Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

Prima prova di accertamento – 30/01/2024 – Canale 1 – Prof. Meneghesso

COGNOME: NOME: MATRICOLA:

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE LA PROVA

- 1) Bisogna consegnare il testo del compito anche in caso di ritiro
- 2) Risposte non chiare o non adequatamente giustificate saranno penalizzate
- 3) Nei conti e nei risultati, i valori numerici **<u>DEVONO</u>** essere accompagnati dalla <u>**relativa unità di misura**</u>. I risultati senza unità di misura saranno considerati sbagliati.
- 4) L'elaborato deve essere scritto e consegnato in forma ORDINATA e COMPRENSIBILE.
- 5) Il tempo a disposizione è di 2 ore

Problema 1

DATI: $R_1 = 120k\Omega$, $R_2 = 240k\Omega$, $R_D = 4k\Omega$, $R_S = 250\Omega$, $R_I = 40k\Omega$, $R_L = 12k\Omega$, $V_{DD} = 12V$. Parametri del MOSFET: $k_p = 8mA/V^2$, $V_{TP} = -1.5V$.

Consideriamo l'amplificatore in figura. Calcolare:

- 1. Il valore di R₃ per polarizzare il MOSFET in saturazione con I_{DS} = 1mA
- 2. Il punto di polarizzazione dei MOSFET in condizioni stazionarie (V_{GS} e V_{DS}).
- 3. Disegnare il circuito ai piccoli segnali e calcolare la transconduttanza di M₁ Dall'analisi ai piccoli segnali calcolare:
- 4. Le resistenze di ingresso e di uscita dell'amplificatore (come indicato in figura).
- 5. Il guadagno dall'ingresso v_i all'uscita v_o.

Problema 2

DATI: $R_1 = R_2 = 20k\Omega$.

Consideriamo il circuito in figura che realizza un filtro passa banda.

- 1. Trovare la funzione di trasferimento del filtro.
- 2. Calcolare i valori della capacità C_1 e C_2 in modo tale che le pulsazioni di taglio inferiore e superiore siano ω_L = 100rad/s e ω_H = 1000rad/s.
- 3. Calcolare il valore della resistenza R3 in modo che il guadagno in banda passante abbia modulo 10.
- 4. Disegnare il diagramma di bode del modulo e della fase. Per ciascun diagramma indicare: le coordinate (pulsazione, dB e gradi) di ciascun punto di spezzamento, le pendenze di ciascun segmento della spezzata (in dB/dec o °/dec).

Problema 3

Consideriamo il circuito in figura realizzato con un operazionale ideale, un diodo con V_{ON} = 1V e resistenze di valore R = 1k Ω :

- 5. Calcolare la tensione di uscita con $v_S = 5V$
- 6. Calcolare la tensione di uscita con $v_s = -5V$
- 7. Tracciare la transcaratteristica di v₀ in funzione di vS.
- 8. Calcolare il valore di v_s corrispondente al punto in cui il diodo cambia regione operativa e il corrispondente valore di v_o .

