SRN

PES University, Bengaluru (Established under Karnataka Act 16 of 2013)

UE17/18/19/20CY101

END SEMESTER ASSESSMENT (ESA) B TECH. MAY 2022 UE17/18/19/20CY101 - ENGINEERING CHEMISTRY

Duration: 3 HOURS Maximum Marks: 100 ANSWER ALL QUESTIONS

1.	a	For a rigid diatomic molecule:	8
		(i) Draw the energy level diagram for a rigid rotor diatomic molecule upto J=3.	
		(ii) Write the corresponding spectrum obtained from the transition.	
		(iii) Calculate the energy required (in cm ⁻¹) for the molecule to move from J=2 to J=3 level	
		if B=10.56 cm ⁻¹ .	
		(iv) Calculate the reduced mass and moment of inertia for HCl molecule if the bond length is	
		127 pm. (Given: 1 amu = 1.66×10^{-27} kg, C= 3×10^8 m/s, atomic masses of H and Cl are	
		1.008 and 35.45 amu respectively)	
	b	For a HF molecule which behaves like a harmonic oscillator, the vibrational spectrum shows a	6
		fundamental frequency at 4162.97 cm ⁻¹ .	
		(i) What is the applicable selection rule?	
		(ii) Calculate reduced mass and force constant.	
		(iii) Calculate the zero point energy.	
1		(Given: C=3 x 10^8 m/sec, Π =3.14, N=6.02 x 10^{23} , 1 amu =1.66x 10^{-27} kg, molar mass of	
		H=1.004g, F=18.998g).	
	С	State Born-Oppenheimer approximation.	2
	d	Give the classification of nanomaterials with example.	4
	<u> </u>		
2	à	For a Pb-Ag system:	3
-		(i) Give the temperature and composition values at eutectic point	
		ii) Calculate the degrees of freedom at eutectic point.	
	ь	How many phases and components present for the following system?	2
		$CaCO_3(s)$ \iff $CaO(s) + CO_2(closed system)$	
	С	A silver electrode containing 0.15M silver nitrate and copper electrode containing 0.19M	8
		copper sulphate were coupled using salt bridge. Write the cell representation, half cell	
		reactions. Calculate E°_{Cell} , E_{Cell} at 25 °C and Wmax.	
		(Given: $E_{Ag/Ag}^{\circ} = 0.8V$; $E_{Cu/Cu}^{\circ} = 0.34V$)	
	d	Discuss the construction and working of a calomel electrode. Write any two advantages of	7
		calomel electrode.	
3	a	Describe the construction and working of Lithium-ion battery.	4
	b	i) Define electricity storage density of a battery.	6
		ii) Calculate the capacity(Ah), energy density(Wh/kg) and electricity storage density(Ah/kg) of	
		Zn-air battery, if 2.6 g of Zn is stored in the battery weighing 72.0 g. (Given: Voltage available	
		from the battery = 1.39 V and gram molar mass of Zn = 65.38)	
-	С	Give the construction & working of H ₂ -O ₂ alkaline fuel cell. Calculate the efficiency of the fuel	6
		cell, if its cell potential is 1.235V.	
		(Given the enthalpy of formation of water is -285.83 kj/mole).	
	d	Mark the regions in which the following energy storage devices appear in the ragone plot.	4
1		(i)Fuel cell (ii)Li-ion battery (iii)Supercapacitor	

4	a	Explain the differential metal and differential aeration corrosion with an example.	6
	b	Discuss how the following factors affect corrosion: (i) Nature of the metal (ii) pH	4
	С	Explain the process of Galvanization, mention one advantage and disadvantages of galvanization.	6
	d	What is cathodic protection? Explain sacrificial anodic method.	4
5	a	Draw the structure of monomer used to synthesize Kevlar. Write two reasons why Kevlar is stronger than steel an equal weight basis. Mention two applications of Kevlar.	6
	b	Give the synthesis of butyl rubber.	4
	С	Calculate the number average, weight average and viscosity average of a polymer having 15 molecules of molecular weight is 1800, 20 molecules of molecular weight is 2200 and 25 molecules of molecular weight is 2800. (Given a=0.64)	6
	d	Explain these principles of green chemistry with example: (i) Prevent waste (ii) Safer synthesis	4
		* * * * * * *	