10ο Σετ Ασκήσεων Μαθηματική Ανάλυση

The name, username and photo associated with your Google account will be recorded when you upload files and submit this form. Not dcv@uom.edu.gr? Switch account

* Required

Όνομα: *
Your answer
Επώνυμο: *
Your answer
Αριθμός Μητρώου: *
Your answer

Τα διαγράμματα α και δ αντιστοιχούν συστήματα διαφορικών εξισώσε 1 point όπου: *
Στην πρώτη περίπτωση υπάρχει ασταθές σημείο ισορροπίας και στη δεύτερη ευσταθές.
Στην πρώτη περίπτωση υπάρχει ευσταθές σημείο ισορροπίας και στη δεύτερη ασταθές.
Και στις δύο περιπτώσεις υπάρχει ευσταθές σημείο ισορροπίας.
Και στις δύο περιπτώσεις υπάρχει ασταθές σημείο ισορροπίας.

Να βρεθούν οι λύσεις του παρακάτω συστήματος διαφορικών εξισώσεων 1 point με τη μέθοδο της αντικατάστασης: *

$$\dot{y_1} = y_1 - 2y_2, \dot{y_2} = \frac{1}{2}y_1 + y_2$$

$$y_1(t) = e^{-t}(A_k cos(t) + A_2 sin(t)), y_2(t) = \frac{e^{-t}}{2}(A_1 cos(t) + A_2 sin(t))$$

$$y_1(t)=e^t(A_1cos(t)+A_2sin(t)), y_2(t)=e^t(A_1\frac{sin(t)}{2}-A_2\frac{cos(t)}{2})$$

$$y_1(t) = A_1e^t + A_2e^{-t}, y_2(t) = A_1e^{2t} + A_2e^{-2t}$$

$$y_1(t) = e^{2t}(A_1\cos(t) + A_2\sin(t)), y_2(t) = e^{-2t}(A_1\cos(t) + A_2\sin(t))$$

0 -

Τα διαγράμματα β και γ (τα οποία απεικονίζονται παραπάνω) αντιστοιχούν 1 point σε περιπτώσεις που: *

- Στο β υπάρχει ασταθές σημείο ισορροπίας και στο γ ευσταθές σημείο ισορροπίας.
- Και στα δύο υπάρχει ευσταθές σημείο ισορροπίας.
- Και στα δύο υπάρχει ασταθές σημείο ισορροπίας.
- Στο β υπάρχει ευσταθές σημείο ισορροπίας και στο γ ασταθές σημείο ισορροπίας.

Να βρεθούν οι λύσεις του παρακάτω συστήματος διαφορικών εξισώσεων 1 point (προτείνεται η χρήση της "άμεσης" μεθόδου): *

$$\dot{y_1} = -3y_1 - 4y_2, \dot{y_2} = y_1 + y_2$$

$$y_1(t) = (C_1 + C_2 t) e^{-t}, y_2(t) = e^{-t} (-\frac{1}{2}C_1 - \frac{1}{4}C_2) - t e^{-t} (\frac{1}{2}C_1)$$

$$y_1(t) = C_1e^{-t} + C_2e^t, y_2(t) = C_1e^{2t} + C_2e^{2t}$$

O -

$$y_1(t) = C_1 e^t + C_2 e^{-t}, y_2(t) = C_1 e^{2t} + C_2 e^{-2t}$$

$$y_1(t) = e^{2t}(C_1\cos(t) + C_2\sin(t)), y_2(t) = e^{-2t}(C_1\cos(t) + C_2\sin(t))$$

O --

Να βρεθούν τα σταθερά σημεία της παρακάτω διαφορικής εξίσωσης και 1 point αν το σύστημα συγκλίνει ή αποκλίνει από αυτά: *

$$\dot{y_1} = y_1 - 2y_2 + 4, \dot{y_2} = \frac{1}{2}y_1 + y_2 + 1$$

- Το (0,1) και το σύστημα συγκλίνει σε αυτό.
- Τα σημεία (-1, 0) και (0,1) και το σύστημα αποκλίνει από αυτά.
- Το (-3, 1/2) και το σύστημα αποκλίνει από αυτό.
- Το (1,0) και το σύστημα αποκλίνει από αυτό.

Να βρεθούν τα σταθερά σημεία του παρακάτω συστήματος διαφορικών 1 point εξισώσεων και αν το σύστημα συγκλίνει σε αυτά ή αποκλίνει από αυτά: *

$$\dot{y_1} = 2y_1 + 4y_2 + 1, \dot{y_2} = y_1 + 4y_2 + 2$$

- Το (-3/4, 5/8) και το σύστημα αποκλίνει από αυτό.
- Το (1, -3/4) και το σύστημα αποκλίνει από αυτό.
- Το (1, 0) και το σύστημα συγκλίνει σε αυτό.
- Το (0, 1) και το σύστημα αποκλίνει από αυτό.

Το διάγραμμα παραπάνω το οποίο αντιστοιχεί στο παρακάτω σύστημα 1 point διαφορικών εξισώσεων είναι το: *

$$\dot{y_1} = 2y_1 + 5, \dot{y_2} = 2y_2 + 4$$

- () a
- β
- γ.
- δ

Το διάγραμμα παραπάνω το οποίο αντιστοιχεί στο παρακάτω σύστημα 1 point διαφορικών εξισώσεων είναι το: *

- $\dot{y_1} = -2y_1 + 3, \dot{y_2} = -3y_2 + 4$
- α
- β.
- O Y
- δ

Το διάγραμμα παραπάνω το οποίο αντιστοιχεί στο παρακάτω σύστημα 1 point διαφορικών εξισώσεων είναι το: *

$$\dot{y}_1 = -8\dot{y}_2 + 20, \dot{y}_2 = 8\dot{y}_1 - 16$$

- (a.
- β
- O Y
- () ε

Το διάγραμμα παραπάνω το οποίο αντιστοιχεί στο παρακάτω σύστημα 1 point διαφορικών εξισώσεων είναι το: *

$$\dot{y}_1 = 2y_2 - 5, \dot{y}_2 = 2y_1 - 4$$

- (a
- β
- O Y
- δ

A copy of your responses will be emailed to dcv@uom.edu.gr.

Page 1 of 1

Submit

Never submit passwords through Google Forms.

This form was created inside of UNIVERSITY OF MACEDONIA. Report Abuse

Google Forms

