PROGRAMMING LANGUAGES AND COMPUTATION

Week 5: Regular Languages

- ** 1. Suppose $M = (Q, \Sigma, \delta, q_0, F)$ is a DFA. Construct a DFA \overline{M} with $L(\overline{M}) = \{w \in \Sigma^* \mid w \notin L(M)\}$. You will not be able to answer this question with a diagram.
- ** 2.
- (a) Given a word $w \in \Sigma^*$, and a letter $a \in \Sigma$, let $erase_a(w)$ be the word w but with any occurrences of a erased. For example, for alphabet $\Sigma = \{0, 1, 2\}$:

$$\begin{array}{lll} \mathsf{erase}_1(01211210012) &=& 022002 \\ \mathsf{erase}_1(101001222100) &=& 00022200 \\ \mathsf{erase}_2(101001222100) &=& 101001100 \\ \mathsf{erase}_2(101001100) &=& 101001100 \end{array}$$

Define a function $\operatorname{erase}_a(R)$ that takes a regular expression R over Σ as input and returns a new regular expression S such that:

$$L(S) = \{ erase_a(w) \mid w \in L(R) \}$$

You need not justify your answer.

- (b) Conclude that, if X is a regular language over Σ and $a \in \Sigma$, then $\{erase_a(w) \mid w \in X\}$ is also a regular language over Σ .
- ** 3. Let rev(w) be the reverse of the word w, e.g. rev(abccd) = dccba and $rev(\epsilon) = \epsilon$. Show that language $S = \{w \in \{a, b\}^* \mid w = rev(w)\}$ is not regular.
- ** 4. Show that the language $\{a^n b^m \mid n = 2 * m\}$ over $\{a, b\}$ is not regular.
- *** 5. Prove that the language of squares (written in unary), $\{1^{n^2} \mid n \in \mathbb{N}\}$, is not regular.
- *** 6. Show that the following language over {0, 1} is regular and justify your answer:

$$\{0^k u 0^k \mid k \geq 1 \land u \in \{0,1\}^*\}$$