회귀분석팀

6팀 고경현 박세령 박이현 박지성 심예진 이선민

INDEX

- 1. 회귀분석이란?
- 2. 단순선형회귀
- 3. 다중선형회귀
- 4. 데이터 진단
- 5. 로버스트 회귀

1

회귀분석이란?

회귀분석

회귀팀 파이팅>< (feat. 학회장님)

Regression Analysis

변수 사이의 관계를 모델링하는 통계적 기법 특정 변수들의 값을 이용하여 다른 변수를 설명하거나 예측

Ex) 스마트폰 이용시간(X변수)에 따른 기말고사 성적 변화(Y변수)

지도학습의 한 종류

결과의 예측이 목적인 학습 방법 결과변수와 특징변수가 모두 존재 회귀분석

회귀팀 파이팅>< (feat. 학회장님)

Regression Analysis

변수 사이의 관계를 모델링하는 통계적 기법 특정 변수들의 값을 이용하여 다른 변수를 설명하거나 예측

Ex) 스마트폰 이용시간(X변수)에 따른 기말고사 성적 변화(Y변수)

지도학습의 한 종류

지도학습이란? *

결과의 예측이 목적인 학습 방법 결과변수와 특징변수가 모두 존재

회귀식 (회귀 모델)

회귀분석에서 변수들 간의 관계를 함수식으로 표현한 모델

$$Y = f(X_1, X_2, \cdots, X_p) + \epsilon$$

X 변수 (독립변수, Independent Variable)

종속변수를 설명하기 위한 변수

Y 변수 (종속변수, Dependent Variable)

독립변수에 의해서 설명되는 변수

€ (오차항, Error Term)

변수를 측정할 때 발생할 수 있는 오차

설명이 불가능한 무작위성

회귀식 (회귀 모델)

회귀분석에서 변수들 간의 관계를 함수식으로 표현한 모델

$$Y = f(X_1, X_2, \cdots, X_p) + \epsilon$$

X 변수 (독립변수, Independent Variable)

종속변수를 설명하기 위한 변수

Y 변수 (종속변수, Dependent Variable)

독립변수에 의해서 설명되는 변수

€ (오차항, Error Term)

변수를 측정할 때 발생할 수 있는 오차

설명이 불가능한 무작위성

회귀식 (회귀 모델)

회귀분석에서 변수들 간의 관계를 함수식으로 표현한 모델

$$Y = f(X_1, X_2, \cdots, X_p) + \epsilon$$

X 변수 (독립변수, Independent Variable)

종속변수를 설명하기 위한 변수

Y 변수 (종속변수, Dependent Variable)

독립변수에 의해서 설명되는 변수

€ (오차항, Error Term)

변수를 측정할 때 발생할 수 있는 오차 설명이 불가능한 무작위성

회귀 모델링 과정

I . 문제 정의

내 학점에 영향을 주는 요소에는 무엇이 있을까?

Ⅱ. 적절한 변수 선정

독립변수 X 선정 → 통학 거리, 공부 시간, 수강 학점이 영향을 주지 않을까?

Ⅲ. 데이터 수집 및 전처리

선정한 변수에 맞는 학생 데이터를 수집 및 전처리

회귀 모델링 과정

Ⅳ. 모델 설정 및 적합

우리가 가진 데이터를 설명할 적절한 회귀분석 모델 선정

Ex) 다중회귀 모형 :
$$\hat{Y} = \widehat{\beta_0} + \widehat{\beta_1} X_1 + \dots + \widehat{\beta_p} X_p$$

V. 모델 평가

모델이 회귀분석의 가정을 만족하는지 평가 Ex) $\epsilon_i \sim NID(0, \sigma^2)$

VI. 모델 해석

분석을 바탕으로 독립변수와 종속변수간 <mark>관계 제시</mark> 3학점을 덜 듣는다면 추가적으로 GPA가 0.3정도 오르겠구나!

2

단순선형회귀

하나의 종속변수(Y)와 하나의 독립변수(X)만을 갖는 회귀모델 두 변수 간의 관계를 가장 잘 표현하는 직선 추정이 목적

직선 추정의 목적

단순선형회귀

직선 추정의 목적

단순선형회귀

이상적인 실제 모델을 현실에서 정확히 찾는 것은 사실상 불가능

직선을 추정하여 변수의 영향력을 간단하게 모형화 가능 X와 Y의 일대일대응 관계를 통해 변화율(기울기)을 직관적으로 이해

고차함수로 추정을 할 경우 과적합 우려

회귀 모델

 y_i : 종속변수 Y의 i번째 관측값

 ϵ_i : i번째 관측값에 의한 랜덤 오차 평균은 0, 분산은 σ^2 를 가정 x_i : 독립변수 X의 i번째 관측값

 β_0, β_1 : 회귀계수, 추정해야 할 모수

회귀 모델

 y_i : 종속변수 Y의 i번째 관측값

 x_i : 독립변수 X의 i번째 관측값

 ϵ_i : i번째 관측값에 의한 랜덤 오차 평균은 0, 분산은 σ^2 를 가정 β_0, β_1 : 회귀계수, 추정해야 할 모수

특정한 함수를 가정하는 모수적 방법

모수의 추정: 최소제곱법

실제 데이터 사이의 관계를 함수식으로 표현하기 위해 모수 추정(β_0, β_1)

좋은 추정: 실제 데이터와 추정된 함수 사이의 오차가 최소화 되는 경우

🍟 오차의 제곱합을 최소화하여 모수를 추정하는 방법 💆

모수의 추정 : 최소제곱법

argmin
$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = \sum_{i=1}^{n} \epsilon_i^2$$

오차제곱합 $S(\beta_0, \beta_1)$ 를 최소화하는 β_0, β_1 를 찾는 것이 목적 아래로 볼록한 이차함수 형태 \rightarrow 최소값(= 극소값)을 가지므로 <mark>편미분</mark>!

$$\frac{\partial S}{\partial \beta_0}\Big|_{\widehat{\beta_0},\widehat{\beta_1}} = -2\sum_{i=1}^n (y_i - \widehat{\beta_0} - \widehat{\beta_1}x_i) = 0$$

$$\frac{\partial S}{\partial \beta_1}\Big|_{\widehat{\beta_0},\widehat{\beta_1}} = -2\sum_{i=1}^n (y_i - \widehat{\beta_0} - \widehat{\beta_1}x_i)x_i = 0$$

모수의 추정 : 최소제곱법

argmin
$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = \sum_{i=1}^{n} \epsilon_i^2$$

오차제곱합 $S(\beta_0, \beta_1)$ 를 최소화하는 β_0, β_1 를 찾는 것이 목적 아래로 볼록한 이차함수 형태 \rightarrow 최소값(= 극소값)을 가지므로 <mark>편미분</mark>!

최소제곱법을 통해 얻은 추정치 $\widehat{\beta_0}$, $\widehat{\beta_1}$

최소제곱추정치

Least Square Estimator

모수의 추정: 최소제곱법

최소제<mark>곱법을</mark> 사용하는 이유

최소제곱법의 가정과 특징

아무런 조건(가정) 없이 사용 가능 세 가지 조건이 만족되면,

LSE는 선형불편추정량 중 분산이 가장 작은 안정적인 추정량이 됨

- ① 오차들의 평균은 0
- ② 오차들의 분산은 σ^2 로 동일
- ③ 오차간 자기상관이 없음(Independent)

Gauss-Markov Theorem

BLUE(Best Linear Unbiased Estimator)

최소제곱법의 가정과 특징

아무런 조건(가정) 없이 사용 가능 세 가지 조건이 만족되면,

LSE는 선형불편추정량 중 분산이 가장 작은 안정적인 추정량이 됨

- ① 오차들의 평균은 0
- ② 오차들의 분산은 σ^2 로 동일
- ③ 오차간 자기상관이 없음(Independent)

Gauss-Markov Theorem

BLUE(Best Linear Unbiased Estimator)

최대가능도추정량 vs 최소제곱추정량

최대가능도추정량 Maximal Likelihood Estimator

- ♥ 데이터가 나올 가능도(Likelihood)를 최대로 하는 모수 추정
- ♥ 관측치가 항상 iid라는 가정 필수
- ♀ 오차의 정규분포 가정 시 MLE = LSE

적합성 검정

01 최소제곱법으로 모수 추정

02

추정된 모수 = 회귀 계수 03

추정된 회귀 계수를 이용해 회귀직선 04

적합성 검정

쁘리띠

실제 데이터에 잘 들어맞는지?

적합성 검정

최소제곱법으로 모수 추정

02

추정된 모수

= 회귀 계수

추정된 회귀 계수를

이용해 회귀직선

적합성 검정

쁘리띠

실제 데이터에 잘 들어맞는지?

적합성 검정

실기 최소제곱법으로 모수 추정 02

추정된 모수 = 회귀 계수 03

추정된 회귀 계수를 이용해 회귀직선 04

적합성 검정

쁘리띠

실제 데이터에 잘 들어맞는지?

적합성 검정

자 Residual

오차의 추정량 실제값 y_i 와 추정값 $\hat{y_i}$ 의 차이

$$e_i = y_i - \widehat{y}_i = y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i)$$

오차와 잔차의 차이?

오차는 모집단의 측정치, 잔차는 표본의 측정치

적합성 검정

不大-Residual

오차의 추정량

실제값 y_i 와 추정값 $\hat{y_i}$ 의 차이

$$e_i = y_i - \widehat{y}_i = y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i)$$

오차와 잔차의 차이?

오차는 모집단의 측정치, 잔차는 표본의 측정치

변동 분할

총변동(Total Sum of Squares, SST) = $\sum (y_i - \bar{y})^2$

오차변동(Error Sum of Squares, SSE) = $\sum (y_i - \hat{y}_i)^2$

변동 분할

$$SST = SSR + SSE$$

변동 분할

총변동(Total Sum of Squares, SST) = $\sum (y_i - \bar{y})^2$

<mark>회귀변동</mark>(Regression Sum of Squares, SSR) = 설명 가능한 변동

오차변동(Error Sum of Squares, SSE) = 설명 불가능한 변동

결정계수

총변동(SST)에서 회귀식이 설명할 수 있는 비율(SSR)
Y가 X에 의해 설명되는 비율
1에 가까울수록 좋음

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

결정계수

잔차제곱합(SSE)은 회귀식이 설명할 수 없는 실제값과 추정값 사이의 오차

∴ 총 변동 대비 잔차제곱합이 차지하는 비율이 작을수록 좋음

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

유의성 검정

전체 회귀식이 아닌, 개별 모수의 추정량이 통계적으로 유의한지를 알아보는 과정

 $\epsilon_i \sim NID(0, \sigma^2)$ 라는 오차의 정규분포 가정 하에 이루어짐

검정 과정

 $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$

추정량의 분포 : $\widehat{\beta_1} \sim N\left(\beta_1, \frac{\sigma^2}{S_{rr}}\right)$

검정 통계량 : $t_0 = \frac{\beta_1}{se(\widehat{\beta_1})} \sim t_{(n-2)}$

임계값: $t_{(1-\alpha/2,n-2)}$

건 검정(양측) : $|f|t_0| > t_{(1-\alpha/2,n-2)}$ reject H_0 at α

유의성 검정

전체 회귀식이 아닌, 개별 모수의 추정량이 통계적으로 유의한지를 알아보는 과정

 $\epsilon_i \sim NID(0, \sigma^2)$ 라는 오차의 정규분포 가정 하에 이루어짐

검정 과정

 $\overset{\text{(P)}}{\longrightarrow}$ 가설 검정 : H_0 : $\beta_1=0$ vs H_1 : $\beta_1\neq 0$

Arr 추정량의 분포 : $\widehat{\beta_1} \sim N\left(\beta_1, \frac{\sigma^2}{S_{rr}}\right)$

검정 통계량 : $t_0 = \frac{\widehat{\beta_1}}{se(\widehat{\beta_1})} \sim t_{(n-2)}$

임계값: $t_{(1-\alpha/2,n-2)}$

ightharpoonup 검정(양측) : $|f|t_0| > t_{(1-lpha/2,n-2)}$ reject H_0 at lpha

유의성 검정

전체 회귀식이 아닌, 개별 모수의 추정량이 통계적으로 **유의한지**를 알아보는 과정

 $\epsilon_i \sim NID(0, \sigma^2)$ 라는 오차의 정규분포 가정 하에 이루어짐

검정 과정

 β_0 도 동일한 방법으로 검정할 수 있음

3

다중선형회귀

단순선형회귀

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

다중선형회귀

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon$$

단순선형회귀에 비해 <mark>복잡한 관계</mark> 설명이 용이

나머지 X변수들이 고정되어 있을 때, x_p 가 한 단위 증가하면 $y \in \beta_p$ 만큼 증가함을 의미

단순선형회귀에 비해 복잡한 관계 설명이 용이

+ 독립변주수목립변수

나머지 X변수들이 고정되어 있을 때, x_p 가 한 단위 증가하면 $y 는 \beta_p$ 만큼 증가함을 의미

모수의 추정

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \quad \Longleftrightarrow \quad \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \ddots & & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_0 \\ \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

- 단순선형회귀와 동일하게 최소제곱법(LSE)을 이용

모수의 추정: 최소제곱법(LSE)

목적함수

min
$$S(\beta) = \sum_{i=1}^{n} \epsilon_i^2 = \epsilon' \epsilon = (y - X\beta)' (y - X\beta)$$

목적함수 $S = \beta$ 에 대해 미분 해당 미분식 = 0

추정량
$$\hat{\beta} = (X'X)^{-1}X'y$$

추정된 $\hat{\beta}$ 을 이용하여 회귀식 추정하기

추정된 회귀식

$$\widehat{Y} = X\widehat{\beta} = X(X'X)^{-1}X'y = Hy$$

모수의 추정: 최소제곱법(LSE)

목적함수
$$\min S(\beta) = \sum_{i=1}^{n} \epsilon_i^2 = \epsilon' \epsilon = (y - X\beta)'(y - X\beta)$$

목적함수 $S = \beta$ 에 대해 미분 해당 미분식 = 0

추정량

$$\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'y$$

추정된 $\hat{\beta}$ 을 이용하여 회귀식 추정하기

추정된 회귀식

$$\widehat{Y} = X\widehat{\beta} = X(X'X)^{-1}X'y = Hy$$

모수의 추정: 최소제곱법(LSE)

목적함수
$$\min S(\beta) = \sum_{i=1}^{n} \epsilon_i^2 = \epsilon' \epsilon = (y - X\beta)'(y - X\beta)$$

목적함수 $S = \beta$ 에 대해 미분 해당 미분식 = 0

추정량
$$\widehat{\beta} = (X'X)^{-1}X'y$$

추정된 $\hat{\beta}$ 을 이용하여 회귀식 추정하기

추정된 회귀식

$$\widehat{Y} = X\widehat{\beta} = X(X'X)^{-1}X'y = Hy$$

모수의 추정: 최소제곱법(LSE)

아래식에서 **H**는 **투영** 행렬을 의미!

그렇다면, H(투영행렬)가 가진

의미와 성질은 무엇일까?

추정된 $\hat{oldsymbol{eta}}$ 을 이용하여 회귀식 추정하기

$$\widehat{Y} = X\widehat{\beta} = X(X'X)^{-1}X'y = Hy$$

모수의 추정 : 최소제곱법(LSE) 부영 행렬이란?

모수의 추정 : 최소제곱법(LSE) 부영 행렬이란?

회귀분석에서는 y 를 X의 열공간에 가깝게 근사 시키기 위해 사용 $^{+}$ $^{-}$

모수의 추정 : 최소제곱법(LSE) 투영 행렬의 성질

$$H' = (X(X'X)^{-1}X')' = X(X'X)^{-1}X' = H$$

록등 (Idempotent)

$$H^2 = X(X'X)^{-1}X'X(X'X)^{-1}X' = X(X'X)^{-1}X' = H$$

추정된 회귀식
$$\widehat{Y} = X\widehat{\beta} = X(X'X)^{-1}X'y = Hy$$

. 전체 회귀계수에 대한 검정 : F-test

가설설정

$$H_0: \beta_0 = \beta_1 = \dots = \beta_p = 0$$

 H_1 : not H_0

검정통계량
$$F_0 = \frac{(SST - SSE)/p}{SSE/(n-p-1)} = \frac{SSR/p}{SSE/(n-p-1)} = \frac{MSR}{MSE}$$

회귀식으로 설명하지 못하는 부분에 비해 얼마나 설명이 가능한가를 보여줌

→ 회귀식의 전반적인 계수가 얼마나 설명력을 갖는지를 보여줌

[/] 전체 회귀계수에 대한 검정 : F-test

가설설정
$$H_0: \beta_0 = \beta_1 = \cdots = \beta_p = 0$$
 $H_1: not H_0$

검정통계량
$$F_0 = \frac{(SST - SSE)/p}{SSE/(n-p-1)} = \frac{SSR/p}{SSE/(n-p-1)} = \frac{MSR}{MSE}$$

회귀식으로 설명하지 못하는 부분에 비해 얼마나 설명이 가능한가를 보여줌

→ 회귀식의 전반적인 계수가 얼마나 설명력을 갖는지를 보여줌

전체 회귀계수에 대한 검정 : F-test

임계값

$$F_{(1-a/2, p, n-p-1)}$$

- ✔ 귀무가설 기각 if $F_0 \ge F_{(1-a/2, p, n-p-1)}$
 - ▶ 적어도 한 개의 회귀계수는 0이 아님
- ✓ 귀무가설 기각 안됨 if $F_0 < F_{(1-a/2, p, n-p-1)}$
 - ▶ 모든 회귀계수는 0임
 - → 모델 재설정 등 다른 조치 필요!

전체 회귀계수에 대한 검정 : F-test

임계값

$$F_{(1-a/2, p, n-p-1)}$$

- ✔ 귀무가설 기각 if $F_0 \ge F_{(1-a/2, p, n-p-1)}$
 - ▶ 적어도 한 개의 회귀계수는 0이 아님
- ✔ 귀무가설 기각 안됨 if $F_0 < F_{(1-a/2, p, n-p-1)}$
 - ▶ 모든 회귀계수는 0임
 - → 모델 재설정 등 다른 조치 필요!

유의성 검정

일부 회귀계수에 대한 검정 : Partial F-test

Full Model (FM): 기존 모든 변수를 사용한 다중회귀모형

Reduced Model (RM): 일부 회귀 계수를 특정한 값(보통 0)으로 두는 축소 모형

가설설정

$$H_0$$
: $\beta_j=\beta_{j+1}=\cdots=\beta_{j+q-1}=0$ (RM이 맞다) H_1 : $not\ H_0$

유의성 검정

일부 회귀계수에 대한 검정 : Partial F-test

Full Model (FM): 기존 모든 변수를 사용한 다중회귀모형

Reduced Model (RM): 일부 회귀 계수를 특정한 값(보통 0)으로 두는 축소 모형

가설설정

$$H_0$$
: $\beta_j=\beta_{j+1}=\cdots=\beta_{j+q-1}=0$ (RM이 맞다) H_1 : $not\ H_0$

유의성 검정

일부 회귀계수에 대한 검정 : Partial F-test

검정통계량

$$F_0 = \frac{\left(SSE(RM) - SSE(FM)\right)/(p-q)}{SSE(FM)/(n-p-1)}$$
$$= \frac{\left(SSR(FM) - SSR(RM)\right)/(p-q)}{SSE(FM)/(n-p-1)} \sim F_{p-q,n-p-1}$$

SSE(RM) 변수를 제거하면 당연히 커짐

SSE(FM)

q 개의 변수를 제거했을 때 모델이 설명하지 못하는 변동

모든 변수를 포함했을 때 모델이 설명하지 못하는 변동

유의성 검정

일부 회귀계수에 대한 검정: Partial F-test

검정통계량

$$F_{0} = \frac{\left(SSE(RM) - SSE(FM)\right)/(p-q)}{SSE(FM)/(n-p-1)}$$

$$= \frac{\left(SSR(FM) - SSR(RM)\right)/(p-q)}{SSE(FM)/(n-p-1)} \sim F_{p-q,n-p-1}$$

검정통계량의 의미

SSE(RM)

변수를 제거하면 당연히 커짐

SSE(FM)

q 개의 변수를 제거했을 때 모델이 설명하지 못하는 변동 모든 변수를 포함했을 때 모델이 설명하지 못하는 변동

유의성 검정

일부 회귀계수에 대한 검정: Partial F-test

검정통계량

$$F_0 = \frac{\left(SSE(RM) - SSE(FM)\right)/(p-q)}{SSE(FM)/(n-p-1)}$$
$$= \frac{\left(SSR(FM) - SSR(RM)\right)/(p-q)}{SSE(FM)/(n-p-1)} \sim F_{p-q,n-p-1}$$

검정통계량의 의미

SSE(RM)

하지만 <mark>제거된 변수</mark>가 모델에 유의미하다면 월등히 커짐

SSE(FM)

q 개의 변수를 제거했을 때 모델이 설명하지 못하는 변동

모든 변수를 포함했을 때 모델이 설명하지 못하는 변동

유의성 검정

일부 회귀계수에 대한 검정 : Partial F-test

검정통계량

$$F_{0} = \frac{\left(SSE(RM) - SSE(FM)\right)/(p-q)}{SSE(FM)/(n-p-1)}$$

$$= \frac{\left(SSR(FM) - SSR(RM)\right)/(p-q)}{SSE(FM)/(n-p-1)} \sim F_{p-q,n-p-1}$$

검정통계량의 의미

SSE(RM)

하지만 제거된 변수가 모델에 유의미하다면 월등히 커짐

SSE(FM)

q 개의 변수를 제거해을 때 검정통계량 F_0 커짐 P-value 작아짐

유의성 검정

일부 회귀계수에 대한 검정 : Partial F-test

임계값

- ✓ 귀무가설 기각 if $F_0 \ge F_{(1-a/2, p-q, n-p-1)}$
- ▶ q개의 회귀 계수 중 적어도 한 개의 회귀 계수는 0이 아님
- ✔ 귀무가설 기각 안됨 if $F_0 < F_{(1-a/2, p-q, n-p-1)}$
 - ▶ q개의 회귀 계수는 0임

일부 회귀계수에 대한 검정: Partial F-test

임계값

- ✔ 귀무가설 기각 if $F_0 \ge F_{(1-a/2, p-q, n-p-1)}$
- ▶ q개의 회귀 계수 중 적어도 한 개의 회귀 계수는 0이 아님
- ✔ 귀무가설 기각 안됨 if $F_0 < F_{(1-a/2, p-q, n-p-1)}$
 - ▶ q개의 회귀 계수는 0임

유의성 검정

개별 회귀계수에 대한 검정 : t-test

가설설정

$$H_0$$
: $\beta_j = 0$

$$H_1: \beta_i \neq 0$$

다른 변수들은 모두 적합 된 상태라고 가정!

검정통계량

$$t_j = \frac{\widehat{\beta_j}}{s.e.(\widehat{\beta_j})}$$

유의성 검정

개별 회귀계수에 대한 검정 : t-test

가설설정

$$H_0$$
: $\beta_j = 0$

$$H_1: \beta_i \neq 0$$

다른 변수들은 모두 적합 된 상태라고 가정!

검정통계량

$$t_j = \frac{\widehat{\beta_j}}{s.e.(\widehat{\beta_j})}$$

개별 회귀계수에 대한 검정 : t-test

임계값

$$t_{(\alpha/2, n-p-1)}$$

- \checkmark 귀무가설 기각 if $\left|t_{j}\right| \geq t_{(\alpha/2, n-p-1)}$
 - ▶ x_j 를 새로 추가하는 것은 통계적으로 유의함
- \checkmark 귀무가설 기각 안됨 if $\left|t_{j}\right| < t_{(\alpha/2, n-p-1)}$
 - $\triangleright x_i$ 를 새로 추가하는 것은 통계적으로 유의하지 않음

개별 회귀계수에 대한 검정 : t-test

임계값

$$t_{(\alpha/2, n-p-1)}$$

- \checkmark 귀무가설 기각 if $\left|t_{j}\right| \geq t_{(\alpha/2, n-p-1)}$
 - ▶ x_j 를 새로 추가하는 것은 통계적으로 유의함
- \checkmark 귀무가설 기각 안됨 if $\left|t_{j}\right| < t_{(\alpha/2,\,n-p-1)}$
 - $\triangleright x_i$ 를 새로 추가하는 것은 통계적으로 유의하지 않음

개별 회귀계수에 대한 검정: t-

임계값 t-test를 통해 변수선택을 하는 것은 위험! $t(\alpha/2, n-p-1)$

개별 회귀계수에 대한 검정: t-

임계값

F-test를 t-test보다 먼저 검정할 것 $t(\alpha/2, n-p-1)$

귀무가설 기각 if $|t_j| \ge t_{(\alpha/2, n-p-1)}$

▶ *x」* ■ 전체 모델에 대한 F값을 확인해 봄으로써

모델 전체가 통계적으로 유의한지를 먼저 확인해야함 다른 변수

- \checkmark 귀무가설 <mark>기각 안됨</mark> if $\left|t_{j}\right| < t_{(lpha/2,\,n-p-1)}$
 - *▶ %;를 새로 추가*하는 것은 통계적으로 유의하지 않음

적합성 검정

수정 결정계수

변수가 추가됨에 따라 증가하는 결정계수에 변수개수라는 패널티를 부과한 형태

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$
 변수개수 패널티

$$R_{adj}^2 = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)}$$

의미 없는 변수임에도 변수가 증가함에 따라

SSR이 증가하여 \mathbb{R}^2 이 불필요하게 증가되는 문제점을 보완하기 위함!

적합성 검정

수정 결정계수

변수가 추가됨에 따라 증가하는 결정계수에 변수개수라는 패널티를 부과한 형태

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$
 변수개수 패널티

$$R_{adj}^2 = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)}$$

패널티가 왜 필요한가?

의미 없는 변수임에도 변수가 증가함에 따라

SSR이 증가하여 \mathbb{R}^2 이 불필요하게 증가되는 문제점을 보완하기 위함!

4

데이터 진단

4 데이터 진단

데이터 진단의 필요성

일반적인 경향에서 벗어나는 개별 데이터 존재

🄷 이상치, 지렛값, 영향점 등

회귀 모형에 큰 영향을 미침

개별 데이터가 경향성에 벗어나는지 판단하여 처리 필요!

4 데이터 진단

데이터 진단의 필요성

일반적인 경향에서 벗어나는 개별 데이터 존재

🆣 이상치, 지렛값, 영향점 등

회귀 모형에 큰 영향을 미침

개별 데이터가 경향성에 벗어나는지 판단하여 처리 필요!

데이터 진단 과정

스튜던트 잔차

관측값이 경향성에서 벗어나는지 판단하는 기준!

스튜던트 잔차

y값의 단위에 영향을 많이 받는 잔차의 특성을 고려하여, 좀 더 **일반화된 상황**에서 적용할 수 있도록 **표준화**한 것

$$r_i = rac{e_i}{\widehat{\sigma}\sqrt{1-h_{ii}}}$$
 , $\widehat{\sigma} = \sqrt{rac{ extsf{SSE}}{n-p-1}}$

스튜던트 잔차

관측값이 경향성에서 벗어나는지 판단하는 기준!

스튜던트 잔차

일반 잔차는 왜 안되나요?

스튜던트 잔차

관측값이 경향성에서 벗어나는지 판단하는 기준!

스튜던트 잔차

Y의 단위에 영향을 많이 받기 때문!

이상치

이상치 Outlier

스튜던트 잔차가 매우 큰 값 표준화 했을 때 Y의 기준에서 절대값이 큰 값

보통 $|r_i| > 3$ 이면 이상치라고 판단

팀장님이 넣으래요,,

지렛값

지렛값 Leverage point

x의 평균(\bar{x})에서 멀리 떨어져 있어 기울기에 큰 영향을 주는 값

지렛값

중심점에서 먼 점일수록 작은 힘만으로도

지렛값기울기를 쉽게 변화시키는 지렛대의 원리를 떠올려보자!

지렛값

지렛값 Leverage

x의 평균(:

을 주는 값

$$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

Outlier 나 Leverage point라고 해서

회귀 직선을 변화시킨다고 판단하긴 이르다

지렛값

지렛값 Leverage

x의 평균(:

을 주는 값

$$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

Outlier 나 Leverage point라고 해서

회귀 직선을 변화시킨다고 판단하긴 이르다

평균 주위에 있는 Outlier는 기울기 변화시키지 못함!

Leverage point라도 회귀선의 연장선에 있을 수 있음!

영향점

영향점 Influential point

회귀직선의 기울기에 상당한 영향을 주는 점

Cook's Distance

Outlier와 Leverage를 동시에 고려하는 지표로,

특정 데이터를 지웠을 때 회귀선이 변화하는 정도를 나타냄

영향점

영향점 Influential point

회귀직선의 기울기에 상당한 영향을 주는 점

Cook's Distance

Outlier와 Leverage를 동시에 고려하는 지표로,

특정 데이터를 지웠을 때 회귀선이 변화하는 정도를 나타냄

영향점

영향점 Influential point

회귀직선의 기울기에 상당한 영향을 주는 점

$$C_i = \frac{r_i^2}{p+1} \times \frac{h_{ii}}{1-h_{ii}}$$
 이상치 고려 지렛값 고려

C_i > 1 이면 영향점으로 판단

영향점의 처리

영향점의 처리

영향점이 있으면 왜 안되나요?

추정량을 불안정하게 (<mark>분산을 크게</mark>) 만듦

영향점의 처리

영향점이 있으면 왜 안되나요?

추정량을 불안정하게 (<mark>분산을 크게</mark>) 만듦

잘못된 모델의 해석

영향점의 처리

영향점이 있으면 왜 안되나요?

추정량을 불안정하게 (<mark>분산을 크게</mark>) 만듦

잘못된 모델의 해석

예측 성능 저하

로봇이 채팅방을 나갔습니다.

영향점 제거 이상치에 강건한 모델링

5

로버스트 회귀

5 로버스트 회귀

로버스트 회귀

로버스트 회귀

이상치의 영향력을 크게 받지 않는 회귀모형

5 로버스트 회귀

Median Regression

Median Regression

평균보다 <mark>중앙값</mark>이 이상치의 영향을 덜 받는다는 생각에 기초하여 독립변수 X의 변화에 따른 종속변수 Y의 조건부 중앙값을 추정하는 방법

5 로버스트 회귀

Quantile Regression

Quantile Regression

독립변수 x가 주어졌을 때, 종속변수 y의 분위수 값을 추정하는 방법

Huber's M-estimation

Huber's M-estimation

잔차가 특정 상수값보다 크면,

잔차의 '제곱'이 아닌 일차식으로 바꾸어 이상치에

강건한 회귀계수를 추정하는 방법

$$\rho(e) = \begin{cases} \frac{1}{2}e^2, & \text{if } |e| \leq c\\ c|e| - \frac{1}{2}c^2, & \text{otherwise} \end{cases}$$

Least Trimmed Square

Least Trimmed Square

통계적 기준에 따라 잔차가 너무 큰 관측치를 제거하고 회귀계수를 추정하는 방법

$$\hat{\beta} = \min \sum_{j=1}^{n} r_{(j)}^2 = \begin{cases} r_{(1)} \le r_{(2)} \le \dots \le r_{(h)} \\ \frac{n}{2} + 1 \le h \end{cases}$$

 $r_{(j)}$ 는 작은 순서부터 오름차순으로 나열한 잔차

W N개의 관찰값 중 h개만 사용하여 회귀식을 만드는데,

그 중 잔차제곱합이 가장 작은 회귀식을 사용

관 관찰값이 별로 없는 경우나 영향점이 존재하지 않는 경우 주의해서 사용해야 함

Least Trimmed Square

Least Trimmed Square

통계적 기준에 따라 잔차가 너무 큰 관측치를 제거하고 회귀계수를 추정하는 방법

$$\hat{\beta} = \min \sum_{j=1}^{n} r_{(j)}^2 = \begin{cases} r_{(1)} \le r_{(2)} \le \dots \le r_{(h)} \\ \frac{n}{2} + 1 \le h \end{cases}$$

그 중 잔차제곱합이 가장 작은 회귀식을 사용

관찰값이 별로 없는 경우나 영향점이 존재하지 않는 경우 주의해서 사용해야 함

다음 주 예고

회귀분석의 4가지 기본 가정

가정 진단

가정 위배 시 문제점

가정 위배 시 처방법