Section 2.7 Exercises

David Piper

October 3, 2020

2.47 For two statements P and Q we want to show that $(P \land (\sim Q)) \land (P \land Q)$ and $(P \Longrightarrow \sim Q) \land (P \land Q)$ are contradictions. First let us observe that $(P \land (\sim Q)) \land (P \land Q)$ has the following truth table.

P	Q	$\sim Q$	$P \wedge (\sim Q)$	$P \wedge Q$	$(P \wedge (\sim Q)) \wedge (P \wedge Q)$
$\overline{\mathrm{T}}$	Τ	F	F	Т	F
Τ	F	${ m T}$	${ m T}$	F	F
F	Τ	\mathbf{F}	F	F	F
F	F	${ m T}$	F	F	F

From this truth table we can observe that $(P \land (\sim Q)) \land (P \land Q)$ is false for all possible values of P and Q, thus it is a contradiction.

Next let's consider the statement $(P \Longrightarrow \sim Q) \land (P \land Q)$. We can observe that it has the following truth table.

P	Q	$\sim Q$	$P \implies \sim Q$	$P \wedge Q$	$(P \implies \sim Q) \land (P \land Q)$
$\overline{\mathrm{T}}$	Τ	F	F	Τ	F
Τ	F	Τ	${ m T}$	F	F
F	Τ	\mathbf{F}	${ m T}$	F	F
F	F	Τ	${ m T}$	F	F

From this truth table we can observe that $(P \Longrightarrow \sim Q) \land (P \land Q)$ is false for all possible values of P and Q, thus it is a contradiction.

2.49 For the statements P, Q and R we want to show that $((P \Longrightarrow Q) \land (Q \Longrightarrow R)) \Longrightarrow (P \Longrightarrow R)$ is a tautology. First let us observe that these statements

have the following truth table.

From this truth table we can observe that $(P \land (\sim Q)) \land (P \land Q)$ is false for all possible values of P and Q, thus it is a contradiction.