Modelagem Matemática I – Prof. Eurico L. P. Ruivo

Método Branch & Bound em Programação Linear Inteira

Objetivo: Apresentar o Método Branch & Bound para um problema de PLI genérico.

Considere o seguinte problema de otimização:

MAXIMIZAR $z = 5x_1 + 4x_2$ SUJEITO A:

$$-2x_1 + 4x_2 \le 8$$

 $5x_1 + 3x_2 \le 30$
 $x_1, x_2 \ge 0$ e inteiros

A seguir, o método de resolução por Branch & Bound.

PASSO 1: Encontrar a solução ótima contínua. Utilizando o Excel Solver, chega-se a $x_1 \approx 3,69$ e $x_2 \approx 3,84$. Como queremos soluções inteiras, devemos procurar em regiões definidas por valores de x_1 e x_2 imediatamente anteriores e posteriores aos valores encontrados na solução contínua. Isto é, devemos considerar adicionar restrições do tipo $x_1 \leq 3$ ou $x_1 \geq 4$ e $x_2 \leq 3$ ou $x_2 \geq 4$.

PASSO 2: Adicionar a restrição $x_1 \le 3$ e verificar se há solução. Temos o seguinte novo problema:

PROBLEMA 1

MAXIMIZAR
$$z=5x_1+4x_2$$
SUJEITO A:
$$-2x_1+4x_2\leq 8$$

$$5x_1+3x_2\leq 30$$

$$x_1\leq 3$$

$$x_1,x_2\geq 0 \text{ e inteiros}$$

A solução contínua nesse caso é $x_1=3$ e $x_2=3,5$, que ainda não serve, pois x_2 não é inteiro. Assim, vamos manter a restrição $x_1\leq 3$ e tentar adicionar $x_2\leq 3$ ou $x_2\geq 4$ para obter uma solução inteira. Tentemos primeiro com $x_2\leq 3$, obtendo o seguinte novo problema:

PROBLEMA 2

MAXIMIZAR
$$z = 5x_1 + 4x_2$$
SUJEITO A:
$$-2x_1 + 4x_2 \le 8$$

$$5x_1 + 3x_2 \le 30$$

$$x_1 \le 3$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0 \text{ e inteiros}$$

A solução ótima desse problema é $x_1=3$ e $x_2=3$, com z=27 nesse caso. Assim, temos uma solução inteira válida para o Problema 2, mas que pode não ser a ótima para o problema original, assim devemos continuar nossa busca com todas as outras possibilidades, eliminando aquelas que não forem superiores ao que já obtivemos agora (z=27). Portanto, agora adicionaremos ao Problema 1 a restrição $x_2 \ge 4$ e verificaremos se há solução inteira e, caso exista, se supera z=27.

Chegamos agora ao problema dado abaixo:

PROBLEMA 3

MAXIMIZAR
$$z = 5x_1 + 4x_2$$
SUJEITO A:
$$-2x_1 + 4x_2 \le 8$$

$$5x_1 + 3x_2 \le 30$$

$$x_1 \le 3$$

$$x_2 \ge 4$$

$$x_1, x_2 \ge 0 \text{ e inteiros}$$

Utilizando o Solver, observa-se que não há solução viável. Como já esgotamos todas as possibilidades com $x_1 \le 3$ (Problema 2 e Problema 3), resta checar o que aconteceria caso tivéssemos $x_1 \ge 4$.

PASSO 3: Voltando ao problema original, adicionamos agora a restrição $x_1 \ge 4$ e consideramos os casos restantes sem restrições para x_2 ainda, a exemplo do que fizemos no Problema 1.

PROBLEMA 4

MAXIMIZAR
$$z=5x_1+4x_2$$
SUJEITO A:
$$-2x_1+4x_2\leq 8$$

$$5x_1+3x_2\leq 30$$

$$x_1\geq 4$$

$$x_1,x_2\geq 0 \text{ e inteiros}$$

A solução obtida para esse problema foi $x_1=4$ e $x_2\approx 3,33$. Agora devemos considerar as possibilidades $x_2\leq 3$ e $x\geq 4$. Adicionando a $x_2\leq 3$ ao Problema 4, temos:

PROBLEMA 5

MAXIMIZAR
$$z = 5x_1 + 4x_2$$
SUJEITO A:

$$-2x_1 + 4x_2 \le 8$$

$$5x_1 + 3x_2 \le 30$$

$$x_1 \ge 4$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0 \text{ e inteiros}$$

Esse problema nos gera a solução ótima $x_1=4,2$ e $x_2=3$, com z=33, o que está acima de nosso valor de referência obtido no Problema 2 (z=27), nos obrigando a mexer novamente na variável x_1 , que agora estará nas restrições $x_1 \le 4$ e $x_1 \ge 5$.

PROBLEMA 6

MAXIMIZAR
$$z=5x_1+4x_2$$
SUJEITO A:
$$-2x_1+4x_2\leq 8$$

$$5x_1+3x_2\leq 30$$

$$x_1\leq 4$$

$$x_2\leq 3$$

$$x_1,x_2\geq 0 \text{ e inteiros}$$

Esse problema nos produz a solução ótima inteira $x_1=4$ e $x_2=3$ com z=32, superando nossa solução inteira anterior dada no Problema 2 (z=27). Agora nosso valor de referência é z=32.

Resta considerar a possibilidade de termos $x_1 \ge 5$ e $x_2 \le 3$:

PROBLEMA 7

MAXIMIZAR
$$z = 5x_1 + 4x_2$$
SUJEITO A:
$$-2x_1 + 4x_2 \le 8$$

$$5x_1 + 3x_2 \le 30$$

$$x_1 \ge 5$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0 \text{ e inteiros}$$

A solução dada é $x_1=5$ e $x_2=1,66$ com z=31,66. Como a solução contínua desse problema tem z menor que nosso atual valor de referência (z=32), não precisamos continuar os testes nesse caso.

Por fim, voltando ao Problema 4 (primeiro do PASSO 3), resta considerar a possibilidade $x_1 \ge 4$ e $x_2 \ge 4$:

PROBLEMA 8

MAXIMIZAR
$$z=5x_1+4x_2$$
SUJEITO A:
$$-2x_1+4x_2\leq 8$$

$$5x_1+3x_2\leq 30$$

$$x_1\geq 5$$

$$x_2\leq 3$$

$$x_1,x_2\geq 0 \text{ e inteiros}$$

Esse problema não apresenta solução viável.

Uma vez que esgotamos todas as possibilidades de teste, concluímos que a solução ótima do problema original é a dada pelo Problema 6:

x_1	4
x_2	3
Z	32

Problemas Propostos (retirados de [Taha, 2008]

Resolva pelo Método *Branch & Bound* com o auxílio do Excel Solver o seguinte problema de otimização:

MAXIMIZAR $z = 4x_1 + 6x_2$ SUJEITO A:

$$4x_1 + 5x_2 \le 40$$

$$3x_1 + 6x_2 \le 36$$

$$x_1 \le 8$$

$$x_1, x_2 \ge 0 \text{ e inteiros}$$

Você deverá entregar as resoluções feitas por você numa folha com nome, TIA e turma de laboratório. A descrição de cada Problema encontrado ao longo da solução, bem como seus valores ótimos devem constar na folha a ser entregue.