Aufgabe 4

Zu zeigen: A ist entscheidbar

 $A \leq B$ und B rekursiv aufzählbar $\Longrightarrow A$ ist auch rekursiv aufzählbar (Lemma von Reduktionen) - - - - ①

 $A \leq B$ und $B \leq \overline{A} \Longrightarrow A \leq \overline{A}$ (nach Tutoraufgabe 2a von 4. Tutu
orium, also Transitivität von Reduktionen)

 $A \leq \overline{A} \Longrightarrow \overline{A} \leq A$ (nach Tutoraufgabe 2b von 4. Tutuorium) - - - - 2

- ① und ② $\Longrightarrow \overline{A}$ ist auch rekursiv aufzählbar - - ③
- 1 und 3 \Longrightarrow A ist entscheidbar

Aufgabe 5

Zu zeigen: $\mathbf{H}_{\varepsilon} \leq \mathbf{L}_{111}$ Sei ω die Eingabe für \mathbf{H}_{ε}

- Wenn ω keine gültige Gödelnummer ist, so sei $f(\omega) = \omega$
- Falls $\omega = \langle M \rangle$ für eine **TM** M, so sei $f(\omega)$ die Gödelnummer einer TM M^* mit der folgenden Eigenschaften:

 M^* überprüft, ob die Eingabe mit 111 endet.

Falls ja, löscht M^* die Eingabe und simuliert M mit der Eingabe ε . Ansonsten geht M^* in eine Endlosschleife.

Korrektheit:

- Falls ω keine Gödelnummer ist, ist die Korrektheit klar
- Sei nun $\omega = \langle M \rangle$ für eine **TM** und sei $f(\omega) = \langle M^* \rangle$

Es gilt: $\omega \in \mathbf{H}_{\varepsilon}$

- \Longrightarrow M hält auf der Eingabe ε
- $\implies M^*$ hält auf der Eingabe, die mit 111 endet.
- $\implies \langle M^* \rangle \in \mathbf{L}_{111}$
- $\Longrightarrow f(\omega) \in \mathbf{L}_{111}$

 $\omega \notin \mathbf{H}_{\varepsilon}$

- \Longrightarrow M hält nicht auf der Eingabe ε
- $\implies M^*$ hält nicht auf der Eingabe, die mit 111 enden
- $\implies \langle M^* \rangle \notin \mathbf{L}_{111}$
- $\implies f(\omega) \notin \mathbf{L}_{111}$

Aufgabe 6

a)

 $L_{\mathbb{P}}$ ist unentscheidbar.

Wir beweisen es durch Satz von Rice.

$$S = \{ f_M \mid f_M(\mathbb{P}) = 1, \ f_M(\Sigma^* \backslash \mathbb{P}) = 0 \}$$

 $L_{\mathbb{P}} = L(S)$

- $= \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$
- $= \{\langle M \rangle \mid M \text{ entscheidet die Menge der Binärdarstellugungen der Primzahlen.} \}$

• $S \neq \emptyset$:

Es existiert eine TM M_{10} mit:

 M_{10} kann 2 (deren Binärdarstellung ist (10) entscheiden. D.h. M_{10} akzeptiert 10. Ansonsten verwirft M_{10} .

$$f_{M_{10}} \in S \Longrightarrow S \neq \emptyset$$

• $S \neq R$

Es existiert so eine TM $M_{\neg(10)}$ mit:

 $M_{\neg(10)}$ kann auch 2 (deren Binärdarstellung ist 10) entscheiden. Aber im Fall verwirft $M_{\neg(10)}$ 10. Ansonsten akzeptiert $M_{\neg(10)}$ immer.

$$f_{M_{\neg(10)}} \in R \backslash S \Longrightarrow S \neq R$$

Nach Satz von Rice ist $L_{\mathbb{P}}$ unentscheidbar.

b)

Wir definieren $L_{comp} = \{ \langle M_1 \rangle \ \langle M_2 \rangle \mid L(M_1) = \overline{L(M_2)} \}$

Zu Zeigen: $H_{\epsilon} \leq L_{comp}$

Beschreibung der Funktion f:

Sei w die Eingabe für H_{ϵ} .

- Wenn w keine Gödelnummer ist, so sei f(w) = w.
- Falls $w = \langle M \rangle$ für ein TM M, so sei f(w) die Gödelnummer von TM M_1^* und M_2^* , die die folgenden Eigenschaft haben:
 - M_1^* lösche die Eingabe und simuliert M auf ϵ . Falls M in den Endzustand läuft(M hält), **schreibt** M_1^* **ein 1 auf dem Band**.
 - M_2^* lösche die Eingabe und simuliert M auf ϵ . Falls M in den Endzustand läuft(M hält), dann **geht** M_2^* **in eine Endlosschleife**.

Korrektheit:

$$w \in H_{\epsilon} \Longrightarrow M$$
 hält auf ϵ

$$\Longrightarrow M_1^* \ akzeptiert \ die \ Einegabe. \ M_2^* \ akzeptiert \ dieselbe \ Eingabe \ nicht.$$

$$\Longrightarrow \langle M_1^* \rangle \ \langle M_2^* \rangle \in L_{comp}$$

$$\Longrightarrow f(w) \in L_{comp}$$

$$w \notin H_{\epsilon} \Longrightarrow M \ \text{hält nicht auf } \epsilon$$

$$\Longrightarrow M_1^* \ akzeptiert \ alle \ Einegabenicht. \ M_2^* \ akzeptiert \ alle \ Eingabe \ nicht.$$

$$\Longrightarrow \langle M_1^* \rangle \ \langle M_2^* \rangle \notin L_{comp}$$

$$\Longrightarrow f(w) \notin L_{comp}$$

Daher wird $H_{\epsilon} \leq L_{comp}$ zeigt. Da H_{ϵ} nicht rekursiv ist, ist L_{comp} nicht rekursiv.

Aufgabe 7

a)

Zu zeigen:

L ist rekursiv aufzählbar \iff L = Def(f)={x | f(x) \neq \perp}

" \Rightarrow " Sei A ein Aufzähler für L. Wir konstruieren eine TM M, die L erkennt. Bei Eingabe w arbeitet M wir folgt:

M simuliert A mit Hilfe einer Spur, welche die Rolle des Druckers übernimmt. Immer wenn ein neues Wort gedruckt worden ist, vergleicht M dieses Wort mit w und hält bei Übereinstimmung auf.

Daher berechnet TM M die Funktion f_M mit der Form: $\forall x \in L, f_M(x) \neq \bot$

" \Leftarrow " Sei f eine berechenbare Funktion für $S = \{f \mid \forall x \in L, \ f(x) \neq \bot\}$ Für die Funktion f existiert eine TM M', die f berechnet. Dann konstruieren wir ein Aufzähler A' durch M': Für $i = 1, 2, 3 \cdots$

A' simuliere je i Schritte von M' auf jedem Wort aus $\{w_1, w_2, \dots, w_i\}$. Wann M' immer dabei auf eines der Wörter hält, so drucke es aus. Somit ist A' ein Aufzähler von L.

b)

Zu zeigen:

L ist rekursiv aufzählbar \iff L = Bild(f)={f(x) | x \in \{0,1\}^* \} oder L={}

" \Rightarrow " Sei L rekursiv aufzählbar. Damit gibt es Für L ein Aufzähler A. Für $\{0,1\}^*$ steht eine kanonische Reihenfolge. Sei $x \in \{0,1\}^*$ in i-Position Konstruiere ein TM M mit folgenden Eigenschaft:

- 1. Suche, welche Stelle die Eingabe in der kanonischen Reihenfolge steht, z.B. i-te Stelle.
- 2. Simuliere A und druck das i-te Wort von L aus. Falls A hält(D.h. A hat alle Wörter von L ausgegeben), dann simuliere A nochmal, aber zähle weiter. (Z.B. Das letzte Wort aus A ist n-te Wort. Wenn wir nochmal A simulieren, zählen wir von n+1.)
- 3. Wiederhole 2-te Schritte, bis das i-te Wort von L ausgibt.

Im Fall kann M für jeder $x \in \{0,1\}^*$ ein Wort von L finden und dann es ausgeben. Für so eine TM M existiert ein Funktion, die total berechenbar ist.