Tensor Time Series Clustering

De Dataset

AMIE: Automatic Monitoring of Indoor Exercises

- · Metingen van lichaamsgewichtoefeningen
 - Squats
 - Forward lunges
 - Side lunges
- · Tijdsreeksen als datapunten: Posities bij de uitvoering gemeten doorheen de tijd

Datapunten vergelijken

- Dynamic Time Warping (DTW): berekent afstand tussen 2 tijdsreeksen
 - · Gelijkaardige data krijgen een kleine afstand
 - O(n²) tijd
- Afstandstensor: elk element is een DTW afstand tussen 2 datapunten
 - ightarrow Elementen berekenen kostelijk!

Doel van het Onderzoek

Tijdsreeksen clusteren

- Tensor decompositie berekenen
 - CP decompositie: benadert tensor zeer goed
 - Adaptieve methodes: steunen op het ACA algoritme
- 2) Rijen/kolommen/tubes uit decompositie als feature vectoren kiezen
 - Dimensie bepaald wat we clusteren
 - Bij AMIE-dataset: clusteren op sensoren of personen
- 3) K-means clustering algoritme gebruiken met deze feature vectoren

DTW operaties van decompositie laag houden

decompositie berekenen

Adaptive Cross Approximation (ACA) uitbreiden

- Decompositie algoritme voor matrices
- Adaptive: Focust op grootste en dus belangrijkste elementen
- · Cross: Iteratief een rij en kolom aan de decompositie toevoegen
- Kleinere elementen niet nodig
 - → Ideaal voor een decompositie van de afstandstensor
 - → ACA methodes voor tensoren ontwikkelen

Benadering van een Tensor

Candecomp/Parafac (CP) decompositie

- Som van uitwendige producten van vectoren
- · Alternating Least Squares algoritme
- De volledige tensor nodig => Kostelijk

Adaptive Cross Approximation for Tensors (ACA-T) decompositie

- Som van uitwendige producten van matrices/vectoren
- Adaptief = Gericht vectoren in Tensor kiezen
- · 'Klein' deel van de tensor nodig

Matrix Methode (Matrix ACA-T): · Kostelijk ≈ + + ... +

Vectoren Methode (Vector ACA-T type 1):

Hogere relatieve fout

Ons Onderzoek

Hypothese: De uitgebreide vectoren methode zal voor een kleinere relatieve fout zorgen maar het aantal DTW operaties laag houden.

De uitgebreide vectoren methode

- Starten vanuit de matrix methode
- De matrix in elke term opnieuw benaderen met ACA
 - \rightarrow notatie: *type k* = er zijn k termen in elke matrix decompositie
- · elke term bevat:
 - **Tube:** een vector mode-3
 - Matrix-decompositie: som van termen met 2 vectoren mode-1 en 2

Resultaten: Tensor benadering

Bovenstaande figuur toont de relatieve fout van enkele types van de uitgebreide vectoren methode per rang. De bar is het gemiddelde en de zwarte streep de standaard afwijking (n = 50). De rang van een decompositie is gelijk aan het aantal termen. **Opmerkelijk:** Hogere types liggen dichter de matrix methode bij lage rang, en dichter bij de vectoren methode (type 1) bij hoge rang.

- De y-as bevat opnieuw het gemiddel van de relatieve fout zoals bovenstaande figuur (zonder standaa afwijking)
- Op de x-as staat het percentage DTV operaties nodig om deze relatieve fout tverkijgen. 100% betekent dat we dvolledige tensor hebben berekent.
- We willen een methode die in de linke onderhoek ligt.

Resultaten: Clusteren

Person	Exercise	Cluster	Person	Exercise	Cluste
Person8	squat	1	Person8	squat	
Person8	squat	1	Person8	squat	
Person8	squat	1	Person8	squat	
Person8	squat	1	Person8	squat	
Person8	squat	1	Person8	squat	
Person8	squat	1	Person8	squat	
Person8	lunge	0	Person8	lunge	
Person8	lunge	0	Person8	lunge	
Person8	lunge	0	Person8	lunge	
Person8	lunge	0	Person8	lunge	
Person5	sidelunge	2	Person5	sidelunge	

Resultaten clusteren (k = 3 en k = 7 resp.) met uitgebreide vectoren methode rang 25 type 3.

Visualisatie van de resulterende clusters door middel van *Principal Component Analysis* om de dimensie te reduceren waarbij we de rijen als feature-vectoren nemen.