Adaptive Sample Size Re-estimation: Design and Inference

Sarah Emerson and Gregory Levin

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Outline

- Statistical Efficiency of Adaptation
- Complete Inference after Adaptation
 - Inference for Pre-specified Design
 - Inference after Unplanned Adaptation
- 3 Evaluating Inferential Methods
- Additional Issues

- Statistical Efficiency of Adaptation
- 2 Complete Inference after Adaptation
 - Inference for Pre-specified Design
 - Inference after Unplanned Adaptation
- Evaluating Inferential Methods
- Additional Issues

Competing Issues in Clinical Trials

- Ethics: individual and collective
- Clinical science: overall patient health
- Basic Science: mechanisms
- Statistical: reliable and precise answers
- Economic/Operational: feasibility, profits and/or costs

Considering Adaptation

- What do we gain?
 - Efficiency?
 - Flexibility?
- What do we lose?
 - Efficiency?
 - Interpretability?
 - Ease of implementation?
- How do we make fair comparisons?
 - Same number or schedule of analyses, or trial duration?
 - Same power at the alternative? Same power curve?
 - ► How to measure efficiency?

Efficiency of Adaptive Testing

- Methods of adaptive hypothesis testing based on combination or conditional error functions violate sufficiency principle
 - ► Same sample mean and *N* at stopping could lead to opposite decisions (see next slide)
- Suffer efficiency losses compared to GSDs
 - **Losses** of $\sim 40\%$ in certain cases (Jennison and Turnbull 2006)
- Efficiency loss due to testing method or poor sample size modification rules?

Violation of Sufficiency Principle

Our Research on Efficiency

- Consider completely pre-specified adaptive designs with testing adhering to sufficiency principle
 - Differences in operating characteristics due to adaptation rule, not testing method
- Explore efficiency gains over group sequential designs
- Explore efficient types of adaptations
- Compare to frequently proposed adaptation rules

Setting and Notation

- Potential observations X_{Ai} on treatment A and X_{Bi} on treatment B, for i = 1, 2, ..., independently distributed
 - Means μ_A and μ_B and common known variance σ^2
- Parameter of interest: $\theta = \mu_A \mu_B$
 - lacktriangle Positive values of heta indicate superiority of new treatment
- Up to J interim analyses with sample sizes $N_1, N_2, N_3, ..., N_J$
- At the jth analysis, let
 - ▶ Partial Sum: $S_j = \sum_{i=1}^{N_{Aj}} X_{Ai} \sum_{i=1}^{N_{Bj}} X_{Bi}$
 - ▶ MLE: $\hat{\theta}_i = \overline{X}_{Ai} \overline{X}_{Bi}$

Setting and Notation

- Upper-case letters for random variables, lower-case for fixed quantities
- Use a * to denote incremental data

•
$$N_i^* = N_j - N_{j-1}$$
 (with $N_0 = 0$)

$$\qquad \qquad \bullet \ \hat{\theta}_j^* = \overline{X}_{Aj}^* - \overline{X}_{Bj}^* \ \text{and} \ Z_j^* = \frac{(\hat{\theta}_j^* - \theta_0)}{\sqrt{\frac{\sigma^2}{N_{Aj}^*} + \frac{\sigma^2}{N_{Bj}^*}} }$$

- Outcomes immediately observed
- Test null H_0 : $\theta = \theta_0 = 0$ against one-sided alternative $\theta > 0$

A Class of Pre-specified Adaptive Designs

- Single adaptation occurs at analysis time j = h
- At adaptation analysis (j = h), there are r mutually exclusive continuation sets, denoted C_h^k , k = 1, ..., r
- Each continuation set C_h^k at adaptation analysis corresponds to future group sequential path k
- Random sample path variable K can take values $0, 1, \ldots, r$
- Define three-dimensional test statistic (M, S, K)
 - ▶ M is stage, S is partial sum, K is path at stopping

Example of Adaptive Design

Sampling Density

- ullet $N_j^*=n_j^{k*}$ is fixed conditional on $S_{j-1}=s\in \mathcal{C}_{j-1}^k$
- Appealing to the central limit theorem,
 - $S_1^* \sim N(n_1^0 \theta / 2, n_1^0 \sigma^2)$
 - $S_j^* \mid S_{j-1} \sim N(n_j^{k*} \theta / 2, n_j^{k*} \sigma^2)$

Sampling Density

Following Armitage et al. (1969), density of (M = j, S = s, K = k) is

$$p_{M,S,K}(j, s, k; \theta) = \begin{cases} f_{M,S,K}(j, s, k; \theta) & \text{if } s \in \mathcal{S}_j^k \\ 0 & \text{otherwise} \end{cases}$$

where the (sub)density is recursively defined as

$$f_{M,S,K}(1, s, 0; \theta) = \frac{1}{\sqrt{n_1^0} \sigma} \phi \left(\frac{s - n_1^0 \theta / 2}{\sqrt{n_1^0} \sigma} \right)$$

$$f_{M,S,K}(j, s, k; \theta) = \int_{C_{j-1}^k} \frac{1}{\sqrt{n_j^{k*} \sigma}} \phi \left(\frac{s - u - n_j^{k*} \theta / 2}{\sqrt{n_j^{k*} \sigma}} \right) f_{M,S,K}(j - 1, u, k; \theta) du$$

for
$$k = 0, j = 2, ..., h$$
 (if $h > 1$) and $k = 1, ..., r, j = h + 1, ..., J_k$

Sampling Density

Easy to show the following relation:

$$p_{M,S,K}(j, s, k; \theta) = p_{M,S,K}(j, s, k; 0) \exp\left(\frac{s\theta}{2\sigma^2} - \frac{\theta^2}{2\sigma^2} n_j^k\right)$$

- \Rightarrow MLE is sample mean $\hat{\theta} = \overline{X}_A \overline{X}_B$
- \Rightarrow (N, S) minimally sufficient for θ

Computations

- Can compute density of sample mean, $\beta(\theta)$, ASN(θ), etc.
- All computations just functions of density and/or operating characteristics (OC) of a set of r + 1 group sequential designs
- Can modify existing group sequential software to carry out computations
- All our results using R package RCTdesign built from S-Plus module S+SeqTrial

Efficiency of Adaptive Testing

Our research on efficiency...

- Define optimality criteria in two simple, realistic RCT settings with different scientific constraints
- Derive optimal competing fixed sample, GS, adaptive designs
 - Restrict attention to symmetric designs
- Compare operating characteristics
- Describe in detail sampling plan of optimal adaptive designs

Setting 1: Optimality Criteria

- Number of analyses constrained to max of two
- Type I error $\alpha =$ 0.025, power $\beta =$ 0.975 at $\theta = \Delta$
- Initial candidate design: fixed $n=4\,\frac{(z_{1-\alpha}+z_{\beta})^2}{\Delta^2}$ (WLOG, $\sigma^2=1$)
- Primary interest: find most efficient design meeting constraints
 - Efficiency measured by average sample size in presence of truly ineffective (under null) or effective (under alternative) treatment

Setting 1: Optimal GSD

- 2-analysis GSD with Pocock-like stopping boundaries
- Analyses at 50% and 118% of original fixed sample size n
- Stopping boundaries for futility and efficacy at first analysis 0.21Δ and 0.79Δ on sample mean scale
 - ▶ (0.57, 2.21) on *Z*-scale
 - (4.9%, 95.1%) on conditional power scale assuming $\theta = \hat{\theta}_1$
 - (81.8%, 99.0%) on conditional power scale assuming $\theta = \Delta$
- ASN of 68.54% of fixed sample size n at design alternatives

Finding the "Optimal" Adaptive Design

Find optimal adaptive designs with increasing number r of continuation regions...

- Holding constant α , β , first-stage stopping bounds of optimal GSD, choose C_1^1 and n_2^1 to minimize ASN at design alternatives based on numerical grid search
- 2 Proceed to 3 continuation regions by holding C_1^1 constant and finding optimal split of C_1^2 into 2 continuation regions
- **3** Proceed to 4 continuation regions by optimally splitting C_1^1 ...

Finding the "Optimal" Adaptive Design

Setting 1: Results

Table: Average, maximal sample sizes of competing designs in units of n

N. J. CC .: .: D.:											
	Number of Continuation Regions										
	0 ^a	1^b	2	3	4	5	6	7	8		
$ASN_{\theta=0,\Delta}$	1	0.6854	0.6831	0.6828	0.6825	0.6824	0.6824	0.6824	0.6824		
% Difference	+45.9%	Ref	-0.34%	-0.38%	-0.42%	-0.43%	-0.43%	-0.44%	-0.44%		
Maximal N	1	1.18	1.24	1.24	1.26	1.26	1.26	1.26	1.28		
E: 15 1 D :											

a. Fixed Sample Design

- Efficiency gain by optimal adaptive design minimal (< 0.5%)
- Gain largely achieved with r = 2, negligible decreases with r > 4

b. Group Sequential Design (Reference design)

Setting 1: The Optimal Adaptive Design

Setting 1: Describing the Design

- ullet Increasing # regions only modestly increases maximal N
 - ▶ Designs frequently proposed in literature allow ≥ 2-fold increase
- Largest maximal sample sizes chosen near center of group sequential continuation region, smallest near boundaries
- ullet \sim Optimal thresholds for increasing N_2 (relative to GSD)
 - $(0.34\Delta, 0.66\Delta)$ on sample mean scale
 - \triangleright (0.95, 1.83) on Z scale
 - ▶ (0.19, 0.81) on CP(z1; MLE) scale
 - (0.89, 0.98) on $CP(z1; \Delta)$ scale
- ullet Thresholds on conditional power scale change substantially based on presumption of MLE or Δ as true treatment effect

Setting 1: Other Efficiency Considerations

- Efficiency gain at alternatives ($\theta = 0$ and $\theta = \Delta$) offset by losses at intermediate treatment effects ($0.25\Delta 0.75\Delta$)
 - ► ASN increases ~ same magnitude as efficiency gains
- Negligible power differences (< 0.0005) between adaptive design and GSD at intermediate θ s
- Adding additional analysis to GSD leads to much larger efficiency gain than allowing adaptivity
 - ▶ Reduces ASN of GSD by 6.3% as compared to < 0.5%

Setting 1: Other Efficiency Considerations

 Efficiency index of design A: ratio of fixed sample size needed to match its power over its ASN

Setting 2: Optimality Criteria

- Only one "stopping analysis"
- Earlier "adaptation" analysis to determine optimal sample size
- $\alpha=0.025$, $\beta=0.975$ at $\theta=\Delta$, candidate fixed $n=4\,\frac{(z_{1-\alpha}+z_{\beta})^2}{\Delta^2}$
- Minimum sample size for stopping of $n_{min} < n$ required for adequate safety profile
 - Assume $n_{min} = 0.75n$ (similar patterns with other choices)
- "Adaptation" analysis may occur at range of time points n_{adapt}
 - Let $n_{adapt} = q * n_{min}$ and consider $q \in \{0.1, 0.2, ..., 0.9, 1.0\}$
- Primary interest: find most efficient design meeting constraints

Setting 2: Results

q (Proportion of n_{min} at which adaptation occurs)											
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0	
$\overline{ASN_{\theta=0,\Delta}}$	0.99	0.97	0.94	0.91	0.88	0.86	0.84	0.82	0.80	0.78	
Maximal N	1.07	1.12	1.16	1.18	1.20	1.21	1.21	1.20	1.18	1.17	

- \bullet Adding "adaptation" analysis leads to meaningful efficiency gains over fixed sample test, reducing ASN by $\sim 20\%$
- Best design allows stopping at "adaptation" analysis
- Behavior improves as statistical info at adaptation increases

Setting 2: The Optimal Adaptive Designs

(b)
$$q = 0.8$$

Setting 2: Describing the Designs

- Largest maximal sample size chosen near middle
- \bullet *N* increased up to \sim 20%, much less than frequently proposed
- ullet \sim Optimal thresholds for increasing N (q=0.5)
 - $(0.13\Delta, 0.87\Delta)$ on sample mean scale
 - ▶ (0.30, 2.10) on Z scale
 - (0.03, 0.97) on CP(z1; MLE) scale
 - (0.80, 0.99) on $CP(z1; \Delta)$ scale
- ullet Thresholds on CP scales depend heavily on presumed heta and may not represent intuitive thresholds
- Thresholds on CP(z1; MLE) scale deviate from designs proposed in literature have set lower threshold to 36% (MP 2010)

Results on Efficiency

- Optimal adaptive designs attain very small efficiency gains (< 0.5%) over group sequential designs with same # analyses
 - Offset by losses at other plausible treatment effects
 - ▶ Far outpaced by adding an analysis to group sequential design
- Insight into good and bad choices of adaptive sampling plans
 - Only few continuation regions and possible final Ns necessary
 - Better to adapt with more information and when stopping permitted
 - ▶ Efficient designs qualitatively different than those in literature

Design in Literature (MP 2010)

Limitations

- Many parameters can vary
 - Number, timing of analyses, family of stopping boundaries, definition of "efficiency," scientific constraints
- We covered fraction of this space
 - Focused on symmetric designs in two settings
 - Defined "efficiency" and "optimal" based on ASN at design alternatives, holding power constant
- True minimum ASN not guaranteed for r > 2
 - Sensitivity procedures iterating between adjacent regions do not provide further reduction
- Statistical efficiency not only (or most important) concern...

Other Results: Jennison and Turnbull 2006

- Compared optimal pre-specified adaptive designs derived under Bayesian framework to optimal group sequential designs
- \bullet Sample size adaptation led to efficiency gains of <1.5% (holding constant type I error, power, maximum N, and # analyses)
- "Observed the sampling rules of optimal adaptive tests to be qualitatively different from rules based on conditional power..."
 - Optimal rules selected smaller maximal Ns when interim statistic close to stopping bounds, larger maximal Ns in middle
 - ▶ Others reported similar patterns (Posch, Bauer, Brannath 2003)

Efficiency in Survival Setting

- See Emerson, Rudser, and Emerson 2011 (or ask Sarah!)
- In survival setting, statistical information based on # of events, while cost based on # of patients and length of follow-up
- Evaluate tradeoffs between efficiency (average # events), power, cost
- Possibly greater (but still relatively small) benefits from pre-specified adaptation to sampling plan in time-to-event setting
 - Depends on effect size, accrual rate, per-patient cost, interest rate

Stochastic Curtailment and Conditional Power

Stochastic Curtailment and Conditional Power

- Wide range of conditional power values for each boundary as assumptions and reference design vary
 - Efficient threshold on one scale markedly inefficient on another
- Degree of changes in CP do not accurately reflect changes in unconditional power and ASN
- Efficient choices may not correspond to intuitively desirable changes

1-1 Correspondence Between Scales

- 1-1 correspondence between scales for stopping/adaptation boundaries (see Emerson 2007 for relationships)
 - Sample mean, Z statistic, fixed sample P-value, error-spending function, conditional power under $\hat{\theta}$, conditional power under Δ , Bayesian predictive power under some prior, Bayesian posterior probability of some hypothesis
- Choice of scale relatively unimportant if scientific constraints are met, important operating characteristics evaluated
 - ▶ Don't choose "intuitive" rule (e.g., stop early if CP < 30%, increase N to achieve CP=90% if CP < 90%) and call it a day!</p>

Collaborate, Evaluate, and Iterate

- Consider scientific/regulatory constraints
 - Maximal feasible sample size, minimal sample size (for adequate safety profile), early conservatism
- Consider important operating characteristics
 - Type I error, power under important alternatives, stopping boundaries on different scales, sample size distribution, stopping probabilities, inference reported at stopping
- Compare candidate designs, modify designs to achieve desired operating characteristics, etc.

Schizophrenia Example (Mehta and Pocock 2010)

- Randomized, phase 3 trial of new drug versus control in patients with negative symptoms schizophrenia
- Primary endpoint: change from baseline in Negative Symptoms Assessment (NSA)
- Desire high power at alternative $\Delta=2$ with SD ~7.5
 - Mean difference as small as 1.6 considered clinically important
- Need complete data on at least 200 patients for adequate safety profile
- Assume overrunning minimal (for ease of illustration)

Schizophrenia Example

- Fixed sample design with n=442 and 80% power at $\Delta=2$ underpowered at $\Delta=1.6$
- Fixed sample design with n=690 and 80% power at $\Delta=1.6$ not feasible
- Also consider group sequential and adaptive designs with up to 2 analyses
 - Compare important operating characteristics

Schizophrenia Software Example

Demonstration of calculations of important operating characteristics in R

- Statistical Efficiency of Adaptation
- Complete Inference after Adaptation
 - Inference for Pre-specified Design
 - Inference after Unplanned Adaptation
- Second Second
- Additional Issues

Motivation for Additional Research

- Despite unclear efficiency gains, adaptive designs implemented in practice, so research needed to propose, evaluate estimation methods
 - Desire for "innovative" designs
 - One sponsor even requires justification if adaptation not included?
- False positive rate and statistical efficiency not only concerns

Case Study: NECAT

- Inhalation of mercury vapor from dental amalgam restorations may have adverse health effects
- Children 6-10 years old randomized to receive dental restoration using either amalgam or resin composite
- Primary outcome: change in full-scale IQ from baseline to 5 years
 - 3 point decline in IQ considered clinically important

Fixed Sample Hypothesis Testing

- Use trial data to decide whether to reject the null hypothesis that amalgam restorations do not lower children's mean IQ
- Design trial to attain low false positive rate (if truly no effect) and high true positive rate (if truly a 3 point average IQ difference)
- Typically 5% false positive rate and 80% or 90% power

Testing versus Estimation

- Testing typically based on P-value: probability of obtaining more extreme difference in mean IQ change than what was observed if there were truly no treatment effect
 - If p < 0.05, reject null hypothesis of no amalgam effect on IQ
- Four scenarios: What do you conclude?

Study	<i>P</i> -value	
Α	0.263	
В	0.263	
C	0.025	
D	0.025	

Testing versus Estimation

Four scenarios: What do you conclude?

Study	Estimate	Confidence Interval	<i>P</i> -value
Α	0.5	(-0.4, 1.4)	0.263
В	4.5	(-3.4, 12.3)	0.263
C	0.5	(0.1, 0.9)	0.025
D	4.5	(0.5, 8.4)	0.025

- A: no statistical significance, and ruled out clinical importance
- B: no statistical significance, but consistent with important effect
- C: statistical significance, but ruled out clinical importance
- D: statistical significance, and consistent with important effect

The Need for Good Estimates

- Confirmatory phase III RCTs must produce interpretable results
 - Regulatory decisions based on statistical and clinical significance
 - Appropriate labeling of newly approved treatment indications
 - Clinicians can effectively practice evidence-based medicine

Complete Inference

Four numbers (with good properties):

- Best point estimate of treatment effect
- Confidence interval providing range of effects consistent with data
- P-value reflecting strength of statistical evidence against no effect

Sequential Analyses: Statistical Challenges

- Sequential testing has implications on estimation of the treatment effect in addition to hypothesis testing
- We stop early only if extreme results are observed
 - ► Fixed sample estimates such as the sample mean tend to be biased (to the extreme)
 - Confidence intervals do not have correct coverage probabilities (may be conservative or anti-conservative)
- We need point and interval estimates, adjusted for sequential analyses, with desirable "properties"

Connection to Other Types of Studies

- Bottom line: implications of performing multiple comparisons
 - Inflated false positive rate
 - Random high bias in estimates of treatment effect for positive results ("winner's curse", "sophomore slump")
- Applies to many other settings
 - Multiple analyses over time
 - Multiple subgroup analyses (e.g. by genetic or other biomarker)
 - Multiple endpoints
 - Publication bias (multiple studies)

Estimation after Sequential Hypothesis Testing

• Compute estimates, *P*-values based on true sampling density:

Estimation after Sequential Testing

• Example: *P*-values still probability of observing more "extreme" data under null hypothesis of no treatment effect

Well-understood Methods

- Extensive literature on estimation after group sequential test
 - ▶ Different methods to compute bias-adjusted point estimates, and correct (adjusted) confidence intervals and *P*-values
 - ► Extensive evaluation of properties assessing the reliability and precision of estimates, Cls, *P*-values
 - Variety of software available for design, conduct, analysis of group sequential designs (PEST, East, SeqTrial, SAS, R)
- Adjusted estimates should be reported, but often are not (even by the best journals)

Extension of Group Sequential Approaches

- Extend orderings of outcome space to adaptive setting
 - Compute p-values
 - Compute confidence regions
 - Compute median-unbiased estimates
- Extend bias-adjusted mean to adaptive setting
- Extend software and evaluate methods

Adaptive Sampling Density of Sample Mean

• Under null (left) and alternative (right)

Duality of Testing and Confidence Sets

- Confidence set: all hypothesized values of θ that would not be rejected by appropriately sized hypothesis test given observed data
- Define acceptance region of "non-extreme" results for each θ :

$$A(\theta,\alpha) = \{(j,t,k): 1-\alpha > P[(M,T,K) \succ (j,t,k); \theta] > \alpha\}$$

• Use acceptance region to define equal-tailed $(1-2\alpha) \times 100\%$ confidence set:

$$CS^{\alpha}(M, T, K) = \{\theta : (M, T, K) \in A(\theta, \alpha)\}\$$

Exact Confidence Sets

To apply, need to define "more extreme" (\succ) with outcome ordering:

$$\{(j,t,k): t \in \mathcal{S}_i^k; \ k=0, j=1,\ldots,h \ \text{and} \ k=1,\ldots,r, j=h+1,\ldots,J_k\}$$

- Neyman-Pearson: likelihood ratio most powerful for simple hypothesis
- Density does not have monotone likelihood ratio, so composite hypothesis theory for optimal tests and CIs does not apply
- Useful to extend straightforward group sequential orderings and evaluate range of properties under variety of designs
 - Relative behavior likely depends on design and treatment effect

Orderings of Outcome Space

Orderings of Outcome Space

• Sample mean ordering (SM). Outcomes ordered according to MLE $T \equiv \hat{\theta}$:

$$(j', t', k') \succ (j, t, k)$$
 if $t' > t$

• Signed likelihood ratio ordering (LR). Outcomes ordered according to signed likelihood ratio test statistic against hypothesized θ' :

$$(j',t',k') \succ_{\theta'} (j,t,k) \quad \text{if}$$

$$\operatorname{sign}(t'-\theta') \frac{p_{M,T,K}(j',t',k';\theta=t')}{p_{M,T,K}(j',t',k';\theta=\theta')} > \operatorname{sign}(t-\theta') \frac{p_{M,T,K}(j,t,k;\theta=t)}{p_{M,T,K}(j,t,k;\theta=\theta')}, \text{ i.e., if}$$

$$\sqrt{n_{Aj'}^{k'}}(t'-\theta') > \sqrt{n_{Aj}^{k}}(t-\theta')$$

Orderings of Outcome Space

- Stage-wise orderings. Outcomes ordered according to "stage" study stops.
 - Earlier is "more extreme"
 - Unlike GS setting, ranks of analysis times and sample sizes not necessarily equal
 - How to rank statistics observed at same stage through different paths?
 - Several ways to impose this in adaptive setting

Stage-wise Orderings

• Analysis time + Z statistic ordering (Z):

$$(j',t',k') \succ (j,t,k)$$
 if
$$\begin{cases} j' < j \text{ and } t' \in \mathcal{S}_{j'}^{k'(1)} \\ j' > j \text{ and } t \in \mathcal{S}_{j'}^{k'(0)} \\ j' = j \text{ and } z' > z \end{cases}$$

• Analysis time + re-weighted Z statistic ordering (Z_w) :

$$(j', t', k') \succ (j, t, k)$$
 if
$$\begin{cases} j' < j \text{ and } t' \in \mathcal{S}_{j'}^{k'(1)} \\ j' > j \text{ and } t \in \mathcal{S}_{j'}^{k'(0)} \\ j' = j \text{ and } z'_w > z_w \end{cases}$$

Statistical information ordering (N):

$$(j',t',k') \succ (j,t,k) \ \text{if} \ \begin{cases} n_{j'}^{k'} < n_j^k \ \text{and} \ t' \in \mathcal{S}_{j'}^{k'(1)} \\ n_{j'}^{k'} > n_j^k \ \text{and} \ t \in \mathcal{S}_{j'}^{k'(0)} \\ n_{j'}^{k'} = n_j^k \ \text{and} \ t' > t \end{cases}$$

Point Estimates and P-values

Define the following point estimates for θ given (M, T, K) = (j, t, k):

- Sample Mean (MLE): $\hat{\theta} = \overline{X}_A \overline{X}_B = t$
- Bias adjusted mean (BAM) $\check{\theta}$: $E_T[T; \check{\theta}] = t$
- Median unbiased estimates (MUE) $\tilde{\theta}_o$: $P[(M, T, K) \succ_o (j, t, k); \tilde{\theta}_o] = \frac{1}{2}$

For $H_0: \theta = \theta_0$, define a *P*-value under imposed ordering O = o:

• p-value_o = $P[(M, T, K) \succ_o (j, t, k); \theta_0]$

Statistics as Usual

- We frequently use different orderings of the outcome space in order to carry out tests and compute point, interval estimates
 - Wald vs. Score vs. Likelihood Ratio
- Seek as reliable and precise inference as possible
- Desirable properties in sequential setting enumerated by Emerson, Jennison and Turnbull, and others

Schizophrenia Software Example

Demonstration of calculations in R to compute estimates, confidence intervals, and P-values after fixed, group sequential, and adaptive sampling plans

Interactive Exercise

Interactive exercise to illustrate concepts discussed thus far

- Statistical Efficiency of Adaptation
- Complete Inference after Adaptation
 - Inference for Pre-specified Design
 - Inference after Unplanned Adaptation
- Second Second
- Additional Issues

Unplanned Adaptation: Motivation

- Motivation
 - Flexibility to modify design (e.g., sample size / power) based on external information
 - * If truly external (independent), no adjustment to inference needed, but difficult to prove interim data had no role?
 - Flexibility to adapt utilizing information on additional endpoints
- Worth potential losses in reliability, efficiency due to lack of planning?
 - ▶ (Plus logistical challenges inherent to all adaptive designs)

Testing versus Estimation

- Many methods to control type I error rate in presence of unplanned adaptation
 - ► All equivalent to conditional error approach (J+T 2003, Proschan 2009)
- Limited research on estimation after adaptive hypothesis test
 - Exploration of absolute bias of MLE
 - * As high as 40% of SD of first-stage sample mean in 2-stage setting (Brannath et al. 2006)
 - Extension of repeated confidence intervals
 - Inversion of conditional error testing approach

Brannath, Mehta, and Posch (BMP) 2009

• Outcomes ordered according to smallest level of significance μ for which a conditional-error based adaptive hypothesis test of $H_0: \theta = \theta'$ would be rejected:

$$(j', t', k', t'_h) \succ_{\theta', GSD} (j, t, k, t_h)$$
 if
$$\mu(j', t', k', t'_h; \theta', GSD) < \mu(j, t, k, t_h; \theta', GSD)$$

- Depends on θ' , interim estimate t_h , and original GSD
- But does not depend on what sampling plan we would have chosen had other interim data been observed

Gao, Liu, and Mehta (2012)

- More intuitive derivation of approach to invert conditional error-based tests
- Compute stage-wise ordered p-value of "backward image" of observed test statistic
- Backward image is statistic in outcome space of originally planned design with same stage-wise p-value (conditional on interim estimate) as in adaptively chosen future sampling plan
- Appears to be two-sided generalization of BMP approach

- Statistical Efficiency of Adaptation
- 2 Complete Inference after Adaptation
 - Inference for Pre-specified Design
 - Inference after Unplanned Adaptation
- Second Second
- Additional Issues

Assessing Reliability and Precision of Inference

- Confidence sets
 - True intervals
 - * If $P[(M, T, K) \succ_o (j, t, k); \theta]$ increases in θ for each (j, t, k) (proof found for sample mean ordering)
 - ★ Otherwise, negligible effects on coverage
 - Consistency with hypothesis test
 - * Requires same ordering for decisions, P-values, intervals
 - Shorter expected length

Assessing Reliability and Precision of Inference

- Point estimates
 - Low bias, variance, mean squared error (MSE)
- P-values
 - High probabilities of falling below important thresholds
 - ★ e.g., $0.025^2 = 0.000625$ to potentially approximate statistical strength of evidence of two independent studies

Approach to Evaluating Inferential Methods

- Estimates derived in iterative search by numerically integrating several group sequential densities
 - Densities convolutions of normals and truncated normals
 - Difficult to come up with analytic results on relative behavior
 - Resort to Monte Carlo simulation
- Develop extensive comparison framework to evaluate methods
 - ▶ 10,000 simulated trials under a range of treatment effects across a variety of adaptive sampling plans

Comparison Framework

Pre-specified adaptive tests of H_0 : $\theta = 0$ against one-sided alternative $\theta > 0$ with $\alpha = 0.025$, power β at $\theta = \Delta$, with varying:

- Degree of early conservatism (reference OF or Pocock GSD)
- Symmetry of early stopping (symmetric or only for superiority)
- Power at Δ (80% to 97.5%)
- Maximum number of analyses (2, 3, or 4)
- Timing of adaptation (25% to 75% of original N_J)
- Maximum allowable sample size (25% to 100% increase)
- Rule for determining final sample size (symmetric or conditional-power based)

Adaptively Chosen Sample Size

• Example of symmetric and CP-based N_2 functions

Differences in Boundaries and Power

• Comparing testing based on different orderings of outcome space (OF reference, symmetric N_J rule, 100% maximal increase)...

Avoiding Inconsistent Inference

• Should use same ordering for testing as for estimation

Confidence Intervals: Correct Coverage

• Standard error of CI coverage with 10,000 simulations: 0.0022

	OF Reference GSD				Pocock Reference GSD						
Power	Naive	SM	LR	BMP	Naive	SM	LR	BMP			
	Symmetric N_J function, up to 50% Increase										
0.025	0.9442	0.9455	0.9449	0.9462	0.9425	0.9484	0.9485	0.9481			
0.500	0.9314	0.9507	0.9488	0.9507	0.9458	0.9507	0.9504	0.9507			
0.900	0.9402	0.9493	0.9478	0.9476	0.9350	0.9465	0.9467	0.9466			
	CP-based N_J function, up to 100% Increase										
0.025	0.9428	0.9494	0.9497	0.9494	0.9441	0.9502	0.9508	0.9505			
0.500	0.9181	0.9462	0.9469	0.9466	0.9355	0.9461	0.9476	0.9462			
0.900	0.9291	0.9501	0.9501	0.9501	0.9365	0.9494	0.9489	0.9496			

Estimates: Median-unbiased

SE of probability exceeds MUE with 10,000 simulations: 0.005

	O	Reference G	Pocock Reference GSD							
Power	SM	LR	BMP	SM	LR	BMP				
	Symmetric N_J function, up to 100% Increase									
0.0250	0.4956	0.4993	0.4960	0.4983	0.4986	0.4960				
0.5000	0.5082	0.5076	0.5081	0.5100	0.5093	0.5095				
0.9000	0.5019	0.5006	0.4970	0.5034	0.5028	0.5011				
	CP-based N _J function, up to 100% Increase									
0.0250	0.4975	0.4997	0.4958	0.5032	0.5035	0.5025				
0.5000	0.5079	0.5075	0.5064	0.5027	0.5027	0.5045				
0.9000	0.5001	0.4981	0.5050	0.5105	0.5099	0.5094				

Results: Naive Inference

- MLE substantially higher bias than adjusted estimates at all but intermediate effects and higher MSE (up to 40%) across nearly all designs and effects considered
- Naive 95% CIs lack exact coverage, typically 92-93% coverage, occasionally near 90%
- Performance may be worse with more complex multistage designs

Comparing Confidence Intervals: Example

• Reference OF design, symmetric (left) or CP-based (right) N_J function, up to 50% increase, J=2

Comparing Confidence Intervals: Trends

- Likelihood ratio ordering shorter expected CI length across nearly all designs and treatment effects studied
 - $ho \sim 1-10\%$ shorter, depending on setting
 - \triangleright Margin increases with greater potential inflation of N_I
 - ightharpoonup Margin slightly larger for CP-based than symmetric N_J function
- Sample mean slightly superior ($\sim 1-3\%$) to BMP in some settings, similar in others

Comparing Point Estimates: Example

• Reference Pocock design, symmetric (left) or CP-based (right) N_J function, up to 100% increase, J=2

Comparing Point Estimates: Example

• Reference Pocock design, symmetric (left) or CP-based (right) N_J function, up to 100% increase, J=2

Comparing Point Estimates: Trends

- Bias adjusted mean best MSE across nearly all designs and treatment effects considered
 - $ho \sim 1-20\%$ lower, depending on setting and comparator
 - ► Margin increases with N_J inflation, CP-based adaptation
 - Lower bias at extreme effects, variance at intermediate effects
 - All CIs observed to always contain BAM
- SM, LR MUEs up to 15% lower MSE than BMP MUE
- LR MUE slightly superior ($\sim 1-3\%$) to SM MUE in some settings, similar in others

Comparing P-values: Example

• Reference OF (left) or Pocock (right) design, CP-based N_J function, up to 50% increase, J=2

Comparing P-values: Trends

- Likelihood ratio ordering tends to demonstrate greater probabilities of potentially "pivotal" P-values
 - ightharpoonup Up to $\sim 20\%$ greater (on absolute scale), depending on setting
 - ▶ Margin increases with greater N_J inflation, CP-based adaptation
 - Margin larger for tests derived from OF reference designs
- \bullet Sample mean modestly superior (up to $\sim 10\%$ on absolute scale) to BMP in most settings, similar in others

Summary and Conclusions

- Bias adjusted mean most reliable and precise point estimate
- Likelihood ratio ordering CIs and P-values behaved best
- Margins increase with N_J inflation, CP-based N_J function
- Qualitative differences persist varying many design parameters
 - Quantitative differences decrease for early, late adaptations
- MLE and inference using other orderings poor relative behavior

Cost of Planning not to Plan

- Most proposed adaptations could be pre-specified at design stage
- Substantial cost of failing to plan ahead and resorting to conditional error-based (BMP) estimation
 - ▶ Large increase (up to 20%) in MSE of point estimate
 - ▶ Modest increase (up to 10%) in expected CI length
 - ► Large decrease (up to 20%) in probability of pivotal *P*-value
 - Cost is largest for typically proposed adaptation rules
 - Due to inversion of conditional error tests or stage-wise ordering of backward image?
- BMP inference has reasonable behavior if needed

- Statistical Efficiency of Adaptation
- 2 Complete Inference after Adaptation
 - Inference for Pre-specified Design
 - Inference after Unplanned Adaptation
- Second Second
- Additional Issues

Case Study: An Antidepressant in MDD

- Randomized placebo-controlled clinical trial to study safety and effectiveness of novel antidepressant in major depressive disorder
- Primary outcome is 50% improvement at 8 weeks in Hamilton depression rating scale
- 30% response rate expected on placebo
- 10% improvement on treatment considered minimal clinically important difference

Case Study: An Antidepressant in MDD

Candidate designs:

- Fixed sample design with 176 participants per arm
 - ▶ $\alpha = 2.5\%$ type I error, $\beta = 90\%$ power at $\theta = 0.165$, threshold for statistical significance of 10%
- Two-analysis O'Brien and Fleming and Pocock group sequential designs with same α, β , significance threshold
- Adaptive designs derived from these GSDs, using symmetric or conditional power-based rules

Statistical versus Clinical Significance

- Goal of RCTs not statistical significance but instead "statistically reliable evaluation regarding whether the experimental intervention is safe and provides clinically meaningful benefit." (Fleming 2006)
- Yet adaptation often proposed to increase conditional power presuming treatment effects below the MCID
- Threshold for statistical significance on scale of estimated treatment effect varies greatly under LR, BMP orderings
 - ▶ May fall below MCID: ranges from 8.0% to 13.2%

Statistical versus Clinical Significance

Boundary differences result in power differences
 (OF reference, symmetric N_J rule, 50% maximal increase)...

Statistical versus Clinical Significance

• Consider success as statistical and clinical (> 10%) significance:

Maintaining Confidentiality

- Maintaining confidentiality protects trial integrity
- Additional challenges in conduct of adaptive trial
 - ▶ Sample size may be function of interim estimate:

$$N_2(\hat{ heta}_1) = \left(rac{rac{d_2^0 \, n_2^0 - \hat{ heta}_1 \, n_1}{\sqrt{n_2^0 - n_1}} - \sqrt{V} \, \Phi^{-1}(0.1)}{\hat{ heta}_1}
ight)^2 + n_1$$

- Potential unblinding through new recruitment targets
 - ★ Example: New $N_2 = 227$ allows approximation of 13% estimate
- Less likely with only few possible final sample sizes

Maintaining Confidentiality

Possible approaches if knowledge of adaptively chosen sample size and adaptation rule allows reasonably precise estimate of interim effect?

- Blind trial investigators involved in treatment, outcome assessment to new sample size
- Blind trial investigators to Adaptive Charter (which describes adaptation rule)
- Rely on unplanned adaptation by DMC
 - ➤ Too much to ask of DMC? Will require sponsor input/knowledge regardless...

Logistical and Ethical Issues

- Increased effort in planning, protocol development, monitoring
 - FDA Draft Guidance: "added complexities... call for more detailed documentation"
 - ► SAP must include "summary of each adaptation and its impact upon critical statistical issues"
- Ethics of weighting subjects differently
 - And should weighted or unweighted estimate be reported?
- Allow even greater bias knowing crude estimates will be reported in journals/labeling, interpreted as reliable

Additional Challenges: Summary

- Relative behavior of LR, BMP orderings, adaptive designs in general suffer when considering statistical and clinical significance
- Important added logistical and ethical challenges in design and conduct
- In many cases, these considerations alone may render adaptive design inappropriate

Summary and Conclusions

- ullet Pre-specified adaptation attains minor efficiency gain (< 0.5%)
 - Efficient designs differ qualitatively from those in literature
 - Should evaluate important operating characteristics and modifying/comparing candidate designs
- Estimation methods after adaptive test developed and evaluated
 - Avoid using naive CIs and MLE
 - ▶ Bias adjusted mean, LR or SM ordering better behavior with respect to important measures of reliability, precision
 - ► Failing to pre-specify (BMP) comes with meaningful cost

Editorial

- Carefully compare candidate designs before deciding to adapt
- Potential gains in flexibility, efficiency through sample size adaptation likely not worth added interpretability, logistical challenges in most settings
- Possibly more promise with adaptive subgroup selection (e.g., with a pre-specified, clearly defined targeted subset expected to benefit more – see Rosenblum research)

Statistical Efficiency of Adaptation Complete Inference after Adaptation Evaluating Inferential Methods Additional Issues

Thank you