Chapter 3.4: Trigonometric Identities

Expected Skills:

- Be able to derive Pythagorean Identities relating tangent/secant or cotangent/cosecant from $\sin^2 \theta + \cos^2 \theta = 1$.
- Given the identities $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$ be able to derive the double angle formulas and power reducing formulas (as described in the course notes).
- Be able to use the Law of Cosines to relate the sides lengths of a triangle with one of the angles.

Practice Problems:

- 1. Find the exact values of each of the following:
 - (a) $\sin 15^{\circ}$ and $\cos 15^{\circ}$.
 - (b) $\sin 165^{\circ}$ and $\cos 165^{\circ}$.
 - (c) $\sin 195^{\circ}$ and $\cos 195^{\circ}$.
- 2. Express $\cos \alpha \cos \beta$ in terms of $\cos (\alpha + \beta)$ and $\cos (\alpha \beta)$. **Hint:** write out the sum and difference identities for cosine and combine them appropriately.
- 3. Express $\sin \alpha \sin \beta$ in terms of $\cos (\alpha + \beta)$ and $\cos (\alpha \beta)$.
- 4. Express $\sin \alpha \cos \beta$ in terms of $\sin (\alpha + \beta)$ and $\sin (\alpha \beta)$.
- 5. Suppose $\tan \alpha = \frac{3}{4}$, $\tan \beta = 8$ where $0 < \alpha < \frac{\pi}{2}$ and $0 < \beta < \frac{\pi}{2}$. Evaluate $\sin(\alpha + \beta)$.
- 6. Derive the following identity: $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 \tan \alpha \tan \beta}$.
- 7. Suppose $\tan \alpha = \frac{3}{4}$ and $\tan \beta = 8$. Use the result of the previous exercise to evaluate $\tan(\alpha + \beta)$.
- 8. Suppose $\cos \theta = \frac{3}{5}$ and $\sin \theta < 0$. Evaluate each of the following:
 - (a) $\sin(2\theta)$
 - (b) $\cos(2\theta)$
 - (c) $\tan(2\theta)$

- 9. Rewrite $\sin^4 \theta$ as an equivalent expression which does not have any trigonometric functions with powers greater than 1.
- 10. One hand of a very large clock is 3 feet long and the other is 4 feet long.
 - (a) What is the distance between their tips at the moment when the clock strikes 3:00 pm?
 - (b) What is the distance between their tips at the moment when the clock strikes 1:00 pm?
- 11. Consider the following triangle:

(a) Calculate the area of this triangle using the following theorem:

Heron's Formula: The area of a triangle with sides of length a, b, and c is $A = \sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{a+b+c}{2}$

(b) Calculate the area of this triangle using the formula $A = \frac{1}{2}bh$.