习题讲解

Hw4 – Hw7、 Quiz 2-3

liangst@zju.edu.cn

触发器

- SR锁存器:或非门/与非门S_D=R_D=1
- 触发器: SR、JK、T、D特性方程

• 电平触发:

边沿触发:

• 脉冲触发:

• 脉冲触发JK触发器: CLK=1期间只可能翻转一次(P223)

1. 一个4输入优先编码器真值表如表所示,其中D0的优先级最低,D3的优先级最高。X表示无关条件,V表示有效位指示符。

输入				输出		
D_0	\mathbf{D}_1	D_2	D_3	X	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

(1) 优先编码器出输出表达式如下:

$$x = D_2 + D_3$$
 $y = D_1 \overline{D_2} + D_3$ $V = D_0 + D_1 + D_2 + D_3$

写出这个 4 输入优先编码器的 Verilog HDL 行为描述,输入 D 用 4 位矢量, always 模块中用 if-else 描述,假定输入 D[3]具有最高优先级。

1. (1) 优先编码器出输出表达式如下:

$$x = D_2 + D_3$$
 $y = D_1 \overline{D_2} + D_3$ $V = D_0 + D_1 + D_2 + D_3$

写出这个 4 输入优先编码器的 Verilog HDL 行为描述,输入 D用 4 位矢量, always 模块中用 if-else 描述,假定输入 D[3]具有最高优先级。

```
1
      module encoder behavior (x, y, V, D);
 2 3 4 5
        input[3:0] D;
        output x, y, V;
        req x, y, V;
        always @ (D)
 6789
          begin
                 if (D[3]) begin x = 1'b1; y = 1'b1; V = 1'b1; end
           else if (D[2]) begin x = 1'b1; y = 1'b0; V = 1'b1; end
          else if (D[1]) begin x = 1'b0; y = 1'b1; V = 1'b1; end
10
            else if (D[0]) begin x = 1'b0; y = 1'b0; V = 1'b1; end
                            begin x = 1'b0; y = 1'b0; V = 1'b0; end
11
            else
12
          end
13
      endmodule
14
```

注:用always块建立组合逻辑模型时,用阻塞赋值。

1. (2) 采用 Verilog HDL 语言仿真验证题目的 4 输入优先编码器的行为级模型,给出仿真结果波形(需包含输入信号所有可能的值)。波形注意要截完整,不要遗漏信号名。

解:

本题主要考察模块的调用,以及测试文件的写法,由于只要求验证行为级模型,所以只需要调用行为级模型,并且赋予输入信号所有有可能的值,观察输出就可以了。当然门级模型一同验证比对也是可以的。要产生输入信号所有有可能的值,可以采用真值表的方法产生,也可以采用行为描述(定义变量不断加1)。

```
`timescale 1ns/1ns
                2
                      'include "encoder behavior.v"
1. (2)
                     module test encoder;
                       wire xb, yb, Vb;
                       reg[3:0] D;
                8
                       encoder behavior encoder1(xb, yb, Vb, D);
                9
               10
                       initial
               11
                         begin
                         #10 D=4'b0000;
               12
               13
                         #10 D=4'b0001;
               14
                         #10 D=4'b0010;
               15
                         #10 D=4'b0011;
               16
                         #10 D=4'b0100;
               17
                         #10 D=4'b0101;
               18
                         #10 D=4'b0110;
               19
                         #10 D=4'b0111;
               20
                         #10 D=4'b1000;
               21
                         #10 D=4'b1001;
               22
                         #10 D=4'b1010;
               23
                         #10 D=4'b1011;
               24
                         #10 D=4'b1100;
               25
                         #10 D=4'b1101;
               26
                         #10 D=4'b1110;
               27
                         #10 D=4'b1111;
               28
                         #10 $finish;
               29
                         end
               30
                     endmodule
```

1. (2)

5.2 画出图P5.2由或非门组成的SR锁存器输出端Q、Q'的电压波形,输入端 S_D 、 R_D 的电压波形如图中所示。

5.4 在图P5.4所示电路中,若CLK、S、R的电压波形如图中所示,试画出Q和Q'端与之对应的电压波形。假定触发器的初始状态为Q=0。

电平触发SR触发器

CLK 21

5.7 已知边沿触发器输入端D和时钟信号CLK的电压波形如图P5.7中所示,试画出Q和Q'端对应的电压波形。假定触发器的初始状态为Q=0。

5.8 已知边沿触发D触发器各输入端的电压波形如图P5.8中所示,试画出Q和Q'

端对应的电压波形。

5.10 若脉冲触发SR触发器各输入端的电压波形如图P5.10中所给出,试画出Q、Q′端对应的电压波形。设触发器的初始状态为Q=0。

5.16 在脉冲触发T触发器中,已知T、CLK端的电压波形如图P5.16中所示,试画出Q、Q′端对应的电压波形。设触发器的初始状态为Q=0。

5.20 试画出图P5.20电路在图中所示CLK、RD'信号作用下Q1、Q2、Q3的输出电压波形,并说明Q1、Q2、Q3输出信号的频率与CLK信号频率之间的关系。

- 时序逻辑电路设计
 - 驱动方程、状态方程、输出方程
 - 状态转换表、状态转换图、状态机流程图、时序图
 - 时序逻辑电路
 - 移位寄存器
 - 任意进制计数器(LD/R_D)
 - 序列信号发生器
 - 顺序脉冲发生器
 - 时序逻辑电路的设计方法(课本6.4节)
 - 自启动问题

1. 如图所示的时序电路, A为输入, Y为输出。写出其驱动方程、状态方程和输出方程, 以真值表的形式列出状态转换表, 画出电路的状态转移图。

首先由电路可写出驱动方程:

$$\begin{cases} J_1 = K_1 = 1 \\ J_2 = K_2 = A \oplus Q_1 \end{cases}$$
将上述驱动方程带入JK触发器的特性方程(Q* = JQ'+K'Q),得到状态方程: $\begin{cases} Q_1^* = Q_1' \\ Q_2^* = A \oplus Q_1 \oplus Q_2 \end{cases}$ CLK

由电路图化简,得到输出方程:

$$\mathbf{Y} = A\mathbf{Q}_1\mathbf{Q}_2 + A'\mathbf{Q}_1'\mathbf{Q}_2'$$

1. 如图所示的时序电路,A为输入,Y为输出。写出其驱动方程、状态方程和输出方程,以真值表的形式列出状态转换表,画出电路的状态转移图。

首先由电路可写出驱动方程:

$$\begin{cases}
J_1 = K_1 = 1 \\
J_2 = K_2 = A \oplus Q_1
\end{cases}$$

将上述驱动方程带入JK触发器的特性

方程(Q* = JQ'+K'Q),得到状态方程:

$$\begin{cases}
Q_1^* = Q_1' \\
Q_2^* = A \oplus Q_1 \oplus Q_2
\end{cases}$$

由电路图化简,得到输出方程:

$$\mathbf{Y} = A\mathbf{Q}_1\mathbf{Q}_2 + A'\mathbf{Q}_1'\mathbf{Q}_2'$$

Q ₂ *	$Q_1 */Y Q_2 Q_1$	00	01	10	11
	0	01/1	10/0	11/0	00/0
生	1	11/0	00/0	01/0	10/1

2. 4位双向移位寄存器74LS194A如左图所示,其功能表如右表所示。使用两片74LS194A设计一个8位双向移位寄存器。

R' _D	S ₁	S ₀	工作状态
0	Х	Χ	置零
1	0	0	保持
1	0	1	右移
1	1	0	左移
1	1	1	并行输入

2.

解:只需将其中一片的 Q_3 接至另一片的 D_{IR} 端,将另一片的 Q_0 接至这一片的 D_{IL} ,同时把两片的 S_1 、 S_2 、 $CLK和R'_D$ 分别并联就可以了。

3. 试分析左图的计数器在M=0和M=1时各为几进制。74160功能表如右所示。

CLK	R_D'	LD'	EF	P ET	工作状态
X	0	Χ	X	Χ	置 0 (异步)
JL	1	0	Χ	X	预置数(同步)
X	1	1	0	1	保持(包括C)
X	1	1	Χ	0	保持(C=0)
JL	1	1	1	1	计数

3. 试分析左图的计数器在M=0和M=1时各为几进制。74160功能表如右所示。

解:

M=1时,当电路进入 $Q_3Q_2Q_1Q_0$ =1001以后,LD'=0。下一个CLK到达时将 $D_3D_2D_1D_0$ =0100置入电路中,再从0100继续做加法计数。因此,电路在0100和1001这六个状态间循环,构成六进制计数器。

同理,在M=0的情况下,电路计到1001 后置入0010,形成八进制计数器。

误: M = 1: 八进制, M = 0: 六进制

□ 由高到低: D₃D₂D₁D₀

4. 试用4位同步二进制计数器74LS161接成十二进制计数器,可以附加必要的 门电路。74LS161元件及其功能表如下所示。标明元件端口和输入输出端。

C	CLK	R_D'	LD'	EP	ET	工作状态
	Χ	0	Χ	Χ	X	置 0 (异步)
	JL	1	0	X	X	预置数(同步)
	Χ	1	1	0	1	保持(包括C)
	Χ	1	1	Χ	0	保持(C=0)
	JL	1	1	1	1	计数

4. 试用4位同步二进制计数器74LS161接成十二进制计数器,可以附加必要的 门电路。74LS161元件及其功能表如下所示。标明元件端口和输入输出端。

解:

此题有多种解法,例如可采用同步置数法,在电路计成 $Q_3Q_2Q_1Q_0=1011$ (十一)后译出LD'=0的信号,并在下一个CLK信号到达时置入0000就得到了十二进制计数器。

5. 试用两片同步十进制计数器74160设计一个同步三十一进制计数器。可以附加必要的门电路。74160功能表如下所示。标明元件端口和输入输出端。

1. 使用D触发器和门电路设计一个串行数据检测器,要求在连续输入4个或4个以上"1"时输出为1,其余情况下输出为0。画出状态转换图、画出卡诺图进行状态化简、写出状态方程和驱动方程,画出电路图。(例6.4.2)解:首先,可根据题目描述进行逻辑抽象,画出状态转移图。

取输入数据为X,输出数据为Y。设电路在没有输入1以前的状态为S0,输入一个1以后的状态为S1,连续输入两个1以后的状态为S2,连续输入3个或3个以上1以后的状态为S3。以S表示电路的现态,S*表示电路的次态。依据设计要求可得到如下的状态转移图和状态转移表。

S*/Y S	S_0	S_1	S_2	S_3
0	S ₀ /0	S ₀ /0	S ₀ /0	$S_0/0$
1	S ₁ /0	S ₂ /0	S ₃ /0	S ₃ /1

1. 电路总共有4个状态,因此需要2个D触发器。取触发器状态 Q_1Q_0 的00、01、

10、11分别代表 S_0 、 S_1 、 S_2 、 S_3 。画出 Q_1*Q_0* 和Y的卡诺图。

$Q_1^* Q_0^* / Y Q_1 Q_0$	00	01	11	10
0	00/0	00/0	00/0	00/0
1	01/0	10/0	11/1	11/0

将上述卡诺图分解并进行化简,得到电路的状态方程和输出方程:

Q_1 Q_1 Q_0	00	01	11	10
0	0	0	0	0
1	0	1	[1]	1

Q_0 Q_1 Q_0	00	01	11	10
0	0	0	0	0
1	1	0	1	1

Y $Q_1 Q_0$	00	01	11	10
0	0	0	0	0
1	0	0	1	0

状态方程: $\begin{cases} Q_1^* = XQ_0 + XQ_1 \\ Q_0^* = XQ_1 + XQ_0' \end{cases}$ 输出方程: $Y = XQ_1Q_0$ 。

1. 将上述卡诺图分解并进行化简,得到电路的状态方程和输出方程:

状态方程:
$$\begin{cases} Q_1^* = XQ_0 + XQ_1 \\ Q_0^* = XQ_1 + XQ_0' \end{cases}$$
 输出方程: $Y = XQ_1Q_0$ 。

由D触发器特性方程得到驱动方程: $\begin{cases} D_1 = X(Q_0 + Q_1) \\ D_0 = X(Q_0' + Q_1) \end{cases}$

画出电路图:

2. 使用JK触发器和门电路设计一个能周期性的产生"01110001"序列信号发生器。画出状态转换图、状态转换表、画出卡诺图进行状态化简、写出状态方程和驱动方程,画出电路图。

解:由题意,序列长度为8,需要8个状态,需要3个JK触发器。用3个JK触发器的 $Q_2Q_1Q_0$ 分别表示 S_0 ~ S_7 。画出状态转换图以及状态转换表:

$Q_2 Q_1 Q_0$	$Q_2^*Q_1^*Q_0^*$	\mathbf{Y}_1	Y_2
000	001	0	1
001	010	1	1
010	011	1	1
011	100	1	0
100	101	0	0
101	110	0	0
110	111	0	1
111	000	1	0

2. 根据状态转换表可进行卡诺图化简,得到状态方程:

$$Q_2^* = Q_2 Q_0 + Q_2 Q_1 + Q_2 Q_1 Q_0$$

Q1Q Q2	00	01	11	10
0	0	1	0	1
1	0	1	0	1

$$Q_1^* = Q_1 Q_0' + Q_0 Q_1'$$

Q1Q Q2	00	01	11	10
0	1	0	0	1
1	1	0	0	1

$$Q_0^* = Q_0'$$

根据JK触发器特性方程,得到驱动方程: $\begin{cases} J_0 = K_0 = 1 \\ J_1 = K_1 = Q_0 \\ I_2 = K_2 = Q_0 Q_1 \end{cases}$

$$\begin{cases} J_0 = K_0 = 1 \\ J_1 = K_1 = Q_0 \\ J_2 = K_2 = Q_0 Q_1 \end{cases}$$

2. 使用状态转移表中Y1的排布方式,对Y进行化简:如果使用Y2,则输出还可

$$Y = Q_2' Q_1 + Q_2' Q_0 + Q_1 Q_0$$

$$Y = Q_2'Q_1' + Q_1Q_0'$$

使用Y2的排布方式,画出电路图:

3. 用十进制计数器74160和8选1数据选择器设计一个序列信号发生器,使之在一系列CLK信号作用下能周期性地输出"0010110111"的序列信号。

解:可列出在CLK连续作用下计数器状态 $Q_3Q_2Q_1Q_0$ 与要求产生的输出Z之间关

系的真值表:

由真值表写出**Z**的逻辑表达式,并 化成与**8**选**1**数据选择器对应的形式得 到:

$$Z = Q_3(Q_2'Q_1'Q_0') + Q_3(Q_2'Q_1'Q)$$

$$+ Q_3'(Q_2'Q_1Q_0') + 0(Q_2'Q_1Q_0)$$

$$+ Q_3'(Q_2Q_1'Q_0') + Q_3'(Q_2Q_1'Q_0)$$

$$+0(Q_2Q_1Q_0') + Q_3'(Q_2Q_1Q_0)$$

CLK顺序	Q3	Q2	Q1	Q0	Z
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1

3.
$$Z = Q_3(Q_2'Q_1'Q_0') + Q_3(Q_2'Q_1'Q) + Q_3'(Q_2'Q_1Q_0') + 0(Q_2'Q_1Q_0) + Q_3'(Q_2Q_1'Q_0') + Q_3'(Q_2Q_1'Q_0) + 0(Q_2Q_1Q_0') + Q_3'(Q_2Q_1Q_0)$$

$$\Leftrightarrow A_2 = Q_2, \ A_1 = Q_1, \ A_0 = Q_0,$$

$$D_0 = Q_3$$
, $D_1 = Q_3$, $D_2 = Q_3'$, $D_3 = 0$,

$$D_4 = Q_3', \ D_5 = Q_3', \ D_6 = 0, \ D_7 = Q_3',$$

$$(D_0 \sim D_7: Q_3 Q_3 Q_3' 0 Q_3' Q_3' 0 Q_3')$$

则数据选择器的输出Y即所求Z。

所得到的电路图如图所示。

$$(D_0 \sim D_7: Q_3 Q_3 101101$$
 也正确)

$$(D_0 \sim D_7$$
: 10101101, $Z = Y | Q_3$ 也正确)

4. 设计一个灯光控制逻辑电路。要求红、绿、黄三种颜色的灯在时钟信号作用下按下表规定的顺序转换状态。表中的1表示"亮",0表示"灭",要求电路能自启动,并尽可能采用中规模集成电路芯片。

CLK顺序	红	黄	绿
0	0	0	0 🗲
1	1	0	0
2	0	1	0
3	0	0	1
4	1	1	1
5	0	0	1
6	0	1	0
7	1	0	0
8	0	0	0

解:因为输出为八个状态循环,所以用74LS161的低三位作为八进制计数器,若以R、Y、G分别表示红、黄、绿三个输出,则可得计数器输出状态 $Q_2Q_1Q_0$ 与R、Y、G关系的真值表。

4. 设计一个灯光控制逻辑电路。要求红、绿、黄三种颜色的灯在时钟信号作用下按下表规定的顺序转换状态。表中的1表示"亮",0表示"灭",要求电路能自启动,并尽可能采用中规模集成电路芯片。

Q2	Q1	Q0	红	黄	绿
0	0	0	0	0	0 🗲
0	0	1	1	0	0
0	1	0	0	1	0
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	1
1	1	0	0	1	0
1	1	1	1	0	0
0	0	0	0	0	0 🗕

解:因为输出为八个状态循环,所以用74LS161的低三位作为八进制计数器,若以R、Y、G分别表示红、黄、绿三个输出,则可得计数器输出状态 $Q_2Q_1Q_0$ 与R、Y、G关系的真值表。

选用两片双4选1数据选择器 74HC153作通用函数发生器使用, 产生R、Y、G。

4. 选用两片双4选1数据选择器74HC153作通用函数发生器使用,产生R、Y、G。 由真值表写出R.、Y、G的逻辑式,并化成与数据选择器的输出逻辑式相 对应的形式: $R = Q_2(Q_1'Q_0') + Q_2'(Q_1'Q) + 0(Q_1Q_0') + Q_2(Q_1Q_0)$ $Y = Q_2(Q_1'Q_0') + 0(Q_1'Q) + 1(Q_1Q_0') + 0(Q_1Q_0)$ $G = Q_2(Q_1'Q_0') + Q_2(Q_1'Q) + 0(Q_1Q_0') + Q_2'(Q_1Q_0)$ EP D₀ D₁ D₂ D₃ LD D CLK $Q_0 Q_1 Q_2 Q_3 C$ $S_1 D_{10} D_{12}$ $S_2D_{20}D_{22}$ $S_1 D_{10} D_{12}$ $S_2 D_{20} D_{22}$ $D_{21}D_{23}$ 74HC153(1) 74HC153(2)

4.

4.

17	Y7+Y0
16	Y3+Y5
15	Y6+Y2
14	0
13	Y1
12	0
I1	0
10	Y4

计数器输出	译码器输出	编码器输入	RYG
000	Y0'	17'	000
001	Y1'	I3'	100
010	Y2'	I5'	010
011	Y3'	16'	001
100	Y4'	10'	111
101	Y5'	16'	001
110	Y6'	15'	010
111	Y7'	17'	100

5. 用D触发器和门电路设计一个十一进制计数器,并检查设计的电路能否自启动。

解:因为电路必须有11个不同的状态,所以需要用四个触发器组成这个电路。如果按下表取电路的11个状态和循环顺序,则可画出表示电路次态的卡诺图:

表 A6.33 题 6.33 中计数器的状态循环表

计数		电路	状态		进位	计数		电路	状态		进位
顺序 ——-	Q_3	Q_2	Q_1	Q_0	<i>C</i>	順序	Q_s	Q_2	Q_1	Q_0	c
0	0	0	0	0	0	6	0	1	1	0	0
L	0	0	0	1	0	7	0	1	1	1	0
2	0	0	1	0	0	8	1	0	0	0	0
3	0	0	1	1	0	9	1	0	0	1	0
4	0	1	0	0	0	10	1	0	1	0	1
5	0	1	0	1	0	11	0	0	0	0	0

5. 用D触发器和门电路设计一个十一进制计数器,并检查设计的电路能否自启动。

解:因为电路必须有11个不同的状态,所以需要用四个触发器组成这个电路。如果按下表取电路的11个状态和循环顺序,则可画出表示电路次态的卡诺图:

状态方程为:

$$\begin{cases} Q_3^* = Q_3 Q_1' + Q_2 Q_1 Q_0 \\ Q_2^* = Q_2 Q_1' + Q_3 Q_0' + Q_2' Q_1 Q_0 \\ Q_1^* = Q_1' Q_0 + Q_3' Q_1 Q_0' \\ Q_0^* = Q_3' Q_0' + Q_1' Q_0' \end{cases}$$

输出方程为:

$$C = Q_3 Q_1$$

5.
$$\begin{cases} Q_3^* = Q_3 Q_1' + Q_2 Q_1 Q_0 \\ Q_2^* = Q_2 Q_1' + Q_3 Q_0' + Q_2' Q_1 Q_0 \\ Q_1^* = Q_1' Q_0 + Q_3' Q_1 Q_0' \\ Q_0^* = Q_3' Q_0' + Q_1' Q_0' \end{cases} \qquad C = Q_3 Q_1$$

5. 检查自启动:

1、分析图中所示的时序电路,画出在图中所示的输入信号 A 和时钟 CP 作用下 Q1、Q2、Q3 和 Y 的波形。

驱动方程:

$$D_1 = 1$$
 $J_2 = K_2 = Q_3$
 $J_3 = Q_1 + Q_2 ; K_3 = 1$

状态方程:

$$Q_{1}^{*} = (A \cdot D_{1}) \cdot R = Q'_{2}Q'_{3}$$

$$Q_{2}^{*} = Q_{3}Q'_{2} + Q'_{3}Q_{2}$$

$$Q_{3}^{*} = Q'_{3}Q_{1} + Q'_{3}Q_{2}$$

输出方程: $Y = Q_2 + Q_3$

$$Q_{1}^{*} = D_{1} \cdot R = Q_{2}' Q_{3}'$$

$$Q_{2}^{*} = Q_{3} Q_{2}' + Q_{3}' Q_{2}$$

$$Q_{3}^{*} = Q_{3}' Q_{1} + Q_{3}' Q_{2}$$

2、寄存器文件设计

寄存器文件设计的写入逻辑如题2图所示。重新设计寄存器文件的写入逻辑,使得两个寄存器可以在同一个时钟上升沿被写入。ws1和ws2为5比特,指定了待写入的寄存器;WE1和WE2为1比特,决定了每个端口是否允许写入(1允许,0禁止);wd1和wd2为32比特,是待写入的数据。如果两个写入端口都被使能,且ws1和ws2指定了同一个寄存器,则写入寄存器的值必须是wd1。

画出你最终的设计方案电路图。如果你需要使用复杂的逻辑函数,给出函数 f(x, y,...)的真值表,并且在电路图中用标有f(x, y,...)的方框指代。对于简单的逻辑门,可以使用标准符号(如或门、与门、多路复用器、信号选择器等)。

1、用T触发器设计计数器,重复的计数序列为0,1,3,7,6,4。说明为什么二进制状态010和101被当作任意态使用时,计数器不能正常工作。给出一种方法校正这种设计。

状态转换表:

$Q_1 Q_2 Q_3$	$Q_1^*Q_2^*Q_3^*$		
000	001		
001	011		
011	111		
111	110		
110	100		
100	000		
010	x x x		
101	x x x		

未使用010和101作为任意态的驱动方程:

$$T_{1} = Q'_{1} Q_{2} Q_{3} + Q_{1} Q'_{2} Q'_{3}$$

$$T_{2} = Q'_{1} Q'_{2} Q_{3} + Q_{1} Q_{2} Q'_{3}$$

$$T_{3} = Q_{1} Q_{2} Q_{3} + Q'_{1} Q'_{2} Q'_{3}$$

使用010和101作为任意态的驱动方程:

$$T_{1} = Q'_{1} Q_{2} + Q_{1} Q'_{2}$$

$$T_{2} = Q'_{2} Q_{3} + Q_{2} Q'_{3}$$

$$T_{3} = Q_{1} Q_{3} + Q'_{1} Q'_{3}$$

2、以一个计数器74161为核心器件和少量门电路,设计一个带回步清0功能的5421BCD码计数器:电路有清0输入控制端R,当R=0时,同步清0;当R=1时,按5421BCD码规则同步计数,注意不能有过渡态。5421BCD码编码规则:0~9分别为:0000、0001、0010、0011、0100、1000、1001、1010、1011、1100。写出设计流程。

