# 微积分 A (2)

姚家燕

第 20 讲

## 在听课过程中,

严禁使用与教学无关的电子产品!

# 第 19 讲回顾: 第一、二类曲线积分之间的关系

设路径  $L \subset \mathbb{R}^3$  是起点为 A, 终点为 B 的分段 光滑曲线, 其参数方程为

$$\vec{\ell}(t) = \big(x(t), y(t), z(t)\big)^T \quad (t \in [a, b]),$$

而  $\vec{F} = (F_1, F_2, F_3)^T : L \to \mathbb{R}^3$  为分段连续函数.  $\forall P \in L$ , 设 L 在点 P 处的单位切向量为

$$\vec{\tau}^0(P) = (\cos \alpha(P), \cos \beta(P), \cos \gamma(P))^T.$$

### 于是 $\forall t \in [a, b]$ , 我们有

$$\vec{\tau}^{0}(\vec{\ell}(t)) = \frac{\vec{\ell}'(t)}{\|\vec{\ell}'(t)\|} = \frac{\left(x'(t), y'(t), z'(t)\right)^{T}}{\sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}}}.$$

#### 由此立刻可得

$$\cos \alpha(\vec{\ell}(t)) = \frac{x'(t)}{\sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}},$$

$$\cos \beta(\vec{\ell}(t)) = \frac{y'(t)}{\sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}},$$

$$\cos \gamma(\vec{\ell}(t)) = \frac{z'(t)}{\sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}}.$$

注意到 
$$d\ell = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt$$
, 故  $x'(t) dt = \cos \alpha d\ell$ ,  $y'(t) dt = \cos \beta d\ell$ ,  $z'(t) dt = \cos \gamma d\ell$ .

#### 进而我们就有

$$\int_{L(A)}^{(B)} \vec{F}(\vec{\ell}) \cdot d\vec{\ell} = \int_{L(A)}^{(B)} F_1(\vec{\ell}) dx + F_2(\vec{\ell}) dy + F_3(\vec{\ell}) dz$$

$$= \int_a^b \left( F_1(\vec{\ell}(t)) x'(t) + F_2(\vec{\ell}(t)) y'(t) + F_3(\vec{\ell}(t)) z'(t) \right) dt$$

$$= \int_L \left( F_1(x, y, z) \cos \alpha + F_2(x, y, z) \cos \beta + F_3(x, y, z) \cos \gamma \right) d\ell$$

$$= \int_L (\vec{F} \cdot \vec{\tau}^0)(x, y, z) d\ell.$$

#### 评注

- 由于第二类曲线积分可以转化成第一类曲线积分,因此只要不涉及到路径时,第二类曲线积分就具有与第一类曲线积分类似的性质.
- 形式上, 我们有  $d\vec{\ell} = \vec{\tau}^0 d\ell$ , 也即  $dx = \cos \alpha d\ell du = \cos \beta d\ell dz = \cos \alpha d\ell$

 $dx = \cos \alpha \, d\ell, \ dy = \cos \beta \, d\ell, \ dz = \cos \gamma \, d\ell.$ 

# 回顾: 第二类曲面积分

- 连通光滑曲面的定向: 可定向曲面的定义及其刻画, 定向曲面. 对于一般的分片光滑曲面, 可以对于每个连通分支分片考虑.
- 第二类曲面积分的定义及其直观意义.
- 假设  $\Omega \subset \mathbb{R}^3$  为开集,  $\vec{F} : \Omega \to \mathbb{R}^3$  分片连续,  $S^+ \subset \Omega$  为定向曲面, 则  $\iint_{S^+} \vec{F}(x,y,z) \cdot d\vec{\sigma}$  存在.
- 若 S 为封闭曲面, 通常将外侧取为正侧并将第二类曲面积分记作  $\iint \vec{F}(x,y,z) \cdot d\vec{\sigma}$ .

# 回顾: 第一、二类曲面积分间的关系

 $\forall P \in S$ , 假设  $\vec{n}_{S}^{0}(P)$  是由定向曲面  $S^{+}$  的定向 在点 P 处所确定的单位法向量, 则由定义知

$$\iint_{S^+} \vec{F}(x, y, z) \cdot d\vec{\sigma} = \lim_{d \to 0} \sum_{j=1}^k \vec{F}(X_j) \cdot \vec{S}_j$$

$$= \lim_{d \to 0} \sum_{j=1}^k \vec{F}(X_j) \cdot \vec{n}_S^0(X_j) |S_j|$$

$$= \iint_{S} (\vec{F} \cdot \vec{n}_S^0)(x, y, z) d\sigma.$$

形式上, 我们有  $d\vec{\sigma} = \vec{n}_S^0(x, y, z) d\sigma$ .

若记 
$$\vec{n}_S^0 = (\cos \alpha, \cos \beta, \cos \gamma)^T$$
,则我们有
$$\iint_{S^+} \vec{F}(x, y, z) \cdot d\vec{\sigma} = \iint_{S} (\vec{F} \cdot \vec{n}_S^0)(x, y, z) d\sigma$$
$$= \iint_{S} \left( F_1(x, y, z) \cos \alpha + F_2(x, y, z) \cos \beta + F_3(x, y, z) \cos \gamma \right) d\sigma.$$

现定义  $dy \wedge dz = \cos \alpha \, d\sigma$ ,  $dz \wedge dx = \cos \beta \, d\sigma$ ,  $dx \wedge dy = \cos \gamma d\sigma$ , 于是我们有  $\iint \vec{F}(x,y,z) \cdot d\vec{\sigma} = \iint \left( F_1(x,y,z) \, dy \wedge dz \right)$ 

 $+F_2(x,y,z)\,\mathrm{d}z\wedge\mathrm{d}x+F_3(x,y,z)\,\mathrm{d}x\wedge\mathrm{d}y$ .

# 回顾: 第二类曲面积分的性质

当不涉及到曲面的定向时,第二类曲面积分 具有与第一类曲面积分类似的性质.

#### • 曲面的有向性:

$$\iint_{S^{+}} \vec{F}(x, y, z) \cdot d\vec{\sigma} = -\iint_{S^{-}} \vec{F}(x, y, z) \cdot d\vec{\sigma}.$$

• 曲面的可加性: 如果曲面S由 $S_1, S_2$ 所组成, 并且 $S_1, S_2$ 的定向由S的定向诱导,则

$$\iint\limits_{S^+} \vec{F}(x,y,z) \cdot \mathrm{d}\vec{\sigma} = \iint\limits_{S^+} \vec{F}(x,y,z) \cdot \mathrm{d}\vec{\sigma} + \iint\limits_{S^+} \vec{F}(x,y,z) \cdot \mathrm{d}\vec{\sigma}.$$

# 回顾: 第二类曲面积分的计算

设  $S \subset \mathbb{R}^3$  为光滑曲面, 其参数方程为

$$\begin{cases} x = x(u, v), \\ y = y(u, v), & (u, v) \in D \subset \mathbb{R}^2, \\ z = z(u, v), \end{cases}$$

其中 D 为 Jordan 可测, x,y,z 连续可微且

$$\vec{n} = \begin{pmatrix} \frac{\partial x}{\partial u} \\ \frac{\partial y}{\partial u} \\ \frac{\partial z}{\partial u} \end{pmatrix} \times \begin{pmatrix} \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{D(y,z)}{D(u,v)} \\ \frac{D(z,x)}{D(u,v)} \\ \frac{D(x,y)}{D(u,v)} \end{pmatrix} \neq \vec{0}.$$

设 $\vec{F} = (F_1, F_2, F_3)^T$ 在S的邻域上分片连续,则

$$\iint_{S^{+}} \vec{F}(x, y, z) \cdot d\vec{\sigma} = \iint_{S^{+}} \left( F_{1} \, dy \wedge dz + F_{2} \, dz \wedge dx + F_{3} \, dx \wedge dy \right)$$

$$= \pm \iint_{D} \left( F_{1}(x(u, v), y(u, v), z(u, v)) \frac{D(y, z)}{D(u, v)} + F_{2}(x(u, v), y(u, v), z(u, v)) \frac{D(z, x)}{D(u, v)} + F_{3}(x(u, v), y(u, v), z(u, v)) \frac{D(x, y)}{D(u, v)} \right) dudv$$

$$= \pm \iint_{D} \begin{vmatrix} F_{1} & F_{2} & F_{3} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \end{vmatrix} dudv,$$

$$= \pm \iint_{D} \begin{vmatrix} F_{1} & F_{2} & F_{3} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \end{vmatrix} dudv,$$

其中 $\pm$ 由任意一点处,  $\vec{n}$ 与 $S^+$ 是否同向来定.

#### 形式上, 我们有

$$dy \wedge dz = \frac{D(y, z)}{D(u, v)} du \wedge dv = \pm \frac{D(y, z)}{D(u, v)} du dv,$$

$$dz \wedge dx = \frac{D(z, x)}{D(u, v)} du \wedge dv = \pm \frac{D(z, x)}{D(u, v)} du dv,$$

$$dx \wedge dy = \frac{D(x, y)}{D(u, v)} du \wedge dv = \pm \frac{D(x, y)}{D(u, v)} du dv,$$

其中 $\pm$ 由任意一点处, $\vec{n}$ 与 $S^+$ 是否同向来定.

# 回顾: 计算第二类曲面积分的步骤

- •给出定向曲面  $S^+$  的参数方程. 有时还需要将 S 分片, 在每片上给出各自的参数表示.
- 在曲面上任取一个定点  $P_0$ , 并将相应的参数记作  $(u_0, v_0)$ . 利用参数方程来计算法向量

$$\vec{n}(u_0, v_0) = \vec{r}'_u(u_0, v_0) \times \vec{r}'_v(u_0, v_0),$$

随后再将  $\vec{n}(u_0, v_0)$  与  $S^+$  在点  $P_0$  处的方向进行比较, 以便确定二重积分前的正负号.

# 第 20 讲

## §5. 平面向量场 Green 公式

#### 1. Green 公式

定义 1. 称  $\Omega \subset \mathbb{R}^2$  为单连通集, 若  $\Omega$  中的任意 闭曲线所围的区域仍包含在  $\Omega$  中 (也即  $\Omega$  中的任意闭曲线可连续地收缩成为一点). 若  $\Omega$  不为 单连通集, 则称之为复连通集.

例 1.  $\mathbb{R}^2$  中单位圆盘  $B(\mathbf{0},1)$  为单连通集, 但是 去心单位圆盘  $\mathring{B}(\mathbf{0},1)$  不为单连通.

定理 1. (Green 公式) 假设  $\Omega \subset \mathbb{R}^2$  为单连通的 有界闭区域, 它的边界  $\partial\Omega$  为分段光滑闭曲线, 该曲线的正方向为逆时针方向, 记  $\vec{n}^0$  为  $\partial\Omega$  的 单位外法向量. 如果  $\vec{F} = (F_1, F_2)^T : \Omega \to \mathbb{R}^2$  为 连续可导的向量值函数. 则

$$\oint_{\partial\Omega} \vec{F} \cdot \vec{n}^0 \, d\ell = \iint_{\Omega} \left( \frac{\partial F_1}{\partial x} (x, y) + \frac{\partial F_2}{\partial y} (x, y) \right) dx \, dy.$$

## 评注

•  $\forall P \in \partial \Omega$ , 假设  $\vec{\tau}^0(P) = (\cos \alpha, \sin \alpha)^T$  为  $\partial \Omega$  在点 P 处的单位切向量, 则我们有

$$\vec{n}^0(P) = \Big(\cos\big(\alpha - \frac{\pi}{2}\big), \sin\big(\alpha - \frac{\pi}{2}\big)\Big)^T = (\sin\alpha, -\cos\alpha)^T.$$

又  $dx = \cos \alpha \, d\ell$ ,  $dy = \sin \alpha \, d\ell$ , 于是我们有  $\vec{F} \cdot \vec{n}^0 \, d\ell = (F_1 \sin \alpha - F_2 \cos \alpha) \, d\ell = F_1 \, dy - F_2 \, dx$ .

从而 Green 公式又可以表述成

$$\oint_{\partial\Omega^+} F_1 \, \mathrm{d}y - F_2 \, \mathrm{d}x = \iint_{\Omega} \left( \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} \right) \mathrm{d}x \, \mathrm{d}y.$$

• 
$$|\Omega| = \iint_{\Omega} 1 dx dy = \oint_{\partial \Omega^+} x dy = -\oint_{\partial \Omega^+} y dx = \frac{1}{2} \oint_{\partial \Omega^+} x dy - y dx.$$

• 若将 F<sub>2</sub> 换成 -F<sub>1</sub>, F<sub>1</sub> 换成 F<sub>2</sub>, 则

$$\oint_{\partial\Omega} \vec{F} \cdot d\vec{\ell} = \oint_{\partial\Omega^+} F_1 dx + F_2 dy = \iint_{\Omega} \left( \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy.$$

• (外微分) 设  $\omega = F_1 dx + F_2 dy$ . 定义

$$d\omega := dF_1 \wedge dx + dF_2 \wedge dy$$

$$= \left(\frac{\partial F_1}{\partial x} dx + \frac{\partial F_1}{\partial y} dy\right) \wedge dx + \left(\frac{\partial F_2}{\partial x} dx + \frac{\partial F_2}{\partial y} dy\right) \wedge dy$$

$$= \frac{\partial F_1}{\partial y} dy \wedge dx + \frac{\partial F_2}{\partial x} dx \wedge dy$$

$$= \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dx \wedge dy.$$

借助外微分, Green 公式变为

$$\iint_{\Omega} d\omega = \iint_{\Omega} \left( \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy$$
$$= \oint_{\partial \Omega^+} F_1 dx + F_2 dy = \oint_{\partial \Omega^+} \omega.$$

上式形式上与 Newton-Leibniz 公式极为类似:

$$\int_a^b \mathrm{d}F(x) = \int_a^b F'(x) \, \mathrm{d}x = F \Big|_a^b.$$

这里区间 [a,b] 的边界为  $\{a,b\}$ .



# 最简单情形下的证明

假设 
$$\Omega = [a, b] \times [c, d]$$
. 则我们有

$$\iint_{\Omega} \left( \frac{\partial F_1}{\partial x}(x, y) + \frac{\partial F_2}{\partial y}(x, y) \right) dxdy$$

$$= \int_{c}^{d} \left( \int_{a}^{b} \frac{\partial F_1}{\partial x}(x, y) dx \right) dy + \int_{a}^{b} \left( \int_{c}^{d} \frac{\partial F_2}{\partial y}(x, y) dy \right) dx$$

$$= \int_{c}^{d} \left( F_1(b, y) - F_1(a, y) \right) dy + \int_{a}^{b} \left( F_2(x, d) - F_2(x, c) \right) dx$$

$$= \int_{a}^{b} \left( -F_2(x, c) \right) dx + \int_{c}^{d} F_1(b, y) dy + \int_{b}^{a} \left( -F_2(x, d) \right) dx$$

$$+ \int_{c}^{c} F_1(a, y) dy.$$

$$\Leftrightarrow A = (a, c), B = (b, c), C = (b, d), D = (a, d).$$

则  $\partial\Omega$  的边界由  $\overrightarrow{AB}$ ,  $\overrightarrow{BC}$ ,  $\overrightarrow{CD}$ ,  $\overrightarrow{DA}$  组成, 从而

$$\oint_{\partial\Omega^{+}} F_{1} dy - F_{2} dx = \oint_{\overrightarrow{AB}} F_{1} dy - F_{2} dx + \oint_{\overrightarrow{BC}} F_{1} dy - F_{2} dx 
+ \oint_{\overrightarrow{CD}} F_{1} dy - F_{2} dx + \oint_{\overrightarrow{DA}} F_{1} dy - F_{2} dx = \oint_{a}^{b} \left( -F_{2}(x,c) \right) dx 
+ \oint_{c}^{d} F_{1}(b,y) dy + \int_{b}^{a} \left( -F_{2}(x,d) \right) dx + \int_{d}^{c} F_{1}(a,y) dy,$$

由此可得  $\oint_{\partial\Omega^+} F_1 dy - F_2 dx = \iint_{\Omega} \left( \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} \right) dx dy.$ 

例 2. 求  $\int_{L_1^+} (1 + ye^x) dx + (x + e^x) dy$ , 其中  $L_1$  沿  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  的上半周由 A(a,0) 到 B(-a,0).

解: 设  $L^+ = L_1^+ \cup \overrightarrow{BA}$ , 并且将 L 所围成的区域记作  $\Omega$ . 则由 Green 公式可知

$$\oint_{L^{+}} (1 + ye^{x}) dx + (x + e^{x}) dy$$

$$= \iint_{\Omega} \left( -\frac{\partial (1 + ye^{x})}{\partial y} + \frac{\partial (x + e^{x})}{\partial x} \right) dxdy$$

$$= \iint_{\Omega} (-e^{x} + 1 + e^{x}) dxdy = \iint_{\Omega} 1 dxdy = \frac{\pi}{2}ab.$$

#### 另一方面, 我们也有

$$\int_{\overrightarrow{BA}} (1 + ye^x) \, dx + (x + e^x) \, dy = \int_{-a}^{a} 1 \, dx = 2a.$$

#### 由此可得

$$\int_{L_1^+} (1 + ye^x) dx + (x + e^x) dy$$

$$= \oint_{L^+} (1 + ye^x) dx + (x + e^x) dy$$

$$- \oint_{\overrightarrow{BA}} (1 + ye^x) dx + (x + e^x) dy = \frac{\pi}{2} ab - 2a.$$

例 3. 计算  $\iint_{\Omega} \sin(x^2) dx dy$ , 其中区域  $\Omega$  为三条

直线 x = y, y = 0, x = 1 所围成的三角形.

解: 令 O = (0,0), A = (1,0), B = (1,1). 则我们由 Green 公式立刻可得

$$\iint_{\Omega} \sin(x^2) \, \mathrm{d}x \mathrm{d}y = \oint_{\partial \Omega^+} \left( -y \sin(x^2) \right) \, \mathrm{d}x = \int_{\overrightarrow{OA}} \left( -y \sin(x^2) \right) \, \mathrm{d}x$$

$$+ \int_{\overrightarrow{AB}} \left( -y \sin(x^2) \right) \, \mathrm{d}x + \int_{\overrightarrow{BO}} \left( -y \sin(x^2) \right) \, \mathrm{d}x$$

$$= \int_1^0 \left( -x \sin(x^2) \right) \, \mathrm{d}x = \int_0^1 \sin(x^2) \, \mathrm{d}\left(\frac{x^2}{2}\right)$$

$$= \left( -\frac{1}{2} \cos(x^2) \right) \Big|_0^1 = \frac{1}{2} (1 - \cos 1).$$

对于复连通区域,如果规定沿它的边界的正方向行走时,上述区域在其边界的左边,则我们有:

定理 2. (Green 公式) 假设  $\Omega \subset \mathbb{R}^2$  为复连通的有界闭区域, 它的边界  $\partial\Omega$  为分段光滑的闭曲线, 且其方向取正向. 若  $\vec{F} = (F_1, F_2)^T : \Omega \to \mathbb{R}^2$  为连续可导的向量值函数, 则

$$\oint_{\partial\Omega^{+}} F_{1} dy - F_{2} dx = \iint_{\Omega} \left( \frac{\partial F_{1}}{\partial x}(x, y) + \frac{\partial F_{2}}{\partial y}(x, y) \right) dx dy,$$

$$\oint_{\partial\Omega^{+}} F_{1} dx + F_{2} dy = \iint_{\Omega} \left( \frac{\partial F_{2}}{\partial x}(x, y) - \frac{\partial F_{1}}{\partial y}(x, y) \right) dx dy.$$

定义 2. 假设  $\Omega \subset \mathbb{R}^2$  为非空开集,  $\vec{F} = (F_1, F_2)$  在  $\Omega$  上可导.  $\forall (x, y) \in \Omega$ , 定义

$$\operatorname{div} \vec{F}(x,y) = \frac{\partial F_1}{\partial x}(x,y) + \frac{\partial F_2}{\partial y}(x,y),$$
  

$$\operatorname{rot} \vec{F}(x,y) = \frac{\partial F_2}{\partial x}(x,y) - \frac{\partial F_1}{\partial y}(x,y),$$

称为  $\vec{F}$  的散度和旋度. 此时 Green 公式变为

$$\oint_{\partial\Omega} \vec{F} \cdot \vec{n}^0 \, d\ell = \oint_{\partial\Omega^+} F_1 \, dy - F_2 \, dx = \iint_{\Omega} \operatorname{div} \vec{F}(x, y) \, dx dy,$$

$$\oint_{\partial\Omega} \vec{F} \cdot d\vec{\ell} = \oint_{\partial\Omega^+} F_1 \, dx + F_2 \, dy = \iint_{\Omega} \operatorname{rot} \vec{F}(x, y) \, dx dy,$$

 $\oint_{\partial\Omega} \vec{F} \cdot d\vec{\ell} = \oint_{\partial\Omega^+} F_1 dx + F_2 dy = \iint_{\Omega} \operatorname{rot} \vec{F}(x, y) dx dy.$ 

例 4. 设  $L \subset \mathbb{R}^2$  为光滑的简单闭曲线, 所围的 区域为  $\Omega$ , 而  $\vec{n}^0 = (\cos \alpha, \cos \beta)^T$  为 L 的单 位外法向量. 求证:

$$|\Omega| = \frac{1}{2} \oint_L (x \cos \alpha + y \cos \beta) \, d\ell.$$

证明: 由 Green 公式可知

$$\frac{1}{2} \oint_{L} (x \cos \alpha + y \cos \beta) \, d\ell = \frac{1}{2} \oint_{L} (x, y)^{T} \cdot \vec{n}^{0} \, d\ell$$
$$= \frac{1}{2} \iint_{\Omega} \left( \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} \right) dx dy = \iint_{\Omega} 1 \, dx dy = |\Omega|.$$

例 5. 设  $L \subset \mathbb{R}^2$  为光滑闭曲线, 逆时针方向为正向,  $\vec{n}^0$  为 L 的单位外法向量, 而  $\vec{a}$  为固定的单位向量. 求证:  $\int_L \cos\langle \vec{n}^0, \vec{a} \rangle \, \mathrm{d}\ell = 0$ .

证明: 设 L 所围区域为  $\Omega$ . 由 Green 公式可知  $\int_{L} \cos\langle \vec{n}^{0}, \vec{a} \rangle d\ell = \int_{L} \vec{a} \cdot \vec{n}^{0} d\ell = \iint_{\Omega} (\operatorname{div} \vec{a}) dx dy = 0.$ 

作业题: 第 4.6 节第 214 页第 1 题第 (1) 小题, 第 215 页第 4 题第 (1) 小题.

## 2. 平面第二类曲线积分与路径的无关性 原函数

问题: 设  $\vec{F} = (F_1, F_2)^T$ , L 是以 A 为起点, 以 B 为终点的路径. 问第二类曲线积分

$$\int_{L(A)}^{(B)} \vec{F} \cdot d\vec{\ell} = \int_{L(A)}^{(B)} F_1(x, y) dx + F_2(x, y) dy$$

何时仅与 A, B 有关而与路径 L 无关? 若无关,则将上述积分记作  $\int_{(A)}^{(B)} \vec{F} \cdot d\vec{\ell}$ .

定理 3. 假设  $\Omega \subset \mathbb{R}^2$  为非空开集,  $\vec{F} = (F_1, F_2)^T$  在  $\Omega$  上为连续可导, 而  $A, B \in \Omega$  为两个固定点,  $L \subset \Omega$  为连接 A, B 的分段光滑曲线. 则

$$\int_{L(A)}^{(B)} \vec{F} \cdot d\vec{\ell}$$

仅依赖 A, B 而与路径 L 无关当且仅当对于  $\Omega$  中过 A, B 的任意分段光滑闭曲线  $\Gamma$ , 均有

$$\oint_{\Gamma^+} \vec{F} \cdot d\vec{\ell} = 0.$$

证明: 假设  $L_1, L_2 \subset \Omega$  为连接 A, B 的两条分段 光滑的曲线. 从 A 出发经  $L_1$  到 B 后, 再沿  $L_2$  回到 A 可得到过 A, B 的分段光滑的闭曲线  $\Gamma$ ; 而由过 A, B 的任意分段光滑闭曲线  $\Gamma$ , 也可以得到连接 A, B 的分段光滑曲线  $L_1, L_2$ . 此时

$$\oint_{\Gamma^+} \vec{F} \cdot d\vec{\ell} = \int_{L_1(A)}^{(B)} \vec{F} \cdot d\vec{\ell} - \int_{L_2(A)}^{(B)} \vec{F} \cdot d\vec{\ell}.$$

则  $\oint_{\Gamma^+} \vec{F} \cdot d\vec{\ell} = 0$  当且仅当  $\int_{L_1(A)}^{(B)} \vec{F} \cdot d\vec{\ell} = \int_{L_2(A)}^{(B)} \vec{F} \cdot d\vec{\ell}$ . 因此所证结论成立.. 定理 4. 假设  $\Omega \subset \mathbb{R}^2$  为<mark>单连通</mark>开区域, 而函数  $\vec{F} = (F_1, F_2)^T$  在  $\Omega$  上连续可导. 则下列等价:

(1) 
$$\forall (x,y) \in \Omega$$
, 均有  $\frac{\partial F_1}{\partial y}(x,y) = \frac{\partial F_2}{\partial x}(x,y)$ ;

- (2)  $\forall A, B \in \Omega$ ,  $\int_{L(A)}^{(B)} \vec{F} \cdot d\vec{\ell}$  仅与 A, B 有关, 而与  $\Omega$  中连接 A, B 的分段光滑曲线 L 无关;
- (3) 存在函数  $U:\Omega\to\mathbb{R}$  使得  $\forall (x,y)\in\Omega$ ,

$$dU(x,y) = F_1(x,y) dx + F_2(x,y) dy.$$

证明: (1)  $\Rightarrow$  (2) 对于  $\Omega$  中过 A, B 的分段光滑 闭曲线 L, 设其所围区域为  $\Omega_1$ , 由 Green 公式知

$$\oint_{L^+} \vec{F} \cdot \mathrm{d}\vec{\ell} = \oint_{L^+} F_1 \, \mathrm{d}x + F_2 \, \mathrm{d}y = \iint\limits_{\Omega_1} \Big( \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \Big) \mathrm{d}x \mathrm{d}y = 0.$$

进而由前面定理可知 (2) 成立.

(2) ⇒ (3) 固定 
$$A \in \Omega$$
.  $\forall B = (x_0, y_0) \in \Omega$ , 定义 
$$U(x_0, y_0) = \int_{(A)}^{(B)} F_1 \, \mathrm{d}x + F_2 \, \mathrm{d}y.$$

下面将证明  $dU = F_1 dx + F_2 dy$ .

固定  $(x_0, y_0) \in \Omega$ . 当  $(h, k) \to (0, 0)$  时, 我们有  $U(x_0 + h, y_0 + k) - U(x_0, y_0)$ 

$$= \int_{(x_0,y_0)}^{(x_0+h,y_0+k)} \vec{F} \cdot d\vec{\ell}$$

$$= \int_{(x_0,y_0)}^{(x_0+h,y_0)} \vec{F} \cdot d\vec{\ell} + \int_{(x_0+h,y_0)}^{(x_0+h,y_0+k)} \vec{F} \cdot d\vec{\ell}$$

 $= \int_{(A)}^{(x_0+h,y_0+k)} \vec{F} \cdot d\vec{\ell} - \int_{(A)}^{(x_0,y_0)} \vec{F} \cdot d\vec{\ell}$ 

 $= \int_{x_0}^{x_0+h} F_1(x,y_0) dx + \int_{y_0}^{y_0+k} F_2(x_0+h,y) dy$  $= F_1(x_0 + \theta_1 h, y_0)h + F_2(x_0 + h, y_0 + \theta_2 k)k \ (\theta_1, \theta_2 \in (0, 1))$  $= F_1(x_0, y_0)h + F_2(x_0, y_0)k + o(1)h + o(1)k$ 

 $= F_1(x_0, y_0)h + F_2(x_0, y_0)k + o(1)\sqrt{h^2 + k^2},$ 

于是  $dU(x_0, y_0) = F_1(x_0, y_0) dx + F_2(x_0, y_0) dy$ , 由此立刻可得 (3) 成立.

(3) 
$$\Rightarrow$$
 (1) 由于  $dU = F_1 dx + F_2 dy$ ,则我们有 
$$F_1 = \frac{\partial U}{\partial x}, \ F_2 = \frac{\partial U}{\partial y},$$

于是  $\frac{\partial^2 U}{\partial y \partial x} = \frac{\partial F_1}{\partial y}$ ,  $\frac{\partial^2 U}{\partial x \partial y} = \frac{\partial F_2}{\partial x}$ . 又  $F_1, F_2$  为连续可导, 因此  $\frac{\partial^2 U}{\partial y \partial x}$ ,  $\frac{\partial^2 U}{\partial x \partial y}$  均连续, 从而  $\frac{\partial^2 U}{\partial y \partial x} = \frac{\partial^2 U}{\partial x \partial y}$ , 进而可得  $\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}$ . 故 (1) 成立.

# 评注

• 单连通的条件不能够去掉. 例如函数  $\frac{x \, dy - y \, dx}{x^2 + y^2}$  在  $\mathbb{R}^2 \setminus \{(0,0)\}$  上满足条件 (1), 但对于单位 圆周  $L: x^2 + y^2 = 1$  (逆时针方向), 却有  $\oint_{L^+} \frac{x \, dy - y \, dx}{x^2 + y^2} = \int_0^{2\pi} \cos \varphi \, d(\sin \varphi) - \sin \varphi \, d(\cos \varphi) = 2\pi.$ 

- 仅(1) ⇒ (2) 才需要单连通条件.
- •满足  $dU = F_1 dx + F_2 dy$  的函数 U 被称为 微分形式  $F_1 dx + F_2 dy$  的一个原函数.

- 若 U 为  $F_1 dx + F_2 dy$  的一个原函数,那么 U + C 也是上述微分形式另外一个原函数,其中 C 为任意的常数.
- 前面的定理是说: 单连通区域 Ω ⊂ ℝ² 上的 微分形式 F₁ dx + F₂ dy 具有原函数当且仅当 我们有 ∂F₁ ∂y = ∂F₂ ∂x.

定理 5. 设 $\Omega \subset \mathbb{R}^2$ 为开区域,函数 $\vec{F} = (F_1, F_2)^T$ 在  $\Omega$  上连续并且使得  $F_1 dx + F_2 dy$  在  $\Omega$  上有原函数 U,则  $\forall (x_1, y_1), (x_2, y_2) \in \Omega$ ,我们有

$$\int_{(x_1,y_1)}^{(x_2,y_2)} F_1 \, \mathrm{d}x + F_2 \, \mathrm{d}y = U(x_2,y_2) - U(x_1,y_1) = U\Big|_{(x_1,y_1)}^{(x_2,y_2)}.$$

证明: 假设  $\vec{\gamma}$ :  $[0,1] \to \Omega$  为分段连续可导函数 使得  $\vec{\gamma}(0) = (x_1, y_1)$ ,  $\vec{\gamma}(1) = (x_2, y_2)$ .  $\forall t \in [0,1]$ , 记  $\vec{\gamma}(t) = (x(t), y(t))$ . 设  $\vec{\gamma}$  定义的曲线为 L, 则

$$\int_{L(x_1,y_1)}^{(x_2,y_2)} F_1 dx + F_2 dy = \int_0^1 \left( F_1(\vec{\gamma}(t))x'(t) + F_2(\vec{\gamma}(t))y'(t) \right) dt$$
$$= \int_0^1 d \left( U(\vec{\gamma}(t)) \right) = U(\vec{\gamma}(1)) - U(\vec{\gamma}(0)).$$

例 6. 计算  $\int_{L(O)}^{(B)} (e^y + \sin x) dx + (xe^y - \cos y) dy$ , 其中 L 是沿圆弧  $(x - \pi)^2 + y^2 = \pi^2$  由原点 O到点  $B(\pi, \pi)$ . 另外, 记  $A = (\pi, 0)$ .

解: 方法 1. 因 
$$\frac{\partial (e^y + \sin x)}{\partial y} = e^y = \frac{\partial (xe^y - \cos y)}{\partial x}$$
, 则 
$$\int_{L(O)}^{(B)} (e^y + \sin x) \, \mathrm{d}x + (xe^y - \cos y) \, \mathrm{d}y$$
$$= \int_{\overrightarrow{OA}} (e^y + \sin x) \, \mathrm{d}x + (xe^y - \cos y) \, \mathrm{d}y$$
$$+ \int_{\overrightarrow{AB}} (e^y + \sin x) \, \mathrm{d}x + (xe^y - \cos y) \, \mathrm{d}y$$
$$= \int_0^{\pi} (1 + \sin x) \, \mathrm{d}x + \int_0^{\pi} (\pi e^y - \cos y) \, \mathrm{d}y = 2 + \pi e^{\pi}.$$

#### 方法 2. 由题设可知

$$(e^{y} + \sin x) dx + (xe^{y} - \cos y) dy$$

$$= (e^{y} dx + xe^{y} dy) + \sin x dx - \cos y dy$$

$$= d(xe^{y} - \cos x - \sin y),$$

#### 由此我们立刻可得

$$\int_{L(O)}^{(B)} (e^y + \sin x) dx + (xe^y - \cos y) dy$$
$$= (xe^y - \cos x - \sin y)\Big|_{(0,0)}^{(\pi,\pi)} = 2 + \pi e^{\pi}.$$

作业题: 第 4.6 节第 214 页第 3.(1) 题, 第 215 页第 5 题.

例 7. 求解  $(\log y - \frac{y}{x})dx + (\frac{x}{y} - \log x)dy = 0.$ 

解: 方法 1. 由题设可知

$$0 = \left(\log y - \frac{y}{x}\right) dx + \left(\frac{x}{y} - \log x\right) dy$$

$$= \left(\log y \, dx + x \, d(\log y)\right) - \frac{x}{y} \, dy - \frac{y}{x} \, dx + \left(\frac{x}{y} - \log x\right) dy$$

$$= d(x \log y) - \left(\frac{y}{x} dx + \log x dy\right) = d(x \log y - y \log x).$$

于是常微分方程的通解为 $x \log y - y \log x = C$ ,

其中  $C \in \mathbb{R}$  为任意常数.

### 方法 2. 由题设立刻可知

$$\frac{\partial}{\partial y} \left( \log y - \frac{y}{x} \right) = \frac{1}{y} - \frac{1}{x}, \ \frac{\partial}{\partial x} \left( \frac{x}{y} - \log x \right) = \frac{1}{y} - \frac{1}{x},$$

故原方程为全微分方程,从而该方程的解满足

$$C = \int_{(1,1)}^{(x,y)} \left(\log v - \frac{v}{u}\right) du + \left(\frac{u}{v} - \log u\right) dv$$

$$= \int_{(1,1)}^{(x,1)} \left(\log v - \frac{v}{u}\right) du + \left(\frac{u}{v} - \log u\right) dv$$

$$+ \int_{(x,1)}^{(x,y)} \left(\log v - \frac{v}{u}\right) du + \left(\frac{u}{v} - \log u\right) dv$$

$$= -\int_{1}^{x} \frac{du}{u} + \int_{1}^{y} \left(\frac{x}{v} - \log x\right) dv = x \log y - y \log x,$$

其中  $C \in \mathbb{R}$  为任意常数.

例 8. 求解 (x+y) dx + (y-x) dy = 0.

解: 由题设知 0 = x dx + y dy + y dx - x dy, 故

$$0 = \frac{d(x^2 + y^2)}{2(x^2 + y^2)} + \frac{y \, dx - x \, dy}{x^2 + y^2}$$

$$= d\left(\frac{1}{2}\log(x^2 + y^2)\right) + \frac{\frac{dx}{y} + x \, d\left(\frac{1}{y}\right)}{1 + \left(\frac{x}{y}\right)^2}$$

$$= d\left(\frac{1}{2}\log(x^2 + y^2) + \arctan\frac{x}{y}\right).$$

于是原方程的解为  $\frac{1}{2}\log(x^2+y^2) + \arctan\frac{x}{y} = C$ ,

其中  $C \in \mathbb{R}$  为任意常数.

例 9. 计算  $\int_{L^+} \frac{(x+y)\,\mathrm{d}y + (x-y)\,\mathrm{d}x}{x^2+y^2}$ , 其中 L 是:

(1) 
$$(x-2)^2 + 4(y-1)^2 = 1$$
, 顺时针方向;  
(2)  $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ , 顺时针方向;

(3) 从 A(2,0) 到 B(4,4) 的有向线段.

 $\mathbf{M}$ :  $\forall (x,y) \in \mathbb{R}^2$ , 若  $x \neq 0$ , 则我们有

$$\frac{(x+y)\,dy + (x-y)\,dx}{x^2 + y^2} = \frac{d(x^2 + y^2)}{2(x^2 + y^2)} + \frac{x\,dy - y\,dx}{x^2 + y^2} 
= \frac{1}{2}d\Big(\log(x^2 + y^2)\Big) + \frac{\frac{1}{x}\,dy + y\,d(\frac{1}{x})}{1 + (\frac{y}{x})^2} 
= \frac{1}{2}d\Big(\log(x^2 + y^2)\Big) + d\Big(\arctan(\frac{y}{x})\Big).$$

45 / 63

# (1) 由于曲线

$$L: (x-2)^2 + 4(y-1)^2 = 1$$

为简单封闭曲线,它所围成的区域不包含原点且为单连通,则我们有

$$\oint_{L^{+}} \frac{(x+y)\,\mathrm{d}y + (x-y)\,\mathrm{d}x}{x^2 + y^2}$$

$$= \left. \left( \frac{1}{2} \log(x^2 + y^2) + \arctan(\frac{y}{x}) \right) \right|_{(3.1)}^{(3.1)} = 0.$$

(2) 假设曲线  $L: x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$  所围的区域为  $\Omega$ , 那么原点为  $\Omega$  的内点, 从而存在  $\delta > 0$  使得  $\Omega$ 

包含  $L_{\delta}: x^2 + y^2 = \delta^2$ . 再令  $\Omega_{\delta}$  是以  $L \cup L_{\delta}$  为 边界的区域, 其中  $L^+$  沿顺时针方向, 而  $L_\delta^+$  沿

逆时针方向. 则由 Green 公式可知

$$\oint_{L^+ \cup L_{\delta}^+} \frac{(x+y) \, \mathrm{d}y + (x-y) \, \mathrm{d}x}{x^2 + y^2} = - \iint_{\Omega_{\delta}} \left( \frac{\partial}{\partial x} \frac{x+y}{x^2 + y^2} - \frac{\partial}{\partial y} \frac{x-y}{x^2 + y^2} \right) \, \mathrm{d}x \, \mathrm{d}y$$

$$= - \iint_{\Omega_{\delta}} \left( \frac{(x^2 + y^2) - (x+y)(2x)}{(x^2 + y^2)^2} - \frac{-(x^2 + y^2) - (x-y)(2y)}{(x^2 + y^2)^2} \right) \, \mathrm{d}x \, \mathrm{d}y$$

 $= -\iint_{\Omega_{\delta}} \left( \frac{y^2 - x^2 - 2xy}{(x^2 + y^2)^2} - \frac{y^2 - x^2 - 2xy}{(x^2 + y^2)^2} \right) dxdy = 0.$ 

#### 由此我们立刻可得

$$\oint_{L^{+}} \frac{(x+y) \, \mathrm{d}y + (x-y) \, \mathrm{d}x}{x^{2} + y^{2}} = -\oint_{L_{\delta}^{+}} \frac{(x+y) \, \mathrm{d}y + (x-y) \, \mathrm{d}x}{x^{2} + y^{2}}$$

$$= -\int_{0}^{2\pi} \frac{(\delta \cos \varphi + \delta \sin \varphi) \, \mathrm{d}(\delta \sin \varphi)}{\delta^{2}} + \frac{(\delta \cos \varphi - \delta \sin \varphi) \, \mathrm{d}(\delta \cos \varphi)}{\delta^{2}}$$

$$= -\int_{0}^{2\pi} \left( (\cos \varphi + \sin \varphi) \cos \varphi - (\cos \varphi - \sin \varphi) \sin \varphi \right) \, \mathrm{d}\varphi$$

$$= -\int_{0}^{2\pi} (\cos^{2} \varphi + \sin^{2} \varphi) \, \mathrm{d}\varphi$$

$$= -2\pi$$

# (3) 由于有向线段 $\overrightarrow{AB}$ 包含于单连通区域 x > 1,

而后者不包含原点, 于是我们有

$$\int_{\overrightarrow{AB}} \frac{(x+y) \, dy + (x-y) \, dx}{x^2 + y^2} \\
= \left( \frac{1}{2} \log(x^2 + y^2) + \arctan(\frac{y}{x}) \right) \Big|_{(2,0)}^{(4,4)} \\
= \frac{1}{2} \log 32 + \frac{\pi}{4} - \frac{1}{2} \log 4 \\
= \frac{3}{2} \log 2 + \frac{\pi}{4}.$$

例 10. 问曲线积分  $\int_{L(A)}^{(B)} \frac{x \, \mathrm{d}x + y \, \mathrm{d}y}{\sqrt{x^2 + y^2 - 1}}$  在复连通域  $\Omega = \mathbb{R}^2 \setminus \bar{B}((0,0);1)$  上是否与路径无关? 若是, 求其从 A(2,0) 到点 B(0,3) 的积分值.

解: 设  $\Gamma$  为  $\Omega$  中过 A,B 的分段光滑闭曲线且 参数方程为 x=x(t), y=y(t),  $t\in [a,b]$ . 则

$$\oint_{\Gamma^{+}} \frac{x \, dx + y \, dy}{\sqrt{x^{2} + y^{2} - 1}} = \int_{a}^{b} \frac{x(t)x'(t) + y(t)y'(t)}{\sqrt{(x(t))^{2} + (y(t))^{2} - 1}} dt$$

$$= \left( \sqrt{(x(t))^{2} + (y(t))^{2} - 1} \right) \Big|_{a}^{b} = 0,$$

因此题中的曲线积分在 Ω 上与路径无关.

特别地, 若 A = (2,0), B = (0,3), 并设  $L = \overrightarrow{AB}$ ,

则其方程为  $y = 3 - \frac{3}{2}x$   $(0 \le x \le 2)$ , 于是

$$\int_{(A)}^{(B)} \frac{x \, dx + y \, dy}{\sqrt{x^2 + y^2 - 1}} = \int_{L(A)}^{(B)} \frac{x \, dx + y \, dy}{\sqrt{x^2 + y^2 - 1}}$$
$$= -\int_0^2 \frac{x - \frac{3}{2}(3 - \frac{3}{2}x)}{\sqrt{x^2 + (3 - \frac{3}{2}x)^2 - 1}} \, dx$$

$$= \sqrt{x^2 + \left(3 - \frac{3}{2}x\right)^2 - 1}$$
$$= -\sqrt{x^2 + \left(3 - \frac{3}{2}x\right)^2 - 1}\Big|_0^2$$
$$= 2\sqrt{2} - \sqrt{3}.$$

# §6. 空间向量场 Gauss 公式和 Stokes 公式

#### 1. Gauss 公式

定理 1. (Gauss 公式) 设  $\Omega \subset \mathbb{R}^3$  为有界闭区域, 其边界  $\partial\Omega$  为分片光滑可定向曲面且以外侧为 正向, 而  $\vec{F} = (F_1, F_2, F_3)^T \in \mathscr{C}^{(1)}(\Omega)$ , 则

$$\iint_{\partial\Omega^+} \vec{F} \cdot d\vec{\sigma} = \iiint_{\Omega} \left( \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \right) dx dy dz.$$

- 注: (1) 令  $\operatorname{div} \vec{F} = \vec{\nabla} \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$ , 称为向量场  $\vec{F}$  的散度.
- (2) Gauss 公式的证明与 Green 公式的类似.

# 利用微分形式表述的 Gauss 公式

于是 Gauss 公式也可以表述成

$$\iint_{\partial\Omega^{+}} F_{1} dy \wedge dz + F_{2} dz \wedge dx + F_{3} dx \wedge dy$$

$$= \iiint_{\Omega} \left( \frac{\partial F_{1}}{\partial x} + \frac{\partial F_{2}}{\partial y} + \frac{\partial F_{3}}{\partial z} \right) dx dy dz.$$

我们由此考虑微分 2-形式

$$\omega = F_1 \, \mathrm{d}y \wedge \mathrm{d}z + F_2 \, \mathrm{d}z \wedge \mathrm{d}x + F_3 \, \mathrm{d}x \wedge \mathrm{d}y.$$

### 我们下面定义外微分

$$d\omega := dF_1 \wedge dy \wedge dz + dF_2 \wedge dz \wedge dx + dF_3 \wedge dx \wedge dy$$

$$= \left(\frac{\partial F_1}{\partial x} dx + \frac{\partial F_1}{\partial y} dy + \frac{\partial F_1}{\partial z} dz\right) \wedge dy \wedge dz$$

$$+ \left(\frac{\partial F_2}{\partial x} dx + \frac{\partial F_2}{\partial y} dy + \frac{\partial F_2}{\partial z} dz\right) \wedge dz \wedge dx$$

$$+ \left(\frac{\partial F_3}{\partial x} dx + \frac{\partial F_3}{\partial y} dy + \frac{\partial F_3}{\partial z} dz\right) \wedge dx \wedge dy$$

$$= \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}\right) dx \wedge dy \wedge dz.$$

故 Gauss 公式也可表述成  $\iint \omega = \iiint d\omega$ .

例 1. 计算  $\iint_{S^+} x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$ , 其中  $S: x + y + z = 1 \ (x, y, z \ge 0)$ , 它的正侧的单位

法向量为  $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ . 解: 将曲面 S 与坐标平面所围成的区域记为  $\Omega$ , 则由 Gauss 公式, 我们立刻可知

$$\iint_{S^+} x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$$

$$= \iint_{\partial \Omega^+} x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy = \iiint_{\Omega} 3 \, dx dy dz = \frac{1}{2}.$$

作业题: 第 4.7 节第 226 页第 3.(1) 题, 第 4 章 总复习题第 229 页第 5, 7 题. 例 2. 求  $\iint (x^2 - z) dx \wedge dy + (z^2 - y) dz \wedge dx$ , 其中

 $S^+$  为抛物面  $z = 1 - x^2 - y^2, z \in [0, 1]$  的外侧.

解: 令  $S_1$  为圆盘 z = 0 ( $x^2 + y^2 \le 1$ ), 其正向为 z 轴的方向. 将  $S^+$  与  $S_1^-$  所围成的区域记作 Ω, 则由 Gauss 公式, 我们立刻可知

$$\iint_{S^{+} \cup S_{1}^{-}} (x^{2} - z) \, \mathrm{d}x \wedge \mathrm{d}y + (z^{2} - y) \, \mathrm{d}z \wedge \mathrm{d}x = \iiint_{\Omega} (-2) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

$$= -2 \int_{0}^{2\pi} \left( \int_{0}^{1} \left( \int_{0}^{1-\rho^{2}} \rho \, \mathrm{d}z \right) \mathrm{d}\rho \right) \mathrm{d}\varphi = -4\pi \int_{0}^{1} (1 - \rho^{2}) \rho \, \mathrm{d}\rho$$

$$= -4\pi \left( \frac{1}{2} \rho^{2} - \frac{1}{4} \rho^{4} \right) \Big|_{0}^{1} = -\pi.$$

曲面  $S_1$  的方程为 z = 0 ( $x^2 + y^2 \le 1$ ), 则我们有  $\frac{D(x,y)}{D(x,u)} = 1$ , 而  $S_1$  的正向为  $(0,0,1)^T$ , 故

$$\iint_{S_1^+} (x^2 - z) \, \mathrm{d}x \wedge \mathrm{d}y + (z^2 - y) \, \mathrm{d}z \wedge \mathrm{d}x = \iint_{x^2 + y^2 \leqslant 1} x^2 \, \mathrm{d}x \, \mathrm{d}y$$
$$= \int_0^{2\pi} \left( \int_0^1 (\rho \cos \varphi)^2 \rho \, \mathrm{d}\rho \right) \, \mathrm{d}\varphi = \frac{1}{4} \rho^4 \Big|_0^1 \cdot \frac{\varphi + \frac{1}{2} \sin 2\varphi}{2} \Big|_0^{2\pi} = \frac{\pi}{4}.$$

由此立刻可得

$$\iint_{S^+} (x^2 - z) dx \wedge dy + (z^2 - y) dz \wedge dx$$

$$= \iint_{S^+_1} (x^2 - z) dx \wedge dy + (z^2 - y) dz \wedge dx - \pi = -\frac{3}{4}\pi.$$

#### 2. Stokes 公式

定理 2. (Stokes 公式) 假设 $\Omega \subset \mathbb{R}^3$ 为非空开集,  $S \subset \Omega$ 为分片光滑可定向有界曲面, 其边界  $\partial S$ 为分段光滑闭曲线并且  $S^+$ 与  $\partial S^+$  的定向满足右手螺旋法则,  $\vec{F} = (F_1, F_2, F_3)^T \in \mathscr{C}^{(1)}(\Omega)$ , 则

$$\oint_{\partial S^{+}} \vec{F} \cdot d\vec{\ell} = \oint_{\partial S^{+}} F_{1} dx + F_{2} dy + F_{3} dz$$

$$= \iint_{\partial S^{+}} \cot \vec{F} \cdot d\vec{\sigma},$$

其中  $\operatorname{rot} \vec{F} = \vec{\nabla} \times \vec{F}$  被称为向量场  $\vec{F}$  的旋度.

# 评注

我们由定义立刻可知 
$$\cot \vec{F} = \vec{\nabla} \times \vec{F} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} F_1 \\ F_2 \\ F_3 \end{pmatrix}$$
$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \begin{pmatrix} \frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \\ \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial y} \\ \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \end{pmatrix},$$

其中  $\vec{i}, \vec{j}, \vec{k}$  表示  $\mathbb{R}^3$  的标准基底.

# 于是 Stokes 公式也可以表述成

$$\begin{split} &\oint_{\partial S^+} \vec{F} \cdot \mathrm{d}\vec{\ell} = \oint_{\partial S^+} F_1 \, \mathrm{d}x + F_2 \, \mathrm{d}y + F_3 \, \mathrm{d}z \\ &= \iint_{S^+} \Big( \frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \Big) \mathrm{d}y \wedge \mathrm{d}z + \Big( \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \Big) \mathrm{d}z \wedge \mathrm{d}x \\ &\quad + \Big( \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \Big) \mathrm{d}x \wedge \mathrm{d}y \\ &= \iint \mathrm{rot} \vec{F} \cdot \mathrm{d}\vec{\sigma}. \end{split}$$

由此令 
$$\omega = F_1 dx + F_2 dy + F_3 dz$$
, 并定义 
$$d\omega = dF_1 \wedge dx + dF_2 \wedge dy + dF_3 \wedge dz.$$

## 则我们有

$$d\omega = dF_1 \wedge dx + dF_2 \wedge dy + dF_3 \wedge dz$$

$$d\omega = dF_1 \wedge dx + dF_2 \wedge dy + dF_3 \wedge dz$$

$$= \left(\frac{\partial F_1}{\partial x} dx + \frac{\partial F_1}{\partial y} dy + \frac{\partial F_1}{\partial z} dz\right) \wedge dx$$

$$+ \left(\frac{\partial F_2}{\partial x} dx + \frac{\partial F_2}{\partial x} dy + \frac{\partial F_2}{\partial z} dz\right) \wedge dy + \left(\frac{\partial F_2}{\partial x} dx + \frac{\partial F_2}{\partial x} dy + \frac{\partial F_2}{\partial x} dz\right)$$

$$+\left(\frac{\partial F_2}{\partial x}dx + \frac{\partial F_2}{\partial y}dy + \frac{\partial F_2}{\partial z}dz\right) \wedge dy + \left(\frac{\partial F_3}{\partial x}dx + \frac{\partial F_3}{\partial y}dy + \frac{\partial F_3}{\partial z}dz\right) \wedge dz$$

 $= \frac{\partial F_1}{\partial y} dy \wedge dx + \frac{\partial F_1}{\partial z} dz \wedge dx + \frac{\partial F_2}{\partial x} dx \wedge dy$ 

 $+\frac{\partial F_2}{\partial z} dz \wedge dy + \frac{\partial F_3}{\partial x} dx \wedge dz + \frac{\partial F_3}{\partial y} dy \wedge dz$  $= \left(\frac{\partial F_3}{\partial u} - \frac{\partial F_2}{\partial z}\right) dy \wedge dz + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) dz \wedge dx + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial u}\right) dx \wedge dy.$ 

于是 Stokes 公式也可写成  $\oint_{as+} \omega = \iint d\omega$ .

例 3. 求  $\oint_{L^+} \frac{x \, \mathrm{d} x + y \, \mathrm{d} y + z \, \mathrm{d} z}{x^2 + y^2 + z^2}$ , 其中曲线 L 为球面  $S: x^2 + y^2 + z^2 = a^2$  在第一卦限中与坐标平面 相交的圆弧  $\widehat{AB}$ ,  $\widehat{BC}$ ,  $\widehat{CA}$  连接而成的闭曲线.

解: 曲面 S 的正向向外. 由 Stokes 公式可知

$$\oint_{L^{+}} \frac{x \, dx + y \, dy + z \, dz}{x^{2} + y^{2} + z^{2}} = \frac{1}{a^{2}} \oint_{L^{+}} x \, dx + y \, dy + z \, dz 
= \frac{1}{a^{2}} \iint_{S^{+}} \vec{\nabla} \times (x, y, z)^{T} \cdot d\vec{\sigma} = 0.$$

作业题: 第 4.7 节第 227 页第 5 题第 (1) 小题.

# 谢谢大家!