Contents

Preface		ix	
1	Vec	tor Spaces	1
	1.1 1.2	Introduction	1
	1.3	Subspaces	16
	1.4	Linear Combinations and Systems of Linear Equations	24
	1.5	Linear Dependence and Linear Independence	35
	1.6 1.7*	Bases and Dimension	42 58
	1.1	Index of Definitions	62
2	Line	ear Transformations and Matrices	64
	2.1 2.2 2.3	Linear Transformations, Null Spaces, and Ranges The Matrix Representation of a Linear Transformation Composition of Linear Transformations	64 79
	2.0	and Matrix Multiplication	86
	2.4	Invertibility and Isomorphisms	99
	2.5	The Change of Coordinate Matrix	110
	2.6* 2.7*	Dual Spaces	119
		with Constant Coefficients	127
		Index of Definitions	145
3		mentary Matrix Operations and Systems of Linea	r 147
	3.1	Elementary Matrix Operations and Elementary Matrices	147

*Sections denoted by an asterisk are optional.

vi	Table of Content
VI	Table of Content

	3.2	The Rank of a Matrix and Matrix Inverses	152
	3.3	Systems of Linear Equations Theoretical Aspects	168
	3.4	Systems of Linear Equations—Computational Aspects	182
		Index of Definitions	198
4	Det	erminants	199
	4.1	Determinants of Order 2	199
	4.2	Determinants of Order n	209
	4.3	Properties of Determinants	222
	4.4	Summary- Important Facts about Determinants	232
	4.5*	A Characterization of the Determinant	238
	1.0	Index of Definitions	244
5	Diag	gonalization	245
	- .	Tr. 1 17.	0.45
	5.1	Eigenvalues and Eigenvectors	245
	5.2	Diagonalizability	261
	5.3*	Matrix Limits and Markov Chains	283
	5.4	Invariant Subspaces and the Cayley–Hamilton Theorem	313
		Index of Definitions	328
6	Inne	er Product Spaces	329
	6.1	Inner Products and Norms	329
	6.2	The Gram-Schmidt Orthogonalization Process	
		and Orthogonal Complements	341
	6.3	The Adjoint of a Linear Operator	357
	6.4	Normal and Self-Adjoint Operators	369
	6.5	Unitary and Orthogonal Operators and Their Matrices	379
	6.6	Orthogonal Projections and the Spectral Theorem	398
	6.7*	The Singular Value Decomposition and the Pseudoinverse	40
	6.8*	Bilinear and Quadratic Forms	422
	6.9*	Einstein's Special Theory of Relativity	451
	6.10*	Conditioning and the Rayleigh Quotient	464
		The Geometry of Orthogonal Operators	472
		Index of Definitions	480

Tai	ole of	Contents	vii	
7	Canonical Forms			
	7.1 7.2 7.3	The Jordan Canonical Form I	482 497 516	
	7.4*	The Rational Canonical Form	524 548	
Αį	open	dices	549	
	A	Sets	549	
	В	Functions	551	
	C	Fields	552	
	D E	Complex Numbers	555 561	
Αı	ıswe	rs to Selected Exercises	571	
ln	dex		589	

List of Symbols

A_{ij}	the ij -th entry of the matrix A	$page \ 9$
A^{-1}	the inverse of the matrix A	page 100
A^\dagger	the pseudoinverse of the matrix A	page 414
A^*	the adjoint of the matrix A	page 331
$ ilde{A}_{ij}$	the matrix A with row i and column j deleted	page 210
A^t	the transpose of the matrix A	page 17
(A B)	the matrix A augmented by the matrix B	$page\ 161$
$B_1\oplus\cdots\oplus B_k$	the direct sum of matrices B_1 through B_k	page 320
$\mathcal{B}(V)$	the set of bilinear forms on V	page 422
$oldsymbol{eta^*}$	the dual basis of β	page 120
eta_x	the T-cyclic basis generated by x	page 526
C	the field of complex numbers	page 7
C_{i}	the ith Gerschgorin disk	page 296
$\operatorname{cond}(A)$	the condition number of the matrix A	page 469
$C^n(R)$	set of functions f on R with $f^{(n)}$ continuous	page 21
C∞	set of functions with derivatives of every order	page 130
C(R)	the vector space of continuous functions on R	page 18
C([0,1])	the vector space of continuous functions on $[0,1]$	page 331
C_x	the T-cyclic subspace generated by x	page 525
D	the derivative operator on C^{∞}	page 131
$\det(A)$	the determinant of the matrix A	page 232
δ_{ij}	the Kronecker delta	page 89
$\dim(V)$	the dimension of V	page 47
e^A	$\lim_{m\to\infty} \left(I + A + \frac{A^2}{2!} + \dots + \frac{A^m}{m!}\right)$	page 312
e_i	the <i>i</i> th standard vector of F^n	page 43
E_{λ}	the eigenspace of T corresponding to λ	page 264
${\pmb F}$	a field	page 6
f(A)	the polynomial $f(x)$ evaluated at the matrix A	page 565
F^n	the set of n -tuples with entries in a field F	page 8

f(T)	the polynomial $f(x)$ evaluated at the operator T	page 565
$\mathcal{F}(S,F)$	the set of functions from S to a field F	page 9
Н	space of continuous complex functions on $[0,2\pi]$	page 332
I_n or I	the $n \times n$ identity matrix	page 89
I_V or I	the identity operator on V	page 67
K_{λ}	generalized eigenspace of T corresponding to λ	page 485
K_{ϕ}	$\{x\colon (\phi(T))^p(x)=\theta \text{ for some positive integer } p\}$	page 525
L_A	left-multiplication transformation by matrix A	page 92
$\lim_{m\to\infty}A_m$	the limit of a sequence of matrices	page 284
$\mathcal{L}(V)$	the space of linear transformations from \boldsymbol{V} to \boldsymbol{V}	page 82
$\mathcal{L}(V,W)$	the space of linear transformations from V to W	page 82
$M_{m \times n}(F)$	the set of $m \times n$ matrices with entries in F	page 9
u(A)	the column sum of the matrix A	page 295
$ u_j(A)$	the j th column sum of the matrix A	page 295
N(T)	the null space of T	page 67
$\operatorname{nullity}(T)$	the dimension of the null space of T	page 69
0	the zero matrix	page 8
$\operatorname{per}(M)$	the permanent of the 2×2 matrix M	page 448
P(F)	the space of polynomials with coefficients in ${\cal F}$	page 10
$P_n(F)$	the polynomials in $P(F)$ of degree at most n	page 18
03	standard representation with respect to basis β	page 104
R	the field of real numbers	page 7
$\mathrm{rank}(A)$	the rank of the matrix A	page 152
$\operatorname{rank}(T)$	the rank of the linear transformation T	page 69
ho(A)	the row sum of the matrix A	page 295
$ ho_i(A)$	the i th row sum of the matrix A	page 295
R(T)	the range of the linear transformation ${\sf T}$	page 67

CONTINUED ON REAR ENDPAPERS