Math 542 HW2

Hongtao Zhang

1 Q1

1.1 10.4.10

Suppose R is commutative and $N \cong \mathbb{R}^n$ is a free R-module of rank n with R-module basis $e_1, ..., e_n$.

1.1.1

For any nonzero R-module M show that every element of $M\otimes N$ can be written uniquely in the form $\sum_{i=1}^n m_i\otimes e_i$ where $m_i\in M$. Deduce that if $\sum_{i=1}^n m_i\otimes e_i=0$ in $M\otimes N$ then $m_i=0$ for $i=1,\ldots,n$.

Proof:
$$N \cong \mathbb{R}^n \Rightarrow M \otimes N \cong M \otimes \mathbb{R}^n \cong \underbrace{(M \otimes \mathbb{R}) \oplus \ldots \oplus (M \otimes \mathbb{R})}_{n \text{ times}}$$

Because the construction is a free module, so every entries are linearly independent, so summing them is equivalent to the cartisian product.

Therefore, if $\sum_{i=1}^n m_i \otimes e_i = 0$, every entries must equal to 0, then either $m_i = 0$ or $e_i = 0$ for all i. However, we know that $e_i \neq 0$, then $m_i = 0$.

1.1.2

Show that if $\sum m_i \otimes n_i = 0$ in $M \otimes N$ where n_i are merely assumed to be R-linearly independent then it is not necessarily true that all the m_i are 0.

Proof: Consider the $1 \otimes 2$ in the proposed Hint.

In $\mathbb{Z}/2\mathbb{Z}\otimes\mathbb{Z}$, we have proved that $1\otimes 2=0$ in last homework, but this is a counterexample for the claim above as $1\neq 0\in\mathbb{Z}/2\mathbb{Z}$.

1.2 10.4.16

Suppose R is commutative and let I and J be ideals of R, so R/I and R/J are naturally R-modules.

1.2.1

Prove that every element of $\frac{R}{I} \otimes_R \frac{R}{J}$ can be written as simple tensor of the form $(1 \mod I) \otimes (r \mod J)$.

Proof: Assume we have $a\otimes b+c\otimes d\in \frac{R}{I}\otimes \frac{R}{J}$. By the property of tensor product, it must satisfy $a\otimes b+c\otimes d=a(1\otimes b)+c(1\otimes d)=(1\otimes ab)+(1\otimes cd)=1\otimes (ab+cd)$. This is doable because $\frac{R}{I}$ and $\frac{R}{J}$ are subring of R.

1.2.2

Prove that there is an R-module isomorphism $R/I \otimes_R R/J \cong R/(I+J)$ mapping $(r \mod I) \otimes (r' \mod J)$ to $rr' \mod (I+J)$.

Proof: To prove surjectivity, we already have every element of $\frac{R}{I} \otimes \frac{R}{J}$ can be written as $(1 \bmod I) \otimes (r \bmod J)$, and thus implies that $1r' \bmod (I+J)$ is everything in R/(I+J). To prove injectivity, we have the only element maps to 0 to be the element when r=0 or r'=0. However, each will mean they are 0 in the tensor product.

2 Short Exact Sequences

Let R be a commutative ring. A sequence of R-modules

$$0 \to N \stackrel{\iota}{\longrightarrow} A \stackrel{p}{\longrightarrow} Q \longrightarrow 0$$

is *short exact* if $\iota: N \to A$ is an injective R-module homomorphism whose image is the kernel of the surjective R-module homomorphism p. Let B be an R-module.

2.1

Show that $p \otimes \mathbb{1} : A \otimes B \to Q \otimes B$ is still surjective and that the image of $\iota \otimes \mathbb{1}$ is still its kernel.

Proof: We know that both p and $\mathbb{1}$ are surjective. Then we can prove that $p \otimes \mathbb{1}$ is surjective by the property of tensor product.

Consider the following diagram:

$$A \oplus B \xrightarrow{f} A \otimes B$$

$$p \oplus 1 \qquad \qquad p \otimes 1 \qquad \qquad \downarrow$$

$$Q \oplus B \xrightarrow{\tilde{f}} Q \otimes B$$

The kernel of $p \otimes \mathbb{1}$ will be also be the kernel of $p \oplus \mathbb{1}$ as only 0 be sent to 0 and the diagram commute. Because $p \oplus \mathbb{1}$ is surjective, and thus $p \otimes \mathbb{1}$ is also surjective.

With a similar reasoning, the image of ι , which is the kernel of p also lies in the kernel of $p \otimes \mathbb{1}$.

2.2

Now consider a short exact sequence of abelian groups $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/n \to 0$ and let $B = \mathbb{Z}/m$ where n and m are positive integers. Show that $\iota \otimes \mathbb{1}$ is injective if and only if $m \mid n$.

Proof: Consider the following graph:

If $\iota \oplus \mathbb{1}$ is injective, then the kernel of $p \otimes \mathbb{1}$ are $\{0\}$. Thus, the kernel of $p \otimes \mathbb{1}$ is also $\{0\}$.

If $m \mid n$, then $a \otimes b \in \mathbb{Z}/m \Leftrightarrow a \mod m \otimes b$, which means $p \otimes \mathbb{I}$ will be injective.

If $p \otimes \mathbb{1}$ is injective, then $a \otimes b \Leftrightarrow a \mod n \otimes b$, which implies that $m \mid n$.

3 Tensor Proudcts of Linear Maps

Suppose that $A:V_1\to V_2$ and $B:W_1\to W_2$ are k-linear maps between k-linear vectors spaces. Let $\mathrm{rank}(C)$ be the rank of a linear map C, i.e. the dimension of its image. Show that $\mathrm{rank}(A\otimes B)=\mathrm{rank}(A)\;\mathrm{rank}(B)$.

Proof: This can be done by consider the basis of image of A and image of B. Then the image of $A \otimes B$ is the tensor product of the basis of the image of A and B, which will contains $\operatorname{rank}(A)\operatorname{rank}(B)$ elements.

4 Classifying Simple Modules

4.1

For each positive integer n, find all simple $\mathbb{R}[\mathbb{Z}/n\mathbb{Z}]$ -modules up to isomorphism and their endomorphism algebras. (Hint: Each simple module will be at most 2-dimensional; think about rotations)

Proof: We know that rotation matrix is simple under $\mathbb{R}[\mathbb{Z}/n\mathbb{Z}]$. Then for $\mathbb{Z}/n\mathbb{Z}$, we just consider the rotation matrix with angle $\frac{2\pi}{n}$.

Because we have the theorem $|\mathbb{Z}/n\mathbb{Z}| = \sum \frac{\dim(S_i)^2}{\operatorname{End}(S_i)}$. Because we have $\dim(S_i) = 2$ for all i, then the dimension of the endomorphism rings must be 4.

4.2

Recall that $\mathbb H$ is a 4-dimensional algebra over $\mathbb R$ whose elements can be written as a+bi+cj+dk for some real numbers a,b,c,d where $i^2=j^2=k^2=-1,ij=k,jk=i,ji=-k,ik=-j,kj=-i$. Let $Q_8\subset\mathbb H$ be the group of order 8 which is generated by i,j. Its elements are $\{\pm 1,\pm i,\pm j,\pm k\}$.

4.2.1

Show that there are four non-isomorphic one-dimensional $\mathbb{R}[Q_8]$ -modules. (Note that $Q_8/[Q_8,Q_8]\cong \mathbb{Z}/2\times \mathbb{Z}/2$).

Proof: An one dimensional $\mathbb{R}[Q_8]$ module are in the following form:

$$\{a+bi+cj+dk \mid a,b,c,d \in \mathbb{R}\}\$$

For one dimensional module, we are essentially consider the homomorphism between $Q_8 \to \mathbb{C}^{\times}$, but \mathbb{C}^{\times} is commutative, which means it suffices to consider $Q_8/[Q_8,Q_8] \to \mathbb{C}^{\times}$, which is essentially $\mathbb{Z}/2 \times \mathbb{Z}/2 \to \mathbb{C}^{\times}$, which is $\operatorname{Hom}(\mathbb{Z}/2,\mathbb{C}^{\times})^2$, which has size 4.

4.2.2

Show that $\operatorname{End}_{\mathbb{R}[Q_8]}(\mathbb{H})$ is isomorphic to \mathbb{H} as a ring.

Proof: We can see that $\mathbb{R}[Q_8]$ is isomorphic to \mathbb{H} as a ring, and thus $\mathrm{End}_{\mathbb{R}[Q_8]}(\mathbb{H}) \cong \mathbb{H}$.

4.2.3

Use previous one to conclude, up to isomorphism, $\mathbb H$ is the unique simple $\mathbb R[Q_8]$ -module that is not one-dimensional.

Proof: Since we have 4 one dimensional simple module and one 4 dimensional simple module, then we have $|Q_8| = \sum \frac{\dim(S_i)^2}{\operatorname{End}(S_i)} = 4 + 4 = 8$.

Then we know $\mathbb H$ is the unique simple $\mathbb R[Q_8]\text{-module}$ that is not one dimensional.

4.3

Show that there is a unique simple $\mathbb{C}[Q_8]$ -module that is not one-dimensional. (Hint: It is two-dimensional, but you don't have to construct it. You can deduce its existence from fact we have shown and the four one-dimensional $\mathbb{C}[Q_8]$ -modules that you found in the previous part.)

Proof: We know that $|Q_8| = 8$, and we have four one dimensional simple module, so the last one must be two dimensional by the formula.

5 Maschke

Let k be a field. Let V be a finite-dimensional k-vector space. Suppose that V is a k[G]-module where G is a finite group.

5.1

A linear map $\pi: V \to V$ is called a *projection onto* W if its image is W and if $\pi(w) = w$ for all $w \in W$. Show that, given such a map, V is isomorphic (as a vector space) to $\ker(\pi) \oplus W$.

Proof: By rank-nullity theorem, we have $\ker(\pi) = |V| - |W|$. Then we can see that $V = \ker(\pi) \oplus W$ as long as $\ker(\pi)$ and W are disjoint except $\{0\}$. However this is clear given $\pi(w) = w$.

5.2

A linear map $\pi: V \to V$ is called G-equivariant if $\pi(g \cdot v) = g \cdot \pi(v)$ for all $g \in G$. Show that if π is G-equivariant then its kernel and image are k[G]-submodules of V.

Proof: We know that π is G-equivariant, then $\forall g \in G : \pi(g \cdot v) = g \cdot \pi(v)$. Thus it means that $\pi \in \operatorname{Hom}_{k[G]}(V,V)$, which suggests that its kernel and image are k[G]-submodules of V.

5.3

Suppose that $\pi:V\to V$ is a projection onto a submodule W. Suppose |G| is invertible in k (this could fail for instance if G has even order and $k=\mathbb{Z}/2$ since 2 is not invertible in k as it coincides with 0). Define a new function $p:V\to V$ by $p(v)=\frac{1}{|G|}\sum_{g\in G}g\cdot\pi(g^{-1}\cdot v)$. Show that p is a G-equaiariant projection onto W. Conclude that V is isomorphic to $W\oplus\ker(\pi)$ as a k[G]-module.

Proof:

$$p(g'w) = \frac{1}{|G|} \sum_{g \in G} g(g^{-1}g'w) = \frac{1}{|G|} \sum_{g \in G} g'g'^{-1}g(g^{-1}g'w) = g' \sum_{g'' \in G} g''\pi \Big(g''^{-1}w\Big) = g'\pi(w)$$

Then p is G-equivarant projection, then W and $\ker(\pi)$ are all k[G]-submodule, which implies that V is isomorphic to $W \oplus \ker(\pi)$ as a k[G]-module.

5.4

Conclude that V is a direct sum of simple k[G]-modules.

Proof: We can make W a simple k[G]-module, and W is a direct sum of a simple module and its kernel. Then we do the same thing to the kernel. Then we can conclude that V is a direct sum of simple k[G]-modules.