Définition 15.1 - tribu

Pour un univers Ω au plus dénombrable, on appelle tribu sur Ω une partie $\mathcal{T} \subset \mathcal{P}(\Omega)$ tel que :

- 1. $\Omega \in \mathcal{T}$
- **2.** Pour tout $A \in \mathcal{T}, \overline{A} \in \mathcal{T}$
- **3.** Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de $\mathcal{T}, \bigcup_{n\in\mathbb{N}} A_n \in \mathcal{T}$

Les éléments de \mathcal{T} sont appelés évènements.

Définition 15.4 - espace probabilisable

Soit Ω un univers au plus dénombrable et \mathcal{T} une tribu sur Ω . Le couple (Ω, \mathcal{T}) est appelé espace probabilisable.

Définition 15.5 - système complet d'évènements

Soit (Ω, \mathcal{T}) un espace probabilisable associé à un univers Ω au plus dénombrable. On dit qu'une famille au plus dénombrable $(A_i)_{i \in I} \in \mathcal{T}^I$ d'évènements constitue un système complet d'évènements si :

$$\Omega = \bigsqcup_{i \in I} A_i$$

Définition 15.7 - probabilité sur un univers

Soit (Ω, \mathcal{T}) un espace probabilisable associé à un univers Ω au plus dénombrable. On appelle probabilité sur (Ω, \mathcal{T}) une application $\mathbb{P}: \mathcal{T} \to [0; 1]$ telle que :

- 1. $\mathbb{P}(\Omega) = 1$
- **2.** σ -additivité: Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'évènements deux à deux incompatibles, la série de terme général $\mathbb{P}(A_n)$ converge et:

$$\mathbb{P}\bigg(\bigsqcup_{n\in\mathbb{N}} A_n\bigg) = \sum_{n=0}^{+\infty} \mathbb{P}(A_n)$$

On dit alors que $(\Omega, \mathcal{T}, \mathbb{P})$ constitue un espace probabilisé.

Théorème 15.17 - de la limite monotone

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé. Soit $(A_n)_{n \in \mathbb{N}} \in \mathcal{T}^{\mathbb{N}}$ une suite croissante d'évènements $(\forall n \in \mathbb{N}, A_n \subset A_{n+1})$. Alors :

$$\mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} \mathbb{P}(A_n)$$

Proposition 15.20 - inégalité de Boole

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé. Soit $(A_n)_{n \in \mathbb{N}} \in \mathcal{T}^{\mathbb{N}}$ une suite d'événements telle que la série de terme général $\mathbb{P}(A_n)$ converge. Alors :

$$\mathbb{P}\bigg(\bigcup_{n=0}^{+\infty}A_n\bigg)\leq \sum_{n=0}^{+\infty}\mathbb{P}(A_n)$$

Définition 15.21 - événements négligeable, presque sûr

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé.

- Un événement A est dit négligeable si $\mathbb{P}(A) = 0$.
- Un événement A est dit presque sûr si $\mathbb{P}(A) = 1$.

Proposition 15.22 (3) - intersection, union avec un événement négligeable

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé. Soit $A \in \mathcal{T}$ un événement négligeable. Alors :

$$\forall B \in \mathcal{T}, \ \begin{cases} \mathbb{P}(A \cap B) = 0 \\ \mathbb{P}(A \cup B) = \mathbb{P}(B) \end{cases}$$

Définition 15.24 - probabilité conditionnelle

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé. Soit $A \in \mathcal{T}$ un événement non négligeable. Alors l'application :

$$\mathbb{P}_A: \mathcal{T} \longrightarrow [0; 1]$$

$$B \longmapsto \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

est une probabilité, appelée probabilité conditionnelle sachant A.

Théorème 15.26 - formule des probabilités composées

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé. Soit $(A_k)_{k \in [\![1, n]\!]} \in \mathcal{T}^n$ une famille d'évènements telle que $\bigcap_{k=1}^n A_k$ ne soit pas négligeable. Alors :

$$\mathbb{P}\left(\bigcap_{k=1}^{n} A_k\right) = \prod_{k=1}^{n} \mathbb{P}\left(A_k \mid \bigcap_{i=1}^{k-1} A_i\right)$$

Théorème 15.28 - formule de probabilités totales

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé. Soit $(A_i)_{i \in I}$ un système complet d'évènement de probabilités non nulles, où I est au plus dénombrable. Pour tout $B \in \mathcal{T}$:

$$\mathbb{P}(B) = \sum_{i \in I} \mathbb{P}(B \cap A_i)$$

Théorème 15.32 - formule de Bayes

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé. Soit $(A_i)_{i \in I}$ un système complet d'évènement de probabilités non nulles, où I est au plus dénombrable. Pour tout $B \in \mathcal{T}$ de probabilité non nulle :

$$\forall j \in I, \, \mathbb{P}_B(A_j) = \frac{\mathbb{P}_{A_j}(B)}{\sum_{i \in I} \mathbb{P}_{A_i}(B) \mathbb{P}(A_i)}$$

Définition 15.37 - évènements mutuellement indépendants

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé. Soit $(A_i)_{i \in I}$ un système complet d'évènement, où I est au plus dénombrable. $(A_i)_{i \in I}$ est une famille d'évènements mutuellement indépendants si :

$$\forall J \in \mathcal{P}_f(I), \, \mathbb{P}\bigg(\bigcap_{j \in J} A_j\bigg) = \prod_{j \in J} \mathbb{P}(A_j)$$

Définition 15.38 - prédicat vrai sur un ensemble au plus dénombrable

Soit P un prédicat sur I un ensemble au plus dénombrable. On dit que P est vrai sur I si :

$$\forall J \in \mathcal{P}_f(I), \, \forall x \in J, \, P(x)$$