

EasyPACK[™] module with CoolSiC[™] Trench MOSFET and PressFIT / NTC

Features

- · Electrical features
 - V_{DSS} = 2000 V
 - $I_{DN} = 60 \text{ A} / I_{DRM} = 120 \text{ A}$
 - High current density
 - Low inductive design
- Mechanical features
 - Rugged mounting due to integrated mounting clamps
 - PressFIT contact technology
 - Integrated NTC temperature sensor

Potential applications

· Solar applications

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

EasyPACK[™] module

Table of contents

	Description
	Features
	Potential applications
	Product validation
	Table of contents
1	Package3
2	MOSFET 3
3	Body diode
4	Diode, Boost6
5	NTC-Thermistor
6	Characteristics diagrams
7	Circuit diagram
8	Package outlines
9	Module label code
	Revision history
	Disclaimer 14

EasyPACK[™] module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	3.2	kV
Internal isolation		basic insulation (class 1, IEC 61140)	Al ₂ O ₃	
Creepage distance	d_{Creep}	terminal to heatsink	10.4	mm
Creepage distance	d_{Creep}	terminal to terminal	10.2	mm
Clearance	d _{Clear}	terminal to heatsink	10.1	mm
Clearance	d _{Clear}	terminal to terminal	9.4	mm
Comparative tracking index	СТІ		> 400	
Relative thermal index (electrical)	RTI	housing	140	°C

Table 2 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Stray inductance module	L _{sCE}				14		nH
Storage temperature	T _{stg}			-40		125	°C
Mounting torque for module mounting	М	- Mounting according to valid application note	M5, Screw	1.3		1.5	Nm
Weight	G				78		g

Note: The current under continuous operation is limited to 25 A rms per connector pin.

2 MOSFET

Table 3 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	$V_{\rm DSS}$		T _{vj} = 25 °C	2000	V
Implemented drain current	I _{DN}			60	А
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _H = 65 °C	50	А
Repetitive peak drain current	/ _{DRM}	verified by design, t _p lim	nited by T _{vjmax}	120	А
Gate-source voltage, max. transient voltage	V_{GS}	D < 0.01		-10/23	V
Gate-source voltage, max. static voltage	V_{GS}			-7/20	V

EasyPACK[™] module

2 MOSFET

Table 4 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		18	V
Off-state gate voltage	V _{GS(off)}		-3	V

Table 5 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 60 A	$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		17.2	26.5	mΩ
			$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 125 ^{\circ}\text{C}$		36.6		
			$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 175 ^{\circ}\text{C}$		51.7		
Gate threshold voltage	V _{GS(th)}	$I_D = 34 \text{ mA}, V_{DS} = V_{GS}, T_{vj} = 1 \text{ms pulse at } V_{GS} = +20 \text{ V})$	25 °C, (tested after	3.45	4.3	5.15	V
Total gate charge	Q _G	$V_{\rm DD}$ = 1200 V, $V_{\rm GS}$ = -3/18 V	/		0.234		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			3.8		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 1200 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		7.24		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 1200 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.169		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 1200 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.012		nF
C _{OSS} stored energy	E _{OSS}	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = -3/18 V	⁷ , T _{vj} = 25 °C		154		μJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ = 2000 V, $V_{\rm GS}$ = -3 V	T _{vj} = 25 °C		0.012	205	μΑ
Gate-source leakage current	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} = 20 V			400	nA
Turn-on delay time	t _{d on}	$I_{\rm D} = 60 \text{ A}, R_{\rm Gon} = 1.6 \Omega,$	T _{vj} = 25 °C		38.1		ns
(inductive load)		$V_{DD} = 1200 \text{ V},$ $V_{GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		38.1		
		VGS3/10 V	T _{vj} = 175 °C		38.1		
Rise time (inductive load)	t _r	$I_{\rm D} = 60 \text{ A}, R_{\rm Gon} = 1.6 \Omega,$	T _{vj} = 25 °C		26		ns
		$V_{DD} = 1200 \text{ V},$ $V_{GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		26		
		VGS3/10 V	T _{vj} = 175 °C		26		
Turn-off delay time	t _{d off}	$I_{\rm D} = 60 \text{ A}, R_{\rm Goff} = 2 \Omega,$	T _{vj} = 25 °C		74.4		ns
(inductive load)		$V_{DD} = 1200 \text{ V},$ $V_{GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		81.5		1
		VGS3/10 V	T _{vj} = 175 °C		83.9		

(table continues...)

EasyPACK[™] module

3 Body diode

Table 5 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Fall time (inductive load)	t _f	$I_{\rm D} = 60 \text{ A}, R_{\rm Goff} = 2 \Omega,$	T _{vj} = 25 °C		16		ns
		$V_{DD} = 1200 \text{ V},$ $V_{GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		16.1		
		VGS = -5/10 V	T _{vj} = 175 °C		17.1		
Turn-on energy loss per	E _{on}	$I_{\rm D}$ = 60 A, $V_{\rm DD}$ = 1200 V,	T _{vj} = 25 °C		1.5		mJ
pulse		$L_{\sigma} = 35 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon} = 1.6 \Omega, \text{ di/dt} = 5$	T _{vj} = 125 °C		1.5		
		$kA/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		1.5		
Turn-off energy loss per	E _{off}	$I_{\rm D}$ = 60 A, $V_{\rm DD}$ = 1200 V,	T _{vj} = 25 °C		0.435		mJ
pulse		$L_{\sigma} = 35 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 2 \Omega, \text{ dv/dt} = 56.14$	T _{vj} = 125 °C		0.481		
		$kV/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		0.529		
Thermal resistance, junction to heat sink	R _{thJH}	per MOSFET			0.515		K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C

Note:

The body diode of $CoolSiC^{T}$ Trench MOSFET cannot be used for polarity protection. An external diode is needed for this purpose.

The selection of positive and negative gate-source voltages impacts the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Notes AN 2018-09 and AN 2021-13 must be considered to ensure sound operation of the device over the planned lifetime.

 $T_{\rm vj\,op}$ > 150°C is allowed for operation at overload conditions for MOSFET and body diode. For detailed specifications, please refer to AN 2021-13

3 Body diode

Table 6 Characteristic values

Parameter	Symbol Note or test condition			Values			Unit
				Min.	Тур.	Max.	
Forward voltage	V_{SD}	$I_{SD} = 60 \text{ A}, V_{GS} = -3 \text{ V}$	T _{vj} = 25 °C		4.6	6.15	V
			T _{vj} = 125 °C		4.15		
			T _{vj} = 175 °C		4		

EasyPACK[™] **module**

4 Diode, Boost

4 Diode, Boost

Table 7 Maximum rated values

Parameter	Symbol	Note or test conditio	n	Values	Unit
Repetitive peak reverse voltage	V_{RRM}		T _{vj} = 25 °C	2000	V
Continuous DC forward current	I _F			40	A
Repetitive peak forward current	I _{FRM}	t _P = 1 ms		80	А
I ² t - value	I ² t	$t_{\rm P}$ = 10 ms, $V_{\rm R}$ = 0 V	T _{vj} = 125 °C	90	A ² s
			T _{vj} = 175 °C	70	

Table 8 Characteristic values

Parameter	Symbol	Note or test condition			Values		
				Min.	Тур.	Max.	
Forward voltage	V_{F}	I _F = 40 A	T _{vj} = 25 °C		1.50	1.85	V
			T _{vj} = 125 °C		2.17		
			T _{vj} = 175 °C		2.67		
Thermal resistance, junction to heat sink	R_{thJH}	per diode			0.685		K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C

Note:

 $T_{\rm vj\,op}$ > 150°C is allowed for operation at overload conditions for booster diode. For detailed specifications, please refer to AN 2021-13

5 NTC-Thermistor

Table 9 Characteristic values

Parameter	Symbol	mbol Note or test condition		Values		
			Min.	Тур.	Мах.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Deviation of R ₁₀₀	∆R/R	$T_{\rm NTC} = 100 {}^{\circ}{\rm C}$, $R_{100} = 493 \Omega$	-5		5	%
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		K
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

Note: Specification according to the valid application note.

EasyPACK[™] module

6 Characteristics diagrams

6 Characteristics diagrams

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 18 V$

Output characteristic field (typical), MOSFET

 $I_D = f(V_{DS})$

 $T_{vj} = 175$ °C

Drain source on-resistance (typical), MOSFET

 $R_{DS(on)} = f(T_{vj})$

 $V_{GS} = 18 V$

Transfer characteristic (typical), MOSFET

 $I_D = f(V_{GS})$

 $V_{DS} = 20 V$

EasyPACK[™] module

6 Characteristics diagrams

Gate-source threshold voltage (typical), MOSFET

$$V_{GS(th)} = f(T_{vj})$$

 $V_{GS} = V_{DS}$

Gate charge characteristic (typical), MOSFET

$$V_{GS} = f(Q_G)$$

$$I_D$$
 = 60 A, T_{vj} = 25 °C

Capacity characteristic (typical), MOSFET

 $C = f(V_{DS})$

$$f = 100 \text{ kHz}, T_{vj} = 25 \text{ °C}, V_{GS} = 0 \text{ V}$$

Switching losses (typical), MOSFET

 $E = f(I_D)$

$$R_{Goff} = 2 \Omega$$
, $R_{Gon} = 1.6 \Omega$, $V_{DD} = 1200 V$, $V_{GS} = -3/18 V$

EasyPACK[™] module

6 Characteristics diagrams

Switching losses (typical), MOSFET

 $E = f(R_G)$

 $V_{DD} = 1200 \text{ V}, I_D = 60 \text{ A}, V_{GS} = -3/18 \text{ V}$

Switching times (typical), MOSFET

 $t = f(I_D)$

 R_{Goff} = 2.0 $\Omega,\,R_{Gon}$ = 1.6 $\Omega,\,V_{DD}$ = 1200 V, T_{vj} = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET

 $t = f(R_G)$

 V_{DD} = 1200 V, I_{D} = 60 A, T_{vj} = 175 °C, V_{GS} = -3/18 V

Reverse bias safe operating area (RBSOA), MOSFET

 $I_D = f(V_{DS})$

 $R_{Goff} = 2 \Omega$, $T_{vj} = 175 \, ^{\circ}C$, $V_{GS} = -3/18 \, V$

EasyPACK[™] module

6 Characteristics diagrams

Transient thermal impedance, MOSFET

 $Z_{th} = f(t)$

Forward characteristic (typical), Diode, Boost $I_F = f(V_F)$

Transient thermal impedance, Diode, Boost

 $Z_{th} = f(t)$

Temperature characteristic (typical), NTC-Thermistor

 $R = f(T_{NTC})$

7 Circuit diagram

7 Circuit diagram

Figure 1

8 Package outlines

11

Figure 2

EasyPACK[™] module

9 Module label code

9 Module label code

Cadafarmat	Data Matrix		Daysond - C	`ada120
Code format	Data Matrix		Barcode C	Jode128
Encoding	ASCII text		Code Set /	A
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content	Digit		Example
	Module serial number	1-5		71549
	Module material number	6 - 11		142846
	Production order number	12 - 19		55054991
	Date code (production year)	20 – 21		15
	Date code (production week)	22 – 23		30
Example	BOOK FOR Y			

Figure 3

EasyPACK[™] module

Revision history

Revision history

Document revision	Date of release	Description of changes
0.10	2022-07-05	Initial version
1.00	2022-07-15	Final datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-07-15 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABE754-002

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.