

Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1. (Original) A binuclear, oxygen-bridged, bimetallic complex of the general formula I:

where:

M^1 = Al, Ge, Zr or Ti;

M^2 = Zr, Ti, or Hf;

Cp = cyclopentadienyl;

R^1, R^2 = H'; C(1-6) alkyl; halogen; aryl; SiMe₃; and alkaryl where aryl = C₆H_{5-n}X_n

X = halogen, C(1-6) alkyl, aryl NO₂, SO₃H, NR³, where R³ = C(1-6) alkyl or H

and n = 0 to 5; and

L = a bidentate, doubly heteroatom-coordinated organochemical ligand which together with the metal M¹ forms a 5- or 6-membered ring.

2. (Currently amended) The binuclear, oxygen-bridged, bimetallic complex as claimed in claim 1, in which

R^1, R^2 = methyl, ethyl, i-propyl, t-butyl, halogen, phenyl, alkylphenyl, and SiMe₃, and

L is a bidentate, doubly nitrogen-coordinated organochemical ligand which, together with the metal M¹, forms the [[a]] 5- or 6-membered ring.

3. (Currently amended) The binuclear, oxygen-bridged, bimetallic complex as claimed in claim 1, characterized in that it is a heterobimetallic complex, preferably on in which wherein M¹ = Al aluminum and M² = Zr zirconium, more preferably a complex of the formula [(LA1Me)[Cp₂ZrR²](-O)], where R² is Me or Cl.

4-5. (Canceled)

6. (Currently amended) A process for preparing a binuclear, oxygen-bridged,

bimetallic complex of the general formula I:

(I) $[(LM^1R^1)(Cp_2M^2R^2)](\mu-O)$

where:

$M^1 = Al, Ge, Zr$ or $Ti;$

$M^2 = Zr, Ti$ or $Hf;$

$Cp = cyclopentadienyl;$

$R^1, R^2 = H'; C(1-6) alkyl; halogen; aryl; SiMe_3;$ and alkaryl where aryl = $C_6H_{5-n}X_n$

$X = halogen, C(1-6) alkyl, aryl NO_2, SO_3H, NR^3_2,$ where $R^3 = C(1-6) alkyl$ or H

and $n = 0$ to $5;$ and

$L = a bidentate, doubly heteroatom-coordinated organochemical ligand which$
together with the metal M^1 forms a 5- or 6-membered ring,

comprising the step of reacting as claimed in claim 1 characterized in that a
precursor complex of the formula $LM^1R^1(OH)$ is reacted with a metallocene
precursor complex[[.] selected from $Cp_2M^2(R^2)_2$ or $Cp_2M^2MeR^2$ or Cp_2M^2HX'
where X' is a halogen, where $x = halogen,$ preferably in an inert solvent.

7. (Currently amended) A catalyst preparation for the polymerization of olefins
which comprises

at least one complex as claimed in claim 1 of the general formula I:

(I) $[(LM^1R^1)(Cp_2M^2R^2)](\mu-O)$

where:

$M^1 = Al, Ge, Zr$ or $Ti;$

$M^2 = Zr, Ti$ or $Hf;$

$Cp = cyclopentadienyl;$

$R^1, R^2 = H'; C(1-6) alkyl; halogen; aryl; SiMe_3;$ and alkaryl where aryl = $C_6H_{5-n}X_n$

$X = halogen, C(1-6) alkyl, aryl NO_2, SO_3H, NR^3_2,$ where $R^3 = C(1-6) alkyl$ or H

and $n = 0$ to $5;$ and

$L = a bidentate, doubly heteroatom-coordinated organochemical ligand which$
together with the metal M^1 forms a 5- or 6-membered ring, and

at least one cocatalyst.

8. (Currently amended) The catalyst preparation as claimed in claim 7,
characterized in that wherein the at least one cocatalyst is an alkyl-alumininoxane;

preferably methylalumininoxane (MAO).

9-11. (Canceled)

12. (New) The binuclear, oxygen-bridged bimetallic complex as claimed in claim 3 wherein R² is Me or Cl.

13. (New) The binuclear, oxygen-bridged, bimetallic complex as claimed in claim 1 wherein the ligand L is defined by formula II:

where X' = C or P; and

R^a, R^b = R¹, and n = 1 when X = C, and n = 2 when X = P.

14. (New) The binuclear, oxygen-bridged, bimetallic complex as claimed in claim 1 wherein the ligand L is defined by formula III:

where Ar is an aryl.

15. (New) The binuclear, oxygen-bridged, bimetallic complex as claimed in claim 14 where in Ar is 2, 6-iPr₂C₆H₃ where iPr is isopropyl.

16. (New) The method of claim 6 wherein said reacting step is performed in an inert solvent.

17. (New) The catalyst preparation of claim 8 wherein said alkyl-alumininoxane is methylalumininoxane.

18. (New) A method of catalytically polymerizing polymers, comprising the steps of:

combining materials to be polymerized with a binuclear, oxygen-bridged, bimetallic complex of the general formula I:

where:

M¹ = Al, Ge, Zr or Ti;

M² = Zr, Ti, or Hf;

Cp = cyclopentadienyl;

R¹, R² = H'; C(1-6) alkyl; halogen; aryl; SiMe₃; and alkaryl where aryl = C₆H_{5-n}X_n

X = halogen, C(1-6) alkyl, aryl NO₂, SO₃H, NR³₂, where R³ = C(1-6) alkyl or H
and n = 0 to 5; and

L = a bidentate, doubly heteroatom-coordinated organochemical ligand which
together with the metal M¹ forms a 5- or 6-membered ring, and

polymerizing the materials using said binuclear, oxygen-bridged,
bimetallic complex as a catalyst.

19. (New) The method of claim 18 wherein said combining step includes the step
of adding an alkyl-aluminoxane, trialkyaluminum, or alkylhaloaluminum
cocatalyst to said materials and said binuclear, oxygen-bridged, bimetallic
complex.

20. (New) the method of claim 19 wherein said cocatalyst is methylaluminoxane.