

Algorítmica Grado en Ingeniería Informática

Tema 5 - Algoritmos para exploración en grafos

Este documento está protegido por la Ley de Propiedad Intelectual (Real Decreto Ley 1/1996 de 12 de abril). Queda expresamente prohibido su uso o distribución sin autorización del autor. Manuel Pegalajar Cuéllar manupc@ugr.es

Departamento de Ciencias de la Computación e Inteligencia Artificial http://decsai.ugr.es

Objetivos del tema

- ■Plantearse la búsqueda de varias soluciones distintas para un mismo problema y evaluar la bondad de cada una de ellas.
- Saber ver al árbol de estados como una representación lógica del conjunto de todas las posibles soluciones de un problema.
- Conocer las técnicas de exploración de grafos (vuelta atrás y ramificación y poda) y su aplicación en la resolución de problemas, entendiendo sus características principales y las diferencias entre ellas.
- ■Comprender y saber aplicar el uso de cotas para reducir el espacio de búsqueda en las técnicas de exploración en grafos.
- ■Conocer los criterios de aplicación de cada una de las distintas técnicas de diseño de algoritmos.

Estudia este tema en...

- G. Brassard, P. Bratley, "Fundamentos de Algoritmia", Prentice Hall, 1997, pp. 319-363
- J.L. Verdegay: Lecciones de Algorítmica. Editorial Técnica AVICAM (2017).

Anotación sobre estas diapositivas:

El contenido de estas diapositivas es esquemático y representa un apoyo para las clases presenciales teóricas. No se considera un sustituto para apuntes de la asignatura.

Se recomienda al alumno completar estas diapositivas con notas/apuntes propios, tomados en clase y/o desde la bibliografía principal de la asignatura.

Algorítmica

Grado en Ingeniería Informática

Algoritmos para exploración en grafos

- 1. Introducción
- 2. Representación de espacios de estados
- 3. La técnica Backtracking
- 4. Las 8 reinas
- 5. Resolución de Sudokus
- 6. El viajante de comercio
- 7. La técnica de Branch&Bound
- 8. Asignación de tareas
- 9. El viajante de comercio

- Para una gran cantidad de problemas, no existe un algoritmo conocido que los resuelva de forma eficiente.
- ■En estos casos, la resolución del problema pasa por una exploración directa de todas (o gran parte de) las posibilidades de llegar a una solución.
- Muchos de estos problemas se pueden representar como un grafo: Por eso es necesario conocer las técnicas para su exploración.

Los recorridos sobre un grafo ya se conocen: Se han estudiado en la asignatura de Estructuras de Datos. Ejemplo de **recorrido** profundidad:

Procedimiento RecorridoProfundidad(G=(V,A))

Para cada v en V hacer marca[v]= NoVisitado Para cada v en V hacer:

Si marca[v] = NoVisitado, **entonces** rp(v)

Fin-Para

Procedimiento rp(vértice v)

Marca[v]= visitado

Para cada w adyacente a v hacer:

Si marca[w] = NoVisitado, entonces rp(w)

Fin-Para

Ejemplo de ejecución: recorrido en profundidad:

- ■Ejecución: (comienzo desde el nodo 1)
- □rp(1) Se visita el nodo 1 y pasa al adyacente
- rp(2) Llamada recursiva, visita 3
- rp(3) Llamada recursiva, visita 6
- rp(6) Llamada recursiva, visita 5
- rp(5) Sin nodos adyacentes
- rp(4) Llamada recursiva de rp(1), visita 7
- rp(7) Llamada recursiva, visita 8
- rp(8) sin nodos que visitar

Ejemplo de recorrido en anchura:

Procedimiento RecorridoAnchura(G=(V,A))

Para cada v en V **hacer** marca[v]= NoVisitado

Para cada v en V hacer:

Si marca[v] = NoVisitado, entonces ra(v)

Fin-Para

Procedimiento ra(v)

Q= Cola vacía

marca[v]= Visitado;

Insertar v en Q

Mientras Q no esté vacía, hacer:

u= Quitar primer elemento de Q

Para cada nodo w adyacente a u no visitado, hacer:

marca[w]= Visitado; Insertar w al final de Q

Fin-Para

Fin-Mientras

■Ejemplo de ejecución: recorrido en anchura:

Paso	V visitado	Q		
1	1	2, 3, 4		
2	2	3, 4, 5, 6		
3	3	4, 5, 6, 7, 8		
4	4	5, 6, 7, 8		
5	5	6, 7, 8		
6	6	7, 8		
7	7	8		
8	8			

Las técnicas de BackTracking, Branch&Bound (ramificación y poda) y de árboles para juegos hacen una exploración de todos los posibles estados de un problema hasta llegar a la solución.

Pueden implementar un recorrido en profundidad, en anchura o variantes que ayuden en la búsqueda

Ventajas

- Fáciles de diseñar.
- Fáciles de implementar.
- Resuelven una gran cantidad de problemas.

Inconvenientes

■Ineficientes en tiempo y en espacio.

Grado en Ingeniería Informática

Algoritmos para exploración en grafos

- Introducción
- 2. Representación de espacios de estados
- 3. La técnica Backtracking
- 4. Las 8 reinas
- 5. Resolución de Sudokus
- 6. El viajante de comercio
- 7. La técnica de Branch&Bound
- 8. Asignación de tareas
- 9. El viajante de comercio

Usaremos árboles/grafos para representar posibles estados de un problema y los movimientos/acciones a realizar para pasar de un estado a otro.

Representación en espacios de estados

- □Cada nodo del grafo representa un estado del problema.
- □Contiene toda la información necesaria para poder diferenciar el estado del problema de cualquier otro.
- Las aristas se asocian a acciones o decisiones a tomar.
- ■Una acción (arista), aplicada sobre un estado del problema da como resultado un cambio de estado a otro conocido.

Ejemplo: El juego de los palillos

Inicialmente, hay **n** palillos sobre la mesa, y dos jugadores A y B. El jugador A comienza el juego quitando 1, 2 ó 3 palillos. Le sigue el jugador B, que también podrá quitar 1, 2 ó 3 palillos. El turno vuelve al jugador A, y estas acciones se repiten hasta que quede un único palillo en la mesa. Aquel que quite este último palillo pierde el juego.

Ejemplo: El juego de los palillos. Representación

- Representaremos el juego como un grafo,
- ☑Cada nodo representa un **estado** del problema (el número de palillos sobre la mesa).
- **©**Cada arista representa un **movimiento** (quitar 1, 2 ó 3 palillos).
- La aplicación de un movimiento conlleva un cambio de estado entre uno inicial y otro final.
- Concretamente, para esta versión del juego se puede dar una estrategia óptima para el jugador 1 haciendo un estudio algebraico. Pero supongamos que no, sólo porque el ejemplo resulta ilustrativo sobre qué es un árbol de estados...)

Algorítmica

Grado en Ingeniería Informática

Algoritmos para exploración en grafos

- Introducción
- 2. Representación de espacios de estados
- 3. La técnica Backtracking
 - 4. Las 8 reinas
 - 5. Resolución de Sudokus
 - 6. El viajante de comercio
 - 7. La técnica de Branch&Bound
 - 8. Asignación de tareas
 - 9. El viajante de comercio

Idea general

- Hacer una búsqueda exhaustiva sobre grafos (árboles) **dirigidos** y **acíclicos**, mediante recorrido en profundidad.
- Se realiza una poda de ramas poco prometedoras en el grafo para acelerar la búsqueda.
- Las soluciones se expresan dependiendo de la representación del problema, como vectores $\mathbf{T}=(\mathbf{x}_1,\ \mathbf{x}_2,\ \mathbf{x}_3,\ ...,\ \mathbf{x}_t)$. Representan a la secuencia de decisiones (arcos del grafo) tomadas desde el estado inicial hasta el estado final objetivo.
- **☑**Criterios de parada: Depende del objetivo perseguido en el problema: a) encontrar todas las soluciones al problema, o b) Encontrar alguna solución.

La técnica Backtracking

Componentes de diseño Backtracking

- ■Buscar una **representación** del tipo **T**=(\mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_t), para las soluciones del problema.
- ☑Identificar las **restricciones explícitas**: Restricciones externas al proceso de encontrar la solución.
- Diseñar la **estructura del árbol/grafo implícito** que define los estados y transiciones entre estados de búsqueda de soluciones.
- Diseñar la **función objetivo**: Criterio de parada para encontrar la solución/soluciones requerida/s.
- Diseñar una **función de poda** $B_k(x_1, x_2, ..., x_k)$ para eliminar la exploración de ramas que deriven en soluciones inadecuadas.

La técnica Backtracking

Plantilla general de un algoritmo backtracking

```
Procedimiento BackTracking(k, T[x<sub>1</sub>..x<sub>1</sub>])
Para cada valor v posible de la variable \mathbf{x}_{k} hacer:
  Si es factible T U {v} entonces
   Si T U {v} es solución entonces Devolver T U {v}
   en otro caso,
     Si k<t entonces
        u= BackTracking(k+1, T U {v})
        Si u es solución entonces Devolver u
     Fin-Si
   Fin-En otro caso
  Fin-Si
Fin-Para
Devolver No hay solución
```


Grado en Ingeniería Informática

Algoritmos para exploración en grafos

- 1. Introducción
- 2. Representación de espacios de estados
- 3. La técnica Backtracking
- 4. Las 8 reinas
 - 5. Resolución de Sudokus
 - 6. El viajante de comercio
 - 7. La técnica de Branch&Bound
 - 8. Asignación de tareas
 - 9. El viajante de comercio

Enunciado

En un tablero de ajedrez de tamaño NxN, se desea colocar N reinas sin que ningún par se dé jaque entre sí.

Las 8 reinas: Componentes Backtracking (I)

- **Representación**: $T(x_1, x_2, ..., x_N)$ es un vector donde cada componente **i** representa una columna del tablero y cada valor $\mathbf{x_i}$ es la fila donde se colocará la reina de la i-ésima columna.
- **Restricciones implícitas**: $\mathbf{x_i}$ tendrá valores entre 1 y N (inclusive), la fila donde se colocará la i-ésima reina.
- Restricciones explícitas: No puede haber 2 reinas en la misma fila, en la misma columna, o en la misma diagonal.

Las 8 reinas: Componentes Backtracking (II)

- Representación del árbol implícito:
 - El **estado inicial** será el vector T=(0)_N, donde el 0 indica que no hay cada nivel i del árbol asignamos la reina de la i-ésima columna a una fila del tablero.
 - En cada nivel del árbol trataremos de solucionar la posición i del vector (i-ésima columna).
 - ☑ Cada estado tiene las siguientes acciones (arcos): Poner la reina de la columna i asociada al estado (nivel del estado en el árbol) en cada posición de 1 a N.
 - El **estado final** o **solución** se dará cuando todo el vector esté relleno cumpliendo con restricciones implícitas y explícitas.

Las 8 reinas: Componentes Backtracking (III)

Representación del árbol implícito:

Las 8 reinas: Componentes Backtracking (IV)

- **Función objetivo**: Encontrar un vector $T(x_1, x_2, ..., x_N)$ que sea solución al problema (N reinas colocadas en el tablero sin darse jaque).
- **Función de poda**: Al hacer $T(x_1, x_2, ..., x_{k-1})$ U x_k, x_k debe cumplir:
 - ☑ Implícitamente por la representación usada para T, no puede hacer 2 reinas en la misma columna.
 - No existe x_i , con i<k, tal que $x_i=x_k$. (Dos reinas en la misma fila).
 - No existe x_i , con i<k, tal que abs (x_i-x_k) = abs(i-k).

Las 8 reinas: Diseño del algoritmo

Procedimiento Soluc(N)

 $T=(0, 0, 0, ..., 0)_N$ **Devolver** NReinas(1, T)

```
Procedimiento BTNReinas(k, T[1..N])
```

```
Para i=1..N, hacer:
 T[k]=i
 Si T es factible entonces
   Si k=N entonces Devolver T
   en otro caso,
     Si k<N entonces
       T = BTNReinas(k+1, T)
       Si T es solución entonces Devolver T
     Fin-Si
   Fin-En otro caso
 Fin-Si
Fin-Para
Devolver No hay solución
```


Las 8 reinas: Implementación.

```
Dool SolucionarNReinas(int *sol, int k, int N) {
19
20
21
           if (k>=N) return true; // Todo relleno. Solución encontrada
22
23
           // Probamos con cada posición (fila) para la columna k
           for (int i= 0; i<N; i++) {
24
25
26
               sol[k]=i;
27
28
               // Comprobamos factibilidad
29
               if (factible(sol, k)) {
30
                   bool solucion= SolucionarNReinas(sol, k+1, N);
31
                   if (solucion) // Si se ha encontrado solución, salimos y no continuamos el bucle
32
                       return true:
33
34
35
36
           // No se ha encontrado solución: Vuelta atrás
           sol[k]= -1:
37
           return false:
38
39
```


Algorítmica

Grado en Ingeniería Informática

Algoritmos para exploración en grafos

- Introducción
- 2. Representación de espacios de estados
- 3. La técnica Backtracking
- 4. Las 8 reinas
- 5. Resolución de Sudokus
- 6. El viajante de comercio
- 7. La técnica de Branch&Bound
- 8. Asignación de tareas
- 9. El viajante de comercio

Enunciado (I)

- Un Sudoku es un pasatiempo matemático que consiste en rellenar con números del 1 al 9 una tabla de 9x9 elementos, dividida en subcuadrículas de 3x3, con casillas rellenadas previamente. Las normas del pasatiempo son:
 - No puede haber dos casillas en la misma fila con el mismo número.
 - No puede haber dos casillas en la misma columna con el mismo número.
 - No puede haber dos casillas, en la misma subcuadrícula de 3x3, con el mismo número.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Enunciado (II)

Para solucionar un sudoku, es necesario escribir números entre 1 y 9 en todas las casillas que quedan vacías, de modo que cumplan las 3 reglas anteriores.

Las casillas que pueden modificarse son sólo aquellas que al comienzo están vacías.

3
1
6
5
9
3

Resolución de Sudokus: Componentes Backtracking (I)

- **Representación**: $T(x_1, x_2, ..., x_N)$, con N=9*9=81, se representará como una matriz S(i, j) conteniendo el dígito entre 1 y 9 que haya en la fila **i**, columna **j** del tablero, con **1**<=**i**,**j**<=**9**.
 - La componente del vector \mathbf{x}_k se asociará a la fila de la matriz S con la siguiente proyección: $\mathbf{k}=(\mathbf{i}^*(\mathbf{9}-\mathbf{1})+\mathbf{j})$
 - Para diferenciar entre casillas modificables y no modificables, las que no se puedan alterar tendrán el valor en negativo.
 - Las casillas que no tengan valor asignado tendrán valor 0
- **Restricciones implícitas**: \mathbf{x}_{k} tendrá valores entre 1 y 9 (inclusive), el dígito asociado a la k-ésima celda de la matriz S(i,j)

Resolución de Sudokus: Componentes Backtracking (II)

Restricciones explícitas:

- No puede haber 2 valores distintos de 0 iguales (en valor absoluto), en la misma fila i; es decir: S(i,j)!=S(i,k) para todo i.
- No puede haber 2 valores distintos de 0 iguales (en valor absoluto), en la misma columna i; es decir: S(j, i)!=S(k, i) para todo i.
- No puede haber 2 valores distintos de 0 iguales (en valor absoluto), en la misma subcuadrícula de 3x3. Es decir:

```
S(i,j) != S(a,b) para todo S(i,j),S(a,b) distintos de 0 tal que:

(i,j), (a,b) estén en (1..3, 1..3) o

(i,j), (a,b) estén en (1..3, 4..6) o

(i,j), (a,b) estén en (1..3, 7..9) o...

... (i,j), (a,b) estén en (7..9, 7..9)
```


Resolución de Sudokus: Componentes Backtracking (II)

- Representación del árbol implícito:
 - El **estado inicial** será la matriz S(i,j)=0 en todas las casillas vacías, salvo en las que no se pueden modificar que tendrán valores desde 1 hasta -9.
 - ☑ En cada nivel del árbol trataremos de solucionar la posición k del vector, con k=(i*(9-1)+j), recorriendo la matriz de izquierda a derecha y de arriba abajo.
 - ☑ Cada estado tiene las siguientes acciones (arcos): Si la casilla está vacía, asignar un número entre 1 y 9 válido.
 - El estado final o solución se dará cuando toda la matriz S esté rellena cumpliendo con restricciones implícitas y explícitas.

Resolución de Sudokus: Componentes Backtracking (IV)

- **Función objetivo**: Encontrar una matriz S(1..9,1..9) que sea solución al problema (todas las casillas del Sudoku rellenas).
- Función de poda: Al hacer S(i,j)= valor, se deberá podar si:
 - ☑ Dos casillas de la misma fila no vacías tienen igual valor. Es decir, si S(i,j) =S(i,k) para todo i, y S(i,j) != 0
 - ☑ Dos casillas de la misma columna no vacías tienen igual valor. Es decir, si S(j,i) =S(k,i) para todo i, y S(j,i) != 0
 - Dos casillas del mismo subrecuadro de 3x3 no vacías tienen el mismo valor. Es decir, S(i,j)=S(a,b), S(i,j)!=0, y:
 - Floor(i/3)=Floor(a/3) y Floor(j/3)=Floor(b/3),

Donde Floor(x) representa parte entera.

Resolución de sudokus: Diseño del algoritmo

Procedimiento Soluc(N)

S= Matriz inicial

Devolver Sudoku(1, S)

```
Procedimiento Sudoku(k, S[1..9, 1..9])
Calcular j = (k-1)\%9+1, i = (k-1)/9+1
Si (k>81) devolver S; en otro caso:
 Si (k<=0) devolver Sudoku (k+1, S); en otro caso:
   Para v=1..9, hacer:
    S(i,j) = v
    Si S es factible entonces
      S'= Sudoku(k+1, S)
      Si S' es solución Devolver S'
    Fin-Si
   Fin-Para
   S(i,j) = 0
 Fin-En otro caso
 Devolver No hay solución
```


Resolución de sudokus: Implementación.

```
63

□ bool Sudoku(int k, int T[9][9]) {
64
65
            if (k>80)
                 return true; // En T está la solución
66
67
68
            int i, j; // Coordenadas de la matriz correspondientes a |
69
70
            do {
71
                 i= k%9;
72
                 i = k/9:
73
                 if (T[i][i] < 0)</pre>
74
                     k++:
75
                 if (k>80)
76
                     return true:
77
             } while (T[i][j]<0 );</pre>
78
79
            // Para cada valor posible en el nivel k...
80
            for (int v= 1; v<=9; v++) {
81
82
                T[i][j] = v;
83
84
                 // Si es factible, llamar al nivel siguiente
85
                 if (esfactible(T, i, j) && Sudoku(k+1, T))
86
                         return true:
87
88
89
            T[i][j] = 0;
90
            return false;
91
```


Algorítmica

Grado en Ingeniería Informática

Algoritmos para exploración en grafos

- Introducción
- 2. Representación de espacios de estados
- 3. La técnica Backtracking
- 4. Las 8 reinas
- 5. Resolución de Sudokus
- 6. El viajante de comercio
 - 7. La técnica de Branch&Bound
 - 8. Asignación de tareas
 - 9. El viajante de comercio

Enunciado del problema

Sea un grafo G=(V,A), **no dirigido**, **completo**, con V vértices y A aristas, donde las **aristas están ponderadas con pesos no negativos**.

El problema del viajante de comercio consiste en:

"Encontrar el circuito hamiltoniano minimal del grafo G."

Ejemplo de problema tipo del viajante de comercio

Un repartidor de periódicos sale todas las mañanas de su almacén, y debe repartir la mercancía por todos los kioskos de la ciudad. Diseñar una ruta que le permita repartir los periódicos en todos los kioskos y terminar en el almacén de donde partió, sin repetir ningún kiosko y haciendo que la ruta completa tenga un coste mínimo.

El viajante de comercio: Componentes Backtracking (I)

- **Representación**: $T(x_1, x_2, ..., x_N)$, con N=número de nodos del grafo.
 - La componente del vector $\mathbf{x}_{\mathbf{k}}$ se asociará al nodo que hay que visitar en la k-ésima posición.
- **☑Restricciones implícitas**: **x**_k tendrá valores entre 1 y N (inclusive)
- Restricciones explícitas:
 - No puede visitarse el mismo nodo dos veces. Formalmente:

$$\mathbf{x_i}! = \mathbf{x_j}$$
 para todo i,j

- **Función objetivo**: Encontrar un vector $T(x_1, x_2, ..., x_N)$ tal que el circuito hamiltoniano que representa sobre el grafo sea mínimo.
- **Función de poda**: Al hacer $T(x_1, x_2, ..., x_{k-1})$ U x_k, x_k debe cumplir: $x_k!$ = x_i para todo i<k

El viajante de comercio: Componentes Backtracking (II)

- Representación del árbol implícito:
 - El **estado inicial** será el vector T={1, 0, 0...0}_N en todas las casillas vacías, salvo en la primera, que supondrá que se parte desde el nodo 1.
 - En **cada nivel** del árbol trataremos de solucionar la posición **k** del vector, asignando un nodo no visitado.
 - ☑ Cada estado tiene las siguientes acciones (arcos): Tantos arcos como nodos aún queden por visitar y que puedan ser sucesores del nodo del estado actual.
 - El **estado final** o **solución** se dará cuando el vector esté relleno y el circuito hamiltoniano que representa tenga longitud mínima.

Resolución de sudokus: Diseño del algoritmo

Procedimiento [MejorSol]= Soluc(G=<V,A>)

N = |V|;

 $T = \{1, 0, 0, ..., 0\}_{N}$

MejorSolucion= $\{0, 0, 0, ..., 0\}_{N}$, con coste(MejorSolucion)= ∞

TSP(G, MejorSol, T, 2)

Devolver MejorSol]

Procedimiento TSP(G =<V,A>, MS, T, k)

Soluciona la componente k del vector T sobre el grafo G.

El parámetro MS representa a la mejor solución encontrada hasta el momento.

Resolución de sudokus: Diseño del algoritmo

```
Procedimiento TSP(G =<V,A>, MS, T, k)
Para cada nodo i=1..|V|
 Si i no ha sido utilizado en T[1..k-1], entonces:
   T[k]=i;
   Si k=|V|, entonces:
      Si coste(T) mejor que coste(MS), entonces:
         Actualizar MS= T
      Fin-Si
   En otro caso, si k<|V|:
     Resolver TSP(G, MS, T, k+1)
   Fin-En otro caso
 Fin-Si
Fin-Para
Devolver MS
```


Algorítmica

Grado en Ingeniería Informática

Algoritmos para exploración en grafos

- Introducción
- 2. Representación de espacios de estados
- 3. La técnica Backtracking
- 4. Las 8 reinas
- 5. Resolución de Sudokus
- 6. El viajante de comercio
- 7. La técnica de Branch&Bound
- 8. Asignación de tareas
- 9. El viajante de comercio

Algoritmos para exploración en grafos

La técnica Branch&Bound (ramificación y poda)

Terminología

- Nodo vivo: Nodo del espacio de soluciones del que no se han generado/visitado aún todos sus hijos.
- Nodo en curso (o en expansión): nodo del que se están generando (visitando) hijos.
- Nodo muerto: nodo del que no se van a generar más hijos porque:
 - A) es un nodo hoja,
 - B) se poda,
 - C) no producirá una solución mejor que la solución en curso

Diferencias entre Branch&Bound y Backtracking

- **Backtracking:** Tan pronto se puede pasar a generar/visitar un nodo, se hace. (*Los únicos nodos vivos son lo que hay desde la raíz del árbol hasta el nodo actual*)
- **Branch&Bound**: Se generan todos los nodos hijos del nodo en curso (nodo actual) antes de que cualquier otro nodo vivo pase a ser el nodo en curso. Por tanto, se deben almacenar los nodos vivos en una estructura de datos auxiliar: **Lista de nodos vivos**.

Diferencias entre Branch&Bound y Backtracking

- Ventajas de Backtracking:
 - Es más fácil de implementar.
 - Tiene menos requisitos de memoria.
- Ventajas de Branch&Bound:
 - Revisa menos estados para llegar a la solución.
 - Es más eficiente

Componentes de diseño Branch&Bound

- **Representación** de una solución en un vector $(x_1, x_2, ..., x_n)$
- **Función objetivo** que determina si la solución actual es óptima.
- **Restricciones implícitas**: Valores de cada x_i
- **Restricciones explícitas:** Las que no dependen de la representación del problema.
- **Función de elección** para seleccionar qué nodo es mejor para considerarlo en curso.
- **Cálculo de cotas**, para eliminar partes del árbol que no van a proporcionar la solución o para seleccionar el camino más prometedor.
- Organizar el problema en un árbol de búsqueda.

Cálculo de cotas en Branch&Bound

Hay 2 tipos de cotas. Suponiendo problemas de minimización:

- **Cota Superior:** Coste de una solución válida que no debe sobrepasarse.
- **Cota Inferior:** Valor estimado de un nodo **n** del árbol, calculado como el coste real de viajar desde la raíz hasta **n** + estimación para llegar desde **n** hasta un nodo hoja.

La idea básica de un algoritmo B&B consiste en explorar antes los nodos más prometedores del árbol de estados, eliminando nodos no factibles o que tengan una cota inferior peor o igual que el coste de la mejor solución conocida al problema (cota superior). Se hace uso de una cola con prioridad para ordenar los nodos vivos de más prometedor a menos prometedor.

Plantilla general de un algoritmo Branch&Bound

```
Procedimiento BranchAndBound(Problema P)
C= Cola con prioridad vacía
MS= solución inicial al problema P // Cálculo de cota superior (trivial, greedy, etc.)
Crear r=nodo raiz del árbol de estados del problema P
Insertar r en C
Mientras C no esté vacía, hacer:
 x= Quitar Primer Elemento de C
 Para cada hijo v posible de x hacer:
  Si v es nodo hoja entonces: // Si v es solución factible
    Si coste(v) mejor que coste(MS), entonces: // Actualizar cota superior
      actualizar MS= solución asociada al nodo v
      Eliminar de C todos los nodos c con cotaInferior(c)>=coste(MS)
    Fin-Si
   En otro caso, Si CotaInferior(v) < coste(MS), insertar v en C
 Fin-Para
Fin-Mientras
Devolver MS
```


Algorítmica

Grado en Ingeniería Informática

Algoritmos para exploración en grafos

- 1. Introducción
- 2. Representación de espacios de estados
- 3. La técnica Backtracking
- 4. Las 8 reinas
- 5. Resolución de Sudokus
- 6. El viajante de comercio
- 7. La técnica de Branch&Bound
- 8. Asignación de tareas
 - 9. El viajante de comercio

Enunciado

Sean n tareas a repartir entre n personas. Suponiendo que el coste de que la persona \mathbf{i} se asigne a la tarea \mathbf{j} es \mathbf{c}_{ii} . Asignar las tareas a las personas de modo que el coste total sea mínimo.

Ejemplo: con n=3

	T1	T2	T3
P1	4	7	က
P2	2	6	1
Р3	3	9	4

Asignación óptima:

P1= T2

P2 = T3

P3= T1

Coste= 11

Elementos Branch&Bound (I)

- **Representación**: $T(x_1, x_2, ..., x_n)$ es un vector donde cada componente **i** representa una persona y $\mathbf{x_i}$ es la tarea asignada a esa persona.
- **Restricciones implícitas**: \mathbf{x}_{i} tendrá valores entre 1 y n (inclusive), la tarea asignada a la persona **i**.
- **☑Restricciones explícitas**: No puede haber 2 personas haciendo la misma tarea.
- Árbol del estados:
 - Nodo raíz: No hay asignada ninguna persona a ninguna Tarea
 - En cada nivel i del árbol se asigna una tarea a la persona i.
 - Nodo hoja: Tiene todas las personas/tareas asignadas
- **☑Función objetivo**: Encontrar una asignación óptima que haga mínimo el coste total.

Elementos Branch&Bound (II)

Cálculo de cotas:

- Cota inicial (superior): Solución trivial asignando la persona i a la tarea i
- Cota de nodos (inferior): Suponiendo escogidos las k-ésimas primeras personas y sus tareas asignadas, acotamos los restantes eligiendo para cada tarea el menor coste (cota mínima), tanto si es una solución válida como si no
- **Poda**: Se calcula el coste de la asignación realizada hasta el nivel actual + la cota hasta llegar a la solución. Los nodos con cota mínima mayor que este coste, se podan.

	T1	T2	Т3	T4
P1	11	12	18	40
P2	14	15	13	22
Р3	11	17	19	23
P4	17	14	20	28

	T1	T2	Т3	T4
P1	11	12	18	40
P2	14	15	13	22
Р3	11	17	19	23
P4	17	14	20	28

Cota para la solución inicial (superior)
Pi= i= 11+15+19+28= 73.

Si en alguna rama se estima una cota mínima superior a 73, se poda.

Estimación de cota (inferior) para la raíz: Para cada tarea sin asignar, se calcula su mínimo coste: 11+12+13+22= **55**

Lo mínimo posible a alcanzar es 55, aunque esta solución no sea factible por tener P1 y P2 asignadas varias tareas.

Algoritmos para exploración en grafos

Representación de espacios de estados

Ejemplo: con n=4

	T1	T2	Т3	T 4
P1	11	12	18	40
P2	14	15	13	22
Р3	11	17	19	23
P4	17	14	20	28

T4 T3 P1 11 12 18 40 **P2** 14 15 13 22 23 **P3** 11 17 19 17 20 28 **P4** 14

Estimación de coste para P1= 1

Para cada tarea sin asignar, se calcula su mínimo coste: 11+14+13+22= **60**

Estimación de coste para P1= 2

Para cada tarea sin asignar, se calcula su mínimo coste: 11+12+13+22= **58**

Árbol de estados para asignación de P1.

- Se poda P1=4 porque es mayor que la cota, 78>73.
- Hacemos P1=2 nodo en expansión, porque es el más prometedor.

- Expandimos nodo más prometedor.
- ☑Árbol de estados para asignación de P1=2, P2=¿?.

Expandimos nodo más prometedor, P2=3

- Expandimos nodo más prometedor.
- Árbol de estados para asignación de P1=2, P2=3

Actualizamos cota máxima= 64

- Expandimos nodo más prometedor.

Actualizamos cota máxima= 64. Se podan los nodos con cota mínima igual o superior a dicha cota máxima.

- Expandimos nodo vivo de menor coste: P1= 1

- Seleccionamos nodo en expansión P2=3
- Árbol de estados para asignación de P1=1, P2=3

- Actualizamos cota superior = 61. Podamos nodos con cota mínima >=61.
- No quedan nodos vivos. Fin. Coste de la solución: 61.

Algorítmica

Grado en Ingeniería Informática

Algoritmos para exploración en grafos

- 1. Introducción
- 2. Representación de espacios de estados
- 3. La técnica Backtracking
- 4. Las 8 reinas
- 5. Resolución de Sudokus
- 6. El viajante de comercio
- 7. La técnica de Branch&Bound
- 8. Asignación de tareas
- 9. El viajante de comercio

Enunciado del problema

Sea un grafo G=(V,A), **no dirigido**, **completo**, con V vértices y A aristas, donde las **aristas están ponderadas con pesos no negativos**.

El problema del viajante de comercio consiste en:

"Encontrar el circuito hamiltoniano minimal del grafo G."

Elementos Branch&Bound (I)

- **Representación**: $T(x_1, x_2, ..., x_n)$ es un vector donde cada componente **i** representa una posición y $\mathbf{x_i}$ es el nodo que se visita en la i-ésima posición. El valor n=número de nodos del grafo.
- **☑Restricciones implícitas: x**_i tendrá valores entre 1 y n (inclusive).
- **Restricciones explícitas**: No puede haber un nodo visitado dos veces, $x_i!=x_j$ para todo i,j
- Árbol del estados:
 - Nodo raíz: Vector T={1, 0, 0, ..., 0}_n, Suponiendo que se parte de la ciudad 1
 - En cada nivel i del árbol se resuelve el nodo que se visita en la iésima posición.
 - Nodo hoja: Tiene todos los nodos asignados

Elementos Branch&Bound (II)

□Función objetivo: Encontrar una ruta óptima para el circuito hamiltoniano que representa la solución

Cálculo de cotas:

- Cota inicial (superior): Solución trivial asignando el nodo i en la iésima posición a visitar.
- ☑ Cota de nodos (inferior): Suponiendo escogido el orden de visita de los nodos para las k-ésimas posiciones, acotamos las siguientes seleccionando el arco de valor mínimo entre los nodos que aún no han sido visitados, tanto si es una solución válida como si no
- **Poda**: Se calcula el coste de la asignación realizada hasta el nivel actual + la cota hasta llegar a la solución. Los nodos con cota mínima mayor que este coste, se podan.

Ejercicio:

Realizar la ejecución del algoritmo diseñado para el grafo dado por la matriz de adyacencia de la diapositiva.

	1	2	3	4
1	11	12	18	40
2	14	15	13	22
3	11	17	19	23
4	17	14	20	28

Algorítmica Grado en Ingeniería Informática

Tema 5 - Algoritmos para exploración en grafos

Este documento está protegido por la Ley de Propiedad Intelectual (Real Decreto Ley 1/1996 de 12 de abril). Queda expresamente prohibido su uso o distribución sin autorización del autor. Manuel Pegalajar Cuéllar manupc@ugr.es

Departamento de Ciencias de la Computación e Inteligencia Artificial http://decsai.ugr.es