Chapitre 8: Fonctions continues

I désigne ici un intervalle infini de \mathbb{R} (c'est-à-dire ni vide ni réduit à un singleton) D désigne une partie non vide de \mathbb{R} .

I Généralités

A) Rappel de définition

Soit $f: D \to \mathbb{R}$ Soit $x_0 \in D$.

• f continue en $x_0 \Leftrightarrow f$ a une limite finie en x_0 (qui est alors $f(x_0)$)

$$\Leftrightarrow f(x) \xrightarrow[h \to 0]{} f(x_0)$$

$$\Leftrightarrow f(x_0 + h) \xrightarrow[h \to 0]{} f(x_0)$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D, (|x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon)$$

On dit que f est continue (sur D) lorsque f est continue en tout point x₀ de D,
 c'est-à-dire :

$$\forall x_0 \in D, \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D, (|x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon)$$

B) Opération sur les fonctions continues

1) Restriction

Définition, proposition:

Soit $f: D \to \mathbb{R}$, soit $D' \subset D$ non vide.

On dit que f est continue sur D' lorsque $f_{D'}$ est continue.

Si f est continue sur D, alors elle est continue sur D'.

En effet:

(1) f est continue (sur D)

$$\Leftrightarrow \forall x_0 \in \underline{D}, \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in \underline{D}, (|x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon)$$

(2) f est continue en tout point de D'

$$\Leftrightarrow \forall x_0 \in \underline{\underline{D}}', \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in \underline{\underline{D}}, (\left|x - x_0\right| < \alpha \Rightarrow \left|f(x) - f(x_0)\right| < \varepsilon)$$

(3) f est continue sur D'

$$\Leftrightarrow \forall x_0 \in \underline{\underline{D}}', \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in \underline{\underline{D}}', \left(\left|x - x_0\right| < \alpha \Rightarrow \left|f(x) - f(x_0)\right| < \varepsilon\right)$$

Il est alors évident logiquement que $(1) \Rightarrow (2) \Rightarrow (3)$ mais que les réciproques sont fausses en général.

Sur l'exemple :

- f n'est pas continue sur le segment [0;2]

- f n'est pas continue en tout point de [0;1] (puisqu'elle ne l'est pas en 1)
- $f_{/[0;1]}$ est continue : f est continue sur [0;1]

Remarque:

f continue sur A et f continue sur $B \Rightarrow f$ est continue sur $A \cup B$

Pour éviter toute ambiguïté de langage, ne pas dire f est continue sur [0;1], mais plutôt $f_{/[0;1]}$ est continue.

Remarque:

Si f est continue sur [a,b] et sur [b,c] (a < b < c), alors f est continue sur [a,c] (si f est définie seulement sur [a,c]).

En effet:

- Si x₀ ∈ [a,b[, alors f est continue en x₀, car [a,b] est un voisinage de x₀ intercepté par le domaine de définition, et f restreinte à ce voisinage de x₀ tend vers f(x₀) en x₀. Donc f tend vers f(x₀) en x₀.
- En b: f est continue à droite et à gauche, donc f est continue en b.
- Pour $x_0 \in [b, c]$, on fait la même chose que le premier point.

2) Sommes, produits...

Théorème:

- La somme de deux fonctions continues est continue.
- Le produit d'une fonction continue par un réel est continu.
- Le produit de deux fonctions continues est continu.
- L'inverse, lorsqu'il est défini, d'une fonction continue est continu.

Démonstration (pour le quatrième) :

Soit $f:D\to\mathbb{R}$, continue. On suppose que $\frac{1}{f}$ est définie (c'est-à-dire que f ne s'annule pas). Soit $x_0\in D$. Alors $f(x)\xrightarrow[x\mapsto x_0]{} f(x_0)$. Comme $f(x_0)\neq 0$, on a bien $\frac{1}{f(x)}\xrightarrow[x\mapsto x_0]{} \frac{1}{f(x_0)}$. Ceci est vrai pour tout $x_0\in D$, d'où la continuité de $\frac{1}{f}$ sur D.

On fait la même chose pour les autres parties du théorème.

3) Composition

Théorème:

La composée, quand elle est définie, de deux fonctions continues est une fonction continue.

Démonstration :

Soient $f: D \to \mathbb{R}$, $g: E \to \mathbb{R}$, continues.

On suppose que $f(D) \subset E$, ainsi $g \circ f$ est définie sur D.

Soit $x_0 \in D$. Alors $f(x) \xrightarrow[x \mapsto x_0]{} f(x_0)$, et $g(u) \xrightarrow[u \mapsto f(x_0)]{} g(f(x_0))$, car $f(x_0) \in E$ et g est continue en $f(x_0)$. Donc $g(f(x)) \xrightarrow[x \mapsto x_0]{} g(f(x_0))$.

4) Autres...

Si f est continue sur D, alors |f| est continue sur D. De plus, f^+ et f^- sont continues sur D.

Démonstration:

Pour |f| : C'est la composée de fonctions continues.

Pour f^+ : $\forall x \in D, f^+(x) = \max(f(x), 0) = \frac{1}{2}(f(x) + |f(x)|)$, donc f^+ est la somme, produit par un réel et composition de fonctions continues, donc est continue.

Pour f^- : $\forall x \in D, f^-(x) = \max(-f(x), 0) = \frac{1}{2}(-f(x) + |f(x)|)$, idem que pour f^+ .

C) Fonctions usuelles

Les fonctions polynomiales, rationnelles, du type $x \mapsto x^{\alpha}$, cosinus, sinus, tangente, exponentielle, logarithme, valeurs absolues sont continues sur leur domaine de définition. (vu chapitre précédent)

D) Notation

Soit *I* un intervalle. L'ensemble des fonctions continues sur *I* à valeurs dans \mathbb{R} est noté $C^0(I,\mathbb{R})$. Un élément de $C^0(I,\mathbb{R})$ est dit de classe C^0 sur *I* (lire « C zéro »).

II Le théorème des valeurs intermédiaires (T.V.I.)

Théorème 1:

Soit $f:[a,b] \to \mathbb{R}$, a < b une fonction continue.

Soit d une valeur intermédiaire entre f(a) et f(b) (c'est-à-dire que $f(a) \le d \le f(b)$ ou $f(b) \le d \le f(a)$. Alors il existe $c \in [a,b]$ tel que d = f(c).

Théorème 2 (variante) :

L'image d'un intervalle par une fonction continue est un intervalle.

Démonstration:

- Montrons déjà l'équivalence entre les deux théorèmes :
 - Supposons 1 établi : Soit I un intervalle de \mathbb{R} , et f continue sur I. Montrons que f(I) est in intervalle.

Soient $\alpha, \beta \in f(I)$. Montrons que tout réel d entre α et β est dans f(I).

 α s'écrit f(a), avec $a \in I$

 β s'écrit f(b), avec $b \in I$.

Soit d entre α et β

On peut supposer $a \le b$ (sinon on échange α et β).

 $a \in I$ et $b \in I$. Donc $[a,b] \subset I$ car I est un intervalle.

f est continue sur I, donc f est continue sur [a,b].

Donc d s'écrit f(c), où $c \in [a,b] \subset I$ (puisqu'on a supposé 1 établi).

Donc $d \in f(I)$.

Donc tout réel entre deux éléments de f(I) est élément de f(I).

Donc f(I) est un intervalle (de \mathbb{R}).

Supposons 2 établi.

Soit $f:[a,b] \to \mathbb{R}$, continue. Alors f([a,b]) est un intervalle (puisque [a,b] en est un). Donc tout réel qui est entre deux réels de f([a,b]) est aussi dans f([a,b]), c'est-à-dire que tout réel s'écrit f(c), où $c \in [a,b]$.

• Démonstration du théorème 1 :

Soient $a, b \in \mathbb{R}$, tels que a < b. Soit $f : [a, b] \to \mathbb{R}$, continue.

Soit d entre f(a) et f(b).

- Si $f(a) \le f(b)$, alors $f(a) \le d \le f(b)$.

Donc $f(a) - d \le 0 \le f(b) - d$.

On note alors
$$g: [a,b] \to \mathbb{R}$$

 $x \mapsto f(x) - d$

Alors g est continue sur [a,b], et $g(a) \le 0 \le g(b)$.

On s'est donc ramené à montrer l'existence de $c \in [a,b]$ tel que g(c) = 0

Si $f(a) \ge f(b)$, on notera $g: [a,b] \to \mathbb{R}$, et on aura la même chose à $x \mapsto d - f(x)$

montrer.

Maintenant:

On construit par dichotomie deux suites (a_n) et (b_n) telles que :

-
$$a_0 = a$$
 et $b_0 = b$

- pour tout $n \in \mathbb{N}$:

Si
$$g\left(\frac{a_n + b_n}{2}\right) \le 0$$
, on pose $a_{n+1} = \frac{a_n + b_n}{2}$ et $b_{n+1} = b_n$,

Et sinon
$$a_{n+1} = a_n$$
, $b_{n+1} = \frac{a_n + b_n}{2}$.

Alors, du fait de la construction dichotomique des deux suites :

$$(1) \forall n \in \mathbb{N}, a \le a_n \le b_n \le b$$

 $(2)(a_n)$ est croissante, (b_n) décroissante

$$(3)\forall n \in \mathbb{N}, b_n - a_n = \frac{b - a}{2^n}$$

Et de plus, une récurrence immédiate montre que $(4) \forall n \in \mathbb{N}, g(a_n) \leq 0$ et $g(b_n) \geq 0$.

Soit $\forall n \in \mathbb{N}, g(a_n) \le 0 \le g(b_n)$.

Les suites (a_n) et (b_n) sont donc adjacentes. Elle convergent vers une même limite c.

Le passage à la limite dans (1) donne : $a \le c \le b$, soit que $c \in [a,b]$.

Le passage à la limite dans (4), sachant que g est continue (en c en particulier), donne $g(c) \le 0 \le g(c)$, soit g(c) = 0, d'où l'existence du réel cherché, et le théorème.

Remarques:

Le théorème est faux en général quand f n'est pas continue :

Le théorème des valeurs intermédiaires donne l'existence d'un réel $c\dots$ mais pas l'unicité, qui est fausse en générale (il suffit de prendre une fonction non monotone pour trouver des contre-exemples).

Il y a des fonctions non continues sur un intervalle *I* telles que toute valeur entre deux valeurs atteintes soit une valeur atteinte :

Le théorème des valeurs intermédiaires n'est donc pas caractéristique des fonctions continues (c'est-à-dire qu'une fonction vérifiant le théorème n'est pas nécessairement continue).

III Image d'un segment

Théorème:

L'image d'un segment par une fonction continue est un segment.

Démonstration:

Soit $f:[a,b] \to \mathbb{R}$, avec a < b une fonction continue. Montrons que J = f([a,b]) est un segment.

Déjà, J est un intervalle, puisque [a,b] en est un.

Montrons maintenant que *J* est fermé et borné.

Soient $\alpha, \beta \in \mathbb{R}$ ses extrémités. On doit alors montrer que $\alpha, \beta \in J$ (ce qui montrera à la fois le fait que J est fermé et borné)

Montrons le pour β (le raisonnement est le même pour α)

Déjà,
$$\beta \in Adh_{\overline{D}}(J)$$

Donc β est la limite d'une suite $(y_n)_{n \in \mathbb{N}}$ d'éléments de J.

Pour chaque $n \in \mathbb{N}$, on introduit $x_n \in [a,b]$ tel que $y_n = f(x_n)$. La suite $(x_n)_{n \in \mathbb{N}}$ est bornée. On en extrait alors une suite $(x'_n)_{n \in \mathbb{N}} = (x_{\varphi(n)})_{n \in \mathbb{N}}$ qui converge.

Soit
$$l = \lim_{n \to +\infty} x_{\varphi(n)}$$
. Alors $l \in [a,b]$ (car $\forall n \in \mathbb{N}, a \le x_{\varphi(n)} \le b$).

Alors $(y_{\varphi(n)})_{n\in\mathbb{N}}$, d'une part tend vers β , d'autre part tend vers f(l) car $\forall n\in\mathbb{N}, y_{\varphi(n)}=f(x_{\varphi(n)})$, et f est continue.

Donc
$$\beta = f(l)$$
. Donc $\beta \in J$.

De même, $\alpha \in J$.

Donc J est un segment.

Remarque (hors programme):

On peut plus généralement établir que l'image d'une partie fermée et bornée de \mathbb{R} par une fonction continue est une partie fermée et bornée (de \mathbb{R}).

Vocabulaire : une partie fermée et bornée est un compact.

Conséquence du théorème :

Si f est une fonction continue sur un segment [a,b], alors f est bornée sur ce segment et atteint ses bornes.

Attention, pour une fonction continue :

- l'image d'un intervalle borné n'est pas toujours un intervalle borné : Pour $f(x) = \frac{1}{x}$ sur [0;1[, on a $f([0;1[)]) = [1,+\infty[$.
- L'image d'un intervalle fermé n'est pas toujours un intervalle fermé : Pour $f(x) = \frac{1}{x}$ sur $[1,+\infty[$, on a $f([1,+\infty[)=]0;1]$
- L'image d'un ouvert n'est pas toujours un ouvert : Pour $f: x \mapsto \sin x$ sur \mathbb{R} (ouvert), on a $f(\mathbb{R}) = [-1;1]$ Ou pour $f: x \mapsto x^2$ sur -1;1[, on a f(-1;1[) = [0;1[
- L'image d'un non borné n'est pas toujours non borné (on reprend $f: x \mapsto \sin x$)
- L'image d'un non intervalle n'est pas toujours un non intervalle : Encore $f: x \mapsto \sin x \text{ sur } [0, \pi] \cup [3\pi, 4\pi]$

IV Fonctions continues et strictement monotones sur un intervalle

A) Le théorème

Théorème 1:

Soit f une fonction continue et strictement croissante sur un intervalle I.

Alore

- (1) f constitue/réalise une bijection de I sur un certain intervalle J.
- (2) L'intervalle J est l'intervalle délimité de la manière suivante :

Notons a, b avec a < b les extrémités dans $\overline{\mathbb{R}}$ de I.

Les extrémités de J dans $\overline{\mathbb{R}}$ sont α, β tels que :

- Si $a \in I$, $\alpha = f(a)$ et $\alpha \in J$
- Sinon, $\alpha = \lim f$ et $\alpha \notin J$

De même pour β

(3) La bijection réciproque $f^{-1}: J \to I$ est continue et strictement croissante sur J

Théorème 2:

Même théorème que le 1 pour f strictement décroissante (changer α par β , β par α et croissante par décroissante)

Démonstration:

(1) Déjà, f est strictement croissante donc injective.

Donc l'application $I \to f(I)$ est bijective (puisqu'elle est déjà injective, et on a $x \mapsto f(x)$

restreint l'ensemble d'arrivée à l'image)

Et selon le théorème des valeurs intermédiaires, J = f(I) est un intervalle, d'où le premier point du théorème.

- (2) Si $a \in I$, alors $\forall x \in I, f(a) \le f(x)$. Donc f(a) est un minorant de $\{f(x), x \in I\} = J$, soit le minimum puisque $a \in I$. Donc $\alpha \in J$ et $\alpha = f(a)$ Si $a \notin I$:
- Si J n'est pas minorée, alors $\alpha=-\infty$. Mais dans ce cas, f n'est pas minorée, donc $\lim f=-\infty=\alpha$ (puisque f est strictement croissante)
- Si J est minorée, alors $\alpha = \inf(J)$. Mais dans ce cas, f est minorée et α n'est autre que $\inf(f) = \lim_a f$ (d'après le théorème de la limite monotone). De plus, $\alpha \notin J$ car sinon on trouverait $x_0 \in I$ tel que $\alpha = f(x_0)$ (par définition de J), et on aurait alors $\forall x \in I, f(x_0) \leq f(x)$, d'où $\forall x \in I, x_0 \leq x$ (car si on trouve $x \in I$ tel que $x_0 > x$ on aurait $f(x_0) > f(x)$ puisque f est strictement croissante). Ainsi, I admettrait un minimum (x_0) , ce qui contredirait la définition de a.

On fait la même chose pour b.

(3) f^{-1} est strictement croissante. En effet :

Soient $u, u' \in J$ tels que u < u'.

Alors $f^{-1}(u) < f^{-1}(u')$, car sinon $f^{-1}(u) \ge f^{-1}(u')$, et comme f est croissante, $f(f^{-1}(u)) \ge f(f^{-1}(u'))$ soit $u \ge u'$ ce qui est impossible.

Montrons que f^{-1} est continue sur J.

Soit $u_0 \in J$. Montrons que f^{-1} est continue en u_0 , c'est-à-dire que $\lim_{u \mapsto u_0} f^{-1}(u)$ existe et vaut $f^{-1}(u_0) = x_0$, soit que $\forall W \in V(x_0), \exists U \in V(u_0), \forall u \in U \cap J, f^{-1}(u) \in W$. Soit $W \in V(x_0)$.

 1^{er} cas: $x_0 \in \mathring{I}$. Donc $W \cap I \in V(x_0)$, donc contient un segment $[x_1, x_2]$ avec $x_1 < x_0 < x_2$. On pose $u_1 = f(x_1)$ et $u_2 = f(x_2)$. On a alors:

 $u_1 < f(x_0) < u_2$, soit $u_1 < u_0 < u_2$. Ainsi, $[u_1, u_2]$ est un voisinage de u_0 , contenu dans J car $u_1, u_2 \in J$. Alors, en posant $U = [u_1, u_2]$, on a : $\forall u \in U \cap J$, $f^{-1}(u) \in W$.

En effet: $U \cap J = U = [u_1, u_2]$. Donc pour u tel que $u_1 \le u \le u_2$, on a $f^{-1}(u_1) \le f^{-1}(u) \le f^{-1}(u_2)$ (car f^{-1} est croissante). Donc $f^{-1}(u) \in [x_1, x_2] \in W$. D'où la continuité, puisque le résultat est valable en tout $u_0 \in J$.

 $2^{\text{ème}}$ cas : si x_0 est une extrémité de I, par exemple $x_0 = \max(I)$. Alors $W \cap I$ contient un segment $[x_1, x_0]$ avec $x_1 < x_0$. Posons $u_1 = f(x_1)$. Alors $u_1 < f(x_0)$, c'està-dire $u_1 < f(u_0)$. Par conséquent, $U = [u_1, +\infty[$ est un voisinage de u_0 .

Alors $\forall u \in U \cap J$, $f^{-1}(u) \in W$. En effet:

Pour $u \in U \cap J$, on a $u \ge u_1$, donc $f^{-1}(u) \ge f^{-1}(u_1)$ (car f^{-1} est croissante) et $f^{-1}(u) \le x_0$ car $f^{-1}(u) \in I$ et $x_0 = \max(I)$. Donc $f^{-1}(u) \in [x_1, x_2] \subset W$, donc f^{-1} est continue en u_0 .

On a la même chose si x_0 est un autre type d'extrémité de I.

Donc f^{-1} est continue sur J.

La démonstration du théorème 2 est analogue, ou alors :

Partant de f continue et strictement croissante, appliquer le théorème 1 à -f continue et strictement croissante.

Donc -f réalise une bijection de I sur un intervalle J

Donc f réalise une bijection de I sur -J (c'est-à-dire $\{-y, y \in J\}$, d'où (1) puis (2).

$$f^{-1}: -J \to I$$
 n'est autre que l'application $-J \to I$ $x \mapsto (-f)^{-1}(-x)$, d'où (3). En effet :

Pour $x \in -J$, $y \in I$, on a les équivalences :

$$y = f^{-1}(x) \Leftrightarrow f(y) = x \Leftrightarrow -f(y) = -x \Leftrightarrow y = (-f)^{-1}(-x)$$
.

On utilise généralement ce théorème uniquement avec (1) et (2).

Exemple de rédaction :

Soit $f: \mathbb{R}_+^* \to \mathbb{R}$. Montrer que l'équation f(x) = 0 a exactement deux $x \mapsto x - 4 \ln x$

solutions sur \mathbb{R}_{+}^{*} .

$$f(4) = 4(1 - \ln 4) < 0 \text{ car } 4 > e$$
.

- f est continue et strictement décroissante sur]0;4] et $\lim_{0} f = +\infty$. Donc f réalise une bijection de]0;4] sur $]f(4),+\infty]$. Comme f(4) < 0, $0 \in]f(4),+\infty]$, donc a un unique antécédent dans]0;4] par f, c'est-à-dire qu'il existe un unique $x \in [0;4]$ tel que f(x) = 0.
- De même, f étant continue et strictement croissante sur $[4,+\infty[$, il existe un unique $x' \in [4,+\infty[$ tel que f(x') = 0.
- Comme $f(4) \neq 0$, $x \in [0;4[$ et $x' \in]4,+\infty[$, soit $x \neq x'$.
- Donc l'équation f(x) = 0 admet deux solutions.

Variante:

On montre l'existence d'une valeur avec le théorème des valeurs intermédiaires, puis l'unicité avec la stricte monotonie.

V Continuité uniforme

A) Définition

Soit D une partie de \mathbb{R} . Soit $f: D \to \mathbb{R}$. On dit que f est uniformément continue sur D lorsque $\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D, \forall x' \in D, (|x - x'| < \alpha \Rightarrow |f(x) - f(x')| < \varepsilon)$

Proposition:

Soit $f: D \to \mathbb{R}$. Si f est uniformément continue sur D, alors f est continue sur D.

Démonstration:

Rappel des définitions:

(1) f est uniformément continue sur D

$$\Leftrightarrow \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in D, \forall x' \in D, (|x - x'| < \alpha \Rightarrow |f(x) - f(x')| < \varepsilon)$$

(2) f est continue sur D

$$\Leftrightarrow \forall x \in D, \forall \varepsilon > 0, \exists \alpha > 0, \forall x' \in D, (\left| x - x' \right| < \alpha \Rightarrow \left| f(x) - f(x') \right| < \varepsilon)$$

alors $(1) \Rightarrow (2)$ est logiquement évident :

Supposons (1):

Soient $x \in D, \varepsilon > 0$

Selon (1), on peut trouver $\alpha > 0$ tel que :

$$\forall u, u' \in D, (|u - u'| < \alpha \Rightarrow |f(u) - f(u')| < \varepsilon).$$

En particulier, avec u = x (et en remplaçant la variable muette u' par x'):

$$\forall x' \in D, (|x - x'| < \alpha \Rightarrow |f(x) - f(x')| < \varepsilon)$$

Donc
$$\forall x \in D, \forall \varepsilon > 0, \exists \alpha > 0, \forall x' \in D, (|x - x'| < \alpha \Rightarrow |f(x) - f(x')| < \varepsilon)$$
.

La réciproque est fausse. Exemple :

 $x \mapsto x^2$ n'est pas uniformément continue sur \mathbb{R}^+ , mais elle est continue.

Montrons alors qu'il existe $\varepsilon > 0$ tel que :

$$\forall \alpha > 0, \exists x, x' \in \mathbb{R}^+, (|x - x'| < \alpha \text{ et } |f(x) - f(x')| \ge \varepsilon)$$

Prenons $\varepsilon = 1$

Soit
$$\alpha > 0$$
. Soit $n \in \mathbb{N}^*$ tel que $\frac{1}{n} < \alpha$

On prend alors
$$x = n$$
, $x' = n + \frac{1}{n}$

On a alors
$$|x - x'| = \frac{1}{n} < \alpha$$
, mais $|x^2 - x'^2| = \frac{1}{n}(2n + \frac{1}{n}) = 2 + \frac{1}{n^2} \ge \varepsilon$

(on aurait même pu prendre $\varepsilon = 2$)

Proposition:

Si f est lipschitzienne sur D, alors f est uniformément continue sur D.

Démonstration:

Soit f lipschitzienne sur D.

Soit
$$k \in \mathbb{R}_+^*$$
 tel que $\forall x, x' \in D, (|f(x) - f(x')| \le k|x - x'|)$

Soit
$$\varepsilon > 0$$
, posons $\alpha = \frac{\varepsilon}{k}$.

Alors si
$$|x-x'| < \alpha$$
, $k|x-x'| < \varepsilon$, c'est-à-dire $|f(x)-f(x')| \le k|x-x'| < \varepsilon$.

La réciproque est aussi fausse :

 $x \mapsto \sqrt{x}$ n'est pas lipschitzienne sur [0;1], mais elle y est uniformément continue.

B) Théorème de Heine

Toute fonction continue sur un segment y est uniformément continue.

Démonstration:

Soit K = [a, b] un segment de \mathbb{R} , avec a < b.

Soit $f: K \to \mathbb{R}$, continue.

Montrons que $\forall \varepsilon > 0, \exists \alpha > 0, \forall x, x' \in K, (|x - x'| < \alpha \Rightarrow |f(x) - f(x')| < \varepsilon)$.

Supposons que c'est faux, c'est-à-dire qu'il existe $\varepsilon > 0$ tel que $\forall \alpha > 0, \exists x, x' \in K, (|x-x'| < \alpha \text{ et } |f(x) - f(x')| \ge \varepsilon)$.

Pour chaque $n \in \mathbb{N}^*$, on peut donc introduire $x_n, x'_n \in K$ tels que $|x_n - x'_n| < \frac{1}{n}$ et $|f(x_n) - f(x'_n)| \ge \varepsilon$).

Donc $(x_n)_{n\in\mathbb{N}^*}$ est une suite bornée d'éléments de K. D'après le théorème de Bolzano-Weierstrass, on peut donc en extraire une suite $(x_{\varphi(n)})_{n\in\mathbb{N}^*}$ qui converge vers $l\in\mathbb{R}$.

Or, pour tout $n \in \mathbb{N}^*$, $a \le x_n \le b$, donc par passage à la limite, $a \le l \le b$, c'est-à-dire que $l \in K$.

De plus, la suite $(x_{\varphi(n)} - x'_{\varphi(n)})_{n \in \mathbb{N}^*}$, extraite de $(x_n - x'_n)_{n \in \mathbb{N}^*}$, converge vers 0 puisque $(x_n - x'_n)_{n \in \mathbb{N}^*}$ converge vers 0.

Donc
$$x'_{\varphi(n)} = \underbrace{x_{\varphi(n)}}_{\rightarrow l} + \underbrace{x'_{\varphi(n)} - x_{\varphi(n)}}_{\rightarrow 0}$$
 tend aussi vers l en $+\infty$.

Or, f est continue en l, donc $f(x_{\varphi(n)}) \to f(l)$ et $f(x'_{\varphi(n)}) \to f(l)$.

Donc
$$f(x_{\varphi(n)}) - f(x'_{\varphi(n)}) \rightarrow 0$$
.

Contradiction car $|f(x_{\varphi(n)}) - f(x'_{\varphi(n)})| \ge \varepsilon$ pour tout $n \in \mathbb{N}^*$,

soit
$$\lim_{n \to \infty} \left| f(x_{\varphi(n)}) - f(x'_{\varphi(n)}) \right| \ge \varepsilon > 0$$
.

Donc f est uniformément continue sur [a,b].

VI Exemples de réciproque d'une bijection d'une fonction continue et strictement monotone sur un intervalle. Notions sur les constructions de la fonction exponentielle

(1) Soit $n \in \mathbb{N}^*$.

Soit $f_n : \mathbb{R} \to \mathbb{R}$. On établit alors aisément que :

Si n est impair, f_n réalise une bijection continue et strictement croissante de $\mathbb R$ dans $\mathbb R$.

Si n est pair, f_n réalise une bijection continue et strictement croissante de \mathbb{R}^+ dans \mathbb{R}^+ .

Pour *n* impair, la fonction réciproque de f_n est définie sur \mathbb{R} , continue et strictement croissante. Pour tout $x \in \mathbb{R}$, l'unique $y \in \mathbb{R}$ tel que $f_n(y) = x$ est noté $\sqrt[n]{x}$

Pour n pair, la fonction réciproque est définie sur \mathbb{R}^+ , continue et strictement croissante. Pour tout $x \in \mathbb{R}^+$, l'unique $y \in \mathbb{R}^+$ tel que $f_n(y) = x$ est aussi noté $\sqrt[n]{x}$.

(2) On vérifie aisément que pour tout $x \in \mathbb{R}_+^*$, $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$ et $r \in \mathbb{N}^*$:

 $\sqrt[rq]{x^{pr}} = \sqrt[q]{x^p}$. Ainsi, $\sqrt[q]{x^p}$ ne dépend que de $\frac{p}{q}$. On peut donc le noter $x^{p/q}$.

Attention: $x^{p/q}$ n'a de sens que pour x > 0. Par exemple:

$$\sqrt[6]{(-2)^2} = \sqrt[6]{4} > 0$$

$$\sqrt[3]{-2} < 0$$

On ne peut donc pas les noter $(-2)^{2/6}$ ou $(-2)^{1/3}$

On a ainsi défini x^n pour tous x > 0 et $r \in \mathbb{Q}$.

On vérifie aisément que, pour tous x, x' > 0, $r, r' \in \mathbb{Q}$:

$$x^r x^{r'} = x^{r+r'}$$

$$x^{-r} = \frac{1}{r^r}$$

$$x^{0} = 1$$

$$(xx')^r = x^r x'^r$$

Et que, pour tout r > 0, $x \mapsto x^r$ est continue et strictement croissante sur \mathbb{R}_+^* .

pour tout r < 0, $x \mapsto x^r$ est continue et strictement décroissante sur \mathbb{R}_+^* .

(pour r = 0, $x \mapsto x^r$ est constante égale à 1)

(3) On admet que:

Pour tout x > 0, pour tout $\alpha \in \mathbb{R}$ et toute suite $(r_n)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}$ qui converge vers α , la suite $(x^{r_n})_{n \in \mathbb{N}}$ converge vers un réel qui ne dépend que de α et pas de la suite $(r_n)_{n \in \mathbb{N}}$.

On note alors $x^{\alpha} = \lim_{\substack{d \in R \\ n \to +\infty}} x^{r_n}$ (définition qui reste vraie si $\alpha \in \mathbb{Q}$)

On admet que la fonction $x \mapsto x^{\alpha}$ est continue sur \mathbb{R}_{+}^{*} , strictement croissante si $\alpha > 0$, strictement décroissante si $\alpha < 0$.

On montre aussi que, pour tous x, x' > 0, $\alpha, \beta \in \mathbb{R}$:

$$x^{0} = 1$$

$$x^{\alpha}x^{\beta} = x^{\alpha+\beta}$$

$$(x^{\alpha})^{\beta} = x^{\alpha\beta}$$

$$x^{-\alpha} = \frac{1}{r^{\alpha}}$$

$$(xx')^{\alpha} = x^{\alpha}x'^{\alpha}$$

On montre aussi que pour $\alpha > 0$, $\lim_{x \to 0} x^{\alpha} = 0$ et $\lim_{x \to +\infty} x^{\alpha} = +\infty$

(4) Soit $a \in \mathbb{R}_+^*$. On s'intéresse à $x \mapsto a^x$, définie sur \mathbb{R} .

On montre que $x \mapsto a^x$ est continue sur \mathbb{R} , strictement croissante si a > 1, constante si a = 1, strictement décroissante si a < 1

On a vu que la suite de terme général $u_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$ converge, vers un réel $e \in \mathbb{R} \setminus \mathbb{Q}$ et aussi que 2 < e < 3.

On admet de plus que $\frac{e^x - 1}{x} \xrightarrow{x \to 0} 1$. La fonction $x \mapsto e^x$ est appelée la fonction exponentielle, notée exp. Alors exp est strictement croissante sur \mathbb{R} . (car e > 2 > 1).

(5) La fonction exponentielle réalise une bijection continue et strictement croissante de R sur]0,+∞]. Sa réciproque, appelée logarithme népérien, est appelée ln .