

Katedra Metrologii Elektronicznej i Fotonicznej

Nazwa kursu:

Metrologia optyczna - laboratorium

Temat projektu:

Bezdotykowy pomiar temperatury za pomocą pirometru opartym na czujniku MLX90614

Autorzy projektu:

inż. Piotr Rosiński inż. Patryk Niczke inż. Przemysław Lis

Wydział Elektroniki, Fotoniki i Mikrosystemów Kierunek: Elektronika

Miejsce i rok: Wrocław, 2024

Spis treści

1	Wst	5ęp	3	
	1.1	Wprowadzenie	3	
	1.2	Cel projektu	3	
	1.3	Zakres projektu	4	
2	Założenia projektowe			
	2.1	Opis założeń funkcjonalnych	5	
	2.2	Opis założeń konstrukcyjnych	5	
	2.3	Opis założeń środowiskowych	6	
	2.4	Opis założeń ekonomicznych	6	
3	Charakterystyka wykorzystanych komponentów sprzętowych			
	3.1	Mikrokontroler Arduino Uno	7	
	3.2	Czujnik temperatury MLX90614	7	
	3.3	4-przyciskowa klawiatura	7	
	3.4	Wyświetlacz LCD z konwerterem I2C HD44780	7	
4	Ana	aliza struktury zastosowanego oprogramowania	8	
	4.1	Połączenie z czujnikiem temperatury MLX90614	8	
	4.2	Połączenie z wyświetlaczem LCD HD44780	8	
	4.3	Synchroniczna współpraca LCD i czujnika temperatury z wykorzy-		
		staniem mikrokontrolera Arduino	8	
5	Uru	nchomienie projektu i skalibrowanie urządzenia	9	
	5.1	Proces uruchomienia	9	
	5.2	Kalibracja urządzenia	9	

6	Wy	konanie testów i dokonanie odpowiednich pomiarów	10	
	6.1	Opis metodyki testowania	10	
	6.2	Przygotowanie do testów	10	
	6.3	Przebieg testów	10	
	6.4	Dokonanie pomiarów	10	
	6.5	Analiza wyników	10	
7	Inst	trukcja użytkowania	11	
	7.1	Krótki opis pirometru i jego przeznaczenia	11	
	7.2	Ostrzeżenia dotyczące pomiarów wysokich temperatur/kontaktu z go-		
		rącymi obiektami	11	
	7.3	Podłączenie pirometru do źródła zasilania	11	
	7.4	Opcjonalna zmiana parametrów (emisyjność, odległość dokonywania		
		pomiaru)	11	
	7.5	Czyszczenie powierzchni czujnika	11	
	7.6	Informacje o przechowywaniu	11	
	7.7	Typowe problemy (np. brak odczytu, błędne wyniki) i ich możliwe		
		rozwiązania	11	
8	Poc	lsumowanie i Wnioski	12	
Bi	Bibliografia			

Wstęp

1.1 Wprowadzenie

Metrologia optyczna stanowi obecnie jeden z najważniejszych narzędzi pomiarowych w nauce i przemyśle stale zwiększając swoje znaczenie. Bezdotykowy pomiar temperatury rewolucjonizuje precyzję kontroli procesów technologicznych, badań naukowych i diagnostyki medycznej. Szczególną zaletą tych rozwiązań jest możliwość wykonywania pomiarów w warunkach, które dotychczas stanowiły wyzwanie – w przypadku obiektów szybko się poruszających, materiałów o ekstremalnych temperaturach lub gdy klasyczny kontakt pomiarowy mógłby zakłócić naturalne właściwości badanego obiektu i wprowadzić zaburzenie do pomiaru.

1.2 Cel projektu

Celem niniejszego projektu jest opracowanie i implementacja pirometru – zaawansowanego urządzenia do bezdotykowego pomiaru temperatury wykorzystującego technologię podczerwieni. Projekt został zrealizowany w oparciu o czujnik
MLX90614, który zapewnia odpowiednią precyzję i stabilność pomiarów w założonym zakresie temperatur. Sercem systemu jest popularna płytka mikrokontrolerowa,
Arduino UNO, która stanowi centrum sterujące całego urządzenia. Płytka Arduino
UNO oparta jest na 8-bitowym mikrokontrolerze ATmega328P, który zapewnia róż-

norodne funkcje, takie jak 14 cyfrowych pinów wejścia/wyjścia czy 6 analogowych wejść. Dzięki swojej prostocie i wszechstronności, Arduino UNO jest często pierwszym wyborem dla wielu, nieco mniej wymagających obliczeniowo projektów [1]. Kod źródłowy projektu został napisany w języku C/C++, z wykorzystaniem opensourcowych bibliotek ułatwiających programowanie kluczowych komponentów, w tym wyświetlacza LCD opartego na standardzie HD44780. HD44780 to standardowy kontroler wyświetlaczy LCD. Został opracowany przez firmę Hitachi w latach 80. XX wieku i jest powszechnie stosowany w alfanumerycznych wyświetlaczach dot-matrix [2]. W projektach wykorzystujących tę technologię często stosowana jest biblioteka LiquidCrystalI2C, która upraszcza interakcję z wyświetlaczami LCD podłączonymi do mikrokontrolerów takich jak Arduino poprzez interfejs I2C. Dzięki tej bibliotece możliwe jest łatwe sterowanie wyświetlaczem oraz wyświetlanie tekstu i danych w sposób efektywny i intuicyjny.

Inicjalizacja omawianego wyświetlacza LCD z wykorzystaniem biblioteki LiquidCrystalI2C zajmuje zaledwie kilka linijek kodu źródłowego:

```
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 16, 2); // Adres I2C,
liczba kolumn, liczba wierszy
```

1.3 Zakres projektu

Zakres niniejszego projektu obejmuje kompleksowe opracowanie bezdotykowego systemu pomiarowego temperatury, który łączy optymalne rozwiązania w każdym omawianym później aspekcie projektowym. Projekt podzielony jest na dwie główne części: część programową i konstrukcyjną. Pod uwagę wzięte zostaną także różne istotne czynniki, które wpływają na sposób wykorzystania zbudowanego urządzenia. Istotne dla projektu jest nie tylko samo działanie pirometru, lecz także wpływ środowiska w którym jest użytkowane i kwestia sensownej minimalizacji kosztów utworzenia w pełni funkcjonalnego systemu pomiarowego.

Założenia projektowe

2.1 Opis założeń funkcjonalnych

Funkcjonalność kompletnego urządzenia pozwala na bezproblemowy i możliwie najprostszy w realizacji bezdotykowy pomiar temperatury. Urządzenie dokonuje w czasie rzeczywistym pomiaru temperatury danej powierzchni z wykorzystaniem czujnika MLX90614, wyświetlając wynik na wspomnianym wyświetlaczu LCD.

Za pomocą dołączonej 4-przyciskowej klawiatury można:

- zwiększać wartość emisyjności
- zmniejszać wartość emisyjności
- przywrocić początkową wartość emisyjności wynoszącą 1
- zmieniać jednostkę w której wyświetlany jest wynik: stopnie Celsjusza, stopnie
 Fahrenheita, stopnie Kelvina.

2.2 Opis założeń konstrukcyjnych

Urządzenie wykonane zostało na płycie ewaluacyjnej, która umożliwia korzystanie z urządzenia, minimalizując ryzyko jakiegokolwiek uszkodzenia urządzenia. Układ działa stabilnie i daje opcję przetransportowania przyrządu.

Wykonany przyrząd pomiarowy składa się z:

- bezdotykowego czujnika temperatury MLX90614, który umożliwia pomiar temperatury obiektu w zakresie -70° do 380°C. Pomiar jest podawany z dokładnością do 0,5°C w zakresie 0-50°C, lub 4°C dla skrajnych wartości zakresu. Natomiast dla temperatury czujnika zakres wynosi od -40°C do 85°C.
- wyświetlacza LCD HD44780 z dołączonym konwerterem I2C
- układu sterującego komponentami i przetwarzającymi dane pomiarowe uzyskiwane z czujnika tj. mikrokontrolera Arduino Uno
- 4-przyciskowej klawiatury

2.3 Opis założeń środowiskowych

Urządzenie powinno działać w szerokim zakresie temperatur, od -40°C do +85°C, aby zapewnić niezawodność w różnych warunkach otoczenia. Urządzenie zostało zaprojektowane tak, aby mogło funkcjonować w umiarkowanej wilgotności, np. do 85% przy temperaturze 25°C, aby zminimalizować ryzyko kondensacji i uszkodzeń komponentów. Urządzenie zasilane jest napięciem 5V DC bądź poprzez port USB 2.0. Urządzenie nie zostało przetestowane pod kątem pracy w trudniejszych warunkach środowiskowych. Użyte materiały są odporne na korozję oraz działanie substancji chemicznych, co jest istotne w przypadku zastosowań przemysłowych lub laboratoryjnych. Przed wdrożeniem urządzenia do użytku przeprowadzono testy środowiskowe, upewniając się, że spełnia wszystkie założenia dotyczące warunków pracy. Poczynione założenia środowiskowe są kluczowe dla zapewnienia niezawodności i długowieczności urządzenia, a także dla jego prawidłowego działania w różnych warunkach otoczenia.

2.4 Opis założeń ekonomicznych

Charakterystyka wykorzystanych komponentów sprzętowych

- 3.1 Mikrokontroler Arduino Uno
- 3.2 Czujnik temperatury MLX90614
- 3.3 4-przyciskowa klawiatura
- 3.4 Wyświetlacz LCD z konwerterem I2C HD44780

Analiza struktury zastosowanego oprogramowania

- 4.1 Połączenie z czujnikiem temperatury MLX90614
- 4.2 Połączenie z wyświetlaczem LCD HD44780
- 4.3 Synchroniczna współpraca LCD i czujnika temperatury z wykorzystaniem mikrokontrolera Arduino

Uruchomienie projektu i skalibrowanie urządzenia

- 5.1 Proces uruchomienia
- 5.2 Kalibracja urządzenia

Wykonanie testów i dokonanie odpowiednich pomiarów

- 6.1 Opis metodyki testowania
- 6.2 Przygotowanie do testów
- 6.3 Przebieg testów
- 6.4 Dokonanie pomiarów
- 6.5 Analiza wyników

Instrukcja użytkowania

- 7.1 Krótki opis pirometru i jego przeznaczenia
- 7.2 Ostrzeżenia dotyczące pomiarów wysokich temperatur/kontaktu z gorącymi obiektami
- 7.3 Podłączenie pirometru do źródła zasilania
- 7.4 Opcjonalna zmiana parametrów (emisyjność, odległość dokonywania pomiaru)
- 7.5 Czyszczenie powierzchni czujnika
- 7.6 Informacje o przechowywaniu
- 7.7 Typowe problemy (np. brak odczytu, błędne wyniki) i ich możliwe rozwiązania

Podsumowanie i Wnioski

Bibliografia

- [1] Sanchez, Julio; Canton, Maria P. (2007) "Microcontroller Programming: the Microchip PIC. CRC Press."
- [2] ElektronikaB2B "Arduino jak wybrać i kupić?"
 https://elektronikab2b.pl/technika/50150-arduino-jak-wybrac-i-kupic