· 指南与共识 ·

高血压精准化诊疗中国专家共识(2024)

高血压精准化诊疗专家共识组成员,老年心脑血管病教育部重点实验室

摘要: 高血压是以血压升高为主要表现的心血管症候群,精准化的诊断对于高血压精准化治疗显得尤为重要。随着信息学、生物学、影像、功能检测等技术快速发展,高血压的精准化诊疗成为可能,高血压诊疗进入一个新阶段,即实现从"遵循通用临床指南"到"根据个体特征定制治疗方案的精准医学"转型。为此,中国医师协会心血管内科医师分会组织我国心血管和高血压领域专家联合编写了这部《高血压精准化诊疗中国专家共识(2024)》,该共识对高血压精准化诊疗的定义、精准化诊断、精准化治疗及精准化管理等问题提出了建议,并介绍了实施高血压精准化治疗新技术及研究进展。高血压精准化诊疗已经有可行且有效的案例,例如单基因遗传性高血压、继发性高血压,但高血压精准诊疗涉及多个学科,其推广与普及还面临巨大挑战。本共识希望能为临床医师针对高血压患者的具体病情进行精准检测、精准诊断、精准治疗、精准管理等提供参考。

关键词: 高血压; 精准医学; 专家共识

Chinese Expert Consensus on Precision Medicine for Hypertension Diagnosis and Treatment (2024)

Member of the Experts Consensus Group on Precise Medicine for Hypertension Diagnosis and Treatment; Key Laboratory of Geniatnic Cardiovascular and Cerebrovascular Diseases, Ministry of Education

Abstract: Hypertension is a cardiovascular syndrome characterized by blood pressure elevation. Precise diagnosis is particularly important for precise treatment of hypertension. With the rapid development of informatics, biology, imaging, functional detection and other technologies, the precise diagnosis and treatment of hypertension has become possible. The diagnosis and treatment of hypertension has entered a new stage, which is to achieve the transformation from "following general clinical guidelines" to "precision medicine that customizes treatment plans based on individual characteristics". To this end, the Cardiovascular Physicians Branch of the Chinese Medical Association organized experts in the field of cardiovascular and hypertension in China to jointly compile the Chinese Expert Consensus on Precision Medicine for Hypertension Diagnosis and Treatment (2024). The consensus proposed suggestions on the definition, precise diagnosis, precise treatment, and precise management of hypertension, and introduced new technologies and research progress in implementing precise treatment of hypertension. There are feasible and effective cases of precise diagnosis and treatment of hypertension involves multiple disciplines, and its promotion and popularization still face huge challenges. This consensus aims to provide reference for clinical physicians to accurately detect, diagnose, treat, and manage the specific conditions of hypertensive patients.

Keywords: hypertension; precision medicine; expert consensus

通信作者:曾春雨(陆军军医大学大坪医院心血管内科,老年心脑血管病教育部重点实验室,高血压研究重庆市重点实验室,重庆 400042), E-mail: chunyuzeng01@163.com;

陈垦(陆军军医大学大坪医院心血管内科,老年心脑血管病教育部重点实验室,高血压研究重庆市重点实验室,重庆 400042),E-mail:ck_tmmu@sina,com;

张瑞岩(上海交通大学医学院附属瑞金医院心血管内科,上海 200025), E-mail: zhangruiyan@263. net;

张抒扬(中国医学科学院北京协和医院,北京 100032),E-mail:shuyangzhang103@163.com

执笔人:周冰青(陆军军医大学大坪医院心血管内科,老年心脑血管病教育部重点实验室,高血压研究重庆市重点实验室,重庆 400042),E-mail: dpzhoubingqing@sina,com;

邹雪(陆军军医大学大坪医院心血管内科,老年心脑血管病教育部重点实验室,高血压研究重庆市重点实验室,重庆 400042),E-mail:zoux-ue1125@163,com;

杨立(陆军军医大学大坪医院心血管内科,老年心脑血管病教育部重点实验室,高血压研究重庆市重点实验室,重庆 400042), E-mail: cq. yangli@163. com

精准医疗模式是指整合应用现代科技手段与传统 医学方法,科学认知人体机能与疾病本质,系统优化人 类疾病防治和健康促进的原理和实践,以高效、安全、 经济的健康医疗服务获取个体和社会健康效益最大化 的新型健康医疗服务范式。2016年国家卫计委发布 "中国精准医学研究"重点专项,使得"精准医学"这一 全新的医学概念与医疗模式,在肿瘤治疗等领域迅速 得到推广。全基因组关联研究(genome-wide association studies, GWAS) 发现了众多肿瘤相关的基因突变 和单核苷酸多态性(single nucleotide polymorphism, SNP),针对这些位点研发干预手段,为肿瘤个体化精 准治疗提供了理论和技术的支撑[1]。在心血管疾病 中,单基因遗传性心血管疾病是现阶段精准医学率先 突破的领域[2-3]。随着基因检测技术的发展,我们对心 血管疾病的分子病理机制了解得更加深入。目前,除 了单基因遗传心血管疾病外,精准医疗在非单基因遗 传性心血管疾病的诊断、治疗和患者健康管理方面都 取得了显著成就,特别是在心肌梗死、高血压和心力衰 竭方面[4-5]。以证据为基础的高血压控制和治疗、穿戴 式设备的应用等均使高血压控制有了精准的依据,随 着高血压 GWAS,高血压药物基因、代谢和转录组学 的发展,高血压精准医学已可特异性识别具有不同病 因机制的患者亚群及其对不同降压治疗的差异。

1 高血压精准化诊断

1.1 血压的精准测量 准确测量血压是高血压诊断、 治疗和管理的基石,不精准的设备和测量方法会对后 续的治疗和评估产生重大的影响。血压的测量包括中 心动脉血压和外周动脉血压测量,而外周动脉血压测 量方法又分为诊室血压和诊室外血压测量。诊室外血 压测量包括动态血压测量(ambulatory blood pressure monitoring, ABPM) 和家庭血压测量(home blood pressure measurement, HBPM)。直接测量中心动脉 内血流的侧压力可反映血压的真实数值,但侵入性阻 碍了其在临床的广泛应用,目前临床上采用无创法测 定中心动脉压的原理是将周围动脉压力波形通过公式 转换成中心动脉压波形[6]。急性心力衰竭指南指导的 药物治疗上调滴定的安全性、耐受性和有效性(safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure, STRONG-HF)心脏研究和盎格鲁-斯堪的那维亚心脏 终点事件试验-导管动脉功能评估(Anglo-Scandinavian cardiac outcomes trial-conduit artery function evaluation, ASCOT-CAFE)研究表明中心动脉压比外 周动脉压(肱动脉压)具有更好的临床预测价值[7-8]。

目前诊室血压(office blood pressure, OBP)仍是高血 压指南中诊断高血压、血压水平分级以及观察降压疗 效的常用方法。无人值守的诊室血压测量(unattended office blood pressure measurement)接近家庭血 压,已经在收缩压干预试验(systolic blood pressure intervention trial, SPRINT)中得到应用[9]。与诊室血 压相比,诊室外血压与靶器官损害和心血管疾病事件 的关联性更强,目有助于鉴别白大衣性高血压、发现隐 蔽性高血压[10-11]。ABPM 能发现夜间高血压、晨峰高 血压和血压变化规律,连续 ABPM 可实现长时程血压 监测[12-14]。家庭血压数据比诊室血压数据更具可重复 性,能够更好地预测靶器官损害、心血管结局和死亡率 以及高血压表型,但对于焦虑患者应减少家庭血压监 测频次,防止焦虑放大效应对血压的影响[15-16]。除血 压测量方法精准应用外,测量方法的规范化亦至关重 要。《中国高血压防治指南(2018年修订版)》中对血 压的测量方法做出了具体的规范,包括监测仪器的选 择与校准、血压测量的频率与时间等[17]。

1.2 继发性高血压诊断 高血压作为疾病集合体,分为原发性及继发性。继发性高血压的比例在临床诊疗过程中被大大低估了^[18-22],以原发性醛固酮增多症为例,既往认为其患病率低于 1%,近来的研究采用肾上腺静脉取血等方法使其患病率提高到 5%~10%,因此不能简单地将 90%以上高血压归类为原发性高血压,对高血压的病因筛查非常重要^[23]。继发性高血压是具有明确病因的高血压,当查出病因并有效去除或控制病因后,继发性高血压可被治愈或明显缓解^[24]。因此对继发性高血压的筛查、鉴别是高血压诊断评估和治疗的重要内容。

继发性高血压筛查对象:详细的病史询问及体格 检查是高血压精准化筛查的第一步,如询问患者病程, 特殊嗜好及睡眠状况等。体检过程中需注意特殊症状 及体征的发现(如:满月脸、水牛背、皮肤紫纹、毛发增 多等可协助诊断皮质醇增多症继发的高血压;触诊肾 脏肿大、听诊肾脏血管杂音、双下肢水肿等可提示肾脏 相关的继发改变),能为病因诊断提供思路。存在以下 症状或体征应考虑继发性高血压,需要进行全面详尽 的筛查(表 1)。

1.3 高血压精准化诊断的多学科模式和精准化支撑体系 高血压精准化诊断需要检验学、影像学等精准医学体系和多学科诊疗(multi-disciplinary treatment, MDT)模式的支持。专科实验室检查(内分泌系统、肾脏系统)、血管功能评价、专科影像学检查、特殊的影像学检查、睡眠呼吸监测、肾脏穿刺活检、微创高血压介入治疗和外科治疗、基因诊断、精神心理状况测试等体系的应用在高血压病因精准化筛查中发挥着重要作

用。血浆醛固酮/肾素比值(aldosterone to renin ratio, ARR)、皮质醇、血或尿儿茶酚胺等可作为内分泌源性 高血压的筛查手段;尿白蛋白/肌酐比值(urinary albumin/creatinine ratio, UACR)、24 h 尿蛋白监测、肾 脏超声、肾脏及肾上腺计算机断层扫描或磁共振成像 (magnetic resonance imaging, MRI)可有效筛查肾脏、 肾上腺病变;血管功能评价对大动脉炎有辅助诊断意 义。肾脏血管造影可筛查肾动脉疾病导致的继发性高 血压病变,肾脏穿刺活检可诊断局灶节段硬化性肾小 球肾炎,该疾病亦会对血压产生不良影响,引发高血 压。心血管内科医生应重视专科影像学检查的应用, 比如用于诊断成人嗜铬细胞瘤和儿童神经母细胞瘤的 间碘苄胍(metaiodoenzylguanidine, MIBG)检查[25-26] 以及用于诊断神经内分泌肿瘤的奥曲肽显像、18F-2-氟 代脱氧葡萄糖(18F-2-Fluoro-2-deoxy-D-glucose, ¹⁸F-FDG)、⁶⁸Ga-大环配体奥曲肽(⁶⁸Ga-DOTATATE) 正电子发射断层显像/X线计算机体层成像(positron emission tomography/computed tomography, PET/ CT)检测等^[25],这些检查能进一步对高血压疾病定位 诊断;睡眠呼吸监测能发现患者夜间及晨起高血压,判 断患者睡眠过程中是否存在呼吸暂停和血压周期性升 高;合并颅神经损害的难治性高血压进行颅脑磁共振 血管成像/电子计算机断层扫描血管成像(magnetic resonance angiography/CT angiography, MRA/CTA) 检查;部分高血压患者还会表现出阵发性或间歇性血 压升高,发作前常伴有"心悸、头昏"等异常感觉,但实 验室检查却发现血尿儿茶酚胺、醛固酮、双侧肾上腺、 肾动脉均为正常,此时精神心理状况测试是必要的。 近年来,MDT模式逐步建立,促进了高血压的精准化 诊疗,比如组建肾上腺相关高血压 MDT,可开展肾上 腺静脉取血[27]、岩下窦采血技术[28],为分型提供 依据。

随着高通量基因测序与分析计算的高速发展,针对疾病的基因诊断已经广泛应用于包括肿瘤、产前评估等多个方面。针对高血压,高通量测序等基因诊断技术的应用也十分重要。通过识别基因突变,有助于预测和识别高血压发病的风险及预后^[29]。相关专家共识指出,年龄<20岁,有原发性醛固酮增多症家族史或早发脑卒中家族史者应做基因诊断,针对氯离子通道蛋白 2 (chloride channel protein 2, *CLCN2*)、T-型电压依赖钙离子通道α1H亚基(T-type voltage dependent calcium channel alpha 1H subunit, *CAC-NA1H*)以及内向整流型钾离子通道亚家族 J 成员 5 (potassium inwardly rectifying channel subfamily J member 5, *KCNJ5*)等基因的突变位点进行检测^[30]。除了原发性醛固酮增多症等继发性高血压以外,基因

分析联合尿钠监测可简化盐敏感性高血压的诊断流程,G蛋白耦联受体激酶 4(G protein coupled receptor kinase 4, *GRK4*)突变体是重要的检测靶点。未来,通过基因诊断明确突变基因,联合产前诊断和胚胎植入前遗传诊断,能有效实现遗传阻断。

表 1 怀疑继发性高血压患者的线索[23,25]

血压中重度升高的年轻高血压患者(年龄<40岁)

既往正常血压个体,突然发生高血压

既往血压控制良好患者,血压急进性增高

真正的顽固性高血压

高血压急症

重度(3级)或恶性高血压

严重和/或广泛的靶器官损害,特别是与血压升高的持续时间和严重程 度不成比例

提示阻塞性睡眠呼吸暂停的临床特征

提示高血压内分泌原因的临床或生化特征

提示肾血管性高血压或纤维肌性发育不良的临床特征

妊娠期严重高血压(血压>160/110 mmHg,1 mmHg=0.133 kPa)或既往高血压孕妇血压急进性增高

55 岁后出现高血压(收缩压≥180 mmHg 和/或舒张压≥120 mmHg)

降压治疗过程中出现不明原因的肾功能恶化,尤其在应用血管紧张素 转换酶抑制药(ACEI)、血管紧张素受体阻滞药(ARB)或直接肾素抑 制剂治疗后1周内,血清肌酐浓度急性持续性升高超过50%

重度高血压患者发生动脉粥样硬化,尤其是 50 岁以上者

重度高血压患者急性(速发型)肺水肿反复或难治性心力衰竭伴肾功能 衰竭

腹部可闻及收缩期一舒张期杂音

1.4 高血压分级及危险分层 高血压分级和危险分层对高血压精准化治疗至关重要。即使相同的血压水平,如果合并症和并发症不同,危险分层也有较大区别。各国指南的高血压分级标准存在一定差异,我国指南标准延续多年,根据血压水平分为正常血压、正常高值、1级高血压、2级高血压、3级高血压以及单纯收缩期高血压,其中单纯收缩期高血压也应进一步划分为1级、2级、3级(表2)。

表 2 根据诊室血压定义的高血压分级^[17] (mmHg)

分类	收缩压		舒张压
正常血压	<120	和	<80
正常高值	$120 \sim 139$	和/或	80~89
高血压	≥140	和/或	≥90
1级高血压	$140 \sim 159$	和/或	90~99
2级高血压	$160 \sim 179$	和/或	100~109
3级高血压	≥180	和/或	≥110
单纯收缩期高血压	≥140	和	<90

注: 当收缩压和舒张压分属于不同级别时,以较高的分级为准。单 纯收缩期高血压也应进一步划分为1级、2级、3级。 根据血压的分级及合并的心血管危险因素或靶器官损害,分为低危、中危、中-高危、高危以及很高危(表3)。表4列出了影响高血压患者心血管风险的因素,包括:环境、生活方式、临床心血管危险因素、高血压靶器官损害情况以及合并的心血管疾病或慢性肾脏病(chronic kidney disease, CKD)^[23]。其中,针对靶器官损害的评估是高血压危险分层的重要组成部分。

例如,针对高血压肾病的发生,建立预测预警体系有利于高血压患者的诊治与管理和降压药合理使用^[31]。高血压肾病预测模型的建立与验证(development and validation of prediction models for hypertensive nephropathy,PANDORA)研究在大规模高血压人群队列中针对危险因素建立了高血压肾病早期预警及进展风险预测模型,具有较好的治疗前评估价值^[32]。

表 3 血压升高患者的心血管危险分层[17]

	沙室血压						
其他危险因素 或疾病史	正常高值 (收缩压 130~139 mmHg 和/ 或舒张压 85~89 mmHg)	1 级高血压 (收缩压 140~159 mmHg 和/ 或舒张压 90~99 mmHg)	2 级高血压 (收缩压 160~179 mmHg 和/ 或舒张压 100~109 mmHg)	3 级高血压 (收缩压≥180 mmHg 和/ 或舒张压≥110 mmHg)			
无其他危险因素		低危	中危	高危			
1~2 个其他危险因素	低危	中危	中-高危	很高危			
≥3 个危险因素, 靶器 官损害、慢性肾脏病 3 期或糖尿病	中-高危	高危	高危	很高危			
临床并发症,或慢性肾 脏病≥4期,有并发 症的糖尿病	高-很高危	很高危	很高危	很高危			

表 4 影响高血压患者心血管危险分层的因素[23]

心血管疾病危险因素

性别(男>女)

年龄(男≥45岁,女≥55岁)

吸烟(现在或过去)

收缩压水平

非高密度脂蛋白胆固醇水平

家族或父母有早发高血压史

个人恶性高血压病史

早发性心血管疾病家族史(男性<55岁,女性<65岁)

心率(静息心率>80次/min)

低出生体重

久坐不动的生活方式

超重或肥胖

糖尿病

高尿酸血症

高脂血症

妊娠不良结局(反复流产、早产、妊娠期高血压疾病、妊娠糖尿病)

社会心理和社会经济因素

暴露于空气污染或噪声的环境

其他临床状况或合并症

真性难治性高血压

睡眠障碍(包括呼吸暂停)

慢性阻塞性肺疾病

痛风

慢性炎性疾病

非酒精性脂肪性肝病

慢性感染(包括长新冠综合征)

偏头痛

抑郁

男性勃起功能障碍

高血压靶器官损害

左心室肥厚

左心房扩大(超声心动图)

老年脉压≥60 mmHg

颈动脉斑块形成

臂踝动脉脉搏波传导速度 \geqslant 18 m/s 或颈股动脉脉搏波传导速度 \geqslant 10 m/s

踝臂血压指数≤0.9

慢性肾脏病 3期,估算的肾小球过滤率(estimated glomerular filtration

rate, eGFR) 30~59 mL/(min • 1.73 m²)

晚期视网膜病变:出血或渗出,乳头状水肿

合并的心血管疾病或慢性肾脏病

脑出血、缺血性脑卒中、短暂性脑缺血发作

冠心病、慢性心力衰竭、心房颤动

高低密度脂蛋白胆固醇血症

心力衰竭,包括射血分数保留型心力衰竭

外周动脉疾病

心房颤动

大量蛋白尿(>300 mg/24 h)或尿微量白蛋白/肌酐比值(晨尿更具价

值)>300 mg/g

慢性肾脏病 4 期和 5 期

2 高血压精准化治疗

随着对高血压病因、病理生理机制、并发症的深入认识,高血压的诊断标准、危险分层、目标血压值不断更新。随着高血压精准化研究的深入,人们认识到高血压降压目标值不是一成不变的,在选择血压目标值时需要考虑诸多因素,这些因素包括性别、年龄、种族、遗传、生活方式、所处环境、高血压状态持续时间、靶器官损害情况、合并症等。

2.1 血压目标值 对于高血压的管理,降压达标是第 一位。我国现有高血压指南仍把血压目标值确定为< 140/90 mmHg,如可耐受,可降至 130/80 mmHg。在 此基础上,越来越多的循证证据证实了强化降压的获 益。SPRINT 结果显示[33],以精准化的无人值守诊室 血压测量,强化降压(收缩压目标值<120 mmHg)较 标准降压(收缩压目标值<140 mmHg)显著降低了心 脑血管事件风险。老年高血压患者血压干预策略试验 (strategy of blood pressure intervention in the elderly hypertensive patients, STEP) 亦显示强化降压(诊室 收缩压目标值 110~130 mmHg)与标准降压(诊室收 缩压目标值 130~150 mmHg)相比,在降低心脑血管 事件风险的基础上,并未增加降压过度导致的肾脏损 伤等不良事件[34]。基于指南和循证的支持,强化降压 可为大多数高血压患者带来更多心脑血管获益。然而 强化降压可能不适用于所有人群,在一些特殊人群中 目标值应个体化衡量。在超高龄患者中,目前专门针 对年龄>80 岁高龄高血压患者的大型随机化对照试 验仅有高龄老年人高血压试验(hypertension in the very elderly trial, HYVET),该研究证实收缩压控制 在<150 mmHg时,能够减少全因死亡、致死性脑卒 中和心力衰竭发生率,同时安全性较正常组无明显减 低[35]; 而 2019 年柏林倡议研究(Berlin Initiative Study,BIS)发现当血压<140/90 mmHg 时,年龄≥ 80 岁患者组的全因死亡率增加了40%,而既往有心血 管疾病史的患者全因死亡率增加了61%[36],分析原因 考虑为超高龄患者基础合并症多,体质较差等综合因 素,故超高龄患者群体的血压控制目标仍需进一步临 床循证医学的支持。老年人群中衰弱合并高血压也较 为常见,一项包含23个横断面研究的荟萃分析结果显 示,60 岁以上高血压人群中衰弱的患病率为14%,而 衰弱老人中高血压的患病率高达 72%[37]。对于合并 衰弱的老年高血压患者的血压管理,目前仍存在争议。 Ravindrarajah等[38]对英国电子病历库中超 14 万 80 岁以上老人的分析显示,不论是否使用降压药,在收缩 压<120 mmHg 时死亡率明显高于 120~139 mmHg 组,衰弱程度越重死亡率越高,而在收缩压 140~

159 mmHg 时死亡率最低。然而, SPRINT 亚组分析结果却提示^[39],在75 岁以上老年高血压治疗中,不论是常规降压组还是强化降压组,衰弱对心血管事件和全因死亡均没有明显影响。HYVET 亚组分析亦显示,衰弱老人仍能够从降压(血压控制在150/80 mmHg以下)中获益^[40]。鉴于现有临床研究证据的不一致,目前仍认为在衰弱、超高龄等人群中应采取个体化的血压管理策略,由临床医生根据患者耐受性确定适宜的个体化血压控制目标。

血压目标值在精准化治疗中不仅要考虑到年龄和 衰弱程度的差异,同时也需要结合患者基础疾病,合并 不同并发症,采用个体化原则(表 5)。对于合并冠心 病的患者,普伐他汀或阿托伐他汀的疗效评估和感染-心肌梗死溶栓研究 22 (pravastatin or atorvastatin evaluation and infection therapy thrombolysisin myocardial infarction 22, PROVE ITTIMI22)[41] 及稳定型 冠状动脉疾病患者前瞻性纵向观察(prospective observational longitudinal registry of patients with stable coronary artery disease, CLARIFY)[42] 均发现,血 压水平在 120~130/70~80 mmHg 范围内心血管事 件发生率最低,血压>140/90 或<120/70 mmHg 均 可增加心血管事件风险,血压与心血管事件的发生风 险之间存在 J 型曲线关系;血压和心血管事件新目标 (blood pressure and cardiovascular events in the treating to new targets, TNT)研究发现,舒张压< 70 mmHg,尤其是<60 mmHg 时心血管事件发生概 率明显升高,同时舒张压>90 mmHg 后心血管事件 发生概率也明显升高[43]。高血压合并 CKD 的患者, 既往系统评价显示,强化降压治疗(血压<130/ 80 mmHg)可使CKD患者肾脏复合终点事件(肌酐翻 倍、eGFR降低50%或终末期肾病)风险降低,但亚组 分析却显示,在未合并蛋白尿的 CKD 患者中,强化降 压治疗并未改善肾脏结局[44-45];SPRINT显示,与收缩 压<140 mmHg 组相比,控制收缩压<120 mmHg 组 主要心血管不良事件(major adverse cardiovascular events, MACE)和全因死亡风险下降,但有增加急性 肾损伤、新发 CKD、低血压、电解质异常等不良事件的 风险[33,46];同时针对非糖尿病 CKD 非透析患者血压 控制目标的研究显示,与常规降压治疗组(血压<140/ 90 mmHg)相比,强化降压治疗(血压<130/ 80 mmHg)组的患者 eGFR、复合肾脏终点事件和全 因死亡风险差异无统计学意义,同时伴随着强化降压 治疗,头晕风险增加[47]。尽管学界目前已对高血压患 者合并不同合并症的情况给予了降压目标值的推荐, 但当患者同时有多种合并症时是否需要更加精准的降 压目标值仍需要进一步深入研究。

表 5 不同合并症血压控制目标值及循证证据

合并症	推荐目标值	循证证据
高血压合并冠心病	如能耐受,血压可降至<130/80 mmHg,	Bundy 等. JAMA Cardiol,2017 ^[48]
	但舒张压不应低于 60 mmHg	Treibel 等. J Am Coll Cardiol, $2018^{[49]}$
		Wokhlu 等. J Hypertens, $2018^{[50]}$
		Williams 等. Eur Heart J ,2018 ^[51]
高血压合并心力衰竭	<130/80 mmHg	Ettehad 等. Lancet,2016 ^[52]
		Bundy 等. JAMA Cardiol,2017 ^[48]
		Unger 等. Hypertension, 2020 ^[53]
高血压合并心房颤动	<130/80 mmHg	Du 等. Eur Heart J,2009 $^{[54]}$
		Kim 等. J Am Coll Cardiol, 2018 ^[55]
		Kim 等. Hypertension, 2020 ^[56]
高血压合并糖尿病	<130/80 mmHg	White \mathfrak{F} . J Am $Heart$ $Assoc$, $2018^{[57]}$
		Brouwer 等. Diabetes Care, 2018 ^[58]
		Treibel 等. J Am Coll Cardiol, 2018 ^[49]
		Whelton 等. Hypertension, 2018 ^[59]
高血压合并肾脏病	<140/90 mmHg,有白蛋白	Upadhyay 等. Ann Intern Med, $2011^{[60]}$
	<130/80 mmHg	Lv 等. <i>CMAJ</i> ,2013 ^[61]
		Beddhu 等. Ann Intern Med ,2017 ^[62]
		SPRINT 研究组. N Engl J Med, 2015 ^[33]
高血压合并脑卒中(包括缺血性及出血性)	急性期:监测血压,避免血压波动,根据	Qureshi 等. N Engl J Med, 2016 [63]
	患者情况降压	Treibel 等. J Am Coll Cardiol, $2018^{[49]}$
	稳定期:<130/80 mmHg	Unger 等. Hypertension, 2020 ^[53]
		Moullaali 等. J Neurol Neurosurg Psychiatry, 2022 [64]

注:SPRINT 为收缩压干预试验。

上述研究结果之间的分歧提示,虽然强化降压明显降低高血压患者心血管事件和死亡风险,但是强化降压对于一些特殊人群是否合适仍有待研究,特别是强化降压后出现的低血压、急性肾功能损伤等不良反应应该引起重视,且强化治疗多涉及大剂量或多重用药,患者依从性、风险获益比、近/远期预后等仍是需要探讨的问题。

2.2 **高血压精准化生活方式干预** 生活方式的干预 是高血压精准化治疗的基石。非药物干预在降低血压 方面的效果已得到研究证实及国内外高血压指南的推 荐,包括饮食、适当运动、减压、减重等,但因患者年龄、 合并症等不同,生活方式干预亦有所区别。

早在 1997 年美国研究就发现高血压控制饮食 (dietary approaches to stop hypertension, DASH)对降血压有着明显的改善和帮助, DASH 可较正常饮食显著降低血压(平均收缩压和舒张压分别降低7.62 mmHg 和 4.22 mmHg)^[65], 而后在此基础上改良的 DASH(强调少盐)可进一步降低收缩压 5.5 mmHg^[66]; 在 DASH 的基础上, 欧洲提出了"强调橄榄油使用"的地中海饮食模式。2013 年的地中海饮食预防 (prevención con dieta mediterránea, PRE-DIMED)研究证实^[67], 坚持地中海饮食 1 年以上的 64 岁以上人群(与接受标准化饮食建议的对照组相比),

收缩压降低 5.9 mmHg,不仅如此,根据系统回顾和 网络荟萃分析的结果,地中海饮食还可以降低全因死 亡风险 28%、心血管死亡风险 45%、非致命性心肌梗 死风险 52%等[68]。然而,西方和中国人群的特点及饮 食结构有较大差别。2022年中国饮食、运动和心血管 健康-饮食(diet, exercise and cardiovascular health-diet, DECIDE)研究发现中国心脏健康(Chinese hearthealthy, CHH)饮食(包含鲁菜、淮扬菜、粤菜、川菜 4 个不同版本,与正常饮食相比,CHH 饮食中的脂肪能 量占比减少 5%~8%,蛋白质能量占比增加 3.5%~ 5.5%,碳水化合物能量占比增加0~5%)较对照组收 缩压降低 10 mmHg,舒张压降低 3.8 mmHg,且不影 响中国人群对饮食的喜好程度[69]。除饮食结构的改 变外,基于中国人群的盐替代和脑卒中研究(salt substitute and stroke study, SSaSS)结果显示,与普通食 盐(100%氯化钠)相比,低钠替代盐(约75%氯化钠和 25%氯化钾)饮食组发生脑卒中风险降低14%,主要 心血管风险降低 13%,全因死亡风险降低 12%[70]。 基于中国老年人的 DECIDE-salt 研究结果显示[71],低 钠富钾饮食(钾摄入量 90~120 mmol/d)可使老年人 收缩压降低 7.1 mmHg,并且显著降低心血管及脑卒 中事件风险。故结合中国饮食特点,建议低盐低脂富 钾优质蛋白饮食更有利于国人血压控制,但即使如此,

在一些特殊人群,如肾功能不全者及重度营养不良的 患者,为避免高钾血症、低钠的风险,需采用个体化 原则。

规律锻炼或身体活动的增加有利于控制血压,降 低心血管死亡风险[72]。相对于不运动的群体,所有的 运动类型都有益于心理健康,但不同运动方式、时间对 心血管的益处不尽相同。研究表明有氧运动联合抗阻 力量练习可使收缩压降低得更为理想,每次运动时间 控制在 30~45 min 最佳,运动频次每周 3~5 d 更为 合适;相较于低强度和高强度运动,中等强度运动降压 效果最好[73]。比较高强度间歇训练(high-intensity interval training, HIIT)和中等强度间歇训练(moderate-intensity continuous training, MICT)对高血压患 者血压影响的研究发现, HIIT 和 MICT 均能降低成 年高血压患者的收缩压,且 HIIT 降低舒张压的幅度 更大[74]。但由于每个人的身体状况不同,在选择运动 量时还是要因人而异,考虑年龄、身体衰弱情况和合并 症情况,综合判断。此外,团体类运动、骑车、有氧健身 操更利于减轻心理负担[75]。参与骑车、游泳、网拍类 运动和有氧运动与全因死亡和心血管死亡减少显著相 关,其中参与网拍类运动可使全因死亡风险下降 47%,被认为是性价比最高的运动类型[76]。

体重指数的控制在高血压人群中也具有重要作用,对于个别通过饮食及运动后仍不能控制的患者,研究表明通过减重药物或手术减重能有效降低血压,并能更好地改善代谢综合征,降低心血管事件发生率[77]。

尽管众多的研究和指南指出了生活方式干预的重要性,但也应该认识到不同的生活方式干预对高血压患者个体血压的影响存在较大差异,未来结合患者高血压易患因素以及基因组学特征明确每一个高血压患者最为适宜的生活方式干预策略可为高血压患者个体化治疗提供更加精准的指导。

2.3 高血压精准化药物治疗

2.3.1 继发性高血压 继发性高血压具有针对性的 治疗手段,可通过手术、药物等手段去除病因,使血压 正常或趋于正常。如甲状腺功能亢进或睡眠呼吸暂停 综合征,可采用药物控制甲状腺功能亢进、无创通气辅 助治疗方式控制血压;肾动脉狭窄可用球囊扩张或支 架置人术治疗;肾上腺肿瘤采用手术切除;醛固酮增多 症用醛固酮拮抗剂等。在继发性高血压中有一种特殊 类型,即单基因遗传性高血压,其遗传方式符合孟德尔 遗传规律,因此又称孟德尔型高血压。目前常见的单 基因高血压有:Liddle 综合征、Gordon 综合征、糖皮质 激素可治性醛固酮增多症(glucocorticoid-remediable aldosteronism, GRA)、盐皮质激素受体活性突变、拟 盐皮质激素增多症等。单基因遗传性高血压具有独特 的药物治疗方案^[78-85],如 GRA 需用地塞米松治疗。 很多单基因遗传性高血压采用常规的 5 大类降压效果 不佳,需采用针对性的药物,如:保钾利尿剂氨苯蝶啶 治疗 Liddle 综合征,螺内酯、依普利酮治疗表观盐皮 质类固醇激素过多综合征(apparent mineralocorticoid excess, AME); 噻嗪利尿剂治疗 Gordon 综合征(表 6)。

表 6 单基因遗传性高血压的临床特点[86]

		12 0	十坐四	12217	T. FJ 1111./15	はい マン・フィング	
单基因高血压类型	发病年龄	肾素 活性	醛固酮	K ⁺	遗传方式	致病基因	治疗
糖皮质激素可治性醛固酮增多症	20~30岁	降低	升高	降低	常染色体	CYP11B2 嵌合	低剂量糖皮质激素;其他方案:盐皮质激素拮
(GRA)					显性	CYP11B1	抗剂,上皮钠离子通道(ENaC)抑制剂
Liddle 综合征	<30 岁	降低	降低	降低	常染色体	SCNN1B\SCNN1G\	螺内酯、补钾、激素
					显性	ENaC	
表观盐皮质类固醇激素过多综合	儿童或成人	降低	降低	降低	常染色体	11βHSD2	螺内酯、补钾、激素
征(AME)					隐性		
妊娠加重型高血压(Geller 综合	<20 或<30 岁	降低	降低	降低	常染色体	NR3C2	低钠饮食;避免使用醛固酮受体拮抗剂,终止
征)					显性		妊娠后可改善高血压
Gordon 综合征	<20 或<30 岁	降低	降低	升高	常染色体	WNK4 WNK1 、	严格限盐,噻嗪类利尿剂
					显性	KLHL3、CUL3	
高血压伴短指综合征	儿童	降低	降低	降低	常染色体	PDE3A SUR2	磷酸二酯酶 3 抑制的可能作用
					显性		
先天性肾上腺皮质增生(congenital	儿童或青春期	降低	降低	降低	常染色体	CYP21A2 CYP11B1	17∝羟化酶缺陷糖皮质激素治疗,保钾利尿剂
adrenal cortical hyperplasia, CAH)					隐性	CYP17A1 、HSD3B2	? 21∝羟化酶缺乏糖皮质激素治疗

注:CYP11B2 为细胞色素 P450 11B2;CYP11B1 为细胞色素 P450 11B1;SCNN1B 为阿米洛利敏感钠离子通道蛋白 1B;SCNN1G 为阿米洛利敏感钠离子通道蛋白 1B;SCNN1G 为阿米洛利敏感钠离子通道蛋白 1B;SCNN1G 为阿米洛利敏感钠离子通道蛋白 1B;SCNN1G 为阿米洛利敏感钠离子通道蛋白 1G;ENaC 为上皮钠离子通道;11βHSD2 为 11β 羟类固醇脱氢酶 2;NR3C2 为核受体亚家族 3C 组成员 2;WNK4 为 WNK 赖氨酸缺陷蛋白激酶 4;WNK1 为 WNK 赖氨酸缺陷蛋白激酶 1;KLHL3 为 Kelch 样蛋白 3;CUL3 为 Cullin3;PDE3A 为磷酸二酯酶 3A;SUR2 为 ATP 敏感钾离子通道 SUR2 亚基;CYP21A2 为细胞色素 P450 21A2;CYP17A1 为细胞色素 P450 17A1;HSD3B2 为 3β 羟类固醇脱氢酶 2。

2.3.2 原发性高血压 精准医学在原发性高血压的 应用相较继发性高血压研究更为复杂,高血压涉及遗传因素与环境因素的综合作用。目前已证实与高血压 发病相关的基因超过30个,同时还发现有超过1477个 SNPs 与血压相关,位点涉及肾素-血管紧张素-醛固酮 系统、交感神经系统和内皮素系统、钠调节系统、脂质代谢、细胞信号传导等多个系统,然而,到目前为止,这 些高血压相关的 SNP 也仅仅能解释大约6%的遗传性高血压的发病[87]。众多的高血压相关基因及 SNPs 的综合作用,对高血压的发生和发展产生怎样的影响仍是一个很复杂的问题,目前也是高血压基因多态性 研究的热点之一,如何采用多基因风险评分早期识别高血压的高风险人群是一个值得探讨的方向。

在高血压常用的5大类降压药中,具体到患者的 实际情况,不同药物对患者个体疗效的差异更加突显 药物精准选择治疗的价值。如:青年人高血压往往伴 有交感神经兴奋性增高,以舒张压升高为主,所以要抑 制交感神经活性,同时控制好心室率,β受体阻滞剂恰 好具备上述功能;对于糖尿病合并蛋白尿患者,大剂量 的血管紧张素转换酶抑制药(angiotensin converting enzyme inhibitor, ACEI)或血管紧张素受体阻滞药 (angiotensin receptor blocker, ARB)在发挥降血压作 用的同时可降低患者的蛋白尿,保护肾功能。对于合 并心力衰竭的患者,推荐血管紧张素受体-脑啡肽酶抑 制剂(angiotensin receptor neprilysin inhibitor, AR-NI)替代 ACEI/ARB,临床研究证实它在控制血压的 同时,可改善心血管预后。老年人多合并动脉硬化,使 用长效钙通道阻滯剂(calcium channel blocker, CCB) 在稳定降低收缩压的同时,对动脉硬化有一定的改善 作用。联合用药在提高降压效果的同时,提高了患者 依从性、减少了药物不良反应(联合用药方案及证据见 表 7)。单片复方制剂(single-pill combination, SPC) 作为一种新型联合用药方式,与单药自由联合用药相 比,具有使用方便、治疗依从性和疗效较好等优势,是 联合治疗的新趋势。2022年单片复方制剂与相同多 药治疗在高血压、血脂异常和继发性心血管保护作用 比较(effects of single pill combinations compared to identical multi pill therapy on outcomes in hypertension, dyslipidemia and secondary cardiovascular prevention, START)研究结果表明, SPC 可有效降低人 群心血管事件发生率和全因死亡率,接受治疗后,SPC 组首次心血管事件发生的平均时间比多片药物联合 (multi-pill combination, MPC)组晚 116 d, 死亡时间 比 MPC 组晚 62.176 d,使用 SPC 的患者服药后首次 发生心血管事件和死亡事件的时间也较使用 MPC 的 患者更晚[88]。中国门诊高血压患者治疗现状登记调

查(national survey of blood pressure control rate in Chinese hypertensive outpatients, CHINA STATUS II) [189]、糖尿病和心血管行动(the action in diabetes and vascular disease, ADVANCE) [90]、氯沙坦减少高血压患者终点事件研究(losartan intervention for endpoint reduction in hypertension study, LIFE) [91] 及老年人认知和预后研究(the study on cognition and prognosis in the elderly, SCOPE) [92] 均证实: 不同成分的SPC 均显示出比自由联合用药更好的治疗依从性和用药持久性。CHINA STATUS II 研究结果显示, ACEI/ARB与 CCB 联用(奥美沙坦酯+氨氯地平)相较于其他双重或三重用药组合,可更好地改善高血压患者的代谢功能和肾功能。但对于舒张压高、高盐摄入的患者, ACEI/ARB与噻嗪类利尿剂的联合具有更好的减压作用[89]。

药物基因组学在"精准药物治疗"方面崭露头角,基于个体药物基因组学证据,可预测药物降压效果、耐药性及靶器官保护作用,从而为高血压提供更加精准的治疗指导。与此同时,应用这些治疗策略的卫生经济学研究对高血压群体防控同样具有重要价值。

2.4 高血压人群精准化管理模式

2.4.1 "互联网十"高血压慢性疾病管理模式 "互联 网十"高血压慢性疾病的管理是互联网时代发展的产 物,是传统高血压管理方法的补充和发展,通过结合互 联网来精确匹配患者群体及获取其准确全面的健康信 息,从而增强卫生服务和信息的透明化,达到精准医疗 的效果。2008年,家庭血压监测,网络教育和药师管 理控制高血压的有效性研究(effectiveness of home blood pressure monitoring, web communication, and pharmacist care on hypertension control, e-BP) 随机 对照试验[99]证实家庭血压监测十线上教育+药师咨 询组血压达标率(56%)显著高于常规管理组(31%)和 家庭血压监测+线上教育组(36%);2021年发表在 《英国医学杂志》(The British Medical Journal, BMJ)上的家庭在线血压管理和评估(home and online management and evaluation of blood pressure, HOME BP)研究进一步证实,数字化干预通过使用血 压的自我监测来控制高血压,与传统方法相比,1年后 收缩压的控制效果更好(收缩压相差-3.4 mmHg,舒 张压相差-0.5 mmHg),且增量成本更低[100];2022 年中国医学科学院阜外医院王增武教授团队研究显 示,在"互联网十"指导下,血压控制效果、生活方式干 预效果均大幅度提高[101]。综上,基于互联网管理平 台开展健康管理在改善高血压患者的血压控制率、降 低血压水平等方面均显著优于对照组。

表 7 联合用药方案及临床研究

试验	研究方案	研究药物	研究结果
NCLUSIVE 研究 ^[93]	ARB+利尿剂	厄贝沙坦+氢氯噻嗪	单药、联合用药达标:30%、77%
EVALUATE 研究 ^[94]	ARB比利尿剂;ARB+	缬沙坦比氢氯噻嗪;缬沙坦+	缬沙坦+氢氯噻嗪降压明显优于单用氢氯噻嗪或缬沙坦;
Val-DICTATE 研究 ^[95]	利尿剂比 CCB	氢氯噻嗪比氨氯地平	ARB+利尿剂组与 ARB+CCB 组降压疗效相当,但 ARB+利尿剂组不良反应发生率显著低于 ARB+CCB 组
VALUE 研究 ^[96]	ARB+利尿剂 比 CCB+ 利尿剂	氨氯地平+氢氯噻嗪比 缬沙 坦+氢氯噻嗪	ARB+利尿剂组较 CCB+利尿剂组心血管事件风险降低,但降低幅度稍低
LIFE 研究 ^[91]	ARB+利尿剂比β受体 阻滞剂	氯沙坦/氢氯噻嗪比阿替洛尔	ARB+利尿剂较 β 受体阻滞剂可显著降低心血管事件复合终点
ASCOT-BPLA 研究 ^[97]	CCB+ACEI 比β受体阻 滞剂+利尿剂	氨氯地平/培哚普利 比 阿替 洛尔/苄氟噻嗪	CCB+ACEI 较 β 受体阻滞剂+利尿剂血压下降明显,同时显著降低心血管事件复合终点
HOT-CHINA 研究 ^[98]	CCB 比 CCB+ACEI 比 CCB+β 受体阻滞剂	非洛地平比非洛地平/培哚普 利比非洛地平/比索洛尔	CCB+ACEI 组较 CCB+β 受体阻滞剂组显著降低心血管事件 复合终点

注:NCLUSIVE 研究为厄贝沙坦和氢氯噻嗪的长期降压活性与耐受性研究(the long-term antihypertensive activity and tolerability of irbesartan with hydrochlorothiazide); EVALUATE 研究为比较缬沙坦/氢氯噻嗪与氨氯地平/氢氯噻嗪对 2 期高血压患者动态血压的影响研究(effects of force-titrated valsartan/hydrochlorothiazide versus amlodipine/hydrochlorothiazide on ambulatory blood pressure in patients with stage 2 hypertension); Val-DICTATE 研究为缬沙坦氢氯噻嗪利尿药起始控制和滴定至最佳疗效研究(the valsartan hydrochlorothiazide diuretic for initial control and titration to achieve optimal therapeutic effect); VALUE 研究为缬沙坦抗高血压长期应用研究(valsartan antihypertensive long-term use evaluation); LIFE 研究为氯沙坦减少高血压患者终点事件研究; ASCOT-BPLA 研究为盎格鲁-斯堪的那维亚心脏终点事件试验-降血压研究(the Anglo-Scandinavian cardiac outcomes trial-blood pressure lowering arm); HOT-CHINA 研究为中国高血压患者最佳治疗研究(hypertension optimal treatment study in China); ARB 为血管紧张素受体阻滞药; CCB 为钙通道阻滞剂; ACEI 为血管紧张素转换酶抑制药。

2.4.2 中国式以社区、乡村医生为主导的多方位血压 控制干预模式 约75%的高血压患者生活在中低收 人国家,而在这种资源匮乏环境中,高血压患者血压控 制达标的比例很低。在我国,农村地区的高血压患病 率(29.4%)明显高于城市地区(25.7%),而高血压的 控制率仅为11%。因此,在我国农村地区探索出可 行、有效和可持续的高血压控制策略势在必行。中国 农村高血压控制项目(the China rural hypertension control project, CRHCP)研究通过对乡村医生适当培 训,高血压控制率大幅度提高,主要复合终点发生率、 全因死亡率显著降低,由此证实在资源欠缺的村庄,由 乡村医生主导的高血压干预在降低心血管疾病和全因 死亡方面效果显著[102]。城市内,我国高血压防治工 作重点由综合性医院、心血管专科医师向基层社区健 康卫生服务中心转移。2017年,He等[103]发表了其在 阿根廷低收入社区的研究结果,该研究团队对高血压 患者实施了以社区健康工作者为主导的综合干预,具 体包括健康教育、家庭血压监测、血压达标监督、医生 教育及短信干预,发现相比常规管理组,综合干预组高 血压患者收缩压下降 6.4 mmHg,舒张压下降 5.4 mmHg,控制率提高了 20.6%。目前我国深圳"福田 模式"等研究亦发现:通过对社区居民设立专员管理、 医联体下高血压患者分级诊疗、双向转诊及家庭医生 综合干预模式后高血压的治疗率、控制率明显增高,这 种下沉至社区的高血压管理模式,使高血压患者得到

较大获益^[104]。厦门市采用专科医师、全科医师及健康管理师的高血压"三师共管"模式,显著提高了高血压的控制率^[105]。

2.4.3 智能可穿戴设备在高血压诊疗中的应用 智能可穿戴设备是在传感器、无线通信、可穿戴技术及算法支持下设计、开发的可穿戴设备的总称,可获取生命体征相关参数,在健康医疗领域极具潜力。随着科技的发展,智能穿戴设备的健康监测功能已逐渐完善,与传统血压仪相比,智能穿戴产品具备使用更便捷的特点,同时便于人们对血压进行长时间有效的监测,得出更全面的血压数据。Kario等[106]研究中的腕带式可穿戴设备和Islam等[107]研究中的无袖式可穿戴设备均被证实与传统血压测量方式相比,测量血压数据差别小,达到了临床应用需求。此外,使用智能可穿戴设备还具有一些潜在优势,如:通过程序设定,定时测量血压,可有效鉴别白大衣性高血压及隐蔽性高血压;结合人工智能技术和多次血压测量,可早期预测高血压发生风险,预测血压变异性等。

3 高血压精准化治疗新技术与新进展

3.1 高血压精准化治疗新技术

3.1.1 经导管去肾交感神经术(renal denervation, RDN) 难治性高血压的形成与肾交感神经的过度激活有关,RDN 是通过破坏肾动脉壁内的交感神经纤维,从而降低交感神经兴奋性,实现降压的新兴技术。

近 10 年来,RDN 针对顽固性高血压的治疗临床研究 共有 10 余项发布,多项研究结果显示^[108-117]:RDN 可 显著降低诊室血压及动态血压或减少降压药物的服用 量。RDN 在经验丰富的专业中心,可作为顽固性高血 压成年患者的辅助治疗选择,为提升血压控制率,减少 心血管事件与疾病负担提供一条新的路径。

但要注意,作为一种手术治疗,RDN 有严格的适 应证,不能将应用范围扩大化,这些适应证包括:①经 足量且合理应用3种或以上,包括利尿剂在内的不同 作用机制的降压药物规范治疗,诊室收缩压仍≥ 160 mmHg, 如合并 2 型糖尿病者收缩压≥ 150 mmHg;②充分排除继发性高血压、假性难治性高 血压(血压测量因素、患者依从性差、服用具有升压作 用的药物等);③eGFR>45 mL/(min·1.73 m²), CTA 或 MRA 确定肾动脉主干直径≥4 mm 且长度≥ 20 mm。同时应注意,手术流程应经过临床验证并通 过相关管理部门审批,手术人员需经过规范化培训。 3.1.2 颈动脉窦刺激器 颈动脉窦为压力感受器,其 作用为将血压的冲动传至延髓的血管舒缩中心,调节 血压。当血压长期维持在较高水平时动脉压力感受器 的敏感性下降,血压调节功能减弱或消失,促进了顽固 性高血压的发生。植入电刺激器或植入血管内压力反 射放大器的方式可降低交感神经活性,已成为治疗高 血压的一种方式。基于此原理,开发了两类治疗器械, 一种是用单侧颈动脉窦水平电压力刺激的 Barostim neo 系统,另一种是不通过电刺激,而是通过颈内动脉 植入物,采用被动机械刺激压力感受器来降低血压的 Mobius HD 系统。对顽固性高血压同时合并不符合心 脏再同步化治疗适应证的难治性心力衰竭患者,颈动 脉窦刺激器可能是一种的更好的选择[118-121]。相关器 械仍处于持续研究阶段,尚未应用于临床。

3.1.3 心脏神经调节治疗 在具有心脏起搏器的患者中,采用缩短房室间期、减少心室充盈从而达到降压的作用,但血压下降可能引起压力感受器调节的神经元和激素应答,通过加快心率,增加外周阻力和心肌收缩力来抵消房室间期缩短导致的血压下降。因此通过在较短和较长的房室间期不断交替,血压可以在较长时间内下降,而没有交感神经激活或出现对这种治疗的耐受。基于上述原理创造的 Moderato 系统,是一种双腔、频率应答起搏器,其内置有程序血压控制(programmable hypertension control, PHC)算法。PHC可以交替变换房室间期,在8~13次短房室间期起搏后给予1~3次长房室间期起搏。MODERATO I 研究显示植人 Moderato 系统后采用 PHC 能够在短期内使收缩压降低(14.2±9.8)mmHg;而长期观察显示收缩压降低了(23.4±20.5)mmHg^[122-123]。该系

统适合应用于病态窦房结综合征或房室传导阻滞拟行起搏器治疗同时合并难治性高血压患者^[122-123]。这一治疗手段有望进入临床。

3.1.4 其他 其他应用于高血压治疗的技术如颈动脉体消融术、髂动静脉分流术、脑深部电刺激术(deep brain stimulation, DBS)等还处于探索阶段^[124-125]。

3.2 高血压精准化诊疗临床研究进展

3.2.1 诊室血压与诊室外血压的选择 在高血压诊 断方面,选择诊室血压测量或是诊室外血压测量,哪一 个更能方便有效地诊断高血压,并能评估高血压风险, 仍存在争议。2020年12月《美国心脏病学会杂志》 (Journal of the American College of Cardiology, JACC)上发表了一项研究,结果显示,在与诊室血压 和 24 h 动态血压进行比较时,家庭自测血压诊断高血 压的可靠性更高,并且与左室质量指数的相关性更好。 在诊断高血压和评估高血压风险时,应优先选择家庭 自测血压[126]。诊室血压和诊室外血压之间具有互相 补充的作用,应在高血压患者的诊治过程中灵活应用。 3.2.2 高血压的时间治疗学 研究证实,血压昼夜节 律的丧失与许多心血管疾病包括高血压的不良预后相 关。然而,目前的诊断和治疗方法对血压昼夜节律性 的调控缺乏足够的重视。睡眠模式、激素释放、饮食习 惯、消化功能、体温、肾脏和心血管功能都在一定程度 上影响血压的昼夜节律。通常情况下,患者日间血压 高于夜间血压,所以推荐患者多在日间进行服药。 Thomas M MacDonald 团队在《柳叶刀》(Lancet)杂志 发表了英国成年高血压患者常规降压药早晚服用对心 血管结局影响(cardiovascular outcomes in adults with hypertension with evening versus morning dosing of usual antihypertensives in the UK, TIME) 随 机对照临床研究的结果,显示早晨或夜间服用降压药 物在主要心血管结果方面无差异,这些结果提示对于 普通高血压患者可以按照习惯或方便,选择在早晨或 夜间服药均可[127]。但对于"勺型"高血压,睡前或夜 间服药可能更有助于控制夜间血压的升高。对于高血 压的时间治疗学仍需要更多的大规模临床研究支持。 3.2.3 新型降压药 艾沙利酮(Esaxerenone)作为高 度选择性的盐皮质激素受体拮抗剂,与其他类固醇激 素受体相比,该受体的选择性超过 1000 倍,相对于螺 内酯和依普利酮,艾沙利酮的盐皮质激素受体亲和力 提高了 4 倍和 76 倍。在《高血压》(Hypertension)杂 志上发表的新型选择性非甾体盐皮质激素受体拮抗剂 艾沙利酮的Ⅲ期多中心、随机、双盲临床试验结果显 示, 艾沙利酮 2.5 mg/d 的剂量在静息血压和 24 h 血 压降低方面不劣于依普利酮片。用艾沙利酮 5 mg/d 的血压降压效果显著优于依普利酮 50 mg/d^[128]。