5.2 RAT

1. Let's say we have the following event space and the empirical data:

VB	VBD	VBG	VBN	VBP	VBZ
5	10	4	8	6	7

What will be the probability distribution that maximize entropy with the following feature?

$$f_{past} = \{VBD, VBN\}, E[f_{past}] = \frac{1}{2}$$

2. Suppose we have a 1 feature maxent model built over observed data as shown. This time our one feature is picking out <code>ends-with(vowel)</code>. Work out what the expectation of that feature is and choose the constructed model's probability distribution over the four possible outcomes

	ends-with(vowel)	ends-with(consonent)
starts-with(capital)	1	1
starts-with(lower)	2	2

$$f = \{ends\text{-}with(vowel)\}$$

- 3. Which of the following is **not** true of joint models P(c, d) with the marginal constraint?
 - A) Computing the expectation of each feature is more timeconsuming with the marginal constraint
 - B) P(c,d) is zero if d does not occur in our empirical data
 - C) Maximizing P(c,d) is equivalent to maximizing P(c|d)
 - D) The model is useful when the space C×D is too huge to enumerate
- 4. Suppose a certain feature f_i matches 5 times over the training data (C,D). That is, it's empirical expectation is 5. Suppose further that we train a smoothed maxent model with $\sigma^2 = 1$ and that the feature gets a weight of $\lambda_i = 2$ in the resulting model. What will the empirical expectation of the feature on the training data D be? Recall:

 $\delta \log P(C, \lambda | D) / \delta \lambda_i = \operatorname{actual}(f_i, C) - \operatorname{predicted}(f_i, \lambda) - \lambda_i / \sigma^2$