6. Implement XOR function using McCulloch—Pitts neuron (consider binary data).

Solution: The truth table for XOR function is given in Table 3.

Table 3				
x_1	x_2	y		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

In this case, the output is "ON" for only odd number of 1's. For the rest it is "OFF." XOR function cannot be represented by simple and single logic function; it is represented as

$$y = x_1 \overline{x_2} + \overline{x_1} x_2$$
$$y = z_1 + z_2$$

where

$$z_1 = x_1 \overline{x_2}$$
 (function 1)
 $z_2 = \overline{x_1} x_2$ (function 2)
 $y = z_1(OR)z_2$ (function 3)

A single-layer net is not sufficient to represent the function. An intermediate layer is necessary.

Figure 6 Neural net for XOR function (the weights shown are obtained after analysis).

• First function $(z_1 = x_1\overline{x_2})$: The truth table for function z_1 is shown in Table 4.

lable	9 4	
x_{l}	x_2	z_1
0	0	0
0	1	0
1	0	1
1	1	. 0

The net representation is given as Case 1: Assume both weights as excitatory, i.e.,

$$w_{11} = w_{21} = 1$$

Calculate the net inputs. For inputs,

$$(0,0), z_{1in} = 0 \times 1 + 0 \times 1 = 0$$

 $(0,1), z_{1in} = 0 \times 1 + 1 \times 1 = 1$
 $(1,0), z_{1in} = 1 \times 1 + 0 \times 1 = 1$
 $(1,1), z_{1in} = 1 \times 1 + 1 \times 1 = 2$

Hence, it is not possible to obtain function z_1 using these weights.

Case 2: Assume one weight as excitatory and the other as inhibitory, i.e.,

$$w_{11} = 1; \quad w_{21} = -1$$

Figure 7 Neural net for Z_1 .

Calculate the net inputs. For inputs

$$(0,0)$$
, $z_{1in} = 0 \times 1 + 0 \times -1 = 0$
 $(0,1)$, $z_{1in} = 0 \times 1 + 1 \times -1 = -1$
 $(1,0)$, $z_{1in} = 1 \times 1 + 0 \times -1 = 1$
 $(1,1)$, $z_{1in} = 1 \times 1 + 1 \times -1 = 0$

On the basis of this calculated net input, it is possible to get the required output. Hence,

$$w_{11} = 1$$
 222 40
 $w_{21} = -1$ $\theta \ge 1$ for the Z_1 neuron

• Second function ($z_2 = \overline{x_1}x_2$): The truth table for function z_2 is shown in Table 5.

lable	5	
x_1	x_2	z ₂
0	0	0
0	1	1
1	0	0
1	1	0

The net representation is given as follows: Case 1: Assume both weights as excitatory, i.e.,

$$w_{12} = w_{22} = 1$$

Now calculate the net inputs. For the inputs

$$(0,0), z_{2in} = 0 \times 1 + 0 \times 1 = 0$$

 $(0,1), z_{2in} = 0 \times 1 + 1 \times 1 = 1$
 $(1,0), z_{2in} = 1 \times 1 + 0 \times 1 = 1$
 $(1,1), z_{2in} = 1 \times 1 + 1 \times 1 = 2$

Hence, it is not possible to obtain function z_2 using these weights.

Case 2: Assume one weight as excitatory and the other as inhibitory, i.e.,

$$w_{12} = -1; \quad w_{22} = 1$$

Now calculate the net inputs. For the inputs

$$(0,0), z_{2in} = 0 \times -1 + 0 \times 1 = 0$$

 $(0,1), z_{2in} = 0 \times -1 + 1 \times 1 = 1$
 $(1,0), z_{2in} = 1 \times -1 + 0 \times 1 = -1$
 $(1,1), z_{2in} = 1 \times -1 + 1 \times 1 = 0$

Thus, based on this calculated net input, it is possible to get the required output, i.e.,

$$w_{12} = -1$$

 $w_{22} = 1$
 $\theta \ge 1$ for the \mathbb{Z}_2 neuron

• Third function $(y = z_1 \text{ OR } z_2)$: The truth table for this function is shown in Table 6.

Table 6

$\overline{x_1}$	x_2	y	$oldsymbol{z_{l}}$	z_2
0	0	0	0	0
0	1	1	0	- 1
1	0	1	1	0
1	1	0	0	0

Here the net input is calculated using

$$y_{in}=z_1v_1+z_2v_2$$

Case 1: Assume both weights as excitatory, i.e.,

$$v_1 = v_2 = 1$$

Now calculate the net input. For inputs

$$(0,0), y_{in} = 0 \times 1 + 0 \times 1 = 0$$

 $(0,1), y_{in} = 0 \times 1 + 1 \times 1 = 1$
 $(1,0), y_{in} = 1 \times 1 + 0 \times 1 = 1$
 $(1,1), y_{in} = 0 \times 1 + 0 \times 1 = 0$

(because for $x_1 = 1$ and $x_2 = 1$, $z_1 = 0$ and $z_2 = 0$)

Figure 9 Neural net for $Y(Z_1 \text{ OR } Z_2)$.

Setting a threshold of $\theta \ge 1$, $v_1 = v_2 = 1$, which implies that the net is recognized. Therefore, the analysis is made for XOR function using M-P neurons. Thus for XOR function, the weights are obtained as

$$w_{11} = w_{22} = 1$$
 (excitatory)
 $w_{12} = w_{21} = -1$ (inhibitory)
 $v_1 = v_2 = 1$ (excitatory)