TMR4243 - MARINE CONTROL SYSTEMS II

Exam

Spring 2015

Notation: Throughout this exam |x| means the vector 2-norm, i.e. $|x| = \sqrt{x^{\top}x}$.

1 Solutions to nonlinear ODEs (22 pts)

1. Consider the nonlinear ordinary differential equation (ODE):

$$\dot{x} = f(x), \qquad x_0 = x(0)$$

where $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}^n$.

(a) What does it mean that a solution is **forward complete**?

Answer: (2 pts) Answer: A solution $x(t, x_0)$ is forward complete if it is defined for all future time $t \geq 0$ for all $x_0 \in \mathbb{R}^n$.

(b) What does it mean that this system is locally Lipschitz?

Answer: (2 pts) The system is Locally Lipshcitz if for each $x \in \mathbb{R}^n$ there exists there exists a neighborhood \mathcal{U} of x and a constant L > 0 such that

$$x_1, x_2 \in \mathcal{U} \implies |f(x_1) - f(x_2)| \le L|x_1 - x_2|.$$

(c) What can you say about the solutions if it is *locally Lipschitz*?

Answer: (2 pts) Existence and uniqueness of solutions: For each $x_0 = x(0)$ there exists T > 0 and a unique solution $x(t, x_0)$ on [0, T].

(d) What does it mean that this system is **globally Lipschitz**?

Answer: (2 pts) The system is Globally Lipshcitz if there exists a (global) constant L > 0 such that for each pair $x_1, x_2 \in \mathbb{R}^n$

$$|f(x_1) - f(x_2)| \le L |x_1 - x_2|.$$

(e) What can you say about the solutions if it is globally Lipschitz?

Answer: (2 pts) Existence, uniqueness, and forward completeness of solutions: For each $x_0 \in \mathbb{R}^n$ there exists a unique solution $x(t, x_0)$ for all $t \geq 0$.

2. For the scalar system

$$\dot{x} = x^{\frac{1}{3}}, \qquad x_0 = 0$$

we propose the following solutions for $t \geq 0$:

$$x(t) = 0 \qquad \& \qquad x(t) = \left(\frac{2t}{3}\right)^{\frac{3}{2}}$$

- (a) Show that the proposed solutions are indeed solutions to the ODE.
 - **Answer:** (2 pts) Zero solution: Initial condition $x_0 = x(0) = 0$, and differentiating x(t) = 0 gives $\dot{x}(t) = 0 = 0^{\frac{1}{3}} = x(t)^{\frac{1}{3}}$ Q.E.D.

Answer: (2 pts) Non-zero solution: Initial condition $x_0 = x(0) = \left(\frac{2\cdot 0}{3}\right)^{\frac{3}{2}} = 0$, and differentiating $x(t) = \left(\frac{2t}{3}\right)^{\frac{3}{2}}$ gives

$$\dot{x}(t) = \frac{3}{2} \left(\frac{2t}{3}\right)^{\frac{1}{2}} \cdot \frac{2}{3} = \left(\frac{2t}{3}\right)^{\frac{3}{2}\frac{1}{3}} = x(t)^{\frac{1}{3}}$$
 Q.E.D.

- (b) What is the Lipschitz property of this ODE?
 - **Answer:** (2 pts) Differentiating $\frac{\partial f}{\partial x} = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3x^{2/3}}$. At x = 0 this derivative is infinite, which implies that it cannot be locally Lipschitz at x = 0. For an initial condition at x = 0 the solutions exist but are not unique.
- (c) What is the stability property of this ODE?
 - **Answer:** (1 pt) The equilibrium x = 0 is unstable. A slight offset from x = 0 will make the solution grow unbounded in either positive or negative direction.
- 3. For the scalar system

$$\dot{x} = kx$$
, $x_0 = -1$, $k = \text{const.}$

we propose the solution for $t \geq 0$:

$$x(t) = -e^{kt}$$

- (a) Show that the proposed solution is indeed a solution to this ODE.
 - **Answer:** (2 pts) Initial condition $x_0 = x(0) = -e^{k \cdot 0} = -1$ OK. Differentiating $\dot{x}(t) = -ke^{kt} = kx(t)$ Q.E.D.
- (b) What is the Lipschitz property of this ODE?

Answer: (2 pts) A linear ODE is Globally Lipschitz. We get

$$|f(x_1) - f(x_2)| = |kx_1 - kx_2| < L|x_1 - x_2|, \quad L = |k|,$$

which holds for all x_1, x_2 .

(c) What is the stability property of this ODE for k > 0?

Answer: (1 pt) For k positive the origin is unstable. The solution for $x_0 = -1$ shows directly that it will decrease unbounded to $-\infty$.

2 Stability of nonlinear systems (18 pts)

1. Consider the nonlinear time-varying system:

$$\dot{x} = f(t, x), \qquad x_0 = x(t_0), \quad t_0 \ge 0$$

where $x \in \mathbb{R}^n$ and $f : \mathbb{R}_{>0} \times \mathbb{R}^n \to \mathbb{R}^n$, and assume $f(t,0) = 0, \forall t \geq 0$.

(a) Define UGS and UGAS for the system solutions with respect to x=0 based on class- \mathcal{K} and class- \mathcal{KL} functions.

Answer: (4 pts) The origin is UGS if there exists a function $\varphi \in \mathcal{K}_{\infty}$ such that for all $x_0 \in \mathbb{R}^n$, the solution $x(t, x_0)$ satisfies

$$|x(t,x_0)| \le \varphi(|x_0|), \quad \forall t \ge 0.$$

The origin is UGAS if there exists a function $\beta \in \mathcal{KL}$ such that for all $x_0 \in \mathbb{R}^n$, the solution $x(t, x_0)$ satisfies

$$|x(t,x_0)| \le \beta(|x_0|, t), \quad \forall t \ge 0.$$

(b) What meaning does *Uniform* have?

Answer: (1 pt) Uniform implies that the above bounds does not change with time, that is, the bounding \mathcal{K}/\mathcal{KL} functions does not depend on the initial time. For time-invariant systems this is redundant information, e.g. UGS = GS, since the system dynamics then cannot change over time.

(c) What meaning does *Global* have?

Answer: (1 pt) This means that the stability property and above bounds are valid for all initial conditions $x_0 \in \mathbb{R}^n$.

(d) What meaning does Asymptotic have?

Answer: (1 pt) This means that the solutions will asymptotically converge to the origin x = 0 as $t \to \infty$. This is also denoted as the origin being *attractive*.

2. In terms of equilibrium points you can have three types: *single point*, *multiple isolated points*, and a *continuum of points*. Explain each of these and wether they are possible for linear vs. nonlinear systems.

Answer: (3 pts) Single point: There is a unique single point that is an equilibrium point for the system. Both linear and nonlinear systems can have this.

Multiple isolated points: There are several points in the state space, each isolated from the others, that all are equilibria to the dynamical system. This is not possible for a linear system (due to the linearity property), but generally possible for a nonlinear system.

Continuum of points: This means that there is a continuous (closed) set of points in the state space that all are equilibria for the dynamical system, e.g. the x_1 -axis. This is possible for both linear and nonlinear systems; for a linear system $\dot{x} = Ax$ such a continuum of equilibria must correspond to the nullspace of A.

3. Consider the linear time-varying system:

$$\dot{x} = Q(x - x_d(t)) + \dot{x}_d(t)$$

where $Q = Q^{\top}$, and $(x_d(t), \dot{x}_d(t))$ are bounded reference signals. Let

$$V(t,x) = \frac{1}{2} (x - x_d(t))^{\top} (x - x_d(t))$$

be a Lyapunov function candidate.

(a) Show how to differentiate V(t,x).

Answer: (4 pts) We get

$$\dot{V} = V^{t}(t,x) + V^{x}(t,x)\dot{x} = -(x - x_{d}(t))^{\top} \dot{x}_{d}(t) + (x - x_{d}(t))^{\top} \dot{x}$$

$$= -(x - x_{d}(t))^{\top} \dot{x}_{d}(t) + (x - x_{d}(t))^{\top} (Q(x - x_{d}(t)) + \dot{x}_{d}(t))$$

$$= -(x - x_{d}(t))^{\top} \dot{x}_{d}(t) + (x - x_{d}(t))^{\top} Q(x - x_{d}(t)) + (x - x_{d}(t))^{\top} \dot{x}_{d}(t)$$

$$= (x - x_{d}(t))^{\top} Q(x - x_{d}(t))$$

(b) What is your stability conclusion if Q < 0?

Answer: (2 pts) The Lyapunov function V(t,x) is positive definite and radially unbounded in the error $e = x - x_d(t)$, and if Q is symmetric negative definite then \dot{V} is negative definite in e. Hence, we get for the error system $\dot{e} = Qe$ that the equilibrium point e = 0 is UGES from Lyapunov's direct method.

(c) What is your stability conclusion if $Q \ge 0$?

Answer: (2 pts) If $Q \ge 0$ then no stability conclusion can be made from using V(t,x) as a Lyapunov candidate. However, considering the error system $\dot{e} = Qe$ we know that e = 0 will generally be unstable and marginally stable, at best, for Q = 0.

3 Lyapunov stability (22 pts)

Consider the system

$$\dot{x}_1 = x_2
\dot{x}_2 = -x_1 - x_2 + \frac{k}{\sqrt{5}}x_2^2$$

1. Assume k = 0. Differentiate the Lyapunov function

$$V_1(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

and discuss stability of the origin by Lyapunov's method and the Krasovskii-LaSalle theorem.

Answer: (4 pts) Differentiating we get

$$\dot{V}_1 = x_1 x_2 - x_2 x_1 - x_2^2 = -x_2^2 \le 0$$

Since the derivative is negative semidefinite we have that the origin $x = col(x_1, x_2) = 0$ is UGS. Since the system is time-invariant, we can apply the Krasovskii-LaSalle theorem. We let

$$\Omega = \left\{ x \in \mathbb{R}^2 : \dot{V}_1 = 0 \right\} = \{ x_2 = 0 \}$$

and look for the largest invariant set in Ω by considering the state equations. For Ω to be invariant we need $x_2=\dot{x}_2=0$. Then we get $\dot{x}_1=x_2=0\Rightarrow\dot{x}_1=0$ and $\dot{x}_2=-x_1-x_2=0\Rightarrow x_1=0$. Hence, the largest invariant set in Ω is the origin, which then is GAS. Since for k=0 the system is linear, then GAS=GES.

2. Assume k = 0. Differentiate the Lyapunov function

$$V_2(x) = \frac{3}{2}x_1^2 + x_1x_2 + x_2^2$$

and discuss stability of the origin by Lyapunov's method.

Answer: (4 pts) Differentiating we get

$$\dot{V}_{2} = 3x_{1}\dot{x}_{1} + \dot{x}_{1}x_{2} + x_{1}\dot{x}_{2} + 2x_{2}\dot{x}_{2}
= 3x_{1}x_{2} + x_{2}^{2} + x_{1}(-x_{1} - x_{2}) + 2x_{2}(-x_{1} - x_{2})
= 3x_{1}x_{2} + x_{2}^{2} - x_{1}^{2} - x_{1}x_{2} - 2x_{2}x_{1} - 2x_{2}^{2}
= -x_{1}^{2} - x_{2}^{2} = -|x|^{2}$$

For V_2 we also get

$$V_{2}(x) = \left(\frac{1}{\sqrt{2}}x_{1} + \frac{1}{\sqrt{2}}x_{2}\right)^{2} + x_{1}^{2} + \frac{1}{2}x_{2}^{2} \ge \frac{1}{2}|x|^{2}$$

$$V_{2}(x) = \frac{3}{2}x_{1}^{2} + x_{1}x_{2} + x_{2}^{2} \le \frac{3}{2}x_{1}^{2} + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} + x_{2}^{2} \le 2|x|^{2}$$

$$\frac{1}{2}|x|^{2} \le V_{2}(x) \le 2|x|^{2}$$

It follows from Lyapunov's Direct Method that the origin x=0 is GES.

3. Show that the system can be written in vector form with state vector $x = col(x_1, x_2)$, as

$$\dot{x} = Ax + kbx_2^2$$

by appropriate definitions of A and b.

Answer: (2 pts) We get

$$A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}, \qquad b = \frac{1}{\sqrt{5}} \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

(a) Show that $|x_2^2| \le |x|^2$.

Answer: (1 pt) $|x_2^2| = x_2^2 \le x_1^2 + x_2^2 = |x|^2$.

(b) Show that the Lyapunov function $V_2(x)$ above can be written

$$V_2(x) = x^{\top} P x$$

where P is symmetric positive definite.

Answer: (1 pt) We get

$$P = \left[\begin{array}{cc} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array} \right]$$

(c) Show that (P, A) satisfies the Lyapunov equation with Q = I.

Answer: (2 pts) Lyapunov equation:

$$\begin{split} PA + A^{\top}P &= \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} \\ &= \begin{bmatrix} -\frac{1}{2} & 1 \\ -1 & -\frac{1}{2} \end{bmatrix} + \begin{bmatrix} -\frac{1}{2} & -1 \\ 1 & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -Q. \end{split}$$

(d) Assume k = 1. Show that $|Pb| = \frac{1}{2}$ and that

$$\dot{V}_2 \le -|x|^2 + |x|^3 =: Y_2(|x|)$$

For what state values $x \in \mathbb{R}^2$ is $Y_2(|x|)$ negative definite?

Answer: (3 pts) We get

$$\begin{split} Pb &= \frac{1}{\sqrt{5}} \left[\begin{array}{c} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array} \right] \left[\begin{array}{c} 0 \\ 1 \end{array} \right] = \left[\begin{array}{c} \frac{1}{2\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{array} \right] \\ |Pb| &= \sqrt{\left(\frac{1}{2\sqrt{5}}\right)^2 + \left(\frac{1}{\sqrt{5}}\right)^2} = \sqrt{\frac{1}{4 \cdot 5} + \frac{1}{5}} = \sqrt{\frac{1}{4 \cdot 5} + \frac{4}{4 \cdot 5}} = \sqrt{\frac{1}{4}} = \frac{1}{2} \\ \dot{V}_2 &= 2x^\top PAx + 2x^\top Pkbx_2^2 = x^\top \left(PA + A^\top P\right)x + 2x^\top Pbx_2^2 \\ &\leq -|x|^2 + 2|Pb| \, |x| \, |x_2^2| \leq -|x|^2 + |x|^3 \end{split}$$

where we used k=1, $|Pb|=\frac{1}{2}$, and $\left|x_2^2\right|\leq |x|^2$. We get that $Y_2(|x|)$ is negative definite on $\mathcal{D}=\left\{x\in\mathbb{R}^2:\ |x|<1\right\}$, i.e. all points strictly inside the unit circle.

(e) For k = 1, what stability of x = 0 can you conclude for the nonlinear system based on $V_2(x)$?

Answer: (2 pts) We have the $V_2(x)$ is positive definite and radially unbounded, and $\dot{V}_2 < 0$ on $\mathcal{D}\setminus\{0\}$. Hence, the origin is LES.

4. The figure below shows three ellipsoidal level curves of $V_2(x)$, i.e. the curves $\{x \in \mathbb{R}^2 : V(x) = c\}$ for $c = \{0.69, 1.81, 3.66\}$, and the level curve $\{x \in \mathbb{R}^2 \setminus \{0\} : Y_2(|x|) = 0\}$.

Which of the 4 ellipses can be used as an estimate of the Region of Convergence (ROC)? Justify your answer.

Answer: (3 pts) Any level set of $V_2(x)$ contained in \mathcal{D} can be used as an estimmate of the ROC, i.e. in this case the set

$$G = \{x \in \mathbb{R}^2 : V(x) \le 0.69\}.$$

This guarantees that for any $x_0 \in \mathcal{G}$ then the solutions can never cross the boundary for which \dot{V}_2 becomes positive. Hence, since $\dot{V}_2 < 0$ in $\mathcal{G}\setminus\{0\}$ the solutions |x(t)| must monotonically decrease to the origin.

4 Nonlinear feedback control (22 pts)

Consider a marine system

$$\dot{\eta} = R(\eta)\nu$$
 $M\dot{\nu} = \tau + \rho(\eta, \nu) + d(t)$

where $\eta \in \mathbb{R}^n$ is a position/orientation vector, $\nu \in \mathbb{R}^n$ is a velocity vector, $\tau \in \mathbb{R}^n$ is the control input, $\rho(\eta, \nu) \in \mathbb{R}^n$ is a locally Lipschitz vector function, d(t) is a bounded bias, $M = M^{\top} > 0$, and $R(\eta)$ is a rotation matrix with the properties $R(\eta)^{\top}R(\eta) = R(\eta)R(\eta)^{\top} = I$ and $\dot{R} = R(\eta)S(\nu)$ where $S(\nu) = -S(\nu)^{\top}$.

1. Choosing $x_1 = \eta$, $x_2 = R(\eta)\nu$, and $x = col(x_1, x_2)$, show that you can transform the system into the controller form:

$$\dot{x} = Ax + B\Gamma(\eta, \nu) \left[\tau + \varphi(\eta, \nu) + d(t)\right]$$

where Γ is nonsingular. Show that (A, B) is a controllable pair.

Answer: (8 pts) We get

$$\dot{x}_1 = \dot{\eta} = R(\eta)\nu = x_2
\dot{x}_2 = \dot{R}\nu + R(\eta)\dot{\nu} = R(\eta)S(\nu)\nu + R(\eta)M^{-1}(\tau + \rho(\eta, \nu) + d(t))
= R(\eta)M^{-1}MS(\nu)\nu + R(\eta)M^{-1}(\tau + \rho(\eta, \nu) + d(t))
= R(\eta)M^{-1}[\tau + MS(\nu)\nu + \rho(\eta, \nu) + d(t)]$$

Hence, we can assign

$$\begin{array}{rcl} A & = & \left[\begin{array}{cc} 0 & I \\ 0 & 0 \end{array} \right] \in \mathbb{R}^{2n \times 2n}, \quad B = \left[\begin{array}{c} 0 \\ I \end{array} \right] \in \mathbb{R}^{2n \times n} \\ \Gamma(\eta, \nu) & = & R(\eta) M^{-1}, \quad \varphi(\eta, \nu) = MS(\nu) \nu + \rho(\eta, \nu) \end{array}$$

where $\Gamma(\eta, \nu)$ is invertible.

To show that (A, B) is controllable we form the controllability matrix,

$$C = \left[\begin{array}{cccc} B & AB & A^2B & \cdots & A^{2n-1}B \end{array} \right]$$

and require that $rank(\mathcal{C})=2n$. This means that we need \mathcal{C} to have full row rank. Since $A^2=A^3=\ldots A^{2n-1}=0$ we get

$$C = \left[\begin{array}{cccc} 0 & I & 0 & \cdots & 0 \\ I & 0 & 0 & \cdots & 0 \end{array} \right]$$

which clearly is full row-rank. Hence, (A, B) is controllable.

2. Assume all states and the model is fully known, and d(t) = 0. Design a static state feedback control law $\tau = \alpha(\eta, \nu)$, using feedback linearization, that renders the closed-loop system linear and x = 0 UGES.

Answer: (4 pts) A state feedback control law is

$$\tau = \Gamma(\eta, \nu)^{-1}\alpha - \varphi(\eta, \nu)$$
$$\alpha = -Kx$$

gives

$$\dot{x} = Ax + B\alpha = (A - BK)x$$

where the linear feedback gain $K \in \mathbb{R}^{n \times 2n}$ is designed such that the closed-loop matrix A - BK is Hurwitz.

3. For d(t) a bounded unknown bias, show that your static feedback control law renders the system Input-to-State-Stable (ISS) from d(t) as input.

Answer: (4 pts) We let $A_0 = A - BK$ such that

$$\dot{x} = A_0 x + B\Gamma(\eta, \nu) d(t)$$

Let $P = P^{\top} > 0$ satisfy the Lyapunov equation $PA_0 + A_0^{\top}P = -I$. We will then show that $V_0(x) = x^{\top}Px$ is an ISS-Lyapunov function. Differentiating gives

$$\dot{V}_{0} = 2x^{\top} P A_{0} x + 2x^{\top} P B \Gamma(\eta, \nu) d(t)
= -x^{\top} x + 2x^{\top} P B \Gamma(\eta, \nu) d(t)
\leq -|x|^{2} + 2|x| ||PB\Gamma(\eta, \nu)|| |d(t)|
\leq -\frac{1}{2}|x|^{2} - \frac{1}{2}|x|^{2} + L|x| |d(t)|
\leq -\frac{1}{2}|x|^{2}, \quad \forall |x| \geq 2L|d(t)|$$

where $L \geq \|PB\Gamma(\eta,\nu)\|$ (e.g. $L = \frac{\lambda_{\max}(P)}{\lambda_{\min}(M)}$). Hence, $V_0(x)$ is an ISS-Lyapunov function.

4. Suppose d(t)=d =constant and unknown, and that the static control law $\tau=\alpha(\eta,\nu)+\tau_0$ renders the closed-loop system into

$$\dot{x} = A_0 x + B\Gamma(\eta, \nu) \left[\tau_0 + d \right]$$

where A_0 is Hurwitz. Augmenting the control law with integral action τ_0 , let

$$\dot{\xi} = \gamma$$

$$\tau_0 = -K_i \xi, \qquad K_i = K_i^{\top} > 0$$

where the function γ shall be designed. Define $\tilde{\xi} = \xi - K_i^{-1}d$, let $P = P^{\top} > 0$ satisfy $PA_0 + A_0^{\top}P = -I$, and define the CLF

$$V(x,\tilde{\xi}) = x^{\top} P x + \frac{1}{2} \tilde{\xi}^{\top} K_i \tilde{\xi}$$

(a) Write down the state equations for $(\tilde{\xi}, x)$.

Answer: (2 pts) State equations becomes

$$\dot{\tilde{\xi}} = \dot{\xi} = \gamma$$

$$\dot{x} = A_0 x + B\Gamma(\eta, \nu) \left[-K_i \xi + d \right]$$

$$= A_0 x - B\Gamma(\eta, \nu) K_i \left[\xi - K_i^{-1} d \right]$$

$$= A_0 x - B\Gamma(\eta, \nu) K_i \tilde{\xi}$$

(b) Differentiate $V(x, \tilde{\xi})$ and design γ so that \dot{V} becomes

$$\dot{V} = -x^{\top}x$$

Answer: (2 pts) Differentiating $V(x, \tilde{\xi})$ gives

$$\dot{V} = 2x^{\top}P\dot{x} + \tilde{\xi}^{\top}K_{i}\dot{\tilde{\xi}}
= 2x^{\top}PA_{0}x - 2x^{\top}PB\Gamma(\eta,\nu)K_{i}\tilde{\xi} + \tilde{\xi}^{\top}K_{i}\gamma
= x^{\top}\left(PA_{0} + A_{0}^{\top}P\right)x - 2\tilde{\xi}^{\top}K_{i}\Gamma(\eta,\nu)^{\top}B^{\top}Px + \tilde{\xi}^{\top}K_{i}\gamma
= -x^{\top}x + \tilde{\xi}^{\top}K_{i}\left(\gamma - 2\Gamma(\eta,\nu)^{\top}B^{\top}Px\right)$$

Assigning then the integral action

$$\gamma = 2\Gamma(\eta, \nu)^{\top} B^{\top} P x$$

gives the desired result.

(c) What stability properties can you conclude for $(\tilde{\xi}, x) = (0, 0)$ (Hint: Use the LaSalle-Yoshizawa theorem).

Answer: (2 pts) We have $V(x, \tilde{\xi})$ positive definite and radially unbounded, and \dot{V} is negative semidefinite. Hence, the origin $(\tilde{\xi}, x) = (0, 0)$ is UGS. In addition, from the LaSalle-Yoshizawa theorem we get that $\dot{V} = -x^{\top}x$ converges to zero, implying that $\lim_{t\to\infty} x(t) = 0$.

In fact, since $\eta = x_1$ and $\nu = R(x_1)^\top x_2$, we find that the closed-loop system is time-invariant. Hence, we can use the Krasovskii-LaSalle invariance principle to conclude that $B\Gamma(\eta,\nu)K_i\tilde{\xi}$ must converge to zero. Since ΓK_i is nonsingular, we can conclude that $\lim_{t\to\infty} \tilde{\xi}(t) = 0$.

5 Solution: Backstepping (16 pts)

Consider the system

$$\dot{x}_1 = g(x_1)x_2 - \sin(x_1)$$

 $\dot{x}_2 = u - |x_2|x_2 + b$

where $1 \leq g(x_1) \leq 10$ for all $x_1 \in \mathbb{R}$, $u \in \mathbb{R}$ is the control input, and b is a constant bias.

1. Suppose b = 0, and let the control objective be to stabilize $(x_1, x_2) = (0, 0)$. Use *backstepping* to design a feedback control law for u that solves the regulation control objective.

Answer: (8 pts) Backstepping design for regulation:

Step 1:

We let $z_1 = x_1$ and $z_2 = x_2 - \alpha_1(x_1)$ and differentiate z_1 and $V_1 = \frac{1}{2}z_1^2$ to get

$$\dot{z}_1 = g(x_1)z_2 + g(x_1)\alpha_1 - \sin(x_1)
\dot{V}_1 = z_1\dot{z}_1 = z_1g(x_1)z_2 + z_1[g(x_1)\alpha_1 - \sin(x_1)]$$

We choose

$$\alpha_1 = \frac{1}{g(x_1)} \left[-c_1 z_1 + \sin(x_1) \right]$$

which gives

$$\dot{V}_1 = g(x_1)z_1z_2 - c_1z_1^2$$

This shows for $z_2 = 0$ that $z_1 = 0$ is UGES.

Step 2:

Differentiating z_2 and $V_2 = V_1 + \frac{1}{2}z_2^2$ gives

$$\dot{z}_2 = \dot{x}_2 - \dot{\alpha}_1 = u - |x_2| x_2 - \dot{\alpha}_1
\dot{V}_2 = -c_1 z_1^2 + g(x_1) z_1 z_2 + z_2 \dot{z}_2 = -c_1 z_1^2 + z_2 [g(x_1) z_1 + u - |x_2| x_2 - \dot{\alpha}_1]$$

where we assume an expression for $\dot{\alpha}_1$ is available by some differentiationwork. We choose the control law

$$u = -g(x_1)z_1 - c_2z_2 + |x_2|x_2 + \dot{\alpha}_1$$

which gives

$$\dot{V}_2 = -c_1 z_1^2 - c_2 z_2^2 < 0.$$

Correspondingly, the origin $(z_1, z_2) = (0, 0)$ of the closed-loop system

$$\dot{z}_1 = -c_1 z_1 + g(x_1) z_2
\dot{z}_2 = -g(x_1) z_1 - c_2 z_2$$

is UGES.

2. Suppose $b \neq 0$, let \hat{b} be an estimate of b, and define the estimation error $\tilde{b} = b - \hat{b}$. Augment the Step 2 CLF V_2 with a term $\frac{1}{2\gamma}\tilde{b}^2$, and design an adaptive update law for $\dot{\hat{b}}$ that renders $(z_1, z_2, \tilde{b}) = 0$ UGS and ensures the convergence $(x_1(t), x_2(t)) \to 0$.

Answer: (8 pts) Redoing Step 2 for $b \neq 0$, we will get

$$\dot{z}_2 = u - |x_2| \, x_2 - \dot{\alpha}_1 + b$$

and augmenting with the adaptive term, we define $V_2 = V_1 + \frac{1}{2}z_2^2 + \frac{1}{2\gamma}\tilde{b}^2$ and differentiate

$$\dot{V}_{2} = -c_{1}z_{1}^{2} + z_{2} \left[g(x_{1})z_{1} + u - |x_{2}| x_{2} - \dot{\alpha}_{1} + b \right] + \frac{1}{\gamma} \tilde{b} \tilde{b}$$

$$= -c_{1}z_{1}^{2} + z_{2} \left[g(x_{1})z_{1} + u - |x_{2}| x_{2} - \dot{\alpha}_{1} + \hat{b} \right] + \tilde{b} \left(z_{2} - \frac{1}{\gamma} \dot{\hat{b}} \right)$$

Choosing then the adaptive control law

$$\dot{\hat{b}} = \gamma z_2
 u = -\hat{b} - g(x_1)z_1 - c_2 z_2 + |x_2| x_2 + \dot{\alpha}_1$$

gives

$$\dot{V}_2 = -c_1 z_1^2 - c_2 z_2^2 \le 0$$

According to the LaSalle-Yoshizawa theorem, the origin $(z_1, z_2, \tilde{b}) = 0$ is UGS and $\lim_{t\to\infty} (z_1(t), z_2(t)) = 0$. Since

$$x_1(t) = z_1(t)$$

 $x_2(t) = z_2(t) + \frac{1}{g(z_1(t))} [-c_1 z_1(t) + \sin(z_1(t))]$

we also get that $\lim_{t\to\infty} (x_1(t), x_2(t)) = 0$. Can you show that $(z_1, z_2, \tilde{b}) = 0$ is in fact UGAS?