Similarity and Dissimilarity Measures

Distance or Similarity Measures

- Many data analytics tasks involve the comparison of objects in terms of their similarities (or dissimilarities)
 - Clustering
 - Nearest-neighbor search, classification, and prediction
 - ▶ Characterization and discrimination
 - Automatic categorization
 - Correlation analysis
- Many of todays real-world applications rely on the computation similarities or distances among objects
 - ▶ Personalization
 - Recommender systems
 - Document categorization
 - Information retrieval
 - Target marketing

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are
 - Value is higher when objects are more alike
 - Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity can refer to a measure of similarity or dissimilarity

3

Distance or Similarity Measures

- Measuring Distance
 - In order to group similar items, we need a way to measure the distance between objects (e.g., records)
 - Often requires the representation of objects as "feature vectors"

An Emp	oloyee	DB

ID	Gender	Age	Salary
1	F	27	19,000
2	М	51	64,000
3	M	52	100,000
4	F	33	55,000
5	M	45	45,000

Feature vector of Employee 2: <M, 51, 64000.0>

Term Frequencies for Documents									
	T1 T2 T3 T4 T5 T								
Doc1	0	4	0	0	0	2			
Doc2	3	1	4	3	1	2			
Doc3	3	0	0	0	3	0			

Feature vector for Document 4: <0, 1, 0, 3, 0, 0>

Distance or Similarity Measures

- Properties of Distance Measures (IMPORTANT)
 - for all objects A and B, dist(A, B) ≥ 0
 - b dist(A, A) = 0
 - for all A, B, dist(A,B) = dist(B,A)
 - dist(A, C) \leq dist(A, B) + dist (B, C)

• Representation of objects as vectors:

- Each data object (item) can be viewed as an n-dimensional vector, where the dimensions are the attributes (features) in the data
- Example (employee DB): Emp. ID 2 = <M, 51, 64000>
- Example (Documents): DOC2 = <3, 1, 4, 3, 1, 2>
- The vector representation allows us to compute distance or similarity between pairs of items using standard vector operations, e.g.,
 - Cosine of the angle between vectors
 - Manhattan distance
 - Euclidean distance
 Hamming Distance

-

Data Matrix and Distance Matrix

- Data matrix
 - Conceptual representation of a table
 Cols = features; rows = data objects
 - Cols = features; rows = data obj.
 n data points with p dimensions
 - Each row in the matrix is the vector representation of a data object
- $\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$
- Distance (or Similarity) Matrix
 - n data points, but indicates only the pairwise distance (or similarity)
- A triangular matrix
- Symmetric

$$\begin{bmatrix} 0 \\ d(2,I) & 0 \\ d(3,I) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

6

Proximity Measure for Nominal Attributes

- If object attributes are all nominal (categorical), then proximity measure are used to compare objects
- · Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching m: # of matches, p: total # of variables
- $d(i,j) = \frac{p-m}{p}$
- Method 2: Convert to Standard Spreadsheet format
 - For each attribute A create M binary attribute for the M nominal states of A
 - ▶ Then use standard vector-based similarity or distance metrics

Proximity Measure for Binary Attributes

 A contingency table for binary data

		OI	bject <i>j</i>	
		1	0	sum
	1	q	r	q + r
Object i	0	8	t	s+t
	sum	q + s	$\tau + t$	p

Distance measure for symmetric binary variables

$$d(i, j) = \frac{r+s}{q+r+s+1}$$

- Distance measure for asymmetric binary variables
- $d(i,j) = \frac{r+s}{q+r+s}$
- Jaccard coefficient (similarity measure for asymmetric binary variables)
- $sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$

Normalizing or Standardizing Numeric Data

- - x: raw value to be standardized, μ: mean of the population, σ: standard deviation
 - the distance between the raw score and the population mean in units of the standard deviation
 - negative when the value is below the mean, "+" when above
- Min-Max Normalization

$$x'_{i} = \frac{x_{i} - \min x_{i}}{\max x_{i} - \min x_{i}} (new \max - new \min) + new \min$$

ID	Gender	Age	Salary
1	F	27	19,000
2	M	51	64,000
3	М	52	100,000
4	F	33	55,000
5	M	45	45,000

ID	Gender	Age	Salary		
1	1	0.00	0.00		
2	0	0.96	0.56		
3	0	1.00	1.00		
4	1	0.24	0.44		
5	0	0.72	0.32		

Common Distance Measures for Numeric Data

- Consider two vectors
- Rows in the data matrix
- $X = \langle x_1, x_2, \dots, x_n \rangle \mid Y = \langle y_1, y_2, \dots, y_n \rangle$
- Common Distance Measures:
 - Manhattan distance:

$$dist(X,Y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$

Euclidean distance:

$$dist(X,Y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Distance can be defined as a dual of a similarity measure

$$dist(X,Y) = 1 - sim(X,Y)$$
 $sim(X,Y) = -$

Example: Data Matrix and Distance Matrix

Distance on Numeric Data: Minkowski Distance

• Minkowski distance: A popular distance measure

$$d(i, j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

- where $i = (x_{j_1}, x_{j_2}, ..., x_{j_p})$ and $j = (x_{j_1}, x_{j_2}, ..., x_{j_p})$ are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm)
- Note that Euclidean and Manhattan distances are special cases
 - h = 1: (L₁ norm) Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

▶ h = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + \dots + |x_{i_p} - x_{j_p}|^2)}$$

Vector-Based Similarity Measures

- In some situations, distance measures provide a skewed view of data
 - E.g., when the data is very sparse and 0's in the vectors are not significant
 - In such cases, typically vector-based similarity measures are used
 - Most common measure: Cosine similarity

$$X = \langle x_1, x_2, L, x_n \rangle$$
 $Y = \langle y_1, y_2, L, y_n \rangle$

- Dot product of two vectors: $sim(X,Y) = X \bullet Y = \sum_{i} x_i \times y_i$
- Cosine Similarity = normalized dot product
- the norm of a vector X is: $||X|| = \sqrt{\sum_i x_i^2}$
- the cosine similarity is:

13

Vector-Based Similarity Measures

Why divide by the norm?

- Example: • X = <2 0 3 2 1 4>
- X = <2, 0, 3, 2, 1, 4>
- ||X|| = SQRT(4+0+9+4+1+16) = 5.83
- $X^* = X / ||X|| = <0.343, 0, 0.514, 0.343, 0.171, 0.686>$
- Now. note that ||X*|| = 1
- So, dividing a vector by its norm, turns it into a unit-length vector
- Cosine similarity measures the angle between two unit length vectors (i.e., the magnitude of the vectors are ignored).

14

Example Application: Information Retrieval

- · Documents are represented as "bags of words"
- · Represented as vectors when used computationally
 - A vector is an array of floating point (or binary in case of bit maps)
 - Has direction and magnitude
 - Each vector has a place for every term in collection (most are sparse)

umen	nova	galaxy	heat	actor	film	role	a document
A	1.0	0.5	0.3				
В	0.5	1.0					
C		1.0	0.8	0.7			
D		0.9	1.0	0.5		•	
E				1.0		1.0	D = 10 10 10
F					0.7		$D_i - W_{d_{i1}}, W_{d_{i2}},, W_{d_{it}}$
G	0.5		0.7			0.9	$D_{i} = W_{d_{i1}}, W_{d_{i2}},, W_{d_{it}}$ $Q = W_{q1}, W_{q2},, W_{qt}$
Н		0.6		1.0	0.3	0.2	
I			0.7	0.5		0.3	w = 0 if a term is absent

Documents & Query in n-dimensional Space

- Documents are represented as vectors in the term space
 - Typically values in each dimension correspond to the frequency of the corresponding term in the document
- Queries represented as vectors in the same vector-space
- Cosine similarity between the query and documents is often used to rank retrieved documents

_

Example: Similarities among Documents

Consider the following document-term matrix

	T1	T2	T3	T4	T5	T6	T7	T8
Doc1	0	4	0	0	0	2	1	3
Doc2	3	1	4	3	1	2	0	1
Doc3	3	0	0	0	3	0	3	0
Doc4	0	1	0	3	0	0	2	0
Doc5	2	2	2	3	1	4	0	2

Norm (Doc4) = SQRT(0+1+0+9+0+0+4+0) = 3.74Cosine(Doc2, Doc4) = 10 / (6.4 * 3.74) = 0.42

Correlation as Similarity

- In cases where there could be high mean variance across data objects (e.g., movie ratings), Pearson Correlation coefficient is the best option
- Pearson Correlation

$$corr(x, y) = \frac{cov(x, y)}{stdev(x) \cdot stdev(y)}$$

 Often used in recommender systems based on Collaborative Filtering

18