Jiayu Zhou

¹Department of Computer Science and Engineering Michigan State University East Lansing, MI USA

April 5, 2016

Jiayu Zhou

1 / 53

Table of contents

- $lue{1}$ K-means for Clustering
- 2 Hierarchical Clustering
- Gaussian Mixture
- Spectral Clustering
- Issues with Clustering

Clustering Application - Geo

13 States Clustered into 51 Custom Ecoregions.

Clustering Application - Cancer Patients

Clustering of gingivo-buccal oral cancer patients based on mutational profiles.

Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups, Nature Communications, 2013

Clustered Results

- iaguar (185)
- ⊕ ► Club (35)

 ⊕ ► Parts (26)
- _____
- ⊕ ► <u>Racing</u> (15)
- → Models (12)
- ⊕ → Atari (11)
- ---**▶** History (8)
- ---> Classic Jaguar (8)
- ♠ ► International Jaguar (8)
- Jaguar Dealership (7)
- → More

Find in clusters:

Top 185 results retrieved for the query jaguar (Details)

1. Jaquar Cars [new window] [frame] [preview]

Official worldwide web site of **Jaguar** Cars. Gama actual, concesionarios, historia, noticias, anuncios y servicios fina URL: www.jaguar.com - <u>show in clusters</u> Sources: <u>Loros 1</u>

2. Jaquar Cars [new window] [frame] [preview]

URL: WWW.jaguarcars.com - show in clusters Sources: Lycos 2, Lycos 50, Lycos 90, Lycos 97, Lycos 90

3. www. jaquar -racing.com [new window] [frame] [preview]

URL: www.jaguar-racing.com - show in clusters Sources: Lycos 3, Lycos 93, Lycos 116

4. Jaquar Cars [new window] [frame] [preview]

United States United Kingdom Germany Japan France Italy Spain...

URL: www.jaguarvehicles.com - show in clusters
Sources: Lycos 4, Lycos 8, Lycos 41, Lycos 102, Lycos 188

5. Apple - Mac OS X [new window] [frame] [preview]

... queries to find your stuff, refining the list as you narrow options. Sure you could quantify that as up to six times far Jaguar , but youll probably think Panthers done almost before you...

URL: www.apple.com/macosx - show in clusters Sources: Lycos 5

Clustering Application - Island of Music

Pampalk, Elias, Andreas Rauber, and Dieter Merkl. "Content-based organization and visualization of music archives." Proceedings of the tenth ACM international conference on Multimedia. ACM, 2002.

Million Song

just have to mount it:

-means for Clustering Hierarchical Clustering Gaussian Mixture Spectral Clustering Issues with Clustering

Clustering Application - MRI TDI Fibers

"Exploring 3D DTI fiber tracts with linked 2D representations." Visualization and Computer Graphics, IEEE Transactions on 15.6 (2009): 1449-1456.

Notion of a Cluster can be ...

How many clusters?

Jiayu Zhou

Types of Clustering

- A clustering is a set of clusters.
- Important distinction between hierarchical and partitional sets of clusters
 - Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
 - Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Original Points

A Partitional Clustering

Traditional Hierarchical Clustering

Traditional Dendrogram

K-means for Clustering

K-means for Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- Optimization objective

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- Optimization objective

$$\underset{\{c_j, m_{i,j}\}}{\arg\min} \sum_{j=1}^K \sum_{i=1}^n m_{i,j} ||x_i - c_j||^2$$

where memberships $\{m_{i,j}\}$ and centers $\{c_j\}$ are correlated.

K-means Clustering Algorithm

$$\underset{\{c_j, m_{i,j}\}}{\operatorname{arg\,min}} \sum_{j=1}^K \sum_{i=1}^n m_{i,j} ||x_i - c_j||^2$$

Alternating procedure.

K-means Clustering Algorithm

$$\underset{\{c_j, m_{i,j}\}}{\operatorname{arg\,min}} \sum_{j=1}^K \sum_{i=1}^n m_{i,j} ||x_i - c_j||^2$$

Alternating procedure.

- Given centroids $\{c_j\}$, $m_{i,j} = \begin{cases} 1 & j = \arg\min_{j \in [1...K]} \|x_i c_j\|^2 \\ 0 & \text{otherwise} \end{cases}$
- ullet Given memberships $\{m_{i,j}\}$, $c_j = \frac{\sum_{i=1}^n m_{i,j} x_i}{\sum_{i=1}^n m_{i,j}}$

K-means Clustering Algorithm

$$\underset{\{c_{j}, m_{i,j}\}}{\operatorname{arg\,min}} \sum_{j=1}^{K} \sum_{i=1}^{n} m_{i,j} ||x_{i} - c_{j}||^{2}$$

Alternating procedure.

- Given centroids $\{c_j\}$, $m_{i,j} = \begin{cases} 1 & j = \arg\min_{j \in [1...K]} \|x_i c_j\|^2 \\ 0 & \text{otherwise} \end{cases}$
- Given memberships $\{m_{i,j}\}$, $c_j = \frac{\sum_{i=1}^n m_{i,j} x_i}{\sum_{i=1}^n m_{i,j} x_i}$
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - Recompute the centroid of each cluster. 4:
 - 5: **until** The centroids don't change

K-means illustration

K-means illustration

K-means illustration

K-means Clustering Details

K-means for Clustering

- Initial centroids are often chosen randomly.
- The centroid is (typically) the mean of the points in the cluster.
- Closeness is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations. Often the stopping condition is changed to "Until relatively few points change clusters"
- \bullet Let n = number of points, K = number of clusters, I = number of pointsiterations, d = number of attributes, complexity is

K-means Clustering Details

- Initial centroids are often chosen randomly.
- The centroid is (typically) the mean of the points in the cluster.
- Closeness is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations. Often the stopping condition is changed to "Until relatively few points change clusters"
- \bullet Let n = number of points, K = number of clusters, I = number of pointsiterations, d = number of attributes, complexity is $O(n \times K \times I \times d)$

Jiayu Zhou

K-means revisited

Original Points

If there are K "real" clusters then the chance of selecting one centroid from each cluster is small.

- Chance is relatively small when K is large
- ullet If clusters are the same size, n, then the probability is

If there are K "real" clusters then the chance of selecting one centroid from each cluster is small.

- ullet Chance is relatively small when K is large
- ullet If clusters are the same size, n, then the probability is

$$P = \frac{\text{ways to select one centroid from each cluster}}{\text{ways to select K centroids}} = \frac{K! n^K}{(Kn)^K} = \frac{K!}{K^K}$$

- \bullet For example, if K=10, then probability $=10!/10^{10}=0.00036$
- Sometimes the initial centroids will readjust themselves in "right" way, and sometimes they don't.

Solutions to Initial Centroids Problem

Multiple runs

Multiple runs
 Helps, but probability is not on your side

- Multiple runs
 Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids

Jiayu Zhou

K-means for Clustering

Solutions to Initial Centroids Problem

- Multiple runs Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- ullet Select more than K initial centroids and then select among these initial centroids

Solutions to Initial Centroids Problem

- Multiple runs Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- ullet Select more than K initial centroids and then select among these initial centroids
- Bisecting K-means

K-means for Clustering

Solutions to Initial Centroids Problem

- Multiple runs Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- ullet Select more than K initial centroids and then select among these initial centroids
- Bisecting K-means

K-means for Clustering

- Pick a cluster to split.
- Find 2 sub-clusters using the basic k-Means algorithm (Bisecting step)
- Repeat step 2, the bisecting step, for ITER times and take the split that produces the clustering with the highest overall similarity.
- Repeat steps 1, 2 and 3 until the desired number of clusters is reached.

Not as susceptible to initialization issues

Most common measure is Sum of Squared Error (SSE)

- For each point, the error is the distance to the nearest cluster
- To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in c_i} d^2(m_i, x)$$

- x is a data point in cluster c_i and m_i is the representative point (center/mean) for cluster c_i .
- Given two clusters, we can choose the one with the smaller error
- One easy way to reduce SSE is to increase K, the number of clusters
 - A good clustering with smaller K can have a lower SSE than a poor clustering with higher K.

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- K-means has problems when the data contains outliers.
- The number of clusters (*K*) is difficult to determine.

Hierarchical Clustering

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by "cutting" the dendrogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, movie genre, etc.)

Hierarchical Clustering

- Tan, Seinbach, and Kumar, Introduction to Data Mining, Addison-Wesley, 2006.
- Chapter 8, Cluster Analysis.
- http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf

Gaussian Mixture

Multivariate Gaussian

ullet A generative model specified by a center μ and a covariance Σ

$$p(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

 Assume that data are generated from a mixture of Gaussian distributions

Jiayu Zhou

A Gaussian Mixture Model for Clustering

- Assume that data are generated from a mixture of Gaussian distributions
- For each Gaussian
 - Center μ_i
 - Variance: Σ_i

A Gaussian Mixture Model for Clustering

- Assume that data are generated from a mixture of Gaussian distributions
- For each Gaussian
 - Center μ_i
 - Variance: Σ_i
- For each data point
 - Determine membership
 - z_{ij} : if x_i belongs to the j-th cluster

- 1-dimensional case.
- Probability $p(x = x_i)$

- 1-dimensional case.
- Probability $p(x=x_i)$

$$p(x = x_i) = \sum_{\mu_j} p(x = x_i, \mu = \mu_j) = \sum_{\mu_j} p(\mu = \mu_j) p(x = x_i | \mu = \mu_j)$$
$$= \sum_{\mu_j} p(\mu = \mu_j) \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2\right)$$

Log likelihood of data

- 1-dimensional case.
- Probability $p(x=x_i)$

$$p(x = x_i) = \sum_{\mu_j} p(x = x_i, \mu = \mu_j) = \sum_{\mu_j} p(\mu = \mu_j) p(x = x_i | \mu = \mu_j)$$
$$= \sum_{\mu_j} p(\mu = \mu_j) \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2\right)$$

Gaussian Mixture

Log likelihood of data

$$\sum_{i} \log p(x = x_i) = \sum_{i} \log \left[\sum_{\mu_j} p(\mu = \mu_j) \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2\right) \right]$$

• Apply MLE to find optimal parameters $\{p(\mu = \mu_i), \mu_i\}_i$

E-Step

$$\mathbb{E}[z_{ij}] = p(\mu = \mu_j | x = x_i)$$

$$= \frac{p(x = x_i | \mu = \mu_j) p(\mu = \mu_j)}{\sum_{k=1}^{K} p(x = x_i | \mu = \mu_k) p(\mu = \mu_k)}$$

$$= \frac{\exp\left(-\frac{1}{2\sigma^2} (x_i - \mu_j)^2\right) p(\mu = \mu_j)}{\sum_{k=1}^{K} \exp\left(-\frac{1}{2\sigma^2} (x_i - \mu_k)^2\right) p(\mu = \mu_k)}$$

M-Step

$$\mu_j \Leftarrow \sum_{i=1} \frac{\mathbb{E}[z_{ij}]}{\sum_{i=1} \mathbb{E}[z_{ij}]} x_i = \frac{1}{\sum_{i=1} \mathbb{E}[z_{ij}]} \sum_{i=1} \mathbb{E}[z_{ij}] x_i$$

$$p(\mu = \mu_j) \Leftarrow \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}[z_{ij}]$$

Gaussian Mixture Example: Start

After 1st Iteration

After 2nd Iteration

After 3rd Iteration

After 4th Iteration

After 5th Iteration

After 6th Iteration

After 20th Iteration

Spectral Clustering

• We assume that we have n data points $\{x_i\}_{i=1}^n \in \mathbb{R}^m$, which we organize as columns in a matrix

$$X = [x_1, x_2, \cdots, x_n] \in \mathbb{R}^{m \times n}.$$

• Let $\Pi = \{\pi_j\}_{j=1}^k$ denote a partitioning of the data in X into kclusters:

$$\pi_j = \{v \mid x_v \text{ belongs to cluster } j\}$$
.

• Let the mean, or the centroid, of the cluster be

$$c_j = \frac{1}{n_j} \sum_{v \in \pi_j} x_v,$$

where n_i is the number of elements in π_i .

Jiayu Zhou

- We describe K-means algorithm based on the Euclidean distance measure.
 - ullet The tightness or coherence of cluster π_i can be measured as the sum

$$q_j = \sum_{v \in \pi_j} ||x_v - c_j||^2.$$

- We describe K-means algorithm based on the Euclidean distance measure.
 - The tightness or coherence of cluster π_i can be measured as the sum

$$q_j = \sum_{v \in \pi_j} ||x_v - c_j||^2.$$

• The closer the vectors are to the centroid, the smaller the value of q_i . The quality of a clustering can be measured as the overall coherence.

$$Q(\Pi) = \sum_{j=1}^{k} \sum_{v \in \pi_j} ||x_v - c_j||^2.$$

ullet Let e be the vector of all ones with appropriate length. It is easy to see that $c_j = X_j e/n_j$, where X_j is the data matrix of the j-th cluster.

Jiayu Zhou

cluster.

• Let e be the vector of all ones with appropriate length. It is easy to see that $c_i = X_i e/n_i$, where X_i is the data matrix of the j-th

• The sum-of-squares cost function of the j-th cluster is

$$q_j = \sum_{v \in \pi_j} ||x_v - c_j||^2 = ||X_j - c_j e^T||_F^2 = ||X_j (I_{n_j} - ee^T/n_j)||_F^2.$$

- Let e be the vector of all ones with appropriate length. It is easy to see that $c_i = X_i e/n_i$, where X_i is the data matrix of the j-th cluster.
- The sum-of-squares cost function of the j-th cluster is

$$q_j = \sum_{v \in \pi_j} ||x_v - c_j||^2 = ||X_j - c_j e^T||_F^2 = ||X_j (I_{n_j} - ee^T/n_j)||_F^2.$$

• Note that $I_{n_i} - ee^T/n_i$ is a projection matrix (Why?)

K-means revisited

- Let e be the vector of all ones with appropriate length. It is easy to see that $c_i = X_i e/n_i$, where X_i is the data matrix of the j-th cluster.
- The sum-of-squares cost function of the j-th cluster is

$$q_j = \sum_{v \in \pi_j} ||x_v - c_j||^2 = ||X_j - c_j e^T||_F^2 = ||X_j (I_{n_j} - ee^T/n_j)||_F^2.$$

• Note that $I_{n_i} - ee^T/n_i$ is a projection matrix (Why?)

$$(I_{n_j} - ee^T/n_j)^2 = I_{n_j} - ee^T/n_j.$$

It follows that

$$q_j = \operatorname{trace}\left(X_j(I_{n_j} - ee^T/n_j)X_j^T\right) = \operatorname{trace}\left((I_{n_j} - ee^T/n_j)X_j^TX_j\right).$$

• Let e be the vector of all ones with appropriate length. It is easy to see that $c_j = X_j e/n_j$, where X_j is the data matrix of the j-th cluster.

ullet The sum-of-squares cost function of the j-th cluster is

$$q_j = \sum_{v \in \pi_j} ||x_v - c_j||^2 = ||X_j - c_j e^T||_F^2 = ||X_j (I_{n_j} - ee^T/n_j)||_F^2.$$

• Note that $I_{n_j} - ee^T/n_j$ is a projection matrix (Why?)

$$(I_{n_j} - ee^T/n_j)^2 = I_{n_j} - ee^T/n_j.$$

It follows that

$$q_j = \operatorname{trace}\left(X_j(I_{n_j} - ee^T/n_j)X_j^T\right) = \operatorname{trace}\left((I_{n_j} - ee^T/n_j)X_j^TX_j\right).$$

Therefore,

$$Q(\Pi) = \sum\nolimits_{j=1}^k q_j = \sum\nolimits_{j=1}^k \left(\operatorname{trace} \left(X_j^T X_j \right) - \frac{e^T}{\sqrt{n_j}} X_j^T X_j \frac{e}{\sqrt{n_j}} \right).$$

Define the n-by-k orthogonal matrix Y as follows

$$Y = \begin{pmatrix} e/\sqrt{n_1} & & & \\ & e/\sqrt{n_2} & & \\ & & \vdots & \\ & & e/\sqrt{n_k} \end{pmatrix}$$
 (1)

Then

$$Q(\Pi) = \operatorname{trace}(X^T X) - \operatorname{trace}(Y^T X^T X Y)$$
.

The k-means objective, minimization of $Q(\Pi)$, is equivalent to the maximization of trace (Y^TX^TXY) with Y is of the form in Eq. (1).

• Ignoring the special structure of Y and let it be an arbitrary orthonormal matrix, we obtain a relaxed maximization problem

$$\max_{\boldsymbol{Y}^T\boldsymbol{Y}=\boldsymbol{I}_k} \operatorname{trace}\left(\boldsymbol{Y}^T\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{Y}\right).$$

• Ignoring the special structure of Y and let it be an arbitrary orthonormal matrix, we obtain a relaxed maximization problem

$$\max_{\boldsymbol{Y}^T\boldsymbol{Y}=\boldsymbol{I}_k} \mathsf{trace}\left(\boldsymbol{Y}^T\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{Y}\right).$$

- It turns out the above trace maximization problem has a closed-form solution.
 - Theorem (Ky Fan): Let H be a symmetric matrix with eigenvalues $\lambda_1 > \lambda_2 > \cdots \lambda_n$ and the corresponding eigenvectors $U = [u_1, \cdots, u_n]$. Then

$$\lambda_1 + \cdots + \lambda_k = \max_{Y^T Y = I_k} \operatorname{trace}(Y^T H Y).$$

Moreover, the optimal Y^* is given by $Y^* = [u_1, \dots, u_k]Q$ with Q an arbitrary orthogonal matrix of size k by k.

50 / 53

$$\min_{\Pi} Q(\Pi) \geq \operatorname{trace}(X^TX) - \max_{Y^TY = I_k} \operatorname{trace}\left(Y^TX^TXY\right) = \sum_{i=k+1}^{\min\{m,n\}} \sigma_i^2(X),$$

where $\sigma_i(X)$ is the *i*-th largest singular value of X.

• We may derive the following lower bound for the minimum of the sum-of-squares cost function:

$$\min_{\Pi} Q(\Pi) \geq \operatorname{trace}(X^TX) - \max_{Y^TY = I_k} \operatorname{trace}\left(Y^TX^TXY\right) = \sum_{i=k+1}^{\min\{m,n\}} \sigma_i^2(X),$$

where $\sigma_i(X)$ is the *i*-th largest singular value of X.

• Let Y^* be the n-by-k matrix consisting of the k largest eigenvectors of X^TX . Each row of Y^* corresponds to a data vector. This can be considered as transforming the original data vectors which lie in a m-dimensional space to new data vectors which now lie in a k-dimensional space.

• We may derive the following lower bound for the minimum of the sum-of-squares cost function:

$$\min_{\Pi} Q(\Pi) \geq \operatorname{trace}(X^TX) - \max_{Y^TY = I_k} \operatorname{trace}\left(Y^TX^TXY\right) = \sum_{i=k+1}^{\min\{m,n\}} \sigma_i^2(X),$$

where $\sigma_i(X)$ is the *i*-th largest singular value of X.

- Let Y^* be the n-by-k matrix consisting of the k largest eigenvectors of X^TX . Each row of Y^* corresponds to a data vector. This can be considered as transforming the original data vectors which lie in a m-dimensional space to new data vectors which now lie in a k-dimensional space.
- How to get our cluster assignment back? One might be attempted to compute the cluster assignment by applying the ordinary K-means method to those data vectors in the reduced dimension space.

eans for Clustering Hierarchical Clustering Gaussian Mixture Spectral Clustering **Issues with Clustering**

Clustering

There are many clustering algorithms but unsupervised learning in general is still a challenging problem.

Non-convexity

- Non-convexity
 - Sensitive to initialization (e.g., K-means).

- Non-convexity
 - Sensitive to initialization (e.g., K-means).
 - Convex relaxation and convex clustering

- Non-convexity
 - Sensitive to initialization (e.g., K-means).
 - Convex relaxation and convex clustering
- What is the type of clustering we are looking for?

- Non-convexity
 - Sensitive to initialization (e.g., K-means).
 - Convex relaxation and convex clustering
- What is the type of clustering we are looking for?
 - Given a set of patients, what types of clustering are we expecting from the algorithm?

- Non-convexity
 - Sensitive to initialization (e.g., K-means).
 - Convex relaxation and convex clustering
- What is the type of clustering we are looking for?
 - Given a set of patients, what types of clustering are we expecting from the algorithm?
 - Each distance metric specifies a clustering

- Non-convexity
 - Sensitive to initialization (e.g., K-means).
 - Convex relaxation and convex clustering
- What is the type of clustering we are looking for?
 - Given a set of patients, what types of clustering are we expecting from the algorithm?
 - Each distance metric specifies a clustering
- Only applicable to elliptical shape clusters.

- Non-convexity
 - Sensitive to initialization (e.g., K-means).
 - Convex relaxation and convex clustering
- What is the type of clustering we are looking for?
 - Given a set of patients, what types of clustering are we expecting from the algorithm?
 - Each distance metric specifies a clustering
- Only applicable to elliptical shape clusters.
 - Non-linear embeddings