\mathbb{S}_{mu}^{\wedge}

Imagine maps:

 $\operatorname{Map}_{*}^{G}(A,B)$

 $\operatorname{Map}_*^G(A,B)$

where $A, B \in \mathsf{Top}^G_*$ (where Top is a suitable category). If $X \in \mathsf{Top}_*$ and $Y \in \mathsf{Top}$, we can form the spectra:

 $\Sigma^{\infty} X, \Sigma_{+}^{\infty} Y$

and for a spectrum $Z \in \mathsf{Sp},$ we can form the pointed space:

 $\Omega^{\infty} Z$

THEOREM 1 (Pythagoras). $a^2 + b^2 = c^2$.

Proof. Trivial

Lemma 2 (Zorn's Lemma). An poset $P \in \mathsf{Poset}$ where all chains are bounded above has a maximal element.

Proof. Axiom of choice.

◁

◁

PROPOSITION 3. $\sqrt[3]{2}$ is not a rational number.

PROOF. Suppose it was. Then, there will be two integers $a, b \in \mathbb{Z}$ such that $a^3 + a^3 = b^3$. We will need the following:

THEOREM 4 (Fermat's Last Theorem, due to Andrew Wiles). The equation $a^n + b^n = c^n$ has no integer solutions when $n \ge 3$.

Proof. Trivial [Theorem 4] \square

We see that $\sqrt[3]{2}$ being rational produces a contradiction to Fermat's Last Theorem. Therefore, it must be irrational. [Proposition 3] \square

Remark 5 (Jordan curve theorem). It happens

Proof. Duh \Box

 \mathbb{S} , \mathcal{MU} , tmf, \mathcal{BP} , $\mathcal{T}(n)$, $\mathcal{K}(n)$, \mathcal{HZ} , \mathcal{E}_n S, MU, tmf, BP, T(n), K(n), HZ, E_n

CLAIM 6. When $z \in \mathbb{C}$, we have that:

$$e^z = e^{\Re(z)}(\cos \Im m(z) + i\sin \Im m(z))$$

 $\mathrm{K}(\mathbb{Z}) \quad K \quad K \quad (n) \quad \mathcal{K}(n-\mathrm{cork}_p(\mathcal{F})) \quad \mathcal{K}(n) \quad \mathrm{K}(\mathbb{Z}) \quad \mathcal{K}(\infty)$

Δ

Axiom (Axiom of Choice). For any collection of non-empty sets \mathcal{S} , there exists a choice function $\phi: \mathcal{S} \to \bigcup_{s \in \mathcal{S}} s$, such that $\phi(s) \in s$.