Домашнее задание

Задача 1. Вычислить несобственный интеграл или доказать его расходимость

$$1.1. \int_{e}^{\infty} \frac{\ln x}{\sqrt[3]{x^5}} dx;$$

1.2.
$$\int_{e}^{+\infty} \frac{dx}{(1+x)\sqrt{x}};$$

1.3.
$$\int_{1}^{+\infty} \frac{dx}{x^2(x^2+9)}$$
;

1.4.
$$\int_{1}^{\infty} \frac{dx}{x\sqrt{x^2 + 6x + 5}};$$

1.5.
$$\int_{1}^{+\infty} \frac{dx}{x+x^3}$$
;

1.6.
$$\int_{0}^{+\infty} (2x+1)e^{-x/3}dx;$$

1.7.
$$\int_{1}^{+\infty} \frac{dx}{x(\sqrt{x}+2x)};$$

1.8.;
$$\int_{-\infty}^{-2} \frac{dx}{x\sqrt{x^2-1}}$$

1.9.
$$\int_{0}^{+\infty} \frac{dx}{x^3 + 27}$$
;

1.10.
$$\int_{1/2}^{\infty} \frac{dx}{x\sqrt{x^2 + 2x - 1}};$$

1.11.
$$\int_{1}^{+\infty} \frac{\arctan x}{x^2} dx;$$

1.12.
$$\int_{1}^{+\infty} \frac{\sqrt{x} dx}{(x+1)^2}$$
;

1.13.
$$\int_{1}^{+\infty} \frac{dx}{x\sqrt{x^2 + 4x + 1}};$$

1.14.
$$\int_{\ln 2}^{+\infty} \frac{e^x}{e^{2x} + 9} dx;$$

1.15.
$$\int_{1}^{+\infty} \frac{dx}{x(\sqrt{x} + \sqrt[5]{x^2})};$$

1.16.
$$\int_{0}^{+\infty} (x^2 + 1)e^{-x} dx;$$

1.17.
$$\int_{1}^{\infty} \frac{dx}{x \sqrt{(\ln x + 4)^5}};$$

1.18.
$$\int_{0}^{+\infty} \frac{dx}{(2+x)\sqrt{1+x}};$$

1.19.
$$\int_{0}^{+\infty} e^{-\sqrt{x}} dx$$
;

1.20.
$$\int_{0}^{+\infty} \frac{dx}{1+x^{3}};$$

1.21.
$$\int_{1}^{+\infty} \frac{x \ln x}{(1+x^2)^2} dx;$$

1.22.
$$\int_{1}^{+\infty} \frac{dx}{(2x-1)\sqrt{x^2-1}};$$

1.23.
$$\int_{1}^{+\infty} \frac{x}{x^3 + 1} dx;$$

1.24.
$$\int_{0}^{+\infty} \frac{x^3}{9+x^8} dx;$$

1.25.
$$\int_{2}^{\infty} \frac{dx}{x\sqrt{x^{2}+x-1}};$$

1.26.
$$\int_{e}^{\infty} \frac{\ln^2 x}{x^3} dx$$
;

1.27.
$$\int_{1}^{+\infty} \frac{dx}{x^2(x+3)};$$

1.28.
$$\int_{\sqrt{2}}^{+\infty} \frac{dx}{x\sqrt{x^2 - 1}};$$

1.29.
$$\int_{0}^{+\infty} x^3 e^{-x^2} dx$$
;

1.30.
$$\int_{3}^{\infty} \frac{dx}{x^2(x^2+9)}.$$

Задача 2. Вычислить несобственный интеграл или доказать его расходимость:

2.1.
$$\int_{-1}^{1} \frac{dx}{(2-x)\sqrt{1-x^2}};$$

2.2.
$$\int_{-3}^{0} \frac{dx}{\sqrt[5]{(x+1)^3}};$$

2.3.
$$\int_{1}^{2} \frac{dx}{x\sqrt{3x^2 - 2x - 1}};$$

2.4.
$$\int_{0}^{2} \frac{dx}{\sqrt{8-2x-x^{2}}};$$

2.5.
$$\int_{0}^{e} x \ln x dx$$
;

2.6.
$$\int_{0}^{1} \frac{e^{\frac{1}{x}}}{x^{3}} dx;$$

2.7.
$$\int_{1}^{e} \frac{dx}{x\sqrt[3]{\ln^2 x}}$$
;

2.8.
$$\int_{\pi}^{3\pi/2} \frac{\sin x dx}{\sqrt[5]{\cos^3 x}};$$

2.9.
$$\int_{0}^{1} \frac{dx}{\sqrt{x-x^{2}}};$$

2.10.
$$\int_{\sqrt{3}}^{3} \frac{dx}{(x-1)\sqrt{x^2-3}};$$

2.11.
$$\int_{0}^{1} \ln^2 x dx$$
;

2.12.
$$\int_{1/3}^{2} \frac{dx}{(2-x)\ln^2(2-x)}$$

2.13.
$$\int_{2}^{3} \frac{(2x+3)dx}{x^2+x-12};$$

2.14.
$$\int_{0}^{3/\pi} \cos \frac{1}{x} \frac{dx}{x^{3}};$$

2.15.
$$\int_{0}^{3} \frac{x^{3} dx}{\sqrt{9-x^{2}}};$$

2.16.
$$\int_{2}^{5} \frac{x dx}{\sqrt{7x - x^2 - 10}};$$

2.17.
$$\int_{-1}^{1} \frac{\ln(2+\sqrt[3]{x})}{\sqrt[3]{x}} dx;$$

2.18.
$$\int_{2}^{3} \frac{x dx}{\sqrt[4]{x^2 - 4}};$$

2.19.
$$\int_{0}^{1} \frac{dx}{x^3 - 1};$$

2.20.
$$\int_{0}^{1} \frac{x^{2} dx}{\sqrt{1 - x^{2}}};$$

2.21.
$$\int_{0}^{1} \frac{(x-3)dx}{\sqrt{3-2x-x^{2}}};$$

2.22.
$$\int_{0}^{1} (x^{2} - x) \ln x dx;$$

2.23.
$$\int_{4}^{7} \sqrt{\frac{x-4}{7-x}} dx$$
;

2.24.
$$\int_{0}^{2} \frac{x^{3} dx}{\sqrt{4-x^{2}}};$$

2.25.
$$\int_{3}^{5} \frac{x^{2}}{\sqrt{(x-3)(5-x)}} dx$$

2.26.
$$\int_{2}^{4} \frac{dx}{x\sqrt{6x-x^2-8}};$$

2.27
$$\int_{-1}^{e-2} \frac{dx}{(x+2) \sqrt[7]{\ln^5(x+2)}};$$

2.28.
$$\int_{2}^{9} \sqrt{\frac{x-2}{9-x}} dx$$
;

2.29.
$$\int_{0}^{e} \sqrt{x} \ln^{2} x dx$$
;

2.30.
$$\int_{0}^{\ln 2} \frac{dx}{\sqrt{e^x - 1}}.$$

Задача 3. Исследовать на сходимость несобственный интеграл

3.1.
$$\int_{1}^{+\infty} \frac{(4+\sin x)dx}{\sqrt[5]{x^3+x+9}};$$

3.2.
$$\int_{4}^{+\infty} \frac{(3x+2)dx}{(x^2+4)\sqrt[3]{\ln^5(x+6)}}$$

3.3.
$$\int_{0}^{\infty} \frac{x \arctan x}{\sqrt[3]{x^4 + 1}} dx;$$

3.4.
$$\int_{4}^{+\infty} \frac{(3x^2+2)dx}{(x^3+4)\sqrt{\ln(x+6)}}$$

3.5.
$$\int_{1}^{+\infty} \frac{7 + 2\cos(2x - 1)}{\sqrt[7]{x^6 + 9x + 1}} dx$$

3.6.
$$\int_{0}^{1} \frac{\sin x \, dx}{\sqrt{x^3 + x^5}};$$

3.7.
$$\int_{2}^{+\infty} \frac{dx}{x\sqrt[3]{\ln^2 x + 5}};$$

3.8.
$$\int_{1}^{+\infty} \frac{\arctan x}{\sqrt[5]{4+x^7}} dx$$
;

3.9.
$$\int_{1}^{+\infty} \frac{(3+2\cos x)dx}{\sqrt{x^2+3x+\sqrt[4]{x}}}.$$
;

3.10.
$$\int_{1}^{+\infty} \frac{\sin^2 x}{\sqrt[3]{x^7 + 9}} dx;$$

3.11.
$$\int_{1}^{+\infty} \frac{(1+5\sin x)dx}{\sqrt[5]{x^6+9x+1}};$$

3.12.
$$\int_{1}^{+\infty} \frac{\sqrt{x^3 + 1} + \sqrt{x^2}}{x^3 + 4x + 8} dx$$

3.13.
$$\int_{1}^{+\infty} \frac{\arcsin(1/x)}{1+x\sqrt{x}} dx;$$

3.14.
$$\int_{e}^{+\infty} \frac{\ln x}{\sqrt[3]{x^2 - 3x + 7}} dx;$$

3.15.
$$\int_{2}^{+\infty} \frac{\arcsin(1/x)}{(x - \cos(1/x))^{5}} dx;$$

$$3.16. \int_{1}^{\infty} \arcsin \frac{x}{x^2 + x + 1} dx$$

3.17.
$$\int_{2}^{+\infty} \frac{dx}{x \ln^{2}(x+4)};$$

3.18.
$$\int_{1}^{+\infty} \frac{\arctan x}{\sqrt{x^3 + 2x + 5}} dx;$$

3.19.
$$\int_{1}^{+\infty} \sqrt{x^3} (1 - \cos \frac{1}{x^3}) dx$$

3.20.
$$\int_{4}^{+\infty} \frac{(x^2 + 5x)dx}{(x^3 + 5)\sqrt[5]{\ln(x + 6)}};$$

3.21.
$$\int_{1}^{+\infty} \frac{\cos x \, dx}{x\sqrt[7]{x^6 + 9x + 1}};$$

3.22.
$$\int_{2/\sqrt{\pi}}^{+\infty} \frac{1}{x^3} \sin \frac{1}{x^2} dx;$$

3.23.
$$\int_{2}^{+\infty} \frac{(x+5)dx}{(x^2+1)\ln(x+3)};$$

3.24.
$$\int_{1}^{+\infty} \frac{\arctan x}{\sqrt{x^5 + 2x^3 + 3}} dx;$$

3.25.
$$\int_{1}^{+\infty} \frac{(3-\sin x)dx}{\sqrt[5]{x^3+5x+2}};$$

3.26.
$$\int_{1}^{+\infty} \frac{(2x-1)dx}{\sqrt{x^5+7x+5}};$$

3.27.
$$\int_{1}^{+\infty} \sqrt{x} (1 - \cos \frac{1}{x^2}) dx$$

3.28.
$$\int_{1}^{+\infty} \frac{(4+\cos x)dx}{\sqrt[7]{x^8+3x+1}};$$

3.29.
$$\int_{1}^{+\infty} \frac{(3-\sin^2 x)dx}{\sqrt[3]{x^2+x+\sqrt[3]{x}}};$$

3.30.
$$\int_{4}^{+\infty} \frac{(3x^2+2)dx}{(x^3+4)\sqrt{\ln(x+6)}}.$$

Задача 4. Исследовать на сходимость несобственный интеграл

4.1.
$$\int_{0}^{1} \frac{dx}{\sqrt{e^{4x}-1}};$$

4.2.
$$\int_{0}^{\pi/4} \frac{dx}{\sqrt[5]{x^2 + x + 3\sin x}};$$

4.3.
$$\int_{0}^{1} \frac{\cos^{2} x \, dx}{\sqrt[3]{(1-x^{2})^{2}}};$$

4.4.
$$\int_{0}^{1} \frac{dx}{\sqrt[5]{\arctan^3 x}};$$

4.5.
$$\int_{0}^{1} \frac{\arcsin x}{x^2 + x\sqrt[3]{x}} dx;$$

4.6.
$$\int_{0}^{1} \frac{dx}{1 - e^{-6x}};$$

4.7.
$$\int_{-1}^{1} \frac{3x^2 + 2}{\sqrt[3]{x^2}} dx;$$

4.8.
$$\int_{3}^{7} \frac{dx}{\sqrt{(x-3)(7-x)}}$$
;

4.9.
$$\int_{0}^{1} \frac{\ln x}{1-x^{2}} dx;$$

4.10.
$$\int_{0}^{1} \frac{dx}{x(1-\cos x)}$$
;

4.11.
$$\int_{0}^{1} \frac{dx}{x - \sin x};$$

4.12.
$$\int_{0}^{1} \frac{dx}{\sqrt[3]{\operatorname{arctg} x}}$$
;

4.13.
$$\int_{0}^{1} \frac{\ln(1+\sqrt[3]{x^2})}{e^{2x}-1} dx;$$

4.14.
$$\int_{0}^{1} \frac{dx}{e^{\sqrt{x}} - 1}$$
;

4.15.
$$\int_{0}^{\pi/4} \frac{dx}{\sqrt[5]{x-\sin x}};$$

4.16.
$$\int_{0}^{\pi/6} \frac{dx}{\lg \sqrt{\pi x}}$$
;

4.22.
$$\int_{0}^{1} \frac{dx}{e^{2x} - \cos \pi x};$$

4.27.
$$\int_{0}^{1} \frac{\arcsin x}{x^2 + x\sqrt[3]{x}} dx;$$

4.17.
$$\int_{0}^{1} \frac{\sqrt{x}}{\sqrt[7]{(1-x)^{5}}} dx;$$

4.23.
$$\int_{0}^{e} \frac{\ln(1+x)}{\sqrt{(1+x^4)^3} - 1} dx;$$

4.28.
$$\int_{0}^{\pi/2} \frac{\ln \sin x}{\sqrt{x}} dx;$$

4.18.
$$\int_{0}^{\pi/2} \frac{\sin x dx}{e - e^{\sqrt{\cos x}}};$$

4.24.
$$\int_{0}^{1} \frac{\cos^{2}(1/x)}{\sqrt{x}} dx;$$

4.29.
$$\int_{0}^{1} \frac{dx}{1 - \cos \sqrt{x}};$$

4.19.
$$\int_{0}^{\pi/4} \frac{\lg 3x}{x\sqrt{x}} dx;$$

4.25.
$$\int_{0}^{2} \frac{x}{\sqrt[3]{8-x^3}} dx;$$

4.26. $\int_{0}^{1} \frac{dx}{\sqrt[3]{a^{x^2}-1}};$

4.30.
$$\int_{0}^{1} \frac{\sqrt{x^2 + 1}}{\sqrt[3]{x} \arcsin x} dx.$$

4.20.
$$\int_{0}^{\pi/4} \frac{dx}{\sqrt[5]{x^2 + \sin x}};$$

4.21.
$$\int_{0}^{1} \frac{\sqrt{x^2 + \sin x}}{\sqrt{x(2x^3 + \sqrt{x^2 + x})}}$$

Задача 5. Вычислить площадь фигуры, ограниченной линиями

5.1.
$$y = \sqrt{x}$$
, $x + y = 2$, $y = 0$;

5.2.
$$y = x^2 - 4$$
, $y = x + 2$;

5.3.
$$y = -\sqrt{x}$$
, $y = x^2$, $x = 4$;

5.4.
$$y = x^3$$
, $x + y = 2$, $x = 0$;

5.5.
$$y = \sqrt[3]{x-1}$$
, $x + y = 1$, $x = 0$;

5.6.
$$y = \sqrt{x+1}$$
, $y = \sqrt{2x}$, $y = 0$;

5.7.
$$y = 6 - x^2$$
, $y = -x$;

5.8.
$$y = e^{2x}$$
, $x = \ln 2$, $x = 0$, $y = 0$;

5.9.
$$yx = 3$$
, $x + y = 4$;

5.10.
$$y = x^2 - 2x$$
, $y = x$;

5.11.
$$yx = 1$$
, $y = x$, $x = 4$;

5.12.
$$y = \cos x$$
, $y = 4\cos x$, $(0 \le x \le \frac{\pi}{2})$;

5.13.
$$y = -\sqrt[3]{x}$$
, $x + y = 6$, $x = 0$;

5.14.
$$y = 2^x$$
, $y = 2^{-x}$, $x = -1$, $x = 2$, $y = 0$;

5.15.
$$y = -4x - x^2$$
, $y = x$;

5.16.
$$y = \sqrt{x+4}$$
, $x + y = 2$, $y = 0$;

5.17.
$$y = -2$$
, $y = 3$, $x = \frac{y^2}{2}$, $x = 0$;

5.18.
$$y = (x+2)^2$$
, $y = 4-x$, $y = 0$;

5.19.
$$yx = 1$$
, $y = x$, $x = 4$, $y = 0$;

5.20.
$$y = \sin x$$
, $y = 5\sin x$, $(0 \le x \le \pi)$;

5.21.
$$x = -2y^2$$
, $x = 1 - 3y^2$;

5.22.
$$y = x^2 - 6x + 10$$
, $y = 6x - x^2$;

5.23.
$$y = x^2$$
, $4y = x^2$, $y = 9$;

5.24.
$$yx = 1$$
, $y = x$, $y = 6$;

5.25.
$$y^2 = 2x + 1, x - y - 1 = 0$$
;

5.26.
$$y = \frac{16}{x^2}$$
, $y = 17 - x^2$;

5.27.
$$x = 3 - y^2 + 2y$$
, $x = y^2 - 4y + 3$,

5.28.
$$y = \cos \frac{x}{2}, y = \sin \frac{x}{2}, x = 0 \ (x \ge 0);$$

5.29.
$$y^2 = 4 + x$$
, $x + 3y = 0$;

5.30.
$$y = -\cos x$$
, $(0 \le x \le \pi)$.

Задача 6. Вычислить площадь фигуры, ограниченной линиями

6.1.
$$y = x^2 \sqrt{4 - x^2}$$
, $y = 0$, $x = 1$ ($x \ge 1$);

6.2.
$$y = xe^{-x^2/2}$$
 и ее асимптотой;

6.3.
$$y^2 = 2x$$
, $y^2 = 4x - x^2$ ($y^2 \le 2x$);

6.4.
$$y = \frac{1}{x^2 - 6x + 13}$$
, $y = 0$;

6.5.
$$y = \sqrt{e^x - 1}$$
, $y = 0$, $x = \ln 4$;

6.6.
$$y = \frac{\arctan x}{x^2}$$
, $y = 0$, $x = 1 (x \ge 1)$;

6.7.
$$y = x \arctan x, y = 0, x = \sqrt{3}$$
;

6.8.
$$y = \frac{1}{x\sqrt{1 + \ln x}}, y = 0, x = e^3, x = e^{-1};$$

6.9.
$$x^2 + y^2 = 2$$
, $x = y^2$, $(x \le y^2)$;

6.10.
$$y = x^2 e^{-2x}$$
, $y = 0$, $x \ge 0$;

6.11.
$$y = \ln x$$
, $y = \ln^2 x$;

6.12.
$$y = \frac{1}{x\sqrt{16-x^2}}, y = 0, x = 4, x = 2;$$

6.13.
$$y = x\sqrt{9-x^2}$$
, $y = 0$ ($0 \le x \le 3$);

6.14.
$$y = |\lg x|, x = 0, y = 0;$$

6.15.
$$y = x^2 \cos x$$
, $y = 0$, $(0 \le x \le \frac{\pi}{2})$;

6.16.
$$y = \frac{x}{(x^2 + 1)^2}, y = 0$$
;

6.17.
$$y = e^{2x}$$
, $y = \log_2 x$, $x = 1$, $x = 2$;

6.18.
$$y = \frac{1}{x^2 + 4x + 5}$$
, $y = 0$;

6.19.
$$y^2 = x^3 - x^2$$
, $x = 2$;

6.20.
$$y = \arcsin(x-2), y = \frac{\pi x}{6}, x = 1, x = 3;$$

6.21.
$$x^2 + y^2 = 10y$$
, $y = 2x - 5$;

6.22.
$$y = \ln x$$
, $x = 0$, $y = 0$;

6.23.
$$v^2 + x^2 = 8$$
, $v^2 = 2x$ ($v^2 \le 2x$);

6.24.
$$y = x^2 \operatorname{arctg} x$$
, $y = 0$ $x = 1$;

6.25.
$$y^2 + x^2 = 5$$
, $yx = 2$ ($yx \ge 2$);

6.26.
$$y = \frac{1}{\sqrt{4x - x^2}}, y = 0, x = 2, x = 4;$$

6.27.
$$y = \arcsin(x-2), y = x^2, x = 1, x = 2;$$

6.28.
$$y = \frac{2x}{(x^2 + 4)^2}, y = 0 \ (x \ge 0);$$

6.29.
$$y^2 + x^2 = 8$$
, $y^2 = 2x (y^2 \ge 2x)$;

6.30.
$$y = \frac{1}{x\sqrt{4 + \ln x}}, y = 0, x = 1, x = e^{-1}.$$

Задача 7. Вычислить площади фигур, ограниченных графиками функций.

7.1.
$$y = (x-2)^3$$
, $y = 4x-8$.

7.2.
$$y = x\sqrt{9 - x^2}$$
, $y = 0, (0 \le x \le 3)$.

7.3.
$$y = 4 - x^2$$
, $y = x^2 - 2x$.

7.4.
$$y = \sin x \cos^2 x$$
, $y = 0$, $(0 \le x \le \pi/2)$.

7.5.
$$y = \sqrt{4 - x^2}$$
, $y = 0$, $x = 0$, $x = 1$.

7.6.
$$y = x^2 \sqrt{4 - x^2}$$
, $y = 0, (0 \le x \le 2)$.

7.7.
$$y = \cos x \sin^2 x$$
, $y = 0, (0 \le x \le \pi/2)$.

7.8.
$$y = \sqrt{e^x - 1}$$
, $y = 0$, $x = \ln 2$.

7.9.
$$y = \frac{1}{x\sqrt{1 + \ln x}}, \quad y = 0, x = 1, \quad x = e^3.$$

7.10.
$$y = \arccos x$$
, $y = 0$, $x = 0$.

7.11.
$$y = (x+1)^2$$
, $y^2 = x+1$.

7.12.
$$y = 2x - x^2 + 3$$
, $y = x^2 - 4x + 3$.

7.13.
$$y = x\sqrt{36 - x^2}$$
, $y = 0, (0 \le x \le 6)$.

7.14.
$$x = \arccos y$$
, $x = 0$, $y = 0$.

7.15.
$$y = \arctan x$$
, $y = 0$, $x = \sqrt{3}$.

7.16.
$$y = x^2 \sqrt{8 - x^2}$$
, $y = 0, (0 \le x \le 2\sqrt{2})$.

7.17.
$$x = \sqrt{e^y - 1}$$
, $x = 0$, $y = \ln 2$.

7.18.
$$y = x\sqrt{4-x^2}$$
, $y = 0, (0 \le x \le 2)$.

7.19.
$$y = \frac{x}{1 + \sqrt{x}}, y = 0, x = 1.$$

7. 20.
$$y = \frac{1}{1 + \cos x}$$
, $y = 0, x = \pi/2$, $x = -\pi/2$.

7.21.
$$x = (y-2)^3, x = 4y-8.$$

7.22.
$$y = \cos^5 x \sin 2x$$
, $y = 0$, $(0 \le x \le \pi/2)$.

7.23.
$$y = \frac{x}{(x^2 + 1)^2}, y = 0, x = 1.$$

7.24.
$$x = 4 - y^2$$
, $x = y^2 - 2y$.

7.25.
$$x = \frac{1}{y\sqrt{1+\ln y}}, \quad x = 0, y = 1, \quad y = e^3.$$

7.26.
$$y = \frac{e^{1/x}}{x^2}$$
, $y = 0, x = 2$, $x = 1$.

7.27.
$$y = x^2 \sqrt{16 - x^2}$$
, $y = 0, (0 \le x \le 4)$.

7.28.
$$x = \sqrt{4 - y^2}$$
, $y = 0$, $x = 0$, $y = 1$.

7.29.
$$y = (x-1)^2, y^2 = x-1.$$

7.30.
$$y = x^2 \cos x$$
, $y = 0$, $(0 \le x \le \pi/2)$.

Задача 8. Вычислить площадь фигуры, ограниченной линиями:

8.1.
$$\begin{cases} x = 16\cos^3 t, \\ y = 2\sin^3 t, \end{cases} \quad x = 2 \ (x \ge 2);$$

8.2. одной аркой циклоиды
$$\begin{cases} x = 4(t - \sin t), \\ y = 4(1 - \cos t) \end{cases}$$
 и осью ОХ ;

8.3.
$$\begin{cases} x = 6\cos t, \\ y = 2\sin t, \end{cases} y = \sqrt{3} \ (y \ge \sqrt{3});$$

8.4.
$$\begin{cases} x = 2 + 3\cos t, \\ y = 3 + 2\sin t, \end{cases} y = 4 \ (y \ge 4)$$

8.5.
$$\begin{cases} x = t - \sin t, \\ y = 1 - \cos t, \end{cases} \quad y = 1 \ (0 \le x \le 2\pi, y \ge 1);$$

8.6.
$$\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t), \end{cases} y = 2 (0 \le x \le 4\pi, y \ge 2);$$

8.7.
$$\begin{cases} x = 3\cos^3 t, \\ y = 32\sin^3 t, \end{cases} \quad y = 4 \ (y \ge 4);$$

8.8.
$$\begin{cases} x = 2\sqrt{2}\cos t, \\ y = 5\sqrt{2}\sin t, \end{cases} y = 5 \ (y \ge 5);$$

8.9.
$$\begin{cases} x = 5(t - \sin t), \\ y = 5(1 - \cos t), \end{cases} y = 7, 5 \ (0 \le x \le 10\pi, y \ge 7, 5);$$

8.10.
$$\begin{cases} x = 16\cos^3 t, \\ y = 2\sin^3 t, \end{cases} x = 2 (x \ge 2);$$

8.11.
$$\begin{cases} x = 2\cos^3 t, \\ y = 16\sin^3 t, \end{cases} \quad y = 6\sqrt{3} \ (y \ge 6\sqrt{3});$$

8.12. петлей
$$\begin{cases} x = 3t^2, \\ y = 3t - t^3 \end{cases}$$
;

8.13.
$$\begin{cases} x = \sqrt{2} \cos t, \\ y = 4\sqrt{2} \sin t, \end{cases} \quad y = 4 \ (y \ge 4)$$

8.13.
$$\begin{cases} x = \sqrt{2}\cos t, \\ y = 4\sqrt{2}\sin t, \end{cases} y = 4 \ (y \ge 4);$$
8.14. кардиоидой
$$\begin{cases} x = \cos t - \cos 2t, \\ y = \sin t - \sin 2t \end{cases};$$

8.15. петлей
$$\begin{cases} x = \frac{t}{1+t^3}, \\ y = \frac{t^2}{1+t^3}, \end{cases}$$

8.16.
$$\begin{cases} x = 4\sqrt{2}\cos^3 t, \\ y = \sqrt{2}\sin^3 t, \end{cases} \quad x = 2 \ (x \ge 2);$$

8.17.
$$\begin{cases} x = 9\cos t, \\ y = 4\sin t, \end{cases} y = 2 \ (y \ge 2);$$

8.18.
$$\begin{cases} x = 10(t - \sin t), \\ y = 10(1 - \cos t), \end{cases} y = 15 \ (0 \le x \le 20\pi, y \ge 15);$$

8.19.
$$\begin{cases} x = 24\cos^3 t, \\ y = 2\sin^3 t, \end{cases} \quad x = 9\sqrt{3} \ (x \ge 9\sqrt{3});$$

8.20.
$$\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t), \end{cases} y = 3 \ (0 \le x \le 4\pi, y \ge 3);$$

8.21.
$$\begin{cases} x = 6\cos t, \\ y = 2\sin t, \end{cases} y = \sqrt{3} \ (y \ge \sqrt{3});$$

8.22. петлей
$$\begin{cases} x = t^2 + 1, \\ y = t^3 - 3t \end{cases}$$
;

8.23.
$$\begin{cases} x = 8\cos^3 t, \\ y = 8\sin^3 t, \end{cases} \quad x = 1 \ (x \ge 1);$$

8.24. кардиоидой
$$\begin{cases} x = 3\cos t - 3\cos 2t, \\ y = 3\sin t - 3\sin 2t \end{cases}$$

8.25. петлей
$$\begin{cases} x = \frac{3t}{1+t^3}, \\ y = \frac{3t^2}{1+t^3}, \end{cases} 0 \le t < +\infty ;$$

8.26.
$$\begin{cases} x = 32\cos^3 t, \\ y = \sin^3 t, \end{cases} \quad x = 4 \ (x \ge 4);$$

8.27. кардиоидой
$$\begin{cases} x = 5(\cos t - \cos 2t), \\ y = 5(\sin t - \sin 2t) \end{cases}$$
;

8.28.
$$\begin{cases} x = 4\cos^3 t, \\ y = 24\sin^3 t, \end{cases} \quad y = 3 \ (y \ge 3);$$

8.29.
$$\begin{cases} x = 6(t - \sin t), \\ y = 6(1 - \cos t), \end{cases} y = 6 \ (0 \le x \le 12\pi, y \ge 6);$$

8.30. петлей
$$\begin{cases} x = t^2 - 1, \\ y = t^3 - t. \end{cases}$$

Задача 9. Вычислить площади фигур, ограниченных линиями, заданными уравнениями.

9.1.
$$\begin{cases} x = \sqrt{2} \cos t, \\ y = 2\sqrt{2} \sin t, \end{cases} y = 2 \quad (y \ge 2).$$

9.2.
$$\begin{cases} x = 4\sqrt{2}\cos^3 t, \\ y = 2\sqrt{2}\sin^3 t, \end{cases} x = 2 \quad (x \ge 2).$$

9.3.
$$\begin{cases} x = 4(t - \sin t), \\ y = 4(1 - \cos t), \end{cases} y = 4 \quad (0 < x < 8\pi, \ y \ge 4).$$

9.4.
$$\begin{cases} x = 16\cos^3 t, \\ y = 2\sin^3 t, \end{cases} x = 2 \quad (x \ge 2).$$

9.5.
$$\begin{cases} x = 2\cos t, \\ y = 6\sin t, \end{cases} y = 3 \quad (y \ge 3).$$

9.6.
$$\begin{cases} x = 16\cos^3 t, \\ y = \sin^3 t, \end{cases} x = 6\sqrt{3} \quad \left(x \ge 6\sqrt{3} \right).$$

9.7.
$$\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t), \end{cases} y = 3 \quad (0 < x < 4\pi, \ y \ge 3).$$

9.8.
$$\begin{cases} x = 3(t - \sin t), \\ y = 3(1 - \cos t), \end{cases} y = 3 \quad (0 < x < 6\pi, \ y \ge 3).$$

9.9.
$$\begin{cases} x = 6\cos t, \\ y = 2\sin t, \end{cases} y = \sqrt{3} \quad (y \ge \sqrt{3}).$$

9.10.
$$\begin{cases} x = 2\sqrt{2}\cos t, \\ y = 3\sqrt{2}\sin t, \end{cases} y = 3 \quad (y \ge 3).$$

9.11.
$$\begin{cases} x = 8\sqrt{2}\cos^3 t, \\ y = \sqrt{2}\sin^3 t, \end{cases} x = 4 \quad (x \ge 4).$$

9.12.
$$\begin{cases} x = 6(t - \sin t), \\ y = 6(1 - \cos t), \end{cases} y = 9 \quad (0 < x < 12\pi, \ y \ge 9).$$

9.13.
$$\begin{cases} x = 32\cos^3 t, \\ y = \sin^3 t, \end{cases} x = 4 \quad (x \ge 4).$$

9.14.
$$\begin{cases} x = 3\cos t, \\ y = 8\sin t, \end{cases} y = 4 \quad (y \ge 4).$$

9.15.
$$\begin{cases} x = 8\cos^3 t, \\ y = 4\sin^3 t, \end{cases} x = 3\sqrt{3} \quad (x \ge 3\sqrt{3}).$$

9.16.
$$\begin{cases} x = 6(t - \sin t), \\ y = 6(1 - \cos t), \end{cases} y = 6 \quad (0 < x < 12\pi, \ y \ge 6).$$

9.17.
$$\begin{cases} x = 10(t - \sin t), \\ y = 10(1 - \cos t), \end{cases} y = 15 \quad (0 < x < 20\pi, \ y \ge 15).$$

9.18.
$$\begin{cases} x = 6\cos t, \\ y = 4\sin t, \end{cases} y = 2\sqrt{3} \quad (y \ge 2\sqrt{3}).$$

9.19.
$$\begin{cases} x = \sqrt{2} \cos t, \\ y = 4\sqrt{2} \sin t, \end{cases} y = 4 \quad (y \ge 4).$$

9.20.
$$\begin{cases} x = 2\sqrt{2}\cos^3 t, \\ y = \sqrt{2}\sin^3 t, \end{cases} x = 1 \ (x \ge 1).$$

9.21.
$$\begin{cases} x = t - \sin t, \\ y = 1 - \cos t, \end{cases} y = 1 \quad (0 < x < 2\pi, \ y \ge 1).$$

9.22.
$$\begin{cases} x = 8\cos^3 t, \\ y = 8\sin^3 t, \end{cases} x = 1 \quad (x \ge 1).$$

9.23.
$$\begin{cases} x = 9\cos t, \\ y = 4\sin t, \end{cases} y = 2 \quad (y \ge 2).$$

9.24.
$$\begin{cases} x = 8(t - \sin t), \\ y = 8(1 - \cos t), \end{cases} y = 12 \quad (0 < x < 16\pi, \ y \ge 12).$$
9.25.
$$\begin{cases} x = 24\cos^3 t, \\ y = 2\sin^3 t, \end{cases} x = 9\sqrt{3} \quad (x \ge 9\sqrt{3}).$$
9.26.
$$\begin{cases} x = 3\cos t, \\ y = 8\sin t, \end{cases} y = 4\sqrt{3} \quad (y \ge 4\sqrt{3}).$$
9.27.
$$\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t), \end{cases} y = 2 \quad (0 < x < 4\pi, \ y \ge 2).$$

9.25.
$$\begin{cases} x = 24\cos^3 t, \\ y = 2\sin^3 t, \end{cases} x = 9\sqrt{3} \quad (x \ge 9\sqrt{3}).$$

9.26.
$$\begin{cases} x = 3\cos t, \\ y = 8\sin t, \end{cases} y = 4\sqrt{3} \quad (y \ge 4\sqrt{3}).$$

9.27.
$$\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t), \end{cases} y = 2 \quad (0 < x < 4\pi, \ y \ge 2).$$

9.28.
$$\begin{cases} x = 2\sqrt{2}\cos t, \\ y = 5\sqrt{2}\sin t, \end{cases} y = 5 \quad (y \ge 5).$$

9.29.
$$\begin{cases} x = 4\sqrt{2}\cos^3 t, \\ y = \sqrt{2}\sin^3 t, \end{cases} x = 2 \quad (x \ge 2)$$

$$y = 2(1 - \cos t),$$
9.28.
$$\begin{cases} x = 2\sqrt{2}\cos t, & y = 5 \ (y \ge 5). \\ y = 5\sqrt{2}\sin t, & x = 2 \ (x \ge 2). \end{cases}$$
9.29.
$$\begin{cases} x = 4\sqrt{2}\cos^3 t, & x = 2 \ (x \ge 2). \\ y = \sqrt{2}\sin^3 t, & y = 6 \ (0 < x < 8\pi, \ y \ge 6). \end{cases}$$
9.30.
$$\begin{cases} x = 4(t - \sin t), & y = 6 \ (0 < x < 8\pi, \ y \ge 6). \end{cases}$$

Задача 10. Вычислить площадь фигуры, ограниченной линиями

10.1.
$$r = 2 \sin 3\varphi$$
;

10.2.
$$r = 2\cos\varphi, r = 4\cos\varphi$$
;

10.3.
$$r = 2(2 + \cos \varphi)$$
;

10.4.
$$r = 2\phi$$
 (первый виток спирали Архимеда) ;

10.5.
$$r = 4(1 + \sin \varphi)$$
;

10.6.
$$r = 2(\cos \varphi - \sin \varphi)$$
;

10.7.
$$r = 6(1 - \cos \varphi)$$
;

10.8.
$$r = 5\cos 2\varphi$$
 (одним лепестком);

10.9.
$$r = 3(1 - \cos \varphi), r = 3$$
;

10.10.
$$r = 2\sin\varphi, r = 2\sqrt{3}\cos\varphi$$
;

10.11.
$$r = 2\sin 5\varphi$$
;

10.12.
$$r = \cos^3 \varphi$$
;

10.13.
$$r = 2(1 - \cos \varphi), r = 2\cos \varphi$$
;

10.14.
$$r = \cos \varphi + \sin \varphi$$
;

10.15.
$$r = 1 + \sqrt{2} \sin \varphi$$
;

10.16.
$$r = 3\sin \varphi, r = 5\sin \varphi$$
;

10.17.
$$r = 1 + \sqrt{2} \cos \varphi$$
;

10.18.
$$r = 4\cos 3\varphi, r = 2(r \ge 2)$$
;

10.19.
$$r = 2(1 - \cos \varphi), r = 2$$
;

```
10.20. r = 3(1 + \sin \varphi);
10.21. r = 6\sin 3\varphi, r = 3(r \ge 3);
10.22. r = 7(1 + \cos \varphi);
10.23. r = 4 \sin \varphi, r = 6 \sin \varphi;
10.24. r = 6\cos 6\varphi;
10.25. r = 6\varphi (первый виток спирали Архимеда);
10.26. r = 3(\cos \varphi - \sin \varphi);
10.27. r = 4\sin 3\varphi, r = 2(r \ge 2);
10.28. r = \cos \varphi + 1/2;
10.29. r = 2\cos\varphi, r = 2\sqrt{3}\sin\varphi(0 \le \varphi \le \pi/2);
10.30. r = \cos \varphi, r = 2\cos \varphi.
```

11.20. $r = (5/2)\sin \varphi$, $r = (3/2)\sin \varphi$.

Задача 11. Вычислить площади фигур, ограниченных линиями, заданными в

полярных координатах.

11.1.
$$r = 4\cos 3\varphi$$
, $r = 2$ $(r \ge 2)$.

11.2. $r = \cos 2\varphi$.

11.3. $r = \sqrt{3}\cos\varphi$, $r = \sin\varphi$, $(0 \le \varphi \le \pi/2)$.

11.4. $r = 4\sin 3\varphi$, $r = 2$ $(r \ge 2)$.

11.5. $r = 2\cos\varphi$, $r = 2\sqrt{3}\sin\varphi$, $(0 \le \varphi \le \pi/2)$.

11.6. $r = \sin 3\varphi$.

11.7. $r = 6\sin 3\varphi$, $r = 3$ $(r \ge 3)$.

11.8. $r = \cos\varphi$, $r = \sqrt{2}\sin(\varphi - \pi/4)$, $(-\pi/4 \le \varphi \le \pi/2)$.

11.9. $r = \cos 3\varphi$.

11.10. $r = 6\cos 3\varphi$, $r = 3$ $(r \ge 3)$.

11.11. $r = \sin\varphi$, $r = \sqrt{2}\cos(\varphi - \pi/4)$, $(0 \le \varphi \le 3\pi/4)$.

11.12. $r = \cos\varphi$, $r = \sin\varphi$, $(0 \le \varphi \le \pi/2)$.

11.13. $r = 1/2 + \sin\varphi$.

11.14. $r = \sqrt{2}\cos(\varphi - \pi/4)$, $r = \sqrt{2}\sin(\varphi - \pi/4)$, $r = \sqrt{2}\sin(\varphi - \pi/4)$.

11.15. $r = \cos\varphi$, $r = 2\cos\varphi$.

11.16. $r = 1 + \sqrt{2}\cos\varphi$.

11.17. $r = \sin\varphi$, $r = 2\sin\varphi$.

11.18. $r = 1/2 + \cos\varphi$.

11.19. $r = 1 + \sqrt{2}\sin\varphi$.

11.21.
$$r = 4\cos 4\varphi$$
.

11.22.
$$r = (3/2)\cos\varphi$$
, $r = (5/2)\cos\varphi$.

11.23.
$$r = \cos \varphi + \sin \varphi$$
.

11.24.
$$r = \cos \varphi - \sin \varphi$$
.

11.25.
$$r = \sin 6\varphi$$
.

11.26.
$$r = 2\sin 4\varphi$$
.

11.27.
$$r = 2\cos 6\varphi$$
.

11.28.
$$r = 2\cos\varphi$$
, $r = 3\cos\varphi$.

11.29.
$$r = 3\sin \varphi$$
, $r = 5\sin \varphi$.

11.30.
$$r = 2\sin \varphi$$
, $r = 4\sin \varphi$.

Задача 12. Вычислить длину дуги кривой

12.1.
$$y = \ln(1 - x^2), \ 0 \le x \le 3/4;$$

12.2.
$$y = 2 + \ln \cos x$$
, $0 \le x \le \pi/6$;

12.3.
$$y = \ln \frac{5}{2x}$$
, $\sqrt{3} \le x \le \sqrt{8}$;

12.4.
$$y = 2\sqrt{x}, 0 \le x \le 1;$$

12.5.
$$y = \sqrt{x - x^2} + \arcsin \sqrt{x}$$
, $1/4 \le x \le 1$;

12.6.
$$y = \frac{x^2}{4} - \frac{\ln x}{2}, 1 \le x \le 2;$$

12.7.
$$y = e^x + 6$$
, $\ln \sqrt{8} \le x \le \ln \sqrt{24}$;

12.8.
$$y^2 = x^3$$
 от начала координат до точки B(4;8).;

12.9.
$$y = \sqrt{1 - x^2} + \arcsin x$$
, $0 \le x \le 7/9$;

12.10.
$$y = \ln \sin x$$
, $\pi/3 \le x \le 2\pi/3$;

12.11.
$$y = 2x - x^2$$
 от вершины до точки B(2;0);

12.12.
$$y = \ln x$$
, $\sqrt{8} \le x \le \sqrt{15}$;

12.13.
$$y = \sqrt{x - x^2} - \arccos \sqrt{x}, \ 0 \le x \le 1/4;$$

12.14.
$$y = 2 \operatorname{ch} \frac{x}{2}, \ 0 \le x \le 3;$$

12.15.
$$y = 5 \ln(x^2 - 25), \ 10 \le x \le 15;$$

12.16.
$$y = \arcsin e^{-x}, \ 0 \le x \le 1;$$

12.17.
$$y^2 = (x-2)^3, 2 \le x \le 3$$
;

12.18.
$$y = \sqrt{25 - x^2} - 5\arccos\frac{x}{5}, -1 \le x \le 4;$$

12.19.
$$y = \ln(x^2 - 1), 2 \le x \le 6$$
;

12.20.
$$y = x^2/2 - 4x + 15/2, 3 \le x \le 5$$
;

12.21.
$$y = \ln \frac{e}{\cos x}$$
, $0 \le x \le \pi/6$;

12.22.
$$y = \sqrt{x - x^2} + \arcsin \sqrt{x} - 9$$
, $1/16 \le x \le 1$;

12.23.
$$y = \operatorname{ch} x + 15, \ 0 \le x \le 2$$
;

12.24.
$$y = 8 - \ln \cos x$$
, $0 \le x \le \pi/6$;

12.25.
$$y = \ln \frac{7}{x}$$
, $\sqrt{3} \le x \le \sqrt{8}$;

12.26.
$$y = 3 + \sqrt{x - x^2} - \arccos \sqrt{x}, \ 0 \le x \le 9/16;$$

12.27.
$$y^2 = 16x$$
, отсеченной прямой $x = 4$;

12.28.
$$y = \frac{\operatorname{ch} 2x}{2} + 1, \ 0 \le x \le 2;$$

12.29.
$$y = 9 - \ln \sin x$$
, $\pi/3 \le x \le \pi/2$;

12.30.
$$y = 5 + \sqrt{100 - x^2} + 10\arccos(x/10), -1 \le x \le 6$$

Задача 13. Вычислить длины дуг кривых, заданных уравнениями в прямоугольной системе координат.

13.1.
$$y = \sqrt{1 - x^2} + \arccos x$$
, $0 \le x \le 8/9$.

13.2.
$$y = \frac{e^x + e^{-x}}{2} + 3$$
, $0 \le x \le 2$.

13.3.
$$y = \sqrt{1 - x^2} + \arcsin x$$
, $0 \le x \le 7/9$.

13.4.
$$y = \ln \frac{5}{2x}$$
, $\sqrt{3} \le x \le \sqrt{8}$.

13.5.
$$y = -\ln \cos x$$
, $0 \le x \le \pi/6$.

13.6.
$$y = e^x + 6$$
, $\ln \sqrt{8} \le x \le \ln \sqrt{15}$.

13.7.
$$y = 2 + \arcsin \sqrt{x} + \sqrt{x - x^2}$$
, $1/4 \le x \le 1$.

13.8.
$$y = \ln(x^2 - 1), 2 \le x \le 3.$$

13.9.
$$y = \ln x$$
, $\sqrt{3} \le x \le \sqrt{15}$.

13.10.
$$y = \arcsin x - \sqrt{1 - x^2}$$
, $0 \le x \le 15/16$.

13.11.
$$y = 2 + \operatorname{ch} x$$
, $0 \le x \le 1$.

13.12.
$$y = e^x + 13$$
, $\ln \sqrt{15} \le x \le \ln \sqrt{24}$.

13.13.
$$y = 1 - \ln \cos x$$
, $0 \le x \le \pi/6$.

13.14.
$$y = -\arccos\sqrt{x} + \sqrt{x - x^2}$$
, $0 \le x \le 1/4$.

13.15.
$$y = 2 - e^x$$
, $\ln \sqrt{3} \le x \le \ln \sqrt{8}$.

13.16.
$$y = \ln(1 - x^2), \quad 0 \le x \le 1/4.$$

13.17.
$$y = 1 - \ln \sin x$$
, $\pi/3 \le x \le \pi/2$.

13.18.
$$y = 1 - \ln(x^2 - 1), \quad 3 \le x \le 4.$$

13.19.
$$y = \sqrt{x - x^2} - \arccos \sqrt{x} + 5$$
, $1/9 \le x \le 1$.

13.20.
$$y = -\arccos x + \sqrt{1 - x^2} + 1$$
, $0 \le x \le 9/16$.

13.21.
$$y = \operatorname{ch} x + 3$$
, $0 \le x \le 1$.

13.22.
$$y = \ln 7 - \ln x$$
, $\sqrt{3} \le x \le \sqrt{8}$.

13.23.
$$y = \ln \sin x$$
, $\pi/3 \le x \le \pi/2$.

13.24.
$$y = 1 + \arcsin x - \sqrt{1 - x^2}$$
, $0 \le x \le 3/4$.

13.25.
$$y = e^x + 26$$
, $\ln \sqrt{8} \le x \le \ln \sqrt{24}$.

13.26.
$$y = \ln \cos x + 2$$
, $0 \le x \le \pi/6$.

13.27.
$$y = \frac{x^2}{4} - \frac{\ln x}{2}, \quad 1 \le x \le 2.$$

13.28.
$$y = \arccos \sqrt{x} - \sqrt{x - x^2} + 4$$
, $0 \le x \le 1/2$.

13.29.
$$y = \frac{e^{2x} + e^{-2x} + 3}{4}$$
; $0 \le x \le 2$

13.30.
$$y = e^x + e$$
, $\ln \sqrt{3} \le x \le \ln \sqrt{15}$.

Задача 14. Вычислить длину дуги кривой

14.1.
$$x = 2\cos^2 t$$
; $y = 2\sin^2 t$; $0 \le t \le \pi/4$;

14.2.
$$x = t^2$$
, $y = t - t^3 / 3$, $-\sqrt{3} \le t \le \sqrt{3}$;

14.3.
$$x = 2\cos^3 t$$
; $y = 2\sin^3 t$; $0 \le t \le \pi/4$;

14.4.
$$x = \cos t + t \sin t$$
; $y = \sin t - t \cos t$; $0 \le t \le \pi$;

14.5.
$$x = 4(t - \sin t)$$
, $y = 4(1 - \cos t)$, $0 \le t \le \pi/2$;

14.6.
$$x = e^{t}(\cos t + \sin t)$$
 $y = e^{t}(\cos t - \sin t)$, $\pi/2 \le t \le \pi$;

14.7.
$$x = t^6 / 6$$
, $y = 2 - t^4 / 4$ между точками пересечения с осями координат;

14.8.
$$x = e^t \cos t$$
 $y = e^t \sin t$, $0 \le t \le 1$;

14.9.
$$x = 7(2\cos t - \cos 2t)$$
; $y = 7(2\sin t - \sin 2t)$; $0 \le t \le \pi/2$;

14.10.
$$x = (t^2 - 2)\sin t + 2t\cos t$$
, $y = (2 - t^2)\cos t + 2t\sin t$, $0 \le t \le \pi$;

14.11.
$$x = \cos^5 t$$
; $y = \sin^5 t$; $0 \le t \le \pi/2$;

14.12.
$$x = 8(\cos t + t \sin t)$$
; $y = 8(\sin t - t \cos t)$, $0 \le t \le \pi/4$;

14.13.
$$x = 9e^t(\cos t + \sin t)$$
 $y = 9e^t(\cos t - \sin t)$, $0 \le t \le 3\pi/2$;

14.14.
$$x = 3(t - \sin t), y = 3(1 - \cos t), \pi \le t \le 2\pi$$
;

14.15.
$$x = e^{2t} \cos t$$
 $y = e^{2t} \sin t$, $0 \le t \le \pi/4$;

14.16.
$$x = 3\sin t + 4\cos t$$
; $y = 4\sin t - 3\cos t$, $\pi/4 \le t \le 3\pi/2$;

14.17.
$$x = 5\cos^3 t$$
; $y = 5\sin^3 t$; $0 \le t \le \pi/2$;

14.18.
$$x = 3(\cos t + t \sin t)$$
; $y = 3(\sin t - t \cos t)$, $0 \le t \le \pi/3$;

14.19.
$$x = 2t^6$$
, $y = 24 - 3t^4$ между точками пересечения с осями координат;

14.20.
$$x = 4e^{t}(\cos t + \sin t)$$
 $y = 4e^{t}(\cos t - \sin t)$, $\pi/2 \le t \le \pi$;

14.21.
$$x = 2\cos^3 t$$
; $y = 2\sin^3 t$; $\pi/6 \le t \le \pi/4$;

14.22.
$$x = 7(t - \sin t), y = 7(1 - \cos t), 0 \le t \le \pi/2;$$

14.23.
$$x = 3t^2$$
, $y = 3t - t^3$, $0 \le t \le 2$;

14.24.
$$x = (2t^2 - 4)\sin t + 4t\cos t$$
, $y = (4 - 2t^2)\cos t + 4t\sin t$, $0 \le t \le \pi/3$;

14.25.
$$x = 5(t - \sin t), y = 5(1 - \cos t), \pi/2 \le t \le \pi$$
;

14.26.
$$x = 6\cos^5 t$$
; $y = 6\sin^5 t$; $0 \le t \le \pi/2$;

14.27.
$$x = 9(\cos t + t \sin t)$$
; $y = 9(\sin t - t \cos t)$, $0 \le t \le 2\pi/3$;

14.28.
$$x = 3\cos^2 t$$
; $y = 3\sin^2 t$; $0 \le t \le \pi/4$;

14.29.
$$x = 9\cos^3 t$$
; $y = 9\sin^3 t$; $0 \le t \le \pi/6$;

14.30
$$x = 2t^2$$
, $y = 2t - 2t^3/3$, $0 \le t \le \sqrt{6}$.

Задача 15. Вычислить длины дуг кривых, заданных параметрическими уравнениями.

15.1.
$$\begin{cases} x = 5(t - \sin t), \\ y = 5(1 - \cos t), \end{cases} 0 \le t \le \pi.$$

15.2.
$$\begin{cases} x = 3(2\cos t - \cos 2t), \\ y = 3(2\sin t - \sin 2t), \end{cases} 0 \le t \le 2\pi.$$

15.3.
$$\begin{cases} x = 4(\cos t + t \sin t), \\ y = 4(\sin t - t \cos t), \end{cases} 0 \le t \le 2\pi.$$

15.1.
$$\begin{cases} x = 5(t - \sin t), & 0 \le t \le \pi. \\ y = 5(1 - \cos t), & 0 \le t \le \pi. \end{cases}$$
15.2.
$$\begin{cases} x = 3(2\cos t - \cos 2t), & 0 \le t \le 2\pi. \\ y = 3(2\sin t - \sin 2t), & 0 \le t \le 2\pi. \end{cases}$$
15.3.
$$\begin{cases} x = 4(\cos t + t\sin t), & 0 \le t \le 2\pi. \\ y = 4(\sin t - t\cos t), & 0 \le t \le 2\pi. \end{cases}$$
15.4.
$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t, & 0 \le t \le \pi. \\ y = (2 - t^2)\cos t + 2t\sin t, & 0 \le t \le \pi. \end{cases}$$

15.5.
$$\begin{cases} x = e^{t} (\cos t + \sin t), & 0 \le t \le \pi. \\ y = e^{t} (\cos t - \sin t), & 0 \le t \le \pi. \end{cases}$$
15.6.
$$\begin{cases} x = 10\cos^{3}t, & 0 \le t \le \pi/2. \\ y = 10\sin^{3}t, & 0 \le t \le \pi/2. \end{cases}$$
15.7.
$$\begin{cases} x = 3(t - \sin t), & \pi \le t \le 2\pi. \\ y = 3(1 - \cos t), & \pi \le t \le 2\pi. \end{cases}$$

15.6.
$$\begin{cases} x = 10\cos^3 t, \\ y = 10\sin^3 t, \end{cases} 0 \le t \le \pi/2$$

15.7.
$$\begin{cases} x = 3(t - \sin t), \\ y = 3(1 - \cos t), \end{cases} \pi \le t \le 2\pi$$

15.8.
$$\begin{cases} x = \frac{1}{2}\cos t - \frac{1}{4}\cos 2t, \\ y = \frac{1}{2}\sin t - \frac{1}{4}\sin 2t, \end{cases} \pi/2 \le t \le 2\pi/3.$$
15.9.
$$\begin{cases} x = 3(\cos t + t\sin t), \\ y = 3(\sin t - t\cos t), \end{cases} 0 \le t \le \pi/3.$$

15.9.
$$\begin{cases} x = 3(\cos t + t \sin t), \\ y = 3(\sin t - t \cos t), \end{cases} 0 \le t \le \pi/3.$$

15.10.
$$\begin{cases} x = 6\cos^3 t, \\ y = 6\sin^3 t, \end{cases} 0 \le t \le \pi/3.$$

15.11.
$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t, \\ y = (2 - t^2)\cos t + 2t\sin t, \end{cases} 0 \le t \le \pi/3.$$

15.12.
$$\begin{cases} x = e^t (\cos t + \sin t), \\ y = e^t (\cos t - \sin t), \end{cases} \pi/2 \le t \le \pi.$$

15.13.
$$\begin{cases} x = 2.5(t - \sin t), \\ y = 2.5(1 - \cos t), \end{cases} \pi/2 \le t \le \pi.$$

15.13.
$$\begin{cases} x = 2.5(t - \sin t), & \pi/2 \le t \le \pi. \\ y = 2.5(1 - \cos t), & 0 \le t \le \pi. \end{cases}$$
15.14.
$$\begin{cases} x = 3.5(2\cos t - \cos 2t), & 0 \le t \le \pi/2. \\ y = 3.5(2\sin t - \sin 2t), & 0 \le t \le \pi/2. \end{cases}$$
15.15.
$$\begin{cases} x = 6(\cos t + t\sin t), & 0 \le t \le \pi. \\ y = 6(\sin t - t\cos t), & 0 \le t \le \pi. \end{cases}$$

15.15.
$$\begin{cases} x = 6(\cos t + t \sin t), \\ y = 6(\sin t - t \cos t), \end{cases} 0 \le t \le \pi.$$

15.16.
$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t, & 0 \le t \le \pi/2. \\ y = (2 - t^2)\cos t + 2t\sin t, & 0 \le t \le \pi/2. \end{cases}$$
15.17.
$$\begin{cases} x = e^t(\cos t + \sin t), & 0 \le t \le 2\pi. \\ y = e^t(\cos t - \sin t), & 0 \le t \le 2\pi. \end{cases}$$

15.17.
$$\begin{cases} x = e^t (\cos t + \sin t), \\ y = e^t (\cos t - \sin t), \end{cases} \quad 0 \le t \le 2\pi$$

15.18.
$$\begin{cases} x = 8\cos^3 t, \\ y = 8\sin^3 t, \end{cases} 0 \le t \le \pi/6$$

15.18.
$$\begin{cases} x = 8\cos^3 t, & 0 \le t \le \pi/6. \\ y = 8\sin^3 t, & 0 \le t \le \pi/6. \end{cases}$$
15.19.
$$\begin{cases} x = 4(t - \sin t), & \pi/2 \le t \le 2\pi/3. \\ y = 4(1 - \cos t), & \pi/2 \le t \le 2\pi/3. \end{cases}$$

15.20.
$$\begin{cases} x = 2(2\cos t - \cos 2t), \\ y = 2(2\sin t - \sin 2t), \end{cases} 0 \le t \le \pi/3.$$

15.21.
$$\begin{cases} x = 8(\cos t + t \sin t), \\ y = 8(\sin t - t \cos t), \end{cases} 0 \le t \le \pi/4.$$

15.20.
$$\begin{cases} x = 2(2\cos t - \cos 2t), \\ y = 2(2\sin t - \sin 2t), \end{cases} 0 \le t \le \pi/3.$$
15.21.
$$\begin{cases} x = 8(\cos t + t\sin t), \\ y = 8(\sin t - t\cos t), \end{cases} 0 \le t \le \pi/4.$$
15.22.
$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t, \\ y = (2 - t^2)\cos t + 2t\sin t, \end{cases} 0 \le t \le 2\pi.$$

15.23.
$$\begin{cases} x = 4\cos^3 t, & \pi/6 \le t \le \pi/4. \\ y = 4\sin^3 t, & \pi/6 \le t \le \pi/4. \end{cases}$$

15.24.
$$\begin{cases} x = e^t \left(\cos t + \sin t\right), \\ y = e^t \left(\cos t - \sin t\right), \\ 0 \le t \le 3\pi/2. \end{cases}$$

15.25.
$$\begin{cases} x = 4(2\cos t - \cos 2t), \\ y = 4(2\sin t - \sin 2t), \end{cases} 0 \le t \le \pi.$$

15.26.
$$\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t), \end{cases} 0 \le t \le \pi/2.$$

15.27.
$$\begin{cases} x = 2\cos^3 t, \\ y = 2\sin^3 t, \end{cases} \quad 0 \le t \le \pi/4.$$

15.23.
$$\begin{cases} x = 4\cos^{3}t, & \pi/6 \le t \le \pi/4. \\ y = 4\sin^{3}t, & 0 \le t \le 3\pi/2. \end{cases}$$
15.24.
$$\begin{cases} x = e^{t}(\cos t + \sin t), & 0 \le t \le 3\pi/2. \\ y = e^{t}(\cos t - \sin t), & 0 \le t \le \pi/2. \end{cases}$$
15.25.
$$\begin{cases} x = 4(2\cos t - \cos 2t), & 0 \le t \le \pi. \\ y = 4(2\sin t - \sin 2t), & 0 \le t \le \pi/2. \end{cases}$$
15.26.
$$\begin{cases} x = 2(t - \sin t), & 0 \le t \le \pi/2. \\ y = 2(1 - \cos t), & 0 \le t \le \pi/4. \end{cases}$$
15.27.
$$\begin{cases} x = 2\cos^{3}t, & 0 \le t \le \pi/4. \\ y = 2\sin^{3}t, & 0 \le t \le \pi/4. \end{cases}$$
15.28.
$$\begin{cases} x = (t^{2} - 2)\sin t + 2t\cos t, & 0 \le t \le 3\pi. \\ y = (2 - t^{2})\cos t + 2t\sin t, & 0 \le t \le \pi/2. \end{cases}$$

15.29.
$$\begin{cases} x = 2(\cos t + t \sin t), \\ y = 2(\sin t - t \cos t), \end{cases} 0 \le t \le \pi/2.$$

15.29.
$$\begin{cases} x = 2(\cos t + t \sin t), \\ y = 2(\sin t - t \cos t), \end{cases} 0 \le t \le \pi/2.$$
15.30.
$$\begin{cases} x = e^{t} (\cos t + \sin t), \\ y = e^{t} (\cos t - \sin t), \end{cases} \pi/6 \le t \le \pi/4.$$

Задача 16. Вычислить длину дуги кривой

16.1.
$$r = e^{4\varphi/3}, -\pi/2 \le \varphi \le \pi/2;$$

16.2.
$$r = 2\sin^3(\varphi/3), \ 0 \le \varphi \le \pi/2;$$

16.3.
$$r = 2(1 + \cos \varphi)$$
;

16.4.
$$r = 1 - \sin \varphi, -\pi/2 \le \varphi \le -\pi/6$$
;

16.5.
$$r = 1/\varphi$$
, $3/4 \le \varphi \le 4/3$;

16.6.
$$r = 4(1-\cos\varphi), -2\pi/3 \le \varphi \le 0;$$

16.7.
$$r = \sin \varphi$$
, $0 \le \varphi \le \pi/4$;

16.8.
$$r = 5 \varphi$$
, находящейся внутри окружности $r = 10 \pi$;

16.9.
$$r = 3\sin^4\frac{\varphi}{4}$$
;

16.10.
$$r = \frac{1}{1 + \cos \varphi}, \ 0 \le \varphi \le \pi/2;$$

16.11.
$$r = \sqrt{2}e^{\varphi}, \ 0 \le \varphi \le \pi/2$$
;

16.12.
$$r = 3\varphi$$
, $0 \le \varphi \le 3/4$;

16.13.
$$r = 2\cos\varphi, \ 0 \le \varphi \le \pi/12$$
;

16.14.
$$r = 3\sin^3(\varphi/3)$$
;

```
16.15. r = 2(1 - \cos \varphi), -\pi \le \varphi \le -\pi/2;
```

16.16.
$$r = 5e^{5\varphi/12}, -\pi/2 \le \varphi \le \pi/2;$$

16.17.
$$r = 6(1 + \sin \varphi), -\pi/2 \le \varphi \le 0$$
;

16.18.
$$r = 2e^{\varphi}$$
, находящейся внутри окружности $r = 2$;

16.19.
$$r = \sqrt{2} \sin \varphi$$
:

16.20.
$$r = 3, 5(1 - \cos \varphi)$$
;

16.21.
$$r = 2\varphi$$
, $0 \le \varphi \le 4/3$;

16.22.
$$r = 3(1 + \sin \varphi), -\pi/6 \le \varphi \le 0$$
;

16.23.
$$r = 5e^{6\varphi}$$
, находящейся внутри окружности $r = 5$;

16.24.
$$r = 4e^{12\varphi/5}$$
, $-\pi/2 \le \varphi \le \pi/2$;

16.25.
$$r = 7\cos\varphi$$
, $0 \le \varphi \le \pi/4$;

16.26.
$$r = 5\varphi$$
, $0 \le \varphi \le 12/5$;

16.27.
$$r = 5(1 - \cos \varphi), -2\pi/3 \le \varphi \le 0$$
;

16.28.
$$r = 2\varphi$$
, находящейся внутри окружности $r = 2\pi$;

16.29.
$$r = 5e^{4\varphi/3}$$
, $0 \le \varphi \le \pi/3$;

16.30.
$$r = 3\varphi$$
, $0 \le \varphi \le 4/3$.

Задача 17. Вычислить длины дуг кривых, заданных уравнениями в полярных координатах.

17.1.
$$r = 2(1 - \cos \varphi), \quad -\pi \le \varphi \le -\pi/2.$$

17.2.
$$r = 4e^{4\varphi/3}, -\pi/2 \le \varphi \le \pi/2.$$

17.3.
$$r = \sqrt{2} e^{\varphi}, -\pi/2 \le \varphi \le \pi/2.$$

17.4.
$$r = 5e^{5\varphi/12}$$
, $-\pi/2 \le \varphi \le \pi/2$.

17.5.
$$r = 6e^{12\varphi/5}, -\pi/2 \le \varphi \le \pi/2.$$

17.6.
$$r = 3e^{3\varphi/4}, \quad 0 \le \varphi \le \pi/3.$$

17.7.
$$r = 4e^{4\varphi/3}$$
, $0 \le \varphi \le \pi/3$.

17.8.
$$r = \sqrt{2} e^{\varphi}, \quad 0 \le \varphi \le \pi/3.$$

17.9.
$$r = 5e^{5\varphi/12}$$
, $0 \le \varphi \le \pi/3$.

17.10.
$$r = 12e^{12\varphi/5}, \quad 0 \le \varphi \le \pi/3.$$

17.11.
$$r = 1 - \sin \varphi$$
, $-\pi/2 \le \varphi \le -\pi/6$.

17.12.
$$r = 3e^{3\varphi/4}$$
, $-\pi/2 \le \varphi \le \pi/2$.

17.13.
$$r = 4\varphi$$
, $0 \le \varphi \le 3/4$.

17.14.
$$r = 4(1 - \sin \varphi), \quad 0 \le \varphi \le \pi/6.$$

17.15.
$$r = 2\varphi$$
, $0 \le \varphi \le 5/12$.

17.16.
$$r = 6(1 + \sin \varphi), -\pi/2 \le \varphi \le 0.$$

17.17.
$$r = 3\varphi$$
, $0 \le \varphi \le 4/3$.

17.18.
$$r = 8(1 - \cos \varphi), -2\pi/3 \le \varphi \le 0.$$

17.19.
$$r = 2\varphi$$
, $0 \le \varphi \le 3/4$.

17.20.
$$r = 2\varphi$$
, $0 \le \varphi \le 4/3$.

17.21.
$$r = 5(1 - \cos \varphi), -\pi/3 \le \varphi \le 0.$$

17.22.
$$r = 2\varphi$$
, $0 \le \varphi \le 12/5$.

17.23.
$$r = 3(1 + \sin \varphi), -\pi/6 \le \varphi \le 0.$$

17.24.
$$r = 7(1 - \sin \varphi), -\pi/6 \le \varphi \le \pi/6.$$

17.25.
$$r = 5\varphi$$
, $0 \le \varphi \le 12/5$.

17.26.
$$r = 2\cos\varphi$$
, $0 \le \varphi \le \pi/6$.

17.27.
$$r = 8\cos\varphi$$
, $0 \le \varphi \le \pi/4$.

17.28.
$$r = 6\cos \varphi$$
, $0 \le \varphi \le \pi/3$.

17.29.
$$r = 2\sin \varphi$$
, $0 \le \varphi \le \pi/6$.

17.30.
$$r = 8\sin \varphi$$
, $0 \le \varphi \le \pi/4$.

Задача 18. Найти объем тела, полученного вращением фигуры, ограниченной графиками функций вокруг оси ОХ

18.1.
$$y = 2\sin x$$
, $y = 0$, $0 \le x \le \pi$;

18.2.
$$y = 2 - x^2$$
, $y = x$, $x = 0$;

18.3.
$$y = -x^2 + 5x - 6$$
, $y = 0$;

18.4.
$$y = x^2 + 1$$
 $y = x$, $x = 0$, $x = 1$;

18.5.
$$y = \sqrt{x}$$
, $xy = 1$, $y = 0$, $x = 2$;

18.6.
$$y = x^2$$
, $xy = 1$, $y = 4$;

18.7.
$$x^2 - y^2 = 3$$
, $y = x/2$, $y = 0$;

18.8.
$$y = x^3$$
, $y = 0$, $x + y = 2$;

18.9.
$$xy = 6$$
, $x + y = 5$;

18.10.
$$y = 2x - x^2$$
, $y = x$;

18.11.
$$y = \ln x$$
, $y = 0$, $x = 2$;

18.12.
$$y^2 = 6x$$
, $y = \sqrt{6}x^2$;

18.13.
$$3x - y = 0$$
, $3x - 4y = 0$, $y = 3$;

18.14.
$$y = xe^x$$
, $x = 1$, $y = 0$;

18.15.
$$y = x^2 / 2$$
, $2y + 2x = 3$;

18.16.
$$y = \arcsin x$$
, $y = 0$, $x = 1$;

18.17.
$$y = e^x - 1$$
, $y = 2$, $x = 0$;

18.18.
$$y = x^3$$
, $x = 0$, $x + y = 2$;

18.19.
$$y = 2x - x^2$$
, $y = 2 - x$;

18.20.
$$y = \frac{2}{1+x^2}$$
, $y = 0$, $x = 0$, $x = 1$;

18.21.
$$y = \sqrt{x}$$
, $x + y = 6$, $y = x + 4$, $x = 0$;

18.22.
$$(x-3)^2 + (y-4)^2 = 1$$
;

18.23.
$$y = \sin^2 x$$
, $y = 0$, $(0 \le x \le \pi)$;

18.24.
$$y = 3 - x^2$$
, $y = x^2 + 1$;

18.25.
$$y = 2^x, 3x - 4y + 5 = 0;$$

18.26.
$$y = \log_2 x$$
, $y = 0$, $x = 4$;

18.27.
$$y^2 = x - 4$$
, $y = 0$, $y = (x - 2)^3$, $y = 1$;

18.28.
$$y = 7 - x^2 + 2x$$
, $y = x^2 - 2x + 1$;

18.29.
$$(x+2)^2 + (y-6)^2 = 25$$
;

18.30.
$$y = \cos^2 x$$
, $y = 3\cos^2 x$, $(-\pi/2 \le x \le \pi/2)$.

Задача19. Найти объем тела, полученного вращением фигуры, ограниченной графиками функций вокруг оси ОҮ

19.1.
$$xy = 4$$
, $y = 1$, $y = 2$, $x = 0$;

19.2.
$$y^2 = x - 2$$
, $y = 0$, $y = x^3$, $y = 1$;

19.3.
$$y = x^2 - 4x + 2$$
 u $y = -x^2 + 8x + 2$;

19.4.
$$y = 1 - x^2$$
, $x = 0$, $x = \sqrt{y - 2}$, $x = 1$;

19.5.
$$y = 2x - x^2$$
, $y = 2 - x$;

19.6.
$$yx = 6$$
, $y = 0$, $x = 1$, $x = 4$;

19.7.
$$y^2 = 16 - x$$
, $x = 0$;

19.8.
$$y = e^{-x}$$
, $y = 0$, $x = 0$ ($x \ge 0$);

19.9.
$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$
, $y = -3$, $y = 3$;

19.10.
$$y = \ln x$$
, $y = 0$, $y = 2$, $x = 0$;

19.11.
$$y = \frac{8}{x^2 + 4}$$
, $y = \frac{x^2}{4}$;

19.12.
$$y = 4x^2$$
, $y = 8x^2$, $y = 2$;

19.13.
$$y = 4x - x^2$$
, $y = -2x$;

19.14.
$$(x-2)^2 + y^2 = 1$$
;

19.15.
$$y^2 = 4x$$
, $x = 1$;

19.16.
$$y = \sin x$$
, $y = 0$, $(0 \le x \le \pi)$;

19.17.
$$x = \sqrt[3]{y-2}$$
, $y = 1$, $x = 1$;

19.18.
$$y = x$$
, $y = 3x$, $x = 3$;

19.19.
$$y = \sqrt{x-2}$$
, $x + y = 8$, $4x + y = 8$;

19.20.
$$y = \arccos x$$
, $y = 0$, $x = 0$;

19.21.
$$y = \log_2 x$$
, $x + y = 6$ $x = 1$;

19.22.
$$y = |x-2|, x-3y+6=0;$$

19.23
$$yx = 2$$
, $y = 2x$, $y = x/2$.;

19.24.
$$\frac{x^2}{4} - \frac{y^2}{25} = 1$$
, $x = 4$;

19.25.
$$y = 2x$$
, $y = 5x$, $y = 10$;

19.26.
$$y = \operatorname{arctg} x, y = 0, x = 1;$$

19.27.
$$y = \ln x$$
, $y = 4 \ln x$, $x = e^3$;

19.28.
$$y = \sin x$$
, $y = 6\sin x$, $(0 \le x \le \pi)$;

19.29.
$$x = \sqrt{y}$$
, $5x - y - 4 = 0$, $x = 0$;

19.30.
$$y = e^{1-x}$$
, $y = 0$, $x = 0$, $x = 1$.

Задача 20. Вычислить объемы тел, образованных вращением фигур, ограниченных графиками функций. В вариантах 1-16 ось вращения Ox, в вариантах 17-30 ось вращения Oy.

20.1.
$$y = -x^2 + 5x - 6$$
, $y = 0$.

20.2.
$$2x - x^2 - y = 0$$
, $2x^2 - 4x + y = 0$.

20.3.
$$y = 3\sin x$$
, $y = \sin x$, $0 \le x \le \pi$.

20.4.
$$y = 5\cos x$$
, $y = \cos x$, $x = 0$, $x \ge 0$.

20.5.
$$y = \sin^2 x$$
, $x = \pi/2$, $y = 0$.

20.6.
$$x = \sqrt[3]{y-2}$$
, $x = 1$, $y = 1$.

20.7.
$$y = xe^x$$
, $y = 0$, $x = 1$.

20.8.
$$y = 2x - x^2$$
, $y = -x + 2$, $x = 0$.

20.9.
$$y = 2x - x^2$$
, $y = -x + 2$.

20.10.
$$y = e^{1-x}$$
, $y = 0$, $x = 0$, $x = 1$.

20.11.
$$y = x^2$$
, $y^2 - x = 0$.

20.12.
$$x^2 + (y-2)^2 = 1$$
.

20.13.
$$y = 1 - x^2$$
, $x = 0$, $x = \sqrt{y - 1}$, $x = 1$.

20.14.
$$y = x^2$$
, $y = 1$, $x = 2$.

20.15.
$$y = x^2$$
, $y = \sqrt{x}$.

20.16.
$$y = \sin(\pi x/2), y = x^2.$$

20.17.
$$y = \arccos(x/3)$$
, $y = \arccos x$, $y = 0$.

20.18.
$$y = \arcsin(x/5)$$
, $y = \arcsin x$, $y = \pi/2$.

20.19.
$$y = x^2$$
, $x = 2$, $y = 0$.

20.20.
$$y = x^2 + 1$$
, $y = x$, $x = 0$, $x = 1$

20.21.
$$y = \sqrt{x-1}$$
, $y = 0$, $y = 1$, $x = 0.5$.

20.22.
$$y = \ln x$$
, $x = 2$, $y = 0$.

20.23.
$$y = (x-1)^2$$
, $y = 1$.

20.24.
$$y^2 = x - 2$$
, $y = 0$, $y = x^3$, $y = 1$.

20.25.
$$y = x^3$$
, $y = x^2$.

20.26.
$$y = \arccos(x/5)$$
, $y = \arccos(x/3)$, $y = 0$.

20.27.
$$y = \arcsin x$$
, $y = \arccos x$, $y = 0$.

20.28.
$$y = x^2 - 2x + 1$$
, $x = 2$, $y = 0$.

20.29.
$$y = x^3$$
, $y = x$.

20.30.
$$y = \arccos x$$
, $y = \arcsin x$, $x = 0$.