

communities using unique molecular identifiers with Nanopore sequencing

Accurate profiling of diazotrophic

COMMENTS 0

DO

dx.doi.org/10.17504/protocols.io.6qpvr4embgmk/v1

Nobuhiko Shigyo¹

¹Department of Forest Soils, Forestry and Forest Products Research Institute

WORKS FOR ME

Nobuhiko Shigyo
Department of Forest Soils, Forestry and Forest Products Res...

ABSTRACT

This protocol applies the method by Karst et al. (2021), who used UMI-tagged primers to perform highly accurate long-read amplicon analysis on the full-length ribosomal RNA operons, to the nitrogen fixation (*nif*) gene cluster. A recent study has shown that the functional gene *nifH*, which is frequently used in community analysis of diazotrophs, detects many false positives (Mise et al. 2021). Therefore, in this protocol, I used newly developed primers targeting the *nifD-K* gene (approx. 1.8 kbp) to identify the diazotrophic communities. The present protocol is presented using plant litter and mineral soil as examples, but it could potentially be applied in a variety of environmental samples.

DOI

dx.doi.org/10.17504/protocols.io.6qpvr4embgmk/v1

PROTOCOL CITATION

Grant ID: 20K20003

Nobuhiko Shigyo 2022. Accurate profiling of diazotrophic communities using unique molecular identifiers with Nanopore sequencing. **protocols.io** https://dx.doi.org/10.17504/protocols.io.6qpvr4embgmk/v1

FUNDERS ACKNOWLEDGEMENT

A research grant of the Forestry and Forest Products Research Institute Grant ID: #202206

JSPS Grants-in-Aid for Early-Career Scientists

KEYWORDS

Oxford Nanopore MinION, Nitrogen fixation, nifD-K, Forest soil, Leaf litter

LICENSE

This is an open access protocol distributed under the terms of the <u>Creative Commons</u>

<u>Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

protocols.io

1

Citation: Nobuhiko Shigyo Accurate profiling of diazotrophic communities using unique molecular identifiers with Nanopore sequencing https://dx.doi.org/10.17504/protocols.io.6gpvr4embgmk/v1

CREATED

Sep 14, 2022

LAST MODIFIED

Dec 07, 2022

PROTOCOL INTEGER ID

69982

Materials and Reagents

- 0.2 mL PCR tubes
- 1.5 mL tubes
- DNA extraction kit for soil (e.g., ISOIL for Beads Beating kit, Nippon Gene Co., Ltd., Tokyo, Japan)
- Qubit dsDNA HS assay kit (Thermo Fisher Scientific, Waltham, MA, United States)
- Qubit Assay Tubes (Thermo Fisher Scientific)
- 1st PCR primers (PAGE purification) (Integrated DNA Technologies, Coralville, IA)
- 1. Forward primer (nifD229f_UMI): 5'-CAAGCAGAAGACGGCATACGAGAT NNNYRNNNYRNNNYRNNN TGGGGNCCVRTCAAGGAYAT-3'
- 2. Reverse primer (nifK476r_UMI): 5'-AATGATACGGCGACCACCGAGATC NNNYRNNNYRNNNYRNNN CCRATSACYTCBGCCATRCA-3'
- 2nd PCR primers (PAGE purification) (Karst et al. 2021)
- 1. Forward primer (lu_pcr_i1_fw_v7): 5'-ACGAGACTGATT CAAGCAGAAGACGGCATACGAGAT-3'
- 2. Reverse primer (lu_pcr_i1_rv_v7): 5'-TACAGCGCATAC AATGATACGGCGACCACCGAGATC-3'
- PrimeSTAR Max Polymerase (Takara Bio Inc., Shiga, Japan)
- Nuclease-free water
- KAPA HyperPure Beads (Kapa Biosystems, Inc., Wilmington, MA, USA)
- 80% ethanol (molecular grade)
- Ligation sequencing kit V14 (SQK-LSK114) (Oxford Nanopore Technologies, Oxford, United Kingdom)
- R10.4.1 flow cell (FLO-MIN114) (Oxford Nanopore Technologies)
- NEBNext Companion Module for Oxford Nanopore Technologies Ligation Sequencing (New England BioLabs, Beverly, MA, USA)
- Bovine Serum Albumin (BSA) (Invitrogen, Carlsbad, CA, USA)

Equipment

- Thermal cycler (e.g., TaKaRa PCR Thermal Cycler Dice Touch, Takara Bio Inc.)
- Micropipette (P1000, P200, P100, P20, P10, and P2)
- Vortex mixer
- Microfuge
- Magnetic stand (e.g., NGS MagnaStand (YS-Model) 8Ch × 0.2 mL PCR tube, Nippon Genetics Co., Ltd., Tokyo, Japan)
- Qubit fluorometer (Qubit 4 fluorometer, Thermo Fisher Scientific)
- Nanopore sequencer (e.g., MinION Mk1C, Oxford Nanopore Technologies)

Citation: Nobuhiko Shigyo Accurate profiling of diazotrophic communities using unique molecular identifiers with Nanopore sequencing https://dx.doi.org/10.17504/protocols.io.6gpvr4embgmk/v1

10m

Tagging *nifD-K* genes with UMIs (1st PCR)

15m

3 Prepare PCR-master mix in a 0.2 mL PCR tube with the following:

•	
Component	Volume (total 50 μL)
Nuclease-free water	X μL
Forward primer (nifDK229f_UMI, 10µM)	2.5 μL
Reverse primer (nifK476r_UMI, 10 μM)	2.5 μL
PrimeSTAR Max Premix	25 μL
Template DNA	Y μL (50 ng)

Run the following PCR program:

10m

Clean-up of 1st PCR products

[98°C 10 sec \rightarrow 55°C 15 sec \rightarrow 72°C 30 sec] \times 2 \rightarrow 8°C ∞

30m

- 5 Clean up the 1st PCR products using KAPA HyperPure Beads (Kapa Biosystems, Inc., Wilmington, MA, USA)
- 5.1 Equilibrate the beads solution at room temperature and allow the beads to resuspend completely.
- 5.2 Add $\angle 25 \,\mu$ L beads solution to the $\angle 50 \,\mu$ L PCR products (0.5× bead solution/sample ratio) and mix by pipetting up and down multiple (10 to 20) times.
- 5.3 Incubate the tube at room temperature for 5 min.

5m

5.4	Place the tube on a magnetic rack (NGS MagnaStand (YS-Model) 8Ch × 0.2 mL PCR tube, Nippon Genetics Co., Ltd., Tokyo, Japan) to capture the beads. Incubate until the liquid is clear (~3 min).	
5.5	Discard the supernatant.	
5.6	Wash beads by adding Δ 200 μL fresh 80% ethanol.	
5.7	Incubate the tube on the magnetic rack at room temperature for 30 sec.	30s
5.8	Discard the supernatant.	
5.9	Repeat the previous washing steps (4.6-4.8).	
5.10	Dry the beads at room temperature for 3 min.	3m
5.11	Remove the tube from the magnetic rack.	
5.12	Elute the purified DNA by adding $\ \ \ \ \ \ \ \ \ \ \ \ \ $	
5.13	Incubate the tube at room temperature for 5 min.	5m

1m

5.15 Transfer the supernatant to a new PCR tube.

Amplification of UMI tagged sequences (2nd PCR)

2h 10m

Prepare PCR-master mix in a 0.2 mL PCR tube with the following:

•	· ·
Component	Total volume (100 μL)
Nuclease-free water	20 μL
Forward primer (lu_pcr_i1_fw_v7)	5 μL (0.5 μM)
Reverse primer (lu_pcr_i1_rv_v7)	5 μL (0.5 μM)
PrimeSTAR Max Premix	50 μL
Template DNA (1st PCR products)	20 μL

Run the following PCR program:

[98°C 10 sec \rightarrow 68°C 5 sec \rightarrow 72°C 30 sec]×30 \rightarrow 68°C 5min \rightarrow 8°C ∞

30m

2h

Clean-up of 2nd PCR products

8 Clean up the 2nd PCR products using KAPA HyperPure Beads (0.5× bead solution/sample ratio) following the same procedure as in Section 5.

Quality control

10m

9 Measure the DNA concentration of the purified 2nd PCR products using a Qubit fluorometer with the Qubit dsDNA HS assay kit.

6

Citation: Nobuhiko Shigyo Accurate profiling of diazotrophic communities using unique molecular identifiers with Nanopore sequencing https://dx.doi.org/10.17504/protocols.io.6qpvr4embgmk/v1

10

OPTIONAL:

Check the amplified fragments by gel electrophoresis.

Lanes:

- 1. 1kb DNA ladder
- 2. Purified 2nd PCR products

Nanopore sequencing

Conduct "DNA repair and end prep", "Adapter ligation and cleanup", and "Priming and loading of SpotOn flow cell" according to the Ligation Sequence Amplicon V14 protocol (ligation-sequencing-amplicons-sqk-lsk114-ACDE_9163_v114_revE_29Jun2022-minion.pdf).

sequencing https://dx.doi.org/10.17504/protocols.io.6qpvr4embqmk/v1

7