ADVANCED MATHEMATICS FOR COMPUTER SCIENCE

Final Exam Matrix CS

AMAD, FRANCIS JALEN

CS MATH | CS-AMCS

Matrix Solver Documentation.

-This notebook demonstrates how to solve a system of linear equations using two methods: Matrix Inverse Method and Gaussian Elimination. We'll first generate a random 3x4 matrix, then solve the system both manually and using Python, and finally verify our solutions.

1. Generate Random Matrix

Let's start by importing the necessary libraries and generating our random matrix:

import numpy as np import matplotlib.pyplot as plt

Set random seed for reproducibility

```
np.random.seed(42) # for reproducibility
```

Generate a 3x4 random matrix

```
matrix_3x4 = np.random.randint(1, 11, size=(3, 4)) # Range 1-10 for
easier manual calculations
A = matrix_3x4[:, :3] # Coefficient matrix (first 3 columns)
b = matrix_3x4[:, 3] # Right-hand side vector (last column)

print("Generated 3x4 Matrix:")
print(matrix_3x4)
print("\nCoefficient Matrix (A):")
print(A)
print(NRight-hand Side Vector (b):")
```

2. Manual Calculations

2.1 Matrix Inverse Method

Step 1: Find the determinant of A

Step 2: Find the adjugate matrix of A

Step 2: Find the adjugate matrix of A

adj (A) =
$$[(6.6 - 3.3) (37 - 6.8) (8.3 - 4.6)]$$
 $[3.9 - 6.5) (7.6 - 9.3) (9.8 - 7.5)$
 $[(5.3 - 6.9) (9.8 - 7.5) (7.6 - 8.5)]$

= $\begin{bmatrix} 27 - 27 - 6 \\ 27 - 9 & 37 \\ -39 & 37 & -2 \end{bmatrix}$

Step 3: Calculate

Stap 3 : Calcul	ate			
A.	= 1 del (A)	· adj(A)		
A-1=	$\left(-\frac{1}{108}\right)$		37 -2	114
A-1	-0.25	0.25	0.0556	72.53
,	-0.25 0.3611	0.0833	0.0185	

Step 4: Calculate x

x = A-1 - b	[-0.25 0.25 O.O	9586 10	The final A.
1 1 107	V- 00-	426 . 7	[-0472]
there $b = \begin{bmatrix} 10 \\ 3 \end{bmatrix}$	0.3611 -0.3426 0.01	185] [5]	X: -3.63
	First row: -0.25.10+0.25.7	10.0556.5 = - 2.5+ 1.75 +	0.278=-0.472
	Second row: -0.25 · 10 + 0.0833-7		

2.2 Gaussian Elimination

Step 1: Write the augmented matrix

Amad, trancis Jalen	Final Exam Ma	itrix	CS	
2.2 Gaussain Elimination				
Step 1: Write the Augmented Matrix				
7x + 8g + 7z = 10	[Alb]	7	8	7 : 10
5x + 6y + 3z = 7	5	5	6	3:7
9x + 3y + 6z = 5		9	3	6:5]

Step 2: Use row operations to transform the left side into an upper triangular matrix

Stop 2: Use Row Operation to Trans	Form the Left side into an Upper Triangolor Admix
	1 8 1 10 0 0.286 -2 10.714 0 -1.286 -3 : -7.857
Regime 112 min 1.3 7 TV	0 - 1.286 - 3 : - 7.857

Step 3: Back-substitution From the last equation:

From the second equation:

```
Second eq: 0.286g \cdot 2_{7} = 0.714
0.286g = 0.714 + 2(0.2314)
0.286g = 1.1768
9 = \frac{1.1768}{0.286} = 4.1146
```

From the first equation:

```
field eq: 7x + 8y + 7z = 10
7x = 10 - 8[4.1146] - 7[0.2514]
7x = -23.9388
-23.9388 = -3.4198
```

Therefore, the solution is:

3. Python Solution

Now let's solve the system using Python and compare with our manual calculations:

Solve using Matrix Inverse Method

```
try:
    A_inv = np.linalg.inv(A) # Compute A^-1
    x_inverse = np.dot(A_inv, b) # x = A^-1 * b
    print("\nSolution using Matrix Inverse Method:")
    print(x_inverse)
except np.linalg.LinAlgError:
    print("\nMatrix A is singular and cannot be inverted.")
```

Solve using Gaussian Elimination

```
x_gaussian = np.linalg.solve(A, b) # Direct Gaussian elimination
print("\nSolution using Gaussian Elimination (NumPy):")
print(x_gaussian)
```

4. Verification

Let's verify that our solution satisfies the equation Ax = b:

Verify the solution

```
b_check = np.dot(A, x_gaussian) # Recompute b using A and the computed x
print("\nVerification (Ax = b):")
print(b_check)
print("\nOriginal b:")
print(b)
print(b)
print("\nAre the results equal?", np.allclose(b_check, b))
```

5. Visualization

Finally, let's visualize our results:

Visualize the results

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

ax1.imshow(A, cmap='viridis')
ax1.set_title('Coefficient Matrix A')
for i in range(3):
    for j in range(3):
        ax1.text(j, i, A[i, j], ha='center', va='center', color='w')

ax2.bar(range(3), x_gaussian)
ax2.set_title('Solution Vector x')
ax2.set_xlabel('Variable')
ax2.set_ylabel('Value')
for i, v in enumerate(x_gaussian):
    ax2.text(i, v, f'{v:.2f}', ha='center', va='bottom')
```

plt.tight_layout() plt.show()

Github link:

https://github.com/jalen8/Final-Exam-Matrix-CS-AMAD.git