommended to Ministry of Power to make changes in National Electricity Policy, Tariff Policy and competitive Bidding Guidelines to include the cost of skill development in and around the project area in the project cost of generation and transmission projects. CERC has also been requested by CEA to consider the cost of human resource development in and around project area as a pass through in generation and transmission tariff. It has been proposed that the provision on this account should be restricted to actual expenditure or a pre-specified percentage of project cost whichever is lower.

• IT based monitoring

The IT based monitoring is a system which enables to receive all information about the project to be monitored and programmes in real time, thereby helping to highlight the critical issues, the cost over runs and other aspects related to be reported at various levels of management.

It may be utilized to track the daily progress of ongoing power projects and expedite the process of getting clearances from various agencies and would also be helpful in placing orders of BOP/equipments on time. The system can also alert the authority for appropriate action if the project is not progressing as per schedule.

The IT based monitoring system through use of software which would integrate the master network with L1 and L2 level networks to facilitate simultaneous online updation from different geographical locations. Summary dashboard information can also be accessed of all the projects and programs in real-time, helping in determining which projects are in danger of delay/late completion and running over-budget. The system would also help to:-

- ensure online updation of actual dates of approval/release of each drawing by engineering deptt. in a manner that can be accessed by all concerned.
- enable online monitoring of those transport/logistic activities which are critical for timely commissioning of the projects.
- Monitor Poor projects performance and poor sequencing of events.
- Project delays, cost overruns
- visibility into scheduling and material delivery
- Cost overruns, unknown implications of material cost increases.
- Inefficient use of resources, incorrect mix of skills, project delay.

All the projects were requested to implement IT based monitoring for effective project monitoring & implementation. However, only a few projects have implemented the same. This is required to be implemented in all the projects.

Central Electricity Authority has implemented Integrated Management System-I (IMS-I) for centralized collection of data from various power generations, transmission and distribution entities in the country through web based interface. CEA has already approved the input formats and reports pertaining to IMS-I and date is being obtained in the input formats from respective organizations.

CEA is also going to implement IMS-II with the following broad objectives:-

- More intensive and comprehensive IT based monitoring of execution of power projects.
- To provide adequate redundancy in the existing data centre to enhance reliability and availability of the system and to prepare a separate disaster recovery data centre.

Since the number of projects likely to be commissioned during 12th Plan will be large, IT based monitoring would be useful to monitor and generate reports pertaining to ongoing projects.

• Fuel Constraints

- Some of the projects have been delayed due to non-availability of coal, gas and nuclear fuel.
- ❖ Konaseema (445MW) and Gauthami (464 MW) in A.P. which were ready for commissioning were delayed due to non-availability of gas. These projects have since been allocated gas from KG D6 basin and have been commissioned during 2009-10. RAPP Unit-5 & 6, 220 MW each have already been commissioned, as imported nuclear fuel is now available for these units.
- ❖ In addition to above, few gas based power projects could not be commissioned during 11th Plan due to non availability of gas. The Hazira CCGT (351 MW) gas power projects in Gujarat, commissioned during 11th Plan (March 2012), is presently lying idle due to non availability of gas.

• Contractual disputes

A number of projects had awarded fixed price contracts during the 10th Plan period which were affected adversely due to unexpected increase in price of inputs. CEA advised all the utilities not to award fixed price contracts in future where the implementation period is longer. A model contract document with appropriate price calculation formula was circulated for the guidance of the utilities.

During the one-day International Conclave on "Contract Management for Accelerated Development of Hydropower Projects" on 16th November, 2007 at New Delhi organized by the Ministry of Power and Central Electricity Authority, it was concluded that there are deficiencies in the existing contract documents and management systems/practices, leading to contractual disputes affecting the development of the hydropower projects. A need was felt to prepare equitable documents as guidelines for adoption by stakeholders.

In pursuance of the same, a Task Force was constituted by Ministry of Power, Govt. of India under the Chairmanship of Chairperson, CEA & comprising members from Utilities, IPPs/Developers, and consultants. The Construction Industry Development Council (CIDC) was engaged for the purpose.

The draft document has been finalized and sent to MoP for acceptance. Key elements / concepts introduced in Standard Bidding Document (SBD) inter-alia include the following:

- i **Risk Register:** It is seen that delays in most of the hydro projects occur on account of contractual issues especially on account of risk sharing arising out of unforeseen situations. A proforma for risk register incorporating risk sharing/allocation of different types of risks generally encountered in hydro projects has been incorporated. It is expected that adoption of the proforma would reduce contractual disputes between the employer and the contractors to a large extent.
- ii Institutional Arbitration Mechanism: To ensure speedy and efficient dispute redressal, Institutional Dispute Resolution Mechanism has been proposed which is in line with emerging global best practices. Globally the increased emphasis on fair and timely determination of compensation events and claims has tilted the scales in favour of Institutional Arbitration Mechanisms that ensures a more accountable and transparent process for timely resolution of disputes.

iii Other issues suitably incorporated / modified inter-alia include

- Claims towards idling of resources,
- Cost control,
- Procedures for claims,
- Price adjustment formulae,
- Incentive bonus,
- Payment upon termination / foreclosure of contract.

iv. Review committee provision – Constitution of a review committee has been proposed for periodic revision of the SBD and other documents for mid-course correction.

The Standard Bidding Document after getting legal vetting has been finalized and sent to MoP.

• Standardization: Standard specification for steam generator and Turbine generator for 500MW and above with sub critical technology were prepared by CEA with a view to reduce the time in design & engineering and implementation of thermal projects. Standard specifications of super critical units and balance of plants are also under preparation.

Annexure 2.1

SUMMARY OF STATE-WISE SECTOR-WISE CAPACITY ADDITION TARGET/ACHIEVEMENT FOR 11TH PLAN

		TARGET -78,700 MW				TARGET AS PER MID- TERM APPRAISAL (MTA)-				ACHIEVEMENT AS ON			
							62,3	74 MW	7	31.03.2012			
Sl. No.	STATE/ UTs	CS	SS	PS	TOTAL	CS	SS	PS	TOTAL	CS	SS	PS	TOTAL
1	DELHI	0	1500	0	1500	0	1500	108	1608	0	750	108	858
2	HARYANA	1500	1800	0	3300	1500	1800	0	3300	1000	1800	660	3460
3	HIMACHAL PRADESH	2763	210	1462	4435	751	0	1362	2113	0	0	1292	1292
4	JAMMU & KASHMIR	449	450	0	899	449	450	0	899	120	450	0	570
5	PUNJAB	0	500	0	500	0	500	0	500	0	500	0	500
6	RAJASTHAN	690	1790	1080	3560	690	1290	1080	3060	690	1290	540	2520
7	UTTAR PRADESH	980	2000	1600	4580	980	1000	1800	3780	980	250	2850	4080
8	UTTARAKHAND	1520	304	330	2154	400	304	0	704	400	304	0	704
9	CHANDIGARH	0	0	0	0	0	0	0	0	0	0	0	0
	SUB TOTAL NORTHERN	7902	8554	4472	20928	4770	6844	4350	15964	3190	5344	5450	13984
	CHHATTISGARH	3980	1750	1600	7330	2000	250	1600	3850	3320	250	1833	5403
	GUJARAT	0	2782	2448	5230	0	2282	5248	7530	0	1090	7168	8258
12	MAHARASHTRA	1740	2500	1450	5690	740	2500	2110	5350	740	2500	2236	5476
13	MADHYA PRADESH	520	2210	400	3130	520	710	400	1630	520	710	0	1230
14	GOA	0	0	0	0	0	0	0	0	0	0	0	0
15	DAMAN & DIU	0	0	0	0	0	0	0	0	0	0	0	0
16	DADRA & NAGAR HAVELI	0	0	0	0	0	0	0	0	0	0	0	0
	SUB TOTAL WESTERN	6240	9242	5898	21380	3260	5742	9358	18360	4580	4550	11237	20367
17	ANDHRA PRADESH	1000	3064	909	4973	1000	2204	1275	4479	1000	2154	1425	4579
	KARNATAKA	440	1480	1615	3535	440	1480	1615	3535	440	1480	1800	3720
19	KERALA	0	160	0	160	0	100	0	100	0	100	0	100
20	TAMIL NADU	5000	1252	0	6252	4000	1952	0	5952	750	92	0	842
	PUDUCHERRY	0	0	0	0	0	0	0	0	0	0	0	0
	SUB TOTAL SOUTHERN	6440	5956	2524	14920	5440	5736	2890	14066	2190	3826	3225	9241
	BIHAR	4390	0	0		1000	0	0		1000	0	0	
	JHARKHAND	3050	0	0		1500	0			1000	0	1050	2050
24	ORISSA	0	150	600	750	0			1350	0	150	1800	1950
	SIKKIM	510	0	1299	1809	510			1209	510	0	0	
26	WEST BENGAL	4242	2720	250	7212	4242		250	7212	2750	2720	250	5720
	SUB TOTAL EASTERN	12192	2870	2149	17211	7252	2870	3199	13321	5260	2870	3100	11230
27	ARUNACHAL PRADESH	2600	0	0		0		0		0	0	0	-
28	ASSAM	750	37	0		500		0		0	37	0	
	MANIPUR	0	0	0	-	0			-	0	0	0	-
30	MIZORAM	0	0	0	_	0		0	-	0	0	0	
	MEGHALYA	0	124	0		0		0		0	84	0	
	NAGALAND	0	0	0		0		0		0	0	0	-
	TRIPURA	750	0	0		0			_	0	21	0	
	SUB TOTAL N.EASTERN	4100	161	0		500		0		0	142	0	
	ANDMAN & NICOBAR ISLANDS	0	0	0		0		0		0	0	0	_ ~
	LAKSHDWEEP	0	0	0	-	0		0	-	0	0	0	_ ~
	TOTAL		26783		78700	21222	21355	19797	62374	15220	16732	23012	54964

CS: Central Sector; SS: State Sector; PS: Private Sector

Annexure-2.2

LIST OF PROJECTS COMMISSIONED DURING 11TH PLAN

SI. No.	PLANT NAME	STATE	AGENCY	SEC-TOR	STATUS	FUEL TYPE	CAPACI TY (MW)	Capa- city as per 78,700 MW	Capa- city as per 62,374 MW	Capacity Commissioned
	CENTRAL SECTOR									
1	CHANDRAPURA U- 7, 8	JHARKHAND	DVC	С	COMND	COAL	500	500	500	500
2	MEJIA U-6	WB	DVC	С	COMND	COAL	250	250	250	250
3	MEJIA PH II U 7, 8	WB	DVC	С	COMND	COAL	1000	1000	1000	1000
4	KODARMA U1	JHARKHAND	DVC	С	COMND	COAL	500	500	500	500
5	KODARMA U2	JHARKHAND	DVC	С	UC	COAL	500	500	500	
6	DURGAPUR STEEL U1	WB	DVC	С	COMND	COAL	500	500	500	500
7	DURGAPUR STEEL U2	WB	DVC	С	COMND	COAL	500	500	500	500
8	RAGHUNATHPUR PH-I U1,2	WB	DVC	С	UC	COAL	1200	1200	1200	
9	BOKARO EXPANSION	JHARKHAND	DVC	С	UC	COAL	500	500		
10	KAMENG HEP	ARUNACHAL PRADESH	NEEPCO	С	UC	HYDRO	600	600		
11	OMKARESHWAR HEP	MP	NHDC	С	COMND	HYDRO	520	520	520	520
12	TEESTA V U 1,2,3 HEP	SIKKIM	NHPC	С	COMND	HYDRO	510	510	510	510
13	SEWA-II U1,3,2 HEP	J&K	NHPC	С	COMND	HYDRO	120	120	120	120
14	CHAMERA-III HEP	HP	NHPC	С	UC	HYDRO	231	231	231	
15	PARBATI - II HEP	HP	NHPC	С	UC	HYDRO	800	800		
16	PARBATI - III HEP	HP	NHPC	С	UC	HYDRO	520	520	520	
17	URI-II HEP	J&K	NHPC	С	UC	HYDRO	240	240	240	
18	NIMOO BAZGO HEP	J&K	NHPC	С	UC	HYDRO	45	45	45	
19	CHUTAK HEP	J&K	NHPC	С	UC	HYDRO	44	44	44	
20	TEESTA LOW DAM-III HEP	WB	NHPC	С	UC	HYDRO	132	132	132	
21	TEESTA LOW DAM-IV HEP	WB	NHPC	С	UC	HYDRO	160	160	160	
22	SUBANSIRI LOWER HEP	ARUNACHAL PRADESH	NHPC	С	UC	HYDRO	2000	2000		
23	BARSINGSAR LIG U1,2	RAJASTHAN	NLC	С	COMND	LIGNITE	250	250	250	250
24	NEYVELI - II LIG U1	TN	NLC	С	COMND	LIGNITE	250	250	250	250
25	NEYVELI - II LIG U2	TN	NLC	С	UC	LIGNITE	250	250	250	
26	TUTICORIN JV	TN	NLC	С	UC	COAL	1000	1000		
27	KAIGA U-3,4	KARNATAKA	NPC	С	COMND	NUCL EAR	440	440	440	440
28	RAPP U-5,6	RAJASTHAN	NPC	С	COMND	NUCL- EAR	440	440	440	440
29	KUDANKULAM U 1,2	TN	NPC	С	UC	NUCL- EAR	2000	2000	2000	
30	PFBR (Kalapakkam)	TN	NPC	С	UC	NUCL- EAR	500	500	500	
31	RATNAGIRI (DHABOL) JV	MAHARASHTRA	NTPC	С	COMND	GAS/ LNG	740	740	740	740
32	SIPAT-II U4,5	CHHATTISGARH	NTPC	С	COMND	COAL	1000	1000	1000	1000

SI. No.	PLANT NAME	STATE	AGENCY	SEC-TOR	STATUS	FUEL TYPE	CAPACI TY (MW)	Capa- city as per 78,700 MW	Capa- city as per 62,374 MW	Capacity Commissioned
33	SIPAT-I U1,2	CHHATTISGARH	NTPC	С	COMND	COAL	1320	1320		1320
34	SIPAT I U3	CHHATTISGARH	NTPC	С	UC	COAL	660	660		
35	BHILAI JV U 1,2	CHHATTISGARH	NTPC	С	COMND	COAL	500	500	500	500
36	KORBA III U-7	CHHATTISGARH	NTPC	С	COMND	COAL	500	500	500	500
37	KAHALGAON II U6,7	BIHAR	NTPC	С	COMND	COAL	1000	1000	1000	1000
38	DADRI EXT U-5,6	UP	NTPC	С	COMND	COAL	980	980	980	980
39	INDIRA GANDHI TPP (JHAJJAR) JV U1,2	HARYANA	NTPC	С	COMND	COAL	1000	1000	1000	1000
40	INDIRA GANDHI TPP (JHAJJAR) JV U3	HARYANA	NTPC	С	UC	COAL	500	500	500	
41	FARAKKA STAGE- III U-6	WB	NTPC	С	COMND	COAL	500	500	500	500
42	SIMHADRI-EXT U- 3,4	AP	NTPC	С	COMND	COAL	1000	1000	1000	1000
43	BONGAIGAON TPP U 1-3	ASSAM	NTPC	С	UC	COAL	750	750	500	
44	LOHARI NAGPALA HEP	UTTARAKHAND	NTPC	С	UC	HYDRO	600	600		
45	TAPOVAN VISHNUGARH HEP	UTTARAKHAND	NTPC	С	UC	HYDRO	520	520		
46	KOLDAM HEP	HP	NTPC	С	UC	HYDRO	800	800		
47	MAUDA TPP U1,2	MAHARASHTRA	NTPC	С	UC	COAL	1000	1000		
48	BARH I U 1,2,3	BIHAR	NTPC	С	UC	COAL	1980	1980		
49	BARH II U1	BIHAR	NTPC	С	UC	COAL	660	660		
50	NABINAGAR JV U- 1,2,3	BIHAR	NTPC	С	UC	COAL	750	750		
51	VALLUR (ENNORE) JV U1	TN	NTPC	С	COMND	COAL	500	500	500	500
52	VALLUR (ENNORE) JV U2	TN	NTPC	С	UC	COAL	500	500	500	
53	TRIPURA GAS ILFS JV	TRIPURA	ONGC	С	UC	GAS/ LNG	726	750		
54	RAMPUR HEP	HP	SJVNL	С	UC	HYDRO	412	412		
55	KOTESHWAR U 1-	UTTARAKHAND	THDC	С	COMND	HYDRO	400	400	400	400
	SUB TOTAL (CENTRAL SECTOR)							35824	21222	15220
	STATE SECTOR									
1	JURALA PRIYA U 1-6	AP	APGENCO	S	COMND	HYDRO	234	234	234	234
2	RAYALSEEMA U4,5	AP	APGENCO	S	COMND	COAL	420	420	420	420
3	VIJAYWADA TPP ST-IV, U1	AP	APGENCO	S	COMND	COAL	500	500	500	500
4	KAKATIYA TPP	AP	APGENCO	S	COMND	COAL	500	500	500	500
5	KOTHAGUDEM ST- VI	AP	APGENCO	S	COMND	COAL	500	500	500	500
6	NAGARJUNA SAGAR TR	AP	APGENCO	S	UC	HYDRO	50	50	50	
7	LOWER JURALA U1-6 HEP	AP	APGENCO	S	UC	HYDRO	240	240		
8	PULICHINTALA HEP	AP	APID	S	UC	HYDRO	120	120		

SI. No.	PLANT NAME	STATE	AGENCY	SEC-TOR	STATUS	FUEL TYPE	CAPACI TY (MW)	Capa- city as per 78,700 MW	Capa- city as per 62,374 MW	Capacity Commissioned
9	KAKATIYA EXT U1	AP	APGENCO	S	UC	COAL	500	500		
10	LAKWA WH	ASSAM	APGCL	S	COMND	GAS/ LNG	37.2	37.2	37.2	37.2
11	KORBA EAST EXT U2	CHHATTISGARH	CSEB	S	COMND	COAL	250	250	250	250
12	MARWAH TPP U 1,2	CHHATTISGARH	CSEB	S	UC	COAL	1000	1000		
13	KORBA WEST EXT PH III	CHHATTISGARH	CSEB	S	UC	COAL	500	500		
14	PRAGATI-III (BAWANA) GT-1,2 ST-1	DELHI	PPCL	S	COMND	GAS/ LNG	750	750	750	750
15	PRAGATI-III (BAWANA) GT-3,4 & ST-2	DELHI	PPCL	S	UC	GAS/ LNG	750	750	750	
16	KUTCH LIGNITE TPS	GUJARAT	GSECL	S	COMND	LIGNITE	75	75	75	75
17	DHUVRAN ST	GUJARAT	GSECL	S	COMND	GAS/ LNG	40	40	40	40
18	UTRAN CCPP- GT+ST	GUJARAT	GSECL	S	COMND	GAS/ LNG	374	374	374	374
19	SURAT LIGNITE EXT U3,4	GUJARAT	GIPCL	S	COMND	LIGNITE	250	250	250	250
20	UKAI EXT U6	GUJARAT	GSECL	S	UC	COAL	490	490	490	
21	GSEG HAZIRA EXT	GUJARAT	GSECL	S	COMND	GAS/ LNG	351	351	351	351
22	PIPAVAV JV CCGT	GUJARAT	GSECL	S	UC	GAS/ LNG	702	702	702	
23	SIKKA TPP EXT	GUJARAT	GSECL	S	UC	COAL	500	500		
24	YAMUNA NAGAR U1,2	HARYANA	HPGCL	S	COMND	COAL	600	600	600	600
25	RAJIV GANDHI TPS (HISSAR) U1,2	HARYANA	HPGCL	S	COMND	COAL	1200	1200	1200	1200
26	UHL - III HEP	HP	HPJVVNL	S	UC	HYDRO	100	100		
27	SAWARA KUDDU HEP	HP	PVC	S	UC	HYDRO	110	110		
28	BAGLIHAR-I U1,2,3 HEP	J&K	JKPDC	S	COMND	HYDRO	450	450	450	450
29	VARAHI EXT U1,2 HEP	KARNATAKA	KPCL	S	COMND	HYDRO	230	230	230	230
30	BELLARY TPP U 1,2	KARNATAKA	KPCL	S	COMND	COAL	1000	1000	1000	1000
31	RAICHUR U 8	KARNATAKA	KPCL	S	COMND	COAL	250	250	250	250
32	KUTIYADI EXT U1,2 HEP	KERALA	KSEB	S	COMND	HYDRO	100	100	100	100
33	PALLIVASAL HEP	KERALA	KSEB	S	UC	HYDRO	60	60		
34	GHATGHAR PSS U1,2	MAHARASHTRA	GOMID	S	COMND	HYDRO	250	250	250	250
35	PARAS EXT U1,2	MAHARASHTRA	MSPGCL	S	COMND	COAL	500	500	500	500
36	NEW PARLI EXT U- 2	MAHARASHTRA	MSPGCL	S	COMND	COAL	250	250	250	250
37	KHAPER KHEDA EXT	MAHARASHTRA	MSPGCL	S	COMND	COAL	500	500	500	500
38	BHUSAWAL TPP U4,5	MAHARASHTRA	MSPGCL	S	COMND	COAL	1000	1000	1000	1000
39	MYNTDU St-I HEP	MEGHALAYA	MeSEB	S	COMND	HYDRO	84	84	84	84
40	MYNTDU St-I ADDL UNIT	MEGHALAYA	MeSEB	S	UC	HYDRO	42		42	
41	NEW UMTRU HEP	MEGHALAYA	MeSEB	S	UC	HYDRO	40	40		·

SI. No.	PLANT NAME	STATE	AGENCY	SEC-TOR	STATUS	FUEL TYPE	CAPACI TY (MW)	Capa- city as per 78,700 MW	Capa- city as per 62,374 MW	Capacity Commissioned
42	BIRSINGHPUR EXT	MP	MPPGCL	S	COMND	COAL	500	500	500	500
43	AMARKANTAK U-5	MP	MPGENCO	S	COMND	COAL	210	210	210	210
44	MALWA TPP U1,2	MP	MPGENCO	S	UC	COAL	1000	1000		
45	SATPURA EXT U- 1,2	MP	MPPGCL	S	UC	COAL	500	500		
46	BALIMELA HEP ST-II U7,8	ORISSA	OHPC	S	COMND	HYDRO	150	150	150	150
47	GHTPP-II U-3,4	PUNJAB	PSEB	S	COMND	COAL	500	500	500	500
48	GIRAL LIGNITE U-2	RAJASTHAN	RRVUNL	S	COMND	LIGNITE	125	125	125	125
49	CHHABRA TPS U- 1,2	RAJASTHAN	RRVUNL	S	COMND	COAL	500	500	500	500
50	KOTA TPP U7	RAJASTHAN	RRVUNL	S	COMND	COAL	195	195	195	195
51	SURATGARH EXT U6	RAJASTHAN	RRVUNL	S	COMND	COAL	250	250	250	250
52	DHOLPUR GT2+ST	RAJASTHAN	RRVUNL	S	COMND	GAS/ LNG	220	220	220	220
53	KALISINDH TPS U1	RAJASTHAN	RRVUNL	S	UC	COAL	600	500		
54	VALUTHUR EXT	TN	TNEB	S	COMND	GAS/ LNG	92.2	92.2	92.2	92.2
55	BHAWANI BARRAGE II & III	TN	TNEB	S	UC	HYDRO	60	60	60	
56	METTUR EXT U1	TN	TNEB	S	UC	COAL	600	500	600	
57	NORTH CHENNAI EXT U1,2	TN	TNEB	S	UC	COAL	1200	600	1200	
58	BARAMURA GT	TRI		S	COMND	GAS/ LNG	21			21
59	MANERI BHALI HEP	UTTARAKHAND	UJVNL	S	COMND	HYDRO	304	304	304	304
60	PARICHHA EXT U- 5,6	UP	UPRVUNL	S	UC	COAL	500	500	500	
61	HARDUAGANJ EXT U-8	UP	UPRVUNL	S	COMND	COAL	250	250	250	250
62	HARDUAGANJ EXT U-9	UP	UPRVUNL	S	UC	COAL	250	250	250	
63	ANPARA-D U1,2	UP	UPRVUNL	S	UC	COAL	1000	1000		
64	PURLIA PSS	WB	WBSEB	S	COMND	HYDRO	900	900	900	900
65	SAGARDIGHI U 1,2	WB	WBPDCL	S	COMND	COAL	600	600	600	600
66	SANTALDIH U5	WB	WBPDCL	S	COMND	COAL	250	250	250	250
67	SANTALDIH EXT- U 6	WB	WBPDCL	S	COMND	COAL	250	250	250	250
68	BAKRESHWAR U 4,5	WB	WBPDCL	S	COMND	COAL	420	420	420	420
69	DURGAPUR EXT U 7	WB	DPL	S	COMND	COAL	300	300	300	300
	SUB TOTAL (STATE SECTOR)							26783	21355	16732

SI. No.	PLANT NAME	STATE	AGENCY	SECTOR	STATUS	FUEL TYPE	CAPACITY (MW)	Capa city as per 78,700 MW	Capacit as per 62,374 MW	Capacity Commi- ssioned
	PRIVATE SECTOR									
1	KONASEEMA GT+ST	AP	KONASEEMA POWER	Р	COMND	GAS/ LNG	445	445	445	445
2	GAUTAMI	AP	GAUTAMI POWER	Р	COMND	GAS/ LNG	464	464	464	464
3	KONDAPALLI CCPP PH-II GT+ST	AP	LANCO	Р	COMND	GAS/ LNG	366		366	366
4	RAIGARH TPP PH-I, U-1, 2; PH II U 3,4	CHHATTIS -GARH	JINDAL POWER	Р	COMND	COAL	1000	1000	1000	1000
5	LANCO AMARKANTAK U1,2	CHHATTIS -GARH	LANCO	Р	COMND	COAL	600	600	600	600
6	RITHALA CCPP (GT1+GT2+ST)	DELHI	NDPL	Р	COMND	GAS/ LNG	108.0		108.0	108.0
7	SUGEN TORRENT BLOCK I, II & III	GUJARAT	TORRENT	Р	COMND	GAS/ LNG	1147.5	1128	1147.5	1147.5
8	MUNDRA TPP PH-I, U 1-4	GUJARAT	ADANI POWER	Р	COMND	COAL	1320	1320	1320	1320
9	MUNDRA TPP PH-II U1,2	GUJARAT	ADANI POWER	Р	COMND	COAL	1320		1320	1320
10	MUNDRA TPP PH-III U-1	GUJARAT	ADANI POWER	Р	COMND	COAL	660		660	660
11	MUNDRA TPP PH-III U- 2,3	GUJARAT	ADANI POWER	Р	COMND	COAL	1320			1320
12	ULTRA MEGA MUNDRA U1	GUJARAT	TATA POWER	Р	COMND	COAL	800		800	800
13	ALLAIN DUHANGAN U1,2	HP	ADHPL	Р	COMND	HYDR O	192	192	192	192
14	KARCHAM WANGTOO U1-4	HP	JPKHCL	Р	COMND	HYDRO	1000	1000	1000	1000
15	MALANA HEP II U1,2	HP	EVREST POWER	Р	COMND	HYDRO	100	100	100	100
16	BUDHIL HEP	HP	LANCO	Р	UC	HYDRO	70	70	70	
17	SORANG HEP	HP	HIMACHAL SORANG POWER	Р	UC	HYDRO	100	100		
18	MAITHAN RBC JV U1,2*	JHARKHAND	IPP	Р	COMND	COAL	1050	1050	1050	1050
19	TORANGALLU U1,2	KARNATAKA	JSW ENERGY	Р	COMND	COAL	600	600	600	600
20	UDUPI TPP (LANCO NAGARJUNA) U1,2	KARNATAKA	NPCL	Р	COMND	COAL	1200	1015	1015	1200
21	TROMBAY TPS	MAHARASH RA	TATA POWER	Р	COMND	COAL	250	250	250	250
22	JSW ENERGY, RATNAGIRI U1-4	MAHARASH RA	JSW	Р	COMND	COAL	1200	1200	1200	1200
23	TPS AT WARORA U1,2,3,4	MAHARASH RA	WARDHA POWER CO.	Р	COMND	COAL	540			540
24	TIRODA TPP PH-I U1	MAHARASH RA	ADANI POWER	Р	UC	COAL	660		660	
25	MAHESHWAR 1-10	MP	SMHPCL	Р	UC	HYDRO	400	400	400	
26	STERLITE TPP U 2,1	ORISSA	STERLITE ENERGY	Р	COMND	COAL	1200	600	1200	1200
27	STERLITE TPP U3	ORISSA	STERLITE ENERGY	Р	COMND	COAL	600			600
28	JALLIPA LIGNITE U 1-4	RAJASTHAN	RAJ WEST POWER	Р	COMND	LIGNITE	540	540	540	540
29	JALLIPA LIGNITE U 5-8	RAJASTHAN	RAJ WEST POWER	Р	UC	LIGNITE	540	540	540	
30	TEESTA III	SIKKIM	TEESTA URJA	Р	UC	HYDRO	1200	1200	600	

31	CHUJACHEN	SIKKIM	GATI	Р	UC	HYDRO	99	99	99	I
32	SRINAGAR	UTTARAK- HAND	GVK	Р	UC	HYDRO	330	330		
33	Mahatma Gandhi (Jhajar)TPP U1	Haryana	CLP	Р	COMND	COAL	660			660
34	Kasaipalli TPP	CHG	ACB India	Р	COMND	COAL	135			135
35	S. V. Power TPP	CHG	S. V. Power	Р	COMND	COAL	63			63
36	Mihan TPP	MAH	Abhijeet Energy	Р	COMND	COAL	246			246
37	Katghoda TPP U1	CHG	ACB India	Р	COMND	COAL	35			35
38	Simhapuri Energy Pvt Ltd U1	AP	Madhucan Projects	Р	COMND	COAL	150			150
39	Salaya TPP U 1	GUJ	ESSAR POWER	Р	COMND	COAL	600			600
40	ROSA ST-I U1,2	UP	RELIANCE POWER	Р	COMND	COAL	600	600	600	600
41	ROSA ST-II U1,2	UP	RELIANCE POWER	Р	COMND	COAL	600			600
42	ANPARA-C U1,2	UP	LANCO	Р	COMND	COAL	1200	1000	1200	1200
43	KHAMBRKHERA U 1,2	UP	BAJAJ Energy	Р	COMND	COAL	90			90
44	MAQSOODPUR U 1,2	UP	BAJAJ Energy	Р	COMND	COAL	90			90
45	BARKHERA TPP U 1,2	UP	BAJAJ Energy	Р	COMND	COAL	90			90
46	KUNDARKI TPP U1,2	UP	BAJAJ Energy	Р	COMND	COAL	90			90
47	Utrala TPP U1,2	UP	BAJAJ Energy	Р	COMND	COAL	90			90
48	BUDGE-BUDGE EXT	WB	CESC	Р	COMND	COAL	250	250	250	250
	SUB TOTAL (PRIVATE SECTOR)							16093	19797	23012
	TOTAL (11TH PLAN)							78700	62374	54964

^{*}Note: Maithon RBC (1050 MW) was considered in Central Sector in 78,700 MW Target. The project is now in Private Sector.

C: Central Sector; S: State Sector; P: Private Sector; COMND: Commissioned; UC: Under Construction

Chapter 3

DEMAND PROJECTIONS FOR ELECTRICITY

3.0 BACKGROUND

Demand assessment is an essential prerequisite for planning of generation capacity addition required to meet the future power requirement of various sectors of our economy. The type and location of projects planned is largely dependent on the magnitude, spatial distribution as well as the variation of demand during the day, seasons and on a yearly basis. Therefore, reliable planning for capacity addition for future is largely dependent on an accurate assessment of the future demand.

The National Electricity Policy also stipulates that CEA, while formulating the National Electricity Plan, would include the Short-term and the Long Term demand forecast for different Regions.

3.1 DEMAND ASSESSMENT BY CENTRAL ELECTRICITY AUTHORITY – ELECTRIC POWER SURVEY (EPS REPORTS)

The Electricity Power Survey Committee is constituted by CEA, with wide representation from the Stake-holders in the Power Sector, to forecast the demand for electricity both in terms of peak electric load and electrical energy requirement. CEA has been regularly bringing out the Electric Power Survey Reports. The latest Report by this Committee is the 18th EPS Report which is under print. This Report forecasted year-wise electricity demand for each State, Union Territory, Region and All India in detail up to the end of 12th Five Year Plan i.e. 2016-17 and projected the perspective electricity demand for the terminal years of 13th & 14th Plans i.e. year 2021-22 and year 2026-27 for the Utility systems. The impact of DSM and Energy Conservation Measures during the 12th and 13th Plans on the demand of the country has been suitably taken into account while finalizing the 18th EPS demand.

The 18th EPS draft report which has been brought out now encompasses various features for fulfilling the Aims and Objectives of the National/ State Policies framed by the Government(s). Due consideration has been given while formulating the electricity demand forecasts to the promotion of high efficiency and DSM measures in the Agriculture, Industrial, Commercial sectors as well as in domestic establishments. Future projections of the EPS have also been worked out based on the T & D loss reduction targets assessed in consultation with various States/UTs. The Long Term Forecast is based on reducing T & D losses to 18.9% and 15.4% by 2016-17 and 2021-22 respectively.

3.2 DEMAND SCENARIOS

A number of Demand Scenarios have been worked out and a choice is required to be made as to which of these demands is to be adopted for carrying out Planning studies for estimating the most accurate Generation Capacity addition Programme for the 12th and 13th Plans. The various possible Demand Scenarios analysed in this Chapter are as follows:

Scenario: 1

Actual demand up to 2009-10 & then applying Actual Cumulative Growth Rate (CAGR) of past few years in 12th plan & EPS growth rate in 13th plan.

Scenario: 2

Actual Demand up to 2009-10 with 9% GDP Growth Rate & 0.8 Elasticity during 12th & 13th Plans

Scenario: 3

Actual Demand up to 2009-10 with 9% GDP Growth Rate & 0.9 Elasticity during 12th Plan and 0.8 Elasticity during 13th Plan.

Scenario: 4

Actual Demand up to 2009-10 with 9% GDP Growth Rate & 0.95 Elasticity during 12th & 13th Plans.

Scenario: 5

Actual Demand up to 2009-10 with 9% GDP Growth Rate & 1.0 Elasticity during 12th Plan and 0.9 Elasticity during 13th Plan.

Scenario: 6

18th EPS Demand Projections

Details of Year-wise Energy Requirement projections by 12th & 13th Plan end are furnished in Table 3.1 & 3.2 below:

TABLE 3.1 SCENARIOS OF ENERGY REQUIREMENT PROJECTIONS FOR 12^{th} PLAN

	Sc1	GR	Sc2	GR	Sc3	GR	Sc4	GR	Sc5	GR	Sc-6
Year	Actual ER (upto 2009- 10) with actual CAGR	%	Actual ER (upto 2009- 10) & 9% GDP; 0.8 Elasticity	%	Actual ER (upto 2009-10) & 9% GDP; 0.9 Elasticity	%	Actual ER (upto 2009-10) & 9% GDP; 0.95 Elasticity	%	Actual ER (upto 2009-10) & 9% GDP; 1.0 Elasticity	%	18 th EPS
	Gwh		Gwh		Gwh		Gwh		Gwh		
2003-04	559264		559264		559264		559264		559264		
2004-05	591373		591373		591373		591373		591373		
2005-06	631554		631554		631554		631554		631554		
2006-07	690587		690587		690587		690587		690587		
2007-08	739343		739343		739343		739343		739343		
2008-09	777039		777039		777039		777039		777039		
2009-10	830594		830594		830594		830594		830594		
2010-11	890123		890397		897872		901610		905347		
2011-12	953919		954505		970600		978697		986829		929111
2012-13	1022287	7.17	1023230	7.2	1049218	8.1	1062376	8.6	1075643	9.0	1007694
2013-14	1095555		1096902		1134205		1153209		1172451		1084610
2014-15	1174074		1175879		1226076		1251809		1277972		1167731
2015-16	1258221		1260543		1325388		1358838		1392989		1257589
2016-17	1348399		1351302		1432744		1475019		1518358		1354874

Table 3.2 SCENARIOS OF ENERGY REQUIREMENT PROJECTIONS FOR 13th PLAN

	Sc1	GR	Sc2	GR	Sc.3	GR	Sc4	GR	Sc5	G R	Sc6
Year	Actual ER (upto 2009-10) with EPS GR	%	Actual ER (upto 2009- 10) & 9% GDP; 0.8 Elasticity	%	Actual ER (upto 2009-10) & 9% GDP; 0.8 Elasticity	%	Actual ER (upto 2009-10) & 9% GDP; 0.95 Elasticity	%	Actual ER (upto 2009- 10) & 9% GDP; 0.9 Elasticity	%	18 th EPS
	Gwh		Gwh		Gwh		Gwh		Gwh		
2017-18	1443326	7.1	1448595	7.2	1535902	7.2	1601133	8.6	1641345	8.1	1450982
2018-19	1544936		1552894		1646487		1738030		1774294		1552008
2019-20	1653700		1664703		1765034		1886631		1918012		1660783
2020-21	1770120		1784561		1892116		2047938		2073371		1778109
2021-22	1894736		1913050		2028348		2223037		2241314		1904861

The above projections do not include savings from DSM & EE measures whereas 18th EPS projections include these savings. The actual load factor in 2009-10 was 79.5 %. In the past, the demand has not grown as anticipated and due to various other reasons the decreasing trend of load factor as anticipated has not taken place. It would therefore be prudent that case of GDP growth rate Scenarios with a modest decline in load factor may be assumed. Therefore, a load factor of about 78% has been considered while estimating the peak demand for 2016-17.

A Summary of Energy Requirement and Peak demand in the various Scenarios considered above and a Load factor of 78% upto 2016-17 & 76% upto 2021-22 is as follows:

Table 3.3
VARIOUS DEMAND SCENARIOS - ENERGY REQUIREMENT AND PEAK DEMAND (WITHOUT EFFECT OF ENERGY CONSERVATION AND DSM MEASURES)

GDP growth rates	GDP / Electricity Elasticity	Energy require- ment (MkWh)	Energy requirement	Peak Demand (MW)	Peak Demand (MW)
	,	, , , , , , , , , , , , , , , , , , , ,	(MkWh)		(' ' ' ' '
		2016-17	2021-22	2016-17	2021-22
Actual Energy	0.80	1351302	1913050	197767	287348
requirement	0.90/0.8 in 12 th /13 th	1432744	2028348	209686	304667
(upto 2009-10)	Plans				
with 9 % Growth	0.95	1475019	2223037	215873	333910
rate	1.0/0.9 in 12 th /13 th Plans	1518358	2241314	222216	336655
Actual Energy requ	irement	1348399	1894736	202535	284598
(upto 2009-10) wit	h actual Growth rates				
18 th EPS		1354874	1904861	199540	283470

Considering the savings in energy requirement and reduction in Peak Demand on account of BEE's Energy Efficiency Measures and DSM programmes, a reduction of about 60 BU in Energy Requirement and about 12,000 MW in Peak Demand may be made at end of 12th Plan and a reduction of about 15,000 MW in Peak Demand may be made at end of 13th Plan in each of the above Scenarios (except 18th EPS). The Demand figures thus suitably modified are as given in the Table below:

Table 3.4
VARIOUS DEMAND SCENARIOS - ENERGY REQUIREMENT AND PEAK DEMAND (CONSIDERING EFFECT OF ENERGY CONSERVATION AND DSM MEASURES)

GDP growth rates	GDP / Electricity Elasticity	Energy requirement	Energy requirement	Peak Demand (MW)	Peak Demand (MW)
		(MkWh)	(MkWh)	(1/2 ///	(1,1,1,)
		2016-17	2021-22	2016-17	2021-22
Actual Energy	0.80	1321972	1877313	185967	272348
requirement	0.90/0.8 in	1403414	1992611	197686	289667
(upto 2009-10) with	12 th /13 th Plans				
9 % Growth rate	0.95	1445689	2187300	203873	318910
	1.0/0.9 in	1489028	2205577	210216	321655
	12 th /13 th Plans				
Actual Energy requires	ment	1319069	1858999	190535	269598
(upto 2009-10) with ac	tual Growth rates				
18 th EPS*		1354874	1904861	199540	283470

^{*} Reduction in Peak Demand and Energy Requirement on account of BEE's Energy Efficiency Measures and DSM programmes has not been reduced from 18th EPS figures as these have already been accounted for while arriving at 18th EPS Peak Demand & Energy Requirement.

3.3 RECOMMENDED DEMAND SCENARIO

Of the Scenarios detailed above, the demand corresponding to 18th EPS projections has been considered for Generation Planning studies to assess capacity addition requirement for 12th and 13th plan periods.

These demand estimates were considered since they are based on a detailed and systematic approach of load projections by the Electric Power Survey Committee comprising of various stakeholders. Partial end use method is adopted to make these forecasts. The demand forecasts make projections of unrestricted demand while accounting for nominal impact of Energy Efficiency and Demand Side Management measures. Generation Planning Studies based on unrestricted demand were considered to be prudent and desirable. However, additional impact of aggressive measures & other initiatives of BEE which take into account the structural changes taking place in the Power Sector on account of various initiatives of the Government have not been considered in this Scenario.

The details of year-wise/ State-wise/Region-wise peak demand and energy requirement forecast corresponding to year 2012-13 to 2021-22 is given in **Annexure 3.1.** The long-term forecast for peak demand & energy requirement in the country by the end of 14th Plan (2026-27) is summarized in Table 3.5 below:

Region/Islands Energy Requirement (BU) Peak Load (GW) Northern Region 840.67 121.98 Western Region 757.32 120.62 Southern Region 727.91 118.76 **Eastern Region** 349.41 53.05 **NE Region** 33.95 6.17 **A&N** Islands 0.71 0.125 Lakshdeep 0.08 0.023 All-India 2710 400.7

Table 3.5 Long Term Projections for Year 2026-27

Demand Projections as per 18th EPS Report to be adopted by 12th and 13th Plan end for the purpose of Generation Planning Exercise are as follows:

Table 3.6
DEMAND ADOPTED FOR GENERATION PLANNING STUDIES

	Energy Requirement Gwh	Peak Load (MW)
2016-17 (12 TH Plan end)	1354874	199540
2021-22 (13 th Plan end)	1904861	283470

In the Integrated Energy Policy, Peak demand has been estimated assuming decreasing system load factor i.e. 76% up to 2010, 74% for 2011-12 to 2015-16, 72% for 2016-17 to 2020-21 and beyond and these demands are based on actual consumption up to 2004-05 and it also include Captive Demand. On the other hand 18th EPS demand projections have been based on actual demand up to 2009-10 and this corresponds to demand projections of utilities only. 18th EPS demand projections also have taken into account Demand Side Management and Energy Conservation measures as proposed by BEE. Therefore 18th EPS demand projections may be considered for purpose of Generation Planning

3.4 CONCLUSION

- 18th EPS demand figures are to be adopted for assessing the 12th Plan Capacity addition Programme and the 13th Plan tentative capacity addition required, as the demand assessment by the EPS is a through exercise based on end use method involving all Stakeholders.
- Optimum capacity addition for 12th and 13th Plans has been worked out considering 18th EPS demand figures. Thereafter, seasonal variation in demand has also been estimated (peak and off-peak) to ensure that the optimum capacity addition would meet the demand in all the seasons.

Annexure 3.1

ALL INDIA & STATE WISE / UT WISE FORECAST Peak Electric Load at Power Station Bus Bars (Utilities Only) (U/R) 2012-13 to 2021-22

in MW

			12th Plan	1				13th Plan		
State/Uts	2012-13	2013-14	2014-15	2015-16	2016-17	1017-18	2018-19	2019-20	2020-21	2021-22
Delhi	5290	5547	5818	6101	6398	6849	7335	7857	8419	9024
Haryana	7291	7944	8655	9429	10273	11006	11749	12526	13356	14244
Himachal Pradesh	1459	1558	1665	1778	1900	2022	2151	2288	2434	2589
Jammu & Kashmir	2471	2523	2577	2631	2687	2917	3180	3481	3825	4217
Punjab	10292	10770	11271	11794	12342	12826	13228	13648	14089	14552
Rajasthan	9396	10360	11422	12594	13886	14957	16004	17137	18364	19692
Uttar Pradesh	14152	15993	18073	20424	23081	25547	27832	30331	33067	36061
Uttrakhand	1716	1824	1938	2060	2189	2315	2449	2591	2741	2901
Chandigarh	352	370	387	406	426	450	475	501	529	559
Northern Region	44033	47758	51799	56181	60934	65686	70276	75238	80620	86461
Goa	622	666	712	762	815	880	949	1024	1105	1191
Gujarat	13047	14350	15782	17358	19091	20486	21942	23503	25177	26973
Chhattisgarh	3534	3792	4070	4367	4687	5028	5385	5755	6162	6599
Madhya Pradesh	10299	11102	11967	12899	13904	14934	15803	16734	17732	18802
Maharashtra	22368	23795	25313	26928	28645	29983	32122	34431	36926	39622
D. & N. Haveli	693	749	809	874	944	1006	1072	1142	1217	1297
Daman & Diu	380	394	409	425	441	469	500	533	567	605
Western Region	46909	50300	53936	57835	62015	65871	70383	75223	80441	86054
Andhra Pradesh	15553	17044	18681	20476	22445	24271	26246	28382	30693	33194
Karnataka	9742	10473	11258	12102	13010	13964	14945	16005	17159	18403
Kerala	3701	3922	4157	4405	4669	4931	5198	5479	5777	6093
Tamil Nadu	14174	15736	17497	19489	20816	22375	24057	25876	27838	29975
Pudducherry	533	555	579	604	630	659	690	722	754	782
Southern Region	39850	43623	47752	52273	57221	61525	66111	71063	76413	82199
Bihar	2843	3277	3777	4354	5018	5660	6398	7250	8236	9306
Jharkhand	3452	3727	4010	4301	4616	4948	5262	5598	5957	6341
Orissa	4397	4686	4994	5322	5672	5866	6066	6289	6515	6749
West Bengal	8289	9052	9887	10798	11793	12882	13964	15124	16369	17703
Sikkim	117	123	130	137	144	148	159	164	170	176
Eastern Region	16638	18291	20109	22106	24303	26320	28411	30710	33226	35928
Assam	1300	1414	1537	1671	1817	1946	2080	2222	2373	2534
Manipur	180	212	249	294	346	373	399	428	460	497
Meghalaya	338	362	388	415	445	475	505	529	551	596
Nagaland	145	154	164	174	185	201	216	233	251	271
Tripura	254	274	294	317	340	365	389	415	442	472
Arunachal Pradesh	111	117	123	129	135	142	150	158	167	177
Mizoram	174	197	223	252	285	302	314	325	338	352
North E. Region	2214	2382	2563	2757	2966	3169	3370	3579	3800	4056
Andman & Nicobar	59	61	63	65	67	71	75	79	84	89
Lakshadweep	8	9	10	10	11	12	14	15	16	18
All India	143967	156208	169491	183902	199540	214093	229465	246068	264041	283470

ALL INDIA & STATE WISE / UT WISE FORECAST Electrical Energy Requirement at Power Station Bus Bars (Utilities Only) (U/R) 2012-13 to 2021-22

in Million Units

			12th Plan					13th Plan		
State/Uts	2012-13	2013-14	2014-15	2015-16	2016-17	1017-18	2018-19	2019-20	2020-21	2021-22
Delhi	29100	31011	33047	35217	37529	40176	43023	46085	49382	52930
Haryana	40750	44254	48060	52193	56681	60725	64820	69108	73688	78586
Himachal Pradesh	8974	9421	9891	10384	10901	11546	12228	12948	13710	14514
Jammu & Kashmir	14425	14872	15333	15808	16298	17180	18172	19282	20516	21884
Punjab	51595	55567	59844	64450	69410	73032	76245	79626	83186	86941
Rajasthan	54243	59382	65007	71166	77907	83914	89792	96149	103030	110483
Uttar Pradesh	93148	102924	113727	125664	138854	152571	164997	178488	193136	209046
Uttrakhand	10735	11207	11700	12214	12751	13466	14223	15025	15874	16774
Chandigarh	1767	1859	1956	2058	2165	2286	2414	2549	2692	2842
Northern Region	304737	330497	358565	389153	422498	454897	485914	519260	555214	594000
Goa	3641	3912	4204	4517	4853	5205	5572	5966	6386	6837
Gujarat	82331	88254	94603	101409	108704	116649	124937	133825	143360	153582
Chhattisgarh	17703	19146	20707	22396	24222	25989	27833	29743	31850	34106
Madhya Pradesh	56763	61448	66519	72010	77953	83988	89152	94699	100657	107060
Maharashtra	140736	147402	154383	161695	169353	175870	187034	199001	211836	225606
D. & N. Haveli	4977	5276	5593	5930	6286	6665	7064	7488	7937	8413
Daman & Diu	2375	2479	2587	2700	2817	2976	3143	3320	3508	3706
Western Region	308527	327917	348597	370655	394188	417342	444735	474042	505534	539310
Andhra Pradesh	93189	101231	109968	119458	129767	140324	151743	164093	177454	191912
Karnataka	58513	63001	67833	73036	78637	83917	89285	95059	101309	108012
Kerala	20516	21889	23354	24917	26584	28080	29595	31198	32895	34691
Tamil Nadu	91625	97865	104529	111648	119251	128177	137815	148237	159475	171718
Pudducherry	3024	3155	3293	3436	3586	3755	3929	4109	4295	4452
Southern Region	266867	287141	308977	332495	357826	384252	412367	442696	475426	510786
Bihar	16529	19096	22062	25489	29447	32964	36982	41590	46883	52975
Jharkhand	21309	22844	24407	25990	27691	29592	31381	33287	35318	37482
Orissa	26265	28374	30652	33113	35772	36999	38262	39667	41089	42566
West Bengal	51021	55288	59912	64923	70352	76511	82571	89033	95927	103283
Sikkim	440	461	482	504	528	544	581	601	622	645
Eastern Region	115564	126063	137515	150018	163790	176611	189777	204178	219839	236952
Assam	6392	6953	7562	8225	8947	9615	10313	11058	11852	12699
Manipur	737	840	956	1089	1241	1405	1571	1760	1975	2219
Meghalaya	1749	1861	1981	2108	2243	2396	2553	2678	2794	3029
Nagaland	692	725	760	796	834	895	954	1019	1088	1163
Tripura	1029	1112	1201	1297	1401	1514	1628	1751	1883	2026
Arunachal Pradesh	524	531	538	545	552	580	611	644	681	721
Mizoram	503	588	686	801	936	1031	1112	1196	1287	1388
North E. Region	11628	12609	13684	14862	16154	17435	18743	20106	21560	23244
Andman & Nicobar	328	337	347	356	366	390	415	443	473	505
Lakshadweep	43	45	47	49	52	55	57	59	62	65
All India	1007694	1084610	1167731	1257589	1354874	1450982	1552008	1660783	1778109	1904861

Chapter 4

INITIATIVES AND MEASURES FOR GHG MITIGATION

4.0 INTRODUCTION

Human-induced climate change is posing a substantial threat to global development efforts. Therefore, global efforts to mitigate and moderate human-induced climate change are consistent with India's national interest. At the macroeconomy scale, India is a low-intensity producer of CO_2 emissions with per capita CO_2 emissions being among the lowest in the world, at around 1.37 metric ton (MT) per person (Source: IEA World Energy Statistics-2011) compared with 4.29 metric ton per person for the world average and 16.9 metric ton per person for the United States. India also performs very well when compared to other economies in respect of CO_2 intensity per capita GDP (tons of CO_2 emissions per unit of GDP). Having signed the 1992 UNFCCC convention, India affirms the principle of "common but differentiated responsibility" for climate change.

The Initiative and Plans proposed by the Government's Integrated Energy Policy Report are projected to keep CO₂ intensity declining while massively expanding rural access and increasing power generation to meet the demands of a rapidly-growing economy. India needs to evaluate and develop strategic options that address concern about changing climate without compromising – but rather reinforcing – its growth and development objectives, by facilitating additional investments and transfer of technology, India has significant opportunities to accelerate growth while controlling the carbon intensity of its development path. This can be achieved by harnessing the substantial synergies between "low carbon" and economic performance through improving the efficiency of electricity generation, reducing technical losses in the power sector, enhancing end-use energy efficiency in various sectors, developing hydropower and renewable potential, and accelerating the adoption of new technologies. Moreover, there are many development benefits that India can capture with a well-designed low-carbon strategy including energy security, rural access though distributed renewable applications and cleaner air in cities and homes. In short, a low carbon growth strategy could be an opportunity to improve health, productivity and quality of life.

The National Action Plan on Climate Change (NAPCC) outlines India's Strategy to meet the challenge of Climate change and to enhance the ecological sustainability of India's development path. Eight National Missions form the core of the National Action Plan, representing multi-pronged, long term and integrated strategies for achieving key goals in the context of climate change, two out of which are National Solar Mission and Mission on Enhanced Energy Efficiency.

Choice of fuel for power generation is an important factor to mitigate GHG emission. Renewable energy sources being benign sources are being encouraged to the maximum extent possible. In case of conventional sources, hydro and nuclear are the preferred options. Gas is preferred to coal and lignite for power generation. In case of coal based generation, technology options with higher efficiency are being encouraged since there is an inverse correlation between efficiency and carbon emission. Details of CO_2 emission for different types of power plants are as follows:

Type of Power Plant	Specific CO ₂ emission
	T CO ₂ /MWh
Coal	1.04
Lignite	1.28
Gas-CC	0.43
Gas-OC	0.66
Gas Engine (Elect only)	0.46
Gas Engine (CHP)	0.22
Oil	0.66
Diesel Eng	0.59
Diesel OC	0.69
Naptha	0.61
Hydro	0
Nuclear	0
Wind	0
Solar	0

There has not been any major change in basic power generation technology since its invention except improvement in efficiency. Even today, a substantial amount of heat energy of coal is wasted in the power generation process. To meet the rising demand for power, it would have to go for major technological innovation so that maximum energy available from fossils fuel is converted to electrical energy. This would pose a challenge to engineers and technicians on the means to tackle environmental degradation. Another problem dogging the thermal power stations is the proportion of ash content in coal and stringent environmental norms for emissions.

The thermal generation today, is causing atmospheric pollution through the emission of carbon dioxide, carbon monoxide, nitrous oxide (nox) and sulphur dioxide (sox). New technology to reduce GHG has to be developed. This is a big challenge for engineers and technologists all over the world.

4.1 CARBON EMISSIONS FROM GENERATION - EXISTING STATUS

As per IEA Energy Statistics - 2011 report, India's per capita Carbon dioxide emission is only 1.37 tonnes per person which is amongst the lowest in the world. The world average per capita Carbon dioxide emission is around 4.29 tones and highest being 16.9 tones for USA. India's contribution is around 4% of the world total CO₂ Emission.

The Installed generating capacity of India is around **2, 09,276** MW at the end of October, 2012. Installed capacity based on thermal generation is around 67% of which coal constitutes about 85 %.

Table 4.1 below shows the weighted average specific emissions for fossil fuel power stations in the five regional grids of the country. It is evident that coal and lignite have highest emission rate (tCO₂/MWh) among various fossil fuels.

Table 4.1 Weighted average specific emissions for fossil fuel-fired stations in FY 2010-11 (Figures in tCo_2/MWh)

	Coal	Diesel	Gas	Lignite	Naphtha	Oil
India	1.06	0.55	0.44	1.44	0.39	0.64

(All figures are based on Net Generation)

It may be mentioned that India's Co_2 emission rate (tCo_2/Mwh) has been reducing during the period 2008-09 to 2010-11. The trend of Weighted Average Emission Rate is indicated in following Table and Graph.

 $Table \ 4.2$ Weighted Average Emission Rate (tCo2/Mwh) (incl. imports)

2003-04	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11
0.85	0.84	0.81	0.80	0.79	0.82	0.81	0.79

Figure 4.1

4.2 INITIATIVES/ MEASURES

Major Initiatives being taken to develop the power generation sector pertain to increasing the efficiency of coal based power stations. These are as follows:

- Increase of unit size with higher steam parameters.
- Technology Development Adoption of higher unit size & Clean Coal technologies
 - ➤ Supercritical Technology 2 percent point efficiency gain possible
 - ➤ Ultra Supercritical Technology –additional efficiency 0.75% over 800 MW supercritical
 - ➤ Integrated Gasification Technology higher efficiency of 40-45%
- R & M and Life Extension of old power stations Benefits of CDM to be extended to overcome fund constraints
- Energy Efficiency improvement
- Retirement of old inefficient units
- Coal quality Improvement

Other measures include

- Reduction in T & D losses All India T&D losses- 28.65% in 2006-07. Aim to bring down to 15%
- Efficiency in use of energy
- Setting up of pithead stations for reduction in transportation of coal

The benefits from reduction in T&D losses will be discussed in the Volume-II of the Plan.

4.2.1 Increase in Unit Size with Higher Steam Parameters

The Indian Power Sector has witnessed rapid technological development over the last few decades. The largest size unit of coal based plant which was a mere 30 MW in 1950s, rapidly increased to 60 MW in 60s, and 110/120/140 MW in 70s. Thereafter, 200 MW units of Russian (LMZ) were introduced in 1977 and of Siemens KWU design in 1983. The 500 MW units were introduced in 1984. The increase in unit size was associated with corresponding increase in steam parameters (Pressure and Temperature) and efficiency. Enhanced efficiency implies lesser GHG emission. The improvement in steam parameters and design efficiency of various units are indicated in **Table 4.3** below:

Gross Design **Unit Size** M/s. Pressure **MS/RH Temperature Efficiency** MW kg/cm2 °C (%) 30-50 60 482 28.20 60-100 90 535 31.30 210 LMZ 130 535/535 35.63 210 KWU 37.04 150 535/535 250 150 535/535 38.3 500 169 538/538 38.6 660 247 538/565 39.5 565/593 40.5 800 247 565/593 40.5

Table-4.3 Various Unit Sizes and main parameters

Today 210/250 MW and 500 MW units form the backbone of Indian power industry and constitute over 75 % of total coal based installed capacity. During the 11th Plan, 8 nos of 660 MW supercritical units and one 800 MW unit totalling to 6080 MW have been commissioned. During the 12th Plan, it is being planned that the percentage of 660 MW and 800 MW unit sizes with Supercritical technology would still increase further and during the 13th Plan, all new coal based capacity is likely to be on supercritical technology only.

Power generation using gas turbines as prime movers started in a big way around the world in early 1960s & 70s. This was basically due to advancement of technology as new and better heat resistant alloys were manufactured enabling higher firing temperatures, consequently higher cycle efficiencies. The Gas Turbines (GTs) are normally manufactured in standard sizes based on development of manufacturing technologies. GTs are now available up to 250 MW range. The open cycle operation typically achieves a generation efficiency of about 35% and about 53% in combined cycle mode. Since Gas Turbines use cleaner fuels (natural gas, LNG, distillate oil, Naphtha), GT based plants are more environment friendly mode of power generation. There is a need to encourage setting up of gas based plants during 12th Plan and beyond to meet part of the capacity addition requirements.

The availability of gas, has, however been a major issue adversely affecting the operation of existing gas turbine stations at optimum capacity. Development of new Gas based power plants will depend on the availability of natural gas in the country.

4.2.2 Introduction of Clean Coal Technologies Supercritical Technology:

Supercritical technology is being introduced to further enhance the efficiency of coal fired thermal generation. With the advancements in metallurgy and availability of better materials, adoption of higher parameters beyond the critical points has become possible. With the adoption of higher parameters, efficiency gain of about 2 % is possible over sub critical units, thereby, reducing emissions of CO2, NOx and SOx. Depending on the steam parameters adopted, supercritical technology can lead to about 4 % coal savings and corresponding reduction in emissions as compared to

conventional sub-critical units. Already many supercritical units of 660 and 800 MW are under construction in Central, State and Private Sector and 8 nos of 660 MW supercritical units and one 800 MW unit totalling to 6080 MW have already been commissioned during 11th Plan. Initial supercritical units in the country were based on steam parameters of 246 kg/cm², 535/565 deg C at turbine inlet but some of the units which have recently started construction have adopted higher steam temperatures of 565/593 deg C resulting in higher efficiency. Supercritical technology has been made mandatory for Ultra Mega Projects being implemented.

BHEL have already entered into collaboration with M/s Alstom and Siemens for manufacturing of super-critical boilers and turbo-generators respectively. With the view to enhance the indigenous manufacturing capability, efforts have been made to attract International manufacturers for taking up the equipment manufacturing in India. Already, L&T have formed JV companies with MHI Japan to manufacture super-critical boilers and turbines in India. Bharat Forge-Alstom, JSW-Toshiba Thermax -Babcock and GB industries-Ansaldo are other joint ventures set up for manufacture of supercritical power equipment in the country.

A proposal for bulk ordering of eleven numbers supercritical units of 660 MW for various projects of NTPC and DVC has been approved by GOI . The proposal envisages mandatory conditions of the suppliers setting up manufacture of super-critical units in the country. This would ensure few initial orders for the new joint ventures being set up to kick-start indigenous manufacturing. The order for bulk tendering of 9 projects having 11 such 660 MW units have been placed and for remaining 2 projects order is expected shortly. Bulk tendering with mandatory phased indigenous manufacturing for 800 MW units is under process.

Setting up of indigenous production facilities for supercritical plants and increase in indigenous components of such units is expected to bring down their cost in future. It is expected that during the 12th Plan, the total coal based capacity addition would be about 69,280 MW out of which 24,920 MW (36%) is based on supercritical units.

Ultra Supercritical Technology

Ultra supercritical technology refers to adoption of still higher steam temperatures of 600/600 deg C. Ultra supercritical technology has already been adopted in Japan and some European countries. Some latest units in China are also stated to be based on ultra-supercritical technology. International efforts are also underway to further increase the steam temperatures to 700 deg C and necessary technology development is being undertaken through various R&D programmes. The 700 deg C plants are slated to achieve an efficiency of over 50%.

In the Indian scenario, large capacity induction of supercritical units would have taken place by the end of 12th plan, and significant manufacturing capacity of supercritical units would be achieved through BHEL and other JV companies coming up in this area. Thus introduction of ultra supercritical technology with steam parameters of about 600/600-620 deg C could be considered for specific sites based on relative techno-economics. Further, the International partners of new JVs are manufacturers of ultra supercritical plants and could stimulate the introduction of this technology in India in 13th Plan.

Circulating Fluidized Bed Combustion. (CFBC) Technology

CFBC technology has selectively been applied in India for firing high sulphur refinery residues, lignite etc. A number of 125 MW CFBC units have been installed for firing high sulphur lignite. Neyveli Lignite Corporation is installing 250 MW CFBC boilers for their NLC TPS II expansion project. Complete technology know how and commercial arrangement (licensee) of CFBC exist in the country and CFBC boilers of upto 250 MW are being manufactured indigenously.

IGCC Technology

The IGCC (integrated gasification combined cycle) technology refers to power generation through gasification of coal in gasifiers wherein the syngas is generated which after cleaning is used in gas turbine combined cycle systems to generate power. Presently, efficiency of IGCC plants internationally is comparable to those of supercritical plants but the technology has the potential to achieve higher efficiency than the conventional pulverized coal technology.

IGCC has been adopted internationally for very low ash coals or petroleum based fuels. With low gas and petroleum based fuels availability in the country, our efforts are mostly centered on technologies, which can use Indian high ash coals. International cooperation in developing IGCC technology is being sought using typical high ash Indian coals

which are presently being used for power generation in our Thermal Power Stations. Action has also been initiated for developing IGCC technology indigenously. BHEL have been doing research on gasification of Indian coals and have signed an MOU with APGENCO to set up 125 MW IGCC based plant. However, the results of the past studies do not indicate any improvement in efficiency with IGCC technology due to high ash contents of Indian coal.

4.2.3 Renovation and Modernisation of Thermal Power Stations

Background

Renovation and Modernisation (R&M) and Life Extension (LE) of existing old power stations provide an opportunity to get additional generation at low cost in short gestation period. Besides generation improvement, it results in improvement of environmental emissions and improvement in availability, safety and reliability.

The Indian power sector has immense potential of reducing carbon dioxide emission by way of Renovation and Modernization schemes as some of the plants are old and are operating at a low efficiency. Benefits of CDM can be extended to overcome the fund constraints for the various R & M schemes, especially for energy efficiency improvements, as these schemes would mitigate carbon dioxide emissions and save fossil fuel.

R&M programme was initiated in 1984 as a centrally sponsored programme for 34 numbers of thermal power stations covering 163 thermal units in the country. The programme was successfully completed in the year 1992 and an additional generation of about 10,000 MU/ annum was achieved.

The Phase-II R&M programme for 44 numbers of thermal power stations was taken up in the year 1990-91. Power Finance Corporation (PFC) was to provide loan assistance to the State Electricity Boards (SEBs) for the R&M works. However, this programme could not progress as per schedule mainly due to non-availability of funds and poor financial conditions of State Electricity Boards (SEBs).

The R&M programme continued to be implemented during 8th, 9th, 10th and 11th Plan periods but met with limited success during 10th Plan onwards due to various reasons such as non-availability of units for shut down, delayed supply of materials, fund constraint, lack of agencies to undertake R&M works etc.

4.2.3.1 Formulation of R&M / LE programme & Achievement during 11th Plan

A Summary of Programme & tentative Achievement during 11th Plan is given in Table below.

LE/R&M Programme-Achievement during 11th Plan (2007 – 2012)

Sl No.	Particular	State	te Sector Central Sector Total (State sec Central Sect		Central Sector		
		No. of units	Capacity (MW)	No. of units	Capacity (MW)	No. of units	Capacity (MW)
1.	LE works (Programme)	33	4524	20	2794	53	7318
	(Achievement)	10	1024	3	267	13	1291
2.	R&M works (Programme)	27	6015	49	12950	76	18965
	(Achievement)	20	4485	39	10370	59	14855
	Total (Programme)	60	10539	69	15744	129	26283
	(Achievement)	30	5509	42	10637	72	16146

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 343

Programme for 12th Plan

Under 12th Plan, life extension works have been identified on 70 thermal units of total capacity 12066 MW. This includes 38 units (6820 MW) from state sector and 32 units (5246 MW) from central sector. Out of these 32 number central sector units, NTPC units are 28 numbers (4406 MW) and DVC units are 4 numbers (840 MW). In addition to above, R&M works have also identified on 65 units (17301 MW) during 12th plan, out of this 37 units (12890 MW) are from NTPC, 8 units (261 MW) are from NEEPCO and balance 20 units (4150 MW) from state power utilities.

Table 4.5 R&M/ LE Programme of Thermal Units during 12th Plan (2012 – 2017)

Sl No.	Particular	State	Sector	Central Sector		Total (State sector + Central Sector)	
		No. of units	Capacity (MW)	No. of units	Capacity (MW)	No. of units	Capacity (MW)
1.	LE works	38	6820	32	5246	70	12066
2.	R&M works	20	4150	45	13151	65	17301
	Total of LE/R&M	58	10970	77	18397	135	29367

The list of units identified for life extension and R&M during 12th Plan are given at Annexure-4.1 and 4.2 respectively.

Potential candidate units for LE and R&M works during 13th Plan (2017—2022)

The Summary of 13th Plan R&M/LE programme is given in Table 4.6 below:

Table 4.6 3TH PLAN R&M/LE PROGRAMME (POTENTIAL CANDIDATE UNITS)

Name of the Programme	State Sec	etor	Central S	ector	Total identified units (State + Central Sector) during 13 th	
Trogramme					Plan	during 13
	No. of Units	Capacity (MW)	No. of Units	Capacity (MW)	No. of Units	Capacity (MW)
LE						
Coal	55	12130	16	3940	71	16070
Gas	6	672	5	765.71	11	1438
Sub Total	61	12802	21	4706	82	17508
R&M						
Coal	16	3560	6	2420	22	5980
Gas			6	1172	6	1172
Sub Total	16	3560	12	3592	28	7152
Grand Total	77	16362	33	8298	110	24660

Future vision for R&M Programme

So far, R&M activities were confined to old, small size units to sustain their operation, improve plant availability and extend their operating life. However, such units are highly inefficient and beset with various operational problems. It is aimed at gradually decommissioning such units.

Today, 200/210/250MW/300MW and 500 MW units (61655 MW) consisting of 81 % of coal/lignite based installed capacity form the backbone of Indian Power sector. A large number of 200/210 MW machines and few 500 MW machines are in operation for 15-25 years or more. Such machines through efficiency integrated R&M provide a good opportunity for performance enhancement through technology intensive R&M. Plant specific energy audit studies and techno-economic analysis are proposed to be carried out for defining & implementation of efficiency integrated R&M/LE scheme. At present, three power stations viz., Bokaro 'B' TPS (3x210MW), Kolaghat TPS (3x210MW) and Nasik TPS Unit-3 (1x210MW) have been identified for efficiency integrated R&M study through bilateral cooperation with German Government. Contract has been awarded for preparation of Feasibility Study for all the above units. Further, few units such as Bandel TPS Unit-5 (210MW) and Koradi TPS Unit-1 (210MW) and Panipat TPS (2x110MW) have also been identified for efficiency integrated R&M through World Bank assistance. LOA has been issued to M/s Doosan Heavy Industries & Construction Co. Ltd. for main plant package for Bandel TPS Unit -5. In case of Koradi TPS unit-6 Bid have been received and is under evaluation. After detail study techno-economic viability for life extension of unit 3&4 of Panipat TPS could not be established and HPGCL Board decided not to undertake R&M works in these units. The Energy Efficient R&M programme through external assistance is intended to be taken up in few more units also.

Technical assistance to CEA by the World Bank for the efficiency enhanced R&M

The World Bank is providing technical assistance of US \$ 1.1 million as a part of GEF grant under Coal Fired Generation Rehabilitation Project to CEA for addressing the barriers to energy efficient R&M in India. The scheme would be implemented through appointment of consultants for carrying out studies related to reduction of barriers to R&M interventions in India, developing market for implementations and strengthening institutional capacity at CEA in the field of R&M. All the consultants have been appointed.

4.2.4 Renovation, Modernisation & Uprating of Hydro Electric Power Projects

Renovation & Modernisation, Life Extension and Up rating (RM&U) of existing old hydro electric power projects is considered a good option, as this is cost effective and quicker to achieve than setting up of green field hydro power projects.

In order to augment the hydro generation and improve the availability of existing hydro power projects, Government of India has laid emphasis on R&M of various existing hydro electric power projects in the country.

Recognising the benefits of the R&M of hydroelectric power projects, Govt. of India set up a National Committee in 1987 and a Standing Committee in 1998 thereafter, these have identified the projects/ schemes to be taken up for implementation under R&M. The National Perspective Plan document for R&M of hydro electric power projects in the country was also prepared in CEA during the year 2000, incorporating the status of various projects/schemes already identified for implementation/ completion till the end of the 11th Plan, i.e. the year 2011-12. The summary of 11th Plan is given in **Table 4.7**

A Summary of the 12th Plan programme for hydro R&M, Life Extension & Uprating Schemes and of the projects planned, completed and on which work is ongoing in the 12th Plan is as furnished in **Table 4.8 below.**

Table 4.7 $\label{eq:summary} \mbox{SUMMARY OF R\&M, LIFE EXTENSION \& UPRATING PROGRAMME AND ACHIEVEMENTS FOR 11TH PLAN - HYDRO$

Description	R&M	LE & Uprating
No. of Projects Covered	13	5
Capacity (MW)	3363.2	1458.00
Estimated Cost (Rs. Crores)		412.83
Expenditure incurred (Rs. Crores) till 31.03.2012		294.84
Targeted Benefits (MW)	-	826
Actual Benefits achieved	-	735

Table 4.8

SUMMARY OF R&M AND LIFE EXTENSION PROGRAMME AND ACHIEVEMENTS FOR 12TH PLAN – HYDRO

Description	R&M	LE & Uprating	
No. of projects Covered	7	36	
Capacity (MW)	2583.25	4084.50	
Estimated Cost (Rs. Crores)	4433.67		
Expenditure incurred (Rs. Crores) till	9	94.72	
31.03.2012			
Targeted Benefits (MW)	-	3773.25	
Actual Benefits achieved	-	-	

Abbreviations: MW - Mega Watt; Res. - Restoration; U - Uprating; LE - Life Extension

The details of Hydro projects considered for R&M during 12th plan are given in Annexure-4.3

4.2.5 Retirement of Old and Inefficient Thermal Plants

Retirement of Old and Inefficient thermal Plants and replacing them with new and more efficient units is an effective way of using the fuel and minimizing GHG Emissions. During the 11th Plan, 3,000 MW of capacity was targeted to be retired. This comprised of coal and lignite units of unit size lesser than 100 MW.

During the 12th Plan, a capacity of about 4,000 MW has been proposed to be retired which includes the remaining units of coal & lignite under 100 MW size, gas plants more than 30 years old (1987 & before) and some coal units of 110 MW capacity.

During the 13th Plan, retirement of 4,000 MW capacity has been considered which includes all coal units lesser than 200 MW (commissioned before 1982) and gas units commissioned before 1992 (more than 20 years old).

4.2.6 Generation and Energy Efficiency Measures

In a scenario where India tries to accelerate its development process and cope up with increasing energy demands, conservation and energy efficiency measures are to play a central role in our energy policy. A national movement for energy conservation can significantly reduce the need for fresh investment in energy supply systems in coming years. It is imperative that all-out efforts are made to realize this potential. Energy conservation is an objective to which all the citizen in the country can contribute. Whether a household or a factory, a small shop or a large commercial building, a farmer or a office worker, every user and producer of energy can and must make this effort for his own benefit, as well as that of the nation.

Government of India has already enacted Energy Conservation Act ,2001 (EC Act) which provides much needed legal framework and institutional arrangement for promotion of energy efficiency in all sectors of economy. Under this EC Act, Thermal Power Stations have already been declared as Designated Consumers vide Government notification dated 19.3.2007.

Following are some of the relevant provisions under the EC Act for Power Stations as designated consumers:

- 1. To designate or appoint energy manager in charge of the activities of energy efficiency and conservation;
- 2. To get Energy Audit conducted by an accredited energy auditor;
- 3. Furnish information with regard to the energy consumed and action taken on the recommendation of accredited energy auditors;
- 4. Comply with the norms of energy consumption.

Central Electricity Authority has also initiated action on creation of Energy Efficiency Cells at all the thermal Power Stations. Central Electricity Authority in collaboration with

M/s GIZ, Germany has also finalized the training needs required by these cells under Indo-German Energy programme (IGEN). Various regional workshops/seminars on Energy Efficiency are being held for effective working of these Energy Efficiency cell under IGEN programme.

In order to deal with the complex operational problems of the power stations in the country with incorporation of state of the art technologies and with a view to enhance the efficiency of the operating power stations, it was proposed, under Indo German Energy Forum to setup an Excellence Enhancement Centre (EEC) for Indian Power sector. The implementation agreement between CEA, BEE and GIZ was signed on 8th September,2011.

The objectives of EEC are as follows:

- a. To share best practices in all areas of power sector and providing broad based expertise.
- b. To raise awareness of the need for excellence.
- c. To provide a solid network for interaction with industry for platform for technological development and to provide a focal point of contact for the whole power sector.
- d. To identify common challenges, developing common solutions and joint action plans for power sector.
- e. To provide a platform for the top Experts in Power Sector.

Excellence Enhancement Centre has been registered as a society under Societies Registration Act no XXI of 1860 as applicable to National Capital Territory of Delhi on 16th November,2010 The centre has started its operation from CBIP building, Malcha Marg, Chanakyapuri, New Delhi. Chairperson, CEA is the President of the Governing Body of EEC. The Governing body of the Society comprises members from CEA, NTPC, BEE, VGB, Germany and GIZ. GIZ, Germany is assisting the activities of the proposed EEC through funding from BMU, Germany. VGB, Germany shall be assisting EEC by sharing of knowledge and expertise available in Germany and other EU countries.

EEC is non profit member driven society. The membership drive is in progress. Many organizations like BHEL.J&K Power Development Corporation, NTPC, Hitachi, EON, Steag Ratnagiri power, CPRI etc have already approached EEC for membership. EEC has already short listed the topics which will be taken initially. The EEC has already organized one National Workshop in New Delhi and one regional workshop at Kolkata on the topic of PAT Scheme .More regional workshops are being proposed to be held in near future at Jaipur, Hyderabad, Bangalore and Chandigarh etc.

4.2.7 Efficient Use of Resources

Efficiency in the use of resources is an important factor as it promotes more productive output from limited resources as well as it reduces the carbon footprint on the environment.

Cogeneration is the use of a heat engine or a power station to simultaneously generate both electricity and useful heat. Cogeneration is a thermodynamically efficient use of fuel. Conventional power plants emit the heat created as a byproduct of electricity generation into the environment through cooling towers, flue gas, or by other means. Combined Heat and Power (CHP) captures the by-product heat for domestic or industrial heating purposes. CHP is most efficient when the heat can be used on site or very close to it. Overall efficiency is reduced when the heat must be transported over longer distances.

Combined Cooling, Heating and Power (CCHP)

Large industrial units such as cement plants, chemical industries, textile plants, etc have, for several years, been drawing power from their captive power plants. Many of these units have also gone in for waste heat recovery to meet the needs of process steam or chilling.

In the last few years, there has also been a rise in the number of large commercial buildings in the form of IT complexes, multiplexes, data centres, modern airports, etc that have a tremendous amount of power requirement. As these buildings are fully air-conditioned, the power intensity is extremely high. Due to their concentrated load and the possibility of using part of their air-conditioning loads from the waste heat, they are ideal candidates for combined heat

and cooling solutions. Also due to the varying nature of their loads, they demand a high degree of operational flexibility.

It should be made mandatory for commercial consumers with loads exceeding 25 MW, to generate power in situ and to demonstrate a minimum thermal efficiency of 60%. Ensuring compliance will not be too difficult, given the incentives cited above.

CHP plants can be set up by the building owner as a captive power plant. Or several such buildings can come together and form a group-captive power plant. Energy from such plants would be viewed as 'deemed renewable energy" and the generators allowed feed-in rights to export the excess power to the grid or to power exchanges.

An equal, if not greater, opportunity presents itself in the use of (clean) natural gas for such "within the fence" CCHP plants. By carefully calibrating the allocation and restricting the use of natural gas to CHP applications that can offer an efficiency of at least 60%.

4.2.8 Distributed Generation

Distributed Generation is the location of generation scattered throughout all areas/states. Most often this generation would be from Wind, biogas, Solar or gas/ diesel engines. The major advantages of Distributed Generation are as follows:

Low transmission losses

Distributed flexible generation is located close to consumption and load centres. Transmission losses are, therefore, minimised.

• Low transmission investments

Transmission investments are minimised, compared with the Rs 1 crore/MW needed to build the transmission line system associated with a UMPP.

• Rapid capacity addition

It enables a paradigm shift from large plants to more number of smaller plants, say in the range of 25-200 MW. They enable quick capacity addition. These plants generally use standardised power generating blocks, and deploy far higher extent of prefabrication and modularisation. Due to this, the time of site work is greatly reduced, and thus, time-to-start up is much shorter.

• Lower physical vulnerability, and risk mitigation

Distributed generation, apart from increasing reliability, improving quality, reducing transmission costs, reducing right-of-way acquisition costs, etc, lowers the vulnerability of the electricity system, by spreading the points of generation over a wider geographical area. If large centralised plants are affected by natural disasters or acts of terrorism, the impact can be immediate and much higher, as large chunks of power supplies drop out of the system. Distributed plants that ensure generation in smaller chunks from different sites removes this weakness and improves the resilience of the system. Urban agglomerations having several installations of highly sensitive or strategic importance will particularly benefit from the risk mitigation that such distributed flexible generation offers.

• Quicker financial closure

Project investments are smaller, and thus can be financially closed much faster.

• Smallest land requirement, lowest water use

Distributed generation technologies help in reducing the area footprint per MW significantly. They also do not consume much water and do not cause strain on natural resources.

• Better Grid support

Distributed generation provides better grid support, and islanding schemes can insulate load centres from cascade tripping.

4.2.9 Coal Quality Improvement:

Coal characteristics have a significant impact on the power plant performance. Indian coal available for power generation is by and large of poor quality with high ash content leading to low efficiencies of the power plants. The average Gross Calorific Value of the coal available for Indian power plant is in the range of 3000.- 4500 Kcal/kg with ash content as high as 40%. The use of Beneficiated coal either by coal washing or blending with low ash imported coal is being done at some of the stations. The use of beneficiated coal will not only improve the performance of the plant leading to low carbon emissions but also would reduce the over all operation and maintenance costs. Many stations have started using washed coal and are in process of blending with imported coal thereby improving their plant performance.

Ministry of Environment & Forests have issued a notification requiring thermal power stations located 1000 kms. from pit heads or those located in urban, sensitive and critically polluted areas to use raw or blended or beneficiated coal with ash content not exceeding 34% on an annual average basis.

Indian coals are less amenable to washing and are characterized as difficult, as the washing yield is rather low. Hence, appropriate technical solutions have to be found with a view to optimize cost of washing and yields. Economics of washing can be improved by utilizing rejects for producing electricity in Fluidized Bed Combustion (FBC) boilers. Many private washeries are setting up small capacity FBC units based on washery rejects.

At present out of a total coal consumption of about 323 million tones, washed coal accounts for a mere 33 million tones. With the allocation of coal blocks to private and Govt. power utilities for coal mining, washing is set to increase rapidly. The large size supercritical units are slated to use washed /imported coal.

4.3 GENERATION FROM RENEWABLE ENERGY SOURCES IN INDIA

Use of Renewable Energy Sources is a far better option than Conventional Energy Sources as they are sustainable and cause comparatively very little pollution. However at a particular instant their quantity is limited and these are not capable of meeting the demand of the Utility. Also these normally provide non despatchable energy, dependent on the vagaries of nature and thus can not be relied upon to meet the peak demand of the system. They generally run at an overall PLF of 15% to 20% (PLF based on total capacity and sum of energy from all the renewable sources). In addition, the power producing technologies are expensive thereby increasing the tariff of power produced. However due to their inherent merits, development of these power sources are being encouraged and power thus generated is being fed into the Grid.

Therefore, renewable energy sources have been considered while drawing up the capacity addition programme for the 12th and 13th Plans. Energy from these sources, whenever available, has been considered foremost to meet the demand. Additional capacity from conventional sources has been assessed to meet the balance load of the system.

4.3.1 Potential of Renewables

Thrust is being accorded to development of Renewable Energy Sources which are not only a renewable source but are also environmentally benign. The Ministry of Non-conventional Energy Sources has projected the potential for Wind energy itself to be of the order of 45,000 MW. Other forms of non-conventional energy sources are bio-mass, small, mini and micro hydro (using canal falls as cost of civil works is minimal), tidal power and solar energy. These may also be viable as distributed generation to meet the demands of remote locations where extension of grid may be difficult or very costly. In the short term these sources could be exploited for bridging the demand-supply gap especially in geographically dispersed areas. Today the capital cost of non-conventional energy is higher than that of conventional sources on per kW basis except Wind Power. However, their viability could be established if financial cost benefit analysis is replaced by economic cost benefit analysis.

As per the information furnished by MNRE, the total estimated medium-term potential (2032) for power generation from renewable energy sources such as wind, small hydro, solar, waste to energy and biomass in the country is about 1,83,000 MW as given in **Table 4.9** below:

[भाग Ⅲ-खण्ड 4] भारत का राजपत्र : असाधारण 349

Table 4.9

(Figures in MW)

Sources / Systems	Estimated Mid-Term (2032) Potential
Wind Power	45,000
Bio-Power (Agro residues & Plantations)	61,000
Co-generation Baggasse	5,000
Small Hydro (up to 25 MW)	15,000
Waste to Energy	7,000
Solar Photovoltaic	50,000*
TOTAL	1,83,000

^{*}As per Objective of the National Solar Mission, 1,00,000 MW shall be the Installed Solar generation capacity by 2030 and 2,00,000 MW by 2050..

4.3.2 Development of Renewable Energy Sources

Renewable Energy has been appropriately given the central place in India's National Action Plan on Climate Change. Intergovernmental Panel on Climate Change(IPCC) in its Fourth Assessment Report on 'Mitigation of Climate Change' has observed that technologies are available for mitigating the climate change, however these require appropriate Policy and financial support. Due to its vast market potential for renewable energy projects, and a relatively well-developed industrial, financing and business infrastructure, India is perceived as an excellent country for Clean Development Mechanism (CDM) projects. National renewable energy plans offer ample opportunity for CDM projects and technological innovations. CDM and the emerging carbon market in general have potential to contribute to the financial viability of renewable energy projects, although not necessarily making them fully viable.

The Electricity Act 2003 also recognises the role of renewable energy technologies for supplying power to the Utility grid as well as in Stand-alone systems. It empowers the State Electricity Regulatory Commissions (SERCs) to promote renewable energy and specify, for purchase of electricity from renewable sources a percentage of the total consumption of electricity in the area of a distribution licensee. National Electricity Policy also states that non-conventional energy sources have to be exploited fully and promotional measures have to be taken for development of technologies and sustainable development of these sources by SERCs. The tariff policy also mandates minimum percentage of energy from renewable sources to be made applicable for the tariffs to be determined by SERCs. Thus the Electricity Act, National Electricity Policy and the Tariff Policy of Government of India mandate development of renewable resources through a system of obligation of a distribution company to purchase electricity from such sources. These Initiatives provide a major boost for promotion of the renewable energy sector in India.

The total Installed capacity from renewable energy sources at the end of 11th Plan i.e. as on 31.03.2012 24,914 MW. India ranks fifth in the world in terms of installed capacity of wind turbine power plants. The capacity addition target for 11th Plan from renewable sources is 14,000 MW (not including solar capacity as proposed under the Solar Mission). Against the target of 14,000 MW during 11th plan a capacity of about 17,000 MW added.

During the 12th and 13th Plans, capacity addition is expected to be more than the 11th Plan capacity addition from renewable sources. A number of Incentives have been given by MNRE for setting up of Solar and Wind based power plants. During the 12th and 13th Plans, the capacity addition from renewables is expected to be about 29,500 MW and 30,500 MW respectively. Considering 7,761 MW from renewables at the beginning of 11th Plan i.e. 31.03.2007, the capacity from renewables at the end of 11th, 12th and 13th Plans is expected to be 24,914 MW, 54,414 MW and 84,914 MW. The growth in renewable capacity addition during 10th Plan onwards is illustrated in Exhibit below:

As per MNRE's perspective Plan, a capacity addition of 60,000 MW is envisaged during the 12th and 13th Plan periods. These estimates include likely capacity addition through Grid –interactive Solar Power. The National Action Plan on Climate Change has identified large-scale Solar Power generation as one of the thrust areas under proposed Solar Mission, An indicative target of 20,000 MW Solar Power by 2020 is envisaged in this Plan.

4.4 DEVELOPMENT OF SOLAR POWER

4.4.1 Introduction

Out of all the Non-conventional resources of power generation, Solar energy is the most readily available and abundant source of energy. India being a tropical country with abundant sunshine, solar energy could be easily harnessed for power generation. It is especially advantageous while considering power options for rural electrification, both as grid-connected power and distributed power option.

A National Solar Mission has been launched under the National Action Plan for Climate Change (NAPCC) to significantly increase the share of solar energy in the total energy mix while recognizing the need to expand the scope of other renewable and non-fossil options such as nuclear & wind energy and biomass.

The ingress of solar technology for energy use has been slow due to a number of factors predominantly the high capital cost and large land requirement for solar installations. A further constraint has been its availability only during the day for energy use, thereby requiring additional high cost for storage system. For any technology to play an effective role and to bring down the costs, it is necessary to take up capacity building in "Mission mode". Accordingly all efforts are being made to harness Solar energy in the most effective manner, with an eye on sustainability in the near future.

MNRE has launched a new scheme in March 2008 for installation of Megawatt Capacity Grid Interactive Solar Power Plants. Under this project, the Ministry will provide a generation based incentive of a maximum of Rs.12 per KWh for the electricity generated from Solar Photovoltaic and the maximum of Rs.10 per KWh for the electricity generated through Solar Thermal Power Plants and fed to the grid from a grid interactive solar power plant of a capacity of 1 MWp and above. This incentive will be provided to the project developers at a fix rate for a period of ten years and will be worked out taking into account the tariff provided by the utility to the solar power producer. This programme will be limited to an aggregate installed capacity of 50 MWp of Solar Power during the 11th Plan period with each State being allowed to set up upto 10 MWp aggregate capacity.

4.4.2 Potential in India for solar energy

India gets plenty of sunlight due to its proximity to the equator. About 5,000 trillion kWh energy is incident over India's land area with most parts receiving 4-7 kWh per sq. m per day. As a thumb rule, 1 MW of solar capacity without storage facility produces 1.6 MU of electricity per annum. In India potential of solar energy is available in the States which are rich in Sunshine, particularly in the States of Rajasthan, Gujarat, Andhra Pradesh, Tamil Nadu and Ladakh. A mapping of the solar potential is available which could be utilized for while setting up Solar installations.

4.4.3 Power from solar energy- Technology Options

Solar power entails producing power from the energy of the sun. Sunlight can be converted into electricity predominantly by using 2 types of technologies i.e. Photovoltaic (PV) cell and Solar Thermal or Concentrating Solar Power (CSP) technology as follows:

- (i) Solar Photovoltaic Panels
- (ii) Solar Thermal (CSP and heating), which includes Parabolic Trough, Power Towers Dish Design and Fresnel Reflector.

Each technology has its own merit and demerit and a judicious choice needs to be made depending upon the requirement and inputs available.

4.4.4 Solar Photo-voltaic (PV) Technology

A solar cell or photovoltaic cell is a device that converts sunlight directly into electricity by the photovoltaic effect. Assemblies of cells are used to make solar panels, solar modules, or photovoltaic arrays. Solar cells are often electrically connected and encapsulated as a module. PV modules often have a sheet of glass on the front (sun up) side, allowing light to pass while protecting the semiconductor wafers from the elements (rain, hail, etc.). Solar cells are also usually connected in series in modules, creating an additive voltage. Connecting cells in parallel will yield a higher current. Modules are then interconnected, in series or parallel, or both, to create an array with the desired peak DC voltage and current.

To make practical use of the solar-generated energy, the electricity is most often fed into the electricity grid using inverters (grid-connected PV systems); in stand alone systems, batteries are used to store the energy that is not needed immediately. PV has mainly been used to power small and medium-sized applications, from the calculator powered by a single solar cell to off-grid homes powered by a photovoltaic array. For large-scale generation, CSP plants have been the norm. However recently multi-megawatt PV plants are becoming common.

Newer alternatives to standard crystalline silicon modules include casting wafers instead of sawing, thin film (CdTe, CIGS, amorphous Si, microcrystalline Si), concentrator modules, 'Sliver' cells, and continuous printing processes. Due to economies of scale solar panels get less costly as people use and buy more — as manufacturers increase production to meet demand, the cost and price is expected to drop in the years to come.

4.4.5 Solar Thermal Technology

In this technology, the solar energy is converted into thermal energy, which can then be converted to electrical energy by turbine.

The Salient Features of Comparison of the 3 thermal technologies i.e. Parabolic Trough, Power Tower and Dish/Engine are as follows:

Towers and troughs are best suited for large, grid connected power projects in the 30-200 MW size wheras dish/engine systems are modular and can be used in single dish applications or grouped in dish farms to create large multi- megawatt projects.

- Parabolic troughs are the most mature solar power technology available today and the technology most likely to be used for near term deployment. Proven technology waiting for an opportunity to be developed.
- Power towers, with low cost and efficient thermal storage promise to offer despatchable, high capacity factor, solar only power plants in the near future. However they require the operability and maintainability of the molten-salt technology to be demonstrated and the development of low cost heliostats
- The modular nature of dishes allows them to be used in smaller, high value applications. However the dish/engine systems require the development of at least one commercial engine and the development of a low cost concentrator
- Towers and dishes offer the opportunity to achieve higher solar-to electric efficiencies and lower cost as compared to the trough type but uncertainty remains as to whether these technologies can achieve the necessary capital cost reduction and availability improvements

4.4.6 Objectives and Targets For Solar Power in India

As per JNNSM, the objective of the National Solar Mission is to establish India as a global leader in solar energy, by creating the policy conditions for its diffusion across the country as quickly as possible.

The Mission will adopt a 3-phase approach, spanning the remaining period of the 11th Plan and first year of the 12th Plan (up to 2012-13) as Phase 1, the remaining 4 years of the 12th Plan (2013-17) as Phase 2 and the 13th Plan (2017-22) as Phase 3. At the end of each plan, and mid-term during the 12th and 13th Plans, there will be an evaluation of progress, review of capacity and targets for subsequent phases, based on emerging cost and technology trends, both domestic and global. The aim would be to protect Government from subsidy exposure in case expected cost reduction does not materialize or is more rapid than expected.

The immediate aim of the Mission is to focus on setting up an enabling environment for solar technology penetration in the country both at a centralized and decentralized level. The first phase (up to 2013) will focus on capturing of the low-hanging options in solar thermal; on promoting off-grid systems to serve populations without access to commercial energy and modest capacity addition in grid-based systems. In the second phase, after taking into account the experience of the initial years, capacity will be aggressively ramped up to create conditions for up scaled and competitive solar energy penetration in the country.

To achieve this, the Mission targets are:

- To create an enabling policy framework for the deployment of 20,000 MW of solar power by 2022.
- To ramp up capacity of grid-connected solar power generation to 1000 MW within three years by 2013; an additional 3000 MW by 2017 through the mandatory use of the renewable purchase obligation by utilities backed with a preferential tariff. This capacity can be more than doubled reaching 10,000MW installed power by 2017 or more, based on the enhanced and enabled international finance and technology transfer. The ambitious target for 2022 of 20,000 MW or more, will be dependent on the 'learning' of the first two phases, which if successful, could lead to conditions of grid-competitive solar power. The transition could be appropriately up scaled, based on availability of international finance and technology.
- To create favourable conditions for solar manufacturing capability, particularly solar thermal for indigenous production and market leadership.
- To promote programmes for off grid applications, reaching 1000 MW by 2017 and 2000 MW by 2022.
- To achieve 15 million sq. meters solar thermal collector area by 2017 and 20 million by 2022.
- To deploy 20 million solar lighting systems for rural areas by 2022.

4.4.7 Mission strategy (phase 1 and 2)

The first phase will announce the broad policy frame work to achieve the objectives of the National Solar Mission by 2022. The policy announcement will create the necessary environment to attract industry and project developers to invest in research, domestic manufacturing and development of solar power generation and thus create the critical mass for a domestic solar industry. The Mission will work closely with State Governments, Regulators, Power utilities and Local Self Government bodies to ensure that the activities and policy framework being laid out can be implemented effectively. Since some State Governments have already announced initiatives on solar, the Mission will draw up a suitable transition framework to enable an early and aggressive start-up.

A. Utility connected applications: constructing the solar grid

The key driver for promoting solar power would be through a Renewable Purchase Obligation (RPO) mandated for power utilities, with a specific solar component. This will drive utility scale power generation, whether solar PV or solar thermal. The Solar Purchase Obligation will be gradually increased while the tariff fixed for Solar power purchase will decline over time.

B. The below 80°C challenge - solar collectors

The Mission in its first two phases will promote solar heating systems, which are already using proven technology and are commercially viable. The Mission is setting an ambitious target for ensuring that applications, domestic and industrial, below 80 °C are solarised. The key strategy of the Mission will be to make necessary policy changes to meet this objective:

- Firstly, make solar heaters mandatory, through building byelaws and incorporation in the National Building Code,
- Secondly, ensure the introduction of effective mechanisms for certification and rating of manufacturers of solar thermal applications,
- Thirdly, facilitate measurement and promotion of these individual devices through local agencies and power utilities, and
- Fourthly, support the upgrading of technologies and manufacturing capacities through soft loans, to achieve higher efficiencies and further cost reduction.

C. The off-grid opportunity - lighting homes of the power- deprived poor:

A key opportunity for solar power lies in decentralized and off-grid applications. In remote and far-flung areas where grid penetration is neither feasible nor cost effective, solar energy applications are cost-effective. They ensure that people with no access, currently, to light and power, move directly to solar, leap-frogging the fossil fuel trajectory of

growth. The key problem is to find the optimum financial strategy to pay for the high-end initial costs in these applications through appropriate Government support.

Currently, market based and even micro-credit based schemes have achieved only limited penetration in this segment. The Government has promoted the use of decentralized applications through financial incentives and promotional schemes. While the Solar Mission has set a target of 1000 MW by 2017, which may appear small, but its reach will add up to bringing changes in millions of households. The strategy will be learn from and innovate on existing schemes to improve effectiveness. The Mission plans to:

- Provide solar lighting systems under the ongoing remote village electrification programme of MNRE to cover about 10,000 villages and hamlets. The use of solar lights for lighting purposes would be promoted in settlements without access to grid electricity and since most of these settlements are remote tribal settlements, 90% subsidy is provided. The subsidy and the demand so generated would be leveraged to achieve indigenization as well as lowering of prices through the scale effect. For other villages which are connected to grid, solar lights would be promoted through market mode by enabling banks to offer low cost credit.
- Set up stand alone rural solar power plants in special category States and remote and difficult areas such as Lakshadweep, Andaman & Nicobar Islands, Ladakh region of J&K. Border areas would also be included.

Promotion of other off grid solar applications would also be encouraged. This would include hybrid systems to meet power, heating and cooling energy requirements currently being met by use of diesel and other fossil fuels. These devices would still require interventions to bring down costs but the key challenge would be to provide an enabling framework and support for entrepreneurs to develop markets.

Solar energy to power computers to assist learning in schools and hostels, Management Information System (MIS) to assist better management of forests in MP, powering milk chilling plants in Gujarat, empowering women Self Help Groups (SHGs) involved in tussar reeling in Jharkhand, cold **chain management** for Primary Health Centres (PHCs) are some examples of new areas, being tried successfully in the country. The Mission would consider up to 30 per cent capital subsidy (which would progressively decline over time) for promoting such innovative applications of solar energy and would structure a non-distorting framework to support entrepreneurship, up-scaling and innovation.

In order to create a sustained interest within the banking community, it is proposed to provide a soft re-finance facility through Indian Renewable Energy Development Agency (IREDA) for which Government will provide budgetary support. IREDA would in turn provide refinance to NBFCs & banks with the condition that it is on-lend to the consumer at rates of interest not more than 5 per cent. The Mission would provide an annual tranche for the purpose which would be used for refinance operations for a period of ten years at the end of which the funds shall stand transferred to IREDA as capital and revenue grants for on-lending to future renewable energy projects.

D. Manufacturing capabilities: innovate, expand and disseminate

Currently, the bulk of India's Solar PV industry is dependent on imports of critical raw materials and components – including silicon wafers. Transforming India into a solar energy hub would include a leadership role in low-cost, high quality solar manufacturing, including balance of system components. Proactive implementation of Special Incentive Package (SIPs) policy, to promote PV manufacturing plants, including domestic manufacture of silicon material, would be necessary.

Indigenous manufacturing of low temperature solar collectors is already available; however, manufacturing capacities for advanced solar collectors for low temperature and concentrating solar collectors and their components for medium and high temperature applications need to be built. An incentive package, similar to SIPS, could be considered for setting up manufacturing plants for solar thermal systems/ devices and components.

The SME sector forms the backbone for manufacture of various components and systems for solar systems. It would be supported through soft loans for expansion of facilities, technology up gradation and working capital. IREDA would provide this support through refinance operations.

It should be ensured that transfer of technology is built into Government and private procurement from foreign sources.

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 355

E. R&D for Solar India: creating conditions for research and application

A major R&D initiative to focus: firstly, on improvement of efficiencies in existing materials, devices and applications and on reducing costs of balance of systems, establishing new applications by addressing issues related to integration and optimization; secondly, on developing cost-effective storage technologies which would address both variability and storage constraints, and on targeting space-intensity through the use of better concentrators, application of nanotechnology and use of better and improved materials. The Mission will be technology neutral, allowing technological innovation and market conditions to determine technology winners.

A Solar Research Council will be set up to oversee the strategy, taking into account ongoing projects, availability of research capabilities and resources and possibilities of international collaboration.

An ambitious human resource development programme, across the skill-chain, will be established to support an expanding and large-scale solar energy programme, both for applied and R&D sectors. In Phase I, at least 1000 young scientists and engineers would be incentivized to get trained on different solar energy technologies as a part of the Mission's long-term R&D and HRD plan.

Pilot demonstration projects would be closely aligned with the Mission's R & D priorities and designed to promote technology development and cost reduction. The Mission, therefore, envisages the setting up of the following demonstration projects in Phase I, in addition to those already initiated by MNRE and those, which may be set up by corporate investors:

- 1. 50-100 MW Solar thermal plant with 4-6 hours' storage (which can meet both morning and evening peak loads and double plant load factor up to 40%).
- 2. A 100-MW capacity parabolic trough technology based solar thermal plant.
- 3. A 100-150 MW Solar hybrid plant with coal, gas or bio-mass to address variability and space-constraints.
- 4. 20-50 MW solar plants with/without storage, based on central receiver technology with molten salt/steam as the working fluid and other emerging technologies.
- 5. Grid-connected rooftops PV systems on selected government buildings and installations, with net metering.
- 6. Solar-based space-cooling and refrigeration systems to meet daytime and summer season peak load. These could be installed on selected government buildings and installations.

The configurations and capacities as mentioned above are indicative and would be firmed up after consultations with various stakeholders. Bidding process will be adopted to set up solar power demonstration plants which would help in better price discovery for determining tariff for solar power. It will be ensured that indigenous content is maximized. The bid documents will also include a technology transfer clause. It is expected that these plants will be commissioned in the 12th plan period.

4.4.8 Proposed Roadmap

The aspiration is to ensure large-scale deployment of solar generated power for grid-connected as well as distributed and decentralized off-grid provision of commercial energy services. The deployment across the application segments is envisaged as in **Table 4.9** below:

Table 4.9

S.	Application segment	Target for Phase I	Target for Phase 2	Target for Phase 3
No.		(2010-13)	(2013-17)	(2017-22)
1.	Solar collectors	7 million sq meters	15 million sq meters	20 million sq meters
2.	Off grid solar applications	200 MW	1000 MW	2000 MW
3.	Utility grid power, including	1,000-2000 MW	4000-10,000 MW	20000 MW
	roof top			

4.4.9. Policy and regulatory framework

The objective of the Mission is to create a policy and regulatory environment which provides a predictable incentive structure that enables rapid and large-scale capital investment in solar energy applications and encourages technical innovation and lowering of costs.

Although in the long run, the Mission would seek to establish a sector-specific legal and regulatory framework for the development of solar power, in the shorter time frame, it would be necessary to embed the activities of the Mission within the existing framework of the Electricity Act 2003. The Electricity Act already provides a role for renewables but given the magnitude and importance of the activities under the Mission, it would be necessary to make specific amendments. The National Tariff Policy 2006 mandates the State Electricity Regulatory Commissions (SERC) to fix a minimum percentage of energy purchase from renewable sources of energy taking into account availability of such resources in the region and its impact on retail tariff. National Tariff Policy, 2006 would be modified to mandate that the State electricity regulators fix a percentage for purchase of solar power. The solar power purchase obligation for States may start with 0.25% in the phase I and to go up to 3% by 2022. This could be complemented with a solar specific Renewable Energy Certificate (REC) mechanism to allow utilities and solar power generation companies to buy and sell certificates to meet their solar power purchase obligations.

The Central Electricity Regulatory Commission has recently issued guidelines for fixing feed-in-tariff for purchase of Solar power taking into account current cost and technology trends. These will be revised on an annual basis. The CERC has also stipulated that Power Purchase Agreement that utilities will conclude with Solar power promoters, should be for a period of 25 years.

In order to enable the early launch of "Solar India" and encourage rapid scale up, a scheme is being introduced in cooperation with the Ministry of Power, the NTPC and the Central Electricity Authority, which would simplify the off-take of solar power and minimize the financial burden on Government.

Many investors are willing to set up solar based power plants. However, sale of power by the IPPs may be an issue due to the high cost of power and realization of tariff for the same from the distribution companies.

In order to incentivise setting up of a large number of Solar Power Projects, while minimizing the impact on tariff various alternatives were explored. One of the options is to bundle solar power along with power out of the cheaper unallocated quota of Central stations and selling this bundled power to state distribution utilities at the CERC regulated price. This will bring down the gap between average cost of power and sale price of power. For the purpose of bundling, power has to be purchased by an entity and re-sold to the state power distribution utilities. Such function can be done only by a trading company/ Discoms, as per the existing statutory provisions.

NTPC has a wholly owned subsidiary company engaged in the business of trading of power – NTPC Vidyut Vyapar Nigam Ltd. (NVVN). NVVN will be designated as nodal agency by the Ministry of Power (MoP) for entering into a Power Purchase Agreement (PPA) with Solar Power Developers. The PPAs shall be signed with the developers who will be setting up Solar Projects and are connected to the grid at 33 KV level and above. The PPAs will be valid for a period of 25 years. For each MW of solar power installed capacity for which PPA is signed by NVVN, MOP shall allocate to NVVN an equivalent amount of MW capacity from the unallocated quota of NTPC stations.

NVVN will bundle this power and sell this bundled power at a rate fixed as per CERC regulations. In case of significant price movement in the market rate, the Government will review the situation.

When NVVN supplies the bundled power to distribution utilities, those distribution utilities will be entitled to use part of the bundled power to meet their RPO, as determined by the regulatory authorities. The CERC may issue appropriate guidelines in this regard. At the end of the first phase, well-performing utilities with proven financial credentials and demonstrated willingness to absorb solar power shall be included in the Scheme, in case it is decided to extend it into Phase II.

The requirement of phased indigenization would be specified while seeking development of solar power projects under this scheme. The size of each project would be determined so as to make phased indigenization feasible. The tariff and tax regime for key components and segments would be suitably fine tuned so as to promote the process of indigenization.

The Mission will encourage rooftop solar PV and other small solar power plants, connected to LT/11 KV grid, to replace conventional power and diesel-based generators. Operators of solar PV rooftop devices will also be eligible to receive the feed-in tariff fixed by the CERC, both on the solar power consumed by the operator and the solar power fed into the grid. Utilities will debit/credit the operator for the net saving on conventional power consumed and the solar power fed into the grid, as applicable. A Generation Based Incentive will be payable to the utility to cover the difference between the solar tariff determined by CERC, less the base price of Rs. 5.50/kWh with 3% p.a. escalation. The metering and billing arrangements between the utility and the rooftop PV operator will be as per guidelines/regulations of the appropriate commission.

State Governments would also be encouraged to promote and establish solar generation Parks with dedicated infrastructure for setting up utility scale plants to ensure ease of capacity creation.

FISCAL INCENTIVES

It is also recommended that custom duties and excise duties concessions/ exemptions be made available on specific capital equipment, critical materials, components and project imports.

4.4.10 Solar Manufacturing in India

One of the Mission objectives is to take a global leadership role in solar manufacturing (across the value chain) of leading edge solar technologies and target a 4-5 GW equivalent of installed capacity by 2020, including setting up of dedicated manufacturing capacities for poly silicon material to annually make about 2 GW capacity of solar cells. India already has PV module manufacturing capacity of about 700 MW, which is expected to increase in the next few years. The present indigenous capacity to manufacture silicon material is very low; however, some plants are likely to be set up soon in public and private sector. Currently, there is no indigenous capacity/capability for solar thermal power projects; therefore new facilities will be required to manufacture concentrator collectors, receivers and other components to meet the demand for solar thermal power plants.

To achieve the installed capacity target, the Mission recommends the following:

- <u>Local demand creation</u>: The 20 GW plan supported with right level of incentives for solar generation coupled with large government pilot/demonstration programs will make the Indian market attractive for solar manufacturers
- Financing & Incentives: SEZ like incentives to be provided to the manufacturing parks which may include:
 - ❖ Zero import duty on capital equipment, raw materials and excise duty exemption
 - ❖ Low interest rate loans, priority sector lending
 - ❖ Incentives under Special Incentive Package (SIPs) policy to set up integrated manufacturing plants; (i) from poly silicon material to solar modules; and (ii) thin film based module manufacturing plants. Under the SIP scheme of the Department of Information Technology, there are 15 applications in the domain of solar photovoltaic, which includes cell manufacturing, (both crystalline and thin film) and poly-silicon manufacturing among others. The combined capacity projected by these 15 companies could result in the production of 8-10 GW solar power by the year 2022 which would be sufficient for meeting the Mission targets even after accounting for exports.
 - ❖ It is also recommended that solar components be covered under the Bureau of Energy Efficiency's star rating programme to ensure high standards.

Similar incentives will be required for manufacture of CSP systems and their components. A Committee may be set up to formulate a policy for promotion of solar thermal manufacture in the country.

• Ease of doing business: In consultation with States, create a single window clearance mechanism for all related permissions.

• <u>Infrastructure & ecosystem enablers</u>: Create 2-3 large solar manufacturing tech parks consisting of manufacturing units (across the solar value chain), housing, offices, and research institutes. These will have 24x7 power and water supply and will likely need to be located near large urban centres with good linkages to ports and airports to ensure rapid access to imported raw materials and high quality engineering talent.

4.4.11 Research and Development

This Mission will launch a major R&D programme in Solar Energy, which will focus on improving efficiency in existing applications, reducing costs of Balance of Systems, testing hybrid co-generation and addressing constraints of variability, space-intensity and lack of convenient and cost-effective storage.

The R&D strategy would comprise dealing with five categories viz. i) Basic research having long term perspective for the development of innovative and new materials, processes and applications, ii) Applied research aimed at improvement of the existing processes, materials and the technology for enhanced performance, durability and cost competitiveness of the systems/ devices, iii) Technology validation and demonstration projects aimed at field evaluation of different configurations including hybrids with conventional power systems for obtaining feedback on the performance, operability and costs, iv) development of R&D infrastructure in PPP mode, and v) support for incubation and start ups.

To support the R&D Strategy, the Mission may include the following:

- Setting up a high level Research Council comprising eminent scientists, technical experts and representatives from academic and research institutions, industry, Government and Civil Society to guide the overall technology development strategy. The Council may invite eminent international experts in the field to support its work. The Council will review and update the technology roadmap to achieve more rapid technological innovation and cost reduction.
- A National Centre of Excellence (NCE) shall be established to implement the technology development plan formulated by the Research Council and serve as its Secretariat. It will coordinate the work of various R&D centres, validate research outcomes and serve as an apex centre for testing and certification and for developing standards and specifications for the Solar industry. It is envisaged that the Solar Energy Centre of the MNRE will become part of the National Centre of Excellence.
- The Research Council, in coordination with the National Centre of Excellence, inventorize existing institutional capabilities for Solar R&D and encourage the setting up of a network of Centres of Excellence, each focusing on an R&D area of its proven competence and capability. These Centres may be located in research institutes, academic institutions or even private sector companies. They will be encouraged to bid for various components of the Solar Technology Development Plan, and may do so adopting a consortium approach, collaborating with other institutions, including foreign collaboration, with proven capabilities.
- The NCE will provide a national platform for networking among different centers of excellence and research institutions, including foreign R&D institutions and high-tech companies.
- The NCE will serve as the funding agency to support performance-linked solar R&D programmes. This will include funding, or co-funding of pilot demonstration projects in areas relevant to Mission objectives. Funding will need to be adequate, predictable and should typically cover a time frame extending from 5-10 years.
- The NCE will be the main interface with international research institutions, research groups from foreign countries, high-tech start-up companies and multilateral programmes (such as those which may emerge from current negotiations under the UNFCCC). It will encourage joint projects between international partners and Indian centres of excellence, with sharing of IPR, as also encourage the setting up of R&D bases in India by advanced high-tech companies from abroad.
- The NCE will coordinate with the IMD, ISRO and other concerned agencies, the detailed mapping of ground irradiance or insulation, particularly in high potential solar regions of the country. Accurate and reliable data is a critical requirement for all solar applications, in particular, concentrated solar power (CSP).

- In drawing up the Solar Technology Development Plan, the Research Council will review ongoing and proposed R&D initiatives of MNRE, the Department of Science and Technology, the Ministry of Earth Sciences and other agencies and institutions and incorporate them, as appropriate, in its Plan.

In order to provide support for incubation and start ups, the Mission could tie up with institutions like Centre for Innovation, Incubation and Entrepreneurship (CIIE) based in IIM Ahmedabad to incubate solar energy start-ups and SMEs in India through mentoring, networking and financial support. A fund could be established to aim at supporting at least 50 start-ups developing and deploying solar related technologies across India over the next 5 years and would be managed by a professional entity. The Fund shall be structured as a Venture Fund and would be operated as a hub and spoke model with the professional entity coordinating the fund activities and also identifying like minded institutions for administering the fund. The Fund would provide financial (equity/debt) support to start-ups, entrepreneurs and innovators for R&D and pilot of new solar related technologies and for creating new and unique business models which have a potential of increasing the deployment of solar related technologies in India – for all segments including consumer, SME and commercial usage. The initiative shall be structured ideally in a private-public partnership model, to be able to provide risky capital to the aspiring entrepreneurs. It would also attract contributions from private stakeholders, amounting to, at least 10% of that of the Government. The returns generated on the Government support to the Fund shall be ploughed back for further promoting incubation activities in this space.

The Mission would also explore the possibility of collaborating with CSIR to launch an Open Source Solar Development initiative on similar lines as the Open Source Drug Discovery platform of CSIR

4.4.12 Institutional Arrangements for implementing the Mission

This Mission will be implemented by an autonomous Solar Energy Authority and or an autonomous and enabled Solar Mission, embedded within the existing structure of the Ministry of New and Renewable Energy. The Authority/Mission secretariat will be responsible for monitoring technology developments, review and adjust incentives, manage funding requirements and execute pilot projects. The Mission will report to the Prime Minister's Council on Climate Change on the status of its programme.

The broad contours of an autonomous and enabled Mission would comprise of:

- i) A Mission Steering Group, chaired by the Minister for New and Renewable Energy and composed of representatives from all relevant Ministries and other stakeholders, will be set up to over see the over all implementation of the National Solar Mission. The Mission Steering Group will be fully empowered to approve various schemes/ projects/ policies and the related financial norms for all schemes covered under the National Solar Mission (NSM). The Mission Steering group will also authorize any modifications/deviations in the norms on ongoing schemes.
- ii) A Mission Executive Committee, chaired by Secretary, Ministry of New and Renewable Energy, will periodically review the progress of implementation of the projects approved by the Mission Steering Group.
- iii) An empowered Solar Research Council headed by an eminent scientist will advise the Mission on all R&D, technology and capacity building related matters. In addition, Industry Advisory Council will advise the Mission on all matters relating to industrial development, technology transfer/ absorption/joint ventures, incentives and investment related matters.
- iv) A Mission Director, with the rank of an Additional Secretary, would head the Mission secretariat and be responsible for day to day functioning and also achieving the goals laid out in a time bound manner. The Mission Secretariat would have Joint secretary/ Scientist G level officers including other scientists, experts and consultants.

4.4.13 Sites and Land for Solar Installation

Identifying suitable site and adequate land for setting up of a particular type of Solar installation is our foremost requirement. Solar energy can be utilised in the following ways:

i) Solar thermal energy being used as process heat for domestic, commercial and industrial applications

- ii) Solar power being used in the DDG mode
- iii) Solar power being fed into the Utilities' grid system

In case of Alternative (i.) and (ii) the site for setting up the solar installation would most likely be the roof-top or land within the premises of the user/group of users.

However in case of Alternative (iii) it would be preferable to have the site of installation in the vicinity of the grid system since connectivity of the power generated to be injected into the grid would also be an issue. In case the site is away from the power station or the substation, additional cable/lines would have to be laid to inject this power into the grid. It is therefore considered that solar installations at generation stations or grid substations are the best option. In case this is not feasible, alternate barren land shall have to be identified for this purpose.

At present, the Installed Capacity in the country is about 2, 10, 000 MW. A capacity of about 88,000 MW is under execution for commissioning during 12th Plan and a capacity of about 1 lakh MW is expected during 13th Plan. This entire capacity has huge potential to accommodate electricity generated from solar installations in real time without the use of storage devices.

4.4.14 Human Resource Development

The rapid and large-scale diffusion of Solar Energy will require a concomitant increase in technically qualified manpower of international standard. Some capacity already exists in the country, though precise numbers need to be established.

However, it is envisaged that at the end of Mission period, Solar industry will employ at least 100,000 trained and specialized personnel across the skill spectrum. These will include engineering management and R&D functions.

The following steps may be required for Human Resource Development:

- IITs and premier Engineering Colleges will be involved to design and develop specialized courses in Solar Energy, with financial assistance from Government. These courses will be at B. Tech, M. Tech and Ph. D level. Some of the IITs, Engineering Colleges and Universities are teaching solar energy at graduation and post graduation level. Centres for Energy studies have been set up by some of the IITs and engineering colleges. These initiatives will be further strengthened. In addition, a countrywide training programme and specialized courses for technicians will be taken up to meet the requirement of skilled manpower for field installations and after sales service network. The Directorate General of Education and Training under the Ministry of Labour has agreed to introduce training modules for course materials for technicians in order to create a skilled workforce which could service and maintain solar applications. MNRE has already initiated this activity with the Ministry of Labour and a short term training module is to be introduced during the current academic session. In addition, industry is also working with some of the ITIs to create a skilled work force.
- A Government Fellowship programme to train 100 selected engineers / technologies and scientists in Solar Energy in world class institutions abroad will be taken up. This may need to be sustained at progressively declining levels for 10 years. This could be covered under the ongoing bilateral programmes. Institution to institution arrangements will also be developed. Fellowships will be at two levels (i) research and (ii) higher degree (M. Tech) in solar energy. MNRE is already implementing a fellowship programme in this regard, which will be expanded to include students from a larger number of academic institutions. This may be done in consultation with industry to offer employment opportunities.

Setting up of a National Centre for Photovoltaic Research and Education at IIT, Mumbai, drawing upon from Department of Energy Science and Engineering and its Centre for Excellence in Nano-Electronics is considered.

4.4.15 Task Force set up by MNRE

A Task Force has been set up by MNRE under the Chairmanship of Chairperson, CEA to examine technical issues related to the feasibility of integrating solar power plants with thermal/ hydro-electric power plants and connectivity of solar rooftops systems with the grid. The Task Force comprises of representatives of MNRE, MOP, CEA, NTPC, NHPC, BHEL, CEL, RRECL, RRUVNL, GSECL, GEDA and KPCL. The objective of the Task Force is to prepare implementable project reports for setting up solar plants at power plants, one each at coal based, gas based and hydro power stations. The project report shall include complete bill of material, cost estimates, methodology of accounting energy and to establish the commercial viability.

Three Subgroups have been formed under the Task Force to look into the specific areas of (i) Feasibility of solar generation with respect to space availability, any constraints foreseen and application areas (ii) Solar technology options and techno-economics (iii) Arrangement for connectivity and metering of solar plants.

The following reports were prepared by the sub groups and these reports are available on CEA website.

- Report of Sub Group-I on Grid Interactive Rooftop Solar PV System Dec 2009
- Sub Group-I- Technical specification of Grid Interactive Rooftop Solar PV System for Sewa Bhawan Dec 2009
- Report of the Sub Group-II and III Integration of Solar Systems with Thermal/ Hydro Power stations January 2010

A feasibility report for installing 5 MW solar plant in Leh was also prepared by Sub Group-I and the report was sent to Secretary (Power), J&K and Secretary, MNRE.

4.4.16 Fund Requirement

One of the major bottlenecks in the development of Solar Installations is the high Capital cost which results in high tariff as compared to power generated using Conventional Energy Resources. It has been estimated that the capital cost of solar installations is about Rs 20crs/MW, with Solar thermal being marginally lesser i.e. about Rs 18 crs/MW. However it is expected that the cost will decline as the technology gets established and the quantum of orders increase with time. It is expected that the cost which would be about Rs 20 crs/MW during the 11th Plan, will reduce to Rs 16crs/MW during the 12th Plan and about Rs 12crs/MW during the 13th Plan.

	First Phase	Second Phase	Third Phase
	(2008-13)	(2013-17)	(2017-22)
Installed Capacity (Solar) in MW	1000	10000	20,000
Capacity Addition during Plan in MW	1000	9000	10,000
Funds reqt per MW (Rs crs)	20	16	12
Funds Requirement (Rs crs)	20,000	1,44,000	1,20,000

As per JNNSM, the fund requirements for the Mission would be met from the following sources or combinations:

- i) Budgetary support for the activities under the National Solar Mission established under the MNRE;
- ii) International Funds under the UNFCCC framework, which would enable upscaling of Mission targets.

The Mission strategy has kept in mind the two-fold objectives, to scale-up deployment of solar energy and to do this keeping in mind the financial constraints and affordability challenge in a country where large numbers of people still have no access to basic power and are poor and unable to pay for high cost solutions. The funding requirements and arrangements for Phase II will be determined after a review of progress achieved at the end of the 11th Plan and an analysis of the efficacy of the model adopted for capacity building of utility scale solar power.

Annexure-4.1 LIST OF THERMAL UNITS PROGRAMMED FOR LIFE EXTENSION WORKS DURING 12TH PLAN 1. STATE SECTOR

	ATE SECTOR		l az	** **	37 0	I a ·	1 > r ·		11477
Sl.	State	Name of Utility	Name of	Unit	Year of	Capacity	Make	T ma	LMZ/
No.	D :		Station	No.	Comm.	(MW)	Boiler	TG	KWU
North	ern Region U.P.	LIDDAZIJAJI	01	10	1077	200	DHEI	DHEI	1 1 1 7
2	U.P.	UPRVUNL UPRVUNL	Obra Obra	10	1977 1977	200	BHEL BHEL	BHEL BHEL	LMZ LMZ
3	U.P.	UPRVUNL	Obra	12	1977	200		BHEL	LMZ
4	U.P.	UPRVUNL	Obra	13	1981	200	BHEL BHEL	BHEL	LMZ
5	U.P.	UPRVUNL	Harduaganj	7	1982	110	BHEL	BHEL	LIVIZ
6	U.P.				1978	110			
7	U.P.	UPRVUNL	Parichha	1	1984	110	BHEL	BHEL	-
/	Sub Total	UPRVUNL	Parichha	7	1985	1130	BHEL	BHEL	
0		DCDCI	D-41-1-1-	3	1070		DHEI	DHEI	-
9	Punjab	PSPCL PSPCL	Bathinda Bathinda	4	1978 1979	110 110	BHEL BHEL	BHEL BHEL	
9	Punjab	PSPCL	Ванниа		1979		BHEL	BHEL	-
10	Sub Total	HDCCI	D : 4	2	1005	220	DITE	DHE	+
10	Haryana	HPGCL	Panipat	3	1985	110	BHEL	BHEL	1
11	Haryana	HPGCL	Panipat	4	1985	110	BHEL	BHEL	+
	Sub Total			2		220		-	+
XX74	Sub Total Northern R	egion		11		1570	1		1
	rn Region	MAHAGENGO	NT1- :1-	Ι 2	1070	210	DITE	DITE	1 1 1 7
12	Maharashtra	MAHAGENCO	Nashik	3	1979	210	BHEL	BHEL	LMZ
13	Maharashtra	MAHAGENCO	Nashik	4	1980	210	BHEL	BHEL	LMZ
14	Maharashtra	MAHAGENCO	Koradi	5	1978	210	BHEL	BHEL	LMZ
15	Maharashtra	MAHAGENCO	Koradi	6	1982	200	BHEL	BHEL	LMZ
16	Maharashtra	MAHAGENCO	Bhusawal	2	1979	210	BHEL	BHEL	LMZ
17	Maharashtra	MAHAGENCO	Bhusawal	3	1982	210	BHEL	BHEL	LMZ
18	Maharashtra	MAHAGENCO	Chandrapur	1	1983	210	BHEL	BHEL	LMZ
19	Maharashtra	MAHAGENCO	Chandrapur	2	1984	210	BHEL	BHEL	LMZ
20	Maharashtra	MAHAGENCO	Parli	3	1980	210	BHEL	BHEL	LMZ
2.1	Sub Total	COED	77 1 277	9	1002	1880	Diver	DITE	*****
21	Chattisgarh	CSEB	Korba (West)	1	1983	210	BHEL	BHEL	KWU
22	Chattisgarh	CSEB	Korba (West)	2	1984	210	BHEL	BHEL	KWU
	Sub Total			2		420			
23	Madhya Pradesh	MPPGCL	Satpura	6	1979	200	BHEL	BHEL	LMZ
24	Madhya Pradesh	MPPGCL	Satpura	7	1979	210	BHEL	BHEL	LMZ
	Sub Total			2		410	1		1
	Sub Total Western Re	gion		17		3530			
	ern Region		1	1	_		-	T	
25	Tamil Nadu	TNEB	Tuticorin	1	1979	210	BHEL	BHEL	LMZ
26	Tamil Nadu	TNEB	Tuticorin	2	1980	210	BHEL	BHEL	LMZ
	Sub Total			2		420			
27	Andhra Pradesh	APGENCO	Dr. N.T. TPS (Vijaywada)	1	1979	210	BHEL	BHEL	LMZ
28	Andhra Pradesh	APGENCO	Dr. N.T. TPS (Vijaywada)	2	1980	210	BHEL	BHEL	LMZ
	Sub Total		, , , ,	2		420			
29	Karnataka	KPCL	Raichur	1	1985	210	BHEL	BHEL	KWU
30	Karnataka	KPCL	Raichur	2	1986	210	BHEL	BHEL	KWU
	Sub Total			2		420			
	Sub Total Southern R	egion		6		1260			
31	Bihar	BSEB	Barauni	6	1983	110	BHEL	BHEL	
32	Bihar	BSEB	Barauni	7	1985	110	BHEL	BHEL	
33	Bihar	KBUNL	Muzaffarpur	1	1985	110	BHEL	BHEL	1
34	Bihar	KBUNL	Muzaffarpur	2	1986	110	BHEL	BHEL	
	Sub Total			4		440			1
	West Bengal	WBPDCL	Kolaghat	1	1990	210	AVB	BHEL	LMZ

S1.	State	Name of Utility	Name of	Unit	Year of	Capacity	Make		LMZ/
No.			Station	No.	Comm.	(MW)	Boiler	TG	KWU
36	West Bengal	WBPDCL	Kolaghat	2	1985	210	AVB	BHEL	LMZ
37	West Bengal WBPDCL		Kolaghat	3	1984	210	AVB	BHEL	LMZ
38	West Bengal	West Bengal WBPDCL		5	1982	210	AVB	BHEL	LMZ
	Sub Total			4		840			
	Sub Total Eastern	Sub Total Eastern Region				1280			
	SUB TOTAL STA	38		6820					

Sl. No.	Name of Utility	Name of Station	Unit	Year of	Capacity	Make		LMZ / KWU
			No.	Comm.	(MW)	Boiler	TG	
	2. CENTRAI	L SECTOR						
1	DVC	Bokaro 'B'	1	1986	210	ABL	BHEL	LMZ
2	DVC	Bokaro 'B'	2	1990	210	ABL	BHEL	LMZ
3	DVC	Bokaro 'B'	3	1993	210	ABL	BHEL	LMZ
4	DVC	Durgapur	4	1982	210	BHEL	BHEL	LMZ
	Sub Total		4		840			
5	NTPC	Badarpur	4	1978	210	BHEL	BHEL	LMZ
6	NTPC	Badarpur	5	1981	210	BHEL	BHEL	LMZ
7	NTPC	Singrauli STPS	1	1982	200	BHEL	BHEL	LMZ
8	NTPC	Singrauli STPS	2	1982	200	BHEL	BHEL	LMZ
9	NTPC	Singrauli STPS	3	1983	200	BHEL	BHEL	LMZ
10	NTPC	Singrauli STPS	4	1983	200	BHEL	BHEL	LMZ
11	NTPC	Singrauli STPS	5	1984	200	BHEL	BHEL	LMZ
12	NTPC	Korba STPS	1	1983	200	BHEL	BHEL	KWU
13	NTPC	Korba STPS	2	1983	200	BHEL	BHEL	KWU
14	NTPC	Korba STPS	3	1984	200	BHEL	BHEL	KWU
15	NTPC	Ramagundam STPS	1	1984	200	Ansaldo	Ansaldo	KWU
16	NTPC	Ramagundam STPS	2	1984	200	Ansaldo	Ansaldo	KWU
17	NTPC	Ramagundam STPS	3	1984	200	Ansaldo	Ansaldo	KWU
	Sub total NTPC		13		2620			

Central Sector LE Gas Based

Sl. No.	Name of Utility	Name of Station	Unit No.	Year of Comm.	Capacity (MW)	Make
1	NTPC	Dadri GT	GT-1	1992	131	SIEMENS
2	NTPC	Dadri GT	GT-2	1992	131	SIEMENS
3	NTPC	Dadri GT	GT-3	1992	131	SIEMENS
4	NTPC	Dadri GT	GT-4	1992	131	SIEMENS
5	NTPC	Auraiya GT	GT-1	1989	111.19	MHI, Japan
6	NTPC	Auraiya GT	GT-2	1989	111.19	MHI, Japan
7	NTPC	Auraiya GT	GT-3	1989	111.19	MHI, Japan
8	NTPC	Auraiya GT	GT-4	1989	111.19	MHI, Japan
9	NTPC	Kawas GT	GT-1	1992	106	GE
10	NTPC	Kawas GT	GT-2	1992	106	GE
11	NTPC	Kawas GT	GT-3	1992	106	GE
12	NTPC	Kawas GT	GT-4	1992	106	GE
13	NTPC	Gandhar GT	GT-1	1994	131	ABB
14	NTPC	Gandhar GT	GT-2	1994	131	ABB
15	NTPC	Gandhar GT	GT-3	1994	131	ABB
	Sub total (Gas Based)				1785.8	

Sub Total NTPC	28	4406
SUB TOTAL CENTRAL SECTOR	32	5246

TOTAL OF 12TH PLAN (LE):

NUMBER OF UNITS: 70
CAPACITY (MW): 12066

Annexure-4.2 LIST OF THERMAL UNITS PROGRAMMED FOR R&M WORKS DURING 12TH PLAN.

3. STATE SECTOR

Sl. No.	State	Name of	Name of	Unit	Year of	Capacity		Make
		Utility	Station	No.	Comm.	(MW)	Boiler	TG
Northern	n Region							
1	U.P.	UPRVUNL	Anpara	1	1986	210	BHEL	BHEL
2	U.P.	UPRVUNL	Anpara	2	1986	210	BHEL	BHEL
3	U.P.	UPRVUNL	Anpara	3	1988	210	BHEL	BHEL
4	U.P.	UPRVUNL	Anpara 'B'	4	1993	500	MHI	TOSHIBA
5	U.P.	UPRVUNL	Anpara 'B'	5	1994	500	MHI	TOSHIBA
6	U.P.	UPRVUNL	Obra	7	1974	100	BHEL	BHEL
	Sub Total			6		1730		
7	Punjab	PSEB	Ropar	1	1984	210	BHEL	BHEL
8	Punjab	PSEB	Ropar	2	1985	210	BHEL	BHEL
9	Punjab	PSEB	Ropar	5	1992	210	BHEL	BHEL
10	Punjab	PSEB	Ropar	6	1993	210	BHEL	BHEL
	Sub total			4		840		
11	Haryana	HPGCL	Panipat	5	1993	210	BHEL	BHEL
Total No	rthern Region			11		2780		
Western	Region							
12	Gujarat	GSECL	Wanakbori	1	1982	210	BHEL	BHEL
13	Gujarat	GSECL	Wanakbori	2	1983	210	BHEL	BHEL
14	Gujarat	GSECL	Ukai	3	1979	200	BHEL	BHEL
15	Gujarat	GSECL	Ukai	4	1979	200	BHEL	BHEL
	Sub total			4		820		
16	Rajasthan	RRVUNL	Kota	1	1983	110	BHEL	BHEL-SKODA
17	Rajasthan	RRVUNL	Kota	2	1983	110	BHEL	BHEL-SKODA
	Sub total			2		220		
Total Wo	estern Region			6		1040		
Eastern	Region							
18	Jharkhand	JSEB	Patratu	9	1984	110	BHEL	BHEL
19	Jharkhand	JSEB	Patratu	10	1986	110	BHEL	BHEL
	Sub-Total			2		220		
20	West Bengal	DPL	Durgapur	6	1985	110	AVB	BHEL
Total Ea	tal Eastern Region 3 330							
TOTAL	STATE SECTO	R		20		4150		

2. CENTRAL SECTOR - Coal based units

Sl.	Utility	Name of Power station	Unit	Year of	Capacity	Make of	Make of
No.	Ctility	runic of Fower station	No.	commissioning	(MW)	Boiler	TG
1	NTPC	Singrauli STPS	6	1986	500	BHEL	BHEL
2	NTPC	Singrauli STPS	7	1987	500	BHEL	BHEL
3	NTPC	Korba STPS	4	1987	500	BHEL	BHEL
4	NTPC	Korba STPS	5	1988	500	BHEL	BHEL
5	NTPC	Korba STPS	6	1988	500	BHEL	BHEL
6	NTPC	Ramagundem STPS	4	1988	500	USSR	USSR
7	NTPC	Ramagundem STPS	5	1989	500	BHEL	BHEL
8	NTPC	Ramagundem STPS	6	1989	500	BHEL	BHEL
9	NTPC	Farakka Stg-II	4	1992	500	Ansaldo	BHEL
10	NTPC	Farakka Stg-II	5	1994	500	Ansaldo	BHEL
11	NTPC	Tanda	2	1989	110	BHEL	BHEL
12	NTPC	Unchahar	1	1988	210	BHEL	BHEL
13	NTPC	Unchahar	2	1989	210	BHEL	BHEL
14	NTPC	Unchahar	3	1999	210	BHEL	BHEL
15	NTPC	Unchahar	4	1999	210	BHEL	BHEL
16	NTPC	Vindhyachal	1	1987	210	USSR	USSR
17	NTPC	Vindhyachal	2	1988	210	USSR	USSR
18	NTPC	Vindhyachal	3	1989	210	USSR	USSR
				·			
19	NTPC	Vindhyachal	4	1989	210	USSR	USSR
20	NTPC	Vindhyachal	5	1990	210	USSR	USSR
21	NTPC	Vindhyachal	6	1991	210	USSR	USSR

Sl.	Utility	Name of Power station	Unit	Year of	Capacity	Make of	Make of
No.	Cunty	rune of rower station	No.	commissioning	(MW)	Boiler	TG
22	NTPC	Vindhyachal	7	1999	500	BHEL	BHEL
23	NTPC	Vindhyachal	8	2000	500	BHEL	BHEL
24	NTPC	Simhadri	1	2002	500	BHEL	BHEL
25	NTPC	Simhadri	2	2002	500	BHEL	BHEL
26	NTPC	Talcher STPS	1	1995	500	BHEL	BHEL
27	NTPC	Talcher STPS	2	1996	500	BHEL	BHEL
28	NTPC	Dadri	1	1991	210	BHEL	BHEL
29	NTPC	Dadri	2	1992	210	BHEL	BHEL
30	NTPC	Dadri	3	1993	210	BHEL	BHEL
31	NTPC	Dadri	4	1994	210	BHEL	BHEL
32	NTPC	Rihand STPS Phase -					
		III	1	1988	500	BHEL	BHEL
33	NTPC	Rihand STPS Phase -					
		III	2	1989	500	BHEL	BHEL
34	NTPC	Kahalgaon	1	1992	210	BHEL	BHEL
35	NTPC	Kahalgaon	2	1994	210	BHEL	BHEL
36	NTPC	Kahalgaon	3	1995	210	BHEL	BHEL
37	NTPC	Kahalgaon	4	1996	210	BHEL	BHEL
	Sub Tot	al	37	_	12890		

Gas based units

Sl. No.	Name of Utility	Name of Station	Unit No.	Year of Comm.	Capacity (MW)	Make
1	NEEPCO	Kathalguri CCGT	GT-1	1995	33.50	Mitsubishi, Japan
2	NEEPCO	Kathalguri CCGT	GT-2	1995	33.50	Mitsubishi, Japan
3	NEEPCO	Kathalguri CCGT	GT-3	1995	33.50	Mitsubishi, Japan
4	NEEPCO	Kathalguri CCGT	GT-4	1995	33.50	Mitsubishi, Japan
5	NEEPCO	Kathalguri CCGT	GT-5	1996	33.50	Mitsubishi, Japan
6	NEEPCO	Kathalguri CCGT	GT-6	1996	33.50	Mitsubishi, Japan
7	NEEPCO	Kathalguri CCGT	ST-1	1998	30.00	BHEL
8	NEEPCO	Kathalguri CCGT	ST-2	1998	30.00	BHEL
	Sub Total		8		261.00	
TOTAL (TOTAL CENTRAL SECTOR				13151	

TOTAL OF 12TH PLAN (R&M):
 NUMBER OF UNITS: 65
 CAPACITY (MW): 17301
Total of 12th Plan (LE+R&M) 135
 Capacity (MW) 29367

 $Abbreviations: \ R\&M-Renovation \&\ Modernisation;.\ U-Uprating; \ LE-Life\ Extension; \ Res-Restoration; \ MW-Mega\ Watt; \ CS-Central\ Sector: SS-State\ Sector$

\$ - Installed Capacity for Dehar (Ph.b) at Sl. No.2 & Nagjhari (U-4 to 6) at Sl. No.21 are not included in the total as the same has already been accounted for at Sl. Nos. 1 and 6 respectively.

Abbreviations: R&M – Renovation & Modernisation;. U – Uprating; LE – Life Extension; Res – Restoration; MW – Mega Watt; CS-Central Sector: SS- State Sector \$ - Installed Capacity for Dehar (Ph.A) at Sl. No. 10, Nagjhari (U-4 to 6) at Sl. No. 22, Chilla at S. No. 4 and Khodri (Ph.B) at Sl. No. 56 are not included in the total as the same has already been accounted for at Sl. Nos. 1, 21, 37 and 3 respectively.

Abbreviations: R&M – Renovation & Modernisation;

RM&U—Renovation, Modernisation & Uprating,

RM&LE—Renovation, Modernisation & Life Extension

RMU&LE—Renovation, Modernisation, Uprating & Life Extension;

R&M+Res.—Renovation & Modernisation + Restoration;

RM&LE+Res.—Renovation, Modernisation & Life Extension + Restoration;

 $RM\&U+Res. \\ --Renovation, \\ Modernisation \\ \& Uprating + Restoration.$

MW - Mega Watt; Res - Restoration; U - Uprating; LE - Life Extension

Annexure 4.3

STATE WISE LIST OF HYDRO R&M, LIFE EXTENSION & UPRATING SCHEMES PROGRAMMED FOR COMPLETION DURING THE $12^{\rm TH}$ PLAN AS ON 31.03.2012

Sl.	Project,	CS/ SS	Inst.	(Rs.	in Crs.)	Benefits	Category	Year of
No	Agency		Cap. (MW)	Est. Cost	Actual	(MW)		Completion
0		1		(Prov.)	Exp.			
	oing Schemes – Un achal Pradesh	der implen	nentation					
1	Bhakra LB,	CS	5x108	489.77	222.15	540.00	RMU&LE	2014-15
_	BBMB				(as on	(LE) +		
					31.03.12)	90.00		
2	D , HDGED	00	2.165.	110.02	100.07	(U)	DMILLE	2012 12
2	Bassi, HPSEB	SS	3x16.5+ 1x15	119.83	109.97 (as on	6.0(U)+ 60 (LE)	RMU&LE	2012-13
			1713		31.03.12)	00 (LE)		
Jam	mu & Kashmir	-1	1					'
3	Chenani,	SS	5x4.66	39.14	3.98	23.30 (LE)	RM&LE	2013-14
	J&KPDC				(as on			
4	Sumbal Sindh,	SS	2x11.3	34.17	31.03.12) 18.89		R&M	2012-13
4	J&KPDC	33	2X11.3	34.17	(as on	-	KXIVI	2012-13
					31.03.12)			
5	Lower Jhelum,	SS	3x35	101.30	78.25	15.00	R&M+	2012-13
	J&KPDC				(as on	(Res.)	Res.	
T 144 -	. D J I.				31.03.12)			
Ottai 6	Pradesh Obra, UPJVNL	SS	3x33	43.14	12.7	99.00 (LE)	RM&LE	2015-16
U	Obla, Olyvive	33	3,33	43.14	(as on	99.00 (LL)	KWICEE	2013-10
					31.03.12)			
7	Rihand,	SS	6x50	132.20	62.62	300.00 (LE)	RM&LE	2015-16
	UPJVNL			(Rev.)	(as on			
TIMA	 rakhand				31.03.12)			
8	Pathri, UJVNL	SS	3x6.8	92.82	13.8	20.40 (LE)	RM&LE	2013-14
o	Taumi, OJVINE	33	3.0.0	92.62	(as on	20.40 (LE)	KWICEL	2013-14
					31.03.12)			
	nra Pradesh		_		_		1	
9	Srisailam RB,	SS	7x110	16.70	13.36	-	R&M	2012-13
	APGENCO				(as on 31.03.12)			
10	Lower Sileru,	SS	4x115	8.75	6.66	_	R&M	2012-13
	APGENCO				(as on			
					31.03.12)			
11	Nagarjuna	SS	1x110+	33.35	13.90	-	R&M	2012-13
	Sagar, APGENCO		7x100.8		(as on 31.03.2012)			
Karr	nataka				31.03.2012)			
12	Nagjhari,	SS	2x150+	45.22	51.99	45.00	RM&U	2013-14
	U-4to6, KPCL		1x135		(as on	(U)		
					31.03.12)			
I Z	lo.	1						
Kera 13	Sabirigiri,	SS	5x55+	104.36	96.95	300.00	RMU&LE	2012-13
1.0	KSEB		1x60	101.50	(as on	(LE) +	RITOGEL	2012-13
					31.03.12)	35.00(U)		
14	Idamalayar,	SS	2x37.5	11.70	5.45	-	R&M	2012-13
	KSEB				(as on			
15	Poringal-	SS	4x8	96.10	31.03.12) 2.34 (as on	32.00 (LE)+	RM&LE	2015-16
13	kuthu,KSEB	33	440	90.10	31.03.12)	32.00 (LE)+ 4 (U)	NIVIXLE	2013-10
Tam	il Nadu	1	1	1		1 - (-)	1	1
16	Periyar,TNEB	SS	3x35+	161.18	114.28	140.00	RMU&LE	2013-14
			1x42		(as on	(LE) +		
					31.03.12)	28.00(U)		

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 367

Sl.	Project, CS/ SS Inst. (Rs. in Crs.)		in Cra	Benefits	Category	Year of		
No	Agency	CS/ SS	Cap.	Est. Cost	Actual	(MW)	Category	Completion
	g,		(MW)	(Prov.)	Exp.	(==)		
West	Bengal	l	1	.	•		1	
17	Maithon,	CS	2x20	49.05	3.76	40.00 (LE)	RM&LE	2016-17
	U-1&3, DVC				(as on 31.03.12)			
18	Jaldhaka St.I,	SS	3x9	88.62	74.28	27.00 (LE)	RM&LE	2012-13
	WBSEB				(as on			
					31.03.12)			
Oriss 19	Rengali	SS	1x50	47.50	14.67	50 (LE)	RM&LE	2012-13
19	OHPC	33	1330	47.50	(as on	30 (LE)	KWICEL	2012-13
					31.03.12)			
20	Hirakud-II,	SS	3x24	125.52	58.73	72.00 (LE)	RM&LE	2014-15
	OHPC				(as on 31.03.12)			
Assai	m	<u> </u>			31.03.12)			1
21	Kopili, NEEPCO	CS	2x50 +	66.42	9.25	-	R&M &	2013-14
			2x50		(as on		Refurbishment	
22	Khandong,	CS	2x25	25.05	31.03.12) 10.15	50.00	of Units 1 & 2 RM&LE	2014-15
	NEEPCO	CS	ZXZS	23.03	(as on	(LE)	TOVICELL	201113
					31.03.12)			
	Sub Total (A)		4683	1932	966	1977		
	ing Schemes – Und nu & Kashmir	ler Tende	ring					
23	Ganderbal,	SS	2x3+	21.95	8.23	9.00 (LE)	RM&LE	2016-17
	J&KPDC		2x4.5		(as on			
					31.03.12)			
Uttar 24	Pradesh Matatila,	SS	3x10.2	10.29	1.00	30.6 (LE)	RM&LE	2013-14
24	UPJVNL	33	3X10.2	10.29	(as on	30.0 (LE)	RWICELE	2013-14
					31.03.12)			
	akhand	Lag	12.12.0	105656	17.04	41.40 (LE)	I DI COLE	2014.15
25	Khatima, UJVNL	SS	3x13.8	256.76	17.26 (as on	41.40 (LE)	RM&LE	2014-15
	CJVIL				31.03.12)			
26	Chilla Ph B	SS	4x36	472.00	-	28.8(U) +	RMU&LE	2015-16
27	UJVNL	aa	2 11 25	112.10		144(LE)	DMOLE	2015 16
27	Dhakrani, UJVNL	SS	3x11.25	113.18	-	33.75 (LE)	RM&LE	2015-16
28	Dhalipur,	SS	3x17	113.71	-	51.00 (LE)	RM&LE	2015-16
	UJVNL							
29	Tiloth, UJVNL	SS	3x30	163.75	-	90 (LE)	RM&LE	2015-16
30	Kulhal, UJVNL	SS	3x10	115.44	_	30(LE)	RM&LE	2015-16
	Tamai, Covill		JATO	113.11		Jo(EE)		2013 10
31	Chibro, UJVNL	SS	4x60	201.25	-	240(LE)	RM&LE	2015-16
22	Vh o dui	CC	4,,20	165.05		120/LE)	DM &I E	2015 16
32	Khodri UJVNL	SS	4x30	165.85	-	120(LE)	RM&LE	2015-16
Tami	l Nadu	<u> </u>			1			
33	Sholayar-I,	SS	2x35	40.68	-	14.00(U) +	RMU&LE	2016-17
	TNEB					70.00		
Iharl	 khand	1		1	1	(LE)	1	1
34	Panchet,	CS	1x40	58.22	1.99	40.00	RM&LE	2016-17
	U-1, DVC				(as on	(LE)		
0					31.03.12)			1
Oriss 35	a Hirakud-I	SS	2x37.5	296.83	0.25	75.00 (LE)	RM&LE	2014-15
55	U5&6, OHPC		2,37.3	2,0.03	(as on	, 5.00 (<u>LL</u>)		201113
		ac		1.00	31.03.12)	1000		
36	Balimela, OHPC	SS	6x60	160	-	360(LE)	RM&LE	2016-17
	Sub Total (B)		1340.75	2189.91	28.73	1377.55		
L	Sub Iviai (D)	1	1070./3	#1071/1	20113	1011.00	I.	1

Sl.	Project,	CS/ SS	Inst.	(Rs.	in Crs.)	Benefits	Category	Year of
No	Agency		Cap. (MW)	Est. Cost (Prov.)	Actual Exp.	(MW)		Completion
Ong	oing Schemes – Uno	der DPR P	Preparation/I	Finalisation	1	1	1	1
Him	achal Pradesh							
37	Giri, HPSEB	SS	2x30	48.48	-	60.00 (LE)	RM&LE	2014-15
And	hra Pradesh						•	
38	Machkund , APGENCO	SS	3x17 (St.I) & 3x21.25 (St.II)	124.45	-	15.25 (U) + 114.75 (LE)	RMU&LE	2016-17
Kera	ıla							
39	Sholayar, KSEB	SS	3x18	54.00	0.044 (as on 31.12.10)	54.00 (LE)	RM&LE	2016-17
40	Kuttiadi, KSEB	SS	3x25	25.00	-	75.00 (LE)	RM&LE	2016-17
	Sub Total (C)		304	252	0.044	319		
	going Schemes – Ur	nder RLA	Studies					
And	hra Pradesh						T-	
41	Upper Sileru, APGENCO	SS	4x60	10.00	-	-	R&M	2016-17
Tam	il Nadu			I	1			
42	Kodayar Ph.I, TNEB	SS	1x60	30.00	-	60.00 (LE)	RM&LE	2015-16
43	Kodayar PH-II, TNEB	SS	1x40	19.94	-	40.0(LE)	RM&LE	2015-16
	Sub Total (D)		340	59.94	-	100.00		
	Total (A+B+C+D)		6667.75	4433.67	994.72	3773.25 [266.05(U) + 3492.20(LE) + 15(Res.)]		

Abbreviations:

R&M – Renovation & Modernisation;

RM&U – Renovation, Modernisation & Uprating;

RM&LE – Renovation, Modernisation & Life Extension;

RMU&LE – Renovation, Modernisation, Uprating & Life Extension;

R&M+Res.-Renovation & Modernisation + Restoration;

RM&LE+Res.- Renovation, Modernisation & Life Extension + Restoration;

RM&U+Res. – Renovation, Modernisation & Uprating + Restoration.

MW - Mega Watt; Res - Restoration; U - Uprating; LE - Life Extension.

Chapter 5

GENERATION PLANNING

5.0 INTRODUCTION

Economic development in the country is being achieved by meeting the increasing demand for power by setting up generation capacity addition. The demand for power is expected to grow but the available fuel resources for generation, to meet this demand, are limited. Also, a growth in generation capacity cannot be viewed in isolation and has to be achieved in an environment which is clean and green and sustainable in nature. Therefore, Low Carbon Growth Strategy is the order of the day. This has to be planned very meticulously as its development may not be very easily achievable.

Till the 11th Plan period, the main focus of the planning process was to add large generation capacities, aiming to bridge the chronic gap between supply and demand. When most parts of rural India did not have access to electricity, and when urban India faced power cuts regularly, the over-riding consideration was to ensure 'adequacy of power" by adding base-load capacities. During the 11th Plan, a capacity addition of 54,964 MW has been achieved against Mid-Term target of 62,374 MW.

The situation in future may be different since Urban India accounts for over half the country's GDP, and its electricity consumption peaks during the day, and drops significantly at night and on weekends. This demand pattern does not very well suit plants that are built to run on base load. Therefore, this approach of focusing mainly on adding coal-hydro-nuclear base load generating capacity, while necessary, may just not be sufficient during 12th Plan and beyond. Thus, additional parameters which need attention and planning are reliability and flexibility of the power system by creating peaking capacity and reserve margin in our system through appropriate type of power plants.

This Chapter highlights the Principles of Generation Planning adopted in the Plan to assess the requirement of capacity addition in the 12th and 13th Plan periods. These principles are in consonance with the principles of Low Carbon Strategy and the power system planned is able to meet the additional parameters of reliability and flexibility also, in addition to capacity requirement, by specifically planning for peaking power and spinning reserves.

5.1 OPTIONS FOR POWER GENERATION IN INDIA

The resources for power generation in our country are limited and since Low Carbon Growth Strategy has to be followed, all generation options need to be harnessed in the most optimum manner. Various Technology options also need to be explored to facilitate minimum carbon emission feasible. Fuel Options for Power Generation are:

- Conventional Sources Hydro, Nuclear, Natural gas, Coal and lignite.
- Non-Conventional Sources- Solar, Wind, Biomass, Tidal, Geothermal, Waste to energy, Hydrogen/ fuel cells, etc.

Emphasis on adoption of Non-conventional sources of energy which are renewable in nature, along with hydro and nuclear resources, is one of the most important and far reaching Initiatives towards achieving a low carbon growth strategy. However Non-conventional sources are generally non-despatchable in nature as well as provide more costly power and therefore, their implementation is restricted beyond a certain extent. Power plants can be set up based on the above conventional sources of power generation. The choice of source depends upon characteristics of each type of plant and a judicious decision is made on the choice of fuel depending upon a number of factors, major being economics of generation, fuel reserves, availability of fuel, dynamics of operation of the plant and impact on environment. These are supplemented by Non-Conventional Sources of power generation.

5.2 PRINCIPLES OF GENERATION PLANNING

The three major aspects to be dealt with and considered in our planning process are:

- Growth of the Power Generation Capacity to meet the demand pattern in accordance with the principles of Sustainable development.
- To fulfil desired operational characteristics of the system (to meet varying demand) such as Reliability and flexibility.
- Most efficient use of resource i.e. adoption of latest technological advancements in coal based generation; Combined Cooling, Heating and Power (CCHP) and Distributed Generation.

The above aspects have been considered within realms of feasibility, while drawing up this National Electricity Plan along with the economics and the status of the various projects.

5.2.1 Sustainable Development

Sustainable Development of our country is our ultimate goal which encompasses economic development, maintaining environmental quality and social equity. This would also ensure that development takes place to fulfil our present needs without compromising the needs of our future generations. The importance and relevance of power development within the confines of Clean and Green Power is the most essential element. Such a growth depends upon the choice of an appropriate fuel/technology for power generation. Accordingly, the Plan takes into account the development of projects based on renewable energy sources as well as other measures and technologies promoting sustainable development of the country.

The foremost Low Carbon Strategy Initiative is the choice of resources for power generation. Projects in the Plan based on Conventional Sources i.e. Hydro, Nuclear & Thermal are selected as a result of Studies carried out using Capacity Expansion Software programmes to meet the demand as stipulated by the 18th EPS Report. Power from Renewable Energy Sources has also been considered while carrying out these studies.

The demand adopted for planning purpose is the 18th EPS demand projections. This demand is based on use of energy efficient technologies being used and energy conservation measures being adopted. Therefore, the planning strategy adopted is in accordance with low carbon strategy growth.

5.2.2 Operational Flexibility and Reliability

The fuel sources and their respective technologies of power generation are multiple and varied. Accordingly, each has its own characteristics of operation. The demand of our electric system also varies with time of the day, season, year and the spatial location. Therefore, matching generation with load at all instances of time requires not only installation of adequate capacity but is also sensitive to the type of generation capacity, each with its unique characteristics of altering its output and the time taken to do so. Accordingly, this requirement of the system also needs to be considered when deciding upon the type of generation. It is, therefore, necessary to widen the scope of the planning process to take into account aspects of 'reliability' and 'quality' of power, apart from the adequacy and quantum of power.

With the prevalence of load shedding/power cuts in almost all parts of the country, consumers are being compelled to resort to back up power from inverters and small diesel gensets. The amount spent by an average consumer in providing back up power varies from 50 paise to several Rupees per kWh. The consumers would be more than willing to pay a premium for their power consumption in return for the assurance of 24x7 supplies, which would obviate the need for them to incur the avoidable costs of owning and running back up power sources. This extra price, billed as a "reliability charge" by the utilities, would form the base for procuring "time of day" power from dedicated peaking plants.

The higher price for power from peaking plants must be balanced against the higher efficiency, lower impact on environment and the flexibility made possible by these plants. Also, as peaking plants will operate for shorter duration than base-load plants, the weighted average cost of power drawn as a whole will not be significantly higher.

a) Reliability of Power

Reliable power system operation requires ongoing balancing of supply and demand in accordance with established operating criteria such as maintaining system voltages and frequency within acceptable limits. Changes in customer demand throughout the day and over the seasons are met by controlling generation when needed.

The main characteristics of a reliable system are as follows:

- The System is controlled to stay within acceptable limits during normal conditions.
- The System performs acceptably after credible Contingencies.
- The System limits the impact and scope of instability and cascading outages when they occur.
- The System's Facilities are protected from unacceptable damage by operating them within Facility Ratings.
- The System's integrity can be restored promptly if it is lost.
- The System has the ability to supply the aggregate electric power and energy requirements of the electricity consumers at all times, taking into account scheduled and reasonably expected unscheduled outages of system components.

To achieve reliability in the system, adequate Reserve capacity, spinning as well as non-spinning needs to be planned for in the system. Aspects related to the operation, ownership, modalities and nature of reserves also need to be determined. The location of the reserve generation capacity viz-a-viz the load centres is also critical.

The National Electricity Policy stipulates a 5% Reserve Margin in our system. This has been considered while planning capacity addition requirement during the 12th and 13th Plans. Details of how this Reserve Margin is to be provided are furnished later in this Chapter (under Cl. 5.4 on 'Planning Approach').

b) Flexibility of operation

A system that is designed for base-load generation will lack the characteristics to respond dynamically or efficiently to the variation in demand within a short time. Apart from variation in demand, there is expected to be wide variability in generation as well, when the installed base of renewable energy plants increases as a result of obligation on Discoms to source their requirement from renewable energy sources (to meet RPO). Since system stability requires matching of generation with the demand at all instances of time, a certain degree of flexibility and ability of the generators to respond rapidly to the changing demand must be introduced into the system through appropriate generation plants. System should be able to meet additional demand arises due to unexpected demand and sudden unexpected outages of some units.

Peaking demand in Indian states has been met, to some extent, by purchasing power from other states through bilateral agreements or through the mechanism of Unscheduled Interchange (UI) at frequency-linked prices and sometimes by load shedding also. The frequency band tolerated here (from 50.2 to 49.7 Hz) is far above that permitted in developed countries. However in the future this frequency band is expected to narrow down and this would reduce the available margin to meet the peaking requirement or reserve capacity through frequency linked interchange mechanism. Hydro power plants also can be started up quickly to meet sudden peaks, but this facility is restricted to those few states that have adequate water storage, all through the year.

Peaking plants shall be environmentally-friendly and must comply with emission norms, so as to be located close to load centres. They must be able to start up (and stop) instantaneously and ramp up quickly, and in required steps, to match the spike in load. Their efficiency curve must be high and flat at different plant loads. They must be 'all-season' plants and use a fuel which is available throughout the year.

As regards the Reserves in the Power System, in developed electricity markets abroad, it is customary to have several layers of reserves to meet the contingencies. The first rapid response to a drop in frequency of say 0.1 to 0.2 Hz is to bring on line a hot reserve plant (equal to the largest single unit in the grid) in 5-30 seconds, through automatic generation control (AGC). As a second step, fast reserve power plants (FRPP) are started in 4-15 minutes and ramped up to full load, after which the AGC plant will retreat to reserve mode. As a third step, replacement reserve power plants (RRPP) come on in 45-60 minutes, after which the FRPP plants return to their stand-by mode.

The several layers of reserves as planned in the developed countries also take care of the flexibility of operation of the various reserves. Therefore, hot reserve which is required to operate within seconds is generally provided through Automatic Generation Control (AGC). The fast replacement reserve is required to be from a generation source which is capable of ramping up within 4-15 minutes to take over from the AGC sources. However Replacement Reserve Capacity could be from slower acting generation source to take over from fast acting reserves. Accordingly, each of these reserve capacity has to be from appropriate generation source having the requisite ramp up and ramp down characteristics. These principles of planning reserve capacity to provide flexibility of operation have been adopted in our planning process as detailed in Clause 5.4.

5.2.3 Efficient use of resource

The fuels for power generation are scarce and must therefore be used most judiciously. From the environment point of view, it is essential that energy produced per K.Cal of fuel is maximum to the extent possible. This would minimize the pollution caused during the process of power production. Various measures taken/ being taken to maximize efficient use of resources i.e adoption of latest technological advancements in coal based generation; Combined Cooling, Heating and Power (CCHP) and Distributed Generation are detailed in Chapter 4

5.3 PLANNING TOOLS - DETAILS OF PLANNING MODELS

CEA is carrying out detailed Generation expansion studies using the following computer software models for the generation planning exercises:

(i) Integrated System Planning (ISPLAN)

(ii) Electric Generation Expansion Analysis System (EGEAS)

Salient features of the Planning models are discussed below.

5.3.1 Integrated System Planning [ISPLAN] Model

For analyzing various investment alternatives for the system as a whole, the analytical tool should be capable of assessing the options for both additional generating capacity and transmission linkage expansion in an integrated fashion to achieve optimal solution. The major problems confronting planners are not only those related to optimizing the generating capacity requirement and reliability, but also location of the plant in relation to load centres, fuel resources, fuel transportation network and extension of the transmission grid. The power system planning is generally carried out over long time horizons and the planning model should be capable of analyzing a large number of scenarios within a reasonable time and with least effort.

The ISPLAN model has the capability to address these system planning issues as an indicative planning tool for analyzing the major features of an optimal expansion plan for generating capacity, transmission network and fuel transport. The ISPLAN model works out the least cost power development plan based on minimisation of objective function, which comprises of Capital cost of projects (annualised), O&M cost (Annual), Fuel cost, Fuel transportation cost etc.

Based on Linear Programming formulation, the model is capable of producing optimal expansion plans effectively and quickly with respect to a large number of alternative input assumptions. Criteria of optimality is the minimum discounted present worth of the total annual system cost for the year under study including the annualized capital cost of all new facilities (generating plants, transmission lines etc.) plus the operation and maintenance cost and cost of energy not served.

The ISPLAN model considers operation of the power plants at a particular PLF depending upon the demand to be met such that the cost of delivered power is minimal. Accordingly, thermal stations with costly fuel will operate at low PLF i.e. only during period of peak demand and not during off-peak period. As per the model, all the DG based stations operate at low PLF. Some of the gas based stations also operate at low PLF. Even some of the existing load centre based coal stations located at in the state of Haryana, Punjab, Rajasthan, Gujarat, Tamil Nadu and even some imported coal based stations located in the state of Gujarat and Maharashtra operate at low plant load factor (PLF) on account of high delivered cost of fuel to these stations.

However, the least cost expansion plan is not always the feasible plan. From feasibility point of view, a number of aspects like availability of land, water etc. obtaining various clearances for setting up the plant, placement of orders for main plant etc. need to be looked into.

5.3.2 Electric Generation Expansion Analysis System [EGEAS]

The Electric Generation Expansion Analysis System (EGEAS) is a software package intended for use for expansion planning of an electric generation system. In this planning model the operation of the power system is simulated probabilistically. The load on the power system is represented both in terms of magnitude and time variation. The model yields the reliability indices, namely the Loss-Of-Load-Probability (LOLP), the expected value of Energy-Not-Served (ENS), and the reserve margin for an expansion power plan by minimising the objective function which is the present worth of the costs associated with operation of the existing and committed generating stations viz., the annualised/levelised capital cost and operating cost of new generating stations and cost of energy not served. The EGEAS model is capable of giving a number of expansion plans along with their objective functions and the reliability indices for each such plan. The optimal power plan is that plan for which the reliability indices are satisfied in accordance with certain criteria laid down by the planner, and the objective function is the lowest.

The EGEAS model, being probabilistic in nature, provides for long range generation expansion planning as it yields very useful quantitative measures of reliability of power supply several years into the future, and at the same time gives an indication of the total cost of operating the existing and committed system and installing and operating the new system. The transportation of fuel and transmission of power are considered explicitly in the Integrated System Planning (ISPLAN) Model. Whereas the overall requirement of generating capacity is assessed using the EGEAS, the citing of new generating stations that use transportable fuel is done using ISPLAN. Under ISPLAN the broad features of the transmission system are also obtained.

5.4 PLANNING APPROACH

Beyond the 11th Plan, a planning approach whose exclusive aim is 'adequacy of power' (through the addition of baseload capacities equal or close to the maximum expected demand) would lead to sub-optimal operation of the system for a majority of the time. This is due to the poor turn-down capabilities inherent in power production technologies of base load plants such as coal and nuclear fuel. Moreover, this pattern of under-loading coal plants during off-peak hours down to 50% also results in power stations operating at sub-optimal PLFs leading to poor efficiency levels.

It therefore becomes imperative to plan for a more optimal mix of base-load capacities, peaking solutions and reserve capacities. The base load capacities will take care of 'bulk-power' requirement, while the others will provide the system operator with sufficient reserve capacity and a valuable tool to take care of seasonal spikes or time-of-day variations – expected and unexpected-in demand. The dynamic response characteristics of such a balanced system would be far superior and would contribute to higher reliability.

As unscheduled intra and inter-regional transfers would pose challenges, the right mix of base load and flexible solutions must preferably be determined and planned for, at the level of the state grid itself. This will ensure the most rapid, real-time response to local peaking needs.

The Planning Approach is in the following sequence:

1) Preparation of All India Load Duration Curve

An All India Load Duration Curve (LDC) was generated from the summation of hourly data for all states. The data was collected for past three years on monthly basis from various Regional Load Dispatch Centres and State Load Dispatch Centres. The hourly data was analyzed and corrected for any discrepancies in terms of load shedding, frequency correction, scheduled power cuts and any data errors. The hourly loads for each year were normalized, summed and averaged to unity. The peak demand was adjusted to unity and other hourly demands were scaled accordingly. It was assured that the All India LDC meets both Peak Demand and Energy Requirement monthly and annually published from time to time by CEA using a mathematical model. A typical Equivalent All India Load Duration Curve was generated based on Energy Requirement and Peak Load for 2016-17. A typical Load Duration Curve is illustrated in the **Figure No. 5.2** below.

Figure 5.2- All India Load Duration Curve (LDC)

2) Generation Expansion Studies

The above All India LDC was fed in as an input to the EGEAS Software to carry out generation expansion studies. Hydro, Renewable, Gas and Nuclear projects were accorded priority and taken as must run projects on account of their inherent advantages. The programme indicated the requirement of coal based projects to meet the demand requirement out of a shelf of coal based projects under implementation. The hydro and gas based projects that are likely to materialise during 12th Plan out of the shelf of projects under various stages of implementation have been considered as must run for the planning purpose. Nuclear projects have been considered for benefit during 12th Plan based on inputs from Nuclear Power Corporation. Renewable capacity considered during 12th Plan is also as per inputs from MNRE. Renewable capacity is considered for meeting the energy requirement only and not for peaking power requirement. The loading of the type of generation to meet the demand of the system based on cost economics is also illustrated in Fig 5.2.

Reserve capacity

As stipulated by NEP, 5% Spinning Reserve is to be provided. This corresponds to a capacity of about 10,000 MW by 12th Plan end. The requirement of this Reserve Capacity has been incorporated in the Plan by correspondingly reducing availability of coal based plants by 5% under normal operating conditions viz-a-viz normative availability from these plants.

All the above options have a very quick response time and, therefore, adequately provide hot reserve, fast replacement reserve and replacement reserve.

Peaking capacity

A peaking load occurs owing to several reasons. It could be something that can be anticipated, as in morning peaks and evening peaks. It could happen when irrigation needs have to be met and several thousand pump sets come on simultaneously. Urban loads can shoot up in certain seasons (example, summer air-conditioning loads in Delhi). Or the peaking shortage could be due to a sudden drop in output from an infirm, renewable energy source such as wind turbines.

Plants with rapid-response characteristics that make them ideal as 'reserve' plants can also be used to meet expected daily, time-of-day spikes and seasonal peaks. They can be an integral part of the grid operator's armoury to provide flexibility.

Peaking capacity also needs to come from quick response power plants. Therefore, foremost, pumped storage hydro plants and hydro plants with storage capacity provide peaking power. Also, gas based/ diesel based plants i.e. OCGT and engines are appropriate for peaking power. It is also considered appropriate to have distributed peaking capacity at major load centres in the country, perhaps 400 MW each at the 5 metropolitan cities totalling to about 2000 MW during 12^{th} Plan to provide quality, reliable and flexible power supply.

3) Renewable capacity in planning process

Renewable capacity has tremendous inherent advantages and has therefore been considered in the studies while estimating the capacity addition requirement from conventional power plants. Wind and solar energy was fixed with topmost priority as must run in the expansion exercise. The remaining capacity addition required was then estimated to meet the demand of the system. Different Scenarios corresponding to likely availability of renewables were worked out. Non-conventional source energy dispatch may be considered based on the availability but not in continuous manner.

4) Retirement of Old thermal units

Information was compiled in respect of old thermal power plants and gradually and systematically all the inefficient thermal units were considered for retirement while estimating the capacity addition requirement. During the 12th and 13th Plan, 4,000 MW each was retired.

5) Facility for Black Start after complete grid collapse

As suggested above, a peaking capacity of about 2,000 MW could be provided, 400 MW at each 5 major metropolitan cities. This facility would also be useful in providing black start up facility in the event of a grid collapse. Combined Heat and Power Plants with a high efficiency of operation could also provide black start facilities immediately after grid collapse.

6) Time of Day (TOD) Tariff

The National Electricity Policy and the National Tariff Policy mandates the State Commissions to introduce Time of the day (TOD) metering in order to reduce the demand of electricity during peak hours. It is desirable from the system point of view to flatten the load curve for which it is essential to reduce peak demand and encourage consumption/enhance load during off peak hours. This can be done by the following methods

- Providing incentives to consumers for shifting their consumption to off-peak hours
- Providing dis-incentives to consumers for consumption during peak hours
- A combination of the above two.

The above methods require differential tariffs for different time slots of peak and off-peak hours. It is well known that by controlling the price of electricity, it is possible to motivate individual consumers to either reduce/increase or shift their consumption from one point of time to another during the day, i.e. the consumer can be motivated to change his consumption pattern during the day.

The major advantage of reducing the peak demand through TOD metering, as a tool for Demand Side Management, is that it allows the utility to reduce its generation/power purchase requirement, which reduces the overall cost of supply. Another advantage, which the utility has, is that the load factor of the system improves due to shifting of some peak load to off peak hours and leads to flattening of load curve. Improved load factor causes the Plant Load Factor of the generating stations to improve, thus reducing the generation cost. The consumers ultimately get benefited by availing power at lower rates during off-peak hours and also by reduction in supply costs of the utility. The incidence of load shedding is also reduced due to reduction in the peak load.

Although, TOD tariff is applicable for high tension consumers in many states, it is not yet applicable at the retail level. TOD metering could be made applicable for those consumers where there is possibility of shifting the load of peak hours to off-peak hours. To have TOD tariff imposed at the retail level, all domestic consumers will have to be given a new meter that will segregate the peak and off-peak consumed units.

5.5 CONCLUSION

Planning for capacity addition in 12th and 13th Plans has been carried out in Chapter 6 in accordance with the principles outlined in this Chapter. Reliability by providing Reserve Margins/Capacity Reserve and Flexibility by providing capacity having suitable ramp up and ramp down response to take care of peaking and reserve requirements, forms an important aspect while planning capacity addition in succeeding Chapters.

Chapter 6

GENERATION CAPACITY ADDITION PROGRAMME FOR 12th & 13th PLANS

6.0 INTRODUCTION

In this Chapter, the Generation Capacity addition required during the 12th Plan and tentative capacity addition required during the 13th Plan has been assessed based on Planning Principles and criteria detailed in Chapter 5.

Studies have been carried out by CEA to assess the required capacity addition. A Shelf of projects for likely benefit during the Plan (projects which are in the pipeline) has been drawn up out of which the most feasible projects are selected based on the Status of the Projects.

Out of the Conventional Energy Sources, Hydro and Nuclear are Clean and Green Sources and therefore, have been accorded priority by being considered as must run projects in the Studies, considering the viability and status of each project. Out of the remaining, thermal projects are selected based on the requirement & preparedness of the projects. Gas projects need to be set up and efforts need to be made to ensure adequate availability of gas. Peaking capacity and Reserve Capacity has also been planned in accordance with the Planning Principles. However, due care has also been taken to ensure that over capacity is not planned for, since our emphasis is on an optimum solution.

6.1 GENERATION FROM CONVENTIONAL SOURCES IN INDIA

6.1.1 Hydro

India's hydroelectric resources are estimated to be 84 GW at a 60% load factor. At an average load factor of about 30%, an installed capacity of 150 GW, excluding 15 GW of mini hydro-electric plants (less than 25 megawatts), may be feasible. Low carbon growth Strategy would ensure clean hydropower is used to its maximum potential for meeting peak loads and all new projects must be designed with this objective in mind. However the full development of India's hydro-electric potential, while technically feasible, faces issues of water rights, resettlement of project affected people and environmental concerns –issues that must be resolved.

6.1.2 Nuclear

Nuclear generation is also limited due to availability of natural uranium in the country. Department of Atomic Energy plans to put up a total installed nuclear power capacity of 20,000 MWe by the year 2020 in the country. As of now, the first stage programme based on indigenous fuel is in progress and has reached a stage of maturity. A beginning has been made of the 2nd stage programme with construction of 500 MWe PFBR (Prototype Fast Breeder Reactor). This is expected to be followed by four more 500 MWe units by the year 2020. Thereafter, it will be followed by a number of FBRs. When the capacity through FBRs builds up to reasonable level, the deployment of thorium for power generation through 3rd stage will begin and get realized in the long term.

Although nuclear energy can make only a modest contribution over the next 15 years, longer-term consideration of even a modest degree of energy self-sufficiency suggests the need to pursue the development of nuclear power using thorium.

With the signing up of the '123 Agreement' on nuclear cooperation between USA and India, and NSG's waiver for supply of nuclear fuel to India, it is expected that some nuclear plants with foreign technology from friendly countries would be set up in the country. The availability of imported nuclear fuel and technology to India will help in accelerated capacity addition from nuclear power plants. Commencement of construction of reactors with imported technology during 11th/12th Plans is expected which will get commissioned in 13th Plan onwards. Development of nuclear parks with Mega capacity is also anticipated.

6.1.3 Gas

Gas based stations are also restricted due to limited availability of gas. Therefore, coal based thermal generation is likely to continue to dominate power generation in the country and therefore requisite thrust is essential for the development of various environment friendly technologies including clean coal technologies. The choice of fuel for power generation would be governed by principles of sustainable development keeping in view energy security aspect.

The production and supply of gas had not been keeping pace with the growing demand of gas in the country, including for that of power sector. The gas supply for gas based power stations in the country is inadequate, even the commitments of gas allocations made earlier to power stations were not fulfilled. The average gas supply during April 2012 was 51.94 MMSCMD against the requirement of 82.04 MMSCMD to operate the stations at 90% PLF, which was sufficient to operate these stations at about 56.98% PLF.

In the year 2009-10, Government of India allocated 18 MMSCMD gas from KG D6 basin out of production of 40 MMSCMD in Phase I to Power Sector for existing power plants which helped in utilizing the stranded capacity of gas based power stations. The production at KG basin was expected to go up to 80 MMSCMD. Therefore subsequently, EGoM allocated bulk of the additional gas from KG basin to Power Sector. The allocation was based on 75% PLF to A.P. projects and 70% PLF to non A.P. projects. This additional allocation includes 12.29 MMSCMD gas on firm basis and 12 MMSCMD on fall back basis to existing power projects including projects likely to be commissioned during 2009-10.

However, in view of reduced production from KG basin in recent past, even the firm quantity of allocated gas is not being supplied to power plants and the country is facing huge generation loss. Gas power plants, being a semi green power, needs to be promoted for reduction of our carbon foot prints and also because of many other inherent advantages of gas power plants as compared to conventional coal power plants. Presently, about 13,000 MW gas based capacity in the country is under various stage of construction. But non availability of gas to new power plants at present, have serious constraint in development of gas power plant in the country. Presently, existing power plants are operating at very low PLF and few power plants are lying idle due to non availability of gas.

After start of actual supply of gas from KG basin to power projects, a number of proposals for setting up gas based power projects totalling to about 1,30,000 MW including expansion as well green field projects have been received. However, no gas is available for allocation to these projects.

It is necessary to plan for about 20,000-25,000 MW gas based projects (subjected to availability of gas) to meet the capacity addition target and also to reduce our total CO_2 emission. Two scenarios have been developed for 12^{th} Plan in view of uncertainty of gas. However, it is recommended that power projects be given higher priority as far domestic gas allocation is concerned in view of massive power shortage in the country and very low emission from gas plants which will help us in restricting CO_2 emissions from power sector.

6.1.4 Coal/Lignite

The coal reserves in the country are of the order of 277 billion tonnes. About 70% of the total coal produced is consumed in the Power Sector.

However, there are impediments in the development of coal blocks due to delay in granting clearances and problems in acquisition of land. Forest clearance is a major problem as coal blocks are in forest area. Captive coal blocks are generally unexplored and are expected to take more time in development. According to present status of commissioning of power projects during 11th plan and production plan of CIL, the gap between demand and availability of domestic coal in the terminal year of the 11th plan was about 53 MT. To meet the above shortfall, utilities were advised to import 35 MT of coal. However, the actual import during 2011-12 was about 28 MT. Blending of imported coal may be technically feasible to the tune of about 10-15% only. Therefore, shortage of coal has resulted in stranded coal based capacity.

The geological reserves of lignite have been estimated to be about 35.6 BT. Lignite is available at limited locations such as Neyveli in Tamil Nadu, Surat, Akrimota in Gujarat and Barsingsar, Palana, Bithnok in Rajasthan, Over 86% of the resources are located in the State of Tamil Nadu alone, whereas the rest 14% are distributed in other States. Since, lignite is available at a relatively shallow depth and is non-transferable, its use for power generation at pithead stations is found to be attractive. The cost of mining lignite has to be controlled to be economical for power generation.

6.2 NORMS ADOPTED FOR RELIABILITY CRITERIA

EGEAS software has been used to carry out generation planning exercise for 12th & 13th Plan. The Power System is planned to meet the forecasted demand and ensure an expected level of reliability. Reliability is a measure of the ability of a system to perform its designated function under the designed conditions. In our Studies, Loss of Load Probability (LOLP) is the criteria adopted to reflect the capacity of the system to meet the peak load and Energy Not Served (ENS) to reflect the Energy Requirement not met in the System. LOLP is the probability that a system will fail to meet its peak load under the specified operating conditions. It is the proportion of days per year or hours per year when the available generating capacity is insufficient to serve the peak demand. This index is dimensionless and can also be expressed as a percentage.

ENS is the expected amount of energy which the system will be unable to supply to the consumers as a fraction of the total energy requirement. This index again is dimensionless and can also be expressed as a percentage. In other words these indicate as to how many units of energy requirement in a year are not met and correspondingly how many hours in a year the power demand is not met. Various countries in the world have adopted their own Reliability Criteria depending upon the status of their power system and the price affordability of the consumers to pay for the reliability of the system. It is evident that a more stringent and reliable system would yield higher cost of electricity which has to be borne by the consumer. Details of LOLP in some countries are as follows:

Name of country	LOLP(%)
Cambodia	1.8
Laos	0.27
Thailand	0.27
Vietnam	0.27
Hong Kong	0.006
Bangladesh	1.0
Belgium	0.2
USA	0.03
China	0.14

Source: Information collected from website of above countries.

Up till now, in India the reliability figures adopted were of LOLP – 1% and ENS- 0.15%. This was the case when India was faced by a huge power deficit situation. Now, the power shortage is expected to ease out. Therefore from 12^{th} Plan onwards, more Stringent Reliability norms are required to be adopted. USA adopts an LOLP of 0.03% which appears to be reasonable for a developed economy. LOLP standard adopted by some South Asian countries is 0.27%.

It is therefore proposed that an LOLP of 0.2% and the Energy Not Served (ENS) of 0.05% shall be adopted for planning purposes from 12^{th} Plan onwards.

6.3 PLANNING NORMS (CERC NORMS)

The planning studies require accurate performance parameters of various type of generating units to assess their availability and energy generation capabilities. The peaking power availability and energy generation capacity are important parameters for meeting the projected demand of the country and various regions. Peak availability and PLF are key performance factors required for the planning studies and other features used for planning studies are the auxiliary power consumption, heat rate, capital cost of the generating units, etc. Different types of generating units have varied operational performance and accordingly different norms have been used for thermal (coal), combined cycle, hydro and nuclear projects. The generation planning norms for different sizes of thermal units are different and units of higher sizes i.e. 200 MW and above have shown consistently good performance over a long period. Higher size unit of 660 MW and above which are likely to be installed in future have been placed along with 500 MW units for auxiliary Power consumption, however for the purpose of heat rate, these units have been placed in a separate group. Combined cycle Gas Turbines (CCGT) are very efficient and have lower heat rates, however, their availability and PLF would depend on the availability of gas. The energy of the hydro units has been taken on the basis of the design energy of the project.

6.3.1 Peaking Availability

The peaking availability (gross) of the various types of generating units is given in Table 6.1

Table 6.1 Figures in %

PEAKING AVAILABILITY (GROSS) OF THERMAL/ NUCLEAR/ HYDRO POWER STATIONS				
	Unit Size	Existing Units	Future Units	
Thermal (Coal)	800/660 MW	-	88	
	500/250/210/200 MW	85	85	
	Below 200 MW	75	85	
	Below 200 MW operating below 20 % PLF	50	-	
	at present			
Gas Based	OCGT all sizes	90	90	
	CCGT all sizes	88	88	
DG Sets	All sizes	75	75	
Lignite Based	All sizes	80	80	
Nuclear	All sizes	68	68	
Hydro	All sizes	87.5	87.5	

6.3.2 Auxiliary Power Consumption: The auxiliary consumption of the various types of generating units considered are given in Table 6.2

Table 6.2

I	Coal Based Power stations	Auxiliary Power Consumption
1.	800/ 660 MW class units	7.5%
2.	500 MW class units	7.5%
3.	250/210/200 MW class units	8.5%
4	Below 200 MW units	12.0
5	Lignite based units	12 % for <200 MW
		9 % for >200 MW
II	Gas Based Power Stations	
1	Combined cycle	3.0%
2	Open cycle	1.0%
3	DG sets/Gas Engines	1.0%
III	Hydro Power Stations	0.7%
IV	Nuclear Power Stations	
	160 MW BWR	10%
	200/220 MW PHWR	12.5%
	1000 MW LWR	7.8%
	220/ 540 MW PHWR	12.5%
	500 MW FBR	6.0%

6.3.3 Machine heat rate: The machine heat rates (gross) considered for the various thermal units are given in **Table 6.3**

Unit Size	Gross Heat rate (Kcal/kWh)
800 MW	2300
660 MW	2300
500 MW	2425
200/210/250 MW KWU	2460
200/210/250 MW LMZ	2500
250/210/125 MW (lignite)	2750
100 MW	2750
50 MW class of units	3000
30 MW class of units	3300

Combined cycle Gas turbine	2000
Open cycle Gas turbine/DG Sets	2900
Open Cycle Gas Engines	2200
Combined Cycle Gas Engines	2000

6.3.4 Cost and heat value of GAS/LNG

Table 6.4

FUEL	COST	CALORIFIC VALUE
	(RS./TH.CUM)	(KCAL/CUM)
LNG	8,000	9,800
GAS (HVJ)	4,400	9,500
GAS (RELIANCE)	5,760	9,500
GAS (NER)	3,000	9,500

6.3.5 Financial Parameters

Table 6.5

S.NO	ITEM	UNIT	VALUE
1	DEBT - % OF CAPITAL COST	%	70
2	EQUITY - % OF CAPITAL COST	%	30
3	WORKING CAPITAL- % OF CAPITAL COST	%	6
4	INTEREST ON DEBT	%	11.5
5	RETURN ON EQUITY	%	15.5+TAX
6	INTEREST ON WORKING CAPITAL	%	12.25
7	DISCOUNT RATE	%	9.0
8	O&M CHARGES POWER PLANT	%	2.5
9	O&M CHARGES – TRANSMISSION LINE	%	1.5
10	DEPRECIATION - POWER PLANT	%	5.28 FOR 12 YEARS

6.3.6 Plant load factor: The plant load factor of thermal power stations (coal and gas-based) considered for the various type of plants are furnished in **Table 6.6**

Table 6.6

PLANT LOAD FACTORS OF THERMAL/ NUCLEAR POWER STATIONS				
Units	PLF (%)	Remarks		
Thermal				
Coal Based				
800/660 MW	85.0	Future Units		
500/250/210/200 MW	85.0	Existing and Future Units		
Below 100/110 MW	60	80% for future units		
	40	Units in ER and NER operating Below 20%		
		PLF.		
Lignite Based 125/ 200/250 MW	75			
Gas Based				
CCGT/CCGE	68.5			
OCGT/OCGE	33			
Nuclear Units				
All sizes	68	Normative Capacity Factor		

For hydro units, the energy generation is as per the designed energy generation in a 90% dependable year.

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 381

6.4 GENERATION CAPACITY EXPANSION PLANNING DURING 12TH PLAN

A Computer Model Study on Electric Generation Expansion Analysis System (EGEAS) programme was carried out in CEA to assess the installed capacity required to meet the above demand projections on the basis of National Load Duration Curve. The Studies are based on the following:

- Demand to be considered as forecasted by 18th EPS i.e. Peak Demand 1,99,540 MW and Energy Requirement - 1354 BU at bus bar.
- Spinning Reserve of 10,000 MW (corresponding to 5% spinning reserve as stipulated by National Electricity Policy. (It has been represented that this figure of spinning reserve is on higher side & needs to be reviewed, it could be 2-3%. As India can't afford to have 5% spinning reserve in terms of Investment, Task Force on peaking plants & spinning reserves constituted under the Chairmanship of Chairperson CEA will deliberate on this issue)
- Reliability Criteria Loss of Load Probability (LOLP) < 0.2% and Energy Not Served (ENS) < 0.05%.
- Actual Capacity addition considered during 11th Plan is 54,964 MW.
- Capacity retired during 12th Plan is about 4000 MW which includes remaining units of coal & lignite under 100 MW (1500 MW already retired during 11th Plan), gas plants more than 30 years old (1987 & before) and some coal units of 110 MW.
- Import of hydro power of 1,200 MW from neighbouring countries
- First priority given to potential hydro projects followed by nuclear and gas based projects with a view to minimize CO2 emissions.
- Seasonal Studies being carried out rather than Annual Studies with a view to ensure demand being met in all
 the seasons
- Projects considered in the study are as under :-

> Hvdro

The hydro projects have been considered as must run in EGEAS study in line with our Low Carbon Growth Strategy. Considering the status of various projects under construction and uncertainties relating to geological surprises, natural calamities like floods, R&R and environmental issues expected to be experienced during the execution of the hydro projects, it is proposed that a hydro capacity addition of about 10,897 MW is likely during 12th Plan. Details of hydro projects are furnished in **Annexure 6.1.** Additional list of hydro projects which could materialised during 12th /13th Plan totalling to 2435 MW furnished in **Annexure 6.2.** In addition shelf of hydro projects totalling to 19,675 MW has also been identified for likely benefit during 13th Plan. Details are furnished in **Annexure 6.8.**

Nuclear

A nuclear capacity of 5,300 MW has been considered as per the information furnished by Nuclear Power Corporation. Details are furnished in **Annexure 6.1.**

> Thermal

Gas Based Plants

Addition of gas based capacity is considered necessary to reduce CO₂ emissions. Modern combined cycle gas turbines (CCGTs) have high efficiency of around 55% compared to coal based plants (Gross efficiency of supercritical units is 38 to 40%). Gas turbines/Engines could be located near the load centre with a view to minimize the requirement of transmission system and could be operated in a manner so as to maximize the output during the peak hours and minimize during the off-peak hours so as to utilize the available gas which is scarce, optimally.

In view of expected increase in coal shortage during 12th Plan, we should plan for about 12,000-15,000 MW gas based projects to meet the capacity addition target and also to reduce our total CO₂ emission. It is recommended that power projects be given higher priority as far domestic gas allocation is concerned in view of massive power shortage in the country and very low emission from gas plants which will help us in restricting CO₂ emissions from power sector. As the availability of gas is uncertain only 14,540 MW gas based projects have been considered during 12th plan in the

high gas scenario and 2,540 MW gas based plants for which gas is assured from local sources in the Low Gas Scenario. Project-wise details of gas based projects totalling to 2,540 MW considered during 12th Plan is given in **Annexure 6.1.** In addition, many other projects totalling to about 13,000 MW capacities are also under construction and can be commissioned during 12th Plan if gas is made available to these projects. The details of these projects are given in

Annexure 6.6

Coal based Plants

The balance capacity to meet the stipulated demand is proposed to be met from coal based projects. Thus, coal is expected to be main fuel for 12th Plan capacity addition too. A shelf of projects have been identified which are likely to yield benefits during 12th Plan. The project-wise details of capacity totalling to 69,800 MW from coal/ lignite which is under construction and most likely to materialise during 12th plan are furnished in **Annexure 6.1**. In addition to projects listed in **Annexure 6.1**, certain other thermal projects totalling to 33,870 MW are also under construction for likely benefits during 12th Plan, details of which are given in **Annexure 6.2**. A list of power projects under bulk tendering, totalling to 14,460 MW is enclosed as **Annexure 6.3**. Certain power projects totalling to 13,050 MW for which order for main plants have been placed but certain clearance are awaited; details of these projects are given in **Annexure 6.4**. A list of projects totalling to 11,200 MW for which coal has been tied up but orders for main plant not placed is given in **Annexure 6.5**. In addition, certain project developers have also requested for inclusion of their projects in the 12th Plan list. These projects totalling to 13,111 MW are in initial stage and could come up in 12th Plan. Details of these projects are given in **Annexure 6.7**.

6.5 12TH PLAN STUDY AND RESULTS

EGEAS Studies were carried out to assess the total capacity addition requirement during the 12th Plan to meet the demand within the confines of the reliability criteria.

Earlier Studies were conducted only to estimate the Capacity addition required to meet the Annual Demand projections. However, it was considered that Annual Studies are not adequate as they would not eliminate the possibility that this capacity would be sufficient for the system to meet the reliability criteria in each of the 5 seasonal blocks of months in a year. These five blocks of months are April-June, July-September, Oct-November, December-January and February-March. Seasonal Studies were, therefore, considered to be essential to ensure that the seasonal demand of the system would be met in each block when considering the energy of hydro plants in each of the above blocks of month. Therefore studies for each 5 seasons i.e. 5 blocks of months in a year were carried out using EGEAS model to assess the capacity addition requirement.

Hydro, Gas and Nuclear based capacity is given the foremost priority due to their inherent advantages towards a Low Carbon growth Strategy. Therefore, capacity from these sources which is likely to materialise during 12th Plan has been considered as must run in the various Scenarios.

Renewable capacity has also been considered as must run capacity. However, only energy from this capacity has been considered to meet energy requirement.

Four scenarios were developed for generating capacity addition during 12th Plan. The scenarios are as follows:

Scenario 1 – Low Renewables (18,500 MW), Low Gas (2,540 MW) (Base Case)

Scenario 2 – Low Renewables (18,500 MW), High Gas (14,540 MW)

Scenario 3 – High Renewables (30,000 MW), High Gas (14,540 MW)

Scenario 4 – High Renewables (30,000 MW), Low Gas (2,540 MW)

Hydro Imports of 1,200 MW during 12th Plan have been considered in all the four scenarios. Details of Various Scenarios and study Results in each case are as follows:

• Scenario – 1– 18th EPS Demand - Low Renewable (18,500 MW), Low gas (2,540 MW)- Base Case

ТҮРЕ		city Requirement MW)
Hydro		10,897
Thermal		70,903
Coal	67,843	
Lignite	520	
Gas	2.540	

Nuclear	5,300
TOTAL (Conventional)	87,100
Wind	11,000
Solar	4,000
Other RES	3,500
TOTAL (RES)	18,500
Retirement During 12 th	4,000
Plan	

Scenario – 2–18th EPS Demand - Low Renewable(18,500 MW), High gas (14,540 MW)

TYPE	12 th Plan Capacity Requirement
	(MW)
Hydro	10,897
Thermal	70,903
Coal	55,843
Lignite	520
Gas	14,540
Nuclear	5,300
TOTAL (Conventional)	87,100
Wind	11,000
Solar	4,000
Other RES	3,500
TOTAL (RES)	18,500
Retirement During 12 th	4,000
Plan	

• Scenario -3 - 18th EPS Demand - High Renewables (30,000 MW), High Gas(14,540MW)

TYPE		12 th Plan Capacity	
		(MW)	
Hydro			10,897
Thermal			67,703
Coal	52,643		
Lignite	520		
Gas	14,540		
Nuclear			5,300
TOTAL			83,900
(Conventional)			
Wind			15,000
Solar			10,000
Other RES			5,000
TOTAL (RES)			30,000
Retirement During			4,000
12 th Plan			

• Scenario – 4– 18th EPS Demand - High Renewable(30,000 MW), Low gas (2,540MW)

ТҮРЕ		12thPlan Capacity (MW)
Hydro		10,897
Thermal		66,903
Coal+Lignite	63,843	
Lignite	520	
Gas	2,540	
Nuclear		5,300

TOTAL (Conventional)	83,100
Wind	15,000
Solar	10,000
Other RES	5,000
TOTAL (RES)	30,000
Retirement During 12 th Plan	4,000

OUT OF THE ABOVE SCENARIOS, SCENARIO-1 HAS BEEN CONSIDERED AS THE BASE CASE FOR PLANNING CAPACITY ADDITION DURING THE 12^{TH} PLAN.

Details of Base Case are as follows:

12th Plan Programme

Total Capacity Requirement	- 87,100 MW
(Conventional)	
Hydro	- 10,897 MW
Nuclear	- 5,300 MW
Thermal	- 70,903 MW
Coa+Lig	- 68,363 MW
Gas	- 2,540 MW

The requirement of capacity addition during 12th plan is 87,100 MW. However based on status of projects under construction, a list of projects for likely benefits during 12th Plan totalling to a capacity of 88,537 MW has been identified and the same is enclosed as Annexure 6.1. It may also be mentioned that all of the projects identified for likely benefits during 12th Plan are presently under construction. In addition to above, additional shelf of projects is also under construction/ planning stage and some of these projects could materialize during 12th Plan. The shelf of these projects is given in Annexure 6.2. Thus, in case some of the projects identified for 12th Plan is delayed due to unforseen reasons, other projects (back up projects) may get commissioned during 12th Plan. Thus a capacity addition of about 88,000 MW is expected during 12th Plan with high degree of certainty. Of course, fuel availability to these projects is major concern and need to be addressed.

6.6 TENTATIVE PLANNING FOR GENERATION CAPACITY EXPANSION DURING 13^{TH} PLAN

The studies for assessing the tentative capacity addition requirement during the 13th Plan was carried out based on the following considerations:

- Demand to be considered as forecasted by 18th EPS Peak Load- 2,83,470; Energy Requirement 1904 BU
- Spinning Reserve -5% i.e. about 14,000 MW.
- Reliability Criteria Loss of load probabilities < 0.2 % and Energy not served < 0.05 %.
- Actual Capacity addition considered during 11th Plan is 54,964 MW.
- 12th Plan capacity of about 87,100 MW in corresponding scenario.
- Retirement of 4,000 MW which includes coal units lesser than 200 MW (commissioned before 1982) and gas units commissioned before 1992 (more than 20 years old).
- Import from neighbouring countries 8,040 MW Hydro capacity.

6.7 STUDY RESULTS FOR 13TH PLAN TENTATIVE CAPACITY EXPANSION

EGEAS Studies were carried out to assess the total capacity addition requirement during the 13th Plan to meet the demand within the confines of the reliability criteria.

Seasonal Studies were carried out as in the 12th Plan.

Hydro, Gas and Nuclear based capacity is given the foremost priority due to their inherent advantages towards a Low Carbon growth Strategy. Therefore this capacity is considered as must run in the various Scenarios.

Renewable capacity has also been considered as must run capacity.

Four scenarios were developed for tentative generating capacity addition during 13th Plan. The scenarios are as follows: Scenario 1 – Low Renewables (30,500 MW), No Gas.

Scenario 2 – Low Renewables (30,500 MW), High Gas (13,000 MW).

Scenario 3 – High Renewables (45,000 MW), High Gas (13,000 MW).

Scenario 4 – High Renewables (45,000 MW), No Gas.

Considering above must run projects, the balance capacity is proposed to be met from coal based projects. These Scenarios are based on corresponding Scenarios materializing in the 12th Plan. The details of 13th Plan capacity addition requirement corresponding to the four Scenarios are given as under:

Hydro Imports of 8,040 MW during 13th Plan have been considered in all the four scenarios.

• Scenario-1 – Low Renewables (30,500 MW) - No Gas

ТҮРЕ	13 th Plan Capacity Addition Requirement (MW)
Hydro	12,000
Thermal	56,400
Coal	56,400
Gas	0
Nuclear	18,000
TOTAL (Conventional)	86,400
Wind	11,000
Solar	16,000
Other RES	3,500
Total (RES)	30,500
Retirement During 13th Plan	4,000

• Scenario-2 – Low Renewables (30,500 MW) - High Gas (13,000 MW)

ТҮРЕ	13 th Plan Capacity (MW)
Hydro	12,000
Thermal	58,200
Coal	45,200
Gas	13,000
Nuclear	18,000
TOTAL (Conventional)	88,200
Wind	11,000
Solar	16,000
Other RES	3,500
Total (RES)	30,500
Retirement During 13 th Plan	4,000

• Scenario-3 – High Renewables (45,000 MW) - High Gas (13,000 MW)

ТҮРЕ	13 th Plan Cap	acity (MW)
Hydro		12,000
Thermal		50,200
Coal	37,200	
Gas	13,000	
Nuclear		18,000
TOTAL (Conventional)		80,200
Wind		20,000
Solar		20,000
Other RES		5,000
Total (RES)		45,000
Retirement During 13th Plan		4,000

• Scenario-4 – High Renewables (45,000 MW) - No Gas

ТҮРЕ	13th Plan Capacity (MW)
Hydro	12,000
Thermal	54,800
Coal	54,800
Gas	0
Nuclear	18,000
TOTAL (Conventional)	84,800
Wind	20,000
Solar	20,000
Other RES	5,000
Total (RES)	45,000
Retirement During 13th Plan	4,000

OUT OF THE ABOVE SCENARIOS SCENARIO-1 HAS BEEN CONSIDERED AS THE BASE CASE FOR THE 13TH PLAN.

The capacity addition required during the 13th Plan is as follows:

13th Plan Programme

Total Capacity - 86,400 MW

(Conventional)

Hydro - 12,000* MW

Nuclear - 18,000 MW

Thermal - 56,400 MW

Coal - 56,400 MW

Gas - Nil

It may be mentioned that 18,000 MW nuclear capacity during 13th Plan has been considered as per the programme of NPC. In case this capacity does not materialize, the same could be replaced by coal based capacity.

During the 13th Plan, the capacity addition is from more efficient Units based on latest technologies. Thermal capacity addition is from units of higher size i.e. 660/800 MW in all cases with supercritical technologies. These Initiatives are in accordance with our strategies for clean and Green Power. It is recommended that during the 13th Plan, capacity addition from coal fired power plant must be from super critical units only.

The required capacity addition during the 13th Plan will be of the order of about 86,400 MW. Any projects slipping from 12th Plan capacity addition programme MW will be added in the 13th Plan capacity addition programme. Thus it is clear that huge capacity addition will be required during 13th Plan for which advance Planning/advance action is required during the 12th Plan itself by all concerned.

6.8 CONCLUSION

- The power demand projections considered for planning capacity addition are as per the 18th EPS Report. Details are as follows:
 - > End of 12th Plan are Peak Demand of 199,540 MW and Energy Requirement of 1354 BU.
 - ► End of 13th Plan- Peak Demand- 283470 MW and Energy Requirement 1904 BU.
- A Capacity addition of 87,100 MW would be required to be added in the country during the 12th Five Year Plan based on actual capacity addition of about 54,964 MW during the 11th Plan, spinning reserve requirement of 5% as per NEP, retirement of old inefficient thermal units of about 4,000 MW and reliability criteria of 0.2% LOLP & 0.05% ENS adopted by CEA.
- The total capacity addition requirement in the country for 12th Plan has been proposed as under:

Total Capacity (excluding renewable) - 87,100 MW

Hydro - 10,897MW Nuclear - 5,300 MW

^{*} excludes 8,040 MW imports from hydro plants of neighbouring countries.

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 387

Indigenous capacity required to be developed – 87,100 MW (1,200 MW imports have been assumed from neighbouring countries).

• The total capacity addition requirement in the country for 13th Plan has been proposed as under:

Total Capacity (excluding renewable) - 86,400 MW

Hydro - 12,000 MW

Nuclear - 18,000 MW

Thermal - 56,400 MW

• Coal - 56,400 MW Hydro Import – 8,040 MW

• Indigenous capacity required to be developed – 86,400 MW (Considering 8,040 MW imports from neighbouring countries).

---+++----

Annexure 6.1

SUMMARY OF PROJECTS UNDER CONSTRUCTION FOR LIKELY BENEFITS DURING 12TH PLAN (2012-17)

(Figures in MW)

	HYDRO	THE	RMAL BRE	AKUP	TOTAL	NUCLEAR	TOTAL	
	птрко	COAL	LIGNITE	GAS/LNG	THERMAL	NUCLEAR	IOIAL	
CENTRAL SECTOR	6004	13800	250	827.6	14878	5300	26182	
STATE SECTOR	1608	12210	0	1712.0	13922	0	15530	
PRIVATE SECTOR	3285	43270	270	0.0	43540	0	46825	
ALL-INDIA	10897	69280	520	2539.6	72340	5300	88537	

	CIL	BLOCK	BLOCK (TL)	IMP COAL	WASHERY REJECT	LINKAGE REQUIRED	TOTAL
COAL BASED CAPACITY	50504	5440	8310	4246	330	450	69280

	2012-13	2013-14	2014-15	2015-16	2016-17	TOTAL
CENTRAL SECTOR	6668	4992	1870	4491	8160	26182
STATE SECTOR	4048	3866	4846	2260	510	15530
PRIVATE SECTOR	7370	10445	14242	10328	4440	46825
ALL-INDIA	18086	19303	20958	17079.0	13110	88537

Hydro	802	2639	2543	1613	3300	10897
Thermal	15284	16664	17915	15466	7010	72340
Nuclear	2000	0	500	0	2800	5300
Total	18086	19303	20958	17079	13110	88537

LIST OF PROJECTS UNDER CONSTRUCTION FOR LIKELY BENEFITS DURING 12TH PLAN (2012-17)

Sl. No.	Project Name	State	Developer	Sector	Fuel Type	Capacity (MW)
				-		
1.	Lower Jurala HEP	A.P.	APGENCO	S	Hydro	240
2.	Pulichintala HEP	A.P.	APGENCO	S	Hydro	120
3.	Nagarjuna Sagar TR HEP	A.P.	APGENCO	S	Hydro	50
4.	Sri Damodaram Sanjeevaiah TPP (Krishnapattnam TPP) U1,2	A.P.	APGENCO	S	Coal	1600
5.	Rayal seema TPP U6	A.P.	APGENCO	S	Coal	600
6.	Thamminapatnam TPP U3,4	A.P.	Meenakshi Energy Pvt. Ltd.,	P	Coal	700
7.	Nagarjuna Construction Company Ltd Ph-I U-1,2	A.P.	Ngarjuna Construction Company Ltd	P	Coal	1320
8.	Painampuram TPP U 1,2	A.P.	Thermal Powertech Corporation Ltd.	P	Coal	1320
9.	Bhavanapaddu TPP U-1,2	A.P.	East Coast Energy	P	Coal	1320
10.	Thamminapatnam TPP U1,2	A.P.	Meenakshi Energy Pvt. Ltd.,	Р	Coal	300
11.	Simhapuri TPP Ph-I, U 2	A.P.	Simhapuri Energy Pvt. Ltd.,	Р	Coal	150
12.	Hinduja TPP,U1-2	A.P.	Hinduja	P	Coal	1050
	SUB TOTAL (AP)					8770
1.	Pare HEP	Ar. P	NEEPCO	C	Hydro	110
2.	Kameng HEP	Ar. P	NEEPCO	C	Hydro	600
3.	Subansiri Lower HEP	Ar. P	NHPC	C	Hydro	1000
	SUB TOTAL (ARUNACHAL PRADESH)					1710
1.	Bongaigaon TPP U 1,2,3	Assam	NTPC	С	Coal	750
2.	Namrup CCGT	Assam	APGCL	S	Gas	100
	SUB TOTAL (ASSAM)	71334111	AH GCL	5	Gus	850
	SCD TOTAL (ASSIMI)					050
1.	Muzaffarpur (Kanti) TPP U 3,4	Bihar	NTPC JV	С	Coal	390
2.	Barh STPP-I U 1,2,3	Bihar	NTPC	С	Coal	1980
3.	Barh STPP-II U 1,2	Bihar	NTPC	С	Coal	1320
4.	Nabinagar TPP U1-4	Bihar	NTPC JV	С	Coal	1000
	SUB TOTAL (BIHAR)					4690
1.	Sipat-I TPP U 3	Chhattisgarh	NTPC	С	Coal	660
2.	Korba West St.III TPP U5	Chhattisgarh	CSEB	S	Coal	500
3.	Marwah TPP U1-2	Chhattisgarh	CSEB	S	Coal	1000
4.	Avantha Bhandar TPP U1	Chhattisgarh	Korba West Power Company Ltd.	P	Coal	600
5.	Maurti Clean Coal & Power Ltd.TPP U1	Chhattisgarh	Maurti Clean Coal & Power Ltd.	Р	Coal	300

Sl. No.	Project Name	State	Developer	Sector	Fuel Type	Capacity (MW)
6	Lanco Amarkantak TPP U- 3,4	Chhattisgarh	LANCO Amarkantak Pvt Ltd	P	Coal	1320
7	Uchpinda TPP U1-3	Chhattisgarh	R.K.M. PowerGen Pvt Ltd	P	Coal	1080
8	Vinjkote (Darrampura) TPP U1-3	Chhatisgarh	SKS Ispat and Power Ltd.	P	Coal	900
9	Akaltara (Nariyara) TPP U 1-3	Chhattisgarh	KSK Mahanadi Power Company Limited	P	Coal	1800
10	Kasaipalli TPP U 2	Chhattisgarh	ACB India	P	Coal	135
11	Swastik Korba TPP U 1	Chhattisgarh	ACB India	P	Coal	25
12	Vandana Vidyut TPP U 1,2	Chhattisgarh	Vandana Vidyut	P	Coal	270
13	Balco TPP U-1,2	Chhattisgarh	Bharat Aluminium Co. Ltd	P	Coal	600
14	Athena Singhtarai TPP U-1	Chhattisgarh	Athena Chhattisgarh Power Ltd.	P	Coal	600
15	D B Power TPP U-1,2	Chhattisgarh	DB Power Ltd	P	Coal	1200
16	TRN Energy TPP U-1,2	Chhattisgarh	TRN Energy	P	Coal	600
17	Ratija TPP	Chhattisgarh	ACB India	P	Coal	50
18	Raigarh TPP U1,2	Chhattisgarh	Jindal Power Ltd	P	Coal	1200
	SUB TOTAL (CHHATTISGARH)					12840
1	Pragati -III (BAWANA) CCGT	Delhi	PPCL	S	Gas/LNG	750
	SUB TOTAL (DELHI)					750
1	KAPP U-3,4	Gujarat	NPC	С	Nuclear	1400
2	Sikka TPP Ext. U3	Gujarat	GSECL	S	Coal	250
3	Ukai TPP EXT U6	Gujarat	GSECL	S	Coal	500
4	Pipavav JV CCGT Block-1,2	Gujarat	GSECL	S	Gas/LNG	702
5	Mundra UMPP, U 2	Gujarat	The Tata Power Company Ltd	P	Coal	800
6	Salaya TPP U 2	Gujarat	Essar Power Salaya Ltd	P	Coal	600
	SUB TOTAL (GUJARAT)					4252
1	Parbati-II HEP	H.P.	NHPC	С	Hydro	800
2	Rampur HEP	H.P.	SJVNL	C	Hydro	412
3	Kol Dam HEP	H.P.	NTPC	C	Hydro	800
4	Chamera-III HEP	H.P.	NHPC	C	Hydro	231
	Parbati - III HEP	H.P.	NHPC	C	Hydro	520
, i	1 mi / mi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
5	Kashang - I HEP	НР	HPPCI.	S	Hvaro	רח
6	Kashang - I HEP	H.P.	HPPCL BVPC	S	Hydro Hydro	100
	Kashang - I HEP Uhl-III HEP Sawara Kuddu HEP	H.P. H.P. H.P.	HPPCL BVPC HPPCL	S S S	Hydro Hydro	100 111

Sl. No.	Project Name	State	Developer	Sector	Fuel Type	Capacity (MW)
10	Sainj HEP	H.P.	HPPCL	S	Hydro	100
11	Tidong-I HEP	H.P.	N S L Tidong Power Generation Ltd	P	Hydro	100
12	Sorang HEP	H.P.	Himachal Sorang Power Pvt. Ltd	P	Hydro	100
13	Tangnu Romai-I HEP	H.P.	Tangnu Romai Power Generation Ltd	P	Hydro	44
14	Budhil HEP	H.P.	LANCO Green Power Pvt Ltd	P	Hydro	70
	SUB TOTAL (HP)					3583
1	Indira Gandhi TPP (Jhajjar) JV U-3	Haryana	NTPC	C	Coal	500
2	Mahatmi Gandhi Jhajjar TPP U2	Haryana	China Light Power	P	Coal	660
	SUB TOTAL (HARYANA)					1160
1	Kishan Ganga HEP	J&K	NHPC	C	Hydro	330
2	Uri-II HEP	J&K	NHPC	С	Hydro	240
3	Nimoo Bazgo HEP	J&K	NHPC	C	Hydro	45
4	Chutak HEP	J&K	NHPC	С	Hydro	44
5	Baglihar-II HEP	J&K	J&K State Power Development Corp. Ltd.	S	Hydro	450
	SUB TOTAL (J&K)		Liu.			1109
	(0011)					1107
1	Bokaro TPP A Exp U1	Jharkhand	DVC	С	Coal	500
2	Koderma TPP U2	Jharkhand	DVC	С	Coal	500
3	Mata Shri Usha TPP Ph-I U 1,2	Jharkhand	Corporate Power Ltd.	P	Coal	540
4	Adhunik Power & Natural Resources Ltd TPP U1,2	Jharkhand	Adhunik Power & Natural Resources Ltd.	P	Coal	540
	SUB TOTAL (JHARKHAND)					2080
1	Thottiar HEP	Kerala	KSEB	S	Hydro	40
2	Pallivasal HEP	Kerala	KSEB	S	Hydro	60
	SUB TOTAL (KERALA)					100
1	Vindhyachal TPP St-IV U-11,12	MP	NTPC	С	Coal	1000
2	Satpura TPP EXT U-10,11	MP	MPGENCO	S	Coal	500
3	Shree Singhaji TPP U-1,2	MP	MPGENCO	S	Coal	1200
	Since Singuaji III U-1,2	1711	MB Power		Coai	1200
4	Annupur TPP Ph-I U1,2	MP	(Madhya Pradesh) Ltd.	P	Coal	1200

Sl. No.	Project Name	State	Developer	Sector	Fuel Type	Capacity (MW)
5	Bina TPP U 1,2	MP	Bina Power Supply Comp. Ltd (Jaypee Group)	Р	Coal	500
6	Sasan UMPP U 1,2	MP	Reliance Power Ltd.	P	Coal	1320
7	Maheshwar HEP U 1-10	MP	SMHPCL	P	Hydro	400
8	D B Power TPP, Sidhi U-1	MP	DB Power (Madhya Pradesh) Ltd	P	Coal	660
9	Jhabua TPP U1	MP	Jhabua Power Ltd	P	Coal	600
	SUB TOTAL (MP)					7380
1	Mauda TPP U1,2	Maharashtra	NTPC	C	Coal	1000
3	Chandrapur TPP Ext. U 8 Koradi TPP Ext U 8	Maharashtra Maharashtra	MAHGENCO MAHGENCO	S S	Coal Coal	500
4	Parli TPP U 3	Maharashtra	MAHGENCO	S	Coal	250
5	India Bulls- Amravati TPP Ph-I,U1-5	Maharashtra	India Bulls Power Limited	P	Coal	1350
6	India Bulls - Nasik TPP Ph-I,U1-5	Maharashtra	India Bulls Realtech Limited	Р	Coal	1350
7	Dhariwal Infrastructure (P) Ltd TPP U1,2	Maharashtra	Dhariwal Infrastructure (P) LTD	P	Coal	600
8	EMCO Warora TPP U 1,2	Maharashtra	GMR EMCO Energy Ltd	P	Coal	600
9	Butibori TPP Ph -II U 1	Maharashtra	Vidarbha Industries Power Ltd	P	Coal	300
10	Lanco Mahanadi, Vidarbha TPP U1,2	Maharashtra	Lanco Mahanadi Power Pvt Ltd	P	Coal	1320
11	Tiroda TPP PH-I U 1,2	Maharashtra	Adani Power Ltd	P	Coal	1320
12	Tiroda TPP Ph-II U1	Maharashtra	Adani Power Ltd	P	Coal	660
13	GEPL TPP U-1,2	Maharashtra	Gupta Energy Pvt Ltd	P	Coal	120
14	Bela TPP U 1	Maharashtra	Ideal Energy Projects Ltd	P	Coal	270
	SUB TOTAL (MAHARASHTRA)					10300
-	N. H. HED	34 1 1	M. ECI	C	TT 1	40
2	New Umtru HEP	Meghalaya	MeECL MeSER	S	Hydro	40
	Myntdu St-I HEP ADDL UNIT SUB TOTAL (MEGHALAYA)	Meghalaya	MeSEB	S	Hydro	42 82
	SOD TOTAL (MEGHALATA)					62
1	Tuirial HEP	Mizoram	NEEPCO	С	Hydro	60
	SUB TOTAL (MIZORAM)		-			60
1	Derang TPP U1	Orissa	Jindal India Thermal Power Ltd	P	Coal	600

Sl. No.	Project Name	State	Developer	Sector	Fuel Type	Capacity (MW)
2	Ind Barath Energy Pvt. Ltd. TPP U1,2	Orissa	Ind. Barath power (Utkal) Ltd.	P	Coal	700
3	Lanco Babandh Dhenkanal TPP U 1	Orissa	Lanco Babandh	P	Coal	660
4	K.V.K. Nilanchal TPP U 1	Orissa	K.V.K. Nilachal Power Pvt. Ltd.	P	Coal	350
5	Kamalanga TPP U 1-3	Orissa	GMR Energy	P	Coal	1050
6	Sterlite TPP U 4	Orissa	Sterlite Energy	P	Coal	600
	SUB TOTAL (ORISSA)					3960
1	Talwandi Sabo TPP U1-3	Punjab	Vedanta	P	Coal	1980
2	Goindwal Sahib TPP U1,2	Punjab	GVK Industries	P	Coal	540
3	Nabha TPP U-1,2	Punjab	L&T Power Development Ltd	P	Coal	1400
	SUB TOTAL (PUNJAB)					3920
	DADDUG 0. C	D 1 1	1770		NT 1	4.00
1	RAPP U 7 & 8	Rajasthan	NPC	C	Nuclear	1400
2	Kalisindh TPP U1	Rajasthan	RRVUNL	S	Coal	600
3	Chhabra TPP Ext U3,4	Rajasthan	RRVUNL	S	Coal	500
4	Ramgarh CCGT	Rajasthan	RRVUNL	S	Gas	160
5	Jallipa Kapurdi TPP U 5-6	Rajasthan	Raj West Power Ltd	P	Lignite	270
	SUB TOTAL (RAJASTHAN)					2930
			G 17.0			
1	Bhasmey HEP	Sikkim	Gati Infrastructure Ltd.	P	Hydro	51
2	Jorethang Loop HEP	Sikkim	DANS Pvt. Ltd	P	Hydro	96
3	Rangit-IV HEP	Sikkim	Jal Power Corp. Ltd.	P	Hydro	120
4	Teesta-VI HEP	Sikkim	Lanco Energy Pvt. Ltd.	P	Hydro	500
5	Teesta-III HEP	Sikkim	Teesta Urja Ltd	P	Hydro	1200
6	Chujachen HEP	Sikkim	Gati Infrastructure Ltd.	P	Hydro	99
	SUB TOTAL (SIKKIM)				_	2066
1	Kudankulam U 1,2	TN	NPC	С	Nuclear	2000
2	PFBR(Kalpakkam)	TN	NPC	C	Nuclear	500
3	Vallur (Ennore) TPP U 2,3	TN	NTPC/TNEB JV	C	Coal	1000
4	Tuticorin TPP JV U1,2	TN	NPTL (NLC JV)	C	Coal	1000
5	Neyveli II TPP U2	TN	NLC	C	Lignite	250
6	Bhawani Barrage HEP II & III	TN	TNEB	S	Hydro	60
7	Mettur TPP EXT U1	TN	TNEB	S	Coal	600
8	North Chennai TPP Ext U1,2	TN	TNEB	S	Coal	1200
9	Ind Barath TPP U1	TN	Ind Barath Power (Madras) Ltd	P	Coal	660
	SUB TOTAL (TN)					7270

		T				
Sl.	Project Name	State	Developer	Sector	Fuel	Capacity
No.					Type	(MW)
1	Tripura CCGT	Tripura	ONGC JV	C	Gas	726.6
2	Monarchak CCGT	Tripura	NEEPCO	С	Gas	101
	SUB TOTAL (TRIPURA)					827.6
1	Rihand TPP-III U 5,6	UP	NTPC	C	Coal	1000
2	Anpara-D TPP U 1,2	UP	UPRVUNL	S	Coal	1000
3	Parichha TPP EXT U-5,6	UP	UPRVUNL	S	Coal	500
4	Harduaganj TPP EXT U-9	UP	UPRVUNL	S	Coal	250
			Prayagraj Power			
5	Bara TPP U1-3	UP	Gen. Co. Ltd	P	Coal	1980
			(Jaypee Group)			
	SUB TOTAL (UP)					4730
1	Tapovan Vishnugad HEP	Uttarakhand	NTPC	С	Hydro	520
2	C'and Phates HED	Uttarakhand	L&T Uttaranchal	P	II. d	99
2	Singoli Bhatwari HEP	Uttaraknand	Hydro Power Ltd	P	Hydro	99
3	Dhoto Danna HED	TT4 1 1 1	Lanco Energy Pvt.	P	Hardao	76
3	Phata Byung HEP	Uttarakhand	Ltd.	P	Hydro	76
4	Srinagar HEP	Uttara-khand	AHPCo. Ltd.	P	Hydro	330
	SUB TOTAL (UTTARAKHAND)					1025
1	Teesta Low Dam-III HEP	WB	NHPC	С	Hydro	132
2	Teesta Low Dam-IV HEP	WB	NHPC	С	Hydro	160
3	Raghunathpur TPP U1,2	WB	DVC	С	Coal	1200
4	Haldia TPP U1-2	WB	CESC	P	Coal	600
	SUB TOTAL (WB)					2092
	TOTAL					88537

C: CENTRAL SECTOR; S: STATE SECTOR; P: PRIVATE SECTOR

Annexure 6.2

SUMMARY OF ADDITIONAL UNDER CONSTRUCTION PROJECTS WHICH MAY YIELD BENEFIT DURING 12th PLAN

	HVDDO	THERMAL BREAKUP			TOTAL	MUCLEAD	TOTAL
	HYDRO	COAL	LIGNITE	GAS/LNG	THERMAL	NUCLEAR	TOTAL
CENTRAL SECTOR	2000	500	0	0.0	500	0	2500
STATE SECTOR	80	4520	0	0.0	4520	0	4600
PRIVATE SECTOR	355	28080	770	0.0	28850	0	29205
ALL-INDIA	2435	33100	770	0.0	33870	0	36305

	CIL	BLOCK	BLOCK (TL)	IMP COAL	WASHERY REJECT	LINKAGE REQUIRED	TOTAL
COAL BASED CAPACITY	4250	16250	660	11880	60	0	33100

S. No.	Project Name	State	Developer	Sector	Fuel Type	Capacity (MW)
1	Kakatiya TPP ST -II U1	A.P.	APGENCO	S	Coal	600
2	Simhapuri TPP Ph-I, U3,4	A.P.	Simhapuri Energy Pvt. Ltd.,	P	Coal	300
	SUB TOTAL (AP)					900
1	Subansiri (L) HEP	Ar. Pr.	NHPC	С	Hydro	1000
	SUB TOTAL (Ar. Pr.)					1000
1	Akaltara TPP U-4-6	Chhattisgarh	KSK Mahanadi Power Company Limited	P	Coal	1800
2	Raikheda TPP U-1,2	Chhattisgarh	GMR Energy	P	Coal	1370
3	Uchpinda TPP U4	Chhattisgarh	R.K.M. Powergen Pvt Ltd,	P	Coal	360
4	Athena Singhtarai TPP U-2	Chhattisgarh	Athena Chhattisgarh Power Ltd.	P	Coal	600
5	Vinjkote (Darrampura) TPP U4	Chhattisgarh	SKS Ispat and Power Ltd.	P	Coal	300
6	VISA TPP	Chhattisgarh	VISA Power	P	Coal	600
7	Raigarh TPP U3,4	Chhattisgarh	Jindal Power Ltd	P	Coal	1200
	SUB TOTAL (Chhhattisgarh)					6230
1	Sikka TPP U-4	Gujarat	GSECL	S	Coal	250
2	Mundra UMPP, U -3,4,5	Gujarat	The Tata Power Company Ltd	P	Coal	2400
3	Bhavnagar Lignite U-1,2	Gujarat	Bhavnagar Energy	P	Lignite	500
	SUB TOTAL (Gujarat)					3150
1	Essar Tori TPP U-1,2	Jharkhand	Essar Power	P	Coal	1200
2	JAS Infra TPP	Jharkhand	JAS Infrastructure & Power Pvt Ltd	P	Coal	660
3	Corporate Power TPP PH-II	Jharkhand	Corporate Power Ltd	P	Coal	540
	SUB TOTAL (Jharkhand)					2400
1	Chandrapur TPP U-9	Maharashtra	MAHGENCO	S	Coal	500
2	Koradi TPP U-9,10	Maharashtra	MAHGENCO	S	Coal	1320

S. No.	Project Name	State	Developer	Sector	Fuel Type	Capacity (MW)
3	Koyna Left Bank PSS	Maharashtra	Water Recources Deptt (Government of Maharashtra)	S	Hydro	80
4	India Bulls- Amravati TPP Ph- II,U1-5	Maharashtra	India Bulls Realtech Limited	P	Coal	1350
5	India Bulls - Nasik TPP Ph- II,U1-5	Maharashtra	India Bulls Realtech Limited	P	Coal	1350
6	Tiroda TPP PH-II U 2,3	Maharashtra	Adani Power Ltd	P	Coal	1320
	SUB TOTAL (Maharashtra)					5920
	V. II 1 1 00000 0 VVVV 10	1.00) IMP C		G 1	7 00
1	Vindhyachal STPP St-V U-13	MP	NTPC	C	Coal	500
3	Mahan TPP U-1,2 Sasan UMPP U3-6	MP MP	Essar Power Reliance Power Ltd.	P P	Coal	1200 2640
4	Nigrie TPP U-1,2	MP	Jaypee Group	P	Coal Coal	1320
4	SUB TOTAL (MP)	IVIF	Jaypee Group	Г	Coai	5660
	SCD TOTAL (MI)					3000
1	Derang TPP U2	Orissa	Jindal India Thermal Power Ltd	P	Coal	600
2	Monnet malibrahmani U1,2	Orissa	Monnet	P	Coal	1050
3	K.V.K. Nilachal TPP U 2,3	Orissa	K.V.K. Nilachal Power Pvt. Ltd.	P	Coal	700
4	Maa Durga TPP	Orissa	Maadurga Thermal Power Co Ltd	P	Coal	60
5	Lanco Babandh - Dhenkanal TPP U-2	Orissa	Lanco Babandh	P	Coal	660
	SUB TOTAL (Orissa)					3070
1	Kawai TPP	Rajasthan	Adani Power Ltd	P	Coal	1320
2	Jalipa Lignite U 7-8	Rajasthan	Raj West Power Ltd	P	Lignite	270
3	Kalisindh TPS U2	Rajasthan	RRVUNL	S	Coal	600 2190
	SUB TOTAL (Rajsthan)					2190
1	Tashiding HEP	Sikkim	Shiga Energy	P	Hydro	97
2	Dikchu HEP	Sikkim	Sneha Kinetic Power	P	Hydro	96
3	Rangit-II HEP	Sikkim	Sikkim Hydro Power	P	Hydro	66
	•		Madhya Bharat Power		·	
4	Rongnichu HEP	Sikkim	Corp. Ltd	P	Hydro	96
	SUB TOTAL (Sikkim)					355
1	Mutiara TPP, Tuticorin, Melamaruthur U1-2	TN	Coastal Energen Pvt Ltd	P	Coal	1200
	SUB TOTAL (TN)					1200
1	Bajaj Energy TPP (Lalitpur)	UP	Bajaj Energy Pvt Ltd.	P	Coal	1980
	SUB TOTAL (UP)					1980
4	T. I. DOD	TT., 11 1	TILD		TT 1	1000
1	Tehri PSP	Uttarakhand	THDC	С	Hydro	1000
1	SUB TOTAL (Uttarakhand) DPL TPP U 8	WB	Durgapur Projects Ltd	C	Coal	1000 250
2	Sagardighi TPP U1,2	WB	WBPDCL	S	Coal	1000
	SUB TOTAL (WB)	W D	WDIDCL	3	Coai	1250
	SOD TOTAL (WD)					1230
	TOTAL					36305

Annexure 6.3

LIST OF PROJECTS PROPOSED UNDER BULK TENDERING

S. No.	Project Name	Unit X Capacity(MW)	State	Developer	Sector	Fuel Type	Total Capacity (MW)
1	New Nabinagar TPP	3x660	Bihar	NTPC JV	С	Coal	1980
2	Lara TPP	2x800	Chhattisgarh	NTPC	С	Coal	1600
3	Kudgi TPP	3x800	Karnataka	NTPC	С	Coal	2400
4	Solapur TPP	2x660	Maharashtra	NTPC	С	Coal	1320
5	Mauda Ph-II TPP	2x660	Maharashtra	NTPC	С	Coal	1320
6	Gajmara TPP	2x800	Orissa	NTPC	С	Coal	1600
7	Darlipali TPP	2x800	Orissa	NTPC	С	Coal	1600
8	Meja JV TPP	2x660	UP	NTPC JV	С	Coal	1320
9	Raghunathpur TPP	2x660	WB	DVC	С	Coal	1320
	Total						14460

Annexure 6.4 PROJECTS FOR WHICH ORDERS FOR MAIN PLANT PLACED BUT CERTAIN CLEARANCE AWAITED

Sr.N.	Project	State	Developer	Sector	Fuel type	Capacity
1	Krishnapatnam UMPP U1-6	A.P.	Reliance Power Ltd.	P	Coal	3960
2	Baurauni TPP	Bihar	BSEB	S	Coal	500
3	Raigarh TPP (600MW+660MW)	Chhattisgarh	Visa Power	P	Coal	1260
4	Avantha Bhandar TPP U-2	Chhattisgarh	Korba West Power Company Ltd.	P	Coal	600
5	Pipavav TPP	Gujarat	Pipavav Energy Ltd	P	Coal	600
6	Yermarus TPP	Karnataka	RPCL (JV of KPCL & BHEL)	S	Coal	1600
7	Edlapur TPP	Karnataka	RPCL (JV of KPCL & BHEL)	S	Coal	800
8	Bellary TPP U-3	Karnataka	KPCL	S	Coal	700
9	DB Power TPP (Sidhi) U-2	MP	DB Power	P	Coal	660
10	Navabharat Power Pvt.Ltd TPP U1-3	Orissa	Navabharat Power Pvt.Ltd	P	Coal	1050
11	Karchana TPP	UP	Sangam Power Generation Company Ltd (JP Group)	P	Coal	1320
	Total					13050

Annexure 6.5 PROJECTS FOR WHICH COAL TIED-UP BUT ORDERS FOR MAIN PLANT NOT PLACED

S. No.	Project Name	State	Sector	Fuel Type	Capacity (MW)
1	BPL POWER PROJECTS (AP) LTD	A.P.	P	Coal	600
2	TPP OF M/s VIDEOCON INDUSTRIES LTD.	Chhattisgarh	P	Coal	660
3	DHEERU POWER GEN PVT. LTD.	Chhattisgarh	P	Coal	1050
4	PEL POWER LTD. AMRELI	Gujarat	P	Coal	500
5	TILAIYA UMPP BY RELIANCE POWER LTD.	Jharkhand	P	Coal	3960
6	APARNA INFRAENERGY	Maharashtra	P	Coal	250
7	JINBHUVISG POWER GENERATION LTD 2X250	Maharashtra	P	Coal	500
8	CENTRAL INDIA POWER CO. LTD	Maharashtra	P	Coal	660
9	GUPTA ENERGY LTD.	Maharashtra	P	Coal	540
10	NSL POWER PVT. LTD	TN	P	Coal	1320
11	TIRUMALAI TPP PEL POWER LTD.	TN	P	Coal	500
12	OBRA EXTN U-1 (UPRVUNL)	UP	S	Coal	660
	TOTAL				11200

Annexure 6.6 SHELF OF GAS BASED POWER PROJECTS UNDER CONSTRUCTION (GAS NOT TIED UP)

S.No.	Name of Power Station /Agency	Capacity(MW)	Located in State
	Central Sector		
	STATE SECTOR		
1	Bawana CCGT *	750	Delhi
2	Dhuvran Extn (GSECL)	375	Gujarat
3	Pipavav JV CCGT	702	Gujarat
	Sub Total (S.S.)	1827	
	Private Sector		
4	Vemagiri exp by GREL	768	A.P.
5	Lanco Kondapalli Exp (St-III)	770	A.P.
6	Kashipur CCGT (Sravanti Energy P Ltd) I&II	450	Uttarakhand
7	Samalkot Expansion	2400	A.P.
8	Gegrupadu Exp. (St-III)I	400	A.P.
9	Gautami St-II (Phase-I)	800	A.P.
10	CCGT by M/s PSPL(Pandu Ranga) –Ph-I	110	A.P.
11	RVK (Rajahmundry) Private Ltd.	436	A.P.
12	Sugen Phase-I Unit -4 M/s Torrent	382.5	Gujarat
13	Dahej SEZ (Torrent) 3 Modules	1200	Gujarat
14	CCGT by M/s Beta Infratech Private Ltd	225	Uttarakhand

15	CCGT by M/s Gama Infratech Pvt Ltd	225	Uttarakhand
16	CCPP by M/s Guruji Power Pvt Ltd (GPPL)	110	Uttarakhand
17	CHP at Bidar by Saheli Exports Pvt. Ltd.	70	Karnataka
18	CCGT at Kuttalam by Saheli Exports P Ltd.	30	Tamilnadu
19	Latur CCPP by Hecate Power Systems P Ltd.	800	Maharashtra
20	CCPP by M/s H Energy Co. Pvt. Ltd.	350	Maharashtra
21	CCGT by M/s KPR Chemicals Ltd.	225	AP
22	CCGT by M/s Pioneer Gas Power Ltd	400	Maharashtra
23	PPN Expansion by PPN Power Generation Co Ltd	1080	Tamil Nadu
24	Gas Engine at Pashamylaram By Astha Power	35	AP
	Sub Total (But Septem)	112665	
	Sub Total (Pvt Sector)	11266.5	
	TOTAL (SS+PS)	13093.5	

Total capacity of Bawana CCGT is 1500 MW, out of it 750 MW was commissioned during 11th Plan.

 $\label{eq:Annexure 6.7} \mbox{LIST OF POWER PROJECTS REQUESTED FOR INCLUSION IN THE 12^{th} PLAN}$

S. No.	Project Name	State	Developer	Sector	Fuel Type	Capacity (MW)
1	AGTP	Tripura	Neepco	C	Gas	46
2	Jangir Champa TPP	Chhattisgarh	MB Power	P	coal	1320
3	DR TPP Ext. (Yamuna Nagar)	Haryana	HPGCL	S	Coal	660
4	Tuticorin St-IV	TN	Spic Electric Power Corporation Pvt. Ltd	Р	Coal	525
5	Srikaji TPP	TN	Sindia Power	P	Coal	1320
6	Bhognipur TPP	UP	Lanco	P	Coal	3960
7	Sandila TPP	UP	Torrent Power	P	Coal	1320
8	Ghatampur TPP	UP	UPRVUNL & NLC JV	S	Coal	1980
9	Jawaharpur TPP	UP	UP UPRVUNL		Coal	1980
	Total					13111

Annexure 6.8 LIST OF HYDRO PROJECTS IDENTIFIED FOR LIKELY BENEFITS DURING 13TH PLAN

Sl. No.	Name of scheme	State	Sector	Developer	Capacity (MW)
1	Dummugudem	A.P.	S	APID	320
2	Pollavaram MPP	A.P.	S	APID	960
3	Singareddypally	A.P.	S	APID	320
4	Tawang-I	Ar. Pr	С	NHPC	600
5	Tawang-II	Ar. Pr	С	NHPC	800
6	Demwe Lower	Ar. Pr	P	Athena Demwe	1750
7	Dibbin	Ar. Pr	P	KSK Dibbin Hydro Power Pvt. Ltd.	120
8	Siang Lower	Ar. Pr	P	Jaiprakash Associates Ltd.	2700
9	Nyamjunchhu	Ar. Pr	P	Bhilwara Energy Ltd	780
10	Londa(Talong)	Ar. Pr	P	GMR Energy Ltd.	225
11	Nafra	Ar. Pr	P	SEW	120
12	Tato-II	Ar. Pr	P	Reliance Enegy Ltd.	700
13	Dardu	Ar. Pr	P	KVK	60
14	Mago Chhu	Ar. Pr	P	SEW	96
15	Par	Ar. Pr	P	KVK	65
16	Rego	Ar. Pr	P	TUFF Energy	141
17	Dinchang	Ar. Pr	P	KSK	90
18	Nyukcha Rong Chhu	Ar. Pr	P	SEW	96
19	Lower Kopili	Assam	S	Assam GENCO	150
20	Dhaula Sidh	H.P.	С	SJVNL	66
21	Bajoli Holi	H.P.	P	GMR	180
22	Kutehr	H.P.	P	JSW	240
23	Dhamwari Sunda	H.P.	P	Dhamwari Power Pvt Ltd	70
24	Kashang -IV	H.P.	S	HPPCL	48
25	Renuka Dam	H.P.	S	HPPCL	40
26	Shongtong Karcham	H.P.	S	HPPCL	450
27	Kawar	J & K	С	NHPC	520
28	Kiru	J & K	С	NHPC	600
29	New Ganderbal	J & K	S	JKPDC	93
30	Gundia-I	Karnataka	S	KPCL	200
31	Gundia-II	Karnataka	S	KPCL	200
32	Shiva Samudram Seasonal HEP	Karnataka	S	KPCL	345
33	Athirapally	Kerala	S	KSEB	163
34	Mankulam	Kerala	S	KSEB	40
35	Achenkovil	Kerala	S	KSEB	30
36	Pambar	Kerala	S	KSEB	40
37	Loktak D/S	Manipur	С	NHPC	66
38	Balimela Dam Toe	Orissa	S	Orissa & AP JV	60
39	UBDC-III	Punjab	P	Bhilwara Energy Ltd.	75
40	Shahpur Kandi	Punjab	S	PSEB	206
41	Teesta -IV	Sikkim	С	NHPC	520
42	Ting Ting	Sikkim	P	TT Energy	99
43	Panan	Sikkim	P	Himagiri	300
44	Kundah PSS	Tamil Nadu	S	TNEB	500
45	Lata Tapovan	Uttarakhand	С	NTPC	171
46	Vishnugad Pipalkoti	Uttarakhand	С	THDC	444
47	Kotlibhel-IA	Uttarakhand	С	NHPC	195
48	Kotlibhel-IB	Uttarakhand	С	NHPC	320

Sl. No.	Name of scheme	State	Sector	Developer	Capacity (MW)
49	Kotlibhel-II	Uttarakhand	С	NHPC	530
50	Rupsiyabagar Khasiyabara	Uttarakhand	C	NTPC	260
51	Naitwar Mori (Dewra Mori)	Uttarakhand	С	SJVNL	56
52	Devsari Dam	Uttarakhand	C	SJVNL	252
53	Alaknanda (Badrinath)	Uttarakhand	P	GMR	300
54	Hanol Tiuni	Uttarakhand	P	Sunflag	60
55	Bogudiyar Sirkari	Uttarakhand	P	GVK	146
56	Mapang Bogudiyar	Uttarakhand	P	GVK	200
57	Pala Maneri	Uttarakhand	S	UID	480
58	Arkot Tiuni	Uttarakhand	S	UID	81
59	Tuini Plasu	Uttarakhand	S	UID	72
60	Bowala Nand Prayag	Uttarakhand	S	UJVNL	300
61	Nand Prayag Langasu	Uttarakhand	S	UJVNL	100
62	Tamak Lata	Uttarakhand	S	UJVNL	280
63	Ramam -III	W. B.	С	NTPC	120
64	Ramam -I	W. B.	S	WBPDCL	36
65	Ramman Ultimate- (IV)	W. B.	S	WBPDCL	28
	Total				19675

Chapter 7

OPTIMIZATION OF LAND AND WATER REQUIREMENTS FOR THERMAL POWER PLANTS

7.0 INTRODUCTION

Large capacity addition is envisaged in the country during the 12th Plan and beyond. A capacity of about 88,000 MW is required during 12th Plan and a capacity of similar magnitude during 13th Plan is to be added. This requires installation of large number of coal and gas based plants. To achieve faster capacity addition targets, large capacity plants including 4,000 MW size Ultra Mega power plants(UMPPs) using 660/800 MW supercritical units have been envisaged for installation at different sites mainly at pithead and coastal locations. Availability of adequate land and water are key requirements for installation of a thermal power plant.

In the past, because of comparatively slow pace of capacity addition, availability of adequate land was not a big constraint and plants could be located as per other applicable criteria viz. availability of coal and water. However, since expansion of power sector has been taken up in a big way, availability of land has become a constraint and is posing a big challenge for currently planned and future plants. Land has become premium resource and its acquisition has also become difficult on account of other competing sectors and opposition of local population. In this background, optimum utilisation of land has gained significance so that maximum plant capacity could be installed on the available land.

7.1 LAND REQUIREMENT

Land requirement for a coal based plant depends upon a number of factors such as capacity of the plant & unit size adopted, quality of coal & its storage requirement, type of CW system adopted, source of raw water & its storage requirement and plant design aspects. For coal based plants, land is basically required for main plant systems/ equipment, ash dyke, pipe corridors (for ash and raw water) and township. Plants based on imported coal require less land as compared to those based on indigenous coal on account of considerably reduced requirement for ESP, coal handling system, ash handling system and ash dyke. Type of CW system viz. open cycle or cooling tower system also has a significant impact on land requirement of the plant.

Land requirement for ash dyke varies over wide range depending upon quality of coal, method of ash disposal and utilization of fly ash. Fly ash and bottom ash were earlier conventionally disposed off to ash pond in the form of lean slurry requiring large pond area. However, with increased concentration of wet slurry up to 25% and use of other techniques such as HCSD (High concentration slurry disposal) and dry fly ash disposal, the land required for ash dyke has considerably reduced. MOEF's stipulation for progressive utilization of fly ash up to 100% within a given time frame has reduced the quantum of ash to be disposed off to ash dyke. Use of washed coal and blending of imported coal with indigenous coal has also resulted in reduced land required for ash dyke. New plants based on imported coal would be requiring least land for ash dyke.

7.1.1 Committee for Optimisation of Land Requirement

In view of large capacity addition proposed to be based on coal based plants, need had been felt to optimize the land requirement for thermal plants. As large capacity plants with large size units are required to be installed to achieve the intended high capacity targets, CEA had set up a committee in April, 2007 to go into the aspect of land requirement for thermal plants and suggest minimum land requirement for various size plants. The Committee submitted its report in December, 2007 and has analysed land requirement aspects for various sizes & combinations of the plants viz. indigenous coal/imported coal, open cycle/closed cycle CW system. The Committee has recommended the land requirement as indicated in **Table 7.1 & 7.2** below:

[भाग III-खण्ड 4] भारत का राजपत्र : असाधारण 403

Table 7.1 Indigenous Coal (Pithead Stations)

Sl. N.	Description	Land requirement (acres) (acre/MW)					
		2x500MW	3x660MW	6x660MW	5x800MW		
i)	Main power plant	600 (0.6)	850 (0.43)	1250 (0.32)	1170 (0.29)		
ii)	Ash dyke	500	855	1630	1200		
iii)	Other facilities (pipe corridors & raw water pump house etc.)	220	245	250	250		
iv)	Township	100	100	150	150		
	Total land requirement (acres)	1420	2050	3280	2770		
	(acres/MW)	(1.42)	(1.04)	(0.83)	(0.69)		

Table 7.2 Imported Coal (Coastal Stations)

Sl. N.	Description		Land requirement (acres) (acre/MW)							
		3x66	0MW	6x66	0MW	5x80	0MW			
		Without	With	Without	With	Without	With			
		MGR &	MGR &	MGR &	MGR &	MGR &	MGR &			
		without	with	without	with	without	with			
		cooling	cooling	cooling	cooling	cooling	cooling			
		tower	tower	tower	tower	tower	tower			
i)	Main power plant	400	570	630	880	570	840			
		(0.2)	(0.29)	(0.16)	(0.22)	(0.14)	(0.21)			
ii)	Ash dyke	240	240	400	400	390	390			
iii)	Other facilities (pipe corridors & raw water pump house etc.)	100	140	110	150	110	150			
iv)	Township	100	100	150	150	150	150			
	Total land requirement (acres)	840	1050	1290	1580	1220	1530			
	(acres/MW)	(0.42)	(0.53)	(0.33)	(0.4)	(0.3)	(0.38)			

The Committee has suggested that further reduction in land requirement is possible for ash dyke and the colony. The land requirement could also be reduced considerably by setting up of integrated projects for fly ash utilization, compact design of the plant and adopting multi storey concept of the township.

7.2 WATER OPTIMIZATION TECHNOLOGIES IN THERMAL POWER PLANTS

7.2.1 Introduction

Water is one of the key inputs for thermal power generation. Historically, thermal power plants were located near water bodies and adequate quantity of water was assured on sustained basis. With all round development in the country and vast growth of thermal power stations, the availability of water has become scarce. As drinking and irrigation uses have got priority in allocation of water over industrial use and power generation, the thermal power plants are facing constraints in availability of adequate fresh water. Judicious utilization of water and recycling of plant waste water in thermal plants has become important so as to reduce net drawal from the source water body to bare minimum.

Large coal based capacity is required to be added during 12th Plan and beyond. This requires large number of new sites for setting up coal based power stations. Primary criteria for deciding selection of sites is availability of land and water. Much of the new capacity is envisaged near pit-head due to economics of coal transportation and in coastal regions. Difficulties are already being faced in selection of new sites due to non-availability of water, particularly in coal bearing states like Orissa, Jharkhand and Chhatisgarh where large number of sites have been identified. Difficulties are also being faced in finding coastal sites particularly on west coast. This problem is expected to be aggravated in future when more sites would be required. Thus there is a need to minimise water requirement in water scarce regions to enhance the siting options for thermal power plants.

7.2.2 Plant Water System

The plant water system including cooling water system depends upon source of raw water. Cooling water system may be of once through open cycle type or closed cycle open recirculating type using cooling tower. For all inland plants based on fresh water sources such as river, canal, lake, and reservoir, it is now mandatory to install closed cycle cooling system employing cooling towers. Open cycle cooling system is permitted only in coastal regions. Sea water based cooling towers are also adopted at coastal sites depending upon techno-economic considerations.

The raw water input to the plant needs to be treated to make it suitable for use in various plant applications. Typically, raw water is treated in clarification plant to produce clarified water which is used for clarified water applications such as cooling tower make up & service water etc. and as input water for DM plant & potable water system. The scheme of DM plant typically consist of pressure filters, cation exchanger, degasser, anion exchanger and mixed bed polisher. The scheme of potable water system consist of filtration, chlorine dosing and any other treatment as required to make water fit for drinking. The waste water generated in various treatment sections (clarifier sludge, filter back wash and regeneration waste of DM plant etc.) is suitably recycled and reused with or without treatment to the extent possible.

7.2.3 Water Requirement

In a thermal power plant, bulk of the water is required for make up to the condenser cooling water system and for wet ash disposal. Other water requirements include power cycle make up, service and potable uses, coal dust suppression etc. The cooling tower blow down is used for disposal of ash.

Plant water requirement is governed by a number of factors such as quality of raw water, type of condenser cooling system, quality of coal, type of ash disposal system, waste water management aspects. Consumptive water requirement for a typical 1000MW capacity plant with different modes of ash handling system is indicated in **Table 7.3** below:

Table 7.3

Sl.	Type of ash handling system		COC** of	Plant water consumption	
No.	Fly ash	Bottom ash	CW system	(m^3/h)	
1	Normal mode – Dry Emergency – Wet	Wet	5.0	2900*	
2	Normal mode- Dry	Wet	5.0	2850	
2	Emergency – HCSD***	Wet	3.0	2030	

Note:

The requirement of plant consumptive water can further be reduced by adopting technologies which facilitate in minimizing requirement of water.

7.2.4 Plant Water Optimization Technologies

There has been continued endeavour for optimization of plant water system in thermal power plants on account of water scarcity and reducing allocation of water for thermal generation. Over a period of time in the past, plant water requirement has been optimized by judicious utilization of water for various applications, adequate treatment for deteriorating of quality of raw water, adoption of reduced margins in various consumptive uses and use of plant waste waters in various low grade applications. Further optimization in plant water requirement has been achieved by adopting techniques aimed at reducing consumptive requirement of various applications and recycling of plant waste waters to maximum extent. The requirement and scheme for utilization of plant waste water is also governed by stipulation of MOEF and CPCB/ SPCB in this regard. In some recent projects, MOEF has stipulated the requirement of zero effluent discharge from plant boundary which has a great bearing on plant water scheme and treatment of waste water to be adopted. Technologies/measures that can be adopted for optimization of the water required for thermal plants are described below:

7.2.4.1 Cooling Water System

Cooling water system is provided to remove the waste heat in condenser and plate heat exchangers of boiler and turbine auxiliaries. Cooling towers involve evaporation of water and require blow down to limit the build up of dissolved salts in the circulating water. Make up water is added to cooling water system to compensate for loss of water due to evaporation, drift and blow down.

Dry cooling systems which do not involve evaporation of water, thus not requiring any make up water for condenser cooling system can also be used for reduction of plant consumptive water to a large extent.

7.2.4.2 Optimisation in wet cooling system

Wet cooling towers require make up water, the quantum of which depends upon cycle of concentration (COC) that can be maintained in the CW system. The COC to be adopted in the CW system primarily depends upon quality of make up water. Present practice is to use clarified water as make up to the cooling tower and operate the CW system at COC of 5.0 with suitable chemical dosing so as to optimize the plant water requirement. This requires CT make up water of typically 2 % of CW flow, and blow down water to be effected from CW system amounts to 0.35 % of the CW flow.

The water for ash handling plant is tapped from available blow down water. In case, requirement of ash handling plant is less than available blow down water from CW system, the balance blow down is led to the CMB of the plant. If water requirement of ash handling plant gets further reduced viz. by adoption of dry ash handling, recycling of ash pond water etc., there shall be increase in blow down water to be disposed off to the CMB. The quantum of blow down water can be reduced by increasing the COC of CW system which can be achieved by suitably improving the chemical regime of circulating water.

^{*} During initial period of plant operation till adequate utilization of fly ash is achieved, wet mode shall be used for disposal of fly ash and additional requirement of water during this period shall be about 600 m³/h over that indicated above.

^{**} Cycle of Concentration

^{***} High Concentration Slurry Disposal

7.2.4.3 Dry cooling system

Dry cooling systems refer to rejection of power cycle waste heat directly to the atmosphere by cooling in finned tubes by air. Unlike wet cooling systems which operate with respect to ambient wet bulb temperature and involve both sensible and latent heat transfer, dry cooling systems operate with respect to ambient dry bulb temperature and involve only sensible cooling. Large surface area of finned tubes is required for heat exchange in dry cooling system. The turbine back pressure achievable in dry cooling system is considerably higher than in wet cooling system on account low heat transfer coefficient and operation with respect to dry bulb temperature. Dry cooling systems can be broadly classified in following two categories:-

- a) Direct dry cooling systems
- b) Indirect dry cooling systems.

In direct dry cooling system, steam exhaust from LP turbine is directly cooled in a system of finned tubes by ambient air using mechanical draft fans. To reduce pressure drop in steam conveying system, these units called air cooled condenser (ACC) need to be installed close to the turbine hall. The finned tubes are generally arranged in the form of an 'A' frame or delta over forced draft fans to reduce the land area requirement.

In an indirect dry cooling system, turbine exhaust steam is cooled by water in a condenser which can be of surface type or direct contact type and hot water is cooled by air in finned tube bundles utilizing natural draft tower. Because of water piping involved, these air cooled units can be located away from the main plant. Heat exchanger elements are vertically arranged at base of the tower along its periphery with cooling taking place by air drawn by buoyancy of hot air inside the tower shell.

Dry cooling technologies have higher equipment cost and result in reduced power output of the unit due to high condenser back pressure leading to high turbine cycle heat rate. However, these technologies provide an option of locating the thermal plants in water scarce regions. There are considerable number of dry cooling installations including for large size units (≥ 600 MW) operating in different parts of the world. In India, some small size combined cycle plants, captive power plants and industrial units have also provided with air cooled condensers.

In order to explore the possibility of reducing the plant consumptive water requirement by application of dry cooling system for condenser cooling in thermal power plants, CEA, has set up a committee with members drawn from NTPC, BHEL, RRVUNL, MAHAGENCO, CESC and TCE to examine the issue of dry cooling system for condensers in thermal power plants. The committee is expected to suggest available options of dry cooling systems for thermal power plants keeping in view various techno- economic aspects involved.

7.2.5 Ash Handling System

Various technologies/measures that can be adopted for minimizing the requirement of water for ash handling system are described below:

7.2.5.1 Recovery and reuse of ash water

Thermal power plants have conventionally been provided with wet ash disposal system. Fly ash and bottom ash is discharged to low lying ash pond in the form of a lean slurry. As per requirement of MOEF, ash pond water is to recovered and reused in ash handling system to conserve the water. Typically, 70% water can be recovered from the ash pond and reused in ash handling plant. Thus, requirement of water to be supplied to the ash handling plant from plant water system gets reduced to this extent.

7.2.5.2 Dry ash disposal

Wet ash disposal results in contamination of ground water on account of seepage from ash pond, and areas surrounding the pond are under threat for possible breach of ash bund. Dry ash disposal overcomes these issues besides reduction in consumptive water and facilitates utilization of fly ash in cement plants, building material, landfill, embankments etc. With progressive increase in utilization in fly ash, the wet disposal of ash is getting reduced. The plant water is required only for wet disposal of bottom ash which is about 20% of total ash generation and part of fly ash which is not disposed off in dry form.

7.2.5.3 Dry bottom ash handling

Bottom ash is conventionally handled in water impounded hoppers and then grinded in clinker grinders for subsequent disposal to ash pond alongwith fly ash in the form of lean slurry. Semi-dry method using hydro- bins have also been used in some of the power plants. To conserve water, bottom ash can be disposed in dry form also. Technologies are

available for dry extraction, cooling and conveying of bottom ash from pulverized coal fired boilers. In India, this technology is being used in one thermal power plant with unit size of 300 MW.

7.2.5.4 High concentration slurry disposal (HCSD) system

As the name suggests, HCSD refers to disposal of fly ash from coal fired thermal power plant to ash disposal area in the form of high concentration slurry. The process is environmental friendly and involves pumping of high solids concentration slurry with more than 60% solids by weight employing positive displacement pumps as compared to lean slurry transportation at about 20% concentration. The slurry forms a natural slope on the disposal area without need for mechanical spreading and with minimal release of water and generates a stable and dry landfill. The water consumption of HCSD system is lower by a factor of about 6 as compared to water requirement by lean slurry disposal. However, if recovery of water from ash pond is taken into consideration, there may not be very substantial saving in water consumption as compared to wet disposal method.

7.2.6 Minimising Effluent Discharge

Waste waters generated in a typical thermal power plant include clarifier sludge, filter back wash, CT blow down, boiler blow down, regeneration waste of DM plant & condensate polishing plant etc. An optimized plant water scheme requires that sludge water and filter back wash water are recycled to pre treatment plant and other waste waters are utilized to maximum extent in low grade applications. The unutilized waste has high TDS on account of CT blow down and regeneration waste. If water is to be recovered from this waste water for recycling in the plant, its treatment would require application of reverse osmosis technology to have maximum recovery of water and minimum quantity of concentrated brine reject.

7.3 WATER SAVING

As can be seen from above that various possibilities exist for reduction of plant water consumption which need to be applied on case to case basis. For plants with wet cooling towers, water reduction can typically be achieved in an optimum manner by operating the CW system at a practically possible higher COC, recycling of clarifier sludge water & filter back wash in pre treatment plant, reduced consumption in ash handling plant and maximum utilization of waste water. These measures can result in plant water saving of about 20%. If dry cooling system is adopted in combination with dry handling of ash, plant water consumption can be reduced by about 80-85%.

----+++----

Chapter 8

LOW CARBON GROWTH STRATEGY FOR INDIAN POWER SECTOR FOR 12th & 13th FIVE YEAR PLANS

8.0 INTRODUCTION

Power is one of the most essential infrastructural requirements for the overall development of the country's economy. All the industries are heavily dependent for their successful operation on the availability of reliable and quality power at reasonable rates. The commercial and domestic power requirements of the county are also increasing rapidly. Therefore, making available power on demand to all is one of the top most priorities of the Government. Making power available to the consumers, be it industries, enterprise, domestic consumers or farmers for their use, involves an overall development of the entire chain from power generation to its transmission and ultimately its distribution to the point of consumption in the most optimum and efficient manner.

The demand for power has been continually outstripping the growth of generation and therefore peak and energy shortages still prevail in the country either due to inadequate generation or inadequate transmission & distribution facilities despite the fact that generation capacity has increased many fold since independence. The demand for electricity in the country has been growing at an average growth rate of about 7 to 8% and demand-supply gap has widened over the years. Providing reliable and inexpensive electricity is the goal for economic development of the country and better standard of living of the people.

Besides its importance in the growth of the country's economy, it plays a major role in the life of a common man and has a direct impact on the quality of life. About 56.5% of our rural households still do not have access to electricity and therefore the national common minimum programme of our government has set a target of completing electrification of all households in coming five years.

While we have to enhance availability of energy to meet our growing demand, as a responsible nation India has decided to adopt a Low Carbon Growth Strategy to reduce the energy intensity and promote sustainable development of the country. Sustainable development is one that **meets the needs of the present without compromising on the ability of the future generations to meet their own needs**. With a view to reduce Green House Gas emission, harnessing of renewable resources to the extent possible, promotion of hydro and nuclear generation, enhancing efficiency of the existing power plants and introduction of new technologies for power generation for enhancing efficiency and demand side management and conservation are being pursued. Since coal will continue to dominate power generation in future, Super Critical Technology has been proposed to be introduced. To produce power this technology will convert coal far more efficiently than pulverized coal boiler technology with Sub-Critical steam parameters. Initiatives have also been taken to undertake feasibility studies towards introduction of Integrated Gasification Combined Cycle (IGCC) technology for power generation.

This note details the strategy being adopted by the Indian Power Sector to reduce GHG emissions in line with government's objectives enshrined in NAPCC.

8.1 INSTALLED CAPACITY AS ON 31-03-2012

The total installed capacity as on 31-03-2012 was 1,99,877 MW comprising of 38,990 MW hydro, 1,31,603 MW thermal (including gas and diesel), 4,780 MW Nuclear and 24,503 MW Renewable Energy sources. The type-wise details of installed capacity as on 31-03-2012 are given in Table 8.1 and shown in Pie **Chart 8.1** below.

Table 8.1 Installed Capacity as on 31.03.2012

Sector	Hydro (MW)		Therma	l (MW)		Nuclear (MW)	R.E.S * (MW)	Total (MW)
		Coal	Gas	Diesel	Total		(MNRE)	
State	27380	49457.0	4965.32	602.61	55024.93	0	3513.72	85918.65
Private	2525.00	23450.38	6713.50	597.14	30761.02	0	20989.73	54275.75
Central	9085.4	39115.00	6702.23	0	45817.23	4780	0	59682.63
Total	38990.4	112022.38	18381.05	1199.75	131603.18	4780	24503.45	199877.03

- RES Renewable Energy Sources
- Present IC as on 31.10.2012 is 2,09,276 MW

Chart 8.1

8.2 GENERATION MIX DURING 2011-12

The energy generation during 2011-12 was 929 BU comprising 136 BU hydro (including 5.3 BU imports from Bhutan), 708BU thermal (including gas and diesel), 32 BU nuclear and 52 BU energy from Renewables. The generation break-up during 2011-12 is given below:

Table 8.2 Energy generation during 2011-12

Hydro (BU)	Thermal (BU)	Nuclear (BU)	RES* (BU)	Total (BU)	
136 (14.7%)	708 (76.3%)	32 (3.4%)	52 (5.6%)	929 (100%)	

Chart 8.2

It may be seen that share of fossil fuels in installed capacity is 66%, while the share of the same in energy generation is 76% indicating that the fossil fuel capacity has been operating at a higher PLF thus generating more. Fossil fuels based generation, as such is the back bone of Indian Power Sector.

8.3 CAPACITY ADDITION DURING 11TH PLAN

During the 11th Plan period (2007- 2012), Planning Commission had set a capacity addition target of 78,700, MW comprising 15,627 MW hydro, 59693 MW thermal and 3380 MW nuclear projects as summarized in **Table 8.3.**

Table 8.3

Sector	Hydro		Ther	Nuclear	Total		
		Coal	Gas	Diesel	Total		
State	3482.0	19985.0	3316.4	0.0	23301.4	0.0	26783.4
Private	3491.0	9515.0	2037.0	0.0	11552.0	0.0	15043.0
Central	8654.0	23350.0	1490.0	0.0	24840.0	3380.0	36874.0
Total	15627.0	52850.0	6843.4	0.0	59693.4	3380.0	78700.4

As per the Mid Term Review, the likely capacity addition target during the 11th plan period was 62,374 MW. A capacity of 54964 MW has been commissioned during 11th Plan. The fuel-wise break-up of Mid Term Target of capacity addition during 11th Plan is summarized in **Table 8.4**. Actual Capacity addition during 11th plan is given in Table 8.4(a)

Table 8.4

SECTOR	Hydro	Thermal	Nuclear	Total (MW)
CENTRAL	2922	14920	3380	21222
STATE	2854	18501	0	21355
PRIVATE	2461	17336	0	19797
TOTAL	8237	50757	3380	62374
	(13.2%)	(81.4%)	(5.4%)	(100)

Tal	ole	8.4	(a)

SECTOR	Hydro	Thermal	Nuclear	Total (MW)
CENTRAL	1550	12790	880	15220
STATE	2702	14030	0	16732
PRIVATE	1292	21720	0	23012
TOTAL	5544	48540	880	54964
	(10.1%)	(88.3%)	(1.6%)	(100)

8.4 EMISSION FACTOR (kg/kwh of CO₂)

The weighted average emissions (tonnes of CO₂/Mwh) fuel wise for different types of generation as per actual during 2010-11 and possible with latest technology are indicated in **Table 8.5.**

Table 8.5
Weighted Average Emissions Fuel- Wise (tCO2/MWh) *

Fuel	During 2010-11	With Latest Technology
Coal	1.06	0.88 (Super Critical HR 2326)
Gas	0.44	0.34 (CCGT η - 53%)
		0.25 (CCHP η - 70%)
Oil	0.64	
DG Sets	0.55	
Bio Mass	Co2 Neutral	Co2 Neutral

^{*} Values calculated on net generation

The actual emission factor and absolute CO_2 emission upto 2011-12 i.e. by the end of 11th Plan for Indian Power Sector on the basis of total generation is given in **Chart 8.3.**

It can be seen that emission factor has been reducing over the years despite rise in CO₂ emissions.

8.5 ELECTRICAL ENERGY REQUIREMENT PROJECTION

The requirement of electrical energy by the end of 12th & 13th plan as per 18th EPS report is shown in Chart 8.4.

Chart 8.4

To meet the power demand of the country during 12th & 13th Plan with as low increase in emissions as practicable, a Low Carbon Growth Strategy has been adopted in generation planning as summarized below.

8.6 LOW CARBON GROWTH STRATEGY

Following are a few measures being considered to ensure low carbon growth during the 12th & 13th five year plans.

(i) Promote Hydro Power Development

Development of hydro projects from planning to commissioning takes a long time and therefore advance planning of hydro projects is necessary. CEA has prepared hydro development plan for the 12th five year plan in Sept, 2008. All out efforts were made to get timely Statutory Clearances of Projects identified for 12th Plan capacity and to ensure placement of orders for main packages in 11th Plan itself so that projects could fructify during the 12th Plan.

Water & Water power is a state subject. A large no. of hydro project sites have been allocated to public & private companies for development. These projects are likely to be commissioned during 12th & 13th Plans. CEA has been monitoring the progress of survey & investigation and preparation of Detailed Project Reports and construction for these projects in close coordination with the developers.

Based on the status of various hydro projects, it has been estimated that a capacity of about 10,897 MW could materialize during 12th Plan. In view of inherent advantages of hydro projects, they have been considered as must run in the planning exercise.

(ii) Promote Renewable Energy including Solar Power

The Renewable Purchase Obligation (RPO) has been notified by different SERCs for respective states. The Renewable Purchase Obligation (RPO) is the obligation mandated by the State Electricity Regulatory Commission (SERC) under the Act, to purchase minimum level of renewable energy out of the total consumption in the area of a distribution licensee. Feed in tariff for renewable energy has been notified by CERC and a number of State Electricity Regulatory

Commissions for different types of renewable generation. To promote use of renewable energy, Renewable Energy Certificate (REC) mechanism has been proposed by CERC. REC is a market based instrument to promote renewable energy and facilitate renewable purchase obligations (RPO). REC mechanism is aimed at addressing the mismatch between availability of RE resources in state and the requirement of the obligated entities to meet the renewable purchase obligation (RPO).

Jawahar Lal Nehru National Solar Mission is a major initiative of the Government of India to promote ecologically sustainable growth while addressing India's energy security challenge. It will also constitute a major contribution by India to the global effort to meet the challenges of climate change and tap the vast renewable potential available in India from solar power. MoP and MNRE are finalizing strategies for development of Solar Projects totaling 1000 MW through NVVNL by 2013 which includes 200 MW roof top solar by 2013 under phase-I of the programme. Further, SERCs are to specify RPOs in respect of solar energy and MoP is to make necessary modification in NEP/ Tariff Policy.

One objective of the National Solar Mission is to create an enabling policy framework for the development of 20,000 MW of solar power by 2022.

(iii) Promoting New Gas based Generation

There is a need to develop gas based generation capacity in the country in order to meet our growing demand of power and reduce CO_2 emissions. Besides being environmentally benign, the gas projects have high efficiency, low gestation period, low capital cost and require less land and water. Gas projects are ideally suited for meeting peaking requirements. CEA has already projected the following additional requirement for 12^{th} Plan. Adding gas based flexible peaking capacities also reduce backing down of coal based power plants and in turn lower CO_2 emissions.

Table 8.6 Additional gas requirement for 12th plan

Particulars	Gas capacity in MW	Gas requirement at 70% PLF (mmscmd)
CCHP Capacity	2,000	8.0
Gas based capacity at the brown field sites or at green field sites including	21,000	78.0
Peaking Gas based capacity to be located near large cities	2,000	4.0 *
Total	25,000	90.0

^{*} Considering operation for about 5-6 hours daily for peak load and in contingencies

However, in view of reduced production from KG basin in recent past, even the firm quantity of allocated gas is not being supplied to power plants and the country is facing huge generation loss. Most of the existing power plants are operating at very low PLF and few power plants are lying idle due to non-availability of gas. Presently, about 13,000 MW gas based capacity in the country is under various stage of construction. But non-availability of gas to new power plants at present, have serious constraint in development of gas power plant in the country. Import of RLNG with proper policy support is required to promote new gas based generation in India.

(iv) Notification of CEA regulation on construction of power plants indicating mandatory minimum efficiency levels

CEA's technical regulation for construction of electrical plants and lines has been notified in August, 2010. These regulations indicate mandatory minimum efficiency level of power plants and transmission equipments.

(v) Retirement of Old and Inefficient Coal based Generating units

Retirement of Old and Inefficient thermal Plants and replacing them with new and more efficient units is an effective way of using the fuel and minimizing GHG Emissions. During the 11th Plan 1500 MW of capacity was retired. This comprises of coal and lignite units of unit size lesser than 100 MW.

A capacity of about 4000 MW is proposed to be retired during the 12th and 13th Plan each which includes the remaining units of coal & lignite under 100 MW, gas plants more than 30 years old (1987 & before) and some coal based units of 110 MW capacity.

(vi) Implementation of National Enhanced Efficiency Renovation and Modernization Program.

CEA has already prepared a National Enhanced Efficiency Renovation and Modernisation Programme for implementation during 11th and 12th Plans. This covers R&M of 18965 MW capacity during 11th Plan and 4971 MW during 12th Plan. Renovation and Modernisation (R&M) and Life Extension (LE) of existing old power stations provide an opportunity to get additional generation at low cost in short gestation period. Besides generation improvement, it results in improvement of environmental emissions and improvement in availability, safety and reliability. To incentivise States, 50% of generation capability of the unit just before shut down for R&M may be compensated by way of additional allocation from unallocated quota during the normative period of shut down. Low interest rate financing for enhanced efficiency based R&M has also been initiated.

(vii) Adoption of Clean Coal Technology

As per Low Carbon Growth Strategy, adoption of clean coal technology which includes addition of Super Critical units, promotion of IGCC, CFBC technology is being adopted for future plans. During the 12th Plan about 35% of Coal based capacity is being planned on super critical and in 13th Plan it has been proposed that all coal based capacity is to be based on super critical technology. In this regard following action has been taken/required to be taken.

Action:

- (a) Creation of Indigenous manufacturing capacity for super critical equipment
- (b) Incentivising Indigenous Manufacturers to ensure transfer of Super Critical Technology
- (c) Bulk tendering for 11X660 MW Super Critical units with mandatory indigenous manufacturing in progress. To initiate Bulk Tendering for 800 MW size units shortly after finalising orders for 660 MW.
- (d) Bulk tendering for projects based on Ultra super critical technology with mandatory indigenous manufacturing in consultation with indigenous manufacturers.
- (e) MOEF may be advised not to clear any Coal based projects w.e.f. 01-04-2012 on Sub-critical technology. No coal linkages for Sub-critical plants for 13th Plan
- (f) It is proposed that on Super Critical Plants there should not be any custom duty and excise duty i.e. the same exemption for excise duty and custom duty as applicable to Mega Power Projects.

(viii) Nuclear Power Generation

Nuclear generation is also limited due to availability of natural uranium in the country. Department of Atomic Energy plans to put up a total installed nuclear power capacity of 20,000 MWe by the year 2020 in the country. As of now, the first stage programme based on indigenous fuel is in progress and has reached a stage of maturity. A beginning has been made of the 2nd stage programme with construction of 500 MWe PFBR (Prototype Fast Breeder Reactor). This is expected to be followed by four more 500 MWe units by the year 2020. Thereafter it will be followed by a number of FBRs. When the capacity through FBRs builds up to reasonable level, the deployment of thorium for power generation through 3rd stage will begin and get realized in the long term.

Although nuclear energy can make only a modest contribution over the next 15 years, longer-term consideration of even a modest degree of energy self-sufficiency suggests the need to pursue the development of nuclear power using thorium. India can erect and run nuclear plants to a capacity of 60GW by 2031-32. The full development of the country's hydro-electric potential and realization of the optimistic nuclear scenario by 2031-32 needs to be persued.

With the signing up of the '123 Agreement' on nuclear cooperation between USA and India, and NSG's waiver for supply of nuclear fuel to India, it is expected that some nuclear plants with foreign technology from friendly countries would be set up in the country. The availability of imported nuclear fuel and technology to India will help in accelerated capacity addition from nuclear power plants. Commencement of construction of reactors with imported technology during 11th/12th Plans is expected which will get commissioned in 13th Plan onwards. Development of nuclear parks with Mega capacity is also anticipated. Integrated Energy Policy indicates two scenarios of nuclear capacity addition of about 48,000 MW in low nuclear scenario and 68,000 MW in high nuclear scenario by 2031-32.

(ix) Reduction of T&D losses to be accorded high priority

All India T&D Losses are very high of the order of 23.97 %. To reduce T&D losses, implementation of R- APDRP to reduce technical and commercial losses are being accorded highest priority. Privatization/franchisee of distribution should be encouraged as these measures are expected to help in reducing AT&C Losses.

(x) Implementation of BEE Programmes

Bureau of Energy Efficiency (BEE) has launched various programme to promote efficiency in use of electrical energy as per details given below:

- Implementation of ECBC in states
- DSM in municipal, agriculture and buildings

- Enforcement of energy intensity standards in Energy Intensive Industry and trading of emission reduction certificates.
- CFL Bachat Lamp Yojna
- Agriculture (Ag DSM) Pump efficiency improvement through ESCO.
- Labeling of Appliances
- Labeling of Inverters on priority

(xi) Utilization of Coal Bed Methane (CBM)

In India, scope for simultaneous operations for CBM and oil and gas exploration/production in the same area exists in Cambay basin (Gujarat), Barmer Basin (Rajasthan) and Cauvery basin (Tamil Nadu) wherein both CBM and Oil & Natural Gas occur in the same basinal areas. As far as technical feasibility and horizontal/vertical separation of CBM operations and Oil & Gas operations are concerned it is very well established that both operations could be carried out simultaneously. However, certain broad guidelines and procedures may have to be followed in this endeavor. Director General Hydro Carbon under MoP&NG is the nodal agency for CBM. Till date 26 blocks have been allocated.

8.7 IMPROVEMENT IN EFFICIENCY OF THE THERMAL GENERATION CAPACITY (COAL, LIGNITE AND GAS)

With the introduction of supercritical technology and new gas based capacity and retirement of old units, the thermal efficiencies at the end of the 11th, 12th & 13th Plans are expected to increase as given in **Table 8.7 & Chart 8.5** below:

TABLE 8.7

	Thermal Capacity at the end of Plan	Thermal Efficiency (%)
End of 10 th Plan (Actual)	84, 812	33.86
End of 11 th Plan (with 1500 MW retirement)	1, 31, 853	35.13
End of 12 th Plan (with 4000 MW retirement)	1, 98,756	35.94
End of 13 th Plan (With 4000 MW Retirement)	2, 51, 156	36.94

Chart 8.5

This increase in efficiency of thermal units will result in reduced emission factor further. Further reduction is expected due to increase in generation from nuclear, hydro and renewable resources under various scenarios as listed below.

8.8 CAPACITY ADDITION REQUIRED DURING 12TH & 13TH PLANS

Four Scenarios have been developed for capacity addition during 12th & 13th Plan periods. The Business as Usual Scenarios with low gas and low renewable Scenario is the Base Case. The capacity addition required during 12th & 13th Plan has been worked out based on the results of the Planning studies carried out using EGEAS software model.

Studies have been carried out for 12th & 13th plan periods taking into account the existing capacity, actual capacity addition during the 11th Plan and the options available for 12th Plan. Capacity addition required has been assessed to meet the seasonal requirements also.

Hydro capacity has been restricted to the feasible capacity of 10,897 MW in the four different scenarios. Retirement of old inefficient units also has been considered as given in the table of capacity addition. Renewable capacity has been assumed to operate at 20% PLF.

Based on results of the studies, generation capacity addition required during 12th & 13th Plans are summarised in **Table 8.8 & 8.9** below:

Table 8.8 Four Capacity Addition Scenarios-12th Plan

	SC-1	SC-2	SC-3	SC-4
	Low Gas Low	High Gas Low	High Gas High	Low Gas High
	Renewables	Renewables	Renewables	Renewables
	(Base Case)			
Hydro	10,897	10,897	10,897	10,897
Nuclear	5,300	5,300	5,300	5,300
Renewable(Excluding Solar)	14,500	14,500	20,000	20,000
Solar	4,000	4,000	10,000	10,000
Retirements of Old inefficient	4,000	4,000	4,000	4,000
Units				
Gas	2,540	14,540	14,540	2,540
Coal	68,363	56,363	53,163	64,363
Sub-Critical	43,443	31,443	28,243	39,443
Super Critical	24,920	24,920	24,920	24,920
12th Plan (Total)	87,100	87,100	83,900	83,100
(Conventional)				

TABLE 8.9 Capacity Addition Scenario-13th Plan

	SC-1 Low	SC-2	SC-3	SC-4
	Gas Low	High Gas Low	High Gas High	Low Gas High
	Renewables	Renewables	Renewables	Renewables
	(Base Case)			
Hydro	12,000	12,000	12,000	12,000
Nuclear	18,000	18,000	18,000	18,000
Renewable (Excluding	14,500	14,500	25,000	25,000
Solar)				
Solar	16,000	16,000	20,000	20,000
Retirements of Old	4000	4000	4000	4000
inefficient Units				
Gas	0	13,000	13,000	0
Coal	56,400	45,200	37,200	54,800
Sub-Critical	10,000	0	0	0
Super Critical	46,400	45,200	37,200	54,800
12th Plan (Total)	86,400	88,200	80,200	84,800
(Conventional)				

8.9 EMISSION PROJECTIONS UPTO THE END OF 13th PLAN (2021-22)

On the basis of generation from each fuel sources including renewables, carbon footprint i.e. Emissions and the emission factor intensity considering base year of 2004-05 have been worked out, The Electrical generation growth during the plans considered and the average emission factor from total generation are shown in **Chart 8.6** below:

Chart 8.6 Average Emission Factor from Total Generation (Kg/kWh)

It may be seen that the average emission factor is expected to reduce in the range of 15% to 20% by the end of 13th Plan (2021-22) in four scenarios from the level of 2004-05 due to various measures mentioned above. However, the total emission from power sector would increase as shown in **Chart 8.7** below:

Chart 8.7

8.10 ANTICIPATED PERCENTAGE REDUCTION IN EMISSION INTENSITY (KG CO2/ TEN ₹ OF GDP) FOR POWER SECTOR W.R.T. YEAR 2004-05

To assess emission intensity based on power sector emissions for year 2021-22, actual GDP data upto 2007-08 has been taken from Economic Survey Report of Central Statistical Organization and thereafter projected data at 8% CAGR has been used. India's Emission Intensity (kg CO2/ ten ₹ of GDP) based on Power Sector Emission is summarized in **Table 8.10.**

Table 8.10					
Emission Intensity based on Power Sector Emissions					

YEAR	GDP IN RS.	(CO2 EMISSIONS(MT)				CO2 IN KG/ Ten ₹ of GDP			
	CRORE	SC-1	SC-2	SC-3	SC-4	SC-1	SC-2	SC-3	SC-4	
2004-05	2388768	462	462	462	462	0.193	0.193	0.193	0.193	
2006-07	2871118	495	495	495	495	0.172	0.172	0.172	0.172	
2007-08	3306735	521	521	521	521	0.158	0.158	0.158	0.158	
2011-12	4498776	749	749	749	749	0.166	0.166	0.166	0.166	
2016-17	6610178	1030	1013	1000	1018	0.156	0.153	0.152	0.154	
2021-22	9712521	1330	1306	1278	1299	0.137	0.134	0.132	0.134	

8.11 CONCLUSION

- An increase in thermal efficiency is expected from 33.86% by end of 10th Plan (2006-07) to 36.94% by the end of 13th Plan (2021-22).
- Average Emission Factor from total generation (including renewable) is also expected to decrease from actual 0.744 in year 2006-07 to 0.656 by 2021-22. While estimating the above benefits, effect of strategies like R&M etc have not been incorporated for 13th Plan.
- Efforts are required to be made to accelerate R&M Programmes as well as Energy Conservation measures at the generation and consumer end. Thrust to adoption of latest technologies, in particular clean coal technologies needs to be vigorously pursued.
- It is feasible to achieve reduction in emission factor (CO₂ per unit of generation) from power sector by nearly 15% less in 2022, compared to 2005. The percentage reduction expected in Emission Factor (CO₂ produced per Kwh of generation) in all the four scenarios at the end of 11th, 12th & 13th Plans w.r.t. year 2004-05 is indicated in **Table 8.11** below:

Table 8.11

Scenarios	End of 10th Plan (2006-07) (Actual)	End of 11th Plan (2011-12)	End of 12th Plan (2016-17)	End of 13th Plan (2021-22)
Scenario-1	4.6	5.0	8.3	15.9
Scenario-2			9.9	17.4
Scenario-3			11.0	19.2
Scenario-4			9.5	17.8

• It is feasible to achieve percentage reduction in Emission Intensity (Kg CO₂/ ten ₹ of GDP) for Power Sector by the end of 13th Plan (2021-22) w.r.t. year 2004-05 by around 25-30% assuming GDP growth of 8%.

---+++---

CHAPTER 9

KEY INPUTS FOR 12TH PLAN

9.0 INTRODUCTION

For successful implementation of any Power Plan, it is essential that all key inputs required for implementation of the power expansion programme are made available as per the schedule of requirement of the individual power projects. The timely supply of all key inputs would ensure timely completion of the project and therefore avert detrimental implications of cost and time overruns in case the power project is delayed.

This Chapter broadly deals with an assessment of requirement of Equipment for 12th Plan for generation capacity addition and key inputs required during these Plan periods, namely, Steel, Cement, aluminium for infrastructure requirement of generating plants. An assessment of fuel, manpower and fund requirement for execution of power generation works during 12th Plan has also been made.

It is felt that the assessment of requirement of equipment, material and fuel as covered in this Chapter would give sufficient input to other Ministries and to the industry to enable them to take advance action and plan their production targets etc. according to the requirement of the Power Sector.

9.1 CAPACITY ADDITION PROGRAMME

A capacity addition of about 87,100 MW is required during the 12th Plan in the Base Case to meet the All-India demand projections of the 18th EPS Report. Accordingly, as approved by Planning Commission, a capacity addition target of 88,537 MW has been finalized for the 12th Plan. Details of capacity addition being planned for the 12th Plan are given below:

TABLE 9.1 Type Wise Capacity Additions during 12th Plan

(Figs in MW)

	(Figs in WW)
Item	12 th Plan (2012-17)
Coal+Lignite based	69,800
Gas based	2,540
Hydro	10,897
Nuclear	5,300
Total	88,537

9.2 EQUIPMENT

Requirement of equipment is one of the most important inputs for the setting up of Power Projects. Adequate domestic manufacturing capacities & capabilities for main plant equipment would be available to meet the demand of the 12th Plan capacity addition programme as a result of the push given by the Government for indigenous manufacturing of main plant equipment during the 11th Plan. To ensure energy security it is vital that the manufacturers give reliable services as well as spares during the life time operation of the Plant; accordingly it is essential that a level playing field is provided to manufacturers so that a healthy competition ensures competitive prices and quality equipment. A number of 11th Plan projects have not been able to achieve full load operation within stipulated time from synchronization due to non-readiness of the balance of plant.

9.2.1 Main Plant Equipment

In the category of coal based power plant, switch-over to super critical technology is envisaged for the new capacities coming up in $12^{th} / 13^{th}$ Plan and beyond.

Based on the encouragement from Government of India for setting up domestic manufacturing facilities, a number of new manufacturers have come forward for setting up manufacturing facilities for Steam Generators and Turbine Generators. These include:

- 9. L&T-MHI
- 10. Toshiba-JSW
- 11. Alstom-Bharat Forge
- 12. Gammon Ansaldo
- 13. BGR-Hitachi
- 14. Doosan
- 15. Thermax-Babcock
- 16. Cethar Vessel—Riley Power

Joint Venture	Boilers	Turbine-generator	Remarks
L&T-MHI	4000 MW	4000 MW	Production for Boiler and turbine commenced
Alstom -Bharat Forge	-	5000 MW	All manufacturing facilities for manufacture of turbines to be completed by June 2013.
Toshiba- JSW	-	3000 MW	All manufacturing facilities to be completed by April-2013
Gammon- Ansaldo	4000 MW	-	Probable date of completion of facilities December, 2012 (2000 MW) and December 2014 (additional 2000 MW)
Thermax-Babcock & Wilcox	3000 MW		All manufacturing facilities to be completed byMarch. 2013.
BGR Hitachi Boilers Private Ltd.	5 Boiler per annum (~3000 MW		All manufacturing facilities to be completed by Jan. 2013.
BGR Hitachi Turbine Generator Private Ltd.		5 Turbine generators per annum (~3000 MW	All manufacturing facilities to be completed by July. 2014.
Doosan Chennai works Pvt. Ltd.	2200 MW *(Both subcritical and Supercritical		 DCW pvt ltd is 100% subsidiary of Doosan Korea, incorporated in India on 20.7.2000 Existing facility- Chennai: Additional facility acquired- Mannur village Kancheepuram district Production from additional facilities to start by Sept.2012

In addition, BHEL has also augmented its capacity from 6,000 MW per annum in 10th Plan to 15,000 MW per annum at the end of 11th plan (2011-12). From the information provided by the manufacturers, it has emerged that following domestic capacities shall be available for supercritical steam generators and turbine generators.

	By 2013-14	By 2014-15
SG (MW)	26,500	40,500
TG (MW)	30.020	35,020

9.2.2 Balance of Plant (BoPs)

Balance of Plants such as Coal Handling Plant, Ash Handling Plant, Water Treatment/DM Plant, Cooling Towers, CW System, Chimney, Plant electrical and switchyard etc. have been identified as critical items for timely commissioning of thermal power projects. BoPs have been and continue to be a critical area for achieving capacity addition targets. To mitigate risk associated with BOP systems initiatives like standardisation of BOP systems,

reviewing the qualifying requirements to ensure quality vendors and large vendors for faster execution of projects, mandating a central organization to maintain a dynamic data base with regard to BOP orders and their liquidation.

It is also felt that the latest methods of civil construction with mechanised equipment and man power mobilization needs to be adopted. The vendors have to be encouraged to adopt new erection technologies to reduce the erection and commissioning cycle. An institutional mechanism to develop skilled man power for construction & execution of projects is also to be stressed upon.

As per the information compiled by CEA, sufficient numbers of vendors are available for major BoPs. Details of BoP vendors are as follows:

NUMBER OF BOP VENDORS

Coal handling System	15
Ash Handling System	13
Cooling Towers	12
DM Plants	18

Few suggestions regarding BOP equipment for ensuring timely capacity addition are as follows:

- Developers may execute BOPs on EPC basis.
- A web based portal needs to be designed and managed for all information relating to BOP vendors viz. orders at hand, their implementation status etc. so that developer of projects can take an informed decision.
- In second phase the BOP vendors and Construction agencies could be rated based on their performance.
- Work in hand/Bid Capacity etc. should find place in bid documents.
- Training of Skilled/Semi-skilled workers for Power project requirements to be taken by EPC Contractors, Developers as well as the Manufacturers.

9.3 KEY MATERIALS

Steel and cement are the key materials needed for power projects. In case of both hydro and thermal projects, the requirement of steel and cement are site specific and the civil engineering works vary from project to project depending upon the features of the projects. In case of thermal projects, the civil works would be more when the first unit of the thermal project is installed on a virgin site than for an additional unit installed at the same site. However for the purpose of estimating the requirement, suitable consumption norms have been worked out based on the actual consumption of steel and cement for the works completed during the past and also in respect of projects under execution. In view of this, the assessment of steel and cement required for hydro and thermal projects in 12th Plan would be only approximate.

9.3.1 Norms for material requirement:

The Norms used for computing material inputs for power generation projects are as given in Table 9.2 below:

Table 9.2 Norms for Key Inputs

(Figures in Tonnes/MW)

Requirement of	Therma	al	Hydro	Remarks	
Materials/MW	Coal/Lignite Based	Gas Based			
a) Cement	150	60	956		
b) Structural steel	85	29	34		
c) Reinforcement steel	45	24	93		
d) Stainless steel	130.61	51.6	-	Used in Bunker	
e) Aluminium	0.5	0.5	0.1	Used in windows, metal cladding walls, control rooms	

9.3.2 **Material Requirement**

Requirement of key materials for 12th Plan and 13th Plan corresponding to generation expansion plan has been worked out as per the norms and given in Table 9.3 and 9.4 below:

Table 9.3 Key Inputs for 12th Plan

(Figures in Million Tonnes)

Sl. No.	Materials	Thermal Capacity		Hydro Capacity	Total
		Coal based & Lig 69,800 MW	Gas based 2,540 MW	10,897 MW	
1.	Cement	10.47	0.15	10.42	21.04
2.	Structural steel	5.93	0.07	0.37	6.37
3.	Reinforcement steel	3.14	0.06	1.01	4.21
4.	Stainless steel	9.11	0.13	0	9.24
5.	Aluminium	0.04	0.001	0.001	0.042

Table 9.4 Key Inputs for 13th Plan

(Figures in Million Tonnes)

				. 0	
Sl. No.	Materials	Thermal Capacity		Hydro	Total
				Capacity	
		Coal based	No Gas based	12000 MW	
		56,400 MW	considered		
1.	Cement	8.46	0	11.47	19.93
2.	Structural steel	4.79	0	0.41	5.2
3.	Reinforcement steel	2.54	0	1.12	3.66

Based on the assessment of Nuclear Power Corporation (NPCIL), requirement of Steel, Cement and other materials for nuclear projects is considered at 130% of the requirement of coal based projects for planning purposes.

Considering the above, the material requirement for Nuclear Projects estimated by CEA is as given under in Table 9.5.

Table 9.5 Key Inputs for 13th Plan Nuclear

(Figures in Million Tonnes)

Material	12 th Plan	13 th Plan
	5,300 MW	18,000 MW
Cement	1.04	3.51
Structural Steel	0.58	1.99
Reinforcement Steel	0.31	1.05

The main inputs for manufacturing power plant equipment are castings & forgings, steel plates, structural steel, copper, CRGO/CRNGO etc. While Steel, Cement, Copper, Aluminium etc. are the key inputs needed for erection & commissioning and transmission & distribution networks. Some estimates regarding these key inputs are given in the following Tables.

Castings & Forgings for Turbo-Generators (TG) Sets:

As per the details provided by BHEL the average requirement of castings and forgings for a 500/660/800 MW sets is as given below:

MT per Set

Equipment	Weight of Castings	Weight of Forgings
Turbine	384	235
Generator	3	130
Total	387	364

The requirements of Castings and forgings for thermal projects based on the above average, have been worked for the 12th and 13th Plans. Based on projects identified for 12th Plan, 35% supercritical sets in 12th Plan and 100% supercritical sets for 13th Plan have been considered.

Lakh MT

Material	12 th Plan	13 th Plan
	69,800 MW	56,400 MW
Castings	0.40	0.33
Forgings	0.37	0.31

Note: As norms for nuclear projects are not received, requirement for nuclear is not included. Also, requirement of Casting & Forgings for Hydro projects are very project specific, hence not included.

Sufficient indigenous capacities for heavy castings & forgings need to be created to reduce dependence on imports. As per the details of norms provided by BHEL, the requirement of Tubes & Pipes and Thick Boiler Quality Plates (Imported Plates) is given below. As per the projections 35% supercritical sets have been assumed in 12th Plan and 100% supercritical sets have been assumed for 13th Plan.

Lakh MT

Material	12th Plan	13th Plan
	69,800MW	56,400 MW
Tubes & Pipes	7.2	5.99
Thicker Boiler Quality Plates	0.94	0.91

Indigenous capacity availability scenario of tubes & pipes as provided by BHEL:

Lakh MT

Material	12th Plan	13th Plan
Tubes & Pipes	3.9	4.8
Thicker Boiler Quality Plates	-	-

Considering large quantity of high alloy tubes & pipes (like T91/P91, T92/P92 grades) required for super critical boilers and thick plates requirement, sufficient indigenous capacities need to be created in the country to avoid dependence on the imports.

Copper:

As per IEEMA, power sector requirement of Copper would be approx. 12.5 lakh MT p.a. with an overall requirement of approx. 56 lakh MT for entire 12th Plan. This is expected to grow at a CAGR of approx. 10% p.a. As per the information provided by FIMI for Copper, the capacity, production and consumption for 12th Plan is given below:

Lakh MT

12th Plan (2012-17)	Capacity	Production	Consumption
2012-13	10.0	8.0	8.8
2013-14	10.0	8.5	9.8
2014-15	15.0	13.2	11.0
2015-16	15.0	13.5	12.3
2016-17	15.0	13.7	13.3

Aluminium:

Following norms for the Aluminium requirement have been considered for working out Aluminium requirement: Norms for Aluminium for Generating Stations:

(MT per MW)

Materials	Thermal		Hydro	Remarks	
	Coal Based	Gas based	Nuclear Based		
Aluminium	0.5	0.5	130% of Coal	0.1	Used in windows, metal cladding
			Based		walls, control rooms, conductors

Aluminium requirement for Generating Stations in 12th & 13th Plan:

(Figures in Lakh MT)

Material	12 th Plan 13 th Plan							
Wiateriai		12 11	ian			13 1	iaii	
	Coal Based	Gas Based	Nuclear Based	Hydro	Coal Based	Gas Based	Nuclear Based	Hydro
	69,800MW	2,540MW	5,300 MW	10,897 MW	56,400 MW	-	18000 MW	12000 MW
Aluminum	0.349	0.012	0.034	0.010	0.282	-	0.117	0.012
Total		0.40	5	•		0.41	11	•

Prima facie there is no likely shortage of key materials except for CRGO, and thicker steel plates. Further, there is an inadequate indigenous manufacturing capacity in the country for Tubes & Pipes especially for alloy steel tubes & Pipes (T91/P91, T92/P92 grades), which needs to be augmented. Some indigenous capacity for heavy castings & forgings which are critical for power generating equipments, are being planned by a major private sector manufacturer and are expected to come up in near future.

9.4 FUEL REQUIREMENT

Availability of fuel is essential for power generation. In addition to tapping fuel source or organizing its availability, it is also essential to create the infrastructure to facilitate fuel to reach the intended destination. Therefore development of mines/ ports and requisite transportation facilities commensurate with the completion of the projects is very necessary. The gestation period in the development of mines and even transport facilities are in some cases longer than the gestation period for setting up of thermal power stations. It is therefore imperative for the Power Sector to make its prospective coal requirement, over a long time horizon, known to the Ministry of Coal, Railways and port authorities to enable them to undertake co-ordinated development of coal mines and transport infrastructure with the coming up of thermal power stations. Necessary infrastructure required to transport gas to the projects also needs to be set up. With this objective in view, the assessment of fuel requirement has been carried out.

The coal requirement for thermal power stations depends upon the scheduled generation, quality of coal being supplied/ to be supplied and the condition of power station equipment. However the normative requirement of fuel during the terminal year of 12th Plan has been estimated as summarised below:

Table 9.6

FUEL REQUIREMENT FOR TERMINAL YEAR OF 12 TH PLAN			
Fuels Requirement			
	2016-17		
Coal (Million Tonne)	842		
Gas +LNG (MMSCMD)	100*		

* This requirement corresponds to gas based capacity of 18,381 MW by the end of 11th Plan and additional requirement of for 12th Plan projects of about 2,540 MW capacities to operate at 90% PLF. The gas requirement of additional 13,000 MW projects under construction has not been considered due to non availability of gas.

Transport

Transport sector plays a vital role in the growth of Power Sector. The development of different transport sectors like Railways, Highways & Roads, Ports, Inland Waterways and Gas pipelines are key to achieve the capacity addition targets in XII five year plan. The total coal requirement for the power utilities by end of 12th Plan (2016-17) is estimated to be around 842 MT including domestic & Imported coal as also coal from the captive coal blocks. Apart from this, with the increase in Unit sizes to 660 MW, 800 MW and plus 1000 MW during 12th plan and beyond, heavy Over Dimensional Consignments (ODC) as never before will need to be transported from Ports (for imported equipment) and Indigenous Manufacturers to Project sites. This calls for bold initiatives, policy changes as well as adopting basic changes in load and handling specifications in Roads, Railways and Port sectors.

Railways

The long-term strategy of Indian Railways is to segregate the freight and passenger movement through construction of Dedicated Freight Corridors (DFCs). At present two DFC projects i.e. Eastern DFC (Dankuni, WB - Ludhiana, Punjab) and Western DFC (JNPT, Mumbai- Dadri, UP) have been sanctioned. Apart from above Railways have also planned Gauge conversion, new railway lines, electrification of new routes and procurement of locomotives and wagons.

Broadly, Railways envisage the following targets for the medium and long-term goals (XII five year plan & beyond) towards creation of infrastructure and capacity build-up.

Broad Category	Revised XI plan Targets	Vision 2020 Targets
Doubling including DFC	2500	12,000 Kms.
Gauge Conversion	6000	12,000 Kms.
New Lines	2000	25,000 kms.
Electrification	4500	14,000 kms.
Procurement of Wagons	62000	289,136
Procurement of Diesel locomotives	1019	5334
Procurement of Electric locomotives	1205	4281

Table 9.7

To achieve, the projected high-growth targets, Railways need massive investments in capacity creation, network expansion and up-gradation and modernization. The existing trunk routes and other coal carrying routes are heavily saturated. Railways needs to strengthen its net work speedily to achieve this high growth scenario. The tentative estimates of Investments required by the year 2020 to deal with higher levels of freight traffic would be as under:

T-	ble	Λ	O
	Me	•	~

Description	Investment (Rs)`
Bottleneck removal –	23,000 cr
Traffic facilities, freight bye-passes, logistic parks, etc.	
Capacity augmentation-	
New Line,	1,80,000 cr.
Doubling/Tripling/Quadrupling including DFC	1,30,000 cr.
Gauge conversion,	35,000 cr.
Electrification	12,600 cr.
Rolling stock -	
Freight wagons,	86,740 cr.
Diesel locomotives,	56,007 cr.
Electric locomotives	64,873 cr.
Technological up- gradation -	
Track renewal and 25 tonne axle load,	71,405 cr.
Bridges	8,000 cr.

The expansion plans detailed in the Vision 2020 documents of Railways gives a sense of confidence that to a large extent Railways will be able to meet Power Sector requirements for 12th Plan and beyond, provided of course that their expansion takes place as per their vision document.

Inland Water Transport

Inland Waterways Authority (IWT) of India has planned for the development, up-gradation, modernization and expansion of National Waterways / other Waterways during 12th plan period with an estimated investment of Rs. 10,460 Crores. Keeping this in view, there is a strong possibility of coal cargo movement through IWT becoming attractive to power companies especially if the contract of imported coal movement by IWT of 3.0 million tonnes per annum from Haldia to Farrakka Project of NTPC is a success. At present, ten thermal power stations are operational on the banks of Ganga and these are located in the States of West Bengal (7) and Bihar (3). Further eleven more Thermal Power Stations are proposed in Bihar and Uttar Pradesh with installed capacity of over 15000 MW. Their coal requirement is estimated to be around 70 million metric tonnes per annum, which can be met through IWT.

National Highways

The National Highways comprise of only around 2% of the total Road Network in India but carry more than 40% of the Traffic. This makes route management of heavy Over Dimensional Consignments (ODCs) highly challenging and difficult. There are serious issues associated with ODC transportation through roads / highways like interpretation of Motor Vehicle Act differently in different states, inadequate strength of roads and Bridges enroute to the project sites, insufficient road width / carriage width in state highways, improper design of Toll Plazas built on the Highways, sharp curves/bends/gradients on roads and inadequate vertical clearance in underpasses in North Eastern states etc. These need to be addressed urgently including necessary fundamental changes in loading specifications of roads, highways and bridges for which specific recommendations have been given in the Report.

- Railways are transporting about 60% of the total off-take of domestic coal.
- The percentage share will remain the same during the 12th plan.
- Railways to confirm their coal evacuation capacity from each coal field.
- Railways to augment their capacity to evacuate coal from three major coal fields namely North Karampura, Ib Valley and Mand Raigarh.
- For smooth and faster evacuation of coal, coal conveyors should be used to transport coal from mine to rail head with automatic loading in wagons.
- Railway to expedite proposed Dedicated Freight Corridors to segregate freight and passenger traffic.
- Railways to ensure rail connectivity to all ports having coal unloading facilities.
- NTPC and Inland Water Ways Authority of India (IWAI) would be signing an agreement for transportation of 3 MT of imported coal to Farakka TPS. Other thermal projects located on the banks of Ganges in West Bengal and Bihar should also explore the same.

Roads and Highways need to be augmented for transportation of Over Dimensioned Consignments (ODC) for supercritical units. The following needs to be considered:

- Amendment in Motor Vehicle Act to accommodate heavy consignments above 49 MT and inclusion of hydraulic axles, trailers.
- Review of load classification for Roads & Bridges by IRC/ MoRTH to accommodate ODCs beyond 100 MT.
- Single window clearance and one time payment for ODC movement.
- Proper design of Toll Plazas built on highways.
- Changes in Road design in North Eastern & Hill states to minimise sharp curves/gradients in roads and have sufficient vertical clearance in underpasses.
- Proper Approach Roads to be provided for Hydro Projects.

Existing & Proposed Gas Pipelines / Grid

Natural gas is the fastest growing primary energy source amongst fossil fuels, projected to grow around 3-4 times between 2002-2025 at current consumption level. We have come a long way from the time when oil and gas were first discovered in India in 1886 in Assam and subsequently when the famous Bombay High field was discovered in 1974 in the Western Offshore.

- With developing gas market, timely development of gas pipelines across the country for realization of social and economic benefits of natural gas usage has become a priority. Such trunk gas pipelines when integrated with the existing gas pipelines shall ultimately lead to the National Gas Grid. The indicative National Gas Grid shall consist of the existing pipelines, authorized / planned pipelines and their links to the remote and under-developed areas.
- EGOM (Empowered Group of Ministers) have formulated Gas Utilization Policy for distribution and utilization of domestic gas in the country and have allocated priority for KG D6 gas allocation to existing gas based / liquid based stations, connected with gas pipelines. For better utilization of generation capacities, presently running on liquid or under- utilized, it is necessary to connect them preferably as a part of trunk/ spur pipeline network.

Existing Gas Pipelines

The present gas pipeline infrastructure in the county is around 12000 km with design capacity of around 283 MMSCMD. The existing main trunk pipelines are as under:

- GAIL: Owns and operates around 8000 km pipelines including spur lines (mainly HVJ-GREP-DVPL including DVPL-GREP up gradation and DUPL-DPPL) with design capacity around 150 MMSCMD.
- Reliance Gas Transportation Infrastructure Ltd. (RGTIL): Owns and operates around 1400 km long East -West Pipeline (EWPL) - (Kakinada-Hyderabad-Uran-Ahmedabad) with design capacity of 80 MMSCMD.
- Other major regional players:
- Gujurat State Petronet Ltd (GSPL) :Owns & operates ~ 1200 km pipelines with design capacity of 40 MMSCMD.
- Assam Gas Company Ltd (AGCL): Owns & operates ~ 500 km pipelines with design capacity of 8 MMSCMD.
- **Authorized Gas Pipelines:** Ministry of Petroleum and Natural Gas in 2007 authorized following nine new trunk pipelines with total length of approximately 8700 km with design capacity of about **209 MMSCMD**.

(A) GAIL:

- Dadri-Bawana-Nangal (600 ksm)
- Chainsa-Jhajjar-Hissar (400 kms)
- Jagdishpur-Haldia (2000 kms)
- Dabhol-Bangalore (1400 kms)
- Kochi-Kanjirrkod-Bangalore (1100 kms)

(B) RGTIL:

- Kakinada-Haldia (928 kms)
- Kakinada-Chennai (577 kms)
- Chennai-Bangalore-Mangalore (538 kms)
- Chennai-Tuticorin (585 kms)

These pipelines are under different stages of development.

Establishment of PNGRB: The Petroleum and Natural Gas Regulatory Board (PNGRB) Act 2006 provides for the establishment of an independent regulatory board (PNGRB) as a downstream regulator to regulate the activities of

companies related to refining, processing, storage, transportation, distribution, marketing and sale of petroleum, petroleum products and natural gas and City Gas Distribution (CGD). The board has been established and started functioning w.e.f. June 2007. The PNGRB have formulated several regulations pertaining to gas transportation. PNGRB is authorising entities for laying pipeline on basis of competitive bidding through EOI route. PNGRB has received 06 EOIs for setting up of additional gas pipelines. These are (as per PNGRB website):

- (i) Mallavaram (A.P.) Vijaipur (M.P.) Bhilwara (Rajasthan)
- (ii) Mehasana (Gujarat) to Bhatinda (Punjab) via Jaipur (Rajasthan)
- (iii) Bhatinda (Punjab) to Srinagar (J & K)
- (iv) Surat to Paradip
- (v) Durgapur to Kolkata
- (vi) Kakinada to Srikakulam

PORTS

Keeping in view the estimated capacity addition of about 88,000 MW during 12th Plan, the coal quantity to be imported by the end of 12th plan works out to about 230 MT including the requirement for power plants that would be operating completely on imported coal. Based on the Maritime Agenda for Ports, issued by the Ministry of Shipping, major and non major ports together are targeted to handle 476.04 Million Tonnes of Thermal and Coking coal combined by the end of 12th Plan. Moreover in order to augment the capacity and enhance productivity levels at major ports, several initiatives are being taken by the Ministry of Shipping including modernisation of port infrastructure, construction of new berths/ terminals, expansion/ up-gradation projects for berths and dredging, installation of new and modern equipment, mechanisation of cargo handling operations and automation through computer aided systems. However improving / augmenting rail and road connectivity especially last mile connectivity will need special attention particularly as it involves close coordination and interface between Roads, Railways and Port Authorities.

Suggestions/ Recommendations

- Adequate coal unloading arrangement at Ports to be ensured to handle imported and domestic coal required for power stations (approximately 150 MT).
- On the East Coast, coal handling facilities to be augmented at Paradip and Vizag Ports. This will be necessary
 to evacuate coal from mines in Orissa as rail routes are congested.
- All major and important minor ports should be mechanised by augmenting crane capacities, silos, conveyors & wagon tipplers.
- Draft at various ports to be increased to handle Panamax or Capsize vessels.
- RO-RO berths should be created atleast in two major ports namely Kandla on the west coast and Paradip on the east coast for unloading ODCs.
- Road connectivity to ports to handle ODCs has to be ensured.

9.5 MANPOWER REQUIREMENT

Trained manpower is an essential prerequisite for the rapid development of all areas of the Power Sector. This Sector is poised for massive capacity addition and the industry should take steps to increase production and project execution capacity to meet the targets of over 1,00,000 MW (including captive & renewable) during the 12th Plan. Manpower development including training facilities shall be commensurate with this large capacity addition requirement.

9.5.1 Norms for manpower requirement

Norms have been adopted to assess the manpower requirement for project construction, execution and O&M of generation projects during the 12th Plan. Details are as follows:

For construction of new plants

Hydro - 10 persons per MW

Thermal – 8 persons per MW Nuclear – 8 persons per MW **Project execution period** Hydro -72 months

Thermal - 72 months

Thermal - 36 months

Nuclear - 72 months

For operation and maintenance of generation projects

Hydro - 1.9 persons per MW
Thermal - 1.1 persons per MW
Nuclear - 1.9 persons per MW

9.5.2 Manpower requirement during 12th Plan

The targeted capacity addition during the 12th Plan is presently pegged at around 88,000 MW. It has been estimated that about 4.54 Lakh additional personnel in O&M and 6.55 Lakh in construction of generation, Transmission & distribution are required. The personnel engaged in construction area in the Power sector during 11th Plan would be adequate to meet the requirement in construction during 12th Plan. The category-wise break-up of the additional Manpower Requirement during 12th plan is shown in Table 9.10 below:

Table -9.10

Category	operation &	Construction	Total
	maintenance		
Engineers	42000	36000	78000
Supervisors	78000	49000	127000
Skilled Workers	63000	109000	172000
Semi-skilled workers	68000	121000	189000
Unskilled workers	78000	219000	297000
Non-tech	127000	121000	248000
Total	454000	655000	1109000

Critical ITI trades for power industry are as follows:

Table 9.11

Table 9.11				
Trade	Number of units	Annual intake		
Fitter	8,531	1,36,496		
Electrician	8,221	1,31,536		
Welder	1,068	17,088		
Wireman	2,005	32,080		
Turner	1,773	28,368		
Mechanic	1,157	18,512		
Carpenter	475	7,600		
Sheet metal	285	4,560		
Mason	165	2,640		
Tool & die maker	38	608		
Plumber	448	7,168		
Total	24,166	3,86,656		

Source: Director General (Employment & Training) 40,000 is the average annual requirement estimate

In view of the huge requirement of trained manpower during 12th Plan and huge training load and advancing technologies emerging in the Power Sector, it is recommended to adopt modern and scientific training methodologies and create an infrastructure accordingly including course materials and training aids. This will result in cost and time effective training and help in further bridging the training load-infrastructure gap. Some of such training methodologies are described below:

- Through Simulators of different types suiting to the organizational/trainee's needs (i.e. through area simulator, compact simulator, generic simulator or full-scope replica simulator etc.)
- Through plant specific on-plant, on-site training at power station/sub station, manufacturer's site.
- Through personnel computer based self-learning package system.
- Through video /CDs/ films.
- Through mock up plants, models, rigs, zigs line-up panels etc.
- Through correspondence courses and distant learning packages.
- Maintenance skill development through 'Hands-on' training on actual plants, or obsolete/ redundant equipment.
- Through case studies.
- Arranging training through local languages as medium of instruction and developing course material in these languages.

9.6 FUND REQUIREMENT

The requirement of funds for Generation projects has been assessed based on the capacity addition of about 88,000 MW during the 12th Plan.

The fund requirement has been assessed based on assumption of cost per MW for various generation projects based on the costs of past projects.

The details of assumptions for estimation of cost of generation projects are given as Annexure 9.1.

Based on the above and the likely 12th Plan Capacity addition of about 88,000 MW, the likely fund requirement during the 12th Plan has been assessed as 4,13,870 crs for generation projects.

In addition, funds are also required during the 12th Plan for advance action for 13th Plan projects which has been assessed as 2,72,582 crs. Details of total fund requirement for capacity addition during 12th plan are as follows:

Table 9.12

Total Fund Requirement for Capacity Addition during 12th Plan

	Fund requirement in Rs. Crores
12 th Plan Capacity of about 88,000 MW	4,13,870
Advance action for 13 th Plan Projects	2,72,582
Total fund requirement for Generation projects during 12 th Plan	6,86,452

The total fund requirement for Generation Projects during the 12th Plan is 6,86,452 Crs. This fund requirement does not include funds required for R&M of power plants, Captive and Renewable capacity additions Matching funds are also required for transmission & Distribution sector.

---+++----

Annexure 9.1

ASSUMPTIONS FOR ESTIMATION OF COST OF PROJECTS

Assumptions for estimating cost of power projects

(Figures in Rs. Crore per MW)

S.No.	Type of Generation project	Cost
1	Thermal generation projects	6
2	Hydro generation projects	8
3	Nuclear projects	10
4	Captive	5
5	Solar	13
6	Wind	6
7	Other RES	5

^{*}The above costs are based on the FY 2011-12 price levels

[#] 10% higher costs have been assumed for projects in NE region.

Chapter 10

INTEGRATED PLANNING BY THE STATES

(I) BACKGROUND

Government of India has taken a number of Initiatives to adopt a more pro-active, market oriented approach to rid the Power Sector of the problems being faced by it. These range from changing the structure of the Power Utilities to the operating environment and the Legislative and Regulatory framework governing the Power Sector. Most significant changes have been the unbundling of the vertically integrated business of generation, transmission & distribution and the entry of private sector in power generation, transmission & distribution. These Initiatives are expected to set the stage for a quantum jump in the capacity addition programme and also making electricity available to all including rural households.

The Electricity Act 2003 envisages a strong push to the structural reforms, de-licensing, thrust on rural electrification, incentives to reforming States and importantly mandatory metering with stronger provisions for punishment for theft of electricity. The National Electricity Policy and the Tariff Policy further provide guidelines for the development and operation of the Power Sector within the ambit of the Electricity Act.

The erstwhile State Electricity Boards have been unbundled into separate generation, transmission and distribution companies. While this Initiative is expected to be instrumental in making the power business economically viable, the States have a very important role to play in carrying out integrated planning of the entire electricity chain from generation to the ultimate consumer such that all the systems are adequate and are set up within a matching timeframe. This Chapter outlines the planning to be undertaken by each state in a cohesive manner.

10.1 CREATION OF STATE ELECTRICITY BOARD

The beginning of power supply industry in the country was through private entrepreneurial initiative and as a principle the generating plants were established close to load centres. The emergence of grid systems to connect and operate the isolated generating units to improve economics and reliability of supply was recognized during the forties. A comprehensive legislation to restructure the power supply industry was made with the enactment of the Electricity Supply Act 1948. This Act provided for the creation of State Electricity Boards (SEB) with the responsibility of promoting generation and supply in an efficient and economic manner and extension of power supply facilities in the country. The role of Private Sector for development of Power at this stage was minimal with private entrepreneurs only in Ahmedabad, Calcutta and Bombay being in the field.

10.2 ELECTRICITY ACT 2003 AND NATIONAL ELECTRICITY POLICY

Enactment of the Electricity Act, 2003 was aimed at addressing the problems which were plaguing the Power Sector in the past. The Act envisages development of the Power Sector in a market driven environment, keeping in view the interest of the consumers as well as of the suppliers of power. Generation has been delicensed and Open access in transmission and distribution has been stipulated.

The National Electricity Policy was formulated to act as a functional lever to facilitate implementation of the Act towards providing the required thrust to the Power Sector.

Section 3(4) of the Electricity Act 2003 mandates CEA to prepare the National Electricity Plan in accordance with the National Electricity Policy. The Plan is expected to function as a facilitating lever for implementation of the Electricity Act 2003 in keeping with its true spirit. The draft Plan prepared by CEA is circulated to all the Stakeholders as well as it is put up on the CEA Website inviting comments of all. The Plan is finalised based on comments received, as considered appropriate.

The National Electricity Plan is prepared to serve as a road map towards optimum growth of the Power Sector. It is based on an approach of integrated resource planning so as to optimally utilize the resources including investments already made. The Plan is evolved as a result of detailed studies carried out using sophisticated generation planning software models available with CEA. The Plan contains project-wise details of capacity addition as well as the fuel type of each project. Generation as well as Transmission aspects are covered by the Plan.

10.3 RESTRUCTURING OF THE POWER SECTOR

Creation of the State Electricity Boards (SEBS) in the fifties was extremely beneficial for the development of the Power Sector. Each State developed its integrated system from the power plants to the transmission and the distribution network. This facilitated the reach of electricity to a wide spatially distributed area of the country.

However with time, the performance of the SEBs deteriorated and they gradually became financially unviable due to mounting losses. This adversely affected their developmental plans and the States started facing increasing power deficits. This prompted the Government to unbundled the States into separate Generation, Transmission and Distribution Corporations, each being a separate financial entity. Regulatory Commissions were also set up in each State under whose regulatory oversight the operation and development of each State took place.

The main problem experienced after unbundling of the SEBs is that since in each State generation, transmission and distribution are under separate Corporations, no coordinated short term or long term planning is being done in most of the States. This is expected to be extremely detrimental to the overall power scenario in the country.

Earlier, the development in each State was in accordance with the planning exercise being done by CEA. However subsequent to the Electricity Act 2003, the developer of a power plant does not require any clearance from CEA for setting up a thermal or a hydro power plant below a certain financial limit. Therefore most of the States do not have a regular planning philosophy or developmental Plans for their system.

10.4 NEED FOR COORDINATED PLANNING IN STATES

Each State needs to have a coordinated planning in respect of their generation, transmission and distribution system. Short term and Long term Plans need to be evolved for each State. Some of the specific reasons for this are as follows:

- a) Each State has a varying Load dispatch curve which has to be met by setting up base load as well as peaking power plants. As such each State is expected to be responsible for setting up adequate base load as well as peaking generation capacity, even after formation of National Grid. It is therefore necessary for each State to carry out short term as well as long term planning. Long term Plans covering a period of 10 years are very important since some power projects specially hydro projects are long gestation ones. Also the planning process needs to ensure that , at potential sites for storage type of hydro projects these projects are built rather than run of the river projects as these provide peaking power.
- b) Adequate transmission network needs to be set up in the same time frame as the associated generation project. Also since the Act and the Policy provides for Open Access, sufficient transmission capacity needs to be created to ensure open access to all consumers as required.
- c) Distribution, even though a State subject, needs a coordinated planning commensurate with the generation and the transmission system. Since the Act provides very stringently for reliable power, planning may be carried out for the distribution system also. As per the Electricity Act, 2003 it is the prime responsibility of the Distribution Company to develop their distribution network by carrying out short term and long term studies to optimize the system network to provide least cost solution, to ensure voltage at various nodes within stipulated limits as per IE Rules, Minimise energy losses in the distribution network, Improve quality and reliability of power supply etc. Because of multiple agencies in one supply area, there is a need to have one single agency to ensure integrated planning for fulfilling the above objectives This agency would coordinate with the developers of generation, transmission, distribution and other agencies if any. This would facilitate development of a robust, most economical and reliable system.
- d) Modern information technology systems need to be implemented by the distribution utilities on a priority basis, after considering cost and benefits, to facilitate creation of network information and customer data base which will help in management of load, improvement in quality, detection of theft and tampering, customer information and prompt and correct billing and collection.

(II) PROPOSAL AND RECOMMENDATION FOR SINGLE AGENCY IN EACH STATE FOR INTEGRATED PLANNING

With a view to facilitate coordinated planning in each State covering all aspects of the power system, it is necessary to have a Single Nodal Agency in each State for this purpose. This Agency shall be designated by each State. It may be effective for the energy department of the State to perform this function. As per the Act, STU has been designated for planning in the respective States. CEA shall be the consultant to this Nodal Agency as it has the requisite expertise for planning and is equipped with the suitable software planning tools for this purpose.

Chapter 11

FUEL REQUIREMENT

11.0 INTRODUCTION

Fuel for the power project is the main input required to be tied up before implementation of power projects. Coal is the main fuel for the Indian Power Sector and it is expected that coal will continue to dominate the power sector in the next few Plans as well. An important aspect which therefore needs to be considered is the availability of adequate coal to fuel the generation of power. Inadequate availability of coal will result in stranding of generation capacity causing wastage of sunken capital expenditure as well as the perpetuation of power deficit conditions in the country. Many existing power plants are experiencing generation loss due to non availability of adequate coal. Import of coal is therefore inevitable for power generation. The timely supply of all key inputs including fuel would ensure timely completion of the project and therefore avert detrimental implications of cost and time overruns in case the power project is delayed.

This Chapter broadly deals with a review of fuel availability during the 11th Plan, an assessment of requirement of fuel for 12th Plan & indicative requirement for 13th Plan as well as critical issues which need to be addressed/ constraints being experienced in the coal sector. This would give sufficient inputs to other Ministries and to the industry to enable them to take advance action and plan their production targets etc. According to the requirement of the Power Sector.

11.1 REQUIREMENT OF COAL

- 11.1.1 Coal is the mainstay of India's energy sector and accounts for over 50% of primary commercial energy supply. The total power generation capacity (Utility) of the country is about 1,99,877 MW as on 31.03.2012, out of which about 1,12,022 MW (56%) is coal fired. Of the total power generated in the country, 70 % comes from coal based thermal power stations even though they constitute only 56% of the total installed capacity. The Plant Load Factor (PLF) of the thermal power stations in the country has been improving steadily over the years in view of various initiatives being taken by the Ministry of Power. The PLF has increased from 57.1% in 1992-93 to 73.32% in 2011-12. This has increased the demand of coal per MW of installed capacity. However, due to fuel constraints, PLF of coal based power plants is declining. The growing gap between the demand and the domestic supply of coal has made it imperative to augment domestic production both from public sector and private sector and expedite the reform process for realizing efficiency gains through increased competition in the sector during the 11th Plan.
- **11.1.2** The Government has introduced the New Coal Distribution Policy (NCDP) that assures supplies at predetermined prices to some categories of consumers and reintroduces e-auctions to encourage a vibrant market for the commodity. The Main Features of the Policy which is effective from 1st April 2009 are as follows:
- 100% Normative Requirement of coal would be considered for supply to Power Utilities
- Supply of coal through commercially enforceable Fuel Supply Agreements (FSAs) at notified prices by CIL.
- 10% of annual production of CIL to be offered through e-auction for consumers who are not able to source coal through available institutional mechanism.
- FSAs to indicate Annual Contracted Quantities (ACQ) of coal to Power Utilities by coal companies during entire year. Incentive and penalty clauses incorporated in FSAs.

Signing of Fuel Supply Agreement (FSA) for the Units Commissioned after 31st March, 2009:

For thermal power plants commissioned before 31st March, 2009, FSAs were signed with a trigger value of 90% of the Annual Contracted Quantity (ACQ).

FSAs for thermal power plants commissioned after 31st March, 2009 have not been signed, primarily due to CIL's insistence for (a) keeping the assured supply as low as 50% of LOA and (b) signing the FSA for 5 years. LOA for new power plants generally being commensurate with 85% PLF, this will tantamount to assured supply of coal corresponding to 42.5% for 5 years for generating stations having PPA for supply of power for 25 years.

MoP has taken up the matter with Ministry of Coal for signing of FSAs for projects commissioned after 31st March, 2009. The concept of pooling of Price is also being pursued.

11.1.3 Coal Stocking Norms:

Coal stocking norms for power stations as fixed by a Committee headed by Secretary, Planning Commission depending on the distance of the power plant from the pit-head as per details given below:

Pit-head Station	15 days' stock
• Upto 500 Kms. Away from Coal mine	20 days' stock
 Upto 1000 Kms. Away from Coal mine 	25 days' stock
• Beyond 1000 Kms. Away from Coal mine	30 days' stock

11.1.4 Import of coal

In the past, Power Utilities were advised to import coal to maintain the stipulations of Ministry of Environment and Forest regarding use of coal of less than 34% ash content and also to occasionally supplement the coal from indigenous sources. The quantity of coal imported by the power stations during the previous years is as given below:-

(In Million Tonnes)

Year	Target	Actual
2004-05 10.0		4.5
2005-06 13.5		10.4
2006-07 20.0		9.7
2007-08	12.0	10.2
2008-09 20.0		16.1
2009-10 28.7		24.6
2010-11	47.0	30.5
2011-12	55.0	44.9

As per the demand-supply analysis of domestic coal, done above, import of non-coking coal is expected to increase by the end of 12th Plan period is needed to meet the demand of power sector. The present port capacity can handle around 55 MT of thermal coal and would need to be augmented to meet the rising coal import forecasted. Further, imported coal can be used as a blend with the domestic coal to substitute requirement of washed coal, which is required for Power Stations to adhere with MoEF's stipulation. Such a situation would also ease the problem of handling washery rejects. However, high cost of imported coal will have adverse impact on the power tariff.

11.1.5 Capacity Addition Programme and Coal Requirement

Ensuring adequate coal supply to existing/newly commissioned power plants has been a major concern. The coal supply position to Power Sector during the last two years i.e.2010-11 & 2011-12 is given below:

(iii) Coal Supply position for the period 2010-11 & 2011-12 Source wise programme and receipt of coal for year 2010-11 & 2011-12 are as given below:

	Apı	ril, 2010- March	n 2011	Ap	April 2011- March,2012		
Source	Program	Receipt	%	Program	Receipt	%	Receipt (%)
CIL	335	302.8	90	347	310.4	90	2.9
SCCL	30	33.6	112	32	35.4	110	5.4
CAPTIVE	20	21.4	107	22	22.4	84	5.6
IMPORT	47	30.5	65	55	44.9	82	47.2
E auction					6.2		
TOTAL	432	388.3	90	456	419.3	91	8.0

(iv) Coal Demand and Availability Position during the Year 2012-13:

For the year 2012-13, a coal based capacity addition programme of around 13,735 MW is envisaged. The coal requirement for the indigenous coal based thermal units vis-a-vis coal availability from indigenous sources and coal requirement for plants designed on imported coal is detailed below:

S.No.	Description	2012-13
1.1	Coal requirement for plants designed on indigenous Coal	476
1.2	Coal requirement for plants designed on imported coal	24
1.3	Total	500
2.	Coal Availability from indigenous sources	
2.1	From CIL Sources	347
2.2	From SCCL	35
2.3	From captive Mines	25
2.4	Total coal availability from indigenous sources	407
3.	Shortfall of indigenous coal (1.1 – 2.4)	69
4.1	Coal to be imported to meet the shortfall for plants designed on indigenous coal	46
4.2	Coal requirement for plants designed on imported coal	24

From the above, it may be seen that there is a shortfall of 69 MT in the availability of indigenous coal. In order to bridge this shortfall, power utilities are required to import 46 MT of imported coal. Apart from this, 24 MT of imported coal is required for power stations designed to run on imported coal.

(iii) 12th PLAN

Considering 54,964 MW actual capacity additions in 11th Plan, four Scenarios for capacity addition during 12th Plan have been worked out based on 18th EPS Demand projections. As per the Base case, the details of capacity addition requirement during 12th Plan is as follows:—

Exhibit 11.1
TYPE WISE CAPACITY ADDITIONS DURING 12th PLAN

(Figs in MW)

		(Figs in M W)
TYPE	12thPlan C	
	(With 18 th EPS deman	d + 5% S.R.) (MW)
Hydro		10,897
Thermal		70,903
Coal	67,843	
Lignite	520	
Gas	2,540	
Nuclear		5,300
TOTAL		87,100
Wind		11,000
Solar		4,000
Other RES		3,500
TOTAL (RES)		18,500
Retirement During 12 th Plan		4,000

Coal demand and availability during 12th plan

Availability of coal for the coal based thermal power stations is a matter of serious concern. Although thrust is being accorded to maximize generation from other conventional and non-conventional sources, coal based generation is likely to be the main stay of electricity generation for 12th and 13th Plan to support the targeted GDP growth envisaged by the Government. The coal based capacity addition programme is worked out after taking into account the electricity generation availability from other sources i.e. Hydro, Nuclear, Gas, Lignite and renewable sources.

In order to meet this generation requirement, coal requirement (at SPCC 0.72 Kcal/ Kg) works out to around 842MT. Against the requirement of 842 MT, 54 MT coal is to be imported by Thermal Power Stations designed on imported coal. SCCL has confirmed a coal availability of 35 MT and around 100 MT coal is expected to be available from captive coal blocks. Thus, 788 MT coal needs to be made available by CIL against which they have committed to supply 477 MT. Thus, CIL is to be impressed upon for formulating exigency plan to enhance their production to meet the requirement the power stations. The availability/shortfall of indigenous coal is detailed below:

- (i) Coal requirement during the year 2016-17 = 842 MT
- (ii) Coal availability from
 - (a) CIL = 477 MT
 - (b) SCCL = 35 MT
 - (c) Captive Blocks allocated to Power Utilities = 100 MT

 Total, coal availability = 612 MT
 - (d) Coal to be imported by TPSs designed on imported coal 54 MT Shortfall = 176 MT

In order to bridge the above gap between demand and coal availability as referred above, Power Utilities are expected to import around 117 MT to meet shortage in coal supply from CIL. This quantity of imported coal would be in addition to 54 MT coal likely to be imported by Thermal Power Stations designed on imported coal. Therefore, the total quantity of coal expected to be imported is about 171 MT.

11.1.6 Issues/Constraints in making coal available to power stations

Timely availability of adequate coal is extremely crucial for maximizing generation from the power plants. In addition to tapping fuel source or organizing its availability, it is also essential to create the infrastructure to facilitate fuel to reach the intended destination. Therefore development of mines/ ports and requisite transportation facilities commensurate with the completion of the projects is very necessary. The gestation period in the development of mines and even transport facilities are in some cases longer than the gestation period for setting up of thermal power stations. It is therefore imperative for the Power Sector to make its prospective coal requirement, over a long time horizon, known to the Ministry of Coal, Railways and port authorities to enable them to undertake co-ordinated development of coal mines and transport infrastructure with the coming up of thermal power stations.

11.2 COAL WASHERIES IN INDIA

In India, 20 percent of coal produced is washed as against a global average of 50 percent. Coking coal preparation has long been in operation in India but recently, the trend has been shifted to washing of non coking coal due to environmental and efficiency concerns. The long distance transportation of coal via land routes offer an ideal opportunity for coal washing in India because of economic benefits. Though coal washery increases the overall cost of coal, but the benefits accrued in terms of saving in transportation, O&M cost and efficiency are sustained.

The quality of Run of Mine (ROM) coal from Indian mines is continuously decreasing due to the geographical pattern of coal seams in coal bed. This very nature of coal quality from coal seams demand coal washing, providing bullish market opportunity for national and international players to enter the lucrative washery segment of Indian coal sector.

The guidelines set by MOEF to use coal containing ash not more than 34% for power plants situated at a distance more than 1000km has changed the scenario completely. Out of the projected capacity addition during the 11th plan, about 27% of planned capacity would be located at more than 1000km.

As the pressure from environment brigade is mounting, MOEF is likely to reduce the required norms for using 34% washed coal from beyond 1000 Km to a distance of 500km. This will open a huge opportunity for private players to enter into the coal washing segment of India. Currently, India has more than 100 million tonnes of non coking coal washing capacity.

CIL has been in the fore front in developing coal Washeries but due to man power constraints coupled with cost of the operation, it has decided to outsource this operation to private players in BOM (Build, Operate and Maintain) basis. It has planned for international competitive bidding to develop 22 coal Washeries in different parts of India. 66 players have evinced their interest to develop coal Washeries for the first phase (11 coal Washeries) of competitive bidding. It has earmarked a whopping Rs 5000 crores for coal washery development to increase the capacity from 120MTPA to 250MTPA in 4 years of time.

Strategies for improvement of domestic coal production

Use of State-of-the art technology for improvement in efficiency & productivity in coal mines and related Policy changes:

To facilitate adoption of State-of-the-art International coal mining technology, high output – high efficiency HEMM, new technology in Mine Safety, etc., further liberalization of import policies by the Indian government is needed. In addition to it, Coal Sector may be given "Infrastructure Status" with 'Tax Holiday' & Duty exemptions. Alternatively, the concept of Mega Project may be introduced in the coal sector also by according Mega Status to Coal Mines of production level of 5 MTPA or above and providing benefits of tax/duty concessions.

R&R Policy for Coal Mining Industry:

Resettlement and rehabilitation policy needs to be evolved to protect the livelihood of project-affected people. To bring in clarity and uniformity – Nationwide, a uniform R&R policy needs to be formulated which should be adopted by all coal producing companies in India. With increased use of state-of-the-art technology and sophistication, more automation & computer control in coal mining operation, less manpower deployment will be required in the new mines and thus there will be less job opportunities. So, while formulating National R&R policies for coal mining, this aspect may also be looked into and suitable alternatives, beneficial for upliftment of livelihood of the displaced persons, may be agreed upon. Moreover, in order to avoid erosion of land compensation amount by the land oustees in a short span, a suitable mechanism like Interest-carrying deposits of land compensation amount – part or full in a suitable fund created by the mine owner, issuance of Bonds, etc., may be explored.

Unlike other industries, coal mining industry does not require establishment of permanent fixtures over the entire acquired land, hence the some of the land, after mining, can be used for cultivation with proper development like earth-filling & putting in of fertilizers, etc. R&R Policy for Coal Mining may look into another dimension like taking of agricultural land from local people on term-lease & returning of land to the extent possible in an area where mining operation is completed after proper development of that land so that cultivation can again be done. The Agency/Organization, engaged in coal mining in a particular block, will remain responsible for development & return of the land.

Expeditions clearances for development of Coal Mining Projects:

Govt. support in terms of simplified procedures and single-window approach for granting of various clearances and permissions, including environmental clearance, faster investment decisions, closer coordination between the Centre and the State Govt. agencies etc. would be needed for speedier execution of coal mining projects.

Captive Coal Mining

Coal production, modernization and efficiency improvement would depend on the level of competition in the industry. Mobilization of the requisite investment in coal mining also reinforces the need to induct more players from both the public and private sectors. The introduction of new players in the coal sector would be beneficial to the sector as a whole and is considered essential. It would also be essential to gradually increase the production through captive mining of 40 to 50 % of the total production of the country. Reputed International Coal Mining Companies may be encouraged to come to India for development & operation of coal mines which will facilitate introduction of latest mining technology & mine safety measures

State Governments must become partners in development of coal

- i. There is a need to incentivise states from mining operation.
- ii. Before the allocation of blocks, concerned Sate Govt. may be consulted with and made party to it, as mining of coal in their States would directly and indirectly benefit that particular state.

- iii. In mineral rich states, a separate cell may be made operational for land acquisition process, processing of proposal related to environment and forest clearance (Single window approach through MOU), etc.
- iv. Coal-bearing states, in addition to Royalty, may be incentivised for their co-operation in start of mining in a time-bound manner.

❖ Special Task Force for monitoring the progress of project implementation

A special Task Force may be in place for periodic review & monitoring of the progress of coal mining projects. It will prevent any slippage, help in clearances/approvals and ensure timely commencement of production of coal. Such monitoring & status reporting must be done in a transparent manner and in electronic form.

* To ensure adequate exploration of coal mines and reliability of estimates of extractable reserves

It is needed to speed up our efforts to accelerate the pace of regional surveys and drilling to complete the comprehensive coal resource assessment exercise. Therefore, there is a need to enrol more specialist agencies to conduct exploration of blocks and prepare GRs, so that production from blocks can start in a timely manner.

Commercial coal mining by private sector

The need to provide adequate investments in coal mines, conserve coal reserves ensure mine safety and environmental protection and to assure decent living standard for the coal labour was the basic reason for nationalization of coal mines during 1971 and 1973.

In this regard, Coal Mines (Nationalisation) Amendment Bill, 2000 is a step towards promoting liberalisation in the coal sector. It will also address the need for augmenting coal production in the country through wider participation of private coal mining companies. The proposed amendment bill is pending for long time to be expedited

Coal price pooling:

The concept of pooling of price of domestic and imported coal is necessitated due to the fact that the production of domestic coal is not increasing commensurate with the requirement of coal for power stations which are existing and are being planned, based on domestic coal. Most of the new Power Utilities would be required to import coal to bridge the gap between their requirement and availability of domestic coal.

Coal for thermal power plants is predominantly being imported from countries like Australia and Indonesia which has a high Calorific Value ranging from 6000-6500 Kcal/ Kg with low ash content. Major ports for import are Mundra, Vizag, Gangavaram, Ennore, Tuticorin, Pipavav etc. Transportation cost from these ports to power plant site which are not in the coastal region or not in the state where these ports are located may be as high as Rs. 1500 per tonne.

Coal for the Power Utilities in the country is being transported by Indian Railways and most of their routes are already facing congestion due to heavy movement of traffic. There is cross movement of coal from port to Power Utilities located in Central India and from domestic coal mines to Power Utilities located in coastal or adjoining areas. This is causing duplicate movement of coal rakes and causing unnecessary expenditure on freight and avoidable overloading of Indian Railways network and creating other logistic problem. Transporting coal from such a long distance also increases transit loss thereby reflecting in the bottom line of generating utilities. Since the fuel price is generally pass through in the tariff, higher freight charges will certainly increase the tariff resulting in higher cost of electricity to the consumers. The situation thus needs to be rationalized to the extent feasible.

A solution to this problem could be the allocation of coal to Power Utilities from the nearby coal source to the extent possible to minimize transportation cost. Power Utilities located in coastal areas may be asked to use larger chunk of imported coal being nearest to the port subject to design limitations. Most of the coal mines of Coal India Ltd. are located in Central India giving almost an equal distance of coal transportation from coal mine to a majority of Power Stations. Therefore, the Power Utilities which are at a larger distance from ports may be allocated coal from the mines of Coal India only and be asked to use imported coal only in the case of shortfall to avoid unnecessary double movement of coal rakes.

It is accepted fact that the cost of imported coal is higher than domestic coal even after accounting for its higher GCV, at present rate it is almost two and half times costlier than domestic coal on heat value basis. This could be a deterrent to the Power Utilities at coastal areas which would be asked to use a higher chunk of imported coal as it will increase their cost of generation.

A case, therefore, exists for importing coal to bridge the gap between requirement and availability of domestic coal and the cost of the same to be equitably borne by all the power utilities. It may however be mentioned that the concept of pooling cost is to be applicable to power stations designed for domestic coal only. Imported coal based stations and stations linked to dedicated coal blocks are not to be considered in this pooling mechanism.

Following categories of power plants may be accorded higher preference for utilizing imported coal (subject to 15% blending with imported coal for existing stations and upto 30% blending for new stations) under the pooling of price concept:—

- Coastal power stations
- Stations where availability of indigenous coal is a major constraint.
- Stations situated at long distances from pithead
- Stations which have to comply with MOEF stipulations on ash content.

The above are to be prioritized considering the existing coal handling facilities at power stations to the extent possible.

Pooled price is to be evaluated based on the heat value (Rs/KCal) of the coal. CIL shall be responsible for importing coal and levying the pooled price on the various power utilities. This is reasonable in view of the fact that the New Coal Distribution Policy stipulates that CIL is responsible for meeting 100% of the normative requirement of coal of the power utilities, and import of coal may be resorted to the extent required.

e-Auction of coal

As per NCDP, around 10% of total domestic coal production is allowed for e-Auction by CIL. It is to be ensured that before offering 10% quantity, FSA/MOU commitments are met with. The issue of rail connectivity to such mines from where coal for e-auction is sourced should be taken up immediately.

Coal Regulator

A need is being felt for long to institute an independent regulatory body to regulate the upstream allotment and exploitation of available coal blocks to yield coal, coal bed methane, coal-to-liquid and for in-situ coal gasification. The proposed Regulatory Body, as an interim measure, may approve coal price revisions, ensure supply of coal to the power sector under commercially driven long-term FSAs, facilitate the development of formulae/indices for resetting coal prices under long-term fuel supply agreements, monitor the functioning of the proposed e-auctions, ensure that the price discovery through e-auctions is free of distortions, regulate trading margins, develop a mechanism for adequate quantities of coal imports under long-term contracts to bridge the gap between supply and demand thereby assuring that the e-auctions and consequent price discovery does not take place in a supply constrained market and, finally, create the environment for a competitive coal market to operate.

Once a competitive market is developed, the role of Regulator in determining the prices would be to ensure a free and transparent market for coal. The Regulator must ensure that mines are planned, designed and developed in a scientific manner giving due importance to coal conservation thereby maximising percentage of coal recovery from geological blocks.

The Regulator must standardise norms of operation, establish benchmarks and ensure that coal companies raise their level of competence to be at par with international standards.

The proposed Coal Regulator should also be entrusted with following aspects of coal mining:

- Coal Resources Management
- Safety, Health, and Employment in coal mines
- Prices, Taxes, Royalty, Value Added Tax, Property Tax, and Salary of Workers
- Environment Management
- Policy-Legal, Public Relations, Statistics, and Dispute Resolution
- Recommendation to CIL for issuance of LoAs
- Approval of mine plans including mine closure plans
- Optimization of current linkages to minimize Rail/Road transportation

- Oversight role on captive coal block auctions
- Dispute resolution-primary forum for :
- dispute resolution among entities;
- entities aggrieved due to decisions given by MOC/MOEF relating to mine closure, etc.

11.3 LIGNITE

Lignite reserves in the country have been estimated at around 40.9 Billion tonnes, most of which is found in the state of Tamil Nadu. About 82% of the Lignite reserves are located in the State of Tamil Nadu & Pondicherry. At present only a small percentage of the total reserves of lignite have been exploited. Considerable scope remains for the exploitation of the lignite reserves and use of lignite in thermal power stations subject to cost-economics, particularly in the states of Tamil Nadu, Rajasthan and Gujarat having the limitations of transportation of coal to these regions. State-wise distribution of Lignite resources, Lignite Demand & Production Plan by M/s. Neyveli Lignite Corporation Ltd. (NLC) and Lignite Demand & Production Plan by State Electricity Board are shown in Table-11.2 to 11.3:

TABLE-11.1 State-wise Lignite Reserves

State	Total[MT]
Tamil Nadu	33309.53
Rajasthan	4835.29
Gujarat	2722.05
Jammu & Kashmir	27.55
Others (Kerala, West Bengal)	11.44
Total	40905.86

TABLE -11.2 Lignite Demand & Production Plan by M/s. Neyveli Lignite Corporation Ltd. (NLC)

Item	2012-13	2013-14	2014-15	2015-16	2016-17	12th plan
Demand (MT)	25.60	26.12	25.91	25.37	27.26	130.27
Production (MT)	26.01	26.01	26.01	26.01	27.29	131.33
Demand-Production	0.41	-0.11	0.10	0.64	0.02	1.05
Gap (MT)						

Brief year-wise anticipated demand & production plan of Lignite by other State Electricity Boards and private companies (other than NLC) during 12th five year plan period are shown below (TABLE 11.3).

Table 11.3
Lignite Demand & Production Plan by State Electricity Board

Item	2012-13	2013-14	2014-15	2015-16	2016-17	12th plan
Rajasthan Rajya Vidyut Utpadan Nigam Limited						
Demand(MT)	8.4	8.4	10.5	10.7	10.7	48.7
Production (MT)	5.4	6.1	10.6	13.1	13.1	48.3
Demand-Production Gap (MT)	-3	-2.3	0.1	2.4	2.4	-0.4
Gujarat Industries Power Comp	any Ltd.					
Demand (MT)	3.6	3.6	3.6	8.1	8.1	27.0
Production (MT)	3.6	4.2	5	8.4	8.4	29.6
Demand-Production Gap (MT)	0	0.6	1.4	0.3	0.3	1.4

[•] Immediate steps needed to augment lignite production considering large reserves of lignite in the country. The technology issues for efficient utilization of lignite resources need to be addressed.

11.4 NATURAL GAS

(i) With only one carbon and four hydrogen atoms per molecule, Natural Gas has the lowest carbon to hydrogen ratio, hence it burns completely, making it the cleanest of fossil fuels. Natural gas satisfies most of the requirements for fuel in a modern day industrial society; being efficient, non-polluting and relatively economical. The periodic uncertainties and volatility in both the price and supply of oil have also helped Natural Gas emerge as a preferred fuel in the energy basket across the countries. The demand of Natural Gas has sharply increased in the last two decades at the global level.

In India, the natural gas sector has gained importance particularly over the last decade and being termed as the Fuel of the 21st Century. The demand of Natural Gas in power sector has ramped up but the supply is not keeping pace with demand.

(ii) Supply of Gas to Gas based power plants:

The production and supply of gas had not been keeping pace with the growing demand of gas in the country, including for that of power sector. Supply of gas to gas based power plants during last few years had been as under:

Sl. Capacity at the Gas Required Aver. Gas Supplied Shortfall **Years** end of year No. (MMSCMD) (MMSCMD) (MMSCMD) (MW)**(1) (2) (4) (3) (5)** (6)=(4)-(5)2000-01 9028.70 44.54 24.40 1 20.14 2 2001-02 9432.90 46.31 24.33 21.98 3 2002-03 9949.00 48.26 25.12 23.14 4 2003-04 10,154,90 49.25 25.62 23.63 49.73 5 2004-05 10,224.90 30.70 19.03 10,919.62 6 2005-06 53.38 35.37 18.01 7 2006-07 12,444.42 61.18 35.10 26.08 2007-08 13,408.92 8 65.67 38.14 27.53 9 13,599.62 2008-09 66.61 37.45 29.16 10 2009-10 15,769.27 78.09 55.45 22.64 11 2010-11 16,639.77 81.42 59.31 22.11 12 2011-12 16,926.27 81.78 55.98 25.80

TABLE 11.4

The production of gas from KG basin (D-6) has started from April 2009. So far, EGoM has allocated gas to the existing power plants based on anticipated production of about 80 MMSCMD from KG-D6 basin. Presently, the production from KG-D6 has come down to about 24 MMSCMD against the firm production of about 60 MMSCMD last year. The gas production from other old fields is also reducing day by day due to depletion of these fields. In view of low availability of domestic gas, existing power plants in the country are getting lesser supply of gas resulting in sub-optimal utilization of these power plants.

(iii). Generation loss due to gas shortage

There was a shortage in availability of gas. This resulted in loss of generation of power. In case of gas based power stations having provision for the use of alternate fuels, such as naphtha, HSD, generation was augmented by use of such

fuels. On account of the prevailing high costs of liquid fuels resulting in high cost of generation, the actual generation using these fuels was, however, dependent upon the requirement/acceptance by the beneficiaries. Loss of generation due to shortage in availability of gas as reported to CEA and based on possible operation of power plants at 90% PLF were as under:

TABLE 11.5

		Generation Loss during the year (BUs)			
S. No.	Year	As reported to CEA by Gas Based Power Stations	Based on possible operation of gas power plants at 90% PLF		
1	2004-05	7.03	23.71		
2	2005-06	7.69	23.88		
3	2006-07	8.06	26.33		
4	2007-08	9.34	31.17		
5	2008-09	11.99	33.71		
6	2009-10	3.24	25.02		
7	2010-11	6.39	28.27		
8	2011-12	10.01	32.97		

(iv) Steps taken by the Government to overcome the gas shortage

Government of India has adopted a multi-pronged strategy to augment gas supplies and bridge the gap between supply and demand for the domestic market. These include:-

- MOP&NG is taking necessary steps to augment production of natural gas from the gas fields/wells.
- MOP&NG is taking necessary steps to increase availability of gas from domestic sources by awarding gas blocks for Exploration & Production (E&P) activities in various sedimentary basins of the country under the New Exploration Licensing Policy (NELP).
- MOP&NG is encouraging import of gas in the form of Liquefied Natural Gas (LNG) and also making efforts for import of gas through international pipelines projects.
- In order to explore and produce new sources of natural gas from coal bearing areas, government has formulated a Coal Bed Methane (CBM) Policy providing attractive fiscal and contractual framework for exploration and production of CBM in the country.
- Government is encouraging Under Ground Coal Gasification (UGCG) and coal liquification and investment by
 private entrepreneurs in development of these frontier technologies. The notification specifying coal gasification
 and liquefaction as end-uses has been published in the Gazette of India on 12th July, 2007.
- Implementation of Natural Gas Hydrate Programme (NGHP) for evaluation of hydrate resources and their possible commercial exploitation.
- Efforts are also being made to persuade Government to accord priority to Power Sector while finalizing Gas Utilization Policy of the Government for all future domestic gases.
- While allocation was made for RIL gas from KG basin (D-6), the power sector has been given priority.
- Planning Commission had constituted an Inter-Ministerial Committee on Policy for Pooling of Natural Gas
 Prices" under the Chairmanship of Saumitra Chaudhary. The committee has submitted its report in August, 2011.
 The committee has emphasized for increasing share of RLNG in the Power Sector.

(v) Gas Requirement for power sector for 12th Five Year Plan

A capacity addition of about 88,000 MW may be required in power sector to meet the growing demand of power during the 12th Five Year Plan. Due to uncertainty in availability of domestic gas, a gas based capacity of only 2540 MW has been considered for the 12th Plan i.e. only those projects in case of which gas is assured from local sources or slippage projects of 11th Plan. However, there is need to plan for additional gas based capacity to the tune of 25,000 MW depending on the availability of gas due to several advantages of gas based plants over coal power plants and also to reduce our emissions. Bulk of this capacity could be developed in next 3 years at the brown field sites or green field sites where land is already available. Presently, about 13,000 MW gas based capacity is under construction and if gas is made available, this capacity can be commissioned in early years of 12th Plan.

By the end of the year 2012-13, a substantial coal based capacity is going to be operationalised. The base load requirement by the country will be met from nuclear, pit head coal based generation and partly by non pit-head coal based generation and gas based generation. The intermediate and peak load is required to be met by hydro, non-pit head coal based generation and gas based generation. The wind, solar and small hydro will be "must run" generation and will have to be accommodated by backing down thermal generation. Thus, there is need to promote gas based peaking power plants during 12th Plan onwards. The additional gas requirement for 25,000 MW capacity worked out as under:

TABLE 11.6 12th Plan Gas Requirement

Particulars	Gas capacity in MW	Gas requirement at 70% PLF (mmscmd)
CCHP Capacity	2,000	8.0
Gas based capacity at the brown field sites or at green field sites	21,000	78.0
Peaking Gas based capacity to be located near large cities	2,000	4.0 *
Total	25,000	90.0

^{*} Considering operation for about 5-6 hours daily for peak load and in contingencies

Pooling of domestic gas with imported RLNG can be one solution to reduce the shortage of gas. Based on capacity of exiting/proposed LNG terminals in the country, it is felt that additional 40-50 MMSCMD gas can be made available for power sector by 2012-13, which can support about 10,000-12,000 MW additional gas based power plants in the country. LNG being costlier fuel, can be pooled with domestic gas and the common pooled pricing of Natural Gas may be implemented as a policy directive and this will give the much needed impetus to the growth of Gas based generation in the country though it may increase the cost of generation. Due to inherent advantages of gas based generation being green power, the purchase of fixed percentage of power may be made mandatory by the Regulatory Commissions, so as to make the gas based power having higher tariff despatchable.

(vi) Total Gas Requirement by Terminal Year of 12th Plan (2016-17)

The total gas based installed capacity in the country by the end of 11th Plan (31.03.2012) was 18,381 MW. Based on normative requirement of 4.8 MMSCMD gas per 1000 MW at 90 % PLF, gas requirement for these projects works out to 88 MMSCMD. Gas requirement to promote new gas based capacity of about 25,000 MW during 12th Plan works out to about 90 MMSCMD. Details of gas requirement during terminal year of 12th Plan are summarised below:

TABLE 11.7

GAS REQUIREMENT FOR TERMINAL YEAR OF 12 TH PLAN (2016-17) *				
Gas requirement by 11th Plan end (corresponding 88 MMSCMD				
to existing capacity of 18381 MW as on 31.03.2012)				
Requirement for 12th Plan Projects (for 25,000 90 MMSCMD				
MW capacity)				
Total Gas requirement by 12 th Plan end(2016-17)	178 MMSCMD			

11.5 NUCLEAR DEVELOPMENT

Expansion of capacity in atomic energy has been limited in the past due to the lack of availability of domestic uranium or the non-availability of supply of international supply of uranium fuel because of the restrictions imposed by the Nuclear Suppliers Group. These restrictions have now been lifted and we can expect a much faster expansion in our nuclear generation capacity. DAE envisages to add 5300 MW in the 12th Plan based on domestic manufacturing capability and additional 18,000 MW during 13th Plan. Despite availability of imported uranium, we must give priority to domestic development of uranium mines. This would enable faster development of the sector.

The India's nuclear power strategy has depended on a three stage development programme consisting of conventional nuclear reactors in the first phase, fast breeder reactors in the second phase and thorium based reactors in the third phase. Successful transition to the third phase will enable us to explore India's vast thorium resources to become much more energy independent beyond 2050. If we depend on domestic uranium resources, the first phase plants cannot exceed 10,000 MWe from PHWR. A cap of 10,000 MWe would have limited the scale and pace of fast breeder reactor programme and therefore, the production of plutonium which determines the rate at which thorium based nuclear plants can be mobilized. With the lifting of NSG restrictions, import of uranium would enhance the capacity base of our first stage programme. Government has taken steps to import nuclear fuel from NSG members and reactors from the nuclear equipment suppliers to enhance the capacity base in the country. 300 tonnes of Uranium concentrates has already been imported from France. Steps are on to get long term supply of 2,000 tonnes of Uranium pellets from Russian federation in a phased manner.

The Fast Breeder Reactor programme is set to be launched with the prototype 500 MWe Fast Breeder reactor plant being built at Kalpakkam, which is likely to be commissioned by March 2012. This is first of its kind project in India and is being implemented by the BHAVINI, a public sector company set up to build this project and all future fast breeder reactor projects. Successful commissioning of this project would go a long way in achieving the three stage development of India's nuclear power programme for the future.

DAE envisages start of work on eight units of indigenous 700 MWe PHWRS in the 11th Plan for commissioning during 13th Plan. Four units have been already approved and work has commenced. These are slated for commissioning in 2016/2017. Work is also planned to be started on LWRs based on international cooperation. The Government has accorded in principle approval for five coastal sites to set up nuclear power parks of 6000 to 10000 MWe capacity based on LWRS with cooperation from Russian Federation, USA and France. A total LWRs capacity of 40,000 MWe is possible to be added progressively by 2032 depending up on the actual start of work on these reactors. The spent fuel of LWRs is planned to be reprocessed and deployed in safeguarded FBRs and additional PHWRs. This would further enhance the FBR capacity in the long term and thus increase the role that nuclear energy can play in long term energy security, without the need for any further import of nuclear fuel. This would significantly increase the role that nuclear energy can play in our long term energy security.

The 3rd phase of the 3-phase nuclear energy program, has several complex technological issues to be tackled before our ability to use Thorium. A clear analysis and assessment of the need of additional Manpower, R&D investment and new facilities are called for including the elements to be covered in the remaining 11th plan period. Schedules are of serious concern on this front.

---+++---

Chapter 12 ENERGY CONSERVATION AND DEMAND-SIDE MANAGEMENT

12.0 BACKGROUND

The gap between electricity supply and demand in terms of both capacity (i.e. MW) and energy (i.e. MWh) has been steadily growing in India. Improving the efficiency with which energy is used to provide economic services meets the dual objectives of promoting sustainable development and of making the economy competitive. Energy Efficiency & Conservation has also assumed enhanced importance with a view to conserve depleting energy resources and Energy Efficiency is being increasingly recognized as the most cost-effective option in the short to medium term to meet the energy requirements of increased economic growth and while minimizing the impact of global climate change. Efficiency options can reduce the need for expensive new electricity generation capacity and, since much of the generation is coal-based, reduce the greenhouse gas (GHG) emissions from energy production and use.

Over the past one decade energy efficiency in India has been increasing at a good trot, and energy intensity declined by about 20-25%. Yet there are places where energy efficiency opportunities continue to exist largely because of a range of market failures, information, risks and split incentives. This has led the Government of India through the Energy Conservation Act and the Bureau of Energy Efficiency to launch several programs.

The Energy Conservation Act (2001) is the most important multi-sectoral legislation in India and is intended to promote efficient use of energy in India. The Act specifies energy consumption standards for equipment and appliances, establishes and prescribes energy consumption norms and standards for designated consumers, prescribes energy conservation building code for efficient use of energy in commercial buildings, and establishes a compliance mechanism for energy consumption norms and standards. Large scale energy savings can be realized through strengthening of the existing policies, schemes as well as expanding and reaching out to new areas in the 12th Five Year Plan.

The primary energy consumption of India is 421 million tonnes of oil equivalent (mtoe) (2008; International Energy Agency 2009) which is about 3.5% of the world primary energy consumption in the year 2008. The per capita energy consumption is only 0.53 kilogram of oil equivalent (kgOE) whereas the world average is 1.82 kgOE (2008; International Energy Agency 2009). India lacks sufficient domestic energy resources and imports much of its growing energy requirements. According to the International Energy Agency (IEA), coal/peat account for nearly 40 percent of India's total energy consumption, followed by nearly 27 percent for combustible renewables and waste. Oil accounts for nearly 24 percent of total energy consumption, natural gas 6 percent, hydroelectric power almost 2 percent, nuclear nearly 1 percent, and other renewables less than 0.5 percent. About 30 percent of India's total energy needs are met through imports.

Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power is responsible for spearheading the improvement of energy efficiency in the economy through various regulatory and promotional instruments. Some of these initiatives are:

- a) Regulatory Commissions allowing utilities to factor EE/ DSM expenditure into the tariff
- b) Creation of an EE/ DSM cell in utilities.
- c) Introduction of Time of Day tariffs for large industrial and commercial consumers to flatten the load curve.
- d) Enforcement of mandatory purchase of electricity at fixed prices from cogenerators (at declared avoided costs of the utility) by the grid to encourage cogeneration.
- e) Adoption of efficient pumping systems and shifting of pumping load to off-peak hours.
- f) Energy audits to be done periodically and be made mandatory for public buildings, large establishments (connected load >1 MW or equivalent energy use >1MVA) and energy intensive industries.

12.1 ENERGY CONSERVATION POTENTIAL

As per the BEE/NPC report 2009 the electrical energy conservation and potential in India has been identified as below. It is estimated that total 15%-20% energy savings potentials have been identified across the various sectors through demand side management and energy efficiency in India. The Government of India has initiated a comprehensive program to significantly enhance availability of energy at an affordable price to meet the growing needs of the economy. While capacity addition has been given a major focus, energy efficiency along with renewable energy, nuclear energy is the thrust areas to ensure sustainable development. The aim of the energy efficiency policy is to create appropriate conditions for a robust market to function and unlock the estimated potential of around 20%, the enactment of the Energy Conservation Act, 2001, setting up of Bureau of Energy Efficiency (BEE) and the National Mission for Enhanced Energy Efficiency, are steps in this direction. Following table shows the saving potential in India from energy conservation and demand side management

Table 12.1
Electrical Energy Consumption and Conservation
Potential in India (in BU)

S.No.	Sector	Consumption	Saving Potenial	% Savings
1.	Agriculture Pumping	92.33	27.79	30.09
2.	Commercial Buildings /	9.92	1.98	19.95
	Establishments with connected			
	load>500 KW			
3.	Municipalities	12.45	2.88	23.13
4.	Domestic	120.92	24.16	19.98
5.	Industry (including SMEs)	265.38	18.57	6.99
	Total	501.00	75.36	15.04

Source: BEE/NPC Study 2009

12.2 ENERGY CONSERVATION (EC) ACT

Recognizing the fact that efficient use of energy and its conservation is the least-cost option to mitigate the gap between demand and supply, Government of India has enacted the Energy Conservation (EC) Act – 2001 and established Bureau of Energy Efficiency.

The Act provides for institutionalizing and strengthening delivery mechanism for energy efficiency services in the country and provides the much-needed coordination between the various entities. The Bureau would be responsible for implementation of policy programmes and co-ordination of implementation of energy conservation activities.

The mission of BEE is to develop policy and strategies with a thrust on self- regulation and market principles, within the overall framework of the EC Act with the primary objective of reducing energy intensity of the Indian economy.

12.3 PROGRAMME AND MEASURES UNDER THE PROVISIONS OF EC ACT 2001

In order to enhance energy conservation and energy efficiency, various schemes have been initiated by BEE. They are:

- 1. Energy Conservation Building Code
- 2. Bachat Lamp Yojana
- 3. Strengthening of State Designated Agencies
- 4. Standards and Labelling program
- 5. Municipal Demand Side Management (MuDSM)
- 6. Agriculture Demand Side Management (AgDSM)
- 7. Energy Efficiency in Small and Medium Enterprises (SMEs) and Designated Consumers
- 8. Professional certification and accreditation
- 9. Manuals and codes
- 10. Energy efficiency policy research program
- 11. Delivery Mechanisms for energy Services, and
- 12. School education/awareness etc.

12.3.1 Energy Conservation Building Code (ECBC): To set the minimum energy performance standards for new commercial buildings, having connected load of 100 kW and above, as well as to promote energy efficiency in the existing buildings through retrofitting, Energy Conservation Building Code (ECBC) was launched on 27th May 2007. Presently, the code is in voluntary phase of implementation. While the ECBC has been developed by BEE, its enforcement lies with the State governments and urban local bodies. Many states have already amended the ECBC for their state with Odisha, Rajasthan, Karnataka, Uttar Pradesh, Puducherry and Uttrakhand having completed and states such as Punjab, Chhattisgarh and Gujarat are in the finalization of the amendment process of ECBC for their state. To promote adoption of ECBC in the built environment, several enabling measures were taken up during 11th Plan period. These included (1) empanelment of ECBC expert architects, (2) development of technical reference material such as ECBC User Guide, Tip Sheets for lighting, envelope, HVAC, simulation; (3) development of conformance/compliance check tool (ECOnirman) to help architects/ design professionals and code compliance officials to assess conformance with code requirements, (4) Standard ECBC Training Modules covering various aspects of the code, (5) Developed model building bye-laws to mandate minimum energy standards for residential and commercial buildings/ complexes for formulation of draft National Sustainable Habitat parameters on energy efficiency, (6) Harmonization of ECBC with National Building Code(NBC) 2005 has been finalised by including a chapter "Approach to Sustainability" and sent for wider circulation after which it would be adopted in all future constructions in the country, (7) Draft amendments in the CPWD Schedule of Rates have been carried out to incorporate the requirements of ECBC and are submitted to CPWD for further action.

The draft report on "Low Carbon Strategies for Inclusive Growth" indicates that by mandating ECBC for new commercial complexes and energy audits in existing buildings, 75 % of new commercial buildings starts during the 12th Plan would be compliant to the ECBC. Similarly, 20% of existing buildings would reduce their present energy consumption by 20% through energy audits & retrofits. Consequently, the estimated savings in energy use in new and existing buildings over the Business As Usual (BAU) scenario is likely to be 5.07 BU.

Energy audit studies in buildings have shown large potential for energy savings in government and commercial office buildings. BEE is promoting the implementation of energy efficiency measures in existing buildings through Energy Service Companies (ESCOs) which provide an innovative business model through which the energy-savings potential in existing buildings can be captured and the risks faced by building owners can also be addressed.

It has been seen, time and again, that energy conservation in such buildings can be achieved through well-known interventions, which are cost effective as well. However, the implementation of these interventions is hampered by institutional, procedural and process barriers, particularly the inability of building managers to assess and guarantee the energy savings due to these interventions. In order to address this institutional barrier, the Bureau of Energy Efficiency has taken up the task of institutionalizing energy efficiency services, and of promoting energy efficiency delivery mechanisms, such as the development of a market for Energy Service Companies (ESCOs), which address the risks perceived by building owners.

ESCOs provide a business model through which the energy-savings potential in existing buildings can be captured, and the risks faced by building owners can be addressed as well. The performance-contract based payments for energy savings achieved through the interventions carried out by the ESCO ensures that savings are achieved, and that the payments by the building owners to the ESCO are related to the achievement of these savings. In order to create a sense of credibility amongst the prospective agencies that are likely to secure the services of an ESCO as well as the financial institutions, BEE does an accreditation exercise for ESCOs through a process of rating these applicants in terms of success in implementation of energy efficiency projects based on performance contracting, availability of technical manpower, financial strength, etc. The rating exercise is done through SEBI accredited agencies such as CRISIL, CARE and ICRA. The results of this exercise are made available in public domain and to the various State Governments/SDAs, so as to facilitate them in implementing Energy Efficiency programmes in their respective states. BEE has developed draft standard templates for Request for Proposal (RfP) with evaluation matrix to assist SDAs/building owners/ state governments to invite bids from ESCOs, Investment Grade Energy Audit (IGEA) for addressing the gaps in the DPRs, Draft Performance Contract for EE implementation, Standard M& V plan based on IPMVP guidelines.

In order to further accelerate the energy efficiency activities in the commercial building sector, BEE developed a Star labelling programme (Voluntary) for day use office buildings, BPOs and Shopping complexes have been developed, which is based on the actual performance of a building in terms of its specific energy usage in kwh/sqm/year,. The programme rates buildings on a 1-5 Star scale, with a 5 Star labeled building being the most efficient. The Star rating Programme provides public recognition to energy efficient buildings and creates a 'demand side' pull for such buildings. Buildings with a connected load of 100 KW and above are being considered under the BEE Star rating scheme. In 12th Plan period, the Star rating scheme will be extended to other building types.

12.3.2 Bachat Lamp Yojana: The residential sector accounts for 25.87 percent of the electricity demand in the country. The lighting load comprises of 28% of this electricity demand in the residential sector and contributes almost fully to the peak load as well. To promote the penetration of energy saving CFLs in the residential sector, BEE has developed the "Bachat Lamp Yojana" (BLY) Scheme. Under the BLY scheme, a maximum of 4 nos. long-life, quality CFL would be distributed by the CFL supplier to the grid-connected residential households in exchange of equivalent no. of incandescent lamps (ICLs) and Rs. 15 per CFL. Approximately 6, 00,000 CFLs can be distributed within a single project. The savings in electricity that would mitigate GHG emissions will be leveraged in the international market by the CFL supplier under the Clean Development Mechanism (CDM) of the Kyoto Protocol.

Three types of ICL lamp wattages commonly in use viz. 40 W, 60 W and 100 W are likely for replacement under the BLY scheme. This Bachat lamp Yojana Scheme is registered as CDM Programme of Activities (PoA) with the CDM executive board of UNFCCC to reduce the transaction cost associated with CDM. The project brings together the three key players, namely BEE, the Electricity Distribution Companies (DISCOMs) and Investors to supply the households with CFLs. To bridge the cost differential between the market price of the CFLs and the price at which they are distributed to households, the Clean Development Mechanism (CDM) is harnessed. The CFL supplier (Investor) would cover the project cost through the sale of greenhouse gas (GHG) emission reductions achieved in their respective project areas.

BEE, the Coordinating and Managing Entity (CME) will have to keep a functionary to handle the various documentation and protocols required by the UNFCCC (United Nations framework Convention for Climate Change) and the PoA. Further to facilitate the implementation of BLY projects and CFL distribution, this functionary will have to continuously engage with the State Electricity Distribution Companies and CFL suppliers.

Till now, 50 BLY projects from various parts of India have been included in this registered umbrella framework. 28 million CFLs have been distributed in the included projects in the XI plan period and CFL distribution is in progress in some of the included project areas. An Avoided Generation Capacity of 324.3 MW has been achieved by the CFL distribution till December 2011 during XI plan.

The scheme was designed with 8 Euros as the base price of the CERs. However, as the result of the uncertainty related to the international climate change negotiations and economic slowdown in Europe, the current state of carbon market

does not seem to be very promising at present and the price of CER is varying between 3 to 4 Euros for past several months. Over and above this, the CFLs have become expensive due to the increase in the price of the triband phosphor. All these factors have affected the financial viability of the scheme. This has come as a barrier in speedy implementation of BLY.

The database management of the BLY projects and Capacity building of State Electricity Distribution Companies and CFL suppliers along with BEE functionary will be the key focus areas in 12th Plan. In 12th Five Year Plan, activities proposed to be undertaken are: strengthen the on-going BLY scheme by continued engagement with the state electricity distribution companies, workshops on awareness of BLY, inclusion of projects under the registered PoA, monitoring and verification of the BLY projects, updation of the PoA as per the UNFCCC rules, formulating guidelines and processes for bulk procurement of LED bulbs and other areas of the scheme and monitoring and verification of the LED projects.

12.3.3 Strengthening of State Designated Agencies (SDAs): State Designated Agencies (SDAs) are statutory bodies set up by states to implement energy conservation measures at state level. State designated agencies (SDAs) in different states need to play a very important role in terms of carrying forward various energy efficiency initiatives at the state level. The main emphasis of the scheme is to build capacity of the SDAs to enable them to discharge regulatory, facilitative and enforcement functions under the EC Act 2001. The thrust of the SDA program during the 12th Plan will be on strengthening the 32 SDAs which would enable them to implement various programs and activities initiated by BEE or SDAs themselves.

In the 11th Plan, BEE supported State designated agencies (SDAs) in preparation of action plan, building institutional capacity of SDAs, to perform their regulatory, developmental and promotional functions in their respective states, by way of technical assistance, guidance and funding etc. Each SDA has been supported to develop a five year Energy Conservation Action Plan, customized to local needs aiming at and delivery of the EC act mandates.

The proposed activities for the 12th Plan include sector specific interventions in areas like municipality (drinking water and sewage treatment), agriculture sector (pumping), street lighting, commercial buildings, government buildings and waste heat recovery in SMEs including demonstration projects. Following initiatives of SDA are proposed to be supported that would help in strengthening the capacities of SDAs and undertaking of various projects and programmes to promote energy efficiency in their respective states:

- Support for implementing state-wise sector specific energy saving plan by the SDAs
- Continued engagement of SDAs with energy efficiency professionals like energy auditors, energy managers and ESCOs
- Implement various EE demonstration projects in the states to showcase the effectiveness of the most advanced energy efficient technology and pursue state governments to replicate the project in other parts of the state.
- LED village campaign in the villages and pursue state governments to replicate the project in other parts of the state.
- Publicity /awareness on EE in the states
- Workshops/ training programmes for all the stakeholders
- Capacity building programmes for the SDAs

The total funds requirement for the above proposed activities is Rs. 140 crore.

The State Energy Conservation Funds (SECF) as mandated under the Energy Conservation Act, 2001, have already been constituted in 24 states and funds have been released to all the states during the 11th Plan to operationalize the SECF for various energy efficiency initiatives. The state governments of Andhra Pradesh, Rajasthan, Chhattisgarh, Karnataka, Haryana, Punjab, Kerala, Himachal Pradesh and Odisha have also contributed a matching grant to the SECF and were provided the second instalment by BEE.

In the 12th Plan, it is proposed to set up the SECF in all the states and

- Pursue with SDAs for constitution of SECF in the states and matching contribution by the state governments to the SECF.
- Coordinate with SDAs to implement various energy conservation activities and utilization of fund under SECF. Contribution of Rs. 50 crore to state energy conservation fund is proposed under the 12th Plan.

Total fund required for strengthening of SDAs and SECF is Rs. 190 crore.

12.3.4 Standards and Labeling Program

(a): Equipments & Appliances: The National Energy labeling program was launched on May 18, 2006. Key objective of this scheme is to provide the consumer an informed choice about the energy saving and thereby cost saving potential of the relevant marketed equipments/appliances. During the 11th Plan, under this scheme, a large number of appliances were covered initially under the voluntary labelling categories, out of which four appliances/equipment namely AC, Frost Free Refrigerator, TFLs and Distribution Transformers (up to 200 KVA) have been notified for mandatory labelling program. The energy performance standards for split ACs and Frost Free Refrigerators were further upgraded with effect from January 2012. The S&L Program was quite successful during the 11th Plan period and has contributed to the savings in avoided capacity addition of 7766 MW upto 31st December 2011.

The 11th Plan has already envisaged inclusion of 14 appliances under S&L programme and the 12th Plan also envisage widening and deepening the program. It is envisaged that by the end of 12th plan, 27 products (7 mandatory and 20 voluntary) would be covered under S&L scheme. A baseline survey would also be taken up to find relevant data on 5 products.

The proposed activities in 12th Five Year Plan under S&L for equipments and appliances include:

- Inclusion of at least 13 new equipment and appliances in the S&L program. Standby power loss reduction in few of the electrical appliances will also be focussed in the 12th Plan.
- Mandatory labelling program for Direct Cool Refrigerators, Color TV and Water heaters
- Awareness creation and capacity building of among all the stakeholders,
- Undertaking of check testing, label verification, market impact assessment for appliances/ equipments covered under S&L scheme.
- Involvement of State Designated Agencies to act as Independent Agency for verification and monitoring.

(b) S&L for Transport Sector

There are total 13.3 million passenger cars (2010 - 11) in India which consume about 9 mtoe. The average annual sales of new passenger cars in the country are about 1.1 million. Under the sector, the following activities are proposed:

- Introduction of fuel economy norms in terms of Corporate Average Fuel Consumption (CAFC) for 2015-16 to 2020-21 and 2020-21 and beyond
- Introduction of labelling program for passenger cars
- Technical study for 2 & 3 wheelers and commercial vehicles (Truck & Buses) to finalise S&L programme

The targeted energy saving by the end of the 12th Five Year Plan is 4.3 mtoe.

Based on the above proposed schemes, fund requirement of Rs. 200 crores have been envisaged for the Standard & Labeling programme for the 12th Plan. Based on the above investment, the likely saving from the S&L scheme in the year 2016-17 is estimated to be 10.4 BU of electrical energy and 4.3 mtoe of thermal energy.

(c) Super Efficient Equipment Program (SEEP)

SEEP is a part of Market Transformation for Energy Efficiency (MTEE) initiative, one of the four initiatives of the National Mission on Enhanced Energy Efficiency (NMEEE). The primary objective of MTEE is to accelerate the shift to energy efficient appliances through innovative measures to make the products more affordable.

This programme proposes to deal directly with the manufacturers of select key appliances. Usually, only a handful of manufacturers account for 70 to 90% of the market share of these appliances. SEEP would compensate the manufacturers for a major part of the incremental cost of producing Super Efficient Appliances (SEAs), and encourage

them to not just produce but also sell SEAs at an affordable price to common consumers. The need for incentive is expected to reduce very fast as volumes pick up.

In this manner, the programme would help to introduce appliances that are far more efficient than the ones currently available in India thus, narrowing the massive gap between the efficiency of the average purchase and that of the most efficient technology available internationally.

Super efficient appliances (SEA) may consume 30 to 50 percentages less energy than the five star rated equipments of BEE. SEAs will have their high first cost which can be decreased by large scale production facilities, but due to uncertainty of market demand, manufacturers feel reluctant to make the initial investment to change production lines for super efficient appliances. This barrier needs to be removed by innovative policy interventions.

BEE has identified ceiling fans as the first product under SEEP and in consultation with stakeholder such as manufacturers, technology developers, civil society organizations, R&D and academic institutions; technical specification, monitoring process etc. has been developed.

The ceiling fan market will undergo a significant transformation because of the SEEP intervention. It is expected that 26 million SEA ceiling fans will be deployed by the end of the 12th Plan which will provide savings of 2.2 billion units in the year 2016-17 of 12th five year Plan.

SEEP would also be extended to LED bulbs in the 12th Plan. It is estimate that about 25 million LED bulbs will be deployed under SEEP in the 12th Plan and from which a saving of around 2.01 billion units is expected.

12.3.5 Municipal Demand Side Management (MuDSM)- The global trend towards increased urbanization requires municipal bodies to provide services such as streetlights, solid waste management, sewage treatment & disposal, etc. All these activities consume significant amount of electricity, usually in an inefficient manner. The cost of energy sometimes constitutes more than 50% of the municipality's budget and implementing efficiency measures could reduce it by at least 25%. The basic objective of the Municipal Demand Side Management (MuDSM) programme is to improve the overall energy efficiency of the Urban Local Bodies (ULBs) which could lead to substantial savings in the electricity consumption, thereby resulting in cost reduction/savings for the ULBs. The situation analysis was carried out in the Municipal sector in 2007 covering 23 States/UTs. The finding across all the 171 cities spread in 23 states points out that only 9 cities have exclusive energy cell. Other Municipal's region neither had energy cells nor having any medium for collection of data for improvement of energy efficiency. Bureau of Energy Efficiency has initiated a programme to cover 175 municipalities in the country by conducting energy audits and preparation of Detailed Project Reports(DPRs) and implementation through ESCO mode.

Energy Efficiency in ULBs

• As low as only 38 cities out of 171 have separate allocation in their budget for any energy efficiency initiative. Notably out of total budget allocation of Rs. 12,123 crore across these 171 cities, only Rs 128.5 crore (1.06%) was allocated exclusively for energy efficiency initiatives in the year 2006-07. This subsequently went down to 0.88% in 2007-08 with the allocation of Rs 161.8 crores out of total budget provision of Rs 18,430 crore. Based on the data collected in the situation analysis survey, the energy saving potential for 12th Plan has been estimated as 257 million units (MU) in the urban local bodies.

Energy Efficiency in Water pumping

During the course of initial Investment Grade Audits (IGAs) of ULBs, it was found that over a period of time, many of the water pumping bodies (Jal Nigam/ Jal Sansthan/ Water Department) have separated out from the scope of ULBs and therefore, a separate situation analysis of these bodies was carried out. The representative water bodies, encompassing total of 3520.65 lakh of population in 1896 Sq.km spread across 105 cities, were covered during this sample based survey for situation analysis covering 19 states.

In this study, the overall estimated electricity consumption in the pumping was 1040 MU with an estimated electricity saving potential of 208 MU.

Based on the above survey, funding requirement of Rs. 25 crores is envisaged for the MuDSM Scheme during the 12th plan as this scheme would create an institutional mechanism for implementation of the MuDSM in the country. The above budget is meant for undertaking investment grade energy audits in Jal-Nigams (Water Bodies) and implementation of energy conservation measures in few selected ULBs whose DPRs were prepared in the 11th plan.

12.3.6 Agriculture Demand Side Management (AgDSM)-: Agriculture accounts for about 20% of electricity consumption in the country, which is increasing due to rural electrification efforts of the Government. The electricity is largely used in agricultural pump sets which generally have very poor efficiency. Since agricultural tariffs are usually the lowest and also highly subsidized, there is no incentive to the agricultural consumer to improve efficiency of the pump set. However, utilities are not able to recover economic price on every unit of energy sold to these categories of consumers and therefore need to aggressively target these consumers for DSM measures. Ag DSM promises immense opportunity in reducing the overall power consumption, improving efficiencies of ground water extraction and reducing the subsidy burden of the states without sacrificing the service obligation to this sector. To tap the energy saving potential in the agriculture sector, which is estimated to be 20.75% (2007-08) of the total energy consumption, the activities proposed to be undertaken in the 12th Plan would focus on to build up the process of acceleration of sustainable energy efficiency in the plan through; widespread mandatory regulation across the country for every new pumpset connections, financial assistance for EEPS, implementing DPRs prepared in 11th plan, Monitoring and Verification, facilitating the usage of star labeled pump sets in the existing State/Central government schemes, leveraging the CDM methodology/CERs earning, capacity building, implementing pilot rural drinking water pumping efficiency projects, strategic approach for dissemination of results. The major impacts of the Ag DSM scheme during the 11th Five Year Plan includes 97 MU of annual energy saving potential assessed across eight different states covering about 20,885 pump sets. First AgDSM pilot project covering 2600 numbers pumpsets is being implemented in Solapur region of Maharashtra.

Based on the results achieved during the 11th Plan, the proposed targeted reduction in electricity consumption by efficiency upgradation of 2.7 Lakhs pump sets at the end of 12th Plan is 660 million units (MU). The following instruments are proposed to meet the target:

- Regulatory mechanism to mandate the use of BEE star labelled pump sets for new connections through SDAs. (Target 2.5 lakh pump sets).
 - Facilitate SDAs/State governments to promote the use of star rated Energy Efficient Pumpsets (EEPS), coupled with financial assistance provided to marginal and small farmer category for installation of EEPS
 - o Promoting the use of EEPS in existing State/Central government schemes applicable to agriculture pumping sector.
- Facilitating the Implementation of DPRs prepared in 8 States during 11th plan and placement of Monitoring & Verification protocol to capture the project energy savings.(Target: 0.2 Lakh pumpsets)
- Technical assistance and capacity development of all stakeholders.
- Few Demonstration projects for energy efficiency improvement of water pumping systems in rural public drinking water systems. (Budgetary provision; Rs.9.1 crore)

At the end of the 12th Five Year Plan, it is forecasted that through market transformation of agriculture pump sets, major manufacturer of agriculture pumps in the organized SME sector would transform into manufacturing of energy efficient star labelled pumps through the various initiatives of BEE schemes/programmes.

Wider involvement of stakeholders like DISCOMs, state regulatory commissions, State Designated Agencies, State Governments, pump manufacturers, energy saving companies, farmers/ consumers etc. is one of the key initiatives under the scheme.

The projected electricity saving at the end of 12th Plan i.e. 2016-17 is about 660 MU with the financial budget requirement of Rs. 80 crore.

12.3.7 Energy Efficiency in Small and Medium Enterprises (SMEs) and Designated Consumers: The SME sector is an important constituent of the Indian economy, contributing significantly precisely 8% in GDP, 45% in

manufacturing output and 40% of the total export. Similarly this sector also plays a significant role in energy consumption which is about 25% of the total energy consumption by industrial sector. There are more than 1200 MSMEs clusters in the country comprising about 350 to 400 large manufacturing clusters out of which 180 clusters are energy intensive. Thus there is a need for support to MSMEs in the acquisition and adaptation of energy efficient clean technologies and capacity building, particularly in the context of the National Action Plan for Climate Change (NAPCC). To stimulate energy efficiency measures in 25 high energy consuming small and medium enterprises, BEE in consultation with Designated State Agencies has initiated diagnostic studies in 25 SME clusters in the country and developed cluster specific energy efficiency manuals/ booklets and other documents to enhance energy conservation in SMEs.

The proposed schemes/activities to be undertaken in 12th Plan are as mentioned below:

- Sector specific approach for energy efficiency and technology up gradation through facilitation of implementation of DPRs
- Energy mapping of the targeted SME Sector on all India basis
- Undertaking of Innovative Financial Schemes for adoption of EE Technologies in the SMEs
- Technical assistance and capacity building
- SMEs Product Labelling Promotion Scheme

The approach would be based on the replication of results and findings from the 11th Plan. The total energy consumption in these 25 SME clusters was 4468375 toe and the saving potential was estimated to 663771 toe which is about 15% of the consumption. The reported saving from these clusters was about 14300 toe from 650 EE projects. The energy consumption by energy intensive sector of MSME would be 30.7 mtoe (estimated) in year 2016-17. To achieve the targeted saving (131 MW), BEE is directly or indirectly targeting intervention in about 1500 SMEs units of various clusters in the country through the support of different agencies programs working for energy efficiency in SMEs. This would include implementation of DPRs on energy efficient technologies and development of Local/technologies Service Providers for SMEs, capacity building of stakeholders including bankers /FIs and strategic approach for dissemination of results. The strategy will be to move from cluster based approach to sector based approach to enable large degree implementation in the sectors selected under the 11th Five Year Plan.

12.3.8 Promotional Activities to Enhance Awareness Support Energy Conservation Act

The EC Act, 2001 requires the Government and BEE to take steps to enhance awareness about energy efficiency and energy conservation amongst stakeholders. In pursuance, the following activities are being implemented:

National Awareness Campaign

The objective of the general awareness as well as the Standards and Labelling Programme Campaign of BEE and MOP is to create awareness amongst public on the efficacy and virtues of adopting a habit for energy conservation.

The General Awareness Campaign would create awareness to motivate people to save power by rational use of electricity. This campaign will serve as the umbrella campaign for the energy conservation initiatives and lay emphasis on the subject as the need of the hour. A Multi media outreach strategy has been prepared to achieve maximum reach to the targeted audience. The combination of Media taken in the plan viz. Print, TV, Satellite, Radio, Cinema, Internet would give 96% reach.

The multimedia campaign is being carried out in a phased manner: TV, Print and Radio plan has already been rolled out. Channel selection in TV/Satellite is based on TAM ratings to achieve 65%+ reach at 5+ OTS. For print, popular and top English, Hindi and regional language newspapers along with vernacular magazines have been taken up. The stations for radio campaign have also been selected in such a way so as to attain the maximum reach. All the channels, stations and newspapers have been selected as per the DAVP policy. Alongside, monitoring and performance evaluation would be stepped up to ensure that the scheme attains its designated targets.

The allocation of resources over the various media platforms is such that TV and satellite constitutes the highest allocation followed by print and radio. The plan for Cinema and internet has also been proposed.

Many activities to promote awareness on energy conservation amongst the targeted sectors and general public and also for school children were undertaken during 11th Plan which include National Energy Conservation Award for industries, buildings and railways and Painting Competition on energy conservation for school children.

National Energy Conservation Awards

The National Energy Conservation Award Scheme of Ministry of Power covers about 36 sectors of industry, thermal power stations, office buildings, hotels and hospitals, zonal railways, state designated agencies, municipalities and manufacturers of BEE Star labelled appliances. In the last 13 years of Award Scheme of the period 1999-2011, the participating units have collectively saved Rs 15789 Crores and the investment made on energy efficiency projects was recovered back in 18 months. In energy terms, 17956 Million kWh of electrical power, 31 lakhs kilolitre of oil, 124 lakhs metric tonne of coal and 22.44 billion cubic metre of gas was saved, through the energy conservation measures of the participating units. The progressive industrial units and other establishments have already realized the cost effectiveness of energy conservation measures and honouring their efforts on National Energy Conservation Day, gives a message to thousands of other industrial units and establishments who may have not yet fully utilized their cost effective potential through energy conservation. It is hoped that National Energy Conservation Award Scheme would help in motivating the other energy consumers in joining and promoting of a nation wise energy conservation movement.

It is proposed to strengthen all ongoing activities during the 12th Plan and introduce the following specific activities:

- Creation of data base and its analysis EC Award participating units
- Compilation and dissemination of best-practices in industry and building sector
- Continuation of EC Awards and paintings competition on energy conservation
- Awareness creation on energy conservation through print, electronic and other media for general public

The projected saving in the year 2016-17 of 12th Plan is about 3.42 BU of electrical energy and 5 mtoe of thermal fuel saving with the financial budget requirement of Rs. 100 crore.

• National Painting Competition

Children are an important target group as well as stakeholders in increasing awareness; therefore the Ministry of Power and BEE took up this innovative scheme to target children. The Ministry of Power has launched Painting competition for students in the standards 4th, 5th & 6th at the School, State and at National level, Essay writing competition for students in the standards 6th to 8th at the School and State level, Debate competition for students in the standards 9th to 12th at the District and State level has been included as one of the activities of the campaign, which would not only make aware the children about the need of conserving energy but at the same time would educate and involve their parents as well in the above cause. The identified activity is one of the measures, which can help in creating awareness in the domestic sector. In 2011, around 58,855 schools and 2072,285 students participated in the Painting competition.

12.3.9 Results achieved / expected

The Ministry has set up a targeted reduction of 5% energy consumption by the end of XI Five year Plan. The energy conservation potential as assessed is 20,000 MW and the target planned for the XI Plan is 10,000 MW.

The major achievements are as follows:

- ▶ 9368 Certified Energy Managers out of which 6791 are Certified Energy Auditors till 12th examination.
- > 13 National Certification Examination for Energy Managers and Energy Auditors successfully conducted.
- ➤ 4 Guidebooks prepared to assist energy professionals.
- Four interactive Websites in place.
- > 32 State Governments and Union Territories have notified State Designated Agencies for implementing EC Act within the state.
- Standards & Labeling scheme has resulted in electricity saving of 4611 MU, equivalent to avoided capacity generation of 2565 MW during 2011-2012.

- As per details collected from SDAs to review energy savings based on activities carried out, the reported avoided capacity addition is 1065 MW.
- The estimated avoided capacity based on individual savings achieved by 644 participating units in the National Energy Conservation Award Programme 2011, is equivalent to 504 MW.
- The achievements in respect of energy saved relating to the programmes/ schemes of the BEE during 11th plan is 10836 MW.

12.4 SUPPLY-SIDE MANAGEMENT

- **12.4.1** The thermal units in the country have a unit capacity of up to 600MW. A large number of supercritical units of sizes 660/800 MW are under construction. Initially supercritical units were designed with parameters of 247kg/cm2, 537/50C. Now higher parameters of 247kg/cm2, 565/5930C are being envisaged. With the higher steam parameters being envisaged for supercritical units, the efficiency of these supercritical units would be about 5% higher than the efficiency of present 500 MW units. This would lead to corresponding saving in coal consumption and reduction in GHG emissions. In 12th Plan, supercritical units are likely to constitute a majority of coal based capacity addition. During 13th Plan, thermal capacity addition will be from supercritical units only. A very large number of small size units of 100 MW or less capacity are in operation. The average PLF of most of these units is very low, even less than 50%. These units are of non-reheat type having very low design efficiency. Such units are planned to be retired in a phased manner over a period of next ten years.
- **12.4.2** Thermal power stations in the country are operating with high auxiliary power consumption and secondary fuel oil consumption. These factors, coupled with poor operation and maintenance practices, result in poor efficiency of the stations. Mapping studies carried out by CEA on thermal power stations have revealed that the power stations are losing heavily due to poor condenser vacuum, non-availability of HP heaters, excessive consumption of DM water, air ingress into the boiler, high flue gas temperature and a number of other reasons. Most of the power stations were incurring huge financial losses due to sub-optimal operation resulting in increased coal & oil consumption.
- 12.4.3 Benefits have accrued in terms of higher generation, improvement in heat rate, and reduction in specific fuel oil and coal consumption at a number of TPSs where the recommendations given by CEA in the mapping reports have been implemented. Monitoring of implementation of the recommendations is being carried out regularly. CEA has also prepared "Guidelines for establishment of Energy Audit Cells at TPS" to encourage thermal power stations to conduct energy audits on their own. Energy Conservation Act 2001 makes it mandatory to get energy audit of power stations done through Accredited Energy Auditors. Energy Audit and implementation of recommendations to improve operational efficiency may form part of regular activity and necessary financial arrangements may be made accordingly.
- 12.4.4 Transmission and Distribution (T&D) losses in the Indian system are amongst the highest in the world. Presently the all-India T&D losses are around 27%, out of which substantial portion is non-technical losses and theft. Reduction of the non-technical losses could be achieved with better management at a little extra cost. Schemes have been drawn up to reduce technical losses by installation of additional capacitors, appropriate size of the transformers, installation of amorphous core transformers, augmentation and strengthening of transmission and distribution lines and reduction of the length of low voltage lines. Based on the guidelines issued for reduction of transmission and distribution losses and energy audit in power system, Utilities have been encouraged to reduce the T&D losses by implementing the schemes in regard to computerised system load management through segregation of load to agriculture and introduction of Time of Use (TOU) differential tariffs etc. T.O.U. Tariffs should be such designed in the form of incentive of lower rate that it should encourage use of more energy during off-peak hours and higher rate should be fixed to discourage the use of energy during peak-hours. Regional staggering of load should be aimed to stagger the load and minimizing the load of the system during peak hours. These efforts have to be vigorously followed up along with steps to curb pilferage and theft of electricity. The High Voltage Distribution system (HVDS) has greater potential to reduce T&D losses and should be encouraged.
- **12.4.5** The Indian power system is around hundred years old. With latest technology developments, there is ample scope for improvement in the system of generation and supply of electricity to the ultimate consumers in the most effective and efficient way within acceptable environmental level. Some of the latest technologies are Circulating/

Pressurized Fluidized Bed Combustion (CFBC & PFBC), coal washing/ benefaction, computer-aided up gradation of sub-stations, supercritical pulverized fuel units and Integrated Gasification Combined Cycle (IGCC) plants.

12.5 ACHIEVEMENT UNDER THE 11th Plan

Bureau of Energy Efficiency (BEE) and Ministry of Power (MoP) had introduced a number of schemes during 11th Five Year Plan for promotion of energy efficiency in India. The schemes of BEE include Standards and Labeling (S&L), Energy Conservation Building Code (ECBC) & Energy Efficiency in Existing Buildings, Bachat Lamp Yojana (BLY), SDA strengthening, Energy Efficiency in Small and Medium Enterprises (SMEs), Agriculture & Municipal Demand Side Management (DSM) and Contribution to State Energy Conservation Fund (SECF).

The schemes of the Ministry of Power (MoP) include Energy Conservation Awareness, Energy Conservation Awards & Painting Competition on Energy Conservation for school students and National Mission for Enhanced Energy Efficiency (NMEEE). In the 11th Five Year Plan (2007–12), it was proposed to achieve the energy saving of 5% of the anticipated energy consumption level in the beginning of the 11th Five Year Plan.

The outcomes of these schemes are quite encouraging; various activities under different schemes of BEE and MoP have resulted in savings in avoided power capacity of 10,836 MW (verified; till Dec 2011).

12.6 UTILITY BASED DEMAND SIDE MANAGEMENT IN THE 12TH PLAN

Demand-Side Management (DSM) is the selection, planning, and implementation of measures intended to have an influence on the demand or customer-side of the electric meter. DSM program can reduce energy costs for utilities, and in the long term, it can limit the requirement for further generation capacity augmentation and strengthening of transmission and distribution system. BEE would provide the technical assistance for establishment of DSM cells in the DISCOMs and capacity building of personnel of DSM cells for enabling them to undertake the following strategies and schemes of DSM in 12th Five Year plan:

(I) LOAD SURVEY

The questionnaire based surveys are the most commonly adopted tools to study the consumption pattern of the consumers by a utility. "Standard load survey techniques" need to be developed which may be adopted by the DISCOMs. Also it is envisaged that DISCOMs to develop utility/city level load profiles which may be uploaded on DISCOMs and BEE's DSM website (http://www.bee-dsm.in) on a periodical basis which can be utilized for DSM plans and for further analysis.

(II) LOAD STRATEGIES

Load strategies are to be adopted by electricity utilities to modify customer load profiles and thereby reduce their peak demands. Following Load management strategies may be demonstrated by DISCOMs/Utilities:

* Demand Response

Demand Response is an effort to create additional capacity during the peak hours, by involving voluntary load curtailment by consumers during peak hours or when requested by the distribution companies. The load curtailment can be achieved through implementing load reduction by Energy Efficiency or by load shifting measures.

* Load Management Programmes

- Dynamic/Real Time Pricing: Based on real time system of supply & demand
- Time-of-Use Rates: Customers are offered different rates for electricity usage at different times of the day.
- Automated/Smart Metering: Implementing Dynamic/ Real Time Pricing or Time-of-use rate structure and billing accordingly.
- Web-based/Communication System: This is a tool used along with the above to convey to the customer about the prevailing demand, supply, prices on real time basis and the incentives and options for him, which are used by the customer to manage the demand.

(III) DEMONSTRATION STUDIES

Direct installation programs that provide complete services to design, finance, and install a package of efficiency measures.

(IV) ADVANCED METERING

Advanced Meter has the capability of online communication, accurate measurements, local intelligence, load connect-disconnect facility and consumer friendly display unit. Adoption of this technology will help distribution companies in implementing Demand Side Management specially Demand Response Activities.

(V) DSM FINANCING

The strategic value of DSM measures and energy efficiency lies in their ability to improve the financial cash flow of Indian utilities.

Moreover, DSM and Demand Response (DR) Activity are utilized to curtail the peak electricity demand. In other words, it helps to negate spending on generation, transmission and distribution infrastructure by curtailing the peak. Thus, it can be said that funds are freed up which would otherwise be utilized to meet the peak demand. At the National level, the load growth should be reviewed with and without DSM and the fund freed up because of lower peak growth should be used for DSM/DR activity. In other words, the DSM/DR should have a target (say 0.5% to 1%) of peak demand reduction and the net saving in infrastructure due to that should be used for DSM/DR activity.

The total funds required for providing technical assistance for capacity building of DSM cells established by DISCOMs under 12th Five Year Plan is Rs. 300 crore.

12.7 ENERGY CONSERVATION STRATEGY IN THE 12^{TH} PLAN

The strategies adopted during the 11th Five Year Plan have started showing encouraging outcomes. It is necessary to carry forward the existing schemes as well as further strengthen the activities to accelerate the process of implementation of energy efficiency measures to achieve the desired energy savings.

Further, large scale energy savings can be realized through strengthening of the schemes in industrial, commercial, residential and agriculture sectors as well as expanding and reaching out to new areas. Projected electrical energy saving potential at the end of 12th Five Year Plan i.e during the year 2016-17 is 44.85 BU on the demand side (equivalent to 60.17 BU at Bus bar) and an additional energy saving equivalent of 21.3 mtoe in the industrial sector (including Thermal Power Stations (TPS) and Small and Medium Enterprises), Transport Sector and Energy Conservation (EC) award scheme. The share of target energy saving (Electrical & Thermal) for various proposed schemes under 12th Plan is given below:

12.8 THE NATIONAL ACTION PLAN ON CLIMATE CHANGE (NAPCC)

The National Action Plan on Climate Change(NAPCC) released by the Prime Minister on 30th June, 2008, recognizes the need to maintain a high growth rate for increasing living standards of the vast majority of people and reducing their vulnerability to the impacts of climate change. The National Action Plan outlines Eight National Missions, representing multi-pronged, long-term and integrated strategies for achieving key goals in the context of climate change. The National Mission of Enhanced Energy Efficiency is considered as one of the key missions to achieve the objectives of the NAPCC. The National Mission for Enhanced Energy Efficiency (NMEEE) seeks to identify measures to promote India's development objectives and also result in co-benefits useful in dealing with adverse impacts of climate change. Cost-effective energy efficiency and energy conservation measures are particularly important in this connection. The basic tenet of the mission is to ensure sustainable growth through an appropriate mix of **4 Es: Energy, Efficiency, Equity, and Environment.**

The NMEEE spelt out the following <u>four</u> new initiatives to enhance energy efficiency, (in addition to the programmes on energy efficiency being pursued by MOP and BEE in the 11th Plan):

- i) Unique market based mechanism for energy intensive industries through Perform Achieve and Trade (**PAT**);
- ii) Accelerating the shift to energy efficient appliances in designated sectors through innovative measures to make the products more affordable. (Market Transformation for Energy Efficiency (MTEE);
- iii) Creation of mechanisms that would help finance demand side management programmes in all sectors by capturing future energy savings. (Energy Efficiency Financing Platform (**EEFP**);
- iv) Developing fiscal instruments to promote energy efficiency namely Framework for Energy Efficient Economic Development (**FEED**);

The Ministry of Power (MOP) and Bureau of Energy Efficiency (BEE) were tasked to prepare the implementation plan for the NMEEE. NMEEE spelt out the following four new initiatives to enhance energy efficiency, in addition to the programmes on energy efficiency being pursued. They are:

- (i) Perform Achieve and Trade
- (ii) Market Transformation for Energy Efficiency (MTEE)
- (iii) Energy Efficiency Financing Platform (EEFP):
- (iv) Framework for Energy Efficient Economic Development (FEEED):

(i) Perform, Achieve and Trade (PAT):

It is a market based mechanism to enhance cost effectiveness for improvements in energy efficiency in energy-intensive large industries and facilities, through certification of energy savings that could be traded. Government of India notified the PAT scheme on 30th March, 2012 and the scheme became mandatory from 1st April, 2012.

During the first cycle of PAT scheme i.e. from 2012-13 to 2014-15, 478 Designated Consumers in eight energy intensive sectors such as Thermal Power plants, Aluminium, Cement, Chlor-alkali, Fertilizer, Iron & Steel, Pulp & Paper, and Textile have been included, which account for about 165 million ton of oil equivalent of energy consumption annually. The direct benefit for the participating industries in this period is energy saving of 6.686 million ton of oil equivalent energy, which is around 4% of total Reported Energy Consumption of these 478 designated consumers assessed under PAT.

(ii) Market Transformation for Energy Efficiency (MTEE):

MTEE is the scheme to accelerate the shift to energy efficient appliances in designated sectors through innovative measures to make products more affordable with focus on leveraging international financial instruments, including Clean Development Mechanism (CDM) to make energy efficient appliances affordable and increase their levels of penetration.

Government is also going to launch Super-Efficient equipment program in 12th five year plan. Ceiling fans have been identified as the first appliance to be adopted. The program proposes to incentivize fan manufacturers to produce and sell super- efficient fans that are 30-50% more efficient than the most efficient available in the market at discounted price to consumers. Several rounds of consultation meetings were held with all stakeholders such as fan manufactures, R&D institutions, technology innovators, and academia and policy bodies to deliberate upon specification, incentive structure, and measurement and verification strategy and to work-out a road map of the program. Performance specification of a super- efficient ceiling fan has been finalized and program development is at advance stage of finalization

(iii) Energy Efficiency Financing Platform (EEFP)

To promote the energy efficiency market in India, it is envisaged that need for policy interventions, implementation of demonstration projects, promoting Energy Services Companies (ESCOs), developing and standardizing sustainable contractual and legal documents and putting in place a financing mechanism as key elements of creating markets for energy efficiency the Platform.

Government is also expanding the different Energy Efficiency Financing Platforms though MOUs with public sector, banks, and training of bank officials for appraisal of energy efficiency projects. MoU has been signed by BEE with M/s. PTC India Ltd, M/s. SIDBI, HSBC Bank, Tata Capital and IFCI Ltd. to promote financing for Energy Efficiency projects. Two conferences were organized in association with financial institutions on PRGF and VCFEE in Delhi and Mumbai on 14th February, 2012 and 17th February, 2012 respectively to stimulate financing for Designated Consumers of Maharashtra and Gujarat.

Framework for Energy Efficient Economic Development (FEEED)

Government is also making efforts to create a market for energy efficiency with fiscal instruments by providing reassurance to lenders by providing a guarantee for performance contracts, providing a venture capital fund, promoting leadership in the public sector on energy efficiency and promoting energy efficiency in public procurement based on life cycle cost analysis. Two types of fund for energy efficiency are being established. One is the Partial Risk Guarantee Fund for Energy Efficiency (PRGFEE) and the other is the Venture Capital Fund for Energy Efficiency (VCFEE).

Partial Risk Guarantee Fund (PRGF)

A PRGF is a risk sharing mechanism lowering the risk to the lender by substituting part of the risk of the borrower by granting guarantees ensuring repayment of part of the loan upon a default event. The PRGF guarantees a maximum 50% of the loan provided by the Participating Financial Institution (PFI).

Venture Capital Fund for Energy Efficiency (VCFEE)

VCFEE as envisaged by the Government of India under the National Mission for Enhanced Energy Efficiency can go long way in addressing these barriers and kick starting some of the long awaited energy efficiency projects in the country. This fund provide risk capital support to energy efficiency investments.

12.9 OTHER POTENTIAL AREAS

Other potential areas that BEE has initiated and which offer significant energy efficiency potential:

Trigeneration

The HVAC market size in India in the year 2007 was about 13 million kW; 14 % of that was for the domestic sector. The ratio of window to split ACs in 2004-05 was 3:1 and now the figure is 1:1. HVAC market in India is mainly characterized by the air-conditioning market.

There is a market for hot water generators (i.e. geysers) in the Northern and Central part of the country. About 1.6 million of such heaters are sold annually in India. Assuming average power consumption of 1.5 kW/ heater, total installed capacity would be about 2400 MW.

It has been estimated that about 3000 MW gas based power system is already installed in India, out of that about 1000 MW are recently added in Indian building sector and out of the 1000 MW installed 522 MW are for cogeneration/tri-generation projects.

The tri-generation and cogeneration market is expected to grow very rapidly in future. Present market size has been estimated at 13×10^6 kW (3.7 X 10^6 TR) out of which about 2.3×10^6 kW (0.65 x 10^6 TR) represents chilled water based central system, which is likely to be the immediate target market for cogeneration/tri-generation system.

Waste-to Heat Recovery

India has nearly 13 million of micro, small & medium enterprises which constitute more than 80% of the total number of industrial enterprises in the country. Small industries have a 45% share of the total manufacturing output and they contribute nearly 40% of total exports in the economy. They are one of the biggest employers providing employment to about 41 million people and according to recent estimates, constitutes about 8-9% of the country's GDP. The SME sector is one area which demonstrates high overall potential for reductions in energy intensity ranging from 20 – 25% as per study conducted by the BEE. SMEs, especially those for whom energy costs represent a large portion of total production costs, can reap especially high benefits from improving efficiency of energy conversion and reduction of energy losses, yet numerous barriers and market failures have prevented widespread adoption of these measures.

Rising energy costs can lead to higher production and distribution costs for business, eroding long term competitiveness and profitability. SMEs are particularly vulnerable due to limited resources and tight operating margins. Cutting energy waste can be quick way for them to reduce costs, but they often lack the knowledge, financing and dedicated personnel needed to identify efficiency opportunities and implement improvements. Potential savings can be unlocked through simple measures, one of which can be the waste heat recovery in some of the clusters. Also, demonstration in few units will have high replicability potential as these units are located in clusters.

In order to have an effective implementation mechanism within the timelines indicated in National Mission on Enhanced Energy Efficiency (NMEEE), the Ministry recommended augmentation of energy efficiency institutional structure, both at the policy/ regulatory level by strengthening BEE and creation of an implementation corporate entity as a Joint Venture. As a result, Energy Efficiency Services Limited (EESL) is a joint venture company promoted by 4 Central Public Sector Undertakings (CPSUs), namely National Thermal Power Corporation Limited (NTPC Limited), Power Grid Corporation of India Limited (PGCIL), Power Finance Corporation Limited (PFC Limited) and Rural Electrification Corporation (REC). EESL is registered under the companies Act, 1956 on 10th December 2009 and the commencement of business certificate is obtained on 11th February 2010. It is the first such company exclusively for implementation of energy efficiency in South Asia and amongst a very few such instances in the world.

12.10 HUMAN RESOURCE DEVELOPMENT PROGRAMMES

There is a vast potential for energy savings through human intervention. BEE and SDAs have a major responsibility for stimulating a major change in the energy efficiency ethos and practices (energy modesty) by directing the national energy conservation campaign as a mass movement and seeking wide support. In the 11th Plan, BEE will continue with their campaigns. In addition, Central government will partially fund the SDAs for their respective campaigns in the States.

The following initiatives will be taken in the area of HRD:

- (i) Capacity building: a) Officials of BEE & SDAs abroad/ in India; b) Code officials from SDAs, urban & municipal bodies for promoting & enforcement of energy conservation building codes; c) Orientation programs every year for senior officials from Central & State Govt. departments to review the achievements, impediments and strategies to step up the tempo of energy conservation.
- (ii) Capacity building for new breed of professionals: a) energy managers/auditors being developed under the EC Act from 2003 by BEE through National Certification Examination by offering Refresher training modules for lifelong training for Energy Auditors & Managers; b) Tutorial /help-line support for prospective candidates in the national examination for energy managers/auditors.
- (iii) Demonstration centres in 2 industrial estates to showcase and convince the entrepreneurs & plant engineers/technicians for industrial energy efficiency products/technologies.
- (iv) Orientation workshops on energy efficiency for top management, middle level executives and shop floor operating personnel.
- (v) Farmers training by display of energy efficient pump-sets & other relevant products.
- (vi) Training to drivers in road transport on fuel efficient driving.
- (vii) Nationwide campaigns: a) through media; b) awareness programs for general public & institutions in state capitals and other locations; c) painting competition for school children; d) Eco clubs activities for youth clubs
- (viii) Introduction of the modules on energy efficiency/DSM in the curricula of a) schools b) technical institutes engineering colleges c) other degree/ postgraduate courses including MBA programs.

12.11 OTHER TECHNOLOGIES/AREAS FOR ENERGY CONSERVATION

Award for manufacturer offering the most energy efficient appliance models

Appliances manufacturing companies may have started producing energy efficient, star rated models. However, they also produce a wide range of models that are cheaper and popular but energy inefficient. An award will incentivize the manufacturing companies to offer more energy efficient models and will act as recognition of their commitment to energy efficiency.

The Ministry of Power already has the National Energy Conservation Award (NECA) scheme to recognize the innovation and achievements in energy conservation & efficiency by the industry, and the above proposed award can be a part of the scheme.

ENERGY EFFICIENCY RESEARCH CENTERS

Setting up of 10 energy efficiency research centres for selected energy consuming sectors may be considered in collaboration with the Department of Science & Technology (DST). Based on a model appropriate for India, BEE may invite offers from academic institutions, manufacturing associations & ESCOs and offer funding for initial set up, partial running and maintenance cost for the first 5 year period.

The financial budget requirement for this activity is Rs. 200 crore in 12th Five Year Plan.

Other Strategies and Initiatives

Other strategies

Encourage planners and regulators related to energy and technology up gradation sector to adopt integrated resource planning in the entire value chain of activities, right from extraction or procurement, and conversion to final end use.

New areas/initiatives

Railways

The Indian Railways in past has undertaken many initiatives to conserve energy. However, still many opportunities may exist for improving the energy efficiency in the railway sector as a whole. Given the energy saving potential that may exist in this sector, it is proposed to initiate studies and various schemes in coordination with the Ministry of Railways.

Additional sectors

A few additional sectors are proposed under the 12th Plan, where possibilities to reduce energy consumption exist, which are not presently/ adequately covered under the existing BEE schemes. These include the defence establishments like ordinance factories (purely on a voluntary basis), Public Sector Units (PSUs) township and large engineering/ manufacturing industries.

Lighting Centre of Excellence

Creating a demonstration centre on lighting technologies (Lighting Centre of Excellence) to showcase energy efficient lighting technologies, may be considered in the 12th Plan.

12.12 CONCLUSION AND RECOMMENDATIONS

The target of energy saving which may be achieved in the terminal year 2016-17 of 12th Five year Plan as a consequence of Demand Side Management (DSM), Energy Efficiency and Energy Conservation schemes as proposed in the plan is expected to be 44.85 BU (at consumer side) which is equivalent to 60.17 BU at the Bus bar side. The equivalent avoided peaking capacity is estimated to be 12,350 MW at the end of the 12th five year plan. In addition to the electricity saving, total thermal energy saving equivalent to 21.30 million tonne of oil equivalent (mtoe) in the Industries & SME, Transport sector and Energy Conservation (EC) award is also expected to be achieved in the terminal year of 12th Plan.

The details of target of energy saving during 12th Plan as well as corresponding fund requirement for various programmes initiated by BEE are summarized in following table.

Energy Saving Targets for 12th Plan

Sr No	Sectors	Schemes	Total Fund requirement in schemes (Rs. In Crore)	Total Fund requirement in sector (Rs. In Crore)	Targeted Electricity Saving, BU	Targeted Thermal Fuel Saving, mtoe
1	Utility Based DSM	DSM Programme for Utilities	75	75	+	-
2	Industries	Industries	690	745	11.96	10.41
		SMEs	55		1.83	1.59
3	Residential Sector	Bachat Lamp Yojana	22.50	22.50	4.40	-
4	Equipment & Appliances	Standards & Labeling (S & L)	133	1033	10.40	4.30
		SEEP	900		4.21	-
5	Agriculture Sector	Agricultural Demand Side Management	80	80	0.70	-
6	Commercial Sector	ECBC & Energy Efficiency in Existing Buildings	35	35	5.07	-
7	Municipal Sector	Municipal Demand Side Management	25	25	0.47	-
8	State Designated Agencies	SDA Strengthening	140	190	-	-
		State Energy Conservation Fund	50		-	-

Sr No	Sectors	Schemes	Total Fund requirement in schemes (Rs. In Crore)	Total Fund requirement in sector (Rs. In Crore)	Targeted Electricity Saving, BU	Targeted Thermal Fuel Saving, mtoe
9	National Awards, Painting & Awareness	National Awards, Painting & Awareness	100	100	3.42	5.00
10	Innovative Technologies/Areas	Energy Efficiency Research Centre	118	200	1	-
11	HRD	HRD	65	288	-	-
Total 2488.50						21.30
Tota	al electricity saving at de	44.85				
Total electricity saving at Bus bars, BU						

Following recommendations/new initiatives are suggested for 12th Plan.

- Continuation of on-going Schemes/Programs by Bureau of Energy Efficiency and Ministry of Power
- State designated agencies (SDAs) in different states need to play a very important role in terms of carrying forward various energy efficiency initiatives at the state level. The thrust of the SDA program during the 12th Plan will be on strengthening the 32 SDAs which would enable them to implement various programs and activities initiated by BEE or SDAs themselves.
- In the 12th Plan, it is proposed to set up State Energy Conservation Fund (SECF) in all the States and pursue with SDAs for constitution of SECF in the states to implement various energy conservation activities and utilization of fund under SECF. Matching contribution may be made by the state governments to the SECF.

The proposed activities in 12th Five Year Plan under Standard & Labelling Programme (S&L) for equipments and appliances include:

- Inclusion of at least 5 selected new equipment and appliances. Standby power loss reduction in few of the electrical appliances will also be focussed in the 12th Plan.
- Awareness creation among all the stakeholders,
- Undertaking of check testing, label verification, market impact assessment for appliances/ equipments covered under S&L scheme and
- Up-gradation of energy performance standards for equipment/ appliances covered during 11th Plan.

Under the labelling scheme, the following activities are proposed

- Introduction of fuel economy norms effective from 1st year of 12th Plan,
- Technical study for 2 & 3 wheelers and commercial vehicles (Truck & Buses) to finalise S&L programme

---+++---

Chapter 13

REQUIREMENT OF PEAKING POWER AND RESERVE MARGIN

13.0 BACKGROUND

The National Electricity Policy, 2005 aims at achieving the following objectives.

- Access to Electricity available for all households.
- Availability of Power demand to be fully met by 2012. Energy and peaking shortages to be overcome and spinning reserve to be available.
- Supply of reliable and quality power of specified standards in an efficient manner and at reasonable rates.
- Financial turnaround and commercial viability of electricity sector.
- Protection of consumers' interests.

While, a lot of work has been done and is under progress for achieving the objectives as envisaged in the Policy, but out of the above, objectives like Demand to be fully met, Energy & Peaking shortages to be overcome and building spinning reserves have yet to be achieved. It is expected that although in next 5 yrs or so our country may become base load power surplus but peak power deficits will still prevail. In this scenario any measures for improving the base load power situation shall not lead to the desired and targeted benefits to the economy.

Consumers' demand for electricity changes daily and seasonally. During peak times, the largest amount of electricity is needed (peak load), but a "base load" of electricity is needed year-round. Because electricity cannot be stored easily, utilities must anticipate demand, even on the hottest summer day or coolest winter day, and supply enough electricity to meet the demand. Consumption depends predominantly on the time of day and on the season. Utilities meet this demand with in-state power plants and by purchasing electricity from power plants in other states. The balancing of supply and demand is required in order to maintain a reliable electric system without a power interruption to the consumer. Energy use, as opposed to demand, is the total amount of measured electricity that consumers use over time. Demand or energy use can be divided into "base load," "intermediate load," and "peak load". This helps to determine the type and quantity of power plants needed to produce the electricity at the right times. Different types of plants using different fuels or combination of fuels are needed to fulfil one or more of these three types of demand.

Base load plants provide a base level of electricity to the system and are typically large generating units. Base load plants operate almost continuously (approximately 70 to 80 percent of the time), except when down for scheduled maintenance, repairs, or unplanned outages. They take a long time to ramp back up to full capacity and have limited ability to vary their output of electricity. In contrast, plants that satisfy peak demand (peaking plants) are highly responsive to changes in electrical demand. They can be turned off and on relatively quickly. However, they typically operate less than 20 percent of the time. Peaking plants are most often either reservoir based Hydro projects or Pumped storage systems or natural gas combustion turbines/ gas engines. The cost and flexibility of intermediate load plants fall in between those of base and peak load plants. These plants are designed more specifically for cyclic operation, or they can be older coal plants that have become too expensive to run as base load plants. They normally operate during times of elevated load demand, between 30 and 60 percent of the time. Compared to peaking plants, they are generally more efficient or utilize a cheaper fuel source and, therefore, cost less to operate.

A system that is designed for base-load generation will lack the characteristics to respond dynamically or efficiently to the variation in demand within a short time. Apart from variation in demand, there is expected to be wide variability in generation as well, when the installed base of renewable energy plants increases as a result of pressure on Discoms to source their requirement from renewable energy sources (to meet RPO). Since system stability requires matching of generation with the demand at all instances of time, a certain degree of flexibility and ability of the generators to respond rapidly to the changing demand/availability for RE sources must be introduced into the system through appropriate generation plants.

13.1 CAPACITY RESERVE/RESERVE MARGIN (RM)

A reserve margin is the electric generating capacity the utilities maintain beyond demand to handle unpredicted needs and shut downs, both planned & forced. It is the generation capacity above the annual peak requirement. Normal practice requires utilities to maintain at least a 15 percent reserve margin in their electric generation planning.

Reserve Margin (RM) = (Installed Capacity – Peak Load) / Peak Load

In spite of having a significant reserve margin the system has a high loss of load probability. This is due to the following factors:

- i) The outages both forced and due to maintenance are high.
- ii) The share of Renewables which is about 10% does not generate during peak hours and are of highly non-dispatchable in nature.
- iii) The share of Hydro projects is about 23% and the energy of the hydro projects is relatively low.

13.2 OPERATING RESERVES

Operation of Power System has to be made to meet the load forecast. Secondly, utilities make forecast for a planned load or schedule to deliver equal amount of power. However, the actual availability of power or the actual load may be different from what was forecast, due to a number of reasons like extreme weather conditions or unscheduled outages to generation units. Thus generation and distribution have to be managed by what are known as frequency control reserves. The system has to have certain surplus spinning capacity to immediately meet the change in forecast demand.

System reserves can be classified into

- i) Primary Control Reserves or Frequency Control Reserves
- ii) Secondary Reserves or Spinning and Non-spinning Reserves
- iii) Tertiary Reserves or Replacement Reserves
- The spinning reserve is the extra generating capacity that is available by increasing the power output of generators that are already connected to the power system. For most generators, this increase in power output is achieved by increasing the torque applied to the turbine's rotor. The frequency-response reserve (also known as regulating reserve) is provided as an automatic reaction to a loss in supply. It occurs because immediately following a loss of supply; the generators slow down due to the increased load. To combat this slowing, many generators have a governor. By helping the generators to speed up, these governors provide a small boost to both the output frequency and the power of each generator. However, because the frequency-response reserve is often small and not at the discretion of the system operator it is not considered part of the operating reserve. The deployment of the primary control reserves is from 0 to 30 seconds. The primary frequency control systems are activated if the frequency deviation is more than the dead band of the controller. Half of the primary control reserves should be in operation in 15 seconds, and all reserves should be in full power in 30 seconds.
- The non-spinning or supplemental reserve is the extra generating capacity that is not currently connected to the system but can be brought online after a short delay. In isolated power systems, this typically equates to the power available from fast-start generators. However in interconnected power systems, this may include the power available on short notice by importing power from other systems or retracting power that is currently being exported to other systems. The secondary reserves should be activated within 30 seconds and they should be in full output within 15 minutes. The activation is done automatically. The secondary control reserves should release the primary reserves for the next disturbance in the system.
- Tertiary Reserve/Replacement Reserve: Tertiary control actions should free the secondary control reserves in 15 minutes from the start of the disturbance. Part of the actions will be taken automatically and some manually. Automatic actions are typically initiated when the frequency drops below the given limits. The manual actions are initiated by starting the reserve power plants (non-spinning reserves), or by increasing the load of the operating plants (spinning reserves). Tertiary control is based mainly on manual actions initiated by the operator.

The time periods over which all three kinds of reserve power operate is illustrated in the diagram given below.

13.3 REQUIREMENT OF RESERVE PLANTS

The Optimal power system should have about 15-20 % reserve plants, about 20-30% peaking plants, 10-20 % Intermediate plants, and about 50-60% Base load plants. In Indian power system also, the standard frequency control reserves are also need to be created. These are reserves which are primarily reserved to meet the distribution in the system. The reserves should be activated within a period of 30 seconds and should give full output within the next 15 minutes, with a view to release the primary control reserves. In addition the system should have tertiary reserves also which can take over from the scanty reserves within fifteen minutes of the disturbance and release these scanty reserves. These are generally non spinning reserves which can be brought into service at very short notice. As such it is important to discuss as to what should be the quantum of each of these resources.

13.4 PRACTICES IN DEVELOPED COUNTRIES

As regards the Reserves in the Power System, in developed electricity markets abroad, it is customary to have several layers of reserves to meet the contingencies. The first rapid response to a drop in frequency of say 0.1 to 0.2 Hz is to bring on line a hot reserve plant (equal to the largest single unit in the grid) in 5-30 seconds, through automatic generation control (AGC). As a second step, fast reserve power plants (FRPP) are started in 4-15 minutes and ramped up to full load, after which the AGC plant will retreat to reserve mode. As a third step, replacement reserve power plants (RRPP) come on in 45-60 minutes, after which the FRPP plants return to their stand-by mode. These reserves are as illustrated in Figure 13.1 below:

Figure 13.1

The several layers of reserves as planned in the developed countries also take care of the flexibility of operation of the various reserves. Therefore hot reserve which is required to operate within seconds is generally provided through Automatic Generation Control (AGC). The fast replacement reserve is required to be from a generation source which is capable of ramping up within 4-15 minutes to take over from the AGC sources. However Replacement Reserve Capacity could be from slower acting generation source to take over from fast acting reserves. Accordingly, each of these reserve capacity has to be from appropriate generation source having the requisite ramp up and ramp down characteristics.

The rule that the grid operator generally uses is that they must always have an ability to replace the loss of the largest generating unit. It can of course be replaced from multiple sources, including imports. Because of the hydraulic and import abilities, they don't need to keep fossil units running very much just for spinning reserve (but they do warm them up in advance of forecasted demand). Nuclear can not be used for spinning reserve. It is either on or it is off. The same is true of co-generation or combined heat and power installations.

Our suggestions on Reserves

- 1. About 10,000 MW of the capacity which will be operating at lower PLFs would ramp up to meet the sudden peak in demand and these will be our primary control reserves
- 2. The supplemental reserves or secondary reserves can be the hydro stations with storage, pumped storage plants or Gas engines which can be activated within 30 seconds and can be in full output within 15 minutes.
- 3. The tertiary reserves can be some old oil or coal fired stations which can be activated manually and free the secondary reserves for fresh disturbances.

Indian System

The load duration curve of the country reveals that the duration of peak demands being shorter, it may not be economically viable to depend on purely base load stations to meet such peak demands. It makes more sense to set up some power plants for operating only during peak period. However, such plants would require a different tariff structure to recover their costs. Differential tariff structure for peak and off peak periods for the existing generating plants as well as for the new peaking power plants can to a large extent address this problem. The non-pit head power plants and coastal plants based on imported coal with higher variable charges may have to alter the load during the day depending on the load demand. During the off-peak hours also, such coal based plants may continue to operate, though at reduced load.

13.5 REQUIREMENT OF PEAKING POWER

Power supply position in the country indicates continued energy and peaking shortages. While the energy shortage makes it imperative to set up base load stations, the peak shortage underscores the need for separate dispensation to meet demands during peak periods. Peaking demand in Indian states has been met, to an extent, by purchasing power from other states through bilateral agreements or through the mechanism of Unscheduled Interchange (UI) at frequency-linked prices and sometimes by load shedding also. Hydro power plants also can be started up quickly to meet sudden peaks, but this facility is restricted to those few states that have adequate water storage, all through the year.

Peaking power can ideally be provided by pondage / reservoir based hydro plants. However, hydro capacity alone may not be able to meet the peaking demand. Fast response during peak hours could be provided by the gas engine based generation because of their excellent peaking support capability.

Given the continuing peaking shortages on all India level and the region specific or State specific shortages there is a need for peaking power plants. At the same time, given the fact that energy shortages also persist we would continue to need investment in the base load / intermediate load stations. The major capacity addition is expected in hydro, coal and renewable. Hydro capacity addition though small is also mainly in run of the river type or with small pondage. No peaking stations are under execution except 1000MW pumped storage scheme at Tehri, & Teesta Stage V. Thus there is an urgent need to plan for peaking capacity. It would also be desirable to operate the combined cycle gas based capacity to meet mainly the peaking and intermediate load demand.

The trends both in terms of volume and price of electricity in the short-term market further reiterate the need for setting up of adequate generation capacity in general and peaking power plants in particular to enable the distribution companies to make long-term planning for meeting their requirements for power for base-load as well as peak-load.

13.6 OPTION FOR PEAKING POWER GENERATION

The optimum base load capacity is the one which can supply energy under the Load Duration Curve (LDC) running at nearly full load both technically as well as commercially (with reference to its cost of operation and efficiency). On the merit order the demand is first met from nuclear or renewable energy sources or run of the river hydro stations and hydro plants with storage which have to release water to meet irrigation requirements which are must run, followed by generation from pit head coal based station, followed by load centre and coastal coal based stations, and combined cycle gas based station. Balance demand could be supplemented further by peaking power plants, namely, storage type hydro generating station including pumped storage schemes, open cycle gas turbine station, and gas based reciprocating engines.

Peaking plants shall be environmentally-friendly and must comply with emission norms, so as to be located close to load centres. They must be able to start up (and stop) instantaneously and ramp up quickly, and in required steps, to match the spike in load. Their efficiency curve must be high and flat at different plant loads. They must be 'all-season' plants and use a fuel which is available throughout the year. A comparison of various types of peaking alternatives and their economics in term of objective function being minimum are as given in Table 13.1 below:

_			-	_		
Tя	h	\mathbf{a}	1	-2	. 1	

Type	Capital cost	Effici- ency	Fixed O&M	Variable O&M	Obj.fn Rs.Cr.		% Change	
	Cr/MW	%	Rs/kW	Rs/MWh	2017	Ext. period	2017	Ext. period
Gas Engines	3.5	43.0	842	442	49991.3	357145.2	-	-
Gas (Duel Fuel)	4.0	42.2	870	442	50228.4	358514.8	0.47	0.38
Diesel HFO	3.0	43.5	1270	663	50232.9	359198.1	0.48	0.57
OCGT	3.0	37.8	876	731	50241.9	359270.5	0.50	0.60

Peak load management can be very useful in the short term. It can be developed further with remote measuring and a new load based tariff system or time of the day metering & tariff. However, as there is a significant demand during peaking specially in cities and big towns separate peaking plants are to be setup. These are to be distributed generating plants or stand alone plants supplying peak demand. With the National grid in place the role of distributed plants is to meet the peak load and reserve loads. Distributed power can be a major source to meet the peak demand in the future. In peak load service the most profitable investments are the gas & Diesel engine plants and aero derivative gas turbine plants. The most common applications of the internal combustion engines are in standby and reserve capacities. They are distributed in hospitals, super markets, airports, nuclear power plants and industrial facilities to ensure safety in case of blackout or in a sudden spurt of demand.

Typical diesel engines can be synchronized in one minute, and can deliver full output within 3 minutes. Gas Engines can be synchronized in 2 minutes and can deliver full output within 8 minutes. An Aero derivative gas turbine can be synchronized within five minutes & can deliver full output in ten minutes. These options may be considered to meet the peak demand and the tariff may be as per CERC guidelines for peaking tariff.

13.7 ISSUES IN PEAKING PLANTS

Peaking plants are generally gas turbines/engines that burn natural gas or Pumped storage systems. A few plants burn petroleum-derived liquids, such as diesel oil and jet fuel, but they are usually more expensive than natural gas, so their use is limited. However, many peaking plants are able to use petroleum as a backup fuel. The thermodynamic efficiency of open cycle gas turbine power plants ranges between 30 to 42% for a new plant. Reciprocating gas engines are also good options for the peaking plants near the load centres and can provide higher efficiency of about 44-48%. It is now stated that even CCGT can work on load shift basis as peaking stations.

The hydro generating stations, other than run of the river type, can be operated, as and when required. In these stations water can be stored during off-peak hours so as to generate more power during peak hours. As such these hydro generating stations are normally used as peaking power stations. The pumped storage hydro generating station is also a good option for meeting peak demand.

Similarly we may also have to plan some GTs / Reciprocating Gas Engines to meet the peaking requirements. These plants will be expected to be operated for about 6-8 hours a day. It is recommended that part of such plants may be constructed near the metro cities in the vicinity of existing or proposed gas grid. Besides meeting the peaking demand these plants could also be operated during the system contingencies such as low voltage, transmission constraints, etc., thus adding to reliability of power supply of the metro city.

Operation of CCGTs in peaking mode as suggested above and OCGT for peaking may result in higher heat rate and O&M costs (on account of higher repair and maintenance cost) for which the power plant will have to be compensated.

Most of the combined cycle plants have modules with 2 GTs and 1 steam turbine. It is proposed to close down 1 GT in each module after the evening peak hours and restart at the commencement of the morning peak hours. Thus, during night hours such plants may operate at about 50% capacity. Some modern combined cycle gas based plants have single

shaft configuration with 1 GT and 1 ST. Such unit may have to be closed down completely during night hours after evening peak hours or may have to be operated at partial load during off-peak night hours.

Allocation of gas to the CCGT plants connected to gas grid from domestic sources corresponds to operation of these plants at a PLF of 70 to 75%. Cyclic operation of CCGTs in the manner indicated above will be optimal use of available gas. Presently, GAIL does not allow wide variation in withdrawal of gas by power plants. However, with increase in pipeline capacity such variations may be possible in near future. Matter will have to be taken with GAIL in this regard.

13.8 PEAKING TARIFF

Operation of Combined Cycle plants in peaking mode as suggested above and Open Cycle plants in peaking mode may result in higher heat rate and O&M costs (on account of higher repair and maintenance cost) for which the power plant will have to be compensated. Therefore, it is obvious that peaking power would be costlier as compared to off peak power. To determine the peak and off peak tariff a Task Force under the chairmanship of Shri Rakesh Nath, then Chairperson, CEA was constituted by CERC and the task force has already submitted the report. The notification for separate tariff for peak and off peak power would help in flattening of Load Duration Curve and ultimately it would result in lesser capacity addition to meet the same power demand in the country.

13.9 POLICY INITIATIVES FOR PEAKING POWER PLANTS

Provision in Act

Inception of peaking power plants would require initial Policy support to start off with. There are following regulatory enablers that provide for the provision of the same. Relevant stipulations under Electricity Act 2003 are

- i. Section 61 (b),(c)&(e) of the Electricity Act, 2003: States that the Appropriate Commission, in specifying terms and conditions for determination of tariff, shall be guided by:
 - a) Commercial principles
 - b) Encouraging efficiency, economical use of resources, good performance and optimum investments
 - c) Rewarding efficiency in performance
- ii. Section 62(3) of the Electricity Act, 2003: The Act contemplates certain specific factors which may form the basis to justify differential tariffs, including
 - a) Total consumption of electricity during any specified period;
 - b) Time at which supply is required;
 - c) Nature of supply; and
 - d) Purpose for which supply is required.

In the above, efficiency and rewarding efficiency performance needs special mention during formulation of peaking power policy. As consistent with the nature of Peaking, technology used for meeting such needs should have certain specific characteristics which are listed as under:

- Fast start up & shut down times
- Fast ramp up rate
- Wide load range
- Black start capability
- Un restricted up/down times
- Fuel flexibility
- Low emissions

In the bidding process for selecting dedicated peaking power plants, a critical evaluation needs to be done on above parameters.

Plants specifically dedicated for peaking, shall be a part of planned capacity addition and like the renewables, a target figure of 10% of installed capacity by 2020 may be incorporated for peaking power plants. This will optimise the generation mix, where "Base Load Plants" can run on high PLF & the "Peaking Power Plants" can meet the cycling

requirement at different times of the day and also complement infirm nature of renewable energy plants. This will result into huge economical benefit in terms of operational & capital expenses.

Gas based power plants are amongst the best available options for meeting the peaking power needs. Also as Natural gas is a scarce resource it needs optimal utilization. For gas based peaking power generation, cost of generation would be on higher side if domestic fuel is not allocated. Hence, for gas based peaking power plant, there could be separate allocation of Domestic Natural Gas.

Specific quantity of domestic gas may be allocated for peaking plant for assuring reasonable cost to DISCOMs. Initially introduction of about 2000 MW dedicated peaking power capacities is envisaged which would need about 2 MMSCMD of natural gas (@ 25% PLF). Such Plants should be located in five metro cities (400 MW each). In this regard, a Task Force has been set up under the Chairmanship of Chairperson, CEA to look into all aspects related to setting up of peaking power plants. The report of the Task Force is expected soon.

Legislative and policy support required

- 1. In line with National Electricity Policy, notification of Peaking Power Policy needs to done which provides necessary directives to mandate the State distribution companies to provide universal access to power (by every section of society rural, urban, agricultural) and unrestricted availability of power to all.
- 2. It is necessary to mandate the Regulators to implement "load shedding free system" by allowing differential tariff in different times of day or for different users in a phased manner to recover the cost of power.
- 3. Power purchase from dedicated peaking power plants should be based on an auction system (like Case 2 bidding) with plant characteristics defined in the bid document as:
- 6 hours/day operation split into multiple starts and stops
- Capability to start and reach full load within 10 minutes and stop within 2 minutes

CERC could be assigned the task of preparing model bidding document. In the above context, two directives could be issued:-

- (i) Existing Power Plants designed for base loads shall not normally participate in auction as Peaking power plants. This emerges from the very fact that if the existing plants had excess capacities to offer under 'Peaking', then there would not have been any necessity to shed or restrict the power supply to the extent it prevails today in India. Most of the rural areas in our country get only 4 to 6 hours of power supply daily, while the cities suffer restriction of various duration from season to season.
- (ii) Also if existing plants are allowed to supply peaking power as well, it may lead to a situation where a generation company defaults in its base-load supply commitments to a distribution company to cater to peaking requirements in some other parts of the country to unduly make profit.

This will also ensure additionality of capacity suited for the peaking plants at much lower capital cost and higher efficiency. It is important to ensure that distinction is made between "peaking plants' and 'base load plants' as use of same plant for both the purpose, will only result in profiteering by a section of base load operators by diversion of capacity in peak time.

1. In the formative years, say 5 years from date of issuing the Peaking Power policy, the State and Central Electricity Regulators may approve procurement of power by DISCOMs from "new plants" set up as "Peaking Power Plants" either in public or private sector when the plant capital cost is established by the plant owner based on competitive bidding and the gas price to be pass through. CERC with assistance of CEA may be mandated to define a model tariff formula based on suitable normative parameters.

Suitable policy measure coupled with effective implementation plan will help Indian electricity sector to come out of the problems of load-shedding & take the country forward on the path of 24x7 uninterrupted power supplies and thus becoming a powerful enabler to the economic growth & stability. However, there is a need to ensure that such measures lead to the new capacity – "Peaking Power plants" in the system.

Duration of peak and off-peak hours

For daily recovery of peak hour capacity charges, the peak hours in a day may be considered as 6 hours in case of thermal generating stations and 3 hours in case of hydro generating stations to be declared by the National Load Dispatched Centre from time to time.

Basis for differentiation of peak and off-peak tariff

The prices should be differentiated for peak and off-peak supply and the tariff should include variable cost of generation at actual levels and reasonable compensation for capacity charges.

It would be necessary that a distinction should be made between drawl of power in the peak and off-peak time. Over-drawls in peak time should be over a stiffer surcharge compared to over drawls in off-peak time – (say 10% to 50% of fixed charges), as may be decided in the REB.

13.10 ISSUES IN INDIA

India being in a deficit situation so far really does not have any reserve plants to meet the sudden demand spikes. But while planning for the future with 5% spinning of reserve and the fact that India is becoming a competitive market reserve plants need to be identified/ designated. It has been represented by various stake holders that the criteria of 5% spinning reserve needs to be reviewed as India can't afford to have 5% spinning reserve in terms of Investment. The Task Force set up for Peaking & Reserve Plants is deliberating on this issue and decision to reduce the desired spinning reserve in the system may be taken based on report of the Task Force.

13.11 OPTIONS AVAILABLE / SUGGESTED

In India one option to have reserve margin could be construction of reserve plants with proper regulatory support. The other option that could be operation of plants below declared capacity, so that in case of sudden demand additional power could be generated. In planning exercise to carry out study for additional capacity requirement in future plans, the availability factor is reduced to meet the requirement of 5% reserve margin in the system.

13.12 RECOMMENDATION

It is recommended to plan for at least 2000 MW gas based peaking power plants during 12th Plan, 400 MW each at/near five major metro cities of India. The experience gained from operation of these peaking plants would pave the way for creation of additional peaking plants in other major cities and higher capacity in future plans.

It has been suggested by various stakeholders that instead of 400 MW each at five metro cities, smaller peaking power plants of 100-150 MW each distributed in all areas/cities of India with proper regulatory support may be set up.

A Task Force under Chairperson, CEA has been set up to deliberate upon all the issues related to peaking power plants. The size & locations may be considered based on the Task Force Report which is likely to be submitted soon.

---+++---

Chapter 14

CONCLUSIONS AND RECOMMENDATIONS

The National Electricity Plan includes a review of the 11th Plan, detailed planning for the 12th Plan and Perspective 13th Plan projections. Planning Studies have been carried out, considering Demand as projected by the draft 18th EPS Report. Based on results of studies following recommendations emerge.

(1) 12TH PLAN CAPACITY ADDITION REQUIREMENT

- (i)-A Capacity addition of about 87,100 MW would be required to be added in the country during the 12th Five Year Plan considering actual capacity addition of about 54,964 MW during the 11th Plan, spinning reserve requirement of 5% as per NEP, retirement of old inefficient thermal units of about 4,000 MW and revised reliability criteria of CEA. Four scenarios have been worked out corresponding to low renewable/Low Gas (BASE CASE), Low Renewable/High Gas, High Renewable/Low Gas and High Renewable High Gas.
- (ii) High priority has been accorded towards development of renewable, hydro, nuclear and gas based projects in order to minimize CO₂ emissions. Hydro capacity addition of 10,897 MW has been considered during 12th Plan based on progress of actual construction at project site and taking into account uncertainty in development of hydro projects relating to geological surprises, natural calamities, R&R and environmental issues. Renewable capacity of 18,500 MW during 12th Plan has been considered for planning studies to work out balance thermal capacity additions required. A nuclear capacity of 5,300 MW has been proposed as per the information furnished by NPCIL. Gas based capacity of 2,540 MW has been considered.
- (iii) The total capacity addition requirement in the country for 12th Plan under Base Case Scenario has been worked out as under:

Total Capa	- 87,100 MW	
Hydro	- 10,897MW	
Nuclear	- 5,300 MW	
Thermal	- 70,903 MW	
•	Coal - 67,843 MW	
•	Lignite - 520 MW	
•	Gas - 2.540 MW	

(iv) As per the 12th Plan target of 88,537 MW set up by the Planning Commission, projects totalling to 88,537 MW has been identified as per following details:

```
Total Capacity (excluding renewable)

Hydro - 10,897MW

Nuclear - 5,300 MW

Thermal - 72,340 MW

Coal - 69,280 MW

Lignite - 520 MW

Gas - 2,540 MW
```

(2) 13TH PLAN CAPACITY ADDITION REQUIREMENT

A capacity of 86,400 MW would be required to be added in the country during 13th Plan considering capacity addition of about 88,000 MW during 12th Plan. Four Scenarios have been worked out corresponding to four Scenarios in 12th Plan i.e. Low Renewables/Low Gas (BASE CASE), Low Renewables/High Gas, High Renewables/Low Gas and High Renewables/High Gas.

The total capacity addition requirement in the country for 13th Plan under Base Case has been proposed as under:

Total Capacity - 86,400 MW (excluding renewable)

Hydro - 12,000 MW
Nuclear - 18,000 MW
Thermal - 56,400 MW
Coal - 56,400 MW
Gas - 0 MW

• Renewable 30,500 MW Hydro Import – 8,040 MW

It may be mentioned that 18,000 MW nuclear capacity during 13th Plan has been considered as per the programme of NPC. In case this capacity does not materialize, the same could be replaced by coal based capacity.

(3) MAJOR ISSUES

With a view to expedite new capacity addition, following issues may be addressed expeditiously:

- Availability of land and water. It is suggested that every States Governments have a land survey done for prospective industrial project sites in respective States to reduce project completion schedule.
- > Ensuring faster Environment and forest clearance of the project to avoid the cost & Time over run.
- > To incentivise new BOP manufacturers and the existing manufacturers to increase their capacity and/or diversify, in order to meet the complete demand of the new power generating capacity. This would also be instrumental in introducing competition and reducing prices.
- To incentivise setting up of more number of erection and commissioning agencies to meet the rapidly growing requirement.
- ➤ Logistics for movement of heavy machinery like roads and bridges must be improved.
- Making the key inputs available like Cement, Steel, etc. These need to be tied up well in advance.
- Human resource development commensurate with the requirement of the various skilled and unskilled manpower is essential.

(4) POLICY INITIATIVES

In order to realise the massive capacity addition requirement during the 12th and 13th Plans within the ambit of a Low Carbon Growth Strategy, a number of Policy Initiatives and Measures need to be taken. They are as summarised below:

- (i) Central Electricity Authority (CEA) has been carrying out Integrated Power Planning for the country as a whole. The States are responsible for State specific planning for generation, transmission and distribution with a view to optimally utilize resources and to meet their demand. Earlier, State Electricity Boards which were integrated entities were doing integrated power planning for the States. After unbundling of power sector in the States and formation of generation, transmission and distribution companies, there is no single organization responsible for integrated planning and coordination with CEA.
 - It is proposed that integrated planning of generation, transmission and distribution systems within each State may be done by a single agency. To facilitate this each State may appoint a suitable Nodal Agency for this purpose which shall coordinate with the generation and distribution utilities in the States.
- (ii) National Electricity Policy stipulates that a spinning reserves of 5% needs to be provided in the system. However, this implies a large capacity to provide spinning reserve which would otherwise be idle in the system. Since this implies setting up of power projects involving huge sum of money, which are required to operate only under emergency condition, it is suggested that the amount of spinning reserves may be reduced to Largest unit size + fraction of peak load (1 % may be considered). For the 12th Plan, this corresponds to about 3000 MW. The Task Force set up for peaking & reserve plant may deliberate upon this issue.
- (iii) Earlier the generation planning exercise was carried out corresponding to reliability criteria of 1% LOLP and 0.15% ENS. While planning for 12th & 13th Plan capacity addition the reliability criteria has been made more stringent and the criteria adopted is LOLP of 0.2% and ENS of 0.05%. It is felt that as more and more generation capacity is added, the planning norms should be made more and more stringent to improve the reliability of generation.

(5) ISSUES RELATED TO COAL AVAILABILITY

(i) Coal Requirement by the End of 12th Plan.

In order to meet this generation requirement, coal requirement (at SPCC 0.72 Kcal/ Kg) works out to around 842MT. Against the requirement of 842 MT, 54 MT coal is to be imported by Thermal Power Stations designed on imported coal. SCCL has confirmed a coal availability of 35 MT and around 100 MT coal is expected to be available from

captive coal blocks. Thus, 788 MT coal needs to be made available by CIL against which they have committed to supply 477 MT. Thus, CIL is to be impressed upon for formulating exigency plan to enhance their production to meet the requirement the power stations. The availability/shortfall of indigenous coal is detailed below:

- (i) Coal requirement during the year 2016-17 = 842 MT
- (ii) Coal availability from
 - (a) CIL = 477 MT(b) SCCL = 35 MT
 - (c) Captive Blocks allocated to Power Utilities = 100 MT Total, coal availability = 612 MT
 - (d) Coal to be imported by TPSs designed on imported coal 54 MT

Shortfall = 176 MT

In order to bridge the above gap between demand and coal availability as referred above, Power Utilities are expected to import around 117 MT to meet shortage in coal supply from CIL. This quantity of imported coal would be in addition to 54 MT coal likely to be imported by Thermal Power Stations designed on imported coal. Therefore, the total quantity of coal expected to be imported is about 171 MT.

- (ii) Limited availability of coal for running of power stations is a matter of grave concern. Following initiatives therefore need to be taken:
 - a. Use of domestic coal in a judicious and most appropriate manner. Due to shortage of domestic coal, import of coal may also be tied up. A Policy decision may have to be taken to allocate coal only to super critical power plants in future.
 - b. Other Initiatives which needs to be taken to ensure availability of coal to power plants are as follows:
 - Acquisitions of fuel assets abroad by power developers, coal companies and other industries and tieing up
 of import of coal on a long term basis.
 - Development of specialized ports/jetties well-equipped with adequate coal handling infrastructure.
 - Priority to Power Sector in berthing at ports.
 - Development of adequate port, railways and roads infrastructure for transportation of coal to power projects.
 - Additional availability of Railway Rakes and augmentation of tracks / sections commensurate with increasing requirement for transportation of coal from pit head to power plant.
 - Availability of wagons in conformity with the unloading facilities available at TPSs.
 - Expeditious implementation of express freight corridor.
 - Deficiency in mining agencies and equipment to be overcome
 - Upgradation of coal mining facilities, desired quality of coal etc.
 - Adequate crushing facilities at mine head.
 - Expedite setting up of rapid loading system/ Silos at coal mine head.
 - Construction of Dedicated Freight Corridors to be expedited.
 - Allocation of coal mines on tariff based bidding like Case II tariff based biding for power projects.
 - Compress time taken for development of coal blocks
 - Coal mining may be allocated to private parties on cost/time basis.
 - Setting up of coal washeries for reducing burden on railways and to improve efficiency of power stations.
 - Development of Coal Blocks.

(6) ISSUES RELATED TO GAS AVAILABILITY AND NEED FOR PROMOTION OF GAS BASED GENERATION IN THE COUNTRY

(i)So far gas available from KG basin has been allocated to existing projects only and Power Sector has been given 2nd priority in gas allocation next to Fertilizer Sector. It is recommended that power projects be given highest priority as far as domestic gas allocation is concerned in view of power shortage in the country and very low emission from gas plants which will help us in restricting CO2 emissions from power sector. In view of expected coal shortage during 12th Plan, it would be desirable to plan for about 25,000 MW gas based projects in next few years to meet the capacity addition target and also to reduce our total CO2 emission.

(ii) Total Gas Requirement by Terminal Year of 12th Plan (2016-17)

The total gas requirement during terminal year of 12th Plan(2016-17) works out to about 178 MMSCMD as summarised below:

	FOR TERMINAL YEAR OF AN (2016-17) *
Gas requirement by 11 th Plan end (corresponding to existing capacity of 18381 MW as on 31.03.2012)	88 MMSCMD
Requirement for 12 th Plan Projects (for 25,000 MW capacity)	90 MMSCMD
Total Gas requirement by 12 th Plan end(2016-17)	178 MMSCMD

(iii) Need for Promotion of Gas Based Generation in the Country

There is urgent need for promotion of gas based generation in the country due to inherent advantage of these power plants, as given below:

Load profile in the country and the role of gas based power in addressing the requirements reliably:

CERC has encouraged setting up of peaking capacities by prescribing peaking tariffs for different category of plants including pumped storage schemes. Hydro projects have taken much longer gestation period for development and construction and as a result hydro power share in the country's generation capacity mix has continuously slipped. It is in this context that gas-based generation can play an important role in meeting peak/intermediate load requirements far more reliably compared to other available options.

Shorter construction periods

Gas-based power plants can be constructed in a much shorter time-frame of 18-24 months relative to longer construction timelines involved in coal and hydel projects.

Lesser strain on resources – land and water:

Gas based plants require lesser land and water as compared to coal based plants or hydro capacities, where there is a possibility of large-scale people displacement.

Considerable environmental benefits relative to coal-based power:

Gas-based power is considerably cleaner when compared to coal-based power. CO2 emissions from a modern combined cycle gas turbine (CCGT)/ combined cycle gas engines (CCGE) are only 0.35 kg/kwh in contrast with 0.83 kg/kwh from a 660 MW super critical unit.

Diversification of fuel supply /energy security risks:

Availability of domestic natural gas, though anticipated to increase substantially post commencement of production from KG-D6 gas finds, has declined in the recent months. However, a calibrated approach in gas-based capacity addition combined with the adoption of appropriate policies in the natural gas sector, still makes sense to diversify fuel supply risks resulting from excessive dependence on coal. Even if part of gas requirement is to be imported as LNG, it provides diversification of source countries from where energy is imported, thereby providing diversification of energy security risks.

(iv) Policy changes to be adopted to encourage gas based capacity addition

- Policy initiatives required to incentivize gas based plants including Combined Heating & Cooling plants having high efficiency.
- Priority for gas allocation to CCHP plants.
- Duration of PPA: Duration of PPA is kept at 25 years, it needs to be brought down to 15-18 years, keeping in mind economic life of gas-based power plants. Further, normally gas is allocated for 5 Year period, as such signing of PPA need to be facilitated for 5 year period, to be reviewed from time to time in line with extension of gas allocation period upto the economic life cycle of 15-18 year of the plant.
- Fuel risks pass-through: Current domestic and international market environment for natural gas suggests that there are far too many uncertainties with regard to availability and/or price of natural gas. Developers are not ideally placed to take those risks. Therefore fuel availability and price risks need to be borne by the procurers.
- Take-or-Pay risk pass-through: Gas supply contracts are characterized by high level of Take-or-Pay obligations on fuel buyer. PPA needs to be suitably amended to alter current level (relatively low) of minimum off-take guarantees to suitably higher levels. It also needs to be ensured that gas-based plants do not face dispatch risks during their intended hours of operation (peak/intermediate load).

- Capital cost and heat rate under competitive bidding scope: Bidding would therefore be primarily on competitively discovering capacity charges and conversion (net heat rate) efficiencies.
- Gas based peaking power if integrated into the total electricity generation system can lead to carbon reduction efficiencies even higher than renewables like wind or solar power. Hence it is suggested to extend the fiscal benefits to gas based peaking power projects at par with the renewable energy projects or Ultra Mega Projects. Specifically, zero customs duties & taxes and interest rate subsidy.
- Technical requirements for intermittent or peaking application: Bid invitation should specify these requirements as the very nature of application would influence the choice of fuel and technology. These are –
- Capable of number of stop / starts in a day in other words to operate on Load Follow Principle
- No effect on maintenance due to multiple stop / starts
- 5 to 10 minutes time from start up to full load
- 5 to 10 minutes shut down time from full load to zero
- Black start capability
- No effect on efficiency due to part load operation of the plant
- High availability >94%

(7) GREEN HOUSE GAS MITIGATION STRATEGY

Green House Gas mitigation strategy needs to be adopted in order to meet the emission standards. Some of the major Initiatives proposed in view of Coal being the main stay of the Generation capacity addition in the next few plan periods are:

- Increase of unit size with higher steam parameters.
- Technology Development Adoption of higher unit size & Clean Coal technologies
 - ❖ Supercritical Technology 2 percent point efficiency gain possible
 - Ultra Supercritical Technology –additional efficiency 0.75% over 800 MW supercritical
 - ❖ Integrated Gasification Technology higher efficiency of 40-45%
- R & M and Life Extension of old power stations Benefits of CDM to be extended to overcome fund constraints
- Energy Efficiency improvement
- · Retirement of old inefficient units
- Coal quality Improvement

Other measures include

- Reduction in T & D losses All India T&D losses 23.79% in 2010-11. Aim to bring down to 15%
- Efficiency in use of energy
- Setting up of pithead stations for reduction in transportation of coal

(8) DEVELOPMENT OF RENEWABLE ENERGY SOURCES

Renewable Energy has been appropriately given the central place in India's National Action Plan on Climate Change. During the 12th Plan & 13th Plans renewable capacity of about 60,000 MW is planned to be added by MNRE.

(9) ENERGY CONSERVATION AND DEMAND-SIDE MEASURES

Energy Conservation and demand-side measures will remain cost effective tools to bridge the gap between demand and supply of power. Three pronged approach of Energy Efficiency, Conservation of Energy and Demand Side Management assumes central role in achieving the mission of Government of India - "Power for all" by 2012. Towards this end, the power sector has to play a central role in enabling this transformation. There is a need to shift from supply domination and capacity expansion towards improvement in operational efficiency of the existing power generating stations, reduction in Transmission and distribution losses and most importantly improving the end use efficiency. Energy efficiency, conservation of energy and demand side management needs to be tapped vigorously.

(10) NEED FOR PEAKING POWER PLANTS

- (i) It is recommended to plan for at least 2000 MW gas based peaking power plants during 12th Plan, 400 MW each in five major metro cities of India with proper regulatory support. The experience gained from operation of these peaking plants would pave the way for creation of additional peaking plants in other major cities and higher capacity in future plans.
- (ii) A Task Force under Chairperson, CEA has been set up to deliberate upon all the issues related to peaking power plants. The size & locations may be considered based on the Task Force Report which is likely to be submitted soon.

राष्ट्रीय विद्युत योजना

(भाग-।।)

पारेषण

[विद्युत अधिनियम, 2003 की धारा 3 (4) के अंतर्गत केन्द्रीय विद्युत प्राधिकरण की बाध्यता की पूर्ति में]

> भारत सरकार विद्युत मंत्रालय केन्द्रीय विद्युत प्राधिकरण

नवम्बर 2012

शब्द संक्षेप

शब्द संक्षेप	विस्तार
एबीटी	उपलब्धता आधारित टैरिफ
एसी	वैकल्पिक करेंट
एईजीसीएल	असम इलेक्ट्रिक जनरेशन कंपनी लिमिटेड
एईआरसी	असम विद्युत नियामक आयोग
एआई	अखिल भारत
एपीडीआरपी	त्वरित विद्युत विकास और सुधार कार्यक्रम
एपीपी	एटॉमिक पावर प्लांट
एपीट्रांस्को	आंध्र प्रदेश ट्रांसमिशन कंपनी
ऑग	विस्तार
बी-टी-बी	बैक-टू-बैक
बीएसईबी	बिहार राज्य विद्युत बोर्ड
सीईए	केन्द्रीय विद्युत प्राधिकरण
सीईआरसी	केन्द्रीय विद्युत नियामक आयोग
सीकेएम	सर्किट किलोमीटर
सीपीपी	केन्द्रीय विद्युत परियोजना
सीपीएसयू	केन्द्रीय सार्वजनिक क्षेत्र उपक्रम
सीएसईबी	छत्तीसगढ़ राज्य विद्युत बोर्ड
सीटीयू	केन्द्रीय पारेषण कंपनी
डी/सी	डबल सर्किट
डीवीसी	दामोदर वैली कॉर्पोरेशन
ईए 2003	विद्युत अधिनियम, 2003
ईएचवी	अतिरिक्त उच्च वोल्टेज
ईपीएस	इलेक्ट्रिक पावर सर्वे
ईआर	पूर्वोत्तर क्षेत्र
ईआरसी	विद्युत नियामक आयोग
एफएसीटीएस	फ्लेक्सिबल एसी ट्रांसमिशन सिस्टम
जीईटीसीओ	गुजरात एनर्जी ट्रांसमिशन कॉर्पोरेशन
जीआईएस	गैस इंसुलेटेड स्विचगियर
जीओआई	भारत सरकार
जीवीए	गीगा वोल्ट एम्पीयर
जीडब्ल्यू	गीगा वाट

जीडब्ल्यूई	गीगा वाट इलेक्ट्रिकल
एचईपी	हाइड्रो इलेक्ट्रिक प्रोजेक्ट
एचवीडीसी	हाई वोल्टेज डायरेक्ट करेंट
आईसीटी	इंटरकनेक्टिंग ट्रांसफार्मर
आईएसजीएस	इंटर स्टेट जनरेटिंग स्टेशन (एस)
आईएसटीएस	इंटर स्टेट ट्रांसमिशन सिस्टम
इंट्रा - एसटीएस	इंट्रा-स्टेट ट्रांसिमशन सिस्टम
जेवी	संयुक्त उद्यम
केपीटीसीएल	कर्नाटक पावर ट्रांसमिशन कॉर्पोरेशन
केयूएमपीपी	कृष्णानापट्टनम यूएमपीपी
केवी	किलो वोल्ट
एलआईएलओ	लाइन इन लाइन आउट
एलएनजी	तरल प्राकृतिक गैस
एलटी	लो टेंशन
एलटीओए	लॉंग टर्म ओपन ऐक्सेस
एमएपीपी	मद्रास एपीपी
एमओपी	विद्युत मंत्रालय
एमवीए	मेगा वोल्ट एम्पीयर
एमवीएआर	मेगा वोल्ट एम्पीयर रिएक्टिव
एमडब्ल्यू	मेगा वाट
एनईए	नेपाल विद्युत प्राधिकरण
नीपको	नार्थ ईस्टर्न इलेक्ट्रिक पावर कॉर्पोरेशन
एनईपी	राष्ट्रीय विद्युत योजना
एनईआर	पूर्वात्तर क्षेत्र
एनएचपीसी	नेशनल हाइड्रो पावर कॉर्पोरेशन
एनएलसी	नेवेली लिग्नाइट कॉर्पोरेशन
एलएलसीपीआर	नॉन लैप्सेबल सेंट्रल पूल रिसोर्स
एनपीसी	न्यूक्लियर पावर कॉर्पोरेशन
एनपीसीआईएल	न्यूक्लियर पावर कॉर्पोरेशन ऑफ इंडिया लि.
एनआर	उत्तरी क्षेत्र
एनआरएलडीजी	उत्तरी क्षेत्र लोड डिस्पैच सेंटर
एनआरपीसी	उत्तरी क्षेत्र विद्युत समिति
एनटीपीसी	नेशनल पावर कॉर्पोरेशन
L	

ओएनजीसी	तेल एवं प्राकृतिक गैस निगम
ओपी.	प्रचालित
पीएफबीआर	पल्वराइज्ड फ्यूल ब्रीडिंग रिएक्टर
पीएफसी	पावर फाइनेंस कॉर्पोरेशन
पीजी	पावर ग्रिड
पावरग्रिड/पीजीसीआईएल	पावर ग्रिड कॉर्पोरेशन ऑफ इंडिया लिमिटेड
पीएलसीसी	पावर लाइन कैरियर कम्यूनिकेशन
पीएलएफ	प्लांट लोड फैक्टर
पीएमजीवाई	प्रधानमंत्री ग्रामीण योजना
पीपीए	विद्युत खरीद करार
पीएसएस	पावर सिस्टम स्टेबलाइजर
पीएमयू	फेसर मेजरमेंट यूनिट
पीएसयू	सार्वजनिक क्षेत्र उपक्रम
पीटीसीयूएल	पावर ट्रांसमिशन कॉर्पोरेशन ऑफ उत्तरांचल लि.
क्वैड	क्वाड्रपल्ड बंडल कंडक्टर
आर एण्ड एम	नवीनीकरण और आधुनिकीकरण
आरएपीपी	राजस्थान एपीपी
आरई	ग्रामीण विद्युतीकरण
आरपीसी	क्षेत्रीय विद्युत समिति
आरएल	रूट लेंथ
आरएलडीसी	रिजनल लोड डिस्पैच सेंटर
आरओडब्ल्यू	राइट ऑफ वे
आरपीसी	क्षेत्रीय विद्युत समितियां
एस/सी	सिंगल सर्किट
एस/सी ऑन डी/सी	डबल सर्किट टावर पर सिंगल सर्किट
एस/एस, एस/एस	सब-स्टेशन, सब-स्टेशन
एससी	सीरीज कंपेन्शेसन
एसईबी	राज्य विद्युत बोर्ड
एसईआरसी	राज्य विद्युत नियामक आयोग
एसएलडीसी	स्टेट लोड डिस्पैच
एसआर	दक्षिणी क्षेत्र
एसआरएलडीसी	दक्षिणी क्षेत्र लोड डिस्पैच सेंटर
एसआरपीसी	दक्षिणी विद्युत समिति

स्टेटकॉम	स्टेटिक कंपेन्शेसन
	स्टिंगिंग ऑफ सेकंड सर्किट
एसटीजी 2nd सीकेटी	
एसटीओए	शॉर्ट टर्म ओपन ऐक्सेस
एसटीयू	राज्य पारेषण कंपनी
एवीसी	स्टेटिक वीएआर कंपेन्शेसन
टीएपीपी	तारापुर एपीपी
टीसीकेएम	थाउजेंड सर्किट किलोमीटर
टीसीएससी	थाइरिस्टर कंट्रोल्ड सीरीज कंपेन्शेसन
टीएम	ट्विन मूस
टीपीएस	थर्मल पावर स्टेशन
टीएसईसीएल	त्रिपुरा स्टेट इलेक्ट्रिक कॉर्पोरेशन लि.
यूसीपीटीटी	यूनीफाइड कॉमन पूल ट्रांसमिशन टैरिफ
पएचवीडीसी	अल्ट्रा एचवीडीसी
यूआई	अन्शेड्यूल्ड इंटरचेंज
यूएलडीसी	यूनीफाइड लोड डिस्पैच सेंटर
यूएमपीपी	अल्ट्रा मेगा पावर प्रोजेक्ट
यूपीसीएल	उत्तरांखंड पावर कॉर्पोरेशन लि.
यूपीपीसीएल	उत्तर प्रदेश पावर कॉर्पोरेशन लि.
वीएआर	वोल्ट एम्पीयर रिएक्टिव
वीएलजीओ	वेरी लार्ज ग्रिड ऑपरेटर
डब्ल्यूआर	पश्चिमी क्षेत्र
डब्ल्यूआरएलडीसी	पश्चिमी क्षेत्र लोड डिस्पैच सेंटर
डब्ल्यूआरपीसी	पश्चिमी क्षेत्र विद्युत समिति

अध्याय - 1

प्रस्तावना

1.1 राष्ट्रीय विद्युत योजना

विद्युत अधिनियम, 2003 की धारा 3 के अनुसार केंद्रीय विद्युत प्राधिकरण (सीईए) को राष्ट्रीय विद्युत नीति के अनुसरण में राष्ट्रीय विद्युत योजना तैयार करने तथा पांच वर्ष में एक बार ऐसी योजना अधिसूचित करने की जिम्मेदारी सौंपी गई है। अधिनियम में यह प्रावधान किया गया है कि लाइसेंस-धारकों, विद्युत उत्पादन कंपनियों एवं आम जनता से सुझाव एवं आपत्तियां आमंत्रित करते हुए राष्ट्रीय विद्युत योजना का मसौदा प्रकाशित करना होगा तथा राष्ट्रीय विद्युत योजना अधिसूचित करने से पूर्व सीईए को केंद्र सरकार का अनुमोदन प्राप्त करना होगा।

सीईए ने मसौदा एनईपी तैयार किया तथा 29 मार्च, 2012 को अपनी वेबसाइट के माध्यम से सभी पणधारकों को इसे उपलब्ध कराया। टिप्पणियां प्राप्त करने की अंतिम तिथि 30 जून, 2012 निर्धारित की गई। जारी की गई 'राष्ट्रीय विद्युत नीति (भाग-॥) - पारेषण' नामक इस योजना में 12वीं योजना अविध (अर्थात् 2012-13 से 2016-17) के लिए पारेषण योजना एवं 12वीं योजना के बाद के लिए संभावित योजना शामिल हैं। इसके अद्यतनीकृत रूप में मसौदा दस्तावेज पर विभिन्न पणधारकों से प्राप्त टिप्पणियों/सुझावों को ध्यान में रखा है।

1.2 राष्ट्रीय विद्युत योजना - पारेषण

पारेषण आयोजना पारेषण प्रणाली की अतिरिक्त क्षमता अभिवृद्धि/विस्तार, उनके समय एवं आवश्यकता की पहचान की सतत प्रक्रिया होती है। पारेषण की आवश्यकताएं प्रणाली में नई उत्पादन अभिवृद्धि, मांग में वृद्धि तथा प्रणाली के सामान्य सुदृढ़ीकरण, जो किसी विशिष्ट उत्पादन परियोजना से अनिवार्य रूप से जुड़ी नहीं होती है, से उत्पन्न हो सकती हैं। पारेषण आयोजना की प्रक्रिया के माध्यम से पारेषण अभिवृद्धि की इन आवश्यकताओं की पहचान की जाती है, अध्ययन किया जाता है तथा पुष्टि की जाती है।

1.3 भारत में पारेषण प्रणलियां

देश में जो पारेषण प्रणालियां स्थापित हैं उनमें अंतर्राज्यीय पारेषण प्रणालियां (आईएसटीएस) तथा अंत:राज्यीय पारेषण प्रणालियां (इंट्रा-एसटीएस) शामिल हैं।

1.3.1 अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस)

आईएसटीएस का स्वामित्व एवं प्रचालन मुख्य रूप से पावर ग्रिड कॉर्पोरेशन आफ इंडिया लिमिटेड (पावरग्रिड) के पास है जो केंद्रीय पारेषण कंपनी (सीटीयू) भी है। भविष्य में प्रतिस्पर्धी बोली के माध्यम से अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) स्कीमों का निर्माण किया जाएगा तथा निजी क्षेत्र की अनेक संस्थाएं इन आईएसटीएस घटकों का स्वामित्व तथा उनका प्रचालन करेंगी। निजी क्षेत्र के स्वामित्व वाली या निजी क्षेत्र एवं पावरग्रिड के बीच संयुक्त उद्यम (जेवी) के रूप में अनेक आईएसटीएस योजनाएं पहले से ही निर्माणाधीन हैं। आईएसटीएस निम्नलिखित प्रयोजन को पुरा करती हैं:

- (i) ऐसे अंतर्राज्यीय उत्पादन केंद्रों से विद्युत का रिक्तीकरण (निष्क्रमण) जिनके लाभार्थी एक से अधिक राज्यों में हैं।
- (ii) अंतर्राज्यीय उत्पादन केंद्रों से विद्युत की प्रदायगी के लिए राज्य ग्रिड के प्रदायगी बिंदु तक विद्युत का पारेषण।
- (iii) अतिरेक वाले राज्य (राज्यों) से कमी वाले राज्य (राज्यों) को या अतिरेक वाले क्षेत्र (क्षेत्रों) से कमी वाले क्षेत्र (क्षेत्रों) को प्रचालनात्मक अतिरेक का अंतरण।

1.3.2 अंत:राज्यीय पारेषण प्रणाली (इंट्रा-एसटीएस)

राज्य के अंदर अंत:राज्यीय पारेषण प्रणाली का स्वामित्व एवं प्रचालन मुख्य रूप से प्रत्येक राज्य की पारेषण कंपनी के हाथों में होता है। इंट्रा-एसटीएस निम्नलिखित प्रयोजन पूरा करते हैं:

(i) ऐसे उत्पादन केंद्रों से विद्युत का रिक्तीकरण जिनमें उस राज्य के लाभार्थी होते हैं।

- (ii) राज्य के अंदर आईएसटीएस की सीमा से राज्य ग्रिड नेटवर्क के विभिन्न उप केंद्रों तक पारेषण।
- (iii) राज्य के अंदर लोड केंद्रों को विद्युत की प्रदायगी के लिए राज्य ग्रिड के अंदर पारेषण।

1.4 'राष्ट्रीय विद्युत नीति' के प्रावधान

राष्ट्रीय विद्युत नीति के पारेषण संबंधी कुछ प्रावधान, जिनकी राष्ट्रीय विद्युत योजना के संबंध में कुछ विवक्षाएं/बाध्यताएं हैं, इस प्रकार हैं:

- (i) देश के लिए मजबूत एवं एकीकृत विद्युत प्रणाली विकसित करने के लिए पर्याप्त एवं समय पर निवेश तथा दक्ष एवं समन्वित कार्रवाई भी।
- (ii) उत्पादन में योजनागत भारी वृद्धि को ध्यान में रखते हुए तथा विद्युत बाजार के विकास के लिए भी पारेषण की दक्षता बढ़ाना।
- (iii) उत्पादन की नई क्षमताओं की योजना बनाते समय ही संबद्ध पारेषण क्षमता आवश्यकता की भी गणना करनी होगी ताकि उत्पादन क्षमता एवं पारेषण सुविधाओं के बीच असंतुलन से बचा जा सके। उपर्युक्त उद्देश्यों को पूरा करने के लिए इस नीति के अंतर्गत निम्नलिखित पर बल दिया गया है:
 - केंद्र सरकार विद्युत की पर्याप्त अंतर्राज्यीय अवसंरचना उपलब्ध कराने तथा यह सुनिश्चित करने के लिए राष्ट्रीय ग्रिड के सतत विकास में सहायता प्रदान करेगी कि विद्युत उत्पादन के लिए अल्प प्रयुक्त उत्पादन क्षमता की सहायता की जाए ताकि अतिरेक वाले क्षेत्रों से इसका पारेषण कमी वाले क्षेत्रों में हो सके।
 - अधिनियम में प्रावधान के अनुसार सभी संबंधित एजेंसियों से समन्वय स्थापित करके राष्ट्रीय विद्युत योजना के आधार पर नेटवर्क आयोजना एवं विकास की प्रमुख जिम्मेदारी केंद्रीय पारेषण कंपनी (सीटीयू) एवं राज्य पारेषण कंपनी (एसटीयू) की है। सीटीयू राष्ट्रीय एवं क्षेत्रीय पारेषण प्रणाली की आयोजना एवं विकास के लिए जिम्मेदार है। एसटीयू अंतर्राज्यीय पारेषण प्रणाली की आयोजना एवं विकास के लिए जिम्मेदार है। पारेषण से जुड़ी बाधाओं को सबसे प्रभावी ढंग से दूर करने के सामूहिक लक्ष्य की प्राप्ति के लिए सीटीयू को एसटीयू के साथ समन्वय स्थापित करने की जरूरत होगी।
 - पारेषण की ऐसी अनुमानित आवश्यकताओं को ध्यान में रखकर नेटवर्क विस्तार की योजना बनानी चाहिए तथा कार्यान्वित करना चाहिए जो खुली पहुंच की व्यवस्था में प्रणाली से आनुषंगिक होंगी। लाभार्थियों के साथ पूर्व करार नेटवर्क विस्तार के लिए पूर्व शर्त नहीं होगी। पणधारकों से परामर्श करके आवश्यकताओं की पहचान करने के बाद सीटीयू/एसटीयू को नेटवर्क विस्तार का कार्य करना चाहिए तथा यथोचित विनियामक अनुमोदन के बाद निष्पादन शुरू करना चाहिए।
 - सीटीयू एवं एसटीयू द्वारा सुगठित सूचना प्रसार एवं प्रकटन कार्यविधियां विकसित की जानी चाहिए ताकि सुनिश्चित हो कि सभी हितधारक उत्पादन एवं पारेषण की परियोजनाओं एवं योजनाओं की स्थिति से अवगत हैं। ये समग्र आयोजना प्रक्रिया के अंग होने चाहिए।
- (iv) उत्पादन कंपनियों, जो अब देशभर में विभिन्न वितरण लाइसेंस धारकों को बिक्री कर सकती हैं, में प्रतिस्पर्धा को बढ़ावा देने के लिए पारेषण में खुली पहुंच की व्यवस्था शुरू की गई है। इससे सस्ती बिजली की उपलब्धता का मार्ग प्रशस्त होना चाहिए। अधिनियम पारेषण में भेदभाव रहित खुली पहुंच का अधिदेश देता है। जब थोक ग्राहकों को प्रतिस्पर्धी उत्पादकों से सीधे खरीदने में समर्थ बनाने के लिए संबंधित राज्य आयोगों द्वारा वितरण नेटवर्क तक खुली पहुंच की व्यवस्था शुरू होगी, तो बाजार में प्रतिस्पर्धा से सस्ती एवं विश्वसनीय बिजली की उपलब्धता बढ़ेगी। विनियामक आयोगों द्वारा भेदभाव रहित खुली पहुंच के लिए सुसाध्यकारी रूपरेखा प्रदान किए जाने की जरूरत है। इसके लिए वास्तविक समय के आधार अधुनातन संचार एवं डाटा अधिग्रहण क्षमता से युक्त लोड प्रेषण सुविधाओं की जरूरत होती है। यद्यपि इस समय क्षेत्रीय लोड प्रेषण केंद्रों पर यह स्थिति है, उपयुक्त राज्य आयोगों को सुनिश्चित करना चाहिए कि प्रौद्योगिकी उन्नयन के साथ

मैचिंग सुविधाएं आवश्यकतानुसार राज्य स्तर पर उपलब्ध हैं, तथा अधिक से अधिक जून, 2006 तक साकार की गई हैं।

- (v) विद्युत क्षेत्र के व्यवस्थित विकास एवं प्रगित में सहायता प्रदान करने तथा ग्रिड के सुरक्षित एवं विश्वसनीय प्रचालन के लिए भी, पारेषण प्रणाली में पर्याप्त मार्जिन का सृजन करना चाहिए। अंतर्राष्ट्रीय मानकों एवं प्रथाओं को ध्यान में रखकर प्रचुरता स्तर तथा मार्जिन दोनों की व्यवस्था के लिए पारेषण क्षमता की योजना बनाई जाएगी तथा निर्माण किया जाएगा। सुनियोजित एवं मजबूत पारेषण प्रणाली न केवल पारेषण क्षमताओं के इष्टतम उपयोग का सुनिश्चय करेगी अपितु उत्पादन सुविधाओं के भी इष्टतम उपयोग का सुनिश्चय करेगी तथा विद्युत की किफायती प्रदायगी के अंतिम उद्देश्य को प्राप्त करने में सुविधा प्रदान करेगी। पूरे क्षेत्र में विद्युत के किफायती पारेषण में सुविधा प्रदान करने के लिए, सीईआरसी द्वारा एक राष्ट्रीय पारेषण टैरिफ रूपरेखा कार्यान्वित किए जाने की जरूरत है। टैरिफ तंत्र दूरी एवं दिशा के प्रति संवेदनशील होगा तथा प्रवाह की मात्रा से संबंधित होगा। अंतर्राज्यीय एवं अंत:राज्यीय प्रणालियों में पारेषण मूल्य निर्धारण रूपरेखा में यथासंभव एकरूपता बनाए रखने की जरूरत है। इसके अलावा, यह सुनिश्चित किया जाना चाहिए कि नेटवर्क की वर्तमान खामियों से पारेषण क्षति की पूर्ति के लिए अतर्कसंगत आवश्यकताएं न उत्पन्न हों।
- (vi) विद्युत अधिनियम, 2003 के अधिदेश के अनुसार पारेषण में भेदभाव रहित खुली पहुंच प्रदान करने के लिए आवश्यक विनियामक रूपरेखा उत्पादन क्षमता को स्थित करने हेतु उपयुक्त स्थान का चयन करने एवं उत्पादन संसाधन के इष्टतम उपयोग के लिए और परिणामत: आपूर्ति की लागत घटाने के लिए विद्युत में व्यापार को प्रोत्साहित करने के लिए आवश्यक है।
- (vii) पारेषण क्षेत्र में निजी निवेश को प्रोत्साहित करने के लिए विशेष तंत्र सृजित किए जाएंगे ताकि 2012 तक मांग को पूरी तरह पूरा करने के उद्देश्य को प्राप्त करने के लिए पर्याप्त निवेश किए जाएं।

1.5 'टैरिफ नीति' के प्रावधान

टैरिफ नीति के कुछ संबद्ध प्रावधान इस प्रकार हैं जो पारेषण टैरिफ रूपरेखा के माध्यम से पारेषण प्रणालियों के विकास में वस्तुनिष्ठता प्रदान करते हैं:

- जहां तक पारेषण का संबंध हैं, टैरिफ नीति निम्नलिखित उद्देश्यों को प्राप्त करना चाहती है:
 - 1. देश में उत्पादन एवं पारेषण परिसंपत्तियों के दक्ष उपयोग को बढ़ावा देने के लिए पारेषण नेटवर्क के इष्टतम विकास का सुनिश्चय करना;
 - 2. पारेषण क्षेत्र में अपेक्षित निवेश आकर्षित करना और पर्याप्त प्रतिफल प्रदान करना।
- किसी मध्यवर्ती राज्य के भूभाग में विद्युत पारेषण एवं राज्य के अंदर वाहन जो ऐसे अंतर्राज्यीय पारेषण के लिए आनुषंगिक है, समेत सभी अंतर्राज्यीय पारेषण के लिए उपयुक्त पारेषण टैरिफ रूपरेखा को पूरे देश में सभी परिसंपत्तियों के कारगर उपयोग को बढ़ावा देने तथा जरूरत के अनुसार नई पारेषण क्षमता के त्वरित विकास के लिए कार्यान्वित करने की जरूरत है।

1.6 सीईआरसी विनियमों में प्रावधान

अधिनियम के अनुसरण में, केंद्रीय आयोग ने विनियम जारी किया है जो वितरण लाइसेंस धारकों, उत्पादकों, विद्युत व्यापारियों एवं अनुमत ओपन अक्सेस ग्राहकों को अंतर्राज्यीय पारेषण प्रणाली तक पहुंच प्राप्त करने के लिए पात्र बनाते हैं। वर्तमान विनियमों के अनुसार, अल्प, मध्यम या दीर्घ अविध के आधार पर पारेषण प्रणाली तक पहुंच प्राप्त की जा सकती है। केंद्रीय पारेषण कंपनी (सीटीयू) मध्यम अविध (3 माह से 3 साल) और दीर्घ अविध (12 से 25 साल) की पहुंच, जिसकी जरूरत विशिष्ट रूप से उत्पादन केंद्र को या उसकी ओर से किसी व्यापारी को होती है, प्रदान करने के लिए नोडल एजेंसी है। दीर्घ अविध की पहुंच पारेषण आयोजना रूट के माध्यम से प्रदान की जानी होती है। क्षेत्रीय लोड प्रेषण केंद्र अल्प अविध की खुली पहुंच (3 माह तक) प्रदान करने वाली नोडल एजेंसी है। राष्ट्रीय लोड प्रेषण केंद्र विद्युत एक्सचेंज तक पारेषण पहुंच प्रदान करने के लिए नोडल एजेंसी है।

अध्याय- 2

भारत में पारेषण प्रणाली का विकास

2.1 भारत में पारेषण प्रणाली का विकास

2.1.1 एकीकृत आयोजना हेतु राज्य ग्रिडों का निर्माण

स्वाधीनता के समय देश में विद्युत प्रणालियां निश्चय ही शहरी एवं औद्योगिक क्षेत्रों में या उनके आसपास विकसित प्रथक प्रणलियों के रूप में थी। देश की संस्थापित उत्पादन क्षमता मात्र 1300 मेगावाट के लगभग थी और इस विद्युत प्रणली में छोटी-छोटी उत्पादन इकाइयाँ शामिल थीं जो अरीय रूप से (रेडियली) भार केन्द्रों का पोषण करती थीं। उच्चतम पारेषण वोल्टता 132 केवी थी। 50 एवं 60 के दशक के दौरान राज्य-क्षेत्र का नेटवर्क 132 केवी के वोल्टता स्तर तक और 60 एवं 70 के दशक के दौरान 220 केवी तक पहुंच गया। बाद में, व्यापक पैमाने पर विद्युत का बहुत अधिक दूरी तक पारेषण करने के उद्देश्य कई राज्यों (उत्तर प्रदेश, महाराष्ट्र, मध्य प्रदेश, गुजरात, ओडीशा, आन्ध्र प्रदेश और कर्नाटक) में राज्य क्षेत्र में सारभूत 400 केवी का नेटवर्क भी विकसित हुआ। अधिकांश राज्यों में राज्य ग्रिड के विकास के साथ ही क्षेत्रीय ग्रिड के लिए भी आधार तैयार हो गया था।

2.1.2 क्षेत्रीय आयोजना की संकल्पना एवं प्रान्तीय ग्रिडों का एकीकरण-

तीसरी पंचवर्षीय योजना के दौरान विद्युत क्षेत्र में क्षेत्रीय आयोजना की संकल्पना की गयी। तदनुसार विद्युत विकास आयोजना के उद्देश्य से देश को पाँच विद्युत क्षेत्रों- उत्तरी, पश्चिमी, दक्षिणी, पूर्वी एवं उत्तर-पूर्वी में चिन्हित किया गया। क्षेत्र में प्रान्तीय तंत्रों के एकीकृत संचालन की व्यवस्था और राज्यों के मध्य विद्युत के आदान-प्रदान को प्रोत्साहन देने के लिए 1964 में देश के प्रत्येक क्षेत्र में क्षेत्रीय विद्युत मंडल स्थापित किये गये। राज्यों को इस प्रकार की विद्युत विनिमय के लिए अधो संरचना के निर्माण हेतु प्रोत्साहन देने के लिए अंतर्राज्यीय लाइनों को 'केन्द्र द्वारा प्रायोजित' माना गया और राज्यों को राज्य योजना के अलावा ब्याज-मुक्त ऋण उपलब्ध कराया गया। इस कार्यक्रम के अंतर्गत 55 अंतर्राज्यीय लाइनों का निर्माण हुआ जिनमें से 13 लाइनों ने विभिन्न क्षेत्रों में स्थित राज्यों को जोड़ा जिससे अंतर्क्षेत्रीय लिंक का आरम्भिक सेट तैयार हुआ। इन लाइनों ने विभिन्न क्षेत्रों के मध्य अरीय रूप से विद्युत के आदान-प्रदान की सुविधा प्रदान की।

2.1.3 क्षेत्रीय ग्रिडों का उद्भव-

लगभग 1975 तक राज्य एवं केन्द्रशासित प्रदेशों में पारेषण का विकास आवश्यक रूप से राज्य के विद्युत मंडलों/ विद्युत विभागों द्वारा ही हुआ। राज्यों के विद्युत उत्पादन क्षमता की वृद्धि के प्रयासों को बल देने के लिये 1975 में केन्द्रीय क्षेत्र की उत्पादन विद्युत कंपनियों यथा राष्ट्रीय जल विद्युत विद्युत निगम (एनएचपीसी) एवं राष्ट्रीय ताप विद्युत निगम (एनटीपीसी) आदि बनायी गईं। इन निगमों ने क्षेत्रों में राज्यों के हितार्थ बड़ी उत्पादन इकाइयों की स्थापना की। इन निगमों ने राज्यों की सीमाओं से बाहर लाभार्थी राज्यों को विद्युत के वितरण एवं विद्युत के निष्क्रमण हेतु सहयोगी पारेषण लाइनों के विकास की जिम्मेदारी भी ली। इसने क्षेत्रीय ग्रिड प्रणली के निर्माण को प्रोत्साहन परिणामस्वरूप 1980 के दशक के अंत तक कई सुदृढ़ क्षेत्रीय नेटवर्क अस्तित्व में आये।

2.1.4 अंतर्क्षेत्रीय लिंक्स का विकास

1989 में केन्द्रीय उत्पादन कंपनियों की पारेषण शाखाओं को भारतीय विद्युत ग्रिड निगम (पावरग्रिड) के निर्माण हेतु बाँट दिया गया ताकि सीईए द्वारा तैयार रूपयोजना के आधार पर केन्द्रीय उत्पादन इकाइयों एवं अंतर्क्षेत्रीय पारेषण कार्यक्रम से जुड़े पारेषण प्रणली के कार्यान्वयन को गित प्रदान की जा सके। तब तक देश में उत्पादन एवं पारेषण प्रणली का आयोजना एवं विकास क्षेत्रीय आत्मिनिर्भरता के आधार पर होता था तथा राज्य विद्युत कंपनियाँ अंतर्क्षेत्रीय आधारभूत संरचना को बनाने के लिए अंतर्क्षेत्रीय लिंक का प्रारम्भिक सेट केन्द्र द्वारा प्रायोजित कार्यक्रम के अंतर्गत तैयार किया गया। जिसका उपयोग विभिन्न क्षेत्रों में सीमित ढ़ंग से परिचालन आधिक्य के विनिमय को सुविधाजनक बनाने में किया गया क्योंकि क्षेत्रीय ग्रिड स्वप्रणली रूप से संचालित होते थे उनकी भिन्न-भिन्न परिचालन आवृत्तियाँ थी और इन अंतर्क्षेत्रीय लिंकों पर विद्युत विनिमय सिर्फ अरीय ढ़ंग से ही हो सकता था।

2.2. राष्ट्रीय ग्रिड का विकास-

राष्ट्रीय ग्रिड में उत्पादन केन्द्रों, अंतर्क्षेत्रीय लिंकों, अंतर- राज्यीय पारेषण प्रणाली एवं एसटीयूस के अंतरराज्यीय पारेषण से विद्युत के निष्क्रमण हेतु पारेषण प्रणाली सम्मिलित हैं। इस प्रकार राष्ट्रीय ग्रिड का विकास एक विकासात्मक प्रक्रिया है। यही आशा की जा रही है कि 12वीं योजना के अंत तक देश का प्रत्येक प्रांत अपने पड़ोसी राज्यों या संलग्न राज्य (राज्यों) से कम से कम दो उच्च क्षमता तुल्यकालिक 400 केवी या 765 केवी लाइन एवं एक एचवीडीसी द्विध्रुवीय/सुलभ संपर्क (बेक टु बेक लिंक) से जुड़ जायेगा। यह और बड़ा तुल्यकालिक पारेषण जाल बना देगा जहाँ सभी क्षेत्रीय एवं राज्यीय ग्रिडें आपस में विद्युत के मामले में जुड़ी होंगी एवं एक ही आवृत्ति पर संचालित होंगीं। राष्ट्रीय ग्रिड का विकास निम्नानुसार हुआ है- एचवीडीसी द्विध्रुवीय तलचेर-कोलार में वृद्धि, गजुवाक में दक्षिणी क्षेत्र और पूर्वी क्षेत्र के बीच एचवीडीसी सुलभ संपर्क प्रणाली का द्वित

2.2.1 क्षेत्रीय ग्रिडों के मध्य अतुल्यकालिक अन्तर्संबंधन

विभिन्न क्षेत्रीय ग्रिडों की प्रचालन व्यवस्था को ध्यान में रखते हुये 1990 के दशक के आसपास यह निर्णय लिया गया कि विद्युत की भारी नियंत्रित मात्रा का आदान-प्रदान करने में सक्षम बनाने के लिए प्रारंम्भिक स्तर पर क्षेत्रीय ग्रिडों के बीच अतुल्यकालिक संबंधन स्थापित किये जायें। तदनुसार, विंध्याचल में पश्चिमी क्षेत्र एवं उत्तरी क्षेत्र के बीच एक 500 मेगावाट का अतुल्यकालिक एचवीडीसी सुलभ संपर्क (बेक टु बेक लिंक) स्थापित की गयी। बाद में, पश्चिमी क्षेत्र एवं दक्षिणी क्षेत्र (1000 मेगावाट क्षमता, भद्रावती में) के बीच तथा पूर्वी क्षेत्र एवं दक्षिणी क्षेत्र (500 मेगावाट क्षमता, गजुवाका में) के बीच तथा पूर्वीक्षेत्र एवं उत्तरी क्षेत्र (500 मेगावाट क्षमता, सासाराम) के बीच स्थापित की गयी। पूर्वी क्षेत्र एवं दक्षिणी क्षेत्र के बीच गजुवाका लिंक की क्षमता 1000 मेगावाट तक बढ़ा दी गयी।

2.2.2 क्षेत्रीय ग्रिडों का तुल्यकालन (सिंक्रोनाइजेशन)

1992 में उत्तरी क्षेत्र एवं उत्तरपूर्वी क्षेत्रों को बीरपाड़ा- सालाकटी 220 केवी दोहरी परिपथ पारेषण लाइन के द्वारा एक साथ तुल्यकालिक अनतर्संबंधित किया गया और फिर 440 केवी डी/सी बोंगाइगाँव-माल्दा लाइन से। 2003 में 400 केवी राउरकेला- रायपुर डी/सी लाइन के द्वारा पश्चिमी क्षेत्र को पूर्वी क्षेत्र- उत्तरपूर्वी क्षेत्रीय प्रणाली से तुल्यकालिक रूप से आपस में जोड़ा गया। इस प्रकार पूर्व क्षेत्र- उत्तरपूर्व क्षेत्र, पश्चिम क्षेत्र वाले मध्य भारत प्रणाली ने कार्य करना प्रारम्भ किया। वर्ष 2006 में मुजफ्फरपुर- गोरखपुर 400 केवी डी/सी लाइन जुड़ जाने से उत्तरी क्षेत्र भी इस प्रणाली से जुड़ गया। इस प्रकार उपरी भारत प्रणली जिसमें उत्तर क्षेत्र- पूर्व क्षेत्र- उत्तर पूर्व क्षेत्र प्रणाली सम्मिलित है, का विकास हुआ। वर्ष 2007 में आगरा-ग्वालियर 765 केवी एस/सी लाइन-1 जिसे 400 केवी स्तर पर चलाया जाता है, के माध्यम से उत्तर क्षेत्र भी पश्चिमी क्षेत्र से तुल्यकालिक रूप से जुड़ गया।

2.2.3 अखिल भारतीय एकीकृत राष्ट्रीय ग्रिड की योजना एवं उद्भव

वर्तमान सदी के आगमन के साथ ही देश में उत्पादन एवे पारेषण की योजना का ध्यान जो क्षेत्रीय आत्मनिर्भरता की ओर था अखिल भारतीय स्तर पर उपलब्ध संसाधनों के अधिकतम उपयोग की ओर मुड़ गया है। सीईए द्वारा किये गये उत्पादन योजना अध्ययन ने यह इंगित किया है कि अखिल भारतीय स्तर पर योजित अतिरिक्त क्षमता क्षेत्रीय स्तर पर योजित क्षमता से कम है। फिर, एक मजबूत अखिल भारतीय एकीकृत राष्ट्रीय ग्रिड देश में असमांग ढ़ंग से वितरित उत्पादन संसाधन के व्यवस्थित प्रयोग को सुनिश्चित करता है। राष्ट्रीय ग्रिड के विकास की आवश्यकता को पहचानते हुए, चरणबद्ध तरीके से अन्तर-क्षेत्रीय लिंक की क्षमता को बढ़ाने पर जोर दिया गया। 9वीं योजना के अन्त तक कुल अन्तर क्षेत्रीय पारेषण क्षमता 5756 मेगावाट थी। 10वीं योजना अर्थात् 2002-07 के दौरान कुल 8300 मेगावाट की अन्तर क्षेत्रीय क्षमता वृद्धि की गयी। इस प्रयास में, मुख्य उपलब्धियाँ थीं- तालचेर-कोलार द्विध्रुवीय एचवीडीसी में वृद्धि, गजुवाका में दक्षिण क्षेत्र एवं पूर्व क्षेत्र के बीच एचवीडीसी सुलभ संपर्क प्रणाली के द्वितीय प्रतिरूपक, सासाराम में उत्तर क्षेत्र एवं पूर्व क्षेत्र के बीच

एचवीडीसी सुलभ संपर्क प्रणाली, राउरकेला- रायपुर 400 केवी डी/सी लाइन द्वारा उत्तरपूर्व/पूर्व क्षेत्र ग्रिड का पश्चिम क्षेत्र ग्रिड के साथ तुल्यकालिक अंतर्संबंध, मुजफ्फरपुर- गोरखपुर 400 केवी डी/सी (क्वैड) लाइन द्वारा और बाद में एक परिपथ पटना- बिलया 400 केवी डी/सी (क्वैड) लाइन एवं आगरा- ग्वालियर 765 केवी पारेषण लाइन (400 केवी पर संचालित) उत्तर पूर्व क्षेत्र/पूर्व क्षेत्र/पश्चिम क्षेत्र ग्रिड का उत्तर ग्रिड के साथ तुल्यकालिक अंतर्संबंध। 10वीं योजना के अंत तक कुल अंतरक्षेत्रीय पारेषण क्षमता 14050 मेगावाट थी जो 11वीं योजना (मार्च, 2012) तक बढ़कर 27750 मेगावाट हो गयी। 11वीं योजनाविध में लागू किये जाने वाली अंतरक्षेत्रीय लिंकों का विवरण अध्याय 6 में दिया गया है और जो 12वीं योजनाविध हेतु निर्माणाधीन/ नियोजित है उनका विवरण अध्याय 7 में दिया गया है।

2.3 पारेषण प्रणाली का भौतिक रूप में विकास

भारत में पारेषण नेटवर्क एवं परिणमन क्षमता में लगातार वृद्धि हुई है। यह वृद्धि देश में विद्युत उत्पादन एवं मांग में हुई वृद्धि के अनुरूप रही है। 220 के.वी. एवं इससे अधिक वोल्टता स्तर के पारेषण लाइनों में (परिपथ कि.मी. के रूप में) पिछले 26 वर्षों में लगभग पाँच गुना रहा है एवं उपकेन्द्रों की क्षमता के लिए, इसी समय में, आठ गुना से भी ज्यादा रहा है। उच्च वोल्टता स्तर पर पारेषण प्रणाली में और उप-केन्द्र क्षमताओं में और अधिक वृद्धि हुई है। पारेषण में वृद्धि का यह पहलू, लम्बी दूरी तक बड़ी मात्रा में विद्युत के पारेषण की आवश्यकता साथ ही सही रास्ता, हास में कमी एवं ग्रिड-विश्वसनीयता में सुधार की जरूरत को दर्शाता है।

2.3.1 पारेषण लाइनों में वृद्धि -

*[6वीं पंचवर्षीय योजना के अंत (मार्च 1985) से 11वीं योजना (मार्च 2012) तक] 220 के.वी. एवं इससे अधिक वोल्टता स्तर के पारेषण लाइनों में कुल वृद्धि नीचे दर्शायी गई है-प्रत्येक योजना के अन्त में पारेषण लाइनों (सीकेएम) में वृद्धि

वोल्टता स्तर	6वीं योजना	7वीं योजना	8वीं योजना	9वीं योजना	10वींयोजना	11वीं योजना
765 केवी	0	0	0	971	2184	5250
एचवीडीसी बाइपोल	0	0	1634	3138	5872	9432
400 केवी	6029	19824	36142	49378	75722	106819
220 केवी	46005	59631	79600	96993	114629	135980
कुल सीकेएम	52034	79455	117376	150480	198407	257481

2.3.2 उपकेन्द्रों में वृद्धि :

6वीं पंच वर्षीय योजना (अर्थात मार्च, 1985) से 11वीं पंच वर्षीय योजना (अर्थात मार्च, 2012) के अंत तक 220 के.वी एवं अधिक वोल्टेज स्तर के उपकेन्द्रों और एचवीडीसी टर्मिनलों की पारषण क्षमता में संचित वृद्धि नीचे दर्शायी गई है:

प्रत्येक योजना के अन्त में उपकेन्द्रों में वृद्धि (एमवीए/मेवा)

	6वीं योजना	7वीं योजना	8वीं योजना	9वीं योजना	10वीं योजना	11वीं योजना
765 केवी	0	0	0	0	0	25000
एचवीडीसी बाइपोल	0	0	0	5000	8000	9750
400 केवी	9330	21580	40865	60380	92942	151027
220 केवी	37291	53742	84177	116363	156497	223774
कुल एमवीए/ मेगावाट	46621	75322	125042	181743	257439	409551

2.4 पारेषण क्षेत्र में अतिमहत्वपूर्ण घटनाएं :-

पारेषण नेटवर्क का विकास उत्पादन क्षमता की वृद्धि को ध्यान में रखते हुए किया गया है। पारेषण प्रणली में वृद्धि को पारेषण नेटवर्क में भौतिक वृद्धि के साथ-साथ उच्च वोल्टता पारेषण की शुरूआत एवं वृहत विद्युत पारेषण हेतु नवीन तकनीक की शुरूआत के रूप में समझा जा सकता है। इस वृद्धि की मुख्य घटनाएँ है –

1948 – विद्युत (आपूर्ति) अधिनियम 1948 इस अधिनियम ने केन्द्रीय विद्युत प्राधिकरण (सीईए) एवं राज्य विद्युत बोर्ड की स्थापना का प्रावधान किया।

1950-60 – प्रांतीय ग्रिडों का विकास एवं 220 के.वी. वोल्टता स्तर की शुरूआत

1964 – क्षेत्रीय विद्युत बोर्डों का गठन

1965-73 – क्षेत्रीय ग्रिड प्रणाली के निर्माण हेतु प्रांतीय ग्रिडों को आपस में जोड़ना

1977 – 400 के.वी. वोल्टता स्तर की शुरूआत

1980-88	– केन्द्रीय क्षेत्र उत्पादन के साथ सहयोगी पारेषण प्रणली के रूप में क्षेत्रीय ग्रिड़ तंत्रों का विकास।
1989	– एचवीडीसी सुलभ संपर्क (बेक टु बेक लिंक)।
1990	– एचवीडीसी द्धिध्रुवीय लाइन की शुरूआत।
1992	– पूर्व क्षेत्र व उत्तर-पूर्व क्षेत्र का तुल्यकालिक अंतरसंबंध ।
1999	– अखिल भारतीय प्रणली की ओर पारेषण आयोजना का पुर्नउन्मुखीकरण।
2000	– 765 केवी लाइन की शुरुआत (शुरुआत में 400 केवी पर आवेशित)
2003	– विद्युत अधिनियम, 2003
	– सभी पाँचों विद्युत क्षेत्रों में वास्तविक समय बंदोबस्त के साथ एबीटी का कार्यान्वयन जिससे
	विद्युत बाजार के ऑपरेशन हेतु आधारभूत संरचना का निर्माण हुआ।
	– पश्चिम क्षेत्र का पूर्व क्षेत्र - उत्तरपूर्व क्षेत्र प्रणली के साथ तुल्यकालिक अंतर्संबंध
	– बृहत् अंतक्षेत्रीय एचवीडीसी पारेषण प्रणली।
2004	– पारेषण में मुक्त पहुँच (तालयेर-कोलार एचवीडीसी लिंक)।
2006	– उत्तर क्षेत्र का पूर्व क्षेत्र- उत्तर पूर्व क्षेत्र – पश्चिम प्रणली के साथ तुल्यकालिक अंतर्संबंध।
2007	– सियात उपकेन्द्र का 765 केवी संचालन।
2007	– 765 केवी पारेषण लाइनों का 765 केवी पर संचालन ।
2010	– आरएलडीसी/एनएलडीसी का सीटीओ से पृथक संस्था के रूप कार्य करने हेतु – पॉस्को
	(POSOCO) की अधिसूचना।
2011	– पूरे देश में पारेषण शुल्कों (चार्ज़ेज़) एवं हृास को बाँटने हेतु संबंध बिन्दु (प्वाइंट ऑफ कनेक्शन)
	पर आधारित विधि का कार्यान्वयन ।

अध्याय- 3

पारेषण आयोजना सिद्धांत

3.1 पारेषण आयोजना सिद्धांत

भारत में पारेषण आयोजना सिद्धांत का प्रादुरभाव पिछले कुछ दशकों में विकास की गित को बल देने और ऊर्जा क्षेत्र की आवश्यकताओं को पूरा करने के लिए हुआ है। पारेषण आयोजना, विद्युत अधिनियम 2003, राष्ट्रीय विद्युत नीति, टैरिफ नीति, विनियम एवं विद्युत क्षेत्र के बाजारोन्मुखीकरण आदि से संबद्ध है। पारेषण आयोजना के उद्देश्य, पहल और मानदंड, जिनका प्रादुरभाव समय के आधार पर हुआ, में दीर्घकालिक आधार पर पारेषण क्षेत्र में निवेश के इष्टतमीकरण के समय लोड वृद्धि की अनिश्चितताओं और उत्पादन क्षमता अभिवृद्धि को ध्यान में रखा जाता है। पर्याप्तता, सुरक्षा और विश्वसनीयता के लिए निर्धारित लक्ष्यों को पूरा करने के उद्देश्य से पारेषण अभिवृद्धि आवश्यकताओं की आयोजना तैयार करते समय उपर्युक्त सभी लक्ष्यों, पहलों और मानदंडों को ध्यान में रखा जाता है। विभिन्न तकनीकी विकल्पों और पारेषण आयोजना सिद्धांत पर विचार करते हुए प्रणाली अध्ययन/विश्लेषण के जिए पारेषण आयोजना का सुदृढ़ीकरण किया जाता है।

3.2 आयोजना के उद्देश्य-

भारत में इष्टतम पारेषण प्रणाली की आयोजना और विकास करते समय निम्नलिखित उद्देश्यों को ध्यान में रखा जाता है:

- 1- समान विकास- भारत में पारेषण प्रणाली का विकास समग्र रूप से इस प्रकार से किया जाये कि सभी क्षेत्रों में विद्युत की उपलब्धता समान रूप से रहे भले ही देश में नवीकरणीय ऊर्जा स्रोतों सहित विद्युत उत्पादन संसाधनों की उपलब्धता असमान रूप से क्यों न मौजूद हो।
- 2- उत्पादन संसाधनों का इष्टतम दोहन- उचित पारेषण प्रणाली के विकास से उत्पादन संसाधनों का समुचित दोहन संभव है। उसमें जल-ताप विद्युत प्लांटों का संयुग्मन हो सकता है। पूर्वी भारत में कोयला और उत्तर एवं पूर्वोत्तर भारत में जल विद्युत संसाधनों को ध्यान में रखते हुये उपलब्ध उत्पादन संसाधनों यथा जल-ताप विद्युत प्लांटों के संयुग्मन का इष्टतम उपयोग करने के लिए उचित पारेषण प्रणाली का विकास करना आवश्यक है।
- 3- क्षेत्रीय पीक माँग में विविधता का लाभ प्राप्त करना- वैविध्य आधारित विद्युत विनिमय के लाभ प्राप्त करना; इसका आशय यह है कि भौगोलिक स्थितियाँ, मौसम, दिन का समय व क्रियात्मक वैविध्य के कारण उत्पादन और मांग पैटर्न में क्षेत्रीय आधार पर अंतर को पूरा करने के लिए लेनदेन करना।
- 4- क्रार्यान्वयन के लिए सहूलियत प्रदान करना केन्द्रीय पारेषण कंपनी (सीटीयू) व राज्य पारेषण कंपनी (एसटीयू) पारेषण के आयोजना एवं विकास के लिए जवाबदेह हैं। इस प्रक्रिया में मार्गदर्शन हेतु केन्द्रीय विद्युत प्राधिकरण ने राष्ट्रीय विद्युत योजना नामक मार्गदर्शिका तैयार की है। राज्य पारेषण कंपनी राज्य में विद्युत के पारेषण के लिए उत्तरदायी हैं। देश में सुसमन्वयन आधारित पारेषण आयोजना के लिए केन्द्रीय पारेषण कंपनी राज्य पारेषण कंपनियों एवं अन्य सहभागियों में समन्वय करता है। उत्पादन क्षेत्र के विलाइसेंसीकरण के बाद राष्ट्रीय विद्युत आयोजना में वास्तविक विकास इसके साथ जुड़े उपागमों में परिवर्तनों के रूप में दर्शित हो सकता है। पारेषण विकास कार्यक्रम में यथा समयानुरूप संशोधन निहित हैं। अत: दीर्घकालिक परिदृश्य में राष्ट्रीय विद्युत आयोजना में परिवर्तन किये जाने की आवश्यकता है। नए विद्युत उत्पादन केन्द्रों के बनने के बाद इनसे जुड़े पारेषण प्रणाली को जल्द ही योजना बनाकर क्रियान्वित करना होगा।
- 5- सुविधादायी व्यापार- विद्युत अधिनियम 2003 के अनुसार पारेषण प्रणाली में सुविधादायी व्यापार को विशिष्ट गतिविधि के रूप में मान्यता दी गयी है। इस स्थिति में और अभेदभावकारी खुली बाजार व्यवस्था में संभव है कि पारेषण प्रणाली को बाजार की ताकतें विद्युत प्रवाह की व्यवस्था को प्रभावित करें। अत: पारेषण नेटवर्क में अनुचित एवं उचित का पुनर्मूल्यांकन करना होगा। बिजली के बाजारीकरण

के लिए उचित प्रणाली का सशक्तिकरण करना होगा और संभावित पारेषण प्रणाली में केन्द्रीय व राज्य कंपनियों के मध्य केन्द्रीय विद्युत प्राधिकरण को समन्वयक की भूमिका निभानी होगी।

- 6- तकनीकी एवं लागत का इष्टतमीकरण- पारेषण नेटवर्क के समुचित विकास के लिए सुसंगत तकनीकी विश्लेषण और तकनीकार्थिक मूल्यांकन करना होगा। इसके लिए अतिरिक्त उच्च वोल्टेज, ए.सी., एचवीडीसी, हाइब्रिड, मल्टी सर्किट, मल्टी कंडक्टर लाइनें, जीआईएस प्रतिक्रियाकारी प्रतिपूर्ति, गतिक प्रतिपूर्ति आदि का प्रयोग किया जा सकता है। तकनीक के प्रयोग से पारेषण प्रणाली की लागत को तार्किक बनाना उसके उद्देश्य हैं।
- 7- मार्गस्थ अधिकार (राइट आफ वे) का इष्टतमीकरण- देश के समग्र विकास एवं बढ़ती जनसंख्या को देखते हुये विद्युत पारेषण के क्षेत्र में मुश्किलें लगातार बढ़ रहीं हैं। अत: इस समस्या के निदान के लिए आवश्यक है विद्युत पारेषण कॉरिडोर का इष्टतमीकरण करने की आवश्यकता है। इस हेतु लागत की दृष्टि से तार्किक उच्च क्षमता की लाइनों का प्रयोग, मल्टी सर्किट लाइनें, एल्युमिनियम-एलॉय कंडक्टर या सीरीज कंपंनशेसन व फैक्टस डिवाइस के प्रयोग से पारेषण की लाइनों की क्षमता में अभिवृद्धि करना आदि के प्रयोग के लिए योजना स्तर पर विचार किया जाना चाहिये।
- 8- चरणबद्ध विकास- उत्पादन क्षमता का सृजन कई चरणों में होता है। लिहाजा पारेषण क्षमता में वृद्धि भी चरणबद्ध होगी। पारेषण क्षमता में वृद्धि उच्चतर वोल्टेज विनिर्दिष्ट लाइनों को कम वोल्टेज पर चार्ज करके की जा सकती है। दूसरा तरीका यह हो सकता है कि बहुपरिपथ लाइनों को फेजीकरण के माध्यम से किया जाये या सीरीज कम्पनसेशन का प्रयोग किया जाये।
- पूर्वोत्तर भारत से उच्च क्षमता के कोरिडोर- देश के पूर्वोत्तर भाग में जल विद्युत ऊर्जा प्रचुर मात्रा में उपलब्ध है। इसकी अब तक मात्रा 30-35 गीगावॉट तक विकसित की जा चुकी है। जल विद्युत ऊर्जा का विकास पूर्वोत्तर भारत में इसलिये जरूरी है क्योंकि क्षेत्र के औद्योगिक विकास के साथ स्थानीय आपूर्ति को भी पूराकिया जा सके। उल्लेखनीय है कि पूर्वोत्तर भारतमें जल विद्युत का योगदान बहुत ज्यादा हो सकता है। भविष्य में जल विद्युत ऊर्जा का 70 प्रतिशत भाग आने वाले समय में पूर्वोत्तर भारत से प्राप्त होगा। इस क्षेत्र ऊर्जा की सतत प्राप्ति से यह स्पष्ट है कि यहाँ से उत्तर, दक्षिण, पश्चिम क्षेत्रों को विद्युत पारेषण सरल है क्योंकि यहाँ पर उत्पादन की तुलना में मांग कम है स्थानीय आपूर्ति के बाद जिन क्षेत्रों में मांग ज्यादा है वहाँ पर ऊर्जा का पारेषण किया जा सकता है। इसी के साथ पड़ोसी देश भूटान से उत्तर, पश्चिम और दक्षिण क्षेत्रों में विद्युत पारेषण संभव हो सकता है। पूर्वोत्तर क्षेत्र में विद्युत का उत्पादन मांग की तुलना में काफी अधिक है अत: पर्वी क्षेत्र अपने कोयले के भंडार को आरक्षित रख सकता है। पूर्वी क्षेत्र भविष्य में भी अपनी विद्युत निर्यातक की भूमिका बरकरार रखेगा। अत: पूर्वोत्तर क्षेत्र उत्तर/पश्चिम/दक्षिण क्षेत्रों को विद्युत का पारेषण लगभग 2000 किलोमीटर की तय करके संभव है। इस पर अमल करने के लिए आने वाले बाधाओं का सही अनुमान लगाकर एचवीडीसी और उच्चक्षमता की 400 के.वी. का हाइब्रिड नेटवर्क सिस्टम का विकास करना होगा। इस विकास के लिए चरणबद्ध तरीके से पूर्वोत्तर में विद्युत उत्पादन विकास के लिए कार्यक्रम का क्रियान्वयन करना होगा। पूर्वोत्तर भारत से विद्युत के आपात के लिए 1800 केवी एचवीडीसी उच्च क्षमता की लाइन विचारणीय है। उच्चक्षमता वोल्टेज के अनुप्रयोग में प्रमुख कारक हैं-लाइनलॉस में कभी लानाऔर क्रियान्वयन की उचित युक्ति।

10- दलदलीय और तटवर्ती क्षेत्रों में उत्पादन का समग्र रूप से उपभोग-

दलदली और तटवर्ती क्षेत्रों में उत्पादित विद्युत के समग्र उपभोग के लिए देश में लोड सेंटर्स में उच्चक्षमता का पारेषण प्रणाली विकसित करना होगा। क्योंकि पारेषण में लंबी दूरी की वजह से विद्युत का एक बहुत बड़ा भाग लाइन लॉस के रूप में बेकार चला जाता है। आर.ओ.डब्ल्यू. ऑप्टीमाइजेशन

ग्रिड में क्रियात्मक लचीलापन और पारेषण की अनुपलब्धता की वजह से अनुत्पादन की स्थिति आदि बाधायें हैं जिनका निवारण आयोजना में करता है।

- 11- क्षेत्रीय ग्रिडों का सतत विकास :- ग्रिडो का विकास सतत रूप से होना चाहिए जिससे क्षेत्रों में विद्युत माँग के अनुरूप हो सके। यह इस प्रकार से हो जिससे उत्पादन केन्द्रों से दूरदराज के क्षेत्रों में विद्युत आपूर्ति माँग के अनुरूप हो सके। पारेषण प्रणाली विद्युत प्रवाह के पैटर्न के बदलावों को संभाल सके और अंतर राज्य पारेषण में अंतरा राज्य क्षमता में अभिवृद्धि कर सके। इस प्रणाली को इस तरह से सशक्त किया जाए जिससे ऊर्जा का अभाव समाप्त हो जाये और समस्या का दीर्घकालिक समाधान किया जाए।
- 12- सुदृढ़ अखिल भारतीय ग्रिड: "सभी को बिजली उचित दर पर," इस नारे को चिरतार्थ करने के लिए सशक्त अखिल भारतीय ग्रिड का विकास करना होगा जिससे देश में विद्युत प्रणाली को नियोजित दिशा में विकसित करने की दिशा में प्रयत्न संभव हो सके। सशक्त अखिल भारतीय ग्रिड से उन क्षेत्रों में भी विद्युत की उपलब्धता सुनिश्चित की जा सकेगी जहाँ पर विद्युत की उपलब्धता माँग के अनुरूप काफी कम है। इससे पारेषण में बाजार द्वारा निर्धारित उत्पादित माँग को ओपन एक्ससे की सुविधा प्राप्त होगी और आपूर्ति पर इसका परिणाम यह होगा कि वितरण में विद्युत मूल्य में कमी आएगी और इससे उपभोक्ता को सीधा फायदा होगा।
- 13- उन क्षेत्रों ग्रिड सबस्टेशन बनाना जहाँ पर 300 मेगावॉट से अधिक हो-

विद्युत का राज्यों में प्रेषण, पारेषण प्रणाली का एक अहम कार्य है। इस कोशिश से आई एस टी एस। स्टेट ग्रिड सबस्टेशन (400 केवी ग्रिड स्टेशन) की स्थापना उन क्षेत्रों में सुनिश्चित हो सकेगी जहाँ पर माँग 300 मेगावाँट से अधिक है। इससे भारत में उच्च क्षमताकी ग्रिड को बढ़ाने में मदद मिलेगी।

14- 220 केवी और 132 केवी के लिए पारेषण प्रणाली के योगक का विकास -

220 व 132 केवी की आपूर्ति के लिए पारेषण प्रणाली का जोड़ना होगा और उप पारेषण और वितरण प्रणाली को भी जोड़ा जाएं। आपूर्ति में वृद्धि होने पर उत्पादन व पारेषण के समन्वयन से विद्युत आपूर्ति की मांगको पूरा किया जा सकता है। देश में उपभोक्ताओं का सीधा फायदा मिलेगा।

- 3.3 व्यवसायिक प्लांटों के लिए पारेषण आयोजना में चुनौतियां
- 3.3.1 विद्युत अधिनियम 2003 के अधिनियमन से अब काफी व्यापक विद्युत बाजार का मार्ग प्रशस्थ हुआ है, जो कभी दीर्घकालिक विद्युत खरीद करार (पीपीए) जैसी विशेषताओं के लिए जाना जाता थ और वितरण कंपनियों तथा उपभोक्ताओं को पूतिकर्ताओं के विकल्प उपलब्ध नहीं थे। उत्पादन की डी लाइसेंसिंग और कैपिटव उत्पान प्लांटों पर से नियंत्रण समाप्त करने के अलावा विद्युत अधिनियम, 2003 के अंतर्गत पारेषण लाइसेंसधारी कंपनियों को यह अनिवार्य कर दिया गया है कि वे पारेषण प्रभारों के भुगतान पर विद्युत के पारगमन (व्हीलिंग) के लिए किसी भी लाईसेंसधारक अथवा उत्पादन कंपनी को अपनी पारेषण प्रणाली का भेदभाव सहित मुक्त अभिगम उपलब्ध कराएंगी। इससे उत्पादक/व्यापारी के बीच स्वस्थ प्रतिस्पर्धा का वातावरण उत्पन्न होगा और वे अपनी सुविधानुसार ग्राहकों का चयन कर सकेंगे।
- 3.3.2 इस अधिनियम के अनुसार उत्पादन प्लांटों की प्रक्रिया को उदारीकृत किया गया है और कोई भी उत्पादन कंपनी विद्युत उत्पादन संयंत्र की स्थापना कर सकती है, चला सकती है और रख रखाव कर सकती है। इसका परिणाम यह हुआ कि बड़ी संख्या में आईवीपी ने विद्युत प्लांटों की स्थापना इस आशय के साथ की कि वे विद्युत बाजार के संवर्गों में इसका कारोबार कर सकेंगे। विद्युत बाजार के संवर्गों में कारोबार कर सकेंगे। विद्युत बाजार के संवर्गों है- दीर्घावधि, मध्यावधि, अल्पावधि, द्विपक्षीय या दिन के बदले विनिमय आदि। ग्यारहवीं पंचवर्षीय योजना में निजी क्षेत्र द्वारा 23,000 मेगावॉट विद्युत का उत्पादन ऑकलित किया गया है। इस क्षेत्रका 12वीं पंचवर्षीय योजना यह योगदान 50,000 मेगावॉट होगी इस अनुमान की पृष्टि सी.अी.यू. ने की है।

- 3.3.3 इसका कोई सुस्पष्ट ज्ञान नहीं है कि इसके कितने लाभान्वित हुए है या जब पारेषण आयोजना तैयार होता है तो यह कितनेविद्युत प्लांटों के उत्पादन को पारेषित करेगा, केवल चिन्हित क्षेत्र/लाभार्थी का ध्यान पारेषण आयोजना में रखा जाता है। ऐसे परिदृश्य में उचित पारेषण अधोसंरचना के सृजन की आवश्यकता है, जिसमें यह नए उत्पादन प्लांटों वहन करने में सक्षमहो। इस अनिश्चिता के माहौल में पारेषण आयोजना एक चुनौतीपूर्ण कार्य है। ऐसे पारेषण में दबाव का खतरा है।
- 3.3.4 उत्पादक द्वारा दीर्घावधि एक्सेस के अनुप्रयोग पर आधारित पारेषण प्रणाली को उत्पादन प्लांटों से उत्पादित विद्युत को तत्काल भेजे जाने के लिए नियोजित किया जाता है। प्रणाली आयोजना का अध्ययन यह बताता है कि विद्युत ऊर्जा सर्वेक्षण द्वारा घोषित संभावित माँग कितनी है और वास्तविक लोड राज्य या क्षेत्र में कितना है।विभिन्न राज्यों में लोड का अनुमान किसीभी अव्यवहारिक पीपीए पर आधारित होता है। अत: इस प्रक्रिया में विद्युत उचित अंतर राज्य पारेषण क्षमता उत्पादन प्लांटोंसे पहुँचती है। हालाँकि वास्तविक लाभार्थी/थियोंतक विद्युत की पहुँचने में कुछ परेशानियाँ आती है। आई एस टी एस द्वारा संपोषित । प्रवाहित विद्युत के अवशोषण के लिए उचित अंतरा राज्य पारेषण प्रणाली की भी जरूरत है।
- 3.3.5 : आयोजना प्रक्रिया में, कुछ डिजाइन मार्जिन बनाया जाता है जिससे दीर्घावधि के नेटवर्क भविष्य में होने वाली वृद्धि को वहन करने में सक्षम हो। यह मार्जिन क्रियात्मक और विश्वसनीय मार्जित होते हैं जो कि प्रकृति से चर होते हैं, प्रणाली की स्थिति और भार के प्रवाह के ढ़ंग पर निर्भर करते हैं। उस समय राज्यों के लिये प्रणाली में पर्याप्त अतिरिक्त क्षमता उपलब्ध करा दी जाये ताकि राज्य अपने दीर्घकालिक पीपीएज से अधिक विद्युत खरीद सकें। हालांकि, इन मार्जिनों का प्रयोग एक सीमा तक ही किया जा सकता है और यदि राज्य अपनी पूर्व घोषित आवश्यकता से अधिक विद्युत खरीदना प्रारम्भ करते हैं तो संकुलन हो सकता है।

3.4 हालिया अनुभव से सीख

- 3.4.1 पारेषण ग्रिड के समुचित सुरक्षित विकास के क्रम में पारेषण आयोजना में कुछ आधारभूत नियम बाजार में मौजूदा कंपनियों (आपूर्तिकर्त्ता) के लिए तय किए जाने चाहिए। इस संबंध में निम्नलिखित सुझाव भावी योजना के लिए दिए गए है:
- 1. जहाँ तक संभव हो लिलोइंग के द्वारा अंतरिक कनेक्टिविटी या अनदेखा किए जाने चाहिए।
- 2. कनेक्टिविटी का अनुरोध और दीर्घकाल आपूर्ति की जरूरत एक साथ पूरा किया जाना चाहिए। दीर्घाविध के लिए प्रणाली को सशक्त किया जाना चाहिए। एल टी. ए. के बिना कनेक्टिवटी पारेषण ग्रिड को ओवरलोडिंग की वजह बन सकती है। मुक्त कनेक्टिविटी का प्रावधान प्रयोगकर्ताओं के लिए एलटीए की अनदेखी करना वरदान सरीखा है।
- 3. पिछले कुछ बरसों में आईएसटीएस तंत्रों का आयोजना व क्रियान्वयन का आधार आईपीपी द्वारा उपलब्ध कराए गए क्षेत्रीय मांग था। केन्द्रीय विद्युत नियामक आयोग के नियमानुसार माँग का ऑकलन पिछले तीन वर्षों की अधिकतम माँग के आधार पर करना चाहिए जिसे आई पी पी सामान्यतौर पर संकलित नहीं करते है। यह पारेषण भार और माँग की पूर्ति से जुड़ा विषय है जिसमें ग्रिड सुरक्षा सर्वोपिर है। देश ग्यारह उच्च क्षमता के कॉरिडोरों की योजना इस आधार पर तैयार हो चुकी है और सीईआरसी विद्युत उत्पादन परियोजनाओं के सतत विकास संज्ञान में रखते हुए क्रियान्वयनकी स्वीकृति दे दी है। दीर्घाविध में पारेषण के उपयोगकर्ताओं को ध्यान में खते हुए पारेषण आयोजना की पुर्नसमीक्षा की जरूरत है।

यह संभावित है कि भविष्य में उपयोगकर्ताओं/उत्पादकों के लिए एल टी ए की प्रक्रिया में विद्युत आपूर्ति एवं मॉंग का लगभग 85% अनुभाग की जानकारी सुनिश्चित की जानी चाहिए। यह **पीपीएएस** के दीर्घावधि में विद्युत माँग पर आधारित है। इसमें केंद्रीय विद्युत उत्पादक जैसे एनटीपीसी,**एनएचपीसी** की भूमिका उल्लेखनीय होगी। उपरोक्त सुझाव के समर्थन में निम्न विचार हैं-

- अनुभव दर्शाता है कि यह संभव है कि स्वस्थ्य पारेषण में 15% क्षमता का इस्तेमाल **ना** सके जो कि पारेषण परिदृश्य समान है।
- यदि 85% विद्युत की आपूर्ति के लिए पीपीए के द्वारा दीर्घविध के लिए समझौता किया गया है तो आईएसटीएस का आयोजना एवं क्रियान्वयन राज्य की सीमा को ध्यान में रखकरिकया जाना चाहिए और राज्य ट्रांसमिशन यटिलिटी को भी समन्वित एस टी यु नेटवर्क का लुप बनाना चाहिए।
- यह विचारणीय है कि डिस्कॉम दीर्घाविध के जिरए पीपीए बेस लोड सुरक्षित बनाएं। मौसमी माँग और दैनिक जरूरत के संतुलन अल्पाविधवाजार के अनुरूप हो क्योंकि अल्पाविध बाजार में कीमतें परिवर्तनशील होती हैं। अल्पाविध आपूर्ति मर्चेंट केपेसिटी की अतिरिक्त क्षमता, केप्टिन संयत्रों, सहउत्पादन प्लांटों, अतिरिक्त डिस्कॉम व राज्य राज्य सरकारों द्वारा उत्पादित जल विद्युत आदि से प्राप्त होती है। अत: मर्चेंन्ट द्वारा यह आपूर्ति अल्प मात्रा में दी संख्या है। अल्पविध बाजार में आपूर्ति संतुलन के लिए ग्रिड का स्थायित्व आवश्यक है। यह वैल्पिक असमय अंतर परिवर्तन है। दूसरे छोर पर इसमें अत्याधिक बढ़ोत्तरी पारेषण पर दबाव बढ़ा सकता है और ग्रिड की सुरक्षा खतरे में पड़ सकती है।
- 3.4.2 समर्पित पारेषण लाइन जो कि उत्पादन प्लांटों से आती है उनकी प्रकृति रेडियल हो। लाइनें उत्पादन प्लांटों से जुड़ी बहुसमर्पित लाइनें जो कि एक से अधिक ग्रिड से जुड़ी हो उनका आयोजना नहीं करना चाहिए।
- 3.4.3 विद्युत अधिनियम के अनुभाग के 3a के अनुसार राज्य पारेषण यूटिलिटी अपने आयोजना में अंतर्राज्य पारेषण में सी ए व सी टी यू का सहयोग लिया जाए। यहाँ पूर्व के कुछेक उदाहरण है जहाँ पर एस टी यू महत्वपूर्ण पारेषण प्रणाली का आयोजना किया है या बड़े उत्पादन प्लांटों कनेक्टिविटी में सी ई ए व सी टी यू के बिना आयोजना किया हो और इसका परिणाम टीएसटीएस/राष्ट्रीय ग्रिड पर दबाव/क्रियात्मक रूप में दिखा दो। एसटीयू को अपने तंत्रों में सीईए व सीटीयू शामिल करना चाहिए जिसे स्टेंडिंग कमेटी ने भी संतुष्ट किया हैं।
 - क) 400 केवी व इससे अधिक क्षमता वाली लाइनें
 - ख) नवीकरणीय उत्पादन का बडे पैमाने पर दोहन
 - ग) 500 मेगा वॉट से अधिक क्षमता के प्लांटों से विद्युत निष्कर्षण के लिए पारेषण प्रणाली

3.5 पारेषण आयोजना मानदंडों की प्रमुख विशषताएं

पारेषण आयोजना में ऐसे प्रणाली स्वीकार्य किया जाए जिसका प्रदर्शन विश्वसनीय हो और आवश्यकताओं की पूर्ति करता हो। प्रणाली की विश्वसनीयता राष्ट्रीय विद्युत आयोजना 2007 और पारेषण आयोजना के तरीके (1994) में निहित है जिसे भारत सरकार ने अधिसूचित किया है। पारेषण आयोजना के प्रमुख बिंदु है :

- 1. पारेषण प्रणाली की आयोजना एकीकृत तरीके से हो
- 2. अंतरा राज्य व अंतर राज्य की खपत का कुल योग ऑप्टिमाइजेशन में सम्मिलित किया जाना चाहिए
- 3. राष्ट्रीय ग्रिड को विद्युत का प्रवाह अबाध रूप से सभी क्षेत्रों की सीमा में करना चाहिए
- 4. राष्ट्रीय दृष्टि में यथाप्रकरण बड़े उत्पादन प्लांटों (3000 मेगावाट या अधिक) और मल्टी लाइन कोरिडोरों से पारेषण प्रणाली की उपयुक्तता का परीक्षण करने के लिए एन-2 कसौटी को लागू किया जा सकता है। जबिक, क्षेत्रीय आयोजना के लिए एन-1 कसौटी को लागू रखा जा सकता है। हालांकि, एन-1 का प्रयोग नियमित रूप से विद्युत के प्रचालन के दौरान बिना भार पृथक्करण या उत्पादन का पुनर्योजन किये पारेषण की क्षमता का परीक्षण करने के लिए तथा एन-2 का प्रयोग नियमित रूप से प्रचालन के दौरान बिना भार पृथक्करण परन्तु उत्पादन के पुनर्योजन द्वारा पारेषण की क्षमता का परीक्षण करने के लिए किया जायेगा।

- 5. अंतर क्षेत्रीय विनिमय व अंतर कनेक्शन क्षमता के आँकलन में संयंत्र का मिश्रण- के उत्पादन में कमी, मौसमी वैविध्यता, आपरम्पारिक उत्पादन स्रोतों में परिवर्तन, लोड की भविष्यवाणी में गलती आदि को अध्यक्ष में समाहित किया जाना चाहिए।
- 6. अंतर क्षेत्रीय विनिमय में विद्युत की अधिकता एवं कमी का विभिन्न क्षेत्रों में होना और इसके समाधान के लिए राष्ट्रीय ग्रिड के प्रयोग पर विचार करना चाहिए
- 7. पारेषण प्रणाली की उपयुक्तता परीक्षण के अनुरूप होना चाहिए। यह परीक्षण विभिन्न लोड उत्पादन परिदृश्य में होना हो। जो कि एक या एक से अधिक परवेश से जुड़ाहो जिससे पारेषण प्रणाली पर अधिकतम दबाव झेलने में सक्षम हो सके।
- ग्रीष्म काल में उच्च लोड
- ग्रीष्म काल में निम्न लोड
- शीत काल में उच्च लोड
- शीत काल में निम्न लोड
- मानसून में उच्च लोड
- मानसून में निम्न लोड
- 8. प्रेषण परिदृश्यों में अधिकतम ट्रांसफर अंतर खेत्र कॉरिडोरों में पारेषण प्रणाली की उपयुक्तता का निर्धारणमें क्षेत्रीय वैविध्यता महत्वपूर्ण हैं। यह वैविध्यता आयात निर्यात ट्रांसफर के परिदृश्यों में है।
- 9. पारेषण प्रणाली पर बोझ में बढ़ोत्तरी की संभावना का अध्ययन करने के लिए उत्पादन प्रेषण के संबंध में संवेदनशीलता या माँग भार का भी अध्ययन किया जाना चाहिये।
- 10.अन्तर- संबंध ट्रांसफार्मर (आइसीटी) का आकार एवं संख्या जिनकी आयोजना इस प्रकार से हो कि किसी एक भी इकाई का आपूर्ति व्यवधान शेष आईसीटीज पर या अन्तनिर्हित प्रणाली पर कोई अतिरिक्त भार न डाले।
- 11. सामान्य नियम के तहत, आइएसटीएस निम्नलिखित आकस्मिक आपूर्ति व्यवधान के विरुद्ध सुरक्षित एवं सहन करने में समर्थ होगा।
 - क. नियमित रूप से विद्युत के प्रचालन के दौरान बिना भार पृथक्करण या उत्पादन का पुनर्योजन किये सहन करने की क्षमता-
 - 132 केवी डी/सी लाइन का आपूर्ति व्यवधान या
 - 220 केवी डी/सी लाइन का आपूर्ति व्यवधान या
 - 400 केवी एस/सी लाइन का आपूर्ति व्यवधान या
 - 400 केवी एस/सी लाइन (श्रेणी प्रतिकारी के साथ) आपूर्ति व्यवधान या
 - एकल अंतर-संबंध ट्रांसफार्मर का आपूर्ति व्यवधान या
 - एचवीडीसी बाइपोल लाइन के एक पोल का आपूर्ति व्यवधान या
 - श्रेणी प्रतिकारी के बिना 765 केवी एस/सी लाइन का आपूर्ति व्यवधान।
 - ख. नियमित रूप से प्रचालन के दौरान बिना भार पृथक्करण परन्तु उत्पादन के पुनर्योजन द्वारा सहन करने की क्षमता-
 - 400 केवी एस/सी लाइन (टीसीएससी सहित) का आपूर्ति व्यवधान या
 - 400 केवी डी/सी लाइन का आपूर्ति व्यवधान या
 - एचवीडीसी बाइपोल लाइन के दोनों पोलों का आपूर्ति व्यवधान या
 - 765 केवी एस/सी लाइन (श्रेणी प्रतिकारी के साथ) का आपूर्ति व्यवधान।

12. उपर्युक्त आकस्मिकताओं को 220 केवी डी/सी लाइन या किसी दूसरे गिलयारे में 400 केवी एस/सी लाइन के जो उसी उपकेन्द्र से निर्गमित हो रही है पूर्व- आकस्मिक प्रणाली अवक्षय (योजित आपूर्ति व्यवधान) माना जाना चाहिये। सभी उत्पादन इकाइयाँ अपने प्रतिघाती क्षमता वक्रों के भीतर प्रचालित हो सकती हैं और नेटवर्क उत्पादन वोल्टेज प्रोफाइल भी विनिर्दिष्ट वोल्टेज सीमाओं के भीतर रहनी चाहिये।

विश्वसनीयता के लिए अब अपनाये जाने वाले नाभिकीय ऊर्जा केन्द्रों के निष्क्रमण प्रणाली के लिए आयोजना की कसौटी को किसी एक परिपथ के आपूर्ति व्यवधान पर यह मानकर विचार करना चाहिये कि यह उसी केन्द्र के दूसरे परिपथ का पूर्व आकस्मिक अवक्षय है। यह प्रभावी ढ़ंग से बिना पुनर्योजन लेकिन बिना अन्य पूर्व आकस्मिकता के एन-2 है।

- 13.132 केवी या इससे ऊपर का ईएचवी उपकेन्द्र की योजना कम से कम दो ट्रांसफार्मरों के साथ बनानी चाहिये ताकि एक ट्रांसफार्मर के खराब होने पर किसी क्षेत्र की विद्युत आपूर्ति बाधित न हो।
- 14.2000 मेगावाट या इससे अधिक ऊर्जा खपत वाले बड़े शहरों को निर्बाध ऊर्जा आपूर्ति के लिए एन-2 कयौटी अपनाना चाहिये।
- 15.अंतर-क्षेत्रीय पारेषण क्षमता समुचित होनी चाहिये जो आयातक क्षेत्र की बड़ी मशीनों के आपूर्ति व्यवधान और संबंधित क्षेत्रों के बीच एकल एस/सी अंतर- क्षेत्रीय लाइन के आपूर्ति व्यवधान के अनुरूप हो ।

अध्याय - 4 आयोजना एवं विकास प्रक्रिया

4.1 विद्युत प्रणाली आयोजना हेतु समन्वित योजना एवं स्थायी समितियाँ

पारेषण प्रणाली संवर्धन योजना के इष्टतम विकास हेतु अंतर्राज्यीय तथा अंत:राज्यीय ग्रिड प्रणाली की समन्वित योजना बनाए जाने की आवश्यकता है। अंतर्राज्यीय पारेषण प्रणाली के विकास के संबंध में अंतर्राज्यीय पारेषण प्रणाली (आई.एस.टी.एस.) तथा राज्य विद्युत निकासी बिन्दु/स्थल पर राज्य ग्रिड एवं आई.एस.टी.एस. द्वारा उन्हें विद्युत आपूर्ति और उनमें अतिरिक्त विश्वसनीयता पैदा करने पर मुख्यत: ध्यान केंद्रित किया जाना है। अंत:राज्यीय पारेषण प्रणाली (आई.एस.टी.एस.) के विकास हेतु आई.एस.टी.एस. से प्राप्त विद्युत को पारेषित करने के लिए राज्य ग्रिड, इसके विद्युत उत्पादन केन्द्रों और लोड केन्द्रों की क्षमता को बढ़ाए जाने पर भी ध्यान केंद्रित किया जाना है। विद्युत अधिनियम 2003 की धारा 73 (क) के अंतर्गत अपने कार्यों एवं दायित्वों के रूप में केंद्रीय विद्युत प्राधिकरण द्वारा एकीकृत आयोजना का समन्वयन किया जा रहा है।

इस उद्देश्य को पूरा करने और एकीकृत आयोजना को क्रियान्वित करने के लिए केंद्रीय विद्युत प्राधिकरण ने पारेषण संवर्धन के लिए ठोस प्रस्ताव तैयार करने हेतु पारेषण सेवाओं के साथ-साथ अन्य स्टेकहोल्डरों के समन्वय से और उनसे विचार-विमर्श कर विद्युत प्रणाली आयोजना हेतु क्षेत्रीय स्थायी समितियों (एस.सी.पी.एस.पी.) का गठन किया है। विद्युत प्रणाली आयोजना हेतु बनायी गई इन समितियों में केंद्रीय विद्युत प्राधिकरण (सी.ई.ए.), सी.टी.यू., संबद्ध राज्यों की पारेषण कंपनियां (एस.टी.यू.), संबंधित क्षेत्र की क्षेत्रीय विद्युत समितियों (आर.पी.सी.) तथा संबंधित क्षेत्र में केंद्रीय क्षेत्र की विद्युत उत्पादन कंपनियों के प्रतिनिधि शामिल हैं। विद्युत उत्पादन के निष्कर्षण (इवैकुएशन) अथवा प्रणाली संवर्धन हेतु तैयार की गई अंतर्राज्यीय पारेषण प्रणाली पर संबंधित क्षेत्रों की विद्युत आयोजना हेतु क्षेत्रीय स्थायी समितियों (एस.सी.पी.एस.पी.) के साथ विचार-विमर्श किया गया। दीर्घकालिक अभिगम अनुप्रयोगों (लांग टर्म एक्सेस एप्लिकेशन) के परिणामस्वरूप उत्पन्न होने वाली आवश्यकताओं पर भी चर्चा की गई और आवेदकों की उपस्थिति में विद्युत आयोजना हेतु क्षेत्रीय स्थायी समितियों (एससीपीएसपी) द्वारा भी इस पर जोर दिया गया। साझा मुद्दों पर चर्चा के लिए समस्त क्षेत्रों की एक संयुक्त बैठक आयोजित की जाती है।

4.2 पारेषण योजनाएं तैयार करना

किसी निश्चित समय-सीमा में प्रारेषण प्रणाली की योजना बनाने हेतु केंद्रीय विद्युत प्राधिकरण द्वारा बनाई गई योजनाओं एवं निर्धारित अविध में इसे पूर्ण किए जाने हेतु संचालित विद्युत उत्पादन परियोजनाओं का ध्यान रखना पड़ता है। पारेषण प्रणाली अपेक्षाओं में उत्पादन परियोजनाओं से विद्युत निष्कर्षण प्रणाली (पॉवर इवैकुएशन सिस्टम) तथा एक समय-सीमा के अंदर लोड की बढ़ती मांग को पूरा करने हेतु नेटवर्क को सशक्त बनाना शामिल है। इस प्रणाली के इष्टतम उपयोग के मद्देनजर इसे राष्ट्रीय स्तर पर तैयार किया जाता है। इस प्रक्रिया में पारेषण हेतु सकल निवेश में अंतर्राज्यीय सहित अंत:राज्यीय प्रणाली शामिल है, जिसे अधिकतम युक्तिसंगत बनाया गया है। केंद्रीय विद्युत प्राधिकरण द्वारा तैयार की गई आगामी योजना तथा कौन सी इकाई आगामी 2-3 वर्षों हेतु विद्युत उत्पादन हेतु उपलब्ध हो पाएंगी एवं विशेष क्षेत्र में लोड की बढ़ती मांग को देखते हुए सी.टी.यू. अथवा एस.टी.यू. को प्राथमिकताएं तय करनी होती हैं, आवश्यकता पड़ने पर इसकी समीक्षा करनी होती है तथा पारेषण प्रणाली के विस्तार हेतु कार्यक्रमों को क्रियान्वित भी करना पड़ता है।

4.3 पारेषण योजनाओं का क्रियान्वयन (आई.एस.टी.एस.)

अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) विकास के परिप्रेक्ष्य में, विद्युत ऊर्जा योजना हेतु क्षेत्रीय सिमितियों (एससीपीएसपी) में इन प्रस्तावों पर निर्णय लिए जाने के पश्चात संबंद्ध विद्युत ऊर्जा उत्पादन स्टेशनों के अधिष्ठापन कार्यक्रम को ध्यान में रखते हुए सी.टी.यू. तथा सी.ई.ए. इसके क्रियान्वयन पर प्रस्ताव को अधिकार प्राप्त सिमिति के सम्मुख विचारार्थ प्रस्तुत करते हैं। अधिकार प्राप्त सिमिति की

सिफारिश के अनुरूप एवं भारत सरकार द्वार इस पर विचार किए जाने के उपरांत पारेषण योजनाओं को कार्यान्वयन या तो टैरिफ आधारित प्रतियोगी बोली प्रक्रिया (टैरिफ बेस्ड कंपिटिटिव बिडिंग प्रॉसेस) अथवा टैरिफ नीति के प्रावधानों के अनुसार सीटीयू के रूप में पॉवरग्रिड द्वारा विनियमित टैरिफ के साथ लागत प्रभावी व्यवस्था के अंतर्गत किया जाता है।

4.4 अंत:राज्यीय पारेषण प्रणाली की आयोजना एवं विकास:

राज्य विद्युत कंपनियों को अंत:राज्यीय पारेषण प्रणाली (इंट्रा-एसटीएस) का विकास करना होता है। उनकी नेटवर्क आयोजना, योजना निरूपण तथा अंत:राज्यीय पारेषण विकास में अंत:राज्यीय लाभ हेतु राज्य एवं निजी क्षेत्र की विद्युत उत्पादन परियोजनाओं से विद्युत निष्कर्षण (इवैकुएशन) के लिए पारेषण प्रणाली का विकास, अंतर्राज्यीय पारेषण प्रणाली द्वारा उपलब्ध कराए गई विद्युत ऊर्जा की खपत, राज्य के विभिन्न क्षेत्रों में विद्युत की बढ़ती मांग को पूरा करने तथा उनकी प्रणाली की विश्वसनीयता बनाए रखने पर ध्यान केंद्रित किया जाना है। विद्युत की मांग में संभावित वृद्धि को दृष्टिगत करते हुए समन्वित विकास प्रक्रिया हेतु ऐसा किया जाना उपयुक्त होगा कि सरकारी पारेषण कंपनियाँ क्षेत्रीय ग्रिड प्रणाली की विकास योजनाओं का लाभ लेते हुए अपने-अपने राज्य की विद्युत योजना तैयार करें तथा वे वहाँ की विद्युत आवश्यकताओं पर विशेष रूप से ध्यान केंद्रित करें।

4.5 पारेषण आयोजना अध्ययन :

4.5.1 पारेषण योजना हेतु अध्ययन एवं विश्लेषण :

आयोजना के चरण में विद्युत उत्पादन परियोजनाओं हेतु पारेषण और प्रणाली-पुनर्प्रवतन (सिस्टम रि-इनफोर्समेंट) की आवश्यकताओं-अपेक्षाओं को तैयार किया गया है, जो विभिन्न प्रौद्योगिकी विकल्पों, योजना मानदंडों एवं विनियमों के मद्देनजर विस्तृत प्रणाली अध्ययन एवं विश्लेषण पर आधारित होती हैं। ऐसे अध्ययन/विश्लेषण समस्या विशेष पर आधारित होते हैं, इसका आशय यह है कि किसी विशेष कार्रवाई में अध्ययन/विश्लेषण का केवल एक सब-सेट ही आवश्यक होता है। इस प्रणाली से संबंधित प्रमुख अध्ययन एवं विश्लेषण में निम्नलिखित कार्य शामिल हैं -

- ⇒ मांग-उत्पादन विश्लेषण
- ⇒ विद्युत प्रवाह अध्ययन
- ⇒ आकश्मिकता संबंधी अध्ययन
- ⇒ सार्ट सर्किट अध्ययन / दोष विश्लेषण
- ⇒ वोल्टेज स्थिरता अध्ययन
- ⇒ अल्प एवं दीर्घकालिक गत्यात्मक स्थिरता
- ⇒ तकनीकी-आर्थिक विश्लेषण

4.5.2 पूर्व अपेक्षाएं :

पारेषण आयोजना प्रक्रिया के अंतर्गत विविध प्रणालियों के अध्ययन/विश्लेषण हेतु निम्नलिखित आंकड़ों/सूचनाओं की पूर्व में ही आवश्यकता होती है:

- ⇒ वर्तमान प्रणाली पर आंकड़े
- ⇒ लोड पूर्वानुमान
- ⇒ उत्पादन विस्तार योजना
- ⇒ मौसम संबंधी लोड सृजन परिदृश्य
- ⇒ नेटवर्क विस्तार विकल्प
- ⇒ पारेषण आयोजना मानदंड
- ⇒ प्रौद्योगिकी विकल्प
- ⇒ अधिनियम, विनियम, नीतियाँ

4.6 प्रौद्योगिकी विकल्प:

12वीं एवं 13वीं योजना अविध के लिए अब उपलब्ध प्रोद्योगिकी विकल्प निम्नलिखित हैं। इन विकल्पों को विशिष्ठ समस्याओं के समाधान के लिए प्रयोग करना उचित होगा, इसका आशय यह है कि किसी विशेष कार्रवाई के लिए केवल सीमित संख्या में ही विकल्प उपयुक्त हो सकते हैं।

- ⇒ 220 के.वी. ए.सी., 400 के.वी. ए.सी, 765 के.वी. ए.सी, 1200 के.वी. ए.सी
- ⇒ एच.वी.डी.सी./यू.एच.वी.डी.सी. (+500 के.वी., +600 के.वी., +800 के.वी.)
- ⇒ हाइब्रिड मॉडल (एच.वी.डी.सी सिस्टम सहित ए.सी.)
- ⇒ उच्च सुचालक तापमान विकल्प के साथ उच्च क्षमतायुक्त लाइऩें
- ⇒ सिरिज कंपेन्सेशन, डायनमिक रिऐक्टिव पॉवर-टी.सी.एस.सी., एस.वी.सी., स्टैटकॉम/फैक्ट्स

अध्याय – 5

नई प्रौद्योगिकी तथा स्मार्ट ग्रिड

5.1 राष्ट्रीय ग्रिड के डिजाइन एवं इसके प्रचालन में चुनौतियाँ-

विभिन्न क्षेत्रों की बढ़ती विद्युत मांग को पूरा करने के लिए ग्रिड की विद्युत अंतरण क्षमता में निरंतर संवर्धन अपेक्षित है। इसके विस्तार में कुछ चुनौतियाँ हैं, जिनका आयोजना एवं नई प्राद्योगिकी अपनाए जाने से समाधान निकलता है। कुछ चुनौतियाँ निम्नलिखित हैं:-

- मार्गाधिकार (राइट ऑफ वे): वर्तमान समय में पारेषण क्षेत्र की यह सबसे मुख्य समस्या है। पर्यावरण हित को ध्यान में रखते हुए उच्च क्षमता वाले पारेषण मार्ग (मेगावाट प्रति मीटर राइट आफ वे) को विकसित करने की आवश्यकता है।
- > उपकेन्द्र लगाने हेतु जगह का अभाव : महानगरों, पर्वतीय तथा अन्य शहरी क्षेत्रों में जगह की उपलब्धता न होने से वहाँ उपकेन्द्रों लगाने के लिए स्थान सीमित करने की प्रबल आवश्यकता है।

> पारेषण लाइन पर विद्युत लोडिंग तथा विद्युत नियमन (रेगुलेशन) में सहुलियत :

दैनिक खपत के साथ-साथ खास मौसम में विद्युत मांग में भारी अंतर के कारण ग्रिड की सुरक्षा एवं इसके इष्टतम उपयोग हेतु पारेषण नेटवर्क पर विद्युत प्रवाह को नियंत्रित करने की अत्यंत आवश्यकता होती है।

🗲 प्रचालन संबंधी दक्षता में सुधार –

विद्युत प्रणाली को सुरक्षा, संरक्षा तथा अधिकाधिक उपलब्धता के साथ-साथ उच्च क्षमता से प्रचालित किया जाना अपेक्षित है। यह तभी संभव हो सकता है जब विश्वसनीयता आधारित ऑन-लाइन मानिटरिंग की जाए, पहले ही मरम्मत एवं अनुरक्षण और फोर्स आउटेज को शून्य किया जाए।

5.2 नई प्राद्योगिकी का अंगीकरण

उपरोक्त चुनौतियों से निपटने के लिए निम्नलिखित प्रौद्योगिकी का क्रियान्वयन किया जा रहा है।

> पारेषण वोल्टेज में वृद्धि :

वोल्टेज बढ़ने से विभिन्न स्तरों पर विद्युत घनत्व में वृद्धि होती है। यह 132 कि.वा. हेतु 3 मेगावाट/मीटर तथा 765 कि.वा. हेतु 45 मेगावाट/मीटर होता है। 765 कि.वा. स्तर तक वोल्टेज का पारेषण पहले से ही किया जा रहा है। ऐसी ही एक ±800 कि.वा., 6000 मेगावाट एच.वी.डी.सी. प्रणाली, जो पूर्वोत्तर क्षेत्र (एन.ई.आर.) से 2000 किमी. दूर उत्तरी क्षेत्र (एन.ई.) के थोक विद्युत निष्कर्षण का एक अंग है, पर कार्य चल रहा है। इसके अतिरिक्त ए.सी. वोल्टेज 1200 किलोवाट तक बढ़ाने की योजना बनाई गई है। 1000 कि.वा. के एच.वी.डी.सी. प्रणाली के लिए अनुसंधान कार्य भी आरंभ किया जा चुका है।

> पारेषण लाइन का अपग्रेडेशन :

जम्मू-कश्मीर में किशेनपुर-किश्तवार लाइन के 220 किलोवाट डी/सी. को 400 किलोवाट एस/सी. में अपग्रेड किया गया, जो भारत में पहली बार हुआ है। इससे वर्तमान पारेषण मार्ग (कॉरिडोर) के मार्गाधिकार (राइट आफॅ वे) में विद्युत अंतरण क्षमता में मामूली (35 मीटर से 37 मीटर) वृद्धि हुई है।

एच.वी.डी.सी. टर्मिनल का अपग्रेडेशन: तलचर (पूर्वोत्तर क्षेत्र) – कोलर (दक्षिण क्षेत्र) ±500 किलोवाट एच.वी.डी.सी. टर्मिनल के 2000 से 2500 मेगावाट में अपग्रेडेशन का कार्य बिना किसी अड़चन और किसी उपकरण बदले ही पूरा कर लिया गया है। इससे बिल्कुल अल्प लागत पर ट्रांसफारमर की कूलिंग में वृद्धि हुई है और रिएक्टर को निर्बाध करने में सहायता मिली है।

- 400 किलोवाट उच्च क्षमता की मल्टी सर्किट/बंडल कंडक्टर लाइनें: पावर ग्रिड ने मल्टी सर्किट टावरों (एक टावर पर दो कंडक्टर सिहत 4 सिकिट) का इन-हाउस डिजाइन एवं विकास किया है, जिनका कई पारेषण प्रणालियों में उपयोग किया जा रहा है और ये जंगल एवं सघन मार्गाधिकार (राइट ऑफ वे) वाले क्षेत्रों जैसे कुडानकुलम और आर.ए.पी.पी.-सी पारेषण प्रणाली से होकर गुजरते हैं।
- > हाई सर्ज इम्पेडेन्स लोडिंग लाइन (एच.एस.आई.एल.): पारेषण लाइनों की लोड क्षमता को बढ़ाने के लिए एच.एस.आई एल. प्रौद्योगिकी विकास को बढ़ावा दिया जा रहा है। पावर ग्रिड एक एच.एस.आई एल. यथा-400 किलोवाट मेरठ-कैथाल डी/सी लाइन को तैयार कर रहा है, जो किसी नार्मल क्वाड बंडल कंडक्टर लाइन हेतु नॉमिनल 650 मेगावाट की तुलना में एस.आई.एल. 750 मेगावाट का है।
- कम्पैक्ट टावर: डेल्टा कनिफगरेशन की तरह कम्पैक्ट टावर का आकार छोटा/पतला होता है और कम स्थान घेरने के कारण इन टावरों का प्रयोग किया जा रहा है। डेल्टा कनिफगरेशन पर पहली टावर लाइन 765 किलोवाट सिपत-सिवनी 2xएस./सी. प्रक्रियाधीन है। इसके अलावा घनी आबादी वाले क्षेत्रों में 400 किलोवाट के टावरों का उपयोग किया जा रहा है। घनी आबादी वाले शहरी क्षेत्रों में मार्गाधिकार (राइट ऑफ वे) की समस्या के समाधान के लिए महारानी बाग, दिल्ली उपकेन्द्र आने वाली पारेषण लाइन हेतु परंपरागत टावरों की आधारभूत चौड़ाई 12 से 15 मीटर के स्थान पर लगभग 1.85 मीटर चौड़ाई के खंभों के आकार के टावरों का उपयोग किया गया।

उच्च तापमान पर लो सैग (एच.टी.एल.एस.) कंडक्टर लाइन :

वर्तमान रेटिंग को बढ़ाने के लिए उच्च तापमान अवशोषित करने वाले कंडक्टरों का प्रयोग चयनित प्रारेषण मार्गों (कॉरिडोर) तथा शहरों/महानगरों में किया जा रहा है। पावर ग्रिड ने महारानी बाग उपकेन्द्र पर 400 किलोवाट दादरी-बल्लभगढ़ क्वाड कंडक्टर लाइन के एलआईएलओ हिस्से (15 किमी. के विस्तार) हेतु दोनों आईएनवीएआर कंडक्टर लाइन को पहले ही क्रियान्वित किया है। इसके अलावा सिलिगुड़ी-पूर्णियां के दोनों मूज कंडक्टर लाइनों को उच्च तापमान लो सैग कंडक्टर (एच.टी.एल.एस.) से रि-कंडक्टर किया जा रहा है।

- ▶ गैस इन्सुलेटेड उपकेन्द्र (जी.आई.एस.): पारेषण प्रणाली स्थापित करने हेतु महानगरों, पर्वतीय, तथा नगरीय क्षेत्रों में जमीन की विशेषरूप से अनुपलब्धता के कारण जमीन की कम खपत किए जाने की बराबर आवश्यकता रही है। गैस इन्सुलेटेड उपकेन्द्र (जी.आई.एस.) हेतु (करीब 70 प्रतिशत) कम जगह की आवश्यकता होती है। परंपरागत विद्युत उपकेन्द्र हेतु सामान्यतया 30 से 40 एकड़ क्षेत्रफल की तुलना में इसके लिए केवल 8 से 10 एकड़ क्षेत्रफल की जरूरत होती है। जमीन की आवश्यकता को पूरा करने हेतु मितव्ययता के दृष्टिकोण से गैस इन्सुलेटेड उपकेन्द्र (जी.आई.एस.) का प्रयोग एक बेहतर विकल्प है।
- विद्युत प्रवाह में नियंत्रण/संसाधनों का उपयोग : विद्युत की बढ़ती मांग के कारण वर्तमान संसाधनों के समुचित उपयोग के साथ-साथ विद्युत नियंत्रण पर अधिकाधिक ध्यान दिए जाने की आवश्यकता महसूस की जा रही है। विद्युत नेटवर्क पर इलेक्ट्रानिक्स उपकरणों के प्रयोग से ही ऐसा संभव हो सकता है।

स्थिति आधारित मॉनिटरिंग:

पावर ग्रिड ने ट्रांसफारमरों की बेहतर विश्वसनीयता, उपलब्धता तथा टिकाऊपन के लिए डी.जी.ए. एफ.आर.ए., पी.डी.सी., आर.वी.एम. आदि, सी.बी. के लिए डी.सी.आर.एम. एवं सर्ज ऐरेस्टरों आदि के लिए थर्ड हार्मोनिक रिसिस्टिव करंट मेजरमेंट जैसी अनेक दशा मॉनिटरिंग एवं डायग्नोस्टिक की उत्कृष्ट तकनीकों को अपनाया है। इसके अलावा ट्रान्सफारमरों के ऑन-लाइन मानिटरिंग की प्रणाली

को क्रियान्वित किया जा रहा है ताकि आरंभिक स्तर पर ही गड़बड़ी का पता लगाया जा सके तथा टान्सफारमरों के खराब होने के पहले ही चौकन्ना किया जा सके।

- निवारक अनुरक्षण : ट्रान्सफारमरों तथा रिएक्टरों के विभिन्न पुर्जे, सर्किट ब्रेकरों, इन्स्ट्रूमेंट ट्रान्सफारमरों, लाइट ऐरेस्टर आदि विभिन्न कंपोनेन्ट की ऑन-लाइन मानिटरिंग में विभिन्न उपकरणों हेतु उत्कृष्ट निवारक अनुरक्षण तकनीकों को प्रणाली में शामिल किया गया है।
- पारेषण परियोजनाओं हेतु धारित अवधि में कमी: उत्पादन परियोजनाओं की धारित अवधि में कमी तथा राष्ट्रीय विद्युत आयोजना से व्यतिक्रम होने की संभावना एवं नॉन डिस्क्रिमिनेटरी ओपेन एक्सेस रिजीम को ध्यान में रखते हुए पारेषण योजनाओं हेतु धारित अवधि को समुचित रूप से सीमिति किया जाना होगा। पारेषण परियोजनाओं की धारित अवधि को सीमित किए जाने हेतु नई निर्माण प्रणाली एवं प्राद्योगिकी की उपलब्धता को क्रियान्वित किया जाना अपेक्षित होगा। डिटेल सर्वे तथा रूट एलाइनमेंट के लिए सैटेलाइट इमेजिंग जैसी उभरती प्रोद्योगिकी को अपनाना वांछनीय होगा। विभिन्न प्रकार के टावरों की विन्ड जोन मैपिंग तथा मानक डिजाइन और मृदा जाँच अग्रिम रूप से की जा सकती है ताकि पारेषण प्रणाली के लिए निर्माण समय को काफी हद तक कम किया जा सके।

5.3 स्मार्ट नेशनल ग्रिड

5.3.1 भारतीय विद्युत प्रणाली हेतु स्मीट ट्रांसिमशन ग्रिड की आवश्यकता

विद्युत क्षेत्र की पुन: संरचना (रिक्ट्रक्चिरिंग) तथा उदारीकरण के कारण नए नियमन, उन्मुक्त पहुँच, विद्युत लेन-देन इत्यादि एवं कम अविध के कार्यों की बढ़ती भागीदारी और नवीनीकरण योग्य उत्पादन के कारण भारतीय ग्रिड को स्मार्ट नेशनल ग्रिड के रूप में डिजाइन और संचालित किया जाना आवश्यक हो गया है। विद्युत की बढ़ती मांग को पूरा करने में भारतीय विद्युत प्रणाली का तीव्र गित से विस्तार हो रहा है। अनियत विद्युत वितरण के अधिकतम उपयोग हेतु अंतर्राज्यीय/क्षेत्रीय प्रणाली के माध्यम से क्षेत्रीय ग्रिडों का निरंतर सशक्तिकरण किया जा रहा है। पांच क्षेत्रीय ग्रिडों में चार ग्रिड यथा- उत्तरी, पश्चिमी, पूर्वी तथा पूर्वोत्तर, जिनकी क्षमता करीब 133 गेगावाट है, को एक दूसरे के तुल्यकालिक (सिंक्रोनाइज) बनाया गया है, जबिक दक्षिणी ग्रिड (49 गेगावाट) को 2014 तक इन ग्रिडों के तुल्यकालिक किए जाने की आशा है। अगले 5 से 6 वर्षों में करीब 40 से 50 गेगावाट नवीनीकरण योग्य उत्पादन सिहत भारत के सभी ग्रिडों की एकीकृत उत्पादन क्षमता 300 गेगावाट तक पहुँचने की आशा है। व्यापक नवीनीकरण योग्य क्षमता के मुख्य घटक के रूप में पवन विद्युत उत्पादन की प्रकृति सामान्यता अनियमित है और ग्रिड के साथ इसके एकीकरण से इतने बड़े ग्रिड हेतु मानिटरिंग और नियंत्रण में जटिलता आएगी। लंबी दूरी तक फैले ग्रिड तथा इसके प्रचालन में बढ़ती जटिलता और विद्युत खपत के कारण व्यापक स्तर पर इसे मॉनिटर करने की आवश्यकता होती है, जो उभती हुई सिंक्रो फेजर प्रौद्योगिकी के प्रयोग से केवल संभव हो सकती है।

ग्रिड के कार्य निष्पादन हेतु व्यापक क्षेत्र मापन प्रणाली (डब्ल्यएएमएस) आधारित प्रौद्योगिकी सबसे महत्वपूर्ण है, जो इस आधुनिक परिदृश्य में ग्रिड के लिए अपेक्षित भी है। व्यापक क्षेत्र मापन प्रणाली (वैम्स) हेतु उपकेन्द्रों तथा विद्युत उत्पादन संयंत्रों पर फेजर मापन यूनिट (पी.एम.यू.) लगाया जाना अपेक्षित है। वर्तमान एस.सी.ए.डी.ए. /ई.एम.एस. आधारित ग्रिड प्रचालन में पावर ग्रिड के केवल स्थाई दशा को व्यक्त किए जाने की क्षमता होती है। व्यापक क्षेत्र हेतु सिंक्रोफैजर मापन सहित फेजर मापन यूनिट (पी.एम.यू.), पर आधारित प्रौद्योगिकी, डायनिमक रियल टाइम मेजरमेंट और पावर सिस्टम विजुएलाइजेशन को आसान बनाती है, जो ग्रिड की संरक्षा एवं सुरक्षा की मॉनिटर करने के साथ-साथ नियंत्रण और निवारक कार्यों हेतु उपयोगी है। स्मार्ट ग्रिड के सफल विकास में व्यापक क्षेत्र मापन प्रणाली (वैम्स) में संवर्धन के साथ-साथ मापन, संचार, नियंत्रण एवं स्वचालन (कंट्रोल एवं आटोमेशन) उन्न्तशील मीटर, सूचना प्रौद्योगिकी की आधारिक संरचना, ऊर्जा भंडारण आदि महत्वपूर्ण भूमिका अदा करते हैं।

5.3.2 फैजर मापन यूनिट (पी.एम.यू.) तथा व्यापक क्षेत्र मापन प्रणाली (वैम्स) प्रौद्योगिकियों के विषय में जानकारी

फेजर और सिंक्रोफेजर प्रौद्योगिकी: फैजर एक जटिल संख्या है, जो ए.सी. प्रणाली में पाई जाने वाली ज्या तरंगों (साइन वेब) के मैग्नीट्यूड तथा फेज एंगल दोनों का प्रतिनिधित्व करती है। उसी समय होने वाले फैजर मापन को सिंक्रोफैजर कहते हैं, जिन्हें फैजर मापन यूनिट (पी.एम.यू.) द्वारा पूरी शुद्धता के साथ मापा जा सकता है। पारंपरिक प्रौद्योगिकी से 4 से 10 सेकेंड की स्पीड की तुलना में फैजर मापन यूनिट (पी.एम.यू.) द्वारा मापन कार्य विशेषरूप से प्रति सेकेंड 25 से 30 सैंपल की उच्च स्पीड पर लिया जाता है। कॉमन टाइम रेफरेन्स के अनुसार प्रत्येक मापन, टाइम स्टैम्पीड होता है। टाइम स्टैंपिंग, सिंक्रोफेजर को विभिन्न स्थानों से टाइम एलाइन (सिंक्रोनाइज) होने देता है, जिससे संपूर्ण ग्रिड का संयुक्त एवं व्यापक दृश्य उपलब्ध हो पाता है।

व्यापक क्षेत्र मापन प्रणाली (वैम्स) नेटवर्क के एक अंग के रूप में किसी विशिष्ट पी.एम.यू. अधिष्ठापन (इन्सटालेशन) में ऐसे पी.एम.यू. आते हैं, जो ग्रिड के विविध उद्देश्यों की प्राप्ति में समस्त विद्युत ग्रिडों तक दूर-दूर स्थित होते हैं। मुख्य केन्द्र का फैजर डाटा कंसेन्ट्रैटर (पी.डी.सी.) पी.एम.यू. से आंकड़े जुटाता है और इसे टाइम एलाइन करते हुए सुपरवाइजरी कंट्रोल एवं डाटा एक्विजिशन (एस.सी.ए.डी.ए.) सिस्टम को भेजता है। वैम्स नेटवर्क को पी.एम.यू. डाटा के सैंपलिंग फ्रिक्वैंसी का मिलान करके त्वरित गित से डाटा अंतरित करने हेत् हाई बैंडविड्थ कम्युनिकेशन बैकबोन की आवश्यकता होती है।

फैजर डाटा कंसेन्ट्रेटर (पी.डी.सी.): कई पी.एम.यू. से मापे गए विद्युत पैरामीटरों को जिस उपकरण के माध्यम से स्थानिक अथवा दूरस्थ संग्रहित किया जाना होता है, उसे फैजर डाटा कंसेन्ट्रेटर (पी.डी.सी.) कहते हैं। जहाँ फैजर डाटा, कई पी.एम.यू. से किसी प्रणाली के लिए आंकड़ें संग्रहित, सह-संबद्ध करके एवं एकल स्ट्रीम से अन्य अनुप्रयोगों (एप्लिकेशनों) के लिए उनकी पूर्ति करता है, वहाँ फैजर डाटा कंसेन्ट्रेटर (पी.डी.सी.) नोड बनाता है। सोपानिक ढ़ांचे में कई डाउन स्ट्रीम पी.डी.सी. से आंकड़े इकट्ठा करने में भी फैजर डाटा कंसेन्ट्रेटर (पी.डी.सी.) का प्रयोग किया जा सकता है। फैजर डाटा कंसेन्ट्रेटर (पी.डी.सी.), फैजर डाटा पर गुणवत्ता की जॉंच, सह-संबद्ध डाटा स्ट्रीम पर आवश्यक फ्लैग लगाने, डिस्टरबैंस फ्लैग को चेक करने तथा विश्लेषण हेतु डाटा फाइलों को रिकार्ड करने, समग्र मापन प्रणाली को मानिटर करने तथा कार्य निष्पादन के रिकार्ड एवं प्रदर्शित करने जैसे अतिरिक्त कार्यों को भी संपादित करता है।

व्यापक क्षेत्र मापन प्रणाली (वैम्स): फैजर मापन यूनिट (पी.एम.यू.) से युक्त व्यापक क्षेत्र मापन प्रणाली (वैम्स) उभरती हुई प्रौद्योगिकी है, जो एक उन्नतशील मापन प्रणाली है। वैम्स बड़ी तत्परता से तुल्यकालिक (सिंक्रोनाइज्ड) मापन करता है। व्यापक क्षेत्र मापन प्रणाली (वैम्स) प्रौद्योगिकी, ऐम्प्लिट्यूड और फेज एंगल के रूप में रियल टाइम फैजर देता है, जो अधिक स्पष्ट विजुएलाइजन तथा विद्युत प्रणाली प्रचालन की परिस्थिति से बेहतर अवगत कराने में सहूलियत देती है। पारेषण प्रणाली में ग्रिड को स्मार्ट बनाने हेतु वैम्स प्रौद्योगिकी मुख्य भूमिका निभाती है। वैम्स प्रणाली के अंतर्गत फैजर मापन यूनिट (पी.एम.यू.) फैजर डाटा कंसेन्ट्रेटर (पी.सी.डी.), विजुएलाइजेशन ऐड, एप्लिकेशन एवं एनालिसिस माड्यूल, डाटा आर्चिविंग तथा स्टोरेज आदि कंपोनेन्ट आते हैं। वैम्स प्रौद्योगिकी के मूलभूत घटकों में पी.एम.यू., वाइड बैंड कम्यूनिकेशन तथा पी.डी.सी. आते हैं। कई देशों में पी.एम.यू. का अधिष्ठापन (इनस्टालेशन) सबसे पहले केवल इस प्रौद्योगिकी के अनुभव से परिचित होने के लिए आरंभ किया गया तथा अधिष्ठापित इन पी.एम.यू. को व्यापक स्तर पर क्रियान्वित करते हुए बाद में इन्हें एकीकृत किया गया।

पूरे विश्व में वैम्स प्रौद्योगिकी के सर्वाधिक कार्यक्रमों में फैजर प्रौद्योगिकी को लागू किए जाने के तीन चरण हैं। इसके प्रथम चरण में संस्थिति विज्ञान (टोपोलॉजी) तथा प्रचालन सीमा के निर्धारण हेतु पी.एम.यू. का उपयोग कर रहे समस्त ग्रिड के महत्वपूर्ण स्थलों से आर्चिव फैजर तथा फ्रिक्वैंसी डाटा का संग्रह है। इसके द्वितीय चरण में ग्रिड प्रचालन को स्थिर और विश्वसनीय बनाने में सुझाव हेतु विश्लेषणात्मक प्रक्रिया से ग्रिड की दशा की गणना के लिए रियल टाइम फैजर तथा फ्रिक्वैन्सी मापन के

साथ संग्रहित आंकड़ों का उपयोग है। तृतीय और अंतिम चरण में उपरोक्त सम स्त कार्य बिना किसी व्यक्ति के ऑटोमैंटिक संपन्न किया जाना होता है।

5.3.3 पूरे विश्व में सिंक्रोफेजर का अनुप्रयोग

उत्तरी अमेरिका, यूरोप, चीन, रूस, ब्राजील आदि देशों सहित विश्व भर में अनेक विद्युत कंपनियों ने बड़े विद्युत ग्रिडों के प्रचालन से लाभान्वित होने के लिए इस नई प्रौद्योगिकी का उपयोग/विकास करना आरंभ कर दिया है। चीन ने व्यापक क्षेत्र मानिटरिंग प्रणाली (वैम्स) के अंतर्गत वर्ष 2006 में अपने 6 ग्रिडों विशेषकर 500 किलोवाट एवं 330 किलोवाट उपकेन्द्रों तथा विद्युत संयंत्र हेत् 300 फैजर मापन युनिट (पी.एम.यू.) अधिष्ठापित कराया। वर्तमान में चीन ने अपने ग्रिडों में 1000 फैजर मापन यूनिट (पी.एम.यू.) से अधिक को अधिष्ठापित कराया है और सभी 500 किलोवाट उपकेन्द्रों एवं 300 मेगावाट तथा इसके अधिक क्षमता के विद्युत संयंत्रों में फैजर मापन यूनिट (पी.एम.यू.) लगाने की योजना बनाई है। अमेरिका में 57 विद्युत कंपनियों और ग्रिड प्रचालकों को शामिल करते हुए 10 सिंक्रोफेजर परियोजनाओं पर क्रियान्वयन हो रहा है तथा लगभग 850 फैजर मापन यूनिट (पी.एम.यू.) नेटवर्क पर इसका अधिष्ठापन किया जा चुका है। ये युक्तियाँ वर्ष 2013 तक देश के लगभग सभी क्षेत्रों में कार्य करने लगेंगी। पूर्वी इंटरकनेक्ट फैजर परियोजना (ई.आई.पी.पी.), जिसे अब नार्थ अमेरिकन सिंक्रोफेजर इनिशिएटिव अथवा एन.ए.एस.पी.आई. कहा जाता है, द्वारा टेनसी वैली प्राधिकरण (टी.वी.ए.) स्थित "सुपर फैजर डाटा कनेक्ट्रैटर" प्रणाली में आंकड़ों को संग्रहित करते हुए 40 से अधिक फैजर मापन प्रणाली युनिटों को जोड़ा गया है। दक्षिणी कैलिफोर्नियाँ एडिसन अपनी प्रणाली पर कुछ स्वचालित ग्रिडों के संरक्षण हेतु अब सिंक्रोफैजर प्रौद्योगिकी का सफलतापूर्वक उपयोग कर रहा है। अमेरिका की ओखलाहोमा गैस एवं विद्युत कंपनी (ओ.जी. एंड ई.), सिंक्रोफैजर प्रौद्योगिकी का उपयोग यह निर्धारण करने के लिए करती है कि क्या कोई रूकावट उच्च गति अथवा स्टेप-डिस्टैंस (डिलेड) ट्रिपिंग द्वारा दूर होती है। इन आंकड़ों का प्रयोग रूकावट के कारणों का पता लगाने तथा उसकी जाँच हेत् किया जाता है। सिंक्रोफैजर आंकड़ो का दूसरा बड़ा महत्वपूर्ण उपयोग उपकरणों में आ रहे दोष, जिनका कि एस.सी.ए.डी.ए. प्रणाली से ज्ञात नहीं हो पाता. को निर्धारित करने में भी किया जाता है।

प्रणाली स्थिरता का मूल्यांकन, उत्पादन नियंत्रण में समस्या अथवा अन्य कारणों से लो फ्रिक्वैन्सी ओस्लिशन जैसी किसी अंत:संबद्ध प्रणाली की जटिलताओं का विशेष रूप से पता लगाने के लिए सिंक्रोफैजर आंकडों का प्रयोग प्रयोग किया जा रहा है। उपरोक्त राष्ट्रों के अतिरिक्त, दक्षिण अफ्रिका, ब्राजील, रूस, पश्चिमी विद्युत समन्वय परिषद (डब्ल्यू. ई.सी.सी.), जिसका सेवा क्षेत्र कनाड़ा से मैक्सिको तथा कुछ यूरोपीय देशों तक फैला हुआ है, अपनी प्रणाली में पी.एम.यू. लगाने की योजना बना रहे हैं।

5.3.4 भारत में मौजूदा पीएमयू परियोजना एवं इसका लाभ

भारत में पी.एम.यू. स्थापित करने की प्रक्रिया पहले ही शुरू की जा चुकी है। उत्तरी क्षेत्र में पहले चरण में 9 पी.एम.यू.-मोगा, कानपुर, ददरी, विन्ध्याचल तथा दूसरे चरण में आगरा, बस्सी, हिसार, किशेनपुर तथा करचम वांगटू में लगाए जा चुके हैं, जिनका फैजर डाटा कंसेन्ट्रेटर (पी.डी.सी.) एन.आर.एल.डी.सी. में है। प्रत्येक पी.एम.यू. पर फैजर डाटा, जी.पी.एस. टाइम स्टैपिंग सहित प्रति सेकेंड 25 सैंपल लेता है, जो 64 के.बी.पी.एस. फाइबर ऑप्टिक कम्यूनिकेशन लिंक से एन.आर.एल.डी.सी. को फैजर डाटा कंसंन्ट्रेटर (पी.डी.सी.) अंतरित करता है। इन स्थानों से प्राप्त फैजर डाटा को एक में मिलाते हुए इसका पी.डी.सी. टाइम एलाइन करते हैं। पी.डी.सी. टाइम एलाइन किए हुए डाटा विजुएलाइजेशन के लिए ऑपरेटर कन्सोल को उपलब्ध कराए जाते हैं। पी.डी.सी. डाटा एन.आर.एल.डी.सी. के डाटा हिस्टोरियन को भी उपलब्ध कराये जाते हैं। हिस्टोरियन से डाटा को ओपेन डाटाबेस कनेक्टिविटी (ओ.डी.बी.सी.) तथा भविष्य में विश्लेषण के लिए स्प्रेडशीट द्वारा बाहरी डाटाबेस के लिए उपलब्ध कराया जा सकता है। रियल टाइम डाटा को वर्तमान एस.सी.ए.डी.ए. प्रणाली पर अंतरित किए जाने के लिए पी.डी.सी. को ओ.पी.सी. (ऑब्जेक्ट लिंकिंग एंड इम्बेडिंग फॉर प्रोसेस कंट्रोल) सर्वर भी उपलब्ध कराया गया है।

उत्तर क्षेत्र की अग्रणी परियोजना चालू किए जाने से विभिन्न स्थानों से उपलब्ध फैजर डाटा, एन.आर.एल.डी.सी. तथा इसके वर्तमान एस.सी.ए.डी.ए. प्रणाली पर उपलब्ध हैं। फैजर डाटा द्वारा ग्रिड के विभिन्न केन्द्रों के बीच लोड को कुछ ही मिलीसेकेंड के अपडेशन टाइम के अंदर अधिक शुद्धता के साथ उपलब्ध कराया जाता है और इससे ग्रिड प्रचालन के लिए उपलब्ध उपकरणों की क्षमता में वृद्धि होती है। डाटा हिस्टोरियन डी.पी.सी. से एकत्रित आंकड़ों को संग्रहित करता है जो ग्रिड की किसी घटना के उपरांत विश्लेषण हेतु उपयोगी हो सकेगा। विगत में भी लो फ्रिक्वैन्सी ओस्लिशन का पता लगाने तथा सिस्टम इन्टीग्रेटेड प्रोटेक्शन स्कीम (एस.आई.पी.एस.) प्रचालन की जाँच के लिए इन आंकड़ों का प्रयोग किया गया है।

5.3.5 भारत में वैम्स आधारित स्मार्ट पारेषण ग्रिड के लिए योजना

अन्य क्षेत्रों में भी पी.एम.यू. अधिष्ठापित करने का प्रस्ताव प्रक्रियाधीन है। वैम्स प्रौद्योगिकी के पूर्ण क्रियान्वयन के लिए प्रत्येक क्षेत्र में (भारत की 12वीं आयोजना में आरंभिक चरण में करीब 1500 से 1700) पी.एम.यू. अधिष्ठापित किए जाने के साथ-साथ हाई बैंड विड्थ और न्यूनतम प्रसुप्ति (लीस्ट लेटेन्सी) सहित विश्वसनीय सूचना नेटवर्क अपेक्षित होगा। ग्रिड के विभिन्न महत्वपूर्ण स्थानों और नियंत्रण केन्द्रों पर पी.एम.यू. सहित (12वीं आयोजना में करीब 50-60) फैजर डाटा कंसेन्ट्रेटर लगाए जाने का प्रस्ताव है। समग्र राष्ट्रीय ग्रिड के एकीकृत रूप से कार्य करने के लिए रियल टाइम स्टेट मॉनिटरिंग हेतु सोपानिक क्रम में राज्य विद्युत पारेषण केन्द्रों के पास मास्टर पी.डी.सी. तथा राष्ट्रीय और क्षेत्रीय पारेषण केन्द्रों के पास सुपर पी.डी.सी. होनी चाहिए। इस अवधारणा को निम्न संरचना में प्रस्तुत किया गया है।:

भारत में बड़ी संख्या में पी.एम.यू. और पी.डी.सी. की आवश्यकता को देखते हुए यदि देश में ही स्वदेशी स्तर पर निर्माण तथा जॉंच की सुविधा उपलब्ध हो, तो यह अत्यंत लाभदायक होगा।

5.3.6 फाइबर ऑप्टिक आधारित संचार प्रणाली की आवश्यकता

ध्विन एवं आंकड़े का विश्वसनीय संचार विवेचनात्मक रूप से महत्वपूर्ण होता है। प्रभावी संचार प्रणाली की आवश्यकताओं से व्यापक क्षेत्र मापन प्रौद्योगिकी, एस.सी.ए.डी.ए. प्रणाली तथा दूरस्थ प्रचालन जैसे विशेष संरक्षण उपकरणों का प्रचलन बढ़ा है। उपयोग किया जा रहा है। संचार मंत्रालय द्वारा 2.3 से 2.5 गेगा हर्ट्स पर ऑपरेट कर रहे आधुनिक ऊर्जा प्रणाली को 'स्मार्ट ट्रांसिमशन ग्रिड' बनाने हेतु विभिन्न पॉवर सिस्टम एलिमेंन्ट्स के रियल टाइम डाटा को पाने के लिए, उपकेन्द्र, उत्पादन संयंत्र, एच.वी.डी.सी. लिंक, अंतर्राज्यीय पारेषण लाइन इत्यादि पूर्व अपेक्षाएं बन गई हैं। वर्तमान में ऊर्जा प्रणाली प्रचालन में संचार की तीन विधियों-पी.एल.सी.सी., माइक्रोवेव, एवं फाइबर ऑप्टिक का माइक्रोवेव को वापस लिया जा रहा है। पी.एल.सी.सी. को ऊर्जा प्रणाली का एक अभिन्न अंग माना जाता है और इसके लिए इसका उपयोग ऊर्जा प्रणाली को संरक्षण देने तथा सीमित दायरे में ध्विन संप्रेषित करने में किया जाता है। ये सभी आवश्यकताएं आप्टिक फाइबर कम्यूनिकेशन (ओ.एफ.सी.) द्वारा पूरी की जा सकती हैं।

5.3.7 पी.एम.यू. आधारित स्मार्ट ट्रान्सिमशन ग्रिड से संभावित लाभ

ग्रिड के महत्वपूर्ण स्थानों पर पी.एम.यू. तथा पी.डी.सी. की उपलब्धता, सशक्त फाइबर ऑप्टिक कम्यूनिकेशन नेटवर्क तथा समुचित उपकरणों के क्रियान्वयन से निम्नलिखित लाभ होंगे :-

- ग्रिड की स्थितिपरक जानकारी तथा कोणीय एवं वोल्टेज स्थिरता के संबंध में ग्रिड की गतिशीलता।
- 🕨 पारेषण मार्ग (कोरिडोर) की क्षमता में अनुकूलतम वृद्धि।
- ग्रिड पैरामीटर को बनाए रखने में विद्युत प्रवाह नियंत्रण एवं नियमन।
- किसी ऊर्जा प्रणाली में मांग के अनुकूल व्यवस्था प्रबंधन के लिए लोड शेडिंग तथा लोड नियंत्रण जैसी अन्य प्रौद्योगिकी ।
- उपचारी कार्य-योजनाओं (आर.ए.एस.) तथा प्रणाली एकीकृत संरक्षण योजनाओं (एस.आई.पी.एस.) का विकास
- प्रबल आपातकालीन स्थिति में ग्रिड की खराबी को रोकने के लिए किए जाने वाले निवारक कार्यों की पहचान करना।
- 🕨 इंटर-एरिया ओस्लिशन मॉनिटरिंग।
- एडैप्टिव आईलैंडिंग
- नेटवर्क मॉडल प्रमाणीकरण
- सी.टी./सी.वी.टी. कैलिब्रेशन आदि

अध्याय – 6 11वीं पंचवर्षीय योजना-प्रगति तथा कार्यक्रम

6.1 आमुख

- 6.1.1 10वीं पंचवर्षीय योजना के अंत में 31 मार्च, 2007 तक कुल 132 गेगावाट संस्थापित ऊर्जा क्षमता तथा व्यस्त अविध में 101 गेगावाट की बढ़ी मांग की तुलना में देश में 765/एच.वी.डी.सी./400/230/220 के.वी. पारेषण प्रणाली पर पारेषण लाइन क्षमता 198 हजार सर्किट किलोमीटर (टी.सी.के.एम.) और उपकेन्द्र क्षमता 257 जी.वी.ए. थी।
- 6.1.2 10वीं पंचवर्षीय योजना में विद्युत की कमी (13.8 प्रतिशत मुख्य समय में तथा 9.6 प्रतिशत ऊर्जा में) को ध्यान में रखते हुए और 17वें ई.पी.एस. की भविष्यवाणी के अनुसार मांग को पूरा करने के लिए 11वीं पंचवर्षीय योजना में उत्पादन क्षमता में 78.7 गेगावाट अतिरिक्त वृद्धि का आंकलन किया गया था। तथापि सीमिति संसाधानों एवं 17वीं ई.पी.एस. अनुमानित लक्ष्यों की तुलना में मांग वृद्धि में अपेक्षाकृत कम होने के कारण क्षमता संवर्धन कार्यक्रमों की समीक्षा की गई तथा उसी के अनुसार 11वीं पंचवर्षीय योजना में 8.2 गेगावाट हाइड्रो, 50.8 गेगावाट थर्मल तथा 3.4 गेगावाट न्यूक्लियर सिहत 62.4 गेगावाट उत्पादन वृद्धि का लक्ष्य निर्धारित किया गया। 62.4 गेगावाट के इस कार्यक्रम के अनुरूप, उत्पादन परियोजनाओं की सूची के आधार पर 132 के.वी. तथा इससे ऊपर की पारेषण आवश्यकताओं के साथ-साथ विद्युत निष्कर्षण प्रणाली और नेटवर्क संवर्धन प्रणाली को चिन्हित किया गया था। 11वीं पंच वर्षीय योजना में उत्पादन विकास के क्षेत्र में वास्तविक गित तथा क्षेत्रवार वास्तविक लोड वृद्धि के अनुरूप केंद्रीय पारेषण तथा राज्य पारेषण कंपनियों द्वारा उनके पारेषण विकास कार्यक्रम की व्यापक पंचवर्षीय योजना बनाने तथा अंतिम स्वरूप देने में यह पारेषण कार्यक्रम आधार बन गया।
- 6.1.3 62.4 गेगावाट योजना के अनुरूप 11वीं पंचवर्षीय योजना के दौरान वास्तविक उत्पादन क्षमता वृद्धि में परिवर्तन होता रहा। तदनुरूप, 11वीं पंचवर्षीय योजना के वास्तविक पारेषण कार्यक्रम में भी परिवर्तन हुआ। संबद्ध पारेषण प्रणाली में परिवर्तनों के अतिरिक्त स्थगित/चूक/परिवर्तित उत्पादन के अनुरूप भी पारेषण आवश्यकताओं में समीक्षा किए जाने की आवश्यकता हुई। तदनुसार, उत्पादन परियोजनाओं तथा वास्तविक आवश्यकता की तुलना में जारी पारेषण कार्यक्रमों के निष्पादन का पुनरीक्षण किया गया। मार्गाधिकार (राइट ऑफ वे) के मुद्दों, वन विभाग से अनुमित न मिलने/विलंब होने, उपकेन्द्रों हेतु स्थान की उपलब्धता न होने के कारण कुछ पारेषण कार्यक्रमों में विलंब/अवरोध हुआ।

6.2 11वीं पंचवर्षीय योजना पारेषण कार्यक्रम का सारांश :

आठवीं, नवीं, तथा 10वीं पंचवर्षीय योजना अविध के अंत में देश में अर्जित पारेषण प्रणाली की उपलब्धियां निम्नलिखित हैं:-

	यूनिट	8वीं पंच	9वीं पंचवर्षीय	10वीं पंचवर्षीय
		वर्षीय	योजना के अंत	योजना के अंत (मार्च,
		योजना के	तक (मार्च,	2007)
		अंत तक	2002)	
		(मार्च,		
		1997)		
<u>पारेषण</u> लाइनें		8वीं पंच-	9वीं पंचवर्षीय	10वीं पंचवर्षीय
		वर्षीय	योजना	योजना
		योजना		
एच.वी.डी.सी. +/- 500 के.वी.	सर्किट	1634	3138	5872
	किमी.			

705 2-4	सर्किट किमी.		074	0404
765 के.वी.		0	971	2184
400 के.वी.	सर्किट किमी.	36142	49378	75722
230/220 के.वी. के.वी.	सर्किट किमी.	79600	96993	114629
एच.वी.डी.सी. 200 के.वी.	सर्किट किमी.	0	162	162
मोनोपोल				
सकल पारेषण लाइन	सर्किट किमी.	117376	150642	198569
<u>ए.सी.</u> उपकेन्द्र		8वीं पंच	9वीं पंचवर्षीय	10वीं पंचवर्षीय
		वर्षीय	योजना	योजना
		योजना		
765 के.वी.	एमवीए	0	0	0
400 के.वी.	एमवीए	40865	60380	92942
230/220 के.वी.	एमवीए	84177	116363	156497
कुल ए.सी. उपकेन्द्र	एमवीए	125042	176743	249439
एच.वी.डी.सी. टर्मिनल	मेगावाट	8वीं पंच	9वीं पंचवर्षीय	10वीं पंचवर्षीय
		वर्षीय	योजना	योजना
		योजना		
एच.वी.डी.सी. बाइपोल	मेगावाट	1500	3200	5200
+मानोपोल				
एच.वी.डी.सी. बी.टी.बी.	मेगावाट	1500	2000	3000
एच.वी.डी.सी. टर्मिनल की	मेगावाट	3000	5200	8200
सकल क्षमता				

11वीं पंच वर्षीय योजना में प्रगति का सारांश :

पारेषण प्रणाली प्रकार/वोल्टेज श्रेणी	यूनिट	10वीं पंचवर्षीय योजना के अंत तक (मार्च, 2007)	11वीं पंच वर्षीय योजना में वृद्धि #	11वीं पंचवर्षीय योजना के अंत तक (मार्च, 2012)
<u>पारेषण</u> लाइनें				
(क) एच.वी.डी.सी. +/- 500 के.वी. बाइपोल	सर्किट किमी.	5872	3560	9432
(ख) 765 के.वी.	सर्किट किमी.	2184	3546	5250
(ग) 400 के.वी.	सर्किट किमी.	75722	37645	106819
(घ) 230/220 के.वी.	सर्किट किमी.	114629	25175	135980
(ड़) एच.वी.डी.सी. 200 के.वी. मोनोपोल	सर्किट किमी.	162	-162*	0
सकल पारेषण लाइनें	सर्किट किमी.	198569	69926	257481
उपकेन्द्र				
(क) 765 के.वी.	एमवीए	0	25000	25000

(ख) 400 के.वी.	एमवीए	92942	58085	151027
(ग) 230/220 के.वी.	एमवीए	156497	67277	223774
कुल उपकेन्द्र	एमवीए	249439	150362	399801
एच.वी.डी.सी.				
(क) पाइपोल लिंक क्षमता	मेगावाट	5000	1750	6750
(ख) बैक-टू-बैक क्षमता	मेगावाट	3000	0	3000
(c) एच.वी.डी.सी. 220	मेगावाट	200	-200*	0
के.वी. मोनो-पोल				
(क), (ख) एवं (ग) का योग	मेगावाट	8200	1750	9750

- * बरसुर-लोवर सिलेरू मोनोपोल प्रचालन में नहीं है।
- # 10वीं पंचवर्षीय योजना तक खींची गई कुल विद्युत लाइनों के आंकड़ों को सर्किट किलोमीटर में दर्शाया गया है। 11वीं पंचवर्षीय योजना अविध से नीतियों में परिवर्तन हुआ है। इसमें केवल वे लाइनें हैं, जो चालू हो गई हैं अथवा चालू किए जाने हेतु तैयार हैं। तदनुरूप, 11वीं पंच वर्षीय योजना में अतिरिक्त 10852 सर्किट किलोमीटर (765 के.वी.-480 सर्किट किलोमीटर, 400 के.वी.-6548 सर्किट किलोमीटर तथा 220 के.वी.-3824 सर्किट किलोमीटर) का समायोजन किया गया है।

6.3 11वीं पंचवर्षीय योजना में एच.वी.डी.सी. प्रणाली का विकास :

नवीं पंचवर्षीय योजना अवधि में भारत में एच.वी.डी.सी. प्रणाली विकास का सारांश निम्नलिखित सारिणी में प्रस्तुत है :

एच.वी.डी.सी. पारेषण प्रण	ाली			10वीं	11वीं	11वीं पंच
				पंच	पंच	वर्षीय
				वर्षीय	वर्षीय	योजना के
				योजना	योजना	अंत तक
				के अंत	में	(मार्च,
				तक	संवर्धन	2012)
एच.वी.डी.सी. बाइपोल लाइन						
चन्द्रपुर – पडघे	± 500	एम.एस.ई.	सर्किट	1504		1504
	के.वी.	बी.	किलोमीटर			
रिहंद-ददरी	± 500	पीजीसीआई	सर्किट	1634		1634
	के.वी.	एल	किलोमीटर			
तेलचर-कोलार	± 500	पीजीसीआई	सर्किट	2734		2734
	के.वी.	एल	किलोमीटर			
बलिया-भिवड़ी (2500 मेगावाट)	± 500	पीजीसीआई	सर्किट		1580	1580
	के.वी.	एल	किलोमीटर			
मुन्द्रा - मोहिन्दरगढ़	± 500	अदानी	सर्किट		1980	1980
	के.वी.		किलोमीटर			
योग	_			5872	3560	9432
एच.वी.डी.सी. बाइपोल पारेषण क्ष	मता					
चन्द्रपुर – पडघे	बाइपोल	एम.एस.ई.	मेगावाट	1500		1500
Š		बी.				

		2-2-2-				
रिहन्द-ददरी	बाइपोल	पीजीसीआई एल	मेगावाट	1500		1500
तलचर – कोलार	बाइपोल	पीजीसीआई	मेगावाट	2000	500	2500
तलचर – कालार 	भार्गाण	एल	गंगाया	2000	500	2500
 बलिया-भिवडी	बाइपोल	पीजीसीआई	मेगावाट		4050	4050
जालवानामवडा 	भारभाषा		मगापाट		1250	1250
मुन्द्रा - मोहिन्दरगढ़	बाइपोल	एल अदानी	मेगावाट			
योग	भार्गाल	ગવાના	मेगावाट	5000	4750	0750
	0		मगावाट	5000	1750	6750
एच.वी.डी.सी. बैक-टू-बैक पारेषण		2				
विन्ध्याचल	बीटी	पीजीसीआई	मेगावाट	500		500
	बी.	एल				
चन्द्रपुर	बीटी	पीजीसीआई	मेगावाट	1000		1000
	बी.	एल				
गज्आका	बीटी	पीजीसीआई	मेगावाट	1000		1000
9	बी.	एल		1000		1000
सासाराम	बीटी	पीजीसीआई	मेगावाट	500		500
	बी.	एल		300		300
योग		•	मेगावाट	3000	0	3000
एच.वी.डी.सी. मोनोपाल लाइन						
बरसुर –लोवर सिलेरू	200	सी.एस.ई.	सर्किट	162		162*
	के.व <u>ी</u> .	बी./ए.पी.टी.	किलोमीटर			
	77.91.	आर.ए.एन.				
		एस.सी.ओ.				
योग		•	सर्किट	162	-162*	0
			किलोमीटर			
एच.वी.डी.सी. मोनोपाल पारेषण ध	। ध्रमता		1नलामादर			
	मोनोपाल मोनोपाल	सी.एस.ई.बी./	मेगावाट	200		200*
बरसुर –लोवर सिलेरू	171171171	ए.पी.टी.आर.	नगानाऽ	200		200*
		ए.पा.टा.आर. ए.एन.एस.सी.				
		્ર. ૯૧. ૯સ.સા. એ.				
योग		∀III.		200	-200*	0
सकल योग			सर्किट	6034		9432
MIN TIT			किलोमीटर किलोमीटर	0034	3560	343 Z
			मेगावाट	8200	1750	9750

^{*} बरसुर-लोवर सिलेरू मोनोपोल प्रचालन में नहीं है।

6.4 11वीं पंचवर्षीय योजना के दौरान 765 के.वी. प्रणाली का विकास :

10वीं पंचवर्षीय योजना तक देश में सभी 765 के.वी. प्रणाली, 440 के.वी. पर प्रचालित थे। सितम्बर, 2007 में सबसे पहले सिपत से सेउनी प्रणाली को 765 के.वी. पर प्रचालित किया गया। देश में पारेषण के क्षेत्र में यह मील का पत्थर साबित हुआ। भारत में 11वीं पंचवर्षीय योजना के दौरान 765 के.वी. पारेषण प्रणाली के विकास का सारांश निम्नलिखित है:

765 के.वी. पारेषण प्रणाली	10वीं पंच वर्षीय योजना के में	11वीं पंच वर्षीय योजना के दौरान वृद्धि	11वीं पंच वर्षीय योजना के अंत तक (मार्च, 2012)			
765 के.वी. पारेषण लाइनें						
अनपरा-उन्नाव	एस./सी.	यूपीपीसीएल	सर्किट किमी.	409		409
किशेनपुर-मोगा एल1 (डब्ल्यू.)	एस./सी.	पीजीसीआईएल	सर्किट किमी.	275		275
किशेनपुर-मोगा एल2 (ई.)	एस./सी.	पीजीसीआईएल	सर्किट किमी.	287		287
टेहरी-मेरठ लाइन-1	एस./सी.	पीजीसीआईएल	सर्किट किमी.	186		186
टेहरी-मेरठ लाइन-2	एस./सी.	पीजीसीआईएल	सर्किट किमी.	184		184
आगरा-ग्वालियर लाइन-1	एस./सी.	पीजीसीआईएल	सर्किट किमी.	128		128
आगरा-बीना लाइन-1	एस./सी.	जी.सी.आई.एल.	सर्किट किमी.	235		235
गया-बलिया	एस./सी.	पीजीसीआईएल	सर्किट किमी.		228	228
बलिया-लखनऊ	एस./सी.	पीजीसीआईएल	सर्किट किमी.		320	320
सिपत-सेवनी लाइन-1	एस./सी.	पीजीसीआईएल	सर्किट किमी.		351	351
सिपत-सेवनी लाइन-2	एस./सी.	पीजीसीआईएल	सर्किट किमी.		354	354
सेवनी-बीना (400 के.वी. पर प्रचालन आरंभ किया जाना है)	एस./सी.	पीजीसीआईएल	सर्किट किमी.		293	293
सेवनी-वर्धा लाइन-1 (400 के.वी. पर प्रचालन आरंभ किया जाना है)	एस./सी.	पीजीसीआईएल	सर्किट किमी.		269	269
सेवनी-वर्धा लाइन-2 (400 के.वी. पर प्रचालन आरंभ किया जाना है)	एस./सी.	पीजीसीआईएल	सर्किट किमी.		261	261
ग्वालियर–बीना लाइन-2	एस./सी.	पीजीसीआईएल	सर्किट किमी.		233	233
आगरा-ग्वालियर लाइन-2 (400 के.वी. पर प्रचालन आरंभ किया जाना है)	एस./सी.	पीजीसीआईएल	सर्किट किमी.		128	128

टेहरी पूलिंग प्वाइंट पर टेहरी	एस./सी.	पीजीसीआईएल	सर्किट		21	21
एल.आई.एल.ओमेरठ डी./सी.			किमी.			
लाइन (400 के.वी. पर आवेशित किया						
जाना है)						
*	/ 	-0-0-0	सर्किट			
टेहरी पूलिंग प्वाइंट पर टेहरी एल.आई.एल.ओ. सिपत-सेवनी	एस./सी.	पीजीसीआईएल	साकट किमी.		16	16
(सिपत के पास डब्ल्यू. आर			19741.			
पूलिंग स्टेशन पर दूसरी सीकेटी)						
सासाराम-फतेहपुर (लाइन-1)	एस./सी.	पीजीसीआईएल	सर्किट किमी.		337	337
सतना-बीना लाइन -1	एस./सी.	पीजीसीआईएल	सर्किट		274	274
			किमी.			
बीना-इन्दौर	एस./सी.	पीजीसीआईएल	सर्किट किमी.		311	311
गया-सासाराम	एस./सी.	पीजीसीआईएल	सर्किट		148	148
			किमी.			
अनपरा बी –उन्नाव प्रतिस्थापना	एस./सी.	यूपीपीसीएल	सर्किट		1	1
अनपरा-बी से अनपरा-सी प्वाइंट	_		किमी.			
अनपरा बी –उन्नाव प्रतिस्थापना	एस./सी.	यूपीपीसीएल	सर्किट		1	1
उन्नाव में टर्मिनल प्वाइंट			किमी.			
योग			सर्किट किमी.	1704	3546	5250
765 के.वी. उपकेन्द्र						
सेवनी उपकेन्द्र		पीजीसीआईएल	एमवीए		1500	1500
सेवनी नया		पीजीसीआईएल	एमवीए		1500	1500
सेवनी विस्तार		पीजीसीआईएल	एमवीए		1500	1500
फतेहपुर		पीजीसीआईएल	एमवीए		3000	3000
गया		पीजीसीआईएल	एमवीए		3000	3000
सिपत के पास प.क्षे. पूलिंग		पीजीसीआईएल	एमवीए		3000	3000
बलिया		पीजीसीआईएल	एमवीए		3000	3000
लखनऊ		पीजीसीआईएल	एमवीए		3000	3000
वर्धा		पीजीसीआईएल	एमवीए		4500	3000
उन्नाव		यूपीपीटीसीएल	एमवीए		1000	1000
योग			एमवीए	0	25000	25000

6.5 11वीं पंचवर्षीय योजना के दौरान प्रगति एवं कार्यक्रम :

400 के.वी. एवं 220 के.वी. पारेषण प्रणाली के संबंध में 11वीं पंचवर्षीय योजना के प्रथम चार वर्षों अर्थात 2007-08, 2008-09, 2009-10, 2010-11 एवं 2011-12 की वास्तविक उपलब्धि क्रमशः अनुलग्नक-6.1, 6.2, 6.3, 6.4 तथा अनुलग्नक 6.5 में विस्तृत रूप से दी गई है। इनमें अतर्राज्यीय पारेषण प्रणाली तथा अंत:राज्यीय पारेषण प्रणाली दोनों शामिल हैं। 11वीं पंचवर्षीय योजना की उपलब्धि निम्नलिखित है:-

6.5.1 वर्ष 2007-08 के दौरान पारेषण प्रणाली में संवर्धन:

वर्ष 2007-08 में 12,440 सर्किट किलोमीटर पारेषण लाइन (220 के.वी. एवं इससे अधिक) तथा 24,423 एमवीए ट्रांसफारमेशन क्षमता को चालू किया गया। उल्लेखनीय है कि आरएपीपी विस्तार परियोजना (2 x 220 मेगावाट) के चालू किए जाने के पहले ही विशेष प्रयासों से आरएपीपी-कंक्रोली डी/सी लाइन पूरी कर ली गई, परंतु ईंधन की उपलब्धता न होने से इस परियोजना से उत्पादन नहीं लिया जा सका। मार्च, 2008 में सिपत परियोजना के 500 मेगावाट यूनिट #5 के आरंभ होने से पहले सितम्बर, 2007 में 765 के.वी. एस/सी सिपत-सेवनी लाइन चालू करने की एक अन्य उपलब्धि हासिल हुई। 765, 400 एवं 220 के.वी. की पारेषण लाइनें तथा उपकेन्द्र, जो वर्ष 2007-08 में पूरे किए गए, उनके विवरण अनुलग्नक 6.1 में दिए गए हैं:-

6.5.2 वर्ष 2008-09 के दौरान पारेषण प्रणाली में संवर्धन:

वर्ष 2008-09 में 9913 सर्किट किलोमीटर पारेषण लाइन (220 के.वी. एवं इससे अधिक) तथा 16,680 एमवीए ट्रांसफारमेशन क्षमता को चालू किया गया। सिपत एस.टी.पी.पी.-। उत्पादन केन्द्र से विद्युत निष्कर्षण के लिए 765 के.वी. सिपत-सेवनी लाइन ।।, एस/सी, 354 सर्किट किलोमीटर को अप्रैल, 2008 में चालू किया गया। कहलगाँव एस.टी.पी.पी.-।। से विद्युत निष्कर्षण हेतु 765 के.वी. आगरा-ग्वालियर द्वितीय एस/सी, (400 के.वी. पर प्रचालित) 128 सर्किट किलोमीटर को मार्च, 2009 में चालू किया गया। सिपत एस.टी.पी.पी.-। पारेषण लाइन से विद्युत निष्कर्षण के लिए 765 के.वी. सिवनी-वर्धा लाइन, एस/सी, 269 सर्किट किलोमीटर को मार्च, 2009 में चालू किया गया तथा वर्ष 2008-09 के दौरान 765, 400 एवं 220 के.वी. की पारेषण लइनों के साथ-साथ उपकेन्द्रों को पूरा किया गया, जिसे अनुलग्नक 6.2 में दिया गया है।

6.5.3 वर्ष 2009-10 के दौरान पारेषण प्रणाली में संवर्धन :

वर्ष 2009-10 में 11,790 सर्किट किलोमीटर पारेषण लाइन (220 के.वी. एवं इससे अधिक) तथा 21,315 एमवीए ट्रांसफारमेशन क्षमता को चालू किया गया। पश्चिम क्षेत्र पारेषण प्रणाली को सशक्त किए जाने हेतु 765 के.वी. (400 के.वी. पर प्रचालित) बीना से ग्वालियर (233 सर्किट किलोमीटर) को फरवरी, 2010 में चालू किया गया। 765 के.वी. सेवनी से बीना एस/सी लाइन (400 के.वी. पर प्रचालित) को भी मार्च, 2010 में चालू किया गया, जिसे विद्युत उत्पादन केन्द्र से जोड़ा गया है। इसे बाड उत्पादन केन्द्र के चालू होने से पहले ही पूरा कर लिया गया। वर्ष 2009-10 के दौरान 765, 400 एवं 220 के.वी. की पारेषण लाइनों के साथ-साथ उपकेन्द्रों को पूरा किया गया, जिसे अनुलग्नक 6.3 में दिया गया है।

6.5.4 वर्ष 2010-11 के दौरान पारेषण प्रणाली में संवर्धन :

वर्ष 2010-11 में लगभग 15,367 सर्किट किलोमीटर पारेषण लाइन (220 के.वी. एवं इससे अधिक) तथा 31,657 एमवीए ट्रांसफारमेशन क्षमता को पूरा किए जाने का लक्ष्य प्राप्त किया गया। वर्ष 2010-11 के दौरान 765, 400 एवं 220 के.वी. की पारेषण लाइनों के साथ-साथ उपकेन्द्रों को पूरा किया गया, जिसे अनुलग्नक 6.4 में दिया गया है।

6.5.5 वर्ष 2011-12 के दौरान पारेषण प्रणाली में संवर्धन :

वर्ष 2011-12 में मार्च, 2012 तक लगभग 20,434 सर्किट किलोमीटर पारेषण लाइन (220 के.वी. एवं इससे अधिक) तथा 54,287 एमवीए ट्रांसफारमेशन क्षमता को पूरा किए जाने का लक्ष्य प्राप्त किया गया। 11वीं पंच वर्षीय योजना के दौरान वर्ष 2011-12 में 765, 400 एवं 220 के.वी. की पारेषण लाइनों के साथ-साथ उपकेन्द्रों को पूरा किया गया, जिसे अनुलग्नक 6.5 में दिया गया है।

- 6.6 11वीं पंचवर्षीय योजना में अंतर-क्षेत्रीय पारेषण क्षमता का विकास :
- 6.6.1 11वीं पंचवर्षीय योजना के अंत तक प्रगति और उपलब्धियां :

10वीं पंचवर्षीय योजना के अंत तक 132 के.वी. तथा इससे अधिक के लिए अंतर-क्षेत्रीय पारेषण क्षमता 14050 मेगावाट थी। 11वीं पंच वर्षीय योजना के दौरान (अप्रैल, 2007 से मार्च, 2012 तक) 13900 मेगावाट अंतर-क्षेत्रीय पारेषण क्षमता को जोड़ा गया है, जिससे दिनांक 31.03.2012 तक (132 के.वी. एवं इससे अधिक वोल्टेज लेवल पर) कुल अंतर-क्षेत्रीय पारेषण क्षमता 27750 मेगावाट हो गई। (इसमें शामिल है- (i) 2100 मेगावाट गया-बलिया 765 के.वी. एस/सी लाइन, जिसे 400 के.वी. पर आपातकालिक व्यवस्था के रूप में चालू किया गया है, तथा (ii) 2100 मेगावाट सासाराम-फतेहपुर 765 के.वी. एस/सी लाइन, जिसे गया-फतेहपुर लाइन के रूप में 765 के.वी. लेवल पर चालू किया गया। इसमें 200 मेगावाट बरसुर-लोवर सिलरू एच.वी.डी.सी. मोनोपोल को शामिल नहीं किया गया है, जो कि अभी प्रचालन में नहीं है।)

11वीं पंचवर्षीय योजना के अंत तक अंतर-क्षेत्रीय क्षमता का विवरण निम्नलिखित है:

(पारेषण क्षमता के.वी. में)

11वीं पंच वर्षीय योजना के अंत तक अंतर-क्षेत्रीय क्षमता का विवरण		10वीं पंच वर्षीय	11वीं पंच वर्षीय	11वीं पंच वर्षीय
का विवरण		योजना के	योजना में	योजना के
		अंत तक	संवर्धन	अंत तक
पूर्वी क्षेत्र – दक्षिणी क्षेत्र (ई.आरएस.आर.):				
गजुवाका एच.वी.डी.सी. बैक-टू-बैक		1000		1000
बालीमेला-अपर सिलेरू 220 के.वी. एस/सी.		130		130
तलचर-कोलार एच.वी.डी.सी. बाइपोल		2000		2000
तलचर-कोलार एच.वी.डी.सी. बाइपोल का अपग्रेडेशन			500	500
पूर्वी क्षेत्र – दक्षिणी क्षेत्र (ई.आरएस.आर.) का योग :		3130	500	3630
पूर्वी क्षेत्र – उत्तरी क्षेत्र (ई.आरएन.आर.) :				
मुजफ्फरपुर-गोरखपुर 400 के.वी. डी/सी		2000		2000
टी.सी.एस.सी. सहित (क्वाड मूज)				
देहरी-साहूपुरी 220 के.वी. एस./सी.		130		130
पटना-बलिया 400 के.वी. डी/सी. क्वाड		800	800	1600
बिहारशरीफ-बलिया 400 के.वी. डी/सी. क्वाड			1600	1600
बाड-बलिया -400 के.वी. डी/सी. क्वाड	#		1600	1600
सासाराम-फतेहपुर 765 के.वी. एस/सी लाइन-1	##		2100	2100
गया-बलिया 765 के.वी. एस/सी	*		2100	2100
<u>सासाराम :</u>		500	500	1000
(i) एच.वी.डी.सी. बैक टू बैक				
(ii) सासाराम-इलाहाबाद/वाराणसी 400 के.वी. डी/सी को				
स्थापित करने हेतु एच.वी.डी.सी. बैक टू बैक का बाईपासिंग				
पूर्वी क्षेत्र - दक्षिणी क्षेत्र (ई.आरएन.आर.) का योग :		3430	8700	12130
पूर्वी क्षेत्र – पश्चिमी क्षेत्र (ई.आरडब्ल्यू.आर.):				
राउरकेला-रायपुर 400के.वी. डी/सी		1000		1000
राउरकेला-रायपुर 400के.वी. डी/सी पर टी.सी.एस.सी.		400		400
बुधिपारा-कोरबा 220 के.वी. डी/सी+एस/सी		390		390
रांची-सिपत 300 के.वी. डी/सी (40% एस/सी)			1200	1200

रांची-राउरकेला-रायपुर 400के.वी. डी/सी फिक्स्ड सिरिज			1400	1400
कैपासिटर सहित, टी.सी.एस.सी. की समानांतर लाइन				
रांची –पश्चिम क्षेत्र (सिपत) 765 के.वी. एस/सी पूलिंग	\$\$			-
प्वाइंट एस/सी				
पूर्वी क्षेत्र – पश्चिमी क्षेत्र (ई.आरडब्ल्यू.आर.) का योग :		1790	2600	4390
पूर्वी क्षेत्र – पूर्वोत्तर क्षेत्र (ई.आरएन.ई.आर.):				
बीरपाड़ा-सलाकती 220 के.वी. डी/सी		260		260
मालदा-बोंगईगांव 400 के.वी. डी/सी		1000		1000
बोंगईगांव-सिलिगुड़ी 400 के.वी. डी/सी क्वाड **	\$\$			-
पूर्वी क्षेत्र – पूर्वोत्तर क्षेत्र (ई.आरएन.ई.आर.) का योग :		1260		1260
उत्तर क्षेत्र – पश्चिम क्षेत्र (ई.आरडब्ल्यू.आर):				
विन्ध्याचल एच.वी.डी.सी. बैक टू बैक		500		500
औरैया-मालनपुर 220 के.वी. डी/सी		260		260
कोटा-उज्जैन 220 के.वी. डी/सी		260		260
आगरा-ग्वालियर 765 के.वी. एस/सी लाइन-1 400		1100		1100
किलोवट (प्रचालन)				
आगरा-ग्वालियर 765 के.वी. एस/सी लाइन-2 400			1100	1100
किलोवट (प्रचालन)				
कंक्रोली-जेर्दा 400 के.वी. डी/सी			1000	1000
उत्तर क्षेत्र – पश्चिम क्षेत्र (ई.आरडब्ल्यू.आर.) का योग :		2120	2100	4220
पश्चिमी क्षेत्र-दक्षिणी क्षेत्र (डब्ल्यू.आरएस.आर.) :				
चंद्रपुर एच.वी.डी.सी. बैक टू बैक		1000		1000
बरसुर-लोवर सिलेरू 200 के.वी. एच.वी.डी.सी. मोनोपोल	@	200	(-200)	0
कोल्हापुर-बेलगाम 220 के.वी. डी/सी		260		260
पोन्डा-नागाझरी 220 के.वी. डी/सी		260		260
पश्चिमी क्षेत्र-दक्षिणी क्षेत्र (डब्ल्यू.आरएस.आर.) का योग :		1720		1520
भारत में (200 के.वी. एवं इससे अधिक) कुल मेगावाट		13450	13900	27150
132के.वी./110 के.वी. अंतर-क्षेत्रीय लिंक 4xडी/सी +	\$	600	0	600
4Xएस/सी = 12 सीकेटीएस (ckts)				
भारत में (110/132 के.वी. एवं इससे अधिक) कुल मेगावाट		14050	13900	27750

नोट:

- @ 200 मेगावाट एच.वी.डी.सी. मोनोपोल वर्तमान में प्रचालन में नहीं है।
- \$ 132/110 के.वी. लाइन समय-समय पर रेडियल मोड में प्रचालित की जाती है।
- *- गया-बिलया 765 के.वी. एस/सी लाइन को 400 के.वी. पर आपातकालीन व्यवस्था के रूप में चालू किया गया है।
- ** निजी क्षेत्र के अधीन है।
- # 1600 मेगावाट, बाड-बलिया लाइन के 400 के.वी. डी/सी को पूरा किया जा चुका है।
- ## -सासाराम-फतेहपुर लाइन को 765 के.वी. पर गया-फतेहपुर लाइन के रूप में चालू किया गया है।
- \$\$ 12वीं पंच वर्षीय योजना के प्रारंभिक अवधि हेतु बढ़ाई गई।

6.6.2 11वीं पंच वर्षीय योजना में अंतर-क्षेत्रीय क्षमता की निर्धारित योजना की तुलना में उपलब्धि :

11वीं पंच वर्षीय योजना के अंत तक मध्याविध मूल्यांकन (एम.टी.ए.) के अनुरूप अंतर-क्षेत्रीय लिंक की पारेषण क्षमता की निर्धारित योजना 32650 मेगावाट थी। कोल्हापुर स्थित 1000 मेगावाट टर्मिनल के बैक-टू-बैक एच.वी.डी.सी. सिहत नरेन्द्र-कोल्हापुर 400 के.वी. डी/सी लाइन की समीक्षा की गई और इसे नरेन्द्र (कर्नाटक दक्षिणी क्षेत्र) तथा कोल्हापुर (महाराष्ट्र-पश्चिमी क्षेत्र) के बीच 765 के.वी. लिंक के रूप में उपयोग किए जाने की योजना बनाई गई है। यह डी/सी लाइन होगी, जो शुरूआत में 400 के.वी. क्षमता से प्रचालित की जाएगी। इस लाइन को अब 12वीं पंच वर्षीय योजना में पूर्ण किए जाने की योजना है। अत: 31650 मेगावाट क्षमता में से 11वीं पंच वर्षीय योजना में 27950 मेगावाट चालू की गई। गया-बिलया 765 के.वी. एस/सी लाइन को 400 के.वी. पर आपातकालीन व्यवस्था के रूप में तथा सासाराम-फतेहपुर लाइन को 765 के.वी. पर गया-फतेहपुर लाइन के रूप में चालू किया गया। शेष 3700 मेगावाट क्षमता लिंक की स्थिति निम्नलिखित सारिणी में दी जा रही है:

क्रम	अंतर-क्षेत्रीय	अंतर-	क्रियान्वयन करने	योजना का नाम	पूर्ण किए
सं.	लिंक	क्षेत्रीय	वाली एजेन्सी		जाने की
		मेगावाट			संभावित
		क्षमता			तिथि
1.	रांची-	2100	पीजीसीआईएल	765 के.वी. पूलिंग स्टेशन की साझा योजना	अगस्त,
	पश्चिमी क्षेत्र			तथा उत्तरी क्षेत्र हेतु नेटवर्क (सासन	2012
	पूलिंग			यू.एम.पी.पी.पी.+एन.के.पी.+मैथन/कोडर्मा/	
	स्टेशन 765 के.वी.			मेजिया/बोकारो/रघुनाथपुर/दुर्गापुर+पूर्वी	
	क.वा. एस/सी			क्षेत्र से उत्तरी क्षेत्र और पूर्वोत्तर	
	्र _{ताता} लाइन			क्षेत्र/दक्षिणी क्षेत्र/पश्चिमी क्षेत्र वाया पूर्वी	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			क्षेत्र से आयात हेतु साझा) के एक अंग के रूप	
				में एवं पश्चिमी क्षेत्र हेतु सामान्य नेटवर्क	
				योजना(एन.के.पी.+मैथन/कोडर्मा/मेजिया/	
				बोकारो+रघुनाथपुर/दुर्गापुर+ पूर्वी क्षेत्र से	
				उत्तरी क्षेत्र को पूर्वोत्तर क्षेत्र/दक्षिणी	
				क्षेत्र/पश्चिमी क्षेत्र वाया पूर्वी क्षेत्र से आयात	
				हेतु साझा)	

2.	बोंगईगॉंव- सिलिगुड़ी 400 के.वी. डी/सी क्वाड लाइन	1600	मेसर्स स्टरलाइट उत्तर पूर्व इंटरकनेक्शन कंपनी लिमिटेड	उत्तरी क्षेत्र द्वारा पूर्वोत्तर/पूर्वी क्षेत्र के सरप्लस आयात को सुनिश्चित करने के लिए पारेषण योजना	मार्च, 2013 (एल.ओ.आ ई दिनांक 07.01.20
	योग	3700			10 को जारी किया गया।)

6.7 11वीं पंच वर्षीय योजना के क्रियान्वयन में चुनौतियाँ

6.7.1 चुनौतियाँ:

पारेषण परियोजनाएं, आगामी उत्पादन परियोजनाओं तथा संबद्ध निष्कर्षण लाइनों को चालू किए जाने में किसी प्रकार के विलंब/व्यतिरेक, जिससे ऊर्जा बाधित हो सकती है, को ध्यान में रखते हुए बनाई जाती हैं। कुछ पारेषण कार्यों को पूरा करने में कार्यान्वयन एजेन्सियों के सामने चुनौतियाँ आती हैं। इनमें से मुख्य समस्याएं हैं – जंगलों में से मार्ग बनाना, मार्गाधिकार (राइट ऑफ वे) की समस्या तथा उपकेन्द्रों के लिए जगह की उपलब्धता। 11वीं पंच वर्षीय योजना में जिन पारेषण लाइन परियोजनाओं (220 के.वी. एवं इससे अधिक) पर कार्य चल रहा था, उन्हें पूरा करने में कार्यान्वयन एजेन्सियों द्वारा जंगलों से मार्ग बनाने में जिन बड़ी समस्याओं का सामना करना पड़ा, उनके विवरण अनुलग्नक – 6.6 में दिए गए हैं।

6.7.2 जंगल से मार्ग बनाना :

जंगलों के एक छोर से दूसरे छोर तक विद्युत लाइन बिछाने में जंगल की कटाई करना अनिवार्य होता है। यद्यपि विद्युत मार्ग-निर्धारण के समय जंगलों, राष्ट्रीय उद्यानों, वन्यजीव अभ्याहरणों इत्यादि से बचने पर जोर दिया जाता है, फिर भी इनसे पूरी तरह से बच पाना संभव नहीं होता है। जंगलों की कटाई-छटाई हेतु लंबी प्रक्रिया तथा कई स्तरों के जुड़े होने के कारण इसमें बहुत अधिक समय लग जाता है। परियोजना प्राधिकारी को ग्राम सभा से अनुमित लेने में समस्याओं का सामना करना पड़ता है क्योंकि वन अधिनियम, 2006 के अंतर्गत ऐसा किया जाना अनिवार्य कर दिया गया है। इतना ही नहीं पर्यावरण एवं वन मंत्रालय से अनुमित लेने में प्रस्ताव अग्रेषित करने हेतु राज्य सरकारें काफी समय ले लेती हैं।

6.7.3 मार्गाधिकार (राइट ऑफ वे):

पारेषण वोल्टेज अधिक होने के कारण टावर लगाने तथा मार्गाधिकार (राइट ऑफ वे) के लिए जमीन की आवश्यकता काफी हद तक बढ़ गई है। यद्यपि मार्गाधिकार (राइट ऑफ वे) की आवश्यकताओं को अनुकूलतम बनाने में उपलब्ध आधुनिकतम प्रौद्योगिकी समाधान को अपनाने के बावजूद इसके परिणामों में विलंब होने के कारण पारेषण परियोजनाओं के क्रियान्वयन में मुश्किलें आती हैं। मार्गाधिकार (राइट ऑफ वे) हेतु मूल्यांकन एवं क्षतिपूर्ति के निर्धारण में भी एक राज्य से दूसरे राज्य के मानकों में अंतर होता है।

6.7.4 उपकेन्द्रों हेतु जमीन अधिग्रहण:

उपकेन्द्रों हेतु भू-अधिग्रहण अधिनियम-1984 के अंतर्गत सामान्यतया सरकारी अथवा प्राइवेट जमीन की उपलब्धता सुनिश्चित कराई जाती है। हालांकि नए उपनगरों को बसाने तथा औद्योगिक केन्द्रों की पंच वर्षीय योजना बनाते समय उपकेन्द्रों की स्थापना तथा पारेषण लाइनों को भी ध्यान में रखा जाना चाहिए। महानगरों, पर्वतीय तथा अन्य शहरी क्षेत्रों में उपकेनुद्रों को लगाने में जमीन की आवश्यकता को कम किए

जाने हेतु गैस इन्सुलेटेड उपकेन्द्रों (जी.आई.एस.) को अधिकाधिक लगाया जा रहा है, क्योंकि परंपरागत उपकेन्द्रों की तुलना में इसके लिए 30 प्रतिशत कम जगह की आवश्यकता होती है।

6.8 11वीं पंच वर्षीय योजना में क्षेत्रीय ग्रिडों का विकास :

11वीं पंच वर्षीय योजना में चल रही निम्नलिखित पारेषण योजनाओं को या तो पूरा कर लिया गया है अथवा इसी दौरान उन पर कार्य आरंभ कर दिया गया है। उत्पादन परियोजनाओं से जुड़ी हुई विभिन्न योजनाओं के अंतर्गत पारेषण प्रणाली तथा अतर्राज्यीय पारेषण प्रणाली को संवर्धित करने वाली योजनाएं अनुलग्नक-6.7 में विभिन्न सारणी में दर्शायी गई हैं।

6.8.1 उत्तरी क्षेत्र:

उत्तरी क्षेत्र में प्रणाली संवर्धन की योजनाएं

प्रणाली संवर्धन की योजना	पारेषण प्रणाली हेतु सारिणी संख्या
एन.आर.एस.एस.एसXIII	एन.आरआईएस-01/सी.एच6
	(योजना निर्माणाधीन है)
एन.आर.एस.एस.एसXIV	एन.आरआईएस-02/सीएच6
एन.आर.एस.एस.एस XV	एन.आरआईएस-03/सीएच6
	(योजना निर्माणाधीन है)
एन.आर.एस.एस.एसXVI	एन.आरआईएस-04/सीएच6
	(योजना निर्माणाधीन है)
एन.आर.एस.एस.एस XVII	एन.आरआईएस-05/सीएच6
एन.आर.एस.एस.एसXVIII	एन.आरआईएस-06/सीएच6
	(योजना निर्माणाधीन है)

उत्तर क्षेत्र स्थित उत्पादन परियोजनाओं के लिए <u>ए.टी.एस.</u> :

राज्य जहाँ उत्पादन परियोजना स्थित है	आई.सी.	क्षेत्र	पारेषण प्रणाली हेतु सारिणी
	(मेगावाट)		संख्या
हिमांचल प्रदेश:			
चामेरा III एच.ई.पी. (12वीं पंच वर्षीय	231		एन.आरएच.पी01/ सीएच6
योजना के लिए बढ़ा दी गई)		केंद्रीय	(निर्माणीधीन पारेषण प्रणाली)
पारबती III एच.ई.पी. (12वीं पंच वर्षीय	520	केंद्रीय	एन.आरएच.पी02/ सीएच6
योजना के लिए बढ़ा दी गई)			(निर्माणीधीन पारेषण प्रणाली)
करचम वांग्टू एच.ई.पी.	1000	आईपीपी	एन.आरएच.पी03/ सीएच6
			(निर्माणीधीन पारेषण प्रणाली)
बुडहिल एच.ई.पी.	70	आईपीपी	एन.आरएच.पी04/ सीएच6
(12वीं पंच वर्षीय योजना के लिए बढ़ा दी गई)			
मलाना ।। एच.ई.पी.	100	आईपीपी	एन.आरएच.पी05/ सीएच6
जम्मू एवं कश्मीर			
यूरी-॥ एच.ई.पी.	240	केंद्रीय	एन.आर.जे.के01/सीएच-6
(12वीं पंच वर्षीय योजना के लिए बढ़ा दी			(निर्माणीधीन पारेषण प्रणाली)
गई)			,

राज्य जहाँ उत्पादन परियोजना स्थित है	आई.सी.	क्षेत्र	पारेषण प्रणाली हेतु सारिणी
	(मेगावाट)		संख्या
चौतक (12वीं पंच वर्षीय योजना के लिए बढ़ा दी	44	केंद्रीय	एन.आरजे.के02/ सीएच6
गई)			
निम्बू बाजगू	45	केंद्रीय	एन.आरजे.के03/ सीएच6
(12वीं पंच वर्षीय योजना के लिए बढ़ा दी गई)			
उत्तराखंड			
कोटेश्वर (यू.1-यू4)	400	केंद्रीय	एन.आर.यू.के01/ सीएच6
<u>दिल्ली</u>			
प्रगति सी.सी.जी.टी. फेज-।।। (पी.पी.सी.एल.)	750	राज्य	एन.आरडी.एल.01/ सीएच6
(जी.टी.1, जी.टी.2, जी.टी.3)			
(12वीं पंच वर्षीय योजना के लिए बढ़ा दी गई)			
रिठाला सी.सी.पी.पी.पी. (एन.डी.पी.एल)	108	आईपीपी.	एन.आरडी.एल.02/ सीएच6
<u>हरियाणा</u>			
झज्जर -। (इंदिरा गांधी) टी.पी.एस. (यू1, 2)	1000	केंदीय	एन.आरएच.आर.01/ सीएच6
झज्जर -। (महात्मा गांधी) टी.पी.एस.	1320	आईपीपी.	एन.आरएच.आर.02/ सीएच6
<u>राजस्थान</u>			
जिल्लपा कपुर्दी टी.पी.पी. (यू1-4)	540	आईपीपी.	एन.आरआर.जे.01/ सीएच6
(राज वेस्ट पावर)			
उत्तर प्रदेश			
अनपरा 'सी' (लैंको अनपरा पी.पी.एल. यू1,2)	1200	आईपीपी.	एन.आरयू.पी.01/ सीएच6
हरदुआगंज टी.पी.एस. (यू8)	250	राज्य	एन.आरयू.पी.02/ सीएच6
परिछा टी.पी.एस. विस्तार	500	राज्य	एन.आरयू.पी.03/ सीएच6
रोसा स्टे. ।। (यू3 एवं 4)	600	निजी	एन.आरयू.पी.04/ सीएच6
			(निर्माणीधीन पारेषण प्रणाली)

6.8.2 पश्चिमी क्षेत्र :

पश्चिमी क्षेत्र में प्रणाली संवर्धन योजनाएं:

प्रणाली संवर्धन योजना	पारेषण प्रणाली हेतु सारिणी संख्या
पश्चिमी क्षेत्र संवर्धन योजना-।।	प.क्षेआईएस-01/ सीएच6
पश्चिमी क्षेत्र संवर्धन योजना- X	त्रुटि ! कोई वैध लिंक नहीं.
पश्चिमी क्षेत्र संवर्धन योजना- XI	त्रुटि ! कोई वैध लिंक नहीं.

पश्चिमी क्षेत्र में स्थित उत्पादन परियोजनाओं हेतु ए.टी.एस.

राज्य जहाँ उत्पादन परियोजना स्थित है	आई.सी. (मेगावाट)	क्षेत्र	पारेषण प्रणाली हेतु सारिणी संख्या
गुजरात			
हजीरा टी.पी.पी. (जी.एस.ई.सी.एल.)	351	राज्य	डब्ल्यू.आरजी.जे01/ सीएच.6 (निर्माणीधीन पारेषण प्रणाली)
मुंद्रा टी.पी.पी. फेज ।। (अदानी पावर)	1320	आईपीपी	डब्ल्यू.आरजी.जे02/ सीएच.6 (निर्माणीधीन पारेषण प्रणाली)
मुंद्रा टी.पी.पी. फेज ।।।	1980	आईपीपी.	डब्ल्यू.आरजी.जे03/ सीएच.6

राज्य जहाँ उत्पादन परियोजना स्थित है	आई.सी.	क्षेत्र	पारेषण प्रणाली हेतु सारिणी संख्या
	(मेगावाट)		·
सूरत लिग्नाइट विस्तार	250	आईपीपी.	डब्ल्यू.आरजी.जे04/ सीएच.6
एस्सार-सलाया पावर यू1	600	आईपीपी.	डब्ल्यू.आरजी.जे05/ सीएच.6
महाराष्ट्र			
भुसावल टी.पी.पी. (एम.एस.पी.जी.सी.एल.)	1000	राज्य	डब्ल्यू.आरएम.एच01/ सीएच.6
खपेरखेड़ा टी.पी.एस.	500	राज्य	डब्ल्यू.आरएम.एच02/ सीएच.6
(एम.एस.पी.जी.सी.एल.)			(निर्माणीधीन पारेषण प्रणाली)
जे.एस.डब्ल्यू. एनर्जी (रत्नागिरी लिमिटेड)	1200	आईपीपी.	डब्ल्यू.आरएम.एच03/ सीएच.6
मिहान टी.पी.पी.	200	आईपीपी.	डब्ल्यू.आरएम.एच04/ सीएच.6
(अभिजीत एनर्जी)			
मध्य प्रदेश			
महेश्वर एच.ई.पी.	400	आ	डब्ल्यू.आरएम.पी01/ सीएच.6
(12वीं पंच वर्षीय योजना के लिए बढ़ा दी		ई.पी.पी.	(निर्माणीधीन पारेषण प्रणाली)
गई)			
छत्तीसगढ़			(निर्माणीधीन पारेषण प्रणाली)
सिपत-1	1980	केंद्रीय	डब्ल्यू.आरसी.जी01/ सीएच.6
एस.वी. पावर टी.पी.पी.	63	आईपीपी.	डब्ल्यू.आरसी.जी02/ सीएच.6
कसाईपल्ली टी.पी.पी. यू1	135	आईपीपी.	डब्ल्यू.आरसी.जी03/ सीएच.6

6.8.3 दक्षिणी क्षेत्र दक्षिणी क्षेत्र में प्रणाली संवर्धन योजनाएं

प्रणाली संवर्धन योजना	पारेषण प्रणाली हेतु सारिणी संख्या
एस.आर.एस.एस.एसIX	एस.आरआई.एस01/ सीएच.6
एस.आर.एस.एस.एसX	एस.आरआई.एस02/ सीएच.6
एस.आर.एस.एस.एसXI	एस.आरआई.एस03/ सीएच.6

दक्षिणी क्षेत्र में स्थित उत्पादन परियोजनाओं हेतु ए.टी.एस.

राज्य जहाँ उत्पादन परियोजना स्थित है	आई.सी.	क्षेत्र	पारेषण प्रणाली हेतु सारिणी
	(मेगावाट)		संख्या
आंध्र प्रदेश			
सिम्हाद्री टी.पी.एस. स्टे।। (एनटीपीसी)	1000	केंद्रीय	एस.आरए.पी01/ सीएच6
नागार्जन सागर टीआर एचईपी (2x25 मेगावाट)	50	राज्य	एस.आरए.पी02/ सीएच6
(12वीं पंच वर्षीय योजना के लिए बढ़ा दी गई)			(निर्माणीधीन पारेषण प्रणाली)
प्रियदर्शनी-जुराला एचईपी (6 x 39 मेगावाट)	234	राज्य	एस.आर-ए.पी03/ सीएच6
ककाटिया (भूपलपल्ली) टी.पी.एस. यू1	500	राज्य	एस.आरए.पी04/ सीएच-6
कोठागुडम टी.पी.एस. एस.टी -VI	500	राज्य	एस.आर.ए.पी05/ सीएच6
<u>कर्नाटक</u>			
उडापी टी.पी.एस. (यू.पी.सी.एल.)	1200	आईपीपी.	एस.आरके.ए01/ सीएच6

राज्य जहाँ उत्पादन परियोजना स्थित है	आई.सी.	क्षेत्र	पारेषण प्रणाली हेतु सारिणी
	(मेगावाट)		संख्या
			(निर्माणीधीन पारेषण प्रणाली)
तोरांगल्लू यू. 1,2	600	आईपीपी.	एस.आरके.ए02/ सीएच6
बेल्लारी टी.पी.पी. यू1,2	1000	राज्य	एस.आरके.ए03/ सीएच6
कैगा ए.पी.पी. यू3,4	500	केंद्रीय	एस.आरके.ए04/ सीएच6
			(निर्माणीधीन पारेषण प्रणाली)
तमिलनाडु			
वल्लूर टी.पी.एस. जे.वी. (एनटीपीसी-टीएनईबी)	500	केंद्रीय	एस.आरटी.एन01/ सीएच6
यू-1			(निर्माणीधीन पारेषण प्रणाली)
नेवेली टी.पी.एस.।। यू-1 (एनएलसी)	250	केंद्रीय	एस.आरटी.एन02/ सीएच6
कुडनकुलम एटामिक स्टे।	2000	केंद्रीय	एस.आरटी.एन03/ सीएच6
नार्थ चेन्नै टी.पी.एस.	1200	राज्य	एस.आरटी.एन04/ सीएच6
(12वीं पंच वर्षीय योजना के लिए बढ़ा दी गई)			(निर्माणीधीन पारेषण प्रणाली)
मेट्टूर टी.पी.एस. स्टेज ।।। (12वीं पंच वर्षीय योजना के लिए बढ़ा दी गई)	600	राज्य	एस.आरटी.एन06/ सीएच6

6.8.4 पूर्वी क्षेत्र पूर्वी क्षेत्र में प्रणाली संवर्धन योजनाएं :

प्रणाली संवर्धन योजना	पारेषण प्रणाली हेतु सारिणी संख्या
ई.आर.एस.एस.एसIX	ई.आरआई.एस01/ सीएच6
ई.आर.एस.एस.एसX	ई.आर त्रुटि ! कोई वैध लिंक नहीं.
ई.आर.एस.एस.एसXI	ई.आर त्रुटि ! कोई वैध लिंक नहीं.

पूर्वी क्षेत्र में स्थित उत्पादन परियोजनाओं हेतु ए.टी.एस.

राज्य जहाँ उत्पादन परियोजना स्थित है	आई.सी.	क्षेत्र	पारेषण प्रणाली हेतु सारिणी
	(मेगावाट)		संख्या
पश्चिम बंगाल			
टिस्ता लो डैम IV (एन.एच.पी.सी.) (12वीं पंच	160	केंद्रीय	त्रुटि ! कोई वैध लिंक नहीं.
वर्षीय योजना के लिए बढ़ा दी गई)			(निर्माणीधीन पारेषण प्रणाली)
टिस्ता लो डैम ।।।	132	केंद्रीय	त्रुटि ! कोई वैध लिंक नहीं.
(12वीं पंच वर्षीय योजना के लिए बढ़ा दी गई)			(निर्माणीधीन पारेषण प्रणाली)
मेजिया टी.पी.एस. फेज ।। (डी.वी.सी.)	1000	केंद्रीय	त्रुटि ! कोई वैध लिंक नहीं.
दुर्गापुर टी.पी.एस. (डी.वी.सी.)	1000	केंद्रीय	त्रुटि ! कोई वैध लिंक नहीं.
			(निर्माणीधीन पारेषण प्रणाली)
सांताडीह टी.पी.पी. (डब्ल्यू.बी.पी.डी.सी.एल.) यू. 5,6	500	राज्य	त्रुटि ! कोई वैध लिंक नहीं.
सागरडिग्ही-I एवं II	600	राज्य	त्रुटि ! कोई वैध लिंक नहीं.
<u>झारखंड</u>			
कोडर्मा टी.पी.एस. यू-1 (डी.वी.सी.)	500	केंद्रीय	त्रुटि ! कोई वैध लिंक नहीं.
मैथन आर.बी.टी.पी.एस. (डी.वी.सी. एवं टाटा का	1050	राज्य	त्रुटि ! कोई वैध लिंक नहीं.

राज्य जहाँ उत्पादन परियोजना स्थित है	आई.सी. (मेगावाट)	क्षेत्र	पारेषण प्रणाली हेतु सारिणी संख्या
संयुक्त उपक्रम)			
<u>ओडिशा</u>			
स्टरलाइट टी.पी.पी. (यू1,2,3) (केवल एलआईएलओ व्यवस्था पूरी की गई)	1800	आईपीपी.	सीएच7 में पारेषण प्रणाली हेतु सारिणी पू.क्षे-ओ.आर01, पू.क्षे-ओ.आर02, पू.क्षे-ओ.आर03, पू.क्षे-ओ.आर04, पू.क्षे-ओ.आर05
<u>बिहार</u>			
बाड -। (यू-1,2,3) (12वीं पंच वर्षीय योजना के लिए बढ़ा दी गई)	1980	केंद्रीय	त्रुटि ! कोई वैध लिंक नहीं.

6.8.5 उत्तर पूर्वी क्षेत्र

उत्तर पूर्वी क्षेत्र में स्थित उत्पादन परियोजनाओं हेतु ए.टी.एस

राज्य जहाँ उत्पादन परियोजना स्थित है	आई.सी. (मेगावाट)	क्षेत्र	पारेषण प्रणाली हेतु सारिणी संख्या
<u>मेघालय</u>			
लेशका मिंटडू -। एच.ई.पी.	84	राज्य	एनईआर-एम.जी01/ सीएच-6

6.8.6 अंतर-क्षेत्रीय पारेषण योजनाएं :

प्रणाली संवर्धन योजना	पारेषण प्रणाली हेतु सारिणी संख्या
पूर्व-पश्चिम पारेषण मार्ग संवर्धन	आईआर-एसएस/01/ सीएच6

अनुबंध – 6क

अनुबंध – 11 वीं पंचवर्षीय योजना की प्रगति और कार्यक्रम

<u>अनुबंध- 6.1</u>

2007-08 के दौरान पारेषण प्रणलियों की वृद्धि

क्र. सं.	पारेषण लाइनों का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
I.	765 केवी लाइनें				
1	सिपत - सिवनी लाइन 1	एस/सी	पावरग्रिड	351	सितंबर-07

क्र. सं.	पारेषण लाइनों का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
	वर्ष के दौरान पूरी तरह से पूरी की गई कुल सीकेएम 765 केवी			351	
	लाइन की (अखिल भारत स्तर पर)				

क्र. सं.	पारेषण लाइनों का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
II.	400 केवी लाइनें (सीएस)				
1	बलिया – लखनऊ	डी/सी	पावरग्रिड	632	अप्रैल-07
2	मैथन – रांची	डी/सी	पावरग्रिड	400	मई-07
3	मौजूदा विंद्याचल-कानपुर लाइन के निकट लगभग 2.3 किमी पर सिंगरौली से लाइन .	डी/सी	पावरग्रिड	6	मई-07
4	गूटी - रैचूर	डी/सी	पावरग्रिड	294	मई-07
5	विंद्याचल – कोरबा	एस/सी	पावरग्रिड	291	जून-07
6	लखनऊ – बरेली	डी/सी	पावरग्रिड	511	जुलाई -07
7	बरेली स्थित बरेली –मंदौला का एलआईएलओ	2 x डी/सी	पावरग्रिड	37	जुलाई -07
8	सतना–बीना सर्किट &	डी/सी पर एस/सी	पावरग्रिड	545	अगस्त-07
9	बरेली में लखनऊ –मुरादाबाद का एलआईएलओ	डी/सी	पावरग्रिड	22	अगस्त-07
10	दिल्ली में दादरी - बल्लभगढ़ का एलआईएलओ	डी/सी	पावरग्रिड	60	सितंबर-07
11	सिवनी में भिलाई - सतपुरा एस/सी का एलआईएलओ	डी/सी	पावरग्रिड	4	सितंबर-07
12	बिहार शरीफ - बिलया (क्वाद) सर्किट-I	डी/सी पर एस/सी	पावरग्रिड	484	जनवरी-08
13	लखनऊ में सुल्तानपुर –लखनऊ का एलआईएलओ	डी/सी	पावरग्रिड	42	दिसम्बर-07
14	फतेहाबाद में हिसार-मोगा का एलआईएलओ सर्किट	डी/सी	पावरग्रिड	59	दिसम्बर-07
15	नागदा - देहगाम	डी/सी	पावरग्रिड	664	दिसम्बर-07
16	रायगढ़ में राउरकेला –रायपुर का एलआईएलओ	डी/सी	पावरग्रिड	37	दिसम्बर-07
17	भाटापारा में कोरबा –रायपुर एस/सी का एलआईएलओ	डी/सी	पावरग्रिड	5	दिसम्बर-07

क्र. सं.	पारेषण लाइनों का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
18	बीना - नागदा	डी/सी	पावरग्रिड	662	दिसम्बर-07
19	नरेंद्र - दवनगीर	डी/सी	पावरग्रिड	310	जनवरी-08
20	लुधियान- जालंधर	एस/सी	पावरग्रिड	85	मार्च-08
21	सिवनी – खंडवा (क्वाद)	डी/सी	पावरग्रिड	703	मार्च-08
22	खंडवा – रायगढ़ सर्किट II	डी/सी	पावरग्रिड	220	मार्च-08
23	वेमागिरी सब-स्टेशन में गाजियाबाद-विजयवाडा 400 केवी डी/सी के दोनों सर्किटों का एलआईएलओ	डी/सी	पावरग्रिड	156	मार्च-08
24	मालेरकोटला – लुधियाना	एस/सी	पावरग्रिड	36	मार्च-08
25	रायगढ़ में सरदार सरोबर-नागदा के दोनों सर्किटों का एलआईएलओ	डी/सी	पावरग्रिड	16	मार्च-08
26	तीस्ता V – सिलीगडी सर्किट I	एस/सी	पावरग्रिड	114	मार्च-08
27	तिरूनेवेली में मदुरई (पीजी) – त्रिवेंद्रम (पीजी) के पहले सर्किट का एलआईएलओ	डी/सी	पावरग्रिड	106	मार्च-08
28	आरएपीपी 5&6 – कंकरोली	डी/सी	पावरग्रिड	397	मार्च-08
	कुल 400 केवी लाइन की			6898	
	(सीएस)				
	220 केवी लाइनें (केंद्रीय क्षेत्र)				
1	ऊंचाहार- राबरेली	एस/सी	पावरग्रिड	43	जुलाई -07
2	रायबरेली में ऊंचाहार-लखनऊ के सर्किट-। का एलआईएलओ	डी/सी	पावरग्रिड	12	जुलाई -07
3	एमटीपीएस-दुर्गापुर	डी/सी	डीवीसी	84	अगस्त-07
4	रांची में पतरातू-चांडिल डी/सी का एलआईएलओ	2xडी/सी	पावरग्रिड	29	सितंबर-07
	कुल 220 केवी लाइन की (सी)			168	
	कुल सीएस (केवल 765			7417	
	+400+220+132 केवी पीजी)				

क्र. सं.	पारेषण लाइनों का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
	राज्य क्षेत्र				
	400 केवी लाइनें				
1	पुरूलिया पम्प स्टोरेज-	डी/सी	पश्चिम बंगाल	418	अप्रैल-07
	आरामबाग				

क्र. सं.	पारेषण लाइनों का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
2	पुरूलिया पम्प स्टोरेज-दुर्गापुर	एस/सी	पश्चिम बंगाल	370	अप्रैल-07
	सर्किट 1				
3	चाकन एमआईडीसी में	एस/सी	महाराष्ट्र	4	मई-07
	लोनीखंड-पडघे डायवर्जन				
4	देघम (पीजीसीआईएल)-	डी/सी	गुजरात	125	जुलाई -07
	रणछोड़पुरा				
5	अखकोल में झानूर-वापी का एलआईएलओ	डी/सी	गुजरात	28	नवम्बर-07
6	अकोला में भुसावल-कोराडी के	डी/सी	महाराष्ट्र	80	जनवरी-08
	पहले सर्किट का एलआईएलओ				
	कुल 400 केवी लाइनें (सब-			1025	
	स्टेशन)				
	220 केवी लाइनें (राज्य क्षेत्र)				
1	सिरूसेरी में एस पी कोइल-	डी/सी	तमिलनाडु	20	अप्रैल-07
	थारामणि का एलआईएलओ				
2	ममीदीपल्ली-चंद्रयंगुट्टा से	डी/सी	आंघ्र प्रदेश	1	अप्रैल-07
	हैदराबाद एअरपोर्ट की टैप				
	लाइन		आंघ्र प्रदेश	_	3
3	आसिफनगर-करवान 245 केवी		आध्र प्रदश	3	अप्रैल-07
4	एक्सएलपीई यूजी केबिल मादा – बारमर	डी/सी	राजस्थान	258	अप्रैल-07
5	सतारा एमआईडीसी - वेंकुआवडे	डी/सी	महाराष्ट्र	30	अप्रैल-07
		डी/सी	मध्य प्रदेश		
6	सिवनी 400 केवी (पीजी)-	31/411	मध्य प्रदश	9	मई-07
	सिवनी(एमपी)	डी/सी	<u></u>		
7	हुलकरवाडी में थेय्यूर-जेझुरी का एलआईएलओ	। डा/सा	महाराष्ट्र	38	मई-07
8	नाइक-कलवा-III&IV	डी/सी	महाराष्ट्र	2	जून-07
9	खिंनवसार - भोपालगढ़	एस/सी	राजस्थान	36	जून-07
10	बिरसिंगपुर-जबलपुर	डी/सी	मध्य प्रदेश	274	जून-07
11	बिरसिंहपुर सब-स्टेशन में	डी/सी	मध्य प्रदेश	12	जून-07
	बिरसिंहपुर (टी)-				
	बिरसिंहपुर(एच) के दूसरे सर्किट				
	का एलआईएलओ				
12	डी/सी पर कनहान-उमरेद	एस/सी	महाराष्ट्र	50	जून-07
	एस/सी				

क्र. सं.	पारेषण लाइनों का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
13	बिरसिंहपुर सब-स्टेशन में बिरसिंहपुर (टी)-नौरोजाबाद	2xडी/सी	मध्य प्रदेश	23	जुलाई -07
	डी/सी का एलआईएलओ				
14	नेल्लौर में नेल्लौर – रेनीगंटा का एलआईएलओ	डी/सी	आंघ्र प्रदेश	20	जुलाई -07
15	कामावरापुकोटा में विज्जेवारम् का एलआईएलओ	डी/सी	आंघ्र प्रदेश	46	जुलाई -07
16	मिवाडी एसडब्ल्यू. एसटीएन – पोन्नापुरम सर्किट-I	डी/सी	तमिलनाडु	19	जुलाई -07
17	हिसार (बीबीएमबी)-हिसार आईए (द्वितीय सर्किट)	एस/सी	हरियाणा	1.5	अगस्त-07
18	आसनसोल में एसटीपीएस – दुर्गापुर सर्किट । का एलआईएलओ ।	डी/सी	पश्चिम बंगाल	80	अगस्त-07
19	डी/सी पर छलाकुर्ती- कोंडामल्लेपल्ली एस/सी	एस/सी	आंघ्र प्रदेश	43	अगस्त-07
20	मामीदीपल्ली-एद्दूमैलारम दूसरी सर्किट ट्रिंगिंग	एस/सी	आंघ्र प्रदेश	63	अगस्त-07
21	नीलामंगला-डीबी पुरा	डी/सी	कर्नाटक	33	अगस्त-07
22	सिरसी एसडब्ल्यू. एसटीएन पर सरावती-हुबली का एलआईएलओ	डी/सी	कर्नाटक	13	अगस्त-07
23	मंडावर में दउआ-भाटापारा का एलआईएलओ	डी/सी	राजस्थान	16	सितंबर-07
24	बरसिंघर-नागपुर	एस/सी	राजस्थान	104	सितंबर-07
25	श्रीडूंगरगढ़ में रतनगढ़-बाकानेर एलआईएलओ	डी/सी	राजस्थान	5	सितंबर-07
26	सगरदिघी-गोकरना	डी/सी	पश्चिम बंगाल	90	सितंबर-07
27	जेटीपी-रायगढ़ औद्योगिक इस्टेट (पनजीपात्रा)	डी/सी	छत्तीसगढ़	40	सितंबर-07
28	डी/सी पर तालापल्ली-छलाकुर्ती एस/सी	एस/सी	आंघ्र प्रदेश	26	सितंबर-07
29	मिवाडी एसडब्ल्यू. एसटीएन पोन्नापूरम सर्किट-II	डी/सी	तमिलनाडु	19	सितंबर-07
30	हदाला में राजकोट-मोरबी एलआईएलओ	डी/सी	गुजरात	1	सितंबर-07
31	राजकोट-मोरबी	डी/सी	गुजरात	145	सितंबर-07

क्र. सं.	पारेषण लाइनों का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
32	इंदौर (पूर्व) में इंदौर-देवास एलआईएलओ 1 सर्किट	डी/सी	मध्य प्रदेश	1	सितंबर-07
33	भटापारा (सुहेला) -बेमेतारा	डी/सी	छत्तीसगढ़	89	अक्टूबर-07
34	भटापारा (सुहेला) –महामुंद	डी/सी	छत्तीसगढ़	124	अक्टूबर-07
35	मेजिया- दुर्गापुर	एस/सी	पश्चिम बंगाल	64	अक्टूबर-07
36	यमुनानगर टीपीपी-जोरियन (यमुनानगर)	डी/सी	हरियाणा	22	अक्टूबर-07
37	यमुनानगर टीपीपी – सलेमपुर (निसिंग बाईपास सलेमपुर को जोड़ने वाला)	डी/सी	हरियाणा	86	अक्टूबर-07
38	वलूथर सब-स्टेशन पर अलगर कोइल (उत्तर मदुरई) – कराईकुडी का एलआईएलओ	डी/सी	तमिलनाडु	193	अक्टूबर-07
39	यच्चनयल्ली में शिमोगा-मैसूर एलआईएलओ	डी/सी	कर्नाटक	6	नवम्बर-07
40	महारानी बाग-लोदी रोड सर्किट-1	डी/सी पर एस/सी	दिल्ली	1.2	दिसम्बर-07
41	कैलाश चंद्रपुर – पदमानवपुर	डी/सी	उड़ीसा	68	दिसम्बर-07
42	पदमानवपुर-बालासौर सर्किट-1	डी/सी	उड़ीसा	22	दिसम्बर-07
43	उरसे में अपता-छिंदवाडा एलआईएलओ	डी/सी	महाराष्ट्र	22	दिसम्बर-07
44	ग्रेटर नोएडा-नोएडा (पी) सर्किट-1	डी/सी पर एस/सी	उत्तर प्रदेश	27	दिसम्बर-07
45	कोरबा (पुर्व) डीपीएम-भाटापारा (सुहेला)	डी/सी	छत्तीसगढ़	284	दिसम्बर-07
46	अमलनेर में घुले डोंडइच्छा एलआईएलओ	डी/सी	महाराष्ट्र	61	दिसम्बर-07
47	तलंगडे-कागल पांच सितारा एमआईडीसी	डी/सी पर एम/सी	महाराष्ट्र	4	दिसम्बर-07
48	पुलाकुर्ती में रामागुंडम-वारंगल एलआईएलओ	डी/सी	आंघ्र प्रदेश	21	दिसम्बर-07
49	नेल्लौर में नेल्लौर-रेनीगुंडा का द्वितीय एलआईएलओ (400 केवी सब-स्टेशन)	डी/सी	आंघ्र प्रदेश	20	दिसम्बर-07

क्र. सं.	पारेषण लाइनों का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
50	तिरूनेवेली में कयाथर – संकनेरी	डी/सी	तमिलनाडु	44	दिसम्बर-07
	एलआईएलओ (400 केवी)				
51	पेंड्रा में कोरबा – अमरकंटक	डी/सी	छत्तीसगढ़	23	दिसम्बर-07
	एलआईएलओ (कोटमिकाला)				
52	चंपा (बनारी) में कोरबा (पूर्व) डीएसपीएम- भाटापारा (सुहेला) द्वितीय सर्किट का एलआईएलओ	डी/सी	छत्तीसगढ़	2	दिसम्बर-07
53	महारानी बाग-लोदी रोड सर्किट- ॥	डी/सी पर एस/सी	दिल्ली	1.2	जनवरी-08
54	राजेंद्र स्टील-सिल्तरा द्वितीय एस/सी	एस/सी	छत्तीसगढ़	2	जनवरी-08
55	धनकी-अदलसार	डी/सी	गुजरात	18	जनवरी-08
56	सतारा एमआईडीसी सब-स्टेशन के लिए मलहारपेठ – वंकुशवाडे का एलआईएलओ	डी/सी	महाराष्ट्र	60	जनवरी-08
57	कनकपुरा में सोमनहल्ली – टी के हल्ली एलआईएलओ	डी/सी	कर्नाटक	6	जनवरी-08
58	मालापराम्बा में कोझईकोड- इडुक्की एलआईएलओ	डी/सी	केरल	2	जनवरी-08
59	घाटघर में जिंदल-वशाला एलआईएलओ (केवल संशोधन द्वारा)	डी/सी	महाराष्ट्र	0	जनवरी-08
60	पीजीसीआईएल-नलासोपारा	एस/सी	महाराष्ट्र	4	जनवरी-08
61	अदलसार-बाला	डी/सी	गुजरात	22	जनवरी-08
62	बरसाना में नैनीखखर – शिवलखा डी/सी का एलआईएलओ	डी/सी	गुजरात	7	जनवरी-08
63	दूनी के लिए एलआईएलओ	डी/सी	राजस्थान	4	फरवरी-08
64	कानन में खपेरखेडा – भंडारा दूसरे सर्किट का एलआईएलओ	डी/सी	महाराष्ट्र	20	फरवरी-08
65	भरथाना में परीक्षा-सफाई का एलआईएलओ	डी/सी	उत्तर प्रदेश	8	फरवरी-08
66	वेल्तूर 400 केवी सब-स्टेशन - जुराला	डी/सी	आंघ्र प्रदेश	66	मार्च-08

क्र. सं.	पारेषण लाइनों का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
67	शादनगर में ममिदीपल्ली –	डी/सी	आंघ्र प्रदेश	36	मार्च-08
	ऐद्दूमैलारम् से एलआईएलओ				
68	दिचपल्ली 400 केवी दिचपल्ली	डी/सी	आंघ्र प्रदेश	8	मार्च-08
69	सरावती उत्पादन स्टेशन- दुगाडीमाने	एम/सी	कर्नाटक	28	मार्च-08
70	तिरूनेलवेली (400 केवी)- वीरानम	डी/सी पर एस/सी	तमिलनाडु	31	मार्च-08
71	कोडीकुरेची-छेक्कानूरानी	एस/सी	तमिलनाडु	31	मार्च-08
72	थिरूवल्ली–नरेंद्रपुर चंढ़ाका	डी/सी	उड़ीसा	750	मार्च-08
73	आईबी थर्मल –बुघीपडार (द्वितीय डी/सी)	डी/सी	उड़ीसा	52	मार्च-08
74	बिहनूपुर में टीपी – आरामबाग एलआईएलओ	2xडी/सी	पश्चिम बंगाल	4	मार्च-08
75	मेंधासल में भंजनगर – चंडक का एलआईएलओ	डी/सी	उड़ीसा	12	मार्च-08
76	गुरूर में भिलाई-बंसूर (द्वितीय सर्किट) का एलआईएलओ	डी/सी	छत्तीसगढ़	14	मार्च-08
77	भैती (पीजी)-उरई	एस/सी	उत्तर प्रदेश	90	मार्च-08
78	पटना पीजी में फतूहा-खगौल एलआईएलओ	डी/सी	बिहार	20	मार्च-08
	कुल 220 केवी लाइनें (सब-			4001	
	स्टेशन)				
	कुल सब-स्टेशन (400+220) केवी			5026	
	वर्ष के दौरान पूरी की गई 400 के	7923			
	स्तर पर) कुल सीकेएम				
	वर्ष के दौरान पूरी की गई 220 के	4169			
	स्तर पर) कुल सीकेएम				

2007-08 के दौरान पूरे किए गए सब-स्टेशन

क्र.सं.	सब-स्टेशन	वोल्टेज अनुपात (केवी/केवी)	क्रियान्वयन एजेंसी	क्षमता (एम डब्ल्यू / एमवीए)	पूर्ण होने का माह
II. 76	5 केवी (सब-स्टेशन)				
1	सिवनी सब स्टेशन	765/400	पावरग्रिड	1500	सितंबर-07

क्र.सं.	सब-स्टेशन	वोल्टेज अनुपात (केवी/केवी)	क्रियान्वयन एजेंसी	क्षमता (एम डब्ल्यू / एमवीए)	पूर्ण होने का माह
	(7x (500-333))				
2	सिवनी नया (3x500)	765/400	पावरग्रिड	1500	मार्च-08
3	सिवनी विस्तार	765/400	पावरग्रिड	1500	मार्च-08
	(3x500)				

क्र.सं.	सब-स्टेशन	वोल्टेज	क्रियान्वयन	क्षमता	पूर्ण होने का माह
		अनुपात (केवी/केवी	एजेंसी	(एम डब्ल्यू /	
		(कवा/कवा	•	एमवीए)	
III. 40	00 केवी (सब-स्टेशन) (सीएस)				
1	रांची (आईसीटी -1)	400/220	पावरग्रिड	315	मई-07
2	ग्वालियर (नया)	400/220	पावरग्रिड	315	मई-07
3	वगूरा (त्रतीय) (3x105)	400/220	पावरग्रिड	315	जून-07
4	मोगा (विस्तार)	400/220	पावरग्रिड	315	जून-07
5	कुडप्पा विस्तार	400/220	पावरग्रिड	315	अगस्त-07
6	दिल्ली (जीआई)	400/220	पावरग्रिड	630	सितंबर-07
7	गूटी विस्तार	400/220	पावरग्रिड	315	सितंबर-07
8	कोलार विस्तार	400/220	पावरग्रिड	500	सितंबर-07
9	गजुवाका विस्तार ,	400/220	पावरग्रिड	315	अक्टूबर-07
10	रांची (आईसीटी-II)	400/220	पावरग्रिड	315	नवम्बर-07
11	फतेहाबाद (नया) आईसीटी-I	400/220	पावरग्रिड	315	दिसम्बर-07
12	पटना द्वितीय आईसीटी	400/220	पावरग्रिड	315	दिसम्बर-07
13	रायगढ़ (नया) आईसीटी-I	400/220	पावरग्रिड	315	दिसम्बर-07
14	भाटापारा (नया)	400/220	पावरग्रिड	315	दिसम्बर-07
15	मुनेराबाद विस्तार	400/220	पावरग्रिड	315	दिसम्बर-07
16	सिवनी आईसीटी-I	400/220	पावरग्रिड	315	जनवरी-08
17	ख्म्माम विस्तार	400/220	पावरग्रिड	315	जनवरी-08
18	रायगढ़ (नया) आईसीटी-II	400/220	पावरग्रिड	315	फरवरी-08
19	सिवनी II आईसीटी	400/220	पावरग्रिड	315	मार्च-08
20	ग्वालियर (नया) II आईसीटी	400/220	पावरग्रिड	315	मार्च-08
21	अम्रतसर (विस्तार)	400/220	पावरग्रिड	315	मार्च-08
22	राजगढ़ (नया)	400/220	पावरग्रिड	315	मार्च-08
23	हिरियूर विस्तार	400/220	पावरग्रिड	315	मार्च-08
24	विजयवाडा विस्तार	400/220	पावरग्रिड	315	मार्च-08
25	फतेहाबाद आईसीटी- II	400/220	पावरग्रिड	315	मार्च-08
	कुल (केंद्रीय क्षेत्र)	400		8375	
	220 केवी (सब-स्टेशन)(सीएस)				
1	रायबरेली आईसीटी-।	220/132	पावरग्रिड	100	सितंबर-07

क्र.सं.	सब-स्टेशन	वोल्टेज अनुपात (केवी/केवी	क्रियान्वयन एजेंसी	क्षमता (एम डब्ल्यू / एमवीए)	पूर्ण होने का माह
2	रायबरेली आईसीटी-II	220/132	पावरग्रिड	100	दिसम्बर-07
	कुल (केंद्रीय क्षेत्र)	220		200	
	कुल सीएस (765 +400+220) केवी			13075	

क्र.सं.	सब-स्टेशन	वोल्टेज	_	क्षमता	पूर्ण होने का माह
		अनुपात	क्रियान्वयन	(एम	
		(केवी/केवी)	एजेंसी	डब्ल्यू /	
				एमवीए)	
<u>400 वे</u>	वी सब-स्टेशन (सब-स्टेशन)				
1	रणछोड़पुरा (वदावी) (द्वितीय)	400/220	गुजरात	315	जनवरी-08
2	अलमपथी	400/230	तमिलनाडु	630	जनवरी-08
3	ममिदीपल्ली	400/220	आंघ्र प्रदेश	315	जनवरी-08
4	दिचपल्ली	400/220	आंघ्र प्रदेश	630	फरवरी-08
	कुल 400 केवी सब-स्टेशन (एसएस)	400/220		1890	
	220 केवी (सब-स्टेशन)(एसएस)				
1	सिरूसेरी	230/110	तमिलनाडु	200	अप्रैल-07
2	रानिया (द्वितीय)	220/132	हरियाणा	100	मई-07
3	गढ़चंदौर	220/33	महाराष्ट्र	25	मई-07
7	कामावरेपुकोटा	220/132	आंघ्र प्रदेश	100	जुलाई -07
8	पान्नापुरम्	230/110	तमिलनाडु	100	जुलाई -07
9	अगिया	220/132	असम	50	जुलाई -07
10	सुब्रामणयमपुरम् द्वितीय आईसीटी	220/66	कर्नाटक	50	अगस्त-07
	(विस्तार)				
11	देवनहल्ली अंतर्राष्ट्रीय एअर पोर्ट	220/66	कर्नाटक	100	अगस्त-07
12	संकानेरी	230/110	तमिलनाडु	100	अगस्त-07
13	पोन्नापुरम् द्वितीय आईसीटी	230/110	तमिलनाडु	100	अगस्त-07
14	महासमुंद	220/132	Chhatigarh	160	अगस्त-07
15	इंदौर (पूर्व)	220/33	मध्य प्रदेश	100	अगस्त-07
16	कंबा (भिवंडी-II)	220/22	महाराष्ट्र	50	अगस्त-07
17	तंबाती (विस्तार)	220/22	महाराष्ट्र	25	अगस्त-07
18	कोंडमल्लेपल्ली	220/132	आंघ्र प्रदेश	100	अगस्त-07
19	अल्वर सुदृढ़ीकरण (100-50)	220/132	राजस्थान	50	सितंबर-07
20	धनडरीकाला सुदृढ़ीकरण	220/66	पंजाब	100	सितंबर-07
21	बडौत (160-100)	220/132	उत्तर प्रदेश	60	सितंबर-07
22	कुरकुंभ	220/33	महाराष्ट्र	50	सितंबर-07

क्र.सं.	सब-स्टेशन	वोल्टेज		क्षमता	पूर्ण होने का माह
		अनुपात	क्रियान्वयन	(एम	
		(केवी/केवी)	एजेंसी	डब्ल्यू /	
				एमवीए)	
23	बहादुरगढ़ द्वितीय आईसीटी	220/132	हरियाणा	100	सितंबर-07
24	घटनांद्रे तृतीय आईसीटी	220/33	महाराष्ट्र	100	सितंबर-07
25	वीटा सुदृढ़ीकरण (50-25)	220/33	महाराष्ट्र	25	सितंबर-07
26	सिरसी	220/66	कर्नाटक	50	सितंबर-07
27	संकानेरी अतिरिक्त	230/110	तमिलनाडु	100	सितंबर-07
28	इंगुर अतिरिक्त	230/110	तमिलनाडु	100	सितंबर-07
29	कोडिकुरिच्छी अतिरिक्त	230/110	तमिलनाडु	100	सितंबर-07
30	तेम्बुरनी	220/33	महाराष्ट्र	25	अक्टूबर-07
31	सी.आर. पटना (यच्छन्नाहल्ली)	220/66	कर्नाटक	200	अक्टूबर-07
32	कल्यानदुर्ग	220/132	आंघ्र प्रदेश	100	अक्टूबर-07
33	रीवा (अतिरिक्त)	220/132	मध्य प्रदेश	160	अक्टूबर-07
34	आगरा कैंट (विस्तार)	220/33	उत्तर प्रदेश	23	अक्टूबर-07
35	वलूथूर	230/110	तमिलनाडु	300	अक्टूबर-07
36	शाहजहांपुर सुदृढ़ीकरण (160-100)	220/132	उत्तर प्रदेश	60	नवम्बर-07
37	एचएसआर लेआउट अगस्त	220/66	कर्नाटक	100	नवम्बर-07
	2x(150-100)				
38	एनआरएस सुदृढ़ीकरण (150-100)	220/66	कर्नाटक	50	नवम्बर-07
39	थारामणी अतिरिक्त	230/110	तमिलनाडु	100	नवम्बर-07
40	दौलताबाद आईसीटी-।	220/66	हरियाणा	100	नवम्बर-07
41	जैनकोटे (विस्तार)	220/132	जम्मू और कश्मीर	150	दिसम्बर-07
42	बुरला	220/132	उड़ीसा	200	दिसम्बर-07
43	तरकेरा (चतुर्थ)	220/132	उड़ीसा	100	दिसम्बर-07
44	बालीमेला प्रथम	220/33	उड़ीसा	20	दिसम्बर-07
45	कृष्णा नगर (2x160)	220/132	पश्चिम बंगाल	320	दिसम्बर-07
46	आसनसोल	220/132	पश्चिम बंगाल	160	दिसम्बर-07
47	फिरोजाबाद विस्तार	220/132	उत्तर प्रदेश	100	दिसम्बर-07
48	खुर्जा विस्तार	220/132	उत्तर प्रदेश	40	दिसम्बर-07
49	हाथरस	220/132	उत्तर प्रदेश	40	दिसम्बर-08
50	गाजीपुर	220/132	उत्तर प्रदेश	100	दिसम्बर-07
51	मंडवार (दौआ)	220/132	राजस्थान	100	दिसम्बर-07
52	खिंवसर / 1X100 एमवीए	220/132	राजस्थान	100	दिसम्बर-07
53	अमलनेर	220/132	महाराष्ट्र	100	दिसम्बर-07
54	तालंगडे (पांच सितारा एमआईडीसी) कागल	220/33	महाराष्ट्र	50	दिसम्बर-07
	<u> </u>				

क्र.सं.	सब-स्टेशन	वोल्टेज		क्षमता	पूर्ण होने का माह
7'.\.		अनुपात	क्रियान्वयन	(एम	
		(केवी/केवी)	एजेंसी	डब्ल्यू /	
				एमवीए)	
55	मौलाली	220/132	आंघ्र प्रदेश	160	दिसम्बर-07
56	शापुर नगर	220/132	आंघ्र प्रदेश	160	दिसम्बर-07
57	हटिया	220/132	झारखंड	300	जनवरी-08
58	चांडिल तृतीय ट्रांसफॉर्मर	220/132	झारखंड	100	जनवरी-08
59	उर्से (1x50)	220/33	महाराष्ट्र	50	जनवरी-08
60	अमलनेर (1x100)	220/132	महाराष्ट्र	100	जनवरी-08
61	पिरांगुट	220/22	महाराष्ट्र	50	जनवरी-08
62	अदलसार	220/22	गुजरात	50	जनवरी-08
63	एकलाहरे (200-50)	220/132	महाराष्ट्र	150	जनवरी-08
64	गोबी	230/110	तमिलनाडु	100	जनवरी-08
65	सिरूसेरी	230/110	तमिलनाडु	100	जनवरी-08
66	थकचंकुरीती	230/110	तमिलनाडु	100	जनवरी-08
67	किलपौक (विस्तार) 50 से 100	230/110	तमिलनाडु	50	जनवरी-08
68	विन्नामंगलम् (विस्तार) 50 से 100	230/110	तमिलनाडु	50	जनवरी-08
69	इंगूर (विस्तार) 50 से 100	230/110	तमिलनाडु	50	जनवरी-08
70	कनकपुरा	220/66	कर्नाटक	100	जनवरी-08
71	बिदादी अतिरिक्त ट्रांसफॉर्मर	220/66	कर्नाटक	100	जनवरी-08
72	मालापरंबा	220/110	केरल	100	जनवरी-08
73	बरसाना	220/66	गुजरात	100	जनवरी-08
74	दूनी	220/132	राजस्थान	50	फरवरी-08
75	उद्योग बिहार (विस्तार)	220/132	राजस्थान	50	फरवरी-08
76	हंडिया (अतिरिक्त.)	220/33	मध्य प्रदेश	160	फरवरी-08
77	निमरानी (अतिरिक्त)	220/132	मध्य प्रदेश	160	फरवरी-08
78	जालना (50-25)	220/33	महाराष्ट्र	25	फरवरी-08
79	आईसीओएम (चंद्रपुर)	220/33	महाराष्ट्र	50	फरवरी-08
80	हिंजेवाडे (50-25)	220/22	महाराष्ट्र	25	फरवरी-08
81	गोकुल सुदृढ़ीकरण (160-100)	220/132	उत्तर प्रदेश	60	फरवरी-08
82	सी.बी. गंज (160-100)	220/132	उत्तर प्रदेश	60	फरवरी-08
83	टेक्काली	220/132	आंघ्र प्रदेश	100	मार्च-08
84	शादनगर	220/132	आंघ्र प्रदेश	100	मार्च-08
85	शाहपुर	220/110	कर्नाटक	100	मार्च-08
86	किलपौक (विस्तार) 50 से 100	230/110	तमिलनाडु	50	मार्च-08
87	करीमंगलम (अतिरिक्त)	230/110	तमिलनाडु	100	मार्च-08
88	पारवती (1x200+1x50)	220/22	महाराष्ट्र	250	मार्च-08
89	वरोरा	220/33	महाराष्ट्र	25	मार्च-08

क्र.सं.	सब-स्टेशन	वोल्टेज		क्षमता	पूर्ण होने का माह
		अनुपात	क्रियान्वयन	(एम	
		(केवी/केवी)	एजेंसी	डब्ल्यू /	
				एमवीए)	
90	उमरेद	220/33	महाराष्ट्र	25	मार्च-08
91	कलरछेम (थाणे)	220/22	महाराष्ट्र	50	मार्च-08
92	रंजनगांव सुदृढ़ीकरण	220/22	महाराष्ट्र	150	मार्च-08
	(1x50+1x100)				
93	सारनाथ सुदृढ़ीकरण (160-100)	220/132	उत्तर प्रदेश	60	मार्च-08
94	सलेमपुर	220/66	हरियाणा	100	मार्च-08
95	अलेफता	220/132	महाराष्ट्र	100	मार्च-08
96	बिष्णूपुर	220/132	पश्चिम बंगाल	320	मार्च-08
97	राजपुर	220/11	गुजरात	25	मार्च-08
98	श्रीडूंगरगढ़	220/132	राजस्थान	100	मार्च-08
99	सिवान (नया) गोपालगंज	220/132	बिहार	200	मार्च-08
	कुल (राज्य क्षेत्र)	220		9458	
	कुल 400 केवी सब-स्टेशन (अखिल भ	10265			
	कुल 220 केवी सब-स्टेशन (अखिल भ	9658			

अनुबंध – 6.2

2008-09 के दौरान पारेषण प्रणालियों हुई वृद्धि 2008-09 के दौरान स्थापित की गई पारेषण लाइनें

सं.	पारेषण लाइनों का नाम	सर्किट की	क्रियान्वयन	लाइन की	पूर्ण होने का माह
		संख्या	एजेंसी	लंबाई	
				(सीकेएम)	
I. 7	65 केवी लाइनें				
1	सिपत - सिवनी लाइन -II	एस/सी	पावरग्रिड	354	अप्रैल.'08
2	आगरा-ग्वालियर द्वितीय एस/सी	एस/सी	पावरग्रिड	128	मार्च-09
	(आरंभ में 400 केवी पर प्रचालित				
	करने के लिए)				
3	सिवनी - वर्धा लाइन (400 केवी पर	एस/सी	पावरग्रिड	269	मार्च-09
	प्रचालित करने के लिए)				
	कुल 765 केवी लाइनें (अखिल			751	
	भारत)				

सं.	पारेषण लाइनों का नाम	सर्किट	क्रियान्वयन गर्भेगी	लाइन की ंग्फ	पूर्ण होने का माह
		संख्या	एजेंसी	लंबाई (सीकेएम)	
II. 40)0 केवी लाइन (C)			(41 1024)	
1	तिरूनेवेली में मदुरई (पीजी)-त्रिवेंद्रम	डी/सी	पावरग्रिड	107	मार्च-08
	(पीजी) के द्वितीय सर्किट का				
	एलआईएलओ		_		
2	बरेली-मुरादाबाद	एस/सी	पावरग्रिड	91	मई-08
3	मेलाकोट्टायूर सब-स्टेशन पर मौजूदा	डी/सी	पावरग्रिड	31	मई-08
	कोलार –श्रीपेरंबदुर का				
	एलआईएलओ				
4	तास्ता-V - सिलीगुडी	एस/सी	पावरग्रिड	114	मई-08
	(सर्किट-II)				
5	सिपत - रायपुर	डी/सी	पावरग्रिड	298	जुलाई -08
6	कोटा-मेरटा	डी/सी	पावरग्रिड	512	जनवरी-09
7	रांची-सिपत लाइन	डी/सी	पावरग्रिड	816	जनवरी-09
8	आरएपीपी 5&6 – कोटा	डी/सी	पावरग्रिड	75	मार्च-09
9	भिवाडी में हिसार-जयपुर का एलआईएलओ	डी/सी	पावरग्रिड	156	मार्च-09
10	रूडकी में ऋषिकेश-मुजफ्फरनगर एलआईएलओ	डी/सी	पावरग्रिड	3	मार्च-09

सं.	पारेषण लाइनों का नाम	सर्किट संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई	पूर्ण होने का माह
				(सीकेएम)	
11	वर्धा-अकोला	डी/सी	पावरग्रिड	324	मार्च-09
12	पुगालूर-मदुरई	डी/सी	पावरग्रिड	246	मार्च-09
13	जेरदा-कंकरोली	डी/सी	पावरग्रिड	470	मार्च-09
14	नेवेली-टीएस -II – पुगालूर	डी/सी	पावरग्रिड	395	मार्च-09
15	कुंडनकुलम (एनपीसी) – तिरूनेवेली	डी/सी	पावरग्रिड	145	मार्च-09
	(पीजी) (क्वैद) लाइन I				
16	कुंडनकुलम (एनपीसी) – तिरूनेवेली	डी/सी	पावरग्रिड	160	मार्च-09
	(पीजी) (क्वैद) लाइन II				
17	तिरूनेवेली (पीजी) – उदूमलपेट	डी/सी	पावरग्रिड	534	मार्च-09
	(पीजी)				
	कुल 400 केवी लाइनें (सीएस)			4477	
	220 केवी लाइनें				
	केंद्रीय क्षेत्र				
1	वापी (पीजी) - मगरवडा लाइन	डी/सी &	पावरग्रिड	31	अप्रैल-08
		एम/सी			
2	वापी (पीजी) - खरड़पडा़	डी/सी	पावरग्रिड	34	जून-08
	(डीएनएच)				
3	सीतानगर में टनकपुर-बरेली सर्किट-	डी/सी	पावरग्रिड	44	मार्च-09
	1 का एलआईएलओ				
	कुल 220 केवी लाइनें की (सीएस)			109	
	कुल सीएस (765 +400+220)			5337	

ŧi.	पारेषण लाइनों का नाम	सर्किट संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
	400 केवी (राज्य क्षेत्र)				
1	अमरकंटक में कोरबा – सिपत	डी/सी	छत्तीसगढ़	62	अप्रैल-08
	एलआईएलओ				
2	जेटीपीएस – रायपुर डी/सी	डी/सी	छत्तीसगढ़	516	मई-08
3	रामागुंडम (एनटीपीसी)-दिचपल्ली	एस/सी	आंघ्र प्रदेश	171	मई-08
4	गजवेल में रामागुंडम-घानापुर	डी/सी	आंघ्र प्रदेश	21	अगस्त-08
	एलआईएलओ				
5	रतनगढ़-मेरटा	एस/सी	राजस्थान	181	मई-08
6	बीटीपी में आरटीपी-गुट्टूर	डी/सी	कर्नाटक	2	जून-08

सं.	पारेषण लाइनों का नाम	सर्किट संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
	एलआईएलओ				
7	दमोह में बिरसिंहपुर – दमोह डी/सी एलआईएलओ	डी/सी	मध्य प्रदेश	26	अगस्त-08
8	बिरसिंहपुर में बिरसिंहपुर-कटनी- दमोह इंटरकनेक्शन	डी/सी	मध्य प्रदेश	1	अगस्त-08
9	कटनी में बिरसिंहपुर-कटनी – दमोह डायवर्जन	डी/सी	मध्य प्रदेश	2	अगस्त-08
10	सगरदिघी में फरक्का-उभाग्राम एलआईएलओ	डी/सी	पश्चिम बंगाल	13	अगस्त-08
11	किशेनपुर-बगलीहार (प्रथम सर्किट)	एस/सी	जम्मू और कश्मीर	68	अक्टूबर-08
12	एनपीसीएल-रायपुर	डी/सी	छत्तीसगढ़	28	मार्च-09
13	छाबडा़-डेहरा (कोटा)	डी/सी	राजस्थान	261	मार्च-09
	कुल 400 केवी लाइनें (सब-स्टेशन)			1352	
	220 केवी लाइन (सब-स्टेशन)				
1	रंगनाथपुरम् में पुगालूर-चेकन्नूरम् का एलआईएलओ	डी/सी	तमिलनाडु	32	अप्रैल-08
2	इटारसी में भोपाल-इटारसी के दोनों सर्किटों का एलआईएलओ	2xडी/ सी	मध्य प्रदेश	2	अप्रैल-08
3	अकहाखोल-किम	डी/सी	गुजरात	8	अप्रैल-08
4	एनपीसीएल-गुरूर (सीईबी)	एस/सी	छत्तीसगढ़	20	अप्रैल-08
5	ह्यूगनहल्ली (के आर पेट) में शिमोगा –मैसूर एलआईएलओ	डी/सी	कर्नाटक	23	मई-08
6	कंकरोली (पीजी) में भीलवाडा़- कंकरोली एलआईएलओ	एस/सी	राजस्थान	9.5	मई-08
7	पोन्नापुरम्- पल्लादाम	डीसी पर सी	तमिलनाडु	32	जून-08
8	मंडीदीप में इटारसी-भोपाल प्रथम सर्किट का एलआईएलओ	डी/सी	मध्य प्रदेश	12	जून-08
9	पीमतपुर-रागढ़ (द्वितीय) सर्किट	एस/सी	मध्य प्रदेश	69	जून-08
10	निलोखेरी-करनाल	एस/सी	हरियाणा	19	जून-08
11	अमलोह रोड गोबिंदगढ़ में गोबिंदगढ़-I - गोबिंदगढ़-II के एलआईएलओ	डी/सी	पंजाब	2	जून-08
12	लुधियाना (पीजी) लालटोन-जारेन प्रथम सर्किट का एलआईएलओ	डी/सी	पंजाब	4	जून-08

सं.	पारेषण लाइनों का नाम	सर्किट	क्रियान्वयन	लाइन की	पूर्ण होने का माह
		संख्या	एजेंसी	लंबाई (सीकेएम)	
13	बर्न-किहेनपुर	डी/सी	जम्मू और कश्मीर	75	जून-08
14	कलिवंथापट्टू 400 केवी सब-स्टेशन में एस पी कोइल-थारामणि ।। एलआईएलओ	डी/सी	तमिलनाडु	14	जुलाई -08
15	कयाथर- छेक्कानूरानी 400 केवी सब-स्टेशन	डी/सी	तमिलनाडु	244	जुलाई -08
16	ओंकारेश्वर में बरवाहा-नेपानगर (खंडवा) एलआईएलओ	2xडी/ सी	मध्य प्रदेश	91	जुलाई -08
17	कवाई में छाबरा-बारन-दहरा एलआईएलओ	डी/सी	राजस्थान	2	जुलाई -08
18	हीरापुरा-बस्सी लाइन के प्रथम सर्किट को खोलना और संगानेर- फुलेरा को जोड़ना	एस/सी	राजस्थान	59	जुलाई -08
19	खासा-अम्रतसर (बालाचक में (पीजीसीआईएल))	डी/सी	पंजाब	44	जुलाई -08
20	मोगा (400 केवी) – जगरांव	डी/सी	पंजाब	1	जुलाई -08
21	ओरेगाडोम सब-स्टेशन पर श्रीपेरम्बदूर-एसपी कोइल का एलआईएलओ	डी/सी	तमिलनाडु	18	अगस्त-08
22	वीरापुरम् में एसपी कोइल-थारामणि का एलआईएलओ	डी/सी	तमिलनाडु	5	अगस्त-08
23	रायगढ़ (पीजी) में पीतमपुर-रायगढ़ डी/सी के देनों सर्किटों का एलआईएलओ	2xडी/ सी	मध्य प्रदेश	92	अगस्त-08
24	कडाविनाकोडे में एमजी-मैसूर एलआईएलओ	डी/सी	कर्नाटक	33	अगस्त-08
25	राज पश्चिम एलटीपीएस में गिराल- बार्मर सर्किट 1 का एलआईएलओ	डी/सी	राजस्थान	5	अगस्त-08
26	भर्थाना में पारीक्षा-सेफई का एलआईएलओ	डी/सी	उत्तर प्रदेश	5	अगस्त-08
27	अमरकंटक (चचाई) में बिरसिंहपुर- सतना का एलआईएलओ	डी/सी	मध्य प्रदेश	90	सितंबर-08
28	वीकेआईए में हीरापुर-कुकास एलआईएलओ	डी/सी	राजस्थान	2	सितंबर-08
29	प्रस्तावित पुगालूर 400 केवी सब- स्टेशन में पुगालूर-मिवाडी का एलआईएलओ	डी/सी	तमिलनाडु	15	अक्टूबर-08

सं.	पारेषण लाइनों का नाम	सर्किट संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
30	अलामथी सब-स्टेशन-मनाली	डी/सी	तमिलनाडु	47	अक्टूबर-08
31	बारदोली-छिकाली	डी/सी	गुजरात	96	अक्टूबर-08
32	हूडी-एचएएल	डी/सी	कर्नाटक	6	अक्टूबर-08
33	भिवाडी (पीजीसीआईएल)-नीमराना	एस/सी	राजस्थान	52	अक्टूबर-08
34	खुखेरा में भिवाडी-नीमराना एलआईएलओ	डी/सी	राजस्थान	8	अक्टूबर-08
35	खुखेरा में अल्वर-भिवाडी एलआईएलओ	डी/सी	राजस्थान	5	अक्टूबर-08
36	किशनगढ़ में अजमेर-फुलेरा एलआईएलओ	डी/सी	राजस्थान	0.2	अक्टूबर-08
37	सीधी के लिए बिरसिंहपुर-रीवा एलआईएलओ	डी/सी	मध्य प्रदेश	118	नवम्बर-08
38	कुकमा में अंजार-पानाध्रोके प्रथम सर्किट का एलआईएलओ	डी/सी	गुजरात	5	नवम्बर-08
39	दुराला में शहबाद-पेहोबा प्रथम सर्किट का एलआईएलओ	डी/सी	हरियाणा	6	नवम्बर-08
40	फतेहाबाद (पीजी) में नरवाना- फतेहाबाद और फतेहाबाद-सिरसा एलआईएलओ	डी/सी	हरियाणा	5	नवम्बर-08
41	भूना में नरवाना-फतेहाबाद एलआईएलओ	डी/सी	हरियाणा	16	नवम्बर-08
42	पदमानवपुर-बालासेर	डी/सी	उड़ीसा	44	नवम्बर-08
43	भीमावरम्-गुडीवाडा	डी/सी	आंघ्र प्रदेश	121	नवम्बर-08
44	दमोह (400 केवी) में दमोह- टीकमगढ़ प्रथम सर्किट एलआईएलओ	डी/सी	मध्य प्रदेश	2	दिसम्बर-08
45	सागर में दमोह-बीना डी/सी द्वितीय सर्किट का एलआईएलओ	डी/सी	मध्य प्रदेश	10	दिसम्बर-08
46	बडौद में उज्जैन-कोटा दोनों सर्किटों का एलआईएलओ	डी/सी	मध्य प्रदेश	15	दिसम्बर-08
47	मुद्रा (अदानीi) –नानी खाखेर	डी/सी	गुजरात	33	दिसम्बर-08
48	बरिंघर-खिंनवसर	एस/सी	राजस्थान	98	दिसम्बर-08
49	जीएनडीटीपी-मुकतर (द्वितीय सर्किट)	डी/सी पर एस/सी	पंजाब	53	दिसम्बर-08
50	एचआईएएल में मिमदीपल्ली- चंद्रयंगुट्टा सर्किट-2 का एलआईएलओ	डी/सी	आंघ्र प्रदेश	3	दिसम्बर-08
51	मेदछल में मलकारम्-मिनपुर द्वितीय सर्किट एलआईएलओ	डी/सी	आंघ्र प्रदेश	1	दिसम्बर-08

सं.	पारेषण लाइनों का नाम	सर्किट संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
52	रेनताछिंताला में वीटी-तल्लापल्ली एलआईएलओ	डी/सी	आंघ्र प्रदेश	2	दिसम्बर-08
53	गंगापुर-वाल्वे	डी/सी	महाराष्ट्र	13	दिसम्बर-08
54	कुड्डालोर में नेवेली टीएस-।।-नेवेली जीरो यूनिट का एलआईएलओ	डी/सी	तमिलनाडु	22.5	जनवरी-09
55	श्रीपेरम्बदुर 400 केवी सब-स्टेशन- नोकिया	डी/सी	तमिलनाडु	11	जनवरी-09
56	खेमार-पुत्तूर (गुरूवनयानकेरे-पुत्तूर पार्ट लाइन)	डी/सी	कर्नाटक	56	जनवरी-09
57	अथानी में महालिंगपुर-कुडाची एलआईएलओ	डी/सी	कर्नाटक	48	जनवरी-09
58	बीजापुर में बसावनाबगेवडी-इंदी एलआईएलओ	डी/सी	कर्नाटक	12	जनवरी-09
59	विरशाभवाथी सब-स्टेशन में पीन्या- सेमनाहल्ली एलआईएलओ	डी/सी	कर्नाटक	0.5	जनवरी-09
60	लोनी-मुरादनगर (400 केवी सब- स्टेशन)	डी/सी	उत्तर प्रदेश	27	जनवरी-09
61	सिकंदराबाद में खुर्जा-मुरादनगर एलआईएलओ	डी/सी	उत्तर प्रदेश	38	जनवरी-09
62	गोमतीनगर में सरोजनीनगर-चिनहट एलआईएलओ	डी/सी	उत्तर प्रदेश	7	जनवरी-09
63	दोहाने में सी.बी.गंज-बरेली एलआईएलओ	डी/सी	उत्तर प्रदेश	4	जनवरी-09
64	आईबी थर्मल-बुघीपडार द्वितीय डी/सी	डी/सी	उड़ीसा	52	जनवरी-09
65	तालेगांव 400 केवी सब-स्टेशन - उरसे 220 केवी सब-स्टेशन (प्रथम सर्किट)	डी/सी	महाराष्ट्र	10	जनवरी-09
66	हटिया-लोहरदग्गा	डी/सी	झारखंड	122	जनवरी-09
67	केएलसी में जीरत-लक्ष्मीकांतपुर एलआईएलओ	डी/सी	पश्चिम बंगाल	6	जनवरी-09
68	पटना (पीजी) में फतना-खगौल प्रथम सर्किट एलआईएलओ	डी/सी	बिहार	16	जनवरी-09
69	जेपीएल-रायगढ़ (सीईबी)	डी/सी	छत्तीसगढ़	108	फरवरी-09
70	बीजापुर में बी बगेवाडी इंदी लाइन का एलआईएलओ	डी/सी	कर्नाटक	11	फरवरी-09
71	धोरीमन्ना-भिनमल	एस/सी	राजस्थान	92	फरवरी-09

 सं.	पारेषण लाइनों का नाम	सर्किट संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
72	वाईटीपीपी-अब्दुल्लापुर	डी/सी	हरियाणा	56	फरवरी-09
73	हिसार (मैय्यार) - इशारवल	डी/सी	हरियाणा	92	फरवरी-09
74	मोहाली-II में मोहाली-। - देरा बस्सी एलआईएलओ	डी/सी	पंजाब	1	फरवरी-09
75	मोहाली-देरा बस्सी (द्वितीय सर्किट स्ट्रिंजिंग)	डी/सी पर एस/सी	पंजाब	29	फरवरी-09
76	जीपीएल में गजूवाका-वीएसएस का एलआईएलओ	डी/सी	आंघ्र प्रदेश	6	फरवरी-09
77	बोको सब-स्टेशन में अगिया- सारूसाजिय के प्रथम सर्किट का एलआईएलओ	डी/सी	असम	1	फरवरी-09
78	शिवपुरी - सबलगढ़	डी/सी	मध्य प्रदेश	200	मार्च-09
79	एनपीसीएल-बीएसपी-एमएसडीएस- 6	डी/सी	छत्तीसगढ़	8	मार्च-09
80	किरन-भूना	डी/सी	हरियाणा	60	मार्च-09
81	मोगा (400 केवी) – बाघा पुराना	डी/सी	पंजाब	20	मार्च-09
82	डुबुरी-पारादीप	डी/सी	उड़ीसा	226	मार्च-09
83	गजवेल 400 केवी सब-स्टेशन - डी/सी पर कामारेड्डी एस/सी	एस/सी	आंघ्र प्रदेश	66	मार्च-09
84	थेयूर-मागरपट्टा (मागरपट्टा में थेयूर- फुरूंगी एलआईएलओ)	डी/सी	महाराष्ट्र	25	मार्च-09
85	मनेरी ।। में मनेरी-। -ऋषिकेश एलआईएलओ	डी/सी	उत्तराखंड	4	मार्च-09
	कुल 220 केवी लाइनें (सब-स्टेशन)			3224	
	कुल लाइनें (400+220) केवी			4576	
	वर्ष के दौरान पूर्ण की गई कुल सी	5829			
	(अखिल भारत)				
	वर्ष के दौरान पूर्ण की गई कुल सी	केएम 22	0 केवी लाइनें	3333	
	(अखिल भारत)				

2008-09 के दौरान स्थापित सब-स्टेशन

क्र. सं.	सब-स्टेशन	वोल्टेज अनुपात (केवी/केवी)	क्रियान्वयन एजेंसी	क्षमता (एम डब्ल्यू / एमवीए)	पूर्ण होने का माह
	400 केवी (सब-स्टेशन)				
	(सीएस)				
1	इटारसी	400/220	पावरग्रिड	315	अप्रैल-08
2	तिरूनेवेली आईसीटी- II	400/220	पावरग्रिड	315	अप्रैल-08
3	बरीपाडा	400/220	पावरग्रिड	315	अप्रैल-08
4	लुधियाना आईसीटी-I	400/220	पावरग्रिड	315	मई-08
5	मेलाकोट्टैयूर आईसीटी-I	400/220	पावरग्रिड	315	मई-08
6	लुधियाना आईसीटी-II	400/220	पावरग्रिड	315	जुलाई -08
7	कंकरोली सब-स्टेशन आईसीटी I & II	400/220	पावरग्रिड	945	सितंबर-08
8	दमोह आईसीटी- I	400/220	पावरग्रिड	315	सितंबर-08
9	मेलाकोट्टैयूर आईसीटी-II	400/220	पावरग्रिड	315	सितंबर-08
10	दमोह आईसीटी - II	400/220	पावरग्रिड	315	नवम्बर-08
11	तिरूनेवेली आईसीटी-I	400/220	पावरग्रिड	315	नवम्बर-08
12	भाटापारा आईसीटी-II	400/220	पावरग्रिड	315	जनवरी-09
13	कोटा सब-स्टेशन	400/220	पावरग्रिड	630	मार्च-09
14	रूडकी सब-स्टेशन	400/220	पावरग्रिड	315	मार्च-09
15	राजगढ़ सब-स्टेशन (द्वितीय आईसीटी)	400/220	पावरग्रिड	315	मार्च-09
16	वर्धा	400/220	पावरग्रिड	315	मार्च-09
17	उडूमालपेट (पीजी)	400/220	पावरग्रिड	315	मार्च-09
	(विस्तार)				
	कुल (केंद्रीय क्षेत्र)			6300	
	400 केवी (सब-स्टेशन)				
	(एसएस)				
1	एनपीसीएल (2x315	400/220	छत्तीसगढ़	315	अप्रैल-08
	एमवीए)				
2	गजवेल आईसीटी –l	400/220	एपी ट्रांस्को	315	सितंबर-08

	कुल (अखिल भारत)	400/220		7365	
	कुल (राज्य क्षेत्र)			1065	
	2x(160-100)				
4	सारनाथ विस्तार	400/220	उत्तर प्रदेश	120	अक्टूबर-08
3	गजवेल आईसीटी –II	400/220	एपी ट्रांस्को	315	मार्च-09

क्र.सं.	सब-स्टेशन	वोल्टेज	क्रियान्वयन	क्षमता	पूर्ण होने का माह
		अनुपात	एजेंसी	(एमडब्ल्यू/	
		(केवी/केवी)		एमवीए)	
II. 220	केवी सब-स्टेशन (सीएस)				
1	सितारगंज	220/132	पावरग्रिड	100	फरवरी-09
2	बरजोरा	220/33	डीवीसी	100	फरवरी-09
3	दुर्गापुर	220/33	डीवीसी	80	फरवरी-09
	कुल (केंद्रीय क्षेत्र)			280	
220 वे	न्वी सब-स्टेशन (एसएस)				
1	रंगनाथपुरम (2x50)	230/110	तमिलनाडु	50	अप्रैल-08
2	पेरम्बदूर अतिरिक्त ट्रांसमिशन	230/110	तमिलनाडु	100	मई-08
3	पल्लादम	230/110	तमिलनाडु	200	जून-08
4	वीरापुरम	230/110	तमिलनाडु	100	जून-08
5	पुदनचांडी (अतिरिक्त	230/110	तमिलनाडु	100	जून-08
	ट्रांसमिशन)				
6	उद्ययथूर (अतिरिक्त	230/33	तमिलनाडु	50	जून-08
	ट्रांसमिशन)				
7	कोरत्तूर (अतिरिक्त	230/110	तमिलनाडु	100	जुलाई -08
	ट्रांसमिशन)				
8	ओरगादम	230/110	तमिलनाडु	100	अगस्त-08
9	मनाली (अतिरिक्त	230/110	तमिलनाडु	100	अगस्त-08
	ट्रांसमिशन)				
10	थिरूवलमा (अगस्त) (100-	230/110	तमिलनाडु	20	अक्टूबर-08
	80)				
11	उद्ययाथूर (अतिरिक्त	230/33	तमिलनाडु	50	जनवरी-09
	ट्रांसमिशन)				
12	कदापेरी (अगस्त)(2x100-	230/110	तमिलनाडु	40	जनवरी-09
	2x80)				

13	अमूथापुरम	230/33	तमिलनाडु	50	जनवरी-09
14	बालीपार (तेजपुर)	220/132	असम	50	अप्रैल-08
15	बोको	220/132	असम	50	फरवरी-09
16	वाडा	220/22	महाराष्ट्र	50	अप्रैल-08
17	पंधानपुर	220/22	महाराष्ट्र	50	जुलाई -08
18	कोलशेट	220/22	महाराष्ट्र	50	जुलाई -08
19	भूगांव	220/33	महाराष्ट्र	25	सितंबर-08
20	भिवंडी II(कांबा)	220/22	महाराष्ट्र	50	सितंबर-08
21	कुरकंभ (50-25)	220/33	महाराष्ट्र	25	सितंबर-08
22	कोलशेट	220/100	महाराष्ट्र	200	सितंबर-08
23	भिगवान (विस्तार)	220/33	महाराष्ट्र	25	अक्टूबर-08
24	पौड़	220/132	महाराष्ट्र	100	नवम्बर-08
25	मालेगांव II	220/32	महाराष्ट्र	50	नवम्बर-08
26	नलावपारा	220/22	महाराष्ट्र	50	नवम्बर-08
27	गंगापुर (3x100)	220/132	महाराष्ट्र	300	दिसम्बर-08
28	फुरूंगी (2x100)	220/132	महाराष्ट्र	200	दिसम्बर-08
29	वथेर	220/132	महाराष्ट्र	100	मार्च-09
30	नेरूल	220/33	महाराष्ट्र	25	मार्च-09
31	मगरपट्टा (3x50)	220/22	महाराष्ट्र	150	मार्च-09
32	के. आर. पेट (ह्यूगनहल्ली)	220/66	कर्नाटक	60	मई-08
33	येरंदानाहल्ली (तृतीय	220/66	कर्नाटक	100	जून-08
	ट्रांसमिशन)				
34	शाहपुर (द्वितीय ट्रांसमिशन)	220/110	कर्नाटक	100	जून-08
35	अल्लीपुरा (अतिरिक्त	220/110	कर्नाटक	100	जुलाई -08
	ट्रांसमिशन)				
36	कडाविनाकोटे (2x100)	220/66	कर्नाटक	200	अगस्त-08
37	एचएएल	220/66	कर्नाटक	100	अक्टूबर-08
38	पुत्तूर	220/110	कर्नाटक	100	दिसम्बर-08
39	एचएएल (द्वितीय ट्रांसमिशन)	220/66	कर्नाटक	100	जनवरी-09
40	अथानी	220/110	कर्नाटक	100	जनवरी-09
41	ब्रिशाभवाथी वेली (2x100)	220/66	कर्नाटक	100	फरवरी-09

42	शीरलकोप्पा (2x100)	220/110	कर्नाटक	100	फरवरी-09
43	बीजापुर (2x100)	220/110	कर्नाटक	100	फरवरी-09
44	सलेमपुरr (द्वितीय आईसीटी)	220/132	हरियाणा	100	मई-08
45	नीलोखेरी सब-स्टेशन (2x100	220/132	हरियाणा	100	जुलाई -08
45	एमवीए)	220/102	(, , , , , ,	100	भुराग्य -00
46	बल्लभगढ़ सुद्रढ़ीकरण	220/132	हरियाणा	100	जुलाई -08
47	दौलताबाद द्वितीय आईसीटी	220/66	हरियाणा	100	जुलाई -08
48	दुराला	220/00	हरियाणा	100	नवम्बर-08
49	जोरियन (सुद्रहीकरण)	220/66	हरियाणा	100	नवम्बर-08
50	भूना (2x 100 एमवीए)	220/00	हरियाणा	100	नवम्बर-08
51	पल्ली (सुद्रहीकरण)	220/66	हरियाणा	100	नवम्बर-08
52	नीलोखेरी सब-स्टेशन द्वितीय	220/00	हरियाणा	100	दिसम्बर-08
52	ट्रांसमिशन	220/102	Q	100	14(114(-00
53	यमुनानगर (जोरियन) तृतीय	220/66	हरियाणा	100	फरवरी-09
	आईसीटी				
54	टेपला सुद्रढ़ीकरण	220/66	हरियाणा ·	100	मार्च-09
55	धुरी (सुद्रढ़ीकरण) (द्वितीय	220/66	पंजाब	100	जून-08
	ट्रांसमिशन)				
56	अमलोह रोड गोबिंदगढ़	220/66	पंजाब	100	जून-08
57	गोरैय्या (सुद्रढ़ीकरण)	220/132	पंजाब	100	सितंबर-08
58	जीएनडीटीपी, बीटीआई	220/66	पंजाब	50	अक्टूबर-08
	सुद्रढ़ीकरण (100-50)				
59	रजला (सुद्रढ़ीकरण)	220/66	पंजाब	100	दिसम्बर-08
60	जीउचटीपी लेहरा मोहाबत	220/66	पंजाब	100	फरवरी-09
61	अतरौली विस्तार 2	220/132	उत्तर प्रदेश	100	जून-08
62	आगरा कैंट (63-40)	220/132	उत्तर प्रदेश	23	जुलाई -08
63	लोनी	220/132	उत्तर प्रदेश	100	अक्टूबर-08
64	दोहना, बरेली	220/132	उत्तर प्रदेश	200	अक्टूबर-08
65	भर्थना	220/132	उत्तर प्रदेश	100	अक्टूबर-08
66	आजमगढ़ सुद्रढ़ीकरण	220/132	उत्तर प्रदेश	60	अक्टूबर-08
	2x(160-100)				
67	मुरादनगर विस्तार (160-	220/132	उत्तर प्रदेश	60	नवम्बर-08
	100)				
68	सहारनपुर विस्तार (160-	220/132	उत्तर प्रदेश	60	नवम्बर-08

	100)				
69	सिकंदराबाद (2x100)	220/132	उत्तर प्रदेश	200	जनवरी-09
70	नेहतौर सुद्रढ़ीकरण (160-	220/132	उत्तर प्रदेश	60	जनवरी-09
	100)				
71	गोमतीनगर (3x60)	220/33	उत्तर प्रदेश	180	जनवरी-09
72	लोनी (द्वितीय ट्रांसमिशन)	220/132	उत्तर प्रदेश	100	जनवरी-09
73	हरदोई रोड विस्तार (160-	220/132	उत्तर प्रदेश	60	जनवरी-09
	100)				
74	जौनपुर विस्तार (160-100)	220/132	उत्तर प्रदेश	60	जनवरी-09
75	हाथरस विस्तार (160-100)	220/132	उत्तर प्रदेश	60	जनवरी-09
76	सिमबोली विस्तार (160-	220/132	उत्तर प्रदेश	60	जनवरी-09
	100)				
77	सी.बी. गंज विस्तार (3x60)	220/132	उत्तर प्रदेश	60	जनवरी-09
78	फुलपूर विस्तार (160-100)	220/132	उत्तर प्रदेश	60	मार्च-09
79	कवाई	220/132	राजस्थान	100	जुलाई -08
80	किशनगढ़ (अजमेर)	220/132	राजस्थान	100	सितंबर-08
81	वीकेआईए	220/132	राजस्थान	100	सितंबर-08
82	नीमराना	220/132	राजस्थान	100	अक्टूबर-08
83	खुखेरा(अल्वर) (1x100)	220/132	राजस्थान	100	जनवरी-09
84	बीवर (सुद्रढ़ीकरण)	220/132	राजस्थान	50	मार्च-09
85	फलोडी (सुद्रढ़ीकरण)	220/132	राजस्थान	50	मार्च-09
86	कुछामन सिटी (सुद्रढ़ीकरण)	220/132	राजस्थान	100	मार्च-09
87	अल्वर (सुद्रढ़ीकरण)	220/132	राजस्थान	50	मार्च-09
88	दहरा (सुद्रढ़ीकरण)	220/132	राजस्थान	100	मार्च-09
89	कुकमा	220/66	गुजरात	100	अगस्त-08
90	बाला (2x50)	220/11	गुजरात	100	फरवरी-09
91	दुधरेज (2x25)	220/11	गुजरात	50	फरवरी-09
92	सुहेला (भाटापारा)	220/132	छत्तीसगढ़	160	अगस्त-08
93	सिल्तारा	220/132	छत्तीसगढ़	160	फरवरी-09
94	मेन स्टेप डाउन सब-स्टेशन	220/132	छत्तीसगढ़	160	मार्च-09
	(एमडी)-6				_
95	मंडीदीप 	220/132	मध्य प्रदेश	160	सितंबर-08
96	सागर	220/132	मध्य प्रदेश	160	दिसम्बर-08
97	बडौद	220/132	मध्य प्रदेश	160	दिसम्बर-08

98	होसंगाबाद	220/132	मध्य प्रदेश	160	फरवरी-09
99	सबलगढ़	220/132	मध्य प्रदेश	160	मार्च-09
100	मंडीदीप	220/132	मध्य प्रदेश	100	मार्च-09
101	दमोह (अतिरिक्त ट्रांसमिशन)	220/132	मध्य प्रदेश	160	मार्च-09
102	राजगढ़ (धार) (अतिरिक्त	220/132	मध्य प्रदेश	160	मार्च-09
	ट्रांसमिशन)				
103	बर्न (2x160)	220/132	जम्मू और कश्मीर	160	अक्टूबर-08
104	मनीमाजरा (चंडीगढ़)	220/66	चंडीगढ़	100	नवम्बर-08
105	रेंताचिंताला	220/132	आंघ्र प्रदेश	100	दिसम्बर-08
106	गजवेल (आईसीटी-I)	220/132	आंघ्र प्रदेश	100	फरवरी-09
107	केमारेड्डी	220/132	आंघ्र प्रदेश	100	मार्च-09
108	गंगावरम् पोर्ट	220/33	आंघ्र प्रदेश	31.5	मार्च-09
109	फतुआ (सुद्रढ़ीकरण)	220/132	बिहार	100	जनवरी-09
110	केएलसी	220/132	पश्चिम बंगाल	100	जनवरी-09
111	गोकामा (तृतीय ट्रांसमिशन)	220/132	पश्चिम बंगाल	100	जनवरी-09
112	बवाना डीआईडीसी	220/66	दिल्ली	100	फरवरी-09
113	दक्षिण वजीराबाद (चतुर्थ आईसीटी)	220/66	दिल्ली	100	फरवरी-09
114	जीटी सब-स्टेशन (अगस्त)	220/33	दिल्ली	60	फरवरी-09
	(160-100)				
115	बारकोटे (आईसीटी- II)	220/33	उड़ीसा	20	फरवरी-09
116	पारादीप (प्रथम)	220/132	उड़ीसा	100	मार्च-09
	कुल (राज्य क्षेत्र)	220		11034.5	
	कुल (अखिल भारत)	220		11314.5	

<u>अनुबंध-6.3</u>

2009-10 के दौरान बढ़ाई की गई पारेषण लाइनें 2009-10 के दौरान स्थापित की गई पारेषण लाइनें

क्र.सं.	पारेषण लाइन का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
I. 765 8	केवी लाइनें				
1	बीना (पीजी) – ग्वालियर (पीजी)	एस/सी	पावरग्रिड	233	फरवरी-10
	द्वितीय एस/सी (आरंभ में 400 केवी पर				
	प्रचालित किए जाने के लिए)				
2	सिवनी – बीना (आरंभ में 400 केवी	एस/सी	पावरग्रिड	293	मार्च-10
	पर प्रचालित किए जाने के लिए)				
3	टिहरी पूलिंग प्वइंट पर 765 केवी	डी/सी	पावरग्रिड	8	मार्च-10
	डी/सी टिहरी-मेरठ लाइन का				
	एलआईएलओ				
	वर्ष के दौरान पूरी की गई कुल 765केवी	ो सीकेएम (अखिल भारतीय	<i>534</i>	
	स्तर पर)				

क्र.सं.	पारेषण लाइन का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
II. ± 50	0 केवी एचवीडीसी लाइनें				
1	+/- 500 केवी बलिया-भिवाडी (2500 मेगावाट)	बाईपोल	पावरग्रिड	1580	मार्च-10
	वर्ष के दौरान पूरी की गई कुल 7	1580			
	भारतीय स्तर पर)				

क्र. सं.	पारेषण लाइन का नाम	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
III. 4	00 केवी लाइनें				
	केंद्रीय क्षेत्र				
1	वारंगल में रामगुंडम्-ख्म्माम एलआईएलओ	डी/सी	पावरग्रिड	26	जुलाई -09
2	कराईकुडी में मदुरई (पीजी) - त्रची (पीजी) 1 सर्किट का एलआईएलओ	डी/सी	पावरग्रिड	98	जुलाई -09
3	भिवाडी-आगरा	डी/सी	पावरग्रिड	418	अगस्त-09
4	भिनमल में कंकरोली-जेरदा प्रथम सर्किट का एलआईएलओ	डी/सी	पावरग्रिड	55	अगस्त-09
5	नेवेली (विस्तार) स्विच यार्ड नेवेली (मौजूदा) स्विच यार्ड	2xएस/ सी	पावरग्रिड	3	सितंबर-09
6	बाढ़ में कहलगांव-पटना एलआईएलओ	डी/सी	पावरग्रिड	104	अक्टूबर-09
7	अकोला-औरंगाबाद	डी/सी	पावरग्रिड	482	दिसम्बर-09
8	मेजिया में मैथन-जमशेदपुर प्रथम सर्किट एलआईएलओ	डी/सी	पावरग्रिड	100	फरवरी-10
9	भिवाडी-मोगा	डी/सी	पावरग्रिड	702	मार्च-10
10	कोलदाम-नालागढ़ (क्वैद) (पावरग्रिड भाग)	डी/सी	पावरग्रिड	90	मार्च-10
11	कंकरोली-जोधपुर	डी/सी	पावरग्रिड	193	मार्च-10
12	गुडगांव में बल्लभगढ़-भिवाडी एलआईएलओ	डी/सी	पावरग्रिड	68	मार्च-10
13	दमोह – भोपाल (एमपीईबी)	डी/सी	पावरग्रिड	430	मार्च-10
14	उधमालपेट-अरौर	डी/सी	पावरग्रिड	131	मार्च-10
15	पुड्डुचेरी में नेवेली-श्रीपेरंबदूर लाइन का एलआईएलओ	डी/सी	पावरग्रिड	26	मार्च-10
16	तिरूनेवेली (पीजी) - एडामोन (केएसईबी) बहु-सर्किट लाइन	एम/सी	पावरग्रिड	327	मार्च-10
17	हासन में तलगुप्पा (केपीटीसीएल) – नीलमंगला (केपीटीसीएल) के मौजूदा प्रथम सर्किट का एलआईएलओ	डी/सी	पावरग्रिड	148	मार्च-10

कुल 400 केवी लाइनें (सीएस)	3401
कुल 220 केवी लाइनें (सीएस)	0
कुल सीएस (765 +400+220+132 केवी पीजी	5515
मात्र)	

क्र. सं.	लाइन	सर्किट की संख्या	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)	पूर्ण होने का माह
	राज्य क्षेत्र (400 केवी लाइनें)				
1	विजयवाडा टीपी पर श्रीशेलम-नुनम एलआईएलओ	एम/सी	आंघ्र प्रदेश	24	जुलाई -09
2	भूपालपल्ली'वारेगल	डी/सी	आंघ्र प्रदेश	90	फरवरी-10
3	मेरामुंदली-मेंडाल (चंडका)	डी/सी	उड़ीसा	201	अगस्त-09
4	हिसार टीपीएस में हिसार- मोगा प्रथम सर्किट का एलआईएलओ	डी/सी	हरियाणा	3	जुलाई -09
5	हिसार-फतेहाबाद (प्रथम सर्किट)	एस/सी	हरियाणा	41	जनवरी-10
6	चोरनिया में असोज-अमरेली प्रथम सर्किट का एलआईएलओ	डी/सी	गुजरात	39	जुलाई -09
7	सूरतगढ़ एसटीपीएस-बीकानेर	एस/सी	राजस्थान	162	सितंबर-09
8	हिंदुअन में धौलपुर-हीरापुरा एलआईएलओ	डी/सी	राजस्थान	8	दिसम्बर-09
9	नया खेपरखेडा में करोडी- चंद्रपुरा एलआईएलओ	डी/सी	महाराष्ट्र	3	नवम्बर-09
10	चाकन में लोनीखंड-पडघे का एलआईएलओ	डी/सी	महाराष्ट्र	2	दिसम्बर-09
	वर्ष के दौरान पूरी की गई कुल	सीकेएम 40	0 केवी लाइनें	573	
	(सब-स्टेशन)	-	<u>-</u>		
	राज्य क्षेत्र (220 केवी लाइनें)				
1	एसटब्अीपीएस-भद्रा	एस/सी	राजस्थान	114	अप्रैल-09
2	राज पश्चिम-बारमर	डी/सी	राजस्थान	27	अप्रैल-09
3	रेनवाल में हीरापुरा-कूका एलआईएलओ	डी/सी	राजस्थान	49	मई-09

4	छाबडा-बारन-देहरा	एस/सी	राजस्थान	138	जून-09
5	कंकरोली (पीजी)-देबारी	एस/सी	राजस्थान	63	अगस्त-09
6	भीलवाडा 400 केवी सब- स्टेशन में भीलवाडा – पाली एलआईएलओ	डी/सी	राजस्थान	10	सितंबर-09
7	भीलवाडा 400 केवी सब- स्टेशन में भीलवाडा – बाली एलआईएलओ	डी/सी	राजस्थान	6	सितंबर-09
8	सेलम्बर में 132 केवी सब- स्टेशन के लिए एलआईएलओ और बांसवाडा अंत से सेलम्बर तक बांसवाडा-देबेर के द्वितीय सर्किट की स्टिंग	एस/सी	राजस्थान	87	सितंबर-09
9	हिंदुअन (400 केवी)-हिंदुअन (220 केवी)	डी/सी	राजस्थान	16	सितंबर-09
10	400 केवी एसटीपी सूरतगढ़- बीकानेर के लिए एसटीपीएस के अंत में लिंक लाइन	एस/सी	राजस्थान	3.5	सितंबर-09
11	गिराल एसटीपीएस-बारमर द्वितीय सर्किट	एस/सी	राजस्थान	35	नवम्बर-09
12	बैतू-बलोत्रा	एस/सी	राजस्थान	48	नवम्बर-09
13	गिराल एसटीपीएस-बैतू	एस/सी	राजस्थान	55	दिसम्बर-09
14	जीएसएस सेज-। में बस्सी– फुलेरा का एलआईएलओ	डी/सी	राजस्थान	15	जनवरी-10
15	कंकरोली (पीजी)-कंकरोली	एस/सी	राजस्थान	8	मार्च-10
16	बीकानेर (400 केवी) में बीकानेर-नागौर एलआईएलओ	डी/सी	राजस्थान	37	मार्च-10
17	कुछामन में मेरटा-मकराना	एस/सी	राजस्थान	108	मार्च-10
18	132 केवी जीएसएस सब- स्टेशन पर बांसवाडा-देवारी के प्रथम सर्किट का एलआईएलओ	डी/सी	राजस्थान	16	मार्च-10
19	जीएसएस धोड़ में सीकर- कुछामन एलआईएलओ	डी/सी	राजस्थान	6	मार्च-10
20	गुलाबपुरा में केटीपीएस-बेवर के प्रथम सर्किट का एलआईएलओ	डी/सी	राजस्थान	13	मार्च-10

0.4		डी/सी	77-2917	40	2.12
21	400 केवी अकाई (जैसलमेर)	डा/सा	राजस्थान	12	मार्च-10
	में 400 केवी जीएसएस अकाई				
	और 220 केवी बेस के पहुंच				
	खंड में डी/सी लाइन	-00	·		
22	अजवाल में मोगा-जगरांव एलआईएलओ	डी/सी	पंजाब	3	अप्रैल-09
23	मजीथा (मिश्रित लूप) में फतेह	डी/सी	पंजाब	5	जुलाई -09
23	गढ़ छुरियन-सिविल लाइन	317 (11		5	जुलाइ -09
	अम्रतसर के प्रथम सर्किट का				
	एलआईएलओ				
24	मजीथा (मिश्रित लूप के बिना)	डी/सी	पंजाब	5	दिसम्बर-09
	में फतेह गढ़ छुरियन-सिविल लाइन अम्रतसर के प्रथम				
	सर्किट का एलआईएलओ				
25	ऋषिकेश-मनेरीबाली चरण-II	एस/सी	उत्तराखंड	79	मई-09
	(तृतीय सर्किट)				
26	घनाली-चंबा	एस/सी	उत्तराखंड	35	अक्टूबर-09
27	भौती (पीजी)-उरई	एस/सी	उत्तर प्रदेश	90	अप्रैल-09
28	रोसा - हरदोई (सर्किट-I)	एस/सी	उत्तर प्रदेश	59	जुलाई -09
29	रोसा-शाहजहांपुर -I	एस/सी	उत्तर प्रदेश	22	जुलाई -09
30	सोहावल में सुल्तानपुर-गोंडा	डी/सी	उत्तर प्रदेश	26	जनवरी-10
	एलआईएलओ	-00			
31	दादरी में खुर्जा-मुरादनगर एलआईएलओ	डी/सी	उत्तर प्रदेश	24	फरवरी-10
32	रोसा-सहारनपुर -II	एस/सी	उत्तर प्रदेश	22	मार्च-10
33	गुडगांव सेक्टर 56 में पल्ली-	 डी/सी	हरियाणा		
33	गुडगांव सेक्टर 52 का	31/(11	() (अ) आ	2	अगस्त-09
	एलआईएलओ				
34	किरोडी-मसूदपुर	डी/सी	हरियाणा	24	अक्टूबर-09
35	किरोडी में जींद-हिसार	डी/सी	हरियाणा	26	मार्च-10
	एलआईएलओ				
36	मसूदपुर में जींद-हिसार एलआईएलओ	डी/सी	हरियाणा	4	मार्च-10
37	बवाना डीआईडीसी (भाग में	डी/सी	दिल्ली	14	नवम्बर-09
31	लूप) में बवाना-नरेला	,, ,,,		14	19791-03
	एलआईएलओ				
38	नरसिंहपुर में जबलपुर-	डी/सी	मध्य प्रदेश	4	अप्रैल-09
	इटारसी (द्वितीय सर्किट) का				
	एलआईएलओ				

39	होसंगाबाद में भोपाल- इटारसी एलआईएलओ प्रथमसर्किट	डी/सी	मध्य प्रदेश	12	अप्रैल-09
40	छिंदवाड़ा - सिवनी (पीजी)	डी/सी	मध्य प्रदेश	134	अप्रैल-09
41	सागर में दमोह-बीना डी/सी प्रथम सर्किट का एलआईएलओ	डी/सी	मध्य प्रदेश	15	अप्रैल-09
42	बाद नगर में पीतमपुरा- रतलाम के द्वितीय सर्किट एलआईएलओ	डी/सी	मध्य प्रदेश	20	अप्रैल-09
43	मकरोनिया-सागर (ट्रेक्शन फीडर)	डी/सी	मध्य प्रदेश	10	जुलाई -09
44	होसंगाबाद में इटारसी- भोपाल द्वितीय सर्किट एलआईएलओ	डी/सी	मध्य प्रदेश	11	जुलाई -09
45	सुजालपुर-राजगढ़	डी/सी	मध्य प्रदेश	144	सितंबर-09
46	पिपरिया में जबलपुर-इटारसी के प्रथम सर्किट का एलआईएलओ	डी/सी	मध्य प्रदेश	7	अक्टूबर-09
47	भोपाल (400 केवी)-अश्ता सब-स्टेशन	डी/सी	मध्य प्रदेश	194	जनवरी-10
48	हंडिया में सतपुरा-इटारसी प्रथम सर्किट का एलआईएलओ	डी/सी	मध्य प्रदेश	170	मार्च-10
49	थेयूर-मगरपट्टा (उर्से-तालेगांव द्वितीय सर्किट)	एस/सी	महाराष्ट्र	10	अप्रैल-09
50	सोमकर में नेरूल-ट्रोम्बे एलआईएलओ	डी/सी	महाराष्ट्र	1	अप्रैल-09
51	हिंजवाडी-।। में पिरंगूट– हिंजवाडी-। एलआईएलओ	डी/सी	महाराष्ट्र	10	सितंबर-09
52	बारमणि एग्रो, शेतपाल में भिगवान-बारामती एलआईएलओ	डी/सी	महाराष्ट्र	8	नवम्बर-09
53	हिंजवाडी-।। में कंदलगांव- चिंचवाड डी/सी एलआईएलओ	डी/सी	महाराष्ट्र	12	नवम्बर-09
54	छाकन मैसर्स वोक्स वैगन	डी/सी	महाराष्ट्र	5	दिसम्बर-09
55	765 केवी देवली सब-स्टेशन में वर्धा-बदनेरा एलआईएलओ	डी/सी	महाराष्ट्र	20	फरवरी-10
56	ऐरोली (नालेज पार्क) में कलवा-नासिक (सर्किट-III) का	डी/सी	महाराष्ट्र	1	मार्च-10

	एलआईएलओ				
57	चोरनिया बाला	डी/सी	गुजरात	59	जून-09
58	कोम्बा में सर्किट-1 पर वैव-	डी/सी	गुजरात	10	जुलाई -09
	जगडिया एलआईएलओ				
59	रायपुर-दुधरेज	डी/सी	गुजरात	20	जुलाई -09
60	टुंडा यूएमपीपी – नैनीखक्खर	एस/सी	गुजरात	15	दिसम्बर-09
61	अदानी (मुंद्रा) – वरसाना	डी/सी	गुजरात	166	जनवरी-10
62	मगरौल-मोभा	डी/सी	गुजरात	219	फरवरी-10
63	रायगढ़400केवी(पीजीसीआईएल)	एस/सी	छत्तीसगढ़	21	जून-09
	सब-स्टेशन – रायगढ़				
64	खेडामारा -राजनांदगांव	डी/सी	छत्तीसगढ़	50	सितंबर-09
65	भाटापारा 400 केवी	डी/सी	छत्तीसगढ़	27	जनवरी-10
	(पीजीसीआईएल)– सुहेला				
	(भाटापारा)				
66	अमोना में कोल्हापुर –पोंडा	डी/सी	गोवा	3	नवम्बर-09
_	प्रथम सर्किट का एलआईएलओ				
67	दाबापेट (नेलमंगला) मे	डी/सी	कर्नाटक	2	अप्रैल-09
	कदौर-नेलमंगला एलआईएलओ				
68	हिरीयूर-तल्लाक	डी/सी	कर्नाटक	80	अप्रैल-09
69	इंदी-बवानाबेगेवाडी	डी/सी	कर्नाटक	170	अप्रैल-09
70	नजिहारी-हुबली और हुबली-	डी/सी	कर्नाटक	3	सितंबर-09
	गदज लाइन के बीच लिंक				
7.4	लाइन मुडौल/वजारामत्ती में	डी/सी	कर्नाटक	0	<i>C</i> · · · · · · · · · · · · · · · · · · ·
71	महालिगापुर-बगलकोट	કા/લા	भगाटक	2	सितंबर-09
	एलआईएलओ				
72	बिदादी-कोथीपुरा (रामनगर)	एम/सी	कर्नाटक	36	सितंबर-09
73	यूटीपीएस-नंदीकुर – खेमार	डी/सी,	कर्नाटक	48	अक्टूबर-09
	(आंशिक रूप से बहु-सर्किट	एम/सी			
	बहु-वोल्टेज टावर & आंशिक				
	रूप से डी/सी टावर)				
74	सौंदती में महालिंगापुर –	डी/सी	कर्नाटक	9	दिसम्बर-09
	हुबली लाइन का				
	एलआईएलओ	-0 1 -0	 		
75	बतीपुरा-कडाकोला	डी/सी	कर्नाटक	44	फरवरी-10

76	मनाली- टोंडियारपेट	डी/सी	तमिलनाडु	18	मई-09
77	मीलाविट्टन – मैसर्स इंड भारत	एस/सी	तमिलनाडु	9	जुलाई -09
78	कराईकुडी 400 केवी सब-	डी/सी	तमिलनाडु	7.5	अगस्त-09
	स्टेशन पर कराईकुडी –				
	पुडकोट्टई एलआईएलओ				
79	पुगालूर 400 केवी सब-स्टेशन	डी/सी	तमिलनाडु	18	अगस्त-09
	पुगालूर-अलुंदूर एलआईएलओ	-0.0			
80	अमत्थापुरम - छेक्कानूरानी	डी/सी पर	तमिलनाडु	110	अक्टूबर-09
		एस/सी			
81	बैन ब्रित में टोंडियारपेट-	<i>ड</i> ी/सी	तमिलनाडु	2	नवम्बर-09
	माइलापोर एलआईएलओ	-0.0			,
82	अरौर 400 केवी - अरौर 230	डी/सी	तमिलनाडु	43	जनवरी-10
	केवी सब-स्टेशन	एस/सी	तमिलनाडु	50	
83	मेलूमिछामपट्टी – कॉमन	एस/सा	तामलगाडु 	58	जनवरी-10
	प्वाइंट – मिवाडी	4.4			
84	श्रीपेरम्बदुर 400 केवी सब-	डी/सी पर	तमिलनाडु	15	जनवरी-10
	स्टेशन - श्रीपेरम्बदुर सिपकोट	एस/सी			
	230 केवी सब-स्टेशन	-			
85	तिरूनेवेली 400 केवी / -	डी/सी	तमिलनाडु	69	फरवरी-10
	उड्याथूर	पर एस/सी			
86	मैसर्स इंड भारत-	डी/सी &	तमिलनाडु	154	मार्च-10
	छेक्कानूरानी	एस/सी			
87	इडप्पोन में कायमकुलम-	डी/सी	केरल	17	जून-09
	इडामन (सर्किट-2)				
	एलआईएलओ	4.4			
88	वडाकारा सब-स्टेशन के लिए टेप लाइन	डी/सी	करल 	2	अगस्त-09
89	गेरीविडी - बोड्डेपल्लीपेटा	डी/सी	आंघ्र प्रदेश	44	जुलाई -09
	, , , , , , , , , , , , , , , , , , , ,	पर			
		एस/सी			
90	बोड्डेपल्लीपेटा –टेक्काली	डी/सी पर	आंघ्र प्रदेश	44	जुलाई -09
		पस/सी			
91	आरटीपीपी-पुलीवेंदुला	डी/सी	आंघ्र प्रदेश	82	दिसम्बर-09
92	नर्रावपेट में वीटी-पोडिल्ली	डी/सी	आंघ्र प्रदेश	4	दिसम्बर-09
	एलआईएलओ	0 : 0			
93	जपला में सोनेनगर-गढ़वा डी/सी एलआईएलओ	डी/सी	झारखंड	8	मई-09
	्रा/ता एलजाइएलजा				

94	बिहार शरीफ- बेगुसराय	डी/सी	बिहार	150	नवम्बर-09
95	बुधीपडार-बोलंगीर	डी/सी	उड़ीसा	312	जनवरी-10
96	टिनुकिया- नामरूप	डी/सी	असम	80	अप्रैल-09
	वर्ष के दौरान पूरी की गई कुल स	नीकेएम 22	20 केवी लाइनें	4325	
	(सब-स्टेशन)				
	400 केवी लाइन की (निजी				
	क्षेत्र)				
1	मुंद्रा-देहगाम	डी/सी	अदानी पावर लिमिटेड	868	जुलाई -09
2	थोरंगल्लू जेएसडब्ल्यू सब-	डी/सी	जेडब्ल्यू एनर्जी लिमिटेड	16	अगस्त-09
	स्टेशन में आरटीपीएस-गुट्टूर एलआईएलओ		।लामटड		
3	कोडापल्ली-नुन्ना	डी/सी	लेंको	44	अक्टूबर-09
	वर्ष के दौरान पूरी की गई कुल स	928			
	(पावर-स्टेशन)				
	निजी क्षेत्र				
1	अखाकोल-पूना	डी/सी	टोरेंट पावर	72	मई-09
2	अखाकोल-भतर	डी/सी	टोरेंट पावर	136	मई-09
3	अखाकोल-वेद (डभोली)	डी/सी	टोरेंट पावर	52	जून-09
4	बुडगे-बुडगे-कोस्बा	डी/सी	सीईसी	170	फरवरी-10
	कुल सीकेएम 220 केवी लाइनें			430	
	(पीएस)				
	वर्ष के दौरान पूरी की गई कुल सीकेएम 400 केवी लाइनें (अखिल भारत)			4902	
	वर्ष के दौरान पूरी की गई कुल र	निकेएम 22	0 केवी लाइनें	4755	
	(अखिल भारत)				
1					

2009-10 के दौरान स्थापित सब-स्टेशन

क्र. सं.	सब-स्टेशन	वोल्टेज अनुपात (केवी/केवी)	क्रियान्वयन एजेंसी	क्षमता (एम डब्ल्यू/ एमवीए)	पूर्ण होने का माह
I. 50	00 केवी एचवीडीएस (सब-स्टेशन)				
1	बलिया और भिवाडी में कनवर्टर स्टेशन (2x1250 मेगावाट)			1250	मार्च-10
	कुल (केंद्रीय क्षेत्र)			1250	

क्र. सं.	सब-स्टेशन	वोल्टेज अनुपात (केवी/केवी)	क्रियान्वयन एजेंसी	क्षमता (एम डब्ल्यू / एमवीए)	पूर्ण होने का माह
II. 40	00 केवी (सब-स्टेशन)				
	केंद्रीय क्षेत्र				
1	त्रिवेंद्रम (पीजी) (विस्तार)	400/220	पावरग्रिड	315	जून-09
	(1x315)				
2	वारंगल सब-स्टेशन (2x315)	400/220	पावरग्रिड	630	जुलाई -09
3	कराईकुडी सब-स्टेशन	400/220	पावरग्रिड	630	जुलाई -09
4	(2x315)	400/000	पावरग्रिड	000	00
4	भिमनाल सब-स्टेशन (2x315) प्रथम आईसीटी	400/220	भाषराग्रड	630	अगस्त-09
5	पुगालूर / (2x315)	400/222	पावरग्रिड	630	अगस्त-09
6	रूडकी / (द्वितीय आईसीटी)	400/220	पावरग्रिड	315	मार्च-10
7	लुधियाना(तृतीय आईसीटी)	400/220	पावरग्रिड	315	मार्च-10
8	हिसार तृतीय आईसीटी	400/220	पावरग्रिड	315	मार्च-10
	(1x315)				
9	गुडगांव जीआईएस सब-स्टेशन	400/220	पावरग्रिड	315	मार्च-10
	(2x315)				
10	वर्धा सब स्टेशन(2x315)	400/220	पावरग्रिड	315	मार्च-10
	द्वितीय ट्रांसमिशन				
11	सोलापुर	400/220	पावरग्रिड	630	मार्च-10

12	अरासुर सब-स्टेशन (2x315)	400/220	पावरग्रिड	630	मार्च-10
13	पोंडिचेरी सब-स्टेशन (2x315)	400/220	पावरग्रिड	630	मार्च-10
14	हासन सब-स्टेशन	400/220	पावरग्रिड	630	मार्च-10
	कुल (केंद्रीय क्षेत्र)			6930	
1	मेंढ़ाल (2x315)	400/220	उड़ीसा	630	अगस्त-09
2	दुर्गापुर (6x105)	400/220	पश्चिम बंगाल	630	दिसम्बर-
					09
3	चाकन सब-स्टेशन (3x105)	400/220	महाराष्ट्र	315	दिसम्बर-
					09
4	जेजूरी (3x167)	400/220	महाराष्ट्र	500	जनवरी-10
5	बीकानेर / (1X315)	400/220	राजस्थान	315	मार्च-10
	कुल (राज्य क्षेत्र)			2390	

क्र. सं.	सब-स्टेशन	वोल्टेज अनुपात (केवी/केवी)	क्रियान्वयन एजेंसी	क्षमता	पूर्ण होने का माह
		(यम्पा/यम्पा)		(एम डब्ल्यू / एमवीए)	
III. 22	20 केवी (सब-स्टेशन)				
	केंद्रीय क्षेत्र				
1	सितारगंज द्वितीय आईसीटी	220/132	पावरग्रिड	100	जुलाई -09
2	कोपिली सब-स्टेशन विस्तार	220/132	पावरग्रिड	160	मार्च-10
3	दीमापुर सब-स्टेशन विस्तार	220/132	पावरग्रिड	100	मार्च-10
	कुल (केंद्रीय क्षेत्र)			360	
	राज्य क्षेत्र				
1	गुडगांव सुदृढ़ीकरण	220/66	हरियाणा	100	अप्रैल-09
	(सेक्टर-52 क) तृतीय				
	ट्रांसमिशन				
2	इशरवाल	220/132	हरियाणा	100	अप्रैल-09
3	पेहोबा सुदृढ़ीकरण (100-	220/132	हरियाणा	50	जून-09
	50)				
4	छीका सुदृढ़ीकरण (तृतीय)	220/132	हरियाणा	100	जून-09
5	निसिंग सुदृढ़ीकरण	220/132	हरियाणा	100	जून-09
	(तृतीय)				

6	भूना (द्वितीय ट्रांसमिशन)	220/132	हरियाणा	100	जुलाई -09
7	गुड़गांव सुदृढ़ीकरण	220/66	हरियाणा	100	अगस्त-09
	(सेक्टर-56)				
8	करतारपुर (विस्तार)	220/66	पंजाब	100	अप्रैल-09
	(द्वितीय)				
9	मोहाली-II (नया)	220/66	पंजाब	100	अगस्त-09
10	बाघा पुराना (भूमिगत)	220/66	पंजाब	100	अगस्त-09
11	मजीथा (भूमिगत)	220/66	पंजाब	100	अगस्त-09
12	अजितवाल	220/66	पंजाब	100	अक्टूबर-09
13	रेनवाल	220/132	राजस्थान	100	मई-09
14	बारन	220/132	राजस्थान	100	मई-09
15	भद्रा	220/132	राजस्थान	100	मई-09
16	महिंद्रा ईजेड	220/132	राजस्थान	100	मार्च-10
17	गुलाबपुरा	220/132	राजस्थान	100	मार्च-10
18	धौड़	220/132	राजस्थान	100	मार्च-10
19	डीआईडीसी बवाना	220/66	दिल्ली	100	जुलाई -09
	(द्वितीय ट्रांसमिशन)				
20	बस्ती सुदृढ़ीकरण (160-	220/132	उत्तर प्रदेश	60	अप्रैल-09
	100)				
21	सुल्तानपुर सुदृढ़ीकरण	220/132	उत्तर प्रदेश	60	अगस्त-09
	(160-100)				
22	सिकंदराबाद	220/132	उत्तर प्रदेश	100	अक्टूबर-09
23	मुजफ्फरपगर	220/132	उत्तर प्रदेश	100	जनवरी-10
24	सोहावल	220/132	उत्तर प्रदेश	100	जनवरी-10
25	सोनखर	220/33	महाराष्ट्र	50	अप्रैल-09
26	तमबर्नी	220/33	महाराष्ट्र	25	अप्रैल-09
27	मगरपट्टा	220/22	महाराष्ट्र	150	अप्रैल-09
28	वथर	220/132	महाराष्ट्र	100	जून-09
29	वथर	220/33	महाराष्ट्र	50	जून-09
30	तेमघर	220/22	महाराष्ट्र	50	अगस्त-09
31	वशाला	220/22	महाराष्ट्र	25	अगस्त-09
32	हिंजेवाडी II सब-स्टेशन	220/22	महाराष्ट्र	50	अक्टूबर-09
33	महापे (तृतीय ट्रांसमिशन)	220/22	महाराष्ट्र	50	जनवरी-10

34	तेमघर (द्वितीय ट्रांस.)	220/22	महाराष्ट्र	50	जनवरी-10
35	महद	220/22	महाराष्ट्र	50	मार्च-10
36	ऐरोली (नॉलेज पार्क)	220/22	महाराष्ट्र	50	मार्च-10
37	पनवेल (तृतीय	220/33	महाराष्ट्र	50	मार्च-10
	ट्रांसमिशन)				
38	सीधी सब-स्टेशन	220/132	मध्य प्रदेश	160	मई-09
39	राजगढ़ (ब्यावरा)	220/132	मध्य प्रदेश	160	सितंबर-09
40	बैरागढ़	220/132	मध्य प्रदेश	160	सितंबर-09
41	नागदा	220/132	मध्य प्रदेश	160	सितंबर-09
42	इंदौर (दक्षिण जोन)	220/132	मध्य प्रदेश	160	सितंबर-09
43	बादनगर	220/132	मध्य प्रदेश	160	अक्टूबर-09
44	छिंदवाडा	220/132	मध्य प्रदेश	160	नवम्बर-09
45	पिररिया	220/132	मध्य प्रदेश	160	जनवरी-10
46	आस्था	220/132	मध्य प्रदेश	100	जनवरी-10
47	बडनगर (द्वितीय	220/132	मध्य प्रदेश	160	जनवरी-10
	ट्रांसफार्मर)				
48	भोपाल (चंबला)	220/132	मध्य प्रदेश	100	मार्च-10
	अतिरिक्त ट्रांसमिशन				
49	राजनांदगांव	220/132	छत्तीसगढ़	160	सितंबर-09
50	रायगढ़	220/132	छत्तीसगढ़	160	जुलाई -09
51	अमोना (2x50)	220/33	गोवा	100	नवम्बर-09
52	बाला (2x50)	220/11	गुजरात	100	नवम्बर-09
53	दुधरेज (2x25)	220/11	गुजरात	50	नवम्बर-09
54	तल्लाक (द्वितीय	220/66	कर्नाटक	100	अप्रैल-09
	ट्रांसमिशन)				
55	हस्कोटे	220/66	कर्नाटक	100	अप्रैल-09
56	दाबापेट (नीलमंगला)	220/66	कर्नाटक	100	अप्रैल-09
57	एचआर लेआउट (2x150-	220/66	कर्नाटक	100	अप्रैल-09
	2x100)				
58	शिरालकोपा	220/110	कर्नाटक	100	अप्रैल-09
59	सिंधनूर (प्रथम)	220/110	कर्नाटक	100	अप्रैल-09
60	इंदी (2x100)	220/110	कर्नाटक	200	अप्रैल-09
61	नागानाथपुरा (प्रथम	220/66	कर्नाटक	100	जून-09
	ट्रांस.)				

62	वजरामट्टी (2x100)	220/110	कर्नाटक	200	अक्टूबर-09
63	रानेबेन्नूर (अतिरिक्त.ट्रांसमिशन)	220/110	कर्नाटक	100	अक्टूबर-09
64	कुसतागी (अतिरिक्त.ट्रांसमिशन)	220/110	कर्नाटक	100	नवम्बर-09
65	सौंदत्ती	220/110	कर्नाटक	100	मार्च-10
66	नागनाथपुरा (द्वितीय ट्रांसमिशन)	220/66	कर्नाटक	100	दिसम्बर-09
67	्र श्रीपेरम्बदुर एसआईपीसीओटी	230/110	तमिलनाडु	100	अप्रैल-09
68	नोकिया	230/110	तमिलनाडु	100	अप्रैल-09
69	पोन्नापुरम् (अतिरिक्त. ट्रांसमिशन)	230/110	तमिलनाडु	100	अप्रैल-09
70	कडप्पेरी तृतीय (80 से 100 एमवीए)	230/110	तमिलनाडु	20	अप्रैल-09
71	पल्लादाम अतिरिक्त ट्रांसमिशन	230/110	तमिलनाडु	100	मई-09
72	मेत्तूर (विस्तार)	230/110	तमिलनाडु	100	जून-09
73	पेरम्बलूर (विस्तार) (100-50)	230/110	तमिलनाडु	50	जुलाई -09
74	अरनी (अतिरिक्त ट्रांसमिशन)	230/110	तमिलनाडु	80	अगस्त-09
75	थिरूवलम् अतिरिक्त ट्रांसमिशन	230/110	तमिलनाडु	100	सितंबर-09
76	अलुंदूर (विस्तार) (100- 50)	230/110	तमिलनाडु	50	सितंबर-09
77	Amयूनिटthapयूनिटram अतिरिक्त.ट्रांसमिशन	230/33	तमिलनाडु	50	अक्टूबर-09
78	रेंगनाथपुरम् अतिरिक्त ट्रांसमिशन	230/110	तमिलनाडु	100	अक्टूबर-09
79	कोरातूर सुदृढ़ीकरण (80 से 100 एमवीए)	230/110	तमिलनाडु	20	अक्टूबर-09
80	बैन ब्रिज (जीएमआर वावी)	230/110	तमिलनाडु	100	नवम्बर-09

	(2x50) कुल (राज्य क्षेत्र)	220		10195	
103	नामरूप (विस्तार)	220/132	जित्त न	100	अक्टूबर-09
102	समागुरी (विस्तार)	220/132	असम असम	50	सितंबर-09
101	भदरक (द्वितीय Traf)	220/132	उड़ीसा	100	सितंबर-09
	ट्रांसफार्मर)				_
100	पारादीप (द्वितीय	220/132	उड़ीसा	100	सितंबर-09
98	बेगूसराय (2x100)	220/132	बिहार	200	नवम्बर-09
97 98	आरामबाग (विस्तार) बिहार शरीफ विस्तार	220/132 220/132	बिहार	160 150	सितंबर-09 अप्रैल-09
96	शुभाग्राम	220/132	पश्चिम बंगाल पश्चिम बंगाल	160	सितंबर-09
95	नया टाउन कक-III (2x50)	220/33	पश्चिम बंगाल पश्चिम बंगाल	100	जुलाई -09
94	नया टाउन कक-III (2x160)	220/132	पश्चिम बंगाल	320	जुलाई -09
93	नेल्लौर (मनुबोइन)	220/132	आंघ्र प्रदेश	100	दिसम्बर-09
92	नारारौपेट	220/132	आंघ्र प्रदेश	100	दिसम्बर-09
91	पुल्लीवेंदुला	220/132	आंघ्र प्रदेश	100	दिसम्बर-09
90	गजवेल द्वितीय ट्रांसमिशन	220/132	आंघ्र प्रदेश	100	नवम्बर-09
89	कुंद्रा	220/110	केरल	200	दिसम्बर-09
88	वदाकरा द्वितीय ट्रांसमिशन	220/110	केरल	100	दिसम्बर-09
87	वदाकरा	220/110	केरल	100	अगस्त-09
86	सलेम सुदृढ़ीकरण (100- 80)	230/110	तमिलनाडु	20	मार्च-10
85	औथाकलमांडपम् (तृतीय ट्रांस.)	230/110	तमिलनाडु	100	मार्च-10
84	उद्याथूर	230/110	तमिलनाडु	100	मार्च-10
83	थिरूवलम् सुदृढ़ीकरण (100-75)	230/110	तमिलनाडु	25	जनवरी-10
82	नेथीमेदू सुदृढ़ीकरण (100- 80)	230/110	तमिलनाडु	20	दिसम्बर-09
81	विन्नामंगलम सुदृढ़ीकरण (100-50)	230/110	तमिलनाडु	50	नवम्बर-09

	संयुक्त उद्यम/निजी क्षेत्र				
1	पूना (2x160 एमवीए)	220/66	टोरेंट पावर	160	मई-09
2	भतर (2x160 एमवीए)	220/66	टोरेंट पावर	160	मई-09
3	वेद (डभोई) (2x160	220/66	टोरेंट पावर	160	जून-09
	एमवीए) जीआई				
4	पूना (द्वितीय ट्रांसमिशन)	220/66	टोरेंट पावर	160	जुलाई -09
5	भतर (द्वितीय ट्रांसमिशन)	220/66	टोरेंट पावर	160	जुलाई -09
6	वेद (डभोई) (द्वितीय	220/66	टोरेंट पावर	160	अगस्त-09
	ट्रांस.) जीआई				
7	कोबा (3x160)	220/132	सीईसी लिमिटेड	480	नवम्बर-09
	कुल (संयुक्त उद्यम/निजी			1440	
	क्षेत्र)				
	कुल (अखिल भारत)	400		9320	
	कुल (अखिल भारत)	220		11995	

<u>अनुबंध -6.4</u>

2010-11 के दौरान बढ़ाई गई पारेषण प्रणाली

2010-11 के दौरान स्थापित की गई पारेषण लाइनें

क्र.	पारेषण लाइन का नाम	सर्किट की	क्रियान्वयन	लाइ	पूर्ण होने का
सं.		संख्या	एजेंसी	न की लंबा	माह
				क्र	
I. 40	् 0 केवी लाइनें				
	400 केवी लाइन (सीएस)				
1	बाड-बलिया (क्वैद)	डी/सी	पावरग्रिड	488	जून-10
2	बहादुरगढ़-सोनीपत लाइन (तृतीय स्थिति)	डी/सी	पावरग्रिड	104	जुलाई -10
3	रायगढ़ - रायपुर	डी/सी	पावरग्रिड	440	सितंबर-10
4	मैथन आरबी - मैथन (पीजी)	डी/सी	पावरग्रिड	62	सितंबर-10
5	कानपुर - बल्लभगढ़	डी/सी	पावरग्रिड	743	अक्टूबर-10
6	गोरखपुर - लखनऊ	डी/सी	पावरग्रिड	528	अक्टूबर-10
7	मेरठ –कैथल (क्यू) (उचआईएल)	डी/सी	पावरग्रिड	327	अक्टूबर-10
8	बिरसिंहपुर (एमपीजेनको) – दमोह	डी/सी	पावरग्रिड	457	अक्टूबर-10
9	रांची-राउरकेला	डी/सी	पावरग्रिड	290	नवम्बर-10
10	पीराना-देहगाम	डी/सी	पावरग्रिड	94	दिसम्बर-10
11	अंदल में दुर्गापुर-जमशेदपुर पार्ट लाइन के	डी/सी	पावरग्रिड	38	जनवरी-11
	लिए एलआईएलओ (दुर्गापुर एसटीएसपी				
	में आरंभि विद्युत को सुकर बनाने के लिए)				
12	पार्ली (एमएसईटीसीएल) – पार्ली (पीजी)	डी/सी	पावरग्रिड	10	फरवरी-11
13	कोटेश्वर-टिहरी पूलिंग प्वाइंट	डी/सी	पावरग्रिड	5	मार्च-11
14	चमेरा पूलिंग स्टेशन - चमरा-॥ एचईपी	एस/सी	पावरग्रिड	1	मार्च-11
	(भाग-I)				
15	अब्दुल्लापुर-सोनीपत	डी/सी	पावरग्रिड	291	मार्च-11
16	भद्रावती (पीजी)-पार्ली(पीजी)	डी/सी	पावरग्रिड	768	मार्च-11
17	सुजालपुर में बीना-नागदा एलआईएलओ	डी/सी	पावरग्रिड	44	मार्च-11
18	दुर्गापुर एसटीपीएस में दुर्गापुर-जमशेदपुर	डी/सी	डीवीसी	7	जनवरी-11
	(पीजी) एलआईएलओ				
19	रघुनाथपुर में मैथन-रांची (पीजी)	डी/सी	डीवीसी	21	मार्च-11
	एलआईएलओ				

	वर्ष के दैरान पूरी की गई कुल सीकेएम 400	केवी लाइनें	(सीएस)	4718	
	400 केवी लाइनें (सब-स्टेशन)				
1	मलकारम् में रामगुंडम-घानापुर एलआईएलओ	डी/सी	एपी ट्रांस्को	52	अप्रैल-10
2	कोथागुडम टीपी – ख्म्माम	डी/सी	एपी ट्रांस्को	136	मार्च-11
3	भुसावल -II – मौजुदा खडका	डी/सी	एमएसईटीसीए ल	15	अप्रैल-10
4	हिसार – किरोड़ी	डी/सी	एचवीपीएनएल	13	सितंबर-10
5	हिसार – फतेहाबाद	डी/सी	एचवीपीएनएल	90	सितंबर-10
6	झझर - दौलतापुर (प्रथम सर्किट)	डी/सी	एचवीपीएनएल	68	जनवरी-11
7	झझर - दौलतापुर (द्वितीय सर्किट.)	डी/सी	एचवीपीएनएल	68	फरवरी-11
8	छाबडा-हिंदुअन	एस/सी+	आरआरवीपीएन	342	अप्रैल-10
		डी/सी	एल		
9	राजवेत- जोधपुर	डी/सी	आरआरवीपीएन एल	417	मई-10
10	राजवेत-बारमर (प्रथम सर्किट)	एस/सी	आरआरवीपीएन एल	15	मई-10
11	डहरा (कोटा)-भीलवाड़ा	एस/सी+ डी/सी	आरआरवीपीएन एल	187	अक्टूबर-10
12	जैसलमेर- बारमर	एस/सी	ं आरआरवीपीएन एल	143	नवम्बर-10
13	जोधपुर - मेरटा (द्वितीय सर्किट)	एस/सी	आरआरवीपीएन एल	97	जनवरी-11
14	केटीपीएस-कोटा(पीजी) (220 केवी पर प्रभारित किए जाने के लिए)	डी/सी	आरआरवीपीएन एल	13	मार्च-11
15	राजवेत- बारमर (द्वितीय सर्किट)	एस/सी	आरआरवीपीएन एल	15	मार्च-11
16	मुंडका में बमनौली-बवाना एलआईएलओ	डी/सी	डीटीएल	1	फरवरी-11
17	डभोल-नेगोथने सर्किटII	एस/सी	एमएसईटीसीए ल	137	जून-10
18	वरसाना-हदाला	डी/सी	जीईटीसीओ	318	नवम्बर-10
19	मुंद्रा (अदानी) -वरसाना	डी/सी	जीईटीसीओ	168	फरवरी-11
20	सगरदिघी में फरक्का-सुभाग्राम एस/सी एलआईएलओ	डी/सी	डब्ल्यूटीसीएल	13	नवम्बर-10
21	लिंबडी (छोनिया) (जीईटीसीओ)- रामचंद्रपुरा (वदावी) (जीईटीसीओ)	डी/सी	जीईटीसीओ	206	मार्च-11
	वर्ष के दौरान पूरी की गई कुल सीकेएम 40	2514			

	400 केवी लाइनें (पीएस)					
1	सुजेन - झानोर	डी/सी	टोरेंट	टोरेंट पावर		जुलाई -10
2	जयगढ़ - नया कोयना (सर्किट 1)	एस/सी	जेडब	ल्यू एनर्जी	55	जुलाई -10
3	Jaigad - नया कोयना (सर्किट 2)	एस/सी	जेडब	ल्यू एनर्जी	55	अगस्त-10
4	झझर - मुंडका (प्रथम सर्किट)	एस/सी	एपी	सीपीएल	62	सितंबर-10
5	झझर - मुंडका (द्वितीय सर्किट)	एस/सी	एपी	सीपीएल	70	नवम्बर-10
6	सोलापुर (पावरग्रिड) में सोलापुर-कराड	डी/सी	रिला	यंस पावर	230	जनवरी-11
	एलआईएलओ					
7	झानौर-पिराना वाया पिराना टीपीएल	डी/सी पर एम/सी	टोरेंट	पावर	284	फरवरी-11
8	स्टरलाइट टीपीपी में राउरकेला- रायगढ़	डी/सी	स्टरत	नाइटटीपी	54	फरवरी-11
	एलआईएलओ			पी		
	वर्ष के दौरान पूरी की गई कुल सीकेएम 400		970			
	(सब-स्टेशन)					
	कुल सीकेएम 400 केवी लाइनें (अखिल भार	82	202			

क्र. सं.	पारेषण लाइन का नाम	सर्किट व संख्या		क्रियान्वयन एजेंसी	लाइन की लंबाई	पूर्ण होने का माह
II. 220	केवी लाइनें					
	220 केवी लाइन (सीएस)					
1	वापी -खडोली (यूटी छीएनएच)	डी/सी		पावरग्रिड	62	सितंबर-10
2	कल्यानेश्वरी – पिथाकारी	डी/सी		डीवीसी	16	जुलाई -10
3	धनबाद में कल्यानेश्वरी –चंद्रपुरा	2xडी/स	ft	डीवीसी	8	मार्च-11
	टीपी एलआईएलओ					
4	कल्यानेश्वरी-सर्किट I में चंद्रपुरा	डी/सी		डीवीसी	90	मार्च-11
	टीपीएस-एमटीपीएस दोनों सर्किटों					
	का लूप	डी/सी		डीवीसी	0.0	
5	कल्यानेश्वरी-सर्किट ।। में चंद्रपुरा	डा/सा		डावासा	92	मार्च-11
	टीपीएस-एमटीपीएस दोनों सर्किटों का लूप					
	वर्ष के दौरान पूरी की गई कुल सीकेए	। म 220 के	— त्री ल	 ाइन (सब-स्टेशन)	206	
	220 केवी लाइनें (सब-स्टेशन)			,		
1	छीका-दुराला	डी/सी	τ	एचवीपीएनएल	100	मई-10
2	बतरा-कौल	डी/सी	τ	एचवीपीएनएल	90	अक्टूबर-10
3	पेहोबा-कौल लाइन	डी/सी	τ	एचवीपीएनएल	33	अक्टूबर-10

4	बतारा में पीटीपीएस –सैफीदोन	डी/सी	एचवीपीएनएल	27	अक्टूबर-10
	लाइन का एलआईएलओ	0 . 0	0.0		
5	वाइटीपीपी (डीसीआरटीपीपी) –	डी/सी	एचवीपीएनएल	104	नवम्बर-10
	नीलोखेरी				
6	सोनीपत (जजी)-माहाना सब-स्टेशन	डी/सी	एचवीपीएनएल	6	नवम्बर-10
7	पीटीपीपी-बतरा लाइन	डी/सी	एचवीपीएनएल	28	नवम्बर-10
8	सेमपला-मोहान लाइन	डी/सी	एचवीपीएनएल	69	फरवरी-11
9	मोहान-मलखा लाइन	डी/सी	एचवीपीएनएल	55	फरवरी-11
10	नालागढ़-मोहाली -I (वास्तविक के	डी/सी	पीटीसीएल	111	मई-10
	अनुसार लाइन की लंबाई ठीक की				
	गई)				
11	माना - एचपीसीएल मित्तल एनर्जी	डी/सी	पीटीसीएल	97	मई-10
	लिमिटेड (जमा कार्य)				
12	जीएचटीपी-हिम्मतपुरा डी/सी	डी/सी	पीटीसीएल	81	जुलाई -10
13	खरार में जीजीएसएसटीपी –	डी/सी	पीटीसीएल	6	जुलाई -10
	मोहाली-। के प्रथम सर्किट का				
	एलआईएलओ				
14	तरन तारन में वरपाल-पल्ली के	डी/सी	पीटीसीएल	13	जुलाई -10
	प्रथम सर्किट का एलआईएलओ				3
15	मोहाली-राजपुरा	डी/सी	पीटीसीएल	13	अक्टूबर-10
16	पखोवल में मलेरकोट्टा-लालटन कलां	डी/सी	पीटीसीएल	2	अक्टूबर-10
	एस/सी एलआईएलओ	0 0	0.00		
17	सादिक में मोगा-मुक्तसर के प्रथम	डी/सी	पीटीसीएल	38	दिसम्बर-10
	सर्किट का एलआईएलओ	-0:-0	-0.0		
18	मेलौत में भटिंडा-मुक्तसर लाइन का एलआईएलओ	डी/सी	पीटीसीएल	48	जनवरी-11
19	फिरोजपुर रोड लुधियाना में	डी/सी	पीटीसीएल	10	मार्च-11
19	लालटन कलां-हुंब्रान एलआईएलओ	317 (11	1131/11/5/1	10	माय-।।
20	जीएसएस बगरू में बस्सी-फुलेरा	डी/सी	आरआरवीपीएनएल	9	मई-10
	एलआईएलओ				
21	कोटा (पीजी) कोटा-भीलवाडा	डी/सी	आरआरवीपीएनएल	4	जून-10
	एलआईएलओ				
22	हिंदुअन (400 केवी)-मंडावर	एस/सी	आरआरवीपीएनएल	47	सितंबर-10
23	अकाई (जैसलमेर) में अमरसागर-	2xडी/	आरआरवीपीएनएल	77	सितंबर-10
	बारमर के दोनों सर्किटों का	सी			
	एलआईएलओ				
24	जीएसएस नोखा में बीकानेर-नागौर	एस/सी	आरआरवीपीएनएल	6	सितंबर-10
	लाइन का एलआईएलओ	- 			

25	छिरावा में हिसार- खेतरी एलआईएलओ	डी/सी	आरआरवीपीएनएल	38	नवम्बर-10
26	भिनमाल (पीजी) – सेंचोरे (आरवीपीएन)	एस/सी	आरआरवीपीएनएल	67	मार्च-11
27	बरिंघर टीपीएस-फलोडी	एस/सी	आरआरवीपीएनएल 	123	मार्च-11
28	जगतपुरा में बस्सी-हीरापुरा प्रथम सर्किट का एलआईएलओ	डी/सी	आरआरवीपीएनएल	18	मार्च-11
29	धोरीमना-सेंचोर (जालौर)	एस/सी	आरआरवीपीएनएल	64	मार्च-11
30	नीमराना-कोटपुतली	डी/सी	आरआरवीपीएनएल	88	मार्च-11
32	पिंडवारा जीएस-मैसर्स जे.के. लक्ष्मी सीमेंट	एस/सी	आरआरवीपीएनएल	20	मार्च-11
33	जीएसएस सावा में चित्तौड़गढ़- नीमबछेड़ा एलआईएलओ	डी/सी	आरआरवीपीएनएल	5	मार्च-11
34	जीएसएस एमआईए अल्वर में बदरपुर-अल्वर एलआईएलओ	डी/सी	आरआरवीपीएनएल	5	मार्च-11
35	बाली में कंकरोली-सिरोही एलआईएलओ	डी/सी	आरआरवीपीएनएल	3	मार्च-11
36	मेटोरे (मेरठ) (पीजी)-गजरौला	एस/सी	यूपीपीटीसीएल	87	जून-10
37	संभल में मुरादाबाद-एनएपीपी एलआईएलओ	डी/सी	यूपीपीटीसीएल	3	जून-10
38	मुजफ्फरनगर-शामली	एस/सी	यूपीपीटीसीएल	56	नवम्बर-10
39	शमशाबाद में आगरा (400)- फिरोजाबाद एलआईएलओ	डी/सी	यूपीपीटीसीएल	50	दिसम्बर-10
40	रोजा-बदौन	डी/सी	यूपीपीटीसीएल	192	जनवरी-11
41	ननौता में शहारनपुर-शामली एलआईएलओ	डी/सी	यूपीपीटीसीएल	6	जनवरी-11
42	ननौता-मुजफ्फरनगर	एस/सी	यूपीपीटीसीएल	65	मार्च-11
43	एटा में मैनपुरी (पीजी)-हरदुआगंज लाइन का एलआईएलओ	डी/सी	यूपीपीटीसीएल	20	मार्च-11
44	रिज वैली-नारायणा	एस/सी	डीटीएल	5	सितंबर-10
45	डीआईएएल (2x2x6 किमी.) में मेहरौली-बमनौली एलआईएलओ	डी/सी	डीटीएल	24	सितंबर-10
46	खंजावाला (2xडी/सी)(प्रथम सर्किट) में बवाना-नरेला एलआईएलओ	डी/सी	डीटीएल	7	फरवरी-11
47	महारानी बाग (पीजी)-मस्जिद मोड़ भूमिगत	डी/सी	डीटीएल	19	मार्च-11

48	काशीपुर- बरहेनी	डी/सी	पीटीसीयूएल	54	जनवरी-11
	बरहेनी-पंतनगर	एस/सी	पीटीसीयूएल		
49	`	-	()	71	जनवरी-11
50	कांगू-रौरी (प्रथम सर्किट)	एस/सी	एचपीईबीएल	24	फरवरी-11
51	कांगू-रौरी (द्वितीय सर्किट)	एस/सी	एचपीईबीएल	24	मार्च-11
52	रेरू माजरा (पीजीसीआईएल)-	डी/सी	एचपीईबीएल	7	मार्च-11
	उपेरला नंगल (नालागढ़)				
53	खोदरी-माजरी(द्वितीय सर्किट)	डी/सी	एचपीईबीएल	35	मार्च-11
		पर (
F.4	वरसाना- मोरबी	एस/सी डी/सी	जीईटीसीओ जीईटीसीओ	214	अप्रैल-10
54	बोतड़ में कसोर-वरतेज	डी/सी	जीईटीसीओ		
55	एलआईएलओ			39	जून-10
56	लखानी में कंसारी-थराड एलआईएलओ	डी/सी	जीईटीसीओ	1	जून-10
57	वीराम्गम-सलेजदा	डी/सी	जीईटीसीओ	118	जुलाई -10
58	भाट में वीराम्गम-सलेतदा एलआईएलओ	एम/सी	जीईटीसीओ	71	जुलाई -10
59	तापर-वरसाना लाइन	डी/सी	जीईटीसीओ	8	नवम्बर-10
60	कपड़वंज में वानकबोरी-रनासन	डी/सी	जीईटीसीओ	30	नवम्बर-10
	सर्किट II एलआईएलओ				
61	उतरन-कोसाम्बा लाइन -I	डी/सी	जीईटीसीओ	86	फरवरी-11
62	ग्वालियर 400 केवी (पीजी) में	डी/सी	एमपीपीटीसीएल	17	अप्रैल-10
	ग्वालियर-मालनपुर एलआईएलओ				
63	जबलपुर-नरसिंहपुर	डी/सी	एमपीपीटीसीएल	153	अप्रैल-10
64	चेगांव-निमरानी	डी/सी	एमपीपीटीसीएल	205	अप्रैल-10
65	हंडिया में सतपुरा-इटारसी प्रथम	डी/सी	एमपीपीटीसीएल	170	अप्रैल-10
	सर्किट का एलआईएलओ				
66	छेगांव नया सब-स्टेशन में बरवाहा- खंडवा एलआईएलओ	डी/सी	एमपीपीटीसीएल	4	अप्रैल-10
67	इंदौर ।। में इंदौर-उज्जैन	डी/सी	एमपीपीटीसीएल	2	अप्रैल-10
	एलआईएलओ	<u>₽'+₽</u>			٠
68	महेश्वर-निमरानी	डी/सी	एमपीपीटीसीएल	54	मई-10
69	आस्था-बर्छा	एस/सी	एमपीपीटीसीएल	50	मई-10
70	छिंदवाड़ा-बैत्ल	डी/सी	एमपीपीटीसीएल	266	जुलाई -10
71	कोटा में सतना-बनसागर एलआईएलओ	डी/सी	एमपीपीटीसीएल	8	सितंबर-10
72	छेगांव नया सब-स्टेशन पर	डी/सी	एमपीपीटीसीएल	35	जनवरी-11
	खंडवा-नेपानगरएलआईएलओ				

पुजा (पजा) 28 जिस्सी में अमरकंटक- विरसिंहपुर एल्आईएलओ विरसिंहपुर एल्आईएलओ विरसिंहपुर एल्आईएलओ विर्वा में भोपाल-बीना प्रथम पर एल्आईएलओ विदिशा में भोपाल-बीना प्रथम पर एल्आईएलओ विदिशा में भोपाल-बीना प्रथम किंकि का एल्आईएलओ विदेश में भेपूर- में भेपूर- ममरप्रपृ एल्आईएलओ विर्वा में भेपूर- ममरप्रपृ एल्आईएलओ विरा प्रमुप्त हैं।सी एमएसईटीसीएल 1 जून-10 ममरपु एल्आईएलओ विरा प्रमुप्त हैं।सी एमएसईटीसीएल 46 जुलाई -10 एल्आईएलओ विरा प्रमुप्त हैं।सी एमएसईटीसीएल 5 नवम्बर-10 एल्आईएलओ विरा प्रमुप्त हैं।सी एमएसईटीसीएल 5 नवम्बर-10 प्रमुप्त हैं।सी एमएसईटीसीएल 22 विसम्बर-10 प्रमुप्त हैं।सी एमएसईटीसीएल 44 फरवरी-11 1) का एल्आईएलओ विरा प्रमुप्त हैं।सी एमएसईटीसीएल 42 विसम्बर-11 विरा प्रमुप्त हैं।सी एमएसईटीसीएल 44 फरवरी-11 विरा प्रमुप्त हैं।सी एमएसईटीसीएल 45 जुल-10 विरा प्रमुप्त हैं।सी एमएसईटीसीएल 46 जुलाई -10 प्रमुप्त हैं।सी एमएसईटीसीएल 47 फरवरी-11 विरा प्रमुप्त हैं।सी एमएसईटीसीएल 48 फरवरी-11 विरा प्रमुप्त हैं।सी एमएसईटीसीएल 48 फरवरी-11 विरा प्रमुप्त हैं।सी एमएसईटीसीएल 48 फरवरी-11 विरा प्रमुप्त हैं।सी एमएसईटीसीएल 49 फरवरी-11 विरा प्रमुप्त हैं।सी एमएसईटीसीएल 40 फरवरी-11 विरा प्रमुप्त हैं।सी एमएसईटीसीएल 42 सितंबर-10 विरा प्रमुप्त हैं।सी एमएसईटीसीएल 42 सितंबर-10 विरा प्रमुप्त हैं।सी एमिट्रास्को 25 अप्रैल-10 विरा प्रमुप्त हैं।सी एमिट्रास्को 25 अप्रैल-10 वावा प्रमुप्त हैं।सी एमिट्रास्को 7 जून-10 वावा प्रमुप्त हैं।सी एमिट्रास्को 7 जून-10 एल्आईएलओ विवा प्रमुप्त हैं।सी एमिट्रास्को 40 सितंबर-10 वावा प्रमुप्त हैं।सी एमिट्रास्को 40 सितंबर-10 वावा प्रमुप्त हैं।सी एमिट्रास्को 40 सितंबर-10 वावा प्रमुप्त हैं।सी एमिट्रास्को 40 सितंबर-10 वाव प्रमुप्त हैं।सी एमिट्रास्को 40 सितंबर-10 वाव प्रमुप्त हैं।सी एमिट्रास्को 41 फरवरी-11 वाव पर है	72	सुखा (पीजी) 2xडी/सी में	2xडी/	एमपीपीटीसीएल	222	11 11 11 11 11 11 11 11 11 11 11 11 11
एलआईएलओ ही/सी एमपीपीटीसीएल 156 फरवरी-11 पर एस/सी एमपीपीटीसीएल 42 सार्च-11 एमपीपीटीसीएल 42 सार्च-11 सिनंट का एलआईएलओ डी/सी एमपीपीटीसीएल 44 सार्च-11 उत्त-10 समर्स सेरम इंस्टीट्यूट में थेयूर- की/सी एमएसईटीसीएल 1 प्रत-10 प्रत-10	73	9 ()		्रमभाभादासा <u>य</u> स	332	फरवरी-11
सतना-छतरपुर डी/सी एमपीपीटीसीएल 156 फरवरी-11 पर एस/सी पर एस/सी पर एस/सी पर एस/सी एमपीपीटीसीएल 42 मार्च-11 सिर्केट का एलआईएलओ डी/सी एमपीपीटीसीएल 144 मार्च-11 मार्च-11 मार्च-11 मार्च-11 मार्च-11 मार्च-11 मार्च-11 मार्च-11 मार्च-11 मारपट्टा एलआईएलओ डी/सी एमएसईटीसीएल 1 जून-10 प्रकाईएलओ एक्आईएलओ एमएसईटीसीएल 46 जुलाई -10 एक्आईएलओ एक्आईएलओ डी/सी एमएसईटीसीएल 5 तबम्बर-10 एक्आईएलओ उत्तर्गाती-हलकरनी सब-स्टेशन डी/सी एमएसईटीसीएल 22 दिसम्बर-10 एस्/मी एमएसईटीसीएल 22 दिसम्बर-10 एस्/मी एमएसईटीसीएल 44 फरवरी-11 एस्/मी एमएसईटीसीएल 45 स्वर्णाती सिर्केट का एल्आईएलओ सिर्मेट का एल्आईएलओ सिर्मेट का एल्आईएलओ सिर्मेट का एल्आईएलओ सीपीटीसीएल 50 जून-10 सिर्नेट का एल्आईएलओ सीपीटीसीएल 42 सिर्नेवर-10 सिर्नेट का एल्आईएलओ सीपीटीसीएल 42 सिर्नेवर-10 सिर्नेवर-10 सीपीटीसीएल 42 सिर्नेवर-10 सीपीटीसीएल 42 सिर्नेवर-10 सीपीटीसीएल 43 सिर्नेवर-10 सीपीटीसीएल 44 सिर्नेवर-10 सीपीटीसीएल 45 सिर्नेवर-10 सिर्नेवर-			सा			
पर एस/सी एमपीपीटीसीएल 42 मार्च-11 सिर्केट का एलआईएलओ 51/सी एमपीपीटीसीएल 144 मार्च-11 मार्च-12 मार्च-11 मार्च-पूर एलआईएलओ कारद-मिराज एलआईएलओ एमएसईटीसीएल 46 जुलाई -10 एलआईएलओ एलआईएलओ एमएसईटीसीएल 5 नवम्बर-10 एलआईएलओ एमएसईटीसीएल 5 नवम्बर-10 पर एम/सी एमएसईटीसीएल 22 दिसम्बर-10 पर एम/सी एमएसईटीसीएल 22 दिसम्बर-10 पर एम/सी एमएसईटीसीएल 44 फरवरी-11 का एलआईएलओ कारद-मिराज डी/सी एमएसईटीसीएल 44 फरवरी-11 का एलआईएलओ कारद-पिराज डी/सी एमएसईटीसीएल 44 फरवरी-11 का एलआईएलओ कारद-पिराज डी/सी एमएसईटीसीएल 45 फरवरी-11 सिर्केट का एलआईएलओ कारद-पिराज डी/सी सीपीटीसीएल 50 जून-10 सिर्वेवर-10 सिर्वेवर-10 पराठपारा) एलआईएलओ कारदी-सिल्तरा डी/सी सीपीटीसीएल 42 सिर्वेवर-10 पराठपारा) एलआईएलओ कारदी-सिल्तरा डी/सी सीपीटीसीएल 24 मार्च-11 एलआईएलओ कारदी-पिराज डी/सी एपीट्रांस्को 25 अप्रैल-10 मार्च-पारम कारदी-पारम कारदी-प	74	,	ड़ी/सी	एमपीपीटीसीएल	156	11 11 11 11 11 11 11 11 11 11 11 11 11
प्रम/सी एमपीपीटीसीएल 42 मार्च-11 सिर्फेट का एलआईएलओ डी/सी एमपीपीटीसीएल 144 मार्च-11 76 देवास-आस्था डी/सी एमपीपीटीसीएल 144 मार्च-11 77 मैससं सेरम इंस्टीट्यूट में थेयूर- की/सी एमएसईटीसीएल 1 जूत-10 मगरपट्टा एलआईएलओ 78 वानी में चंद्रपुर-वरोना डी/सी एमएसईटीसीएल 46 जुलाई -10 एलआईएलओ एलआईएलओ एमएसईटीसीएल 5 नवम्बर-10 एलआईएलओ एमएसईटीसीएल 5 नवम्बर-10 एलआईएलओ एमएसईटीसीएल 22 दिसम्बर-10 पर एम/सी एमएसईटीसीएल 44 फरवरी-11 1) का एलआईएलओ 81 हिंगोली में पीड-गिरवानी (सिर्फेट- डी/सी एमएसईटीसीएल 44 फरवरी-11 1) का एलआईएलओ 82 हलकरनी में कोल्हापुर-पाँदा दितीय डी/सी एमएसईटीसीएल 19 फरवरी-11 सिर्फेट का एलआईएलओ डी/सी सीपीटीसीएल 50 जून-10 सितंबर-10 (भाटापारा) एलआईएलओ डी/सी सीपीटीसीएल 42 सितंबर-10 सितंबर-10 सितंबर-10 कोल्डाईएलओ कोल्डाईएलओ डी/सी सीपीटीसीएल 24 मार्च-11 एलआईएलओ कोल्डाईएलओ डी/सी सीपीटीसीएल 24 मार्च-11 एलआईएलओ कोल्डाईएलओ डी/सी एपीट्रांस्को 25 अप्रैल-10 नागारम 88 परचूर में तडीकोंडा-ऑगोले डी/सी एपीट्रांस्को 7 जून-10 एलआईएलओ कोल्डाईएलओ डी/सी एपीट्रांस्को 7 जून-10 एलआईएलओ वितंबर-10 मार्च-वापार्थी डी/सी एपीट्रांस्को 26 नवम्बर-10 एलआईएलओ लादन का एलआईएलओ लादन का एलआईएलओ वितंबर-10 सिर्जेट्डाईएलओ वितंबर-10 सिर्जेट्डाईएलओ सिर्जेट्डाईएलो	74				156	फरवरा-।।
75 विदेशा में भोषाल-बीना प्रथम सर्जिट का एलआईएलओ ही/सी एमपीपीटीसीएल 144 मार्च-11 76 देवास-आस्था ही/सी एमपीपीटीसीएल 144 मार्च-11 77 मैसर्स सेरम इंस्टीट्यूट में थेयूर- मगरपट्टा एलआईएलओ ही/सी एमएसईटीसीएल 1 जून-10 गुल-10 गुल-10						
सिर्कट का एलआईएलओ डी/सी एमपीपीटीसीएल 144 मार्च-11 77 मैसर्स सेरम इंस्टीट्यूट में थेयूर- डी/सी एमएसईटीसीएल 1 जून-10	75	विदिशा में भोपाल-बीना प्रथम		एमपीपीटीसीएल	42	मार्च-11
भैसर्स सेरम इंस्टीट्यूट में थेयूर- मगरपट्टा एलआईएलओ 1 जून-10 जून-10		सर्किट का एलआईएलओ				
सगरपट्टा एलआईएलओ वानी में चंद्रपुर-वरोना डी/सी एमएसईटीसीएल 46 जुलाई -10 एलआईएलओ 79 एकडेगांव में कारद-मिराज डी/सी एमएसईटीसीएल 5 नवम्बर-10 एलआईएलओ 79 एकडेगांव में कारद-मिराज डी/सी एमएसईटीसीएल 22 दिसम्बर-10 पर एस/सी एमएसईटीसीएल 22 दिसम्बर-10 पर एस/सी 1) का एलआईएलओ 81 हिंगोली में पौड-गिरवानी (सर्किट- डी/सी एमएसईटीसीएल 44 फरवरी-11 का एलआईएलओ 82 हलकरनी में कोल्हापुर-पोंदा द्वितीय डी/सी एमएसईटीसीएल 19 फरवरी-11 सर्किट का एलआईएलओ 83 खेदामरा-बमतरा डी/सी सीपीटीसीएल 50 जून-10 84 दोमा में रायपुर(पीजी)- सृहेला डी/सी सीपीटीसीएल 42 सितंबर-10 (भाटापारा) एलआईएलओ 85 एनपीसीएल-बीपी एमडी-5 डी/सी सीपीटीसीएल 24 मार्च-11 एलआईएलओ 87 ओगलापुर 400 केवी सब-स्टेशन डी/सी सीपीटीसीएल 24 मार्च-11 एलआईएलओ 87 ओगलापुर 400 केवी सब-स्टेशन डी/सी एपी ट्रांस्को 25 अप्रैल-10 नागारम 88 परच्र में तडीकोंडा-ओंगोले एलआईएलओ 89 बेल्ट्र ने तडीकोंडा-ओंगोले एलआईएलओ 89 बेल्ट्र ने तडीकोंडा-ओंगोले एलआईएलओ 89 बेल्ट्र ने तागारवा डी/सी एपी ट्रांस्को 40 सितंबर-10 एलआईएलओ 91 शिवारामपल्ली में एचआईएएल-डी/सी एपी ट्रांस्को 26 नवम्बर-10 एलआईएलओ 91 शिवारामपल्ली में एचआईएएल-डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 एलआईएलओ 92 ब्राह्मणकोटटूर मलयाला डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 एलआईएलओ 92 ब्राह्मणकोटटूर मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11	76	देवास-आस्था	डी/सी	एमपीपीटीसीएल	144	मार्च-11
सगरपट्टा एलआईएलओ वानी में चंद्रपुर-वरोना डी/सी एमएसईटीसीएल 46 जुलाई -10 एलआईएलओ 79 एकडेगांव में कारद-मिराज डी/सी एमएसईटीसीएल 5 नवम्बर-10 एलआईएलओ 79 एकडेगांव में कारद-मिराज डी/सी एमएसईटीसीएल 22 दिसम्बर-10 पर एस/सी एमएसईटीसीएल 22 दिसम्बर-10 पर एस/सी 1) का एलआईएलओ 81 हिंगोली में पौड-गिरवानी (सर्किट- डी/सी एमएसईटीसीएल 44 फरवरी-11 का एलआईएलओ 82 हलकरनी में कोल्हापुर-पोंदा द्वितीय डी/सी एमएसईटीसीएल 19 फरवरी-11 सर्किट का एलआईएलओ 83 खेदामरा-बमतरा डी/सी सीपीटीसीएल 50 जून-10 84 दोमा में रायपुर(पीजी)- सृहेला डी/सी सीपीटीसीएल 42 सितंबर-10 (भाटापारा) एलआईएलओ 85 एनपीसीएल-बीपी एमडी-5 डी/सी सीपीटीसीएल 24 मार्च-11 एलआईएलओ 87 ओगलापुर 400 केवी सब-स्टेशन डी/सी सीपीटीसीएल 24 मार्च-11 एलआईएलओ 87 ओगलापुर 400 केवी सब-स्टेशन डी/सी एपी ट्रांस्को 25 अप्रैल-10 नागारम 88 परच्र में तडीकोंडा-ओंगोले एलआईएलओ 89 बेल्ट्र ने तडीकोंडा-ओंगोले एलआईएलओ 89 बेल्ट्र ने तडीकोंडा-ओंगोले एलआईएलओ 89 बेल्ट्र ने तागारवा डी/सी एपी ट्रांस्को 40 सितंबर-10 एलआईएलओ 91 शिवारामपल्ली में एचआईएएल-डी/सी एपी ट्रांस्को 26 नवम्बर-10 एलआईएलओ 91 शिवारामपल्ली में एचआईएएल-डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 एलआईएलओ 92 ब्राह्मणकोटटूर मलयाला डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 एलआईएलओ 92 ब्राह्मणकोटटूर मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11	77	मैसर्स सेरम इंस्टीट्यूट में थेयूर-	डी/सी	एमएसईटीसीएल	1	जन-10
एलआईएलओ		3				
79	78	_	डी/सी	एमएसईटीसीएल	46	जुलाई -10
एलआईएलओ 80 राजगोली-हलकरनी सब-स्टेशन डी/सी एमएसईटीसीएल 22 दिसम्बर-10 81 हिंगोली में पौड-गिरवानी (सर्किट- 1) का एलआईएलओ 82 हलकरनी में कोल्हापुर-पोंदा द्वितीय ही/सी एमएसईटीसीएल 19 फरवरी-11 सिंक्ट का एलआईएलओ 83 खेदामरा-बमतरा डी/सी सीपीटीसीएल 50 जून-10 84 दोमा में रायपुर(पीजी)- सुहेला डी/सी सीपीटीसीएल 42 सितंबर-10 (भाटापारा) एलआईएलओ 85 एनपीसीएल-बीपी एमडी-5 डी/सी सीपीटीसीएल 7 फरवरी-11 86 मोपका में कोरबा-सिल्तरा एलआईएलओ 87 ओगलापुर 400 केवी सब-स्टेशन डी/सी एपी ट्रांस्को 25 अप्रैल-10 नगगरम 88 परचूर में तडीकोंडा-ओंगोले एलआईएलओ डी/सी एपी ट्रांस्को 7 जून-10 एलआईएलओ 89 बेल्तूर-वनापार्थी डी/सी एपी ट्रांस्को 40 सितंबर-10 90 ब्राह्मणकोट्टूर में नानौर-बनापार्थी डी/सी एपी ट्रांस्को 26 नबम्बर-10 एलआईएलओ 91 शिवारामपल्ली में एचआईएएल- डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 एलआईएलओ 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11						
80 राजगोली-हलकरनी सब-स्टेशन डी/सी पर एस/सी प्राप्त हीं सीएल प्राप्त हीं सीएल पर एस/सी प्राप्त हीं सीएल प्राप्त हीं सीएल हीं सीएल प्राप्त हीं सी एमएसईटीसीएल 44 फरवरी-11 का एलआईएलओ 82 हलकरनी में कोल्हापुर-पोंदा द्वितीय सिकेंट का एलआईएलओ 83 खेदामरा-वमतरा डी/सी सीपीटीसीएल 50 जून-10 सितंबर-10 सि	79	,	डी/सी	एमएसईटीसीएल	5	नवम्बर-10
पर एस/सी			4.4			
एस/सी	80	राजगाला-हलकरना सब-स्टशन 		एमएसइटासाएल 	22	दिसम्बर-10
81 हिंगोली में पौड-गिरवानी (सर्किट- डी/सी एमएसईटीसीएल 19 फरवरी-11 (सर्किट- विल्लंग			_			
1) का एलआईएलओ 82 हलकरनी में कोल्हापुर-पोंदा द्वितीय डी/सी एमएसईटीसीएल 19 फरवरी-11 सिर्कट का एलआईएलओ डी/सी सीपीटीसीएल 50 जून-10 84 दोमा में रायपुर(पीजी)- सुहेला डी/सी सीपीटीसीएल 42 सितंबर-10 (भाटापारा) एलआईएलओ 85 एनपीसीएल-बीपी एमडी-5 डी/सी सीपीटीसीएल 7 फरवरी-11 86 मोपका में कोरबा-सिल्तरा डी/सी सीपीटीसीएल 24 मार्च-11 एलआईएलओ 87 ओगलापुर 400 केवी सब-स्टेशन डी/सी एपी ट्रांस्को 25 अप्रैल-10 नागारम 88 परचूर में तडीकोंडा-ओंगोले डी/सी एपी ट्रांस्को 7 जून-10 एलआईएलओ 89 वेल्तूर-वनापार्थी डी/सी एपी ट्रांस्को 40 सितंबर-10 90 ब्राह्मणकोट्टूर में नानौर-वनापार्थी डी/सी एपी ट्रांस्को 26 नवम्बर-10 एलआईएलओ शिवारामपल्ली में एचआईएएल- डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 गछीवाउली लादन का एलआईएलओ 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11	01	निंगोनी में मौद गिरवानी (मर्दिर	•	एमएसईटीसीएल	11	फरवरी 11
82 हलकरनी में कोल्हापुर-पोंदा द्वितीय सर्किट का एलआईएलओ 33 खेदामरा-बमतरा 31/सी सीपीटीसीएल 50 जून-10 84 दोमा में रायपुर(पीजी)- सुहेला डी/सी सीपीटीसीएल 42 सितंबर-10 (भाटापारा) एलआईएलओ 31/सी सीपीटीसीएल 42 सितंबर-10 31/सी सीपीटीसीएल 42 सितंबर-10 31/सी सीपीटीसीएल 7 फरवरी-11 31/सी सीपीटीसीएल 7 फरवरी-11 31/सी सीपीटीसीएल 24 मार्च-11 31/सी एलआईएलओ 25 अप्रैल-10 31/सी एपी ट्रांस्को 25 अप्रैल-10 31/सी एपी ट्रांस्को 7 जून-10 31/सी एपी ट्रांस्को 7 जून-10 31/सी एपी ट्रांस्को 40 सितंबर-10 31/सी एपी ट्रांस्को 40 सितंबर-10 31/सी एपी ट्रांस्को 31/सी 31/स	01	,	317 (11	7.17.1621.1117.1	44	फरवरा-।।
सर्किट का एलआईएलओ डी/सी सीपीटीसीएल 50 जून-10 84 दोमा में रायपुर(पीजी)- सुहेला डी/सी सीपीटीसीएल 42 सितंबर-10 (भाटापारा) एलआईएलओ डी/सी सीपीटीसीएल 7 फरवरी-11 85 एनपीसीएल-बीपी एमडी-5 डी/सी सीपीटीसीएल 7 फरवरी-11 86 मोपका में कोरबा-सिल्तरा एलआईएलओ डी/सी एपीट्रांस्को 25 अप्रैल-10 नागारम 87 ओगलापुर 400 केवी सब-स्टेशन डी/सी एपीट्रांस्को 7 जून-10 एलआईएलओ डी/सी एपीट्रांस्को 7 जून-10 एलआईएलओ डी/सी एपीट्रांस्को 40 सितंबर-10 90 ब्राह्मणकोट्टूर में नानौर-वनापार्थी डी/सी एपीट्रांस्को 26 नवम्बर-10 एलआईएलओ 91 शिवारामपल्ली में एचआईएएल- गछीवाउली लादन का एलआईएलओ डी/सी एपीट्रांस्को 1.5 नवम्बर-10 एलआईएलओ 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपीट्रांस्को 21 फरवरी-11	_	, ,	6 6			
83 खेदामरा-बमतरा डी/सी सीपीटीसीएल 50 जून-10 84 दोमा में रायपुर(पीजी)- सुहेला (भाटापारा) एलआईएलओ डी/सी सीपीटीसीएल 42 सितंबर-10 (भाटापारा) एलआईएलओ डी/सी सीपीटीसीएल 7 फरवरी-11 86 मोपका में कोरबा-सिल्तरा डी/सी सीपीटीसीएल 24 मार्च-11 एलआईएलओ 25 अप्रैल-10 नागारम 25 अप्रैल-10 नागारम 88 परचूर में तडीकोंडा-ओंगोले डी/सी एपीट्रांस्को 7 जून-10 एलआईएलओ डी/सी एपीट्रांस्को 7 जून-10 प्रलाईएलओ 89 वेल्तूर-वनापार्थी डी/सी एपीट्रांस्को 40 सितंबर-10 90 ब्राह्मणकोट्टूर में नानौर-वनापार्थी डी/सी एपीट्रांस्को 26 नवम्बर-10 एलआईएलओ 91 शिवारामपल्ली में एचआईएल- डी/सी एपीट्रांस्को 1.5 नवम्बर-10 एलआईएलओ 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपीट्रांस्को 21 फरवरी-11	82		डी/सी	एमएसईटीसीएल	19	फरवरी-11
84 दोमा में रायपुर(पीजी)- सुहेला डी/सी सीपीटीसीएल 42 सितंबर-10 85 एनपीसीएल-बीपी एमडी-5 डी/सी सीपीटीसीएल 7 फरवरी-11 86 मोपका में कोरबा-सिल्तरा डी/सी सीपीटीसीएल 24 मार्च-11 87 ओगलापुर 400 केवी सब-स्टेशन डी/सी एपी ट्रांस्को 25 अप्रैल-10 88 परचूर में तडीकोंडा-ओंगोले डी/सी एपी ट्रांस्को 7 जून-10 89 वेल्तूर-वनापार्थी डी/सी एपी ट्रांस्को 7 जून-10 90 ब्राह्मणकोट्टूर में नानौर-वनापार्थी डी/सी एपी ट्रांस्को 40 सितंबर-10 90 प्राह्मणकोट्टूर में नानौर-वनापार्थी डी/सी एपी ट्रांस्को 26 नवम्बर-10 91 शिवारामपल्ली में एचआईएएल-गछीवाउली लादन का एलआईएलओ 1.5 नवम्बर-10 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11			-0 / -0	-0.00.0		
(भाटापारा) एलआईएलओ 85 एनपीसीएल-बीपी एमडी-5 डी/सी सीपीटीसीएल 7 फरवरी-11 86 मोपका में कोरबा-सिल्तरा डी/सी सीपीटीसीएल 24 मार्च-11 87 ओगलापुर 400 केवी सब-स्टेशन — डी/सी एपी ट्रांस्को 25 अप्रैल-10 88 परचूर में तडीकोंडा-ओंगोले डी/सी एपी ट्रांस्को 7 जून-10 89 वेल्तूर- वनापार्थी डी/सी एपी ट्रांस्को 40 सितंबर-10 90 ब्राह्मणकोट्टूर में नानौर-वनापार्थी डी/सी एपी ट्रांस्को 26 नवम्बर-10 91 शिवारामपल्ली में एचआईएएल-गछीवाउली लादन का एलआईएलओ 92 ब्राह्मणकोट्टूर - मलयाला डी/सी एपी ट्रांस्को 1.5 नवम्बर-10	83			·	50	जून-10
85 एनपीसीएल-बीपी एमडी-5 डी/सी सीपीटीसीएल 7 फरवरी-11 86 मोपका में कोरबा-सिल्तरा डी/सी सीपीटीसीएल 24 मार्च-11 87 अगेलापुर 400 केवी सब-स्टेशन डी/सी एपी ट्रांस्को 25 अप्रैल-10 नागारम 88 परचूर में तडीकोंडा-ओंगोले डी/सी एपी ट्रांस्को 7 जून-10 एलआईएलओ 89 वेल्तूर-वनापार्थी डी/सी एपी ट्रांस्को 40 सितंबर-10 90 ब्राह्मणकोट्टूर में नानौर-वनापार्थी डी/सी एपी ट्रांस्को 26 नवम्बर-10 एलआईएलओ 91 शिवारामपल्ली में एचआईएएल- डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 गछीवाउली लादन का एलआईएलओ 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11	84	दोमा में रायपुर(पीजी)- सुहेला	डी/सी	सीपीटीसीएल	42	सितंबर-10
86 मोपका में कोरबा-सिल्तरा डी/सी सीपीटीसीएल 24 मार्च-11 एलआईएलओ 25 अप्रैल-10 नागारम 25 अप्रैल-10 नागारम 26 सितंबर-10 एलआईएलओ 31/सी एपी ट्रांस्को 7 जून-10 एलआईएलओ 31/सी एपी ट्रांस्को 40 सितंबर-10 90 ब्राह्मणकोट्टूर में नानौर-वनापार्थी डी/सी एपी ट्रांस्को 26 नवम्बर-10 एलआईएलओ 91 शिवारामपल्ली में एचआईएएल- डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 गछीवाउली लादन का एलआईएलओ 92 ब्राह्मणकोट्टूर - मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11		(भाटापारा) एलआईएलओ				
86 मोपका में कोरबा-सिल्तरा डी/सी सीपीटीसीएल 24 मार्च-11 एलआईएलओ 25 अप्रैल-10	85	एनपीसीएल-बीपी एमडी-5	डी/सी	सीपीटीसीएल	7	फरवरी-11
एलआईएलओ 87 ओगलापुर 400 केवी सब-स्टेशन — डी/सी एपी ट्रांस्को 25 अप्रैल-10 88 परचूर में तडीकोंडा-ओंगोले डी/सी एपी ट्रांस्को 7 जून-10 89 वेल्तूर- वनापार्थी डी/सी एपी ट्रांस्को 40 सितंबर-10 90 ब्राह्मणकोट्टूर में नानौर-वनापार्थी डी/सी एपी ट्रांस्को 26 नवम्बर-10 91 शिवारामपल्ली में एचआईएएल- डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11			डी/सी	सीपीटीसीएल	24	
87 अंगलापुर 400 केवी सब-स्टेशन	00		- 17		24	माअ-।।
11 12 13 14 15 15 15 15 15 15 15	87		डी/सी	एपी ट्रांस्को	25	अप्रैल-10
88 परचूर में तडीकोंडा-ओंगोले एलआईएलओ डी/सी एपी ट्रांस्को 7 जून-10 89 वेल्तूर- वनापार्थी डी/सी एपी ट्रांस्को 40 सितंबर-10 90 ब्राह्मणकोट्टूर में नानौर-वनापार्थी एलआईएलओ डी/सी एपी ट्रांस्को 26 नवम्बर-10 91 शिवारामपल्ली में एचआईएएल- गछीवाउली लादन का एलआईएलओ डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11						,,,,,
एलआईएलओ 89 वेल्तूर- वनापार्थी डी/सी एपी ट्रांस्को 40 सितंबर-10 90 ब्राह्मणकोट्टूर में नानौर-वनापार्थी डी/सी एपी ट्रांस्को 26 नवम्बर-10 91 शिवारामपल्ली में एचआईएएल- डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 गछीवाउली लादन का एलआईएलओ 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11	88	5. 6.5. 5.5.5	डी/सी	एपी ट्रांस्को	7	जਜ-10
90 ब्राह्मणकोट्टूर में नानौर-वनापार्थी एपी ट्रांस्को 26 नवम्बर-10 91 शिवारामपल्ली में एचआईएएल- डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 गछीवाउली लादन का एलआईएलओ डी/सी एपी ट्रांस्को 21 फरवरी-11				, ^	•	ूरा 1 ७
90 ब्राह्मणकोट्टूर में नानौर-वनापार्थी एपी ट्रांस्को 26 नवम्बर-10 91 शिवारामपल्ली में एचआईएएल- गछीवाउली लादन का एलआईएलओ डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11	89	·	डी/सी	एपी ट्रांस्को	40	सितंबर-10
एलआईएलओ 91 शिवारामपल्ली में एचआईएएल- डी/सी एपी ट्रांस्को 1.5 नवम्बर-10 गछीवाउली लादन का एलआईएलओ 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11	90	• (डी/सी	एपी ट्रांस्को	26	
गछीवाउली लादन का एलआईएलओ 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11		121		, ^		
गछीवाउली लादन का एलआईएलओ 92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11	91	शिवारामपल्ली में एचआईएएल-	डी/सी	एपी ट्रांस्को	1.5	नवम्बर-10
92 ब्राह्मणकोट्टूर – मलयाला डी/सी एपी ट्रांस्को 21 फरवरी-11						
2 (4		एलआईएलओ				
93 कलपका सब-स्टेशन- मैसर्स ब्रेंडिक्स डी/सी एपी ट्रांस्को 22 मार्च-11	92	ब्राह्मणकोट्टूर – मलयाला	डी/सी	एपी ट्रांस्को	21	फरवरी-11
, , , , , , , , , , , , , , , , , , , ,	93	कलपका सब-स्टेशन- मैसर्स ब्रेंडिक्स	डी/सी	एपी ट्रांस्को	22	मार्च-11

	(भाग लाइन)				
94	धोने-कम्बलापडू	डी/सी	एपी ट्रांस्को	12	मार्च-11
		पर			
		एस/सी	0 . 2		
95	कृषिनगरी-संट्टीपली	डी/सी	एपी ट्रांस्को	11	मार्च-11
		पर			
		एस/सी			
96	कम्बलापडू – लक्काग्राम	डी/सी	एपी ट्रांस्को	9	मार्च-11
		पर एस/सी			
07	रेगुलापडू में गूटी-अलीपुरा से	डी/सी	एपी ट्रांस्को	20	
97	एलआईएलओ	91/(11	९ वा द्वारवत	22	मार्च-11
98	नागरम एसडब्ल्यू स्टेशन पर	डी/सी	एपी ट्रांस्को	3	मार्च-11
30	पुलाकुर्थी-रामप्पा एलआईएलओ	- 17	,		साय-।।
99	छिलाकल्लू में वीटी-नारकेटपल्ली	डी/सी	एपी ट्रांस्को	5	मार्च-11
	एलआईएलओ				
100	गजवेल में मेदोहल-मिनपुर	डी/सी	एपी ट्रांस्को	80	मार्च-11
	एलआईएलओ				
101	सेलिवगू में पुलाकुर्थी-रामाप्पा	डी/सी	एपी ट्रांस्को	0.7	सितंबर-10
	एलआईएलओ				
102	ऐलीफेंट गेट-टोंडियारपेट	एस/सी	टीएएनट्रांस्को	5	जून-10
103	वलूथ्थूर – परामाकुडी डी/सी पर	एस/सी	टीएएनट्रांस्को	50	जून-10
	एस/सी				
104	गोबी-मैत्तूर टीपी	डी/सी	टीएएनट्रांस्को	82	जून-10
		पर			ζ
		एस/सी			
105	एस.पी.कोली-थारामणि	एस/सी	टीएएनट्रांस्को	49	अगस्त-10
	(पेराम्बकम-थारामणि भाग)				
106	,	एस/सी	टीएएनट्रांस्को	62	31112 10
106	ओथाकलमंडपम-कॉमप प्वाइंट -	2/11/11	2122 1817 111	62	अगस्त-10
4.5-	पोन्नापुरम् केआईटीएस पार्क सब-स्टेशन पर	एस/सी	<u>टीएएनट्रांस्को</u>		<u> </u>
107	एस.पी.कोली-थारामणि लाइन का	एस/सा	टाएएनट्रास्का 	1	सितंबर-10
	एलआईएलओ				
108	एनसीटीपीएस स्टेज II में	डी/सी	टीएएनट्रांस्को	3	नवम्बर-10
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3,3,2,		ाना अं र । ।
	एनसीटीपीएस-मोर एलआईएलओ				
	(आरंभिक पावर के लिए)				
109	श्रीपेरंबदूर आईपीसीओटी-	डी/सी	टीएएनट्रांस्को	12	मार्च-11
	सुंगूवरछात्रम् 400 केवी सब-स्टेशन				
110	हस्सन (शांतिग्राम) पर मैसूर –	2xडी/	केपीटीसीएल	28	दिसम्बर-10
	शिमोगा लाइन पर एलआईएलओ	<u> </u>	,		
	रत्याचा वास्य १८ दुवाणा स्टुवाणा	\(\(\)\(\)	1		

-					
111	नरेंद्र 400 केवी सब-स्टेशन घाटप्रभा	डी/सी	केपीटीसीएल	191	दिसम्बर-10
112	नरेंद्र सब-स्टेशन - एमके हुगली सब- स्टेशन	एस/सी	केपीटीसीएल	34	दिसम्बर-10
113	हूटागली- टीके हाली -वाजामंगला का एलआईएलओ	डी/सी	केपीटीसीएल	3	दिसम्बर-10
114	वरही-शिमोगा	डी/सी	केपीटीसीएल	9	दिसम्बर-10
115	पीन्नया-एनआरएस	डी/सी	केपीटीसीएल	8	दिसम्बर-10
116	आनंद राव सर्किल-निमहा-एचएएल	एस/सी	केपीटीसीएल	17	दिसम्बर-10
117	नरेंद्र-केआईडीएवी	एम/सी पर डी/सी	केपीटीसीएल	4	दिसम्बर-10
		लाइन			
118	बस्तिपुर-कुशलनगर	डी/सी	केपीटीसीएल	154	मार्च-11
119	एरियाकोड(पीजीसीआईएल) 400 केवी सब-स्टेशन-एरियाकोड सब- स्टेशन	एम/सी	केईबी	1	मार्च-11
120	रामानाथपुरम पर विल्लियानुर- बहोर का एलआईएलओ	डी/सी	पुडुचुरी विद्युत विभाग	29	अक्टूबर-10
121	न्यू टाउन एए- III पर जीरट-कस्बा लाइन का एलआईएलओ	डी/सी	डब्ल्यूबीईटीसीएल	2	नवम्बर-10
122	मुजफ्फरपुर(पीजी) पर हाजीपुर- मुजफ्फरपुर(कांटी) का एलआईएलओ	डी/सी	बीईबी	15	नवम्बर-10
123	बेगुसराय-मुजफ्फरपुर(कांटी) (एमटीपीएस) लाइन	डी/सी	बीईबी	304	नवम्बर-10
124	कुचे-बालासोर(सर्किट- II)	एस/सी	ओपीटीसीएल	76	जनवरी-11
125	नरेन्द्रपुर-मेंधासल(सर्किट- II)	एस/सी	ओपीटीसीएल	170	जनवरी-11
126	मिसा-बिरनीहट	डी/सी	मेघालयईबी	226	अगस्त-10
	वर्ष के दौरान पूर्णरूपेण स्थापित 220 केवी		6539		
	लाइन (सब-स्टेशन) का कुल सीकेएम				
	220 केवी लाइन की(पीएस)				
1	स्टरलाइट टीपीपी-स्टरलाइट कैप्टिव प्लांट डी/सी	डी/सी	स्टरलाइट	9	अगस्त-10
2	एलेन दुहंगन-पनर्सा-नालागढ़ डी/सी	डी/सी	एडी हाइड्रो	349	सितंबर-10
	220 केवी लाइन (पीएस) का कुल सीकेएम			358	
	वर्ष के दौरान पूर्णरूपेण स्थापित 220 केवी लाइन (अखिल भारत) का कुल सीकेएम		7165		

2010-11 के दौरान स्थापित सब-स्टेशन

豖.					
सं.	सब-स्टेशन	वोल्टेज अनुपात	क्रियान्वयन एजेंसी	क्षमता (एम डब्ल	पूर्ण होने यू का माह
		(केवी/केवी)		/ एमवीए)
	400 केवी (सब-स्टेशन) (सीएस)				
1	सोनीपत(प्रथम ट्रांस्फ)	400/220	पावरग्रिड	315	सितंबर-10
2	महारानीबाग जीआईएस एक्सटेंशन(प्रथम ट्रांस्फ)	400/220	पावरग्रिड	500	सितंबर-10
3	पुणे	400/220	पावरग्रिड	630	अक्टूबर-10
4	बीना	400/220	पावरग्रिड	315	अक्टूबर-10
5	सोनीपत (द्वितीय ट्रांस्फ)	400/220	पावरग्रिड	315	नवम्बर-10
6	महारानीबाग जीआईएस एक्सटेंशन(द्वितीय)	400/220	पावरग्रिड	500	नवम्बर-10
7	पिराणा (प्रथम ट्रांस्फ)	400/220	पावरग्रिड	315	फरवरी-11
8	मुवट्टापुझा सब-स्टेशन (प्रथम ट्रांस्फ)	400/220	पावरग्रिड	315	फरवरी-11
9	वगूरा सब-स्टेशन फोर्थ आईसीटी (3x105)	400/220	पावरग्रिड	315	मार्च-11
10	मालरकोटला एक्सटेंशन	400/220	पावरग्रिड	500	मार्च-11
11	पिराणा(द्वितीय ट्रांस्फ)	400/220	पावरग्रिड	315	मार्च-11
12	ग्वालियर विस्तार	400/220	पावरग्रिड	315	मार्च-11
	कुल पीजीसीआईएल			4650	
	डीवीसी			0	
	कुल (केंद्रीय क्षेत्र)			4650	
	400 केवी (सब-स्टेशन) (सब-				
	स्टेशन)				
1	किरोरी	400/220	एचवीपीएनएल	630	अप्रैल-10
2	किरोरी (तृतीय ट्रांसमिशन)	400/220	एचवीपीएनएल	315	मई-10
3	दौलतापुर	400/220	एचवीपीएनएल	630	नवम्बर-10
4	दौलतापुर (तृतीय ट्रांसमिशन)	400/220	एचवीपीएनएल	315	दिसम्बर10

315	सितंबर-10
215	Tarat 10
	नवम्बर-10
315	नवम्बर-10
315	नवम्बर-10
315	दिसम्बर-10
315	सितंबर-10
315	मार्च-11
630	मार्च-11
315	मई-10
315	फरवरी-11
315	जून-10
500	जनवरी-11
315	नवम्बर-10
315	मार्च-11
315	दिसम्बर10
315	मई-10
315	मई-10
315	जून-10
315	अगस्त-10
315	अगस्त-10
8690	
630	मार्च-11
630	
13970	
	315 315 315 315 315 315 315 315 315 315

सं.	सब-स्टेशन	अनुपात	 क्रियान्वयन		T
			1 4-4- 44 4 4 4	क्षमता	पूर्ण होने का
			एजेंसी	(एमडब्ल्यू /	माह
		(केवी/केवी)		एमवीए)	
	202-2 (
	220केवी (सब-स्टेशन) (C)				
—	पेथौरागढ़(प्रथम)	220/132	पावरग्रिड	100	अगस्त-10
	पेथौरागढ़ (द्वितीय)	220/132	पावरग्रिड	100	नवम्बर-10
<u> </u>	गरिपाडा	220/132	पावरग्रिड	160	मार्च-11
l '	वरजोरा सब-स्टेशन	220/132	डीवीसी	300	जून-10
 	(2x150)				
वु	कुल (केंद्रीय क्षेत्र)			660	
	220केवी (सब-स्टेशन) (सब-				
	स्टेशन)				
-	केरोरी (प्रथम ट्रांसमिशन)	220/132	एचवीपीएनएल	100	मई-10
2 ৰ	त्रत्रा	220/132	एचवीपीएनएल	200	सितंबर-10
3 ਰਿ	केरोरी(द्वितीय ट्रांसमिशन)	220/132	एचवीपीएनएल	100	सितंबर-10
4 रे	रवाड़ी (विस्तार) (100-50)	220/132	एचवीपीएनएल	50	अक्टूबर-10
5 f	जेंद (विस्तार)	220/132	एचवीपीएनएल	100	नवम्बर-10
6 ₹	मलखा (2x100)	220/132	एचवीपीएनएल	200	फरवरी-11
7 सि	नंपला	220/132	एचवीपीएनएल	200	मार्च-11
8 ৰ	ग्र <u>ा</u> गरू	220/132	आरआरवीपीएनएल	100	मई-10
9 ब	बोरांडाआई/ए	220/132	आरआरवीपीएनएल	100	जून-10
10 ਜੋ	गोखा	220/132	आरआरवीपीएनएल	100	नवम्बर-10
11 f	चेरावा(1x100)	220/132	आरआरवीपीएनएल	100	नवम्बर-10
12	जयपुर (इंदिरा गांधी नगर)	220/132	आरआरवीपीएनएल	100	दिसम्बर-10
	जीएसएस (1x100)				
13 ए	रमआईए (अप-ग्रेड)	220/132	आरआरवीपीएनएल	100	मार्च-11
14 स	नावा (अपग्रेड)	220/132	आरआरवीपीएनएल	100	मार्च-11
15 ย่	घोलपुर(100-50)	220/132	आरआरवीपीएनएल	50	मार्च-11
16 f	रेंगुस (सिकर) (100-50)	220/132	आरआरवीपीएनएल	50	मार्च-11
17 प	क्लोदी (जोधपुर) (100-50)	220/132	आरआरवीपीएनएल	50	मार्च-11
18 ยั	धोरीमाना (बारमर)	220/132	आरआरवीपीएनएल	100	मार्च-11
(1	विस्तार)				

19	मंडावर (दौसा) (विस्तार)	220/132	आरआरवीपीएनएल	100	मार्च-11
20	भीलवाड़ा(विस्तार)	220/132	आरआरवीपीएनएल	100	मार्च-11
21	बंसवारा (विस्तार)	220/132	आरआरवीपीएनएल	100	मार्च-11
22	भरतपुर(विस्तार)	220/132	आरआरवीपीएनएल	100	मार्च-11
23	मोदक (कोटा) (100-50)	220/132	आरआरवीपीएनएल	50	मार्च-11
24	बलोतरा (बारमर) (100-	220/132	आरआरवीपीएनएल	50	मार्च-11
0.5	50)	000/400	आरआरवीपीएनएल	50	
25	फुलेरा (जयपुर) (100-50)	220/132	आरआरवीपीएनएल	50	मार्च-11
26	किशनगढ़ (अजमेर) (विस्तार)	220/132	आरआरवापाएनएल	100	मार्च-11
27	हिंडन (करौली) (विस्तार)	220/132	आरआरवीपीएनएल	50	मार्च-11
28	गुलाबपुर (भीलवाड़ा) (विस्तार)	220/132	आरआरवीपीएनएल	100	मार्च-11
29	कंक्रोली (राजसमंद)	220/132	आरआरवीपीएनएल	100	मार्च-11
	(विस्तार)				
30	अमरसागर (जैसलमेर)	220/132	आरआरवीपीएनएल	100	मार्च-11
	(विस्तार)				
31	कुकस (जयपुर) (विस्तार)	220/132	आरआरवीपीएनएल	100	मार्च-11
32	चिरावा (झुंझणु)(विस्तार)	220/132	आरआरवीपीएनएल	100	मार्च-11
33	धोड (सिकर)(विस्तार)	220/132	आरआरवीपीएनएल	100	मार्च-11
34	संभल, मुरादाबाद	220/132	यूपीपीटीसीएल	200	जून-10
35	गजरौला	220/132	यूपीपीटीसीएल	200	जून-10
36	दादरी	220/132	यूपीपीटीसीएल	200	नवम्बर-10
37	एटा	220/132	यूपीपीटीसीएल	100	दिसम्बर-10
38	ननौटा (160+100)	220/132	यूपीपीटीसीएल	160	जनवरी-11
39	नौबस्ता(160-100)	220/132	यूपीपीटीसीएल	60	मार्च-11
40	साहूपुरी(160-100)	220/132	यूपीपीटीसीएल	60	मार्च-11
41	बदौन(160-100)	220/132	यूपीपीटीसीएल	60	मार्च-11
42	शताब्दीनगर(160-100)	220/132	यूपीपीटीसीएल	60	मार्च-11
43	पनकी(160-100)	220/132	यूपीपीटीसीएल	60	मार्च-11
44	जहाँगीराबाद(160-100)	220/132	यूपीपीटीसीएल	60	मार्च-11
45	आजमगढ़(160-100)	220/132	यूपीपीटीसीएल	60	मार्च-11
46	अतरौली(160-100)	220/132	यूपीपीटीसीएल	60	मार्च-11

47	देइरूआ (100)	220/132	यूपीपीटीसीएल	100	मार्च-11
48	साहूपुरी(160-100)	220/132	यूपीपीटीसीएल	60	मार्च-11
49	लोनी(150-100)	220/132	यूपीपीटीसीएल	50	मार्च-11
50	हरदोई रोड, लखनऊ(160-	220/132	यूपीपीटीसीएल	60	मार्च-11
	100)				
51	खुर्जा (160-100)	220/132	यूपीपीटीसीएल	60	मार्च-11
52	गोंडा(160-100)	220/132	यूपीपीटीसीएल	60	मार्च-11
53	सिकंदरा, आगरा (60)	220/33	यूपीपीटीसीएल	60	मार्च-11
54	बदौन (150-100)	220/132	यूपीपीटीसीएल	50	मार्च-11
55	शमशाबाद रोड, आगरा	220/132	यूपीपीटीसीएल	320	मार्च-11
56	गोरखपुर II	220/132	यूपीपीटीसीएल	160	मार्च-11
57	पोंग (विस्तार) (40-20)	220/66	एचपीईबीएल	20	मार्च-11
58	जस्सूर सब-स्टेशन 1x25	220/33	एचपीईबीएल	25	मार्च-11
	एमवीए				
59	उपरला नांगल (नालागढ़)	220/66	एचपीईबीएल	200	मार्च-11
60	अमलो रोड मंडी गोविंद गढ़	220/66	पीटीसीएल	100	जून-10
61	हिम्मतपुर	220/66	पीटीसीएल	100	जुलाई -10
62	वेरपाल सुदृढ़ीकरण(100-	220/66	पीटीसीएल	50	जुलाई -10
	50)				
63	सादिक (यू/जी) (1x100	220/66	पीटीसीएल	100	अगस्त-10
	एमवीए)				
64	खारर	220/66	पीटीसीएल	100	अगस्त-10
65	तारन तारन	220/66	पीटीसीएल	100	अगस्त-10
66	सिविल लाइंस एएसआर	220/66	पीटीसीएल	100	अगस्त-10
67	सुनाम	220/66	पीटीसीएल	100	अगस्त-10
68	पखोवल (न्यू) (1x100	220/66	पीटीसीएल	100	नवम्बर-10
	एमवीए)				
69	एफ पी नाभा (1x100)	220/66	पीटीसीएल	100	दिसम्बर-10
70	साहनीवाल (तृतीय	220/66	पीटीसीएल	100	दिसम्बर-10
	ट्रांसफार्मर)				
71	कोहारा (Aug) (1x100	220/66	पीटीसीएल	100	जनवरी-11
	एमवीए)				
72	अलगन	220/66	पीटीसीएल	100	मार्च-11
73	झुनीर	220/66	पीटीसीएल	100	मार्च-11
	•	•	•		

74	घुबाया (अतिरिक्त)	220/66	पीटीसीएल	100	मार्च-11
75	बाजा खाना (अतिरिक्त)	220/66	पीटीसीएल	100	मार्च-11
76	मालरकोटला (अतिरिक्त)	220/66	पीटीसीएल	100	मार्च-11
77	मलोत(न्यू)	220/66	पीटीसीएल	100	मार्च-11
78	करतारपुर	220/132	पीटीसीएल	100	मार्च-11
79	बोटियांवाला	220/66	पीटीसीएल	100	मार्च-11
80	रिज वैली	220/66	डीटीएल	320	सितंबर-10
81	डायल	220/66	डीटीएल	320	सितंबर-10
82	वसंत कुंज (तृतीय)	220/66	डीटीएल	160	नवम्बर-10
83	शालीमार बाग (तृतीय)	220/33	डीटीएल	100	मार्च-11
84	मस्जिद-मोठ (सिरीफोर्ट)	220/33	डीटीएल	200	मार्च-11
85	मुंडका(प्रथम ट्रांसफार्मर)	220/66	डीटीएल	160	मार्च-11
86	लखानी(आगाथाला)(प्रथम	220/66	जीईटीसीओ	100	अप्रैल-10
	ट्रांसफार्मर)				
87	बोटड	220/66	जीईटीसीओ	50	अप्रैल-10
88	भाट(बावला)	220/66	जीईटीसीओ	100	मई-10
89	लखानी(आगाथाला)	220/66	जीईटीसीओ	100	नवम्बर-10
	(द्वितीय ट्रांसफार्मर)		0:00		
90	कांगासियल्ली	220/66	जीईटीसीओ	100	मार्च-11
91	भाट(बावला) (द्वितीय ट्रांसफार्मर)	220/66	जीईटीसीओ	100	मार्च-11
92	बोटड(द्वितीय ट्रांसफार्मर)	220/66	जीईटीसीओ	150	मार्च-11
93	जंबुवा (विस्तार)	220/132	जीईटीसीओ	50	मार्च-11
94	छत्राल(विस्तार)	220/66	जीईटीसीओ	50	मार्च-11
95	कपडवंज(विस्तार)	220/66	जीईटीसीओ	50	मार्च-11
96	अंजर (विस्तार)	220/66	जीईटीसीओ	100	मार्च-11
97	मेहसाना (विस्तार)	220/66	जीईटीसीओ	50	मार्च-11
98	डोमा	220/132	सीपीटीसीएल	160	सितंबर-10
99	मेन स्टेप डाउन जीआईएस सब- स्टेशन (एमएसडीएस)-5	220/132	सीपीटीसीएल	320	मार्च-11
100	पारसवाणि (महासमुंद) (अतिरिक्त)	220/132	सीपीटीसीएल	160	मार्च-11
101	मोपका (अतिरिक्त)	220/132	सीपीटीसीएल	160	मार्च-11
102	छतरपुर	220/132	एमपीपीटीसीएल	160	अप्रैल-10
103	छेगांव	220/132	एमपीपीटीसीएल	160	अगस्त-10

104	आस्था	220/132	एमपीपीटीसीएल	100	सितंबर-10
105	कोटार	220/132	एमपीपीटीसीएल	160	नवम्बर-10
106	बेतुल	220/132	एमपीपीटीसीएल	160	नवम्बर-10
107	विदिशा	220/132	एमपीपीटीसीएल	160	जनवरी-11
108	वाणि(2x50)	220/33	एमएसईटीसीएल	100	जुलाई -10
109	चकन	220/22	एमएसईटीसीएल	50	अगस्त-10
110	शेंद्रा	220/33	एमएसईटीसीएल	100	दिसम्बर-10
111	टेमघर	220/22	एमएसईटीसीएल	50	दिसम्बर-10
112	हिंगोली	220/132	एमएसईटीसीएल	100	मार्च-11
113	हिंगोली(2x25)	220/33	एमएसईटीसीएल	50	मार्च-11
114	चकन (2x50)	220/22	एमएसईटीसीएल	100	मार्च-11
115	तालेगांव(2x50)	220/33	एमएसईटीसीएल	100	मार्च-11
116	काडेगांव (वाणि)	220/132	एमएसईटीसीएल	100	मार्च-11
117	प्रचुर	220/132	एपी ट्रांस्को	100	जून-10
118	सालिवागु	220/11	एपी ट्रांस्को	100	सितंबर-10
119	ब्राह्मणाकोटकुर (2x25)	220/11	एपी ट्रांस्को	25	जनवरी-11
120	मलयाला (4x31.5)	220/11	एपी ट्रांस्को	31.5	फरवरी-11
121	ब्रांडिक्स (2x100)	220/132	एपी ट्रांस्को	200	मार्च-11
122	रेगुलापादु	220/11	एपी ट्रांस्को	25	मार्च-11
123	थुडियालुर (अतिरिक्त	230/110	टीएएनट्रांस्को	80	जून-10
	ट्रांसमिशन)				
124	केआईटीएस पार्क	230/110	टीएएनट्रांस्को	80	सितंबर-10
125	बसीन ब्रिज(अतिरिक्त	230/110	टीएएनट्रांस्को	100	सितंबर-10
	ट्रांसमिशन)				
126	अमुथापुरम (अतिरिक्त	230/33	टीएएनट्रांस्को	50	जनवरी-11
	ट्रांसफार्मर)				
127	कोडिकुरूचि(अतिरिक्त	230/110	टीएएनट्रांस्को	100	जनवरी-11
	ट्रांसफार्मर)				
128	होसुर(अतिरिक्त ट्रांसफार्मर)	230/110	टीएएनट्रांस्को	100	जनवरी-11
129	अलागरकोइल(अतिरिक्त.ट्रांसफा	230/110	टीएएनट्रांस्को	100	मार्च-11
	र्मर)				
130	कुंद्रा (द्वितीय ट्रांसमिशन)	220/110	केईबी	200	नवम्बर-10
131	पोठेनकोड(तृतीय	220/110	केईबी	200	मार्च-11

	ट्रांसफार्मर)				
132	एम के हुबली	220/110	केपीटीसीएल	100	दिसम्बर-10
133	घाटप्रभा (प्रथम ट्रांसफार्मर)	220/110	केपीटीसीएल	100	दिसम्बर-10
134	ए' स्टेशन कंपाउंड (आनंद	220/66	केपीटीसीएल	150	दिसम्बर-10
	राव सर्किल)				
135	रामानगर (कोठिपुरा)	220/66	केपीटीसीएल	100	दिसम्बर-10
136	निमहंस	220/66	केपीटीसीएल	300	दिसम्बर-10
137	वाजामंगला	220/66	केपीटीसीएल	150	दिसम्बर-10
138	ईस्ट डिवीजन कंपाउंड	220/66	केपीटीसीएल	300	दिसम्बर-10
139	घाटप्रभा (द्वितीय ट्रांसमिशन)	220/110	केपीटीसीएल	100	मार्च-11
140	कुशलनगर	220/66	केपीटीसीएल	100	मार्च-11
141	बोलांगिर(2x100)	220/132	ओपीटीसीएल	100	अगस्त-10
142	बोलांगिर(द्वितीय ट्रांसफार्मर)	220/132	ओपीटीसीएल	100	मार्च-11
143	सुभाषग्राम	220/132	डब्ल्यूबीईटीसीएल	160	अगस्त-10
144	सिंगूर(2x160)	220/132	डब्ल्यूबीईटीसीएल	160	सितंबर-10
145	सुभाषग्राम(द्वितीय)	220/132	डब्ल्यूबीईटीसीएल	160	नवम्बर-10
146	सिंगूर(2x160)	220/132	डब्ल्यूबीईटीसीएल	160	नवम्बर-10
147	कोलकाता लेदर कॉम्प्लेक्स	220/132	डब्ल्यूबीईटीसीएल	160	नवम्बर-10
148	आसनसोल (सुदृढ़ीकरण)	220/132	डब्ल्यूबीईटीसीएल	100	नवम्बर-10
149	खगौल (पटना) (विस्तार)	220/132	बीईबी	100	नवम्बर-10
150	बोधगया(विस्तार)	220/132	बीईबी	150	नवम्बर-10
151	बिदानासी	220/33	ओपीटीसीएल	40	जनवरी-11
152	बिरनीहट(2x160)	220/132	मेघालयईबी	320	अगस्त-10
	कुल (राज्य क्षेत्र)	220		17027	
	कुल (अखिल भारत)	220		17687	
	कुल (अखिल भारत)	(400		31657	
		+220)केवी			

अनुबंध 6.5

2011-12 के दौरान बढ़ाई गई पारेषण प्रणाली 2011-12 के दौरान स्थापित की गई पारेषण लाइन

31.03.2012 की स्थिति के अनुसार

			<u>। १८ का । स्थात क अनुसा</u>	<u> </u>
क्र	पारेषण लाइन का नाम	सर्किट की	क्रियान्वयन एजेंसी	लाइन कीलंबर् ड
सं.		संख्या.		कीलंबाई
				(सीकेएम)
	65 केवी लाइन			
केंद्री	य क्षेत्र			
1	टेहरी पुलिंग प्वाइंट (400 केवी पर आवेशित होने वाला) पर टेहरी-मेरठ का एलआईएलओ	2xडी/सी	पीजीसीआईएल	13
2	गया -बलिया(भाग लाइन)	एस/सी	पीजीसीआईएल	69
3	सतना - बीना लाइन –I	एस/सी	पीजीसीआईएल	274
4	द्वितीय एस/सी सिवनी (पीजी)–वर्धा (पीजी)	एस/सी	पीजीसीआईएल	261
	लाइन (शुरूआत में 400 केवी पर संचालित			
	होने वाली)			
5	बलिया-लखनऊ	एस/सी	पीजीसीआईएल	320
6	गया - बलिया (बचा भाग)	एस/सी	पीजीसीआईएल	159
7	बीना – इंदौर	एस/सी	पीजीसीआईएल	311
8	गया -	एस/सी	पीजीसीआईएल	148
9	डब्ल्यूआर पुलिंग प्वाइंट (बिलासपुर पुलिंग प्वाइंट) पर सिपट-सिवनी का एलआईएलओ	एस/सी	पीजीसीआईएल	8
10	डब्ल्यूआर पुलिंग प्वाइंट (बिलासपुर पुलिंग प्वाइंट) पर सिपट-सिवनी का एलआईएलओ (द्वितीय सर्किट)	एस/सी	पीजीसीआईएल	8
11	सासाराम-फतेहपुर लाइन –l	एस/सी	पीजीसीआईएल	337
वर्षः	के दौरान पूर्णरूपेण स्थापित (सीएस) का कुल सी	ोकेएम 		1908
	। क्षेत्र			
1	उन्नाव में 765 केवी अनपरा-उन्नाव की शिफ्टिंग	एस/सी	यूपीपीटीसीएल	1
2	अनपरा बी से अनपरा सी एसडब्ल्यू यार्ड में अनपरा बी-उन्नाव टर्मिनेशन प्वाइंट की शिफ्टिंग	एस/सी	यूपीपीटीसीएल	1
	कुल राज्य क्षेत्र		2	
	कुल 765केवी लाइन (अखिल भारत	T)		1910

पारेषण लाइन का नाम	सर्किट की संख्या.	क्रियान्वयन एजेंसी	लाइन कीलंबाई (सीकेएम)
एचवीडीसी बाईपोल			
+/- 500 केवी मुंद्रा-मोहिंदरगढ़ बाइपोल		अदानी	1980
कुल(एचवीडीसी)			1980

क	पारेषण लाइन का नाम	सर्किट की	संख्या.	क्रियान्वयन एजेंसी	लाइन कीलंबाई			
सं.					(सीकेएम)			
II. 4	II. 400 केवी लाइन							
केंद्र	य क्षेत्र							
1	कोडरमा-बिहारशरीफ (क्वैद)	डी/सी	पीर्ज	ोसीआईएल	222			
2	कोरबा एसटीपी- रायपुर	डी/सी	पीर्ज	ोसीआईएल	424			
3	सिंहाद्री टीपीएस पर 400 केवी डी/सी गाजुवाका-वेमागिरी का एलआईएलओ	डी/सी	पीर्ज	ोसीआईएल	22			
4	मैसूर-हस्सन	डी/सी	पीर्ज	ोसीआईएल	192			
5	राउरकेला – रायगढ़	डी/सी	पीर्ज	ोसीआईएल	420			
6	वेल्लूर टीपीएस पर आलामाथी-श्रेपेरूम्बदुर का एलआईएलओ	डी/सी on एम/सी	पीर्ज	ोसीआईएल	131			
7	(पीजी)-पार्ली (पीजी)	डी/सी	पीर्ज	ोसीआईएल	674			
8	बारिपाडा-मेंढाल	डी/सी	पीर्ज	ोसीआईएल	546			
9	फरक्का- कहलगांव (द्वितीय लाइन)	डी/सी	पीर्ज	ोसीआईएल	190			
10	भिवानी में बवाना/बहादुरगढ़-हिसार लाइन का एलआईएलओ	डी/सी	पीर्ज	ोसीआईएल	27			
11	पटियालामें नालागढ़-कैथल के जिंद सर्किट का एलआईएलओ	डी/सी	पीर्ज	ोसीआईएल	22			
12	कैथल में पटियाला-हिसार का एलआईएलओ	डी/सी	पीर्ज	ोसीआईएल	66			
13	मुंद्रा-बच्चाउ	डी/सी	पीर्ज	ोसीआईएल	198			
14	यूआरआई I – यूआरआई II	एस/सी	पीर्ज	ोसीआईएल	11			
15	बच्चाउ-रणछोड़पुर	डी/सी	पीर्ज	ोसीआईएल	566			
16	पटियाला-लुधियाना	डी/सी	पीर्ज	ोसीआईएल	156			
17	कोरबा(एनटीपीसी)-ब्रिसिंहपुर (एमपीजेनको) (लाइन 8 सीकेएम के भाग की स्थापना आकस्मिक व्यवस्था के लिए की गई)	डी/सी	पीर्ज	ोसीआईएल	8			
18	मेजिया-मैथन	डी/सी	पीर्ज	ोसीआईएल	114			
19	मुंद्रा-लिंबडी (भाग लाइन)	एस/सी	पीर्ज	ोसीआईएल	384			
20	मुवत्तुपूझा (पीजी) – नॉर्थ त्रिचुर (पीजी)	डी/सी	पीर्ज	ोसीआईएल	157			

20	भिवानी में बवाना/बहादुरगढ़-हिसार लाइन का एलआईएलओ	डी/सी	पीजीसीआईएल	97
21	फतेहपुर में इलाहाबाद-कानपुर का एलआईएलओ	डी/सी	पीजीसीआईएल	31
22	लखनऊ(न्यू)-लखनऊ लाइन- II(क्वैद)	डी/सी	पीजीसीआईएल	6
23	मैथन(आरबी)-रांची	डी/सी	पीजीसीआईएल	376
24	यूआरआई II –वगूरा	एस/सी	पीजीसीआईएल	105
25	बिहारशरीफ-सासाराम(सर्किट-। और सर्किट- ।। का भाग)	डी/सी	पीजीसीआईएल	318
26	फतेहपुर में सिंगरौली-कानपुर का एलआईएलओ	डी/सी	पीजीसीआईएल	41
27	नीमराना-सिकर	डी/सी	पीजीसीआईएल	352
28	तूतीकोरिन जेवी-मदुरई	डी/सी	पीजीसीआईएल	304
29	दुर्गापुर-मैथन लाइन	डी/सी	पीजीसीआईएल	146
30	कोरबा(एनटीपीसी)- बीरसिंहपुर(एमपीजेनको) (बचा भाग)	डी/सी	पीजीसीआईएल	446
31	शाहजहांपुर में लखनऊ-बरेली लाइन (पीजी) के दोनों सर्किट का एलआईएलओ	डी/सी	पीजीसीआईएल	32
32	पंचकुला में नाथप्पा झाकरी- अब्दुल्लापुर(ट्रिपल स्नोबार्ड) के दोनों सर्किट का एलआईएलओ	डी/सी	पीजीसीआईएल	102
33	मुंद्रा-लिंबडी	डी/सी	पीजीसीआईएल	244
34	बिहारशरीफ-सासाराम (सर्किट-।। का शेष भाग)	डी/सी	पीजीसीआईएल	80
35	इंदौर-इंदौर (एमपीपीटीएल)	डी/सी	पीजीसीआईएल	50
36	कलपक्कम-अर्णि	डी/सी	पीजीसीआईएल	213
37	बिदाडी में नीलमंगला-सोमनहल्ली का एलआईएलओ	डी/सी	पीजीसीआईएल	28
38	पलक्कड में उडुमालपेट-त्रिचुर का एलआईएलओ	डी/सी	पीजीसीआईएल	49
39	सासन में विंध्याचल-जबलपुर के दोनों सर्किट का एलआईएलओ	2xडी/सी	पीजीसीआईएल	13
40	मौदा एसटीपीएस-वर्धा लाइन (क्वैद) (सर्किट-1)	डी/सी	पीजीसीआईएल	124
	कुल 400 केवी (पीजी)			7687
	कुल 400 केवी डीवीसी			0
	कुल केंद्रीय क्षेत्र(400 केवी)			7687

राज	य क्षेत्र		1	
1	सागरदीघी-परूलिया (पीजीसीआईएल)	डी/सी पर एस/सी	डब्ल्यूबीईटीसीएल	255
2	वाडिनार (एस्सार)-हडाला	डी/सी	जीईटीसीओ	226
3	सुंगुवरक्षत्रम 400 केवी सब-स्टेशन पर श्रीपेरंबुदुर-पुदुचेरी का एलआईएलओ	डी/सी	टीएएनट्रांस्को	16
4	नुहियावाली में हिसार-फतेहाबाद का एलआईएलओ	डी/सी	एचवीपीएनएल	153
5	एमजी झज्जर (सीएलपी) पर झज्जर (एपीसीपीएल)-दौलताबाद लाइन का एलआईएलओ	डी/सी	एचवीपीएनएल	10
6	जैसलमेर-जोधपुर	एस/सी	आरवीपीएनएल	239
7	भुसाबल - II – औरंगाबाद	डी/सी	एमएसईटीसीएल	185
8	न्यू भुसावल – औरंगाबाद	डी/सी	एमएसईटीसीएल	179
9	कोसांबा में असोज-उकाई का एलआईएलओ	डी/सी	जीईटीसीओ	64
10	झज्जर-धनोंडा	डी/सी	एचवीपीएनएल	40
11	झज्जर-कबुलपुर	डी/सी	एचवीपीएनएल	70
12	कबुलपुर-दीपलपुर	डी/सी	एचवीपीएनएल	133
13	दीपलपुर में अब्दुल्लापुर-बवाना का एलआईएलओ	डी/सी	एचवीपीएनएल	2
14	बीटीपीएस-हिरियुर	डी/सी	केपीटीसीएल	313
	कुल राज्य क्षेत्र(400 केवी)			1885
निष	नी क्षेत्र			
1	पुणे(पीजी) में लोनीखंड (एमएसईटीसीएल)- कलवा(एमएसईटीसीएल) का एलआईएलओ	डी/सी	आरपीटीएल	3
2	लिम्डी (चोरानिया (गेटको)- रामछोड़पुर	डी/सी	आरपीटीएल	206
	(वडावि) (गेटको)			
3	जैगड़-कराड	डी/सी	जेपीटीएल	219
4	कसाइपल्ली में कोरबा-भाटापारा का एलआईएलओ	डी/सी	एसीबी	6
5	पार्ली (पीजी) – सोलापुर (पीजी)	डी/सी	आरपीटीएल	272
6	रणछोड़पुरा (वडाबी) (गेटको)- जेर्दा (कंसारी (गेटको)	डी/सी	आरपीटीएल	282
7	बाल्को टीपीएस में कोरबा-ब्रिसिंहपुर का एलआईएलओ	डी/सी	बाल्को	35
8	एनर्जन टीपीपी में मदुरई-एनएलसी का एलआईएलओ	डी/सी	सीजीपीएल	52

9	महान सब-स्टेशन पर विंध्याचल-कोरबा लाइन का एलआईएलओ	डी/सी	एस्सार	44
10	मीनाक्षी-नेल्लोर	एस/सी	एमईएल	26
11	सिम्हापुरी-मीनाक्षी	डी/सी	एमईएल	2
12	सिम्हापुरी-नेल्लोर	एस/सी	एमईएल	26
13	शाहजहांपुर में (पीजीसीआईएल) लखनऊ- बरेली का एलआईएलओ	डी/सी	आरपीटीएल	29
14	शाहजहांपुर में लखनऊ-बरेली के (रिलांयस) का एलआईएलओ	डी/सी	आरपीटीएल	15
	कुल निजी क्षेत्र (400 केवी)			1217
कुल 400 केवी लाइन (अखिल भारत)			10789	

क्र सं.	पारेषण	लाइन का नाम	सर्किट की संख्या.	क्रियान्वयन एजेंसी	लाइन की लंबाई (सीकेएम)
III. 2	220 केवी	•			
केंद्र	यि क्षेत्र				
1	चमेरा-।	। एचईपी के नजदीक चमेरा-।।।-पुलिंग स्टेशन	डी/सी	पीजीसीआईएल	30
2	कलपक्	कम पीएफबीआर-सिरूचेर <u>ी</u>	डी/सी	पीजीसीआईएल	72
3	\ \ \	में 220 केवी डी/सी फतेहपुर (यूपीपीसीएल)- (यूपीपीसीएल) का एलआईएलओ	डी/सी	पीजीसीआईएल	23
4	गया में एलआई	डेहरी-बोधगया के प्रथम सर्किट का एलओ	डी/सी	पीजीसीआईएल	24
5		में प्रथम सर्किट सिकर (आरवीपीएन), रतनगढ़ आईएलओ	डी/सी	पीजीसीआईएल	6
6	गया में	डेहरी-बोधगया का एलआईएलओ	डी/सी	पीजीसीआईएल	24
	कुल पी	जीसीआईए ल			179
	कुल सी	केएम 220 केवी लाइन की(डीवीसी)			0
	कुल सी	केएम 220 केवी लाइन की(सीएस)			179
राज	य क्षेत्र				
	1	मोहाना-स्मलखा लाइन	डी/सी	एचवीपीएनएल	55
	2	देवास-आस्था	डी/सी	एमपीपीटीसीएल	144
	3	चकन सब-स्टेशन पर भोसारि-चिंचवाड का एलआईएलओ	डी/सी on एम/सी	एमएसईटीसीएल	17
	4	बीकानेर जीएसएस में बीकानेर-श्रीदूनगरगढ़ लाइन का एलआईएलओ	एस/सी	आरवीपीएनएल	7

5	जीएसएस सवा में चित्तौरगढ़-निंबाहेरा का	डी/सी	आरवीपीएनएल	5
	एलआईएलओ		,,,,	-
6	भिवानी जीएसएस(पीजी) में सिरोही-	डी/सी	आरवीपीएनएल	10
	भिनमल का एलआईएलओ	-0.0	-0000	
7	बरदोली (मोटा) में उकाई(टी)-वीएवी के द्वितीय सर्किट का एलआईएलओ	डी/सी	जीईटीसीओ	10
8	बीना765 न्यू सब-स्टेशन (पीजी) पर बीना-	डी/सी	एमपीपीटीसीएल	2
0	शिवपुरी के प्रथम सर्किट का एलआईएलओ	31//11	3.11113111311	2
9	लालरू में मोहाली-डेरा बस्सी का	एस/सी	पीटीसीएल	34
	एलआईएलओ			-
10	झुणीर में सुनाम-मंसा लाइन का	डी/सी	पीटीसीएल	68
	एलआईएलओ	0 - 0		
11	देवाक्कुरिची-पुधनचंदाई	डी/सी पर	टीएएनट्रांस्को	84
	करमवयम(निम्मेली थिप्पीयाकुडी) में	एस/सी डी/सी	टीएएनट्रांस्को	4-
12	करमवयम्(।नम्मला ।यण्पायाकुडा) म थिरूवरूर-कराइकुडी का एलआईएलओ	डा/सा	टाएएनट्रास्का	17
13	ओथाक्कालमंडपम(मालूमिचंपट्टी)-पल्लदम	एस/सी	टीएएनट्रांस्को	53
14	कानपुर दक्षिण में फतेहपुर-पनकी का	 डी/सी	यूपीपीटीसीएल	7
14	एलआईएलओ	31//11	Z 11 1131/11/3/1	,
15	लक्कासाग्राम-नंसुरल्ला	डी/सी	एपी ट्रांस्को	7
16	भाट-पिराना लाइन	डी/सी	जीईटीसीओ	29
17	चोरमार-रानिया लाइन वाया नुहियानवली	डी/सी	एचवीपीएनएल	73
18	लुला अहिर में दादरी-रेवारी का	डी/सी	एचवीपीएनएल	9
	एलआईएलओ			
19	सेवा-छाजपुर लाइन	डी/सी	एचवीपीएनएल	27
20	स्मलखा-छाजपुर	डी/सी	एचवीपीएनएल	50
21	बार्न-बिश्ना-हीरा नगर	डी/सी	जेकेपीडीडी	180
22	वीएसएनएल सब-स्टेशन पर लोनीखंडा-	डी/सी	एमएसईटीसीएल	4
	खड़की लाइन का एलआइएलओ			
23	जेजुरी सब-स्टेशन पर पार्वती-फुरसुंगी लाइन	डी/सी	एमएसईटीसीएल	62
	का एलआईएलओ	डी/सी		_
24	तुलजापुर में पार्ली(मुरूद)-सोलापुर लाइन का एलआईएलओ	डा/सा	एमएसईटीसीएल	6
	44 (410112641011			
25	फोकल प्वाइंट नाभा-फागन माजरा 400	डी/सी	पीटीसीएल	33
20	केवी सब-स्टेशन	20.70		JJ
26	अकाल-भू लाइन	डी/सी	आरवीपीएनएल	17
27	नल्लामनइकेनपट्टी में चेकनुरानी-अमाथापुरम	डी/सी	टीएएनट्रांस्को	30
	का एलआईएलओ			
28	ग्रेटर नोएडा-नोएडा सेक्टर 129	डी/सी	यूपीपीटीसीएल	24
29	बिठुर में पनकी-उन्नाव का एलआईएलओ	एस/सी	यूपीपीटीसीएल	14

20	काठलगुरी-तिनसुकिया (द्वितीय सर्किट)	एस/सी		0.4
30		-	एईजीसीएल	24
31	रमागुंडम-बेल्लामपल्ली	डी/सी पर एस/सी	एपी ट्रांस्को	37
32	कोसांबा-जगाडिया लाइन	डी/सी	जीईटीसीओ	49
33	कांगासियाली में गोंडल-राजकोट लाइन का एलआईएलओ	डी/सी	जीईटीसीओ	28
34	कशांग-भाबा (प्रथम सर्किट)	डी/सी	एचपीईबीएल	37
35	लुला अहीर-धनोंडा लाइन	एस/सी	एचवीपीएनएल	40
36	वाठेर में कराड-कोल्हापुर डी/सी का एलआईएलओ	डी/सी	एमएसईटीसीएल	20
37	तालेगांव 400 केवी (पीजी) सब-स्टेशन- तालेगांव 220 केवी सब-स्टेशन	डी/सी	एमएसईटीसीएल	20
38	लुधियाना में लैटन कलां-धंडारी के प्रथम सर्किट का एलआईएलओ	डी/सी	पीटीसीएल	5
39	पट्टी- अलगांव लाइन	डी/सी पर एस/सी	पीटीसीएल	20
40	ढोणे एसडब्ल्यू. स्टेशन पर गुटी- सोमयाजुलापल्ली के दोनों सर्किट का एलआईएलओ	2xडी/सी	एपी ट्रांस्को	114
41	विजयवाडा टीपीएस-तल्लापल्ली	डी/सी	एपी ट्रांस्को	266
42	टेमघर में पागढे-कलवा का एलआईएलओ	डी/सी	एमएसईटीसीएल	3
43	भद्रा-चिरावा	एस/सी	आरवीपीएनएल	109
44	भीनमल(पीजी)-संचोर (आरवीपीएन) और भीनमल(पीजी)- भीनमल(आरवीपीएन)	एस/सी	आरवीपीएनएल	18
45	छाबरा टीपीएस- झालावाड़	एस/सी	आरवीपीएनएल	101
46	हजैरा(जीएसईसी)-कोसांबा	डी/सी	जीईटीसीओ	125
47	फतेहाबाद-चोरमार लाइन	डी/सी	एचवीपीएनएल	158
48	हुमनाबाद-हलबरागा	डी/सी	केपीटीसीएल	79
49	चिकमगलूर में शिमोगा-मैसूर का एलआईएलओ	डी/सी	केपीटीसीएल	57
50	वॉक्सवैगन-मेसर्स महिंद्रा सब-स्टेशन	एस/सी	एमएसईटीसीएल	3
51	पलमनेरू-चित्तूर	डी/सी पर एस/सी	एपी ट्रांस्को	58
52	न्यारा-तेभदा (सर्किट-।)	एस/सी	जीईटीसीओ	90
53	धनोंडा-दधिबाना लाइन	डी/सी	एचवीपीएनएल	34
54	देचू-तिनवारी	एस/सी	आरवीपीएनएल	71
55	सुंगुवरछत्रम-ओरागाडम	डी/सी पर एस/सी	टीएएनट्रांस्को	10

56	ढोणे-कृष्णागिरी	डी/सी पर एस/सी	एपी ट्रांस्को	11
57	रेगुलापडु (शेष कार्य) में गुटी-अलिपुर का एलआईएलओ	डी/सी	एपी ट्रांस्को	22
58	पूर्वी प्रभाग कंपाउंड-बंगलौर में एचएएल	यूजीकेबल	केपीटीसीएल	8
59	आरटीपीएस-रायचूर	डी/सी	केपीटीसीएल	35
60	भुसावल-।।-अमलनेर	डी/सी	एमएसईटीसीएल	197
61	भिलंगाना III- घंसाली (गुट्टु)	डी/सी	पीटीसीयूएल	38
62	मात्रे (पीजी)- नेहतौर	एस/सी	यूपीपीटीसीएल	75
63	संपला में बहादुरगढ़-रोहतक लाइन का एलआईएलओ	डी/सी	एचवीपीएनएल	48
64	दौलताबाद-मउ	डी/सी	एचवीपीएनएल	76
65	अकोला –बालापुर लाइन	डी/सी	एमएसईटीसीएल	54
66	बाभलेश्वर-चालीसगांव(कोपरगांव टैप प्वाइंट तक)	डी/सी	एमएसईटीसीएल	74
67	बंभोरी-अमलनेर लाइन	एस/सी	एमएसईटीसीएल	38
68	दीपनगर-बंभोरी	एस/सी	एमएसईटीसीएल	70
69	हामिदवाडा में कोल्हापुर-फोंडा का एलआईएलओ	डी/सी	एमएसईटीसीएल	4
70	भांडुप में मुलुंड-बोरिबली का एलआईएलओ	यूजीकेबल	एमएसईटीसीएल	2
71	निवाली लाइन पर पेढांबे-खरेपटन का एलआईएलओ	एस/सी	एमएसईटीसीएल	33
72	ओनि लाइन पर पेढांबे-खरेपटन का एलआईएलओ	एस/सी	एमएसईटीसीएल	1
73	एमआईडीसी चंद्रपुर सब-स्टेशन-मेसर्स जीईपीएल (सर्किट-।)	एस/सी	एमएसईटीसीएल	12
74	कलपक्का सब-स्टेशन-एमएस. ब्रैंडिक्स (शेष भाग)	डी/सी	एपी ट्रांस्को	19
75	महारानी बाग-ट्रामा सेंटर/एआईआईएमएस (यूजी केबल)	डी/सी	डीटीएल	19
76	भुटिया-खेरालु लाइन	डी/सी	जीईटीसीओ	99
77	वर्गा- आरवीएनएल लाइन	डी/सी	जीईटीसीओ	18
78	मैहर में सतना (पीजीसीआइएल)-कटनी का एलआईएलओ	डी/सी	एमपीपीटीसीएल	4
79	फुर्सुंगी-जेजुरी लाइन	डी/सी	एमएसईटीसीएल	60
80	भिवाडी (पीजीसीआईएल)-नीमराना (शेष भाग)	एस/सी	आरवीपीएनएल	6
81	चरंका-जंगराल लाइन	डी/सी	जीईटीसीओ	32
82	शाहपुर में जेतपुर-केशोड लाइन का एलआईएलओ	डी/सी	जीईटीसीओ	3

		0.0		
83	बट्टा में कैथल-नर्वाना का एलआईएलओ	डी/सी	एचवीपीएनएल	4
84	गुड़गांव सेक्टर-56 में पाली-गुड़गांव सेक्टर- 52ए का एलआईएलओ	डी/सी	एचवीपीएनएल	1
85	नरेंद्र 400केवी सब-स्टेशन-महालिंगापुर	डी/सी	केपीटीसीएल	246
86	महेश्वर-पितमपुर	डी/सी	एमपीपीटीसीएल	115
87	ओसमानाबाद-बरषी (द्वितीय सर्किट)	एस/सी	एमएसईटीसीएल	44
88	साउथ सोलापुर(पीजी)-साउथ सोलापुर	डी/सी	एमएसईटीसीएल	6
89	रेहाना जट्टन में जमशेर-महिलपुर का एलआईएलओ	डी/सी	पीटीसीएल	10
90	किशनगढ़ में भिवाडी-अलवर लाइन का एलआईएलओ	एस/सी	आरवीपीएनएल	5
91	पदमपुर-उद्योगविहार	एस/सी	आरवीपीएनएल	42
92	एमटीपीएस स्टेज III-पल्लकापलयम	एस/सी	टीएएनट्रांस्को	6
93	एमटीपीएस स्टेज III- गोबी	एस/सी	टीएएनट्रांस्को	3
94	बुर्ला-बोलंगिर, (द्वितीय सर्किट)	एस/सी	ओपीटीसीएल	118
95	चिंचोली(पीजीसीआईएल)-सोलापुर	डी/सी	एमएसईटीसीएल	5
96	चितेगांव-शेंद्रा	डी/सी	एमएसईटीसीएल	57
97	चुल्लियार (मन्नुकड)-पलक्कड	डी/सी	केईबी	8
98	ग्रेटर नोएडा- आईटी सिटी गरबारा	एस/सी	यूपीपीटीसीएल	11
99	जबलपुर-जबलपुर	डी/सी	एमपीपीटीसीएल	12
100	खापरखेडा टीपीएस-खापरखेडा (मौजूदा)	2xडी/सी	एमएसईटीसीएल	12
101	किरोरी-समैन लाइन	डी/सी	एचवीपीएनएल	68
102	सिपारा(न्यू) में फतुहा-खगौल का एलआईएलओ	डी/सी	बीईबी	19
103	करामदाई में अरासुर-ईंगुर का एलआईएलओ	डी/सी	टीएएनट्रांस्को	6
104	(जीआईएस) कुंडा की ढाणी में बस्सी-कुकस का एलआईएलओ	डी/सी	आरवीपीएनएल	8
105	टडाली में चंद्रपुर जीसीआर-चंद्रपुर एमआईडीसी का एलआईएलओ	डी/सी	एमएसईटीसीएल	2
106	आसपुर में डेबारी-बंसवारा का एलआईएलओ	डी/सी	आरवीपीएनएल	2
107	हाल्वड में धंगाढरा-लालपुर का एलआईएलओ	डी/सी	जीईटीसीओ	4
108	लालपुर में धंगाढरा-मोर्बी लाइन का एलआईएलओ	डी/सी	जीईटीसीओ	13
109	पीपावव (जीपीपीसी) (लाइन-1) पर सावरकुंडला-माहवा(ओथा) का एलआईएलओ	डी/सी	जीईटीसीओ	91

	कुल अखिल भारत (765+400+220 केवी)			20434	
कुल 220 केवी(अखिल भारत)					
	कुल राज्य क्षेत्र	<u>'</u>		3452	
	220 केवी लाइन (पीएस)का कुल सीकेएम			42	
2	बुधिल-चमेरा III	डी/सी	एलईपीपी	40	
1	छौर में एलेन दुहंगन-नालागढ़ का एलआईएलओ	डी/सी	ईपीसीएल	2	
	निजी क्षेत्र				
	220 केवी लाइन (सबस्टेशन)का कुल सीकेएम			5534	
123	वराही-खेमार (पार्ट लाइन)	डी/सी	केपीटीसीएल	150	
122	सारनाथ(400)-बीरापट्टी	एस/सी	यूपीपीटीसीएल	23	
121	संखारी-जंगराल लाइन	डी/सी (जीईटीसीओ	65	
120	रोजा-बदाउन (द्वितीय सर्किट)	एस/सी	यूपीपीटीसीएल	96	
119	राज वेस्ट-ढोरीमाना	एस/सी	आरवीपीएनएल	83	
118	परिच्छा-बांदा	एस/सी	यूपीपीटीसीएल	210	
117	न्यारा-तेवडा (द्वितीय सर्किट)	एस/सी	जीईटीसीओ	90	
116	मालवा टीपीपी-छेगांव	डी/सी	एमपीपीटीसीएल	95	
		यूजीकेबल	0.000		
115	मलकारम-गनरॉक	डीसी	एपी ट्रांस्को	32	
114	लेन) महारानी बाग-मस्जिद मोठ	डी/सी	डीटीएल	18	
महारानी बाग-एचसी माथुर लेन(इलेक्ट्रिक				17	
113	लिंक लाइन	डी/सी	डीटीएल	17	
112	पटना(पीजी)-सिपारा(बीएसईबी) के बीच	डी/सी	बीईबी	1	
111	एलआईएलओ लालतोंकलां-सहनेवाल (एक सर्किट)	डी/सी	पीटीसीएल	7	
110	एलओसी 30 के सावरकुंडला-महुआ पर सावरकुंडला-अल्ट्राटेक(पुराना) का	डी/सी	जीईटीसीओ	16	

वर्ष 2011-12 के दौरान स्थापित सब-स्टेशन

31.03.2012 की स्थिति के अनुसार

क्र. सं.	सब-स्टेशन का नाम	वोल्टेज अनुपात	क्रियान्वयन एजेंसी	क्षमता (एम डब्ल्यू /	पूर्ण होने का माह
		(केवी/केवी)		एमवीए)	
765	 5 केवी	(441/441)			
	य क्षेत्र				
1	बलिया (नया) (प्रथम ट्रांसफार्मर)	765/400	पीजीसीआईएल	1500	दिसम्बर-11
2	लखनऊ (नया) (प्रथम ट्रांसफार्मर)	765/400	पीजीसीआईएल	1500	दिसम्बर-11
3	बलिया सब-स्टेशन (द्वितीय	765/400	पीजीसीआईएल	1500	फरवरी-12
	ट्रांसफार्मर)				
4	लखनऊ(द्वितीय ट्रांसफार्मर)	765/400	पीजीसीआईएल	1500	फरवरी-12
5	वर्धा	765/400	पीजीसीआईएल	3000	फरवरी-12
6	फतेहपुर	765/400	पीजीसीआईएल	3000	मार्च-12
7	गया	765/400	पीजीसीआईएल	3000	मार्च-12
8	सिपत के नजदीक डब्ल्यूआर पुलिंग स्टेशन	765/400	पीजीसीआईएल	3000	मार्च-12
9	वर्धा तृतीय ट्रांसफार्मर	765/400	पीजीसीआईएल	1500	मार्च-12
	कुल (केंद्रीय क्षेत्र)			19500	
	राज्य क्षेत्र				
1	उन्नाव	765/400	यूपीपीटीसीएल	1000	मार्च-12
	कुल (राज्य क्षेत्र)			1000	
	कुल अखिल भारत (765केवी			20500	
	लाइनें)				

क्र. सं.	सब-स्टेशन का नाम		_	पात	क्रियान्वयन एर	गें सी	क्षमता (एम डब्ल्यू	1
400 केव	<u> </u> ਜੇ		(केवी	केवी)			एमवीए	()
केंद्रीय क्षे	<u> </u>							
1	रायपुर एक्सटेशन	400	/220	पीज	ीसीआईएल	•	315	जून-11
2	शुजलपुर (प्रथम आईसीटी)	400	/220	पीज	ीसीआईएल		315	जून-11
3	एक्सटेंशन पटियाला	400	/220	पीज	ीसीआईएल	;	500	जुलाई -11

4	बच्चाउ सब-स्टेशन	400	/220	र्प	ोजीसीआईएल	(630	अगस्त-11
5	चमेरा-।। एचईपी के नजदीक जीआईएस पुलिंग स्टेशन	400	/220	र्प	ोजीसीआईएल	(630	अगस्त-11
6	एक्सटेंशन बहादुरगढ़	400	/220	र्प	ोजीसीआईएल	ţ	500	अक्टूबर-11
7	पुणे एक्सटेंशन	400	/220	र्प	ोजीसीआईएल	,	315	अक्टूबर-11
8	मुवत्तापुझा सब-स्टेशन (द्वितीय आईसीटी)	400	/220	र्प	ोजीसीआईएल	;	315	नवम्बर-11
9	शुजालपुर (द्वितीय आईसीटी)	400	/220	र्प	ोजीसीआईएल	;	315	नवम्बर-11
10	फतेहपुर एक्सटेंशन	400	/220	र्प	ोजीसीआईएल	(630	दिसम्बर-11
11	नीमराना (प्रथम ट्रांसफार्मर)	400)/220	र्प	ोजीसीआईएल	;	315	दिसम्बर-11
12	वर्धा एक्सटेंशन	400	/220	र्प	ोजीसीआईएल	;	500	दिसम्बर-11
13	गया एक्सटेंशन	400	/220	र्प	ोजीसीआईएल	,	815	जनवरी-12
14	गुड़गांव जीआईएस सब- स्टेशन (द्वितीय आईसीटी)	400	/220	र्प	ोजीसीआईएल	;	315	जनवरी-12
15	लखनऊ सब-स्टेशन	400	/220	र्प	ोजीसीआईएल	;	500	जनवरी-12
16	सिकर	400	/220	र्प	ोजीसीआईएल	;	315	जनवरी-12
17	चूल्लियार	400	/220	र्प	ोजीसीआईएल	;	315	फरवरी-12
18	पंचकुला	400	/220	र्प	ोजीसीआईएल	(630	फरवरी-12
19	भिवाड़ी एक्सटेंशन	400	/220	र्प	ोजीसीआईएल	;	315	मार्च-12
20	बिडाडी (जीआई) सब- स्टेशन	400)/220	र्प	ोजीसीआईएल	;	500	मार्च-12
21	चूल्लियार (द्वितीय ट्रांसफार्मर)	400	/220	र्प	ोजीसीआईएल	;	315	मार्च-12
22	नीमराना (द्वितीय ट्रांसफार्मर)	400	/220	र्प	ोजीसीआईएल		500	मार्च-12
23	सिकर (द्वितीय आईसीटी)	400	/220	र्प	ोजीसीआईएल	;	315	मार्च-12
24	सिलचर (नया)	400	/220	र्प	ोजीसीआईएल		400	मार्च-12
	कुल पीजीसीआईएल					10	0515	
	कुल डीवीसी						0	
	कुल केंद्रीय क्षेत्र	(400 के	वी लाइनें)		10	0515	
राज्य क्षे	त्र							
1	भुसाबल(आईसीटी-।) सब-स्टे	शन	400/2	220	एमएसईटीसीए	ुल	500	अगस्त-11
2	सुंगुवरछत्रम		400/220		टीएएनट्रांस्को		630	अगस्त-11
	· · · · · · · · · · · · · · · · · · ·							

	लाइनें)					
	कुल अखिल भारत (400	 केवी			17165	
कुल 400	केवी(पीएस)	-			0	
	कुल राज्य क्षेत्र				6650	
12	नुहियावानी (द्वितीय और आइसीटी)	तृतीय	400/220	एचवीपीएनएल	630	फरवरी-12
11	कबुलपुर सब-स्टेशन		400/220	एचवीपीएनएल	630	फरवरी-12
10	दीपलपुर सब-स्टेशन		400/220	एचवीपीएनएल	630	फरवरी-12
9	नुहियावाली (प्रथम ट्रांसप	र्हार्मर)	400/220	एचवीपीएनएल	315	जनवरी-12
8	दिनोड (द्वितीय ट्रांसफार्म	₹)	400/220	जीईटीसीओ	315	जनवरी-12
7	नागोठाने सब-स्टेशन		400/220	एमएसईटीसीएल	500	दिसम्बर-11
6	खापरखेडा सब-स्टेशन (2	x500)	400/220	एमएसईटीसीएल	1000	दिसम्बर-11
5	धुले सब-स्टेशन		400/220	एमएसईटीसीएल	500	दिसम्बर-11
4	बाभलेश्वर सब-स्टेशन		400/220	एमएसईटीसीएल	500	दिसम्बर-11
3	भुसाबल(आईसीटी-।।) स	ब-स्टेशन	400/220	एमएसईटीसीएल	500	सितंबर-11

क्र. सं.	सब-स्टेशन का नाम	वोल्टेज अनुपात (केवी/केवी)	क्रियान्वयन एजेंसी	क्षमता (एम डब्ल्यू / एमवीए)	पूर्ण होने का माह
220	केवी				
केंद्रीय	⁻ क्षेत्र				
1	धनबाद (2x80)	220/33	डीवीसी	80	जून-11
2	रायबरेली (पावरग्रिड)	220/132	पीजीसीआईएल	100	सितंबर-11
3	कोडरमा (2x150)	220/132	डीवीसी	320	मार्च-12
4	कोडरमा (2x80)	220/33	डीवीसी	160	मार्च-12
	कुल केंद्रीय क्षेत्र			660	
राज्य	⁻ क्षेत्र				
1	ब्राह्मणकोटकूर	220/11	एपी ट्रांस्को	25	अप्रैल-11
2	मलयाला	220/11	एपी ट्रांस्को	95	अप्रैल-11
3	सदायापालयम	230/33	टीएएनट्रांस्को	100	अप्रैल-11
4	ओरागाडोम	230/110	टीएएनट्रांस्को	100	अप्रैल-11
5	एलुंडुर (अतिरिक्त ट्रांसफार्मर)	230/110	टीएएनट्रांस्को	100	अप्रैल-11

हिपार्टमेंट गोवा चर्चनेलंडम 220/110 ईएलंड हिपार्टमेंट गोवा चर्च-11 इंग्लंड हिपार्टमेंट गोवा चर्च-11 इंग्लंड हिपार्टमेंट गोवा चर्च-11 चर	6	पोंडा	220/110	ईएलइ	100	मई-11
गोवा				_		
डिपार्टमेंट गोवा विस्तार विद्तीय विद्				गोवा		
श्रीवा	7	एक्सेलडम	220/110	ईएलइ	100	मई-11
8 कुशालनगर (द्वितीय ट्रांसफार्मर) 220/66 केपीटीसीएल 100 मई-11 9 वसाई 220/100 एमएमईटीमीएल 100 मई-11 10 जाठ (2x100) (प्रथम ट्रांसफार्मर) 220/132 एमएमईटीमीएल 100 मई-11 11 उसें 220/22 एमएमईटीमीएल 50 मई-11 12 कानपुर विश्वण (3x60) (प्रथम ट्रांसफार्मर) 220/132 यूपीपीटीसीएल 60 मई-11 13 अमुल्हापुराम (अतिरिक्त ट्रांसफार्मर) 230/33 टीएएनट्रांसको 50 जून-11 14 ए स्टेशन कंपाउंड (आनंद राव प्रक्तिल) (द्वितीय ट्रांसफार्मर) 220/66 केपीटीसीएल 150 जून-11 15 वदावी (विस्तार) 220/66 जीईटीसीओ 50 जून-11 16 नखटराना (विस्तार) 220/66 जीईटीसीओ 50 जून-11 18 खसा (विस्तार) 220/66 पीटीसीएल 100 जून-11 19 गुडागंव सेक्टर-72 220/33 एचवीपीएनएल 100 जुलाई -11 20 मालेरकोटला (विस्तार) 220/66 पीटीसीएल 100 जुलाई -11 21 फोकल प				डिपार्टमेंट		
जाठ (२४१००) (प्रथम २२०/१०० एमएसईटीसीएल १०० मई-१०० १०० मई-१०० १००						
9 बसाई 220/100 एमएसईटीसीएल 100 मई-11 10 जाठ (2x100) (प्रथम 220/132 एमएसईटीसीएल 100 मई-11 11 उर्से 220/22 एमएसईटीसीएल 50 मई-11 12 कानपुर दक्षिण (3x60) (प्रथम ट्रांसफार्मर) 13 अमुल्हापुराम (अतिरिक्त ट्रांसफार्मर) 14 ए स्टेशन कंपाउंड (आनंद राव सिक्तार) 220/66 केपीटीसीएल 150 जून-11 15 बदाबी (बिस्तार) 220/66 जीईटीसीओ 50 जून-11 16 नखटराना (बिस्तार) 220/66 जीईटीसीओ 50 जून-11 17 अच्चलिया (बिस्तार) 220/66 जीईटीसीओ 50 जून-11 18 खस्सा (बिस्तार) 220/66 जीईटीसीओ 50 जून-11 19 गुड़गांव सेक्टर-72 220/33 एचबीपीएनएल 100 जून-11 19 गुड़गांव सेक्टर-72 220/66 पीटीसीएल 100 जुलाई -11 20 मालेरकोटला (बिस्तार) 220/66 पीटीसीएल 100 जुलाई -11 21 फोकल प्वाइंट नाभा (द्वितीय ट्रांसफार्मर) 22 बिट्रर 220/132 यूपीपीटीसीएल 100 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटिमकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 बसाई (द्वितीय ट्रांसफार्मर) 220/132 पेए इंस्को 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 एपी ट्रांस्को 100 जुलाई -11	8	कुशालनगर (द्वितीय	220/66	केपीटीसीएल	100	मई-11
10 जाठ (2x100) (प्रथम 220/132 एमएसईटीसीएल 100 मई-11 गई-11 गई-11		ट्रांसफार्मर)				
220/22 एमएमईटीनीएल	9	वसाई	220/100	एमएसईटीसीएल	100	मई-11
11 उमें 220/22 एमएमईटीसीएल 50 मई-11 12 कानपुर दक्षिण (3x60) (प्रथम ट्रांसफार्मर) 220/132 यूपीपीटीसीएल 60 मई-11 इंसफार्मर) 13 अमूल्हापुराम (अतिरिक्त ट्रांसफार्मर) 220/66 केपीटीसीएल 150 जून-11 150 कोटमिकला (अतिरिक्त.) 220/132 जूपीपीटीसीएल 160 जूनाई-11 150 कोटमिकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जूनाई-11 150 कोटमिकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जूनाई-11 150 जूनाई-11 150 कोटमिकला (अतिरिक्त.) 220/132 एपीट्रांस्को 100 जुलाई-11 150 जूनाई-11 150 जूनाई-	10	जाठ (2x100) (प्रथम	220/132	एमएसईटीसीएल	100	मई-11
12 कानपुर दक्षिण (3x60) (प्रथम ट्रंग्सफार्मर) 220/132 यूपीपीटीसीएल 60 मई-11 हं.सफार्मर) 13 अमूल्हापुराम (अतिरिक्त ट्रंग्सफार्मर) 230/33 टीएएनट्रांस्को 50 जून-11 ए स्टेशन कंपाउंड (आनंद राव प्रिक्तिण (द्वितीय ट्रंग्सफार्मर) 15 वदावी (विस्तार) 220/66 जीईटीसीओ 50 जून-11 16 नखटराना (विस्तार) 220/66 जीईटीसीओ 50 जून-11 17 अञ्चलिया (विस्तार) 220/66 जीईटीसीओ 50 जून-11 18 खस्सा (विस्तार) 220/66 पीटीसीएल 100 जून-11 19 गुडगांव सेक्टर-72 220/33 एचवीपीएनएल 100 जूनाई -11 19 युडगांव सेक्टर-72 220/66 पीटीसीएल 100 जूलाई -11 101 यूनार्य (विस्तार) 220/132 यूपीपीटीसीएल 160 जूलाई -11 102 यूनार्य (विस्तार) 220/132 यूपीपीटीसीएल 100 जूलाई -11 103 यूनार्य (विस्तार) 220/132 यूपीपीटीसीएल 100 जूलाई -11 100 यूनार्य -11 101 यूनार्य -11 102 यूनार्य -11 103 यूनार्य -11 104 यूनार्य -11 105 यूनार्य -11 106 यूनार्य -11 107 यूनार्य -11 107 यूनार्य -11 108 यूनार्य -11 109 यूनार्य -11 100 यूनार्		ट्रांसफार्मर)				
्रांसफार्मर) 13 अमूल्हापुराम (अतिरिक्त 230/33 टीएएनट्रांस्को 50 जून-11 ट्रांसफार्मर) 14 ए स्टेशन कंपाउंड (आनंद राव सर्किल) (द्वितीय ट्रांसफार्मर) 15 वदावी (विस्तार) 220/66 जीईटीसीओ 50 जून-11	11	उर्से	220/22	एमएसईटीसीएल	50	मई-11
13 अमूल्हापुराम (अतिरिक्त ट्रांसफार्मर)	12	कानपुर दक्षिण (3x60) (प्रथम	220/132	यूपीपीटीसीएल	60	मई-11
्ट्रांसफार्मर) 14 एस्टेशन कंपाउंड (आनंद राव सर्किल) (द्वितीय ट्रांसफार्मर) 15 वदाबी (विस्तार) 220/66 जीईटीसीओ 50 जून-11 16 नखटराना (विस्तार) 220/66 जीईटीसीओ 50 जून-11 17 अच्चिलया (विस्तार) 220/66 जीईटीसीओ 50 जून-11 18 खस्सा (विस्तार) 220/66 पीटीसीएल 100 जून-11 19 गुड़गांव सेक्टर-72 220/33 एचवीपीएनएल 100 जुलाई -11 20 मालेरकोटला (विस्तार) 220/66 पीटीसीएल 100 जुलाई -11 21 फोकल प्वाइंट नाभा (द्वितीय ट्रांसफार्मर) 22 विट्टर 220/132 यूपीपीटीसीएल 100 जुलाई -11 23 विश्ना 220/66 जीईटीसीओ 100 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटिमेकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 25 विस्तार (व्वितीय ट्रांसफार्मर) 220/132 एपीटीसीएल 100 जुलाई -11 25 कोटिमकला (अतिरिक्त.) 220/132 एपीट्रांसको 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/132 एपीट्रांसको 100 जुलाई -11 27 वेल्लमपल्ली (मंडपम) 220/132 एपीट्रांसको 100 जुलाई -11		ट्रांसफार्मर)				
14 ए स्टेशन कंपाउंड (आनंद राव सर्किल) (द्वितीय ट्रांसफार्मर) 15 वदाबी (विस्तार) 220/66 जीईटीसीओ 50 जून-11 16 नखटराना (विस्तार) 220/66 जीईटीसीओ 50 जून-11 17 अच्चिलया (विस्तार) 220/66 जीईटीसीओ 50 जून-11 17 अच्चिलया (विस्तार) 220/66 पीटीसीएल 100 जून-11 19 गुड़गांव सेक्टर-72 220/33 एचवीपीएनएल 100 जुलाई -11 20 मालेरकोटला (विस्तार) 220/66 पीटीसीएल 100 जुलाई -11 21 फोकल प्वाइंट नाभा (द्वितीय 220/66 पीटीसीएल 220/66 पीटीसीएल 100 जुलाई -11 21 फोकल प्वाइंट नाभा (द्वितीय 220/66 पीटीसीएल 220/132 यूपीपीटीसीएल 100 जुलाई -11 23 विश्ना 220/132 जे एण्ड के 320 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटिमकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 25 कोटिमकला (अतिरिक्त.) 220/132 एपीट्रांसफो 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/132 एपीट्रांसको 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपीट्रांसको 100 जुलाई -11 28 रिशरा (विस्तार)	13	अमूल्हापुराम (अतिरिक्त	230/33	टीएएनट्रांस्को	50	जून-11
सर्किल) (द्वितीय ट्रांसफार्मर) 15 वदाबी (विस्तार) 220/66 जीईटीसीओ 50 जून-11 16 नखटराना (विस्तार) 220/66 जीईटीसीओ 50 जून-11 17 अच्चिलया (विस्तार) 220/66 जीईटीसीओ 50 जून-11 18 खस्सा (विस्तार) 220/66 पीटीसीएल 100 जून-11 19 गुडगांव सेक्टर-72 220/33 एचवीपीएनएल 100 जुलाई -11 20 मालेरकोटला (विस्तार) 220/66 पीटीसीएल 100 जुलाई -11 21 फोकल प्वाइंट नाभा (द्वितीय ट्रांसफार्मर) 22 बिट्टर 220/132 यूपीपीटीसीएल 100 जुलाई -11 23 विश्ना 220/132 जे एण्ड के 320 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटिमकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 25 कोटिमकला (अतिरिक्त.) 220/132 एप ट्रांस्को पण जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/132 एपी ट्रांस्को 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार)		ट्रांसफार्मर)				
15 बदाबी (बिस्तार) 220/66 जीईटीसीओ 50 जून-11 16 नखटराना (बिस्तार) 220/66 जीईटीसीओ 50 जून-11 17 अच्चिलया (बिस्तार) 220/66 जीईटीसीओ 50 जून-11 18 खस्सा (बिस्तार) 220/66 पीटीसीएल 100 जून-11 19 गुड़गांव सेक्टर-72 220/33 एचवीपीएनएल 100 जुलाई -11 20 मालेरकोटला (बिस्तार) 220/66 पीटीसीएल 100 जुलाई -11 21 फोकल प्वाइंट नाभा (द्वितीय 220/66 पीटीसीएल 100 जुलाई -11 21 प्रोकल प्वाइंट नाभा (द्वितीय 220/66 पीटीसीएल 100 जुलाई -11 22 बिट्ट्रर 220/132 यूपीपीटीसीएल 160 जुलाई -11 23 विश्ना 220/132 जे एण्ड के 320 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटमिकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/100 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 डब्ल्यूबीईटीसीएल 160 जुलाई -11	14	ए स्टेशन कंपाउंड (आनंद राव	220/66	केपीटीसीएल	150	जून-11
16 नखटराना (विस्तार) 220/66 जीईटीसीओ 50 जून-11 17 अच्चिलया (विस्तार) 220/66 जीईटीसीओ 50 जून-11 18 खस्सा (विस्तार) 220/66 पीटीसीएल 100 जून-11 19 गुड़गांव सेक्टर-72 220/33 एचवीपीएनएल 100 जुलाई -11 20 मालेरकोटला (विस्तार) 220/66 पीटीसीएल 100 जुलाई -11 21 फोकल प्वाइंट नाभा (द्वितीय 220/66 पीटीसीएल 100 जुलाई -11 22 बिट्टूर 220/132 यूपीपीटीसीएल 160 जुलाई -11 23 विश्ना 220/132 जे एण्ड के 320 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटिमिकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/100 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 ड्ल्यूबीईटीसीएल 160 जुलाई -11		सर्किल) (द्वितीय ट्रांसफार्मर)				
17 अच्चलिया (विस्तार) 220/66 जीईटीसीओ 50 जून-11 18 खस्सा (विस्तार) 220/66 पीटीसीएल 100 जून-11 19 गुड़गांव सेक्टर-72 220/33 एचवीपीएनएल 100 जुलाई -11 20 मालेरकोटला (विस्तार) 220/66 पीटीसीएल 100 जुलाई -11 21 फोकल प्वाइंट नाभा (द्वितीय 220/66 पीटीसीएल 100 जुलाई -11 22 बिट्टर 220/132 यूपीपीटीसीएल 160 जुलाई -11 23 विश्ना 220/132 जे एण्ड के 320 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटिमिकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/100 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 डिक्ट्यूबीईटीमीएल 160 जुलाई -11	15	वदाबी (विस्तार)	220/66	·	50	जून-11
18 खस्सा (विस्तार) 220/66 पीटीसीएल 100 जून-11 19 गुड़गांव सेक्टर-72 220/33 एचवीपीएनएल 100 जुलाई -11 20 मालेरकोटला (विस्तार) 220/66 पीटीसीएल 100 जुलाई -11 21 फोकल प्वाइंट नाभा (द्वितीय ट्रांसफार्मर) 220/66 पीटीसीएल 100 जुलाई -11 22 बिठ्ठर 220/132 यूपीपीटीसीएल 160 जुलाई -11 23 विश्ना 220/132 जे एण्ड के 320 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटिमिक्ला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/132 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 डब्ल्यूबीईटीसीएल 160 जुलाई -11	16	नखटराना (विस्तार)	220/66	जीईटीसीओ	50	जून-11
19 गुड़गांव सेक्टर-72 220/33 एचवीपीएनएल 100 जुलाई -11 20 मालेरकोटला (विस्तार) 220/66 पीटीसीएल 100 जुलाई -11 21 फोकल प्वाइंट नाभा (द्वितीय 220/66 पीटीसीएल 100 जुलाई -11 22 बिठ्रर 220/132 यूपीपीटीसीएल 160 जुलाई -11 23 विश्ना 220/132 जे एण्ड के 320 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटिमिकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/100 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 डब्ल्यूबीईटीसीएल 160 जुलाई -11	17	अच्चलिया (विस्तार)	220/66	जीईटीसीओ	50	जून-11
20 मालेरकोटला (विस्तार) 220/66 पीटीसीएल 100 जुलाई -11 21 फोकल प्वाइंट नाभा (द्वितीय ट्रांसफार्मर) 220/66 पीटीसीएल 100 जुलाई -11 22 बिठ्र ट्रांसफार्मर) 220/132 यूपीपीटीसीएल 160 जुलाई -11 23 विश्ना 220/132 जे एण्ड के 320 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटिमिकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/100 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 डब्ल्यूबीईटीसीएल 160 जुलाई -11	18	खस्सा (विस्तार)	220/66	पीटीसीएल	100	जून-11
21 फोकल प्वाइंट नाभा (द्वितीय ट्रांसफार्मर) 220/66 पीटीसीएल 100 जुलाई -11 22 बिठूर 220/132 यूपीपीटीसीएल 160 जुलाई -11 23 विश्ना 220/132 जे एण्ड के 320 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटिमकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/100 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 डब्ल्यूबीईटीसीएल 160 जुलाई -11	19	गुड़गांव सेक्टर-72	220/33	एचवीपीएनएल	100	जुलाई -11
ट्रांसफार्मर) 22 बिठ्रर 220/132 यूपीपीटीसीएल 160 जुलाई -11 23 विश्ना 220/132 जे एण्ड के 320 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटिमकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/100 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 डब्ल्यूबीईटीसीएल 160 जुलाई -11	20	मालेरकोटला (विस्तार)	220/66	पीटीसीएल	100	जुलाई -11
22 बिठूर 220/132 यूपीपीटीसीएल 160 जुलाई -11 23 विश्ना 220/132 जे एण्ड के 320 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटिमकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/100 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 उल्ल्यूबीईटीसीएल 160 जुलाई -11	21	फोकल प्वाइंट नाभा (द्वितीय	220/66	पीटीसीएल	100	जुलाई -11
23 विश्ना 220/132 जे एण्ड के 320 जुलाई -11 24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटमिकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/100 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 उब्ल्यूबीईटीसीएल 160 जुलाई -11		ट्रांसफार्मर)				
24 कांगासियाली 220/66 जीईटीसीओ 100 जुलाई -11 25 कोटमिकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/100 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 डब्ल्यूबीईटीसीएल 160 जुलाई -11	22	बिठूर	220/132	यूपीपीटीसीएल	160	जुलाई -11
25 कोटिमिकला (अतिरिक्त.) 220/132 सीपीटीसीएल 100 जुलाई -11 26 वसाई (द्वितीय ट्रांसफार्मर) 220/100 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 डब्ल्यूबीईटीसीएल 160 जुलाई -11	23	विश्ना	220/132	जे एण्ड के	320	जुलाई -11
26 वसाई (द्वितीय ट्रांसफार्मर) 220/100 एमएसईटीसीएल 100 जुलाई -11 27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 डब्ल्यूबीईटीसीएल 160 जुलाई -11	24	कांगासियाली	220/66	जीईटीसीओ	100	जुलाई -11
27 बेल्लमपल्ली (मंडपम) 220/132 एपी ट्रांस्को 100 जुलाई -11 28 रिशरा (विस्तार) 220/132 डब्ल्यूबीईटीसीएल 160 जुलाई -11	25	कोटमिकला (अतिरिक्त.)	220/132	सीपीटीसीएल	100	जुलाई -11
28 रिशरा (विस्तार) 220/132 डब्ल्यूबीईटीसीएल 160 जुलाई -11	26	वसाई (द्वितीय ट्रांसफार्मर)	220/100	एमएसईटीसीएल	100	जुलाई -11
	27	बेल्लमपल्ली (मंडपम)	220/132	एपी ट्रांस्को	100	जुलाई -11
29 लालरू 220/66 पीटीसीएल 100 अगस्त-11	28	रिशरा (विस्तार)	220/132	डब्ल्यूबीईटीसीएल	160	जुलाई -11
	29	लालरू	220/66	पीटीसीएल	100	अगस्त-11

30 कपुरथला (कंजली) (नया) 220/66 पीटीसीएल 100 अगस्त-11 31 अलगांव 220/66 पीटीसीएल 100 अगस्त-11 32 बेमेतारा (अतिरिक्त.) 220/132 सीपीटीसीएल 160 अगस्त-11 33 डियोडोर (विस्तार) 220/66 जीईटीसीओ 50 सितंबर-11 34 द्वासा (विस्तार) 220/66 जीईटीसीओ 50 सितंबर-11 35 हराला (विस्तार) 220/66 जीईटीसीओ 100 सितंबर-11 36 जांगरोल (विस्तार) 220/66 जीईटीसीओ 100 सितंबर-11 37 वाबोदीद (विस्तार) 220/66 जीईटीसीओ 100 सितंबर-11 38 विटूर (द्वितीय ट्वांसफार्मर) 220/132 यूपीपीटीसीएल 160 सितंबर-11 39 डालखोला 220/132 यूपीपीटीसीएल 320 सितंबर-11 40 पालामतेल 220/132 एपी ट्वांसफो 100 अन्दूबर-11 याजपुर सब-स्टेशन 220/132 एपी ट्वांसफो 100 अन्दूबर-11 याजपुर सब-स्टेशन 220/132 एपी ट्वांपिएनएल 200 अन्दूबर-11 यारस्तेहिंडीसीफा 220/132 एपी ट्वांपिएनएल 200 अन्दूबर-11 यारस्तेहिंडीसिफा 220/132 एपी ट्वांपिएनएल 100 अन्दूबर-11 यारस्तेहिंडी(मऊ) सब-स्टेशन 220/33 एपी ट्वांपिएनएल 100 अन्दूबर-11 यारस्तेहिंडी(मऊ) सब-स्टेशन 220/33 एपी ट्वांपिएनएल 100 अन्दूबर-11 यारस्तेहिंडी यारसार्वितिह्तित्ते ट्वांपफार्मर 220/132 यारसार्वितिह्तित्ते ट्वांपफार्मर 220/132 यारसार्वितिह्तित्ते ट्वांपफार्मर 220/132 यारसार्वितिह्तित्तेहिंडी 100 अन्दूबर-11 यारपण्ल यारसार्वितिह्तेति 220/132 यारसार्वितिह्ते 220/14 यारपण्ल 100 अन्दूबर-11 यारपण्ल 220/14 यारपण्ल 220/14 यारसार्वितिह्ते 220/14 यारसार्वि						
32 वेमेतारा (अतिरिक्त.) 220/132 मीपीटीमीएल 160 अगस्त-11 33 वियोडोर (विस्तार) 220/66 जीईटीमीओ 50 मितंबर-11 34 बामा (विस्तार) 220/66 जीईटीमीओ 50 मितंबर-11 35 ह्वाला (विस्तार) 220/66 जीईटीमीओ 100 मितंबर-11 36 जीगरोल (विस्तार) 220/66 जीईटीमीओ 100 मितंबर-11 37 वाघोदीद (विस्तार) 220/66 जीईटीमीओ 100 मितंबर-11 38 विट्टर (वितीय ट्रांसफार्मर) 220/132 यूपीपीटीमीएल 160 मितंबर-11 39 बालखोला 220/132 एपी ट्रांसको 100 अक्टूबर-11 40 पालामनेरू 220/132 एपी ट्रांसको 100 अक्टूबर-11 41 खाजपुर सब-स्टेशन 220/132 एचवीपीएनएल 200 अक्टूबर-11 220/132 एचवीपीएनएल 200 अक्टूबर-11 220/132 एचवीपीएनएल 200 अक्टूबर-11 220/132 पचवीपीएनएल 200 अक्टूबर-11 220/132 पचवीपीएनएल 200 अक्टूबर-11 220/132 पचवीपीएनएल 100 अक्टूबर-11 220/132 220/33 एचवीपीएनएल 100 अक्टूबर-11 220/33 एचवीपीएनएल 200 अक्टूबर-11 220/33 एचवीपीएनएल 200 अक्टूबर-11 220/33 एचवीपीएनएल 100 अक्टूबर-11 220/33 220/132	30	कपूरथला (कंजली) (नया)	220/66	पीटीसीएल	100	अगस्त-11
33 डियोडोर (विस्तार) 220/66 जीर्डटीमीओं 50 सितंबर-11 34 डासा (विस्तार) 220/66 जीर्डटीमीओं 50 सितंबर-11 35 इदाला (विस्तार) 220/66 जीर्डटीमीओं 100 सितंबर-11 36 जीगरोल (विस्तार) 220/66 जीर्डटीमीओं 100 सितंबर-11 37 वाघोदीद (विस्तार) 220/66 जीर्डटीमीओं 100 सितंबर-11 38 विट्टर (द्वितीय ट्रांसफार्मर) 220/132 यूपीपीटीमीएल 160 सितंबर-11 39 डालखोला 220/132 यूपीपीटीमीएल 320 सितंबर-11 40 पालामनेरू 220/132 एपी ट्रांस्को 100 अक्टूबर-11 41 ख्राजपुर सब-स्टेशन 220/132 एचवीपीएनएल 200 अक्टूबर-11 42 चोरसर सब-स्टेशन 220/132 एचवीपीएनएल 100 अक्टूबर-11 224 ट्रांसफार्मर) 220/33 एचवीपीएनएल 100 अक्टूबर-11 43 चोरसर सब-स्टेशन (द्वितीय 220/33 एचवीपीएनएल 200 अक्टूबर-11 234 ट्रांसफार्मर) 220/66 एचवीपीएनएल 200 अक्टूबर-11 44 धारूहेडा(मऊ) सब-स्टेशन 220/33 एचवीपीएनएल 100 अक्टूबर-11 45 धारूहेडा(मऊ) सब-स्टेशन 220/33 एचवीपीएनएल 100 अक्टूबर-11 46 लुआ अहिर 220/33 एचवीपीएनएल 100 अक्टूबर-11 47 आस्था (अतिरिक्त) ट्रांसफार्मर 220/132 एपपीपीटीमीएल 160 अक्टूबर-11 48 वुतारी(विस्तार) सब-स्टेशन 220/132 पपपीपीटीमीएल 100 अक्टूबर-11 49 संचोर (1x100) 220/132 आरआरअरवीपी एनएल 100 अक्टूबर-11 50 पोस्र-।।। ऑटो (अतिरिक्त 220/13 टीएएनट्रांस्को 100 अक्टूबर-11 51 सद्यमपल्लम (अतिरिक्त 220/13 टीएएनट्रांस्को 50 अक्टूबर-11 52 कंबलापड्ड 220/11 एपी ट्रांस्को 50 अक्टूबर-11 53 रेगुलापड्ड सब-स्टेशन 220/11 एपी ट्रांस्को 50 जवस्बर-11 54 धर्नोदा 220/132 एचवीपीएनएल 100 तबस्बर-11 55 चिक्रमंगलूर सब-स्टेशन 220/14 एपी ट्रांस्को 50 तबस्बर-11 55 चिक्रमंगलूर सब-स्टेशन 220/166 केपीपिएनएल 100 तबस्बर-11	31	अलगांव	220/66	पीटीसीएल	100	अगस्त-11
34 डासा (विस्तार) 220/66 जीईटीमीओ 50 सितंबर-11 35 हदाला (विस्तार) 220/66 जीईटीमीओ 100 सितंबर-11 36 जांगरोल (विस्तार) 220/66 जीईटीमीओ 100 सितंबर-11 37 वाघोदीद (विस्तार) 220/66 जीईटीमीओ 100 सितंबर-11 38 बिट्टर (द्वितीय ट्रांसफार्मर) 220/132 यूपीपीटीमीएल 160 सितंबर-11 39 डालखोला 220/132 ज्ञ्यूवीईटीमएल 320 सितंबर-11 40 पालामने 220/132 एपी ट्रांसको 100 अक्टूबर-11 41 छाजपुर सब-स्टेशन 220/132 एपी ट्रांसको 100 अक्टूबर-11 42 चोरसर सब-स्टेशन (प्रथम ट्रांसफार्मर) एचवीपीएनएल 200 अक्टूबर-11 43 चोरसर सब-स्टेशन (द्वितीय ट्रांसफार्मर) 220/132 एचवीपीएनएल 100 अक्टूबर-11 44 धारूहेडा(मऊ) सब-स्टेशन (द्वितीय ट्रांसफार्मर) 220/33 एचवीपीएनएल 100 अक्टूबर-11 45 धारूहेडा(मऊ) सब-स्टेशन (द्वितीय ट्रांसफार्मर) 220/33 एचवीपीएनएल 100 अक्टूबर-11 46 लुआ अहिर 220/33 एचवीपीएनएल 100 अक्टूबर-11 47 आस्था (अतिरिक्त) ट्रांसफार्मर 220/33 एचवीपीएनएल 100 अक्टूबर-11 48 बुतारी(विस्तार) सब-स्टेशन (ट्वितीय ट्रांसफार्मर) 160 अक्टूबर-11 49 संचोरे (1х100) 220/132 एमपीपीटीमीएल 100 अक्टूबर-11 49 संचोरे (प्रांचिस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 50 मोसूर-III ऑटो (अतिरिक्त ट्रांसफार्मर) 20/132 ज्ञारआरवीपी एनएल 100 अक्टूबर-11 51 सदयमपल्लम (अतिरिक्त ट्रांसफार्मर) 50 अक्टूबर-11 52 कंबलापडु 220/11 एपी ट्रांसको 50 अक्टूबर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांसको 50 नवम्बर-11 54 धर्तीदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 विकसंगल्ट सब-स्टेशन 220/11 एपी ट्रांसको 50 नवम्बर-11 56 विकसंगल्ट सब-स्टेशन 220/11 एपी ट्रांसको 50 नवम्बर-11 57 विकसंगल्ट सब-स्टेशन 220/11 एपी ट्रांसको 50 नवम्बर-11	32	बेमेतारा (अतिरिक्त.)	220/132	सीपीटीसीएल	160	अगस्त-11
35 ह्वाला (विस्तार) 220/66 जीईटीसीओ 100 सितंबर-11 36 जांगरोल (विस्तार) 220/66 जीईटीसीओ 100 सितंबर-11 37 वाघोदीद (विस्तार) 220/66 जीईटीसीओ 100 सितंबर-11 38 विटूर (द्वितीय ट्रांसफार्मर) 220/132 यूपीपीटीसीएल 160 सितंबर-11 39 डालखोला 220/132 रण्पीट्रांसको 100 अक्टूबर-11 40 पालामनेक 220/132 प्पवीपीएनएल 200 अक्टूबर-11 41 खाजपुर सब-स्टेशन (प्रथम 220/132 प्पवीपीएनएल 200 अक्टूबर-11 220/132 प्पवीपीएनएल 100 अक्टूबर-11 220/132 प्पवीपीएनएल 100 अक्टूबर-11 220/33 प्पवीपीएनएल 100 अक्टूबर-11 220/34 यारुहेडा(मऊ) सब-स्टेशन (द्वितीय 220/33 प्पवीपीएनएल 200 अक्टूबर-11 220/34 यारुहेडा(मऊ) सब-स्टेशन (द्वितीय ट्रांसफार्मर) 220/66 प्पवीपीएनएल 100 अक्टूबर-11 46 लुआ अहिर 220/33 प्पवीपीएनएल 100 अक्टूबर-11 47 आस्था (अतिरिक्त) ट्रांसफार्मर 220/132 प्पपीपीटीमीएल 160 अक्टूबर-11 48 बुतारी(विस्तार) सब-स्टेशन 220/132 प्पपीपीटीमीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 यारुहेडा 30 अक्टूबर-11 47 यारुहेडा यारुहेडा 220/132 यारुहेडा 30 अक्टूबर-11 49 संचोरे (1x100) 220/132 यारुहेडा 30 अक्टूबर-11 36 यारुहेडा 30 अक्टूबर-11 37 यारुहेडा 30 यारुहेडा	33	डियोडोर (विस्तार)	220/66	जीईटीसीओ	50	सितंबर-11
36 जांगरोल (विस्तार) 220/66 जीईटीसीओ 100 सितंबर-11 37 वाघोदीद (विस्तार) 220/66 जीईटीसीओ 100 सितंबर-11 38 विदूर (द्वितीय ट्रांसफार्मर) 220/132 यूपीपीटीसीएल 160 सितंबर-11 39 डालखोला 220/132 उळ्यूबीईटीसीएल 320 सितंबर-11 40 पालामनेरू 220/132 एपी ट्रांस्को 100 अक्टूबर-11 41 छाजपुर सब-स्टेशन 220/132 एचवीपीएनएल 200 अक्टूबर-11 42 चोरमर सब-स्टेशन (प्रथम ट्रांसफार्मर) 220/132 एचवीपीएनएल 100 अक्टूबर-11 220/132 यूचीपीएनएल 100 अक्टूबर-11 220/132 यूचीपीएनएल 100 अक्टूबर-11 220/132 यूचीपीएनएल 100 अक्टूबर-11 220/132 यूचीपीएनएल 100 अक्टूबर-11 220/142 220/14	34	ढासा (विस्तार)	220/66	जीईटीसीओ	50	सितंबर-11
37 वाघोदीद (विस्तार) 220/66 जीईटीसीओ 100 सितंबर-11 38 बिट्टर (द्वितीय ट्रांसफार्मर) 220/132 यूपीपीटीसीएल 160 सितंबर-11 39 डालखोला 220/132 उळ्यूबीईटीमीएल 320 सितंबर-11 40 पालामनेरू 220/132 एपी ट्रांस्को 100 अक्टूबर-11 41 छाजपुर सब-स्टेशन 220/132 एपी ट्रांस्को 100 अक्टूबर-11 42 चोरमर सब-स्टेशन (प्रथम ट्रांसफार्मर) 220/132 एचवीपीएनएल 100 अक्टूबर-11 48 बुतारी(विस्तार) सब-स्टेशन 220/132 एमपीपीटीबीएल 160 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआरबीपी एनएल 100 अक्टूबर-11 220/132 उत्तारादीपी एनएल 100 अक्टूबर-11 220/132 उत्तारादीपी 100 अक्टूबर-11 220/132 उत्तारादीपी एनएल 100 अक्टूबर-11 220/132 उत्तारादीपी 100 अक्टूबर-11 220/132 उत्तारादीपी 100 अक्टूबर-11 220/132 उत्तारादीपी 100 अक्टूबर-11 220/132 उत्तारादीपी 220/132 320/1	35	हदाला (विस्तार)	220/66	जीईटीसीओ	100	सितंबर-11
38 बिठूर (द्वितीय ट्रांसफार्मर) 220/132 यूपीपीटीसीएल 160 सितंबर-11 39 डालखोला 220/132 उळ्लूबीईटीसीएल 320 सितंबर-11 40 पालामनेरू 220/132 एपी ट्रांस्को 100 अक्टूबर-11 41 छाजपुर सब-स्टेशन 220/132 एचवीपीएनएल 200 अक्टूबर-11 42 चोरमर सब-स्टेशन (प्रथम 220/132 एचवीपीएनएल 100 अक्टूबर-11 21 21 22 22 23 एचवीपीएनएल 100 अक्टूबर-11 23 23 24 24 24 25 25 25 25 25	36	जांगरोल (विस्तार)	220/66	जीईटीसीओ	100	सितंबर-11
अब्रुवर-11 अक्टूबर-11 उठ्ठा/13 अरुक्ट्बर-11 उठ्ठा/13 अरुक्ट्बर-11 उठ्ठा/13 अरुक्ट्बर-11 उठ्ठा/13 अक्टूबर-11 उठ्ठा/14 उ	37	वाघोदीद (विस्तार)	220/66	जीईटीसीओ	100	सितंबर-11
40 पालामनेरू 220/132 एपी ट्रांस्को 100 अक्टूबर-11 41 छाजपुर सब-स्टेशन 220/132 एचवीपीएनएल 200 अक्टूबर-11 42 बोरमर सब-स्टेशन (प्रथम ट्रांसफार्मर) 220/132 एचवीपीएनएल 100 अक्टूबर-11 43 बोरमर सब-स्टेशन (द्वितीय ट्रांसफार्मर) 220/33 एचवीपीएनएल 100 अक्टूबर-11 44 धारूहेडा(मऊ) सब-स्टेशन (प्रथम ट्रांसफार्मर) 220/66 एचवीपीएनएल 200 अक्टूबर-11 45 धारूहेडा(मऊ) सब-स्टेशन (द्वितीय ट्रांसफार्मर) 220/33 एचवीपीएनएल 100 अक्टूबर-11 46 लुआ अहिर 220/33 एचवीपीएनएल 100 अक्टूबर-11 47 आस्था (अतिरिक्त) ट्रांसफार्मर सब-स्टेशन 220/132 एमपीपीटीमीएल 100 अक्टूबर-11 48 बुतारी(विस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआत्रवीपी एनएल 100 अक्टूबर-11 50 मोसूर-III ऑटो (अतिरिक्त ट्रांसफार्मर) 220/11 टीएएनट्रांसको 50 अक्टूब	38	बिठूर (द्वितीय ट्रांसफार्मर)	220/132	यूपीपीटीसीएल	160	सितंबर-11
41 छाजपुर सब-स्टेशन 220/132 एचवीपीएनएल 200 अक्टूबर-11 220/132 एचवीपीएनएल 100 अक्टूबर-11 220/132 एचवीपीएनएल 100 अक्टूबर-11 220/132 एचवीपीएनएल 100 अक्टूबर-11 220/133 एचवीपीएनएल 200 अक्टूबर-11 220/134 220/135 एचवीपीएनएल 200 अक्टूबर-11 220/135 एचवीपीएनएल 200 अक्टूबर-11 220/135 एचवीपीएनएल 100 अक्टूबर-11 220/135	39	डालखोला	220/132	डब्ल्यूबीईटीसीएल	320	सितंबर-11
42 चोरमर सब-स्टेशन (प्रथम ट्रांसफार्मर) 220/132 एचवीपीएनएल 100 अक्टूबर-11 प्रथम प्रांसफार्मर) 43 चोरमर सब-स्टेशन (द्वितीय ट्रांसफार्मर) 220/66 एचवीपीएनएल 200 अक्टूबर-11 प्रथम ट्रांसफार्मर) 44 धारूहेडा(मऊ) सब-स्टेशन (प्रथम ट्रांसफार्मर) 220/66 एचवीपीएनएल 200 अक्टूबर-11 (द्वितीय ट्रांसफार्मर) 45 धारूहेडा(मऊ) सब-स्टेशन (द्वितीय ट्रांसफार्मर) 220/33 एचवीपीएनएल 100 अक्टूबर-11 46 लुआ अहिर 220/33 एचवीपीएनएल 100 अक्टूबर-11 47 आस्था (अतिरिक्त) ट्रांसफार्मर 220/132 एमपीपीटीसीएल 160 अक्टूबर-11 48 वृतारी(विस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआरवीपी एनएल 100 अक्टूबर-11 एनएल 100 अक्टूबर-11 एनएल 100 अक्टूबर-11 100 220/132 टीएएनट्रांस्को 100 अक्टूबर-11 100 21 100 220/132 100 220/132 100 220/132 100 220/132 100 220/132 100 220/132 100 220/132 100 220/132 100 220/132 220/11 21 21 220/132 220/11 21 21 220/132	40	पालामनेरू	220/132	एपी ट्रांस्को	100	अक्टूबर-11
प्रांसफार्मर) 220/33 एचवीपीएनएल 100 अक्टूबर-11 प्रंसफार्मर) 220/66 एचवीपीएनएल 200 अक्टूबर-11 44 धारूहेड़ा(मऊ) सब-स्टेशन (प्रथम ट्रांसफार्मर) 220/33 एचवीपीएनएल 100 अक्टूबर-11 45 धारूहेड़ा(मऊ) सब-स्टेशन (द्वितीय ट्रांसफार्मर) 220/33 एचवीपीएनएल 100 अक्टूबर-11 46 लुआ अहिर 220/33 एचवीपीएनएल 100 अक्टूबर-11 47 आस्था (अतिरिक्त) ट्रांसफार्मर सब-स्टेशन 220/132 एमपीपीटीसीएल 160 अक्टूबर-11 48 बुतारी(विस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआरवीपी एनएल 100 अक्टूबर-11 50 मोसूर-III ऑटो (अतिरिक्त ट्रांसफार्मर) 220/110 टीएएनट्रांस्को 100 अक्टूबर-11 51 सदयमपल्लम (अतिरिक्त ट्रांसफार्मर) 220/33 टीएएनट्रांस्को 50 अक्टूबर-11 52 कंबलापड़ 220/11 एपी ट्रांस्को 75 नवस्वर-11 53 रेगुलापड़ सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवस्वर-11	41	छाजपुर सब-स्टेशन	220/132	एचवीपीएनएल	200	अक्टूबर-11
चोरमर सब-स्टेशन (द्वितीय हांसफार्मर) 220/33 एचवीपीएनएल 200 अक्टूबर-11 220/66 एचवीपीएनएल 200 अक्टूबर-11 220/66 एचवीपीएनएल 200 अक्टूबर-11 220/33 एचवीपीएनएल 100 अक्टूबर-11 247 अस्था (अतिरिक्त) ट्रांसफार्मर 220/32 एमपीपीटीसीएल 160 अक्टूबर-11 220/132 यार्थारवीपी 100 अक्टूबर-11 220/132 यार्थारवीपी 100 अक्टूबर-11 220/132 यार्थारवीपी एनएल 100 अक्टूबर-11 220/132 यार्थारवीपी एनएल 100 अक्टूबर-11 21 220/132 यार्थारवीपी एनएल 100 3क्टूबर-11 21 220/132 यार्थारवीपी 21 220/132 यार्थारवीपी 21 220/132 यार्थारवीपी 220/132 यार्थारविपाटवीपीएनएल 100 3क्टूबर-11 220/132 यार्थारविपाटवीपीएनएल 100 3क्टूबर-11 220/132 यार्थाटवीपीएनएल 100 विक्वयर-11 220/132 यार्थाटविपाटवीपीएनएल 100 विक्वयर-11 220/132 यार्थापीपीएनएल 100 विक्वयर-11 220/132 यार्थापीपीएनएल 100 विक्वयर-11 220/132 यार्थापीपीएनएल 100 विक्वयर-11 220/132 यार्थापीपीएनएल 100 विक्वयर-11 220/132 यार्थापीएनएल 100 विक्वयर-11 220/132 यार्थापीएनएल 200 विक्वयर-11 220/132 22	42	चोरमर सब-स्टेशन (प्रथम	220/132	एचवीपीएनएल	100	अक्टूबर-11
्रांसफार्मर) 44 धारूहेड़ा(मऊ) सब-स्टेशन (प्रथम ट्रांसफार्मर) 45 धारूहेड़ा(मऊ) सब-स्टेशन (द्वितीय ट्रांसफार्मर) 46 लुआ अहिर 220/33 एचवीपीएनएल 100 अक्टूबर-11 47 आस्था (अतिरिक्त) ट्रांसफार्मर 220/132 एमपीपीटीसीएल 160 अक्टूबर-11 48 बुतारी(विस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआरवीपी एनएल 50 मोसूर-III ऑटो (अतिरिक्त ट्रांसफार्मर) 50 मोसूर-III ऑटो (अतिरिक्त ट्रांसफार्मर) 51 सदयमपल्लम (अतिरिक्त ट्रांसफार्मर) 51 सदयमपल्लम (अतिरिक्त 220/110 टीएएनट्रांस्को 50 अक्टूबर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगल्र सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11		ट्रांसफार्मर)				
44 धारूहेड़ा(मऊ) सब-स्टेशन (प्रथम ट्रांसफार्मर) 45 धारूहेड़ा(मऊ) सब-स्टेशन (द्वितीय ट्रांसफार्मर) 46 लुआ अहिर 220/33 एचवीपीएनएल 100 अक्टूबर-11 47 आस्था (अतिरिक्त) ट्रांसफार्मर 220/132 एमपीपीटीसीएल 100 अक्टूबर-11 48 बुतारी(विस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआरवीपी 100 अक्टूबर-11 50 मोसूर-।।। ऑटो (अतिरिक्त 220/110 टीएएनट्रांस्को 100 अक्टूबर-11 51 सदयमपल्लम (अतिरिक्त 220/33 टीएएनट्रांस्को 50 अक्टूबर-11 52 कंबलापडु 220/11 एपी ट्रांस्को 50 अक्टूबर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11	43	चोरमर सब-स्टेशन (द्वितीय	220/33	एचवीपीएनएल	100	अक्टूबर-11
(प्रथम ट्रांसफार्मर) 45 धारूहेड़ा(मऊ) सब-स्टेशन (द्वितीय ट्रांसफार्मर) 46 लुआ अहिर 220/33 एचवीपीएनएल 100 अक्टूबर-11 47 आस्था (अतिरिक्त) ट्रांसफार्मर सब-स्टेशन 48 बुतारी(विस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआरवीपी एनएल 50 मोसूर-III ऑटो (अतिरिक्त ट्रांसफार्मर) 51 सदयमपल्लम (अतिरिक्त ट्रांसफार्मर) 52 कंबलापडु 220/11 एपी ट्रांस्को 50 जक्टूबर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 कंपीटीसीएल 200 नवम्बर-11		ट्रांसफार्मर)				
45 धारूहेड़ा(मऊ) सब-स्टेशन (द्वितीय ट्रांसफार्मर) 46 लुआ अहिर 220/33 एचवीपीएनएल 100 अक्टूबर-11 47 आस्था (अतिरिक्त) ट्रांसफार्मर 220/132 एमपीपीटीसीएल 160 अक्टूबर-11 48 बुतारी(विस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआरवीपी 100 अक्टूबर-11 50 मोसूर-III ऑटो (अतिरिक्त 220/110 टीएएनट्रांस्को 100 अक्टूबर-11 ट्रांसफार्मर) 51 सदयमपल्लम (अतिरिक्त 220/33 टीएएनट्रांस्को 50 अक्टूबर-11 ट्रांसफार्मर) 52 कंबलापडु 220/11 एपी ट्रांस्को 75 नवम्बर-11 53 रेगुलापडु सब-स्टेशन 220/132 एचवीपीएनएल 100 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11	44	, , ,	220/66	एचवीपीएनएल	200	अक्टूबर-11
(द्वितीय ट्रांसफार्मर) 46 लुआ अहिर 220/33 एचवीपीएनएल 100 अक्टूबर-11 47 आस्था (अितरिक्त) ट्रांसफार्मर सब-स्टेशन 48 बुतारी(विस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआरवीपी 100 अक्टूबर-11 50 मोसूर-III ऑटो (अितरिक्त 220/110 टीएएनट्रांस्को 100 अक्टूबर-11 ट्रांसफार्मर) 51 सदयमपल्लम (अितरिक्त 220/33 टीएएनट्रांस्को 50 अक्टूबर-11 ट्रांसफार्मर) 52 कंबलापडु 220/11 एपी ट्रांस्को 75 नवम्बर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11		, ,,				
46 लुआ अहिर 220/33 एचवीपीएनएल 100 अक्टूबर-11 47 आस्था (अितिरिक्त) ट्रांसफार्मर सब-स्टेशन 220/132 एमपीपीटीसीएल 160 अक्टूबर-11 48 बुतारी(विस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआरवीपी एनएल 100 अक्टूबर-11 50 मोसूर-III ऑटो (अितिरिक्त ट्रांसफार्मर) टीएएनट्रांस्को 100 अक्टूबर-11 51 सदयमपल्लम (अितिरिक्त ट्रांसफार्मर) 220/33 टीएएनट्रांस्को 50 अक्टूबर-11 52 कंबलापडु 220/11 एपी ट्रांस्को 75 नवम्बर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11	45		220/33	एचवीपीएनएल	100	अक्टूबर-11
47 आस्था (अतिरिक्त) ट्रांसफार्मर सब-स्टेशन 220/132 एमपीपीटीसीएल 160 अक्टूबर-11 48 बुतारी(विस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआरवीपी 100 अक्टूबर-11 50 मोसूर-III ऑटो (अतिरिक्त ट्रांसफार्मर) 220/110 टीएएनट्रांस्को 100 अक्टूबर-11 51 सदयमपल्लम (अतिरिक्त 220/33 टीएएनट्रांस्को 50 अक्टूबर-11 52 कंबलापडु 220/11 एपी ट्रांस्को 75 नवम्बर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11	40	, , , ,	220/22	गचवीपीग्रनगल	400	27777 44
सब-स्टेशन 48 बुतारी(विस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआरवीपी एनएल 50 मोसूर-III ऑटो (अतिरिक्त 220/110 टीएएनट्रांस्को 100 अक्टूबर-11 टूांसफार्मर) 51 सदयमपल्लम (अतिरिक्त 220/33 टीएएनट्रांस्को 50 अक्टूबर-11 टूांसफार्मर) 52 कंबलापडु 220/11 एपी ट्रांस्को 75 नवम्बर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11						2,
48 बुतारी(विस्तार) सब-स्टेशन 220/66 पीटीसीएल 100 अक्टूबर-11 49 संचोरे (1x100) 220/132 आरआरवीपी एनएल 100 अक्टूबर-11 50 मोसूर-III ऑटो (अतिरिक्त ट्टांसफार्मर) टीएएनट्रांस्को 100 अक्टूबर-11 51 सदयमपल्लम (अतिरिक्त ट्टांसफार्मर) 220/33 टीएएनट्रांस्को 50 अक्टूबर-11 52 कंबलापडु 220/11 एपी ट्रांस्को 75 नवम्बर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11	47		220/132	एमपापाटासाएष	160	अक्टूबर-11
49 संचोरे (1x100) 220/132 आरआरबीपी एनएल 50 मोसूर-III ऑटो (अतिरिक्त 220/110 टीएएनट्रांस्को 100 अक्टूबर-11 ट्रांसफार्मर) 51 सदयमपल्लम (अतिरिक्त 220/33 टीएएनट्रांस्को 50 अक्टूबर-11 ट्रांसफार्मर) 52 कंबलापडु 220/11 एपी ट्रांस्को 75 नवम्बर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचबीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11	48		220/66	पीटीसीएल	100	अक्टबर-11
50 मोसूर-III ऑटो (अतिरिक्त ट्रांसफार्मर) 220/110 टीएएनट्रांस्को 100 अक्टूबर-11 51 सदयमपल्लम (अतिरिक्त ट्रांसफार्मर) 220/33 टीएएनट्रांस्को 50 अक्टूबर-11 52 कंबलापडु 220/11 एपी ट्रांस्को 75 नवम्बर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11		संचोरे (1x100)		आरआरवीपी		2,
ट्रांसफार्मर) 220/33 टीएएनट्रांस्को 50 अक्टूबर-11 ट्रांसफार्मर) 220/11 एपी ट्रांस्को 75 नवम्बर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11		,		1 1		
51 सदयमपल्लम (अतिरिक्त 220/33 टीएएनट्रांस्को 50 अक्टूबर-11 52 कंबलापडु 220/11 एपी ट्रांस्को 75 नवम्बर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11	50	,	220/110	टीएएनट्रांस्को	100	अक्टूबर-11
ट्रांसफार्मर) 220/11 एपी ट्रांस्को 75 नवम्बर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11			000/00			
52 कंबलापडु 220/11 एपी ट्रांस्को 75 नवम्बर-11 53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11	51		220/33	्राएएगद्रा ए का	50	अक्टूबर-11
53 रेगुलापडु सब-स्टेशन 220/11 एपी ट्रांस्को 50 नवम्बर-11 54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11		,	000///			
54 धनौंदा 220/132 एचवीपीएनएल 100 नवम्बर-11 55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11						
55 चिकमंगलूर सब-स्टेशन 220/66 केपीटीसीएल 200 नवम्बर-11	53	<u> </u>	220/11		50	नवम्बर-11
	54		220/132		100	नवम्बर-11
56 बदनेरा (विस्तार) सब-स्टेशन 220/33 एमएसईटीसीएल 25 दिसम्बर-11	55	*`	220/66	,	200	नवम्बर-11
	56	बदनेरा (विस्तार) सब-स्टेशन	220/33	एमएसईटीसीएल	25	दिसम्बर-11

57	बालापुर सब-स्टेशन	220/33	एमएसईटीसीएल	25	दिसम्बर-11
58	बम्हौरी (जलगांव) सब-स्टेशन	220/132	एमएसईटीसीएल	200	दिसम्बर-11
59	बम्हौरी सब-स्टेशन	220/132	एमएसईटीसीएल	25	दिसम्बर-11
60	बारामति(विस्तार) सब-स्टेशन	220/33	एमएसईटीसीएल	25	दिसम्बर-11
61	बारामति(विस्तार) सब-	220/132	एमएसईटीसीएल	50	दिसम्बर-11
	स्टेशन				
62	भांडूप जीआईएस सब-स्टेशन	220/22	एमएसईटीसीएल	200	दिसम्बर-11
63	चिकाली (विस्तार) सब-स्टेशन	220/132	एमएसईटीसीएल	100	दिसम्बर-11
64	हमीदवाड़ा सब-स्टेशन	220/33	एमएसईटीसीएल	50	दिसम्बर-11
65	हिंजेवाड़ी सब-स्टेशन	220/22	एमएसईटीसीएल	50	दिसम्बर-11
66	आईएमटी (मानेसर) (विस्तार)	220/66	एचवीपीएनएल	100	दिसम्बर-11
67	जाथ सब-स्टेशन	220/33	एमएसईटीसीएल	50	दिसम्बर-11
68	कदेगांव सब-स्टेशन	220/132	एमएसईटीसीएल	100	दिसम्बर-11
69	कदेगांव सब-स्टेशन	220/33	एमएसईटीसीएल	100	दिसम्बर-11
70	कंदलगांव सब-स्टेशन	220/22	एमएसईटीसीएल	50	दिसम्बर-11
71	कंगासियाली (द्वितीय	220/66	जीईटीसीओ	100	दिसम्बर-11
	ट्रांसफार्मर)				
72	कृष्णगिरी	220/11	एपी ट्रांस्को	75	दिसम्बर-11
73	कुरकुंभ सब-स्टेशन	220/132	एमएसईटीसीएल	200	दिसम्बर-11
74	लक्कासगरम	220/11	एपी ट्रांस्को	75	दिसम्बर-11
75	ललपर	220/132	जीईटीसीओ	200	दिसम्बर-11
76	एम के हुबली (द्वितीय	220/110	केपीटीसीएल	100	दिसम्बर-11
	ट्रांसफार्मर)				
77	मिराज (विस्तार) सब-स्टेशन	220/132	एमएसईटीसीएल	100	दिसम्बर-11
78	निवाली सब-स्टेशन	220/132	एमएसईटीसीएल	100	दिसम्बर-11
79	पारादीप (विस्तार) सब-स्टेशन	220/132	ओपीटीसीएल	110	दिसम्बर-11
80	परभानी (विस्तार) सब-स्टेशन	220/132	एमएसईटीसीएल	100	दिसम्बर-11
81	पुसाद (विस्तार) सब-स्टेशन	220/33	एमएसईटीसीएल	25	दिसम्बर-11
82	सवांगी सब-स्टेशन	220/132	एमएसईटीसीएल	100	दिसम्बर-11
83	सेट्टीपल्ली	220/11	एपी ट्रांस्को	75	दिसम्बर-11
84	सोलापुर (विस्तार) सब-स्टेशन	220/132	एमएसईटीसीएल	50	दिसम्बर-11
85	तुलजापुर सब-स्टेशन	220/33	एमएसईटीसीएल	100	दिसम्बर-11
86	वीएसएनएल – येवालेवाड़ी	220/22	एमएसईटीसीएल	50	दिसम्बर-11
	सब-स्टेशन				

	1				
87	वरोरा (विस्तार) (द्वितीय)	220/33	एमएसईटीसीएल	25	दिसम्बर-11
	सब-स्टेशन				
88	वरोरा(विस्तार) सब-स्टेशन	220/33	एमएसईटीसीएल	25	दिसम्बर-11
89	अमरगढ़ सब-स्टेशन/	220/132	जेकेपीडीडी	160	जनवरी-12
90	अमृतसर सब-स्टेशन	220/66	पीटीसीएल	100	जनवरी-12
91	औरंगाबाद रिंग मेन	220/33	एमएसईटीसीएल	100	जनवरी-12
92	बालापुर (द्वितीय ट्रांसफार्मर)	220/33	एमएसईटीसीएल	25	जनवरी-12
93	बालापुर सब-स्टेशन	220/132	एमएसईटीसीएल	200	जनवरी-12
94	बट्टा सब-स्टेशन(प्रथम	220/132	एचवीपीएनएल	100	जनवरी-12
	ट्रांसफार्मर)				
95	बट्टा सब-स्टेशन (द्वितीय	220/33	एचवीपीएनएल	100	जनवरी-12
	ट्रांसफार्मर)				
96	भूटिया (विस्तार)	220/66	जीईटीसीओ	50	जनवरी-12
97	बिदरी (25 एमवीए)	220/33	एमएसईटीसीएल	50	जनवरी-12
98	बिदरी सब-स्टेशन	220/132	एमएसईटीसीएल	100	जनवरी-12
99	बोगाइगांव टीपीएस सब	220/132	एईजीसीएल	80	जनवरी-12
	स्टेशन (विस्तार)				
100	बुडगांव	220/132	जेकेपीडीडी	320	जनवरी-12
101	चंद्रपुरा (विस्तार)	220/66	जीईटीसीओ	50	जनवरी-12
102	डसुया (अतिरिक्त ट्रांसफार्मर)	220/66	पीटीसीएल	100	जनवरी-12
	सब-स्टेशन				
103	धुरी (अतिरिक्त)(तृतीय	220/66	पीटीसीएल	100	जनवरी-12
	ट्रांसफार्मर) सब-स्टेशन		-0.00		
104	फिरोजपुर रोड लुधियाना (1x100 एमवीए)	220/66	पीटीसीएल	100	जनवरी-12
105	गोरखपुर द्वितीय (द्वितीय	220/132	यूपीपीटीसीएल	160	जनवरी-12
105	,	220/132	X 11 11 51 (11 5 (1	160	जनवरा-1∠
100	ट्रांसफार्मर) महुआखेड़ागंज	220/422	<u>पीटीसीयूएल</u>	200	
106	महुआखड़ागज मंडी गोविंदगढ़	220/132	पीटीसीएल पीटीसीएल	200	जनवरी-12
107		220/66	•	100	जनवरी-12
108	मीरबाजार	220/132	जेकेपीडीडी स्की संस्को	320	जनवरी-12
109	नैनसुराला	220/11	एपी ट्रांस्को	75	जनवरी-12
110	नुहियावल <u>ी</u>	220/132	एचवीपीएनएल	100	जनवरी-12
111	नुनामाजरा (विस्तार) सब	220/132	एचवीपीएनएल	100	जनवरी-12
	स्टेशन				

112	पेट्रन	220/66	पीटीसीएल	100	जनवरी-12
113	रामबन (3x40)	220/132	जेकेपीडीडी	120	जनवरी-12
114	रोहतक (विस्तार) सब-स्टेशन	220/132	एचवीपीएनएल	100	जनवरी-12
115	सगापारा(विस्तार)	220/66	जीईटीसीओ	50	जनवरी-12
116	ट्रामा सेंटर/एम्स(जीआईएस)	220/33	डीटीएल	200	जनवरी-12
117	ए-5 फरीदाबाद सब-स्टेशन	220/66	एचवीपीएनएल	100	फरवरी-12
118	दीपालपुर सब-स्टेशन	220/132	एचवीपीएनएल	200	फरवरी-12
119	कबुलपुर सब-स्टेशन	220/132	एचवीपीएनएल	200	फरवरी-12
120	मसुदपुर	220/132	एचवीपीएनएल	100	फरवरी-12
121	मोहना	220/132	एचवीपीएनएल	100	फरवरी-12
122	बारशी सब-स्टेशन	220/132	एमएसईटीसीएल	200	फरवरी-12
123	फ्लैगशीप (हिंजेबाड़ी) सब- स्टेशन	220/22	एमएसईटीसीएल	50	फरवरी-12
124	तुलजापुर सब-स्टेशन	220/132	एमएसईटीसीएल	200	फरवरी-12
125	छोला साहेब सब-स्टेशन	220/66	पीटीसीएल	100	फरवरी-12
126	दोराहा	220/66	पीटीसीएल	100	फरवरी-12
127	कोटला जंगण (अतिरिक्त)	220/66	पीटीसीएल	100	फरवरी-12
128	रेहाना जट्टन	220/66	पीटीसीएल	100	फरवरी-12
129	किशनगढ़बास सब-स्टेशन	220/132	आरवीपीएनएल	100	फरवरी-12
130	(दीघी) येवालेवाड़ी सब-स्टेशन	220/22	एमएसईटीसीएल	50	मार्च-12
131	भोकर्धन	220/33	एमएसईटीसीएल	50	मार्च-12
132	भोकर्धन सब-स्टेशन	220/132	एमएसईटीसीएल	200	मार्च-12
133	गजोखर	220/132	यूपीपीटीसीएल	100	मार्च-12
134	हिम्मतपुरा (अतिरिक्त 100 एमवीए ट्रांसफार्मर)	220/66	पीटीसीएल	100	मार्च-12
135	झांसी	220/132	यूपीपीटीसीएल	100	मार्च-12
136	झुनसी	220/132	यूपीपीटीसीएल	160	मार्च-12
137	जुराला	220/132	एपी ट्रांस्को	200	मार्च-12
138	कागल (हमीदवाड़ा) सब- स्टेशन	220/33	एमएसईटीसीएल	50	मार्च-12
139	मस्तेंवाला	220/66	पीटीसीएल	100	मार्च-12
140	मेहलकलन	220/66	पीटीसीएल	100	मार्च-12
141	परंदा	220/132	एमएसईटीसीएल	200	मार्च-12
142	पटोदा	220/33	एमएसईटीसीएल	100	मार्च-12
-			•		·

143	रसियाना (अतिरिक्त)	220/66	पीटीसीएल	100	मार्च-12
144	सोमनहल्ली (अतिरिक्त)	220/66	केपीटीसीएल	100	मार्च-12
145	तदाली सब-स्टेशन	220/33	एमएसईटीसीएल	100	मार्च-12
146	तेलकाडीह सब-स्टेशन	220/132	सीपीटीसीएल	160	मार्च-12
147	वडाला (अतिरिक्त)	220/66	पीटीसीएल	100	मार्च-12
	कुल (राज्य क्षेत्र)	220		15835	
	निजी क्षेत्र				
1	छौर सब-स्टेशन	220/132	ईपीसीएल	127	सितंबर-11
कुल 2		16622			
	कुल अखिल भारत (765	54287			

<u>अनुबंध-6.6</u>

निर्माणाधीन पारेषण लाईन परियोजनाएं (220 केवी और उससे अधिक) के विवरण जहां कार्यान्वयन एजेंसियों द्वारा वन स्वीकृति संबंधी बड़ी समस्याएं बतायी गयी हैं।

क्र	परियोजना का नाम/अवस्थिति	क्रियान्वयन	एमओईएफ/राज्य सरकार के साथ मुद्दों की
अ [,] स.	चारचाजना चम गाम/जजारजात	रक्षयान्ययम एजेंसियां	संक्षिप्त जानकारी
1.	पार्वती पुलिंग स्टेशन-अमृतसर	पीजीसीआईएल	कुल वन भूमि 137.213 हेक्टेयर। प्रस्ताव
	डी/सी लाइन (हिमाचल प्रदेश)		जून 2010 में पारित हुआ।आरएमओईएफ ने
			निरीक्षण रिपोर्ट मार्च 2012 में सौंपी तथा
			एफएसी मीटिंग में अप्रैल 2012 में चर्चा
			की। एफआरए अनुपालन प्रगति पर है।
			चरण। की स्वीकृति प्राप्त की जानी है।
2.	अनपारा बी से अनपारा सी	यूपीपीटीसीएल	कुल वन भूमि 6.7 हेक्टेयर (800 मीटर)
	स्विचयार्ड पर टर्मिनेशन प्वाइंट से		प्रस्ताव अगस्त 2010 में पारित हुआ। चरण।
	अनपारा-उन्नाव 765 केवी एस/सी		की स्वीकृति मई 2011 में प्राप्त हुई
	पारेषण लाइन की शिफ्टिंग		चरण ॥ की स्वीकृति दिसंबर 2011 में प्राप्त
			हुई। लाइन मार्च 2012 में शुरू हुई।
3.		केपीटीसीएल	कुल वन भूमि 172.53 हेक्टेयर (33.39
	यूपीसीएल नांदीकुर- हसन		किलोमीटर) प्रस्ताव मार्च 2010 में पारित
	(शांतिग्राम) 400 केवी डी/सी लाइन		हुआ। चरण । की स्वीकृति फरवरी 2011 में
			प्राप्त हुई चरण ॥ की स्वीकृति फरवरी
			2012 में प्राप्त हुई और कार्य प्रगति पर है।
4.	बीटीपीएस-हिरीयुर 400 केवी	केपीटीसीएल	कुल वन भूमि 14.34 हेक्टेयर प्रस्ताव मई
	लाइन		2008 में पारित हुआ। वन विभाग ने जुलाई
			2010 में प्रस्ताव अग्रेषित किया केंद्रक
			अधिकारी ने एमओईएफ को जनवरी 2011
			में सौंपी चरण । की स्वीकृति मई 2011 में
			प्राप्त हुई चरण ॥ की स्वीकृति जनवरी
			2012 में प्राप्त हुई। लाइन मार्च 2012 में
			शुरू हुई।
5.	कोलडम-लुधियाना 400केवी लाइन	पीकेटीसीएल	पीजीसीआईएल ने वन प्रस्ताव मई 05 में
	(हिप्र और पंजाब)		सौंपी।
			हिमाचल प्रदेश का भाग चरण। की स्वीकृति
			मार्च 2010 में प्राप्त हुई पंजाब का भाग
			चरण। की स्वीकृति फरवरी 2010 में प्राप्त

			हुई। पीकेटीसीएल ने प्रयोक्ता एजेंसी का नाम
			परिवर्तित करने का अनुरोध किया । केंद्रक
			अधिकारी,हिमाचल प्रदेश ने जुलाई 2010 में
			एमओईएफ को मामले की संस्तुति की।
			मामला एमओईएफ के विचाराधीन है। चरण
			॥ अभी प्राप्त की जानी है।
6.	तीस्ता- III-मंगन-किशनगंज	टीवीपीटीएल	कुल वन भूमि
	(करंदिघी) 400 केवी डी/सी		48.4484(सिक्किम)+47.4932(पश्चिम
	लाइन(क्वैद मूज)		बंगाल) वन प्रस्ताव अगस्त 2009 में सौंपा
			गया। सिक्किम के लिए चरण। की स्वीकृति
			जनवरी 2011 में प्राप्त हुई अनुपालन मसौदा
			मई 2011 में सौंपा गया। चरण॥ की स्वीकृति
			सितंबर 2011 में प्राप्त हुई। पश्चिम बंगाल के
			लिए वन प्रस्ताव अगस्त 2009 में सौंपा
			गया।चरण। की स्वीकृति अभी प्राप्त की जानी
			है। राज्य सरकार को अभी एमओईएफ को
			प्रस्ताव अग्रेषित करनी है।
7.	मुंद्रा –लिंबडी और मुंद्रा-जेतपर	पीजीसीआईएल	कुल वन भूमि (44.34 + 29.38 हेक्टेयर)
	मुंद्रा-रणछोड़पुरा 400 केवी डी/सी		चरण। की स्वीकृति अक्तूबर2010/जून
	लाइन		2011में प्राप्त हुई।वन प्रस्ताव जनवरी 2011
			में सौंपा गया। चरण।। की स्वीकृति
			जून/जुलाई 2011 में प्राप्त हुई।
			अनुपालन मसौदा मई 2011 में सौंपा गया।
			चरण॥ की स्वीकृति सितंबर 2011 में प्राप्त
			हुई। मुंद्रा –लिंबडी और मुंद्रा-रणछोड़पुरा
			लाइन फरवरी 2012 में शुरू हुई। मुंद्रा-
			जेतपर लाइन प्रगति पर है।
8.	हिंदपुर-पुलिवेंदुला 220 केवी डी/सी	एपीट्रांसको	कुल वन भूमि 6.79 हेक्टेयर चरण। वन
	लाइन		प्रस्ताव अप्रैल 2008 में सौंपा गया। चरण।
			की स्वीकृति जुलाई 2008 में प्राप्त हुई।
			अनुपालन मसौदा जुलाई 2009 में सौंपा
			गया। चरण॥ की स्वीकृति प्रतीक्षित है।
9.	नेल्लोर-पालमनेरू 220 केवी डी/सी	एपीट्रांसको	यह लाइन छोड़ दी गयी है।

10.	पल्लाताना-बोंगाइगांव 400 केवी	एनईटीसीएल	कुल वन भूमि (5680 हेक्टेयर) 130
	डी/सी लाइन	,	एलओसी में। वन प्रस्ताव अप्रैल से अगस्त
	·		े 2006 में सौंपे गए।
			त्रिपुरा
			चरण। की स्वीकृति अक्तूबर 2009 में प्राप्त
			की गई। चरण॥ की स्वीकृति अगस्त 2010
			में प्राप्त की गई।
			असम
			चरण। की स्वीकृति मई 2010 में प्राप्त की
			गई। अनुपालन मसौदा फरवरी 2011 में
			सौंपा गया। चरण॥ की स्वीकृति मई 2012
			में प्राप्त की गई।
			मेघालय
			चरण। की स्वीकृति फरवरी 2010 में प्राप्त
			की गई।अनुपालन मसौदा फरवरी 2011 में
			सौंपा गया। चरण॥ की स्वीकृति मई 2012
			में प्राप्त की गई।
11.	कामेंग-बालिपारा 400 केवी डीसी	पीजीसीआईएल	कुल वन भूमि (98.25 हेक्टेयर) चरण । की
	लाइन (असम)		स्वीकृति जनवरी 2010 में प्राप्त की गई।
			अनुपालन मसौदा जुलाई 2011 में सौंपा
			गया। चरण॥ की स्वीकृति अभी प्राप्त होनी
			है।
12.	विश्वनाथ चरियाली पुलिंग स्टेशन के	पीजीसीआईएल	कुल वन भूमि 58.55 हेक्टेयर चरण । की
	लिए अर्थ इलेक्ट्रोड लाइन और		स्वीकृति नबंबर 2009 में प्राप्त की गई।
	ठगियाबारि (असम) पर अर्थ		अनुपालन मसौदा जुलाई 2011 में सौंपा
	इलेक्ट्रोड स्टेशन		गया। चरण ॥ की स्वीकृति अभी प्राप्त होनी
			है।
13.	कोरबा एसटीपीपी-ब्रिसिंहपुर 400	पीजीसीआईएल	कुल वन भूमि 157.481 हेक्टेयर
	केवी डी/सी लाइन (छत्तीसगढ़)		चरण। की स्वीकृति जुलाई 2010 में प्राप्त
			की गई। अनुपालन मसौदा नबंबर 2010 में
			सौंपा गया। चरण॥ की स्वीकृति जून 2011
			में प्राप्त की गई। लाइन फरवरी 2012 में
			शुरू हुई।

14.	बिहारशरीफ-कोडरमा 400केवी	पीजीसीआईएल	कुल वन भूमि 13.007 हेक्टेयर चरण। की
	डी/सी लाइन (बिहार)		स्वीकृति अप्रैल 2010 में प्राप्त की गई।
			अनुपालन मसौदा दिसंबर 2010 में सौंपा
			गया। चरण ॥ की स्वीकृति मार्च 2011 में
			प्राप्त की गई। लाइन मार्च 2011 में शुरू
			हुई।
15.	मैसूर-कोजिकोड 400 केवी डी/सी	पीजीसीआईएल	कुल वन भूमि 23.166 हेक्टेयर, वन प्रस्ताव
	लाइन 23.166 हेक्टेयर (कर्नाटक)		अप्रैल 2004 में सौंपा गया।राज्य सरकार ने
			अक्तूबर 2010 में प्रस्ताव पारित किया।
			चरण। की स्वीकृति प्राप्त होनी है।
16.	मोहिंदरगढ़ एचवीडीसी स्टेशन	पीजीसीआईएल	कुल वन भूमि 0.8612 हेक्टेयर स्टेशन मार्च
	(हरियाणा)		2012 में शुरू हुआ।
17.	राउरकेला-रायगढ़ 400 केवी डी/सी	अदानी पावर	कुल वन भूमि 111.39 हेक्टेयर। चरण । की
	लाइन (उड़ीसा)		स्वीकृति अक्तूबर 2009 में प्राप्त की गई।
			चरण॥ की स्वीकृति अभी प्राप्त की जानी है।
			जुलाई 2010 में एमओईएफ की विशेष
			अनुमति पर जून 2011 में लाइन शुरू हुई।
18.	चमेरा-III पुलिंग स्टेशन- जालंधर	पीजीसीआईएल	कुल वन भूमि 130.698 हेक्टेयर, चरण ।
	400केवी डी/सी लाइन (हिमाचल		की स्वीकृति सितंबर 2010 में प्राप्त की गई।
	प्रदेश)		अनुपालन मसौदा मार्च 2011 में सौंपा
			गया। चरण ॥ की स्वीकृति अभी प्राप्त होनी
			है।
19.	लोअर सुबांसिरी-विश्वनाथ	पीजीसीआईएल	कुल वन भूमि 88.77 हेक्टेयर, चरण। वन
	चरियाली 400केवी डी/सी लाइन		प्रस्ताव फरवरी 2011 में सौंपा गया। चरण।
	(असम)		की स्वीकृति अभी प्राप्त होनी है।
20.	कामेंग-बालिपारा 400 केवी डी/सी	पीजीसीआईएल	कुल वन भूमि 133.65 हेक्टेयर, चरण । की
	लाइन (अरूणाचल प्रदेश		स्वीकृति सितंबर 2010 में प्राप्त की गई।
			अनुपालन मसौदा अक्तूबर 2011 में सौंपा
			गया। कार्य प्रगति पर है।
21.	रायपुर-वर्धा 400केवी डी/सी लाइन	पीजीसीआईएल	कुल वन भूमि 15.37 हेक्टेयर,
	(छत्तीसगढ)		वन प्रस्ताव मई 2011 में सौंपा गया।
			चरण।की स्वीकृति अप्रैल 2012 में प्राप्त की
			गई। कार्य प्रगति पर है।

22.	कृष्णपट्टणम-गूटी और कृष्णपट्टणम-	पीजीसीआईएल	कुल वन भूमि 42.067 हेक्टेयर,
	कुर्नुल 400 केवी डी/सी लाइन (आंध्र		वन प्रस्ताव नबंबर 2010 में सौंपा गया।
	प्रदेश)		चरण। की स्वीकृति दिसंबर 2010 में प्राप्त
			की गई। अनुपालन मसौदा फरवरी 2012 में
			सौंपा गया। चरण ॥ की स्वीकृति अभी प्राप्त
			होनी है।
23.	धनबाद-गिरीडीह 220 केवी डी/सी	डीवीसी	कुल वन भूमि 42.243 हेक्टेयर,
	लाइन		वन प्रस्ताव सितंबर 2006 में सौंपा गया।
			चरण। की स्वीकृति जनवरी 2009 में प्राप्त
			की गई। अनुपालन मसौदा अगस्त 2011 में
			सौंपा गया। चरण ॥ की स्वीकृति मई 2012
			में प्राप्त की गई। कार्य की स्वीकृति अभी वन
			विभाग से प्राप्त होनी है।
24.	मेजिया-गोला-रामगढ़ 220केवी	डीवीसी	कुल वन भूमि 90.543 हेक्टेयर,
	लाइन		वन प्रस्ताव नबंबर 2005 में सौंपा गया।
			चरण। की स्वीकृति अप्रैल 2010 में प्राप्त की
			गई। अनुपालन मसौदा अगस्त 2010 में
			सौंपा गया। चरण ॥ की स्वीकृति अभी प्राप्त
			होनी है।
25.	रघुनाथपुर-रांची 400 केवी लाइन	डीवीसी	कुल वन भूमि 61.352 हेक्टेयर,
			वन प्रस्ताव जनवरी 2008 में सौंपा गया।
			चरण। की स्वीकृति अक्तूबर 2010 में प्राप्त
			की गई। अनुपालन मसौदा दिसंबर 2011 में
			सौंपा गया। चरण ॥ की स्वीकृति अभी प्राप्त
			होनी है।
26.	गोला-रांची 220केवी डी/सी लाइन	डीवीसी	कुल वन भूमि 42.164 हेक्टेयर, वन प्रस्ताव
			मई 2008 में सौंपा गया। चरण। की स्वीकृ
			ति नबंबर 2010 में प्राप्त की गई। अनुपालन
			मसौदा अभी सौंपी जानी है।
27.	संपला-मोहना 220 केवी डी/सी	एचवीपीएनएल	कुल वन भूमि 0.4919 हेक्टेयर, लाइन
	लाइन		फरवरी 2011 में शुरू हुई।
28.	उतरन-कोसांबा 220 केवी लाइन-॥	जीईटीसीओ	यह लाइन छोड़ दी गयी है।
29.	मालवा-टीएचपी पितमपुर 400	एमपीपीटीसीएल	कुल वन भूमि 5.755 किलोमीटर
	केवी डी/सी लाइन		वन प्रस्ताव फरवरी 2010 में सौंपा गया।

			चरण। की स्वीकृति दिसंबर 2010 में प्राप्त की गई। अनुपालन मसौदा अगस्त 2011 में सौंपा गया। चरण॥ की स्वीकृति फरवरी 2012 में प्राप्त की गई।
30.	पालामनेरू-चित्तूर 220 केवी डी/सी लाइन	एपी ट्रांस्को	कुल वन भूमि 22.03 हेक्टेयर, वन प्रस्ताव अगस्त 2006 में सौंपा गया। चरण। की स्वीकृति जुलाई 2010 में प्राप्त की गई। अनुपालन मसौदा दिसंबर 2010 में सौंपा गया। चरण॥ की स्वीकृति जनवरी 2011 में प्राप्त हुई। लाइन अक्तूबर 2011 में शुरू हुई।
31.	पार्वती-कोलडम 400 केवी लाइन (हिमाचल प्रदेश)	पीकेटीसीएल	वन प्रस्ताव नबंबर 2006 में सौंपा गया। चरण। की स्वीकृति दिसंबर 2007 में प्राप्त की गई। अनुपालन मसौदा राज्य सरकार के पास लंबित है।
32.	वापी-नवी मुंबई 400केवी डी/सी लाइन, (महाराष्ट्र)	पीजीसीआईएल	कुल वन भूमि 272.1195 हेक्टेयर, वन प्रस्ताव मई 2005 में सौंपा गया। वन प्रस्ताव अक्टूबर 2011 में नेशनल बोर्ड फॉर वाइल्ड लाईफ (एनबीडब्ल्यूएल) को प्रस्तुत की गई।
33.	बरिपदा-मेंढासल 400केवी डी/सी लाइन (उड़ीसा)	पीजीसीआईएल	कुल वन भूमि 21.36 हेक्टेयर (0.55 हेक्टेयर डब्ल्यूएल),वन प्रस्ताव फरवरी 2008 में सौंपा गया। चरण। की स्वीकृति मई 2011 में प्राप्त की गई। अनुपालन मसौदा अगस्त 2011 में सौंपा गया। चरण॥ की स्वीकृति अगस्त 2011 में प्राप्त की गई। लाइन अगस्त 2011 में शुरू हुई।
34.	कोडरमा-गिरीडीह 220 केवी लाइन	डीवीसी	कुल वन भूमि 86.085 हेक्टेयर, वन प्रस्ताव मार्च 2009 में सौंपा गया। मार्च 2012 में कोई भी प्रस्ताव अग्रेषित नहीं किया गया। चरण। की स्वीकृति मई 2012 में प्राप्त की गई। अनुपालन मसौदा अभी सौंपी जानी है।

35.	झालावाड़-कालिसिंध 220 केवी	आरआरवीपीएनएल	कुल वन भूमि 4.4 हेक्टेयर, वन प्रस्ताव मार्च
00.	डी/सी लाइन		2010 में सौंपा गया। चरण। की स्वीकृति
	ગાતા તાર્ગ		अप्रैल 2011 में प्राप्त की गई। लाइन अप्रैल
			2012 में शुरू हुई।
26		आरआरवीपीएनएल	5 0
36.	मादरी-उदयपुर 220केवी लाइन का	जारजारवा गाउगरुव	कुल वन भूमि 2.1 हेक्टेयर, वन प्रस्ताव मई
	एलआईएलओ		2010 में सौंपा गया। चरण। की स्वीकृति
		पीटीसीएल	अभी प्राप्त होनी है।
37.	,	पाटासाएल 	यह लाइन छोड़ दी गयी है।
	220 केवी लाइन		
38.		पीटीसीयूएल	यह लाइन छोड़ दी गयी है।
	केवी डी/सी लाइन		
39.	सतपुरा-आस्था डी/सी 400 केवी	एमपीपीटीसीएल	कुल वन भूमि 106.15 हेक्टेयर, वन प्रस्ताव
	लाइन		दिसंबर 2010 में सौंपा गया। चरण। की
			स्वीकृति जनवरी 2012 में प्राप्त की गई।
			अनुपालन मसौदा अभी सौंपी जानी है।
40.	वाणी-वरोरा 220केवी लाइ	एमएसईटीसीएल	यह लाइन छोड़ दी गयी है।
41.	चंद्रपुर॥–एमआईडीसी-बल्लरशाह	एमएसईटीसीएल	यह लाइन छोड़ दी गयी है।
	220केवी डी/सी लाइन		
42.	मौजूदा स्थिति से खापरखेड़ा	एमएसईटीसीएल	कुल वन भूमि 0.7735 हेक्टेयर,
	कोराडी का नं. 6- चंद्रपुर 400केवी		चरण। की स्वीकृति जनवरी 2012 में प्राप्त
	एस/सी लाइन		की गई। चरण ॥ की स्वीकृति अभी प्राप्त की
			जानी है।
43.	जेउर-परांदा 220केवी डी/सी लाइन	एमएसईटीसीएल	यह लाइन छोड़ दी गयी है।
44.	पारेषण लाइन लंबोटी (सोलापुर) –	एमएसईटीसीएल	कुल वन भूमि 63.24 हेक्टेयर, वन प्रस्ताव
	तलजापुर 220केवी डी/सी लाइन		नबंबर 2009 में सौंपा गया। चरण। की
			स्वीकृति अभी प्राप्त की जानी है।
45.	पार्ली ॥।-नांदेड 220 केवी डी/सी	एमएसईटीसीएल	यह लाइन छोड़ दी गयी है।
	लाइन	,	
46.		आरपीटीएल	कुल वन भूमि 39.14 हेक्टेयर, वन प्रस्ताव
	400 केवी डी/सी लाइन		दिसंबर 2009 में सौंपा गया। राज्य सरकार
	100 E II 91/II /II (I		को एमओईएफ को अभी प्रस्ताव अग्रेषित
			करना है।
			ואַ וויאַד
		I	1

47.	बोईसर में तारापुर-बोरीबली 220	एमएसईटीसीएल	कुल वन भूमि 0.498 हेक्टेयर, वन प्रस्ताव
	केवी डी/सी का एलआईएलओ		अगस्त 2008 में सौंपा गया। चरण । की
			स्वीकृति अभी प्राप्त की जानी है।
48.	बोईसर-बोरीबल 220केवी डी/सी	एमएसईटीसीएल	कुल वन भूमि 198.71(117.29+81.42)
			हेक्टेयर,वन प्रस्ताव अगस्त 2010 में सौंपा
			गया। चरण।की स्वीकृति दिसंबर 2011
			में प्राप्त की गई। अनुपालन मसौदा जुलाई
			2012 में सौंपा गया। चरण ॥ की स्वीकृति
			अभी प्राप्त की जानी है।
49.	बोरीबल-कलवा 220 केवी डी/सी	एमटीसीएल	-do-
	लाइन		
50.	कालवा-खागघर 220केवी डी/सी	एमटीसीएल	-do-
	लाइन		
51.	सांविधिक स्वीकृति जारी रखने के	केईबी	वन प्रस्ताव जुलाई 2010 में सौंपा गया।
	लिए 50 और 51 लोकेशन पर 220		चरण। की स्वीकृति अभी प्राप्त की जानी है।
	केवी सवारिगिरी-थेनी फीडर से		
	पहले		
52.	मनकुलम एचईपी-वलारा पुलिंग	केईबी	वन प्रस्ताव अगस्त 2010 में सौंपा गया।
	स्टेशन 220 केवी लाइन		चरण। की स्वीकृति अभी प्राप्त की जानी है।
53.	लोहरदग्गा-लातेहार 220 केवी	जेईबी	कुल वन भूमि 11.5611 हेक्टेयर, वन
	डी/सी लाइन		प्रस्ताव जुलाई 2010 में सौंपा गया। चरण।
			की स्वीकृति अभी प्राप्त की जानी है।
54.	लातेहार-डाल्टनगंज 220केवी	जेईबी	कुल वन भूमि 57.04 हेक्टेयर, वन प्रस्ताव
	डी/सी लाइन		अगस्त 2010 में सौंपा गया। चरण। की
			स्वीकृति अभी प्राप्त की जानी है।
55.	तिरोदा-वरोरा (एमएसईटीसीएल)	अदानी पावर	कुल वन भूमि 27.308 हेक्टेयर,वन प्रस्ताव
	400 केवी डी/सी (क्वैद) लाइन		मई 2011 में सौंपा गया। चरण। की
			स्वीकृति जनवरी 2012 में प्राप्त की गई।
			अनुपालन मसौदा फरवरी 2012 में सौंपा
			गया। चरण ॥ की स्वीकृति अभी प्राप्त की
			जानी है।
56.	मुंद्रा-महेन्द्रगढ़ केवी±500	अदानी पावर	कुल वन भूमि 55.58 हेक्टेयर,वन प्रस्ताव
	एचवीडीसी लाइन		मई 2011 में सौंपा गया। चरण। की

			स्वीकृति अक्तूबर 2011 में प्राप्त की गई।
			लाइन मार्च 2012 में पूरी हुई।
57.	कोरबा-बिश्रामपुर 220केवी डी/सी	सीपीटीसीएल	कुल वन भूमि 195.296 हेक्टेयर, वन
			प्रस्ताव जुलाई 2006 में सौंपा गया। चरण।
			की स्वीकृति मार्च 2009 में प्राप्त की गई।
			अनुपालन मसौदा मई 2011 में सौंपा गया।
			चरण ॥ की स्वीकृति अगस्त 2011 में प्राप्त
			की गई।
58.	बोंगाइगांव (पीजी)-सिलीगुड़ी	ईएनआईसीएल	कुल वन भूमि 8.5 हेक्टेयर,वन प्रस्ताव
	(पीजी) 400केवी डी/सी लाइन		जनवरी 2011 में सौंपा गया। चरण। की
			स्वीकृति अभी प्राप्त की जानी है।
59.	बिलासपुर पुलिंग स्टेशन- रांची	पीजीसीआईएल	कुल वन भूमि 302.368 हेक्टेयर,वन
	765केवी एस/सी लाइन (छत्तीसगढ़)		प्रस्ताव मार्च 2011 में सौंपा गया। चरण।
			की स्वीकृति अभी प्राप्त की जानी है।
60.	सिलचर-मेलरिअत(न्यू) 400 केवी	पीजीसीआईएल	कुल वन भूमि 375.66 हेक्टेयर,वन प्रस्ताव
	डी/सी लाइन (132 केवी पर		सितंबर 2011 में सौंपा गया। चरण। की
	आवेशित)		स्वीकृति अभी प्राप्त की जानी है।
61.	सासन-सतना 765 केवी एस/सी	पीजीसीआईएल	कुल वन भूमि 114.724 हेक्टेयर,वन
	लाइन (सर्किट ।) (मध्य प्रदेश)		प्रस्ताव मई 2011 में सौंपा गया। चरण ।
			की स्वीकृति अभी प्राप्त की जानी है।
62.	पार्वती पुलिंग स्टेशन-अमृतसर	पीजीसीआईएल	कुल वन भूमि 61.65 हेक्टेयर, चरण । की
	लाइन 400केवी डी/सी (पंजाब)		स्वीकृति अप्रैल 2010 में प्राप्त की गई। वन
			प्रस्ताव अक्तूबर 2011 में सौंपा गया।चरण
			।। की स्वीकृति अभी प्राप्त की जानी है।
63.	बोकारो-कोडरमा 400केवी डी/सी	पीजीसीआईएल	कुल वन भूमि 198.59 हेक्टेयर,वन प्रस्ताव
	लाइन (झारखंड)		मई 2011 में सौंपा गया। चरण। की
			स्वीकृति अभी प्राप्त की जानी है।
64.	सतपुरा (सारनी)-पंढुरना 220केवी	एमपीपीटीसीएल	कुल वन भूमि 38.90 हेक्टेयर, वन प्रस्ताव
	लाइन (द्वितीय सर्किट)		फरवरी 2011 में सौंपा गया। चरण। की
			स्वीकृति सितंबर 2011 में प्राप्त की गई।
			अनुपालन मसौदा मार्च 2012 में सौंपा गया।
			चरण ॥ की स्वीकृति जून 2012 में प्राप्त की
			गई।

अनुबंध- 6.7

11वीं योजना के दौरान क्रियांवित की जा रही योजनाएं

(उत्पादन परियोजनाएं और आईएसटीएस प्रणाली सुदृढ़ीकरण योजनाओं के साथ)

क्र. सं.	सब-स्टेशन	वोल्टेज अनुपात (केवी/केवी)	क्रियान्वयन एजेंसी	क्षमता (एम डब्ल्यू / एमवीए)	स्थिति
I. 500 केवी एचवीडीसी(सब-					
स्टेशन)					
1	बलिया और भिवाड़ी		पीजीसीआ	1250	डब्ल्यूआईपी
	(2x1250 मेगावाट) पर		ईएल		
	कंवर्टर स्टेशन-द्वितीय पोल				
2.	मुंद्रा और मोहिंद्रगढ़		अदानी	2500	डब्ल्यूआईपी
	(2x1250 मेगावाट) पर				
	कंवर्टर स्टेशन-				

उत्तरी क्षेत्र में प्रणाली सुदृढ़ीकरण योजना:

योजना	विवरण	स्थिति		
	 तालिका संख्या : एनआर-आईएस-01/अध्याय-6			
एन आर प्रणाली	1. गुड़गांव (पीजी सेक्टर 72)-मानेसर 400केवी	कठिन आरओडब्ल्यू समस्या।		
सुदृढ़ीकरण योजना-	डी/सी(क्वैद)			
XIII	2. मानेसर में 2X 500 एमवीए पारेषण क्षमता	क्रियांवयन और सर्वेक्षण प्रगति		
	वाले 400/200 केवी सब-स्टेशन की स्थापना	में		
	3. आगरा-समयपुर और समयपुर-गुड़गांव (पीजी	डब्ल्यूआईपी		
	सेक्टर-72) 400 केवी लाइन का समयपुर से			
	अलगाव और आगरा से गुड़गांव (पीजी सेक्टर-			
	72) एस/सी सर्किट तक सीधी लाइन का			
	निर्माण करना			
	4. फतेहाबाद 400/200 केवी सब-स्टेशन पर दो			
	220 केवी बे			
	5. मानेसर में 125 एमवीएआर बस रिएक्टर			
तालिका संख्या∶ एनआर-आईएस-02/अध्याय-6				

एन आर प्रणाली	1. पटियाला(प्रथम सर्किट का एलआईएलओ पहले	8/11 में कमीशन हुआ।	
सुदृढ़ीकरण योजना-	ही हो चुका है) में नालागढ़-कैथल 400केवी		
-XIV	सर्किट (नालागढ़-हिसार 400केवी डी/सी		
	लाइन का ट्रिपल स्नोबर्ड सेकंड सर्किट) का		
	एलआईएलओ		
	2 पटियाला में अतिरिक्त 500 एमवीए	कमीशन दुआ।	
	400/200 केवी आईसीटी (जिसकी क्षमता	TATISTY GOTT	
	2X315 एमवीए है)		
	3. मालेकोटला में अतिरिक्त 500 एमवीए	क्रमीयन स्था।	
	3. नालकाटला न जातारक 500 एनपाए 400/200 केवी आईसीटी (जिसकी क्षमता	कमाराम हुआ।	
	,		
	2X315 एमवीए है)		
	4. पटियाला में 125 एमवीएआर बस रिएक्टर	कमीशन हुआ।	
	तालिका संख्या : एनआर- आईएस -03/अध्या य ।	r-6	
एन आर प्रणाली	1. मानेसर-नीमराना 400 केवी डी/सी	डब्ल्यूआईपी	
सुदृढ़ीकरण योजना-	2. भिवाड़ी-नीमराना 400 केवी डी/सी	स्ट्रींजिंग मार्च 11 से आरंभ हुआ।	
XV	3. कोटपुतली में नए 400/200 केवी एस/एस की	क्रियांवयन और सर्वेक्षण प्रगति	
	स्थापना के लिए भिवाड़ी-जयपुर 400केवी	में	
	एस/सी का एलआईएलओ		
	4. नीमराना में 2x315 एमवीए पारेषण क्षमता	कमीशन हुआ।	
	वाले 400/200 केवी सब-स्टेशन की स्थापना		
	5. कोटपुतली में 2x315 एमवीए पारेषण क्षमता	डब्ल्यूआईपी	
	वाले 400/200 केवी सब-स्टेशन की स्थापना		
तालिका संख्या : एनआर- आईएस -04 /अध्याय -6			
एन आर प्रणाली	1. न्यू वनपोह में नये 400/200केवी एस/एस के	डब्ल्यूआईपी	
सुदृढ़ीकरण योजना	निर्माण के लिए किशनपुर-वगूरा 400 केवी		
-XVI	डी/सी के दोनों सर्किट का एलआईएलओ		
	2. किशनपुर-न्यू वनपोह 400केवी डी/सी	डब्ल्यूआईपी	
	3. न्यू वनपोह में 2x315 एमवीए पारेषण क्षमता	डब्ल्यूआईपी	
	वाले 400/200 केवी सब-स्टेशन की स्थापना		
	2. किशनपुर-न्यू वनपोह 400केवी डी/सी 3. न्यू वनपोह में 2x315 एमवीए पारेषण क्षमता		

तालिका संख्या : एनआर- आईएस -05 /अध्याय -6		
एन आर प्रणाली	नीमराना-सिकर 400केवी डी/सी	लाइन पूर्ण हो गयी।
सुदृढ़ीकरण योजना		
-XVII		
तालिका संख्या : एनआर- आईएस -06 /अध्याय -6		
एन आर प्रणाली	1. बागपत-देहरादून 400केवी डी/सी (क्वैद)	बागपत और देहरादून सब-
सुदृढ़ीकरण योजना		स्टेशन निर्धारित समयावधि में
-XVIII		पूर्ण की गयी (जमीन अभी भी
		सौंपना बाकी है) ।
	2. देहरादून में 2x315 एमवीए पारेषण क्षमता	डब्ल्यूआईपी
	वाले 400/220 केवी सब-स्टेशन की स्थापना	

हिमाचल प्रदेश में अवस्थित उत्पादन परियोजनाएं:

उत्पादन परियोजनाएं	विवरण	स्थिति	
	तालिका संख्या : एनआर-एचपी-01 /अध्याय -6		
चमेरा॥। एचईपी	1. चमेरा ॥।एईपी के नजदीक पुलिंग	वन चरण-॥ का अनुमोदन लंबित है ।	
(एनएचपीसी) (3x77	स्टेशन-जुल्लनदुर लाइन	निर्धारित समयावधि में चमेरा जेनरल	
मेगावाट) (12वीं योजना में	400केवी डी/सी	परियोजना पूर्ण की गई।	
स्थानांतरित)	2. चमेरा ॥ एचईपी के नजदीक	8/11 में कमीशन हुआ।	
	चमेरा-॥।-चमेरा पुलिंग स्टेशन		
	3. चमेरा ॥ एचईपी के नजदीक	8/11 में कमीशन हुआ।	
	जीआईएस पुलिंग स्टेशन		
	तालिका संख्या : एनआर-एचपी-02 /व	अध्याय-6	
पार्बती-॥। एचईपी (4x130	1. पार्वती पुलिंग प्वाइंट, अमृतसर	वन अनुमोदन लंबित (पार्बती-॥।-	
मेगावाट)	पर 400केवी डी/सी पार्बती-॥-	अमृतसर लाइन के साथ मिला हुआ	
(12वीं योजना में	कोलडम/नालगढ़ का		
स्थानांतरित)	एलआईएलओ		
	2. पार्बती-॥।पर 400केवी डी/सी	टावर निर्माण आरंभ हुआ।	
	पार्बती-॥-पार्बती पुलिंग प्वाइंट		
	का एलआईएलओ		

	3. 80 एमवीएआर रिएक्टर के साथ	वन मसौदा (हिमाचल प्रदेश भाग) जून
	 पार्बती पुलिंग प्वाइंट- अमृतसर	10 में एमओईएफ, नई दिल्ली को
	400केवी डी/सी	अग्रेषित।वन्य जीव अभयारण्य क्षेत्र को
		अनदेखा कर लाइन की रि-रूटिंग की
		गई है। चरण-॥ की स्वीकृति अभी
		प्रतीक्षित है।
	4. 400केवी पार्बती पुलिंग स्टेशन	
	(जीआईएस) की स्थापना	
	् तालिका संख्या : एनआर-एचपी-03 /३	अध्याय-6
करचम वांगटू	1. करचम वांगटू- अब्दुल्लापुर	जेवीको. द्वारा निर्माणाधीन
एचईपी(4x250	400केवी डी/सी	
मेगावाट)(कमीशन हो गया)	2. अब्दुल्लापुर- सोनीपत 400केवी	3/11 में कमीशन हुआ।
	डी/सी	
	तालिका संख्या : एनआर-एचपी-04 /३	अध्याय-6
बुधिल एचईपी (लैंको ग्रीन)	बुधिल-चमेरा- III 220केवी एस/सी	कमीशन हुआ।
एचपी (2x35मेगावाट)		
(12वीं योजना में		
स्थानांतरित)		
		अध्याय-6
मलाना II	1. मलाना ॥ एचईपी- छौर	पूर्ण की गयी स्ट्रींजिंग।
एचईपी(ईपीपीएल)(2x50	132केवी डी/सी	
मेगावाट) (कमीशन हुआ)	2. छौर 220 केवी डी/सी पर	पूर्ण की गयी स्ट्रींजिंग।
	अल्लैन दुहंगन-नालागढ़ का	
	एलआईएलओ	
	3. 220 केवी/132केवी छौर	आरंभ होने के लिए तैयार।
	एस/एस	

जम्मू और कश्मीर में अवस्थित उत्पादन परियोजनाएं:

उत्पादन परियोजनाएं	विवरण	स्थिति	
तालिका संख्या : एनआर-जेके-01/अध्याय-6			
यूआरआई-II एचईपी	यूआरआई I- यूआरआईII 400 केवी	लाइन प्रभार के लिए तैयार	
(एनएचपीसी) 4x60	एस/सी	है।एनएचपीसी द्वारा निर्मित क्षेत्र की	
मेगावाट (12वीं योजना में		सहमति कमीशन होने के लिए प्रतीक्षित	
स्थानांतरित)		है।	
	यूआरआई I- वगूरा 400 केवी	नियम कानून की समस्या और दो	
	एस/सी	महीनों की लगातार बर्फबारी से कार्य	
		बाधित हुआ।	
	तालिका संख्या : एनआर-जेके-02 / अ	ध्याय-6	
एनएचपीसी(4x11मेगावाट)	प्रणाली 66केवी स्तर तक उपलब्ध		
(12वीं योजना में	है।		
स्थानांतरित)			
	तालिका संख्या : एनआर-जेके-03/अध्याय-6		
निमू बाजगो (एनएचपीसी)	प्रणाली 66केवी स्तर तक उपलब्ध		
(3X15 मेगावाट) (12वीं	है।		
योजना में स्थानांतरित)			

उत्तराखंड में अवस्थित उत्पादन परियोजनाएं:

उत्पादन	विवरण	स्थिति
परियोजनाएं		
	तालिका संख्या : एनआर- यूके -01 /	अध्याय-6
कोटेश्वर (कमीशन	1. कोटेश्वर- टेहरी पुलिंग प्वाइंट	सर्किट-1 परीक्षण 23.02.11 को और
हुआ)		सर्किट-II परीक्षण मार्च 11 में हुआ।
	2. टेहरी पुलिंग प्वाइंट (400 केवी पर	सर्किट-I का एलआईएलओ पूर्ण हुआ और
	आवेशित होनेवाला) पर टेहरी-मेरठ	परीक्षण 21.01.11 को हुआ तथा
	का एलआईएलओ	सर्किट-II परीक्षण 6/11 को हुआ।

3. टेहरी-मेरठ लाइन का 50% मुआवजा	
4. टेहरी पुलिंग स्टेशन(जीआईएस) की	
स्थापना	

दिल्ली में अवस्थित उत्पादन परियोजनाएं:

उत्पादन परियोजनाएं	विवरण	स्थिति		
	तालिका संख्या : एनआर-डीएल-01/अध्याय-6			
प्रगति सीसीजीटी फेज-III	मौजूदा 400 केवी बवाना बस का	डीटीएल के द्वारा कार्य		
(पीपीसीएल)	विभाजन			
(4x250+2x250)	400 केवी स्विचयार्ड बस का स्प्लिट			
मेगावाट (12वीं योजना में	बस में विस्तार			
स्थानांतरित)				
	तालिका संख्या : एनआर-डीएल-02/अध्याय-6			
रिठाला सीसीपीपी	प्रणाली 66 केवी स्तर पर			
(एनडीपीएल)	(एनडीपीएल)			
(जीटी+एसटी 108				
मेगावाट) (स्थापित)				

हरियाणा में अवस्थित उत्पादन परियोजनाएं:

उत्पादन	विवरण	स्थिति
परियोजनाएं		
	एनआर-एचआर-01/अध्य	ाय-6
झज्जर-l(इंदिरा गांधी)	1. झज्जर-दौलबाताद 400केवी डी/सी	सर्किट 1 स्थापित। द्वितीय सर्किट फरवरी
टीपीएस (3x500		11 में स्थापित हुआ।
मेगावाट) (यू-1, यू-2	2. झज्जर-मुंडका(दिल्ली) 400केवी	प्रथम सर्किट 9/10 में स्थापित हुआ और
स्थापित हो गया,	डी/सी	द्वितीय सर्किट 11/10 में स्थापित हुआ।
यू-3 12वीं योजना में	3. झज्जर(टीपीएस)-/धनौंडा 400केवी	डब्ल्यूआईपी
स्थानांतरित।)	डी/सी	
	4. दौलताबाद (3x315) 400/220	पहला और दूसरा ट्रांसफार्मर जांच 11/10
	केवी एस/एस	में हुआ और तीसरा ट्रांसफार्मर जांच 12/।0
		में हुआ।

	T- : (2.245) (2.245)	
	5. मुंडका (2x315) 400/220 केवी	पहला ट्रांसफार्मर 9/10 में स्थापित हुआ
	एस/एस	और द्वितीय ट्रांसफार्मर 3/11 में स्थापित
		हुआ।
	6. मुंडका (2x160) 400/220 केवी	स्थापना के लिए तैयार।
	एस/एस	
	एनआर-एचआर-02/अध्य	ाय-6
झज्जर -l (महात्मा	1. आरजीईएस- सोनीपत (दीलापुर)	
गांधी) टीपीएस	220 केवी डी/सी	
(2x660 मेगावाट)	2. दीलापुर–एचएसआईडीसी 220केवी	कार्य प्रदान किया गया।
	डी/सी	
(यू-l स्थापित हो	3. दीलापुर –बरही 220 केवी डी/सी	कार्य प्रदान नहीं किया गया।
गया, यू-2 12वीं	4. दीलापुर –ताजपुर 220 केवी डी/सी	
योजना में	5. दीलापुर –बरही 220 केवी डी/सी	
स्थानांतरित)	6. झज्जर(टीपीएस)-धनोंडा 400केवी	स्थापित
	डी/सी	
	7. झज्जर-कबुलपुर 400 केवी डी/सी	स्थापित
	8. कबुलपुर-दीलापुर 400केवी डी/सी	स्थापित
	9. झज्जर टीपीएस पर 400 केवी	स्थापित
	झज्जर(एपीसीपीएल)- दौकताबाद	
	लाइन का एलआईएलओ	
	10. दीलापुर 400/200 केवी और	स्थापित
	220/132 केवी एस/एस	
	11.कबुलपुर 400/200 केवी और	स्थापित
	220/132 केवी एस/एस	

राजस्थान में अवस्थित उत्पादन परियोजनाएं:

उत्पादन परियोजनाएं	विवरण	स्थिति
तालिका संख्या : एनआर – आरजे -01/अध्याय -6		
जल्लिपा कपुर्दी	1. राजवेस्ट-जोधपुर 400केवी डी/सी	5/10 में स्थापित

टीपीपी (8x135	2. राजवेस्ट-बारमेर 400केवी डी/सी	प्रथम सर्किट 5/10 में और द्वितीय सर्किट
मेगावाट) (राजवेस्ट		3/11 में स्थापित
पावर) (यूनिट 1 से 4	3. राजवेस्ट-ढोरीमन्ना 400केवी डी/सी	3/12 में स्थापित
तक 11वीं योजना में	4. राजवेस्ट एलटीपीएस डी/सी पर	8/08 में स्थापित
स्थापित हुआ)	गिरल-बारमेर का एलआईएलओ	

उत्तर प्रदेश में अवस्थित उत्पादन परियोजनाएं:

उत्पादन परियोजनाएं	विवरण	स्थिति	
	तालिका संख्या : एनआर- यूपी- 01/अध्याय-6		
अनपारा 'सी' (लैंको	1. केवी बस का अनपारा बी से	6/10 कार्य 6/10 में पूर्ण हुआ	
अनपारा पीपीएल	अनपारा सी में विस्तार		
(2x600 मेगावाट)	2. अनपारा बी - अनपारा सी	लाइन प्रभार हुआ।	
(स्थापित)	स्विचयार्ड से 765 केवी अनपारा		
	बी- उन्नाव टर्मिनेशन प्वाइंट का		
	स्थान परिवर्तन		
	3. उन्नाव में 765 केवी अनपारा-उन्नाव	स्थापित	
	का स्थान परिवर्तन		
	4. उन्नाव 765/400 केवी एस/एस	स्थापित	
	तालिका संख्या : एनआर- यूपी -02	/अध्याय-6	
हरदुआगंज टीपीएस यू-	हरदुआगंज-जहांगीराबाद 220 केवी	मौजूदा प्रणाली यू-8 और यू-9 के लिए	
8 और9 (2x250	डी/सी	पर्याप्त है। निर्माण कार्य आरंभ हो गया।	
मेगावाट) (यू-8 स्थापित	-		
हो गया,यू-9 12वीं			
योजना में स्थानांतरित।			
तालिका संख्या : एनआर- यूपी- 03 /अध्याय- 6			
परिछा टीपीएस	1. परिछा-ओराई 400केवी डी/सी	कार्य प्रगति में है।	
एक्सटेंशन	2. ओराई-मैनपुरी 400केवी डी/सी	कार्य प्रगति में है।	
(यूपीआरवीयूएनएल)	3. मैनपुरी(765 केवी)-मैनपुरी	ो पीपीपी अवस्था में प्रस्तावित।	
2x250 मेगावाट (12वी	i (पीजीसीआईएल) 400केवी डी/सी		
योजना में स्थानांतरित।	4. मैनपुरी 400 केवी डी/सी ग	Ť	
	आगरा-आगरा (पीजीसीआईएल)	

	का एलआईएलओ	
	5. परिछा-भौती	स्थापित
	6. परिछा-बांदा पार्ट I 220 केवी	कार्य प्रगति में है।
	एस/सी	
	7. परिछा-बांदा पार्ट II 220 केवी	पूर्ण
	एस/सी	
	8. मैनपुरी 765/400केवी एस/एस	पीपीपी अवस्था में प्रस्तावित।
	9. ओरई 400/220 केवी एस/एस	
	तालिका संख्या : एनआर- यूपी -04 /अ	ध्याय -6
रोसा एसटी ॥	1. शाहजहांपुर में (पीजीसीआईएल) लखन	ऊ- स्थापित
(2x300 मेगावाट)	बरेली 400केवी लाइन का एलआईएलओ	T
(निजी क्षेत्र)	2. शाहजहांपुर में (रिलायंस) लखनउ-बरे	ली स्थापित
(स्थापित)	400केवी लाइन का एलआईएलओ	
	3. डी/सी पर रोजा-डोहना 220केवी ला	इन कार्य प्रगति में है।
	एस/सी	

पश्चिमी क्षेत्र में प्रणाली सुदृढ़ीकरण योजना :

योजना	विवरण	स्थिति
	तालिका संख्या : डब्ल्यूआर-आई-0 ′	1/अध्याय -6
पश्चिमी क्षेत्र	एसईटी-ए: पश्चिमी क्षेत्र के पूर्वी और	
सुदृढ़ीकरण योजना-II	मध्य भाग में आयात के लिए	
	वर्धा (पीजी)- पर्ली (पीजी) 400केवी	7/11 में स्थापित।
	डी/सी	
	रायपुर (पीजी)- वर्धा (पीजी) 400केवी	लाइन में आरओडब्ल्यू समस्या और
	डी/सी	बिलंबित वन स्वीकृति के कारण कार्य
		प्रभावित
	भद्रावती (पीजी)-पर्ली (पीजी) 400 केवी	मार्च 11 में लाइन प्रभार।
	डी/सी	

	द्वितीय एस/सी सिवनी (पीजी)- वर्धा	स्थापित
	(पीजी) लाइन (आरंभ में 400केवी पर	
	प्रचालित करने के लिए)	
	पर्ली (एमएसईटीसीएल)- पर्ली (पीजी)	लाइन पूर्ण हुआ।
	400केवी डी/सी	
	एसईटी-डी : उत्तरी मध्यप्रदेश में क्षेत्रीय	
	सुदृढ़ीकरण के लिए	
	1. कोरबा(एनटीपीसी)-ब्रीसिंहपुर	लाइन स्थापित हुआ।
	(एमपीजेनको) 400केवी डी/सी	
	2. ब्रीसिंहपुर (एमपीजेनको)-दमोह	लाइन पूर्ण और स्थापित हुआ।
	400केवी डी/सी	
	3. दमोह- भोपाल 400केवी डी/सी	स्थापित
	लाइन	
	4. बीना-ग्वालियर 765 केवी द्वितीय	स्थापित
	एस/सी लाइन (400 केवी पर	
	प्रचालित करने के लिए)	
	तालिका संख्या : डब्ल्यूआर-आई-0 2	2/अध्याय-6
पश्चिमी क्षेत्र	सिपत के नजदीक डब्ल्यूआर पुलिंग	स्थापित
सुदृढ़ीकरण योजना -	स्टेशन पर 765 केवी एस/सी सिपत-	
X	सिवनी लाइन का एलआईएलओ	
	तालिका संख्या : डब्ल्यूआर-आई-0	3 /अध्याय -6
पश्चिमी क्षेत्र	सिपत के नजदीक डब्ल्यूआर पुलिंग	स्थापित
सुदृढ़ीकरण योजना -	स्टेशन पर 765केवी सिपत-सिवनी	
ΧI	(द्वितीय सर्किट) का एलआईएलओ	
	1x500एमवीए, डब्ल्यूआर पुलिंग स्टेशन	
	पर तृतीय ट्रांसफार्मर	

गुजरात में अवस्थित उत्पादन परियोजनाएं:

उत्पादन	विवरण	स्थिति
परियोजनाएं		
	तालिका संख्या : डब्ल्यूआर-जीजे-0	1/अध्याय-6
ह,जिरा टीपीपी	हजिरा टीपीपी (जीएसईसीएल) 351	हजिरा टीपीपी (जीएसईसीएल) 351
(जीएसईसीएल) 351	मेगावाट (स्थापित)	मेगावाट (स्थापित)
मेगावाट (स्थापित)		
	तालिका संख्या : डब्ल्यूआर-जीजे-0	2/अध्याय-6
मुंद्रा टीपीपी फेज II	मुंद्रा टीपीपी फेज II (2x660 मेगावाट)	मुंद्रा टीपीपी फेज II (2x660 मेगावाट)
(2x660 मेगावाट)	(स्थापित)	(स्थापित)
(स्थापित)		
	तालिका संख्या : डब्ल्यूआर-जीजे -0 3	3/ अध्याय -6
मुंद्रा टीपीपी फेजIII	मुंद्रा टीपीपी फेजIII 3x660 मेगावाट	स्थापित
3x660 मेगावाट	(अदानी पावर), (स्थापित)	
(अदानी पावर),	1. मोहिंदरगढ़ एचवीडीसी- मोहिंदरगढ़	
(स्थापित)	एचवीपीएनएल (धनोंडा) 400केवी	
	2. मोहिंदरगढ़ एचवीडीसी-भिवानी	
	400 केवी	
	3. धनोंडा-दौलताबाद(क्वैद) 400केवी	
	4. मानेसर 400 केवी पर धनोंडा-	
	दौलताबाद का एलआईएलओ	
	5. धनोंडा (मोहिंदरगढ़) 400/220 केवी	
	6. औरंगाबाद (पीजी) – औरंगाबाद	
	(एमएसईटीसीएल)	
	् तालिका संख्या : डब्ल्यूआर-जीजे-0	4/अध्याय-6
सूरत लिग्नाइट	सूरत लिग्नाइट एक्सटेंशन (250	सूरत लिग्नाइट एक्सटेंशन (250 मेगावाट)
एक्सटेंशन (250	मेगावाट) (राज्य क्षेत्र) (स्थापित)	(राज्य क्षेत्र) (स्थापित)
मेगावाट) (राज्य		
क्षेत्र) (स्थापित)		

तालिका संख्या : डब्ल्यूआर-जीजे-05/अध्याय-6		
एस्सार पावर	1. जेनरेशन स्विचयार्ड पर 1x125	डब्ल्यूआईपी
सालिया 2x600	एमवीएआर बस रिएक्टर के साथ	
(निजी क्षेत्र)	ईपीजीएल टीपीएस- बचाऊ400केवी	
(स्थापित)	डी/सी (ट्रिपल)	
	2. वाडिनार ईपीजीएल टीपीएस-	स्थापित
	हडाला 400केवी डी/सी	
	3. वाडिनार ईपीजीएल टीपीएस-	डब्ल्यूआईपी
	अमरेली 400केवी डी/सी	

महाराष्ट्र में अवस्थित उत्पादन परियोजनाएं:

उत्पादन परियोजनाएं	विवरण	स्थिति
	तालिका संख्या : डब्ल्यूआर-एमएच- (01/अध्याय-6
भुसावल टीपीपी	1. न्यू भुसावल-औरंगाबाद 400केवी	स्थापित
(एमएसपीजीसीएल)	डी/सी	
2x500 मेगावाट	2. भुसावल-II-औरंगाबाद 400 के वी डी/सी	स्थापित
(स्थापित)	3. भुसावल-II- खडका 400 केवी डी/सी	4/10 में स्थापित
	4. भुसावल-II- आमलनेर 220 केवी	स्थापित
	डी/सी	
	5. केवी न्यू भुसावल एस/एस- एम/सी	स्थापित
	पर मौजूदा 400 केवी खडका डी/सी	
	6. भुसावल-II 400/220 केवी एस/एस	स्थापित
	तालिका संख्या : डब्ल्यूआर-एमएच- (02/अध्याय-6
खापरखेडा टीपीएस	1. खापरखेडा टीपीएस-कोरादी	कार्य प्रगति में है।
(एमएसपीजीसीएल)	400केवी एस/सी	
(1x500 मेगावाट)	2. खापरखेडा टीपीएस 400 केवी	11/09 में स्थापित
(स्थापित)	डी/सी पर कोराडी-चंद्रपुर का	
	एलआईएलओ	
	3. खापरखेडा टीपीएस- खापरखेडा	स्थापित
	(मौजूदा) 220 केवी 2x डी/ससी	
	4. खापरखेडाएस/एस (2x500एमवीए)	स्थापित

तालिका संख्या : डब्ल्यूआर-एमएच-03/अध्याय-6			
जेएसडब्ल्यू एनर्जी	1. जैगड-न्यू कोयना 400केवी डी/सी	सर्किट 1 7/10 में स्थापित हुआ और सर्किट	
(रत्नागिरी लिमिटेड)		2 8/10 में स्थापित हुआ।	
4x300 मेगावाट	2. जैगड-कराड 400केवी डी/सी	स्थापित	
(स्थापित)			
	तालिका संख्या : डब्ल्यूआर-एमएच-04/अध्याय-6		
मिहान टीपीपी	220केवी वर्धा-1 से अंबाजारी एस/सी	स्थापित	
(अभिजीत एनर्जी)	लाइन का एलआईएलओ		
(4x500 मेगावाट)			
(स्थापित)			

मध्य प्रदेश में अवस्थित उत्पादन परियोजनाएं:

उत्पादन परियोजनाएं	विवरण	स्थिति
	। तालिका संख्या : डब्ल्यूआर- एमपी-	। 01/अध्याय-6
महेश्वर एचईपी	1. महेश्वर-निमरानी 220केवी डी/सी	5/10 में स्थापित
(10x40	2. महेश्वर-पितमपुर 220 केवी डी/सी	डब्ल्यूआईपी अंतिम वन स्वीकृति प्राप्त हुआ।
मेगावाट)(12वीं	3. महेश्वर-राजगढ़ 220केवी डी/सी	कार्य आस्थगित।
योजना में		
स्थानांतरित)		

छत्तीसगढ़ में अवस्थित उत्पादन परियोजनाएं:

उत्पादन	विवरण	स्थिति
परियोजनाएं		
	तालिका संख्या : डब्ल्यूआर-सीजी-01	/अध्याय-6
सिपत –।	1. सिपत -सिवनी लाइन -1	स्थापित
(3x660 मेगावाट)	1. सिपत -सिवनी लाइन -2	स्थापित
(केंद्रीय क्षेत्र)	2. सिवनी-खंडवा 400केवी डी/सी	स्थापित
(यू-1 और 2 स्थापित)	(क्वैद एएएसी)	
स्था।पत्र)	2. सिपत 400 केवी डी/सी पर कोरबा	स्थापित
	एसटीपीएस-रायपुर के एक सर्किट का	
	एलआईएलओ	

	3. सिवनी 400केवी डी/सी पर भिलाई-	स्थापित
	सतपुरा एस/सी लाइन का एलआईएलओ	
	4. नागडा-डेहगम 400केवी डी/सी	स्थापित
	5. राजगढ़ 400 केवी 2xडी/सी पर	स्थापित
	एस.सरोवर-नागडा डी/सी के दोनों	
	सर्किट का एलआईएलओ	
	6. सिवनी एस/एस 765/400 केवी	स्थापित
	(7x500 एकल फेज यूनिट)	
	7. सिवनी 400/220केवी 2x315 एमवीए	स्थापित
	एस/एस	
	8. राजगढ़ 400/220 केवी 2x315	स्थापित
	एमवीए एस/एस	
	तालिका संख्या : डब्ल्यूआर-सीजी-02	/अध्याय-6
एस वी पावर	एस वी पावर पर 220 केवी कोरबा-मोपाका	स्थापित
टीपीपी (स्थापित)	लाइन का एलआईएलओ	
	तालिका संख्या : डब्ल्यूआर-सीजी-03	/अध्याय-6
कसाईपल्ली टीपीपी	3. कसाईपल्ली-सिपत (भराई) पुलिंग	पूर्ण की गयी स्ट्रींजिंग।
(2x135 मेगावाट)	स्टेशन 400केवी डी/सी	
(यू-1 स्थापित)	4. कसाईपल्ली पर कोरबा-भाटापारा का	स्थापित (अंतरिम व्यवस्था)
	एलआईएलओ	

दक्षिणी क्षेत्र में प्रणाली सुदृढीकरण योजनाः

योजना	विवरण	स्थिति	
	तालिका संख्या: एसआर-आइएस-01 /अध्याय -6		
एसआरएसएसएस -	मैसूर-हसन 400केवी डी/सी लाइन	6/11 में स्थापित हुआ।	
IX			
	तालिका संख्या: एसआर-आईएस-02/अध्याय-6		
एसआरएसएसएस -	बिडाडी में 400 केवी नीलमंगला-	आरंभ की गयी स्ट्रींजिंग	
×	सोमनहल्ली के दोनों सर्किट का		
	एलआईएलओ		

तालिका संख्या : एसआर-आईएस -03 /अध्याय -6		
एसआरएसएसएस-	चूल्लियार में 400 केवी उडूमालपेट-	स्थापित
-XI	मडाकठारा के दोनों सर्किट का	
	एलआईएलओ	

आंघ्र प्रदेश में अवस्थित उत्पादन परियोजनाएं:

विवरण	स्थिति	
तालिका संख्या : एसआर-एपी-01/अध्याय-6		
सिंहाद्री एसटी॥ टीपीएस डी/सी पर	7/11 में स्थापित	
400 केवी डी/सी गजुवाका-वेमागिरी		
का एलआईएलओ		
तालिका संख्या : एसआर-एपी -02 / अध	याय-6	
रेंताचिंताला 220/132 केवी	11/08 में स्थापित	
एस/एस		
वीटीएस-तालापल्ली 132 केवी	11/08 में स्थापित	
डी/सी लाइन-रेंताचिंताला का		
एलआईएलओ		
रेंताचिंताला-मचेरला एस/एस 132	डब्ल्यूआईपी	
केवी		
रेंताचिंताला-नागार्जुन सागर प्लांट	डब्ल्यूआईपी	
132 केवी		
तालिका संख्या : एसआर-एपी -03 / अध	याय-6	
जुराला एचईपी-वेलतूर 220 केवी	स्थापित	
डी/सी		
तालिका संख्या : एसआर-एपी -04 / अध	याय -6	
भूपलापल्ली-वारंगल 400 केवी	2/10 में स्थापित	
डी/सी		
भूपलापल्ली-गजवाल 400 केवी	कार्य प्रगति में है।	
डी/सी		
	तालिका संख्या: एसआर-एपी-01/अध्य सिंहाद्री एसटी॥ टीपीएस डी/सी पर 400 केवी डी/सी गजुवाका-वेमागिरी का एलआईएलओ तालिका संख्या: एसआर-एपी -02/अध्य रेंताचिंताला 220/132 केवी एस/एस वीटीएस-तालापल्ली 132 केवी डी/सी लाइन-रेंताचिंताला का एलआईएलओ रेंताचिंताला-मचेरला एस/एस 132 केवी रेंताचिंताला-नागार्जुन सागर प्लांट 132 केवी तालिका संख्या: एसआर-एपी -03/अध्य जुराला एचईपी-वेलतूर 220 केवी डी/सी तालिका संख्या: एसआर-एपी -04/ अध्य भूपलापल्ली-वारंगल 400 केवी डी/सी	

तालिका संख्या : एसआर-एपी -05 / अध्याय -6		
कोठागुदाम टीपीएस एसटी-	कोठागुदाम टीपीएस – खम्मम	3/11 में स्थापित
VI (500 मेगावाट) (स्थापित)	400केवी डी/सी	

कर्नाटक में अवस्थित उत्पादन परियोजनाएं:

उत्पादन परियोजनाएं	विवरण	स्थिति
तालिका संख्या : एसआर-केए-01/अध्याय-6		
उडुपी टीपीएस	1. यूटीपीएस-हसन (शांतिग्राम)	डब्ल्यूआईपी आरओडब्ल्यू और कोर्ट केस।
(यूपीसीएल), (2x600	400केवी डी/सी	वन (172.53 हेक्टेयर) और रेलवे स्वीकृति
मेगावाट) (स्थापित)		(6 जगहों पर) आवश्यक, चरण। स्वीकृति
		प्राप्त हुआ। सीए चार्जेज जमा किए गए।
	2. यूटीपीएस-नांदिकुर-खेमर 220केवी	10/09 में स्थापित (आरंभिक विद्युत के
	(अंशतः मल्टी सर्किट मल्टी वोल्टेज	लिए)
	टावर और अंशतः डी/सी टावर पर)	
	तालिका संख्या : एसआर-केए-02	/अध्याय -6
टोरंगल्लू जिंदल यू-	1. टोरंगल्लू जेएसडब्ल्यू-गूटी 400केवी	
1,2 (2x300	डी/सी लाइन	
मेगावाट) (निजी क्षेत्र)	2. थोरंगल्लू जेएसडब्ल्यू एस/एस में	स्थापित
(स्थापित)	आरटीपीएस-गुट्टूर का	
	एलआईएलओ	
	तालिका संख्या : एसआर-केए -03	/अध्याय -6
बेल्लारी टीपीपी	1. बीटीपीएस 400केवी डी/सी पर	स्थापित
(2x500 मेगावाट)	आरटीपीएस-गुट्टूर का	
(स्थापित)	एलआईएलओ	
	2. बीटीपीएस-हिरियुर 400केवी डी/सी	स्थापित
	3. बीटीपीएस पर लिंगापुर-अलिपुर का	
	एलआईएलओ	

तालिका संख्या : एसआर-केए -04 / अध्याय -6		
कैगा एपीपी यू-	1. मैसूर-कोजिकोट 400 केवी डी/सी आरओडब्ल्यू समस्या	
3,4(2x250मेगावाट)	2. नरेन्द्र-दवेनगिरी 400केवी डी/सी स्थापित	
(स्थापित)	लाइन	
	3. हिरियुर 400/220 केवी एस/एस स्थापित	
	4. कोजिकोड एक्सटेंशन 400/220 निर्धारित समयाविध के अनुसार पूर्ण की	
	केवी एस/एस गयी।	

तमिलनाडु में अवस्थित उत्पादन परियोजनाएं:

उत्पादन परियोजनाएं	विवरण	स्थिति	
	तालिका संख्या : एसआर-टीएन-01/अध्याय-6		
वल्लूर टीपीएस जेवी	1. वल्लूर जेवी परियोजना-एनसी टी पी एस	रेलवे क्रासिंग स्वीकृति तथा लाइन की रुटिंग के	
(एनटीपीसी-टीएनईबी	एसटी॥ 400 के वी डी/सी	लिए साल्ट कमिश्नर से अनुमति आवश्यक	
जेवी) (2x500 मेगावाट)	2. नॉर्थ चेन्नई टीपीएस एसडब्ल्यू यार्ड	7/11 में स्थापित	
(यू-1 स्थापित, यू-2	पर अलामथी-श्रीपेरंबदुर का		
12वीं योजना में	एलआईएलओ		
स्थानांतरित)	अनुपुरक पारेषण प्रणाली वल्लूर टीपीएस	के साथ सम्मिलित	
	1. वल्लूर टीपीएस-मेलाकोट्टयूर	इंजीनियरिंग प्रगति में	
	400केवी डी/सी		
	2. तिरूवलम (पीजी)-चित्तूर 400केवी	इंजीनियरिंग प्रगति में	
	डी/सी		
	तालिका संख्या : एसआर-टीएन -02	/अध्याय-6	
नेवेली टीपीएस॥	1. नेवेली टीएस-॥-पुगलुर 400केवी	8/09 में स्थापित	
एक्सटेंशन (एनएलसी)	एस/सी		
(2x250 मेगावाट) (यू-1	2. पुगलुर-मदुरई 400केवी डी/सी	3/09 में स्थापित	
स्थापित, यू-2 12वीं	3. उदुमालपेट-अरासुर 400केवी	7/10 में स्थापित	
याजना तक खिसक गई।)	डी/सी		
	4. पांडिचेरी डी/सी में नेवेली-	10/10 में स्थापित	
	श्रीपेरंबुदुर 400केवी एस/सी का		
	एलआईएलओ		

	5. वारंगल डी/सी में रामागुंडम-खमम	7/09 में स्थापित
	400केवी एस/सी का एलआईएलओ	
	6. नेवेली टीएस-॥ एक्सटेंशन-नेवेली	9/09 में स्थापित
	टीएस-॥ 400केवी 2xएस/सी	
	7. पुगलुर 400/230केवी एस/एस	3/09 में स्थापित
	8. वारंगल एस/एस400/230केवी	आईसीटी-। और ॥ 7/09 में स्थापित
	9. अरासुर एस/एस 400/230केवी	7/10 में स्थापित
	10. पुदुचेरी एस/एस 400/230केवी	10/10 में स्थापित
	तालिका संख्या : एसआर-टीएन-03 /	अध्याय-6
कुडनकुलम एटामिक	1. कुडनकुलम-तिरूनलवेली 400केवी	पूर्ण की गयी स्ट्रींजिंग। जेन परियोजना
पीपी (2x100मेगावाट)	डी/सी क्वाद प्रथम	स्थापना में विलंब के कारण स्थापना में
(12वीं योजना में	2. कुडनकुलम-तिरूनलवेली 400केवी	विलंब हुआ।
स्थानांतरित)	डी/सी क्वाद द्वितीय	
	3. तिरूनलवेली-उडुमालपेट 400केवी	
	डी/सी	
	4. तिरूनलवेली-एडामोन 400केवी	
	एम/सी	
	5. एडामोन-मुवत्तुपुझा 400केवी	सर्वर आरओडब्ल्यू समस्या के कारण
	डी/सी क्वाद	स्वीकृति अनिश्चत।
	6. मुवत्तुपुझा-नार्थ त्रिचुर 400केवी	सर्वर आरओडब्ल्यू समस्या का सामना
	डी/सी क्वाद	हुआ।
	7. तिरूनलवेली 2x डी/सी में मदुरई-	स्थापित
	त्रिवेंद्रम 400केवी डी/सी का	
	एलआईएलओ	
	8. तिरूनलवेली 400/220केवी	आईसीटी-। 4/08 में स्थापित
	एस/एस (2x315)	आईसीटी-॥ 11/08 में स्थापित
	9. उडुमालपेट (पीजी) एक्सटेंशन	स्थापित

	10.मुवत्तुपुझा 400/220केवी एस/एस	आईसीटी। स्थापना के लिए तैयार तथा ॥
	(2x315)	आरंभ हुई। *निर्धारित समयावधि के
		अनुसार पूर्ण की गयी।
	11.त्रिवेंद्रम 400/220 केवी (1x315)	स्थापित
	तालिका संख्या : एसआर-टीएन-04 /	अध्याय-6
नार्थ चेन्नई एक्सटेंशन	1. एनसीटीपीएस एसटी॥–आलामाथी	10 जगहों पर आरओडब्ल्यू । कोर्ट केस
टीपीएस (टीएनईबी),	400केवी एम/सी	
2x600 मेगावाट (12वीं	2. आलामाथी- सुंगुवरछत्रम 400केवी	25 जगहों पर आरओडब्ल्यू। कोर्ट केस
योजना तक खिसक गई)	एम/सी	
	3. एनसीटीपीएस चरण॥ (आरंभिक	11/10 में स्थापित
	विद्युत के लिए के लिए) पर 230	
	केवी एनसीटीपीएस-मोसुर का	
	एलआईएलओ	
	तालिका संख्या : एसआर-टीएन-05 /	अध्याय-6
मेट्दुर टीपीएस चरण ॥।	1. एमटीपीएस एसटी III -अरासुर	डब्ल्यूआईपी
(600 मेगावाट) यू-1	400केवी डी/सी	
(12वीं योजना में	2. एमटीपीएस एसटी III -सिंगारपेट	निविदा प्रवर्तन होनी है।
स्थानांतरित)	400केवी	
	3. एमटीपीएस चरण III पर 230	एमटीपीएस चरण॥।- मालको एस/सी
	केवी एमटीपीएस-मालको का	लाइन 2/11 आरंभिक विद्युत के लिए
	एलआईएलओ	आवेशित किया गया।
	4. केवी एमटीपीएस चरण III -	स्थापित
	पल्लकापलयम लाइन	
	5. 230 केवी एमटीपीएस चरण III -	स्थापित
	गोबी लाइन	
	I	

पूर्वी क्षेत्र में प्रणाली सुदृढ़ीकरण योजना :

योजना	विवरण	स्थिति
तालिका संख्या : ईआर -आईएस-01/अध्याय-6		
पूर्वी क्षेत्र सुदृढ़ीकरण	i) दुर्गापुर-जमशेदपुर 400केवी डी/सी	पूर्ण
योजना-।	लाइन	
	ii) अंडल (दुर्गापुर एसटीपीएस	1/11 में स्थापित
	400केवी डी/सी लाइन के आरंभिक	
	विद्युत के लिए) में एलआईएलओ के	
	लिए दुर्गापुर-जमशेदपुर पार्ट लाइन	
	iii) जमशेदपुर-बारिपादा 400केवी	लाइन पूर्ण हुआ।
	डी/सी लाइन	
	(iv)बारिपादा-मेंढासल 400केवी	स्थापित
	डी/सी लाइन	
	तालिका संख्या: ईआर - आईएस -0 2	2/अध्याय-6
पूर्वी क्षेत्र सुदृढ़ीकरण	दुर्गापुर-मैथन 400केवी डी/सी लाइन	लाइन पूर्ण हुआ।
योजना- II		
	तालिका संख्या : ईआर - आईएस 03 /	/ अध्याय -6
डीवीसी के आरंभिक	1. कोडरमा-बिहारशरीफ (क्वाद) 400	स्थापित
विद्युत के लिए पारेषण	केवी डी/सी	
प्रणाली और मैथन राइट	2. मैथन आरबी-मैथन (पीजी)	लाइन परीक्षण प्रभार 30.09.10 को हुआ।
बैंक जेनरल परियोजना	400केवी डी/सी	
	3. फतेहपुर में 220 केवी फतेहपुर	लाइन पूर्ण हुआ।
	(यूपीपीसीएल) – कानपुर	
	(यूपीपीसीएल) का एलआईएलओ	
	4. गया में 220केवी डी/सी डेहरी-	स्थापित
	बोधगया लाइन का एलआईएलओ	

पश्चिम बंगाल में अवस्थित उत्पादन परियोजनाएं:

उत्पादन परियोजनाएं	विवरण	स्थिति
तालिका संख्याः ईआर-डब्ल्यूबी-01/अध्याय-6		
तीस्ता लो डैम IV	तीस्ता एलडी IV- न्यू जलपाईगुड़ी	वन स्वीकृति प्राप्त हुआ। समतल के 18
(एनएचपीएसी)	(पैकेज-।) 220 केवी डी/सी + एस/सी	जगहों तथा पहाड़ों के बहुत सारे जगहों पर
डब्ल्यूबी (4x40	(72.5+21 किमी)	सर्वर आरओडब्ल्यू समस्या
मेगावाट) (12वीं		
योजना में		
स्थानांतरित)		
	तालिका संख्याः ईआर-डब्ल्यूबी-0	2/अध्याय-6
तीस्ता लो डैम III	तीस्ता एलडी III - न्यू जलपाईगुड़ी	वन स्वीकृति प्राप्त हुआ। समतल के 18
(4x33 मेगावाट)	(पैकेज II) 220 केवी एस/सी	जगहों तथा पर सर्वर आरओडब्ल्यू समस्या
(12वीं योजना में		का सामना करना पड़ा।
स्थानांतरित)		
	तालिका संख्या: ईआर-डब्ल्यूबी-0	3/अध्याय-6
मेजिआ टीपीएस	1. मेजिआ टीपीएस-मैथन (पीजी) 400	स्थापित
फेज-॥ (डीवीसी)	केवी डी/सी	
2x500मेगावाट	2. मेजिआ 400केवी डी/सी पर मैथन-	(i) 2/10 में स्थापित
(स्थापित)	जमशेदपुर का एलआईएलओ	(ii) यू 1 के लिए निष्क्रमण सुविधा
		उपलब्ध
	तालिका संख्या: ईआर-डब्ल्यूबी-0	
दुर्गापुर टीपीएस	1. दुर्गापुर-जमशेदपुर 400 केवी डी/सी	ईसीएल विस्थापित मार्ग पर निर्माण की अनुमति
(डीवीसी)		नहीं दे रहा है, अंडल एयरपोर्ट के निर्माण के लिए
2x500 मेगावाट		अनुमती दी गई। एमओपी लेवेल परमामले को
(स्थापित)		कोयला मंत्रालय के साथ उठाया गया है।
	2. दुर्गापुर टीपीएस 400 केवी डी/सी	1/11 में स्थापित ।
	पर दुर्गापुर(पीजी) - जमशेदपुर	
	(पीजी) का एलआईएलओ	
	3. दुर्गापुर टीपीएस – रघुनाथपुर 400	10 जगहों पर आरओडब्ल्यू समस्या।
	केवी डी/सी	दामोदर नदी पर दो टावरों के लिए नींव ।

तालिका संख्याः ईआर-डब्ल्यूबी-05/अध्याय-6		
संतलडीह टीपीपी	संतलडीह-बिष्णुपुर 220केवी डी/सी	16.618 हेक्टेयर के लिए वन स्वीकृति
(डब्ल्यूबीपीडीसीएल)		समस्या ।
यू 5,6- (2x250	आसनसोल 220केवी पर संतलडीह-	स्थापित
मेगावाट) (यू-5	दुर्गापुर (। सर्किट) का एलआईएलओ	
स्थापित)	बिष्णुपुर में एसटीपीएस-आरामबाग	स्थापित
	220केवी डी/सी का एलआईएलओ	
	तालिका संख्याः ईआर-डब्ल्यूबी-0	6/अध्याय-6
सगरदिघी - यूनिट-।	1. डी/सी लाइन पर सगरदिघी-	स्थापित
& II (600 मेगावाट)	पुरूलिया (पीजी) 400 केवी	
(राज्य क्षेत्र)	एस/सी	
(स्थापित)		

झारखंड में अवस्थित उत्पादन परियोजनाएं:

उत्पादन	विवरण	स्थिति
परियोजनाएं		
	तालिका संख्या: ईआर-जेआर-0	1/अध्याय-6
कोडरमा टीपीएस	1. कोडरमा – बिहार शरीफ 400 केवी	5/11 में स्थापित
(डीवीसी)	क्वैद डी/सी	
2x500 मेगावाट	2. कोडरमा-गया 400 केवी डी/सी	* बहु सर्किट भाग को मैथन कोडरमा लाइन
		से गुजारकर मैथन-गया को कोडरमा-गया से
(यूनिट-1 स्थापित,		जोड़ने के लिए आकस्मिक व्यवस्था की गई।
यूनिट-3 12वीं	3. कोडरमा एसएस/ डी/सी पर	(i) दोनों सर्किट 24 अगस्त, 2010 को
योजना में	132केवी बरही - कोडरमा का	स्थापित
स्थानांतरित)	एलआईएलओ	(ii) स्टार्ट-अप पावर अब उपलब्ध
	तालिका संख्या∶ ईआर-जेआर-0ः	2/अध्याय-6
मैथन	1. मैथन आरबीटीपी - मैथन (पीजी)	लाइन परीक्षण 30.9.10 को हुआ।
आरबीटीपी एस	400 केवी डी/सी	
(डीवीसी और टाटा	2. मैथन आरबीटीपी - रांची (पीजी)	स्थापित
का संयुक्त उद्यम) (2x 525 मेगावाट)	400 केवी डी/सी	
(ट्र 525 मगावाट) (स्थापित)		

बिहार में अवस्थित उत्पादन परियोजनाएं:

तालिका संख्याः ईआर-बीआर-01		
बाढ़-I यूनिट1,2,3	6. बाढ़ में कहलगांव-पटना 400 केवी	स्थापित
(1980 मेगावाट)	डी/सी (क्वैद) का एलआईएलओ	
(केंद्रीय क्षेत्र)	7. बाढ़-बलिया 400 केवी डी/सी लाइन	स्थापित
(12वीं योजना से	(क्वैद)	
आगे बढ़ गई है)	8. बलिया-भिवाड़ी 2500 मेगावाट	एक पोल स्थापित
	+500 केवी एचवीडीसी बाईपोल	
	लाइन	
	9. सिवनी-बीना 765 केवी एस/सी	स्थापित
	लाइन	
	10.दो 66 केवी अर्थ इलेक्ट्रोड लाइन (2	
	कंडक्टर ट्विन मोड)	
	11.बलिया , सिवनी, भिवाड़ी और बीना	स्थापित
	400 केवी का विस्तार.	
	12.बलिया और भिवाड़ी एचवीडीसी	डब्ल्यूआईपी
	कंवर्टर स्टेशन	

मेघालय में अवस्थित उत्पादन परियोजनाएं:

उत्पादन परियोजनाएं	विवरण	स्थिति			
तालिका संख्या: एनईआर-एमजी-01/अध्याय-6					
त्रेश्का मिंटडु-। एचईपी (एमईएसईबी)	लेश्का मिंटडु- ख्लियेहरियत	33केवी पर प्रभार			
(2x42+1x42 मेगावाट) (यू-1,2	132 केवी डी/सी				
स्थापित, अतिरिक्त युनिट 12वीं योजना में					
स्थानांतरित)					

अंतर्क्षेत्रीय पारेषण योजना :

तालिका संख्या: आईआर- एसएस -01/अध्याय-6					
हरित	विवरण	स्थिति			
परियोजनाएं					
पूर्वी पश्चिमी	1 रांची-राउरकेला 400 केवी डी/सी	11/10 में स्थापित			
पारेषण कारिडोर	2 राउरकेला – रायगढ़ 400 केवी डी/सी	6/11 को परीक्षण प्रभार हुआ तथा 6/11 में			
सुदृढ़ीकरण		स्थापित।			
	3 रायगढ़ - रायपुर 400 केवी डी/सी	9/10 में स्थापित			

अध्याय-7

12वीं योजना के लिए पारेषण कार्यक्रम

7.1 12वीं योजना के लिए पारेषण प्रणाली का विकास

- 7.1.1 उत्पादन विस्तार कार्यक्रम के अनुकूल विद्युत प्रणाली अध्ययन के आधार और उस योजना अविध के अंत में पूर्वानुमानित मांग परिदृश्य के आधार पर योजना अविध के लिए पारेषण विस्तार आवश्यकताओं की पहचान की जाती है, जिसके आधार पर योजनाएं विकसित की जाती हैं और समय-समय पर उत्पादन कार्यक्रम में हुए परिवर्तनों को ध्यान में रखकर पुनः योजनाएं बनाई हाती हैं, उन पर विचार-विमर्श किया जाता है और उन्हें अंतिम रूप दिया जाता है। योजना के दौरान वार्षिक आधार पर उत्पादन क्षमता वृद्धि और भार वृद्धि कार्यक्रम के अनुकूल कार्यान्वित किए जाने वाले परियोजनाओं, योजनाओं और पारेषण तत्वों की पहचान को ध्यान में रखते हुए कार्यान्वयन कार्यक्रम को तदनुसार लागू किया जाता है। पारेषण नेटवर्क के सामयिक विकास के लिए विशेष उत्पादन परियोजनाओं के अनुरूप विशिष्ट पारेषण योजनाओं का सुदृढ़ीकरण आवश्यक है, विशेष रूप से अंतर-राज्य पारेषण प्रणाली के संदर्भ में यह कार्य पूर्ण कर करने की निर्धारित तारीख के बाद 3-5 वर्ष के अंदर किया जाना चाहिए।
- 7.1.2 इन आवश्यकताओं को पूरा करने वाले 12वीं योजना की अधिकतर योजनाओं की पहचान कर ली गई है और इस पर विद्युत प्रणाली योजना के क्षेत्रीय स्थायी समितियों में विचार-विमर्श किया गया, उसे अंतिम रूप दिया गया, योजना तैयार की गई और कार्यान्वयन की प्रक्रिया शुरू कर दी गई। चिन्हित योजनाओं में से अधिकतर का निर्माण कार्य चल रहा है, विशेषकर वे योजनाएं जिन्हें 12वीं योजना के उत्तरार्ध में पूरा किए जाने की आवश्यकता है।

7.2 अंतर-क्षेत्रीय पारेषण क्षमता कार्यक्रम

- 7.2.1 राष्ट्रीय ग्रिड की अंतर-क्षेत्रीय पारेषण क्षमता क्षेत्रीय ग्रिड की आपसी क्षमता का प्रदर्शन करती है। 10वीं योजना के अंत में अखिल भारतीय ग्रिड की अंतर-क्षेत्रीय पारेषण क्षमता 14050 मेगावाट थी। 11वीं योजना के दौरान 31-03-12 तक कुल अंतर क्षेत्रीय पारेषण क्षमता (132 केवी और इससे अधिक वोल्टेज स्तर पर) में 13900 मेगावाट क्षमता की वृद्धि करते हुए इस 27750 मेगावाट तक पहुंचाया गया है। [इसमें शामिल हैं (i) 2100 मेगावाट का गया-बिलया 765 केवी एस/सी लाइन जिसे 400 केवी की आकस्मिक व्यवस्था के साथ शुरू किया गया और (ii) 2100 मेगावाट सासाराम-फतेहपुर 765 केवी एस/सी लाइन जिसे गया-फतेहपुर लाइन के रूप में 765 केवी के साथ शुरू किया गया। इसमें बुरसुर-लोअर सिलेरू एचवीडीसी मोनोपोल शामिल नहीं है जो कि प्रचालनरत नहीं है।
- 7.2.2 12वीं योजना अवधि के दौरान उत्पादन परियोजना से संबधित अथवा प्रणाली सुदृढ़ीकरण योजनाओं के रूप में बहुत सारे अंतर क्षेत्रीय पारेषण लिंक योजित किए गए हैं। इन लिंक का कार्यान्वयन संबंधित उत्पादन केंद्रों की प्रगति पर निर्भर होगा। 12वीं योजना के लिए 84 गीगा वाट उत्पादन वृद्धि परिदृश्य को देखते हुए 12वीं योजना अवधि/शुरुआती 13वीं योजना अवधि के दौरान लगभग 44000 मेगावाट को अंतर-क्षेत्रीय पारेषण लिंक की वृद्धि की जाए। इस प्रकार 12वीं योजना/शुरुआती 13वीं योजना के अंत में

अंतर-क्षेत्रीय पारेषण क्षमता 72000 मेगावाट रहने का अनुमान है। विवरण सारणी में दी गई हैः

प्रणाली का नाम (सभी आंकड़े मेगावाट में दिए गए हैं)		11वीं योजना के अंत में	12वीं योजना/ शुरुआती 13वीं योजना के लिए योजना	12वीं योजना/ शुरुआती 13वीं योजना के अंत में अनुमानित
ईआर – एसआर :				
गाजुवाका एचवीडीसी बैक टू बैक		1000		1000
बालीमेला अपर सिलेरू 220 केवी एस/सी		130		130
तालचर-कोलर एचवीडीसी बाइपोल		2000		2000
तालचर-कोलर एचवीडीसी बाइपोल का उन्नयन		500		500
कुल ईआर-एसआर		3630		3630
ईआर-एनआर:				
मुजफ्फरपुर-गोरखपुर 400केवी डी/सी (क्वाडमुज) टीसीएससी के साथ		2000		2000
डेहरी-साहूपुरी 220केवी एस/सी		130		130
पटना-बलिया 400 केवी डी/सी क्वाड		1600		1600
बिहारशरीफ-बलिया 400 केवी डी/सी क्वाड		1600		1600
बाढ़-बलिया 400 केवी डी/सी क्वाड	#	1600		1600
गया-बिलया 765 केवी एस/सी(12वीं योजना में वाराणसी में एलआईएलओईडी)	*	2100		2100
सासाराम-इलाहाबाद/वाराणसी 400केवी/ डीसी लाइन (सासाराम एचवीडीसी बैक टू बैक को बाइपास किया गया है)		1000		1000
गया-वाराणसी 765 केवी एस/सी			2100	2100
सासाराम-फतेहपुर 765 केवी एस/सी लाइन #1	##	2100		2100
बाढ़-गोरखपुर 400 केवी डी/सी क्वाड			1600	1600
सासाराम-फतेहपुर 765 केवी एस/सी लाइन #2			2100	2100
कुल ईआर-एनआर		12130	5800	17930

ईआर-डब्ल्यूआर :			
राउरकेला-रायपुर 400 केवी/डीसी	1000		1000
राउरकेला-रायपुर 400 केवी/डीसी पर टीसीएससी	400		400
बुधिपारा-कोरबा 220केवी डी/सी+ एस/सी	390		390
रांची-सिपत 400 केवी डी/सी (40% एससी)	1200		1200
निर्धारित सीरिज कैपेसीटर, पैरलेल लाइन में टीसीएससी के	1400		1400
साथ रांची-राउरकेला-रायगढ़-रायपुर 400 केवी डी/सी			
12वीं योजना के दौरान धरमजयगढ़ के माध्यम से रांची-		2100	2100
डब्ल्यूआर (बिलासपुर) सिपत पुलिंग प्वाइंट 765 केवी			
एस/सी			
रांची-धरमजयगढ़ 765 केवी एस/सी		2100	2100
झारसुगुडा-धरमजयगढ़ 765 केवी डी/सी		4200	4200
कुल ईआर-डब्ल्यूआर	4390	8400	12790
ईआर-एनईआर :			
बीरपारा-सलाकाटी 220 केवी डी/सी	260		260
मालछा-बोंगाइगांव 400केवी डी/सी	1000		1000
12वीं/13वीं योजना में अलिपुरद्वार में एलआईएलओईडी		1600	1600
किया जानेवाला बोंगाइगांव-सिलिगुड़ी 400केवी डी/सी			
क्वाड			
कुल ईआर-एनईआर	1260	1600	2860
एनआर-डब्ल्यूआर:			
विंध्याचल एचवीडीसी बैक टू बैक	500		500
औरिया-मालनपुर 220केवी डी/सी	260		260
कोटा-उज्जैन 220केवी डी/सी	260		260
765 केवी पर आगरा-ग्वालियर 765 केवी एस/सी लाइन-1	1100	1000	2100
(पहले 400 केवी पर)			
765 केवी पर आगरा-ग्वालियर 765 केवी एस/सी लाइन-2	1100	1000	2100
(पहले 400 केवी पर)			

				_
कांक्रोली- जेर्दा 400केवी डी/सी		1000		1000
ग्वालियर-जयपुर 765केवी एस/सी#1			2100	2100
ग्वालियर-जयपुर 765केवी एस/सी#2			2100	2100
आरएपीपी सी एण्ड डी-शुजालपुर 400केवी डी/सी			1000	1000
चंपा-कुरूक्षेत्र+/-800केवी 6000 मेगावाट एचवीडीसी			3000	3000
बाइपोल लाइन, फेज-1				
कुल एनआर-डब्ल्यूआर		4220	10200	14420
डब्ल्यूआर-एसआर :				
चंद्रपुर एचवीडीसी बैक टू बैक		1000		1000
बुरसुर-एल सिलेरू 200केवी एचवीडीसी मोनोपोल	@			
कोल्हापुर-बेलगाम 220केवी डी/सी		260		260
पोंडा-नागाझाड़ी 220केवी डी/सी		260		260
नरेंद्र (जीआईएस)765केवी डी/सी लाइन (शुरू में 400 केवी			2200	2200
पर चार्ज किया गया)				
रायचुर-शोलापुर 765केवीएस/सी #1			2100	2100
रायचुर-शोलापुर 765केवी एस/सी #2			2100	2100
कुल डब्ल्यूआर-एसआर		1520	6400	7920
एनईआर/ईआर /डब्ल्यूआर:				
विश्वनाथ चरियाली–आगरा <u>+</u> 800 केवी, 3000 मेगावाट			3000	3000
एचवीडीसी बाइपोल				
अलिपुरद्वार के नए पुलिंग केंद्र पर <u>+</u> 800केवी विश्वनाथ			3000	3000
चरियाली–आगरा एचवीडीसी बाइपपोल का एलआईएलओ				
और 3000 मेगावाट एचवीडीसी की वृद्धि				
कुल एनईआर/ईआर /डब्ल्यूआर		0	6000	6000
संपूर्ण अखिल भारत		27150	38400	65550
(220केवी और उससे ज्यादा)				
132केवी/110केवी अंतर्क्षेत्रीय लिंक	\$	600	(-600)	

(12वीं योजना में शामिल न किया जाने वाला)			
संपूर्ण अखिल भारत	27750	37800	65550

नोट:

- @ 200 मेगावाट एचवीडीसी मोनोपोल वर्तमान में प्रचालनरत नहीं है।
- \$ समय-समय पर 132/110केवी लाइन रेडियल मोड में प्रचालित किया जाता है। (12वीं योजना में शामिल न किया जाने वाला)
- # बाढ़-बलिया लाइन को पूरा कर लिया गया है लेकिन अभी इसका उद्घाटन नहीं हुआ है।
- *- 400केवी की आकस्मिक व्यवस्था के साथ गया-बलिया 765केवी एस/सीलाइन का उद्घाटन हो गया है।
- ## गया-फतेहपुर लाइन की तरह 765केवी स्तर के सासाराम-फतेहपुर लाइन का उद्घाटन हो गया है।

विभिन्न क्षेत्रों के बीच आई-आर पारेषण क्षमता वृद्धि का सारांश नीचे दिया गया है:

(सभी आंकड़े मेगावाट में दिए गए हैं)

क्षेत्रों के बीच आई-आर	10वीं योजना	11वीं योजना	12वीं	12वीं योजना के
पारेषण क्षमता	के अंत में	के अत में	योजना/शुरुआती	अंत में /13वीं
	उपलब्ध	उपलब्ध	13वीं योजना के	योजना के
			दौरान वृद्धि	शुरूआत में
				अनुमान
ईआर-एसआर	3130	3630	-	3630
ईआर-एनआर	3430	12130	5800	17930
ईआर-डब्ल्यूआर	1790	4390	8400	12790
ईआर-एनईआर	1260	1260	1600	2860
एनआर-डब्ल्यूआर	2120	4220	10200	14420
डब्ल्यूआर-एसआर	1720	1520	6400	7920
एनईआर/ईआर-	0	0	6000	6000
एनआर/डब्ल्यूआर				
132/110केवी रेडियल लिंक	600	600	(-600)	0
संपूर्ण अखिल भारत	14050	27750	37800	65550

7.2.4 दो क्षेत्रों के बीच अंतर-क्षेत्रीय लिंक और अंतरण क्षमता की पारेषण क्षमता

अंतर-क्षेत्रीय लिंक की पारेषण क्षमता का संकलन दो क्षेत्रों के बीच के संबंधों का प्रतीकात्मक प्रस्तुतीकरण है। ये समुच्चय संख्या विभिन्न क्षेत्रों/राज्यों की वास्तविक अंतरण क्षमता को नहीं दर्शाते हैं। ग्रिड में किसी दो बिंदुओं के बीच विद्युत अंतरण क्षमता लोड प्रवाह पद्धित, वोल्टेज स्थिरता, एंगुलर स्थिरता, लूप फ्लो और ग्रिड में सबसे कमजोर लिंक के लाइन लोडिंग जैसे बहुत सारे कारकों पर निर्भर होता है। उदाहरण के लिए वर्तमान में उत्तर क्षेत्र का संकलित अंतर-क्षेत्रीय पारेषण क्षमता 16350 मेगावाट है(ईआरके साथ 12130 मेगावाट और डब्ल्यूआर के साथ 4220 मेगावाट) जबक प्रचालनात्मक स्थितियों पर आधारित एनआर का समकालिक अंतरण आयात क्षमता लगभग 6000-7000 मेगावाट है। प्रणाली प्रचालक को समय-समय पर ग्रिड के दो बिंदुओं के बीच अंतरण क्षमता का मूल्यांकन करना पड़ता है और तदनुसार विद्युत प्रवाह को सीमित करना पड़ता है।

7.3 12वीं योजना के दौरान पारेषण प्रणाली का विकास - प्रतिस्पर्धी बोली के माध्यम से कार्यान्वयन

यह नोट किया जाए कि 12वीं योजना के लिए चिन्हित परियोजनाओं के लिए पारेषण योजना तैयार की जा चुकी है, विद्युत प्रणाली योजना हेतु स्थायी समिति में रखा गया है और 5 जनवरी 2011 की निर्धारित तिथि से पहले आईएसटीएस को लंबी अविध के लिए पारेषण पहुंच उपलब्ध कराने हेतु नोडल एजेंसी के रूप में सीटीयू के साथ पारेषण सहमित करार (बीपीटीए) पर हस्ताक्षर किया गया है। इसलिए, अधिकतर आईएसटीएस योजनाओं को सेंट्रल सेक्टर योजनाओं के रूप में पावरग्रिड द्वारा कार्यान्वित किया जाएगा। इसके अलावा, अंतर-राज्यीय उत्पादन केंद्रों से समर्पित पारेषण लाइन का निर्माण अधिकतर उत्पादन विकासकर्ताओं द्वारा निजी क्षेत्र लाइन के रूप में किया जाएगा। प्रतिस्पर्धी बोली के माध्यम से आईएसटीएस विकसित करने के लिए अधिकारप्राप्त समिति के निर्देश के अंतर्गत कुछ योजनाएं चिन्हित की गई हैं और वे कार्यान्वयन के विभिन्न चरणों में हैं। इसे 12वीं योजना के दौरान मूर्त रूप दिया जाएगा।

इसके अलावा, कुछ अपवादों को छोड़कर प्रणाली सुदृढ़ीकरण, राज्य द्वारा विद्युत के उपयोग और भविष्य में चिन्हित किया जानेवाला विद्युत हटाने के लिए आवश्यक नई योजनाओं को जहां तक संभव हो बोली प्रक्रिया के माध्यम से कार्यान्वित किया जाएगा। प्रतिस्पर्धी बोली में पावरग्रिड भी भाग लेगा। इसी तरह राज्य क्षेत्र में भी संभावना है कि 12वीं योजना के दौरान अधिकतर योजनाओं को एसटीयू द्वारा कार्यानिवत किया जाएगा।

7.4 12वीं योजना अवधि एवं उसके बाद के लिए योजित पारेषण योजनाएं

7.4.1 समन्वित योजना प्रक्रिया

केंद्रीय पारेषण कंपनियों, राज्य पारेषण कंपनियों और क्षेत्रीय विद्युत समितियों के साथ समन्वय कर सीईए ने निम्नलिखित के लिए पारेषण प्रणालियां योजित की हैं –(i) होराइजन में मौजूद विभिन्न उत्पादन परियोजनाओं से विद्युत हटाना, और (ii) 12वीं और शुरुआती 13वीं योजना अविध के लिए आवश्यक क्षेत्रीय और अंतर-क्षेत्रीय पारेषण नेटवर्क के सुदृढ़ीकरण के लिए आवश्यक पारेषण प्रणालियां। विद्युत हटाने और ग्रिड के सुदृढ़ीकरण के लिए योजित ऐसी सभी योजित योजनाओं का विवरण नीचे दिया गया है। ऐसी अधिकतर योजनाएं तैयार हैं तथापि इसमें ऐसी योजनाएं भी हैं जो अभी तैयार नहीं हैं जो कि संबंधित उत्पादन परियोजना की प्रगति पर निर्भर हैं। इन योजनाओं में मुख्यतः 400 केवी और इससे अधिक की पारेषण प्रणाली शामिल है।

7.4.2 लंबी अवधि पहुंच (एलटीए) प्रक्रिया

समन्वित योजना प्रक्रिया के भाग के रूप में आईएसटीएस में एलटीए की मंजूरी के लिए आवश्यक पारेषण वृद्धि की भी योजना बनाई गई है। अंतर-राज्यीय पारेषण प्रणाली का एलटीए केंद्रीय नियामक आयोग के विनियमों द्वारा अधिशासित होता है। लंबी अवधि की पहुंच (एलटीए) उपलब्ध कराने के लिए केंद्रीय पारेषण कंपनियों (सीटीयू) नोडल एजेंसी है जिसमें प्रतीकात्मक रूप से पारेषण योजना प्रक्रिया के माध्यम से पारेषण में वृद्धि शामिल है। लंबी अवधि की पहुंच के लिए विद्युत उत्पादक के प्रयोग पर आधारित पारेषण प्रणाली उत्पादन केंद्र से विद्युत हटाने के लिए योजित है। चूंकि लंबी अवधि पहुंच में सामान्यतया आईएसटीएस का सुदृढ़ीकरण शामिल होता है जिसकी पहचान पारेषण योजना द्वारा तया की जाती है, इसके लिए आवश्यक कुछ मूलभूत इनपुट हैं- (i) उत्पादन योजना क्षमता, (ii) इसकी अवस्थिति, (iii) कार्यान्वयन की समय-सीमा और (iv) लाभार्थी जिन्हें विद्युत उपलब्ध कराया जाएगा। तथापि, वर्तमान परिस्थिति में इनमें से कोई इनपुट निश्चितता के साथ उपलब्ध नहीं है। ऐसी स्थिति में यह स्पष्ट है कि पारेषण करने वाले व्यापक लक्ष्य की पूर्ति सुनिश्चित करने के लिए कुछ अभिनव रणनीतियों का पालन करते हैं, जिससे यह सुनिश्चित किया जाता है कि (i) पारेषण आवश्यकता की पूर्ति के लिए पारेषण विकास किया जाता है, (ii) विद्युत की आपूर्ति को नहीं रोका जाता है, (iii) उत्पादन और पारेषण के बेमेल को रोका जाता है, (iv) यदि ग्रिड के किसी भाग में संकुलन पाया जाता है तो उसे जल्द से जल्द दूर किया जाए इत्यादि। इसको देखते हुए अधिक क्षमता वाली पारेषण प्रणाली विकसित करना एक चुनौती बन जाती है और यदि एक बार योजना बन जाती है तो इसका कार्यान्वयन भी उतना ही चुनौतीपूर्ण होता है ताकि उत्पादन परियोजना और पारेषण प्रणाली के विकास के बेमेल को हटाया या रोका जा सके।

7.4.3 पारेषण संकुलन

सामान्यतया जहां एलटीए के लिए आवेदन के समय लाभार्थियों को भी विनिर्दिष्ट किया गया है वहां एलटीए के अंतर्गत विद्युत अंतरण में कोई संकुलन नहीं होता है। तथापि, अल्पाविध/मध्याविध विद्युत अंतरण में संकुलन हो जाता है। स्व-निपटान तत्व के रूप में वितरण उपयोगिताएं अपने मौसमी मांग की पूर्ति करने हेतु अथवा अपने मौसमी अधिशेष की पूर्ति हेतु मौसमी व्यापार करते हैं जिससे कि मांग और आपूर्ति के बीच संतुलन बना रहे और आकस्मिक आवश्यकताओं को पूरा किया जा सके। भारत में, अल्पाविध व्यापार की पद्धित अनियमित है और यह बहुत सारे बाह्य कारणों विशेषकर घाटे के डीआईएससीओएमएस इत्यादि के साथ निधियों की उपलब्धता पर आधारित होता है। कभी कोई राज्य अचानक से भार घटाने का निर्णय ले सकता है और व्यापार के माध्यम से भारी मात्रा में अल्पाविध खरीददारी कर सकता है। ऐसी स्थिति में वापसी का मौजूदा पारेषण क्षमता में उपलब्ध मार्जिन तक सीमित रखना होगा। ऐसी स्थिति/संभाव्यता के अनुकूल पारेषण प्रणाली को योजित करना संभव नहीं है। सामान्यतया विश्व के सभी विकसित विद्युत बाजारों में संकुलन रहता है।

7.4.4 लचीली योजना

इनमें से कुछ पारेषण योजनाएं विशेषकर वे जो 12वीं योजना के अंत के वर्षों में आने वाली उत्पादन परियोजनाओं के लिए आवश्यक हैं और जिनकी पारेषण प्रणाली सामूहिक है, उसमें बदलाव किया जा सकता है और यह बदलाव सामूहिक पुलिंग बिंदु से लिंक किए गए उत्पादन क्षमता की प्रगति पर निर्भर होगा।

7.4.5 इंट्रास्टेट उत्पादन केंद्रों के लिए योजनाएं

राज्य क्षेत्र (अथवा निजी क्षेत्र लेकिन जिससे केवल गृह राज्य को ही लाभ हो) के अंतर्गत 12वीं योजना की कुछ उत्पादन क्षमताओं के लिए पारेषण प्रणालियों पर भी एकीकृत प्रणाली योजना प्रक्रिया के लिए प्रायोगिक रूप से विचार किया गया, तथापि, इन पारेषण योजनाओं को संबंधित राज्य पारेषण कंपनियों द्वारा योजित और तैयार करने की आवश्यकता है। अपेक्षाकृत ये कम क्षमता वाले उत्पादन केंद्र हैं जिसके लिए 220 केवी या उससे कम वोल्टेज स्तर को हटाना होता है।

7.4.6 एसटीयू की प्रणाली सुदृढ़ीकरण योजनाएं

संबंधित एसटीयू द्वारा राज्य पारेषण नेटवर्क के विकास और डीआईएससीओएम स्तर तक आईएसटीएस ग्रिड बिंदु से विद्युत प्रदायगी, जोिक 220 केवी या उससे कम के वोल्टेज स्तर पर है, के लिए एसटीयू की प्रणाली सुदृद्धीकरण योजनाएं बनाना अपेक्षित है। ऐसा अनुमान है कि प्रत्येक एसटीयू 12वीं योजना के दौरान प्रयोग के लिए समय से पहले ही अपना कार्य पूरा कर लेगा और सीईए को समय पर इसकी सूचना भी दे देगा तािक भविष्य के पारेषण योजना अध्ययन के लिए ऐसे पारेषण वृद्धि का अनुकरण किया जा सके। कुछ राज्यों की सूचना उपलब्ध है और इसे निम्नलिखित भागों में शािमल किया गया है।

7.4.7 पारेषण योजनाओं का विवरण

निम्नलिखित खंडों में योजित अथवा योजित की जा रही पारेषण योजनाएं जो 12वीं/शुरुआती 13वीं

योजना के दौरान लाभ देगी उनकी क्षेत्र/राज्यवार सूची उपलब्ध करानी है। प्रत्येक योजना के अंतर्गत शामिल पारेषण का विवरण अनुबंध 7.1 से अनुबंध 7.7 में दी गई है।

उत्तरी क्षेत्र –पारेषण योजना विवरण	अनुबंध – 7.1
पश्चिमी क्षेत्र – पारेषण योजना विवरण	अनुबंध – 7.2
दक्षिणी क्षेत्र – पारेषण योजना विवरण	अनुबंध – 7.3
पूर्वी क्षेत्र – पारेषण योजना विवरण	अनुबंध – 7.4
उत्तरी-पूर्वी – पारेषण योजना विवरण	अनुबंध – 7.5
पारेषण योजना विवरण –भारत में नवीकरणीय ऊर्जा स्रोत	अनुबंध – 7.6
पारेषण योजना विवरण –भूटान, बांगलादेश और नेपाल में विद्युत	अनुबंध –7.7

परियोजना के लिए

7.5 उत्तरी क्षेत्र – पारेषण योजनाएं

7.5.1 उत्तरी क्षेत्र में योजित प्रणाली सुदृद्धीकरण योजनाएं

क्रम सं.	पारेषण सुदृद्वीकरण योजना	पारेषण प्रणाली
		सारणी संख्या
1.	उत्तरी ग्रिड भाग-l के केंद्रीय भाग के लिए 765 केवी प्रणाली	एनआर-आईएस-01
2.	उत्तरी ग्रिड भाग-II के केंद्रीय भाग के लिए 765 केवी प्रणाली	एनआर-आईएस-02
3.	उत्तरी ग्रिड भाग-III के केंद्रीय भाग के लिए 765 केवी प्रणाली	एनआर-आईएस-03
4.	एनआर प्रणाली सुदृढ़ीकरण् योजना-XIX	एनआर-आईएस-04
5.	एनआर प्रणाली सुदृढ़ीकरण् योजना-XX	एनआर-आईएस-05
6.	एनआर प्रणाली सुदृढ़ीकरण् योजना-XXI	एनआर-आईएस-06
7.	एनआर प्रणाली सुदृढ़ीकरण् योजना-XXII	एनआर-आईएस-07
8.	एनआर प्रणाली सुदृढ़ीकरण् योजना-XXIII	एनआर-आईएस-08
9.	एनआर प्रणाली सुदृढ़ीकरण् योजना-XXIV	एनआर-आईएस-09
10.	एनआर प्रणाली सुदृढ़ीकरण् योजना-XXV	एनआर-आईएस-10
11.	एनआर प्रणाली सुदृढ़ीकरण् योजना-XXVI	एनआर-आईएस-11
12.	एनआर प्रणाली सुदृढ़ीकरण् योजना-XXVII	एनआर-आईएस-12
13.	एनआर प्रणाली सुदृढ़ीकरण् योजना-XXVIII	एनआर-आईएस-13
14.	एनआर बस रिएक्टर योजनाएं	एनआर-आईएस-14
15.	एनआर में प्रणाली सुदृढ़ीकरण (उत्तर करणपुरा परियोजना से	एनआर-आईएस-15
	योजना को अलग करने के बाद)	
16.	श्रीनगर (उत्तराखंड) और टिहरी के बीच आपसी संपर्क	एनआर-आईएस-16

7.5.2 उत्तरी क्षेत्र से उत्पादन परियोजना को हटाने की योजना जम्मू और कश्मीर में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी,	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1	किशन गंगा	330	केन्द्र	एनआर-जेके-01
2	बघालिहार II	450	राज्य	एनआर-जेके-02
3	उरी-॥ एचईपी	240	केन्द्र	एनआर-जेके -01/अध्याय-6
4	चुटक एचईपी	44	केन्द्र	एनआर-जेके -02/अध्याय-6
5	निमु बाजगो	45	केन्द्र	एनआर-जेके -03/अध्याय-6

हिमाचल प्रदेश में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी,	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1	पार्वती-II	800	केंद्र	एनआर-एचपी-01
2	रामपुर	412	केंद्र	एनआर-एचपी-02
3	कोल्डम	800	केंद्र	एनआर-एचपी-03
4	टिडोंग-I	100	निजी	एनआर-एचपी-04
5	सोरंग	100	निजी	एनआर-एचपी-05
6	यूएचएल III	100	राज्य	एनआर-एचपी-06
7	कशांग I , II, III	195	राज्य	एनआर-एचपी-07
8	सवारा कुड्डु	110	राज्य	एनआर-एचपी-08
9	कुटेहर	260	निजी	एनआर-एचपी-09
10	बजोली होली एचईपी	180	निजी	एनआर-एचपी-10
11	कुनिहर(आंध्र+नोगली+माइक्रो)	196	राज्य	एनआर-एचपी-11
12	सैंज	100	राज्य	एनआर-एचपी-12
13	चमेरा–III एचईपी	231	केंद्र	एनआर-एचपी-01/ अध्याय-6
14	पार्वती–III एचईपी	520	केंद्र	एनआर-एचपी-02/ अध्याय-6
15	बुधिल एचईपी	70	आईपीपी	एनआर-एचपी-04/ अध्याय-6

पंजाब में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी,	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1	नाभा – राजपुरा टीपीएस	1400	निजी	एनआर-पीबी-01
2	तलवंडी साबो	1980	निजी	एनआर-पीबी -02
3	गोविंदवाल साहेब	540	निजी	एनआर-पीबी-03

हरियाणा में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी,	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1	झज्जर-I (इंदिरा गांधी)	500	केंद्र	एनआर-एचआर-01/अध्याय-6
	टीपीएस (यू- 3)			
2	झज्जर (महात्मा गांधी)	660	निजी	एनआर-एचआर-02/अध्याय-6
	टीपीएस यू-2			

दिल्ली में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी,	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1	प्रगति सीसीजीटी फेज- III	750	राज्य	एनआर-डीएल-01/अध्याय-6
	(पीपीसीएल) (जीटी4,			
	एसटी1,एसटी2)			

राजस्थान में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी,	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1	आरएपीपीडी (यू-7,8)	1400	केंद्र	एनआर-आरजे-01
2	रामगढ़-II	160	राज्य	एनआर-आरजे-02
3	छाबरा टीपीएस एसटी-2	500	राज्य	एनआर-आरजे-03
4	कालीसिंध	1200	राज्य	एनआर-आरजे-03

5	बारसिंगसर एक्सटेंशन	250	केंद्र	एनआर-आरजे-04
6	श्री सीमेंट लिमिटेड	300	आईपीपी	एनआर-आरजे-05
7	जल्लिपा कपुर्दी टीपीपी (यूनिट	540	आईपीपी	एनआर-आरजे-01/अध्याय-6
	5 – 8)			

उत्तराखंड में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी,	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1	तपोवन विष्णुगढ़	520	केंद्र	एनआर-यूके-01
2	सिंगोली भटवारी	99	आईपीपी	एनआर-यूके-02
3	फटा ब्योंग	76	आईपीपी	एनआर-यूके-03
4	धौली गंगा +	260	केंद्र	एनआर-यूके-04
	रूपसियाबागर खसियाबारा			
5	कोटलीभेल केंद्र-1क एवं ख,	1045	केंद्र	एनआर-यूके-05
	कोटलीभेल एसटी- II			
6	टेहरी- II	1000	केंद्र	एनआर-यूके-06
7	लता तपोवन	171	केंद्र	एनआर-यूके-07
8	पाला मनेरी	480	राज्य	एनआर-यूके-08
9	श्रवंथ एनर्जी प्राइवेट लिमिटेड	450	आईपीपी	एनआर-यूके-09
10	श्रीनगर	330	निजी	एनआर-यूके-10

उत्तर प्रदेश में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी,	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1	रिहंद III (यू-5 और6)	1000	केंद्र	एनआर-यूपी-01
2	सिंगरौली एसटी- III	500	केंद्र	एनआर-यूपी-02
3	मेजा	1320	केंद्र	एनआर-यूपी-03
4	बारा	1980	निजी	एनआर-यूपी-03
5	कर्चणा	1320	निजी	एनआर-यूपी-03
6	लतिलपुर टीपीएस	1980	राज्य	एनआर-यूपी-04

7	अनपारा डी	1000	राज्य	एनआर-यूपी-05
8	परीच्छा एक्सटेंशन (यू -5,6)	500	राज्य	एनआर-यूपी-03/अध्याय-6
9	हरदुआगंज टीपीएस एक्सटेंशन	250	राज्य	एनआर-यूपी-02/ अध्याय -6
	यू-9			

7.6 पश्चिमी क्षेत्र- पारेषण योजनाएं

7.6.1 पश्चिमी क्षेत्र में योजित प्रणाली सुदृढ़ीकरण योजनाएं:

क्रम सं.	प्रणाली सुदृढ़ीकरण योजना	सारणी संख्या में पारेषण प्रणाली
1	यूटी डीएनएच में 400/220केवी एस/एस की स्थापना	डब्ल्यूआर-आईएस-01
2	यूटी डीएनएच में 400/220केवी एस/एस की स्थापना	डब्ल्यूआर-आईएस -02
3	रायपुर 400केवी एस/एस में स्पिलिट बस व्यवस्था और समाप्ति	डब्ल्यूआर-आईएस -03
	लाइन की रिकंफीगरेशन/शिफ्िटंग	

7.6.2 पश्चिम क्षेत्र में उत्पादन परियोजना को हटाने की योजना गुजरात में अवस्थित योजना परियोजनाएं:

क्र. सं.	परियोजना	आईसी,	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1.	केएपीपी एक्सटेंशन यू-3,4,	1400	केंद्र	डब्ल्यूआर-जीजे-01
	(1400मेगावाट) (केंद्रीय क्षेत्र sector)			
2.	यूएमपीपी मुंद्रा (यू-1 11वीं योजना में	4000	आईपीपी	डब्ल्यूआर-जीजे-02
	शुरू की गई)			डब्ल्यूआर-जीजे-03
				डब्ल्यूआर-जीजे-09
3.	पिपावव टीपीएस-वीडियोकॉन	1200	आईपीपी	डब्ल्यूआर-जीजे-04
4.	धुवारण एक्सटेंशन	360	राज्य	डब्ल्यूआर-जीजे-05
5.	भावनगर	500	राज्य	डब्ल्यूआर-जीजे-06
6.	सिक्का रिप. एक्सटेशन	500	राज्य	डब्ल्यूआर-जीजे-07
7.	पिपावव सीसीपीपी	702	राज्य	डब्ल्यूआर-जीजे-08
8.	ऊकाई एक्सटेंशन	500	राज्य	डब्ल्यूआर-जीजे-10
9.	वनाकबोरी टीपीएस	500	राज्य	डब्ल्यूआर-जीजे-11
10.	शपूरजी पल्लोनजी एनर्जी लिमिटेड	1320	आईपीपी	डब्ल्यूआर-जीजे-12
11.	डीजीईएन टीपीएस -टोरेंट पावर	1200	आईपीपी	डब्ल्यूआर-जीजे-13
	लिमिटेड			
12.	एनटीपीसी लिमिटेड (गांधार- II)	1300	केंद्र	डब्ल्यूआर-जीजे-14
13.	एनटीपीसी लिमिटेड (कावास- II)	1300	केंद्र	डब्ल्यूआर-जीजे-15

14.	गुजरात फ्लूरोकेमिकल्स लिमिटेड	300	आईपीपी	डब्ल्यूआर-जीजे-16
	(जीएफएल)			
15.	सिंटेक्स पावर लिमिटेड	1708	आईपीपी	डब्ल्यूआर-जीजे-17
16.	एस्सार-पावर यू-2	600	आईपीपी	डब्ल्यूआर-जीजे-05/अध्याय-6

मध्य प्रदेश में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी,	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1.	विंध्याचल IV (यू-11,12)	1000	केंद्र	डब्ल्यूआर-एमपी-01
2.	यूएमपीपी सासन	3960	आईपीपी	डब्ल्यूआर-एमपी-02
				डब्ल्यूआर-जीजे-09
3.	बीना पावर	500	आईपीपी	डब्ल्यूआर-एमपी-03
				डब्ल्यूआर-सीजी-17
4.	महान-एस्सार पावर	1200	आईपीपी	डब्ल्यूआर-एमपी-04
5.	आर्यन एमपी पावर जेनरेशन कंपनी	1200	आईपीपी	डब्ल्यूआर-एमपी-05
	लिमिटेड			डब्ल्यूआर-सीजी-17
6.	डीबी पावर (एमपी) लिमिटेड यू-	1320	आईपीपी	डब्ल्यूआर-एमपी-05
	1,2			
7.	चितरंगी पावर	5940	आईपीपी	डब्ल्यूआर-एमपी-05
8.	निगरी टीपीपी-जयप्रकाश पावर	1320	आईपीपी	डब्ल्यूआर-एमपी-06
				डब्ल्यूआर-सीजी-17
9.	मोजरबीयर पावर(चरण 1)	1200	आईपीपी	डब्ल्यूआर-एमपी-07
				डब्ल्यूआर-सीजी-23
10.	टुडे एनर्जी (एमपी)	1320	आईपीपी	डब्ल्यूआर-एमपी-07
				डब्ल्यूआर-सीजी-23
11.	झबुआ पावर	1200	आईपीपी	डब्ल्यूआर-एमपी-07
				डब्ल्यूआर-सीजी-23
12.	एसजेके पावरजेन लिमिटेड	1320	आईपीपी	डब्ल्यूआर-एमपी-07
13.	मालवा (श्री सिंह जी) टीपीपी	1200	राज्य	डब्ल्यूआर-एमपी-08
14.	सतपुरा एक्सटेंशन (यू-10,11)	500	राज्य	डब्ल्यूआर-एमपी-09
15.	एस्सार पावर एमपी लिमिटेड	600	आईपीपी	डब्ल्यूआर-एमपी-11
	(महान चरण II)			
16.	माहेश्वर एचईपी	400	आईपीपी	डब्ल्यूआर-एमपी-01/अध्याय-6

महाराष्ट्र में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1.	मौदा केंद्र-I (यू- 1& 2)	1000	केंद्र	डब्ल्यूआर-एमएच-01
2.	मौदा केंद्र -II	1320	केंद्र	डब्ल्यूआर-एमएच-02
3.	तिरोदा अदानी चरण I,यू-1,2,3	1320	आईपीपी	डब्ल्यूआर-एमएच-03
4.	तिरोदा अदानी चरण -II, यू-1,2	1320	आईपीपी	डब्ल्यूआर-एमएच-03
5.	इंडिया बुल-नासिक	1350	आईपीपी	डब्ल्यूआर-एमएच-04
6.	इंडिया बुल-नंदनगांवपेट-अमरावती	1350	आईपीपी	डब्ल्यूआर-एमएच-05
7.	बेला टीपीपी-आइडियल पावर	540	आईपीपी	डब्ल्यूआर-एमएच-06
8.	धारीवाल मूलसंरचना	600	आईपीपी	डब्ल्यूआर-एमएच-07
9.	ईएमसीओ-वरोरा(महाराष्ट्र)	600	आईपीपी	डब्ल्यूआर-एमएच-08
10.	पार्लि + प्रतिस्थापन	250	राज्य	डब्ल्यूआर-एमएच-09
11.	कोराडी – II	1980	राज्य	डब्ल्यूआर-एमएच-10
12.	चन्द्रपुर टीपीएस-II (यू -8,9)	1000	राज्य	डब्ल्यूआर-एमएच-11
	(यू-8 11वीं योजना में शुरू किया गया)			
13.	धोपावे	1600	राज्य	डब्ल्यूआर-एमएच-12
14.	यूरान एक्सटेंशन	1040	आईपीपी	डब्ल्यूआर-एमएच-13
15.	जीईपीएल टीपीपी यू-1 और 2	120	आईपीपी	डब्ल्यूआर-एमएच-14
16.	एनपीसीआईएल ,जैतापुर	3480	केंद्र	डब्ल्यूआर-एमएच-15
17.	जिनभुविश पावरजेन प्राइवेट लिमिटेड	600	आईपीपी	डब्ल्यूआर-एमएच-16
	(600		_	
18.	हिंदुस्तान इलेक्ट्रिसिटी जेन कंपनी	1137	आईपीपी	डब्ल्यूआर-एमएच-17
	लिमिटेड (एचईजीसीएल)			

छत्तीसगढ़ में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1.	सिपत-I	1980	केंद्र	डब्ल्यूआर-सीजी-01
2.	आरकेएम पावरजेन प्राइवेट लिमिटेड	1440	आईपीपी	डब्ल्यूआर-सीजी-02
	(ऊंचपांडा टीपीपी)			डब्ल्यूआर-सीजी-08 से
	(यू 1-4)			डब्ल्यूआर-सीजी-16

3.	एसकेएस पावर लिमिटेड यू 1-4	1200	आईपीपी	डब्ल्यूआर-सीजी-02
	(धरमपुरा टीपीपी)			डब्ल्यूआर-सीजी-08 से
				डब्ल्यूआर-सीजी-16
4.	डीबी पावर	1200	आईपीपी	डब्ल्यूआर-सीजी-02
				डब्ल्यूआर-सीजी-08 से
				डब्ल्यूआर-सीजी-16
5.	अथेना छत्तीसगढ़ पावर लिमिटेड	1200	आईपीपी	डब्ल्यूआर-सीजी-02
				डब्ल्यूआर-सीजी-08 से
				डब्ल्यूआर-सीजी-16
6.	अवंथा भंडार टीपीपी	600	आईपीपी	डब्ल्यूआर-सीजी-02
				डब्ल्यूआर-सीजी-08 से
				डब्ल्यूआर-सीजी-16
7.	कॉसमॉस स्पांज एण्ड पावर लिमिटेड	350	आईपीपी	डब्ल्यूआर-सीजी-02
	(सीएसपीएल)			
8.	वीसा स्टील लिमिटेड	450	आईपीपी	डब्ल्यूआर-सीजी-02
9.	जीएमआर छत्तीसगढ़	1370	आईपीपी	डब्ल्यूआर-सीजी-03
				डब्ल्यूआर-सीजी-08 से
				डब्ल्यूआर-सीजी-16
10.	केएसके (अकलतारा) महानदी पावर	2400	आईपीपी	डब्ल्यूआर-सीजी-04
				डब्ल्यूआर-सीजी-08 से
				डब्ल्यूआर-सीजी-16
11.	कर्नाटक पावर कार्प लिमिटेड	1600	आईपीपी	डब्ल्यूआर-सीजी-04
	(केपीसीएल)			डब्ल्यूआर-सीजी-08 से
				डब्ल्यूआर-सीजी-16
12.	लांको अमरकंटक यू-3 और 4	1320	आईपीपी	डब्ल्यूआर-सीजी-04
				डब्ल्यूआर-सीजी-08 से
				डब्ल्यूआर-सीजी-16
13.	एम बी पावर (छत्तीसगढ़ लिमिटेड)	1320	आईपीपी	डब्ल्यूआर-सीजी-04
14.	आर्यन कोल बेनीफिकेशन लिमिटेड	1200	आईपीपी	डब्ल्यूआर-सीजी-05
				डब्ल्यूआर-सीजी-08 से
				डब्ल्यूआर-सीजी-16
15.	धीरू पावरजेन और पीटीसी इंडिया	1050	आईपीपी	डब्ल्यूआर-सीजी-05
				डब्ल्यूआर-सीजी-17

16. स्पेक्ट्रम पावर					
17. मारूति क्लीन एण्ड पावर लिमिटेड 300 आईपीपी डळ्यूआर-सीजी-05 डळ्यूआर-सीजी-17 18. रायगढ़ चरण, III यू 1-4 (जिंदल पावर) 2400 आईपीपी डळ्यूआर-सीजी-06 डळ्यूआर-सीजी-08 से डळ्यूआर-सीजी-06 डळ्यूआर-सीजी-07 डळ्यूआर-सीजी-07 डळ्यूआर-सीजी-07 डळ्यूआर-सीजी-07 डळ्यूआर-सीजी-07 डळ्यूआर-सीजी-07 डळ्यूआर-सीजी-07 डळ्यूआर-सीजी-07 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-07 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-07 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-07 डळ्यूआर-सीजी-08 इळ्यूआर-सीजी-08 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-20 डळ्यूआर-सीजी-20 डळ्यूआर-सीजी-20 डळ्यूआर-सीजी-21 डळ्यूआर-सीजी-22 डळ्यूआर-सीजी-22 डळ्यूआर-सीजी-22 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-22 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-22 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-22 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-22 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-22 डळ्यूआर-सीजी-08 डळ्यूआर-सीजी-28 डळ	16.	स्पेक्ट्रम पावर	100	आईपीपी	डब्ल्यूआर-सीजी-05
श्रि स्वास्तिक टीपीपी यू-1 25 अर्हपीपी डब्ल्यूआर-सीजी-17 18.					डब्ल्यूआर-सीजी-17
18. रायगढ़ चरण, III यू 1-4 (जिंदल पावर) 19. टीआरएन एनर्जी (2x300 मेगावाट) 19. टीआरएन एनर्जी (2x300 मेगावाट) 20. सारदा एनर्जी एण्ड मिनरल (एसईएमएल) 21. जायसवाल न्यू ऊर्जा लिमिटेड (जेएनयूएल) 22. बीएएलसीओ 23. वंदना विद्युत 540 आईपीपी 24. स्वास्तिक टीपीपी यू-1 25. रितजा टीपीपी 26. मारवा सीएसईबी 27. कोरवा (डळ्यू) केंद्र-III (यू-5) 28. कमाइपल्ली टीपीपी यू-2 135 आईपीपी 350 आईपीपी	17.	मारूति क्लीन एण्ड पावर लिमिटेड	300	आईपीपी	डब्ल्यूआर-सीजी-05
पावर) 19. टीआरएन एनर्जी (2x300 मेगावाट) 19. टीआरएन एनर्जी (2x300 मेगावाट) 20. सारदा एनर्जी एण्ड मिनरल (एसईएमएल) 21. जायसवाल न्यू ऊर्जा लिमिटेड (जेएनयूएल) 22. बीएएलसीओ 23. वंदना विद्युत 540 आईपीपी 560 आईपीपी 5600 3600					डब्ल्यूआर-सीजी-17
ज्राह्मणीया विद्युत	18.	रायगढ़ चरण, III यू 1-4 (जिंदल	2400	आईपीपी	डब्ल्यूआर-सीजी-06
19. टीआरएन एनर्जी (2x300 मेगावाट) 600 आईपीपी डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 20. सारदा एनर्जी एण्ड मिनरल (एसईएमएल) डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-16 22. बीएएलसीओ 600 आईपीपी डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 23. बंदना विद्युत 540 आईपीपी डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 24. स्वास्तिक टीपीपी यू-1 25 आईपीपी डब्ल्यूआर-सीजी-19 25. रतिजा टीपीपी 50 आईपीपी डब्ल्यूआर-सीजी-20 26. मारवा सीएसईवी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरवा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-		पावर)			डब्ल्यूआर-सीजी-08 से
च्या स्वाप्त करे से स्वाप्त करे से स्वाप्त करे से स्वाप्त करे से					डब्ल्यूआर-सीजी-16
20. सारदा एनर्जी एण्ड मिनरल (एसईएमएल) 350 आईपीपी डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 21. जायसवाल न्यू ऊर्जा लिमिटेड (तेएनयूएल) विच्यू अर्ज्य लिमिटेड (तेण्यू अर्ज्य क्षेत्र सीजी-08 से डब्ल्यू अर-सीजी-07 विच्यू अर-सीजी-07 विच्यू अर-सीजी-16 23. विद्या विच्युत 540 आईपीपी व्बल्यू आर-सीजी-07 व्बल्यू आर-सीजी-08 से व्बल्यू आर-सीजी-16 24. स्वास्तिक टीपीपी यू-1 25 आईपीपी व्बल्यू आर-सीजी-19 25. रितजा टीपीपी 50 आईपीपी व्बल्यू आर-सीजी-20 26. मारवा सीएसईवी 1000 राज्य व्बल्यू आर-सीजी-21 27. कोरवा (ब्बल्यू) केंद्र-III (यू-5) 500 राज्य व्बल्यू आर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी ब्बल्यू आर-सीजी-03/अध्याय-	19.	टीआरएन एनर्जी (2x300 मेगावाट)	600	आईपीपी	डब्ल्यूआर-सीजी-06
20. सारदा एनर्जी एण्ड मिनरल (एसईएमएल) 350 आईपीपी डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 21. जायसवाल न्यू ऊर्जा लिमिटेड (जेएनयूएल) 600 आईपीपी डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 23. वंदना विद्युत 540 आईपीपी डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 24. स्वास्तिक टीपीपी यू-1 25 आईपीपी डब्ल्यूआर-सीजी-19 25. रतिजा टीपीपी 50 आईपीपी डब्ल्यूआर-सीजी-20 26. मारवा सीएसईबी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरवा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-03/अध्याय- 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-					डब्ल्यूआर-सीजी-08 से
(एसईएमएल) 21. जायसवाल न्यू ऊर्जा लिमिटेड 600 आईपीपी डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-16 22. बीएएलसीओ 600 आईपीपी डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 23. वंदना विद्युत 540 आईपीपी डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 24. स्वास्तिक टीपीपी यू-1 25 आईपीपी डब्ल्यूआर-सीजी-19 25. रितजा टीपीपी 50 आईपीपी डब्ल्यूआर-सीजी-20 26. मारवा सीएसईबी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-					डब्ल्यूआर-सीजी-16
च्रायसवाल न्यू ऊर्जा लिमिटेड 600 आईपीपी डब्ल्यूआर-सीजी-06 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 22. वीएएलसीओ 600 आईपीपी डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 23. वंदना विद्युत 540 आईपीपी डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 24. स्वास्तिक टीपीपी यू-1 25 आईपीपी डब्ल्यूआर-सीजी-19 25. रितजा टीपीपी 50 आईपीपी डब्ल्यूआर-सीजी-20 26. मारवा सीएसईवी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-	20.	सारदा एनर्जी एण्ड मिनरल	350	आईपीपी	डब्ल्यूआर-सीजी-06
21. जायसवाल न्यू ऊर्जा लिमिटेड 600 आईपीपी डब्ल्यूआर-सीजी-06 (जेएनयूएल) डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 22. बीएएलसीओ 600 आईपीपी डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-16 23. वंदना विद्युत 540 आईपीपी डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-16 24. स्वास्तिक टीपीपी यू-1 25 आईपीपी डब्ल्यूआर-सीजी-19 25. रतिजा टीपीपी 50 आईपीपी डब्ल्यूआर-सीजी-20 26. मारवा सीएसईबी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-03/अध्याय- 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-		(एसईएमएल)			डब्ल्यूआर-सीजी-08 से
(जेएनयूएल) (जेएनयूएल) विष्णुलसीओ 600 आईपीपी डब्ल्यूआर-सीजी-16 22. बीएएलसीओ 600 आईपीपी डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-16 23. बंदना विद्युत 540 आईपीपी डब्ल्यूआर-सीजी-16 24. स्वास्तिक टीपीपी यू-1 25 अईपीपी डब्ल्यूआर-सीजी-19 25. रितजा टीपीपी 50 आईपीपी डब्ल्यूआर-सीजी-19 26. मारवा सीएसईबी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-					डब्ल्यूआर-सीजी-16
डब्ल्यूआर-सीजी-16 उथ्या विद्युत उक्यूआर-सीजी-07 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 उथ्या विद्युत उर्वतना विद्युत उर्वतना विद्युत उर्वतना विद्युत उक्यूआर-सीजी-07 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 उक्य्यूआर-सीजी-16 उक्य्यूआर-सीजी-16 उक्य्यूआर-सीजी-16 उक्य्यूआर-सीजी-19 उक्य्यूआर-सीजी-19 उक्य्यूआर-सीजी-20 उक्य्यूआर-सीजी-20 उक्य्यूआर-सीजी-21 उक्य्यूआर-सीजी-21 उक्य्यूआर-सीजी-21 उक्य्यूआर-सीजी-22 उक्य्यूआर-सीजी-22 उक्य्यूआर-सीजी-22 उक्य्यूआर-सीजी-22 उक्य्यूआर-सीजी-03/अध्याय-	21.	जायसवाल न्यू ऊर्जा लिमिटेड	600	आईपीपी	डब्ल्यूआर-सीजी-06
22. बीएएलसीओ 600 आईपीपी डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-16 23. वंदना विद्युत 540 आईपीपी डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 24. स्वास्तिक टीपीपी यू-1 25 आईपीपी डब्ल्यूआर-सीजी-19 25. रतिजा टीपीपी 50 आईपीपी डब्ल्यूआर-सीजी-20 26. मारवा सीएसईबी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-		(जेएनयूएल)			डब्ल्यूआर-सीजी-08 से
डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 23. वंदना विद्युत 540 आईपीपी डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 24. स्वास्तिक टीपीपी यू-1 25 आईपीपी डब्ल्यूआर-सीजी-19 25. रितजा टीपीपी 50 आईपीपी डब्ल्यूआर-सीजी-19 26. मारवा सीएसईबी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-					डब्ल्यूआर-सीजी-16
डब्ल्यूआर-सीजी-16	22.	बीएएलसीओ	600	आईपीपी	डब्ल्यूआर-सीजी-07
23. वंदना विद्युत 540 आईपीपी डब्ल्यूआर-सीजी-07 डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 24. स्वास्तिक टीपीपी यू-1 25 आईपीपी डब्ल्यूआर-सीजी-19 25. रितजा टीपीपी 50 आईपीपी डब्ल्यूआर-सीजी-20 26. मारवा सीएसईबी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-					डब्ल्यूआर-सीजी-08 से
डब्ल्यूआर-सीजी-08 से डब्ल्यूआर-सीजी-16 24. स्वास्तिक टीपीपी यू-1 25. प्रतिजा टीपीपी 50. आईपीपी डब्ल्यूआर-सीजी-19 26. मारवा सीएसईबी 1000 राज्य डब्ल्यूआर-सीजी-20 27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-22 डब्ल्यूआर-सीजी-03/अध्याय-					डब्ल्यूआर-सीजी-16
24. स्वास्तिक टीपीपी यू-1 25 आईपीपी डब्ल्यूआर-सीजी-19 25. रतिजा टीपीपी 50 आईपीपी डब्ल्यूआर-सीजी-20 26. मारवा सीएसईबी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-	23.	वंदना विद्युत	540	आईपीपी	डब्ल्यूआर-सीजी-07
24. स्वास्तिक टीपीपी यू-1 25 आईपीपी डब्ल्यूआर-सीजी-19 25. रतिजा टीपीपी 50 आईपीपी डब्ल्यूआर-सीजी-20 26. मारवा सीएसईबी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-					डब्ल्यूआर-सीजी-08 से
25. रतिजा टीपीपी 50 आईपीपी डब्ल्यूआर-सीजी-20 26. मारवा सीएसईबी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-					डब्ल्यूआर-सीजी-16
26. मारवा सीएसईबी 1000 राज्य डब्ल्यूआर-सीजी-21 27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-	24.	स्वास्तिक टीपीपी यू-1	25	आईपीपी	डब्ल्यूआर-सीजी-19
27. कोरबा (डब्ल्यू) केंद्र-III (यू-5) 500 राज्य डब्ल्यूआर-सीजी-22 28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-	25.	रतिजा टीपीपी	50	आईपीपी	डब्ल्यूआर-सीजी-20
28. कसाइपल्ली टीपीपी यू-2 135 आईपीपी डब्ल्यूआर-सीजी-03/अध्याय-	26.	मारवा सीएसईबी	1000	राज्य	डब्ल्यूआर-सीजी-21
	27.	कोरबा (डब्ल्यू) केंद्र-III (यू-5)	500	राज्य	डब्ल्यूआर-सीजी-22
06	28.	कसाइपल्ली टीपीपी यू-2	135	आईपीपी	डब्ल्यूआर-सीजी-03/अध्याय-
					06

7.7 दक्षिणी क्षेत्र – पारेषण योजनाएं

7.7.1 दक्षिणी क्षेत्र में योजित प्रणाली सुदृढ़ीकरण योजनाएं:

क्रम सं.	परियोजना सुदृढ़ीकरण योजना	सारणी संख्या में पारेषण प्रणाली
1.	एसआर-XII में प्रणाली सुदृढ़ीकरण योजनाएं	एसआर-इएस-01
2.	एसआर- XIII में प्रणाली सुदृढ़ीकरण योजनाएं	एसआर-इएस-02

3.	एसआर- XIV में प्रणाली सुदृढ़ीकरण योजनाएं	एसआर-इएस-03
4.	एसआर- XV में प्रणाली सुदृढ़ीकरण योजनाएं	एसआर-इएस-04
5.	एसआर- XVI में प्रणाली सुदृढ़ीकरण योजनाएं	एसआर-इएस-05
6.	एसआर- XVII में प्रणाली सुदृढ़ीकरण योजनाएं	एसआर-इएस-06
7.	एसआर- XVIII में प्रणाली सुदृढ़ीकरण योजनाएं	एसआर-इएस-07
8.	एसआर- XIX में प्रणाली सुदृढ़ीकरण योजनाएं	एसआर-इएस-08
9.	दक्षिणी क्षेत्र में एचवीडीसी बाइपोल सुदृढ़ीकरण	एसआर-इएस-09
10.	ईआर से पावर आयात करने के लिए एसआर में प्रणाली	एसआर-इएस-10
	सुदृढ़ीकरण	

7.7.2 दक्षिणी क्षेत्र में उत्पादन परियोजनाओं को हटाने की योजनाएं आंध्र प्रदेश में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1.	सिंहापुरी कोस्टल-केपीटीएनएम	600	आईपीपी	एसआर-एपी-01
	(11वीं योजना में शुरू की गयी यू-1)			एसआर-एपी-02
2.	मीनाक्षी एनर्जी एसटी-I + II	1000	आईपीपी	एसआर-एपी-01
				एसआर-एपी-02
3.	थर्मल पावरटेक काप	1980	आईपीपी	एसआर-एपी-01
				एसआर-एपी-02
4.	कृष्णापट्टणम नवयुग	1320	आईपीपी	एसआर-एपी-01
				एसआर-एपी-02
5.	किनेटा पावर	1980	आईपीपी	एसआर-एपी-01
				एसआर-एपी-02
6.	एनसीसी पावर	1320	आईपीपी	एसआर-एपी-01
				एसआर-एपी-02
7.	वीएसएफ प्रोजेक्ट्स लिमिटेड	350	आईपीपी	एसआर-एपी-01
8.	अल्ट्रा मेगा कृष्णापट्टणम	3960	आईपीपी	एसआर-एपी-03
	(योजना को उत्पादन परियोजना से			एसआर-एपी-04
	अलग/परिवर्तित कर दिया गया है,			
	इसके भाग को प्रणाली सुदृढ़ीकरण के			
	रूप में कार्यान्वित किया जा रहा है)			

9.	पूर्वी तट- भावनपाडु टीपीपी	1320	आईपीपी	एसआर-एपी-05
				एसआर-एपी-06
10.	जीएमआर- राजमुंद्री	768	आईपीपी	एसआर-एपी-07
				एसआर-एपी-08
11.	स्पेक्ट्रम-वेमागिरी-गैस	1400	आईपीपी	एसआर-एपी-07
				एसआर-एपी-08
12.	रिलायंस-वेमागिरी-गैस	2400	आईपीपी	एसआर-एपी-07
				एसआर-एपी-08
13.	जीवीके-गौतमी-वेमागिरी-गैस	800	आईपीपी	एसआर-एपी-07
				एसआर-एपी-08
14.	जीवीके-जगरूपाडु-वेमागिरी-गैस	800	आईपीपी	एसआर-एपी-07
				एसआर-एपी-08
15.	आरवीके एनर्जी	360	आईपीपी	एसआर-एपी-07
16.	हिंदुजा विजाग	1040	आईपीपी	एसआर-एपी-09
17.	लांको कोंडापल्ली केंद्र-III	740	आईपीपी	एसआर-एपी-10
18.	रायलसीमा केंद्र -III (यू-6)	600	राज्य	एसआर-एपी-11
19.	पुलिचिंताला एचईपी	120	राज्य	एसआर-एपी-12
20.	लोअर जुराला (यू1-6) एचईपी	240	राज्य	एसआर-एपी-13
21.	श्री दामोदरम संजीवैरय्या टीपीपी	1600	राज्य	एसआर-एपी-14
	(कृष्णपट्टणम टीपीपी)			
22.	नागार्जुन सागर टीआर एचईपी	50	राज्य	एसआर-एपी-02/अध्याय-6
23.	काकातिया टीपीपी II	600	राज्य	एसआर-एपी-04/ अध्याय -6

कर्नाटक में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1.	टोरानगल्लू जिंदल यू-3	300	आईपीपी	एसआर-केए-01
2.	गुंडिया एचईपी	400	राज्य	एसआर-केए-02
3.	येरमारूस टीपीपी	1600	राज्य	एसआर-केए-03
4.	एदलापुर	800	राज्य	एसआर-केए-03
5.	कुडगी टीपीएस चरण-I	2400	केंद्र	एसआर-केए-04
6.	सुरेना पावर लिमिटेड	420	आईपीपी	एसआर-केए-05

केरल में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी मेगावाट	क्षेत्र	सारणी सं. में पारेषण प्रणाली
1.	थोट्टियार	40	राज्य	एसआर-केई-01
2.	पल्लिवासल	60	राज्य	एसआर-केई-02

तमिलनाडु में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी	क्षेत्र	सारणी सं. में पारेषण प्रणाली
		मेगावाट		
1.	तुतिकोरिन जेवी-एनएलसी	1000	केंद्र	एसआर-टीएन-01
2.	कोस्टल एनर्जेन-तुतिकोरिन	1200	आईपीपी	एसआर-टीएन-02
				एसआर-टीएन-03
3.	इंड बराथ-तुतिकोरिन	1320	आईपीपी	एसआर-टीएन-02
				एसआर-टीएन-03
4.	चेतीनाड पावर कॉर्पोरेशन प्राइवेट लिमिटेड	1200	आईपीपी	एसआर-टीएन-02
5.	एनएसएल-नागापट्टणम	1320	आईपीपी	एसआर-टीएन-04
				एसआर-टीएन-05
6.	पीपीएन पावर जेनरेटिंग कंपनी	1080	आईपीपी	एसआर-टीएन-04
				एसआर-टीएन-05
7.	चेतीनाड पावर कॉर्पोरेशन लिमिटेड	1320	आईपीपी	एसआर-टीएन-04
				एसआर-टीएन-05
8.	पीईएल पावर लिमिटेड (1050 मेगावाट)	1050	आईपीपी	एसआर-टीएन-04
				एसआर-टीएन-05
9.	आईएल एण्ड एफएस तमिलनाडु पावर	1200	आईपीपी	एसआर-टीएन-04
	कंपनी लिमिटेड			एसआर-टीएन-05
10.	रिजेन पावरटेक प्राइवेट लिमिटेड	600	आईपीपी	एसआर-टीएन-06
11.	उडनगुडी जेवी	1600	राज्य	एसआर-टीएन-07
12.	कलपक्कम पीएफबीआर	500	केंद्र	एसआर-टीएन-08
13.	वल्लूर(एन्नोर) जेवी यू-2,3	1000	केंद्र	एसआर-टीएन-01/ अध्याय-6
14.	नेवेली टीपीएस II यू-2	250	केंद्र	एसआर-टीएन-02/अध्याय-6
15.	कुडनकुलम आणविक केंद्र-I	2000	केंद्र	एसआर-टीएन-03/ अध्याय -6
16.	उत्तरी चेन्नई एक्सटेंशन यू-1,2	1200	केंद्र	एसआर-टीएन-04/ अध्याय -6
17.	भवानी बैरेज ॥ और ॥	60	राज्य	एसआर-टीएन-05/ अध्याय -6
18.	मेट्टूर टीपीएस केंद्र-III (यू-1)	600	राज्य	एसआर-टीएन-06/ अध्याय -6

7.8 पूर्वी क्षेत्र- पारेषण योजनाएं

7.8.1 पूर्वी क्षेत्र में योजित प्रणाली सुदृढ़ीकरण योजनाएं :

क्रम	परियोजना सुदृढ़ीकरण योजना	सारणी संख्या में पारेषण
सं.		प्रणाली
1.	पूर्वी क्षेत्र सुदृढ़ीकरण योजना-III	ईआर-आईएस-01
2.	पूर्वी क्षेत्र सुदृढ़ीकरण योजना-IV	ईआर-आईएस-02
3.	पूर्वी क्षेत्र सुदृढ़ीकरण योजना-V	ईआर-आईएस-03
4.	पूर्वी क्षेत्र सुदृढ़ीकरण योजना–VII (पश्चिम बंगाल के लिए)	ईआर-आईएस-04
5.	पूर्वी क्षेत्र सुदृढ़ीकरण योजना-VI (बिहार के लिए)	ईआर-आईएस-05

7.8.2 पूर्वी क्षेत्र में उत्पादन परियोजनाओं को हटाने की योजना बिहार में अवस्थित उत्पादन परियोजनाएं :

क्र. सं.	परियोजना	आईसी मेगावाट	क्षेत्र	सारणी सं. में पारेषण प्रणाली
1.	बाढ़ II यू 1,2	1320	केंद्र	ईआर-बीआर-01
				ईआर-जेएच-06
2.	नबी नगर जेवी (रेलवे	1000	केंद्र	ईआर-बीआर-02
	+एनटीपीसी)			ईआर-जेएच-06
3.	न्यू नबी नगर जेवी	1980	केंद्र	ईआर-बीआर-03
	(बिहार+एनटीपीसी)			
4.	मुजफ्फरपुर एक्सटेंशन जेवी	390	केंद्र	ईआर-बीआर-04
5.	बाढ़-I (यू-1,2,3)	1980	केंद्र	ईआर-बीआर-01/अध्याय-6

झारखंड में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी मेगावाट	क्षेत्र	सारणी सं. में पारेषण प्रणाली
1.	बोकारो एक्सपैंशन	500	केंद्र	ईआर-जेएच-01
				ईआर-जेएच-01/ अध्याय-6
2.	कोडरमा टीपीपी यू-2	500	केंद्र	ईआर-जेएच-01/ अध्याय-6
3.	आधुनिक पावर – झारखंड	540	आईपीपी	ईआर-जेएच-02
				ईआर-जेएच-03
				ईआर-जेएच-04

4	_~	540		20 2
4.	कार्पोरेट (चरण-I)	540	आईपीपी	ईआर-जेएच-02
	(माताश्री उषा टीपीपी)			ईआर-जेएच-03
				ईआर-जेएच-04
5.	कॉर्पोरेट (चरण-II)	540	आईपीपी	ईआर-जेएच-02
				ईआर-जेएच-03
				ईआर-जेएच-04
6.	एस्सार पावर/तोरी टीपीएस	1200	आईपीपी	ईआर-जेएच-02
				ईआर-जेएच-03
				ईआर-जेएच-04
7.	तिलैया यूएमपीपी	4000	आईपीपी	ईआर-जेएच-05
				ईआर-जेएच-06

ओडिशा में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी मेगावाट	क्षेत्र	सारणी सं. में पारेषण प्रणाली
1.	स्टरलाइट टीपीपी यू-4	600	आईपीपी	ईआर-ओआर-01, ईआर-ओआर-02
	(11वीं योजना में शुरू की गयी यू-			ईआर-ओआर-03, ईआर-ओआर-04
	1,2,3)			ईआर-ओआर-05
2.	मलिब्रह्माणी टीपीपी/मोनेट पावर	1050	आईपीपी	ईआर-ओआर-01, ईआर-ओआर-02
				ईआर-ओआर-03, ईआर-ओआर-04
				ईआर-ओआर-05
3.	कमलगंगा टीपीपी – जीएमआर	1050	आईपीपी	ईआर-ओआर-01, ईआर-ओआर-02
				ईआर-ओआर-03, ईआर-ओआर-04
				ईआर-ओआर-05
4	महालक्ष्मी-नवभारत	1050	आईपीपी	ईआर-ओआर-01, ईआर-ओआर-02
				ईआर-ओआर-03, ईआर-ओआर-04
				ईआर-ओआर-05
5	इंड बराथ – ओडिशा	700	आईपीपी	ईआर-ओआर-01, ईआर-ओआर-02
				ईआर-ओआर-03, ईआर-ओआर-04
				ईआर-ओआर-05
6	जिंदल इंडिया थर्मल	1200	आईपीपी	ईआर-ओआर-01, ईआर-ओआर-02
				ईआर-ओआर-03, ईआर-ओआर-04
				ईआर-ओआर-05

7	लांको बाबंध	2640	आईपीपी	ईआर-ओआर-01, ईआर-ओआर-02
				ईआर-ओआर-03, ईआर-ओआर-04
				ईआर-ओआर-05
8	डेरांग टीपीपी-जेआईटीपीएल	1200	आईपीपी	ईआर-ओआर-01, ईआर-ओआर-02
				ईआर-ओआर-03, ईआर-ओआर-04
				ईआर-ओआर-05

सिक्किम में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी मेगावाट	क्षेत्र	सारणी सं. में पारेषण प्रणाली
1	तीस्ता– III एचईपी	1200	आईपीपी	ईआर-एसएम-01, ईआर-एसएम-02
				ईआर-एसएम-03
2	तीस्ता-VI	500	आईपीपी	ईआर-एसएम-01, ईआर-एसएम-02
				ईआर-एसएम-03
3	रंगीत-IV	120	आईपीपी	ईआर-एसएम-01, ईआर-एसएम-02
				ईआर-एसएम-03
4	भाष्मे	51	आईपीपी	ईआर-एसएम-01, ईआर-एसएम-02
				ईआर-एसएम-03
5	जोरेथांग लूप	96	आईपीपी	ईआर-एसएम-01, ईआर-एसएम-02
				ईआर-एसएम-03
6	रोंगनीचु	96	आईपीपी	ईआर-एसएम-01, ईआर-एसएम-02
				ईआर-एसएम-03
7	चुजाचेन एचईपी (गति)	99	आईपीपी	ईआर-एसएम-01, ईआर-एसएम-02
				ईआर-एसएम-03
8	पनन	300	आईपीपी	ईआर-एसएम-04, ईआर-एसएम-05
				ईआर-एसएम-06
9	टिंगटिंग	99	आईपीपी	ईआर-एसएम-04, ईआर-एसएम-05
				ईआर-एसएम-06
10	ताशिडिंग	97	आईपीपी	ईआर-एसएम-04, ईआर-एसएम-05
				ईआर-एसएम-06
11	डिक्चु	96	राज्य	ईआर-एसएम-04, ईआर-एसएम-05
				ईआर-एसएम-06

पश्चिम बंगाल में अवस्थित उत्पादन परियोजनाएं :

豖.	परियोजना	आईसी मेगावाट	क्षेत्र	सारणी सं. में पारेषण प्रणाली
सं.				
1	रघुनाथपुर चरण-1 (यू-1 & 2)	1200	केंद्र	ईआर-डब्ल्यूबी-01
				ईआर-डब्ल्यूबी-02
2	एनआर द्वारा डीवीसी से विद्युत		केंद्र	ईआर-डब्ल्यूबी-02
	आयात के लिए सामूहिक पारेषण			
3	ईआर में पुलिंग केंद्र के लिए पारेषण		केंद्र	ईआर-डब्ल्यूबी-03
	प्रणाली और भूटान में अवस्थित			
	परियोजनाओं से एनआर/डब्ल्यूआर			
	को विद्युत अंतरण			
4	सीईएससी हल्दिया	600	निजी	ईआर-डब्ल्यूबी-04
5	दुर्गापुर डीपीएल नया(यू-8)	250	राज्य	ईआर-डब्ल्यूबी-05
6	तीस्ता लो डैम IV	160	केंद्र	ईआर-डब्ल्यूबी-01/अध्याय-6
7	तीस्ता लो डैम III	132	केंद्र	ईआर-डब्ल्यूबी-02/ अध्याय -6

7.8.3 पूर्वी क्षेत्र – एसटीयू की राज्य ग्रिड सुदृढ़ीकरण योजनाएं:

क्रम सं.	परियोजना सुदृढ़ीकरण योजना	सारणी संख्या में पारेषण प्रणाली
1	पश्चिम बंगाल में प्रणाली सुदृढ़ीकरण योजना	ईआर-एसएस-डब्ल्यूबी

7.9 पूर्वोत्तर क्षेत्र – पारेषण योजनाएं

7.9.1 पूर्वोत्तर क्षेत्र में योजित प्रणाली सुदृद्धीकरण योजनाएं :

क्रम सं.	परियोजना सुदृढीकरण योजना	सारणी संख्या में पारेषण प्रणाली
1	एनईआर चरण-l और ll में पारेषण का सुदृढ़ीकरण	एनईआर-आईएस-01

7.9.2 पूर्वोत्तर क्षेत्र में उत्पादन योजनाओं को हटाने की योजनाएं

अरुणाचल प्रदेश में अवस्थित उत्पादन परियोजनाएं :

क्र. सं.	परियोजना	आईसी मेगावाट	क्षेत्र	सारणी सं. में पारेषण प्रणाली
1	पारे डिकरांग एचईपी	110	केंद्र	एनईआर-एआरपी-01

2	कामेंग	600	केंद्र	एनईआर-एआरपी-02
				एनईआर-एआरपी-04
3	लोअर सुबानसिरी	2000	केंद्र	एनईआर-एआरपी-03
				एनईआर-एआरपी-04
4	खुईताम	33	आईपीपी	एनईआर-एआरपी-05
5	डेमवे लोअर	341	आईपीपी	एनईआर-एआरपी-06
6	केएसके डिबिन हाइड्रो पावर	120	आईपीपी	एनईआर-एआरपी-07
	लिमिटेड			एनईआर-एआरपी-08
7	आदिशंकर खितम पावर लिमिटेड	66	आईपीपी	एनईआर-एआरपी-07
				एनईआर-एआरपी-08
8	पटेल हाइड्रो प्राइवेट	273	आईपीपी	एनईआर-एआरपी-07
	लिमिटेड(घुंगरी और सासकग्रांग)			एनईआर-एआरपी-08
9	एसईडब्ल्यू नाफ्रा पावर कॉर्पोरेशन	120	आईपीपी	एनईआर-एआरपी-07
	लिमिटेड			एनईआर-एआरपी-08

असम में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी मेगावाट	क्षेत्र	सारणी सं. में पारेषण प्रणाली
1	बोंगाइगांव टीपीपी	250	केंद्र	एनईआर-एएस-01
				एनईआर-एएस -02
2	नामरूप + एक्सटेंशन	100	राज्य	एनईआर-एएस -03

मेघालय में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी मेगावाट	क्षेत्र	सारणी सं. में पारेषण प्रणाली
1	न्यू उम्त्रु	40	राज्य	एनईआर-एमजी-01
2	लेंश्का मिंदतु एचईपी (अतिरिक्त	42	राज्य	एनईआर-एमजी -01/अध्याय-6
	इकाई)			

मिजोरम में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी मेगावाट	क्षेत्र	सारणी सं. में पारेषण प्रणाली
1	ट्यूरियल एचईपी	60	केंद्र	एनईआर-एमजेड-01

त्रिपुरा में अवस्थित उत्पादन परियोजनाएं:

क्र. सं.	परियोजना	आईसी मेगावाट	क्षेत्र	सारणी सं. में पारेषण प्रणाली
1	पल्लाताना	726	केंद्र	एनईआर-टीआर-01
				एनईआर-एएस-02
2	मोनार्चक गैस परियोजना	105	केंद्र	एनईआर-टीआर -02

7.9.3 पूर्वोत्तर क्षेत्र-एसटीयू की राज्य ग्रिड सुदृढीकरण योजनाएं:

क्रम सं.	परियोजना सुदृढ़ीकरण योजना	सारणी संख्या में पारेषण प्रणाली
1	अरुणाचल प्रदेश में प्रणाली सुदृढ़ीकरण योजना	एनईआर-एसएस-एआरपी
2	असम में प्रणाली सुदृढ़ीकरण योजना	एनईआर-एसएस-एएस
3	मणिपुर में प्रणाली सुदृढ़ीकरण योजना	एनईआर-एसएस-एमआर
4	मिजोरम में प्रणाली सुदृढ़ीकरण योजना	एनईआर-एसएस-एमजेड
5	त्रिपुरा में प्रणाली सुदृढ़ीकरण योजना	एनईआर-एसएस-टीआर
6	मेघालय में प्रणाली सुदृढ़ीकरण योजना	एनईआर-एसएस-एमजी
7	नागालैंड में प्रणाली सुदृढ़ीकरण योजना	एनईआर-एसएस-एनजी

7.10 भारत में नवीकरणीय ऊर्जा स्रोतों के लिए पारेषण योजना

豖.	परियोजना	आईसी	सारणी सं. में पारेषण
सं.		मेगावाट	प्रणाली
1	राजस्थान में सौर और नया वायु ऊर्जा परियोजना (2650	2650	आरईएस-आरजे-01
	मेगावाट)		
2	चरंका सौर पार्क में सौर परियोजनाओं के लिए पारेषण प्रणाली	950.5	आरईएस-जीजे-01
	(950.5 मेगावाट)		
3	गुजरात में वायु परियोजनाओं के लिए पारेषण प्रणाली	4500	आरईएस-जीजे -02
4	गुजरात में वायु परियोजनाओं के लिए प्रणाली सुदृढ़ीकरण	-	आरईएस-जीजे -03
	(4500 मेगावाट)		
5	तमिलनाडु में वायु परियोजनाएं (चरण-I)	6300	आरईएस-टीएन-01
6	तमिलनाडु में वायु परियोजनाएं (चरण-II)	5800	आरईएस-टीएन -02

7	आंध्र प्रदेश में वायु परियोजनाएं	3150	आरईएस-टीपी-01
8	कर्नाटक में वायु परियोजनाएं	600	आरईएस-केआर-01

7.11 भूटान, बंगलादेश और नेपाल में उत्पादन परियोजनाओं के लिए निष्कर्षण योजनाएं – भारत में विद्युत के आयात के लिए

क्र. सं.	परियोजना	आईसी मेगावाट	क्षेत्र	सारणी सं. में पारेषण प्रणाली
1	फुनातसांगचु केंद्र-I	1200	-	बीएच-01
2	फुनातसांगचु केंद्र -II	990	-	बीएच-02
3	मांगधेचु	720	-	बीएच-03
4.	भूटान के अधिशेष के आगत के लिए	-	-	बीएच-04
	भारतीय ग्रिड का सुदृढ़ीकरण			

क्र. सं.	परियोजना	सारणी सं. में पारेषण प्रणाली.
1	500 मेगावाट तक की बिजली का आदान-प्रदान सुकर करने के लिए	बीजी-01
	भारत और नेपाल ग्रिड के बीच सीमा पार आपसी संपर्क	

क्र. सं.	परियोजना	सारणी सं. में पारेषण प्रणाली.
1	दोनों देशों के बीच बिजली का आदान-प्रदान सुकर करने के लिए	एनपी -01
	भारत और नेपाल ग्रिड के बीच सीमा पार आपसी संपर्क	

7.11 12वीं योजना/13वीं योजना की आरंभिक अवधि के लिए योजनागत 765 केवी पारेषण प्रणालियां

7.12.1 राष्ट्रीय ग्रिड के विकास और तटीय एवं पिट-हेड क्षेत्रों में परिकल्पित उत्पादन परियोजनाओं के क्लस्टर से भारी मात्रा में कुशलपूर्वक विद्युत प्रदायगी की इसकी क्षमता में 765केवी प्रणाली की भूमिका अहम होगी। 11वीं योजना के दौरान बहुत सारे 765 केवी लाइन को जोड़ा गया है और कुछ लाइन के निर्माणाधीन हैं। 765केवी प्रणाली के बढ़ते रुझान का 12वीं योजना में भी बढ़ने की संभावना है। बहुत सारे नए 765 केवी लाइन और उपकेंद्रों से 300-600 मेगावाट विद्युत को लंबी दूरी तक पहुंचाने की योजना बनाई गई है। उनका वास्तविक कार्यान्वयन संबंधित उत्पादन परियोजनाओं की प्रगति पर निर्भर करेगा। 10वीं योजना की समाप्ति से भारत में 765 केवी प्रणाली का विकास नीचे दर्शाया गया है:

पारेषण लाइन (सीकेएम):

उपकेंद्र (एमवीए):

10वीं योजना → 11वीं योजना →

12वीं योजना/शुरुआती 13वीं योजना (योजना के अनुसार)

7.12.2 योजित और 12वीं योजना के दौरान अथवा शुरुआती 13वीं योजना में कार्यान्वित की जाने वाली 765 केवी पारेषण प्रणालियों को निम्नलिखित क्षेत्रवार सारणी में दिया गया है। इनमें से कुछ 765 केवी उपकेंद्रों को प्रारंभ में 400केवी पर प्रचालित किया जाएगा। उनका 765केवी प्रचालन संबंधित उत्पादन परियोजनाओं की प्रगति पर निर्भर करेगा।

7.12.3 उत्तरी क्षेत्र - 765केवी पारेषण प्रणाली:

उत्तरी क्षेत्र में 765केवी	प्रकार	10वीं	11वीं	12वीं/शुरु	12वीं योजना के अंत
पारेषण लाइन		योजना की	योजना की	आती 13वीं	में/शुरुआती 13वीं
(मूल्य सीकेएम में)		समाप्ति पर	समाप्ति पर	योजना के	योजना में अनुमानित
				लिए	
				योजित	
अनपारा-उन्नांव	एस/सी	409	409		409
उन्नांव-अनपारा 'बी' को	एस/सी		2		2
अनपारा 'सी' में स्थानांतरित					
करना					
किशनपुर-मोगा एल-1 (डब्ल्यू)	एस/सी	275	275		275

किशनपुर-मोगा एल-2 (डब्ल्यू)	एस/सी	287	287		287
टिहरी-मेरठ लाइन-1	एस/सी	186	186		186
टिहरी-मेरठ लाइन -2	एस/सी	184	184		184
टिहरी पुलिंग बिंदु पर टिहरी-	2xएस/सी		8		8
मेरठ लाइन-1 का					
एलआईएलओ					
टिहरी पुलिंग बिंदु पर टिहरी-	2xएस/सी		13		13
मेरठ लाइन-2 का					
एलआईएलओ					
फतेहपुर-आगरा	एस/सी			334	334
बलिया-लखनऊ	एस/सी		320		320
बलिया-लखनऊ (दूसरी	एस/सी			250	250
सीकेटी)					
लखनऊ-बरेली	एस/सी			250	250
लखनऊ-बरेली(दूसरी सीकेटी)	एस/सी			270	270
बरेली-मेरठ	2xएस/सी			400	400
आगरा-मेरठ	एस/सी			260	260
आगरा-झटीकरा	एस/सी			240	240
झटीकरा-भिवानी	एस/सी			80	80
भिवानी-मोगा	एस/सी			273	273
मेरठ-भिवानी	एस/सी			260	260
मेरठ-मोगा	एस/सी			260	260
जयपुर-भिवानी 765केवी	एस/सी			250	250
जयपुर-भिवानी 765केवी	एस/सी			260	260
(दूसरी सीकेटी)					
अंता पीपी - फागी (जयपुर	2Xएस/सी			450	450
दक्षिण-आरवीपीएनएल)					
वाराणसी-कानपुर	डी/सी			331	331
कानपुर-झटीकरा	एस/सी			480	480
I—————————————————————————————————————		i		1	1

ओराई-बुलंदशहर-सोनीपत	एस/सी	525	525
बारा-मेनपुरी	2Xएस/सी	700	700
मेनपुरी-ग्रेटर नोएडा	एस/सी	270	270
उन्नाव-मेनपुरी	एस/सी	175	175
मेनपुरी-हापुड़	एस/सी	250	250
ग्रेटर नोएडा में आगरा – मेरठ	एस/सी	20	20
का एलआईएलओ			
हापुड़-ग्रेटर नोएडा	एस/सी	50	50
फतेहपुर-आगरा (सासन के	एस/सी	340	340
साथ)			

उत्तर क्षेत्र में 765केवी उपकेंद्र	10वीं योजना की	11वीं	12वीं/शुरुआती	12वीं योजना के अंत
(मूल्य एमवीए में)	समाप्ति पर	योजना की	13वीं योजना के	में/शुरुआती 13वीं
		समाप्ति पर	लिए योजित	योजना में अनुमानित
उन्नाव		1000	1000	2000
आगरा			3000	3000
मेरठ			3000	3000
मेरठ (संवर्धन)			1500	1500
लखनऊ		3000		3000
फतेहपुर		3000		3000
बलिया		3000		3000
बरेली			3000	3000
टिहरी			4500	4500
किशनपुर			3000	3000
मोगा (संवर्धन)			3000	3000
बारा (स्विचयार्ड)			3000	3000
भिवानी			2000	2000
झटीकलन			6000	6000
वाराणसी			3000	3000
कानपुर			3000	3000
ओराई			3000	3000

जयपुर	3000	3000
फागी (जयपुर दक्षिण-आरवीपीएनएल)	3000	3000
अंता (बार्न) पीपी जयपुर	3000	3000
बुलंदशहर	3000	3000
हापुड़	3000	3000
सोनीपत	3000	3000
मैनपुरी	2000	2000
ग्रेटर नोएडा	3000	3000

7.12.4 <u>पश्चिमी क्षेत्र</u> - 765केवी पारेषण प्रणाली:

पश्चिमी क्षेत्र में 765केवी	प्रकार	10वीं	11वीं	12वीं/शुरु	12वीं योजना के
पारेषण लाइन		योजना की	योजना की	आती 13वीं	अंत में/शुरुआती
(मूल्य सीकेएम में)		समाप्ति पर	समाप्ति पर	योजना के	13वीं योजना में
				लिए	अनुमानित
				योजित	
ग्वालियर-आगरा लाइन-1	एस/सी	128	128		128
ग्वालियर-आगरा लाइन -2	एस/सी		128		128
ग्वालियर-बीना लाइन -1	एस/सी	235	235		235
ग्वालियर-बीना लाइन -2	एस/सी		233		233
ग्वालियर-बीना लाइन -3	एस/सी			230	230
ग्वालियर-जयपुर 2xएस/सी	2xएस/सी			600	600
रिहंद-III - विंध्याचल	डी/सी			64	64
जबलपुर-ओराई	एस/सी			350	350
ओराई में सतना-वर्धा का	2xएस/सी			60	60
एलआईएलओ					
सिपत-सिवनी लाइन-1	एस/सी		351		351
सिपत-सिवनी लाइन -2	एस/सी		354		354
सिवनी -बीना	एस/सी		293		293
सिवनी -वर्धा लाइन-1	एस/सी		269		269
सिवनी -वर्धा लाइन -2	एस/सी		261		261
विंध्याचल पुल-सतना	2xएस/सी			499	499

सतना-ग्वालियर	2xएस/सी		723	723
विंध्याचल पुल-सासन	एस/सी		6	6
सासन-सतना लाइन-I	एस/सी		257	257
सासन-सतना लाइन -II	एस/सी		260	260
सतना-बीना लाइन-I	एस/सी	274		274
सतना-बीना लाइन -II	एस/सी		276	276
बीना-इंदौर	एस/सी		303	303
वर्धा-जबलपुर पुलिंग स्टेशन	डी/सी		700	700
रायगढ़(कोट्रा)- चंपा	एस/सी		105	105
रायगढ़ (कोट्रा)-	डी/सी		50	50
रायगढ़(तमनार)				
रायपुर-वर्धा	2Xडी/सी		1520	1520
वर्धा-औरंगाबाद	2Xडी/सी		1420	1420
औरंगाबाद-पडघे	डी/सी		279	279
रायगढ़ पीएस(कोट्रा)–रायपुर	डी/सी		250	250
पीएस				
चंपा पीएस – रायपुर पीएस	डी/सी		150	150
चंपा पीएस – धर्मजयगढ़	एस/सी		50	50
इंदौर – वडोदरा 765केवी	एस/सी		293	293
एस/सी				
धर्मजयगढ़ / कोरबा के निकट –	2xडी/सी		1500	1500
जबलपुर पुल				
जबलपुर पुलिंग केंद्र – बीना	डी/सी		473	473
जबलपुर पुलिंग केंद्र – भोपाल	एस/सी		260	260
भोपाल-इंदौर	एस/सी		173	173
शोलापुर-पुणे	एस/सी		269	269
औरंगाबाद-धुले (आईपीटीसी)	एस/सी		188	188
धुले (आईपीटीसी) – वडोदरा	एस/सी		260	260
(पीजी)				
		1	1	

तिरोदा (गोंडिया) – कोरादी III	2xएस/सी		120	120
कोरादी III – अकोला-II	2xएस/सी		270	270
अकोला-II – औरंगाबाद (पीजी)	2xएस/सी		240	240
औरंगाबाद-II- औरंगाबाद	डी/सी		60	60
शोलापुर-पुणे	डी/सी		265	265
डब्ल्यूआर पुलिंग बिंदु	एस/सी	16		16
(बिलासपुर) में डब्ल्यू आर में				
सिपत-सिवनी के दोनों सीकेटी				
का एलआईएलओ (बिलासपुर)				

पश्चिमी क्षेत्र में 765 केवी	10वीं	11वीं योजना	12वीं/शुरु	12वीं योजना के अंत
उपकेंद्र	योजना की	की समाप्ति	आती 13वीं	में/शुरुआती 13वीं योजना में
(मूल्य एमवीए में)	समाप्ति पर	पर	योजना के	अनुमानित
			लिए	
			योजित	
सिवनी		4500		4500
सिपत		1500		1500
ग्वालियर			3000	3000
बीना			2000	2000
वर्धा		4500		4500
सतना			2000	2000
इंदौर			3000	3000
विंध्याचल पुलिंग केंद्र			3000	3000
जबलपुर पुल			3000	3000
शोलापुर			3000	3000
पुणे			3000	3000
औरंगाबाद (पीजी)			3000	3000
औरंगाबाद - II			3000	3000

	3000	3000
	3000	3000
3000	1500	4500
	1500	1500
	6000	6000
	4500	4500
	4500	4500
	9000	9000
	3000	3000
	3000	3000
	3000	3000
	3000	3000
	1500	1500
	3000	3000 3000 1500 1500 6000 4500 4500 9000 3000 3000 3000

7.12.5 दक्षिणी क्षेत्र – 765केवी पारेषण प्रणाली:

दक्षिणी क्षेत्र में	प्रकार	10वीं	11वीं	12वीं/शुरुआती	12वीं योजना के अंत
765केवी पारेषण		योजना की	योजना की	13वीं योजना के	में/शुरुआती 13वीं योजना में
लाइन		समाप्ति पर	समाप्ति पर	लिए योजित	अनुमानित
(मूल्य सीकेएम में)					
तिरूवलम-कुर्नुल	एस/सी			342	342
नेल्लोर पुलिंग केंद्र –	डी/सी			600	600
कुर्नुल					
कुर्नुल – रायचूर	एस/सी			116	116
कुर्नुल – रायचूर (दूसरी	एस/सी			126	126
सीकेटी)					
वेमागिरी पुलिंग केंद्र –	2Xडी/			1000	1000
खम्मम	सी				
खम्मम-हैदराबाद	2Xडी/			1000	1000
	सी				

तुतिकोरिन पुलिंग केंद्र–	डी/सी		738	738
सलेम पुलिंग केंद्र				
सलेम – मधुगिरी	एस/सी		221	221
नागापट्टणम पुलिंग	डी/सी		534	534
स्टेशन-सलेम				
सलेम – मधुगिरी 765	एस/सी		230	230
केवी एस/सी लाइन – 2				
(तुतिकोरिन एलटीओए				
परियोजना के साथ				
योजित लाइन-1)				
मधुगिरी-नरेंद्र	डी/सी		700	700
खम्मम- हैदराबाद	2xडी/		1000	1000
	सी			
हैदराबाद- वर्धा	डी/सी		800	800
नरेंद्र - कोल्हापुर	डी/सी		500	500
श्रीकाकुलम पीपी-	डी/सी		700	700
वेमागिरी-II				
श्रीकाकुलम पीपी -	डी/सी		750	750
अंगुल				

दक्षिणी क्षेत्र में 765केवी उपकेंद्र (मूल्य एमवीए में)	10वीं योजना की समाप्ति पर	11वीं योजना की समाप्ति पर	12वीं/शुरुआती 13वीं योजना के लिए योजित	12वीं योजना के अंत में/शुरुआती 13वीं योजना में अनुमानित
रायचूर			3000	3000
नेल्लोर			3000	3000
कुर्नुल			3000	3000
तुतिकोरिन पुलिंग केंद्र			3000	3000
तिरूवलम			3000	3000
सलेम			3000	3000

मधुगिरी	3000	3000
नागापट्टणम पुलिंग केंद्र	3000	3000
श्रीकालुकम	3000	3000
वेमागिरी (नया पुलिंग केंद्र)	6000	6000
खम्मम (नया पुलिंग केंद्र)	3000	3000
हैदराबाद (नया पुलिंग केंद्र)	3000	3000

7.12.6 पूर्वी क्षेत्र – 765 केवी पारेषण प्रणाली:

पूर्वी क्षेत्र में	प्रकार	10वीं	11वीं	12वीं/शुरुआती	12वीं योजना के अंत
765केवी पारेषण		योजना की	योजना की	13वीं योजना	में/शुरुआती 13वीं योजना
लाइन (मूल्य		समाप्ति पर	समाप्ति पर	के लिए योजित	में अनुमानित
सीकेएम में)					
गया-सासाराम	एस/सी		148		148
अंगुल पीएस –	2xएस/सी			424	424
झारसुगुडा पीएस					
अंगुल पीएस –	डी/सी			430	430
झारसुगुडा पीएस					
तिलैया-गया	एस/सी			67	67
गया-बलिया	एस/सी		228		228
तिलैया-बलिया	डी/सी			300	300
(गया में					
एलआईएलओईडी					
किया जाने वाला					
सीकेटी) डी/सी					
लाइन					
रांची –	2xएस/सी			796	796
बिलासपुर(डब्ल्यू					
आर पी. एस.)					
धरमजयगढ़ में	डी/सी			80	80

रांची-बिलासपुर				
(डब्ल्यूआर पी.एस)				
का एलआईएलओ				
रांची-धर्मजयगढ़	डी/सी		360	360
धर्मजयगढ़-	डी/सी		152	152
झारसुगुडा				

पूर्वी क्षेत्र में 765केवी	10वीं योजना	11वीं	12वीं/शुरुआती 13वीं	12वीं योजना के अंत
उपकेंद्र	की समाप्ति पर	योजना की	योजना के लिए	में/शुरुआती 13वीं योजना
(मूल्य एमवीए में)		समाप्ति पर	योजित	में अनुमानित
सासाराम			3000	3000
रांची			3000	3000
गया		3000	1500	4500
गया (संवर्धन)			1500	1500
अंगुल			6000	6000
अंगुल (संवर्धन)			1500	1500
झारसुगुडा			3000	3000

7.13 12वीं योजना / 13वीं योजना की आरंभिक अवधि के लिए योजनागत एचवीडीसी पारेषण प्रणालियां

7.13.1 11वीं योजना के दौरान बिलया-भिवाड़ी 2500 मेगावाट एचवीडीसी बाइपोल का एक पोल और तालचर-कोलार बाइपोल में 500 मेगावाट के उन्नयन का कार्य पूरा कर लिया गया है। समर्पित पारेषण लाइन के रूप में दूसरे एचवीडीसी बाइपोल अर्थात मुंद्रा-मोहिंदरगढ़ 2500 मेगावाट का निर्माण निजी क्षेत्र के अदानी समूह द्वारा किया जा रहा है। इस लाइन को 11वीं योजना अविध में पूरा किया गया था। 12वीं योजना अथवा शुरुआती 13वीं योजना के दौरान और तीन एचवीडीसी प्रणालियों को पूरा करने की योजना बनाई गई है। ये हैं विश्वनाथ चिरयाली-अलीपुरद्वार-आगरा (600मेगावाट), चंपा-कुरूक्षेत्र चरण- 1 (3000 मेगावाट) और रायगढ़-धुले(4000मेगावाट)। एचवीडीसी टर्मिनल की मेगावाट क्षमता तथा एचवीडीसी बाइपोल की लंबाई दोनों के संबंध में एचवीडीसी प्रणाली की वृद्धि नीचे दर्शाई गई है:

अतः 12वीं योजना/शुरुआती 13वीं योजना की समाप्ति पर ऐसा अनुमान है कि राष्ट्रीय ग्रिड में बैक-टू-बैक चार एचवीडीसी और 9 एचवीडीसी बाइपोल प्रणालियां होंगी।

7.13.2 भारत की एचवीडीसी प्रणाली और इसकी योजना नीचे सारणी में दी जा रही है:

मौजूद और योजित	वोल्टेज	एजेंसी	10वीं	11वीं	12वीं/शुरु	12वीं/13वीं
एचवीडीसी पारेषण लाइन	स्तर, केवी		योजना	योजना की	आती	योजना के
(मूल्य सीकेएम में)			की	समाप्ति पर	13वीं	अंत तक
			समाप्ति		योजना के	संभावित
			पर		लिए	
					योजित	
एचवीडीसी बाइपोल लाइन:						
चंद्रपुर-पडघे	± 500केवी	एमएसईबी	1504	1504		1504
रिहंद-दादरी	± 500केवी	पीजीसी	1634	1634		1634
		आइएल				
तालचर-कोलार	± 500केवी	पीजीसी	2734	2734		2734
		आइएल				
बलिया-भिवाडी	± 500केवी	पीजीसी		1580		1580
		आइएल				
विश्वनाथ-चरियाली आगरा	± 800केवी	पीजीसी			3600	3600
		आइएल				

चंपा-कुरूक्षेत्र	± 800केवी	पीजीसी			3700	3700
		आइएल				
रायगढ़(कोट्रा)-धुले	±	पीजीसी			2000	2000
	600केवी	आइएल				
अलपुरद्वार में विश्वनाथ-	± 800केवी	पीजीसी			140	140
आगरा का एलआईएलओ		आइएल				
मुंद्रा-मोहिंद्रगढ़	± 500केवी	अदानी		1980		1980
न्यू पुगलुर-न्यू हैदराबाद	± 500केवी				1800	1800
कुल			5872	9432	11240	20672

एचवीडीसी टर्मिनल	प्रकार	एजेंसी	10वीं	11वीं	12वीं/शुरु	12वीं/13वीं
क्षमता (बाइपोल/बैक-टू-			योजना की	योजना की	आती	योजना के अंत
बैक) मौजूद और योजित			समाप्ति पर	समाप्ति पर	13वीं	तक संभावित
(मूल्य मेगावाट में)					योजना के	
					लिए	
					योजित	
चंद्रपुर-पडघे	बाइपोल	एमएसई	1500	1500		1500
		बी				
रिहंद-दादरी	बाइपोल	पीजीसी	1500	1500		1500
		आइएल				
तालचर-कोलर	बाइपोल	पीजीसी	2000	2500		2500
		आइएल				
बलिया-भिवाडी	बाइपोल	पीजीसी		1250	* 1250	2500
		आइएल				
विश्वनाथ-आगरा	बाइपोल	पीजीसी			3000	3000
		आइएल				
चंपा-कुरूक्षेत्र	बाइपोल	पीजीसी			3000	3000
		आइएल				
रायगढ़(कोट्रा)-धुले	बाइपोल	पीजीसी			# 4000	4000
		आइएल				
अलपुरद्वार में विश्वनाथ-	बाइपोल	पीजीसी			* 3000	3000
आगरा का एलआईएलओ		आइएल				
मुंद्रा-मोहिंद्रगढ़	बाइपोल	Adani			2500	2500

न्यू पुगलुर-न्यू हैदराबाद	बाइपोल				2500	2500
उप-योग (बाइपोल)			5000	6750	19250	26000
विंध्याचल	बैक टू बैक	पीजीसी	500	500		500
		आइएल				
चंद्रपुर	बैक टू बैक	पीजीसी	1000	1000		1000
		आइएल				
गजुवाका	बैक टू बैक	पीजीसी	1000	1000		1000
		आइएल				
सासाराम	बैक टू बैक	पीजीसी	500	500		500
		आइएल				
उप-योग (बैक टू बैक)			3000	3000	0	3000
कुल – एचवीडीसी			8000	9750	19250	29000
टर्मिनल क्षमता						

^{# - 13}वीं योजना में संभावित कार्यान्वयन

7.14 राष्ट्रीय ग्रिड में पारेषण के लिए वोल्टेज के उच्चतर स्तरों का प्रयोग

7.14.1 उच्च वोल्टेज के प्रयोग के परिणामस्वरूप राइट-ऑफ वे(आरओडब्ल्यू) की आवश्यकता में कमी आती है क्योंकि पारेषण वोल्टेज स्तर में वृद्धि से आरओडब्ल्यू का मेगावाट प्रति मीटर में वृद्धि होती है। उच्च वोल्टेज के उपयोग से पारेषण क्षति में कमी होती है क्योंकि वोल्टेज में वृद्धि के साथ पारेषण लाइन में धारा (करेंट) की कमी होती है। उच्च वोल्टेज शार्ट –सर्किट स्तर भी कम वोल्टेज उपकेंद्रों पर बना रहता है। विभिन्न वोल्टेज स्तर के लिए निर्देशात्मक आंकड़े नीचे तालिकाबद्ध किए गए है:

वोल्टेज	132 केवी	220 केवी	400 केवी	765 केवी	1200 केवी
आरओडब्ल्यू, मीटर(एम)	27	35	46	64	90
क्षमता, (मेगावाट)	80	170	700	3000	8000
मेगावाट/एम (अनुमानित)	3	5	15	45	90

^{* - 11}वीं योजना में पूरी न की जा सकीं

7.14.2 1200 केवी पारेषण प्रणाली

कारीडोर की विद्युत घनता बढ़ाने के लिए 1200 केवी एसी प्रणाली को अगले उच्च एसी वोल्टेज स्तर तक विकसित करने का निर्णय लिया गया है। योजना प्रयास के रूप में औरंगाबाद और वर्धा के बीच उच्च क्षमता पारेषण कारिडोर की आवश्यकता को देखते हुए औरंगाबाद-वर्धा 400 केवी क्वाड डी/सी लाइन जो कि मुंद्रा/यूएमपीपी से विद्युत हटाने वाली पारेषण प्रणाली का भाग है, उसे इस तरह से योजित और तैयार किया गया है कि बाद में इस लाइन को 1200 केवी एस/सी लाइन में परिवर्तित किया जा सके। चूंकि 1200 केवी एसी प्रौद्योगिकी तुलनात्मक रूप से नई है, इसलिए स्वदेशी स्तर पर इसका विकास करने के लिए भारतीय विनिर्माताओं के साथ मिलकर पावरग्रिड मध्यप्रदेश के बीना में एक 1200 केवी यूएचवीएसी परीक्षण स्टेशन की स्थापना कर रहा है। इस परीक्षण स्टेशन में दो 1200 केवी परीक्षण लाइन (एस/सी+डी/सी) का विनिर्माण किया जा रहा है जिसमें अग्रणी विनिर्माता ट्रांसफार्मर, सर्जअरेस्टर, सर्किट ब्रेकर, सीटीसीवीटी और पारेषण लाइन हार्डवेयर इत्यादि जैसे उपकरण मुहैया करा रहे हैं। पावरग्रिड स्थान, सिविल फाउण्डेशन, 1200 केवी लाइन, नियंत्रण और संरक्षण प्रणाली, परीक्षण के विभिन्न उपकरण, सहायक और अग्नि सुरक्षा प्रणाली, 1200 केवी बुशिंग इत्यादि उपलब्ध कराएगा। इन विनिर्माताओं एवं पारंषण उपयोगकर्ताओं द्वारा विभिन्न क्षेत्रीय परीक्षणों के लिए परीक्षण बेज और परीक्षण लाइन का उपयोग किया जाएगा ताकि उपयोगिता क्षेत्र में प्रमाणित 1200 केवी प्रणाली के उपकरण के भारत में विकास के लिए इन परिणामों और फीडबैक का उपयोग किया जा सके और इस क्षेत्र का प्रारंभिक प्रचालनात्मक अनुभव प्राप्त किया जा सके।

7.15 अल्ट्रा मेगा विद्युत परियोजना (यूएमपीपी) के लिए पारेषण प्रणाली

7.15.1 बहु-क्षेत्रीय यूएमपीपी

अल्ट्रा मेगा विद्युत परियोजनाओं से प्राप्त होने वाले विद्युत के लाभार्थी जिनमें से प्रत्येक की क्षमता लगभग 4000 मेगावाट क्षमता है, वे हैं देश के अलग-अलग भागों में अवस्थित विभिन्न राज्य/यूएमपीपी जो कि आवश्यक रूप से बहु-क्षेत्रीय उच्च क्षमता परियोजनाएं होती हैं, उनकी पारेषण प्रणाली भी एक से अधिक क्षेत्रों में फैली हुई हैं और राष्ट्रीय ग्रिड के विकास में भी उनका योगदान है। आज की स्थिति के अनुसार चार यूएमपीपी तैयार किए जा चुके हैं। ये हैं-(1) गुजरात में मुंद्रा यूएमपीपी, (2) मध्य प्रदेश में सासन यूएमपीपी, (3) आंध्र प्रदेश में कृष्णापट्टणम यूएमपीपी और (4) झारखंड में तिलैया यूएमपीपी। लाभार्थियों का विवरण उनके आवंटन के साथ निम्नानुसार है:

क्रम	लाभार्थी राज्य	सासन	मुंद्रा	कृष्णपट्टणम	तिलैया (झारखंड)
सं.		(म.प्र.)	(गुजरात)	(आ.प्र.)	
1.	दिल्ली	450	-	-	150
2.	उत्तर प्रदेश	500	-	-	650
3.	उत्तरांचल	100	-	-	-
4.	पंजाब	600	500	-	450
5.	राजस्थान	400	400	-	250
6.	हरियाणा	450	400	-	200
7.	मध्यप्रदेश	1500	-	-	200
8.	छत्तीसगढ़	-	-	-	-
9.	गुजरात	-	1900	-	300
10.	महाराष्ट्र	-	800	800	300
11.	कर्नाटक	-	-	800	-
12.	तमिलनाडु	-	-	800	-
13.	केरल	-	-	-	-
14.	आंध्र प्रदेश	-	-	1600	-
15.	ओडिशा	-	-	-	-
16.	झारखंड	-	-	-	1000
17.	बिहार	-	-	-	500
	कुल	4000	4000	4000	4000

7.15.2 उपर्युक्त यूएमपीपी के लिए योजित पारेषण प्रणालियां एवं उनकी स्थिति

मुंद्रा यूएमपीपी : मुंद्रा यूएमपीपी के 2012-14 में शुरू होने की संभावना है। उत्पादन यूनिट की स्थापना के अनुरूप चरणबद्ध तीरके से पारेषण प्रणाली की स्थापना की जा रही है। पारेषण प्रणाली का विवरण सारणी में दिया गया है (डब्ल्यूआर-जीजे-02, डब्ल्यूआर-जीजे-03 और डब्ल्यूआर-जीजे-09)।

सासन यूएमपीपी: सासन यूएमपीपी के 2012-14 में शुरू होने की संभावना है। उत्पादन यूनिट की स्थापना के अनुरूप चरणबद्ध तीरके से पारेषण प्रणाली की स्थापना की जा रही है। पारेषण प्रणाली का विवरण सारणी में दिया गया है (डब्ल्यूआर-एमपी-02 और डब्ल्यूआर-जीजे-09)।

तिलैया यूएमपीपी: पारेषण प्रणाली उत्पादन यूनिट की स्थापना के अनुरूप होगा। पारेषण प्रणाली का विवरण सारणी में दिया गया है (ईआर-जेएच-05 और ईआर-जेएच-06)।

कृष्णपट्टणम यूएमपीपी: कृष्णपट्टणम यूएमपीपी पर काम को विकासकर्ताओं द्वारा रोक दिया गया है। उत्पादन परियोजना में विलंब के कारण पारेषण योजना को अलग कर उसका पुर्नसमरूपण किया गया है। उत्पादन परियोजना शुरू करने से पूर्व योजित पारेषण प्रणाली के कुछ तत्वों पर काम किया जा रहा है। योजित पारेषण प्रणाली का विवरण सारणी में दिया गया है (एसआर-एपी-03 और एसआर-एपी-04)।

भविष्य की परियोजनाएं-चेय्यूर(तिमलनाडु) यूएमपीपी, ओडिसा यूएमपीपी और छत्तीसगढ़ यूएमपीपी: ये परियोजनाएं अभी शुरू नहीं की गई हैं क्योंकि बोली प्रक्रिया अभी शुरू नहीं किया गया है। इन परियोजनाओं के लिए प्रायोगिक पारेषण प्रणालियों की पहचान कर ली गई है, तथापि इस दस्तावेज में इसे शामिल नहीं किया गया है।

7.16 उच्च क्षमता विद्युत पारेषण कारीडोर का

मुख्य रूप से ओडिशा, छत्तीसगढ़, सिक्किम, झारखंड, मध्यप्रदेश, तटीय आंध्र प्रदेश और तिमलनाडु में स्थित उत्पादन परियोजनाओं के समूह के लिए लंबी अविध तक अधिकतम उपयोग को ध्यान में रखते हुए 11 उच्च क्षमता विद्युत पारेषण परियोजना कारीडोर योजित किए गए थे। इन कारीडोर की सूची नीचे दी गई है। आईपीपी उत्पादन परियोजनाओं की स्थापना के अनुरूप इन पारेषण कारीडोर की उत्तरोत्तर स्थापना की जाएगी। इन कारीडोर का गठन करने वाले पारेषण प्रणाली तत्वों का उल्लेख इस अध्याय के भाग 7.5-7.8 के अंतर्गत क्रमशः संबंधित उत्पादन परियोजनाओं में किया गया है। कारीडोरवार पारेषण तत्वों का उल्लेख अगले अध्याय में संदर्भित योजना के तहत किया गया है।

- (I) ओडिशा में चरण-I में उत्पादन परियोजनाओं से संबंधित पारेषण प्रणाली
- (II) झारखंड में आईपीपी परियोजनाओं से संबंधित पारेषण प्रणाली
- (III) सिक्किम में आईपीपी परियोजनाओं से संबंधित पारेषण प्रणाली
- (IV) मध्य प्रदेश में बिलासपुर कॉम्प्लेक्स, छत्तीसगढ़ एवं आईपीपी में आईपीपी परियोजनाओं से संबंधित पारेषण प्रणाली

- (V) छत्तीसगढ़ में आईपीपी परियोजनाओं से संबंधित पारेषण प्रणाली
- (VI) कृष्णपट्टणम क्षेत्र, आंध्र प्रदेश में आईपीपी परियोजनाओं से संबंधित पारेषण प्रणाली
- (VII) तुतिकोरिन क्षेत्र, तमिलनाडु में आईपीपी परियोजनाओं से संबंधित पारेषण प्रणाली
- (VIII) श्रीकाकुलम क्षेत्र, आंध्र प्रदेश में आईपीपी परियोजनाओं से संबंधित पारेषण प्रणाली
 - (IX) दूसरे क्षेत्रों को विद्युत **अंत**रण के लिए दक्षिणी क्षेत्रों में आईपीपी परियोजनाओं से संबंधित पारेषण प्रणाली
 - (X) दूसरे क्षेत्रों को विद्युत **अंत**रण के लिए दक्षिणी क्षेत्र के वेमागिरी क्षेत्र में आईपीपी परियोजनाओं से संबंधित पारेषण प्रणाली
 - (XI) दूसरे क्षेत्रों को विद्युत **अं**तरण के लिए दक्षिणी क्षेत्र के नागापट्टिणम/कुड्डालोर क्षेत्र में आईपीपी परियोजनाओं से संबंधित पारेषण प्रणाली

7.17 12वीं योजना अवधि के लिए पारेषण प्रणाली विकास कार्यक्रम

12वीं योजनाविध के दौरान, पारेषण लाइन का लगभग 107440 सिर्किट किलोमीटर (सीकेएम) पारेषण लाइन, 2,70,000 एमवीए एसी परिवर्तन क्षमता और 12750 मेगावाट की एचवीडीसी प्रणालियों को जोड़े जाने का अनुमान है। इस पारषण विस्तार की मुख्य बात है नई एचवीडीसी बाइपोल प्रणालियों जोड़ना और 765 केवी पारेषण प्रणालियों की क्षमता बढाना।

12वीं योजना के दौरान 27000 सीकेएम 765 केवी लाइन और 149000 एमवीए परिवर्तन क्षमता की वृद्धि अनुमानित है। 765 केवी प्रणाली में ऐसी भारी वृद्धि मुख्यतः पिट-हेड और तटीय क्षेत्रों में उत्पादन परियोजनाओं के समूह से विद्युत हटाने के लिए योजित बहुत सारी पुलिंग और डि-पुलिंग केंद्रों एवं लंबी दूरी की पारेषण लाइन के माध्यम से उन्हें देश के भार केंद्रों तक पहुंचाने की योजना के कारण हुआ है। उपर्युक्त के अलावा, 12वीं योजना अवधि के दौरान क्रमशः 45000 सीकेएम की 400 केवी लाइन, 35000 सीकेएम की 220 केवी लाइन और 45000 एमवीए एवं 76000 एमवीए की वृद्धि किए जाने का अनुमान है। 220 केवी प्रणालियां अनुमानित हैं और पिछले रुझानों पर आधारित हैं, और इसे एसटीयू द्वारा 12वीं योजना पारेषण काय्रक्रम तैयार किए जाने के बाद पूरा किया जाएगा। 66केवी, 110 केवी और 132 केवी प्रणालियों की क्षमता में भी वृद्धि की जाएगी। निम्नलिखित सारणी 11वीं योजना अवधि के दौरान भारत में पारेषण प्रणाली (220 केवी और इससे अधिक के वोल्टेज स्तर) विकास और 12वीं योजना अवधि के दौरान इसमें की जाने वाली वृद्धि के अनुमान को दर्शाती है। इन अनुमानों में 12वीं योजना के लिए 88 गीगा वाट उत्पादन की वृद्धि पर विचार किया जा रहा है:

12वीं योजना के अंत में अनुमानित पारेषण लाइन (एसी और एचवीडीसी दोनों) (मूल्य सीकेएम में)	10वीं योजना के अंत में	11वीं योजना में की जाने वाली वृद्धि	11वीं योजना के अंत में	12वीं योजना के दौरान अनुमानित वृद्धि	12वीं योजना के अंत में अनुमानित
एचवीडीसी बाइपोल लाइन	5872	3560	9432	7440	16872
765 केवी	2184	3536	5250	27000	32250
400 केवी	75722	37645	106819	38000	144819
220 केवी	114629	25175	135980	35000	170980
कुल पारेषण लाइन , सीकेएम	198407	69926	257481	107440	364921

पारेषण लाइन (220 केवी और उससे अधिक क्षमता वाली प्रणाली) उपकेंद्र (220 केवी और उससे अधिक क्षमता वाली प्रणाली)

12वीं योजना के अंत में अनुमानित उपकेंद्र(एसी) और एचवीडीसी टर्मिनल (मूल्य एमवीए/मेगावाट में) एचवीडीसी टर्मिनल:	10वीं योजना के अंत में	11वीं योजना में की जाने वाली वृद्धि	11वीं योजना के अंत में	12वीं योजना के दौरान अनुमानित वृद्धि	12वीं योजना के अंत में अनुमानित
एचवीडीसी बैक-टू-बैक	3000	0	3000	0	3000
एचवीडीसी बाइपोल टर्मिपल		1750	6750	-	
	5000			12750	19500
कुल एचवीडीसी टर्मिनल क्षमता, मेगावाट	8000	1750	9750	12750	22500
एसी उपकेंद्र					
765 केवी	0	25000	25000	149000	174000
400 केवी	92942	58058	151027	45000	196027
220 केवी	156497	67277	223774	76000	299774
कुल- एसी उपकेंद्र क्षमता, एमवीए	249439	150362	399801	270000	669801

7.18 12वीं योजना के दौरान पारेषण प्रणाली के विकास के लिए निधियों की आवश्यकता

12वीं योजना के परिदृश्य में 88 गीगा वाट उत्पादन अभिवृद्धि को ध्यान में रखते हुए, पारेषण प्रणाली के विकास के लिए कुल 2,00,000 करोड़ रुपए की निधि आवश्यकता है।

7.19 राष्ट्रीय ग्रिड में नवीकरणीय ऊर्जा स्रोत (आरईएस) उत्पादन का एकीकरण

7.19.1 राष्ट्रीय ग्रिड एवं विद्युत बाजार से एकीकरण

आरईएस पारेषण योजनाएं एकल योजनाएं नहीं हैं और उन्हें राष्ट्रीय ग्रिड और/अथवा क्षेत्रीय/अखिल भारतीय ग्रिड से जोड़े जाने की आवश्यकता है और यह मुख्यत: अंतरित की जाने वाली विद्युत की मात्रा पर निर्भर करेगी। आरईएस ऊर्जा की चर प्रकृति को देखते हुए इन्हें ग्रिड की सहायता की भी आवश्यकता होती है। एकीकरण निश्चित सीमा तक आरईएस उत्पादन की चरता को समायोजित करने के लिए पारेषण और ग्रिड सहायता को विश्वसनीय बनाती है। आरईए उत्पादन की चरता के समायोजना की सीमा ग्रिड के आकार, प्रकृति और प्रचालन पद्धित पर निर्भर करती है। विशेष रूप से (i) आरईएस उत्पादन की मात्रा की तुलना में पारंपरिक ऊर्जा स्रोत की मात्रा और उनकी प्रचालनात्मक विशेषता, (ii) ग्रिड की उत्पादन सुरक्षा, (iii) आरईएस उत्पादन की व्यवहार्यता, (iv) पारेषण अंतरसंपर्क की सीमा(v) ग्रिड कोड एवं ग्रिड की प्रचालन पद्धित, (vi) संतुलन तंत्र, और (vii)नियमन को समर्थ बनाने से (बिना किसी आंशिक अथवा फुल बैक डाउन विभिन्न मौसम/भार क्षमता परिदृश्य के अंतर्गत) राष्ट्रीय ग्रिड में आरईएस के समायोजन की सीमा निर्धारित होगी।

आरईएस के लिए भारत में विद्युत बाजार:

भारत में विद्युत बाजार को विविध बना दिया है जिसमें लंबी अविध, मध्य अविध और अल्प अविध की विद्युत खरीद करार जैसे विभिन्न प्रकार के करारों के तहत विद्युत की खरीद की जाती है। डे-अहेड विद्युत विनिमय का भी प्रावधान है। भारतीय विद्युत ग्रिड को प्रणाली प्रचालक के अनुक्रम के माध्यम से भारतीय विद्युत ग्रिड कोड के अनुसार प्रचालित किया जाता है। कोई केंद्रीय कमान नियंत्रण प्रणाली नहीं है और निर्णय लेने को विकेन्द्रित किया गया है जिसमें प्रत्येक राज्य/डीआईएससीओएम अपना भार उत्पादन संतुलन बनाए रखने के लिए जिम्मेदार होगा। किसी निगम द्वारा समय पर अनुसूची से अलग होने का मामला यूआई तंत्र के माध्यम से वाणिज्यिक रूप से सुलझाया जाता है। नवीकरणीय ऊर्जा उत्पादक को विद्युत बाजार में खरीददार की खोज के लिए बातचीत करनी होगी। इसके पास स्थानीय डीआईएससीओएम के साथ प्राथमिक टैरिफ संविदा अथवा बाजार टैरिफ संविदा स्वीकार करने का विकल्प होगा। इसके पास अनुसूची के आधार पर अंतरराज्यीय संविदा स्वीकार करने का भी विकल्प है। चूंकि देश की नवीकरणीय क्षमता में भारी वृद्धि की जा रही है और आने वाले वर्षों में इसमें और बढ़ोत्तरी होगी। यह अति आवश्यक है कि रजिस्ट्री के सिद्धांत पर एक उपयुक्त तंत्र बनाया जाए जिसमें नवीकरणीय क्षमता के संबंध में पूर्ण सूचना हो ताकि प्रारंभ होने की तिथि और/अथवा कोई अन्य उपयुक्त का इटेरिया पर आधारित निश्चित प्रकार/क्षमता के भाग को शामिल करते हुए प्रौद्योगिकीय-वाणिज्यिक तंत्र को आसानी से कार्यन्वित किया जा सके।

आरईएस की परिवर्तनशीलता:

प्रत्येक डीआईएससीओएम/राज्य को एक पोर्टफोलियो बनाना है जिसमें पारंपरिक एवं नवीकरणीय ऊर्जा स्रोत दोनों से उत्पन्न विद्युत शामिल होगी। अपने पोर्टफोलियो अथवा विद्युत करारों का इष्टतम तरीके से प्रबंधन एवं अपने भार-उत्पादन संतुलन का तरीके से प्रबंधन एवं अपने भार-उत्पादन संतुलन का रखरखाव करने की जिम्मेदारी प्रत्येक डीआईएससीओएम-राज्य की होगी। नवीकरणीय ऊर्जा स्रोतों से

प्राप्त विद्युत परिवर्तनशील होती है और डीआईएससीओएम का अपनी विद्युत खरीद पोर्टफोलियो की प्रबंधन क्षमता को भी प्रभावित करती है। नवीकरणीय ऊर्जा स्रोतों से प्राप्त विद्युत की उपलब्धता में परिवर्तन डीआईएससीओएम/राज्य सीमा में वास्तविक समय अधिक/कम खपत में प्रकट होगी। यदि एसएलडीसी उच्च वायु दाब के अंतर्गत अपने राज्य में पारंपरिक उत्पादन को सहायता नहीं दे पाती है तो इसके कारण आईएसटीएस पर भारी दवाब पड़ेगा और ग्रिड सुरक्षा को खतरा पैदा होगा। वर्तमान में 49.7 एचजेड से 50.2 एचजेड के फ्रिक्वेंसी की अनुमित है। वर्ष 2014 तक नया ग्रिड और एसआर ग्रिडको समक्रमित किए जाने का अनुमान है और तब तक पूरे देश में 765 केवी लाइन का प्रचालन शुरू होने की संभावना है। विद्युत प्रणाली विश्वसनीयता को देखते हुए फ्रिक्वेंसी बैंड को 49.8 से 50.1 एचजेड पर निर्धारित करना आवश्यक है।

ग्रिड और बाजार के एकीकरण के लिए महत्वपूर्ण तथ्य:

पर्याप्त पारेषण: यह नितांत महत्वपूर्ण है कि देश के अधिकांश भाग विशेष रूप से जहां नवीकरणीय ऊर्जा स्रोतों पवन और सौर प्रचुर मात्रा में उपलब्ध हैं, वे सुदृढ़ अंतर-राज्य और अतरा-राज्य पारेषण प्रणालियों से संबद्ध हों तािक नवीकरणीय विद्युत की अधिक उपलब्धता या कम आहरण अथवा अधिक आहरण के कारण प्रणाली की विफलता के मामले में पारेषण प्रणाली पर कोई अतिरिक्त बोझ न पड़े। इसके लिए कनेक्टिविटी और एलटीए विनियमों में आरई उत्पादन से संबंधित प्रावधानों के अनुसार आरई उत्पादन के लिए आईएसटीएस कनेक्टिविटी और पर्याप्त अंतर-राज्यीय विद्युत हटाने की प्रणाली उपलब्ध कराई जाएगी। इसी तरह राज्यों को आरई विद्युत के वितरण के लिए पर्याप्त अंतरा-राज्य पारेषण प्रणाली विकसित करनी चाहिए और सिर्फ आईएसटीएस पर निर्भर नहीं रहना चहिए। अत्यधिक नवीरकणीय ऊर्जा उत्पादन की स्थिति में राज्य अपने पारंपरिक/थर्मल पावर स्टेशन को बंद करने/आंशिक भार पर चलाने के बारे में सोच सकती है। विश्वसनीयता एवं ग्रिड सहायता के लिए राज्यों के माध्यम से अतिरिक्त आईएसटीएस कनेक्टिविटी उपलब्ध कराया जाए।

पूर्वीनुमान एवं अनुसूचन: इसके साथ ही अधिक यथार्थता के साथ वायु और सौर ऊर्जा के संबंध में फार्मवार एवं क्लस्टरवार जानकारी पहले से प्राप्त करने के लिए संबद्ध निगमों द्वारा पूर्वानुमान करने वाले आधुनिक उपकरण होना आवश्यक है ताकि पूर्वयोजित कार्रवाई की जा सके और नवीकरणीय ऊर्जा की परिवर्तनशीलता के कारण ग्रिड पर पड़ने वाले प्रभाव को कम किया जा सके। इसके वायु/सौर ऊर्जा का अधिक से अधिक उपयोग करने में मदद मिलेगी। यह अंतर राज्यीय एवं अंतराराज्य दोनों की दृष्टि से विद्युत की बिक्री के लिए महत्वपूर्ण है। आरई ऊर्जा के अंतर-राज्यीय अनुसूचन के लिए आईईजीसी के पास विशेष प्रबंध है।

ऊर्जा लेखांकन: अंतरा-राज्य सीमाओं पर ऊर्जा पहुंचाने एवं उसका वितरण करने के लिए आपसी जोड़ बिंदुओं एवं अकाउंट पर अंतरापृष्ठ मीटर के प्रतिस्थापन के लिए राज्य निगमों द्वारा आवश्यक उपाय किया जाना आवश्यक है।

भार-उत्पादन संतुलन: भविष्य में नवीकरणीय ऊर्जा का योगदान बहुत बड़ा होगा और हो सकता है कि इसकी परिवर्तनशीलता को यू आई तंत्र के माध्यम से समायोजन संभव नहीं होगा। इन परिस्थितियों में फ्रीक्वेंसी के असामान्य रूप से नीचे आने की स्थिति में स्टोरेज टाइप हाइड्रो स्टेशन अथवा गैस टरबाइन अथवा प्रालनीय मांग प्रबंधन संविदा के प्रचालन जैसे हस्तक्षेप के माध्यम से ग्रिड विद्युत में आए अचानक परिवर्तन का समायोजन करने के लिए उपयुक्त नीति बनाया जाना आवश्यक है। नवीकरणीय ऊर्जा के क्षेत्र में संपन्न राज्य के एसएलडीसी को अपने राज्य के भार-उत्पादन संतुलन में सिक्रयात्मक योगदान देना होगा।

ऊर्जा संग्रहन: नवीकरणीय उर्जा के क्षेत्र में संपन्न राज्य के लिए तार्किक भार-उत्पादन संतुलन प्रभावी रूप से बनाए रखने के लिए ऊर्जा संग्रहन उपकरण/अन्य विकल्प रखना वांछनीय होगा।

आरईएस के लिए रिजस्ट्री: यह अत्यंत आवश्यक है कि रिजस्ट्री के सिद्धांतों पर एक उपयुक्त सांस्थानिक तंत्र बनाया जाए जिसमें स्पष्ट रूप से नवीकरणीय क्षमता के संबंध में पूर्ण सूचना उपलब्ध हो, ताकि प्रारंभ करने की तिथि और/अथवा कोई अन्य उपयुक्त कसौटी के आधार पर क्षमता के निश्चित प्रकार/ भाग को शामिल करने वाले किसी प्रौद्योगिकी–वाणिज्यिक तंत्र को सुगमता से कार्यान्वित किया जा सके।

7.19.2 ग्रिड के साथ आईएस उत्पादन के लिए कनेक्टिवटी योजित करना

स्थानीय ग्रिड की सांस्थिकी, नवीकरणयी ऊर्जा का स्थानिक विवरण एवं हटाए जाने वाले कुल विद्युत पर आधारित मामला-दर-मामला आधार पर नवीकरणीय ऊर्जा उत्पादन परियोजनाओं के लिए पारेषण योजना बनाई जानी है। कुछ राज्यों के पास पर्याप्त नवीकरणयी ऊर्जा स्रोत हैं जबिक दूसरे राज्यों के पास इसका अभाव है। भारी मात्रा में नवीकरणीय ऊर्जा के उत्पादन की स्थिति में स्थानीय रूप से उसका उपयोग करना संभव नहीं होता है विशेषकर जब उसकी अधिक जरूरत नहीं होती है। इसके लिए पारेषण प्रणाली बनाए जाने की आवश्यकता है जिससे नवीरकणीय ऊर्जा उत्पादन को राज्य ग्रिड एवं अंतर-राज्य ग्रिड से जोड़ा जाए। राष्ट्रीय ग्रिड के साथ आरईएस के एकीकरण से उच्च आरईएस उत्पादन की अवधि के दौरान पारंपरिक उत्पादन की बैंकिंग डाउन कम करने और नवीकरणीय उत्पादन की अनुपलब्धता के समय स्थानीय भार केंद्रों की मांग पूरा करने में मदद मिलेगी बशर्ते कि ग्रिड के अन्य भागों में भेजी जाने वाली ऊर्जा पर्याप्त रूप से अधिशेष हो। चूंकि मेगावाट के मामले में अधिकतर नवीरकणीय ऊर्जा स्रोत (आरईएस) उत्पादन का आकार छोटा होता है इसलिए उनका प्रथम ग्रिड से प्रथम संपर्क 11केवी, 22केवी, 33 केवी और 66 केवी पर ही किया जाता है। प्रथम संपर्क बिंदु के बाद ईएचवी पारेषण प्रणाली 110केवी, 132केवी, 220 केवी अथवा 400 केवी पर किया जाता है और यह ईएचवी उपकेंद्रों पर लिए जा रहे विद्युत की मात्रा पर निर्भर करता है।

7.19.3 राष्ट्रीय ग्रिड के साथ आरईएस के एकीकरण के लिए तकनीकी मानक

सीईए ग्रिड से जोड़े जाने वाले पवन उत्पादन के लिए तकनीकी आवश्यकताएं विनिर्दिष्ट करते हुए कनेक्टिवटी मानकों में मसौदा संशोधन जारी करने वाला है जिसके अनुसार उत्पादन स्टेशन अलग-अलग सक्रिय विद्युत सहायता की गतिशील आपूर्ति में सक्षम होंगे और विद्युत घटक को 0.95 लैगिंग से 0.95

लिडिंग सीमाओं के भीतर रखा जा सकेगा। इसके अलावा, उत्पादन स्टेशनों में फाल्ट राइट के माध्यम से 300 मिली सेकेंड की क्षमता नहीं होगी ताकि ग्रिड में बाधा आने की स्थिति में नवीकरणीय ऊर्जा के अचानक समाप्ति से ग्रिड अस्थिर न हो। मसौदा तकनीकी मानकों में भी अधिकतम अनुकूल विरूपण के लिए मानकों को भी विनिर्दिष्ट किया गया है।

7.19.4 राष्ट्रीय ग्रिड के साथ आरईएस के एकीकरण के लिए विनियम

अनुसूचन और वितरण के मामले में पवन और अनुसूचन और वितरण के मामले में पवन और संयंत्र में लचीलापन लाने के लिए सीईआरसी ने भातरीय विद्युत ग्रिंड कोड को संशोधित किया है। सीईआरसी (अंतर-राज्य पारेषण और सबंधित मामलों में कनेक्टिविटी, लंबी अबिध पहुंच और मध्यम अविध खुल पहुंच की मंजूरी देना) विनियमन 2009 के अनुसार 50 मेगावाट से 250 मेगावाट की क्षमता के साथ नवीकरणीय ऊर्जा स्रोतों का प्रयोग करने वाले उत्पादन स्टेशनों के समूह भी अंतर-राज्य पारेषण प्रणाली से प्रत्यक्ष कनेक्टिवटी के लिए सीटीयू को आवेदन दे सकते हैं। आरईएस से विद्युत के अंतरण के लिए पारेषण शुल्क लागू सीईआरसी टैरिफ शर्तों के अनुसार होगा। सौर संयंत्र जोकि 2014 में शुरू किया जाना है, के मामले में आरईएसटीएस शुल्क/घाटा में छूट है। पवन और सौर उत्पादन विकासकर्ता उपर्युक्त प्रावधानों का लाभ ले सकते हैं और अपनी परियोजनाओं से विद्युत हटाने में बेहतर विश्वसनीयता और अखिल-भारत आधार पर राष्ट्रीय ग्रिंड से नवीकरणीय ऊर्जा की बिक्री के लिए अपने आप को आइएसटीएस से जोड़ सकते है।

7.19.5 12 वीं योजना के दौरान आरईएस के एकीकरण के लिए पारेषण प्रणालियां

9वीं योजना के अंत तक देश में नवीरकणीय ऊर्जा उत्पादन क्षमता वृद्धि मात्र 3475 मेगावाट थी। भारत सरकार तथा कई राज्य सरकारों ने नवीकरणीय ऊर्जा उत्पादन के अनुकूल नीतियां और कार्यक्रम बनाए जिसको गित मिली एवं 11वीं योजना के अंत अर्थात (मार्च 2012) तक ये क्षमता 20,000 मेगावाट होगी। इनमें से अधिकतर नवीरकरणीय क्षमता तिमलनाडु, महाराष्ट्र, कर्नाटक, गुजरात और राजस्थान जैसे राज्यों में हैं जो नवीकरणीय ऊर्जा के क्षेत्र में संपन्न राज्य हैं। वर्तमान में ये पांच राज्य देश में प्रतिस्थापित किए गए कुल नवीकरणीय क्षमता का 80% से अधिक है। 12वीं योजना अवधि (2012-17) के लिए 19000-30000 मेगावाट की आरईएस वृद्धि अनुमानित है। नवीकरणीय ऊर्जा के क्षेत्र में संपन्न राज्य हिमाचल प्रदेश, राजस्थान, गुजरात, महाराष्ट्र, तिमलनाडु और आंध्र प्रदेश के राज्य पारेषण निगमों ने अपने राज्यों में आरईएस उत्पादन परियोजनाओं के लिए पारेषण योजनाएं बना ली है। सीईए ने इनमें से कुछ एसटीयू के सहयोग से इन प्रस्तावों की जांच कर ली है/कर रही है और इन्हें योजना प्रक्रिया के अनुसार तैयार किया जाएगा। अभी तक तैयार की गई पारेषण प्रणाली इस अध्याय के अनुबंध 7.6 में दी गई है। इस प्रणाली को 12वीं योजना अवधि के दौरान कार्यान्वित करने की योजना है। यद्यपि इन सभी आरईएस क्षमता वृद्धि को संबंधित राज्यों की आरपीओ (नवीकरणीय खरीद बाध्यता) आवश्यकताओं का पूरा करना है, उनको प्रत्यक्ष/अप्रत्यक्ष रूप से आईएसटीएस के साथ जोड़ने का प्रयास किया जा रहा है ता कि उपर्युक्त पैराग्राफ में उल्लेखित राष्ट्रीय ग्रिड का हिस्सा बन सकें। आरईएस की कुल क्षमता जिसके लिए

पारेषण योजना बनाई जा रही है का कार्य प्रगित पर है और इसकी क्षमता 25000 मेगावाट है (तिमलनाडु-6000 मेगावाट, आंध्र प्रदेश-3000 मेगावाट, गुजरात-5500 मेगावाट, महाराष्ट्र-5000 मेगावाट राजस्थान – 2800 मेगावाट, कर्नाटक – 1600 मेगावाट और हिमाचल प्रदेश-600 मेगावाट)। ऐसा ज्ञात हुआ है कि नवीन और नवीकरणीय ऊर्जा मंत्रालय (एमएनआरई) 12वीं योजनावधि (जो 19000-30000 की सीमा में हैं) के लिए आरईएस उत्पादन वृद्धि की मात्रा और अवस्थिति का मूल्यांकन कर रहा है। इस मूल्यांकन के बाद इन परियोजनाओं के लिए एक व्यापक योजना बनाई जाएगी। भविष्य की आरई परियोजनाओं के लिए मुख्यतः पवन और सौर ऊर्जा के उपयोग की संभाव्यता को देखते हुए सापेक्ष योजना अगले अध्याय में दी गई है।

7.20 13वीं योजना के लिए पारेषण विस्तार मूल्यांकन

उपर्युक्त दिए गए विवरण के अनुसार एलटीए प्रक्रिया के अंतर्गत बहुत सारी उत्पादन परियोजनाओं के लिए पारेषण प्रणाली योजित की गई है जिनमें से अधिकतर परियोजनाओं के 12वीं योजना के दौरान और शेष के 13वीं योजना के दौरान पूरा होने का अनुमान है और यह उत्पादन परियोजना की वास्तविक प्रगति पर निर्भर होगा। 12वीं योजना के दौरान उत्पादन परियोजना और पारेषण प्रणाली की प्रगति और विकास के आधार पर पहले से योजित कुछ पारेषण प्रणालियों की समीक्षा की जानी चाहिए। ये समीक्षा 13वीं योजना में आनेवाली विशिष्ट उत्पादन परियोजनाओं के लिए नई पारेषण आवश्यकताओं की योजना के साथ की जाएगी। ऐसी स्थिति में 13वीं योजना में संभावित भार वृद्धि और प्रदर्श उत्पादन क्षमता वृद्धि परिदृश्य पर विचार करते हुए ही 13वीं योजना के लिए पारेषण क्षमता वृद्धि का मूल्यांकन किया जाएगा। तदनुसार, 13वीं योजना के दौरान पारेषण क्षमता वृद्धि निम्नलिखित मूल्यांकन किया गया है:

13वीं योजना के लिए पारेषण क्षमता वृद्धि (220केवी और इससे अधिक की क्षमता वाली प्रणाली के लिए):

1. पारेषण लाइन : 130 हजार सीकेएम

2. उपकेंद्र (परिणमन) क्षमता : 300 हजार एमवीए

3. निधि आवश्यकता : 200,000 करोड़ रुपए

549542714

अध्याय – 7क

अनुबंध-12वीं योजना पारेषण कार्यक्रम

अनुबंध – 7.1

उत्तरी क्षेत्र- पारेषण योजना विवरण

उत्तरी क्षेत्र-प्रणाली सुदृढ़ीकरण योजनाएं :

	तालिका सं. : एनआर-आईएस-01
उत्तरी ग्रिड के केंद्रीय भाग की 765	1. आगरा-मेरठ 765केवी एस/सी
केवी प्रणाली-भाग-।	2. आगरा-झटिकारा 765केवी एस/सी
	3. झटिकारा-भिवानी 765केवी एस/सी
	4. भिवानी-मोगा 765केवी एस/सी
	5. झटिकारा में मुंडका/बवाना-बमनौली के दोनों सर्किट का
	एलआईएलओ
	तालिका सं.:एनआर-आईएस-02
उत्तरी ग्रिड के केंद्रीय भाग की 765 केवी प्रणाली-भाग-।।	1. आगरा सबस्टेशन विस्तार मार्ग विस्तार
	2. 4x1500 एमवीए 765/400 केवी के साथ झटिकारा में
	765/400/220 केवी सबस्टेशन की स्थापना
	3. 2x1500 एमवीए ट्रांसफार्मेशन क्षमता के साथ मोगा और मेरठ
	400/220 केवी सबस्टेशन का 765/400/220 केवी सबस्टेशन के रूप में सुदृढ़ीकरण
	4. झटिकारा में 240 एमवीएआर बस रिएक्टर
	तालिका सं. : एनआर-आईएस-03
उत्तरी ग्रिड के केंद्रीय भाग की 765	1. मेरठ-भिवानी 765केवी एस/सी
केवी प्रणाली-भाग-।।।	2(क). 2x1000 एमवीए 765/400 केवी आईसीटी के साथ भिवानी
	में 765/400/220 केवी सबस्टेशन की स्थापना
	2(ख). भिवानी में 2x315 एमवीए 400/220 केवी आईसीटी की
	स्थापना
	3. भिवानी में बवाना/बहादुरगढ़-हिसार 400केवी डी/सी के दोनों
	सर्किट का एलआईएलओ
	4. मेरठ में बरेली-मंडौला 400केवीडी/सी के दोनों सर्किट का
	एलआईएलओ
	5. मंडौला बस स्पिलिटिंग
	6. बल्लभगढ़ बस स्पिलिटिंग

	तालिका सं.: एनआर-आईएस-04	
उत्तरी क्षेत्र प्रणाली सुदृढ़ीकरण	1. बागपत में नया 400/220 केवी सबस्टेशन स्थापित करने के लिए	
योजना- XIX	मेरठ-कैथल 400केवी डी/सी (क्वैद एचएसआईएल) के दोनों सर्किट का एलआईएलओ	
	2. 2x500 एमवीए ट्रांसफार्मेशन क्षमता के साथ बागपत में	
	400/220 केवी जीआईएस सबस्टेशन	
	3. कैथल में 80 एमवीएआर बस रिएक्टर	
	4. बागपत में 125 एमवीएआर बस रिएक्टर	
	तालिका सं.: एनआर-आईएस-05	
उत्तरी क्षेत्र प्रणाली सुदृढ़ीकरण	1. हमीरपुर में नया 400/220 केवी सबस्टेशन स्थापित करने के लिए	
योजना-XX	पार्वती पीएस-अमृतसर 400 केवी डी/सी के एक सर्किट का	
	एलआईएलओ	
	2. 2x315 एमवीए ट्रांसफार्मेशन क्षमता के साथ हमीरपुर में	
	400/220 केवी सबस्टेशन	
	तालिका सं.:एनआर-आईएस-06	
उत्तरी क्षेत्र प्रणाली सुदृढीकरण	1. लखनऊ –बरेली 765 केवी एस/सी(सर्किट-I)	
योजना-XXI	2. बरेली–काशीपुर 400 केवी डी/सी (क्वैद)	
	3. काशीपुर–रूड़की 400 केवी डी/सी (क्वैद)	
	4. रूड़की–सहारनपुर 400 केवी डी/सी (क्वैद)	
	5. बरेली में नया 765/400 केवी, 2x1500 एमवीए सबस्टेशन की	
	स्थापना	
	6. बरेली–बरेली 400 केवी 2xडी/सी (क्वैद)	
	तालिका सं.:एनआर-आईएस-07	
उत्तरी क्षेत्र प्रणाली सुदृढ़ीकरण	1. किशनपुर- संबा 400 केवी डी/सी	
योजना-XXII	2. दुलहस्ती-संबा 400 केवी एस/सी	
	3. संबा में नया 400/220 केवी, 2x315 एमवीए सबस्टेशन की	
	स्थापना	
तालिका सं.:एनआर-आईएस-08		
उत्तरी क्षेत्र प्रणाली सुदृढ़ीकरण	 महारानीबाग में 2x500 एमवीए ट्रांसफार्मेशन क्षमता के साथ 	
योजना-XXIII	400/220 केवी का विस्तार	
	2. लखनऊ में1x500 एमवीए ट्रांसफार्मेशन क्षमता के साथ 400/220 केवी का विस्तार	
	4. बहादुरगढ़ में 1x500 एमवीए ट्रांसफार्मेशन क्षमता के साथ	
	400/220 केवी का विस्तार	
तालिका सं.:एनआर-आईएस-09		
उत्तरी क्षेत्र प्रणाली सुदृढ़ीकरण	1. देहरादून-अब्दुल्लापुर 400 केवी डी/सी (क्वैद)	
<u> </u>		

योजना-XXIV	2. दुलहस्ती-किशनपुर 400 केवी डी/सी (क्वैद) – एकल सर्किट स्ट्रंग
	3. बलिया अंत में बाढ़-बलिया 400 केवी डी/सी लाइन पर दो 63
	एमवीएआर लाइन रिएक्टर (प्रत्येक सर्किट पर एक)
	तालिका सं.:एनआर-आईएस-10
उत्तरी क्षेत्र प्रणाली सुदृढ़ीकरण	1. जयपुर-भिवानी 765केवी एस/सी(द्वितीय सर्किट)
योजना-XXV	2. भिवानी (पीजी)-हिसार 400केवी डी/सी लाइन
	3. हिसार में 400केवी डी/सी मोगा-भिवानी लाइन का एलआईएलओ
तालिका सं.:एनआर-आईएस-11	
उत्तरी क्षेत्र प्रणाली सुदृढ़ीकरण	मेरठ-मोगा 765केवी एस/सी लाइन
योजना-XXVI	

	तालिका सं.:एनआर-आईएस-12
उत्तरी क्षेत्र प्रणाली सुदृढ़ीकरण	1 पंचकुला में 400केवी डेहर-पानीपत एस/सी लाइन का
योजना-XXVII	एलआईएलओ
	2 राजपुरा में 400केवी डेहर-भिवानी एस/सी लाइन का
	एलआईएलओ
	3. टिहरी(पीपी)-श्रीनगर 400केवी डी/सी लाइन (क्वैद)
	4. अंता-कोटा 400केवी एस/सी लाइन को समाप्त करने के लिए
	कोटा(पीजी) में एक 400केवी लाइन बे
	5. चमेरा पूलिंग प्वाइंट में दो 220केवी लाइन बे
	तालिका सं.:एनआर-आईएस-13
उत्तरी क्षेत्र प्रणाली सुदृढ़ीकरण	1. एक 400केवी डी/सी (क्वैद) बिहारशरीफ-सासाराम लाइन का
योजना-XXVIII	वाराणसी, बाइपासिंग सासाराम तक विस्तार
	2. वाराणसी में गया-फतेहपुर 765 केवी एस/सी लाइन का
	एलआईएलओ
	3. सासाराम- इलाहाबाद सर्किट को पूर्वी क्षेत्र बस तक बढ़ाया जा सकता है
	4. एचवीडीसी बैक-टू-बैक के जरिए सासाराम-सारनाथ 400केवी
	एस/सी तक बढ़ाया जा सकता है
तालिका सं.:एनआर-आईएस-14	
उत्तरी क्षेत्र बस रिएक्टर योजना	1. गोरखपुर में 125 एमवीएआर बस रिएक्टर
	2. इलाहाबाद में 125 एमवीएआर बस रिएक्टर
	3. मणिपुर में 125 एमवीएआर बस रिएक्टर
	4. हिसार में 125 एमवीएआर बस रिएक्टर
	5. जालंधर में 125 एमवीएआर बस रिएक्टर

	6. कंकरोली में 125 एमवीएआर बस रिएक्टर
	7. नालागढ़ में 125 एमवीएआर बस रिएक्टर
	8. विंध्याचल (एनआर बस) में 2X125 एमवीएआर बस रिएक्टर
	9. अमृतसर में 80 एमवीएआर बस रिएक्टर
तालिका सं.:एनआर-आईएस-15	
उत्तरी क्षेत्र में प्रणाली सुदृढ़ीकरण	1. लखनऊ –बरेली 765केवी एस/सी लाइन (सर्किट-II)
(उत्तरी करणपुरा परियोजना से इस योजना को डिलिंक करने के	2. बरेली– मेरठ 765केवी एस/सी लाइन
बाद)	3. आगरा-गुड़गांव 400केवी डी/सी लाइन (क्वैद)
,	4. गुड़गांव में 2x500 एमवीए, 400/220केवी सबस्टेशन
तालिका सं.:एनआर-आईएस-16	
श्रीनगर(उत्तराखंड) और टिहरी के	श्रीनगर-टिहरी पूलिंग स्टेशन 400 केवी डी/सी (क्वैद)
बीच इंटर कनेक्शन	

उत्तरी क्षेत्र- निष्कर्षण योजना :

तालिका सं.:एनआर-जेके-01		
किशन गंगा (330 मेगावाट) (केन्द्रीय	1. किशनगंगा-अलिस्तांग 220केवी 2Xडी/सी लाइन	
क्षेत्र)	2. अलिस्तांग-न्यू वनपोह 220 केवी डी/सी लाइन	
	3. किशनगंगा- अमरगढ़ 220केवी डी/सी लाइन	
तालिका सं.:एनआर-जेके-02		
बघलिहार II (450 मेगावाट)	बघलिहार एचईपी में 400केवी किशनपुर-न्यू वनपोह डी/सी लाइन के	
(राज्य क्षेत्र)	एक सर्किट का एलआईएलओ	

तालिका सं.: एनआर-एचपी-01		
पार्बती-II (800मेगावाट)	1. पार्बती II-कोलदाम (क्वैद) 400केवी प्रथम सर्किट	
(केन्द्रीय क्षेत्र)	2. पार्बती II-कोलदाम (क्वैद) 400केवी द्वितीय सर्किट	
	3. पार्बती II- कोलदाम (क्वैद) डी/सी भाग	
तालिका सं.: एनआर-एचपी-02		
रामपुर (412 मेगावाट)	1. रामपुर में 400 केवी डी/सी नाथपा-झाकरी-नालागढ़ का	
(केन्द्रीय क्षेत्र)	एलआईएलओ	
	2. लुधियाना-पटियाला 400केवी डी/सी लाइन	
	3. कैथल में 400केवी डी/सी पटियाला-हिसार लाइन का एलआईएलओ	

तालिका सं.: एनआर-एचपी-03		
कोलदाम (800 मेगावाट)	1. कोलदाम-लुधियाना 400केवी डी/सी	
(केन्द्रीय क्षेत्र)	2. कोलदाम-नालागढ़ (क्वैद) 400केवी डी/सी लाइन	
	तालिका सं.: एनआर-एचपी-04	
टिडांग-I (100 मेगावाट) (निजी	टिडांग-l एचईपी- कशांग 20केवी डी/सी लाइन	
क्षेत्र)		
तालिका सं.: एनआर-एचपी-05		
सोरंग (100 मेगावाट) (निजी क्षेत्र)	सोरंग में एस/सी करचम-वांगटू-अब्दुल्लापुर का एलआईएलओ	
तालिका सं.: एनआर-एचपी-06		
यूएचएल-III(100 मेगावाट)	निम्न वोल्टेज पर निष्कर्षण	
(निजी क्षेत्र)		

तालिका सं.: एनआर-एचपी-07	
कशांग I, II, III (3x65 मेगावाट)	कशांग-जंगी पूलिंग स्टेशन 220केवी डी/सी लाइन
(राज्य क्षेत्र)	
	तालिका सं.: एनआर-एचपी-08
सवारा कुड्डू (110 मेगावाट)	सवारा कुड्डू में नाथपा झाकरी-अब्दुल्लापुर 400केवी डी/सी लाइन
(राज्य क्षेत्र)	का एलआईएलओ
	तालिका सं.: एनआर-एचपी-09
कुटेहर (260 मेगावाट)	1. लाहल में 400/220 केवी, 2x315 एमवीए सबस्टेशन की स्थापना
(निजी क्षेत्र)	2. कुटेहर-लाहल 220 केवी डी/सी लाइन
	3. लाहल पीएस-चमेरा पीएस 400 केवी डी/सी लाइन
	तालिका सं.: एनआर-एचपी-10
बजोली होली एचईपी (180	चमेरा पूलिंग प्वाइंट तक एचपीपीटीसीएल प्रणाली (कनेक्टिविटी)
मेगावाट)	
	तालिका सं.: एनआर-एचपी-11
कुनिहर (आंध्रा+ नोगली+माइक्रो)	निम्न वोल्टेज पर निष्कर्षण
(196 मेगावाट) (निजी क्षेत्र)	
तालिका सं.: एनआर-एचपी-12	
सैंज (100 मेगावाट)	1. सैंज-सैंज गांव (एचपीपीटीसीएल) 132केवी डी/सी लाइन
(राज्य क्षेत्र)	2. 400 केवी पार्बती-II- पार्बती पूलिंग प्वाइंट एस/सी लाइन का
	एलआईएलओ
	3. सैंज 400/132केवी सबस्टेशन (150 एमवीए) की स्थापना

	तालिका सं.: एनआर-पीबी-01
नाभा-राजपुरा टीपीएस (2x700	1. 2X315 एमवीए ट्रांसफार्मर के साथ नाभा/पटियाला के समीप
मेगावाट) (निजी क्षेत्र)	400/220 केवी सबस्टेशन का निर्माण
	2. तरनतारण से जालंधर 400 केवी डी/सी के समीप मुक्तसर -
	सबस्टेशन
	3. तरनतारण के समीप 400/220 केवी सबस्टेशन का निर्माण
	4. मोहाली से जालंधर 400 केवी डी/सी के समीप नाभा/पटियाला -
	सबस्टेशन
	5. मोहाली के समीप 400/220 केवी सबस्टेशन का निर्माण
	6. जालंधर से जालंधर सबस्टेशन (पीजी) के समीप 400 केवी
	सबस्टेशन के बीच इंटरकनेक्शन
	7. तरनतारण से अमृतसर सबस्टेशन (पीजी) के समीप 400 केवी
	सबस्टेशन के बीच इंटरकनेक्शन
	तालिका सं.: एनआर-पीबी-02
तलवंडी साबो (3x660 मेगावाट)	1. तलवंडी साबो - मुक्तसर 400केवी डी/सी लाइन
(निजी क्षेत्र)	2. मुक्तसर - पट्टी– नकोडर 400केवी डी/सी लाइन
	3. तलवंडी साबो - धुरि 400केवी डी/सी लाइन
	4. तलवंडी साबो - नकोडर 400 केवी डी/सी (मोगा 400केवी
	पीजीसीआईएल सबस्टेशन पर एक सर्किट का एलआईएलओ)
	5. 2X315 एमवीए मुक्तसर सबस्टेशन की स्थापना
	6. 2X315 एमवीए पट्टी सबस्टेशन की स्थापना
	7. 2X315 एमवीए नकोडर सबस्टेशन की स्थापना
तालिका सं.: एनआर-पीबी-03	
गोविंदवाल साहेब (2x270	1. गोविंदवाल साहेब- फिरोजपुर 220केवी डी/सी
मेगावाट)	2. गोविंदवाल साहेब- खासा (अमृतसर) 220केवी डी/सी
(निजी क्षेत्र)	3. गोविंदवाल साहेब- सुल्तानपुर लोधी 220केवी डी/सी
	4. गोविंदवाल साहेब- कपूरथलाहासा 220केवी डी/सी

	तालिका सं.: एनआर-आरजे-01
आरएपीपी डी (2x700मेगावाट)	1. आरएपीपी–जयपुर (दक्षिण) 400केवी डी/सी लाइन के एक सर्किट
(केन्द्रीय क्षेत्र)	का कोटा में एलआईएलओ स्थापित करना
	2. आरएपीपी – शुजालपुर (पश्चिम क्षेत्र) 400केवी डी/सी लाइन
	3. आरएपीपी-जयपुर एस/सी लाइन के आरएपीपी भाग के अंत
	में1x63एमवीएआर

4. आरएपीपी-शुजालपुर डी/सी लाइन के आरएपीपी भाग के अंत में 1X50 एमवीएआर (प्रत्येक सर्केट) 5. आरएपीपी-डी उत्पादन में 125 एमवीएआर बस रिएक्टर वालिका सं.: एनआर-आरजे-02 रामगढ़-II (160 मेगावाट) (राज्य क्षेत्र) 2. डेचु - तिनवारी 220केवी एस/सी लाइन 3. डेचु - फलोडी 220केवी एस/सी लाइन 4. डेचु (न्यू) (2x100 एमवीए) में 220/132 केवी सबस्टेशन वालिका सं.: एनआर-आरजे-03 छावड़ा स्टेशन-II (500 मेगावाट) और कालीसिंध टीपीएस(2x600 मेगावाट) के लिए संयुक्त विद्युत विकर्षण प्रणाली 765केवी बोल्टेज स्तर पर प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमवीए, 765/400केवी सबस्टेशन के साथ 765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी बोल्टेज स्तर पर प्रणाली 4. अजमेर में 400/220केवी सबस्टेशन जीएसएस के साथ 765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी बोल्टेज स्तर पर प्रणाली 4. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (त्रचेद) लाइन पर कालीसिंध-अंता पूर्लिंग प्याइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्षेद) लाइन पर (छावड़ा-अंता पूर्लिंग प्याइंट (छावड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 1. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-कीवन लाइन का एलआईएलओ 3. किशनगढ़-खालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) 4. प्राचान वार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) 7116का सं.: एनआर-आरजे-04 वरसिंगसर विस्तार (250मेगावाट) (केन्द्रिय क्षेत्र) 1. बरसिंगसर-नार्गर 220केवी एस/सी लाइन 2. खिनवसर (नार्गर) पर सबस्टेशन के साथ वरसिंगसर-खिनवसर-		
5. आरएपीपी-डी उत्पादन में 125 एमवीएआर बस रिएक्टर सिका सं: एनबार-आरणे-02 रामगढ़-II (160 मेगावाट) 1. रामगढ़- डेच्च 220केवी डी/सी लाइन (स्थापित) 2. डेच्च - तिनवारी 220केवी एस/सी लाइन 3. डेच्च - फलोडी 220केवी एस/सी लाइन 4. डेच्च (ल्यू) (2×100 एमवीए) में 220/132 केवी सबस्टेशन सालिका सं: एनबार-आरणे-03 उद्यावड़ा स्टेशन-II (500 मेगावाट) और कालीसिंध टीपीएस(2×600 मेगावाट) के लिए संयुक्त विद्युत तिष्कर्षण प्रणाली 765केवी बोल्टेज स्तर पर प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी 1×125 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी श्रेमराची (जयपुर दक्षिण) 765केवी 2×एम/सी लाइन 2. अंता-फागी (जयपुर दक्षिण) 765केवी 2×एम/सी लाइन 4. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वेद) लाइन पर कालीसिंध-अंता पूलिंग प्वांइट (खावड़ा टीपीएस के लिए) 3. 400केवी डी/सी (क्वेद) लाइन पर (छावड़ा-अंता पूलिंग प्वांइट (खावड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 1. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-विवर लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं: एनबार-आरजे-04 4. वरसिंगसर-नगौर 220केवी एस/सी लाइन (किशनगढ़ टीपीएस के लिए)		4. आरएपीपी आरएपीपी-शुजालपुर डी/सी लाइन के आरएपीपी भाग
रामगढ़-II (160 मेगावाट) (राज्य क्षेत्र) 2. डेचु - तिनवारी 220केवी डी/सी लाइन (स्थापित) 2. डेचु - कलोडी 220केवी एस/सी लाइन 3. डेचु - फलोडी 220केवी एस/सी लाइन 4. डेचु (ल्यू) (2x100 एमवीए) में 220/132 केवी सवस्टेशन राविका सं.: एनबार-आरजे-03 स्टावड़ा स्टेशन-II (500 मेगावाट) और कालीसिंध टीपीएस(2x600 मेगावाट) के लिए संयुक्त विद्युत निष्कर्षण प्रणाली 765केवी वोल्टेज स्तर पर प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमबीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमबीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 400केवी वोल्टेज स्तर पर प्रणाली 400केवी वोल्टेज स्तर पर प्रणाली 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वेद) लाइन पर कालीसिंध-अंता पूर्लिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वेद) लाइन पर (स्टावड़ा-अंता पूर्लिंग प्वाइंट (स्टावड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अंजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-अंजमेर 400केवी डी/सी लाइन 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) राक्तिका सं.: एनबार-आरजे-04 वरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र))		के अंत में 1X50 एमवीएआर (प्रत्येक सर्किट)
रामगढ़-।। (160 मेगावाट) (राज्य क्षेत्र) 2. डेचु - तिनवारी 220केवी डी/सी लाइन (स्थापित) 2. डेचु - फलोडी 220केवी एस/सी लाइन 4. डेचु (न्यू) (2x100 एमचीए) में 220/132 केवी सबस्टेशन तालिका सं.: एनआर-आरजे-03 छाबड़ा स्टेशन-।। (500 मेगावाट) और कालीसिंध टीपीएस(2x600 मेगावाट) के लिए संयुक्त विद्युत तिकर्षण प्रणाली 765केवी वोल्टेज स्तर पर प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमचीए, 765/400केवी सबस्टेशन के साथ 765केवीए, 3x80 एमचीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमबीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमबीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 765केवी, 3x80 एमबीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्याइंट (कालीसिंध टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-इरिरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-इरिरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हरिरापुरा 400केवी डी/सी लाइन 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-वीवर लाइन का एलआईएलओ 3. किशनगढ़-झालाबार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरजे-04 बरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र))		5. आरएपीपी-डी उत्पादन में 125 एमवीएआर बस रिएक्टर
(राज्य क्षेत्र) 2. डेचु - तिनवारी 220केवी एस/सी लाइन 3. डेचु - फलोडी 220केवी एस/सी लाइन 4. डेचु (न्यू) (2x100 एमवीए) में 220/132 केवी सबस्टेशन तातिका सं.: एनआर-आरजे-03 छाबड़ा स्टेशन-॥ (500 मेगावाट) और कालीसिंध टीपीएस(2x600 मेगावाट) के लिए संयुक्त विद्युत तिष्कर्षण प्रणाली 765केवी वोल्टेज स्तर पर प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमवीए, 765/400केवी सबस्टेशन के साथ 765केवीए, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी शेल्टेज स्तर पर प्रणाली 2. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 400केवी वोल्टेज स्तर पर प्रणाली 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 220 केवी वोल्टेज स्तर पर प्रणाली 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं: एनआर-आरजे-04 वरिमंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र)		तालिका सं.: एनआर-आरजे-02
2. डेचु – तिनवारी 220केवी एस/सी लाइन 4. डेचु (प्यू) (2x100 एमवीए) में 220/132 केवी सबस्टेशन तालिका सं.: एनआर-आरजे-03 छाबड़ा स्टेशन-।। (500 मेगाबाट) और कालीसिंध टीपीएस(2x600 मेगाबाट) के लिए संयुक्त विद्युत निष्कर्षण प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमवीए, 765/400केवी सबस्टेशन के साथ 765केवी वोल्टेज स्तर पर प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमवीए, 765/400केवी सबस्टेशन के साथ 765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमवीएआर वास रिएक्टर 2. अंता (बारन) पूलिंग स्टेशन पर 400/765 केवी जीएसएस के साथ 765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 400केवी वोल्टेज स्तर पर प्रणाली 2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 6. भागी (जयपुर दक्षिण)-हीरापुरा पर 220केवी अजमेर-बीवर लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-विवर लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरजे-04 वरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र)	रामगढ़-II (160 मेगावाट)	1. रामगढ़- डेचु 220केवी डी/सी लाइन (स्थापित)
3. डेचु – फलोडी 220केवी एस/सी लाइन 4. डेचु (न्यू) (2x100 एमबीए) में 220/132 केवी सबस्टेशन तालिका सं.: एनआर-आरजे-03 छाबड़ा स्टेशन-॥ (500 मेगावाट) और कालीसिंध टीपीएस(2x600 मेगावाट) के लिए संयुक्त विद्युत निष्कर्षण प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमबीए, 765/400केवी सबस्टेशन के साथ 765केवी बोल्टेज स्तर पर प्रणाली 2. अंता (बारन) पूलिंग स्टेशन पर 400/765 केवी जीएसएस के साथ 765केवी, 3x80 एमबीएआर बाद रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 400केवी बोल्टेज स्तर पर प्रणाली 400केवी बोल्टेज स्तर पर प्रणाली 400केवी बोल्टेज स्तर पर प्रणाली 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-शेत्रापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-शेत्रापुरा पर 220केवी अजमेर-विवर लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तिका सं.: एनआर-आरजे-04 वरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) 1. वरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ वरसिंगसर-खिनवसर-	(राज्य क्षेत्र)	
4. डेचु (न्यू) (2x100 एमवीए) में 220/132 केवी सबस्टेशन तािलिका सं.: एनआर-अरजे-03 छावड़ा स्टेशन-।। (500 मेगावाट) और कालीिसंध टीपीएस (2x600 मेगावाट) के लिए संयुक्त विद्युत निष्कर्षण प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमवीए, 765/400केवी सबस्टेशन के साथ 765केवीए, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमवीएआर लाइन रिएक्टर के दो सेट और 765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी वोण्टेज स्तर पर प्रणाली 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस के साथ 765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वैद) लाइन पर कालीिसंध-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-विवर लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालाबार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तािलिका सं.: एनआर-आरजे-04 वरसिंगसर विस्तार (250मेगावाट) 1. वरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर-वितवसर-		2. डेचु – तिनवारी 220केवी एस/सी लाइन
हाबड़ा स्टेशन-।। (500 मेगावाट) और कालीसिंध टीपीएस(2x600 मेगावाट) के लिए संयुक्त विद्युत निष्कर्षण प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमवीए, 765/400केवी सबस्टेशन के साथ 765केवी वोल्टेज स्तर पर प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमवीए, 765/400केवी सबस्टेशन के साथ 765केवीए, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमवीएआर बस रिएक्टर 2. अंता (बारन) पूलिंग स्टेशन पर 400/765 केवी जीएसएस के साथ 765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 400केवी वोल्टेज स्तर पर प्रणाली 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (क्वालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालाबार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) कार्यसम्पद्धात्वार (250मेगावाट) (केन्द्रीय क्षेत्र) 1. बरसिंगसर-नगरैर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		3. डेचु – फलोडी 220केवी एस/सी लाइन
खाबड़ा स्टेशन-।। (500 मेगावाट) और कालीसिंध टीपीएस(2x600 मेगावाट) के लिए संयुक्त विद्युत निष्कर्षण प्रणाली 765केवी वोल्टेज स्तर पर प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमवीए, 765/400केवी सबस्टेशन के साथ 765केवीए, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमवीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/मी लाइन 400केवी वोल्टेज स्तर पर प्रणाली 2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (खाबड़ा-अंता पूलिंग प्वाइंट (खाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-झरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-झरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-झरापुरा 400केवी डी/सी लाइन 6. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 7. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 7. किशनगढ़-झालाबार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) 7. कालिका सं.: एनआर-अरफे-04 8रसिंगसर विस्तार (250मेगावाट) 7. विनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		4. डेचु (न्यू) (2x100 एमवीए) में 220/132 केवी सबस्टेशन
तिष्कर्षण प्रणाली 765केवी वोल्टेज स्तर पर प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमवीए, 765/400केवी सबस्टेशन के साथ 765केवीए, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमवीएआर बस रिएक्टर 2. अंता (बारन) पूलिंग स्टेशन पर 400/765 केवी जीएसएस के साथ 765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 400केवी वोल्टेज स्तर पर प्रणाली 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 220 केवी वोल्टेज स्तर पर प्रणाली 1. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-वीवर लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालाबार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ वरसिंगसर-खिनवसर-		तालिका सं.: एनआर-आरजे-03
765केवी बोल्टेज स्तर पर प्रणाली 1. फागी (जयपुर दक्षिण) 3000 एमवीए, 765/400केवी सबस्टेशन के साथ 765केवीए, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमवीएआर वास रिएक्टर 2. अंता (बारन) पूलिंग स्टेशन पर 400/765 केवी जीएसएस के साथ 765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 400केवी वोल्टेज स्तर पर प्रणाली 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 6. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 7. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरजे-04 वरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) (केन्द्रीय क्षेत्र) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-	छाबड़ा स्टेशन-।। (500 मेगावाट) औ	र कालीसिंध टीपीएस(2x600 मेगावाट) के लिए संयुक्त विद्युत
साथ 765केवीए, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट और 400केवी 1x125 एमवीएआर बस रिएक्टर 2. अंता (बारन) पूलिंग स्टेशन पर 400/765 केवी जीएसएस के साथ 765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 400केवी वोल्टेज स्तर पर प्रणाली 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-जजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन वाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरके-04 वरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		
400केवी 1x125 एमबीएआर बस रिएक्टर 2. अंता (बारन) पूलिंग स्टेशन पर 400/765 केवी जीएसएस के साथ 765केवी, 3x80 एमबीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 400केवी वोल्टेज स्तर पर प्रणाली 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 220 केवी वोल्टेज स्तर पर प्रणाली 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आपजे-04 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-	765केवी वोल्टेज स्तर पर प्रणाली	
2. अंता (बारन) पूलिंग स्टेशन पर 400/765 केवी जीएसएस के साथ 765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 400केवी वोल्टेज स्तर पर प्रणाली 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 1. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-बीवर लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरजे-04 बरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		
765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट 3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 400केवी वोल्टेज स्तर पर प्रणाली 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 1. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-बीवर लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरजे-04 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		400केवी 1x125 एमवीएआर बस रिएक्टर
3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन 400केवी वोल्टेज स्तर पर प्रणाली 1. अजमेर में 400/220केवी सबस्टेशन जीएसएस 2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 1. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-बीवर लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरजे-04 बरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 6. खनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		2. अंता (बारन) पूलिंग स्टेशन पर 400/765 केवी जीएसएस के साथ
400केवी वोल्टेज स्तर पर प्रणाली1. अजमेर में 400/220केवी सबस्टेशन जीएसएस2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए)3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए)4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन220 केवी वोल्टेज स्तर पर प्रणाली1. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-बीवर लाइन का एलआईएलओ2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए)तालिका सं.: एनआर-आरजे-04वरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र)1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		765केवी, 3x80 एमवीएआर लाइन रिएक्टर के दो सेट
2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट (कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वाइंट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 1. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-बीवर लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरजे-04 बरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		3. अंता-फागी (जयपुर दक्षिण) 765केवी 2xएस/सी लाइन
(कालीसिंध टीपीएस के लिए) 3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वांइट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 1. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-बीवर लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) कालिका सं.: एनआर-आरजे-04 बरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-	400केवी वोल्टेज स्तर पर प्रणाली	1. अजमेर में 400/220केवी सबस्टेशन जीएसएस
3. 400केवी डी/सी (क्वैद) लाइन पर (छाबड़ा-अंता पूलिंग प्वांइट (छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 1. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-बीवर लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरजे-04 बरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		2. 400केवी डी/सी (क्वैद) लाइन पर कालीसिंध-अंता पूलिंग प्वाइंट
(छाबड़ा टीपीएस के लिए) 4. फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन 5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन 1. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-बीवर लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ 3. किशनगढ़-झालाबार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरजे-04 बरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		(कालीसिंध टीपीएस के लिए)
4.फागी (जयपुर दक्षिण)-अजमेर 400केवी डी/सी लाइन5.फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन220 केवी वोल्टेज स्तर पर प्रणाली1.अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-बीवर लाइन का एलआईएलओ2.अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़ लाइन का एलआईएलओ3.किशनगढ़-झालाबार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए)तालिका सं.: एनआर-आरजे-04बरसिंगसर विस्तार (250मेगाबाट)1.बरसिंगसर-नगौर 220केवी एस/सी लाइन(केन्द्रीय क्षेत्र)2.खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		
220 केवी वोल्टेज स्तर पर प्रणाली1. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-बीवर लाइन का एलआईएलओ2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-िकशनगढ़ लाइन का एलआईएलओ3. िकशनगढ़-झालावार 220केवी डी/सी लाइन (िकशनगढ़ टीपीएस के लिए)तालिका सं.: एनआर-आरजे-04बरसिंगसर विस्तार (250मेगावाट)1. बरसिंगसर-नगौर 220केवी एस/सी लाइन(केन्द्रीय क्षेत्र)2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		
लाइन का एलआईएलओ 2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-िकशनगढ़ लाइन का एलआईएलओ 3. िकशनगढ़-झालावार 220केवी डी/सी लाइन (िकशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरजे-04 बरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-िखनवसर-		5. फागी (जयपुर दक्षिण)-हीरापुरा 400केवी डी/सी लाइन
2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-िकशनगढ़ लाइन का एलआईएलओ3. िकशनगढ़-झालावार 220केवी डी/सी लाइन (िकशनगढ़ टीपीएस के लिए)तालिका सं.: एनआर-आरजे-04बरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र)1. बरसिंगसर-नगौर 220केवी एस/सी लाइन2. िखनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-िखनवसर-	220 केवी वोल्टेज स्तर पर प्रणाली	
लाइन का एलआईएलओ 3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरजे-04 बरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		लाइन का एलआईएलओ
3. किशनगढ़-झालावार 220केवी डी/सी लाइन (किशनगढ़ टीपीएस के लिए) तालिका सं.: एनआर-आरजे-04 बरसिंगसर विस्तार (250मेगावाट) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन (केन्द्रीय क्षेत्र) 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		2. अजमेर(400/220केवी) जीएसएस पर 220केवी अजमेर-किशनगढ़
लिए) तालिका सं.: एनआर-आरजे-04 बरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		•
तालिका सं.: एनआर-आरजे-04 बरसिंगसर विस्तार (250मेगावाट) (केन्द्रीय क्षेत्र) 1. बरसिंगसर-नगौर 220केवी एस/सी लाइन 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-		_
बरसिंगसर विस्तार (250मेगावाट)	,	
(केन्द्रीय क्षेत्र) 2. खिनवसर (नागौर) पर सबस्टेशन के साथ बरसिंगसर-खिनवसर-	 बरसिंगसर विस्तार (250मेगावाट)	
	,	
। मापालग्७ ८८∪कवाएस/सा लाइग		भोपालगढ़ 220केवीएस/सी लाइन

	3. खिनवसर 220/132केवी सबस्टेशन की स्थापना
तालिका सं.: एनआर-आरजे-05	
श्री सिमेंट लिमिटेड (300 मेगावाट)	1. 80 एमवीएआर बस रिएक्टर के साथ उत्पादन स्विचयार्ड पर
(आईपीपी)	कोटा-मेरिआ 400केवी डी/सी लाइन के एक सर्किट का
	एलआईएलओ (कनेक्टिविटी)

	तालिका सं.: एनआर-यूके-01	
तपोवन विष्णुगढ़ (520मेगावाट)	1. तपोवन विष्णुगढ़ एचईपी- कुंवारीपास 400केवी डी/सी लाइन	
(केन्द्रीय क्षेत्र)	2. कुंवारीपास पर विष्णु प्रयाग-मुजफ्फरनगर 400 केवी डी/सी लाइन	
	के एक सर्किट का एलआईएलओ	
	3. कुंवारीपास-कर्णप्रयाग 400केवी डी/सी लाइन	
	4. कर्णप्रयाग-श्रीनगर 400केवी डी/सी लाइन	
	5. कर्णप्रयाग पर कुंवारीपास-श्रीनगर 400केवी डी/सी लाइन का	
	एलआईएलओ	
तालिका सं.: एनआर-यूके-02		
सिंगोली भटवारी (99 मेगावाट)	सिंगोली भटवारी में बारंवारी-श्रीनगर 220केवी डी/सी लाइन का	
(निजी क्षेत्र)	एलआईएलओ	
तालिका सं.: एनआर-यूके-03		
फटा ब्योंग (76 मेगावाट)	1. फटा ब्योंग में गौरीकुंड रामवाड़ा –बारंबारी 132केवी एस/सी का	
(निजी क्षेत्र)	एलआईएलओ	
	2. बारंबारी-श्रीनगर 220केवी डी/सी लाइन	
	तालिका सं.: एनआर-यूके-04	
धौली गंगा +रूपसियाबागर	1. धौली गंगा – पिथौरागढ़ 220केवी डी/सी लाइन	
खासियावाड़ा (260मेगावाट)	2. धौली गंगा - बरेली 220केवी डी/सी लाइन	
(केन्द्रीय क्षेत्र)		
	तालिका सं.: एनआर-यूके-05	
कोटलिभेल स्टेशन -1क और ख	1. कोटलिभेल ।। से कोटलिभेल 1क-देहरादून (पीटीसीयूएल) 220	
(515 मेगावाट), कोटलिभेल	केवी डी/सी ट्विन/क्वैद लाइन (कोटलिभेल ।। तक ट्विन और	
स्टेशन-।। (530 मेगावाट) (केन्द्रीय	कोटलिभेल ।।-देहरादून-पीटीसीयूएल के बीच क्वैद)	
क्षेत्र)	2. कोटलिभेल ।ख में कोटलिभेल 1क-देहरादून (पीटीसीयूएल) 220	
,	केवी डी/सी लाइन के एक सर्किट का एलआईएलओ	
	3. पीटीसीयूएल के 220केवी देहरादून सबस्टेशन और पीजी के	
	400/220केवी देहरादून सबस्टेशन के बीच संपर्क। यह संपर्क जोड़े	
	जाने वाले दो सबस्टेशनों की अवस्थिति के आधार पर या तो	
	विस्तारित बस अथवा 220केवी क्वैद डी/सी लाइन द्वारा स्थापित	
	किया जाएगा।	

4. कोटलिभेल एचईपी के लिए क्षेत्रीय योजना के रूप में देहरादून-		
अब्दुल्लापुर 400 केवी डी/सी लाइन		
तालिका सं.: एनआर-यूके-06		
1. टिहरी पीएसपी – टिहरी पूलिंग स्टेशन (क्वैद) 400केवी एस/सी		
लाइन		
2. 765केवीएस/सी लाइन पर टिहरी पूलिंग प्वाइंट-मेरठ लाइन की		
चार्जिंग		
3. टिहरी पुल पर 765/400 केवी, 3x1500 एमवीए सबस्टेशन की		
स्थापना (स्थान की समस्या के कारण टिहरी पूलिंग स्टेशन		
जीआईएस मोड में होगा)		
4. मेरठ में 765/400 केवी, 1x1500 एमवीए सबस्टेशन		
मेरठ में 765 केवी स्तर पर प्रचालन के लिए सीरीज कैपेसिटर का		
संशोधन		
तालिका सं.: एनआर-यूके-07		
लता तपोवन –जोशी मठ 220केवी डी/सी लाइन		
तालिका सं.: एनआर-यूके-08		
पाला मनेरी में लोहारी नागपाला-कोटेश्वर 400केवी डी/सी लाइन		
का एलआईएलओ		
(राज्य क्षेत्र) का एलआईएलओं तालिका सं.: एनआर-यूके-09		
उत्पादन स्विचयार्ड पर काशीपुर –रुड़ की 400केवी डी/सी लाइन के		
एक सर्किट का एलआईएलओ		
तालिका सं.: एनआर-यूके-10		
1. श्रीनगर - काशीपुर 400केवी डी/सी लाइन		
2. श्रीनगर-एचईपी 400केवी डी/सी लाइन		
3. श्रीनगर में विष्णुप्रयाग-मुजफ्फरनगर 400केवी लाइन का		
एलआईएलओ		

पश्चिमी क्षेत्र के रिहंद एसटीपीपी-।।।(2X500 मेगावाट) और विंध्याचल एसटीपीपी -IV (2X500 मेगावाट) के लिए संयुक्त प्रणाली (केन्द्रीय क्षेत्र).

तालिका सं.: एनआर-यूपी-01

- 1. रिहंद-III- विंध्याचल पूल 765 केवी डी/सी (शुरूआत में 400 केवी पर प्रचालित करने के लिए)
- 2. विंध्याचल-IV विंध्याचल पूल 400 केवी डी/सी (क्वैद)
- 3. विंध्याचल पूल-सतना 765 केवी 2x एस/सी
- 4. सतना ग्वालियर 765 केवी 2xएस/सी
- 5. ग्वालियर जयपुर (दक्षिण) 765 केवी एस/सी
- 6. विंध्याचल पूल-सासन 765 केवी एस/सी
- 7. विंध्याचल पूल में 765/400केवी, 2x1500 एमवीए सबस्टेशन की स्थापना

तालिका सं.: एनआर-यूपी-02	
सिंगरौली स्टेशन-III (500मेगावाट)	1. सिंगरौली-इलाहाबाद 400केवी एस/सी लाइन
	2. इलाहाबाद-कानपुर 400केवी डी/सी लाइन
	तालिका सं.: एनआर-यूपी-03
बारा टीपीएस (3X660मेगावाट)	1. बारा उत्पादन योजना की 765केवी स्तर तक स्थापना
(निजी क्षेत्र),	2. बारा स्विचयार्ड में 2x1500एमवीए के साथ 765 केवी और 400
करछना (2x660मेगावाट) (निजी क्षेत्र) और	केवी स्तर (7x500 एमवीए प्रथम चरण यूनिट) 765/400 आईसीटी
्र मेजा जेवी (1320मेगावाट)	3. 400/220केवी 2x315 एमवीए आईसीटी के साथ रीवा रोड
्र (केन्द्रीय क्षेत्र) के लिए संयुक्त प्रणाली	इलाहाबाद में 400केवी सबस्टेशन की स्थापना
	4. करचना और मेगा उत्पादन योजना की 400केवी स्तर तक स्थापना
	5. रीवा रोड इलाहाबाद में 400केवी ओबरा-पनकी लाइन का एलआईएलओ
	6. मेजा-बारा 400केवी क्वैद डी/सी लाइन
	7. मेजा-रीवा रोड (इलाहाबाद) 400केवी क्वैद डी/सी लाइन
	8. करचना-बारा 400केवी क्वैद डी/सी लाइन
	9. करचना-रीवा रोड (इलाहाबाद)) 400केवी क्वैद डी/सी लाइन
	10. बारा-मैनपुरी 765केवी 2xएस/सी लाइनें
	11. मैनपुरी-ग्रेटर नोएडा 765केवी एस/सी
	12. ग्रेटर नोएडा में पीजीसीआईएल की आगरा-मेरठ 765केवी
	एस/सी लाइन का एलआईएलओ
	13. हापुड़-ग्रेटर नोएडा 765केवी एस/सी लाइन

	14. 2x1000एमवीए (7x333 एमवीए, प्रथम चरण यूनिट)
	आईसीटी के साथ मैनपुरी में नया 765/400केवी सबस्टेशन
	15. मैनपुरी 765केवी यूपीपीसीएल – मैनपुरी 400केवी
	पीजीसीआईएल 400केवी क्वैद डी/सी लाइन
	16. 2x1500एमवीए (7x500एमवीए प्रथम चरण यूनिट)
	765/400केवी के साथ ग्रेटर नोएडा में नया 765/400 सबस्टेशन
	17 ग्रेटर नोएडा में नए 765/400केवी सबस्टेशन पर 2x500एमवीए
	400/220केवी आईसीटी
	18. रीवा रोड इलाहाबाद-बांदा 400केवी क्वैद डी/सी लाइन
	19. बांदा-उरई 400केवी क्वैद डी/सी लाइन
	20. उरई-मैनपुरी 765केवी यूपीपीपीसीएल 400केवी क्वैद डी/सी
	लाइन
	21. 400/220 केवी 2x315 एमवीए के साथ बांदा में 400 केवी सबस्टेशन की स्थापना
	22. 400/220केवी 2x315 एमवीए आईसीटी के साथ उरई में
	400केवी सबस्टेशन की स्थापना
	23. मेजा-इलाहाबाद (पीजी) 400केवी डी/सी लाइन
	24. उन्नाव-मैनपुरी 765केवी एस/सी लाइन
	25. मैनपुरी-हापुड़ 765केवी एस/सी लाइन
	तालिका सं.: एनआर-यूपी-04
ललितपुर टीपीएस (3x660	1. ललितपुर-भोगनीपुर –I 765केवी एस/सी लाइन (200किमी)
मेगावाट)	2. ललितपुर-आगरा 765केवी एस/सी लाइन (470 किमी)
(राज्य क्षेत्र)	3. आगरा (यूपी)- आगरा(पीजी) 765केवी एस/सी लाइन (50
(संभावित)	किमी)
	4. ललितपुर 765/220केवी सबस्टेशन (2x300) एमवीए
	5. झांसी-ललितपुर –ललितपुर स्विचयार्ड 220केवी डी/सी लाइन
	(2x50 किमी)

	तालिका सं.: एनआर-यूपी-05
अनपरा डी (1000 मेगावाट)	1. अनपरा बी-अनपरा डी 400केवी डी/सी लाइन
(राज्य क्षेत्र)	2. अनपरा सी-अनपरा डी 765केवी एस/सी लाइन
	3. अनपरा डी- उन्नाव 765केवी एस/सी लाइन
	4. अनपरा डी 765/400केवी सबस्टेशन (2x600+1000) एमवीए

अनुबंध-7.2

पश्चिमी क्षेत्र- पारेषण योजना विवरण

पश्चिमी प्रणाली सुदृढ़ीकरण योजनाएं :

तालिका सं: डब्ल्यूआर-आईएस-01		
दादर नगर हवेली संघ राज्य क्षेत्र	1. दादर नगर हवेली संघ राज्य क्षेत्र में प्रस्तावित काला सबस्टेशन पर	
में 400/220केवी सबस्टेशन की	वापी –नवी मुम्बई 400 केवी डी/सी के दोनों सर्किट का एलआईएलओ	
स्थापना	2. दादर नगर हवेली संघ राज्य क्षेत्र (जीआईएस) में प्रस्तावित काला	
	सबस्टेशन पर 400/220केवी, 2x315 एमवीए सबस्टेशन की स्थापना	
5	तालिका सं: डब्ल्यूआर-आईएस-02	
दमन संघ राज्य क्षेत्र में 400/220	1. मगरवाडा सबस्टेशन पर नवसारी-बोइसारी 400 केवी डी/सी	
केवी सबस्टेशन की स्थापना	लाइन के दोनों सर्किट का एलआईएलओ	
	2. मगरवाड़ा सबस्टेशन (जीआईएस) पर 400/220केवी, 2x315	
	एमवीए सबस्टेशन की स्थापना	
7	ालिका सं: डब्ल्यूआर-आईएस-03	
रायपुर 400केवी सबस्टेशन पर अलग	1. 400 केवी रायपुर बस को बस सेक्शनलाइजर के जरिए चंद्रपुर-1	
बस व्यवस्था और पुन: संरूपण/सीमांत	और चंद्रपुर-2 की मौजूदा लाइन बे के बीच दो भागों में विभाजित	
लाइनों की शिफ्टिंग	करना	
	2. रायपुर में बाइपास 400 केवी घाटापारा-रायपुर- भिलाई लाइन	
	और 400 केवी भाटापारा-भिलाई एस/सी के रूप में लाइन पुन: स्थापित करना	
	3. रायपुर-बी और रायपुर-ए भाग से चंद्रपुर-2 और चंद्रपुर-3 लाइन बे की शिफ्टिंग	

पश्चिम निष्कर्षण योजनाएं :

तालिका सं: डब्ल्यूआर-जीजे-01		
केएपीपी विस्तार यूनिट -	1. काकरापार एनपीपी-नवसारी400केवी डी/सी लाइन	
3,4,(1400मेगावाट)(केन्द्रीय क्षेत्र)	2. काकरापार एनपीपी-वापी 400केवी डी/सी लाइन	
तालिका सं: डब्ल्यूआर-जीजे-02		
मुंद्रा यूएमपीपी (4000मेगावाट) के	1. मुंद्रा-बच्छाउ-रणछोड़पुरा 400 केवी (ट्रिपल स्नोबर्ड) डी/सी	
लिए पारेषण प्रणाली (निजी क्षेत्र)- भाग-क	2. मुंद्रा-जेतपुर 400 केवी (ट्रिपल स्नोबर्ड) डी/सी	
41.1-4	3. मुंद्रा-लिंबडी 400 केवी (ट्रिपल स्नोबर्ड) डी/सी	
तालिका सं: डब्ल्यूआर-जीजे-03		
मुंद्रा यूएमपीपी (4000मेगावाट) के	1. गंधार-नवसारी 400 केवी डी/सी	
लिए पारेषण प्रणाली (निजी क्षेत्र)-	2. नवसारी-बोइसर 400 केवी डी/सी	

ुसम स्व (मिश्रमी श्रेस में मस्त्रीस मा)	
भाग-ख (पश्चिमी क्षेत्र में सुदृढ़ीकरण)	3. वर्धा-औरंगाबाद 400 केवी (क्वैद) डी/सी (बाद में 1200 केवी स्तर
	तक अपग्रेड करने के प्रावधान सहित)
	4. औरंगाबाद-औरंगाबाद (एमएसईटीसीएल) 400 केवी डी/सी क्वैद
	5. नवसारी (पीजी) में कवास-नवसारी 220 केवी डी/सी के दोनों
	सर्किट का एलआईएलओ
	6. बच्छाउ 400/220 केवी 2x315 एमवीए
	7. नवसारी जीआईएस 400/220 केवी , 2x315 एमवीए
	8. वर्धा 765/400 केवी , 3x1500 एमवीए
	9. औरंगाबाद (पीजी) 400/220 केवी 2x315 एमवीए
	10.सिवनी और वर्धा सबस्टेशन में 765 केवी विस्तार
	11.लिंबडी सबस्टेशन में 400 केवी विस्तार
	12.रणछोड़पुरा सबस्टेशन में 400 केवी विस्तार
	13. वर्धा अंत में वर्धा-औरंगाबाद 400केवी डी/सी पर प्रत्येक के लिए
	40% निर्धारित सीरिज क्षतिपूर्ति

तालिका सं: डब्ल्यूआर-जीजे-04	
पिपावव (1200 मेगावाट)	1. पिपावव टीपीएस- पिराना 400 केवी डी/सी लाइन(ट्रिपल) के साथ
(निजी क्षेत्र)	पिपावव में 1X125 एमवीए बस रिएक्टर
	2. पिराना-डेहगाम 400 केवी डी/सी लाइन (द्वितीय)
	3. पिराना में 1X315 एमवीए , 400/220 केवी आईसीटी (तृतीय) की
	स्थापना
तालिका सं: डब्ल्यूआर-जीजे-05	
धुवरन विस्तार (360 मेगावाट)	1. धुवरन में कासोर-वर्तेज 220 केवी एस/सी लाइन का एलआईएलओ
(राज्य क्षेत्र)	2. धुवरन में करमसाद-वर्तेज 220 केवी एस/सी लाइन का
	एलआईएलओ
	तालिका सं: डब्ल्यूआर-जीजे-06
भावनगर (2X250 मेगावाट)	1. बीईसीएल-बोताड़ 220 केवी डी/सी लाइन
(राज्य क्षेत्र)	2. बीईसीएल- सागापारा 220 केवी डी/सी लाइन
	3. बीईसीएल में सर्वकुंडला-वर्तेज 220 केवी लाइन का एलआईएलओ
तालिका सं: डब्ल्यूआर-जीजे-07	
सिक्का विस्तार 2X250मेगावाट)	1. एआई 59 कमान के साथ सिक्का-मोती पनेली220 केवी डी/सी लाइन
(राज्य क्षेत्र)	2. सर्किट सिक्का में जामनगर-जेतपुर 220 केवी डी/सी लाइन के दोनों
	सर्किट का एलआईएलओ

तालिका सं: डब्ल्यूआर-जीजे-08		
पीपावव सीसीपीपी(2x351	1. पीपावव टीपीएस- ढोकाडवा 220केवी डी/सी लाइन	
मेगावाट) जीएसईसीएल (राज्य	2. पीपावव (जीपीपीसी) में सवरकुंडला-महवा 220केवी दोनों लाइनों	
क्षेत्र)	का एलआईएलओ	
	3. महुआ-सागापारा 220केवी डी/सी लाइन	
	तालिका सं: डब्ल्यूआर-जीजे-09	
सासन और मुंद्रा यूएमपीपी के साथ	1. आगरा-सीकर 400केवी डी/सी (क्वैद) लाइन	
उत्तरी क्षेत्र में प्रणाली सुदृढ़ीकरण	2. सीकर-जयपुर (पावरग्रिड) 400केवी डी/सी लाइन	
	3. सीकर-रतनगढ़ 400केवी डी/सी लाइन	
	4. सीकर (पावरग्रिड) पर सीकर (आरवीपीएनएल)-रतनग ढ़	
	(आरवीपीएनएल) 220 केवी डी/सी लाइन के दोनों सर्किट का एलआईएलओ	
	5. पंचकुला में नाथपाझाकरी-अब्दुल्लापुर 400केवी डी/सी के दोनों सर्किट का एलआईएलओ	
	6. सीकर में 2x315 एमवीए ट्रांसफार्मेशन क्षमता के साथ नए	
	400/220केवी सबस्टेशन की स्थापना	
	7. पंचकुला में 2x315 एमवीए ट्रांसफार्मेशन क्षमता के साथ नए	
	400/220केवी सबस्टेशन की स्थापना	
	8. सासाराम-फतेहपुर 765केवी एस/सी लाइन	
	तालिका सं: डब्ल्यूआर-जीजे-10	
उकाई विस्तार (जीएसईसीएल)	1. कोसांबा डी/सी में 400 केवी आसोज-उकाई का एलआईएलओ	
500 मेगावाट (राज्य क्षेत्र)	2. उकाई-कोसांबा 400केवी डी/सी लाइन	
	3. कोसांबा-कोर्णिया 400केवी डी/सी लाइन	
	4. कोसांबा-जगाडिया 220केवी डी/सी लाइन	
तालिका सं: डब्ल्यूआर-जीजे-11		
वनाकबोरी टीपीएस	1. डेहगाम (पीजी) में 400 केवी वनाकबोरी– सोजा लाइन के एक सर्किट	
(जीएसईसीएल) 500 मेगावाट	का एलआईएलओ	
(राज्य क्षेत्र)	2. सोजा-जेर्दा 400केवी डी/सी लाइन	
	3. वनाकबोरी स्विचयार्ड- वनागबोरी (मौजूदा) 400केवी डी/सी लाइन	
	4. वनाकबोरी- सोजा 400केवी डी/सी लाइन	
	तालिका सं: डब्ल्यूआर-जीजे-12	
शपूरजी पल्लोनजी एनर्जी लिमिटेड	1. एसपीईएल – पिराना 400केवी डी/सी लाइन	
(एसपीईएल) (1320 मेगावाट)(निजी क्षेत्र)	2. एसपीईएल - अमरेली 400केवी डी/सी लाइन	

	तालिका सं: डब्ल्यूआर-जीजे-13	
डीजीईएन टीपीएस -टोरेंट पावर	1. डीजीईएनटीपीएस – नवसारी 400केवी डी/सी (ट्रिपल स्नोबर्ड)	
लिमिटेड (1200 मेगावाट) (निजी	2. डीजीईएन टीपीएस -वड़ोदरा 400 केवी डी/सी (ट्विन मूज)	
क्षेत्र)	3. नवसारी-भीस्तन 220 केवी डी/सी लाइन	
417)	· · ·	
तालिका सं: डब्ल्यूआर-जीजे-14		
एनटीपीसी लिमिटेड (गंधार-II)	मौजूदा गंधार 400केवी बस के साथ इंटरकनेक्शन (कनेक्टिविटी)	
(1300 मेगावाट)(केन्द्रीय क्षेत्र)		
तालिका सं: डब्ल्यूआर-जीजे-15		
एनटीपीसी लिमिटेड (कवास-II)	कवास-।। में 400केवी कोसांबा-वापी डी/सी का एलआईएलओ	
(1300 मेगावाट)(केन्द्रीय क्षेत्र)	(कनेक्टिविटी)	
	तालिका सं: डब्ल्यूआर-जीजे-16	
गुजरात फ्लूरोकेमिकल्स लिमिटेड	जीएफएल डब्ल्यूपीपी – बचाउ (पीजी) 220केवी डी/सी (ट्विन जेबरा)	
(जीएफएल)	(कनेक्टिविटी)	
(300 मेगावाट)(निजी क्षेत्र)		
तालिका सं: डब्ल्यूआर-जीजे-17		
सिंटेक्स पावर लिमिटेड (1708	सिंटेक्स-पिराना 400केवी (क्वैद) डी/सी लाइन	
मेगावाट)	(कनेक्टिविटी)	
(निजी क्षेत्र)		

	तालिका सं: डब्ल्यूआर-एमपी-01
उत्तरी क्षेत्र का विंध्याचल	1. रिहंद-III- विंध्याचल पूल 765 केवी डी/सी लाइन (शुरूआत में 400
एसटीपीपी -IV (2X500	केवी पर प्रचालित करने के लिए)
मेगावाट),	2. विंध्याचल-IV - विंध्याचल पूल 400 केवी डी/सी (क्वैद)
रिहंद एसटीपीपी-III (2X500	3. विंध्याचल पूल-सतना 765 केवी 2xएस/सी
मेगावाट) (केन्द्रीय क्षेत्र)	4. सतना-ग्वालियर 765 केवी 2x एस/सी
	5. ग्वालियर-जयपुर (दक्षिण) 765 केवी एस/सी
	6. विंध्याचल पूल-सासन 765 केवी एस/सी
	7. विंध्याचल पूल पर 765/400केवी, 2x1500 एमवीए सबस्टेशन की
	स्थापना
	तालिका सं: डब्ल्यूआर-एमपी-02
सासन यूएमपीपी (3960	1. 765 केवी सासन – सतना लाइन-I
मेगावाट) के लिए पारेषण प्रणाली	2. 765 केवी सासन – सतना लाइन-II

भाग-क	2 705 70 1
माग-या	3. 765 केवी सतना - बीना(पीजी) लाइन-I
	4. 765 केवी सतना - बीना(पीजी) लाइन-II
	5. 765 केवी सासाराम - फतेहपुर लाइन-II
	6. 765 केवी फतेहपुर - आगरा लाइन
	7. 400 केवी बीना (पीजी)-बीना(एमपीपीटीसीएल) लाइन
	8. सासन में विंध्याचल-जबलपुर 400 केवी डी/सी के दोनों सर्किट का एलआईएलओ
सासन यूएमपीपी (3960	1. बीना (पीजी)-इंदौर(पीजी) 765 केवी एस/सी
मेगावाट) के लिए पश्चिमी क्षेत्र में	2. इंदौर(पीजी)-इंदौर (एमपीपीटीसीएल) 400 केवी डी/सी क्वैद
भाग ख क्षेत्रीय प्रणाली सुदृढ़ीकरण	3. इंदौर सबस्टेशन 765/400 केवी, 2x1500 एमवीए
	4. ग्वालियर में नए 765/400 केवी, 2x1500 एमवीए सबस्टेशन की
	स्थापना
	5. बीना (पीजी) में 765/400 केवी, 2x1000 एमवीए सबस्टेशन का
	विस्तार
	6. सतना में नए 765/400 केवी, 2x1000 एमवीए सबस्टेशन की
	स्थापना
	7. आगरा, ग्वालियर, बीना और सिवनी सबस्टेशन में 765 केवी
	एक्सटेंशन ०. २०५ के के के का का कि की का का की कार्यांक के कार्यांक के किए
	 765 केवी के स्तर पर सिवनी-बीना एस/सी लाइन के चार्जिंग के लिए 765 केवी बे का प्रावधान
	तालिका सं: डब्ल्यूआर-एमपी-03
बीना पावर (2x250 मेगावाट)	1. बीना टीपीएस से डी/सी टावर पर कॉमन प्वाइंट तक 400केवी डी/सी
(निजी क्षेत्र)	ा. बागा टापाएस स आसा टापर पर कामग ज्याइट तक 400कवा आसा लाइन
(।नजा क्षत्र)	2. उपर्युक्त् में से एक सर्किट का बीना (पीजी) तथा दूसरे का बीना
	(एमपीटीसीएल) में समापन
	तालिका सं: डब्ल्यूआर-एमपी-04
	1. गंधार-हजिरा 400केवी डी/सी लाइन
महान पावर (1200मेगावाट)	2. महान सबस्टेशन पर 400केवी विंध्याचल-कोरबा लाइन का
(निजी क्षेत्र)	एलआईएलओ
	3. महान-सिपट 400केवी डी/सी लाइन
	4. हजिरा सबस्टेशन 400/220केवी (2x500एमवीए) सबस्टेशन
	तालिका सं: डब्ल्यूआर-एमपी-05
मध्यप्रदेश में उत्पादन परियोजना के	लिए समर्पित पारेषण प्रणाली विंध्याचल पूलिंग प्वाइंट से जुड़ा हुआ है।
विंध्याचल–V (500 मेगावाट)	1. विंध्याचल स्टेशन-IV के साथ इंटरकनेक्शन
(केन्द्रीय क्षेत्र)	

1. आर्यन कोला – विंध्याचल पूलिंग स्टेशन 400केवी डी/सी (उच्च
क्षमता)
2. विंध्याचल पूलिंग स्टेशन पर दो 400 केवी बे
1. डीबी पावर – विंध्याचल पूलिंग स्टेशन 400केवी डी/सी (क्वैद)
लाइन
2. विंध्याचल पूलिंग स्टेशन पर दो 400 केवी बे
1. चित्रांगी टीपीएस-विंध्याचल पूलिंग स्टेशन 765केवी के साथ
765केवी, 1x240एमवीएआर बस रिएक्टर
तालिका सं: डब्ल्यूआर-एमपी-06
1. जयप्रकाश-सतना 400केवी डी/सी (उच्च क्षमता)
2. सतना (पावरग्रिड) पर दो 400 केवी बे
तालिका सं: डब्ल्यूआर-एमपी-07
लेए समर्पित पारेषण प्रणाली जबलपुर पूलिंग प्वाइंट (मोजरबिअर पावर,
ा है।
1. एमबी पावर-जबलपुर पीएस400 केवी डी/सी लाइन (ट्रिपल)
1. टुडे एनर्जी- जबलपुर पीएस 400 केवी डी/सी लाइन(क्वैद)
1. झबुआ पावर - जबलपुर पूलिंग स्टेशन (उच्च क्षमता लाइन)
1. एसजेके टीपीएस – जबलपुर पूलिंग स्टेशन 1x125एमवीएआर बस
रिएक्टर के साथ 400केवी डी/सी (कनेक्टिविटी)
तालिका सं: डब्ल्यूआर-एमपी-08
1. मालवा टीपीएच – पीतमपुर 400 केवी डी/सी लाइन
2. मालवा टीपीएच – जुलवानिया 400 केवी डी/सी लाइन (एक सर्किट
छेगांव से)
3. छेगांव-जुलवानिया 400 केवी डी/सी लाइन
4. मालवा टीपीएच - छेगांव 200 केवी डी/सी लाइन
5. पितमपुर (400केवी)- पितमपुर (220केवी) इंटर कनेक्शन
6. जुलवानिया 400केवी सबस्टेशन पर 220केवी निमरानी-जुलवानिया
के दोनों सर्किट का एलआईएलओ

	तालिका सं: डब्ल्यूआर-एमपी-09
सतपुरा एक्सटेंशन टीपीपी यू-10,11	1. सतपुरा टीपीएच - आस्था 400 केवी डी/सी लाइन
(500मेगावाट)	2. आस्था – इंदौर-II(जेतपुरा) डीसी पर 220केवी एस/सी
(राज्य क्षेत्र)	3. आस्था न्यू 400/220केवी सबस्टेशन (630एमवीए)
	4. आस्था (अतिरिक्त ट्रांसफार्मर) 220/132केवी सबस्टेशन (160
	एमवीए)
	तालिका सं: डब्ल्यूआर-एमपी-10
एस्सार पावर एमपी लिमिटेड	महान टीपीएस चरण-1 उत्पादन परियोजना से 1x125 एमवीएआर
(महान चरण II) (600 मेगावाट)	बस रिएक्टर सहित प्रस्तावित उत्पादन परियोजना स्विचयार्ड तक
(निजी क्षेत्र)	बस विस्तार
	(कनेक्टिविटी)

	तालिका सं: डब्ल्यूआर-एमएच-01	
मौदा एसटीपीएस- I (2X500)	1. मौदा एसटीपीएस– वर्धा 400 केवी डी/सी (क्वैद)	
मेगावाट	2. 400/220 केवी वर्धा सबस्टेशन का विस्तार	
(केन्द्रीय क्षेत्र)		
तालिका सं: डब्ल्यूआर-एमएच-02		
मौदा एसटीपीएस- II (2X660)	1. मौदा -II– बेतुल 400 केवी डी/सी (क्वैद)	
मेगावाट	2. बेतुल – खंडवा 400केवी डी/सी (क्वैद)	
(केन्द्रीय क्षेत्र)	3. खंडवा – रायगढ़ 400केवी डी/सी (द्वितीय)	
	4. बेतुल में 400/220 केवी ,2x315 एमवीए सबस्टेशन	
तालिका सं: डब्ल्यूआर-एमएच-03		
तिरोदा अदानी चरण-1,चरण –II	1. तिरोदा (गोंडिया) - वरोरा 400 केवी डी/सी लाइन (क्वैद)	
(1320मेगावाट+1320मेगावाट)	2. तिरोदा-कोराडी III 765 केवी 2xएस/सी लाइन	
(निजी क्षेत्र)	3. कोराडी-III - अकोला-II 765 केवी 2xएस/सी लाइन	
	4. अकोला-II - औरंगाबाद II 765 केवी 2xएस/सी लाइन	
	5. तिरोदा (गोंडिया) में 2x1500 एमवीए, 765/400 केवी आईसीटी	
	6. औरंगाबाद II-औरंगाबाद (पीजी) 765केवी एस/सी (डी/सी टावर के	
	साथ)	
	7. 2x1500 एमवीए के साथ औरंगाबाद (II) 765/400 केवी सबस्टेशन	
तालिका सं: डब्ल्यूआर-एमएच-04		
इंडिया बुल्स रियलटेक लिमिटेड	1. सिन्नर – नासिक 400केवी डी/सी	
(नासिक)	2. सिन्नर – बाबलेश्वर 400केवी डी/सी लाइन	
चरण- 1& II (5x270 +2x270)		

हेडिया बुल्स-अमरावती नंदगांवपेट वरण- 1 और II (5x270 +2x270) मेगावाट (निजी क्षेत्र) पत्राचन 1 और II (5x270 +2x270) मेगावाट (निजी क्षेत्र) पत्राचन होण्याचेट में अकोला-1-कोराडी-1 400केबी एम/मी लाइन का एलआईएलओ पत्रिका सें डब्ल्यूआर-एमएच-06 आइडियल पावर (बेला टीपीप) (540मेगावाट) (निजी क्षेत्र) पत्रिका सं: डब्ल्यूआर-एमएच-07 शारीवाल ईफ़ास्ट्रक्चर (600 मेगावाट) यू-1,2 (निजी क्षेत्र) पत्राचेट के एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 मेगावाट) (निजी क्षेत्र) पत्राचेट के एल सर्निट का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 मेगावाट) (राज्य क्षेत्र) पत्राचेट (राज्य क्षेत्र) पत्राचेट (विजा केम) तालिका सं: डब्ल्यूआर-एमएच-09 पत्राचेट (राज्य क्षेत्र) पत्राचेट (विजा केम) तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) एमको-वरोरा, महाराष्ट्र (विजा केम) तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) वर्षत्रा करेपावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) शत्राचेट वर्षत्रा करेपाल्य कर्यूआर-एमएच-11 चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) शत्राचेट वर्षत्रा करेपाल्य कर्य हो/मी लाइन वर्षा पीजी 400केवी क्षेत्र हो/मी लाइन वर्षा पीजी 400केवी क्षेत्र हो/मी लाइन वर्षत्र हुप्य-।। में 2x500 एमवीए, 400/220 केवी सवस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 श्रोपाचेट पत्रीची में च्याच्य क्षेत्र हो/मी काइन वर्णता सिकार्य-एमएकी कर्य हो/मी के दोनों सर्निटों का एलआईएलओ क्षेत्र हो/मी के दोनों सर्निटों का एलआईएलओ कर्य हो/मी केवर हो/मी के दोनों सर्निटों का एलआईएलओ कर्य हो/मी केवर हो/मी केवर हो/मी केवर हो/मी केवर हो/मी का देन हें हो पालिकार हो	मेगावाट (निजी क्षेत्र)		
प्रशान 1 और II (5x270 +2x270) मेगावाट (तिजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-06 आइडियल पावर (बेला टीपीप) (540मेगावाट) (तिजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-07 आरीवाल इंफ्रास्ट्रक्चर (600 मेगावाट) यू-1,2 (तिजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-07 आरीवाल इंफ्रास्ट्रक्चर (600 मेगावाट) यू-1,2 (तिजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 मेगावाट) (तिजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 मेगावाट) (तिजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-09 पर्ली (प्रतिस्थापन) यू-8 (250मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 शंद्रपुर II चेपीएस (1000मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-12 शोपावे (1600 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-12 शोपावे (1600 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-13 1. एसीसीसी टीडब्ल्यू 620 स्ववेयर मिमि कंडवरमं के साथ् यूरान-		तालिका सं: डब्ल्यूआर-एमएच-05	
मेगावाट (निजी क्षेत्र) जाविका सं: डब्ल्यूआर-एमएच-06 भेसर्स आइडियल पावर (वेला टीपीप) (540भेगावाट) (निजी क्षेत्र) प्रतिका सं: डब्ल्यूआर-एमएच-07 शारीवाल इंफ्रास्ट्रक्चर (600 मेगावाट) यू-1,2 (तिजी क्षेत्र) प्रतिका सं: डब्ल्यूआर-एमएच-07 शारीवाल इंफ्रास्ट्रक्चर (600 मेगावाट) यू-1,2 (तिजी क्षेत्र) प्रतिका सं: डब्ल्यूआर-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 मेगावाट) (निजी क्षेत्र) प्रतिका सं: डब्ल्यूआर-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 मेगावाट) (तिजी क्षेत्र) पर्ली (प्रतिस्थापन) यू-8 (250भेगावाट) (राज्य क्षेत्र) पर्ली (प्रतिस्थापन) यू-8 (250भेगावाट) (राज्य क्षेत्र) तिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) राज्य क्षेत्र) उत्तरिका सं: डब्ल्यूआर-एमएच-11 कोराडी (1980 मेगावाट) राज्य क्षेत्र) उत्तरिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर ॥ टीपीएस (1000मेगावाट) राज्य क्षेत्र) उत्तरिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर ॥ टीपीएस (1000मेगावाट) राज्य क्षेत्र) उत्तरपुर-॥ वरोरा – वर्धा पीजी 400केवी क्षेत्र डी/सी लाइन प्रतिका सं: डब्ल्यूआर-एमएच-11 उत्तरपुर-॥ वर्धा पीजी 400केवी क्षेत्र डी/सी लाइन उत्तरपुर-॥ वर्धा पीजी 400केवी क्षेत्र डी/सी उत्तरपुर-॥ वर्धा ॥ 400केवी क्षेत्र डी/सी उत्तरपुर-॥ वर्धा ॥ 400केवी क्षेत्र डी/सी उत्तरपुर-॥ वर्धा ॥ 400केवी क्षेत्र डी/सी उत्तरपुर-॥ वर्ध ॥ 400केवी क्षेत्र डी/सी अध्यावे पाले मंजयहन्यू क्षेयर मिम कंडक्टर्स के साथू यूरान- प्रतिका सं: डब्ल्यूआर-एमएच-13 प्रतान सीसीसपीपी (1040मेगावाट) उत्तरपुर- पमएच-13 प्रतान सीसीसपीपी (1040मेगावाट) उत्तरपुर- पमएच-13 प्रतान सीसीसपीपी (1040मेगावाट) उत्तरपुर- पमएच-13	इंडिया बुल्स-अमरावती नंदगांवपेट	1. नंदगांवपेट-अकोला-I 400 केवी डी/सी लाइन (क्वैद)	
सालिका सं: डब्ल्यूआर-एमएच-06 आइडियल पावर (बेला टीपीप) (540मेगावाट) (निजी क्षेत्र) सार्केट का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-07 आरीवाल इंफ्रास्ट्रक्चर (600 मेगावाट) यू-1,2 (निजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 मेगावाट) (निजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 मेगावाट) (निजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-08 एमको-भद्रावती (पीजी) 400 केवी डी/सी लाइन भगवाट) (निजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-09 पर्ली (प्रतिस्थापन) यू-8 (250मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-10 1. कोराडी-॥ नकोराडी-॥ 400 केवी क्षेत्र डी/सी लाइन 2. कोराडी-॥ में 7X167एमवीए,400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-11 1. चंद्रपुर-॥ नेवोरी न वर्षो पिजी 400केवी क्षेत्र डी/सी 3. चंद्रपुर-॥ नेवोरी - वर्षो पीजी 400केवी क्षेत्र डी/सी 3. चंद्रपुर-॥ नेवोरी - वर्षो पीजी 400केवी क्षेत्र डी/सी 3. चंद्रपुर-॥ नेवोरी - वर्षो पीजी 400केवी क्षेत्र डी/सी 3. चंद्रपुर-॥ नेवोरी - वर्षो पीजी 400केवी क्षेत्र डी/सी 3. चंद्रपुर-॥ नेवोरी - वर्षो पीजी 400केवी क्षेत्र डी/सी 3. चंद्रपुर-॥ नेवोरी - वर्षो पीजी 400केवी क्षेत्र डी/सी 3. चंद्रपुर-॥ नेवोरी - वर्षो पीजी 400केवी क्षेत्र डी/सी 3. चंद्रपुर-॥ नेवोरी - वर्षो पीजी 400केवी क्षेत्र डी/सी 3. चंद्रपुर-॥ नेवोरी - वर्षो पीजी 400केवी क्षेत्र डी/सी 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ 2. धोपावे (1600 मेगावाट) (राज्य क्षेत्र) 1. धोपावे - पड्से ॥ 400केवी क्षेत्र डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 1. एसीसीसीसी टीडब्ल्यू 620 स्क्षेयर मिमि कंडक्टर्स के साथ् यूरान-	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	2. नंदगांवपेट में अकोला-।-कोराडी-। 400केवी एस/सी लाइन का	
सालिका सं: डब्ल्यूआर-एमएच-06 आइडियल पावर (बेला टीपीप) (540मेगाबाट) (निजी क्षेत्र) सिर्कट का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-07 धारीवाल इंफ्रास्ट्रकचर (600 भेगाबाट) यू-1,2 (निजी क्षेत्र) सिर्वावाल टीपीएस (यू-2 के लिए) पर भद्रावती (पीजी)-पर्ली 400 केवी डी/सी लाइन के एक सिर्कट का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 भेगाबाट) (निजी क्षेत्र) सिर्वातिका सं: डब्ल्यूआर-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 भेगाबाट) (निजी क्षेत्र) सिर्वातिका सं: डब्ल्यूआर-एमएच-09 पर्ली (प्रतिस्थापन) यू-8 (250मेगाबाट) (राज्य क्षेत्र) सिर्वाटिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगाबाट) (राज्य क्षेत्र) सिर्वाटिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर ॥ टीपीएस (1000मेगाबाट) (राज्य क्षेत्र) सिर्वाटिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर ॥ टीपीएस (1000मेगाबाट) (राज्य क्षेत्र) सिर्वाटिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर ॥ टीपीएस (1000मेगाबाट) (राज्य क्षेत्र) सिर्वाटिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर ॥ टीपीएस (1000मेगाबाट) (राज्य क्षेत्र) सिर्वाटिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर ॥ टीपीएस (1000मेगाबाट) (राज्य क्षेत्र) सिर्वाटिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर ॥ टीपीएस (1000मेगाबाट) (राज्य क्षेत्र) सिर्वाटिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर ॥ वेरापी सिर्वाटिका एलआईएलओ 2. चंद्रपुर ॥ वेरापी सिर्वाटिका एलआईएलओ 2. चंद्रपुर ॥ वेरापी सिर्वाटिका स्वर्विटिका स्वर्वाटिका		एलआईएलओ	
अइडियल पावर (बेला टीपीप) (540मेगावाट) (निजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-07 शारीवाल इंफ्रास्ट्रक्चर (600 मेगावाट) यू-1,2 (निजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 मेगावाट) (निजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 मेगावाट) (निजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-09 पर्ली (प्रतिस्थापन) यू-8 (250मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर ॥ टीपीएस (1000मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर ॥ टीपीएस (1000मेगावाट) (राज्य क्षेत्र) शोपावे (1600 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 वंद्रपुर ॥ टीपीएस (1000मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 वंद्रपुर ॥ टीपीएस (1000मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 वंद्रपुर ॥ टीपीएस (1000मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 वंद्रपुर ॥ टीपीएस (1000मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-12 शोपावे (1600 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-12 शोपावे मंगव्यह-ल्यू कोयना 400केवी क्षेत्र डी/सी के दोनों सर्किटों का एलआईएलओ त्रि के एलआईएलओ त्रि के त्रि जंपावे मंगवाट-त्र्य कोयना 400केवी क्षेत्र डी/सी के दोनों सर्किटों का एलआईएलओ त्रि के त्र व्याप्त मंगवाट-त्र्य कोयना 400केवी क्षेत्र डी/सी के दोनों सर्किटों का एलआईएलओ त्र त्र व्याप्त मंगवाट-त्र क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) तालिका सं: डब्ल्यूआर-एमएच-13 1. एसीसीसी टीडल्य्यू 620 स्क्षेयर सिमि कंडक्टर्स के साथ् यूरान-	(निजी क्षेत्र)		
(540मेगावाट) (निजी क्षेत्र) सर्विका सं: डब्ल्यूआर-एमएच-07 धारीवाल इंफ्रास्ट्रक्चर (600 मेगावाट) यू-1,2 (निजी क्षेत्र) स्वारीवाल वंद्रपुर-॥ 400केवी डी/सी लाइन (यू-1 के लिए) श्वारीवाल इंफ्रास्ट्रक्चर (600 मेगावाट) यू-1,2 (निजी क्षेत्र) स्वारीवाल टीपीएस (यू-2 के लिए) पर भद्रावती (पीजी)-पर्ली 400 केवी डी/सी लाइन के एक सर्विट का एलआईएलओ स्वारीवात टीपीएस (एम्प्-08 एमको-बरोरा, महाराष्ट्र (600 मेगावाट) (निजी क्षेत्र) स्वारीवात (पीजी) 400 केवी डी/सी लाइन स्वारीवात (पीजी) 400 केवी डी/सी लाइन स्वारीवात टीपीएस (निजी क्षेत्र) स्वारीवात (पीजी) 400 केवी डी/सी लाइन स्वारीवात (पीजी) 400 केवी डी/सी लाइन स्वारीवात (पाज्य क्षेत्र) स्वारीवात (पीजी) 400 केवी डी/सी लाइन स्वारीवात (पाज्य क्षेत्र) स्वारीवात (पाज्य कष्ट्रक्चार-एमएच-11) स्वारीवात (पाज्य कष्ट्रक्चार-एमएच-11) स्वारीवात (पाज्य कष्ट्रक्चार-एमएच-11) स्वारीवात (पाज्य कष्ट्रक्चार-एमएच-11) स्वारीवात (पाज्य कष्ट्रक्चार-एमएच-12) स्वापाव (1600 मेगावाट) (राज्य कष्ट्रक्चार-एमएच-12) स्वापाव (1600 मेगावाट) (राज्य कष्ट्रक्चार-एमएच-13) स्वारीवात सं: डब्ल्यूआर-एमएच-13 स्वारीवात सं: डब्ल्यूआर-एमएच-13 स्वारीवात के संच डिल्यूआर-एमएच-13 स्वारीवात संचिति पीपी (1040मेगावाट) स्वारीवात संचात संचात क्षेत्र के साथ यूरान-		T	
शारीवाल इंफ्रास्ट्रक्चर (600 व.स. हज्यूआर-एमएच-07 व.स. हज्यूआर-एमएच-07 व.स. हज्यूआर-एमएच-07 व.स. हज्यूआर-एमएच-08 हिएमको-वरोरा, महाराष्ट्र (600 हे मेगावाट) (निजी क्षेत्र) हिएमको-भद्रावती (पीजी) 400 केवी डी/सी लाइन हे एक सर्किट का एलआईएलओ हिएमको-भद्रावती (पीजी) 400 केवी डी/सी लाइन हे एक सर्किट का एलआईएलओ हिएमको-भद्रावती (पीजी) 400 केवी डी/सी लाइन हिएसको हिएसको-भद्रावती (पीजी) 400 केवी डी/सी लाइन हिएसको हिए	आइडियल पावर (बेला टीपीप)	, , ,	
श्वारीवाल इंफ्रास्ट्रक्चर (600 मेगावाट) यू-1,2 (तिजी क्षेत्र) 2. धारीवाल-चंद्रपुर-॥ 400केवी डी/सी लाइन (यू-1 के लिए) 2. धारीवाल टीपीएस (यू-2 के लिए) पर भद्रावती (पीजी)-पर्ली 400 केवी डी/सी लाइन के एक सर्किट का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-08 एमको-भद्रावती (पीजी) 400 केवी डी/सी लाइन मेगावाट) (निजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-09 पर्ली (प्रतिस्थापन) यू-8 (250मेगावाट) (राज्य क्षेत्र) 2. पर्ली डी/सी लाइन पर 220केवी जीसीआर-बीड का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) 2. कोराडी -॥ ने कोराडी-॥ 400 केवी क्षेत्र वेद डी/सी लाइन (राज्य क्षेत्र) 2. कोराडी -॥ में 7×167एमवीए,400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-11 वंद्रपुर-॥ टीपीएस (1000मेगावाट) (राज्य क्षेत्र) 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ है) में चंद्रपुर-पर्ली 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ 2. चंद्रपुर-॥ ने 2×500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य क्षेत्र) 1. धोपावे – पडघे ॥ 400केवी क्षेत्र डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्षेत्र डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 प्राप्त सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिम कंडक्टर्स के साथ् यूरान-	(540मेगावाट) (निजी क्षेत्र)	सिकेट का एलआईएलओ	
भेगावाट) यू-1,2 (तिजी क्षेत्र) स्वारावाट टीपीएस (यू-2 के लिए) पर भद्रावती (पीजी)-पर्ली 400 केबी डी/सी लाइन के एक सर्किट का एलआईएलओ स्वाराव्य संडब्ल्यूआर-एमएच-08 एमको-बरोरा, महाराष्ट्र (600 भेगावाट) (निजी क्षेत्र) स्वारावती (पीजी) 400 केबी डी/सी लाइन पर्ली (प्रतिस्थापन) यू-8 (250भेगावाट) (राज्य क्षेत्र) स्वारावती (पीजी) 400 केबी डी/सी लाइन पर्ली (प्रतिस्थापन) यू-8 (250भेगावाट) (राज्य क्षेत्र) स्वाराव्य संडब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) संडब्ल्यूआर-एमएच-11 वंद्रपुर II टीपीएस (1000भेगावाट) (राज्य क्षेत्र) संद्रपुर-II जो 3 में से 2 सर्किटों का एलआईएलओ है) में चंद्रपुर-पर्ली 400केबी डी/सी के दोनों सर्किटों का एलआईएलओ 2. चंद्रपुर-II – बरोरा – वर्धा पीजी 400केबी क्षेत्र डी/सी 3. चंद्रपुर-II में 2x500 एमबीए, 400/220 केवी सबस्टेशन सालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य क्षेत्र) संत्रपुर II टीपीएस (1040मेगावाट) शोपावे (1600 मेगावाट) (राज्य क्षेत्र) संत्रपुर II होपीय में जयगढ़-न्यू कोयना 400केबी क्षेत्र डी/सी के दोनों सर्किटों का एलआईएलओ संत्रपुर II होपावे में जयगढ़-न्यू कोयना 400केबी क्षेत्र डी/सी के दोनों सर्किटों का एलआईएलओ स्वारान सीसीसपीपी (1040मेगावाट) स्वारान सीसीसपीपी (1040मेगावाट) स्वारान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू हिंदि स्ववेयर मिमि कंडक्टर्स के साथ् यूरान-		तालिका सं: डब्ल्यूआर-एमएच-07	
(निजी क्षेत्र) तालिका सं: डब्ल्यूबार-एमएच-08 एमको-वरोरा, महाराष्ट्र (600 सेगावाट) (निजी क्षेत्र) तालिका सं: डब्ल्यूबार-एमएच-09 पर्ली (प्रतिस्थापन) यू-8 (250मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूबार-एमएच-09 पर्ली (प्रतिस्थापन) यू-8 (250मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूबार-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूबार-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूबार-एमएच-11 चंद्रपुर टीपीएस (1000मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूबार-एमएच-11 चंद्रपुर टीपीएस (1000मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूबार-एमएच-11 चंद्रपुर टीपीएस (1000मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूबार-एमएच-11 थेपावे (1600 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूबार-एमएच-12 थोपावे (1600 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूबार-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) ग्रिसीसी टीडब्ल्यू ६20 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-	धारीवाल इंफ्रास्ट्रक्चर (600	1. धारीवाल-चंद्रपुर- II 400केवी डी/सी लाइन (यू -1 के लिए)	
प्मको-बरोरा, महाराष्ट्र (600 मेगावाट) (निजी क्षेत्र) प्मको-बरोरा, महाराष्ट्र (600 मेगावाट) (निजी क्षेत्र) पर्ली (प्रतिस्थापन) यू-8 (250मेगावाट) (राज्य क्षेत्र) 1. पर्ली-नांदेड 220केवी डी/सी लाइन (2. पर्ली डी/सी लाइन पर 220केवी जीसीआर-बीड का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) 1. कोराडी-II - कोराडी-III 400 केवी क्षेत्र डी/सी लाइन (राज्य क्षेत्र) 1. कोराडी-III - कोराडी-III 400 केवी क्षेत्र डी/सी लाइन (राज्य क्षेत्र) 1. कोराडी-III - कोराडी-III 400 केवी क्षेत्र डी/सी लाइन (राज्य क्षेत्र) 1. चंद्रपुर-II में 7X167एमबीए,400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-11 वंद्रपुर-III - बरोरा - वर्धा पीजी 400केवी क्षेत्र डी/सी (राज्य क्षेत्र) 1. चंद्रपुर-III - बरोरा - वर्धा पीजी 400केवी क्षेत्र डी/सी (राज्य क्षेत्र) 1. धोपावे - पडघे II 400केवी क्षेत्र डी/सी लाइन (राज्य क्षेत्र) 1. धोपावे - पडघे II 400केवी क्षेत्र डी/सी लाइन (राज्य क्षेत्र) 1. धोपावे - पडघे II 400केवी क्षेत्र डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-12 थोपावे (1600 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्षेत्रर मिमि कंडक्टर्स के साथ् यूरान-	मेगावाट) यू-1,2	2. धारीवाल टीपीएस (यू-2 के लिए) पर भद्रावती (पीजी)-पर्ली 400	
एमको-बरोरा, महाराष्ट्र (600 मेगावाट) (निजी क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-09 पर्ली (प्रतिस्थापन) यू-8 (250मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) कोराडी (1980 मेगावाट) (राज्य क्षेत्र) 1. कोराडी-॥ - कोराडी-॥ 400 केवी क्षेत्र व्हेत ही/सी लाइन 2. कोराडी -॥ में 7X167एमवीए,400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर ॥ टीपीएस (1000मेगावाट) (राज्य क्षेत्र) 1. चंद्रपुर-॥ (जो 3 में से 2 सर्किटों का एलआईएलओ है) में चंद्रपुर-पर्ली 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ 2. चंद्रपुर-॥ - वरोरा - वर्धा पीजी 400केवी क्षेत्र डी/सी 3. चंद्रपुर-॥ में 2x500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्ववेयर मिमि कंडक्टर्स के साथ यूरान-	(निजी क्षेत्र)	केवी डी/सी लाइन के एक सर्किट का एलआईएलओ	
सेगावाट) (निजी क्षेत्र)	तालिका सं: डब्ल्यूआर-एमएच-08		
पर्ली (प्रतिस्थापन) यू-8 (250मेगावाट) (राज्य क्षेत्र) 1. पर्ली-नांदेड 220केवी डी/सी लाइन (2. पर्ली डी/सी लाइन पर 220केवी जीसीआर-बीड का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) 1. कोराडी-II – कोराडी-III 400 केवी क्ष्वैद डी/सी लाइन (राज्य क्षेत्र) 1. कोराडी-III कोराडी-III 400 केवी क्ष्वैद डी/सी लाइन (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) 1. चंद्रपुर-II (जो 3 में से 2 सर्किटों का एलआईएलओ है) में चंद्रपुर-पर्ली 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ 2. चंद्रपुर-II – बरोरा – बर्धा पीजी 400केवी क्ष्वैद डी/सी 3. चंद्रपुर-II में 2x500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य क्षेत्र) 1. धोपावे – पडचे II 400केवी क्ष्वैद डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्ष्वैद डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिम कंडक्टर्स के साथ् यूरान-	एमको-वरोरा, महाराष्ट्र (600	एमको-भद्रावती (पीजी) 400 केवी डी/सी लाइन	
पर्ली (प्रतिस्थापन) यू-8 (250मेगावाट) (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) 1. कोराडी-II - कोराडी-III 400 केवी क्षेत्र डी/सी लाइन (राज्य क्षेत्र) 1. कोराडी-II - कोराडी-III 400 केवी क्षेत्र डी/सी लाइन (राज्य क्षेत्र) तालिका सं: डब्ल्यूआर-एमएच-11 वंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) 1. वंद्रपुर-II (जो 3 में से 2 सर्किटों का एलआईएलओ है) में वंद्रपुर-पर्ली 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ 2. वंद्रपुर-II - वरोरा - वर्धा पीजी 400केवी क्षेत्र डी/सी 3. वंद्रपुर-II में 2x500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य क्षेत्र) 1. धोपावे - पडचे II 400केवी क्षेत्र डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्षेत्र डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-	मेगावाट) (निजी क्षेत्र)		
(250मेगावाट) (राज्य क्षेत्र) 2. पर्ली डी/सी लाइन पर 220केवी जीसीआर-बीड का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) 1. कोराडी-II - कोराडी-III 400 केवी क्षेव डी/सी लाइन 2. कोराडी -II में 7X167एमवीए,400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) 1. चंद्रपुर-II (जो 3 में से 2 सर्किटों का एलआईएलओ है) में चंद्रपुर-पर्ली 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ 2. चंद्रपुर-II - वरोरा - वर्धा पीजी 400केवी क्षेव डी/सी 3. चंद्रपुर-II में 2x500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य क्षेत्र) 1. धोपावे - पडचे II 400केवी क्षेव डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्षेव डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्षेवर मिम कंडक्टर्स के साथ् यूरान-		तालिका सं: डब्ल्यूआर-एमएच-09	
तालिका सं: डब्ल्यूआर-एमएच-10 कोराडी (1980 मेगावाट) (राज्य क्षेत्र) 1. कोराडी-II – कोराडी-III 400 केवी क्ष्यैद डी/सी लाइन 2. कोराडी -II में 7X167एमवीए,400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) 1. चंद्रपुर-II (जो 3 में से 2 सर्किटों का एलआईएलओ है) में चंद्रपुर-पर्ली 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ 2. चंद्रपुर-II – वरोरा – वर्धा पीजी 400केवी क्ष्यैद डी/सी 3. चंद्रपुर-II में 2x500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य क्षेत्र) 1. धोपावे – पडचे II 400केवी क्ष्यैद डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्ष्यैद डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-	पर्ली (प्रतिस्थापन) यू-8	1. पर्ली-नांदेड़ 220केवी डी/सी लाइन	
कोराडी (1980 मेगावाट) (राज्य क्षेत्र) 1. कोराडी-II – कोराडी-III 400 केवी क्वैद डी/सी लाइन 2. कोराडी -III में 7X167एमवीए,400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) 1. चंद्रपुर-II (जो 3 में से 2 सर्किटों का एलआईएलओ है) में चंद्रपुर-पर्ली 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ 2. चंद्रपुर-II – वरोरा – वर्धा पीजी 400केवी क्वैद डी/सी 3. चंद्रपुर-II में 2x500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य क्षेत्र) 1. धोपावे – पडचे II 400केवी क्वैद डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्वैद डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-	(250मेगावाट) (राज्य क्षेत्र)	2. पर्ली डी/सी लाइन पर 220केवी जीसीआर-बीड का एलआईएलओ	
(राज्य क्षेत्र) 2. कोराडी -II में 7X167एमवीए,400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) 1. चंद्रपुर-II (जो 3 में से 2 सिर्केटों का एलआईएलओ है) में चंद्रपुर-पर्ली 400केवी डी/सी के दोनों सिर्केटों का एलआईएलओ 2. चंद्रपुर-II – वरोरा – वर्धा पीजी 400केवी क्वैद डी/सी 3. चंद्रपुर-II में 2x500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य धेत्र) 1. धोपावे – पडघे II 400केवी क्वैद डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्वैद डी/सी के दोनों सिर्केटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ यूरान-		तालिका सं: डब्ल्यूआर-एमएच-10	
तालिका सं: डब्ल्यूआर-एमएच-11 चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ है) में चंद्रपुर-पर्ली 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ 2. चंद्रपुर-II – वरोरा – वर्धा पीजी 400केवी क्वैद डी/सी 3. चंद्रपुर-II में 2x500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य क्षेत्र) 1. धोपावे – पडघे II 400केवी क्वैद डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्वैद डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-	कोराडी (1980 मेगावाट)	1. कोराडी-II – कोराडी–III 400 केवी क्वैद डी/सी लाइन	
चंद्रपुर II टीपीएस (1000मेगावाट) (राज्य क्षेत्र) 1. चंद्रपुर-II (जो 3 में से 2 सर्किटों का एलआईएलओ है) में चंद्रपुर-पर्ली 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ 2. चंद्रपुर-II – वरोरा – वर्धा पीजी 400केवी क्वैद डी/सी 3. चंद्रपुर-II में 2x500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य धेत्र) 1. धोपावे – पडघे II 400केवी क्वैद डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्वैद डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-	(राज्य क्षेत्र)	2. कोराडी -II में 7X167एमवीए,400/220 केवी सबस्टेशन	
(राज्य क्षेत्र) 400केवी डी/सी के दोनों सर्किटों का एलआईएलओ 2. चंद्रपुर-II – वरोरा – वर्धा पीजी 400केवी क्वैद डी/सी 3. चंद्रपुर-II में 2x500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य धोपावे – पडघे II 400केवी क्वैद डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्वैद डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-		तालिका सं: डब्ल्यूआर-एमएच-11	
2. चंद्रपुर-II – वरोरा – वर्धा पीजी 400केवी क्वैद डी/सी 3. चंद्रपुर-II में 2x500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य धोपावे – पडघे II 400केवी क्वैद डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्वैद डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-	चंद्रपुर II टीपीएस (1000मेगावाट)	1. चंद्रपुर-।। (जो 3 में से 2 सर्किटों का एलआईएलओ है) में चंद्रपुर-पर्ली	
3. चंद्रपुर-॥ में 2x500 एमवीए, 400/220 केवी सबस्टेशन तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य धोपावे – पडघे ॥ 400केवी क्वैद डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्वैद डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ यूरान-	(राज्य क्षेत्र)	400केवी डी/सी के दोनों सर्किटों का एलआईएलओ	
तालिका सं: डब्ल्यूआर-एमएच-12 धोपावे (1600 मेगावाट) (राज्य थेत्र) 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्वैद डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-		2. चंद्रपुर-II – वरोरा – वर्धा पीजी 400केवी क्वैद डी/सी	
धोपावे (1600 मेगावाट) (राज्य थेत्र) 2. धोपावे – पडघे II 400केवी क्वैद डी/सी लाइन 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्वैद डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-		3. चंद्रपुर-।। में 2x500 एमवीए, 400/220 केवी सबस्टेशन	
क्षेत्र) 2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्वैद डी/सी के दोनों सर्किटों का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-	9		
का एलआईएलओ तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-	धोपावे (1600 मेगावाट) (राज्य	1. धोपावे – पडघे II 400केवी क्वैद डी/सी लाइन	
तालिका सं: डब्ल्यूआर-एमएच-13 यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-	क्षेत्र)	2. धोपावे में जयगढ़-न्यू कोयना 400केवी क्वैद डी/सी के दोनों सर्किटों	
यूरान सीसीसपीपी (1040मेगावाट) 1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-		का एलआईएलओ	
	तालिका सं: डब्ल्यूआर-एमएच-13		
निजी क्षेत्र आप्टा 220केवी 2X डी/सी लाइन का उन्नयन	यूरान सीसीसपीपी (1040मेगावाट)	1. एसीसीसी टीडब्ल्यू 620 स्क्वेयर मिमि कंडक्टर्स के साथ् यूरान-	
	निजी क्षेत्र	आप्टा 220केवी 2X डी/सी लाइन का उन्नयन	

	2. यूरान-खारघर 220केवी डी/सी लाइन	
	तालिका सं: डब्ल्यूआर-एमएच-14	
जीईपीएल (गुप्ता एनर्जी प्राइवेट	1. जीईपीएल – एमआईडीसी 220केवी डी/सी लाइन	
लिमिटेड) टीपीपी यू -1 और 2	2. 1x80एमवीएआर रिएक्टर के साथ जीईपीएल टीपीएस पर	
(2x60) मेगावाट	भद्रावती-पर्ली 400केवी लाइन के एक सर्किट का एलआईएलओ	
(निजी क्षेत्र)		
,	तालिका सं: डब्ल्यूआर-एमएच-15	
एनपीसीआईएल जैतपुर	जैतपुर-कोल्हापुर 765 केवी डी/सी लाइन. (कनेक्टिवटी)	
(3480मेगावाट)		
(केन्द्रीय क्षेत्र)		
तालिका सं: डब्ल्यूआर-एमएच-16		
जिनभुविश पावर जेन प्राइवेट	400केवी वर्धा-पर्ली डी/सी लाइन के एक सर्किट का एलआईएलओ	
लिमिटेड (600 मेगावाट)	(कनेक्टिवटी)	
निजी क्षेत्र		
Garage 2000 to 2 in the	तालिका सं: डब्ल्यूआर-एमएच-17	
हिंदुस्तान इलेक्ट्रिसटी जेन कंपनी लिमिटेड (एचईजीसीएल))(1137	एचईजीसीएल-पुणे (जीआईएस) 400 केवी डी/सी लाइन	
मेगावाट)	(कनेक्टिविटी)	
निजी क्षेत्र		
	तालिका सं: डब्ल्यूआर-सीजी-01	
सिपत-I(1980मेगावाट)	9. सिपत-सिवनी 765केवी एस/सी लाइन-1	
(केन्द्रीय क्षेत्र)	10. सिपत-सिवनी 765केवी एस/सी लाइन-2	
	11. सिवनी-खांडवा 400 केवी डी/सी (क्वैद एएएसी)	
	12. सिपत 400 केवी डी/सी पर कोरबा एसटीपीएस-रायपुर के	
	एक सर्किट का एलआईएलओ	
	13. सिवनी 400 केवी डी/सी पर भिलाई-सतपुरा एस/सी लाइन	
	का एलआईएलओ	
	14. नागडा-डेहगाम 400 केवी डी/सी	
	15. राजगढ़ 400 केवी 2Xडी/सी में एस.सरोवर-नागडा डी/सी के	
	दोनों सर्किटों का एलआईएलओ	
	16. सिवनी सबस्टेशन 765/400 केवी (7x500 एकल चरण	
	यूनिट)	
	17. सिवनी 400/220 केवी 2x315 एमवीए सबस्टेशन	

	18. राजगढ़ 400/220 केवी 2x315 एमवीए सबस्टेशन		
7	ालिका सं: डब्ल्यूआर-सीजी-02		
राजगढ़ कांप्लेक्स में कोट्रा के नजदीक उत	पादन परियोजना के लिए समर्पित पारेषण प्रणाली [आरकेएम पावरजेन		
लिमिटेड, एसकेएस इस्पात और पावर लिमिटेड, डीबी पावर लिमिटेड, अवंता भंडार टीपीपी, एथेना छत्तीसगढ़			
पावर लिमिटेड (2x600मेगावाट)]			
आरकेएम पावरजेन लिमिटेड (उचपांडा	आरकेएम पावरजेन-रायगढ़ पूलिंग स्टेशन (कोट्रा के नजदीक)		
टीपीपी) (4x360मेगावाट)	400केवी डी/सी(क्वैद)		
एसकेएस इस्पात और पावर लिमिटेड	एसकेएस इस्पात-रायगढ़ पूलिंग स्टेशन (कोट्रा के नजदीक) 400केवी		
(4x300मेगावाट) (दर्रमपुरा टीपीपी)	डी/सी(क्वैद)		
डीबी पावर लिमिटेड (2x600	डीबी पावर-रायगढ़ पूलिंग स्टेशन (कोट्रा के नजदीक) 400केवी डी/सी		
मेगावाट)	(क्वैद)		
अवंथा भंडार (कोरबा पश्चिम टीपीपी)	कोरबा पश्चिम – रायगढ़ पूलिंग स्टेशन (कोट्रा के नजदीक) 400केवी		
(2x600मेगावाट)	डी/सी लाइन		
एथेना छत्तीसगढ़ पावर लिमिटेड	एथेना छत्तीसगढ़- रायगढ़ पूलिंग स्टेशन (कोट्रा के नजदीक) 400केवी		
(2x600मेगावाट) (निजी क्षेत्र)	डी/सी(क्वैद)		
कॉसमॉस स्पांज एंड पावर लिमिटेड	1x80एमवीएआर बस रिएक्टर के साथ सीएसपीली टीपीएस-रायगढ़		
(सीएसपीएल) (350 मेगावाट)	पूलिंग स्टेशन (कोट्रा के नजदीक) 400केवी डी/सी (कनेक्टिविटी)		
वीसा स्टिल लिमिटेड (450 मेगावाट)	1x80एमवीएआर बस रिएक्टर के साथ वीसा स्टिल टीपीएस-रायगढ़		
	पूलिंग स्टेशन (कोट्रा के नजदीक) 400केवी डी/सी (कनेक्टिविटी)		
7	ालिका सं: डब्ल्यूआर-सीजी-03		
जीएमआर छत्तीसगढ़ एनर्जी प्राइवेट लि प्रणाली	जीएमआर छत्तीसगढ़ एनर्जी प्राइवेट लिमिटेड (रायपुर काम्प्लेक्स) (2X685मेगावाट) के लिए समर्पित पारेषण प्रणाली		
जीएमआर छत्तीसगढ़ एनर्जी प्राइवेट	जीएमआर छत्तीसगढ़- रायपुर पूलिंग स्टेशन 400 केवी डी/सी लाइन		
लिमिटेड	(क्वैद)		
7	ालिका सं: डब्ल्यूआर-सीजी-04		
चंपा कांप्लेक्स में उत्पादन परियोजना के	लिए समर्पित पारेषण प्रणाली [अकलतारा (केएसके महानदी), पावर		
लिमिटेड (2400मेगावाट), कर्नाटक् पाव	र कार्पोरेशन लिमिटेड.(केपीसीएल) (1600मेगावाट), लैंको अमरकंटक		
पावर(1320मेगावाट), एम बी पावर (छत्तीसगढ़)(1320 मेगावाट)]			
अकलतारा (केएसके महानदी) पावर	वर्धा पावर (केएसके महानदी)– चंपा पूलिंग स्टेशन 400केवी		
लिमिटेड (4x600मेगावाट)	2xडी/सी (क्वैद)		
कर्नाटक पावर कारपोरेशन लिमिटेड	केपीसीएल-चंपा पूलिंग स्टेशन 400 केवी डी/सी		
(केपीसीएल)	,		
1600मेगावाट)			
लैंको अमरकंटक पावर (1320मेगावाट)	लैंको - चंपा पूलिंग स्टेशन 400केवी डी/सी (क्वैद)		

(m. 0. 4)		
(यू- 3, 4)		
एम बी पावर (छत्तीसगढ़) लिमिटेड	एम बी पावर - चंपा पूलिंग स्टेशन 400केवी डी/सी (क्वैद)	
(2x660 मेगावाट)	(कनेक्टिविटी)	
7	तालिका सं: डब्ल्यूआर-सीजी-05	
पश्चिमी क्षेत्र पूलिंग प्वाइंट (बिलासपुर) में आर्यन कोल बेनिफिसियरिज लिमिटेड ; धीरू पावरजेन और पीटीसी इंडिया, स्पेक्ट्रम पावर, मारूति क्लिन कोल एंड पावर लिमिटेड के लिए समर्पित पारेषण प्रणाली		
आर्यन कोल बेनिफिसियरीज प्राइवेट	1. आर्यन कोल -पश्चिमी क्षेत्र पूलिंग प्वाइंट (बिलासपुर) 400केवी	
लिमिटेड (1200मेगावाट)	डी/सी	
धीरू पावरजेन एंड पीटीसी इंडिया	1. धीरू पावरजेन- पश्चिमी क्षेत्र पूलिंग प्वाइंट (बिलासपुर)	
(450+600मेगावाट)	400केवी डी/सी(उच्च क्षमता)	
(निजी क्षेत्र)	2. पश्चिमी क्षेत्र पूलिंग प्वाइंट (बिलासपुर) पर दो 400 केवी बे	
स्पेक्ट्रम पावर (100मेगावाट) (निजी	1. स्पेक्ट्रम जेनरेशन का आर्यन कोल बेनिफिसियरीज प्राइवेट	
क्षेत्र)	लिमिटेड के साथ इंटरकनेक्शन	
मारूति क्लिन कोल एंड पावर लिमिटेड	1. मारूति क्लिन कोल- पश्चिमी क्षेत्र पूलिंग प्वाइंट (बिलासपुर)	
(300मेगावाट) (निजी क्षेत्र)	400केवी डी/सी	
7	तालिका सं: डब्ल्यूआर-सीजी-06	
	ु (600मेगावाट), सारदा एनर्जी एंड मिनरल्स (एसईएमएल) (350	
	ड (जेएनयूएल) (600मेगावाट) के लिए समर्पित पारेषण प्रणाली	
रायगढ़ चरण-III(4x600मेगावाट)	जिंदल पावर- रायगढ़ पूलिंग स्टेशन (तमनार के नजदीक) 400केवी	
(जिंदल पावर लिमिटेड)	2xडी/सी (क्वैद)	
टीआरएन एनर्जी (2x300 मेगावाट)	टीआरएन एनर्जी- रायगढ़ पूलिंग स्टेशन (तमनार के नजदीक)	
,	400केवी 2xडी/सी (क्वैद)	
सारदा एनर्जी एंड मिनरल्स	सारदा एनर्जी- रायगढ़ पूलिंग स्टेशन (तमनार के नजदीक) 400केवी	
(एसईएमएल)	डी/सी लाइन	
(350 मेगावाट)		
1007		
जायसवाल न्यू ऊर्जा लिमिटेड	जेएनयूएल- रायगढ़ पूलिंग स्टेशन (तमनार के नजदीक) 400केवी	
जायसवाल न्यू ऊर्जा लिमिटेड (जेएनयूएल) (600मेगावाट)	जिएनयूएल- रायगढ़ पूलिंग स्टेशन (तमनार के नजदीक) 400केवी डी/सी लाइन	
(जेएनयूएल) (600मेगावाट)		
(जेएनयूएल) (600मेगावाट) र	डी/सी लाइन	
(जेएनयूएल) (600मेगावाट) र	डी/सी लाइन तालिका सं: डब्ल्यूआर-सीजी-07	
(जेएनयूएल) (600मेगावाट) ह बाल्को लिमिटेड (600मेगावाट), वंदना	डी/सी लाइन तालिका सं: डब्ल्यूआर-सीजी-07 विद्युत लिमिटेड (540 मेगावाट) के लिए समपिर्तत पारेषण प्रणाली	
(जेएनयूएल) (600मेगावाट) बाल्को लिमिटेड (600मेगावाट), वंदना बाल्को लिमिटेड (2x300मेगावाट)	डी/सी लाइन तालिका सं: डब्ल्यूआर-सीजी-07 विद्युत लिमिटेड (540 मेगावाट) के लिए समपिर्तत पारेषण प्रणाली	

तालिका सं: डब्ल्यूआर-सीजी-08

कोट्रा के नजदीक रायगढ़ कांप्लेक्स, तमनार के नजदीक रायगढ़ कांप्लेक्स, छत्तीसगढ़ का चंपा कांप्लेक्स और रायपुर कांप्लेक्स में अवस्थित उत्पादन परियोजनाओं के लिए संयुक्त एटीएस-भाग क

- रायगढ़ पूलिंग स्टेशन (कोट्रा के नजदीक)- रायगढ़ पूलिंग स्टेशन
 765 केवी डी/सी लाइन.
- 2. रायगढ़ पूलिंग स्टेशन (कोट्रा के नजदीक)- रायगढ़ (मौजूदा) 400 केवी डी/सी (आनेवाली तारीख में खुला रखा जाएगा).
- 3. रायगढ़ पूलिंग स्टेशन रायगढ़ (मौजूदा) 400 केवी डी/सी (आनेवाली तारीख में खुला रखा जाएगा)
- 4. 765/400केवी 4x1500एमवीए रायगढ़ पूलिंग स्टेशन (कोट्रा के नजदीक) की स्थापना
- 5. 765/400केवी 1x1500 एमवीए रायगढ़ पूलिंग स्टेशन की स्थापना

तालिका सं: डब्ल्यूआर-सीजी-09

कोट्रा के नजदीक रायगढ़ कांप्लेक्स, तमनार के नजदीक रायगढ़ कांप्लेक्स, छत्तीसगढ़ का चंपा कांप्लेक्स और रायपुर कांप्लेक्स में अवस्थित उत्पादन परियोजनाओं के लिए संयुक्त एटीएस-भाग ख

- 1. चंपा पूलिंग स्टेशन-रायपुर पूलिंग स्टेशन 765 केवी डी/सी लाइन.
- 2. रायगढ़ पूलिंग स्टेशन (कोट्रा के नजदीक)- रायगढ़ पूलिंग स्टेशन (तमनार के नजदीक) 765 केवी डी/सी लाइन.
- 3. चंपा पूलिंग स्टेशन- धरमजयगढ़/कोरबा 765केवी एस/सी लाइन.
- 4. रायगढ़ पूलिंग स्टेशन (कोट्रा के नजदीक)- चंपा पूलिंग स्टेशन 765केवी एस/सी लाइन.
- 5. 765/400केवी 6x1500एमवीए चंपा पूलिंग स्टेशन की स्थापना
- 6. 765/400केवी 3x1500एमवीए रायगढ़ पूलिंग स्टेशन (तमनार के नजदीक) की स्थापना

तालिका सं: डब्ल्यूआर-सीजी-10

कोट्रा के नजदीक रायगढ़ कांप्लेक्स, तमनार के नजदीक रायगढ़ कांप्लेक्स, छत्तीसगढ़ का चंपा कांप्लेक्स और रायपुर कांप्लेक्स में अवस्थित उत्पादन परियोजनाओं के लिए संयुक्त एटीएस-भाग ग

रायपुर पूलिंग स्टेशन - वर्धा 765केवी डी/सी लाइन

तालिका सं: डब्ल्यूआर-सीजी-11

कोट्रा के नजदीक रायगढ़ कांप्लेक्स, तमनार के नजदीक रायगढ़ कांप्लेक्स, छत्तीसगढ़ का चंपा कांप्लेक्स और रायपुर कांप्लेक्स में अवस्थित उत्पादन परियोजनाओं के लिए संयुक्त एटीएस-भाग घ

- 1. वर्धा औरंगाबाद (पीजी) 765केवी डी/सी लाइन.
- 2. औरंगाबाद (पीजी) बोईसर / खारघर 400केवी डी/सी (क्वैद) लाइन
- 3. बोईसर में 400/220केवी, 1x500 एमवीए ट्रांसफार्मर के द्वारा ट्रांसफार्मेशन क्षमता का विस्तार
- 4. 765/400केवी 2x1500एमवीए औरंगाबाद (पीजी) सबस्टेशन

की स्थापना

तालिका सं: डब्ल्यूआर-सीजी-12

कोट्रा के नजदीक रायगढ़ कांप्लेक्स, तमनार के नजदीक रायगढ़ कांप्लेक्स, छत्तीसगढ़ का चंपा कांप्लेक्स और रायपुर कांप्लेक्स में अवस्थित उत्पादन परियोजनाओं के लिए संयुक्त एटीएस-भाग ड

- 1. औरंगाबाद (पीजी) पडघे(पीजी) 765केवी डी/सी लाइन
- 2. पडघे(पीजी) पडघे(एमएसईटीसीएल) 400केवी डी/सी (क्वैद) लाइन
- 3. वडोदरा असोज 400केवी डी/सी(क्वैद) लाइन
- 4. 765/400केवी, 2x1500एमवीए पडघे (पीजी) सबस्टेशन [जीआईएस सबस्टेशन] की स्थापना

तालिका सं: डब्ल्यूआर-सीजी-13

कोट्रा के नजदीक रायगढ़ कांप्लेक्स, तमनार के नजदीक रायगढ़ कांप्लेक्स, छत्तीसगढ़ का चंपा कांप्लेक्स और रायपुर कांप्लेक्स में अवस्थित उत्पादन परियोजनाओं के लिए संयुक्त एटीएस-भाग च रायपुर पूलिंग स्टेशन – वर्धा 765केवी द्वितीय डी/सी लाइन

तालिका सं: डब्ल्यूआर-सीजी-14

कोट्रा के नजदीक रायगढ़ कांप्लेक्स, तमनार के नजदीक रायगढ़ कांप्लेक्स, छत्तीसगढ़ का चंपा कांप्लेक्स और रायपुर कांप्लेक्स में अवस्थित उत्पादन परियोजनाओं के लिए संयुक्त एटीएस-भाग छ वर्धा – औरंगाबाद (पीजी) 765केवी द्वितीयडी/सी लाइन

तालिका सं: डब्ल्यूआर-सीजी-15

कोट्रा के नजदीक रायगढ़ कांप्लेक्स, तमनार के नजदीक रायगढ़ कांप्लेक्स, छत्तीसगढ़ का चंपा कांप्लेक्स और रायपुर कांप्लेक्स में अवस्थित उत्पादन परियोजनाओं के लिए संयुक्त एटीएस-भाग ज

- 1. रायगढ़ पूलिंग स्टेशन (कोट्रा के समीप) और मेटैलिक रिटर्न के साथ धुले (पीजी) के बीच में ए±600केवी, 4000मेगावाट एचवीडीसी बाइपोल
- 2. धुले(पीजी) धुले(आईपीटीसी)* 400केवी 2xडी/सी उच्च क्षमता सुचालक
- 3. धुले (पीजी) नासिक 400केवी डी/सी(क्वैद)
- 4. धुले(पीजी) मालेगांव 400केवी डी/सी(क्वैद)
- रायगढ़ पूलिंग स्टेशन (कोट्रा के समीप) और 400 केवी एसी स्टेशन के साथ धुले (पीजी) में से प्रत्येक पर, 4000मेगावाट, ±600केवी एचवीडीसी बाइपोल की स्थापना
- 6. धुले (पीजी) में 400/220केवी, 2x315एमवीए ट्रांसफार्मर की

स्थापना

	तालिका सं: डब्ल्यूआर-सीजी-16
कोट्रा के नजदीक रायगढ़ कांप्लेक्स, तमनार के नजदीक रायगढ़ कांप्लेक्स, छत्तीसगढ़ का चंपा कांप्लेक्स और रायपुर कांप्लेक्स में अवस्थित उत्पादन परियोजनाओं के लिए संयुक्त एटीएस- भाग।	तालका स: डब्ल्यूआर-साजा-16 1. चंपा पूलिंग स्टेशन (पश्चिमी क्षेत्र) और मेटैलिक रिटर्न के साथ हिरयाणा में अवस्थित कुरूक्षेत्र (उत्तरी क्षेत्र) के बीच में ए±800केवी, 6000मेगावाट एचवीडीसी बाइपोल (शुरूआत में 3000 मेगावाट पर प्रचालित करने के लिए) 2. चंपा पूलिंग स्टेशन और हरियाणा में कुरूक्षेत्र में से प्रत्येक पर, 3000मेगावाट, ±800केवी एचवीडीसी बाइपोल टर्मिनल की स्थापना जिसका उन्नयन कर 6000 मेगावाट करने का प्रावधान है 3. कुरूक्षेत्र(उत्तरी क्षेत्र) - जालंधर 400केवी डी/सी(क्वैद) लाइन (एक सर्किट 400/220केवी नकोडर सबस्टेशन के द्वारा). 4. कुरूक्षेत्र में अब्दुल्लापुर-सोनीपत 400केवी डी/सी(ट्रिपल) का एलआईएलओ 5. कुरूक्षेत्र में 400/220केवी, 2x500 एमवीए सबस्टेशन की स्थापना 6. चंपा पूलिंग प्वाइंट पर 400/132केवी, 2x200 एमवीए सबस्टेशन की स्थापना तालिका सं: डब्ल्यूआर-सीजी-17 1. इंदौर-वडोदरा 765केवी एस/सी 2. वडोदरा – पिराना 400केवी डी/सी(क्वैद) 3. 765/400केवी 2x1500एमवीए वडोदरा सबस्टेशन की स्थापना
	तालिका सं: डब्ल्यूआर-सीजी-18
पश्चिमी क्षेत्र में उत्पादन परियोजनाओं	1. जबलपुर-भोपाल-इंदौर 765केवी डी/सी (क्वैद बरसिमिस)
के लिए पारेषण प्रणाली सुदृढ़ीकरण	2. औरंगाबाद – धुले- वडोदरा 765केवी डी/सी (क्वैद बरसिमिस)
	 3. भोपाल (पीजी) –भोपाल (एमपीटीसीएल) 400केवी डी/सी क्वैद लाइन 4. धुले (पीजी) – धुले(एमएसईटीसीएल) 400केवी डी/सी क्वैद लाइन
 तालिका सं: डब्ल्यूआर-सीजी-19	
स्वास्तिक टीपीपी यू-1(25 मेगावाट) (निजी क्षेत्र)	स्वास्तिक टीपीपी पर कोरबा-मोपाका 132 केवी लाइन का एलआईएलओ
तालिका सं: डब्ल्यूआर-सीजी-20	
रतिजा टीपीपी (50 मेगावाट) (निजी क्षेत्र)	रतिजा-कसाइपल्ली 132केवी डी/सी लाइन

तालिका सं: डब्ल्यूआर-सीजी-21		
मारवा सीएसईबी (2x500 मेगावाट)	1. मारवा-रायपुर (रैता) 400 केवी डी/सी लाइन	
राज्य क्षेत्र	2. मारवा में कोरबा (पश्चिम)- खेडामारा 400 केवी डी/सी लाइन के	
	एक सर्किट का एलआईएलओ	
	3. मारवा-बनारी 220केवी डीसीडीएस	
तालिका सं: डब्ल्यूआर-सीजी-22		
कोरबा (पश्चिम) स्टेशन -III , यू-	1. रायपुर डीसीडीएस (रैता) में 400 केवी कोरबा (पश्चिम)-	
5(500मेगावाट)	खेडेमारा(भिलाई) का एलआईएलओ	
(राज्य क्षेत्र)	2. कोरबा (पश्चिम)-खेडेमारा डीसीडीएस 400 केवी (रैता) लाइन	
	3. रायपुर (रैता) 400/220केवी सबस्टेशन (2x315 एमवीए)	
तालिका सं: डब्ल्यूआर-सीजी-23		
पश्चिमी क्षेत्र और उत्तरी क्षेत्र के लिए	1. जबलपुर-बीना 765केवी एस/सी लाइन	
साझा पश्चिमी क्षेत्र में प्रणाली सुदृढ़ीकरण	2. जबलपुर-धरमजयगढ़ 765केवी डी/सी	

अनुबंध-7.3

दक्षिणी क्षेत्र- पारेषण योजना विवरण

दक्षिणी क्षेत्र- प्रणाली सुदृढीकरण योजनाएं :

214 11 41 14 11 11 3 5 5 11 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1	
	तालिका सं: एसआर-आईएस-01
दक्षिणी क्षेत्र में प्रणाली	1. येलाहांका में एमवीए ट्रांसफार्मर और 1x63 एमवीएआर बस रिएक्टर के
सुदृढ़ीकरण-XII	साथ नए 400/220 केवी सबस्टेशन की स्थापना
	2. येलाहांका 400केवी सबस्टेशन पर नीलमंगला-हूडी 400केवी एस/सी लाइन
	का एलआईएलओ
	3. येलाहांका 400केवी सबस्टेशन पर सोमनहल्ली-हूडी 400केवी एस/सी लाइन
	का एलआईएलओ
तालिका सं: एसआर-आईएस-02	
दक्षिणी क्षेत्र में प्रणाली	1. मधुगिरी में 400/220केवी सबस्टेशन, इस सबस्टेशन को उन्नयित कर
सुदृढ़ीकरण-XIII	765केवी स्तर तक पहुंचाने का प्रावधान है।

	2. गूटि-मधुगिरी 400केवी डी/सी लाइन	
	3. मधुगिरी-येलाहांका 400केवी डी/सी क्वैद लाइन	
	तालिका सं: एसआर-आईएस-03	
दक्षिणी क्षेत्र में प्रणाली	1. सलेम (नया) – सोमनहल्ली 400केवी क्वैद डी/सी लाइन.	
सुदृढ़ीकरण-XIV		
	2. होसर 400/230 केवी सबस्टेशन पर 1x315 एमवीए 400/220केवी	
	ट्रांसफार्मर विस्तार	
तालिका सं: एसआर-आईएस-04		
दक्षिणी क्षेत्र में प्रणाली	1. नार्थ त्रिसूर-कोझिकोड 400केवी क्वैद डी/सी लाइन	
सुदृढ़ीकरण-XV		

	0 : 5 ==	
	तालिका सं: एसआर-आईएस-05	
दक्षिणी क्षेत्र में प्रणाली	1. होसर-इलेक्ट्रानिक सिटी 400 केवी डी/सी लाइन	
सुदृढ़ीकरण-XVI	(इस लाइन का निर्माण मौजूदा पीन्या-सिंगारापेट 220केवी लाइन (वर्तमान में	
	येरांडाहल्ली-होसुर लाइन) के मार्गाधिकार का प्रयोग करते हुए किया जा	
	सकता है। इस मार्गाधिकार का प्रयोग बहु सर्किट टावर का निर्माण करके	
	और/अथवा संबंधित लाभार्थियों के साथ चर्चा के पश्चात व्यवहारिक आधार	
	पर लाइन के भाग को अलग करके किया जा सकता है)।	
	2. 400/220 केवी होसर (पीजी) तथा इलेक्ट्रानिक सिटी (केपीटीसीएल)	
	सबस्टेशनों पर बे विस्तार	
	तालिका सं: एसआर-आईएस-06	
दक्षिणी क्षेत्र में प्रणाली	1. नरेन्द्र (जीआईएस) तथा कोल्हापुर (जीआईएस) में से प्रत्येक पर नया 400	
सुदृढ़ीकरण-XVII	केवी सबस्टेशन (जो बाद में 765 केवी तक उन्नयित कर दिया जाएगा)	
	2. नरेन्द्र (जीआईएस)-कोल्हापुर (जीआईएस) 765केवी डी/सी लाइन (शुरूआत	
	में 400केवी पर प्रभारित किए जाने हेतु)-करीब 200 किमी;	
	3. कोल्हापुर (जीआईएस) में मौजूदा कोल्हापुर-मापुसा 400केवी डी/सी लाइन के	
	दोनों सर्किटों का एलआईएलओ करीब 50 किमी;	
	4. नरेन्द्र (जीआईएस)- नरेन्द्र (मौजूदा) 400केवी डी/सी क्वैद लाइन – करीब	
	20 किमी.	
	 तालिका सं: एसआर-आईएस-07	
दक्षिणी क्षेत्र में प्रणाली	1. प्रत्येक सर्किट के दोनों सिरों पर एमवीएआर लाइन रिएक्टरों के साथ	
सुदृढ़ीकरण-XVIII	विजयवाड़ा – नेल्लोर (आंध्र प्रदेश) 400 केवी डी/सी लाइन	
	, , , , , , , , , , , , , , , , , , , ,	

	THE GREETTE OF INDIT: EXTRAORDIVING
(विजयवाड़ा नेल्लोर तिरूवलम- शोलिंगनल्लूर	 प्रत्येक सर्किट के दोनों सिरों पर 1x50एमवीएआर लाइन रिएक्टरों के साथ नेल्लोर – थिरूवलम 400 केवी डी/सी क्वैद लाइन
कारिडोर)	3. थिरूवलम- मेलाकोट्टयूर 400 केवी डी/सी लाइन
	4. होसर में मौजूदा बैंगलोर-सलेम 400 केवी एस/सी लाइन का एलआईएलओ
	तालिका सं: एसआर-आईएस-08
दक्षिणी क्षेत्र में प्रणाली	1. प्रत्येक सर्किट के दोनों सिरों पर 1x240 एमवीएआर लाइन रिएक्टरों के
सुदृढ़ीकरण-XIX (कुर्नुल- थिरूवलम कारिडोर)	साथ कुर्नुल – थिरूवलम 765 केवी डी/सी लाइन
ापरायशाम प्रगारकार)	2. थिरूवलम में 2x1500 एमवीए, 765/400केवी ट्रांसफार्मर का प्रावधान
	3. थिरूवलम में कोलार-श्रीपेरंबुदूर 400 केवी एस/सी लाइन का एलआईएलओ
	तालिका सं: एसआर-आईएस-09
दक्षिणी क्षेत्र में एचवीडीसी	1. एक नए पुगलुर एचवीडीसी टर्मिनल(2500 मेगावाट) सबस्टेशन की
बाइपोल सुदृढ़ीकरण	स्थापना जिसे 400 केवी सबस्टेशन तथा बाद में उन्नयित कर 765 केवी करने का प्रावधान है।
	2. हैदराबाद (पीजी) में एचवीडीसी टर्मिनल (2500 मेगावाट)
	3. <u>+</u> 500केवी, 2500 मेगावाट का न्यू पुगलुर-हैदराबाद एचवीडीसी बाइपोल
	4. न्यू पुगलुर – उडुमालपेट 400केवी क्वैद डी/सी लाइन
	5. न्यू पुगलुर – पुगलुर 400केवी क्वैद डी/सी लाइन
	6. न्यू पुगलुर एचवीडीसी – तूतिकोरिन पूलिंग स्टेशन 400केवी क्वैद डी/सी लाइन
	7. न्यू हैदराबाद एचवीडीसी – हैदराबाद (765/400केवी पीजी सबस्टेशन)
	400केवी क्वैद 2xडी/सी लाइन
	8. न्यू हैदराबाद एचवीडीसी – कुर्नुल (765/400केवी पीजी सबस्टेशन)
	400केवी क्वैद डी/सी लाइन

तालिका सं: एसआर-आईएस-10	
पूर्वी क्षेत्र से विद्युत आयात	 श्रीकाकुलम पीपी- वेमागिरी –II पूलिंग स्टेशन 765केवी डी/सी लाइन
के लिए दक्षिणी क्षेत्र में प्रणाली सुदृढ़ीकरण	2. खम्मम (न्यू)- नागार्जुन सागर 400केवी डी/सी लाइन

दक्षिणी क्षेत्र – निष्कर्षण योजनाएं :

	तालिका सं.: एसआर-एपी-01		
कृष्णपट्टणम एलटीओए विद्युत परियोजना [सिम्हापुरी(600मेगावाट), मीनाक्षी (1000मेगावाट), कृष्णपट्टणम			
पावर (नवयुग)(1320मेगावाट), काइनेटा पावर (1980मेगावाट), थर्मल पावरटेक(1980मेगावाट), एनसीसी			
पावर (1320 मेगावाट), वीएसएफ परियोजना (350 मेगावाट)] के लिए समर्पित पारेषण प्रणाली			
सिम्हापुरी(600मेगावाट)/	संबद्ध बे सहित सिंहापुरी /मीनाक्षी–नेल्लोर 400 केवी डी/सी (क्वैद) लाइन		
मीनाक्षी I और II(300+700			
मेगावाट)			
थर्मल पावरटेक (पैणमपुरम)	संबद्ध बे सहित थर्मल पावरटेक उत्पादन स्विचयार्ड-नेल्लोर पूलिंग स्टेशन		
टीपीपी (3x660मेगावाट)	765 केवी 2xएस/सी लाइन		
कृष्णपट्टणम (नवयुग) (1320	संबद्ध बे सहित कृष्णपट्टणम पावर (नवयुग) उत्पादन स्विचयार्ड-नेल्लोर		
मेगावाट)	पूलिंग स्टेशन 765 केवी 2xएस/सी लाइन		
काइनेटा पावर (1980	संबद्ध बे सहित काइनेटा पावर उत्पादन स्विचयार्ड-नेल्लोर पूलिंग स्टेशन		
मेगावाट)	765 केवी 2xएस/सी लाइन		
एनसीसी पावर (1320	एनसीसी उत्पादन स्विचयार्ड- नेल्लोर पूलिंग स्टेशन 400 केवी डी/सी (क्वैद)		
मेगावाट)	लाइन		
वीएसएफ प्रोजेक्ट लिमिटेड	उत्पादन स्विचयार्ड- नेल्लोर पूलिंग प्वाइंट 400 केवी डी/सी लाइन		
(350 मेगावाट)			
	तालिका सं.: एसआर-एपी-02		
कृष्णपट्टणम एलटीओए विद्युत	1. 2X1500एमवीए ट्रांसफार्मर क्षमता के साथ 765/400 केवी		
परियोजना [सिम्हापुरी(570मेगा	वाट), नेल्लोर पूलिंग स्टेशन की स्थापना		
मीनाक्षी (900मेगावाट), कृष्णपृ	टुणम 2 नेल्लोर पूलिंग स्टेशन पर सिम्हापुरी-नेल्लोर 400 केवी डी/सी		
पावर (नवयुग)(1320मेगावाट),	क्वैद लाइन का एलआईएलओ		
काइनेटा पावर (1980मेगावाट),	थर्मल 3. नेल्लोर पूलिंग स्टेशन – कुर्नुल 765 केवी डी/सी लाइन.		
पावरटेक(1980मेगावाट), एनसी	सी 		
पावर (1320 मेगावाट)] के लिए			
साझा पारेषण प्रणाली	कृष्णपट्टणम यूएमपीपी के तहत).		
तालिका सं.: एसआर-एपी-03			
~ ~ \	<u>भाग-क</u>		
प्रणाली (कृष्णपट्टणम	1. टीपीसीआईएल – नेल्लोर पूलिंग प्वाइंट (आरंभ में कृष्णपट्टणम यूएमपीपी-		
यूएमपीपी के साथ संबंध	नेल्लोर के जैसा) 400 केवीक्वैद डी/सी लाइन		
11 3, 3, 4 11.11 (3, 2, 3) 1.1.1	2. दोनों सर्किट के प्रत्येक सिरों पर 63एमवीएआर लाइन रिएक्टर के साथ		
योजना के रूप में कार्यान्वयन	नेल्लोर पूलिंग प्वाइंट – गूटि (आरंभ में कृष्णपट्टणम यूएमपीपी- गूटि के		

किया जा रहा है)	जैसा) 400 केवी क्वैद डी/सी लाइन
	भाग-ग
	1. कुर्नुल में 2x 1500 एमवीए आईसीटी और 1x 240 एमवीएआर बस
	रिएक्टर के साथ नए 765/400 केवी सबस्टेशन की स्थापना
	2. कुर्नुल (न्यू) सबस्टेशन पर नागार्जुन सागर-गूटी 400 केवी एस/सी लाइन
	का एलआईएलओ
	3. कुर्नुल (न्यू)-कुर्नुल (एपीट्रांसको) 400 केवी डी/सी क्वैद लाइन
	4. दोनों सर्किट के प्रत्येक सिरों पर 50 एमवीएआर लाइन रिएक्टर के साथ
	कृष्णपट्टणम यूएमपीपी-कुर्नुल(न्यू) 400केवी, क्वैद डी/सी लाइन (पृथक)
	5. कुर्नुल(न्यू) – रायचूर 765केवी एस/सी लाइन (पृथक)

कृष्णपट्टणम- भाग ख के साथ संबद्ध पारेषण प्रणाली (कृष्णपट्टणम यूएमपीपी के साथ संबंध विच्छेद, प्रणाली सुदृढ़ीकरण योजना के रूप में कार्यान्वयन किया जा रहा है)

तालिका सं.: एसआर-एपी-04

- भाग-ख 1. प्रत्येक सबस्टेशन पर 2x 1500 एमवीए आईसीटी और 1x 240
- 1. प्रत्यक सबस्टशन पर 2x 1500 एमवाए आइसाटा आर 1x 240 एमवीएआर बस रिएक्टर के साथ रायचूर और शोलापुर में नए 765/400 केवी सबस्टेशन की स्थापना
- 2. पुणे में 2x1500 एमवीए ट्रांसफार्मेशन क्षमता वाले नए 765/400 केवी सबस्टेशन (जीआईएस) की स्थापना
- 3. रायचुर (न्यू) सबस्टेशन पर मौजूदा रायचुर-गूटी 400केवी क्वैद डी/सी लाइन का एलआईएलओ
- 4. प्रत्येक सिरों पर 240 एमवीएआर स्विचेबल लाइन रिएक्टर के साथ रायचुर-शोलापुर 765 केवी एस/सी
- 5. प्रत्येक सिरों पर 240 एमवीएआर स्विचेबल लाइन रिएक्टर के साथ शोलापुर-पुणे 765 केवी एस/सी
- 6. पुणे (जीआईएस) में 50 एमवीएआर लाइन रिएक्टर के साथ पुणे (जीआईएस) में औरंगाबाद-पुणे 400 केवी डी/सी का एलआईएलओ
- 7. पुणे (जीआईएस) में 50 एमवीएआर लाइन रिएक्टर के साथ पुणे (जीआईएस) में पर्ली-पुणे 400 केवी डी/सी का एलआईएलओ

तालिका सं.: एसआर-एपी-05

पूर्वी तटीय ऊर्जा (1320 मेगावाट) (निजी क्षेत्र) के लिए समर्पित प्रणाली

पूर्वी तटीय ऊर्जा-भावनापाडु टीपीपी(1320 मेगावाट)

- 1. उत्पादन 400केवी पर आगे बढ़ाया जाएगा।
- 2. उत्पादन स्विचयार्ड पर 1x125एमवीएआर का बस रिएक्टर

पूर्वी तटीय ऊर्जा उत्पादन स्विचयार्ड- संबद्ध वे सहित श्रीकाकुलम पूलिंग स्टेशन 400केवी डी/सी क्वैद लाइन

तालिका सं.: एसआर-एपी-06 श्रीकाकुलम क्षेत्र[पूर्वी तटीय 2x1500 एमवीए 765/400केवी ट्रांसफार्मर क्षमता के साथ 1. ऊर्जा प्राइवेट लिमिटेड श्रीकाकुलम क्षेत्र में 765/400केवी पूलिंग स्टेशन की स्थापना परियोजना (1320 मेगावाट)] में साझा पारेषण प्रणाली श्रीकाकुलम पूलिंग स्टेशन - अंगुल 765 केवी डी/सी लाइन(आरंभ में 2. एलटीओए परियोजना 400केवी पर प्रभारित) अंगुल में 765/400केवी 1x1500 एमवीए ट्रांसफार्मर 3. अंगुल-झारसुगुडा 765 केवी डी/सी लाइन 4. झारसुगुडा-धर्मजयगढ़ 765 केवी डी/सी लाइन 5. श्रीकाकुलम पूलिंग स्टेशन, अंगुल, झारसुगुडा और धर्मजयगढ़ 6. 765/400केवी सबस्टेशनों पर संबद्ध 400केवी और 765 केवी बे

तालिका सं.: एसआर-एपी-07

वेमागिरी क्षेत्र [(स्पेक्ट्रम पावर(1400 मेगावाट), रिलायंस(2400 मेगावाट), जीवीके गौतमी पावर लिमिटेड (800 मेगावाट), जीवीके पावर (जेगुरूपाडु) प्राइवेट लिमिटेड (800 मेगावाट),जीएमआर एनर्जी), आरवीके एनर्जी(360 मेगावाट)] में आईपीपी परियोजना के लिए समर्पित पारेषण प्रणाली

जीएमआर एनर्जी (768	1. उत्पादन 400 केवी पर आगे बढ़ाया जाएगा। उत्पादन परियोजना
मेगावाट)	स्विचयार्ड पर 1x80 एमवीएआर का बस रिएक्टर उपलब्ध कराया
(निजी क्षेत्र)	जाएगा ।
	2. जीएमआर एनर्जी स्विचयार्ड-वेमागिरी–II पूलिंग स्टेशन 400 केवी
	डी/सी (क्वैद) लाइन
स्पेक्ट्रम पावर(1400 मेगावाट)	1. वेमागिरी-II पूलिंग स्टेशन को 400 केवी क्वैद डी/सी लाइन
(निजी क्षेत्र)	2. उत्पादन स्विचयार्ड पर 125 एमवीएआर बस रिएक्टर
रिलायंस इन्फ्रास्ट्रक्चर लिमिटेड	1. वेमागिरी-II पूलिंग स्टेशन को 400 केवी क्वैद 2xडी/सी लाइन
(2400 मेगावाट)	2. उत्पादन स्विचयार्ड पर 2x125 एमवीएआर बस रिएक्टर
(निजी क्षेत्र)	
जीवीके गौतमी पावर लिमिटेड	1. मौजूदा स्विचयार्ड का बस एक्सटेंशन
(800 मेगावाट)	2. वेमागिरी-II पूलिंग स्टेशन को 400 केवी डी/सी लाइन
	3. उत्पादन स्विचयार्ड पर 80 एमवीएआर बस रिएक्टर

जीवीके पावर (जेगुरूपाडु) प्राइवेट लिमिटेड (800 मेगावाट) आरवीके एनर्जी (राजमुंद्री) प्राइवेट लिमिटेड (360मेगावाट)	 न्यू स्विचयार्ड पर मौजूदा 400केवी डी/सी लाइन में से एक का एलआईएलओ या मौजूदा स्विचयार्ड का बस विस्तार वेमागिरी-II पूलिंग स्टेशन का 400 केवी डी/सी लाइन उत्पादन स्विचयार्ड पर 80 एमवीएआर बस रिएक्टर आरवीके एनर्जी स्विचयार्ड- वेमागिरी –II पूलिंग स्टेशन 400 केवी डी/सी लाइन 	
	तालिका सं.: एसआर-एपी-08	
वेमागिरी क्षेत्र [(स्पेक्ट्रम पावर(1400 मेगावाट), रिलायंस(2400 मेगावाट), जीवीके गौतमी पावर लिमिटेड (800 मेगावाट), जीवीके पावर	 शार्ट सर्किट एमवीए को कंट्रोल करने के लिए भाग व्यवस्था सहित 4x1500 एमवीए ट्रांसफार्मर के साथ वेमागिरी में 765/400केवी जीआईएस पूलिंग स्टेशन की स्थापना एसआर ग्रिड के साथ आरंभिक एकीकरण के लिए वेमागिरी पूलिंग स्टेशन पर गाजुवाका-विजयवाड़ा 400केवी एस/सी लाइन का एलआईएलओ जिसे बाद में बाइपास किया जाएगा। 	
(जेगुरूपाडु) प्राइवेट लिमिटेड (800 मेगावाट),जीएमआर एनर्जी)], में आईपीपी परियोजना के लिए साझा पारेषण प्रणाली	 3. खम्मम सबस्टेशन का 400केवी आपरेशन और 2x1500 एमवीए प्रति ट्रांसफार्मर के साथ खम्मम में 765/400 केवी पूलिंग स्टेशन की स्थापना 4. हैदराबाद 765/400 केवी सबस्टेशन – हैदराबाद (मौजूदा) 400 	
	केवी डी/सी (क्वैद) लाइन 5. खम्मम 765/400 केवी सबस्टेशन – खम्मम (मौजूदा) 400 केवी डी/सी (क्वैद) लाइन 6. वेमागिरी पूलिंग स्टेशन – खम्मम 765केवी 2xडी/सी लाइन(आरंभ	
	में 400केवी पर प्रभारित) 7. खम्मम – हैदराबाद 765 केवी 2xडी/सी लाइन(आरंभ में 400केवी पर प्रभारित)	
	8. हैदराबाद – वर्धा 765 केवी डी/सी लाइन	
	9. वर्धा – जबलपुर पूलिंग स्टेशन 765 केवी डी/सी	
	 हैदराबाद में प्रति 2x1500 एमवीए ट्रांसफार्मर के साथ 765/400केवी जीआईएस पूलिंग स्टेशन की स्थापना 	
तालिका सं.: एसआर-एपी-09		
हिंदुआ वाइजैग (1040 मेगावाट) (निजी क्षेत्र)	उत्पादन स्विचयार्ड- वेमागिरी-II पीपी 400केवी डी/सी क्वैद लाइन	
तालिका सं.: एसआर-एपी-10		
लैंको कोंडापल्ली स्टेशन -III (निजी क्षेत्र)	लैंको – विजयवाड़ा 400केवी डी/सी लाइन (मौजूदा)	

तालिका सं.: एसआर-एपी-11		
रायलसीमा स्टेशन -III (यू-6)	आरएसटीपीपी उत्पादन स्विचयार्ड- चित्तूर 400 केवी डी/सी लाइन	
(राज्य क्षेत्र)		
	तालिका सं.: एसआर-एपी-12	
पुलिचिंताला (2x30मेगावाट)	1. 132केवी पुलिचिंताला एचईपी-चिल्लाकल्लू डीसी लाइन	
(राज्य क्षेत्र)	2. चिल्लाकल्लू में 132केवी बे विस्तार	
	तालिका सं.: एसआर-एपी-13	
लोअर जुराला यू1-	1. 220केवी लोअर जुराला एचईपी स्विचयार्ड-220/132केवी जुराला	
6(6X40मेगावाट)(राज्य क्षेत्र)	सबस्टेशन डी/सी लाइन	
	2. 400केवी वेलतूर -220केवी जुराला सबस्टेशन , 220केवी डी/सी	
	लाइन	
तालिका सं.: एसआर-एपी-14		
श्री दामोदरम संजीवैय्या टीपीपी	1. कृष्णपट्टणम – नेल्लोर 400केवी क्वैद डी/सी लाइन	
(कृष्णपट्टणम टीपीपी)	2. कृष्णपट्टणम –चित्तूर - 400केवी क्वैद डी/सी लाइन	
(2X800मेगावाट)(राज्य क्षेत्र)		

तालिका सं.: एसआर-केए-01	
टोरंगल्लू जिंदल यू3	1. टोरंगल्लू जेएसडब्ल्यू – गूटी 400केवी डी/सी लाइन
(300मेगावाट) (निजी क्षेत्र)	2. थोरंगल्लू जेएसडब्ल्यू सबस्टेशन पर आरटीपीएस-गुट्टूर का
	एलआईएलओ
	तालिका सं.: एसआर-केए-02
गुंडिया एचईपी	1. गुंडिया पावर हाउस के विद्युत निष्कर्षण के लिए उडूपी और हसन के
(2X200मेगावाट)(राज्य क्षेत्र	ा) समीप नांदिकुर (नागार्जुन टीपीपी) के नीचे डी/सी लाइनों में से एक का एलआईएलओ
	2. 400केवी के रूप में गुंडिया एचईपी के लिए वोल्टेज स्थापित करना
	400केवी
	तालिका सं.: एसआर-केए-03
येरामारूस (1600	1. एदलापुर टीपीएस – येरमारूस टीपीएस सबस्टेशन 400 केवी डीसी ट्विन
मेगावाट)	मूस लाइन
(राज्य क्षेत्र) एदलापुर	2. रायचुर सीमांत बिंदु को एरामरास टीपीएस स्विचयार्ड तक शिफ्ट करने के
(800मेगावाट)	साथ-साथ क्वैद कंडक्टर सहित मौजूदा रायचूर टीपीएस-देवनगिर
्र (राज्य क्षेत्र)	400केवी एस/सी लाइन को 400 केवी डीसी लाइन के रूप में परिवर्तित करना
(<1 4 4(4))	
	3. बीटीपीएस-हिरियुर(निर्माणाधीन) 400केवी डीसी ट्विन लाइन
	4. बीटीपीएस– मधुगिरी(तुमकुर) – 400 केवी क्वैद डीसी लाइन

आईएसटीएस और उन्नत विश्वसनीयता के साथ अतिरिक्त इंटर कनेक्शन के लिए प्रणाली	1. येरामरस टीपीएस-रायचुर (न्यू) 400केवी क्वैद डीसी लाइन		
	तालिका सं.: एसआर-केए-04		
कुडगी चरण -I	1. कुडगी टीपीएस – नरेन्द्र (न्यू) 400 केवी 2xडी/सी क्वैद लाइनें		
(केन्द्रीय क्षेत्र)	2. नरेन्द्र (न्यू) – मधुगिरी 765 केवी डी/सी लाइन		
(3x800 मेगावाट)	3. मधुगिरी – बिडाडी 400 केवी डी/सी (क्वैद)लाइन		
	तालिका सं.: एसआर-केए-05		
सुरेना पावर लिमिटेड (420 मेगावाट)	सुरेना उत्पादन स्विचयार्ड – रायचुर 400केवी डी/सी लाइन		
	तालिका सं.: एसआर-केई-01		
थोट्टियार (2X80मेगावाट)	1. निष्कर्षण के लिए उत्पादन को 220केवी तक स्थापित करना		
(राज्य क्षेत्र)	2. मौजूदा 110केवी कोडाकारा सबस्टेशन को 220केवी तक उन्नयित करना		
	3. स्विचरयार्ड से कोडाकारा सबस्टेशन का 220केवी डी/सी लाइन		
	4. इडुक्की-कोजिकोड 220केवीएस/सी लाइन कोडाकारा का एलआईएलओ		
तालिका सं.: एसआर-केई-02			
पल्लिवासल एचईपी (60	1. निम्न स्तर पर निष्कर्षण (मौजूदा)		
मेगावाट) (राज्य			
क्षेत्र)			

तालिका सं.: एसआर-टीएन-01			
तूतिकोरिन जेवी(500 मेगावाट)	तुतिकोरिना-मदुरई 400केवी डी/सी लाइन (क्वैद कंडक्टर)		
(केन्द्रीय क्षेत्र)			
	तालिका सं.: एसआर-टीएन-02		
तूतिकोरिन एलटीओए पावर परियो	तूतिकोरिन एलटीओए पावर परियोजनाओं [(कोस्टल एनर्जेन प्राइवेट लिमिटेड परियोजना(1200मेगावाट),		
इंड-बराथ पावर (मद्रास) लिमिटेड परियोजना (1320मेगावाट)] के लिए समर्पित पारेषण प्रणाली			
कोस्टल एनर्जेन प्राइवेट लिमिटेड	1. उत्पादन 400केवी पर स्थापित किया जाएगा।		
परियोजना (मेलामुरूथुर टीपीपी)	2. कोस्टल एनर्जेन जेनरेशन स्विचयार्ड –संबद्ध बे सहित तूतिकोरिन		
(2x600मेगावाट)	पूलिंग स्टेशन 400केवी डी/सी क्वैद लाइन		
इंड-बराथ पावर (मद्रास्) लिमिटेड	1. उत्पादन 400केवी पर स्थापित किया जाएगा।		
परियोजना (1320मेगावाट)	2. इंड बराथ पावर जेनरेशन स्विचयार्ड –संबद्ध बे सहित तूतिकोरिन		
	पूलिंग स्टेशन 400केवी डी/सी क्वैद लाइन		

तूतिकोरिन एलटीओए पावर परियोजनाओं [(कोस्टल एनर्जेन प्राइवेट लिमिटेड परियोजना(1200मेगावाट), इंड-बराथ पावर (मद्रास) लिमिटेड परियोजना (1320मेगावाट)] के लिए साझा पारेषण प्रणाली

तालिका सं.: एसआर-टीएन-03

- तूतिकोरिन में 765 केवी पूलिंग स्टेशन की स्थापना (शुरूआत में 400 केवी पर प्रभारित)
- 2. तूतिकोरिन पूलिंग स्टेशन पर तूतिकोरिन जेवी- मदुरई 400 केवी डी/सी क्वैद लाइन के दोनों सर्किटों का एलआईएलओ
- 3 सलेम पुलिंग स्टेशन- सलेम 400 केवी डी/सी (क्वैद) लाइन।
- 4. तूतिकोरिन पूलिंग स्टेशन सलेम पूलिंग स्टेशन 765 केवी डी/सी लाइन (शुरूआत में 400 केवी पर प्रभारित)
- 5. सलेम पूलिंग स्टेशन मधुगिरी पुलिंग स्टेशन 765 केवी एस/सी लाइन (शुरूआत में 400 केवी पर प्रभारित)
- 6. तूतिकोरिन पूलिंग स्टेशन, सलेम पूलिंग स्टेशन, सलेम और मधुगिरी से संबद्ध 400 केवी बे
- 7 सलेम में 765 केवी पूलिंग स्टेशन की स्थापना (शुरूआत में 400 केवी पर प्रभारित)

तालिका सं.: एसआर-टीएन-04

तमिलनाडु में नागापट्टिणम और कुड्डालोर क्षेत्र में आईसीजीएस परियोजना के लिए तुरंत निष्कर्षण [(एनएसएल नागापट्टिणम(1320 मेगावाट), पीपीएन पावर जेनरेटिंग कंपनी (1080 मेगावाट) , आईएल एंड एफएस (1200 मेगावाट), पीईएल पावर(1050 मेगावाट), चेट्नाद पावर(1320)](निजी क्षेत्र)

एकएस (1200 मेगायाट), पाइएल पायर(1050 मेगायाट), पाट्नाद पायर(1520)](निजा क्षेत्र)	
एनएसएल नागापट्टिणम (1320	1. उत्पादन-स्विचयार्ड-नागापट्टिणम पूलिंग स्टेशन 400केवी डी/सी
मेगावाट)	क्वैद या एचटीएलएस लाइन
,	2. उत्पादन स्विचयार्ड पर 125 एमवीएआर बस रिएक्टर ।
पीपीएन पावर जेनरेटिंग कंपनी	1. उत्पादन-स्विचयार्ड-नागापट्टिणम पूलिंग स्टेशन 400केवी डी/सी
(1080 मेगावाट)	लाइन
	2. उत्पादन स्विचयार्ड पर 80 एमवीएआर बस रिएक्टर।
पीईएल पावर लिमिटेड (1050	1. उत्पादन-स्विचयार्ड-नागापट्टिणम पूलिंग स्टेशन 400केवी डी/सी
मेगावाट)	क्वैद लाइन
	2. उत्पादन स्विचयार्ड पर 125 एमवीएआर बस रिएक्टर
आईएल एंड एफएस तमिलनाडु	1. उत्पादन-स्विचयार्ड-नागापट्टिणम पूलिंग स्टेशन 400केवी डी/सी
पावर कंपनी लिमिटेड (1200	क्वैद लाइन
मेगावाट)	2. उत्पादन स्विचयार्ड पर 125 एमवीएआर बस रिएक्टर ।
चेट्टिनाद पावर कारपोरेशन	1. उत्पादन-स्विचयार्ड-नागापट्टिणम पूलिंग स्टेशन 400केवी डी/सी
लिमिटेड (1320 मेगावाट)	क्वैद लाइन
	2. उत्पादन स्विचयार्ड पर 125 एमवीएआर बस रिएक्टर ।

तालिका सं.: एसआर-टीएन-05 शार्ट सर्किट एमवीए को कंट्रोल करने के लिए भाग व्यवस्था सहित तमिलनाडु के नागापट्टिणम और कुड़ालोर क्षेत्र में नागापट्टिणम (जीआईएस) में न्यू 765/400केवी पूलिंग स्टेशन (शुरूआत आईसीजीएस परियोजना के में 400 केवी पर प्रभारित) लिए साझा पारेषण प्रणाली 2. नागापट्टिणम पूलिंग स्टेशन में आरंभिक व्यवस्था के लिए नेवेली-त्रिचि 400केवी एस/सी लाइन का एलआईएलओ जो बाद में 20किमी तक बाइपास हो जाएगा। नागापट्टिणम पूलिंग स्टेशन-सलेम 765केवी डी/सी लाइन (शुरूआत में 400 केवी पर प्रभारित) के समापन के लिए नागापट्टिणम पूलिंग स्टेशन और सलेम में से प्रत्येक पर दो 400 केवी बे जो टैरिफ आधारित बोली प्रक्रिया के लिए कार्यान्वित की जा रही है। 4. सलेम-मधुगिरी 765केवी एस/सी लाइन-2 (शुरूआत में 400 केवी पर प्रभारित) के समापन के लिए सलेम और मध्गिरी में से प्रत्येक पर एक 400 केवी बे जो टैरिफ आधारित बोली प्रक्रिया के लिए कार्यान्वित की जा रही है। 5. मध्गिरी-नरेन्द्र 765केवी डी/सी लाइन (शुरूआत में 400 केवी पर प्रभारित) के समापन के लिए मध्गिरी और नरेन्द्र में से प्रत्येक पर दो 400 केवी बे जो टैरिफ आधारित बिडिंग के लिए कार्यान्वित की जा रही है। 6. कोल्हापुर –पागढे 765केवी डी/सी लाइन (एक सर्किट पुणे के द्वारा) (शुरूआत में 400 केवी पर प्रभारित) के समापन के लिए कोल्हापुर, पागढे और पुणे में से प्रत्येक पर दो 400 केवी बे कार्यान्वित की जा रही है। 7. नागापट्टिणम पुलिंग स्टेशन- सलेम 765केवी डी/सी लाइन 8. सलेम-मधुगिरी 765केवी एस/सी लाइन 9. मध्गिरी-बंगलोर 400केवी डी/सी क्वैद लाइन तालिका सं.: एसआर-टीएन-06 रेगन पावरटेक प्राइवेट रेगन पुलिंग स्टेशन पुगलुर 230केवी डी/सी (ट्विन मुज) लाइन (कनेक्टिवटी) लिमिटेड (600 मेगावाट) तालिका सं.: एसआर-टीएन-07 उडनगुडी 1. उडनगुडी टीपीएस – कराइकुडी 400 केवी डी/सी क्वैद लाइन (1600मेगावाट)(राज्य क्षेत्र) 2. उडनगुडी टीपीएस – कायाथर 400 केवी डी/सी क्वैद लाइन तालिका सं.: एसआर-टीएन-08 कलपक्कम पीएफबीआर 1. काकापक्कम – अर्णि 230 केवी डी/सी लाइन (500मेगावाट) 2. काकापक्कम पीएफबीआर- कांचेपुरम 230 केवी डी/सी लाइन (केन्द्रीय क्षेत्र) 3. काकापक्कम पीएफबीआर -सिरूचरि 230 केवी डी/सी लाइन 4. काकापक्कम – एमएपीएस 230 केवी एस/सी केबल

अनुबंध- 7.4

पूर्वी क्षेत्र – पारेषण योजना का विवरण

पूर्वी क्षेत्र – प्रणाली सशक्तिकरण हेतु योजनाएं :

	तालिका सं. ई.आरआईएस-01
पूर्वी क्षेत्र प्रणाली सशक्तिकरण हेतु योजना-।।।	1. सासाराम-डाल्टनगंज 400 के.वी. डी/सी लाइन
	2. मेंधासाल-पटनायक्य 400 के.वी. डी/सी लाइन
	3. लक्षीसराय में कहलगांव- बिहारसरीफ 400 के.वी. डी/सी लाइन (प्रथम लाइन) का एलआईएलओ
	4. बांका में कहलगांव- बिहारसरीफ 400 के.वी. डी/सी लाइन (द्वितीय लाइन) का एलआईएलओ
	 बोलंगीर में मेरामुंडाली-जयपुर 400 के.वी. एस/सी लाइन का एलआईएलओ
	6. केवनझार में रांगली-बारीपाड़ा 400 के.वी. एस/सी लाइन का एलआईएलओ
	7. डुबरी (ओपीटीसीएल) में बारीपाड़ा-मेंधासाल के 400 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ
	8. चैबासा में जमशेदपुर-राउरकेला 400 के.वी. डी/सी लाइन का एलआईएलओ
	9. डाल्टनगंज (न्यू) 2x315 एम.वी.ए., 400/220 के.वी. सब स्टेशन
	10.लक्षीसराय (न्यू) 2x200 एम.वी.ए., 400/132 के.वी. सब स्टेशन
	11. बांका (न्यू) 2x200 एम.वी.ए., 400/132 के.वी. सब स्टेशन
	12.बोलंगीर (न्यू) 2x315 एम.वी.ए., 400/220 के.वी. सब स्टेशन.
	13. केवनझार (न्यू) 2x315 एम.वी.ए., 400/220 के.वी. सब स्टेशन
	14. चैबासा (न्यू) 2x315 एम.वी.ए., 400/220 के.वी. सब स्टेशन
	15. पटनायक्य (न्यू) 2x315 एम.वी.ए., 400/220 के.वी. सब स्टेशन

तालिका सं. ई.आरआईएस-02	
पूर्वी क्षेत्र प्रणाली सशक्तिकरण हेतु योजना-IV	 सिलिगुड़ी 220/132 के.वी. सब-स्टेशन पर संबंद्ध खंड (एसोसिएटेड बे) के साथ 1X160 एम.वी.ए., 220/132 के.वी. का अतिरिक्त ट्रांसफारमर बीरापाड़ा 220/132 के.वी. सब-स्टेशन पर संबंद्ध खंड (बे) के साथ 1X160 एम.वी.ए., 220/132 के.वी. ट्रांसफारमर द्वारा 1X50 एम.वी.ए., 220/132 के.वी. ट्रांसफारमर का प्रतिस्थापन मालदा सब स्टेशन पर 400 के.वी. मालदा-फरक्का-। फीडर के स्थान पर अतिरिक्त खंड/ब्रेकर (एडिशनल बे/ब्रेकर) का अधिष्ठापन मालदा 400/220 के.वी. सब-स्टेशन पर संबंद्ध खंड (बे) के साथ 2X160 एम.वी.ए., 220/132 के.वी. ट्रांसफारमर का प्रतिस्थापन

 तालिका सं. ई.आरआईएस-03	
पूर्वी क्षेत्र प्रणाली सशक्तिकरण हेतु	1. 400/220 के.वी., 2X500 एम.वी.ए. राजरहाट सब स्टेशन की स्थापना
योजना -V	 राजरहाट में सुभासग्राम-जीरत 400 के.वी., एस/सी लाइन का एलआईएलओ राजरहाट-पूर्निया्400 के.वी., डी/सी लाइन (ट्रिपल स्नोबर्ड), जिसके एक सर्किट
	का एलआईएलओ गोकर्णा तथा दूसरे का फरक्का
	तालिका सं. ई.आरआईएस-04
पूर्वी क्षेत्र प्रणाली सशक्तिकरण हेतु	1. खड़गपुर-चैबासा 400 के.वी., डी/सी लाइन
योजना	2. पुरूलिया पीएसएस-रांची 400 के.वी., डी/सी लाइन
-VII	
	तालिका सं. ई.आरआईएस-05
पूर्वी क्षेत्र प्रणाली सशक्तिकरण हेतु	1. मोतीहारी (2xडी/सी क्वाड) में बढ़-गोरखपुर 400 के.वी., डी/सी लाइन का एलआईएलओ
योजना	2. मुजफ्फरपुर-दरभंगा ट्रिपल स्नोबर्ड कंडक्टर के साथ 400 के.वी., डी/सी लाइन
-VI	3. दरभंगा (जीआईएस) में भविष्य के विस्तार हेतु स्थान सहित 2x500 एम.वी.ए.
	400 के.वी., सब स्टेशन
	4. मोतीहारी (जीआईएस) में भविष्य के विस्तार हेतु स्थान सहित 2x200 एम.वी.ए. 400/132 के.वी., सब स्टेशन
	5. बढ़-मोतीहारी खंड हेतु (600 ओह्म एनजीआर) के साथ मोतीहारी छोर पर 2x80
	एम.वी.ए.आर. के (स्विचएबल) लाइन रिएक्टर
	6. मोतीहारी-गोरखपुर खंड हेतु (400 ओह्म एनजीआर) के साथ मोतीहारी छोर पर
	2x50 एम.वी.ए.आर के (फिक्स्ड) लाइन रिएक्टर

पूर्वी क्षेत्र हेतु निष्कर्षण प्रणाली :

तालिका सं. ई.आरबी.आर-01		
बढ़-II यू 1,2 (1320 मेगावाट)	बढ़-II - गोरखपुर 400के.वी. डी/सी लाइन (क्वाड)	
(केंद्रीय खंड)		
तालिका सं. ई.आरबी.आर-02		
नबीनगर सं.उ.	नबीनगर-सासाराम ट्विन लैपिंग कंडक्टर के साथ 400 के.वी. डी/सी	
(आरएलवाई+एनटीपीसी)	लाइन	
(1000मेगावाट) (केंद्रीय खंड)		
तालिका सं. ई.आरबी.आर-03		
न्यू नबीनगर सं.उ.	1. नबीनगर-गया 400 के.वी. डी/सी (क्वाड) लाइन	
(बिहार+एनटीपीसी)	2. नबीनगर-पटना 400 के.वी. डी/सी (क्वाड) लाइन	
(1980 मेगावाट)	3. गया 765/400 के.वी. 1x1500 एम.वी.ए. ट्रांसफारमर का संवर्धन	
(केंद्रीय खंड)		

तालिका सं. ई.आरबी.आर-04		
मुजफ्फरपुर विस्तार सं.उ.	वर्तमान प्रणाली पर्याप्त होगी	
(390 मेगावाट)		
(केंद्रीय खंड)		
	तालिका सं. ई.आरजे.एच01	
बोकारो विस्तार	1. बोकारो विस्तार-कोडर्मा 400 के.वी. डी/सी लाइन	
(500 मेगावाट)		
(केंद्रीय खंड)		
तालिका सं. ई.आरजे.एच02		
समर्पित प्रणाली आधुनिक पावर, कारपोरेट पावर (प्रथम एवं द्वितीय फेज), एस्सार पावर		
आधुनिक पावर.(540 मेगावाट)	1.आधुनिक टीपीएस-जमशेदपुर 400 के.वी. डी/सी लाइन	
(निजी क्षेत्र)		
कारपोरेट प्रथम फेज (माता श्री ऊषा	2. कारपोरेट प्रथम फेज टीपीएस-रांची 400 के.वी. डी/सी लाइन	
टीपीपी (540 मेगावाट)		
(निजी क्षेत्र)		
कारपोरेट द्वितीय फेज (540	3. कारपोरेट द्वितीय फेज टीपीएस-झारखंड पूलिंग स्टेशन 400 के.वी.	
मेगावाट)	डी/सी लाइन	
(निजी क्षेत्र)		
इलेक्ट्रोस्टील टीपीएस (एस्सार	4. इलेक्ट्रोस्टील टीपीएस - झारखंड पूलिंग स्टेशन 400 के.वी. क्वाड	
पावर) (1200 मेगावाट)	डी/सी लाइन	
(निजी क्षेत्र)		
	तालिका सं. ई.आरजे.एच03	
झारखंड [(आधुनिक पावर (540	1. रांची-गया स्टेशन 400 के.वी.	
मेगावाट), कारपोरेट (540+540	(क्वाड) डी/सी लाइन वाया एस्सार/कारपोरेट उत्पादन परियोजना	
मेगावाट), एस्सार पावर (1200	के निकट प्रस्तावित पूलिंग स्टेशन	
मेगावाट)] के भाग-क हेतु प्रथम फेज		
की विद्युत उत्पादन परियोजनाओं हेत्	2. रांची न्यू (765/400 के.वी. सब स्टेशन) –धर्मजयगढ़/कोरबा के	
साझा प्रणाली सशक्तिकरण	निकट 765 के.वी. एस/सी	
	3. एस्सार एवं कारपोशरेट उत्पादन केन्द्र के निकट 400 के.वी.	
	पूलिंग स्टेशन (झारखंड पूल) की स्थापना। यह आईटीसी के बिना स्विचिंग स्टेशन होगा।	
	4. वाराणसी में 2x1500 एम.वी.ए. 765/400 के.वी. का एक	
	नया सब स्टेशन	
	5. गया-वाराणसी में 765 के.वी. एस/सी	
	6. वाराणसी-बलिया 765 के.वी. एस/सी	
	तालिका सं. ई.आरजे.एच04	
झारखंड [(आधुनिक पावर (540	1. कानपुर में 2x1500 एम.वी.ए., 765/400 के.वी. का नया सब स्टेशन	
	(७राग	

मेगावाट), कारपोरेट (540+540	2. वाराणसी-कानपुर 765 के.वी. डी/सी
मेगावाट), एस्सार पावर (1200	3. कानपुर-झटिकारा 765 के.वी. एस/सी
मेगावाट)] के भाग-ख हेतु प्रथम फेज	4. कानपुर (765/400 के.वी.) कानपुर (मौजूदा) 400 के.वी. डी/सी
की विद्युत उत्पादन परियोजनाओं हेतु	(क्वाड)
साझा प्रणाली सशक्तिकरण	5. वाराणसी-सारनाथ (यूपीपीसीएल) 400 के.वी. डी/सी (क्वाड)
	6. वाराणसी में सासाराम-इलाहाबाद 400 के.वी. लाइन का
	एलअसईएलओ
	7. निजी क्षेत्र लाइन
	धर्मजयगढ़-जबलपुर 765 के.वी. डी/सी लाइन (दूसरी लाइन)
	निजी क्षेत्र के अधीन होगी।
	तालिका सं. ई.आरजे.एच05
तिलैया यूएमपीपी (4000 मेगावाट)	1. तिलैया यूएमपीपी-बलिया 765 के.वी. डी/सी लाइन
निजी क्षेत्र	2. तिलैया यूएमपीपी-गया 765 के.वी. एस/सी लाइन
	3. गया में तिलैया यूएमपीपी-बलिया 765 के.वी. डी/सी लाइन के
	एक सर्किट का एलआईएलओ
	तालिका सं. ई.आरजे.एच06
तिलैया, बढ़-।। एवं नबीनगर सं.उ.	1. बलिया-लखनऊ 765 के.वी. एस/सी (द्वितीय)
(आरएलवाई +एनटीपीसी)	2. लखनऊ-बरेली 765 के.वी. एस/सी (द्वितीय)
	3. बरेली-मेरठ 765 के.वी. एस/सी (द्वितीय)
	4. मेरठ-मोंगा 765 के.वी. एस/सी
	5. रांची-पश्चिमी क्षेत्र पूलिंग स्टेशन 765 के.वी./एस/सी (द्वितीय)

तालिका सं. ई.आर.-ओ.आर.-01

ओडिसा में प्रथम एवं द्वितीय फेज की विद्युत परियोजनाओं के लिए समर्पित पारेषण प्रणाली, [स्टरलाइट टीपीपी यू. 1 एवं 2, एवं 4 (2400 मेगावाट), मोनेट पावर (1050 मेगावाट), जीएमआर (1050 मेगावाट), नव भारत (1050 मेगावाट), इंड बरत (700 मेगावाट), जिंदल (1200 मेगावाट), लैंको बाबंध (2640 मेगावाट), लैंको (2640 मेगावाट), देरंग (1200 मेगावाट)]

(, , , , , , , , , , , , , , , , , ,		
स्टरलाइट टीपीपी यू. 1 एवं 2, 3&4	स्टरलाइट टीपीपी-झारसुगुडा 765/400 के.वी., पूलिंग स्टेशन 2X400	
(2400 मेगावाट) (निजी क्षेत्र)	के.वी. डी/सी लाइन	
मानेट पावर (1050 मेगावाट)	मोनेट-अंगुल पूलिंग प्वाइंट 400 के.वी., डी/सी लाइन	
(निजी क्षेत्र)		
जीएमआर (1050 मेगावाट)	जीएमआर-अंगुल पूलिंग प्वाइंट 400 के.वी., डी/सी लाइन	
(निजी क्षेत्र)		
नव भारत (1050 मेगावाट)	नव भारत टीपीपी-अंगुल पूलिंग प्वाइंट 400 के.वी., डी/सी (क्वाड)	
(निजी क्षेत्र)	लाइन	

इंड बरथ (700 मेगावाट)	इंड-बरथ टीपीएस-झारसुगुडा 400 के.वी., डी/सी लाइन	
(निजी क्षेत्र)		
जिंदल (1200 मेगावाट)	जिंदल टीपीपी-अंगुल पूलिंग प्वाइंट 400 के.वी., डी/सी लाइन	
(निजी क्षेत्र)	j (i	
लैंको बाबंध (4x660 मेगावाट)	लैंको-अंगुल पूलिंग प्वाइंट 400 के.वी., 2X डी/सी लाइन	
(निजी क्षेत्र)	100 h. h., 27 00 h. h.	
देरंग टीपीपी (2x600 मेगावाट)	देरंग-अंगुल पूलिंग प्वाइंट 400 के.वी., डी/सी लाइन	
(निजी क्षेत्र)		
(गिंभा पान)	तालिका सं. ई.आरओ.आर02	
ओडिसा में प्रथम फेज की विद्युत		
परियोजनाओं के लिए साझा पारेषण	1. अंगुल पूलिंग स्टेशन-झारसुगुडा पूलिंग स्टेशन 765 के.वी., 2xएस/सी	
प्रणाली, [स्टरलाइट टीपीपी यू. 1 एवं	2. झारसुगुडा पूलिंग स्टेशन पर राउरकेला-रायगढ़ 400 के.वी. डी/सी	
2, 3 एवं 4 (2400 मेगावाट), मोनेट	लाइन का एलआईएलओ	
पावर (1050 मेगावाट), जीएमआर	3. ** अगुल पूलिंग स्टेशन पर मेरामुंडाली-जयपुर 400 के.वी. एस/सी	
(1050 मेगावाट), नव भारत (1050	लाइन का एलआईएलओ	
मेगावाट), इंड बरत (700 मेगावाट),	4. ** अगुल पूलिंग स्टेशन पर तेलचर-मेरामुंडाली 400 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ	
जिंदल (1200 मेगावाट), लैंको	· · · · · · · · · · · · · · · · · · ·	
(2640 मेगावाट)] भाग-क	5. झारसुगुडा में 2x1500 एम.वी.ए., 765/400 के.वी. पूलिंग स्टेशन की स्थापना	
	6. अंगुलमें 4x1500 एम.वी.ए., 765/400 के.वी. पूलिंग स्टेशन की	
	स्थापना	
	**अंगुल पूलिंग स्टेशन तैयार हो जाने पर इन एलआईएलओ का बाद में	
	विच्छेद कर दिया जाएगा।	
-20-22-00-	तालिका सं. ई.आरओ.आर03	
ओडिसा में प्रथम फेज की विद्युत परियोजनाओं के लिए साझा पारेषण	 धर्मजयगढ़/कोरबा के निकट 765 के.वी. स्विचिंग स्टेशन की स्थापना 	
प्रणाली, [स्टरलाइट टीपीपी यू. 1एवं	2. जबलपुर में 765/400 के.वी. पूलिंग स्टेशन की स्थापना	
2, 3 एवं 4 (2400 मेगावाट), मोनेट	3. झारसुगुडा पूलिंग स्टेशन-धर्मजयगढ़/कोरबा के निकट (प.क्षे.) 765	
पावर (1050 मेगावाट), जीएमआर	के.वी. डी/सी	
(1050 मेगावाट), नव भारत (1050	4. धर्मजयगढ़/कोरबा के निकट रांची-सिपत के निकट प.क्षे. पूलिंग 765 के.वी. एस/सी लाइन का एलआईएलओ	
मेगावाट), इंड बरत (700 मेगावाट),	5. धर्मजयगढ़/कोरबा के निकट-जबलपुर पूलिंग स्टेशन 765 के.वी.	
जिंदल (1200 मेगावाट), लैंको	डी/सी लाइन	
(2640 मेगावाट)] भाग-ख	6. जबलपुर पूलिंग स्टेशन-जबलपुर 400 के.वी. डी/सी (क्वाड) लाइन	
तालिका सं. ई.आरओ.आर04		
ओडिसा में प्रथम फेज की विद्युत	1. जबलपुर पूलिंग स्टेशन-बीना 765 के.वी. डी/सी लाइन	
परियोजनाओं के लिए साझा पारेषण	2. बीना-ग्वालियर 765 के.वी. एस/सी (तीसरा सर्किट)	

प्रणाली, [स्टरलाइट टीपीपी यू. 1-4
(2400 मेगावाट), मोनेट पावर
(1050 मेगावाट), जीएमआर
(1050 मेगावाट), नव भारत (1050
मेगावाट), इंड बरत (700 मेगावाट),
जिंदल (1200 मेगावाट), लैंको
(2640 मेगावाट)] भाग-ग

- 3. ग्वालियर-जयपुर 765 के.वी. एस/सी (दूसरा सर्किट)
- 4. जयपुर-भिवानी 765 के.वी. एस/सी लाइन

तालिका सं. ई.आर.-ओ.आर.-05

ओडिसा में प्रथम फेज की विद्युत परियोजनाओं के लिए साझा पारेषण प्रणाली, [स्टरलाइट टीपीपी यू. 1एवं 2, 3 एवं 4 (2400 मेगावाट), मोनेट पावर (1050 मेगावाट), जीएमआर (1050 मेगावाट), नव भारत (1050 मेगावाट), इंड बरत (700 मेगावाट), जिंदल (1200 मेगावाट), लैंको (2640 मेगावाट)] भाग-घ

- 1. 2x1500 एम.वी.ए., 765/400 के.वी. भोपाल पूलिंग स्टेशन की स्थापना
- 2. जबलपुर पूल-भोपाल-इंदौर 765 के.वी. एस/सी
- 3. भोपाल न्यू सब स्टेशन-भोपाल (म.प्र.) 400 के.वी. डी/सी (उच्च क्षमतायुक्त)

तालिका सं. ई.आर.-एस.एम.-01

सिक्किम में प्रथम फेज की विद्युत परियोजनाओं के लिए समर्पित पारेषण प्रणाली, [तीस्ता-।।। एचईपी (1200 मेगावाट), तीस्ता-VI (500 मेगावाट), रंगित-IV (120 मेगावाट), चुजाचेन (99 मेगावाट), भासमे (51 मेगावाट), जोरेथंग लूप (96 मेगावाट), रोंगनीचू (96 मेगावाट)]

111119); 111111 21 (00 11111	-y,
तीस्ता-।।। एचईपी (1200	तीस्ता-।।।-करनदीग्घी क्वाड मूज कंडक्टर के साथ 400 के.वी. डी/सी
मेगावाट) (निजी क्षेत्र)	लाइन
तीस्ता-VI (500 मेगावाट) (निजी	तीस्ता- VI-रांगपो 220 के.वी. डी/सी (ट्विन मूज)
क्षेत्र)	
रंगित-IV (120 मेगावाट) (निजी	रंगित-IV-न्यू मेल्ली 220 के.वी. डी/सी लाइन
क्षेत्र)	
भासमे (51 मेगावाट) (निजी क्षेत्र)	भामसे में चुजाचेन-रांगपो 132 के.वी. डी/सी के एक सर्किट का एलआईएलओ
जोरेथांग लूप (96 मेगावाट)	जोरेथंग-न्यू मेल्ली 220 के.वी. डी/सी लाइन
(निजी क्षेत्र)	
रोगनीचू लूप (96 मेगावाट)	रोंगनीचू -न्यू मेल्ली 220 के.वी. डी/सी लाइन
(निजी क्षेत्र)	

727

चुजाचेन एचईपी (99 मेगावाट)	चुजाचेन में मेल्ली-गंगटोक डी/सी (नामथंग में एलआईएलओ प्वाइंट) का	
(गति)	एलआईएलओ	
	तालिका सं. ई.आरएस.एम02	
सिक्किम में प्रथम फेज की विद्युत	1. करनदिग्घी में 2x315 एम.वी.ए., 400 के.वी. सब स्टेशन की स्थापना	
परियोजनाओं के लिए साझा पारेषण प्रणाली,	2. करनदिग्घी के नए पूलिंग स्टेशन पर सिलिगुड़ी (मौजूदा)-पुर्निया 400 के.वी. डी/सी लाइन (क्वाड) का एलआईएलओ	
[तीस्ता-।।। एचईपी (1200	3. करनदिग्घी में क्वाड मूज कंडक्टर लाइन के एलआईएलओ भाग के	
मेगावाट), तीस्ता-VI (500	निर्माण के साथ सिलिगुड़ी (मौजूदा)-पुर्निया 400 के.वी. डी/सी लाइन	
मेगावाट), रंगित-IV (120	(जिस पर पीजीसीआईएल द्वारा उच्च क्षमता के एचटीएलएस कंडक्टर सहित रि-कंडक्टरिंग किया जा रहा है) का एलआईएलओ	
मेगावाट), चुजाचेन (99	4. करनदिग्घी में नये पूलिंग स्टेशन पर सिलिगुड़ी –डालखोला 220 के.वी.	
मेगावाट), भासमे (51 मेगावाट),	4. करनादग्या म नय पूर्तिंग स्टरान पर सिलिगुड़ा –डालखाला 220 क.वा. डी/सी लाइन का एलआईएलओ	
जोरेथंग लूप (96 मेगावाट),	હા/તા લાક્ષ માં હલબાકહલબા	
रोंगनीचू (96 मेगावाट)] भाग-क		
	तालिका सं. ई.आरएस.एम03	
सिक्किम में प्रथम फेज की विद्युत	11(1)1 (1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
परियोजनाओं के लिए साझा पारेषण प्रणाली.	3x100 एम.वी.ए., 220/132 के.वी गैस इन्सुलेटेड सब स्टेशन	
्रार्चित्रम्याः [तीस्ता-।।। एचईपी (1200	की स्थापना	
मेगावाट), तीस्ता-VI (500	1. (ख). रागापो जीआईएस पर 3x100 एम.वी.ए., 220/132 के.वी	
मेगावाट), रंगित-IV (120	टाआरएफ का स्थापना	
मेगावाट), चुजाचेन (99	2. न्यू मण्या म 220 प्र.पा. स्थि। प्रग स्टरान प्रग स्थापना	
मेगावाट), भासमे (51 मेगावाट),	5. (144) 4 (11/41-11/41/41) 400 4.41. 4415 51/41 (1124)	
जोरेथंग लूप (96 मेगावाट),	4. न्यू मेल्ली-रांगपो 220 के.वी. डी/सी लाइन (ट्विन मूज कंडक्टर)	
रोंगनीचू (96 मेगावाट)] भाग-ख	5. रांगपो में गंगटोक-रंगित 132 के.वी. एस/सी लाइन का एलआईएलओ तथा रांगपो सब स्टेशन पर गंगटोक-रांगपो /चुजाचेन 132 के.वी. लाइनों (भाग-क के अंतर्गत रांगपो तक गंगटोक-मेल्ली 132 के.वी. एस/सी लाइन का एलआईएलओ) का टर्मिनेशन	
	6. रांगपो में मौजूदा तीस्ता-V-सिलिगुड़ी 400 के.वी. डी/सी लाइन का	
	एलआईएलओ	
	7. करनदिग्घी-पटना (पीजी) 400 के.वी. डी/सी (क्वाड) लाइन	
तालिका सं. ई.आरएस.एम04		
सिक्किम में द्वितीय फेज की विद्युत परियोजनाओं के लिए समर्पित पारेषण प्रणाली, [दिक्चू (96 मेगावाट), पानम		
(300 मेगावाट), टिंगटिंग (99 मेगावाट), तासीडिंग (97 मेगावाट)]		
दिक्चू (96 मेगावाट)	1. जेब्रा कंडक्टर के साथ दिक्चू एचईपी-गंगटोक 132 के.वी. डी/सी लाइन	
(राज्य क्षेत्र)	2. जेब्रा कंडक्टर के साथ दिक्चू एचईपी-मांगन (पीजी) 132 के.वी. डी/सी	
पानम (300 मेगावाट)	1. पानम-मांगन 400 के.वी. डी/सी लाइन	
(निजी क्षेत्र)		

टिंगटिंग (99 मेगावाट)	1. टिंगटिंग-तासीडिंग पीएस 220 के.वी. डी/सी लाइन		
(निजी क्षेत्र)			
तासीडिंग (97 मेगावाट)	1. तासीडिंग-तासीडिंग पीएस 220 के.वी. डी/सी लाइन		
(निजी क्षेत्र)			
	तालिका सं. ई.आरएस.एम05		
सिक्किम में द्वितीय फेज की	1. मांगन में 4x105 एम.वी.ए., एकल फेज, 400/132 के.वी. पूलिंग स्टेशन		
विद्युत परियोजनाओं के लिए	की स्थापना		
साझा पारेषण प्रणाली [दिक्चू	2. तीस्ता-।।।-करनदिग्घी 400 के.वी. डी/सी लाइन का एलआईएलओ		
(96 मेगावाट), पानम (300	3 ट्विन मूज कंडक्टर के साथ मांगन-करनदिग्घी 400 के.वी. डी/सी लाइन		
मेगावाट), टिंगटिंग (99	4. ट्विन मूज कंडक्टर (द्वितीय लाइन) के साथ न्यू मेल्ली-रांगपो 220 के.वी.		
मेगावाट), तासीडिंग (97	डी/सी लाइन		
मेगावाट)] भाग-क			
	तालिका सं. ई.आरएस.एम06		
सिक्किम में द्वितीय फेज की	1. तासीडिंग के पास 220 के.वी. गैस इन्सुलेटेड पूलिंग/स्विचिंग स्टेशन की		
विद्युत परियोजनाओं के लिए	स्थापना		
साझा पारेषण प्रणाली [दिक्चू	2. तासीडिंग पूलिंग स्टेशन के पास ट्विन मूज कंडक्टर के साथ-न्यू मेल्ली 220		
(96 मेगावाट), पानम (300	के.वी. डी/सी लाइन		
मेगावाट), टिंगटिंग (99			
मेगावाट), तासीडिंग (97			
मेगावाट)] भाग-ख			

	तालिका सं. ई.आर.डब्ल्यू.बी01	
रघुनाथपुर फेज-1, यू1 एवं 2	1. रघुनाथपुर में मैथन (पीजी)-रांची 400 के.वी. लाइन के एक सर्किट	
(2x600 मेगावाट)	का एलआईएलओ	
(केंद्रीय क्षेत्र)	2. रघुनाथपुर-रांची 400 के.वी. क्वाड डी/सी लाइन	
	तालिका सं. ई.आर.डब्ल्यू.बी02	
उत्तरी क्षेत्र द्वारा डीवीसी से	1. मैथन-गया 400 के.वी. क्वाड डी/सी लाइन	
विद्युत आयात हेतु साझा पारेषण प्रणाली	2. गया-सासाराम 765 के.वी. एस/सी लाइन	
7 HVII	3. गया-बलिया 765 के.वी. एस/सी	
	4. बलिया-लखनऊ 765 के.वी. एस/सी	
	5. फतेहपुर में पावरग्रिड के 765/400 के.वी. सब स्टेशन पर इलाहाबाद-	
	मैनपुरी 400 के.वी. डी/सी लाइन के दानों सर्किटों के एलआईएलओ	
	6. रांची-पश्चिम क्षेत्र पूलिंग 765 के.वी. एस/सी	
	7. सासाराम-फतेहपुर (पीजी 765 के.वी. सब स्टेशन) एस/सी लाइन	
	8. फतेहपुर (पीजी 765 के.वी. सब स्टेशन)-आगरा 765 के.वी. एस/सी	
	लाइन	

- 9. बिहारसरीफ-सासाराम (पीजी 765 के.वी. सब स्टेशन) 400 के.वी. क्वाड उी/सी लाइन
- 10. बिलया छोर पर बढ़-बिलया 400 के.वी. क्वाड डी/सी लाइन का 40% सिरीज कंपनसेशन
- 11. बिहारसरीफ- बिलया छोर पर बिहारसरीफ-बिलया 400 के.वी. क्वाड डी/सी लाइन का 40% सिरीज कंपनसेशन
- 12. लखनऊ 765/400 के.वी. नया सब स्टेशन-लखनऊ 400/220 के.वी. मौजूदा सब स्टेशन 400 के.वी. क्वाड 2xडी/सी लाइन
- 13. बरेली 765/400 के.वी. नया सब स्टेशन-बरेली 400/220 के.वी. मौजूदा सब स्टेशन 400 के.वी. क्वाड 2xडी/सी लाइन (एनकेएसटीपीपी प्रणाली से मेल कराने के लिए)
- 14. रांची 765/400 के.वी. नया सब स्टेशन-रांची 400/220 के.वी. मौजूदा सब स्टेशन 400 के.वी. क्वाड 2xडी/सी
- 15.पटना में बढ़-बिलया 400 के.वी. डी/सी क्वाड लाइन के दोनों सर्किटों के एलआईएलओ
- 16 3X1500 एम.वी.ए. ट्रांसफारमर के साथ गया 765/400 के.वी. सब स्टेशन की स्थापना
- 17 2X1500 एम.वी.ए. ट्रांसफारमर के साथ सासाराम 765/400 के.वी. सब स्टेशन की स्थापना
- 18 2X1500 एम.वी.ए. ट्रांसफारमर के साथ रांची 765/400 के.वी. सब स्टेशन की स्थापना
- 19 2X1500 एम.वी.ए. ट्रांसफारमर के साथ फतेहपुर 765/400 के.वी. सब स्टेशन की स्थापना
- 20 2X1500 एम.वी.ए. ट्रांसफारमर के साथ आगरा 765/400 के.वी. सब स्टेशन की स्थापना
- 21 2X1500 एम.वी.ए. ट्रांसफारमर के साथ बलिया 765/400 के.वी. सब स्टेशन की स्थापना
- 22 2X1500 एम.वी.ए. ट्रांसफारमर के साथ लखनऊ 765/400 के.वी. सब स्टेशन की स्थापना

तालिका सं. ई.आर.डब्ल्यू.बी.-03

पूर्वी क्षेत्र में पूलिंग स्टेशन हेतु
पारेषण प्रणाली तथा भूटान में
परियोजनाओं से उत्तरी
क्षेत्र/पश्चिमी क्षेत्र को विद्युत
अंतरण

- 1. अलीपुरद्वार पर नया 2x315 एम.वी.ए., 400/220 के.वी. का ए.सी. पूलिंग स्टेशन
- 2. आगरा में 3000 मेगावाट इन्वर्टर माड्यूल के साथ<u>+</u>800 के.वी. एचवीडीसी स्टेशन का विस्तार
- एचवीडीसी स्टेशन के समानांतर लाइन के प्रचालन हेतु अलीपुरद्वार में नए पूलिंग स्टेशन पर विश्वनाथ चरियल्ली-आगरा एचवीडीसी लाइन का एलआईएलओ

	4. अलीपुरद्वार में नए पूलिंग स्टेशन पर बोंगईगांव सिलिगुड़ी 400 के.वी. डी/सी लाइन (क्वाड) (निजी क्षेत्र के अधीन) का एलआईएलओ
	5. अलीपुरद्वार में नए पूलिंग स्टेशन पर टाला-सिलिगुड़ी 400 के.वी.
	डी/सी लाइन का एलआईएलओ
	6. अलीपुरद्वार में नए पूलिंग स्टेशन पर बीरापाड़ा-सलाकाटी 220 के.वी.
	डी/सी लाइन का एलआईएलओ
	7 अलीपुरद्वार में नए पूलिंग स्टेशन पर <u>+</u> 800 के.वी., 3000 मेगावाट
	कन्वर्टर माड्यूल के साथ एचवीडीसी सब स्टेशन
	तालिका सं. ई.आर.डब्ल्यू.बी04
सीईएससी हल्दिया (600	सीईएससी हल्दिया-सुभासग्राम 400 के.वी. डी/सी लाइन
मेगावाट) (निजी क्षेत्र)	
	तालिका सं. ई.आर.डब्ल्यू.बी05
दुर्गापुर डीपीएल न्यू (यू-8)	डीपीएल-विधाननगर 400 के.वी; डी/सी लाइन
(250 मेगावाट)	
(राज्य क्षेत्र)	

पूर्वी क्षेत्र-एस.टी.यू. के प्रणाली सशक्तिकरण हेतु योजनाएं

तालिका सं. ई.आरएस.एस डब्ल्यू.बी.	
पश्चिम बंगाल में प्रणाली	1. खडगपुर में कोलाघाट-बीराघाट 400 के.वी. एस/सी लाइन का
सशक्तिकरण योजना	एलआईएलओ
	2. चंडीताला-सुभाषग्राम 400 के.वी. डी/सी लाइन
	3. चंडीताला-खडगपुर 400 के.वी. डी/सी लाइन

<u>अनुबंध-7.5</u>

उत्तर-पूर्वी क्षेत्र-पारेषण योजना का विवरण उत्तर-पूर्वी-प्रणाली सशक्तिकरण हेतु योजनाएं

त	लिका सं. एन.ई.आरआई.एस 01
एनईआर के द्वितीय फेज में पारेषण का सशक्तिकरण	1. बिर्नीहाट में सिलचर-बोंगईगांव 400 के.वी. डी/सी के एक सर्किट (द्वितीय) का एलआईएलओ
	2. भालुकपोंग में बालीपाड़ा-खूपी 132 के.वी. एस /सी का एलआईएलओ
	3. एनईआर पीपी (विश्वनाथ चरियल्ली) – ईंटानागर (जेब्रा कंडक्टर) 132kV डी/सी लाइन
	4. पी.के. बारी में पलटन-सिलचर 400 के.वी. डी/सी का एलआईएलओ
	5. भालुकपोंग में पीजी 132/33 के.वी. सब स्टेशन का विस्तार
	6. 50 एम.वी.ए. के चार एकल फेज यूनिटों सहित पी.के. बारी 400/132 के.वी. सब स्टेशन का विस्तार

उत्तरी-पूर्वी-पारेषण प्रणाली:

उरारा-रूपा-गारपण प्रणारा :	
7	ालिका सं. एन.ई.आरएआरपी-01
पेरे डिकरोंग एचईपी (110 मेगावाट)	1. डिकरोंग एचईपी पर आरएचईपी-।-निजौली 132 के.वी. सब स्टेशन
(केंद्रीय क्षेत्र)	का एलआईएलओ
	2. डिकरोंग एचईपी पर आरएचईपी-।-इडावगर 132 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ
	3. मिसा पर द्वितीय 315 एमवीए 400/220 के.वी. आईसीटी
7	ालिका सं. एन.ई.आरएआरपी-02
कामेंग एचईपी (600 मेगावाट)	1. कामेंगपाड़ा-बालीपाड़ा 400 के.वी. डी/सी लाइन
(केंद्रीय क्षेत्र)	2. 30% एफएससी सहित बालीपाड़ा-बोंगइगांव (क्वाड) 400 के.वी.
	डी/सी लाइन
7	ालिका सं. एन.ई.आरएआरपी-03
लोअर सुबंसिनी (2000 मेगावाट)	लोअर-सुबंसिनी-विश्वनाथ चरियाली(पीपी 400 के.वी. 2X
(केंद्रीय क्षेत्र)	डी/सी (ट्विन लैपिंग)
7	ालिका सं. एन.ई.आरएआरपी-04
पूर्वोत्तर क्षेत्र से उत्तर/पश्चिम क्षेत्र को	1. विश्वनाथ चरियाली-आगरा <u>+</u> 800 के.वी., 6000 मेगावाट
विद्युत अंतरण हेतु साझा पारेषण	एचवीडीसी बाईपोल लाइन
प्रणाली	2. विश्वनाथ चरियाली (पूलिंग प्वाइंट) पर रंगानदी-बालीपाड़ा 400
	के.वी. डी/सी लाइन का एलआईएलओ
	3. विश्वनाथ चरियाली- विश्वनाथ चरियाली (एईजीसीएल) 132
	के.वी. डी/सी लाइन
	4. विश्वनाथ चरियाली (2x200 एम.वी.ए.) में 400/132 के.वी.
	पूलिंग स्टेशन की स्थापना

752 THE GREETE OF INDIA: EATMORDINARY [FART IN SEC. 4]		
	 5. विश्वनाथ चरियाली में 3000 मेगावाट का एचवीडीसी रेक्टिफायर माड्यूल तथा आगरा में 3000 मेगावाट क्षमता का इन्वर्टर माड्यूल 132 के.वी. डी/सी लाइन 6. बालीपाड़ा- विश्वनाथ चरियाली (पीपी) 400 के.वी. डी/सी लाइन 7. आगरा में 1x315 एम.वी.ए. 400/220 के.वी. सब स्टेशन 	
7	गिलिका सं. एन.ई.आरएआरपी-05	
खुइतम (33 मेगावाट)	खुइतम-डिंचंग 220 के.वी. डी/सी लाइन	
(निजी क्षेत्र)		
	गिलिका सं. एन.ई.आरएआरपी-06	
डेमवे लोअर (341 मेगावाट) (निजी क्षेत्र)	1. डेमवे लोअर-काथलगुड़ी 400 के.वी. डी/सी लाइन वाया नामसाईं पीपी	
	2. काथलगुड़ी-मिसा 400 के.वी. डी/सी लाइन का प्रचालन	
	3. 400/220 के.वी. 630 एम.वी.ए. मरियानी सब स्टेशन की स्थापना	
-	गलिका सं. एन.ई.आरएआरपी-07	
केएसके डिब्बिन, पटेल हाइड्रो, नेफ्रा हे	तु समर्पित प्रणाली	
केएसके डिब्बिन, हाइड्रो पावर लिमिटेड, (2x60 मेगावाट)	केएसके डिब्बिन-डिंचंग पीपी 220 के.वी. डी/सी लाइन	
पटेल हाइड्डो, प्राइवेट लिमिटेड		
(गोन्ग्री एवं सास्ग्रांग) (3x48+	सास्ग्रांग-गोन्ग्री 132 के.वी. डी/सी लाइन	
2x22.5 मेगावाट)	गोन्प्री-डिंचंग पीपी 220 के.वी. डी/सी लाइन	
एसईडब्ल्यू नेफ्रा पावर कारपोरेशन लिमिटेड (2x60 मेगावाट)	नेफ्रा-डिंचंग पीपी 220 के.वी. डी/सी लाइन	
आदिशंकर खुइतम पावर लिमिटेड (3x22 मेगावाट)	खुइतम-डिंचंग पीपी 220 के.वी. डी/सी लाइन	
तालिका सं. एन.ई.आरएआरपी-08		
केएसके डिब्बिन हाइड्रो पावर लिमिटेड, गोन्ग्री एवं सास्ग्रांग, नेफ्रा पावर तथा आदिशंकर खुइतम पावर	 रांगिया/रौता में 440/220 के.वी. ,2x315 एम.वी.ए. का पूलिंग स्टेशन डिंचंग में 440/220 के.वी. 2x315 एम.वी.ए. का पूलिंग स्टेशन 	
हेतु साझा पारेषण प्रणाली	3. रांगिया/रौता में बोंगईगांव-बालीपाड़ा 440 के.वी. डी/सी लाइन का एलआईएलओ	
	4. डिंचंग पीपी-रांगिया/रौता 400 के.वी. डी/सी (क्वाड) लाइन	
	5. सिलचर-मिसा 400 के.वी. (क्वाड) डी/सी लाइन	

तालिका सं. एन.ई.आरएएस-01	
बोंगईगांव टीपीपी हेतु समर्पित प्रणाली	
बोंगईगांव टीपीपी (3x250	बोंगईगांव-बोंगईगांव (पीजी) 400 के.वी. डी/सी लाइन
मेगावाट)	
(केंद्रीय क्षेत्र)	

तालिका सं. एन.ई.आर.-एएस-02

बोंगईगांव टीपीपी (750 मेगावाट) पलाटना (726 मेगावाट) हेतु साझा प्रणाली (केंद्रीय क्षेत्र)

- 1. सिलचर-बदरपुर (पीजी) स्विचिंग स्टेशन 132 के.वी. डी/सी लाइन
- 2. सिलचर-पी.के. बारी (टीएसईसीएल) 400 के.वी. डी/सी लाइन (132 के.वी. पर आवेशित)
- 3. सिलचर-मेलरियात न्यू पीजी 400 के.वी. डी/सी लाइन (132 के.वी. पर आवेशित)
- 4. सिलचर-इम्फाल 400 के.वी. डी/सी लाइन (132 के.वी. पर आवेशित)
- 5. मेलरियात (न्यू)-मेलरियात (मिजोरम) 132 के.वी. डी/सी लाइन
- 6. सिलचर-श्रीकोना (एईजीसीएल) 132 के.वी. डी/सी लाइन
- 7. सिलचर-हेलाकांडी (एईजीसीएल) 132 के.वी. डी/सी लाइन
- 8. इम्फाल (न्यू) पर लोकटक-इम्फाल (पीजी) 132 के.वी. डी/सी लाइन का एलआईएलओ
- 9. मरियानी (न्यू) पर कथलगुड़ी-मीसा 400 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ (132 के.वी. पर आवेशित)
- 10. . मरियानी (न्यू)-मोकोचुंग (पीजी) 220 के.वी. डी/सी लाइन
- 11. जेब्रा कंडक्टर के साथ मोकोचुंग (पीजी)-मोकोचुंग (नागालैंड) 132 के.वी. डी/सी लाइन
- 12. पासीघाट-रोईंग डी/सी लाइन पर 132 के.वी. एस/सी
- 13. रोईंग-तेजू डी/सी लाइन पर 132 के.वी. एस/सी
- 14. तेजू-नामसाईं डी/सी लाइन पर 132 के.वी. एस/सी
- 15. 400/132 के.वी. सिलचर सब स्टेशन (2x200 एम.वी.ए.) की स्थापना
- 16. मेलरियात 132/33 के.वी. (400 के.वी. पर अपग्रेड किए जाने योग्य)(2x50 एम.वी.ए.) सब स्टेशन की स्थापना
- 17. इम्फाल (न्यू) 132/33 के.वी. (400 के.वी. पर अपग्रेड किए जाने योग्य) (2x50 एम.वी.ए.) सब स्टेशन की स्थापना
- 18. मरियानी 220 के.वी. (400 के.वी. पर अपग्रेड किए जाने योग्य) स्विचिंग स्टेशन की स्थापना
- 19. मोकोकचुंग 220/132 के.वी. (7x10 एम.वी.ए. एक स्पेयर) सब स्टेशन की स्थापना
- 20. रोईंग 132/33 के.वी. (एकल फेज 7x5 एम.वी.ए., एक स्पेयर) सब स्टेशन की स्थापना
- 21. तेजू 132/33 के.वी. (एकल फेज 7x5 एम.वी.ए., एक स्पेयर) सब स्टेशन की स्थापना
- 22. नामसाई 132 के.वी. (2x15 एम.वी.ए.) सब स्टेशन की स्थापना

- 23. सिलचर में (2x63 एम.वी.ए.आर.) बस रिएक्टर
- 24. बोंगईगांव में (1x80एम.वी.ए.आर.) बस
- 25. सिलचर छोर पर पलाटना-सिलचर 400 के.वी. डी/सी लाइन के प्रत्येक सर्किट में 50 एम.वी.ए.आर. के लाइन रिएक्टर
- 26. सिलचर एवं बोंगईगांव छोर पर सिलचर-बोंगईगांव 400 के.वी. डी/सी लाइन के प्रत्येक सर्किट में 63 एम.वी.ए.आर. के लाइन रिएक्टर
- 27. बीटीपीएस (एनटीपीसी) में 400/ 220 के.वी. (2x315 एम.वी.ए. ट्रांसफारमर)
- 28. पलाटना में 400/ 132 के.वी. (2x200 एम.वी.ए. ट्रांसफारमर)
- 29. पलाटना छोर पर पलाटना-सिलचर 400 के.वी. डी/सी लाइन के प्रत्येक सर्किट में 50 एम.वी.ए.आर. के लाइन रिएक्टर
- 30. पलाटना जीबीपीपी पर 80 एम.वी.ए.आर. के बस रिएक्टर
- 31. न्यू गुवाहाटी (अजारा) में सिलचर-बोंगईगांव 400 के.वी. डी/सी लाइन के दोनों सर्किटों के एलआईएलओ
- 32. न्यू गुवाहाटी (अजारा) 400/220 के.वी. सब स्टेशन (2x315 एम.वी.ए.) की स्थापना
- 33. अजारा छोर पर अजारा-बोंगईगांव 400 के.वी. डी/सी लाइन के प्रत्येक सर्किट में 63 एम.वी.ए.आर. के लाइन रिएक्टर
- 34. अजारा छोर पर 63 एम.वी.ए.आर. के बस रिएक्टर
- 35. न्यू गोवाहाटी (अजारा) पीजी में अगिया-गुवाहाटी 220 के.वी. डी/सी लाइन के दोनों सर्किट के एलआईएलओ
- 36. बिर्निहाट में सिलचर-बोंगईगांव 400 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ
- 37. बिर्निहाट 400/220 के.वी. सब स्टेशन (2x315 एम.वी.ए.) की स्थापना
- 38. सिलचर-बिर्निहाट लाइन हेतु बिर्निहाट में 63 एम.वी.ए.आर. का लाइन रिएक्टर
- 39. बिर्निहाट में 63 एम.वी.ए.आर. का बस रिएक्टर
- 40. बीटीपीएस-(एनटीपीसी)-बोंगईगांव सब स्टेशन (पीजी) 400 के.वी. डी/सी लाइन
- 41. पलाटना-सिलचर 400 के.वी. डी/सी लाइन
- 42. सिलचर-बोंगईगांव 400 के.वी. डी/सी लाइन
- 43. पलाटना-सूरजमानी नगर 400 के.वी. डी/सी लाइन (132 के.वी. पर आवेशित)

तालिका सं. एन.ई.आरएएस-03		
नामरूप+ विस्तार (100	1.नामरूप-तिनसुखिया 220 के.वी. डी/सी लाइन	
मेगावाट) (राज्य क्षेत्र)	2.नामरूप-लकवा 132 के.वी. डी/सी लाइन	
(राज्य दान)	3.बोडुबी में नामरूप-तिनसुखिया 220 के.वी. एस/सी लाइन का एलआईएलओ	

तालिका सं. एन.ई.आरएमएल-01			
न्यू उमत्रू (40 मेगावाट)	न्यू उम्रत्रू एचईपी-नोबोंग 132 के.वी. डी/सी		
(राज्य क्षेत्र)			
	तालिका सं. एन.ई.आरएमजेड-01		
तुईरियल एचईपी (2x30	1. तुईरियल-कोलासिब 132 के.वी. एस/सी (33 के.वी. पर प्रचालित)		
मेगावाट)	(मौजूदा)		
(केंद्रीय क्षेत्र)	2. तुईरियल एचईपी पर जिरीबेम ऐजाल 132 के.वी. एस/सी		
	तालिका सं. एन.ई.आरटीआर-01		
पलाटना गैस हेतु एटीएस			
पलाटना गैस (726.6 मेगावाट)	1. पलाटना-सिलचर 400 के.वी. डी/सी लाइन		
	2. सिलचर-बोंगईगांव 400 के.वी. डी/सी लाइन		
तालिका सं. एन.ई.आरटीआर-02			
मोनारचक (105 मेगावाट) (केंद्रीय क्षेत्र)	 मोनारचक-बदरघाट-कुमारघाट-बदरपुर एस.डब्ल्यू स्टेशन 132 के.वी. डी/सी लाइन 		
(1/2/14/1/)	2. मोनारचक-रबीन्द्र नगर 132 के.वी. डी/सी लाइन		
	3. रबीन्द्र नगर 132/33 के.वी. सब स्टेशन (2x25 एम.वी.ए.) की स्थापना		
	4. बदरघाट (अगरतला न्यू) 132/33 के.वी. सब स्टेशन (2x25 एम.वी.ए.) की स्थापना		

पूर्वोत्तर क्षेत्र-एस.टी.यू. की प्रणाली सशक्तिकरण योजनाएं:

तालिका सं. एन.ई.आरएसएस-एआरपी	
अरूणाचल प्रदेश में प्रणाली	1. खूपी-सेप्पा डी/सी लाइन पर 132 के.वी. एस/सी
सशक्तिकरण (प्रथम फेज)	2. सेप्पा-साग्ली डी/सी लाइन पर 132 के.वी. एस/सी
	3. साग्ली-नाहरलागुन डी/सी लाइन पर 132 के.वी. एस/सी
	4. नाहरलागुन-गेरूकामुख डी/सी लाइन पर 132 के.वी. एस/सी
	5. गेरूकामुख-लिकाबाली डी/सी लाइन पर 132 के.वी. एस/सी
	6. लिकाबाली-निग्लोक डी/सी लाइन पर 132 के.वी. एस/सी
	7. निग्लोक-पासीघाट डी/सी लाइन पर 132 के.वी. एस/सी

	8. देवमाली-खोन्सा 132 के.वी. एस/सी लाइन
	9. खोन्सा-चांगलांग 132 के.वी. एस/सी लाइन
	10.चांगलांग-जयरामपुर 132 के.वी. एस/सी लाइन
	11.जयरामपुर-मियो 132 के.वी. एस/सी लाइन
	12.मियो-नामसाई (पीजी) डी/सी लाइन पर 132 के.वी.एस/सी
	13.तेजू-हलाईपानी डी/सी लाइन पर 132 के.वी. एस/सी
	14.नाहरलागुन-बंदरदेवा डी/सी लाइन पर 132 के.वी.एस/सी
	15.सेपा, सागली, नेहारलागुन,गेरूकामुख, लिकाबाल, निगलोक, पासीघाट,
	खोन्सा, चांगलांग, जयरामपुर, मियो, हलाईपानी, बंदरदेवा में 132/33 के.वी. सब स्टेशन
अरूणाचल प्रदेश में प्रणाली	1. पालिन-कोलोरियांग132 के.वी. एस/सी लाइन
सशक्तिकरण (द्वितीय फेज)	2. बसर में जीरो-डापोरिजो 132 के.वी. एस/सी का एलआईएलओ
	3. रोईग-अनीनी डी/सी लाइन पर 132 के.वी.एस/सी
	4. एलोंग-रेयिंग डी/सी लाइन पर 132 के.वी.एस/सी
	5. एलोंग-यिंगकियोंग डी/सी लाइन पर 132 के.वी.एस/सी
	6. पालिन 132/33 के.वी. सब स्टेशन (7x5 एम.वी.ए. एकल फेज) की
	स्थापना
	7. कोलोरियांग 132/33 के.वी. सब स्टेशन (7x5 एम.वी.ए. एकल फेज) की
	स्थापना
	8. बसर 132/33 के.वी. सब स्टेशन (7x5 एम.वी.ए. एकल फेज) की स्थापना
	9. यिंगकियोंग 132/33 के.वी. सब स्टेशन (7x5 एम.वी.ए. एकल फेज) की
	स्थापना
	10. रोईंग 132/33 के.वी. सब स्टेशन (7x5 एम.वी.ए. एकल फेज) की
	स्थापना
	11. रेयिंग 132/33 के.वी. सब स्टेशन (7x5 एम.वी.ए. एकल फेज) की स्थापना
	12. अनीनी 132/33 के.वी. सब स्टेशन (4x5 एम.वी.ए. एकल फेज) की
	स्थापना
	13. जीरो 132/33 के.वी. सब स्टेशन (संवर्धन) (4x8 एम.वी.ए.)
	14. डापोरिजो 132/33 के.वी. सब स्टेशन (संवर्धन) (2x15.5 एम.वी.ए.)
	15. एलोंग 132/33 के.वी. सब स्टेशन (संवर्धन) (7x5 एम.वी.ए.)
	16. जीरो-पालिन 132 के.वी. एस/सी लाइन
	तालिका सं. एन.ई.आरएसएस-एएस
असम में प्रणाली सशक्तिकरण	1. रांगिया-अमीनगांव 220 के.वी. डी/सी लाइन
(प्रथम फेज)	2. तिनसुखिया-बेहियाटिंग (न्यू डिब्रूगढ़) 220 के.वी. डी/सी लाइन
	3. जवाहरनगर में समागुड़ी-सरूसाजय लाइन के एक सर्किट 220 के.वी. डी/सी
	लाइन का एलआईएलओ

4. कहीलापाड़ा-गुवाहाटी मेडिकल कालेज 132 के.वी. डी/सी लाइन 5. समागुड़ी-जखलबंधा डी/सी लाइन पर 132 के.वी.एस/सी 6. सिबसागर-मोरान डी/सी लाइन पर 132 के.वी.एस/सी 7. रूपई-चपखोवा (वाया ढोला 4 किमी.नदी की क्रासिंग) डी/सी लाइन पर 132 के.वी.एस/सी 8. लंका-लुमडिंग डी/सी लाइन पर 132 के.वी.एस/सी 9. डेमाजी-शिलापपठार डी/सी लाइन पर 132 के.वी. एस/सी 10. शिलापठार-जोनाई डी/सी लाइन पर 132 के.वी. एस/सी 11. अमीनगांव एवं बेहियाटिंग में 220/33 के.वी. सब स्टेशन 12. जमहानगर में 220/33 के.वी. सब स्टेशन 13. गुवाहाटी मेडिकल कालेज, जखालाबंधा, चापकहोआ, लुमडिंग, शिलापठार, एवं जोनाई में 220/33 के.वी. सब स्टेशन 14. समागुड़ी 220/132 के.वी. सब स्टेशन (3x100 एम.वी.ए.) का संवर्धन असम में प्रणाली सशक्तिकरण 1. बोरनगर में बीपीटीएस-रांगिया 220 के.वी. डी/सी लाइन के एक सर्किट का (द्वितीय फेज) एलआईएलओ माकुम में कथलगुड़ी-तिनसुखिया 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ बोरनगर-बारपेटा 132 के.वी. डी/सी लाइन 3. पाठशाला में बारनगर-रांगिया 132 के.वी. लाइन का एलआईएलओ 4. टांग्ला में रांगिया-रौता 132 के.वी. लाइन का एलआईएलओ ढेकियाजूली में रौता-डिपोता 132 के.वी. लाइन के एक सर्किट का एलआईएलओ 7. अमीनगांव-हजो 132 के.वी. डी/सी लाइन कुकुरमारा (400/220/132) – मिर्जा 132 के.वी. डी/सी लाइन 9. कामाख्या-पलटनबाजार (यू.जी. केबिल) 132 के.वी. एस/सी लाइन 10. जागी रोड-नागांव 132 के.वी. डी/सी लाइन 11. नागांव-ढिंग 132 के.वी. एस/सी लाइन 12. बैथालांग्सो में समागुड़ी-लंका 132 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ 13. सारूपठार में गोलाघाट-बोकाजान 132 के.वी. लाइन का एलआईएलओ 14. टेवक में जोरहट-नजीरा 132 के.वी. लाइन का एलआईएलओ 15. माकुम में तिनसुखिया-मारघेरिटा 132 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ 16. सोनाबिल-तेजपुर न्यू 132 के.वी. डी/सी लाइन 17. बोरगोंग में सोनाबिल-गोहपुर्क 132 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ 18. बीहपुरिया में गोहपुर-एन-लखीमपुर 132 के.वी. लाइन का एलआईएलओ 19. हेलाकांडी-करीमगंज डी/सी लाइन पर 132 के.वी. एस/सी

- THE GAZETTE OF INDIA: EXTRAORDINARY [PART III—SEC. 4] 20. अगिया-सनपुरा (मनकचर) डी/सी लाइन पर 132 के.वी. एस/सी बोरनगर 220/132 के.वी.सब स्टेशन (2x100 एम.वी.ए.) की स्थापना 21. माकुम 220/132 के.वी.सब स्टेशन (तिनसुखिया का विस्तार) (2x100 एम.वी.ए.) 22. बारपेटा 132/33 के.वी.सब स्टेशन (2x25 एम.वी.ए.) की स्थापना 23. पाठशाला 132/33 के.वी.सब स्टेशन (2x25 एम.वी.ए.) की स्थापना 24. टांग्ला 132/33 के.वी.सब स्टेशन (2x25 एम.वी.ए.) की स्थापना 25. ढेकियाजूली 132/33 के.वी.सब स्टेशन (2x25 एम.वी.ए.) की स्थापना 26. हाजो 132/33 के.वी.सब स्टेशन (2x25 एम.वी.ए.) की स्थापना 27. मिर्जा 132/33 के.वी.सब स्टेशन (2x25 एम.वी.ए.) की स्थापना 28. पलटनबाजार 132/33 के.वी.सब स्टेशन (2x40 एम.वी.ए.) की स्थापना 29. ढिंग 132/33 के.वी.सब स्टेशन (2x16 एम.वी.ए.) की स्थापना 30. बैथालांग्स् 132/33 के.वी.सब स्टेशन (2x16 एम.वी.ए.) की स्थापना 31. सारुपठार 132/33 के.वी.सब स्टेशन (2x16 एम.वी.ए.) की स्थापना 32. टेवक 132/33 के.वी.सब स्टेशन (2x25 एम.वी.ए.) की स्थापना
 - 33. माकुम 132/33 के.वी.सब स्टेशन (2x25 एम.वी.ए.) की स्थापना
 - 34. तेजपुर न्यू 132/33 के.वी.सब स्टेशन (2x25 एम.वी.ए.) की स्थापना
 - 35. बोरगांव 132/33 के.वी.सब स्टेशन (2x25 एम.वी.ए.) की स्थापना
 - 36. बीहपुरिया 132/33 के.वी.सब स्टेशन (2x25 एम.वी.ए.) की स्थापना
 - 37. करीमगंज 132/33 के.वी.सब स्टेशन (2x25 एम.वी.ए.) की स्थापना
 - 38. सनपुरा (मनकचार) 132/33 के.वी.सब स्टेशन (2x16 एम.वी.ए.) की स्थापना
 - 39. नामरूप 132/33 के.वी.सब स्टेशन (संवर्धन) (2x100 एम.वी.ए.)
 - 40. डॉलीगांव 132/33 के.वी.सब स्टेशन (संवर्धन) (2x40 एम.वी.ए.)
 - 41. नरेन्गी 132/33 के.वी.सब स्टेशन (संवर्धन) (2x40 एम.वी.ए.)
 - 42. समागुड़ी 132/33 के.वी.सब स्टेशन (संवर्धन) (2x40 एम.वी.ए.)
 - 43. बोकाजन 132/33 के.वी.सब स्टेशन (संवर्धन) (2x25 एम.वी.ए.)
 - 44. सिबसागर 132/33 के.वी.सब स्टेशन (संवर्धन) (2x40 एम.वी.ए.)

तालिका सं. एन.ई.आर.-एसएस-एमआर

मणिपुर में प्रणाली सशक्तिकरण (प्रथम फेज)

- 1. कैथलमान्बी (इम्फाल न्यू)-निंगथांगखोंग 132 के.वी. डी/सी लाइन
- यैनगैंगपोक्पी-यूरेम्बाम 132 के.वी. के द्वितीय सर्किट का स्टिंगिंग
- 3. कैथलमान्बी (इम्फाल न्यू) में यूरेम्बाम-यैनगैंगपोक्पी 132 के.वी. के दोनों सर्किट के एलआईएलओ
- 4. यैनगैंगपोक्पी-कोंग्बा 132 के.वी. के द्वितीय सर्किट का स्टिंगिंग

	5. काकाचिंग-कोंग्बा 132 के.वी. के द्वितीय सर्किट का स्ट्रिंगेंग
	6. काकाचिंग-चूराचंदपुर 132 के.वी. के द्वितीय सर्किट का स्ट्रिंगिंग
	7. तिपाईमुख में जिरीबाम-ऐजॉल 132 के.वी. एस/सी लाइन का
	एलआईएलओ
	8. तिपाईमुख 132/33 के.वी. सब स्टेशन (2x12.5 एम.वी.ए.
मणिपुर में प्रणाली	1. रेंगपांग-तामेंगलांग 132 के.वी. एस/सी लाइन
सशक्तिकरण (द्वितीय एवं तृतीय फेज)	2. तामेंगलांग/कारोंग 132 के.वी. एस/सी लाइन
Z((((() -1))	3. गंफाजोज में इम्फाल-कारोंग 132 के.वी. लाइन का एलआईएलओ
	4. काकचिंग-थाउबाल 132 के.वी. एस/सी लाइन
	5. काकचिंग-मोरेह 132 के.वी. एस/सी लाइन
	6. कोन्बा-थाउबाल 132 के.वी. एस/सी लाइन
	7. मारम में कारोंग-कोहिमा 132 के.वी. लाइन का एलआईएलओ
	8. तामेंगलोंग 132/33 के.वी. सब स्टेशन (1x20 एम.वी.ए.) की स्थापना
	9. गम्फाजोल 132/33 के.वी. सब स्टेशन (1x20 एम.वी.ए.) की स्थापना
	10. थाउबाल 132/33 के.वी. सब स्टेशन (1x20 एम.वी.ए.) की स्थापना
	11. मोरेह 132/33 के.वी. सब स्टेशन (1x12.5 एम.वी.ए.) की स्थापना
	12. मारम 132/33 के.वी. सब स्टेशन (1x12 एम.वी.ए.) की स्थापना
	13. जिबीराम 132/33 के.वी. सब स्टेशन (संवर्धन) (द्वितीय टीएफआर) (1x20
	एम.वी.ए.)
	14. रेंगपंग 132/33 के.वी. सब स्टेशन (संवर्धन) (द्वितीय टीएफआर) (1x20
	एम.वी.ए.)
	15. कोंग्बा 132/33 के.वी. सब स्टेशन (संवर्धन) (द्वितीय टीएफआर) (1x20
	एम.वी.ए.)
	16. उखरुल 132/33 के.वी. सब स्टेशन (संवर्धन) (द्वितीय टीएफआर) (1x20
	एम.वी.ए.)
	17. निंगथऊखोंग 132/33 के.वी. सब स्टेशन (12.5 एम.वी.ए. टीआरएफ का
	अपग्रेडेशन) (1x20 एम.वी.ए.)
	18. गम्फाजोल 132/33 के.वी. सब स्टेशन (संवर्धन) (द्वितीय टीएफआर)
	(1x20 एम.वी.ए.)
	19.थाऊबाल 132/33 के.वी. सब स्टेशन (द्वितीय टीएफआर) (1x20
	एम.वी.ए.)
	तालिका सं. एनईआरएसएस-एमजेड
मिजोरम में प्रणाली	1. मेल रिया त न्सू पीजी-मेलरियात स्टेट (#2) (सिहमुई) 132 के.वी. डी/सी
सशक्तिकरण (प्रथम फेज)	लाइन

	2. सेरचिप-मेलरियात स्टेट (#1) 132 के.वी. एस/सी लाइन
	3. जेम्बावक-मेलरियात स्टेट पर वेस्ट फैलिंग (#2) 132 के.वी. लाइन का
	एलआईएलओ
	4. वेस्ट फैलिंग-मारपाड़ा 132 के.वी. एस/सी लाइन
	5. मेलरियात स्टेट, वेस्ट फैलिंग, ई; लंगडर, मारापाड़ा, लंगसेन लुवंगतलाई में
	132/33 के.वी. का सब स्टेशन
मिजोरम में प्रणाली	1. मारपाड़ा-लुंगसेन 132 के.वी. एस/सी लाइन वाया थेन्हलम रूट
सशक्तिकरण (द्वितीय फेज)	2. लुंगसेन-चावन्ग्टे 132 के.वी. एस/सी लाइन (33 के.वी. पर आवेशित)
	3. चावन्ग्टे-एस. बंगटलांग 132 के.वी. एस/सी लाइन (33 के.वी. पर
	आवेशित)
	4. लवन्गलाई-तुईपंग 132 के.वी. एस/सी लाइन (33 के.वी. पर आवेशित)
	तालिका सं. एनईआरएसएस-टीआर
त्रिपुरा में प्रणाली सशक्तिकरण (प्रथम फेज)	1. सूर्यमानी नगर-पी.के. बारी 400 के.वी. डी/सी लाइन (आरंभ में 132 के.वी.
संशाक्तकरण (प्रथम फज)	पर प्रचालित)
	2. पी.के. बारी, धरमनगर, दुर्लावेहेर्रा-पंचग्राम, ख्लिरियात 132 के.वी. एस/सी लाइन का सशक्तिकरण/नवीनीकरण/रि-कडक्टरिंग
	3. अगरतला 79 टिला-सूरजमानी नगर 132 के.वी. एस/सी लाइन
	4. सूरजमानी नगर-रोहिया 132 के.वी. एस/सी लाइन
	5. सूरजमानी नगर-बदरघाट 132 के.वी. डी/सी लाइन
	6. मोनू 132 के.वी. लाइन पर पी.के. बारी–अम्बासा का एलआईएलओ
	7. सूरजमानी नगर-बोधजंग 132 के.वी. डी/सी लाइन
	8. सूरजमानी नगर-उदयपुर 132 के.वी. एस/सी लाइन
	9. कैलासर-धरमनगर 132 के.वी. डी/सी लाइन
	10. रोखिया-राबेन्दरनगर 132 के.वी. डी/सी लाइन
	11.सूरजमानी नगर (400 के.वी. तक अपग्रेड किए जाने योग्य) * 132/33
	के.वी. सब स्टेशन
	12.बोधजंग नगर 132/33 के.वी. सब स्टेशन (25 एम.वी.ए.)
	13.उदयपुर 132/33 के.वी. सब स्टेशन (25 एम.वी.ए.)
	14.मोनू 132/33 के.वी. सब स्टेशन (15 एम.वी.ए.), 132/1133 के.वी. सब
	स्टेशन (10 एम.वी.ए.)
	15.रबीन्दरनगर 132/33 के.वी. सब स्टेशन (25 एम.वी.ए.)
त्रिपुरा में प्रणाली	1. बोधजंग नगर-जिरानिया 132 के.वी. एस/सी लाइन
सशक्तिकरण (द्वितीय फेज)	2. हैजामारा में अगरतला-खोवई 132 के.वी. लाइन का एलआईएलओ
	3. उदयपुर-बागफा 132 के.वी. डी/सी लाइन
	4. बागफा-बेलोनिया 132 के.वी. डी/सी लाइन
	5. रबीन्दरनगर-बेलोनिया 132 के.वी. डी/सी लाइन
	o. ्याप्पर्वार-यवातिमा 10८ मन्या. आता वाइप

6. बेलोनिया-सबरूम 132 के.बी. डी/सी लाइन (66 के.बी. पर आवेशित) 7. जिरानिया (2x12.5 एम.बी.ए.) 132/33 के.बी. सब स्टेशन 8. जिरानिया (1x10 एम.बी.ए.) 132/33 के.बी. सब स्टेशन 9. (क) हैजामारा 132/33 के.बी. सब स्टेशन (2x12.5 एम.बी.ए.) की स्थापना 10. (क) बेगापा 132/33 के.बी. सब स्टेशन (2x12.5 एम.बी.ए.) की स्थापना 10. (क) बागफा 132/33 के.बी. सब स्टेशन (2x12.5 एम.बी.ए.) की स्थापना (ख) बोगफा 132/36 के.बी. सब स्टेशन (2x12.5 एम.बी.ए.) की स्थापना (ग) बागफा 132/11 के.बी. सब स्टेशन (1x30 एम.बी.ए.) की स्थापना (ग) बोगोनिया 132/66 के.बी. सब स्टेशन (2x10 एम.बी.ए.) की स्थापना (व) बेलोनिया 132/33 के.बी. सब स्टेशन (2x10 एम.बी.ए.) की स्थापना (व) बेलोनिया 132/33 के.बी. सब स्टेशन (2x25 एम.बी.ए.) की स्थापना (व) बेलोनिया 132/33 के.बी. सब स्टेशन (2x10 एम.बी.ए.) की स्थापना (व) बेलोनिया 132/33 के.बी. सब स्टेशन (2x10 एम.बी.ए.) की स्थापना (व) बेलोनिया 132/33 के.बी. सब स्टेशन (2x10 एम.बी.ए.) की स्थापना (व) बेलोनिया 132/33 के.बी. सब स्टेशन (2x10 एम.बी.ए.) की स्थापना (व) बेलोनिया 132/33 के.बी. सब स्टेशन (2x10 एम.बी.ए.) की स्थापना (व) बेलोनिया 132/33 के.बी. सब स्टेशन (1x30 एम.बी.ए.) की स्थापना (व) बेलोनिया 132/33 के.बी. सब स्टेशन (1x30 एम.बी.ए.) की स्थापना (व) बेलोनिया 132/33 के.बी. ही/सी लाइन पर उमट्र-किरदमकुलाई डी/सी लाइन के एक.सकिंट का एलआईएलओ 3. मानपैप-गांगस्टोईन-गंगलबीबरा 132 के.बी. डी/सी लाइन (के.बी. एमएलएकईपी (लेशका)- खिलहरियात डी/सी लाइन (के.बी. एमएलएकईपी (वेशका)- खिलहरियात डी/सी लाइन (के.बी. एमएलकईपल्को) (के.बी.एमलकईपल्को)			
8. जिरानिया (1х10 एम.बी.ए.) 132/33 के.वी. सब स्टेशन की स्थापना 9. (क) हैजामारा 132/33 के.वी. सब स्टेशन (2х12.5 एम.बी.ए.) की स्थापना (ख) हैजामारा 132/11 के.वी. सब स्टेशन (2х12.5 एम.बी.ए.) की स्थापना 10. (क) बागफा 132/33 के.वी. सब स्टेशन (2х12.5 एम.बी.ए.) की स्थापना (ख) बागफा 132/11 के.वी. सब स्टेशन (1х30 एम.बी.ए.) की स्थापना (ग) बागफा 132/11 के.वी. सब स्टेशन (2х10 एम.बी.ए.) की स्थापना (ग) बोलोनिया 132/66 के.बी. सब स्टेशन (2х10 एम.बी.ए.) की स्थापना (ख) बोलोनिया 132/33 के.वी. सब स्टेशन (2х25 एम.बी.ए.) की स्थापना (ख) बोलोनिया 132/33 के.वी. सब स्टेशन (2х25 एम.बी.ए.) की स्थापना (ग) बेलोनिया 132/11 के.वी. सब स्टेशन (2х25 एम.बी.ए.) की स्थापना (ग) बेलोनिया 132/11 के.वी. सब स्टेशन (2х25 एम.बी.ए.) की स्थापना 12. उदयपुर 132/66 के.बी. सब स्टेशन (संबर्धन) (1х30 एम.बी.ए.) की स्थापना 12. उदयपुर 132/66 के.बी. सब स्टेशन (संबर्धन) (1х30 एम.बी.ए.) की स्थापना 12. उदयपुर 132/66 के.बी. साव स्टेशन (संबर्धन) (1х30 एम.बी.ए.) की स्थापना 12. उदयपुर 132/66 के.बी. सब स्टेशन (संबर्धन) (1х30 एम.बी.ए.) की स्थापना 12. उदयपुर 132/66 के.बी. सब स्टेशन (संबर्धन) (1х30 एम.बी.ए.) की स्थापना 12. उदयपुर 132/66 के.बी. सब स्टेशन (प्र.वी.ए.) की स्थापना (ख) बेलोनिया 132/11 के.वी. डी/सी लाइन पर 132 के.वी. एम./मी 2. नोगलोबारा-रोखोम (दूरा) डी/सी लाइन पर 132 के.वी. डी/सी लाइन 3. मानगैप-नागस्टोईन-नानवीवरा 132 के.वी. डी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. डी/सी लाइन 7. मेड्डपाट-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अप्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनके, नोगपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2х20 एम.बी.ए.) सब स्टेशन 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2х160 एम.बी.ए.) सब स्टेशन 11. उमियम, ईपीआईपी-।, रोंगखोम, चेरापूँजी, नोगपटोईन नोगलवीवरा में सब स्टेशन संबर्धन 11. विका सं एनईआर-एसएस-एनजी 11. व्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एकआईएलओ		6. बेलोनिया-सबरूम 132 के.वी. डी/सी लाइन (66 के.वी. पर आवेशित)	
9. (क) हैज़ामारा 132/33 के.वी. सब स्टेशन (2x12.5 एम.वी.ए.) की स्थापना (ख) हैज़ामारा 132/11 के.वी. सब स्टेशन (2x10 एम.वी.ए.) की स्थापना 10. (क) बागफा 132/33 के.वी. सब स्टेशन (2x12.5 एम.वी.ए.) की स्थापना (ख) बागफा 132/16 के.वी. सब स्टेशन (1x30 एम.वी.ए.) की स्थापना (ग) बागफा 132/16 के.वी. सब स्टेशन (1x30 एम.वी.ए.) की स्थापना 11.(क) बेलोनिया 132/66 के.वी. सब स्टेशन (1x130 एम.वी.ए.) की स्थापना (ख) बेलोनिया 132/66 के.वी. सब स्टेशन (2x25 एम.वी.ए.) की स्थापना (ग) बेलोनिया 132/11 के.वी. सब स्टेशन (2x25 एम.वी.ए.) की स्थापना (ग) बेलोनिया 132/11 के.वी. सब स्टेशन (2x10 एम.वी.ए.) की स्थापना 12. उदयपुर 132/66 के.वी. सब स्टेशन (संवर्धन) (1x30 एम.वी.ए.) कालिका सं. एनईबारएसएस-एमजी 14. उदयपुर 132/66 के.वी. सब स्टेशन (संवर्धन) (1x30 एम.वी.ए.) कालिका सं. एनईबारएसएस-एमजी 15. जानिका सं. एनईबारएसएस-एमजी 16. नोगलवीबरा-रोगखोम (दूरा) डी/सी लाइन पर 132 के.वी. एम/मी 17. नोगलवीबरा-रोगखोम (दूरा) डी/सी लाइन पर 132 के.वी. एम/मी 18. नोगपो-गोगस्टोईन-नोगलवीबरा 132 के.वी. डी/सी लाइन 19. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. डी/सी लाइन 19. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. डी/सी लाइन 19. ईशमती, मिनके, नोग्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. सें आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11. उमियम, ईपीआईपी-॥, रोगखोम, चेरापूँजी, नोग्गस्टोईन नोगलवीबरा में स्थान संवर्धन 11. उमियम, ईपीआईपी-॥, रोगखोम, चेरापूँजी, नोग्नस्टोईन नोगलवीबरा में स्थान संवर्धन 11. उमियम, ईपीआईपी-॥, रोगखोम, चेरापूँजी, नोग्नस्टोईन नोगलवीबरा में स्थान संवर्धन 11. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्विट का एलआईएलओ		7. जिरानिया (2x12.5 एम.वी.ए.) 132/33 के.वी. सब स्टेशन	
(ख) हैज़मारा 132/11 के.वी. सब स्टेशन (2x10 एम.बी.ए.) की स्थापना 10. (क) बागफा 132/33 के.बी. सब स्टेशन (2x12.5 एम.बी.ए.) की स्थापना (ख) बागफा 132/16 के.बी. सब स्टेशन (1x30 एम.बी.ए.) की स्थापना (ग) बागफा 132/11 के.बी. सब स्टेशन (2x10 एम.बी.ए.) की स्थापना 11.(क) बेलोनिया 132/66 के.बी. सब स्टेशन (2x25 एम.बी.ए.) की स्थापना (ख) बेलोनिया 132/66 के.बी. सब स्टेशन (2x25 एम.बी.ए.) की स्थापना (ग) बेलोनिया 132/11 के.बी. सब स्टेशन (2x25 एम.बी.ए.) की स्थापना (ग) बेलोनिया 132/11 के.बी. सब स्टेशन (2x25 एम.बी.ए.) की स्थापना 12. उदयपुर 132/66 के.बी. सब स्टेशन (1x30 एम.बी.ए.) की स्थापना 14. जंगलबीबरा-रोंगखोम (त्रा) डी/सी लाइन पर 132 के.बी. एम./सी 2. नोन्गपोह 132 के.बी. डी/सी लाइन पर 132 के.बी. एम./सी 2. नोन्गपोह 132 के.बी. डी/सी लाइन पर 132 के.बी. एम./सी 2. नोन्गपोह 132 के.बी. डी/सी लाइन पर 132 के.बी. ट्रांग्लाक्य ही/सी लाइन के एक सर्किट का एलआईएलओ 3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.बी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.बी. डी/सी लाइन 5. मिनके 132/33 के.बी. सब स्टेशन (132 के.बी. ट्रांसी लाइन 5. मिनके 132/33 के.बी. सब स्टेशन ही/सी लाइन 6. किल्लिंग (विनिंहाट)-मानगैप-ल्यू शिलोंग 220 के.बी. डी/सी लाइन 7. मेडुईपठार-फूलबारी 32 के.बी. डी/सी लाइन 9. ईशामती, मिनके, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.बी. (2x20 एम.बी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.बी. सब स्टेशन को 220 के.बी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.बी. (2x160 एम.बी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-।, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन नवर्धन 11.उमियम, ईपीआईपी-।, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन नवर्धन तालिका सं. एनईआर-एसएस-एनजी		8. जिरानिया (1x10 एम.वी.ए.) 132/33 के.वी. सब स्टेशन की स्थापना	
10. (क) बागफा 132/33 के.वी. सब स्टेशन (2x12.5 एम.वी.ए.) की स्थापना (ख) बागफा 132/66 के.वी. सब स्टेशन (1x30 एम.वी.ए.) की स्थापना (ग) बागफा 132/11 के.वी. सब स्टेशन (2x10 एम.वी.ए.) की स्थापना 11.(क) बेलोनिया 132/66 के.वी. सब स्टेशन (1x130 एम.वी.ए.) की स्थापना (ख) बेलोनिया 132/33 के.वी. सब स्टेशन (2x25 एम.वी.ए.) की स्थापना (ख) बेलोनिया 132/11 के.वी. सब स्टेशन (2x25 एम.वी.ए.) की स्थापना 12. उदयपुर 132/66 के.वी. सब स्टेशन (यx10 एम.वी.ए.) की स्थापना 12. उदयपुर 132/66 के.वी. सब स्टेशन (यx10 एम.वी.ए.) की स्थापना 12. उदयपुर 132/66 के.वी. सब स्टेशन (संवर्धन) (1x30 एम.वी.ए.) तालिका सं. एनईआरएसएस-एमजी 1. नांगलवीबरा-रोंगखोम (तृरा) डी/सी लाइन पर 132 के.वी. एम/सी 2. नोन्नपोह 132 के.वी. डी/सी लाइन पर उमटू-किरदमकुलाई डी/सी लाइन के एक सर्जिट का एलआईएलओ 3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.वी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.वी. डी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. टी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. डी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (विव्हिट्ट)-मानगैप-न्यू शिलोंग 220 के.वी. डी/सी लाइन 7. मेड्डएउटर-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनके, नोन्नपोट, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		9. (क) हैजामारा 132/33 के.वी. सब स्टेशन (2x12.5 एम.वी.ए.) की स्थापना	
(ख) बागफा 132/66 के.वी. सब स्टेशन (1x30 एम.वी.ए.) की स्थापना (ग) बागफा 132/11 के.वी. सब स्टेशन (2x10 एम.वी.ए.) की स्थापना 11.(क) बेलोनिया 132/66 के.वी. सब स्टेशन (2x10 एम.वी.ए.) की स्थापना (ख) बेलोनिया 132/33 के.वी. सब स्टेशन (2x25 एम.वी.ए.) की स्थापना (ख) बेलोनिया 132/11 के.वी. सब स्टेशन (2x25 एम.वी.ए.) की स्थापना (ग) बेलोनिया 132/11 के.वी. सब स्टेशन (2x10 एम.वी.ए.) की स्थापना 12. उदयपुर 132/66 के.वी. सब स्टेशन (वंप्रधेन) (1x30 एम.वी.ए.) की स्थापना 12. जताकिक सं. एनईबार-एसएस-एमजी 1. नांगलबीबरा-रोगखोम (तूरा) डी/सी लाइन पर 132 के.वी. एम/सी 2. नोंनापोह 132 के.वी. डी/सी लाइन पर उमट्ट-किरदमकुलाई डी/सी लाइन के एक सर्किट का एलआईएलओ 3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.वी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.वी. डी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. 2x डी लाइन) पर 132 के.वी. एमएलएचईपी (वेशका)- ख्लिहरियात डी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. डी/सी लाइन 7. मेड्डईपठार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अस्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनके, नोंन्पोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोंन्यस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन ताकिका सं. एनईबार-एसएस-एनजी 11. न्यू कोहिमा* में दीमापुर-पिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		(ख) हैजामारा 132/11 के.वी. सब स्टेशन (2x10 एम.वी.ए.) की स्थापना	
(ख) बागफा 132/66 के.वी. सब स्टेशन (1x30 एम.वी.ए.) की स्थापना (ग) बागफा 132/11 के.वी. सब स्टेशन (2x10 एम.वी.ए.) की स्थापना 11.(क) बेलोनिया 132/66 के.वी. सब स्टेशन (2x10 एम.वी.ए.) की स्थापना (ख) बेलोनिया 132/33 के.वी. सब स्टेशन (2x25 एम.वी.ए.) की स्थापना (ख) बेलोनिया 132/11 के.वी. सब स्टेशन (2x25 एम.वी.ए.) की स्थापना (ग) बेलोनिया 132/11 के.वी. सब स्टेशन (2x10 एम.वी.ए.) की स्थापना 12. उदयपुर 132/66 के.वी. सब स्टेशन (वंप्रधेन) (1x30 एम.वी.ए.) की स्थापना 12. जताकिक सं. एनईबार-एसएस-एमजी 1. नांगलबीबरा-रोगखोम (तूरा) डी/सी लाइन पर 132 के.वी. एम/सी 2. नोंनापोह 132 के.वी. डी/सी लाइन पर उमट्ट-किरदमकुलाई डी/सी लाइन के एक सर्किट का एलआईएलओ 3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.वी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.वी. डी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. 2x डी लाइन) पर 132 के.वी. एमएलएचईपी (वेशका)- ख्लिहरियात डी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. डी/सी लाइन 7. मेड्डईपठार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अस्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनके, नोंन्पोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोंन्यस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन ताकिका सं. एनईबार-एसएस-एनजी 11. न्यू कोहिमा* में दीमापुर-पिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		10. (क) बागफा 132/33 के.वी. सब स्टेशन (2x12.5 एम.वी.ए.) की स्थापना	
(ग) बागफा 132/11 के.बी. सब स्टेशन (2x10 एम.बी.ए.) की स्थापना 11.(क) बेलोनिया 132/66 के.बी. सब स्टेशन (1x130 एम.बी.ए.) की स्थापना (ख) बेलोनिया 132/33 के.बी. सब स्टेशन (2x25 एम.बी.ए.) की स्थापना (ग) बेलोनिया 132/11 के.बी. सब स्टेशन (2x25 एम.बी.ए.) की स्थापना 12. उदयपुर 132/66 के.बी. सब स्टेशन (संबर्धन) (1x30 एम.बी.ए.) की स्थापना 14. जदयपुर 132/66 के.बी. सब स्टेशन (संबर्धन) (1x30 एम.बी.ए.) की स्थापना 15. जदयपुर 132/66 के.बी. सब स्टेशन (संबर्धन) (1x30 एम.बी.ए.) की स्थापना 16. नांगलबीबरा-रोंगखोम (तूरा) डी/सी लाइन पर 132 के.बी. एस/सी 17. नांगलबीबरा-रोंगखोम (तूरा) डी/सी लाइन पर 132 के.बी. एस/सी 18. पोलापोह 132 के.बी. डी/सी लाइन पर 132 के.बी. डी/सी लाइन 18. पोलापोह 132/33 के.बी. सब स्टेशन (132 के.बी. 2x डी लाइन) पर 132 के.बी. एमएलएचईपी (लेशका)- खिलहरियात डी/सी लाइन 18. पोलापोह विनिहाट)-मानगैप-न्यू शिलोंग 220 के.बी. डी/सी लाइन 18. पोलापी-कोर्ग-पोलापी 132 के.बी. डी/सी लाइन 19. ईशमती, मिनक्रे, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.बी. (2x20 एम.बी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.बी. सब स्टेशन को 220 के.बी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.बी. (2x160 एम.बी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआर-एसएस-एनजी 11. न्यू कोहिमा* में दीमापुर-मिसा 220 के.बी. डी/सी लाइन के एक सर्किट का एलआईएलओ			
11.(क) बेलोनिया 132/66 के.बी. सब स्टेशन (1x130 एम.बी.ए.) की स्थापना (ख) बेलोनिया 132/33 के.बी. सब स्टेशन (2x25 एम.बी.ए.) की स्थापना (ग) बेलोनिया 132/11 के.बी. सब स्टेशन (2x10 एम.बी.ए.) की स्थापना 12. उदयपुर 132/66 के.बी. सब स्टेशन (संवर्धन) (1x30 एम.बी.ए.) तालिका सं. एनईवार-एनएस-एमजी 1. नांगलबीबरा-रोंगखोम (तूरा) डी/सी लाइन पर 132 के.बी. एस/सी 2. नोंन्गपोह 132 के.बी. डी/सी लाइन पर उमटू-किरदमकुलाई डी/सी लाइन के एक सर्किट का एलआईएलओ 3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.बी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.बी. डी/सी लाइन 5. मिनके 132/33 के.बी. सब स्टेशन (132 के.बी. 2x डी लाइन) पर 132 के.बी. एमएलएचईपी (लेशका)- खिलहरियात डी/सी लाइन के एलआईएलओ 6. किल्लिंग (बिनिंहाट)-मानगैप-न्यू शिलोंग 220 के.बी. डी/सी लाइन 7. मेड्डर्पटार-फूलबारी 32 के.बी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.बी. डी/सी लाइन 9. ईशमती, मिनके, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.बी. (2x20 एम.बी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.बी. सब स्टेशन को 220 के.बी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.बी. (2x160 एम.बी.ए.) सब स्टेशन 11. उमियम, ईपीआईपी-।, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईबार-एसएस-एनजी 1. न्यू कोहिमा* में वीमापुर-मिसा 220 के.बी. डी/सी लाइन के एक सर्किट का एलआईएलओ			
स्थापना (ख) बेलोनिया 132/33 के.वी. सब स्टेशन (2x25 एम.वी.ए.) की स्थापना (ग) बेलोनिया 132/11 के.वी. सब स्टेशन (2x10 एम.वी.ए.) की स्थापना 12. उदयपुर 132/66 के.वी. सब स्टेशन (संबर्धन) (1x30 एम.वी.ए.) गिवालय में प्रणाली सशक्तिकरण (प्रथम फेज) 1. नांगलवीबरा-रांगखोम (त्रा) डी/सी लाइन पर 132 के.वी. एम/सी 2. नोंनापोह 132 के.वी. डी/सी लाइन पर उमट्ट-किरदमकुलाई डी/सी लाइन के एक सर्किट का एलआईएलओ 3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.वी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.वी. डी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. 2x डी लाइन) पर 132 के.वी. एमएलएचईपी (लेशका)- ख्लिहरियात डी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. डी/सी लाइन 7. मेड्डर्पठार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनके, नोंन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन			
(ग) बेलोनिया 132/11 के.बी. सब स्टेशन (2x10 एम.बी.ए.) की स्थापना 12. उदयपुर 132/66 के.बी. सब स्टेशन (संबर्धन) (1x30 एम.बी.ए.) सोघालय में प्रणाली सशक्तिकरण (प्रथम फेज) 1. नांगलबीबरा-रोंगखोम (नूरा) डी/सी लाइन पर 132 के.बी. एस/सी 2. नोंन्गपोह 132 के.बी. डी/सी लाइन पर उमट्ट-किरदमकुलाई डी/सी लाइन के एक सर्किट का एलआईएलओ 3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.बी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.बी. डी/सी लाइन 5. मिनके 132/33 के.बी. सब स्टेशन (132 के.बी. 2x डी लाइन) पर 132 के.बी. एमएलएचईपी (लेशका)- ख्लिहरियात डी/सी लाइन के एलआईएलओ 6. किल्लिंग (बिर्निहाट)-मानगैप-न्यू शिलोंग 220 के.बी. डी/सी लाइन 7. मेंबुईपठार-फूलबारी 32 के.बी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.बी. डी/सी लाइन 9. ईशमती, मिनके, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.बी. (2x20 एम.बी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.बी. सब स्टेशन को 220 के.बी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.बी. (2x160 एम.बी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संबर्धन तालिका सं. एनईआर-एसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.बी. डी/सी लाइन के एक सर्किट का एलआईएलओ			
12. उदयपुर 132/66 के.वी. सब स्टेशन (संवर्धन) (1x30 एम.वी.ए.) तालिका सं. एनईआरएसएस-एमजी 1. नांगलवीबरा-रोंगखोम (तूरा) डी/सी लाइन पर 132 के.वी. एस/सी 2. नोन्गपोह 132 के.वी. डी/सी लाइन पर उमटू-किरदमकुलाई डी/सी लाइन के एक सर्केट का एलआईएलओ 3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.वी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.वी. डी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. 2x डी लाइन) पर 132 के.वी. एमएलएचईपी (लेशका)- ख्लिहरियात डी/सी लाइन के राज्ञाईएलओ 6. किल्लिंग (बिर्निहाट)-मानगैप-न्यू शिलोंग 220 के.वी. डी/सी लाइन 7. मेड्डईपठार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनके, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11. उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		(ख) बेलोनिया 132/33 के.वी. सब स्टेशन (2x25 एम.वी.ए.) की स्थापना	
स्थित सं. एनईआरएसएस-एमजी सेशालय में प्रणाली सशक्तिकरण (प्रथम फेज) 1. नांगलबीबरा-रोंगखोम (त्रा) डी/सी लाइन पर 132 के.वी. एस/सी 2. नोन्गपोह 132 के.वी. डी/सी लाइन पर उमटू-िकरदमकुलाई डी/सी लाइन के एक सिक्ट का एलआईएलओ 3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.वी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.वी. डी/सी लाइन 5. मिनक्रे 132/33 के.वी. सब स्टेशन (132 के.वी. 2x डी लाइन) पर 132 के.वी. एमएलएचईपी (लेशका)- खिलहरियात डी/सी लाइन के एलआईएलओ 6. किल्लिंग (बिर्निहाट)-मानगैप-न्यू शिलोंग 220 के.वी. डी/सी लाइन 7. मेंडुईपठार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनक्रे, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन संवर्धन 11.उमियम, ईपीआईपी-।, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सिक्ट का एलआईएलओ		(ग) बेलोनिया 132/11 के.वी. सब स्टेशन (2x10 एम.वी.ए.) की स्थापना	
मेघालय में प्रणाली सशक्तिकरण (प्रथम फेज) 1. नांगलबीबरा-रांगखोम (तूरा) डी/सी लाइन पर 132 के.वी. एस/सी 2. नोंनापोह 132 के.वी. डी/सी लाइन पर उमटू-िकरदमकुलाई डी/सी लाइन के एक सर्किट का एलआईएलओ 3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.वी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.वी. डी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. 2x डी लाइन) पर 132 के.वी. एमएलएचईपी (लेशका)- खिलहरियात डी/सी लाइन 6. किल्लिंग (बिर्निहाट)-मानगैप-न्यू शिलोंग 220 के.वी. डी/सी लाइन 7. मेड्डईपठार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनके, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन संवर्धन 11.उमियम, ईपीआईपी-।, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		12. उदयपुर 132/66 के.वी. सब स्टेशन (संवर्धन) (1x30 एम.वी.ए.)	
मेघालय में प्रणाली सशक्तिकरण (प्रथम फेज) 1. नांगलबीबरा-रांगखोम (तूरा) डी/सी लाइन पर 132 के.वी. एस/सी 2. नोंनापोह 132 के.वी. डी/सी लाइन पर उमटू-िकरदमकुलाई डी/सी लाइन के एक सर्किट का एलआईएलओ 3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.वी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.वी. डी/सी लाइन 5. मिनके 132/33 के.वी. सब स्टेशन (132 के.वी. 2x डी लाइन) पर 132 के.वी. एमएलएचईपी (लेशका)- खिलहरियात डी/सी लाइन 6. किल्लिंग (बिर्निहाट)-मानगैप-न्यू शिलोंग 220 के.वी. डी/सी लाइन 7. मेड्डईपठार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनके, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन संवर्धन 11.उमियम, ईपीआईपी-।, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		तालिका सं. एनईआरएसएस-एमजी	
सशक्तिकरण (प्रथम फेज) 2. नोन्नापोह 132 के.बी. डी/सी लाइन पर उमटू-किरदमकुलाई डी/सी लाइन के एक सर्किट का एलआईएलओ 3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.बी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.बी. डी/सी लाइन 5. मिनके 132/33 के.बी. सब स्टेशन (132 के.बी. 2x डी लाइन) पर 132 के.बी. एमएलएचईपी (लेशका)- ख्लिहरियात डी/सी लाइन के दोनों सर्किट के एलआईएलओ 6. किल्लिंग (बिर्निहाट)-मानगैप-न्यू शिलोंग 220 के.बी. डी/सी लाइन 7. मेड्डईपठार-फूलबारी 32 के.बी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.बी. डी/सी लाइन 9. ईशमती, मिनके, नोन्नपोह, फूलबारी, न्यू शिलोंग में 132/33 के.बी. (2x20 एम.बी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.बी. सब स्टेशन को 220 के.बी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.बी. (2x160 एम.बी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्नास्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.बी. डी/सी लाइन के एक सर्किट का एलआईएलओ	मेघालय में प्रणाली		
3. मानगैप-नांगस्टोईन-नंगलबीबरा 132 के.वी. डी/सी लाइन 4. चेरापूंजी-ईशामती 132 के.वी. डी/सी लाइन 5. मिनक्रे 132/33 के.वी. सब स्टेशन (132 के.वी. 2x डी लाइन) पर 132 के.वी. एमएलएचईपी (लेशका)- ख्लिहरियात डी/सी लाइन के दोनों सर्किट के एलआईएलओ 6. किल्लिंग (बिर्निहाट)-मानगैप-न्यू शिलोंग 220 के.वी. डी/सी लाइन 7. मेंडुईपठार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनक्रे, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-।।, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संबर्धन तािलका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ	सशक्तिकरण (प्रथम फेज	2. नोन्गपोह 132 के.वी. डी/सी लाइन पर उमट्रू-किरदमकुलाई डी/सी लाइन के	
4. चेरापूंजी-ईशामती 132 के.वी. डी/सी लाइन 5. मिनक्रे 132/33 के.वी. सब स्टेशन (132 के.वी. 2x डी लाइन) पर 132 के.वी. एमएलएचईपी (लेशका)- खिलहरियात डी/सी लाइन के दोनों सर्किट के एलआईएलओ 6. किल्लिंग (बिर्निहाट)-मानगैप-न्यू शिलोंग 220 के.वी. डी/सी लाइन 7. मेड्डईपटार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनक्रे, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-।।, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		·	
5. मिनक्रे 132/33 के.वी. सब स्टेशन (132 के.वी. 2x डी लाइन) पर 132 के.वी. एमएलएचईपी (लेशका)- ख्लिहिरयात डी/सी लाइन के दोनों सर्किट के एलआईएलओ 6. किल्लिंग (बिर्निहाट)-मानगैप-न्यू शिलोंग 220 के.वी. डी/सी लाइन 7. मेड्डईपठार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनक्रे, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-।।, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ			
के.वी. एमएलएचईपी (लेशका)- ख्लिहरियात डी/सी लाइन के दोनों सर्किट के एलआईएलओ 6. किल्लिंग (बिर्निहाट)-मानगैप-न्यू शिलोंग 220 के.वी. डी/सी लाइन 7. मेड्डईपठार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनक्रे, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ			
के एलआईएलओ 6. किल्लिंग (बिर्निहाट)-मानगैप-न्यू शिलोंग 220 के.वी. डी/सी लाइन 7. मेंडुईपठार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनक्रे, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-।।, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		,	
7. मेड्डईपठार-फूलबारी 32 के.वी. डी/सी लाइन 8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनक्रे, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11. उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ			
8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन 9. ईशमती, मिनक्रे, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		6. किल्लिंग (बिर्निहाट)-मानगैप-न्यू शिलोंग 220 के.वी. डी/सी लाइन	
9. ईशमती, मिनक्रे, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20 एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगित पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		7. मेड्डईपठार-फूलबारी 32 के.वी. डी/सी लाइन	
एम.वी.ए.) सब स्टेशन डी 10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगित पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		8. फूलबारी-अम्पाती 132 के.वी. डी/सी लाइन	
10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड करने का कार्य प्रगित पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		9. ईशमती, मिनक्रे, नोन्गपोह, फूलबारी, न्यू शिलोंग में 132/33 के.वी. (2x20	
तरने का कार्य प्रगित पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		एम.वी.ए.) सब स्टेशन डी	
तरने का कार्य प्रगित पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब स्टेशन 11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		10.न्यू शिलोंग एवं मानगैप (132 के.वी. सब स्टेशन को 220 के.वी. में आपग्रेड	
11.उमियम, ईपीआईपी-॥, रोंगखोम, चेरापूँजी, नोन्गस्टोईन नांगलबीबरा में सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी नागालैंड में प्रणाली सशक्तिकरण (प्रथम फेज) 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		करने का कार्य प्रगति पर) में 220/132 के.वी. (2x160 एम.वी.ए.) सब	
सब स्टेशन संवर्धन तालिका सं. एनईआरएसएस-एनजी नागालैंड में प्रणाली सशक्तिकरण (प्रथम फेज) 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ		स्टेशन	
तालिका सं. एनईआरएसएस-एनजी नागालैंड में प्रणाली सशक्तिकरण (प्रथम फेज) 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ			
नागालैंड में प्रणाली सशक्तिकरण (प्रथम फेज) 1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का एलआईएलओ			
सशक्तिकरण (प्रथम फेज) एलआईएलओ	तालिका सं. एनईआरएसएस-एनजी		
सशक्तिकरण (प्रथम फेज) एलआईएलओ	नागालैंड में प्रणाली	1. न्यू कोहिमा* में दीमापुर-मिसा 220 के.वी. डी/सी लाइन के एक सर्किट का	
2. मोकोचंग-तली 132 के.वी. एस/सी लाइन	सशक्तिकरण (प्रथम फेज		
1		2. मोकोचुंग-तुली 132 के.वी. एस/सी लाइन	

- 3. न्यू कोहिमा 132 के.वी. एस/सी पर कोहिमा-वोक्खा का एलआईएलओ
- 4. दीमापुर-जलूकी वाया गणेशनगर (33 के.वी. पर आवेशित) 132 के.वी. एस/सी
- 5. जलूकी-पेरेन (33 के.वी. पर आवेशित) 132 के.वी. एस/सी
- 6. न्यू कोहिमा-फेक-किफिरे (132 के.वी. पर आवेशित) डी/सी लाइन पर 220 के.वी. एस/सी
- 7. न्यू कोहिमा-वोक्खा-मोकचुंग-मोन (नागिनीमोरा) (132 के.वी. पर आवेशित) डी/सी लाइन पर 220 के.वी. एस/सी
- 8. वोक्खा-जुन्हेबोटो-मोकोचुंग डी/सी लाइन पर 220 के.वी. एस/सी
- 9. फुटसेरो 132 के.वी. 2xडी/सी पर कोहिमा-मेलूरी (किफिरे) 132 के.वी. एस/सी का एलआईएलओ
- 10.मोकोचुंग-ट्यूनसैंग 132 के.वी. एस/सी
- 11.न्यू कोहिमा में 220/132 के.वी. सब स्टेशन
- 12.फुटसेरो, फेक, जुन्हेबोटो एवं ट्वेनसैंग में 132/33 के.वी. सब स्टेशन

अनुबंध-7.6

पारेषण योजना विवरण- भारत में नवीनीकृत ऊर्जा स्रोत

तालिका सं.: आरइएस-आरजे-01

राजस्थान में सौर और न्यू पवन विद्युत परियोजना (2650 मेगावाट)

(सौर -1400 मेगावाट पवन-1250 मेगावाट)

- रामगढ़ (जैसलमेर) में 400केवी डी/सी रामगढ़-भादला लाइन के लिए 400केवी, 1x125 एमवीएआर, बस रिएक्टर और 2x50 एमवीएआर लाइन रिएक्टर सहित 400/220 केवी, 3 X 500 एमवीए और 220/132केवी, 132/33 केवी के साथ 3x160 एमवीए, 2x40/50 एमवीए पूलिंग सब-स्टेशन
- 2. भादला में 400केवी, 1x125 एमवीएआर बस रिएक्टर और 4x50 एमवीएआर, भादला अंत के लिए 400केवी लाइन रिएक्टर, 400केवी डी/सी भादला-बीकानेर लाइन, 400केवी एलआईएलओ जोधपुर-मेरठ सहित भादला (जोधपुर) में 400/220 केवी, 3 X 315 एमवीए और 220/132केवी, 3x160 एमवीए के साथ 132/33केवी, 2x40/50 एमवीए पूलिंग सब स्टेशन जीएसएस
- 3. प्रस्तावित 400केवी अकाल-जोधपुर (न्यू) डी/सी लाइन, और 1x125 एमवीएआर 400 केवी बस रिएक्टर के लिए 400 केवी, 2x50 एमवीएआर शंट रिएक्टर (लाइन टाइप) सहित 400/220 केवी, 1 X 500 एमवीए ट्रांसफार्मर की स्थापना कर 400केवी जीएसएस अकाल का विस्तारण
- 4. 400केवी जीएसएस जोधपुर (न्यू) का विस्तार
 - (i) 400 केवी डी/सी अकाल-जोधपुर (न्यू) लाइन के लिए 400 केवी जीएसएस जोधपुर (न्यू) पर 2x50 एमवीएआर, 400केवी शंट रिएक्टर (लाइन टाइप)
 - (ii) 400 केवी डी/सी राज वेस्ट एलटीपीएस जोधपुर लाइन के दोनों सर्किटों के एलआईएलओ के लिए जोधपुर (न्यू) सर्किट पर 400केवी बे
 - 5. 400केवी जीएसएस बारमेर पर विस्तार
 - (i) 400केवी जीएसएस बारमेर में 1x125 एमवीएआर, 400केवी शंट रिएक्टर (बस टाइप)
 - (ii) 400केवी डी/सी बारमेर-भीनमल (पीजी) लाइन के लिए 400केवी बे
- 6. 400केवी जीएसएस बीकानेर पर विस्तार
 - बीकानेर लाइन के अंत में 400केवी डी/सी भाडला-बीकानेर लाइन के लिए 400केवी बे और 400केवी डी/सी बीकानेर-सीकर (पीजीसीआईएल) लाइन
 - ii. 400केवी जीएसएस बीकानेर में 1x125 एमवीएआर, 400केवी शंट रिएक्अर (बस टाइप)
- 7. 400केवी इंटरकनेक्टिंग लाइनें :

- (i) 400 केवी डी/सी रामगढ़(जैसलमेर)-अकसल (जैसलमेर) लाइन(ट्विन मूज)
- (ii) 400 केवी डी/सी रामगढ़-भादला लाइन (ट्विन मूज)
- (iii) 400 केवी डी/सी भादला-बीकानेर लाइन (क्वैद मूज)
- (iv) 400केवी एस/सी जोधपुर-मेरता लाइन (ट्विन मूज) पर 400/220 केवी पूलिंग स्टेशन भादला से एलआईएलओ प्वाइंट से 400 केवी डी/सी लाइन
- (v) 400 केवी डी/सी बीकानेर-सीकर (पीजीसीआईएल) लाइन(ट्विन मूज)
- (vi) 400 केवी डी/सी बारमेर-भीनमल (पीजीसीआईएल) लाइन(ट्विन मूज)
- (vii) 400केवी जीएसएस जोधुपर (न्यू) (ट्विन मूज) में 400केवी डी/सी राज वेस्ट-जोधपुर लाइन के दोनों सर्किटों का एलआईएलओ
- (viii) 400केवी डी/सी अकाल-जोधपुर (न्यू) लाइन (क्वैद मूज)
- 8. बैप और संबद्ध लाइनों पर 220केवी जीएसएस :
 - (i)बैप (जोधपुर जिले) में 220/132केवी, 2x160 एमवीए और 132/33केवी, 2x40/50 एमवीए जीएसएस
 - (ii) बैप में 220केवी बरसिंगसर एलटीपीएस-फलोदी लाइन का एलआईएलओ
 - (iii) 220केवी डी/सी बैप-भादला लाइन
- 9. कनासर और संबद्ध लाइनों पर 220केवी जीएसएस :
 - (i)कनासर (जोधपुर जिले) में 220/132केवी, 2x160 एमवीए और 132/33केवी, 2x40/50 एमवीए जीएसएस
 - (ii) 220केवी डी/सी भादला-कनासर लाइन
 - (iii) कनासर में प्रस्तावित 220केवी जीएसएस पर 132केवी पीएस1-पीएस2 लाइन का एलआईएलओ
 - (iv) कनासर में प्रस्तावित 220केवी जीएसएस पर 132केवी पीएस2-पीएस3 लाइन का एलआईएलओ
- 10. पीएस नं. 2 का संबद्ध 132 केवी लाइन सहित 132/33केवी, 2x20/25 एमवीए ट्रांसफार्मर के साथ 132 केवी ग्रिड सबस्टेशन के रूप में उन्नयन
- 11.पीएस नं. 3 का 132/33केवी, 2x20/25 एमवीए ट्रांसफार्मर के साथ 132 केवी ग्रिड सबस्टेशन के रूप में उन्नयन
- 12.132 केवी लाइन का 132 केवी पीएस नं. 2 जीएसएस , 132 केवी पीएस नं.3 जीएसएस और 132केवी पीएस नं. 4जीएसएस द्वारा पीएस नं. 5 से पीएस नं. 1 में आवेशन
- 13.पीएस नं. 4 का 132/33केवी, 2x20/25 एमवीए ट्रांसफार्मर के साथ 132 केवी ग्रिड सबस्टेशन के रूप में उन्नयन

तालिका सं.: आरइएस-जीजे-01

चरंका सोलर पार्क में सौर परियोजनाओं के लिए पारेषण प्रणाली (950.5 मेगावाट)

- 400/220केवी, 2X315 एमवीए चरंका सबस्टेशन और चरंका सबस्टेशन पर 400 केवी, 125 एमवीएआर बस रिएक्टर सहित चरंका – संखारि 400केवी डी/सी लाइन (एसीएसआर ट्विन मूज)
- 2. 220/66 केवी ,8X100 एमवीए चरंका पूलिंग स्टेशन
- 3. चरंका-जंगराल 220केवी डी/सी लाइन (एआई-59)
- 4. पूलिंग स्टेशन के साथ सोलर पार्क के प्रत्येक प्लाट में सौर परियोजनाओं के इंटरकनेक्शन के लिए करीब 66 केवी केबल का 452 किमी 1सीx630 स्क्वेयर मिमि

तालिका सं.: आरइएस-जीजे-02

गुजरात में वायु परियोजना के लिए पारेषण प्रणाली (4500 मेगावाट)

- 1. जमानवाडा डब्ल्यू/एफ सबस्टेशन-वर्साना 220 केवी डी/सी –(एएएसी मूज कंडक्टर)
- 2. नाखातराना डब्ल्यू/एफ सबस्टेशन-वर्साना 220 केवी डी/सी (एएएसी मूज कंडक्टर)
- 3. वांदिया डब्ल्यू/एफ सबस्टेशन हलवाड़ (400 केवी सबस्टेशन) 220 केवी डी/सी लाइन (जेब्रा कंडक्टर)
- 4. कनमेर डब्ल्यू/एफ सबस्टेशन हलवाड़ (400 केवी SS) 220 केवी डी/सी लाइन (जेब्रा कंडक्टर)
- 5. चोटिला डब्ल्यू/एफ सबस्टेशन- जसडान 220 केवी डी/सी लाइन (जेब्रा कंडक्टर)
- मालवन डब्ल्यू/एफ सबस्टेशन– चोरानिया 220 केवी डी/सी लाइन (जेब्रा कंडक्टर)
- 7. धनकी डब्ल्यू/एफ सबस्टेशन– भाटिया 220 केवी डी/सी लाइन (जेब्रा कंडक्टर)
- 8. भंवड़ भोमियावाडर 132 केवी डी/सी लाइन।
- 9. तेभादा डब्ल्यू/एफ सबस्टेशन न्यारा (राजकोट) 220 केवी डी/सी लाइन (एएएसी मृज कंडक्टर)
- 10. मालिया डब्ल्यू/एफ सबस्टेशन टंकारा 220 केवी डी/सी लाइन (जेब्रा कंडक्टर)
- 11. रोजमल डब्ल्यू/एफ सबस्टेशन अमरेली 220 केवी डी/सी लाइन (एएएसी मूज कंडक्टर)
- 12. शापुर डब्ल्यू/एफ सबस्टेशन हलवाड (400 केवी सबस्टेशन) 220 केवी डी/सी लाइन (एएएसी मूज कंडक्टर)
- 13. कोदाधा डब्ल्यू/एफ सबस्टेशन थराड 220 केवी डी/सी लाइन (एएएसी मूज कंडक्टर)

	14. पाटन डब्ल्यू/एफ सबस्टेशन – राधनपुर 220 केवी डी/सी लाइन (जेब्रा		
	कंडक्टर)		
	तालिका सं.: आरइएस-जीजे-03		
गुजरात में वायु	1. 400/220केवी, 2x315 एमवीए हलवाड़ सबस्टेशन सहित वरसाना-हलवाड़		
परियोजना के लिए पारेषण	400केवी डी/सी क्वैद लाइन ।		
सुदृढ़ीकरण (4500	2. 220/66 केवी, 100 एमवीए टनकारा सबस्टेशन, 220/132 केवी,		
मेगावाट)	200एमवीए भाटिया सबस्टेशन, (220/66 केवी, 100एमवीए +		
,	220/132केवी, 100एमवीए) जासडन सबस्टेशन		
	3. भाटिया-कलावाड़ - कांगासियाली 220केवी डी/सी लाइन (एएएसी मूज)।		
	4. मोरबी-टनकारा-चोरानिया 220केवी डी/सी लाइन (एएएसी मूज) ।		
	5. अमरेली-जासडन 220केवी डी/सी लाइन(एएएसी मूज) ।		
	6. वरसाना- भचाउ- राधनपुर 220केवी डी/सी लाइन (एएएसी मूज)।		
	7. नाखटराना -वरसाना 220केवी डी/सी लाइन (एसीएसआर जेब्रा) ।		
	8. भाटिया (220केवी)- भाटिया(132केवी) 132 केवी डी/सी लाइन(एसीएसआर		
	पैंथर) ।		

तालिका सं.: आरईएस-टीएन-01	
तमिलनाडु में पवन	1. कनारापट्टी (टीएन विंड) - कायाथर 400 केवी, 400 केवी डी/सी ट्विन मूज
परियोजना चरण-I	लाइन ।
(मौजूदा)	2. कायाथर- कराइकुड्डी 400 केवी डी/सी क्वैद लाइन
	3. कराइकुडी - पुगलुर 400 केवी डी/सी क्वैद लाइन
(तिरूनलवेल्ली/	4. कायाथर में 2x315 एमवीए 400/230 केवी आईसीटी और 2x200 एमवीए
कायाथर क्षेत्र-3500	400/110केवी आईसीटी सहित 400/230-110 केवी सबस्टेशन की स्थापना
मेगावाट थेनी/ उडुमालपेट क्षेत्र–	5. पुगलुर – शोलिनगनल्लूर (ओट्टिआमपक्क्म), 400 केवी डी/सी क्वैद लाइन
2800 मेगावाट)	6. तिरूनलवेली (टीएनईबी) (टीएन विंड/कानरापट्टी) 400/230 केवी सबस्टेशन
2000 मंगावाट)	(3x315 एमवीए)
	7. तिरूनेलवेली (टीएनईबी) - तिरूनेलवेली (पीजी) 400केवी डी/सी क्वैद लाइन
	8. मरंडई, सायामलाई, वागैकुलम, कुमारापुरम, संकारालिंगापुरम में पांच 230/33
	केवी पवन ऊर्जा सबस्टेशन और एक कनारपट्टी 400 केवी सबस्टेशन के साथ
	जुड़ा हुआ 230 केवी लाइन के साथ संबद्ध समुगारंगापुरम सबस्टेशन
	* यह प्रणाली 11वीं योजना में पूर्ण होने के लिए 2007 में योजित थी। यह प्रणाली
	अभी भी पूर्ण होनी है।

	तालिका सं.: आरईएस-टीएन-02
तमिलनाडु में पवन	1. थेनी क्षेत्र में थप्पागुंडु 400/110 केवी (5x200एमवीए) सबस्टेशन
परियोजना चरण-II	2. उडुमालपेट क्षेत्र में अनैकाडावु 400/230-110 केवी (2x315+ 2x200
(1)	एमवीए) सबस्टेशन
(तिरूनलवेल्ली/ कायाथर क्षेत्र-2500	3. उडुमालपेट क्षेत्र में रसिपालयम 400/230-110 सबस्टेशन (2x315+2x200
कायाथर क्षत्र-2500 मेगावाट थेनी/	एमवीए)
उडुमालपेट क्षेत्र–	4. अनैकाडावु- रसिपालयम 400केवी डी/सी लाइन
उडुमालपट क्षत्र– 3300 मेगावाट)	5. उडुमालपेट 400/220 केवी (पीजीसीआईएल) सबस्टेशन पर एक सर्किट
3300 मगायाट)	एलआईएलओ के साथ थप्पागुंडु - अनैकाडावु 400केवी डी/सी
	6. रसिपालयम -सिंगारापेट 400केवी 2xडी/सी लाइन
	7. वगरै 400/230-110 केवी सबस्टेशन
	8. वगरै-रसिपालयम 400 केवी डी/सी लाइन
	9. थेन्नमपट्टी 400/230-110 केवी सबस्टेशन
	10. थेन्नमपट्टी - कायाथर 400केवी डी/सी लाइन
आईएसटीएस और	सलेम 765/400केवी (पावरग्रिड) सबस्टेशन पर एक रसिपलयम-सिगारपेट 400
विस्तृत विश्वस्तता के	केवी डी/सी लाइन का एलआईएलओ
साथ अतिरिक्त	
इंटरकनेक्शन के लिए प्रणाली	
ואיוויאן	

तालिका सं. : आरईएस-एपी-01	
आंध्रपदेश में पवन	1. हिन्दुपुर में 400/220 केवी सबस्टेशन (3x315 एमवीए)
परियोजना (3150	
मेगावाट)	2. कोंडापुरम में 400/220 केवी सबस्टेशन (4x315 एमवीए)
	3. उरावाकोंडा में 400/220 केवी सबस्टेशन (4x315 एमवीए)
	4. उरावाकोंडा -महबूबनगर 400 केवी क्वैद डीसी लाइन
	5. उरावाकोंडा- हिंदुपुर 400 केवी डीसी लाइन
	6. उरावाकोंडा-कोंडापुर 400 केवी डीसी लाइन
	7. कोंडापुर – कुर्नूल 400 केवी क्वैद डीसी लाइन
	8. हिंदुपुर (400 केवी) सबस्टेशन -हिंदुपुर/ गोल्लापुरम (मौजूदा) 220 केवी डीसी
	लाइन
	9. उर्वाकोंडा (400 केवी) सबस्टेशन – कल्याणदुर्ग (मौजूदा) 220 केवी डी/सी
	लाइन

10. कोंडापुर (400 केवी) सबस्टेशन - तदिपत्री(मौजूदा) 220 केवी डी/सी लाइन
11. जम्मालामाडुगु, पेणुकोंडा और पोरूमामिल्ला में 220/132 केवी, 2x100 एमवीए सबस्टेशन
12. जम्मालामाडुगु, पेणुकोंडा और पोरूमामिल्ला 220/1323 केवी सबस्टेशन का मौजूदा 132/33 केवी सबस्टेशनों से कनेक्टिविटी

तालिका सं; : आरईएस-केआर-01	
कर्नाटक में पवन	डोनी में मुनिराबाद-दावनगिरी (गुट्टुर) 400 केवी एस/सी लाइन का एलआईएलओ
परियोजना (600	
मेगावाट)	

अनुबंध 7.7 पारेषण योजना विवरण – भूटान, बांगलादेश और नेपाल में पावर परियोजना के लिए

पारपण याजना विवरण – मूटान, बागलांदरा जार नेपाल में पावर पारयाजना के लिए		
तालिका सं.: बीएच-01		
 फुनातसांगचु I – ल्हामोइजिंगखा (भूटान सीमा) 2X 400 केवी डी/सी लाइन 		
2. ल्हामोइजिंगखा (भूटान सीमा) – अलिपुरद्वार क्वैद मूज कंडक्टर के		
साथ 400केवी डी/सी		
3. फुनातसांगचु- I में 220 केवी बोसोच्चु-II-ित्सरांग एस/सी लाइन का एलआईएलओ		
4. फुनातसांगचु में 3x105 एमवीए आईसीटी		
5. फुनातसांगचु में 1x80 एमवीएआर बस रिएक्टर		
तालिका सं.: बीएच-02		
फुनातसांगचु -।। में फुनातसांगचु- I -ल्हामोइजिंगखा (भूटान सीमा)		
400 केवी डी/सी लाइन का एलआईएलओ		
तालिका सं.: बीएच-03		
1. मांगढेचू एचईपी-गोलिंग 400केवी 2Xएस/सी लाइन		
2. गोलिंग-जिग्मेंलिंग 400केवी डी/सी लाइन		
3. जिग्मेलिंग-अलिपुरद्वार 400केवी डी/सी लाइन(क्वैद)		
तालिका सं.: बीएच-04		
 अलिपुरद्वार में ±800केवी, 3000मेगावाट कंवर्टर माड्यूल के साथ न्यू 2x315 एमवीए, 400/220केवी एसी और एचवीडीसी 		
सबस्टेशन।		
2. आगरा में ±800 केवी एचवीडीसी स्टेशन का 3000 मेगावाट से विस्तार		
3. अलिपुरद्वार में 400/220केवी सहित समानांतर प्रचालन		
एचवीडीसी टर्मिनल के लिए ±800केवी,6000मेगावाट विश्वनाथ		
चरियाली-आगरा एचवीडीसी बाइपोल का एलआईएलओ		
4. अलिपुरद्वार में बोंगाइगांव-सिलिगुड़ी 400केवी डी/सी क्वैद मूज लाइन का एलआईएलओ		
5. ल्हामोइजिंघा/ सुनकोश-अलिपुरद्वार 400केवी डी/सी (प्रथम) क्वैद		
मूज लाइन (भारतीय भाग)		

6. अलिपुरद्वार में ताला-सिलिगुड़ी 400केवी डी/सी लाइन का
एलआईएलओ
7. अलिपुरद्वार में बीरपारा-सालाकटी 220केवी डी/सी लाइन का
एलआईएलओ

पारेषण योजना विवरण – भारत और बांगलादेश ग्रिड के बीच में सीमा पार इंटरकनेक्शन

	तालिका सं.: बीजी-01
दो देशों के बीच 500मेगावाट तक का	भारत का भाग:
विद्युत विनिमय कराने के लिए भारत और बांगलादेश ग्रिड के बीच सीमा	(पावरग्रिड द्वारा कार्यान्वयन किया जाना है)
पार इंटरकनेक्शन	1. बहरामपुर (भारत)-भेरामारा (बांगलादेश) 400केवी डी/सी
	लाइन
	2. बहरामपुर में फरक्का-जिरट 400केवी एस/सी लाइन का
	एलआईएलओ
	3. बहरामपुर में 400केवी स्विचंग स्टेशन की स्थापना
	बांगलादेश भाग:
	(बांगालादेश लिमिटेड के पावर ग्रिड कंपनी द्वारा कार्यान्वयन किया
	जाना है)
	1. बहरामपुर (भारत)-भेरामारा (बांगलादेश) 400केवी डी/सी
	लाइन
	2. भेरामारा में इसुरदी-खुलना दक्षिण 230 केवी डी/सी लाइन का एलआईएलओ
	3. भेरामारा में 1x500मेगावाट एचवीडीसी बैक-टे-बैक स्टेशन
	और 230केवी स्विचिंग स्टेशन की स्थापना

पारेषण योजना विवरण –भारत और नेपाल ग्रिड के बीच सीमा पार इंटरकनेक्शन

तालिका सं.: एनपी-01	
दो देशों के बीच विद्युत विनिमय सहज कराने के लिए भारत और नेपाल ग्रिड के बीच सीमा पार	400केवी मुजफ्फरपुर (भारत)- धलकेबर (नेपालl) डी/सी लिंक
इंटरकनेक्शन	(भारत का भाग-सीपीटीसी (जेवी) द्वारा 87 किमी, नेपाल का भाग-39 किमी)

अध्याय-8

संभावित पारेषण योजना

8.1 संभावित पारेषण योजनाएं:

संभावित पारेषण योजनाओं में निम्नलिखित के लिए योजनागत प्रमुख पारेषण कॅरीडोर शामिल हैं :

- पिट हेड के निकट (स्थानीय कोयले के लिए) तथा तटवर्ती स्थानों के निकट (आयातित कोयले के लिए) चिह्नित थर्मल उत्पादन परियोजनाएं,
- उत्तरी एवं पूर्वी क्षेत्रों में नदी बेसिन पर चिह्नित जल विद्युत परियोजनाएं,
- संभावित पवन तथा सौर ऊर्जा उत्पादन परियोजनाएं,
- अरूणाचल प्रदेश (पूर्वात्तर क्षेत्र में) चिह्नित जल विद्युत परियोजनाएं तथा
- भूटान, नेपाल, एवं म्यांनमार से उत्पादन परियोजनाओं से विद्युत आयात।

इन योजनाओं में चिह्नित पारेषण प्रणालियों को आगामी 5 से 15 वर्षों में क्रियान्वित किया जा सकता है। इस समयाविध में मांग/उत्पादन परिदृश्य के अनुरूप पारेषण योजनाओं का सुदृढ़ीकरण किया जाएगा तथा उत्पादन परियोजनाओं की निर्धारित अनुसूची (कार्यक्रम) को ध्यान में रखते हुए इन्हें क्रियान्वित किया जाएगा।

8.2 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर का विकास

8.2.1 एल.टी.ए. प्रक्रिया के अंतर्गत सशक्त बनाए जाने हेतु चिह्नित अधिकांश उत्पादन योजनाएं मुख्य रूप से ओडिसा, छत्तीसगढ़, सिक्किम, झारखंड, मध्य प्रदेश, तटीय आंध्र प्रदेश तथा तिमलनाडु राज्यों में स्थित हैं। जिन उत्पादन परियोजनाओं के पास स्थायी लाभार्थी नहीं थे, उनकी पारेषण प्रणाली की आवश्यकताओं का निर्धारण लक्ष्य लाभार्थियों/क्षेत्रों के आधार पर किया गया। ऐसे आवेदकों द्वारा दी गई सूचना (स्थापित क्षमता के लगभग 62000 मेगावाट के बराबर) के आधार पर एचवीडीसी को शामिल करते हुए 765 के.वी. ए.सी. तथा 400 के.वी. एस.सी. प्रणालियों सहित 11 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर (एचसीपीटीसी) की योजनाएं बनाई गईं हैं, जिन्हें निम्नलिखित (चित्र 8.01) में दर्शाया गया है:

दीर्घावधि जरूरतों को देखते हुए उपरोक्त पारेषण कॉरीडोर की योजनाएं बनाई गईं थीं तथा संबद्ध उत्पादन परियोजनाओं के आरंभ किए जाने तक इन्हें क्रमिक रूप से चालू कर दिया जाएगा। इन कॉरीडोर के मूलभूत पारेषण घटकों का उत्पादनवार विवरण अध्याय 7 में विभिन्न पारेषण योजनाओं के अंतगर्त दिया गया है। कॉरीडोर-वार विवरण निम्नलिखित है:

8.2.2 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर -। (एचसीपीटीसी-।) "ओडिसा में आई.पी.पी. परियोजनाओं से संबद्ध पारेषण प्रणाली"

संबद्ध उत्पादन परियोजनाएं:

क्रम.	विद्युत उत्पादक/ओपेन एक्सेस एप्लिकैंट	स्थापित क्षमता (मेगावाट)
1	स्टरलाइट एनर्जी लिमिटेड	2400
2	जीएमआर कमलांगा एनर्जी लिमिटेड	1050
3	नवभारत पावर प्राइवेट लिमिटेड	1050
4	मोनेट पावर कंपनी लिमिटेड	1050
5	जिंदल इंडिया थर्मल पावर लिमिटेड	1200
6	लैंको बबंध पावर प्राइवेट लिमिटेड	2640
7	इंड बरथ एनर्जी (उत्कल) लिमिटेड	700
	योग	10090

उच्च क्षमतायुक्त पारेषण कॉरीडोर-। (एचसीपीटीसी-।) में निम्नलिखित पारेषण योजनाएं शामिल हैं:-

ओडिसा में प्रथम चरण की उत्पादन परियोजनाओं हेतु पारेषण प्रणाली भाग-क

- अंगुल पूलिंग स्टेशन झारसुगुडा पूलिंग स्टेशन 765 के.वी. 2xएस/सी. लाइन
- राउरकेला– झारसुगुडा पूलिंग स्टेशन पर रायगढ़ 400 के.वी. डी/सी का एलआईएलओ
- अंगुल पूलिंग स्टेशन पर मेरामुंडली-जयपुर 400 के.वी. एस/सी लाइन का एलआईएलओ
- अंगुल पूलिंग स्टेशन पर तेलचर के एक सीकेटी-मेरामुंडली 400 के.वी. डी/सी का एलआईएलओ
- झारसुगुडा के 765/400 के.वी. पूलिंग स्टेशन की स्थापना
- अंगुल में 765/400 के.वी. पूलिंग स्टेशन की स्थापना

ओडिसा में प्रथम चरण की उत्पादन परियोजनाओं हेतु पारेषण प्रणाली भाग-ख

- झारसुगुडा पुलिंग स्टेशन धर्मजयगढ़/कोरबा (प.क्षे.) के निकट 765 के.वी. डी/सी लाइन
- धर्मजयगढ़/कोरबा के निकट रांची प.क्षे. पूलिंग (सिपत के पास) 765 के.वी. एस/सी लाइन का एलआईएलओ
- धर्मजयगढ़/कोरबा के निकट-जबलपुर पूल 765 के.वी. डी/सी लाइन
- जबलपुर पूलिंग स्टेशन जबलुपर 400 के.वी. डी/सी (उच्च क्षमतायुक्त) लाइन
- धर्मजयगढ़/कोरबा के निकट उचित स्थान पर 765 के.वी. सब स्टेशन की स्थापना
- जबलपुर में 765/400 के.वी. पूलिंग स्टेशन की स्थापना

III. ओडिसा में प्रथम चरण की उत्पादन परियोजनाओं हेतु पारेषण प्रणाली भाग-ग

- जबलपुर पूलिंग स्टेशन बीना 765 के.वी. डी/सी लाइन
- बीना-ग्वालियर 765 के.वी. एस/सी (तीसरी सर्किट) लाइन
- ग्वालियर-जयपुर 765 के.वी. एस/सी लाइन
- जयपुर भिवानी 765 के.वी. एस/सी लाइन

IV. निजी क्षेत्र के अधीन

भाग-घ

- 2x1500 एम.वी.ए., 765/400 के.वी. भोपाल पूलिंग स्टेशन की स्थापना
- जबलपुर पूल भोपाल –इंदौर 765 के.वी. एस/सी
- भोपाल नया सब-स्टेशन भोपाल (म.प्र.) 400 के.वी. डी/सी (उच्च क्षमतायुक्त)

8.2.3 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर -।। (एचसीपीटीसी-।।): 'झारखंड में आई.पी.पी. परियोजनाओं से संबद्ध पारेषण प्रणाली''

संबद्ध उत्पादन परियोजनाएं:

क्रम.	विद्युत उत्पादक/ओपेन एक्सेस एप्लिकैंट	स्थापित क्षमता (मेगावाट)
1.	आधुनिक पावर एवं प्राकृतिक संसाधन लिमिटेड	540
2.	एस्सार पावर (झारखंड)लिमिटेड	1200
3.	कारपोरेट पावर लिमिटेड चरण – ।	540
4.	कारपोरेट पावर लिमिटेड चरण – ।।	540
5.	डब्ल्यूबीएसईडीसीएल – पश्चिम बंगाल के राज्य क्षेत्र परियोजना से सरप्लस	1000
	योग	3820

उच्च क्षमतायुक्त पारेषण कॉरीडोर -।। (एचसीपीटीसी-।।) में निम्नलिखित पारेषण प्रणाली शामिल हैं :

। झारखंड एवं पश्चिम बंगाल में प्रथम चरण की उत्पादन परियोजनाओं हेतु पारेषण प्रणाली : भाग – क

- रांची-गया 400 के.वी. (क्वाड) लाइन वाया एस्सार/कारपोरेट उत्पादन परियोजनाओं के पास प्रस्तावित पूलिंग स्टेशन
- रांची न्यू (765/400 के.वी. एस/एस) धर्मजयगढ़ 765 के.वी. एस/सी
- एस्सार/कारपोरेट उत्पादन परियोजनाओं (एस्सार तथा कारपोरेट आईपीपी की प्रगति के आधार पर) के पास 400 के.वी. पूलिंग स्टेशन की स्थापना। यह स्विचिंग स्टेशन आईसीटी के बिना होगा।

झारखंड एवं पश्चिम बंगाल में प्रथम चरण की उत्पादन परियोजनाओं हेतु पारेषण प्रणाली: भाग –ख

- वाराणसी तथा कानपुर में 2x1500 एम.वी.ए.,765/400 के.वी. का नया सब स्टेशन
- गया वाराणसी 765 के.वी. एस/सी
- वाराणसी बलिया 765 के.वी. एस/सी लाइन **
- वाराणसी कानपुर 765 के.वी. डी/सी लाइन
- कानपुर झटिकरा 765 के.वी. एस/सी लाइन
- वाराणसी एवं कानपुर में 765/400 के.वी. के नए सब स्टेशन हेतु 400 के.वी. की कनेक्टिविटी
- वाराणसी सारनाथ (यूपीपीसीएल) 400 के.वी. डी/सी (क्वाड)
- वाराणसी में सासाराम इलाहाबाद 400 के.वी. लाइन का एलआईएलओ
- कानपुर (765/400 के.वी.) कानपुर (मौजूदा) 400 के.वी. डी/सी (क्वाड)
- * * वाराणसी में तिलैया/गया-बलिया 765 के.वी. के एक सीकेटी के एलआईएलओ के स्थान पर वाराणसी बलिया 765 के.वी. एस/सी को तदन्तर प्रतिस्थापित किया गया।

III निजी क्षेत्र की संभावना के अंतर्गत झारखंड में उत्पादन परियोजनाओं से उत्तरी क्षेत्र/पश्चिमी क्षेत्र को ऊर्जा अंतरण हेत् साझा पारेषण प्रणाली का सशक्तिकरण

• धर्मजयगढ़ – जबलपुर 765 के.वी. डी/सी (द्वितीय लाइन)

8.2.4 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर -।।। (एचसीपीटीसी-।।।):

'सिक्किम में आई.पी.पी. परियोजनाओं से संबद्ध पारेषण प्रणाली"

संबद्ध उत्पादन परियोजनाएं :

क्रम.	विद्युत उत्पादक/ओपेन एक्सेस एप्लिकैंट	स्थापित क्षमता (मेगावाट)
1	तीस्ता ऊर्जा लिमिटेड /पीटीसी	1200
2	लैंको एनर्जी प्राइवेट लिमिटेड	500
3	डीएएनएस एनर्जी प्राइवेट लिमिटेड	96
4	जल पावर कारपोरेशन	120
5	मध्य भारत पावर कारपोरेशन लिमिटेड	96
6	गति इंफ्रास्ट्रक्चर लिमिटेड	99
7	गति इंफ्रास्ट्रक्चर भास्मे पावर प्राइवेट लिमिटेड	51
	योग	2162

उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर -।।। (एचसीपीटीसी-।।।) में निम्नलिखित पारेषण प्रणाली शामिल हैं :

- पश्चिम बंगाल/बिहार के उत्तरी क्षेत्र में किशनगंज के पास पूलिंग स्टेशन के विकास हेतु पारेषण
 प्रणाली, भाग क
 - किशनगंज के नए पूलिंग स्टेशन पर सिलिगुड़ी (मौजूदा) पुर्निया 400 के.वी. डी/सी लाइन (क्वाड) का एलआईएलओ

- किशनगंज में उच्च क्षमता (एचटीएलएस) कंडक्टर सिहत सिलिगुड़ी (मौजूदा)- पुर्निया 400 के.वी. डी/सी लाइन (जिस पर रि-कंडिक्टरंग की जा रही है) का एलआईएलओ
- पश्चिम बंगाल/बिहार के उत्तरी हिस्से में नए पूलिंग स्टेशन पर सिलिगुड़ी
 डालखोला 220
 के.वी. डी/सी लाइन का एलआईएलओ
- रांगपो पूलिंग प्वाइंट तक गंगटोक-मेल्ली 132 के.वी. एस/सी, लाइन का एलआईएलओ, जहाँ चुजाचेन-गंगटोक एवं चुजाचेन-मेल्ली 132 के.वी. एस/सी लाइनों को गठित करने के लिए चुजाचेन-रांगपो 132 के.वी. डी/सी लाइन को जोड़ा जाएगा।
- किशनगंज में संबद्ध खंड़ों (बे) सहित 2x315 एम.वी.ए., 400 के.वी. का नया सब स्टेशन

सिक्किम में पूलिंग सब स्टेशन के विकास हेतु पारेषण प्रणाली और पश्चिम बंगाल/बिहार के उत्तरी हिस्से में किशनगंज के नए पूलिंग स्टेशन को विद्युत अंतरण, भाग-ख

- न्यू मेल्ली में तीस्ता।।।-किशनगंज 400 के.वी. डी/सी लाइन (क्वाड) का एलआईएलओ
- रांगपो नई मेल्ली 220 के.वी. डी/सी लाइन (दो मूज कंडक्डर सहित)
- रांगपो में गंगटोक-रंगित 132 के.वी. एस/सी लाइन का एलआईएलओ तथा रांगपो सब स्टेशन पर गंगटोक-रांगपो/चुजाचेन एवं मेल्ली – रांगपो/चुजाचेन 132 के.वी. लाइनों (रांगपो तक गंगटोक-मेल्ली 132 के.वी. एस/सी लाइन के एलआईएलओ के जरिए भाग-क के अंतर्गत निर्मित) तक टर्मिनेशन
- न्यू मेल्ली में तीस्ता V-सिलिगुड़ी 400 के.वी. डी/सी लाइन का एलआईएलओ
- किशनगंज पटना 400 के.वी. डी/सी (क्वाड) लाइन
- रांगपो में 220/132 के.वी., 3x100 एम.वी.ए. गैस इंसुलेटेड सब स्टेशन की स्थापना
- नयू मेल्ली में 10x167 एम.वी.ए., प्रथम चरण, 400/220 के.वी गैस इंसुलेटेड सब स्टेशन की स्थापना

8.2.5 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - IV (एचसीपीटीसी - IV):

'छत्तीसगढ़ में बिलासपुर काम्प्लेक्स के पास एवं मध्य प्रदेश में आई.पी.पी. परियोजनाओं से संबद्ध पारेषण प्रणाली''

संबद्ध उत्पादन परियोजनाएं :

क्रम.	विद्युत उत्पादक/ओपेन एक्सेस एप्लिकैंट	स्थापित क्षमता (मेगावाट)
	छत्तीसगढ़ आई.पी.पी.	
1.	मारूति क्लीन कोल (1X300 मेगावाट)	300
2.	धीरू पावर जेन (3x350 मेगावाट)	1050
3.	छत्तीसगढ़ स्टेट पावर ट्रेडिंग कं. लिमिटेड	
	उप-योग	1350
	मध्य प्रदेश आई.पी.पी.	
4.	जय प्रकाश पावर वेन्चर्स लिमिटेड (2x660 मेगावाट)	1320

5.	आर्यन एम.पी. पावर जेनरेशन प्राइवेट लिमिटेड (2x 600	1200
	मेगावाट)	
6.	बीना पावर सप्लाई कंपनी लिमिटेड (2x250 मेगावाट)	500
	उप-योग	3020
	योग	4370

उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - IV (एचसीपीटीसी- IV) में निम्नलिखित पारेषण प्रणाली शामिल हैं :

- **इंदौर बडोदरा** 765 के.वी एस/सी
- वडोदरा पिराना 400 के.वी. डी/सी (क्वाड)
- वडोदरा में 765/400 **के.वी.**, 2x1500 **एम.वी.ए. की स्थापना**

8.2.6 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - V (एचसीपीटीसी - V):

'छत्तीसगढ़ आई.पी.पी. परियोजनाओं से संबद्ध पारेषण प्रणाली"

संबद्ध उत्पादन परियोजनाएं :

	सबद्ध उत्पादन पारयाजनाए :	
क्रम.	विद्युत उत्पादक/ओपेन एक्सेस एप्लिकैंट	स्थापित क्षमता (मेगावाट)
	रायगढ़ (कोटरा) काम्प्लेक्स	
1	आर.के.एम. पावरजेन लिमिटेड (4x360)	1440
2	अथेना छत्तीसगढ़ पावर लिमिटेड (2x600)	1200
3	एस.के.एस. पावरजेन लिमिटेड (4x360)	1200
4	कोबरा वेस्ट पावर कंपनी लिमिटेड (1x600)	600
5	डी.बी. पावर लिमिटेड (2x600)	1200
6	वीजा पावर लिमिटेड	1200
	उप – योग	6840
	रायगढ़ (तमनर) काम्प्लेक्स	
1	जिंदल पावर लिमिटेड (4x600)	2400
2	जिंदल पावर लिमिटेड (डोंगामहुआ सीपीपी से 225 मेगावाट +	400
	मौजुदा तमनर टीपीएस से 175 मेगावाट)	
3	टी.आर.एन. एनर्जी प्राइवेट लिमिटेड (2x300)	600
	उप – योग	3400
	जंजगीर – चम्पा काम्प्लेक्स	
1	के.एस.के. महानदी पावर कंपनी लिमिटेड (6x600)	3600
2	बाल्को (4x300)	1200

3	वंदना विद्युत लिमिटेड (2x135+1x270)	540
4	लैंको अमरकंटक पावर प्राइवेट लिमिटेड (2x660)	1320
	उप – योग	6660
	रायपुर काम्प्लेक्स	
1	जी.एम.आर. छत्तीसगढ़ एनर्जी प्राइवेट लिमिटेड	1370
1	छत्तीसगढ़ स्टेट पावर ट्रडिंग कंपनी लिमिटेड	
	योग	18270

उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - V (एचसीपीटीसी- V) में निम्नलिखित पारेषण प्रणाली शामिल हैं:

। पावरग्रिड द्वारा क्रियान्वित की जानी वाली साझा विद्युत पारेषण प्रणाली:

- रायगढ़ पूलिंग स्टेशन (कोटरा के पास) रायगढ़ पूलिंग स्टेशन 765 के.वी. डी/सी लाइन
- चम्पा पुलिंग स्टेशन- धर्मजयगढ़ पुलिंग स्टेशन 765 के.वी. एस/सी लाइन
- चम्पा पूलिंग स्टेशन– रायगढ़ पूलिंग स्टेशन 765 के.वी. डी/सी लाइन
- रायगढ़ पूलिंग स्टेशन (कोटरा के पास) चम्पा पूलिंग स्टेशन 765 के.वी. एस/सी लाइन
- रायगढ़ पूलिंग स्टेशन (तमनर के पास) रायगढ़ पूलिंग स्टेशन (कोटरा के पास) 765 के.वी. डी/सी लाइन
- रायगढ़ पूलिंग स्टेशन (कोटरा के पास) रायगढ़ (पी.जी.) 400 के.वी. डी/सी (बाद की तारीख को आरंभ की गई) लाइन
- रायगढ़ पूलिंग स्टेशन– रायगढ़ (पी.जी.) 400 के.वी. डी/सी (बाद की तारीख को आरंभ की जाएगी) लाइन
- रायपुर पूलिंग स्टेशन वर्धा 765 के.वी. 2xडी/सी लाइन
- वर्धा औरंगाबाद (पी.जी.) 765 के.वी. 2xडी/सी लाइन
- औरंगाबाद (पी.जी.)-पाडघे 765 के.वी. 2xडी/सी लाइन
- औरंगाबाद (पी.जी.) बोइसर 400 के.वी. डी/सी (क्वाड) लाइन
- पडघे (पी.जी.)- पडघे (एमएसटीईसीएल) 400 के.वी. डी/सी (क्वाड) लाइन
- रायगढ़ पूलिंग स्टेशन (कोटरा के निकट)-धुले (पी.जी.) लाइन के बीच ±600 के.वी., 4000 मेगावाट एचवीडीसी बाइपोल
- वडोदरा असोज (गेटको) 400 के.वी. डी/सी (क्वाड) लाइन
- चम्पा पूलिंग स्टेशन कुरूक्षेत्र (उ.क्षे.) के बीच ±800 के.वी., 3000 मेगावाट एचवीडीसी बाइपोल, जिसे बाद में 6000 मेगावाट तक अपग्रेड किए जाने का प्रावधान है
- धुले (पी.जी.) धुले (नया) 400 के.वी. डी/सी (क्वाड) लाइन
- धुले (पी.जी.) मालेगांव (एमएसईटीसीएल) 400 के.वी. डी/सी (क्वाड) लाइन
- धुले (पी.जी.) नासिक (एमएसईटीसीएल) 400 के.वी. डी/सी (क्वाड) लाइन
- धुले (पी.जी.) में 400/220 के.वी. 2x315 एम.वी.ए. सब स्टेशन की स्थापना
- 765/400 के.वी. 4x1500 एम.वी.ए. रायगढ़ पूलिंग स्टेशन (कोटरा के निकट) की स्थापना
- 765/400 के.वी. 3x1500 एम.वी.ए. रायगढ़ पूलिंग स्टेशन (तमनर के निकट) की स्थापना

- 765/400 के.वी. 6x1500 एम.वी.ए. चम्पा पूलिंग स्टेशन की स्थापना
- 765/400 के.वी. 1x1500 एम.वी.ए. रायगढ़ पूलिंग स्टेशन की स्थापना
- रायगढ़ पूलिंग स्टेशन (कोटरा के निकट) तथा धुले (पी.जी.) में क्रमश: एक-एक 4000 मेगावाट 600 के.वी. एचवीडीसी बाइपोल टर्मिनल की स्थापना
- रायगढ़ पूलिंग स्टेशन (कोटरा के निकट) तथा धुले (पी.जी.) में क्रमश: एक-एक 4000 मेगावाट 600 के.वी. एचवीडीसी बाइपोल टर्मिनल की स्थापना
- रायगढ़ पूलिंग स्टेशन (कोटरा के निकट) तथा धुले (पी.जी.) में क्रमश: एक-एक 4000 मेगावाट 600 के.वी. एचवीडीसी बाइपोल टर्मिनल की स्थापना
- चम्पा पूलिंग स्टेशन और कुरूक्षेत्र (उ.क्षे.) में क्रमश: 3000 मेगावाट + 8000 के.वी. बाइपोल टर्मिनल की स्थापना। (बाद में इन टर्मिनल को अपग्रेड किए जाने का प्रावधान है)
- 765/400 के.वी. 2x1500 एम.वी.ए. पेडघे (पीजी) जीआईएस सब स्टेशन की स्थापना
- 765/400 के.वी. 2x1500 एम.वी.ए. पेडघे (पीजी) औरंगाबाद सब स्टेशन की स्थापना

उत्तरी क्षेत्र का सशक्तिकरण

- कुरूक्षेत्र (उ.क्षे.)–जालंधर 400 के.वी. डी/सी (क्वाड) एक सीकेटी वाया 440/220 के.वी. नाकोदर सब स्टेशन
- कुरूक्षेत्र में अब्दुल्लापुर-सोनेपत 400 के.वी. डी/सी (ट्रिपल) का एलआईएलओ
- कुरूक्षेत्र में 400/220 के.वी. 2x500 एम.वी.ए. सब स्टेशन की स्थापना

गा टैरिफ आधारित प्रतियोगी बोली के अंतर्गत साझा पारेषण प्रणाली का सशक्तिकरण

- औरंगाबाद (पी.जी.) धुले (नया) 765 के.वी. एस/सी लाइन
- धुले (नया) वडोदरा 765 के.वी. एस/सी लाइन
- धुले (नया) धुले (एमएसईटीसीएल) 400 के.वी. डी/सी क्वाड लाइन
- 765/400 के.वी., 2x1500 एम.वी.ए. धुले (नया) सब स्टेशन की स्थापना

8.2.7 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - VI (एचसीपीटीसी - VI): "आंध्र प्रदेश के कृष्णापतनम क्षेत्र में आई.पी.पी. परियोजनाओं से संबद्ध पारेषण प्रणाली" संबद्ध उत्पादन परियोजनाएं:

क्रम.	विद्युत उत्पादक/ओपेन एक्सेस एप्लिकैंट	स्थापित क्षमता (मेगावाट)
1	सिम्हापुरी एनर्जी प्राइवेट लिमिटेड	600
2	मीनाक्षी एनर्जी प्राइवेट लिमिटेड	600
3	थर्मल पावरटेक कारपोरेशन इंडिया लिमिटेड	1320
4	मीनाक्षी एनर्जी प्राइवेट लिमिटेड	400
5	एनसीसी पावर प्रोजेक्ट्स लिमिटेड	1320
	योग	4240

उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - VI (एचसीपीटीसी- VI) में निम्नलिखित पारेषण प्रणाली शामिल हैं:

- सिम्हापुरी-नेल्लूर 400 के.वी. डी/सी क्वाड लाइन के एलआईएलओ द्वारा नेल्लूर में 765/400
 के.वी., 2x1500 एम.वी.ए. पूलिंग स्टेशन की स्थापना
- नेल्लूर पूलिंग स्टेशन-करनूल 765 के.वी. डी/सी लाइन
- करनूल रायचूर द्वितीय 765 के.वी. एस/सी लाइन
- नेल्लूर पूलिंग स्टेशन, करनूल एवं रायचूर केन्द्रों पर संबंद्ध 765 के.वी. एवं 400 के.वी. खंड (बे)

8.2.8 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - VII (एचसीपीटीसी - VII):

"तमिलनाडु के तूतीकोरन क्षेत्र में आई.पी.पी. परियोजनाओं से संबद्ध पारेषण प्रणाली" संबद्ध उत्पादन परियोजनाएं :

क्रम.	विद्युत उत्पादक/ओपेन एक्सेस एप्लिकैंट	स्थापित क्षमता (मेगावाट)
1	कोस्टल एनरजेन प्राइवेट लिमिटेड	1200
2	इंड-बरथ पावर (मद्रास) लिमिटेड	1320
	योग	2520

उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - VII (एचसीपीटीसी- VII) में निम्नलिखित पारेषण प्रणाली शामिल हैं :

- तूतीकोरन तथा सलेम (आरंभ में 400 के.वी. पर आवेशित) में 765 के.वी. पूलिंग स्टेशन की स्थापना
- तूतीकोरन पूलिंग स्टेशन पर तूतीकारेन संयुक्त उपक्रम मदुरै 400 के.वी. डी/सी (क्वाड) लाइन के दोनों सर्किटों का एलआईएलओ
- तूतीकोरन पूलिंग स्टेशन सलेम पूलिंग स्टेशन 765 के.वी. डी/सी लाइन, आरंभ में 400 के.वी.
 पर आवेशित
- 400 के.वी. डी/सी (क्वाड) लाइन द्वारा सलेम पूलिंग स्टेशन का मौजूदा सलेम 400/230 के.वी. सब स्टेशन से अंत:संयोजन
- सलेम पूलिंग स्टेशन मधुगिरी पूलिंग स्टेशन 765 के.वी. एस/सी, आरंभ में 400 के.वी. पर आवेशित

8.2.9 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - VIII (एचसीपीटीसी - VIII):

"आंध्र प्रदेश के श्रीकाकुलम क्षेत्र में आई.पी.पी. परियोजनाओं से संबद्ध पारेषण प्रणाली" संबद्ध पारेषण परियोजनाएं :

क्रम.	विद्युत उत्पादक/ओपेन एक्सेस एप्लिकैंट	स्थापित क्षमता (मेगावाट)
1	ईस्ट कोस्ट एनर्जी प्राइवेट लिमिटेड	1320
	योग	1320

उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - VIII (एचसीपीटीसी- VIII) में निम्नलिखित पारेषण प्रणाली शामिल हैं :

- श्रीकाकुलम में 2x1500 एम.वी.ए. 765/400 के.वी. पूलिंग स्टेशन की स्थापना
- अंगुल में 1x1500 एम.वी.ए., 765/400 के.वी. आईसीटी का प्रावधान
- श्रीकाकुलम पूलिंग स्टेशन अंगुल 765 के.वी. डी/सी (आरंभ में 400 के.वी. पर आवेशित)
- अंगुल–झारसुगुडा–धर्मजयगढ़ 765 के.वी. डी/सी लाइन
- श्रीकाकुलम एवं अंगुल सब स्टेशनों पर संबद्ध 400 के.वी. के खंड (बे)
- अंगुल, झारसुगुडा एवं धर्मजयगढ़ सब स्टेशनों पर संबद्ध 765 के.वी. के खंड (बे)

8.2.10 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - IX (एचसीपीटीसी - IX):

"दक्षिणी क्षेत्र से अन्य क्षेत्रों में विद्युत अंतरण के लिए आई.पी.पी. परियोजनाओं से संबद्ध पारेषण प्रणाली "

संबद्ध पारेषण परियोजनाएं:

क्रम.	विद्युत उत्पादक/ओपेन एक्सेस एप्लिकैंट	स्थापित क्षमता (मेगावाट)
1	लैंको कोन्डापल्ली पावर प्राइवेट लिमिटेड	366
2	सिम्हापुरी एनर्जी प्राइवेट लिमिटेड	600
3	मीनाक्षी एनर्जी प्राइवेट लिमिटेड	600
4	थर्मल पावरटेक कारपोरेशन इंडिया लिमिटेड	1320
5	मीनाक्षी एनर्जी प्राइवेट लिमिटेड	400
6	एनसीसी पावर प्रोजेक्ट्स लिमिटेड	1320
7	कोस्टल एनर्जी प्राइवेट लिमिटेड	1200
8	इंडो – बरथ पावर (मद्रास) लिमिटेड	1320
9	ईस्ट कोस्ट एनर्जी प्राइवेट लिमिटेड	1320
	योग	8446

उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - IX (एचसीपीटीसी- IX) में निम्नलिखित पारेषण प्रणाली शामिल हैं :

- शोलापुर पुणे 765 के.वी. द्वितीय एस/सी (प्रथम सर्किट कृष्णापटनम यूएमपीपी से संबद्ध पारेषण प्रणाली के अंतर्गत पहले ही शामिल)
- सतना–ग्वालियर 765 के.वी. लाइन के एक सर्किट वाले एलआईएलओ द्वारा उरई में 2x1000 एम.वी.ए. 765/400 के.वी. स्टेशन की स्थापना
- आगरा-मेरठ 765 के.वी. लाइन के एलआईएलओ द्वारा बुलंदशहर में 2x1500 एम.वी.ए.
 765/400 के.वी. स्टेशन की स्थापना

- भिवानी-मेरठ 765 के.वी. लाइन के एलआईएलओ द्वारा सोनीपत में 2x1500 एम.वी.ए.
 765/400 के.वी. स्टेशन की स्थापना
- जबलपुर पूलिंग स्टेशन उरई 765 के.वी. एस/सी लाइन
- उरई–बुलंदशहर सोनीपत 765 के.वी. एस/सी लाइन
- उरई–उरई (यूपीपीसीएल) 400 के.वी. (क्वाड) लाइन
- सोनीपत–कुरूक्षेत्र 400 के.वी. (क्वाड) लाइन
- सोनीपत (नया)–सोनीपत (निर्माणाधीन) 400 के.वी. डी/सी (क्वाड) लाइन
- बुलंदशहर–हापुर (यूपीपीसीएल) 400 के.वी. (क्वाड) लाइन

8.2.11 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - X (एचसीपीटीसी - X):

"आंध्र प्रदेश में वेमागिरी क्षेत्र में आई.पी.पी. परियोजनाओं से संबद्ध पारेषण प्रणाली" संबद्ध पारेषण परियोजनाएं:

क्रम.	विद्युत उत्पादक	स्थापित क्षमता (मेगावाट)
1	समलकोट पावर लिमिटेड (पूर्व में रिलायंस इन्फ्रास्ट्रक्चर)	2400
2	स्पेक्ट्रम पावर जनरेशन लिमिटेड	1400
3	जी.एम.आर. राजहमुंद्री एनर्जी लिमिटेड	768
	योग	4568

उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - X (एचसीपीटीसी- X) में निम्नलिखित पारेषण प्रणाली शामिल हैं:

- वेमागिरी में 4x1500 एम.वी.ए. ट्रान्सफारमर सहित 765/400 के.वी. जीआईएस पूलिंग स्टेशन की स्थापना
- वेमागिरी पूलिंग स्टेशन पर गजुवाका विजयवाड़ा 400 के.वी. एस/सी लाइन का एलआईएलओ
- खम्मम एवं हैदराबाद में एक-एक 2x1500 एम.वी.ए. ट्रान्सफारमर सहित 765/400 के.वी. जी.आई.एस. पूलिंग स्टेशन की स्थापना
- हैदराबाद 765/400 के.वी. सब स्टेशन हैदराबाद (मौजूदा) 400 के.वी. डी/सी (क्वाड) लाइन
- खम्मम 765/400 के.वी. सब स्टेशन खम्मम (मौजूदा) 400 के.वी. डी/सी (क्वाड) लाइन
- हैदराबाद वर्धा 765 के.वी. डी/सी लाइन
- वेमागिरी पूलिंग स्टेशन खम्मम 765 के.वी. 2xडी/सी लाइन
- खम्मम हैदराबाद 765 के.वी. 2xडी/सी लाइन
- वर्धा जबलपुर पूलिंग स्टेशन 765 के.वी. डी/सी लाइन

8.2.12 उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - XI (एचसीपीटीसी - XI):

"तमिलनाडु के नागापट्टनम क्षेत्र में आई.पी.पी. परियोजनाओं से संबद्ध पारेषण प्रणाली"

संबद्ध पारेषण परियोजनाएं:

क्रम.	विद्युत उत्पादक	स्थापित क्षमता (मेगावाट)
1	आई.एल.एवं एफ.एस.तमिलनाडु लिमिटेड पावर कंपनी	1200
2	पी.ई.एल. पावर लिमिटेड	1050
	योग	2250

उच्च क्षमतायुक्त विद्युत पारेषण कॉरीडोर - XI (एचसीपीटीसी- XI) में निम्नलिखित पारेषण प्रणाली शामिल हैं:

- नागापट्टनम में 4x1500 एम.वी.ए. ट्रान्सफारमर सहित 765/400 के.वी. जी.आई.एस. पूलिंग स्टेशन की स्थापना
- अंतरिम व्यवस्था हेतु नागापट्टनम पूलिंग स्टेशन पर नेवली– त्रिची 400 के.वी. एस/सी लाइन का एलआईएलओ, जिसे बाद में बायपास किया जाएगा।
- नरेन्द्र एवं कोल्हापुर में 2x1500 एम.वी.ए. के एक-एक ट्रान्सफारमर सिहत 765/400
 के.वी.जी.आई.एस. पूलिंग स्टेशन की स्थापना
- मधुगिरी एवं सलेम में एक-एक 2x1500 एम.वी.ए., 765/400 के.वी. ट्रान्सफारमर की व्यवस्था
- नरेन्द्र कोल्हापुर 765 के.वी. डी/सी लाइन
- कोल्हापुर 765/400 के.वी. सब स्टेशन में कोल्हापुर–मपुसा 400 केवी डी/सी के दोनों सर्किटों का एलआईएलओ
- सलेम-मधुगिरि 765 केवी डी/सी लाइन-1 की इसके रेटित बोल्टेज पर चार्जिंग (तूतीकोरन एलटीओए परियोजना के साथ योजनागत)
- नरेन्द्र (मौजूदा) तथा नरेन्द्र 765/400 के.वी. जी.आई.एस. सब स्टेशन के बीच 400 के.वी. का अंत:संयोजन
- नागापट्टनम पूलिंग स्टेशन-सलेम 765 के.वी. डी/सी लाइन
- सलेम–मधुगिरी 765 के.वी. एस/सी लाइन
- मधुगिरी–नरेन्द्र 765 के.वी. डी/सी लाइन
- कोल्हापुर–पडघे 765 के.वी. डी/सी का एक सर्किट वाया पुणे

8:3 <u>नवीकरणीय ऊर्जा संसाधनों</u> से विद्युत निष्कर्षण हेतु पारेषण योजना का परिदृश्य

8.3.1 पवन एवं सौर ऊर्जा उत्पादन हेतु संभावित योजना:

पवन एवं सौर ऊर्जा उत्पादन क्षमता के आंकलन तथा नवीनीकृत योग्य ऊर्जा के विकास हेतु संवेग को ध्यान में रखते हुए वृहद पारेषण कॉरीडोर को चिह्नित करते हुए इनके नवीनीकरण हेतु संभावित योजना बनाई गई है। इसके लिए वर्ष 2030 तक विद्युत आपूर्ति परिदृश्य में नवीनीकृत योग्य ऊर्जा के योगदान पर एक आंकलन कराया गया है। पवन तथा सौर ऊर्जा उत्पादन की क्षमता छ: राज्यों यथा – तिमलनाडु, आंध्र प्रदेश, कर्नाटक, महाराष्ट्र, गुजरात, एवं राजस्थान में प्रमुख रूप से उपलब्ध है। इनमें से पवन ऊर्जा 165 गेगावाट तथा सौर ऊर्जा 35 गेगावाट तक हो सकती है। योजनागत पारेषण कॉरीडोर को जल विद्युत उत्पादन परियोजनाओं हेतु योजनाबद्ध पारेषण कॉरीडोर को एकीकृत करते हुए इन राज्यों के सरप्लस ऊर्जा को कम ऊर्जा उत्पादक राज्यों को पारेषित करना होगा ताकि जल विद्युत ऊर्जा से पवन/सौर ऊर्जा की रिक्तता को संतुलित किया जा सके।

8.3.2 पवन तथा सौर ऊर्जा उत्पादन हेतु उच्च क्षमतायुक्त पारेषण कॉरीडोर

पवन तथा सौर ऊर्जा के संभावित उत्पादन हेतु चिह्नित उच्च क्षमतायुक्त पारेषण कॉरीडोर के विवरण निम्नलिखित हैं:

- 765 के.वी. तमिलनाडु (द.क्षे.) आर.ई. काम्प्लेक्स महाराष्ट्र /गुजरात (प.क्षे.) राजस्थान हरियाणा/दिल्ली (उ.क्षे.) डी/सी
- 2. <u>+</u>800 के.वी. 6000 मेगावाट (मल्टी टर्मिनल) तमिलनाडु /कर्नाटक आर.ई. काम्प्लेक्स उत्तर प्रदेश लोड सेन्टर एचवीडीसी बाइपोल
- 3. 765 के.वी. कर्नाटक (द.क्षे.) आर.ई. काम्प्लेक्स महाराष्ट्र/मध्य प्रदेश (प.क्षे) उत्तर प्रदेश पंजाब (उ.क्षे.) लोड सेन्टर डी/सी
- 4. 765 के.वी. तमिलनाडु / आंध्र प्रदेश (द.क्षे.) आर.ई. काम्प्लेक्स ओडिसा (पू.क्षे) झारखंड (पू.क्षे.) उत्तर प्रदेश/पंजाब (उ.क्षे.) लोड सेन्टर डी/सी
- 5. 765 के.वी. गुजरात आर.ई. काम्प्लेक्स राजस्थान हरियाणा/दिल्ली (उ.क्षे.) डी/सी
- 6. <u>+</u>800 के.वी. 6000 मेगावाट (मल्टी टर्मिनल) गुजरात राजस्थान आर.ई. काम्प्लेक्स पंजाब लोड सेन्टर एचवीडीसी बाइपोल
- 7. 765 के.वी. राजस्थान आर.ई. काम्प्लेक्स (जैसलमेर/बाडमर मध्य राजस्थान –पंजाब जम्मू एवं कश्मीर लोड सेन्टर डी/सी

नवीनीकृत योग्य ऊर्जा उत्पादन (आरई) में प्रगति, संबंधित राज्य में सरप्लस तथा उत्पादकों/राज्यों द्वारा एक राज्य से दूसरे राज्य को आपूर्ति करने की स्वेच्छा को देखते हुए इन पारेषण कॉरीडोर को सुदृढ़ किया जाएगा।

निम्निलिखित चित्र (सं. 8.02) में उपरोक्त उच्च क्षमतायुक्त पारेषण कॉरीडोर का एक आरेख प्रस्तुत है -चित्र 8.02

8.4 सतलज बेसिन तथा सिपत घाटी (सतलज बेसिन) के ऊपरी क्षेत्र में जल विद्युत परियोजनाओं से विद्युत -निष्कर्षण हेतु महायोजना

इस घाटी में चिह्नित जल विद्युत परियोजनाओं की सूची निम्नलिखित है:

क्रम	परियोजना का नाम	स्थापित क्षमता
1	लघु जल विद्युत परियोजनाएं (एसएचपी)	142
2	शांगटांग करचम	450
3	कशांग-।	65
4	कशांग - &	65 + 65
5	कशांग - IV	48
6	टिडोंग - ।	100
7	चांगो यांगथांग	140
8	यांगथांग खाब	261
9	रूपा	60
10	खाब	636
11	टिडोंग -।।	90
12	झंगी थोपन	480
13	थोपन पोवारी	480
14	सुम्टे खाटांग	130
15	लारा सुम्टे	104
16	माने-नादंग	70
17	लारा	60
18	किल्लिंग – लारा	40
	योग	3486

निम्नलिखित चित्र (सं. 8.03) में पारेषण योजना प्रस्तुत है -

8.4.1 लघु जल विद्युत परियोजनाएं (एसएचपी):

भाबा खंड में एसएचपी की स्थापना (57 मेगावाट) के अनुरूप 2014 के मध्य तक वांगटू में 66/220/400केवी जीआईएस पूलिंग स्टेशन और शांगला वैली (400मेगावाट) + 220 केवी कशांग/भाबा डी/सी लाइन तथा वांगटू में 400केवी करचम वांगटू-अब्दुल्लापुर डी/सी लाइन के दोनों सर्किटों के एलआईएलओ की स्थापना-एसटीयु(एचपीपीटीसीएल) के माध्यम से कार्यान्वयन प्रस्तावित।

चित्र:8.03

8.4.2 कशांग-I (65 मेगावाट):

कशांग-I को वर्ष 2013 तक चालू किए जाने की संभावना है। कशांग -I से विद्युत निष्कर्षण हेतु एच.पी. बोग्टू से कशांग तक 220 के.वी. डी/सी लाइन का निर्माण कर रहा है। तदनुरूप बोग्टू से भाभा 220 के.वी. डी/सी लाइन से विद्युत का निष्कर्षण किया जा सकता है।

8.4.3 टिडोंग-I (100 मेगावाट):

यद्यपि टिडोंग-I निर्माणाधीन है तथा इसे दिसम्बर 2014 चालू किए जाने की संभावना है, फिर भी जंगी पूलिंग स्टेशन उस समय तक शायद तैयार न हो सके। इसलिए टिडोंग-। एचईपी पर 220 के.वी. डी/सी कशांग – भाभा लाइन के एक सर्किट के एलआईएलओ द्वारा टिडोंग -। की विद्युत का अस्थाई तौर निष्कर्षण किया जाएगा। ये कार्य एचपीपीटीसीएल द्वारा किए जाएंगे तथा बाद में जंगी विद्युत केन्द्र के चालू हो जाने पर टिडोंग-।-जंगी लाइन का निर्माण कर लिया जाएगा और सिंगल एचटीएलएस कंडक्टर सहित कशांग-जंगी 220 के.वी. डी/सी लाइन को भी स्थापित कर लिया जाएगा। ये कार्य एचपीपीटीसीएल द्वारा किये जाने हैं।

8.4.4 कशांग- II (65 मेगावाट*)* :

जंगी सब स्टेशन में विलंब होने की स्थिति में कशांग -II (65 मेगावाट) का निष्कर्षण 220 के.वी. प्रणाली पर किए जाने की योजना है। फिर भी एक सर्किट से विद्युत आपूर्ति भंग होने की आकस्मिक स्थिति में कुछ अवरोध का सामना करना पड़ सकता है। जंगी पूलिंग स्टेशन की स्थापना कशांग के आगे के चरणों के साथ की जा सकती है।

8.4.5 शांगटांग करचम (450 मेगावाट) :

- ↔ शांगटांग करचम वांग्टू 400 के.वी. डी/सी लाइन (क्वाड एचटीएलएस कंडक्टर करीब 3000 मेगावाट के समतुल्य) 18 किमी. आईएसटीएस के अनुरूप
- स्विचयार्ड जीआईएस की तरह हो तथा इसे 4000 एम्पियर स्विचिगयर के साथ डिजाइन किया जाए ताकि उत्पादन परियोजनाओं के अपस्ट्रीम में योजनागत 2800-3000 मेगावाट ऊर्जा को संचालित किया जा सके।

8.4.6 काशगंज-III (65 मेगावाट) एवं काशगंज - IV (48 मेगावाट) एवं टिडोंग -II (90 मेगावाट) की जल विद्युत परियोजनाएं (एचईपी)

 कशांग – जंगी पूलिंग स्टेशन 220 के.वी. डी/सी लाइन (सिंगल एचटीएलएस – 300 मेगावाट क्षमता के समतुल्य) - एसटीयू द्वारा

- जंगी में 2x315 एम.वी.ए. (7x105 एम.वी.ए. यूनिट) 220/400 के.वी. जी.आई.एस. पूलिंग स्टेशन
 (4000 एम्पियर स्विचिगयर के साथ) (तृतीय आई.सी.टी. हेतु स्थल व्यवस्था सहित)
 आईएसटीएस के अनुरूप
- जंगी में शांगटांग के एक सीकेटी वांगटू 400 के.वी. लाइन का एलआईएलओ- अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुसार
- o टिडोंग जंगी पूलिंग स्टेशन 220 के.वी. डी/सी लाइन एस.टी.यू. द्वारा

8.4.7 चांगो यांगथांग (140 मेगावाट) :

- चांगों यांगथांग का डोगरी पूलिंग स्टेशन 220 के.वी. डी/सी लाइन का प्रस्तावित स्थल 18
 किमी. उत्पादक द्वारा
- का डोगरी- जंगी पूलिंग स्टेशन 400 के.वी. डी/सी लाइन (ट्विन मूज) का प्रस्तावित स्थल, जिसे
 आरंभ में 220 के.वी. पर आवेशित किया जाएगा- 50 किमी. अंतर्राज्यीय पारेषण प्रणाली
 (आईएसटीएस) के अनुसार
- जंगी पूलिंग स्टेशन पर तृतीय 400/220 के.वी. आईसीटी (105 एम.वी.ए. के एकल फेज यूनिट की
 03 संख्या) अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुसार

8.4.8 यांगथांग खाब (261 मेगावाट):

- 220 के.वी. यांगथांग खाब एचटीएलएस कंडक्टर सिहत का डोगरी डी/सी लाइन, जो 300 मेगावाट क्षमता के लिए पर्याप्त है 4 किमी. अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुसार
- का डोगरी में 2x315 एम.वी.ए. (7x105 एम.वी.ए. यूनिट) 220/400 के.वी. जी.आई.एस. पूलिंग स्टेशन - अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुसार
- का डोगरी जंगी लाइन के 400 के.वी. स्तर पर आवेशन अंतर्राज्यीय पारेषण प्रणाली
 (आईएसटीएस) के अनुसार
- o का डोगरी पूलिंग स्टेशन पर चांगो यांगथांक का सीधा टर्मिनेशन विद्युत उत्पादक द्वारा

8.4.9 खाब (636 मेगावाट):

खाब – जंगी पूलिंग स्टेशन 400 के.वी. डी/सी लाइन – 20 किमी. - अंतर्राज्यीय पारेषण प्रणाली
 (आईएसटीएस) के अनुसार

8.4.10 जंगी थोपन (480 मेगावाट) एवं थोपन पोवारी (480 मेगावाट) :

- उत्पादन परियोजना पर जंगी पूलिंग स्टेशन के एक सर्किट–वांग्टू 400 के.वी. डी/सी (क्वाड एचटीएलएस) लाइन का एलआईएलओ- अंतर्राज्यीय पारेषण प्रणाली -(आईएसटीएस) के अनुरूप
- उत्पादन स्विचयार्ड बस रेटिंग पर स्विचिगयर क्षमता 4000 एम्पियर होगी।

8.4.11 रूपा (60 मेगावाट)

- 220 के.वी. डी/सी लाइन से जंगी पूलिंग स्टेशन को प्रत्यक्ष अंत:क्षेपण (डायरेक्ट इन्जेक्शन) विद्युत उत्पादक द्वारा
- संबंधित क्षेत्र में लघु जल विद्युत परियोजनाओं (एसएचपी) का उत्पादन रूपा उत्पादन स्विचयार्ड में अंत:क्षेपित (इन्जेक्ट) किया जा सकता है।

8.4.12 सिपत घाटी (सतलुज बेसिन) की अन्य परियोजनाएं:

- इन परियोजनाओं का उत्पादन, का डोगरी पूलिंग स्टेशन पर अंत:क्षेपित (इन्जेक्ट) किया जा सकता है।
- लारा सुम्टे एचईपी तक किल्लिंग लारा (40 मेगावाट) से, लारा (60 मेगावाट) एवं माने नदंग (70 मेगावाट), की 220 के.वी. की एक संयुक्त डी/सी लाइन तैयार की जा सकती है। लारा सुम्टे एचईपी (104 मेगावाट) से, (ट्विन मूज कंडक्टर सहित) 220 के.वी. उच्च क्षमता की लाइन का डोगरी पूलिंग स्टेशन तक तैयार की जा सकती है। 50 मेगावाट से कम जेनरेटरों को छोड़कर अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप क्रियान्वयन प्रस्तावित है।
- का डोगरी में ट्रान्सफारमेशन क्षमता में संवर्धन की आवश्यकता होगी। 315 एम.वी.ए. (105 एम.वी.ए. एकल फेज यूनिट) के 2 अतिरिक्त आईसीटी के लिए स्थान अपेक्षित होगा। उत्पादन संवर्धन के अनुरूप इन ट्रान्सफारमरों को उत्तरोत्तर उपलब्ध कराया जाएगा। अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप

विशेष: मौजूदा/योजनागत प्रणाली, वांग्टू स्टेशन के आगे लगभग 500 – 600 मेगावाट ऊर्जा (इन उत्पादन परियोजना के विकास होने पर इसकी पृष्टि की जा सकती है) संचालित करने में समर्थ होगी। वांग्टू से हरियाणा/पंजाब की ओर उच्च क्षमतायुक्त एक अतिरिक्त लाइन (400 के.वी. क्वाड) की आवश्यकता होगी, जिसे नदी के दक्षिणी तट पर तैयार किया जा सकता है।

8.5 चन्द्रभागा बेसिन में जल विद्युत परियोजनाओं से विद्युत - निष्कर्षण हेतु महायोजना

8.5.1 इस बेसिन में चिह्नित जल विद्युत परियोजनाएं निम्नलिखित हैं :

क्रम	परियोजना का नाम	स्थापित क्षमता (मेगावाट में)
1	छत्रु	120
2	तेलिंग	94
3	शांगलिंग	44
4	जिस्पा	300
5	टांडी	104
6	राशिल	130
7	बरदंग	126
8	टिगनेट	81
9	पट्टम	60
10	सेली	400
11	मियार	120
12	रेवली दुग्ली	420
13	साच खास	149
14	पूरथी	300
15	दुग्गर	236
16	लघु जल विद्युत परियोजनाएं (एसएचपी)	300
17	अन्य	500
	योग	3500

पारेषण योजना निम्नलिखित चित्र (सं. 8.04) में प्रस्तुत की गई है

इस क्षेत्र में कुल ऊर्जा 3500 मेगावाट है। इन परियोजनाओं में से दो परियाजनाएं – मियार एवं सेली के 2017 तक तथा तीन परियोजनाएं - छात्रु, रेवली दुग्ली एवं साच खास वर्ष 2018 तक तैयार हो सकती है। इस क्षेत्र की अगली संभावित परियोजना जिस्पा होगी। अन्य परियोजनाओं की स्थिति तथा समय-सीमा अभी तक स्पष्ट नहीं है।

उत्पादन, कॉरीडोर की उपलब्धता, सेली के पास मार्गाधिकार (राइट ऑफ वे) की विकट समस्या, ऊर्जा की प्रमात्रा (क्वांटम) के आधार पर दो पारेषण कॉरीडोर - एक हमीरपुर तथा दूसरा जम्मू एवं कश्मीर की ओर लगाया जाना उपयुक्त समझा गया। ऐसा प्रस्तावित है कि सेली एचईपी से आरंभ होने वाला पारेषण कॉरीडोर हमीरपुर की ओर तथा रेवली दुग्ली से आरंभ होने वाला कॉरीडोर जम्मू - कश्मीर की ओर जाएगा। हमीरपुर की ओर जाने वाले कॉरीडोर की क्षमता 2500 मेगावाट तथा जम्मू - कश्मीर की ओर जाने वाले कॉरीडोर की क्षमता 1500 मेगावाट होगी।

उपरोक्त तथ्यों को ध्यान में रखते हुए निम्नलिखित पारेषण प्रणाली प्रस्तावित हैं, जो उत्पादन परियोजनाओं को चालू किए जाने के समय तक तैयार होंगी :

चन्द्रभागा कॉरीडोर -।

8.5.2 सेली एचईपी (400 मेगावाट):

- सेली से सिस्सू/ग्राम्फू (इस समयाविध में पूलिंग स्टेशन संभवत: तैयार न हो सके), 400 के.वी. डी/सी लाइन (ट्विन एचटीएलएस-लगभग 2000 मेगावाट हेतु पर्याप्त)-अतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप
- सिस्सू/ग्राम्फू पूलिंग स्टेशन के पास प्रस्तावित स्थल-हमीरपुर 400 के.वी. डी/सी (ट्रिपल एचटीएलएस-लगभग 2500 मेगावाट हेतु पर्याप्त)-इस लाइन खंड पर, रोहतंग पास को क्रास किया जाना होगा। यहां शीतकाल में 8-10 फुट बर्फ होने के कारण कार्य हेतु बहुत कम समय मिलेगा, जिसके परिणाम स्वरूप इसके क्रियान्वयन में चुनौतियां आएंगी। -अतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप

8.5.3 मियार एचईपी (120 मेगावाट):

ि मियार में सेली-हमीरपुर (वाया रोहतंग) 400 के.वी. डी/सी लाइन (ट्विन एचटीएलएस) के एक सर्किट का एलआईएलओ - अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के प्रस्ताव के अनुसार क्रियान्वयन

8.5.4 छात्रु एचईपी (120 मेगावाट):

- सिस्सु/ग्राम्फू के पास 2x315 मेगावाट (7x105 एकल फेज यूनिट) 400/220 के.वी. जी.आई.एस.
 पूलिंग स्टेशन की स्थापना अतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप
- छात्रु-सिस्सु/ग्राम्फू के जी.आई.एस. पूलिंग स्टेशन 220 के.वी. डी/सी लाइन (एचटीएलएस 300 मेगावाट प्रति सर्किट हेतु पर्याप्त)-अतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप
- सिस्सु/ग्राम्फू जीआईएस पूलिंग स्टेशन पर सेली-हमीरपुर के दोनों सर्किटों का एलआईएलओ अतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के प्रस्ताव के अनुरूप

8.5.5 तेलिंग एवं शांगलिंग एचईपी (94 एवं 44 मेगावाट):

- o तेलिंग में छात्रु-सिस्सु/ग्राम्फू पूलिंग स्टेशन 220 के.वी. डी/सी (एचटीएलएस) के एक सर्किट का एलआईएलओ अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप
- शांगलिंग में छात्रु-सिस्सु/ग्राम्फू पूलिंग स्टेशन 220 के.वी. डी/सी (एचटीएलएस) के एक सर्किट का एलआईएलओ एसटीयू अथवा उत्पादक द्वारा

विशेष: छात्रु, तेलिंग एवं शिंगलांग एचईपी में उत्पादन स्विचयार्ड की क्षमता, 300 मेगावाट ऊर्जा संचालन क्षमता के बराबर होगी अन्यथा एक सर्किट से विद्युत आपूर्ति भंग होने की आकस्मिक स्थिति में कुछ अवरोध का सामना करना पड़ सकता है।

8.5.6 जिस्पा (300 मेगावाट) :

जिस्पा – सिस्सु/ग्राम्फू पूलिंग स्टेशन 400 के.वी. डी/सी लाइन - अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप

8.5.7 बरदंग एचईपी (126 मेगावाट) :

 सेली-सिस्सु/ग्राम्फू पूलिंग स्टेशन 400 के.वी. डी/सी (ट्विन एचटीएलएस) लाइन के एक सर्किट का एलआईएलओ - अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप

8.5.8 रासिल एचईपी (130 मेगावाट)

o सेली-सिस्सु/ग्राम्फू पूलिंग स्टेशन 400 के.वी. डी/सी (ट्विन एचटीएलएस) लाइन के एक सर्किट का एलआईएलओ - अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप

8.5.9 टॉडी एचईपी (104 मेगावाट):

 सेली-सिस्सु/ग्राम्फू पूलिंग स्टेशन 400 के.वी. डी/सी (ट्विन एचटीएलएस) लाइन के एक सर्किट का एलआईएलओ - अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुसार

8.5.10 पट्टम एचईपी (60 मेगावाट):

- o पट्टम-मियार 220 के.वी. डी/सी -अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुसार
- मियार में 1x250 एम.वी.ए. (83.3 एम.वी.ए. एकल फेज यूनिट की 04 संख्या), 220/400 के.वी.
 जीआईएस पूलिंग स्टेशन की व्यवस्था। मियार स्विचयार्ड में स्थान की कमी होने की स्थिति में एक अलग पूलिंग स्टेशन की आवश्यकता पड़ेगी- अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप

8.5.11 टिगनेट एचईपी (81 मेगावाट)

- पट्टम-मियार 220 के.वी. डी/सी के एक सर्किट का एलआईएलओ -अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप
- पट्टम एवं टिगनेट एचईपी की पारेषण प्रणालियों के लिए माना जाता है कि पट्टम, टिगनेट से पहले आएगी। यदि टिगनेट, पट्टम से पहले तैयार हो जाती है तो टिगनेट एचईपी के समय पर 220 के.वी. डी/सी लाइन एवं आईसीटी की व्यवस्था करनी पड़ेगी।

विशेष: (नई परियोजनाओं की आवश्यकता/उनके चालू होने के आधार पर हमीरपुर से आगे के लिए अतिरिक्त प्रणाली की योजना बनाई जाएगी।) अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप

चन्द्रभागा कॉरीडोर - II

8.5.12 सेली एचईपी के डाउनस्ट्रीम में उत्पादन परियोजनाएं अर्थात रेवली दुग्ली (420 मेगावाट), साच खास (149 मेगावाट) पुरथी (300 मेगावाट) एवं दुग्गर (236 मेगावाट) आदि परियोजनाएं जम्मू क्षेत्र के पास होने के कारण इनका निष्कर्षण जम्मू क्षेत्र से किया जाना प्रस्तावित था, परंतु सेली से रेवली दुग्गी तक मार्गाधिकार (राइट ऑफ वे) के विकट अवरोध के कारण एक कॉरिडर से कुल 3850 मेगावाट ऊर्जा का निष्कर्षण व्यावहारिक/विश्वसनीय न हो।

8.5.13 रेवली दुग्ली एचईपी (420 मेगावाट) एवं साच खास (149 मेगावाट) :

- रवेली दुग्ली-िकश्तवार 400 के.वी. डी/सी (ट्विन एचटीएलएस -1500 मेगावाट हेतु पर्याप्त)
 अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप
- ि किश्तवार में 400 के.वी. स्विचिंग स्टेशन की स्थापना अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस)
 के अनुरूप
- किश्तवार में दुलहस्ती/राट्ले-किशेनपुर 400 के.वी. डी/सी (क्वाड) लाइन का एलआईएलओ अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप
- साच खास में रेवली-किश्तवार के एक सर्किट का एलआईएलओ अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप
- पावर हाउस पर जनरेटिंग स्विचयार्ड क्षमता 1500 मेगावाट रखनी प्डेगी।

8.5.14 पुरथी एचईपी (300 मेगावाट) :

- उत्पादन स्टेशन पर रेवली-िकश्तवाड़ 400 के.वी. डी/सी के एक सर्किट कस एलआईएलओ अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप
- पावर हाउस पर 1500 मेगावाट हेतु जनरेटिंग स्विचयार्ड क्षमता रखनी होगी।

8.5.15 दुग्गर एचईपी (236 मेगावाट) :

- उत्पादन केन्द्र पर रेवली-किश्तवाड़ 400 के.वी./डी/सी के एक सर्किट का एलआईएलओ अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप
- 🔾 पावर हाउस पर 1500 मेगावाट हेतु जनरेटिंग स्विचयार्ड क्षमता रखनी होगी।

विशेष: हालांकि किश्तवार के आगे कुछ गुंजाइश हो सकती है, फिर भी उत्पादन संवर्धन के आधार पर प्रणाणी को सशक्त किया जाना अपेक्षित होगा। पावर हाउस पर 1500 मेगावाट हेतु जनरेटिंग स्विचयार्ड क्षमता रखनी होगी। - अंतर्राज्यीय पारेषण प्रणाली (आईएसटीएस) के अनुरूप

8.6 राबी और ब्यास बेसिन में जल विद्युत परियोजनाओं से विद्युत - निष्कर्षण हेतु महायोजना

8.6.1 राबी बेसिन :

इस बेसिन में चिह्नित जल विद्युत परियोजनाओं की सूची निम्नलिखित है:-

क्रम सं.	परियोजना का नाम	स्थापित क्षमता (मेगावाट में)
1	चमेरा – I	540
2	चमेरा – II	300
3	चमेरा – III	231
4	बुधिल	70
5	कुठेर	260
6	बिजोली होली	200
7	बाड़ा बंगाल	200
8	बड़मर	45

9	हडसर	60
10	कुग्ती	45
	योग	1951

पारेषण परियोजना निम्नलिखित चित्र (8.05) में दर्शाई गई है:

राबी बेसिन में चमेरा-। (540 मेगावाट) एवं चमेरा-।। (300 मेगावाट) दो प्रमुख परियोजनाएं मौजूद हैं। चमेरा-। से जुल्लुंधर-400 के.वी. डी/सी लाइन तथा चमेरा-। से किशेनपुर 400 के.वी. एस/सी लाइनें, जिसे चमेरा-।। में एलआईएलओ किया गया है, निष्कर्षण हेतु मौजूद हैं। चमेरा-।।। (231 मेगावाट) एवं बुधिल (70 मेगावाट) निर्माणीधीन हैं तथा कुठेर (260 मेगावाट), बिजोली होली (200 मेगावाट), बाड़ा बंगाल (200 मेगावाट), बड़मर (45 मेगावाट), हड़सर (60 मेगावाट) और कुग्ती (45 मेगावाट) आदि परियोजनाओं हेतु योजनाएं बनाई गई हैं। चमेरा-।। के अपस्ट्रीम की परियोजनाओं से विद्युत निष्कर्षण हेतु चमेरा-।। के निकट 400/220 के.वी. के एक पूलिंग स्टेशन की योजना बनाई गई है, जो बुधिल एचईपी के समयानुकूल होगी और यह इस घाटी की अगली परियोजना होगी। यह पूलिंग स्टेशन, चमेरा-।। से 400 के.वी. एस/सी लाइन और जुल्लुंधर से 400 के.वी. डी/सी लाइन द्वारा संयोजित होगा। अगली पीढ़ी की परियोजना चमेरा-।।। के लिए जुल्लुंधर पारेषण लाइन की आवश्यकता होगी। इस हेतु 220 के.वी. का एक पूलिंग स्टेशन, चमेरा-।।। के उचित अपस्ट्रीम लोकेशन पर भी प्रस्तावित है, जहाँ विद्युत पूल किए जाने तथा वहाँ से 1x मूज कंडक्टरों से 220 के.वी. की तीन डी/सी लाइनों द्वारा चमेरा-।। के 400/220 के.वी. पूलिंग स्टेशन को पारेषित किए जाने की योजना है। परियोजनाओं के चरणबद्ध विकास में उपरोक्त अनुकलतम समाधान होंगे। फिर भी, यदि घाटी से होकर 220 के.वी. डी/सी की तीन लाइनों के निर्माण में

व्यावहारिक समस्या होगी, तो 2 xमूज कंडक्टरों सिहत 220 के.वी. डी/सी की दो लाइनों का निर्माण अपेक्षित होगा।

8.6.2 ब्यास बेसिन :

इस बेसिन में चिह्नित जल विद्युत परियोजनाओं की सूची निम्नलिखित है:-

क्रम सं.	परियोजना का नाम	स्थापित क्षमता (मेगावाट में)
1	मलाना - I	87
2	लारजी	126
3	एल्लेन डुहंगन/Allain Duhangan	192
4	मलाना - II	100
5	कोल्डम	800
6	पारबती -।।	800
7	पारबती-।।।	501
8	मैं ज	100
	योग	2706

पारेषण परियोजना निम्नलिखित चित्र (8.06) में दर्शाई गई है:

ब्यास बेसिन में मलाना-। (87 मेगावाट) एवं लारजी (126 मेगावाट) दो प्रमुख परियोजनाएं मौजूद हैं। इन दोनों परियोजनाओं से विद्युत निष्कर्षण 132 के.वी. एचपीएसईबी प्रणाली से किया जा रहा है। ब्यास/पारबती बेसिन में अन्य प्रमुख योजनाएं – डुहंगन (192 मेगावाट), मलाना-।। (100 मेगावाट), कोल्डम (800 मेगावाट), पारबती-।। (800 मेगावाट), पारबती-।।। (501 मेगावाट) तथा सैंज (100

मेगावाट) हैं। कोल्डम, पारबती-।। एवं पारबती-।।। से विद्युत निष्कर्षण 400 के.वी. द्वारा किए जाने की योजना है। पारेषण लाइनें हैं :-

- कोल्डम-नालागढ़ 400 के.वी. डी/सी क्वाड कंडक्टर लाइन
- पारबती-।।-कोल्डम 400 के.वी. 2xएस/सी क्वाड कंडक्टर लाइन
- कोल्डम-लुधियाना 400 के.वी. डी/सी ट्रिपल कंडक्टर

पारबती-।।। के साथ पनर्सा में एक पूलिंग स्टेशन प्रस्तावित है तथा पनर्सा – अमृतसर 400 के.वी. डी/सी ट्विन मूज लाइन की योजना बनाई गई है।

एल्लेन डुहंगम तथा मलाना-।। की समय-सीमा के अंदर पनर्सा 400/220 के.वी. पूलिंग स्टेशन की आवश्यकता होगी। यह समय-सीमा एक अनुकूल न होने से एडीएचपीएल द्वारा एल्लेन डुहंगन से नालागढ़ तक एक 220 के.वी. डी/सी सीधी लाइन का निर्माण किया जा रहा है। इस लाइन में 1xजेब्रा कंडक्टर के साथ 400 मेगावाट क्षमता होगी, जिससे मालाना-।। का विद्युत निष्कर्षण भी किया जा सकेगा।

सैंज से विद्युत निष्कर्षण वाया पारबती-।।।, 400 के.वी. द्वारा किया जाना प्रस्तावित है। इस हेतु सैंज में या तो 400 के.वी. का सीधा सेट-अप हो अथवा 400/132 के.वी. का इसका अपना सब स्टेशन।

चेनाब में प्रस्तावित टांडी 220 के.वी. पूलिंग स्टेशन से प्राप्त होने वाली विद्युत को पूल करने हेतु पनर्सा में 400/220 के.वी. पूलिंग स्टेशन की फिर भी आवश्यकता होगी। चूँकि टाँडी से आने आने वाली लाइन काफी ऊँचाई पर होगी, इसलिए कुछ स्थानों पर केबिल की भी आवश्यकता होगी। अत: 400 के.वी. के स्थान पर 220 के.वी. लाइन का विकल्प बेहतर होगा। 220 के.वी. लाइनें उच्च कंडक्टर मानक यथा-क्वाड मूज कंडक्टर सहित 220 के.वी. डी/सी पर होनी चाहिए।

8.7 अरूणाचल प्रदेश में जल विद्युत परियोजनाओं से विद्युत - निष्कर्षण हेतु महायोजना

8.7.1 अरूणाचल प्रदेश में बेसिन-वार उत्पादन क्षमता:

अरूणाचल प्रदेश में आगामी वर्षों में लगभग 37,600 मेगावाट जल विद्युत क्षमता को चिह्नित किया गया है। इसमें से 12वीं पंचवर्षीय योजना के अंत तक लगभग 2700 मेगावाट तथा 13वीं पंचवर्षीय योजना एवं इसके बाद लगभग 35000 मेगावाट की वृद्धि संभावित है। इन उत्पादन परियोजनाओं को निजी/सरकारी क्षेत्र द्वारा तैयार किया जा सकता है। बेसिन-वार चिह्नित क्षमता निम्नलिखित है:-

क्रम	बेसिन का नाम	स्थापित क्षमता
		(मेगावाट में)
1	ट्वांग	2773
2	कामेन्ग	3892
3	सुबंसिरी	8865
4	सियांग	6939
5	लोहित	6632
6	डिबंग	8508

8.7.2 जारी परियोजनाओं अर्थात लोअर सुबंसिरी एचईपी (2000 मेगावाट) एवं कामेंग एचईपी (600 मेगावाट) से जुड़ी हुई पारेषण प्रणाली :

अरूणाचल प्रदेश में लोअर सुबंसिनी एचईपी एवं कामेंग एचईपी तथा भूटान में जल विद्युत परियोजनाओं-पुनातसान्चू-। (1200 मेगावाट), पुनातसान्चू-। (990 मेगावाट) एवं मांगदेचू (720 मेगावाट) से विद्युत-निष्कर्षण हेतु पारेषण प्रणाली को व्यापक तरीके से तैयार किया गया था। इन परियोजनाओं से उत्तरी एवं पश्चिमी क्षेत्रों को विश्वनाथ चरियल्ली से आगरा तक + 800 के.वी., 600 मेगावाट एचवीडीसी बाइपोल लाइन से विद्युत निष्कर्षण किया जाएगा। लोअर सुबंसिनी एचईपी के कार्य में विलंब होने से एचवीडीसी बाइपोल के क्रियान्वयन को स्थिगत करना पड़ा। वर्ततान में 1971 किमी. एचवीडीसी लाइन का निर्माण कार्य प्रगति पर है तथा विश्वनाथ चरियल्ली (3000 मेगावाट), अलीपुरद्वार (3000 मेगावाट) और आगरा (6000 मेगावाट) में कनवर्टर टर्मिनलों के निर्माण की स्वीकृति भी दी जा चुकी है। पारेषण प्रणाली का क्रियान्वयन पावरग्रिड द्वारा किया जा रहा है तथा इस योजना पर रू. 11,130 करोड़ लागत आने का अनुमान है। जल विद्युत परियोजनाएं चालू किए जाने के समय तक इस योजना को भी चालू किए जाने की संभावना है। इस पारेषण प्रणाली का विस्तृत विवरण निम्नलिखित है:

क. पूर्वोत्तर–उत्तरी/पश्चिमी इंटरकनेक्टर-।

- विश्वनाथ चरियल्ली-आगरा + 800 के.वी., 6000 मेगावाट एचवीडीसी बाईपोल लाइन
- बालीपाड़ा 400 के.वी. डी/सी लाइन
- विश्वनाथ चरियल्ली में रंगानदी बालीपाड़ा 400 के.वी. डी/सी लाइन का एलआईएलओ
- विश्वनाथ चरियल्ली -विश्वनाथ चरियल्ली (एईजीसीएल) 132 के.वी. डी/सी लाइन
- विश्वनाथ चरियल्ली में 2x200 एम.वी.ए. 400/132 के.वी. सब स्टेशन
- विश्वनाथ चरियल्ली में एवीडीसी 3000 मेगावाट रेक्टीफायर माड्यूल तथा आगरा में 3000 मेगावाट इनवरटर माड्यूल
- आगरा में 1x315 एम.वी.ए. 400/220 के.वी. सब स्टेशन (संवर्धन)

ख. कामेंग एचईपी से विद्युत के तत्काल निष्कर्षण हेतु पारेषण प्रणाली

- कामेंग-बालीपाड़ा 400 के.वी. डी/सी लाइन
- बालीपाड़ा-बोंगईगॉंव 400 के.वी. डी/सी लाइन (क्वाड), 30 % फिक्स्ड सिरीज कंपेनसेशन
- मिसा में द्वितीय 315 एम.वी.ए. 400/220के.वी. आईसीटी
- ग. लोअर सुबंसिरी एचईपी से विद्युत के तत्काल निष्कर्षण हेतु पारेषण प्रणाली
 - लोअर सुबंसिरी विश्वनाथ चरियल्ली ट्विन लैपविंग कंडक्टर के साथ 400 के.वी. 2xडी/सी

8.7.3 महायोजना का विकास :

केंद्रीय विद्युत प्राधिकरण (सीईए) ने अरूणाचल प्रदेश में विभिन्न प्रस्तावित जल विद्युत परियोजनाओं से विद्युत-निष्कर्षण हेतु नदी बेसिन महायोजना तैयार की है। यह महायोजना अरूणाचल प्रदेश में जल विद्युत परियोजनाओं से विद्युत निष्कर्षण को सुदृढ़ बनाने हेतु नींव का कार्य करेगी। योजनागत पारेषण प्रणाली में मुख्यतया तीन भाग होते हैं।

- किसी एक उत्पादन स्टेशन से निकटतम बेसिन-वार पूलिंग स्टेशन/स्टेशनों को विद्युत अंतरण हेतु तत्काल निष्कर्षण प्रणाली।
- बंसिन पुलिंग स्टेशन/स्टेशनों से बड़े पुलिंग स्टेशनों के लिए साझा पारेषण प्रणाली ।
- iii. अन्य क्षेत्रों में एचवीडीसी/ईएचवीएसी लाइनों द्वारा अपेक्षाकृत बड़े पूलिंग स्टेशन से लोड केन्द्रों को विद्युत पारेषण ।

किसी नदी बेसिन में चिह्नित उत्पादन परियोजनाओं हेतु पारेषण प्रणाली के प्रथम दो भाग में- 220 के.वी. अथवा 400 के.वी. ईएचवीएसी शामिल हैं। इसके तीसरे भाग में ऐसी प्रणाली आती है, जो अधिक बड़े पूलिंग स्टेशनों से (जो कुल 5000-7000 मेगावाट क्षमता की परियोजनाओं को पूल करेगी) से अन्य क्षेत्र के केन्द्रों को लोड करेगी। यह प्रणाली अभी भी आयोजना के चरण में है। ऐसी प्रणाली में मूलतया नवीनतम एचवीडीसी तकनीकयुक्त उच्च क्षमता वाली लंबी दूरी की पारेषण प्राणाली शामिल हैं। चूँिक अधिकांश उत्पादन परियोजनाएं जैसे- 37000 मेगावाट में से 34000 मेगावाट वर्ष 2017 से 2030 के बीच तैयार होने की संभावना है, इसलिए लंबी दूरी तक विद्युत-पारेषण एवं मार्गाधिकार (राइट-आफ-वे) को इष्टतम बनाने हेतु उस समय तक उपलब्ध नवीनतम प्रौद्योगिकी का उपयोग करते हुए यह योजना बनाई जानी होगी।

अरूणाचल प्रदेश में विभिन्न नदी बेसिन परियोजनाओं साझा पारेषण महायोजना चित्र 8.07 में प्रदर्शित है।

जो उत्पादक अपनी परियोजनाओं के विद्युत निष्कर्षण हेतु अंतर्राज्यीय पारेषण प्रणाली का उपयोग करना चाहते हैं, उन्हें ग्रिड कनेक्टिविटी एवं सीईआरसी नियमावली के अंतर्गत तथा लंबी अविध उपयोग (लांग टर्म एक्सेस/एलटीए) के लिए केंद्रीय पारेषण कंपनी (सेंट्रल ट्रांसिमिशन यूटिलिटी/सीटीयू) से संपर्क करना होगा। जल विद्युत उत्पादक कंपनी को एलटीए की अनुमित मिल जाने पर उन्हें लंबी अविध उपयोग अनुबंध (लांग टर्म एक्सेस एग्रीमेंट/एलटीएए) पर हस्ताक्षर करना होगा तथा सीटीयू को अपेक्षित बैंक गारंटी देनी होगी। तदोपरांत चिह्नित पारेषण प्रणाली पर क्रियान्वयन किया जाता है। इस प्रकार महायोजना में चिह्नित विभिन्न पारेषण प्रणाली, संबद्ध उत्पादक परियोजना की आवश्यकता तथा योजना के अनुसार क्रियान्वित की जाएगी।

चित्र 8.07

8.7.4 लोहित बेसिन में परियोजना हेतु पारेषण प्रणाली :

क: जल विद्युत परियोजनाएं, जिन्होंने कनेक्टिविटी/एलटीए के लिए सीटीयू को आवेदन दिया है

अरूणाचल प्रदेश के लोहित बेसिन में जल विद्युत परियोजना विकस हेतु निम्नलिखित उत्पादकों ने ग्रिड कनेक्टिविटी/लंबी अविध के उपयोग (एलटीए) के लिए सीटीयू को आवेदन दिया है:

क्रम	परियोजना का	उत्पादक का नाम	स्थापित क्षमता	एलटीए/कनेक्टिविटी
	नाम		(मेगावाट में)	(मेगावाट में)
1	लोअर डेम्वे	एथेना डेम्वे पावर लिमिटेड	5x342+1x40=1750	1750
		योग –क	1750	1750

ख : अतिरिक्त जल विद्युत परियोजनाएं :

लोहित बेसिन से पारेषण प्रणाली विकसित करते समय निम्नलिखित अतिरिक्त जल विद्युत परियोजनाओं पर भी विचार किया गया :

क्रम	परियोजना का नाम	उत्पादक का नाम	स्थापित क्षमता
सं.			(मेगावाट में)
1.	डेम्यू अपर	एथेना एनर्जी वेन्चर (लोहित ऊर्जा)	1080
2.	कलई-II	कलई पावर प्राइवेट लिमिटेड	1200
		(रिलायंस पावर मिमिटेड)	
3.	हौतंग-॥	माउंटेन फाल इंडिया प्राइवेट लिमिटेड	1250
4.	कलई -I	माउंटेन फाल इंडिया लिमिटेड	1352
		योग – ख	4882
		योग (क+ख)	6632

ग : पारेषण प्रणाली :

जल विद्युत परियोजनाओं से विद्युत नामसी पूलिंग प्वाइंट पर पूल की जाएगी, जहाँ से देश के अन्य क्षेत्रों में एचवीडीसी बाइपोल लाइन द्वारा + 800 के.वी. 7000 मेगावाट से अधिक विद्युत का निष्कर्षण किया जाएगा। लोहित बेसिन से विद्युत-निष्कर्षण अधिक विश्वसनीय बनाने हेतु नामसी को रूपई पूलिंग प्वाइंट, 400 के.वी. डी/सी एचटीएलएस ए.सी. लाइन से अंतर-संयोजित किया जाएगा। म्यांमार की जल विद्युत परियोजनाओं से विद्युत को रूपई पूलिंग प्वाइंट पर पूल किये जाने की योजना है, जहाँ से देश के अन्य क्षेत्रों के लिए एक + 800 के.वी. एचवीडीसी (7000 मेगावाट) बाईपोल लाइन भी प्रस्तावित है।

8.7.5 डिबंग बेसिन में परियोजनाओं हेतु पारेषण प्रणाली :

क: जल परियोजनाएं, जिनकी कनेक्टिविटी/एलटीए के लिए सीटीयू को आवेदन दिया गया

अरूणाचल प्रदेश के डिबंग बेसिन में ग्रिड कनेक्टिविटी/लंबी अविध के उपयोग (एलटीए) के लिए किसी जल विद्युत उत्पादक ने अब तक सीटीयू को आवेदन नहीं दिया है।

ख : अतिरिक्त जल विद्युत परियोजनाएं :

डिबंग बेसिन से पारेषण प्रणाली विकसित करते समय निम्नलिखित अतिरिक्त जल विद्युत परियोजनाओं पर भी विचार किया गया :

क्रम	परियोजना का	उत्पादक का नाम	स्थापित क्षमता (मेगावाट में)
सं.	नाम		
1.	डिबंग	एनएचपीसी	3000
2.	ईमिनी	ईमिनी हाइड्रो पावर प्राइवेट लिमिटेड	500
		(रिलायंस एनर्जी लिमिटेड)	

क्रम	परियोजना का	उत्पादक का नाम	स्थापित क्षमता (मेगावाट में)
सं.	नाम		
3.	मिहुम्डन	मिहुम्डन हाइड्रो पावर प्राइवेट	400
		लिमिटेड (रिलायंस एनर्जी लिमिटेड)	
4.	सिस्सिरी	सोमा सिस्सिरी हाइड्रो पावर प्राइवेट	1352
		लिमिटेड (सोमा इंटरप्राइज लिमिटेड)	
5.	एम्रा-II	एथेना एनर्जी वेन्चर	216
6.	अमूलिन	अमूलिन हाइड्रो पावर प्राइवेट	420
		लिमिटेड (रिलायंस एनर्जी लिमिटेड)	
7.	एम्रा-।	एथेना एनर्जी वेन्चर	275
8.	एतालिन	जिंदल पावर लिमिटेड	3097
9.	अत्तुन्ली	जिंदल पावर लिमिटेड	500
		योग – ख	8508
		योग (क+ख)	8508

गः पारेषण प्रणाली :

डिबंग एवं एतिलन को छोड़कर जल परियोजनाओं से विद्युत अनीनी सब-स्टेशन पर पूल की जाएगी। डिबंग एवं एतिलन जल परियोजनाओं के साथ-साथ अनीनी सब-पूलिंग प्वाइंट की विद्युत दमबक में पूल की जाएगी, जो एक बड़ा पूलिंग प्वाइंट है। वहाँ से + 800 के.वी. 7000 मेगावाट एचवीडीसी बाईपोल लाइन से देश के अन्य क्षेत्रों के लिए विद्युत का निष्कर्षण किया जाएगा। अनीनी पावर प्वाइंट को दमबक पूलिंग प्वाइंट से 400 के.वी. डी/सी लाइन एचटीएलएस कंडक्टर के साथ संयोजित (कनेक्ट) किया जाएगा। इस बेसिन से शेष विद्युत-निष्कर्षण के लिए दमबक पूलिंग प्वाइंट को रूपई पूलिंग प्वाइंट से 400 के.वी. 2xडी/सी एचटीएलएस लाइनों पर अंतर-संयोजित किया जाएगा।

8.7.6 सियांग बेसिन में परियोजनाओं हेतु पारेषण प्रणाली :

क: जल परियोजनाएं, जिनकी कनेक्टिविटी/एलटीए के लिए सीटीयू को आवेदन दिया गया

अरूणाचल प्रदेश के सियांग बेसिन में जल विद्युत परियोजना विकसित करने हेतु निम्नलिखित उत्पादकों ने ग्रिड कनेक्टिविटी/लंबी अवधि के उपयोग (एलटीए) के लिए सीटीयू को आवेदन दिया है :

क्रम	परियोजना का	उत्पादक का नाम	स्थापित क्षमता	एलटीए/कनेक्टिविटी
सं.	नाम		(मेगावाट में)	(मेगावाट में)
1.	लोअर सियांग	जयप्रकाश पावर	प्रथम चरण :	2700
		वेन्चर्स लिमिटेड	5x300=1500	

क्रम	परियोजना का	उत्पादक का नाम	स्थापित क्षमता	एलटीए/कनेक्टिविटी
सं.	नाम		(मेगावाट में)	(मेगावाट में)
		(जेपीवीएल)	द्वितीय चरण:	
			4x300=1200	
			योग = 2700	
2.	सियोम (सियांग		6x166.6=1000	1000
	मिडले)	पावर प्राइवेट		
		लिमिटेड (रिलायंस		
	22	एनर्जी लिमिटेड)		
3.	टैटो-॥	टैटो - II	4x175=700	700
		हाइड्रो पावर		
		प्राइवेट लिमिटेड		
		(रिलायंस एनर्जी		
		लिमिटेड)		
4.	नेयिंग	डी.एस. कंसट्रक्शन	4x250=1000	1000
		लिमिटेड		
5.	टगरशिट	एल एंड टी पावर	3x28=84	84
	2	लिमिटेड		
6.	पौक	पौक हाइड्रो पावर	3x48.3=145	145
		परियोजना (वेलकैन एनर्जी		
		(वलकन एनजा लिमिटेड)		
7.	हेवो	हेवो हाइड्रो पावर	3x80=240	240
' .		प्रोजेक्ट	0,00 Z-10	270
8.	टैटो-।	सियोटो हाइड्रो	3x62=186	186
		पावर प्रोजेक्ट		
		योग – क	6055	6055

ख : अतिरिक्त जल विद्युत परियोजनाएं :

सियांग बेसिन से पारेषण प्रणाली विकसित करते समय निम्नलिखित अतिरिक्त जल विद्युत परियोजनाओं पर भी विचार-विमर्श किया गया :

क्रम	परियोजना का	उत्पादक का नाम	स्थापित क्षमता
	नाम		(मेगावाट में)
1.	पेमाशेल्पू	राजरत्ना मेटल इंडस्ट्रीज	90
2.	हिरोंग	जयप्रकाश एसोसिएट्स लिमिटेड	500

3.	कांगतांगशिरी	राजरत्ना मेटल इंडस्ट्रीज	80
4.	रूपम	राजरत्ना मेटल इंडस्ट्रीज	80
5.	शिमंग-।	आदिशंकर पावर प्राइवेट लिमिटेड	67
6.	शिमंग-II	आदिशंकर पावर प्राइवेट लिमिटेड	67
		884	
		6939	

गः पारेषण प्रणाली :

सियांग बेसिन में कुछ जल परियोजनाओं से टैटो सब-पूलिंग प्वाइंट पर विद्युत पूल की जाएगी। टैटो के साथ-साथ पास की अन्य जल परियोजनाओं की विद्युत भी कामकी - एक दूसरे पूलिंग प्वाइंट पर पूल की जाएगी। कामकी पूलिंग स्टेशन से विद्युत 400 के.वी. ए.सी. लाइन की उच्च क्षमता द्वारा शिलापठार - एक बड़े पूलिंग प्वाइंट पर लाई जाएगी। लोअर सियांग परियोजना से विद्युत शिलापठार में सीधे पूल की जाएगी। वहाँ से + 800 के.वी. 7000 मेगावाट एचवीडीसी बाईपोल लाइन से देश के अन्य क्षेत्रों को विद्युत का निष्कर्षण किया जाएगा। पारेषण प्रणाली में प्रचुर मात्रा में विद्युत उपलब्ध करने के लिए, शिलापठार को विश्वनाथ चरियल्ली एवं रूपई के साथ 400 के.वी. डी/सी एचटीएलएस लाइनों पर इंटरकनैक्ट किया जाएगा।

8.7.7 सुबंसिरी बेसिन में परियोजनाओं हेतु पारेषण प्रणाली :

क: मौजूदा परियोजना :

क्रम सं .	परियोजना का नाम	उत्पादक का नाम	स्थापित क्षमता (मेगावाट में)
1.	रंगानादी	एनईईपीसीओ	405
		योग-क	405

बालीपुरा सब-स्टेशन पर 400 के.वी. डी/सी लाइन पर विद्युत का निष्कर्षण किया जाता है।

ख: जारी परियोजना:

	1	योग-ख	2000
1.	सुबंसिरी लोअर	एनएचपीसी	2000
क्रम सं .	परियोजना क नाम	उत्पादक का नाम	स्थापित क्षमता (मेगावाट में)

संबद्ध पारेषण प्रणाली उपरोक्त 8.7.2 में दी गई है।

ग: जल परियोजनाएं, जिनकी कनेक्टिविटी/एलटीए के लिए सीटीयू को आवेदन दिया गया :

अरूणाचल प्रदेश के सुबंसिरी बेसिन में जल विद्युत परियोजना विकसित करने हेतु किसी उत्पादक ने ग्रिड कनेक्टिविटी/लंबी अवधि के उपयोग (एलटीए) के लिए सीटीयू को अब तक आवेदन नहीं दिया है:

घः अतिरिक्त जल विद्युत परियोजनाएं

सियांग बेसिन से पारेषण प्रणाली विकसित करते समय निम्नलिखित अतिरिक्त जल विद्युत परियोजनाओं पर भी विचार किया गया :

क्रम	परियोजना का	उत्पादक का नाम	स्थापित क्षमता
सं.	नाम		(मेगावाट में)
1.	सुबंसिरी मिडिल	जिंदल पावर लिमिटेड	1600
2.	सुबंसिरी अपर	केएसके एनर्जी वेन्चर्स लिमिटेड	1800
3.	नाबा	आबीर इन्फ्रासट्रक्चर प्राइवेट लिमिटेड	1000
4.	नालो	कोस्टल इन्फ्रासट्रक्चर प्राइवेट लिमिटेड	360
5.	ओजू-II	नवयुग एनर्जी कंपनी लिमिटेड	1000
6.	आजू-l	700	
		6460	
		8865	

च : पारेषण प्रणाली :

सुबंसिरी बेसिन में, सुबंसिरी मिडिल को छोड़कर, जल परियोजनाओं से विद्युत डापोरिजो पूलिंग प्वाइंट पर पूल की जाएगी तथा सुबंसिरी मिडिल से सुबंसिरी लोअर में विद्युत पूल की जाएगी। डापोरिजो पूलिंग प्वाइंट से 400 के.वी. 2xडी/सी एचटीएलएस लाइनों से विद्युत न्यू ईटानगर पूलिंग प्वाइंट पर लाई जाएगी, जहाँ से + 800 के.वी. 7000 मेगावाट एचवीडीसी बाईपोल लाइन से देश के अन्य क्षेत्रों को विद्युत का निष्कर्षण किया जाएगा। इसके अतिरिक्त सुबंसिरी लोअर-विश्वनाथ चरियल्ली 400 के.वी. 2xडी/सी की एक लाइन को ईटानगर में लूप इन तथा लूप आउट किया जाएगा।

8.7.8 कामेंग बेसिन में परियोजनाओं हेतु पारेषण प्रणाली :

क : प्रगतिगामी जल विद्युत परियोजना :

क्रम	परियोजना	का	उत्पादक का नाम	स्थापित क्षमता
सं.	नाम			(मेगावाट में)
1.	कामेंग		एनईईपीसीओ	600
			योग – क	600

संबद्ध पारेषण प्रणाली उपरोक्त 8.7.2 में दी गई है।

ख : जल विद्युत परियोजनाएं, जिनकी कनेक्टिविटी/एलटीए के लिए सीटीयू को आवेदन दिया गया

अरूणाचल प्रदेश के सियांग बेसिन में जल विद्युत परियोजना विकसित करने हेतु निम्नलिखित उत्पादकों ने ग्रिड कनेक्टिविटी/लंबी अवधि के उपयोग (एलटीए) के लिए सीटीयू को आवेदन दिया है:

क्रम	परियोजना का नाम	उत्पादक का नाम	स्थापित क्षमता	एलटीए/कनेक्टिविटी
सं.			(मेगावाट में)	(मेगावाट में)
1.	डिब्बिन	केएसके डिब्बिन हाइड्रो पावर प्राइवेट लिमिटेड	2x60=120	120
2.	i) गोंगरी	पटेल हाइड्रो प्राइवेट	3x48=144	273
	ii) ससकंग रोंग	लिमिटेड	2x22.5=45	
	iii) मेयंग		2x19=38	
	iv) डिग्गिन		2x23=46	
3.	खुईटम	आदिशंकर खुईटम पावर प्राइवेट लिमिटेड	3x22 = 66	66
4.	नेफ्रा	एसईडब्ल्यू पावर कारपोरेशन लिमिटेड	2x60 = 120	132
5.	i) पचूक -I	एनर्जी डेवलपमेंट कंपनी	84	391
	ii) पचूक -II	लिमिटेड (ईडीसीएल)	60	
	iii) पचूक -II (एल)		45	
	iv) मारगिंग्ला		60	
	v)मारगिंग्ला (एल)		48	
	vi) पक्के-l		40	
	vii) पक्के -II		15	
	viii) पक्के -III		24	
	ix) पक्के -IV		15	
6.	तालोंग (लोंदा)	जीएमआर लोंदा हाइड्रो पावर प्राइवेट लिमिटेड	3x75 = 225	225
		योग-ख	1195	1207

ग : अतिरिक्त जल परियोजनाएं

सियांग बेसिन से पारेषण प्रणाली विकसित करते समय निम्नलिखित अतिरिक्त जल विद्युत परियोजनाओं पर भी विचार किया गया :

क्रम	परियोजना का नाम	उत्पादक का नाम	स्थापित क्षमता (मेगावाट में)
सं.			
1.	रेब्बी	कोस्टल प्रोजेक्ट्स लिमिटेड	31
2.	पाड़ा	कोस्टल प्रोजेक्ट्स लिमिटेड	55
3.	बदाओ	कोस्टल प्रोजेक्ट्स लिमिटेड	70
4.	लोचुंग	कोस्टल प्रोजेक्ट्स लिमिटेड	41
5.	पंचुंग (पाची)	इंडियाबुल रियल इस्टेट लिमिटेड	56
6.	पिचंग	इंडियाबुल रियल इस्टेट लिमिटेड	12
7.	तारंग वारंग	इंडियाबुल रियल इस्टेट लिमिटेड	36
8.	पापू	इंडियाबुल रियल इस्टेट लिमिटेड	90
9.	सेप्ला	इंडियाबुल रियल इस्टेट लिमिटेड	21
10.	उटुंग	केएसके एनर्जी वेन्चर प्राइवेट लिमिटेड	100
11.	कामेंग डैम	केएसके एनर्जी वेन्चर प्राइवेट लिमिटेड	480
12.	डिमिजिन	केएसके एनर्जी वेन्चर प्राइवेट लिमिटेड	20
13.	डिनचंग	केएसके एनर्जी वेन्चर प्राइवेट लिमिटेड	360
14.	जामेरी	केएसके एनर्जी वेन्चर प्राइवेट लिमिटेड	90
15.	कामेंग ।। (भारेली)	माउंटेन फाल इंडिया प्राइवेट लिमिटेड	600
16.	पापू वैली	वेन्सर कन्सट्रक्शन कंपनी प्राइवेट लिमिटेड	35
		योग – ग	2097
		योग (क+ख+ग)	3892

घ: पारेषण प्रणाली :

कामेंग बेसिन में एनर्जी डेवलपमेंट कंपनी लिमिटेड (ईडीसीएल) की नौ विद्युत परियोजनाओं से विद्युत, ईडीसीएल सब-पूलिंग स्टेशन पर पूल की जाएगी। कामेंग बेसिन के पश्चिमी क्षेत्र में जल परियोजनाओं से विद्युत डिंचांग पूलिंग प्वाइंट पर पूल की जाएगी। कामेंग बेसिन के उत्तरी क्षेत्र तथा ईडीसीएल सब पूलिंग प्वाइंट से विद्युत तालोंग पूलिंग प्वाइंट पर पूल की जाएगी। तालोंग पूलिंग प्वाइंट तथा कामेंग बेसिन के दक्षिण-पूर्वी भाग में जल परियोजनाओं से विद्युत दक्षिण कामेंग पूलिंग प्वाइंट पर पूल की जाएगी। इसके अतिरिक्त डिंचांग पूलिंग प्वाइंट से 400 के.वी. क्वाड डी/सी लाइन से विद्युत रांगिया/रौटा पूलिंग प्वाइंट पर लाई जाएगी। वहाँ से + 800 के.वी. 7000 मेगावाट एचवीडीसी बाईपोल लाइन से देश अन्य क्षेत्रों को विद्युत का निष्कर्षण किया जाएगा। दक्षिण कामेंग पूलिंग प्वाइंट से विद्युत 400 के.वी. डी/सी एचटीएलएस लाइन से विश्वनाथ चरियल्ली लाई जाएगी। विश्वनाथ चरियल्ली में कन्वर्टर टर्मिनल की क्षमता बढ़ाकर 6000 मेगावाट की जाएगी तथा आगरा तक एचवीडीसी लाइन के एलआईएलओ को अलीपुरद्वार टर्मिनल पर पृथक किया जाएगा।

8.7.9 ट्वांग बेसिन में परयोजनाओं हेतु पारेषण प्रणाली:

क: जल परियोजनाएं, जिनकी कनेक्टिविटी/एलटीए के लिए सीटीयू को आवेदन दिया गया

अरूणाचल प्रदेश के ट्वांग बेसिन में जल विद्युत परियोजना विकसित करने हेतु निम्नलिखित उत्पादकों ने ग्रिड कनेक्टिविटी/लंबी अविध के उपयोग (एलटीए) के लिए सीटीयू को आवेदन दिया है:

क्रम	परियोजना का नाम	उत्पादक का नाम	स्थापित क्षमता	एलटीए/कनेक्टिविटी
सं.			(मेगावाट में)	(मेगावाट में)
1.	न्यामजंग चू	भीलवाड़ा एनर्जी	6x130 = 780	780
		लिमिटेड		
2.	i) टाशू -l	एनर्जी डेवलपमेंट कंपनी	3x8=24	164
	ii) टाशू -l (एल)	लिमिटेड (ईडीसीएल)	3x16.6=50	
	iii) टाशू -II		3x30=90	
3.	ट्वांग-।	एनएचपीसी लिमिटेड	3x200=600	660
				(ओवर लोड सहित)
4.	ट्वांग ।।	एनएचपीसी लिमिटेड	4x200=800	880
				(ओवर लोड सहित)
		योग-क	2344	2484

ख: अतिरिक्त जल परियोजनाएं:

ट्वांग बेसिन से पारेषण प्रणाली विकसित करते समय निम्नलिखित अतिरिक्त जल विद्युत परियोजनाओं पर भी विचार किया गया :

क्रम सं .	परियोजना का नाम	उत्पादक का नाम		स्थापित क्षमता (मेगावाट में)
1.	मागो चू	सेउ एनर्जी लिमिटेड		96
2.	निकचारोंगचू	सेउ एनर्जी लिमिटेड		96
3.	रहो	सेउ एनर्जी लिमिटेड		141
4.	न्यू मेल्ली	सेउ एनर्जी लिमिटेड		96
	1		योग – ख	429
			योग (क+ख)	2773

ग. पारेषण प्रणाली:

ट्वांग बेसिन में जल परियोजनाओं से विद्युत, ट्वांग पूलिंग स्टेशन पर पूल की जाएगी, जहाँ से यह 400 के.वी. डी/सी क्वाड एचटीएलएस लाइन द्वारा रांगिया/रौटा के बड़े पूलिंग प्वाइंट पर पूल की जाएगी।

रांगिया/रौटा से \pm 800 के.वी. 7000 मेगावाट एचवीडीसी बाईपोल लाइन द्वारा देश के अन्य क्षेत्रों के लिए विद्युत का निष्कर्षण किया जाएगा। रांगिया/रौटा में 400 के.वी. बालीपाड़ा-बोंगईगाँव का एलआईएलओ भी प्रस्तावित है।

8.8 उत्तर पूर्वी क्षेत्र में पारेषण प्रणाली का आगामी विकास:

13वीं पंचवर्षीय योजना में उत्तर-पूर्वी क्षेत्र में बड़ी संख्या में जल विद्युत उत्पादन स्टेशन स्थापित किए जाने की संभावना है, जो उत्तर-पूर्वी क्षेत्र के संघटकों हेतु विद्युत ऊर्जा के बहुत बड़े स्रोत होंगे। उत्तर पूर्वी क्षेत्र के संघटक इन परियोजनाओं से विद्युत प्राप्त करते रहें, इस हेतु पूर्वोत्तर के जिन राज्यों में ये परियोजनाएं स्थित हैं, वहाँ पारेषण प्रणाली में समुचित संवर्धन किया जाना होगा। इसलिए यह आवश्यक है कि पूर्वोत्तर राज्यों में जल विद्युत परियोजनाओं के विकास के साथ-साथ प्रणाली का चरणबद्ध ढंग से संवर्धन किया जाए ताकि इस क्षेत्र का पारेषण नेटवर्क भी सशक्त हो सके। तदनुरूप, 13वीं पंचवर्षीय योजना में पूर्वोत्तर क्षेत्रों हेतु अनुमानित पारेषण प्रणाली सशक्तिकरण योजना नीचे दी गई है:

- (i) रांगिया/रौटा पूलिंग स्टेशन अजारा 400 के.वी. डी/सी लाइन (उच्च क्षमता)
- (ii) अजारा-बिर्नीहाट 400 के.वी. डी/सी लाइन (उच्च क्षमता)
- (iii) बिर्नीहाट-सिलचर 400 के.वी. डी/सी लाइन (उच्च क्षमता)
- (iv) सिलचर-सूरजमानीनगर 400 के.वी. डी/सी लाइन (उच्च क्षमता)
- (v) सूरजमानीनगर-मिलरियात 400 के.वी. डी/सी लाइन (उच्च क्षमता)
- (vi) मिलरियात-इंफाल 400 के.वी. डी/सी लाइन (उच्च क्षमता)
- (vii) इंफाल-कोहिमा 400 के.वी. डी/सी लाइन (उच्च क्षमता)
- (viii) कोहिमा-मारियानी 400 के.वी. डी/सी लाइन (उच्च क्षमता)
- (ix) मारियानी-सिलापठार पूलिंग स्टेशन 400 के.वी. डी/सी लाइन (उच्च क्षमता)

8.9 भूटान में विद्युत परियोजनाओं से विद्युत-निष्कर्षण हेतु संभावित पारेषण योजना :

8.9.1 प्रस्तावना

भूटान में टाला (1020 मेगावाट), चुखा (336 मेगावाट), कुरिचू (60 मेगावाट) तथा बोसोचू-। (24 मेगावाट) एवं बोसोचू ।। (40 मेगावाट) की जल विद्युत परियोजनाओं (एचईपी) को मिलाकर स्थापित विद्युत उत्पादन की कुल क्षमता 1480 मेगावाट है। इन जल विद्युत परियोजनाओं (एचईपी) से परिमाण में उत्पादन को भूटान की आंतरिक विद्युत मांग को पूरा करने के बाद भारत को निर्यात किया जाता है। इस विद्युत अंतरण हेतु संबद्ध निष्कर्षण प्रणाली तथा सीमापार पारेषण लाइनों को 400 के.वी. तथा 130 के.वी. स्तर पर विकसित किया गया है तथा इन्हें भारतीय ग्रिड के समानांतर प्रचालित किया जाता है। भूटान की शाही सरकार ने अपने यहाँ जल विद्युत की भारी संभावना को देखते हुए वर्ष 2030 तक विभिन्न नदी बेसिन में लगभग 75 नई जल विद्युत परियोजनाओं को चिह्नित किया है। वर्ष 2030 तक लगभग 26534 मेगावाट जल विद्युत उत्पादन क्षमता विकसित कर ली जाएगी। इसमें से 10334 मेगावाट उत्पादन हेतु 14 जल विद्युत परियोजनाओं (एचईपी) को वर्ष 2020 तक क्रियान्वित करने की योजना बनाई गई है। इनमें से पुनातसंगचू-।, पुनातसंगचू-।। तथा मंगादेचू जल विद्युत परियाजनाएं विकसित किए जाने के विभिन्न चरणों में हैं तथा इन्हें 2015 से 2017 के बीच चालू किए जाने का लक्ष्य है। शेष अन्य जल परियोजनाएं-संकोष, चामखारचू, निकाचू, खोलोन्चू, कूरी गोंगरी, अमोचू आर.एस., बुनाखा, वांगचू, बिन्दू खोला एवं दागाचू हैं। भूटान द्वारा वर्ष 2020 में 1500 मेगावाट लोड का

पूर्वानुमान है, जो वर्ष 2030 तक बढ़कर 2500 मेगावाट हो जाएगा। इस प्रकार भूटान में आगामी विद्युत उत्पादन की अधिकाधिक मात्रा भी भारत को निर्यात की जाएगी।

8.9.2 पारेषण प्रणाली, जो क्रियान्वयन के चरण में है:

पुनातसांगचू-। जल विद्युत परियोजना (एचईपी) से विद्युत निष्कर्षण हेतु पुनातसांगचू-। से हामोई जिंगखा/संकोष (भारतीय सीमा) तक 400 के.वी. डी/सी ट्विन मूज के साथ दो लाइनें जिनमें से एक डी/सी लाइन वाया पुनातसांगचू-।। (एचईपी), तैयार किए जाने की योजना बनाई गई है। संकोष से अलीपुरद्वार, भारतीय पुलिंग प्वाइंट तक 400 के.वी. उच्च क्षमता की एक डी/सी लाइन (क्वाड मुज कंडक्टर) का निर्माण किया जाएगा और जब तक हामोई जिंगखा/संकोष 400 के.वी. स्विचयार्ड तैयार नहीं हो जाता, तब तक प्रारंभिक चरण में इसे पुनातसांगचू-। जल विद्युत परियोजना (एचईपी) के दो डी/सी ट्विन मूज लाइन से अंतर-संयोजित किया जाएगा। पुनातसांगचू-। एवं ।। से विद्युत आयात हेत् अलीपुरद्वार पर ± 800 के.वी., 3000 मेगावाट कन्वर्टर माड्यूल का एक एचवीडीसी स्टेशन एवं 2x315 एमवीए, 400/220 के.वी. ईएचवीएसी सब-स्टेशन निर्मित किए जाने की योजना बनाई गई है। ± 800 के.वी., 6000 मेगावाट विश्वनाथ चरियल्ली (एनईआर)-आगरा (एनआर) एचवीडीसी बाई-पोल लाइन, 3000 मेगावाट कन्वर्टर माड्यूल के साथ, विश्वनाथ चरियल्ली (रेक्टिफायर इंड) तथा आगरा (इनवर्टर इंड), को उत्तर पूर्वी क्षेत्र में जल विद्युत परियोजनाओं (एचईपी) से विद्युत निष्कर्षण हेतु उत्तर पूर्वी क्षेत्र-उत्तरी क्षेत्र/पश्चिमी क्षेत्र से अंतर-संयोजन परियोजना के एक अंग के रूप में विकसित किया जा रहा है। इसे अलीपुरद्वार में एलआईएलओ से जोड़ा जाएगा। आगरा में 3000 मेगावाट अतिरिक्त कन्वर्टर माड्यूल से टर्मिनल की क्षमता बढ़कर 6000 मेगावाट हो जाएगी, जिसके माध्यम से भूटान से विद्युत आयात करने हेतु योजना बनाई गई है।

तदनुसार, भारत में पारेषण प्रणाली लागू किए जाने का प्रारंभिक चरण निम्नवत होगा :

- (i) अलीपुरद्वार में ± 800 के.वी. 3000 मेगावाट कन्वर्टर माड्यूल के साथ नया 2x315 एम.वी.ए., 400/220 के.वी. ए.सी. एवं एचवीडीसी सब-स्टेशन।
- (ii) आगरा में 3000 मेगावाट इन्वर्टर माड्यूल सहित 800 के.वी. एचवीडीसी स्टेशन का विस्तार।
- (iii) अलीपुरद्वार में एचवीडीसी कन्वर्टर स्टेशन के समानांतर प्रचालन के लिए अलीपुरद्वार लाइन पर 800 के.वी. विश्वनाथ चरियल्ली - आगरा एचवीडीसी बाई-पोल का एलआईएलओ।
- (iv) अलीपुरद्वार में बोंगईगांव-सिलिगुड़ी 400 के.वी. डी/सी क्वाड लाइन का एलआईएलओ।
- (v) अलीपुरद्वार में टाला सिलिगुड़ी 400 के.वी. 1x डी/सी लाइन का एलआईएलओ।
- (vi) अलीपुरद्वार में बीरापाड़ा -सलाकती 220 के.वी. डी/सी लाइन का एलआईएलओ।
- (vii) संकोष/हमोई जिंगखा-अलीपुरद्वार 400 के.वी. 1xडी/सी क्वाड मूज लाइन (भारतीय हिस्सा)

8.9.3 भूटान से 2020 तक अतिरिक्त विद्युत आयात हेतु पारेषण प्रणाली :

भूटान के पूर्वी भाग में 2017 से 2020 तक मांगदेचू, निकाचू, चामकरचू-।, कुरी गोंगरी तथा खोलोंगचू जल विद्युत परियोजनाएं (एचईपी) तैयार किए जाने की योजना बनाई गई है। भूटान की आंतरिक मांग को पूरा करते हुए इन जल विद्युत परियोजनाएओ (एचईपी) से जिगमेलिंग (वाया गोलिंग) में विद्युत पूल किया जाना प्रस्तावित है तथा वहाँ से 400 के.वी. डी/सी क्वाड मूज कंडक्टर लाइन द्वारा अलीपुरद्वार (प.बं) में इसे पूल किया जाएगा। सामान्य उच्च प्रचालन स्थिति में जिगमेलिंग के पास भारत को निर्यात हेतु 1500 से 1900 मेगावाट अतिरिक्त विद्युत होगी। इसके अतिरिक्त संकोष/हमोई जिंगखा से अलीपुरद्वार को 4200-4400 मेगावाट विद्युत, 400 के.वी. 2xडी/सी क्वाड मूज लाइनों से पारेषित की

जाएगी। अलीपुरद्वार से भारत के उत्तरी/पश्चिमी (विद्युत कमी वाले) क्षेत्रों को इतनी बड़ी प्रमात्रा में विद्युत अंतरण के लिए एक नई तथा स्वतंत्र 800 के.वी., 6000 मेगावाट एचवीडीसी बाई-पोल लाइन भारत के उत्तरी अथवा पश्चिमी क्षेत्र (क्षेत्रीय लोड परिदृश्य को देखते हुए) में उचित डि-पूलिंग प्वाइंट पर विकसित किए जाने की योजना है ताकि अलीपुरद्वार के 3000 मेगावाट कन्वर्टर टर्मिनल क्षमता को बढ़ाकर 6000 मेगावाट तथा डि-पूलिंग प्वाइंट पर 6000 मेगावाट का नया कन्वर्टर स्टेशन (इन्वर्टर टर्मिनल) तैयार किया जा सके। तदोपरांत, अलीपुरद्वार में 800 के.वी., 6000 मेगावाट विश्वनाथ चरियल्ली (एनईआर)-आगरा (एनआर) एचवीडीसी लाइन के एलआईएलओ को हटाते हुए विश्वनाथ चरियल्ली (एनईआर) से आगरा (एनआर) एचवीडीसी बाई-पोल लाइन को सीधे चालू कर दिया जाएगा।

पूर्वी भूटान की जल विद्युत परियोजनाओं से यांगबारी पूलिंग स्टेशन पर प्रवाहित विद्युत, 400 के.वी. यांगबारी-रांगिया/रौटा-उ.क्षे./प.क्षे. एचवीडीसी बाई-पोल लाइन से असम में रांगिया/रौटा स्टेशन पर 400 के.वी. ईएचवीएसी एवं एचवीडीसी स्टेशन पर पूल की जाएगी। भूटान तथा अरूणाचल प्रदेश के उत्तर पूर्वी क्षेत्रों में ट्वांग एवं कामेंग बेसिन की जल विद्युत परियोजनाओं से विद्युत निष्कर्षण के लिए कन्वर्टर क्षमता 6000 मेगावाट (कुरी गोंगरी हेतु 1800 मेगावाट) अथवा 7000 मेगावाट (कुरी-गोंगरी हेतु 3400 मेगावाट) किए जाने पर विचार किया गया है। इस प्रकार पारेषण ग्रिड के सुदृढ़ीकरण में निम्नलिखित शामिल होंगे:

- (i) 400 के.वी. जिगमेलिंग-अलीपुरद्वार क्वाड मूज डी/सी लाइन (भारतीय हिस्से) का निर्माण।
- (ii) 400 के.वी. यांगबारी/रांगिया/रौटा 2xडी/सी क्वाड मूज कंडक्टर लाइनों (भारतीय हिस्से) का निर्माण।
- (iii) अलीपुरद्वार से उ.क्षे/प.क्षे. में उपयुक्त डि-पूलिंग प्वाइंट तक <u>+</u> 800 के.वी. 6000 मेगावाट एचवीडीसी बाई-पोल नई लाइन की स्थापना तथा अलीपुरद्वार के एलआईएल को हटाते हुए 800 के.वी. विश्वनाथ चरियल्ली (एनईआर) आगरा (एनआर) एचवीडीसी लाइन का पुनर्निर्माण।
- (iv) <u>+</u> 800 के.वी., रांगिया/रौटा-उ.क्षे./प.क्षे. एचवीडीसी बाईपोल लाइन के साथ 6000 मेगावाट कन्वर्टर क्षमता (कुरी-गोंगरी हेतु 1800 मेगावाट) अथवा रांगिया/रौटा एवं उ.क्षे./प.क्षे. में प्रत्येक के लिए 7000 मेगावाट (कुरी-गोंगरी हेतु 3400 मेगावाट)

वर्ष 2020 तक पारेषण प्रणाली को चित्र सं. 8.08 में दर्शाया गया है।

8.9.4 भूटान से वर्ष 2030 तक विद्युत आयात हेतु संभावित पारेषण योजनाएं :

भविष्य में सीमापार निम्नलिखित बड़े एचवीडीसी एवं एस.सी. कॉरिडोर की आवश्यकता है :

।. भारतीय ग्रिड हेतु वर्ष 2030 तक संभावित एचवीडीसी पारेषण कॉरिडोर:

- i. ± 800 के.वी., 6500 मेगावाट रांगिया/रौटा–प.क्षे./उ.क्षे. एचवीडीसी द्वितीय बाईपोल
- ii. ± 800 के.वी., 6000 मेगावाट संकोष/हमोई जिंगखा-उ.क्षे./प.क्षे. एचवीडीसी बाईपोल
- iii. ± 800 के.वी. 6500 मेगावाट यांगबारी-प.क्षे./उ.क्षे. एचवीडीसी बाईपोल

II. वर्ष 2030 तक सीमापार संभावित एस.सी. पारेषण कॉरिडोर :

- iv. 400 के.वी. अमोचू-।/।।-अलीपुरद्वार डी/सी लाइन
- v. मानस-आरएस।/।।-रांगिया/रौटा 2xडी/सी क्वाड मूज कंडक्टर लाइनें
- vi. न्येरा अमारी।।-रांगिया/रौटा 2xडी/सी क्वाड मूज कंडक्टर लाइनें वर्ष 2030 तक पारेषण प्रणाली चित्र सं. 8.09 में प्रदर्शित है

चित्र सं. - 8.8 (2020 का परिदृश्य)

चित्र सं. - 8.9 (2020 का परिदृश्य)

8.10 नेपाल में विद्युत परियोजनाओं से विद्युत-निष्कर्षण हेतु संभावित पारेषण योजना

8.10.1 मौजूदा सीमापार अंतर-संयोजन (इंटर कनेक्शन)

नेपाल विद्युत प्राधिकरण तथा भारतीय विद्युत कंपनियों जैसे बीएसईबी, यूपीपीसीएल तथा यूपीसीएल के बीच विद्युत का आदान-प्रदान, दोनों ओर सीमापार दूर-दराज के इलाकों में विद्युत आवश्यकताओं को पूरा करने के सिद्धांत के आधार होता रहा है। द्विपक्षीय विद्युत आदान-प्रदान के लिए 11 के.वी., 33 के.वी. तथा 132 के.वी. पारेषण लाइनों सिहत सीमापार करीब 13 अंतर-संयोजन सुविधाएं प्रचालन में हैं। भारतीय विद्युत कंपनियाँ विद्युत लेन-देन सिमित द्वारा निर्धारित टैरिफ सिद्धांत के आधार नेपाल को विद्युत आपूर्ति करती हैं। महाकाली संधि के अंतर्गत भारत भी 132 के.वी. टनकपुर-महेन्द्रनगर एस/सी लाइन द्वारा टनकपुर एचईपी (120 मेगावाट) से नेपाल को लगभग 70 एम.यू. मुफ्त विद्युत आपूर्ति करता है। इसके अतिरिक्त लघु अविध के अंतर्गत नेपाल को कामर्सियल रूट पर 75 मेगावाट अतिरिक्त तथा इसके आगे मध्यम अविध के अंतर्गत 132 मेगावाट विद्युत आपूर्ति करने हेतु प्रणाली संवर्धन के उपायों पर विभिन्न चरणों में क्रियान्वयन हो चल रहा है।

8.10.2 मुजफ्फरपुर (भारत)-ढालकेबार (नेपाल) सीमापार 400 के.वी. की स्थापना

400 के.वी. मुजफ्फरपुर (भारत)-ढालकेबार डी/सी लाइन (भारतीय हिस्सा जिसकी लंबाई 87 किमी.-सीपीटीसी (संयुक्त उपक्रम) द्वारा तथा 39 किमी की लंबाई जो नेपाल के हिस्से में आता है, का निर्माण संयुक्त उपक्रम कंपनियों जैसे-भारतीय हिस्से के लिए सीमापार पारेषण कंपनी (क्रास बार्डर ट्रांसिमशन कंपनी/सीपीटीयू) एवं नेपाल के हिस्से में आने वाला कार्य पावर ट्रांसिमशन कंपनी लिमिटेड (पीटीसीएन) द्वारा किया जा रहा है। नेपाल विद्युत अधिकरण तथा विद्युत पारेषण कंपनी (पावर ट्रांसिमशन कंपनी) के बीच विद्युत विक्रय अनुबंध पर हस्ताक्षर हो चुका है। नेपाल विद्युत अधिकरण और सीमापार पारेषण कंपनी (क्रास बार्डर ट्रांसिमशन कंपनी/सीपीटीयू) एवं नेपाल विद्युत अधिकरण और विद्युत पारेषण कंपनी लिमिटेड (पीटीसीएन) के बीच क्रियान्वयन एवं पारेषण सेवा अनुबंध (आईटीएसए) पर भी हस्ताक्षर हो गए हैं। इस पारेषण लाइन को जून, 2014 तक पूरा कर लिया जाना निर्धारित है।

आरंभिक 5 से 7 वर्षों के लिए नेपाल में 200 से 300 मेगावाट विद्युत की कमी होने का अनुमान लगाया गया है, जिसे भारतीय विद्युत बाजार से आयात करके पूरा किया जाना है। यह आपूर्ति 400 के.वी. मुजफ्फरपुर-ढालकेबार डी/सी लाइन, जिसे आरंभ में 220 के.वी. पर प्रचालित किया जाना है, से की जाएगी।

8.10.3 नेपाल से विद्युत आयात हेतु संभावित विद्युत पारेषण योजना:

आगामी 7 से 10 वर्षों में नेपाल में विद्युत परियोजनाएं यथा- अपर मार्सयांगडी (600 मेगावाट), अपर करनाली (900 मेगावाट), अरूण-।।। (900 मेगावाट), तमाकोशी (800 मेगावाट) इत्यादि परियोजनाओं के पूरी होने की संभावनाएं हैं। अपनी आंतरिक मांग को पूरा करने के बाद नेपाल विद्युत अधिकरण के पास बड़ी मात्रा में अतिरिक्त विद्युत होगी। नेपाल से विद्युत निष्कर्षण तथा भारत में इसके अंतरण के लिए वहाँ की उपरोक्त जल विद्युत परियोजनाओं के चालू होने के समय तक अपर करनेली से बरेली, अपर मार्सयांगडी से गोरखपुर, अरूण-।।। से मुजफ्फरपुर तथा बुटावल से गोरखपुर में उच्च क्षमता घनत्व के 400 के.वी. ए/सी. लिंकों को सीमापार कॉरिडोर के रूप में विकसित किए जाने की योजना बनाई जा रही है।

निम्नलिखित चित्र में भारत एवं नेपाल के बीच मौजूदा एवं संभावित सीमापार विद्युत अंतर-संयोजन

8.11 म्यांमार में तमनथी एवं श्वेजेई जल विद्युत परियोजना (एचईपी) से विद्युत निष्कर्षण हेतु संभावित पारेषण योजना:

8.11.1 प्रस्तावना :

म्यांमार में छिंदिवन नदी बेसिन में तमनथी जल विद्युत परियोजना (एचईपी) 1200 मेगावाट तथा श्वेजेई जल विद्युत परियोजना (एचईपी) 880 मेगावाट की दो जल विद्युत परियोजनाएं बनाई जा रही हैं। भारत तथा म्यांमार के बीच द्विपक्षीय सहयोग बढ़ाने के लिए जल विद्युत क्रियान्वयन विभाग (डीएचपीआई), विद्युत ऊर्जा मंत्रालय, म्यांमार सरकार एवं एनएचपीसी लिमिटेड के बीच इन परियोजनाओं के विकास हेतु एक सहमित ज्ञापन (एम.ओ.यू.) पर हस्ताक्षर किए गए हैं। वर्ष 2018-20 तक इन्हें पूर्ण किए जाने की संभावना है और इसीलिए इन परियोजनाओं से विद्युत निष्कर्षण हेतु संभावित योजना बनाई गई है।

8.11.2 म्यांमार में तमनथी एवं श्वेजेई जल विद्युत परियोजना (एचईपी) से विद्युत निष्कर्षण हेतु पारेषण प्रणाली:

म्यांमार, भारत के पूर्वोत्तर राज्यों से भौगोलिक रूप से निकट होने के कारण, वहाँ की विद्युत परियोजनाओं की विद्युत को पहले पूर्वोत्तर क्षेत्र में लाना तथा इसके बाद उसे भारत के अन्य हिस्सों में पारेषित करना किफायती होगा। परिदृश्य को देखते हुए तमनथी एवं श्वेजेई जल विद्युत परियोजनाओं से विद्युत निष्कर्षण हेतु पारेषण प्रणाली की योजना बनाई गई है। इसके पहले परिदृश्य में पूर्वोत्तर में नई विद्युत परियोजनाओं को म्यांमार की विद्युत परियोजना से जोड़ा जाना होगा तथा इसके लिए 7000 मेगावाट एचवीडीसी की उच्च क्षमता पारेषण कॉरिडोर की योजना बनाई गई है। दूसरे परिदृश्य में पूर्वोत्तर क्षेत्र में भविष्य में किसी दूसरी बड़ी विद्युत परियोजना की योजना नहीं है, जिसे म्यांमार की विद्युत परियोजना से जोड़ा जा सके। इसलिए केवल ए.सी. पारेषण प्रणाली का उपयोग करते हुए विद्युत अंतरण की योजना बनाई गई है। उत्पादन परियोजनाओं के विविध विवरण जैसे चालू होने की समयाविध, भारतीय ग्रिड को आपूर्ति की जाने वाली विद्युत की प्रमात्रा तथा इसके लाभार्थियों आदि को अंतिम रूप दिए जाने के बाद पारेषण प्रणाली को सुदृढ़ किया जाना होगा। तदनुरूप, म्यांमार उत्पादन परियोजनाओं से विद्युत निष्कर्षण तथा विद्युत अंतरण हेतु निम्नलिखित विकल्पों पर विचार किया गया है:

8.11.3 मुख्य विकल्प : उत्तर पूर्वी क्षेत्र से उत्तरी/पश्चिमी क्षेत्र को एक नई +800 के.वी., 7000 मेगावाट बाईपोल लाइन

क. उत्तर पूर्वी क्षेत्र में नए पूलिंग प्वाइंट (शिलापठार) तक पारेषण प्रणाली

- 1. श्वेजेई–तमनथी 400 के.वी. डी/सी लाइन
- 2. तमनथी-नामसाईं पूलिंग प्वाइंट (एनईआर) 400 के.वी. 2x डी/सी लाइन (ट्विन लैपविंग)
- 3. तमनही छोर पर श्वेजेई-तमनही लाइन पर टीसीएससी (थायरिस्टर कंट्रोल्ड सीरीज कंपन्सैटर) (नियत : 40% परिवर्तनीय : 5-15%)

ख. <u>नामसाईं पूलिंग (एनईआर) से उत्तरी क्षेत्र/पश्चिमी क्षेत्र को +/- 800 के.वी., 7000 मेगावाट</u> एचवीडीसी बाईपोलर की साझा पारेषण प्रणाली

- 1. नामसाईं पूलिंग (एनईआर) से उत्तरी क्षेत्र/पश्चिमी क्षेत्र को +/- 800 के.वी., 7000 मेगावाट एचवीडीसी बाईपोलर लाइन
- 2. नामसाईं पूलिंग (एनईआर) और उत्तरी क्षेत्र/पश्चिमी क्षेत्र पूलिंग प्वाइंट पर +/- 800 के.वी., 6000 मेगावाट एचवीडीसी टर्मिनल

8.11.4 विकल्प-2: उत्तर पूर्वी क्षेत्र में ए.सी. पारेषण प्रणाली का उपयोग

- क. उत्तर पूर्वी क्षेत्र (एनईआर) में विश्वनाथ चरियल्ली पूलिंग प्वाइंट तक पारेषण प्रणाली
 - 1. श्वेजेई-तमनथी 400 के.वी. डी/सी लाइन
 - 2. तमनथी-विश्वनाथ चरियल्ली (एनईआर) 400 के.वी. 2x डी/सी लाइन (ट्विन लैपविंग)
 - 3. तमनही छोर पर श्वेजेई-तमनही लाइन पर टीसीएससी (थायरिस्टर कंट्रोल्ड सीरीज कंपन्सैटर) (नियत : 40% परिवर्तनीय : 5-15%)

ख. साझा पारेषण प्रणाली

- 1. बोंगईगांव-सिलिगुड़ी 400 के.वी. डी/सी लाइन का ट्विन से उच्च क्षमतायुक्त कंडक्टर में रिकंडक्टरिंग
- 2. पटना वाराणसी 400 के.वी. डी/सी लाइन (क्वाड कंडक्टर)

अध्याय - 9 एनईपी – पारेषण पर टिप्पणियां

विद्युत अधिनियम, 2003 के अनुसार सीईए को हर पांच वर्ष में राष्ट्रीय विद्युत योजना (एनईपी) तैयार करना है। अधिनियम में यह भी प्रावधान किया गया है कि सीईए एनईपी तैयार करते समय इसके मसौदा प्रकाशित करेगा और लाइसेंस धारकों, उत्पादन कंपनियों और जनता के सुझाव और आपित्तयां आमंत्रित करेगा। इसके पश्चात् केन्द्र सरकार का अनुमोदन प्राप्त किया जाता है और फिर योजना अधिसूचित की जाती है। मसौदा एनईपी जिसमें 11वीं और 12वीं योजना की व्यापक समीक्षा शामिल है, और सीईए द्वारा संभावित योजना दो अंकों (भाग-। - उत्पादन पर और भाग-।। पारेषण पर) में तैयार की गई तथा 29.3.2012 को उसे सीईए की वेबसाइट पर अपलोड किया गया। मसौदा एनईपी पर विचार/सुझाव/टिप्पणियां 30 जून, 2012 तक आमंत्रित की गईं। निम्नलिखित कंपनियों/व्यक्तियों ने राष्ट्रीय विद्युत योजना (अंक-।।), पारेषण पर अपने विचार/सुझाव/टिप्पणियां भेजी हैं:

क्र. सं.	पणधारक का नाम
1.	मैसर्स पावर सिस्टम ऑपरेशन कॉर्पोरेशन लि.
2.	मैसर्स एनएचपीसी लि.
3.	मैसर्स भाखड़ा ब्यास मैनेजमेंट बोर्ड
4.	मैसर्स यूपी पावर पावर ट्रांसमिशन कॉर्पोरेशन लि;
5.	मैसर्स उड़ीसा पावर ट्रांसमिशन लि.
6.	मैसर्स छत्तीसगढ़ स्टेट पावर ट्रांसमिशन कॉपोरेशन लिमिटेड
7.	मैसर्स पीटीसी इंडिया लि.
8.	मैसर्स एसोसिएशन ऑफ पावर पर्चेजर्स
9.	मैसर्स पावर रिसर्च एण्ड डवलपमेंट कंसल्टेंट प्रा. लि.
10.	मैसर्स इंडिया विंड एनर्जी एसोसिएशन
11.	मैसर्स इंडिया विंड पावर एसोसिएशन
12.	मैसर्स रिलायंस पावर ट्रांसमिशन लि.
13.	मैसर्स लाचंग हाइड्रो पावर लि.
14.	मैसर्स तीस्ता हाइड्रो पावर प्रा. लि.
15.	मैसर्स अथेना, छत्तीसगढ़ पावर लि.
16.	मैसर्स चुंगथंग हाइड्रो पावर लि.
17.	मैसर्स एमबी पावर (छत्तीसगढ़) लि.
18.	श्री ए. राजा राव, सेवानिवृत्त कार्यपालक निदेशक, बीएचईएल, बंगलौर
19.	श्री जे. बालासुब्रामण्यम, पावर सेक्टर प्रोफेशनल
20.	श्री जयंत इंगोलिकर, नागपुर

वर्तमान राष्ट्रीय विद्युत योजना (अंक-।।) – पारेषण को उपर्युक्त प्राप्त विचार/सुझावों/टिप्पणियों को ध्यान में रखते हुए उपयुक्त ढंग से अंतिम रूप दिया गया है।

National Electricity Plan

(Volume II)

Transmission

[In fulfilment of CEA's obligation under section 3(4) of the Electricity Act 2003]

Government of India

Ministry of Power

Central Electricity Authority

November, 2012

[भाग III—खण्ड 4] भारत का राजपत्र : असाधारण 801

ACRONYMS ABT	EXPANSION
ΔRT	
7101	Availability Based Tariff
AC	Alternating Current
AEGCL	Assam Electric Generation Company Limited
AERC	Assam Electricity Regulatory Commission
AI	All India
APDRP	Accelerated Power Development and Reform Program
APP	Atomic Power Plant
APTRANSCO	Andhra Pradesh Transmission Corporation
Aug	Augmentation
b-t-b	back-to-back
BSEB	Bihar State Electricity Board
CEA	Central Electricity Authority
CERC	Central Electricity Regulatory Commission
Ckm	circuit kilometer
CPP	Central Power Project
CPSU	Central Public Sector Undertaking
CSEB	Chhatisgarh State Electricity Board
CTU	Central Transmission Utility
D/C	Double Circuit
DVC	Damodar Valley Corporation
EA 2003	Electricity Act 2003
EHV	Extra High Voltage
EPS	Electric Power Survey
ER	Eastern Region
ERC	Electricity Regulatory Commission
FACTS	Flexible AC Transmission System
GETCO	Gujarat Energy Transmission Corporation
GIS	Gas Insulated Switchgear

GOI Government of India

GVA Giga Volt Ampere

GW Giga Watt

GWe Giga Watt Electrical

HEP Hydro Electric Project

HVDC High Voltage Direct Current

ICTs Interconnecting Transformers

ISGS Inter State Generating Station(s)

ISTS Inter State Transmission System

Intra-STS Intra-State Transmission System

JV Joint Venture

KPTCL Karnataka Power Transmission Corporation Limited

KUMPP Krishnapattnam UMPP

kV kilo Volt

LILO Line In Line Out

LNG Liquefied Natural Gas

LT Low Tension

LTOA Long Term Open Access

MAPP Madras APP

MoP Ministry of Power

MVA Mega Volt Ampere

MVAR Mega Volt Ampere Reactive

MW Mega Watt

NEA Nepal Electricity Authority

NEEPCO North Eastern Electric Power Corporation

NEP National Electricity Plan

NER North Eastern Region

NHPC National Hydro Power Corporation

NLC Neyveli Lignite Corporation

NLCPR Non Lapsable Central Pool Resources

NPC Nuclear Power Corporation

NPCIL Nuclear Power Corporation of India Limited NR Northern Region **NRLDC** Northern Regional Load Dispatch Center **NRPC** Northern Regional Power Committee **NTPC National Thermal Power Corporation ONGC** Oil and Natural Gas Corporation operated op. **PFBR** Pulverized Fuel Breeding Reactor **PFC Power Finance Corporation** Power Grid PG POWERGRID/PGCIL Powergrid Corporation of India Limited **PLCC** Power Line Carrier Communication **PLF** Plant Load Factor **PMGY** Prime Minister Grameen Yojana PPA Power Purchase Agreement **PSS** Power System Stabilizer **PMU** Phasor Measurement Unit **PSU** Public Sector Undertaking **PTCUL** Power Transmission Corporation of Uttranchal Ltd Quadrupled Bundle Conductor Quad R&M Renovation & Modernisation **RAPP** Rajasthan APP RE Rural Electrification **RPC** Regional Power Committee RL Root Length **RLDC** Regional Load Dispatch Center RoW Right of Way **RPCs** Regional Power Committees S/C Single Circuit S/C on D/C Single Circuit on Double Circuit towers S/S, s/s Sub-Station, sub-station

SC Series Compensation **SEB** State Electricity Board **SERC** State Electricity Regulatory Commission **SLDC** State Load Dispatch Center SR Southern Region **SRLDC** Southern Regional Load Dispatch Center **SRPC** Southern Region Power Committee STATCOM Static Compensation Stg 2nd ckt Stringing of second circuit **STOA** Short Term Open Access STU State Transmission Utility SVC Static VAR Compensation Tarapur APP **TAPP** Tckm Thousand circuit kilometer **TCSC** Thyristor Controlled Series Compensation TM Twin Moose **TPS** Thermal Power Station **TSECL** Tripura State Electric Corporation Limited **UCPTT Unified Common Pool Transmission Tariff UHVDC** Ultra HVDC UI Unscheduled Interchange **ULDC** Unified Load Dispatch Center **UMPP** Ultra Mega Power Project **UPCL** Uttrakhant Power Corp. Ltd **UPPCL** Utter Pradesh Power Corp. Ltd VAR Volt Ampere Reactive Very Large Grid Operators **VLGO** WR Western Region **WRLDC** Western Regional Load Dispatch Center

Western Region Power Committee

WRPC

CHAPTER - 1

INTRODUCTION

1.1 NATIONAL ELECTRICITY PLAN

As per Section 3 of the Electricity Act 2003, Central Electricity Authority (CEA) has been entrusted with the responsibility of preparing the National Electricity Plan in accordance with the National Electricity Policy and notify such plan once in five years. The Act provides that the draft of National Electricity Plan has to be published inviting suggestions and objections from licensees, generating companies and the public and CEA has to obtain approval of the Central Government before notifying the National Electricity Plan.

CEA prepared the Draft NEP and has made it available to all the stakeholders through its website on 29th March 2012, last date for receiving comments was 30th June 2012. This release titled 'National Electricity Plan (Volume-II) – Transmission', which covers the transmission plan for 12th Plan period (i.e. 2012-13 to 2016-17) and perspective plan for beyond 12th Plan, in its updated form takes into account the comments/suggestions of various stakeholders on the draft document.

1.2 NATIONAL ELECTRICITY PLAN - TRANSMISSION

Transmission planning is a continuous process of identification of transmission system addition requirements, their timing and need. The transmission requirements could arise from new generation additions in the system, increase in demand and general system strengthening not necessarily associated with a particular generation project. These transmission addition requirements are identified, studied and firmed through the transmission planning process.

1.3 TRANSMISSION SYSTEMS IN INDIA

The transmission systems that are in place in the country consist of Inter-State Transmission System(ISTS) and Intra State Transmission System(Intra-STS).

1.3.1 Inter-State Transmission System (ISTS)

ISTS is mainly owned and operated by Power Grid Corporation of India Limited(POWERGRID) which is also Central Transmission Utility(CTU). In future, Inter-State Transmission System (ISTS) schemes would be built through competitive bidding and many private sector entities would own and operate the ISTS elements. Already, a number of ISTS schemes owned by the private sector or joint venture(JV) between private sector and POWERGRID are under construction. The ISTS serves the following purpose:

- (i) Evacuation of power from inter-state generation stations which have beneficiaries in more than one state.
- (ii) Onwards transmission of power for delivery of power from inter-state generation stations up to the delivery point of the state grid.
- (iii) Transfer of operational surpluses from surplus state(s) to deficit state(s) or from surplus region(s) to deficit region(s).

1.3.2 Intra State transmission system (Intra-STS)

Intra-STS within the state are mainly owned and operated by the state transmission utilities of each state. The Intra-STS serves the following purpose:

- Evacuation of power from the generating stations having beneficiaries in that State.
- (ii) Onwards transmission within the State from ISTS boundary up to the various substations of the state grid network.
- (iii) Transmission within the state grid for delivery of power to the load centres within the state.

1.4 PROVISIONS OF THE 'NATIONAL ELECTRICITY POLICY'

Some of transmission related provisions of the National Electricity Policy, which have implication with regard to the National Electricity Plan, are:

- (i) Adequate and timely investments and also efficient and coordinated action to develop a robust and integrated power system for the country.
- (ii) Augmenting transmission capacity keeping in view the massive increase planned in generation and also for development of power market.
- (iii) While planning new generation capacities, requirement of associated transmission capacity would need to be worked out simultaneously in order to avoid mismatch between generation capacity and transmission facilities. The policy emphasizes the following to meet the above objective:
 - The Central Government would facilitate the continued development of the National Grid for providing adequate infrastructure for inter-state transmission of power and to ensure that underutilized generation capacity is facilitated to generate electricity for its transmission from surplus regions to deficit regions.
 - The Central Transmission Utility (CTU) and State Transmission Utility (STU) have the key responsibility of network planning and development based on the National Electricity Plan in coordination with all concerned agencies as provided in the Act. The CTU is responsible for the national and regional transmission system planning and development. The STU is responsible for planning and development of the intra-state transmission system. The CTU would need to coordinate with the STUs for achievement of the shared objective of eliminating transmission constraints in cost effective manner.
 - Network expansion should be planned and implemented keeping in view the anticipated transmission needs that would be incident on the system in the open access regime. Prior agreement with the beneficiaries would not be a pre-condition for network expansion. CTU/STU should undertake network expansion after identifying the requirements in consultation with stakeholders and taking up the execution after due regulatory approvals.
 - Structured information dissemination and disclosure procedures should be developed by the CTU and STUs to ensure that all stakeholders are aware of the status of generation and transmission projects and plans. These should form a part of the overall planning procedures.
- (iv) Open access in transmission has been introduced to promote competition amongst the generating companies who can now sell to different distribution licencees across the country. This should lead to availability of cheaper power. The Act mandates non-discriminatory open access in transmission. When open access to distribution networks is introduced by the respective State Commissions for enabling bulk consumers to buy directly from competing generators, competition in the market would increase the availability of cheaper and reliable power supply. The Regulatory Commissions need to provide facilitative framework for non-discriminatory open access. This requires load dispatch facilities with state-of-the art communication and data acquisition capability on a real time basis. While this is the case currently at the regional load dispatch centres, appropriate State Commissions must ensure that matching facilities with technology upgrades are provided at the State level, where necessary and realized not later than June 2006.
- (v) To facilitate orderly growth and development of the power sector and also for secure and reliable operation of the grid, adequate margins in transmission system should be created. The transmission capacity would be planned and built to cater to both the redundancy levels and margins keeping in view international standards and practices. A well planned and strong transmission system will ensure not only optimal utilization of transmission capacities but also of generation facilities and would facilitate achieving ultimate objective of cost effective

delivery of power. To facilitate cost effective transmission of power across the region, a national transmission tariff framework needs to be implemented by CERC. The tariff mechanism would be sensitive to distance, direction and related to quantum of flow. As far as possible, consistency needs to be maintained in transmission pricing framework in inter-State and intra-State systems. Further it should be ensured that the present network deficiencies do not result in unreasonable transmission loss compensation requirements.

- (vi) The necessary regulatory framework for providing non-discriminatory open access in transmission as mandated in the Electricity Act 2003 is essential for signalling efficient choice in locating generation capacity and for encouraging trading in electricity for optimum utilization of generation resources and consequently for reducing the cost of supply.
- (vii) Special mechanisms would be created to encourage private investment in transmission sector so that sufficient investments are made for achieving the objective of demand to be fully met by 2012.

1.5 PROVISIONS OF THE 'TARIFF POLICY'

Some of related provisions of the Tariff Policy, which provide objective in development of transmission systems through transmission tariff framework, are:

- The tariff policy, insofar as transmission is concerned, seeks to achieve the following objectives:
 - 1. Ensuring optimal development of the transmission network to promote efficient utilization of generation and transmission assets in the country;
 - 2. Attracting the required investments in the transmission sector and providing adequate returns.
- A suitable transmission tariff framework for all inter-State transmission, including transmission of electricity across the territory of an intervening State as well as conveyance within the State which is incidental to such inter-state transmission, needs to be implemented with the objective of promoting effective utilization of all assets across the country and accelerated development of new transmission capacities that are required.

1.6 PROVISIONS IN CERC REGULATIONS

In accordance with the Act, the central commission has issued regulations which entitle distribution licensees, generators, electricity traders and permitted open access customers to seek access to the inter-state transmission system. As per the present regulations access to the transmission system can be sought on short, medium or long term basis. The Central Transmission Utility (CTU) is the nodal agency for providing medium term (3 months to 3 years) and long term (12 to 25 years) access that are typically required by a generating station or a trader on its behalf. The long term access is to be granted through the transmission planning route. The nodal agency for grant of short term open access (up to three months) is the Regional Load Dispatch Centre. The nodal agency for providing transmission access to the power exchanges is the National Load Dispatch Centre.

CHAPTER - 2

GROWTH OF TRANSMISSION SYSTEM IN INDIA

2.1 GROWTH OF TRANSMISSION SYSTEMS IN INDIA

2.1.1 Formation of State Grids for integrated planning

At the time of independence, power systems in the country were essentially isolated systems developed in and around urban and industrial areas. The installed generating capacity in the country was only about 1300 MW and the power system consisted of small generating stations feeding power radially to load centres. The highest transmission voltage was 132 kV. The state-sector network grew at voltage level up to 132 kV during the 50s and 60s and then to 220 kV during 60s and 70s. Subsequently, in many states (Utter Pradesh, Maharashtra, Madhya Pradesh, Gujarat, Orissa, Andhra Pradesh and Karnataka) substantial 400kV network was also developed in the State sector as large quantum of power was to be transmitted over long distances. With the development of state grids in most states of the country the stage was set for development of regional grids.

2.1.2 Concept of Regional Planning and Integration of State Grids

During the 3rd Five Year Plan, the concept of Regional planning in Power Sector was introduced. Accordingly, for the purposes of power development planning, the country was demarcated into five power Regions viz. Northern, Western, Southern, Eastern and North-Eastern. In 1964, the Regional Electricity Boards were established in each of the Regions of the country for facilitating integrated operation of State Systems in the Region and encouraging exchange of power among the States. To encourage the States to build infrastructure for exchange of such power, inter-State lines were treated as 'centrally sponsored' and the States were provided interest free loans outside the State Plan. 55 nos. of inter-State lines were constructed under the programme of which 13 lines were connecting States located in different Regions and this created the initial set of inter-Regional links. These lines facilitated exchange of power in radial mode among the various Regions.

2.1.3 Evolution of Regional Grids

Till about 1975 the development of transmission was essentially by the State Electricity Boards/ Electricity Departments in the States and Union Territories. In 1975, to supplement the efforts of the states in increasing generation capacities, Central Sector generation utilities viz. National Hydroelectric Power Corporation (NHPC) and National Thermal Power Corporation (NTPC) were created. These corporations established large generating station for the benefit of States in a region. These corporations also undertook development of associated transmission lines, for evacuation of power and delivery of power to the beneficiary States transcending state boundaries. This gave a fillip to the formation of Regional Grid Systems and by the end of 1980s, strong regional networks came into existence.

2.1.4 Development of inter-regional links

In 1989, transmission wings of Central generating companies were separated to set up Power Grid Corporation of India (POWERGRID) to give thrust to implementation of transmission system associated with Central generating stations and inter-Regional transmission programme based on perspective planning done by CEA. Till then, the generation and transmission systems in the country were planned and developed on the basis of regional self-sufficiency and the initial set of inter-regional links developed under the Centrally sponsored programme for building inter-state infrastructure of State utilities, was utilized to facilitate exchange of operational surpluses among the various Regions in a limited manner because the Regional Grids operated independently and had different operating frequencies and the power exchanges on these inter-regional links could take place only in radial mode.

2.2 DEVELOPMENT OF NATIONAL GRID

The National Grid consists of the transmission system for evacuation of power from generating stations, the inter-regional links, Inter State transmission system and Intra-State transmission of the

STUs. Thus, development of national grid has been an evolutionary process. It is expected that, at the end of 12th Plan, each region in the country would be connected to an adjacent region(s) through at least two high capacity synchronous 400kV or 765kV lines and a HVDC bipole/back-to-back link. This would make the National Grid a large, meshed synchronous transmission grid where all the regional and State grids in them would be electrically connected and operating at single frequency. Following describes the evolution of National Grid.

2.2.1 Asynchronous Interconnections between Regional Grids

Considering the operational regime of the various Regional Grids, it was decided around 1990s to establish initially asynchronous connection between the Regional Grids to enable them to exchange large regulated quantum of power. Accordingly, a 500 MW asynchronous HVDC back-to-back link between the Northern Region and the Western Region at Vindhyachal was established. Subsequently, similar links between Western Region and Southern Region (1000 MW capacity at Bhadrawati) and between Eastern Region and Southern Region (500 MW capacity at Gazuwaka) and between Eastern Region and Northern Region (500 MW capacity at Sasaram), were established. The capacity of Gazuwaka link between Eastern Region and Southern Region has been increased to 1000 MW.

2.2.2 Synchronization of Regional Grids

In 1992 the Eastern Region and the North-Eastern Region were synchronously interconnected through the Birpara-Salakati 220kV double circuit transmission line and subsequently by the 400 kV D/C Bongaigaon -Malda line. Western Region was interconnected to ER-NER system synchronously through 400kV Rourkela-Raipur D/C line in 2003 and thus the Central India system consisting of ER-NER-WR came in to operation. In 2006 with commissioning of Muzaffarpur-Gorakhpur 400kV D/C line, the Northern Region also got interconnected to this system making an upper India system having the NR-WR-ER-NER system. In 2007 NR was also synchronously interconnected with WR through Agra-Gwalior 765kV S/C line-1 operated at 400kV level.

2.2.3 All India Planning and Evolution of Integrated National Grid

Since the advent of the current century, the focus of planning the generation and the transmission system in the country has shifted from the orientation of regional self-sufficiency to the concept of optimization of utilization of resources on all-India basis. Generation planning studies carried out by CEA had indicated that the capacity addition planned on all-India basis is less than that planned on regional basis. Further, a strong all-India integrated national grid enables harnessing of unevenly distributed generation resources in the country. Recognizing the need for development of National grid, thrust was given to enhance the capacity of inter-regional links in a phased manner. Total interregional transmission capacity by the end of 9th Plan was 5750 MW. During 10th Plan i.e. 2002-07, a total of 8300 MW of inter-regional capacities were added. In this effort, major achievements were addition of Talcher-Kolar HVDC Bipole, second module of HVDC back-to-back system between SR and ER at Gazuwaka, HVDC back-to-back system between NR and ER at Sasaram, synchronous inter-connection of NER/ER grid with WR grid by Rourkela-Raipur 400kV D/C line, synchronous inter-connection of NER/ER/WR grid with NR grid by Muzaffarpur-Gorakhpur 400kV D/C (quad) line and subsequently, one circuit of Patna-Balia 400kV D/C (quad) line and Agra-Gwalior 765kV transmission line (operated at 400kV). Total inter-regional transmission capacity by the end of 10th Plan was 14050 MW and increased to 27750 MW by end of 11th Plan (i.e. March 2012). Details of inter-regional links that are expected to be implemented during 11th Plan period are given in Chapter-6, and those under-construction/ planned for 12th Plan period are given in Chapter-7.

2.3 GROWTH OF TRANSMISSION SYSTEM IN PHYSICAL TERMS

There has been a consistent increase in the transmission network and transformation capacity in India. This increase is in consonance with increase in generation and demand of electricity in the country. The increase in the transmission lines of 220kV and above voltage levels, in terms of circuit kilometres, have been roughly five times in last 26 years and that for substation capacity more than

eight times in the same period. There has been more increase in the transmission system at higher voltage levels and substation capacities. This aspect of growth in transmission highlights requirements of transmission network to carry bulk power over longer distances and at the same time optimize right of way, minimize losses and improve grid reliability.

2.3.1 Growth in transmission lines

Cumulative growth in transmission lines, of 220kV and above voltage levels, since end of 6th five-year plan (i.e. March 1985) to 11th Plan (i.e. March 2012) is depicted below:

Growth of Transmission Lines(ckm) at the end of each Plan:

Voltage level	6th Plan	7th Plan	8th Plan	9th Plan	10th Plan	11th Plan
765kV	0	0	0	971	2184	5250
HVDC Bipole	0	0	1634	3138	5872	9432
400kV	6029	19824	36142	49378	75722	106819
220kV	46005	59631	79600	96993	114629	135980
Total ckm	52034	79455	117376	150480	198407	257481

2.3.2 Growth of Substations

Cumulative growth in transformation capacity of substations and HVDC terminals, of 220kV and above voltage levels, since end of 6th five-year plan(i.e. March 1985) to 11th Plan (i.e. March 2012) is depicted below:

Growth of Substations (MVA/MW) at the end of each Plan:

	6th Plan	7th Plan	8th Plan	9th Plan	10th Plan	11th Plan
765kV	0	0	0	0	0	25000
HVDC Bipole	0	0	0	5000	8000	9750
400kV	9330	21580	40865	60380	92942	151027
220kV	37291	53742	84177	116363	156497	223774
Total MVA/MW	46621	75322	125042	181743	257439	409551

2.4 LANDMARK EVENTS FOR TRANSMISSION SECTOR

Development of the transmission network has been done in tandem with growth in generation capacity. The growth in transmission system is characterized by the physical growth in transmission network as well as introduction of higher transmission voltages and new technologies for bulk power transmission. Landmark events of this growth are:

1948 Electricity (Supply) Act 1948. The Act provided for establishment of the Central

Electricity Authority (CEA) and the State Electricity Boards

1950-60 Growth of State Grids and introduction of 220kV voltage level

1964	Constitution of Regional Electricity Boards
1965-73	Interconnecting State Grids to form Regional Grid systems
1977	Introduction of 400kV voltage level
1980-88	Growth of Regional Grid Systems as associated transmission system with Central Sector generation
1989	HVDC back-to-back System
1990	Introduction of HVDC bi-pole line
1992	Synchronous inter-connection of ER and NER
1999	Transmission planning re-oriented towards all-India system
2000	Introduction of 765kV transmission line (initially charged at 400kV)
2003	- Electricity Act 2003
	- ABT with real time settlement mechanism implemented in all the five electrical regions creating the basic infrastructure for the operation of an electricity market.
	- Synchronous inter-connection of WR with ER-NER system
	- Bulk inter-regional HVDC transmission system (Talcher – Kolar HVDC link)
2004	Open access in transmission
2006	Synchronous inter-connection of NR with ER-NER-WR system
2007	765kV operation of Sipat Substation
2007	765kV operation of 765kV transmission lines
2010	Notification of POSOCO – for operation of RLDCs/NLDC as a separate organization from CTU
2011	Implementation of point-of-connection based method for sharing transmission charges and losses all across the country.

CHAPTER - 3

TRANSMISSION PLANNING PHILOSOPHY

3.1 TRANSMISSION PLANNING PHILOSOPHY

Transmission planning philosophy in India has evolved over last few decades keeping pace with developments and needs of the electricity sector. The transmission planning has been aligned with the Electricity Act 2003, National electricity policy, tariff policy, regulations and market orientation of the electricity sector. The objectives, approach and criteria for transmission planning, which evolved in time, take care of uncertainties in load growth and generation capacity addition while optimizing investment in transmission on long term basis. These objectives, approach and criteria are kept in view while planning transmission addition requirements to meet targets for adequacy, security and reliability. Transmission plan is firmed up through system studies/analysis considering various technological options and the transmission planning philosophy.

3.2 PLANNING OBJECTIVES

Following objectives are taken into account while planning and developing optimal transmission system in India.

- (1) **Even development:** Development of transmission system across the country so that all areas could have adequate level of electricity system irrespective of uneven disposition of electric power generating sources, including renewable energy sources, in the country.
- (2) Optimum utilisation of generation resources: Adequate transmission system development so as to optimally utilise the hydro-thermal mix of generation resources taking into account the concentration of coal in the eastern part of the country and hydro power sources in the north eastern and northern parts of the country.
- (3) Harnessing diversity in regional peak demand: Obtaining advantages of diversity based exchanges of power; that is, exchanges on account of regional variations in generation and demand pattern arising due to geographical, seasonal, time of day and operational diversities.
- (4) Providing flexibility for implementation: The Central Transmission Utility (CTU) and the State Transmission Utility (STU) are responsible for planning and development of the transmission system. National Electricity Plan prepared by the Central Electricity Authority serves as guiding document in this process. The Central Transmission Utility is responsible for inter-state transmission of electricity. The State Transmission Utility is responsible for transmission of power within the state. The Central Transmission Utility would have to coordinate with the State Transmission Utilities and the other stakeholders for preparing a well-coordinated transmission plan for the country. As the generation sector has been delicensed, the actual development may be at variance with respect to the programme indicated in National Electricity Plan. The transmission development programme would accordingly need to be reworked from time to time. Therefore, in the long run there could be deviations from the National Electricity Plan. With the emergence of new generating stations, the transmission system associated therewith would have to be quickly planned and executed.
 - (5) Facilitating trading: Transmission system to facilitate trading of electricity, which under the Electricity Act, 2003, has been recognized as a distinct activity. It is expected that in consequence of this and the non-discriminatory open access on the transmission system, market forces may influence the pattern of power flows requiring reassessment of adequacies/inadequacies in the transmission network. For the need arising from trading in electricity, suitable system strengthening (to be taken up from time to time), and aligned with the perspective transmission plan would be required to be taken up by the Central Transmission Utility and the State Transmission Utilities in coordination with CEA.
- (6) **Technology and cost optimization:** Optimum development of transmission network based on feasibility analysis and techno-economic evaluation of technology options such as Extra High Voltages, AC, HVDC, hybrid, multi-circuit/multi-conductor lines, GIS, reactive compensation, dynamic compensation, etc. The objective should be to optimize cost of transmission system by use of technology.
- (7) Right of Way optimization: With the all round development of our country and the increase in population, difficulty in obtaining corridors for power transmission has been increasing. Therefore, there is a need to optimize the power transmission corridors. Use of high capacity lines, multi circuit lines and increasing transmission capability of existing lines through use of re-conductoring using aluminium—alloy conductors or series compensation and flexible

- alternating current transmission systems (FACTS) devices where optimal, are to considered in the planning stage.
- (8) Stage wise development: As generating capacity is built up in stages, the transmission capacity would also have to be built up in stages. Stage wise development of transmission capacity could be done by charging a higher voltage specification line at lower voltage initially, or by stringing circuits of multi-circuit line in phased manner or by use of series compensation at a later date on a line built with high current capacity conductors etc.
- High capacity corridors from NER: The North-eastern Region of the country has hydro (9)potential of the order of 30-35 GW most of which is yet to be developed. Development of this hydro potential alongwith industrial development in the North-Eastern Region(NER) is required so that increasing availability of power in the region is matched with growth in local demand. However, as the hydro potential in the NER is quite large (almost 70% of all future hydro power would come from NER), substantial power from this region would be required to be transmitted to Northern, Western and Southern regions where the growth in demand is much higher as compared to potential for local development of generation resources in those regions. In addition, power from Bhutan would also need to be transmitted towards NR/WR/SR. As the Eastern region(ER) is in surplus and with development of further generation projects in ER utilising the coal reserves in that area, the ER will continue to be an exporting region. Thus the bulk of NER power would be transmitted directly to NR/WR/SR over distances exceeding 2000 km. Considering the right of way constraints in the chickenneck area and also to conserve the over-all right of way, high capacity transmission system consisting of hybrid network of HVDC and high capacity 400kV AC would be required to be developed. This development would need to be properly phased to match with the programme of development of hydro generation in NER. For bringing power from NER, a higher voltage of + 800kV HVDC has been considered. Reduction in losses and optimisation of right of way are the main objectives of adopting higher voltages.
- (10) Full utilization of the generating capacity in Pit-head and Coastal Areas: For the full utilization of the capacity from cluster of generation projects mainly in pit-head and coastal areas, high capacity transmission system up to load centers in the country have to be planned keeping in view long distance of transmission, ROW optimization, operational flexibility of grid and the aim that no generating capacity is rendered idle due to transmission constraints.
- (11) Continued development of Regional Grids: Continued development of regional grids so as to meet the transmission needs within each of the regions. The development should cater to the power evacuation from generation capacity additions and strengthening in the regional grids addressing specific requirements of the area. It should provide transmission system to cater to changes in the pattern of power flows for inter-state transmission arising on account of capacity additions for intra-state benefits. The system should be strengthened to overcome the deficiencies and provide long term solution.
- (12) A strong All India Grid: Formation of strong All India Grid is a flagship endeavour to steer the development of Power System on planned path leading to cost effective fulfilment of the objective of 'Electricity to All at affordable prices'. A strong All India Grid would enable harnessing of unevenly distributed generation resources in the country to their optimum potential. This together with open access in transmission would facilitate market-determined generation dispatches, thereby resulting in supply at reduced prices to the distribution utilities and ultimately to consumers' benefit.
- (13) Grid substations where demand exceeds 300 MW: Delivery of power to the states is an important component of transmission system. The endeavour could be to provide ISTS / State grid substations (preferably a 400kV grid substation) at places where demand exceeds 300 MW. This would also enable spread of high capacity grid in India.
- (14) Development of matching transmission system at 220kV and 132kV: Development of matching transmission system at 220kV and 132kV and also the sub-transmission and distribution system so as to cater to the load growth and ensure proper utilisation of development in generation and transmission facilities for the ultimate goal of delivery of the services up to the end consumers in the country.

3.3 CHALLENGES IN TRANSMISSION PLANNING FOR MERCHANT PLANTS

3.3.1 Enactment of the Electricity Act, 2003 has opened up hitherto constrained electricity market which was characterized by long term PPAs and inability of Distribution Companies and consumers to have a choice of suppliers. Besides, de-licensing generation and removing controls on captive

- generation, the Electricity Act 2003 makes it mandatory for the transmission licensee to provide nondiscriminatory open access to its transmission system for use by any licensee or generating company for wheeling its power on payment of transmission charges. This creates enabling environment for competition among generators/traders to choose their customers and vice-versa.
- 3.3.2 The Act has also liberalized setting up of generating stations and any generating company can establish, operate and maintain a generating station. As a result, a large number of IPPs are setting up generating stations with the aim of selling power in various segments of the electricity market viz. long-term, medium-term, short-term, bilateral or day-ahead power exchange. During the 11th Plan, about 23,000 MW generating capacity was added through private sector. The contribution of the private sector i.e. Independent Power Producers (IPPs) during the 12th Plan may be of the order of about 50,000 MW. The magnitude of long term access (LTA) applications received by the CTU confirms this trend.
- 3.3.3 There is no firm knowledge of the perspective beneficiaries or delivery point when the transmission planning is taken up and for a number of generation projects and only target regions/ beneficiaries is known at the time of transmission planning. Under such scenario there is need to create adequate transmission infrastructure in time so that the new generating capacity is not bottled up after commissioning. Planning transmission in such a high uncertainty is a challenging task. There are dangers of transmission congestion at the prospective points of drawal or having stranded transmission assets for some time.
- 3.3.4 Based on application by a generator for Long Term Access, the transmission system is planned for evacuation of power from generating stations. The system planning studies are carried out considering projected load in accordance with forecasts of Electric Power Survey (EPS) and actual growth of the load in a State/region. The loads of various States are assumed irrespective of any PPAs. Thus, in this process, adequate inter-state transmission capacity gets created for evacuation of power from the generation project. However, delivery of their power to their actual beneficiaries may face some constraint. Further, adequate intra-state transmission system is also required to absorb power injected from ISTS.
- 3.3.5 During the planning process, some design margins get created in the network generally due to long term optimisation. These margins, alongwith operational and reliability margins which are variable in nature and depend upon system conditions and load flow pattern at that time provide sufficient additional capacity in the system for States to buy power more than their long-term PPAs. However, these margins can be utilized only up to a limit and may result into congestion if States start buying power in much excess of their forecasted requirements.

3.4 LEARNING FROM RECENT EXPERIENCE

- **3.4.1** In order to develop an optimum and secure transmission grid, the transmission planning criteria should fix some ground rules for market players as well. In this regard, the following are suggested for future planning:
 - (i) Interim connectivity by LILOing the lines or otherwise should be avoided as far as possible. It disturbs power flow patterns, reduces reliability and can cause overloading of the transmission lines. At the most it may be allowed for drawl of power for pre-commissioning activities and not for injecting power.
 - (ii) Request for connectivity and long term access need to be processed simultaneously. Requisite system strengthening can be carried out as part of long term access only. Connectivity without LTA can cause overloading of the transmission grid. Provision of connectivity free of cost is a perverse incentive for the applicants to avoid seeking LTA.
 - (iii) In the last few years considerable ISTS systems have been planned and implemented based on the applications of IPPs giving only target regions for drawal. As per CERC regulations, the applications were required to identify the points of drawal (State periphery) at least 3 years prior to COD, which the IPPs have generally not complied. This is a matter of concern in the context of transmission congestion particularly at the drawal end as well as for grid security. The eleven high capacity corridors were planned on this basis and CERC had given go head for implementation while simultaneously keeping a watch on the progress of generation projects. In the interest of optimum transmission planning there is a need to review this approach for transmission planning for long term transmission access applicants. It is proposed that in future, applications by the generators for LTA should be processed with firm knowledge of points of injection and drawal for at least 85% capacity, based on long term PPAs, as is the case with central generating stations like NTPC, NHPC etc. The rationale for the above suggestion is as follows:

- Experience tells that it is possible to plan a robust transmission system with 15% unallocated capacity or merchant capacity which is the same thing from a transmission perspective.
- ➢ If 85 % power is tied up in long term PPAs (based on regulated tariff or bid tariff), ISTS can be planned and implemented up to the electrical boundary of each State and the STU can also be taken into the loop for coordinated development of STU network.
- ➢ It is desirable that DISCOMS secure their base load demand through long term PPAs. Only seasonal demand and day-to-day balancing requirement should be met from the short term market because there is volatility in price in short term market. The short term supply comes from the aggregation of merchant capacity, captive plants, co-generation plants, surplus DISCOMS and State Governments vested with free hydro power. Hence only small doze of merchant capacity is required for liquidity of supply. The short term market which provides balancing supply is essential for grid stability and is an alternative to Unscheduled Interchanges. On the other hand a large quantum of merchant power/united capacity can potentially cause transmission congestion and put pressure on the grid security.
- **3.4.2** Dedicated transmission line(s) from a generating station should be radial in nature. Multiple dedicated lines from the same station to more than one grid point should not be planned.
- 3.4.3 As per section 39 of the Electricity Act, STUs need to carry out their planning function related to intra-state transmission in coordination with the CEA and CTU. There have been a few instances in the past where, the STU has planned important transmission system or allowed connectivity to large generation capacities without involving CEA and CTU and this may result in congestion/operational difficulties for the ISTS/national grid. To start with, it is proposed that STU should evolve following of their systems involving CEA and CTU, which would subsequently be firmed up through the Standing Committee forum:-
 - (a) 400 kV and above system
 - (b) Large scale harnessing of renewable generation
 - (c) System for evacuation of power from a complex having generation capacity of 500 MW above.

3.5 HIGHLIGHTS OF TRANSMISSION PLANNING CRITERIA

Transmission planning should aim at achieving an acceptable system performance and reliability requirements. These reliability requirements are specified in the Manual on Transmission Planning Criteria (1994) and updated in the National Electricity Plan (2007) notified by Government of India. Highlights of the transmission planning criteria are:

- (1) The transmission system should be planned in an integrated manner.
- (2) The optimization should include the total network including inter-state and intra-state transmission system.
- (3) The National Grid should facilitate free flow of power across the regional boundaries.
- (4) In the national approach, N-2 criteria may be adopted for testing the adequacy of transmission system from large generating complex (3000 MW or above) and multi line corridors (3 D/C lines or more), on case to case basis. Whereas, regional planning may be continued with N-1 criteria. However, while N-1 would be applied to test transmission adequacy without necessitating load shedding or rescheduling of generation during steady state operation, N-2 would be applied to test without necessitating load shedding but could be with rescheduling of generation during steady state operation.
- (5) Inter-regional exchanges and inter-connection capacity on account of plant mix considerations, generation shortages due to forced outages, diversity in weather pattern, variation in renewable energy generation and load forecasting errors in regions shall also be considered in the studies.
- (6) Inter-regional exchange with a combination of surplus and deficit scenarios for different regions maximizing surplus in surplus region and deficit in deficit region to be considered in evolving National Grid.

- (7) The adequacy of the transmission system should be tested for different load generation scenarios corresponding to one or more of the following so as to test the scenario of maximum burden on the transmission system:
 - Summer Peak Load;
 - Summer Off-peak Load;
 - Winter Peak Load;
 - Winter Off-peak Load;
 - Monsoon Peak Load:
 - Monsoon Off-peak Load;
- (8) Dispatch scenarios for maximizing transfer in specific inter-regional corridors should be considered to determine the adequacy of transmission system to take care of requirement of regional diversity in inter-regional export / import.
- (9) Sensitivity in respect of generation dispatch or load demand should be studied so as to study the possibility of increased burden on transmission system.
- (10) Size and number of interconnecting transformers (ICTs) to planned in such a way that outage of any single unit does not over load the remaining ICTs or the underlying system.
- (11) As a general rule, the ISTS shall be capable of withstanding and be secure against the following contingency outages:
 - (a) Withstand without necessitating load shedding or rescheduling of generation during steady state operation
 - Outage of a 132kV D/C line, or
 - Outage of a 220kV D/C line, or
 - Outage of a 400kV S/C line, or
 - Outage of a 400kV S/C line with series compensation, or
 - Outage of single Interconnecting Transformer, or
 - Outage of one pole of HVDC Bipole line, or
 - Outage of a 765kV S/C line without series compensation
 - (b) Withstand without necessitating load shedding but could be with rescheduling of generation during steady state operation -
 - Outage of a 400kV S/C line with TCSC, or
 - Outage of a 400kV D/C line, or
 - Outage of both poles of HVDC Bipole line, or
 - Outage of a 765kV S/C line with series compensation.
- (12) The above contingencies shall be considered assuming a pre-contingency system depletion (Planned Outage) of another 220kV D/C line or 400kV S/C line in another corridor and not emanating from the same substation. All the Generating Units may operate within their reactive capability curves and the network voltage profile shall also be maintained within voltage limits specified. For requirement of reliability, planning criteria for evacuation system for Nuclear power station that is being adopted is to consider outage of one circuit assuming pre-contingency depletion of another circuit from the same station. This is effectively N-2 without rescheduling but with no other pre-contingency.
- (13) EHV substation of 132 kV or above is to be planned with at least two transformers such that failure of one transformer shall not affect the power supply of a particular area.
- (14) Large cities with a power demand of 2000 MW or above shall also adopt N-2 criteria for supply of reliable & quality power.
- (15) Inter-regional transmission capacity should be adequate to meet outage of large machine in the importing region along with the outage of one S/C inter-regional line between the respective regions.

CHAPTER - 4

PLANNING AND DEVELOPMENT PROCESS

4.1 COORDINATED PLANNING AND STANDING COMMITTEES FOR POWER SYSTEM PLANNING (SCPSP)

Optimum development of transmission system growth plan requires coordinated planning of the inter State and intra-State grid systems. In respect of development of ISTS, the focus mainly is the interface of ISTS and State grid at drawal point of the State and the ability of ISTS to deliver this power and provide additional reliability to the State grid. In respect of development of Intra-STS, the focus is to enhance ability of State grid to transmit power drawn from ISTS and its own generating stations up to its load centres. The process of integrated planning is being coordinated by the Central Electricity Authority as part of its functions and duties under Section 73(a) of the Electricity act 2003.

To fulfil this objective and carry out integrated planning through coordination and consultation with transmission utilities and other stake-holders, CEA has constituted Regional Standing Committees for Power System Planning(SCPSP) to firm up transmission addition proposals. These Standing Committees for Power System Planning have representation of CEA, CTU, STUs of the constituent States, Regional Power Committee (RPC) of the concerned region and representatives of Central Sector Generating Companies in the region. The inter-state transmission system developed either for evacuation of the generation or for system improvement is discussed in the SCPSP of respective region(s). Transmission addition requirements arising out of Long Term Access (LTA) applications are also discussed and firmed up by the SCPSP in the presence of the applicants. Combined meeting of all the regions is held to discuss common issues.

4.2 FORMULATION OF TRANSMISSION SCHEMES

Planning of the transmission system for a particular timeframe takes into account the plans formulated by CEA and the generation projects being taken up for execution in that timeframe. The transmission system requirement covers the power evacuation system from the generation projects and system strengthening of the network for meeting the load growth in that time frame. The transmission system is evolved keeping in view the overall optimization on a National level. In this process the total investment in transmission including the inter-state as well as intra-state system is optimized. Based on the perspective plan developed by CEA and depending upon as to which generations are likely to be available during the next 2-3 years and taking into account the load growth in particular areas, CTU or STUs have to prioritize, review (if required) and take up their transmission system expansion programme for implementation.

4.3 IMPLEMENTATION OF TRANSMISSION SCHEMES (ISTS)

In respect of ISTS, after firming up of the transmission proposals in the SCPSP and considering schedule of commissioning of associated generating station, CTU and CEA take up the proposal to the Empowered Committee for consideration of its implementation. As recommended by the Empowered committee and after consideration by the Government of India, the transmission schemes are implemented either through the tariff based competitive bidding process or under cost-plus mechanism with regulated tariff by POWERGRID as the CTU in accordance with provisions of the Tariff Policy.

4.4 INTRA STATE TRANSMISSION SYSTEM PLANNING AND DEVELOPMENT

The intra-state transmission system (Intra-STS) is to be developed by the State utilities. Their network planning, scheme formulation and the programme of intra-state transmission development have to take into account the transmission system requirements for evacuation of power from state sector and private sector generation projects for intra-state benefit, absorption of power made available through ISTS, meeting the load growth in different areas of the State and improve the reliability of their system. For a coordinated development process aiming at perspective optimization in meeting the growth targets, it would be appropriate that the State Transmission Utilities prepare their State Electricity Plans taking advantage of development plans for regional grid system and focusing on the specific requirements of the concerned State.

4.5 TRANSMISSION PLANNING STUDIES

4.5.1 Studies and Analysis for Transmission Planning

In the planning phase, transmission requirements for generation projects and system reinforcement needs are evolved, based on detailed system studies and analysis keeping in view various

technological options, planning criteria and regulations. These studies/analysis are problem-specific, that is, in a particular exercise, only a sub-set of the analysis/studies may be necessary. The type of major system studies and analysis that are considered in the exercise are as follows:

- ⇒ Power flow studies
- ⇒ Short circuit studies/ Fault analysis
- □ Transient and long duration dynamic stability
- ⇒ Techno-economic analysis

4.5.2 Pre-requirements

Following data /information is needed for carrying out various system studies/analysis under the transmission planning process:

- ⇒ Data on existing system
- ⇒ Generation expansion plan
- ⇒ Seasonal load-generation scenario
- ⇒ Network expansion options
- ⇒ Transmission planning criteria
- ⇒ Technological options
- ⇒ Act, Regulations, Policies

4.6 TECHNOLOGICAL OPTIONS

The various technological options that are available now for 12th /13th Plan time frame are given below. Consideration of these options is problem-specific, that is, in a particular exercise, only a limited number of options may be relevant.

- ⇒ 220kV AC, 400kV AC, 765kV AC, 1200kV AC
- ⇒ HVDC/UHVDC (<u>+</u>500kV, <u>+</u>600kV, <u>+</u>800kV)
- ⇒ Hybrid model (AC with HVDC system)
- ⇒ High capacity lines with high conductor temperature option
- ⇒ Series compensation, dynamic reactive power compensation- TCSC, SVC, STATCOM/FACTS

CHAPTER - 5

NEW TECHNOLOGIES AND SMART GRID

5.1 THE CHALLENGES IN DESIGN AND OPERATION OF NATIONAL GRID

In order to meet the growing power demand of various regions, power transfer capacity of the grid is required to be enhanced continuously. This expansion poses few challenges that need to be met through planning and adoption of new technologies. Following are some of the challenges:

- ➤ **Right Of Way (ROW):** It is the most notable challenge that the transmission sector is facing today. The need is to develop high intensity transmission corridor (MW per meter ROW) in an environmental friendly manner.
- Reduction in land for substation: With scarce land availability there is a growing need for reduction of land use for setting up of substations systems, particularly in Metros, hilly and other urban areas.
- Flexibility in Line Loading and Regulation of Power: Due to wide variation in demand on daily as well as seasonal basis there is increased need to regulate power flow on the transmission network for grid security and optimization.
- Improvement of Operational Efficiency: Power system is required to be operated at the rated capacity with security, reliability and high availability. This can only be achieved through reliability based on-line condition monitoring, repair and maintenance in advance and making forced outage as zero.

5.2 ADOPTION OF NEW TECHNOLOGIES

Following new technologies are being implemented to meet above challenges:

- Increase in transmission voltage: Power density at different voltage level increases with increase in voltage. It is 3 MW/m for 132kV and 45 MW/m for 765kV. Transmission voltages upto 765kV levels are already in operation. A ±800 kV, 6000 MW HVDC system as a part of evacuation of bulk power from North Eastern Region (NER) to Northern Region (NR) over a distance of around 2000 km is under implementation. In addition, increasing the AC voltage level at 1200kV level has been planned. Research work for 1000kV HVDC system has also been commenced.
- ➤ **Upgradation of transmission line:** Upgradation of 220kV D/C Kishenpur- Kishtwar line in J&K to 400 kV S/c, which was first time in India, has resulted in increase of power transfer capacity of the exist transmission corridor with marginal increase in ROW (from 35m to 37m).
- ➤ **Upgradation of HVDC Terminal:** Upgradation of Talcher(ER) Kolar(SR) ±500kV HVDC terminal from 2000MW to 2500MW has been achieved seamlessly without changing of any equipment. That has been achieved with enhanced cooling of transformer and smoothing reactor with meagre cost.
- ➤ High capacity 400kV multi-circuit/bundle conductor lines: POWERGRID has designed & developed multi circuit towers (4 Circuits on one tower with twin conductors) in-house and the same are implemented in many transmission systems, which are passing through forest and RoW congested areas e.g. Kudankulam and RAPP-C transmission system.
- ➤ High Surge Impedance Loading (HSIL) Line: In order to increase the loadability of lines, development of HSIL technology is gaining momentum. POWERGRID is building up one HSIL line viz. 400kV Meerut Kaithal D/c where SIL is about 750 MW as against nominal 650MW for a normal guad bundle conductor line.
- ➤ Compact towers: Compact towers like delta configuration, narrow based tower etc. reduce the space occupied by the tower base are being used. First 765kV Sipat Seoni 2xS/c line with delta configuration tower is under operation. Further, 400kV Pole structure is also being used in high population density areas. Pole type structures with about 1.85 m base width as against 12-

15m base width of a conventional tower were used in transmission line approaching Maharani Bagh, Delhi substation to address Right-of-way problem in densely populated urban area.

- High Temperature Low Sag (HTLS) conductor line: High temperature endurance conductor to increase the current rating are in use for select transmission corridors and urban/metro areas. POWERGRID has already implemented twin INVAR conductor line for LILO portion (15kms stretch) of 400kV Dadri-Ballabgarh quad conductor line at Maharanibagh substation. Further, the Siliguri Purnea, twin Moose conductor line is being re-conductored with high temperature low sag (HTLS) conductor.
- ➤ Gas Insulated Substations (GIS): With scarce land availability there is a growing need for reduction of land use for setting up of transmission systems, particularly in Metros, hilly and other urban areas. Gas Insulated Substations (GIS), requires less space (about 70% reduction) i.e. 8-10 acres as compared to conventional substation which generally requires 30-40 acres area. In the context of economy in requirement of land, use of GIS for substations is a preferred option.
- ➤ Regulation in Power Flow/ FACTS devices: With electricity market opening up further, more and more need has been felt to utilize the existing assets to the fullest extent as well as regulate the power. This could be possible through use of power electronics in electricity network.
- ➤ Condition Based Monitoring: POWERGRID has adopted many state of the art condition monitoring & diagnostic techniques such as DGA, FRA, PDC, RVM etc. for transformers, DCRM for CBs, Third Harmonic Resistive current measurement for Surge Arrestors etc. to improve Reliability, Availability & Life Extension. Further, on-line monitoring systems for transformers are being implemented to detect faults at incipient stage and provide alarms in advance in case of fault in the transformers.
- ➤ **Preventive Maintenance:** Preventive State-of-the-art maintenance techniques for various equipments applied in system include on-line monitoring of various components of transformers and reactors, Circuit Breakers, Instrument transformers, Lightening Arrester etc.
- Reducing the gestation period of transmission projects: The gestation period of transmission projects would have to be compressed suitably, keeping in view, the reduction in gestation period of generation projects and also the possibility of deviation from the National Electricity Plan, and trading of electricity under non-discriminatory open access regime. New construction practices and technologies, wherever available, would be required to be implemented for compressing the gestation period of transmission projects. It would be desirable to adopt emerging technologies like satellite imaging for carrying out detailed survey and route alignment. The wind zone mapping and standard design of various types of towers and soil investigation could be done in advance so that construction time for the transmission system could be substantially reduced.

5.3 SMART NATIONAL GRID

5.3.1 Smart Transmission Grid - Need for Indian system

With the restructuring and liberalization of power sector, advent of new regulations, open access, power exchange etc and increasing share of short term transactions and renewable generation, it has become necessary to design and operate Indian grid as a Smart National Grid. Indian power system is expanding at a fast pace to meet the growing requirement. In order to facilitate optimal utilization of unevenly distributed energy resources, strengthening of regional grids through inter-State/regional system is being taking place continuously. Out of the five(5) regional grids, four(4) grids viz Northern, Western, Eastern and North-Eastern regions with capacity of about 133 GW have been synchronized with one another while the remaining Southern grid (49 GW) is expected to be synchronized with these grids by 2014. Total capacity of the integrated all-India grid is expected to be of the order of 300 GW including about 40 - 50 GW of renewable generation in next 5 to 6 years. The large renewable capacity with wind generation as main component is generally intermittent in nature and with its integration in grid would increase the complexity towards the monitoring and

control of such large grid. The wide spread grid and increasing complexities in its operation and of electricity market requires wide area monitoring which may only be possible by application of emerging synchrophasor technology.

WAMS (Wide Area Measurement System) based technology is the key for achieving grid performance that is expected in this changed scenario. WAMS requires installation of Phasor Measurement Units (PMUs) at the substations and power plants. The existing SCADA/EMS based grid operation has the capability to provide only steady state view of the power grid. PMU based technology with synchrophasor measurements over wide-area facilitate dynamic real time measurements and visualization of power system which are useful in monitoring safety and security of the grid as well enable in taking control/corrective actions. Developments in WAMS and other technologies in the field of measurements, communication, control & automation, advanced meters, IT infrastructure, energy storage etc. have prominent role towards successful development of Smart Grid.

5.3.2 About PMU and WAMS technologies

Phasor & synchrophasor technology: A phasor is a complex number that represents both the magnitude and phase angle of the sine waves found in AC system. Phasor measurements that occur at the same time are called "synchrophasors" and can be measured precisely by the Phasor Measurement Units(PMUs). PMU measurements are taken at high speed typically 25 or 50 samples per second – compared to one every 4 to 10 seconds using conventional technology. Each measurement is time-stamped according to a common time reference. Time stamping allows synchrophasors from different locations to be time-aligned (or synchronized) providing combined and comprehensive view of the entire grid.

A typical PMU installation as a part of wide area monitoring system (WAMS) network consists of PMUs dispersedly placed throughout the electricity grid at strategic locations in order to cover the diverse footprint of the grid. A Phasor Data Concentrator (PDC) at central location collects the information from PMUs and pass it to Supervisory Control and Data Acquisition (SCADA) system after time aligning the same. The WAMS network requires high bandwidth communication backbone for rapid data transfer matching the frequency of sampling of the PMU data.

Phasor Data Concentrator(PDC): The electrical parameters measured by number of PMUs are to be collected by some device either locally or remotely, this function is performed by Phasor Data Concentrator(PDC). A PDC forms a node in a system where phasor data from a number of PMUs is collected, correlated and fed as a single stream to other applications. In a hierarchal set up the PDCs can also be used to collect the data from number of down stream PDCs. PDC provides additional functions like - quality checks on the phasor data and inserts appropriate flags into the correlated data stream, checking disturbance flags and recording files of data for analysis, monitoring overall measurement system and providing display and record of performance, etc.

Wide Area Monitoring System (WAMS): Emerging technologies like WAMS using Phasor measurement units (PMUs) is advanced measurement system that provides synchronized measurements at a very fast rate. The WAMS technology provides real time phasor measurements in terms of amplitude and phase angle which are utilized for better visualization & help to increase the situational awareness of power system operators. The WAMS technology is the main building block towards Smart Grid development in Transmission System. The components of WAMS are Phasor Measurement Units (PMUs), Phasor Data Concentrators (PDCs), Visualization aids, Application and Analysis modules, data archiving and storage etc. The basic building block of WAMS technology is PMU, wide-band communication and PDC. The installation of PMUs has been taken up in many countries as a starting point to gain experience with this technology and these installed PMUs are later integrated with the larger implementation of PMUs.

Most programs for WAMS technology world over have three stages to implement phasor technology. The initial stage is to collect and archive phasor and frequency data from important locations throughout the grid using PMU to determine the topology and operating limits. In Second stage, the data gathered along with real-time phasor and frequency measurements to calculate grid

conditions using analytical functions to make suggestions to grid operator to keep grid stable and reliable. The third and final stage is to do all of the above automatically without human intervention.

5.3.3 Synchrophasor applications worldwide

Worldwide many utilities from North America, Europe, China, Russia and Brazil etc have started using/developing this new technology to harness the unexplored benefits in operating large electrical grids. In 2006, China's Wide Area Monitoring Systems (WAMS) for its six(6) grids had 300 PMUs installed mainly at 500kV and 330kV substations and power plants. Presently China has installed more than 1000 PMUs in their Grid and have plans to put PMUs at all 500kV substations and all power plants of 300MW and above.

In U.S there are ten(10) synchrophasor projects underway involving 57 utilities and grid operators across the country and installing about 850 networked PMUs. By 2013, the devices will be operating in nearly all regions of the country. The Eastern Interconnect Phasor Project (EIPP) (now known as the North American Synchrophasor Initiative, or NASPI), has over 40 connected phasor measurement units collecting data into a "Super Phasor Data Concentrator" system centered at Tennessee Valley Authority (TVA). Southern California Edison is successfully using synchrophasors today to trigger some automated grid protection functions on their system. The Oklahoma Gas & Electric Co.(OG&E), USA uses synchrophasor technology to determine if a disturbance is cleared by high-speed or step-distance(delayed) tripping. The data is being used to locate the source of event disturbance and proceed with an investigation. Another valuable use of synchrophasor data is the detection of equipment failure, most of which is not detectable by SCADA system. System stability assessment is being carried out using synchrophasor data especially capturing the intricacies of an interconnected system like low frequency oscillations due to generation control problem or other reasons. Apart from above nations, other countries like South Africa, Brazil, Russia, Western Electricity Coordinating Council (WECC) whose service territory extends from Canada to Mexico and some European countries are also planning to deploy PMUs in the system.

5.3.4 Present PMU project in India and its benefits

The process for installation of PMUs has already been started and nine (9) PMUs (at Moga, Kanpur, Dadri and Vindhyachal in first phase and Agra, Bassi, Hisar, Kishenpur and Karcham Wangtoo in second phase) have already been commissioned in Northern Region with a Phasor data concentrators (PDC) at NRLDC. Phasor data at each PMU is being sampled at 25 samples per second with GPS time stamping and transferred to phasor data concentrator (PDC) provided at NRLDC through dedicated 64Kbps fiber optic communication link. The phasor data received from all the locations is merged and time aligned in the PDC. The time aligned data from PDC is provided to operator console for visualization. PDC data is also fed to a data historian provided at NRLDC. Data from historian can be made available to external database through ODBC (Open Database Connectivity) and spreadsheet for further analysis. PDC has also been provided with OPC (Object Linking & Embedding for Process Control) server in order to transfer real time phasor data to existing SCADA system.

With the commissioning of Northern Region pilot project, Phasor data from different locations is available at NRLDC and its existing SCADA system. From the phasor data, load angle between different pockets of the grid is available more accurately with updation time of order of few milliseconds and this enhances the capability of the tools available to grid operator. The data historian provided is collecting concentrated data from PDC and shall be useful for post event analysis of any grid incidences. In the past data has also been utilized to observe low frequency oscillations and checking effectiveness of system integrated protection scheme(SIPS) operations.

5.3.5 Plan for WAMS based Smart Transmission Grid in India

Proposal for installation of PMUs in other regions is also in the pipeline. Full implementation of WAMS technology would require installation of PMUs in each region (about 1500-1700 PMUs initially in XII Plan in India) and reliable communication network with very high band width and with least latency. Phasor data concentrators (about 50-60 in XII Plan) are proposed to be installed along with PMUs at various strategic grid locations and control centres. The State Load Despatch Centres

may have Master PDCs and National and Regional Load Despatch Centres may have a Super PDCs working in hierarchy for real time dynamic state monitoring of the complete National Grid in a unified manner. This concept is depicted in following schematic diagram:

In view of large number of PMUs and PDCs required in India, it would be beneficial if we have indigenous capability for their manufacturing and testing in the country.

5.3.6 Need for fibre optic based communication system

Reliable voice and data communication has become critically important. The requirement of effective communication system has increased with the advent of special protection schemes, wide area measurement technology, SCADA system and remote operation. Getting real time data of various power system elements i.e. substations, generating plants, HVDC links, Interstate transmission lines etc. has become an essential prerequisite for successful operation of modern power system as a 'Smart Transmission Grid'. Presently three modes of communication are being used viz, PLCC, Microwave and Fibre optic in power system operation. The Microwave links operating in 2.3 - 2.5 GHz band is being withdrawn by Ministry of Communication. The PLCC is considered an integral part of power system and its usage for power system are protection of the power system and providing speech communication in limited area. All these requirements can be met by optic fibre communication (OFC).

5.3.7 Possible Benefits of PMU based Smart Transmission Grid

Availability of PMUs and PDCs at strategic locations in the grid, robust fibre optic communication network and implementation of enabling applications will facilitate:-

> situational awareness of grid events and dynamic state of the grid in terms of angular

stability and voltage stability,

- > optimization towards transmission corridor capability.
- > control and regulation of power flow to maintain grid parameters,
- load shedding and other load control techniques such as demand response mechanisms to manage a power system
- deployment of remedial action schemes(RAS) and system integrated protection schemes(SIPS),
- identifying corrective actions to be taken in the event of severe contingency to prevent grid disturbances,
- monitoring of Inter-area oscillations,
- adaptive islanding,
- > network model validation,
- > CT/CVT calibration, etc

CHAPTER - 6 XI PLAN PROGRESS AND PROGRAMME

6.1 INTRODUCTION

- **6.1.1** At the end of X Five-Year Plan, corresponding to the total installed generation capacity of 132 GW as on 31st March 2007 and peak demand of 101 GW, the transmission system in the country at 765/HVDC/400/230/220kV stood at 198 thousand circuit kilometres (Tckm) of transmission lines and 257 GVA of substation capacity.
- 6.1.2 Considering the shortages (13.8% in peaking and 9.6% in energy) as at the end of 10th plan and to meet the demand as forecasted by the 17th EPS, the generation capacity addition requirement for the XI Plan was assessed to be 78.7 GW. However, taking into account the resource constraints and factoring that the demand growths was likely to be less than the 17th EPS projections, the capacity addition programme was reviewed and accordingly 62.4 GW comprising 8.2 GW of hydro, 50.8 GW of thermal and 3.4 GW of nuclear was targeted for the XI plan. Based on the list of generation projects corresponding to this programme of 62.4 GW, transmission requirements at 132 kV level and above including the power evacuation system as well as network strengthening were identified. This transmission programme became the basis for taking up detailed planning exercise and finalizing of their transmission development programme by the Central Transmission Utility and the State Transmission Utilities corresponding to the actual pace of 11th Plan development happening in generation and the actual area-wise load growths.
- 6.1.3 The actual generation capacity addition during 11th Plan has been at variance with respect to the 62.4 GW plan. Accordingly, the actual 11th Plan transmission programme has also been at variance. Apart from changes in associated transmission system corresponding to deferred /slipped /changed generation, also necessitated review of transmission needs. Accordingly, the transmission programme taken up for execution was revised as per the actual needs matching with generation projects. A few of the transmission works are delayed/held up because of Right-of-Way(RoW) issues, non-availability/delay in getting Forest Clearance and delay in land acquisition for substations.

6.2 SUMMARY OF XI PLAN TRANSMISSION PROGRAMME

The following table gives the transmission system in the country as achieved at the end of VIII, IX and X Plan periods:

	Unit	At the end of	At the end of VIII Plan ie At the end of IX Plan ie	
		March 1997	March 2002	X Plan ie March 2007
TRANSMISSION LINES		VIII Plan	IX Plan	X Plan
HVDC +/- 500 kV	ckm	1634	3138	5872
765 kV	ckm	0	971	2184
400 kV	ckm	36142	49378	75722
230/220 kV	ckm	79600	96993	114629
HVDC 200kV Monopole	ckm	0	162	162
Total Transmission Line	ckm	117376	150642	198569
SUBSTATIONS - AC		VIII Plan	IX Plan	X Plan
765 kV	MVA	0	0	0
400 kV	MVA	40865	60380	92942
230/220 kV	MVA	84177	116363	156497
Total- AC Substation	MVA	125042	176743	249439
HVDC TERMINALS		VIII Plan	IX Plan	X Plan
HVDC Bipole+Monopole	MW	1500	3200	5200
HVDC BTB	MW	1500	2000	3000
Total- HVDC Terminal Capacity	MW	3000	5200	8200

Summary of progress during 11th Plan:

Transmission System Type / Voltage Class	Unit	At the end of X Plan (Mar.	Addition during XI Plan	At the end of XI Plan i.e. Mar 2012
		2007)	#	
TRANSMISSION LINES				
(a) HVDC ± 500kV Bipole	ckm	5872	3560	9432
(b) 765 kV	ckm	2184	3546	5250
(c) 400 kV	ckm	75722	37645	106819
(d) 230/220kV	ckm	114629	25175	135980
(e)HVDC 200kV Monopole	ckm	162	-162*	0
Total-Transmission Lines	ckm	198569	69926	257481
SUBSTATIONS				
(a) 765 kV	MVA	0	25000	25000
(b) 400 kV	MVA	92942	58085	151027
(c) 230/220 kV	MVA	156497	67277	223774
Total – Substations	MVA	249439	150362	399801
HVDC				
(a) Bi-pole link capacity	MW	5000	1750	6750
(b) Back-to back capacity	MW	3000	0	3000
(c) HVDC 220 kV Mono-pole	MW	200	-200*	0
Total of (a), (b) & (c)	MW	8200	1750	9750

^{*}Barsur -Lower Sileru monopole not in operation.

Up to 10th Plan, the ckm figures show the total stringing carried out. From 11th Plan onwards, the policy has changed to reckon only the lines that have been commissioned or have become ready for commissioning. Accordingly, the addition during 11th Plan has been adjusted with 10852 ckm. (765kV – 480 ckm, 400kV – 6548 ckm and 220kV – 3824 ckm).

6.3 DEVELOPMENT OF HVDC SYSTEMS DURING XI PLAN

A summary of development of HVDC systems in India during the XI Plan period is given below:

HVDC Transmission	Systems		At the end of X Plan	Addition during XI Plan	At end of XI Plan i.e. 3/2012	
HVDC Bipole Line						
Chandrapur-Padghe	± 500kV	MSEB	ckm	1504		1504
Rihand-Dadri	± 500kV	PGCIL	ckm	1634		1634
Talcher-Kolar	± 500kV	PGCIL	ckm	2734		2734
Balia-Bhiwadi(2500MW)	± 500kV	PGCIL	ckm		1580	1580
Mundra-Mohindergarh	± 500kV	Adani	ckm		1980	1980
TOTAL				5872	3560	9432
HVDC Bi-pole Transmission	Capacity					

Chandrapur-Padghe	bipole	MSEB	MW	1500		1500
Rihand-Dadri	bipole	PGCIL	MW	1500		1500
Talcher-Kolar	bipole	PGCIL	MW	2000	500	2500
Balia-Bhiwadi	bipole	PGCIL	MW		1250	1250
Mundra-Mohindergarh	bipole	Adani	MW			
TOTAL			MW	5000	1750	6750
HVDC Back-to-back Transmiss	on Capaci	ty				
Vindhachal	b-t-b	PGCIL	MW	500		500
Chandrapur	b-t-b	PGCIL	MW	1000		1000
Gazuwaka	b-t-b	PGCIL	MW	1000		1000
Sasaram	b-t-b	PGCIL	MW	500		500
TOTAL			MW	3000	0	3000
HVDC Monopole Line						
Barsur-Lower Sileru	200kV	CSEB/ APTRANSCO	ckm	162		162*
TOTAL			ckm	162	-162*	0
HVDC Mono-pole Transmission	Capacity					
Barsur-Lower Sileru	M-pole	CSEB/ APTRANSCO	MW	200		200*
TOTAL				200	-200*	0
Grand Total			ckm	6034	3560	9432
			MW	8200	1750	9750

^{*}Barsur –Lower Sileru monopole not in operation.

6.4 DEVELOPMENT OF 765KV SYSTEMS DURING XI PLAN

Up to 10th plan all 765 kV systems in the country were operated at 400kV. Sipat to Seoni was the first system that was operated at 765kV in Sept 2007. This set a new milestone in development of transmission system in the country. A summary of development of 765kV transmission system in India during the XI Plan period is given below:

765kV Transmission Systems				At the end of X Plan	Addition during XI Plan	at end of XI Plan i.e. 3/2012
765kV Transmission Lines						
Anpara-Unnao	S/C	UPPCL	ckm	409		409
Kishenpur-Moga L-1(W)	S/C	PGCIL	ckm	275		275
Kishenpur-Moga L-2(E)	S/C	PGCIL	ckm	287		287
Tehri-Meerut Line-1	S/C	PGCIL	ckm	186		186
Tehri-Meerut Line-2	S/C	PGCIL	ckm	184		184
Agra-Gwalior Line-1	S/C	PGCIL	ckm	128		128
Gwalior-Bina Line-1	S/C	GCIL	ckm	235		235
Gaya-Balia	S/C	PGCIL	ckm		228	228
Balia-Lucknow	S/C	PGCIL	ckm		320	320
Sipat-Seoni Line-1	S/C	PGCIL	ckm		351	351
Sipat-Seoni Line-2	S/C	PGCIL	ckm		354	354
Seoni – Bina (to be initially op. at 400KV)	S/C	PGCIL	ckm		293	293
Seoni-Wardha line-1	S/C	PGCIL	ckm		269	269

(to be initially op. at 400KV)						
Seoni-Wardha line-2	S/C	PGCIL	ckm		261	261
(to be initially op. at 400KV)						
Gwalior-Bina Line-2	S/C		ckm		233	233
Agra-Gwalior Line-2	S/C	PGCIL	ckm		128	128
(to be initially op. at 400KV)						
LILO of Tehri –Meerut D/C line at Tehri	S/C	PGCIL	ckm		21	21
Pooling Point						
(to be charged at 400kV) LILO of Sipat - Seoni (2nd Ckt) at WR	S/C	PGCIL	ckm		16	16
Pooling station Near Sipat	3/0	FGCIL	CKIII		16	16
Sasaram- Fatehpur(Line-1)	S/C	PGCIL	ckm		337	337
Satna-Bina line-1	S/C	PGCIL	ckm		274	274
Bina- Indore	S/C	PGCIL	ckm		311	311
Gaya- Sasaram	S/C	PGCIL	ckm		148	148
Shifting of Anpara-B -Unnao point from Anpara- B to Anpara-C	S/C	UPPCL	ckm		1	1
Shifting of Anpara-B -Unnao termaination point at Unnao	S/C	UPPCL	ckm		1	1
TOTAL			ckm	1704	3546	5250
765kV Sub-stations						
Seoni Sub Station		PGCIL	MVA		1500	1500
Seoni New		PGCIL	MVA		1500	1500
Seoni Extn		PGCIL	MVA		1500	1500
Fatehpur		PGCIL	MVA		3000	3000
Gaya		PGCIL	MVA		3000	3000
WR Pooling Station near Sipat		PGCIL	MVA		3000	3000
Balia		PGCIL	MVA		3000	3000
Lucknow		PGCIL	MVA		3000	3000
Wardha		PGCIL	MVA		4500	3000
Unnao		UPPTCL	MVA		1000	1000
TOTAL			MVA	0	25000	25000

6.5 PROGRESS AND PROGRAMME DURING XI PLAN

In respect of 400kV and 220kV transmission system, the actual achievements during the first four years of the 11th Plan i.e. 2007-08, 2008-09, 2009-10, 2010-11 and 2011-12, are detailed at Annex-6.1, Annex-6.2, Annex-6.3, Annex-6.4 and Annex-6.5 respectively. These include both ISTS and Intra-STS transmission systems. The summary of 11th plan achievements is given below:

6.5.1 Transmission System Addition during 2007-08

During 2007-08 12,440 Ckm of transmission lines (220kV and above) and 24,423 MVA of transformation capacity was commissioned. It may be mentioned that RAPP-Kankroli D/C line was completed ahead of the commissioning of RAPP Extn. Project (2 x 220 MW) by making special efforts, but the generation from the project could not be achieved due to the non-availability of fuel. The another achievement was the commissioning of 765 kV S/C Sipat-Seoni line in Sept.,07 before the commissioning schedule of 500 MW unit#5 of Sipat project in March,08. Transmission lines and sub-station at 765kV, 400 kV and 220 kV completed during the year 2007-08 are given at Annex 6.1.

6.5.2 Transmission System Addition during 2008-09

During 2008-09 around 9913 Ckm of transmission Lines (220kV and above) and 18,680 MVA Transformation capacity was commissioned. 765 kV Sipat-Seoni Line II, S/C , 354 Ckm was commissioned during April 2008 to evacuate power from Sipat STPP-I Generating Station. 765 kV Agra-Gwalior 2nd S/C (operated at 400kV), 128 Ckm. was commissioned during March 2009 to evacuate power from Kahalgaon STPS-II. 765 kV Seoni-Wardha line, S/C, 269 Ckm. was commissioned during March 2009 to evacuate power from Sipat STPP-I. Transmission lines and sub-station at 765kV, 400 kV and 220 kV completed during the year 2008-09 are given at Annex 6.2

6.5.3 Transmission System Addition during 2009-10

During 2009-10 around 11,790 Ckm of transmission lines (220kV and above) and 21,315 MVA and transformation Capacity was commissioned. During this period 765 kV (operated at 400kV) S/C line from Bina to Gwalior (233 Ckm) was commissioned during Feb. 2010 for Western Regional Transmission system Strengthening and 765 kV Seoni to Bina S/C line (operated at 400kV) was also commissioned in March 2010 which is associated with Barh Generating Station and has been completed before the commissioning of the Barh Generating Station. Transmission lines and substation at 765kV, 400 kV and 220 kV completed during the year 2009-10 are given at Annex 6.3.

6.5.4 Transmission System Addition during 2010-11

During 2010-11, around 15,367 Ckm of transmission lines (220kV and above) and 31,657 MVA of Transformation Capacity was achieved. Transmission lines and sub-station at 765kV, 400 kV and 220 kV completed during the year 2010-11 are given at Annex 6.4.

6.5.5 Transmission System Addition during 2011-12

During 2011-12, upto March 2012, around 20434 Ckm of transmission lines (220kV and above) and 54287 MVA of Transformation Capacity was achieved. Transmission lines and sub-station at 765kV, 400 kV and 220 kV completed during this period of 11th plan, are given at Annex-6.5.

6.6 DEVELOPMENT OF INTER-REGIONAL TRANSMISSION CAPACITY DURING THE XI PLAN

6.6.1 Progress and achievement at the end of 11th Plan

At the end of the 10th Plan, the inter-regional transmission capacity at 132kV and above was 14050 MW. During the period of XI Plan, (April 2007 to March 2012), 13900 MW of inter-regional transmission capacity has been added, taking the total inter-regional transmission capacity (at voltage level 132kV and above) to 27750 MW as on 31-03-2012. (This includes (i) 2100 MW Gaya-Balia 765kV S/C line which has been commissioned with contingency arrangement at 400kV and (ii) 2100 MW Sasaram-Fatehpur 765kV S/c line which has been commissioned at 765kV level as Gaya -Fetehpur line. It excludes 200MW of Bursur-Lower Sileru HVDC Monopole which is not in operation.)

Details of the inter-regional capacity up to the end of 11th plan are given below:

(Transmission capacity in MW)

Details of Inter-Regional Transmission – Existing at the end of 11th Plan		At the end of 10th Plan	Addition during 11th Plan	At the end of 11th Plan
ER – SR:				
Gazuwaka HVDC back to back		1000		1000
Balimela-Upper Sileru 220kV S/C		130		130
Talcher-Kolar HVDC Bipole		2000		2000
Upgradation of Talcher–Kolar HVDC bipole			500	500
ER-SR total		3130	500	3630
ER –NR :				
Muzaffarpur - Gorakhpur 400kV D/C (Quad Moose) with TCSC		2000		2000
Dehri-Sahupuri 220kV S/C		130		130
Patna-Balia 400kV D/C quad		800	800	1600
Biharshariff-Balia 400kV D/C quad			1600	1600
Barh-Balia 400kV D/C quad	#		1600	1600
Sasaram–Fatehpur 765kV S/C line-1	##		2100	2100
Gaya-Balia 765kV S/C	*		2100	2100
Sasaram:		500	500	1000
(i) HVDC back to back				
(ii) Bypassing of HVDC back-to- back to establish Sasaram-				
Allahabad/Varanasi 400kV D/C line				
ER-NR total		3430	8700	12130

ER – WR :				
Rourkela-Raipur 400kV D/C		1000		1000
TCSC on Rourkela-Raipur 400kV D/C		400		400
Budhipara-Korba220kV D/C+S/C		390		390
Ranchi-Sipat 400kV D/C (40% SC)			1200	1200
Ranchi-Rourkela-Raipur 400kV D/C with fixed series			1400	1400
capacitor, TCSC in parallel line				
Ranchi – WR (Sipat) Pooling Point 765kV S/C	\$\$			-
ER-WR total		1790	2600	4390
ER - NER :				
Birpara-Salakati 220kV D/C		260		260
Malda-Bongaigaon 400kV D/C		1000		1000
Bongaigaon-Siliguri 400kV D/C Quad **	\$\$			-
ER-NER total	111	1260		1260
NR – WR :				
Vindhychal HVDC back to back		500		500
Auria-Malanpur 220kV D/C		260		260
Kota-Ujjain 220kV D/C		260		260
Agra-Gwalior 765kV S/C line-1 400kV op.		1100		1100
Agra-Gwalior 765kV S/C line-2 400kV op.			1100	1100
Kankroli-Zerda 400kV D/C			1000	1000
NR-WR total		2120	2100	4220
WR-SR:				
Chandrapur HVDC back to back		1000		1000
Barsur-L.Sileru 200kV HVDC mono pole	@	200	(-200)	0
Kolhapur-Belgaum 220kV D/C		260		260
Ponda – Nagajhari 220kV D/C		260		260
WR-SR total		1720		1520
TOTAL ALL INDIA (200kV & above), in MW		13450	13900	27150
132kV/110kV Inter-Regional links	\$	600	0	600
4xD/C + 4XS/C = 12 ckts				
TOTAL ALL INDIA (110/132kV & above), in MW		14050	13900	27750

Note:

- @ 200 MW HVDC Monopole is currently not in operation.
- \$ 132/110kV lines are operated in radial mode from time to time.
- *- Gaya- Balia 765kV S/C line has been commissioned with contingency arrangement at 400kV.
- ** Under Private Sector
- # Barh-Balia 400kV D/C of 1600 MW has been completed, but is yet to be commissioned.
- ## Sasaram-Fatehpur line has been commissioned at 765kV level as Gaya -Fatehpur line.
- \$\$ slipped to early 12th plan.

6.6.2 Planned v/s Achieved I-R capacity in 11th Plan

The transmission capacity of Inter-Regional links planned, as per mid-term appraisal (MTA), to be achieved by end of 11th Plan is 32650 MW. The Narendra – Kolhapur 400kV D/C line with HVDC back-to-back terminal of 1000 MW capacity at Kolhapur was reviewed and has been planned as 765 kV link between Narendra (Karnataka-SR) and Kolhapur (Maharashtra-WR). This line would be D/C line and would be initially operated at 400 kV. The line now is planned to be completed in 12th Plan. So, out the remaining 31650 MW capacity, 27950 MW was commissioned in the 11th plan. Gaya – Balia 765kV S/C line line was commissioned with contingency arrangement at 400kV and Sasaram– Fatehpur line has been commissioned at 765kV level as Gaya –Fatehpur line. Status of the remaining 3700 MW capacity links is given in the following table:

SI. No.	Inter- regional link	I-R capacity MW	Implementing Agency	Scheme under which covered	Likely date of completion
1.	Ranchi - WR Pooling Station 765kV S/c line	2100	PGCIL	As a part of Common scheme for 765kV pooling stations and network for NR (Common for Sasan UMPP+ NKP+ Maithon/ Koderma/Mejia/Bokaro/Raghunathpur/ Durgapur + Import by NR from ER and from NER/SR/WR via ER) and Common scheme for network for WR (Common for NKP+Maithon/Koderma/ Mejia/Bokaro + Raghunathpur/ Durgapur + Import by WR from ER and from NER/SR/WR via ER)	August 2012
2.	Bongaigaon – Siliguri 400 kV D/C quad line	1600	M/s Sterlite East North Interconnection Company Limited	Transmission Scheme for enabling import of NER/ER surplus by NR	March 2013. (LOI was placed on 7/1/2010).
	Total	3700			

6.7 CHALLENGES IN IMPLEMENTATION OF XI PLAN

6.7.1 Challenges

Transmission projects are planned along with the upcoming generation projects and any delay/mismatch in commissioning of associated evacuation lines may result in bottling up of power. For some of the transmission works, implementing agencies face challenges in completion of the task. Main challenges are: delay in forest clearance, right of way problems and challenges in acquiring land for substations. Details of transmission line projects (220kV and above) under execution where major forest clearance problems were encountered by implementing agencies (as observed during the XI Plan) are given at Annex - 6.6.

6.7.2 Forest Clearance

Forest Clearance is a mandatory requirement for the portion of the line traversing through the forest. While finalizing the route alignment emphasis is on avoidance of forest, National Parks, Wildlife Sanctuary etc., however, it is not possible to avoid such areas completely. Getting Forest Clearance takes considerable time due to lengthy process and involvement of different levels. The Project Authorities are facing problems in getting the consent of Gram Sabhas which has been

made compulsory under Forest Act 2006. Even the State Governments take lot of time in forwarding the proposal to MOEF for further clearances.

6.7.3 Right of Way (RoW)

With increase in transmission voltage, the requirement of land for tower footing and RoW has increased substantially. Despite adoption of latest technological solutions to optimize the RoW requirements, difficulties in getting RoW results in delay in implementation of transmission projects. Norms for evaluation and fixing of compensation for RoW vary from state to state.

6.7.4 Land for Substations:

The land for substations is normally government land or private land acquired through Land Acquisition Act 1984. While doing town planning for new suburban area and industrial centers, provision for laying of substation and transmission line should be kept in mind. To reduce the requirement of land for constructing substation use of Gas Insulated Substations (GIS) which requires about 30 % land compared to conventional substation is being increasingly adopted in metro, hilly and other urban areas.

6.8 DEVELOPMENT OF REGIONAL GRIDS DURING THE XI PLAN

Following are on-going transmission schemes that have been completed during the 11th plan or works on which has been initiated in the 11th Plan. The transmission system under various schemes associated with generation projects and ISTS system strengthening schemes are given in various Tables in Annex- 6.7.

6.8.1 Northern Region

System Strengthening Schemes in Northern Region

System strengthening scheme	Transmission System in Table no.	
NRSSS-XIII	NR-IS-01/Ch6	
	(scheme under construction)	
NRSSS-XIV	NR-IS-02/Ch6	
NRSSS - XV	NR-IS-03/Ch6	
	(scheme under construction)	
NRSSS - XVI	NR-IS-04/Ch6	
	(scheme under construction)	
NRSSS - XVII	NR-IS-05/Ch6	
NRSSS - XVIII	NR-IS-06/Ch6	
	(scheme under construction)	

ATS for Generation projects located in Northern Region

Generation Project located in	IC	SECTOR	Transmission System in Table no.
State	(MW)		
Himachal Pradesh:			
Chamera III HEP	231	Central	NR-HP-01/ Ch6
			(Transmission system under
(slipped to 12 th Plan)			construction)
Parbati - III HEP	520	Central	NR-HP-02/Ch6
			(Transmission system under
(slipped to 12 th Plan)			construction)
Karcham Wangtoo HEP	1000	IPP	NR-HP-03/Ch6
			(Transmission system under
			construction)

Malana II HEP	Budhil HEP (slipped to 12 th Plan)	70	IPP	NR-HP-04/Ch6
Uri - II HEP	Malana II HEP	100	IPP	NR-HP-05/Ch6
Uri - II HEP				
(slipped to 12 th Plan) Chutak (slipped to 12 th Plan) NR-JK-02/Ch6 (slipped to 12 th Plan) Wimoo Bazgo (slipped to 12 th Plan) Uttrakhand: Koteshwar (U1- U4) Delhi: Pragati CCGT Ph-III (PPCL) (GT1, T50 State NR-DL-01/Ch6 GT2,GT3) (slipped to 12 th Plan) Rithala CCPP (NDPL) Interval NR-JK-03/Ch6 NR-JK-01/Ch6 IPP NR-HR-01/Ch6 IPP NR-HR-01/Ch6 Rajasthan: Jallipa Kapurdi TPP (U-1 -4) (Raj S40 IPP NR-RJ-01/Ch6 West Power) Uttar Pradesh: Anpara ' C' (LANCO ANPARA PPL U-1, 2 Harduaganj TPS (U-8) 250 State NR-UP-01/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) NR-JK-03/Ch6 (Transmission system under		0.40		ND III 04/01 0
Central Central NR-JK-02/Ch6	Uri - II HEP	240	Central	
Chutak	(slipped to 12 th Plan)			
Slipped to 12 th Plan		44	Central	NR-,IK-02/Ch -6
NR-JK-03/Ch6		7.7	Ochilai	1411 010 02/011. 0
Uttrakhand: Koteshwar (U1- U4) 400 Central NR-UK-01/Ch6 Delhi: Pragati CCGT Ph-III (PPCL) (GT1, GT2,GT3) (slipped to 12 th Plan) Rithala CCPP (NDPL) 108 IPP NR-DL-01/Ch6 Haryana: Jhajjar-I (Indira Gandhi) TPS 1000 Central (NR-HR-01/Ch6 Jhajjar-I (Indira Gandhi) TPS 1320 IPP NR-HR-02/Ch6 Rajasthan: Jallipa Kapurdi TPP (U-1 -4) (Raj West Power) 540 IPP NR-RJ-01/Ch6 West Power) Uttar Pradesh: Anpara ' C' (LANCO ANPARA PPL U-1,2 IPP NR-UP-01/Ch6 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under	Nimoo Bazgo	45	Central	NR-JK-03/Ch6
Uttrakhand: Koteshwar (U1- U4) 400 Central NR-UK-01/Ch6 Delhi: Pragati CCGT Ph-III (PPCL) (GT1, GT2,GT3) (slipped to 12 th Plan) Rithala CCPP (NDPL) 108 IPP NR-DL-01/Ch6 Haryana: Jhajjar-I (Indira Gandhi) TPS 1000 Central (NR-HR-01/Ch6 Jhajjar-I (Indira Gandhi) TPS 1320 IPP NR-HR-02/Ch6 Rajasthan: Jallipa Kapurdi TPP (U-1 -4) (Raj West Power) 540 IPP NR-RJ-01/Ch6 West Power) Uttar Pradesh: Anpara ' C' (LANCO ANPARA PPL U-1,2 IPP NR-UP-01/Ch6 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under	(slipped to 12 th Plan)			
NR-UK-01/Ch6				
Delhi: Pragati CCGT Ph-III (PPCL) (GT1, GT2,GT3) (slipped to 12 th Plan) Rithala CCPP (NDPL) 108 IPP NR-DL-02/Ch6 Haryana: Jhajjar-I (Indira Gandhi) TPS 1000 Central NR-HR-01/Ch6 (U-1, 2) Jhajjar (Mahatma Gandhi) TPS 1320 IPP NR-HR-02/Ch6 Rajasthan: Jallipa Kapurdi TPP (U-1 -4) (Raj West Power) 540 IPP NR-RJ-01/Ch6 Uttar Pradesh: Anpara ' C' (LANCO ANPARA PL U-1,2 1200 IPP NR-UP-01/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under				
Pragati CCGT Ph-III (PPCL) (GT1, GT2,GT3) (slipped to 12 th Plan) Rithala CCPP (NDPL) 108 IPP NR-DL-02/Ch6 Haryana: Jhajjar-I (Indira Gandhi) TPS 1000 Central NR-HR-01/Ch6 (U-1, 2) Jhajjar(Mahatma Gandhi) TPS 1320 IPP NR-HR-02/Ch6 Rajasthan: Jallipa Kapurdi TPP (U-1 -4) (Raj S40 IPP NR-RJ-01/Ch6 West Power) Uttar Pradesh: Anpara ' C' (LANCO ANPARA PPL U-1,2 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under	Koteshwar (U1- U4)	400	Central	NR-UK-01/Ch6
Pragati CCGT Ph-III (PPCL) (GT1, GT2,GT3) (slipped to 12 th Plan) Rithala CCPP (NDPL) 108 IPP NR-DL-02/Ch6 Haryana: Jhajjar-I (Indira Gandhi) TPS 1000 Central NR-HR-01/Ch6 (U-1, 2) Jhajjar(Mahatma Gandhi) TPS 1320 IPP NR-HR-02/Ch6 Rajasthan: Jallipa Kapurdi TPP (U-1 -4) (Raj S40 IPP NR-RJ-01/Ch6 West Power) Uttar Pradesh: Anpara ' C' (LANCO ANPARA PPL U-1,2 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under				
Pragati CCGT Ph-III (PPCL) (GT1, GT2,GT3) (slipped to 12 th Plan) Rithala CCPP (NDPL) 108 IPP NR-DL-02/Ch6 Haryana: Jhajjar-I (Indira Gandhi) TPS 1000 Central NR-HR-01/Ch6 (U-1, 2) Jhajjar(Mahatma Gandhi) TPS 1320 IPP NR-HR-02/Ch6 Rajasthan: Jallipa Kapurdi TPP (U-1 -4) (Raj S40 IPP NR-RJ-01/Ch6 West Power) Uttar Pradesh: Anpara ' C' (LANCO ANPARA PPL U-1,2 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under	Delhi:			
GTZ,GT3) (slipped to 12 th Plan) Rithala CCPP (NDPL) 108 IPP NR-DL-02/Ch6 Haryana: Jhajjar-I (Indira Gandhi) TPS (U-1, 2) Jhajjar(Mahatma Gandhi) TPS 1320 IPP NR-HR-01/Ch6 Rajasthan: Jallipa Kapurdi TPP (U-1 -4) (Raj West Power) Uttar Pradesh: Anpara ' C' (LANCO ANPARA PPL U-1,2 Harduaganj TPS (U-8) Parichha TPS Extn. Rosa St II (U-3 & 4) Rosa St II (U-3 & 4) Representation of the product of the produc		750	State	NR-DL-01/Ch6
(slipped to 12 th Plan) Rithala CCPP (NDPL) Haryana: Jhajjar-I (Indira Gandhi) TPS (U-1, 2) Jhajjar(Mahatma Gandhi) TPS 1320 IPP NR-HR-01/Ch6 Rajasthan: Jallipa Kapurdi TPP (U-1 -4) (Raj S40 IPP NR-RJ-01/Ch6 West Power) Uttar Pradesh: Anpara 'C' (LANCO ANPARA PL U-1,2 Harduaganj TPS (U-8) Parichha TPS Extn. Rosa St II (U-3 & 4) Rosa St II (U-3 & 4) Residuagan PR NR-UP-04/Ch6 (Transmission system under				
Rithala CCPP (NDPL) 108 IPP NR-DL-02/Ch6	(slipped to 12 th Plan)			
Jhajjar-I (Indira Gandhi) TPS1000CentralNR-HR-01/Ch6(U-1, 2)Jhajjar(Mahatma Gandhi) TPS1320IPPNR-HR-02/Ch6Rajasthan:Jallipa Kapurdi TPP (U-1 -4) (Raj West Power)540IPPNR-RJ-01/Ch6Uttar Pradesh:NR-UP-01/Ch6Anpara ' C' (LANCO ANPARA PL U-1,2IPPNR-UP-01/Ch6Harduaganj TPS (U-8)250StateNR-UP-02/Ch6Parichha TPS Extn.500StateNR-UP-03/Ch6Rosa St II (U-3 & 4)600PrivateNR-UP-04/Ch6 (Transmission system under	Rithala CCPP (NDPL)	108	IPP	NR-DL-02/Ch6
Jhajjar-I (Indira Gandhi) TPS1000CentralNR-HR-01/Ch6(U-1, 2)Jhajjar(Mahatma Gandhi) TPS1320IPPNR-HR-02/Ch6Rajasthan:Jallipa Kapurdi TPP (U-1 -4) (Raj West Power)540IPPNR-RJ-01/Ch6Uttar Pradesh:NR-UP-01/Ch6Anpara ' C' (LANCO ANPARA PL U-1,2IPPNR-UP-01/Ch6Harduaganj TPS (U-8)250StateNR-UP-02/Ch6Parichha TPS Extn.500StateNR-UP-03/Ch6Rosa St II (U-3 & 4)600PrivateNR-UP-04/Ch6 (Transmission system under				
Jhajjar-I (Indira Gandhi) TPS1000CentralNR-HR-01/Ch6(U-1, 2)Jhajjar(Mahatma Gandhi) TPS1320IPPNR-HR-02/Ch6Rajasthan:Jallipa Kapurdi TPP (U-1 -4) (Raj West Power)540IPPNR-RJ-01/Ch6Uttar Pradesh:NR-UP-01/Ch6Anpara ' C' (LANCO ANPARA PL U-1,2IPPNR-UP-01/Ch6Harduaganj TPS (U-8)250StateNR-UP-02/Ch6Parichha TPS Extn.500StateNR-UP-03/Ch6Rosa St II (U-3 & 4)600PrivateNR-UP-04/Ch6 (Transmission system under	Harvana:			
U-1, 2		1000	Central	NR-HR-01/Ch6
Rajasthan: Jallipa Kapurdi TPP (U-1 -4) (Raj 540 IPP NR-RJ-01/Ch6 West Power) Uttar Pradesh: Anpara ' C' (LANCO ANPARA PPL U-1,2 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under	(U-1, 2)			
Jallipa Kapurdi TPP (U-1 -4) (Raj West Power) 540 IPP NR-RJ-01/Ch6 Uttar Pradesh: Anpara ' C' (LANCO ANPARA PPL U-1,2 1200 IPP NR-UP-01/Ch6 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under	Jhajjar(Mahatma Gandhi) TPS	1320	IPP	NR-HR-02/Ch6
Jallipa Kapurdi TPP (U-1 -4) (Raj West Power) 540 IPP NR-RJ-01/Ch6 Uttar Pradesh: Anpara ' C' (LANCO ANPARA PPL U-1,2 1200 IPP NR-UP-01/Ch6 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under				
West Power) Uttar Pradesh: Anpara ' C' (LANCO ANPARA PPL U-1,2 1200 IPP NR-UP-01/Ch6 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under				
Uttar Pradesh: IPP NR-UP-01/Ch6 Anpara ' C' (LANCO ANPARA PPL U-1,2 1200 IPP NR-UP-01/Ch6 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under		540	IPP	NR-RJ-01/Ch6
Anpara ' C' (LANCO ANPARA PPL U-1,2 1200 IPP NR-UP-01/Ch6 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under	West Power)			
Anpara ' C' (LANCO ANPARA PPL U-1,2 1200 IPP NR-UP-01/Ch6 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under	Litter Bradech			
PPL U-1,2 Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under		1200	IPP	NR-LIP-01/Ch -6
Harduaganj TPS (U-8) 250 State NR-UP-02/Ch6 Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under		1200	11 1	1411 OI -01/OII0
Parichha TPS Extn. 500 State NR-UP-03/Ch6 Rosa St II (U-3 & 4) 600 Private NR-UP-04/Ch6 (Transmission system under		250	State	NR-UP-02/Ch6
(Transmission system under		500		NR-UP-03/Ch6
(Transmission system under	Rosa St II (I I-3 & 4)	600	Private	NR-LIP-04/Ch -6
	11034 01 11 (0 0 4 4)	000	i iivale	
construction)				construction)

6.8.2 Western Region System Strengthening Schemes in Western Region

System strengthening scheme	Transmission System in Table no.
Western Region Strengthening Scheme - II	WR-IS-01/Ch6
Western Region Strengthening Scheme - X	WR-IS-02/Ch6
Western Region Strengthening Scheme - XI	WR-IS-03/Ch6

ATS for Generation projects located in Western Region

Generation Project located in State	IC (MW)	SECTOR	Transmission System in Table no.
Gujarat:			
Hazira TPP (GSECL)	351	State	WR-GJ-01/Ch6 (Transmission system under construction)
Mundra TPP Ph.II (Adani Power)	1320	IPP	WR-GJ-02/Ch6 (Transmission system under construction)
Mundra TPP Ph.III	1980	IPP	WR-GJ-03/Ch6
Surat Lignite Ext	250	IPP	WR-GJ-04/Ch6
Essar -Salaya Power U-1	600	IPP	WR-GJ-05/Ch6
Maharashtra:			
Bhusaval TPP (MSPGCL)	1000	State	WR-MH-01/Ch6
Khaperkheda TPS (MSPGCL)	500	State	WR-MH-02/Ch6 (Transmission system under construction)
JSW Energy(Ratanagiri Ltd)	1200	IPP	WR-MH-03/Ch6
Mihan TPP (Abhijeet Energy)	200	IPP	WR-MH-04/Ch6
Madhya Pradesh:			
Maheshwar HEP	400	IPP	WR-MP-01/Ch6 (Transmission system under construction)
(slipped to 12 th Plan)			,
<u>Chhatisgarh:</u>			
Sipat-I	1980	Central	WR-CG-01/Ch06
S V Power TPP	63	IPP	WR-CG-02/Ch06
Kasaipalli TPP U-1	135	IPP	WR-CG-03/Ch06

6.8.3 Southern Region System Strengthening Schemes in Southern Region

System strengthening scheme	Transmission System in Table no.
SRSSS -IX	SR-IS-01/Ch6
SRSSS -X	SR-IS-02/Ch6
SRSSS -XI	SR-IS-03/Ch6

ATS for Generation projects located in Southern Region

Generation Project located in State	IC (MW)	SECTOR	Transmission System in Table no.
Andhra Pradesh:			
Simhadri TPS St- II (NTPC)	1000	Central	SR-AP-01/Ch6
Nagarjuna Sagar TR HEP(2x25 MW) (slipped to 12 th Plan)	50	State	SR-AP-02/Ch6 (Transmission system under construction)
Priyadarshani-Jurala HEP(6x39 MW)	234	State	SR-AP-03/Ch6
Kakatiya (Bhoopalapally) TPS U-1	500	State	SR-AP-04/Ch6
Kothagudam TPS ST-VI	500	State	SR-AP-05/Ch6
Karnataka:			
Udupi TPS (UPCL)	1200	IPP	SR-KA-01/Ch6 (Transmission system under construction)
Torangallu U 1,2	600	IPP	SR-KA-02/Ch6
Bellary TPP U-1,2	1000	State	SR-KA-03/Ch6
Kaiga APP U-3,4	500	Central	SR-KA-04/Ch6 (Transmission system under construction)
Tamil Nadu:			
Vallur TPS JV(NTPC -TNEB JV)U-1	500	Central	SR-TN-01/Ch6 (Transmission system under construction)
Neyveli TPS II U-1(NLC)	250	Central	SR-TN-02/Ch6
Kudankulam Atomic St-I	2000	Central	SR-TN-03/Ch6
North Chennai TPS. (slipped to 12 th Plan)	1200	State	SR-TN-04/Ch6 (Transmission system under construction)
(slipped to 12 th Plan) Mettur TPS Stage III	600	State	SR-TN-06/Ch6
(slipped to 12 th Plan)			

6.8.4 Eastern Region System Strengthening Schemes in Eastern Region

System strengthening scheme	Transmission System in Table no.
ERSSS -IX	ER-IS-01/Ch6
ERSSS -X	ER-IS-02/Ch6
ERSSS -XI	ER-IS-03/Ch6

ATS for Generation projects located in Eastern Region

Generation Project located in State	IC (MW)	SECTOR	Transmission System in Table no.
West Bengal:			
Teesta Low Dam IV (NHPC)	160	Central	ER-WB-01/Ch6
(slipped to 12 th Plan)			(Transmission system under construction)
Teesta Low Dam III	132	Central	ER-WB-02/Ch6
(alipped to 10 th Plan)			(Transmission system under construction)
(slipped to 12 th Plan) Mejia TPS Ph II(DVC)	1000	Central	ER-WB-03/Ch6
D TDQ (D)(Q)	1000	0	ED WD 04/01-0
Durgapur TPS (DVC)	1000	Central	ER-WB-04/Ch6 (Transmission system under
			construction)
Santaldih TPP (WBPDCL) U 5,6	500	State	ER-WB-05/Ch6
Sagardighi-I & II	600	State	ER-WB-06/Ch6
<u>Jharkhand:</u>			
Koderma TPS U-1(DVC)	500	Central	ER-JR-01/Ch6
Maithon RBTPS (JV of DVC& Tata)	1050	State	ER-JR-02/Ch6
Orrisa:			
Sterlite TPP (U-1, 2, 3)	1800	IPP	Transmission system in Ch7 under
(Only LILO arrangement completed			tables ER-OR-01, ER-OR-02
(Only Lie arrangement completed			ER-OR-03, ER-OR-04
Bihavi			ER-OR-05
Bihar:			
Barh-I (U-1,2,3)	1980	Central	ER-BR-01/Ch6
(slipped to 12 th Plan)			

6.8.5 North-eastern Region ATS for Generation projects located in North-eastern Region

Generation Project located in State	IC (MW)	SECTOR	Transmission System in Table no.
Meghalaya:			
Leshka Myntdu - I HEP	84	State	NER-MG-01/Ch6

6.8.6 Inter-Regional Transmission Schemes:

System strengthening scheme	Transmission System in Table no.
East-West Transmission Corridor	IR-SS-01/Ch6
Strengthening	

CHAPTER – 6A ANNEX-XI PLAN PROGRESS AND PROGRAMME

Annex-6.1

TRANSMISSION SYSTEM ADDITION DURING 2007-08

Transmission lines completed during 2007- 08

SI. No.	Name of the transmission lines	No. of ckts	Executing Agency	Line length (CKM)	Month of Completion
I.	765 KV LINES				
1	Sipat - Seoni Line1	S/C	POWERGRID	351	Sep-07
	TOTAL CKM OF FULLY COMPLETED 765 kV LINES	351			

SI. No.	Name of the transmission lines	No. of ckts	Executing Agency	Line length (CKM)	Month of Completion
II. 4	100 KV LINES(CS)				
1	Balia - Lucknow	D/C	POWERGRID	632	Apr-07
2	Maithon - Ranchi	D/C	POWERGRID	400	May-07
3	Line from Singrauli to a point 2.3 Km near existing Vindhyachal - Kanpur Line.	D/C	POWERGRID	6	May-07
4	Gooty - Raichur	D/C	POWERGRID	294	May-07
5	Vindhyachal - Korba	S/C	POWERGRID	291	Jun-07
6	Lucknow - Bareilly	D/C	POWERGRID	511	Jul-07
7	LILO of Bareilly - Mandaula at Bareilly	2xD/C	POWERGRID	37	Jul-07
8	Satna - Bina Ckt I & II	S/C on D/C	POWERGRID	545	Aug-07
9	LILO of Lucknow - Moradabad at Bareilly	D/C	POWERGRID	22	Aug-07
10	LILO of Dadri - Ballabhgarh at Delhi	D/C	POWERGRID	60	Sep-07
11	LILO of S/C Bhilai - Satpura at Seoni	D/C	POWERGRID	4	Sep-07
12	Biharshariff - Balia (Quad) Ckt-I	S/C on D/C	POWERGRID	484	Jan-08
13	LILO of Sultanpur - Lucknow at Lucknow	D/C	POWERGRID	42	Dec-07
14	LILO one ckt of Hissar - Moga at Fatehabad	D/C	POWERGRID	59	Dec-07
15	Nagda - Dehgam	D/C	POWERGRID	664	Dec-07
16	LILO of Rourkela - Raipur at Raigarh	D/C	POWERGRID	37	Dec-07
17	LILO of Korba - Raipur, S/C at Bhatapara	D/C	POWERGRID	5	Dec-07
18	Bina - Nagda	D/C	POWERGRID	662	Dec-07
19	Narendra - Davangere	D/C	POWERGRID	310	Jan-08
20	Ludhiana - Jallandhar	S/C	POWERGRID	85	Mar-08
21	Seoni - Khandwa (Quad)	D/C	POWERGRID	703	Mar-08
22	Khandwa - Rajgarh ckt II	D/C	POWERGRID	220	Mar-08
23	LILO of Both Ckt of Gazuwaka -Vijayawada 400 kV D/C at Vemagiri S/S.	D/C	POWERGRID	156	Mar-08
24	Malerkotla - Ludhiana	S/C	POWERGRID	36	Mar-08
25	LILO of both ckt of S. Sarovar - Nagda at Rajgarh	D/C	POWERGRID	16	Mar-08
26	Teesta V - Siliguri ckt I	S/C	POWERGRID	114	Mar-08
27	LILO of 1st ckt of Maduri (PG) -Trivendrum (PG) at Tirunelveli	D/C	POWERGRID	106	Mar-08
28	RAPP 5&6 - Kankroli	D/C	POWERGRID	397	Mar-08
	TOTAL 400 kV LINES (CS)			6898	
	220 KV LINES (Centor Sector)				
1	Unchahar - Raibareilly	S/C	POWERGRID	43	Jul-07

2	LILO of one ckt of Unchahar-Lucknow at	D/C	POWERGRID	12	Jul-07
	Raibareilly				
3	MTPS-Durgapur	D/C	DVC	84	Aug-07
4	LILO Patratu-Chandil D/C at Ranchi	2xD/C	POWERGRID	29	Sep-07
	TOTAL 220 kV LINES (CS)			168	
	Total CS (765 +400+220+132 kV PG only)			7417	

SI. No.	Name of the transmission lines	No. of ckts	Executing Agency	Line length (CKM)	Month of Completion
	State Sector			, ,	
	400 KV LINES				
1	Purulia Pump Storage-Arambagh	D/C	West Bengal	418	Apr-07
2	Purulia Pump Storage-Durgapur ckt 1	S/C	West Bengal	370	Apr-07
3	Lonikhand-Padghe diversion at Chakan MIDC	S/C	Maharashtra	4	May-07
4	Dehgam (PGCIL)-Ranchodpura	D/C	Gujarat	125	Jul-07
5	LILO of Jhanoor- Vapi at Akhakol	D/C	Gujarat	28	Nov-07
6	LILO of Bhusawal-Koradi Ist Ckt.at Akola	D/C	Maharashtra	80	Jan-08
	TOTAL 400 kV LINES (SS)			1025	
	220 kV LINES (State Sector)				
1	LILO of S P Koil-Tharamani at Siruseri	D/C	Tamil Nadu	20	Apr-07
2	Tap line of Mamidipally-Chandrayanagutta to Hyderabad Airport	D/C	Andhra Pradesh	1	Apr-07
3	245 kV XLPE UG cable Asifnagar-Karwan		Andhra Pradesh	3	Apr-07
4	Mada- Barmer	D/C	Rajasthan	258	Apr-07
5	Satara MIDC-Vankusawade	D/C	Maharashtra	30	Apr-07
6	Seoni 400 kV(PG)-Seoni(MP)	D/C	Madhya Pradesh	9	May-07
7	LILO Theur-Jejuri at Hulkarwadi	D/C	Maharashtra	38	May-07
8	Nasik-Kalwa-III&IV	D/C	Maharashtra	2	Jun-07
9	Khinvsar-Bhopalgarh	S/C	Rajasthan	36	Jun-07
10	Birsinghpur-Jabalpur	D/C	Madhya Pradesh	274	Jun-07
11	LILO Birsinghpur(T)-Birsinghpur(H) 2nd Ckt at Birsinghpur S/S	D/C	Madhya Pradesh	12	Jun-07
12	Kanhan-Umred S/C on D/C	S/C	Maharashtra	50	Jun-07
13	LILO of Birsinghpur(T)-Nowrozabad D/C at Birsinghpur S/S	2xD/C	Madhya Pradesh	23	Jul-07
14	LILO of Nellor-Renigunta at Nellore	D/C	Andhra Pradesh	20	Jul-07
15	LILO Vijjeswaram-VTPS at Kamavarapukota	D/C	Andhra Pradesh	46	Jul-07
16	Myvadi Sw.StnPonnapuram Ckt-I	D/C	Tamil Nadu	19	Jul-07
17	Hissar(BBMB)-Hissar IA (2 nd Ckt)	S/C	Haryana	1.5	Aug-07
18	LILO of STPS-Durgapur circuit -I at Asansol	D/C	West Bengal	80	Aug-07
19	Chalakurthy-Kondamallepalli S/C on D/C	S/C	Andhra Pradesh	43	Aug-07
20	Mamidipalli-Yeddumailaram 2nd ckt stringing	S/C	Andhra Pradesh	63	Aug-07
21	Neelamangala-DB Pura	D/C	Karnataka	33	Aug-07
22	LILO of Sharawati- Hubli at Sirsi Sw. Stn.	D/C	Karnataka	13	Aug-07
23	LILO Dausa-Bharatpur at Mandawar	D/C	Rajasthan	16	Sep-07
24	Barsinghsar-Nagaur	S/C	Rajasthan	104	Sep-07
25	LILO Ratangarh-Bikaner at Sridungargarh	D/C	Rajasthan	5	Sep-07
26	Sagardighi-Gokarna	D/C	West Bengal	90	Sep-07
27	JTPS-Raigarh Industrial Estate (Panjipatra)	D/C	Chhattisgarh	40	Sep-07
28	Talapally-Chalakurthy S/C on D/C	S/C	Andhra Pradesh	26	Sep-07
29	Myvadi Sw.StnPonnapuram Ckt-II	D/C	Tamil Nadu	19	Sep-07
30	LILO Rajkot-Morbi at Hadala	D/C	Gujarat	1	Sep-07
31	Rajkot-Morbi	D/C	Gujarat	145	Sep-07

32	LILO 1 ckt of Indore-Dewas at Indore (East)	D/C	Madhya Pradesh	1	Sep-07
33	Bhatapara (Suhela) – Bemetara	D/C	Chhattisgarh	89	Oct-07
34	Bhatapara (Suhela) – Mahasamund	D/C	Chhattisgarh	124	Oct-07
35	Mejia-Durgapur	S/C	West Bengal	64	Oct-07
36	Yamunanagar TPP-Jorian (Yamunanagar)	D/C	Haryana	22	Oct-07
37	Yamunanagar TPP – Salempur (connected to Nissing bypassing Salempur)	D/C	Haryana	86	Oct-07
38	LILO of Alagar koil(North Madurai)- Karaikudi at Valuthur S/S	D/C	Tamil Nadu	193	Oct-07
39	LILO Shimoga-Mysore at Yachanyalli	D/C	Karnataka	6	Nov-07
40	Maharani Bagh-Lodhi Road Ckt-l	S/C on D/C	Delhi	1.2	Dec-07
41	Kailash Chandrapur - Padmanavpur	D/C	Orissa	68	Dec-07
42	Padmanavpur - Balasore ckt-1	D/C	Orissa	22	Dec-07
43	LILO of Apta-Chinchwad at Urse	D/C	Maharashtra	22	Dec-07
44	G. NOIDA-NOIDA (P) ckt-1	S/C on D/C	Uttar Pradesh	27	Dec-07
45	Korba (E) DSPM-Bhatapara (Suhela)	D/C	Chhattisgarh	284	Dec-07
46	LILO of Dhule-Dondaicha at Amalner	D/C	Maharashtra	61	Dec-07
47	Talandage-Kagal Five Star MIDC	D/C on M/C	Maharashtra	4	Dec-07
48	LILO Ramagundam-Warangal at Pulakurthy	D/C	Andhra Pradesh	21	Dec-07
49	2nd LILO Nellore-Renigunda at Nellore (400 kV S/S)	D/C	Andhra Pradesh	20	Dec-07
50	LILO Kayathar-Sankaneri at Tiruneveli (400 kV S/S)	D/C	Tamil Nadu	44	Dec-07
51	LILO of Korba – Amarkantak at Pendra (Kotmikala)	D/C	Chhattisgarh	23	Dec-07
52	LILO of Korba (E) DSPM– Bhatapara (Suhela) 2 nd Ckt. at Champa (Banari)	D/C	Chhattisgarh	2	Dec-07
53	Maharani Bagh-Lodhi Road Ckt-II	S/C on D/C	Delhi	1.2	Jan-08
54	Rajendra Steel-Siltara 2nd S/C	S/C	Chhattisgarh	2	Jan-08
55	Dhanki-Adalsar	D/C	Gujarat	18	Jan-08
56	LILO of Malharpeth-Wankuswade for Satara MIDC S/S	D/C	Maharashtra	60	Jan-08
57	LILO of Somanhalli- T K Halli at Kanakapura	D/C	Karnataka	6	Jan-08
58	LILO of Kozhikode - Idukki line at Malaparamba	D/C	Kerala	2	Jan-08
59	LILO Jindal-Washala at Ghatghar (by modification only)	D/C	Maharashtra	0	Jan-08
60	PGCIL S/S-Nalasopara	S/C	Maharashtra	4	Jan-08
61	Adalsar-Bala	D/C	Gujarat	22	Jan-08
62	LILO of Nanikhakhar-Shivlakha D/C at Varsana	D/C	Gujarat	7	Jan-08
63	LILO for Duni	D/C	Rajasthan	4	Feb-08
64	LILO of Khaperkheda-Bhandara 2nd ckt at Kanan	D/C	Maharashtra	20	Feb-08
65	LILO Paricha-Safai at Bharthana	D/C	Uttar Pradesh	8	Feb-08
66	Vetloor 400 kV S/S - Jurala	D/C	Andhra Pradesh	66	Mar-08
67	LILO from Mamidipally- Yeddumallaram at Shadnagar	D/C	Andhra Pradesh	36	Mar-08
68	Dichpally 400 kV S/S- Dichpally	D/C	Andhra Pradesh	8	Mar-08
69	Sharavati Generating Station-Dugadimane	M/C	Karnataka	28	Mar-08
70	Tirunelveli (400 kV)-Veeranam	S/C on D/C	Tamil Nadu	31	Mar-08
71	Kodikurichi-Chekkanoorani	S/C	Tamil Nadu	31	Mar-08
72	Theruvali -Narendrapur-Chandaka	D/C	Orissa	750	Mar-08
73	IB Thermal-Budhipadar(2nd D/C)	D/C	Orissa	52	Mar-08
74	LILO of STPS-Arambagh at Bishnupur	2xD/C	West Bengal	4	Mar-08
75	LILO of Bhanjnagar-Chandaka at Mendhasal	D/C	Orissa	12	Mar-08
76	LILO of Bhilai- Bansoor(2nd ckt) at Gurur	D/C	Chhattisgarh	14	Mar-08
77	Bhauti (PG)-Orai	S/C	Uttar Pradesh	90	Mar-08
78	LILO of Fatuha-Khagaul at Patna PG	D/C	Bihar	20	Mar-08

TOTAL 220 kV LINES (SS)			4001	
Total SS (400+220) kV			5026	
TOTAL CKM OF FULLY COMPLETED 400 kV LINES (All India) DURING THE YEAR				
TOTAL CKM OF FULLY COMPLETED 220 kV LINES (A	All India) DU	RING THE YEAR	4169	

Sub-stations completed during 2007-08

SI. No.	Name of the Sub-station	Voltage Ratio (kV/kV)	Executing Agency	Capacity (MW/MVA)	Month of completion
II. 765 k	V (Sub-station)				
1	Seoni Sub Station (7x (500-333))	765/400	POWERGRID	1500	Sep-07
2	Seoni New (3x500)	765/400	POWERGRID	1500	Mar-08
3	Seoni Extn. (3x500)	765/400	POWERGRID	1500	Mar-08

SI. No.	Name of the Sub-station	Voltage Ratio (kV/kV)	Executing Agency	Capacity (MW/MVA)	Month of completion
III. 400	kV (Sub-station)(CS)				
1	Ranchi (ICT-1)	400/220	POWERGRID	315	May-07
2	Gwalior (New)	400/220	POWERGRID	315	May-07
3	Wagoora (3rd) (3x105)	400/220	POWERGRID	315	Jun-07
4	Moga (Aug)	400/220	POWERGRID	315	Jun-07
5	Cuddapa Extn.	400/220	POWERGRID	315	Aug-07
6	Delhi (GIS)	400/220	POWERGRID	630	Sep-07
7	Gooty Extn.	400/220	POWERGRID	315	Sep-07
8	Kolar Extn.	400/220	POWERGRID	500	Sep-07
9	Gazuwaka Extn,	400/220	POWERGRID	315	Oct-07
10	Ranchi (ICT-II)	400/220	POWERGRID	315	Nov-07
11	Fatehabad (New) ICT-I	400/220	POWERGRID	315	Dec-07
12	Patna 2nd ICT	400/220	POWERGRID	315	Dec-07
13	Raigarh (New) ICT-I	400/220	POWERGRID	315	Dec-07
14	Bhatapara (New)	400/220	POWERGRID	315	Dec-07
15	Munerabad Extn.	400/220	POWERGRID	315	Dec-07
16	Seoni ICT-I	400/220	POWERGRID	315	Jan-08
17	Khammam Extn.	400/220	POWERGRID	315	Jan-08
18	Raigarh (New) ICT-II	400/220	POWERGRID	315	Feb-08
19	Seoni II ICT	400/220	POWERGRID	315	Mar-08
20	Gwalior (New) II ICT	400/220	POWERGRID	315	Mar-08
21	Amritsar (Aug)	400/220	POWERGRID	315	Mar-08
22	Rajgarh (New)	400/220	POWERGRID	315	Mar-08
23	Hiriyur Extn.	400/220	POWERGRID	315	Mar-08
24	Vijayawada Extn.	400/220	POWERGRID	315	Mar-08
25	Fatehabad ICT- II	400/220	POWERGRID	315	Mar-08
	Total (Central Sector)	400		8375	
	220 kV (Sub-station)(CS)				
1	Raebareilly ICT-I	220/132	POWERGRID	100	Sep-07
2	Raebareilly ICT-II	220/132	POWERGRID	100	Dec-07
	Total (Central Sector)	220		200	
	Total CS (765 +400+220) kV			13075	

1 2 3 4 1 2 3	Abstation (SS) Ranchodpura(Vadavi)(2nd) Alamathy Mamidipally Dichpally TOTAL 400kV Substation (SS) 220 kV (Sub-station)(SS) Siruseri Rania (2nd) Gadchandur	Ratio (kV/kV) 400/220 400/230 400/220 400/220 400/220 230/110	Agency Gujarat Tamil Nadu Andhrapradesh Andhrapradesh	(MW/MVA) 315 630 315 630 630	Jan-08 Jan-08 Jan-08
1 2 3 4 1 2 3	Ranchodpura(Vadavi)(2nd) Alamathy Mamidipally Dichpally TOTAL 400kV Substation (SS) 220 kV (Sub-station)(SS) Siruseri Rania (2nd)	400/220 400/230 400/220 400/220 400/220	Tamil Nadu Andhrapradesh	315 630 315	Jan-08 Jan-08
1 2 3 4 1 2 3	Ranchodpura(Vadavi)(2nd) Alamathy Mamidipally Dichpally TOTAL 400kV Substation (SS) 220 kV (Sub-station)(SS) Siruseri Rania (2nd)	400/230 400/220 400/220 400/220	Tamil Nadu Andhrapradesh	630 315	Jan-08 Jan-08
2 3 4 1 2 3	Alamathy Mamidipally Dichpally TOTAL 400kV Substation (SS) 220 kV (Sub-station)(SS) Siruseri Rania (2nd)	400/230 400/220 400/220 400/220	Tamil Nadu Andhrapradesh	630 315	Jan-08 Jan-08
3 4 1 2 3	Mamidipally Dichpally TOTAL 400kV Substation (SS) 220 kV (Sub-station)(SS) Siruseri Rania (2nd)	400/220 400/220 400/220	Andhrapradesh	315	Jan-08
1 2 3	Dichpally TOTAL 400kV Substation (SS) 220 kV (Sub-station)(SS) Siruseri Rania (2nd)	400/220 400/220	<u> </u>		
1 2 3	TOTAL 400kV Substation (SS) 220 kV (Sub-station)(SS) Siruseri Rania (2nd)	400/220	Andhrapradesh	630	
1 2 3	220 kV (Sub-station)(SS) Siruseri Rania (2nd)				Feb-08
1 2 3	Siruseri Rania (2nd)	230/110		1890	
3	Rania (2nd)	I 230/110			
3	\ /		Tamilnadu	200	Apr-07
	Gadehandur	220/132	Haryana	100	May-07
7		220/33	Maharashtra	25	May-07
	Kamavarepukota	220/132	Andhra Pradesh	100	Jul-07
	Ponnapuram	230/110	Tamil Nadu	100	Jul-07
	Agia	220/132	Assam	50	Jul-07
	Subramanyapura 2nd ICT (Aug)	220/66	Karnataka	50	Aug-07
	Devanahalli Int. Air Port	220/66	Karnataka	100	Aug-07
	Sankaneri	230/110	Tamil Nadu	100	Aug-07
	Ponnapuram 2nd ICT	230/110	Tamil Nadu	100	Aug-07
	Mahasamund	220/132	Chhatisgarh	160	Aug-07
	Indore(E)	220/33	Madhya Pradesh	100	Aug-07
	Kamba (Bhivandi-II)	220/22	Maharashtra	50	Aug-07
	Tambati(Aug)	220/22	Maharashtra	25	Aug-07
	Kondamallepalli	220/132	Andhra Pradesh	100	Aug-07
	Alwar Aug (100-50)	220/132	Rajasthan	50	Sep-07
	Dhandarikala Aug	220/66	Punjab	100	Sep-07
	Baraut (160-100)	220/132	Uttar Pradesh	60	Sep-07
	Kurkumbh	220/33	Maharashtra	50	Sep-07
	Bahadurgarh 2nd ICT	220/132	Haryana	100	Sep-07
	Ghatnandre 3rd ICT	220/33	Maharashtra	100	Sep-07
	Vita Aug (50-25)	220/33	Maharashtra	25	Sep-07
	Sirsi	220/66	Karnataka	50	Sep-07
	Sankaneri Addl	230/110	Tamil Nadu	100	Sep-07
	Ingur Addl	230/110	Tamil Nadu	100	Sep-07
	Kodikurichi Addl	230/110	Tamil Nadu	100	Sep-07
	Temburni	220/33	Maharashtra	25	Oct-07
	C.R.Patna (Yachanahalli)	220/66	Karnataka	200	Oct-07
	Kalyandurg	220/132	Andhra Pradesh	100	Oct-07
	Rewa (Addl)	220/132	Madhya Pradesh	160	Oct-07
	Agra Cantt. (Aug)	220/33 230/110	Uttar Pradesh	23	Oct-07
	Valuthur Shahiahannur Aug (160, 100)	220/110	Tamil Nadu Uttar Pradesh	300 60	Oct-07
	Shahjahanpur Aug (160-100)	220/132	Karnataka	100	Nov-07 Nov-07
	HSR Layout Aug 2x(150-100) NRS Aug (150-100)	220/66	Karnataka	50	Nov-07
	Tharamani Addl	230/110	Tamil Nadu	100	Nov-07
	Daultabad ICT-I	220/66	Haryana	100	Nov-07
	Zainkote (Aug)	220/132	Jammu & Kashmir	150	Dec-07
	Zamkote (Aug) Burla	220/132	Orissa	200	Dec-07
	Tarkera (4th)	220/132	Orissa	100	Dec-07
	Balimela 1st	220/33	Orissa	20	Dec-07
	Krishna Nagar (2x160)	220/132	West Bengal	320	Dec-07
	Asansol	220/132	West Bengal	160	Dec-07
	Firozabad Extn.	220/132	Uttar Pradesh	100	Dec-07
	Khurja Extn.	220/132	Uttar Pradesh	40	Dec-07
	Hathras	220/132	Uttar Pradesh	40	Dec-08
	Gazipur	220/132	Uttar Pradesh	100	Dec-07
	Mandawar (Dausa)	220/132	Rajasthan	100	Dec-07
	Khinvsar S/S 1X100 MVA	220/132	Rajasthan	100	Dec-07

53	Amalner	220/132	Maharashtra	100	Dec-07
54	Talangde (Five Star MIDC) Kagal	220/33	Maharashtra	50	Dec-07
55	Moulali	220/33	Andhra Pradesh	160	Dec-07
56	Shapur Nagar	220/132	Andhra Pradesh	160	Dec-07
57	Hatia	220/132	Jharkhand	300	Jan-08
58	Chandil 3rd Transformer	220/132	Jharkhand	100	Jan-08
59	Urse (1x50)	220/132	Maharashtra	50	Jan-06 Jan-08
60	Amalner (1x100)	220/33	Maharashtra	100	Jan-08
61	Pirangut	220/132	Maharashtra	50	Jan-08
62	Adalsar	220/22	Gujarat	50	Jan-08
63	Eklahare(200-50)	220/22	Maharashtra	150	Jan-08
64	Gobi	230/110	Tamil Nadu	100	Jan-08
65	Siruseri	230/110	Tamil Nadu	100	Jan-08
66	Thatchankurichi	230/110	Tamil Nadu	100	Jan-08
67	Kilpauk(Aug) 50 to 100	230/110	Tamil Nadu	50	Jan-08
68	Vinnamangalam(Aug.)50 to 100	230/110	Tamil Nadu	50	Jan-08
69	Ingur(Aug) 50 to 100	230/110	Tamil Nadu	50	Jan-08
70	Kanakapura	220/66	Karnataka	100	Jan-08
71	Bidadi Add Tr.	220/66	Karnataka	100	Jan-08
72	Malaparamba	220/110	Kerala	100	Jan-08
73	Versana	220/110	Gujarat	100	Jan-08
74	Duni	220/132	Rajasthan	50	Feb-08
75	Udhyog Vihar (Aug)	220/132	Rajasthan	50	Feb-08
76	Handia (Addl.)	220/33	Madhya Pradesh	160	Feb-08
77	Nimrani (Addl)	220/33	Madhya Pradesh	160	Feb-08
78	Jalna (50-25)	220/33	Maharashtra	25	Feb-08
79	SICOM(Chandrapur)	220/33	Maharashtra	50	Feb-08
80	Hinjewade (50-25)	220/22	Maharashtra	25	Feb-08
81	Gokul Aug. (160-100)	220/132	Uttar Pradesh	60	Feb-08
82	C.B. Ganj (160-100)	220/132	Uttar Pradesh	60	Feb-08
83	Tekkali	220/132	Andhra Pradesh	100	Mar-08
84	Shadnagar	220/132	Andhra Pradesh	100	Mar-08
85	Shahapur	220/110	Karnataka	100	Mar-08
86	Kilpauk(Aug) 50 to 100	230/110	Tamil Nadu	50	Mar-08
87	Karimangalam(Addl.)	230/110	Tamil Nadu	100	Mar-08
88	Parvati(1x200+1x50)	220/22	Maharashtra	250	Mar-08
89	Varora	220/33	Maharashtra	25	Mar-08
90	Umred	220/33	Maharashtra	25	Mar-08
91	Colourchem(Thane)	220/22	Maharashtra	50	Mar-08
92	Ranjangaon Aug.(1x50+1x100)	220/22	Maharashtra	150	Mar-08
93	Sarnath Aug.(160-100)	220/132	Uttar Pradesh	60	Mar-08
94	Salempur	220/66	Haryana	100	Mar-08
95	Alephata	220/132	Maharashtra	100	Mar-08
96	Bishnupur	220/132	West Bengal	320	Mar-08
97	Rajpur	220/11	Gujarat	25	Mar-08
98	Sridungargarh	220/132	Rajasthan	100	Mar-08
99	Siwan(new)Gopalgang	220/132	Bihar	200	Mar-08
	TOTAL (State Sector)	220		9458	
	TOTAL 400kV Substation (ALL INDIA		•	10265	
	TOTAL 220kV Substation (ALL INDIA			9658	

<u>Annex – 6.2</u>

TRANSMISSION SYSTEM ADDITION DURING 2008-09

Transmission lines commissioned during 2008-09

S No	Name of the transmission lines	No. of ckts	Executing Agency	Line length (CKM)	Month of Completion
I. 76	5 KV LINES				
1	Sipat - Seoni line-II	S/C	POWERGRID	354	Apr.'08
2	Agra - Gwalior 2nd S/C (initially to be operated at 400KV)	S/C	POWERGRID	128	Mar-09
3	Seoni - Wardha line (to be operated at 400KV)	S/C	POWERGRID	269	Mar-09
	TOTAL 765 KV LINES (ALL INDIA)			751	

S	Name of the transmission lines	No.	Executing	Line	Month of Completion
No		of	Agency	length	
		ckts		(CKM)	
-	0 KV LINES(CS)				
1	LILO of 2nd ckt of Maduri (PG) -Trivendrum (PG)	D/C	POWERGRID	107	Mar-08
	at Tirunelveli	0/0	DOWEDODID	04	14. 00
2	Bareilly - Mordadabad	S/C	POWERGRID	91	May-08
3	LILO of existing Kolar-Sriperumbadur at Melakottaiyur S/Stn.	D/C	POWERGRID	31	May-08
4	Teesta-V - Siliguri (Ckt-II)	S/C	POWERGRID	114	May-08
5	Sipat - Raipur	D/C	POWERGRID	298	Jul-08
6	Kota - Merta	D/C	POWERGRID	512	Jan-09
7	Ranchi-Sipat line	D/C	POWERGRID	816	Jan-09
8	RAPP 5&6 - Kota	D/C	POWERGRID	75	Mar-09
9	LILO of Hissar - Jaipur at Bhiwadi	D/C	POWERGRID	156	Mar-09
10	LILO of Rishikesh - Muzaffarnagar at Roorkee	D/C	POWERGRID	3	Mar-09
11	Wardha - Akola	D/C	POWERGRID	324	Mar-09
12	Pugalur - Madurai	D/C	POWERGRID	246	Mar-09
13	Zerda - kankroli	D/C	POWERGRID	470	Mar-09
14	Neyveli TS -II - Pugalur	D/C	POWERGRID	395	Mar-09
15	Kundankulam (NPC) - Tirunelveli (PG) (Quad Line -I	D/C	POWERGRID	145	Mar-09
16	Kundankulam (NPC) - Tirunelveli (PG) (Quad) line -II	D/C	POWERGRID	160	Mar-09
17	Tirunelveli (PG) - Udumalpet (PG)	D/C	POWERGRID	534	Mar-09
	TOTAL 400 kV LINES (CS)			4477	
	220 KV LINES				
	Center Sector				
1	Vapi (PG) - Magarwada line	D/C&	POWERGRID	31	Apr-08
	, , ,	M/C			'
2	Vapi (PG) - Kharadpada (DNH)	D/C	POWERGRID	34	Jun-08
3	LILO of 1 ckt. Of Tanakpur-Bareilly at Sitarganj	D/C	POWERGRID	44	Mar-09
	TOTAL 220 kV LINES (CS)			109	
	Total CS (765 +400+220)			5337	

S No	Name of the transmission lines	No. of ckts	Executing Agency	Line length (CKM)	Month of Completion
	400kV (State Sector)				
1	LILO of Korba-Sipat at Amarkantak	D/C	Chhattisgarh	62	Apr-08
2	JTPS-Raipur D/C	D/C	Chhattisgarh	516	May-08
3	Ramagundam(NTPC)-Ditchpally	S/C	Andhra Pradesh	171	May-08
4	LILO of Ramagundam -Ghanapur at Gajwel	D/C	Andhra Pradesh	21	Aug-08
5	Ratangarh-Merta	S/C	Rajasthan	181	May-08
6	LILO of RTPS-Guttur at BTPS	D/C	Karnataka	2	Jun-08
7	LILO of Birsinghpur - Damoh D/C at Damoh	D/C	Madya Pradesh	26	Aug-08
8	Interconnector of Birsinghpur-Katni-Damoh at Birsinghpur	D/C	Madya Pradesh	1	Aug-08
9	Diversion of Birsinghpur-Katni-Damoh at Katni	D/C	Madya Pradesh	2	Aug-08
10	LILO of Farakka-Subhashgram at Sagardighi	D/C	West Bengal	13	Aug-08
11	Kishenpur-Baglihar (Ist ckt)	S/C	Jammu& Kashmir	68	Oct-08
12	NSPCL-Raipur	D/C	Chhattisgarh	28	Mar-09
13	Chhabra-Dahra (Kota)	D/C	Rajasthan	261	Mar-09
	TOTAL 400 kV LINES (SS)			1352	
	220 KV LINES(SS)				
1	LILO of Pugalur-Checkanoorani at Renganathapuram	D/C	Tamil Nadu	32	Apr-08
2	LILO of both ckts of Bhopal-Itarsi at Itarsi	2xD/C	Madya Pradesh	2	Apr-08
3	Akhakhol-Kim	D/C	Gujarat	8	Apr-08
4	NSPCL-Gurur (CSEB)	S/C	Chhattisgarh	20	Apr-08
5	LILO from Shimoga- Mysore at Huygonahalli (K R Pet)	D/C	Karnataka	23	May-08
6	LILO Bhilwara-Kankroli at Kankroli(PG)	S/C	Rajasthan	9.5	May-08
7	Ponnapuram- Palladam	SC on DC	Tamil Nadu	32	Jun-08
8	LILO of 1st Ckt of Itarsi-Bhopal at Mandideep	D/C	Madya Pradesh	12	Jun-08
9	Pitampur-Raigarh (2nd) Ckt	S/C	Madya Pradesh	69	Jun-08
10	Nilokheri-Karnal	S/C	Haryana	19	Jun-08
11	LILO of Gobindgarh-I - Gobindgarh-II at Amloh Road Gobindgarh	D/C	Punjab	2	Jun-08
12	LILO one ckt of Lalton- Jagron at Ludhiana (PG)	D/C	Punjab	4	Jun-08
13	Barn-Kishenpur	D/C	Jammu& Kashmir	75	Jun-08
14	LILO of S P Koil- Tharamani II at Kalivanthapattu 400kV S/S	D/C	Tamil Nadu	14	Jul-08
15	Kayathar - Checkkanoorani 400 kV S/S	D/C	Tamil Nadu	244	Jul-08
16	LILO of Barwaha-Nepanagar (Khandwa) at Omkareshwar	2xD/C	Madya Pradesh	91	Jul-08
17	LILO of Chhabra-Baran-Dahra at Kawai	D/C	Rajasthan	2	Jul-08
18	Opening of one ckt of Heerapura-Bassi line and connecting Sanganer & Phulera	S/C	Rajasthan	59	Jul-08
19	Khasa – Amritsar (at Balachak (PGCIL))	D/C	Punjab	44	Jul-08
20	Moga (400 KV)- Jagraon	D/C	Punjab	1	Jul-08
21	LILO of Sriperumbadur -S P Koil at Oragadom S/S	D/C	Tamil Nadu	18	Aug-08
22	LILO of S P Koil- Tharamani at Veerapuram	D/C	Tamil Nadu	5	Aug-08
23	LILO of both circuits of Pitampur-Raigarh D/C at Raigarh(PG)	2xD/C	Madya Pradesh	92	Aug-08
24	LILO of SMG- Mysore at Kadavinakote	D/C	Karnataka	33	Aug-08
25	LILO of Giral -Barmer ckt 1 at RAJ West LTPS	D/C	Rajasthan	5	Aug-08
26	LILO of Paricha-Safai at Bharthana	D/C	Uttar Pradesh	5	Aug-08

		1 -/-	T		
27	LILO of Birsinghpur-Satna at Amarkantak (Chachai)	D/C	Madya Pradesh	90	Sep-08
28	LILO Heerapura-Kukas at VKIA	D/C	Rajasthan	2	Sep-08
29	LILO of Pugalur -Myvadi at proposed Pugalur 400kV S/S	D/C	Tamil Nadu	15	Oct-08
30	Alamathy S/S - Manali	D/C	Tamil Nadu	47	Oct-08
31	Bardoli-Chikali	D/C	Gujarat	96	Oct-08
32	Hoody - HAL	D/C	Karnataka	6	Oct-08
33	Bhiwadi(PGCIL)-Neemrana	S/C	Rajasthan	52	Oct-08
34	LILO Bhiwadi-Neemrana at Khushkhera	D/C	Rajasthan	8	Oct-08
35	LILO Alwar-Bhiwadi at Khushekhera	D/C	Rajasthan	5	Oct-08
36	LILO of Ajmer - Phulera at Kishangarh	D/C	Rajasthan	0.2	Oct-08
37	LILO of Birsinghpur-Rewa for Sidhi	D/C	Madya Pradesh	118	Nov-08
38	LILO of one Ckt of Anjar - Panadhro at Kukma	D/C	Gujarat	5	Nov-08
39	LILO one ckt of Shahbad-Pehova at Durala	D/C	Haryana	6	Nov-08
40	LILO Narwana-Fatehabad & Fatehabad-Sirsa at	D/C	Haryana	5	Nov-08
	Fatehabad (PG)				
41	LILO of Narwana-Fatehabad at Bhuna	D/C	Haryana	16	Nov-08
42	Padmanavpur - Balasore	D/C	Orissa	44	Nov-08
43	Bhimavaram- Gudivada	D/C	Andhra Pradesh	121	Nov-08
44	LILO of 1st Ckt Damoh-Tikamgarh at Damoh(400 kV)	D/C	Madya Pradesh	2	Dec-08
45	LILO of 2nd Ckt of Damoh - Bina D/C at Sagar	D/C	Madya Pradesh	10	Dec-08
46	LILO of both Ckt of Ujjain- Kota at Badod	D/C	Madya Pradesh	15	Dec-08
47	Mundra (Adani) -Nani khakher	D/C	Gujarat	33	Dec-08
48	Barsinghsar -Khinvsar	S/C	Rajasthan	98	Dec-08
49	GNDTP-Muktsar (2nd ckt)	S/C on D/C	Punjab	53	Dec-08
50	LILO of Mamidipally- Chandrayanagutta ckt-2 at HIAL	D/C	Andhra Pradesh	3	Dec-08
51	LILO of 2nd ckt of Malkaram- Minpur at Medchal	D/C	Andhra Pradesh	1	Dec-08
52	LILO of VTS- Tallapally at Rentachintala	D/C	Andhra Pradesh	2	Dec-08
53	Gangapur - Valve	D/C	Maharashtra	13	Dec-08
54	LILO of Neyveli TS-II-Neyveli Zero Unit at Cuddalore	D/C	Tamil Nadu	22.5	Jan-09
55	Sriperumbudur 400 kV S/S-Nokia	D/C	Tamil Nadu	11	Jan-09
56	Khemar- Puttur(Guruvanyankere-Puttur part line)	D/C	Karnataka	56	Jan-09
57	LILO of Mahalingpur- Kudachi at Athani	D/C	Karnataka	48	Jan-09
58	LILO of Basavanabagevadi-Indi at Bijapur	D/C	Karnataka	12	Jan-09
59	LILO of Peenya- Somanahalli at Vrishabhavathi S/S	D/C	Karnataka	0.5	Jan-09
60	Loni-Muradnagar(400 kV S/S)	D/C	Uttar Pradesh	27	Jan-09
61	LILO of Khurja-Muradnagar at Sikandrabad	D/C	Uttar Pradesh	38	Jan-09
62	LILO of Sarojininagar-Chinhat at Gomtinagar	D/C	Uttar Pradesh	7	Jan-09
63	LILO of C.B.Ganj- Bareilly at Dohane	D/C	Uttar Pradesh	4	Jan-09
64	IB Thermal- Budhipadar 2nd D/C	D/C	Orissa	52	Jan-09
65	Talegaon 400 kV S/S- Urse 220 kV S/S(1st ckt)	D/C	Maharashtra	10	Jan-09
66	Hatia-Lohardagga	D/C	Jharkhand	122	Jan-09
67	LILO of Jeerat- Lakshmikantpur at KLC	D/C	West Bengal	6	Jan-09
68	LILO of Fatna- Khagaul 1st ckt at Patna(PG)	D/C	Bihar	16	Jan-09
69	JPL-Raigarh (CSEB)	D/C	Chhattisgarh	108	Feb-09
70	LILO of B Bagewadi- Indi line at Bijapur	D/C	Karnataka	11	Feb-09
71	Dhorimanna-Bhinmal	S/C	Rajasthan	92	Feb-09
72	YTPP-Abdullapur	D/C	Haryana	56	Feb-09
73	Hissar (Mayyar)-Isharwal	D/C	Haryana	92	Feb-09
<u> </u>		ı			

		1	1	1	
74	LILO of Mohali-I – Dera Bassi at Mohali-II	D/C	Punjab	1	Feb-09
75	Mohali-Dera Bassi (2nd ckt stringing)	S/C on	Punjab	29	Feb-09
		D/C			
76	LILO of Gajuwaka- VSS at GPL	D/C	Andhra Pradesh	6	Feb-09
77	LILO of one ckt of Agia- Sarusajai at Boko S/S	D/C	Assam	1	Feb-09
78	Shivpuri-Sabalgarh	D/C	Madya Pradesh	200	Mar-09
79	NSPCL-BSP MSDS-6	D/C	Chhattisgarh	8	Mar-09
80	Kiron- Bhuna	D/C	Haryana	60	Mar-09
81	Moga (400 KV) - Bagha Purana	D/C	Punjab	20	Mar-09
82	Duburi-Paradeep	D/C	Orissa	226	Mar-09
83	Gajwel 400 kV S/S -Kamareddy S/C on D/C	S/C	Andhra Pradesh	66	Mar-09
84	Theur - Magarpatta(LILO of Theur- Phursungi at Magarpatta)	D/C	Maharashtra	25	Mar-09
85	LILO of Maneri I-Rishikesh at Maneri II	D/C	Uttarakhand	4	Mar-09
	TOTAL 220 kV LINES (SS)			3224	
	Total SS (400+220)kV			4576	
	TOTAL CKM OF 400 kV LINES (ALL INDIA) FUL	5829			
	YEAR				
	TOTAL CKM OF 220 kV LINES (ALL INDIA) FUL	LY COMPL	ETED DURING THE	3333	
	YEAR				

Sub-stations commissioned during 2008-09

SI. No.	Name of the Sub-station	Voltage Ratio (kV/kV)	Executing Agency	Capacity (MW/MVA)	Month of completion
	400 kV (Sub-station)(CS)				
1	Itarsi	400/220	POWERGRID	315	Apr-08
2	Tirunelveli ICT- II	400/220	POWERGRID	315	Apr-08
3	Baripada	400/220	POWERGRID	315	Apr-08
4	Ludhiana ICT-I	400/220	POWERGRID	315	May-08
5	Melakottaiyur ICT-I	400/220	POWERGRID	315	May-08
6	Ludhiana ICT-II	400/220	POWERGRID	315	Jul-08
7	Kankroli S/S ICT I & II	400/220	POWERGRID	945	Sep-08
8	Damoh ICT- I	400/220	POWERGRID	315	Sep-08
9	Melakottaiyur ICT-II	400/220	POWERGRID	315	Sep-08
10	Damoh ICT - II	400/220	POWERGRID	315	Nov-08
11	Tirunelveli ICT-I	400/220	POWERGRID	315	Nov-08
12	Bhatapara ICT-II	400/220	POWERGRID	315	Jan-09
13	Kota S/S	400/220	POWERGRID	630	Mar-09
14	Roorkee S/S	400/220	POWERGRID	315	Mar-09
15	Rajgarh S/S (2nd ICT)	400/220	POWERGRID	315	Mar-09
16	Wardha	400/220	POWERGRID	315	Mar-09
17	Udumalpet (PG)(Ext)	400/220	POWERGRID	315	Mar-09
	Total (Central Sector)			6300	
	400 kV (Sub-station)(SS)				
1	NSPCL (2x315 MVA)	400/220	Chhattisgarh	315	Apr-08
2	Gajwel ICT –I	400/220	APTRANSCO	315	Sep-08
3	Gajwel ICT –II	400/220	APTRANSCO	315	Mar-09
4	Sarnath Extn.2x(160-100)	400/220	Uttar Pradesh	120	Oct-08
	TOTAL (State Sector)	122/25		1065	
	TOTAL(All India)	400/220		7365	

SI. No.	Name of the Sub-station	Voltage Ratio (kV/kV)	Executing Agency	Capacity (MW/MVA)	Month of completion
II. 220 I	ν Sub-station (CS)				
1	Sitarganj	220/132	POWERGRID	100	Feb-09
2	Barjora	220/33	DVC	100	Feb-09
3	Durgapur	220/33	DVC	80	Feb-09
	TOTAL (Central Sector)			280	
220 kV				_	
1	Renganathapuram(2x50)	230/110	Tamil Nadu	50	Apr-08
2	Perambalur Add. Trans.	230/110	Tamil Nadu	100	May-08
3	Palladam	230/110	Tamil Nadu	200	Jun-08
4	Veerapuram	230/110	Tamil Nadu	100	Jun-08
5	Pudhanchandi (Add. Trans)	230/110	Tamil Nadu	100	Jun-08
6	Udayathur (Add.Trans)	230/33	Tamil Nadu	50	Jun-08
7	Korattur (Add.Trans)	230/110	Tamil Nadu	100	Jul-08
8	Oragadam Magadi (Add Tagas)	230/110	Tamil Nadu	100	Aug-08
9	Manali (Add.Trans.)	230/110	Tamil Nadu	100	Aug-08
10	Thiruvalam(Aug.)(100-80)	230/110	Tamil Nadu	20	Oct-08
11	Udayathur (Add.Trans)	230/33	Tamil Nadu	50	Jan-09
12	Kadapperi(Aug.)(2x100-2x80)	230/110	Tamil Nadu	40	Jan-09
13	Amuthapuram	230/33	Tamil Nadu	50	Jan-09
14 15	Balipara (Tezpur)	220/132	Assam	50	Apr-08
16	Boko Wada	220/132	Assam	50	Feb-09
17		220/22 220/22	Maharashtra Maharashtra	50 50	Apr-08
18	Pandhanpur Kolshet	220/22	Maharashtra	50	Jul-08 Jul-08
19	Bhugaon	220/33	Maharashtra	25	Sep-08
20	Bhiwandi II(Kamba)	220/22	Maharashtra	50	Sep-08
21	Kurkambh (50-25)	220/33	Maharashtra	25	Sep-08
22	Kolshet	220/100	Maharashtra	200	Sep-08
23	Bhigwan (Aug.)	220/33	Maharashtra	25	Oct-08
24	Pusad	220/132	Maharashtra	100	Nov-08
25	Malegaon II	220/32	Maharashtra	50	Nov-08
26	Nalasopara	220/22	Maharashtra	50	Nov-08
27	Gangapur (3x100)	220/132	Maharashtra	300	Dec-08
28	Phursungi(2x100)	220/132	Maharashtra	200	Dec-08
29	Wather	220/132	Maharashtra	100	Mar-09
30	Nerul	220/33	Maharashtra	25	Mar-09
31	Magarpatta(3x50)	220/22	Maharashtra	150	Mar-09
32	K.R Pet(Huyoganahally)	220/66	Karnataka	60	May-08
33	Yerandanahalli (3rd Trans.)	220/66	Karnataka	100	Jun-08
34	Shahapur (2nd Trans)	220/110	Karnataka	100	Jun-08
35	Allipura (Add.Trans)	220/110	Karnataka	100	Jul-08
36	Kadavinakote(2x100)	220/66	Karnataka	200	Aug-08
37	HAL	220/66	Karnataka	100	Oct-08
38	Puttur	220/110	Karnataka	100	Dec-08
39	HAL(2nd Trans.)	220/66	Karnataka	100	Jan-09
40	Athani	220/110	Karnataka	100	Jan-09
41	Vrishabhavaathi Valley(2x100)	220/66	Karnataka	100	Feb-09
42	Shiralkoppa(2x100)	220/110	Karnataka	100	Feb-09
43	Bijapur(2x100)	220/110	Karnataka	100	Feb-09
44	Salempur (2nd ICT)	220/132	Haryana	100	May-08
45	Nilokheri S/S (2x100 MVA)	220/132	Haryana	100	Jul-08
46	Ballabhgarh Aug	220/132	Haryana	100	Jul-08
47	Daultabad 2nd ICT	220/66	Haryana	100	Jul-08
48	Durala	220/132	Haryana	100	Nov-08
49	Jorian(Aug.)	220/66	Haryana	100	Nov-08
50	Bhuna (2x 100 MVA)	220/132	Haryana	100	Nov-08

51	Palli (Aug.)	220/66	Haryana	100	Nov-08
52	Nilokheri S/S 2nd trans.	220/132	Haryana	100	Dec-08
53	Yamunanager(Jorian) 3rd ICT	220/66	Haryana	100	Feb-09
54	Tepla Aug	220/66	Haryana	100	Mar-09
55	Dhuri (Aug) (2nd Trans.)	220/66	Punjab	100	Jun-08
56	Amloh Rd Gobindgarh	220/66	Punjab	100	Jun-08
57			•		
	Goraya(Aug.)	220/132	Punjab	100	Sep-08
58	GNDTP,BTI Aug.(100-50)	220/66	Punjab	50	Oct-08
59	Rajla (Aug)	220/66	Punjab	100	Dec-08
60	GHTP Lehra Mohabat	220/66	Punjab	100	Feb-09
61	Atrauli Extn. 2	220/132	Uttar Pradesh	100	Jun-08
62	Agra Cant.(63-40)	220/132	Uttar Pradesh	23	Jul-08
63	Loni	220/132	Uttar Pradesh	100	Oct-08
64	Dohna, Bareilly	220/132	Uttar Pradesh	200	Oct-08
65	Bharthana	220/132	Uttar Pradesh	100	Oct-08
66	Azamgarh Aug.2x(160-100)	220/132	Uttar Pradesh	60	Oct-08
67	Muradnagar Extn.(160-100)	220/132	Uttar Pradesh	60	Nov-08
68	Saharanpur Extn.(160-100)	220/132	Uttar Pradesh	60	Nov-08
69	Sikandrabad(2x100)	220/132	Uttar Pradesh	200	Jan-09
70	Nehtaur Aug. (160-100)	220/132	Uttar Pradesh	60	Jan-09
71	Gomti Nagar(3x60)	220/33	Uttar Pradesh	180	Jan-09
72	Loni(2nd Trans.)	220/132	Uttar Pradesh	100	Jan-09
73	Hardoi Road Ext. (160-100)	220/132	Uttar Pradesh	60	Jan-09
74	Jaunpur Extn. (160-100)	220/132	Uttar Pradesh	60	Jan-09
75	Hathras Extn. (160-100)	220/132	Uttar Pradesh	60	Jan-09
76	Simboli Extn. (160-100)	220/132	Uttar Pradesh	60	Jan-09
77	C.B.Ganj Extn. (3x60)	220/132	Uttar Pradesh	60	Jan-09
78	Phoolpur Extn.(160-100)	220/132	Uttar Pradesh	60	Mar-09
79	Kawai	220/132	Rajasthan	100	Jul-08
80	Kishangarh (Ajmer)	220/132	Rajasthan	100	Sep-08
81	VKIA	220/132	Rajasthan	100	Sep-08
82	Neemrana	220/132	Rajasthan	100	Oct-08
83	Khushkhera(Alwar)(1x100)	220/132	Rajasthan	100	Jan-09
84	Beaver(Aug.)	220/132	Rajasthan	50	Mar-09
85	Phalodi(Aug)	220/132	Rajasthan	50	Mar-09
86	Kuchaman City(Aug.)	220/132	Rajasthan	100	Mar-09
87	Alwar (Aug.)	220/132	Rajasthan	50	Mar-09
88	Dahra (Aug.)	220/132	Rajasthan	100	Mar-09
89	Kukma	220/66	Gujarat	100	
					Aug-08
90	Bala (2x50)	220/11	Gujarat	100	Feb-09
91	Dudhrej (2x25)	220/11	Gujarat	50	Feb-09
92	Suhela (Bhatapara)	220/132	Chhattisgarh	160	Aug-08
93	Siltara	220/132	Chhattisgarh	160	Feb-09
94	Main step down sub-station (MSDS)-6	220/132	Chhattisgarh	160	Mar-09
95	Mandideep	220/132	Madhya Pradesh	160	Sep-08
96	Sagar	220/132	Madhya Pradesh	160	Dec-08
97	Badod	220/132	Madhya Pradesh	160	Dec-08
98	Hoshangabad	220/132	Madhya Pradesh	160	Feb-09
99	Sabalgarh	220/132	Madhya Pradesh	160	Mar-09
100	Mandideep	220/132	Madhya Pradesh	100	Mar-09
101	Damoh(Add Trans.)	220/132	Madhya Pradesh	160	
					Mar-09
102	Rajgarh(Dhar)(Add.Trans)	220/132	Madhya Pradesh	160	Mar-09
103	Barn (2x160)	220/132	Jammu& Kashmir	160	Oct-08
104	Manimajra (Chandigarh)	220/66	Chandigarh	100	Nov-08
105	Rentachintala	220/132	Andhra Pradesh	100	Dec-08
106	Gajwel (ICT-I)	220/132	Andhra Pradesh	100	Feb-09
107	Kamareddy	220/132	Andhra Pradesh	100	Mar-09
108	Gangavaram port	220/33	Andhra Pradesh	31.5	Mar-09
109	Fatuah(Aug.)	220/132	Bihar	100	Jan-09
110	KLC	220/132	West Bengal	100	Jan-09
110	I NEO	220/ TUZ	vvcst Deligai	100	0011-03

111	Gokarna(3rd Trans.)	220/132	West Bengal	100	Jan-09
112	Bawana DSIDC	220/66	Delhi	100	Feb-09
113	South of Wazirabad (4th ICT)	220/66	Delhi	100	Feb-09
114	GT S/S (Aug)(160-100)	220/33	Delhi	60	Feb-09
115	Barkote(ICT- II)	220/33	Orissa	20	Feb-09
116	Paradeep(1st)	220/132	Orissa	100	Mar-09
	TOTAL (State Sector)	220		11034.5	
	TOTAL (All India)	220		11314.5	

Annex-6.3

TRANSMISSION SYSTEM ADDITION DURING 2009-10

Transmission lines commissioned during 2009-10

SI. No.	Name of the transmission lines	No. of ckts	Executing Agency	Line length (CKM)	Month of Completion
I. 765	KV LINES				
1	Bina (PG) – Gwalior (PG) 2nd S/C (initially to be operated at 400kV)	S/C	POWERGRID	233	Feb-10
2	Seoni - Bina (initially to be operated at 400KV)	S/C	POWERGRID	293	Mar-10
3	LILO of 765 kV D/C Tehri -Meerut line at Tehri Pooling Point	D/C	POWERGRID	8	Mar-10
	TOTAL 765kV CKM OF FULLY COMPLETED (AI) DURING	G THE YEA	R	534	

SI. No.	Name of the transmission lines	No. of ckts	Executing Agency	Line length (CKM)	Month of Completion
II. ± 5	00 kV HVDC LINES				
1	+/- 500 KV Balia - Bhiwadi (2500 MW)	Bipole	POWERGRID	1580	Mar-10
	TOTAL CKM OF FULLY COMPLETED (AI) DURING THE	1580			

SI.	Name of the transmission lines	No.	Executing	Line	Month of
No.		of ckts	Agency	length	Completion
		CNIS		(CKM)	
III. 400	KV LINES			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	CENTRAL SECTOR				
1	LILO of Ramagundam - Khammam at Warangal	D/C	POWERGRID	26	Jul-09
2	LILO of 1 ckt of Madurai (PG) - Trichy (PG) at Karaikudi	D/C	POWERGRID	98	Jul-09
3	Bhiwadi - Agra	D/C	POWERGRID	418	Aug-09
4	LILO of 1st ckt. Of Kankroli-Zerda at Bhinmal	D/C	POWERGRID	55	Aug-09
5	Neyveli (Expn.) Sw. Yd Neyveli (existing) Sw. Yd.	2xS/C	POWERGRID	3	Sep-09
6	LILO of Kahalgaon-Patna at Barh	D/C	POWERGRID	104	Oct-09
7	Akola - Aurangabad	D/C	POWERGRID	482	Dec-09
8	LILO of one ckt of Maithon - Jamshedpur line at Mejia	D/C	POWERGRID	100	Feb-10
9	Bhiwadi - Moga	D/C	POWERGRID	702	Mar-10
10	Koldam - Nalagarh (Quad) (Powergrid Portion)	D/C	POWERGRID	90	Mar-10
11	Kankroli - Jodhpur	D/C	POWERGRID	193	Mar-10
12	LILO of Ballabhgarh - Bhiwadi at Gurgaon	D/C	POWERGRID	68	Mar-10
13	Damoh – Bhopal (MPEB)	D/C	POWERGRID	430	Mar-10
14	Udhamalpet - Arasur	D/C	POWERGRID	131	Mar-10
15	LILO of Neyveli - Sriperumbadur line at puducherry	D/C	POWERGRID	26	Mar-10

16	Tirunelveli (PG) - Edamon (KSEB) Multi -Ckt line	M/C	POWERGRID	327	Mar-10
17	17 LILO of 1 ckt of exist. Talguppa (KPTCL) -Neelamangla		POWERGRID	148	Mar-10
	(KPTCL) at Hassan				
	TOTAL 400 kV Lines (CS)			3401	
	TOTAL 220 kV Lines (CS)			0	
	Total CS (765 +400+220+132 kV PG only)			5515	

SI. No.	Name of the transmission lines	No. of ckts	Executing Agency	Line length (CKM)	Month of Completion
	State Sector (400kV LINES)				
1	LILO of Srisailam-Nunna at Vijayawada TPS	M/C	Andhra Pradesh	24	Jul-09
2	Bhoopalapally -Warangal	D/C	Andhra Pradesh	90	Feb-10
3	Meramundali-Mendhasal (Chandaka)	D/C	Orissa	201	Aug-09
4	LILO of one ckt of Hissar- Moga at Hissar TPS	D/C	Haryana	3	Jul-09
5	Hissar - Fatehbad (1st ckt)	S/C	Haryana	41	Jan-10
6	LILO of one Ckt of Asoj-Amreli at Chorania	D/C	Gujarat	39	Jul-09
7	Suratgarh STPS -Bikaner	S/C	Rajasthan	162	Sep-09
8	LILO Dholpur-Heerapura at Hindaun	D/C	Rajasthan	8	Dec-09
9	LILO of Koradi- Chandrapura at New Khaperkheda	D/C	Maharashtra	3	Nov-09
10	LILO of Lonikhand - Padghe at Chakan	D/C	Maharashtra	2	Dec-09
	TOTAL CKM OF FULLY COMPLETED 400 kV LINES (SS) DU			573	200 00
	` ,				
1	State Sector (220 KV LINES) STPS-Bhadra	S/C	Rajasthan	114	Apr-09
2	Raj West-Barmer	D/C	Rajasthan	27	Apr-09
3	LILO Heerapura-Kukas at Renwal	D/C D/C	Rajasthan	49	May-09
4	Chhabra-Baran-Dahra	S/C	Rajasthan	138	Jun-09
5	Kankroli (PG)-Debari	S/C	Rajasthan	63	Aug-09
6	LILO Bhilwara-Pali at Bhilwara 400 kV S/S	D/C	Rajasthan	10	Sep-09
7	LILO Bhilwara-Bali at Bhilwara 400 kV S/S	D/C	Rajasthan	6	Sep-09
8	2nd ckt strng.of Banswara- Debair upto Salumber from	S/C	Rajasthan	87	Sep-09
0	Banswara end & LILO for 132 kV S/S at Salumber	3/0	Najastilali	01	3ep-09
9	Hindaun (400 kV)-Hindaun (220 kV)	D/C	Rajasthan	16	Sep-09
10	Link line at STPS end for 400KV STPS Suratgarh-Bikaner	S/C	Rajasthan	3.5	Sep-09
11	Giral TPS-Barmer 2nd ckt	S/C	Rajasthan	35	Nov-09
12	Baitoo - Balotra	S/C	Rajasthan	48	Nov-09
13	Giral TPS-Baitoo	S/C	Rajasthan	55	Dec-09
14	LILO Bassi - Phulera at GSS SEZ -I	D/C	Rajasthan	15	Jan-10
15	Kankroli (PG)-Kankroli	S/C	Rajasthan	8	Mar-10
16	LILO Bikaner- Nagaur at Bikaner (400 kV)	D/C	Rajasthan	37	Mar-10
17	Merta- Makrana- Kuchaman	S/C	Rajasthan	108	Mar-10
18	LILO of one ckt of Banswara- Debari at 132 kV GSS	D/C	Rajasthan	16	Mar-10
	Salumber		,		
19	LILO of Sikar- Kuchman at GSS Dhod	D/C	Rajasthan	6	Mar-10
20	LILO of one ckt of KTPS- Bewar at Gulabpura	D/C	Rajasthan	13	Mar-10
21	D/C line at approach section of 400 kV GSS Akai and 220 kV bays at 400 kV Akai (Jaisalmer)	D/C	Rajasthan	12	Mar-10
22	LILO of Moga- Jagraon at Ajiwal	D/C	Punjab	3	Apr-09
23	LILO of one ckt. of Fateh Garh Churian- Civil Line Amritsar at	D/C	Punjab	5	Jul-09
	Majitha(Loop in commid.)		-		
24	LILO of one ckt. of Fateh Garh Churian- Civil Line Amritsar at Majitha(Loop out commid.)	D/C	Punjab	5	Dec-09
25	Rishikesh-Maneribali Stage-II (3rd ckt)	S/C	Uttarakhand	79	May-09
26	Ghansali - Chamba	S/C	Uttarakhand	35	Oct-09
27	Bhauti(PG)-Orai	S/C	Uttar Pradesh	90	Apr-09
28	Rosa - Hardoi (ckt-I)	S/C	Uttar Pradesh	59	Jul-09
29	Rosa- Shahjahanpur -I	S/C	Uttar Pradesh	22	Jul-09
30	LILO of Sultanpur-Gonda at Sohawal	D/C	Uttar Pradesh	26	Jan-10

31	LILO of Khurja-Muradnagar at Dadri	D/C	Uttar Pradesh	24	Feb-10
32	Rosa- Shahjahanpur -II	S/C	Uttar Pradesh	22	Mar-10
33	LILO of Palli - Gurgaon Sector 52 A at Gurgaon Sector 56	D/C	Haryana	2	
					Aug-09
34	Kirori - Masudpur	D/C	Haryana	24	Oct-09
35	LILO of Jind- Hissar at Kirori	D/C	Haryana	26	Mar-10
36	LILO of Jind - Hissar at Masudpur	D/C	Haryana	4	Mar-10
37	LILO of Bawana - Narela at Bawana DSIDC(loop in portion)	D/C	Delhi	14	Nov-09
38	LILO of Jabalpur-Itarsi(2nd ckt) at Narsinghpur	D/C	Madhya Pradesh	4	Apr-09
39	LILO of lst Ckt Itarsi - Bhopal at Hosangabad	D/C	Madhya Pradesh	12	Apr-09
40	Chindwara- Seoni (PG)	D/C	Madhya Pradesh	134	Apr-09
41	LILO of 1st Ckt of Damoh - Bina D/C at Sagar	D/C	Madhya Pradesh	15	Apr-09
42	LILO of 2nd ckt of Pitampur- Ratlam at Bad Nagar	D/C	Madhya Pradesh	20	Apr-09
43	Makronia- Sagar(Traction feeder)	D/C	Madhya Pradesh	10	Jul-09
44	LILO of 2nd ckt Itarsi - Bhopal at Hosangabad	D/C	Madhya Pradesh	11	Jul-09
45	Sujalpur-Rajgarh	D/C	Madhya Pradesh	144	Sep-09
46	LILO of 1st Ckt Jabalpur-Itarsi at Piparia	D/C	Madhya Pradesh	7	Oct-09
47	Bhopal(400 kV)-Ashta S/S	D/C	Madhya Pradesh	194	Jan-10
48	LILO of one ckt of Satpura-Itarsi at Handia	D/C	Madhya Pradesh	170	Mar-10
49	Theur- Magarpatta(Urse- Talegaon 2nd ckt)	S/C	Maharashtra	10	Apr-09
50	LILO of Nerul- Trombay at Somkar	D/C	Maharashtra	1	Apr-09 Apr-09
51	LILO of Pirangut - Hinjwadi I at Hinjwadi-II	D/C	Maharashtra	10	Sep-09
52	LILO of Bhigwan- Baramati at Baramati Agro, Shetphal	D/C	Maharashtra	8	Nov-09
53	LILO of Kandalgaon – Chinchwad D/C at Hinjwadi-II	D/C	Maharashtra	12	Nov-09
54	Chakan- M/s Volks Wagen	D/C	Maharashtra	5	Dec-09
55	LILO of Wardha- Badnera at 765 kV Deoli S/S	D/C	Maharashtra	20	Feb-10
56	LILO of Kalwa – Nassik(Ckt-III)at Airoli (Knowledge Park)	D/C	Maharashtra	1	Mar-10
57	Chorania -Bala	D/C	Gujarat	59	Jun-09
58	LILO of Vav-Jagadia on Ckt-1 at Kosamba	D/C	Gujarat	10	Jul-09
59		D/C		20	Jul-09
	Rajpur - Dudhrej		Gujarat		
60	Tunda UMPP - Nanikhakhar	S/C	Gujarat	15	Dec-09
61	Adani(Mundra) - Versana	D/C	Gujarat	166	Jan-10
62	Mangrol - Mobha	D/C	Gujarat	219	Feb-10
63	Raigarh 400 kV (PGCIL) S/S – Raigarh	S/C	Chattisgarh	21	Jun-09
64	Khedamara- Rajnandgaon	D/C	Chattisgarh	50	Sep-09
65	Bhatapara 400 kV (PGCIL)- Suhela (Bhatapara)	D/C	Chattisgarh	27	Jan-10
66	LILO of one ckt of Kolhapur - Ponda at Amona	D/C	Goa	3	Nov-09
67	LILO of Kadur- Nelamangala at Dabaspet (Nelamangala)	D/C	Karnataka	2	Apr-09
68	Hiriyur - Tallak	D/C	Karnataka	80	Apr-09
	· ·	D/C	Karnataka	170	
69	Indi- Basavanabagevadi				Apr-09
70	Link line between Nagjhari-Hubli and Hubli-Gadag line	D/C	Karnataka	3	Sep-09
71	LILO of Mahalingapur-Bagalkot at Mudol/Vajaramatti	D/C	Karnataka	2	Sep-09
72	Bidadi-Kothipura(Ramanagar)	M/C	Karnataka	36	Sep-09
73	UTPS-Nandikur - Khemar (partly on Multi-ckt Multi-Voltage	D/C,	Karnataka	48	Oct-09
	towers & partly on D/C towers)	M/C			
74	LILO of Mahalingapur-Hubli line at Soundatti	D/C	Karnataka	9	Dec-09
75	Bastipura - Kadakola	D/C	Karnataka	44	Feb-10
76	Manali- Tondiarpet	D/C	Tamil Nadu	18	May-09
77	Meelavittan - M/s Ind Bharat	S/C	Tamil Nadu	9	Jul-09
78	LILO of Karaikudi - Pudukkottai at Karaikudi 400kV SS	D/C	Tamil Nadu	7.5	Aug-09
79	LILO of Pugalur-Alundur at Pugalur S/S 400kV S/S	D/C	Tamil Nadu	18	Aug-09
80	Amathapuram- Chekkanoorani	S/C on	Tamil Nadu	110	Oct-09
		D/C			
81	LILO of Tondiarpet- Mylapore at Basin Bridge	D/C	Tamil Nadu	2	Nov-09
82	Arasur 400kV S/S- Arasur 230kV S/S	D/C	Tamil Nadu	43	Jan-10
83	Malumichampatty- Common point- Myvadi	S/C	Tamil Nadu	58	Jan-10
84	Sriperumbudur 400kV S/S- Sripermbudur Sipcot 230 kV S/S	S/C on	Tamil Nadu	15	Jan-10
J-T	onpondinada 100kt 0/0 onpondada olpoot 200 kV 0/0	D/C	Tanin Nada		Juli 10
85	Tirunelveli 400kV S/S - Udayathur	S/C on	Tamil Nadu	69	Feb-10
00	Hundivell 400kv 3/3 - Oudydulul		ranni Nauu	09	reb-10
		D/C			
1		1		1	

86	M/s Ind Bharat- Chekkanoorani	D/C &	Tamil Nadu	154	Mar-10
		S/C			
87	LILO of Kayamkulam-Edaman (ckt-2) at Edappon	D/C	Kerala	17	Jun-09
88	Tap line to Vadakara S/S	D/C	Kerala	2	Aug-09
89	Garividi - Boddepallipeta	S/C on	Andhra Pradesh	44	Jul-09
		D/C			
90	Boddepallipeta-Tekkali	S/C on	Andhra Pradesh	44	Jul-09
		D/C			
91	RTPP-Pulivendula	D/C	Andhra Pradesh	82	Dec-09
92	LILO of VTS- Podili at Nasararaopet	D/C	Andhra Pradesh	4	Dec-09
93	LILO of Sonenagar- Garhwa D/C at Japla	D/C	Jharkhand	8	May-09
94	Biharshariff- Begusarai	D/C	Bihar	150	Nov-09
95	Budhipadar-Bolangir	D/C	Orissa	312	Jan-10
96	Tinsukia- Namrup	D/C	Assam	80	Apr-09
	TOTAL CKM OF FULLY COMPLETED 220 kV LINES (SS) DU	RING THE	YEAR	4325	
	400kV Lines (Private Sector)				
1	Mundra-Dehgam	D/C	Adani Power Ltd	868	Jul-09
2	LILO of RTPS- Guttur at Thorangallu JSW S/S	D/C	JSW Energy Ltd	16	Aug-09
3	Kondapalli - Nunna	D/C	Lanco	44	Oct-09
	TOTAL CKM OF FULLY COMPLETED 400 kV LINES (PS) DU	RING THE	YEAR	928	
	Private Sector				
1	Akhakol-Puna	D/C	Torrent Power	72	May-09
2	Akhakol-Bhatar	D/C	Torrent Power	136	May-09
3	Akhakol-Ved(Dabholi)	D/C	Torrent Power	52	Jun-09
4	Budge Budge -Kosba	D/C	CESC	170	Feb-10
	Total CKM OF 220 kV LINES (PS)			430	
	TOTAL CKM OF FULLY COMPLÉTED 400 kV LINES (All Indi	a) DURING	THE YEAR	4902	
		,			
	TOTAL CKM OF FULLY COMPLETED 220 kV LINES (All Indi	a) DURING	THE YEAR	4755	
	·	•			

Sub-stations commissioned during 2009-10

SI. No.	Name of the Sub-station	Voltage Ratio (kV/kV)	Executing Agency	Capacity (MW/MVA)	Month of completion
I. 500 kV HV	DC(Sub-station)				
1	Converter station at Balia & Bhiwadi (2x1250 MW)			1250	Mar-10
	TOTAL (Central Sector)			1250	

SI. No.	Name of the Sub-station	Voltage Ratio (kV/kV)	Executing Agency	Capacity (MW/MVA)	Month of completion
II. 400 kV	(Sub-station)				
	Central Sector				
1	Trivandrum (PG)(Ext) (1x315)	400/220	POWERGRID	315	Jun-09
2	Warrangal S/S (2x315)	400/220	POWERGRID	630	Jul-09
3	Karaikudi S/S (2x315)	400/220	POWERGRID	630	Jul-09
4	Bhimnal S/Stn.(2x315)1st ICT	400/220	POWERGRID	630	Aug-09
5	Pugalur S/S (2x315)	400/222	POWERGRID	630	Aug-09
6	Roorkee S/S (2nd ICT)	400/220	POWERGRID	315	Mar-10
7	Ludhiana (3rd ICT)	400/220	POWERGRID	315	Mar-10
8	Hissar 3rd ICT (1x315)	400/220	POWERGRID	315	Mar-10
9	Gurgaon GIS S/Stn.(2x315)	400/220	POWERGRID	315	Mar-10
10	Wardha Sub station (2x315) 2nd Trans.	400/220	POWERGRID	315	Mar-10

11	Solapur	400/220	POWERGRID	630	Mar-10
12	Arasur S/S (2x315)	400/220	POWERGRID	630	Mar-10
13	Pondicherry S/S (2x315)	400/220	POWERGRID	630	Mar-10
14	Hassan S/S	400/220	POWERGRID	630	Mar-10
	TOTAL (Central Sector)			6930	
1	Mendhasal (2x315)	400/220	Orissa	630	Aug-09
2	Durgapur(6x105)	400/220	West Bengal	630	Dec-09
3	Chakan S/S (3x105)	400/220	Maharashtra	315	Dec-09
4	Jejuri (3x167)	400/220	Maharashtra	500	Jan-10
5	Bikaner S/S (1X315)	400/220	Rajasthan	315	Mar-10
	TOTAL (State Sector)			2390	

SI. No.	Name of the Sub-station	Voltage Ratio (kV/kV)	Executing Agency	Capacity (MW/MVA)	Month of completion
III. 220 kV (S	Sub-station)	(117,117)		(,,	
	Central Sector				
1	Sitarganj 2nd ICT	220/132	POWERGRID	100	Jul-09
2	Kopili S/S Extn.	220/132	POWERGRID	160	Mar-10
3	Dimapur S/S Extn.	220/132	POWERGRID	100	Mar-10
	TOTAL (Central Sector)			360	
	State Sector				
1	Guragaon Aug(Sector-52A) 3rd Tr.	220/66	Haryana	100	Apr-09
2	Isharwal	220/132	Haryana	100	Apr-09
3	Pehowa Aug (100-50)	220/132	Haryana	50	Jun-09
4	Cheeka Aug (3rd)	220/132	Haryana	100	Jun-09
5	Nissing Aug (3rd)	220/132	Haryana	100	Jun-09
6	Bhuna (2nd Trans.)	220/132	Haryana	100	Jul-09
7	Guragaon Aug(Sector-56)	220/66	Haryana	100	Aug-09
8	Kartarpur (Aug) (2nd)	220/66	Punjab	100	Apr-09
9	Mohali-II (New)	220/66	Punjab	100	Aug-09
10	Bagha Purana (U/G)	220/66	Punjab	100	Aug-09
11	Majitha (U/G)	220/66	Punjab	100	Aug-09
12	Ajitwal	220/66	Punjab	100	Oct-09
13	Renwal	220/132	Rajasthan	100	May-09
14	Baran	220/132	Rajasthan	100	May-09
15	Bhadra	220/132	Rajasthan	100	May-09
16	Mahindra SEZ	220/132	Rajasthan	100	Mar-10
17	Gulabpura	220/132	Rajasthan	100	Mar-10
18	Dhod	220/132	Rajasthan	100	Mar-10
19	DSIDC Bawana (2nd Trans.)	220/66	Delhi	100	Jul-09
20	Basti Aug. (160-100)	220/132	Uttar Pradesh	60	Apr-09
21	Sultanpur Aug.(160-100)	220/132	Uttar Pradesh	60	Aug-09
22	Sikandrabad	220/132	Uttar Pradesh	100	Oct-09
23	Muzaffarnagar	220/132	Uttar Pradesh	100	Jan-10
24	Sohawal	220/132	Uttar Pradesh	100	Jan-10
25	Sonkhar	220/33	Maharashtra	50	Apr-09
26	Tembhurni	220/33	Maharashtra	25	Apr-09
27	Magarpatta	220/22	Maharashtra	150	Apr-09
28	Wathar	220/132	Maharashtra	100	Jun-09
29	Wathar	220/33	Maharashtra	50	Jun-09
30	Temghar	220/22	Maharashtra	50	Aug-09
31	Washala	220/22	Maharashtra	25	Aug-09
32	Hinjewadi II S/S	220/22	Maharashtra	50	Oct-09
33	Mahape (3rd Trans.)	220/22	Maharashtra	50	Jan-10
34	Temghar (2nd Tranf.)	220/22	Maharashtra	50	Jan-10
35	Mahad	220/22	Maharashtra	50	Mar-10
36	Airoli (Knowledge Park)	220/22	Maharashtra	50	Mar-10
37	Panvel (3rd Trans.)	220/33	Maharashtra	50	Mar-10

38	Sidhi S/S	220/132	Madhya Pradesh	160	May-09
39	Rajgarh (Biaora)	220/132	Madhya Pradesh	160	Sep-09
40	Beragarh	220/132	Madhya Pradesh	160	Sep-09
41	Nagda	220/132	Madhya Pradesh	160	Sep-09
42	Indore(South Zone)	220/132	Madhya Pradesh	160	Sep-09
43	Badnagar	220/132	Madhya Pradesh	160	Oct-09
44	Chindwara	220/132	Madhya Pradesh	160	Nov-09
45	Piparia	220/132	Madhya Pradesh	160	Jan-10
46	Astha	220/132	Madhya Pradesh	100	Jan-10
47	Badnagar (2nd Traf.)	220/132	Madhya Pradesh	160	Jan-10
48	Bhopal (Chambal) Addl.Tr.	220/132	Madhya Pradesh	100	Mar-10
49	Rajnandgaon	220/132	Chhattisgarh	160	Sep-09
50	Raigarh	220/132	Chhattisgarh	160	Jul-09
51	Amona (2x50)	220/33	Goa	100	Nov-09
52	Bala (2x50)	220/11	Gujarat	100	Nov-09
53	Dudhrej (2x25)	220/11	Gujarat	50	Nov-09
54	Tallak(2ndTrans.)	220/66	Karnataka	100	Apr-09
55	Haskote	220/66	Karnataka	100	Apr-09
56	Dabaspet (Nelamangala)	220/66	Karnataka	100	Apr-09
57	HSR layout(2x150- 2x100)	220/66	Karnataka	100	Apr-09
58	Shiralkoppa	220/110	Karnataka	100	Apr-09
59	Sindhanur (1st)	220/110	Karnataka	100	Apr-09
60	Indi (2x100)	220/110	Karnataka	200	Apr-09
61	Naganathapura (1st Trans)	220/66	Karnataka	100	Jun-09
62	Vajramatti (2x100)	220/110	Karnataka	200	Oct-09
63	Ranebennur(Addl.Trans.)	220/110	Karnataka	100	Oct-09
64	Kustagi (Addl.trans.)	220/110	Karnataka	100	Nov-09
65	Soundatti	220/110	Karnataka	100	Mar-10
66	Naganathapura (2nd Trans.)	220/66	Karnataka	100	Dec-09
67	Sriperumbudur SIPCOT	230/110	Tamil Nadu	100	Apr-09
68	Nokia	230/110	Tamil Nadu	100	Apr-09
69	Ponnapuram (Addl. Trans.)	230/110	Tamil Nadu	100	Apr-09
70	Kadapperi 3rd(80 to 100 MVA)	230/110	Tamil Nadu	20	Apr-09
71	Palladam Addl.Trans.	230/110	Tamil Nadu	100	May-09
72	Mettur (Aug.)	230/110	Tamil Nadu	100	Jun-09
73	Perambalur (Aug.)(100-50)	230/110	Tamil Nadu	50	Jul-09
74	Arni (Addl.Trans.)	230/110	Tamil Nadu	80	Aug-09
75	Thiruvalam Addl.Trans.	230/110	Tamil Nadu	100	Sep-09
76	Alundur (Aug.)(100-50)	230/110	Tamil Nadu	50	Sep-09
77	Amuthapuram Addl.Trans.	230/33	Tamil Nadu	50	Oct-09
78		230/33	Tamil Nadu	100	Oct-09
79	Renganathapuram Addl.Trans.	230/110		20	Oct-09
80	Koratur Aug.(80 to 100 MVA) Basin Bridge(GMR Vasavi)	230/110	Tamil Nadu Tamil Nadu	100	Nov-09
81	Vinnamangalam Aug.(100-50)	230/110		50	Nov-09 Nov-09
82	Nethimedu Aug.(100-80)	230/110	Tamil Nadu	20	Dec-09
83			Tamil Nadu	25	
	Thiruvalam Aug. (100-75)	230/110	Tamil Nadu		Jan-10
84	Udayathur	230/110	Tamil Nadu	100	Mar-10
85	Othakalmandapam (3rd Tr.)	230/110	Tamil Nadu	100	Mar-10
86	Salem Aug.(100- 80)	230/110	Tamil Nadu	20	Mar-10
87	Vadakara	220/110	Kerala	100	Aug-09
88	Vadakara 2nd Trans.	220/110	Kerala	100	Dec-09
89	Kundra	220/110	Kerala	200	Dec-09
90	Gajwel 2nd Trans.	220/132	Andhra Pradesh	100	Nov-09
91	Pulivendula	220/132	Andhra Pradesh	100	Dec-09
92	Nasararaopet	220/132	Andhra Pradesh	100	Dec-09
93	Nellore(Manuboin)	220/132	Andhra Pradesh	100	Dec-09
94	New Town AA-III (2x160)	220/132	West Bengal	320	Jul-09
95	New Town AA-III (2x50)	220/33	West Bengal	100	Jul-09
96	Subhasgram	220/132	West Bengal	160	Sep-09
97	Arambag(Aug.)	220/132	West Bengal	160	Sep-09

98	Biharshariff Extn.	220/132	Bihar	150	Apr-09
99	Begusarai(2x100)	220/132	Bihar	200	Nov-09
100	Paradeep (2nd Traf.)	220/132	Orissa	100	Sep-09
101	Bhadrak (2nd Traf)	220/132	Orissa	100	Sep-09
102	Samaguri (Aug.)	220/132	Assam	50	Sep-09
103	Namrup (Aug)(2x50)	220/132	Assam	100	Oct-09
	TOTAL (State Sector)	220		10195	
	JV/Private Sector				
1	Puna (2x160 MVA)	220/66	Torrent Power	160	May-09
2	Bhatar (2x160 MVA)	220/66	Torrent Power	160	May-09
3	Ved (Dabhol) (2x160 MVA) GIS	220/66	Torrent Power	160	Jun-09
4	Puna (2nd Trans.)	220/66	Torrent Power	160	Jul-09
5	Bhatar (2nd Trans.)	220/66	Torrent Power	160	Jul-09
6	Ved (Dabhol) (2nd Trans) GIS	220/66	Torrent Power	160	Aug-09
7	Kosba (3x160)	220/132	CESC Limited	480	Nov-09
	Total(JV/PS)			1440	
	TOTAL (All India)	400		9320	
	TOTAL (All India)	220		11995	

Annex-6.4

TRANSMISSION SYSTEM ADDITION DURING 2010-11

Transmission lines commissioned during 2010-11

SI. No	Name of the transmission lines	No. of ckts	Executing Agency	Line length	Month of Completion
I. 400 I	KV LINES				
	400kV lines(CS)				
1	Barh-Balia (Quad)	D/C	POWERGRID	488	Jun-10
2	Bahadurgarh-Sonepat line (Triple Cond.)	D/C	POWERGRID	104	Jul-10
3	Raigarh - Raipur	D/C	POWERGRID	440	Sep-10
4	Maithon RB - Maithon (PG)	D/C	POWERGRID	62	Sep-10
5	Kanpur - Ballabgarh	D/C	POWERGRID	743	Oct-10
6	Gorakhpur - Lucknow	D/C	POWERGRID	528	Oct-10
7	Meerut -Kaithal (Q) (HSIL)	D/C	POWERGRID	327	Oct-10
8	Birsinghpur (MPGENCO) – Damoh	D/C	POWERGRID	457	Oct-10
9	Ranchi-Rourkela	D/C	POWERGRID	290	Nov-10
10	Pirana-Dehgam	D/C	POWERGRID	94	Dec-10
11	Durgapur-Jamshedpur Part line for LILO at Andal (to facilitae start up power at Durgapur STPS)	D/C	POWERGRID	38	Jan-11
12	Parli (MSETCL) – Parli (PG)	D/C	POWERGRID	10	Feb-11
13	Koteshwar -Tehri Pooling Point	D/C	POWERGRID	5	Mar-11
14	Chamera Pooling Station - Chamera-II HEP (Part-I)	S/C	POWERGRID	1	Mar-11
15	Abdullapur - Sonepat	D/C	POWERGRID	291	Mar-11
16	Bhadravati(PG)-Parli(PG)	D/C	POWERGRID	768	Mar-11
17	LILO of Bina - Nagda at Sujalpur	D/C	POWERGRID	44	Mar-11
18	LILO of Durgapur-Jamshedpur (PG) at Durgapur STPS	D/C	DVC	7	Jan-11
19	LILO of Maithon-Ranchi (PG) at Raghunathpur	D/C	DVC	21	Mar-11
	Total CKM OF 400 kV LINES (CS) Comple	eted durinç	the Year	4718	
	400kV lines(SS)				
1	LILO of Ramagundam -Ghanapur at Malkaram	D/C	APTRANSCO	52	Apr-10
2	KothagudamTPS - Khammam	D/C	APTRANSCO	136	Mar-11
3	Bhusaval - II - existing Khadka	D/C	MSETCL	15	Apr-10
4	Hissar - Kirori	D/C	HVPNL	13	Sep-10
5	Hissar - Fatehbad	D/C	HVPNL	90	Sep-10
6	Jhajjar - Daultabad (1st ckt.)	D/C	HVPNL	68	Jan-11
7	Jhajjar - Daultabad (2nd ckt.)	D/C	HVPNL	68	Feb-11

8	Chhabra-Hindaun	S/C+	RRVPNL	342	Apr-10
	Official Filliadan	D/C	TUTVITUE	042	7 (5) 10
9	Rajwest- Jodhpur	D/C	RRVPNL	417	May-10
10	Rajwest- Barmer (1st ckt)	S/C	RRVPNL	15	May-10
11	Dahra(Kota)-Bhilwara	S/C+	RRVPNL	187	Oct-10
		D/C			
12	Jaisalmer- Barmer	S/C	RRVPNL	143	Nov-10
13	Jodhpur - Merta (2nd Ckt)	S/C	RRVPNL	97	Jan-11
14	KTPS-Kota(PG) (to be charged at 220 kV)	D/C	RRVPNL	13	Mar-11
15	Rajwest- Barmer (2nd ckt)	S/C	RRVPNL	15	Mar-11
16	LILO of Bamnauli - Bawana at Mundka	D/C	DTL	1	Feb-11
17	Dabhol-Nagothane CktII	S/C	MSETCL	137	Jun-10
18	Versana-Hadala	D/C	GETCO	318	Nov-10
19	Mundra(Adani) -Versana	D/C	GETCO	168	Feb-11
20	LILO Farakka-Subhasgram S/C at Sagardighi	D/C	WBSTCL	13	Nov-10
21	Limbdi(Choania) (GETCO)- Ramchandpura(Vadavi) (GETCO)	D/C	GETCO	206	Mar-11
	TOTAL CKM OF FULLY COMPLETED 400 kV LII	NES (SS) DU	RING THE YEAR	2514	
	400kV lines(PS)				
1	Sugen - Jhanor	D/C	Torrent Power	160	Jul-10
2	Jaigad - New Koyna (ckt 1)	S/C	JSW Energy	55	Jul-10
3	Jaigad - New Koyna (ckt 2)	S/C	JSW Energy	55	Aug-10
4	Jhajjar - Mundka (1st ckt)	S/C	APCPL	62	Sep-10
5	Jhajjar - Mundka (2nd ckt)	S/C	APCPL	70	Nov-10
6	LILO of Solapur -Karad at Solapur(POWEGRID)	D/C	Reliance Power	230	Jan-11
7	Jhanor-Pirana via Pirana TPL	D/C on	Torrent Power	284	Feb-11
		M/C			
8	LILO of Rourkela- Raigarh at Sterlite TPP	D/C	Sterlite TPP	54	Feb-11
	TOTAL CKM OF FULLY COMPLETED 400 kV LII	NES (PS) DU	RING THE YEAR	970	
	TOTAL CKM OF 400 kV LINES (ALL INDIA)			8202	

SI.	Name of the transmission lines	No.	Executing	Line	Month of
No		of	Agency	length	Completion
		ckts			
II. 220	KV LINES				
	220 KV LINES(CS)				
1	Vapi -Khadoli (UT of DNH)	D/C	POWERGRID	62	Sep-10
2	Kalyaneshwari - Pithakari	D/C	DVC	16	Jul-10
3	LILO of Kalyaneshwari-ChandrapuraTPS at Dhanbad	2xD/C	DVC	8	Mar-11
4	Loop in of both ckts of Chandrapura TPS-MTPS at	D/C	DVC	90	Mar-11
	Kalyaneshwari -ckt l				
5	Loop out of both ckts of Chandrapura TPS-MTPS at	D/C	DVC	92	Mar-11
	Kalyaneshwari- ckt II				
	TOTAL CKM OF FULLY COMPLETED 220 kV LIN	ES (CS) DUF	RING THE YEAR	206	
	220 KV LINES(SS)				
1	Cheeka-Durala	D/C	HVPNL	100	May-10
2	Bastra- Kaul	D/C	HVPNL	90	Oct-10
3	Pehowa-Kaul line	D/C	HVPNL	33	Oct-10
4	LILO of PTPS -Safidon line at Bastara	D/C	HVPNL	27	Oct-10
5	YTPP(DCRTPP) -Nilokheri	D/C	HVPNL	104	Nov-10
6	Sonepat(Jajjy)-Mohana S/S	D/C	HVPNL	6	Nov-10
7	PTPP-Bastra line	D/C	HVPNL	28	Nov-10
8	Sampla-Mohana line	D/C	HVPNL	69	Feb-11
9	Mohana-Smalkha line	D/C	HVPNL	55	Feb-11
10	Nalagarh-Mohali -I (length of line corrected as per	D/C	PSTCL	111	May-10
	actual)				
11	Mansa- HPCL Mittal Energy Ltd (Deposit Work)	D/C	PSTCL	97	May-10
12	GHTP-Himatpura D/C	D/C	PSTCL	81	Jul-10
13	LILO of one circuit of GGSSTP – Mohali-I at Kharar	D/C	PSTCL	6	Jul-10

	,				
14	LILO of one ckt of Verpal- Palli at Taran Taran	D/C	PSTCL	13	Jul-10
15	Mohali-Rajpura	D/C	PSTCL	13	Oct-10
16	LILO of Malerkotla – Lalton Kalan S/C at Pakhowal	D/C	PSTCL	2	Oct-10
17	LILO of one ckt. of Moga- Mukatsar DC at Sadiq	D/C	PSTCL	38	Dec-10
18	LILO of Bhatinda -Mukatsar line at Malout	D/C	PSTCL	48	Jan-11
19	LILO of Lalton Kalan-Humbran at Ferozpur Road	D/C	PSTCL	10	Mar-11
	Ludhiana				
20	LILO of Bassi-Phulera at GSS Bagru	D/C	RRVPNL	9	May-10
21	LILO Kota-Bhilwara at Kota (PG)	D/C	RRVPNL	4	Jun-10
22	Hindaun (400 kV)-Mandawar	S/C	RRVPNL	47	Sep-10
23	LILO of both ckts of Amarsagar - Barmer at Akai	2xD/C	RRVPNL	77	Sep-10
25	(Jaisalmer)	2,0/0	IXIXVI INL	''	Зер-10
24	LILO of Bikaner-Nagaur line at GSS Nokha	S/C	RRVPNL	6	Sep-10
25	LILO of Hissar – Khetri at Chirawa	D/C	RRVPNL	38	Nov-10
26	Bhinmal(PG) -Sanchore (RVPN)	S/C	RRVPNL	67	Mar-11
27	Dominida(PG) -Sanctione (RVPN)	S/C		123	
	Barsinghsar TPS-Phalodi		RRVPNL		Mar-11
28	LILO one ckt Bassi-Heerapura at Jagatpura	D/C	RRVPNL	18	Mar-11
29	Dhorimana - Sanchore (jalore)	S/C	RRVPNL	64	Mar-11
30	Neemrana-Kotputli	D/C	RRVPNL	88	Mar-11
32	Pindwara GSS- M/S J.K. laxmi cement	S/C	RRVPNL	20	Mar-11
33	LILO of Chittorgarh-Nimbahera at GSS sawa	D/C	RRVPNL	5	Mar-11
34	LILO of Badarpur- Alwar at GSS MIA Alwar	D/C	RRVPNL	5	Mar-11
35	LILO of Kankroli-sirohi at Bali	D/C	RRVPNL	3	Mar-11
36	Metore(Meerut) (PG)-Gajraula	S/C	UPPTCL	87	Jun-10
37	LILO of Moradabad-NAPP at Sambhal	D/C	UPPTCL	3	Jun-10
38	Muzaffarnagar-Shamli	S/C	UPPTCL	56	Nov-10
39	LILO of Agra(400)-Ferozabad at Shamshabad	D/C	UPPTCL	50	Dec-10
40	Roza - Badaun	D/C	UPPTCL	192	Jan-11
41	LILO of Saharanpur-Shamli at Nanauta	D/C	UPPTCL	6	Jan-11
42	Nanauta - Muzaffarnagar	S/C	UPPTCL	65	Mar-11
43	LILO of Mainpuri (PG)-Harduaganj Line at Etah	D/C	UPPTCL	20	Mar-11
44	Ridge Valley - Naraina	S/C	DTL	5	Sep-10
45	LILO of Mehrauli - Bamnauli at DIAL (2x2x6kM)	D/C	DTL	24	Sep-10
46	LILO of Bawana-Narela at Khanjawla(2xD/C)(1st ckt)	D/C	DTL	7	Feb-11
47	U/G of Maharani Bagh(PG)-Masjid Moth	D/C	DTL	19	Mar-11
48	Kashipur - Barheni	D/C	PTCUL	54	Jan-11
49	Barheni - Pantnagar	S/C	PTCUL	71	Jan-11
50	Kangoo-Rauri (1st Ckt)	S/C	HPSEBL	24	Feb-11
51	Kangoo-Rauri (2nd Ckt)	S/C	HPSEBL	24	Mar-11
52	Reru Majra (PGCIL)-Uperla Nangal (Nalagarh)	D/C	HPSEBL	7	Mar-11
53	Khodri-Majri (2nd circuit)	S/C on	HPSEBL	35	Mar-11
	Transari majir (zria oirodit)	D/C	I II OLDL		IVICII - I I
54	Versana- Morbi	D/C	GETCO	214	Apr-10
55	LILO of Kasor- Vertej at Botad	D/C	GETCO	39	Jun-10
56	LILO of Kansari- Tharad at Lakhani	D/C	GETCO	1	Jun-10
57	Viramgam- Salejada	D/C D/C	GETCO	118	Jul-10 Jul-10
58	LILO of Viramgam- Salejada at Bhat	M/C	GETCO	71	Jul-10 Jul-10
					Nov-10
59	Tappar-Varsana line	D/C	GETCO	8	
60	LILO Wanakbori-Ranasan Ckt II at Kapadvanj	D/C	GETCO	30	Nov-10
61	Utran - Kosamba Line-I	D/C	GETCO	86	Feb-11
62	LILO of Gwalior-Malanpur at Gwalior 400 kV (PG)	D/C	MPPTCL	17	Apr-10
63	Jabalpur-Narsinghpur	D/C	MPPTCL	153	Apr-10
64	Chegaon-Nimrani	D/C	MPPTCL	205	Apr-10
65	LILO of one ckt of Satpura-Itarsi at Handia	D/C	MPPTCL	170	Apr-10
66	LILO of Barwaha- Khandwa at Chhegaon new S/S	D/C	MPPTCL	4	Apr-10
67	LILO of Indore- Ujjain at Indore II S/S	D/C	MPPTCL	2	Apr-10
68	Maheshwar - Nimrani	D/C	MPPTCL	54	May-10
69	Astha- Bercha	S/C	MPPTCL	50	May-10
70	Chhindwara-Betul	D/C	MPPTCL	266	Jul-10
71	LILO of Satna-Bansagar At Kotar	D/C	MPPTCL	8	Sep-10

72	LILO of Khandwa - Nepanagar at Chhegaon new S/S	D/C	MPPTCL	35	Jan-11
73	LILO Amarkantak-Birsinghpur at Sukha (PG) 2xD/C	2xD/C	MPPTCL	332	Feb-11
74	Satna-Chhatarpur	S/C on	MPPTCL	156	Feb-11
		D/C			
75	LILO of One Ckt.of Bhopal-Bina at Vidisha	D/C	MPPTCL	42	Mar-11
76	Dewas - Astha	D/C	MPPTCL	144	Mar-11
77	LILO of Theur- Magarpatta at M/s Serum Institute	D/C	MSETCL	1	Jun-10
78	LILO of Chandrapur- Warora at Wani	D/C	MSETCL	46	Jul-10
79	LILO of Karad-Miraj at Kadegaon	D/C	MSETCL	5	Nov-10
80	Rajgoli to Halkarni S/S	S/C on	MSETCL	22	Dec-10
		D/C			
81	LILO of Pusad – Girwali (ckt-1) at Hingoli	D/C	MSETCL	44	Feb-11
82	LILO of 2nd ckt Kolhapur-Phonda at Halkarni	D/C	MSETCL	19	Feb-11
83	Khedamara- Bemtra	D/C	CSPTCL	50	Jun-10
84	LILO of Raipur(PG)- Suhela (Bhatapara) at Doma	D/C	CSPTCL	42	Sep-10
85	NSPCL-BSP MSDS-5	D/C	CSPTCL	7	Feb-11
86	LILO of Korba-Siltara at Mopka	D/C	CSPTCL	24	Mar-11
87	Oglapur 400kV S/S-Nagaram	D/C	APTRANSCO	25	Apr-10
88	LILO of Tadikonda- Ongole at Parchur	D/C	APTRANSCO	7	Jun-10
89	Veltoor- Wanaparthy	D/C	APTRANSCO	40	Sep-10
90	LILO of Narnoor -Wanaparthy at Brahmanakotkur	D/C	APTRANSCO	26	Nov-10
91	LILO of HIAL-Gachibowli line at Sivarampalli	D/C	APTRANSCO	1.5	Nov-10
92	Brahmanakotkur- Malyala	D/C	APTRANSCO	21	Feb-11
93	Kalpaka S/S - Ms. Brandix (part line)	D/C	APTRANSCO	22	Mar-11
94	Dhone - Kambalapadu	S/C on	APTRANSCO	12	Mar-11
		D/C			
95	Krishnagiri - Settipally	S/C on	APTRANSCO	11	Mar-11
		D/C			
96	Kambalapadu- Lakkasagaram	S/C on	APTRANSCO	9	Mar-11
		D/C			
97	LILO from Gooty- Alipura at Regulapadu	D/C	APTRANSCO	22	Mar-11
98	LILO of Pulakurthy -Ramppa at Nagaram sw.station	D/C	APTRANSCO	3	Mar-11
99	LILO of VTS- Narketpally at Chilakallu	D/C	APTRANSCO	5	Mar-11
100	LILO of Medchal- Minpur at Gajwel	D/C	APTRANSCO	80	Mar-11
101	LILO of Pulakurthy -Ramppa at salivgu	D/C	APTRANSCO	0.7	Sep-10
102	Elephant Gate- Tondiarpet	S/C	Tantransco	5	Jun-10
103	Valuthur - Paramakudi S/C on D/C	S/C	Tantransco	50	Jun-10
104	Gobi -Mettur TPS	S/C on	Tantransco	82	Jun-10
		D/C			
105	S.P.Koil-Tharamani (Perambakkam-Tharamani portion)	S/C	Tantransco	49	Aug-10
106	Othakalmandapam-Common point -Ponnapuram	S/C	Tantransco	62	Aug-10
107	LILO of S.P.Koil -Tharamani line at KITS Park SS	S/C	Tantransco	1	Sep-10
108	LILO of NCTPS- Mosur at NCTPS Stage II (for startup	D/C	Tantransco	3	Nov-10
10-	power)				
109	Sriperumbadur SIPCOT- Sunguvarchatram 400 kV S/S	D/C	Tantransco	12	Mar-11
110	LILO of Mysore - Shimoga line at Hassan(Shanthigrama)	2xD/C	KPTCL	28	Dec-10
111	Narendra 400 kV S/S- Ghataprabha	D/C	KPTCL	191	Dec-10
112	Narendra S/S- MK Hubli S/S	S/C	KPTCL	34	Dec-10
113	LILO of Hootagalli-TK Hali -Vajamangala	D/C	KPTCL	3	Dec-10
114	varahi-Shimoga	D/C	KPTCL	9	Dec-10
115	Peenya-NRS	D/C	KPTCL	8	Dec-10
116	Anand rao Circle-Nimhas-HAL	S/C	KPTCL	17	Dec-10
117	Narendra-KIDAB	M/C on D/C line	KPTCL	4	Dec-10
118	Basthipura-Kushalanagara	D/C	KPTCL	154	Mar-11
119	Areacode(PGCIL)400kV S/S- Areacode S/S	M/C	KSEB	1	Mar-11
120	LILO of Villlianur-Bahour at Ramnathpuram	D/C	Puduchurry Ele.	29	Oct-10
	r		Dept.		
121	LILO of Jeerut-Kasba line at New Town AA-III	D/C	WBSETCL	2	Nov-10
122	LILO of Hazipur-Muzaffapur (Kanti) at Muzaffapur(PG)	D/C	BSEB	15	Nov-10

Begusarai-Muzaffapur (Kanti) (MTPS) Line	D/C	BSEB	304	Nov-10
Kuchei-Balasore(Ckt-II)	S/C	OPTCL	76	Jan-11
Narendrapur-Mendhasal (Ckt-II)	S/C	OPTCL	170	Jan-11
Misa - Byrnihat	D/C	MeSEB	226	Aug-10
TOTAL CKM OF FULLY COMPLETED 220 kV LINES (S	6539			
220 kV LINES (PS)				
Sterlite TPP - Sterlite captive plant D/C	D/C	Sterlite	9	Aug-10
Allain Duhangan-Panarsa-Nalagarh D/C	D/C	AD Hydro	349	Sep-10
Total CKM OF 220 kV LINES (PS)			358	
TOTAL CKM OF 220 kV LINES (ALL INDIA) FULLY COMPLETED				
	Kuchei-Balasore(Ckt-II) Narendrapur-Mendhasal (Ckt-II) Misa - Byrnihat TOTAL CKM OF FULLY COMPLETED 220 kV LINES (S 220 kV LINES (PS) Sterlite TPP - Sterlite captive plant D/C Allain Duhangan-Panarsa-Nalagarh D/C Total CKM OF 220 kV LINES (PS)	Kuchei-Balasore(Ckt-II) Narendrapur-Mendhasal (Ckt-II) Misa - Byrnihat D/C TOTAL CKM OF FULLY COMPLETED 220 kV LINES (SS) DURING 220 kV LINES (PS) Sterlite TPP - Sterlite captive plant D/C Allain Duhangan-Panarsa-Nalagarh D/C Total CKM OF 220 kV LINES (PS) TOTAL CKM OF 220 kV LINES (ALL INDIA) FULLY COMPLETED	Kuchei-Balasore(Ckt-II) Narendrapur-Mendhasal (Ckt-II) Misa - Byrnihat TOTAL CKM OF FULLY COMPLETED 220 kV LINES (SS) DURING THE YEAR 220 kV LINES (PS) Sterlite TPP - Sterlite captive plant D/C Allain Duhangan-Panarsa-Nalagarh D/C Total CKM OF 220 kV LINES (PS) TOTAL CKM OF 220 kV LINES (ALL INDIA) FULLY COMPLETED	Kuchei-Balasore(Ckt-II) S/C OPTCL 76 Narendrapur-Mendhasal (Ckt-II) S/C OPTCL 170 Misa - Byrnihat D/C MeSEB 226 TOTAL CKM OF FULLY COMPLETED 220 kV LINES (SS) DURING THE YEAR 6539 220 kV LINES (PS) Sterlite TPP - Sterlite captive plant D/C D/C Sterlite 9 Allain Duhangan-Panarsa-Nalagarh D/C D/C AD Hydro 349 Total CKM OF 220 kV LINES (PS) 358 TOTAL CKM OF 220 kV LINES (ALL INDIA) FULLY COMPLETED 7165

Sub-stations commissioned during 2010-11

SI.					
No.	Name of the Sub-station	Voltage Ratio (kV/kV)	Executing Agency	Capacity (MW/MVA)	Month of completion
	400kV (substation) (CS)				
1	Sonepat (1st Transf)	400/220	POWERGRID	315	Sep-10
2	Maharanibagh GIS Extn(1st Trf)	400/220	POWERGRID	500	Sep-10
3	Pune	400/220	POWERGRID	630	Oct-10
4	Bina	400/220	POWERGRID	315	Oct-10
5	Sonepat (2nd Transf)	400/220	POWERGRID	315	Nov-10
6	Maharanibagh GIS Extn(2nd)	400/220	POWERGRID	500	Nov-10
7	Pirana(1st Tranf)	400/220	POWERGRID	315	Feb-11
8	Muvattapuzha s/s (1st Transf)	400/220	POWERGRID	315	Feb-11
9	Wagoora S/Stn. 4th ICT(3x105)	400/220	POWERGRID	315	Mar-11
10	Malerkotla Extn.	400/220	POWERGRID	500	Mar-11
11	Pirana (2nd Transf)	400/220	POWERGRID	315	Mar-11
12	Gwalior Extn.	400/220	POWERGRID	315	Mar-11
	Total PGCIL			4650	
	DVC			0	
	TOTAL (Central Sector)			4650	
	400kV (substation) (SS)				
1	Kirori	400/220	HVPNL	630	Apr-10
2	Kirori (3rd Trans.)	400/220	HVPNL	315	May-10
3	Daultabad	400/220	HVPNL	630	Nov-10
4	Daultabad (3rd Trans.)	400/220	HVPNL	315	Dec-10
5	Hindaun S/S (1x315)	400/220	RRVPNL	315	Sep-10
6	Bhilwara S/S (1x315)	400/220	RRVPNL	315	Nov-10
7	Barmer S/S (1x315)	400/220	RRVPNL	315	Nov-10
8	Akai (Jaisalmer)	400/220	RRVPNL	315	Nov-10
9	Akai (Jaisalmer) (2nd Trf.)	400/220	RRVPNL	315	Dec-10
10	Mundka (1st Trf.)	400/220	DTL	315	Sep-10
11	Mundka (2nd Trf.)	400/220	DTL	315	Mar-11
12	Bawana (2x315)	400/220	DTL	630	Mar-11
13	Katni	400/220	MPPTCL	315	May-10
14	Indore	400/220	MPPTCL	315	Feb-11
15	Chakan (2nd ICT)	400/220	MSETCL	315	Jun-10
16	Kalwa(3x167)	400/220	MSETCL	500	Jan-11
17	Varsana (2x315 MVA)	400/220	GETCO	315	Nov-10
18	Kosamba	400/220	GETCO	315	Mar-11
19	Talaguppa (3rd)	400/220	KPTCL	315	Dec-10
20	Mahaboobnagar(2nd Trans.)	400/220	APTRANSCO	315	May-10
21	Chittoor (2nd Trans.)	400/220	APTRANSCO	315	May-10
22	Malkaram(1st Trf.)	400/220	APTRANSCO	315	Jun-10
23	Malkaram(2nd Trf.)	400/220	APTRANSCO	315	Aug-10
24	Mahaboobnagar(3rd Trans.)	400/220	APTRANSCO	315	Aug-10

	TOTAL (State Sector)			8690	
	400kV (substation) (PS)				
1	Pirana (2x315 MVA)	400/132	Torrent Power Ltd	630	Mar-11
	TOTAL (Private Sector)			630	
	TOTAL(All India) 400kV (substation)			13970	

SI. No.	Name of the Sub-station	Voltage Ratio	Executing Agency	Capacity	Month of completion
	2001-1/(14-4) (20)	(kV/kV)		(MW/MVA)	
	220kV (substation) (CS)	220/132	DOWEDODID	100	A 10
2	Pithoragarh (1st)	220/132	POWERGRID	100 100	Aug-10 Nov-10
3	Pithoragarh (2nd)	220/132	POWERGRID POWERGRID		
4	Baripada	220/132		160	Mar-11
4	Barjora S/S (2x150)	220/132	DVC	300	Jun-10
	TOTAL (Central Sector)			660	
	220kV (substation) (SS)	000/400	LIV/DAII	400	M 40
1	Kirori(1st Trans.)	220/132	HVPNL	100	May-10
2	Bastra	220/132	HVPNL	200	Sep-10
3	Kirori(2nd Trans.)	220/132	HVPNL	100	Sep-10
4	Rewari (Aug.) (100-50)	220/132	HVPNL	50	Oct-10
5	Jind (Aug.)	220/132	HVPNL	100	Nov-10
6	Smalkha (2x100)	220/132	HVPNL	200	Feb-11
7	Sampla	220/132	HVPNL	200	Mar-11
8	Bagru	220/132	RRVPNL	100	May-10
9	Boranada I/A	220/132	RRVPNL	100	Jun-10
10	Nokha	220/132	RRVPNL	100	Nov-10
11	Chirawa (1x100)	220/132	RRVPNL	100	Nov-10
12	Jaipur(Indira Gandhi Nagar) GSS(1x100)	220/132	RRVPNL	100	Dec-10
13	MIA (up-grade)	220/132	RRVPNL	100	Mar-11
14	Sawa (upgrade)	220/132	RRVPNL	100	Mar-11
15	Dholpur (100-50)	220/132	RRVPNL	50	Mar-11
16	Reengus (Sikar) (100-50)	220/132	RRVPNL	50	Mar-11
17	Phalodi (Jodhpur) (100-50)	220/132	RRVPNL	50	Mar-11
18	Dhorimana (Barmer) (Aug.)	220/132	RRVPNL	100	Mar-11
19	Mandawar (Dausa) (Aug.)	220/132	RRVPNL	100	Mar-11
20	Bhilwara (Aug.)	220/132	RRVPNL	100	Mar-11
21	Banswara (Aug.)	220/132	RRVPNL	100	Mar-11
22	Bharatpur) (Aug.)	220/132	RRVPNL	100	Mar-11
23	Modak (Kota) (100-50)	220/132	RRVPNL	50	Mar-11
24	Balotra (Barmer) (100-50)	220/132	RRVPNL	50	Mar-11
25	Phulera (Jaipur) (100-50)	220/132	RRVPNL	50	Mar-11
26	Kishangarh (Ajmer) (Aug.)	220/132	RRVPNL	100	Mar-11
27	Hindaun (Karauli) (Aug.)	220/132	RRVPNL	50	Mar-11
28	Gulabpura (Bhilwara) (Aug.)	220/132	RRVPNL	100	Mar-11
29	Kankroli (Rajsamand) (Aug.)	220/132	RRVPNL	100	Mar-11
30	Amarsagar (Jaisalmer) (Aug.)	220/132	RRVPNL	100	Mar-11
31	Kukas (Jaipur) (Aug.)	220/132	RRVPNL	100	Mar-11
32	Chirawa (Jhunjhnu)(Aug.)	220/132	RRVPNL	100	Mar-11
33	Dhod (Sikar)(Aug.)	220/132	RRVPNL	100	Mar-11
34	Sambhal, Muradabad	220/132	UPPTCL	200	Jun-10
35	Gajraula	220/132	UPPTCL	200	Jun-10
36	Dadri	220/132	UPPTCL	200	Nov-10
37	Etah	220/132	UPPTCL	100	Dec-10
38	Nanauta (160+100)	220/132	UPPTCL	160	Jan-11
39	Naubasta (160-100)	220/132	UPPTCL	60	Mar-11
40	Sahupuri (160-100)	220/132	UPPTCL	60	Mar-11
41	Badaun(160-100)	220/132	UPPTCL	60	Mar-11

42	Shatabdinagar (160-100)	220/132	UPPTCL	60	Mar-11
43	Panki (160-100)	220/132	UPPTCL	60	Mar-11
44	Jahangirabad (160-100)	220/132	UPPTCL	60	Mar-11
45	Azamgarh (160-100)	220/132	UPPTCL	60	Mar-11
46	Atrauli (160-100)	220/132	UPPTCL	60	Mar-11
47	Deirua (100)	220/132	UPPTCL	100	Mar-11
48	Sahupuri (160-100)	220/132	UPPTCL	60	Mar-11
49	Loni (150-100)	220/132	UPPTCL	50	Mar-11
50	Hardoi Road, Lucknow (160-100)	220/132	UPPTCL	60	Mar-11
51	Khurja (160-100)	220/132	UPPTCL	60	Mar-11
52	Gonda (160-100)	220/132	UPPTCL	60	Mar-11
53	Sikandra, Agra (60)	220/33	UPPTCL	60	Mar-11
54	Badaun (150-100)	220/132	UPPTCL	50	Mar-11
55	Shamshabad Road, Agra	220/132	UPPTCL	320	Mar-11
56	Gorakhpur II	220/132	UPPTCL	160	Mar-11
57	Pong (Aug) (40-20)	220/66	HPSEBL	20	Mar-11
58	Jassure S/S 1x25 MVA	220/33	HPSEBL	25	Mar-11
59	Uperla Nangal (Nalagarh)	220/66	HPSEBL	200	Mar-11
60	Amloh Road Mandi Govind Garh	220/66	PSTCL	100	Jun-10
61	Himatpura	220/66	PSTCL	100	Jul-10
62	Verpal Aug.(100-50)	220/66	PSTCL	50	Jul-10
63	Sadiq (U/G) (1x100 MVA)	220/66	PSTCL	100	Aug-10
64	Kharar	220/66	PSTCL	100	Aug-10
65	Taran Taran	220/66	PSTCL	100	Aug-10 Aug-10
66	Civil Lines ASR	220/66	PSTCL	100	Aug-10 Aug-10
67	Sunam	220/66	PSTCL	100	Aug-10 Aug-10
68		220/66	PSTCL	100	Nov-10
69	Pakhowal (new) (1x100 MVA)	220/66	PSTCL	100	Dec-10
70	F P Nabha (1x100)	220/66	PSTCL	100	
71	Sahnewal (3rd Trf.)			100	Dec-10
72	Kohara (Aug) (1x100 MVA)	220/66	PSTCL	100	Jan-11
	Algun	220/66	PSTCL		Mar-11
73	Jhuneer (Addi)	220/66	PSTCL	100	Mar-11
74	Ghubaya (Addi.)	220/66	PSTCL	100	Mar-11
75	Baja Khana (Addi.)	220/66	PSTCL	100	Mar-11
76	Malerkotla (Addi.)	220/66	PSTCL	100	Mar-11
77	Malout (New)	220/66	PSTCL	100	Mar-11
78	Kartarpur	220/132	PSTCL	100	Mar-11
79	Botianwala	220/66	PSTCL	100	Mar-11
80	Ridge Valley	220/66	DTL	320	Sep-10
81	DIAL (2nd)	220/66	DTL	320	Sep-10
82	Vasant Kunj (3rd)	220/66	DTL	160	Nov-10
83	Shalimar Bagh (3rd)	220/33	DTL	100	Mar-11
84	Masjid-Moth (Sirifort)	220/33	DTL	200	Mar-11
85	Mundka (1st Trf.)	220/66	DTL	160	Mar-11
86	Lakhani (Agathala)(1st Trf.)	220/66	GETCO	100	Apr-10
87	Botad	220/66	GETCO	50	Apr-10
88	Bhat (Bavla)	220/66	GETCO	100	May-10
89	Lakhani (Agathala) (2nd Trf.)	220/66	GETCO	100	Nov-10
90	Kangasiyalli	220/66	GETCO	100	Mar-11
91	Bhat (Bavla) (2nd Trf.)	220/66	GETCO	100	Mar-11
92	Botad (2nd Trf.)	220/66	GETCO	150	Mar-11
93	Jambuva (Aug.)	220/132	GETCO	50	Mar-11
94	Chhatral (Aug.)	220/66	GETCO	50	Mar-11
95	Kapadwanj (Aug.)	220/66	GETCO	50	Mar-11
96	Anjar (Aug.)	220/66	GETCO	100	Mar-11
97	Mehsana (Aug.)	220/66	GETCO	50	Mar-11
98	Doma	220/132	CSPTCL	160	Sep-10
99	Main step down GIS sub-station (MSDS)-5	220/132	CSPTCL	320	Mar-11
100	Paraswani (Mahassamund) (addti.)	220/132	CSPTCL	160	Mar-11
101	Mopka (addti)	220/132	CSPTCL	160	Mar-11
_					

102	Chhatarpur	220/132	MPPTCL	160	Apr-10
103	Chhegaon	220/132	MPPTCL	160	Aug-10
104	Astha	220/132	MPPTCL	100	Sep-10
105	Kotar	220/132	MPPTCL	160	Nov-10
106	Betul	220/132	MPPTCL	160	Nov-10
107	Vidisha	220/132	MPPTCL	160	Jan-11
108	Wani (2x50)	220/33	MSETCL	100	Jul-10
109	Chakan	220/22	MSETCL	50	Aug-10
110	Shendra	220/33	MSETCL	100	Dec-10
111	Temghar	220/22	MSETCL	50	Dec-10
112	Hingoli	220/132	MSETCL	100	Mar-11
113	Hingoli (2x25)	220/33	MSETCL	50	Mar-11
114	Chakan (2x50)	220/22	MSETCL	100	Mar-11
115	Talegoan (2x50)	220/33	MSETCL	100	Mar-11
116	Kadegaon (Wani)	220/132	MSETCL	100	Mar-11
117	Parchur	220/132	APTRANSCO	100	Jun-10
118	Salivagu	220/11	APTRANSCO	100	Sep-10
119	Brahmanakotkur (2x25)	220/11	APTRANSCO	25	Jan-11
120	Malyala (4x31.5)	220/11	APTRANSCO	31.5	Feb-11
121	Brandix (2x100)	220/132	APTRANSCO	200	Mar-11
122	Regulapadu	220/11	APTRANSCO	25	Mar-11
123	Thudiyalur (Addl.Trans.)	230/110	Tantransco	80	Jun-10
124	KITS Park	230/110	Tantransco	80	Sep-10
125	Basin Bridge (Addl.Trans.)	230/110	Tantransco	100	Sep-10
126	Amuthapuram (Addl.Trf.)	230/33	Tantransco	50	Jan-11
127	Kodikurichi (Addl.Trf.)	230/110	Tantransco	100	Jan-11
128	Hosur (Addl.Trf.)	230/110	Tantransco	100	Jan-11
129	Alagarkoil (Addl.Trf.)	230/110	Tantransco	100	Mar-11
130	Kundra (2nd Trans.)	220/110	KSEB	200	Nov-10
131	Pothencode (3rd Trf.)	220/110	KSEB	200	Mar-11
132	MK Hubli	220/110	KPTCL	100	Dec-10
133	Ghataprabha (1st Trf.)	220/110	KPTCL	100	Dec-10
134	A' Station compound (Anand Rao circle)	220/66	KPTCL	150	Dec-10
135	Ramanagar (Kothipura)	220/66	KPTCL	100	Dec-10
136	Nimhans	220/66	KPTCL	300	Dec-10
137	Vajamangala	220/66	KPTCL	150	Dec-10
138	East Division Compound	220/66	KPTCL	300	Dec-10
139	Ghataprabha (2nd Trans.)	220/110	KPTCL	100	Mar-11
140	Kushalanagara	220/66	KPTCL	100	Mar-11
141	Bolangir (2x100)	220/132	OPTCL	100	Aug-10
142	Bolangir (2nd Trf.)	220/132	OPTCL	100	Mar-11
143	Subhasgram	220/132	WBSETCL	160	Aug-10
144	Singur (2x160)	220/132	WBSETCL	160	Sep-10
145	Subhasgram (2nd)	220/132	WBSETCL	160	Nov-10
146	Singur (2x160)	220/132	WBSETCL	160	Nov-10
147	Kolkata Leather Complex	220/132	WBSETCL	160	Nov-10
148	Asansol (Aug.)	220/132	WBSETCL	100	Nov-10
149	Khagaul (Patna) (Aug.)	220/132	BSEB	100	Nov-10
150	Bodhgaya (Aug.)	220/132	BSEB	150	Nov-10
151	Bidanasi	220/33	OPTCL	40	Jan-11
152	Byrnihat (2x160)	220/132	MeSEB	320	Aug-10
	TOTAL (State Sector)	220		17027	
	TOTAL (All India)	220		17687	
	Total (All India)	(400 +220) kV		31657	
	. , ,	<u> </u>	i and the second	•	

Annex 6.5

TRANSMISSION SYSTEM ADDITION DURING 2011-12

Transmission lines commissioned during 2011-12

As on 31.03.2012

SI. No.	Name of Trans	mission Lines	No. of ckts.	Executing Agency	Line Length (CKM)
	KV LINES				
CEN	TRAL SECTOR				
1	LILO of Tehri - Meerut at Tehri Poo	ing Point (to be charged at 400 kV)	2xD/C	PGCIL	13
2	Gaya –Balia (Part Line)		S/C	PGCIL	69
3	Satna - Bina line -l		S/C	PGCIL	274
4	2nd S/C Seoni (PG)–Wardha (PG) 400 kV)	S/C	PGCIL	261	
5	Balia-Lucknow		S/C	PGCIL	320
6	Gaya - Balia (Balance Part)		S/C	PGCIL	159
7	Bina - Indore		S/C	PGCIL	311
8	Gaya - Sasaram		S/C	PGCIL	148
9	LILO of Sipat - Seoni at WR pooling	point (Bilaspur poolng point)	S/C	PGCIL	8
10	LILO of Sipat - Seoni at WR pooling Ckt)	point (Bilaspur poolng point) (2nd	S/C	PGCIL	8
11	Sasaram - Fatehpur line-I		S/C	PGCIL	337
TOTA	L CKM OF FULLY COMPLETED (C	S) DURING THE YEAR			1908
STA	E SECTOR				
1	Shiffting of 765 kV Anpara- Unnao a	t Unnao	S/C	UPPTCL	1
2	Shifting of Anpara B-Unnao termina		S/C	UPPTCL	1
	C sw. yard.				
	Total of STATE Sector				2
	TOTAL 765	kV lines (ALL INDIA)			1910

Name of Transmission Lines	No. of Circits	Name of Utility	Line Length (CKM)
HVDC BIPOLE			
+/- 500 kV Mundra -Mohindergarh Bipole	Bipole	Adani	1980
Total (HVDC)			1980

SI. No.	Name of Transmission Lines	No. of ckts.	Executing Agency	Line Length (CKM)
II. 40	0 kV lines			(ORIN)
CEN	TRAL SECTOR			
1	Koderma-Biharshariff (Quad)	D/C	PGCIL	222
2	Korba STPS- Raipur	D/C	PGCIL	424
3	LILO of 400 kV D/C Gazuwaka - Vemagiri at Simhadri TPS	D/C	PGCIL	22
4	Mysore - Hassan	D/C	PGCIL	192
5	Rourkela - Raigarh	D/C	PGCIL	420
6	LILO of Alamathy - Sriperumbdur at Vallure TPS	D/C on M/C	PGCIL	131
7	Wardha (PG)-Parli (PG)	D/C	PGCIL	674
8	Baripada - Mendhasal	D/C	PGCIL	546
9	Farakka - Kahalgaon (2nd line)	D/C	PGCIL	190

10	LILO of Bawana/Bahadurgarh -Hissar line at Bhiwani	D/C	PGCIL	27
11	LILO of Jind ckt. of Nalagarh-Kaithal at Patiala	D/C	PGCIL	22
12	LILO of Patiala - Hissar at Kaithal	D/C	PGCIL	66
13	Mundra - Bachchau	D/C	PGCIL	198
14	URI I - URI II	S/C	PGCIL	11
15	Bachchau - Ranchodpura	D/C	PGCIL	566
16	Patiala - Ludhiana	D/C	PGCIL	156
17	Korba (NTPC)-Brisinghpur (MPGENCO) (Portion of line 8 Ckm	D/C	PGCIL	8
	commissioned for contingency arrangement)			
18	Mejia-Maithon	D/C	PGCIL	114
19	Mundra -Limbdi (part Line)	S/C	PGCIL	384
20	Muvattupuzha (PG) - North Trichur (PG)	D/C	PGCIL	157
20	Bhiwadi - Neemrana	D/C	PGCIL	97
21	LILO of Allahabad - Kanpur at Fatehpur	D/C	PGCIL	31
22	Lucknow (New) - Lucknow line - II (Quad)	D/C	PGCIL	6
23		D/C	PGCIL	376
	Maithon (RB) - Ranchi			
24	URI II -Wagoora	S/C	PGCIL	105
25	Biharshariff - Sasaram (Ckt-I & Part of Ckt-II)	D/C	PGCIL	318
26	LILO of Singrauli - Kanpur at Fatehpur	D/C	PGCIL	41
27	Neemrana - Sikar	D/C	PGCIL	352
28	Tuticorin JV - Madurai	D/C	PGCIL	304
29	Durgapur - Maithon line	D/C	PGCIL	146
30	Korba (NTPC) – Birsinghpur (MPGENCO) (Balance Part)	D/C	PGCIL	446
31	LILO of Both Ckt of Lucknow - Bareliiy line (PG) at Shahjahanpur	D/C	PGCIL	32
32	LILO of Both Ckt of Nathpa Jhakri - Abdullapur (Tripal Snowbard) at	D/C	PGCIL	102
32		D/C	PGCIL	102
	Panchkula			
33	Mundra - Limbdi	D/C	PGCIL	244
34	Biharshariff - Sasaram (Remaninig Part of Ckt-II)	D/C	PGCIL	80
35	Indore - Indore (MPPTL)	D/C	PGCIL	50
36	Kalpakkam - Arni	D/C	PGCIL	213
37	LILO of Nelmangala - Somanhalli at Bidadi	D/C	PGCIL	28
38	LILO of Udumalpet - Trichur at Palakkad	D/C	PGCIL	49
39	LILO of both ckt Vindhyachal -Jabalpur at Sasan	2xD/C	PGCIL	13
40	Mauda STPS - Wardha line (Quad)(Ckt-1)	D/C	PGCIL	124
40		DIC	I GOIL	
	Total 400 kV (PG)			7687
	Total 400 kV DVC			0
	Total of CENTRAL Sector (400 kV)			7687
STA	TE SECTOR	T-		
1	Sagardighi - Parulia (PGCIL)	S/C on D/C	WBSETCL	255
2	Vadinar (Essar)-Hadala	D/C	GETCO	226
3	LILO of Sriperumbudur- Puduchery at Sunguvarchatram 400kV S/S	D/C	TANTRANSCO	16
4	LILO of Hissar- Fatehabad at Nuhiawali	D/C	HVPNL	153
5	LILO of Jhajjar (APCPL) - Daultabad line at MG Jhajjar (CLP)	D/C	HVPNL	10
6	Jaisalmer- Jodhpur	S/C	RVPNL	239
7	Bhusaval - II - Aurangabad	D/C	MSETCL	185
	<u> </u>	D/C		
8	New Bhusaval - Aurangabad		MSETCL	179
9	LILO of Asoj - Ukai at Kosamba	D/C	GETCO	64
10	Jhajjar -Dhanonda	D/C	HVPNL	40
11	Jhajjar - Kabulpur	D/C	HVPNL	70
12	Kabulpur-Deepalpur	D/C	HVPNL	133
13	LILO of abdullapur-Bawana at deepalpur	D/C	HVPNL	2
14	BTPS- Hiriyur	D/C	KPTCL	313
	Total of STATE Sector (400 kV)			1885
PRI	/ATE SECTOR	1	1	
1	LILO of Lonikhand (MSETCL) - Kalwa (MSETCL) at Pune (PG)	D/C	RPTL	3
2	Limdi (Chorania (GETCO)- Ramchodpura (Vadavi) (GETCO)	D/C	RPTL	206
3	Jaigad - Karad.	D/C	JPTL	219
4	LILO of Korba - Bhatapara at Kasaipalli	D/C	ACB	6
5	Parli (PG) - Solapur (PG)	D/C	RPTL	272
6	Ranchodpura (Vadavi) (GETCO)- Zerda (Kansari (GETCO)	D/C	RPTL	282

7	LILO of Korba - Brisinghpur at Balco TPS	D/C	BALCO	35
8	LILO of Madurai - NLC at Energen TPP	D/C	CGPL	52
9	LILO of Viindhyachal -Korba line at Mahan S/S	D/C	ESSAR	44
10	Meenakshi-Nellore	S/C	MEL	26
11	Simhapuri-Meenakshi	D/C	MEL	2
12	Simhapuri-Nellore	S/C	MEL	26
13	LILO of (PGCIL) Lucknow - Bafreilly at Shahjahanpur	D/C	RPTL	29
14	LILO of (Reliance) of Lucknow - Bareilly at Shahjahanpur	D/C	RPTL	15
	Total of PVT Sector (400 kV)			1217
	Total 400 kV Lines (All India)			10789

SI. No.	Name of Transmission Lines	No. of ckts.	Executing Agency	Line Length (CKM)
III. 220	kV			
CENT	RAL SECTOR			
1	Chamera-III - Pooling Station Near Chamera-II HEP	D/C	PGCIL	30
2	Kalpakkam PFBR-Sirucheri	D/C	PGCIL	72
3	LILO of 220 kV D/C Fatehpur (UPPCL) - Kanpur (UPPCL) line at Fatehpur.	D/C	PGCIL	23
4	LILO of 1st Ckt Dehri - Bodhgaya line at Gaya.	D/C	PGCIL	24
5	LILO of 1st Ckt Sikar (RVPN), Ratnagarh at Sikar	D/C	PGCIL	6
6	LILO of Dehri - Bodhgaya line at Gaya	D/C	PGCIL	24
	Total PGCIL			179
	Total CKM OF 220 kV LINES (DVC)			0
	Total CKM OF 220 kV LINES (CS)			179
STATE	SECTOR			
1	Mohana-Smalkha line	D/C	HVPNL	55
2	Dewas - Astha	D/C	MPPTCL	144
3	LILO of Bhosari - Chinchwad line at Chakan S/S	D/C on M/C	MSETCL	17
4	LILO of Bikaner-Sridungargarh line at Bikaner GSS	S/C	RVPNL	7
5	LILO of Chittorgarh - Nimbahera line at GSS Sawa.	D/C	RVPNL	5
6	LILO of Sirohi-Bhinmal at Bhinwal GSS (PG)	D/C	RVPNL	10
7	LILO of 2nd ckt of Ukai (T)-Vav at Bardoli (mota)	D/C	GETCO	10
8	LILO of 1 Ckt of Bina - Shivpuri at Bina 765 KV New S/S (PG)	D/C	MPPTCL	2
9	LILO of Mohali-Dera Bassi at Lalru	S/C	PSTCL	34
10	LILO of Sunam - Mansa line at Jhunir	D/C	PSTCL	68
11	Devakkurichi- Pudhanchandai	S/C on D/C	TANTRANSCO	84
12	LILO of Thiruvarur- Karaikudi at Karambayam(Nimmeli Thippiakudi)	D/C	TANTRANSCO	17
13	Othakkalmandapam (Malumichampatty)- Palladam	S/C	TANTRANSCO	53
14	LILO of Fatehpur - Panki at Kanpur South	D/C	UPPTCL	7
15	Lakkasagaram - Nansuralla	D/C	APTRANSCO	7
16 17	Bhat - Pirana line Chormar-Rania line via Nuhianwali	D/C D/C	GETCO HVPNL	29 73
18	LILO of Dadri -Rewari at Lula Ahir	D/C	HVPNL	9
19	Sewah-Chhajpur line	D/C	HVPNL	27
20	Smalkha- Chhajpur	D/C	HVPNL	50
21	Barn-Bishnah-Hira Nagar	D/C	JKPDD	180
22	LILO of Lonikhanda - Khadki line at VSNL S/S	D/C	MSETCL	4
23	LILO of Parvati - Phursungi line at Jejuri S/S	D/C	MSETCL	62
24	LILO on Parli (Murud) - Solapur line at Tuljapur	D/C	MSETCL	6
25	Focal Point Nabha- Phagan Majra 400kV S/S	D/C	PSTCL	33
26	Akal - Bhu line	D/C	RVPNL	17
27	LILO of Chekknurani - Amathapuram at Nallamanaickenpatty	D/C	TANTRANSCO	30
28	Greater Noida-Noida Sector 129	D/C	UPPTCL	24
29	LILO of panki-Uanno at Bithoor	S/C	UPPTCL	14

	I/ (II 1 'T' 1 '(0 10 10 10	0/0	45001	0.4
30	Kathalguri-Tinsukia (2nd Circuit)	S/C	AEGCL	24
31	Ramagundam- Bellampalli	S/C on D/C	APTRANSCO	37
32	Kosamba-Zagadia line	D/C	GETCO	49
33	LILO of Gondal-Rajkot line at Kangasiyali	D/C	GETCO	28
34	Kashang-Bhaba(1st Ckt.)	D/C	HPSEBL	37
35	Lula Ahir-Dhanonda line	S/C	HVPNL	40
36	LILO of Karad – Kolhapur D/C at Wather	D/C	MSETCL	20
37	Talegaon 400 kV(PG)S/S – Talegaon 220 kV S/S	D/C	MSETCL	20
38	LILO one ckt of Laiton Kalan-Dhandari at Ludhiana	D/C	PSTCL	5
39	Patti-Algaon line	S/C on D/C	PSTCL	20
40	LILO of both ckts of Gooty - Somayajulapally at Dhone sw.stn.	2xD/C	APTRANSCO	114
41	Vijayawada TPS-Tallapally	D/C	APTRANSCO	266
42	LILO of Padghe-Kalwa at Temghar	D/C	MSETCL	3
43	Bhadra- Chirawa	S/C	RVPNL	109
44	Bhinmal (PG) -Sanchore (RVPN) and Bhinmal (PG)-Bhinmal (RVPN)	S/C	RVPNL	18
45	Chhabra TPS-Jhalawar	S/C	RVPNL	101
46	Hazaira (GSEC)-Kosamba	D/C	GETCO	125
47	Fatehabad-Chormar line	D/C	HVPNL	158
48		D/C	KPTCL	79
	Humnabad - Halbaraga			
49	LILO of Shimoga - Mysore at Chikk Magalur	D/C	KPTCL	57
50	Volkswagen-M/s. Mahindra S/S	S/C	MSETCL	3
51	Palamaneru - Chitoor	S/C on D/C	APTRANSCO	58
52	Nyara - Tebhda (Ckt-I)	S/C	GETCO	90
53	Dhanonda - Dadhi Bana line	D/C	HVPNL	34
54	Dechu - Tinwari	S/C	RVPNL	71
55	Sunguvarchatram- Oragadam	S/C on D/C	TANTRANSCO	10
56	Dhone - Krishnagiri	S/C on D/C	APTRANSCO	11
57	LILO of Gooty - Alipura at Regulapadu (balance work)	D/C	APTRANSCO	22
58	East Div Comp HAI in Bangalore.	UG Cable	KPTCL	8
59	RTPS-Raichur	D/C	KPTCL	35
60	Bhusaval - II - Amalner	D/C	MSETCL	197
61	Bhilangana III - Ghansali (Guttu)	D/C	PTCUL	38
62	Matre (PG) - Nehtaur	S/C	UPPTCL	75
63	LILO of Bahadurgarh -Rohtak line at Sampla	D/C	HVPNL	48
64	daultabad-Mau	D/C	HVPNL	76
65	Akola - Balapur line	D/C	MSETCL	54
66	Babhleshwar - Chalisgaon (upto kopergaon tap point.)	D/C	MSETCL	74
67	Bambhori - Amalner line	S/C	MSETCL	38
68	Deepnagar - Bambhori line	S/C	MSETCL	70
69	LILO of Kolhapur - Phonda at Hamidwada	D/C	MSETCL	4
70	LILO of Mulund - Borivali at Bhandup	UG Cable	MSETCL	2
71	LILO of Pedhambe - Kharepatan at Niwali line	S/C	MSETCL	33
72	LILO of Pedhambe - Kharepatan at Oni line	S/C	MSETCL	1
73	MIDC Chandrapur S/S - M/s GEPL (ckt-l)	S/C	MSETCL	12
74	Kalpaka S/S - Ms. Brandix (Balance Part)	D/C	APTRANSCO	19
75	Maharani Bagh - Trauma Centre/AIIMS (UG cable)	D/C	DTL	19
76	Bhutiya-Kheralu line	D/C	GETCO	99
77	Wagra - RVNL line	D/C	GETCO	18
78	LILO of Satna (PGCIL) - Katni at Maihar	D/C	MPPTCL	4
79	Phursungi-Jejuri line	D/C	MSETCL	60
80	9 ,	S/C	RVPNL	6
	Bhiwadi (PGCIL) - Neemrana (Remaining Portion)			
81	Charanka - Jangral line	D/C	GETCO	32
82	LILO of Jetpur-Keshod line at Shapur	D/C	GETCO	3
83	LILO of Kaithal -Narwana at batta	D/C	HVPNL	4
84	LILO of Pali - Gurgaon Sector-52 A at Gurgaon Sector-56	D/C	HVPNL	1
85	Narendra 400kV S/S- Mahalingapur	D/C	KPTCL	246
86	Maheshwar - Pithampur	D/C	MPPTCL	115
	·			
87	Osmanabad - Barshi (2nd Ckt)	S/C	MSETCL	44

88	South solapur (PG) - South solapur	D/C	MSETCL	6
89	LILO of Jamsher - Mahilpur at Rehana Jattan	D/C	PSTCL	10
90	LILO of Bhiwadi - Alwar line at Kishangarh	S/C	RVPNL	5
91	Padampur - Udyogvihar	S/C	RVPNL	42
92	MTPS Stage III -Pallakkapalayam	S/C	TANTRANSCO	6
93	MTPS Stage-III - Gobi	S/C	TANTRANSCO	3
94	Burla - Bolangir, (2nd Ckt)	S/C	OPTCL	118
95	Chincholi (PGCIL) - Solapur	D/C	MSETCL	5
96	Chitegaon- Shendra	D/C	MSETCL	57
97	Chulliar (Mannukad) - Palakkad	D/C	KSEB	8
98	Greater Noida-IT City Garbara	S/C	UPPTCL	11
99	Jabalpur - Jabalpur	D/C	MPPTCL	12
100	Khaperkheda TPS - Khaperkheda (Existing)	2xD/C	MSETCL	12
101	Kirori-Samain line	D/C	HVPNL	68
102	LILO of Fatuha- Khagaul at Sipara(New)	D/C	BSEB	19
103	LILO of Arasur - Ingur at Karamadai	D/C	TANTRANSCO	6
104	LILO of Bassi - Kukas at (GIS) Kunda ki Dhani	D/C	RVPNL	8
105	LILO of Chandrapur GCR - Chandrapur MIDC at Tadali	D/C	MSETCL	2
106	LILO of Debari - Banswara at Aspur	D/C	RVPNL	2
107	LILO of Dhangadhra - Lalpar at Halvad	D/C	GETCO	4
108	LILO of Dhrangadhra-Morbi line at Lalpar	D/C	GETCO	13
109	LILO of Savarkundla - Mahva(otha) at Pipavav (GPPC) (line-1)	D/C	GETCO	91
110	LILO of Savarkundla - Ultratech (Old) at loc 30 of Savarkundla - Mahuva	D/C	GETCO	16
110	The of caramana character (clay action to the caramana a manara	373	02.00	10
111	Laltonkalan - Sahnewal (one ckt)	D/C	PSTCL	7
112	Link line between Patna (PG) - Sipara(BSEB)	D/C	BSEB	1
113	Maharani bagh - HC Mathur Lane (Electric Lane)	D/C	DTL	17
114	Maharani bagh - Masjidmoth	D/C	DTL	18
115	Malakaram - Gunrock	DC UG cable	APTRANSCO	32
116	Malwa TPP - Chhegaon	D/C	MPPTCL	95
117	Nyara - Tevda (2nd Ckt)	S/C	GETCO	90
118	Parichha - Banda	S/C	UPPTCL	210
119	Raj West-Dhorimana	S/C	RVPNL	83
120	Roja - Badaun (2nd Ckt)	S/C	UPPTCL	96
121	Sankhari -Jangral line	D/C	GETCO	65
122	Sarnath (400) - Birapatti	S/C	UPPTCL	23
123	Varahi - Khemar (Part line)	D/C	KPTCL	150
	Total CKM OF 220 kV LINES (SS)		1	5534
	Private Sector			
1	LILO of Allain Duhangan- Nalagarh at Chhaur	D/C	EPCL	2
2	Budhil -Chamera III	D/C	LEPP	40
	Total CKM oF 220 kV LINES (PS)			42
	Total of STATE Sector			3452
	Total of 220 kV (ALL INDIA)			5755
	T (111 111111 / 1111 11			00.40.4
	Total ALL INDIA (765+400+220 kV)			20434

Sub-stations commissioned during 2011-12

As on 31.03.2012

SI. No.	Name of Sub-Station	Voltage Ratio (kV/kV)	Executing Agency	Capacity (MW/MVA)	Month of Completion
765 I	άV	1 /			1
CEN	TRAL SECTOR				
1	Balia (New) (1st Trf)	765/400	PGCIL	1500	DEC-11
2	Lucknow (New) (1st Trf)	765/400	PGCIL	1500	DEC-11
3	Balia S/S (2nd Trf.)	765/400	PGCIL	1500	Feb-12
4	Lucknow (2nd Trf)	765/400	PGCIL	1500	Feb-12
5	Wardha	765/400	PGCIL	3000	Feb-12
6	Fatehpur	765/400	PGCIL	3000	Mar-12
7	Gaya	765/400	PGCIL	3000	Mar-12
8	WR Pooling Station near Sipat	765/400	PGCIL	3000	Mar-12
9	Wardha 3rdTrf	765/400	PGCIL	1500	Mar-12
	TOTAL (Central Sector)			19500	
	State Sector				
1	Unnao	765/400	UPPTCL	1000	Mar-12
	TOTAL (State Sector)			1000	
	Total ALL INDIA (765kV SS)			20500	

SI. No.	Name of Sub-Station	Voltage Ratio (kV/kV)	Executing Agency	Capacity (MW/MVA)	Month of Completion
400 k	χV	(,)		1	l .
CEN	TRAL SECTOR				
1	Raipur Extn.	400/220	PGCIL	315	JUN-11
2	Shujalpur (1st ICT)	400/220	PGCIL	315	JUN-11
3	Extn.Patiala	400/220	PGCIL	500	JUL-11
4	Bachchau S/S	400/220	PGCIL	630	AUG-11
5	GIS Pooling Station near Chamera-II HEP	400/220	PGCIL	630	AUG-11
6	Extn. Bahadurgarh	400/220	PGCIL	500	OCT-11
7	Pune Extn.	400/220	PGCIL	315	OCT-11
8	Muvattapuzha s/s (2 nd ICT)	400/220	PGCIL	315	NOV-11
9	Shujalpur(2 nd ICT)	400/220	PGCIL	315	NOV-11
10	Fatehpur Extn.	400/220	PGCIL	630	DEC-11
11	Neemrana (1st Trf.)	400/220	PGCIL	315	DEC-11
12	Wardha Extn.	400/220	PGCIL	500	DEC-11
13	Gaya Extn.	400/220	PGCIL	815	Jan-12
14	Gurgaon GIS S/Stn. (2nd ICT)	400/220	PGCIL	315	Jan-12
15	Lucknow Extn.	400/220	PGCIL	500	Jan-12
16	Sikar	400/220	PGCIL	315	Jan-12
17	Chulliar	400/220	PGCIL	315	Feb-12
18	Panchkula	400/220	PGCIL	630	Feb-12
19	Bhiwadi Extn.	400/220	PGCIL	315	Mar-12
20	Bidadi (GIS) S/S	400/220	PGCIL	500	Mar-12
21	Chulliar (2nd Trf.)	400/220	PGCIL	315	Mar-12
22	Neemrana (2nd Trf.)	400/220	PGCIL	500	Mar-12
23	Sikar (2nd ICT)	400/220	PGCIL	315	Mar-12
24	Silchar (New)	400/220	PGCIL	400	Mar-12
	Total PGCIL			10515	
	Total DVC			0	
	Total of CENTRAL Sector ((400 kV SS)		10515	

STATE SECTOR						
1	Bhusaval (ICT-I) S/S	400/220	MSETCL	500	AUG-11	
2	Sunguvarchatram	400/220	TANTRANSCO	630	AUG-11	
3	Bhusaval (ICT –II) S/S	400/220	MSETCL	500	SEP-11	
4	Babhaleshwar S/S	400/220	MSETCL	500	DEC-11	
5	Dhule S/S	400/220	MSETCL	500	DEC-11	
6	Khaperkheda S/S (2x500)	400/220	MSETCL	1000	DEC-11	
7	Nagothane S/S	400/220	MSETCL	500	DEC-11	
8	Dinod (Kosamba)(2nd Trf.)	400/220	GETCO	315	Jan-12	
9	Nuhiyawali (1st Trf)	400/220	HVPNL	315	Jan-12	
10	Deepalpur S/S	400/220	HVPNL	630	Feb-12	
11	Kabulpur S/S	400/220	HVPNL	630	Feb-12	
12	Nuhiyawani (2nd & 3rd ICT)	400/220	HVPNL	630	Feb-12	
	Total of STATE Sector			6650		
TOTA	L 400 kV (PS)			0		
	Total ALL INDIA (400 kV SS)			17165		

SI. No.	Name of Sub-Station	Voltage Ratio (kV/kV)	Executing Agency	Capacity (MW/MVA)	Month of Completion
220 k	·V	, ,			•
CEN	TRAL SECTOR				
1	Dhanbad (2x80)	220/33	DVC	80	JUN-11
2	Raebareli (POWERGRID)	220/132	PGCIL	100	SEP-11
3	Koderma (2x150)	220/132	DVC	320	Mar-12
4	Koderma (2x80)	220/33	DVC	160	Mar-12
To	otal of CENTRAL Sector			660	
STAT	TE SECTOR				
1	Brahmanakotkur	220/11	APTRANSCO	25	Apr-11
2	Malyala	220/11	APTRANSCO	95	Apr-11
3	Sadayapalayam	230/33	TanTransco	100	Apr-11
4	Oragadom	230/110	TanTransco	100	Apr-11
5	Alundur (Addl Trf.)	230/110	TanTransco	100	Apr-11
6	Ponda	220/110	Ele. Deptt. Goa	100	May-11
7	Xeldem	220/110	Ele. Deptt. Goa	100	May-11
8	Kushalanagara (2nd Trf.)	220/66	KPTCL	100	May-11
9	Vasai	220/100	MSETCL	100	May-11
10	Jath (2x100) (1st Trf.)	220/132	MSETCL	100	May-11
11	Urse	220/22	MSETCL	50	May-11
12	Kanpur South (3x60) (Ist Trf.)	220/132	UPPTCL	60	May-11
13	Amulhapuram (Add.Tr.)	230/33	TANTRANSCO	50	Jun-11
14	A'station Compound (Anand Rao Circle) (2nd Trf.)	220/66	KPTCL	150	Jun-11
15	Vadavi (Aug.)	220/66	GETCO	50	Jun-11
16	Nakhatrana (Aug.)	220/66	GETCO	50	Jun-11
17	Achchalia (Aug.)	220/66	GETCO	50	Jun-11
18	Khassa (Aug.)	220/66	PSTCL	100	Jun-11
19	Gurgoan Sector-72	220/33	HVPNL	100	Jul-11
20	Malerkotla (Aug.)	220/66	PSTCL	100	Jul-11
21	Focal Point Nabha (2nd Trf.)	220/66	PSTCL	100	Jul-11
22	Bithoor	220/132	UPPTCL	160	Jul-11
23	Bishnah	220/132	J&K	320	Jul-11
24	Kangasiyali	220/66	GETCO	100	Jul-11
25	Kotmikala (Addl.)	220/132	CSPTCL	100	Jul-11
26	Vasai (2nd Trf.)	220/100	MSETCL	100	Jul-11
27	Bellampally (Mandamarri)	220/132	APTRANSCO	100	Jul-11
28	Rishra(aug.)	220/132	WBSETCL	160	Jul-11
29	Lalru	220/66	PSTCL	100	Aug-11

30	Kapurthala (Kanjli) (New)	220/66	PSTCL	100	Aug-11
31	Algaon (Nanjii) (New)	220/66	PSTCL	100	Aug-11 Aug-11
32	Bemetara(Add.)	220/132	CSPTCL	160	Aug-11 Aug-11
33	Deodor (Aug.)	220/66	GETCO	50	Sep-11
34	Dhasa (Aug.)	220/66	GETCO	50	Sep-11
35	Hadala (Aug.)	220/66	GETCO	100	Sep-11
36	, •	220/66	GETCO	100	Sep-11
37	Jangrol (Aug.)	220/66	GETCO	100	
38	Waghodid (Aug.) Bithoor (2nd Trf.)	220/132	UPPTCL	160	Sep-11 Sep-11
39	Dalkhola			320	
		220/132 220/132	WBSETCL		Sep-11
40	Palamaneru		APTRANSCO	100	Oct-11
41	Chhajpur S/S	220/132	HVPNL	200	Oct-11
42	Chormar S/S (1st Trf)	220/132	HVPNL	100	Oct-11
43	Chormar S/S (2nd Trf)	220/33	HVPNL	100	Oct-11
44	Dharuhera (Mau) S/S (1st Trf)	220/66	HVPNL	200	Oct-11
45	Dharuhera (Mau) S/S (2nd Trf)	220/33	HVPNL	100	Oct-11
46	Lula Ahir	220/33	HVPNL	100	Oct-11
47	Ashta (Add.) Trf. S/S	220/132	MPPTCL	160	Oct-11
48	Butari (Aug) S/S	220/66	PSTCL	100	Oct-11
49	Sanchore (1x100)	220/132	RRVPNL	100	Oct-11
50	Mosur III Auto (Add. Trf)	220/110	TANTRANSCO	100	Oct-11
51	Sadayampalayam (Add. Trf)	220/33	TANTRANSCO	50	Oct-11
52	Kambalapadu	220/11	APTRANSCO	75	Nov-11
53	Regulapadu S/S	220/11	APTRANSCO	50	Nov-11
54	Dhanonda	220/132	HVPNL	100	Nov-11
55	Chikkmagalur S/S	220/66	KPTCL	200	Nov-11
56	Badnera (Aug.) S/S	220/33	MSETCL	25	Dec-11
57	Balapur S/S	220/33	MSETCL	25	Dec-11
58	Bambhori (Jalgaon) S/S	220/132	MSETCL	200	Dec-11
59	Bambhori S/S	220/132	MSETCL	25	Dec-11
60	Baramati (Aug.) S/S	220/33	MSETCL	25	Dec-11
61	Baramati (Aug.) S/S	220/132	MSETCL	50	Dec-11
62	Bhandup GIS S/S	220/22	MSETCL	200	Dec-11
63	Chikhali (Aug.) S/S	220/132	MSETCL	100	Dec-11
64	Hamidwada S/S	220/33	MSETCL	50	Dec-11
65	Hinjewadi S/S	220/22	MSETCL	50	Dec-11
66	IMT Manesar (Aug.)	220/66	HVPNL	100	Dec-11
67	Jath S/S	220/33	MSETCL	50	Dec-11
68	Kadegaon S/S	220/132	MSETCL	100	Dec-11
69	Kadegaon S/S	220/33	MSETCL	100	Dec-11
70	Kandalgaon S/S	220/22	MSETCL	50	Dec-11
71	Kangasiyali (2nd Trf.)	220/66	GETCO	100	Dec-11
72	Krishnagiri	220/00	APTRANSCO	75	Dec-11
73	Kurkumbh S/S	220/132	MSETCL	200	Dec-11
74	Lakkasagaram	220/132	APTRANSCO	75	Dec-11
75	Lalpar	220/11	GETCO	200	Dec-11
76	M.K. Hubli (2 nd Trf)	220/132	KPTCL	100	Dec-11
77	Miraj (Aug.) S/S	220/110	MSETCL	100	Dec-11
	Niwali S/S	220/132		100	
78 79		220/132	MSETCL OPTCL	110	Dec-11
	Paradeep (Aug.) S/S		<u> </u>		Dec-11
80	Parbhani (Aug.) S/S	220/132	MSETCL	100	Dec-11
81	Pusad (Aug.) S/S	220/33	MSETCL	25	Dec-11
82	Sawangi S/S	220/132	MSETCL	100	Dec-11
83	Settipally (A) 0/0	220/11	APTRANSCO	75 50	Dec-11
84	Solapur (Aug.) S/S	220/132	MSETCL	50	Dec-11
85	Tuljapur S/S	220/33	MSETCL	100	Dec-11
86	VSNL - Yewalewadi S/S	220/22	MSETCL	50	Dec-11

87 Warona (Aug.) (Into) SIS 22033 MSETCL 25 Dec-11 89 Amarogan SIS 220132 JKPDD 160 Jan-12 91 Aurangabed Ring Main 22033 MSETCL 100 Jan-12 92 Balapur (Prin Tri) 22033 MSETCL 25 Jan-12 93 Balapur SIS 22016 PSTCL 100 Jan-12 94 Batta SIS (1st Tri) 220132 MSETCL 20 Jan-12 95 Batta SIS (1st Tri) 220132 MSETCL 20 Jan-12 96 Bhutlya (Aug.) 220166 GETCO 50 Jan-12 97 Bidri (25 MVA) 22033 MSETCL 50 Jan-12 98 Batta SIS (20 Tri) 22033 MSETCL 50 Jan-12 98 Borgaigan TPS SS (Aug.) 22066 GETCO 50 Jan-12 99 Borgaigan TPS SS (Aug.) 220132 MSETCL 100 Jan-12 100 Budgam 220132 JKPDD 320 Jan-12 101 Chandrapura(Aug.) 22066 GETCO 50 Jan-12 102 Dasuy (Aud.) 71 72 72 73 73 73 103 Dhuri (Addil)(3rd TF) SIS 22066 PSTCL 100 Jan-12 104 Foreign Food Ludriana (1x100 MVA) 22066 PSTCL 100 Jan-12 105 Gorakpur II (2nd fri) 220132 JPPDD 320 Jan-12 106 Mahushedsagan 220132 JPPTCL 160 Jan-12 107 Mandi Govindgarh 220132 JPPTCL 160 Jan-12 108 Marushedsagan 220132 JPPTCL 160 Jan-12 109 Narsuralla 2201132 PTCUL 100 Jan-12 101 Mandi Govindgarh 220132 JPPTCL 160 Jan-12 101 Mandi Marushedsagan 220132 JPPTCL 160 Jan-12 102 Mandi Marushedsagan 220132 JPPTCL 160 Jan-12 103 Marushedsagan 220132 JPPTCL 160 Jan-12 104 Mahushedsagan 220132 JPPTCL 160 Jan-12 105 Marushedsagan 220132 JPPTCL 160 Jan-12 106 Marushedsagan 220132 JPPTCL 160 Jan-12 107 Mandi Marushedsagan 220132 JPPTCL 160 Jan-12 108 Marushedsagan 220132 JPPTCL 160 Jan-12 109 Marushedsagan 220132 JPPTCL 160 Jan-12 109 Marushedsagan 220132			,	1		
Barrisan SiS 220132	87	Warora (Aug.) (IInd) S/S	220/33	MSETCL	25	Dec-11
90	88	Warora (Aug.) S/S	220/33		25	Dec-11
191 Aurangabad Ring Main 220/33 MSETCL 100 Jan-12	89	Amargarh S/S	220/132	JKPDD	160	Jan-12
Balagur (2nd Trf) 220/33 MSETCL 25 Jan-12 Balagur (2nd Trf) 220/32 MSETCL 200 Jan-12 Balagur (3nd Trf) 220/32 MSETCL 200 Jan-12 Balagur (3nd Trf) 220/32 MSETCL 200 Jan-12 Balas (3nd Trf) 220/33 HVPNL 100 Jan-12 Balas (3nd Trf) 220/33 HVPNL 100 Jan-12 Balas (3nd Trf) 220/33 MSETCL 50 Jan-12 Balas (3nd Trf) 220/33 MSETCL 50 Jan-12 Balas (3nd Trf) 220/34 MSETCL 50 Jan-12 Balas (3nd Trf) 220/32 MSETCL 50 Jan-12 Balas (3nd Trf) 220/32 MSETCL 50 Jan-12 Balas (3nd Trf) 220/32 JRPDD 320 Jan-12 Balas (3nd Trf) 220/33 JRPDD 320 Jan-12 Balas (3nd Trf) 3nd Trf	90	Amritsar S/S	220/66	PSTCL	100	Jan-12
Section Sect	91	Aurangabad Ring Main	220/33	MSETCL	100	Jan-12
Balapur SIS 220/132 MSETCL 200 Jan-12 94 Batta SIS (1st Trf.) 220/132 HVPNL 100 Jan-12 95 Batta SIS (2nd Trf.) 220/33 HVPNL 100 Jan-12 96 Bhutlya (Aug.) 220/66 GETCO 50 Jan-12 97 Bidri (1st MVA) 220/33 MSETCL 50 Jan-12 98 Bidri SIS 220/132 MSETCL 100 Jan-12 98 Bidri SIS 220/132 MSETCL 100 Jan-12 99 Bongaigaon TPS SS (Aug.) 220/132 AEGCL 80 Jan-12 100 Budgam 220/132 JKPDO 320 Jan-12 101 Chandrapura(Aug.) 220/66 GETCO 50 Jan-12 102 Dasuya (Add. Trf.) SIS 220/66 PSTCL 100 Jan-12 103 Dhuri (Add)l(3rd Trf.) SIS 220/66 PSTCL 100 Jan-12 104 Ferozepur Road Ludhiana (1x100 MVA) 220/66 PSTCL 100 Jan-12 105 Gorakpur II (2nd trf.) 220/132 UPPTCL 160 Jan-12 106 Mahuakhedagani 220/132 UPPTCL 160 Jan-12 107 Mandi Govindgarh 220/66 PSTCL 100 Jan-12 108 Mirbazar 220/132 JKPDD 320 Jan-12 109 Nansuralla 220/11 APTRANSCO 75 Jan-12 101 Nuniawali 220/132 HVPNL 100 Jan-12 102 Nansuralla 220/11 APTRANSCO 75 Jan-12 108 Nansuralla 220/11 APTRANSCO 75 Jan-12 119 Nuna Majra (Aug.) SIS 220/132 HVPNL 100 Jan-12 110 Ramban (3x40) 220/132 HVPNL 100 Jan-12 111 Ramban (3x40) 220/132 HVPNL 100 Jan-12 112 Patran 220/66 PSTCL 100 Jan-12 113 Ramban (3x40) 220/132 HVPNL 100 Jan-12 114 Rothak (Aug.) SIS 220/132 HVPNL 100 Jan-12 115 Sappara (Aug.) SIS 220/132 HVPNL 100 Feb-12 116 Trauma Centre / AllMS (GIS) 220/132 HVPNL 100 Feb-12 117 Rothak (Aug.) SIS 220/132 HVPNL 100 Feb-12 118 Roberdham 220/66 PSTCL 100 Feb-12 129 Roberdham 220/66 PSTCL 100 Feb-12 120 Chock Sahb SIS 220/132 HVPNL 100 Feb-12 121 Koto Langan (Add) 220/66 PSTCL 100 Mar-12 122 Kish						
September Sept						
95 Batta SS (2nd Tr) 220/33 HVPNL 100 Jan-12 96 Brutlya (Aug.) 220/66 GETCO 50 Jan-12 97 Bidri (28 MVA) 220/33 MSETCL 50 Jan-12 98 Bidri SS 220/132 MSETCL 100 Jan-12 100 Budgam 220/132 JKPDD 320 Jan-12 101 Chandrapura(Aug.) 220/66 GETCO 50 Jan-12 102 Dasuya (Addi, Tir) SIS 220/66 GETCO 50 Jan-12 103 Dhuri (Addi)(3rd Tir) SIS 220/66 PSTCL 100 Jan-12 103 Dhuri (Addi)(3rd Tir) SIS 220/66 PSTCL 100 Jan-12 105 Gorakpur II (2nd tir) 220/132 UPPTCL 160 Jan-12 105 Gorakpur II (2nd tir) 220/132 UPPTCL 160 Jan-12 106 Mahuakhedagari 220/132 JKPDD 320 Jan-12 107 <						
Bebulya (Aug.) 220/66 GETCO 50 Jan-12						
Bidri (25 MVA)						
Bidd SIS						
Bongaigaon TPS SS (Aug.)						
100						
101 Chandrapura(Aug.) 220(66 GETCO 50 Jan-12						
Dasuya (Addl. T/F) S/S 220/66 PSTCL 100 Jan-12						
103 Dhuri (Addi)(3rd TiF) S/S 220/66 PSTCL 100 Jan-12						
104 Ferozepur Road Ludhiana (1x100 MVA) 220/66 PSTCL 100 Jan-12						
105						
106 Mahuakhedaganj 220/132 PTCUL 200 Jan-12	104	Ferozepur Road Ludhiana (1x100 MVA)				
107 Mandi Govindgarh 220/66 PSTCL 100 Jan-12	105	Gorakpur II (2nd trf.)	220/132	UPPTCL	160	Jan-12
107 Mandi Govindgarh 220/66 PSTCL 100 Jan-12 108 Mirbazar 220/132 JKPDD 320 Jan-12 109 Mansuralla 220/11 APIRANSCO 75 Jan-12 110 Nuhiawali 220/132 HVPNL 100 Jan-12 111 Nuna Majra (Aug.) S/S 220/132 HVPNL 100 Jan-12 111 Nuna Majra (Aug.) S/S 220/132 HVPNL 100 Jan-12 113 Ramban (3x40) 220/132 JKPDD 120 Jan-12 114 Rothak (Aug.) S/S 220/132 HVPNL 100 Jan-12 115 Sagapara (Aug.) 220/66 GETCO 50 Jan-12 116 Trauma Centre / AllMS (GIS) 220/33 DTL 200 Jan-12 117 A-5 Faridabad. S/S 220/66 HVPNL 100 Feb-12 118 Deepalpur S/S 220/132 HVPNL 200 Feb-12 119 Kabulpur S/S 220/132 HVPNL 200 Feb-12 120 Masudpur 220/132 HVPNL 200 Feb-12 120 Masudpur 220/132 HVPNL 100 Feb-12 121 Mohana 220/132 HVPNL 100 Feb-12 122 Masudpur 220/132 HVPNL 100 Feb-12 122 Barshi S/S 220/132 MSETCL 200 Feb-12 123 Flagship (Hinjewadi) S/S 220/132 MSETCL 200 Feb-12 124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/132 MSETCL 200 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 130 (Dighi) Yevalewadi S/S 220/132 MSETCL 50 Mar-12 131 Bhokardhan 220/132 MSETCL 50 Mar-12 133 MSETCL 200 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 136 Jhansi 220/132 MSETCL 50 Mar-12 137 Jurala 220/132 MSETCL 50 Mar-12 139 Masewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Ma	106	Mahuakhedaganj	220/132	PTCUL	200	Jan-12
Mirbazar 220/132	107	Mandi Govindgarh	220/66	PSTCL	100	Jan-12
109 Nansuralla 220/11 APTRANSCO 75 Jan-12						
110 Nuhiawali 220/132 HVPNL 100 Jan-12 111 Nuna Majira (Aug.) S/S 220/132 HVPNL 100 Jan-12 112 Patran 220/66 PSTCL 100 Jan-12 113 Ramban (3x40) 220/132 JKPDD 120 Jan-12 114 Rothak (Aug.) S/S 220/132 HVPNL 100 Jan-12 115 Sagapara (Aug.) 220/66 GETCO 50 Jan-12 116 Trauma Centre / AlIMS (GIS) 220/33 DTL 200 Jan-12 117 A-5 Faridabad. S/S 220/66 HVPNL 100 Feb-12 118 Deepalpur S/S 220/132 HVPNL 200 Feb-12 119 Kabulpur S/S 220/132 HVPNL 200 Feb-12 120 Masudpur 220/132 HVPNL 200 Feb-12 120 Masudpur 220/132 HVPNL 100 Feb-12 121 Mohana 220/132 HVPNL 100 Feb-12 122 Barshi S/S 220/132 HVPNL 100 Feb-12 122 Barshi S/S 220/132 MSETCL 200 Feb-12 123 Flagship (Hinjewadi) S/S 220/132 MSETCL 200 Feb-12 124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/132 MSETCL 200 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addi) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangaribas S/S 220/132 MSETCL 50 Mar-12 130 Glojshi S 220/22 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan 220/33 MSETCL 200 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 100 Mar-12 137 Jurala 220/132 APTRANSCO 200 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/33 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 200 Mar-12 144 Patoda 220/33 MSETCL 200 Mar-12 144 Patoda 220/33 MSE						
111 Nuna Majra (Aug.) S/S 220/132 HVPNL 100 Jan-12 112 Patran 220/66 PSTCL 100 Jan-12 113 Ramban (3x40) 220/132 JKPDD 120 Jan-12 114 Rothak (Aug.) S/S 220/132 HVPNL 100 Jan-12 115 Sagapara (Aug.) 220/66 GETCO 50 Jan-12 116 Trauma Centre / AlIMS (GIS) 220/33 DTL 200 Jan-12 117 A-5 Faridabad. S/S 220/132 HVPNL 100 Feb-12 118 Deepalpur S/S 220/132 HVPNL 200 Feb-12 119 Kabulpur S/S 220/132 HVPNL 200 Feb-12 119 Kabulpur S/S 220/132 HVPNL 200 Feb-12 120 Masudpur 220/132 HVPNL 100 Feb-12 121 Mohana 220/132 HVPNL 100 Feb-12 122 Barshi S/S 220/132 MSETCL 200 Feb-12 123 Flagship (Hinjewadi) S/S 220/132 MSETCL 200 Feb-12 124 Tuljapur S/S 220/132 MSETCL 50 Feb-12 125 Chola Sahib S/S 220/132 MSETCL 200 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/s 220/132 RVPNL 100 Feb-12 130 (Djghi) Yewalewadi S/S 220/132 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan 220/132 MSETCL 50 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhansi 220/132 UPPTCL 100 Mar-12 137 Jurala 220/132 UPPTCL 100 Mar-12 138 Kagal (Hamidwada) S/S 220/132 UPPTCL 100 Mar-12 139 Mastewala 220/132 UPPTCL 100 Mar-12 139 Mastewala 220/132 UPPTCL 100 Mar-12 139 Mastewala 220/132 UPPTCL 100 Mar-12 140 Mehal Kalan 220/132 MSETCL 200 Mar-12 140 Mehal Kalan 220/133 MSETCL 200 Mar-12						
Patran P						
113 Ramban (3x40) 220/132 JKPDD 120 Jan-12 114 Rothak (Aug.) S/S 220/132 HVPNL 100 Jan-12 115 Sagapara (Aug.) 220/66 GETCO 50 Jan-12 116 Trauma Centre / AlIMS (GIS) 220/33 DTL 200 Jan-12 117 A-5 Faridabad. S/S 220/66 HVPNL 100 Feb-12 118 Deepalpur S/S 220/132 HVPNL 200 Feb-12 119 Kabulpur S/S 220/132 HVPNL 200 Feb-12 119 Kabulpur S/S 220/132 HVPNL 200 Feb-12 120 Masudpur 220/132 HVPNL 100 Feb-12 121 Mohana 220/132 HVPNL 100 Feb-12 122 Barshi S/S 220/132 MSETCL 200 Feb-12 123 Flagship (Hinjewadi) S/S 220/132 MSETCL 200 Feb-12 124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/132 MSETCL 200 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addi) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/S 220/132 MSETCL 50 Mar-12 130 (Dighi) Yewalewadi S/S 220/132 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan 220/33 MSETCL 50 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addi 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Mastewala 220/132 UPPTCL 100 Mar-12 137 Mastewala 220/132 WSETCL 50 Mar-12 139 Mastewala 220/132 WSETCL 50 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/133 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 200 Mar-12 143 Patoda 220/33 MSETCL 200						
Rothak (Aug.) S/S 220/132 HVPNL 100 Jan-12						
115 Sagapara (Aug.) 220/66 GETCO 50 Jan-12 116 Trauma Centre / AlIMS (GIS) 220/33 DTL 200 Jan-12 117 A-5 Faridabad. S/S 220/66 HVPNL 100 Feb-12 118 Deepalpur S/S 220/132 HVPNL 200 Feb-12 119 Kabulpur S/S 220/132 HVPNL 200 Feb-12 120 Masudpur 220/132 HVPNL 100 Feb-12 121 Mohana 220/132 HVPNL 100 Feb-12 122 Barshi S/S 220/132 HVPNL 100 Feb-12 123 Flagship (Hinjewadi) S/S 220/132 MSETCL 200 Feb-12 124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/66 PSTCL 100 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/S 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/132 RVPNL 100 Feb-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan S/S 220/132 UPPTCL 100 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Mansi 220/132 UPPTCL 100 Mar-12 137 Jurala 220/132 UPPTCL 100 Mar-12 138 Kagal (Hamidwada) S/S 220/132 UPPTCL 100 Mar-12 139 Mastewala 220/66 PSTCL 50 Mar-12 130 Mehal Kalan 220/66 PSTCL 50 Mar-12 131 Mehal Kalan 220/66 PSTCL 100 Mar-12 132 Hokardhan 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 139 Mastewala 220/132 UPPTCL 100 Mar-12 130 Mehal Kalan 220/66 PSTCL 100 Mar-12 131 Mehal Kalan 220/66 PSTCL 100 Mar-12 132 Hokardhan 220/132 UPPTCL 100 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/133 MSETCL 200 Mar-12						
116 Trauma Centre / AIIMS (GIS) 220/33 DTL 200 Jan-12 117 A-5 Faridabad. S/S 220/166 HVPNL 100 Feb-12 118 Deepalpur S/S 220/132 HVPNL 200 Feb-12 119 Kabulpur S/S 220/132 HVPNL 200 Feb-12 120 Masudpur 220/132 HVPNL 100 Feb-12 121 Mohana 220/132 HVPNL 100 Feb-12 122 Barshi S/S 220/132 MSETCL 200 Feb-12 123 Flagship (Hinjewadi) S/S 220/132 MSETCL 200 Feb-12 124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/132 MSETCL 100 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
117 A-5 Faridabad. S/S 220/66 HVPNL 100 Feb-12 118 Deepalpur S/S 220/132 HVPNL 200 Feb-12 119 Kabulpur S/S 220/132 HVPNL 200 Feb-12 120 Masudpur 220/132 HVPNL 100 Feb-12 121 Mohana 220/132 HVPNL 100 Feb-12 122 Barshi S/S 220/132 MSETCL 200 Feb-12 123 Flagship (Hinjewadi) S/S 220/22 MSETCL 200 Feb-12 124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/66 PSTCL 100 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 22						
118 Deepalpur S/S 220/132 HVPNL 200 Feb-12 119 Kabulpur S/S 220/132 HVPNL 200 Feb-12 120 Masudpur 220/132 HVPNL 100 Feb-12 121 Mohana 220/132 HVPNL 100 Feb-12 122 Barshi S/S 220/132 MSETCL 200 Feb-12 123 Flagship (Hinjewadi) S/S 220/22 MSETCL 50 Feb-12 124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/166 PSTCL 100 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 2						
119 Kabulpur S/S 220/132 HVPNL 200 Feb-12 120 Masudpur 220/132 HVPNL 100 Feb-12 121 Mohana 220/132 HVPNL 100 Feb-12 122 Barshi S/S 220/132 MSETCL 200 Feb-12 123 Flagship (Hinjewadi) S/S 220/22 MSETCL 50 Feb-12 124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/166 PSTCL 100 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangaribas S/s 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S						
120 Masudpur 220/132 HVPNL 100 Feb-12 121 Mohana 220/132 HVPNL 100 Feb-12 122 Barshi S/S 220/132 MSETCL 200 Feb-12 123 Flagship (Hinjewadi) S/S 220/22 MSETCL 50 Feb-12 124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/66 PSTCL 100 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/s 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/132 RVPNL 100 Feb-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 131 Bhokardhan. S/S <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
121 Mohana 220/132 HVPNL 100 Feb-12 122 Barshi S/S 220/132 MSETCL 200 Feb-12 123 Flagship (Hinjewadi) S/S 220/22 MSETCL 50 Feb-12 124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/66 PSTCL 100 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/s 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/132 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan 220/32 MSETCL 20 Mar-12 133 Gajokhar 220/1						
122 Barshi S/S 220/132 MSETCL 200 Feb-12 123 Flagship (Hinjewadi) S/S 220/22 MSETCL 50 Feb-12 124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/66 PSTCL 100 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/s 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/132 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan 220/132 WPTCL 50 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F						
123 Flagship (Hinjewadi) S/S 220/22 MSETCL 50 Feb-12 124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/66 PSTCL 100 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/s 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/22 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 131 Bhokardhan 220/132 MSETCL 200 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl	121	Mohana	220/132	HVPNL	100	Feb-12
124 Tuljapur S/S 220/132 MSETCL 200 Feb-12 125 Chola Sahib S/S 220/66 PSTCL 100 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/s 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/122 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan. S/S 220/132 MSETCL 200 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi	122	Barshi S/S		MSETCL	200	Feb-12
125 Chola Sahib S/S 220/66 PSTCL 100 Feb-12 126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/s 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/22 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan. S/S 220/132 MSETCL 200 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220	123	Flagship (Hinjewadi) S/S	220/22	MSETCL	50	Feb-12
126 Doraha 220/66 PSTCL 100 Feb-12 127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/s 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/22 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan 220/132 MSETCL 200 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220/132 APTRANSCO 200 Mar-12 138 Kagal (Hamidwada) S/S <	124	Tuljapur S/S	220/132	MSETCL	200	Feb-12
127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/s 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/22 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan. S/S 220/132 MSETCL 200 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220/132 APTRANSCO 200 Mar-12 138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 140 Mehal Kalan	125	Chola Sahib S/S	220/66	PSTCL	100	Feb-12
127 Kotla Jangan (Addl) 220/66 PSTCL 100 Feb-12 128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/s 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/22 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan. S/S 220/132 MSETCL 200 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220/132 APTRANSCO 200 Mar-12 138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 140 Mehal Kalan	126	Doraha	220/66	PSTCL	100	Feb-12
128 Rehana Jattan 220/66 PSTCL 100 Feb-12 129 Kishangarhbas S/s 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/22 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan. S/S 220/132 MSETCL 200 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220/132 APTRANSCO 200 Mar-12 138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan <	127	Kotla Jangan (Addl)	220/66	PSTCL	100	Feb-12
129 Kishangarhbas S/s 220/132 RVPNL 100 Feb-12 130 (Dighi) Yewalewadi S/S 220/22 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan. S/S 220/132 MSETCL 200 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220/132 UPPTCL 160 Mar-12 138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/13						
130 (Dighi) Yewalewadi S/S 220/22 MSETCL 50 Mar-12 131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan. S/S 220/132 MSETCL 200 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220/132 APTRANSCO 200 Mar-12 138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/132 MSETCL 200 Mar-12 142 Patoda 220/33						
131 Bhokardhan 220/33 MSETCL 50 Mar-12 132 Bhokardhan. S/S 220/132 MSETCL 200 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220/132 APTRANSCO 200 Mar-12 138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/132 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 100 Mar-12						
132 Bhokardhan. S/S 220/132 MSETCL 200 Mar-12 133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220/132 APTRANSCO 200 Mar-12 138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/132 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 100 Mar-12						
133 Gajokhar 220/132 UPPTCL 100 Mar-12 134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220/132 APTRANSCO 200 Mar-12 138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/132 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 100 Mar-12						
134 Himmatpura (Addl 100 MVA T/F) 220/66 PSTCL 100 Mar-12 135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220/132 APTRANSCO 200 Mar-12 138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/132 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 100 Mar-12						
135 Jhansi 220/132 UPPTCL 100 Mar-12 136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220/132 APTRANSCO 200 Mar-12 138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/132 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 100 Mar-12						
136 Jhunsi 220/132 UPPTCL 160 Mar-12 137 Jurala 220/132 APTRANSCO 200 Mar-12 138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/132 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 100 Mar-12						
137 Jurala 220/132 APTRANSCO 200 Mar-12 138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/132 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 100 Mar-12						
138 Kagal (Hamidwada) S/S 220/33 MSETCL 50 Mar-12 139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/132 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 100 Mar-12						
139 Mastewala 220/66 PSTCL 100 Mar-12 140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/132 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 100 Mar-12						
140 Mehal Kalan 220/66 PSTCL 100 Mar-12 141 Paranda 220/132 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 100 Mar-12						
141 Paranda 220/132 MSETCL 200 Mar-12 142 Patoda 220/33 MSETCL 100 Mar-12						
142 Patoda 220/33 MSETCL 100 Mar-12						
		Paranda	220/132	MSETCL	200	Mar-12
	142	Patoda	220/33	MSETCL	100	Mar-12
	143	Rashiana (Addl.)	220/66	PSTCL	100	Mar-12

	Total ALL INDIA	54287			
Tota	l of 220 kV(ALL INDIA)	16622			
1	ChhaurS/S	220/132	EPCL	127	SEP-11
	Private Sector		·		
	TOTAL (State Sector)	220		15835	
147	Wadala (addl.)	220/66	PSTCL	100	Mar-12
146	Thelkadih S/S	220/132	CSPTCL	160	Mar-12
145	Tadali S/S	220/33	MSETCL	100	Mar-12
144	Somanahalli (Addl.)	220/66	KPTCL	100	Mar-12

Annex-6.6

Details of transmission line projects (220 kV & above) under execution where major forest clearance problem were encountered by Implementing Agencies

S. No.	Name of the Project / Location	Executing agencies	Brief history of issues with MOEF/State Government
1.	Parbati Pooling Station- Amritsar D/C line (Himachal Pradesh)	PGCIL	Total forest land 137.213 Ha, Proposal submitted in June 2010 RMoEF submitted inspection report in March 2012 and discussed in FAC meeting in April 2012.FRA compliance is under progress. Stage I clearance yet to be received
2.	Shifting of Anpara - Unnao 765 kV S/C trans. line from termination point at Anpara B to Anpara C switchyard	UPPTCL	Total forest land 6.7 Ha(800m) Proposal submitted in Aug 2010 Stage I clearance received in May 2011 Stage II clearance received in Dec 2011 Line Commissioned in March 2012.
3.	UPCL Nandikur - Hassan(Shantigram) 400 kV D/C line	KPTCL	Total forest land 172.53 Ha(33.39 km) Proposal submitted in March 2010 Stage I clearance received in Feb. 2011 Stage II clearance received in Feb.2012 & working under progress.
4.	BTPS-Hiriyur 400 kV Line	KPTCL	Total forest land 14.34 Ha Proposal submitted in May, 2008. Forest dept. forwarded proposal in July 2010 Nodal officer submitted to MoEF in Jan 2011 Stage I clearance received in May 2011 Stage II clearance received in Jan.2012 Line Commissioned in March 2012.
5.	Koldam-Ludhiana 400 kV line (HP & Punjab)	PKTCL	Forest proposal submitted by PGCIL in May,05 HP portion Stage-I clearance received in Mar 2010 Punjab Portion Stage-I clearance received in Feb 2010 PKTCL requested for change of name of user agency. Nodal officer, HP recommended the case to MoEF in July 2010 Matter is under consideration by MoEF. Stage II Clearance yet to be received.
6.	Teesta-III-Mangan- Kishenganj(Karandighi) 400 kV D/C line (Quad moose)	TVPTL	Total forest land 48.4484(Sikkim) +47.4932(WB) Forest proposal submitted in Aug 2009 For Sikkim portion Stage I clearance received in Jan. 2011 Compliance report submitted in May 2011 Stage-II clearance received in Sept 2011 For West Bengal portion Forest proposal submitted in Aug 2009 Stage I clearance yet to be received State Govt. yet to forward proposal to MoEF
7.	Mundra- Limbdi and Mundra-Jetpur	PGCIL	Total forest land (44.34 + 29.38 Ha)

			Ta
	Mundra-Ranchodpura		Stage-1 clearance received in Oct2010/Jun2011
	400KV D/C Line		Compliance report submitted in Jan. 2011/
	(0)		Stage-II clearance received in June/July 2011
	(Gujarat)		Mundra- Limbdi and Mundra -Ranchodpura line
			commissioned in Feb 2012
			Mundra - Jetpur line is under progress.
8.	Hindupur-Pulivendula 220 kV D/C line	APTRANSCO	Total forest land 6.79 Ha
			Forest proposal submitted in April 2008
			Stage I clearance received in July 2008
			Compliance report submitted in July 2009
			Stage II clearance is awaited
9.	Nellore – Palamaneru 220 kV D/C line	APTRANSCO	This line has been dropped
10.	Pallatana – Bongaigaon 400 kV D/C line	NETCL	Total forest land (5680HCs) in 130 locs.
	. anatana 20ngangaon 100 m 270 mio		Forest proposal submitted in April to Aug.2006
			Tripura
			Stage I clearance received in Oct 2009
			Stage II clearance received in Aug.2010.
			Assam
			Stage I clearance received in May 2010
			compliance report submitted in Feb.2011
			Stage II clearance received in May 2012
			Olaye II Gearance received III May 2012
			Meghalaya
			Stage I clearance received in Feb 2010.
			compliance report submitted in Feb.2011
			Stage II clearance received in May 2012
11.	Komong Polinoro 400kV D/C lino	PGCIL	Total forest land 98.25 Ha
11.	Kameng-Balipara 400kV D/C line	PGCIL	
	(Assam)		Stage I clearance received in Jan 2010
			compliance report submitted in July 2011
			Stage II clearance yet to be received
12.	Earth Electrode line for Biswanath	PGCIL	Total forest land 58.55 Ha
12.	Chariali Pooling Stn. & Earth Electrode	1 GOIL	Stage I clearance received in Nov 2009
	Station at Thagiabari (Assam)		compliance report submitted in July 2011
	Station at magiaban (Assam)		Stage II clearance yet to be received
13.	Korba STPP – Birshinghpur	PGCIL	Total forest land 157.481 Ha
13.	400 kV D/C line	FOOIL	Stage I clearance received in July 2010
	(Chhattisgarh)		compliance report submitted in Nov 2010
			Stage II clearance received in June 2011
4.4	Dibaraharif Kadama 400 DV DVO P	DOOU	Line Commissioned in Feb.2012.
14.	Biharsharif – Koderma 400 kV D/C line	PGCIL	Total forest land 13.007 Ha
	(Bihar)		Stage I clearance received in April 2010
			compliance report submitted in Dec 2010
			Stage II clearance received in Mar 2011
_		500"	Line Commissioned in May2011.
15.	Mysore – Kozikode 400 kV D/C line	PGCIL	Total forest land 23.166 Ha
	23.166 Ha (Karnataka)		Forest proposal submitted in April 2004
			State Govt. submitted proposal in Oct. 2010
			Stage I clearance yet to be received
40	M-11-1	A 1. 15	T (-16 (1 - 10 0040))
16.	Mohindergarh HVDC Station (Haryana)	Adani Power	Total forest land 0.8612 Ha
			Station Commissioned in Mar 2012.
1-	B	F00"	T + 16 + 1 + 1444 CO ::
17.	Rourkela- Raigarh 400 KV D/C line	PGCIL	Total forest land 111.39 Ha.
	(Orissa)		Stage I clearance received in Oct 2009
			Stage II clearance yet to be received
			Line Commissioned in June 2011 on special permission from
			MoEF in July 2010
18.	Chamera-III Pooling StnJallandhar 400	PGCIL	Total forest land 130.698 Ha,
	KV D/C line		Stage I clearance received in Sept 2010

	((Free de 1 De 1 de 1)	I	0
	(Himachal Pradesh)		Compliance report submitted in Mar 2011
19.	Lower Subansiri-Biswanath Chariali	PGCIL	Stage II clearance yet to be received Total forest land 88.77 Ha
13.	400KV D/C Line (Assam)	FOOIL	Forest proposal submitted in Feb 2011
	400KV B/O Line (765am)		Stage I clearance yet to be received
20.	Kameng – Balipara 400 kV D/C line	PGCIL	Total forest land 133.65 Ha,
20.	(Arunachal Pradesh)	1 OOIL	Stage I clearance received in Sept 2010
	(, wanashar radoon)		Compliance report submitted in Oct 2011
			Work is in progress.
21.	Raipur- Wardha 400 kV D/C line	PGCIL	Total forest land 15.37 Ha.
	(Chhattisgarh)		Forest proposal submitted in May 2011
	,		Stage I clearance received in April 2012
			Work is in progress.
22.	Krishnapatnam – Gooty and	PGCIL	Total forest land 42.067 Ha,
	Krishnapatnam - Kurnool 400KV D/C		Forest proposal submitted in Nov 2010
	lines (Andhra Pradesh)		Stage I clearance received in Dec 2010
			Compliance report submitted in Feb 2012.
			Stage II clearance yet to be received
23.	Dhanbad-Giridih 220KV D/C line	DVC	Total forest land 42.243 Ha,
			Forest proposal submitted in Sept. 2006
			Stage I clearance received in Jan 2009
			Compliance report submitted in Aug 2011
			Stage II clearance received in May 2012
			Working clearance from forest dept. yet to be received
24.	Mejia- Gola-Ramgarh 220 KV Line	DVC	Total forest land 90.543 Ha,
24.	Mejia- Gola-Kanigani 220 KV Line	DVC	Forest proposal submitted in Nov 2005
			Stage I clearance received in April 2010
			Compliance report submitted in Aug 2010
			Stage II clearance yet to be received
25.	Raghunathpur-Ranchi 400 kV line	DVC	Total forest land 61.352 Ha,
	Tragnanau par Transin 100 IV III.		Forest proposal submitted in Jan 2008
			Stage I clearance received in Oct 2010
			Compliance report submitted in Dec 2011
			Stage II clearance yet to be received
26.	Gola -Ranchi 220 kV D/C line	DVC	Total forest land 42.164 Ha,
			Forest proposal submitted in May 2008
			Stage I clearance received in Nov 2010
			Compliance report yet to be submitted
27.	Sampla - Mohana	HVPNL	Total forest land 0.4919 Ha
	220 kV D/C line		Line Commissioned in Feb 2011.
28.	Utran-Kosamba 220 kV line-II	GETCO	This line has been dropped
29.	Malwa THP-Pithampur 400 kV D/C line	MPPTCL	Total forest land 5.755 kms
			Forest proposal submitted in Feb 2010
			Stage I clearance received in Dec 2010
			Compliance report submitted in Aug 2011
20	Palamaneru - Chitoor 220 kV D/C line	ADTDANICOO	Stage II clearance received in Feb 2012. Total forest land 22.03 Ha.
30.	raiamaneru - Ghitoor 220 KV D/G line	APTRANSCO	
			Forest proposal submitted in Aug 2006 Stage I clearance received in July 2010
			Compliance report submitted in Dec 2010
			Stage II clearance received in Jan 2011
			Line Commissioned in Oct 2011
31.	Parbati-Koldam 400 kV line (Himachal	PKTCL	Forest proposal submitted in Nov 2006
•	Pradesh)		Stage I clearance received in Dec 2007
	,		Compliance report pending with the State Government
32.	Vapi- Navi Mumbai 400 KV D/C line,	PGCIL	Total forest land 272.1195 Ha
	(Maharastra)		Forest proposal submitted in May 2005
	,		The forest proposals has been put up to National Board for
33.	Baripada – Mendhasal 400 kV D/C line	PGCIL	Total forest land 21.36 Ha(0.55 Ha WL)
	(Orissa)		Forest proposal submitted in Feb 2008
33.	•	PGCIL	Wild Life(NBWL) in Oct 2011 Total forest land 21.36 Ha(0.55 Ha WL)

			Stage I clearance received in May 2011
			Compliance report submitted in Aug 2011
			Stage II clearance received in Aug 2011
	14 1 001 111 000 114 11	D) (0	Line Commissioned in Aug 2011
34.	Koderma-Giridih 220 kV line	DVC	Total forest land 86.085 Ha,
			Forest proposal submitted in Mar 2009
			NO forwarded Proposal in Mar 2012
			Stage I clearance received in May 2012
			Compliance report yet to be submitted
35.	Jhalawar - Kalisindh 220 kV D/C line	RRVPNL	Total forest land 4.4 Ha
			Forest proposal submitted in Mar 2010
			Stage I clearance received in April 2011
			Line Commissioned in April 2012.
36.	LILO of Madri-Udaipur 220 kV line	RRVPNL	Total forest land 2.1 Ha
			Forest proposal submitted in May 2010
			Stage I clearance yet to be received
37.	Ranjit Sagar Dam – Sarna (Ckt.IV) 220	PSTCL	This line has been dropped
38.	kV line Loharinagpala-Koteshwaar 400 kV D/C	PTCUL	This line has been dropped
JO.	line	FICUL	This line has been dropped
	iiile		
39.	Satpura – Ashta D/C 400 kV line	MPPTCL	Total forest land 106.15 Ha
J3.	Oatpura - Asrita D/O 400 KV IIIIE	IVIFFICE	Forest proposal submitted in Dec 2010
			Stage I clearance received in Jan 2012
			Compliance report yet to be submitted
40.	Wani - Warora 220 kV line	MSETCL	
40.	Warii - Warora 220 KV line	MSETCL	This line has been dropped
41.	Chandrapur II- MIDC - Ballarshah 220	MSETCL	This line has been dropped
	KV D/C line		·
42.	Khaperkheda from exist loc. No. 6 of	MSETCL	Total forest land 0.7735 Ha
	Koradi – Chandrapur 400 kV S/C line		Stage I clearance received in Jan 2012
			Stage II clearance yet to be received
43.	Jeur – Paranda 220 kV D/C line	MSETCL	This line has been dropped
44.	Trans. Line Lamboti (Solapur) – Taljapur	MSETCL	Total forest land 63.24 Ha
	220 kV D/C line		Forest proposal submitted in Feb 2009
			Stage I clearance yet to be received
45.	Parli III-Nanded 220 kV D/C line	MSETCL	This line has been dropped
46.	Dairearh/DC\ Varamand(CETCO\	RPTL	Total forest land 39.14 Ha
40.	Rajgarh(PG)-Karamsad(GETCO) 400 KV D/C line	KFIL	
	400 KV D/C line		Forest proposal submitted in Dec 2009
			State Govt yet to forward proposal to MoEF
47.	LILO of Tarapur – Boriwali 220 kV D/C	MSETCL	Total forest land 0.498 Ha
	at Boisar		Forest proposal submitted in Aug 2008
			Stage I clearance yet to be received
48.	Boisar- Boriwali 220 kV D/C	MSETCL	Total forest land 198.71 (117.29+81.42) Ha
			Forest proposal submitted in Aug 2010
			Stage I clearance received in Dec 2011
			Compliance report submitted in July 2012
			Stage II clearance yet to be received
49.	Boriwali- Kalwa 220 kV D/C line	MSTCL	-do-
50.	Kalwa-Kharghar 220 kV D/C line	MSTCL	-do-
51.	Removing earth and rock beneath 220	KSEB	Forest proposal submitted in July 2010
	kV Sabarigiri-Theni feeder between		Stage I clearance yet to be received
	location 50 and 51 to maintain statutory		2.1.go . 3.53. 3.1.55
	clearance		
52.	Mankulam HEP - Valara pooling station	KSEB	Forest proposal submitted in Aug 2010
02.	220 kV line	NOLD	Stage I clearance yet to be received
	LLU IVV IIIIU		olago i dicarance yel to be received

		I IOED	T
53.	Lohardagga-Latehar 220 kV D/C line	JSEB	Total forest land 11.5611 Ha
			Forest proposal submitted in July 2010
			Stage I clearance yet to be received
54.	Latehar – Daltonganj 220 kV D/C line	JSEB	Total forest land 57.04 Ha
			Forest proposal submitted in Aug 2010
			Stage I clearance yet to be received
55.	Tiroda - Warora (MSETCL) 400 kV	ADANI POWER	Total forest land 27.308 Ha
	D/C (Quad) line		Forest proposal submitted in May 2011
			Stage I clearance received in Jan 2012
			Compliance report submitted in Feb 2012
			Stage II clearance yet to be received
56.	Mundra – Mahindergarh ±500 kV HVDC	ADANI POWER	Total forest land 55.58
	line		Forest proposal submitted in May 2011
			Stage I clearance received in Oct. 2011
			Line Completed in March 2012
57.	Korba- Bishrampur 220 kV D/C	CSPTCL	Total forest land 195.296 Ha
	·		Forest proposal submitted in July 2006
			Stage I clearance received in March 2009
			Compliance report submitted in May 2011
			Stage II clearance received in Aug 2011
58.	Bongaigaon (PG) – Siliguri (PG) 400 kV	ENICL	Total forest land 8.5 Ha
	D/C line		Forest proposal submitted in Jan 2011
			Stage I clearance yet to be received
59.	Bilaspur Pooling Station – Ranchi	PGCIL	Total forest land 302.368 Ha
	765kV S/C Line (Chhattisgarh)		Forest proposal submitted in Mar 2011
	(Stage I clearance yet to be received
60.	Silchar – Melriat (New) 400 KV D/C line	PGCIL	Total forest land 375.66 Ha
	(Charged at 132 KV) (Mizorma)		Forest proposal submitted in Sept. 2011
	(consignation of the control of the		Stage I clearance yet to be received
61.	Sasan- Satna 765 KV S/C line (ckt.l)	PGCIL	Total forest land 114.724 Ha.
	(Madhya Pradesh)		Forest proposal submitted in May 2011
	(· · ·) · · · · · · · · · · · · · · · · · · ·		Stage I clearance yet to be received
62.	Parbati Pooling Stn.– Amritsar line	PGCIL	Total forest land 61.65 Ha.
	400kV D/C (Punjab)	. 55.2	Stage I clearance received in April 2010
	(, 4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Compliance report submitted in Oct 2011
			Stage II clearance yet to be received
63.	Bokaro-Kodarma 400 KV D/C Line	PGCIL	Total forest land 198.59 Ha
30.	(Jharkhand)	1 0012	Forest proposal submitted in May 2011
	(onamidia)		Stage I clearance yet to be received
64.	Satpura (Sarni)-Pandhurna 220 kV	MPPTCL	Total forest land 38.90 Ha
J 4.	Line(2nd circuit)	IVII I IOL	Forest proposal submitted in Feb. 2011
	Lino(Lina onodit)		Stage I clearance received in Sept. 2011
			Compliance report submitted in Mar 2012
			Stage II clearance received in June2012
			Stage if clearance received in June2012

Annex- 6.7

SCHEMES UNDER EXECUTION DURING 11TH PLAN

(Associated with Generation Projects and ISTS System Strengthening Schemes)

SI. Name of the Sub-station Voltage Executing Capacity Status

No. Ratio Agency (MW/MVA)

No.		Ratio (kV/kV)	Agency	(MW/MVA)	
I. 500 kV H	IVDC(Sub-station)				
1	Converter station at Balia & Bhiwadi (2x1250 MW) – 2 nd Pole		PGCIL	1250	WIP
2.	Converter station at Mundra & Mohindergarh (2x1250 MW) –		Adani	2500	WIP

System Strengthening Schemes in NR:

Scheme	Description	Status
	Table No: NR-IS-01/Ch6	
NR System Strengthening	Gurgaon (PG Sec 72) – Manesar 400 kV D/c(Quad)	Severe ROW problem.
Scheme-XIII	Establishment of 400/220kV substation with 2x500 MVA transformation capacity at Manesar	Engg.& Survey in progress
	3. Delinking Agra-Samaypur and Samaypur-Gurgaon (PG Sec-72) 400 kV lines from Samaypur and making a direct line from Agra to Gurgaon (PG Sec-72) 400 kV S/c circuit	WIP
	4. 2 nos. of 220 kV bays at Fatehabad 400/220 kV substation.	
	5. 125 MVAR Bus Reactor at Manesar	
	Table no: NR-IS-02/Ch6	
NR System Strengthening Scheme-XIV	LILO of Nallagarh-Kaithal 400 kV circuit (Triple Snowbird second ckt of Nalagarh-Hissar 400 kV D/c line) at Patiala (first ckt is already LILOed)	Commissioned 8/11.
	2 Additional 500 MVA 400/220 kV ICT at Patiala having (2x315 MVA) capacity	Commissioned
	3. Additional 500 MVA 400/220 kV ICT at Malerkotla having (2x315 MVA) capacity	commissioned
	4. 125 MVAR Bus Reactor at Patiala	commissioned
	Table no: NR-IS-03/Ch6	
NR System	1. Manesar - Neemrana 400 kV D/c	WIP
Strengthening Scheme-XV	2. Bhiwadi - Neemrana 400 kV D/c	Stringing commenced from March '11.
Scrienie-XV	3. LILO of Bhiwadi – Jaipur 400 kV S/c to establish new 400/220 kV S/s at Kotputli.	Engg. & Survey in progress
	4 Establishment of 400/220kV substation with 2x315 MVA transformation capacity at Neemrana	commissioned
	5. Establishment of 400/220kV substation with 2x315 MVA transformation capacity at Kotputli	WIP
	Table no: NR-IS-04/Ch6	
NR System Strengthening Scheme-XVI	LILO of both circuits of Kishenpur - Wagoora 400 kV D/c to create new 400/220 kV S/s at New Wanpoh	
	2. Kishenpur – New Wanpoh 400 kV D/c	WIP
	3. Establishment of 400/220kV substation with 2x315 MVA transformation capacity at New Wanpoh	
	Table no: NR-IS-05/Ch6	
NR System Strengthening Scheme-XVII	Neemrana – Sikar 400kV D/C	Line completed
	Table no: NR-IS-06/Ch6	
NR System Strengthening Scheme-XVIII	1. Baghpat – Dehradun 400 kV D/c (Quad)	Completion matching with Bagpat & Deharadun S/Stn. (land yet to be handed-over).
	 Establishment of 400/220kV substation with 2x315 MVA transformation capacity at Dehradun 	

Generation projects located in Himachal Pradesh:

Generation Project Description		Status
	Table no: NR-HP-01/Ch6	i
Chamera III HEP (NHPC) (3x77 MW)	Pooling Station near Chamera-III HEP - Jullandur line 400kV D/C	Forest stage -II approval pending. Compl. Matching with Chamera Gen. Proj.
(slipped to 12th Plan)	2. Chamera-III-Chamera pooling station near Chamera II HEP	commissioned 8/11.
	3. GIS Pooling Station near Chamera-II HEP	commissioned 8/11.
	Table no: NR-HP-02/Ch6)
Parbati - III HEP (4x130 MW) (slipped to 12th Plan)	LILO of 400kV D/C Parbati -II - Koldam/Nalagarh at Parbati Pooling Point Amritsar	Forest approval pending (Clubbed with parbati-III - Amritsar line)
,	2. LILO of 400kV D/C Parbati -II - Parbati Pooling Point at Parbati -III	Tower erection commenced.
	3. Parbati Pooling Point - Amritsar 400kV D/C with 80 MVAR reactor	Forest case (HP portion) forward to MOEF N. Delhi in Jun'10. Re-routing of line is done avoiding wild life centuary area. St-II clearance awaited
	4. Establishment of 400KV Parbati Pooling station (GIS)	
	Table no: NR-HP-03/Ch6	
Karcham Wangtoo HEP (4x250	Karcham Wangtoo-Abdullapur 400kV D/C	Under costruction by JV co.
MW) (commissioned)	2. Abdullapur – Sonepat 400kV D/C	Commissioned 3/11.
	Table no: NR-HP-04/Ch6	
Budhil HEP (LANCO Green) HP(2x35 MW) (slipped to 12th Plan)	Budhil- Chamera-III 220kV S/C	commissioned
	Table no: NR-HP-05/Ch6	
Malana II HEP (EPPL)	1. Malana II HEP - Chhaur 132kV D/C	Stringing Completed.
(2x50 MW)	2. LILO of Allain Duhangan -Nalagarh at Chhaur 220kV D/C	stringing completed.
(commissioned)	3. 220/132kV Chhaur S/S	Ready for commissioning.

Generation projects located in Jammu & Kashmir:

Description	Status
Table no: NR-JK-0	1/Ch6
URI I - URI II 400kV S/C	Line ready for charging. Readiness of bays being constructed by NHPC awaited for commissioning.
URI II -Wagoora 400kV S/C	Work seriously hampered due to law & order problem& frequent snowfall in last two months.
Table no: NR-JK-0	2/Ch6
System available at 66 kV level.	
	I
	Table no: NR-JK-0 URI I - URI II 400kV S/C URI II -Wagoora 400kV S/C Table no: NR-JK-0

Table no: NR-JK-03/Ch6		
Nimoo Bazgo (NHPC)(3x15MW) (slipped to 12th Plan)	System available at 66 kV level.	

Generation projects located in Uttrakhand:

Generation	Description	Status
Project		
	Table no: NR-UK-0	/Ch6
Koteshwar (commissioned)	Koteshwar -Tehri Pooling Point D/C	Ckt-1 Test charged on 23.02.11 & Ckt-II test charged on march '11.
	LILO of Tehri - Meerut at Tehri Pooling Point (to be charged at 400 KV)	LILO of Ckt-I completed & test charged on 21.01.11 & Ckt-II test charged on 6/11.
	3. 50% compensation of Tehri – Meerut line	
	Establishment of Tehri Pooling station(GIS)	

Generation projects located in Delhi:

Generation	Description	Status	
Project			
	Table no: NR-DL-01/C	h6	
Pragati CCGT ph-	Splitting of Existing 400kV Bawana Bus	Work by DTL	
III (PPCL)	400 kV Swichyard Bus to be extended		
(4x250+2x250)MW	to split Bus		
(slipped to 12th			
Plan)			
	Table no: NR-DL-02/Ch6		
Rithala CCPP	System at 66 kV(By NDPL)		
(NDPL) (GT+ ST			
108 MW)			
(commissioned)			

Generation projects located in Haryana:

Generation	Description	Status
Project		
	NR-HR-01/Ch6	
Jhajjar-I (Indira Gandhi) TPS	Jhajjar-Daulatabad 400kV D/C	ckt 1 commissioned. 2 nd ckt commissioned Feb'11
(3x500 MW)	2. Jhajjar-Mundka (Delhi) 400kV D/C	1 st ckt commissioned 9/10& 2 nd ckt in 11/10
(U-1,U-2 commissioned, U-	3. Jhajjar (TPS) -Dhanonda 400kV D/C	WIP.
3 slipped to 12th Plan)	4. Daultabad (3x315) 400/220 kV S/S	1 st & 2 nd Transformer test charged 11/10 and 3 rd Transformer test charged 12/10
	5. Mundka (2x315) 400/220 kV S/S	1 st Trans.Commissioned 9/10 and 2 nd Trans.Commissioned 3/11.
	6. Mundka (2x160) 400/220 kV S/S	Ready for commissioning.

	NR-HR-02/Ch6	
Jhajjar-I (Mahatma	RGEC-Sonipat(Deelapur)220kV	
Gandhi) TPS	D/C	
(2x660 MW)	2. Deelapur –HSIDC 220kV D/C W	Work awarded
	3. Deelapur –Barhi 220kV D/C W	Work not awarded
(U-I	4. Deelapur –Tajpur 220kV D/C	
commissioned,	5. Deelapur –Barhi 220kV D/C	
U-2 slipped to	6. Jhajjar (TPS) -Dhanonda 400kV c	commissioned
12th Plan)	D/C	
	7. Jhajjar -Kabulpur 400kV D/C c	commissioned
	8. Kabulur- Deelapur 400kV D/C c	commissioned
	/ - (- / - /	commissioned
	Dauktabad line at Jhajjar TPS	
	I I	commissioned
	220/132kV S/S	
	• • • • • • • • • • • • • • • • • • •	commissioned
	220/132kV S/S	

Generation projects located in Rajasthan:

Generation Project	Description	Status
	Table no: NR-RJ-01/0	h6
Jallipa Kapurdi	1. Rajwest- Jodhpur 400kV D/C	Commissioned 5/10
TPP(8x135 MW)	2. Raj West-Barmer 400kV D/C	1 ckt Commissioned 5/10& 2nd ckt in 3/11
(Raj West Power)	3. Raj West-Dhorimanna 400kV D/C	Commissioned 3/12
(Unit 1to 4 commissioned in 11 th plan)	4. LILO of Giral -Barmer ckt 1 at RAJ West LTPS D/C	Commissioned 8/08

Generation projects located in Uttar Pradesh:

Generation Project	Description	Status	
	Table no: NR-UP-01/Ch6		
Anpara ' C' (LANCO ANPARA	Extn.of 400 kV Bus from Anpara B to Anpara C	Work completed 6/10	
PPL(2x600 MW)	2. Shifting of 765kV Anpara B- Unnao termination point from Anpara B to	Line charged	
(commissioned)	Anpara C sw.yard 3. Shifting of 765kV Anpara –Unnao at	commissioned	
	Unnao 4. Unnao 765/400 kV S/S	commissioned	
Table no: NR-UP-02/Ch6			
Harduaganj TPS U- 8 & 9 (2x250MW) (U-8 commissioned, U-9 slipped to 12th Plan)	Harduaganj - Jahangirabad 220kV D/C	Existing system adequate for U-8 & U-9. Construction work started	
,	Table no: NR-UP-03/Ch	16	
Parichha TPS Extn. (UPRVUNL) 2x250 MW (slipped to 12th Plan)	 Parichha - Orai 400 kV D/C Orai - Mainpuri 400 kV D/C Mainpuri (765 kV)- Mainpuri (PGCIL) 400 kV D/C LILO of Agra- Agra (PGCIL) at Mainpuri 400 kV D/C 	Work in progress Work in progress Proposed under PPP mode	
	5. Parichha - Bhauti	Commissioned	

	6. Parichha - Banda Part I 220 kV S/C Work in progress	
	7. Parichha - Banda Part II 220 kV S/C Completed.	
	8. Mainpuri 765/400 kV S/S Proposed under PPP m	node
	9. Orai 400/220 kV S/S	
Table no: NR-UP-04/Ch6		
Rosa St II (2x300	LILO of (PGCIL) Lucknow–Bareilly commissioned	
MW)	400kV line at Shahjahanpur	
(Private Sector)	2. LILO of (Reliance) Lucknow- commissioned	
	Bareilly 400kV line at Shahjahanpur	
(commissioned)	3. Rosa- Dohna 220kV line S/c on D/c Work in progress	

System Strengthening Schemes in WR:

Scheme	Description	Status
	Table no: WR-IS-01/Cl	h6
Western Region Strengthening	SET-A: For absorbing import in eastern and central part of WR	
Scheme - II	Wardha (PG)-Parli (PG) 400kV D/C	Commissioned 7/11.
	Raipur(PG)-Wardha(PG) 400kV D/C	Work affected due to ROW problem in
		line & delayed forest clearance.
	Bhadravati(PG)-Parli(PG) 400kV D/C	Line charged in March'11.
	2nd S/C Seoni (PG)-Wardha (PG) line	commissioned.
	(initially to be operated at 400kV)	
	Parli (MSETCL) - Parli (PG) 400kV D/C	Line completed
	SET-D: For Regional Strengthening in Northern Madhya Pradesh	
	1. Korba (NTPC) – Birsinghpur (MPGENCO) 400kV D/C	line commissioned
	2. Birsinghpur (MPGENCO) – Damoh 400kV D/C	Line completed & commissioned
	3. Damoh – Bhopal 400kV D/c line	commissioned
	4. Bina – Gwalior 765kV 2 nd S/C line(op. at 400kV)	Commissioned
	Table no: WR-IS-02/CI	h6
Western Region Strengthening	LILO of 765kV S/C Sipat - Seoni line at WR Pooling station Near Sipat	commissioned
Scheme – X		
	Table no: WR-IS-03/Cl	h6
Western Region	LILO of 765kV Sipat - Seoni (2nd Ckt)	commissioned
Strengthening	at WR Pooling station Near Sipat	
Scheme - XI	1x500MVA, 3rd transformer at WR Pooling point	

Generation projects located in Gujarat:

Generation Project	Description	Status
Table no: WR-GJ-01/Ch6		
Hazira TPP	Hazaira (GSEC)- Kosamba 220kV D/C	commissioned
(GSECL) 351 MW	Hazaira (GSEC)- Mota 220kV D/C line	WIP
(commissioned)	, ,	

Mundra TPP Ph.II (2x660 MW) (commissioned)	Table no: WR-GJ-02/Ch6			
(2x660 MW) (commissioned) 2. Mundra(Adani) –Zerda 400kV line 1 WIP Table no: WR-GJ-03/Ch6 Mundra TPP Ph.III 3x 660 MW(Adani Power), (commissioned) 1. Mundra (Adani)-Mohindergarh HVDC - Mohindergarh HVPNL (Dhanonda) 400kV Stringing completed. 400kV 3. Mohindergarh HVDC – Bhiwani 400kV Stringing completed. 400kV 4. Dhanonda- Daultabad (Quad) 400kV WIP 5. LILO of Dhanonda-Daultabad at Manesar 400kV 0. Dhanoda(Mohindergarh) 400/220kV commissioned 7. Aurangabad(PG)- Aurangabad (MSETCL) Table No : WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) Mangrol-Mobha 220kV D/C line (2nd ckt) commissioned Essar Power Saliya (2x600MW) (Private Sector) 1. EPGL TPS – Bachau 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard WIP (U-1 Commissioned) 2. (Vadinar)EPGL TPS-Hadala 400kV D/C (Triple) Along WIP Commissioned				
Table no: WR-GJ-03/Ch6				
Table no: WR-GJ-03/Ch6 Mundra TPP Ph.III 3x 660 MW(Adani Power), (commissioned) Power), (commissioned) 2. Mohindergarh HVDC - Mohindergarh HVDC - Bhiwani 400kV 3. Mohindergarh HVDC - Bhiwani Stringing completed. 400kV 4. Dhanonda- Daultabad (Quad) WIP 400kV 5. LILO of Dhanonda-Daultabad at Manesar 400kV 6. Dhanoda(Mohindergarh) 400/220kV commissioned 7. Aurangabad(PG)- Aurangabad (MSETCL) Table No: WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (U-1 (U-1 commissioned) 7. Aurangabad (Aurangabad at Mangrol-Mobha 220kV D/C line (2nd Commissioned) Table no: WR-GJ-05/Ch6 WIP (U-1 (Vadinar)EPGL TPS-Hadala 400kV D/C Commissioned) 3. (Vadinar)EPGL TPS-Amreli 400kV WIP		2. Mundra(Adani) –Zerda 400kV line 1	WIP	
Mundra TPP Ph.III 3x 660 MW(Adani Power), (commissioned)	(commissioned)	T.I.I. WD.0.100/0		
3x 660 MW(Adani		Table no: WR-GJ-03/C	ch6	
Power), (commissioned) 2. Mohindergarh HVDC - Mohindergarh HVPNL (Dhanonda) 400kV 3. Mohindergarh HVDC - Bhiwani 400kV 4. Dhanonda- Daultabad (Quad) 400kV 5. LILO of Dhanonda-Daultabad at Manesar 400kV 6. Dhanoda(Mohindergarh) 400/220kV commissioned 7. Aurangabad(PG)- Aurangabad (MSETCL) Table No: WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) Commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (CU-1 (U-1 commissioned) 1. EPGL TPS - Bachau 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV MIP	Mundra TPP Ph.III	Mundra (Adani)-Mohindergarh	commissioned	
(commissioned) Mohindergarh HVPNL (Dhanonda) 400kV 3. Mohindergarh HVDC – Bhiwani 400kV 4. Dhanonda- Daultabad (Quad) 400kV 5. LILO of Dhanonda-Daultabad at Manesar 400kV 6. Dhanoda(Mohindergarh) 400/220kV 7. Aurangabad(PG)- Aurangabad (MSETCL) Table No: WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (CU-1 Commissioned) Mohindergarh HVPNL (Dhanonda) Stringing completed. WIP Stringing completed. 400kV Commissioned Table No: WR-GJ-04/Ch6 WIP WIP Table no: WR-GJ-05/Ch6 WIP (U-1 Commissioned) Commissioned Commissioned 3. (Vadinar)EPGL TPS-Hadala 400kV WIP	3x 660 MW(Adani	HVDC (± 500kV)		
400kV 3. Mohindergarh HVDC – Bhiwani Stringing completed. 400kV 4. Dhanonda- Daultabad (Quad) WIP 400kV 5. LILO of Dhanonda-Daultabad at Manesar 400kV 6. Dhanoda(Mohindergarh) 400/220kV commissioned 7. Aurangabad(PG)- Aurangabad (MSETCL) Table No: WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (Private Sector) (U-1 (U-1 commissioned) 1. EPGL TPS – Bachau 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV MIP			Stringing completed.	
3. Mohindergarh HVDC – Bhiwani 400kV 4. Dhanonda- Daultabad (Quad) 400kV 5. LILO of Dhanonda-Daultabad at Manesar 400kV 6. Dhanoda(Mohindergarh) 400/220kV commissioned 7. Aurangabad(PG)- Aurangabad (MSETCL) Table No: WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (Private Sector) (U-1 commissioned) 1. EPGL TPS – Bachau 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV D/C line 3. (Vadinar)EPGL TPS-Amreli 400kV WIP	(commissioned)			
400kV 4. Dhanonda- Daultabad (Quad) 400kV 5. LILO of Dhanonda-Daultabad at Manesar 400kV 6. Dhanoda(Mohindergarh) 400/220kV commissioned 7. Aurangabad(PG)- Aurangabad (MSETCL) Table No: WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (Private Sector) (U-1 (U-1 commissioned) 3. (Vadinar)EPGL TPS-Hadala 400kV MIP				
4. Dhanonda- Daultabad (Quad) 400kV 5. LILO of Dhanonda-Daultabad at Manesar 400kV 6. Dhanoda(Mohindergarh) 400/220kV commissioned 7. Aurangabad(PG)- Aurangabad (MSETCL) Table No: WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (U-1 (U-1 commissioned) 1. EPGL TPS – Bachau 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV MIP WIP WIP WIP Commissioned Commissioned 3. (Vadinar)EPGL TPS-Amreli 400kV WIP			Stringing completed.	
400kV 5. LILO of Dhanonda-Daultabad at Manesar 400kV 6. Dhanoda(Mohindergarh) 400/220kV commissioned 7. Aurangabad(PG)- Aurangabad (MSETCL) Table No: WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV D/C commissioned (U-1			L L L L L L L L L L L L L L L L L L L	
5. LILO of Dhanonda-Daultabad at Manesar 400kV 6. Dhanoda(Mohindergarh) 400/220kV commissioned 7. Aurangabad(PG)- Aurangabad (MSETCL) Table No: WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (Private Sector) (U-1 commissioned) 1. EPGL TPS – Bachau 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV Commissioned D/C line 3. (Vadinar)EPGL TPS-Amreli 400kV WIP		` ,	WIP	
Manesar 400kV 6. Dhanoda(Mohindergarh) 400/220kV commissioned 7. Aurangabad(PG)- Aurangabad (MSETCL) Table No: WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (Private Sector) (U-1 Commissioned) Mangrol-Mobha 220kV D/C line (2nd commissioned) Table no: WR-GJ-05/Ch6 WIP WIP (U-1 Commissioned) 2. (Vadinar)EPGL TPS-Hadala 400kV Commissioned D/C line 3. (Vadinar)EPGL TPS-Amreli 400kV WIP			0	
6. Dhanoda(Mohindergarh) 400/220kV commissioned 7. Aurangabad(PG)- Aurangabad (MSETCL) Table No: WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (Private Sector) (2. (Vadinar)EPGL TPS-Hadala 400kV D/C D/C Iine (2nd Ckt) WIP Surat Lignite Ext (250MW) (State Sector) (250MW) (State Sector) (250MW) (Vadinar)EPGL TPS-Hadala 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard (2. (Vadinar)EPGL TPS-Hadala 400kV D/C Iine (2nd Ckt) (Vadinar)EPGL TPS-Hadala 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard (2. (Vadinar)EPGL TPS-Hadala 400kV D/C Iine (2nd Ckt) (Vadinar)EPGL TPS-Amreli 400kV WIP			0	
7. Aurangabad(PG)- Aurangabad (MSETCL) Table No : WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (Private Sector) (U-1 Commissioned) 1. EPGL TPS – Bachau 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV Commissioned (U-1 Commissioned) 3. (Vadinar)EPGL TPS-Amreli 400kV WIP			commissioned	
Table No : WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (U-1 (U-1 commissioned) (U-1 commissioned) (MSETCL) Mangrol-Mobha 220kV D/C line (2nd commissioned) Table no: WR-GJ-05/Ch6 WIP WIP (WIP (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV D/C Commissioned D/C line 3. (Vadinar)EPGL TPS-Amreli 400kV WIP			Commissioned	
Table No: WR-GJ-04/Ch6 Surat Lignite Ext (250MW) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (2x600MW) (Private Sector) (2x600MW) (Private Sector) (2x600MW) (U-1 (Vadinar)EPGL TPS-Hadala 400kV MIP) (U-1 (Commissioned) (Vadinar)EPGL TPS-Amreli 400kV MIP)				
(250MW) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (U-1 commissioned) 1. EPGL TPS – Bachau 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV Commissioned (U-1 commissioned) 3. (Vadinar)EPGL TPS-Amreli 400kV WIP				
(250MW) (State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (U-1 commissioned) 1. EPGL TPS – Bachau 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV Commissioned (U-1 commissioned) 3. (Vadinar)EPGL TPS-Amreli 400kV WIP				
(State Sector) (commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (U-1 commissioned) 1. EPGL TPS – Bachau 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV Commissioned D/C line 3. (Vadinar)EPGL TPS-Amreli 400kV WIP			commissioned	
(commissioned) Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (U-1 (Vadinar)EPGL TPS-Amreli 400kV D/C Commissioned) (Vadinar)EPGL TPS-Amreli 400kV WIP		ckt)		
Table no: WR-GJ-05/Ch6 Essar Power Saliya (2x600MW) (Private Sector) (U-1 (U-1 commissioned) Table no: WR-GJ-05/Ch6 WIP WIP WIP (WIP (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV Commissioned D/C line 3. (Vadinar)EPGL TPS-Amreli 400kV WIP				
Essar Power Saliya (2x600MW) (Private Sector) (U-1 commissioned) 1. EPGL TPS – Bachau 400kV D/C (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV Commissioned D/C line 3. (Vadinar)EPGL TPS-Amreli 400kV WIP	(commissioned)			
Saliya (2x600MW) (Private Sector) (U-1 commissioned) (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV Commissioned D/C line 3. (Vadinar)EPGL TPS-Amreli 400kV WIP		Table no: WR-GJ-05/Ch6		
Saliya (2x600MW) (Private Sector) (U-1 commissioned) (Triple) along with 1x125MVAR bus reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV Commissioned D/C line 3. (Vadinar)EPGL TPS-Amreli 400kV WIP	Fssar Power	1 FPGL TPS – Bachau 400kV D/C	WIP	
(Private Sector) reactor at generation switchyard 2. (Vadinar)EPGL TPS-Hadala 400kV Commissioned D/C line commissioned) 3. (Vadinar)EPGL TPS-Amreli 400kV WIP			4411	
(U-1 Commissioned) 2. (Vadinar)EPGL TPS-Hadala 400kV Commissioned D/C line 3. (Vadinar)EPGL TPS-Amreli 400kV WIP				
(U-1 D/C line 3. (Vadinar)EPGL TPS-Amreli 400kV WIP	(a.c ccc)		Commissioned	
commissioned) 3. (Vadinar)EPGL TPS-Amreli 400kV WIP	(U-1	,		
	`		WIP	
D/G line	·	D/C line		

Generation projects located in Maharashtra:

Generation	Description	Status
Project		
	Table no: WR-MH-01/C	ch6
Bhusaval TPP (MSPGCL) 2x500	1. New Bhusaval - Aurangabad 400kV D/C	Commissioned
MW	2. Bhusaval - II - Aurangabad 400kV D/C	Commissioned
(commissioned)	3. Bhusaval - II - existing Khadka 400kV D/C	Commissioned 4/10
	4. Bhusaval - II - Amalner 220kV D/C	Commissioned
	5. 400/220 kV new Bhusaval S/S -	Commissioned
	existing 400 kV Khadka D/C on M/C	
	6. Bhusaval – II 400/220 kV S/S	Commissioned
	Table no: WR-MH-02/C	ch6
Khaperkheda TPS (MSPGCL)	Khaperkheda TPS - Koradi 400kV S/C	Work in progress
(1x500MW)	2. LILO of Koradi- Chandrapura at Khaperkheda TPS 400kV D/C	Commissioned 11/09
(commissioned)	3. Khaperkheda TPS - Khaperkheda (Existing) 220kV 2xD/C	commissioned
	4. Khaperkheda S/S (2x500 MVA)	commissioned

Table no: WR-MH-03/Ch6		
JSW Energy (Ratanagiri Ltd) ,	1. Jaigad - New Koyna 400kV D/C	ckt 1 commissioned 7/10 & ckt 2 commissioned 8/10.
4x300 MW (commissioned)	2. Jaigad - Karad 400kV D/C	commissioned
Table no: WR-MH-04/Ch6		
Mihan TPP (Abhijeet Energy) (4x50MW) (commissioned)	LILO of 220kV Wardha-1 to Ambazari S/C line	commissioned

Generation projects located in Madhya Pradesh:

Generation	Description	Status
Project		
	Table no: WR-MP-01/C	ch6
Maheshwar HEP	1. Maheshwar - Nimrani 220kV D/C	Commissioned 5/10
(10x40 MW)	2. Maheshwar - Pithampur 220kV D/C	WIP. Final forest clearence obtained.
(slipped to 12th	3. Maheshwar - Rajgarh 220kV D/C	Work deferred
Plan)		

Generation projects located in Chhatisgarh:

Generation	Description	Status	
Project			
	Table no: WR-CG-01/C	ch6	
Sipat-I	1. Sipat-Seoni Line-1	commissioned	
(3x660MW)	1. Sipat-Seoni Line-2	commissioned	
(Central sector) (U-1 &2	2. Seoni-Khandwa 400 kV D/C (Quad AAAC)	commissioned	
commissioned)	2. LILO of one ckt of Korba STPS- Raipur at Sipat 400 kV D/C	commissioned	
	3. LILO of Bhilai-Satpura S/C line at Seoni 400 kV D/C	commissioned	
	4. Nagda-Dehgam 400 kV D/C	commissioned	
	5. LILO of both ckt of S.Sarovar- Nagda D/C at Rajgarh 400 kV 2XD/C	commissioned	
	6. Seoni S/S 765/400 kV (7x500 single phase units)	commissioned	
	7. Seoni 400/220 kV 2x315 MVA S/S	commissioned	
	8. Rajgarh 400/220 kV 2x315 MVA S/S	commissioned	
	Table no: WR-CG-02/Ch6		
S V Power TPP (commissioned)	LILO of 220kV Kobra – Mopaka line at S V Power	Commissioned	
	Table no: WR-CG-03/Ch6		
Kasaipalli TPP (2x135MW)	3. Kasaipalli- Sipat(Bharai) Pooling Station 400kV D/c	Stringing completed	
(U -1 commissioned)	4. LILO of Kobra –Bhatapara at Kasaipalli	Commissioned (interim arrangement)	

System Strengthening Schemes in SR:

Scheme	Description	Status		
	Table no: SR-IS-01/Ch6			
SRSSS -IX	Mysore – Hassan 400kV D/C line	Commissioned 6/11.		
Table no: SR-IS-02/Ch6				
SRSSS -X	LILO of both ckt of 400kV Neelmangla – Somanahalli at Bidadi	Stringing commenced		
Table no: SR-IS-03/Ch6				
SRSSS -XI	LILO of both ckt of 400kV Udumalpet - Madakathara at Chulliar	commissioned		

Generation projects located in Andhra Pradesh:

Generation Project	Description	Status	
Table no: SR-AP-01/Ch6			
Simhadri TPS St- II (NTPC) (2x500 MW) (commissioned)	LILO of 400 kV D/C Gazuwaka - Vemagiri at Simhadri St II TPS D/C	commissioned 7/11.	
	Table no: SR-AP-02/Ch6	6	
Nagarjuna Sagar TR HEP(2x25 MW) (slipped to 12th Plan)	Rentachintala 220/132kV S/S LILO of VTS -Tallapally 132kV D/C line- Rentachintala	Commissioned 11/08 Commissioned 11/08	
,	Rentachintala -Macherla S/S132kV	WIP	
	Rentachintala -Nagarjuna Sagar Plant 132kV	WIP	
	Table no: SR-AP-03/Ch6		
Priyadarshani-Jurala HEP(6x39 MW) (commissioned)	Jurala HEP-Veltoor 220kV D/C	Commissioned	
Table no: SR-AP-04/Ch6			
Kakatiya(Bhoopalapally) TPP-St-I & II(1x500 + 1x600MW) (State Sector) (U-1 commissioned)	Bhoopalapally -Warangal 400kV D/C Bhoopalapally -Gajwel 400kV D/C	Commissioned 2/10 Work in progress	
Table no: SR-AP-05/Ch6			
Kothagudam TPS ST-VI (500 MW) (commissioned)	Kothagundam TPS - Khammam 400kV D/C	Commissioned 3/11	

Generation projects located in Karnataka:

Generation	Description	Status
Project		
	Table no: SR-KA-01/0	Ch6
Udupi TPS (UPCL), (2x600MW) (commissioned)	1. UTPS- Hassan(Shantigrama) 400kV D/C	WIP.ROW& Court case. Forest(172.53hec.) & railway clearance (6loc.) required, Stage I clearance recd. CA charges deposited.
	UTPS-Nandikur - Khemar 220kV (partly on Multi-ckt Multi-Voltage towers & partly on D/C towers)	Commissioned 10/09. (For start up power)

	T 11 OD 1/4 00/0	N 0		
	Table no: SR-KA-02/Ch6			
Torangallu Jindal	1. Torangallu JSW -Gooty 400kV D/C			
U-1,2(2x300MW)	line			
(Private Sector)	2. LILO of RTPS- Guttur at Thorangallu	Commissioned		
(commissioned)	JSW S/S			
	Table no: SR-KA-03/C	ch6		
Bellary TPP	LILO of RTPS-Guttur at BTPS	Commissioned		
(2x500MW)	400kV D/C			
(commissioned)	2. BTPS-Hirriyur 400kV D/C	Commissioned		
	3. LILO Lingapur-Alipur at BTPS			
Table no: SR-KA-04/Ch6				
Kaiga APP U-3,4	1. Mysore – Kozikode 400kV D/C	RoW problem		
(2x250MW)	2. Narendra – Davengiri 400kV D/C	Commissioned		
(commissioned)	line			
	3. Hiriyur 400/220kV S/S	Commissioned		
	4. Kozikode Ext. 400/220kV S/S	Completion matching with line		

Generation projects located in Tamil Nadu:

Generation	Description	Status
Project	•	
,	Table no: SR-TN-01/0	Ch6
Vallur TPS JV (NTPC - TNEB JV) (2x500 MW)	Vallur JV Project-NCTPS St.II 400kV D/C	Permission from salt commissioner for routing the line and railway crossing clearence required.
(U-1 commissioned, U-	LILO of Alamathy - Sriperumbadur at North Chennai TPS Sw. Yd.	Commissioned 7/11.
2 slipped to 12th Plan)	Supplementary trans.system associate	ed with Vallur TPS
	Vallur TPS- Melakottaiyur 400kV D/C	Engg. in progress.
	2. Tiruvalam(PG) - Chitoor 400kV D/C	Engg. In progress
	Table no: SR-TN-02/0	Ch6
Neyveli TPS II	1. Neyveli TS -II - Pugalur 400kV S/C	Commissioned 8/09
Extn.	2. Pugalur-Madurai 400kV D/C	Commissioned 3/09
(NLC) (2x 250	3. Udumalpet-Arasur 400kV D/C	Commissioned 7/10
MW)	4. LILO of Neyveli-Sriperumbudur 400kV S/C at Pondicherry D/C	Commissioned 10/10
(U-1 commissioned, U-	5. LILO of Ramagundam-Khammam 400kV S/C at Warrangal D/C	Commissioned 7/09
2 slipped to 12th Plan)	6. Neyveli TS-II Extn-Neyveli TS-II 400kV 2xS/C	Commissioned 9/09
	7. Pugalur 400/230 kV S/S	Commissioned 3/09
	8. Warangal S/S 400/230 kV	ICT-I & II Commissioned 7/09
	9. Arasur S/S 400/230 kV	Commissioned 7/10
	10. Puducherry S/S 400/230 kV	Commissioned 10/10
	Table no: SR-TN-03/0	∑h6
Kudankulam Atomic PP(2x1000	Kudankulam-Tirunelveli 400kV D/C Quad 1st	Stringing completed. Commissioning delayed due to delay in Gen. Project
MW) (slipped to 12th	Kudankulam-Tirunelveli 400kV D/C Quad 2nd	commissioning
Plan)	3. Tirunelveli-Udumalpet 400kV D/C	
	4. Tirunelveli-Edamon 400kV M/C	
	5. Edamon-Muvattupuzha 400kV D/C Quad	Completion uncertain due to severe ROW problem

	Muvattupuzha-North	Trichur 400kV Sever ROW p	problem being faced.
	D/C Quad		
	LILO of Madurai-Tri		ed
	D/C at Tirunelveli 2		
	8. Tirunelveli 400/220l		ssioned 4/08, ICT- II
		commissione	d 11/08
	Udumalpet (PG) Ex	. Commissione	d
	10. Muvattupuzha 400/2	20kV S/S ICT I Ready f	or commissioning.& II
	(2x315)	erected.	
		*Completion r	natching with line.
	11. Trivandrum 400/220	kV (1x315) Commissione	d
	Table	no: SR-TN-04/Ch6	
North Chennai Ext.	 NCTPS St.II- Alama 	thy 400kV M/C ROW at 10 lo	c .Court case
TPS.	2. Alamathy - Sunguva	rchatram ROW at 25 lo	c. Court case.
(TNEB) ,2x600	400kV M/C		
MW	3. LILO of 230kV NCT	PS- Mosur at Commissione	d 11/10
	NCTPS Stage II (for	startup power)	
(slipped to 12th		,	
Plan)			
	Table	no: SR-TN-05/Ch6	
Mettur TPS Stage	 MTPS St.III - Arasu 	400kV D/C WIP	
III (600 MW) U-1	2. MTPS St.III - Singai	oet 400kV Tender to be	floated.
(slipped to 12th	LILO of 230kV MTP	S -Malco at MTPS Stage	III - Malco S/C line energised
Plan)	MTPS Stage III	2/11 for start	up power
	4. 230kV MTPS Stage	III - commissione	
	Pallakkapalayam lin		
	5. 230kV MTPS Stage	III -Gobi line commissione	d

System Strengthening Schemes in ER:

Scheme	Description	Status		
	Table no: ER-IS-01/Ch6			
Eastern Region	i) Durgapur-Jamshedpur 400kV D/C line	completed		
Strengthening	ii) Durgapur-Jamshedpur Part line for	Commissioned 1/11		
Scheme-I	LILO at Andal(for start up power to			
	Durgapur STPS400kV D/C line			
	iii) Jamshedpur - Baripada 400kV D/C	line completed		
	line			
	(iv)Baripada - Mendhasal 400kV D/C	commissioned		
	line			
Table no: ER-IS-02/Ch6				
Eastern Region	Durgapur - Maithon 400kV D/C line	Line completed		
Strengthening				
Scheme-II				
	Table no: ER-IS-03/C	h6		
Transmission	1. Koderma-Biharshariff (Quad) 400kV	commissioned		
System for Start	D/C			
up Power to DVC	2. Maithon RB - Maithon (PG) 400kV	Line test charged on 30.9.10		
and Maithon Right	D/C			
Bank Gen. Project	3. LILO of 220KV D/C Fatehpur	Line completed		
	(UPPCL) - Kanpur (UPPCL) line at			
	Fatehpur			
	4. LILO of 220KV D/C Dehri -	commissioned		
	Bodhgaya line at Gaya			

Generation projects located in West Bengal:

Generation	Description	Status		
Project				
	Table no: ER-WB-01/Ch6			
Tarabala Dan	Translat D.W. No. Halanda	Familiation and the BOW		
Teesta Low Dam IV (NHPC) WB	Teesta LD IV – New Jalpaiguri (package-I) 220kV D/C+ S/C (72.5+21	Forest clearance obtained. Severe ROW problem at 18 locations in plains & at many		
(4x 40 MW)	(package-i) 220kV b/C+ 3/C (72.5+21 km)	locations in hills.		
(slipped to 12th	Kiii)	locations in times.		
Plan)				
,	Table no: ER-WB-02/0	ch6		
Teesta Low Dam	Teesta LD III-New Jalpaiguri (package	Forest clearance obtained.Severe ROW		
III	II) 220kV S/C	problem is being faced at 18 locations in		
(4x 33 MW)		plains.		
(slipped to 12th				
Plan)	Table no: ER-WB-03/0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Mejia TPS Ph-II	1. Mejia TPS- Maithon(PG) 400kV D/C	commissioned		
(DVC)	LILO of Maithon - Jhamshedpur at	(i)Commissioned 2/10		
2x500 MW	Mejia400kV D/C	(ii)Evacuation facility available for U I		
(commissioned)		,		
Table no: ER-WB-04/Ch6				
Durgapur TPS	1. Durgapur-Jamshedpur 400kV D/C	ECL is not allowing construction on the		
(DVC) 2x500 MW		diverted route, diverted to allow setting up of Andal Airport. Matter taken up with		
(commissioned)		Ministry of Coal at MOP level.		
(commissioned)	2. LILO of Durgapur(PG) - Jamsedpur	Commissioned 1/11.		
	(PG) at Durgapur TPS 400kV D/C			
	3. Durgapur TPS - Raghunathpur	ROW problem at 10 locations. Pile		
	400kV D/C	foundations for 2 towers at Damodar river.		
	Table no: ER-WB-05/0			
Santaldih TPP	Santaldih - Bishnupur 220kV D/C	Forest clearance problem for 16.618		
(WBPDCL) U 5,6 -	LILO of Contoldib Durgonur (LOkt) of	Hectares. Commissioned		
(2x250 MW) (U-5	LILO of Santaldih-Durgapur (I Ckt) at Asansol 220kV D/C	Commissioned		
commissioned)	LILO of STPS-Arambagh 220kV D/C at	Commissioned		
	Bishnupur	Commissioned		
	Table no: ER-WB-06/0	ch6		
Sagardighi- U-I & II (600 MW)	Sagardighi-Parulia(PG) 400kV S/c on D/C line	commissioned		
(State Sector)				
(commissioned)				

Generation projects located in Jharkhand :

	Description	Status
	Table no: ER-JR-01/C	
Koderma TPS (DVC) 2x500 MW	Koderma - Biharsarriff 400kV quad D/C	Commissioned 5/11.
(U-1 commissioned, U-	2. Koderma -Gaya 400kV D/C	* Contigency arrangement being made to connect Maithon -Gaya with Koderma- Gaya, by-passing multi-ckt portion, to from Maithon-Koderma line

3 slipped to 12th Plan)	 3. LILO of 132kV Barhi - Koderma at Koderma S/S D/C (i)Both Ckt commissioned on 24 Aug. 2010. (ii) Startup power now available 					
	Table no: ER-JR-02/Ch6					
Maithon RBTPS (JV of DVC& Tata)	1. Maithon RBTPS - Maithon (PG) Line test charged on 30.9.10 400kV D/C					
(2x 525 MW) (commissioned)	2. Maithon RBTPS - Ranchi (PG) commissioned 400kV D/C					

Generation projects located in Bihar :

	Table no: ER-BR-01						
Barh-I U1,2,3	6. LILO of Kahalgaon-Patna 400 kV	commissioned					
(1980 MW)	D/c(Quad) at Barh						
(Central Sector)	7. Barh-Balia 400kV D/c line (quad)	commissioned					
(slipped to 12th	8. Balia-Bhiwadi 2500 MW +500 kV	One pole commissioned					
Plan)	HVDC bipole line						
	9. Seoni-Bina 765kV S/c line	commissioned					
	10. Two nos.66kV Earth Electrode lines						
	(2 conductor of Twin Moose)						
	11. Ext. of Balia , Seoni, Bhiwadi and	commissioned					
	Bina 400 kV S/s						
	12. Balia and Bhiwadi HVDC Converter	WIP					
	Station						

Generation projects located in Meghalaya:

Generation Project	Description	Status
	Table no: NER-MG-01/	Ch6
Leshka Myntdu - I HEP (MeSEB) (2x42 +1x42 MW) (U-1, 2 commissioned, additional unit slipped to 12th Plan)	Leshka Myntu-Khliehriat 132kV D/C	Charged at 33 kV

Inter-Regional Transmission Schemes:

Table no: IR-SS-01/Ch6					
Generation	Generation Description Status				
Project					
East-West	1 Ranchi-Rourkela 400kV D/C	Commissioned 11/10			
Trans. Corridor	2 Rourkela – Raigarh 400kV D/C	Test Charged 6/11 & commissioned			
Strengthening		6/11.			
	3 Raigarh - Raipur 400kV D/C	Commissioned 9/10			

CHAPTER - 7

XII PLAN TRANSMISSION PROGRAMME

7.1 EVOLVING TRANSMISSION SYSTEM FOR THE XII PLAN

- 7.1.1 Identification of transmission expansion requirement for a Plan period is done based on power system studies corresponding to the generation expansion programme and forecasted demand scenario expected at the end of that Plan. Transmission alternatives are identified after the detailed studies based on which the specific schemes are evolved, and re-evolved taking into account the changes in the generation programme from time to time and subsequently discussed and firmed up. The implementation programme is subsequently worked out keeping in view identification of projects, schemes and transmission elements that should be implemented matching with programme of generation capacity addition and load growth on yearly basis during the Plan. Timely development of transmission network requires firming-up of the specific transmission schemes corresponding to specific generation projects, which particularly in respect of inter-state transmission system, need to be done 3 to 5 years ahead of the target date of completion.
- **7.1.2** Meeting this requirement, most of the 12th Plan schemes have already been identified, discussed in the Regional Standing Committees on Power System Planning, finalized, scheme formulated and process of implementation initiated. Of the identified schemes, many are under construction, particularly those which are required to be completed in first half of the 12th Plan.

7.2 INTER-REGIONAL TRANSMISSION CAPACITY PROGRAMME

- 7.2.1 Inter-regional transmission capacity of National Grid gives an indication of strength of bond between regional grids. Inter-regional transmission capacity of all-India grid at the end of 10th Plan was 14050 MW. During 11th Plan 13900 MW capacity has been added taking the total inter-regional transmission capacity (at voltage level 132kV and above) to 27750 MW as on 31-03-2012. (This includes (i) 2100 MW Gaya- Balia 765kV S/C line which has been commissioned with contingency arrangement at 400kV and (ii) 2100 MW Sasaram–Fatehpur 765kV S/c line which has been commissioned at 765kV level as Gaya –Fetehpur line. It excludes 200MW of Bursur-Lower Sileru HVDC Monopole which is not in operation.)
- 7.2.2 During 12th Plan period a number of inter regional transmission links either associated with generation projects or as system strengthening schemes have been planned. These links would be implemented depending upon progress of associated generating stations. Considering the 84 GW generation addition scenario for 12th Plan, the inter-regional transmission links of about 44000 MW may be added during 12th Plan/ early 13th Plan period. Thus inter-regional transmission capacity at the end of 12th Plan/early 13th Plan is expected to be of the order of 72000 MW. Details are given in the following Table.

Name of System (all figures are in MW)	At the end of 11 th Plan	Plan for 12 th Plan/ early 13 th Plan	at end of 12 th Plan/early 13 th Plan
ER – SR :			
Gazuwaka HVDC back to back	1000		1000
Balimela-Upper Sileru 220kV S/C	130		130
Talcher-Kolar HVDC Bipole	2000		2000
Upgradation of Talcher-Kolar HVDC bipole	500		500

ER-SR total		3630		3630
ER –NR :				
Muzaffarpur - Gorakhpur 400kV D/C (Quad Moose) with TCSC		2000		2000
Dehri-Sahupuri 220kV S/C		130		130
Patna-Balia 400kV D/C quad		1600		1600
Biharshariff-Balia 400kV D/C quad		1600		1600
Barh-Balia 400kV D/C quad	#	1600		1600
Gaya-Balia 765kV S/C (LILOed at Varanasi in 12 th Plan)	*	2100		2100
Sasaram-Allahabad/Varanasi 400kV D/C line (Sasaram HVDC back to back has been bypassed)		1000		1000
Gaya-Varanasi 765kV S/C			2100	2100
Sasaram-Fatehpur 765kV S/C - line#1	##	2100		2100
Barh-Gorakhpur 400kV D/C quad			1600	1600
Sasaram-Fatehpur 765kV S/C - line#2			2100	2100
ER-NR total		12130	5800	17930
ER - WR:				
Rourkela-Raipur 400kV D/C		1000		1000
TCSC on Rourkela-Raipur 400kV D/C		400		400
Budhipara-Korba220kV D/C+S/C		390		390
Ranchi-Sipat 400kV D/C (40% SC)		1200		1200
Ranchi-Rourkela-Raigarh-Raipur 400kV D/C with fixed series capacitor, TCSC in parallel line		1400		1400
Ranchi – WR(Bilaspur)Sipat Pooling Point 765kV S/C via Dharamjaigarh during 12th plan			2100	2100
Ranchi- Dharamjaigarh 765kV S/C			2100	2100
Jharsuguda -Dharamjaigarh-765kV D/C			4200	4200
ER-WR total		4390	8400	12790
ER - NER :				
Birpara -Salakati 220kV D/C		260		260
Malda-Bongaigaon 400kV D/C		1000		1000
Bongaigaon-Siliguri 400kV D/C Quad to be LILOed at Alipurduar in 12th/13th plan			1600	1600
ER-NER total		1260	1600	2860
NR - WR :				
Vindhyachal HVDC back to back		500		500
Auria-Malanpur 220kV D/C		260		260
Kota-Ujjain 220kV D/C		260		260
Agra-Gwalior 765kV S/C line-1 at 765 kV(earlier at 400kV)		1100	1000	2100
Agra-Gwalior 765kV S/C line-2 at 765kV(earlier at 400kV)		1100	1000	2100
Kankroli-Zerda 400kV D/C		1000		1000
Gwalior-Jaipur 765kV S/C#1			2100	2100
Gwalior-Jaipur 765kV S/C#2			2100	2100

		1000	1000
		3000	3000
	4220	10200	14420
	1000		1000
@			
	260		260
	260		260
		2200	2200
		2100	2100
		2100	2100
	1520	6400	7920
		3000	3000
		3000	3000
	0	6000	6000
\$	27150 600	38400 (-600)	65550
	27750	37800	65550
		1000 @ 260 260 1520 0 27150 \$ 600	3000 4220 10200 1000 1000 260 260 2100 2100 210

Note:

- @ 200 MW HVDC Monopole is currently not in operation.
- \$ 132/110kV lines are operated in radial mode from time to time.

(not to be included for 12th plan period)

- # Barh-Balia line has been completed but is yet to be commissioned.
- *- Gaya- Balia 765kV S/C line has been commissioned with contingency arrangement at 400kV.
- ## Sasaram-Fatehpur line has been commissioned at 765kV level as Gaya -Fatehpur line.

A summary of growth of I-R transmission capacity, between various regions, is given below:

(all figures are in MW)

I-R Transmission Capacity between Regions	Existing at end of 10 th Plan	At the end of 11 th Plan	Addition during 12 th Plan/ early 13 th Plan	Expected at end of 12th Plan/ early 13 th Plan
ER-SR	3130	3630	-	3630
ER-NR	3430	12130	5800	17930
ER-WR	1790	4390	8400	12790
ER-NER	1260	1260	1600	2860
NR-WR	2120	4220	10200	14420
WR-SR	1720	1520	6400	7920
NER/ER-NR/WR	0	0	6000	6000
132/110kV radial links	600	600	(-600)	0
TOTAL ALL INDIA	14050	27750	37800	65550

7.2.4 Transmission capacity of inter-regional links and transfer capability between two regions

The summation of the transmission capacities of inter-Regional links is a figurative representation of the bonds between the regions. These aggregate numbers do not indicate actual power transfer capability across different regions/States. The power transfer capability between any two points in a grid depends upon a number of variable factors, such as - load flow pattern, voltage stability, angular stability, loop flows and line loading of weakest link in the grid. For instance, present aggregate inter-regional transmission capacity of Northern Region is 16350 MW (12130 MW with ER and 4220 MW with WR), whereas, simultaneous transfer import capability of NR may work out to about 6000 - 7000 MW depending upon operational conditions. The system operator has to assess the transfer capability between two points of the grid from time to time and restrict the power flow accordingly.

7.3 DEVELOPMENT OF TRANSMISSION SYSTEM DURING 12TH PLAN - IMPLEMENTATION THROUGH COMPETITIVE BIDDING

It may be noted that transmission schemes for the projects identified for 12th Plan have been mostly planned, firmed up in the Standing Committees for Power System Planning and the transmission agreements (BPTA) have been signed with the CTU as the nodal agency for Long Term Transmission Access to ISTS prior to the cut-off date of 5th January 2011. As such most of the ISTS schemes would be implemented by POWERGRID as central sector schemes. In addition Dedicated Transmission Lines from the inter-State Generating Stations would mostly be built by the generation developers as private sector lines. Some schemes, under the direction of the Empowered Committee for developing ISTS through competitive bidding have been identified and are in the various stages of implementation. These would materialize during 12th Plan period. Further, barring a few exceptions, new transmission schemes required for system strengthening, drawl of power by the states and for power evacuation to be identified in future would be implemented through competitive bidding process as far as possible. POWERGRID would also participate in the competitive bidding. Similarly in the State sector also it is likely that majority of the schemes during 12th Plan period would be implemented by the STUs.

7.4 TRANSMISSION SCHEMES PLANNED FOR XII PLAN PERIOD AND BEYOND

7.4.1 Coordinated planning process

CEA, in coordination with Central Transmission Utility, State Transmission Utilities and Regional Power Committees have planned transmission systems required for –(i) evacuation of power from various generation projects which are in the horizon, and (ii) transmission systems required for strengthening of regional and inter-regional transmission networks, that are required for 12th Plan or early 13th Plan periods. Details of all such planned transmission schemes for evacuation of power and strengthening of grids are given in the following sections. Most of these schemes have been firmed up; however, these also include some schemes which are yet to be firmed up depending upon progress of associated generation project. These schemes mainly cover the 400kV and above transmission system.

7.4.2 Long Term Access (LTA) Process

As part of the coordinated planning process, transmission addition requirements for grant of LTA in ISTS are also planned. The LTA to inter-State transmission system is governed by the regulations of the Central Regulatory Commission. The Central Transmission Utility (CTU) is the nodal agency for providing Long Term Access (LTA) which typically involves transmission addition through transmission planning process. Based on application by a generator for Long Term Access, the transmission system is planned for evacuation of power from generating stations. As grant of Long Term Access generally involves strengthening of ISTS which is identified through transmission planning, some basic inputs required are - (i) generation plant capacity, (ii) its location, (iii) time frame of materialization and (iv) beneficiaries to whom the power shall be delivered. However, in the present circumstances, none of these inputs is available with certainty. Under such a situation, it is prudent that transmission planners follow some innovative strategies to ensure fulfilment of broad objectives ensuring that - (i) transmission development takes place to cater to the transmission requirement, (ii) bottling up of the power is avoided, (iii) mismatch of generation and transmission system is avoided, (iv) congestion if observed in some part of grid should be removed at the earliest etc. In view of this, it becomes a challenge to evolve optimal transmission system and once the plan is in place it is equally challenging to plan its implementation so as to avoid mismatch between development of generation project and transmission system.

7.4.3 Transmission Congestion

Generally there is no congestion for transfer of power under LTA where beneficiaries have also been specified at the time of application for LTA. However, for short-term/medium term transfers of power, congestion can occur. The distribution utilities, as self-dispatched entities, do seasonal trading to meet their seasonal demand or sell their seasonal surplus, balancing the demand with supply and meeting contingency requirement. In India, the pattern of short term trading is erratic and depends on many extraneous factors particularly availability of funds with deficit DISCOMS etc. Sometimes a State may suddenly decide to reduce load shedding and resort to heavy short term purchase through trading. In such a situation, the drawal has to be restricted to the margins available in the existing transmission capacity. It is not possible to plan transmission system for catering to such a situation/eventuality. The congestions are generally there in all developed electricity markets in the world.

7.4.4 Flexible planning

A few of these transmission schemes, particularly those required for generation projects coming up towards the last years of the 12th Plan and having common transmission system, could be altered depending upon progress of generation capacity linking to a common pooling point.

7.4.5 Schemes for Intra-State generating stations

Transmission systems for some of the 12th Plan generation capacities under the State sector (or private sector but giving benefit to only home State) have also been tentatively considered for integrated system planning process, however, these transmission schemes are required to be planned and firmed up by the respective State Transmission Utilities. These are relatively small capacity generating stations for which evacuation is at 220kV or below voltage level.

7.4.6 THE SYSTEM STRENGTHENING SCHEMES OF STUS

The system strengthening schemes of stus for development of state transmission network and for delivery of power from ists grid points up to discom level, which mainly is at 220kV and below voltage level, are required to be planned by respective stu. It is expected that each stu would complete this exercise well in advance for benefit during XII Plan and also inform cea in time so that such transmission additions are simulated for future transmission planning studies. Information about some of the states is already known and has been included in the following sections.

7.4.7 DETAILS OF TRANSMISSION SCHEMES

Following sections give region/state-wise list of transmission schemes planned or under planning process that would benefit during 12th / early 13th plan. Details of transmission elements covered under each scheme are given in annex–7.1 to annex-7.7.

Northern Region –Transmission Scheme details	Annex – 7.1
Western Region –Transmission Scheme details	Annex – 7.2
Southern Region –Transmission Scheme details	Annex – 7.3
Eastern Region –Transmission Scheme details	Annex – 7.4
Northern-Eastern –Transmission Scheme details	Annex – 7.5
Transmission Scheme details –Renewable Energy Sources in India Transmission Scheme details –for power projects in Bhutan, Bangladesh and Nepal	Annex – 7.6 Annex –7.7

7.5 NORTHERN REGION – TRANSMISSION SCHEMES

7.5.1 System Strengthening Schemes planned in Northern Region

SI. No.	System Strengthening Scheme	Transmission System in Table no.
1.	765kV system for Central Part of Northern Grid-Part-I	NR-IS-01
2.	765kV system for Central Part of Northern Grid-Part-II	NR-IS-02
3.	765kV system for Central Part of Northern Grid-Part-III	NR-IS-03
4.	NR System Strengthening Scheme-XIX	NR-IS-04
5.	NR System Strengthening Scheme-XX	NR-IS-05
6.	NR System Strengthening Scheme-XXI	NR-IS-06
7.	NR System Strengthening Scheme-XXII	NR-IS-07
8.	NR System Strengthening Scheme-XXIII	NR-IS-08
9.	NR System Strengthening Scheme-XXIV	NR-IS-09
10.	NR System Strengthening Scheme-XXV	NR-IS-10
11.	NR System Strengthening Scheme-XXVI	NR-IS-11
12.	NR System Strengthening Scheme-XXVII	NR-IS-12
13.	NR System Strengthening Scheme-XXVIII	NR-IS-13
14.	NR Bus Reactor Schemes	NR-IS-14
15.	System Strengthening in NR (after delinking the scheme with North Karanpura Project)	NR-IS-15
16.	Inter-connection between Srinagar (Uttrakhand) and Tehri	NR-IS-16

7.5.2 Evacuation Schemes of Generation Projects in Northern Region

Generation projects located in Jammu & Kashmir:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Kishen Ganga	330	Central	NR-JK-01
2	Baghalihar II	450	State	NR-JK-02
3	Uri-II HEP	240	Central	NR-JK-01/ Ch6
4	Chutak HEP	44	Central	NR-JK-02/ Ch6
5	Nimoo Bazgo	45	Central	NR-JK-03/Ch6

Generation projects located in Himachal Pradesh:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Parbati-II	800	Central	NR-HP-01
2	Rampur	412	Central	NR-HP-02
3	Koldam	800	Central	NR-HP-03
4	Tidong-I	100	Private	NR-HP-04
5	Sorang	100	Private	NR-HP-05
6	UHL III	100	State	NR-HP-06
7	Kashang I , II, III	195	State	NR-HP-07
8	Sawara Kuddu	110	State	NR-HP-08
9	Kutehr	260	Private	NR-HP-09
10	Bajoli Holi HEP	180	Private	NR-HP-10
11	Kunihar(Andhra+Nogli+ Micro)	196	State	NR-HP-11

12	Sainj	100	State	NR-HP-12
13	Chamera –III HEP	231	Central	NR-HP-01/ Ch6
14	Parbati –III HEP	520	Central	NR-HP-02/ Ch6
15	Budhil HEP	70	IPP	NR-HP-04/Ch6

Generation projects located in Punjab:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Nabha - Rajpura TPS	1400	Private	NR-PB-01
2	Talwandi Sabo	1980	Private	NR-PB-02
3	Govindwal Saheb	540	Private	NR-PB-03

Generation projects located in Haryana:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Jhajjar-I (Indira Gandhi) TPS (U-3)	500	Central	NR-HR-01/Ch6
2	Jhajjar (Mahatma Gandhi) TPS U-2	660	Private	NR-HR-02/Ch6

Generation projects located in Delhi:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Pragati CCGT Ph-III (PPCL) (GT4, ST1,ST2)	750	State	NR-DL-01/Ch6

Generation projects located in Rajasthan:

SI.	Project	I/C, MW	Sector	Transmission System in Table no.
No.				
1	RAPP D (U-7,8)	1400	Central	NR-RJ-01
2	Ramgarh-II	160	State	NR-RJ-02
3	Chhabra TPS St-2	500	State	NR-RJ-03
4	Kalisindh	1200	State	NR-RJ-03
5	Barsingsar Ext	250	Central	NR-RJ-04
6	Shree Cement Itd	300	IPP	NR-RJ-05
7	Jallipa Kapurdi TPP (Unit 5 – 8)	540	IPP	NR-RJ-01/Ch6

Generation projects located in Uttarakhand:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Tapovan Vishnugarh	520	Central	NR-UK-01
2	Singoli Bhatwari	99	IPP	NR-UK-02
3	Phata Byong	76	IPP	NR-UK-03
4	Dhauli Ganga + Rupsiyabagar Khasiyabara	260	Central	NR-UK-04

5	Kotlibhel St-1A & B, Kotlibhel St-II	1045	Central	NR-UK-05
6	Tehri-II	1000	Central	NR-UK-06
7	Lata Tapovan	171	Central	NR-UK-07
8	Pala Maneri	480	State	NR-UK-08
9	Sravanthi Energy Private Itd.	450	IPP	NR-UK-09
10	Srinagar	330	Private	NR-UK-10

Generation projects located in Uttar Pradesh:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	RihandIII(U-5&6)	1000	Central	NR-UP-01
2	Singrauli St-III	500	Central	NR-UP-02
3	Meja	1320	Central	NR-UP-03
4	Bara	1980	Private	NR-UP-03
5	Karchana	1320	Private	NR-UP-03
6	Latilpur TPS	1980	State	NR-UP-04
7	Anpara D	1000	State	NR-UP-05
8	Parichha Ext (U -5, 6)	500	State	NR-UP-03/Ch6
9	Harduaganj TPS Ext U-9	250	State	NR-UP-02/Ch6

7.6 WESTERN REGION – TRANSMISSION SCHEMES

7.6.1 System Strengthening Schemes planned in Western Region:

SI. No.	System Strengthening Scheme	Transmission System in Table no.
1	Establishment of 400/220kV S/s in UT DNH	WR-IS-01
2	Establishment of 400/220kV S/s in UT Daman	WR-IS-02
3	Split Bus arrangement and reconfiguration/shifting of terminating lines at Raipur 400kV S/s	WR-IS-03

7.6.2 Evacuation Schemes of Generation Projects in Western Region

Generation projects located in Gujarat:

SI. No.	Project	I/C,MW	Sector	Transmission System in Table no.
1.	KAPP Extn U- 3,4,(1400MW)(Central sector)	1400	Central	WR-GJ-01
2.	UMPP Mundra (U-1 commissioned in 11 th Plan)	4000	IPP	WR-GJ-02 WR-GJ-03 WR-GJ-09
3.	Pipavav TPS - Videocon	1200	IPP	WR-GJ-04
4.	Dhuvaran EXT.	360	State	WR-GJ-05
5.	Bhavnagar	500	State	WR-GJ-06
6.	Sikka Rep.Ext.	500	State	WR-GJ-07
7.	Pipavav CCPP	702	State	WR-GJ-08
8.	Ukai Ext	500	State	WR-GJ-10
9.	Wanakbori TPS	500	State	WR-GJ-11
10.	Shapoorji Pallonji Energy Ltd.	1320	IPP	WR-GJ-12

11.	DGEN TPS -Torrent Power	1200	IPP	WR-GJ-13
	Ltd.			
12.	NTPC Limited (Gandhar-II)	1300	Central	WR-GJ-14
13.	NTPC Limited (Kawas-II)	1300	Central	WR-GJ-15
14.	Gujarat Fluorochemicals Ltd.(GFL)	300	IPP	WR-GJ-16
15.	Sintex Power Ltd.	1708	IPP	WR-GJ-17
16.	Essar -Saliya Power U-2	600	IPP	WR-GJ-05/Ch6

Generation projects located in Madhya Pradesh:

SI. No.	Project	I/C,MW	Sector	Transmission System in Table no.
1.	Vindhyachal IV (U-11,12)	1000	Central	WR-MP-01
2.	UMPP Sasan	3960	IPP	WR-MP-02 WR-GJ-09
3.	Bina Power	500	IPP	WR-MP-03 WR-CG-17
4.	Mahan - Essar Power	1200	IPP	WR-MP-04
5.	Aryan MP Power Generation Company Ltd.	1200	IPP	WR-MP-05 WR-CG-17
6.	DB Power (MP) ltd. U-1,2	1320	IPP	WR-MP-05
7.	Chitrangi Power	5940	IPP	WR-MP-05
8.	Nigri TPP - Jaiprakash Power	1320	IPP	WR-MP-06 WR-CG-17
9.	Moserbear Power (Phase 1)	1200	IPP	WR-MP-07 WR-CG-23
10.	Today energy (MP)	1320	IPP	WR-MP-07 WR-CG-23
11.	Jhabua Power	1200	IPP	WR-MP-07 WR-CG-23
12.	SJK Powergen Ltd	1320	IPP	WR-MP-07
13.	Malwa (shree Singhji) TPP	1200	State	WR-MP-08
14.	Satpura EXT (U-10,11)	500	State	WR-MP-09
15.	Essar Power MP Ltd. (Mahan Phase II)	600	IPP	WR-MP-11
16.	Maheshwar HEP	400	IPP	WR-MP-01/Ch6

Generation projects located in Maharashtra:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1.	Mauda St-I (U- 1& 2)	1000	Central	WR-MH-01
2.	Mauda St-II	1320	Central	WR-MH-02
3.	Tiroda -Adani Ph I,U 1,2,3	1320	IPP	WR-MH-03
4.	Tiroda -Adani Ph-II, U1,2	1320	IPP	WR-MH-03
5.	India Bull -Nasik	1350	IPP	WR-MH-04
6.	India Bull- Nandangaonpet-	1350	IPP	WR-MH-05

	Amravati			
7.	Bela TPP- Ideal Power	540	IPP	WR-MH-06
8.	Dhariwal Infrastructure	600	IPP	WR-MH-07
9.	EMCO_Warora (Maharshtra)	600	IPP	WR-MH-08
10.	Parli + Replacement	250	State	WR-MH-09
11.	Koradi - II	1980	State	WR-MH-10
12.	ChandrapurTPS-II (U -8,9) (U-8 commissioned in 11 th Plan)	1000	State	WR-MH-11
13.	Dhopave	1600	State	WR-MH-12
14.	Uran Ext	1040	IPP	WR-MH-13
15.	GEPL TPP U-1&2	120	IPP	WR-MH-14
16.	NPCIL ,Jaitapur	3480	Central	WR-MH-15
17.	Jinbhuvish Power Gen Pvt Ltd(600	600	IPP	WR-MH-16
18.	Hindustan Electricty Gen Company Ltd (HEGCL)	1137	IPP	WR-MH-17

Generation projects located in Chattisgarh:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1.	Sipat -I	1980	Central	WR-CG-01
2.	RKM Powergen Pvt ltd (Uchpanda TPP) (U 1-4)	1440	IPP	WR-CG-02 WR-CG-08 to WR-CG-16
3.	SKS Power ltd U 1-4 (DharmapuraTPP)	1200	IPP	WR-CG-02 WR-CG-08 to WR-CG-16
4.	D B Power	1200	IPP	WR-CG-02 WR-CG-08 to WR-CG-16
5.	Athena Chhattisgarh Power Ltd.	1200	IPP	WR-CG-02 WR-CG-08 to WR-CG-16
6.	Avantha Bhandar TPP	600	IPP	WR-CG-02 WR-CG-08 to WR-CG-16
7.	Cosmos Sponge & Power Ltd. (CSPL)	350	IPP	WR-CG-02
8.	Visa Steel Ltd.	450	IPP	WR-CG-02
9.	GMR Chhattigarh	1370	IPP	WR-CG-03 WR-CG-08 to WR-CG-16
10.	KSK (Akltara) Mahanadi power	2400	IPP	WR-CG-04 WR-CG-08 to WR-CG-16
11.	Ltd.(KPCL)	1600	IPP	WR-CG-04 WR-CG-08 to WR-CG-16
12.	Lanco Amarkantak U-3 & 4	1320	IPP	WR-CG-04 WR-CG-08 to WR-CG-16

10	M B Power (Chattisgarh) Ltd	1320	IPP	WR-CG-04
13.	W B Power (Challisgam) Liu	1320	IFF	Wh-GG-04
14.	Aryan Coal Banification Ltd	1200	IPP	WR-CG-05
	,			WR-CG-08 to
				WR-CG-16
15.	Dheeru Powergen and PTC	1050	IPP	WR-CG-05
	India			WR-CG-17
40	O. and an D. and	400	IDD	WD 00 05
16.	Spectrum Power	100	IPP	WR-CG-05 WR-CG-17
				Wh-Cd-17
17.	Maruti Clean Coal & Power	300	IPP	WR-CG-05
	Ltd.			WR-CG-17
18.	Raigarh Ph III U1-4 (Jindal	2400	IPP	WR-CG-06
	Power)			WR-CG-08 to
40	TDN F (0.000 MMA)	000	IDD	WR-CG-16
19.	TRN Energy (2x300 MW)	600	IPP	WR-CG-06 WR-CG-08 to
				WR-CG-06 to WR-CG-16
20	Sarda Energy &	350	IPP	WR-CG-06
	minerals(SEML)			WR-CG-08 to
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			WR-CG-16
21.	Jayaswal New Urja Ltd(JNUL)	600	IPP	WR-CG-06
				WR-CG-08 to
				WR-CG-16
22.	BALCO	600	IPP	WR-CG-07
				WR-CG-08 to
22	Vandana Vidyut	540	IPP	WR-CG-16 WR-CG-07
23.	vanuana viuyut	340	155	WR-CG-07
				WR-CG-16
24.	Swastik TPP U-1	25	IPP	WR-CG-19
25.	Ratija TPP	50	IPP	WR-CG-20
	MARWA CSEB	1000	State	WR-CG-21
27.	Korba (W) St-III (U -5)	500	State	WR-CG-22
28.	Kasaipalli TPP U-2	135	IPP	WR-CG-03/Ch06

7.7 SOUTHERN REGION – TRANSMISSION SCHEMES

7.7.1 System Strengthening Schemes planned in Southern Region:

SI. No.	System Strengthening Scheme	Transmission System in Table no.
1	System Strengthening Schemes in SR-XII	SR-IS-01
2	System Strengthening Schemes in SR-XIII	SR-IS-02
3	System Strengthening Schemes in SR-XIV	SR-IS-03
4	System Strengthening Schemes in SR-XV	SR-IS-04
5	System Strengthening Schemes in SR-XVI	SR-IS-05
6	System Strengthening Schemes in SR-XVII	SR-IS-06
7	System Strengthening Schemes in SR-XVIII	SR-IS-07
8	System Strengthening Schemes in SR-XIX	SR-IS-08
9	HVDC Bipole Strengthening in Southern Region	SR-IS-09
10	System Strengthening in SR for import of power from ER	SR-IS-10

7.7.2 Evacuation Schemes of Generation Projects in Southern Region Generation projects located in Andhra Pradesh:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1.	Simhapuri Coastal-KPTNM (U-1 commissioned in 11 th Plan)	600	IPP	SR-AP-01 SR-AP-02
2.	Meenakshi Energy ST-I + II	1000	IPP	SR-AP-01 SR-AP-02
3.	Thermal Powertech Corp	1980	IPP	SR-AP-01 SR-AP-02
4.	Krishnapatnam Navyuga	1320	IPP	SR-AP-01 SR-AP-02
5.	Kineta Power	1980	IPP	SR-AP-01 SR-AP-02
6.	NCC Power	1320	IPP	SR-AP-01 SR-AP-02
7.	VSF Projects Ltd	350	IPP	SR-AP-01
8.	Ultra Mega Krishnapatnam (scheme delinked/ diverted from generation project, parts being implemented as system strengthening)	3960	IPP	SR-AP-03 SR-AP-04
9.	East Coast- Bhavanapadu TPP	1320	IPP	SR-AP-05 SR-AP-06
10.	GMR Rajmundry	768	IPP	SR-AP-07 SR-AP-08
11.	Spectrum-Vemagiri-Gas	1400	IPP	SR-AP-07 SR-AP-08
12.	Reliance-Vemagiri-Gas	2400	IPP	SR-AP-07 SR-AP-08
13.	GVK-Gautmi-Vemagiri-Gas	800	IPP	SR-AP-07 SR-AP-08
14.	GVK-Jegrupadu-Vemagiri- Gas	800	IPP	SR-AP-07 SR-AP-08
15.	RVK Energy	360	IPP	SR-AP-07
16.	Hinduja Vizag	1040	IPP	SR-AP-09
17.	Lanco Kondapally St-III	740	IPP	SR-AP-10
18.	Rayalseema St -III (U-6)	600	State	SR-AP-11
19.	Pulichintala HEP	120	State	SR-AP-12
20.	Lower Jurala (U1-6) HEP	240	State	SR-AP-13
21.	Sri Damodaram Sanjeevaiah TPP (Krishnapatnam TPP)	1600	State	SR-AP-14
22.	Nagarjuna Sagar TR HEP	50	State	SR-AP-02/Ch6
23.	Kakatiya TPP II	600	State	SR-AP-04/Ch6

Generation projects located in Karnataka:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1.	Torangallu Jindal U-3	300	IPP	SR-KA-01
2.	Gundia HEP	400	State	SR-KA-02
3.	Yermarus TPP	1600	State	SR-KA-03

4.	Edlapur	800	State	SR-KA-03
5.	Kudgi TPS Phase-I	2400	Central	SR-KA-04
6.	Surena Power Ltd.	420	IPP	SR-KA-05

Generation projects located in Kerala:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1.	Thottiar	40	State	SR-KE-01
2.	Pallivasal	60	State	SR-KE-02

Generation projects located in Tamilnadu:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1.	Tuticorin JV-NLC	1000	Central	SR-TN-01
2.	Coastal Energen-Tuticorin	1200	IPP	SR-TN-02 SR-TN-03
3.	Ind Barath-Tuticorin	1320	IPP	SR-TN-02 SR-TN-03
4.	Chettinad Power corporation Private Ltd	1200	IPP	SR-TN-02
5.	NSL-Nagapatnam	1320	IPP	SR-TN-04 SR-TN-05
6.	PPN Power Generating Company	1080	IPP	SR-TN-04 SR-TN-05
7.	Chettinad Power Corporation Ltd.	1320	IPP	SR-TN-04 SR-TN-05
8.	PEL Power Ltd(1050 MW)	1050	IPP	SR-TN-04 SR-TN-05
9.	IL & FS Tamil Nadu Power Company Ltd	1200	IPP	SR-TN-04 SR-TN-05
10.	RegenPowertech Pvt ltd.	600	IPP	SR-TN-06
11.	Udanguddi JV	1600	State	SR-TN-07
12.	Kalpakkam PFBR	500	Central	SR-TN-08
13.	Vallur(Ennore)JV U-2,3	1000	Central	SR-TN-01/ Ch6
14.	Neyveli TPS II U-2	250	Central	SR-TN-02/Ch6
15.	Kudankulam Atomic St-I	2000	Central	SR-TN-03/Ch6
16.	North Chennai Ext U-1,2	1200	Central	SR-TN-04/Ch6
17.	Bhawani Barrage II &III	60	State	SR-TN-05/Ch6
18.	Mettur TPS St-III (U-1)	600	State	SR-TN-06/ Ch6

7.8 EASTERN REGION – TRANSMISSION SCHEMES

7.8.1 System Strengthening Schemes planned in Eastern Region:

SI. No.	System Strengthening Scheme	Transmission System in Table no.
1	Eastern Region Strengthening Scheme-III	ER-IS-01
2	Eastern Region Strengthening Scheme-IV	ER-IS-02
3	Eastern Region Strengthening Scheme-V	ER-IS-03
4	Eastern Region System Strengthening Scheme –VII (for West Bangal)	ER-IS-04
5	Eastern Region System Strengthening Scheme -V I (for Bihar)	ER-IS-05

7.8.2 Evacuation Schemes of Generation Projects in Eastern Region Generation projects located in Bihar:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Barh II U 1,2	1320	Central	ER-BR-01
				ER-JH-06
2	Nabi Nagar JV	1000	Central	ER-BR-02
	(Rly+NTPC)			ER-JH-06
3	New Nabi Nagar JV (Bihar+NTPC)	1980	Central	ER-BR-03
4	Muzzafarpur ext JV	390	Central	ER-BR-04
5	Barh-I (U-1,2,3)	1980	Central	ER-BR-01/Ch6

Generation projects located in Jharkhand:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1.	Bokaro Expansion	500	Central	ER-JH-01 ER-JH-01/ Ch6
2.	Koderma TPP U-2	500	Central	ER-JH-01/ Ch6
3.	Adhunik Power – Jh.	540	IPP	ER-JH-02 ER-JH-03 ER-JH-04
4.	Corporate (Phase-I) (Mata Shri Usha TPP)	540	IPP	ER-JH-02 ER-JH-03 ER-JH-04
5.	Corporate (Phase-II)	540	IPP	ER-JH-02 ER-JH-03 ER-JH-04
6.	Essar Power /Tori TPS	1200	IPP	ER-JH-02 ER-JH-03 ER-JH-04
7.	Tilaiya UMPP	4000	IPP	ER-JH-05 ER-JH-06

Generation projects located in Orissa:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Sterlite TPP U -4 (U-1, 2, 3 commissioned in 11 th Plan)	600	IPP	ER-OR-01, ER-OR-02 ER-OR-03, ER-OR-04 ER-OR-05
2	Malibrahmani TPP/Monet Power	1050	IPP	ER-OR-01, ER-OR-02 ER-OR-03, ER-OR-04 ER-OR-05
3	Kamlanga TPP – GMR	1050	IPP	ER-OR-01, ER-OR-02 ER-OR-03, ER-OR-04 ER-OR-05
4	Malaxmi – Nav Bharat	1050	IPP	ER-OR-01, ER-OR-02 ER-OR-03, ER-OR-04 ER-OR-05
5	Ind Barath – Orissa	700	IPP	ER-OR-01, ER-OR-02

				ER-OR-03, ER-OR-04 ER-OR-05
6	Jindal India Thermal	1200	IPP	ER-OR-01, ER-OR-02 ER-OR-03, ER-OR-04 ER-OR-05
7	Lanco Babandh	2640	IPP	ER-OR-01, ER-OR-02 ER-OR-03, ER-OR-04 ER-OR-05
8	Derang TPP- JITPL	1200	IPP	ER-OR-01, ER-OR-02 ER-OR-03, ER-OR-04 ER-OR-05

Generation projects located in Sikkim:

SI.	Project	I/C, MW	Sector	Transmission
No.				System in Table no.
1	Teesta – III HEP	1200	IPP	ER-SM-01, ER-SM-02
				ER-SM-03
2	Teesta-VI	500	IPP	ER-SM-01, ER-SM-02
				ER-SM-03
3	Rangit-IV	120	IPP	ER-SM-01, ER-SM-02
				ER-SM-03
4	Bhasmey	51	IPP	ER-SM-01, ER-SM-02
				ER-SM-03
5	Jorethang Loop	96	IPP	ER-SM-01, ER-SM-02
				ER-SM-03
6	Rongnichu	96	IPP	ER-SM-01, ER-SM-02
				ER-SM-03
7	Chujachen HEP (Gati)	99	IPP	ER-SM-01, ER-SM-02
				ER-SM-03
8	Panan	300	IPP	ER-SM-04, ER-SM-05
				ER-SM-06
9	Ting Ting	99	IPP	ER-SM-04, ER-SM-05
				ER-SM-06
10	Tashiding	97	IPP	ER-SM-04, ER-SM-05
	_			ER-SM-06
11	Dikchu	96	State	ER-SM-04, ER-SM-05
				ER-SM-06

Generation projects located in West Bengal:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Raghunathpur Ph-1 (U-1 & 2)	1200	Central	ER-WB-01 ER-WB-02
2	Common Transmission System for import of power from DVC by NR		Central	ER-WB-02
3	Transmission system for Pooling Station in ER and transfer of power to NR/WR from projects in Bhutan		Central	ER-WB-03
4	CESC Haldia	600	Private	ER-WB-04
5	Durgapur DPL New(U-8)	250	State	ER-WB-05
6	Teesta Low Dam IV	160	Central	ER-WB-01/Ch6
7	Teesta Low Dam III	132	Central	ER-WB-02/Ch6

_			
Г			

7.8.3 Eastern Region – State Grid Strengthening Schemes of STUs:

SI. No.	System Strengthening Scheme	Transmission System in Table no.
1	System Strengthening Scheme in West Bengal	ER-SS-WB

7.9 NORTH-EASTERN REGION – TRANSMISSION SCHEMES

7.9.1 System Strengthening Schemes planned in North-Eastern Region:

SI. No.	System Strengthening Scheme	Transmission System in Table no.
1	Strengthening of Transmission in NER Phase-I & II	NER-IS-01

7.9.2 Evacuation Schemes of Generation Projects in North-Eastern Region

Generation projects located in Arunachal Pradesh:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Pare Dikrong HEP	110	Central	NER-ArP-01
2	Kameng	600	Central	NER-ArP-02 NER-ArP-04
3	Lower Subansiri	2000	Central	NER-ArP-03 NER-ArP-04
4	Khuitam	33	IPP	NER-ArP-05
5	Demwe Lower	341	IPP	NER-ArP-06
6	KSK Dibbin Hydro Power Ltd	120	IPP	NER-ArP-07 NER-ArP-08
7	Adishankar Khitam power	66	IPP	NER-ArP-07 NER-ArP-08
8	Patel Hydro pvt Ltd (Ghoongri and Saskngrong)	273	IPP	NER-ArP-07 NER-ArP-08
9	SEW Nafra power Corporation Ltd	120	IPP	NER-ArP-07 NER-ArP-08

Generation projects located in Assam:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Bongaigaon TPP	250	Central	NER-AS-01,
				NER-AS-02
2	Namrup+Ext	100	State	NER-AS-03

Generation projects located in Meghalaya:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	New Umtru	40	State	NER-MG-01
2	Leshka Myntdu HEP (add. Unit)	42	State	NER-MG-01/Ch6

Generation projects located in Mizoram:

	SI.	Project	I/C, MW	Sector	Transmission
--	-----	---------	---------	--------	--------------

No.				System in Table no.
1	Tuirial HEP	60	Central	NER-MZ-01

Generation projects located in Tripura:

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Pallatana	726	Central	NER-TR-01 NER-AS-02
2	Monarchak Gas project	105	Central	NER-TR-02

7.9.3 North-Eastern Region – State Grid Strengthening Schemes of STUs:

SI. No.	System Strengthening Scheme	Transmission System in Table no.
1	System Strengthening Scheme in Arunachal Pradesh	NER-SS-ArP
2	System Strengthening Scheme in Assam	NER-SS-AS
3	System Strengthening Scheme in Manipur	NER-SS-MR
4	System Strengthening Scheme in Mizoram	NER-SS-MZ
5	System Strengthening Scheme in Tripura	NER-SS-TR
6	System Strengthening Scheme in Meghalaya	NER-SS-MG
7	System Strengthening Scheme in Nagaland	NER-SS-NG

7.10 TRANSMISSION SCHEME FOR RENEWABLE ENERGY SOURCES IN INDIA

SI.	Scheme	IC, MW	Transmission System in Table
No.			no.
1	Solar & New Wind Power Projects in Rajsthan (2650 MW)	2650	RES- RJ-01
2	Transmission system for Solar projects in Charanka Solar Park (950.5 MW)	950.5	RES- GJ-01
3	Transmission system for wind projects in Gujarat	4500	RES- GJ-02
4	System Strengthening for wind projects in Gujarat (4500 MW)	-	RES-GJ-03
5	Wind projects in Tamil Nadu (Phase-I)	6300	RES-TN-01
6	Wind projects in Tamil Nadu (Phase-II)	5800	RES-TN-02
7	Wind projects in Andhra Pradesh	3150	RES-AP-01
8	Wind projects in Karnataka	600	RES-KR-01

7.11 EVACUATION SCHEMES FOR GENERATION PROJECTS IN BHUTAN, BANGLADESH AND NEPAL (FOR IMPORT OF POWER IN INDIA)

SI. No.	Project	I/C, MW	Sector	Transmission System in Table no.
1	Phunatsangchu St-I	1200	-	BH-01
2	Phunatsangchu St-II	990	-	BH-02
3	Mangdhechu	720	-	BH-03

765 kV

4	Indian Grid Strengthening for	-	_	Bh-04
٦.				2 0.1
	import of Bhutan Surplus			

SI. No.	Scheme	Transmission System in Table no.
1	Cross border interconnection between India and Bangladesh Grid for facilitating exchange of power up to 500 MW	BG-01

SI. No.	Scheme	Transmission System in Table no.
1	Cross border interconnection between India and Nepal Grid for facilitating exchange of power between the two countries	NP-01

7.12 <u>765KV TRANSMISSION SYSTEMS</u> PLANNED FOR 12TH PLAN/ EARLY 13TH PLAN

400 kV 39%

765 kV

7.12.1 The 765kV system would play increasing role in development of National Grid and its ability to efficiently deliver bulk power from clusters of generation projects that are envisaged in coastal and pit-head areas. During 11th Plan, a number of 765kV lines and substations have been added and a few more are under-construction. The trend of increasing 765kV system in the grid is going to continue in the 12th Plan as well. A number of new 765kV lines and substations have been planned for evacuation bulk power in the range of 3000 – 6000 MW to longer distances. Their actual realization would depend upon progress of associated generation projects. Growth of 765kV system in India, since end of X Plan, is depicted below:

765 kV

Transmission Lines (ckm):

400 kV

7.12.2 The 765kV transmission systems that have been planned and are expected to be implemented during 12th Plan or early 13th Plan period are given in the following <u>region-wise Tables</u>. Some of these 765 kV substations would initially be operated at 400 kV. Their 765 kV operation would depend upon progress of associated generation projects.

7.12.3 Northern Region - 765kV Transmission system:

765kV Transmission lines in Northern Region (values in ckm)	Туре	At the end of 10 th Plan	At the end of 11 th Plan	Planned for 12 th / early 13 th Plan	Expected at end of 12 th / early 13 th Plan
Anpara-Unnao	S/C	409	409		409
Shifting of Unnao-Anpara'B' to Anpara'C'	S/C		2		2
Kishenpur-Moga L-1(W)	S/C	275	275		275
Kishenpur-Moga L-2(E)	S/C	287	287		287
Tehri-Meerut Line-1	S/C	186	186		186
Tehri-Meerut Line-2	S/C	184	184		184
LILO of Tehri-Meerut Line-1 at Tehri Pooling Point	2xS/C		8		8
LILO of Tehri-Meerut Line-2 at Tehri Pooling Point	2xS/C		13		13
Fatehpur-Agra	S/C			334	334
Balia-Lucknow	S/C		320		320
Balia-Lucknow (2 nd Ckt)	S/C			250	250
Lucknow-Bareilly	S/C			250	250
Lucknow-Bareilly (2 nd Ckt)	S/C			270	270
Bareilly-Meerut	2xS/C			400	400
Agra-Meerut	S/C			260	260
Agra-Jhatikra	S/C			240	240
Jhatikra-Bhiwani	S/C			80	80
Bhiwani-Moga	S/C			273	273
Meerut-Bhiwani	S/C			260	260
Meerut-Moga	S/C			260	260
Jaipur – Bhiwani 765kV	S/C			250	250
Jaipur – Bhiwani 765kV (2 nd ckt)	S/C			260	260
Anta PP – Phagi (Jaipur South- RVPNL)	2XS/C			450	450
Varanasi – Kanpur	D/C			331	331
Kanpur – Jhatikra	S/C			480	480
Orai – Bulandshahar – Sonipat	S/C			525	525
Bara-Mainpuri	2XS/C			700	700
Mainpuri – G. Noida	S/C			270	270

Unnao - Mainpuri	S/C	175	175
Mainpuri – Hapur	S/C	250	250
LILO of Agra - Meerut at G. NOIDA	S/C	20	20
Hapur – G.Noida	S/C	50	50
Fatehpur-Agra (with Sasan)	S/C	340	340

765 kV Substations in Northern Region	At the end of 10 th Plan	At the end of 11 th Plan	Planned for 12 th / early 13 th	Expected at end of 12 th / early 13 th Plan
(values in MVA)			Plan	
Unnao		1000	1000	2000
Agra			3000	3000
Meerut			3000	3000
Meerut (Augmentation)			1500	1500
Lucknow		3000		3000
Fatehpur		3000		3000
Balia		3000		3000
Bareilly			3000	3000
Tehri			4500	4500
Kishenpur			3000	3000
Moga (Aug.)			3000	3000
Bara (Switchyard)			3000	3000
Bhiwani			2000	2000
Jhatikalan			6000	6000
Varanasi			3000	3000
Kanpur			3000	3000
Orai			3000	3000
Jaipur			3000	3000
Phagi (Jaipur South-RVPNL)			3000	3000
Anta (Barn) PPJaipur			3000	3000
Bulandshahr			3000	3000
Hapur			3000	3000
Sonepat			3000	3000
Mainpuri			2000	2000
G Noida			3000	3000

7.12.4 <u>Western Region</u> - 765kV Transmission system:

765kV Transmission lines in Western Region (values in ckm)	Туре	At the end of 10 th Plan	At the end of 11 th Plan	Planned for 12 th / early 13 th Plan	Expected at end of 12 th / early 13 th Plan
Gwalior-Agra Line-1	S/C	128	128		128
Gwalior-Agra Line-2	S/C		128		128
Gwalior-Bina Line-1	S/C	235	235		235
Gwalior-Bina Line-2	S/C		233		233
Gwalior-Bina Line-3	S/C			230	230
Gwalior- Jaipur 2xS/C	2xS/C			600	600

Rihand-III - Vindhyachal	D/C		64	64
Jabalapur - Orai	S/C		350	350
LILO of Satna – Wardha at Orai	2xS/C		60	60
Sipat-Seoni Line-1	S/C	351	00	351
Sipat-Seoni Line-2	S/C	351		354
Seoni-Bina	S/C	293		293
Seoni-Wardha Line-1	S/C	293		269
Seoni-Wardha Line-1	S/C	269		269
	2xS/C	201	499	499
Vindhyachal Pool-Satna Satna-Gwalior				
	2xS/C		723	723
Vindhyachal Pool-Sasan	S/C		6	6
Sasan-Satna-Line-I	S/C		257	257
Sasan-Satna—Line-II	S/C		260	260
Satna-Bina –Line-I	S/C	274		274
Satna-Bina-Line-II	S/C		276	276
Bina-Indore	S/C		303	303
Wardha – Jabalpur Pooling station	D/C		700	700
Raigarh(Kotra)- Champa	S/C		105	105
Raigarh (Kotra)- Raigarh (Tamnar)	D/C		50	50
Raipur-Wardha	2XD/C		1520	1520
Wardha-Aurangabad	2XD/C		1420	1420
Aurangabad-Padghe	D/C		279	279
Raigarh PS.(Kotra)-Raipur PS	D/C		250	250
Champa PS – Raipur PS	D/C		150	150
Champa PS – Dharamjaigarh	S/C		50	50
Indore – Vadodara 765kV S/C	S/C		293	293
Dharamjaigarh / near Korba – Jabalapur Pool	2xD/C		1500	1500
Jabalpur Pooling Station – Bina	D/C		473	473
Jabalapur Pooling station – Bhopal	S/C		260	260
Bhopal – Indore	S/C		173	173
Sholapur – Pune	S/C		269	269
Aurangabad- Dhule (IPTC)	S/C		188	188
Dhule (IPTC) – Vadodara (PG)	S/C		260	260
Tiroda (Gondia) – Koradi III	2xS/C		120	120
Koradi III – Akola-II	2xS/C		270	270
Akola-II – Aurangabad (PG)	2xS/C		240	240
Aurangabad-II-Auragabad	D/C		60	60
Sholapur-Pune	D/C		265	265
LILO of both ckts of Sipat- Seioni at WR at WR Pooling Point (Bilaspur)	S/C	16		16

765kV Substations in Western Region	At the end of 10 th Plan	At the end of 11 th Plan	Planned for 12 th / early 13 th Plan	Expected at end of 12 th / early 13 th Plan
(values in MVA)				
Seoni		4500		4500
Sipat		1500		1500
Gwalior			3000	3000
Bina			2000	2000
Wardha		4500		4500
Satna			2000	2000
Indore			3000	3000
Vindhyachal Pooling Stn			3000	3000
Jabalapur Pool			3000	3000
Sholapur			3000	3000
Pune			3000	3000
Aurangabad (PG)			3000	3000
Aurangabad - II			3000	3000
Padghe (PG)			3000	3000
Vadodara			3000	3000
WR Pooling Station- Bilaspur(near Sipat)		3000	1500	4500
Raipur Pooling Station			1500	1500
Raigarh (Kotra) Pooling St.			6000	6000
Raigarh(Tamnar) Pooling St			4500	4500
Dharamjaigarh			4500	4500
Champa Pooling St			9000	9000
Dhule (IPTC)			3000	3000
Bhopal Pooling Station			3000	3000
Tiroda			3000	3000
Koradi			3000	3000
Akola			1500	1500

7.12.5 <u>Southern Region</u> – 765kV Transmission system:

765kV Transmission lines in Southern Region (values in ckm)	Туре	At the end of 10 th Plan	At the end of 11 th Plan	Planned for 12 th / early 13 th Plan	Expected at end of 12 th / early 13 th Plan
Tiruvalam – Kurnool	S/C			342	342
Nellore Pooling Station – Kurnool	D/C			600	600
Kurnool – Raichur	S/C			116	116
Kurnool-Raichur (2 nd ckt)	S/C			126	126
Vemagiri Pooling Station – Khammam	2XD/C			1000	1000
Khammam – Hyderabad	2XD/C			1000	1000
Tuticorin Pooling station–Salem Pooling station	D/C			738	738
Salem – Madhugiri	S/C			221	221

Nagapattinam Pooling Station –	D/C	534	534
Salem			
Salem – Madhugiri 765 kV S/C	S/C	230	230
line – 2 (line-1 planned with			
Tuticorin LTOA projects)			
Madhugiri-Narendra	D/C	700	700
Khammam- Hyderabad	2xD/C	1000	1000
Hyderabad- Wardha	D/C	800	800
Navandra - Kallaanin	D/C	F00	500
Narendra - Kolhapur	D/C	500	500
Srikakulam PP- Vemagiri-II	D/C	700	700
- Tanadan I Vonagni n	2,0	. 00	. 30
Srikakulam PP- Angul	D/C	750	750

765kV Substations in Southern Region (values in MVA)	At the end of 10 th Plan	At the end of 11 th Plan	Planned for 12 th / early 13 th Plan	Expected at end of 12 th / early 13 th Plan
,				
Raichur			3000	3000
Nellore			3000	3000
Kurnool			3000	3000
Tuticorin pooling point			3000	3000
Tiruvalam			3000	3000
Salem			3000	3000
Madhugiri			3000	3000
Nagapattinam Pooling Station			3000	3000
Srikakulam			3000	3000
Vemagiri(New Pooling Station)			6000	6000
Khammam(New Pooling Station			3000	3000
Hyderabad(New Pooling Station			3000	3000

7.12.6 <u>Eastern Region</u> - 765kV Transmission system:

765kV Transmission lines in Eastern Region (values in ckm)	Туре	At the end of 10 th Plan	At the end of 11 th Plan	Planned for 12 th / early 13 th Plan	Expected at end of 12 th / early 13 th Plan
Gaya-Sasaram	S/C		148		148
Angul PS – Jharsuguda PS	2xS/C			424	424
Angul PS – Jharsuguda PS	D/C			430	430
Tilaiya - Gaya	S/C			67	67
Gaya- Balia	S/C		228		228
Tilaiya-Balia (on ckt to be LILOed at Gaya) D/c line	D/C			300	300
Ranchi – Bilaspur (WR P.S.)	2xS/C			796	796
LILO of Ranchi – Bilaspur (WR P.S.) at Dharamjaigarh	D/C			80	80
Ranchi – Dharamjaigarh	D/C			360	360

Dharamjaigarh – Jharsuguda	D/C		152	152

765kV Substations in Eastern Region (values in MVA)	At the end of 10 th Plan	At the end of 11 th Plan	Planned for 12 th / early 13 th Plan	Expected at end of 12 th / early 13 th Plan
Sasaram			3000	3000
Ranchi			3000	3000
Gaya		3000	1500	4500
Gaya (Augmentation)			1500	1500
Angul			6000	6000
Angul (augmentation)			1500	1500
Jharsuguda			3000	3000

7.13 HVDC TRANSMISSION SYSTEMS PLANNED FOR 12TH PLAN/ EARLY 13TH PLAN

7.13.1 During 11th Plan, one pole of Balia-Bhiwadi 2500 MW HVDC Bipole and upgradation of Talcher-Kolar Bipole by 500 MW has been completed. Another HVDC bipole as Dedicated Transmission line, i.e. Mundra-Mohindergarh 2500 MW is being constructed under private sector by Adani group. This line was completed in 11th Plan period. Three more HVDC systems have been planned for completion during 12th Plan or early 13th Plan. These are Biswanath Chariyali – Alipurduar - Agra (6000 MW), Champa-Kurukshetra Phase-I (3000 MW) and Raigarh-Dhule (4000 MW). Growth of HVDC system, both in terms of MW capacity of HVDC terminals as well as length of HVDC bipoles is depicted below:

Thus, at the end of 12th Plan/early 13th Plan, it is expected that there would be four HVDC back-to-back and nine HVDC Bipole systems in the National Grid.

7.13.2 Details of HVDC system in India and its plan are given in the following Tables:

HVDC Transmission Lines Existing and Planned (values in ckm)	Voltage level, kV	Agency	At the end of 10 th Plan	At end of 11 th Plan	Planned for 12 th / early 13 th Plan	Expected at end of 12 th / early 13 th Plan
HVDC Bipole Line:						
Chandrapur-Padghe	± 500kV	MSEB	1504	1504		1504
Rihand-Dadri	± 500kV	PGCIL	1634	1634		1634
Talcher-Kolar	± 500kV	PGCIL	2734	2734		2734
Balia-Bhiwadi	± 500kV	PGCIL		1580		1580
Biswanath Chariyali-Agra	± 800kV	PGCIL			3600	3600
Champa – Kurukshetra	± 800kV	PGCIL			3700	3700
Raigarh(Kotra)-Dhule	±600kV	PGCIL			2000	2000
LILO of Bishwanath– Agra at Alipurduar	± 800kV	PGCIL			140	140
Mundra - Mohindergarh	± 500kV	Adani		1980		1980
New Pugalur- New Hyderabad	± 500kV				1800	1800
TOTAL			5872	9432	11240	20672

HVDC Terminals Capacity (bipole / back- to-back) Existing and Planned	Туре	Agency	At the end of 10 th Plan	At end of 11 th Plan	Planned for 12 th / early 13 th Plan	Expected at end of 12 th / early 13 th Plan
(values in MW)						
Chandrapur-Padghe	bipole	MSEB	1500	1500		1500
Rihand-Dadri	bipole	PGCIL	1500	1500		1500
Talcher-Kolar	bipole	PGCIL	2000	2500		2500
Balia-Bhiwadi	bipole	PGCIL		1250	* 1250	2500
Biswanath-Agra	bipole	PGCIL			3000	3000
Champa- Kurukshetra	bipole	PGCIL			3000	3000
Raigarh(Kotra)-Dulhe	bipole	PGCIL			# 4000	4000
LILO of Bishwanath– Agra at Alipurduar	bipole	PGCIL			* 3000	3000
Mundra - Mohindergarh	bipole	Adani			2500	2500
New Pugalur- New Hyderabad	bipole				2500	2500
Sub-total (bipole)			5000	6750	19250	26000
Vindhyachal	b-to-b	PGCIL	500	500		500
Chandrapur	b-to-b	PGCIL	1000	1000		1000

Gazuwaka	b-to-b	PGCIL	1000	1000		1000
Sasaram	b-to-b	PGCIL	500	500		500
Sub-total (b-to-b)			3000	3000	0	3000
TOTAL – HVDC Terminal Capacity			8000	9750	19250	29000

^{# -} Likely to be implemented in 13th plan

7.14 USE OF HIGHER LEVELS OF VOLTAGE FOR TRANSMISSION IN NATIONAL GRID

7.14.1 Use of higher voltage levels results in reducing requirement of right-of-way(RoW) as MW per metre of RoW increases with increase in transmission voltage level. Use of higher voltage levels also results in reducing transmission losses as current in the transmission lines decreases with increase in voltage level. Higher voltage also helps in containing short-circuit levels at lower voltage substations. Indicative figures for various voltage levels are tabulated below:

Voltage	132 kV	220 kV	400 kV	765 kV	1200 kV
RoW, meters(m)	27	35	46	64	90
Capacity, (MW)	80	170	700	3000	8000
MW/m (approx.)	3	5	15	45	90

7.14.2 1200kV Transmission system

In order to increase the power density of the corridor, development of 1200kV AC system as next higher AC voltage level has been decided. As a planning initiative, considering need of higher capacity transmission corridor between Aurangabad and Wardha, the Aurangabad - Wardha 400 kV Quad D/C line which is part of the transmission system for evacuation of power from Mundra UMPP has been planned and designed in such a way that this line would be converted into a 1200kV S/C line at a later date.

As, the 1200kV AC technology is relatively a new one in the world, therefore, to develop this technology indigenously, POWERGRID along with Indian manufacturers is establishing a 1200kV UHVAC Test Station at Bina in the State of M.P.). In this test station, a 1200kV test line (S/c+D/c) is being constructed along with two 1200kV test bays in which the leading manufacturers are providing main equipment like transformers, surge arresters, circuit breakers, CTs, CVTs and transmission line hardware etc. POWERGRID shall provide space, civil foundation, 1200kV line, control & protection system, various testing equipment, auxiliaries & fire protection system, 1200kV bushing etc. These test bays and test line shall be used by the manufacturers and transmission utilities for various field tests so that the results and feedback can be used for developing field proven equipment of 1200kV system in India as well as gain initial operational experience.

7.15 TRANSMISSION SYSTEM FOR ULTRA MEGA POWER PROJECTS(UMPP)

7.15.1 Multi-Regional UMPPs

Beneficiaries of power from Ultra Mega Power Projects, each of about 4000 MW capacity, are various States spread over different regions in the country. UMPPs, essentially being multi-regional large capacity projects, their transmission system also spans in more than one region and has contributed to growth of National Grid. Till date transmission systems for four UMPPs have been

^{* -} Spill over from 11th plan

firmed up. These are - (1) Mundra UMPP in Gujarat, (2) Sasan UMPP in Madhya Pradesh, (3) Krishnapattnam UMPP in Andhra Pradesh and (4) Tilaiya UMPP in Jharkhand. Details of beneficiaries along with their allocations are as given under:

SI. No.	Beneficiary State	Sasan (MP)	Mundra (Guj.)	Krishnapatnam (AP)	Tilaiya (Jhar.)
1.	Delhi	450	1	-	150
2.	U. P.	500	-	-	650
3.	Uttaranchal	100	-	-	-
4.	Punjab	600	500	-	450
5.	Rajasthan	400	400	-	250
6.	Haryana	450	400	-	200
7.	M.P.	1500	-	-	200
8.	Chhattisgarh	-	-	-	-
9.	Gujarat	-	1900	-	300
10.	Maharashtra	-	800	800	300
11.	Karnataka	-	-	800	-
12.	Tamil Nadu	-	-	800	-
13.	Kerala	-	-	-	-
14.	Andhra Pradesh	-	-	1600	-
15.	Orissa	-	-	-	-
16.	Jharkhand	-	-	-	1000
17.	Bihar	-	-	-	500
	TOTAL	4000	4000	4000	4000

7.15.2 Transmission systems planned for above UMPPs and their status

<u>The Mundra UMPP</u>: The Mundra UMPP is likely to come in 2012-14. The transmission system is being commissioned in phased manner matching with commissioning of the generation Units. Detail of transmission system is given in the Tables (WR-GJ-02, WR-GJ-03, & WR-GJ-09).

<u>The Sasan UMPP</u>: The Sasan UMPP is likely to come in 2012-14. The transmission system is being commissioned in phased manner matching with commissioning of the generation Units. Detail of transmission system is given in the Tables (WR-MP-02, & WR-GJ-09).

The Tilaiya UMPP: The transmission system would be matched with commissioning of the generation Units. Detail of transmission system is given in the Tables (ER-JH-05, & ER-JH-06).

The Krishnapatnam UMPP: The work on Krishnapatnam UMPP has been suspended by the developer. Due to delay in the generation project, the transmission scheme has been delinked and re-configured. Some elements of the planned transmission system are being taken up ahead of the generation project. Detail of planned transmission system is given in the Tables (SR-AP-03, & SR-AP-04).

<u>Future projects – Cheyyur (Tamil Nadu) UMPP, Orissa UMPP and Chhatisgarh UMPP</u>: These projects are yet to take-off as bidding process has not been initiated. Tentative transmission systems have been identified for these projects, however, these are not included in this document.

7.16 EVOLUTION OF HIGH CAPACITY POWER TRANSMISSION CORRIDORS

Eleven number of High Capacity Power Transmission Corridors were planned taking into consideration long term optimization for cluster of generation projects mainly located in the States of Orissa, Chhattisgarh, Sikkim, Jharkhand, Madhya Pradesh, coastal Andhra Pradesh and Tamil Nadu. A list of these corridors is given below. These transmission corridors would be commissioned progressively matching with commissioning of IPP generation projects. Transmission system elements constituting these corridors are mentioned in respective associated generation projects under sections 7.5 - 7.8 in this chapter. Corridor wise transmission elements are given under perspective plan in next chapter.

- i. Transmission System Associated with Phase-I Generation Projects in Orissa
- ii. Transmission System Associated with IPP projects in Jharkhand
- iii. Transmission System Associated with IPP projects in Sikkim
- iv. Transmission System Associated with IPP projects in Bilaspur complex, Chhattisgarh & IPPs in Madhya Pradesh
- v. Transmission System Associated with IPP projects in Chhattisgarh
- vi. Transmission System Associated with IPP projects in Krishnapatnam Area, Andhra Pradesh
- vii. Transmission System Associated with IPP projects in Tuticorin Area, Tamil Nadu
- viii. Transmission System Associated with IPP projects in Srikakulam Area, Andhra Pradesh
- ix. Transmission System Associated with IPP projects in Southern Region for transfer of power to other regions
- x. Transmission System Associated with IPP projects in Vemagiri area in SR for power transfer of other regions
- xi. Transmission System Associated with IPP projects in Nagapattinam / Cuddalore area in SR for power transfer of other regions

7.17 TRANSMISSION SYSTEM DEVELOPMENT – PROGRAMME FOR 12TH PLAN PERIOD

During 12th Plan period, a total of about 107440 circuit kilometers (ckm) of transmission lines, 270000 MVA of AC transformation capacity and 12750 MW of HVDC systems are estimated to be added. Highlights of this transmission expansion are addition of new HVDC Bipole systems and quantum jump in 765kV transmission systems. During 12th Plan about 27000 ckm of 765kV lines and 149000 MVA transformation capacity addition is expected. This huge increase in the 765kV

system is due to a number of pooling and de-pooling 765/400kV stations that have been planned to evacuate power from cluster of generation projects mainly in pit-head and coastal areas and transfer their power through long distance transmission lines up to load centers in the country. In addition to above, 400kV lines of 45000 ckm, 220kV lines of 35000 ckm and transformation capacity of 45000 MVA and 76000 MVA, respectively is estimated to be added during 12th Plan period. The estimates of 220kV systems are approximate and based on previous trends, which would be firmed up after STUs work out their 12th Plan transmission programmes. There would also be additions in the 66kV, 110kV and 132kV systems. Following Tables give development of the transmission system(of 220kV and above voltage level) in India in 11th Plan period and expected to be added during 12th Plan period. These estimates are considering the 88 GW generation addition scenario for 12th Plan:

Transmission Lines (220kV and above system)

Transmission Lines (both AC and HVDC) expected by end of 12 th Plan (values in ckm)	At the end of 10 th Plan	Add. in 11 th Plan	At end of 11 th Plan	Expected addition during 12 th Plan	Expected by end of 12 th Plan
HVDC Bipole lines	5872	3560	9432	7440	16872
765 kV	2184	3536	5250	27000	32250
400 kV	75722	37645	106819	38000	144819
220 kV	114629	25175	135980	35000	170980
Total Transmission Line, ckm	198407	69926	257481	107440	364921

Substations (220kV and above system)

Substations(AC) and HVDC Terminals expected by end of 12 th Plan (values in MVA / MW)	At the end of 10 th Plan	Add. in 11 th Plan	At the end of 11 th Plan	Expected addition during 12 th Plan	Expected by end of 12 th Plan
HVDC Terminals:					
HVDC back-to-back	3000	0	3000	0	3000
HVDC Bipole terminals	5000	1750	6750	12750	19500
Total- HVDC Terminal Capacity, MW	8000	1750	9750	12750	22500
AC Substations					

765 kV	0	25000	25000	149000	174000
400 kV	92942	58058	151027	45000	196027
220 kV	156497	67277	223774	76000	299774
Total- AC Substation capacity, MVA	249439	150362	399801	270000	669801

7.18 FUND REQUIREMENT FOR DEVELOPMENT OF TRANSMISSION SYSTEM DURING 12TH PLAN

Considering the 88 GW generation addition scenario for 12th Plan, total fund requirement for development of transmission system is estimated **to be of the order of Rs 2,00,000 crore**.

7.19 INTEGRATION OF RENEWABLE ENERGY SOURCES (RES) GENERATION IN NATIONAL GRID

7.19.1 Integration with National Grid and Electricity market

The RES transmission schemes are not stand alone schemes and require to be integrated with State grid and/or regional/all-India grid depending mostly upon quantum of power to be transmitted. Owing to variable nature of RES energy, these also require support from the grid. The integration provides reliability of transmission and grid support to accommodate variability of RES generation to certain extent. Extent of accommodation of variability of RES generation depends upon size, nature and operating practices of grid. In particular, - (i) quantum of RES generation vis-à-vis quantum of conventional sources of energy and their operating characteristics, (ii) generation reserves in the grid, (iii) variability of RES generation, (iv) extent of transmission interconnections (v) grid codes & operating practices of the grid, (vi)balancing mechanism, and (vii)enabling regulations, would determine extent of accommodation of RES into National Grid with no, partial or full back-down under different seasons/load-generation scenarios.

Electricity Market in India for RES:

India has diversified electricity market in which power is contracted on different type of contracts such as long term, medium term and short term power purchase agreements. There is a day-ahead power exchange. Power is also contracted on barter basis. The Indian Electricity Grid is operated as per the Indian Electricity Grid Code through hierarchy of system operators. There is no central command control system and the decision making is de-centralized with each State/DISCOM being responsible for maintaining its load generation balance. Deviations from the schedule by an entity in real time are settled commercially through UI mechanism. The renewable energy generator would have to interact in the electricity market and find a buyer. It has options to enter into a preferential tariff contract or a market tariff contract with native DISCOM. It has also option to enter into an interstate contract on schedule basis. Since the renewable capacity in the country is being added in a big way and in the years to come the growth is going to be still higher, it is extremely important that a suitable institutional mechanism on the principles of a Registry is devised which may clearly contain the complete information about the renewable capacity, so that any techno-commercial mechanism involving a certain type/part of the capacity based on the date of commencing and/or any other suitable criteria can be implemented smoothly.

Variability of RES:

Each DISCOM/State is to build a portfolio comprising of power from both conventional and

renewable energy sources. It is the responsibility of each DISCOM/ State to manage its portfolio or power contracts in an optimal manner and maintain its load-generation balance. Power from renewable energy sources is subject to variability and this impacts the ability of the DISCOM to manage its power purchase portfolio. Variation in the availability of power from renewable energy sources would manifest as over/under drawal in real time at the DISCOM/State boundary. In case SLDCs are unable to enforce backing down of conventional generation in their State under high wind scenario, it will result in very heavy injection into ISTS and may jeopardize grid security. The present allowable frequency range is 49.7 Hz to 50.2 Hz. By the year 2014, the NEW Grid and the SR Grid are expected to be synchronized and a large number of 765 kV lines are also likely to become operational by then across the country. From power system reliability considerations, it is essential to further tighten the frequency band to 49.8 to 50.1 Hz.

Important things for integration with grid and market:

Adequate transmission: It is important that all parts of the country particularly those with concentrated the renewable energy sources such as wind and solar are connected with very strong intra- state and inter-state transmission system so that there is no congestion on the transmission system in the event of under drawl or over drawl due to failure or excess availability of renewable power. For this, ISTS connectivity and adequate evacuation inter-state system for RE generation shall be provided as per provisions pertaining to RE generation in the connectivity and LTA regulation. Similarly, the States must develop adequate Intra State transmission system for dispatch of RE power and not piggy ride the ISTS. In case of excess renewable power, the States must be willing to shut-down/run on partial load their conventional /thermal power stations. Additional ISTS connectivity may be provided through State's grid for reliability and grid support.

Forecasting and scheduling: At the same time, it is also important to have the latest forecasting tools to predict wind and solar power, farm-wise and cluster-wise, with greater accuracy so that preplanned action can be taken by the utilities and impact on the grid due to variation of renewable energy is minimized. This would help wind / solar forms to schedule their power with more certainty. This is important from the point of view of both inter-state and intra-state sale of power. IEGC has special dispensation for inter-state scheduling of RE power.

Energy accounting: It is essential that all the states utilities take urgent measures for installation of the interface meters at the interconnecting points and account for the energy injection and deviation at the intra-state boundaries.

Load-generation balance: The renewable power contribution is going to become very large in the future and its variation may not be possible to be accommodated through UI mechanism. Under such circumstances a suitable strategy has to be devised to accommodate sudden variations in the fall of grid power through the intervention such as running a storage type hydro stations or gas turbines or operating demand management contracts in the event of frequency falling down abnormally. The SLDCs of renewable rich States would have to play a proactive role in maintaining load-generation balance of their State.

Energy storage: Eventually, it would be desirable for the renewable rich States to introduce energy storage devices/other alternative options to effectively maintain a reasonable load-generation balance.

Registry for RES: It is extremely important that a suitable institutional mechanism on the principles of a Registry is devised which may clearly contain the complete information about the renewable capacity, so that any techno-commercial mechanism involving a certain type/part of the capacity based on the date of commencing and/or any other suitable criteria can be implemented smoothly.

The transmission planning for renewable energy generation projects has to be done on case to case basis depending upon topology of the local grid, spatial distribution of renewable sources and the total quantum of power to be evacuated. Some of the States have abundant renewable energy sources, while others are deficit. In case of large scale renewable generation it is not possible to absorb the energy locally, particularly during off peak hours, and a transmission system is required to be planned integrating renewable generation with the state grid as well as with inter-state grid. Integration of RES with National Grid would help in lessening backing down of conventional generation during periods of high RES generation and meeting demand of local load centres when renewable generation is not available, provided there is enough dispatchable surplus generation in other parts of the grid. As most of the renewable energy source (RES) generation in terms of MW are smaller in size their first connection with the grid is normally done at 11kV, 22kV, 33kV or 66kV. The EHV transmission system beyond first connection point is either at 110kV, 132kV, 220kV or 400kV depending on the quantum power being pooled at EHV substations.

7.19.3 Technical standards for integration of RES with National Grid

CEA is in the process of issuing draft amendment to connectivity standards specifying the technical requirements from wind generators to be synchronized with the grid, as per which, generating stations shall be capable of supplying dynamically varying reactive power support so as to maintain power factor within limits of 0.95 lagging to 0.95 leading. Also, the generating stations shall have fault ride through capability of not less than 300 milli-seconds so that grid is not destabilized due to sudden outage of renewable generation in the event of a grid disturbance. Standards for maximum harmonic distortion are also being specified in the draft technical standards.

7.19.4 Regulations for integration of RES with National Grid

CERC has amended Indian Electricity Grid Code to allow flexibility to wind and solar plants in scheduling and dispatch. As per CERC (Grant of Connectivity, Long-term Access and Medium-term Open Access in inter-state transmission and related matters) Regulation 2009, a group of generating stations using renewable sources with capacity between 50 MW and 250 MW can also apply to the CTU for direct connectivity with inter-state transmission system. Transmission charges for transfer of power from RES shall be as per the applicable CERC tariff norms. In case of solar plants which are to be commissioned by 2014, ISTS charges/losses are exempted. Wind and solar generation developers can take advantage of the above provisions and get themselves connected with ISTS for improved reliability of evacuation of power from their projects and selling the renewable energy on all-India basis in through National Grid.

7.19.5 Transmission systems for integration of RES during 12th Plan

The renewable generation capacity addition in the country, up to the end of 9th Plan i.e. 2001-02 was just 3,475 MW. The Government of India as well as many State governments have issued policies and programmes conducive to the generation of renewable power, which gained acceleration and is going to cross 20,000 MW by the end of 11th Plan (i.e. March 2012). Most of this renewable capacity is in the renewable potential rich states of Tamil Nadu, Maharashtra, Karnataka, Gujarat and Rajasthan. These five states at present contribute more than 80% of total renewable capacity installation in the country. For the 12th Plan period (2012-17) RES addition is being estimated in the range of 19000 - 30000 MW. The State Transmission Utilities of renewable rich states of Himachal Pradesh, Rajasthan, Gujarat, Maharashtra, Tamil Nadu and Andhra Pradesh have prepared transmission plans for RES generation projects in their States. CEA in association with some of the these STUs have examined/examining these proposals and these are likely to be firmed up along with other stakeholders as per planning process. The transmission system that has been firmed up till date is given in Annex 7.6 of this chapter. This system is planned for implementation during 12th Plan period. Though, all of these RES capacity additions are planned to meet RPO(renewable purchase obligation) requirements of respective States, care is being taken to integrate them also with ISTS directly/indirectly so that they become part of National Grid as explained in above

paragraphs. Total capacity of RES for which transmission planning exercise is under progress is of the order of 25000 MW (Tamil Nadu – 6000 MW, Andhra Pradesh – 3000 MW, Gujarat – 5500 MW, Maharashtra – 5000 MW, Rajasthan – 2800 MW, Karnataka – 1600 MW and Himachal Pradesh 600 MW). It is learnt that Ministry of New and Renewable Energy (MNRE) is assessing quantum and location of RES generation additions for 12th Plan period (which are in the 19000-30000 range). A comprehensive plan for these projects can be worked out after this assessment. For future RE projects, a tentative perspective plan considering potential for harnessing of mainly wind and solar power is given in next Chapter.

7.20 TRANSMISSION EXPANSION ASSESSMENT FOR 13TH PLAN

As explained above, transmission system for a number of generation projects have been planned under the LTA process, majority of which are expected to materialize during 12th Plan and the rest would be implemented during 13th Plan depending upon actual progress of the generation project. Based on progress and development of generation projects and transmission system during 12th Plan, some of the already planned transmission systems would have to be reviewed. This review would be carried out alongwith planning for new transmission requirements for specific generation projects coming in 13th Plan. Under such scenario, only a broad assessment of transmission capacity addition for 13th Plan can be made considering probable load growth and indicative generation capacity addition scenarios for 13th Plan.

Accordingly, following assessment has been made for transmission capacity addition during 13th Plan period:

Transmission capacity addition for 13th Plan (220kV and above system):

1. Transmission lines : 130 Thousand ckm

2. Substation (Transformation) Capacity : 300 Thousand MVA

3. Fund requirement : Rs 200,000 Crore

549562/14

CHAPTER - 7A

ANNEX - XII PLAN TRANSMISSION PROGRAMME

ANNEX – 7.1

NORTHERN REGION -TRANSMISSION SCHEME DETAILS

Northern Region – System Strengthening Schemes:

Table No: NR-IS-01				
765kV system for Central Part of Northern Grid-	1. Agra - Meerut 765 kV S/c			
Part-I	2. Agra - Jhatikra 765 kV S/c			
	3. Jhatikra - Bhiwani 765 kV S/c			
	4. Bhiwani – Moga 765 kV S/c			
	5. LILO of both circuits of Mundka/Bawana – Bamnouli			
	at Jhatikra			
Table	No: NR-IS-02			
765kV system for Central Part of Northern Grid-	Agra Substation extension Bay extension			
Part-II	2. Establishment of 765/400/220 kV substation at			
	Jhatikra with 4x1500MVA 765/400 kV			
	3. Augmentation of Moga & Meerut 400/220 kV			
	substation to 765/400/220 kV susbtation with			
	2x1500MVA transformation capacity			
	4. 240 MVAR Bus reactor at Jhatikra			
Table	No: NR-IS-03			
765kV system for Central Part of Northern Grid-	1. Meerut – Bhiwani 765 kV S/c			
Part-III	2(a). Establishment of 765/400/220 kV substation at			
	Bhiwani with 2x1000MVA 765/400 kV ICT			
	2(b). Establishment of 2x315 MVA 400/220 kV ICT at			
	Bhiwani			
	3. LILO of both circuits of Bawana/Bahadurgarh-Hissar			
	400 kV D/c at Bhiwani			
	4. LILO of both circuits of Bareilly-Mandaula 400 kV D/c			
	at Meerut			
	5. Mandaula Bus splitting			
-	6. Ballabhgarh Bus splitting			
Table No: NR-IS-04				
NR System Strengthening Scheme-XIX	1. LILO of both circuits of Meerut – Kaithal 400 kV D/c			
	(Quad HSIL) to create new 400/220 kV S/s at Bagpat 2. Bagpat 400/220 kV GIS s/s with 2x500 MVA			
	transformation capacity			
	3. 80 MVAR Bus Reactor at Kaithal			
	4. 125 MVAR Bus Reactor at Rathal			
Tahle	e No: NR-IS-05			
NR System Strengthening Scheme-XX	1. LILO of one circuit of Parbati PS – Amritsar 400 kV			
TWY Gystem circingtherming continue 707	D/c to create new 400/220 kV S/s at Hamirpur			
	2. Hamirpur 400/220 kV s/s with 2x315 MVA			
	transformation capacity			
Table	No: NR-IS-06			
NR System Strengthening Scheme-XXI	1. Lucknow – Bareilly 765 kV S/c (ckt-I)			
, 5	2. Bareilly–Kashipur 400 kV D/c (quad)			
	3. Kashipur–Roorkee 400 kV D/c (quad)			
	4. Roorkee–Saharanpur 400 kV D/c (quad)			
	5. Establishment of new 765/400 kV, 2x1500 MVA			
	substation at Bareilly			
	6. Bareilly – Bareilly 400 kV 2xD/c (quad)			
Table No: NR-IS-07				
NR System Strengthening Scheme-XXII	1. Kishenpur – Samba 400 kV D/c			
, , , , , , , , , , , , , , , , , , , ,	2. Dulhasti – Samba 400 kV S/c			

	3. Establishment of new 400/220 kV, 2x315 MVA			
	substation at Samba			
	e No: NR-IS-08			
NR System Strengthening Scheme-XXIII	1. Augmentation of 400/220 kV transformation capacity			
	by 2x500 MVA at Maharanibagh			
	2. Augmentation of 400/220 kV transformation capacity			
	by 1x500 MVA at Lucknow			
	3. Augmentation of 400/220 kV transformation capacity			
	by 1x500 MVA at Bahadurgarh			
Tabl	e No: NR-IS-09			
NR System Strengthening Scheme-XXIV	1. Dehradun – Abdullapur 400 kV D/c (Quad)			
	2. Dulhasti – Kishenpur 400 kV D/c (Quad) – Single			
	Circuit Strung			
	3. 2 nos. of 63 MVAR line Reactors (one on each ckt)			
	on Barh – Balia 400 kV D/c line at Balia end			
Tabl	e No: NR-IS-10			
NR System Strengthening Scheme-XXV	1. Jaipur-Bhiwani 765kV S/c (2nd Ckt)			
, , ,	2. Bhiwani(PG)-Hissar 400kV D/c line			
	3. LILO of 400kV D/c Moga-Bhiwadi line at Hissar			
Tabl	e No: NR-IS-11			
NR System Strengthening Scheme-XXVI	Meerut-Moga 765kV S/c line			
	e No: NR-IS-12			
NR System Strengthening Scheme-XXVII	1 LILO of 400kV Dehar-Panipat S/c line at Panchkula			
The System Strongthorning Solitons your	2 LILO of 400kV Dehar-Bhiwani S/c line at Rajpura			
	3. TehriPP-Srinagar 400kV D/c line (Quad)			
	4. one 400kV line bay at Kota(PG) for terminating Anta			
	- Kota 400kV S/c line			
	Two 220kV line bays at Chamera pooling point			
5. Two 220kV line bays at Chamera pooling point Table No: NR-IS-13				
NR System Strengthening Scheme-XXVIII	1. Extend one 400kV D/c (Quad) Biharsharif-Sasaram			
Title dystem strongthorning concine xxviii	line to Varanasi, Bypassing Sasaram			
	LILO of Gaya-Fathepur765 kV S/c line at Varanasi			
	Sasaram-Allahabad Circuit may be from ER bus			
	Sasaram-Saranath 400kV S/c may be through			
	HVDC back to Back			
Tabl	e No: NR-IS-14			
NR Bus Reactor Schemes	1. 125 MVAR bus reactor at Gorakhpur			
INA DUS REACIOI SCHEMES	125 MVAR bus reactor at Allahabad			
	3. 125 MVAR bus reactor at Mainpuri			
	4. 125 MVAR bus reactor at Hissar			
	5. 125 MVAR bus reactor at Jullandhar			
	6. 125 MVAR bus reactor at Kankroli			
	7. 125 MVAR bus reactor at Nallagarh			
	8. 2X125 MVAR bus reactor at Vindhyachal(NR Bus)			
	9. 80 MVAR bus reactor at Amritsar			
	e No: NR-IS-15			
System Strengthening in NR	1. Lucknow – Bareilly 765kV S/c line (ckt-II)			
(after delinking the scheme with North	2. Bareilly – Meerut 765kV S/c line			
Karanpura Project)	3. Agra – Gurgaon 400kV D/c line(quad)			
	4. 2x500 MVA ,400/220kV S/S at Gurgaon			
Tabl	e No: NR-IS-16			
Inter-connection between Srinagar (Uttrakhand)	Srinagar-Tehri Pooling station 400 kV D/C (Quad)			
and Tehri				

Northern Region – Evacuation Schemes:

Table No: NR-JK-01		
Kishen Ganga (330MW)	1. Kishenganga – Alistang 220kV 2XD/c line	
(Central sector)	2. Alistang – New Wanpoh 220 kV D/c line	
	3. Kishenganga- Amargarh 220kV D/c line	

	Table No: NR-JK-02
Baghalihar II (450 MW)	LILO of one ckt of 400kV Kishenpur-New Wanpoh D/c line at
(State Sector)	Baghlihar HEP

		Table No: NR-HP-01		
Parbati-II (800MW)	(Central Sector)	1 Parbati II-Koldam (Quad) 400kV 1st ckt		
		2 Parbati II-Koldam (Quad) 400kV 2nd ckt		
		3 Parbati II- Koldam (Quad) D/c portion		
		Table No: NR-HP-02		
Rampur (412MW)	(Central Sector)	1. LILO of 400 kV D/c Nathpa Jhakri - Nalagarh at Rampur		
		2. Ludhiana - Patiala 400kV D/c line		
		3. LILO of 400kV D/c Patiala -Hissar line at Kaithal		
Table No: NR-HP-03				
Koldam (800MW)	(Central Sector)	1. Koldam-Ludhiana 400kV D/c		
		2. Koldam-Nalagarh (Quad) 400kV D/c line		
Table No: NR-HP-04				
Tidong-I (100 MW) (Private Sector)		Tidong-I HEP- kashang 220kV D/c line		
Table No: NR-HP-05				
Sorang(100 MW)	(Private Sector)	LILO of S/c Karcham Wangtoo - Abdullapur at Sorang		
Table No: NR-HP-06				
UHL-III(100MW)		Evacuation at lower voltage		
(Private Sector)				

Table No: NR-HP-07					
Kashang I, II, III (3x65 MW) (State Sector)	Kashang- Jangi Pooling Station 220kV D/c line				
Table No: NR-H	P-08				
Sawara Kuddu (110 MW) (State sector)	LILO of Nathpa Jhakri-Abdullapur 400kV D/c line at Sawara kudu				
Table No: NR-H	P-09				
Kutehr (260MW) (Private Sector)	Establishment of 400/220 kV ,2x315 MVA S/S at Lahal				
	Kutehar -Lahal 220 kV D/C line Lahal PS - Chamera PS 400 kV D/C line				
Table No: NR-H	Table No: NR-HP-10				
Bajoli Holi HEP(180 MW)	HPPTCL system upto Chemera Pooling point (connectivity)				
Table No: NR-HP-11					
Kunihar (Andhra+Nogli+Micro) (196 MW) (Private Sector)	Evacuation at lower voltage				
Table No: NR-H	Table No: NR-HP-12				
Sainj(100 MW) (State Sector)	Sainj-Sainj Village(HPPTCL) 132kV D/c line				
	LILO of 400kV Parbathi-II- Parbathi pooling point S/c line				
	3. Establishment of Sainj 400/132kV S/s (150 MVA)				

Table No: NR-PB-01					
Nabha - Rajpura TPS(2x700 MW) (Private Sector)	 Creation of 400/220 kV S/S near Nabha/Patiala with 2X315 MVA Transformer 				
	2. Muktsar -substation near Jullundhur 400 kV D/C				
	via Tarantaran				
	3. Creation of 400/220 kV S/S near Tarantaran				
	4. Nabha/Patiala - S/S near Jullundhur 400 kV D/C				
	via Mohali				
	5. Creation of 400/220 kV S/S near Mohali				
	6. Interconnection between 400 kV S/S near				
	Jullundhur to Jullundhur S/S (PG)				

	7. Interconnection between 400 kV S/S near Taran
	Taran to Amritsar S/S (PG)
Table	No: NR-PB-02
Talwandi Sabo (3x660 MW)	1. Talwandi Sabo - Muktsar 400kV D/c line
(Private Sector)	2. Muktsar - Patti – Nakodar 400kV D/c line
	3. Talwandi Sabo - Dhuri 400kV D/c line
	4. Talwandi Sabo - Nakodar 400 kV D/C (one ckt to be
	LILOed at Moga 400kV PGCIL s/s)
	5. Establishment of 2X315 MVA Muktsar S/s
	6. Establishment of 2X315 MVA Patti S/s
	7. Establishmnet of 2X315 MVA Nakodar S/s
Table I	No: NR-PB-03
Govindwal Saheb (2x270 MW)	1. Gowindwal sahib- Ferozpur 220kV D/C
(Private sector)	2. Gowindwal sahib- Khasa (Amritsar) 220kV D/C
	3. Gowindwal sahib- Sultanpur Lodhi 220kV D/C
	4. Gowindwal sahib- Kapurthalahasa 220kV D/C

Table No. ND D I 01			
DADD D/0×700MM/	Table No: NR-RJ-01		
RAPP D(2x700MW)	1. RAPP–Jaipur (South) 400kV D/c line of which one ckt. to be		
(Central Sector)	LILOed at Kota		
	2. RAPP – Shujalpur (WR) 400kV D/c line		
	3. 1x63MVAR at RAPP end of RAPP-Jaipur S/c line		
	4. 1X50 MVAR at RAPP end of RAPP-Shujalpur D/ c line(each		
	Ckt)		
	5. 125 MVAR bus reactor at RAPP-D Generation Table No: NR-RJ-02		
Ramgarh-II (160 MW)	1. Ramgarh- Dechu 220kV D/c line (commissioned)		
(State Sector)			
	2. Dechu – Tinwari 220kV S/c line		
	3. Dechu – Phalodi 220kv S/c line		
	4. 220/132kV S/S at Dechu(new) (2x100MVA)		
	Table No: NR-RJ-03		
· · · · · · · · · · · · · · · · · · ·	or Chhabra St-II(500MW) and Kalisindh TPS(2x600 MW)		
System at 765kV voltage level	1. Phagi (Jaipur South) 3000 MVA, 765/400kV S/S along with		
	two sets of 765kV, 3x80 MVAR line reactors and 400kV		
	1x125 MVAR bus reactor		
	2. 400/765 kV GSS at Anta (Baran) pooling Station with with		
	two sets of 765kV, 3x80 MVAR line reactors		
	3. Anta – Phagi (Jaipur South) 765kV 2xS/c line		
System at 400kV voltage level	1. 400/220kV S/S GSS at Ajmer		
	 Kalisindh – Anta Pooling Point at 400kV D/C (quad) line (for Kalisindh TPS) 		
	3. Chhabra – Anta Pooling Point at 400kV D/C (quad) line(for Chhabra TPS)		
	4. Phagi (Jaipur south) - Ajmer 400kV D/C line		
	5. Phagi (Jaipur south) -Heerapura 400kV D/C line		
System at 220kV voltage level	LILO of 220kV Ajmer – Beawer line at Ajmer(400/220kV) GSS.		
	2. LILO of 220kV Ajmer – Kishangarh line at Ajmer(400/220kV) GSS.		
	3. Kalisindh – Jhalawar 220kV D/C line (for Kalisindh TPS)		
Table No: NR-RJ-04			
Barsingsar Ext(250MW)	1. Barsingsar- Nagaur 220kV S/c line		
(Central sector)	2. Barsingsar-Khinvsar- Bhopalgarh 220kVS/c line with S/S at		
	Khinvsar (Nagaur)		
	3. Establishment of Khinvsar 220/132kV substation		
Table No: NR-RJ-05			
Shree Cement Ltd (300 MW)	1. LILO of one ckt of Kota – Meria 400kV D/c line at generation		
(IPP)	switchyard with 80 MVAR bus reactor		
	(connectivity)		

	Table No: NR-UK-01
Tapovan Vishnugarh(520MW)	Tapovan Vishnugarh HEP- Kunwaripaas 400kV D/c line
(Central sector)	LILO one ckt of Vishnu Prayag – Muzaffarnagar 400 kV D/c
(Gentral Scotor)	line at Kuwanri Pass
	Kunwari Pass - Karanprayag 400kV D/c line
	Karanprayag - Srinagar line 400kV D/c line
	ILILO of Kunwari Pass – Srinagar 400kV D/c line at
	Karanprayag
	Table No: NR-UK-02
Singoli Bhatwari (99 MW)	LILO of Baramwari – Srinagar 220kV D/c line at Singoli
(Private sector)	Bhatwari
	Table No: NR-UK-03
Phata Byong (76 MW)	1. LILO of Gaurikund Rambara -Barambari 132kV S/c at Phata
(private Sector)	Byong
(I	2. Baramwari-Srinagar 220kV D/c line
	Table No: NR-UK-04
Dhauli Ganga +Rupsiyabagar	1. Dhauli Ganga – Pithoragarh 220kV D/c line
Khasiyabara (260MW)	2. Dhauli Ganga – Bareili 220kV D/c line
(Central Sector)	
	Table No: NR-UK-05
Kotlibhel St-1A & B	1. Kotli Bhel IA – Dehradun (PTCUL) 220 kV D/C twin/quad
(515 MW), Kotlibhel St-II (530 MW)	line via Kotli Bhel II (Twin up to Kotli Bhel II and quad
(central Sector)	between Kotli Bhel II – Dehradun (PTCUL))
	2. LILO of one circuit of Kotli Bhel IA – Dehradun (PTCUL)
	220 kV D/C line at Kotlibhel 1B
	3. Connectivity between 220kV Dehradun s/s of PTCUL and
	400/220kV Dehradun s/s of PG. This would be either
	through extended bus or through 220kV quad D/C line
	depending on location of the two s/s being contiguous or
	otherwise
	4. Dehradun-Abdullapur 400 kV D/C line as regional scheme
	for Kotlibhel HEP
	Table No: NR-UK-06
Tehri-II(1000MW)	1. Tehri PSP – Tehri Pooling Point (quad) 400kV S/c line
(Central Sector)	2. Charging Tehri Pooling Point – Meerut line at 765kVS/c line
	3. Establishment of 765/400 kV, 3x1500 MVA S/S at Tehri Pool
	(Due to Space constraints, Tehri Pooling stn. would be GIS)
	4. 765/400 kV, 1x1500 MVA substations at Meerut
	Modification of Series Capacitors for operation at 765 kV level
	at Meerut
Late Teneview (171 MM) (Control	Table No: NR-UK-07
Lata Tapovan (171 MW) (Central	Lata Tapovan - Joshi Math 220kV D/c line
Sector)	Toble No. ND UV 09
Pala Mapori (490 MW)	Table No: NR-UK-08
Pala Maneri (480 MW)	LILO of Lohari Nagpala – Koteshwar 400kV D/c line at Pala Maneri
(State Sector)	Table No: NR-UK-09
Sravanthi Energy Private Itd. (450 MW)	LILO of one circuit of Kashipur –Roorkee 400kV D/c line at
Gravantini Energy i rivate itu. (400 MW)	Generation Switchyard
	Table No: NR-UK-10
Srinagar (330 MW)	Srinagar - Kashipur 400kV D/c line
(Private Sevtor)	Srinagar - Kasriipur 400kV D/c line Srinagar-HEP - Srinagar 400kV D/c line
(i iivate ocvioi)	3. LILO of Visgnuprayag-Muzaffarnagar 400kV line at Srinagar
	10. LILO DI VISYITUPIAYAY-IVIUZAHAHIAYAH 400KV IIHE AL SHIRAYAH

Table No : NR-UP-01		
Combined system for Rihand STPP-III (2X500 MW) & Vindhyachal STPP -IV (2X500 MW) of WR (Central Sector).	Rihand-III- Vindhyachal Pool 765 kV D/c(initially to be	
	operated at 400 kV) 2. Vindhyachal-IV - Vindhyachal Pool 400 kV D/c (Quad)	

	3. Vindhyachal Pool-Satna 765 kV 2xS/c
	4. Satna - Gwalior 765 kV 2xS/c
	5. Gwalior - Jaipur(South) 765 kV
	S/c 6. Vindhyachal Pool-Sasan 765
	KV S/c 7. Establishment of 765/400kV,
	2x1500 MVA S/s at
Table No: NR-UP-02	Vindhyachal Pool
Singrauli St-III (500MW)	Singrauli –Allahabad
	400kV S/C line
	2. Allahabad –Kanpur 400kV D/C line
Table No : NR-UP-03	
Combined system for Bara TPS(3X660MW) (Private Sector), Karchana (2x660MW) (Private Sector) &	Step-up of Bara generation to 765kV
Meja JV(1320MW) (Central Sector)	2. Bara switchyards to have 765kV and 400kV levels with
	2x1500MVA (7x500 MVA, 1
	phase units) 765/400 ICTs.
	3. Establishment of 400kV
	substation at Reewa Road
	Allahabad with 400/220kV 2x315 MVA ICTs
	4. Step-up of Karchana and
	Meja generation to 400kV
	5. LILO of 400kV Obra-Panki
	line at Reewa Road
	Allahabad
	6. Meja – Bara 400kV quad D/C line
	7. Meja – Reewa Road
	(Allahabad) 400kV quad D/C line
	8. Karchana – Bara 400kV quad D/C line
	9. Karchana – Reewa Road Allahabad 400kV quad D/C
	line
	10. Bara-Mainpuri 765kV 2xS/C lines
	11. Mainpuri – G.Noida 765kV S/C
	12. LILO of Agra - Meerut 765 kV
	S/C line of PGCIL at G. NOIDA
	13. Hapur – G.Noida 765kV S/C line
	14. New 765/400kV substation at
	Maipuri with 2x1000MVA (7x333 MVA, 1 phase units) ICTs
	15. Mainpuri 765kV UPPCL –
	Mainpuri 400kV PGCIL 400kV quad D/C line
	16. New 765/400 substation at
	G.Noida with 2x1500MVA (7x500MVA, 1 phase units) 765/400kV
	. 55, .551(1

	17 2x500MVA 400/220kV ICTs at	
	New 765/400kV substation at	
	G.Noida	
	18. Reewa Road Allahabad –	
	Banda 400kV quad D/C line	
	19. Banda – Orai 400kV quad	
	D/C line	
	20. Orai – Mainpuri 765kV	
	UPPCL 400kV quad D/C line	
	21. Establishment of 400kV	
	substation at Banda with	
	400/220kV 2x315 MVA ICTs	
	22. Establishment of 400kV	
	substation at Orai with	
	400/220kV 2x315 MVA ICTs	
	23. Meja-Allahabad(PG) 400kV	
	D/c line	
	24. Unnao-Mainuri 765kV S/c line	
	25. Mainpuri-Hapur 765kV S/c line	
Table No : NR-UP-04		
Lalitpur TPS (3x660 MW)	1. Lalitpur – Bhognipur –I 765kV	
(State Sector)	S/C line (200km)	
(tentative)	2. Lalitpur – Agra 765kV S/C line	
(contains)	(470km)	
	3. Agra (UP)- agra(PG) 765kV	
	S/C line (50km)	
	4. Lalitpur 765/220kV S/S (2x300)	
	MVA	
	5. Jhasi- Lalitpur – lalitpur	
	switchyard 220kV D/C line	
	(2x50 km)	
Table No : NR-UP-05		
Anpara D (1000 MW)	1. Anpara B-Anpara D 400kV D/C	
(State Sector)	Ine	
,	2. Anpara C-Anpara D 765kV S/c	
	line	
	3. Anpara D- Unnao 765kV S/C	
	line	
	4. Anpara D 765/400kV S/S	
	(2x600+1000) MVA	
	\	

ANNEX – 7.2

WESTERN REGION -TRANSMISSION SCHEME DETAILS

Western – System Strengthening Schemes:

Т	Table No : WR-IS-01			
Establishment of 400/220kV S/s in UT DNH	LILO of both circuits of Vapi –Navi Mumbai 400 kV D/c at proposed Kala S/s in UT DNH			
	2. Establishment of 400/220kV, 2x315 MVA S/s at proposed Kala S/s in UT DNH (GIS)			
Т	able No : WR-IS-02			
Establishment of 400/220kV S/s in UT Daman	LILO of both ckts of Navsari - Boisari 400 kV D/c line at Magarwada S/s			
	2. Establishment of 400/220kV, 2x315 MVA S/s at Magarwada S/s (GIS)			
Т	Table No : WR-IS-03			
Split Bus arrangement and reconfiguration/shifting of terminating lines at Raipur 400kV S/s	Splitting 400kV Raipur bus into two sections between existing line bays of Chandrapur-1 & Chandrapur-2 through bus sectionaliser.			
	2. Bypass 400kV Bhatapara-Raipur-Bhilai line at Raipur and restore the line as 400kV Bhatapara-Bhilai S/c			
	3. Shifting of Chandrapur-2 and Chandrapur-3 line bays from Section Raipur-B to Raipur-A.			

Western – Evacuation Schemes:

	Table No : WR-GJ-01
KAPP Extn U-3,4,(1400MW)(Central	1. Kakrapar NPP-Navsari 400kV D/C line
sector)	2. Kakrapar NPP-Vapi 400kV D/C line
	Table No : WR-GJ-02
Transmission System for Mundra UMPP	1. Mundra – Bachchau-Ranchodpura 400 kV (Triple snowbird)
(4000MW) (Private Sector)-Part-A	D/c
	2. Mundra - Jetpur 400 kV (Triple snowbird) D/c
	3. Mundra – Limbdi 400 kV (Triple snowbird) D/c
	Table No: WR-GJ-03
Transmission System for Mundra	1. Gandhar-Navsari 400 kV D/C
UMPP (4000MW) (Private Sector)-Part-	2. Navsari-Boisar 400 kV D/C
B (Strengthening in WR)	3. Wardha-Aurangabad 400 kV (Quad) D/c (with provision to
	upgrade at 1200 kV at later date)
	4. Aurangabad-Aurangabad (MSETCL) 400 kV D/C quad
	5. LILO of both circuit of Kawas-Navsari 220 kV D/C at Navsari
	(PG)
	6. Bachchau 400/220 kV 2x315 MVA
_	7. Navsari GIS 400/220 kV , 2x315 MVA
_	8. Wardha 765/400 kV , 3x1500 MVA
-	9. Aurangabad(PG) 400/220 kV 2x315 MVA
-	10. Extn. 765 kV at Seoni and Wardha S/s
-	11. Extn. 400 kV at Limbdi S/s
-	12. Extn. 400 kV at Ranchodpura S/s
	13. 40% Fixed Series compensation each on Wardha - Aurangabad 400 kV D/c at Wardha end.
Discussive Engages (1000 MM)	Table No: WR-GJ-04
Pipavav Energy (1200 MW) (Private Sector)	 Pipavav TPS- Pirana 400 kV D/c line(Triple) along with 1X125 MVA bus reactor at Pipavav
`	2. Pirana –Dehgam 400 kV D/c line (2nd)
	3. Installation of 1X315 MVA, 400/220 kV ICT(3rd) at Pirana
	Table No : WR-GJ-05
Dhuvaran EXT.(360 MW)	LILO of Kasor-Vartej 220 kV S/c line at Dhuvaran
	2. LILO of Karamsad-Vartej 220 kV S/c line at Dhuvaran
(Table No : WR-GJ-06
Bhavnagar(2X250 MW)	BECL - Botad 220 kV D/C line

3. LILO of Sarvakundla - Vartej 220 kV line at BECL Table No: WR-GJ-07 1. Sikka - Mol: Panell 220 kV D/C line with AI 59 cond. 2. LILO of bot ckt. of Jamnagar - Jetpur 220 kV D/C line at Sikka Table No: WR-GJ-08 2. LILO of bot ckt. of Jamnagar - Jetpur 220 kV D/C line at Sikka Table No: WR-GJ-08 2. LILO of bot ckt. of Jamnagar - Jetpur 220 kV D/C line at Sikka Table No: WR-GJ-08 2. LILO of bot ckt. of Jamnagar - Jetpur 220 kV D/C line 2. LILO of bot kt. of Jamnagar - Jetpur 220 kV D/C line 2. LILO of bot kt. of Jamnagar - Jetpur 220 kV D/C line 2. LILO of bot savarkundla - Mahva220kV lines at Pipavav(GPPC) 3. Mahva - Sagapara 220kV D/C line Table No: WR-GJ-09 3. Makuva - Sagapara 220kV D/C line 3. Sikar-Ratangarh 400kV D/C (Juuad) line 3. Sikar-Ratangarh 400kV D/C (Juuad) line 3. Sikar-Ratangarh 400kV D/C (Juuad) line 3. Sikar-Ratangarh 400kV D/C line 4. LILO of both Ckts of NathgaJhakri-Abdullahpur 400kV D/C at Panchkula 8. Sasaram-Fathehpur 765kV S/C line Table No: WR-GJ-10 1. LILO of 400 kV Asoj- Ukai at Kosamba D/C 2. Ukai -Kosamba 400kV D/C line 3. Kosamba - Jagadia 220kV D/C line 4. Kosamba - Jagadia 220kV D/C line 3. Wanakbori TPS (GSECL) 500 MW (State Sector) 1. LILO of 400 kV Asoj- Ukai at Kosamba D/C 2. Ukai -Kosamba 400kV D/C line 3. Wanakbori Sw. Yard- Wanakbori – Soja line at Dehgam/PG) 2. Soja- Zerda 400kV D/C line 3. Wanakbori Sw. Yard- Wanakbori (Sw. Yard- Wanakbori – Soja line at Dehgam/PG) 2. Soja- Zerda 400kV D/C line 1. DEEN TPS – Navsari 400kV D/C (twin Moose) 3. Navsari-Botestan 220kV D/C (twin Moose) 3. Navsari-Botestan 220kV D/C (twin Moose) 3. Navsari-Botestan 220kV D/C (twin Moose) 1. DEEN TPS – Navsari 400kV D/C (twin Moose) 1. DEEN TPS – Navsari 400kV D/C (twin Moose) 1. DEEN TPS – Navsari 400kV D/C (twin Moose) 1. DEEN TPS – Navsari 400kV D/C (twin Moose) 1. DEEN TPS – Navsari 400kV D/C (twin	(State Sector)	2. BECL - Sagapara 220 kv D/C line		
Table No : WR-GJ-07	(State Sector)			
1. Sikka - Motit Paneli 220 kV D/C line with Al 59 cond.				
State Sector 2. LLL O of bot okt. of Jammagar - Jetpur 220 kV D/C line at Sikka	Sikka Ext (2X250MW)			
Table No : WR-GJ-08				
Pipavav CCPP(2x351 MW) GSECL (State Sector)	(State Sector)			
State Sector	Pinavay, CCPP(2x351 MW) GSECI			
Pipavav(GPPC) 3. Mahuva - Sagapara 220kV D/C line Table No: WR-GJ-09				
System Strengtheing in NR associated with Sasan & Mundra UMPP	(State Sector)			
Table No : WR-GJ-09				
System Strengtheing in NR associated with Sasan & Mundra UMPP				
2. Sikar-Jaipur (POWERGRID) 400kV D/c line 3. Sikar-Ratangarh 400kV D/c line 4. LILO of both circuits of Sikar (RVPNL)-Ratangarh(RVPNL) 220 kV D/c line at Sikar (POWERGRID) 5. LILO of both Ckts of NathpaJhakri-Abdullahpur 400kV D/c at Panchkula 6. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathehpur 765kV 5/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathehpur 765kV 5/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathehpur 765kV 5/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathehpur 765kV 5/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathehpur 765kV 5/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathehpur 765kV 5/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathehpur 765kV 5/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathehpur 765kV 5/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathehpur 765kV 5/c line 7. Estable No: WR-GJ-11 1. LILO of 100 kV Asoj-100 kV D/c line 7. Estable No: WR-GJ-12 7. Estable No: WR-GJ-13 7. Estable No: WR-GJ-14 7. Estable No: WR-GJ-14 7. Estable No: WR-GJ-15 7. Estable No: WR-GJ-16 7. Estable No: WR-GJ-16 7. Estable No: WR-GJ-16 7. Estable No: WR-GJ-16 7. Estable No: WR-GJ-17 7. Estable No: WR-GJ-	System Strengtheing in NR associated			
3. Sikar-Ratangarh 400kV D/c line 4. LILO of both circuits of Sikar (RVPNL)-Ratangarh(RVPNL) 220 kV D/c line at Sikar(POWERGRID) 5. LILO of both Ckts of NathpaJhakri-Abdullahpur 400kV D/c at Panchkula 6. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Sikar. 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathelpur 765kV S/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathelpur 765kV S/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathelpur 765kV S/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathelpur 765kV S/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathelpur 765kV S/c line 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fathelpur 765kV S/c line 7. Establishment of new 400/220kV D/c line 7. Establishment of new 400/220kV D/c line 7. LILO of one ckt of 400kV D/c line 7. LILO of 00 ne ckt of 400kV W anakbori – Soja line at Degam(PG) 7. Spell – Pirana 400kV D/c line 7. Establishment of new 400kV D/c line 7. Establishment				
4. LILO of both circuits of Sikar (RVPNL)-Ratangarh(RVPNL) 220 kV D/c line at Sikar (POWERGRID) 5. LILO of both Ckts of NathpaJhakri-Abdullahpur 400kV D/c at Panchkula 6. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Sikar. 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula 8. Sasaram-Fatheplur 765kV S/c line 8. LilLO of 400 kV Asoj- Ukai at Kosamba D/C 9. LilLO of 400 kV Asoj- Ukai at Kosamba D/C 1. LilLO of 400 kV Asoj- Ukai at Kosamba D/C 2. Lila- Kosamba 400kV D/C line 3. Kosamba - Chornia 400kv D/C line 4. Kosamba - Jagadia 220kV D/C line 4. Kosamba - Jagadia 220kV D/C line 5. Soja- Zerda 400kV D/C line 6. Svaja- Zerda 400kV D/C line 7. LilLO of one ckt of 400 kV Wanakbori - Soja line at Dehgam(PG) 2. Soja- Zerda 400kV D/C line 3. Wanakbori Soja 400kV D/C line 4. Wanakbori Soja 400kV D/C line 7. Table No: WR-GJ-12 1. SPEL - Pirana 400kV D/C line 2. SPEL- Amreli 400kV D/C line 3. Wanakbori Soja 400kV D/C line 4. Wanakbori Soja 400kV D/C line 5. SPEL- Amreli 400kV D/C line 7. Table No: WR-GJ-13 1. LICO of wR-GJ-13 1. DGEN TPS - Navsari 400kV D/C (twin Moose) 3. Navsari-Bheestan 220 kV D/C line 7. Table No: WR-GJ-14 NTPC Limited (Gandhar-II) (1300 MW)(Central Sector) 1. DGEN TPS - Navsari 400kV D/C (twin Moose) 3. Navsari-Bheestan 220 kV D/C line 7. Table No: WR-GJ-15 NTPC Limited (Kawas-II) (1300 MW)(Central Sector) 7. Table No: WR-GJ-16 GEL WPP - Bachau(PG) 220kV D/C (Twin Zebra). (connectivity) 7. Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex Pirana 400kV (quad) d/c line	Will Gasarra Mariara Simir			
220 kV D/c line at Sikar(POWERGRID)				
S. LILO of both Ckts of NathpaJhakri-Abdullahpur 400kV D/c at Panchkula				
Panchkula				
6. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Sikar. 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula. 8. Sasaram-Fathehpur 765kV S/c line Table No : WR-GJ-10 Ukai Extn. (GSECL) 500 MW (State Sector) I LILO of 400 kV Asoj- Ukai at Kosamba D/C 2. UkaiKosamba - Chornia 400kv D/C line 3. Kosamba - Chornia 400kv D/C line Table No : WR-GJ-11 1. LILO of one ckt of400 kV Wanakbori - Soja line at Dehgam(PG) 2. Soja- Zerda 400kV D/C line 3. Wanakbori- Soja 400kV D/C line 3. Wanakbori- Soja 400kV D/C line 4. Wanakbori- Soja 400kV D/C line 3. Wanakbori- Soja 400kV D/C line 4. Wanakbori- Soja 400kV D/C line 3. Wanakbori- Soja 400kV D/C line 4. Wanakbori- Soja 400kV D/C line 4. Wanakbori- Soja 400kV D/C line Table No : WR-GJ-12 Shapoorji Pallonji Energy Ltd.(SPEL) (1320 MW)(Private Sector) 1. SPEL - Pirana 400kV D/C line 2. SPEL- Amreil 400kV D/C line Table No : WR-GJ-13 DGEN TPS - Navsari 400kV D/C (triple snowbird) 2. DGEN TPS- Vadodara 400 kV D/C (triple snowbird) 2. DGEN TPS- Vadodara 400 kV D/C (triple snowbird) 2. DGEN TPS- Vadodara 400 kV D/C (triple snowbird) 3. Navsari-Bheestan 220 kV D/C line Table No : WR-GJ-15 NTPC Limited (Gandhar-II) (1300 MW)(Central Sector) Table No : WR-GJ-15 NTPC Limited (Kawas-II) (1300 MW)(Central Sector) Table No : WR-GJ-16 GGL WPP - Bachau(PG) 220kV D/C (Twin Zebra). (connectivity) Table No : WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line				
transformation capacity at Sikar. 7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula. 8. Sasaram-Fathehpur 765kV S/c line Table No: WR-GJ-10				
7. Establishment of new 400/220kV substation with 2x315 MVA transformation capacity at Panchkula. 8. Sasaram-Fathehpur 765kV S/c line Table No : WR-GJ-10				
transformation capacity at Panchkula.				
8. Sasaram-Fathehpur 765kV S/c line Table No : WR-GJ-10				
Table No : WR-GJ-10				
Ukai Extn. (GSECL) 500 MW (State Sector)				
2. Ukai -Kosamba 400kV D/C line 3. Kosamba - Chornia 400kv D/C line 4. Kosamba - Jagadia 220kV D/C line Table No : WR-GJ-11	Ukai Extn. (GSECL) 500 MW (State			
3. Kosamba - Chornia 400kv D/C line 4. Kosamba - Jagadia 220kV D/C line Table No : WR-GJ-11 1. LILO of one ckt of400 kV Wanakbori - Soja line at Dehgam(PG) 2. Soja- Zerda 400kV D/C line 3. Wanakbori Sw. Yard- Wanakbori(existing) 400kV D/C line 4. Wanakbori- Soja 400kV D/C line 5. SPEL - Pirana 400kV D/C line 5. SPEL - Pirana 400kV D/C line 5. SPEL - Amreli 400kV D/C line 5. SPEL -				
4. Kosamba – Jagadia 220kV D/C line Table No: WR-GJ-11 Wanakbori TPS (GSECL) 500 MW (State Sector) Pengam(PG) 2. Soja- Zerda 400kV D/C line 3. Wanakbori Sw. Yard- Wanakbori(existing) 400kV D/C line 4. Wanakbori- Soja 400kV D/C line 7. Table No: WR-GJ-12 Shapoorji Pallonji Energy Ltd.(SPEL) (1320 MW)(Private Sector) DGEN TPS -Torrent Power Ltd. (1200 MW) (Private Sector) Table No: WR-GJ-13 DGEN TPS -Torrent Power Ltd. (1200 MW) (Private Sector) Table No: WR-GJ-14 NTPC Limited (Gandhar-II) (1300 MW)(Central Sector) Table No: WR-GJ-14 NTPC Limited (Kawas-II) (1000 MW)(Central Sector) Table No: WR-GJ-15 NTPC Limited (Kawas-II) (1000 MW)(Central Sector) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (500 MW)(Private Sector) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line				
Table No : WR-GJ-11				
State Sector State Sector Sector Sector Sector State Sector Sector Sector State Sector Se				
Dehgam(PG) 2. Soja- Zerda 400kV D/C line 3. Wanakbori Sw. Yard- Wanakbori(existing) 400kV D/C line 4. Wanakbori- Soja 400kV D/c line Table No : WR-GJ-12 1. SPEL – Pirana 400kV D/c line 2. SPEL- Amreli 400kV D/c line Table No : WR-GJ-13 DGEN TPS -Torrent Power Ltd. (1200 MW) (Private Sector) 1. DGEN TPS – Navsari 400kV D/c (triple snowbird) 2. DGEN TPS – Navsari 400kV D/c (triple snowbird) 2. DGEN TPS – Navsari 400kV D/C (twin Moose) 3. Navsari-Bheestan 220 kV D/C line Table No : WR-GJ-14 NTPC Limited (Gandhar-II) (1300 MW)(Central Sector) Interconnection with the existing Gandhar 400kV bus. (connectivity) Table No : WR-GJ-15 LILO of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No : WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (GFL WPP – Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No : WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line	Wanakhori TPS (GSECL) 500 MW			
2. Soja- Zerda 400kV D/C line 3. Wanakbori Sw. Yard- Wanakbori(existing) 400kV D/C line 4. Wanakbori- Soja 400kV D/c line Table No: WR-GJ-12 Shapoorji Pallonji Energy Ltd.(SPEL) (1320 MW)(Private Sector) DGEN TPS -Torrent Power Ltd. (1200 MW) (Private Sector) 1. DGEN TPS - Navsari 400kV D/c (triple snowbird) 2. DGEN TPS - Navsari 400kV D/C (twin Moose) 3. Navsari-Bheestan 220 kV D/C line Table No: WR-GJ-14 NTPC Limited (Gandhar-II) (1300 MW)(Central Sector) NTPC Limited (Kawas-II) (1300 MW)(Central Sector) Table No: WR-GJ-15 NTPC Limited (Kawas-II) (1300 MW)(Central Sector) Connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP - Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line				
3. Wanakbori Sw. Yard- Wanakbori(existing) 400kV D/C line 4. Wanakbori- Soja 400kV D/c line Table No: WR-GJ-12 Shapoorji Pallonji Energy Ltd.(SPEL) (1320 MW)(Private Sector) DGEN TPS -Torrent Power Ltd. (1200 MW) (Private Sector) Table No: WR-GJ-13 DGEN TPS -Torrent Power Ltd. (1200 MW) (Private Sector) 1. DGEN TPS - Navsari 400kV D/c (triple snowbird) 2. DGEN TPS- Vadodara 400 kV D/C (twin Moose) 3. Navsari-Bheestan 220 kV D/C line Table No: WR-GJ-14 Interconnection with the existing Gandhar 400kV bus. (connectivity) Table No: WR-GJ-15 NTPC Limited (Kawas-II) (1300 MW)(Central Sector) NTPC Limited (Kawas-II) (1300 MW)(Central Sector) Connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP - Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line	(State Society)			
4. Wanakbori- Soja 400kV D/c line Table No: WR-GJ-12 Shapoorji Pallonji Energy Ltd.(SPEL) (1320 MW)(Private Sector) Table No: WR-GJ-13 DGEN TPS -Torrent Power Ltd. (1200 MW) (Private Sector) 1. DGEN TPS - Navsari 400kV D/c line Table No: WR-GJ-13 DGEN TPS - Vadodara 400 kV D/C (triple snowbird) 2. DGEN TPS-Vadodara 400 kV D/C (twin Moose) 3. Navsari-Bheestan 220 kV D/C line Table No: WR-GJ-14 NTPC Limited (Gandhar-II) (1300 MW)(Central Sector) NTPC Limited (Kawas-II) (1300 MW)(Central Sector) ILIC of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP - Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line				
Table No: WR-GJ-12 Shapoorji Pallonji Energy Ltd.(SPEL) (1320 MW)(Private Sector) Table No: WR-GJ-13 DGEN TPS -Torrent Power Ltd. (1200 MW) (Private Sector) 1. DGEN TPS - Navsari 400kV D/c (triple snowbird) 2. DGEN TPS - Navsari 400kV D/C (twin Moose) 3. Navsari-Bheestan 220 kV D/C line Table No: WR-GJ-14 NTPC Limited (Gandhar-II) (1300 MW)(Central Sector) NTPC Limited (Kawas-II) (1300 MW)(Central Sector) LILO of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP - Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line				
Shapoorji Pallonji Energy Ltd.(SPEL) (1320 MW)(Private Sector) Table No: WR-GJ-13 DGEN TPS -Torrent Power Ltd. (1200 MW) (Private Sector) 1. DGEN TPS - Navsari 400kV D/c (triple snowbird) 2. DGEN TPS - Navsari 400kV D/c (triple snowbird) 2. DGEN TPS-Vadodara 400 kV D/C (twin Moose) 3. Navsari-Bheestan 220 kV D/C line Table No: WR-GJ-14 NTPC Limited (Gandhar-II) (1300 MW)(Central Sector) Interconnection with the existing Gandhar 400kV bus. (connectivity) Table No: WR-GJ-15 NTPC Limited (Kawas-II) (1300 MW)(Central Sector) LILO of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP - Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line				
Connectivity Conn	Shapoorii Pallonii Energy Ltd.(SPEL)			
Table No: WR-GJ-13 DGEN TPS -Torrent Power Ltd. (1200 MW) (Private Sector) 1. DGEN TPS - Navsari 400kV D/c (triple snowbird) 2. DGEN TPS-Vadodara 400 kV D/C (twin Moose) 3. Navsari-Bheestan 220 kV D/C line Table No: WR-GJ-14 NTPC Limited (Gandhar-II) (1300 MW)(Central Sector) Interconnection with the existing Gandhar 400kV bus. (connectivity) Table No: WR-GJ-15 NTPC Limited (Kawas-II) (1300 MW)(Central Sector) LILO of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP - Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line				
DGEN TPS -Torrent Power Ltd. (1200 MW) (Private Sector) 1. DGEN TPS - Navsari 400kV D/C (triple snowbird) 2. DGEN TPS-Vadodara 400 kV D/C (twin Moose) 3. Navsari-Bheestan 220 kV D/C line Table No: WR-GJ-14 NTPC Limited (Gandhar-II) (1300 MW)(Central Sector) Interconnection with the existing Gandhar 400kV bus. (connectivity) Table No: WR-GJ-15 NTPC Limited (Kawas-II) (1300 MW)(Central Sector) LILO of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP - Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line				
MW) (Private Sector) 2. DGEN TPS-Vadodara 400 kV D/C (twin Moose) 3. Navsari-Bheestan 220 kV D/C line Table No: WR-GJ-14 NTPC Limited (Gandhar-II) (1300 MW)(Central Sector) Interconnection with the existing Gandhar 400kV bus. (connectivity) Table No: WR-GJ-15 NTPC Limited (Kawas-II) (1300 MW)(Central Sector) LILO of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP - Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line	DGEN TPS -Torrent Power Ltd. (1200			
3. Navsari-Bheestan 220 kV D/C line Table No: WR-GJ-14 NTPC Limited (Gandhar-II) Interconnection with the existing Gandhar 400kV bus. (connectivity) Table No: WR-GJ-15 NTPC Limited (Kawas-II) LILO of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (GFL) (GONW)(Private Sector) (Connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line	`			
Table No: WR-GJ-14 NTPC Limited (Gandhar-II) Interconnection with the existing Gandhar 400kV bus. (connectivity) Table No: WR-GJ-15 NTPC Limited (Kawas-II) LILO of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (GFL) (GFL) (GONDECTIVITY) (300 MW)(Private Sector) (CONNECTIVITY) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line	, , , , , , , , , , , , , , , , , , , ,			
NTPC Limited (Gandhar-II) (1300 MW)(Central Sector) Interconnection with the existing Gandhar 400kV bus. (connectivity) Table No: WR-GJ-15 NTPC Limited (Kawas-II) (1300 MW)(Central Sector) LILO of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP - Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line				
(1300 MW)(Central Sector) Table No : WR-GJ-15 NTPC Limited (Kawas-II) (1300 MW)(Central Sector) LILO of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No : WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP – Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No : WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line	NTPC Limited (Gandhar-II)	Interconnection with the existing Gandhar 400kV bus.		
Table No : WR-GJ-15 NTPC Limited (Kawas-II) (1300 MW)(Central Sector) LILO of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No : WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP – Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No : WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line				
NTPC Limited (Kawas-II) (1300 MW)(Central Sector) LILO of 400kV Kosamba-Vapi D/c at Kawas-II. (connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP – Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line	, , ,			
(1300 MW)(Central Sector) (connectivity) Table No: WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) (connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line	NTPC Limited (Kawas-II)			
Table No : WR-GJ-16 Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP – Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No : WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line				
Gujarat Fluorochemicals Ltd.(GFL) (300 MW)(Private Sector) GFL WPP – Bachau(PG) 220kV D/c (Twin Zebra). (connectivity) Table No: WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line				
(300 MW)(Private Sector) (connectivity) Table No : WR-GJ-17 Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line	Gujarat Fluorochemicals Ltd.(GFL)			
Sintex Power Ltd (1708 MW) Sintex- Pirana 400kV (quad) d/c line		(connectivity)		
(Private sector) (connectivity)				
	(Private sector)	(connectivity)		

Table No : WR-MP-01		
Vindhyachal STPP -IV (2X500	1. Rihand-III- Vindhyachal Pool 765 kV D/c line (initially to be	
MW),	operated at 400 kV)	
Rihand STPP-III (2X500 MW) of	2. Vindhyachal-IV - Vindhyachal Pool 400 kV D/c (Quad)	
NR	3. Vindhyachal Pool-Satna 765 kV 2xS/c	
(Central Sector)	4. Satna - Gwalior 765 kV 2xS/c	

	E Oweller Jain	(04b) 705 bV 0/-
		ır(South) 765 kV S/c ool-Sasan 765 KV S/c
	7 Fetablishment	of 765/400kV, 2x1500 MVA S/s at Vindhyachal Pool
	Table No :	
Transmission System for Sasan	1. 765 kV Sasan	
UMPP (3960 MW) –Part-A	2. 765 kV Sasan	
(0000 11111)	3. 765 kV Satna -	
	4. 765 kV Satna -	
		m - Fatehpur line-II
	6. 765 kV Fatehp	
		G)-Bina(MPPTCL) line
	8. LILO of both ck	kts of Vindhyachal-Jabalpur 400 kV D/c at Sasan
Part B Regional System	1. Bina(PG)-Indo	re(PG) 765 kV S/C
Strengthening in WR for Sasan	2. Indore(PG)-Ind	lore (MPPTCL) 400 kV D/C quad
UMPP (3960 MW)		5/400 kV, 2x1500 MVA
		of new 765/400 kV, 2x1500 MVA S/s at Gwalior
		kV, 2x1000 MVA S/s at Bina (PG)
		of new 765/400 kV, 2x1000 MVA S/s at Satna
		t Agra, Gwalior, , Bina & Seoni S/s
		5 kV Bays for charging of Seoni - Bina S/c line at
	765 kV level	AVD AVD OO
D: D (0.050.104)	Table No :	
Bina Power (2x250 MW)		e upto common point on D/c tower from Bina TPS
(Private Sector)		one ckt. Of above at Bina (PG) and other ckt at Bina
	(MPTCL) Table No:	WP_MP_0/
		azira 400kV D/c line
MAHAN POWER (1200MW)		V Vindhyachal – Korba line at Mahan S/S
(Private Sector)		400kV D/C line
(Timale desien)		0/220kV (2x500MVA) S/S
	1. 1142114 6/6 10	OFECONO (EXCOCUTATO) OF C
	Table No :	WR-MP-05
-		ts in MP connecting to Vindhyachal Pooling Point
Vindhyachal –V (500 MW)	 Interconnecti 	on with Vindhyachal St-IV
(Central Sector)		
Aryan MP Power Generation		- Vindhyachal Pooling Station 400kV D/c (high
Company Ltd. (1200 MW)	capacity)	
(Private Sector)	2. Two nos of 4	00kV bays at Vindhyachal Pooling Station
DD Dower (MD) Itd	1 DR Dower	Vindbyschal Basling Station 400kV D/s (guad) line
DB Power (MP) ltd. U-1, 2 (1320 MW)		Vindhyachal Pooling Station 400kV D/c (quad) line 00kV bays at Vindhyachal Pooling Station
(Private Sector)	2. TWO 1105 01 4	our bays at vindifyachai Fooling Station
Chitrangi Power (5940 MW)	Chitrangi TPS – Vindhyachal Pooling Station 765kV along with	
(Private Sector)		
Table No : WR-MP-06		
Table No. Within 60		
Jaiprakash Power Ventures Ltd	1. Jaiprakash – S	Satna 400kV D/c (high capacity)
Nigri TPP(2x660 MW)		DkV bays at Satna(POWERGRID)
(Private Sector)		
	Table No :	
Dedicated Transmission System for Generalon projects in MP connecting to Jabalpur Pooling Point		
[Moserbear Power, Today Energy,	Jnabua Power]	4 MD Devices Telester DO 400 LV DV
Moserbear Power		1. MB Power- Jabalpur PS 400 kV D/c
(Annupur TPP) (1200 MW) (Priva	<u> </u>	line(Triple)
Today Energy(1320 MW) (Private	Sector)	1. Today Energy- Jabalpur PS 400 kV D/c line(quad)
Jhabua Power (2x600MW)		Jhabua Power- Jabalpur Pooling Station (high
(Private Sector)		capacity line)
(1 HValo Octor)		

SJK Powergen Ltd (1320 MW) (Private Sector)		SJK TPS – Jabalpur Pooling Station 400kV D/c along with 1x125MVAR bus reactor (connectivity)	
	Table No : WR-MP-08		
Malwa (Shree Singhji) TPP	1. Malwa TPH -	Pithampur 400 kV D/c line	
(1200MW) (State Sector)	2. Malwa TPH -	Julwania 400 kV D/c line (one ckt via Chhegaon)	
		Julwania 400 kV D/c line	
		Chhegaon 200 kV D/c line	
	5. Pitampur(400	0kV)- Pitampur(220kV) inter-connection	
	6. LILO of both of S/S	ckts of 220kV Nimrani – Julwanai at Julwania400kV	
	Table No :	WR-MP-09	
Satpura Ext TPP U-10,11 (500MW)	Satpura TPI	H - Ashta 400 kV D/c line	
(State Sector)	2. Astha – Indo	ore-II(Jetpura) 220kV S/c on D/c	
	3. Astha New	400/220kv S/s (630MVA)	
	4. Astha (add t	ransformer) 220/132kV S/S (160 MVA)	
Table No : WR-MP-10			
Essar Power MP Ltd. (Mahan Phase II) (600 MW) (Private Sector)		f Mahan TPS phase-1 generation project to proposed oct switchyardalong with 1x125MVAR bus rector	

	Table No: WR-MH-01
Mauda STPS- I (2X500) MW	1. Mauda STPS- Wardha 400 kV D/c (Quad)
(Central sector)	2. Extn. Of 400/220 kV Wardha S/s
	Table No: WR-MH-02
Mauda STPS- II (2X660) MW	1. Mauda -II- Betul 400 kV D/c (Quad)
(Central sector)	2. Betul – Khandwa 400kV D/C (quad)
	3. Khandwa – Raigarh 400kV D/C (2 nd)
	4. 400/220 kV ,2x315 MVA S/S at Betul
	Table No: WR-MH-03
Tiroda Adani Ph-1,Ph -II	1. Tiroda (Gondia) - Warora 400 kV D/c line (quad)
(1320MW+1320MW)	2. Tiroda-Koradi III 765 kV 2xS/c line
(Private Sector)	3. Koradi-III - Akola-II 765 kV 2xS/c line
	4. Akola-II - Aurangabad II 765 kV 2xS/c line
	5. 2x1500 MVA, 765/400 kV ICT at Tiroda (Gondia)
	6. Aurangabad II-Aurangabad (PG) 765kV S/C(with D/C towers)
	7. Aurangabd(II) 765/400 kV Substation with 2x1500 MVA
	Table No: WR-MH-04
IndiaBulls Realtech Ltd(Nasik)	1. Sinnar – Nasik 400kV D/C
Ph- 1& II (5x270 +2x270) MW (Private	2. Sinnar – Bableshwar 400kV D/C line
Sector)	
	Table No: WR-MH-05
India Bulls- Amaravati-Nandagaonpet	1. Nandagaonpet-Akola-I 400 KV D/c Line (Quad)
Ph- 1& II (5x270 +2x270) MW	2. LILO of Akola-I- Koradi-I 400kV S/c line at Nandgaonpet
(Private Sector)	
	Table No: WR-MH-06
Ideal power (Bela TPP)	LILO of one ckt of 400 kV Koradi-II - Wardh (PG) at M/s Ideal
(540MW) (Private Sector)	Energy
	Table No: WR-MH-07
Dhariwal Infrastructure(600 MW) U-1,2 (Private Sector)	1. Dhariwal – Chandrapur- II 400kV D/C line (for U -1)
(2. LILO of one ckt of Bhadrawathi(PG) - Parli 400 KV D/c line at Dhariwal TPS (for U -2)
	Table No: WR-MH-08
EMCO-Warora, Maharashtra (600 MW) (Private Sector)	EMCO-Bhadrawathi(PG) 400 kV D/c line

	Table No: WR-MH-09
David (Davida composit) LLQ (OFONNA)	
Parli (Replacement) U-8 (250MW) (State Sector)	1. Parli-Nanded 220kV D/C line
(State Sector)	2. LILO of 220kV Parli GCR-Beed at Parli D/C line
	Table No: WR-MH-10
Koradi(1980 MW)	1. Koradi-II – Koradi-III 400 kV quad D/C line
(State Sector)	2. 7X167MVA,400/220 kV S/s at Koradi-II
	Table No: WR-MH-11
Chandrapur II TPS (1000MW)	1. LILO of both circuits of Chandrapur - Parli 400kV D/C at
(State Sector)	Chandrapur-II (that is LILO of 2 circuits out of 3)
	2. Chandrapur-II – Warora – Wardha PG 400kV quad D/C
	3. 2x500 MVA, 400/220 kV S/s at Chandrapur-II
Dharana (1000 MMM) (Chaha Cantan)	Table No: WR-MH-12
Dhopave(1600 MW) (State Sector)	 Dhopave – Padghe-II 400kV quad D/C line LILO of both circuits of Jaigarh-New Koyna 400kV quad D/C
	at Dhopave
	Table No: WR-MH-13
Uran CCPP (1040MW)	1. Upgradation of Uran-Apta 220kV 2X D/C line with ACCC TW
Private Sector	620 sq mm conductors
	2. Uran-Kharghar 220kV D/C line
OFDL (Ounte Francis Del 141) TDB 11	Table No: WR-MH-14
GEPL (Gupta Energy Pvt. Ltd.)TPP U- 1&2 (2x60) MW	 GEPL – MIDC 220kV D/C line LILO of one circuits of Bhadrawati – Parli 400kV line at GEPL
(Private Sector)	TPS with 1x80MVAR reactor
(a.s costs.)	Table No: WR-MH-15
NPCIL Jaitapur (3480MW)	Jaitapur - Kolhapur 765 kV D/C line. (connectivity)
(Central Sector)	Table No: WR-MH-16
limbhaniah Darray Cara Dat Ltd	
Jinbhuvish Power Gen Pvt Ltd (600 MW) Private Sector	LILO of one ckt of 400kV Wardha-Parli D/C line (connectivity)
	Table No: WR-MH-17
Hindustan Electricty Gen Company Ltd (HEGCL) (1137 MW) Private Sector	HEGCL - Pune (GIS) 400 kV D/C line (connectivity)
	Table No: WR-CG-01
Sipat-I(1980MW)	1. Sipat-Seoni 765kV S/c Line-1
(Central sector)	2. Sipat-Seoni 765kV S/cLine-2
	3. Seoni-Khandwa 400 kV D/C (Quad AAAC)
	4. LILO of one ckt of Korba STPS-Raipur at Sipat 400 kV D/C
	5. LILO of Bhilai-Satpura S/C line at Seoni 400 kV D/C
	6. Nagda-Dehgam 400 kV D/C
	0 0
	7. LILO of both ckt of S.Sarovar-Nagda D/C at Rajgarh 400 kV 2XD/C
	8. Seoni S/S 765/400 kV (7x500 single phase units)
	9. Seoni 400/220 kV 2x315 MVA S/S
	10. Rajgarh 400/220 kV 2x315 MVA S/S
	Table No: WR-CG-02
Dedicated Transmission System for Con	eraion projects in Raigarh complex near Kotra [RKM Powergen
	td, Avanta BhandarTPP, Athena Chhattisgarh Power Ltd.
RKM Powergen Ltd (Uchpanda TPP) (4x360MW)	RKM Powergen – Raigarh Pooling Station(near Kotra) 400kV D/c(Quad)

SKS Ispat & Power Ltd (4x300MW)	SKS Ispat - Raigarh Pooling Station (near Kotra) 400kV
(Darrampura TPP)	D/c(Quad)
DB Power Ltd(2x600 MW)	DB Power – Raigarh Pooling Station (near Kotra) 400kV D/c (Quad)
Avantha Bhandar (Korba West) TPP (2x600MW)	Korba West – Raigarh Pooling Station (near Kotra) 400kV D/c line
Athena Chhattisgarh Power Ltd. (2x600MW) (Private Sector)	Athena Chhattisgarh – Raigarh Pooling Station(near Kotra) 400kV D/c(Quad)
Cosmos Sponge & Power Ltd. (CSPL) (350 MW)	CSPL TPS - Raigarh Pooling Station (Near Kotra) 400kV D/c along with 1x80MVAR bus reactor (connectivity)
Visa Steel Ltd. (450 MW)	Visa Steel TPS - Raigarh Pooling Station (near Kotra) 400kV D/c along with 1x80MVAR bus reactor (connectivity)
	Table No: WR-CG-03
Dedicated Transmission System for GMI	R Chattishgarh Energy Pvt. Ltd(Raipur complex) (2X685MW)
GMR Chattishgarh Energy Pvt. Ltd	GMR Chattishgarh - Raipur Pooling station 400 kV D/C line
	(quad) Table No: WR-CG-04
Power Ltd (2400MW), Karnataka Power M B Power(Chhattisgarh)(1320 MW)]	neraion projects in Champa complex [Akaltara(KSK Mahanadi) Corp Ltd.(KPCL) (1600MW), Lanco Amarkantak Power(1320MW),
Akaltara(KSK Mahanadi) Power Ltd (4x600MW)	Wardha Power (KSK Mahanadi) – Champa Pooling Station 400kV 2xD/c (Quad)
Karnataka Power Corp Ltd.(KPCL) 1600MW)	KPCL – Champa Pooling Station 400 kV D/C
Lanco Amarkantak Power (1320MW) (U- 3, 4)	Lanco - Champa Pooling Station 400kV D/c (Quad)
M B Power (Chattisgarh) Ltd(2x660 MW)	M B Power - Champa Pooling Station 400kV D/c (Quad) (connectivity)
	Table No: WR-CG-05
	an Coal Beneficiaries Ltd., Dheeru Powergen and PTC India
Aryan Coal Benefications Pvt. Ltd.	Power Ltd. at WR Pooling Point (Bilaspur) 1. Aryan Coal – WR Pooling Point (Bilaspur) 400kV D/C
(1200MW)	
Dheeru Powergen and PTC India(450+600MW)	Dheeru Powergen-WR Pooling Station(Bilaspur) 400kV D/C(high capacity)
(Private Sector)	2. Two nos of 400kV bays at WR Pooling Station(Bilaspur)
Spectrum Power (100MW) (Private Sector)	Interconnecton of Spectrum Generation with Aryan Coal Benefications Pvt. Ltd.
Maruti Clean Coal & Power Ltd. (300MW) (Private Sector)	Maruti Clean Coal – WR Pooling Point (Bilaspur) 400kV D/C
(Coomity) (Frivate Sector)	Table No: WR-CG-06
	Jindal Power, TRN Energy Ltd (600MW), Sarda Energy & ew Urja Ltd (JNUL) (600MW)
Raigarh Ph-III(4x600MW)	Jindal Power – Raigarh Pooling Station (near Tamnar) 400kV
(Jindal Power Ltd)	2xD/c (Quad)
TRN Energy (2x300 MW)	TRN Energy- Raigarh Pooling Station (near Tamnar) 400kV 2xD/c (Quad)
Sarda Energy & minerals(SEML) (350 MW)	Sarda Energy– Raigarh Pooling Station (near Tamnar) 400kV D/c line
Jayaswal New Urja Ltd(JNUL)	JNUL- Raigarh Pooling Station (near Tamnar) 400kV D/c line Table No: WR-CG-07
Dedicated Transmission System for Bald	co Ltd (600MW), Vandana Vidhyut Ltd. (540 MW)
Balco Ltd (2x300MW) (Private Sector)	Balco – Dharamjaygarh Pooling Station 400kV D/c (Triple)
, , ,	Vandana Vidyut – Dharamjaygarh Pooling Station 400 kV D/C
Vandana Vidyut Ltd. (4x135MW) (Private Sector)	line
	Table No: WR-CG-08
Combined ATS for Generation Projects located in Raigarh Complex near	Raigarh Pooling Station (near Kotra) - Raipur Pooling station 765 kV D/C line.

Kotra, Raigarh complex near Tamnar, Champa complex and Raipur complex	2. Raigarh Pooling Station (near Kotra) - Raigarh (existing) 400 kV D/C (to be kept open at a later date).		
of Chhattisgarh-Part-A	3. Raipur Pooling Station – Raipur (existing) 400 kV D/C line (to be kept open at a later date).		
	4. Establishment of 765/400kV 4x1500MVA Raigarh Pooling Station (near Kotra).		
	Establishment of 765/400kV 1x1500MVA Raipur Pooling Station		
	Table No: WR-CG-09		
Combined ATS for Generation Projects	Champa Pooling station- Raipur Pooling station 765 kV D/C		
located in Raigarh Complex near	line.		
Kotra, Raigarh complex near Tamnar, Champa complex and Raipur complex	2. Raigarh Pooling station (near Kotra) - Raigarh Pooling station (near Tamnar) 765 kV D/C line.		
of Chhattisgarh-Part-B	3. Champa Pooling Station – Dharamjaygarh/Korba 765kV S/c line.		
	4. Raigarh Pooling Station (near Kotra) – Champa Pooling Station 765kV S/c line.		
	5. Establishment of 765/400kV 6x1500MVA Champa Pooling Station		
	Establishment of 765/400kV 3x1500MVA Raigarh Pooling Station(near Tamnar)		
	Table No: WR-CG-10		
Combined ATS for Generation Projects	Raipur Pooling Station – Wardha 765kV D/c line		
located in Raigarh Complex near Kotra, Raigarh complex near Tamnar,			
Champa complex and Raipur complex of Chhattisgarh-Part-C			
or ormanogam r are o	Table No: WR-CG-11		
Combined ATS for Generation Projects	1. Wardha – Aurangabad (PG) 765kV D/c line.		
located in Raigarh Complex near Kotra, Raigarh complex near Tamnar,	Aurangabad(PG) – Boisar / Kharghar 400kV D/c (Quad) line.		
Champa complex and Raipur complex	Augmentation of transformation capacity by 400/220kV, 1x500 MVA transformer at Boisar		
of Chhattisgarh-Part-D	Establishment of 765/400kV 2x1500MVA Aurangabad (PG) S/s		
	Table No: WR-CG-12		
Combined ATS for Generation Projects	1. Aurangabad (PG) – Padghe(PG) 765kV D/c line		
located in Raigarh Complex near Kotra, Raigarh complex near Tamnar,	2. Padghe (PG) – Padghe(MSETCL) 400kV D/c (Quad) line.		
Champa complex and Raipur complex	3. Vadodara – Asoj 400kV D/c(Quad) line.		
of Chhattisgarh-Part-E	4. Establishment of 765/400kV, 2x1500MVA Padghe(PG) S/s [GIS Substation]		
	Table No: WR-CG-13		
Combined ATS for Generation Projects	Raipur Pooling Station – Wardha 765kV 2nd D/c line		
located in Raigarh Complex near Kotra, Raigarh complex near Tamnar, Champa complex and Raipur complex			
of Chhattisgarh-Part-F			
Table No: WR-CG-14			
Combined ATS for Generation Projects located in Raigarh Complex near	Wardha – Aurangabad (PG) 765kV 2nd D/c line		
Kotra, Raigarh complex near Tamnar, Champa complex and Raipur complex of Chhattisgarh-Part-G			
or ormattiogarii i art o	Table No: WR-CG-15		
Combined ATS for Generation Projects	1. A ±600kV, 4000MW HVDC bipole between Raigarh Pooling		
located in Raigarh Complex near	Station(near Kotra) and Dhule(PG) along with metallic return		
Kotra, Raigarh complex near Tamnar,	2. Dhule(PG) – Dhule(IPTC)* 400kV 2xD/c high capacity		
Champa complex and Raipur complex	conductor.		
of Chhattisgarh-Part-H	3. Dhule(PG) – Nasik 400kV D/c(Quad)		

	A DistriBO) Materia (4001)// D/r/O (1)
	4. Dhule(PG) – Malegaon 400kV D/c(Quad)
	5. Establishment of 4000MW ±600kV HVDC bipole terminal each at Raigarh Pooling station(near Kotra) and Dhule(PG) along with 400kV AC Station
	6. Installation of 400/220kV, 2x315MVA transformer at Dhule(PG)
	Table No: WR-CG-16
Combined ATS for Generation Projects located in Raigarh Complex near Kotra, Raigarh complex near Tamnar,	A ±800kV, 6000 MW HVDC bipole between Champa Pooling Station (WR) – near Kurushetra (NR) in Haryana with metallic return (initially to be operated at 3000 MW).
Champa complex and Raipur complex of Chhattisgarh-Part-I	2. Establishment of 3000 MW, ±800 kV HVDC bipole terminal each at Champa pooling station and near Kurushetra in
	Haryana with provision to upgrade the terminals to 6000 MW. 3. Kurukshetra(NR) - Jallandhar 400kV D/c(Quad) line (one ckt. via 400/220kV Nakodar S/s).
	LILO of Abdullapur – Sonepat 400kV D/c(triple) at Kurukshetra
	5. Establishment of 400/220kV, 2x500 MVA S/s at Kurukshetra
	6. Establishment of 400/132kV, 2x200 MVA S/s at Champa Pooling Point
	Table No: WR-CG-17
System Strengthening in WR for	1. Indore - Vadodara 765kV S/c
Generation Projects in MP and Chhattisgarh (being pooled at Bilaspur	2. Vadodara – Pirana 400kV D/c(Quad)
Pooling Station)	3. Establishment of 765/400kV 2x1500MVA Vadodara substation
	Table No: WR-CG-18
System Strengthening in WR for	1. Jabalpur – Bhopal -Indore 765kV D/c (quad bersimis)
Generation Projects in Western Region	2. Aurangabad – Dhule- Vadodara 765kV D/c (quad bersimis)
	3. Bhopal (PG) -Bhopal (MPTCL) 400kV D/C quad line
	4. Dhule (PG) – Dhule (MSETCL) 400kV D/C quad line
	Table No: WR-CG-19
Swastik TPP U-1(25 MW) (Private Sector)	LILO of Korba – Mopaka 132KV line at Swastik TPP
	Table No: WR-CG-20
Ratija TPP (50 MW) (Private Sector)	Ratija – Kasaipalli 132KV D/C line
	Table No: WR-CG-21
MARWA CSEB (2x500 MW)	1. Marwa-Raipur(Raita) 400 kV D/c line
State Sector	2. LILO of One ckt of Korba(W) – Khedamara 400 kV D/c line at Marwa
	3. Marwa- Banari 220kV DCDS
	Table No: WR-CG-22
Korba(W)St-III , U-5(500MW) (State Sector)	LILO of 400 kV Korba(West)- Khederma(Bhilai)_ at Raipur DCDS (Raita)
	2. Korba (West) - Khedamara DCDS 400 kV DCDS (Raita) line
	3. Raipur (Raita) 400/220kV S/S (2x315 MVA)
	Table No: WR-CG-23
System Strengthening in WR common	1. Jabalpur -Bina 765kV S/c line
for Western Region and Northern Region	2. Jabalpur – Dharamjaygah 765kV D/c

ANNEX - 7.3

SOUTHERN REGION -TRANSMISSION SCHEME DETAILS

Southern Region – S	system Strengthening Schemes:
-	Table No : SR-IS-01
System	1. Establishment of new 400/220 kV substation at Yelahanka with 2x500 MVA
Strengthening in	transformers and 1x63 MVAR bus reactor
SR-XII	2. LILO of Nelamangla-Hoody 400kV S/c line at Yelahanka 400kV S/S
	3. LILO of Somanahalli -Hoody 400kV S/c line at Yelahanka 400kV S/S
	Table No : SR-IS-02
System	1. 400/220kV substation at Madhugiri, provision of
Strengthening in	upgrading this S/S to 765kV level
SR-XIII	2. Gooty – Madhugiri 400kV D/C line
OH XIII	Madhugiri – Yelahanka 400kV D/C Quad line
	Table No : SR-IS-03
Cyatam	-
System	1. Salem (New) – Somanahalli 400kV Quad D/C line.
Strengthening in	2. 1x315 MVA 400/220kV Transformer Augmentation at Hosur 400/230 kV S/S
SR-XIV	T. I.I. N. OD 10 04
	Table No : SR-IS-04
System	North Trissur – Kozhikode 400kV Quad D/C line
Strengthening in	
SR-XV	
	Table No : SR-IS-05
System	Hosur –Electronic City 400kV D/C line
Strengthening in	(This line could be built using Right of Way of the existing Peenya –Singarapet
SR-XVI	220kV line(presently Yerandahally –Hosur line). This right of way could be used
	by building multi-circuit towers and/or dismantling part of the line depending upon
	practicability after discussion with beneficiaries)
	2. Bay extension at 400/220kV Hosur(PG) and Electronic City(KPTCL)substations.
	Table No : SR-IS-06
System	1. New 400kV substation each at Narendra (GIS) and Kolhapur (GIS)(which shall be
Strengthening in	later upgraded to 765kV):
SR-XVII	2. Narendra (GIS)-Kolhapur (GIS) 765kV D/C line (initially charged at 400kV)-about
0117111	200kms;
	3. LILO of both circuits of existing Kolhapur –Mapusa 400kV D/C line at
	Kolhapur(GIS)- about 50kms;
	Narendra (GIS)- Narendra (existing) 400kV D/C Quad line –about 20kms.
	Table No : SR-IS-07
Custom	
System	
Strengthening in SR-XVIII	ends of each ciruit.
_	2. Nellore - Thiruvalam 400 kV D/C Quad line with 1x50 MVAR line reactors at
(Vijaywada Nellore-	both ends of each circuit.
Thiruvalam-	3. Thiruvalam – Melakottaiyur 400 kV D/C line
	4. LILO of existing Bangalore – Salem 400 kV S/C line at Hosur
Sholinganallur	
Corridor)	Table No : CD IC 00
0 1	Table No : SR-IS-08
System	1. Kurnool – Thiruvalam 765 kV D/c line line with 1x240 MVAR line reactors at
Strengthening	both ends of each circuit.
in SR-XIX	2. Provision of 2x1500 MVA, 765/400kV transformers at Thiruvalam.
(Kurnool-	3. LILO of Kolar – Sriperumbudur 400 kV S/c line at Thiruvalam.
Thiruvalam	
Corridor)	
	Table No : SR-IS-09
HVDC Bipole	1. Establishment of a New Pugalur HVDC terminal (2500 MW) S/S having
Strengthening in	provision of 400kV S/S and upgradable to 765kV at later date.
Southern Region	
-	2. HVDC terminal (2500 MW) at Hyderabad (PG)
	3. New Pugalur – Hyderabad HVDC bipole of ± 500kV, 2500 MW

	4. New P	ugalur – Udumalpet 400kV quad D/C line
	5. New P	ugalur – Pugalur 400kV quad D/C line
	6. New P	ugalur HVDC – Tuticorin Pooling Station 400kV Quad D/c line
	7. New H	lyderabad HVDC - Hyderabad (765/400kV PG S/S) 400kV quad 2xD/C
	line	
	8. New H	yderabad HVDC – Kurnool (765/400kV PG S/S) 400kV quad D/C line
		Table No : SR-IS-10
System	1. Srikaku	lam PP- Vemagiri –II Pooling Station 765kV D/C line
Strengthening in	2. Khamm	am (new)- Nagarjunr Sagar 400kV D/C line
SR for import of		
power from ER		

Southern Region - Evacuation Schemes:

	Table No : SR-AP-01	1
Dedicated Transmission System for Krishna Meenakshi(1000MW), Krishnapatnam Pow Powertech(1980MW), NCC Power (1320 M	ver (Navayuga)(1320ľ	MW), Kineta Power(1980MW), Thermal
Simhapuri(600 MW) /Meenakshil &II(300+700 MW)		Simhapuri/Meenakshi –Nellore 400 kV D/C (quad) line alongwith associated bays
Thermal Powertech (Painampuram) TPP(3x660MW)		Thermal Powertech generation switchyard – Nellore Pooling station 765 kV 2xS/c line alongwith associated bays
Krishnapatnam Power (Navayuga) (1320 MW)		Krishnapatnam Power (Navayuga)generation switchyard – Nellore Pooling station 765 kV 2xS/C line alongwith associated bays
Kineta Power(1980 MW)		Kineta Power generation switchyard – Nellore Pooling station 765 kV 2xS/c line alongwith associated bays
NCC Power (1320 MW)		NCC Generation Switchyard –Nellore Pooling Point 400 kV D/C (quad) line
VSF Projects Ltd.(350 MW)		Generation Switchyard –Nellore Pooling Point 400 kV D/C line
	Table No : SR-AP-02	2
Common transmission systerm for Krishnapattanam LTOA Power Projects[Simhapuri(570MW), Meenakshi(900MW), Krishnapatnam Power (Navayuga)(1320MW), Kineta Power(1980MW), Thermal Powertech(1980MW), NCC Power (1320 MW)]		Establishment of 765/400 kV Nellore Pooling Station with 2X1500MVA transformer capacity
		LILO of Simhapuri-Nellore 400 kV D/C quad line at Nellore Pooling station
		3. Nellore Pooling Station – Kurnool 765 kV D/c line.
		4. Kurnool – Raichur 2nd 765 kV S/C line (1st line under Krishnapatnam UMPP).
	Table No : SR-AP-03	3
Transmission system associated with Krishnapatnam –Part A and Part C (Delinked with Krishnapatnam UMPP, being implemented as System		Pooling Point (earlier as Krishnapattnam e) 400 kVQuad D/C line
Strengthening scheme)	2. Nellore Pooling Point –Gooty (earlier as Krishnapatnam UMPP- Gooty) 400 kV Quad D/C line with 63MVAR line reactors at each end on both circuits.	

Part-C 1. Establishment of new 765/400 kV substation at Kurnool with 2x 1500 MVA ICTs and 1x 240 MVAR bus reactors . 2. LILO of Nagariuna Sagar - Gooty 400 kV S/C line at Kurnool (New) substation. 3. Kurnool(new)-Kurnool (APTRANSCO) 400 KV D/C QUAD 4. Krishnapattnam UMPP - Kurnool (New) 400kV, Quad D/C line with 50MVAR line reactor at each end on both circuits. (DEFFERED) Kurnool (New) - Raichur 765kV S/C line (DEFFERED) Table No : SR-AP-04 Part-B Transmission system associated with Krishnapatnam -Part B 1. Establishment of new 765/400 kV substation at , Raichur (Delinked with Krishnapatnam UMPP, and Sholapur with 2x 1500 MVA ICTs and 1x 240 MVAR bus being implemented as System reactors at each S/S Strengthening scheme) 2. Establishment of new 765/400 kV substation (GIS) at Pune with 2x1500 MVA transformation capacity 3. LILO of existing Raichur-Gooty 400kV Quad D/C line at Raichur(New) substations 4. Raichur - Sholapur 765 kV S/c with 240 MVAR switchable line reactors at each end 5. Sholapur – Pune 765 kV S/c with 240 MVAR switchable line reactors at each end 6. LILO of Aurangabad- Pune 400 kV D/C at Pune(GIS) with 50 MVAR line reactor at Pune (GIS) 7. LILO of Parli-Pune 400 kV D/C at Pune (GIS) with 50 MVAR line reactor at Pune (GIS). Table No : SR-AP-05 Dedicated System for East Coast Energy(1320MW) (Private Sector) East Coast Energy- Bhavanapadu TPP Generation would be stepped up at 400kV. (1320 MW) 2. Bus reactor of 1x125MVAR at generation switchyard East Coast Energy generation switchyard – Srikakulam Pooling Station 400kV D/C Quad line alongwith associated bays Table No: SR-AP-06 Establishment of 765/400kV Pooling Station in Common transmission system LTOA Projects in Srikakulam area[East Coast Srikakulam area with 2x1500 MVA 765/400kV Energy Pvt. Ltd. project(1320 MW)] transformer capacity Srikakulam Pooling station – Angul 765 kV D/C line(Initially Charged at 400kV) 765/400kV 1x1500 MVA transformer at Angul Angul - Jharsuguda 765 kV D/C line Jharsuguda - Dharamjaigarh 765 kV D/C line Associated 400 kV and 765kV bays at Srikakulam Pooling station, Angul, Jharsuguda and Dharamjaigarh 765/400kV S/Ss. Table No: SR-AP-07 Dedicated Transmission System for IPP Projects in vemagiri area[(Spectrum Power(1400 MW), Reliance(2400 MW), GVK Gautami Power Ltd (800 MW), GVK Power (Jegurupadu) Pvt Ltd (800 MW), GMR Energy), RVK energy(360 MW)] GMR Energy (768 MW) 1. Generation would be stepped up at 400kV. Bus reactor of 1x80 MVAR to be provided at the generation project (Private sector) switchyard 2. GMR Energy switchyard - Vemagiri -II Pooling Station 400 kV D/C (quad) line Spectrum Power(1400 MW) 400 kV quad D/c line to Vemagiri-II pooling station (Private sector) 125 MVAR Bus Reactor at generation switchyard 2.

Reliance Infrastructure Ltd.(2400 MW)	1. 400 kV quad 2xD/c line to Vemagiri-II pooling station
(Private sector)	2. 2x125 MVAR Bus Reactor at generation switchyard
GVK Gautami Power Ltd (800 MW)	Bus extn of the existing switchyard
	2. 400 kV D/c line to Vemagiri-II pooling station
	3. 80 MVAR Bus Reactor at generation switchyard
GVK Power (Jegurupadu) Pvt Ltd (800	Bus extn of the existing switchyard or LILO of one of the existing 400 kW D/s line at new switchyard.
MW)	existing 400 kV D/c line at new switchyard 2. 400 kV D/c line to Vemagiri-II pooling station
	3. 80 MVAR Bus Reactor at generation switchyard
RVK Energy (Rajamundry) Pvt	RVK Energy switchyard – Vemagiri –II Pooling Station
Ltd(360MW)	400 kV D/C line
	Table No : SR-AP-08
Common Transmission System for IPP	1. Establishment of 765/400kV GIS Pooling station at
Projects in vemagiri area[(Spectrum	Vemagiri with 4x1500 MVA transformer with
Power(1400 MW), Reliance(2400 MW),	sectionalisation arrangement to control short circuit MVA
GVK Gautami Power Ltd (800 MW), GVK	2. LILO of Gazuwaka – Vijayawada 400kV S/c line at
Power (Jegurupadu) Pvt Ltd (800	Vemagiri Pooling Station for initial integration with SR
MW),GMR Energy)]	grid and which later shall be bypassed
	3. Establishment of 765/400kV GIS Pooling station at
	Khammam with 2x1500MVA transformers each and
	400kV operation of Khammam S/s
	4. Hyderabad 765/400 kV S/s – Hyderabad (existing) 400 kV D/c (quad) line
	5. Khammam 765/400 kV S/s – Khammam (existing) 400
	kV D/c (quad) line
	6. Vemagiri Pooling Station – Khammam 765kV 2xD/c
	line(initally charged at 400kV)
	7. Khammam – Hyderabad 765 kV 2xD/c line(initally charged at 400kV)
	8. Hyderabad – Wardha 765 kV D/c line
	9. Wardha – Jabalpur Pooling station 765 kV D/c
	10 Establishment of 765/400kV GIS Pooling station at
	Hyderabad with 2x1500MVA transformers each
Т	able No : SR-AP-09
Hinduja Vizag(1040 MW) (Private Sector)	Generation switchyard- Vemagiri-II PP 400kV D/C Quad line
Т	able No : SR-AP-10
Lanco Kondapally St-III (Private Sector)	Lanco - Vijaywada 400kV D/C line (existing)
Т	Table No : SR-AP-11
Rayalseema St -III (U-6) (State Sector)	RSTPP Generation Switchyard- Chittoor 400 kV D/C line
Т	Table No : SR-AP-12
Pulichintala(2x30MW)(State Sector)	1. 132Kv Pulichintala HEP-Chillakallu DC line
, , , , ,	2. 132Kv bay extensions at Chillakallu
Т	able No : SR-AP-13
Lower Jurala U1-6(6X40MW)(State Sector)	220Kv Lower Jurala HEP switchyard-220/132Kv Jurala S/S D/C line
	2. 400Kv Veltoor -220Kv Jurala S/S ,220Kv D/C line
т	Table No : SR-AP-14
Sri Damodaram Sanjeevaiah TPP	Krishnapattnam - Nellore 400kV Quad D/C line
(Krishnapatnam TPP) (2X800MW)(State	Krishnapattnam - Chittoor 400kV Quad D/C line
Sector)	2. Talermapatinam offittoor Foota Quad D/O mile

Table No : SR-KA-01			
Torangallu Jindal U3(300MW)	1. Torangallu JSW -Gooty 400kV D/C line		
(Private Sector) 2. LILO of RTPS- Guttur at Thorangallu JSW S/S			

Gundia HEP(2X200MW)(State Sector)	LILO of one of D/C line b/w Nandikur(Nagarjuna TPP) near Udupi and Hasan to evacuate power of Gundia Power house		
	2. Step up voltage for Gundia HEP as 400kV		
	Table No : SR-KA-03		
Yeramarus (1600 MW)	Edlapur TPS - Yermarus TPS S/S 400 kV DC Twin moose line		
(State Sector) Edlapur(800MV (State Sector)	The existing Raichur TPS – Davangere 400kV SC line to be converted to 400kV DC line with QUAD conductors along with shifting of Raichur termination point to Yeramaras TPS switchyard.		
	3. BTPS – Hiriyur (under construction) 400 kV DC twin line		
	4. BTPS – Madhugiri(Tumkur) – 400 kV Quad DC line		
System for additional inter- connection with ISTS and increased reliability:	Yeramarus TPS – Raichur (New) 400kV Quad DC line		
-	Table No : SR-KA-04		
Kudgi Phase-I	1. Kudgi TPS – Narendra (New) 400 kV 2xD/C quad lines		
(3×800 M/M)	2. Narendra (New) – Madhugiri 765 kV D/c line		
	3. Madhugiri – Bidadi 400 kV D/c (quad) line.		
	Table No : SR-KA-05		
Surena Power Ltd. (420 Surena Generation Switchyard – Raichur 400kV D/c line MW)			

Table No : SR-KE-01				
Thottiar HEP(2X80MW)	0MW) (State Sector) 1. Generation to be stepped up to 220kV for evacuation			
		2.	Upgrading the existing 110kV Kodakara S/S to 220kV	
		3.	220kV D/C line from switchyard to Kodakara S/S	
		4.	LILO of Idukki-Kozikode 220kVS/C line Kodakara	
Table No : SR-KE-02				
Pallivasal HEP (60 MW) (State Sector) 1. Evacuation at lower level (existing)				

Tab	ole No : SR-TN-01		
Tuticorin JV(500 MW) (Central Sector)	Tuticorin – Madurai 400kV D/c line (Quad conductor)		
Table No : SR-TN-02			
Barath Power (Madras) Ltd. Project(1320MW)]	Power Projects[(Coastal Energen Pvt. Ltd. Project(1200MW), Ind-		
Coastal Energen Pvt. Ltd. Project(Melamuruthur	Generation would be stepped up at 400kV		
TPP) (2x600MW)	Coastal Energen generation switchyard –Tuticorin Pooling Station 400kV D/C Quad line alongwith associated bays		
Ind-Barath Power (Madras) Ltd. Project(1320MW)	Generation would be stepped up at 400kV		
	Ind-Barath Power generation switchyard –Tuticorin Pooling Station 400kV D/C Quad line alongwith associated bays		
Tab	ole No : SR-TN-03		
Common Transmission System for Tuticorin LTOA Power Projects[(Coastal Energen Pvt. Ltd. Project(1200MW), Ind-Barath Power (Madras) Ltd. Project(1320MW)]	 Establishment of 765 kV Pooling station in Tuticorin (initially charged at 400 kV) LILO of both circuits of Tuticorin JV – Madurai 400 kV D/C Quad line at Tuticorin Pooling Station Salem Pooling Station – Salem 400 kV D/C (quad) line. Tuticorin Pooling station – Salem Pooling station 765 kV D/C line (initially charged at 400 kV) Salem Pooling Station – Madhugiri Pooling Station 765 kV S/C line (initially charged at 400 kV) Associated 400 kV bays at Tuticorin Pooling station, Salem Pooling Station, Salem and Madhugiri. Establishment of 765 kV Pooling station in Salem (initially charged at 400 kV) 		

Table No : SR-TN-04		
Immediate Evacuation for ISGS Projects in Nagapattinam and Cuddalore Area of tamilnadu [(NSL		
	erating Company (1080 MW), IL & FS(1200 MW), PEL Power	
(1050 MW), Chettinad powert(1320)](Private	te Sector)	
NSL Nagaattinam(1320 MW)	Generation-Switchyard-Nagapattinam Pooling station	
	400kV D/c quad or HTLS line	
	125 MVAR bus reactor at generation switchyard.	
PPN Power Generating Company (1080 MV		
	station 400kV D/c line	
	2. 80 MVAR bus reactor at generation switchyard.	
PEL Power Ltd(1050 MW)	Generation-Switchyard-Nagapattinam Pooling	
	station 400kV D/c quad line	
	125 MVAR bus reactor at generation switchyard.	
IL&FS Tamil Nadu power company Ltd(120		
MW)	station 400kV D/c quad line	
	125 MVAR bus reactor at generation switchyard.	
Chettinad power Corporation Ltd. (1320 MW		
	station 400kV D/c quad line	
	2. 125 MVAR bus reactor at generation switchyard.	
	Table No : SR-TN-05	
Common Transmission system for ISGS	1. New 765/400kV Pooling Station at Nagapattinam	
Projects in Nagapattinam and Cuddalore	(GIS)with sectionalisation arrangement to control short	
Area of Tamilnadu	circuit MVA (initially charged at 400kV)	
	2. LILO of Neyveli – Trichy 400kV S/c line at Nagapattinam	
	Pooling Station for initial arrangement which later shall be	
	bypassed –about 20kms	
	3. 2 nos. 400kV bays each at Nagapattinam Pooling Station	
	and Salem for terminating Nagapattinam Pooling Station –	
	Salem 765kV D/C line (initially charged at 400kV)being	
	implemented under Tariff based bidding	
	4. 1 no. 400kV bay each at Salem and Madhugiri for	
	terminating Salem- Madhugiri 765 kV S/C line -2(initially	
	charged at 400kV) being implemented under Tariff based	
	bidding	
	5. 2 nos. 400kV bays each at Madhugiri and Narendra for	
	terminating Madhugiri – Narendra 765kV D/C line (initially	
	charged at 400kV) being implemented under Tariff based	
	bidding 6 2 pag 400kV bays each at Kahlanur, Badaha & Buna far	
	6. 2 nos. 400kV bays each at Kohlapur ,Padghe & Pune for terminating Kohlapur- Padghe 765kV D/C line (one circuit	
	via Pune) (initially charged at 400kV) being implemented	
	7. Nagapattanam Pooling Station- Salem 765kV D/c line	
	8. Salem – Madhugiri 765kV S/c line	
	9. Madhugiri-Bangalore 400kV D/c quad line	
-	Table No : SR-TN-06	
RegenPowertech Pvt ltd. (600 MW)	Regen Pooling Station Pugalur 230kV D/C (twin Moose) line	
riegenrowerteur ryt ita. (600 ivivv)	(connectivity)	
-	Table No : SR-TN-07	
Udangudi(1600MW)(State Sector)	1. Udangudi TPS - Karaikudi 400 kV D/C Quad line	
Guarigual (1000lvivv)(Glate Geolor)	Udangudi TPS - Karaikudi 400 kV D/C Quad line Udangudi TPS - Kayathar 400 kV D/C Quad line	
-	Table No : SR-TN-08	
Kalapakkam PFBR (500MW)		
(Central Sector)	Kakapakkam – Arni 230 kV D/C line Kakapakkam PFBR– Kanchepuram 230 kV D/C line	
(Gentral Geolor)		
	3. Kakapakkam PFBR –Siruchri 230 kV D/C line	
	4. Kakapakkam – MAPS 230 kV S/C cable	

ANNEX – 7.4

EASTERN REGION -TRANSMISSION SCHEME DETAILS

Eastern Region – System Strengthening Schemes:

Table No: ER-IS-01		
Eastern Region Strengthening	Sasaram-Daltonganj 400kV D/C line	
Scheme-III	2. Mendhasal-Pattanaiakya 400kV D/C line	
	3. LILO of Kahalgaon-Biharsharif 400kV D/C line (1st line) at	
	Lakhisarai	
	4. LILO of Kahalgaon-Biharsharif 400kV D/C line (2st line) at Banka	
	5. LILO of Meramundali-Jeypore 400kV S/C line at Bolangir	
	6. LILO of Rangali-Baripada 400kV S/C line at Keonjhar	
	 LILO of one Ckt. of Baripada-Mendhasal 400kV D/C line at Dubri(OPTCL) 	
	8. LILO of Jamshedpur-Rourkela 400kV D/C line at Chaibasa	
	9. Daltonganj(New)) 2x315 MVA, 400/220 kV sub-station.	
	10. Lakhisarai(New) 2x200 MVA, 400/132 kV sub-station.	
	11. Banka(New) 2x200 MVA, 400/132 kV sub-station.	
	12. Bolangir(New) 2x315 MVA, 400/220 kV sub-station.	
	13. Keonjhar(New) 2x315 MVA, 400/220 kV sub-station.	
	14. Chaibasa(New) 2x315 MVA, 400/220 kV sub-station.	
	15. Pattanaiakya(New) 2x315 MVA, 400/220 kV sub-station.	
	Table No: ER-IS-02	
Eastern Region Strengthening	1. Additional 1X160MVA, 220/132kV Transformer with associated	
Scheme-IV	bays at 220/132kV Siliguri Substation	
	2. Replacement of 1X50MVA, 220/132kV Transformer by	
	1X160MVA, 220/132kV Transformer with associated bays at	
	220/132kV Birpara Substation	
	Installation of additional Bay/Breaker against 400kV Malda- Farakka-I feeder at Malda Substation	
	4. Replacement of 2X50MVA, 220/132kV Transformers by	
	2X160MVA, 220/132kV Transformers with associated bays at	
	400/220/132kV Malda Substation	
	Table No: ER-IS-03	
Eastern Region Strengthening	1. Establishment of 400/220 kV, 2X500 MVA Rajarhat substation	
Scheme-V	2. LILO of Subhashgram- Jeerat 400kV S/C line at Rajarhat	
	3. Rajarhat-Purnea 400 kV D/c line (triple snowbird), with LILO of	
	one circuit at Gokarna and other circuit at Farakka	
	Table No: ER-IS-04	
Eastern Region System	1. Kharagpur-Chaibasa 400kV D/C line	
Strengthening Scheme -VII	2. Purulia PSS- Ranchi 400kV D/C line	
Table No: ER-IS-05		
Eastern Region System	1. LILO of Barh – Gorakhpur 400kV D/C line at Motihari (2xD/C quad)	
Strengthening Scheme - VI	2. Mujaffarpur – Darbhanga 400kV D/C line with triple smowbird	
	conductor	
	3. 2x500 MVA 400/220kV S/s at Darbhanga (GIS) with space for future extension	
	4. 2x200 MVA 400/132kV S/s at Motihari (GIS)) with space for future	
	extension	
	5. 2x80 MVAR Line reactors (Switchable) at Mothihari end (with 600	
	ohm NGR) for Barh-Mothihari section	
	2x50 MVAR Line reactors (fixed) at Mothihari end (with 400 ohm NGR) for Mothihari-Gorakhpur section	

Eastern Region – Evacuation Schemes:

Table No: ER-BR-01	
Barh-II U1,2 (1320 MW) (Central Sector)	Barh-II - Gorakhpur 400kV D/c line (quad)

Table No: ER-BR-02		
Nabi Nagar JV (Rly+NTPC)	Nabinagar-Sasaram 400kV D/C line with twin lapwing	
(1000MW) (Central Sector)	conductor	
Table No: ER-BR-03		
New Nabi Nagar JV (Bihar+NTPC)	1. Nabinagar-Gaya 400kV D/C (Quad) line	
(1980MW)	2. Nabinagar-Patna 400kV D/C (Quad) line	
(Central Sector)	3. Augumentation of Gaya 765/400kV 1x1500 MVA	
	Transformer.	
Table No: ER-BR-04		
Muzzafarpur ext JV (390 MW) (Central Sector)	Existing System will be adequate	

Muzzafarpur ext JV (390 MW) (Central Sector)	Existing System will be adequate
	: ER-JH-01
Bokaro Expansion(500 MW) (Central Sector)	1. Bokaro Extn Kodarma 400kV D/C line
	o: ER-JH-02
Dedicated System Adhunik Power, Corporate Power	
Adhunik Power .(540 MW) (Private Sector)	Adhunik TPS- Jamshedpur 400kV D/C line
Corporate Phase-I (Mata Shri Usha TPP)(540MW) (Private Sector)	2. Corporate phase-I TPS-Ranchi 400kV D/C line
Corporate Phase-II (540MW) (Private Sector)	Corporate phase-II TPS-Jharkhand Pooling station 400kV D/C line
Electrosteel TPS (Essar Power) (1200 MW) (Private Sector)	Electrosteel TPS-Jharkhand Pooling station 400kV quad D/C line
Table No	e: ER-JH-03
Common system strengthening for Phase-I Generation Projects in Jharkhand [(Adhunik Power(540 MW), Corporate (540+540 MW), Essar Power(1200 MW)]-Part-A	 Ranchi – Gaya 400 kV (Quad) line via pooling station proposed near Essar / Corporate generation project Ranchi New (765/400kV S/s) - Dharamjaygarh /
	near Korba 765kV S/c 3. Establishment of 400kV Pooling Station (Jharkhand Pool) near Essar and Corporate generation projects. This will be a switching station without ICTs
	4. New 2x1500 MVA, 765/400 kV substation at Varanasi
	5. Gaya – Varanasi 765 kV S/c
Table No	6. Varanasi- Balia 765kV S/c
	: ER-JH-04
Common system strengthening for Phase-I Generation Projects in Jharkhand [(Adhunik	New 2x1500 MVA, 765/400 kV substation at Kanpur
Power(540 MW), Corporate (540+540 MW), Essar	2. Varanasi – Kanpur 765 kV D/c
Power(1200 MW)]-Part-B	 Kanpur – Jhatikra 765 kV S/c Kanpur (765/400kV) - Kanpur (Existing) 400kV
	D/C (Quad)
	5. Varanasi - Sarnath (UPPCL) 400kV D/c (quad)
	6. LILO of Sasaram - Allahabad 400kV line at Varanasi
	7. Private Sector line : Dharamjaygarh – Jabalpur
	765kV D/C line (2nd line) would be under the scope of private sector.
Table No	e: ER-JH-05
Tilaiya UMPP (4000MW)	1. Tilaiyya UMPP - Balia 765 kV D/C line
(Private Sector)	2. Tilaiyya UMPP - Gaya 765 kV S/C line
	3. LILO of one Ckt.of Tilaiyya UMPP - Balia 765 kV D/C line at Gaya
Table No	: ER-JH-06
Common System for Tilaiya, Barh-II and	1. Balia-Lucknow 765kV S/C(2nd)
Nabinagar JV (Rly+NTPC)	Lucknow -Bareilly 765kV S/C(2nd)

3. Bareilly -Meerut 765kV S/C(2nd)
4. Meerut -Moga 765kV S/C
5. Ranchi-WR Pooling 765kV S/C(2nd)

	5. Ranchi-WR Pooling 765KV 5/C(2nd)
Table No	: ER-OR-01
Dedicated Transmission System for Phase-I Generation Projects in Orissa[Sterlite TPP U 1&2, 3&4 (2400 MW), Monet Power (1050 MW), GMR(1050 MW), Nav Bharat (1050 MW), Ind Barat(700 MW), Jindal (1200MW), Lanco Baabandh (2640 MW),Lanco(2640MW),Derang(1200 MW)]	
Sterlite TPP U 1&2, 3&4 (2400 MW) (Private Sector)	Sterlite TPP – Jhasuguda 765/400kV Pooling station 2X400kV D/c line
Monet Power (1050 MW) (Private Sector)	Monnet-Angul Pooling point 400kV D/c line
GMR(1050 MW) (Private Sector)	GMR-Angul Pooling point 400kV D/c line
Nav Bharat (1050 MW) (Private Sector)	Navbharat TPP – Angul Pooling point 400kV D/C (Quad) line
Ind Barat(700 MW) (Private Sector)	Ind-Barath TPS-Jharsuguda 400 kV D/C line
Jindal (1200MW) (Private Sector)	Jindal TPP – Angul Pooling point 400kV D/C line
Lanco Babandh(4x660MW) (Private Sector)	Lanco-Angul Pooling Point 400kV 2X D/c line
Derang TPP(2x600 MW) (Private Sector)	Derang –Angul Pooling Point 400kV D/C line
	: ER-OR-02
Common Transmission System Phase-I Generation Projects in Orissa[Sterlite TPP U 1&2, 3&4 (2400 MW), Monet Power (1050 MW), GMR(1050 MW),	 Angul Pooling Station – Jharsuguda Pooling Station 765kV 2xS/c LILO of Rourkela – Raigarh 400kV D/c at
Nav Bharat (1050 MW), Ind Barat(700 MW), Jindal (1200MW), Lanco(2640MW)] Part-A	Jharsuguda Pooling station 3. **LILO of Meramundali – Jeypore 400kV S/c line
	at Angul pooling station 4. **LILO of one ckt of Talcher - Meramundali 400kV D/c line at Angul pooling station
	Establishment of 2x1500 MVA, 765/400kV Pooling Station at Jharsuguda
	6. Establishment of 4x1500MVA, 765/400kV Pooling Station at Angul
	**These LILO would be later disconnected when Angul pooling station is developed
Table No: ER-OR-03	
Common Transmission System Phase-I Generation Projects in Orissa[Sterlite TPP U 1&2, 3&4 (2400	Establishment of 765kV switching station at Dharamjaygarh / near Korba
MW), Monet Power (1050 MW), GMR(1050 MW), Nav Bharat (1050 MW), Ind Barat(700 MW), Jindal	Establishment of 765/400kV Pooling Station at Jabalpur
(1200MW), Lanco(2640MW)] Part-B	Jharsuguda Pooling Station – Dharamjaygarh / near Korba (WR) 765kV D/c
	LILO of Ranchi – WR Pooling near Sipat 765kV S/c line at Dharamjaygarh / near Korba
	5. Dharamjaygarh / near Korba – Jabalpur Pooling Station 765kV D/c line
-	6. Jabalpur Pooling Station – Jabalpur 400 kV D/c Quad line
	: ER-OR-04
Common Transmission System Phase-I Generation Projects in Orissa[Sterlite TPP U 1-4 (2400 MW),	 Jabalpur Pooling Station – Bina 765kV D/c line Bina – Gwalior 765kV S/c (3rd circuit)
Monet Power (1050 MW), GMR(1050 MW), Nav	3. Gwalior - Jaipur 765kV S/c (ind circuit)
Bharat (1050 MW), Ind Barat(700 MW), Jindal (1200MW), Lanco(2640MW)] Part-C	4. Jaipur - Bhiwani 765kV S/c line
	: ER-OR-05
Common Transmission System Phase-I Generation Projects in Orissa[Sterlite TPP U 1&2, 3&4 (2400	Establishment of 2x1500MVA, 765/400kV Bhopal Pooling Station
MW), Monet Power (1050 MW), GMR(1050 MW),	2. Jabalpur Pool – Bhopal – Indore 765kV S/c
Nav Bharat (1050 MW), Ind Barat(700 MW), Jindal (1200MW), Lanco(2640MW)] Part-D	3. Bhopal New substation – Bhopal (M.P.) 400kV D/c (high capacity)

Table No	: ER-SM-01	
Dedicated Transmission System for Phase-I Generation Projects in Sikkim[Teesta – III HEP(1200MW),		
Teesta-VI(500 MW), Rangit-IV (120 MW), Chujachen (99MW), Bhasmey (51 MW), Jorethang Loop(96 MW), Rongnichu(96 MW)]		
Teesta – III HEP(1200MW) (Private Sector)	Teesta-III – Karandighi 400kV D/c line with Quad Moose conductor	
Teesta-VI(500 MW) (Private Sector)	Teesta-VI-Rangpo 220kV D/C(twin moose)	
Rangit-IV (120 MW) (Private Sector)	Rangit-IV-New Melli 220kV D/Cline	
Bhasmey (51 MW) (Private Sector)	LILO of one ckt. Chujachan-Rangpo 132kV D/c at Bhasmey	
Jorethang Loop(96 MW) (Private Sector)	Jorrethang-New Melli 220kV D/Cline	
Rongnichu(96 MW) (Private Sector)	Rongnichu-New Melli 220 kV D/c line	
Chujachen HEP (99MW) (Gati)	LILO of Melli –Gantok at Chuzachen D/C (LILO point at Namthang)	
Table No	: ER-SM-02	
Common Transmission System for Phase-I Generation Projects in Sikkim[Teesta – III	Establishment of New 2x315 MVA, 400kV substation at Karandighi	
HEP(1200MW), Teesta-VI(500 MW), Rangit-IV (120 MW), Chujachen (99MW), Bhasmey (51 MW),	LILO of Siliguri (Existing) – Purnea 400kV D/c line(quad) at new pooling station at Karandighi	
Jorethang Loop(96 MW), Rongnichu(96 MW)]- Part-A	LILO of Siliguri (Existing) – Purnea 400kV D/c line (on which re-conductoring with high capacity HTLS conductor is undertaken by PGCIL) at Karandighi with construction of LILO portion to be made by Quad moose conductor line.	
	LILO of Siliguri – Dalkhola 220kV D/c line at new pooling station at Karandighi	
Table No	: ER-SM-03	
Common Transmission System for Phase-I Generation Projects in Sikkim[Teesta – III HEP(1200MW), Teesta-VI(500 MW), Rangit-IV (120 MW), Chujachen (99MW), Bhasmey (51 MW), Jorethang Loop(96 MW), Rongnichu(96 MW)]-	(a). Establishment of 16x105MVA, 1 ph, 400/220kV and 3x100MVA 220/132kV, Gas Insulated Substation at Rangpo (b). Establishment of 3x100MVA 220/132kV trf at Rangpo GIS	
Part-B	Establishment of 220kV Switching station at New Melli	
	LILO of Teesta III – Karandighi 400kV Quad D/c line (to be constructed through JV route) at Rangpo	
	New Melli - Rangpo 220kV D/c line (with twin Moose conductor)	
	 LILO of Gangtok-Rangit 132kV S/c line at Rangpo and termination of Gangtok-Rangpo/Chujachen and Melli–Rangpo/Chujachen 132kV lines (constructed under part-A through LILO of Gangtok-Melli 132kV S/c line upto Rangpo) at Rangpo sub-station LILO of Existing Teesta V – Siliguri 400kV D/c line at Rangpo Karandighi – Patna (PG) 400kV D/c (quad) line 	
Table No	: ER-SM-04	
Dedicated Transmission System for Phase-II General MW), Ting Ting(99 MW), Tashiding(97 MW)]		
Dikchu(96 MW) (State Sector)	 Dikchu HEP- Gangtok 132kV D/c with Zebra conductor. Dikchu HEP- Mangan (PG) 132kV D/c line with Zebra conductor. 	
Panan(300 MW) (Private Sector)	1. Panan-Mangan 400kV D/C line	
Ting Ting(99 MW) (Private Sector)	Tingting- Tashiding PS 220kV D/C line	
Tashiding(97 MW)	Tashiding- Tashiding PS 220kV D/C line	

(Private Sector)		
Table No: ER-SM-05		
Common Transmission System for Phase-II Generation Projects in Sikkim[Dikchu(96 MW), Panan(300 MW), Ting Ting(99 MW), Tashiding(97 MW)] Part-A	 Establishment of 4x105MVA, Single Phase, 400/132kV pooling station at Mangan. LILO of Teesta-III – Karandighi 400kV D/c line at Mangan Mangan – Karandighi 400kV D/c line with quad moose conductor New Melli – Rangpo 220kV D/c with twin moose conductor (2nd line) 	
Table No: ER-SM-06		
Common Transmission System for Phase-II Generation Projects in Sikkim[Dikchu(96 MW), Panan(300 MW), Ting Ting(99 MW), Tashiding(97 MW)] Part-B	Establishment of 220kV Gas Insulated Pooling/Switching Station near Tashiding Pooling station near Tashiding – New Melli 220kV D/c with twin moose conductor	

MW)] Part-B	D/c with twin moose conductor
Tab	le No: ER-WB-01
Raghunathpur Ph-1, U-1 & 2 (2x600MW) (Central Sector)	 LILO of one ckt of Maithon(PG)-Ranchi 400kV line at Ragunathpur Raghunathpur-Ranchi 400kV quad D/C line
Tah	le No: ER-WB-02
Common Transmission System for import of	1. Maithon – Gaya 400kV quad D/C line
power from DVC by NR	
power from DVO by NT	2. Gaya - Sasaram 765kV S/C line
	3. Gaya-Balia 765kV S/C
	4. Balia-Lucknow 765kV S/C
	5. LILO of both circuits of Allahabad - Mainpuri 400kV D/C line at Fatehpur 765/400kV sub-station of POWERGRID
	6. Ranchi-WR Pooling 765kV S/C
	7. Sasaram-Fatehpur(PG 765kV s/s) 765kV S/C line
	8. Fatehpur(PG 765kV s/s) - Agra 765kV S/C line
	9. Biharsharif – Sasaram(PG 765kV s/s) 400kV quad D/C
	line
	10. 40% Series compensation of Barh-Balia 400kV quad
	D/C line at Balia end
	11. 40% Series compensation of Biharsharif-Balia 400kV quad D/C line at Biharsharif /Balia end
	12. Lucknow 765/400kV new sub-station – Lucknow
	400/220kV existing sub-station 400 kV quad 2xD/c line
	13. Bareilly 765/400kV new sub-station – Bareilly 400/220kV existing sub-station 400 kV quad 2xD/c line (to match with NKSTPP System)
	14. Ranchi 765/400kV new sub-station – Ranchi 400/220kV existing sub-station 400 kV quad 2xD/c
	15. LILO of both circuits of Barh - Balia 400kV D/C quad line at Patna
	16. Establishment of Gaya 765/400kV Substation with 3X1500 MVA transformers
	17. Establishment of Sasaram 765/400kV Substation with 2X1500 MVA transformers
	18. Establishment of Ranchi 765/400kV Substation with 2X1500 MVA transformers
	19. Establishment of Fathepur 765/400kV Substation with 2X1500 MVA transformers
	20. Establishment of Agra 765/400kV Substation with 2X1500 MVA transformers
	21. Establishment of Balia 765/400kV Substation with 2X1500 MVA transformers

	22 Establishment of Lucknow 765/400kV Substation with 2X1500 MVA transformers
Tabl	e No: ER-WB-03
Transmission system for Pooling Station in ER and transfer of power to NR/WR from projects	New 2x315MVA, 400/220kV AC Pooling Station at Alipurduar
in Bhutan	 Extension of ±800 kV HVDC station with 3000 MW inverter module at Agra
	LILO of Bishwanath Chariyali – Agra HVDC line at new pooling station in Alipurduar for parallel operation of the HVDC station
	4. LILO of Bongaigaon – Siliguri 400kV D/c line(quad) (under Pvt. Sector) at new pooling station in Alipurduar
	LILO of Tala-Siliguri 400kV D/c line at new pooling station in Alipurduar.
	LILO of Birpara-Salakati 220kV D/c line at new pooling station in Alipurduar
	7. HVDC sub-station with <u>+</u> 800 kV, 3000MW converter module at new pooling station at Alipurduar.
Table No: ER-WB-04	
CESC Haldia(600 MW) (Private Sector)	CESC Haldia-Subhasgram 400 kV D/C line
Table No: ER-WB-05	
Durgapur DPL New(U-8) (250 MW) (State Sector)	DPL-Bidhannagar 400kV D/C line

Eastern Region – System Strengthening Schemes of STUs:

Table No: ER-SS-WB	
System Strengthening Scheme in West	1. LILO of Kolaghat-Baripada 400kV S/C line at
Bengal	Kharagpur
	2. Chanditala- Subhashgram 400kV D/C line
	3. Chanditala- Kharagpur 400kV D/C line

ANNEX - 7.5

NORTH-EASTERN REGION -TRANSMISSION SCHEME DETAILS

North-Eastern – System Strengthening Schemes:

Table No: NER-IS-01			
Strengthening of Transmission in NER	1. LILO of one ckt (2nd) of Silchar - Bongaigaon 400kV D/c at		
Phase-II	Byrnihat		
	2. LILO of Balipara-Khupi 132kV S/c at Bhalukpong		
	3. NER PP (Biswanath Chariali) - Itanagar (Zebra conductor)		
	132kV D/c line		
	4. LILO of one ckt of Pallatana-Silchar 400kV D/c at P. K. Bari		
	5. Extension of Bhalukpong PG 132/33kV S/s		
	6. Extension of P. K. Bari 400/132kV with 4 single phase units		
	of 50 MVA)		

Northern-Eastern – Evacuation Schemes:

	Table No: NER-ArP-01	
Pare Dikrong HEP (110MW)	1. LILO of RHEP-I -Nirjouli 132kV S/c line at Dikrong HEP	
(Central Sector)	2. LILO of one ckt of RHEP-I -Edavger 132kV D/c line at	
,	Dikrong HEP	
	3. 2 nd 315 MVA 400/220kV ICT at Misa	
	Table No: NER-ArP-02	
Kameng HEP (600MW)	1. Kameng-Balipara 400kV D/c line	
(Central Sector)	2. Balipara-Bongaigaon (Quad) 400kv D/c line with 30% FSC	
, , , , , , , , , , , , , , , , , , ,	Table No: NER-ArP-03	
Lower Subansiri (2000MW)	Lower-Subansiri-Biswanath Chariyali(PP) 400kV 2XD/C	
(Central Sector)	(Twin Lapwing)	
(Comman Cooker)	Table No: NER-ArP-04	
Combined Transmission system for	1. Biswanath Chariyali – Agra ±800 kV, 6000 MW HVDC bi-	
Transfer of Power from NER to NR/WR	pole line	
	2. LILO of Ranganadi – Balipara 400kV D/C line at Biswanath	
	Chariyali (Pooling Point)	
	3. Biswanath Chariyali – Biswanath Chariyali (AEGCL) 132	
	kV D/c line	
	4. Establishment of 400/132 kV Pooling Station at Biswanath	
	Chariyali (2x200MVA)	
	5. HVDC rectifier module of 3,000 MW at Biswanath Chariyali	
	and inverter module of 3,000 MW capacity at Agra.	
	6. Balipara-Biswanath Chariyali(PP) 400kV D/c line	
	7. 1x315 MVA 400/220kV S/s at Agra	
	Table No: NER-ArP-05	
Khuitam(33 MW) (Private Sector)	Khuitam - Dinchang 220 kV D/c line	
, , , , , , , , , , , , , , , , , , , ,	Table No: NER-ArP-06	
Demwe Lower (341 MW)	1. Demwe Lower - Kathalguri 400 kV D/c line via Namsai PP	
(Private Sector)	2. 400 kV operation of Kathalguri - Misa D/c line	
,	3. Establishment of 400/220 kV, 630 MVA Mariani S/s	
	Table No: NER-ArP-07	
Dedicated sysyem for KSK Dibbin, Patel H	Hydro, Nafra	
KSK Dibbin Hydro Power Ltd(2x60 MW)	KSK Dibbin - Dinchang PP 220kV D/C line	
Patel Hydro pvt Ltd (Ghongri and	Saskngrong - Goongri 132kV D/c Iline	
Saskngrong)(3x48+ 2x22.5 MW)	Goongri - Dinchang PP 220kV D/C line	
SEW Nafra power Corporation Ltd(2x60	Nafra - Dinchang PP 220kV D/C line	
MW)	3	
Adishankar Khitam power ltd(3x22 MW)	Kuitam - Dinchang PP 220kV D/C line	
. , , , ,	Table No: NER-ArP-08	
Common Transmisin Sytem for KSK Dibb		
Ghongri and Saskngrong, Nafra power an		
power	2. 440/220kV ,2x315 MVA Pooling	

	station at Dinchang
3.	LILO of Bongaigaon – Balipara
	400kV D/C line at rangia/Rowta
4.	Dinchang PP -Rangia/ Rowta
	400kV D/C (quad) line
5.	Silchar - Misa 400kV (quad)
	D/C line

	D/C line
 	N. NED 40.04
	No: NER-AS-01
Dedicated sysyem for Bongaigaon TPP	Dengeigeen Dengeigeen (DC) 400kW D/e line
Bongaigaon TPP(3x250 MW) (Central Sector)	Bongaigaon – Bongaigaon (PG) 400kV D/c line No: NER-AS-02
Combined System for Bongaigaon TPP	1. Silchar-Badarpur (PG) Switching Satation 132kV D/c
(750MW) & Palatana (726 MW) (Central	line
Sector)	2. Silchar-P. K. Bari (TSECL) 400kV D/c line (charged at 132 kV)
	3. Silchar - Melriat New PG 400kV D/c line (charged at 132kV)
	4. Silchar - Imphal 400kV D/c line (charged at 132kV)
	5. Melriat (New)-Melriat (Mizoram) 132kV D/c line
	6. Silchar-Srikona (AEGCL) 132kV D/c line
	7. Silchar-Hailakandi (AEGCL) 132kV D/c line
	8. LILO of Loktak-Imphal (PG) 132kV D/c line at Imphal (New)
	9. LILO of one ckt of Kathalguri-Misa 400 kV D/C at Mariani (New) (charged at 220 kV)
	10. Mariani (New)-Mokokchung (PG) 220kV D/c line
	11. Mokokchung (PG)-Mokokchung (Nagaland) 132kV D/c line with Zebra conductor
	12. Passighat-Roing 132kV S/c on D/c line
	13. Roing-Tezu 132kV S/c on D/c line
	14. Tezu-Namsai 132 kV S/c on D/c line
	15. Establishment of 400/132kV Silchar S/S (2x200 MVA)
	16. Establishment of Melriat 132/33kV S/S (upgradable to 400 kV) (2x50 MVA)
	17. Establishment of 132/33kV Imphal (New) S/S
	(upgradable to 400 kV) (2x50 MVA) 18. Establishment of Mariani 220kV Switching Station
	(upgradable to 400 kV)
	19. Establishment of Mokokchung 220/132kV S/S (7x10 MVA one spare)
	20. Establishment of Roing 132/33kV S/S (single phase 7x5 MVA one spare)
	21. Establishment of Tezu 132/33 S/S (single phase 7x5 MVA one spare)
	22. Establishment of Namsai 132kV S/S (2x15 MVA)
	23. Bus Reactor at Silchar (2x63 MVAR)
	24. Bus Reactor at Bongaigaon (1x80 MVAR)
	25. 50 MVAR line reactors in each ckt of Pallatana-
	Silchar 400 kV D/C line at Silchar end
	26. 63 MVAR line reactors in each ckt of Silchar- Bongaigaon 400 kV D/C line at Silchar and
	Bongaigaon ends
	27. 400/ 220kV (2x315 MVA transformers) at BTPS
	(NTPC) 28. 400/ 132kV (2x200 MVA transformers) at Palatana
	29. 50 MVAR line reactors in each ckt of Pallatana-
	Silchar 400 kV D/C line at Pallatana end

30. 80 MVAR bus reactor at Pallatana GBPP
31. LILO of both ckts of Silchar - Bongaigaon 400kV D/C
line at Guwahati New (Azara)
32. Establishment of New Guwahati (Azara) 400/220kV
substation (2x315 MVA)
33. 63 MVAR line reactors in each ckt of Azara-
Bongaigaon 400 kV D/C line at Azara end
34. 63 MVAR bus reactor at Azara end
35. LILO of both ckt of Agia - Guwahati 220 kV D/C at
Guwahati New (Azara) PG
36. LILO of one ckt of Silchar-Bongaigaon 400 kV D/C
line at Byrnihat
37. Establishment of Byrnihat 400/220kV S/S (2x315
MVA)
38. 63 MVAR line reactor at Byrnihat for Silchar-Byrnihat
line
39. 63 MVAR bus reactor at Byrnihat
40. BTPS-(NTPC)-Bongaigaon S/S(PG) 400kV D/c line
41. Pallatana-silchar 400kV D/c line
42. Silchar-Bongaigaon 400kV D/c line
43. Pallatana - Surajmani Nagar 400kV D/c line (charged
at 132kV)

Table No: NER-AS-03		
Namrup+ Ext (100MW)	1. Namrup – Tinsukia 220kV D/C line	
(State Sector)	2. Namrup – Lakwa 132kV D/c line	
	3. LILO of Namrup –Tinsukia 220kV S/C line at Bodubi	

Table No: NER-ML-01			
New Umtru (40 MW) (Stat	e Sector)	New Umtru HEP – Norbong 132kV D/C	
	Table No: NER-MZ-01		
Tuirial HEP (2x30 MW)	 Tuirial –Kolas 	ib 132kV S/C (operated at 33kV) (existing)	
(Central Sector)	2. LILO of Jiriber	m – Aizawl 132kV S/C at Tuirial HEP	
	Table No: NER-TR-01		
ATS for Pallatana Gas			
Pallatana Gas (726.6	1. Palatana – Silchar 400kV D/C line		
MW)	2. Silchar- Bongaigaon 400kV D/c line		
	Table No: NER-TR-02		
Monarchak(105 MW) (Central Sector)	1. Monarchak-Bac	darghat-Kumarghat-Badarpur Sw. Stn 132kV D/c line	
(Gentral Sector)	2. Monarchak-Rak	oindra nagar 132kV D/c line	
	3. Establishment	of Rabindra Nagar 132/33kV Substation (2x25 MVA)	
	4. Establishment MVA)	of Badarghat (Agartala New) 132/33kV Substation (2x25	

North-Eastern Region – System Strengthening Schemes of STUs:

Table No: NER-SS-ArP		
System Strengthening in	1. Khupi - Seppa 132kV S/c on D/C line	
Arunachal Pradesh (Phase-I)	2. Seppa-Sagali 132kV S/c on D/C line	
	3. Sagali-Naharlagun 132kV S/c on D/C line	
	4. Naharlagun-Gerukamukh 132kV S/c on D/C line	
	5. Gerukamukh – Likabali 132kV S/c on D/C line	
	6. Likabali – Niglok 132kV S/c on D/C line	
	7. Niglok-Pasighat 132kV S/c on D/C line	
	8. Deomali – Khonsa 132kV S/c line	
	9. Khonsa – Changlong 132kV S/c line	
	10. Changlang – Jairampur 132kV S/c line	
	11. Jairampur - Miao 132kV S/c on D/C line	

	40 M' N '(DO) 4001 V O/ D/O I'
	12. Miao - Namsai (PG) 132kV S/c on D/C line
	13. Teju-Halaipani 132kV S/c on D/C line
	14. Naharlagun-Banderdewa132kV S/c on D/C line
	15. 132/33kV S/s at Seppa, Sagali, Naharlagun, Gerukamukh, Likabali,
	Niglok, Pasighat, Khonsa, Changlang, Jairampur, Miao, Halaipani,
	Banderdewa
System Strengthening in	1. Palin-Koloriang 132kV S/c line
Arunachal Pradesh (Phase-II)	2. LILO of Ziro-Daporijo 132 kV S/C at Basar
	3. Roing - Anini 132kV S/c on D/C
	4. Along - Reying 132kV S/c on D/C
	5. Along - Yingkiong 132kV S/c on D/C
	6. Establishment of Palin 132/33kV substation (7x5 MVA single Phase)
	7. Establishment of Koloriang 132/33kV Substation (7x5 MVA single
	Phase)
	8. Establishment of Basar 132/33kV Substation (7x5 MVAsingle Phase)
	Stablishment of Yingkiong 132/33kV Substation (7x5 MVA single
	Phase)
	10. Establishment of Roing 132/33kV Substation (7x5 MVA single Phase)
	11. Establishment of Reying 132/33kV Substation (7x5 MVA single 11ase)
	Phase)
	12. Establishment of Anini 132/33kV Substation (4x5 MVA single Phase)
	13. Ziro 132/33kV Substation (Aug.) (4x8 MVA)
	14. Daporijo 132/33kV Substation (Aug.) (2x12.5 MVA)
	15. Along 132/33kV Substation (Aug.) (7x5 MVA)
	16. Ziro - Palin 132kV S/c line
	Table No: NER-SS-AS
System Strengthening in	1. Rangia – Amingaon 220kV D/c line
Assam (Phase-I)	2. Tinsukia – Behiating (New Dibrugarh) 220kV D/c line
	3. LILO of one Ckt of 220kV D/c line Samaguri – Sarusajai line at
	Jawaharnagar
	4. Kahilipara – Guwahati Medical College132kV D/c line
	5. Samaguri – Jakhalabandha 132kV S/C on D/C
	6. Sibsagar – Moran 132kV S/C on D/C
	7. Rupai-Chapakhowa (with 4KM river crossing via Dhola) 132kV S/C on
	D/C
	8. Lanka – Lumding 132kV S/C on D/C
	9. Dhemaji – Silapathar 132kV S/C on D/C
	10. Silapathar – Jonai 132kV S/C on D/C
	11. 220/132kV S/S at Amingaon and Behiating
	12. 220/33kV S/S at Jamaharnagar
	13. 132/33kV S/S at Guwahati Medical College, Jakhalabandha,
	Chapakhowa, Lumding, Silapathar and Jonai
	14. Augmentation of Samaguri 220/132kV S/S (3x100 MVA)
System Strengthening in	LILO of one Ckt of BTPS - Rangia 220kV D/c line at Bornagar
Assam (Phase-II)	2. LILO of one Ckt of Kathalguri - Tinsukia 220kV D/c line at Makum
	Bornagar - Barpeta 132kV D/c line
	4. LILO of Barnagar - Rangia 132kV line at Pathsala
	5. LILO of Rangia - Rowta 132kV line at Tangla
	6. LILO of one ckt of Rowta - Depota 132kV D/c line at Dhekiajuli
	\
	9. Kamakhya - Paltanbazar (UG cable) 132kV S/c line
	10. Jagi Road - Nagaon 132kV D/c line
	11. Nagaon - Dhing 132kV S/c line
	12. LILO of one Ckt of Samaguri - Lanka 132kV D/c line at Baithalangso
	13. LILO of Golaghat - Bokajan 132kV line at Sarupathar
	14. LILO of Jorhat - Nazira 132kV line at Teok
	15. LILO of one ckt. of Tinsukia-Margherita 132kV D/c line at Makum
	16. Sonabil - Tezpur New 132kV D/c line
	17. LILO of one ckt of Sonabil - Gohpurc132kV D/c line at Borgong

	18. LILO of Gohpur - N. Lakhimpur 132kV line at Bihpuria
	19. Hailakandi - Karimganj 132kV S/c on D/C
	20. Agia - Sunpora (Mankachar) 132kV S/c on D/C
	21. Establishment of Bornagar 220/132kV substation (2x100 MVA)
	22. Makum 220/132kV substation (Extension of Tinsukia) (2x100 MVA)
	23. Establishment of Barpeta 132/33kV substation (2x25 MVA)
	24. Establishment of Pathsala 132/33kV substation (2x25 MVA)
	25. Establishment of Tangla 132/33kV substation (2x25 MVA)
	26. Establishment of Dhekiajuli 132/33kV substation (2x25 MVA)
	27. Establishment of Hazo 132/33kV substation (2x25 MVA)
	28. Establishment of Mirza 132/33kV substation (2x25 MVA)
	29. Establishment of Paltanbazar 132/33kV substation (2x40 MVA)
	30. Establishment of Pattaribazar 132/33kV substation (2x16 MVA)
	31. Establishment of Baithalangshu 132/33kV substation (2x16 MVA)
	32. Establishment of Sarupathar 132/33kV substation (2x16 MVA)
	33. Establishment of Teok 132/33kV substation (2x25 MVA)
	34. Establishment of Makum 132/33kV substation (2x25 MVA)
	35. Establishment of Tezpur New 132/33kV substation (2x25 MVA)
	36. Establishment of Borgaon 132/33kV substation (2x25 MVA)
	37. Establishment of Bihpuria 132/33kV substation (2x25 MVA)
	38. Establishment of Karimganj 132/33kV substation (2x25 MVA)
	 Establishment of Sunpora (Mankachar) 132/33kV substation (2x16 MVA)
	40. Namrup 132/33kV substation (Aug.) (2x100 MVA)
	41. Dhaligaon 132/33kV substation (Aug.) (2x40 MVA)
	42. Narengi 132/33kV substation (Aug.) (2x40 MVA)
	43. Samaguri 132/33kV substation (Aug.) (2x40 MVA)
	44. Bokajan 132/33kV substation (Aug.) (2x25 MVA)
	45. Sibasagar 132/33kV substation (Aug.) (2x40 MVA)
	Table No: NER-SS-MR
System Strengthening in	Keithelmanbi (Imphal New) – Ningthoukhong 132kV D/c line
Manipur (Phase-I)	Stringing of Yaingangpokpi - Yurembam 132kV 2nd ckt
Wampur (Friasc I)	Stringing of Faringangpokpi - Furefindan 132kV both ckt at Keithelmanbi LILO of Yurembam - Yaingangpokpi 132kV both ckt at Keithelmanbi
	(Imphal New)
	Stringing of Yaingangpokpi - Kongba 132kV 2nd ckt
	5. Stringing of Kakching - Kongba 132kV 2nd ckt
	6. Stringing of Kakching - Churachandpur 132kV 2nd ckt
	7. LILO of Jiribam - Aizawal 132kV S/c line at Tipaimukh
	8. Tipaimukh 132/33kV S/s(2x12.5 MVA)
System Strengthening in	1. Rengpang - Tamenglong 132kV S/c line
Manipur (Phase-II)	2. Tamenglong - Karong 132kV S/c line
and Phase-III	LILO of Imphal - Karong 132kV line at Gamphajol
	4. Kakching - Thoubal 132kV S/c line
	5. Kakching - Moreh 132kV S/c line
	6. Kongba - Thoubal 132kV S/c line
	7. LILO of Karong - Kohima 132kV line at Maram
	8. Establishment of Tamenglong 132/33kV substation (1x20 MVA)
	9. Establishment of Gamphajol 132/33kV substation (1x20 MVA)
	10. Establishment of Thoubal 132/33kV substation (1x20 MVA)
	11. Establishment of Moreh 132/33kV substation (2x12.5 MVA)
	12. Establishment of Maram 132/33kV substation (2x12.5 MVA)
	13. Jiribam 132/33kV substation (Aug.) (2nd tfr) (1x20 MVA)
	14. Rengpang 132/33kV substation (Aug.) (2nd tfr) (1x20 MVA)
	15. Kongba 132/33kV substation (Aug.) (2nd tfr) (1x20 MVA)
	16. Ukhrul 132/33kV substation (Aug.) (2nd tfr) (1x20 MVA)
	17. Ningthoukhong 132/33kV substation (upgradation of 12.5 MVA tfr) (1x20
1	MVA)
	101 47 ()
	18. Gamphajol 132/33kV substation (Aug.)(2nd tfr) (1x20 MVA)

	Table No: NER-SS-MZ
System Strengthening in	1. Melriat New PG -Melriat State (#2) (Sihhmui) 132kV D/c line
Mizoram (Phase-I)	2. Serchip -Melriat State (#1) 132kV S/C line
	3. LILO of Zemabawk-W. Phaileng at Melriat State (#2) 132kV line
	4. W. Phaileng – Marpara 132kV S/C line
	5. 132/33kV S/s at Melriat State, W. Phaileng, E. Lungdar, Marapara,
	Lungsen and Luwngtlai
System Strengthening in	1. Marpara - Lungsen 132kV S/c line routed via Thenhlum
Mizoram (Phase-II)	2. Lungsen-Chawngte 132kV S/c line (charged at 33 kV)
	3. Chawngte-S. Bungtlang 132kV S/c line (charged at 33 kV)
	4. Lawngtlai - Tuipang 132kV S/c line (charged at 33 kV)
	Table No: NER-SS-TR
System Strengthening in	1. Suryamani Nagar-P. K. bari 400kV D/C line (initially op. at 132 kV)
Tripura (Phase-I)	2. Strengthening /Renovation/Reconductoring of PK Bari-Dharamnagar-
	Durlavcherra-Panchgram-Khlieriat 132kV S/C line
	3. Agartala 79 Tilla – Surajmaninagar 132kV S/C line
	4. Surajmani Nagar – Rokhia 132kV s/C line
	5. Surajmani Nagar – Badarghat 132kV D/C line
	6. LILO of PK Bari-Ambasa at Monu 132kV line
	7. Surajmani Nagar - Bodhjung Nagar 132kV D/C line
	8. Surajmani Nagar – Udaipur 132kVS/C line
	9. Kailashar – Dharamnagar 132kV D/C line
	10. Rokhia-Rabndernagar 132kV D/C line
	11. Surajmaninagar (upgradable to 400kV)* 132/33kV S/S
	12. Bodhjung Nagar 132/33kV S/S (25MVA) 13. Udaipur 132/33kV S/S (25MVA)
	14. Monu 132/33kV S/S (15MVA), 132/1133kV S/S (10 MVA)
	15. Ravindernagar 132/33kV S/s (25 MVA)
System Strengthening in	Bodhjung Nagar - Jirania 132kV S/c line
Tripura (Phase-II)	LILO of Agartala-Khowai 132kV line at Haizamara
mpura (i mase-ii)	3. Udaipur - Bagafa 132kV D/c line
	4. Bagafa - Belona 132kV D/c line
	5. Rabindranagar - Belonia 132kV D/c line
	6. Belonia - Sabroom 132kV D/c line charged at 66kV
	7. Jirania (2x12.5 MVA) 132/33kV Substation
	8. Establishment of Jirania (1x10 MVA) 132/33kV Substation
	9. (a) Establishment of Haizamara 132/33kV Substation (2x12.5 MVA)
	9 .(b) Establishment of Haizamara 132/11kV Substation (2x10 MVA)
	10.(a) Establishment of Bagafa 132/33kV Substation (2x12.5 MVA)
	10.(b) Establishment of Bagafa 132/66kV Substation (1x30 MVA)
	10.(c) Establishment of Bagafa 132/11kV Substation (2x10 MVA)
	11.(a) Establishment of Belonia 132/66kV Substation (1x30 MVA)
	11.(b) Establishment of Belonia 132/33kV Substation (2x25 MVA)
	11.(c) Establishment of Belonia 132/11kV Substation (2x10 MVA)
	12. Udaipur 132/66kV Substation(Aug.) (1x30 MVA)
	·
	Table No: NER-SS-MG
System Strengthening in	1. Nangalbibra - Rongkhom (Tura) 132kV S/c on D/C
Meghalaya	2. LILO of one ckt of Umtru - Kyrdemkulai D/C line at Nongpoh 132kV D/C
(Phase-I)	line
	3. Mawngap - Nongstoin – Nangalbibra 132kV D/C line
	4. Cherrapunjee – Ishamati 132kV D/C line
	5. LILO of both ckts of 132 kV MLHEP(Leshka)- Khliehrait D/C line at
	Mynkre 132/33 kV S/S (132kV 2x D/C line)
	6. Killing (Byrnihat)-Mawngap-New Shillong 220kV D/C line
	7. Meddipathar-Phulbari 132kV D/C line
	Phulbari-Ampati 132kV D/C line
	9. 132/33kV (2x20 MVA) S/s at Ishmati, Mynkre, Nongpoh, Phulbari, New
	shillong
	ı - y

	10. 220/132kV (2x160 MVA) S/S at New Shillong and Mawngap (upgrading
	U/C 132 kV S/S to 220 kV)
	11. S/s augmentation at Umiam, EPIP –II, Rongkhon, Cherapunjee,
	Nongstoin and Nangalbibra
	Table No: NER-SS-NG
System Strengthening in	1. LILO of one ckt of Dimapur-Misa 220 kV D/C line at New Kohima*
Nagaland (Phase-I)	2. Mokokchung – Tuli 132kV S/c
	3. LILO of Kohima-Wokha at New Kohima 132kV S/c
	4. Dimapur - Jaluki via Ganeshnagar (charged at 33 kV) 132kV S/c
	5. Jaluki-Peren (charged at 33 kV) 132kV S/c
	6. New Kohima -Phek-Khipire (charged at 132 kV) 220kV S/C on D/C
	7. New Kohima - Wokha - Mokochung - Mon (Naginimora) (charged at 132
	kV) 220kV S/C on D/C
	8. Wokha - Zunheboto – Mokochung 132kV S/c on D/C
	9. LILO of Kohima-Meluri (Kiphire) at Pfutsero 132kV 2xD /c
	10. Mokokchung - Tuensang 132kV S/c
	11. 220/132kv S/S at New Kohima
	12. 132/33kV S/S at Pfutsero, Phek, Zunheboto and Tuensang

ANNEX - 7.6

TRANSMISSION SCHEME DETAILS- RENEWABLE ENERGY SOURCES IN INDIA

	Table No : RES-RJ-01		
Calar O Nam Mind			
Solar & New Wind	1. 400/220 kV, 3 X 500 MVA and 220/132kV, 3x160 MVA with 132/33kV, 2x40/50		
Power Projects in	MVA Pooling Sub-Station GSS at Ramgarh (Jaisalmer) alongwith 400kV, 1x125		
Rajsthan(2650	MVAR, Bus Reactor and 2x50 MVAR line Reactor for 400kV D/C Ramgarh-		
MW)	Bhadla line		
(0.1	2. 400/220 kV, 3 X 315 MVA and 220/132kV, 3x160 MVA with 132/33kV, 2x40/50		
(Solar -1400 MW	MVA Pooling Sub-Station GSS at Bhadla (Jodhpur) alongwith 400kV, 1x125		
Wind -1250 MW)	MVAR Bus Reactor and 4x50 MVAR, 400kV Line Reactors for Bhadla ends of		
	400kV D/C Bhadla-Bikaner line, 400kV LILO Jodhpur-Merta at Bhadla.		
	3. Augmentation of 400kV GSS Akal by installation of 400/220 kV, 1 X 500 MVA		
	Transformer alongwith 400kV, 2x50 MVAR Shunt Reactor (line type) for proposed		
	400kV Akal-Jodhpur (New) D/c line, and 1x125 MVAR 400 kV Bus Reactor.		
	4. Augmentation of 400kV GSS Jodhpur (New)		
	(i) 2x50 MVAR, 400kV Shunt Reactor (line type) at 400kV GSS Jodhpur (New)		
	for 400kV D/C Akal-Jodhpur(New) line		
	(ii) 400kV bays at Jodhpur (New) for LILO of both ckt. of 400kV D/C Raj West		
	LTPS-Jodhpur line.		
	5. Augmentation at 400kV GSS Barmer		
	(i) 1x125 MVAR, 400kV Shunt Reactor (Bus type) at 400kV GSS Barmer		
	(ii) 400kV bays for 400kV D/C Barmer-Bhinmal (PG) line		
	6. Augmentation at 400kV GSS Bikaner		
	(i) 400kV Bays for 400kV D/C Bhadla-Bikaner line and 400kV D/C Bikaner-Sikar		
	(PGCIL) line at Bikaner end of the lines		
	(ii) 1x125 MVAR, 400kV Shunt Reactor (Bus type) at 400kV GSS Bikaner		
	7. 400kV Interconnecting Lines :		
	(i) 400 kV D/C Ramgarh(Jaisalmer)-Akal (Jaisalmer) line (Twin Moose)		
	(ii) 400 kV D/C Ramgarh-Bhadla line (Twin Moose)		
	(iii) 400 kV D/C Bhadla-Bikaner line (Quad Moose)		
	(iv) 400 kV D/C line from 400/220kV Pooling Station Bhadla to LILO point at		
	400kV S/C Jodhpur-Merta line (Twin Moose)		
	(v) 400 kV D/C Bikaner-Sikar (PGCIL) line (Twin Moose)		
	(vi) 400 kV D/C Barmer-Bhinmal (PGCIL) line (Twin Moose)		
	(vii) LILO of both circuits of 400kV D/C Raj West-Jodhpur line at 400kV GS		
	Jodhpur (New) (Twin Moose)		
	(viii) 400kV D/C Akal-Jodhpur (New) line (Quad Moose)		
	8. 220kV GSS at Bap and associated lines:		
	(i) 220/132kV, 2x160 MVA & 132/33kV, 2x40/50 MVA GSS at Bap (Distt.		
	Jodhpur)		
	(ii) LILO of 220kV Barsingsar LTPS-Phalodi line at at Bap		
	(iii) 220kV D/C Bap-Bhadla line		
	9. 220kV GSS at Kanasar and associated lines:		
	(i) 220/132kV, 2x160 MVA & 132/33kV, 2x40/50 MVA GSS at Kanasar (Distt.		
	Jodhpur)		
	(ii) 220kV D/C Bhadla- Kanasar line		
	(iii) LILO of 132kV PS1-PS2 line at proposed 220kV GSS at Kanasar		
	(iv) LILO of 132kV PS2-PS3 line at proposed 220kV GSS at Kansar		
	10.Up-gradation of PS No. 2 to 132kV Grid Substation with 132/33kV, 2x20/25 MVA		
	Transformers with associated 132kV line		
	11.Up-gradation of PS No. 3 to 132kV Grid Substation with 132/33kV, 2x20/25 MVA		
	Transformers		
	12.Charging of 132 kV line from PS_No.5 to PS_No.1 on 132 kV voltage level via 132		
	kV PS_No.2 GSS, 132 kV PS_No.3 GSS and 132kV PS_No.4 GSS		
	13.Up-gradation of PS No. 4 to 132kV Grid Substation with 132/33kV, 2x20/25 MVA		
	Transformers		
	Hansionies		

Table No : RES-GJ-01			
Transmission system for Solar projects in Charanka Solar Park (950.5 MW)	 Charanka –Sankhari 400kV D/C line (ACSR Twin Moose) along with 400/220kV, 2X315 MVA Charanka substation and 400 kV, 125 MVAR bus reactor at Charanka substation. 220/66 kV ,8X100 MVA Charanka Pooling Station Charanka-Jangral 220kV D/C line (Al-59). Around 452kms 1Cx630 sq mm of 66 kV cable for interconnection of Solar Projects in each plot of the Solar Park with Pooling Station. 		
	Table No : RES-GJ-02		
Transmission system for wind projects in Gujarat (4500 MW)	Jamanwada W/F S/S-Versana 220 kV D/C –(AAAC Moose conductor)		
	Nakhatarana W/F S/S-Versana 220 kV D/C (AAAC Moose conductor)		
	3. Vandiya W/F SS – Halvad (400 kV SS) 220 kV D/C line (Zebra conductor)		
	4. Kanmer W/F SS – Halvad (400 kV SS) 220 kV D/C line (Zebra conductor)		
	5. Chotila W/F SS – Jasdan 220 kV D/C line (Zebra conductor)		
	 Malvan W/F SS – Chorania 220 kV D/C line (Zebra conductor) Dhanki W/F SS – Bhatia 220 kV D/C line (Zebra conductor) Bhanvad W/F SS- Bhomiyavadar 132 kV D/C line. 		
	Tebhada W/F SS Nyara (Rajkot) 220 kV D/C line (AAAC Moose conductor)		
	10. Maliya W/F SS – Tankara 220 kV D/C line (Zebra conductor)		
	11. Rojmal W/F SS – Amreli 220 kV D/C line (AAAC Moose conductor)		
	12. Shapur W/F SS – Halvad (400 kV SS) 220 kV D/C line (AAAC Moose conductor)		
	13. Kodadha W/F SS – Tharad 220 kV D/C line (AAAC Moose conductor)		
	14. Patan W/F SS – Radhanpur 220 kV D/C line (Zebra conductor)		
Table No : RES-GJ-03			
System Strengthening for wind projects in Gujarat (4500 MW)	 Varsana-Halvad 400kV D/C Quad line along with 400/220kV, 2x315MVA Halvad substation. 		
	 220/66 kV, 100 MVA Tankara substation, 220/132 kV, 200MVA Bhatia substation, (220/66 kV, 100MVA + 220/132kV, 100MVA)Jasdan substation. 		
	3. Bhatia-Kalavad-Kangasiyali 220kV D/C line (AAAC Moose).		
	4. Morbi-Tankara-Chorania 220kV D/C line (AAAC Moose).		
	5. Amreli-Jasdan 220kV D/C line(AAAC Moose).		
	6. Varsana- Bhachau- Radhanpur 220kV D/C line (AAAC Moose).		
	7. Nakhatrana-Varsana 220kV D/C line (ACSR Zebra).		
	8. Bhatia(220kV)-Bhatia(132kV) 132 kV D/C line(ACSR Panther).		

Table No : RES-TN-01		
Wind projects in Tamil Nadu	1. Kanaraptty (TN Wind) - Kayathar 400 KV, 400 kV D/C Twin	
Phase-I	Moose line.	
(existing)	2. Kayathar - Karaikudi 400 kV D/C Quad line	
	3. Karaikudi - Pugalur 400 kV D/C Quad line	
(Tirunelveli/Kayathar area-3500 MW	4. Establishment of 400/230-110 kV S/S with 2x315 MVA 400/230	
Theni/ Udumalpet area – 2800 MW)	kV ICT, and 2x200 MVA 400/110kV ICT at Kayathar	
	5. Pugalur – Sholinganallur (Ottiampakkam), 400 kV D/C Quad line	
	6. Tirunelveli (TNEB) (TN wind/Kanarapatty) 400/230 kV S/S	
	(3x315 MVA)	
	7. Tirunelyeli (TNEB) - Tirunelyeli (PG) 400kV D/c guad line	

Mara Sank subsi Kana	numbers of 230/33 kV wind energy substations at ndai, Sayamalai, Vagaikulam, Kumarapuram, aralingapuram and one 230/110 kV Samugarangapuram tation with associated 230 kV lines connecting with the arpatti 400 kV S/S. tem was planned in 2007 for completion in 11 th Plan. The		
	yet to be completed.		
	No : RES-TN-02		
Wind projects in Tamil Nadu Phase-II	1. Thappagundu 400/110 KV (5x200MVA) S/s in Theni area		
(Tirunelveli/Kayathar area-2500 MW	2. Anaikadavu 400/230-110 KV (2x315+ 2x200 MVA) S/s in Udumalpet area		
Theni/ Udumalpet area – 3300 MW)	3. Rasipalayam 400/230-110 S/s (2x315+2x200 MVA) in Udumalpet area		
	4. Anaikadavu- Rasipalayam 400kV D/c line.		
	5. Thappagundu- Anaikadavu 400kV D/c with one ckt LILO at Udumalpet 400/220 kV (PGCIL) substation.		
	6. Rasipalayam -Singarapet 400kV 2xD/c line		
	7. Vagrai 400/230-110 kV substation.		
	8. Vagrai-Rasipalayam 400 kV D/c line		
	9. Thennampatti 400/230-110 kV substation		
	10. Thennampatti - Kayathar 400kV D/C line		
System for additional inter-connection with ISTS and increased reliability	LILO of one Rasipalayam -Singarapet 400kV D/c line at Salem 765/400kV (POWERGRID) substation		

Table No : RES-AP-01		
Wind projects in Andhra Pradesh (3150 MW)	1. 400/220 kV Substation at Hindupur (3x315MVA)	
	2. 400/220 kV Substation at Kondapuram (4x315MVA)	
	3. 400/220 kV Substation at Uravakonda (4x315MVA)	
	4. Uravakonda-Mahbubnagar 400 kV Quad DC Line	
	5. Uravakonda-Hindupur 400 kV DC Line	
	6. Uravakonda-Kondapur 400 kV DC Line	
	7. Kondapur – Kurnool 400kV quad DC line	
	8. Hindupur (400kV) S/S -Hindupur/	
	Gollapuram(existing) 220kV DC line	
	9. Urvakonda (400kV) S/S - Kalyandurg(existing) 220kV D/C line	
	10. Kondapur (400kV) S/S - Tadipatri(existing) 220kV D/C line	
	11. 220/132 kV, 2x100 MVA Substation at Jammalamadugu, Penukonda and Porumamilla	
	12. connectivity of Jammalamadugu, Penukonda and Porumamilla 220/1323kv S/s with existing 132/33kV S/Ss	

Table No : RES-KR-01		
Wind projects in Karnataka	LILO of Munirabad - Davangere (Guttur) 400 kV S/C line at	
(600 MW)	Doni	

ANNEX - 7.7

TRANSMISSION SCHEME DETAILS – FOR POWER PROJECTS IN BHUTAN, BANGLADESH AND NEPAL

Table No: BH-01			
Phunatsangchu St-I (1200	1200 1. Punatsangchu I - Lhamoizingkha (Bhutan Border) 2X 400 kV D/c line		
MW)	2. Lhamoizingkha (Bhutan Border) - Alipurduar 400kV D/C with Quad		
	Moose Conductor		
	3. LILO of 220 kV Bosochhu-II-Tsirang S/c line at Punatsangchu-I		
	4. 3x105 MVA ICT at Punatsangchu		
	5. 1x80 MVAR Bus reactor at Punatsangchu		
	Table No: BH-02		
Phunatsangchu St-II(990	LILO of Punatsangchu I - Lhamoizingkha (Bhutan Border) 400 kV D/c line at		
MW)	Punatsangchu-II		
	Table No: BH-03		
Mangdhechu (720MW)	1. Mangdhechu HEP-Goling 400kV 2XS/c line		
	2. Goling-Jigmeling 400kV D/c line		
	3. Jigmeling-Alipurduar 400kV D/c line(Quad)		
	Table No: BH-04		
Indian Grid Strengthening	1. New 2x315 MVA ,400/220kV AC & HVDC S/S with ±800kV, 3000MW		
for import of Bhutan	converter module at Alipurduar.		
Surplus	2. Extension of ±800 kV HVDC station with 3000 MW inverter module at		
	Agra		
	3. LILO of ±800kV,6000MW Bishwanath Chariyali – Agra HVDC Bi-pole line		
	at Alipurduar for parallel operation HVDC terminal with 400/220kV at		
	Alipurduar		
	4. LILO of Bongaigaon – Siliguri 400kV D/C Quad Moose line at Alipurduar		
	5. Lhamoizingha/Sunkosh –Alipurduar 400kV D/C (1st) Quad moose line		
	(Indian portion)		
	6. LILO of Tala – Siliguri 400kV D/C line at Alipurduar		
	7. LILO of Birpara-Salakati 220kV D/C line at Alipurduar		

TRANSMISSION SCHEME DETAILS – CROSS BORDER INTERCONNECTION BETWEEN INDIA AND BANGLADESH GRID

Table No: BG-01		
Cross border	India portion:	
interconnection between	(to be implemented by POWERGRID)	
India and Bangladesh	1. Baharampur (India)-Bheramara (Bangladesh) 400kV D/C line	
Grid for facilitating	2. LILO of Farakka - Jeerat 400kV S/C line at Baharampur	
exchange of power up to	3. Establishment of 400kV Switching Station at Baharampur	
500 MW between the two	Bangladesh portion:	
countries	(to be implemented by Power Grid Company of Bangladesh Ltd.)	
	 Baharampur (India)-Bheramara (Bangladesh) 400kV D/C line 	
	2. LILO of Ishurdi - Khulna South 230kV D/C line at Bheramara	
	3. Establishment of 1x500MW HVDC back-to-back Station and 230kV	
	Switching Station at Bheramara	

TRANSMISSION SCHEME DETAILS – CROSS BORDER INTERCONNECTION BETWEEN INDIA AND NEPAL GRID

Table No: NP-01		
Cross border interconnection between	400kV Muzaffarpur (India)- Dhalkebar (Nepal) D/C link	
India and Nepal Grid for facilitating exchange of powerbetween the two countries	(Indian portion- 87km by CPTC (JV), Nepal portion- 39km)	

CHAPTER - 8

PERSPECTIVE TRANSMISSION PLAN

8.1 PERSPECTIVE TRANSMISSION PLANS

The perspective transmission plans cover major transmission corridors planned for:

- thermal generation projects identified near pit heads(for local coal) and at coastal locations (for imported coal),
- identified hydro projects on river basins in northern and eastern regions,
- perspective wind and solar generation projects,
- identified hydro projects in Arunachal Pradesh (NER), and
- import of power from perspective generation projects in Bhutan, Nepal and Myanmar.

The transmission system identified in these plans may be implemented in next 5 to 15 year time period. As the demand/generation scenario evolves in this time period, the transmission plans would be firmed up and implemented matching with schedule of generation projects.

8.2 EVOLUTION OF HIGH CAPACITY POWER TRANSMISSION CORRIDORS

8.2.1 Most of the generation projects, for which system strengthening has been identified under LTA process, are mainly located in the States of Orissa, Chhattisgarh, Sikkim, Jharkhand, Madhya Pradesh, coastal Andhra Pradesh and Tamil Nadu. While processing these applications readiness of generation projects was examined in association with the constituents of concerned regions. For the generation projects having no firm beneficiaries, transmission system requirement was worked out on the basis of target beneficiaries/regions. Based on the information furnished by such applicants(totaling to about 62000 MW of installed capacity), eleven(11) numbers of High Capacity Power Transmission Corridors (HCPTC) comprising of HVDC, 765kV AC and 400kV AC systems have been planned. These are depicted in following figure (Fig. – 8.01):

The above transmission corridors were planned considering long term requirement in the generation clusters and would be commissioned progressively matching with commissioning of associated generation projects. Generation-wise transmission elements of these corridors are also given under the various transmission schemes detailed in chapter 7. Corridor-wise details are given below:

8.2.2 High Capacity Power Transmission Corridor – I (HCPTC-I) : "Transmission System Associated with IPP projects in Orissa"

Associated Generation Projects:

SI. Generation Developer/		Installed Capacity (MW)
No.	Open Access Applicant	
1	Sterlite Energy Ltd	2400
2	GMR Kamalanga Energy Ltd	1050
3	Navabharat Power Pvt. Ltd	1050
4	Monet Power Company Ltd	1050
5	Jindal India Thermal Power Ltd	1200

	Ind Barath Energy(Utkal) Ltd Total	700 10090
6	Lanco Babandh Power Pvt Ltd	2640

HCPTC-I consists of following transmission systems:

Transmission System for Phase-I Generation Projects in Orissa - Part-A

- Angul Pooling Station Jharsuguda Pooling Station 765 kV 2xS/c line
- LILO of Rourkela Raigarh 400 kV D/c at Jharsuguda Pooling station
- LILO of Meramundali Jeypore 400 kV S/c line at Angul pooling station
- LILO of one ckt of Talcher Meramundali 400 kV D/c at Angul pooling station
- Establishment of 765/400 kV Pooling Station at Jharsuguda
- Establishment of 765/400 kV Pooling Station at Angul

II. Transmission System for Phase-I Generation Projects in Orissa - Part-B

- Jharsuguda Pooling Station Dharamjaygarh / near Korba (WR) 765 kV D/c line
- LILO of Ranchi WR Pooling (near Sipat) 765 kV S/c line at Dharamjaygarh / near Korba
- Dharamjaygarh / near Korba Jabalpur Pool 765 kV D/c line
- Jabalpur Pooling Station Jabalpur 400 kV D/c (high capacity) line
- Establishment of 765 kV sub-station at suitable location near Dharamjaygarh /Korba
- Establishment of 765/400 kV Pooling Station at Jabalpur

III. Transmission System for Phase-I Generation Projects in Orissa - Part-C

- Jabalpur Pooling Station Bina 765 kV D/c line
- Bina Gwalior 765 kV S/c (3rd circuit) line
- Gwalior Jaipur 765 kV S/c line
- Jaipur Bhiwani 765 kV S/c line

IV. Under Private Sector – Part-D

- Establishment of 2x1500MVA, 765/400kV Bhopal Pooling Station
- Jabalpur Pool Bhopal Indore 765kV S/c
- Bhopal New substation Bhopal (M.P.) 400kV D/c (high capacity)

8.2.3 High Capacity Power Transmission Corridor – II (HCPTC-II):

"Transmission System Associated with IPP projects in Jharkhand"

Associated Generation Projects:

SI. No.	Generation Developer/	Installed Capacity (MW)
	Open Access Applicant	
1.	Adhunik Power & Natural Resources Limited	540
2.	Essar Power (Jharkhand) Ltd.	1200
3.	Corporate Power Limited Ph-I	540
4.	Corporate Power Limited Ph-II	540
5.	WBSEDCL - Surplus from State Sector Projects of West Bengal	1000
	Total	3820

HCPTC-II consists of following transmission systems:

I Transmission System for Phase-I Generation Projects in Jharkhand & West Bengal : Part-A

- Ranchi Gaya 400 kV (Quad) line via pooling station proposed near Essar / Corporate generation projects
- Ranchi New (765/400kV S/s) Dharamjayagarh 765kV S/c
- Establishment of 400kV Pooling Station (Jharkhand Pool) near Essar and Corporate generation projects(depending upon progress of Essar and Corporate IPPs). This will be a switching station without ICTs.

II Transmission System for Phase-I Generation Projects in Jharkhand & West Bengal : Part-B

- New 2x1500 MVA, 765/400 kV substation at Varanasi and Kanpur
- Gaya Varanasi 765 kV S/c

- Varanasi Balia 765 kV S/c line **
- Varanasi Kanpur 765 kV D/c
- Kanpur Jhatikra 765 kV S/c
- 400kV connectivity for new 765/400kV S/s at Varanasi & Kanpur
- Varanasi Sarnath (UPPCL) 400kV D/c (quad)
- LILO of Sasaram Allahabad 400kV line at Varanasi
- Kanpur (765/400kV) Kanpur (Existing) 400kV D/c (quad)
- * * Varanai Balia 765kV S/c has been subsequently been replaced in place of LILO of one ckt. Of Tillaiya/Gaya Balia 765kV line at Varanasi
- III Common Strengthening Transmission System for Transfer of power from generation projects in Jharkhand to NR/WR under the Scope of Private Sector
 - Dharamjaygarh Jabalpur 765kV D/c (2nd line)
- 8.2.4 High Capacity Power Transmission Corridor III (HCPTC-III): "Transmission System Associated with IPPs projects in Sikkim"

Associated Generation Projects:

SI. No.	Generation Developer/ Open Access Applicant	Installed Capacity (MW)
1	Teesta Urja Ltd. / PTC	1200
2	Lanco Energy Pvt. Ltd.	500
3	DANS Energy Pvt. Ltd.	96
4	JAL Power Corporation	120
5	Madhya Bharat Power Corporation Ltd.	96
6	Gati Infrastructure Ltd	99
7	Gati Infrastructure Bhasmey Power Pvt. Ltd.	51
	Total	2162 MW

HCPTC-III consists of following transmission systems:

- I Transmission System for development of pooling station at Kishanganj in Northern part of West Bengal/Bihar PART A
 - LILO of Siliguri (Existing) Purnea 400kV D/c line(quad) at new pooling station Kishangani
 - LILO of Siliguri (Existing) Purnea 400kV D/c line(on which reconductoring is being carried out) at Kishanganj with the higher capacity(HTLS) conductor
 - LILO of Siliguri Dalkhola 220kV D/c line at new pooling station in northern part of West Bengal / Bihar
 - LILO of Gangtok-Melli 132kV S/c line upto Rangpo pooling point, where Chuzachen-Rangpo 132kV D/c would be connected so as to form Chuzachen-Gangtok and Chuzachen-Melli 132kV S/c lines.
 - New 2x315 MVA, 400kV sub-station at Kishanganj along with associated bays.
- II Transmission System for development of pooling substations within Sikkim and transfer of power to a new pooling station Kishanganj in northern Part of West Bengal/Bihar PART B
 - LILO of Teesta III Kishangani 400kV D/c line(quad) at New Melli
 - Rangpo New Melli 220kV D/c line (with twin Moose conductor)
 - LILO of Gangtok-Rangit 132kV S/c line at Rangpo and termination of Gangtok-Rangpo/Chujachen and Melli Rangpo/Chujachen 132kV lines (constructed under part-A through LILO of Gangtok-Melli 132kV S/c line upto Rangpo) at Rangpo substation
 - LILO of Teesta V Siliguri 400kV D/c line at New Melli
 - Kishanganj Patna 400kV D/c (quad) line
 - Establishment of 220/132kV, 3x100MVA Gas Insulated Substation at Rangpo
 - Establishment of 10x167MVA, 1 phase, 400/220kV Gas Insulated substation at New Melli.

8.2.5 High Capacity Power Transmission Corridor – IV (HCPTC-IV):

"Transmission System Associated with IPPs near Bilaspur complex in Chhattisgarh & MP projects"

Associated Generation Projects:

SI. No.	Generation Developer/ Open Access Applicant	Installed Capacity (MW)
110.	Chhattisgarh IPP	()
1.	Maruti Clean Coal(1X300 MW)	300
2.	Dheeru Power Gen (3x350 MW)	1050
3.	Chhattisgarh State Power Trading Co. Ltd	
	Sub-total	1350
	Madhya Pradesh IPP	
4.	Jaiprakash Power Ventures Ltd. (2x660 MW)	1320
5.	Aryan MP Power generation Pvt. Ltd (2x600 MW)	1200
6.	Bina Power Supply Company Ltd. (2x250 MW)	500
	Sub total	3020
	Total	4370

HCPTC-IV consists of following transmission system:

- Indore- Vadodra 765kV S/c
- Vadodra Pirana 400kV D/c (Quad)
- Establishment of 765/400kV, 2x1500 MVA substation at Vadodra

8.2.6 High Capacity Power Transmission Corridor – V (HCPTC-V) : "Transmission System Associated with Chhattisgarh IPP projects"

Associated Generation Projects:

SI.	Generation Developer/	Installed Capacity
No.	Open Access Applicant	(MW)
	RAIGARH(KOTRA) COMPLEX	
1	RKM Powergen Ltd.(4x360)	1440
2	Athena Chhattisgarh Power Ltd.(2x600)	1200
3	SKS Power Gen. (Ch) Ltd.(4x300)	1200
4	Korba West Power Co. Ltd.(1x600)	600
5	DB Power Ltd.(2x600)	1200
6	Visa Power Ltd.	1200
	sub-total sub-total	6840
	RAIGARH(TAMNAR) COMPLEX	
1	Jindal Power Ltd.(4x600)	2400
2	Jindal Power Ltd. (225 MW from Dongamahua CPP+ 175MW	400
	from	
	existing Tamnar TPS	
3	TRN Energy Pvt. Ltd.(2x300)	600
	sub-total	3400
	JANJGIR-CHAMPA COMPLEX	
1	KSK Mahanadi Power Co. Ltd (6x600)	3600
2	BALCO(4x300)	1200
3	Vandana Vidyut Ltd.(2x135+1x270)	540
4	Lanco Amarkantak Power Pvt. Ltd.(2x660)	1320
	sub-total sub-total	6660
	RAIPUR COMPLEX	
1	GMR Chhattisgarh Energy Pvt. Ltd.	1370
1	Chhattisgarh State Power Trading Co. Ltd	
	Total	18270

HCPTC-V consists of following transmission system:

I Common transmission system strengthening to be implemented by POWERGRID

- Raigarh Pooling Station (Near Kotra) Raipur Pooling Station 765kV D/c line
- Champa Pooling Station Dharamjaygarh Pooling Station 765kV S/c line
- Champa Pooling Station Raipur Pooling Station 765kV D/c line
- Raigarh Pooling Station(Near Kotra) Champa Pooling Station 765kV S/c line
- Raigarh Pooling Station (Near Tamnar) Raigarh Pooling Station(near Kotra) 765kV D/c line
- Raigarh Pooling Station(Near Kotra) Raigarh(PG) 400kV D/c(to be opened at later date) line
- Raipur Pooling Station Raipur (PG)400kV D/c (to be opened at later date) line
- Raipur Pooling Station Wardha 765kV 2xD/c line
- Wardha Aurangabad (PG) 765kV 2xD/c line
- Aurangabad(PG) Padghe(PG) 765kV D/c line
- Aurangabad(PG) Boisar 400kV D/c(Quad) line
- Padghe(PG)- Padghe(MSTECL) 400kV D/c(Quad) line
- ±600kV, 4000MW HVDC bipole between Raigarh Pooling Station(Near Kotra) Dhule(PG) line
- Vadodara Asoj(GETCO) 400kV D/c(Quad) line
- ±800kV, 3000MW HVDC bipole between Champa Pooling Station Kurukshehtra(NR) with provision to upgrade to 6000MW at a later date
- Dhule(PG) Dhule(New) 400kV D/c(Quad) line
- Dhule(PG) Malegaon (MSETCL) 400kV D/c(Quad) line
- Dhule(PG) Nasik(MSETCL) 400kV D/c(Quad) line
- Establishment of 400/220kV, 2x315MVA substation at Dhule(PG)
- Establishment of 765/400kV 4x1500MVA Raigarh Pooling Station(near Kotra)
- Establishment of 765/400kV 3x1500 MVA Raigarh Pooling Station(near Tamnar)
- Establishment of 765/400kV 6x1500MVA Champa Pooling Station
- Establishment of 765/400kV 1x1500MVA Raipur Pooling Station
- Establishment of 4000MW 600KV HVDC bipole terminal each at Raigarh Pooling station(near Kotra) and Dhule(PG) respectively.
- Establishment of 3000MW + 800KV HVDC bipole terminal each at Champa Pooling station and Kurukshetra(NR) respectively (provision to upgrade the terminals at 6000MW at a later date).
- Establishment of 765/400kV 2x1500MVA Padghe(PG) GIS S/s
- Establishment of 765/400kV 2x1500MVA Aurangabad(PG) S/s

Strengthening in Northern region

- Kurukshetra(NR) Jallandhar 400kV D/c(Quad) one ckt. via 400/220kV Nakodar S/s
- LILO of Abdullapur Sonepat 400kV D/c(triple) at Kurukshetra
- Establishment of 400/220kV 2x500 MVA S/s at Kurukshetra

II Common transmission system strengthening under tariff based competitive bidding

- Aurangabad(PG) Dhule (New) 765kV S/c line
- Dhule (New) Vadodara 765kV S/c line
- Dhule (New) Dhule (MSETCL) 400kV D/c Quad line
- Establishment of 765/400kV, 2x1500MVA Dhule(New) S/s

8.2.7 High Capacity Power Transmission Corridor – VI (HCPTC-VI):

"Transmission System Associated with IPPs in Krishnapatnam Area, Andhra Pradesh"

Associated Generation Projects:

SI.	Generation Developer/	Installed Capacity (MW)
No.	Open Access Applicant	
1	Simhapuri Energy Private Limited	600
2	Meenakshi Energy Private Limited	600
3	Thermal Powertech Corporation India Limited	1320
4	Meenakshi Energy Private Limited	400
5	NCC Power Projects Limited	1320
	Total	4240

HCPTC-VI consists of following transmission system:

- Establishment of 765/400 kV, 2x1500 MVA pooling station at Nellore by LILO of Simhapuri-Nellore 400 kV D/c quad line
- Nellore Pooling station Kurnool 765 kV D/c line
- Kurnool Raichur 2nd 765 kV S/c line
- Associated 765 kV & 400 kV bays at Nellore Pooling station, Kurnool and Raichur stations.

8.2.8 High Capacity Power Transmission Corridor – VII (HCPTC-VII):

"Transmission System Associated with IPP projects in Tuticorin Area, Tamil Nadu"

Associated Generation Projects:

SI. No.	Generation Developer/ Open Access Applicant	Installed Capacity (MW)
1	Coastal Energen Private Limited	1200
2	Ind-Barath Power (Madras) Limited	1320
	Total	2520

HCPTC-VII consists of following transmission system:

- Establishment of 765 kV pooling station in Tuticorin and Salem (initially charged at 400 kV)
- LILO of both circuits of Tuticorin JV Madurai 400 kV D/c (quad) line at Tuticorin Pooling Station
- Tuticorin Pooling station Salem Pooling station 765 kV D/c line initially charged at 400 kV.
- Interconnection of Salem pooling station with existing Salem 400/230 kV substation through 400 kV D/c (quad) line.
- Salem pooling station Madhugiri pooling station 765 kV S/c initially charged at 400 kV.

8.2.9 High Capacity Power Transmission Corridor – VIII (HCPTC-VIII) :

"Transmission System Associated with IPP projects in Srikakulam Area, Andhra Pradesh"

Associated Generation Projects:

SI. No.	Generation Developer/ Open Access Applicant	Installed Capacity (MW)
1	East Coast Energy Private Limited	1320
	Total	1320

HCPTC-VIII consists of following transmission system:

- Establishment of 2x1500 MVA, 765/400 kV Pooling station at Srikakulam
- Provision of 1x1500 MVA, 765/400 kV ICT at Angul
- Srikakulam Pooling Station Angul 765kV D/c (initially charged at 400kV)
- Angul Jharsuguda Dharamjaigarh 765 kV D/c line
- Associated 400kV bays at Srikakulam & Angul substations
- Associated 765 kV bays at Angul, Jharsuguda & Dharamjaigarh substations.

8.2.10 High Capacity Power Transmission Corridor – IX (HCPTC-IX):

"Transmission System Associated with IPP projects in Southern Region, for transfer of power to other regions"

Associated Generation Projects:

SI. No.	Generation Developer/ Open Access Applicant	Installed Capacity (MW)
1	Lanco Kondapalli Power Private Ltd.	366
2	Simhapuri Energy Private Limited	600
3	Meenakshi Energy Private Limited	600
4	Thermal Powertech Corporation India Limited	1320
5	Meenakshi Energy Private Limited	400
6	NCC Power Projects Limited	1320
7	Coastal Energen Private Limited	1200
8	Ind-Barath Power (Madras) Limited	1320
9	East Coast Energy Private Limited	1320
	Total	8446

HCPTC-IX consists of following transmission system:

- Sholapur Pune 765 kV 2nd S/c (1st circuit already covered under transmission associated with Krishnapatnam UMPP).
- Establishment of 2x1000MVA 765/400 kV station at Orai by LILO of one circuit of Satna Gwalior 765 kV line.
- Establishment of 2x1500MVA 765/400 kV station at Bulandshahar by LILO of Agra Meerut 765 kV line.
- Establishment of 2x1500MVA 765/400 kV station at Sonipat by LILO of Bhiwani Meerut 765 kV line.
- Jabalpur Pooling station Orai 765 kV S/c line.
- Orai Bulandshahar Sonipat 765 kV S/c line.
- Orai-Orai (UPPCL) 400kV D/c (Quad) line
- Sonipat-Kurushetra 400kV D/c (Quad) line
- Sonipat (New) Sonipat (Under Construction) 400kV D/c (Quad) line
- Bulandshahr Hapur (UPPCL) 400kV D/c (Quad) line

8.2.11 High Capacity Power Transmission Corridor – X (HCPTC-X) :

"Transmission System Associated with IPP projects in Vemagiri Area, Andhra Pradesh"

Associated Generation Projects:

SI. No.	Generation Developer	Installed Capacity (MW)
1	Samalkot Power Limited (Earlier Reliance Infrastructure Ltd.)	2400
2	Spectrum Power Generation Limited	1400
3	GMR Rajahmundry Energy Limited	768
	Total	4568

HCPTC-X consists of following transmission system:

- Establishment of 765/400kV GIS Pooling station at Vemagiri with 4x1500 MVA transformer
- LILO of Gazuwaka Vijayawada 400kV S/c line at Vemagiri Pooling Station
- Establishment of 765/400kV GIS Pooling station at Khammam & Hyderabad with 2x1500 MVA transformers each
- Hyderabad 765/400 kV S/s Hyderabad (existing) 400 kV D/c (quad) line
- Khammam 765/400 kV S/s Khammam (existing) 400 kV D/c (quad) line
- Hyderabad Wardha 765 kV D/c line
- Vemagiri Pooling Station Khammam 765kV 2xD/c line

- Khammam Hyderabad 765kV 2xD/c line
- Wardha Jabalpur Pooling Station 765 kV D/c line

_

8.2.12 High Capacity Power Transmission Corridor – XI (HCPTC-XI):

"Transmission System Associated with IPP projects in Nagapattinam / Cuddalore Area, Tamil Nadu"

Associated Generation Projects:

SI. No.	Generation Developer	Installed Capacity (MW)
1	IL & FS Tamil Nadu Power Company Limited	1200
2	PEL Power Limited	1050
	Total	2250

HCPTC-XI consists of following transmission system:

- Establishment of 765/400kV GIS Pooling station at Nagapattinam with 4x1500 MVA transformer
- LILO of Neyveli Trichy 400kV S/c line at Nagapattinam Pooling Station for interim arrangement which later shall be bypassed
- Establishment of 765/400kV GIS Pooling station at Narendra & Kolhapur with 2x1500 MVA transformers each
- Provision of 2x1500 MVA, 765/400 kV transformers each at Madhugiri and Salem
- Narendra Kolhapur 765kV D/c line
- LILO of both circuits of Kolhapur Mapusa 400 kV D/c line at Kolhapur 765/400 kV S/s
- Charging of Salem Madhugiri 765 kV S/c line 1 (planned with Tuticorin LTOA projects) at its rated voltage
- 400 kV interconnection between Narendra (existing) and Narendra 765/400 kV GIS S/s
- Nagapattinam Pooling Station Salem 765kV D/c line
- Salem Madhugiri 765 kV S/c line
- Madhugiri Narendra 765kV D/c line
- Kolhapur Padghe 765 kV D/c one circuit via Pune.

8.3 PERSPECTIVE TRANSMISSION PLAN FOR EVACUATION OF POWER FROM RENEWABLE ENERGY SOURCES

8.3.1 Perspective Plan for Wind and Solar Generations

Considering the Wind and Solar potential estimates and impetus being given on development of renewable generation, a perspective transmission plan for renewable, indicating broad transmission corridors has been prepared. For this, an assessment has been carried out for RE contribution into power supply scenario for 2030. Wind and solar generation potential is mainly available in six states i.e. Tamil Nadu, Andhra Pradesh, Karnataka, Maharashtra, Gujarat and Rajasthan. Based on the assumptions of the past growth trends in RE capacity addition and potential of above resources it is estimated that a total of about 200 GW of capacity may be available by end of 2030. Out of this, wind may be of the order of 165 GW and solar 35 GW. The planned transmission corridors would need to pick up surplus power from these states and transmit up to deficit states integrating with transmission corridor being planned for hydro generation projects so as to balance intermittency of wind/solar power with hydro power.

8.3.2 High Capacity Corridors for Wind and Solar Generations

Details of identified high capacity transmission corridors for perspective wind and solar generation are as under:

1.765kV Tamil Nadu (SR) RE complex- Maharashtra/Gujarat (WR)- Rajasthan- Haryana/Delhi (NR) D/c

- 2.<u>+</u>800kV, 6000 MW (Multi terminal) Tamil Nadu/Karnataka RE complex- Uttar Pradesh load centres HVDC Bipole
- 3.765kV Karnataka (SR) RE complex- Maharashtra/Madhya Pradesh (WR)- Uttar Pradesh/Uttaranchal- Punjab (NR) load centres D/c
- 4. 765kV Tamil Nadu /AP (SR) RE complex Orrisa (ER)- Jharkhand (ER)- Bihar (ER)- UP/Punjab (NR) Load centres D/c
- 5. 765kV Gujarat RE complex Rajasthan- Haryana/Delhi (NR) D/c
- 6. <u>+</u>800kV 6000 MW (Multi terminal) Gujarat Rajasthan RE complex Punjab load centres HVDC Bipole
- 7. 765kV Rajasthan RE complex (Jaisalmer/Barmer) Central Rajasthan Punjab-J&K load centres D/c.

These transmission corridors would be firmed up considering progress of RE generation, surplus in the home State and willingness of producers/States to export out of their State.

A schematic of above high capacity transmission corridors is depicted in following figure (Fig - 8.02)

Figure 8.02

8.4 MASTER PLAN FOR EVACUATION OF POWER FROM HYDRO ELECTRIC PROJECTS IN UPPER PART OF SATLUJ BASIN AND SPITI VALLEY (SATLUJ BASIN)

The list of identified hydro projects in this basin is given below:

SI.	Name of Project	Installed Capacity,
No.		MW
1	SHPs	142
2	Shongtong Karcham	450
3	Kashang-I	65
4	Kashang-II & III	65 + 65
5	Kashang-IV	48
6	Tidong-I	100
7	Chango Yangthang	140
8	Yangthang Khab	261
9	Ropa	60
10	Khab	636
11	Tidong-II	90
12	Jhangi Thopan	480
13	Thopan Powari	480
14	Sumte Khatang	130
15	Lara Sumte	104
16	Mane-Nadang	70
17	Lara	60
18	Killing-Lara	40
	Total	3486

The transmission plan is depicted in following figure (Fig - 8.03):

8.4.1 Small Hydro Projcets (SHPs):

Establishment of 66/220/400 kV GIS Pooling Station at Wangtoo by Mid 2014 to match commissioning of SHPs in Bhaba Khad (57 MW) and Sangla Valley (40 MW) + LILO of 220 kV Kashang- Bhaba D/c Line and LILO of both circuits of 400 kV Karcham Wangtoo-Abdullapur D/c line at Wangtoo. – *Proposed Implementation through STU (HPPTCL)*.

Figure: 8.03

8.4.2 Kashang-I (65 MW):

Kashang-I is likely to be commissioned by 2013. For evacuation of power from Kashang-I, HP is constructing a 220 kV D/c line from Bogtu to Kashang. Accordingly, power can be evacuated through Bogtu - Bhabha 220 kV D/c line.

8.4.3 Tidong-I (100 MW):

Tidong-I is under construction and is likely to be commissioned by December 2014, however, the Jangi Pooling station may not come up by that time, therefore, the Tidong-I power shall be temporarily evacuated by LILO of one circuit of 220 kV D/C Kashang- Bhaba line at Tidong-I HEP. These works shall be carried out by HPPTCL. Later on when Jangi P.S. is commissioned, Tidong-I - Jangi line shall be constructed and also Kashang – Jangi 220 kV D/c line with single HTLS conductor shall be established. These works are proposed to be carried out by HPPTCL.

8.4.4 Kashang-II (65 MW):

Kashang-II (65 MW) is planned to be evacuated through 220 kV system, in case the Jangi S/S is delayed. However some constraints may be faced during contingency of outage of one circuit. Establishment of Jangi Pooling station may be taken up with further stages of Kashang.

8.4.5 Shongtong Karcham(450 MW):

- Shongtong Karcham Wangtoo 400 kV D/c Line (Quad HTLS Conductor –Equivalent to about 3000MW) – 18 km - as ISTS
- Switchyard may of GIS type and may be designed with 4000 Amps switchgear so as to handle about 2800-3000MW power planned in the upstream of the generation project.

8.4.6 Kashang-III (65 MW) & Kashang-IV (48 MW) and Tidong-II (90 MW) HEP:

- Kashang-Jangi Pooling Station 220 kV D/c line (Single HTLS- Equivalent to 300 MW capacity)
 by STU
- 2x315 MVA (7x105 MVA units) 220/400 kV GIS Pooling Station at Jangi (with 4000 Amps. switchgear) (with space provision for 3rd ICT) *as ISTS*
- LILO of one ckt. of Shongtong –Wangtoo 400 kV Line at Jangi as ISTS
- Tidong Jangi Pooling Station 220 kV D/c line by STU

8.4.7 Chango Yangthang (140 MW):

- Chango Yangthang Proposed site of Ka Dogri Pooling Station 220 kV D/c line 18 km by developer
- Proposed Site of Ka Dogri Jangi Pooling Station 400 kV D/c line (Twin Moose) to be initially charged at 220 kV 50 km as ISTS
- Provision of 3rd 400/220 kV ICT (3 nos. of 105 MVA Single Phase units) at Jangi Pooling Station - as ISTS

8.4.8 Yangthang Khab (261 MW):

- 220 kV Yangthang Khab- Ka Dogri D/c Line with HTLS conductor adequate for 300 MW capacity 4 km as ISTS
- 2x315 MVA (7x105 MVA units) 220/400 kV GIS Pooling Station at Ka Dogri as ISTS
- Charging of Ka Dogri Jangi line at 400 kV level as ISTS
- Direct termination of Chango Yangthang at Ka Dogri Pooling Station by generation developer

8.4.9 Khab (636 MW):

Khab – Jangi Pooling Station 400 kV D/c line – 20 km - as ISTS

8.4.10 Jangi Thopan (480 MW) & Thopan Powari (480 MW) :

- LILO of one circuit of Jangi Pooling Station Wangtoo 400 kV D/c (Quad HTLS) line at generation project - as ISTS
- Switchgear Capacity at Generation switchyard bus rating to be 4000 A.

8.4.11 Ropa (60 MW)

- o Direct injection to Jangi Pooling station by a 220 kV D/c line by generation developer
- o The generation of SHPs in the area may be injected at Ropa Generation Switchyard.

8.4.12 Other Projects of Spiti Valley (Satluj Basin)

- o The generation of these projects can be injected at Ka Dogri Pooling Station.
- From Killing Lara (40 MW), Lara (60 MW) & Mane Nadang (70 MW), a combined 220 kV D/c line can be constructed upto Lara Sumte HEP. From Lara Sumte HEP(104MW), a high capacity 220 kV line (with twin Moose conductor) can be constructed upto Ka Dogri Pooling Station Proposed Implementation as ISTS except for the generators below 50 MW.
- Augmentation of transformation capacity would be required at Ka Dogri. Space for 2 additional ICTs of 315 MVA (105 MVA single phase units) would be required. These transformers can be provided progressively matching with the generation addition. - as ISTS

NOTE: Present / Planned system beyond Wangtoo station would be capable of handling about 500-600 MW of power (to be confirmed with the development of the generation projects). One more additional high capacity line (400 kV Quad) from Wangtoo towards Haryana/Punjab shall be required which can be constructed through the right bank of the river.

8.5 MASTER PLAN FOR EVACUATION OF POWER FROM HYDRO ELECTRIC PROJECTS IN CHANDRABHAGA BASIN

8.5.1 The list of identified hydro projects in this basin is given below:

SI. Name of Project Installed Capacity,		Installed Capacity, MW
No.		
1	Chhatru	120
2	Teling	94
3	Shangling	44
4	Jispa	300
5	Tandi	104
6	Rashil	130
7	Bardang	126
8	Tignet	81
9	Pattam	60
10	Seli	400
11	Miyar	120
12	Reoli Dugli	420
13	Sach Khas	149
14	Purthi	300
15	Duggar	236
16	SHPs	300
17	Other	500
_	Total	3500

The transmission plan is depicted in the following figure (Fig – 8.04)

The total power in this area is about 3500 MW. Out of these projects, two projects namely, Miyar & Seli are expected to come up by 2017 and three projects Chhatru, Reoli Dugli & Sach Khas are expected by 2018. The next project expected in this area would be Jispa. The status and time frame of other projects are not yet clear.

Based on the progress of generation, availability of corridors, severe R-o-W constraints near Seli, quantum of power, it was considered prudent to develop two transmission corridors, one towards Hamirpur and the other towards J&K. It is proposed that the corridor to start from Seli HEP would go towards Hamirpur and the other corridor to start from Reoli Dugli would go towards J&K. The corridor capacity towards Hamirpur would be of the order of 2500 MW and corridor capacity towards J&K would be about 1500 MW.

Keeping above observations in view, following transmission system is proposed which is matched with the sequence of commissioning of generation projects:

CHANDRABHAGA CORRIDOR-I

8.5.2 Seli HEP (400 MW):

- 400 kV D/c Line (Twin HTLS-Adequate for about 2000 MW) from Seli to the site of 400 kV Pooling Station near Sissu /Gramphu (Pooling Station may not be constructed during this time frame) - as ISTS
- From site proposed near Sissu/Gramphu Pooling Station Hamirpur 400 kV D/c (Triple HTLS adequate for 2500 MW capacity) For this line section, Rohtang Pass is to be crossed which would have implementation challenges due to 8-10 feet of snow at during winters and working season would be very less.. as ISTS

8.5.3 Miyar HEP(120 MW):

LILO of one circuit of Seli – Hamirpur (via Rohtang) 400 kV D/c line (Twin HTLS) at Miyar - Proposed Implementation as ISTS

8.5.4 Chhatru HEP (120 MW) :

- Establishment of 2x315 MVA (7x105 Single Phase units) 400/220 kV GIS Pooling station near Sissu / Gramphu - as ISTS
- Chhatru Sissu / Gramphu GIS Pooling Station 220 kV D/c line (HTLS adequate for 300 MW per circuit) as ISTS
- o LILO of both circuits of Seli Hamirpur line at Sissu/ Gramphu GIS Pooling Station.- as ISTS

8.5.5 Teling & Shangling HEP (94 & 44 MW) :

- LILO of one circuit of Chhatru Sissu / Gramphu Pooling Station 220 kV D/c (HTLS) at Teling as ISTS
- LILO of one circuit of Chhatru Sissu / Gramphu Pooling Station 220 kV D/c (HTLS) at Shangling - by STU or developer

Note: The capacity of generation switchyards at Chhatru, Teling and Shangling HEPs to be equal to power handling capacity of 300 MW otherwise there would be constraints during contingency of outage of one circuit.

8.5.6 Jispa (300 MW):

Jispa – Sissu / Gramphu Pooling Station 400 kV D/c line - as ISTS

8.5.7 Bardang HEP (126 MW):

LILO of one circuit of Seli – Sissu / Gramphu Pooling Station 400 kV D/c (Twin HTLS) - as ISTS

8.5.8 Rasil HEP (130 MW)

o LILO of one circuit of Seli – Sissu / Gramphu Pooling Station 400 kV D/c (Twin HTLS) - as ISTS

8.5.9 Tandi HEP (104 MW)

o LILO of one circuit of Seli - Sissu / Gramphu Pooling Station 400 kV D/c (Twin HTLS) - as ISTS

8.5.10 Pattam HEP (60 MW):

- Pattam Miyar 220 kV D/c as ISTS
- Provision of 1x250 MVA(4 nos. of 83.3MVA Single Phase units), 220/400 kV GIS Pooling Station at Miyar. Incase of space constraints at Miyar switchyard, a separate pooling station would be required.- **as ISTS**

8.5.11 Tignet HEP (81 MW)

- LILO of one circuit of Pattam Miyar 220 kV D/c as ISTS
- For Pattam & Tignet HEP transmission systems, it is assumed that Pattam would be coming up prior to Tignet. In case Tignet HEP materializes before Pattam, 220 kV D/c line and provision of ICTs shall have to be matched with Tignet HEP.

NOTE: (Additional system beyond Hamirpur would be planned based on the requirement / commissioning of new projects.) - *as ISTS*

CHANDRABHAGA CORRIDOR-II

8.5.12 It was proposed that the generation projects in the downstream of Seli HEP i.e. Reoli Dugli (420 MW), Sach Khas (149 MW), Purthi (300 MW) and Duggar (236 MW) may be evacuated through Jammu region as these projects are close to that region, there are severe R-o-W constraints from Seli to Reoli Dugli and it may not be feasible / reliable to evacuate full 3850 MW through single corridor.

8.5.13 Reoli Dugli HEP (420 MW) & Sach Khas (149 MW):

- o Reoli Dugli- Kishtwar 400 kV D/c (Twin HTLS-Adequate for 1500 MW) as ISTS
- Establishment of 400 kV switching station at Kishtwar as ISTS
- LILO of Dulhasti / Ratle Kishenpur 400 D/c (Quad) line at Kishtwar as ISTS
- LILO of one circuit of Reoli Kishtwar at Sach Khas as ISTS
- Generating Switchyard capacity to be kept for 1500 MW at each Power House.

8.5.14 Purthi HEP (300 MW)

- LILO of one circuit of Reoli Kishtwar 400 kV D/c at Generating station as ISTS
- Generating Switchyard capacity to be kept for 1500 MW at Power House.

8.5.15 Duggar HEP (236 MW):

- LILO of one circuit of Reoli Kishtwar 400 kV D/c at Generating station as ISTS
- Generating Switchyard capacity to be kept for 1500 MW at Power House.

Note: Initially some margins may be available beyond Kishtwar, however system strengthening would be required depending on the generation addition. - *as ISTS*

8.6 MASTER PLAN FOR EVACUATION OF POWER FROM HYDRO ELECTRIC PROJECTS IN RABI AND BEAS BASINS

8.6.1 Rabi Basin

The list of identified hydro projects in this basin is given below:

SI. No.	Name of the Project	Installed Capacity, MW
1	Chamera – I	540
2	Chamera – II	300
3	Chamera – III	231
4	Budhil	70
5	Kuther	260
6	Bijoli holi	200
7	Bara Bengal	200
8	Burmur	45
9	Hudsar	60
10	Kugti	45
	Total	1951

The transmission plan is depicted in following figure (Fig - 8.05):

Major projects existing in Rabi Basin are Chamera-I (540MW) and Chamera-II (300MW). For evacuation of power 400 kV D/C line from Chamera-I to Jullundhar and 400kV S/C from Chamera-I to Kishenpur LILOed to Chamera-II are existing. Chamera-III (231MW) and BudhiI (70MW) are under construction and Kuther(260 MW), Bijoli holi (200 MW), Bara Bengal (200 MW), Burmur (45 MW), Hudsar (60 MW) and Kugti (45 MW) are planned. For evacuation of power from the projects upstream of Chamera-II, a 400/220kV pooling station is planned near Chamera-II which is required matching with BudhiI HEP with would be the next project in the valley. This pooling station would be connected to Chamera-II through a 400kV S/C line and to Jullundhar through 400kV D/C line. The line to Jullundhar would be needed with the next generation project which is Chamera-III. A 220kV pooling station at a suitable location upstream of Chamera III is also proposed where power is proposed to be pooled and transmitted to Chamera-II 400/220kV pooling station through three numbers of 220kV D/C lines with 1xMoose conductors. These would be optimum solution for phased development. However, if there are physical constraints in constructing three of 220 kV D/C lines through the valley, it may be required to built two nos. of 220 D.C lines with 2x Moose conductors

8.6.2 Beas Basin

The list of identified hydro projects in this basin is given below:

SI. No.	Name of the Project	Installed Capacity, MW
1	Malana – I	87
2	Larji	126
3	Allain Duhangan	192
4	Malana – II	100
5	Koldam	800
6	Parbati – II	800
7	Parbati - III	501
8	Sainj	100
	Total	2706

The transmission plan is depicted in following figure (Fig - 8.06):

The existing major projects in Beas basin are Malana-I (87MW) and Larji (126 MW). Power from both these projects is being evacuated through 132 kV HPSEB system. The other major projects in Beas/Parbati basin are Allain Duhangan (192 MW), Malana-II(100MW), Koldam (800MW) Parbati-II (800

MW), Parbati III (501 MW) and Sainj (100 MW). Evacuation from Koldam, Parbati-II and Parbati-III is planned through 400kV system. The transmission lines are:

- Koldam-Nalagarh 400kV D/C Quad conductor line
- Parbati-II-Koldam 400kV 2xS/C Quad conductor line
- Koldam-Ludhiana 400kV D/C Triple conductor

With Parbati-III, a pooling station at Panarsa is proposed and Panarsa-Amritsar 400kV D/C twin Moose line has been planned.

The Panarsa 400/220kV pooling station would required in the time frame of Allain Duhangan and Malana-II. However, as the time schedule did not match, a direct 220kV D/C line from Allain Duhangan to Nalagarh has been taken-up for construction by ADHPL. This line with 1xZebra conductor has a capacity of 400 MW through which Malana-II power can also be evacuated.

Power from Sainj is proposed to be evacuated through 400kV via Parbati-III. For this, either Sainj may adopt direct step-up to 400kV or have its own 400/132kV substation.

The 400/220kV pooling station at Panarsa would still be needed to pool the power to be received from Tandi 220kV pooling station proposed in Chenab basin. As the line from Tandi would be at high altitude, and there may also be need of cables in some portion, 220kV line would be a better option rather that 400kV. The 220kV lines would have to be with higher conductor specification say 220kV D/C line with quad Moose conductors.

8.7 MASTER PLAN FOR EVACUATION OF POWER FROM HYDRO PROJECTS IN ARUNACHAL PRADESH

8.7.1 Basin-wise generation capacity in Arunachal Pradesh

In Arunachal Pradesh about 37,600 MW of hydro potential has been identified to be developed in coming years. Out of this, about 2700 MW addition is expected by end 12th Plan and about 35000 MW during 13th Plan period and beyond. These generation projects may be built through private / Government sector. The basin wise identified capacity is given below:

SI. No.	Name of Basin	Installed Capacity (MW)
1	Twang	2773
2	Kameng	3892
3	Subansiri	8865
4	Siang	6939
5	Lohit	6632
6	Dibang	8508

8.7.2 Transmission system associated with ongoing projects i.e. Lower Subansiri HEP (2000 MW) and Kameng HEP (600 MW)

Transmission system for evacuation of power from Lower Subansiri HEP and Kameng HEP in Arunachal Pradesh and hydro electric projects in Bhutan namely Punatsanchu-I (1200 MW), Punatsanchu-II (990 MW) and Mangdechu (720 MW) was evolved in a comprehensive manner. The power from these projects would be evacuated to Northern and Western regions over + 800 kV, 6000 MW HVDC Bipole line from Biswanath Chariyalli to Agra. The implementation of HVDC Bipole was deferred because of delay in implementation of Lower Subansiri HEP. Now the construction of 1971 km HVDC line is in progress and construction of converter terminals at Biswanath Chariyali (3000 MW), Alipurduar (3000 MW) and Agra (6000 MW) has also been awarded. The transmission system is being implemented by POWERGRID. The estimated cost of the scheme is Rs. 11,130 crores. The scheme is expected to be commissioned matching with the commissioning of the hydro projects. The details of the transmission system are given below.

- a. North East-Northern / Western Interconnector -I
 - Biswanath Chariyalli-Agra ± 800 kV, 6000 MW HVDC bipole line
 - Balipara- Biswanath Chariyalli 400 kV D/C line
 - LILO of Ranganadi-Balipara 400 kV D/C line at Biswanath Chariyalli
 - Biswanath Chariyalli- Biswanath Chariyalli (AEGCL) 132 kV D/C line
 - 2x200 MVA 400/132 kV S/S at Biswanath Chariyalli

- HVDC 3000 MW rectifier module at Biswanath Chariyalli and 3000 MW inverter module at Agra
- 1x315 MVA 400/220 kV S/S at Agra (aug.)
- b. Transmission System for immediate evacuation of power from Kameng HEP
 - Kameng-Balipara 400 kV D/C line
 - Balipara-Bongaigaon 400 kV D/C line (Quad) with 30 % fixed series compensation
 - 2nd 315 MVA 400/220 kV ICT at Misa
- c. Transmission System for immediate evacuation of power from Lower Subansiri HEP
 - Lower Subansiri-Biswanath Chariyalli 400 kV 2xD/C with twin lapwing conductor

8.7.3 Development of Master Plan

CEA has developed river basin wise master plan for evacuating the power of various proposed hydro projects in the state of Arunachal Pradesh. The master plan would serves as a basis for firming up the transmission system for evacuation of power from the hydro projects in Arunachal Pradesh. Broadly the planned transmission system consists of three parts.

- **i.** Immediate evacuation system for transfer of power from individual generating station to nearest basin wise pooling station/s.
- ii. Common transmission system form basin Pooling station/s to bigger pooling station.
- iii. Bigger pooling station to Load centers in other region through HVDC / EHVAC lines.

The first two parts consist of 220kV or 400kV EHVAC transmission systems for generation projects identified in a river basin. The third part i.e. the system from bigger pooling station (which would pool projects totalling to 5000 – 7000 MW capacity) to load centers in other regions, is still under planning stage. These would consist of high capacity long distance transmission systems primarily using latest HVDC technology. As the majority of the generation projects i.e. 34000 MW out of 37000 MW are likely to come during 2017-2030 time period, the system for transmitting this power over long distances and optimizing RoW shall need to be planned using latest available technology at that time.

A combined transmission master plan for various river basins in Arunachal Pradesh is depicted in figure (Fig -8.07).

The generation developers who intend to use inter-state transmission system for evacuation of power from their projects have to approach Central Transmission Utility (CTU) for Grid Connectivity and seek Long Term Access (LTA) as per the CERC regulation. After the grant of LTA to the hydro project developer, the developer needs to sign Long Term Access Agreement (LTAA) and submit requisite bank guarantee to the CTU and thereafter, the identified transmission system is taken up for implementation. Thus, the various transmission systems identified in the master plan would be implemented as per the need and schedule of the associated generation project.

8.7.4 Transmission System for Projects in Lohit Basin:

A: Hydro projects who have applied for connectivity / LTA to CTU

Following hydro projects developers have applied to the CTU for Grid connectivity / Long Term Access in Arunachal Pradesh in Lohit Basin:

, 100000 1117 11 01 11 01 11 11 11 11 11 11 11 11 11					
SI.	Name of Project	Name	of	Installed Capacity	LTA / Connectivity (MW)
No.		Developer		(MW)	
1	Lower Demwe	Athena	Demwe	5x342+1x40=1750	1750
		Power Ltd.			
		•	Total - A	1750	1750

B: Additional Hydro projects

Following additional hydro projects has been considered while evolving transmission system from Lohit Basin:

SI. No.	Name of Project	Name of Developer	Installed Capacity (MW)
1.	Demwe Upper	Athena Energy Venture (Lohit Urja)	1080
2.	Kalai-II	Kalai Power Pvt. Ltd. (Reliance	1200
		Power Ltd.)	
3.	Houtang-II	Mountain Fall India Pvt.	1250
4.	Kalai-I	Mountain Fall India Pvt.	1352
	•	4882	
		Total (A+B)	6632

C: Transmission system:

The power from the hydro projects would be pooled at Namsai Pooling Point from where; it would be evacuated over \pm 800 kV 7000 MW HVDC bipole line to other region of the country. For improving the reliability of evacuation of power Lohit basin, Namsai would be interconnected with Rupai Pooling Point over 400 kV D/C HTLS AC line. Power from hydro projects in Myanmar is proposed to be pooled at Rupai Pooling point from where another \pm 800 kV HVDC (7000 MW) bipole line is proposed to other region of country.

8.7.5 Transmission System for Projects in Dibang Basin:

A: Hydro projects who have applied for connectivity / LTA to CTU

No hydro project developer has applied to the CTU for Grid connectivity / Long Term Access in Arunachal Pradesh in Dibang Basin as on date.

B: Additional Hydro projects

Following additional hydro projects has been considered while evolving transmission system from Dibang Basin:

SI. No.	Name of Project	Name of Developer	Installed Capacity (MW)	
1.	Dibang	NHPC	3000	
2.	Emini	Emini Hydro Power Pvt. Ltd.	500	
		(Reliance Energy Ltd.)		
3.	Mihumdon	Mihumdon Hydro Power Pvt. Ltd.	400	
		(Reliance Energy Ltd.)		
4.	Sissiri	Soma Sissiri Hydro Power Pvt. Ltd.	1352	
		(Soma Enterprise Ltd.)		
5.	Emra-II	Athena Energy Venture	216	
6.	Amulin	Amulin Hydro Power Pvt. Ltd.	420	
		(Reliance Energy Ltd.)		
7.	Emra-I	Athena Energy Venture	275	
8.	Etalin	Jindal Power Ltd.	3097	
9.	Attunli	Jindal Power Ltd.	500	
		8508		
	Total (A+B) 8508			

C: Transmission system:

The power from the hydro projects except Dibang and Etalin would be pooled at a sub pooling point at Anini. The power from Dibang and Etalin hydro project and that from Anini sub pooling point would be pooled at Dambuk, a bigger pooling point, from where it would be evacuated over \pm 800 kV 7000 MW HVDC bipole line to other region of the country. Anine pooling point would be connected to Dambuk pooling point over 400 kV D/C line with HTLS conductor. For evacuating remaining power from this basin, the Dambuk pooling point would be interconnected with Rupai pooling point over 400 kV 2xD/C HTLS lines.

8.7.6 Transmission System for Projects in Siang Basin:

A: Hydro projects who have applied for connectivity / LTA to CTU

Following hydro projects developers have applied to the CTU for Grid connectivity / Long Term Access in Arunachal Pradesh in Siang Basin:

S. No.	Name of Project	Name of	Installed Capacity	LTA / Connectivity (MW)
		Developer	(MW)	
1.	Lower Siang	Jayprakash Power	Ph-I: 5x300=1500	2700
		Ventures Ltd	Ph-II :4x300=1200	
		(JPVL)	Total = 2700	
2.	Siyom (Siang	Siyom Hydro	6x166.6=1000	1000
	Midle)	Power Pvt. Ltd.		

S. No.	Name of Project	Name of Developer	Installed Capacity (MW)	LTA / Connectivity (MW)
		(Reliance Energy Ltd.)		
3.	Tato-II	Tato-II Hydro Power Private Ltd. (Reliance Energy Ltd.)	4x175=700	700
4.	Naying	D S Construction Ltd	4x250=1000	1000
5.	Tagurshit	L&T Power Ltd.	3x28=84	84
6.	Pauk	Pauk Hydro Power Project (Velcan Energy Ltd.)	3x48.3=145	145
7.	Heo	Heo Hydro Power Project	3x80=240	240
8.	Tato-I	Siyota Hydro Power Project	3x62=186	186
		Total A	6055	6055

B: Additional Hydro projects

Following additional hydro projects has been considered while evolving transmission system from Siang Basin:

S. No.	Name of Project	Name of Developer	Installed Capacity (MW)
1.	Pemashelpu	Rajratna Metal Industries	90
2.	Hirong	Jaiprakash Associates Ltd.	500
3.	Kangtangshiri	Rajratna Metal Industries	80
4.	Ropum	Rajratna Metal Industries	80
5.	Simang-I	Adishankar Power Pvt. Ltd.	67
6.	Simang-II	Adishankar Power Pvt. Ltd.	67
	-	Total B	884
		Total (A+B)	6939

C: Transmission system:

The power from some hydro projects in Siang Basin would be pooled at a sub pooling point Tato. Power pooled at Tato would be pooled at another pooling point Kamki, where power from near by hydro projects would also be pooled. The power from Kamki pooling point would be brought to bigger pooling point at Shilapathar through high capacity 400 kV AC lines. The power from Lower Siang project would be directly pooled at Shilapathar. From Shilapathar the power would be evacuated over ± 800 kV 7000 MW HVDC bipole line to other region of the country. In order to provide redundancy in the transmission system, the Shilapathar would be interconnected with Biswanath Chariyali and Rupai over high capacity 400 kV D/C HTLS lines.

8.7.7 Transmission System for Projects in <u>Subansiri Basin</u>: A: Existing Project:

S. No.	Name of Project	Name of Developer	Installed Capacity (MW)
1.	Ranganadi	NEEPCO	405
		Total A	405

The power is evacuated over 400 kV D/C line to Balipara sub-station.

B: Ongoing Project:

S. No.	Name of Project	Name of Developer	Installed Capacity (MW)
1.	Subansiri Lower	NHPC	2000
		Total B	2000

The associated transmission system is given at 8.7.2 above.

C: Hydro projects who have applied for connectivity / LTA to CTU

No hydro project developer has applied to the CTU for Grid connectivity / Long Term Access in Arunachal Pradesh in Subansiri Basin as on date.

D: Additional Hydro projects

Following additional hydro projects has been considered while evolving transmission system from Siang Basin:

S. No.	Name of Project	Name of Developer	Installed Capacity (MW)
1.	Subansiri Middle	Jindal Power Ltd.	1600
2.	Subansiri Upper	KSK Energy Venture Ltd.	1800
3.	Naba	Abir Infrastructure Pvt. Ltd.	1000
4.	Nalo	Coastal Infrastructure Pvt. Ltd.	360
5.	Oju-II	Navayuga Energy Co. Ltd.	1000
6.	Oju-l	Navayuga Energy Co. Ltd.	700
		Total D	6460
		Total (A+B+C+D)	8865

E: Transmission system:

The power from hydro projects mentioned in Subansiri Basin except Subansiri Middle would be pooled at Daporijo Pooling Point and that from Subansiri Middle would be pooled at Subansiri Lower. The power from Daporijo pooling point would be brought to New Itanagar pooling point over 400 kV 2xD/C HTLS lines, from where it would be evacuated over ± 800 kV 7000 MW HVDC bipole line to other region of the country. Further, one D/C of 400 kV Subansiri Lower – Biswanath Chariyalli 2xD/C line would also be Looped in and looped out at New Itanagar.

8.7.8 Transmission System for Projects in <u>Kameng Basin</u>: A: Ongoing Hydro project:

S. No.	Name of Project	Name of Developer	Installed Capacity (MW)
1.	Kameng	NEEPCO	600
		Total A	600

The associated transmission system is given at 8.7.2 above.

B: Hydro projects who have applied for connectivity / LTA to CTU

Following hydro projects developers have applied to the CTU for Grid connectivity / Long Term Access in Arunachal Pradesh in Siang Basin:

S. No.	Name of Project	Name of Developer	Installed Capacity (MW)	LTA / Connectivity (MW)
1.	Dibbin	KSK Dibbin Hydro Power Pvt Ltd	2x60=120	120
2.	i) Gongri ii) Saskang Rong iii) Meyong iv) Diggin	Patel Hydro Pvt Ltd	3x48=144 2x22.5=45 2x19=38 2x23=46	273
3.	Khuitam	Adishankar Khuitam Power Pvt. Ltd.	3x22 = 66	66
4.	Nafra	SEW Power Corporation Ltd	2x60 = 120	132
5.	i) Pachuk-I ii) Pachuk-II iii) Pachuk-II (L) iv) Margingla	Energy Development Company Ltd (EDCL)	84 60 45 60	391

	v) Margingla (L)		48	
	vi) Pakke-I		40	
	vii) Pakke-II		15	
	viii) Pakke-III		24	
	ix) Pakke-IV		15	
6.	Talong (Londa)	GMR Londa Hydro	3x75 = 225	225
		Power Pvt Ltd.		
		Total B	1195	1207

C: Additional Hydro projects

Following additional hydro projects has been considered while evolving transmission system from Siang Basin:

S. No.	Name of Project	Name of Developer	Installed Capacity (MW)
1.	Rebby	Coastal Projects Ltd.	31
2.	Para	Coastal Projects Ltd.	55
3.	Badao	Coastal Projects Ltd.	70
4.	Lochung	Coastal Projects Ltd.	41
5.	Phanchung (Pachi)	Indiabull Real Estate Ltd.	56
6.	Pichang	Indiabull Real Estate Ltd.	12
7.	Tarang Warang	Indiabull Real Estate Ltd.	36
8.	Papu	Indiabull Real Estate Ltd.	90
9.	Sepla	Indiabull Real Estate Ltd.	21
10.	Utung	KSK Energy Venture Pvt. Ltd.	100
11.	Kameng Dam	KSK Energy Venture Pvt. Ltd.	480
12.	Dimijin	KSK Energy Venture Pvt. Ltd.	20
13.	Dinchang	KSK Energy Venture Pvt. Ltd.	360
14.	Jameri	KSK Energy Venture Pvt. Ltd.	90
15.	Kameng II (Bhareli)	Mountain fall India Pvt. Ltd.	600
16.	Papu Valley	Vensar Construction Co. Pvt. Ltd.	35
		Total C	2097
i		Total (A+B+C)	3892

D: Transmission system:

The power from nine hydro projects of Energy Development Company Ltd. (EDCL) in Kameng basin would be pooled at EDCL sub pooling point. Power from the hydro projects in Western part of Kameng basin would be pooled at Dinchnag Pooling Point. Power from Northern part of Kameng basin and that from EDCL sub pooling point will be pooled at Talong Pooling point. Power from Talong pooling point and that from hydro projects in South-Eastern part of Kameng basin would be pooled at South Kameng pooling point. Further power from Dinchang pooling point would be brought to Rangia / Rowta pooling point over 400 kV quad D/C line, from where it would be evacuated over ± 800 kV 7000 MW HVDC bipole line to other region of the country. The power from South Kameng pooling point would be brought to Biswanath Chariyali pooling point over 400 kV D/C HTLS line. The capacity of converter terminal at Biswanath Chariyali would be augmented to 6000 MW and the LILO of HVDC line to Agra would be disconnected at Alipurduar terminal.

8.7.9 Transmission System for Projects in Twang Basin:

A: Hydro projects who have applied for connectivity / LTA to CTU

Following hydro projects developers have applied to the CTU for Grid connectivity / Long Term Access in Arunachal Pradesh in Twang Basin:

S. No.	Name of Project	Name of Developer	Installed	LTA / Connectivity
			Capacity (MW)	(MW)
1.	Nyamjang Chu	Bhilwara Energy Ltd.	6x130 = 780	780
2.	i) Tashu-I	Energy Development	3x8=24	164
	ii) Tashu-I (L)	Company Ltd.	3x16.6=50	
	iii) Tashu-II	(EDCL)	3x30=90	
3.	Twang-I	NHPC Ltd.	3x200=600	660 (with over load)
4.	Twang-II	NHPC Ltd.	4x200=800	880 (with over load)
	_	Total A	2344	2484

B: Additional Hydro projects

Following additional hydro projects has been considered while evolving transmission system from Twang Basin:

S. No.	Name of Project	Name of Developer	Installed Capacity (MW)
1.	Mago Chhu	Sew Energy Limited	96
2.	Nykcharongchu	Sew Energy Limited	96
3.	Rho	Sew Energy Limited	141
4.	New Melling	Sew Energy Limited	96
		Tot	al B 429
		Total (A	A+B) 2773

C: Transmission system:

The power from hydro projects in Twang Basin would be pooled at Twang pooling point. Power pooled at Twang would be pooled at Bigger pooling point Rangia / Rowta through 400 kV D/C Quad HTLS line. From Rangia / Rowta the power would be evacuated over \pm 800 kV 7000 MW HVDC bipole line to other region of the country. It is also proposed to LILO 400 kV Balipara-Bongaigaon lines at Rangia / Rowta.

8.8 Future Development of Transmission System in North Eastern Region

Large number of hydro generating station, are anticipated in North Eastern Region, during 13th plan period. These would be a major source of power to the North Eastern Regional constituents. In order that NER constituents would be able to draw power from these projects, adequate system strengthening would be required in NER constituent states. Therefore, it is important that transmission development in the NER states is also taken up hand in hand in a phased manned with the development of the hydro projects so that the transmission network in the region is also strengthened. Accordingly, a tentative system strengthening transmission plan for 13th plan in NER is given below:

- (i) Rangia / Rowta Pooling Station Azara 400kV D/c line (high capacity)
- (ii) Azara Byrnihat 400kV D/c line (high capacity)
- (iii) Byrnihat Silchar 400kV D/c line (high capacity)
- (iv) Silchar Surajmaninagar 400kV D/c line (high capacity)
- (v) Surajmaninagar Melriat 400kV D/c line (high capacity)
- (vi) Melriat Imphal 400kV D/c line (high capacity)
- (vii) Imphal Kohima 400kV D/c line (high capacity)
- (viii) Kohima Mariani 400kV D/c line (high capacity)
- (ix) Mariani-Silapathar Pooling Station 400 kV D/c line (high capacity)

8.9 PERSPECTIVE TRANSMISSION PLAN FOR EVACUATION OF POWER FROM POJECTS IN BHUTAN

8.9.1 Introduction

Bhutan has total installed generating capacity of 1480 MW comprising of Tala (1020MW), Chukha (336MW), Kurichhu (60MW) and Bosochhu-I (24MW) & II (40MW) HEPs. Bulk of power generated at the HEPs is exported to India after meeting the internal demand of Bhutan. The associated

evacuation system and cross-border transmission lines for transfer of power has been developed at 400kV and 132kV levels and is operated in synchronism with the Indian Grid. Royal Government of Bhutan (RGoB) has embarked on to harness its huge hydro potential and identified about 75 nos. new HEPs by 2030 at various river basins. About 26534 MW hydro potential would be harnessed by 2030 and out of this, 10334 MW hydro power developments from 14 nos. HEPs have been envisaged to be implemented during 2020. Among these, Punatsangchhu I, Punatsangchhu II, and Mangdechhu are under various stages of development and targeted to be commissioned during 2015-17. The remaining hydro projects are Sankosh, Chamkharchhu, Nikachhu, Kholongchhu, Kuri Gongri, Amochhu RS, Bunakha, Wangchhu, Bindu Khola and Dagachhu. As per the load forecast made by Bhutan, estimated load demand by 2020 is 1500 MW & it increases to 2500 MW by 2030. Thus, most of the future generation in Bhutan would also be exported to India.

Considering the above scenario, a grid master plan for Bhutan was evolved for developing transmission corridors with AC & HVDC lines, nodal pooling points, HVDC converter stations in Bhutan and corresponding transmission addition requirements in India for 2020 and 2030 scenarios.

8.9.2 Transmission system under Implementation Stage

For power evacuation from Punatsangchhu-I HEP, the two numbers 400 kV D/C Twin Moose lines from Punatsangchhu-I have been planned to be constructed up Lhamoi Zingkha/Sankosh (Indian border) with one D/C via Punatsangchhu-II HEP. From Sankosh, one 400 kV high capacity D/C line (quad moose conductor) upto the Indian pooling point at Alipurduar would be constructed and would be initially inter-connected with 2 nos. of D/C twin moose line of Punatsangchhu -I HEP, till the time 400 kV switchyard of Lhamoi Zingkha/Sankosh HEP gets established. At Alipurduar, an HVDC station with ± 800 kV, 3000 MW converter module and 2x315 MVA, 400/220 kV EHVAC substation is planned to be constructed for import of power from Punatsangchhu-I & II. The ± 800 kV, 6000 MW Bishwanath Chariyali (NER)-Agra (NR) HVDC bi-pole line with 3000 MW converter module each at Bishwanath Chariyali (Rectifier end) and Agra (inverter end), which is being developed as part of NER-NR/WR inter-connector project for evacuation from HEPs in NER, would be LILOed at Alipurduar. An additional 3000 MW converter module at Agra making total terminal capacity of 6000 MW is planned to facilitate import of power from Bhutan.

Accordingly, the transmission system reinforcement in India at the initial stage would be as hereunder:

- (i) New 2x315 MVA, 400/220 kV AC & HVDC substation with ± 800 kV, 3000 MW converter module at Alipurduar.
- (ii) Extension of 800 kV HVDC station with 3000 MW inverter module at Agra.
- (iii) LILO of 800 kV Bishwanath Chariyali Agra HVDC Bi-pole line at Alipurduar for parallel operation of the HVDC converter station at Alipurduar.
- (iv) LILO of Bongaigaon Siliguri 400 kV D/C Quad line at Alipurduar.
- (v) LILO of Tala Siliguri 400 kV 1xD/C line at Alipurduar.
- (vi) LILO of Birpara-Salakati 220 kV D/C line at Alipurduar.
- (vii) Sankosh/Lhamoi Zingkha Alipurduar 400 kV 1xD/C Quad moose line (Indian portion).

8.9.3 Transmission system for import of surplus power from Bhutan, by 2020.

Mangdechhu, Nikachhu, Chamkarchhu-I, Kuri-Gongri and Kholongchhu HEPs in eastern part of Bhutan are envisaged to be developed during 2017-2020. Power generations from these HEPs are proposed to be pooled at Jigmeling (via Goling) and thereon to Alipurduar (WB) overa 400 kV D/C quad moose conductor line, after meeting the internal load demand of Bhutan. Exportable surplus power to be available at Jigmeling for export to India is in the order of 1500-1900 MW under normal peak operating condition. Further from Sankosh/Lhamoi Zingkha, about 4200-4400 MW is being injected to Alipurduar over 400 kV 2xD/C quad moose lines. In order to transfer such a huge quantum of power from Alipurduar to NR/WR (deficit regions) of India, it is planned to develop a new and independent 800 kV, 6000 MW HVDC bi-pole from Alipurduar to a suitable de-pooling point in NR or WR of India (based upon the regional load generation scenario) with augmentation of converter terminal capacity from 3000 MW to 6000 MW at Alipurduar, and a 6000 MW new converter station (inverter terminal) at the de-pooling point. Subsequently, LILO of 800 kV, 6000

MW Bishwanath Chariyali (NER) – Agra (NR) HVDC line at Alipurduar would be removed restoring the direct HVDC bi-pole line from Bishwanath Chariyali (NER) to Agra (NR).

The power injected at Yangbari PS from HEPs in eastern Bhutan is to be polled at 400 kV EHVAC & HVDC station at Rangia/Rowta in Assam over 400 kV Yangbari – Rangia/Rowta – NR/WR HVDC bi-pole line with converter capacity 6000 MW (for Kuri-Gongri 1800 MW) or 7000 MW (for Kuri-Gongri 3400 MW) is contemplated for evacuation of Bhutan power and for part evacuation of Arunachal HEPs at Tawang and Kameng basins in NER. Thus, the transmission grid reinforcements shall cover the following:

- (i) Construction of 400 kV Jigmeling-Alipurduar Quad moose D/C line (Indian portion).
- (ii) Construction of 400 kV Yangbari-Rangia/Rowta 2xD/C Quad moose conductor lines (Indian portion).
- (iii) Establishment of a new <u>+</u> 800 kV, 6000 MW HVDC bi-pole line from Alipurduar to a suitable de-pooling point in NR./WR and redoing of 800 kV Bishwanath Chariyali (NER) Agra (NR) HVDC line by removing its LILO at Alipurduar.
- (iv) <u>+</u> 800 kV, Rangia/Rowta-NR/WR HVDC bi-pole line with converter capacity 6000 MW (for Kuri-Gongri 1800 MW) or 7000 MW (for Kuri-Gongri 3400 MW) each Rangia/Rowta and NR/WR.

The transmission system up to 2020 is depicted in the figure(Fig – 8.08).

8.9.4 Perspective Transmission Plan for import of power from Bhutan, by 2030

The major HVDC and AC cross-border corridor requirement in future are as follows:

- I. Prospective HVDC Transmission Corridors for Indian grid, by 2030
 - i. ± 800 kV, 6500MW Rangia/Rowta WR/NR HVDC 2nd bipole
 - ii. ± 800 kV, 6000MW Sankosh/Lhamoi Zingkha NR/WR HVDC bipole
 - iii. ± 800 kV, 6500 MW Yangbari WR/NR HVDC bipole

II. Prospective Cross border AC Transmission Corridors, by 2030

- iv. 400kV Amochhu-I/II-Alipurduar D/C line
- v. Manas-RS I/II-Rangia/Rowta 2xD/C Quad moose conductor lines
- vi. Nyera Amari II-Rangia/Rowta 2xD/C Quad moose conductor lines

The transmission system upto 2030 is depicted in the figure (8.09). Fig - 8.8 (2020 scenario)

Fig - 8.8 (2020 scenario)

8.10 PERSPECTIVE TRANSMISSION PLAN FOR EVACUATION OF POWER FROM GENERATION PROJECTS IN NEPAL

8.10.1 Existing Cross Border interconnections

Power exchange between NEA and utilities on the Indian side namely BSEB, UPPCL and UPCL has since been taking place on the principle of catering to the power needs of isolated local areas of both of the sides of the border. About 13 cross border interconnections facilities including 11kV, 33kV and 132 kV transmission lines are in operation for bilateral power exchange. The Indian utilities supply power to Nepal on the basis of the tariff principle determined by the Power Exchange Committee. India also supplies about 70 MU free power from Tanakpur HEP (120 MW) to Nepal under the Mahakali Treaty through the 132kV Tanakpur-Mahendranagar S/C line. Further, system strengthening measures for additional supply for 75MW on commercial route to Nepal under short term and further 132MW under medium term are under various stages of implementation.

8.10.2 Establishment of the cross border 400 kV Muzaffarpur (India)- Dhalkebar (Nepal)

The 400kV Muzaffarpur (India) - Dhalkebar D/C line (Indian portion- 87km by CPTC (JV), Nepal portion- 39km) is being implemented by JV Companies i.e. Cross Border Transmission Company (CPTC) for the Indian portion and Power Transmission Company Limited (PTCN) for the Nepal portion. Power Sale Agreement (PSA) between NEA and PTC has been signed. The Implementation and Transmission Service Agreement (ITSA) has been also signed between NEA and CPTC, and between NEA and PTCN. This line is scheduled to be completed by June 2014.

For initial 5-7years, it is estimated that Nepal will have a power deficit to the tune of 200-300 MW and this shortfall is likely to be met by import from Indian Electricity market through the 400kV Muzaffarpur-Dhalkebar D/C line to be initially operated at 220 kV.

8.10.3 Perspective Transmission Plan for import of power from Nepal

In the next 7-10 years, hydro power projects in Nepal such as Upper Marsyangdi (600MW), Upper Karnali (900 MW), Arun-III (900MW), Tamakoshi (800 MW) etc., are likely to be materialized. NEA would have huge surplus for export to India after meeting their internal load demand. In order to evacuate and transfer of power to India, additional high power density 400kV AC cross border links in Upper Karnali - Berilly, Upper Marsyangdi – Gorakhpur, Arun-III – Muzaffarpur and Butwal - Gorakhpur corridors are being planned to be developed, matching with the commissioning of the above hydro projects in Nepal.

The existing and prospective cross border interconnections with Nepal are shown in following figure:

8.11 PERSPECTIVE TRANSMISSION PLAN FOR EVACUATION OF POWER FROM TAMANTHI HEP AND SHWEZAYE HEP IN MYANMAR

8.11.1 Introduction

Two hydro electric projects i.e. Tamanthi HEP(1200 MW) and Shwezaye HEP(880 MW) are being planned in Chindwin River basin in Myanmar. To promote bi-lateral cooperation between India and Myanmar, a Memorandum of Understanding (MoU) was signed between the Department of Hydro Power Implementation (DHPI), Ministry of Electric Power, Government of Union of Myanmar (GoUM) and NHPC Ltd. for development of these projects. Tentative schedule for these projects is 2018-2020. It is expected that power from these projects would be absorbed in India, and as such, a perspective plan for evacuation of power from these projects has been prepared.

8.11.2 Transmission system for evacuation of power from Tamanthi and Shwezaye HEP in Myanmar

In view of geographical proximity of Myanmar with the North Eastern region of India, it would be economical to first bring the power from generation projects in Myanmar to NER for onward transfer to other parts of India. The transmission system for evacuation of power from Tamanthi and Shwezaye projects has been planned considering two scenarios. In the main scenario, new generation projects in NER would be combined with the generation projects of Myanmar and a high capacity 7000MW HVDC transmission corridor has been envisaged. In the second scenario, no major future generation projects has been considered in NER which could be combined with the generation projects in Myanmar and the power has been planned to transfer utilizing the AC transmission system. The transmission system would be firmed up after finalization of various details of the generation projects like time-frame of commissioning, quantum of power to be injected into the Indian grid and its beneficiaries etc. Accordingly, following alternatives have been considered for evacuation and transfer of power from Myanmar generation projects:

8.11.3 Main Alternative : With a new ±800 kV, 7000MW HVDC bipolar line from NER to NR/WR)

- A. Transmission System up to New pooling point (Shilapathar) in NER
 - 1. Shwezaye Tamanthi 400 kV D/c line
 - 2. Tamanthi Namsai Pooling Point (NER) 400kV 2xD/c line (twin lapwing)
 - 3. TCSC (Thyristor Controlled Series Compensator) (Fixed: 40%, Variable 5-15%) on Shwezaye Tamanthi line at Tamanthi end
- B. <u>Common Transmission System (+/- 800kV, 7000MW HVDC bipolar from Namsai Pooling Point (NER) to NR/WR)</u>
 - 1. Namsai Pooling Point (NER) NR / WR Pooling +800 kV, 7000MW, HVDC Bipolar line
 - 2. <u>+</u>800 kV, 6000MW HVDC terminals at Namsai Pooling Point (NER) and NR / WR Pooling point

8.11.4 Alternative-2: Utilising the AC transmission system in NER

- A. <u>Transmission System up to Biswanath Chariyali pooling point in NER</u>
 - 1. Shwezaye Tamanthi 400 kV D/c line
 - 2. Tamanthi Biswanath Chariyali (NER) 400kV 2xD/c line (twin lapwing)
 - 3. TCSC (Thyristor Controlled Series Compensator) (Fixed: 40%, Variable 5-15%) on Shwezaye Tamanthi line at Tamanthi end
- B. <u>Common Transmission System</u>
 - 1. Re-conductoring of Bongaigaon Silliguri 400 kV D/c line from twin to high capacity conductor
 - 2. Patna Varanasi 400 kV D/c line (quad conductor)

CHAPTER - 9

COMMENTS ON NEP-TRANSMISSION

As per the Electricity Act, 2003, CEA is to prepare the National Electricity Plan (NEP) once in five years. The Act stipulates that CEA, while preparing the NEP, shall publish the draft of the same and invite suggestions and objections from licensees, generating companies, and the public. Thereafter, the Plan is to be notified after obtaining the approval of the Central Government. The draft NEP, which covers a review of the 11th Plan, 12th Plan in detail, and perspective Plan was prepared by CEA in two volumes (Vol.I on Generation and Vol.II on Transmission) and was made available on the CEA website on 29.03.2012. Views/ suggestions/ comments on the draft NEP were invited till 30th June, 2012. The following companies/ individuals have sent their views/ suggestions/ comments on National Electricity Plan (Vol. II), Transmission.

SI. No.	Name of the Stakeholder
1.	M/s Power System Operation Corporation Limited
2.	M/s NHPC Limited
3.	M/s Bhakra Beas Management Board
4.	M/s U.P. Power Transmission Corporation Limited
5.	M/s Odisha Power Transmission Corporation Limited
6.	M/s Chhatisgarh State Power Transmission Co. Limited
7.	M/s PTC India Limited
8.	M/s Association of Power Producers
9.	M/s Power Research & Development Consultants Private Limited
10.	M/s India Wind Energy Association
11.	M/s India Wind Power Association
12.	M/s Reliance Power Transmission Limited
13.	M/s LACHUNG Hydro Power Limited
14.	M/s TEESTA Hydro Power Private Limited
15.	M/s Athena Chhattisgarh Power Limited
16.	M/s CHUNGTHANG Hydro Power Limited
17.	M/s MB Power (Chhattisgarh) Limited
18.	Mr. A. Raja Rao, Retd. Ex. Director, BHEL, Bangalore
19.	Mr. J. Balasubrahmanyam, Power Sector Professional
20.	Mr. Jayant Ingolikar, Nagpur

The present National Electricity Plan (Vol. II), Transmission has been finalized by suitably considering the view/ suggestions/ comments received as above.
