### **Group 8 Team Members**

- Nikhila B R
- Han-Sheng Chen
- Laksh Dhamija
- Harshally Maruti Mutgekar

# **Banking Management System Logical ERD**

This documentation explains the steps taken to convert the conceptual Entity-Relationship Diagram (ERD) into a logical ERD, with additional clarifications and enhancements for better understanding.

# **Steps Taken in Conversion**

### 1. Entity to Table Conversion

- o Each entity in the conceptual ERD was converted into a table.
- Attributes of entities were used as columns in their respective tables.

## 2. Primary and Foreign Keys

- o Primary keys (PK) were defined for all tables to uniquely identify each record.
- Foreign keys (FK) were added to establish relationships between tables. For example:
  - branch\_id is a foreign key in the Customer table.
  - customer\_id is a foreign key in the Account table.

### 3. Composite Attributes Simplified

- Composite attributes were broken down into simple attributes.
  - Example: The address attribute in the Customer entity was split into address\_line\_1, address\_line\_2 and pincode.

### 4. Weak Entities Conversion

- Weak entities were converted into independent tables by combining their partial identifier with the primary key of their associated strong entity as a composite primary key.
  - Example: The Transaction weak entity was turned into a table with transaction\_id (partial identifier) and strong\_entity\_id (foreign key) as its composite primary key.

### 5. Relationships Representation

 One-to-Many Relationships: The primary key of the "one" side was added as a foreign key on the "many" side.

- Example: The relationship between Branch and Customer is represented by adding branch\_id as a foreign key in the Customer table.
- Many-to-Many Relationships: A separate associative table was created, with its primary key being a composite of foreign keys from both participating entities.
  - Example: The many-to-many relationship between Customer and Financial\_Instrument resulted in the creation of the Customer\_Financial\_Insurance table.
- Unary Relationships: For recursive relationships, foreign keys were added within the same table.
  - Example: In the Employee table, manager\_id serves as a recursive foreign key to represent managerial hierarchy.

### 6. Enhanced EER Representation

- Subtypes and supertypes were handled using separate tables, with subtype discriminators added to the supertype table.
  - Example: The Insurance table serves as a supertype for subtypes like Health Insurance, Property Insurance, and Vehicle Insurance. A discriminator column (insurance\_type) identifies the specific subtype.
  - The Loan table serves as a supertype for subtypes like Vehincle\_loan, Student\_loan, mortgage\_loan and business\_loan.
  - The Financial Instrument table serves as a supertype for subtypes like Loan, Insurance, Credit Card and Account.

#### 7. Normalization to 3NF

- All tables were normalized to Third Normal Form (3NF) by ensuring:
  - No composite or multi-valued attributes exist.
  - No partial or transitive dependencies.

# **Key Design Features**

## • Associative Entities:

Associative entities like Customer\_Financial\_Instrument were introduced to handle complex relationships while maintaining normalization standards.

### Subtype Discriminators:

Discriminators like loan\_type, insurance\_type and instrument\_type were added to supertype tables (Loan, Insurance, Financial\_instrument) to differentiate between subtypes.

### • Recursive Relationships:

Recursive relationships, such as employees managing other employees, are captured using self-referencing foreign keys (manager\_id) in the same table.

# **Additional Enhancements**

#### 1. Transaction Table Details:

The Transaction table includes:

- Attributes like transaction\_type, amount, and timestamps (date\_time) for better tracking.
- Associations with both accounts and strong entities for comprehensive linkage.

### 2. Loan Subtypes:

Loans are categorized into subtypes (Vehicle Loan, Student Loan, etc.), each with unique attributes:

- Vehicle loans include details like vehicle type, make, model, year, and VIN.
- Student loans include school name, tuition amount, graduation date, and cosigner details.

### 3. Online Banking Integration:

The inclusion of an Online Banking table captures digital banking features such as:

- Login credentials (username, hashed password).
- Two-factor authentication status for enhanced security.

### 4. Branch Management:

Each branch maintains its own employees (Employee) and customers (Customer). This hierarchical structure is reflected through relationships between the tables.

### 5. Financial Instruments Details:

Financial Instruments are linked to customers via an associative entity (Customer\_Financial\_Instruments) and further detailed in subtypes like loan, account, credit cards and insurance.

