SITE EFFECT CORRECTION USING NORMATIVE MODELLING

Normative modelling educational course OHBM 2024, Seoul

THE SITE EFFECT PROBLEM

ORIGINS OF SITE EFFECTS

'Sites' may differ in

Sequence

Acquisition

Procedure

- Task Details
- Instructions
- Circadianity
- Motion | Immobilisation

Image Postprocessing

Despite pipeline harmonization

Past and current medication

Background population

(e.g., ethnicity, genetic background)

Definition of healthy controls

Definition of clinical inclusion criteria

Other diagnostic instruments

Study protocol differences

METHODS TO CORRECT FOR SITE EFFETCS

OPEN ACCESS

EDITED BY

Maxime Descoteaux, Université de Sherbrooke, Canada

REVIEWED BY

Paul Gerson Unschuld, Université de Genève, Switzerland Muhamed Barakovic, University of Basel, Switzerland

*CORRESPONDENCE

Johanna M. M. Bayer bayerj@student.unimelb.edu.au

[†]These authors share last authorship

SPECIALTY SECTION

This article was submitted to

Site effects how-to and when: An overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses

Johanna M. M. Bayer^{1,2*}, Paul M. Thompson³, Christopher R. K. Ching³, Mengting Liu⁴, Andrew Chen^{5,6}, Alana C. Panzenhagen^{7,8}, Neda Jahanshad⁹, Andre Marquand¹⁰, Lianne Schmaal^{1,2†} and Philipp G. Sämann^{11†}

Review

Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization

Fengling Hu^{a,*}, Andrew A. Chen^a, Hannah Horng^a, Vishnu Bashyam^b, Christos Davatzikos^b, Aaron Alexander-Bloch^{c,d,e}, Mingyao Li^f, Haochang Shou^{a,b}, Theodore D. Satterthwaite^{c,d,g}, Meichen Yu^{h,#}, Russell T. Shinohara^{a,b,#}

^a Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University

NOMRATIVE MODELLING FOR SITE EFFECT CORRECTION

Accommodating site variation in neuroimaging data using normative and hierarchical Bayesian models

Johanna M M Bayer ¹, Richard Dinga ², Seyed Mostafa Kia ², Akhil R Kottaram ³, Thomas Wolfers ⁴, Jinglei Lv ⁵, Andrew Zalesky ⁶, Lianne Schmaal ³, Andre Marquand ⁷

Affiliations + expand

PMID: 36272672 PMCID: PMC7614761 DOI: 10.1016/j.neuroimage.2022.119699

Estimating cortical thickness trajectories in children across different scanners using transfer learning from normative models

C. Gaiser, P. Berthet, S. M. Kia, M. A. Frens, C. F. Beckmann, R. L. Muetzel, Andre F. Marquand

First published: 05 February 2024 | https://doi.org/10.1002/hbm.26565