Mérési útmutató a "Internet of Things (IoT)" című méréshez

2022. április 14.

A mérést kidolgozta:

Gazdag András Holczer Tamás Kócsó Balázs Papp Dorottya

BME, CrySyS Adat- és Rendszerbiztonság Laboratórium

Tartalomjegyzék

1.	Bev	ezetés	3			
2.	Mér	rési eszközök	3			
	2.1.	Környezet	4			
	2.2.	Vízerőmű	5			
	2.3.	Energiaellátás	6			
		2.3.1. Energiaforrások	6			
		2.3.2. Működési módok	7			
		2.3.3. Kommunikáció	7			
	2.4.	Szerver park	8			
	2.5.	SCADA	9			
3.	További információk 1					
	3.1.	LOGO fejlesztő környezet	10			
	3.2.	STEP7 segédosztály leírása	11			
	3.3.	Gecko fejlesztő környezet	11			
4.	Feladatok					
	4.1.	Jelszó brute force támadás a SCADA ellen	12			
	4.2.	Adminisztrátori jogosultságok a SCADA rendszerben	12			
	4.3.	SCADA rendszerbe érkező adatok hamisítása	12			
	4.4.	Sérülékenység keresése az Energy Control rendszerben	13			
	4.5.	A vízerőmű biztonsági rendszerének kiiktatása	13			
	4.6.	Kommunikáció STEP7 protokollon keresztül	13			
	4.7.	Üzenetbeszúrásos támadás a szerverpark hőmérséklet-szabályzój	\mathbf{a}			
		ellen	14			
Α.	Függelék					
	A.1.	Címek és portok	15			
B. Jegyzőkönyv						

1. Bevezetés

Az IOT mérésnek kettős célja van. Egyrészt a hallgatók megismertetése különböző ipari megoldásokkal, és ezen megoldások koncepcionális sérülékenységeivel. Másrészt a félév folyamán különböző méréseken kipróbált technikák gyakoroltatása. Ennek érdekében a rendszer szándékosan sérülékenyre és hibásra van tervezve, de minden sérülékenység olyan, ami gyakorlati életben (habár nem ennyire halmozottan) is előfordulhat.

2. Mérési eszközök

A mérési összeállítás egy komplex energia termelő és fogyasztó rendszer egyszerűsített megvalósítása. A vízerőmű és a naperőmű termeli az energiát, amit a szerver park üzemeltetésére fordít a rendszer. A különböző folyamatok működési és biztonsági paramétereit a különböző szabályozási körök felügyelik. A mérési feladatok elvégzéséhez szükséges a mérési környezet megismerése, amelynek sematikus rajza az 1. ábrán látható.

1. ábra. Mérési elrendezés

Megjegyzés: Az egyes részek ebben a fejezetben egymás után kerülnek bemutatásra, az olvasás közben ajánlott erre az ábrára visszatekinteni az adott egységek leírásánál is.

2.1. Környezet

A környezet feladata a valódi környezetünk, azaz a napsütés, az eső és az idő múlásának modellezése. Ezen kívül a szerverteremben lévő géppark hőtermelését is a környezet szimulálja. Fontos, hogy egy olyan modellt készítsünk a környezetünkről, amellyel az energia termelő és fogyasztó rendszer működése jól szemléltethető. Ezért az idő múlása 1200-szorosra van gyorsítva, ami azt jelenti, hogy a környezetben 20 perc telik el 1 másodperc alatt. Ennek megfelelően

- a nap a 6 órakor kel fel és 22 órakor nyugszik le,
- az eső 12 és 0 óra között esik,
- a szerverteremben lévő gépek folyamatosan mennek, de a terhelésük 10 óra és 22 óra között magasabb, ezért ekkor kapcsol be szerverteremben lévő fűtőtest

A környezet vezérlőegysége a 2. ábrán található, amelynek kijelzőjén jól látható a környezet aktuális ideje és hogy az egyes környezeti elemek milyen állapotban vannak.

2. ábra. A környezet vezérlőegysége (az eső nem esik, a nap süt, a szerverterem hőtermelése aktív)

Ahhoz, hogy az energia termelő és fogyasztó rendszert szélsőséges esetek mellett is tudjuk tesztelni szükség van a környezet befolyásolására. A környezet vezérlőegységén vannak gombok, amellyel az egyes környezeti elemek állapotát manuálisan lehet beállítani, illetve lehet gyorsítani az idő múlását.

2.2. Vízerőmű

A napelem mellett a vízerőmű felel a fogyasztó rendszer áramellátásáért. A vízerőmű modellje egy duzzasztógátat szimbolizál, amelybe a környezettől érkezik az eső. A duzzasztógáttól egy szelep segítségével tudjuk a vizet a generátorhoz eljuttatni és áramot termelni. Ahhoz hogy a vízerőmű zavartalanul működhessen a duzzasztógáton mindig elegendő mennyiségű víznek kell lennie, illetve a gátat biztonsági leeresztő szelepekkel kell védeni a túlfolyó víztől. Ezen feltételek teljesítéséhez a 3. ábrán látható mérési pontokat helyeztünk el.

safety sensor max: a vízszint, amelynél a biztonsági szelep kinyit

safety sensor min: a vízszint, amelynél a biztonsági szelep bezár

generator sensor max: a vízszint, amelynél a generátor be tud kapcsolni

generator sensor min: a vízszint, amely alatt a generátor nem tud mű-ködni

3. ábra. A duzzasztógáton elhelyezett mérési pontok

Megjegyzés: A két-két szenzorra azért van szükség, hogy a kisebb tranziens állapotok ne befolyásolják a szelepek működését (például: folyamatos nyitás-zárás).

A generátorhoz tartozó szelepet az energiaellátó vezérli, amelynek a leírása a 2.3. fejezetben található. A biztonsági szelep vezérlését a 4. ábrán látható PLC végzi.

4. ábra. A vízerőmű biztonsági szelepét vezérlő PLC

A PLC a biztonsági szenzorok (safety sensor) értékei alapján tudja állítani a biztonsági szelepet a következők szerint:

- Ha a vízszint elérte a safety sensor max értéket, akkor a biztonsági szelepet kinyitja.
- Ha a vízszint a safety sensor min érték alá csökken, akkor a biztonsági szelepet bezárja.

A biztonsági szelep működtetéséhez tartozik egy engedélyező jel, amellyel a való életbeli karbantartást lehet modellezni. Az engedélyezést a SCADA rendszer vezérlői felületéről lehet ki- és bekapcsolni. A piros háttérvilágítás a PLC azon belső állapotát jelenti, amely esetében a biztonsági szelepnek nyitva kellene lennie (a valódi nyitás az engedélyező jeltől függ).

Rendszeres időközönként (valós időben 5 másodpercenként) a PLC adatokat szolgáltat a biztonsági rendszer állapotáról a SCADA rendszernek.

2.3. Energiaellátás

Az energia ellátó modul felelős a szerverpark energiával történő ellátásáért. A modul egy intelligens kapcsolót valósít meg, mely három forrásból (napelem, vízerőmű, szünetmentes tápegység) képes energiát biztosítani és többféle működési móddal rendelkezik.

2.3.1. Energiaforrások

A vízerőművet az energia ellátó csak abban az esetben működteti, ha elegendő víz halmozódott fel a tárolóban. Ennek eldöntésére a modul két szenzor adatait használja fel. A generator sensor min nevű szenzor a minimális vízszintet jelzi, a generator sensor max pedig a maximumot. Amennyiben a vízszint a maximum felett van, az energia ellátó modul azonnal képes

bekapcsolni a vízerőművet. Amennyiben a vízszint a minimum és a maximum között áll, a modul csak akkor kapcsolja be a vízerőművet, ha előtte a maximum értéket már elérte és éppen fogyasztja a vízet a duzzasztóból. A minimum érték elérésekor a vízerőművet a modul kikapcsolja és addig nem kapcsolja vissza, amíg vízszint újra el nem éri a maximumot. Bekapcsoláskor a modul megnyitja a vízerőmű működését szabályozó szelepet. A szelepen keresztülfolyó víz eléri a generátort, ami forgásával energiát termel. Mivel a forgás frekvenciája befolyásolja a termelt áram mennyiségét, a modul folyamatosan méri ezt a frekvenciát. A termelt áram mennyisége csak akkor számít elegendőnek, ha a forgási frekvencia meghaladja a modulban tárolt küszöbértéket.

A szünetmentes tápegység valós időben 10 másodperc alatt merül le és 20 másodperc alatt töltődik fel. A környezet jelenlegi beállításai mellett ez a szerverpark egy éjszakán keresztüli energia ellátásra már nem elég.

2.3.2. Működési módok

Amennyiben semmilyen karbantartási munkálatot nem végeznek a különböző forrásokon, a modul működési módja automatikus. Ekkor mindhárom forrás használható. A ténylegesen használt forrást a források közötti preferenciasorrend határozza meg:

- Amennyiben áramot termel a napelem, a modul a napelem által termelt áramot továbbítja
- Amennyiben a napelem nem termel áramot, a modul megpróbál a vízerőműtől áramot biztosítani
- Amennyiben egyik kondíció sem áll fenn, átkapcsol a szünetmentes tápegységre

Karbantartási munkálatok esetén bizonyos forrásokat kizárólagosan vagy egyáltalán nem használhat az energia ellátó. A vízerőmű és a napelem karbantartása során lehetőség van letiltani, és a munkálatok befejezése után engedélyezni az adott forrás használatát. Amennyiben több forrást is érintenek a karbantartási munkálatok, lehetőség van az energia ellátót egyetlen forrásról is működtetni a működési mód beállításával: működés tisztán napelemről, vízerőműről, vagy a szünetmentes tápegységről.

2.3.3. Kommunikáció

A források használatát és a működési módok beállítását a SCADA rendszeren (2.5. fejezet) keresztül lehet megtenni. A rendszer webes felületén történő beállítások JSON dokumentumokként jutnak el az energia ellátó modulhoz. JSON dokumentumon keresztül a következő adatokat lehet megadni az energia ellátónak:

- működési mód
- vízerőmű vagy napelem engedélyezettsége
- vízerőmű generátorának frekvenciájához küszöbérték

A megkapott JSON dokumentumokat naplózza az energia ellátó, ám a feldolgozásuk sikerességéről nem küld visszajelzést. Egy példa JSON dokumentum (legalább egy kulcs-érték pár megadása szükséges!):

```
{
    "energy_source": "hydro",
    "hydro_system_enabled": true,
    "solar_system_enabled": false,
    "hydro_frequency_threshold": 0.8
}
```

A példa JSON dokumentumon keresztül úgy állítottuk be az energia ellátót, hogy csak a vízerőműről működhessen. Engedélyeztük a vízerőmű használatot, letiltottuk a napelem használatát és a forgási frekvencia küszöbértékét 0.8 Hz-re¹ állítottuk.

Rendszeres időközönként (valós időben 5 másodpercenként) az energia ellátó adatokat szolgáltat a energiaellátás, a napelem, a vízerőmű állapotáról a SCADA rendszernek.

2.4. Szerver park

A szerver park valósítja meg az erőmű energiafelhasználását. A szerver parknak nem csak áramot kell szolgáltatni, hanem biztosítani kell a megfelelő hőmérsékletet és a világítást is a folyamatos üzemhez.

A szerverparkban egy webszerver üzemel, amely a folyamatos működésről rendszeres időközönként (valós időben 5 másodpercenként) állapotjelentést küld a SCADA rendszernek. A sok szerver által gerjesztett meleget a szerver parkban egy fűtőtesttel modelleztük. Azért hogy a szerver parkban a hőmérséklet ne tudjon egy bizonyos szint fölé menni, klimatizáló berendezéssel van ellátva. A szerverteremben lévő hőmérsékletet mérése több rádiós szenzorral történik. A rádiós szenzorok a kábellel összekötött szenzornak továbbítják az információt, amely azokat továbbküldi a SCADA rendszernek. A SCADA az utolsó mért hőmérsékletek használatával egy átlagot számol, és ez alapján dönti el, hogy túl meleg van e a szerverparkban. Ezen kívül a szerverteremben szükség van éjszaka világításra is, amit nappal energiatakarékossági okokból le kell kapcsolni.

¹A lapátok forgása szinte sose érik el a 0.7 Hz-et, így ezzel a beállítással gyakorlatilag megtiltottuk az energia továbbítást.

A klimatizáló berendezést és a világítást is egy PLC vezérli, akárcsak a vízerőmű esetén (4. ábra). A klimatizálás be- és kikapcsolását a SCADA-tól érkező vezérlés alapján történik, míg a világítás a környezettől érkező Day signal inverzeként működik. A PLC piros háttérvilágítása a klimatizálás működését jelzi.

Rendszeres időközönként (valós időben 5 másodpercenként) a PLC adatokat szolgáltat a szerverterem állapotáról a SCADA rendszernek.

2.5. SCADA

A SCADA (Supervisory Control And Data Acquisition) általánosan egy felügyeleti ellenőrző és adatgyűjtő rendszer.

A bejelentkezés után válik elérhetővé a megfigyelő és vezérlő panel, valamint a naplózott adatok keresését lehetővé tevő oldal. A megfigyelő panelen látható az előző fejezetekben említett alrendszerek állapotát leíró adatok, amely az 5. ábrán látható.

5. ábra. A SCADA megfigyelő és vezérlő panelje

Az egyes alrendszerek vezérlését csak adminisztrátori jogkörrel rendelkező felhasználók végezhetik el, amelyek lehetnek:

- milyen áramforrást használjon a rendszer,
- milyen frekvencia fölött megfelelő a vízerőmű hatékonysága
- ki- és be lehet kapcsolni a víz- és naperőművet
- milyen hőmérsékletet kell tartani a szerver parkban

• ki- és be lehet kapcsolni a vízerőmű biztonsági leeresztő rendszerét

A naplófájlok lekérését SQL feltételekkel lehet megadni, amely megkönnyíti a visszamenőleges keresést a SCADA rendszerében. A 6. ábrán látható hogyan tudjuk lekérni az elérhető energy_control státuszjelentéseket abban az időben, amikor a naperőmű volt aktív.

6. ábra. A SCADA megfigyelő és vezérlő panelje

3. További információk

3.1. LOGO fejlesztő környezet

A mérés folyamán a Siemens 8-as szériájú LOGO eszközeit használjuk. Ezek egyszerűbb automatizálási célokra létrehozott alap PLC-k (Programmable Logic Controller), amit elterjedten használnak ház automatizálásban és az oktatásban is. A Siemens Logo eszközöket a LOGO!SoftComfort környezetben lehet programozni. Ez egy grafikus felület, ahol funkcióblokkokból vagy létra logikákból lehet összerakni a működtető logikát. Az elkészült program tesztelhető virtuálisan, illetve valós eszközre feltöltve is. Az elkészült program végleges feltöltését szintén a fejlesztő környezet végzi el.

Új programot többek között a következő módon lehet létrehozni:

- 1. Új networked project létrehozása
- 2. Új eszköz hozzáadása, és IP beállítása
- 3. Program létrehozása funkcióblokkok összekötése vagy létralogika segítségével (kezdőknek az előbbi javasolt, mivel sokkal intuitívabb)
- 4. A program tesztelése a fejlesztőkörnyezeten belül, opcionális, de erősen javasolt

- 5. A program tesztelése valós eszközön (ehhez Online módba kell váltani), opcionális
- 6. A végleges program feltöltése az eszközre (figyelni kell, hogy a feltöltés jó eszközre menjen fel, és a végén a PLC "Run" módba kerüljön)

3.2. STEP7 segédosztály leírása

A STEP7 segédosztály a Snap7 projekt segítségével valósít meg egy Pythonos API-t, amin keresztül tetszőleges Step7 protokollt értelmezni tudó Siemens eszköz menedzselhető. Az osztály az alábbi alap interfészt nyújtja:

```
class STEP7(object):
    def __init__(self, ip)
    def read(self, offset, len)
    def write(self, offset, data)
    def __del__(self)
```

A függvények segítségével a bemeneti, kimeneti, és belső memóriaterületek írhatók és olvashatók.

3.3. Gecko fejlesztő környezet

A Silicon Labs Wonder Gecko mikrokontrollerre a Simplicity Studio nevű fejlesztőkörnyezetben lehet alkalmazást fejleszteni. Ez egy olyan Eclipse alapú IDE, ami támogatja a fejlesztést, fordítást és telepítést is.

A fejlesztés főbb lépései a következők:

- 1. Geckok felderítése és szükség szerint verzió detektálása
- Projekt elkészítése üres projektből, vagy egy már létező projektből (a mérésen ez utóbbi a javasolt)
- 3. A projekt fordítása
- 4. Az elkészült bináris feltöltése a kiválasztott Geckora (figyelni kell, hogy a megfelelő eszközre menjen fel a kód)

4. Feladatok

A mérés során a bemutatott rendszerben kell különféle biztonsági problémákat felfedezni és kihasználni. A feladatok úgy lettek elkészítve, hogy egy rendszeren párhuzamosan elvégezhetőek. A 4.1. feladat elvégzése mindenkinek elsőnek kötelező, a többi feladat forgó rendszerben a mérésvezető utasításai alapján fog történni.

4.1. Jelszó brute force támadás a SCADA ellen

Szerezze meg a meres<merocsoport> felhasználónévhez tartozó jelszót, amellyel képes bejutni a SCADA felhasználói felületére!

- 1. Keresse meg a fejlesztés során publikusan hagyott teszt információkat!
- 2. Írjon olyan Python programot, ami offline módon megkeresi a meres<merocsoport> felhasználónévhez tartozó jelszót! (Segítség: a jelszavak rövidek (max. 3 karakter) és csak kisbetűt tartalmazhatnak. A jelszavak BCrypt-tel készültek, és a gyorsabb haladás érdekében az iterációk száma az ajánlottnál kisebbre lett csökkentve. Ajánlott Python modulok: bcrypt, itertools.)
- 3. A megszerzett jelszóval lépjen be a SCADA rendszer vezérlő felületére!

Megjegyzés: A feladat megoldása során ne terhelje le a rendszert, hanem a mérőgépen brute force-olja a saját felhasználójához tartozó jelszót.

4.2. Adminisztrátori jogosultságok a SCADA rendszerben

Az előző feladatban csak egy limitált jogosultságú felhasználó fiókját sikerült feltörni. Próbáljon meg magasabb jogokat elérni. Ehhez keressen sérülékenynek tűnő formokat a SCADA rendszerben! A biztonsági hibákat kihasználva szerezzen adminisztrátori jogosultságokat a SCADA rendszerben! (Vigyázzon, hogy csak saját felhasználója szerezzen adminisztrátori jogosultságokat és más meglévő adatot ne módosítson vagy töröljön.)

4.3. SCADA rendszerbe érkező adatok hamisítása

Küldjön inkonzisztens jeleket a vízerőmű vízszintjéről a SCADA rendszerbe!

- Keresse meg és nézze meg az automatikusan generált API dokumentációt a SCADA rendszerhez.
- 2. Az API dokumentáció alapján készítsen olyan üzeneteket, amely valóságban lehetetlen adatokat tartalmaz a vízszintjelző szenzorok állapotáról! (Az eredményt a SCADA vezérlői felületén ellenőrizze, ahol van lehetőség historikus adatok megnézésére is.)

Megjegyzés: A szenzorok értéke folyamatosan felülíródik a valós adatokkal, tehát csak időleges eredményt lehet ezzel a megoldással elérni. A megoldás ellenőrzése a log-vieweren keresztül valósítható csak meg megbízhatóan.

4.4. Sérülékenység keresése az Energy Control rendszerben

Keressen sérülékenységet az Energy Control rendszerben!

- 1. A mellékelt forráskód alapján keressen buffer owerflow sérülékenységet az Energy Control rendszer hálózati kommunikációs moduljában!
- Készítsen egy segédprogramot, amely képes kihasználni és működésképtelenné tenni az Energy Control modult.
- 3. Figyelje meg, hogy a SCADA rendszerben valóban eltűnnek az Energy Control rendszertől érkező status üzenetek.

A forráskód innen tölthető le: https://www.crysys.hu/downloads/vihimb01/ec_code.zip

Megjegyzés: Azért, hogy ne kelljen minden próbálkozás után az Energy Control rendszert újraindítani, ezért 10s után az automatikus újraindul, de ez az idő elegendő, hogy a SCADA rendszer vezérlőfelületén lehessen látni a hibát.

4.5. A vízerőmű biztonsági rendszerének kiiktatása

Egy új program segítségével iktassa ki a vízerőmű biztonsági rendszerét!

- Készítsen egy új LOGO programot a fejlesztői környezetben, amely csak a LOGO háttérvilágítását villogtatja periodikusan, de a biztonsági szelep vezérlését már nem végzi el. A program ezen kívül tetszőleges nem destruktív feladatot is megvalósíthat.
- 2. Töltse fel a programot a Hydro LOGO-ra és ellenőrizze a működést.
- 3. A sikeres támadás után töltse vissza az eredeti biztonsági programot a PLC-re, vagy kérje meg erre a mérésvezetőt.

4.6. Kommunikáció STEP7 protokollon keresztül

Invertálja a szerverparkban lévő világítás működését a LOGO-k által használt STEP7 protokollon keresztül!

 A STEP7 kommunikációhoz készített osztály segítségével készítsen egy olyan programot, amely képes egy adott ofszettel egy adott bitet módosítani a szerver park LOGO memóriájában.

IP: 10.105.55.6 (Server LOGO)

ofszet: 1104

bitmaszk: 0b00000010

- 2. Ellenőrizze a kód helyességét, hogy a szerverpark világítása valóban invertálódott-e (nappal bekapcsolva éjjel kikapcsolva).
- A sikeres támadás után állítsa vissza az eredeti működést a PLC-n, vagy kérje meg erre a mérésvezetőt.

A kommunikáció osztály innen tölthető le: https://www.crysys.hu/downloads/vihimb01/step7.py

4.7. Üzenetbeszúrásos támadás a szerverpark hőmérséklet-szabályzója ellen

A rádiós hőmérőegység nevében készítsen hamisított hőmérséklet üzeneteket, hogy a szerverpark klimatizációját befolyásolni tudja. Érje el, hogy a ventilátor mindenképp bekapcsoljon, majd kikapcsoljon.

- A Gecko fejlesztőkörnyezetében keresse meg a legális szenzorokon futó kód projektjét
- 2. Értse meg a projekt main.c fájlját, és lokalizálja a azon helyeket, ahol be lehet avatkozni az elküldendő hőmérséklet értékébe
- 3. A kód átírásával és támadó Geckora való feltöltésével érje el, hogy a szenzor szélsőségesen nagy értéket küldjön el (pl. 100 C fokot). Ügyeljen arra, hogy a szenzor milliC fokban küldi el a mért értékeket
- 4. Figyelje meg a SCADA rendszeren, és a szerverparkon, hogy ez milyen következményekkel jártlogikai és fizikai hatásokkal járt
- 5. Küldjön egy szélsőségesen alacsony hőmérsékletet (pl. 1 C fok), és nézze meg a hatását
- Állítsa vissza nagyságrendileg az eredeti működést egy reális hőmérséklet elküldésével (pl az igazi hőmérő utolsó mérését küldje be a támadó nevében)

A. Függelék

A.1. Címek és portok

Eszköz	MAC cím	IP cím	protokoll	port
Környezet	B8:27:EB:19:89:4B	10.105.55.1	_	_
SCADA	B8:27:EB:96:02:34	10.105.55.2	HTTP	8000
Energiaellátó	B8:27:EB:B6:77:59	10.105.55.3	TCP	8080
Webserver	B8:27:EB:E3:89:A4	10.105.55.4	HTTP	80
LOGOhydro	E0:DC:A0:05:77:94	10.105.55.5	STEP7	102
LOGOspark	E0:DC:A0:05:77:BC	10.105.55.6	STEP7	102
GeckoBaseStation	D0:CF:5E:00:1B:D8	10.105.55.7	-	-
GeckoWirelessSensor	D0:CF:5E:00:1B:DA	10.105.55.8	-	-
GeckoAttacker	D0:CF:5E:00:21:A5	10.105.55.255	_	-
FejlesztőX	-	vcenter.crysys.hu	HTTPS	-

1. táblázat. Az egyes eszközök elérhetőségei és szolgáltatásai

A fejlesztő gépeket kivéve az összes eszköz a következő hálózati beállításokat használja:

Network: 10.105.48.0 Netmask: 255.255.240.0

Default gateway: 10.105.48.1

B. Jegyzőkönyv

A jegyzőkönyvet a mérés után egy héten belül el kell küldeni a mérésvezetőnek pdf formátumban. A jegyzőkönyvnek az alábbiakat kell tartalmaznia:

- Hallgató(k) neve és Neptun kódja
- Mérés neve
- Mérés időpontja
- Feladatok megoldása

A megoldások leírásánál törekedni kell a tömör, de érthető válaszra. A leírásból a megoldásnak reprodukálhatónak kell lennie (hosszabb kód mellékelhető a pdf-hez, nem feltétlenül kell belerakni)!