Cours de Statistique Inférentielle

Jean Christophe meunier

Module 4 Covariance, corrélation et régression linéaire

2ème Bac, Commerce Extérieur Année académique 2015-2016

Mesure d'association entre 2 variables

- Jusqu'à présent, travail sur une seule variable
 - Statistique descriptive, lois de probabilité, IC, comparaisons de moyenne...
- Dans ce module, intérêt sur l'association entre deux variables :
 - Dans quelle mesure un changement sur une variable (x) est il associé à un changement sur une seconde variable (y) ?
 - Ex:
 - Temps d'étude (x) réussite (y)
 - Opinion sur un produit (x) achat de ce produit (y)
 - ..

Mesure d'association entre 2 variables

- Visuellement :
 - 'Nuage de points' ou 'Diagramme de dispersion'

Mesure d'association entre 2 variables

• Exemples :

Mesure d'association entre 2 variables

- On parle d'association linéaire :
 - la relation entre les variables x et y peut être décrite/estimée par une ligne droite
 - Pour variables d'échelle intervalle :
 - Les variables d'échelle nominale ou ordinale n'ont pas de gradation à intervalle régulier (association avec d'autres variables impossible ou difficile à établir)

Mesure d'association entre 2 variables

- Principe:
 - Trouver une mesure numérique pour représenter la relation entre deux variables
- Trois mesures les plus courantes :
 - <u>Covariance</u>: mesure d'association
 - <u>Corrélation</u>: mesure 'standardisée' d'association
 - <u>Régression linéaire</u> : mesure d'association causale (ex : x prédit y)

A. Covariance

I. Covariance

- Notation : Cov (x,y) ou S_{xy}
- Mesure numérique qui donne la <u>direction</u> de la relation entre deux variables x et y
 - Ne donne <u>pas l'intensité</u> de la relation
 - N'étalit <u>pas de causalité</u> entre les variables (x prédit y ou est prédit par y)
- L'une des mesures les plus fondamentales d'association

I. Covariance

- Pour chaque sujet
 - Multiplier écarts à la moyenne pour les deux variables

I. Covariance

• Exemple pour un ensemble de sujets (échantillon)

Sujets	Variable X	Variable Y
1	X_1	Y ₁
2	X ₂	Y ₂
:	:	:
n	X _n	Y _n

	\sim		•	
١.	Co	vari	ıan	ce

Sujets	X	Y	$X_i - \overline{X}$	Y_{i} - \overline{Y}	$(X_i - \bar{X}) * (Y_i - \bar{Y})$
1	X_1	Y ₁	$(X_1 - \overline{X})$	(Y ₁ - \overline{y})	$(X_1 - \overline{X}) * (Y_1 - \overline{Y})$
2	X ₂	Y_2	$(X_2 - \overline{X})$	$(Y_2 - \overline{Y})$	$(X_{2} \overline{X})^*(Y_{2} \overline{Y})$
n	X _n	Y _n	$(X_n - \overline{X})$	$(Y_n - \overline{Y})$	$(X_n - \overline{X})^*(Y_n - \overline{Y})$
Moyenne	\overline{X}	\overline{Y}			1

Somme de ces valeurs pour chacun des sujets puis divisé par (n-1)

I. Covariances

• Cov (X,Y) ou
$$s_{xy}$$

$$Cov(x,y) = s_{xy} = \frac{(x_1 - \overline{X})(y_1 - \overline{Y}) + (x_2 - \overline{X})(y_2 - \overline{Y}) + \cdots + (x_n - \overline{X})(y_n - \overline{Y})}{n-1}$$

$$Cov(x, y) = s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})}{n - 1}$$

Où

 \boldsymbol{x}_i et \boldsymbol{y}_i sont les valeurs observées,

 \overline{X} et \overline{Y} les moyennes des deux variables n la taille de l'échantillon.

Remarques sur covariance

- Signe de covariance détermine direction de l'association :
 - Cov + → association positive
 - Cov → association négative
- La taille de la valeur de la covariance
 - ne détermine pas la force d'association entre les deux variables x et y
 - Dépend notamment de la taille des écarts à la moyenne et de leur signe (cf. dia suivante)
- En bref, Covariance donne
 - La direction de l'association (+ ou -)
 - Pas la grandeur de l'association ni la causalité

Ex: calcul de covariance

• Lien entre nombre de cigarettes et capacité pulmonaire

Cigs (X)	Lung Cap (Y)		
0	45		
5	42		
10	33		
15	31		
20	29		
10	36		
10	30		

Ex: calcul de covariance

• Lien entre nombre de cigarettes et capacité pulmonaire

painionanc						
Cigs (X)	$(X-\overline{X})$	$(X-\overline{X})(Y-\overline{Y})$	$(Y-\overline{Y})$	Cap (<i>Y</i>)		
0	-10	-90	9	45		
5	-5	-30	6	42		
10	0	0	-3	33		
15	5	-25	-5	31		
20	10	-70	-7	29		
		∑= -215				

Ex: calcul de covariance

• Lien entre nombre de cigarettes et capacité pulmonaire

$$S_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})}{(n-1)}$$

$$S_{xy} = \frac{1}{4}(-215) = -53.75$$

B. Corrélation

II. Corrélation

- Notation: r_{xy} ou r
- Mesure numérique qui donne la direction et l'intensité de la relation entre deux variables x et y
 - N'établit pas de causalité entre les variables (x prédit y ou est prédit par y)

II. Corrélation

Formule

$$r_{xy} = \frac{S_{xy}}{S_x * S_y}$$

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})}{n-1}$$
 Covariance entre x et y
$$\dot{\mathbf{u}},$$

$$s_x = \frac{\sum_{i=1}^{n} (x_i - \overline{X})}{n-1}$$

$$s_y = \frac{\sum_{i=1}^{n} (y_i - \overline{Y})}{n-1}$$
 Ecart-type de x et y

- Donne une mesure standardisé de la covariance
 - Covariance pondérée par l'écart-type des deux variables
 - corrélation ne dépend donc plus de la taille des écarts à la moyenne
 - force de l'association comprise entre -1 et 1
 - 1 association parfaite (positive)
 - 0 association nulle
 - -1 association parfaite (négative)

C. Régression linéaire

III. Régression linéaire

- Notation : β
- Mesure numérique qui donne la <u>direction</u> et l'<u>intensité</u> de la relation et la <u>causalité</u> entre deux variables x et y
 - X : variable indépendante (prédicteur)
 - − y : variable dépendante (dépend de/prédit par x)

III. Régression linéaire

- 'Nuage de points' ou 'Diagramme de dispersion'
 - Par convention
 - X (prédicteur, var. indépentante) sur l'axe horizontal
 - Y (var. dépendante) sur l'axe vertical
 - La 'pente' (donnée par β, coefficient de régression)
 - Ajustement d'une ligne droite à travers le nuage de points
 - Donne valeur prédite de Y (\hat{Y}) pour n'importe quelle valeur de X

Coefficient β :

- Quantifie la prédiction de X sur Y
- Dans quelle mesure un changement de X est associé à un changement de Y

$$\hat{Y} = \alpha + \beta X + \varepsilon$$

Où,

 α = intercepte (constante) = valeur prédite de y à l'origine de X (quand X_i =0) ou à sa valeur moyenne (quand X_i = \bar{X})

 β = pente (coefficient de régression)

X = variable indépendante (prédicteur)

 ϵ = erreur ou résidu

 \hat{Y} = valeur prédite de la variable dépendante

Modèle de régression linéaire

Intercepte (α) et pente (β)

Intercepte:

- Constante qui donne la valeur prédite de Y à l'origine de X

Pente:

- Donne degré d'association entre x et y - Toujours associé à X (βX)

car donne valeur prédite de Y (\hat{Y}) pour toutes valeurs de X

Imaginons 2 modèles de régression - Ex : X_i prédit Y_i <u>et</u> X_i prédit Y_i

• Calcul intercepte (α) et pente (β) On ne s'occupe par de $\hat{Y} = \alpha + \beta X \ (+\varepsilon) \longrightarrow {}^{\text{On ne s'occupe par de}}_{\text{l'erreur (ε) pour l'instant}}$

$$\beta = \frac{SYX}{S_X^2} = \frac{\sum\limits_{i=1}^{n} (x_i - X) \ (y_i - Y)}{\sum\limits_{i=1}^{n} (x_i - X)} = \frac{\sum\limits_{i=1}^{n} (x_i - X) \ (y_i - Y)}{\sum\limits_{i=1}^{n} (x_i - X)} = \frac{\sum\limits_{i=1}^{n} (x_i - X) \ (y_i - Y)}{\sum\limits_{i=1}^{n} (x_i - X)} \xrightarrow{Simplifiée} \frac{Simplifiée}{\sum x^2}$$

 $lpha=ar{Y}-etaar{X}$ \longrightarrow Valeur moyenne de X et de Y comme référence car la droite de régression passe par le centre de gravité du nuage de points $(ar{X},ar{Y})$

Modèle de régression linéaire

Calcul intercepte (α) et pente (β)

 $lpha=ar{Y}-etaar{X}$ —> Valeur moyenne de X et de Y comme référence car la droite de régression passe par le centre de gravité du nuage de points ($ar{X},ar{Y}$)

Rappel:

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})}{n-1}$$

Covariance

$$r_{xy} = \frac{S_{xy}}{S_x * S_y}$$

Corrélation

$$\beta = \frac{S_{xy}}{S_x^2}$$

Régression linéaire

Modèle de régression linéaire

• Calcul intercepte (α) et pente (β)

Exemple

Etude de l'influence d'un engrais (X = kg/ha) sur le rendement (Y = volume de production par hectare — Q/ha) des cultures.

Dans Excel, l'option ajouter une courbe de tendance permet de tracer la droite des moindres carrés et d'afficher les coefficients a et b

Calcul intercepte (α) et pente (β)

Donn	ées	Ecaris		Proc	luits
X	Y	$x = X - \overline{X}$ $= X - 400$	$y = Y - \overline{Y}$ $= Y - 60$	xy	X^2
100	40	- 300	- 20	6 000	90 000
200	50	- 200	-10	2 000	40 000
300	50	- 100	- 10	1 000	10 000
400	70	0	10	0	0
500	65	100	5	500	10 000
600	65	200	5	1 000	40 000
700	80	300	20	6 000	90 000
\overline{X} = 400	$\overline{Y} = 60$	$\Sigma x = 0$	$\Sigma y = 0$	$\sum xy = 16\ 500$	$\sum x^2 = 280\ 000$

$$\beta = \frac{\sum xy}{\sum x^2} = \frac{16500}{280000} = 0,059$$

 $\overline{Y} = \alpha + \beta \overline{X} \implies \alpha = \overline{Y} - \beta \overline{X} = 60 - 0,59 \times 400 = 36,4$

Modèle de régression linéaire

- Variable dépendante : Y
 - Valeur observée (Y_i) vs. Valeur prédite (\widehat{Y}_i)

Pour une même valeur X_i

- Y_i: valeur réellement observée
- \hat{Y}_i : valeur prédite par la droite de régression

Variance expliquée et variance résiduelle

Modèle de régression linéaire

• Variance expliquée et variance résiduelle

La régression réduit la « variance »

Variance expliquée et variance résiduelle

2. Variance expliquée et variance résiduelle

Note en math. X

$Y - \overline{Y} = (\widehat{Y} - \overline{Y}) + (Y - \widehat{Y})$

Ecart total

« variance » (en fait, somme des carrés)

$$\sum (Y - \overline{Y})^2 = \sum (\widehat{Y} - \overline{Y})^2 + \sum (Y - \widehat{Y})^2$$
 expliqué par X non expliquée

Modèle de régression linéaire

• Variance expliquée et variance résiduelle

$$\sum (Y-\bar{Y})^2 = b^2 \sum x^2 + \sum (Y-\bar{Y})^2$$
 Analyse de la « variance » = décomposition

« Variance » totale (avant régression)

Variance » expliquée due à la régression

« Variance » résiduelle (après régression)

La régression réduit la « variance »

• Coefficient de détermination : r²

Coefficient de détermination r^2 et d'indétermination $(1 - r^2)$

On peut montrer que:

$$r^2 = \frac{\text{"variance" expliquée de Y}}{\text{"variance" totale de Y}}$$

r² est appelé coefficient de détermination. Il fournit la part de la variance totale de Y expliquée par l'ajustement réalisé grâce à la régression linéaire.

Enfin, on peut aussi montrer que:

$$s^2 = (1 - r^2)s_y^2$$

 $(1-r^2)$ est appelé coefficient d'indétermination.

Modèle de régression linéaire

• Coefficient de détermination : r²

Analyse de la « variance » sous forme de tableau ANOVA

Source de variance	« Variance » (somme des carrés, SS)	d.d.l.	Vraie variance (moyenne des carrés, MS)	Rapport F
Expliquée (par la régression)	$\sum (\widehat{Y} - \overline{Y})^2$ ou $b^2 \sum x^2$	1	$\frac{b^2 \sum x^2}{1}$	$\frac{b^2 \sum x^2}{s^2}$
Non expliquée (résiduelle)	iquée $\sum (Y - \widehat{Y})^2$ $n-2$ $S^2 = \frac{1}{2}$		$S^2 = \frac{\sum (Y - \widehat{Y})^2}{n - 2}$	
Total	$\sum (Y - \overline{Y})^2$	n-1	Tableau	11.2

Hypothèse nulle: β = 0 (absence de relation linéaire entre X et Y)

Test classique de l'ANOVA:

F suffisamment grand pour H₀?

$$F = \frac{\text{variance expliquée par la régression}}{\text{variance inexpliquée}} = \frac{b^2 \sum x^2}{s^2}$$

Conditions d'application de la régression (I)

- Les observations sont indépendantes entre elles
 - Les scores d'un sujet i n'influencent pas/ne sont pas influencés par les scores d'un sujet j

Conditions d'application de la régression (II)

• Résidus normalement distribués

Conditions d'application de la régression (II)

- La variance des résidus est égale pour toutes les valeurs de X
 - homoscédasticité

Conditions d'application de la régression (IV)

• Et évidement, la relation entre les deux variables est linéaire

Exercice

Estimation de la droite de régression de Y en X

Parmi tous les points de Y pour $X = X_1$, lequel donne la meilleure prédiction ? Le point situé au milieu du segment (P_1).

Si la distribution de Y en X est normale bivariée, alors, on peut montrer que pour toute autre note X, la valeur de Y située au milieu du segment correspondant est la meilleure prédiction et que les points ainsi déterminés sont alignés sur une droite d'équation:

$$Y = \alpha + \beta X$$

Cette droite peut être estimée à partir d'un échantillon sur lequel on fait une régression

$$\hat{Y} = a + bX$$

où, comme démontré précédemment, $b = \frac{\sum xy}{\sum x^2} = r \frac{s_y}{s_x}$ $a = \overline{Y} - b\overline{X}$

Exercice

Exercice

A l'aide de l'échantillon des notes de math et à l'oral du tableau 11.1 et des statistiques qui en découlent:

- a) Déterminer la régression de Y en X et la régression de X en Y. Représenter les 2 droites.
- b) Pour un étudiant dont la note de math est de X = 90, quelle est la meilleure prédiction de la note d'oral Y ?
- c) Pour un étudiant dont la note d'oral est de Y = 10, quelle est la meilleure prédiction de la note de math X ?

Solution

a. Les calculs dont on a besoin, Σxy , Σx^2 , etc... on déjà été effectués dans le tableau 11.1 Il suffit de les introduire dans les formules appropriées.

Pour la droite de régression de Y en X

$$b = \sum_{x} xy = \frac{654}{1304}$$
 donc: $\hat{Y} = a + bX = 20 + 0,50X$
$$a = \overline{Y} - b\overline{X} = 50 - 0,50(60) = 20$$

Exercice

Nous avons, pour 8 étudiants, la note en math (X) et la note à l'oral (Y):

Données		Ecarts à la moyenne		Produits		
-X	Y	$x = X - \overline{X}$	$y = Y - \overline{Y}$	xy	λ^2	, ye
80	65	20	15	300	400	225
50	60	-10	10	- 100	100	100
36	35	- 24	- 15	360	576	225
58	39	-2	- 11	22	4	121
72	48	12	-2	- 24	144	4
60	44	0	- 6	0	0	36
56	48	-4	- 2	8	16	4
68	61	8	11	88	64	121
$\overline{X} = 60$	$\overline{Y} = 50$	0√	ov.	$\Sigma xy = 654$	$\sum x^2 = 1 \ 304$	$\sum y^2 = 836$

Tableau 11.1

Le coefficient de régression b est: $b = \frac{\sum xy}{\sum x^2} = \frac{654}{1304} = 0,50$ pour prédire Y à partir de X

Le coefficient de corrélation r est: $r = \frac{\sum xy}{\sqrt{\sum x^2} \sqrt{\sum y^2}} = \frac{654}{\sqrt{1304} \sqrt{836}} = 0,6$