Exercise Sheet 5

Exercise 1

Let $\mathcal{X} \times \mathcal{Y}$ be the input-output space with $\mathcal{Y} = \{\pm 1\}$. Suppose that

$$P(y = -1) = P(y = +1) = 0.5.$$

Let \mathcal{F} consist of all (measurable) functions $f: \mathcal{X} \to \{\pm 1\}$ Let \mathbb{S} be the set of all finite training sets. Consider the hypothesis class $\mathcal{H} = \{f_{\mathcal{S}} \in \mathcal{F} : \mathcal{S} \in \mathbb{S}\}$, where

$$f_{\mathcal{S}}(x) = \begin{cases} y : (x,y) \in \mathcal{S} \\ 1 : \text{ otherwise} \end{cases}$$
.

Show that \mathcal{H} is not uniformly convergent.

Exercise 2

Consider the following setting: The input space is $\mathcal{X} = [0, 1]$ and the output space is $\mathcal{Y} = \{\pm 1\}$. The input data $x \in \mathcal{X}$ is uniformly distributed. The Bayes classifier

$$f^*(x) = \begin{cases} +1 & : & x \ge 0.3 \\ -1 & : & x < 0.3 \end{cases}.$$

has zero Bayes risk $R^* = R(f^*) = 0$. The hypothesis class

$$\mathcal{H} = \{f_+, f_-\}$$

consists of two classifiers $f_+(x) = +1$ and $f_-(x) = -1$ for all $x \in \mathcal{X}$.

Is the Empirical Risk Minimization principle consistent with respect to \mathcal{H} and the uniform distribution over \mathcal{X} in the sense of lecture 1, slide 35?

Exercise 3

Construct a classification problem and a finite hypothesis class $\mathcal H$ to illustrate that the probability

$$p(\varepsilon) = \mathbb{P}\left(\sup_{f \in \mathcal{H}} |R_n(f) - R(f)| \ge \varepsilon\right)$$

violates Hoeffding's inequality but satisfies the union bound. Proceed as follows:

- 1. Generate a large population dataset of size N as ground truth
- 2. Construct a finite hypothesis class \mathcal{H}
- 3. Compute the true risk for all $f \in \mathcal{H}$
- 4. Choose a small sample size n
- 5. Repeat T times:

OTH Regensburg AML Fakutät IM WS 2023/24 B. Jain 14.11.2023

- (a) generate a training set of size n
- (b) compute the empirical risk for all $f \in \mathcal{H}$
- 6. Estimate the probabilities $p(\varepsilon)$ as a function of ε .
- 7. Plot the distribution of deviations $|R_n(f) R(f)|$ using a violin plot.
- 8. Plot the Hoeffding and the union bound together with the estimates of $p(\varepsilon)$ as a function of ε .