- 1. Let I be an open interval in \mathbb{R} and let $f: I \to \mathbb{R}$.
 - (a) State the definition of f'(a) for $a \in I$.

Answer: The function $f: I \to \mathbb{R}$ is differentiable at $a \in I$ if $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = f'(a)$ exists. In this case, f'(a) is the derivative of f at a.

(b) Let $a \in \mathbb{R}$. Use the definition of the derivative to compute f'(a) for $f(x) = x^3$.

Answer: By definition, if the limit exists

$$f'(a) = \lim_{h \to 0} \frac{(a+h)^3 - a^3}{h} = \lim_{h \to 0} \frac{3a^2h + 3ah^2 + h^3}{h} = \lim_{h \to 0} \left(3a^2 + 3ah + h^2\right) = 3a^2.$$

So, $f'(a) = 3a^2$ for $a \in \mathbb{R}$.

(c) Assume $f: I \to \mathbb{R}$ is differentiable on I. Use the definition of derivative to prove that f is continuous on I.

Answer: Here we are referring to a general $f: I \to \mathbb{R}$. Assume f is differentiable then $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = f'(x)$ exists. Furthermore, $\lim_{h\to 0} h = 0$ as the identity function is continuos. Therefore, since the product of limits is the limit of the product:

$$\left(\lim_{h\to 0} h\right) \left(\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}\right) = \lim_{h\to 0} h \left(\frac{f(x+h) - f(x)}{h}\right) = \lim_{h\to 0} \left(f(x+h) - f(x)\right) = 0$$

Then, adding the constant f(x) to both sides, we see $\lim_{h\to 0} f(x+h) = f(x)$ and f is continuous at x.

2. Let $f \in C^1(\mathbb{R}^2, \mathbb{R})$ and let $G \in C^1(\mathbb{R}, \mathbb{R}^2)$. Let h(t) = f(G(t)) for $t \in \mathbb{R}$. Find $\frac{dh}{dt}(t)$. (Note, here ∇f is viewed as a row vector so you can multiply it by DG.)

Answer: For $(x,y) \in \mathbb{R}^2$, since f is C^1 , f is differentiable and $\mathbf{D}f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right)$. To take the derivative, we need to label the component functions of g, so assume $g(t) = \begin{pmatrix} g_1(t) \\ g_2(g) \end{pmatrix}$. Then, since g is

 C^1 , g_1 and g_2 are differentiable and $\mathbf{D}g(t) = \begin{pmatrix} g_1'(t) \\ g_2'(t) \end{pmatrix}$. Now, since f and g are C^1 , we use the Chain Rule to get

$$h'(t) = \mathbf{D}f(g(t))\mathbf{D}g(t) = \left(\frac{\partial f}{\partial x}(g_1(t), g_2(t)), \frac{\partial f}{\partial y}(g_1(t), g_2(t))\right) \begin{pmatrix} g_1'(t) \\ g_2'(t) \end{pmatrix}$$
$$= \frac{\partial f}{\partial x}(g_1(t), g_2(t))g_1'(t) + \frac{\partial f}{\partial y}(g_1(t), g_2(t))g_2'(t)$$

3. Define $g(x,y) = \frac{x^2y}{x^2 + y^4}$ on domain $\mathcal{O} = \mathbb{R}^2 \setminus \{(0,0)\}$. Calculate $\lim_{(x,y)\to \mathbf{0}} g(x,y)$ and prove your result or explain why this limit does not exist.

Answer: I haven't used the $\epsilon - \delta$ condition enough in class, so let's do it here! My spidey sense says that the limit is zero. The reason is that one can note that $\frac{x^2}{x^2+y^2} \le 1$ so this allows us to bound $\left|\frac{x^2y}{x^2+y^4}\right|$ above by |y|.

Let $\epsilon > 0$ let $\delta = \epsilon$. Then, $\delta > 0$ because $\epsilon > 0$.

Let $(x, y) \in \mathbb{R}^2$ satisfy $0 < ||(x, y)|| = ||(x, y) - \mathbf{0}|| < \delta$. Then,

$$\left| \frac{x^2 y}{x^2 + y^4} - 0 \right| = \left| \frac{x^2 y}{x^2 + y^4} \right| \le |y| \frac{x^2}{x^2 + y^4} \le |y| \le \|(x, y)\| < \delta = \epsilon.$$

¹Copyright Todd Quinto and Tufts University

This prove that $\lim_{(x,y)\to 0} \frac{x^2y}{x^2+y^4} = 0$.

- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x,y) = x^2 + \cos(xy) + y$.
 - (a) Note that f(0,1) = 2. Explain why there is an open interval I containing 0 and a function $g \in C^1(I,\mathbb{R})$ that satisfies g(0) = 1 and f(x, g(x)) = 2 for all $x \in I$. Find g'(0). Justify your answers. Answer: We use Dini's Theorem. First, f is in $C^1(\mathbb{R}^2,\mathbb{R})$ because it is the sum of compositions of C^1 functions. Secondly, $\frac{\partial f}{\partial y}(x,y) = -x\sin(xy) + 1$ and so $\frac{\partial f}{\partial y}(0,1) = 1$. Therefore, Dini's theorem can be used. Therefore, there is an open interval I containing x = 0 and a function $g \in C^1(I, \mathbb{R})$ such that g(0) = 1 and for all $x \in I$, f(x, g(x)) = 2. Now, by Dini's theorem we know that $g'(0) = \frac{\frac{\partial f}{\partial x}(0,1)}{\frac{\partial f}{\partial x}(0,1)} = \frac{0}{1} = 0$.
 - (b) Explain why $f: \mathbb{R}^2 \to \mathbb{R}$ is not injective (one-to-one). Answer: we have that f(x,g(x)) = 2 for all $x \in I$ and so if $x_1 \in I$ and $x_1 \neq x_0$, then $f(x_1,g(x_1)) = 1$ $2 = f(x_0, g(x_0))$ but $(x_1, g(x_1)) \neq (x_0, g(x_0))$. Therefore, f is not injective. This can be part of a simple proof that if \mathcal{O} is open in \mathbb{R}^2 and $f \in C^1(\mathcal{O}, \mathbb{R})$ then $f : \mathcal{O} \to \mathbb{R}^2$ is not injective. However, an even cooler proof shows that if $f: \mathcal{O} \to \mathbb{R}$ is continuous, then f is not injective.
- 5. let $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ be continuously differentiable (C^1) . Assume $\mathbf{F}(1,2,3) = (4,5,6)$ and

$$\mathbf{DF}(1,2,3) = A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}. \text{ You may assume that } A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

(a) Does \mathbf{F} satisfy the Inverse Function Theorem at (1,2,3)? Justify your answer.

Answer: Since **F** is continuously differentiable and DF(1,2,3) is an invertible matrix as indicated in the problem, **F** satisfies the Inverse Function Theorem. So, there is a neighborhood U of (1,2,3)and a neighborhood V of (4,5,6) such that $\mathbf{F}: U \to V$ is bijective and \mathbf{F}^{-1} is C^1 .

Assume the domain of **F** is given coordinates (x, y, z) and the target has coordinates (u, v, w), that is $\mathbf{F}(x, y, z) = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$.

(b) Find $\frac{\partial u}{\partial x}(1,2,3)$.

Answer: Since u is the first variable in the target of \mathbf{F} and x is the first variable in the domain of **F**, $\frac{\partial u}{\partial x}(1,2,3)$ is the 1,1 entry of **DF**(1,2,3) and that is 1 so $\frac{\partial u}{\partial x}(1,2,3) = 1$.

(c) Find $\frac{\partial x}{\partial y}(4,5,6)$. Recall that $\mathbf{F}(1,2,3) = (4,5,6)$.

Answer: Since u is the first variable in the domain of \mathbf{F}^{-1} and x is the first variable in the target of \mathbf{F}^{-1} , $\frac{\partial x}{\partial u}(4,5,6)$ is the 1,1 entry of $\mathbf{DF}^{-1}(4,\overline{5,6})$ and that is 1 so $\frac{\partial x}{\partial u}(4,5,6) = 1$.

6. Let $F(x,y) = \begin{pmatrix} F_1(x,y) \\ F_2(x,y) \\ F_3(x,y) \end{pmatrix}$ be a C^1 function from \mathbb{R}^2 to \mathbb{R}^3 and assume $D\mathbf{F}(1,1) = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 2 & 2 \end{pmatrix}$. Prove that there is an open neighborhood \mathcal{U} of (1,1) such that $F:\mathcal{U} \to \mathbb{R}^3$ is injective.

HINT: first consider $\tilde{F}: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $\tilde{F}(x,y) = \begin{pmatrix} F_1(x,y) \\ F_2(x,y) \end{pmatrix}$.

Answer: Since F is continuously differentiable, the component functions F_1 and F_2 are continuously differentiable. Therefore $\tilde{F} \in C^1(\mathbb{R}^2, \mathbb{R}^2)$. Since the rows of DF are the gradients of the component functions, $\nabla F_1(1,2) = (1,2)$ $\nabla F_2(1,1) = (1,1)$. Therefore $D\tilde{F}(1,1) = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$. Since this matrix is invertible (it's determinant, -1, is not zero) and \tilde{F} is continuously differentiable, we can use the Inverse Function Theorem to show there is a neighborhood \mathcal{U} of (1,1) and a neighborhood \mathcal{V} of $\tilde{F}(1,1)$ such that $\tilde{F}: \mathcal{U} \to \mathcal{V}$ is bijective. Therefore, $\tilde{F}: \mathcal{U} \to \mathbb{R}^2$ is injective.

We now show $F: \mathcal{U} \to \mathbb{R}^3$ is injective. Let (x_1, y_1) and (x_2, y_2) be points in \mathcal{U} and assume

$$F(x_1, y_1) = \begin{pmatrix} F_1(x_1, y_1) \\ F_2(x_1, y_1) \\ F_3(x_1, y_1) \end{pmatrix} = \begin{pmatrix} F_1(x_2, y_2) \\ F_2(x_2, y_2) \\ F_3(x_2, y_2) \end{pmatrix} = F(x_2, y_2).$$

Therefore, $F_1(x_1, y_1) = F_1(x_2, y_2)$ and $F_2(x_1, y_1) = F_2(x_2, y_2)$ so $\tilde{F}(x_1, y_1) = \tilde{F}(x_2, y_2)$. Since \tilde{F} is injective, $(x_1, y_1) = (x_2, y_2)$. This shows F is injective on the domain \mathcal{U} .

Recall the definition of differentiability:

Definition 1. Let \mathcal{O} be an open subset of \mathbb{R}^n and let $\mathbf{x}_0 \in \mathcal{O}$. Let $\mathbf{F} : \mathcal{O} \to \mathbb{R}^m$. Let B be an $m \times n$ matrix. Then, \mathbf{F} is differentiable at \mathbf{x}_0 if

(1)
$$\lim_{\mathbf{h} \to \mathbf{0}} \frac{\|\mathbf{F}(\mathbf{x}_0 + \mathbf{h}) - [\mathbf{F}(\mathbf{x}_0) + B\mathbf{h}]\|}{\|\mathbf{h}\|} = 0 \quad equivalently \quad \lim_{\mathbf{x} \to \mathbf{x}_0} \frac{\|\mathbf{F}(\mathbf{x}) - [\mathbf{F}(\mathbf{x}_0) + B(\mathbf{x} - \mathbf{x}_0)]\|}{\|\mathbf{x} - \mathbf{x}_0\|} = 0$$

The function \mathbf{F} is differentiable on \mathcal{O} if \mathbf{F} is differentiable at all points in \mathcal{O} .

Recall that, if **F** is differentiable at $\mathbf{x}_0 \in \mathcal{O}$ then **F** has all first partial derivatives at \mathbf{x}_0 and $DF(\mathbf{x}_0) = B$, the matrix in the definition of derivative.

Also, note that if $f: \mathcal{O} \to \mathbb{R}$ is differentiable at \mathbf{x}_0 then we write $\nabla f(\mathbf{x}_0)$ for the vector \mathbf{b} such that

(2)
$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{|f(\mathbf{x}_0 + \mathbf{h}) - [f(\mathbf{x}_0) + \langle \mathbf{b}, \mathbf{h}\rangle]|}{\|\mathbf{h}\|} = 0.$$

If $f: \mathcal{O} \to \mathbb{R}$ is differentiable at \mathbf{x}_0 according to Definition (1), then the $1 \times n$ matrix $B = (b_1, b_2, \dots, b_n)$ in (1), and the vector $\nabla f(\mathbf{x}_0) = \mathbf{b}$ in (2) is the column vector B^T . Since, $B\mathbf{h} = \langle \mathbf{b}, \mathbf{h} \rangle$, the limit in (1) is zero *iff* the limit in (2) is zero. This explains the equivalence of the two definitions of derivative–(1), and (2) if $f: \mathcal{O} \to \mathbb{R}$.

For the following problems, the Sandwich Theorem for functions is really useful and you may use it. I discussed it in the help session and in class on Monday.

Theorem 2. Sandwich Theorem Let f, g, and h be functions from a set $A \subset \mathbb{R}^n$ to \mathbb{R} and assume \mathbf{x}_0 is a limit point of A and $L \in \mathbb{R}$. Assume that

(3)
$$\forall \mathbf{x} \in A, \quad f(\mathbf{x}) \le g(\mathbf{x}) \le h(\mathbf{x}), \quad \lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}_0) = L = \lim_{\mathbf{x} \to \mathbf{x}_0} h(\mathbf{x}).$$

Then, $\lim_{\mathbf{x}\to\mathbf{x}_0} g(\mathbf{x}) = L$.

This can simplify the estimates in the limits in the next two problems.

7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = x^2 + 2xy + 3$. Let $(x,y) \in \mathbb{R}^2$. Use the definition of derivative to show that f is differentiable at (x,y) and that $\nabla f(x,y) = (2x + 2y, 2x)$. Sorry for the misprint on the original version!

You may use the following limits

$$0 = \lim_{(h,k)\to(0,0)} \frac{h^2}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{hk}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{k^2}{\sqrt{h^2 + k^2}} =$$

NOTE: you may use the Sandwich Theorem for limits of functions. I put a proof at the end of this review sheet. If you don't want to do this, you just apply the Sandwich Theorem for sequences to an arbitrary sequence $\mathbf{x}_k \to \mathbf{x}_0$

Answer: We make the guess that $\mathbf{b} = \nabla f(x_0, y_0) = (2x_0 + 2y_0, 2x_0)$ as suggested (with the misprint corrected). We let $\mathbf{h} = (h, k)$, and we let $\mathbf{x}_0 = (x_0, y_0)$. A calculation shows that

$$f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - \langle (2x_0 + 2y_0, 2x_0), (h, k) \rangle = h^2 + 2hk$$

, so
$$0 \le \frac{|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - \langle (2x_0 + 2y_0, 2x_0), (h, k) \rangle|}{\sqrt{h^2 + k^2}} \le \frac{h^2}{\sqrt{h^2 + k^2}} + \frac{|2hk|}{\sqrt{h^2 + k^2}}.$$

Now we use the Sandwich theorem for functions and the limits given in the problem to show the middle term is trapped between 0 on the left and the right-hand term which converges to 0 as $(h,k) \to (0,0)$ by the limits we were given. Therefore the limit of the middle term is zero and f is differentiable and $\nabla f(x_0, y_0) = (2x_0 + 2y_0, 2x_0)$.

8. Let \mathcal{O} be an open subset of \mathbb{R}^n and let $f: \mathcal{O} \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in \mathcal{O}$ and $\nabla f(\mathbf{x}_0) = \mathbf{b}$ is a vector in \mathbb{R}^n . Use the definition of derivative to prove that f is continuous at \mathbf{x}_0 .

Answer: We assume $\lim_{\mathbf{x}\to\mathbf{x}_0} \frac{|f(\mathbf{x})-[f(\mathbf{x}_0)+(\mathbf{b},(\mathbf{x}-\mathbf{x}_0))]|}{\|\mathbf{x}-\mathbf{x}_0\|} = 0$, and we show $\lim_{\mathbf{x}\to\mathbf{x}_0} |f(\mathbf{x})-f(\mathbf{x}_0)| = 0$. By the triangle inequality

 $(4) 0 \le |f(\mathbf{x}) - f(\mathbf{x}_0)| \le |f(\mathbf{x}) - [f(\mathbf{x}_0) + \langle \mathbf{b}, (\mathbf{x} - \mathbf{x}_0) \rangle]| + |\langle \mathbf{b}, (\mathbf{x} - \mathbf{x}_0) \rangle|.$

First observe that $|f(\mathbf{x}) - [f(\mathbf{x}_0) + \langle \mathbf{b}, (\mathbf{x} - \mathbf{x}_0) \rangle]| \to 0$ as $\mathbf{x} \to \mathbf{x}_0$ for the following reason:

$$0 = \lim_{\mathbf{x} \to \mathbf{x}_0} \left(\frac{|f(\mathbf{x}) - [f(\mathbf{x}_0) + \langle \mathbf{b}, (\mathbf{x} - \mathbf{x}_0) \rangle]|}{\|\mathbf{x} - \mathbf{x}_0\|} \right) \lim_{\mathbf{x} \to \mathbf{x}_0} \|\mathbf{x} - \mathbf{x}_0\|$$

$$= \lim_{\mathbf{x} \to \mathbf{x}_0} \left(\frac{|f(\mathbf{x}) - [f(\mathbf{x}_0) + \langle \mathbf{b}, (\mathbf{x} - \mathbf{x}_0) \rangle]|}{\|\mathbf{x} - \mathbf{x}_0\|} \|\mathbf{x} - \mathbf{x}_0\| \right)$$

$$= \lim_{\mathbf{x} \to \mathbf{x}_0} |f(\mathbf{x}) - [f(\mathbf{x}_0) + \langle \mathbf{b}, (\mathbf{x} - \mathbf{x}_0) \rangle]|$$

(Note that we know the limits in the first line of this last set of inequalities exist, so we can combine them.) Here we use that $\lim_{\mathbf{x}\to\mathbf{x}_0} \|\mathbf{x} - \mathbf{x}_0\| = 0$ (the proof is similar to the proof from class that $\lim_{\mathbf{x}\to\mathbf{0}} \|\mathbf{x}\| = 0$). This shows the limit in red exists and is zero so the second to last term in (4) goes to zero as $\mathbf{x}_0 \to \mathbf{x}_0$ We now show that $\lim_{\mathbf{x}\to\mathbf{x}_0} |\langle \mathbf{b}, (\mathbf{x}-\mathbf{x}_0) \rangle| = 0$. By Cauchy Schwartz Bunyakovsky,

$$|\langle \mathbf{b}, (\mathbf{x} - \mathbf{x}_0) \rangle| \le ||\mathbf{b}|| ||\mathbf{x} - \mathbf{x}_0||.$$

Therefore, $\|\mathbf{b}\| \|\mathbf{x} - \mathbf{x}_0\| \to 0$ as $\mathbf{x} \to \mathbf{x}_0$, and the last term in (4) goes to zero as $\mathbf{x} \to \mathbf{x}_0$.

Putting these together, we see the left-hand term in (4) is zero and the right hand term goes to zero as $\mathbf{x} \to \mathbf{x}_0$. Therefore the middle term does and so f is continuous at \mathbf{x}_0 !

9. Explain why the graph of $z = \sin(xy)$ has a tangent plane at $(\pi, 1, 0)$ and find an equation of that tangent plane.

Answer: Because $(x,y) \to xy$ and $t \mapsto \sin(t)$ are both C^1 , their composition is C^1 by the chain rule. Therefore, the graph of $z = \sin(xy)$ does have a tangent plane at $(\pi, 1, 0)$. To find it, we recall the formula of the tangent plane to z = f(x,y) at $(x_0, y_0, f(x_0, y_0))$ is

$$z = f(x_0, y_0) + \langle \nabla f(x_0, y_0), (x - x_0, y - y_0) \rangle.$$

In this case, the equation of the tangent plane becomes

$$z = -(x - \pi) - \pi(y - 1) = -x - \pi y + 2\pi.$$

The Proof of the Sandwich Theorem

Proof of Sandwich Theorem. Let $\{\mathbf{x}_k\}$ be an arbitrary sequence in $A \setminus \{\mathbf{x}_0\}$ that converges to \mathbf{x}_0 . By the assumptions in (3) $f(\mathbf{x}_k) \to L$, $h(\mathbf{x}_k) \to L$ and for all $k \in \mathbb{N}$, $f(\mathbf{x}_k) \le g(\mathbf{x}_k) \le h(\mathbf{x}_k)$. So, by the Sandwich Theorem for sequences, $\lim_{k \to \infty} g(\mathbf{x}_k) \to L$.

This shows that for every sequence $\{\mathbf{x}_k\}$ in $A \setminus \{\mathbf{x}_0\}$ that converges to \mathbf{x}_0 that $g(\mathbf{x}_k) \to L$. Therefore, $\lim_{\mathbf{x} \to \mathbf{x}_0} g(\mathbf{x}) = L$.