MBA em Ciência de Dados

Técnicas Avançadas de Captura e Tratamento de Dados

Módulo II - Tratamento de Dados

Detecção de outliers

Material Produzido por Moacir Antonelli Ponti

CeMEAI - ICMC/USP São Carlos

Conteúdo:

- 1. Detecção de outliers: métodos estatísticos e de aprendizado de máquina
- 2. Limpeza de dados: tratamento de informações faltantes, redundantes e errôneas
- 3. Tratamento de desbalanceamento: SMOTE e data augmentation

Referências:

- Katti Faceli; Ana Carolina Lorena; João Gama; André C.P.L.F. Carvalho. Inteligência Artificial: uma abordagem de aprendizado de máquina, 2011.
- Salvador García, Julián Luengo, Francisco Herrera. Data Processing in Data Mining, 2015.
- Hadley Wickham, Tidy Data. Journal of Statistical Software, v.59, n.10, 2014.

Referência complementar:

 CHANDOLA, Varun; BANERJEE, Arindam; KUMAR, Vipin. Outlier detection: a survey. ACM Computing Surveys, v. 14, p. 15, 2007.

Detectando outliers

Relembrando - outliers, pontos "fora-da-curva" ou pontos aberrantes : exemplos ou instâncias que, dentre do espaco de possíveis valores, recaem num intervalo *fora* daquele relativo a maior parte dos exemplos de uma base de dados.

Detectar outliers por meio de análise exploratória é útil para entender o comportamento da base de dados.

Existem também métodos **estatísticos** e de **aprendizado de máquina** que auxiliam nesse processo e que podem facilitar essa análise, detectando *outliers* de forma automática.

- 1. Dispersão: desvio padrão e intervalo interquartil
- 2. Distribuição: Normal univaridada
- 3. Agrupamento

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# https://www.kaggle.com/rubenssjr/brasilian-houses-to-rent
data = pd.read_csv("./dados/houses_to_rent_mba2.csv")
data
```

Out[1]:

	city	area	rooms	bathroom	parking spaces	floor	hoa	rent	tax	insurance	total	page hits	ava
0	São Paulo	70.0	2.0	1	1.0	7	2065	3300	211	42	5618.0	324	
1	São Paulo	320.0	4.0	4	2.0	20	1200	4960	1750	63	7973.0	720	
2	Porto Alegre	80.0	1.0	1	1.0	6	1000	2800	nr	41	3841.0	64	
3	Porto Alegre	51.0	1.0	1	NaN	2	270	1112	22	17	1421.0	46	
4	São Paulo	25.0	1.0	1	NaN	1	0	800	25	11	836.0	1548	
	•••												
11760	São Paulo	150.0	3.0	3	2.0	8	0	13500	0	172	13672.0	2124	
11761	Porto Alegre	63.0	2.0	1	1.0	5	402	1478	24	22	1926.0	58	
11762	São Paulo	285.0	4.0	4	4.0	17	3100	15000	973	191	19264.0	612	
11763	Brotas	100.0	1.0	2	1.0	-	0	800	116	39	955.0	148	
11764	Brotas	200.0	4.0	2	1.0	-	0	1450	226	75	1751.0	104	

11765 rows × 16 columns

Vamos visualizar dois atributos para estudar a distribuicao dos dados

```
In [2]: plt.figure(figsize=(8,4))
    plt.subplot(121); data.boxplot(['total'])
    plt.subplot(122); data.boxplot(['area'])
```

Out[2]: <matplotlib.axes._subplots.AxesSubplot at 0x7fc12cbfee50>

1. Desvio padrão e amplitude inter-quartil (por dispersão)

Para cada atributo, podemos estudar como os valores estão relacionados com a dispersão dos dados.

Entre as medidas de dispersão temos:

ullet desvio padrão ($extit{standard deviation}$) Seja μ a média de uma variável,

$$\sigma = rac{\sqrt{\sum_i (x_i - \mu)^2}}{n}$$

- amplitude ou intervalo interquartil (IQR, interquartile range) Sejam:
 - $ullet Q_1$ o valor relativo aos primeiros 25% dados,
 - ullet Q_2 o valor relativo aos primeiros 50% dados (mediana),
 - ullet Q_3 o valor relativo aos primeiros 75% dos dados,

$$IQR = Q_3 - Q_1$$

In [3]: # esses valores estão disponíveis viadescribe()
data.describe()

Out[3]:

	area	rooms	bathroom	parking spaces	hoa	rent	insurance
count	11687.000000	11686.000000	11765.000000	8800.000000	1.176500e+04	11765.000000	11765.000000
mean	145.652691	2.496406	2.280408	2.181705	1.162632e+03	4033.429154	56.525032
std	288.676311	1.165594	1.445071	1.519448	1.486720e+04	3564.190560	97.487374
min	1.000000	1.000000	1.000000	1.000000	0.000000e+00	200.000000	3.000000
25%	56.000000	2.000000	1.000000	1.000000	1.600000e+02	1600.000000	22.000000
50%	91.000000	2.000000	2.000000	2.000000	5.610000e+02	2790.000000	37.000000
75%	190.000000	3.000000	3.000000	3.000000	1.300000e+03	5100.000000	70.000000
max	24606.000000	10.000000	25.000000	12.000000	1.117000e+06	45000.000000	6000.000000

Pelo método do desvio padrão e IQR temos:

```
In [4]: # selecionando segundo o total
        Q1 = data['total'].quantile(0.25)
        Q3 = data['total'].quantile(0.75)
        IQR = Q3 - Q1
        desvp = data['total'].std()
        media = data['total'].mean()
        print("IQR = %.2f" % IQR)
        print("media = %.2f, desvio padrao = %.2f" % (media, desvp))
        # apenas outliers segundo IQR
        dataout_iqr = data[(data['total'] < Q1-(IQR*1.5))</pre>
                            | (data['total'] > Q3+(IQR*1.5))]
        # apenas inliers segundo IQR
        dc_iqr = data[(data['total'] >= Q1-(IQR*1.5))
                      & (data['total'] <= Q3+(IQR*1.5))]
        # apenas outliers segundo std
        dataout_std = data[(data['total'] < media-(desvp*2))</pre>
                           | (data['total'] > media+(desvp*2))]
        # apenas inliers segundo std
        dc_std = data[(data['total'] >= media-(desvp*2))
                           & (data['total'] <= media+(desvp*2))]
        IQR = 4814.00
        media = 5622.37, desvio padrao = 15795.76
```

In [5]: dc_std.describe()

Out[5]:

	area	rooms	bathroom	parking spaces	hoa	rent	insurance
count	11680.000000	11679.000000	11758.000000	8796.000000	11758.000000	11758.000000	11758.000000
mean	145.593408	2.496447	2.279469	2.180991	930.645348	4028.211771	56.452373
std	288.705325	1.165218	1.444316	1.518349	1151.665281	3541.282533	97.326654
min	1.000000	1.000000	1.000000	1.000000	0.000000	200.000000	3.000000
25%	56.000000	2.000000	1.000000	1.000000	160.000000	1600.000000	22.000000
50%	91.000000	2.000000	2.000000	2.000000	560.000000	2790.000000	37.000000
75%	190.000000	3.000000	3.000000	3.000000	1300.000000	5100.000000	70.000000
max	24606.000000	10.000000	25.000000	12.000000	32000.000000	30000.000000	6000.000000

```
In [6]: plt.figure(figsize=(8,4))
    plt.subplot(121); dc_std.boxplot(['total'])
    plt.subplot(122); dc_std.boxplot(['area'])
```

Out[6]: <matplotlib.axes. subplots.AxesSubplot at 0x7fc12c6505b0>

In [7]: dc_iqr.describe()

Out[7]:

	area	rooms	bathroom	parking spaces	hoa	rent	insurance
count	10993.000000	10994.000000	11068.000000	8135.000000	11068.000000	11068.000000	11068.000000
mean	128.370690	2.416409	2.144651	2.032821	820.518883	3432.489971	47.701391
std	166.343212	1.132361	1.338094	1.401387	893.913079	2538.420532	72.726753
min	1.000000	1.000000	1.000000	1.000000	0.000000	200.000000	3.000000
25%	55.000000	1.000000	1.000000	1.000000	170.000000	1550.000000	21.000000
50%	86.000000	2.000000	2.000000	2.000000	547.000000	2530.000000	35.000000
75%	164.000000	3.000000	3.000000	3.000000	1200.000000	4500.000000	63.000000
max	12732.000000	10.000000	25.000000	12.000000	8000.000000	13500.000000	6000.000000

```
In [8]: plt.figure(figsize=(8,4))
   plt.subplot(121); dc_iqr.boxplot(['total'])
   plt.subplot(122); dc_iqr.boxplot(['area'])
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7fc12c592e20>


```
In [9]: | dc = data.copy()
         for var in data:
             print(var)
             # verifica se variável é numerica
             if np.issubdtype(dc[var].dtype, np.number):
                 print('\tnumérica: removendo outliers via IQR')
                 Q1 = dc[var].quantile(0.25)
                 02 = dc[var].quantile(0.50)
                 Q3 = dc[var].quantile(0.75)
                 IQR = Q3 - Q1
                 print("\tmediana = %.2f IQR = %.2f" % (Q2,IQR))
                 # apenas inliers segundo IQR
dc = dc[(dc[var] >= Q1-(IQR*1.5)) & (dc[var] <= Q3+(IQR*1.5))]
        city
        area
                 numérica: removendo outliers via IQR
                 mediana = 91.00 IQR = 134.00
        rooms
                 numérica: removendo outliers via IQR
                 mediana = 2.00 IQR = 2.00
        bathroom
                 numérica: removendo outliers via IQR
                 mediana = 2.00 IQR = 2.00
        parking spaces
                 numérica: removendo outliers via IQR
                 mediana = 2.00 IQR = 2.00
        floor
        hoa
                 numérica: removendo outliers via IQR
                 mediana = 750.00 IOR = 1260.00
        rent
                 numérica: removendo outliers via IQR
                 mediana = 3000.00 IQR = 3110.00
        tax
        insurance
                 numérica: removendo outliers via IQR
                 mediana = 38.00 IQR = 37.00
        total
                 numérica: removendo outliers via IQR
                 mediana = 3826.00 IQR = 3540.00
        page hits
                 numérica: removendo outliers via IQR
                 mediana = 396.00 IQR = 769.00
        days available
                 numérica: removendo outliers via IQR
                 mediana = 71.00 IQR = 42.00
        interactions
                 numérica: removendo outliers via IQR
                 mediana = 168.00 IQR = 208.00
        weeks available
                 numérica: removendo outliers via IQR
                 mediana = 10.00 IQR = 6.00
        type
```

Nota: Reparamos que, além de "city", também "floor", "tax" e "type" não são considerados numéricos. Algo a ser investigado se esses atributos forem ser utilizados!

```
In [10]: plt.figure(figsize=(9,4))
    plt.subplot(121); data.boxplot(['total'])
    plt.title('Original')

plt.subplot(122); dc.boxplot(['total']);
    plt.title('Apos remocao de outliers')
```

Out[10]: Text(0.5, 1.0, 'Apos remocao de outliers')

2. Distribuição dos dados (distribuição Normal)

Podemos assumir que os dados possuem uma distribuição de probabilidade conhecida.

Assim temos um algoritmo que:

- 1. Estima os parâmetros da distribuição
- 2. Para cada ponto, computa a probabilidade p de pertencer à distribuição

A. se p<arepsilon, considerar o ponto como outlier

B. senão, o ponto é inlier

arepsilon é um limiar (threshold) pré-definido, exemplo: 0.01 (1%)

Vamos utilizar a distribuição Normal ou Gaussiana, mas outras podem ser também utilizadas.

Normal univariada

A distribuição Normal (ou Gaussiana) univariada (para uma única variável) é parametrizada por: média (centralidade) e variância (dispersão).

• isso significa que os dados podem ser completamente descritos por esses dois valores.

Escrevemos que um conjunto de dados é bem modelado por uma Gaussiana:

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

A equação que define a distribuição Gaussiana é dada por uma exponencial negativa conforme se afasta de um ponto médio μ :

$$e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Note o termo:

$$-rac{(x-\mu)^2}{2\sigma^2}$$

```
In [11]:
         mu = 5 \# m\acute{e}dia = 5
          s2 = 1 \# variancia = 1
          x = np.arange(0, 10.00, 0.1)
          print(x.shape)
          termo gauss = np.exp(-((x-mu)**2/(2*s2**2)))
          plt.plot(x,termo_gauss)
          (100,)
```

Out[11]: [<matplotlib.lines.Line2D at 0x7fc12c3c9130>]

A probabilidade de um determinado ponto x pertencer à X é dada por:

$$p(x;\mu,\sigma^2)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Esse termo que multiplica a exponencial é para normalizar os valores de forma a somar 1, pois isso é requerido para que consideremos uma distribuição de probabilidade.

• faz sentido - a soma de todas as probabilidades tem que ser 1 (100%)

```
In [12]:
         dist_{gauss} = np.exp(-(((x-mu)**2)/(2*s2)))/(np.sqrt(2*np.pi)*s2)
         plt.plot(x,dist_gauss)
Out[12]: [<matplotlib.lines.Line2D at 0x7fc12c398520>]
```


Vamos analisar um dos atributos, "weeks available" (semanas disponível), primeiro visualizando quantos valores distintos existem e o histograma

```
In [13]: data['weeks available'].unique().shape
Out[13]: (50,)
```


Notamos que o atributo parece ter o formato de uma Gaussiana, então vamos aplicar o algoritmo.

```
In [17]:
         def detect outlier Normal(attribute, epsilon=0.001, plotdist=False):
              """Funcao para detectar outliers com base na distribuicao Gaussiana univ
         ariada
             Parametros:
                  - attribute: vetor de atributos/features
                  - epsilon: limiar para rejeitar pontos como pertencendo a distribuic
         ao (default:0.001)
                  - plotdist: opcao que permite grafar a distribuicao com os parametro
         s estimados
             Retorno:
                 vetor com os índices dos outliers detectados
             mean = np.mean(attribute)
             stdv = np.std(attribute)
             # array vazio
             outliers = []
             for x,i in zip(attribute, range(0,len(attribute))):
                 p_x = np.exp(-(((x-mean)**2)/(2*stdv**2))) / (np.sqrt(2*np.pi)*stdv)
                 if (p x < epsilon):</pre>
                      outliers.append(i)
             outliers = np.array(outliers)
             if plotdist:
                 x = np.arange(int(mean-4*stdv),int(mean+4*stdv),stdv/100.0)
                 dist gauss = np.exp(-(((x-mean)**2)/(2*(stdv**2))))) / (np.sqrt(2*np.
         pi)*stdv)
                 plt.figure()
                 plt.plot(x, dist gauss)
                 plt.plot(attribute[outliers], np.zeros(outliers.shape[0]), 'xr')
             return outliers
         outl = detect_outlier_Normal(data['weeks available'], epsilon=0.0001, plotdi
         st=True)
         #print(data.loc[outl,'weeks available'])
```


3. Agrupamento

Outra técnica consiste em utilizar aprendizado não-supervisionado, inferindo agrupamentos e verificando se há pontos isolados em certos grupos.

Vamos considerar um par de atributos para considerar ao mesmo tempo: rent e hoa

O método utilizado será o DBSCAN - *Density-Based Spatial Clustering of Applications with Noise*, mas outros também podem ser empregados na mesma lógica:

• agrupamentos (clusters) isolados com poucos pontos tendem a indicar outliers

```
In [21]:
         from sklearn.cluster import DBSCAN
         from sklearn import metrics
         X1 = np.array(dc['rent'])
         X2 = np.array(dc['hoa'])
         X = np.vstack((X1,X2)).T
         # aprende o agrupamento
         # eps = distancia máxima para dois pontos serem considerados vizinhos
               (depende bastante da amplitude dos atributos)
         # min_samples = minimo de exemplos numa vizinhanca para considerar um
                         agrupamento
         db = DBSCAN(eps = 200, min samples=3).fit(X)
         clusters = db.labels
         # número de rótulos -1 sao considerados outliers!
         n_outl_ = list(clusters).count(-1)
         # retirando os outliers, quantos clusters foram encontrados:
         n_clusters_ = len(set(clusters)) - (1 if -1 in clusters else 0)
         # indices dos outliers
         outl_ind = np.where(clusters==-1)
         print('Número de agrupamentos estimado: %d' % n clusters )
         print('Número de outliers estimados: %d' % n outl )
         print("Coeficiente de silhueta: %0.3f"
               % metrics.silhouette_score(X, clusters))
         plt.plot(X1, X2,'.')
         plt.plot(X1[outl_ind], X2[outl_ind],'xr')
         plt.show()
```

Número de agrupamentos estimado: 8 Número de outliers estimados: 35 Coeficiente de silhueta: 0.006

Resumo e considerações finais

- É possível projetar métodos automáticos para detectar anomalias em bases de dados maiores e mais complexas.
- Nessa aula vimos métodos estatísticos e baseados em aprendizado não-supervisionado.
- Há ainda métodos projetados exclusivamente para detectar anomalias, que também podem ser utilizados.
 - Esses métodos consideram diferentes embasamentos teóricos,
 - a maior parte considera que será feito um treinamento com dados não contaminados.
 - podem ser utilizadas para realizar o que é chamado de deteccao de novidades: reconhecer se um novo ponto é um outlier dado um conjunto de treinamento sem outliers
- Para tratar bases de dados, combinar métodos automáticos com análise exploratória é importante
 - produzir um relatório inicial com os problemas levantados e então buscar conhecimento do domínio para entender os dados em mãos