# Sistemas de Banco de Dados

#### Fundamentos em Bancos de Dados Relacionais

### Wladmir Cardoso Brandão

www.wladmirbrandao.com



# PROJETO FÍSICO



Criação de estrutura apropriada para armazenamento de dados com foco em desempenho na execução de consultas e transações

#### **FATOR DE IMPACTO**

- CARACTERÍSTICA DA CONSULTA
- Frequência de execução
- Tempo de execução
- Exclusividade em campo

#### DECISÃO

- Recuperação de dados
  - Que arquivos são acessados?
  - Que campos estão especificados?
    - Junção e seleção → indexação
  - Condição em Junção e seleção?
    - ► = → multiplicidade de índices
    - $ightharpoonup 
      eq \rightarrow$  limita uso de índice
    - <≤≥> → limitação índice hash

www.wladmirbrandao.com 3 / 20



Criação de estrutura apropriada para armazenamento de dados com foco em desempenho na execução de consultas e transações

#### **FATOR DE IMPACTO**

- Característica da consulta
- Frequência de execução
- Tempo de execução
- Exclusividade em campo

#### DECISÃO

- Atualização de dados
  - Que arquivos são atualizados?
  - Que operações são realizadas?
  - Que campos estão especificados?
    - ► Seleção → considerar indexação
    - Modificação → evitar indexação
  - Condição em SELEÇÃO?
    - → multiplicidade de índices
    - ≠ → limita uso de índice
    - <≤≥> → limitação índice hash

www.wladmirbrandao.com 4 / 20



Criação de estrutura apropriada para armazenamento de dados com foco em desempenho na execução de consultas e transações

#### **FATOR DE IMPACTO**

- Característica da consulta
- FREQUÊNCIA DE EXECUÇÃO
- Tempo de execução
- Exclusividade em campo

#### DECISÃO

- Execuções por unidade de tempo?
  - ► FREQUENTE → considerar indexação para recuperação frequente e evitar indexação para atualização frequente
  - Pareto → 80% do processamento é consumido por 20% das consultas e transações
    - Top 20% → considerar indexação para as de recuperação e evitar indexação para as de atualização

www.wladmirbrandao.com 5 / 20



Criação de estrutura apropriada para armazenamento de dados com foco em desempenho na execução de consultas e transações

#### **FATOR DE IMPACTO**

- Característica da consulta
- Frequência de execução
- Tempo de execução
- Exclusividade em campo

#### DECISÃO

- Tempo médio e máximo esperado para execução?
  - Que consultas e transações tem forte restrição de tempo de execução?
  - CRÍTICAS → considerar indexação para recuperação e evitar indexação para atualização

www.wladmirbrandao.com 6 / 20



Criação de estrutura apropriada para armazenamento de dados com foco em desempenho na execução de consultas e transações

#### **FATOR DE IMPACTO**

- Característica da consulta
- Frequência de execução
- Tempo de execução
- EXCLUSIVIDADE EM CAMPO

#### DECISÃO

- Que campos são exclusivos?
  - Campos exclusivos são usados frequentemente em JUNÇÃO e SELEÇÃO
  - Considerar indexação para campos exclusivos

www.wladmirbrandao.com 7 / 20



Muitas decisões de projeto físico envolvem indexação

```
CREATE [UNIQUE] INDEX <nome>
ON <tabela> ( <coluna> [<ORDEM>] {, <coluna> [<ORDEM>]} )
[CLUSTER];
```

- ► UNIQUE → campo de indexação será exclusivo
- lacktriangle cluster ightarrow índice será um arquivo ordenado pelo campo de indexação
- ► ORDEM → forma de ordenação do campo de indexação
  - ▶ asc → ordenação ascendente
  - ▶ DESC → ordenação descendente

www.wladmirbrandao.com 8 / 20



Desnormalização  $\to$  modificação no projeto lógico para se obter mais eficiência no processamento de consultas e transações

- ▶ Duplicação de atributos → inclusão de atributos de uma tabela em outra
  - Evita operações de Junção entre as tabelas
  - Introduz redundância em tabelas
  - Exemplo: introduzir o atributo *Nome* da tabela DEPARTAMENTO na tabela PROFESSOR evita a necessidade de JUNÇÃO entre as tabelas se a consulta por *Nome* de DEPARTAMENTO e *Nome* de PROFESSOR for frequentemente realizada



www.wladmirbrandao.com 9 / 20

# Ajuste de BD



Todo projeto precisa de ajustes ao ser executado

Sintonia (Tuning) → processo de ajuste contínuo do projeto físico

- Monitora e revisa decisões de projeto
  - ightharpoonup Oвјетиvo ightharpoonup redução do tempo de processamento de consultas e transações
  - MÉTRICAS → conjunto de medidas usadas no monitoramento
    - ▶ Processamento → tempo de otimização e execução de consultas e transações
    - Armazenamento → espaços ocupados por pools de buffer, tabelas (tablespaces) e índices (indexspaces)
    - I/O → # paginações em disco por unidade de tempo
    - CONCORRÊNCIA → taxa de vazão (throughput) de transações, de emissão de comandos de bloqueio, e de registro em log
    - ÍNDICE → # níveis, # nós folha não contíguos

www.wladmirbrandao.com 10 / 20

# Ajuste de BD



### DBAs monitoram métricas para realizar ajustes e evitar problemas:

- ▶ Desperdício → tamanho de buffers inadequados
- Sobrecarga → logging e dumping desnecessários
- ► Aumento de Concorrência → disputa excessiva por bloqueios
- ► INEFICIÊNCIA → alocação inadequada de discos, buffers e processos

### Tais ajustes podem ocorrer de diferentes formas

- ► SINTONIA DE ÍNDICE → criação, remoção e reorganização de índices
- SINTONIA DE PROJETO → alterações no projeto lógico
- SINTONIA DE CONSULTA → reescrita de consultas

www.wladmirbrandao.com 11 / 20

### Sintonia de Índice



Avaliação dos requisitos de projeto físico para reorganizar arquivos e índices

- ► CRIAÇÃO → consultas e transações podem estar demorando a serem executadas por ausência de índice
- ▶ Rемоção → índices podem estar sendo pouco utilizados
- REORGANIZAÇÃO → Índices podem estar sendo muito atualizados
  - Exclusão → blocos de índice com espaço desperdiçado
  - ► INCLUSÃO → overflow excessivo em índice agrupado
- Opções de indexação variam em soluções de SGBD comerciais
  - SYBASE → Índices de agrupamento esparsos em B+ TREES
  - ► INGRESS → Índices de agrupamento ISAM esparsos ou B+ TREES densos
  - ▶ ORACLE → índices de agrupamento densos

www.wladmirbrandao.com 12 / 20

# Sintonia de Projeto



Avaliação dos requisitos de projeto físico para modificação dos projetos conceitual e lógico

DUPLICAÇÃO DE ATRIBUTOS → inclusão de atributos de uma tabela em outra



PARTICIONAMENTO VERTICAL → divisão de atributos de uma tabela em múltiplas tabelas com mesma chave primária em relacionamento 1 : 1



www.wladmirbrandao.com 13 / 20

# Sintonia de Projeto



Avaliação dos requisitos de projeto físico para modificação dos projetos conceitual e lógico

▶ Particionamento Horizontal → distribuição de tuplas de uma tabela em múltiplas tabelas com os mesmos atributos

#### **PROFESSOR**

| <u>CPF</u>  | Nome            | Sexo | Salario | Departamento |
|-------------|-----------------|------|---------|--------------|
| 12345678900 | Roberto Machado | М    | 1200.00 | 1            |
| 12345678901 | Manuela Costa   | F    | 2700.00 | 3            |

#### PROFESSOR TOP

| <u>CPF</u>  | Nome              | Sexo | Salario | Departamento |
|-------------|-------------------|------|---------|--------------|
| 21345678900 | Carlos A. Martins | М    | 3200.00 | 1            |
| 32145678900 | Ana Maria Freitas | F    | 7500.00 | 2            |

www.wladmirbrandao.com 14 / 20



#### Avaliação dos requisitos de projeto físico para reescrever consultas

- ► INDÍCIOS → sinais de que consultas precisam ser reescritas
  - ► Plano de Execução → índices relevantes não estão sendo usados
  - ▶ Paginação → emissão de muitas solicitações de I/O
- Casos Típicos → situações que tipicamente demandam reescrita de consulta
  - PARSING → ordem aleatória de tabelas no FROM e operações no WHERE
  - ► Comparação → NULL, substring e campos de domínios diferentes

```
SELECT A.CPF, B.Nome
FROM PROFESSOR A, DEPARTAMENTO B
WHERE A.Depto IS NOT NULL
AND B.Nome LIKE '%TI%'
AND A.Salario = B.Numero;
```

www.wladmirbrandao.com 15 / 20



Avaliação dos requisitos de projeto físico para reescrever consultas

- ► Casos Típicos → situações que tipicamente demandam reescrita de consulta
  - ightharpoonup Consultas Aninhadas ightharpoonup operadores all, any, some, in e exists

```
SELECT CPF, Nome FROM PROFESSOR
WHERE Depto IN (SELECT Numero FROM DEPARTAMENTO);
SELECT A.CPF, B.Nome FROM PROFESSOR A
WHERE EXISTS (SELECT * FROM DEPARTAMENTO B
WHERE A.Depto = B.Numero);
```

DEDUPLICAÇÃO → operador distinct

```
SELECT DISTINCT Nome FROM PROFESSOR;
```

www.wladmirbrandao.com 16 / 20



### Avaliação dos requisitos de projeto físico para reescrever consultas

- Casos Típicos → situações que tipicamente demandam reescrita de consulta
  - ▶ Condição Disjuntiva → operador or

```
SELECT CPF, Nome FROM PROFESSOR
WHERE Sexo = 'M' OR Salario > 2000,00;

SELECT CPF, Nome FROM PROFESSOR
WHERE Sexo = 'M'
UNION
SELECT CPF, Nome FROM PROFESSOR
WHERE Salario > 2000,00;
```

www.wladmirbrandao.com 17 / 20



Avaliação dos requisitos de projeto físico para reescrever consultas

- ► Casos Típicos → situações que tipicamente demandam reescrita de consulta
  - CONDIÇÃO COMPLEXA → operadores AND e OR

```
SELECT CPF, Nome FROM PROFESSOR

WHERE Depto = 1

AND ((Salario BETWEEN 1000,00 AND 2000,00) OR

(Salario BETWEEN 5000,00 AND 7000,00));

SELECT CPF, Nome FROM PROFESSOR

WHERE Depto = 1 AND (Salario BETWEEN 1000,00 AND 2000,00)

UNION

SELECT CPF, Nome FROM PROFESSOR

WHERE Depto = 1 AND (Salario BETWEEN 5000,00 AND 7000,00);
```

www.wladmirbrandao.com 18 / 20



### Avaliação dos requisitos de projeto físico para reescrever consultas

A.Depto = B.Depto:

- ► Casos Típicos → situações que tipicamente demandam reescrita de consulta
  - ► Consulta Complexa → subconsultas

AND

```
SELECT A.CPF, A.Nome FROM PROFESSOR A

WHERE A.Salario > (SELECT AVG(B.Salario) FROM PROFESSOR B

WHERE A.Depto = B.Depto);

SELECT Depto, AVG(Salario) AS Media INTO TEMP
FROM PROFESSOR
GROUP BY Depto;

SELECT A.CPF, A.Nome FROM PROFESSOR A, TEMP B
WHERE A.Salario > B.Media
```

www.wladmirbrandao.com 19 / 20

# Referências Bibliográficas



- [1] Elmasri, Ramez; Navathe, Sham. *Fundamentals of Database Systems*. 7ed. Pearson, 2016.
- [2] Silberschatz, Abraham; Korth, Henry F.; Sudarshan, S. *Database System Concepts*. 6ed. McGraw-Hill, 2011.
- [3] Date, Christopher J. An Introduction to Database Systems. 8ed. Pearson, 2004.

www.wladmirbrandao.com 20 / 20