CEE450 final project

Xiaowen Lin

```
1. Code
clear all;
clc;
xa=0; xb=10; F0=0; G0=0; GInf=1; s=1;
N=1000; delta=1e-6; Nmax=1000;
step = (xb-xa) / N;
x = linspace(xa, xb, N+1);
F = linspace(0, 0, N+1); % F
G = linspace(0, 0, N+1); % first order F
H = linspace(0, 0, N+1); % second order F
Fv = linspace(0, 0, N+1); % df/ds
Gv = linspace(0, 0, N+1); % dG/ds
Hv = linspace(0, 0, N+1); % dH/ds
iter = 0;
while iter < Nmax</pre>
    F(1) = F0;
    G(1) = G0;
    H(1) = s;
    Fv(1) = 0;
    Gv(1) = 1;
    Hv(1) = 1;
    for i = 1:N
        F(i+1) = F(i) + G(i) * step;
        G(i+1) = G(i) + H(i) * step;
        H(i+1) = H(i) -0.5*F(i)*H(i)*step;
        Fv(i+1) = Fv(i) + Gv(i)*step;
        Gv(i+1) = Gv(i) + Hv(i)*step;
        Hv(i+1) = Hv(i) + 0.5*H(i)*Fv(i)*step;
    end
    iter = iter + 1;
    s = s - (G(N+1)-GInf) / Gv(N+1);
    if abs((G(N+1)-GInf) / Gv(N+1)) < delta
        break;
    end
end
fprintf('The value for s is %.2f\n', s);
plot(x,F,'-',x,G,'--',x,H,':');
leg1 = legend('F','G','H');
set(leg1, 'Location', 'NorthWest');
print -djpeg FGH.jpg;
```

```
close;
plot(x,G);
leg2 = legend('G');
set(leg2, 'Location', 'NorthWest');
hold on;
plot(x, 0.99);
hold off;
print -djpeg G.jpg;
close;
I = 1:1001;
index = I(G>0.99);
index = index(1);
fprintf('The F" nearest to 0.99 is %f and %f.\n', G(index-1), G(index));
fprintf('The corresponding values of eta is %f and %f.\n', x(index-1),
x(index));
fprintf('The value of eta99 is .2f\n', x(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.99-G(index-1)+(0.
1)) * (x(index) -x(index-1)) / (G(index) -G(index-1)));
rho = 1.24; % kg/m3
L = 0.2; b = 0.1; v = 1.5e-5; % m2/s
U = [0.01, 0.1, 0.5];
```

2. Output of MATLAB

FD = 0.66*b*U.*sqrt(v*U*L);

The value for s is 0.33

The F" nearest to 0.99 is 0.989931 and 0.990116.

The corresponding values of eta is 4.910000 and 4.920000.

The value of eta99 is 4.91

3. Solution

1. Use the solution to plot u/U as a function of η .

Value of $\eta 99$ is 4.913746.2 as it shows in the console output of "matlab".

$$\delta \sqrt{\frac{U}{vx}} = 4.91$$

$$\delta = 4.91 \sqrt{\frac{vx}{U}}$$

For the boundary shear stress on the body

$$\frac{\partial u}{\partial y} = U \sqrt{\frac{U}{vx}} F''(\eta)$$

$$\frac{\tau o}{\rho U^2} = \frac{\rho v \frac{\partial u}{\partial y}}{\rho U^2} = \sqrt{\frac{v}{xU}} F''(\eta) = Re^{-\frac{1}{2}} F''(\eta) = Re^{-\frac{1}{2}} F''(0)$$

$$\frac{\tau o}{\rho U^2} = 0.33 \times \sqrt{\frac{v}{xU}} = 0.33 \times Re^{-1/2}$$

For drag force

$$\frac{F_D}{\rho b L U^2} = \frac{1}{bL} \iint \frac{\tau o}{\rho U^2} dA = \frac{1}{L} \int_0^L \frac{\tau o}{\rho U^2} dx = 0.33 \times \frac{1}{L} \int_0^L \sqrt{\frac{v}{xU}} dx = \frac{0.33}{L} \sqrt{\frac{v}{U}} \int_0^L \sqrt{\frac{1}{x}} dx = 0.66 \sqrt{\frac{v}{UL}}$$

$$F_D = 0.66 \rho b U \sqrt{vUL}$$

According to the result form "matlab", the drag force is 1.1 E-7, 3.61 E-6, 4.04 E-5.