曲线积分

June 25, 2017

1 第一型曲线积分

定义

设 $D \subset \mathbb{R}^3$ 是一个区域,函数 $f: D \to \mathbb{R}$ 。可求长曲线 $\Gamma \subset D$,其两个端点分别 记为 A 和 B。在 Γ 上依次取一列点 $\{p_i: i=0,1,\cdots,n\}$,使得 $p_0=A$, $p_n=B$ 。 称 $\widehat{p_{i-1}p_i}$ 为 Γ 的第 i 段曲线,令 $\Delta s_i=s(\widehat{p_{i-1}p_i})$,即 Γ 的第 i 段曲线的弧长。在 $\widehat{p_{i-1}p_i}$ 上任取一点 $\xi_i(i=1,2,\cdots,n)$,若极限

$$\lim_{\max \Delta s_i \to 0} \sum_{i=1}^n f(\xi_i) \Delta s_i , \qquad (1)$$

为一个有限数,且其值不依赖于点 ξ_i 在 $\widehat{p_{i-1}p_i}$ 上的选择,该极限值记为

$$\int_{\Gamma} f(p) ds$$
或者 $\int_{\Gamma} f(x, y, z) ds$

称为函数 f 在 Γ 上的第一型曲线积分。

若 f(p) = 1 对 $p \in \Gamma$ 成立,

$$\int_{\Gamma} \mathrm{d}s = s(\Gamma) \ ,$$

即曲线Γ的弧长。

定理

设区域 $D \subset \mathbf{R}^3$,光滑曲线 $\Gamma \subset D$,函数 $f:D \to \mathbf{R}$ 连续。设 Γ 有向量参数表示 $r = r(t), t \in [\alpha, \beta],$

$$\int_{\Gamma} f ds = \int_{\alpha}^{\beta} f \circ \boldsymbol{r}(t) ||\boldsymbol{r}'(t)|| dt .$$
 (2)

推论

设平面曲线 Γ 有显式表达 $y = \varphi(x), x \in [a, b]$, 其中 φ 在 [a, b] 上连续, 那么

$$\int_{\Gamma} f ds = \int_{a}^{b} f(x, \varphi(x)) \sqrt{1 + (\varphi'(x))^{2}} dx .$$
 (3)

- 1. 求出 Γ 的一个向量参数方程 $\mathbf{r} = \mathbf{r}(t)$,
- 2. 计算弧元 $ds = ||\mathbf{r}'(t)||dt$,
- 3. 计算定积分 $\int_{\alpha}^{\beta} f \circ \boldsymbol{r}(t) ||\boldsymbol{r}'(t)|| \mathrm{d}t$.

2 第二型曲线积分

设区域 $D \subset \mathbb{R}^3$,在 D 上定义了一个向量值函数 $\mathbf{F} = \mathbf{F}(\mathbf{p}), \mathbf{p} \in D$ 。 \mathbf{F} 是在 D 上定义的一个向量场。

定义

设 $D \subset \mathbf{R}^3$ 是一个区域,映射 $\mathbf{F}: D \to \mathbf{R}^3$ 。可求长的有向曲线 $\Gamma \subset D$,其起点记为 A,终点记为 B。在 Γ 上依从 A 到 B 的方向顺次取一列点 $\{\mathbf{p}_i: i=0,1,\cdots,n\}$,使得 $\mathbf{p}_0=A$, $\mathbf{p}_n=B$ 。置 $\Delta \mathbf{p}_i=\mathbf{p}_i-\mathbf{p}_{i-1}, (i=1,2,\cdots,n)$ 。若对于在 Γ 的弧段 $\widehat{\mathbf{p}_{i-1}\mathbf{p}_i}$ 上任取的点 $\boldsymbol{\xi}_i$,极限

$$\lim_{\max||\Delta p_i||\to 0} \sum_{i=1}^n \boldsymbol{F}(\boldsymbol{\xi}_i) \cdot \Delta \boldsymbol{p}_i , \qquad (4)$$

为一确定的有限数, 记为

$$\int_{\Gamma} \boldsymbol{F}(\boldsymbol{p}) \cdot \mathrm{d}\boldsymbol{p} \ ,$$

称它是向量函数 F 沿有向曲线 Γ 上的第二型曲线积分。

定理

设区域 $D \subset \mathbf{R}^3$,连续映射 $\mathbf{F}: D \to \mathbf{R}^3$ 。设 $\Gamma \subset D$ 是一条有向光滑曲线,它具有参数向量方程 $\mathbf{r} = \mathbf{r}(t), \alpha \leqslant t \leqslant \beta$,且参数 t 的增加对应着 Γ 的定向,则

$$\int_{\Gamma} \boldsymbol{F}(\boldsymbol{p}) \cdot \mathrm{d}\boldsymbol{p} = \int_{\alpha}^{\beta} \boldsymbol{F} \circ \boldsymbol{r}(t) \cdot \boldsymbol{r}'(t) \mathrm{d}t \ .$$

- 3 曲线积分与道路无关的条件
- 4 有界变差函数