

Methods for NLP

Shikhar Vashishth Indian Institute of Science

Advised by:

Dr. Partha Talukdar (IISc) Prof. Chiranjib Bhattacharyya (IISc) Dr. Manaal Faruqui (Google Research)

Outline

Addressing Sparsity in Knowledge Graphs

- KG Canonicalization
- Relation Extraction
- Link Prediction

Exploiting Graph Convolutional Networks in NLP

- Document Timestamping
- Word Representation

Addressing Limitations of Existing GCN Architectures

- Unrestricted Influence Neighborhood
- Applicability to restricted class of graphs

Conclusion and Future work

Outline

- Addressing Sparsity in Knowledge Graphs
 - KG Canonicalization
 - Relation Extraction
 - Link Prediction

- Exploiting Graph Convolutional Networks in NLP
 - Document Timestamping
 - Word Representation

- Addressing Limitations of Existing GCN Architectures
 - Unrestricted Influence Neighborhood
 - Applicability to restricted class of graphs

Conclusion and Future work

Knowledge Graphs

- Knowledge in graph form
- Nodes represent entities
- Edges represent relationships
- Examples: Freebase, Wikidata ...

Knowledge Graphs

- Knowledge in graph form
- Nodes represent entities
- Edges represent relationships
- Examples: Freebase, Wikidata ...
- Use cases:
 - Question Answering
 - Dialog systems
 - Web Search

	The last of the la
	ohn Lennon <
A	vailable on
0	YouTube
•	Spotify
g	Gaana
~	More music services
lea par	on Winston Ono Lennon MBE was an English singer, songwriter of peace activist who gained worldwide fame as the founder, co- d vocalist, and rhythm guitarist of the Beatles. His songwriting trership with Paul McCartney remains the most successful in looy, Wilkipedia.
Во	rn: 9 October 1940, Liverpool, United Kingdom
	sassinated: 8 December 1980, The Dakota, New York, United

Sparsity in Knowledge Graphs

- Most KGs are highly sparse
- For instance, NELL has 1.34 facts/entity
- Restricts applicability to real-world problems

Sparsity in Knowledge Graphs

- Most KGs are highly sparse
- For instance, NELL has 1.34 facts/entity
- Restricts applicability to real-world problems

Solutions:

- Identify and merge same entities (Canonicalization)
- Extract more facts (Relation Extraction)
- Infer new facts (Link Prediction)

Knowledge Graph Canonicalization

Noun	Phrases
------	---------

Relation phrases:

Barack Obama

born_in

Obama

took_birth_in

George Bush

is_employed_in

New York City

works_for

NYC

capital_of

Noun Phrases

Barack Obama

Obama

George Bush

New York City

NYC

Relation phrases:

born_in

took_birth_in

is_employed_in

works_for

capital_of

Open Knowledge Graphs

- KGs with entities and relations not restricted to a defined set.
- Construction: Automatically extracting (noun-phrase, relation-phrase, noun-phrase) from unstructured text.
 - Obama was the President of US. →
 (Obama, was president of, US)
 - Examples: TextRunner, ReVerb, Ollie etc.

Issues with existing methods

- Surface form not sufficient for disambiguation
 - E.g. (US, America)
- Manual feature engineering is expensive and often sub-optimal
- Sequentially canonicalizing of noun and relation phrases can lead to error propagation

Contributions

- We propose CESI, a novel method for canonicalizing Open KBs using learned embeddings.
- CESI jointly canonicalize both noun phrase (NP) and relation phrase using relevant side information.
- Propose a new dataset, ReVerb45K for the task. It consists of
 20x more NPs than the previous biggest dataset.

- Side Information Acquisition:
 - Gathers various noun and relation phrase side Information

- Side Information Acquisition:
 - Gathers various noun and relation phrase side Information
- Embeddings Noun and relation phrases:
 - Learns a specialized vector embeddings

- Side Information Acquisition:
 - Gathers various noun and relation phrase side Information
- Embeddings Noun and relation phrases:
 - Learns a specialized vector embeddings
- Clustering Embeddings and Canonicalization:
 - Clusters embeddings and assigns a representative to cluster

Results: Noun Phrase Canonicalization

CESI outperforms others in noun phrase canonicalization

Results: Relation Canonicalization

CESI produces more and better relation canonicalized clusters

	Macro Precision	Micro Precision	Pairwise Precision	Induced Relation Clusters
		Base Data	set	
AMIE	42.8	63.6	43.0	7
CESI	88.0	93.1	88.1	210
	Am	biguous D	ataset	
AMIE	55.8	64.6	23.4	46
CESI	76.0	91.9	80.9	952
		ReVerb45	K	
AMIE	69.3	84.2	66.2	51
CESI	77.3	87.8	72.6	2116

Results: Qualitative Evaluation (t-sne)

Results: Qualitative Evaluation (t-sne)

Shikhar Vashishth, Prince Jain, and Partha Talukdar.

"CESI: Canonicalizing Open Knowledge Bases using Embeddings and Side Information". In Proceedings of the **World Wide Web Conference (WWW), 2018**.

Outline

Addressing Sparsity in Knowledge Graphs

- ✓ KG Canonicalization
- Relation Extraction
- Link Prediction

Exploiting Graph Convolutional Networks in NLP

- Document Timestamping
- Word Representation

Addressing Limitations of Existing GCN Architectures

- Unrestricted Influence Neighborhood
- Applicability to restricted class of graphs

Conclusion and Future work

Relation Extraction

- Identify relation between entities.
- Google was founded in California in 1998.
 - Founding-year (Google, 1998)
 - Founding-location (Google, California)

Relation Extraction

- Identify relation between entities.
- Google was founded in California in 1998.
 - Founding-year (Google, 1998)
 - Founding-location (Google, California)

Used for

- Knowledge base population
- Biomedical knowledge discovery
- Question answering

Distant Supervision

- Alleviates the problem of lack of annotated data.
- Distant Supervision (DS) assumption: [Mintz et al., 2009]
 "If two entities have a relationship in a KB, then all sentences mentioning the entities express the same relation"

Motivation

- KGs contain information which can improve RE
 - Limiting supervision from KG to dataset creation
- Dependency tree based features have been found relevant for RE [Mintz et al. 2009]
 - Instead of defining hand-crafted features can employ Graph Convolutional Networks (GCNs).

Contributions

- Propose RESIDE, a novel method which utilizes additional supervision from KB in a principled manner for improving distant supervised RE.
- RESIDE uses GCNs for modeling syntactic information and performs competitively even with limited side information.

• Entity Type Information:

- All relations are constrained by the entity types
- o president_of(X, Y) => X = Person Y = Country

Entity Type Information:

- All relations are constrained by the entity types
- o president_of(X, Y) => X = Person Y = Country

Relation Alias Information:

Utilize relation aliases provided by KGs.

• Entity Type Information:

- All relations are constrained by the entity types
- o president_of(X, Y) => X = Person Y = Country

Relation Alias Information:

Utilize relation aliases provided by KGs.

• Entity Type Information:

- All relations are constrained by the entity types
- o president_of(X, Y) => X = Person Y = Country

Relation Alias Information:

Utilize relation aliases provided by KGs.

RESIDE: Architecture

Syntactic Sentence Encoding

Instance Set Aggregation

RESIDE: Architecture

Syntactic Sentence Encoding

Instance Set Aggregation

RESIDE: Architecture

Syntactic Sentence Encoding

Instance Set Aggregation

Results: Performance Comparison

Comparison of Precision Recall curves

RESIDE achieves **higher precision** over the **entire recall range**.

Results: Ablation Study

- Comparison of different ablated version of RESIDE
 - Cumulatively removing different side information
 - Side information helps improve performance.

Results: Effect of Relation Alias Information

Performance on different settings:

- None: Relation aliases not available
- One: Name of relations used as aliases.
- One+PPDB: Relation names extended using Paraphrase DB
- All: Relation aliases from KG

RESIDE performs comparable with limited side information.

Results: Effect of Relation Alias Information

Performance on different settings:

- None: Relation aliases not available
- One: Name of relations used as aliases.
- One+PPDB: Relation names extended using Paraphrase DB
- All: Relation aliases from KG

RESIDE performs comparable with limited side information.

S. Vashishth, R. Joshi, S. S. Prayaga, C. Bhattacharyya, and P. Talukdar. "RESIDE: Improving Distantly-Supervised Neural Relation Extraction using Side Information". In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2018.

Outline

- Addressing Sparsity in Knowledge Graphs
 - ✓ KG Canonicalization
 - ✓ Relation Extraction
 - Link Prediction

- Exploiting Graph Convolutional Networks in NLP
 - Document Timestamping
 - Word Representation

- Addressing Limitations of Existing GCN Architectures
 - Unrestricted Influence Neighborhood
 - Applicability to restricted class of graphs

Conclusion and Future work

Link Prediction

Definition:

Task of inferring missing facts based on known ones.

• Example:

- (Barack Obama, spouse_of, Michelle Obama)
- (Sasha Obama, child_of, Mitchell Obama)
- (Sasha Obama, child_of, Barack Obama)
- General technique involves learning a representation for all entities and relations in KG.

Motivation

Increasing interactions helps

Motivation

Increasing interactions helps

ConvE

Contributions

- We propose InteractE, a method that augments the expressive power of ConvE through three key ideas – feature permutation, "checkered" feature reshaping, and circular convolution.
- Establish correlation between number of interactions and link prediction performance. Theoretically show that InteractE increases interactions compared to ConvE.

InteractE: Reshaping Function

InteractE uses Chequer reshaping.

Proposition 7.3. For any kernel w of size k and for all reshaping functions $\phi : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{n \times n}$, the following statement holds:

$$\mathcal{N}_{het}(\phi_{chk}, k) \ge \mathcal{N}_{het}(\phi, k)$$

InteractE: Reshaping Function

InteractE uses Circular Convolution.

Proposition 7.4. Let Ω_0 , $\Omega_c : \mathbb{R}^{n \times n} \to \mathbb{R}^{(n+p) \times (n+p)}$ denote zero padding and circular padding functions respectively, for some p > 0. Then for any reshaping function ϕ ,

$$\mathcal{N}_{het}(\Omega_c(\phi), k) \ge \mathcal{N}_{het}(\Omega_0(\phi), k)$$

InteractE: Overview

InteractE: Results

Performance Comparison (MRR)

InteractE gives substantial improvement over **ConvE** and **RotatE** (SOTA)

InteractE: Results

Effect of Feature Reshaping function

Empirical verification of our claim:

Increasing interactions improves link prediction

InteractE: Results

Effect of Feature Reshaping function

Empirical verification of our claim:

Increasing interactions improves link prediction

S. Vashishth*, S. Sanyal*, V. Nitin, N. Agarwal, and P. Talukdar. "InteractE: Improving Convolution-based Knowledge Graph Embeddings by Increasing Feature Interactions". [Under Submission]

Outline

- Addressing Sparsity in Knowledge Graphs
 - ✓ KG Canonicalization
 - ✓ Relation Extraction
 - ✓ Link Prediction

- Exploiting Graph Convolutional Networks in NLP
 - Document Timestamping
 - Word Representation

- Addressing Limitations of Existing GCN Architectures
 - Unrestricted Influence Neighborhood
 - Applicability to restricted class of graphs
- Conclusion and Future work

Graph Convolutional Networks (GCNs)

Generalization of CNNs over Graphs.

Graph Convolutional Networks (GCNs)

Generalization of CNNs over Graphs.

GCN First-order approximation

(Kipf et. al. 2016)

$$h_v = f\left(rac{1}{|\mathcal{N}(v)|}\sum_{u \in \mathcal{N}(v)}Wx_u + b
ight), \;\; orall v \in \mathcal{V}.$$

Document Time-stamping

Problem:

Predicting the creation time of the document

Applications:

- Information Extraction
- Temporal reasoning
- Text Summarization
- Event detection ...

Document Time-stamping

Problem:

Predicting the creation time of the document

Applications:

- Information Extraction
- Temporal reasoning
- Text Summarization
- Event detection ...

Contributions

 We propose NeuralDater, a Graph Convolutional based approach for document dating. It is the first application of GCNs and neural network-based method for the problem.

 NeuralDater exploits syntactic as well as temporal structure of the document, all within a principled joint model.

Sentences

NeuralDater: Results

Accuracy and Mean absolute deviation on APW & NYT datasets

Method	APW	NYT
BurstySimDater	45.9	38.5
MaxEnt-Time+NER	52.5	42.3
MaxEnt-Joint	52.5	42.5
MaxEnt-Uni-Time	57.5	50.5
CNN	56.3	50.4
NeuralDater	64.1	58.9

NeuralDater outperforms all the existing methods on the task.

NeuralDater: Ablation Study

Effect of different components of NeuralDater

Method	Accuracy
T-GCN	57.3
S-GCN + T -GCN ($K = 1$)	57.8
S-GCN + T-GCN $(K=2)$	58.8
S-GCN + T-GCN $(K=3)$	59.1
Bi-LSTM	58.6
Bi-LSTM + CNN	59.0
Bi-LSTM + T-GCN	60.5
Bi-LSTM + S-GCN + T-GCN (no gate)	62.7
Bi-LSTM + S-GCN + T-GCN (K = 1)	64.1
Bi-LSTM + S-GCN + T-GCN $(K = 2)$	63.8
Bi-LSTM + S-GCN + T-GCN $(K = 3)$	63.3

Incorporation of **Context**, **Syntactic**, and **Temporal** structure achieves **best performance**.

NeuralDater: Ablation Study

Effect of different components of NeuralDater

Method	Accuracy
T-GCN	57.3
S-GCN + T -GCN ($K = 1$)	57.8
S-GCN + T-GCN $(K=2)$	58.8
S-GCN + T-GCN $(K=3)$	59.1
Bi-LSTM	58.6
Bi-LSTM + CNN	59.0
Bi-LSTM + T-GCN	60.5
Bi-LSTM + S-GCN + T-GCN (no gate)	62.7
Bi-LSTM + S-GCN + T-GCN (K = 1)	64.1
Bi-LSTM + S-GCN + T-GCN $(K = 2)$	63.8
Bi-LSTM + S-GCN + T-GCN $(K = 3)$	63.3

Incorporation of **Context**, **Syntactic**, and **Temporal** structure achieves **best performance**.

Shikhar Vashishth, Shib Shankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. "Dating Documents using Graph Convolution Networks". In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL), 2018.

Outline

Addressing Sparsity in Knowledge Graphs

- ✓ KG Canonicalization
- ✓ Relation Extraction
- ✓ Link Prediction

Exploiting Graph Convolutional Networks in NLP

- ✓ Document Timestamping
- Word Representation

Addressing Limitations of Existing GCN Architectures

- Unrestricted Influence Neighborhood
- Applicability to restricted class of graphs

Conclusion and Future work

Word Representation Learning

Problem:

Learning a vector representation of words in text.

Widely used across all NLP applications

References word2vec

Word Representation Learning

Problem:

Learning a vector representation of words in text.

- Widely used across all NLP applications
- However, most techniques restricted to sequential context
 - Methods using syntactic context suffers from vocabulary explosion
 - Explodes to 1.3 million for 220k words.

References word2vec

Contributions

SynGCN, a GCN based method for learning word embeddings.
 Unlike previous methods, SynGCN utilizes syntactic context for learning word representations without increasing vocabulary.

 We also present SemGCN, a framework for incorporating diverse semantic knowledge e.g. synonyms, antonyms, hypernyms etc.

• Given a sentence, $s = (w_1, w_2, w_n)$. We obtain its dependency parse.

Method: SynGCN

• Given a sentence, $s = (w_1, w_2, w_n)$. We obtain its dependency parse.

Utilize syntactic context for predicting a given word w_i.

 $h_i^{k+1} = f\left(\sum_{j \in \mathcal{N}(i)} g_{l_{ij}}^k \times \left(W_{l_{ij}}^k h_j^k + b_{l_{ij}}^k\right)\right)$

Method: SemGCN

- Incorporates semantic knowledge in pre-trained word embeddings
- Unlike prior approaches, SemGCN can utilize any kind of semantic knowledge like synonym, antonym, hypernym etc. jointly

SynGCN: Results

69.6

73.2

Method

GloVe

Deps EXT

Word2vec

SynGCN

Evaluation results on intrinsic and extrinsic tasks.

Intrinsic Tasks

44.9

45.7

Word Similarity WS353S WS353R SimLex999 RW 71.4 52.6 38.0 30.0 69.2 53.4 36.7 29.6 65.7 36.2 39.6 33.0

43.2

45.5

Extrinsic Tasks

POS	SQuAD	NER	Coref
95.0±0.1	78.5±0.3	89.0±0.2	65.1±0.3
94.6±0.1	78.2±0.2	89.1±0.1	64.9±0.2
95.0±0.1	77.8 ± 0.3	88.6±0.3	64.8±0.1
94.9 ± 0.2	$\textbf{79.6} {\pm} \textbf{0.1}$	88.0 ± 0.1	64.8 ± 0.1
95.4±0.1	79.6±0.2	89.5±0.1	65.8±0.1

SynGCN performs **comparably or outperforms** all word embedding approaches **across several tasks**.

18.6

33.7

Evaluation results on intrinsic and extrinsic tasks.

Intrinsic Tasks

Init Embeddings (=X)	SynGCN		
Datasets	WS353	AP	MSR
Performance of X	61.7	69.3	52.8
Retro-fit (X,1)	61.2	67.1	51.4
Counter-fit (X,2)	55.2	66.4	31.7
JointReps (X,4)	60.9	68.2	24.9
SemGCN (X,4)	65.3	69.3	54.4

Extrinsic Tasks

POS	SQuAD	NER	Coref
95.4±0.1	79.6±0.2	89.5±0.1	65.8±0.1
94.8 ± 0.1	79.6 ± 0.1	88.8 ± 0.1	66.0 ± 0.2
94.7±0.1	79.8 ± 0.1	88.3±0.3	65.7 ± 0.3
95.4 ± 0.1	79.4 ± 0.3	89.1 ± 0.3	65.6 ± 0.1
95.5±0.1	80.4±0.1	89.5±0.1	66.1±0.1

SemGCN+SynGCN gives best performance across **multiple tasks**.

S. Vashishth, M. Bhandari, P. Yadav, P. Rai, C. Bhattacharyya, and P. Talukdar. "Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks". In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.

Outline

- Addressing Sparsity in Knowledge Graphs
 - ✓ KG Canonicalization
 - ✓ Relation Extraction
 - ✓ Link Prediction

- Exploiting Graph Convolutional Networks in NLP
 - ✓ Document Timestamping
 - ✓ Word Representation
- Addressing Limitations of Existing GCN Architectures
 - Unrestricted Influence Neighborhood
 - Applicability to restricted class of graphs
- Conclusion and Future work

Neighborhood Aggregations in GCNs

Standard GCN neighborhood aggregation

$$h_v = f\left(rac{1}{|\mathcal{N}(v)|}\sum_{u \in \mathcal{N}(v)}Wx_u + b
ight), \;\; orall v \in \mathcal{V}.$$

No restriction on influence neighborhood

Contributions

Propose ConfGCN, a Graph Convolutional Network (GCN)
framework for semi-supervised learning which models
label distribution and their confidences for each node in
the graph.

 ConfGCN utilize label confidences to estimate influence of one node on another in a label-specific manner during neighborhood aggregation of GCN learning.

Comparison with standard GCN model

Comparison with standard GCN model

Importance for a node is calculated as:

$$r_{uv} = rac{1}{d_M(u,v)} \cdot \quad d_M(u,v) = (oldsymbol{\mu}_u - oldsymbol{\mu}_v)^T (oldsymbol{\Sigma}_u^{-1} + oldsymbol{\Sigma}_v^{-1}) (oldsymbol{\mu}_u - oldsymbol{\mu}_v).$$

 \circ μ_u , μ_v are label distribution and Σ_u , Σ_v denote co-variance matrices.

ConfGCN: Results

Performance on Semi-supervised Learning

Method	Citeseer	Cora	Pubmed	Cora ML
Kipf-GCN (Kipf and Welling, 2016)	69.4 ± 0.4	80.9 ± 0.4	76.8 ± 0.2	85.7 ± 0.3
G-GCN (Marcheggiani and Titov, 2017)	69.6 ± 0.5	81.2 ± 0.4	77.0 ± 0.3	86.0 ± 0.2
GPNN (Liao et al., 2018)	68.1 ± 1.8	79.0 ± 1.7	73.6 ± 0.5	69.4 ± 2.3
GAT (Veličković et al., 2018)	72.5 ± 0.7	$\textbf{83.0}\pm\textbf{0.7}$	79.0 ± 0.3	83.0 ± 0.8
ConfGCN (this paper)	$\textbf{72.7} \pm \textbf{0.8}$	82.0 ± 0.3	$\textbf{79.5}\pm\textbf{0.5}$	86.5 ± 0.3

ConfGCN performs **consistently better** across all the **datasets**

ConfGCN: Results

Effect of Neighborhood Entropy and Node Degree

ConfGCN performs **better** than **Kipf-GCN** and **GAT** at all levels of node **entropy** and **degree**.

ConfGCN: Results

Effect of Neighborhood Entropy and Node Degree

ConfGCN performs **better** than **Kipf-GCN** and **GAT** at all levels of node **entropy** and **degree**.

Shikhar Vashishth*, Prateek Yadav*, Manik Bhandari*, and Partha Talukdar. "Confidence-based Graph Convolutional Networks for Semi-Supervised Learning". In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

Outline

- Addressing Sparsity in Knowledge Graphs
 - ✓ KG Canonicalization
 - ✓ Relation Extraction
 - ✓ Link Prediction

- Exploiting Graph Convolutional Networks in NLP
 - ✓ Document Timestamping
 - ✓ Word Representation
- Addressing Limitations of Existing GCN Architectures
 - ✓ Unrestricted Influence Neighborhood
 - Applicability to restricted class of graphs
- Conclusion and Future work

Limitations of GCN models

 Most GCNs formulation are for undirected graphs but multi-relational graphs are pervasive.

Semantic Role Labeling

Knowledge Graphs

Contributions

 We propose CompGCN, a novel framework for incorporating multi-relational information in GCNs which leverages a variety of composition operations from knowledge graph embedding techniques.

 Unlike previous GCN based multi-relational graph embedding methods, CompGCN jointly learns embeddings of both nodes and relations in the graph

Relational Graph with Embeddings

CompGCN: Overview

Relational Graph with Embeddings

$$m{h}_v^{k+1} = f\left(\sum_{(u,r) \in \mathcal{N}(v)} m{W}_{g(r)}^k \phi(m{h}_u^k, m{h}_r^k)
ight) \qquad m{W}_{g(r)} = egin{cases} m{W}_O, & r \in \mathcal{R} \ m{W}_I, & r \in \mathcal{R}_{inv} \ m{W}_S, & r = m{T} \end{cases}$$

$$oldsymbol{h}_r^{k+1} = oldsymbol{W}_{rel}^k \, oldsymbol{h}_r^k$$

CompGCN Update

$$m{W}_{g(r)} = egin{cases} m{W}_O, & r \in \mathcal{R} \\ m{W}_I, & r \in \mathcal{R}_{inv} \\ m{W}_S, & r = \top \end{cases}$$

CompGCN: Results

Performance on Link Prediction

	FB15k-237				WN18RR					
	MRR	MR	H@10	H@3	H@1	MRR	MR	H@10	H@3	H@1
SACN (Shang et al., 2019)	.35	=	.54	.39	.26	.47	=	.54	.48	.43
HypER (Balažević et al., 2019)	.341	250	.520	.376	.252	.465	5798	.522	.477	.436
RotatE (Sun et al., 2019)	.338	177	.533	.375	.241	.476	3340	.571	.492	.428
ConvR (Jiang et al., 2019)	.350	-	.528	.385	.261	.475	=	.537	.489	.443
VR-GCN (Ye et al., 2019)	.248	70	.432	.272	.159		=	-	-	-
COMPGCN (Proposed Method)	.355	197	.535	.390	.264	.479	3533	.546	.494	.443

CompGCN performs **consistent improvement** across all the **datasets**

CompGCN: Results

Effect of different GCN models and composition operators

Scoring Function $(=X) \rightarrow$	PE	ConvE	
Methods ↓	MRR	MR	H@10
X	0.325	244	0.501
X + D-GCN	0.344	200	0.524
X + R-GCN	0.342	197	0.524
X + W-GCN	0.344	201	0.525
X + COMPGCN (Sub)	0.352	199	0.530
X + COMPGCN (Mult)	0.353	216	0.532
X + COMPGCN (Corr)	0.355	197	0.535
X + COMPGCN (B = 50)	0.350	193	0.530

ConvE + CompGCN(Corr) gives **best performance** across all settings.

CompGCN: Results

 Performance with different number of relation basis vectors and on node classification

Node classification Performance

	MUTAG (Node)	AM
Feat*	77.9	66.7
WL^*	80.9	87.4
RDF2Vec*	67.2	88.3
R-GCN*	73.2	89.3
SynGCN	74.8 ± 5.5	86.2 ± 1.9
WGCN	77.9 ± 3.2	90.2 ± 0.9
СомрССО	$\textbf{85.3} \pm \textbf{1.2}$	90.6 ± 0.2

COMPGCN gives comparable performance even with limited parameters

Shikhar Vashishth*, Soumya Sanyal*, Vikram Nitin, and Partha Talukdar. "Composition-based Multi-Relational Graph Convolutional Networks". CoRR, abs/1909.11218, 2019. [Under Review]

Outline

Addressing Sparsity in Knowledge Graphs

- ✓ KG Canonicalization
- ✓ Relation Extraction
- ✓ Link Prediction

Exploiting Graph Convolutional Networks in NLP

- ✓ Document Timestamping
- ✓ Word Representation

Addressing Limitations of Existing GCN Architectures

- ✓ Unrestricted Influence Neighborhood
- ✓ Applicability to restricted class of graphs

• Conclusion and Future work

Scope for Future Research

Addressing Sparsity in Knowledge Graphs

- Utilizing contextualized embeddings for canonicalization
 - Instead of GloVe, using models like ELMo, BERT.
- Exploiting other signals from Knowledge graphs
 - Relationship between different entities
- Extending idea of increase interactions to several existing models
 - Current work demonstrates improvement for one method

Scope for Future Research

- Exploiting Graph Convolutional Networks in NLP
 - Instead of restricting to input text, utilizing real world knowledge
 - More close to how humans timestamp a document
 - Utilizing GCNs for learning contextualized embeddings
 - Contextualized embeddings are superior to word2vec embeddings

Scope for Future Research

Exploiting Graph Convolutional Networks in NLP

- Instead of restricting to input text, utilizing real world knowledge
 - More close to how humans timestamp a document
- Utilizing GCNs for learning contextualized embeddings
 - Contextualized embeddings are superior to word2vec embeddings

Addressing Limitations of Existing GCN Architectures

- Scaling GCNs to large graphs
- Using spectral GCNs for different NLP tasks

Conclusion

Addressing Sparsity in Knowledge Graphs

- Canonicalization: CESI learns embeddings followed by clustering.
- Relation Extraction: RESIDE, utilized signals from KG for improving RE
- Link Prediction: Demonstrate effectiveness of increasing interactions

Conclusion

Addressing Sparsity in Knowledge Graphs

- Canonicalization: CESI learns embeddings followed by clustering.
- Relation Extraction: RESIDE, utilized signals from KG for improving RE
- Link Prediction: Demonstrate effectiveness of increasing interactions

Exploiting Graph Convolutional Networks in NLP

- NeuralDater for document timestamping which exploits syntactic and temporal graph structure
- Use GCNs for utilizing syntactic context for learning word embeddings

Conclusion

Addressing Sparsity in Knowledge Graphs

- Canonicalization: CESI learns embeddings followed by clustering.
- Relation Extraction: RESIDE, utilized signals from KG for improving RE
- Link Prediction: Demonstrate effectiveness of increasing interactions

Exploiting Graph Convolutional Networks in NLP

- NeuralDater for document timestamping which exploits syntactic and temporal graph structure
- Use GCNs for utilizing syntactic context for learning word embeddings

Addressing Limitations of Existing GCN Architectures

- Restricted influence neighborhood through confidence based GCN
- Propose CompGCN for extending GCNs to relational graphs

Thank you

References:

- Vashishth, Shikhar, Prince Jain, and Partha Talukdar. "CESI: Canonicalizing Open Knowledge Bases using Embeddings and Side Information." Proceedings of the 2018 World Wide Web Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2018. https://arxiv.org/abs/1902.00172
- Vashishth, Shikhar, et al. "RESIDE: Improving distantly-supervised neural relation extraction using side information." arXiv preprint arXiv:1812.04361 (2018). https://arxiv.org/abs/1812.04361
- Vashishth, Shikhar, Shib Sankar Dasgupta, Swayambhu Nath Ray and Partha Pratim Talukdar. "Dating Documents using Graph Convolution Networks." ACL (2018). https://arxiv.org/abs/1902.00175
- Vashishth, Shikhar, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya and Partha Pratim Talukdar. "Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks." ACL (2018). https://arxiv.org/abs/1809.04283
- Vashishth, Shikhar, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal and Partha Talukdar. "InteractE: Improving Convolution-based Knowledge Graph Embeddings by Increasing Feature Interactions". Under review in AAAI 2020. https://arxiv.org/abs/1911.00219
- Vashishth, Shikhar, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. "Composition-based Multi-Relational Graph Convolutional Networks". Under review in International Conference on Learning Representations, 2020. https://openreview.net/forum?id=BylA_C4tPr
- Vashishth, Shikhar, Prateek Yadav, Manik Bhandari and Partha Pratim Talukdar. "Confidence-based Graph Convolutional Networks for Semi-Supervised Learning." AISTATS (2019). https://arxiv.org/abs/1901.08255