

EXERCISE 7 — SOLUTION

1. Visible Light

(a) Describe the spectrum of visible light.

Solution

 $380\,\mathrm{nm}$ (violet) to $780\,\mathrm{nm}$ (red)

(b) Characterize the average spectral sensitivity of human visual perception of brightness.

black: photopic (well-lit) conditions,

green: scotopic (low light) conditions.

2. Photometric Quantities, Solid Angle

Assume there is a quad with dimensions 1 m by 1 m positioned according to the following illustrations.

(a) Compute an approximation of the solid angle Ω_a that the quad spans.

Solution

$$\Omega_a = \frac{A_V}{r^2} = \frac{1 \,\mathrm{m}^2}{4 \,\mathrm{m}^2} = \frac{1}{4} \mathrm{sr}$$

(b) Compute an approximation of the solid angle Ω_b that the quad spans.

Solution

- ullet Quad is rotated by lpha around z
- Thus, one dimension appears shortened: $l = 1 \,\mathrm{m} \cdot \cos \alpha$
- Consequently $\Omega_b = \frac{A_V}{r^2} = \frac{1 \, \text{m} \cdot 1 \, \text{m} \cdot \cos \alpha}{4 \, \text{m}^2} = \frac{1}{4} \text{sr} \cos \alpha$

(c) Fill in the spaces

Assume, a light source emits a _____ of $I_V = 1 \,\mathrm{cd}$, then we can compute the _____ (E_V) in lx (Lux) at the quad.

Solution

- luminous intensity
- illuminance
- (d) Compute these measurements, for which you filled the spaces. Compare them for both quads.

Solution

- surface area: $A = 1 \,\mathrm{m}^2$
- $E_{V,a} = \frac{I_V \Omega_a}{A} = \frac{1 \operatorname{cd} \cdot 1 \operatorname{sr}}{4 \cdot 1 \operatorname{m}^2} = \frac{1}{4} \operatorname{lx}$
- $E_{V,b} = \frac{I_V \Omega_b}{A} = \frac{1 \operatorname{cd} \cdot 1 \operatorname{sr} \cdot \cos \alpha}{4 \cdot 1 \operatorname{m}^2} = \frac{1}{4} \cos \alpha \operatorname{lx}$
- (e) Compare this to the Lambert reflection model. Prove your finding.

Solution

• $E_{V,b} = \frac{I_V \Omega_b}{A} = \frac{1 \operatorname{cd} \cdot 1 \operatorname{sr} \cdot \cos \alpha}{4 \cdot 1 \operatorname{m}^2} = \frac{1}{4} \cos \alpha \operatorname{lx}$ resembles the $I \cdot \cos \theta = I \cdot (\mathbf{n}^\top \mathbf{l})$ term in the Lambert reflection model.

- $\beta = 90^{\circ} \alpha$
- $\theta = 90^{\circ} \beta = 90^{\circ} 90^{\circ} + \alpha = \alpha$

q.e.d.

SOLUTION 2/2