Chapter 1

Vectors and the Geometry of Space

DATE: 2020-09-01

ANNOUNCEMENTS:

Review chapter 12.1 to 12.5 and complete assignments

1.1 Three-Diensional Coordinate Systems

$$|P_1 P_2| = \sqrt{(x_1 - x_1)^2 + (y_2 - y_2)^2 + (z_2 - z_1)^2}$$
(1.1)

 $Dinstance\ Formula\ in\ Three\ Dimensions$

$$(1.2)$$

Equation of a sphere with a center C(h, k, l) and a radius r

$$\left| |\overline{a}| = \sqrt{a_1^2 + a_2^2} \right| \tag{1.3}$$

$$|\overline{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2} \tag{1.4}$$

Length of a Vector

$$\overline{a} + \overline{b} = \langle a_1 + b_1, a_2 + b_2 \rangle \tag{1.5}$$

Vector Addition

Week 1 Lesson 1

$$\overline{a} - \overline{b} = \langle a_1 - b_1, a_2 - b_2 \rangle \tag{1.6}$$

 $Vector\ Subtraction$

$$c\overline{a} = \langle ca_1, ca_2 \rangle \tag{1.7}$$

 $Scalar\ Multiplication$

$$\boxed{\overline{a} \cdot \overline{b} = a_1 b_1 + a_2 b_2 + a_3 b_3} \tag{1.8}$$

Dot Product

$$\overline{a} \cdot \overline{a} = |\overline{a}|^2$$

$$\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$$

$$\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c}$$

$$(c\overline{a}) \cdot \overline{b} = c(\overline{a} \cdot \overline{b} = \overline{a} \cdot (c\overline{b})$$

$$0 \cdot \overline{a} = 0$$

Theorem 1 (Dot product). $\overline{a} \cdot \overline{b} = |a| |b| \cos \theta$

Corollary 1. $\cos \theta = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}||\overline{b}|}$

Direction Angles

$$\cos \alpha = \frac{a_1}{|\overline{a}|}$$

$$\cos \beta = \frac{a_2}{|\overline{a}|}$$

$$\cos \gamma = \frac{a_3}{|\overline{a}|}$$

Projections

$$comp_a \overline{b} = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}|}$$
 (1.9)

 $Scalar\ projection\ of\ b\ onto\ a$

$$proj_{a}\overline{b} = \left(\frac{\overline{a} \cdot \overline{b}}{|\overline{a}|}\right) \frac{\overline{a}}{|\overline{a}|} = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}|} \overline{a}$$

$$(1.10)$$

 $Vector\ projection\ of\ b\ onto\ a$

Week 1 Lesson 1

$$\overline{a} \times \overline{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$
(1.11)

 $Cross\ product$

Theorem 2. $|\overline{a} \times \overline{b}| = |\overline{a}| |\overline{b}| \sin \theta$

Theorem 3 (parallel). $\overline{a} \times \overline{b} = 0 \implies a \text{ and } b \text{ are parallel}$

1.2 Equations of Lines and Planes

1.2.1 Lines

$$\boxed{\overline{r} = \overline{r}_0 + t\overline{v}} \tag{1.12}$$

Vector equation of a line

 ${f r}$ vector that traces the line

 \overline{r}_0 given point on the line $(\overline{r}_0 = \langle x_0, y_0, z_0 \rangle)$

 $\overline{v}\,$ vector in the direction of $\overline{r}\,$

 \mathbf{t} parameter

$$\implies \langle x, y, z \rangle = \langle x_0 + ta, y_0 + tb, z_0 + tc \rangle$$

Parametric equations for a line through a point (x_0, y_0, z_0) parallel to the vector $\overline{v} = \langle a, b, c \rangle$

$$x = x_0 + at$$

$$y = y_0 + bt$$

$$z = z_0 + ct$$