INTRODUCCIÓN Y OBJETIVOS

Repaso de los siguientes conceptos

Constante de equilibrio Kc. Principio de Le Chatelier. Constante de la Ley de Acción de Masas. Factores que afectan al equilibrio químico. Equilibrio redox, equilibrio de solubilidad.

OBJETIVOS

Fijar el concepto de equilibrio químico mediante el estudio experimental de distintas mezclas de reacción.

Observar cómo se puede modificar el estado de equilibrio alterando condiciones tales como concentración de las sustancias implicadas, temperatura, etc.

CUESTIONES

I. OBSERVACIÓN CUALITITATIVA DEL EQUILIBRIO QUÍMICO

I.1. Equilibrio de interconversión cromato/dicromato

El cromato de potasio es una sal de color amarillo intenso que puede dar lugar al dicromato de potasio (color naranja) mediante una reacción de oxidación-reducción en medio ácido.

1. Escriba la reacción de obtención del dicromato de potasio a partir del cromato de potasio al acidular con ácido clorhídrico (cloruro de hidrógeno).
2. La reacción anterior es una reacción reversible. Indique según el principio de LeChatelier hacia dónde se desplazaría dicho equilibrio si una vez alcanzado, se añadiese una base al medio de reacción.

·		le potasio pueden reaccionar con el cloruro e bario (insoluble) y dicromato de bario
a) Escriba ambas reacciones.		
Reacción 1:		
Reacción 2:		
-	% con una muestra qu	cipitaría si se hace adicionar una gota (0,05 le contiene 0.15 g de cromato de potasio.
guía de cálculo		
Reacción ajustada		
Moles de cromato de		
potasio añadidos		
Moles de cloruro de bario		
añadidos		
Reactivo limitante		
Moles de cromato de bario		
formados		
Solubilidad del cromato de		
bario (a partir de Kps)		
Moles de cromato de bario		
solubilizados		
Moles de cromato de bario		
precipitado		
Masa de cromato de bario		
precipitada.		
c) Teniendo en cuenta que lo según el principio de Le Chat		dan en medio ácido a dicromato, prediga, s siguientes casos:
Al añadir ácido a una disoluc	ión saturada de	
cromato de bario en presenc	ia de precipitado	
Al añadir una base a una disc	olución que contiene	
dicromato de bario		

II. FACTORES QUE AFECTAN AL EQUILIBRIO

II.1. EFECTO DE LA TEMPERATURA SOBRE EL EQUILIBRIO DE SOLUBILIDAD

Según la definición de solubilidad se puede deducir que la temperatura afecta la solubilidad de la mayoría de las sustancias, este efecto debe determinarse en forma experimental. Por lo general, la solubilidad de los sólidos aumenta con el incremento de la temperatura. Sin embargo, hay algunas excepciones, como lo indica el siguiente cuadro:

Compues	to	Gramos de soluto en 100 gr de agua						
Nombre	Fórmula	a 0°C	a 50°C	a 100°C				
Hidróxido de potasio	кон	97,00	144,00	178,00				
Nitrato de potasio	KNO ₃	13,30	85,50	246,00				
Clorato de potasio	KCIO ₃	3,30	19,30	57,00				
Cloruro de sodio	NaCl	35,63	36,67	39,12				
Cromato de calcio	CaCrO ₄	4,50	1,12	0,42				
Hidróxido de calcio	Ca(OH) ₂	0,14	0,10	0.06				
Sulfato de zinc	ZnSO ₄	41,9	76,80	80,80				

La dependencia de la solubilidad con la temperatura puede expresarse gráficamente mediante curvas de solubilidad, donde en el eje de las abscisas se marca la temperatura y en el eje de las ordenadas, la solubilidad. Es el mejor procedimiento para observar inmediatamente no sólo el valor de solubilidad sino su variación con la temperatura.

Ejemplo: Solubilidad del nitrato de potasio (KNO₃) en agua en función de la temperatura.

Temperatura	0	10	20	30	40	50	60	70	80	90	100
Solubilidad	13.3	20.9	31.6	45.8	63.9	85.5	110	138	169	202	246
(g sólido/100 mL agua)											

A partir de los datos anteriores construir la gráfica solubilidad/temperatura y contestar a las siguientes cuestiones:

1. La solubilidad del nitrato de potasio	_ (aumenta/disminuye) al aumentar la
temperatura.	
2. Si a 70 ºC se tiene una disolución de 5 g de nitrato	de potasio en 10 mL de agua, dicha
disolución es (diluida/saturada/sob	resaturada)
3. Si la disolución anterior se enfría empezará a apare	ecer precipitado a la temperatura de
aC	
4. A la temperatura de 20ºC la cantidad de precipitado fo	ormado será de g

II.2. Efecto del ion común

El cloruro de plomo(II) es una sal insoluble que se puede formar por la reacción entre el nitrato de plomo(II) y el cloruro de sodio. A temperatura ambiente una disolución saturada de cloruro de plomo (II) contiene 1,004 g de la sal en 250 mL de disolución.

a) Escriba la reacción de formación de cloruro de plomo (II) a partir de nitrato de plomo(II) y cloruro sódico
b) Determine el producto de solubilidad del cloruro de plomo (II).
c) Prediga si se producirá precipitación al mezclar 25 mL de disolución de nitrato de plomo (II) 0,1 M con 0.3 g de cloruro de sodio.
d) En el caso de que se produzca precipitado determinar la masa de precipitado formado
e) Si al resultado del apartado anterior se le añadiese 2,5 gramos más de cloruro de sodio ¿se formaría más cantidad de cloruro de plomo(II)?

II.3. Efecto del pH

El s	ulfato	de cobr	e(II)	puede	reacciona	r cor	ı el	hidr	róxido	de	sodio	para	dar	hidro	óxido	de co	bre
(II)	y sulfa	ato de so	odio	. Mient	ras que e	l sulf	ato	de	sodio	es	solubl	e en	agua	, la	solub	ilidad	del
hid	róxido	de cobr	e (II)	en agu	a es 9,75	· 10 ⁻¹	5 g/l										

a) Escribe la reacción entre el sulfato de cobre(II) y el hidróxido de sodio
b) Calcula la cantidad de hidróxido de sodio 0,1 M que habría que añadir a 3 mL de una disolución 0,1M de sulfato de cobre (II) para la precipitación completa del hidróxido de cobre(II).
c) Escribe el equilibrio de solubilidad del hidróxido de cobre (II) en agua.
d) Calcula su solubilidad molar.
e) Calcula el producto de solubilidad del hidróxido de cobre (II).
d) Justifica qué ocurriría si al precipitado de hidróxido de cobre (II) se le añade más cantidad de hidróxido de sodio y si se añade una disolución de ácido sulfúrico 0,1M.