Решения на задачите от писмен изпит по ЕАИ на специалност "Информатика", проведено на 23 януари 2024 г.

Задача 1. (1 т) Нека G е граматиката c начална променлива S, зададена чрез следните правила:

$$S \rightarrow aT \mid aM \mid aX$$

$$T \rightarrow bS \mid \varepsilon$$

$$M \rightarrow bM \mid bX \mid \varepsilon$$

$$X \rightarrow aS$$

 \mathcal{A} а се построи краен детерминиран автомат \mathcal{A} , за който е изпълнено $\mathcal{L}(\mathcal{A}) = \mathcal{L}(G)$, като се използват изучавани конструкции или се докаже коректността на автомата.

Решение. Първо строим недетерминиран автомат ${\mathcal N}$ и после го детерминизираме, за да получим ${\mathcal A}$:

\mathcal{N}	a	b
$\rightarrow s$	t, m, x	
*t		s
*m		m, x
x	s	

НКА \mathcal{N} за $\mathcal{L}(G)$

\mathcal{A}	a	b
$\rightarrow s$	t, m, x	Ø
*t, m, x	s	s, m, x
*s, m, x	s, t, m, x	m, x
*s, t, m, x	s, t, m, x	s, m, x
*m, x	s	m, x
Ø	Ø	Ø

ДКА
$$\mathcal{A}$$
 за $\mathcal{L}(\mathcal{N}) = \mathcal{L}(G)$

През цялото време сме използвали изучавани конструкции, така че няма какво да доказваме.

Задача 2. (2 т)

• (1 т) Докажете, че следният език е регулярен:

$$L_1 = \{ a^n \# a^{m \cdot (n \mod 2)} b^{m \cdot ((n+1) \mod 2)} \mid n, m \in \mathbb{N} \}$$

• (1 т) Докажете, че следният език не е регулярен:

$$L_2 = \{ a^n \# a^{m \cdot (n \mod 2)} b^{m \cdot ((n+1) \mod 3)} \mid n, m \in \mathbb{N} \}$$

Решение. За L_1 получаваме следното изразяване:

$$L_1 = \{a^n \# a^{m \cdot (n \bmod 2)}, \underbrace{b^{m \cdot (n+1 \bmod 2)}}_{\varepsilon, \text{ понеже}} \mid n, m \in \mathbb{N} \& n \text{ е нечетно}\} \cup \{a^n \# \underbrace{a^{m \cdot (n \bmod 2)}}_{\varepsilon, \text{ понеже}}, b^{m \cdot (n+1 \bmod 2)} \mid n, m \in \mathbb{N} \& n \text{ е четно}\}$$

$$= \{a^n \# a^m \mid n, m \in \mathbb{N} \& n \text{ е нечетно}\} \cup \{a^n \# b^m \mid n, m \in \mathbb{N} \& n \text{ е четно}\}$$

$$= (\{a^n \mid n \in \mathbb{N} \& n \text{ е нечетно}\} \cdot \{\#\} \cdot \{a\}^*) \cup (\{a^n \mid n \in \mathbb{N} \& n \text{ е четно}\} \cdot \{\#\} \cdot \{b\}^*)$$

$$= (\{a^{2n+1} \mid n \in \mathbb{N}\} \cdot \{\#\} \cdot \{a\}^*) \cup (\{a^{2n} \mid n \in \mathbb{N}\} \cdot \{\#\} \cdot \{b\}^*)$$

$$= (\{a\} \cdot \{a^{2n} \mid n \in \mathbb{N}\} \cdot \{\#\} \cdot \{a\}^*) \cup (\{(aa)^n \mid n \in \mathbb{N}\} \cdot \{\#\} \cdot \{b\}^*)$$

$$= (\{a\} \cdot \{(aa)^n \mid n \in \mathbb{N}\} \cdot \{\#\} \cdot \{a\}^*) \cup (\{(aa)^n \mid n \in \mathbb{N}\} \cdot \{\#\} \cdot \{b\}^*)$$

$$= (\{a\} \cdot \{aa\}^* \cdot \{\#\} \cdot \{a\}^*) \cup (\{(aa)^n \mid n \in \mathbb{N}\} \cdot \{\#\} \cdot \{b\}^*)$$

Получихме L_1 чрез прилагане на регулярните операции, започвайки от регулярни езици. Така L_1 е регулярен.

За L_2 нека разгледаме класовете от вида $[a\#a^n]_{\approx_{L_2}}$. Нека $n,k\in\mathbb{N}$ и $n\neq k$. Тогава:

- $a \# a^{n(1 \mod 2)} b^{n(1+1 \mod 3)} = a \# a^n b^{2n} \in L$
- $a\#a^{k(1 \bmod 2)}b^{n(1+1 \bmod 3)} = a\#a^kb^{2n} \notin L$, понеже $n \neq k$

От тук можем да заключим, че $a\#a^n\not\approx_{L_2}a\#a^k$ за $n\neq k$. Така намерихме безброй много елементи на множеството $\{[\alpha]_{\approx_{L_2}}\mid \alpha\in\Sigma^*\}$, откъдето L_2 не е регулярен.

Задача 3. (1 т) Нека $L = \{\omega.\omega^{rev} \mid \omega \in \{a,b\}^*\}$. Докажете, че следният език е контекстно-свободен:

$$L_3 = \{a^n b^n \# \beta \mid n \in \mathbb{N} \& \beta \in L^{(n \bmod 3)}\}\$$

Решение. За L_3 получаваме следното изразяване:

$$\begin{split} L_3 &= \bigcup_{r \in \{0,1,2\}} (\{a^n b^n \mid n \in \mathbb{N} \& (n \bmod 3) = r\} \cdot L^r) \\ &= \bigcup_{r \in \{0,1,2\}} (\{a^r\} \cdot \{a^{3n} b^{3n} \mid n \in \mathbb{N}\} \cdot \{b^r\} \cdot L^r) \end{split}$$

Достатъчно е да направим граматики за $\{a^{3n}b^{3n} \mid n \in \mathbb{N}\}$ и L:

$$S o aaaSbbb\mid arepsilon$$
 - граматика за $\{a^{3n}b^{3n}\mid n\in \mathbb{N}\}$
$$S_L o aS_La\mid bS_Lb\mid arepsilon$$
 - граматика за L

Коректността на тези или подобни граматики е доказвана на упражнение, но на изпита се очаква от студента да направи доказателство.