system pl wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2023/11/02

INFORMATION

Brief

System wrapper for pl only for zc702 board.

License MIT

Copyright 2023 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

system_pl_wrapper

```
module system_pl_wrapper #(
parameter
FPGA_TECHNOLOGY
=
0,
parameter
FPGA_FAMILY
=
0,
parameter
SPEED_GRADE
```

System wrapper for pl only for zc702 board.

Parameters

FPGA TECHNOLOGY Type of FPGA, such as Ultrascale, Arria 10. 1 is for 7 series.

parameter

FPGA_FAMILY Sub type of fpga, such as GX, SX, etc. 4 is for zynq.

parameter

SPEED_GRADE Number that corresponds to the ships recommended

parameter speed. 10 is for -1.

DEV_PACKAGE Specify a number that is equal to the manufactures

parameter package. 14 is for cl.

DELAY_REFCLK_FREQUENCY

parameter

Reference clock frequency used for ad_data_in instances

ADC_INIT_DELAY Initial Delay for the ADC

parameter

DAC_INIT_DELAY Initial Delay for the DAC

oarameter

Ports

axi_aclk	AXI Lite control bus
axi_aresetn	AXI Lite control bus
s_axi_awvalid	AXI Lite control bus
s_axi_awaddr	AXI Lite control bus
s_axi_awready	AXI Lite control bus
s_axi_awprot	AXI Lite control bus
s_axi_wvalid	AXI Lite control bus
s_axi_wdata	AXI Lite control bus
s_axi_wstrb	AXI Lite control bus
s_axi_wready	AXI Lite control bus
s_axi_bvalid	AXI Lite control bus
s_axi_bresp	AXI Lite control bus
s_axi_bready	AXI Lite control bus

s axi arvalid AXI Lite control bus s_axi_araddr AXI Lite control bus s_axi_arready AXI Lite control bus s_axi_arprot AXI Lite control bus s_axi_rvalid AXI Lite control bus s_axi_rready AXI Lite control bus s axi rresp AXI Lite control bus s axi rdata AXI Lite control bus adc_dma_irq fmcomms5 ADC ira dac_dma_irq fmcomms5 DAC irq delay_clk fmcomms5 delay clock

fmcomms5 0 rx clk rx clk in 0 p rx_clk_in_0_n fmcomms5 0 rx clk rx frame in 0 p fmcomms5 0 rx frame rx_frame_in_0_n fmcomms5 0 rx frame rx_data_in_0_p fmcomms5 0 rx data fmcomms5 0 rx data rx_data_in_0_n tx clk out 0 p fmcomms5 0 tx clk tx_clk_out_0_n fmcomms5 0 tx clk tx_frame_out_0_p fmcomms5 0 tx frame fmcomms5 0 tx frame tx_frame_out_0_n fmcomms5 0 tx data tx_data_out_0_p tx_data_out_0_n fmcomms5 0 tx data txnrx_0 fmcomms5 0 txnrx enable 0 fmcomms5 0 enable up_enable_0 fmcomms5 0 enable input up_txnrx_0 fmcomms5 0 txnrx select input

tdd_sync_0_t

tdd_sync_0_i tdd_sync_0_o

fmcomms5 1 rx clk rx clk in 1 p rx_clk_in_1_n fmcomms5 1 rx clk rx_frame_in_1_p fmcomms5 1 rx frame rx_frame_in_1_n fmcomms5 1 rx frame rx data in 1 p fmcomms5 1 rx data fmcomms5 1 rx data rx_data_in_1_n tx clk out 1 p fmcomms5 1 tx clk tx_clk_out_1_n fmcomms5 1 tx clk tx_frame_out_1_p fmcomms5 1 tx frame fmcomms5 1 tx frame tx_frame_out_1_n fmcomms5 1 tx data tx_data_out_1_p

fmcomms5 0 TDD sync i/o fmcomms5 0 TDD sync i/o

fmcomms5 0 TDD sync i/o

tx_data_out_1_n fmcomms5 1 tx data txnrx_1 fmcomms5 1 txnrx enable 1 fmcomms5 1 enable up_enable_1 fmcomms5 1 enable input up_txnrx_1 fmcomms5 1 txnrx select input tdd_sync_1_t fmcomms5 1 TDD sync i/o tdd_sync_1_i fmcomms5 1 TDD sync i/o tdd sync 1 o fmcomms5 1 TDD sync i/o adc m dest axi awaddr fmcomms5 ADC DMA adc_m_dest_axi_awlen fmcomms5 ADC DMA adc_m_dest_axi_awsize fmcomms5 ADC DMA adc_m_dest_axi_awburst fmcomms5 ADC DMA adc m dest axi awprot fmcomms5 ADC DMA adc m dest axi awcache fmcomms5 ADC DMA adc_m_dest_axi_awvalid fmcomms5 ADC DMA adc m dest axi awready fmcomms5 ADC DMA adc_m_dest_axi_wdata fmcomms5 ADC DMA adc m dest axi wstrb fmcomms5 ADC DMA adc m dest axi wready fmcomms5 ADC DMA adc_m_dest_axi_wvalid fmcomms5 ADC DMA adc_m_dest_axi_wlast fmcomms5 ADC DMA adc m dest axi bvalid fmcomms5 ADC DMA adc_m_dest_axi_bresp fmcomms5 ADC DMA adc m dest axi bready fmcomms5 ADC DMA dac_m_src_axi_arready fmcomms5 DAC DMA dac m src axi arvalid fmcomms5 DAC DMA dac_m_src_axi_araddr fmcomms5 DAC DMA dac m src axi arlen fmcomms5 DAC DMA dac_m_src_axi_arsize fmcomms5 DAC DMA dac m src axi arburst fmcomms5 DAC DMA dac_m_src_axi_arprot fmcomms5 DAC DMA dac_m_src_axi_arcache fmcomms5 DAC DMA dac_m_src_axi_rdata fmcomms5 DAC DMA dac_m_src_axi_rready fmcomms5 DAC DMA dac_m_src_axi_rvalid fmcomms5 DAC DMA dac m src axi rresp fmcomms5 DAC DMA dac_m_src_axi_rlast fmcomms5 DAC DMA iic sda fmc i2c for fmc iic_scl_fmc i2c for fmc

i2c for fmc

iic2intc_irpt

INSTANTIANTED MODULES

iic_sda_iobuf

```
ad_iobuf #(

DATA_WIDTH(1)
) iic_sda_iobuf ( .dio_t (sda_t), .dio_i (sda_o), .dio_o (sda_i), .dio_p (sda_i)
```

Tristate i2c sda

iic scl iobuf

```
ad_iobuf #(

DATA_WIDTH(1)
) iic_scl_iobuf ( .dio_t (scl_t), .dio_i (scl_o), .dio_o (scl_i), .dio_p (scl_o)
```

Tristate i2c scl

inst_dma_rstgen

```
dma_rstgen inst_dma_rstgen (
    slowest_sync_clk(delay_clk),
    ext_reset_in(axi_aresetn),
    aux_reset_in(1'b1),
    mb_debug_sys_rst(1'b0),
    dcm_locked(1'b1),
    mb_reset(),
    bus_struct_reset(),
    peripheral_reset(),
    interconnect_aresetn(m_axi_aresetn)
)
```

Generate a new DMA reset based on delay clock.

inst_ad9361x2_pl_wrapper

```
ad9361x2_pl_wrapper #(

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),
```

```
SPEED_GRADE(SPEED_GRADE),

DEV_PACKAGE(DEV_PACKAGE),

ADC_INIT_DELAY(ADC_INIT_DELAY),

DAC_INIT_DELAY(DAC_INIT_DELAY),

DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY)

inst_ad9361x2_pl_wrapper ( .axi_aclk(axi_aclk), .axi_aresetn(axi_aresetn))
```

Module instance of inst_ad9361x2_pl_wrapper for the fmcomms5 device.

inst_axi_crossbar_pl

```
axi_crossbar_pl inst_axi_crossbar_pl (
aclk(axi_aclk),
aresetn(axi_aresetn),
s_axi_awaddr(s_axi_awaddr),
s_axi_awprot(s_axi_awprot),
s_axi_awvalid(s_axi_awvalid),
s_axi_awready(s_axi_awready),
s_axi_wdata(s_axi_wdata),
s_axi_wstrb(s_axi_wstrb),
s_axi_wvalid(s_axi_wvalid),
s_axi_wready(s_axi_wready),
s_axi_bresp(s_axi_bresp),
s_axi_bvalid(s_axi_bvalid),
s_axi_bready(s_axi_bready),
s_axi_araddr(s_axi_araddr),
s_axi_arprot(s_axi_arprot),
s_axi_arvalid(s_axi_arvalid),
s_axi_arready(s_axi_arready),
s_axi_rdata(s_axi_rdata),
s_axi_rresp(s_axi_rresp),
s_axi_rvalid(s_axi_rvalid),
s_axi_rready(s_axi_rready),
m_axi_awaddr({iic_fmc_axi_awaddr, connect_axi_awaddr}),
m_axi_awprot({iic_fmc_axi_awprot, connect_axi_awprot}),
```

```
m_axi_awvalid({iic_fmc_axi_awvalid, connect_axi_awvalid}),
m_axi_awready({iic_fmc_axi_awready, connect_axi_awready}),
m_axi_wdata({iic_fmc_axi_wdata, connect_axi_wdata}),
m_axi_wstrb({iic_fmc_axi_wstrb, connect_axi_wstrb}),
m_axi_wvalid({iic_fmc_axi_wvalid, connect_axi_wvalid}),
m_axi_wready({iic_fmc_axi_wready, connect_axi_wready}),
m_axi_bresp({iic_fmc_axi_bresp, connect_axi_bresp}),
m_axi_bvalid({iic_fmc_axi_bvalid, connect_axi_bvalid}),
m_axi_bready({iic_fmc_axi_bready, connect_axi_bready}),
m_axi_araddr({iic_fmc_axi_araddr, connect_axi_araddr}),
m_axi_arprot({iic_fmc_axi_arprot, connect_axi_arprot}),
m_axi_arvalid({iic_fmc_axi_arvalid, connect_axi_arvalid}),
m_axi_arready({iic_fmc_axi_arready, connect_axi_arready}),
m_axi_rdata({iic_fmc_axi_rdata, connect_axi_rdata}),
m_axi_rresp({iic_fmc_axi_rresp, connect_axi_rresp}),
m_axi_rvalid({iic_fmc_axi_rvalid, connect_axi_rvalid}),
m_axi_rready({iic_fmc_axi_rready, connect_axi_rready})
```

Module instance of axi crossbar pl for the fmcomms5 device.

inst_axi_iic_fmc

```
axi_iic_fmc inst_axi_iic_fmc (
    s_axi_aclk(axi_aclk),
    s_axi_aresetn(axi_aresetn),
    iic2intc_irpt(iic2intc_irpt),
    s_axi_awaddr(iic_fmc_axi_awaddr[8:0]),
    s_axi_awvalid(iic_fmc_axi_awvalid),
    s_axi_awready(iic_fmc_axi_awready),
    s_axi_wdata(iic_fmc_axi_wdata),
    s_axi_wstrb(iic_fmc_axi_wstrb),
    s_axi_wvalid(iic_fmc_axi_wvalid),
    s_axi_wready(iic_fmc_axi_wvalid),
    s_axi_wready(iic_fmc_axi_wready),
    s_axi_bresp(iic_fmc_axi_bresp),
    .
```

```
s_axi_bvalid(iic_fmc_axi_bvalid),
s_axi_bready(iic_fmc_axi_bready),
s_axi_araddr(iic_fmc_axi_araddr[8:0]),
s_axi_arvalid(iic_fmc_axi_arvalid),
s_axi_arready(iic_fmc_axi_arready),
s_axi_rdata(iic_fmc_axi_rdata),
s_axi_rresp(iic_fmc_axi_rresp),
s_axi_rvalid(iic_fmc_axi_rvalid),
s_axi_rready(iic_fmc_axi_rready),
sda_i(sda_i),
sda_o(sda_o),
sda_t(sda_t),
scl_i(scl_i),
scl_o(scl_o),
scl_t(scl_t),
gpo()
```

Module instance of axi_iic_fmc for the fmcomms5 device.