Department of Mathematics IIT Guwahati

Quiz1 MA101 12-12-2020 Total marks: 24 Time: 65 min

- The first question is writing your roll number. It is compulsory.
- Each other question carries 2 marks.
- \bullet For single-correct-option question, you get 2 for correct answer, -1 for wrong answer and 0 for not attempting.
- For multiple-correct-option question, you get 2 for correct answer and 0 for wrong answer or not attempting.
- You get extra 5 minutes for submission. REMEMBER to press the SUBMIT button by 11:04:59. The form will not accept responses after that.
- The form permits ONLY ONE submission. It does not allow REVISION.
- 1. Write your roll number.
- 2. (Multiple correct options) Let A and B be nonempty subsets of \mathbb{R} such that for each $a \in A$ and $b \in B$, we have $a^2 \leq b$. Then which of the following statements are correct?
 - A) lub A must exist in \mathbb{R}
 - B) lub B must exist in \mathbb{R}
 - C) glb A must exist in \mathbb{R}
 - D) glb B must exist in \mathbb{R}
- 3. For a natural number n define $val(n) = n(1 \frac{n \ln n}{(n+1) \ln (n+1)})$. Let

$$(p_n) = (3, 2, 7, 5, 13, 11, 19, 17, \ldots)$$

be the sequence of prime numbers. We want to find $\lim_{n\to\infty} val(p_n)$. Then which of the following options is correct?

- A) Limit exists and it is less than half.
- B) Limit exists and it is half.
- C) Limit exists and it is more than half.
- D) Limit does not exist.
- 4. Consider the following two statements.

Statement 1: Take $a_n = (1 + \frac{1}{\sqrt{n}})^n$. Then the sequence (a_n) is convergent.

Statement 2: If (c_n) and (d_n) are two Cauchy sequences, then (c_nd_n) must be a Cauchy sequence.

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.

5. Consider the following two statements.

Statement 1: $\sum (-1)^n \ln \left(1 + \frac{1}{n^2}\right)$ is absolutely convergent.

Statement 2: Let $a_n \geq 0$ and $\sum a_n$ be convergent. Then the sequence (na_n) must be convergent.

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.
- 6. Consider the following two statements.

Statement 1: There exists an increasing sequence (a_n) such that $\sum a_n = 2020$.

Statement 2: $\sum_{n>1} \frac{1}{n^{1+\frac{1}{n}}}$ is divergent.

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.
- 7. Consider the following two statements.

Statement 1: Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Then $Z = \{x \mid f(x) = 5\}$ contains all its cluster points.

Statement 2: Let f be continuous with $\lim_{h\to 0} \frac{f(h)}{h^2} = 2$ and $\lim_{h\to 0} \frac{f(h)}{h} = l$. Then $\lim_{h\to 0} \frac{l}{h} = 2$.

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.
- 8. (Multiple correct options) I have a polynomial p(x) of degree 2021. Define $f: \mathbb{R} \to \mathbb{R}$ as

$$f(x) = \begin{cases} |p(x)| & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise.} \end{cases}$$

2

Then which of the following options are correct?

- A) The function is discontinuous at each point.
- B) The set $\{a \mid f(x) \text{ is continuous at } a\}$ is nonempty and finite.
- C) The function is continuous at every point a where $\lim_{x\to a} f(x)$ exist.
- D) The limit $\lim_{x\to a} f(x)$ exist at infinitely many points $a \in \mathbb{R}$.

9. Consider the following two statements.

Statement 1: Let $f: \mathbb{R} \to \mathbb{R}$ with $\lim_{h \to 0} (f(x+h) - f(x-h)) = 0$ for all x. Then f is continuous on \mathbb{R} .

Statement 2: If $f : \mathbb{R} \to \mathbb{R}$ is continuous and one-one, then it must be strictly monotone (means strictly increasing or strictly decreasing).

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.
- 10. Consider the following two statements.

Statement 1: Let $f, g : \mathbb{R} \to \mathbb{R}$ with $\lim_{x \to 5} f(x) = l$ and $\lim_{x \to 5} g(x) = k$. Then

$$\lim_{x \to 5} \max\{f(x), g(x)\} = \max\{l, k\}.$$

Statement 2: Let $f : \mathbb{R} \to \mathbb{R}$ be continuous such at two positive points a, b, we have f(a) = 5a and f(b) = 7b. There there must exist a point c for which f(c) = 6c.

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.
- 11. Consider the following two statements.

Statement 1: The number of continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that the image $f(\mathbb{R}) \subseteq \{0, \pi, e, \sqrt{2}\}$ is at least 2.

Statement 2: It is given that $\lim_{x\to 5} \left((f(x))^3 - (f(x))^2 + f(x) - 1 \right)$ exists and it is 0. Then $\lim_{x\to 5} f(x)$ must exist.

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.
- 12. (Multiple correct options) Let 0 < a < b. Which of these irrational numbers are necessarily in the interval (a, b)? Here [x] means the greatest integer function.

A)
$$[a] + \frac{1}{500\sqrt{2}}$$

B)
$$\frac{[na] + \frac{1}{500\sqrt{2}}}{n}$$
, where $n = [\frac{3}{b-a}]$

C)
$$\frac{[na] + 1 + \frac{1}{500\sqrt{2}}}{n}$$
, where $n = [\frac{3}{b-a}]$

D)
$$\frac{[na] + 1 + \frac{1}{500\sqrt{2}}}{n}$$
, where $n = [\frac{2}{b-a}]$

- 13. Let $p(x) = x^4 + 5x^3 3x^2$ and A be an (arbitrary) infinite bounded set of positive real numbers. Define $B = \{x^4 + 5y^3 3z^2 \mid x, y, z \in A\}$. Then which of the following statements is correct?
 - A) We must have lub B = p(lub A).
 - B) We must have $\mathsf{lub}\, B < p(\mathsf{lub}\, A)$.
 - C) We must have lub B > p(lub A).
 - D) No comparisons can be made between $lub\ B$ and $p(lub\ A)$ in general.