Unidad Didáctica 2

POTENCIAS, RADICALES, EXPONENCIALES Y LOGARITMOS

4° ESO

En esta unidad vas a:

- 1. Repasar las propiedades de las potencias.
- 2. Transformar potencias en radicales y viceversa.
- 3. Realizar operaciones con radicales.
- 4. Racionalizar radicales.
- 5. Conocer el concepto de exponencial, logaritmo y sus propiedades.
- 6. Saber cambiar de base en los logaritmos.
- 7. Resolver ecuaciones exponenciales y logarítmicas.
- 8. Utilizar la notación científica para resolver problemas.
- 9. Resolver problemas utilizando radicales y logaritmos.

SUMARIO

- 2.0.- Lectura Comprensiva
- 2.1.- Introducción
- 2.2. Potencias de números reales
- 2.3.- Radicales
- 2.4.- Propiedades de los radicales
- 2.5.- Operaciones con radicales
- 2.6.- Logaritmo de un número real
- 2.7.- Propiedades de los logaritmos. Cambio de Base
- 2.8.- Ecuaciones logarítmicas y exponenciales
- 2.8.- Notación científica
- 2.9.- Resolución de problemas
- 2.10. Autoevaluación

2.00.- Lectura Comprensiva

Los logaritmos y el alce borracho

A finales del siglo XVI, reinaba en Escocia Jacobo VI que era hijo de María Estuardo y que llegó al trono de Inglaterra en 1603. En 1589 se decidió que el rey debía casarse con Ana de Dinamarca. La boda se hizo primero por poderes, y después se envió una expedición a buscarla a Dinamarca. En esa expedición participó John Craig, médico del rey y amigo de John Napier. Debido a una tormenta, el barco se vio forzado a buscar refugio en la isla de Hven, situada entre las costas de Dinamarca y Suecia. Allí se ubicaba el observatorio astronómico de Tycho Brahe, probablemente el mejor de la época. Brahe era el mejor astrónomo antes de la invención del telescopio; cuenta la leyenda que perdió parte de la nariz en un duelo a cuenta de la existencia de los números imaginarios; la sustituyó por una prótesis de plata... o de oro... Aunque quizá fuera de cobre, o al menos a esa conclusión llegaron en 1901 cuando, con motivo del tercer centenario de la muerte de Brahe, decidieron abrir su tumba para comprobar si entre los huesos del astrónomo había o no alguna prótesis nasal. Sea cual fuera el material de la prótesis de Brahe, le tuvo que dar un aspecto de lo más inquietante.

Brahe llamaba a su observatorio Uraniborg, «Castillo del cielo»; que se había construido con los planos del arquitecto masón Hans van Steenwinkel, llenas de simetrías y de dimensiones de intención simbólica y esotérica.

Contaba con comodidades y lujos poco usuales en el siglo XVI: se decía que las habitaciones tenían agua corriente, y que vivían en él enanos clarividentes y alces gigantescos que calmaban su sed con cerveza en vez de con agua —parece ser que el animal predilecto de Brahe se desnucó una noche al rodar borracho por unas escaleras—. En el exterior había pajareras, cenadores, miradores y un

Grabado del observatorio de Uraniborg

jardín de hierbas medicinales que surtía la botica construida en los sótanos del castillo; Brahe y, sobre todo, su hermana Sophia —que fue uno de sus principales asistentes— fueron muy aficionados a la botánica y la alquimia. Brahe llegó incluso a construir un sistema de represas en la isla para alimentar un molino de papel que proveía su imprenta particular.

Del paraíso que Brahe se construyó en Hven le echaron finalmente sus excesos y el joven rey Christian IV. Brahe dejó su isla en 1597 camino de Alemania. La ira de los campesinos de Hven, a quien Brahe había estrujado a base de impuestos y tasas que recaudaba con enorme voracidad y haciendo uso de una crueldad inhumanas, provocó la destrucción parcial de sus castillos al poco de abandonarlos Brahe; el paso del tiempo se encargó de rematar la tarea. Con todo, una visita a la isla de Hven merece aún hoy la pena: a hora y media en ferry de Copenhague, puedes alquilar una bicicleta y recorrer todos sus rincones en seis o siete horas. Aunque del observatorio de Brahe sólo quedan unas pocas ruinas, son tan evocadoras que cuando el viento sopla entre ellas parece querer emular los gritos que Brahe daba a sus ayudantes pidiendo más esmero en las observaciones.

Durante su breve estancia en Uraniborg, el médico escocés amigo de Napier aprendió el método de prostafairesis que enseñó a Napier a su vuelta a Escocia. Napier pensó entonces que el método todavía se podía simplificar si se desarrollaba una herramienta para transformar directamente productos en sumas. Se aplicó entonces a ello, y fruto de sus desvelos fueron los logaritmos.

Lee nuevamente el texto anterior y responde a las siguientes preguntas:

- 1.- ¿De qué trata el texto?
- 2.- ¿Qué te parece la historia?
- 3.- Busca información sobre la prostafairesis aunque lo veremos el año que viene en el tema de trigonometría.

2.01.- Introducción

En el s. XVII se acomete el estudio preciso de las leyes naturales (con las funciones) y de sus variaciones (con el Cálculo Diferencial). Pero se trataba de conceptos teóricos que debían aplicarse a medidas experimentales, sobre las que luego había que realizar cálculos laboriosos. Se ponían en evidencia dos requisitos importantes: por una parte, disponer de un sistema universal de medidas; y, por otra, mejorar la capacidad de cálculo.

Lo primero no se alcanza plenamente hasta 1792, cuando la Academia de Ciencias de París establece el Sistema Métrico Decimal, un triunfo imperecedero del racionalismo impuesto por la Revolución Francesa.

Pero la mejora de los cálculos, tanto en rapidez como en precisión, era una línea de avance permanente desde el siglo XV (ver: Pascalinas y La calculadora de Napier), que había fructificado ya en el siglo XVI en un concepto decisivo: el logaritmo.

En el Renacimiento, una pseudociencia como la Astrología contribuyó indirectamente al progreso de la Ciencia, ya que la elaboración de los horóscopos obligaba a cálculos y observaciones astronómicas. Lo mismo cabe decir de la elaboración de los calendarios. O, en Arquitectura, el diseño de fortalezas teniendo

en cuenta las condiciones del terreno para, con la ayuda de bastiones, ángulos, salientes, etc., protegerse de la artillería

de los sitiadores; también en Navegación, etc.

Los logaritmos se inventaron con el propósito de simplificar, en especial a los astrónomos, las engorrosas multiplicaciones, divisiones y raíces de números con muchas cifras.

Los logaritmos hoy ya no son necesarios para hacer grandes cálculos; gracias a la microelectrónica es posible hacerlos de forma instantánea con la calculadora o el ordenador. Sin embargo, durante siglos de uso, los logaritmos dejaron su huella en las Matemáticas y aún hoy es necesario que los conozcas; pero ahora ya no para calcular, sino para utilizarlos como concepto asociado a muchas situaciones. En particular, son útiles las escalas logarítmicas (entre ellas, la Escala de Richter).

2.02.- Potencias de números reales

Una potencia es la forma abreviada de expresar el producto de un número por sí mismo varias veces, es decir, es una multiplicación de factores iguales.

En una potencia, la base representa el factor que se repite, y el exponente las veces que se repite el producto.

$$\mathbf{\mathcal{A}}^{\mathcal{C}} = \underbrace{\mathbf{\mathcal{A}} \cdot \mathbf{\mathcal{A}} \cdot \mathbf{\mathcal{A}}}_{\text{El producto de a por sí mismo se repite c veces}}$$

$$\left(\frac{a}{b}\right)^{\rho} = \underbrace{\frac{a}{b} \cdot \frac{a}{b} \cdot \frac{a}{b}}_{\text{El producto de } \frac{a}{b} \text{ por s'i misma se repite p veces}} = \frac{a^{\rho}}{b^{\rho}}$$

2.2.1.- Propiedades de las potencias

Las propiedades de las potencias las llevamos estudiando desde 1ºde ESO, así que las resumiremos de forma rápida en la siguiente tabla:

$$a \neq 1$$

Si
$$a^x = a^y \longrightarrow$$

$$x = y$$

1)
$$a^{\circ} = 1$$

$$a^1 = a$$

2)
$$a^b \cdot a^c = a^{b+c}$$

3)
$$a^c \cdot b^c = (a \cdot b)^c$$

4)
$$a^b: a^c = a^{b-c}$$

5)
$$a^c: b^c = (a:b)^c$$

y

7)
$$a^{-b} = \frac{1}{a^b}$$

9)
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Recuerda que existían operaciones de potencias que en principio no se podían realizar porque no tenían ni la misma base ni el mismo exponente, pero que si observábamos cuidadosamente encontrábamos la manera de hacerlas. En estos casos, solía ocurrir que, aunque las bases eran distintas, unas bases eran potencias de otras.

Ejemplo

1.- Calcula las siguientes operaciones con potencias.

No tienen la misma base ni el mismo exponente, pero observamos que unas son potencias de las otras, por tanto:

$$2^{3} \cdot 4^{5} : 8^{4} = 2^{3} \cdot (2^{2})^{5} : (2^{3})^{4} = 2^{3} \cdot 2^{10} : 2^{12} = 2^{13-12} = 2$$

$$9^{3} \cdot 27^{2} = (3^{2})^{3} \cdot (3^{3})^{2} = 3^{6} \cdot 3^{6} = 3^{12}$$

Piensa y practica

1.- Calcula y expresa el resultado de estas operaciones con una sola potencia:

a)
$$(5^8 \cdot 5^4) : (5^2)^5 = b) \left[(-2^6) \cdot (+2)^3 \right] : \left[(+2)^3 \right]^2 = c) (-12)^{-7} \cdot \left[(-3^5 \cdot 4^5) \right]$$
 d) $25^3 : \left[(-15)^5 : 3^5 \right]$

c)
$$(-12)^{-7} \left[\left(-3^5 \cdot 4^5 \right) \right]$$

d)
$$25^3 : \left[\left(-15 \right)^5 : 3^5 \right]$$

e)
$$6^3 : [(2^7 : 2^6) : 3]^{-1}$$

$$e) \ 6^{3} : \left[\left(2^{7} : 2^{6}\right) : 3\right]^{-2} \quad f) \left[\left(\frac{2}{5}\right)^{8} : \left(\frac{5}{2}\right)^{-3}\right]^{-2} : \left(\frac{4}{25}\right)^{-1} = g) \ 8^{4} : \left(2^{5} \cdot 4^{2}\right) \qquad h) \left[\left(6^{2}\right)^{2} \cdot 4^{4}\right] : \left(2^{3}\right)^{4} = g$$

g)
$$8^4 : (2^5 \cdot 4^2)$$

h)
$$\left[\left(6^2 \right)^2 \cdot 4^4 \right] : \left(2^3 \right)^4$$

i)
$$[4^{-4}](2^3)^4 =$$

$$j) 3^3 : 9^{-2} \cdot 81^4 =$$

$$k) \frac{3^7 \cdot 9^3 \cdot 27^{-3}}{81 \cdot 9^{-5}} =$$

$$k) \frac{3^{7} \cdot 9^{3} \cdot 27^{-3}}{81 \cdot 9^{-5}} = I) \frac{\left(\frac{3}{2}\right)^{-8} \cdot \left(\frac{2}{3}\right)^{4} \cdot \left(\frac{3}{2}\right)^{-3}}{\left[\left(\frac{3}{2}\right)^{-3}\right]^{5} \cdot \left(\frac{2}{3}\right)^{5} \cdot \left(\frac{3}{2}\right)^{-2}} = I$$

Sol: a) 5²; b) -2³; c) 12⁻²; d) -5; e) 6⁵; f) (2/5)⁷; g) 2³; h) 3⁴; i) 2⁴; j) 3²²; k) 3¹⁰; l) (3/2)⁹

2.03.- Radicales

Llamamos Radical a cualquier expresión matemática que contenga una raíz de índice cualquier índice, aunque trabajaremos sobre todo con aquellas en las que no se puedan extraer factores del $ext{radicando}$, a, que es el número que hay dentro de la raíz, $\sqrt{\ }$ es el **símbolo de la raíz, n** es el **índice de la raíz,** y **b** es la **raíz.**

La raíz de índice n o raíz enésima de un número a es otro número b, que, elevado a la potencia enésima, nos da el número a.

$$\sqrt[n]{a} = b \quad \Leftrightarrow \quad b^n = a$$

$$15\sqrt{32768} = 2 \Leftrightarrow 2^{15} = 32768$$

$$\Leftrightarrow$$

$$2^{15} = 32768$$

La forma sencilla de resolver cualquier raíz es intentar conseguir en el radicando una potencia de exponente igual que el índice de la raíz.

Ejemplo

2.- Calcula los siguientes radicales.

Escribimos el radicando en forma de potencia mediante la descomposición factorial y resolvemos:

a)
$$\sqrt[5]{32} = \sqrt[5]{2^5} = 2$$

b)
$$\sqrt[4]{81} = \sqrt[4]{3^4} = 3$$

c)
$$\sqrt[3]{125} = \sqrt[3]{5^3} = 5$$

a)
$$\sqrt[5]{32} = \sqrt[5]{2^5} = 2$$
 b) $\sqrt[4]{81} = \sqrt[4]{3^4} = 3$ c) $\sqrt[3]{125} = \sqrt[3]{5^3} = 5$ d) $\sqrt[7]{128} = \sqrt[7]{2^7} = 2$

▲ Decimos que dos radicales son equivalentes si tienen la misma raíz.

Eiemplo

3.- Comprueba si los siguientes radicales son equivalentes.

Escribimos el radicando en forma de potencia, resolvemos y comparamos los resultados:

$$a) \begin{cases} \sqrt{25} = \sqrt{5^2} = 5 \\ \sqrt[3]{125} = \sqrt[3]{5^3} = 5 \end{cases} \longrightarrow Si \qquad b) \begin{cases} \sqrt[4]{16} = \sqrt[4]{2^4} = 2 \\ \sqrt[4]{4} = 2 \end{cases} \longrightarrow Si \qquad c) \begin{cases} \sqrt[4]{81} = \sqrt[4]{3^4} = 3 \\ \sqrt[3]{27} = \sqrt[3]{3^3} = 3 \end{cases} \longrightarrow Si$$

Vemos que sus raíces coinciden, por tanto, las tres parejas son radicales equivalentes.

★ Decimos que dos radicales son semejantes si tienen el mismo índice y el mismo radicando, como, por ejemplo:

$$\sqrt{45}$$
 y $\sqrt{125}$ son radicales semejantes, porque $\sqrt{45} = 3\sqrt{5}$ y $\sqrt{125} = 5\sqrt{5}$

2.3.1.- Relación entre potencias y raíces.

Llamamos potencias de exponente fraccionario a aquellas potencias en las que el exponente es un número racional (fracción) $a^{\frac{b}{c}}$, como por ejemplo: $2^{\frac{5}{4}}$ $3^{\frac{1}{2}}$ $(-4)^{\frac{-1}{7}}$ $(-3)^{\frac{2}{5}}$ $5^{\frac{1}{5}}$

Este tipo de potencias se pueden expresar igualmente como un radical de la siguiente forma:

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} \quad \Longleftrightarrow \quad \sqrt[q]{b^\rho} = b^{\frac{\rho}{q}}$$

Donde el numerador es la potencia y el denominador es índice de la raíz. (Ley de exponentes fraccionarios)

DEMO

Vamos a demostrar primero que: $a^{\frac{1}{n}} = \sqrt[n]{a}$

Si llamamos $b=a^{\frac{1}{n}}$, y elevamos todo a n, llegamos a: $b^n=\left(a^{\frac{1}{n}}\right)^n$, si aplicamos las propiedades de las potencias:

$$b^n = \left(a^{\frac{1}{n}}\right)^n = a^{\frac{1}{n}} = a^{\frac{n}{n}} = a^1 = a \quad \Rightarrow \quad b^n = a \text{ si aplicamos la definición de raíz enésima: } \sqrt[n]{a} = b \quad \Leftrightarrow \quad b^n = a$$

entonces $\sqrt[n]{a} = b$ y como al principio teníamos que: $b = a^{\frac{1}{n}}$ entonces $\sqrt[n]{a} = b = a^{\frac{1}{n}}$ \rightarrow $a^{\frac{1}{n}} = \sqrt[n]{a}$ c.q.d.

Vamos a demostrar ahora $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

 $a^{\frac{m}{n}}$ es igual que $a^{\frac{m-1}{n}}$ y utilizando las propiedades de las potencias: $a^{\frac{m-1}{n}} = (a^m)^{\frac{1}{n}}$ y por la demostración anterior: $(a^m)^{\frac{1}{n}} = \sqrt[n]{a^m}$

Como podemos observar, existe una relación entre los radicales y las potencias, de forma que podemos pasar de uno a otro con facilidad (*expresión potencial de un radical*).

Ejemplo

4.- Pasa de potencia a raíz y viceversa:

Para pasar de potencia a raíz, o de raíz a potencia, simplemente utilizaremos la propiedad anterior:

$$2^{\frac{3}{5}} = \sqrt[5]{2^3} \qquad \sqrt[4]{3^7} = 3^{\frac{7}{4}} \qquad \left(\frac{3}{5}\right)^{\frac{7}{7}} = \sqrt[7]{\left(\frac{3}{5}\right)^2} \qquad \sqrt[3]{\left(\frac{3}{5}\right)^2} = \left(\frac{3}{5}\right)^{\frac{2}{3}}$$

Piensa y practica

2.- Convierte las raíces en potencias y viceversa:

a)
$$\sqrt{7} =$$
 b) $\sqrt[3]{7} =$

c)
$$4^{\frac{2}{5}} =$$

d)
$$(-3)^{\frac{3}{5}} =$$

2.04.- Propiedades de los Radicales

Antes de estudiar las propiedades de los radicales, tienen que quedar claros estos tres conceptos:

- **★** Si $a \ge 0$, $\sqrt[n]{a}$ existe cualquiera que sea n.
- \bullet Si a < 0, $\sqrt[n]{a}$ solo existe si n es impar.
- ♣ Aunque 4 tiene dos raíces cuadradas, cuando escribimos $\sqrt{4}$ siempre nos referimos a la raíz positiva: $\sqrt{4} = +2$, a no ser que se diga otra cosa.

Los radicales tienen una serie de definiciones y propiedades que debemos conocer y utilizar con soltura, todas ellas, consecuencia inmediata de conocidas propiedades de las potencias.

1.— El producto de dos radicales de un mismo índice es igual a la raíz del producto de los radicandos:

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b} \quad \rightarrow \quad ej : \sqrt[3]{4} \cdot \sqrt[3]{5} = \sqrt[3]{4 \cdot 5} = \sqrt[3]{20} \quad \rightarrow \quad \sqrt[3]{4} \cdot \sqrt[3]{5} = 4^{\frac{1}{3}} \cdot 5^{\frac{1}{3}} = (4 \cdot 5)^{\frac{1}{3}} = 20^{\frac{1}{3}} = \sqrt[3]{20}$$

2. — El cociente de dos radicales de un mismo índice es igual a la raíz del cociente de los radicandos:

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} := \sqrt[n]{\frac{a}{b}} \quad \text{si } b \neq 0 \qquad \Rightarrow \quad ej : \frac{\sqrt[5]{16}}{\sqrt[5]{8}} = \sqrt[5]{\frac{16}{8}} = \sqrt[5]{2} \quad \Rightarrow \quad \frac{\sqrt[5]{16}}{\sqrt[5]{8}} = \frac{16^{\frac{1}{5}}}{8^{\frac{1}{5}}} = \left(\frac{16}{8}\right)^{\frac{1}{5}} = 2^{\frac{1}{5}} = \sqrt[5]{2}$$

3.— Un radical de índice n elevado a una potencia m equivale a una raíz de índice n y de radicando elevado a la potencia m:

$$(\sqrt[n]{a})^m = \sqrt[n]{a^m} \rightarrow ej: (\sqrt[3]{a})^2 = \sqrt[3]{a^2} \rightarrow (\sqrt[3]{a})^2 = (a^{\frac{1}{3}})^2 = a^{\frac{2}{3}} = \sqrt[3]{a^2}$$

4.— La raíz de índice m de un radical de índice n es equivalente a una raíz de índice n de un radical de índice m y es igual a una raíz de índice m:

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{\sqrt[n]{a}} \longrightarrow \sqrt[5]{\sqrt[3]{3}} = \sqrt[3]{\sqrt[3]{3}} = \sqrt[3]{\sqrt[3]{3}$$

5.— Si $a \ge 0$ la raíz de índice n de a es igual que la raíz de índice m·n de a elevado a m.

$$\sqrt[n]{a} = \sqrt[m.n]{a^m} \rightarrow e'_j : \sqrt[3]{3} = \sqrt[5:3]{3^{5\cdot 1}} = \sqrt[15]{3^5} \rightarrow \sqrt[3]{3} = 3^{\frac{1}{3}} = 3^{\frac{5\cdot 3}{5\cdot 1}} = 3^{\frac{15}{5}} = \sqrt[15]{3^5}$$

En ellas, hemos puesto un ejemplo en azul y su demostración usando las propiedades de las potencias en rojo.

Piensa y practica

3.- Aplica las propiedades de los radicales y calcula:

a)
$$\sqrt[6]{2^{18} \cdot 7^{12}}$$
 b) $(\sqrt[5]{9})^{15} =$ c) $\sqrt[4]{16 \cdot 9^2} =$ d) $\sqrt{\frac{\sqrt[3]{64}}{\sqrt{625}}} =$ e) $\sqrt[3]{1728} =$

4.- Calcula:

a)
$$\left(\sqrt[3]{\sqrt[7]{\sqrt{a^2b^3}}}\right)^8$$
 b) $\sqrt{abc\sqrt[4]{a^3b^3c^2}} \cdot \sqrt{\sqrt[3]{a^5b^5}}$ c) $\sqrt[3]{a^2b^5\sqrt[4]{a^3b^7}\sqrt{a^5b\sqrt[5]{a^7b^3}}}$

2.05.- Operaciones con Radicales

Para realizar operaciones con radicales, es necesario conocer y dominar con soltura las propiedades de los radicales vistas con anterioridad. Veamos las más importantes:

5.1.- Reducción a índice común

Para realizar operaciones con radicales de distinto índice es necesario reducirlos a otros equivalentes que tengan el mismo índice. Este nuevo índice será el mínimo común múltiplo de todos los índices.

Ejemplo

5.- Reduce a índice común los siguientes radicales:
$$\sqrt{3}$$
 y $\sqrt[3]{2}$

Para ello calculamos el mínimo común múltiplo de los índices 2 y 3: m.c.m.(2,3)=6

$$\sqrt{3} = 3^{\frac{1}{2}} = 3^{\frac{3}{6}} = \sqrt[6]{3^3}$$

$$\sqrt{3} = 3^{\frac{1}{2}} = 3^{\frac{3}{6}} = \sqrt[6]{3^3}$$
 $\sqrt[3]{2} = 2^{\frac{1}{3}} = 2^{\frac{2}{6}} = \sqrt[6]{2^2}$

2.5.2.- Simplificación de radicales

De acverdo con la ley de exponentes fraccionarios y de las propiedades de los radicales, simplificar un radical es expresarlo en su forma más simple. Es decir, un radical está simplificado cuando:

- No se puede extraer ningún factor del radicando (es el menor posible)
- ★ No puede reducirse su índice (es el menor posible)
- No hay radicales en el denominador de una fracción

Para simplificar radicales, se factoriza el radicando y se extraen todos los posibles factores del radical. Después, si es posible, con la ley de exponentes fraccionarios se reduce su índice.

iemplo

6.- Simplifica los siguientes radicales:
$$\sqrt[4]{11664}$$
 y $\sqrt[3]{\frac{8}{729}}b^5 \cdot c^7 \cdot m^{14}$

Factorizamos los radicandos y extraemos los factores que sea posible, por último, si fuera posible, se reduce su índice.

a)
$$\sqrt[4]{11664} = \sqrt[4]{2^4 \cdot 3^6} = \sqrt[4]{2^4 \cdot 3^4 \cdot 3^2} = \sqrt[4]{2^4 \cdot \sqrt[4]{3^4}} \cdot \sqrt[4]{3^2} = 2 \cdot 3 \cdot \sqrt[4]{3^2} = 2 \cdot 3 \cdot \sqrt{3}$$

$$*\sqrt[4]{3^2} = 3^{\frac{1}{4}} = 3^{\frac{1}{2}} = \sqrt{3}$$
b) $\sqrt[3]{\frac{8}{729}} b^5 \cdot c^7 \cdot m^{14} = \sqrt[3]{\frac{2^3}{3^6}} b^5 \cdot c^7 \cdot m^{14} = \frac{2}{3^2} \cdot b \cdot c^2 \cdot m^4 \cdot \sqrt[3]{b^2 \cdot c \cdot m^2}$

2.5.3.- Introducción de factores en un radical

Para introducir factores dentro de un radical, el factor que está fuera se escribe dentro elevado al índice de la raíz y después operamos.

Ejemplo

7.- Introduce los factores que sean posibles dentro del radical:

Factorizamos los radicandos y extraemos los factores que sea posible, por último, si fuera posible, se reduce su índice.

a)
$$-5\sqrt[3]{4} = \sqrt[3]{(-5)^3 \cdot 4} = \sqrt[3]{-500} = -\sqrt[3]{500}$$
 b) $\sqrt{3\sqrt[4]{2}} = \sqrt[4]{3^4 \cdot 2} = \sqrt[8]{162}$

b)
$$\sqrt{3\sqrt[4]{2}} = \sqrt{\sqrt[4]{3^4 \cdot 2}} = \sqrt[8]{162}$$

Piensa y practica

5.- Simplifica los radicales:

a)
$$\sqrt[5]{1024m^{37}c^{18}}$$

b)
$$\sqrt{2,\hat{7}b^3}$$

a)
$$\sqrt[5]{1024}m^{37}c^{18}$$
 b) $\sqrt{2,7}b^3$ c) $\sqrt[3]{\frac{8}{729}}b^5m^{14}$ d) $\sqrt[5]{125}m^{10}c^{13}b^7$

d)
$$\sqrt[5]{125m^{10}c^{13}b^7}$$

6.- Introduce los factores en los radicales siguientes:

a)
$$\frac{3}{8}\sqrt{\frac{2}{27}}x$$

b)
$$\frac{7}{2}\sqrt{\frac{8}{2}}$$

c)
$$\frac{2a}{3}\sqrt[3]{\frac{9a}{16}}$$

d)
$$3mx^2 \sqrt{\frac{1}{3}mx}$$

a)
$$\frac{3}{8}\sqrt{\frac{2}{27}x}$$
 b) $\frac{7}{2}\sqrt{\frac{8}{21}}$ c) $\frac{2a}{3}\sqrt[3]{\frac{9a}{16}}$ d) $3mx^2\sqrt{\frac{1}{3}mx}$ e) $\frac{2^3 \cdot 3^6}{5}\sqrt[4]{\frac{5^3 \cdot 2}{3^{10}}}$

.4.- Producto y cociente de radicales

Para poder multiplicar (o dividir) radicales han de tener el mismo índice, si no es así, primero hay que reducir a índice común. El resultado del producto (o del cociente) ya lo hemos visto en las propiedades 1 y 2.

8.- Realiza las siguientes operaciones con radicales:

a)
$$\sqrt[3]{4} \cdot \sqrt[3]{5} = \sqrt[3]{4 \cdot 5} = \sqrt[3]{20}$$
 b) $\sqrt[3]{2} \cdot \sqrt{2} = \sqrt[6]{2^3} \cdot \sqrt[6]{2^3} = \sqrt[6]{2^5}$ c) $\sqrt[5]{\frac{5}{16}} = \sqrt[5]{2}$ d) $\sqrt[3]{16} : \sqrt{2} = \sqrt[6]{2^8} : \sqrt[6]{2^3} = \sqrt[6]{2^5}$

b)
$$\sqrt[3]{2} \cdot \sqrt{2} = \sqrt[6]{2^2} \cdot \sqrt[6]{2^3} = \sqrt[6]{2^5}$$

$$c) \ \frac{\sqrt[5]{16}}{\sqrt[5]{8}} = \sqrt[5]{\frac{16}{8}} = \sqrt[5]{2}$$

d)
$$\sqrt[3]{16} : \sqrt{2} = \sqrt[6]{2^8} : \sqrt[6]{2^3} = \sqrt[6]{2^5}$$

Piensa y practica

7.- Calcula:

a)
$$\sqrt[3]{2} \cdot \sqrt[5]{3} =$$

b)
$$\sqrt{2} \cdot \sqrt[3]{4} =$$

c)
$$\sqrt{5}: \sqrt[4]{5} =$$

d)
$$\sqrt[3]{25} : \sqrt{5} =$$

e)
$$\sqrt{2} \cdot \sqrt{3} \cdot \sqrt{6} =$$

2.5.5.- Suma y resta de radicales

Para poder sumar radicales han de ser semejantes, es decir, deben tener el mismo índice y el mismo radicando, y para comprobar si dos radicales son semejantes hay que simplificarlos antes. Hecho esto, para sumar o restar radicales semejantes, se extrae factor común y se operan los coeficientes.

9.- Realiza las siguientes operaciones con radicales:

a)
$$\sqrt{3} + 5\sqrt{3} - 3\sqrt{3} = (1+5-3)\sqrt{3} = 3\sqrt{3}$$

b)
$$3\sqrt{27} - 2\sqrt{243} + \sqrt{75} - 2\sqrt{48} = 3\cdot\sqrt{3^3} - 2\sqrt{3^5} + \sqrt{3\cdot5^2} - 2\cdot\sqrt{3\cdot2^4} = 3\cdot3\sqrt{3} - 2\cdot3^2\cdot\sqrt{3} + 5\sqrt{3} - 2\cdot2^2\cdot\sqrt{3} = 9\sqrt{3} - 18\sqrt{3} + 5\sqrt{3} - 8\sqrt{3} = (9 - 18 + 5 - 8)\sqrt{3} = -12\sqrt{3}$$

Es importante notar que la suma algebraica de dos radicales de cualquier índice no es igual a la raíz de la suma algebraica de los radicandos.

$$\sqrt[n]{a} \pm \sqrt[n]{b} \neq \sqrt[n]{a+b}$$

Piensa y practica

8.- Realiza las siguientes operaciones con radicales:

a)
$$5\sqrt{44} - 3\sqrt{275} + 6\sqrt{396} - \sqrt{1331} = 20\sqrt{11}$$

c)
$$8\sqrt{8} - 5\sqrt{2} + 4\sqrt{20} - 12\sqrt{5} + 3\sqrt{18} = 20\sqrt{2} - 4\sqrt{5}$$

b)
$$5\sqrt{125} + 6\sqrt{45} - 7\sqrt{20} + \frac{3}{2}\sqrt{80} = 35\sqrt{5}$$
 d) $\left(\sqrt{(1+x)\sqrt[6]{(1+x)^2}}\right)^3 = x^2 + 2x + 1$

$$d) \left(\sqrt{(1+x)^{2} \sqrt{(1+x)^{2}}} \right)^{3} = x^{2} + 2x + 1$$

2.5.6.- Racionalización de radicales

Cuando tenemos fracciones con radicales en el denominador conviene obtener fracciones equivalentes pero que no tengan radicales en el denominador. A este proceso es a lo que se llama racionalización de radicales de los denominadores.

Según el tipo de radical o la forma de la expresión que aparece en el denominador, el proceso es diferente.

🔹 Caso 1: El denominador es una raíz cuadrada

Si el denominador contiene un solo término formado por una sola raíz cuadrada, se racionaliza multiplicando el numerador y el denominador por la raíz cuadrada del denominador.

emplo

10.- Racionaliza:

a)
$$\frac{5}{\sqrt{2}} = \frac{5}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{5 \cdot \sqrt{2}}{\sqrt{2 \cdot 2}} = \frac{5 \cdot \sqrt{2}}{\sqrt{4}} = \frac{5 \cdot \sqrt{2}}{2}$$

b)
$$\frac{6}{\sqrt{8}} = \frac{6}{2\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{3\cdot\sqrt{2}}{\sqrt{2\cdot2}} = \frac{3\cdot\sqrt{2}}{\sqrt{4}} = \frac{3\cdot\sqrt{2}}{2}$$

Si el denominador contiene un solo término formado por una raíz de índice cualquiera, se racionaliza multiplicando el numerador y el denominador por el radical del mismo orden necesario para completar la raíz. Quizás sea más fácil de comprender con un ejemplo:

Ejemplo

11.- Racionaliza
$$\frac{12}{\sqrt[5]{7^2}}$$

Como en el denominador tenemos la raíz quinta de 7 al cuadrado, para poder quitar el radical del denominador, necesitamos completar la raíz (necesitamos 7^3) así que, multiplicaremos por $\sqrt[5]{7^3}$

$$\frac{12}{\sqrt[5]{7^2}} = \frac{12}{\sqrt[5]{7^2}} \cdot \frac{\sqrt[5]{7^3}}{\sqrt[5]{7^3}} = \frac{12 \cdot \sqrt[5]{7^3}}{\sqrt[5]{7^5}} = \frac{12 \cdot \sqrt[5]{7^3}}{7}$$

Si el denominador de la fracción contiene dos términos en uno de los cuales (o en los dos) hay una raíz cuadrada, se racionaliza utilizando la tercera identidad notable. Es decir, multiplicando numerador y denominador por el conjugado del denominador.

$$(a+b)\cdot(a-b) = a^2 - b^2$$
 donde $(a+b)$ y $(a-b)$ son binomios conjugados

emplo

12.- Racionaliza:

a)
$$\frac{7}{1+\sqrt{2}} = \frac{7}{1+\sqrt{2}} \cdot \frac{1-\sqrt{2}}{1-\sqrt{2}} = \underbrace{\frac{7\cdot \left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\cdot \left(1-\sqrt{2}\right)}}_{SUMA\ X\ DIFERENCIA} = \underbrace{\frac{7-7\sqrt{2}}{1-\left(\sqrt{2}\right)^2}}_{Diferencia\ de\ coadrados} = \frac{7-7\sqrt{2}}{1-\sqrt{2}^2} = \frac{7-7\sqrt{2}}{1-\sqrt{4}} = \frac{7-7\sqrt{2}}{1-2} = \frac{7$$

$$b) \ \frac{\sqrt{3}}{3-\sqrt{2}} = \frac{\sqrt{3}}{3-\sqrt{2}} \cdot \frac{3+\sqrt{2}}{3+\sqrt{2}} = \frac{\sqrt{3}\left(3+\sqrt{2}\right)}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)} = \frac{3\sqrt{3}+\sqrt{6}}{9-\sqrt{4}} = \frac{3\sqrt{3}+\sqrt{6}}{9-2} = \frac{3\sqrt{3}+\sqrt{6}}{9-2}$$

c)
$$\frac{1+\sqrt{3}}{1-\sqrt{3}} = \frac{1+\sqrt{3}}{1-\sqrt{3}} \cdot \frac{1+\sqrt{3}}{1+\sqrt{3}} = \frac{\left(1+\sqrt{3}\right)\cdot\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\cdot\left(1+\sqrt{3}\right)} = \frac{\left(1+\sqrt{3}\right)^2}{\left(1-\sqrt{3}\right)\cdot\left(1+\sqrt{3}\right)} = \frac{1+3+2\sqrt{3}}{1-3} = \frac{4+2\sqrt{3}}{-2} = -2-\sqrt{3}$$

Piensa y practica

9.- Racionaliza las siguientes expresiones:

a)
$$\frac{5}{\sqrt{3}} =$$

b)
$$\frac{\sqrt{2}}{\sqrt[3]{4}}$$
 =

c)
$$\frac{4}{\sqrt{5}-1}$$
 =

d)
$$\frac{\sqrt{3}}{3+\sqrt{6}} =$$

e)
$$\frac{1+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$$
 =

10.- Calcula:

a)
$$\frac{2}{\sqrt{5}-\sqrt{3}}-\frac{2}{\sqrt{3}-1}-\frac{4}{\sqrt{5}-1}=$$

b)
$$\frac{2}{\sqrt{7}-\sqrt{5}} - \frac{3}{\sqrt{7}-2} - \frac{1}{\sqrt{5}-2} =$$

a)
$$\frac{2}{\sqrt{5}-\sqrt{3}} - \frac{2}{\sqrt{3}-1} - \frac{4}{\sqrt{5}-1} =$$
 b) $\frac{2}{\sqrt{7}-\sqrt{5}} - \frac{3}{\sqrt{7}-2} - \frac{1}{\sqrt{5}-2} =$ c) $\frac{3}{\sqrt{6}+\sqrt{3}} + \frac{2}{\sqrt{3}+1} - \frac{5}{\sqrt{6}+1} =$

2.06.- Logaritmo de un número real

Por ahora conocéis seis operaciones aritméticas: suma, resta, multiplicación, división, potenciación y radicación. En este punto vamos a estudiar la séptima y última operación, relacionada con las potencias de números.

Como sabemos, la potenciación tiene como objetivo hallar el resultado de una potencia, $(2^3 = 2 \cdot 2 \cdot 2 = 8)$ y la radicación tiene por objeto hallar la base. $(\sqrt[5]{32} = \sqrt[5]{2^5} = 2)$

Esta nueva operación, la exponenciación, que tiene por objeto hallar el exponente, recibe el nombre de logaritmo.

Ejemplo

13. - Resuelve la siguiente ecuación: 2x=64

En esta ecvación se trata de hallar el valor del exponente **x** al que hay que elevar 2 para obtener como resultado 64. Si descomponemos en factores primos el 64, obtenemos:

$$64 = 2^6$$

Y si sustituimos en la ecuación:

$$2^x = 64 = 2^6$$
 \rightarrow $2^x = 2^6$ \rightarrow $\chi = 6$

Al exponente x = 6, se le llama logaritmo de 64 en base 2 y se escribe:

$$\log_2 64 = 6$$

Y de aquí, podemos observar que las igualdades 2^{κ} y $\log_2 64 = 6$ son equivalentes.

Por tanto, hallar el logaritmo de un número equivale a buscar el exponente al que habrá que elevar una cierta base para obtener dicho número.

Se llama logaritmo en base b de un número a, con a>0, al exponente al que hay que elevar el número b para obtener a.

Cvando la base es 10, se llaman logaritmos decimales y no se indica la base 10, es decir:

$$\log P = \log P = x \quad \Leftrightarrow \quad 10^x = P$$

 \bullet Cuando la base es el número de Euler, e = 2'71828..., se llaman logaritmos neperianos o naturales y se expresan por ln en vez de \log_e , es decir:

$$\log P = \ln P = x \quad \Leftrightarrow \quad e^x = P$$

El Logaritmo y la exponencial son operaciones inversas como pasa con la potencia y la raíz.

jemplo

14.- Determina los siguientes logaritmos aplicando la definición: a)
$$log_2$$
 32 b) log_5 1/5 c) log_4 2

Aplicando la definición de logaritmo:
$$\log_a P = x \iff a^x = P$$

a)
$$\log_2 32 = \kappa$$
 \rightarrow $2^{\kappa} = 32$ \rightarrow $2^{\kappa} = 2^5$ \rightarrow $\kappa = 5$ \rightarrow $\log_2 32 = 5$

b)
$$\log_5 \frac{1}{5} = x$$
 \rightarrow $5^x = \frac{1}{5} = 5^{-1}$ \rightarrow $5^x = 5^{-1}$ \rightarrow $x = -1$ \rightarrow $\log_5 \frac{1}{5} = -1$

c)
$$\log_4 2 = x \rightarrow 4^x = 2 \rightarrow (2^2)^x = 2 \rightarrow 2^{2x} = 2 \rightarrow 2x = 1 \rightarrow x = \frac{1}{2} \rightarrow \log_4 2 = \frac{1}{2}$$

Piensa y practica

11.- Calcula los siguientes logaritmos:

Sol: a) 4; b) -2, c) -2; d) -1; e) 2

a)
$$log_3 81 =$$

b)
$$log_2 0,25 =$$

c)
$$log_{0.1} 100 =$$

$$d) log_5 0,2 =$$

e)
$$\log_{\sqrt{2}} 2 =$$

Como consecuencias inmediatas de la definición de logaritmo llegamos a:

- El logaritmo de la unidad es siempre 0: $\log_a 1 = 0$ \rightarrow $a^0 = 1$
- El logaritmo en cualquier base de la base es siempre 1: $\log_a a = 1$ \rightarrow $a^1 = a$
- El logaritmo de una potencia de la base es siempre el exponente: $\log_a a^Q = Q$ \rightarrow $a^Q = a^Q$

2.07.- Propiedades de los logaritmos

Además de estas tres vistas anteriormente, existen otras de vital importancia que nos van a venir muy bien a la hora de operar con logaritmos:

2.7.1.- Logaritmo del producto:

El logaritmo del producto es igual a la suma de los logaritmos de los factores que intervienen en él.

$$\log_a(P \cdot Q) = \log_a P + \log_a Q$$

Ejemplo

15.- No la vamos a demostrar, pero vamos a ver un ejemplo que nos va a aclarar mucho las ideas usando el log₂ 32:

$$\log_2 32 = 5 \leftrightarrow$$

$$\longleftrightarrow \begin{cases} \log_2 32 = \log_2 2^5 = \log_2 2^{2+3} = \log_2 \left(2^2 \cdot 2^3\right) = \log_2 \left(8 \cdot 4\right) \\ 5 = 2 + 3 = \log_2 2^2 + \log_2 2^3 = \log_2 4 + \log_2 8 \end{cases} \to \log_2 \left(8 \cdot 4\right) = \log_2 4 + \log_2 8$$

2.7.2.- Logaritmo del cociente:

El logaritmo del cociente es igual a la diferencia de los logaritmos del dividendo y del divisor.

$$\log_a \left(\frac{P}{Q}\right) = \log_a P - \log_a Q$$

jemplo

16.- No la vamos a demostrar, pero veremos un ejemplo bastante similar al anterior con la ayuda del $\log_2 8$:

$$\log_2 8 = 3 \qquad \Longleftrightarrow \qquad \begin{cases} \log_2 8 = \log_2 2^3 = \log_2 2^{5-2} = \log_2 \left(2^5 : 2^2\right) = \log_2 \left(\frac{32}{4}\right) \\ 3 = 5 - 2 = \log_2 2^5 - \log_2 2^2 = \log_2 32 - \log_2 4 \end{cases} \qquad \Rightarrow \qquad \log_2 \left(\frac{32}{4}\right) = \log_2 32 - \log_2 4$$

2.7.3.- Logaritmo de la potencia:

El logaritmo de una potencia es igual al producto del exponente por el logaritmo de la base de la potencia.

$$\log_a(P)^Q = Q \cdot \log_a P$$

Ejemplo

17.- Tampoco la vamos a demostrar, pero si veremos un ejemplo similar a los anteriores usando esta vez el log₂64:

$$\log_2 64 = 6 \qquad \Longleftrightarrow \qquad \begin{cases} \log_2 64 = \log_2 2^6 = \log_2 2^{3\cdot 2} = \log_2 \left(2^3\right)^2 = \log_2 \left(8\right)^2 \\ 6 = 2\cdot 3 = 2\cdot \log_2 2^3 = 2\cdot \log_2 8 \end{cases} \qquad \Rightarrow \qquad \log_2 \left(8\right)^2 = 2\cdot \log_2 8$$

Como las potencias y las raíces están muy relacionadas, el logaritmo de una raíz es igual al producto de la inversa del índice de la raíz por el logaritmo del radicando.

$$\log_a \sqrt[Q]{P} = \frac{1}{Q} \cdot \log_a P \quad \to \quad \log_a \sqrt[Q]{P} = \log_a (P)^{\frac{1}{Q}} = \frac{1}{Q} \cdot \log_a P$$

2.7.4.- Potencia del logaritmo:

Como hemos dicho con anterioridad la exponencial y el logaritmo son una inversa de la otra, así que al igual que el logaritmo de una potencia de la base es siempre igual al exponente $\log_a a^x = x$, la potencia de base igual a la base del logaritmo de un número cualquiera será siempre dicho número. $a^{\log_a x} = x$

Exponencial

$$a^{\log_a x} = \lambda^{\log_a x} = x$$

$$e^{\ln(x)} = x$$

$$\log_a a^x = \log_a \lambda^x = x$$

$$\log_a a^x = \log_a \lambda^x = x$$

2.7.5.- Igualdad de logaritmos:

Si los logaritmos de dos números en la misma base son iguales, entonces los números han de ser también iguales.

$$\log_a P = \log_a Q \quad \rightarrow \quad P = Q$$

Ejemplo

18. – Calcula el valor de x en la siguiente expresión: $\frac{\log(x+1)}{\log(x-1)} = 2$

Si operamos un poco llegamos a: $\frac{\log(x+1)}{\log(x-1)} = 2$ \rightarrow $\log(x+1) = 2 \cdot \log(x-1)$

Aplicando la propiedad 3 de los logaritmos:

$$\log(x+1) = 2 \cdot \log(x-1) \qquad \underset{\text{Propiedad 3}}{\longrightarrow} \qquad \log(x+1) = \log(x-1)^2$$

Si aplicamos la propiedad 4:

$$\log(x+1) = \log(x-1)^{2} \longrightarrow (x+1) = (x-1)^{2}$$

Y si resolvemos la ecuación:

$$(x+1)=(x-1)^2 \rightarrow x+1=x^2-2x+1 \rightarrow x^2-3x=0 \rightarrow x(x-3)=0 \rightarrow \begin{cases} x=0 \\ x=3 \end{cases}$$

Por tanto x=3, la solución x=0 se desecha porque el argumento o el antilogaritmo no puede ser un número negativo.

Piensa y practica

12.- Reduce estas expresiones a un único logaritmo con la ayuda de las propiedades de los logaritmos:

a)
$$2 \cdot \log_6 2 + \log_6 9 =$$

b)
$$3\log 2 + 2\log 15 - \log 9 + \log 5 =$$

c)
$$\log(a+b) + \log(a-b) =$$

a)
$$\log \frac{5^2 \cdot 3}{11} =$$

b)
$$\log \sqrt[5]{7^2 \cdot 5^3} =$$

c)
$$\log \frac{\sqrt[3]{a^2}}{4b^3} =$$

b)
$$\log \sqrt[5]{7^2 \cdot 5^3} = c$$
 $\log \log \frac{\sqrt[3]{a^2}}{4b^3} = d$ $\log \left[\frac{10}{a^4 \cdot b^3} \sqrt[3]{\frac{b}{a}} \right] = d$

2.7.6.- Cambio de Base:

La mayoría de las calculadoras científicas sólo permiten calcular o logaritmos decimales o logaritmos neperianos, así que si necesitamos calcular el logaritmo en cualquier otra base tendremos que hacer lo que se conoce como cambio de base.

El logaritmo de un número N en la base a, es el cociente del logaritmo en la base x (la que queramos) del número N entre el logaritmo en dicha base x, de la base antigua a.

$$\log_{P} Q = \frac{\log_{\chi} Q}{\log_{\chi} P} = \frac{\log Q}{\log P} = \frac{\ln Q}{\ln P} = \dots \qquad \underset{\text{En general}}{\longrightarrow} \qquad \log_{P} Q = \frac{\ln Q}{\ln P} \qquad o \qquad \log_{P} Q = \frac{\log Q}{\log P}$$

Sillamamos x al $\log_P Q \rightarrow \log_P Q = x$

Aplicando la definición de logaritmo: $\log_P Q = x \rightarrow P^x = Q$

Y si ahora aplicamos la propiedad (Igualdad de los logaritmos), llegamos a: $\log_u \mathcal{P}^{\kappa} = \log_u Q$

Ahora aplicando la propiedad (Logaritmo de una potencia) llegamos a: $\log_u P^x = \log_u Q$ \rightarrow $x \cdot \log_u P = \log_u Q$

Y despejando x llegamos a la expresión del cambio de base: $x = \frac{\log_y Q}{\log_w P}$

Por tanto: $\log_{\rho} Q = \frac{\log_{y} Q}{\log_{x} P}$ donde y puede ser cualquier base.

emplo

19.- Calcula el valor de log3 7:

Si utilizamos la fórmula del cambio de base: $\log_3 7 = \frac{\log(7)}{\log(3)} = 1,77$ Así que $\log_3 7 = 1,77$

Piensa y practica

14.- Calcula con la fórmula del cambio de base:

Sol: a) 1,255; b) 4,508; c) 3,549; d) 0,434

a)
$$\log_4 5,7 =$$

b)
$$\log_{3/2} O_{1} =$$

c)
$$\log_7 10^3 =$$

$$d$$
) $loge =$

15.- Halla con la calculadora log(7) y log(70) y explica por qué ambos tienen la misma parte decimal.

16.- Sabiendo que log(2)=0,301 y que log(3)=0,477, calcula:

Sol: a) 0,5673; b) 1,176; c) -0,602; d) 1,585

a)
$$\log(24) =$$

b)
$$\log(15) =$$

$$c) \log(0.25) =$$

$$d)\log_{2} 3 =$$

17.– Una empresa recibe un crédito al 8% anual, con la condición de devolver en un solo pago la cantidad prestada más los intereses. ¿Cuánto tiempo tardará en duplicarse la deuda? Sol: 8 años.

2.08.- Ecuaciones Exponenciales y Logarítmicas

Una vez trabajadas las propiedades de las potencias y de los logaritmos, existe un tipo de ejercicios de aplicación de todas ellas, las llamadas ecvaciones logarítmicas y exponenciales, que son un tipo de ecuaciones en las que la incógnita x, aparece o en el exponente (ecuaciones exponenciales) o en el argumento de un logaritmo (ecuaciones logarítmicas). Veamos cada una de ellas por separado:

2.8.1.- Ecuaciones exponenciales:

Una <mark>ecuación exponencial</mark> es una ecuación en la que la incógnita, la **x** normalmente, aparece en el exponente de una potencia. Como, por ejemplo:

$$2^{2x-4}=64$$

📫 Resolver una ecuación exponencial es encontrar el valor o valores de 🗴 que verifican la igualdad, y para ello hemos de tener en cuenta todas estas propiedades de las potencias:

 $a \neq 1$

Si
$$a^x = a^y$$

1)
$$a^{\circ} = 1$$

$$y = a^1$$

3)
$$a^c \cdot b^c = (a \cdot b)^c$$

4)
$$a^b: a^c = a^{b-1}$$

5)
$$a^c: b^c = (a:b)^c$$

5)
$$a^c: b^c = (a:b)^c$$
 6) $(a^b)^c = a^{b \cdot c}$

7)
$$a^{-b} = \frac{1}{a^b}$$

9)
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Las ecuaciones exponenciales podemos resolverlas de dos maneras diferentes, según sea el caso:

Caso 1: Exponencial igualada a un número:

Para resolverla, basta con realizar las operaciones necesarias para que en ambos miembros de la igualdad tengamos la misma base, y de esta forma, poder igualar los exponentes.

Ejemplo

20.- Resuelve las siguientes ecuaciones exponenciales:

$$2^{2x-4} = 64 \rightarrow 2^{2x-4} = 2^6 \rightarrow 2x-4=6 \rightarrow 2x=6+10 \rightarrow$$

$$\rightarrow 2v-4=$$

$$2v = 6 + 10$$

$$2 v = 10$$

$$\rightarrow$$
 $v=5$

$$2 \cdot 3^{2\kappa-5} = 54 \rightarrow 3^{2\kappa-5} = 27 \rightarrow 3^{2\kappa-5} = 3^3 \rightarrow 2\kappa - 5 = 3$$

$$2x - 5 = 3$$

En este tipo de ecuaciones es conveniente verificar si la solución o soluciones son correctas.

$$2^{2x-4} = 64 \rightarrow 2^{2\cdot 5-4} = 2^6 = 64 \quad 6 \quad 2\cdot 3^{2x-5} = 54 \rightarrow 2\cdot 3^{2\cdot 4-5} = 2\cdot 3^3 = 54$$

$$2.3^{2.4-5} - 2.3^3 - 54$$

€ Caso 2: Transformación a una ecuación polinómica mediante un cambio de variable:

Un cambio de variable es una técnica empleada en matemáticas para resolver algunas ecuaciones o sistemas de ecuaciones de grado superior a uno, que de otra forma sería muy complicado de resolver.

Por ejemplo, la ecuación $x^6 - 5x^3 + 6 = 0$, que es muy difícil de resolver, se puede transformar en otra, mucho más fácil de resolver, $z^2 - 5z + 6 = 0$, simplemente haciendo el cambio de variable: $z=x^3$

Cuando nos encontremos con una ecuación exponencial compleja podemos recurrir a un cambio de variable para transformarla en una ecuación polinómica, casi siempre de segundo grado, que es de fácil resolución.

Posteriormente, y esto es muy importante, se deshace el cambio de variable y se obtiene el valor de la incógnita pedida. Veamos un ejemplo:

Ejemplo

21. – Resuelve la siguiente ecuación exponencial $2^{2x+1}-3\cdot 2^x+1=0$

En primer lugar, aplicamos las propiedades de las potencias necesarias para quitar las sumas o restas de los exponentes:

$$2^{2x+1} - 3 \cdot 2^x + 1 = 0$$
 \rightarrow $2^1 \cdot 2^{2x} - 3 \cdot 2^x + 1 = 0$ \rightarrow $2 \cdot (2^x)^2 - 3 \cdot 2^x + 1 = 0$

Si observamos la ecuación obtenida, vemos que se parece a una ecuación de segundo grado donde la "incógnita" sería 2^x , así que hacemos el cambio de variable $2^x=Z$ y reescribimos la ecuación:

$$2\cdot \left(2^{x}\right)^{2} - 3\cdot 2^{x} + 1 = 0 \quad \Rightarrow \quad \text{Si } z = 2^{x} \quad \Rightarrow \quad 2\cdot \left(2^{x}\right)^{2} - 3\cdot 2^{x} + 1 = 0 \quad \Rightarrow \quad 2\cdot \left(z\right)^{2} - 3\cdot z + 1 = 0$$

Llegamos a una ecuación de segundo grado, cuya solución es:

$$2z^{2} - 3z + 1 = 0 \implies z = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} = \begin{cases} z_{1} = \frac{1}{2} \\ z_{2} = 1 \end{cases}$$

Ahora si deshacemos el cambio de variable para poder calcular x:

Si
$$z = 2^{\kappa}$$
 \rightarrow
$$\begin{cases} 2^{\kappa} = \frac{1}{2} & \rightarrow 2^{\kappa} = 2^{-1} & \rightarrow \kappa = -1 \\ 2^{\kappa} = 1 & \rightarrow 2^{\kappa} = 2^{0} & \rightarrow \kappa = 0 \end{cases}$$

Por tanto, las soluciones son $x_1=-1$ y $x_2=0$

22. – Resuelve la siguiente ecuación exponencial $2-3^{-x}+3^{x+1}=0$

Si aplicamos las propiedades de las potencias y hacemos el cambio t=3x, llegamos a una ecuación de 2° grado:

$$2-3^{-\kappa}+3^{\kappa+1}=0$$
 \rightarrow $2-\frac{1}{3^{\kappa}}+3\cdot 3^{\kappa}=0$ \rightarrow $\left(\text{Si }3^{\kappa}=t\right)$ \rightarrow $2-\frac{1}{t}+3t=0$ \rightarrow $3t^{2}+2t-1=0$

Cuya solución es:

$$3t^{2} + 2t - 1 = 0 \quad \rightarrow \quad t = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-2 \pm \sqrt{4 + 12}}{6} = \frac{-2 \pm 4}{6} = \begin{cases} t_{1} = -1 \\ t_{2} = \frac{1}{3} \end{cases}$$

Y deshaciendo el cambio:

Si
$$t = 3^{\kappa}$$
 \rightarrow
$$\begin{cases} 3^{\kappa} = -1 & \rightarrow & \text{Sin solución} \\ 3^{\kappa} = \frac{1}{3} & \rightarrow & 3^{\kappa} = 3^{-1} & \rightarrow & \kappa = -1 \end{cases}$$

Por lo que su solución es x=-1

Piensa y practica

18. - Resuelve las siguientes ecuaciones exponenciales:

Sol: a) -7; b) -8; c) 5/6; d) 1; e) 0 y 1

a)
$$\sqrt{3^{\kappa+1}} = \frac{1}{27}$$
 b) $\frac{(\sqrt{3})^{-\kappa}}{81} = 1$ c) $\frac{2^{\kappa} \cdot \sqrt{2}}{\sqrt[3]{4}} = 2$ d) $2^{\kappa-1} + 2^{\kappa} + 2^{\kappa+1} = 7$ e) $3^{\kappa} + 3^{1-\kappa} = 4$

2.8.2.- Ecuaciones logarítmicas:

Una ecvación logarítmica es aquella en la que la incógnita aparece dentro de un logaritmo.

Ejemplo de este tipo de ecuaciones es:

$$\log 2 + \log (11-x^2) = 2 \cdot \log (5-x)$$

Para resolverlas hemos de tener en cuenta:

★ Las propiedades de los logaritmos:

1)
$$\log_a 1 = 0$$

3)
$$\log_a a^Q = G$$

3)
$$\log_a a^Q = Q$$
 5) $\log_a (P \cdot Q) = \log_a P + \log_a Q$

2)
$$\log_a a = 1$$

$$4) \quad a^{\log_a Q} = Q$$

4)
$$a^{\log_a Q} = Q$$
 6) $\log_a \left(\frac{P}{Q}\right) = \log_a P - \log_a Q$

$$7) \quad \log_a(P)^Q = Q \cdot \log_a P$$

9)
$$\log_a P = \log_a Q \rightarrow P = Q$$

Propiedades de los Logaritmos

8)
$$\log_a \sqrt[Q]{P} = \frac{1}{Q} \cdot \log_a P$$
 10) $\log_P Q = \frac{\log_k Q}{\log_a P}$

$$10) \quad \log_{P} Q = \frac{\log_{x} Q}{\log_{x} P}$$

- **\(\lefta\)** La definición de logaritmo: $\log_a P = x \iff a^x = P$
- \bullet La ignaldad de logaritmos: $\log_a P = \log_a Q \rightarrow P = Q$
- y además tendremos que comprobar las soluciones para verificar que no tengamos logaritmos nulos o negativos.

Como en toda ecuación, hemos de despejar la incógnita, y para ello podemos encontrarnos con diferentes casos:

₡ Caso 1: Aplicando la definición de logaritmo:

23. - Resuelve las siguientes ecuaciones logarítmicas:

a)
$$\log_8 \left[2(x^3 + 5) \right] = 2$$

Aplicando la definición de logaritmo, legamos a:

$$\log_a b = c \Leftrightarrow a^c = b \rightarrow \log_8 \left[2(x^3 + 5) \right] = 2 \Leftrightarrow 8^2 = 2(x^3 + 5)$$

Y operando:

$$8^2 = 2(x^3 + 5)$$
 \rightarrow $64 = 2(x^3 + 5)$ \rightarrow $32 = x^3 + 5$ \rightarrow $x^3 = 27$ \rightarrow $x^3 = 3^3$

Queda claro que si dos potencias son iguales y sus exponentes también lo son, entonces sus bases también tienen que ser iguales:

Si
$$x^3 = 3^3 \rightarrow x = 3$$

Verificamos para asegurarnos de no realizar logaritmos nulos o negativos y claramente si x es positivo, x3 también lo es.

Por tanto, la solución es: x=3.

b) $\log_{2x+3}(81) = 2$

Aplicando la definición de logaritmo, legamos a:

$$\log_a b = c \Leftrightarrow a^c = b \rightarrow \log_{2x+3}(81) = 2 \rightarrow (2x+3)^2 = 81$$

Y operando:

$$(2x+3)^2 = 81$$
 \rightarrow $4x^2 + 12x + 9 = 81$ \rightarrow $4x^2 + 12x - 72 = 0$ \rightarrow $x^2 + 3x - 18 = 0$

Llegamos a una ecuación de segundo grado cuya solución es:

$$x^2 + 3x - 18 = 0$$
 \rightarrow $(x+6)\cdot (x-3) = 0$ \rightarrow
$$\begin{cases} x = -6 \\ x = 3 \end{cases}$$

Verificamos para asegurarnos de no realizar logaritmos nulos o negativos y vemos que ambas soluciones son correctas.

Por tanto, las soluciones son: x=3 y x=-6.

c)
$$\log(2x-4)=2$$

Aplicando la definición de logaritmo y operando, legamos a:

$$\log_a b = c \Leftrightarrow a^c = b \rightarrow \log(2x - 4) = 2 \rightarrow 10^2 = 2x - 4 \rightarrow 104 = 2x \rightarrow x = 52$$

Solución que es válida porque no hace negativo al argumento.

Por tanto, x=52

€ Caso 2: Aplicando las propiedades de los logaritmos y finalmente la igualdad de logaritmos

Eiemplo

24.- Resuelve las siguientes ecuaciones logarítmicas:

$$a) \frac{\log(16-x^2)}{\log(3x-4)} = 2$$

Si operamos un poco llegamos a:

$$\frac{\log(16-x^2)}{\log(3x-4)} = 2 \quad \rightarrow \quad \log(16-x^2) = 2 \cdot \log(3x-4)$$

Aplicando la propiedad de la potencia de un logaritmo:

$$\log(16-x^2) = 2 \cdot \log(3x-4) \rightarrow \log(16-x^2) = \log(3x-4)^2$$

Y si dos logaritmos son iguales, sus argumentos también lo son:

Si
$$\log(16-\kappa^2) = \log(3\kappa-4)^2$$
 \rightarrow $(16-\kappa^2) = (3\kappa-4)^2$ \rightarrow $16-\kappa^2 = 9\kappa^2 - 24\kappa + 16$

Llegamos a una ecuación de segundo grado cuya solución es:

$$16 - x^{2} = 9x^{2} - 24x + 16 \quad \to \quad 10x^{2} - 24x = 0 \quad \to \quad x(5x - 12) = 0 \quad \to \quad \begin{cases} x = 0 \\ x = \frac{12}{5} \end{cases}$$

Desechamos la solución x=0 porque el logaritmo del cociente sería negativo.

Por tanto, la solución es x=12/5

b)
$$\log 2 + \log(11 - x^2) = 2 \cdot \log(5 - x)$$

Aplicando las propiedades de los logaritmos llegamos a:

$$\underbrace{\log 2 + \log \left(11 - \kappa^{2}\right)}_{\text{Propiedad 5}} = \underbrace{2 \cdot \log \left(5 - \kappa\right)}_{\text{Propiedad 7}} \rightarrow \underbrace{\log \left[2 \cdot \left(11 - \kappa^{2}\right)\right] = \log \left(5 - \kappa\right)^{2}}_{\text{Propiedad 9}} \rightarrow \left[2 \cdot \left(11 - \kappa^{2}\right)\right] = \left(5 - \kappa\right)^{2}$$

Una ecuación de segundo grado, que resolviendo:

$$22 - 2x^2 = 25 - 10x + x^2 \qquad \Rightarrow \qquad 3x^2 - 10x + 3 = 0 \qquad \Rightarrow \qquad \begin{cases} x = 3 \\ x = \frac{1}{3} \end{cases}$$

No podemos olvidar que siempre hay que verificar si la solución o soluciones son correctas:

Si sustituimos x=3:

$$\log 2 + \log \left(11 - \kappa^2\right) = 2 \cdot \log \left(5 - \kappa\right) \quad \rightarrow \quad \log 2 + \log \left(11 - 9\right) = 2 \cdot \log \left(5 - 3\right) \quad \rightarrow \quad \log 2 + \log 2 = 2 \cdot \log 2 \qquad \text{c.q.d.}$$

Si sustituimos x=1/3:

$$\begin{split} \log 2 + \log \left(11 - \kappa^2\right) &= 2 \cdot \log \left(5 - \kappa\right) & \rightarrow \quad \log 2 + \log \left(11 - \frac{1}{9}\right) = 2 \cdot \log \left(5 - \frac{1}{3}\right) & \rightarrow \quad \log 2 + \log \left(\frac{98}{9}\right) = 2 \cdot \log \left(\frac{14}{3}\right) \\ & \rightarrow \quad \log \left(2 \cdot \frac{98}{9}\right) = \log \left(\frac{14}{3}\right)^2 & \rightarrow \quad \frac{196}{9} = \frac{196}{9} & \textit{c.q.d.} \end{split}$$

Piensa y practica

19. - Resuelve las siguientes ecuaciones logarítmicas:

Sol: a) 3; b) 5

a)
$$\log(x+1) + \log(x) = \log(x+9)$$

b)
$$\log \sqrt{x-1} = \log(x+1) - \log \sqrt{x+4}$$

20. - Determina el valor de x en las siguientes expresiones:

Sol: a) 3; b) 3, c) 4/3 d) 10

a)
$$log_{2x+3} 81=2$$

b)
$$x + 2 = 10^{\log 5}$$

c)
$$x = \frac{\log 625}{\log 125}$$

$$d') \frac{\log(x-7)}{\log(x-1)} = 0,5$$

21.— Una bacteria se duplica cada hora si tiene las condiciones óptimas. ¿Cuántas horas habrán de pasar para que una bacteria inicial cree una colonia con mil millones de bacterias?

2.09.- Notación científica

La *notación científica* nos permite escribir números muy grandes o muy pequeños de forma abreviada y estandarizada.

0,00068 6,8.10-4

La notación científica significa que un número (entre el 1 y el 10) es multiplicado por una potencia de base 10.

Siempre el exponente es igual al número de cifras decimales que debe correrse la coma para convertir un número escrito en notación científica en el mismo escrito en notación decimal. Se desplazará la coma a la derecha si el exponente es positivo y hacia la izquierda si es negativo. Cuando se trata de convertir un número a notación científica el proceso es a la inversa.

5,7.106

La notación científica se utiliza de forma corriente en infinidad de materias. Ejemplos de ello son:

\\ Masa del prot\(on \) $m_{\rho} = 1,6725 \cdot 10^{-27} kg$

0,00547 5,47·10⁻³ 5.700.000

- **Carga del electrón:** $q_e = 1,6021.10^{-19}$ C
- Número de Avogadro: $N_a = 6.023 \cdot 10^{23}$
- Constante de la gravitación universal: $G = 6,67 \cdot 10^{-11} N \cdot m^2 \cdot kg^{-2}$
- **©** Dinero de Amancio Ortega en 2022: 5,6·10¹⁰ €
- P.I.B. de los E.E.U.U en 2020: $2,094\cdot10^{13}$ \$

jemplo

22. - Expresa los siguientes números en notación científica:

a) $500 = 5 \cdot 10^2$ b) $600.000 = 6 \cdot 10^5$ c) $300.000.000 = 3 \cdot 10^8$ d) $5.750.000 = 5,75 \cdot 10^6$ e) $0,000 = 1,2 \cdot 10^{-4}$ g) $0,000 = 1,2 \cdot 10^{-4}$ g) $0,000 = 1,2 \cdot 10^{-4}$ h) $0,000 = 1,2 \cdot 10^{-4}$ h) $0,000 = 1,2 \cdot 10^{-4}$

Piensa y practica

- 22.- Un átomo de oxígeno, O, tiene una masa aproximada de: 0,000 000 000 000 000 000 000 026 560 gramos Expresa dicha masa en notación científica. Sol: $2,656\cdot10^{-23}$ g
- 23.- La masa de un protón es de aprox. $1,6726\cdot10^{-27}$ kg unas 1.836 veces la masa de un electrón. Con estos datos, ¿podrías calcular la masa aproximada de un electrón?, ¿Cuánto es?
- 24.— El diámetro aproximado de los glóbulos blancos de la sangre es 1,2·10⁻⁷m. Si Alexander tiene 5,5 litros de sangre en su cuerpo y el número de glóbulos blancos por mm³ es de 7.500, averigua el número aproximado de glóbulos blancos que tiene Alexander.
- 25.- El volumen de la Pirámide de Keops es 2.500.000 m³ y el del Lago Ness de 7.500.000.000 m³. a) ¿Cuántos m³ es mayor el Lago Ness que la Pirámide de Keops? b) ¿Cuántas veces es mayor el Lago que la pirámide?

Sol: a) $7,4975\cdot10^{9}$ m 3 ; b) $3\cdot10^{3}$ veces

2.09.- Resolución de Problemas

Según **Polya** (1965), el profesor de matemáticas tiene en sus manos la llave del éxito ya que, si es capaz de estimular en los alumnos la curiosidad, podrá despertar en ellos el gusto por el pensamiento independiente; pero, si por el contrario dedica el tiempo a ejercitarles en operaciones de tipo rutinario, matará en ellos el interés.

Es necesario crear en clase un ambiente que favorezca la investigación, el descubrimiento, la búsqueda, la desinhibición - cuando se trate de plantear preguntas o dudas - , el respeto a los compañeros, las actitudes de colaboración... etc.

Más que enseñar a los alumnos a resolver problemas, se trata de enseñarles a pensar matemáticamente, es decir, a que sean capaces de abstraer y aplicar ideas matemáticas a un amplio rango de situaciones y, en este sentido, los propios problemas serán las "herramientas" que les llevarán a ello.

Es por ello que la resolución de problemas es considerada la parte más esencial del aprendizaje de matemáticas. Mediante la resolución de problemas, experimentareis la utilidad de las Matemáticas en el mundo que os rodea aplicando de forma práctica los conocimientos teóricos que habéis adquirido.

En general, a la hora de resolver problemas en matemáticas, seguiremos el siguiente esquema:

- a) Lectura y comprensión del enunciado.
- b) Análisis de los datos del enunciado. (A veces es importante ayudarse con un dibujo)
- c) Plantear las operaciones a realizar y realizarlas sin olvidar el orden de prioridad.
- d) Resolver el problema paso a paso intentando explicar los pasos seguidos para resolverlo y dando la solución pedida.
- e) Evaluar e interpretar los resultados. ¿Son lógicos? ¿se corresponden con lo pedido en el enunciado? ¿puedo comprobar si la solución es correcta?

Veamos algunos ejemplos:

1.- El patio de una cárcel es un cuadrado de 50 metros de lado. Un recluso pasea recorriendo el perímetro ABCD con una velocidad constante y otro lo hace sobre una diagonal AC con la misma velocidad. Si parten simultáneamente del punto A, ¿Volverán a encontrarse?

Si el lado del cuadrado mide 50m, entonces la diagonal la calcularemos con el Teorema de Pitágoras:

$$d^2 = l^2 + l^2 = 2l^2$$
 \rightarrow $d = \sqrt{2l^2} = l\sqrt{2}$ \rightarrow $d = 50\sqrt{2}$ metros

Sea P el preso que pasea por el perímetro y Q el que pasea por la diagonal.

Según los datos del problema se podrían encontrar en los vértices A o en C.

D

C

В

Para ello, cada uno de los presos debe recorrer un número entero (positivo) de lados o de diagonales.

- Preso P: Recorre un número indeterminado de lados: $n \cdot l = 50n$ $n \in \mathbb{N}$
- Preso Q: Recorre un número indeterminado de diagonales: $m \cdot d = 50\sqrt{2}m$ $m \in \mathbb{N}$

Si igualamos ambas expresiones, veremos donde se encuentran:

$$m \cdot d = nl$$
 \rightarrow $50\sqrt{2}m = 50n$ \rightarrow $\sqrt{2} = \frac{n}{m}$

Resultado que es imposible porque si m y n son naturales, su cociente no puede ser un número irracional.

Por tanto, respondiendo a la pregunta, no se volverán a encontrar nunci

2.— Se tiene una mesa de camilla redonda de 1 metro de radio y otro de altura, si se quiere cubrir con un mantel cuadrado de manera que sus esquinas rocen ligeramente el suelo. ¿Cuál ha de ser el lado del mantel?

La mesa de camilla es un cilindro de 2 metros de diámetro y 1 metro de altura, si la abuela la quiere cubrir con unas enaguas para poner el brasero de leña de forma que las esquinas del cuadrado toquen ligeramente le suelo, tenemos un cuadrado cuya diagonal va a ser el doble del radio más el doble de

la altura al suelo (ver el dibujo de la derecha), por tanto, la diagonal del cuadrado es de 4 metros.

Conocida la diagonal, podemos calcular mediante el teorema de Pitágoras, el lado del cuadrado.

$$a^{2} = b^{2} + c^{2}$$
 \rightarrow $d^{2} = 2l^{2}$ \rightarrow $l = \sqrt{\frac{d^{2}}{2}} = \frac{d}{\sqrt{2}} = \frac{d\sqrt{2}}{2}$

Y sustituyendo el valor de d=4, podemos calcular el lado:

$$l = \frac{d\sqrt{2}}{2} = \frac{4\sqrt{2}}{2} = 2\sqrt{2} m$$

Por tanto, el lado del cuadrado mide $2\sqrt{2}$ metros.

3.- Demvestra que si $\rho = \sqrt{6+4\sqrt{2}} - \sqrt{6-4\sqrt{2}}$, entonces ρ^2 es un número entero.

Si $\rho = \sqrt{6 + 4\sqrt{2}} - \sqrt{6 - 4\sqrt{2}}$, entonces $\rho^2 = \left(\sqrt{6 + 4\sqrt{2}} - \sqrt{6 - 4\sqrt{2}}\right)^2$. Desarrollando ese cuadrado, como es una identidad notable $(a-b)^2 = a^2 + b^2 - 2ab$:

$$\rho^{2} = \left(\sqrt{6 + 4\sqrt{2}} - \sqrt{6 - 4\sqrt{2}}\right)^{2} = \left(\sqrt{6 + 4\sqrt{2}}\right)^{2} + \left(\sqrt{6 - 4\sqrt{2}}\right)^{2} - 2 \cdot \sqrt{6 + 4\sqrt{2}} \cdot \sqrt{6 - 4\sqrt{2}} = 6 + 4\sqrt{2} + 6 - 4\sqrt{2} - 2 \cdot \sqrt{6 + 4\sqrt{2}} \cdot (6 - 4\sqrt{2}) = 12 - 2 \cdot \sqrt{36 - \left(4\sqrt{2}\right)^{2}} = \frac{6 + 4\sqrt{2} + 6 - 4\sqrt{2} - 2 \cdot \sqrt{6 + 4\sqrt{2}} \cdot (6 - 4\sqrt{2})}{2} = \frac{6 + 4\sqrt{2} + 6 - 4\sqrt{2} - 2 \cdot \sqrt{6 + 4\sqrt{2}} \cdot (6 - 4\sqrt{2})}{2} = \frac{6 + 4\sqrt{2} - 2 \cdot \sqrt{6 - 4\sqrt{2}}}{2} = \frac{6 + 4\sqrt{2}}{2} = \frac{6 + 4\sqrt{2}$$

$$12 - 2 \cdot \sqrt{36 - 32} = 12 - 2 \cdot \sqrt{4} = 12 - 4 = 8$$

Por tanto, queda demostrado que p^2 es un número entero.

4.— Demvestra la siguiente igualdad: $2\sqrt{2-\sqrt{3}} = \sqrt{2}(\sqrt{3}-1)$

Si $2\sqrt{2-\sqrt{3}}=\sqrt{2}\left(\sqrt{3}-1\right)$, entonces si elevamos al cuadrado ambos términos, la igualdad no se rompe:

$$\left[2\sqrt{2-\sqrt{3}} \right]^{2} = \left[\sqrt{2} \left(\sqrt{3} - 1 \right) \right]^{2} \rightarrow 4\left(2 - \sqrt{3} \right) = 2\left(\sqrt{3} - 1 \right)^{2} \rightarrow 4\left(2 - \sqrt{3} \right) = 2\left(3 + 1 - 2\sqrt{3} \right)$$

$$\rightarrow 8 - 4\sqrt{3} = 2\left(4 - 2\sqrt{3} \right) \rightarrow 8 - 4\sqrt{3} = 8 - 4\sqrt{3}$$

$$c.q.d.$$

Vemos que, operando en ambos términos de la igualdad, al final llegamos a una identidad, por tanto, queda demostrado que son iguales.

5.— Los puntos A y B dividen a la diagonal del cuadrado en tres partes iguales (ver figura). Si el área del cuadrado es de 36 cm², ¿cuánto medirá el lado del rombo? Da el valor exacto.

Si el área del cuadrado es de 36 cm², su lado será: $l=\sqrt{36}=6$ cm , y aplicando el Teorema de Pitágoras calculamos la longitud de la diagonal:

$$a^2 = b^2 + c^2$$
 \rightarrow $d^2 = 2l^2$ \rightarrow $d = \sqrt{2 \cdot l^2} = \sqrt{2 \cdot 6^2} = \sqrt{72} = 6\sqrt{2}$

Como dice que los puntos A y B dividen a la diagonal en tres partes iguales, cada una de las partes medirá $\frac{1}{3}$. $6\sqrt{2}=2\sqrt{2}$ cm, por tanto, ya tenemos la medida de la diagonal menor del rombo. Si nos fijamos solo en uno de los 4 triángulos rectángulos que forman el rombo podemos observar que un cateto mide $\sqrt{2}$ y el otro $3\sqrt{2}$, así que, aplicamos de nuevo el teorema de Pitágoras:

$$x^2 = b^2 + c^2$$
 \rightarrow $x = \sqrt{b^2 + c^2} = \sqrt{(\sqrt{2})^2 + (3\sqrt{2})^2} = \sqrt{2 + 18} = \sqrt{20} = 2\sqrt{5}$

Por tanto, el lado del rombo mide $2\sqrt{5}$ cm

6.— Una empresa recibe un crédito al 8% anual, con la condición de devolver en un solo pago la cantidad prestada más los intereses. ¿Cuánto tiempo tardará en duplicarse la deuda?

Se trata de un problema de interés compuesto en el que si el crédito concedido (capital inicial) se duplica, quiere esto decir que, los intereses son iguales al crédito concedido (capital inicial):

$$C_{f} = C_{o} \cdot \left(1 + \frac{r}{100} \right)^{t} \rightarrow 2C_{o} = C_{o} \cdot \left(1 + \frac{r}{100} \right)^{t} \rightarrow 2 = \left(1 + \frac{r}{100} \right)^{t}$$

Si aplicamos logaritmos a ambos miembros de la igualdad, llegamos a:

$$\ln(2) = \ln\left[\left(1 + \frac{r}{100}\right)^{t}\right] \xrightarrow{\text{Logaritmo}} \ln(2) = t \cdot \ln\left(1 + \frac{r}{100}\right)$$

Donde, si despejamos t, y sustituimos los datos del problema:

$$t = \frac{\ln(2)}{\ln(1 + \frac{r}{100})} = \frac{\ln(2)}{\ln(1 + \frac{8}{100})} = \frac{\ln(2)}{\ln(1,08)} \rightarrow t = 9 \text{ años}$$

Por tanto, La deuda se duplicará en 9 años.

7.— Jesús ingresa 2.500 € en una cuenta bancaria al 6% de interés con capitalización anual. ¿Cuántos años debe dejar invertida esa cantidad para que el saldo de la cuenta supere los 6.000 €?

Estamos frente a un problema de interés compuesto en el que los intereses se van acumulando al capital inicial y en el que el capital final viene dado por la expresión: $C_f = C_o + I = C_o \left(1 + \frac{r}{100}\right)^t$, como nos piden el tiempo, lo vamos a despejar aplicando logaritmos a ambos lados de la expresión:

$$C_{f} = C_{o} \cdot \left(1 + \frac{r}{100}\right)^{t} \rightarrow \ln\left(C_{f}\right) = \ln\left[C_{o} \cdot \left(1 + \frac{r}{100}\right)^{t}\right] \rightarrow \ln\left(C_{f}\right) = \ln\left(C_{o}\right) + \ln\left(1 + \frac{r}{100}\right)^{t} \rightarrow \ln\left(C_{f}\right) = \ln\left(C_{o}\right) + \ln\left(C_{o}\right) + \ln\left(C_{o}\right) = \ln\left(C_{o}\right) + \ln\left(C_{o}\right) + \ln\left(C_{o}\right) + \ln\left(C_{o}\right) = \ln\left(C_{o}\right) + \ln\left(C_$$

Pasamos el $ln(C_o)$ al primer miembro y aplicamos la propiedad del logaritmo del cociente y la del logaritmo de la potencia:

$$\rightarrow \underbrace{\ln(C_f) - \ln(C_o)}_{\text{Logaritmo del cociente}} = \ln\left(1 + \frac{r}{100}\right)^t \rightarrow \ln\left(\frac{C_f}{C_o}\right) = \underbrace{t \cdot \ln\left(1 + \frac{r}{100}\right)}_{\text{Logaritmo del cociente}}$$

Despejamos t y sustituimos los datos del enunciado:

Por tanto, para que el saldo supere los 6.000 € han de pasar como mínimo 16 años.

8.— Calcula el valor de la siguiente expresión:
$$\frac{\left[\left(4\sqrt{50}-3\sqrt{72}\right)\cdot\left(2\sqrt{2}+\sqrt{18}\right)\right]\cdot\sqrt{2}}{\sqrt{12}+\sqrt{8}} =$$

Antes de operar, vamos a extraer de los radicales todos los factores que se pueda:

$$\frac{\left[\left(4\sqrt{50}-3\sqrt{72}\right)\cdot\left(2\sqrt{2}+\sqrt{18}\right)\right]\cdot\sqrt{2}}{\sqrt{12}+\sqrt{8}} = \frac{\left[\left(4\cdot5\sqrt{2}-3\cdot2\cdot3\sqrt{2}\right)\cdot\left(2\sqrt{2}+3\sqrt{2}\right)\right]\cdot\sqrt{2}}{2\sqrt{3}+2\sqrt{2}}$$

Hecho esto, agrupamos y multiplicamos:

$$\frac{\left[\left(4.5\sqrt{2}-3.2.3\sqrt{2}\right)\cdot\left(2\sqrt{2}+3\sqrt{2}\right)\right]\cdot\sqrt{2}}{2\sqrt{3}+2\sqrt{2}} = \frac{\left[\left(20\sqrt{2}-18\sqrt{2}\right)\cdot\left(2\sqrt{2}+3\sqrt{2}\right)\right]\cdot\sqrt{2}}{2\sqrt{3}+2\sqrt{2}} = \frac{\left[\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\right]\cdot\sqrt{2}}{2\sqrt{3}+2\sqrt{2}} = \frac{\left[\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\right]\cdot\sqrt{2}}{2\sqrt{3}+2\sqrt{2}} = \frac{\left[\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\right]\cdot\sqrt{2}}{2\sqrt{3}+2\sqrt{2}} = \frac{\left[\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\right]\cdot\sqrt{2}}{2\sqrt{3}+2\sqrt{2}} = \frac{\left[\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\right]\cdot\sqrt{2}}{2\sqrt{3}+2\sqrt{2}} = \frac{\left[\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\right]\cdot\sqrt{2}}{2\sqrt{2}+2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)}{2\sqrt{2}+2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)}{2\sqrt{2}+2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)}{2\sqrt{2}+2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)}{2\sqrt{2}+2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)}{2\sqrt{2}+2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)}{2\sqrt{2}+2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)}{2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)}{2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)}{2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)}{2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)}{2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)}{2\sqrt{2}} = \frac{\left(2\sqrt{2}\right)\cdot\left(5\sqrt{2}\right)\cdot$$

Simplificando llegamos a:

$$\frac{\cancel{2}\sqrt{2} \cdot 5\sqrt{2} \cdot \sqrt{2}}{\cancel{2}\left(\sqrt{3} + \sqrt{2}\right)} = \frac{5\sqrt{2} \cdot 2 \cdot 2}{\sqrt{3} + \sqrt{2}} = \frac{5 \cdot 2\sqrt{2}}{\sqrt{3} + \sqrt{2}} = \frac{10\sqrt{2}}{\sqrt{3} + \sqrt{2}}$$

Como en el denominador hay una suma de raíces, tenemos que racionalizar multiplicando arriba y abajo por el conjugado del denominador:

$$\frac{10\sqrt{2}}{\sqrt{3}+\sqrt{2}} \cdot \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}} = \frac{10\sqrt{2}\cdot(\sqrt{3}-\sqrt{2})}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2} = \frac{10\sqrt{6}-10\sqrt{4}}{3-2} = \frac{10\sqrt{6}-10\cdot2}{1} = 10\left(\sqrt{6}-2\right)$$

Así que el resultado es: $10(\sqrt{6}-2)$

9. - Resuelve las siguientes ecuaciones exponenciales y logarítmicas

Resolveremos todas ellas utilizando tanto las propiedades de las potencias como las de los logaritmos, así como la definición de logaritmo. Haremos cambios de variable cuando sea necesario y discutiremos las soluciones para evitar logaritmos nulos o negativos.

a)
$$5^{x^2-5x+6} = 1$$
 \rightarrow $5^{x^2-5x+6} = 5^0$ \rightarrow $x^2-5x+6=0$ \rightarrow $(x-2)(x-3)=0$ \rightarrow $\begin{cases} x_1 = 2 \\ x_2 = 3 \end{cases}$

b)
$$2^{3x} = 0,5^{3x+2}$$
 \rightarrow $2^{3x} = \left(\frac{1}{2}\right)^{3x+2}$ \rightarrow $2^{3x} = \left(2^{-1}\right)^{3x+2}$ \rightarrow $2^{3x} = 2^{-3x-2}$ \rightarrow $3x = -3x - 2$

$$\rightarrow 6x = -2 \rightarrow x = -\frac{2}{6} \rightarrow x = -\frac{1}{3}$$

d)
$$\log(x-3) + \log x = \log 4x$$
 $\rightarrow \log[x(x-3)] = \log(4x)$ $\rightarrow x(x-3) = 4x$ $\rightarrow x^2 - 3x - 4x = 0$

$$\rightarrow x^2 - 7x = 0 \rightarrow \begin{cases} x_1 = 0 \\ x_2 = 7 \end{cases} \rightarrow \text{Desechamos la solución } x = 0 \text{ porque da un logaritmo negativo}$$

$$\rightarrow x = 7$$

e)
$$4\log_2(x^2-1) = \log_2 81$$
 $\rightarrow \log_2(x^2-1)^4 = \log_2 3^4$ $\rightarrow (x^2-1)^4 = 3^4$ $\rightarrow x^2-1=3$ \rightarrow \rightarrow $x^2=4$ $\rightarrow x=\pm 2$ \rightarrow Ambas son correctas porque no hacen ningún logaritmo ≤ 0

f)
$$\log(3x-1) - \log(2x+3) = 1 - \log 25$$
 $\rightarrow \log(3x-1) - \log(2x+3) = \log 10 - \log 25$ \rightarrow
 $\rightarrow \log\left(\frac{3x-1}{2x+3}\right) = \log\left(\frac{10}{25}\right)$ $\rightarrow \frac{3x-1}{2x+3} = \frac{10}{25}$ $\rightarrow \frac{3x-1}{2x+3} = \frac{2}{5}$ $\rightarrow 5(3x-1) = 2(2x+3)$
 $\rightarrow 15x-5 = 4x+6$ $\rightarrow 15x-4x=6+5$ $\rightarrow 11x=11$ $\rightarrow x=1$ (verificada)

g)
$$\frac{\ln 2 + \ln \left(11 - x^2\right)}{\ln (5 - x)} = 2$$
 $\rightarrow \ln 2 + \ln \left(11 - x^2\right) = 2 \cdot \ln (5 - x)$ $\rightarrow \ln \left[2\left(11 - x^2\right)\right] = \ln (5 - x)^2$ $\rightarrow 2\left(11 - x^2\right) = (5 - x)^2$ $\rightarrow 22 - 2x^2 = 25 - 10x + x^2$ $\rightarrow 3x^2 - 10x + 3 = 0$ $\rightarrow x = \frac{10 \pm \sqrt{100 - 4 \cdot 3 \cdot 3}}{6} = \frac{10 \pm \sqrt{64}}{6} = \frac{10 \pm 8}{6}$ $\rightarrow \begin{cases} x_1 = 3 \\ x_2 = \frac{1}{3} \end{cases}$ Ambas verificadas

10.- Resuelve el siguiente sistema:

$$\begin{cases} 3\log x - \log y = 1 \\ \log x + 2\log y = 5 \end{cases} \xrightarrow{\text{(1)}} \begin{cases} \log \left(\frac{x^3}{y}\right) = \log 10 \\ \log (x \cdot y^2) = \log 10^5 \end{cases} \xrightarrow{\text{(2)}} \begin{cases} \frac{x^3}{y} = 10 \\ x \cdot y^2 = 10^5 \end{cases} \xrightarrow{\text{(3)}} \begin{cases} \frac{x^3}{10} = y \\ x \cdot y^2 = 10^5 \end{cases} \rightarrow \\ \frac{2}{10} = y \Rightarrow y = \frac{10^3}{10} = 10^2 \Rightarrow S.C.D.\{x = 10; y = 100\} \end{cases}$$

Hemos resuelto el sistema por el método de sustitución:

En (1) aplicamos las propiedades de los logaritmos

En (2) Aplicamos la igualdad de logaritmos

En (3) despejamos y sustituimos en la otra ecuación

2.10.- Autoevaluación

1.- Utiliza las propiedades de las potencias y calcula:

a)
$$8^4 : (2^5 \cdot 4^2) =$$

a)
$$8^4 : (2^5 \cdot 4^2) =$$
 b) $[(6^2)^2 \cdot 4^4] : (2^3)^4 =$

Sol: a) 23; b) 34

2.- Calcula:

a)
$$\frac{15^2 \cdot 3^2 \cdot 5^3 \cdot 45^2}{25 \cdot 5^3 \cdot 125 \cdot 27} =$$

a)
$$\frac{15^2 \cdot 3^2 \cdot 5^3 \cdot 45^2}{25 \cdot 5^3 \cdot 125 \cdot 27} =$$
 b) $\frac{2^3 \cdot 4^5 \cdot 2^6 \cdot 2 \cdot 8^{30}}{16 \cdot 2^3 \cdot 32 \cdot 2^4} =$

3.- Calcula y da el resultado en forma racional:

$$\frac{\left(\frac{1}{2}\right)^{-8} \left(\frac{2}{3}\right)^{-2} \left(\frac{9}{4}\right)^{3}}{2^{3} \left(\frac{8}{9}\right)^{-1} \left(\frac{1}{3}\right)^{-3} \left(\frac{4}{3}\right)^{2}} =$$

Sol: 243/16

4.– Cuánto debe valer \mathbf{x} para que se verifique esta igualdad:

$$\sqrt{11.3^{85} + 4.9^{42} + 27^{29}} = 8.3^{x}$$

Sol: x=42

5.- Comprueba que no es posible utilizar la calculadora para obtener $5^{129} \cdot 4^{63}$ porque es un número demasiado grande. Utiliza las propiedades de las potencias para expresarlo en notación científica.

Sol: 1,25·10¹²⁸

6.- Simplifica los siguientes radicales:

a)
$$\sqrt[5]{125}$$
m¹⁰c¹³b⁷ = b) $\sqrt[3]{\frac{216}{343}}$ m¹²b¹⁵c = c) $\sqrt[5]{1024}$ m³⁷c¹⁸ =

Sol:a)
$$m^2c^2b\sqrt[5]{5^3c^3b^2}$$
; b) $\frac{6}{7}m^4b^5\sqrt[3]{c}$; c) $4m^7c^3\sqrt[5]{m^2c^3}$

7.- Opera los siguientes radicales:

a)
$$(2\sqrt{3} + 5\sqrt{2})(7\sqrt{3} - 2) = b)\sqrt{\sqrt{13} + 3} \cdot \sqrt{\sqrt{13} - 3} =$$

Sol: a) $42-4\sqrt{3}+35\sqrt{6}-10\sqrt{2}$ b) 2

8.- Opera:

a)
$$\frac{1}{4}\sqrt{128} + 6\sqrt{512} - \frac{1}{2}\sqrt{32} - 3\sqrt{98} =$$

b) $\frac{2}{5}\sqrt{20} - \frac{3}{5}\sqrt{80} + \frac{1}{2}\sqrt{180} + 6\sqrt{45} =$

Sol:a) $75\sqrt{2}$; b) $\frac{97}{5}\sqrt{5}$

Sol: a) $x^2 + 2x + 1$ b) $b \cdot \sqrt[24]{a^{22} \cdot b^{21}}$

9.- Racionaliza:

a)
$$\frac{a}{\sqrt{m}} = b$$
) $\frac{3}{\sqrt[5]{3^2}} = c$) $\frac{4}{\sqrt{5} - 1} = d$) $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} =$
Sol: a) $\frac{a\sqrt{m}}{m}$ b) $\sqrt[5]{3^3}$ c) $\sqrt{5} + 1$ d) $4 + \sqrt{15}$

10. – Calcula:

a)
$$\left(\sqrt{(1+x)^{6}\sqrt{(1+x)^{2}}}\right)^{3}$$
 b) $\sqrt[3]{a^{2}b^{5}\sqrt[4]{a^{3}b^{7}\sqrt{a^{5}b\sqrt[5]{a^{7}b^{3}}}}}$

11.- El patio de una cárcel es un cuadrado de 50 metros de lado. Un recluso pasea recorriendo el perímetro ABCD con una velocidad constante y otro lo hace sobre una diagonal AC con la misma velocidad. Si parten simultáneamente del punto A, ¿Volverán a encontrarse?

12. - Calcula, mediante la definición, estos logaritmos.

- a) log₂ 8
- **b)** log₃ 81
- c) log 1000
- **d)** log 0'0001
- **e)** $\ln e^{33}$
- **f)** $\ln e^{-4}$

g) log₄ 16

- h) log₄ 0'25 i) log₄ 0'0625

Sol: a) 3; b) 4; c) 3; d) -4; e) 33; f) -4; g) 2; h) -1; i) -2

13.- Sabiendo que log(2)=0,3010; log(3)=0,4771 ylog(7)=0,8451, determina los logaritmos decimales de los 10 primeros números naturales. Con estos datos, ¿sabrías calcular log 3,5 ? ¿Y log1,5?

Sol:

14. - Resuelve las siguientes ecuaciones exponenciales y logarítmicas.

a)
$$\log_3(x+2) + \log_3(x-4) = 3$$

$$b)\log\sqrt{x-1} = \log(x+1) - \log\sqrt{x+4}$$

c)
$$\log 2 + \log(11 - x^2) = 2\log(5 - x)$$

d)
$$2^{3x} = 0.5^{3x+2}$$

$$e) 5^{x+1} + 5^x + 5^{x-1} = \frac{31}{5}$$

$$f) 3^{\kappa} - 3^{\kappa-1} + 3^{\kappa-2} = 21$$

g)
$$2^{2\kappa} + 2^{2\kappa-1} + 2^{2(\kappa-1)} + 2^{2\kappa-3} + 2^{2(\kappa-2)} = 1984$$

Sol: a) 7; b) 5; c) 3 y 1/3; d) -1/3; e) 0; f) 3; a) 5

15.- Utilizando la fórmula del cambio de base se pide:

- Demostrar que $\log_a b \cdot \log_b a = 1$
- b) Hallar la relación entre el logaritmo neperiano y el logaritmo decimal.
- c) Expresar $\log_2 x$ en función de $\log x$
- Razona por qué log4 5 es un número irracional.

Sol: c) log2x=3,3219 log (x)

16.- Una empresa recibe un crédito al 8% anual, con la condición de devolver en un solo pago la cantidad prestada más los intereses. ¿Cuánto tiempo tardará en duplicarse la deuda?

Sol: 9 años

