Where Should There Be More Electric Charging Hubs in New York State?

Cecilia Pershyn

CIS512

New York State is a leading state in clean and renewable energy, with a commitment to have 50% of the state's electricity supplied by renewable sources by 2030. Thanks to impressive growth in solar, wind, hydro and biomass power in New York State, plug-in electric vehicles (EVs) have particularly low greenhouse gas emissions here.

EVs are a cheap and clean alternative to gas-fueled vehicles. However, small battery storage capacity limits the amount of electric fuel that can be carried on board the vehicle. In order to make the use of EVs more convenient, and help extend vehicle mileage, there is a need to expand the electric power grid and create more public fueling stations.

In this study I will look at vehicle registrations in NYS to determine where electric vehicles are registered. I will look at where charging ports are located in the state and compare to the zip codes with high electric vehicle registrations to determine which zip codes have the highest demand for new charging ports.

Data Sources:

Data on Charging Stations https://data.ny.gov/d/7rrd-248n?category=Energy- Environment&view name=Electric-Vehicle-Charging-Stations-in-New-York (https://data.ny.gov/d/7rrd-248n?category=Energy-Environment&view name=Electric-Vehicle-Charging-Stations-in-New-York)

Data on Electric Vehicle Registration

https://data.ny.gov/d/uu25-czyc?category=Transportation&view_name=Electric-Vehicles-per-County_(https://data.ny.gov/d/uu25-czyc?category=Transportation&view_name=Electric-Vehicles-per-County)

Bibliography:

How New York Uses Renewable Energy. (n.d.). Retrieved from http://www.dec.ny.gov/energy/83070.html) (http://www.dec.ny.gov/energy/83070.html)

Date Visited: 10/29/18

How New York Uses Renewable Energy. (n.d.). Retrieved from http://www.dec.ny.gov/energy/83070.html)
http://www.dec.ny.gov/energy/83070.html)

Date Visited: 10/29/18

```
In [29]: %matplotlib inline
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns; sns.set()
    sns.set(style="darkgrid")
```

Electric Vehicle Registration Data

Import and read data table

Out[3]:

In [3]: vehicle_reg.head()

	Record Type	VIN	Registration Class	City	State	Zip	County	М
0	VEH	8995	PAS	BUFFALO	NY	14207	ERIE	19
1	VEH	607SR2131A	PAS	N SYRACUSE	NY	13212	ONONDAGA	19
2	VEH	537LS7D46CT083476	PAS	NEWFANE	NY	14108	NIAGARA	20
3	VEH	53TBH2MC1BE900166	PAS	ROCKVILLE CTR	NY	11570	NASSAU	20
4	VEH	53G1B4A47DB000347	PAS	BROOKLYN	NY	11223	KINGS	20

Create a new table with only the relevant information to my study

```
In [4]: veh = vehicle_reg[['City','State','Zip','County']]
    veh[:5]
```

Out[4]:

	City	State	Zip	County
0	BUFFALO	NY	14207	ERIE
1	N SYRACUSE	NY	13212	ONONDAGA
2	NEWFANE	NY	14108	NIAGARA
3	ROCKVILLE CTR	NY	11570	NASSAU
4	BROOKLYN	NY	11223	KINGS

There are 9222 registered electric vehicles in NYS

```
In [30]: len(veh)
Out[30]: 9222
```

Create a data series showing the number of electric vehicles per zip code in New York State

```
In [7]: veh['Number of Vehicles'] = ''
    reg_car = veh.groupby(['Zip'])
    count_car = reg_car.agg({'Number of Vehicles':'count'}).sort_values(['Number of Vehicles','Zip'], ascending=[False, True])
    count_car[:5]
```

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-d ocs/stable/indexing.html#indexing-view-versus-copy
"""Entry point for launching an IPython kernel.

Out[7]:

	Number of Vehicles
Zip	
10583	200
11746	114
11791	109
10580	103
11743	101


```
In [9]: vehicle_reg_zip = vehicle_reg.groupby(['Zip'])
    vrzip = vehicle_reg_zip.size().sort_values(ascending = False)
```

```
vrzip = vrzip[:25]
In [10]:
          vrzip
Out[10]: Zip
          10583
                    200
          11746
                    114
          11791
                    109
          10580
                    103
          11743
                    101
                     87
          11050
          10538
                     81
          10013
                     77
          14850
                     75
          10514
                     73
          11030
                     72
                     72
          11576
          14534
                     67
          10504
                     67
          10011
                     65
          10023
                     60
          11797
                     58
                     55
          11747
                     54
          11545
          10014
                     53
          11733
                     52
          10528
                     51
          11568
                     50
                     49
          11201
          10956
                     48
          dtype: int64
```

Charging Hubs in New York State

Import and read data

Out[11]:

	Fuel Type Code	Station Name	Street Address	Intersection Directions	City	State	ZIP	Plus4	Station Phone	Sta C
0	ELEC	Hudson Valley Community College - TEC- SMART Bu	345 Hermes Rd	NaN	Malta	NY	12020	NaN	518- 629- 7075	E
1	ELEC	EDISONPARKFAST	451 9th Ave	LOC #250 #2 LOT#250; ChargePoint America Program	New York	NY	10018	NaN	888- 758- 4389	Е
2	ELEC	CARCHARGING	350 W 50th St	ICON MERCURY; Icon parking see attendant for a	New York	NY	10019	NaN	888- 758- 4389	Е
3	ELEC	CARCHARGING	310 W 39th St	ICON 310 W 39TH; Icon Parking systems see vale	New York	NY	10018	NaN	888- 758- 4389	E
4	ELEC	EDISONPARKFAST	50 W 44th St	LOC #100 LEVEL3; Located in basement level of	New York	NY	10036	NaN	888- 758- 4389	Е

5 rows × 32 columns

Create a new table with only the relevant information to my study

```
In [12]: hub = charge_hub[['City','ZIP','Latitude','Longitude',]]
hub[:4]
```

Out[12]:

	City	ZIP	Latitude	Longitude	
0	Malta	12020	42.971670	-73.774182	
1	New York	10018	40.754512	-73.995938	
2	New York	10019	40.763245	-73.988648	
3	New York	10018	40.755440	-73.992027	

There are 1030 charging ports in New York State

```
In [31]: len(hub)
Out[31]: 1030
```

Create a data series showing the number of charging hugs per zip code in New York State

```
In [13]: hub['Number of Charge Hubs'] = ''
    ch_hub = hub.groupby(['ZIP'])
    count_hub = ch_hub.agg({'Number of Charge Hubs':'count'}).sort_values([
    'Number of Charge Hubs','ZIP'], ascending=[False, True])
    count_hub[:5]
```

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-d ocs/stable/indexing.html#indexing-view-versus-copy
"""Entry point for launching an IPython kernel.

Out[13]:

	Number of Charge Hubs
ZIP	
10019	34
10016	22
12401	21
10021	17
10022	17

```
chzip = chzip[:25]
In [30]:
          chzip
Out[30]: ZIP
          10019
                    34
          10016
                    22
                    21
          12401
          10022
                    17
          10021
                    17
          10023
                    16
          14850
                    16
          10065
                     15
          12866
                     15
          10028
                    14
          10011
                    14
          10024
                    13
                     12
          11201
          10025
                    12
          10003
                    12
          10036
                    11
                     9
          10014
          14221
                     9
          10013
                      9
          10075
                     8
          11790
                      8
          10001
                      8
          11901
                      7
          12205
                     7
          11215
                      7
          dtype: int64
```

Next Steps

- 1. Combine count_car and count_hub data series into one data frame to compare the number of cars in each zip code and the number of charging hubs. This will help give an idea of demand for hubs.
- 2. Map number of cars per zip code and the locations of charging hubs using geocoding and ArcGIS