Ejemplo 10

Sea $f: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (x^2y, (y+x^3)/(1+x^2))$. Demostrar que f es continua.

Solución

Para ver esto, basta con demostrar, mediante la propiedad (v) del Teorema 4, que cada componente es continua. Como hemos mencionado, cualquier polinomio de dos variables es continuo; por tanto, la aplicación $(x,y)\mapsto x^2y$ es continua. Dado que $1+x^2$ es continua y distinta de cero, por la propiedad (IV), sabemos que $1/(1+x^2)$ es continua; por lo que $(y+x^3)/(1+x^2)$ es un producto de funciones continuas y por la propiedad (III) es continuo.

Razonamientos similares se aplican a ejemplos como la función $\mathbf{c} : \mathbb{R} \to \mathbb{R}^3$ dada por $\mathbf{c}(t) = (t^2, 1, t^3/(1+t^2))$ para demostrar que también son funciones continuas.

Composición

A continuación vamos a estudiar la composición, otra operación básica que se puede realizar con funciones. Si g aplica A en B y f aplica B en C, la composición de g con f, o de f sobre g, que se denota por $f \circ g$, aplica A en C y lleva $\mathbf{x} \mapsto f(g(\mathbf{x}))$ (véase la Figura 2.2.15). Por ejemplo, sen (x^2) es la composición de $x \mapsto x^2$ con $y \mapsto$ sen y.

Figura 2.2.15 La composición de f sobre g .

Teorema 5 Continuidad de las composiciones Sea $g: A \subset \mathbb{R}^n \to \mathbb{R}^m$ y sea $f: B \subset \mathbb{R}^m \to \mathbb{R}^p$. Supongamos que $g(A) \subset B$, de modo que $f \circ g$ está definida en A. Si g es continua en $\mathbf{x}_0 \in A$ y f es continua en $\mathbf{y}_0 = g(\mathbf{x}_0)$, entonces $f \circ g$ es continua en \mathbf{x}_0 .

La intuición que hay tras esto es muy sencilla. Intuitivamente, debemos demostrar que cuando \mathbf{x} se acerca a $\mathbf{x}_0, f(g(\mathbf{x}))$ se aproxima a $f(g(\mathbf{x}_0))$. Pero cuando \mathbf{x} se acerca a $\mathbf{x}_0, g(\mathbf{x})$ se aproxima a $g(\mathbf{x}_0)$ (por la continuidad de g en \mathbf{x}_0); y al acercarse $g(\mathbf{x})$ a $g(\mathbf{x}_0), f(g(\mathbf{x}))$ se acerca a $f(g(\mathbf{x}_0))$ (por la continuidad de f en $g(\mathbf{x}_0)$).

Ejemplo 11

Sea $f(x, y, z) = (x^2 + y^2 + z^2)^{30} + \text{sen } z^3$. Demostrar que f es continua.

Solución

Podemos escribir f como la suma de las dos funciones $(x^2 + y^2 + z^2)^{30}$ y sen z^3 , por lo que bastará con demostrar que cada una de ellas es