

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 9701/34

Advanced Practical Skills 2

October/November 2011

2 hours

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 10 and 11.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session	
Laboratory	

For Examiner's Use		
1		
2		
Total		

This document consists of 11 printed pages and 1 blank page.

1 You are to determine the enthalpy change of neutralisation of sodium hydroxide by an acid and also the concentration of hydrogen ions in the acid. These can be found by measuring the temperature change when solutions of the acid and alkali are mixed.

For Examiner's Use

FB 1 is 1.50 mol dm⁻³ sodium hydroxide, NaOH.

FB 2 is an aqueous solution of an acid.

(a) Method

- Fill a burette with FB 1. [Care: FA1 is corrosive]
- Support the plastic cup in a 250 cm³ beaker.
- Run 10.0 cm³ of **FB 1** from the burette into the plastic cup.
- Measure and record, in the table below, the temperature of the **FB 1** in the cup. You may need to tilt the beaker to ensure that the bulb of the thermometer is covered.
- Measure 40 cm³ of **FB 2** using the measuring cylinder.
- Pour this volume of **FB 2** into the plastic cup containing **FB 1**. Stir carefully and measure the highest temperature obtained.
- Record this temperature in the table.
- Rinse the plastic cup with water.
- Repeat the experiment using 15.0 cm³ of **FB 1** and 35 cm³ of **FB 2** as shown for experiment **2** in the table.
- Carry out experiments 3 to 7 in the same way.
- Complete the table for each experiment.

Results

experiment number	1	2	3	4	5	6	7		
volume of FB 1 /cm ³	10.0	15.0	20.0	25.0	30.0	35.0	40.0	50.0	0.0
volume of FB 2 /cm ³	40	35	30	25	20	15	10	0	50
initial temperature FB 1/°C									
highest temperature/°C									
temperature change/°C								0.0	0.0

[8]

I	
II	
III	
IV	
V	
VI	
VII	
VIII	

(b) On the grid below plot the temperature **change** (*y*-axis) against the volume of **FB 1** (*x*-axis). Use **all** the results in the table including those provided in the final two columns.

For Examiner's Use

Using these points, draw two straight lines that intersect.

+-	+++++	+	+++++							
		+	++++							
		+	++++	++++++						
			+++++							
			$\overline{}$							
+++				 						
										
$\overline{}$										
+-			-							
+++										
+-			+++++							
$\overline{}$										
										
										
				 						
			$\overline{}$	 						
			+++++							
$\overline{}$										
$\overline{}$										
	$\overline{}$									
ШΠ										
ш										
шП										
$\Box\Box$			\Box							
$\sqcup \sqcup \Box$			\Box							
\coprod	\Box	\perp	\Box		\bot					
$\sqcup \sqcup \sqcup$	++++-		++++	\Box	++++	\perp	++++++			
+++	+++++	\bot	+++++	++++++	+++++		++++++++++++++++++++++++++++++++++++			
+++	+++++	++++	+++++	++++++	+++++		++++++++++++++++++++++++++++++++++++			++++++++++
+++	+++++	++++	+++++	++++++	+++++	++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++		++++++	+++++++
+++	+++++	++++	++++	++++++++++++++++++++++++++++++++++++	+++++		++++++++++++++++++++++++++++++++++++		+++++++	++++++++++
$\perp \perp \perp$			\cdots	++++++++++++++++++++++++++++++++++++						
+++			++++							
\vdash		-	+							
+-			+++++							
		+	++++							
$\overline{}$		+	++++	++++++	++++++					
										
	+++++	++++	++++							
+++				 						
										
+-										
+++										
			++++							
			++++	 						
	+++++									
				 						
ЦЦ	\Box		\Box	\Box	\bot	\Box	\Box			
$\sqcup \sqcup \sqcup$	++++-	\Box	++++	+++++	++++		+++++++			
$\sqcup \sqcup$	++++++	\perp	+++++	++++++	+++++					+++++++++++++++++++++++++++++++++++++++
+++	+++++	+++	+++++	++++++++++++++++++++++++++++++++++++	+++++		++++++++++++++++++++++++++++++++++++		++++++	++++++++++
+++	+++++	++++	+++++	++++++++++++++++++++++++++++++++++++	+++++		++++++++++++++++++++++++++++++++++++		+++++++	+++++++++
+++	+++++	+++	++++	++++++++++++++++++++++++++++++++++++	+++++	 			++++++	++++++++
+++	+++++	+++	++++	+++++	+++++	 	 		++++++	+++++++++
+++	++++	++++	 	 			 		 	++++++
+++	 	+++	 	 	 	 	 		+++++	++++++
+++	 	+++	 	 	 	 	 		 	
+++	 	+++	 	 	 	 	 		 	
\vdash			 							
\vdash			 	 	 	 			 	
\vdash	++++		 	 	 		 		 	, , , , , , , , , , , , , , , , , , ,
\Box	+++++		 	 		 			 	, , , , , , , , , , , , , , , , , , ,
ПТ										
ШΠ										
ш										
ЦΠ		\Box								
ШΠ	\Box	\Box	$\Box\Box$							
$\sqcup \sqcup \Box$	\Box		\Box	\Box	\Box	\Box				
$\sqcup \sqcup \sqcup$	\Box		\Box	\bot	\bot					
$\sqcup \sqcup$	++++	\perp	++++	++++	++++		+++++			
$\sqcup \sqcup$	+++++	\bot	+++++	++++++	+++++		++++++++++++++++++++++++++++++++++++			
+++	+++++	+++	+++++	++++++	+++++	++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++			++++++++++
+++	+++++	++++	+++++	++++++	+++++		++++++++++++++++++++++++++++++++++++			++++++++++
+++	+++++	++++	+++++	++++++++++++++++++++++++++++++++++++	+++++		++++++++++++++++++++++++++++++++++++		++++++	
+++	+++++	+++	+++++	++++++++++++++++++++++++++++++++++++	+++++	 			++++++	++++++++++
+++	++++	+++	++++	+++++	++++	 	 		++++++	+++++++++
+++	++++	++++	+++++			 			+++++++	++++++++++
+++	+++++	++++	+++++	++++++++++++++++++++++++++++++++++++	+++++	 			++++++	+++++++++

I	
II	
III	
IV	

[4]

c)	(i)	Use your graph and the intersection of the two lines to determine the largest temperature change which could occur in the reaction between FB 1 and FB 2 .	For Examiner Use	's
		largest temperature change =°C		
	(ii)	From your graph, read the volume of FB 1 required to produce the temperature change in (i) .		
		volume of FB 1 required is = cm ³		
	(iii)	Calculate how many moles of sodium hydroxide are present in the volume of FB 1 recorded in (ii) .		
		moles of sodium hydroxide present = mol		
	(iv)	Use the temperature change from (i) to calculate the amount of heat energy produced in the reaction.		
		[Assume that 4.3 J are required to raise the temperature of 1 cm ³ of any solution by 1°C]		
		heat energy produced =		
	(v)	Use your answers from (iii) and (iv) to calculate the enthalpy change of neutralisation of sodium hydroxide by the acid.	I	
		Give your answer in kJmol ⁻¹ and include the relevant sign.	II	
			III	
			IV	
		enthalpy change of neutralisation = kJ mol ⁻¹	VI	
		sign value [7]	VII	
			1	

(d)		ntify a source of error, other than heat loss, in the experimental method. Suggest an erovement which would reduce this source of error.	For Examine Use	er's
(e)	 (i)	Calculate the concentration of hydrogen ions, H ⁺ , in mol dm ⁻³ , present in FB 2 .		
		concentration of hydrogen ions in FB 2 = mol dm ⁻³		
	(ii)	If the acid present in FB 2 is sulfuric acid, calculate its concentration.		
		and the state of a self-win and the self		
		concentration of sulfuric acid = mol dm ⁻³		
	(iii)	Describe a chemical test by which you could prove that the acid in FB 2 is sulfuric acid.		
		Do not carry out the test.	I	
			II	
			III	
			IV	
		[4]		
		[Total: 25]		

2 Qualitative Analysis

At each stage of any test you are to record the details of the following

For Examiner's Use

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the full name or correct formula of the reagents must be given.

(a) (i) FB 3, FB 4 and FB 5 are aqueous solutions of sodium compounds. None of these compounds contains sulfur.

To about 1 cm depth of each of the solutions in separate test-tubes add the same depth of dilute sulfuric acid.

To another 1 cm depth of each of the solutions in separate test-tubes add a few drops of aqueous lead(II) nitrate.

Record your observations for these tests in an appropriate form in the space below.

I	
II	
III	
IV	
V	
VI	

The anion present in **FB5** is

	Using the Qualitative Analysis Notes printed on pages 10 and 11 and your observations identify the anions in FB 3 and FB 4 .	For Examiner's Use
	FB 3 contains	
	FB 4 contains	
(ii)	Select a reagent or pair of reagents that would enable you to determine the identity of the anion in FB 5 .	
	reagent(s)	
	Carry out a test on FB 5 using the reagent(s) given above. Record your observations below.	
		I
		II
		III

[3]

(b) You are provided with solid **FB 6.** Complete the following table.

For Examiner's Use

	test	observations
(i)	To 1 cm depth of aqueous hydrogen peroxide in a test-tube, add a very small spatula measure of FB 6 .	
(ii)	To 1 cm depth of aqueous iron(II) sulfate in a boiling tube, add the same depth of dilute sulfuric acid. Add a very small spatula measure of FB 6 to the tube. Warm the mixture gently using a Bunsen burner for about 20 seconds, then filter the warm mixture and collect the filtrate.	
	To the filtrate, add aqueous sodium hydroxide.	
(iii)	To 2 cm depth of aqueous potassium manganate(VII) in a test-tube, add the same depth of aqueous sodium hydroxide and then a small spatula measure of FB 6 . Stir the contents of the test-tube for about 20 seconds. Filter the mixture and collect the filtrate.	
	To the filtrate, add dilute sulfuric acid.	

Suggest a conclusion that could be made about the chemical behaviour of FB 6 from the observations in (i) . Explain the reasons for your answer.	For Examiner's Use	
	I	
What conclusion can be made about the aborded behaviour of FD C from the	II	
What conclusion can be made about the chemical behaviour of FB 6 from the observations in (ii)?	III	
	IV	
	V	
[6]	VI	

[Total: 15]

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

	reaction with		
ion	NaOH(aq)	NH ₃ (aq)	
aluminium, Al^{3+} (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
ammonium, NH ₄ ⁺ (aq)	no ppt. ammonia produced on heating		
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.	
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.	
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess	
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess	
lead(II), Pb ²⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess	
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess	
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess	

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate,	CO ₂ liberated by dilute acids
CO ₃ ²⁻	
chromate(VI), CrO ₄ ²⁻ (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride,	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq));
C <i>l</i> ⁻(aq)	gives white ppt. with Pb ²⁺ (aq)
bromide,	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq));
Br ⁻ (aq)	gives white ppt. with Pb ²⁺ (aq)
iodide,	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq));
I⁻(aq)	gives yellow ppt. with Pb ²⁺ (aq)
nitrate,	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
NO ₃ ⁻ (aq)	
nitrite,	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil;
NO ₂ ⁻ (aq)	NO liberated by dilute acids (colourless NO → (pale) brown NO ₂ in air)
sulfate,	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute
SO ₄ ²⁻ (aq)	strong acids)
sulfite,	SO ₂ liberated with dilute acids;
SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	"pops" with a lighted splint
oxygen, O ₂	relights a glowing splint
sulfur dioxide, SO ₂	turns acidified aqueous potassium dichromate(VI) from orange to green

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.