# EHM2141 LOJİK DEVRELER

2024-2025 BAHAR DÖNEMİ

13 Mayıs 2025

Dr. Sibel ÇİMEN

Sayıcılar n bitlik bir bilgiyi tutmanın yanı sıra her saat çevriminde tuttukları değeri artıran veya azaltan ardışıl devrelerdir.

- Genel olarak iki gruba ayrılır:
  - Senkron sayıcılar
  - Asenkron sayıcılar (Ripple counters)

• Yaptığı işe göre oldukça fazla kullanılan sayıcılar standart hale gelmiştir ve hazır devre olarak piyasada

bulunmaktadır.

## **Senkron Sayıcılar**

Senkron sayıcılarda tüm flip-flop'lara uygulanan ortak bir saat (clock) devresi yer almaktadır. Böylece tüm flip-flop'lar senkronize bir şekilde saatin her bir pozitif kenarında tetiklenmekte ve çıkış üretmektedirler.

Örnek: O'dan 7'ye kadar sayan bir binary sayıcı tasarlayalım.
000-111 arasında sayacağından 3 digit gerekmektedir. Dolayısıyla da 3 tane flip-flop kullanılacaktır.

| Şimdiki Durum |                |                | Gelecek Durum |                |                |  |
|---------------|----------------|----------------|---------------|----------------|----------------|--|
| <b>Q</b> 2    | Q <sub>1</sub> | Q <sub>0</sub> | <b>Q</b> 2    | Q <sub>1</sub> | Q <sub>0</sub> |  |
| 0             | 0              | 0              | 0             | 0              | 1              |  |
| 0             | 0              | 1              | 0             | 1              | 0              |  |
| 0             | 1              | 0              | 0             | 1              | 1              |  |
| 0             | 1              | 1              | 1             | 0              | 0              |  |
| 1             | 0              | 0              | 1             | 0              | 1              |  |
| 1             | 0              | 1              | 1             | 1              | 0              |  |
| 1             | 1              | 0              | 1             | 1              | 1              |  |
| 1             | 1              | 1              | 0             | 0              | 0              |  |

## **Senkron Sayıcılar**

Örnek: 0-7 birer birer ileri sayma işlemi yapan ikili senkron sayıcı devresinin tasarımı

| Şim            | ndiki Du       | rum            | Gelecek Durum |                |                |  |
|----------------|----------------|----------------|---------------|----------------|----------------|--|
| Q <sub>2</sub> | Q <sub>1</sub> | Q <sub>0</sub> | <b>Q</b> 2    | Q <sub>1</sub> | Q <sub>0</sub> |  |
| 0              | 0              | 0              | 0             | 0              | 1              |  |
| 0              | 0              | 1              | 0             | 1              | 0              |  |
| 0              | 1              | 0              | 0             | 1              | 1              |  |
| 0              | 1              | 1              | 1             | 0              | 0              |  |
| 1              | 0              | 0              | 1             | 0              | 1              |  |
| 1              | 0              | 1              | 1             | 1              | 0              |  |
| 1              | 1              | 0              | 1             | 1              | 1              |  |
| 1              | 1              | 1              | 0             | 0              | 0              |  |

Durum Tablosu

Durum diyagramını çizelim.

JK Flip-Flop kullanalım.



# **Senkron Sayıcılar**





## **Senkron Sayıcılar**

0-15 arası birer birer ikili sayı sisteminde ileri sayma işlemini yapan lojik devreyi yine JK FF'lar kullanarak gerçekleyelim.

Durum diyagramını çizelim.

#### J ve K giriş uçlarına ilişkin lojik fonksiyonlar:

$$J_0 = 1$$
  $K_0 = 1$   $K_1 = Q_0$   $K_1 = Q_0$   $K_2 = Q_0Q_1$   $K_3 = Q_0Q_1Q_2$   $K_3 = Q_0Q_1Q_2$ 



## **Senkron Sayıcılar**

#### Örnek:

- 2-bitlik senkron binary yukarı/aşağı sayıcı
  - Sayıcı çıkışları 00, 01, 10 ve 11 olacak.
  - 1 tane giriş var: X.
    - > X= 0 ise, sayıcı yukarı doğru sayacak
    - > X= 1 ise, sayıcı aşağı doğru sayacak



| Şimdik | i Durum | Giriş | Gelece | ek Durum |
|--------|---------|-------|--------|----------|
| $Q_1$  | Qo      | X     | $Q_1$  | $Q_0$    |
| 0      | 0       | 0     | 0      | 1        |
| 0      | 0       | 1     | 1      | 1        |
| 0      | 1       | 0     | 1      | 0        |
| 0      | 1       | 1     | 0      | 0        |
| 1      | 0       | 0     | 1      | 1        |
| 1      | 0       | 1     | 0      | 1        |
| 1      | 1       | 0     | 0      | 0        |
| 1      | 1       | 1     | 1      | 0        |

#### Eğer D FF kullanırsak:



$$D_1 = Q_1 \oplus Q_0 \oplus X$$



$$D_0 = Q_0'$$

## **Senkron Sayıcılar**

### Eğer JK FF kullanırsak:

| Şimdiki Durum |       | Giriş | Gel. Durum |       | Flip flop girişleri |       |       |       |
|---------------|-------|-------|------------|-------|---------------------|-------|-------|-------|
| $Q_1$         | $Q_0$ | X     | $Q_1$      | $Q_0$ | $J_1$               | $K_1$ | $J_0$ | $K_0$ |
| 0             | 0     | 0     | 0          | 1     | 0                   | Ø     | 1     | Ø     |
| 0             | 0     | 1     | 1          | 1     | 1                   | Ø     | 1     | Ø     |
| 0             | 1     | 0     | 1          | 0     | 1                   | Ø     | Ø     | 1     |
| 0             | 1     | 1     | 0          | 0     | 0                   | Ø     | Ø     | 1     |
| 1             | 0     | 0     | 1          | 1     | Ø                   | 0     | 1     | Ø     |
| 1             | 0     | 1     | 0          | 1     | Ø                   | 1     | 1     | Ø     |
| 1             | 1     | 0     | 0          | 0     | Ø                   | 1     | Ø     | 1     |
| 1             | 1     | 1     | 1          | 0     | Ø                   | 0     | Ø     | 1     |

| Q(†) | Q(†+1) | J | K |
|------|--------|---|---|
| 0    | 0      | 0 | x |
| 0    | 1      | 1 | × |
| 1    | 0      | × | 1 |
| 1    | 1      | × | 0 |



## **Senkron Sayıcılar**

 Eğer 0'dan 5'e sayan bir binary sayıcı tasarlarsak iki tane durum (110 ve 111) ne olacak??



| Şim   | diki Du | rum   | Gelecek Durum |       |       |  |
|-------|---------|-------|---------------|-------|-------|--|
| $Q_2$ | $Q_1$   | $Q_0$ | $Q_2$         | $Q_1$ | $Q_0$ |  |
| 0     | 0       | 0     | 0             | 0     | 1     |  |
| 0     | 0       | 1     | 0             | 1     | 0     |  |
| 0     | 1       | 0     | 0             | 1     | 1     |  |
| 0     | 1       | 1     | 1             | 0     | 0     |  |
| 1     | 0       | 0     | 1             | 0     | 1     |  |
| 1     | 0       | 1     | 0             | 0     | 0     |  |
| 1     | 1       | 0     | Ø             | Ø     | Ø     |  |
| 1     | 1       | 1     | Ø             | Ø     | Ø     |  |

- Daha güvenilir bir devre elde etmek için bu kullanılmayan durumları don't care yerine
   0 yazabiliriz.
- Böylece bir şekilde devre bu kullanılmayan durumlara girse bile anlamlı bir sonuç olacaktır.

| Şim   | diki Du | ırum | Gelecek Durum |       |    |  |  |  |  |
|-------|---------|------|---------------|-------|----|--|--|--|--|
| $Q_2$ | $Q_1$   | Qo   | $Q_2$         | $Q_1$ | Qo |  |  |  |  |
| 0     | 0       | 0    | 0             | 0     | 1  |  |  |  |  |
| 0     | 0       | 1    | 0             | 1     | 0  |  |  |  |  |
| 0     | 1       | 0    | 0             | 1     | 1  |  |  |  |  |
| 0     | 1       | 1    | 1             | 0     | 0  |  |  |  |  |
| 1     | 0       | 0    | 1             | 0     | 1  |  |  |  |  |
| 1     | 0       | 1    | 0             | 0     | 0  |  |  |  |  |
| 1     | 1       | 0    | 0             | 0     | 0  |  |  |  |  |
| 1     | 1       | 1    | 0             | 0     | 0  |  |  |  |  |



## **Senkron Sayıcılar**

Örnek: Bir adet kontrol girişi (K) olan 3-bitlik ikili senkron sayıcı devresi tasarlanacaktır. K=1 ise sayıcı devre 2'şer 2'şer ileri doğru sayacaktır. K=0 ise sayıcı devre 1'er 1'er geri doğru sayacaktır. Bu sayma işlemini yapabilen lojik devreyi JK FF'lar kullanarak tasarlayınız.

#### **REFERANSLAR:**

- 1. 'Lojik Devreler', Tuncay UZUN Ders Notları, <a href="http://tuncayuzun.com/Dersnot\_LDT.htm">http://tuncayuzun.com/Dersnot\_LDT.htm</a>, 2020.
- 2. 'Lojik Devre Tasarımı', Taner ASLAN ve Rifat ÇÖLKESEN, Papatya Yayıncılık, 2013.
- 3. M. Morris Mano, Sayısal Tasarım (Çeviri), Literatür Yayıncılık: İstanbul, 2003.
- 4. 'Lojik Devreler', Prof. Dr. Ertuğrul ERİŞ Ders Notları, 1995.