

Efficient solvers for constrained optimization in structural mechanics

Naoufal NIFA

Industrial framework

▶ EDF : an operator of electric power production.

 Ensure proper functioning of production structures and optimize their availability.

► Some alternators : Strong impact on the rate of unavailability of equipment

- Some alternators: Strong impact on the rate of unavailability of equipment
- ▶ Reduction of vibration levels : evaluation of corrective solutions

- Some alternators: Strong impact on the rate of unavailability of equipment
- ▶ Reduction of vibration levels : evaluation of corrective solutions

- Some alternators: Strong impact on the rate of unavailability of equipment
- ▶ Reduction of vibration levels : evaluation of corrective solutions

- Some alternators: Strong impact on the rate of unavailability of equipment
- ▶ Reduction of vibration levels : evaluation of corrective solutions

It is difficult to build a Model

Toward a new model

Prediction of dynamic response levels...

► Complex system : assembly, Multiphysics

Toward a new model

Prediction of dynamic response levels...

► Complex system : assembly, Multiphysics

... In a context of severe lack-of-knowledge

- Manufacturing process inducing high variability
- Imprecise tests for model validation in operation
- Absence of plan, materials data, etc.
- Evolutionary behaviour
 - → Need for a predictive model

Construction of the hybrid model

Ingredients

- ► Hybrid model = numerical model + experimental model
- Finite element numerical model of the structure with the mass matrix $M = M(\theta) \in \mathbb{R}^n$ and the stiffness matrix $K = K(\theta) \in \mathbb{R}^n$
- **Each** numerical couple of eigenvalue and eigenvector $(\omega_{\theta}, \varphi_{\theta})$ satisfies :

$$(K(\theta) - \omega_{\theta}^2 M(\theta))\varphi_{\theta} = 0, \varphi_{\theta} \neq 0$$

- Experimental modal basis is available $(\omega_{exp}, \phi_{exp})$
- → Expansion of the experimental modes on the numerical model in order to compute the response

- φ is the best estimation of φ_{θ} , minimizing the distance with the $\phi_{\it exp}$ at the pulsation $\omega_{\it exp}$.
- lacksquare ψ is an error in stiffness in the model. It satisfies :

$$K(\theta)\psi = (K(\theta) - \omega_{\exp}^2 M(\theta))\varphi,$$

- φ is the best estimation of φ_{θ} , minimizing the distance with the ϕ_{\exp} at the pulsation ω_{\exp} .
- \blacktriangleright ψ is an error in stiffness in the model. It satisfies :

$$K(\theta)\psi = (K(\theta) - \omega_{\exp}^2 M(\theta))\varphi,$$

▶ Quadratic problem → Model error + numerical/experimental distance

$$e_{\omega}(\varphi, \psi, \theta) = \frac{1}{2} \psi^{\mathsf{T}} \mathsf{K}(\theta) \psi + \frac{r}{2(1-r)} (\mathsf{\Pi} \varphi - \phi_{\mathsf{exp}})^{\mathsf{T}} \mathsf{K}_{r} (\mathsf{\Pi} \varphi - \phi_{\mathsf{exp}})$$

- φ is the best estimation of φ_{θ} , minimizing the distance with the ϕ_{\exp} at the pulsation ω_{\exp} .
- \blacktriangleright ψ is an error in stiffness in the model. It satisfies :

$$K(\theta)\psi = (K(\theta) - \omega_{\exp}^2 M(\theta))\varphi,$$

▶ Quadratic problem → Model error + numerical/experimental distance

$$e_{\omega}(\varphi, \psi, \theta) = \frac{1}{2} \psi^{\mathsf{T}} \mathsf{K}(\theta) \psi + \frac{r}{2(1-r)} (\mathsf{\Pi} \varphi - \phi_{\mathsf{exp}})^{\mathsf{T}} \mathsf{K}_{\mathsf{r}} (\mathsf{\Pi} \varphi - \phi_{\mathsf{exp}})$$

there are kinematic linear constraints which are described as follows :

$$C\varphi = 0$$
, $C\psi = 0$

where $C \in R^{m \times n}$ represents m linear relations coming from the kinematic boundary conditions.

▶ Minimizing the cost function :

$$\begin{cases}
f_{\omega}(\varphi, \psi, \lambda, \lambda_{1}, \lambda_{2}, \theta) = e_{\omega}(\varphi, \psi, \theta) + c_{\omega}(\varphi, \psi, \lambda, \lambda_{1}, \lambda_{2}, \theta) \\
c_{\omega}(\varphi, \psi, \lambda, \lambda_{1}, \lambda_{2}, \theta) = \lambda^{T}((K(\theta) - \omega_{exp}^{2}M(\theta))\varphi - K(\theta)\psi) - \lambda_{1}^{T}C\psi + \lambda_{2}^{T}(C\psi - C\varphi)
\end{cases}$$

Stationarity conditions :

$$\begin{cases} \frac{\partial f_{\omega}}{\partial \varphi} = 0 \iff \frac{r}{1-r} \Pi^{T} K_{r} (\Pi \varphi - \phi_{exp}) + (K(\theta) - \omega_{exp}^{2} M(\theta)) \lambda - C^{T} \lambda_{2} = 0 \\ \frac{\partial f_{\omega}}{\partial \psi} = 0 \iff K(\theta) \psi - K(\theta) \lambda + C^{T} \lambda_{2} - C^{T} \lambda_{1} = 0 \end{cases}$$

$$\begin{cases} \frac{\partial f_{\omega}}{\partial \psi} = 0 \iff K(\theta) \psi + (K(\theta) - \omega_{exp}^{2} M(\theta)) \varphi = 0 \\ \frac{\partial f_{\omega}}{\partial \lambda} = 0 \iff C \psi = 0 \end{cases}$$

$$\frac{\partial f_{\omega}}{\partial \lambda_{1}} = 0 \iff C \psi = 0$$

Minimizing the cost function yields the following saddle-point linear system :

$$\begin{bmatrix} -K(\theta) & -C^T & K(\theta) - \omega_{exp}^2 M(\theta) & C^T \\ -C & 0 & C & 0 \\ K(\theta) - \omega_{exp}^2 M(\theta) & C^T & \frac{r}{1-r} \Pi^T K_r \Pi & 0 \\ C & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \psi \\ \lambda_1 \\ \varphi \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \frac{r}{1-r} \Pi^T K_r \phi_{exp} \\ 0 \end{bmatrix}$$

Minimizing the cost function yields the following saddle-point linear system :

$$\begin{bmatrix} -K(\theta) & -C^T & K(\theta) - \omega_{exp}^2 M(\theta) & C^T \\ -C & 0 & C & 0 \\ K(\theta) - \omega_{exp}^2 M(\theta) & C^T & \frac{r}{1-r} \Pi^T K_r \Pi & 0 \\ C & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \psi \\ \lambda_1 \\ \varphi \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \frac{r}{1-r} \Pi^T K_r \phi_{exp} \\ 0 \end{bmatrix}$$

▶ If we consider the constrained stiffness and mass matrices :

$$\widetilde{K} = \begin{bmatrix} K(\theta) & C^T \\ C & 0 \end{bmatrix}, \qquad \widetilde{M} = \begin{bmatrix} M(\theta) & 0 \\ 0 & 0 \end{bmatrix}$$

Then:

$$\left[\begin{array}{cc} -\widetilde{K}(\theta) & \widetilde{K}(\theta) - \omega_{\exp}^2 \widetilde{M}(\theta) \\ \widetilde{K}(\theta) - \omega_{\exp}^2 \widetilde{M}(\theta) & \frac{r}{1-r} \widetilde{\Pi}^T \widetilde{K}_r \widetilde{\Pi} \end{array}\right] \left[\begin{array}{c} \widetilde{\psi} \\ \widetilde{\varphi} \end{array}\right] = \left[\begin{array}{c} \widetilde{0} \\ \frac{r}{1-r} \widetilde{\Pi}^T \widetilde{K}_r \widetilde{\phi}_{\exp} \end{array}\right]$$

8/21

- Nonsingular matrix
- But : Large band, bad fill-in ratio, highly indefinite ...

The pattern of the studied saddle point matrix (left) and a finite element matrix in (right)

Mechanical solvers

• for an industrial structure model with more than 10^6 dofs and few hundreds of measurement points (i.e. $N\approx 10^6$ and $n\approx 100$), MD Nastran® provides a huge computation cost for a single calculation.

Mechanical solvers

The linear system could be described in equivalent form as follows :

$$A = \begin{bmatrix} -A & -C^T & B^T & C^T \\ -C & 0 & C & 0 \\ B & C^T & T & 0 \\ C & 0 & 0 & 0 \end{bmatrix} \equiv \begin{bmatrix} -A & B^T & -C^T & C^T \\ B & T & C^T & 0 \\ \hline -C & C & 0 & 0 \\ C & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \widetilde{A} & \widetilde{C}^T \\ \widetilde{C} & 0 \end{bmatrix}$$

where
$$A = K(\theta) \in \mathbb{R}^{n \times n}$$
, $B = K(\theta) - \omega_{\text{exp}}^2 M(\theta) \in \mathbb{R}^{n \times n}$ and $T = \frac{r}{1-r} \Pi^T K_r \Pi$.

The fundamental nullspace basis of \widetilde{C} , is described using :

- $\widetilde{Z} \in \mathbb{R}^{2n \times 2(n-m)}$ such that $range(\widetilde{Z}) = Ker(\widetilde{C})$
- $-\widetilde{Y} \in \mathbb{R}^{2n \times 2m}$ such that $Im(\widetilde{Y}) = Im(\widetilde{C}^T)$. We can take $\widetilde{Y} = \widetilde{C}^T$ which is the description of $Im(\widetilde{C}^T)$ in canonical basis.

$$NB = \left[\begin{array}{ccc} \widetilde{C}^T & \widetilde{Z} & 0 \\ 0 & 0 & \mathbb{I}_{2m} \end{array} \right]$$

► The equivalent linear system is as follows :

$$\mathcal{A} \equiv \left[\begin{array}{ccc} \widetilde{C} & 0 \\ \widetilde{Z}^T & 0 \\ 0 & \mathbb{I}_{2m} \end{array} \right] \left[\begin{array}{ccc} \widetilde{A} & \widetilde{C}^T \\ \widetilde{C} & 0 \end{array} \right] \left[\begin{array}{ccc} \widetilde{C}^T & \widetilde{Z} & 0 \\ 0 & 0 & \mathbb{I}_{2m} \end{array} \right] = \left[\begin{array}{ccc} \widetilde{C}\widetilde{A}\widetilde{C}^T & \widetilde{C}\widetilde{A}\widetilde{Z} & \widetilde{C}\widetilde{C}^T \\ \widetilde{Z}^T\widetilde{A}\widetilde{C}^T & \widetilde{Z}^T\widetilde{A}\widetilde{Z} & 0 \\ \widetilde{C}\widetilde{C}^T & 0 & 0 \end{array} \right]$$

▶ The equivalent linear system is as follows :

$$\mathcal{A} \equiv \left[\begin{array}{ccc} \widetilde{C} & 0 \\ \widetilde{Z}^T & 0 \\ 0 & \mathbb{I}_{2m} \end{array} \right] \left[\begin{array}{ccc} \widetilde{A} & \widetilde{C}^T \\ \widetilde{C} & 0 \end{array} \right] \left[\begin{array}{ccc} \widetilde{C}^T & \widetilde{Z} & 0 \\ 0 & 0 & \mathbb{I}_{2m} \end{array} \right] = \left[\begin{array}{ccc} \widetilde{C}\widetilde{A}\widetilde{C}^T & \widetilde{C}\widetilde{A}\widetilde{Z} & \widetilde{C}\widetilde{C}^T \\ \widetilde{Z}^T\widetilde{A}\widetilde{C}^T & \widetilde{Z}^T\widetilde{A}\widetilde{Z} & 0 \\ \widetilde{C}\widetilde{C}^T & 0 & 0 \end{array} \right]$$

Let $Z \in R^{n \times (n-m)}$ be a matrix such that range(Z) = Ker(C). It is trivial to see that $\widetilde{Z} = \begin{bmatrix} Z & 0 \\ 0 & Z \end{bmatrix}$ where Im(Z) = Ker(C). We obtain that :

$$\widetilde{Z}^T \widetilde{A} \widetilde{Z} = \begin{bmatrix} Z & 0 \\ 0 & Z \end{bmatrix}^T \begin{bmatrix} -A & B \\ B & T \end{bmatrix} \begin{bmatrix} Z & 0 \\ 0 & Z \end{bmatrix} = \begin{bmatrix} -Z^T A Z & Z^T B Z \\ Z^T B Z & Z^T T Z \end{bmatrix}$$

Computing a sparse nullspace basis of C

▶ Using skinny LU technique : Perform LU on the "skinny" matrix C^T

$$PC^TQ = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix} U_1$$

where P and Q are permutations, and define the nulspace to be :

$$Z = P^T \left[\begin{array}{c} -L_1^{-T} L_2^T \\ \mathbb{I} \end{array} \right]$$

 Implementation of a fast sparse nullspace basis generation algorithm on SuperLU

► The reduced linear system to solve is :

$$\begin{bmatrix} -Z^T A Z & Z^T B Z \\ Z^T B Z & Z^T T Z \end{bmatrix} \begin{bmatrix} x_{Z1} \\ x_{Z2} \end{bmatrix} = \begin{bmatrix} -A_Z & B_Z \\ B_Z & T_Z \end{bmatrix} \begin{bmatrix} x_{Z1} \\ x_{Z2} \end{bmatrix} = \begin{bmatrix} 0 \\ f_Z \end{bmatrix}$$

▶ The reduced linear system to solve is :

$$\begin{bmatrix} -Z^T A Z & Z^T B Z \\ Z^T B Z & Z^T T Z \end{bmatrix} \begin{bmatrix} x_{Z1} \\ x_{Z2} \end{bmatrix} = \begin{bmatrix} -A_Z & B_Z \\ B_Z & T_Z \end{bmatrix} \begin{bmatrix} x_{Z1} \\ x_{Z2} \end{bmatrix} = \begin{bmatrix} 0 \\ f_Z \end{bmatrix}$$

▶ The coefficient matrix is also a saddle point one :

$$\mathcal{A} = \left[egin{array}{ccc} \mathbb{A} & \mathbb{B}^T \ \mathbb{B} & \mathbb{D} \end{array}
ight]$$

- ▶ A is SPD.
- \blacktriangleright $\,\mathbb{B}$ is a symmetric indefinite matrix that shares the same pattern as $\mathbb{A}.$
- D is symmetric positive semidefinite, composed of a dense c × c sub-block scattered into a n × n matrix, where c << n is the number of sensors.

15/21

The constraint preconditioner

▶ We use the following constraint preconditioner :

$$\begin{bmatrix} Diag(-A_Z) & B_Z \\ B_Z & T_Z \end{bmatrix}$$

The constraint preconditioner

▶ We use the following constraint preconditioner :

$$\begin{bmatrix} Diag(-A_Z) & B_Z \\ B_Z & T_Z \end{bmatrix}$$

▶ The more convenient factorized form is :

$$\begin{bmatrix} Diag(-A_Z) & B_Z \\ B_Z & T_Z \end{bmatrix} = \begin{bmatrix} \mathbb{I} & 0 \\ -B_Z D^{-1} & S_Z \end{bmatrix} \begin{bmatrix} -D & B_Z \\ 0 & \mathbb{I} \end{bmatrix}$$

Where $S_Z = T_Z + B_Z D^{-1} B_Z$ is the shur complement of $Diag(-A_Z)$.

$$P_{\text{full}}^{-1} = \begin{bmatrix} -D & B_Z \\ B_Z & T_Z \end{bmatrix}^{-1} = \begin{bmatrix} -D^{-1} & D^{-1}B_Z \\ 0 & \mathbb{I} \end{bmatrix} \begin{bmatrix} \mathbb{I} & 0 \\ L^{-T}L^{-1}B_ZD^{-1} & L^{-T}L^{-1} \end{bmatrix}$$

16/21

The constraint preconditioner

▶ We approximate the matrix $B_Z Diag(-A_Z)^{-1}B_Z$ by only calculating its diagonal. Suppose that $B_Z = (bz_{ij}) \in \mathbb{R}^{n-m}$ and $D = (d_{ij}) \in \mathbb{R}^{n-m}$ then :

$$D_{Bz} = \text{Diag}(B_Z D^{-1} B_Z) = \underset{1 \le j \le n-m}{\text{Diag}} (\sum_{i=1}^{n-m} \frac{b z_{ij}^2}{d_{ij}})$$

The constraint preconditioner

▶ We approximate the matrix $B_Z Diag(-A_Z)^{-1}B_Z$ by only calculating its diagonal. Suppose that $B_Z = (bz_{ij}) \in \mathbb{R}^{n-m}$ and $D = (d_{ij}) \in \mathbb{R}^{n-m}$ then :

$$D_{Bz} = \text{Diag}(B_Z D^{-1} B_Z) = \underset{1 \le j \le n-m}{\text{Diag}} (\sum_{i=1}^{n-m} \frac{b z_{ij}^2}{d_{ii}})$$

We consider the approximation $\tilde{S}_Z = T_Z + D_{Bz}$ of the Shur complement. Where $S_Z = T_Z + B_Z D^{-1} B_Z$ is the shur complement of $Diag(-A_Z)$.

$$P_{diag}^{-1} = \begin{bmatrix} -D^{-1} & D^{-1}B_{Z} \\ 0 & \mathbb{I} \end{bmatrix} \begin{bmatrix} \mathbb{I} & 0 \\ \tilde{L}^{-T}\tilde{L}^{-1}B_{Z}D^{-1} & \tilde{L}^{-T}\tilde{L}^{-1} \end{bmatrix}$$

Numerical results

- ▶ We use Petsc (block user implementation) and Matlab to solve the above linear system. We apply GMRES method with this setting: restart = 30, maximum iterations = 200, relative tolerance = 1e-08.
- Academic application : A small prototype of an alternator

Numerical results

							Petsc (Gmres)		
Matrix 4	Physical dofs (n)	Lagrange dofs (m)	Global system size	non-zero elements (nnz)	The preconditioner	# iterations	CPU Time (sec)	Flops	
A_1	9,564	873	17,382	1,824,767	$ P_{full} P_{diag} $	10 21	1.122e+01 6.046e-01	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
A ₂	12,927	1,089	23,676	2,599,697	$ P_{full} P_{diag} $	13 21	2.277e+01 1.349e+00	$\begin{array}{c c} 4.521\mathrm{e}{+08} \\ 4.358\mathrm{e}{+07} \end{array}$	
A ₃	22,101	1,593	41,016	4,872,240	$ P_{full} P_{diag} $	12 25	$\begin{array}{c c} 6.974 e{+01} \\ 1.263 e{+00} \end{array}$	$\left \begin{array}{c} 1.065\mathrm{e}{+09} \\ 8.184\mathrm{e}{+07} \end{array} \right $	
A ₄	146,781	5,553	282,456	38,919,746	$ P_{full} P_{diag} $	10 22	$\begin{vmatrix} 3.753e + 03 \\ 1.179e + 01 \end{vmatrix}$	$\begin{array}{c c} 2.317e + 10 & \\ 9.432e + 08 & \end{array}$	
A_5	452,721	11,913	881,616	517,245,560	$ P_{full} P_{diag} $	15 26	+10h 7.778e+01	$\begin{array}{c c} 1.127e + 11 \\ 3.289e + 09 \end{array}$	

Model updating for the numerical model associated with matrix A_5 (*Physical dofs* = 452,721; *Boudary conditions* = 11,913)

Conclusions and perspectives

Conclusions

- The energy-based expansion method generates a nested saddle point system
- Implementation of the nullspace projection + solution method using SuperLU and Petsc on a standalone code in C.
- ▶ Significant results using constraint preconditioners on the projected system

Conclusions and perspectives

Conclusions

- The energy-based expansion method generates a nested saddle point system
- Implementation of the nullspace projection + solution method using SuperLU and Petsc on a standalone code in C.
- ▶ Significant results using constraint preconditioners on the projected system

Some perspectives

- Need to interface different implementations to be used within the mechanical code CodeAster ®
- Application to industrial structures
- Many ideas of preconditioners to be tested

