Optimization Techniques of Deep Learning Models for Visual Quality Improvement

Lorenzo Palloni

School of Mathematics, Physics and Natural Science Master of Science Degree in Computer Science

> Supervisor: Marco Bertini Co-supervisor: Leonardo Galteri Co-supervisor: Donatella Merlini

> > April 21, 2023

Lorenzo Palloni April 21, 2023 1 / 14

Introduction

- Goal: Improve video restoration with deep learning models
- Challenge: Computational complexity of deep learning models
- Solution: Apply quantization techniques for faster inference and reduced memory usage
- Focus: Artefact removal and super-resolution tasks
- Method: Post-training quantization using TensorRT
- Impact: Enable practical deployment on resource-constrained devices

Lorenzo Palloni April 21, 2023

2 / 14

Quality Metrics for Video Restoration

- Traditional Metrics:
 - Evaluate image quality based on numerical comparisons
 - An example: SSIM (Structural Similarity)
- Perceptual Metrics:
 - Evaluate image quality based on human perception
 - An example: LPIPS (Learned Perceptual Image Patch Similarity)
- No-Reference Metrics:
 - Evaluate image quality without reference images
 - An example: BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator)
- Video Quality Metrics:
 - Take into account temporal aspects of quality degradation
 - An example: VMAF (Video Multi-Method Assessment Fusion)

Lorenzo Palloni April 21, 2023 3 / 14

Model Architectures

- UNet: encoder-decoder structure with skip connections
- SRUNet: modified UNet for super-resolution and artefact removal
- Training setup: Generative Adversarial Network (GAN) framework
- Generator loss: combination of LPIPS and SSIM metrics

Lorenzo Palloni April 21, 2023

4 / 14

Quantization

- Quantization in deep learning: process of reducing the precision of weights and activations of a neural network
- Two main approaches to quantize a deep learning model:
 - Quantization-Aware Training (QAT)
 - Quantization incorporated during training
 - Model learns to be more robust to quantization effects
 - Post-Training Quantization (PTQ)
 - Quantization applied after training the model
 - Model accuracy may be affected

Lorenzo Palloni April 21, 2023 5 / 14

Dataset and Training Setup

- BVI-DVC dataset:
 - Designed for deep video compression tasks
 - Includes 200 frame sequences truncated at the 64th frame
 - Various content types: natural scenes, man-made objects, cityscapes
- Training setup:
 - ullet Models trained on frame patches of 96×96 pixels randomly cropped
 - \bullet Model training required ${\sim}72$ hours on a single GPU NVIDIA Titan Xp
 - Custom data-loader: to speed up training reducing GPU bottlenecks

Figure: Some frame examples from the BVI-DVC dataset.

Lorenzo Palloni April 21, 2023

6/14

Experiments

- Post-Training Quantization (PTQ) implemented using TensorRT
- Comparison of UNet and SRUNet models with TensorRT-optimized versions (FP32, FP16, INT8)
- Evaluation on 60 test frames using perceptual and traditional metrics
- Quantitative results: Perceptual and traditional metrics show minor differences between optimized and non-optimized models.

Analysis of inference speed and memory consumption

Lorenzo Palloni April 21, 2023 7 / 14

Quantitative Results: Perceptual Metrics

	LPIPS ↓	DISTS ↓	BRISQUE ↓
UNet UNet-FP32	0.2897 ± 0.0138 0.2897 ± 0.0138	0.1222 ± 0.0067 0.1222 ± 0.0067	31.1372 ± 1.1690 31.1373 ± 1.1684
UNet-FP16 UNet-INT8	$\begin{array}{c} 0.2898 \pm 0.0138 \\ 0.3041 \pm 0.0137 \end{array}$	$\begin{array}{c} 0.1223 \pm 0.0067 \\ 0.1283 \pm 0.0066 \end{array}$	31.1383 ± 1.1691 29.6849 ± 1.0138
SRUNet SRUNet-FP32	$\begin{array}{c} 0.3111 \pm 0.0151 \\ 0.3111 \pm 0.0151 \end{array}$	$\begin{array}{c} 0.1717 \pm 0.0047 \\ 0.1717 \pm 0.0047 \end{array}$	$27.3738 \pm 3.5705 \\ 27.3736 \pm 3.5697$
SRUNet-FP16 SRUNet-INT8	0.3111 ± 0.0151 0.3068 ± 0.0137	$\begin{array}{c} \textbf{0.1717} \pm \textbf{0.0047} \\ \textbf{0.1722} \pm \textbf{0.0044} \end{array}$	27.3790 ± 3.5739 26.1546 ± 3.2273

Table: Evaluations on perceptual metrics on 60 test frames (mean \pm standard deviation).

Lorenzo Palloni April 21, 2023 8 / 14

Quantitative Results: Traditional Metrics

	SSIM ↑	MS-SSIM ↑	PSNR ↑
UNet UNet-FP32 UNet-FP16 UNet-INT8	$\begin{array}{c} \textbf{0.8952} \pm \textbf{0.0084} \\ \textbf{0.8952} \pm \textbf{0.0084} \\ \textbf{0.8952} \pm \textbf{0.0084} \\ \textbf{0.8941} \pm \textbf{0.0084} \end{array}$	$\begin{array}{c} \textbf{0.8517} \pm \textbf{0.0067} \\ \textbf{0.8517} \pm \textbf{0.0067} \\ \textbf{0.8517} \pm \textbf{0.0067} \\ \textbf{0.8508} \pm \textbf{0.0067} \end{array}$	$\begin{array}{c} \textbf{21.6506} \pm \textbf{0.1269} \\ \textbf{21.6506} \pm \textbf{0.1269} \\ \textbf{21.6506} \pm \textbf{0.1269} \\ \textbf{21.6388} \pm \textbf{0.1286} \end{array}$
SRUNet SRUNet-FP32 SRUNet-FP16 SRUNet-INT8	0.8894 ± 0.0084 0.8894 ± 0.0084 0.8894 ± 0.0084 0.8882 ± 0.0084	$\begin{array}{c} \textbf{0.8457} \pm \textbf{0.0062} \\ \textbf{0.8457} \pm \textbf{0.0062} \\ \textbf{0.8457} \pm \textbf{0.0062} \\ \textbf{0.8442} \pm \textbf{0.0062} \end{array}$	21.3670 ± 0.1248 21.3670 ± 0.1248 21.3671 ± 0.1248 21.3320 ± 0.1224

Table: Evaluations on traditional metrics on 60 test frames (mean \pm standard deviation).

Lorenzo Palloni April 21, 2023 9 / 14

Quantitative Results: Inference Speed

	times [s] ↓	speedup ↑
UNet	0.0348 ± 0.0004	
UNet-FP32	0.0279 ± 0.0004	1.25X
UNet-FP16	0.0279 ± 0.0004	1.25X
UNet-INT8	0.0146 ± 0.0006	2.38X
SRUNet	0.0123 ± 0.0001	
SRUNet-FP32	0.0087 ± 0.0005	1.41X
SRUNet-FP16	0.0087 ± 0.0004	1.41X
SRUNet-INT8	0.0054 ± 0.0006	2.27X

Table: Evaluation times over 300 runs (mean \pm standard deviation).

Lorenzo Palloni April 21, 2023

10 / 14

Qualitative Results: Buildings

(a) Original Image (384×384)

(b) Compressed and Down-scaled (96×96)

(c) Up-scaled using Bilinear Interpolation (384×384)

(d) Up-scaled using SRUNet (384×384)

(e) Up-scaled using SRUNet-INT8 (384×384)

11 / 14

Qualitative Results: Crowd

(a) Original Image (384×384)

(c) Up-scaled using Bilinear Interpolation (384×384)

(d) Up-scaled using SRUNet (384×384)

(b) Compressed and Down-scaled (96 \times 96)

(e) Up-scaled using SRUNet-INT8 (384×384)

12 / 14

Conclusions

- Aim to optimize deep learning models for video quality improvement
- Investigated post-training quantization techniques using TensorRT
- Achieved up to 2.38X speedup and 64.3% size reduction without compromising performance
- Future research:
 - designing efficient NN model architectures
 - co-designing NN architecture and hardware together
 - pruning
 - knowledge distillation
 - exploring different quantization techniques

Lorenzo Palloni April 21, 2023 13 / 14

Thank you, for your attention!

Do you have any questions?

Lorenzo Palloni April 21, 2023 14 / 14

Appendix

Quantitative Results: VMAF

	$VMAF\;(mean)\uparrow$	VMAF (harmonic mean) \uparrow
UNet	47.71	47.20
UNet-FP32	47.72	47.21
UNet-FP16	47.71	47.20
UNet-INT8	47.47	46.96
SRUNet	47.20	46.65
SRUNet-FP32	47.19	46.64
SRUNet-FP16	47.19	46.65
SRUNet-INT8	47.18	46.64
		·

Table: VMAF scores on a 120-second-test video.

Qualitative Results: Trees

(a) Original Image (384×384)

(b) Compressed and Down-scaled (96×96)

(c) Up-scaled using Bilinear Interpolation (384×384)

(d) Up-scaled using SRUNet (384×384)

(e) Up-scaled using SRUNet-INT8 (384×384)

LPIPS-Comp: Introduction (1/5)

- LPIPS-Comp: perceptual similarity metric based on deep neural networks
- Trained on a compression-specific perceptual similarity dataset
- Better alignment with human judgement on general compression tasks

VGG-16 and Feed-Forward Process (2/5)

- LPIPS-Comp uses VGG-16 architecture
- ReLU activations after each conv block in the first five layers
- Batch-normalization applied
- Feed-forward performed on VGG-16 for both original (y) and reconstructed image (\hat{y})

Feature Activations and Normalization (3/5)

- F(y) and $F(\hat{y})$ return stacks of feature activations for all layers L
- Unit-normalized in the channel dimension: $z_y^I, z_{\hat{y}}^I \in R^{H_I \times W_I \times C_I}$ where $I \in L$
- H_I , W_I are the spatial dimensions; C_I is the number of channels

Scaling and L2 Distance (4/5)

- ullet $z_y^I, z_{\hat{y}}^I$ are scaled channel-wise with the vector $w_I \in R^{C_I}$
- L2 distance computed and averaged over spatial dimensions
- Channel-wise sum performed

LPIPS-Comp Equation (5/5)

$$\mathsf{LPIPS-Comp}(y, \hat{y}) = \sum_{l} \frac{1}{H_{l}W_{l}} \sum_{h,w} \left| \left| w_{l} \odot \left(z_{\hat{y},h,w}^{l} - z_{y,h,w}^{l} \right) \right| \right|_{2}^{2}$$

- Weights in F learned for image classification and kept fixed
- w are linear weights learned on a compression-specific similarity dataset