

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

MERRIMACK RIVER BASIN
LYNDEBOROUGH, NEW HAMPSHIRE

SOUHEGAN RIVER WATERSHED DAM NO. 28

NH 00429 NHWRB 147.26

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

AUGUST 1979

85_6 19 083

Approved for public releases

Distribution Unlimited

UTIC FILE COPY

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
NH 00429	SECIPIENT'S CATALOG NUMBER
Souhegan River Watershed Dam No. 28	INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS 7. AUTHOR(*) U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION	6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
DEPT. OF THE ARMY, CORPS OF ENGINEERS NEW ENGLAND DIVISION, NEDED 424 TRAPELO ROAD, WALTHAM, MA. 02254	August 1979 13. NUMBER OF PAGES 64
14. MONITORING AGENCY NAME & ADDRESS(II ditterent from Controlling Of	UNCLASSIFIED 18. DECLASSIFICATION/DOWNGRADING 8CHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

DAMS, INSPECTION, DAM SAFETY,

Merrimack River Basin

Lyndeborough, New Hampshire Temple Brook, tributary of Stony Brook(a tributary of the Souhegan River)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The dam is an earth embankment 340 ft. long and 29 ft. high with a drop inlet service spillway structure and a 30 inch outlet conduit. The dam is small in size with a significant hazard potential. In the event of a failure the possibility for appreciable property damage and loss of life could result. The dam is in good ocndition at the present time. No conditions were observed which warrent further investigation.

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION, CORPS OF ENGINEERS 424 TRAPELO ROAD WALTHAM, MASSACHUSETTS 02154

REPLY TO ATTENTION OF:

NEDED

SEP 24 1979

Honorable Hugh J. Gallen Governor of the State of New Hampshire State House Concord, New Hampshire 03301

Dear Governor Gallen:

I am forwarding to you a copy of the Souhegan River Watershed Dam No. 28 Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Water Resources Board, the cooperating agency for the State of New Hampshire and owner of the project.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Water Resources Board for your cooperation in carrying out this program.

Sincerely.

Inc1 As stated MAX B. SCHEIDER

Colonel, Corps of Engineers

Division Engineer

SOUHEGAN RIVER WATERSHED DAM NO. 28 NH 00429

Acce	ssion For	
NTIS	GRA&I	
DTIC	TAB A	
	nounced	
Just	ification	
Ву		
Dist	ribution/	
Avai	lability Codes	
	Avail and/or	
Dist Special		
1 / L	4	
/ <i>)</i> /,	ららし 意	
//	1001611	

MERRIMACK RIVER BASIN HILLSBOROUGH COUNTY, NEW HAMPSHIRE

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

PHASE I REPORT

Identification No.: NH 00429 NHWRB No.: 147.26

Name of Dam: SOUHEGAN RIVER WATERSHED DAM NO. 28

Town: Lyndeborough

County and State: Hillsborough County, New Hampshire

Stream: Temple Brook, a tributary of Stony Brook,

which is a tributary of the Souhegan River

Date of Inspection: May 1, 1979

BRIEF ASSESSMENT

The Souhegan River Watershed Dam No. 28 is located on Temple Brook which is a tributary of Stoney Brook approximately 1.6 miles upstream of South Lyndeborough, New Hampshire (Township of Lyndeborough). The dam is an earth embankment 340 feet long and 29 feet high with a drop inlet service spillway structure and a 30 inch outlet conduit. An emergency earth spillway 250 feet wide is cut into the right abutment.

The dam is owned by the New Hampshire Water Resources Board. It was designed by the Soil Conservation Service for the purpose of flood protection in the Souhegan River Watershed.

The drainage area of the dam covers 0.95 square miles and is made up primarily of rolling woodland. The dam impounds only 7 acrefeet at low stage but has a maximum impoundment of 24.5 acrefeet. The dam is SMALL in size and its hazard classification is SIGNIFICANT since appreciable property damage and loss of life could result in the event of a dam failure.

The test flood for this dam is one-half of the Probable Maximum Flood. The peak inflow for this flood is 1168 cfs. Because of storage, the resulting peak discharge is 430 cfs compared to a spillway capacity of 2520 cfs. The water surface would be at elevation 851.2 feet (MSL) or 1.8 feet below the top of the dam for this flood.

The dam is in GOOD condition at the present time. Remedial measures to be undertaken by the owner include filling in animal burrows, mowing of slopes, including annual operation of drain gate in the inspection procedure, and developing a

formal written emergency flood warning system for the dam. No conditions were observed which warrant further investigation.

The remedial measures outlined above should be implemented within two years of receipt of this report by the owner, however, the program of annual technical inspections should be continued.

D

William Syme

William S. Zoino N.H. Registration 3226 Vischolas le Congregno Ja

Nicholas A. Campagna, Jr. California Registration 21006

This Phase I Inspection Report on Souhegan River Watershed Dam No. 28 has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dans, and with good engineering judgement and practice, and is hereby submitted for approval.

sigh 9. Mc Elroy

JOSEPH A. MCELROY, MEMBER Foundation & Materials Branch Engineering Division

CARNEY M. TERZIAN, MEMBER

Design Branch

. Engineering Division

SEPH T FINEGAN, JR., CHAIRLAN

hief, Reservoir Control Center

Vater Control Branch Engineering Division

APPROVAL RECOMMENDED:

Chief, Engineering Division

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the Test Flood should not be interpreted as necessarily posing a highly inadequate condition. The Test Flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

TABLE OF CONTENTS

	Page
LETTER OF TRANSMITTAL	
BRIEF ASSESSMENT	
REVIEW BOARD SIGNATURE SHEET	
PREFACE	i
TABLE OF CONTENTS	ii
OVERVIEW PHOTOS	iv
OVERVIEW PHOTOS	1 (
LOCATION MAP	v
SECTION 1 - PROJECT INFORMATION	
1.1 General1.2 Description of Project1.3 Pertinent Data	1-1 1-2 1-5
SECTION 2 - ENGINEERING DATA	
 2.1 Design Data 2.2 Construction Data 2.3 Operational Data 2.4 Evaluation of Data 	2-1 2-1 2-1 2-1
SECTION 3 - VISUAL INSPECTION	
3.1 Findings 3.2 Evaluation	3-1 3-2
SECTION 4 - OPERATIONAL PROCEDURES	
4.1 Procedures4.2 Maintenance of Dam4.3 Maintenance of Operating	4-1 4-1
Facilities 4.4 Description of Warning System in Effect	4-1 4-1
4.5 Evaluation	4-1

Table of Contents - cont.

1...

	Page
SECTION 5 - HYDRAULICS/HYDROLOGY	
5.1 Evaluation of Features	5-1
SECTION 6 - STRUCTURAL STABILITY	
6.1 Evaluation of Structural Stability	6-1
SECTION 7 - ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES	
7.1 Dam Assessment	7-1
7.2 Recommendations	7-1
7.3 Remedial Measures	7-1
7.4 Alternatives	7-2
APPENDICES	
APPENDIX A - INSPECTION CHECKLIST	A-1
APPENDIX B - ENGINEERING DATA	B-1
APPENDIX C - PHOTOGRAPHS	C-1
APPENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS	D-1
APPENDIX E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS	E-1

Overview of upstream slope

Overview of downstream slope

PHASE I INSPECTION REPORT

SOUHEGAN RIVER WATERSHED DAM NO. 28

SECTION 1

PROJECT INFORMATION

1.1 General

(a) Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Goldberg, Zoino, Dunnicliff & Associates, Inc. (GZD) has been retained by the New England Division to inspect and report on selected dams in the State of New Hamsphire. Authorization and notice to proceed were issued to GZD under a letter of March 30, 1979 from Colonel John P. Chandler, Corps of Engineers. Contract No. DACW 33-79-C-0058 has been assigned by the Corps of Engineers for this work.

(b) Purpose

- 1) Perform technical inspection and evaluation of non-federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-federal interests.
- 2) Encourage and prepare the states to initiate quickly effective dam safety programs for non-federal dams.
- 3) Update, verify, and complete the National Inventory of Dams.

(c) Scope

The program provides for the inspection of non-federal dams in the high hazard potential category based upon location of the dams, and those dams in the significant hazard potential category believed to represent an immediate danger based on condition of the dams.

1.2 Description of Project

(a) Location

The Souhegan River Watershed Dam No. 28 is located on Temple Brook approximately 1.6 miles upstream of South Lyndeborough, New Hampshire. It can be reached from an access road off of a town road which intersects State Route 31 in Lyndeborough, New Hampshire. Figure 1 of Appendix B is a site plan for this dam.

(b) Description of Dam and Appurtenances

The dam consists of an earth embankment 340 feet long, a principal spillway with a reinforced concrete riser and outlet pipe, and an earth emergency spillway located at the right abutment. The total length of the dam is approximately 650 feet, of which 250 feet is the emergency spillway and 60 feet is natural ground between the embankment and the emergency spillway.

1) Embankment (See pgs. B-3, B-4, B-6 & B-7)

The embankment is made up primarily of clean sand (Designation SP using the Unified Soil Classification System). It is 340 feet long and is a maximum of 29 feet high. The upstream slope is 3 horizontal to 1 vertical; the downstream slope is 3 horizontal to 1 vertical; and the width of the crest is 14 feet.

The dam is founded in a kame terrace of stratified gravels, sands, and silts at the left abutment. In the center section it is founded in alluvium made up of stratified silt and sand. The right abutment is the end of an esker made up of clean sand over cobbles and decomposed rock.

2) Principal Spillway (See pg. B-5)

The principal spillway consists of a reinforced concrete drop inlet structure with a sluice gate controlled inlet pipe and an uncontrolled orifice inlet and an outlet pipe supported on a concrete cradle.

The riser structure is 9.5 feet high and 7 feet wide normal to the axis of the dam. It is 4.5 feet long parallel to the embankment. The walls of the structure are 12 inches thick and the top slab is 8 inches thick.

At the base of the structure is an 18 inch diameter, vertical lift, sluice gate inlet which is controlled by a wheel operated bench stand with a rising stem. An 18 inch diameter, asphalt coated, corrugated metal pipe extends 15 feet upstream from the lift gate into the impoundment pool. Plans indicate a reinforced concrete inlet structure at the upstream end of this pipe which is protected by a trash rack of painted steel angle sections placed horizontally across the opening.

The "principal spillway inlet" (see pg. B-5) is an uncontrolled opening approximately 6.5 feet above the sluice gate invert. It is 1.5 feet wide and 6 inches high and is located in the upstream face of the riser structure. The water flows over this orifice and drops into the riser structure. It is protected by a trash rack assembly approximately 3 feet high and 2.6 feet wide. This assembly is fabricated from painted steel angle sections.

A 30 inch diameter manhole permits access into the riser structure.

There is a 4 inch diameter galvanized iron vent pipe which penetrates the top of the riser and extends beneath the surface of the embankment to a point near the crest of the dam where it terminates with a 180 degree "U" bend (see pg. B-5).

The riser structure is drained by a 30 inch diameter reinforced concrete pressure pipe. It is approximately 186 feet long and drops approximately one foot over that length. The pipe penetrates the downstream side of the riser structure and is supported by an 8 inch thick concrete cradle within the embankment. Plans indicate 4 concrete anti-seep collars cast around the pipe within the embankment.

The cradle and pipe extend downstream of the embankment and are supported by two precast reinforced concrete piles. The outlet pipe discharges into a stone revetted plunge pool.

3) Emergency Spillway (See pg. B-3)

The grass covered emergency spillway was excavated in earth within the right abutment. It curves to the left around the embankment and is 250 feet wide at the control section. It is approximately 200

feet long and lies approximately 3 feet below the top of the embankment. The side slopes are 4 horizontal to 1 vertical on both sides.

4) Foundation and Embankment Drainage (See pg. B-4)

Toe drains extend from 88 feet to the left of the outlet to 380 feet to the right of the outlet.

At the left abutment the drain consists of a 4 foot wide, clean sand trench drain. Approximately 58 feet left of the outlet conduit, a 10 inch diameter perforated pipe is included in the trench which is made up of clean sand and gravel. This drain discharges approximately 5 feet to the left of the outlet conduit. To the right of the outlet conduit is a similar drain with a perforated pipe which runs approximately 180 feet and discharges to the right of the outlet pipe. Another drain with perforated pipe extends along the downstream toe of the natural slope between the embankment and the emergency spillway, and discharges downstream of the emergency spillway.

The "as built" drawings indicate a chimney drain and blanket extending the full length of the embankment. According to these plans there is a zone of "soil and rock" downstream of this drain.

(c) Size Classification

The dam's maximum impoundment of 245 acre feet and height of 29 feet place it in the SMALL size category according to the Corps of Engineers' Recommended Guidelines.

(d) Hazard Potential Classification

The hazard potential classification for this dam is SIGNIFICANT because of the appreciable economic losses and potential for loss of life downstream in the event of dam failure. Section 5 of this report presents a more detailed discussion of the hazard potential.

(e) Ownership

The dam is owned by the New Hampshire Water Resources Board, 37 Pleasant Street, Concord, New Hampshire 03301. They can be reached by telephone at area code 603-271-3406.

(f) Operator

The operation of the dam is controlled by the New Hampshire Water Resources Board. Key officiels are as follows:

George McGee, Chairman Vernon Knowlton, Chief Engineer Donald Rapoza, Assistant Chief Engineer

The Board's telephone number is 603-271-3406. Alternatively, the Board can be reached through the state capital at 603-271-1110.

(g) Purpose of the Dam

The purpose of the dam is to reduce downstream flooding by providing temporary storage for the runoff from 608 acres of watershed. This temporary storage is released through the low and high stage inlets of the principal spillway.

(h) Design and Construction History

The dam was designed by the U.S. Department of Agriculture, Soil Conservation Service in conjunction with the New Hampshire Water Resources Board. It was completed in 1964.

(i) Normal Operating Procedure

The dam is self-regulating. The pond drain gate is operated as part of infrequent maintenance checks.

1.3 Pertinent Data

(a) Drainage Area

The drainage area for this dam covers 0.95 square miles. It is made up primarily of steeply sloping woodland with some pasture and minor development.

(b) Discharge at Damsite

1) Outlet Works

Normal discharge at the site is through the 30 inch diameter outlet pipe. In the event of severe flooding water would flow over the emergency spillway at elevation 850.0 feet (MSL). The invert of the principal orifice is at elevation 831.0 feet (MSL).

2) Maximum Known Flood

There is no data available for the maximum known flood at this damsite.

3) Ungated Spillway Capacity at Top of Dam

The capacity of the principal spillway with the reservoir at top of dam elevation (853.0 feet MSL) is 21 cfs. The capacity of the emergency spillway is 2500 cfs at this level.

4) Ungated Spillway Capacity at Test Flood

The capacity of the principal spillway with the reservoir at test flood elevation (851.2 feet MSL) is 20 cfs. The capacity of the emergency spillway is 410 cfs at this level.

5) Gated Spillway Capacity at Normal Pool

There are no gated spillways with the exception of the gated pond drain inlet which is normally closed.

6) Gated Spillway Capacity at Test Flood

As previously stated, there are no gated spill-ways.

7) Total Spillway Capacity at Test Flood

The total spillway capacity at test flood elevation (851.2 feet MSL) is 430 cfs.

8) Project Discharge

The total project discharge at test flood elevation (851.2 feet MSL) is 430 cfs.

(c) Elevation (feet above MSL)

- 1) Streambed at centerline of dam: 824.0
- 2) Maximum tailwater: Unknown
- 3) Upstream portal invert diversion tunnel: Not applicable
- 4) Normal pool: 831.0
- 5) Full flood control pool: 850.0

- 6) Spillway crest:
 - a) Pond drain inlet: 824.5
 - b) Low stage inlet: 831.0
 - c) Emergency spillway: 850.0
- 7) Design surcharge: 851.0
- 8) Top dam: 853.0
- 9) Test flood design surcharge: 851.2
- (d) Reservoir
 - 1) Length of maximum pool: 2100 + ft.
 - 2) Length of normal pool: 1050 + ft.
 - 3) Length of flood control pool: 2100 + ft.
- (e) Storage (acre feet)
 - 1) Normal pool: 7
 - 2) Flood control pool: 187
 - 3) Spillway crest pool:
 - a) Low stage inlet: 7
 - b) Emergency spillway: 187
 - 4) Top of dam: 245
 - 5) Test flood pool: 210
- (f) Reservoir Surface (acres)
 - 1) Normal pool: 2.5
 - 2) Flood control pool: 16.5
 - 3) Spillway crest pool:
 - a) Low stage inlet: 2.5
 - b) Emergency spillway: 16.5
 - 4) Test flood: 17.5
 - 5) Top of dam: 19

(g) Dam

- 1) Type: Earth embankment
- 2) Length: 340 ft.
- 3) Height: 29 ft.
- 4) Top width: 14 ft.
- 5) Side slopes: Upstream: 3 to 1
 Downstream: 3 to 1
- 6) Zoning: Semi-pervious sand (SP), chimney drain, "soil and rock" zone in downstream toe
- 7) Impervious core: None
- 8) Cutoff: None
- 9) Grout curtain: None
- (h) Diversion and Regulating Tunnel

Not applicable

(i) Spillways

- 1) Type:
 - a) Principal spillway: Reinforced concrete Drop inlet
 - b) Emergency spillway: Grass covered channel cut in earth within right abutment
- 2) Length of Weir:
 - a) Pond drain inlet: 18 inch diameter pipe
 - b) Principal inlet: 1.5 ft.
 - c) Emergency spillway: 250 ft.
- 3) Crest elevation (Ft. above MSL)
 - a) Pond drain inlet: 824.5
 - b) Principal inlet: 831.0
 - c) Emergency spillway: 850.0

- 4) Gates: 18 inch vertical lift sluice gate on pond drain inlet
- 5) Upstream channel: Reservoir
- 6) Downstream channel: Narrow man made channel extending approximately 400 ft. to the natural streambed

(j) Regulating Outlet

The only regulating outlet is an 18 inch diameter pipe controlled by a wheel operated sluice gate. The pipe invert is at elevation 824.5 feet (MSL). The purpose of this outlet is pond drainage, and it is normally closed.

SECTION 2 - ENGINEERING DATA

2.1 Design Data

Among other design data available from the Soil Conservation Service are hydrologic and hydraulic computations, structural computations, a geological report, soil laboratory data forms, and stability analysis forms.

2.2 Construction Data

"As built" plans are available for this dam and show good agreement with the design plans and the visual inspection.

2.3 Operational Data

No operational data is available as the dam is self-regulating.

2.4 Evaluation of Data

(a) Availability

Sufficient data is available to permit an evaluation of the dam when combined with findings of the visual inspection.

(b) Adequacy

There is sufficient design and construction data to permit an assessment of dam safety when combined with the visual inspection, past performance, and sound engineering judgment.

(c) Validity

Since the observations of the inspection team generally confirm the available data, a satisfactory evaluation for validity is indicated.

SECTION 3 - VISUAL INSPECTION

3.1 Findings

(a) General

The Souhegan River Watershed Dam No. 28 is in GOOD condition at the present time.

(b) Dam

1) Earth Embankment (See overviews)

The earth embankment is generally in good condition. There are three small animal burrows in the downstream slope between the embankment and the emergency spillway. Photo No. 4 is a view of one of these holes. There are tire tracks near the downstream toe of the embankment and some debris on the upstream slope.

The toe drains were functioning with the left toe drain discharging approximately two gallons per minute and the right toe drain discharging approximately ten gallons per minute. The discharge is clear.

3) Emergency Spillway (See photos #1 & 2)

The emergency spillway is in good condition. There is some tree growth at the downstream end of the spillway.

(c) Appurtenant Structure

1) Drop Inlet Service Spillway Structure (See photo # 7)

This structure was completely submerged at the time of inspection. The bench stand and vent pipe appear to be in good condition. Some debris was observed in the trash racks.

2) Pond Drain Inlet Pipe

At the time of inspection the 24 inch pond drain inlet pipe was completely submerged and could not be observed.

3) Outlet Conduit (See photo #5 & 6)

The downstream end of this conduit is in good condition with no evidence of settlement, spalls, cracks, or efflorescence. The supporting cradle is in good condition with the exception of minor spalling (8 square inches) at the downstream end.

(d) Reservoir Area (See photo #3)

The shore of the reservoir is generally steep sloping woodland. It appears stable and in good condition except for a section approximately 100 feet long and 30 feet wide near the left abutment. This section shows recent, very shallow, sloughing of the grass cover. This sloughing is probably due to recent drawdown of the reservoir level after flooding.

(e) Downstream Channel (See photo #5)

The downstream channel consists of a 25 foot plunge pool leading into a gently sloping man-made channel approximately 8 feet wide. This channel extends approximately 400 feet to where it joins the natural channel.

The plunge pool is protected by hand placed rip rap and is stable and in good condition.

3.2 Evaluation

The dam is generally in good condition. The potential problems noted during the visual inspection are listed below:

- a) Animal burrows in downstream slope of the embankment.
- b) Tire ruts in downstream toe of embankment.
- c) Debris in trash racks.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 Procedures

No written operational procedures exist for this dam. The dam is self-regulating.

4.2 Maintenance of Dam

An annual inspection is made jointly by the New Hampshire Water Resources Board and the Soil Conservation Service. Recommendations resulting from this inspection are implemented by the NHWRB.

4.3 Maintenance of Operating Facilities

Operation of the sluice gate for the pond drain inlet is checked approximately once every four or five years by NHWRB.

4.4 Description of Warning System in Effect

There is no warning system in effect.

4.5 Evaluation

The established operational procedures for this dam are generally satisfactory. Additional emphasis on routine maintenance will assist the owners in assuring the long-term safety of the dam.

SECTION 5 - HYDRAULICS/HYDROLOGY

5.1 Evaluation of Features

(a) General

Souhegan River Watershed Dam No. 28 is one of a series of floodwater retarding structures designed by the Soil Conservation Service (SCS) on tributaries to the Souhegan River. This dam, completed in 1964, is located on a tributary to Stony Brook approximately 1.6 miles upstream of South Lyndeborough, New Hampshire. It is an earthfill structure with an orifice controlled principal and a grasslined emergency spillway channel.

The watershed is hilly and almost completely forested. The drainage area at the dam is 608 acres or 0.95 square miles.

(b) Design Data

The elevation of the low stage inlet was determined by the 50 year sedimentation level of the watershed. The high stage inlet was set to allow storage of the four year, six hour storm without water passing over the high stage inlet. The emergency spillway crest was set to allow storage of the 100 year storm and the top of dam was determined based on the Probable Maximum Flood.

The data sources available for Souhegan Watershed Dam No. 28 include the original Soil Conservation Service (SCS) "Hydrology and Hydraulics" design calculations. These calculations, dated 1963, establish storage-elevation and stage-discharge functions for the dam, and develop flood hydrographs.

The SCS design drawings of the dam and spillway structures along with related outlet and drainage facilities are also available. These are dated 1964.

Additionally, there are SCS "Maintenance Checklist" reports of inspections of this dam dated June 2, 1972 and June 15, 1978.

(c) Experience Data

No records of flow or stage are known to be available for Souhegan Watershed Dam No. 28.

(d) Visual Observations

The earthen embankment rises 29 feet above the natural streambed to an elevation of 853.0 feet above mean sea level (MSL) at the crest. The crest of the dam is roughly 320 feet long, meeting a moderately sloping valley wall at the left abutment and a mild slope at the right abutment in which the emergency spillway has been excavated beginning approximately 30 feet beyond the end of the dam.

The emergency spillway is a grass-lined channel to the right of the dam and slightly upstream of the dam axis. It has been excavated in the natural hillside, except for a small fill area at a depression a little more than 100 feet upstream of the control section. The channel is 250 feet wide at the bottom with side slopes 4 horizontal to 1 vertical and a bottom elevation 850.0 feet MSL, 3 feet below the dam crest. It is difficult to distinguish the beginning of the channel, but a length of 200 feet along the centerline from the entrance to the control section has been adopted for calculation purposes. Beyond the control section, emergency spillway discharges will flow down the ungraded hillside into a gentle swale which will return flows to the main stream channel downstream of the dam.

The principal spillway consists of a concrete riser structure with a single orifice set at elevation 831.0. It is protected by a trash rack.

The spillway riser is drained by a 30-inch diameter concrete pipe which extends 186 feet downstream under the dam. The invert elevation at the riser is 824.0 and at the outlet 822.5.

A riprap-lined stilling pool has been excavated at the exit of the spillway drain pipe. This pool is roughly 25 feet long with a bed 4.5 feet below the pipe invert, and leads to an excavated outlet channel with a bed at elevation 820.5, 2 feet below the pipe invert. Sloping at 0.003 feet per foot, this man-made channel, 8 feet wide with 2 horizontal to 1 vertical sideslopes, extends approximately 400 feet further downstream until it meets the natural stream channel.

This stream flows another one-half mile before it joins Stony Brook. It has a very steep gradient and the nature of the terrain suggests that it is well-confined by steep side slopes along the entire reach. About 200 feet downstream of the point of confluence, Stony Brook is crossed by a railroad bridge with two openings each approximately 30 feet wide and 10 feet high above the streambed. The railroad tracks approach the bridge on the upstream side on a small embankment roughly 12 feet above the streambed level.

For the next mile downstream, Stony Brook flows through a gorge. The stream gradient here is very steep and flow is confined by precipitous sidewalls as high as 50 feet. The railroad recrosses Stony Brook midway along this reach, but this crossing is some 50 feet above the streambed. Beyond this reach, near the village of South Lyndeborough, the stream gradient is somewhat reduced and the sideslopes are considerably flatter allowing for some overbank flooding at high discharges.

At South Lyndeborough, 1.6 miles downstream of the dam, the stream is crossed by a lightly used roadway with a bridge opening 15 feet wide and 6 feet high. Nearby, there are two houses each with first floor level about 15 feet above the streambed.

Shortly beyond South Lyndeborough, Stony Brook enters a reach with steep confining sideslopes (though not a gorge) and a steep channel gradient. This reach is roughly 0.9 miles long. For the next 1.5 miles, the sideslopes are milder providing more floodplain area and the stream gradient is somewhat reduced, though not mild, being on the order of 0.01 feet per foot. In the course of this reach, the stream is crossed twice by Route 31. The first crossing, about 1.2 miles downstream of South Lyndeborough, has an 8.5 foot high by 20 foot wide opening and the second crossing, another 1.2 miles further downstream, has a 12 foot high by 23 foot opening. A short distance upstream of the first crossing there is a house near the brook which is approximately 15 feet above the streambed. Another tributary enters Stony Brook along this reach approximately 1.3 miles downstream of South Lyndeborough. At the end of this reach, approximately 4.0 miles downstream of the dam, Stony Brook is joined by Stockwell Brook.

Beyond this point, Stony Brook follows a channel of straight alignment with high, steeply sloping banks and a steep gradient. A few hundred feet downstream of Stockwell Brook the stream is crossed by a railroad bridge with three openings 40 ± feet wide and 22 ± feet high. Approximately a mile downstream of Stockwell Brook a small, run-of-the-river dam structure has been built with a height of about 8 feet and an impoundment with a surface area of roughly 2 acres.

Further downstream, the high bank at the left recedes from the main channel, leaving a wider flood plain as the stream continues another one-quarter mile into Wilton, where it joins the Souhegan River. In the flood plain along this reach, there are seven houses with first floor levels ranging from 7 to 12 feet above the streambed. Just before entering the Souhegan River, Stony Brook passes the Abbott Dam, another run-of-the-river structure which was the subject of a separate inspection report.

(e) Test Flood Analysis

The hydrologic conditions of interest in this Phase I investigation are those required to assess the dam's overtopping potential and its ability to safely allow an appropriately large flood to pass. This requires using the discharge and storage characteristics of the structure to evaluate the impact of an appropriately-sized Test Flood. The original hydraulic and hydrologic design calculations provided by the SCS were utilized in this analysis.

Guidelines for establishing a recommended Test Flood based on the size and hazard classifications of a dam are specified in the "Recommended Guidelines" of the Corps of Engineers. The impoundment of less than 1000 acre feet and height of less than 40 feet classify this dam as a SMALL structure.

The hazard potential for the Souhegan Watershed Dam No. 28 is considered to fall within the SIGNIFICANT category. This is based on the possibility of some damaging flooding at seven houses along Stony Brook just outside of Wilton, and at a railroad crossing and two roadway crossings of Stony Brook. As the affected houses are 5 miles downstream of the dam, the rate of rise of the flood waters should be relatively slow, reducing considerably the potential for loss of life. Flooding at the road crossings, while damaging, should not be severe enough to seriously endanger the life

of motorists.

As shown in Table 3 of the Corps of Engineers' "Recommended Guidelines," the appropriate Test Flood for a dam classified as SMALL in size with a SIGNIFICANT hazard potential would be between the 100-year flood and one-half times the Probable Maximum Flood (PMF).

The Emergency Spillway Hydrograph developed by the SCS as part of the design calculations is of the order of magnitude of one-half the PMF. The peak value of this inflow hydrograph, 1168 cfs, will be adopted as the Test Flood. In comparison, the Corps of Engineers New England Division's chart for "Maximum Probable Flood Peak Flow Rates" indicates that one-half the PMF for this dam from its 0.95 square miles watershed is approximately 1090 cfs.

After accounting for the effect of storage in the flood control reservoir, the peak outflow through the spillway for this Test Flood was calculated by the SCS to be 430 cfs.

The SCS developed a stage-discharge curve defining discharge as the sum of flow through the principal spillway/outlet structure, and flow over the emergency spillway. The calculations determining these curves are outlined in Appendix D.

Using this stage-discharge curve, the peak discharge of 430 cfs would result in a maximum stage of approximately 851.2 feet MSL, 1.8 feet below the crest of the dam.

(f) Dam Failure Analysis

The peak outflow at the Souhegan Watershed Dam No. 28 that would result from dam failure is estimated using the procedure suggested in the Corps of Engineers New England Division's April 1978 "Rule of Thumb Guidelines for Estimating Downstream Dam Failure Hydrographs." Failure is assumed to occur as soon as the dam crest is overtopped, at an elevation of 853.0 MSL. This is 29 feet above the natural streambed level. Just prior to failure, the normal outflow through the principal and emergency spillways would be 2520 cfs, with a tailwater level estimated to be 25.2 feet below the dam crest. Assuming a 94 foot gap is opened in the dam, the peak failure outflow through this gap would be 22,500 cfs.

Following essentially the "Rule of Thumb Guidelines," it is estimated that at the end of the first 0.5 mile reach downstream of the dam, at the confluence with Stony Brook, the dam failure flood peak would be attenuated to 17,000 cfs. This would have a depth of flow in Stony Brook greater than 14 feet, presenting a hazard to the railroad embankment and bridge just downstream of the tributary.

Using the same storage routing technique over the next one mile reach, the attenuated peak discharge near South Lyndeborough due to the dam break is estimated to be 12,800 cfs. Assuming that this flow is augmented by a flow in Stony Brook of 2,900 cfs (this is approximately a 10-year discharge), the total flow of 15,700 cfs would have a flood depth of about 11. The two houses in this vicinity which are approximately 15 feet above the streambed should not be affected, but the road crossing would probably sustain serious damage.

The Route 31 crossing 1.2 miles downstream of South Lyndeborough is also liable to flood damage under dam failure conditions. The estimated depth of flow there would be 11 to 12 feet, while the bridge opening is only 8.5 feet high. However, the house just upstream of this crossing is about 15 feet above the streambed and should be unharmed. At the next Route 31 crossing, 2.4 miles downstream of South Lyndeborough, the dam break flood wave will have been attenuated to an estimated peak discharge of 4,500 cfs. Including the assumed original Stony Brook flow of 2,900 cfs, the flow depth would be about 11 feet and should safely pass the 12 foot by 23 foot bridge opening.

Another mile downstream, in all 5 miles downstream of Souhegan Watershed Dam No. 28, the attenuated peak flow due to dam failure is estimated to be 3,900 cfs. This discharge (not including the original Stony Brook discharge) would be sufficient to cause serious flood damage to houses in the flood plain along the left bank of the stream there. Based on Flood Insurance Study profiles, flood depths of 10 feet might be expected, causing flooding at seven houses which are 7 to 12 feet above the streambed. This magnitude of flooding is comparable to a natural flood with a return period of between 10 and 50 years.

After further attenuation in the flood plain on the outskirts of Wilton and in the pond behind the Abbott Dam, the flood wave resulting from the failure of Souhegan Watershed Dam No. 28 probably would not be a hazard to the Abbott Dam or to other structures in Wilton.

•

SECTION 6 - STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

(a) Visual Observations

There has been no significant displacement or distress which would warrant the preparation of structural stability calculations.

(b) Design and Construction Data

1) Embankment

Analysis carried out during the design and construction phase for the earth embankment included a slope stability analysis by the infinite slope and sliding wedge methods. Based on these analyses, a 3 to 1 upstream slope and a 2.5 to 1 downstream slope were utilized.

2) Appurtenant Structures

A review of the structural calculations for the design of the drop inlet service spillway structure and the outlet conduit (primary spillway) revealed that these structures have been designed on the basis of sound engineering practice.

(c) Operating Records

There are no known operating records for this dam.

(d) Post Construction Changes

There have been no known construction changes since the dam was completed in 1964.

(e) Seismic Stability

The dam is located in seismic zone No. 2 and, in accordance with the recommended Phase I guidelines, does not warrant seismic analysis.

SECTION 7 - ASSESSMENT, RECOMMENDATIONS AND

REMEDIAL MEASURES

7.1 Dam Assessment

(a) Condition

The dam and its appurtenances are generally in good condition at the present time.

(b) Adequacy of Information

There is sufficient design and construction data to permit an assessment of dam safety when combined with the visual inspection, past performance, and sound engineering judgment.

(c) Urgency

The recommendations and remedial measures described herein should be implemented by the owner within two years of receipt of this phase I Inpsection Report.

(d) Need for Additional Investigations

None

7.2 Recommendations

No conditions were observed which would warrant further investigations.

7.3 Remedial Measures

It is recommended that the owner institute the following remedial measures.

- 1) Check the operability of the pond drain inlet gate as part of the annual inspection procedure.
- 2) Develop a downstream emergency flood warning system.
- 3) Maintain the program of annual technical inspections.

Implement and intensify a program of diligent and periodic maintenance including, but not limited to: Backfilling animal burrows in embankment slopes, mowing brush on embankment slopes, and clearing debris from trash racks.

7.4 Alternatives

There are no reaningful alternatives to the above recommendations.

APPENDIX A

VISUAL INSPECTION CHECKLIST

INSPECTION TEAM ORGANIZATION

Date: May 1, 1979

Project: NH 00429

SOUHEGAN RIVER WATERSHED DAM NO. 28

Lyndeborough, New Hampshire

NHWRB 147.26

Weather: Partly cloudy, 65 degrees

INSPECTION TEAM

Nicholas A. Campagna	Goldberg, Zoino, Dunni- cliff & Assoc. (GZD)	Team Captain				
William S. Zoino	GZD	Soils				
M. Daniel Gordon	GZD	Soils				
Jeffrey M. Hardin	GZD	Soils				

Paul Razgha Andrew Christo Engineers

(ACE)

Structures

Carl Razgha ACE Structures

Tom Gooch Resource Analysis, Inc.

(RAI)

Hydrology

Robert Fitzgerald RAI Hydrology

Owner's Representative Present

Gary Kerr - New Hampshire Water Resources Board

CHECK LISTS F	FOR VIS	UAL INSPECTION											
AREA EVALUATED	ВУ	CONDITION & REMARKS											
DAM EMBANKMENT													
Crest elevation	NAC	850.0' emergency spillway											
Current pool elevation		834.5 <u>+</u>											
Maximum impoundment to date		No data											
Surface cracks		None											
Pavement condition		Not applicable											
Movement or settlement of crest		None											
Lateral movement		None											
Vertical alignment		Good											
Horizontal alignment		Good											
Condition at abutment and at concrete structures		Good, drop inlet structure submerged											
Indications of movement of structural items on slopes Trespassing on slopes		None Many shrubs and trees 2' to 4' tall on up and downstream slopes: 3 rodent holes in											
Sloughing or erosion of slopes of abutments Rock slope protection - riprap failures	NAC	natural ground slope near emergency spillway Upstream left abutment drawdown erosion No riprap upstream - slope good except as above											

CHECK LISTS F	UAL INSPECTION	
AREA EVALUATED	BY	CONDITION & REMARKS
Unusual movement or crack- ing at or near toes Unusual embankment or	NPC	None
downstream seepage Piping or boils		None None
Foundation drainage features		Functioning as below
Toe drains Instrumentation system	11/2-	Right toe drain 10-15 gpm Left toe drain 2-4 gpm None
APPURTENANT STRUCTURES A. Drop inlet Service Spill- way	ويذ	
Condition of concrete	<u> </u>	Submerged, could not be observed
Trash rack		Submerged, could not be observed
Gate bench stand		No deficiencies noted
Vent pipe		No deficiencies noted
B. Reservoir Discharge Conduit		Submerged, could not be observed
C. Outlet Conduit (primary spillway)		
Condition of pipe		No deficiencies noted
Concrete cradle	65	Spalled at end, 8 square inches

APPENDIX B

	Page
Site Plan	B-2
Plan of Damsite	B-3
Seepage Drain Details	B - 4
Plan-Profile of Principal Spillway	B-5
Logs of Test Holes	B-6
Embankment Sect. for Earthfill Esti- mate	B-7
List of Pertinent Data Not Included and Their Locations	B-8

THE CASE OF THE CA	ALTO DESCRIPTION DE SERVICE DE SE	The state of the s	The state of the s	And the control of th	SCALES ARE NOT AS SHOWN SCALES ARE NOT AS SHOWN SCALES ARE NOT AS SHOWN SOCIETA WITH SHORT WORKER SOUTHERN THE WORLD WORKER US DEPARTMENT OF MARKEULTURE SOIL CONSPERVATION SPRVICE SOIL CONSPERVATION SPRVICE
THE PART OF THE PA		The state of the s	The state of the s		
The state of the s		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
The state of the s					Hillian Street
The state of the s					

CONCECUM WATER METERALO PROJECT

U.S. DEPARTMENT OF ARRICULTURE

SOIL CONSERVATION SERVICE RANTAIG MAS BEEN REDUCED • :: -4 11:1 Track Street 2 :: ::

Who is where is no in the Baddinon.

The U.S.D.A. Soil Conservation Service (SCS) located in Durham, New Hampshire, maintains a file for this dam. Included in this file are:

- 1) SCS "Design Report" dated June 1964.
- 2) SCS "Hydrology and Hydraulics" design calculations dated 1963.
- 3) SCS structural design calculations dated 1964.
- 4) SCS "Detailed Geological Investigation of Dam Sites" dated 1963.
- 5) SCS soil mechanics laboratory data sheets dated November 1963.
- 6) SCS "As Built" drawings undated.

The New Hampshire Water Resources Board (NHWRB) maintains a correspondence file on this dam. Included in this file are:

1) Maintenance inspection checklists dated June 2, 1972 and June 15, 1978.

APPENDIX C
PHOTOGRAPHS

 View of emergency spillway channel looking upstream

2. View of downstream end of emergency spillway showing rock dump fill and tree growth

3. View of left upstream reservoir slope showing debris and recent sloughing

4. View of animal burrow in right downstream slope near the end of the embankment

5. View of downstream channel showing plunge pool and riprap protection

6. View of outlet pipe and right toe drain outlet

7. View of bench stand on submerged inlet structure

APPENDIX D HYDROLOGIC/HYDRAULIC COMPUTATIONS

1/34

Dam Rating Curve

The principal spillway consists of a riser which reservoir discharges enter through an orifice and which is drained by a 186' long 30" of RC pipe. It is designed such that the flow rate is controlled by the orifice rather than by the drain pipe.

The emergency spillmay is a grass-lined channel at the end of which is a critical

flow control section.

the stage-discharge (rating) function for the two outlets has been computed by the SCS as part of the design calculations. a summary of these calculations follows.

Schematic Section of Dam No Scale

Emergency Spillury

Dam Crest Elev 853.0

Elev. 850.0

- 250' ---

Elev. 831.0 [1.5'c 0.5' principal spillway orifice

Principal Spillway Orifice

Elev. 831.0 (0.5'

Datum -- Elev. 831.0

H=0 to H=0.5' $Q = C L H^{3/2}$ C = 3.4

L = 1.75' (This disagrees with the final design value of 1.5' but the difference is not significant in terms of the ability of the dam to pass a major flood)

- Q= 5.95 H3/2

H>1.0 Q= CA J29xHorifice C=0.65

A = 0.875 12 (See note Ir Labour)

Horifice = H - 0.25 $Q = 4.56 (H - 0.25)^{1/2}$

Emergency Spillway

Weir flow is assumed at the control section. For a given discharge, the Hat the control section must be adjusted by a backwater computation to determine the water surface elev. of the reservoir 200' u/s.

These can putations were made with the use of SCS ES 124, sheet 18 with L=200' (channel lengths b = 250' (channel bottom width) and 2 = 4 (side-slopes Rating Table from sheet 4-5 of SCS design coles.

Pool Elev.	H	Q
831.0	0	0
8 % .0	5	10
840.0	9	14.
846.0	15	18-
850.0	19	20
250.96	19.96	270
852.09	21.09	1271
853.0	22	2521
	1	

This table includes the combined emergency spillway and principal spillway out flows.

Stage - Storage Function

a copy of the stage - storage and stage - surface area curves computed and drawn by the SCS as part of the design calculations is included on he next page.

the Acod storage to the emergency spillbay level is 186.9 acre-Pt

Drainage area

608 cores

Storage = 187 x 12 = 3.7" runoff

Flood storage to the top of dan is 263 corefi.

"Storage = 263 x12 = 5.2" runoff.

Dan Solety SWD 28 16-11-79 79/34

Stage - Storage Table

Pool Elev.	area (ocres)	(acre-ft)
824	0	0
818	.9	1.7
832	3,2	9,9
83 <i>¢</i>	7.6	30.7
840	9.6	65.4
844	11.6	108
848	14.5	139
850	16.5	190
852	18,3	225
853	20.0	263

	_]	NOILVAST	ا ۔ ا	.		<u></u>	,	27.5"	
- 3		8		3 10				734	
	00		\$ - -	80 80					
	: ::: :::				6	111		1 .	• •
	8		2		9		\$		•
	<u></u>		3		- 4				
<u> </u>	1					EN		<u>: -:-</u>	
	<u> </u>		x			in .			
	Y		ake,			185			
	1		5 8 6	3) &	•		·
			EGN 176	,		5 b	- 000		
				7 8 -			&		•
	1		رم – ر	57 -	}	55		1	
] <u> </u>	- ; T-Fig. 1						2	
		\					220		•
	=							5 %	
		1 1 1 1 1 1 1 1				 	4	in.	
	1 40					1 . 1	2 8	ACC	
<u> </u>		\\							• (
	1-8						2		
						- 1			
17.				i i .					
		\	- :- -	<u> </u>					
			-:						
			· - - -			!			•
		 	\ <u>-</u>	<u> </u>	- 	+	ro		
			\ -			+-	<u> </u>		
		-		!		1			• •
			$\sqrt{I_{-}}$!		
	· .		11						
		D-1	77/1/2						
1: : >		₹ n-1	0	17 +	.	1 :	j 1	}	

Dam Failure analysis

Outflow at Failure = Outflow through breach + Normal outflow at failure elev. of pool

assume that he dan fails when it is overtopical with the pool at the loud of the dam crest

-- elev. 853.0

Normal Outflow

Q = 2520 ofs (dam rating curve with H=22')

Tailwater level at failure

Estimate with normal flow roting for the excavated channel just below the dom. Emergency spillway

(0,830.5)

(275,830.5)

 $(35,805) \qquad (53,805.5)$ $(35,805) \qquad 8' \qquad (43,80.5)$ $(36,805) \qquad S = .003$ $(37,805) \qquad (43,805) \qquad (43,805)$

Rating table is shown on the nort page.

	0	ומי	~	ġ.	.	4	34.	82	38.	94.	29.	200	92.	348	987	736.		524.	556.	678.	888	
AR2/3	0.0	•	ф ф	·.	6	ġ	ທ	φ.	17	49	S C	, ,	5	1 P	4	341	•	217.	723.	273.	866.	
ı	0	•		•		•	•				• •		• •	•	•		3.		•	•	•	
	. GO	•	•	4	9	O,	-	1	 . u) ()	ວິວ	٦ ٦ ٢	9	A 7.) U	V	98	71	76		
L	2 02		6	9	4	Ċ	i c	io		Fu	0 C	v a o n	• • • • • •) [·	9 U	00		0	0.			
ū	ころ) ~	10	i V	10	10) (\) (\) () <	• • •	• • u	A C	0 V	9	10	, r	. 0	000		, o	2	836°8	1
Ī	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10.0	

CHANNEL RATING IMMEDIATELY D/S OF S.W.D. #28

Q=2520 cls > Tailwater elev. = 227.8

Breach Ontflow api = 8/27 * Wb * 19 * 40 3/2 W = width of breach < 0.4 + (width of dom at 1/2 height) We Wb = 2.4 + 235 = 94'

* This is the natural stream bed level at the dam. Yo = pool elev. - tailwater elev.

Total Outflow

Downstream Flooding

Tributary to Stony Brook d/s of SWD = 28

The section shown above is typical for the reach from the dom 0.5 mile d/s to Ke confluence with Stony Brook

Estimate peak Sam break flow 2.5 mile d/s of dam Follow (essentially) COE "Rule of Thumb Guidance for Estinating Downstream Dam Failure. Hydrographs

a simple BASIC program was used to calculate a rating table for this reach (next page) based on the representative section statched above.

	9 4	11	53	595.	121.	CVO	1000	340	092.	227		200	683.	276	176	0 1	316.	280.	488	158.	310	270	900	\$ 10 T	843.	187.	943	368	400	956.1	
m	.	•	•											•	•	٠,	_	~	N	L		7	r •	T I	ഹ	9	9	~	84	Ó	•
AR2/3	200	,	 Φ	12	200	11	? ? !	39	26.	070		421.	838.	202	000	900	515	229.	028	914.	000	יי אני	200	¥167.	8418.	1789.	3277	4876		8423	,
HYD-R	•	•				•		•	, ,	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	1) (•
WPER	<u>.</u>		5	2		•	_;	_		•		91.	7	10	77	32.	42.	0	, _C	, r.	, c	2100	1 000	93	14.	4	7	44	0.45°	יו ע	2
ய	٠ 9	F.) G		200	20	75	A	u	3	88	55	90		10	40.	75		010 010			510	899.	。 い い い い い い	SAN.	415	640		7.00.0	100	, ,
	8		•	•	٠				•	•			•	•		2	'n	• > <	L		٥	.	တ်	9	G	•	• 0	ir	000	L	o C
-	, G		•		•			•	•			•	'n	2	-	Š	įr	•	÷	'n	9	V.	о О	σ	ì	5 -	٠. ر	i	200	.	ה

TRIBUTARY TO STONY BROOK D/S OF S.W.D. #28

Dam Salety SWD 28 6-11-79 15/34 Qp2 = 22500 (1 - 101) Vol = 263 (1- Qp2) gross apr = 15000 ofs => Vol = 263 (1 - 1500c) = 87.7 ⇒ Qp2 > 15000 w guzs ap2 = 17,000 ots => Vol = 64.3 acre-ft Depth of flow prior to far failure = 5.7' after dan failure = 12.5' Estimate Depth of Flow in Stony Br. at confluence with Aribidary 5=0.015 h =0.04 (258,20) (80_312) (10_312) (32_33)

an rating table for Stany Br. at this point, based on the approximate section statched above, is shown on the next page.

D-18

0	5459°
α -	964
エ C のの いいよりもいいらんでいった。 本のものものところとしてもらっているもの。	
######################################	24.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	331.
п Почицарог-оуд-ипиарого Водорого обраборого	2,0
та-индиогама-индиога Тарарарарарарарарара	0,0

STONY BROOK AT COMFLUENCE W/ TRIBUTARY

STREAM RATING

from Rating Table,

Q = 1700 c cfs

> depth of flow > 14'

Ralroad bridge 2001 2/5 of confluence

the estimated peak dan Parlure Plew depth of 141 would probably demage the railroad bridge and roadbed.

Istimate Peak Dan Break Flow in Stony Br. outside of S: Lyndeborough 1.5 mile d/s of dan

Typical Section of Stony Br.

a rading datale cosed on this sketch is shown on the following page $Val = \frac{A_1 + A_2}{2} \cdot L$ L = 5280' $A_1 = 610' = (Rimer rating datale w/ <math>Q = 173000'$)

 $A_2 = \int \left(G_{p2} \right)$

	6	69	98.	999.	623.	371.	239.	228.	337.	569.	925.	466.	1015	755.	4627.	6635.	8731.	1968.	3499.	6076.	8802.	
	60	4	ω	S S	5	6.7	52	רט		018	900	457	1707.3	977.	267.	578.	911.	265.	642	541.	464.	
1	G	, Ī,	•		•		•			•			רוי			•	•		с С	۵	•	
	ے ا	•	- ©	•	O V	0 0	, 0	J =:	• • •	- ©	5 r	• • • •	0 00 0 00 0 00	;		r.	G		(توار	0	, •	
Li	ر 1	5 V	0 v	•	• • •	• • •	כיים כיים	D = O ()	• • •!	: \! : 0 C	១៥ ១៤	را د را ر	• • •	4			L.	4	• • • • • • • • • • • • • • • • • • •	7,	ବ୍ୟୁଷ୍ଟ ଜ	
L	u		•	•	•	•		•	•	•	7. 0	•	- • 0	•	•	יט ר) \		• a		28.8 8.8	
4	_					•	•	•	•	•	5 , (• •	. .	ir	, ,	• u	j,	10	•	•	26.0	

STONY BROOK UZS OF SOUTH LYNDEBOROUGH

STREAM RATING

$$|V_0| = 263 \left(1 - \frac{Q_{p2}}{17200}\right)$$

que Rp2 = 14000 cls = Vol = 46.4 acreft.

que Qp2 = 13000 ds = Vol = 61.5

GLAS REZ = 12500 LS > Vel = 69.6

460 Pps = 12500 de

Estimate Septim of Flooding of South Lyinde borough

Stony Brook at South Lyndevorsugh village , the miles d/s of SWD 25

2 rating table for the section statehed acove is shown on the following page.

20 1120 130 130 130 130 130 130 130 130 130 13	
AR 2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
エ ひのの こころろうです 4 4 5 5 5 6 6 7 6 6 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	•
MW408844688644688644688644688644688646886	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
ุ่ พอนุ่งและเล่นตอน พอนุ่งและเล่นตอน บอดดอออออออออออออออออออออ	ċ
Toooooooooooooo	2

STONY BROOK AT SOUTH LYNDEBOROUGH VILLAGE

In the Meintly of S. Lynde borough Village there are 2 houses, each with first floor levels approximately 15' above the stream bed.

Dan brest ducharge 12500 ms Depth = 10.5' reuses ok

add stay , a 10 year flow in Stony Britisofice Sources

Q10 yr. ≅ = = 900 ds

(This is FIS value for a reach of Stony 31. ~3 miles of ofthe point. It is true probably an overestimate.)

atot = ap + aisyr = 15,700 els Depth = 11.1' source Ok

Da- Safety SWD 28 RHF 23/34

Estimate Peak Dan Brenk Flow 25 miles des of dam

Typical Section of Stony Er.

1.6 to 2.5 miles af SMITE

2 rating dable based on this sketch is shown on the Collawing page

Val = $\left(\frac{A_1 + A_2}{2}\right) \times L$ L = .945660 = 4750 $A_1 = 670^{-2}$ (Riem rating table of Q = 12800) $A_2 = f(Q_1 p_2)$

age !	Da	Ãz	Vol
6340	9.0	397	59.9
7876	10.0	467	638
9634	11.0	543	68.1
11629	12.0	625	72.7
12800	12.5	670	75.2
	D-26		

$oldsymbol{\omega} - oldsymbol{\omega} \cap oldsymbol{\omega$	~
a HUNDUNDUNG HUNDUND AA G HUNDUNDUNG HUNDUND HUNDUNG AB AN HUNDUNG WOOD HUNDUNG AB	2.5 MI.
$\frac{1}{2} \frac{1}{2} \frac{1}$	8 (1.6 70
T T T T T T T T T T	8.W.D. #28
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0k 0/5 0F
	STORY BROOK
ന പയപ്പിയും സ്ത്രീസ് സ്ത്യാപ്പിന്റെ പ്രധാന വ സ്ത്യാപ്പിന്റെ സ്ത്യാപ്പിന്റെ പ്രധാന വ ന്റെ പ്രധാന പ്രധാന വേശിയ പ്രധാന വരുന്നു. വേശിയ തെയെ തെയെ വരുന്ന് വരുന്നു വരുന്നു.	PATING
C	STPEAM R

Dam Satisty SUD 28 TOKEF 6-11-79 $V_{01} = 263 \left(1 - \frac{Q_{p2}}{12800}\right)$ 3/20 ap= = 10000 => Vol = 57.5 98.6 USC ROZ = 9500 67.8 Depti of Flow = 12.0 Estimate Peak Flow 40 miles d/s of same Typical Section of Stony Brook 65 to 4.2 miles dis 2560 =28

S = 0.01 11 = 5.24

a roling table based on this skelell is shown on the talkwing page 1/2 = (A, 7 A2) 1/2

= 965 Com sting time of James

0	0000000 000000 000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	្រំ សមាល់ក្រុស សមាល់កុស្តា
T Cac-duappppppaann Tagaonna-annonin-an	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	មេស៊ីស៊ីស៊ីស៊ីស៊ីស៊ី មេស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស
\overline{a} where \overline{a} is a substitution of \overline{a} where \overline{a} is a substitution of \overline{a} is a substitution of \overline{a} in \overline{a}	ស្រួយស្រួយ ស្រួយស្រួយ
ന പ്രചരിധകുമുന്നുമാകുമ്പുന്നുമ നെ	
ന്നു പ്രവാധ പ്രധാന പ്രവാധ പ്ര	ស្រាល - លេក ធា

STORY BROOK LAS OF S.W.D. #28 (2.5 TO 4.8 MI.) STREAM PATING

27/34

Dan Salay

Qp2	D_2	A2	. Vol
3480	8.0	430	130.4
4940	9.0	575	144
2870	10.0	250	1604
9340	11.0	955	79.5
			:

$$|V_{c}| = 253 \left(1 - \frac{x_{p2}}{9500}\right)$$

$$|V_{c}| = 5000 = |V_{d}| = 129.6$$

$$|V_{c}| = \frac{4500}{138.4}$$

Estimate Peak Flow Dia vile 3/5 2 540 735

approx. Section of Stony Br. d/s of Stockwell Br. (4105 mi d/s SUFE

arting table based on this state is such 1 (10 / min D-30

60	11000000000000000000000000000000000000
\	21 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	๛ฅ๚๚๚๚๚๚๚ ๛๛๚๚๚๚๚๚๚ ๛๛๚๛๚๛๛๚๛๛๚๛๛๚๛๛๚
д 60 П • •	スをよりできるできたとうともなるからな みをさらできます。 ならさらできませい。 ならさらできませい。
u i	$\frac{1}{2}$
п 0.0 0.5	⊣⊣ທທµພ∡∡ນນກຎ⊬ຩຑ∞໙໙໙໖ ອນອນອນວນຊນວນອນວນອ
F • •	

STREAM RATING

STONY BROOK D/S OF STOCKWELL BROOK

$$V_{0} = \left(\frac{A_{1}A_{2}}{2}\right)V_{1}$$

$$L = 5280'$$

$$A_{1} = 325$$

$$A_{2} = 5\left(2p_{2}\right)$$

$$V_{0}| = 263\left(1 - \frac{Q_{0}}{7555}\right)$$

$$3(242) J_{0}|_{2} = 35 = 0 \Rightarrow |V_{0}| = 56.4$$

$$3(242) J_{0}|_{2} = 35 = 0 \Rightarrow |V_{0}| = 56.4$$

$$40.9$$

$$49.9$$

$$49.9$$

$$49.9$$

$$49.9$$

$$49.9$$

$$49.9$$

Neglect attenuation behind the small run-ethe river dam at the end of this reach because the temporary storage here, with a pond ares of only 2= scres, would be regligible.

Jan. Safety 540 28 6/11/23______34

Estimate flood depths outside of Wilton due to failure of SWD = 28.

Opprox. Section of Stony Brook

~ 1/4 mile 4/5 of Wilton

The following rating table is based on FIS profiles at this point along Stony Brook.

TR	\mathcal{Q}	Dorth Flow
10 yr.	29006	9.147.
50	4 755	11.6
100	5750	12.8
500	3100	14.5

Note that the attenuated dam break discharge estimated to be 3900 of (not includio additional Stony Brook Alous) would cause flooding

to a depth of 10'x above the streamked.

There are in this vicinity seven houses, with

first floor levels ranging from approximately

6' to 10' above the stream bed, which would

be susceptible to serious domage as a result

of this level of flooding.

However, FIS Pland frequency analysis indicates
that this degree of Acading is not unprecestented

Test Flood Inalysis

Size Classification - Small

Storage 4 1000 AF Height 2 40'

Hazard Classification -- Significant

Series Placeding to homes along Stony Drock outside et Wilten 25 miles des e. the dam. This far dis the flood wave has been much stionusted and the rate of rise should be relatively slow preducing The potential ter loss of like.

Kairford and roadway crossings of Stony Erock downstream would also be samaged.

Test Flood Selection

Her COE audelines , SMALL down with CIGNIFICANT mazard perconal small use o 100 yr to 1/2 PMF Test Flood. as a complete inflow hydrograph of the order of magnitude of Le 1/2 PMF as well as the routed peak outillow. has been developed for this dam -y his SCS, 1 & gent webser D-35 of this hydrograph

be selected as the Test Flood:

Emergency Spillway. Hydrograph

developed by SCS as part of the action

sign coloniations using SCS Unit by drograph.

Peat. Inflow
3 = 1168 of (adopt as Test Flood)

Restricted The Waxman Probable Flood Feat

Watershed -- rolling to insuntainous Drainage area 608 sores = 0.75 sq. mi.

44 PMF = 2300 CSM = 2300x 0.95 = 2190 cfs

1/2 PMF = 1090 035 V

Dan Saloty SWD 28 17#F 34/3

From the dam rating curve, firs outlow of 430 ds will occar with a pool dev. of approximately 851.2 MSL, 1.8 feet below in crest of the fam.

Drawdown Time

Sheet 5-2 of the SES design calculations contains a drawdown time check

Beginning of the level of the emergency spillway ofests elev. 250.0. and assuming the 835.5 (14.5')

APPENDIX E

INFORMATION AS CONTAINED IN
THE NATIONAL INVENTORY OF DAMS

VER/DATE 29JUN19 SCS A PRV/FED DAY MO YR 29JUN79 REPORT DATE POPULATION FEO R ◉ MAINTENANCE Z S PUBLIC LAM 92-367 8AUG1972 NORTH) (WEST) 4253.1 7148.8 (I) OUST FROM DAM (M1.) z AUTHORITY FOR INSPECTION 3 CONSTRUCTION BY € DIST NED NED NONE NAME OF IMPOUNDMENT (#)

IMPOUNDING CAPACITIES

WAXIMUM
IACHE FY

IACHE FY INVENTORY OF DAMS IN THE UNITED STATES NEAREST DOWNSTREAM CITY - TOWN - VILLAGE SOUTH LYNDEBOROUGH 28 OPERATION o z ⊕, MATERSHEU DAM NONE INSPECTION DATE
DAY MO YR REGULATORY AGENCY HYDRAU-HEIGHT 01MAY79 ENGINEERING BY REMARKS REMARKS ◉ 3 SOUHEGAN RIVER USDA SCS CONSTRUCTION 22780 GOLDBERG ZOING DUNNICLIFF + ASSOC WOLUME OF DAM (CV) PURPOSES **©** NONE RIVER OR STREAM NH WATER RESOURCES BOARD MAXIMUM DISCHARGE (FT.) 2521 POPULAR NAME N STATE COURTY CONCR. COUNTY DIST. INSPECTION BY € TEMPLE BROOK YEAR COMPLETED SPILLWAY 0 S2 0 OWNER **③** DESIGN 1 YPE OF DAM 650 1 **©** 01 05 Ē GON BASIN PGRE NONE STATE OLNTITY DVISION

\$

.

FILMED

8-85

DTIC