

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1969

Verification of model of molten glass flow in a forehearth.

Pekcelen, Sina

Monterey, California. U.S. Naval Postgraduate School

http://hdl.handle.net/10945/13359

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

NPS ARCHIVE 1969 PEKCELEN, S.

VERIFICATION OF MODEL OF MOLTEN GLASS FLOW IN A FOREHEARTH

by

Sina Pekcelen

United States Naval Postgraduate School

THESIS

VERIFICATION OF MODEL OF MOLTEN GLASS FLOW

IN A FOREHEARTH

by

Sina Pekçelen

December 1969

T131905

This document has been approved for public release and sale; its distribution is unlimited. U.S. Naval Postgraduate School
Monterey, California 93940

Verification of Model of Molten Glass Flow in a Forehearth

by

Sina Pekçelen Lieutenant (junior grade), Turkish Navy B.S., Naval Postgraduate School, 1969

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN CHEMISTRY

from the

NAVAL POSTGRADUATE SCHOOL December 1969

NPS ARCHIVE 1969 1969 PEKCELEN,S

ABSTRACT

In this work, variations on velocity profiles in a flowing mass of molten glass in a forehearth are investigated. Formerly used parabolic velocity profiles are replaced with analytical solution of open channel flow equation, based on the available data on mass flow of molten glass through the channel in unit time.

Concerning the viscosity effects; temperature dependence of viscosity is built in the model. However, it is assumed that the depth of the channel does not affect the viscosity gradients.

To solve the system of non-linear differential equations i.e., heat equation and flow equation; the analytical solution of the latter at the nodes is used for the numeric solution of the former iteratively, until the convergence is obtained. Predicted temperatures are compared to the available data from an actual operating forehearth, and against the results predicted by the previous model using simplying assumptions to prove its validity.

TABLE OF CONTENTS

I.	INTRODUCTION	11
II.	NATURE OF THE PROBLEM	12
	A. DERIVATION OF DIFFERENTIAL EQUATIONS	16
	B. BOUNDARY CONDITIONS	18
	C. NUMERICAL METHOD USED TO SOLVE THE HEAT EQUATION	20
III.	VELOCITY PROFILES	24
	A. PARABOLIC	24
	B. VELOCITY PROFILES USING OPEN CHANNEL FLOW EQUATION	24
	C. VELOCITY PROFILES WITH TEMPERATURE DEPENDENCE	27
IV.	PHYSICAL PROPERTY PARAMETER ESTIMATION	31
٧.	DISCUSSION	34
APPEND	DIX A - GLASS VISCOSITY DATA	35
APPEND	DIX B - COMPARISON OF RESULTS	36
APPEND	DIX C - FORTRAN VARIABLES DEFINITIONS	38
APPEND	DIX D - FLOW GRAPH TO CALCULATE VELOCITIES	40
COMPUT	TER PROGRAM	41
LIST C	OF REFERENCES	60
INITIA	AL DISTRIBUTION LIST	61
FORM I	nn 1473	63

The month of the ord of the contract

LIST OF ILLUSTRATIONS

Figure		Page
1.	Typical type-K forehearth	12
2.	Forehearth test section instrumentation end view	14
3.	Velocity profiles	28
4.	Viscosity-temperature curve for green glass	32

TABLE OF SYMBOLS

A Radiating area

C Specific heat

d Actual channel height

F Radiating enclosure view factor

h Channel height - general or convective heat transfer

coefficient

k_c Thermal conductivity - ceramic material

k_{eff} Effective thermal conductivity

k_{rad} Radiation thermal conductivity

k_{true} True thermal conductivity

n Refractive index

P Pressure

q Radiant heat transfer rate

R Aspect ratio

T Temperature

T_C Temperature - ceramic material

T_s Temperature of radiating surface

V or u Velocity

▼ or ▼ Average velocity

w Channel width

W_v Radiant volume emmissive power

γ Radiant absorption coefficient

ε Value for convergence criteria

 $\epsilon_{
m G}$ Emissivity of radiating glass surface

ACKNOWLEDGEMENT

The author wishes to express his appreciation for guidance and encouragement given him by Professor John Duffin of the Naval Postgraduate School.

I. INTRODUCTION

To improve the production of glass containers, and to transform the art of glass making into a science, the glass industry embarked an extensive forehearth measurement program in an attempt to resolve the complex phenomena of glass conditioning and cooling, while molten glass is taken out of the furnace and transferred to the forming machine.

The objective of the program was the collection of quantitative data to achieve greater understanding of forehearth and to verify the mathematical model of molten glass flow in forehearth developed by Duffin [Ref. 1].

A knowledge of the temperature distribution is needed for better understanding of the control process in glass plants. The above model proved that sophisticated models can give satisfactory results describing the forehearth behavior in a temperature sense. However they need a big computer and require considerable time to run.

In this work, validity of the simplifying assumptions in [Ref. 1] are investigated and ways to relieve them are sought. Going to a more complicated model has academic interest to show that what was developed was a useful and fairly accurate model.

II. NATURE OF THE PROBLEM

Forehearth is that section of the process where molten glass is transferred from furnace to the forming machine. During the flow, glass is conditioned in a temperature sense. A predetermined temperature is desired at the forming machine end, which assures minimum off-grade material after forming process. If undesirable temperature gradients exist at the input of forming machine, recycling of off-grade glassware is necessary, decreasing the overall system efficiency.

What is needed is controlled conditioning throughout the forehearth while molten glass is flowing. This is mainly a heat transfer problem on a flowing mass of molten glass.

To describe the physical phenomenon taking place in a typical forehearth used in glass container manufacture, see Figure (1). Glass flows from left to right in a open channel with dimensions approximately 26 inches wide, 6 inches deep and 18 feet long.

Figure 1. Typical type K forehearth

Section AA is the point of entry from furnace area with average temperature being 2400 degrees F. at this point. Area from AA to BB is called cooling zone. Area from BB to CC is known as conditioning zone. This is the place where an attempt is made to condition the glass so that the delivery temperature would be constant in plane CC. After CC a glass gob is formed. A gob is a discrete mass of molten glass created by intermittenly shearing a stream of molten glass coming from an orifice. The gob formed falls into a guide chute, and is conducted to a forming machine mold.

Temperature control is achieved by adjusting burner flame-levels and the amount of cooling wind in the cooling zone (section \overline{AA} to \overline{BB}); also with burner flame levels in the conditioning zone.

Burners are mounted on manifolds and are located every 4.5 inches on both sides of the forehearth. They produce a blanket of heat over glass surface. Hot gases sweep over the ceramic radiating surface and heat exchange takes place between gases and surface which, in turn exchanges heat with molten glass. Cooling is achieved by introducing cooling air through inlet pipes. The wind exchanges heat with glass and the ceramic surface and goes out of the system through roof ports. Details of the forehearth cross section is shown in Figure (2).

Heat exchange at the ceramic surface takes place by convection and radiation mechanisms. Heat is also conducted through the ceramic material in the sides and bottom of the forehearth. Possible disturbances can affect the system through these walls.

Above discussion indicates a complex problem of heat exchange in forehearths, with boundaries as described.

To describe temperature behavior within the glass, it is necessary to consider the mechanisms by which heat is transferred.

FOREHEARTH TEST SECTION INSTRUMENTATION END VIEW

It had been shown that emission and absorption of radiation is a bulk phenomena. The interaction of simultaneous emission and absorption throughout the volume leads to radiative heat transfer between adjacent layers of material. When this radiative heat transfer is combined with true conductivity, mathematical description of this internal radiative mechanism becomes rather involved.

Glass is, then, a diathermanous material whose diathermancy is determined by

- a) Wave length-absorption coefficient relation and
- b) Spectral composition of radiation involved.

This dependency is usually shown in plots of absorption coefficient γ versus wave length λ , with temperature as a parameter. Any detailed analysis of the internal radiation should recognize this varying diathermancy. Integration can be replaced by summation using average values of γ for various ranges of λ , with the average value in a given λ range being a function of temperature. Because of its transparency, glass layers beneath the surface will exchange heat with the surroundings. The depth to which this exchange occurs is appreciable varies with the type of the glass being considered. Upper one third of the glass flowing in a forehearth is considered as exchanging energy directly with the surroundings by Duffin [Ref. 1] in his model.

In the glass body, the radiant effects result from bulk phenomena of emission and absorption. Internally emitted radiation is reabsorbed by the glass directly and also as a result of internal reflections. This process leads to the "radiative conductance" of heat through the glass. Internal emission is characterized by "volume emissive power" which is the rate at which a unit volume of glass emits radiation in all directions. For an ideal gray material volume emissive power is given as,

$$W = 4 \text{vn}^2 \sigma T^4$$

Thus, it is proportional to absorption coefficient, refractive index and Stefan-Boltzman constant. According to Kellet [Ref. 2], in the interior of massive bodies of molten glass, steady-state temperature distributions turn out to be linear. It was also proposed that the effect of radiative conductivity be designated as an "radiation conductivity". For the gray material it is given by

$$k_{RAD} = \frac{16 n^2 \sigma T^3}{3\gamma}$$

Thus, the effective conductivity within the material is the sum of the thermal conductivity and radiation conductivity, as follows:

This is set and held throughout the glass depth. But due to dependence on the absorption coefficient, variations are possible near the glass surface.

A. DERIVATION OF DIFFERENTIAL EQUATIONS

Derivation of the differential equations was accomplished by Duffin [Ref. 1] as follows; using a right handed coordinate system and taking X coordinate as the flow direction, a differential volume element of dimensions dx, dy, dz is set up. Then writing energy balance with dz = 1.

- 1. Energy Into Element Due To Mass Flow

 Area in X direction = $dy \cdot dz = dy$ Mass flow = $V_X(1 \cdot dy)_P$ Energy flow = $(pdyV_X)(C)(T)$
- 2. Energy Out Of Element Due To Mass Flow

$$\frac{\partial}{\partial x} (\rho CV_X T dy) dx + \rho CV_X T dy$$

3. Net Flow Energy

$$-\frac{\partial}{\partial x} (\rho CV_X T dx) dy$$

4. Energy Into Element Due To Conduction-Radiation

Area =
$$dx \cdot dz = dx$$

Energy = -
$$k'dx \frac{\partial T}{\partial y}$$

5. Energy Out Of Element Due To Conduction-Radiation

$$\frac{\partial}{\partial y}$$
 (- k'dx $\frac{\partial T}{\partial y}$) dy + [-k'dx $\frac{\partial T}{\partial y}$]

6. Net Conduction-Radiation Energy

$$\frac{\partial}{\partial y}$$
 (k'dx $\frac{\partial T}{\partial y}$)dy

7. Net Total Energy Flow

$$\frac{\partial}{\partial y} (k' \frac{\partial T}{\partial y}) - \frac{\partial}{\partial x} (\rho CV_x T) dx dy = (dx dy \cdot \rho) C \cdot \frac{\partial T}{\partial \theta}$$

so, differential equation is

$$\frac{\partial}{\partial \mathbf{V}} (\mathbf{k}' \frac{\partial \mathsf{T}}{\partial \mathbf{V}}) - \frac{\partial}{\partial \mathbf{X}} (\rho \mathsf{CV}_{\mathbf{X}} \mathsf{T}) = \rho \mathsf{c} \frac{\partial \mathsf{T}}{\partial \theta}$$

This being one dimensional model, actual case must include the wall effects which is not considered in above derivation. To account for that, a term for Z direction must be included.

$$\frac{\partial}{\partial y} (k' \frac{\partial T}{\partial y}) + \frac{\partial}{\partial z} (k' \frac{\partial T}{\partial z}) - \frac{\partial}{\partial x} (V_{x} \rho CT) = \rho C \frac{\partial T}{\partial \theta}$$

If $\frac{\partial T}{\partial \theta}$ is equal to zero, steady-state heat flow equation is obtained. In above equation density, specific heat and effective conductivity terms can be treated as temperature independent. Dependence of velocity on temperature will be discussed later.

B. BOUNDARY CONDITIONS

To apply boundary conditions, a fixed coordinate system is placed in channel center as follows

T @ x = 0 y and z = 0 Temperature in the initial plane

T @ y = d x and z = 0 Radiating boundary

T @ y = 0 x and z = 0 Bottom temperature distribution

t @ z = w x and y = 0 Side wall temperature distribution

at y = 0 and z = w glass contacts with the ceramic material. The temperature of the glass and ceramic material will be same at these points.

$$\left(\frac{\partial T}{\partial v}\right)_{v=0} = \frac{k_c}{k'} \left(\frac{\partial T_c}{\partial v}\right)$$

Following will also apply

$$\left(\frac{\partial T}{\partial z}\right)_{z=w} = \frac{k_c}{k}, \left(\frac{\partial T_c}{\partial z}\right)$$

The boundary at y = d is the radiating boundary. In the model it is assumed that the enclosing surface and the glass surface behave as two infinite opposed parallel planes. If h is the equivalent coefficient of heat transfer for the convection-radiation exchange for the volume element below

$$-k'dx \left(\frac{\partial T}{\partial y}\right)_{y=\delta} + \sigma \varepsilon_s T_s^4 dx$$

Energy Output

hdx
$$(T - T_s) + \sigma \epsilon_G T^4 dx$$

Accumulation

$$-k'dx \left(\frac{\partial T}{\partial y}\right)_{y=\delta} + \sigma \varepsilon_s T_s^4 dx - hdx(T - T_s) - \sigma \varepsilon_G T^4 dx = \rho C_p \delta dx \frac{\partial T}{\partial \theta}$$

Let $\delta \rightarrow 0$, so $y \rightarrow d$

$$\left(\frac{\partial T}{\partial Y}\right)_{y=d} = \frac{\sigma}{k}$$
, $F\left(T_s^4 - T^4\right) - \frac{h}{k'}\left(T - T_s\right)$

is the glass to air enclosure boundary condition. F is the view factor which accounts for the geometric arrangement of the two surfaces. With the assumption above following equation applies:

$$F = \frac{1}{1/\epsilon_{S} + 1/\epsilon_{G} - 1}$$

Where ε_s and ε_g are the emissivities of the enclosing surface and glass, respectively. To go one step ahead, this definition of view factor is replaced with a new one, which also accounts for the reradiation from the connecting walls. Glass and ceramic surface being gray surfaces connected by nonconducting, reradiating walls, the new shape factor is given by Chapman [Ref. 3] as

$$F = \frac{1}{\frac{1}{F_{1-2}} + \frac{A_1}{A_2} (\frac{1}{\varepsilon_s} - 1) + (\frac{1}{\varepsilon_g} - 1)}$$

$$F_{1-2} = \frac{A_2 - A_1 F_{1-2}^2}{A_1 + A_2 - 2 A_1 F_{1-2}}$$

 F_{1-2} is the geometric shape factor, A_1 and A_2 are the areas of the radiating surfaces.

C. NUMERICAL METHOD USED TO SOLVE THE HEAT EQUATION

Partial differential equation describing the steady-state temperature T(x,y,z) in a moving rectangular slab of molten glass in a forehearth is

$$\frac{k'}{\rho C_p} \frac{\partial^2 T}{\partial y^2} + \frac{k''}{\rho C_p} \frac{\partial^2 T}{\partial z^2} - \frac{\partial}{\partial x} (V_x T) = 0$$
 (2.1)

Where cartesian coordinates are used, x is the flow direction down the length of the slab from the front of the hearth, y is the direction from the bottom channel toward the top of the slab, and z is the direction from the channel center toward the side. k', k'', C_p are the known constants. The initial temperature distribution at x=0 is assumed to be linear in y and z. It can be found by linear interpolation from the four corner temperatures. Similarly it is assumed that the temperature on the boundaries (y=0), bottom of the channel, and (z=w), side of the channel, are also linear. I.e.,

$$T(0,y,z) = \phi_1(y,z)$$
 (2.2)

$$T(x,0,z) = \phi_2(x,z)$$
 (2.3)

$$T(x,y,w) = \phi_3(x,y) \tag{2.4}$$

and are all known. The temperature of the glass is symmetric with respect to the center line (z = 0); therefore,

$$\left(\frac{\partial \mathsf{T}}{\partial \mathsf{z}}\right)_{\mathsf{z}=0} = 0 \tag{2.5}$$

Radiative boundary at the surface of the glass (y = d) is that of radiative and convective heat transfer. Equation derived previously was,

$$\left(\frac{\partial T}{\partial v}\right)_{v=d} = \frac{\sigma}{k^{T}} F\left(T_{s}^{4} - T^{4}\right) - \frac{h}{k^{T}} (T - T_{a})$$

Using linearizing approximation on the nonlinear part, and changing sign on the second term of right hand side,

$$\left(\frac{\partial T}{\partial y}\right)_{y=d} = \frac{4\sigma F}{k^{T}} \left(T_{s} + 460\right)^{3} \left(T_{s} - T_{y=d}\right) + \frac{h}{k^{T}} \left(T_{a} - T_{y=d}\right)$$
 (2.6)

Where σ , F, k', h are known constants. T_a is the air temperature on the glass surface. T_s , the temperature of surroundings is determined by linear interpolation between the temperature at the center of the channel, T_{so} and the known temperature on the boundary at the side (z = w). The center temperature is assumed to decrease linearly from initial temperature T_{so} at x = 0 by an amount T_c , at the end of the channel (x = XL); therefore

$$T_{so} = T_{s1} - \frac{X}{XL} T_{c}$$

With these, the problem is formulated as being the solution of the partial differential equation (1), with initial condition (2.2), and boundary conditions (2.3), (2.4), (2.5), and (2.6).

An unconditionally-stable alternating-direction method [Ref. 4] was applied after passing equation (1) into finite difference form. This is accomplished by first getting the first derivatives with backward differences then substituting these in forward difference equation to get finite difference equation for second space derivatives, in y and ^Z directions. Forward difference form is used for the derivative in × direction.

The first increment step is taken as implicit in y direction, the second implicit in z direction, and so on, x step size being the same in each case. Temperatures at successive planes in x direction are related to each other since the first step involves values at $x + \Delta x$ and these intermediate values $(T_{i,j}^{*n+1})$ are used in the following step during the numeric calculation. System of equations obtained are,

$$b_{iJ}(T_{i,J}^{*n+1} - T_{i,J}^{n}) = c_{1}(T_{i-1,J}^{*n+1} - 2T_{i,J}^{*n+1} + T_{i+1,J}^{*n+1}) + c_{2}(T_{i,J-1}^{n} - 2T_{i,J}^{n} + T_{i,J+1}^{n})$$

$$b_{iJ}(T_{i,J}^{n+1} - T_{i,J}^{*n+1} = C_{1}(T_{i-1,J}^{*n+1} - 2T_{i,J}^{*n+1} + T_{i+1,J}^{*n+1}) + C_{2}(T_{i,J-1}^{n+1} - 2T_{i,J}^{n+1} + T_{i,J+1}^{n+1})$$

With following definitions using increments Δx , Δy , Δz

$$b_{iJ} = V_{x}(i\Delta x, J\Delta z)$$

$$C_{1} = \frac{1/2\Delta x}{\Delta y^{2}} \frac{k'}{\rho C_{p}}$$

$$C_{2} = \frac{1/2\Delta x}{\Delta z^{2}} \frac{k''}{\rho C_{p}}$$

$$T_{i,J}^{n} = T(n\Delta x, i\Delta y, J\Delta z)$$

$$T_{i,J}^{*} = T(n\Delta x, i\Delta y, J\Delta z)$$

The indice i runs from i = 1 to i = I where i • Δy = d, indice j runs from j = 0 to j = J-1 where j • Δz = w. The initial temperature gives the values $T_{i,j}^0 = \phi_1(y,z)$, boundaries give the values $T_{0,J}^n = T_{0,J}^{*n} = \phi_2(n\Delta x, J\Delta z)$ when i = I and $T_{i,J}^n = T_{i,J}^{*n} = \phi_2(n\Delta x, i\Delta y)$ when J = J-1.

Also, symmetry around the center line of the channel gives rise to $T_{i,-l}^n = T_{i,l}^n$ and $T_{i,-l}^{*n} = T_{i,l}^{*}$ when j=0. Radiating boundary results in substitutions for T_{i+l}^n , and $T_{i+l,J}^{*n}$ in terms of $T_{i,J}^n$ and $T_{i,J}^{*n}$ when i=I. ϕ_1 , ϕ_2 and ϕ_3 are obtained from corner temperatures by linear interpolation.

The system of equations is solved starting from $T_{i,j}^0$, getting the intermediate solution from the first and using it in the second, making use of Thomas algorithm [Ref. 5] to solve resulting tridiagonal matrices, and proceeding through the channel at every y, z plane separated by

 Δx in x direction, until the end of the test section is reached (x = XL). For integration purposes x length of the channel is divided into 500 increments (Δx = XL/500), y coordinate is divided into 30 increments, and z coordinate is divided into 75 increments, making use of the symmetry around the center line.

III. VELOCITY PROFILES

A. PARABOLIC

First considerations of velocity distribution within the flowing mass of molten glass by Duffin [Ref. 1] had involved moving side walls of the channel to infinity which gave velocity in x direction as a simple function of y coordinate. Next step was evaluation of finite velocity step surfaces based on a given mass flow rate of glass in an effort to account for higher velocities in the center channel and lower velocities near the side walls and bottom. None proved satisfactory, so final choice was the use of explicit expressions for parabolic velocity profiles. Physical picture is as follows:

Maximum velocity occurs at y = d and on center line z = 0. Derivation of the general equation of parabola families gives velocity in x direction as a function of y and z, and physical parameters w, d and V_{max} as follows:

$$V_{x}(y,z) = V_{max} \left[1 - (\frac{y}{d})^{2} - (\frac{z}{w})^{2} + (\frac{yz}{dw})^{2} \right]$$
 (3.1)

from which $9/4 \, V_{ave.} = V_{max.}$ can be obtained. After integration over the channel cross section and dividing by channel area.

B. VELOCITY PROFILES USING OPEN CHANNEL FLOW EQUATION

Above parabolic profile does not account for the viscosity-temperature relationship. Cooper [Ref. 6] pointed out that the effects of moderate

viscosity gradients on velocity are negligible. Temperature in the forehearth changes from 2400°F to 2000°F and across this temperature range viscosity varies by a factor of ten. It has been shown that a viscosity change of 5 x 10^5 would affect velocity only by factor of three. These facts justify the assumption of constant velocity profiles through the channel length.

To investigate the possible outcome when above assumption is relaxed, parabolic profiles are replaced with the solutions of the differential equation describing laminar flow in open channels. The differential equation to be solved is

$$\frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial u}{\partial z} \right) - \frac{dp}{dx} = 0. \tag{3.2}$$

Where x is the direction of the flow, u is the velocity, and μ is the viscosity. Channel width is taken as w and depth being h. A coordinate system is set at the midstream center with boundary conditions:

$$u = 0$$
 @ $z = w$ (3.3)
 $u = 0$ @ $y = h$
 $\frac{du}{dy} = 0$ @ $z = 0$
 $\frac{dy}{dz} = 0$ @ $z = 0$

If viscosity can be considered to be independent of depth and width, above equation simplifies into

$$\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} - \frac{1}{\mu} \frac{dp}{dx} = 0$$
 (3.4)

which is solved with its boundary conditions by the use of infinite series. Solution taken from Timoshenko and Goodier [Ref. 7] is

$$u = \frac{16\lambda h^2}{3} \sum_{n=1,3,5}^{\infty} \frac{1}{n^3} (-1)^{\frac{n-1}{2}} 1 - \frac{\cosh}{\cosh} \frac{\frac{n\pi z}{2h}}{\frac{n\pi w}{2h}} \cos \frac{n\pi y}{2h}$$
 (3.5)

Integrating over the area of half-section and dividing by the area ($h \cdot w$) gives the mean velocity T.

$$\overline{u} = \frac{32\lambda h^2}{\pi^4 w} \sum_{n=1,3,5,...}^{\infty} \frac{1}{n^4} \left(w - \frac{2h}{n} \tanh \frac{n\pi w}{2h} \right)$$
 (3.6)

Data for the average mass flow rate gives an estimate for u value, which in turn can be used to get a value for λ . An experimental value of u from GCIRC report [Ref. 8] was 7.77 ft/hour for green glass. This is used in a computer program to evaluate λ taking ten terms of the series (3.6). Result was 0.03649. With that value, velocity at every node of the initial plane is calculated and held constant through the channel, as a first try to change previously used profiles. To give an idea about the difference obtained in velocity profiles, isovels are plotted by 3.0 ft/hour increments in Figure (3b). These changes of main computer program increased the running time considerably. Steady-state results are reported in Appendix (B), under run (A) for $\overline{u} = 7.77$, run (B) for $\overline{u} = 8.54$ and run (C) for $\overline{u} = 7.00$. Purpose of the last two runs was to get an idea about the effect of mass flow rate on the temperature distribution, since the reported value is just a close estimate of the actual mass flow rate in the forehearth. Generally better correlation is observed to actual data in the center line temperatures, but rather poor results observed toward the walls of the channel. Maximum deviation of 15 degrees F. is calculated in these three runs.

C. VELOCITY PROFILES WITH TEMPERATURE DEPENDENCE

To build in the viscosity-temperature dependence, available viscosity data, Appendix (A), is fitted to a functional form as,

$$u = e^{a+bT}$$

This functional form for viscosity is used to get the values of μ at the nodes for the numeric calculation and at the same time employing an estimated value for (dp/dx). Isovels depending on initial temperature distribution are shown in Figure (3c).

To solve the partial differential equations i.e., heat equation and flow equation, the following route is taken: Start with initial temperature distribution which is obtained by the use of linear interpolation of corner temperatures and calculate velocities at the nodes. Based on these velocities, temperatures in the next plane in flow direction are calculated by the use of the computer program already developed. All the physical parameters are taken as they were in the previous parabolic constant velocity profile computations. Computed temperatures at the nodes are used to recompute the velocity distribution, which is compared with the first velocity array until they agree within the small value ϵ . Iterative technique is used in the following way: the first velocity array is stored in BA (i,j) array for comparison purposes; after the computation of temperatures in one step down the flow direction, they are used to get the new velocity array BIJ (i,j). If those two do not agree when compared at every node of the plane, a linear combination of the two arrays is taken as

$$BIJ(i,j) = W_a \cdot BA(i,j) + (1 - W_a)BIJ(i,j)$$

where W_a is a weight factor. The BIJ(i,j) array is stored in BA(i,j)

A. Isove's using Parabolic Equation.

B. Isovels using Open Channel Flow Equation.

C. Isovels with Temperature Dependence

Figure 3. Isovels for Channel Flow

as the new velocity array, and above cycle is repeated until convergence is obtained. Flow diagram is shown in Appendix (D). Numerous runs for the first two planes proved that the above method is appropriate. Value of W_a is varied to have an idea of its influence on the convergence and also on time to run. Final decision was $W_a = 0.25$ since it cuts the running time by half when compared to $W_a = 0.75$.

Due to the inevitable increase in the computer time with the above scheme, instead of updating the velocity array at every Δ x increment this is done at every 50 Δ x increments. This is updating the velocity array ten times through the channel length. By the trial runs to assign a value to ε , it is found that it takes more than 18 iterations for the convergence with ε = 0.001. Five iterations are needed when ε = 0.01 and 216 seconds to calculate the temperatures at $x = \Delta x$ and $x = 2 \Delta x$. Taking these facts into consideration and also considering the reliability of the data, choice of ε = 0.1 is considered appropriate. For run (D) velocity array is corrected with 50 Δ x increments, ϵ value was 0.1, running time 1/4 hour. Results at the nodes where data was taken was comparable to the best run obtained with the constant velocity calculations but not any better. In subsequent runs (D) and (E) the estimate of (dp/dx) is increased by 10% and 15% respectively, giving closer fit to the actual data. The absolute average deviation was around 4.6 degrees F. in all above runs. The largest deviation observed was at y = 5.88 inches and z = 8.63 inches with values around -15 degrees F. This deviation was also present in the results of the previous model. Another variation tried to compute velocity array using 25 A x increments. Results are reported under run (F). No improvement is observed but running time is increased to twenty minutes.

In run (G), boundary temperature at x = XL, y = d and z = w was decreased from 2078° F to 2035° F, and velocity updated with 50 Δ x increments. Thus run gave the smallest absolute average deviation 4.2°F between data point temperatures and predicted temperatures. All above runs compute velocity array at the nodes using 10 terms of the defining series equation (3.5). When 5 terms of the series is employed running time decreased more than three minutes. The last run in these lines was run (H) with 5 terms for velocity calculation, ε value of 0.1, and radiating boundary temperature at the channel corner is increased to 2140°F from originally used 2125°F. It took 11.8 minutes to run, maximum deviation was 12.1°F being 1.8°F less than the best result obtained with the previous model. Absolute average deviation from data was 4.22°F. run (I), previously used view factor is replaced with the new one, accounting for the reradiation from the channel walls. Maximum deviation from the data was 10.6°F, and absolute average deviation was 4.7°F. predicted temperatures at data points for all above runs are listed in Appendix (B).

VI. PHYSICAL PROPERTY-PARAMETER ESTIMATION

Physical properties used in the equations must be estimated or calculated. Many of these properties and parameters are set at values used in the previous model. Since this work is based on the green glass only, important parameters that were used in original model for that kind of glass are listed below.

Radiation Conductivity	k'	10.0	BTU/HR.FT. F
Density	ρ	147.77	LBS/FT.
Specific Heat	C _p	0.375	BTU/LB. F
Radiant Surface Emissivity	εs	0.9	
Glass Surface Emissivity	arepsilon G	0.9	
Convective Heat Coefficient	h	20.0	BTU/HR.FT. F

In addition to the above, parameters a and b in the functional form $\mu = e^{a+bT}$ are used to get viscosity at the nodes as a function of temperature. Calculated values for different kinds of glass are given below. Plotted viscosity-temperature curve for green glass is presented in Figure (4).

	<u>a</u>	<u>b</u>
Green	9.07	2.82 10 ⁻³
Flint	8.60	2.60 10 ⁻³

To estimate (dp/dx) value; first λ is calculated from the average velocity data based on the mass flow rate, then this value is used together with the average viscosity, since λ is defined as

$$\lambda = \frac{1}{\mu} (dp/dx)$$

Calculated value for (dp/dx) is 6.849 10^{-4} .

K SCALF-1-00E+03 UNITS INCH. Y-SCALF-5-00E+02 UNITS INCH. PEKCELEN WGZ7 GREEN GLASS

Figure 4. Viscosity-Temp Curve.

In view factor calculations, which account for the reradiation from the channel walls, areas of the radiating surfaces are assumed to be equal. Emissivity values are not changed. Geometric view factor is taken from Chapman [Ref. 3] as 0.56.

V. DISCUSSION

Comparison of the results obtained by the previous and modified models made it clear that the assumption of constant velocity distribution through the channel does not have significant effect on the final results. Predicted temperatures at the nodes were still off by small values. Model generally proved flexible and stable for all variations made of velocities and of boundary conditions. It still does not account for the possible viscosity changes due to pressure changes, since pressure changes with position. However, this is not considered significant since putting in viscosity-temperature dependence proved that initial velocities at the nodes decrease by 20-60% depending on the position. Further work could involve putting in functional forms for density, heat-capacity and thermal-conductivity to build in the temperature dependence of these parameters. If this is done, the model will be further complicated and limit its possible use in a closed loop computer control system. To serve for control purposes, time consumption should be decreased considerably. This will be possible only by the use of some simplifications. If the accuracy in positioning of thermocouples and reliability of the temperature data is considered, the present form of the model gives rather good agreement for the steady-state temperature data. It can possibly be used for design purposes. Requirement for a powerful computer is also a drawback for control purposes. An alternate route might be use of a hybrid computer instead of a digital one to make use of the fast integration abilities of analog computers to decrease the running time.

APPENDIX (A)

GREEN GLASS VISCOSITY DATA

Temperature°F	<u>Viscosity</u> (Centipoises)
2330.4	316.2
2292.9	398.1
2255.5	501.2
2221.1	631.0
2185.7	794.3
2153.1	1000.0
2121.2	1259.0
2089.4	1585.0

APPENDIX (B)

Comparison of data and results predicted with models for green glass

Thermocouple position (in.) relative to (0,0,0) point

⊲	-15.2	-2.5	+3.8	-4.5 +5.8	-3.9	-0.1
Run(D)	2123.7 2079.8	2142.5	2150.8 2099.9	2140.5 2082.8	2128.1 2064.9	2121.9
⊲	-4.8 -12.9	3 -6.7 t -2.6	-2.0	8.6	-5.7	0.0
Run(C)	2122.2	2138.3 2097.4	2145.0 2102.1	2136.2 2085.1	2126.3	2122.0
۵	-1.1	-0.6	+15.3	-3.4	-2.9	0.0
Run(B)	2125.9	2144.4	2152.3	2141.6	2129.1	2122 2047.3
⊘	-3.8	-3.3	+1.9	-5.8	-4.2	0.0
	2123.8	2141.7	2148.9 +1.9 2106.2 +11.2	2139.2 -5.8 2088.5 +11.5	2127.8 -4.2 2068.4 +6.4	2122.0 0.0 2054.8 +2.8
	+0.5	+1.0	+6.3 +6.0	-2.9	-2.2	0.0
Previous Model	2127.5	2146.0 2096.0	2153.0	2142.1	2129.8	2122.0
Data	2127.0	2145.0	2147.0	2145.0	2132.0	2122.0
7	0.0	0.0	0.0	0.0	0.0	0.0
>-	5.88	4.88	3.88	1.88	0.88	0.0
×	37.5	37.88	38.25	39.00	39.38	39.75

Thermocouple Position (in.) relative to (0,0,0) point

⊲1	+3.1	+3.2	+8.3	-2.6 +8.5	-2.7	0.0
Run(I)	2130.1 2086.8	2148.2	2155.3 2105.6	2142.4	2129.3 2066.4	2122.0
⊲	-1.7	-0.4	+6.3	-3.1	-3.5	0.0
	2125.3 2082.9	2144.6	2153.3	2141.9	2128.5	2122.0
⊲ا	-0.1	-0.5	+ + 3.9	+ 1 2 3 2	+2.5	0.0
Run(G)	2126.9	2144.5 2094.0	2152.8 2098.9	2141.5	2128.8	2122.0
⊲	-6.6	7-9-	0.0	-7.9	+1.2	-0.3
Run(F)	2120.4 2076.5	2138.3	2146.2 2094.7	2136.1	2126.5 2063.2	2121.7
⊲	-2.1	-0.6	+5.8	-3.5	+13.8	0.0
Run(E)	2124.9	2144.4	2152.8	2141.5	2128.8 2065.8	2122.0
Data	2127.0 2095.0	2145.0	2147.0	2145.0	2132.0	2122.0
7	0.0	0.0	0.0	0.0	0.0	0.0
>-1	5.88	4.88	3.88	1.88	0.88	0.0
×I	37.50	37.88	38.25	39.00	39.38	39.75

APPENDIX (C)

FORTRAN VARIABLE	DEFINITION
N I J XL YL ZL XEND RHO CP TKP	Maximum value of X direction index n Maximum value of Y direction index i Maximum value of Z direction index j Length of channel in X direction Length of channel in Y direction Length of channel in Z direction Value of X at which to terminate integration Density of the glass Specific heat of the glass Glass equivalent thermal conductivity in Y direction
ТКРР	Glass equivalent thermal conductivity in
SIGMA H ES EG TSI T000	Z direction Stefan-Boltzmann Constant Convective heat-transfer coefficient Emissivity of ceramic radiating surface Emissivity of the glass Temperature of radiating boundary @ X = 0
TOOW TODO	Initial plane corner temperatures
TODW TLDW TLOW	Corner temperatures @ x = XL
TA TC	Temperature of the ambient gas Temperature of radiating surface along channel centerline
VMAX	Max. glass velocity for parabolic distribution
TODWR	Radiating surface Tem. 0×0 , $y = YL$, $z = ZL$
TLDWR	Radiating surface Tem. $0 \times = XL$, $y = YL$, $z = ZL$
IRNT	Counter for steady-state program printout
NTERM	Control Number of terms to used in defining series
ITR ITRA	for velocity calculation Counter to recalculate the velocity array Counter for number of iterations for velocity convergence
ITRB	Counter used for non-converging velocities at the nodes
NUP WA T(i,j)	Counter to update the velocity array Weight factor for linear combination 2-Dimensional temperature array

- BIJ (i,j)
- BA (k,j)
- TAS (i,j)

- 2-Dimensional array for glass velocity (V_x) in X direction at (i,j) points in y,z plane
 2-Dimensional array for intermediate
- velocities 2-Dimensional array to store tem. @ the former plane

APPENDIX (D)

FLOW GRAPH TO CALCULATE VELOCITIES

ITR = 0 (Set counters to zero)

ITRA = 0


```
DIMENSION T(45,100), BIJ(45,100), DENI(45,100), DENZ(45,100), JUNENSION T(45,100), BA(45,100), TAS(45,100), H(30,75), JUNENSION TU(30,18), S(30,18), S(30,18), SLEE (8), DENZ(45,100), H(30,75), LOIMENSION TU(30,15), S(30,15), DENJ(15), DENZ(15), DENZ(16), D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RESULTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           THIS SECTION FOR TRANSIENT RUNS ONLY USING PRERECORDED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          READ(5,1) N,1,J,NTAPE,NBOTH,NTAPEA,NTIMEA
READ(5,1) NPATHA,NPATHB,NTIME,IPRT,IYP,IZP,IPRNT
COMBINED STEADY-UNSTEADY STATE GLASS PROGRAMS.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (TU(M,K,L),K=1,I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C READ ARRAY AND SWITCHING(PATH) DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GD TG(204, 201), NTAPEA

N=N/IPRT

I=I/IYP

J=J/IZP

DO 202 M=1, N

DO 203 L=1, J

READ(15, 19, END=1081)

CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           203
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 181
182
182
191
700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               201
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1081
```

C INITIALIZATION AND CALCULATION OF VARIOUS SYSTEM CONSTANTS AND PARAMS KL,YL,ZL,XEND,RHO,CP,TKP,TKPP SIGMA,H,ES,EG,TS1 TO 00,T00W,T0D0,T0DW,TL00,TL0W,TLDW TA,TC,VMAX,T0DWR,TLDWR JLUT(K),K=1,18) YP,IZP,IPRNT,IPRT L, ZL, XEND, RHU, CP, TKP, TKPP A, H, ES, EG, TS1 , TOOW, TODO, TODW, TLOO, TLOW, TLOW C, VMAX, TODWR, TLOWR T(K), K=1,18) MA*FRIC/TKP MA*FRIC/TKP IRNT = IPRNT
ICNT = IPRNT
ICNT = IPRNT
IM = 1-1
JM = 1
JM C INPLT-OUTPUT SECTION READ (57.2)
READ (57.2)
READ (57.1)
READ (57.1)
READ (57.1)
WRITE (67.3)
WRITE (67.5)
WRITE (67.5) 204

```
CALCULATE VELOCITY DISTRIBUTION DEPENDING ON TEMPERATURE DISTIBUTUON
C CALCULATE BOUNDARY CONDITION CONSTANTS AND DO SUME INITIALIZATION
                                                                                                                                                                                                                                                                                                                                                                                                            (10.0**(9.072-0.00282*T(K,L)))
                                                                                                                                                                                                                                                                                    , L) +TINC
                                                                                                                                                                                                                                                                                                                    (L-J) 20,20,22
                   DELXH=0.5*DELX
WBI=(TLOW-TOOW)
WTI=(TLOW-TODW)
YCLI=(TLOO-TOOO
YORI=(TLOW-TOOW
WTIR=(TLOW-TOOW
                                                                                                                                                                                                                                                                                                                                                             SUMT=0.0
NUP=0
NLIM=NTERM*2-1
DO 703 K=1;I
                                                                                                                                                                                                                                                                                                                                                                                                                   TLAM(K)
PREM(K)
CONTINUE
AY=Y
AY=AY-DEL
AZ=O.0
                                                                                                                                                   NA=0
ITR=0
ITRA=0
ITRB=0
YN=I
Z=0•0
                                                                                                          KOUNT=1
                                                                                                                               C INITIALIZE
                                                                                                                                                                                                                              20
                                                                                                                                                                                                                                                                                   21
                                                                                                                                                                                                                                                                                                                                                               22
```

```
SUMC=0.0

SUMC=0.0

SUMC=0.0

SUMC=0.0

SUMC=0.0

SUMC=0.0

TICOSH(ARG*AZ)

TI=COSH(ARG*AZ)

TI=COSH(ARG*AZ)
```

```
.0/(BIJ(K,L)+C22-C2*ALF2)
                                                                                                                                                                             (K, L)=1.0/(BIJ(K, L)+C12-C1*ALF1)
=C1*DEN1(K, L)
NUE
                       (K,L)=1.0/(BIJ(K,L)+C22)
(22*DEN2(K,L)
                                                                                                                                                                   BIJ(K,L)+C12)
                                                                                                                                                                                                                                                                                                                                 56,65,65
                                                                                                                                                                                                                        NUE
TRA.GT.NA)GO TO 25
                                                                                                                                                                                                                                                              0 X=X+DELX

DO 712 K=1,1

DO 713 L=1,3

TAS(K,L)=T(K,L)

CONTINUE

GO TO(995,998), NPATHA

IRNT=IRNT+1

IF(IRNT-IPRNT) 56,65,6
                                                                                                                                                                                                                                                                                                                                                                                                               IF(X.GE.3.12) NPATHA=2
C CALCULATE DEN2
                                                                                                                         C CALCULATE DENI
                                                                                                                                                                                                                                                   C START LOOP
                                                                                                                                                                                                                                                                                                                                                  C WRITE
                                                                                      346
                                                                                                                                                                                                                                                                    20
                                                                                                                                                                                                                                                                                                                                                                    968
                                                                     35
                                                                                                                                                                                                                                                                                                                                                                                             166
                                                                                                                                                                                                                                                                                                                                                                                                               966
                                                                                                                                                                     39
                                                                                                                                                                                                                                                                                                                         966
```

```
L=L-1
TEMPW=TEMPW+ZWINC
WRITE (6,191)(WD(LP),LP=1,L),TEMPW
CONTINUE
GO TO(25,661),NTIME
                                                                                                                                                                          (T(K,L),K=IYP,I,IYP)
(K-1) 40...
(K-1)-1
(n(L)=Y0LH+D1*Y0INC
                                                                                                                                                                                    O(251,245), NBOTH
                                                                                                                                               O TO(25,661), NTIME CNT=ICNT+1
                                                                                                                                                                                             L=1, J, I ZP
                                                                                                         GO TO 67
WD(L)=1(K-1,J1)
CONTINUE
L=18
                                                                                                                                                                                                                                     M=M+1
ICNT=0
                                                                                                                                                                                             D0 2
KK=12
                                                                                                                                           69
56
661
                                                                                                                                                                23
                                                                                           99
 966
                    666
                                                                                                              47
                                                                                                                                                                              243
245
245
                                                                                                                                                                                                                                24
                              992
                                                                                                                             89
                                                                                                                                                                                                                      241
                                                                                                                                                                                                                                          251
```

```
1.0/(BIJ(I,L)+C12-A2A*DEN1(IM1,L)+TH1-FH1*PAR1**3)
                                                                                                                                                                                                                                             TM1+TP1)+(BIJ(K,LM1)-C22)*TNO
                                                                                                                                                                                                                                                                                                                                                    TPI=T(K,L+1)
CONTINUE
CONTINUE
TSI=TSI-A1A
TH2=(TSI-WTIR*(X+DELXH)-TODWR)*DELZ/ZL
FH2=TSI+460.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -FH3-FH1*PAR2*PAR1**3
                                                                                                                                                                                                                                                                                0+(BIJ(K,L)-C22)*TP1
C CHECK X VARIABLE VS. ITS END VALUE
                                  25 IF (X-XEND) 70,105,105
                                                                    C CALCULATE F*
```

```
+(BIJ(K,L)-C12-TH1+PAR13)*TP1-FH3-PAR13*PAR2
                                                                                                                                                                                                                                                      DO 86 L=1, J
JML=J-L+1
DO 85 K=1, IM1
IMK=I-K
T(IMK, JML)=T(I MK, JML)+C1*T(I MK+1, JML)*DEN1(IMK, JML)
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     M1+TP1)+(BIJ(KM1,L)-C12)*TN0
                                                                                                                                                                      T(K,L)+C1*BETO)*DEN1(K,L)
                                                                                                          DC 84 L=1, J

DC 83 K=1, I

IF (K-1) 80, 80, 81

J (K,L)=T(K,L)*DEN1(K,L)

GC 70 82

GC 70 82

I T(K,L)=(T(K,L)+C1*BETO)*C
                                                                                                                                                                                                                                                                                                                                                                            PAR1=FH2
PAR2=TS1
DO 93 L=1, J
DO 92 K=1, I
KM1=K-1
IF (KM1) 88,88,89
YOINC= (YORH-YOLH
DYINC=DELZ*YOINC;
D=YOLH*C1-DYINC
DO 79 L=1, J
D=D+DYINC
I(1,L)=I(1,L)+D
                                                                                  C CALCULATE BETA*
                                                                                                                                                                                                                                 C CALCULATE T*
                                                                                                                                                                                                                                                                                                                                                      C CALCULATE
                                                                                                                                                                      888321
                                                                                                                                                                                                                                                                                                                   85
86
                                                           4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     68
                                                                                                                                               80
                                                                                                                                                                                                                                                                                                                                                                             87
                                                                                                                                                                                                                                                                                                                                                                                                                                                     88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            06
```

```
JML) =T (I MK, JML)+C2*T(IMK, JML+1)*DEN2(IMK, JML)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                JML-1) 101,101,102
K,JML)=T(IMK,JML)+C22*T(IMK,2)*DEN2(IMK,JML)
0 103
                                                                                                                                                                                                                                                                                                                                         K, L) +C2*BET0)*DEN2 (K, L)
                                                                                                                                                                                                                                            C CALCULATE BETA
                                                                                                                                                                                                                                                                                                                                                                                                           C CALCULATE T
                                       93
                                                                                                         94
91
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                207
```

GO TO 22

PROGRAM. TRANS I ENT 10 N O 09 OR STOP STEADY-STATE PROGRAM DONE, EITHER ں

105 GO TO (1052,1051),NTAPE 1051 END FILE 15 1052 GO TO (106,107),NTIMEA 107 CALL DYNAMO 106 STOP END C UNSTEADY STATE SECTION OF PROGRAM STARTS HERE.

FSBSS (3) (50), TPLT5 (FPLT11(50), 1 JLOT(18), YP(50), TP(50), WD(18)
DIMENSION TU(30,15,15), S(30,15,15), ALFI(15), DENI(45,100), ALFJ(15)
DIMENSION A(30,15,15), S(30,15,15), ALFI(15), DENI(15), ALFJ(15)
DIMENSION A(30,15), B(30,15), DENJ(15), NOUT(12)
DIMENSION TAU(4), CHANGE(4), TAUSB(3), CHGSB(3), DLYSB(3), TSBSS(150), TPLT6(50), TPLT7(50), TPLT8(50), TPLT3(50), TPLT4(50), TPLT1(50), TPLT1(5 TU:N; I; J; IPRT; IYP; IZP (1215) (4E15.6) F10.5; 12F10.1) SUBROUTINE DYNAMICS)
DIMENSION T (45, 100)

```
1 INTS// 10x7HTAU(1) = F8.5, 7HTAU(2) = F8.5, 7HTAU(3) = F8.5, 7HTAU(4) = F8.5)

15 FORMAT (///, 25x30HSTEADY-STATE VALUES AT TIME = 0//, 10x4HTS1=F7.1,

16 FORMAT (///, 25x43HCHANGEF7.1), 6HTLDMR=F7.1)

17 FORMAT (///, 25x43HCHANGES IN STEADY-STATE VALUES AT MAX. TIME//, 10x

18 FORMAT (///) = F6.1, 10HCHANGE(2) = F6.1, 10HCHANGE(3) = F6.1, 10HCHANGE(4)

17 FORMAT (1H1, 25x36HSIDE-WALL-BOTTOM BJUNDARY CONDITIONS//, 5X14HTIME

18 FORMAT (1H1, 10x11HTEMP AT X = F7.5, 8H TIME = F7.5, 7H TS1 = F7.1, 7//)

18 FORMAT (1H1, 10x11HTEMP AT X = F7.5, 8H, TIME = F7.5, 7//)

20 FORMAT (1H1, 50x11HTEMP AT X = F7.5, 8H, TIME = F7.5, 7//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RESULTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RUNS ONLY USING PRERECURDED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       XL,YL,ZL,TEND,RHU,CP,TKP,TKPP

XL,YL,ZL,TEND,RHU,CP,TKP,TKPP

15 SIGMA,H,ES,EG

16 TA,VMAX

17 TA,VMAX

17 TA,VMAX

17 TAU(K).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                NT (NOUT(L),L=1,12)

2) XL,YL,ZL,TEND,RHU,CP,TKP,TKPP

2) SIGMA,H,ES,EG

2) TGOO, TOOW, TGOO, TOOW

2) TA,VMAX,PRINT

3) TA,VMAX,PRINT

3) TA,VMAX,PRINT

4) TA,VMAX,PRINT

6) TA,VMAX,PRINT

6) TA,VMAX,PRINT

6) TA,VMAX,PRINT

6) TA,VMAX,PRINT

7) TA,VMAX,PRINT

7)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CALCULATE ARRAY SIZE VARIABLES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ENTRY POINT FOR TRANSIENT ENTRY DYNA!
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DESCRIPTION OF STREET OF S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    N=N/IPRT
I=I/IYP
J=J/IZP
```

ں

ں

C INITIALIZATION AND CALCULATION OF VARIOUS SYSTEM CONSTANTS AND PARAMS TAUSBIKI, TSBSS (K), CHGSBIKI, DLYSB (K) *VMAX*DELT/DELX L/YL*VMAX*0.5*DELT/DELX BIJ(K,L)=VT1*(1.0-CV3*D*D) CONTINUE CONTINUE C CALCULATE DENI AND DENJ C1A=4.0*S1GMA*FRIC C2A=DELY*H*TA/TKP C1B=C1A C2B=1.0-DELY*H/TKP DO 533 K=1,I D=K VT1=CV1*D-CV2*D*D DO532 L=1,J JPI=J+1 DELT=NT DELT=NT DELX=N DELX=XL/DELX DELY=T DELY=T DELY=T DELY=T CVZ=DELY*DEI CV3=DELZ*DEI WRITE(6,9) 24=2.0*C 11=1.0-C1 -RIC=1.0/ C CALCULATE BIJ KKK=1 CNT=0.0 IM1=I-1 [P] = I +**JH1**=1 1=0 532 533

```
DENI(1) =-1.0/(1.0+C12)
DD523 K=2.1M1
DD652 K=2.1M1
DD652
```

```
1.00-EXP(-(U-DLYSB(1))/TAUSB(1)))
FSBSS(1)
0.0-EXP(-(U-DLYSB(2))/TAUSR(2))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TS1=TS1SS+CHANGE(1)*(1.0-EXP(-U/TAU(1)))
TS2=(TS1SS-TCSS)+CHANGE(2)*(1.0-EXP(-U/TAU(2)))
TC=TS1-TS2
TODMR=DWRS S+CHANGE(3)*(1.0-EXP(-U/TAU(3)))
TLDWR=TLDWRS+CHANGE(4)*(1.0-EXP(-U/TAU(4)))
C1T=TC/XL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         WRITE (6,19) (WD(L),L=1,J),YORH
DD531 K=1,I
YORH=YORH+ ZWINC
WRITE (6,19)(TU(M,K,L),L=1,J),YORH
CONTINUE
CONTINUE
GO TO 539
        D0528 L=2, J

WC(L)=WD(L-1)+WDI

WC(L)=WD(L-1)+WDI

CONTINUE

WRITE (6,19) (WD(L),L=1,J),XOT

CONTINUE

D0534 M=1,N

X=X+DELX

IF (COUNT-1) 600,600,601

NEITE (6,20) X,U

KOUNT=2

GC TO 602

HRITE (6,183) X,U

KOUNT=1

YORH=T000+X* (TSBSS(1)-T00W)/XL

WDI= (YORH-YOLH)/ZL*DELZ

WDI (1)=YORH-YOLH)/ZL*DELZ

WDI (1)=YORH-YOLH)/ZL*DELZ

WDI (1)=YORH-YOLH)/XL*DELZ

WDI (1)=YORH-YOLH)/XL*DELZ

WDI (1)=YORH-YOLH)/XL*DELZ

WDI (1)=YORH-YOLH)/XL*DELZ

WDI (1)=YORH-YOLH)/XL*DELZ

WDI (1)=YORH-YOLH)/XL*DELZ

WDI (1)=YOLH-YOLH)/XL*DELZ

WDI (1)=YOLH-YOLH)/XL*DELZ

WDI (1)=YOLH-YOLH)/XL*DELZ

WDI (1)=WD(L)=WD(L-1)+WDI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C CALCULATE TIME DEPENDENT B.C. TERMS
=(XOT-XOB)/2L*DEL2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     START THE GRAND LOOP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            525 U=U+DELT
                                                            528
                                                                                                                                                                                          900
                                                                                                                                                                                                                                                         601
                                                                                                                                                                                                                                                                                                    602
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         530
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ں
```

```
HGSB(3)*(1.00-EXP(-(U-DLYSB(3))/TAUSB(3)))
                                                                                                                                                                                                                                                                                                                                                                CALCULATE T* (THIS IS THE RECURSION SECTION OF THE PROGRAM)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            S(M-1,K,L)+TU(M-1,K,L))
48,548,549
U(M,2,L)+Q21*X*(Q22+Q23*Z)+Q24+Q25*Z)
                                                                                                                                                                                         X=DELX
D0536 M=1,N
Z=0.0
D0535 L=1,J
TS=TS1-C1f*X+Z/ZL*(TODWR-TS1+X*(WTIR+C1T))
TS=TS1-C1f*X+Z/ZL*(TODWR-TS1+X*(WTIR+C1T))
TS=C1f*C1f*TS3*TS+C2A
B(M,L)=C2B-C1B*TS3
Z=Z+DELZ
Z=Z+DELZ
X=X+DELZ
X=X+DELZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    * 545,545,546
* (011*2*(012+013*Y)+014+015*Y)
                                                                                                                                                                   PREPARE RADIATING B.C. TERMS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               551,550,550
                                                                                                                                                                                                                                                                                                                                                                                       Y=DELY
D0560 K=1, I
Z=00.0
D0559 L=1, J
X=DELX
AIMB=AI-BIJC
DIS58 M=1, I
D0558 M=1, I
IF (M-1) 545
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D=D+BIJ(
IF (K-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D=D+BIJC
GO T054
                                                                                                                                                                                                                                                                                                                                      536 CONTINUI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      +0=0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  545
                                                                                                                                                                                                                                                                                                              535
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               549
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            546
                                                                                                                                                                   ں
                                                                                                                                                                                                                                                                                                                                                                ں
```

```
$(M; 1, L)=C1*†U(M; 2, L)-C12*TU(M; 1, L)-S(M; 1, L)

G0 T0565

IF (K-I) 564, 563, 563

S(M; I, L)=C1*TU(M; IM1, L)+(C1*B(M, L)-C12)*TU(M; I, L)-S(M; I, L)

G0 T0565

S(M; K, L)=C1*(TU(M; K-1, L)+TU(M; K+1, L))-C12*TU(M; K, L)-S(M; K, L)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        IF (K-I) 571,570,570
S(M,I,L)=(S(M,I,L)-C1*BETO)/(ALFI(I)+C1*B(M,L)-1.0-C12)
GO TO573
S(M,K,L)=(S(M,K,L)-C1*BETO)*DENI(K)
BETO=S(M,K,L)
                                                                                 IF (L-J) 556,555,555
D=D+C22*(TU(M,K,JM1)+Q31*X*(Q32+Q33*Y)+Q34+Q35*Y)
GO TO557
D=D+C22*(TU(M,K,L-1)+TU(M,K,L+1))
S(M,K,L)=D/DIV
X=X+DELX
CONTINUE
Z=Z+DELZ
2*(TU(M, IM1, L)+A(M, L)+TU(M, I, L) *B(M, L))
                                                                                                                                                                                                                                                                                                                K=1, I
1) 561,561,562
L)=C1*TU(M,2,L)-C12*TU(M,1,L)-S(M,1,L)
                          D=D+C12*(TU(M,K-1,L)+TU(M,K+1,L))
IF (L-1) 553,553,554
D=D+C24*TU(M,K,2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CALCULATE BETA**
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D0575 L=1, J
D0574 M=1, N
BET0=0, 0
D0573 K=1, I
IF (K-I) 571
                                                                                                                                                                                                                                                          CALCULATE F**
                                                                                                                                                                                                                              CONTINU
                                                                                                                                                                                                                              960
                                                                                                                                                                                                                                                                                                                                                                        562
563
                                                                                                                                                                                                                                                                                                                                                                                                                565
                                                                                                                                                                                                 559
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      570
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            573
574
575
                          551
552
553
                                                                                    554
555
                                                                                                                             556
557
                                                                                                                                                                      558
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 571
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ب
                                                                                                                                                                                                                                                          ပ
```

```
L)=C2*(TU(M,K,L-1)+TU(M,K,L+1))-C22*TU(M,K,L)-S(M,K,L)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         TU(M,K,JML)=TU(M,K,JML)+ALFJ(JML)*TU(M,K,JML+1)
                                                                                                                                                                                                                 ) 582,581,581
)=C2*TU(M,K,JM1)-C22*TU(M,K,J)-S(M,K,J)
                    DO578 L=1, J
DO577 M=1, N
DO576 K=1, IM1
IMK=I-K
S(M, IMK, L)=S(M, IMK, L)+ALFI(IMK)*S(M, IMK+1, L)
CONTINUE
                                                                                                                                                            13 L=1, J
L-1) 579,579,580
K,1)=C22*(TU(M,K,2)-TU(M,K,1))-S(M,K,1)
0583
                                                                                                                                                                                                                                                                                                                                D0591 K=1, I
D0590 M=1, N
BET0=0.0
D0589 L=1, J
TU(M,K,L)=(S(M,K,L)-C2*BET0)*DENJ(L)
BET0=TU(M,K,L)
                                                                                                                                                                                                                                                                                                            CALCULATE BETA
CALCULATE T**
                                                                                                                                                                                                                                                                                                                                                                                                                                                 CALCULATE
                                                                                                                         CALCULATE
                                                                            576
                                                                                                                                                                                                                                                   589
590
591
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              592
                                                                                                                                                                                           619
Ç
                                                                                                                                                                                                                                                                                                            Ç
                                                                                                                                                                                                                                                                                                                                                                                                                                                 ပ
                                                                                                                         ပ
```

```
542 CONTINUE

543 CONTINUE

543 CONTINUE

544 CONTINUE

555 TIME(KKK) = 0.

TPLT1(KKK) = 0.

TPLT1(KKK) = 0.

TPLT3(KKK) = 0.

TPLT3(KKK) = 0.

TPLT4(KKK) = 0.

TPLT4(KKK) = 0.

TPLT5(KKK) = 0.

TPLT7(KKK) = 0.

TPLT7(KKM) = 0.

TPLT7(KM) = 0.

T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       X=X*DELX

IF(KOUNT-1) 603,603,604

WRITE(6,18) X,U,TSI,TS2,TC,TODWR,TLDWR

KOUNT=2

GC TO 605

WRITE(6,183) X,U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CONTINUE
WRITE (6,19) (WD(L),L=1,J),YORH
DO542 K=1,I
YORH=YORH+ZWINC
WRITE (6,19) (TU(M,K,L),L=1,J),YORH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    WD(1)=YOLH
ZWINC=TODW+X*WTI
ZWINC=(ZWINC-YORH)/YL*DELY
DO541 L=2,J
WD(L)=WD(L-1)+WDI
                                                                                                                     WRITE TEMPERATURE
CNT=CNI+1.0
IF (CNT-PRINT) 537,527,527
527 CNT=0.0
DO543 MOUT=1,12
M=NOUT (MOUT)
IF (M) 539,539,544
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       YOLH=T000+ X*YOL I
YORH=T00W+X*YOR I
WDI=(YORH-YOLH)/ZL*DEL Z
594 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  545
542
533
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            909
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              605
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    541
                                                                                                                                                                                                                                                                                                                                                                                                                                   544
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   603
                                                                                                                            ပ
```

:0.3696*TU(25,5,11)+0.3304*TU(24,5,11)+0.1584*TU(25,4,11	= 0.0399 * TU(25, 10, 11) + 0. 6601 * TU(24, 10, 11) + 0. 0171 * TU(25, 9	= 0.1548 * 11. = 0.1548 * 10.154	TPLTI2(%*T) - 0.4095*TU(24,15,11)+0.2905*TU(23,15,11)+0.1755*TU(24,1)	
TPLT9(KKK)=0.369	TPLT10(KKK)=0.03	TPLT11(KKK)=0.16	TPLT12(KKK)=0.40 14.11)+0.1245*TH	ス大大=大大大・コー・ファ

C CHECK TIME VARIABLE VS. ITS END VALUE AND WRITE INTERPOLATED RESULTS 537 IF (U-TEND) 525,538,538
538 KKK=KK-I MRITE(6,12)
DO 610 I=1,KKK
WRITE(6,4) TIME(I),TPLT2(I),TPLT3(I),TPLT4(I),TPLT5(II)
1 TPLT6(I),TPLT7(I),TPLT18(II),TPLT10(II),TPLT11(II),TPLT12(II)
510P
END

TYPICAL DATA SET FOR STEADY-STATE CALCULATION

3.313 10.0 0.9	2195.0	51 56
		46
10.0		41
	2195.0 2078.0 17.48	36
20 1.083		31
0.375	000	56
-	2167.0 2010.0 90.0	21 26
0.5		1 16 1 75 0.56
7 10 10 10 10 10 10 10 10 10 10 10 10 10		71
500 30 75 2 3-3125 147-77 0-171300E-08	2122.0	59265
500		1 6 61 66 5 14159265

LIST OF REFERENCES

- 1. International Business Machine Corp., System Development Div., Report 02-472-1, Glass Container Process; Forehearth Simulation by J. Duffin and K. Johnson, 19 July 1965.
- Kellet, B. S., Steady Flow of Heat Transfer Through Hot Glass, <u>Journal of the Optical Society of America</u>, V. 42, p. 339-343, 21 Nov. 1951.
- 3. Chapman, A. J., Heat Transfer, p. 334-335, The McMillan Company, 1960.
- 4. Douglas, Jim, Jr. and D. W. Peaceman, Numerical Solution of Two-Dimensional Heat-Flow Problems, A.I.Ch.E. Jour. V.I., p. 505-507, Dec. 1955.
- 5. Douglas, Jim, Jr., Advances in Computers, Vol. 2, p. 37-38, Academic Press, 1961.
- 6. Cooper, A. R., Jr., Effect of Aspect Ratio and Viscosity Gradients on Flow Through Open Channels, <u>Jour. Am. Ceramic Soc.</u>, Vol. 43, No. 2, p. 97-104, 19 August 1959.
- 7. Timoshenko, Stephen and J. N. Goodier, Theory of Elasticity, 2nd ed., p. 275, McGraw-Hill, 1951.
- 8. Glass Container Industry Research Corporation, <u>Preliminary Study of</u> the Mathematical Model for the Control of Forehearth by T. H. Finger, (Chart 529), 1966.

INITIAL DISTRIBUTION LIST

	No. Copies
Defense Documentation Center Cameron Station Alexandria, Virginia 22314	20
Library, Code 0212 Naval Postgraduate School Monterey, California 93940	2
Professor J. H. Duffin Department of Material Science & Chemistry Naval Postgraduate School Monterey, California 93940	1
LTJG Sina Pekcelen Cevizlik Niyazi Bey Sok No. 24 Bakirkoy-Istanbul Turkey	5
Department of Material Science & Chemistry Naval Postgraduate School Monterey, California 93940	3
Commander, Naval Ordnance Systems Com. Hqs. Department of the Navy, Washington D.C. 20360	1

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School Monterey, California 93940

13. ABSTRACT

In this work, variations on velocity profiles in a flowing mass of molten glass in a forehearth are investigated. Formerly used parabolic velocity profiles are replaced with analytical solution of open channel flow equation, based on the available data on mass flow of molten glass through the channel in unit time.

Concerning the viscosity effects; temperature dependence of viscosity is built in the model. However, it is assumed that the depth of the channel does not affect the viscosity gradients.

To solve the system of non-linear differential equations i.e., heat equation and flow equation; the analytical solution of the latter at the nodes is used for the numeric solution of the former iteratively, until the convergence is obtained. Predicted temperatures are compared to the available data from an actual operating forehearth, and against the results predicted by the previous model using simplying assumptions to prove its validity.

· A-31408

UNCLASSIFIED
Security Classification

14. KEY WORDS		LII	LINK A		LINK B		'LINK' C'	
KEY WORDS	ROLE	wT	ROLE	WT	ROLE	T		
							+	
Foundarieth Cim	ullation.							
Forehearth Sim								
Molten Glass F	low					1		
Math. Model -	Numerical Analysis							
Coupled Partia	1 Differential Eqs. (Non-Linear)						
						1.74-		
				-				
					1			
	.							
						i		
					1			
			4	1000	1111			
		1						
						- 1		
				100				
		1		1				

thesP32738
Verification of model of molten glass fl

3 2768 001 97931 3
DUDLEY KNOX LIBRARY