Artificial Intelligence

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Knowledge Engineering

Knowledge-engineering process

1. identify the task

- What is the range of questions?Wumpus: action selection or asking about the contents of the environment?

2. assemble the relevant knowledge (knowledge acquisition)

- How does the domain actually work?
- Wumpus: what does it mean to feel stench and breeze?

3. decide on a vocabulary of predicates, functions, and constants

- How to translate domain-level concepts to logic-level names?
- Wumpus: is a pit an object or a function of the square?
- The result is an **ontology** of the domain (vocabulary of notions).

4. encode general knowledge about the domain

- Which axioms hold in the domain?
- Wumpus: breeze means a pit in the neighbourhood square

5. encode a description of the specific problem instance

- What is the current state of the world?
- Wumpus: the agent is at square (1,1) looking to the right

6. pose queries to the inference procedure and get answers

- How does the inference procedure operate on our KB?
- Wumpus: is cell (2,2) really safe?

7. debug the knowledge base

- What is missing in the knowledge base?
- Wumpus: there is a single wumpus in the cave

- **Knowledge engineering** deals with the process of knowledge-base construction.
- A **knowledge engineer** is someone who:
 - investigates a particular domain
 - How the things work?
 - This is usually done in co-operation with a problem expert.
 - **learns** what **concepts** are important in that domain
 - Which will be the gueries asked and what do we need to find answers?
 - creates a formal representation of the objects and relations in the domain
 - How to encode facts and axioms so the computer can do inference?

Digital circuits

- 1 and 2 are input bits. 3 is a carry bit
- 1 is output bit for sum, 2 is output bit for carry

What is important in the domain?

- Does the circuits add properly?
- If the inputs are know, what is the output?
- If desired output is given, what should be the input?

Different queries may require different knowledge!

- What is cost of the circuit?
- What is the size of circuit?
- How much energy does the circuit consume?

KE process: knowledge acquisition

What do we know about digital circuits?

- circuits are composed from wires and gates
- signals 0 and 1 flow along wires
- signals flow to the input terminals of gates
- each gate produces signal on the output terminal
- there are four types of gates: AND, OR, XOR, NOT
- circuits have input and output terminals
- wires are used just as connections between terminals
- signal delay, energy consumption, shape of gates are not assumed

KE example: general knowledge

 If two terminals are connected, then they have the same signal.

```
- \forall t_1, t_2 \text{ Connected}(t_1, t_2) \Rightarrow \text{Signal}(t_1) = \text{Signal}(t_2)
```

The signal at every terminal is either 1 or 0.

```
- \forallt Signal(t) = 1 ∨ Signal(t) = 0
- 1 ≠ 0
```

· Connected predicate is commutative.

- $\forall t_1, t_2 \text{ Connected}(t_1, t_2) \Rightarrow \text{Connected}(t_2, t_1)$

 \cdot The gate behaviour is determined by its type.

```
- ∀g Type(g) = OR ⇒
Signal(Out(1,g)) = 1 ⇔ ∃n Signal(In(n,g)) = 1

- ∀g Type(g) = AND ⇒
Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0

- ∀g Type(g) = XOR ⇒
Signal(Out(1,g)) = 1 ⇔ Signal(In(1,g)) ≠ Signal(In(2,g))

- ∀g Type(g) = NOT ⇒
Signal(Out(1,g)) ≠ Signal(In(1,g))
```

KE process: vocabulary

What constants, predicates, and functions?

- we describe circuits, gates, terminals, signals, and gates
 - gates are denoted by constants X₁, X₂, A₁, ...
 - the behaviour of each **gate** is determined by its **type**
 - · we will used constants AND, OR, XOR, NOT
 - types of gates are described by functions Type(X₁) = XOR
 - We can also predicates Type(X₁,XOR) or XOR(X₁)
 - Beware! We will also need axioms to describe uniqueness of the gate type.
 - terminals of gates can also be names by constants (X₁In₁, ...), but then we need to connect them to gates
 - it is better to use functions In(1, X₁), ...
 - wires can be described by predicates
 - Connected(Out(1, X₁),In(1, X₂)), ...

- signals at terminals are determined by a function
 - Signal(g) = 1

KE process: specific problem instance

Objects and categories

Query is a logical formula.

- What combination of inputs would cause the sum output to be 0 and carry-bit output to be 1?
 - $\exists i_1,i_2,i_3$ Signal(In(1,C₁)) = i_1 \land Signal(In(2,C₁)) = i_2 \land Signal(In(3,C₁)) = i_3 \land Signal(Out(1,C₁)) = 0 \land Signal(Out(2,C₁)) = 1

Answer is obtained as substitutions of variables i_1 , i_2 , i_3 .

 $- \{i_1/1, i_2/1, i_3/0\}, \{i_1/1, i_2/0, i_3/1\}, \{i_1/0, i_2/1, i_3/1\}$

Debug the knowledge base

- Some queries may give an unexpected (wrong) answer that indicates a problem in knowledge base (wrong/ missing axiom, ...).
 - A typical problem is a missing axiom claiming that constants identify different objects.
 - 1 ≠ 0

Categories in FOL

How to represent a category in FOL?

- an object is a **member** of a category
 - MemberOf(BB₁₂,Basketballs)
- a category is **subset** of another category
 - SubsetOf(Basketballs,Balls)
- all members of the category have some property
 - \forall x (MemberOf(x,Basketballs) ⇒ Round(x))
- all members of the category can be recognized using common properities
 - ∀ x (Orange(x) ∧ Round(x) ∧ Diameter(x)=9.5in ∧
 MemberOf(x,Balls) ⇒ MemberOf(x,BasketBalls))
- category may also have some property
 - MemberOf(Dogs,DomesticatedSpecies)

- Let us notice that
 - agents manipulate with real objects
 - but reasoning is done at the level of categories
 - An agent uses observations to find properties of objects that are used to assign objects to categories.
 Reasoning on category then reveals useful information about the object itself.

Category

- = a set of its members
- = a complex object with relations
 - MemberOf
 - SubsetOf

Taxonomy

- Categories organize and simplify knowledge base by using **inheritance of properties**.
 - properties are defined for a category but they are inherited to all members of the category
 - food is eatable, fruits are food, apples are fruits, and hence apples are eatable
- Subclasses organize categories to a taxonomy
 - a hierarchical structure that is used to categorize objects
 - originally proposed for classifying living organisms (alfa taxonomy)
 - categories for all knowledge
 - Used in libraries
 - · Dewey Decimal Classification
 - 330.94 European economy

