Calculations with Fermat's Little Theorem and Eluer's Theorem

Learning Objectives. By the end of class, students will be able to:

- Use Fermat's Little Theorem to find the least nonnegative residue modulo a prime
- Use Euler's Theorem to find the least nonnegative residue modulo a composite.

Finding least nonnegative residue Fermat's Little Theorem

Example 1. (a) Find the least nonnegative residue of 29^{202} modulo 13.

First, note that $29 \equiv 3 \pmod{13}$ and 202 = 12(10) + 82 = 12(10) + 12(6) + 10 = 12(16) + 10. Thus,

$$29^{202} \equiv 3^{202} \equiv (3^{12})^{16} 3^{10} \equiv 1^{16} 3^{10} \pmod{13}$$

From here, we have two options:

Keep reducing: For this problem, this is the easier method:

$$3^{10} \equiv (3^3)^3 3 \equiv (27)^3 3 \equiv 3 \pmod{13}$$
.

Find inverse: Note that $3^{12} \equiv 1 \pmod{13}$, so 3^{10} is the multiplicative inverse of $3^2 \equiv 9 \pmod{13}$. Since $9(3) \equiv 1 \pmod{13}$, $3^{10} \equiv 1 \pmod{13}$.

(b) Find the least nonnegative residue of 71⁷¹ modulo 17.

First, note that $71 \equiv 3 \pmod{17}$ and 71 = 8(8) + 7. Thus,

$$71^{71} \equiv 3^{71} \equiv (3^8)^8 3^7 \equiv 1^8 3^7 \pmod{17}$$

Then

$$3^7 \equiv 3^3(3^3)(3) \equiv 10(10)(3) \equiv 10(-4) \equiv -6 \equiv 11 \pmod{17}.$$

Corollary 1. Let p be a prime. If $a \in \mathbb{Z}$ with $p \nmid a$, then a^{p-2} is the multiplicative inverse of a modulo p.

Think-Pair-Share 0.1. Prove: Let p be a prime. If $a, k \in \mathbb{Z}$ with $p \nmid a$ and $0 \le k < p$, then a^{p-k} is the multiplicative inverse of a^k modulo p.

Proof Let p be a prime. If $a \in \mathbb{Z}$ with $p \nmid a$, then by Fermat's Little Theorem, $a^{p-1} \equiv 1 \pmod{p}$. If $k \in \mathbb{Z}$ with $0 \le k < p$, then $a^{p-1} = a^{p-k}a^k$. Thus, $a^{p-k}a^k \equiv 1 \pmod{p}$.

Example 2. Find all incongruent solutions to $9x \equiv 21 \pmod{23}$.

Since(9,23)=1, there is only one incongruent solution modulo 23. By , 9^{21} is the multiplicative inverse of 9 modulo 23. Thus, $x\equiv 21(9^{21})\pmod{23}$.

Alternately, 3^{20} is the multiplicative inverse of 3^2 modulo 23, so $x \equiv 21(3^{20}) \equiv (3^{21})7 \pmod{23}$. Since 3^{21} is the multiplicative inverse of 3 modulo 23, so $3^{21} \equiv 8 \pmod{23}$. Thus, $x \equiv 7(8) \equiv 10 \pmod{23}$.

Learning outcomes:

Author(s): Claire Merriman

Example 3. Let p be prime and $a, b \in \mathbb{Z}$ with $p \nmid a$ and $p \nmid b$. Then $a^p \equiv b^p \pmod{p}$ if and only if $a \equiv b \pmod{p}$.

Proof Let p be prime and $a, b \in \mathbb{Z}$ with $p \nmid a$ and $p \nmid b$.

- (\Leftarrow) If $a \equiv b \pmod{p}$, then $a^p \equiv b^p \pmod{p}$ by repeated applications of Proposition 2.4.
- (\Rightarrow) If $a^p \equiv b^p \pmod{p}$, then by Fermat's Little Theorem,

$$a \equiv a^{p-1}a \equiv b^{p-1}b \equiv b \pmod{p}.$$

Warning 1. This statement is only true for primes. Since

$$1^2 \equiv 3^2 \equiv 5^2 \equiv 7^2 \pmod{8}, \quad 2^2 \equiv 6^2 \pmod{8},$$

$$1^8 \equiv 3^8 \equiv 5^8 \equiv 7^8 \pmod{8}, \quad 2^8 \equiv 6^8 \pmod{8}.$$

Multiplicative inverses using Euler's Extension of Fermat's Little Theorem

Example 4. (a) Find the least nonnegative residue of 29^{202} modulo 20.

The integers 1, 3, 7, 9, 11, 13, 17, 19 are relatively prime to 20. Thus $\phi(20) = 8$. Also note that $29 \equiv 9 \pmod{20}$ and 202 = 8(25) + 2, so

$$29^{202} \equiv 9^{202} \equiv (9^8)^{25} 9^2 \equiv 1^{25} 9^2 \equiv 1 \pmod{20}$$

(b) Find the least nonnegative residue of 71^{71} modulo 16.

The integers 1, 3, 5, 7, 9, 11, 13, 15 are relatively prime to 16. Thus $\phi(16) = 8$. Also note that $71 \equiv 7 \pmod{16}$ and 71 = 8(8) + 7, so

$$71^{71} \equiv 7^{71} \equiv (7^8)^8 7^7 \equiv 1^8 7^7 \pmod{16}$$

Since $7^8 \equiv 7^7 7 \equiv 1 \pmod{16}$, 7^7 is the multiplicative inverse of 7 mulod 16.

Using the Euclidean algorithm,

$$16 = 7(2) + 2,$$
 $2 = 16 + 7(-2)$
 $7 = 2(3) + 1,$ $1 = 7 - 2(3) = 7 - (16 + 7(-2))(3) = 16(-3) + 7(7)$

Thus, $7(7) \equiv 1 \pmod{16}$, and $7^7 \equiv 7 \pmod{16}$.

Corollary 2. Let $a, m \in \mathbb{Z}$ with m > 0. If (a, m) = 1, then $a^{\phi(m)-1}$ is the multiplicative inverse of a modulo m.

Example 5. Find all incongruent solutions to $9x \equiv 21 \pmod{25}$.

The only positive integers less than 25 that are not relatively prime to 25 are 5, 10, 15, 20. Thus, $\phi(25) = 24 - 4 = 20$.

Since(9,25)=1, there is only one incongruent solution modulo 25. By, 9^{19} is the multiplicative inverse of 9 modulo 25. Thus, $x \equiv 21(9^{19}) \pmod{25}$.

Alternately, 3^{18} is the multiplicative inverse of 3^2 modulo 25, so $x \equiv 21(3^{18}) \equiv (3^{19})7 \pmod{25}$.

The previous example does not ask for the least nonnegative residue, but let's find it anyway.

Example 6. Find the least nonnegative residue of $(9^{19})21$ modulo 25.

First, note that $(9^{19})21 = (3^2)^19(21)$. From here there are two options:

Factor 21:

$$(9^{19})21 \equiv (3^2)^1 9(3)(7) \equiv (3^{39})(7) \equiv (3^{20})(3^{19})(7) \pmod{25}$$

By ??, $3^{20} \equiv 1 \pmod{25}$ and by , 3^{19} is the multiplicative inverse of 3 moddulo 25. Since $3(-8) \equiv -24 \equiv 1 \pmod{25}$, $3^{19} \equiv -8 \pmod{25}$. Thus,

$$(9^{19})21 \equiv (-8)(7) \equiv -56 \equiv 19 \pmod{25}$$
.

Using $21 \equiv -4 \pmod{25}$:

$$(9^{19})21 \equiv (3^2)^1 9(-4) \equiv (3^{38})(-4) \equiv (3^{20})(3^{18})(-4) \pmod{25}$$

Since $3^{20} = 3^{18}(3^2) \equiv 1 \pmod{25}$ by ??, 3^{18} is the multiplicative inverse of $3^2 = 9$ modulo 25. Since $9(-11) \equiv -99 \equiv 1 \pmod{25}$, we have $3^{18} \equiv -11 \pmod{25}$. Thus,

$$(9^{19})21 \equiv (-11)(-4) \equiv 44 \equiv 19 \pmod{25}.$$

In-class Problem 1 Let p, q be distinct primes. Prove that $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.

Proof Let p,q be distinct primes. Then $q^{p-1} \equiv 1 \pmod{p}$ and $p^{q-1} \equiv 1 \pmod{q}$ by Fermat's Little Theorem, and $p^{q-1} \equiv 1 \equiv 0 \pmod{p}$ and $q^{p-1} \equiv 1 \equiv 0 \pmod{q}$ by definition.

Thus, $p^{q-1}+q^{p-1}\equiv \boxed{1}\pmod{p}$ and $p^{q-1}+q^{p-1}\equiv \boxed{1}\pmod{p}$ by $\boxed{\text{modular addition}}$

(Finish proof using definition of congruence modulo p and q)