SharcFIN ASIC

SFIN-160 For ADSP-21160 SHARC DSPs

User's Manual

SharcFIN ASIC

User's Manual for the SFIN-160 SharcFIN

December 3, 2003 Edition

Copyright © 2003 BittWare, Inc. All Rights Reserved.

The information contained in this manual is protected by copyright; all rights are reserved by BittWare, Inc. BittWare reserves the right to make periodic modifications of this product without obligation to notify any person or entity of such revision. Copying, duplicating, selling, or otherwise distributing any part of this product without the prior written consent of an authorized representative of BittWare is prohibited.

SharcFIN is a trademark of BittWare, Inc.
QuickLogic is a registered trademark of QuickLogic Corporation.
Tri-State is a registered trademark of National Semiconductor.
SHARC is a registered trademark of Analog Devices, Inc.

31 B South Main St. Concord, NH 03301

Phone: 603.226.0404 Fax: 603.226.6667 Web: www.bittware.com

Contents

Chapter 1 Introduction

1.1	Function	nal Overview of the SharcFIN
	1.1.1	SharcFIN Features
	1.1.2	SharcFIN Architecture Overview
	1.1.2	Interface to ADSP-21160 Cluster Bus
		Interface to PCI
		Interface to Peripheral Bus
		SDRAM Controller
		I2C Interface
		Interrupt Multiplexer
	1.1.3	SharcFIN Data Flow Overview
	1.1.5	PCI-to-DSP Target Transactions
		DSP-to-PCI Target Transactions
		DMA Transactions
		Control Registers
		SDRAM Controller and Peripheral Bus Interface
		SDRAM Controller and reripheral bus interface
1.2	About t	his Document
	1.2.1	Contents and Purpose of This Document
		What This Document Covers
		What You Are Expected To Know
	1.2.2	Conventions Used in This Document
		Addressing Conventions
		Signal Notation
		Object Size Notation
		Bit Ordering Conventions
		Numeric Conventions
		Abbreviations
		Typographic Conventions
		Document Status Information
	1.2.3	Revision History
	1.2.4	Related Documents
		Sources for ADSP-21160 Information
		Sources for PCI Information
		Other Recommended Specifications
		·
1.3	Contact	ing BittWare Technical Support

Chapter 2 Functional Description

2.1	PCI-to-I 2.1.1 2.1.2 2.1.3 2.1.4	OSP Target Interface. Overview of the PCI-to-DSP Target. How the PCI-to-DSP Target Functions. Performing Target Writes Controlling the FIFO Emptiness Threshold	 14 14 15
2.2	DSP-to- 2.2.1 2.2.2	SharcFIN Target Interface	 18
2.3	SDRAM 2.3.1 2.3.2	Controller Configuring SDRAM Setting the SD Size Config Register Accessing SDRAM From an ADSP-21160 DSP Accessing SDRAM From the PCI Interface SDRAM Timing Timing From the ADSP-21160 Timing from the PCI Interface	 19 19 20 20 21 21
0.4			
2.4	2.4.2 2.4.3 2.4.4	ts and Messaging. PCI Interrupt Controller and Status. Determining the Interrupt Status. Configuring the Interrupt Sources Determining the Interrupt Timing. Interrupt Service Routine. SHARC Interface Interrupt Multiplexer. How the Interrupt Multiplexer Functions. Configuring the Interrupt Sources. Performing ADSP-21160 Interrupts. Determining the Status of the Interrupts. ADSP-21160 Flag and Interrupt Connections to SharcFIN. Messaging. Mailbox Operation. Intelligent I/O (I ₂ O).	22 24 28 30 30 31 31 32 32 32
2.5	Periphe 2.5.1 2.5.2 2.5.3	ral Bus Interface	36 36 36 36 36 37
2.6	Reset at 2.6.1	nd Watchdog Interface	

		Performing a Host Total Reset (HTR)	
		Resetting the SHARC Interface and All Peripherals	
	0 / 0	Resetting Peripherals Attached to the SharcFIN	
	2.6.2	Watchdog Interface	41
2.7	Bus Ma	stering and DMAs	42
	2.7.1	Bus Mastering	
	2.7.2	Single PCI Accesses	
		Single PCI Access Mastering	
		Single PCI Accesses from an ADSP-21160 DSP Board	
		Generating Type 0 or Type 1 Configuration Cycles	
	2.7.3	PCI Side DMAs	49
		Transmit DMA Channels 0/1	
		Receive DMA Channels 0/1	
		Chaining Mode DMA	59
	2.7.4	ADSP-21160 Cluster Bus DMAs	
		Using the SharcFIN-Based DMA Engine	
		Using the ADSP-21160-Based DMA Engine	
	2.7.5	Bus Mastering Issues	
		PCI Error	
		Canceling Bus Mastering Operations	
		Master Arbitration Control	
		Master Latency Counter Enable/Disable	
		Bus Mastering in a 32-Bit Environment	
		G	
2.8	I2C Inte	erface and Serial Controller	
	2.8.1	How the I2C Interfaces Function	
	2.8.2	Accessing Serial EEPROMs	
		SPD EEPROM on SDRAM Module	
		Board Configuration EEPROM	74
Chapter	· 3		
Register	Descri	iptions	
		<u> </u>	
0.1	ol Fi	N. 1.4	7 ,
3.1		N Memory Map	
	3.1.1	Overview	
		Accessing System Settings and Configuration Registers	
	3.1.3	Accessing the Flash, UART, and Peripheral Bus	
	3.1.4	Accessing Multiprocessor Memory Space	
	3.1.5	Accessing SDRAM	/8
3.2	PCI Cor	nfiguration Registers	80
3.3	Chip Co	ontrol Registers	96
0.0	3.3.1	PCI Control Registers	
	3.3.2	SHARC Interface Control Registers	
	J.J.Z	Address Override Register	
		Status Register	
		Peripheral Bus Configuration Register	
		Watchdog Configuration Register	
		Traichag Comiguration register	102

	PMC+ Configuration Register
	Onboard I2C Control Register
	PMC I2C Control Register
	SDRAM Configuration Registers
	DMA Address Register
	DMA Configuration Register
	Interrupt Configuration Registers
	Flag and Interrupt Status Registers
Chapter Hardwo	4 re Description
4.1	SharcFIN Signal Descriptions
4.2	Pinout
4.3	PWB Layout
Append Timing I	ix A Diagrams

List of Figures

Figure 1-1 Simplified Block Diagram of the SharcFIN ASIC
Figure 1-2 SharcFIN Data Flow Overview
Figure 2-1 Interrupt Service Routine Flow Chart
Figure 2-2 Interrupt Configuration Register
Figure 2-3 SharcFIN Mailbox Block Diagram
Figure 2-4 Typical I ₂ O Server/Adapter Card Design
Figure 2-5 Driver Architecture Compared
Figure 2-6 SharcFIN Reset Circuitry
Figure 2-7 DMA Channels in the SharcFIN ASIC
Figure 2-8 Steps Necessary to Perform a Type 0 Configuration Cycle
Figure 2-9 Steps Necessary to Start a TransmitO DMA Operation (Control Register Offset 0x00) 50
Figure 2-10 Steps Necessary to Start a Transmit1 DMA Operation (Control Register Offset 0x10) 51
Figure 2-11 Graceful Method Flowchart for Actions Necessary for Canceling/Stopping Transmit DMA Channel 0
Figure 2-12 Graceful Method Flowchart for Actions Necessary for Canceling/Stopping Transmit DMA Channel 1
Figure 2-13 PUNT@#\$! Method Flowchart for Actions Necessary for Canceling/Stopping Transmit DMA Channel 0
Figure 2-14 PUNT@#\$! Method Flowchart for Actions Necessary for Canceling/Stopping Transmit DMA Channel 1
Figure 2-15 Steps Necessary to Start Receive Channel 0 Mastering Operation
Figure 2-16 Steps Necessary to Start Receive Channel 1 Mastering Operation

Figure 2-17 Graceful Method Flowchart for Actions Necessary for Canceling/Stopping Receive DMA Channel 0
Figure 2-18 Graceful Method Flowchart for Actions Necessary for Canceling/Stopping Receive DMA Channel 1
Figure 2-19 PUNT@#\$! Method Flowchart for Actions Necessary for Canceling/Stopping Receive DMA Channel 0
Figure 2-20 PUNT@#\$! Method Flowchart for Actions Necessary for Canceling/Stopping Receive DMA Channel 1
Figure 2-21 Chain Mode Flow Chart
Figure 2-22 Chain Mode Description
Figure 3-1 PCI Configuration Register Memory Map
Figure 3-2 PCI Control Register Memory Map
Figure 3-3 PCI Control Register Memory Map (Continued)
Figure 3-4 User Control Register Memory Map (Continues on next page)
Figure 3-5 User Control Register Memory Map (Continued)
Figure 3-6 SHARC Interface Control Register Memory Map
Figure 4-1 484 PBGA Mechanical Drawing of the SharcFIN

List of Tables

Table 1-1 Document Revision History 10
Table 2-1 Number of Quadword Positions That Must Be Empty in the Target Write/Post FIFO for a Target Write to be Accepted 17
Table 2-2 Settings for Bits 0 and 1 of the SD Size Config Register
Table 2-3 Settings for Bit 2 of the SD Size Config Register 20
Table 2-4 Contents and Settings of the Status Register (0x24)
Table 2-5 Memory Mappings of Peripherals on the Peripheral Bus 37
Table 2-6 Single PCI Mastering Commands
Table 2-7 FIFO Threshold Timeout
Table 2-8 SharcFIN DMA Sustained Data Rates 62
Table 2-9 Contents of the DMA Configuration Register 64
Table 2-10 Settings for PCI Control Registers at Offsets 0x1A and 0x1B
Table 2-11 Information for I2C Protocol
Table 2-12 Contents Used to Set SDRAM Registers
Table 2-13 How the HIL Writes the SD Size Config Register (0x45)
Table 2-14 Board Configuration EEPROM Information
Table 3-1 Overview of How the SharcFIN Maps to PCI and ADSP-21160 Buses
Table 3-2 Accessing BARO-BAR4 From the PCI Side
Table 3-3 PCI and ADSP-21160 Addresses for System Settings and Configuration Registers 77
Table 3-4 PCL and ADSP-21160 Addresses for Elash LIART and Peripheral Bus 77

Table 3-5PCI and ADSP-21160 Addresses for Multiprocessor Memory Space
Table 3-6 PCI and ADSP-21160 Addresses for 64 MB SDRAM 79
Table 3-7PCI and ADSP-21160 Addresses for 128 MB SDRAM79
Table 3-8 Register Offset 0x00 81
Table 3-9 Device and Vendor ID Register Description 81
Table 3-10 Register Offset 0x01 81
Table 3-11 Status Register Description 82
Table 3-12 Command Register Description 84
Table 3-13 Register Offset 0x02 86
Table 3-14 Class Code Register Description 86
Table 3-15 Revision ID Register Description
Table 3-16 Register Offset 0x03 87
Table 3-17 Built-In Self-Test (BIST) Register Description 87
Table 3-18 Header Type Register Description
Table 3-19 Latency Timer Register Description
Table 3-20 Cache Line Size Register Description
Table 3-21 Register Offset 0x04, 0x05, 0x06, 0x07, 0x08, 0x09
Table 3-22 Base Address Register Description
Table 3-23 Register Offset 0x0A 90
Table 3-24 Cardbus CIS Pointer Register Description 91
Table 3-25 Register Offset 0x0B
Table 3-26 Subsystem ID/Subsystem Vendor ID Register Description

Table 3-27 Register Offset 0x0C 92
Table 3-28 Expansion ROM Base Address Register Description
Table 3-29 Register Offset 0x0D 93
Table 3-30 Reserved Register Description 93
Table 3-31 Capabilities Pointer Register Description 93
Table 3-32 Register Offset 0x0E 94
Table 3-33 Reserved Register Description
Table 3-34 Register Offset 0x0F 94
Table 3-35 Maximum Latency Register Description
Table 3-36 Minimum Grant Register Description
Table 3-37 Interrupt Pin Register Description
Table 3-38 Interrupt Line Register Description
Table 3-39 Control Register Offset 0x00
Table 3-40 Master Write Address 0 Description
Table 3-41 Control Register Offset 0x02
Table 3-42 Master Write Count Status 0 Description
Table 3-43 Master Write Transfer Count 0 Description
Table 3-44 Control Register Offset 0x04
Table 3-45 Master Write Address 1 Description
Table 3-46 Control Register Offset 0x06
Table 3-47 Master Write Count Status 1 Description
Table 3-48 Master Write Transfer Count 1 Description

Table 3-49 Control Register Offset 0x08 107
Table 3-50 Single PCI Access Start Description 107
Table 3-51 Single PCI Access 32-Bit Description 108
Table 3-52 Single PCI Access Command Description 108
Table 3-53 Single PCI Byte Lanes Description 109
Table 3-54 Receive FIFO1 Byte Lane Description
Table 3-55Bus Request Status Description
Table 3-56 Pipeline Not Empty Description 111
Table 3-57 Chain Tag Field Description 112
Table 3-58 Receive FIFO0 Byte Lane Description
Table 3-59 Transmit Descriptions 113
Table 3-60Receive Descriptions114
Table 3-61 Chip Revision ID Description 115
Table 3-62 User ID Description 115
Table 3-63 Control Register Offset 0x0A 115
Table 3-64 Enable 16/8 Target Timeout Readback Description
Table 3-65 Wait Timeout Read Readback Description 116
Table 3-66 Wait Timeout Write Readback Description 116
Table 3-67 BAR Enable Readback Description
Table 3-68 Target BAR Configuration Description 118
Table 3-69 Target FIFO Threshold MSBs Description 119
Table 3-70 Target FIFO Control — Emptiness Threshold

Table 3-71 Target Prefetch Control Description 12°
Table 3-72 Target Burst Request Description 122
Table 3-73 Control Register Offset 0x0C 123
Table 3-74 12O Interrupt Mask Bit Description 120
Table 3-75 12O Interrupt Service Request Bit Description 124
Table 3-76 Control Register Offset 0x0E 124
Table 3-77 Reserved Register Description
Table 3-78 Control Register Offset 0x10 125
Table 3-79 12O Outbound Queue Pointer Description 125
Table 3-80 12O Inbound Queue Pointer Description 120
Table 3-81 Control Register Offset 0x12 120
Table 3-82 Master Read AddressO/Chain Descriptor Start Address Description 127
Table 3-83 Control Register Offset 0x14 127
Table 3-84 Master Read Count Status 0 Description
Table 3-85 Master Read Transfer Count 0 Description 128
Table 3-86 Control Register Offset 0x16
Table 3-87 Master Read Address 1 Description 129
Table 3-88 Control Register Offset 0x18 130
Table 3-89 Master Read Count Status 1 Description
Table 3-90 Master Read Transfer Count 1 Description
Table 3-91 Control Register Offset 0x1A
Table 3-92 XMIT FIFO Flaas Description

Table 3-93 Receive FIFO Flags Description 133
Table 3-94 Control Register Offset 0x1C 134
Table 3-95 PCI Outgoing Mail Description 134
Table 3-96 Control Register Offset 0x1E 138
Table 3-97 PCI Incoming Mail Description 139
Table 3-98 Control Register Offset 0x20 143
Table 3-99 User Interrupt Description 143
Table 3-100 DMA Interrupt Description
Table 3-101 PCI Incoming MB Full Description
Table 3-102 PCI Outgoing MB Empty
Table 3-103 12O Interrupt Description 145
Table 3-104 BIST Start Interrupt Description
Table 3-105 SPCI Interrupt Description
Table 3-106 User Outgoing MB Empty Description
Table 3-107 User Incoming MB Full Description 146
Table 3-108 Control Register Offset 0x22 147
Table 3-109 User Interrupt Mask Description
Table 3-110 DMA Interrupt Mask Description
Table 3-111 PCI Incoming Mailbox Full Interrupt Mask/User OMB Full Interrupt Mask
Table 3-112 PCI OMB Empty Interrupt Mask/User IMB Empty Interrupt Mask
Table 3-113 120 Interrupt Mask 149
Table 3-114 RIST Mask 150

Table 3-115Single PCI (SPCI) Interrupt Mask150
Table 3-116 PCI IMB Empty Interrupt Mask/User OMB Empty Interrupt Mask
Table 3-117 PCI OMB Full Interrupt Mask/User IMB Full Interrupt Mask
Table 3-118 Control Register Offset 0x24
Table 3-119 PCI Error Status Flags Description 152
Table 3-120 Error Description
Table 3-121 Target Interface Description
Table 3-122 Target Address Valid Description 154
Table 3-123 Target User Request Description 154
Table 3-124 Target User Multiple Description 155
Table 3-125 barCS Description
Table 3-126 user_be_req Description
Table 3-127 I ₂ O Status Description
Table 3-128 BIST Start Description 157
Table 3-129 Chain Pointer Fetch End Description
Table 3-130 DMA Start/Done# Description
Table 3-131 PCI Incoming MB Status/User Outgoing MB Status
Table 3-132 PCI Outgoing MB Status/User Incoming MB Status 160
Table 3-133 Control Register Offset 0x26 160
Table 3-134 Single PCI Access Address Register Description
Table 3-135 Control Register Offset 0x28 161
Table 3-136 Single PCI Access Data Register Description

Table 3-137 Control Register Offset 0x2A 162
Table 3-138 Reserved Description 162
Table 3-139 Control Register Offset 0x2C 163
Table 3-140 Receive FIFO0 Description 163
Table 3-141 Control Register Offset 0x2E 164
Table 3-142 Receive FIFO1 Description 164
Table 3-143 Control Register Offset 0x30 165
Table 3-144 Transmit FIFO0 Description 165
Table 3-145 Control Register Offset 0x32 165
Table 3-146 Transmit FIFO1 Description
Table 3-147 Control Register Offset 0x34 167
Table 3-148 DMA Arbitration Mode Description 167
Table 3-149 DMA Arbitration Priority
Table 3-150 DMA 32/64# Description
Table 3-151 Receive DMA Special Command Enable 169
Table 3-152 Transmit FIFO Flush Description
Table 3-153 DMA Cancel Description
Table 3-154 Built-In Self Test (BIST) Done Description
Table 3-155 Built-In Self Test (BIST) Completion Code Description 172
Table 3-156 Master Byte Enable Generation
Table 3-157 Maximum Master Retry Timeout Description
Table 3-158 FIFO Threshold Timeout Description

Table 3-159 Latency Timeout Enable Description 173
Table 3-160 Control Register Offset 0x36 173
Table 3-161
Reserved Register Description
Table 3-162Control Register Offset 0x38
Table 3-163 Reserved Register Description 174
Table 3-164Control Register Offset 0x3A175
Table 3-165Reserved Register Description
Table 3-166 Software Reset Register Description
Table 3-167 Total Reset Register Description 176
Table 3-168 Control Register Offset 0x3C 176
Table 3-169 Target Control Address Description
Table 3-170 Control Register Offset 0x3E 177
Table 3-171 Target Control Data Description 177
Table 3-172 Memory Map for the SHARC Interface Control Registers
Table 3-173 Address Override Register Description 179
Table 3-174 Contents of the Status Register 180
Table 3-175 Contents of the Peripheral Bus Configuration Register 181
Table 3-176 Contents of the Watchdog Configuration Register
Table 3-177 Contents of the PMC+ Configuration Register
Table 3-178 Contents of the Onboard I2C Control Register 184
Table 3-179 Effects of Values Written to the Clock and Data Bits (BO, B1)
Table 3-180 Contents of the SDRAM Size Configuration Register

Table 3-181
Contents of the SDRAM Window Register
Table 3-182 Contents of the DMA Address Register 186
Table 3-183 Contents of the DMA Configuration Register 187
Table 3-184 ADSP-21160 Interrupt Configuration Registers 189
Table 3-185 Settings for the ADSP-21160 Interrupt Configuration Registers (0x50, 0x52, 0x54, 0x56) 189
Table 3-186 Settings for the PCI Interrupt Configuration Register (0x58) 191
Table 3-187 Settings for the PMC+ Interrupt Configuration Register (0x5A)
Table 3-188 Contents of the Flag Status Register 193
Table 3-189 Contents of the Interrupt Status Register 194
Table 4-1 PCI Interface Signal Definitions 196
Table 4-2 SHARC Interface Signal Definitions 200
Table 4-3 SharcFIN Pinout

Chapter 1 Introduction

The SFIN-160 SharcFIN ASIC is a feature-rich, single device that combines the complex control of the PCI bus with an interface to the Analog Devices' ADSP-21160 SHARC® DSP. The SharcFIN ASIC flexibly interfaces the ADSP-21160 DSPs to a wide range of interfaces, including 64/66 MHz PCI bus (rev. 2.2 compliant), SDRAM, UART, I²C™ serial ports, flash memory, and a general-purpose expansion bus. The SharcFIN also provides a feature-rich set of DMA functions and interrupt options to support very high-speed, real-time data flow with a minimum of processor overhead.

This chapter discusses the following topics:

- The features, data flow, and architecture of the SharcFIN (see page 1-2)
- General information about this document, including contents, conventions, revision history, and related documents (see page 1-8)
- How to contact BittWare for technical support (see page 1-12)

1.1 Functional Overview of the SharcFIN

This section provides an overview of how the SharcFIN functions, discussing its features, architecture, and data flow.

1.1.1 SharcFIN Features

The following is a list of the SharcFIN's features:

- 64-bit, 66 MHz PCI rev. 2.2 compliant interface (528 MB/s burst)
- Interface to 64-bit, 40 MHz ADSP-21160 cluster bus
- · Peripheral bus interface
 - 8 bits wide @ 20 MHz
 - Accessible from the ADSP-21160 cluster bus and the PCI bus
 - Flash interface for ADSP-21160 boot and non-volatile data storage
- Six independent FIFOs (2.4 KB total)
 - Four DMA buffers, 64×64 each (two transmit, two receive)
 - Two target buffers, 32×64 write, 16×64 read
- · Direct, single PCI access from the ADSP-21160 cluster bus
- · 16-byte configurable PCI mailbox registers
- I₂O™ V1.5 compliant
- Programmable interrupt multiplexer: 10 inputs, 7 outputs (one of each dedicated to PCI)
- SDRAM controller on ADSP-21160 cluster bus; supports up to 512 MB
- Standard UART and I²C interface

1.1.2 SharcFIN Architecture Overview

This section provides an overview of the SharcFIN architecture. Figure 1-1 on page 1-3 is a simplified block diagram of the SharcFIN architecture as it is implemented on an ADSP-21160 SHARC DSP board.

The SharcFIN ASIC flexibly interfaces the ADSP-21160 DSPs to a wide range of interfaces, including 64/66 MHz PCI bus (rev. 2.2 compliant), SDRAM, UART, I²C serial ports, flash memory, and a general-purpose expansion bus (the 8-bit peripheral bus). The SharcFIN also provides a feature-rich set of DMA functions and interrupt options to support very high-speed, real-time data flow with a minimum of processor overhead.

The SharcFIN consists of two main sections: the PCI interface and the SHARC interface. The *PCI interface* consists of a full 64-bit, 66 MHz bus mastering PCI interface. It includes two DMA transmit channels, two DMA receive channels, and a single PCI read/write channel. Also included in the PCI interface is full I²0 support with the associated mailboxes.

The SHARC interface of the SharcFIN provides the ADSP-21160 specific functionality, which includes the SDRAM interface and control, the Flash and dual UART, the interrupt multiplexers, and the I²C interface.

Figure 1-1 Simplified Block Diagram of the SharcFIN ASIC

Interface to ADSP-21160 Cluster Bus

The first function of the SharcFIN is to interface to the ADSP-21160 cluster bus. The SharcFIN provides a 64-bit interface to the ADSP-21160 cluster bus. It also integrates a full-featured SDRAM controller, which allows the ADSP-21160s to access SDRAM using burst mode access at sustained data rates of 256 Mbytes/sec for writes and 180 Mbytes/sec for reads.

Interface to PCI

The second function of the SharcFIN is to interface to PCI. The SharcFIN implements a full 64-bit/66MHz master PCI interface. The PCI interface is PCI rev 2.2 compliant and provides 16 Bytes of configurable PCI mailbox registers.

Interface to Peripheral Bus

A third bus interface is provided by the SharcFIN's peripheral bus. The peripheral bus is a general-purpose utility bus that allows easy interface to standard microprocessor peripherals such as UARTs and flash memory. It provides a simple, glueless way to add additional functionality to your SHARC DSP board.

SDRAM Controller

The SharcFIN also implements a full-featured SDRAM controller, which supports up to 512 Mbytes of SDRAM. It refreshes the SDRAM and controls all of the interfacing from the ADSP-21160s to the SDRAM and from the PCI interface to the SDRAM.

I²C Interface

The SharcFIN's I²C interface allows it to communicate with a wide variety of integrated circuits. Uses include data communications, SharcFIN interconnection, and hardware configuration and identification. BittWare Hammerhead DSP boards use the I²C interface with serial EEPROMs containing configuration information and some user non-volatile storage space.

Interrupt Multiplexer

The SharcFIN integrates an extensive interrupt and flag multiplexer to facilitate system-level control and coordination of multiprocessors. This programmable resource allows each ADSP-21160 to select the sources of its hardware interrupts; sources include other processors, PCI, peripherals, and the internal DMA engines.

1.1.3 SharcFIN Data Flow Overview

Figure 1-2 on page 1–7 illustrates the data flow through the SharcFIN. The SharcFIN's PCI interface logic provides a 64-bit, 66 MHz PCI interface. The SharcFIN has six independent FIFOs. All data moving between the PCI and ADSP-21160 cluster busses passes through one of these FIFOs. The FIFOs are independent: pointers and memory are not shared, dramatically increasing the amount of possible bandwidth through the SharcFIN.

PCI-to-DSP Target Transactions

Target transactions in which the PCI host is the master and the ADSP-21160 is the target use the Target Read/Write Prefetch FIFOs. The Target Read/Write Prefetch FIFOs are buffers for target transactions from the PCI bus to the ADSP-21160 cluster bus. (See section 2.1 for a description of how to use the SharcFIN's PCI-to-DSP target interface.)

Target Write/Post FIFO

The Target Write/Post FIFO is 72 bits wide by 32 deep. It is used by the target controller to buffer target writes to the SharcFIN. The FIFO holds 64 bits of data and 8 bits of byte lane information.

Note

The user does not have direct access to the Target Write Post FIFO, since the target controller automatically extracts the address and data.

Target Read/Prefetch FIFO

The Target Read/Prefetch FIFO is 64 bits wide by 16 deep. It is used by the target controller to hold data for the target reads and target prefetches, and it holds 64 bits of data.

DSP-to-PCI Target Transactions

Single target transactions in which the ADSP-21160 is the master and the PCI is the target use single PCI access. Single PCI Access allows the ADSP-21160 to master single word transfers on the PCI bus. A local processor may transfer single quadwords of data to/from PCI memory by reading and writing to the Single PCI (SPCI) registers in the control space. This mode is also used to do Type 0/1 Configuration Cycles. FIFOs are not used. (See section 2.2 for a description of how to use the DSP-to-SharcFIN target interface, and see "Single PCI Accesses" on page 43 for a description of Single PCI Accesses.)

DMA Transactions

DMA transactions use Transmit FIFO 0/1 and Receive FIFO 0/1. Transmit FIFO 0/1 and Receive FIFO 0/1 are buffers to hold data from the DMA channels as it transfers from bus to bus.

Transmit FIFO0

Transmit FIFO0 is 72 bits wide by 64 deep. It is used to move data from the local busses to PCI under the control of Transmit Channel Master Controller 0. This FIFO holds 64 bits of data and 8 bits of byte lane information.

Transmit FIFO1

Transmit FIFO1 is 72 bits wide by 64 deep. It is used to move data from the local busses to PCI under the control of Transmit Channel Master Controller 1. This FIFO holds 64 bits of data and 8 bits of byte lane information.

Receive FIFO0

Receive FIFO0 is 72 bits wide by 64 deep. It is used to move data from the PCI to the local busses under the control of Receive Channel Master Controller 0. This FIFO holds 64 bits of data, 8 bits of byte lane information.

Receive FIFO1

Receive FIFO1 is 72 bits wide by 64 deep. It is used to move data from PCI to the local busses under the control of Receive Channel Master Controller 1. This FIFO holds 64 bits of data and 8 bits of byte lane information.

The two transmit FIFOs and the two receive FIFOs have several different modes of operation. The following is a brief description of the different modes.

Direct FIFO Mastering

A PCI starting address and transfer count are set by the host or local processor, and data is automatically transferred by the FIFOs to/from PCI memory. Because each FIFO has its own controller, two transmit and two receive channels can be running simultaneously.

Chain Mode DMA

Transmit FIFO0 and Receive FIFO0 can be dedicated to executing a batch of transmit/receive mastering operations. These operations are also called "scatter gather DMA" and "shuttle mode DMA."

Control Registers

A set of control registers controls most of the function of the SharcFIN chip, including PCI control registers, I^2C interfaces, DMAs, mode registers, and the interrupt multiplexers. The PCI bus and the ADSP-21160 bus both have read and write access to these registers.

SDRAM Controller and Peripheral Bus Interface

The ADSP-21160 SDRAM interface logic provides an interface to SDRAM for both the PCI host and the ADSP-21160 DSP. The peripheral bus interface logic provides an interface to flash memory, a dual UART, and any other peripheral bus devices.

Figure 1-2 SharcFIN Data Flow Overview

1.2 About this Document

This section provides general information about the *SharcFIN ASIC User's Manual*. It discusses the following topics:

- The contents and purpose of this document (see section 1.2.1)
- The conventions used throughout this document (see section 1.2.2)
- The revision history of this document (see section 1.2.3)
- Other documents related to this user's manual (see section 1.2.4)

1.2.1 Contents and Purpose of This Document

What This Document Covers

This document is a complete user's guide and reference for BittWare's SFIN-160 SharcFIN ASIC for the ADSP-21160 SHARC DSP. It provides the information you'll need to understand how the SharcFIN functions and how to program it. It contains the following information:

- Descriptions of the features and architecture of the SharcFIN (Chapter 1)
- Detailed description of how the SharcFIN functions (Chapter 2)
- Register descriptions and memory maps for the SharcFIN (Chapter 3)
- Pinouts and signal descriptions for the SharcFIN (Chapter 4)
- Electrical specifications and timing diagrams for the SharcFIN (Appendix A)

What You Are Expected To Know

This document assumes that you have prior knowledge of the following:

- The architecture and function of the Analog Devices ADSP-21160 SHARC DSP
- C and assembly language development on the ADSP-21160 SHARC DSP
- The PCI Local Bus Specification, Revision 2.2

1.2.2 Conventions Used in This Document

This section explains the document conventions we have used throughout the *SharcFIN ASIC User's Manual*.

Addressing Conventions

Because the ADSP-21160 SHARC DSPs use 32-bit word addressing, unless otherwise noted, all addresses in this manual are 32-bit word addresses.

Signal Notation

Signals are either active high or active low. Active low signals are defined as true (asserted) when they are at a logic low. Similarly, active high signals are defined as true at a logic high.

- Each signal that assumes a logic low state when asserted is designated with an "overbar." For example, SIGNAL is asserted low to indicate an active signal.
- Signals that are not designated with an overbar are asserted when they assume the logic high state. For example, SIGNAL is asserted high to indicate an active signal.

Object Size Notation

The following designations are used throughout this manual when referring to the size of data objects:

- A byte is an 8-bit object.
- A word is a 16-bit, or 2-byte object.
- An lword or a dword is a long word and is a 32-bit or 4-byte object.
- A *dlword* or *quadword* is a double long word and is a 64-bit or 8-byte object.

Bit Ordering Conventions

This document adopts the convention that the most significant bit is always the largest number (also referred to as *Little-Endian* bit ordering). For example, in a register that consists of bit_name[31:0], bit_name[31] is the most significant bit, and bit_name[0] is the least significant bit of the register.

Numeric Conventions

We have used the following numeric conventions:

- Hexadecimal numbers are designated by the prefix 0x. For example, 0x01A0.
- Binary numbers are designated by the prefix 0b. For example, 0b1010.
- Decimal numbers have no prefix. For example, 4356.

Abbreviations

In the signal description tables (Table 4-1 on page 4-196 and Table 4-2 on page 4-200), for the interface between the SHARC interface and the PCI core, the following abbreviations are used:

- in Input to the SHARC interface. Driven to the SHARC interface by the PCI core.
- out Output from the SHARC interface. Driven to the PCI core by the SHARC interface.

Typographic Conventions

The following typographic conventions are used in this document:

- *Italic* type is used to designate the following:
 - Document titles (for example, PCI Local Bus Specification)
 - Important terms
 - Equation variables

- Signal names are designated as follows: Signal Name
- · Bit names are designated as follows: Bit Name
- Register names are designated as follows: Register Name

Document Status Information

BittWare classifies its technical documentation as either Preliminary or Final.

- *Preliminary*: The Preliminary release of the manual contains information that is subject to change. It contains information about a product that is near production-ready and is revised as required. The Preliminary manual exists until the product is released to production.
- *Final*: The Final manual contains information about a final, customer-ready product. The final manual is available online or as a printed copy.

1.2.3 Revision History

Table 1-1Document Revision History

Release	Status	Date	Comments
UG-SFIN160G- 01	Final	January, 2002	This is the first customer release version of the SFIN-160 SharcFIN ASIC User's Manual
UG-SFIN160G- 02	Final	December, 2003	Updates to pages 14 and 89: the size of BAR1 is 4 MB rather than 8 MB as stated in the previous version.

1.2.4 Related Documents

Sources for ADSP-21160 Information

For information about the ADSP-21160 SHARC DSP, refer to the following sources:

- ADSP-21160 SHARC DSP Hardware Reference Analog Devices, Inc.
- ADSP-21160 SHARC DSP Instruction Set Reference Analog Devices, Inc.

Sources for PCI Information

For information about PCI, refer to the following sources:

• The PCI Special Interest Group provides many resources for PCI information. You can also order copies of the latest PCI specification on their website.

http://www.pcisig.com PCI Special Interest Group 2575 NE Kathryn St. #17 Hillsboro, OR 97124 • The most current versions of the PCI Specifications are the following:

PCI Local Bus Specification, Revision 2.2

PCI Hot-Plug Specification, Revision 1.1

PCI Power Management Interface Specification, Revision 1.1

• A good resource if you need an introduction to PCI is:

PCI System Architecture

Fourth Addition

MindShare, Inc.

Tom Shanley and Don Anderson

ISBN: 0-201-40993-3

Other Recommended Specifications

Other recommended specifications include the following:

• PICMG 2.0, Compact PCI Specification, Revision 2.1 (or greater)

PCI Industrial Computer Manufacturers Group (PICMG)

401 Edgewater Place, Suite 500

Wakefield, MA 01880, USA

Fax: 781-224-1239

Tel: 781-224-1100

http://www.picmg.org

• Intelligent I/O (I_2O) Architecture Specification, Revision 1.5

I₂0 Special Interest Group

404 Balboa Street

San Francisco, CA 94118, USA

Tel: 415-750-8352

Fax: 415-751-4829

http://www.i20sig.org

1.3 Contacting BittWare Technical Support

BittWare is dedicated to providing our customers with superior technical support. We offer the following types of technical support:

- E-mail: You can direct questions and feedback to us at support@bittware.com. Please include your name, company, address, phone number, and specific details about your request for technical support.
- **Phone:** You can call us directly at 603.226.0404 between the hours of 8:30 a.m. 5:30 p.m. Eastern Standard Time.
- **BittWare's website:** Our website at http://www.bittware.com contains the latest manuals, anomaly lists, and FAQs.

Chapter 2 Functional Description

This chapter provides a detailed description of how the SharcFIN ASIC functions. It covers the following topics:

- Using the SharcFIN to access ADSP-21160 DSPs from the PCI host (section 2.1)
- Accessing the SharcFIN from an ADSP-21160 DSP (section 2.2)
- How the SDRAM controller functions and how to configure it (section 2.3)
- The SharcFIN's interrupt and messaging capabilities (section 2.4)
- The peripheral bus interface (section 2.5)
- How to reset the SharcFIN (section 2.6)
- The SharcFIN's DMA and bus mastering operation (section 2.7)
- The I²C interface (section 2.8)

2.1 PCI-to-DSP Target Interface

This section explains how to use the SharcFIN to access the ADSP-21160 DSPs on the DSP board from the PCI interface. It defines and provides addresses for the base address regions (BARs), describes how the PCI-to-DSP target functions, and describes how to perform target writes.

2.1.1 Overview of the PCI-to-DSP Target

The SharcFIN's PCI-to-DSP target function permits very high data bandwidth for both read and write accesses. As is the case with all master-capable PCI controllers, the target of the SharcFIN is completely independent from the master. It is possible, by design, for any of the SharcFIN's DMA channels to access its own target. The troublesome timing associated when a target accesses its own master is handled internally within the SharcFIN. The SharcFIN accepts multiple target write bursts, but due to transaction ordering requirements, only one non-prefetched burst target read can be pending at a time.

The SharcFIN uses PCI Base Address Regions (BARs) to map its various parts onto the PCI bus. BAR0 maps the SharcFIN's control registers, BAR1 maps to the peripheral bus, BAR2 maps to the ADSP-21160's multiprocessor memory space (MMS), BAR3 is unused, and BAR4 maps to the SDRAM.

The target of the SharcFIN supports three BARs, which support the following features:

- · All are memory mapped
 - BAR0 = 512 bytes
 - BAR1 = 4 MB
 - BAR2 = 32 MB
 - BAR4 = 16 MB
- BAR2 and BAR4 are prefetchable, subject to control register settings. Refer to section 3.3.1 for enabling this function.
- BAR2 and BAR4 are 64-bit addressable in systems that support a 64-bit address space on the PCI bus.

2.1.2 How the PCI-to-DSP Target Functions

The PCI bus has access to the control registers of the SharcFIN via the target interface. The control registers are located in BAR0 and occupy the offsets from 0x00–0x5F. Target read access from the control registers is not prefetchable, and neither reads nor writes to the control registers will burst.

BAR0 contains all control registers. Access to these registers from the PCI bus doesn't use the ADSP-21160 cluster bus and will not interfere with transactions occurring on the ADSP-21160 cluster bus. Refer to section 3.3 for a description of these registers.

BAR2 allows access to the MMS space of the ADSP-21160 cluster bus, including all four ADSP-21160 DSPs (on the BittWare Hammerhead DSP board) and the broadcast write space.

BAR4 allows access to a 16 MB window of the SDRAM. A register at location 0x4A in the control registers sets which 16 MB window is currently visible. BAR2 and BAR4 are prefetchable, which means that block reads to these memory regions may be made more efficient by performing burst reads on the ADSP-21160 cluster bus. Prefetching can be enabled for burst reads from the PCI bus or non-burst reads (not all masters will perform burst reads).

BAR2 and BAR4 may also be mapped into 64-bit address space on 64-bit addressable systems, which allows more boards to be mapped into these systems as they can be mapped into areas above the first four gigabytes.

The SharcFIN PCI core supports the following PCI-to-DSP target functions (not including functions implemented in the SHARC interface):

- PCI Rev. 2.2 protocol
- Retries, disconnects, 8/16 **TRDY** timeout
- Posts multiple write transactions into the Target Write Post FIFO
- · Control register accesses from PCI
- · Many other tasks that all PCI devices require

The SHARC interface completes the following steps to make target accesses work:

- 1. Arbitrates between the PCI core, the ADSP-21160s, and DMA engines for access to its resources.
- 2. Performs burst accesses to the SDRAM and ADSP-21160s whenever possible.
- 3. Maintains a low latency, low overhead approach to all transactions.

2.1.3 Performing Target Writes

The memory structure called the Target Write/Post FIFO is dedicated to target write transactions. This FIFO is 72 bits wide by 32 bits deep. All target write operations go through this FIFO, including target writes to the control registers. The FIFO can contain several target write transactions, and the SharcFIN handles transaction ordering issues simultaneously.

Target writes are stacked in this FIFO until it is full. If a target read is pending, the SharcFIN asserts a **STOP**, forcing a target-abort-with-retry on all following read transactions until the first read has completed one data phase on PCI. During a target write, an address is tagged and placed into the FIFO, followed by all of the data phases of the current transaction.

The FIFO may contain a range of stacked writes from 16 single data write transactions to a single transaction with 32 quadwords of data. During bursts from a 32-bit master, dwords are packed to quadwords before they are written to the FIFO.

2.1.4 Controlling the FIFO Emptiness Threshold

The SharcFIN contains variables that are used to optimize the control of the Target Write/Post FIFO. Assume the following situation:

The Target Write/Post FIFO has five remaining quadword locations available, and the PCI wants to burst nine quadwords of data to BAR2

When this transaction is started, the address will be written into the FIFO, followed by four quadwords of data. After the fourth data phase, the SharcFIN will assert a **STOP**, terminating the transaction with a target-abort-with-retry. Since the transaction did not complete fully, the master that initiated the transaction will start another transaction.

At this point, assume that the ADSP-21160 cluster bus has removed three quadwords of data from the FIFO, leaving three locations open. The new address will be written into the FIFO, followed by two quadwords of data. Once again, the SharcFIN will issue a **STOP**, and the cycle will repeat until all nine quadwords of data have been transferred.

This scenario is not optimal since many locations in the FIFO were used to contain address information, and unnecessary PCI bandwidth was used for multiple, separate transactions. It would be better if the SharcFIN simply refused the transaction until enough positions were available in the FIFO to contain the entire transaction. In this case, if the FIFO had ten locations available, the entire transaction would burst, minimizing the bandwidth needed for the PCI bus and maximizing the use of the FIFO.

To help adjust the movement of target data in this scenario, the SharcFIN has a set of variables in the control registers called *Target FIFO Emptiness Threshold Control*. Each of the four Base Address Regions (BARs) has two bits that control the FIFO threshold at which more data is accepted. If the Target Write/Post FIFO does not contain at least the number of empty quadwords set in this register, then a target write to that particular BAR will be terminated with a target abort. The selectable values for the register are shown in Table 2-1 on page 2-17.

Table 2-1Number of Quadword Positions That Must Be Empty in the Target Write/Post FIFO for a Target Write to be Accepted

Target FIFO Emptiness Threshold Control	Number of Quadword Positions That Must Be Empty			
00	2 or More (1 Address, 1 Data)			
01	3 or More (1 Address, 2 Data)			
10	Use Threshold set in <i>Target FIFO Threshold MSB[3:0]</i> register			
	Register Value Empty Quadword Positions			
	0	2 (1 Address, 1 Data)		
	1	2 (1 Address, 1 Data)		
	2	4 (1 Address, 3 Data)		
	3	6 (1 Address, 5 Data)		
	4	8 (1 Address, 7 Data)		
	5	10 (1 Address, 9 Data)		
	6	12 (1 Address, 11 Data)		
	7	14 (1 Address, 13 Data)		
	8	16 (1 Address, 15 Data)		
	9	18 (1 Address, 17 Data)		
	а	20 (1 Address, 19 Data)		
	b	22 (1 Address, 21 Data)		
	С	24 (1 Address, 23 Data)		
	d	26 (1 Address, 25 Data)		
	е	28 (1 Address, 27 Data)		
	f	30 (1 Address, 29 Data)		
11	FIFO Must Be Empty			

2.2 DSP-to-SharcFIN Target Interface

This section explains how to access the SharcFIN from the ADSP-21160 DSPs.

2.2.1 Overview of the DSP-to-SharcFIN Target

The DSP-to-SharcFIN target consists of three regions of access:

- SDRAM, which maps to ADSP-21160 memory select line MS0
- · Devices on the peripheral bus, including the UART and flash, which map to MS1
- SharcFIN control registers, single PCI access, and DMA FIFOs, all of which map to MS2

These three regions of access allow the ADSP-21160s to access all of the functions of the SharcFIN.

2.2.2 How the DSP-to-SharcFIN Target Functions

The SDRAM interface is a synchronous, low-latency, bursting interface. The ADSP-21160s allow burst links of up to four 64-bit words. Latency on these operations for in-page burst access is 2,1,1,1 for writes and 4,1,1,1 for reads. For details on the SDRAM interface, refer to section 2.3.

Access to the peripheral bus is asynchronous, and timing depends on the peripheral that is being accessed. For details on the peripheral bus interface, refer to section 2.5.

The SharcFIN control register, PCI access, and DMA FIFO region is a synchronous interface. Reads and writes to all locations in this space, with the exception of the FIFOs, are 1 wait state operations. For details about the SharcFIN control registers, refer to section 3.3.2; for details about single PCI accesses, refer to section 2.7.2; and for details about the DMA FIFOs, refer to section 2.7.3.

2.3 SDRAM Controller

This section explains how the SharcFIN's SDRAM controller functions and describes how to configure it and how to use it to access SDRAM on an ADSP-21160 DSP board. The SDRAM controller supports up to 512 Mbytes of SDRAM. It refreshes the SDRAM and controls all of the interfacing from the ADSP-21160s or the PCI bus to the SDRAM.

2.3.1 Configuring **SDRAM**

The SharcFIN's SDRAM controller provides an interface to SDRAM on an ADSP-21160 DSP board. It allows access to the SDRAM from either the ADSP-21160 DSPs or from the PCI host. To configure the SharcFIN to allow access to SDRAM, you will need to set three registers:

- The **SD Size Config** register sets up the SDRAM for both PCI and ADSP-21160 access
- The **SDRAM Window** register sets up the PCI interface to access the SDRAM
- The ADSP-21160s' WAIT register sets up the ADSP-21160s to access the SDRAM

Setting the SD Size Config Register

The first register to configure to allow access to SDRAM is the **SD Size Config** register (address 0x45). This register is a 4-bit wide register. Bits [1:0] determine how the SharcFIN SDRAM controller uses the SharcFIN's **SD_CS0** and **SD_CS1** (chip select 0 and chip select 1) pins (see Table 4-3 on page 4-206 for pin numbers). The chip select pins allow the SharcFIN to be seamlessly connected to more than one bank of SDRAM. These two bits have the following effects:

Table 2-2 Settings for Bits 0 and 1 of the SD Size Config Register

ВО	B1	Result
0	0	SD_CSO always active
0	1	SD_CS1 active when 32-bit word address bit 24 is high; otherwise, SD_CS0 is active
1	0	SD_CS1 active when 32-bit word address bit 25 is high; otherwise, SD_CS0 is active
1	1	SD_CS1 active when 32-bit word address bit 26 is high; otherwise, SD_CS0 is active

Note Do not change this register. When you issue a board reset, the DSP21k-SF Toolkit Host Interface Library (HIL) automatically sets this register properly.

Bit[2] of the *SD Size Config* register sets the refresh rate of the SDRAM. Its settings are as follows:

Table 2-3

Settings for Bit 2 of the SD Size Config Register

B2	Result
0	4K refreshes every 64 milliseconds
1	8K refreshes every 64 milliseconds

Bit[3] of the **SD Size Config** register resets the SDRAM controller. When a 1 is written to this register, the SDRAM is reset. At the end of reset, the bit is cleared.

Accessing SDRAM From an ADSP-21160 DSP

In the ADSP-21160 memory space, the SDRAM is mapped into MS0, and the ADSP-21160s have full access to all of the SDRAM. To configure the ADSP-21160s for access to the SDRAM, you will need to set the ADSP-21160s' **WAIT** register properly. The external bank 0 access mode bit (EB0AM) must be set to synchronous with 1 wait state writes (10), and the external bank 0 wait states (EB0WS) must be set to 1 wait state (001). For specific details on the **WAIT** register, refer to the *ADSP-21160 SHARC Hardware Reference Manual*.

Accessing SDRAM From the PCI Interface

From the PCI side, the SDRAM is mapped into BAR4 with a 4 Mword (16 Mbyte) window viewable at a time. Because the SDRAM is so large, this window exists to keep the entire SDRAM from being mapped into PCI memory and consuming an excessive portion of the available PCI address space. The offset into BAR4 provides bits [21:0] of the address of the SDRAM word to be accessed. The contents of the 5-bit **SD Window** register (address 0x4A) are prepended to bits [26:22] of the address to complete the address and thereby select the 4 Mword window to be accessed. Bit[31] is always set during PCI-to-SDRAM accesses to indicates to the ADSP-21160s that the transaction is not intended for them.

Using a window register of this type to access the large amount of SDRAM has the following two limitations:

- 1. Accesses to blocks of data that cross the window boundaries must be handled carefully. The Host Interface Library (in BittWare's DSP21k-SF Toolkit) takes care of this limitation for host-based transactions that use its functions to access the SDRAM. Attempting to access a block of data that crosses a window boundary would require breaking the transfer into two smaller transfers and handling the window register properly for each transfer. Non HIL-based transfers, such as bus mastering board-to-board transfers must handle this situation.
- 2. The window register is a shared resource. Because the SharcFIN uses the window register for every PCI access to SDRAM, be careful to coordinate SDRAM accesses from PCI if you have multiple threads on the host or multiple PCI bus masters accessing the SDRAM. More than one device attempting to access different windows of the SDRAM

simultaneously will require great care in keeping the SDRAM window register set correctly for each access.

In addition to these two limitations, the manner in which the ADSP-21160s address the SDRAM causes some confusion about how the pages are ordered. MS0 on the ADSP-21160 starts at 0x800000. Therefore for the PCI bus to access the start of SDRAM from the ADSP-21160's perspective, you will need to set the window bits to 0x02 so that the cluster bus address is 0x800000. This is made more confusing because the last two 16 MByte blocks of SDRAM as seen from the ADSP-21160s map to window register values of 0x00 and 0x01. These are always the last two, regardless of the SDRAM size. Therefore, window register 0x02 is the first 16 MByte block of SDRAM, 0x03 is the second, 0x04 is the third,, 0x00 is the second last, and 0x01 is the last. After reset, the default value of the **SD Window** register is 0x02.

2.3.2 SDRAM Timing

Timing From the ADSP-21160

SDRAM timing from the ADSP-21160 is synchronous, 1 wait state. A single write access takes two bus cycles. Since each additional write is single cycle, using the ADSP-21160's burst mode, you can achieve a four 64-bit word burst write in five bus cycles. Reads require additional setup in the SDRAM, resulting in four bus cycles for the first access and a four 64-bit word burst read in seven cycles. The SharcFIN SDRAM controller has a fixed page size of 512 words. Because the SDRAM is page based, you will encounter additional latencies when page boundaries are crossed.

To achieve optimal system performance, use the power of the ADSP-21160's DMA engines and its dual ported internal RAM. Using these features, you can perform DMA-based SDRAM accesses at the same time that the ADSP-21160 core is performing processing on its internal data space.

Timing from the PCI Interface

Timing for access to SDRAM from the PCI interface is similar to timing from the ADSP-21160 with the following two exceptions:

- 1. Bursts from the PCI bus are limited to the full page (512 words) instead of the four 64-bit words allowed by the ADSP-21160s.
- An additional latency is imposed on reads to the SDRAM as they propagate through the SharcFIN.

2.4 Interrupts and Messaging

This section discusses the SharcFIN's interrupt capabilities. The SharcFIN's interrupt functionality is broken into two parts. The first is the PCI interrupt controller, which controls the interrupts to and from the PCI interface. The second is the SHARC interface interrupt multiplexer, which routes interrupts to the ADSP-21160s, the PCI interface, or an attached PMC+ card from a variety of sources.

This explains how to use and configure the PCI side interrupt controller and the SHARC interface interrupt multiplexer to generate interrupts to and from the PCI interface, the ADSP-21160 DSPs, and various other on-board peripherals, such as a UART or a PMC card. It also discusses how to determine the status of interrupts.

2.4.1 PCI Interrupt Controller and Status

The SharcFIN PCI core contains a programmable interrupt controller that can be configured to generate an interrupt on any or all of the events in "Determining the Interrupt Status" on page 22. Two separate interrupts can be generated: one for the PCI bus, and one for the ADSP-21160 cluster bus.

The interrupt signal on the PCI bus is named **INTA**. The interrupt signal to the SharcFIN's interrupt multiplexer is called **PCFlg**. The signal **PCFLg** is synchronous to **LClk** and may be processed in the SHARC interface interrupt multiplexer to create a level or edge style signal of any level or duration.

Each interrupt source can be masked separately for each interrupt, and the status of all interrupt sources can be read from both the PCI bus and the ADSP-21160 cluster bus. See the descriptions for control register 0x22 (Table 3-108 on page 3-147) for the mask locations.

Once an interrupt has been generated, you can determine the source of the interrupt by reading the interrupt status register. In the case of I_2O , two reads are necessary since determining the source of potential interrupts spans two control registers, 0x20 and 0x0C. The location of the registers for the PCI bus is offset 0x20 from **Base Address Register 0** (BAR0), bits [56:32]. For the SHARC interface, the registers are accessed via the ADSP-21160 cluster bus and are at offset 0x20, bits [27:0].

Each interrupt signal has its own set of masks called *interrupt masks*. These bits are located at 0x22 in the control registers. When a mask bit for a particular condition is set to '1', the respective interrupt will go active when the event or action occurs.

Each interrupt signal has its own set of status bits called *interrupt status*. These bits are located at 0x20 in the control registers. An interrupt will stay active until the source(s) of the interrupt is/are cleared. An interrupt is cleared by writing a '1' to the corresponding bit in the *Interrupt Status* register (0x20). A write of '0' to a bit in the *Interrupt Status* register has no effect.

Determining the Interrupt Status

The SharcFIN contains a status register that allows you to determine the state or status of PCI related operations or actions. The *Status* register is at offset 0x24 and can be read by

either the host (via PCI) or by the ADSP-21160s (via the ADSP-21160 cluster bus). The host controller gets this status information by reading the lower four byte lanes of this register. The ADSP-21160 cluster bus gets this status information by reading the lower four byte lanes of this register. All bits are set and cleared automatically by the PCI controller with the exception of the DMA start/done bits. Table 2-4 below describes the contents and settings of the *Status* register.

Table 2-4Contents and Settings of the Status Register (0x24)

Bit	Name	Description
7:0	USER Incoming/PCI Outgoing Mailbox Status	 Each bit represents the empty/full status of respective byte lanes of the mailbox register 0x1C. A bit is set when a PCI write occurs to a byte lane of mailbox register 0x1C. A bit is cleared when a read from the respective byte lane of the mailbox is done from the ADSP-21160 cluster bus.
15:8	PCI Incoming/USER Outgoing Mailbox Status	 Each bit represents the empty/full status of respective byte lanes of the mailbox register 0x1E. A bit is set when an ADSP-21160 cluster bus write occurs to a byte lane of mailbox register 0x1E. A bit is cleared when a read from the respective byte lane of the mailbox is done from PCI.
20:16	DMA Start/Done# Status	Each bit represents the running/stopped status of each of the five DMA controllers. The five channels are Transmit 0/1, Receive 0/1, and Chaining. • A bit is set when a DMA operation is started. A DMA operation is started by a write of '1' to the respective bit. • A bit will be cleared automatically when the DMA operation is complete and the DMA channel is idle. • A write of '1' to a channel that is currently running has no effect. • A write of '0' has no effect at any time.
21	Chain Fetch End Status	 This bit indicates whether or not the last chain descriptor in a chain has been fetched. The bit is set when the last chain descriptor in a chain has been fetched. The bit is cleared when a chain operation is started.

Table 2-4Contents and Settings of the Status Register (0x24) (Continued)

Bit	Name	Description
23	BIST Start/Done	 This describes the execution status of the Build-In-Self-Test (BIST) mechanism. The bit is set when BIST is started by a write of '1' to the BIST configuration bit in the PCI config space (0x03, bits 31:24]). The bit is cleared by an ADSP-21160 cluster bus write to bit[12] of control register 0x34.
24	I ₂ O Inbound Free List Empty	 This bit is set when the PCI host reads from the inbound queue pointer (0x10, bits [31:0]) such as fetching a pointer to a free message frame. The bit is cleared when the ADSP-21160 cluster bus writes to the inbound queue pointer (0x10, bits [31:0]).
25	I ₂ O Inbound Post List Full	 This bit is set when the PCI host writes to the inbound queue pointer (0x10, bits [31:0]) such as placing a message frame in the queue. The bit is cleared when the ADSP-21160 cluster bus reads from the inbound queue pointer (0x10, bits[31:0]).
26	I ₂ O Outbound Post List Empty	 This bit is set when the PCI host reads from the outbound queue pointer (0x10, bits [63:32]) such as fetching an outbound frame pointer. The bit is cleared when the ADSP-21160 cluster bus writes to the outbound queue pointer (0x10, bits [63:32]).
27	I ₂ O Outbound Free List Full	 This bit is set when the PCI host writes to the outbound queue pointer (0x10, bits [63:32]) such as returning a free frame to the list. The bit is cleared when the ADSP-21160 cluster bus reads from the outbound queue pointer (0x10, bits [63:32]).

Configuring the Interrupt Sources

This section indicates the possible sources for interrupts to the SharcFIN's PCI core or the interrupt multiplexer.

Note In the following descriptions, these conventions apply:

- The term "host" refers to a controlling processor that responds to the PCI interrupts via the PCI bus.
- The term "user" refers to a local processor connected to the SHARC interface that responds to the ADSP-21160 interrupt via the ADSP-21160 cluster bus.

The interrupt signals **INTA** (host) or **PCFlg** (SHARC interface) can be asserted by one or more of the following conditions:

Chain Fetch Done

The last Chain Descriptor Table has been fetched, indicating that it is now okay to reclaim the memory used for the tables.

Chain Done

The last chain descriptor has finished executing and the chaining DMA controller is now idle.

DMA Receive Channel 1 Done

The DMA Receive Channel 1 controller has completed all the requested transfers and is now idle.

DMA Receive Channel O Done

The DMA Receive Channel 0 controller has completed all the requested transfers and is now idle.

DMA Transmit Channel 1 Done

The DMA Transmit Channel 1 controller has completed all the requested transfers and is now idle.

DMA Transmit Channel O Done

The DMA Transmit Channel 0 controller has completed all the requested transfers and is now idle

One or more of the following conditions can cause the assertion of the signal **PCFlg** (SHARC interface):

120 Outbound Free List Full

This interrupt is asserted when the PCI host writes to the outbound queue pointer, such as returning a free frame to the list.

120 Outbound Post List Empty

This interrupt is asserted when PCI reads from the outbound queue pointer, such as fetching an outbound frame pointer.

120 Inbound Post List Full

This interrupt is asserted when PCI writes to the inbound queue pointer, such as placing a message frame in the queue.

I₂O Bound Free List Empty

This interrupt is asserted when PCI reads from the inbound queue pointer, such as fetching a pointer to a free message frame.

BIST Start

The host has written a "1" to the BIST configuration register, requesting that the built-in-self-test (BIST) function be executed and results reported.

Single PCI Access Complete

The single PCI access operation has successfully completed.

User Outgoing Mailbox Byte 7 Empty

The host has read mailbox byte 7 and this mailbox is now empty.

User Outgoing Mailbox Byte 6 Empty

The host has read mailbox byte 6 and this mailbox is now empty.

User Outgoing Mailbox Byte 5 Empty

The host has read mailbox byte 5 and this mailbox is now empty.

User Outgoing Mailbox Byte 4 Empty

The host has read mailbox byte 4 and this mailbox is now empty.

User Outgoing Mailbox Byte 3 Empty

The host has read mailbox byte 3 and this mailbox is now empty.

User Outgoing Mailbox Byte 2 Empty

The host has read mailbox byte 2 and this mailbox is now empty.

User Outgoing Mailbox Byte 1 Empty

The host has read mailbox byte 1 and this mailbox is now empty.

User Outgoing Mailbox Byte 0 Empty

The host has read mailbox byte 0 and this mailbox is now empty.

User Incoming Mailbox Byte 7 Full

The host has filled mailbox byte 7 and can be read by the user.

User Incoming Mailbox Byte 6 Full

The host has filled mailbox byte 6 and can be read by the user.

User Incoming Mailbox Byte 5 Full

The host has filled mailbox byte 5 and the mailbox can be read by the user.

User Incoming Mailbox Byte 4 Full

The host has filled mailbox byte 4 and the mailbox can be read by the user.

User Incoming Mailbox Byte 3 Full

The host has filled mailbox byte 3 and the mailbox can be read by the user.

User Incoming Mailbox Byte 2 Full

The host has filled mailbox byte 2 and the mailbox can be read by the user.

User Incoming Mailbox Byte 1 Full

The host has filled mailbox byte 1 and the mailbox can be read by the user.

User Incoming Mailbox Byte 0 Full

The host has filled mailbox byte 0 and the mailbox can be read by the user.

The signal **INTA** can also be asserted by one or more of the following conditions:

Signal PCFlg Asserted (User Interrupt)

The ADSP-21160 cluster bus has asserted the signal PCFlg.

PCI Incoming Mailbox Byte 7 Full

The user outgoing mailbox byte 7 has been filled and can be read by the host.

PCI Incoming Mailbox Byte 6 Full

The user outgoing mailbox byte 6 has been filled and can be read by the host.

PCI Incoming Mailbox Byte 5 Full

The user outgoing mailbox byte 5 has been filled and can be read by the host.

PCI Incoming Mailbox Byte 4 Full

The user outgoing mailbox byte 4 has been filled and can be read by the host.

PCI Incoming Mailbox Byte 3 Full

The user outgoing mailbox byte 3 has been filled and can be read by the host.

PCI Incoming Mailbox Byte 2 Full

The user outgoing mailbox byte 2 has been filled and can be read by the host.

PCI Incoming Mailbox Byte 1 Full

The user outgoing mailbox byte 1 has been filled and can be read by the host.

PCI Incoming Mailbox Byte 0 Full

The user outgoing mailbox byte 0 has been filled and can be read by the host.

PCI Outgoing Mailbox Byte 7 Empty

The user has read the PCI outgoing mailbox byte 7 and this mailbox is empty.

PCI Outgoing Mailbox Byte 6 Empty

The user has read the PCI outgoing mailbox byte 6 and this mailbox is empty.

PCI Outgoing Mailbox Byte 5 Empty

The user has read the PCI outgoing mailbox byte 5 and this mailbox is empty.

PCI Outgoing Mailbox Byte 4 Empty

The user has read the PCI outgoing mailbox byte 4 and this mailbox is empty.

PCI Outgoing Mailbox Byte 3 Empty

The user has read the PCI outgoing mailbox byte 3 and this mailbox is empty.

PCI Outgoing Mailbox Byte 2 Empty

The user has read the PCI outgoing mailbox byte 2 and this mailbox is empty.

PCI Outgoing Mailbox Byte1 Empty

The user has read the PCI outgoing mailbox byte 1 and this mailbox is empty.

PCI Outgoing Mailbox Byte 0 Empty

The user has read the PCI outgoing mailbox byte 0 and this mailbox is empty.

Determining the Interrupt Timing

Assuming the correct masks are asserted, when a DMA operation has completed, the interrupts will go active according to the following approximate timing:

PCFlg: 12 clock cycles of **LClk** or **PCI_clk** (whichever is slower)+ 2 clock cycles of

LClk

INTA: 12 clock cycles of **LClk** or **PCI_clk** (whichever is slower) + 2 clock cycles of

LClk + 3 clock cycles of PCl_clk

The interrupts will deassert according to the following approximate timing:

PCFlg: 2 clock cycles of **LClk**

INTA: Unknown because the time for the write to complete is indeterminate.

Interrupt Service Routine

The deassertion time after a write of "1" to a bit of the interrupt status register for **INTA** is unknown, which is troublesome for the interrupt service routine on the host processor. It is impossible to determine the latency of a PCI write, since bridges and other such devices could be between the host processor and the SharcFIN. To guarantee that an **INTA** interrupt is deasserted, the interrupt service routine for the host processor should do a write of "1" to the correct bits of the **interrupt status** register of the SharcFIN, followed by a read of any register in the SharcFIN before the routine is exited.

Many devices can be between the SharcFIN and the host processor, and each device in the chain will add some latency to this transaction. The write to clear the interrupt, therefore, could take a long time to execute. This execution time will depend on the following:

- The traffic on the PCI bus(es)
- The number of P2P bridges between the host processor and the SharcFIN
- The number of target transactions stacked in the Target FIFO of the SharcFIN.

Also, the bridges between the host processor and the SharcFIN will slow down the **INTA** signal on its path back to the host processor.

If this write-followed-by-read sequence is not followed, it is possible that the write intended to clear the interrupt will not have executed before the interrupt service routine is exited, and the host processor will go back into the interrupt service routine because **INTA** will still be active. The only way to guarantee that this problem is avoided is to execute a read access to the same device that is generating the interrupt. PCI transaction ordering requirements force the write access to complete at the SharcFIN before the read, guaranteeing execution of the interrupt-clearing write.

The read access will also take a longer path back to the host processor than the **INTA** signal (by PCI specification), and thereby guarantee that the host processor will not exit the interrupt routine before the **INTA** signal has been deasserted. On the ADSP-21160 side, the read is not required since a fixed number of clock cycles exists between the time of the write and the deassertion of **PCFlg**.

The PCI interrupt **INTA** is synchronized to the PCI clock, **PCI_clk**. The ADSP-21160 side interrupt **PCFlg** is synchronized to the PCI clock, **LClk**. A flow chart that illustrates the steps is shown in Figure 2-1.

Figure 2-1
Interrupt Service Routine Flow Chart

2.4.2 SHARC Interface Interrupt Multiplexer

The SharcFIN contains a flexible interrupt multiplexer that you can use to create complex interrupt schemes on an ADSP-21160 DSP board. The interrupt multiplexer contains an interrupt multiplexer for each ADSP-21160 on the DSP board, the PCI interface, and any PMC+ cards attached to the DSP board. Inputs to the multiplexer are flags from each ADSP-21160, a PCI side flag, PMC+ flags, UART flags, a peripheral bus flag, and a DMA flag. Outputs from the multiplexer are an interrupt line to each ADSP-21160 on the DSP board, the PCI side, and a PMC+ site on the DSP board, if applicable.

How the Interrupt Multiplexer Functions

The interrupt multiplexer for each output is completely independent and can handle multiple input sources. Input sources include a flag from each of the four ADSP-21160s, a flag from the PMC+ interface, a PCI flag, two UART flags, a peripheral bus flag, and a DMA flag. A second flag from each ADSP-21160 also functions as an input to the multiplexer but can only be used to generate interrupts to other ADSP-21160s.

Each interrupt multiplexer consists of a 32-bit configuration register that allows you to select the desired interrupt sources (see "Interrupt Configuration Registers" on page 188). Each register is broken into two parts. Bits [15:0] are read/write mask bits that select from the sources that will be generating the interrupt; a 1 in a bit position enables the corresponding flag to cause an interrupt on that multiplexer. Bits [31:16] are read only masked flag lines; when one of the flag inputs and its corresponding bit in bits [15:0] of the configuration register is high, the corresponding bit in bits [31:16] is also set to indicate the source of the interrupt. Bits [31:16] allow a device that receives an interrupt to quickly determine the source of the interrupt.

To generate an interrupt, both the flag input from the desired source and its corresponding bit in the configuration register must be asserted. Any other flag input and its corresponding bit in the register can also be high to generate an interrupt. The interrupt multiplexer ANDs each flag input and its corresponding mask bit; it then ORs the results of the AND operations together to create the output. Figure 2-2 on page 2–31 illustrates an interrupt configuration register.

Note

The interrupt multiplexer is level sensitive and does not latch interrupt sources. Therefore, the interrupt is active as long as the source is asserted.

Configuring the Interrupt Sources

To configure the source of an interrupt, you will need to set the appropriate bit in the interrupt configuration register of the desired interrupt output multiplexer. When the flag input that corresponds to that bit is also high, the interrupt multiplexer will generate an interrupt.

Figure 2-2
Interrupt Configuration Register

Performing PCI Side Interrupts

The SharcFIN provides full I²O support with the associated mailboxes. To generate interrupts from the PCI side, either write to PCI outgoing mailboxes or use the ADSP-21160 side PCI interrupt multiplexer, which generates the PCI side user interrupt bit. To generate interrupts to the PCI side, configure the multiplexer, which will generate the "user side" flag into the PCI side interrupt mechanism. The PCI side must then "open" the interrupt.

Performing ADSP-21160 Interrupts

The PCI side can interrupt the ADSP-21160s by writing into mailboxes. PCI side interrupts into the SharcFIN via the $\rm I^2O$ mailbox registers show up as PCI flags into the SharcFIN interrupt multiplexer. Therefore, you can program the ADSP-21160s to respond to PCI interrupts as desired. Writing into mailboxes will cause the PCI interrupt bit to be set in the SHARC interface interrupt multiplexers, which will generate an ADSP-21160 interrupt if the mask is open.

Determining the Status of the Interrupts

The registers at offset 0x5E and 0x5F show the status of each of the flags and interrupts. The **Flag Status** register (0x5E) shows the state of all flag inputs to the interrupt multiplexer. The **Interrupt Status** register (0x5F) shows the state of all interrupt outputs from the interrupt multiplexer.

2.4.3 ADSP-21160 Flag and Interrupt Connections to SharcFIN

Each ADSP-21160 SHARC DSP has two flags and two interrupts that connect to the SharcFIN. Flag0, Flag1, and IRQ0 from each DSP connect to the SharcFIN ASIC interrupt multiplexer (see section 2.4.2). IRQ1 from each DSP is hardwired (non-configurable) in the SharcFIN with the following connections:

- 21160-1 IRQ1 is hardwired to 21160-3 Flag1 and 21160-4 Flag1.
- 21160-2 IRQ1 is hardwired to 21160-3 Flag1 and 21160-4 Flag1.
- 21160-3 IRQ1 is hardwired to 21160-1 Flag1 and 21160-2 Flag1.
- 21160-4 IRQ1 is hardwired to 21160-1 Flag1 and 21160-2 Flag1.

2.4.4 Messaging

Mailbox Operation

Functional Description. The SharcFIN has two 64-bit mailbox registers, which are useful for passing command and status information between the ADSP-21160 cluster bus and the PCI bus. The mailbox registers are divided into two 8-byte sets. Each set is dedicated to one bus for transfer of data to the other bus. The mailbox registers at offset 0x1C are **PCI Outgoing** or **User Incoming** registers. The registers at offset 0x1E are **User Outgoing** or **PCI Incoming** registers. Figure 2-3 shows a block diagram of the mailbox section of the SharcFIN.

Each byte lane of the mailbox registers contains a status register. Empty and full status is determined by polling the status registers accessible to both the PCI and ADSP-21160 cluster busses. The status registers are accessible to the PCI bus from the control registers (*BARO*) at offset 0x24, bits [15:0]. The ADSP-21160 cluster bus accesses the mailbox register at offset 0x24 bits [15:0]. Any of the empty or full flags may be used to generate a PCI or ADSP-21160 interrupt.

Each byte lane of the mailbox registers also contains an empty interrupt flag and a full interrupt flag. Any of these flags may be used to generate a PCI (INTA) or SHARC interface (PCFlg) interrupt. There is a mask register for each of these flags. For example, the PCI Outgoing/User Incoming mailbox register 7 (0x1C, bits [63:56]) has a User Incoming MB Full Interrupt Flag 7 (0x20, bit[7], accessible only from the ADSP-21160 cluster bus) and a PCI Outgoing MB Empty Interrupt Flag 7 (0x20, bit[39], accessible only from PCI). The User Incoming MB Full Interrupt Mask 7 (0x22, bit[7]) determines if an interrupt (on PCFlg only) will be generated from the User Incoming MB Full Interrupt Flag 7 being set, and the PCI Outgoing MB Empty Interrupt Mask 7 (0x22, bit[39]) controls whether an interrupt (on INTA only) will be generated from the PCI Outgoing MB Empty Interrupt Flag 7 being set.

Mailbox Empty/Full Conditions. The PCI bus and the ADSP-21160 cluster bus each have a mailbox register indicating the empty/full status of each byte lane. A write to an empty outgoing mailbox sets the status bit for that register, marking the mailbox as full. A read from a full mailbox clears the status bit for that register.

The status of a mailbox must be determined prior to filling it. If a full mailbox is written to, the new data overwrites the old, and the mailbox remains full. A read from an empty mailbox returns the previously written data, and the mailbox remains empty. For example, a PCI write to a **PCI Outgoing/User Incoming** mailbox register will set the corresponding *User Incoming Full Interrupt Flag*. An interrupt may be generated, and a read from the ADSP-21160 cluster bus to this register also sets the *PCI Outgoing Empty Interrupt Flag*, but it does not clear the *User Incoming Full Interrupt Flag*. These flags can only be cleared by writing a "1" to them from their respective sides.

Figure 2-3 SharcFIN Mailbox Block Diagram

Interrupts. The user has the option to generate interrupts to PCI (using **INTA**) and the ADSP-21160 cluster bus (via the SHARC interface interrupt multiplexer using **PCFlg**) when specific mailbox events occur. The following two conditions, if enabled, will generate an interrupt:

- An incoming mailbox becomes full
- · An outgoing mailbox becomes empty

Multiple PCI Masters. The PCI bus has some shortcomings when multiple masters are attempting to read or write the same address location. To maintain proper transaction

ordering as required by the PCI Specification, the SharcFIN must execute all PCI writes that it has received before servicing a target read. Reads and writes to the mailbox registers are target accesses.

Since the SharcFIN can buffer target writes, it may not be able to respond to a target mailbox read within 16 pci_clk_2fpga's from the assertion of the FRAME. Under these conditions, the PCI Specification requires that the SharcFIN terminate the read transaction with a target retry. If the PCI bus is arbitrated to another master, and this different master attempts to read the same target address, the new master will get the data from the prior transaction. This problem is endemic to PCI. To avoid it, use one of the following workarounds:

- Limit the number of masters that access the mailbox locations to two. Assign the first master the mailboxes 3–0 and assign the second master the mailboxes 7–4. Restrict each master to dword assesses only. Since the dword addresses are different, the problem never occurs.
- Add additional mailboxes at different addresses in the SHARC interface using the target interface. Alias the same mailboxes to different target addresses so that each master has a different address.

Intelligent I/O (I₂O)

The I_2O -compatible Messaging Unit supplies two paths for messages: two inbound FIFOs to receive messages from the primary PCI Bus, and two outbound FIFOs to pass messages to the primary PCI Bus. Refer to I_2O Architecture Specification v1.5 for details. Figure 2-4 and Figure 2-5 illustrate information about I_2O architecture.

Figure 2-4Typical I₂O Server/Adapter Card Design

Figure 2-5Driver Architecture Compared

2.5 Peripheral Bus Interface

The peripheral bus is a general-purpose utility bus that allows easy interface to standard asynchronous peripherals such as UARTs and flash memory. It provides a simple, glueless way to add additional functionality to your ADSP-21160 DSP board. The peripheral bus is an 8-bit wide, 2 MB addressable bus with select lines for three different devices. It is mapped into the ADSP-21160 space as MS1 and into PCI space as BAR1. This region is also mapped into the ADSP-21160 BMS (Boot Memory Select) space to allow the ADSP-21160s to boot from flash memory.

2.5.1 Configuring the Peripheral Bus

Configuring the ADSP-21160s to Access the Peripheral Bus

To configure the ADSP-21160s for access to the peripheral bus, the ADSP-21160s' **Wait Mode** register must be set properly. The *external bank 1 access mode* bits must be set to 00 (asynchronous mode). The *external bank 1 wait state* bit must also be set appropriately for the device that the ADSP-21160 is attempting to communicate with. For more information on the **Wait Mode** register, refer to the ADSP-21160 SHARC DSP Hardware Reference Manual (available from Analog Devices).

Configuring the PCI Bus to Access the Peripheral Bus

The PCI bus accesses the peripheral bus through BAR1. A control register at 0x42, the **Peripheral Bus Configuration** register, sets the timing of PCI access to the peripheral bus. It is similar in function to the wait state setting for the ADSP-21160s.

Bits [3:0] of the **Peripheral Bus Configuration** register set the length of the transaction. The value indicates the number of local bus clock cycles the transaction will remain active, which allows communication with slower asynchronous devices. For example, with the default count of 5 and a 40 MHz local clock, a write to the peripheral bus holds the peripheral bus write pin, address pins, and data pins valid for 5×25 ns (see Table 4-2 on page 4-200 for pin descriptions). This applies only to PCI transactions.

Setting bit [4] of the **Peripheral Bus Configuration** register enables the **PR_ACK** pin to hold off completion of the transaction at the end of the wait programmed by bits [3:0]. Bit [4] is cleared by default. Be cautious about enabling this bit; long hold-offs on the PCI bus can cause your system to become unstable.

Setting bit [5] of the *Peripheral Bus Configuration* register resets devices on the peripheral bus. Devices on the peripheral bus are held in reset until the bit is cleared.

2.5.2 Data Alignment on the Peripheral Bus

ADSP-21160 Access to the Peripheral Bus

When an ADSP-21160 attempts to write to the peripheral bus, data must appear on bits [8:0] of the ADSP-21160 cluster bus on even address accesses and on bits [39:32] on odd word accesses. On reads of the peripheral bus by the ADSP-21160, the data appears on bits [8:0] and bits [39:32]. Therefore, when the ADSP-21160 cluster bus is configured as a 64-bit bus with no external port packing, data to/from the devices appears as the least significant byte of the word being accessed.

PCI Access to the Peripheral Bus

For PCI accesses to the peripheral bus, all transactions must be single-byte operations. Never read or write a whole 32-bit word – just a byte. This PCI region of memory is byte mapped instead of word mapped (BAR0, BAR2, BAR4 are all word mapped).

2.5.3 Mappings of Peripherals on the Peripheral Bus

The SharcFIN has select lines for up to three devices on the peripheral bus. The **PR_FLASHSel** line is intended to be connected to flash memory for flash boot or non-volatile storage for the ADSP-21160s. The **PR_UARTSel** line is intended to be connected to a National Semiconductor 16552 dual UART chip. The **PR_Sel** line is intended for custom user applications. The different select lines are accessed as described in Table 2-5 below.

Table 2-5Memory Mappings of Peripherals on the Peripheral Bus

ADSP-21160 Mappings	PCI Mapping

Device	Address Range	Device	Address Range
Flash	BMS + 0x0 to 0x1FFFFF		
Flash	MS1 base + 0x0 to 0x1FFFFF	Flash	BAR1 base + 0x0 to 0x1FFFFF
UART	MS1 base + 0x200000 to 0x20000F repeated over and over until 0x3FFFFF	UART	BAR1 base + 0x200000 to 0x20000F repeated over and over until 0x2FFFFF
PB Con*	MS1 base + 0x400000 to 0x5FFFFF	PB Con	BAR1 base + 0x300000 to 0x3FFFFF (B20 is lost)
No Sel [†]	MS1 base + 0x600000 to 0x7FFFFF		

^{*} PB Con is the peripheral bus connector select.

Refer to the documentation for the UART and the flash memory for details on how they function. BittWare also provides example software for using the UART and the flash memory.

[†] For this region, the transaction shows up on the peripheral bus read and write lines, and the address lines are strobed, but no selects are active.

2.6 Reset and Watchdog Interface

2.6.1 SharcFIN Reset Sources

The SharcFIN has multiple reset sources that affect different portions of the SharcFIN and devices attached to it. The first three reset sources come from the PCI portion of the chip:

• Total Reset: Resets the entire chip and all peripherals attached to it

Host Total Reset: Resets the SHARC interface, its peripherals, and the control

registers but does not reset the PCI configuration registers

SHARC interface Resets the SHARC interface but does not reset the PCI core

Reset:

The remaining reset sources affect only the SHARC interface portion of the chip and its peripherals:

External Reset Line: Resets the SHARC interface and all peripherals

• SDRAM Reset Line: Resets the SDRAM controller

• Peripheral Bus Reset: Resets all devices on the peripheral bus

Peripherals of the SharcFIN include the SDRAM controller, the ADSP-21160 DSPs, and any devices attached to the peripheral bus. The reset that is passed to the ADSP-21160s (via the **ResetO** signal) is conditioned according to Analog Devices' recommendation in the ADSP-21160 anomaly list dated 05/25/2001 to properly initialize the ADSP-21160s' core clock PLL. This anomaly list requires guaranteeing that the ADSP-21160 reset is at least 60 microseconds long and disabling the clock for 10 microseconds during that time. The clock is disabled by the clock enable line (**ClkEn**). If the reset signal coming to the conditioner is less than 60 microseconds, the conditioner keeps the ADSP-21160s in reset for 60 microseconds. If the reset signal is longer than 60 microseconds, the conditioner keeps the ADSP-21160s in reset until the reset signal is cleared. Figure 2-6 illustrates the SharcFIN's reset circuitry.

Figure 2-6
SharcFIN Reset Circuitry

Performing a Total Reset (TR)

The first PCI side reset source is the PCI reset line **RST**, which resets every function in the chip and all peripherals attached to it. It is issued by the PCI bus to reset all PCI devices on the bus. The SharcFIN is completely reset when **RST** from the PCI bus is active. All registers are initialized to the default conditions, and all FIFOs are emptied. After **RST** is deasserted, the chip will come out of reset after four PCI clocks and will then respond to PCI accesses.

The PCI Bus reset input (RST), when active, causes all PCI bus outputs to be asynchronously tri-stated (or floated), which is a requirement of the *PCI Local Bus Specification* (Revision 2.2). All internal state machines are held in idle states until RST is deasserted.

To maintain hot-plug compatibility, all reset internal functions will not come out of the reset state until an idle phase is detected on the PCI bus. An idle phase is defined as **FRAME** inactive and **IRDY** inactive. Because the SharcFIN is a nonvolatile device, no power-up configuration delays are necessary.

RST is deglitched and synchronized to the PCI clock, **CLK**, prior to its connection to the PCI core. **RST** must be active for a minimum number of cycles of **CLK** and **LClk** (see Section 3.9.4). During any resetting function, both the PCI clock, **CLK**, and the user clock, **LClk**, must be running. This requirement may have implications for subsystems that have PLLs on the clocks.

Performing a Host Total Reset (HTR)

The second PCI side reset source is called a Host Total Reset. The PCI host may initiate a Host Total Reset by writing a "1" to the control register address offset 0x3A, bit[0]. This is *not* a complete chip reset. In addition to resetting the SHARC interface of the chip, a Host Total Reset resets the state of the control registers from 0x00 – 0x3F, including the PCI side DMA engines. It will reset the entire chip with the exception of PCI configuration space; therefore all of the hot plug/BIOS configuration will still be intact.

The PCI core will automatically clear the write of "1." After "1" has been written, the chip's control will go into reset until both clock domains have gotten into reset, and it will respond to PCI access after a given number of clocks. A simple way to recognize that the SharcFIN has come out of reset is to read the vendor device ID register in PCI configuration space until the correct value is read back.

Resetting the SHARC Interface and All Peripherals

Resetting via the PCI Host. The PCI host may initiate a SHARC interface reset by writing a "1" to the PCI control register address offset 0x3A, bit 32. The SHARC interface of the chip will be held in reset, but the PCI core will still respond to PCI accesses. This action will reset the SHARC interface and all peripherals, including the ADSP-21160 DSPs. The reset is cleared by writing a "0" to 0x3A bit [32].

Resetting via an External Reset Source. The SharcFIN's external reset line (WD_Rst) is typically attached to a watchdog chip and includes resets from the watchdog or an external reset pin. This signal resets the entire SHARC interface and all peripherals.

Resetting Peripherals Attached to the SharcFIN

Resetting the SDRAM Controller. Bit[3] of the *SD Size Configuration* register resets the SDRAM controller in the SharcFIN. The reset that is passed to the SDRAM controller is conditioned to last a maximum of two **LClk** clock cycles to allow the SDRAM controller to continue to refresh the SDRAM so its contents are not lost. It is typically not necessary to reset the SDRAM controller. For details on the *SD Size Configuration* register, refer to the section entitled "SDRAM Size Configuration Register" on page 185.

Resetting Devices on the Peripheral Bus. Bit 5 of the *Peripheral Bus Configuration* register resets all devices on the peripheral bus, including the flash memory, UART, and the peripheral bus reset line. For details on the *Peripheral Bus Configuration* register, refer to the section entitled "Peripheral Bus Configuration Register" on page 181.

2.6.2 Watchdog Interface

The SharcFIN is designed to be connected to a Dallas Semiconductor 1832 watchdog chip. The chip has three inputs and two reset outputs. The active low reset output is intended to connect to the SharcFIN's \(\overline{WD_Rst}\) pin (see Table 4-2 on page 4-200 for signal description). One of the inputs can be connected to an external push-button reset. The other two inputs (TCL and TDLY) are intended to be connected to the SharcFIN's \(\overline{WD_TDLY}\) pins respectively. These two inputs allow the SharcFIN to implement a watchdog reset function using ADSP-21160 flags to tickle the watchdog. The \(\overline{Watchdog Configuration}\) register (0x43) controls how these two lines are used.

Bits [1:0] of the *Watchdog Configuration* register enable the watchdog function and set the required tickle frequency. Bits [7:4] enable 21160-1 F1, 21160-2 F1, 21160-3 F1, or 21160-4 F1 (respectively) as sources for the tickle function. The section entitled "Watchdog Configuration Register" on page 182 explains the register in more detail. Refer to the DS1832 data sheet for details on the watchdog's operation.

2.7 Bus Mastering and DMAs

The bus mastering capabilities of the SharcFIN consist of two parts. The first involves moving data between the DMA FIFOs and the PCI bus. The other involves moving data between the ADSP-21160 cluster bus and the DMA FIFOs. This section covers the following topics:

- Bus mastering (section 2.7.1)
- Single PCI accesses (section 2.7.2)
- DMAs between the DMA FIFOs and the PCI bus (section 2.7.3)
- DMAs between the ADSP-21160 cluster bus and the DMA FIFOs (section 2.7.4)

Figure 2-7 illustrates the SharcFIN's DMA channels.

Figure 2-7
DMA Channels in the SharcFIN ASIC

2.7.1 Bus Mastering

The presence of the SharcFIN allows the Bittware DSP board to master the PCI bus. This enables the DSP board to have direct access to any PCI device in the system, allowing it to read or write data without involving the host computer. You may even opt to ignore a provider's OS driver for the PCI device, which becomes important in applications in which real-time performance is required since the host computer's operating system will often schedule the servicing of PCI devices indeterminately. Moreover, PCI devices without drivers for the chosen OS can be controlled by creating a host interface to the device via the DSP board.

Note

In the discussion to follow, SharcFIN control and status register addresses are given as byte offsets from the base (MS2 from the processor's perspective; BAR0 from the PCI bus), but the registers indicated are 64 bits long.

The SharcFIN contains five independent bus mastering channels:

- Two for data moving from the ADSP-21160 cluster bus to PCI
- Two for data moving from PCI to the ADSP-21160 cluster bus
- One channel for moving single bytes, dwords, or quadwords of data to/from PCI (SPCI)

The five channels are labeled as follows:

- 1. Receive Channel 0
- 2. Receive Channel 1
- 3. Transmit Channel 0
- 4. Transmit Channel 1
- 5. Single PCI Access (SPCI)

Each channel, with the exception of SPCI, has its own 64 quadwords deep FIFO, and all five channels can perform full 64-bit addressing and 64-bit data transfers. When chain mode is enabled, Receive Channel 0 and Transmit Channel 0 are dedicated to chaining.

The host processor or local processor sets up a DMA transfer by setting the PCI address and transfer count. The function is enabled when a "1" is written to the DMA Start/Status bit of the respective channel (control registers address 0x24). The SharcFIN will request access to the PCI bus, and when access is obtained, it will burst the data starting at the location specified in the Master Write Address register.

The SharcFIN will generate a Dual Address Cycle (DAC) if the PCI address is beyond the lower 4GB range (upper 32 bit not equal to zero), and it will not generate a DAC if the address is within the lower 4GB range (according to the PCI specification). This is automatically determined by the PCI core.

2.7.2 Single PCI Accesses

The SharcFIN supports a single PCI access channel for performing single PCI reads and writes. To perform PCI reads and writes, tell the SharcFIN which address to read or write, provide the data (for a write), and then request the transfer. On a read completion, the data is available in a buffer to be read. As with the DMAs, the SharcFIN is designed for 64-bit transfers and alignment. You can make it perform any number of byte width transfers by specifying which of the 8 bytes of the 64-bit access are to be enabled. However, you will need to align the data in the 64-bit word and use the 64-bit aligned address.

Note

Single PCI accesses can only be performed from the ADSP-21160s. Unlike DMAs, single PCI accesses can not be performed by the host.

Single PCI Access Mastering

The SharcFIN has a mastering channel that allows a single quadword of data to/from the SharcFIN using any of the commands shown in Table 2-6. This mastering mode is intended for use by a local processor to perform any or all of the following tasks that require the movement of small amounts of data:

- Type 0 or 1 configuration cycles
- · Chain descriptor table initialization
- · Random memory read/writes
- · Random I/O read/writes
- Special cycles
- Interrupt acknowledge

This master can be programmed to use the following commands:

- Memory Read Multiple (MRM)
- Memory Read Line (MRL)
- Memory Write and Invalidate (MWI)

Table 2-6Single PCI Mastering Commands

C/BE#[3:0]	Command Type SharcFIN Capability		
0000	Interrupt Acknowledge	Master	
0001	Special Cycle	Master	
0010	I/O Read	Master/Target	
0011	I/O Write	Master/Target	
0100	Reserved	N/A	
0101	Reserved	N/A	
0110	Memory Read	Master/Target	
0111	Memory Write	Master/Target	
1000	Reserved	N/A	
1001	Reserved	N/A	
1010	Configuration Read	Master/Target	
1011	Configuration Write	Master/Target	
1100	Memory Read Multiple	Master/Target	
1101	Dual Address Cycle	Master/Target	
1110	Memory Read Line	Master/Target	
1111	Memory Write and Invalidate	Master/Target	

These commands, however, imply that multiple pieces of data will be transferred. Since only a single quadword at a time can be transferred using the SPCI controller, it doesn't make any sense to use these commands with this function. The SPCI master always has the highest priority of all mastering channels, regardless of the arbitration selected in the **Arbitration Mode** register.

The following steps are needed to execute a single PCI Access:

For a write (SHARC interface to PCI):

- 1. Write the target address to the **Single PCI Address** register[63:0] (0x26).
- 2. Write the target data to the **Single PCI Data** register[63:0] (0x28).
- 3. Write byte enables, command, and start to **Single PCI Access**, **Control** (0x08, bits [61:48]).
- 4. Wait until the *start* bit (0x20, bit[61]) is low.

For a read (PCI to SHARC interface):

- 1. Write the target address to **Single PCI Address** register[63:0] (0x26).
- 2. Write byte enables, command and start to **Single PCI Access, Control** (0x08, bits[61:48]).
- 3. Wait until the start bit (0x08, bit [61]) is low.
- 4. Data can then be read from **Single PCI Data** register[63:0] (0x28).

Bit[2] in the address register is ignored, and bit[2] in the resulted PCI transaction is generated from the byte-enables automatically. Address bits 1:0 are passed directly to the PCI bus, and they should always be "00" when doing a memory or configuration transaction. For I/O transactions, they should be equal to the location of the first active byte, indicated by the byte enables, within the doubleword. The following are some examples:

• Memory transactions:

Address register [1:0] = "00", byte enables = "11000000"; this will generate a 32-bit transaction and PCI address [2:0] will be "100".

Address register [1:0] = "00", byte enables = "11111111"; this will generate a 64-bit transaction and PCI address [2:0] will be "000".

· I/O transactions:

Address register [1:0] = "10", byte enables = "11000000"; this will generate a 32-bit transaction, and PCI address [2:0] will be "110".

Address register [1:0] = "00", byte enables = "11111111"; this will generate two 32-bit transactions, and PCI address [2:0] will be "000" and "100" respectively.

Address register [1:0] = "01", byte enables = "00000010"; this will generate a 32-bit transaction, and PCI address [2:0] will be "001".

When setting up the SPCI transaction, the data must be aligned into the correct byte lanes in the quadword that is reflected by the byte enables. This action is required even for configuration cycles.

Single PCI Accesses from an ADSP-21160 DSP Board

From the viewpoint of the Bittware DSP board, SPCI accesses are as described above, but with some important considerations. The DSP board's cluster bus, which is shared by all processors, SDRAM, and the SharcFIN, is 32-bit addressable. This means that the addresses to the SharcFIN registers, indicated above as byte-oriented offsets, must be divided by four (4) to reorient them to 32 bits. Furthermore, each 64-bit register is seen as a pair of 32-bit register halves.

The SharcFIN is mapped to the ADSP-21160's MS2, which is the base address. On the ADSP-2116x processors, MS2 must be calculated according to the MSIZE field in the ADSP-21160's SYSCON register. See the *ADSP-21160 SHARC DSP Hardware Reference* (Analog Devices) for more information on calculating the address of MS2. For this discussion, we can assume the base address of the SharcFIN is known and is indicated by *ms2_base*. The examples that follow will use a C Language-like syntax for clarity.

Example 1: Performing an SPCI 16-bit Write Access. The following example shows how to perform a SPCI 16-bit write access from an ADSP-21160 processor, relating the steps to those stated above. Suppose your PCI target address, *pci_addr*, is 0xF5000006, and your data to write, *data_val*, is 0xCAFE.

1. Write target address to the *Single PCI Address* register [63:0] (0x98). The *Single PCI Address* register is at 32-bit offset 0x26, which is the lower half of the 64-bit register. Although the target address is 32 bits long, clear the upper 32 bits in the address register. Align the address to 64 bits by clearing the lower 3 bits, then write the aligned address with two 32-bit accesses:

```
*(ms2_base + 0x26) = pci_addr & 0xFFFFFFF8;
*(ms2_base + 0x27) = 0;
```

2. Write target data to the *Single PCI Data* register [63:0] (0xA0). The *Single PCI Data* register is at 32-bit offset 0x28, which is the lower half of the 64-bit register. Place your data in the correct location within the 64 bits of the data register. Since your target address is 0xF5000006, write the 16 bits of data to the upper two byte positions in the data register as shown. The SPCI mastering channel can be used to read or write any number and any combination of bytes in a quadword.

Single PCI Data Register		er	0×29		0x28		
CA	FE						

You can accomplish this with one 32-bit access to the upper half of the register:

```
*(ms2_base + 0x29) = data_val << 16;
```

3. Write byte enables, command, and start to the **Single PCI Access, Control** register (0x20, bits [61:48]). The **Single PCI Access and Control** register is at 32-bit offset 0x08; however, since this example will write bits in the upper half, point to offset 0x09. Set the upper two byte enables (0x00C00000), a 32-bit write command (0x17000000), and set the start bit (0x20000000) with the value 0x37C00000.

```
*(ms2\_base + 0x9) = 0x37C00000;
```

Note The preceding command could have been a 64-bit write (0x07000000), but in the case of a transfer that is known to be 32 bits or less, a few cycles may be saved by specifying the 32-bit write.

4. Wait until the *start* bit (0x08, bit[61]) is low.

Poll the **Single PCI Access and Control** register until the start bit clears:

```
while(*(ms2_base + 0x09) & 0x20000000)
```

Example 2: Performing an SPCI 8-bit Read Access. This second example shows how to perform a SPCI 8-bit read access from an ADSP-21160 processor, relating the steps to those stated above. Suppose your PCI target address, pci_addr, is 0xF8000003, and you wish to read your byte of data into read val.

1. Write the target address to the **Single PCI Address** register [63:0] (0x26). This step is identical to that of the write example above.

```
*(ms2_base + 0x26) = pci_addr & 0xFFFFFF8;
*(ms2\_base + 0x27) = 0;
```

2. Write byte enables, command, and start to the **Single PCI Access, Control** (0x20, bits [61:48]). The **Single PCI Access and Control** register is at 32-bit offset 0x08; however, for this example you will need to write bits in the upper half, so point to offset 0x09. Set the byte 3 enable bit (0x00080000), a 32-bit read command (0x16000000), and set the start bit (0x20000000) with the value 0x36080000.

```
*(ms2\_base + 0x9) = 0x36080000;
```

Note

The above command could have been a 64-bit read (0x0600000), but in the case of a transfer that is known to be 32 bits or less, a few cycles may be saved by specifying the 32-bit read.

3. Wait until the start bit (0x08, bit [61]) is low. Poll the **Single PCI Access and Control** register until the start bit clears:

```
while(*(ms2\_base + 0x09) & 0x20000000)
```

4. Data can then be read from the **Single PCI Data** register [63:0] (0x28). The **Single PCI Data** register is at 32-bit offset 0x28, which is the lower half of the 64-bit register. Since your data will appear in byte 3, the lower data register is where you'll find it.

```
read_val = (*(ms2_base + 0x28) >> 24) & 0xFF;
```

Note

On all SPCI mastering operations using the SharcFIN, if you do not know whether the destination of the transaction is 32 or 64 bits, assume 64 bits, and the SharcFIN will automatically determine the width using **REQ64** and **ACK64**. If you do know the bus width of the destination, you can potentially save a few clock cycles by giving the SharcFIN this information by setting (32-bit) or clearing (64-bit) control bit [60] of register 0x20.

Generating Type 0 or Type 1 Configuration Cycles

Under the control of an ADSP-21160 processor, the SharcFIN can generate either Type 0 or Type 1 configuration cycles. This allows the ADSP-21160 to configure an embedded system and act as the host processor. Figure 2-8 on page 2–48 shows the steps necessary to complete a Type 0 configuration cycle. Type 0 and Type 1 configuration accesses are limited to 32-bit.

Figure 2-8Steps Necessary to Perform a Type 0 Configuration Cycle

- Assume IDSEL# of target device is connected to AD[22]
- Assume access to BAR[0] of target device. This is the fourth register in configuration space so register_number[7:2] = 0b000100
- Assume function_number = 000
- Single PCI Access byte lanes [7:0] = 00001111
- Config Read: Single PCI Access cmd[3:0] = 101
- Single PCI Access start = 1
- Single PCI Access 64/32 = 0 (Config cycles are 32-bits only)

2.7.3 PCI Side DMAs

PCI side DMAs involve moving data between the DMA FIFOs and the PCI bus. The PCI side of the SharcFIN supports a 5-channel DMA engine. See Figure 2-7 for an illustration of SharcFIN's DMAs.

Transmit DMA Channels 0/1

"Transmit" means moving data from the DMA FIFOs to PCI. The SharcFIN has two transmit channels. Each channel has a dedicated FIFO that is 72 bits wide by 64 deep. The FIFOs are named Transmit FIFO0 and Transmit FIFO1. Figure 2-9 on page 2–50 and Figure 2-10 on page 2–51 show the steps necessary to start a transmit DMA operation. In summary,

- 1. A host or local processor writes the PCI address at which the operation will start to the *Master Write Address* register.
- 2. Next, a transfer count (in bytes) is written to the *Master Write Count* register. The operation is started when a "1" is written to the *DMA Start/Done*, *xmt0/1* bit in control register 0x24.
- 3. Data may be placed in a Transmit FIFO at any time, and multiple transactions may be stacked. A related transmit channel does not need to be enabled before data is placed in its FIFO. Unwanted or unused data may be flushed. (See "Flushing the Transmit FIFOs" on page 51.)
- 4. Unaligned transfers are not supported. The registers Master Write Address 0[63:0] and Master Write Address 1[63:0] must be 64-bit word aligned addresses; and the registers Master Write Transfer Count 0[31:0] and Master Write Transfer Count 1[31:0] must be multiples of 64-bit word transfers expressed in bytes.

Figure 2-9Steps Necessary to Start a TransmitO DMA Operation (Control Register Offset 0x00)

Data may be written to Transmit FIFO0 at any time

BittWare, Inc.

Figure 2-10Steps Necessary to Start a Transmit1 DMA Operation (Control Register Offset 0x10)

Flushing the Transmit FIFOs. Unwanted or unused data may be flushed from Transmit FIFO0 or Transmit FIFO1 by writing a "1" to the correct bit in the control register from the host processor located on PCI or from a local processor. The flush bits are located at offset 0x34. FIFO Flush xmt0 is bit[21] and FIFO Flush xmt1 is bit[22].

The process of flushing is not immediate; it is dependent on the amount of data in the FIFO. A flush is complete after the flush bit, when read, is inactive. The maximum possible time it could take to flush a FIFO is sixty-five **CLK** cycles, plus two **LClk** (ADSP-21160 cluster bus clock) cycles after assertion of the FIFO flush bit.

If the flush operation is initiated from PCI, it could take an additional four **CLK** (PCI clock) cycles plus four **LClk** (ADSP-21160 clock) cycles plus any additional time needed to flush posted writes from the Target Write Post FIFO. Both FIFOs may be flushed at the same time. A Transmit DMA Channel must be idle to execute a flush on its FIFO.

Monitoring Status of a Transmit DMA. You can monitor the status of a Transmit DMA operation two ways:

- Read the DMA Start/Done, xmt0 bit (0x24, bit[16]) for Transmit Channel 0.
- Read the DMA Start/Done, xmt1 bit (0x24, bit[17]) for Transmit Channel 1.

The bits will be active as long as the operation is running. You can also read the Master Write Count Status bits. These 32-bit registers indicate how many bytes are left to transfer. Master Write Count Status 0[31:0] is at control register 0x02, bit[63:32] and Master Write Count Status 1[31:0] is at control register 0x06, bit[63:32].

Canceling/Stopping a Transmit DMA. You can halt a Transmit DMA operation before all data has been transferred or before the requested transfer count has reached zero. Unfortunately, this action is tricky since stopping a Transmit DMA operation depends partially on the target that is receiving the data. The SharcFIN provides a bit for each transmit channel that allows you to halt execution. Two styles of halting are possible: Graceful and PUNT@#\$!.

Figure 2-11 and Figure 2-12 on page 2–53 are flowcharts diagramming the Graceful method. The Graceful method requires you to stop writing to the Transmit FIFO. Once writing to the Transmit FIFO has stopped, wait until all transactions have completed by monitoring the *Pipeline Not Empty* bit in control register 0x20. The Graceful method is the preferred method of halting a transmit DMA.

Figure 2-13 and Figure 2-14 on page 2–54 describe the PUNT@#\$! method. If you use the PUNT@#\$! method, the last pending transfer may not complete if the target had issued a retry and a DMA Cancel was asserted before the Transmit controller re-issued the command. This, technically, is a violation of the PCI Specification since all attempted transactions are explicitly required to complete, and this violation could result in a temporary or permanent hang condition.

Figure 2-11

Graceful Method Flowchart for Actions Necessary for Canceling/Stopping Transmit DMA Channel 0

Figure 2-12

Graceful Method Flowchart for Actions Necessary for Canceling/Stopping Transmit DMA Channel 1

Figure 2-13

PUNT@#\$! Method Flowchart for Actions Necessary for Canceling/ Stopping Transmit DMA Channel 0

Figure 2-14

PUNT@#\$! Method Flowchart for Actions Necessary for Canceling/ Stopping Transmit DMA Channel 1

Bursting Control. The SharcFIN has two programmable parameters that control the flow of data on the PCI bus for mastering operations. The first parameter is an almost empty flag that triggers a transmit DMA controller to request a PCI transaction. The second is a timeout that overrides this trigger if too much time has expired.

Transmit FIFO Almost Empty Flags. Each transmit FIFO has a programmable empty flag that can be set to trigger when the FIFO contains 0–63 quadwords of data. A Transmit DMA controller will wait to request access to the PCI bus until the related programmable empty flag indicates that a sufficient number of quadwords of data are available in the FIFO to burst. This guarantees that each PCI transaction initiated by a transmit DMA controller will burst at least the number of quadwords set in the *Almost Empty Flag* register.

When the number of quadwords that remain in the transfer count less than the value programmed in this register, the transmit controller will ignore this trigger and transfer the data to PCI as it is loaded into the FIFO.

Note

The two transmit FIFOs have a three-quadword buffer after the FIFO. When the small buffer is not full, data is immediately pulled out of the FIFO and placed into that buffer. The programmable full flag is only relative to the amount of data in the FIFO, not the buffer. The value used for the programmable pointer should be three less than the desired burst length, in quadwords.

The register for Transmit FIFO0 is at control address 0x1A, bits[37:32] and Transmit FIFO1 is at control register address 0x1A bits[45:40].

FIFO Timeout. The FIFO time-out is a global programmable variable that affects all four mastering FIFOs. This variable overrides the almost empty flags, in the case of the Transmit FIFOs, or the almost full flags, in the case of the Receive FIFOs, if too much time has expired. The four possible values are charted in Table 2-7.

Table 2-7FIFO Threshold Timeout

	Time@ 33 MHz	Time @ 66 MHz
00	O µs	0 µs
01	30.7 µs	15.4 µs
10	1.966 ms	0.983 ms
11	∞	∞

Each Transmit channel has a separate timer; if this timer expires, the related transmit controller will request access to the PCI bus and will transfer all data that is in the FIFO to the target until the FIFO is empty or the target drives **STOP**. The timer is re-started when either the FIFO is empty or **TRDY** is driven by the destination device on PCI.

PCI Error. If an error occurs during the PCI transaction, the controller will record the error in the control registers. Please refer to the section entitled "PCI Error" on page 67.

Receive DMA Channels 0/1

"Receive" means moving data from the PCI bus to the DMA FIFOs. The SharcFIN has two receive channels, each with a dedicated FIFO. The FIFOs are named Receive FIFO0 (74 bits wide by 64 deep) and Receive FIFO1 (72 bits wide by 64 deep). Figure 2-15 and Figure 2-16 on page 2–56 show the steps necessary to start a Receive DMA operation. In summary:

- 1. A host or local processor writes the PCI address where the operation will start to the *Master Read Address* register.
- 2. Next, a transfer count (in bytes) is written to the *Master Read Count* register.
- 3. The operation is started when a "1" is written to the DMA Start/Done, rcv0/1 bit in control register 0x24.
- 4. Unaligned transfers are not supported on either channel. The registers Master Read Address 0[63:0] and Master Read Address 1[63:0] must be 64-bit word aligned addresses; and the registers Master Read Transfer Count 0[31:0] and Master Read Transfer Count 1[31:0] must be multiples of 64-bit word transfers in bytes.

Figure 2-15
Steps Necessary to Start Receive
Channel O Mastering Operation

Write starting PCI target address to **Master Read Address 0** (Control Register Offset 0x12) Write transfer count (bytes) to Master Read Transfer CountO (Control Register Offset 0x14, bit[31:0]) Start DMA operation by writing "1" to DMA Start/ Done#, rcv0(Control Register Offset 0x24, bit[18]) Operation runs until transfer count has expired or cancelled

Figure 2-16
Steps Necessary to Start Receive
Channel 1 Mastering Operation

Flushing the Receive FIFOs. Unwanted or unused data may be flushed from Receive FIFO0 or Receive FIFO1 by reading the data out of the FIFO until the empty flag is asserted. The empty flags can be monitored at control register 0x02, bits 17 and 19 for FIFO0 and 1 respectively.

Monitoring Status. Status of a Receive DMA operation may be monitored two ways. Either the DMA Start/Done, rcv0 bit (0x24, bit[18]) may be read for Receive Channel 0, or the DMA Start/Done, rcv1 bit (0x24, bit[19]) may be read for Receive Channel 1. The bits will be active as long as the operation is running.

The Master Read Count Status bits can also be read. These 32-bit registers indicate how many bytes are left to transfer. Master Read Count Status 0[31:0] is at control register 0x14, bit[63:32] and Master Read Count Status 1[31:0] is at control register 0x18, bit[63:32].

Canceling/Stopping Receive DMA. A receive DMA operation may be halted before all data has been transferred (before the requested transfer count has reached zero). Unfortunately this is tricky, since stopping a receive DMA operation is partially dependent on the target that is providing the data. The SharcFIN provides a bit for each receive channel that allows you to halt execution. Two styles of halting are possible:

- · Graceful
- PUNT@#\$!

Figure 2-17 and Figure 2-18 are flowcharts diagramming the Graceful method. The Graceful method requires the user to stop reading from the receive FIFO so that the FIFO fills. Once the FIFO is full, you can assert the *DMA Cancel*, *rcv0/1* bit in control register 0x08. The Graceful method is the preferred method of halting a receive DMA.

Figure 2-19 and Figure 2-20 describe the PUNT@#\$! method. If the PUNT@#\$! method is used, the last pending transfer may not complete if the target had issued a retry and a DMA cancel was asserted before the receive controller re-issued the command. This, technically, is a violation of the PCI specification and could have serious repercussions since all attempted transactions are explicitly required to complete. It could lead to a temporary or permanent hang condition on PCI.

Bursting Control. The SharcFIN has two programmable parameters that allow you to control the flow of data on the PCI bus. The first parameter is an almost full flag that triggers a Receive DMA controller to request a PCI transaction. The second is a time-out that overrides this trigger if too much time has expired.

Receive FIFO Almost Full Flags. Each Receive FIFO has a programmable full flag that can be set to trigger when the FIFO contains 0–63 empty locations. A Receive DMA controller will wait to request access to the PCI bus until the related programmable full flag indicates that a sufficient number of quadwords of data are available to be written to the FIFO. This guarantees that each PCI transaction initiated by a Receive DMA controller will burst at least the number of quadwords set in the **Almost Full Flag** register.

Figure 2-17

Graceful Method Flowchart for Actions Necessary for Canceling/Stopping Receive DMA Channel 0

Set the FIFO timeout to immediate or set prog full flag to 64

Wait until Receive FIFO0 is full (0x08, bit[16], or signal rcv0_prog_empty_flag with location set at 63)

Assert DMA Cancel, rcv0 (0x34, bit[18])

Receive DMAO halts gracefully

Wait for Done bit

Figure 2-18

Graceful Method Flowchart for Actions Necessary for Canceling/Stopping Receive DMA Channel 1

Figure 2-19

PUNT@#\$! Method Flowchart for Actions Necessary for Canceling/ Stopping Receive DMA Channel 0

Figure 2-20

PUNT@#\$! Method Flowchart for Actions Necessary for Canceling/ Stopping Receive DMA Channel 1

When the number of quadwords that remain to be transferred is less than the value programmed in this register, the receive controller will ignore this trigger and transfer the data from PCI and load it into the FIFO. The register for Receive FIFO0 is at control address 0x1A, bits[21:16] and Receive FIFO1 is at control register address 0x1A, bits[29:24].

PCI Error. If an error occurs during the PCI transaction, the controller will record the error in the control registers. Please refer to the section entitled "PCI Error" on page 67.

Chaining Mode DMA

The SharcFIN has a very powerful chain mode function. When chain mode is active, Receive FIFO0 and Transmit FIFO0 are dedicated to chaining operations. In chaining mode, the host or local processor sets up descriptor blocks in PCI memory that are composed of four quadwords of information. Figure 2-22 on page 2–61 shows the details of the content of the chain descriptor blocks.

All descriptor information is passed through Receive FIFO0 and can be latched in the SHARC interface or read by a local processor. The presence of descriptor data at the output of Receive FIFO0 is determined by reading the fifth byte lane at address offset 0x08 of the control registers. A non-zero value on the tag bits indicates the presence of descriptor data.

The address of the first chain register is placed by the host or local processor in the "Master Read Address 0" at control register address offset 0x12. This address must be on a quadword aligned address (bits[2:0] must be 0). Chain operation is initiated by writing a "1" to the *chain start* bit at bit[20] of register 0x24. As long as the chain operation is running, bit[20] of register 0x24 will be "1." The next one bit over, bit[21], can be read to determine if the last chain descriptor has been read and the end-of-chain tag has been set. Figure 2-22 illustrates

the chain mode. Once the end-of-chain tag has been observed, the chain descriptors can be deleted or written over.

Chain mode is also sometimes described as "scatter/gather" (see Figure 2-21). The entire second quadword is intended to be used as a local start address pointer but can be used to pass any other information that is interesting to the ADSP-21160 hardware.

Note

If a chain descriptor has a pointer address that points to a previous descriptor block, this mode can be made to loop indefinitely. Other vendors refer to this variation on chaining as "shuttle mode DMA."

Figure 2-21 Chain Mode Flow Chart

Figure 2-22 Chain Mode Description

Twenty-four bits of the third quadword are also user-defined and can be used for any purpose you see fit. A unique descriptor ID that can be read by the local or host processor, for example, would be a good way to monitor the status of the chaining operation. The interrupt controller can be set to interrupt the PCI processor, the local processor, or both.

Chain mode DMA transfers must be 64-bit word aligned like normal DMAs. A maximum of 2^{32} –16 bytes (0xFFFFFFF0) of information may be transferred with each descriptor.

PCI Error. If an error occurs during the PCI transaction, the controller will record the error in the control registers. Please refer to the section entitled "PCI Error" on page 67.

2.7.4 ADSP-21160 Cluster Bus DMAs

SHARC interface DMAs involve moving data between the ADSP-21160 cluster bus and the DMA FIFOs. The SharcFIN supports two primary methods of moving data between the cluster bus and the FIFOs. The first method involves using a single-channel DMA engine built into the SharcFIN. The second method involves using an ADSP-21160 DSP to move the data via either core operations or an external DMA channel.

The SharcFIN DMA is highly optimized for speed. It has been shown to achieve the following sustained rates:

Table 2-8SharcFIN DMA Sustained Data Rates

	SharcFIN DMA	ADSP-21160 DMA	
Tx	260 Mbytes/sec	160 Mbytes/sec	
Rx	140 Mbytes/sec	140 Mbytes/sec	

Note

These rates were achieved on a 64-bit, 66 MHz system using the most optimal DMA condition. Performance will vary based on DMA parameters and the capabilities of the device being communicated with on the PCI bus.

Using the SharcFIN-Based DMA Engine

To use the SharcFIN's DMA engine to perform DMAs between the ADSP-21160 cluster bus and the DMA FIFOs, you will need to set up two registers: the **DMA Address** register and the **DMA Configuration** register. Refer to "DMA Address Register" on page 186 and "DMA Configuration Register" on page 186 for an overview of all the bits in these registers.

Setting the DMA Address Register. The first register to set up is the *DMA Address* register, which is located at 32-bit word offset 0x48 (byte offset 0x120) from BAR0. Bits 0, 28, 29, 30, and 31 of this register are unwritable and fixed at 0, and all accesses are 64-bit aligned operations. The *DMA Address* register sets the address of the first 64-bit word to be

transferred by the DMA engine. It also determines whether the data transferred will be from SDRAM or one of the ADSP-21160s.

Addresses at 0x800000 and above are considered to be SDRAM accesses. The SDRAM window register does not apply to DMA addresses because the DMA engine has full access to all of the SDRAM.

The memory layout from this register appears the same as the MMS memory view of the ADSP-21160s. Therefore, ADSP-21160-1 memory appears at 0x140000 to 0x15FFFF, and ADSP-21160-2 appears at 0x240000 to 0x25FFFF, etc. Broadcast write space is also valid at 0x740000 to 0x75FFFF.

This register is incremented as the DMA progresses, allowing you to monitor the DMA engine's current address. You must reset this register each time if you wish to repeat a DMA on the same address range as the previous transfer. This register cannot be written to while the DMA start bit is set, but it can be read from at any time.

Setting the DMA Configuration Register. The *DMA Configuration* register is located at 32-bit word offset 0x49 (byte offset 0x124) from BAR0. Bits in this register set various parameters of the transfer (direction, transfer count, etc.) and start and stop the transfer.

Table 2-9Contents of the DMA Configuration Register

Bit	Name	Description
15:0	DMACntB[15:0]	DMA transfer count (in 64-bit words) bits. All are settable.
22:16	DMA Stride B[6:0]	Stride or address increment bits. These bits will typically be set to 0x01.
23	Unused	Unwritable; fixed at 0.
24	DMAStart	Setting the bit to 1 starts the DMA; it resets to 0 when the DMA is complete.
25	DMA Channel Select	Selects the ESP channel being operated on (0 or 1)
26	DMA Direction	Selects whether an ESP transmit or receive DMA is being performed. O = ESP receive DMA (PCI to 21160/SDRAM) 1 = ESP transmit DMA (21160/SDRAM to PCI)
27	DMA Interrupt	If this bit is set at the start of the DMA, The SharcFIN generates an interrupt in the interrupt multiplexer on completion of the DMA.
28	Burst Disable	 1 = Disable bursting on the ADSP-21160 side. Must be set to 1 when the address increment > 0x01. If it is set when the address increment <= 0x01, it functions but will slow things down. 0 = Bursting enabled
29	DMA Buslock	1 = SharcFIN requests the ADSP-21160 cluster bus when the start bit is set, and once it obtains the bus, keeps it until the DMA completes.
31:30	DMA Xfer Length B[1:0]	Set the DMA transfer length. These bits must be set along with the bits in the PCI control register at 0x1A and 0x1B (0x68 byte address). See details below.

The minimum size for a DMA that goes from PCI to the ADSP-21160 are eight 64-bit words. The minimum is one 64-bit word going the other way. Set the DMA count bits to 0x0000 to transfer the maximum of 0x10000 (65,536) 64-bit words.

The increment is somewhat confusing because it is a 64-bit word increment. In other words, if you set it to 0x01, the address register (32-bit address) actually increments by 2 on each transfer. The sequence of locations transferred if the increment register is set to 0x01 and the address register is set to 0x800000 is as follows:

Xfer #Addresses Xfered

- 1 0x800000, 0x800001
- 2 0x800002, 0x800003
- 3 0x800004, 0x800005

ETC

The sequence of locations transferred if the increment register is 0x02 and the address register is set to 0x800000 is as follows:

Xfer #Addresses Xfered

- 1 0x800000, 0x800001
- 2 0x800004, 0x800005
- 3 0x800008, 0x800009

ETC

While the start bit is set to 1, the **DMA Address** register (0x48) is read only, and *only* the start bit may be written to in the **DMA Configuration** register (0x49). Setting the start bit to 0 allows you to clear a DMA in progress. The start bit can be polled to monitor completion of the DMA, but keep in mind that the poll rate can significantly affect transfer rates. Interrupts are better but can have more latency. The sequence for starting a DMA should be the following:

- 1. Set up and start PCI DMA.
- 2. Set the **DMA Address** register.
- 3. Set the **DMA Configuration** register.

The *start* bit can be set at the same time as all the other bits in the **DMA Configuration** register.

The DMA interrupt can be mapped into an interrupt by setting bit 14 in the appropriate interrupt multiplexer register. *Any* write to the **DMA Configuration** register once the interrupt is set (i.e. DMA is done) clears the DMA interrupt.

DMAs with the bus lock bit (*DMA Buslock*) set the result in the highest transfer rate but prevent the ADSP-21160s from accessing their bus until the DMA completes. The host can still access the SharcFIN and the ADSP-21160 bus normally while the DMA has the bus locked.

Bits [31:30] control how much data the DMA engine transfers at a time. The four possible settings correspond to:

- 1. Eight 64-bit words
- 2. Sixteen 64-bit words
- 3. Thirty-two 64-bit words
- 4. Sixty-four 64-bit words

The different values affect two things. First is overall throughput. A setting of 2 (thirty-two 64-bit words) is optimal for speed, then 3, 1, and 0 is slowest (your mileage may vary depending on PCI bus size, speed and the abilities of what you are DMAing to/from on the PCI side). This setting also affects bus use. Transferring data in chunks of eight 64-bit words

will use the bus more frequently, but for shorter periods of time than if you transfer sixty-four 64-bit words at a time.

A PCI control register must also be set with a value corresponding to the following setting (X = don't care):

Table 2-10Settings for PCI Control Registers at Offsets 0x1A and 0x1B

DMA to use PCI Receive channel 0

B31	B30	Value that must be written to register at location 0x1A (0x68)
0	0	0xXXXXXX07
0	1	0xXXXXXX0F
1	0	0xXXXXXX1F
1	1	0xXXXXXX3F

DMA to use PCI Receive channel 1

B31	B30	Value that must be written to register at location 0x1A (0x68)
0	0	0xXXXX07XX
0	1	OxXXXXOFXX
1	0	0xXXXX1FXX
1	1	OxXXXX3FXX

DMA to use PCI Transmit channel 0

B31	B30	Value that must be written to register at location 0x1B (0x6C)
0	0	0xXX07XXXX
0	1	0xXX0FXXXX
1	0	0xXX1FXXXX
1	1	0xXX3FXXXX

DMA to use PCI Transmit channel 1

B31	B30	Value that must be written to register at location 0x1B (0x6C)
0	0	0x07XXXXXX
0	1	0x0FXXXXXX
1	0	0x1FXXXXXX
1	1	Ox3FXXXXXX

Using the ADSP-21160-Based DMA Engine

The ADSP-21160s can be used to provide data to the DMA FIFOs using either core-based or DMA-based transfers. Transfers from the ADSP-21160s to the DMA FIFOs must use 64-bit non-bursting mode. The transfer must also be set up with an external increment of 0 and the address to MS2 base + 0x2C, 0x2E, 0x30, or 0x32 depending on the channel being used (RX0, RX1, TX0, TX1 respectively).

Using the ADSP-21160s to provide data to/from the DMA FIFOs presents a potential bus lock condition. If the transmit FIFOs are full or the receive FIFOs are empty, and an ADSP-21160 attempts to read/write to them, the SharcFIN holds the read or write transaction off by lowering the **H_Ack** (ADSP-21160 Ack) line. This transaction cannot be aborted; therefore, the ADSP-21160 cluster bus is inaccessible until space clears up in the FIFOs (or is filled by the receive FIFOs). If the ADSP-21160 bus is unavailable in this situation, when a target transaction requires the ADSP-21160 bus, a deadlock condition exists that cannot be resolved. A system's reaction to this condition varies with the system's BIOS but typically results in a hung computer. Potential workarounds to this problem include making sure the host does not attempt to access the board while a DMA is in progress. If this cannot be avoided, another solution is to break the ADSP-21160 DMA into sixty-four 64-bit transfers, making sure that the transmit FIFO is empty (or the receive FIFO is full) before each transfer is initiated. This guarantees that the ADSP-21160 bus never becomes unavailable. Examples of this workaround are available from BittWare. The SharcFIN-based DMA engine does not have this limitation.

When using the ADSP-21160 DMA engine, always start the PCI side DMA before the ADSP-21160 DMA. Starting the PCI side DMA first will keep the DMA from filling the transmit FIFO or reading an empty receive FIFO, making the bus unavailable for the core to write to the SharcFIN to initiate the PCI side DMA.

2.7.5 Bus Mastering Issues

PCI Error

The following is a list of situations in which the DMA engine will not complete its transfer successfully.

- · Data Parity Error
- Master Abort
- Target Abort
- · Retry Timeout

If any of the above occurs, the DMA engine will automatically be stopped, the corresponding error bits (address 0x25) will be set for the condition, and the DMA status bit will be set back to "done".

A Retry Timeout error happens when the controller has retried a transaction for a given number of times before giving up and signaling an error through the control registers. The number of retries that the device will attempt before canceling the transaction is programmed by two bits in control register 0x34 called Max Retry[1:0]. The four values are, in PCI transactions:

- 0x100 transactions => approximately 30us given an idle bus
- 0x40000 transactions => ~ 30 ms
- 0x10000000 transactions => $\sim 30s$
- Infinite => will never cancel the transaction

The suggested value of *Max Retry* is the ~30ms value for debugging a system, but use the "infinite" value for production systems in which the latency might be very large. When you are using either the ~30s or the infinite value, a condition may occur in which the system decides that the transaction will never complete, and the transaction must be canceled. Four *PCI Error Status* bits (0x24, bits[59:56]) show which type of error occurred in the PCI transaction. They are cleared when a '1' is written to the bit.

Each DMA channel (including chaining and SPCI) has an *Error Status* bit (0x24, bits [53:48]), which is set when a PCI error is detected during that channel's DMA transaction. These bits are read-only. They are updated when the corresponding channel is used again.

When a PCI error occurs, the data that was in the FIFO will not be flushed. Therefore, for the retry and target abort cases, you may restart the transaction with the next address and a decremented transfer count (read the transfer count status for the number of bytes already transferred).

Canceling Bus Mastering Operations

The SharcFIN has five separate DMA engines. Four of them are associated with FIFOs (XMT0/1, RCV0/1). The last one has only a single quadword of data that it can transfer per transaction (SPCI).

The four DMA engines that have FIFOs associated with them have a cancel bit (control register address 0x34) that is useful when the system decides to cut a transaction short or when it must overcome an infinite retry problem. The SPCI DMA engine does not have the cancel bit because all of its data (or buffer space) is already available in the chip, and it attempts to transfer its data immediately and will not stop until it has been transferred. The only way to cancel the SPCI transaction is to change the *Max Retry* register value to "~30us" and let it execute the 256 transactions and fail quickly.

Note

This same method does not necessarily cancel a transaction that is associated with a FIFO. It would only cancel it if it was stuck in infinite retries. If one of the four DMA engines is waiting on one of the internal FIFOs to have data/space available, no transactions will be generated on the bus, and there will therefore be no retries to count. In that case, the system should use one of the cancel bits to end the DMA operation.

Master Arbitration Control

Five possible masters can request access to the PCI bus from the SharcFIN:

- 1. Transmit 0
- 2. Transmit 1
- 3. Receive 0
- 4. Receive 1
- 5. SPCI

The SharcFIN supports two separate arbitration priority schemes: Round Robin and Fixed. The SPCI engine always has priority regardless of the scheme used. The PCI host or local processor select the arbitration mode by writing one of the following values to the **Arbitration Mode Select** registers at offset 0x34 bits[49:48]:

Arbitration Mode[1:0]

- 00 ROUND_ROBIN
- 01 SCHEME PRIORITIZED
- 10 Reserved
- 11 Reserved

When a master obtains access to the bus, the master will keep the bus until one of the following conditions occurs:

- 1. Transaction completes without a retry
- 2. No more data to transmit in transmit FIFO or FIFO full in receive FIFO
- 3. Transfer count==0
- 4. Master abort
- 5. Target abort
- 6. Parity error
- 7. Master operation cancelled by user
- 8. Latency counter expired

Round Robin. In the Round Robin scheme, the direct master always has the highest priority, then the arbiter will cycle through the four masters in the following order:

- 1. Transmit 0
- 2. Transmit 1
- 3. Receive 0
- 4. Receive 1

Fixed Priority. In the Fixed Priority scheme, each channel has a fixed priority. A larger, 2-bit value programmed into the *DMA_arbitration_priority*[1:0] (address offset 0x34) means higher priority. Priorities that are set to be equal are arbitrated in the following order:

- 1. Transmit 0 highest priority
- 2. Transmit 1 middle-high
- 3. Receive 0 middle-low priority
- 4. Receive 1 lowest priority

Master Latency Counter Enable/Disable

The SharcFIN contains a master latency counter that controls the amount of time that a master may have the PCI bus. When the timer has expired and **GNT** is deasserted, the master must relinquish control of the bus.

The purpose of this timer is to prevent a single master from hogging the bus, preventing other devices from getting any bandwidth. The PCI Specification limits this counter to eight bits, which in turn limits the size of a potential burst.

The SharcFIN has a control register bit that allows its masters to ignore the latency counter. Ignoring the latency counter is a direct violation of the PCI Specification but allows for coarser control over PCI arbitration issues for embedded systems. With the latency counter disabled, a single master can maintain control over the bus indefinitely. The bit is called *LATENCY_EN* and is at control register address 0x34.

Bus Mastering in a 32-Bit Environment

The SharcFIN can operate in a 32-bit or 64-bit PCI environment. See section 2.6 for a detailed description of how the SharcFIN determines the bus width at reset time. The SharcFIN can dynamically interface to both 32-bit and 64-bit PCI devices on a transaction-by-transaction basis.

If any of the five masters of the SharcFIN are initiating data transactions to a target device that is known to be 32-bits, providing this information to the SharcFIN can result in some performance gains. If the width of the target device is unknown, program the SharcFIN to assume that the target device is 64-bits, and the SharcFIN will determine the proper bus width dynamically on each transaction using the PCI signals **ACK64** and **REQ64**.

The following control registers are applicable:

Single PCI Access (SPCI)

QLPCI_(U/P)_64_SPCI_ADDR (0x08, bit[59])

- 1 Assume destination is 32 bits
- O Automatically determine bus width using **REQ64**. Initially assume 64 bits.

Receive DMA Channel 1

QLPCI_P_64_RCV_1_FORCE_32_ADDR (0x08, bit[35])

- 1 Automatically determine destination bus width using **REQ64**. Initially assume 64 bits.
- 0 Assume destination is 32 bits.

Receive DMA Channel 0

QLPCI_P_64_RCV_0_FORCE_32_ADDR (0x08, bit[34])

- 1 Automatically determine destination bus width using **REQ64**. Initially assume 64 bits.
- 0 Assume destination is 32 bits.

Transmit DMA Channel 1

QLPCI_P_64_XMT_1_FORCE_32_ADDR (0x08, bit[33])

- 1 Automatically determine destination bus width using **REQ64**. Initially assume 64 bits.
- 0 Assume destination is 32 bits.

Transmit DMA Channel 0

QLPCI_P_64_XMT_0_FORCE_32_ADDR (0x08, bit[32])

- 1 Automatically determine destination bus width using **REQ64**. Initially assume 64 bits.
- 0 Assume destination is 32 bits.

The chain descriptor contains a bit to control this function also. See Figure 2-22 on page 2–61.

2.8 I²C Interface and Serial Controller

The SharcFIN's I²C/Serial controller integrates some of the most common peripheral requirements right into the SharcFIN. Uses include data communications, SharcFIN interconnection, hardware configuration and identification, and user non-volatile storage.

The SharcFIN contains two I^2C interfaces. One connects to onboard configuration EEPROMs that allow software to determine the board configuration information, and provide a small amount of non-volatile memory storage. The register at 0x46 controls this I^2C bus. The other is connected to the PMC+ site and is intended as a simple command and control I/O interface for PMC+ peripherals. The register at 0x47 controls it.

2.8.1 How the I²C Interfaces Function

An I²C interface consists of two signals: a clock and a data line. This interface was standardized by Philips Electronics, and detailed information about it can be found on their website (www.philips.com). I²C capable peripherals also often contain excellent information about specifically accessing that device via I²C.

The SharcFIN directly connects to the clock and data line, and bits in each interface's control register allow the SharcFIN to drive either or both of these lines low or to leave them tristated. Both the clock and data lines are externally pulled up, allowing the buses to operate as both bi-directional and multi-master as described in the Philips Electronics specification.

The I^2C control registers are 4 bits wide. Bit [0] controls the clock line of the bus. Writing a 0 to this bit enables the SharcFIN driver and drives this line to 0. Writing a 1 to this register disables the SharcFIN driver and allows this line to return to a 1 by its pull-up resistor if no other I^2C peripherals are driving it low. Reading bit [0] returns the actual state of the clock line on the I^2C bus. Bit [1] operates similarly to bit [0] except that it relates to the data line. Bit [2] is read only; when read, it returns the state of the SharcFIN driver on the clock line (1 = disable or tri-stated, 0 = enabled and driven low). Bit [3] operates the same as bit [2] except that it relates to the data line. This arrangement allows you to determine on a single read both the actual state of the bus, and the state of the SharcFIN's drivers to easily determine if the SharcFIN, another peripheral, or nothing is driving the I^2C bus.

2.8.2 Accessing Serial EEPROMs

On BittWare Hammerhead boards, the first I^2C bus (0x46) is connected to two serial EEPROMs that contain configuration about the board. These serial EEPROMs are the Board Configuration EEPROM on the board and the Serial Presence Detect (SPD) EEPROM on the SDRAM module.

Table 2-11Information for I²C Protocol

Serial EEPROM	I ² C Device Number	
Board Configuration	2	
SPD EEPROM	0	

SPD EEPROM on SDRAM Module

The SPD EEPROM is a read-only EEPROM module found on most SO-DIMM memory modules. This EEPROM contains standard configuration information about the SO-DIMM. For a full description of the contents of the EEPROM, refer to Appendix E of the SPD section of the *JEDEC JESD21-C standard* (www.jedec.org). Information on a specific module's SPD EEPROM can be found on the module manufacturers web site. The contents used to set SDRAM registers in the SharcFIN are:

Table 2-12Contents Used to Set SDRAM Registers

Name	Offset (in bytes)
Number of Rows	5
Refresh Rate/Type	12
Bank Density	31

Your total module size (in MB) can be found by: Number of Rows \times Bank Density \times 4

After issuing a board reset, the HIL sets the SharcFIN's **SD Size Config** register (offset 0x45) according to the tables below.

Table 2-13How the HIL Writes the SD Size Config Register (0x45)

Number of Rows, Bank Density	SDRAM Size Config Register bits 1 and 0 (offset 0x45)
1, X	00
> 1, 0x10 (64 MB)	01
> 1, 0x20 (128 MB)	10
> 1, 0x40 (256 MB)	11

Refresh Rate/Type	SDRAM Size Config Register bit 2 (offset 0x45)
0x01	1
0x02	Unsupported SO-DIMM
0x81	1
0x82	Unsupported SO-DIMM
All other values	0

Board Configuration EEPROM

The Board Configuration EEPROM is compatible with Microchip Technology Inc.'s 24LC01B/02B. Refer to their documentation for specifics on accessing this type of EEPROM. The lower 128 bytes of the EEPROM are read/write, and the upper 128 bytes are read-only. In the upper 128 bytes, the information in Table 2-14 is stored.

Table 2-14Board Configuration EEPROM Information

Offset	Name	Data Type	Description
0x80	struct_level	ULONG	Structure revision level
0x84	board_type	USHORT	HIL board type
0x86	dsp_type	USHORT	HIL DSP type of processors
0x88	dsp_rev	USHORT	DSP revision
0x8A	num_dsps	USHORT	Number of DSPs on board
0x8C	wait_reg	ULONG	WAIT register value
0x90	msize	ULONG	MSIZE bits value (for SYSCON)
0x94	memory_code[4]	USHORT	Memory code for MS spaces
0x9C	device_num	ULONG	Unused
0xA0	serial_num	ULONG	Board serial number
0xA4	factory_date	ULONG	Date this EEPROM was burned
0xA8	lot_number	ULONG	Production lot number of board
0xAC	board_cfg_level[2]	USHORT	Board configuration level = board_cfg_level[0].board_cfg_level[1]
0xB0	sdram_spd[2]	USHORT	SDRAM SPD setup: sdram_spd[0] = number of rows, sdram_spd[1] = bank density
0xB4	part_number[16]	UCHAR	Part number string (should end with '\0')
0xC4	last_written_date	ULONG	Date this EEPROM was last written
0xC8	num_writes	ULONG	Number of full EEPROM writes
0xCC	last_written_by[4]	UCHAR	Initials of last writer (should end with '\0')
0xD0- 0xF4	spare0 - spare9	ULONG	Unused
0xF8	valid_mask	ULONG	Shows which fields are valid
0xFC	check_um	ULONG	EEPROM checksum of valid fields

Chapter 3 Register Descriptions

The SharcFIN has two sets of registers. One set, the PCI configuration registers, configures the PCI interface. The other set, the chip control registers, configures both the PCI and SHARC interfaces. The PCI configuration registers are only accessible by PCI configuration access. The chip control registers are broken into two groups: the PCI control registers and the SHARC interface control registers; both groups are accessible by PCI (BAR0) and the ADSP-21160 cluster bus (MS2).

3.1 SharcFIN Memory Map

3.1.1 Overview

The SharcFIN maps into PCI and the ADSP-21160 cluster bus. It uses PCI Base Address Registers (BARs) to map its various parts onto the PCI bus. BAR0 maps the SharcFIN's control registers, BAR1 maps to the peripheral bus (Flash and dual UART), BAR2 maps to the ADSP-21160's MMS space, BAR3 is unused in a 32-bit environment and used for the upper 32 bits of address in a 64-bit addressable system, and BAR4 maps to the SDRAM.

The SharcFIN maps into the ADSP-21160 cluster bus space using the MS (memory select) lines of the ADSP-21160s. MS0 maps to the SDRAM, MS1 maps to Flash, dual UART, and peripheral bus, and MS2 maps to the SharcFIN control registers.

This section provides an overview of the PCI and ADSP-21160 memory mapping of the SharcFIN. All addresses are shown as offsets from the appropriate BAR or MS. Table 3-1 gives an overview of how the SharcFIN maps to the PCI and ADSP-21160 cluster buses.

Table 3-1Overview of How the SharcFIN Maps to PCI and ADSP-21160 Buses

PCI Base Address Register	Description	21160 Memory Select	Description
BARO	SharcFIN control registers	MS0	SDRAM
BAR1	Peripheral bus (Flash, UART)	MS1	Peripheral bus (Flash, UART)
BAR2	ADSP-21160 MMS	MS2	SharcFIN control registers
BAR4	SDRAM		

Even though the following sections list both 32-bit (word) and byte addresses, some BARs should be accessed in specific ways from the PCI side. Table 3-2 shows how to access those BARs.

Table 3-2Accessing BARO–BAR4 From the PCI Side

BAR	Access	Description
BARO	Read/Write	Byte or 32-bit word accesses for all registers
BAR1	Read/Write	Byte accesses for all registers*
BAR2	Read Only Write Only	Byte or word accesses Word accesses only [†]
BAR4	Read Only Write Only	Byte or word accesses Word accesses only [†]

Word accesses will produce erroneous data.

[†] Byte writes will corrupt the rest of the word.

3.1.2 Accessing System Settings and Configuration Registers

BAR0 = MS2 = System settings and configuration registers

BAR0 from the PCI interface and MS2 from the ADSP-21160 DSPs map to system settings and configuration registers in the SharcFIN. Table 3-3 gives the PCI and ADSP-21160 offset addresses for accessing system settings and configuration registers.

Table 3-3 PCI and ADSP-21160 Addresses for System Settings and Configuration Registers

PCI 32-bit	PCI Byte	ADSP-21160	Description
Offset From	Offset From	Offset From	
BAR0	BARO	MS2	
0x00 – 0x5F	0x000 – 0x17F	0x00 – 0x5F	Chip control registers (PCI and ADSP-21160)

3.1.3 Accessing the Flash, UART, and Peripheral Bus

BAR1 = MS1 = Flash/UART/Peripheral bus

BAR1 from the PCI interface maps to the Flash, dual UART, and peripheral bus. MS1 from the ADSP-21160 cluster bus also maps to the Flash, dual UART, and peripheral bus. Table 3-4 gives the PCI and ADSP-21160 offset addresses for accessing the Flash, UART, and peripheral bus.

Note

BAR1 **must** be accessed a byte at a time from the PCI side. Word accesses will produce erroneous data.

Table 3-4 PCI and ADSP-21160 Addresses for Flash, UART, and Peripheral Bus

PCI Byte Offset From BAR2	ADSP-21160 Offset From MS1	Description
0x000000 – 0x1FFFFF	0x000000 – 0x1FFFFF	Flash
0x200000 – 0x20000F	0x200000 – 0x20000F	UART
0x200010 – 0x2FFFFF	0x200010 – 0x3FFFFF	Reserved
0x300000 – 0x3FFFFF	0x400000 – 0x5FFFFF	Peripheral Bus

3.1.4 Accessing Multiprocessor Memory Space

 $BAR\ 2 = MMS = flat\ map\ of\ Multiprocessor\ Memory\ Space$

BAR2 from the PCI and MMS from the ADSP-21160 cluster bus allow access to the ADSP-21160 multiprocessor memory space. Table 3-5 gives the PCI and ADSP-21160 offset addresses for accessing the MMS.

Table 3-5 PCI and ADSP-21160 Addresses for Multiprocessor Memory Space

PCI 32-bit Offset From BAR2	PCI Byte Offset From BAR2	ADSP-21160 Address	Description
0x00000 –	0x0000000 –	0x000000 –	Reserved
0x0FFFFF	0x03FFFFF	0x0FFFFF	
0x10000 -	0x0400000 –	0x100000 –	21160-1 MMS space
0x1FFFFF	0x07FFFFF	0x1FFFFF	(ADSP-21160 ID 1)
0x20000 –	0x0800000 –	0x200000 –	21160-2 MMS space
0x2FFFFF	0x0BFFFFF	0x2FFFFF	(ADSP-21160 ID 2)
0x30000 –	0x0C00000 –	0x300000 –	21160-3 MMS space
0x3FFFFF	0x0FFFFFF	0x3FFFFF	(ADSP-21160 ID 3)
0x40000 –	0x1000000 -	0x400000 –	21160-4 MMS space
0x4FFFF	0x13FFFFF	0x4FFFFF	(ADSP-21160 ID 4)
0x50000 –	0x1000000 –	0x500000 –	Reserved
0x7FFFFF	0x1FFFFFF	0x7FFFFF	

3.1.5 Accessing SDRAM

 $BAR \ 4 = MSO = SDRAM$

You can see a window of 16 Mbytes of SDRAM from the PCI bus. The **SD Window** register allows you to select which 16 MB window is currently visible. The register is located at word/ADSP-21160 offset 0x4A in BAR0/MS2. Table 3-6 gives the PCI and ADSP-21160 offset addresses for accessing a 64 MB bank of SDRAM, and Table 3-7 gives addresses for a 128 MB bank.

Note

BittWare, Inc.

The addresses listed in Table 3-6 and Table 3-7 only apply to the given 64 MB and 128 MB SDRAM cases.

Table 3-6 PCI and ADSP-21160 Addresses for 64 MB SDRAM

SD Window	PCI 32-bit	PCI Byte	ADSP-	Description
Register	Offset From	Offset From	21160	
Value*	BAR4	BAR4	Address	
0×02	0x00000 –	0x000000 –	0x800000 –	First 16 MB block of
	0x3FFFFF	0xFFFFFF	0xBFFFFF	SDRAM
0×03	0x00000 –	0x000000 –	0xC00000 –	Second 16 MB
	0x3FFFFF	0xFFFFFF	0xFFFFFF	block of SDRAM
0×00	0x00000 – 0x3FFFFF	0x000000 – 0xFFFFFF	0x1000000 – 0x13FFFFF	Third 16 MB block of SDRAM
0x01	0x00000 –	0x000000 –	0x1400000 –	Fourth 16 MB block
	0x3FFFFF	0xFFFFFF	0x17FFFFF	of SDRAM

^{*} Window register values of 0x00 and 0x01 always access the last two 16 MB windows of SDRAM. Refer to section 2.3 for details.

Table 3-7 PCI and ADSP-21160 Addresses for 128 MB SDRAM

SD Window Register Value*	PCI 32-bit Offset from BAR4	PCI byte Offset from BAR4	ADSP-21160 Address	Description
0x02	0x00000 –	0x000000 –	0x800000 –	First 16 MB block of
	0x3FFFFF	0xFFFFFF	0xBFFFFF	SDRAM
0x03	0x00000 –	0x000000 –	0xC00000 –	Second 16 MB
	0x3FFFFF	0xFFFFFF	0xFFFFFF	block of SDRAM
0x04	0x00000 – 0x3FFFFF	0x000000 – 0xFFFFFF	0×1000000 – 0×13FFFFF	Third 16 MB block of SDRAM
0x05	0x00000 –	0x000000 –	0x1400000 -	Fourth 16 MB block
	0x3FFFFF	0xFFFFFF	0x17FFFFF	of SDRAM
0x06	0x00000 –	0x000000 –	0×1800000 -	Fifth 16 MB block
	0x3FFFFF	0xFFFFFF	0×1BFFFFF	of SDRAM
0x07	0x00000 – 0x3FFFFF	0x000000 – 0xFFFFFF	0x1C00000 - 0x1FFFFF	Sixth 16 MB block of SDRAM
0x00	0x00000 –	0x000000 –	0x2000000 –	Seventh 16 MB
	0x3FFFFF	0xFFFFFF	0x23FFFFF	block of SDRAM
0x01	0x00000 –	0x000000 –	0x2400000 –	Eighth 16 MB block
	0x3FFFFF	0xFFFFFF	0x27FFFF	of SDRAM

^{*} Window register values of 0x00 and 0x01 always access the last two 16 MB windows of SDRAM. Refer to section 2.3 for details.

3.2 PCI Configuration Registers

Each PCI bus device contains a unique 256-byte region called the configuration header space (<u>Figure 3-1</u>). The configuration header is mandatory for a PCI agent to be in full compliance with the PCI Specification. The configuration header for the SharcFIN is used by the system to configure the SharcFIN's PCI interface.

This section describes each of the configuration space fields including the following:

- address
- · default values
- · initialization options
- · bit definitions

Table 3-8 through Table 3-38 provide details on the PCI Configuration Registers.

Figure 3-1
PCI Configuration Register Memory Map

31	16	0				
Devi	ce ID	Vendor ID		0x00		
Sto	itus	Comi	mand	0x01		
	Class Code		Revision ID	0x02		
BIST	Header Type	Latency Timer	Cache Line Size	0x03		
				0x04		
				0x05		
	D 411	D		0x06		
	Base Address Registers					
	Cardbus CIS Pointer					
Subsys	Subsystem ID Subsystem Vendor ID					
		0x0C				
	Reserved Cap. Ptr					
	Rese	rved		0x0E		
Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line	0x0F		

Table 3-8Register Offset 0x00

Register Name:	PCI_ID	Register Offset: 0x00
Bits	Function	
31-24	Device ID[15:8]	
23-16	Device ID[7:0]	
15-8	Vendor ID[15:8]	
7-0	Vendor ID[7:0]	

Table 3-9Device and Vendor ID Register Description

Name	Туре	Reset By	Reset	Function
Device ID[15:0]	Read Only	N/A	0x0026	Identifies the type of SharcFIN
Addr 0x00[31:16]				
Vendor ID[15:0] Addr 0x00[15:0]	Read Only	N/A	Ox12BA	Identifies the manufacturer of the device. This number is allocated by the PCI SIG to ensure its uniqueness.

Table 3-10Register Offset 0x01

Register Name:	Register Offset: 0x01
Bits	Function
31-24	Status[15:8]
23-16	Status[7:0]
15-8	Command[15:8]
7-0	Command[7:0]

Table 3-11Status Register Description

Name	Туре	Reset By	Reset Value	Function
Status[15] Addr 0x01[31]	Read/ Write 1 to clear	TR*	0	Detected Parity Error 1 Parity Error Detected 0 No effect This bit is set to 1 whenever a parity error is detected. Writing a 1 to this location clears it. Writing 0 to this location has no effect.
Status[14] Addr 0x01[30]	Read/ Write 1 to clear	TR	0	Signaled System Error 1 SERR Asserted 0 No effect This bit is set to 1 whenever the device asserts the signal SERR. Writing 1 to this location clears it. Writing 0 to this location has no effect.
Status[13] Addr 0x01[29]	Read/ Write 1 to clear	TR	0	Received Master Abort 1 Master Abort 0 No effect This bit is set to 1 whenever a bus master abort occurs. Writing 1 to this location clears it. Writing 0 to this location has no effect.
Status[12] Addr 0x01[28]	Read/ Write 1 to clear	TR	0	Received Target Abort 1 Initiated cycle terminated by addressed target 0 No effect This bit is set to 1 whenever this device has one of its own initiated cycles terminated by the currently addressed target. Writing 1 to this location clears it. Writing 0 to this location has no effect.
(Sheet 1 of 3)				

Table 3-11Status Register Description (Continued)

Name	Туре	Reset By	Reset Value	Function
Status[11] Addr 0x01[27]	Read/ Write 1 to clear	TR	0	Signaled Target Abort 1 Cycle aborted when addressed as target 0 No effect This bit is set to 1 whenever this device aborts a cycle when addressed as a target. Writing a 1 to this location clears it. Writing 0 to this location has no effect.
Status[10:9] Addr 0x01[26:25]	Read Only	N/A	01	Device Selecting Timing 00 Fast 01 Medium 10 Slow 11 Reserved These bits define the signal behavior of DEVSEL from this device when accessed as a target. The SharcFIN is a 'medium' device, so these bits are hardwired to 01.
Status[8] Addr 0x01[24]	Read/ Write 1 to clear	TR	0	Data Parity Reported 1 Data Parity Error Detected 0 No Effect This bit is set to 1 when a data parity error occurs for a transfer involving the device as the master. The Parity Error Enable bit, bit 6 of the Command Register, must be set in order for this bit to be set.
Status[7] Addr 0x01[23]	Read Only	N/A	1	Fast Back-to-Back Capable For Target 1 Device can accept fast back- to-back cycles as target (Hardwired)
Status[6] Addr 0x01[22]	Read Only	N/A	0	User Defined Feature This bit was used to indicate whether a device supports user-defined features. Bit was changed to RESERVED in the PCI 2.2 specification.
Status[5] Addr 0x01[21]	Read Only	N/A	1	Bit 5 1 Device is 66 MHz Capable 0 Device is 33 MHz Capable Only
(Sheet 2 of 3)				

Table 3-11Status Register Description (Continued)

Name	Туре	Reset By	Reset Value	Function
Status[4]	Read Only	N/A	0	Bit 4 O No New Capabilities Linked List
Addr 0x01[20]				available
Status[3:0]	Read Only	N/A	0x0	Reserved
Addr 0x01[19:16]				
(Sheet 3 of 3)				

^{*} TR = Total Reset. Reset functionality is described in section 2.6.

Table 3-12Command Register Description

Name	Туре	Reset By	Reset Value	Function
Command [15:10]	Read Only	N/A	0	Reserved
Addr 0x01[15:10]				
Command[9] Addr 0x01[9]	Read Only	N/A	0	Fast Back-to-Back Enable For Master O Master not Back-to-Back capable 1 Master Back-to-Back capable This master is not back-to-back capable, so set this bit to "O".
Command[8] Addr 0x01[8]	Read/ Write	TR	1	System Error Enable Set this bit to 1 to permit the chip to drive the open drain output pin, SERR.
Command[7] Addr 0x01[7]	Read Only	N/A	0	Wait Cycle Enable O Address/Data stepping disabled 1 Address/Data stepping permitted
(Sheet 1 of 3)	•			

Table 3-12Command Register Description (Continued)

Name	Туре	Reset By	Reset Value	Function
Command[6] Addr 0x01[6]	Read/ Write	TR	1	Parity Error Enable O Disabled 1 Controller checks for parity errors Setting this bit to 1 allows the controller to check for parity errors. When a data (not address) parity error is detected, the PCI
Command[5] Addr 0x01[5]	Read Only	N/A	0	bus signal PERR is asserted. Palette Snoop Enable O Palette snooping disabled 1 Palette snooping enabled This bit controls how VGA compatible and graphics devices handle access to VGA palette registers. When set to 1, palette snooping is enabled. When the bit is 0, the device should treat palette access like all other accesses. The SharcFIN cannot snoop, so this bit is set to "O".
Command[4] Addr 0x01[4]	Read Only	N/A	0	Memory Write & Invalidate Enable O Masters must use Memory Write command 1 Masters may use Memory Write and Invalidate PCI bus command The SharcFIN cannot generate MWI cycles so this bit is set to 0.
Command[3] Addr 0x01[3]	Read only	N/A	0	Special Cycle Enable O Device ignores special cycle operations 1 Device monitors special cycle operations The SharcFIN cannot respond to special cycles so this bit is set to 0.
Command[2] Addr 0x01[2] (Sheet 2 of 3)	Read/ Write	TR	1	Bus Master Enable O Disable bus master function 1 Enable bus master function Set to 1 to allow the device to function as a bus master.

Table 3-12Command Register Description (Continued)

Name	Туре	Reset By	Reset Value	Function
Command[1]	Read/ Write	TR	1	Memory Space Enable O BAR address decode disabled
Addr 0x01[1]				1 Device responds to memory access cycles
Command[0]	Read/	TR	1	I/O Space Enable
	Write			O Bar address decode disabled
Addr 0x01[0]				1 Device responds to I/O access cycles
(Sheet 3 of 3)				

Table 3-13Register Offset 0x02

Register Name:	Register Offset: 0x02				
Bits	Function				
31-24	Class Code[23:16]				
23-16	Class Code[15-8]				
15-8	Class Code[7-0]				
7-0	Revision ID[7:0]				

Table 3-14Class Code Register Description

Name	Туре	Reset By	Reset Value	Function
Class Code[23:16] Addr 0x02[31:24]	Read Only	N/A	0x04	Base Class The SharcFIN is a multimedia device.
Class Code[15:8] Addr 0x02[23:16]	Read Only	N/A	0x80	Sub-Class The SharcFIN is not specifically an audio video device.
Class Code[7:0] Addr 0x02[8:15]	Read Only	N/A	0x00	Programming Interface

Table 3-15Revision ID Register Description

Name	Туре	Reset By	Reset Value	Function
Revision ID[7:0]	Read-Only	N/A	0	Revision identification
Addr 0x02[7:0]				

Table 3-16Register Offset 0x03

Register Name:	Register Offset: 0x03			
Bits	Function			
1-24	BIST[7:0]			
23-16	Header Type[7:0]			
15-8	Latency Timer[7:0]			
7-0	Cache Line Size[7:0]			

Table 3-17Built-In Self-Test (BIST) Register Description

Name	Туре	Reset By	Reset Value	Function
BIST[7]	Read Only	N/A	0	Device is BIST capable Device is not BIST capable
Addr 0x03[31]				·
BIST[6] Addr 0x03[30]	Read/ Write	TR/HTR	0	Built-In Self-Test 1 Start BIST 0 No effect If device is BIST-capable, writing a 1 to bit 6 will commence the self test. PCI specification states that self test must terminate in 2 seconds.
BIST[5:4] Addr 0x03[29:28]	Read Only	N/A	0	Reserved Should be set to 0.
BIST[3:0] Addr 0x03[27:24]	Read Only	TR/HTR	0	Result Code 0 = BIST OK 1–15 = BIST Fail

Table 3-18Header Type Register Description

Name	Туре	Reset By	Reset Value	Function
Header Type[7]	Read Only	N/A	0	Single-function device Multi-function device
Addr 0x03[23]				
Header Type[6:0]	Read Only	N/A	0	Format Field
Addr 0x03[22:16]				

Table 3-19 Latency Timer Register Description

Name	Туре	Reset By	Reset Value	Function
Latency Timer[7:0] Addr 0x03[15:8]	Read/ Write	TR	0	Latency Timer Used only when the device is a bus master. It indicates the number of PCI bus clocks that this master will be guaranteed. May be overridden by user. (See also section entitled "Bus Mastering" on page 42.)

Table 3-20Cache Line Size Register Description

Name	Туре	Reset By	Reset Value	Function
Cache Line Size[7:0] Addr 0x03[7:0]	Read/ Write	TR	0	Cache Line Size This register specifies the system cache line size in units of 32-bit words. This register must be implemented by the master devices that can generate the Memory Write and Invalidate command. Slave devices that want to allow memory bursting using cache line wrap addressing mode must implement this register. Valid values are: 16 0x10 32 0x20 64 0x40 128 0x80 All other values are assumed invalid.

Table 3-21Register Offset 0x04, 0x05, 0x06, 0x07, 0x08, 0x09

Register Name:	Register Offset: 0x04, 0x05, 0x06, 0x07, 0x08, 0x09		
Bits	Function		
31-24	Base Address Register[31:24]		
23-16	Base Address Register[23:16]		
15-8	Base Address Register[15:8]		
7-0	Base Address Register[7:0]		

Table 3-22Base Address Register Description

Name	Туре	Reset By	Reset Value	Function	
	Base Address Registers (BARs) The Base Address Register (BAR) is used to assign memory or I/O space for the add-on function. There are six base address locations. The size of each base address is hard coded. The size is determined by writing all 1's to a base address register and then reading that register back. The bits returning 0's define the size of the memory region. After the size and type of decode, memory or I/O have been determined, an assigned address is written to the base address register bits returned 1's. Configuring 64-bit addressing can only be done on 0x06 and 0x08 registers. When a register is configured for 64-bit addressing, next 32-bit register is used for the upper 32 address bits of the 64-bit address match.				
Memory Configuration	Memory Configuration				
Base Address[31:4]	Read/ Write	TR	BARO: OxFFFFFEO BAR1: OxFFCO000 BAR2: OxFE00000 BAR3: OxFFFFFFF BAR4: OxFF00000 BAR5: OxFFFFFFF	Base Address Hard coded for BARO = 512 Bytes BAR1 = 4 MBytes BAR2 = 32 MBytes BAR4 = 16 MBytes	
Base Address[3]	Read Only	TR	BARO: O BAR1: O BAR2: 1 BAR3: 1 BAR4: 1 BAR5: 1	Prefetchable This byte is set to 1 if there are no side effects on reads, the device returns all bytes on reads regardless of the byte enables.	
(Sheet 1 of 2)					

Table 3-22Base Address Register Description (Continued)

Name	Туре	Reset By	Reset Value	Function
Base Address[2:1]	Read Only	TR	BARO: 00 BAR1: 00 BAR2: 10 BAR3: 11 BAR4: 10 BAR5: 11	00 Locate anywhere in 32-bit address 01 Below 1 MB 10 Locate anywhere in 64-bit address 11 Reserved
Base Address[0]	Read Only	TR	BARO: O BAR1: O BAR2: O BAR3: 1 BAR4: O BAR5: 1	Memory vs. I/O Space Configuration O Memory Space Configuration 1 I/O Space Configuration
(Sheet 2 of 2)				

Table 3-23Register Offset 0x0A

Register Name:	Register Offset: 0x0A		
Bits	Function		
31-24	Cardbus CIS Pointer[31:24]		
23-16	Cardbus CIS Pointer[23:16]		
15-8	Cardbus CIS Pointer[15:8]		
7-0	Cardbus CIS Pointer[7:0]		

Table 3-24Cardbus CIS Pointer Register Description

Name	Туре	Reset By	Reset Value	Function
Cardbus CIS Pointer[31:0] Addr 0x0A[31:0]	Read Only	N/A	0x0000000	Cardbus CIS Pointer Cardbus CIS pointer is set to 0x0. For a detailed explanation of the CIS, refer to the PCMCIA V2.10 specification. The subject is covered under the heading of "Card Metaformat" and describes the type of information provided and the organization of this information.

Table 3-25Register Offset 0x0B

Register Name:	Register Offset: 0x0B			
Bits	Function			
31-24	Subsystem ID[15:8]			
23-16	Subsystem ID[7:0]			
15-8	Subsystem Vendor ID[15:8]			
7-0	Subsystem Vendor ID[7:0]			

Table 3-26Subsystem ID/Subsystem Vendor ID Register Description

Name	Туре	Reset By	Reset Value	Function
Subsystem ID[15:0] Addr 0x0B[31:16]	Read Only	N/A	0x0000	These optional registers are used to uniquely identify the add-in board or system where the PCI device resides. They provide a mechanism for add-in card vendors to distinguish their cards
Subsystem Vendor ID[15:0] Addr 0x0B[15:0]	Read Only	N/A	0x0000	from one another even though the cards may have the same <i>Vendor ID</i> and <i>Device ID</i> .

Table 3-27Register Offset 0x0C

Register Name:	Register Offset: 0x0C				
Bits	Function				
31-24	Expansion ROM Base Address[31:24]				
23-16	Expansion ROM Base Address[23:16]				
15-8	Expansion ROM Base Address[15:8]				
7-0	Expansion ROM Base Address[7:0]				

Table 3-28 Expansion ROM Base Address Register Description

Name	Туре	Reset By	Reset Value	Function
Expansion ROM Base Address[31:11] Addr 0x0C[31:11]	Read Only	N/A	0x0	Base Address The SharcFIN does not use expansion ROM.
Expansion ROM Base Address[10:1] Addr 0x0C[10:1]	Read Only	N/A	0	Reserved (Always reads as "0")
Expansion ROM Base Address[0] Addr 0x0C[0]	Read Only	N/A	0x0	Address Decode Enable O Address Decode Disabled 1 Address Decode Enabled

Table 3-29Register Offset 0x0D

Register Name:	Register Offset: 0x0D			
Bits	Function			
31-24	Reserved[23:16]			
23-16	Reserved[15:8]			
15-8	Reserved[7:0]			
7-0	Cap_Ptr[7:0]			

Table 3-30Reserved Register Description

Name	Туре	Reset By	Reset Value	Function
Reserved[23:0]	Read Only	N/A	0x000000	Reserved registers must return 0 on read as specified in the PCI specification.
Addr 0x0D[31:8]				

Table 3-31Capabilities Pointer Register Description

Name	Туре	Reset By	Reset Value	Function
Cap_Ptr[7:0]	Read Only	N/A	0x00	Pointer to linked list of new capabilities.
Addr 0x0D[7:0]				

Table 3-32Register Offset 0x0E

Register Name:	Register Offset: 0x0E
Bits	Function
31-24	Reserved[31:24]
23-16	Reserved[23:16]
15-8	Reserved[15:8]
7-0	Reserved[7:0]

Table 3-33Reserved Register Description

Name	Туре	Reset By	Reset Value	Function
Reserved[31:0]	Read Only	N/A	0x00000000	Reserved registers must return 0 on read as specified in the PCI
Addr 0x0E[31:0]				specification.

Table 3-34Register Offset 0x0F

Register Name:	Register Offset: 0x0F		
Bits	Function		
31-24	Max_Lat[7:0]		
23-16	Min_Gnt[7:0]		
15-8	Interrupt Pin[7:0]		
7-0	Interrupt Line[7:0]		

Table 3-35Maximum Latency Register Description

Name	Туре	Reset By	Reset Value	Function
Max_Lat[7:0]	Read	N/A	0x00	Maximum Latency
Addr 0x0F[31:24]	Only			This register specifies how often the device needs to gain access to the PCI bus.
				Setting this register to 0 indicates that the device has no major requirements for the settings of Latency Timers.

Table 3-36Minimum Grant Register Description

Name	Туре	Reset By	Reset Value	Function
Min_Gnt[7:0]	Read Only	N/A	0x00	Minimum Grant This register specifies how long of a burst
Addr 0x0F[23:16]				period the device needs assuming a clock rate of 33 MHz.

Table 3-37Interrupt Pin Register Description

Name	Туре	Reset By	Reset Value	Function
Interrupt Pin[7:0]	Read Only	N/A	0x01	Defines which of the four PCI interrupt request pins the device uses.
Addr 0x0F[15:8]				

Table 3-38Interrupt Line Register Description

Name	Туре	Reset By	Reset Value	Function
Interrupt Line [7:0]	Read/ Write	TR	0	Eight-bit register indicating interrupt line routing information.
Addr 0x0F[7:0]				

3.3 Chip Control Registers

The SharcFIN contains a 512-byte structure that houses the control registers. All the operations of the SharcFIN are controlled using these registers. The control structure can be accessed either via the ADSP-21160 cluster bus or via the PCI bus. The control registers are at an offset of 0x00-0x17F to **Base Address Register 0** (BAR0) or MS2 base + 0x00 to 0x5F (see Figure 3-2 and Figure 3-3, and Table 3-39 through Table 3-171).

Figure 3-2 PCI Control Register Memory Map

8	02	04	90	80	0 V	8	OE	10	12	14	16	18	₹	5	JE
	(>		5	User ID J7:0] (R only) Antifuse	O Target Burst Request BAR[5:0]	1				(>		5	00 Receive FIFO 0 Almost Empty [5:0] (R/W)	PCI Outgoing Mail 0	PCI Incoming Mail 0
	Master Write Transfer CountO [31:0] (R/W)		Master Write Transfer Count1 [31:0] (R/W)	Chip Revision ID [7:0] (R only)	0 Target Prefetch Cntl BAR[5:0]	$_{ m l_2O}$ Interrupt Service Request Bit [3] -		λueue Pointer	(w/	Master Read Transfer CountO [31:0] (R/W)		Master Read Transfer Count1 [31:0] (R/W)	00 Receive FIFO 1 Almost Empty [5:0] (R/W)	PCI Outgoing Mail 1	PCI Incoming Mail 1
	er Write Transfer (er Write Transfer (TTMX Individual Services AMT 1 AMT 1 AMT 0 TMX Full AMT 0 TMX Full RCV1 Full RCV0 Full Full RCV0 Full F	Emptiness Threshold BAR2 BAR1 BAR0	O Interrupt Servi		I ₂ O Inbound Queue Pointer	Address [63:0] (R,	ər Read Transfer (er Read Transfer (D Receive FIFO 0 Almost Full [5:0] (R/W)	PCI Outgoing Mail 2	PCI Incoming Mail 2
Master Write Address 0 [63:0] (R/W)	Maste	Master Write Address 1 [63:0] (R/W)	Maste	000000000	Target FIFO Target FIFO Control Threshold BARS BAR2 BAR3	12	ved		Master Read Address 0 [63:0] (R/W) / Chain Descriptor Start Address [63:0] (R/W)	Maste	Master Read Address 1 [63:0] (R/W)	Maste	00 Receive FIFO 1 Almost 00 Full [5:0] (R/W)	PCI Outgoing Mail 3 Po	PCI Incoming Mail 3 P
ıster Write Addre		ıster Write Addre		Bus Request Phipeline Not Emphy	(R only) BARI BARO	<u> </u>	Reserved		3:0] (R/W) / Ch		uster Read Addre		XMIT FIFO 0 Almost Empty [5:0] (R/W)	PCI Outgoing Mail 4	PCI Incoming Mail 4
W	usO [31:0] (R only)	We	us1 [31:0] (R only)	0000_0000	Target BAR Configuration (R only)	ask Bit [3]		ueue Pointer	Read Address 0 [6	usO [31:0] (R only)	We	Status 1 [31:0] (R only)	XMIT FIFO 1 Almost D0 Empty [5:0] (R/W)	PCI Outgoing Mail 5 PC	PCI Incoming Mail 5 P
	Master Write Count Status0 [31:0] (R only)		Master Write Count Status1 [31:0] (R only)	0000 0000	8AR Enable (R only) 8AR5	l ₂ O Interrupt Mask Bit [3]		1 ₂ O Outbound Queue Pointer	Master	Master Read Count StatusO [31:0] (R only)		Master Read Count Stat	00 XMIT FIFO 0 Almost 00 Full [5:0] (R/W)	PCI Outgoing Mail 6 P	PCI Incoming Mail 6 Pe
	Masi		Masi	0000 0000	8/24ma hw hw 6 8 6 7 7					Mas		Mas	00 XMIT FIFO 1 Almost 0 Full [5:0] (R/W)	PCI Outgoing Mail 7 P	PCI Incoming Mail 7 F

PCI Memory Map

Figure 3-3
PCI Control Register Memory Map (Continued)

20	22	24	26	28	2A	2C	2E	30	32	34	36	38	3A	3C	3E
0000 0000	User Incoming MB Empty Interrupt Mask [7:0]	PCI Outgoing MB Status [7:0]								0 BE En Max Thresh lat Retry TO en [1:0] [1:0] [1:0]			TRST		
0000 0000	User Outgoing MB Empty Interrupt Mask [7:0]	PCI Incoming MB Status [7:0]								0000 0000			pə/		
0000 0000	0000 0000	00 (Gaine DMA Start/Done#								Hush DMA Cancel and set and se			Reserved		
0000 0000	0000 0000	0000 1 ₂ O Status of the order of the orde	Reserved	rved	rved	rved	rved	rved	Reserved	0000 SPC 0000	rved	rved		rved	rved
PCI Outgoing MB Empty [7:0]	PCI Outgoing MB Empty Interrupt Mask [7:0]	0000 0000	Rese	Reserved	Reserved	Reserved	Reserved	Reserved	Rese	0000 DMA 32/64#	Reserved	Reserved	2M Keset	Reserved	Reserved
DMA Interrupt ©	DMA Interrupt Mask PCI Incoming MB Full CE Inc Inc Inc Interrupt Mask [7:0]	Error								0000_00 Arb DMA Arbitration Priority Node rev1 rev0 rm1 xm10 rm10 rm			Reserved		
000_0000	0000_0000 	0000 MET MAN								0000 0000					

PCI Memory Map

Figure 3-4User Control Register Memory Map (Continues on next page)

8	05	90	90	80	90	9	90	10	12	14	16	18	1A	10	JE
28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 6 63:0] (R/W)	Master Write Transfer CountO [31:0] (R/W)	63:0] (R/W)	Master Write Transfer Count1 [31:0] (R/W)	Receive FIFO 0 Byte 동교 등 경우 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	Target FIFO Control - Empliness Threshold of Target Prefetch Cntl of Target Burst Request of BAR[5:0]	I ₂ O Interrupt Service Request Bit [3]		1 ₂ O Inbound Queue Pointer	əscriptor Start Address [63:0] (R/W)	Master Read Transfer CountO [31:0] (R/W)	63:0] (R/W)	Master Read Transfer Count1 [31:0] (R/W)	Receive FIFO 1 Almost PLO 0 Almost PLO 1 (5.0) [R/W] OD Receive FIFO 1 Almost PLO 0 Almost PLO 1 Almost	User Incoming Mail 3 User Incoming Mail 2 User Incoming Mail 1 User Incoming Mail 0	User Outgoing Mail 3 User Outgoing Mail 2 User Outgoing Mail 1 User Outgoing Mail 0
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 11 40 39 38 37 36 35 34 33 32 31 30 79 28 27 28 52 24 Master Write Address 0 [63:0] (R/W)	Master Write Count Status0 [31:0] (R only)	Master Write Address 1 [63:0] (R/W)	Master Write Count Status 1 [31:0] (R only)	00 Single PCI Access Receive FIFO 1 Byte Bus Request Single PCI Access Byte Iames 7:0 Lane [7:0] Will point Will point	0000 8 F F Example (R only) Target BAR Canfiguration (R only) Target FFO Target BAR Canfiguration (R only) Target FFO Target FFO Target BAR Canfiguration (R only) Target FFO Target BAR Canfiguration (R only) Target FFO Target FFO Target BAR Canfiguration (R only) Target FFO Target FFO Target BAR Canfiguration (R only) Target FFO Target BAR Canfiguration (R only) Target FFO Target BAR Canfiguration (R only) Targ	I ₂ O Interrupt Mask Bit [3] ———	Reserved	1 ₂ O Outbound Queue Pointer	Master Read Address 0 [63:0] (R/W) / Chain Descriptor Start Address [63:0] (R/W)	Master Read Count Status0 [31:0] (R only)	Master Read Address 1 [63:0] (R/W)	Master Read Count Status 1 [31:0] (R only)	00 XWIT FFO 1 Almost 00 XWIT FFO 0 Almost 00 Empty [5:0] (R/W)	User Incoming Mail 7 User Incoming Mail 6 User Incoming Mail 5 User Incoming Mail 4 User Inco	User Outgoing Mail 7 User Outgoing Mail 6 User Outgoing Mail 5 User Outgoing Mail 4 User Outg

User Memory Map

Figure 3-5
User Control Register Memory Map (Continued)

	20	22	24	26	28	8	22	2E	30	32	34	36	38	34	30	3E
7 6 5 4 3 2 1 0	User Incoming MB Full [7:0]	User Incoming MB Empty Interrupt Mask [7:0]	User Incoming MB Status [7:0]								0 BE En Max Thresh lot 11:0] [1:0] [1:0] en				000	
20 19 18 17 16 15 14 13 12 11 10 9 8	User Outgoing MB Empty [7:0]	User Outgoing MB Empty Interrupt Mask [7:0]	User Outgoing MB Status [7:0]								000 BIST Code 0 [3:0]					
25 24 23 22 21	BIST Interrupt Start Interrupt Start Interrupt CE CT	BISS Acres A	1.00 Status 1.	::0] (R/W))] (R/W)				((900 Flush DMA Cancel				4	(%
29 28 27 26)O I ₂ O Interrupt)0 1 ₂ O Int Mask		gister [63	ster [63:C] (R only)] (R only)] (W only] (W only)O SPC				J (R only	3:0] (R/V
31 30 ;	0000	0000	0000	ss Reç	ı Regi	Reserved	[63:0	[63:0	[63:0	[63:0	000	Reserved	Reserved	Reserved	. [63:(ata [6
39 38 37 36 35 34 33 32	0000 0000	PCI Outgoing MB Empty Interrupt Mask [7:0]	0000 0000	Single PCI Access Address Register [63:0] (R/W)	Single PCI Access Data Register [63:0] (R/W)	Rese	Receive FIFO0 [63:0] (R only)	Receive FIFO1 [63:0] (R only)	Transmit FIFO0 [63:0] (W only)	Transmit FIFO1 [63:0] (W only)	0000 DMA 32/64# 0000	Rese	Rese	Rese	Target Control Address [63:0] (R only)	Target Control Data [63:0] (R/W)
47 46 45 44 43 42 41 40	0000 0000	PCI Incoming MB Empty Interrupt Mask [7:0]	0000 0000	Single	Sing						DMA Arbitration Priority rev rev0 xmt xmt0				Tarç	
56 55 54 53 52 51 50 49 48	0000 0000	0000 0000	900 Error								Arb Mode Mode [1:0]					
12 61 60 59 58 57 56	0000 0000	0000 0000	OOO MRT MAT MAT MAT MAT MAT MAT MAT MAT MAT MA								0000 0000					

User Memory Map

Figure 3-6SHARC Interface Control Register Memory Map

40	42	44	46	48	4A	4C	4E	50	52	54	56	58	5A	5C	5E	
Address Override Register (R/W)	Peripheral Bus Register (R/W)	PMC+ Configuration Register (R/W)	Onboard I ² C Control Register (R/W)	DMA Address Register (R/W)	SD Window Register (R/W)	Reserved	Reserved	H110 Configuration Register (R/W)	H2IO Configuration Register (R/W)	H3IO Configuration Register (R/W)	H4I0 Configuration Register (R/W)	PCInt Configuration Register (R/W)	PMCIO Configuration Register (R/W)	Reserved	Flag Status Regster (R only)	
Status Register (R only)	Watchdog Configuration Register (WORM)	SD Size Configuration Register (R/W)	PMC+ I ² C Control Register (R/W)	DMA Configuration Register (R/W)	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	IRQ Status Register (R only)	

SHARC Interface Register Memory Map

3.3.1 PCI Control Registers

All access to the control registers via the PCI bus are synchronized to **LClk** and simultaneous accesses to the same byte lane of data result in the PCI write being dropped. (Exceptions apply to **DMA Start/Done#, DMA Cancel**, and **Transmit FIFO Flush**). The control registers may be accessed via the ADSP-21160 cluster bus on a clock-by-clock basis.

Table 3-39Control Register Offset 0x00

Register Name: PCI_ID	Register Name: PCI_ID Register Offset: 0x00								
Bits	Function								
63-56	Master Write Address 0[63:56]								
55-48	Master Write Address 0[55:48]								
47-40	Master Write Address 0[47:40]								
39-32	Master Write Address 0[39:32]								
31-24	Master Write Address 0[31:24]								
23-16	Master Write Address 0[23:16]								
15-8	Master Write Address 0[15:8]								
7-0	Master Write Address 0[7:0]								

Table 3-40Master Write Address 0 Description

Name	Туре	Reset By	Reset Value	Function
Master Write Address 0[63:0]	Read/ Write	TR/HTR*	0	Establishes the starting PCI target address for data moving from Transmit FIFO0 to the PCI bus under the control of Transmit DMA Channel 0.
addr 0x00[63:0]				The address must be 64-bit aligned. A simultaneous write from both busses results in the PCI write being dropped.

^{*} TR= Total Reset HTR = Host Total Reset Reset functionality is described in Section 2.6.

Table 3-41Control Register Offset 0x02

Register Name: PCI_	Register Name: PCI_ID Register Offset: 0x02								
Bits	Function								
63-56	Master Write Count Status 0[31:24]								
55-48	Master Write Count Status 0[23:16]								
47-40	Master Write Count Status 0[15:8]								
39-32	Master Write Count Status 0[7:0]								
31-24	Master Write Transfer Count 0[31:24]								
23-16	Master Write Transfer Count 0[23:16]								
15-8	Master Write Transfer Count 0[15:8]								
7-0	Master Write Transfer Count 0[7:0]								

Table 3-42Master Write Count Status 0 Description

Name	Туре	Reset By	Reset Value	Function
Master Write Count Status 0[31:0]	Read Only	TR/HTR	0	The status of the transfer operation for Transmit DMA Channel 0 is monitored by reading this register.
addr 0x02[63:32]				The <i>Master Write Count Status 0</i> register will contain the number of bytes yet to be transferred (or the last value after a cancel) if the Transmit DMA Channel 0 is enabled. Otherwise the register will read 0. This register is accessible from both the PCI and the ADSP-21160 cluster bus.

Table 3-43Master Write Transfer Count 0 Description

Name	Туре	Reset By	Reset Value	Function
Master Write Transfer Count 0[31:0]	Read/ Write	TR/HTR	0	Total number of bytes that are to be transferred from Transmit FIFO0 to the PCI bus by Transmit DMA Channel 0.
addr 0x02[31:0]				Transfers may be any non-zero value up to 0xFFFFFFFO (2 ³² –16).
				This register is read/write and may be accessed from both the ADSP-21160 cluster bus and by PCI.
				A simultaneous write from both busses results in the PCI write being dropped.

Table 3-44Control Register Offset 0x04

Register Name: PCI_ID	Register Name: PCI_ID Register Offset: 0x04					
Bits	Function					
63-56	Master Write Address 1[63:56]					
55-48	Master Write Address 1[55:48]					
47-40	Master Write Address 1[47:40]					
39-32	Master Write Address 1[39:32]					
31-24	Master Write Address 1[31:24]					
23-16	Master Write Address 1[23:16]					
15-8	Master Write Address 1[15:8]					
7-0	Master Write Address 1[7:0]					

Table 3-45Master Write Address 1 Description

Name	Туре	Reset By	Reset Value	Function
Master Write Address 1[63:0] addr 0x04[63:0]	Read/ Write	TR/HTR	0	Establishes the starting PCI target address for data moving from Transmit FIFO1 to the PCI bus under the control of Transmit DMA Channel 1, and gets sampled by the DMA engine upon start of the transfer. This register does not get updated during the
				transfer. The address must be aligned on 64-bit boundaries.
				A simultaneous write from both busses results in the PCI write being dropped.

Table 3-46Control Register Offset 0x06

Register Name: PCI_ID	Register Name: PCI_ID_Register Offset: 0x06					
Bits	Function					
63-56	Master Write Count Status 1[31:24]					
55-48	Master Write Count Status 1[23:16]					
47-40	Master Write Count Status 1[15:8]					
39-32	Master Write Count Status 1[7:0]					
31-24	Master Write Transfer Count 1[31:24]					
23-16	Master Write Transfer Count 1[23:16]					
15-8	Master Write Transfer Count 1[15:8]					
7-0	Master Write Transfer Count 1[7:0]					

Table 3-47Master Write Count Status 1 Description

Name	Туре	Reset By	Reset Value	Function
Master Write Count Status 1[31:0] addr 0x06[63:32]	Read Only	TR/HTR	0	The status of the transfer operation for Transmit DMA Channel 1 is monitored by reading this register. The <i>Master Write Count Status 1</i> register will contain the number of bytes yet to be transferred if the <i>Transmit DMA Channel 1</i> is enabled. This register is updated approximately every eight clock cycles. A maskable interrupt can be generated to either the PCI bus or the ADSP-21160 cluster bus upon completion. This register is accessible from both the PCI and the ADSP-21160 cluster bus.

Table 3-48Master Write Transfer Count 1 Description

Name	Туре	Reset By	Reset Value	Function
Master Write Transfer Count 1[31:0]	Read/ Write	TR/HTR	0	Total number of bytes that are to be transferred from Transmit FIFO 1 to the PCI bus by Transmit DMA Channel 1.
addr 0x06[31:0]				Transfers may be any non-zero value up to OxFFFFFFFO (2 ³² –16).
				This register is read/write and may be accessed from both the ADSP-21160 cluster bus and by PCI.
				A simultaneous write from both busses results in the PCI write being dropped. This register gets sampled at the start of a DMA transfer.

Table 3-49Control Register Offset 0x08

Register Name: PCI_ID Register Offset: 0x08									
Bits	Function	Function							
63-56	OO Single PCI SPCI Start 32-bit (user only) (user only)			SPCI Command[3:0] [User Only]					
55-48	Single PCI A	Access Byte I	.ane[7:0] [Use	· Only]	1				
47-40	Receive FIF	Receive FIFO1 Byte Lane[7:0] [User Only]							
39-32	Bus Request	Bus Request [3:0]				Pipeline Not Empty[1:0] Chain tag0[1:0] [User Only]			
31-24	Receive FIF	O0 Byte Land	e[7:0] [User O	nly]	- 1		1		
23-16	XMT1 Full XMT1 XMTO Full XMTO Almost Full Full				RCV1 Empty	RCV1 Almost Empty	RCVO Empty	RCVO Almost Empty	
15-8	Chip Revision	Chip Revision ID[7:0] (read only)							
<i>7</i> -0	User ID[7:0	User ID[7:0] (read only)							

Table 3-50Single PCI Access Start Description

Name	Туре	Reset By	Reset Value	Function
Single PCI	Read/	TR/HTR	0	Single PCI Access Start/Status
Access Start	Write			On write:
	(user)			1 Start SPCI access
addr 0x08[61]				0 No effect
				On read:
				1 SPCI access not complete
				O SPCI access complete.
				May be accessed from the ADSP-21160 cluster bus only.

Table 3-51Single PCI Access 32-Bit Description

Name	Туре	Reset By	Reset Value	Function
Single PCI Access 32-Bit	Read/ Write	TR/HTR	0	Automatic/Predetermined Target Bus Width for SPCI Access:
	(user)			1 Assume destination is 32 bits.
addr 0x08[60]				O Automatically determine destination bus width using REQ64 . Initially assume destination is 64-bits.
				Only has meaning on memory accesses; otherwise ignored. May be accessed from the ADSP-21160 cluster bus only.

Table 3-52Single PCI Access Command Description

Name	Туре	Reset By	Reset Value	Function
Single PCI Access Command[3:0] addr 0x08[59:56]	Read/ Write (user)	TR/HTR	0	SPCI Command: C/ Command Type 0000 Interrupt Acknowledge 0001 Special Cycle 0010 I/O Read 0011 I/O Write 0100 Reserved 0101 Reserved 0110 Memory Read 0111 Memory Write 1000 Reserved 1001 Reserved 1001 Reserved 1001 Reserved 1001 Reserved 1001 Reserved 1010 Configuration Read 1011 Configuration Write 1100 Memory Read Multiple 1101 Dual Address Cycle 1110 Memory Read Line 1111 Memory Write and
				May be accessed from the ADSP-21160 cluster bus only

Table 3-53Single PCI Byte Lanes Description

Name	Туре	Reset By	Reset Value	Function
Single PCI Access Byte Lanes[7] addr 0x08[55]	Read/ Write (user)	TR/HTR	0	SPCI Data [63:56]
Single PCI Access Byte Lanes[6] addr 0x08[54]				SPCI Data [55:48]
Single PCI Access Byte Lanes[5] addr 0x08[53]				SPCI Data [47:40]
Single PCI Access Byte Lanes[4] addr 0x08[52]				SPCI Data [39:32]
Single PCI Access Byte Lanes[3] addr 0x08[51]				SPCI Data [31:24]
Single PCI Access Byte Lanes[2] addr 0x08[50]				SPCI Data [23:16]
Single PCI Access Byte Lanes[1] addr 0x08[49]				SPCI Data [15:8]
Single PCI Access Byte Lanes[0] addr 0x08[48]				SPCI Data [7:0] 1 Active Byte Lane 0 Inactive Byte Lane May be accessed from the ADSP- 21160 cluster bus only

Table 3-54Receive FIFO1 Byte Lane Description

Name	Туре	Reset By	Reset Value	Function
Receive FIFO1 Byte Lane[7] addr 0x08[47]	Read Only (user)	TR/HTR	0	Byte lane for the data present at the output of Receive FIFO1 [63:56].
Receive FIFO1 Byte Lane[6] addr 0x08[46]				Byte lane for the data present at the output of Receive FIFO1 [55:48].
Receive FIFO1 Byte Lane[5] addr 0x08[45]				Byte lane for the data present at the output of Receive FIFO1 [47:40].
Receive FIFO1 Byte Lane[4] addr 0x08[44]				Byte lane for the data present at the output of Receive FIFO1 [39:32].
Receive FIFO1 Byte Lane[3] addr 0x08[43]				Byte lane for the data present at the output of Receive FIFO1 [31:24].
Receive FIFO1 Byte Lane[2]				Byte lane for the data present at the output of Receive FIFO1 [23:16].
addr 0x08[42] Receive FIFO1 Byte Lane[1]				Byte lane for the data present at the output of Receive FIFO1 [15:8].
addr 0x08[41]				Byte lane for the data present at the output of Receive FIFO1 [7:0].
Receive FIFO1 Byte Lane[0] addr 0x08[40]				Active Byte Lane Inactive Byte Lane
				May be accessed from the ADSP-21160 cluster bus only

Table 3-55Bus Request Status Description

Name	Туре	Reset By	Reset Value	Function
Bus Request[3] addr 0x08[39]	Read Only	TR/HTR	0	Transmit DMA Channel 0 Activity Status 1 Transmit DMA Channel 0 has pending need of the PCI bus 0 No pending transactions
Bus Request[2] addr 0x08[38]	Read Only	TR/HTR	0	Transmit DMA Channel 1 Activity Status 1 Transmit DMA Channel 1 has pending need of the PCI bus 0 No pending transactions
Bus Request[1] addr 0x08[37]	Read Only	TR/HTR	0	Receive DMA Channel 0 Activity Status 1 Receive DMA Channel 0 has pending need of the PCI bus 0 No pending transactions
Bus Request[0] addr 0x08[36]	Read Only	TR/HTR	0	Receive DMA Channel 1 Activity Status 1 Receive DMA Channel 1 has pending need of the PCI bus 0 No pending transactions

Table 3-56Pipeline Not Empty Description

Name	Туре	Reset By	Reset Value	Function
Pipeline Not Empty[1]	Read	TR/HTR	0	Transmit 1 Pipeline Status
addr 0x08[34]	Only			Used to determine when the Transmit pipeline is empty for gracefully cancelling the DMA operation. Pipeline not empty Pipeline is empty
Pipeline Not Empty[0] addr 0x08[35]	Read Only	TR/HTR	0	Transmit O Pipeline Status Used to determine when the Transmit pipeline is empty for gracefully cancelling the DMA operation. 1 Pipeline not empty O Pipeline is empty

Table 3-57Chain Tag Field Description

Name	Туре	Reset By	Reset Value	Function
Chain tag0[1:0] addr 0x08[33:32]	Read Only (user)	TR/ HTR	0	Chain Tag[1:0] O Normal Data O1 Descriptor Pointer quadword O (PCI StartingAddress) 10 Descriptor Pointer quadword 1 (User Defined) 11 Descriptor Pointer quadword 2 (Transfer Count, et. al.)
				May be accessed from the ADSP-21160 cluster bus only.

Table 3-58Receive FIFOO Byte Lane Description

Name	Туре	Reset By	Reset Value	Function
Receive FIFO0 Byte Lane[7] addr 0x08[31]	Read Only (user)	TR/HTR	0	Byte lane for the data present at the output of Receive FIFOO [63:56].
Receive FIFO0 Byte Lane[6] addr 0x08[30]				Byte lane for the data present at the output of Receive FIFO0 [55:48].
Receive FIFO0 Byte Lane[5] addr 0x08[29]				Byte lane for the data present at the output of Receive FIFO0 [47:40].
Receive FIFO0 Byte Lane[4] addr 0x08[28]				Byte lane for the data present at the output of Receive FIFO0 [39:32].
Receive FIFO0 Byte Lane[3] addr 0x08[27]				Byte lane for the data present at the output of Receive FIFO0 [31:24].
Receive FIFO0 Byte Lane[2] addr 0x08[26]				Byte lane for the data present at the output of Receive FIFO0 [23:16].
Receive FIFOO Byte Lane[1] addr 0x08[25]				Byte lane for the data present at the output of Receive FIFO0 [15:8].
Receive FIFOO Byte Lane[0] addr 0x08[24]				Byte lane for the data present at the output of Receive FIFOO [7:0].
333. 5700[24]				1 Active Byte Lane 0 Inactive Byte Lane
				May be accessed from the ADSP-21160 cluster bus only

Table 3-59 Transmit Descriptions

Name	Туре	Reset By	Reset Value	Function
XMT1 Full FIFO Flag addr 0x08[23]	Read Only	TR/HTR	0	Transmit FIFO1 Full Flag Active High. Full flag for Transmit FIFO1. Indicates that the FIFO is full. Identical to the signal xmt1_fifo_ff, except for a one pipe delay.
XMT1 Almost Full FIFO Flag addr 0x08[22]	Read Only	TR/HTR	0	Transmit FIFO1 Almost Full Flag Active High. Almost full flag for Transmit FIFO1. Indicates that the number of quadwords remaining in Transmit FIFO1 is greater than or equal to the threshold programmed in register 0x1A bits[61:56]. Identical to the signal xmt1_fifo_program_full_flag, except for a one pipe delay.
XMTO Full FIFO Flag addr 0x08[21]	Read Only	TR/HTR	0	Transmit FIFO0 Full Flag Active High. Full flag for Transmit FIFO0. Indicates that the FIFO is full. Identical to the signal xmt0_fifo_ff except for a one pipe delay.
XMTO Almost Full FIFO Flag addr 0x08[20]	Read Only	TR/HTR	0	Transmit FIFOO Almost Full Flag Active High. Almost full flag for DMA Transmit FIFOO. Indicates that the number of quadwords remaining in Transmit FIFOO is greater than or equal to the threshold programmed in register 0x1A bits[53:48]. Identical to the signal xmt0_fifo_program_full_flag except for a one pipe delay.

Table 3-60Receive Descriptions

Name	Туре	Reset By	Reset Value	Function
RCV1 Empty FIFO Flag	Read	TR/HTR	0	Receive FIFO1 Empty Flag
	Only			Active High.
addr 0x08[19]				Empty flag for Receive FIFO1. Indicates that the FIFO is empty.
				Identical to the signal rcv1_fifo_ef except for a one pipe delay.
RCV1 Almost Empty FIFO Flag	Read	TR/HTR	0	Receive FIFO1 Almost Empty Flag
	Only			Active High.
addr 0x08[18]				Almost empty flag for Receive FIFO1. Indicates that the number of quadwords remaining in Receive FIFO1 is equal to or less than the threshold programmed in register 0x1A bits[13:8].
				Identical to the signal rcv1_fifo_program_empty_flag except for a one pipe delay.
RCV0 Empty FIFO Flag	Read	TR/HTR	0	Receive FIFO0 Empty Flag
	Only			Active High.
addr 0x08[1 <i>7</i>]				Empty flag for Receive FIFOO. Indicates that the FIFO is empty.
				Identical to the signal rcv0_fifo_ef except for a one pipe delay.
RCVO Almost Empty FIFO Flag	Read Only	TR/HTR	0	Receive FIFO0 Almost Empty Flag Active High.
addr 0x08[16]				Almost empty flag for Receive FIFOO. Indicates that the number of quadwords remaining in Receive FIFOO is equal to or less than the threshold programmed in register 0x1A bits[5:0].
				Identical to the signal rcv0_fifo_program_empty_flag except for a one pipe delay.

Table 3-61Chip Revision ID Description

Name	Туре	Reset By	Reset Value	Function
Chip Revision ID[7:0]	Read Only	N/A	01	Chip Revision Set by factory. Should read 0x01 for revision
addr 0x08[15:8]	·			1 silicon.

Table 3-62User ID Description

Name	Туре	Reset By	Reset Value	Function
User ID[7:0]	Read Only	N/A	0x05	SharcFIN Revision ID
addr 0x08[7:0]				

Table 3-63Control Register Offset 0x0A

Register N	Register Name: PCI_ID Register Offset: 0x0A								
Bits	Function								
63-56	0000 Enable Wait Wait Bar 16/8 Timeout Timeout Enab Target Read Write ROM								
55-48	BAR Enable[5:0] Target BAR Configuration[17:16]								
47-40	Target BAR	Target BAR Configuration[15:8]							
39-32	Target BAR	Target BAR Configuration[7:0]							
31-24	Target FIFO	Target FIFO Threshold MSBs[3:0] Target FIFO Control-Emptiness Threshold[11:8]							
23-16	Target FIFO Control–Emptiness Threshold[7:0]								
15-8	0	Target Prefetch Control[6:0]							
7-0	0	Target Burst Request[6:0]							

Table 3-64Enable 16/8 Target Timeout Readback Description

Name	Туре	Reset By	Reset Value	Function
Antifuse Status: Enable 16/8 Target Timeout	Read Only	N/A	1	Target 16/8 Timeout Enable Readback 1 Enable target termination to
addr 0x0A[59]				generate STOP# at 16 pci_clk_2fpgas after FRAME# or after8 pci_clk_2fpgas after each data phase during a burst.
				O Disable the above timeout.

Table 3-65Wait Timeout Read Readback Description

Name	Туре	Reset By	Reset Value	Function
Antifuse Status: Wait Timeout Read	Read Only	N/A	1	Target Wait Timeout on Read Readback
addr 0x0A[58]				1 Wait 16/8 timeout (or infinite) until data is available 0 Target drives STOP immediately when it can't assert TRDY on a read access.

Table 3-66Wait Timeout Write Readback Description

Name	Туре	Reset By	Reset Value	Function
Wait Timeout Write	Read Only	N/A	1	Target Wait Timeout on Write Readback
addr 0x0A[57]				 Wait for 16/8 timeout (or infinite) until space is available in the Target Write/Post FIFO. Target drives STOP# immediately when it can't assert TRDY# on a write access.

Table 3-67BAR Enable Readback Description

Name	Туре	Reset By	Reset Value	Function
BAR Enable ROM addr 0x0A[56]	Read Only	N/A	0	ROM BIOS Base Address Register Enable Readback 1 Enabled 0 Disabled
BAR Enable[5] addr 0x0A[55]	Read Only	N/A	0	Base Address Register 5 Enable Readback 1 Enabled O Disabled
BAR Enable[4] addr 0x0A[54]	Read Only	N/A	1	Base Address Register 4 Enable Readback 1 Enabled O Disabled
BAR Enable[3] addr 0x0A[53]	Read Only	N/A	0	Base Address Register 3 Enable Antifuse Readback 1 Enabled O Disabled
BAR Enable[2] addr 0x0A[52]	Read Only	N/A	1	Base Address Register 2 Enable Readback 1 Enabled O Disabled
BAR Enable[1] addr 0x0A[51]	Read Only	N/A	1	Base Address Register 1 Enable Readback 1 Enabled O Disabled
BAR Enable[0] addr 0x0A[50]	Read Only	N/A	1	Base Address Register O Enable Readback 1 Enabled O Disabled

Table 3-68Target BAR Configuration Description

Name	Туре	Reset By	Reset Value	Function
Target BAR Configuration	Read Only	N/A		Bar Configuration Antifuse Status
BAR[5] —Bits[17:15] addr 0x0A[49:47]			111	3 — 1 Prefetchable O Not Prefetchable
				2 — 1 64-Bit Bar O 32-Bit Bar
BAR[4] —Bits[14:12] addr 0x0A[46:44]			110	0 — 1 I/O Space 0 Memory Space
BAR[3] —Bits[11:9] addr 0x0A[43:41]			111	, '
BAR[2] —Bits[8:6] addr 0x0A[40:38]			110	
BAR[1] —Bits[5:3] addr 0x0A[37:35]			000	
BAR[0] —Bits[2:0] addr 0x0A[34:32]			000	

Table 3-69Target FIFO Threshold MSBs Description

Name	Туре	Reset By	Reset Value	Function
Target FIFO Threshold MSB[3:0] addr 0x0A[31:28]	Read/ Write	TR/HTR	0	Number of empty positions necessary for Target Write/Post FIFO to accept target write transactions. Hex = Quadword spaces required 0 = 2 1 = 2 2 = 4 3 = 6 4 = 8 5 = 10 6 = 12 7 = 14 8 = 16 9 = 18 a = 20 b = 22 c = 24 d = 26 e = 28 f = 30 (Valid for BARs with Emptiness Threshold Control set to "10")

Table 3-70Target FIFO Control—Emptiness Threshold

Name	Туре	Reset By	Reset Value	Function
Emptiness Threshold Control[11:0] BAR[5]—Bits[11:10] addr 0x0A[27:26]	Read/ Write	TR/HTR	0	BAR[5] Emptiness Threshold Control
BAR[4] —Bits[9:8] addr 0x0A[25:24]				BAR[4] Emptiness Threshold Control
BAR[3] —Bits[7:6] addr 0x0A[23:22]				BAR[3] Emptiness Threshold Control
BAR[2] —Bits[5:4] addr 0x0A[21:20]				BAR[2] Emptiness Threshold Control
BAR[1] —Bits[3:2] addr 0x0A[19:18]				BAR[1] Emptiness Threshold Control
BAR[0] —Bits[1:0] addr 0x0A[17:16]				BAR[0] Emptiness Threshold Control
				Number of positions that must be available in the Target Write/Post FIFO for the SharcFIN to accept a target write: 00 2 or more 01 3 or more 10 Use threshold set in Target FIFO Threshold MSB[3:0] register 11 FIFO must be empty

Table 3-71Target Prefetch Control Description

Name	Туре	Reset By	Reset Value	Function
Target Prefetch Control[6] addr 0x0A[14]	Read/ Write	TR/ HTR	0	ROM BAR Prefetch Control
Target Prefetch Control[5] addr 0x0A[13]				BAR[5] Prefetch Control
Target Prefetch Control[4] addr 0x0A[12]				BAR[4] Prefetch Control
Target Prefetch Control[3] addr 0x0A[11]				BAR[3] Prefetch Control
Target Prefetch Control[2] addr 0x0A[10]				BAR[2] Prefetch Control
Target Prefetch Control[1] addr 0x0A[9]				BAR[1] Prefetch Control
Target Prefetch Control[0]				BAR[0] Prefetch Control
addr 0x0A[8]				Prefetch enable on burst read request from PCI 1 Allow Prefetching 0 Disallow Prefetching

Table 3-72Target Burst Request Description

Name	Туре	Reset By	Reset Value	Function
Target Burst Request[6] addr 0x0A[6]	Read/ Write	TR/HTR	0	ROM BAR Burst Request
Target Burst Request[5] addr 0x0A[5]				BAR5 Burst Request
Target Burst Request[4] addr 0x0A[4]				BAR4 Burst Request
Target Burst Request[3]				BAR3 Burst Request
addr 0x0A[3] Target Burst Request[2]				BAR2 Burst Request
addr 0x0A[2] Target Burst Request[1]				BAR1 Burst Request
addr 0x0A[1]				BARO Burst Request
Target Burst Request[0] addr 0x0A[0]				Prefetch enable on single dword/quadword request from PCI (only effective when Target Prefetch Control is set to "1") 1 Enable 0 Disable

Table 3-73Control Register Offset 0x0C

Register	Name: PCI_ID Register Offset: 0x0C		
Bits	Function		
63-56	0000_0000		
55-48	0000_0000		
47-40	0000_0000		
39-32	0000	I ₂ O Interrupt Mask Bit	000
31-24	0000_0000	1	
23-16	0000_0000		
15-8	0000_0000		
7-0	0000	I ₂ O Interrupt Service Request Bit	000

Table 3-74 I₂O Interrupt Mask Bit Description

Name	Туре	Reset By	Reset Value	Function
I ₂ O Interrupt Mask Bit	Read/ Write (PCI)	TR/HTR	0	I₂O Interrupt Status Register Mask Set this bit to disable I ₂ O from generating a system interrupt.
addr 0x0C[35]				'

Table 3-75 I₂O Interrupt Service Request Bit Description

Name	Туре	Reset By	Reset Value	Function
I ₂ O Interrupt Status Request Bit	Read Only	TR/HTR	0	This bit is set to 1 if the I_2O Outbound Queue Pointer is an MFA. It is automatically set to 0 if the I_2O Outbound Queue Pointer is empty.
addr 0x0C[3]				

Table 3-76Control Register Offset 0x0E

Register Name: PCI_ID	Register Name: PCI_ID Register Offset: 0x0E				
Bits	Function				
63-56	Reserved [63:56]				
55-48	Reserved [55:48]				
47-40	Reserved [47:40]				
39-32	Reserved [39:32]				
31-24	Reserved [31:24]				
23-16	Reserved [23:16]				
15-8	Reserved [15:8]				
7-0	Reserved [7:0]				

Table 3-77Reserved Register Description

Name	Туре	Reset By	Reset Value	Function
Reserved[63:0] addr 0x0E[63:0]	N/A	N/A	0	Not Used. Must be "0".

Table 3-78Control Register Offset 0x10

Register Name: PCI_ID Register Offset: 0x10				
Bits	Function			
63-56	I ₂ O Outbound Queue Pointer [31:24]			
55-48	I ₂ O Outbound Queue Pointer [23:16]			
47-40	I ₂ O Outbound Queue Pointer [15:8]			
39-32	I ₂ O Outbound Queue Pointer [7:0]			
31-24	I ₂ O Inbound Queue Pointer [31:24]			
23-16	I ₂ O Inbound Queue Pointer [23:16]			
15-8	I ₂ O Inbound Queue Pointer [15:8]			
7-0	I ₂ O Inbound Queue Pointer [7:0]			

Table 3-79 I₂O Outbound Queue Pointer Description

Name	Туре	Reset By	Reset Value	Function
I ₂ O Outbound Queue Pointer[31:0] addr 0x10[63:32]	Read (User) Write (PCI)	TR/HTR	OxFFFFFFF	I ₂ O Outbound Free List This register overlaps with the I ₂ O Outbound Post List. User read returns Outbound Free List FIFO MFA. PCI Write places free MFA into the Outbound Free list FIFO. User read returns 0xFFFFFFFF when empty. Dword access only.
I ₂ O Outbound Queue Pointer[31:0] addr 0x10[63:32]	Read (PCI) Write (User)	TR/HTR	OxFFFFFFF	I ₂ O Outbound Post List This register overlaps with the I ₂ O Outbound Free List. PCI read returns Outbound Post List FIFO MFA. User write places an MFA into the Outbound Post List FIFO. User read returns 0xFFFFFFFF when empty. Dword access only.

Table 3-80 I₂O Inbound Queue Pointer Description

Name	Туре	Reset By	Reset Value	Function
I ₂ O Inbound Queue Pointer[31:0] addr 0x10[31:0]	Read (PCI) Write (User)	TR/HTR	OxFFFFFFF	I2O Inbound Free List This register overlaps with the I ₂ O Inbound Post List. PCI read returns Inbound Free List FIFO MFA. User write places FREE MFA into the Inbound Free List FIFO. PCI read returns 0xFFFFFFFF when empty. Dword access only.
I ₂ O Inbound Queue Pointer[31:0] addr 0x10[31:0	Read (User) Write (PCI)	TR/HTR	OxFFFFFFF	I2O Inbound Post List This register overlaps with the I ₂ O Inbound Free List. User read returns Inbound Post List FIFO MFA. PCI write places a MFA into the Outbound Post List FIFO. PCI read returns 0xFFFFFFFF when empty. Dword access only.

Table 3-81Control Register Offset 0x12

Register Name: PCI_ID Register Offset: 0x12			
Bits	Function		
63-56	Master Read Address 0[63:56]/Chain Descriptor Start Address 0[63:56]		
55-48	Master Read Address 0[55:48]/Chain Descriptor Start Address 0[55:48		
47-40	Master Read Address 0[47:40]/Chain Descriptor Start Address 0[47:40]		
39-32	Master Read Address 0[39:32]/Chain Descriptor Start Address 0[39:32]		
31-24	Master Read Address 0[31:24]/Chain Descriptor Start Address 0[31:24]		
23-16	Master Read Address 0[23:16]/Chain Descriptor Start Address 0[23:16]		
15-8	Master Read Address 0[15:8]/Chain Descriptor Start Address 0[15:8]		
7-0	Master Read Address 0[7:0]/Chain Descriptor Start Address 0[7:0]		

Table 3-82Master Read AddressO/Chain Descriptor Start Address Description

Name	Туре	Reset By	Reset Value	Function
Master Read Address 0[63:0] addr 0x12[63:0]	Read/ Write	TR/HTR	0	Starting Address for DMA Receive Channel 0 Establishes the starting PCI target address for data moving from the target to Receive FIFO0 under the control of Receive DMA Channel 0. The address may be any byte address.
OR				
Chain Descriptor Start Address 0[63:0]	Read/ Write	TR/HTR	0	First Chain Descriptor Address If chain mode—establishes the target PCI address for the first chain descriptor.
addr 0x12[63:0]				Chain descriptors must be aligned on quadword boundaries.
				A simultaneous write from both the PCI bus and the ADSP-21160 cluster bus results in the PCI write being dropped.

Table 3-83Control Register Offset 0x14

Register Name: PCI_ID Register Offset: 0x14						
Bits	Function					
63-56	Master Read Count Status 0 [31:24]					
55-48	Master Read Count Status 0 [23:16]					
47-40	Master Read Count Status 0 [15:8]					
39-32	Master Read Count Status 0 [7:0]					
31-24	Master Read Transfer Count 0 [31:24]					
23-16	Master Read Transfer Count 0 [23:16]					
15-8	Master Read Transfer Count 0 [15:8]					
7-0	Master Read Transfer Count 0 [7:0]					

Table 3-84Master Read Count Status O Description

Name	Туре	Reset By	Reset Value	Function
Master Read	Read	TR/HTR	0	Count Status for DMA Receive Channel 0
Count Status 0[31:0] addr 0x14[63:32]	Only			The status of the transfer operation for Receive DMA Channel 0 is monitored by reading this register.
				This register will contain the number of bytes yet to be transferred if Receive DMA Channel 0 is enabled.
				This register is accessible from both the PCI and ADSP-21160 cluster bus.

Table 3-85Master Read Transfer Count O Description

Name	Туре	Reset By	Reset Value	Function
Master Read	Read/	TR/HTR	0	Read Transfer Count for Receive Channel 0
Transfer Count 0[31:0] addr 0x14[31:0]	Write			Total number of bytes that are to be transferred from the PCI bus to Receive FIFOO by Receive DMA Channel O.
				Transfers may be any non-zero number up to 0xFFFFFFFO (2 ³² –16).
				This register is read/write and is accessible from both the PCI and the ADSP-21160 cluster bus.
				A simultaneous write from both busses results in the PCI write being dropped.

Table 3-86Control Register Offset 0x16

Register Name: PCI_ID Register Offset: 0x16						
Bits	Function					
63-56	Master Read Address 1[63:56]					
55-48	Master Read Address 1[55:48]					
47-40	Master Read Address 1[47:40]					
39-32	Master Read Address 1[39:32]					
31-24	Master Read Address 1[31:24]					
23-16	Master Read Address 1[23:16]					
15-8	Master Read Address 1[15:8]					
<i>7-</i> 0	Master Read Address 1[7:0]					

Table 3-87Master Read Address 1 Description

Name	Туре	Reset By	Reset Value	Function
Master Read	Read/	TR/HTR	0	Starting Address for DMA Receive Channel 1
Address 1[63:0] addr 0x16[63:0]	Write			Establishes the starting PCI target address for data moving from the target to Receive FIFO1 under the control of Receive DMA Channel 1.
				The address may be any byte address.
				A simultaneous write from both busses results in the PCI write being dropped.

Table 3-88Control Register Offset 0x18

Register Name: PCI_ID Register Offset: 0x18					
Bits	Function				
63-56	Master Read Count Status 1 [31:24]				
55-48	Master Read Count Status 1 [23:16]				
47-40	Master Read Count Status 1 [15:8]				
39-32	Master Read Count Status 1 [7:0]				
31-24	Master Read Transfer Count 1 [31:24]				
23-16	Master Read Transfer Count 1 [23:16]				
15-8	Master Read Transfer Count 1 [15:8]				
7-0	Master Read Transfer Count 1 [7:0]				

Table 3-89Master Read Count Status 1 Description

Name	Туре	Reset By	Reset Value	Function
Master Read	Read	TR/HTR	0	Count Status for DMA Receive Channel 1
Count Status 1[31:0] addr 0x18[63:32]	Only			The status of the transfer operation for Receive DMA Channel 1 is monitored by reading this register.
				This register will contain the number of bytes yet to be transferred if Receive DMA Channel 1 is enabled.
				This register is accessible from both the PCI and the ADSP-21160 cluster bus.

Table 3-90Master Read Transfer Count 1 Description

Name	Туре	Reset By	Reset Value	Function
Master Read Transfer Count 1[31:0]	Read/ Write	TR/HTR	0	Read Transfer Count for Receive Channel 1 Total number of bytes that are to be
addr 0x18[31:0]				transferred from the PCI bus to Receive FIFO1 by Receive DMA Channel 1.
, ,				Transfers may be any non-zero number up to 0xFFFFFFFO (2 ³² –16).
				This register is read/write and is accessible from both the PCI and the ADSP-21160 cluster bus.
				A simultaneous write from both busses results in the PCI write being dropped.

Table 3-91Control Register Offset 0x1A

Register	Register Name: PCI_ID Register Offset: 0x1A						
Bits	Reset By	Function					
63-56	00	XMIT FIFO 1 Almost Full[5:0]					
55-48	00	XMIT FIFO0 Almost Full[5:0]					
47-40	00	XMIT FIFO1 Almost Empty[5:0]					
39-32	00	XMIT FIFO0 Almost Empty[5:0]					
31-24	00	Receive FIFO1 Almost Full[5:0]					
23-16	00	Receive FIFO0 Almost Full[5:0]					
15-8	00	Receive FIFO1 Almost Empty[5:0]					
7-0	00	Receive FIFO0 Almost Full[5:0]					

Table 3-92XMIT FIFO Flags Description

Name	Туре	Reset By	Reset Value	Function
XMIT FIFO 1 Almost Full[5:0] addr 0x1A[63:56]	Read/ Write	TR/ HTR	08	Transmit FIFO1 Programmable Almost Full Flag Almost full flag will go active when total number of quadwords that may be written to Transmit FIFO1 is equal to or less than the number set in this register. Controls when the SHARC interface DMA engine is told to hold off a burst.
XMIT FIFO0 Almost Full[5:0] addr 0x1A[55:48]	Read/ Write	TR/ HTR	08	Transmit FIFO0 Programmable Almost Full Flag Almost full flag will go active when total number of quadwords that may be written to Transmit FIFO0 is equal to or less than the number set in this register. Controls when the SHARC interface DMA engine is told to hold off a burst.
XMIT FIFO 1 Almost Empty[5:0] addr 0x1A[47:40]	Read/ Write	TR/ HTR	08	Transmit FIFO1 Programmable Almost Empty Flag Almost empty flag will go active when total number of quadwords that are available in Transmit FIFO1 is equal to or greater than the number set in this register. Used to guarantee a minimum number of bursts during master transmit operations.
XMIT FIFOO Almost Empty[5:0] addr 0x1A[39:32]	Read/ Write	TR/ HTR	08	Transmit FIFO0 Programmable Almost Empty Flag Almost empty flag will go active when total number of quadwords that are available in Transmit FIFO0 is equal to or greater than the number set in this register. Used to guarantee a minimum number of bursts during master transmit operations.

Table 3-93Receive FIFO Flags Description

Name	Туре	Reset By	Reset Value	Function
Receive FIFO1	Read/	TR/	08	Receive FIFO1 Programmable Almost Full Flag
Almost Full[5:0] addr 0x1A[31:24]	Write	HTR		Almost full flag will go active when total number of quadwords that may be written to Receive FIFO1 is equal to or less than the number set in this register. Used to guarantee a minimum number of bursts during master receive operations.
Receive FIFO0	Read/	TR/	08	Receive FIFOO Programmable Almost Full Flag
Almost Full[5:0] addr 0x1A[23:16]	Write	HTR		Almost full flag will go active when total number of quadwords that may be written to Receive FIFOO is equal to or less than the number set in this register.
dudi oxiA[20.10]				Used to guarantee a minimum number of bursts during master receive operations.
Receive FIFO1	Read/	TR/	08	Receive FIFO1 Programmable Almost Empty Flag
Almost Empty[5:0] addr 0x1A[15:8]	Write	HTR		Almost empty flag will go active when total number of quadwords that are available in Receive FIFO1 is equal to or greater than the number set in this register. Controls when the SHARC interface DMA engine is allowed to burst.
Receive FIFO0	Read/	TR/	08	Receive FIFOO Programmable Almost Empty Flag
Almost Empty[5:0]	Write	HTR		Almost empty flag will go active when total number of quadwords that are available in Receive FIFOO is equal to or greater than the number set in this register.
addr 0x1A[7:0]				Controls when the SHARC interface DMA engine is allowed to burst.

Table 3-94Control Register Offset 0x1C

Register N	Register Name: PCI_ID Register Offset: 0x1C					
Bits	Function					
63-56	PCI Outgoing Mail 7 [7:0]/User Incoming Mail 7 [7:0]					
55-48	PCI Outgoing Mail 6 [7:0]/User Incoming Mail 6 [7:0]					
47-40	PCI Outgoing Mail 5 [7:0]/User Incoming Mail 5 [7:0]					
39-32	PCI Outgoing Mail 4 [7:0]/User Incoming Mail 4 [7:0]					
31-24	PCI Outgoing Mail 3 [7:0]/User Incoming Mail 3 [7:0]					
23-16	PCI Outgoing Mail 2 [7:0]/User Incoming Mail 2 [7:0]					
15-8	PCI Outgoing Mail 1 [7:0]/User Incoming Mail 1 [7:0]					
7-0	PCI Outgoing Mail 0 [7:0]/User Incoming Mail 0 [7:0]					

Table 3-95 PCI Outgoing Mail Description

Name	Туре	Reset By	Reset Value	Function		
PCI Outgoing Mail 7 [7:0] User Incoming Mail 7 [7:0] addr 0x1C[63:56]	Write/PCI Read/User	TR/ HTR	0	PCI Outgoing Mailbox 7 Mailbox data written by PCI to be read via the ADSP-21160 cluster bus. On a PCI write—sets the PCI Outgoing Mailbox Status [7]/User Incoming Mailbox Status [7] and the User Incoming Mailbox Full Interrupt Flag [7]. On a ADSP-21160 cluster bus read—clears the PCI Outgoing Mailbox Status [7] / User Incoming Mailbox Status [7] and sets the PCI Outgoing Mailbox Status [7] and sets the PCI Outgoing Mailbox Empty Interrupt		
(Sheet 1 of 4)						

Table 3-95 PCI Outgoing Mail Description (Continued)

Name	Туре	Reset By	Reset Value	Function
PCI Outgoing Mail 6 [7:0] User Incoming Mail 6[7:0] addr 0x1C[55:48]	Write/PCI Read/User	TR/ HTR	0	PCI Outgoing Mailbox 6 Mailbox data written by PCI to be read via the ADSP-21160 cluster bus. On a PCI write—sets the PCI Outgoing Mailbox Status [6]/User Incoming Mailbox Status [6] and the User Incoming Mailbox Full Interrupt Flag [6]. On an ADSP-21160 cluster bus read—clears the PCI Outgoing Mailbox Status [6] / User Incoming Mailbox Status [6] and sets the PCI Outgoing Mailbox Status [6] and sets the PCI Outgoing Mailbox Empty Interrupt Flag [6].
PCI Outgoing Mail 5 [7:0] User Incoming Mail 5[7:0] addr 0x1C[47:40]	Write/PCI Read/User	TR/ HTR	0	PCI Outgoing Mailbox 5 Mailbox data written by PCI to be read via the ADSP-21160 cluster bus. On a PCI write—sets the PCI Outgoing Mailbox Status [5]/User Incoming Mailbox Status [5] and the User Incoming Mailbox Full Interrupt Flag [5]. On a ADSP-21160 cluster bus read—clears the PCI Outgoing Mailbox Status [5] / User Incoming Mailbox Status [5] and sets the PCI Outgoing Mailbox Status [5] and sets the PCI Outgoing Mailbox Empty Interrupt Flag [5].
PCI Outgoing Mail 4 [7:0] User Incoming Mail 4[7:0] addr 0x1C[39:32]	Write/PCI Read/User	TR/ HTR	0	PCI Outgoing Mailbox 4 Mailbox data written by PCI to be read via the ADSP-21160 cluster bus. On a PCI write—sets the PCI Outgoing MB Status [4]/User Incoming MB Status [4] and the User Incoming MB Full Interrupt Flag [4]. On a ADSP-21160 cluster bus read—clears the PCI Outgoing MB Status [4] / User Incoming MB Status [4] and sets the PCI Outgoing MB Empty Interrupt Flag [4].
(Sheet 2 of 4)				

Table 3-95PCI Outgoing Mail Description (Continued)

User Incoming Mail 3[7:0] addr 0x1C[31:24] PCI Outgoing Mail 2 [7:0] User Incoming Mail 2[7:0] Write/PCI Read/User TR/ Read/User HTR Mail PCI Outgoing Mail 2 [7:0] User Incoming Mail 2[7:0] Read/User HTR O PCI Outgoing Mail 2 [7:0] User Incoming Mail 2[7:0] Read/User HTR O PCI Outgoing Mail 2 [7:0] User Incoming Mail 2[7:0] Read/User HTR O PCI Outgoing Mail 2 [7:0] User Incoming Mail 2 [7:0] Read/User HTR	unction
User Incoming Mail 2[7:0] Read/User HTR Mail read bus. Outg Incor User Flag On coread	Acilbox data written by PCI to be ead via the ADSP-21160 cluster bus. On a PCI write—sets the PCI Dutgoing Mailbox Status [3]/User incoming Mailbox Status [3] and the User Incoming Mailbox Full Interrupt Elag [3]. On a ADSP-21160 cluster bus eead—clears the PCI Outgoing Mailbox Status [3] / User Incoming Mailbox Status [3] / User Incoming Mailbox Status [3] and sets the PCI Outgoing Mailbox Status [3] and sets the PCI Outgoing Mailbox Empty Interrupt Elag [3].
Maill Outg	Acilbox data written by PCI to be ead via the ADSP-21160 cluster bus. On a PCI write—sets the PCI Dutgoing Mailbox Status [2]/User incoming Mailbox Status [2] and the User Incoming Mailbox Full Interrupt Glag [2]. On an ADSP-21160 cluster bus ead—clears the PCI Outgoing Mailbox Status [2] / User Incoming Mailbox Status [2] / User Incoming Mailbox Status [2] and sets the PCI Outgoing Mailbox Status [2] and sets the PCI Outgoing Mailbox Status [2] and sets the PCI Outgoing Mailbox Empty Interrupt Glag [2].

Table 3-95 PCI Outgoing Mail Description (Continued)

Name	Туре	Reset By	Reset Value	Function
PCI Outgoing Mail 1 [7:0] User Incoming Mail 1[7:0] addr 0x1C[15:8]	Write/PCI Read/User	TR/ HTR	0	PCI Outgoing Mailbox 1 Mailbox data written by PCI to be read via the ADSP-21160 cluster bus. On a PCI write—sets the PCI Outgoing Mailbox Status [1]/User Incoming Mailbox Status [1] and the User Incoming Mailbox Full Interrupt Flag [1]. On a ADSP-21160 cluster bus read—clears the PCI Outgoing Mailbox Status [1] / User Incoming Mailbox Status [1] / User Incoming Mailbox Status [1] and sets the PCI Outgoing Mailbox Empty Interrupt Flag [1].
PCI Outgoing Mail 0 [7:0] User Incoming Mail 0[7:0] addr 0x1C[7:0]	Write/PCI Read/User	TR/ HTR	0	PCI Outgoing Mailbox 0 Mailbox data written by PCI to be read via the ADSP-21160 cluster bus. On a PCI write—sets the PCI Outgoing Mailbox Status [0]/User Incoming Mailbox Status [0] and the User Incoming Mailbox Full Interrupt Flag [0]. On a ADSP-21160 cluster bus read—clears the PCI Outgoing Mailbox Status [0] / User Incoming Mailbox Status [0] and sets the PCI Outgoing Mailbox Status [0] and sets the PCI Outgoing Mailbox Empty Interrupt Flag [0].
(Sheet 4 of 4)	•	<u>'</u>		

Table 3-96Control Register Offset 0x1E

Register Name: P	Register Name: PCI_ID Register Offset: 0x1E				
Bits	Function				
63-56	PCI Incoming Mail 7 [7:0] User Outgoing Mail 7 [7:0]				
55-48	PCI Incoming Mail 6 [7:0] User Outgoing Mail 6 [7:0]				
47-40	PCI Incoming Mail 5 [7:0] User Outgoing Mail 5 [7:0]				
39-32	PCI Incoming Mail 4 [7:0] User Outgoing Mail 4 [7:0]				
31-24	PCI Incoming Mail 3 [7:0] User Outgoing Mail 3 [7:0]				
23-16	PCI Incoming Mail 2 [7:0] User Outgoing Mail 2 [7:0]				
15-8	PCI Incoming Mail 1 [7:0] User Outgoing Mail 1 [7:0]				
7-0	PCI Incoming Mail 0 [7:0] User Outgoing Mail 0 [7:0]				

Table 3-97 PCI Incoming Mail Description

Name	Туре	Reset By	Reset Value	Function
User Outgoing Mail 7 [7:0] PCI Incoming Mail 7 [7:0] addr 0x1E[63:56]	Write/User Read/PCI	TR/ HTR	0	User Outgoing Mailbox 7 Mailbox data written by ADSP- 21160 cluster bus to be read via PCI. On an ADSP-21160 cluster bus write—sets the User Outgoing Mailbox Status [7] / PCI Incoming Mailbox Status [7] and the PCI Incoming Mailbox Full Interrupt Flag [7]. On a PCI read—clears the User Outgoing Mailbox Status [7] / PCI Incoming Mailbox Status [7] and sets the User Outgoing Mailbox Empty Interrupt Flag [7].
User Outgoing Mail 6 [7:0] PCI Incoming Mail 6 [7:0] addr 0x1E[55:48]	Write/User Read/PCI	TR/ HTR	0	User Outgoing Mailbox 6 Mailbox data written by ADSP- 21160 cluster bus to be read via PCI. On an ADSP-21160 cluster bus write—sets the User Outgoing Mailbox Status [6] / PCI Incoming Mailbox Status [6] and the PCI Incoming Mailbox Full Interrupt Flag [6]. On a PCI read—clears the User Outgoing Mailbox Status [6] / PCI Incoming Mailbox Status [6] and sets the User Outgoing Mailbox Empty Interrupt Flag [6].
User Outgoing Mail 5 [7:0] PCI Incoming Mail 5 [7:0] addr 0x1E[47:40]	Write/User Read/PCI	TR/ HTR	0	User Outgoing Mailbox 5 Mailbox data written by ADSP- 21160 cluster bus to be read via PCI. On an ADSP-21160 cluster bus write—sets the User Outgoing Mailbox Status [5] / PCI Incoming Mailbox Status [5] and the PCI Incoming Mailbox Full Interrupt Flag [5]. On a PCI read—clears the User Outgoing Mailbox Status [5] / PCI Incoming Mailbox Status [5] and sets the User Outgoing Mailbox Empty Interrupt Flag [5].
(Sheet 1 of 4)				

Table 3-97 PCI Incoming Mail Description (Continued)

Name	Туре	Reset By	Reset Value	Function
User Outgoing Mail 4 [7:0] PCI Incoming Mail 4 [7:0] addr 0x1E[39:32]	Write/User Read/PCI	TR/ HTR	0	User Outgoing Mailbox 4 Mailbox data written by ADSP- 21160 cluster bus to be read via PCI. On an ADSP-21160 cluster bus write—sets the User Outgoing Mailbox Status [4] / PCI Incoming Mailbox Status [4] and the PCI Incoming Mailbox Full Interrupt Flag [4]. On a PCI read—clears the User Outgoing Mailbox Status [4] / PCI Incoming Mailbox Status [4] and sets the User Outgoing Mailbox Empty Interrupt Flag [4].
User Outgoing Mail 3 [7:0] PCI Incoming Mail 3 [7:0] addr 0x1E[31:24] (Sheet 2 of 4)	Write/User Read/PCI	TR/ HTR	0	User Outgoing Mailbox 3 Mailbox data written by ADSP- 21160 cluster bus to be read via PCI. On an ADSP-21160 cluster bus write—sets the User Outgoing Mailbox Status [3] / PCI Incoming Mailbox Status [3] and the PCI Incoming Mailbox Full Interrupt Flag [3]. On a PCI read—clears the User Outgoing Mailbox Status [3] / PCI Incoming Mailbox Status [3] and sets the User Outgoing Mailbox Empty Interrupt Flag [3].

Table 3-97 PCI Incoming Mail Description (Continued)

Name	Туре	Reset By	Reset Value	Function		
User Outgoing Mail 2 [7:0] PCI Incoming Mail 2 [7:0] addr 0x1E[23:16]	Write/User Read/PCI	TR/ HTR	0	User Outgoing Mailbox 2 Mailbox data written by ADSP- 21160 cluster bus to be read via PCI. On an ADSP-21160 cluster bus write—sets the User Outgoing Mailbox Status [2] / PCI Incoming Mailbox Status [2] and the PCI Incoming Mailbox Full Interrupt Flag [2]. On a PCI read—clears the User Outgoing Mailbox Status [2] / PCI Incoming Mailbox Status [2] and sets		
the User Outgoing Mailbox Empty Interrupt Flag [2]. (Sheet 3 of 4)						

Table 3-97 PCI Incoming Mail Description (Continued)

Name	Туре	Reset By	Reset Value	Function
User Outgoing Mail 1 [7:0] PCI Incoming Mail 1 [7:0] addr 0x1E[15:8]	Write/User Read/PCI	TR/ HTR	0	User Outgoing Mailbox 1 Mailbox data written by ADSP- 21160 cluster bus to be read via PCI. On an ADSP-21160 cluster bus write—sets the User Outgoing Mailbox Status [1] / PCI Incoming Mailbox Status [1] and the PCI Incoming Mailbox Full Interrupt Flag [1]. On a PCI read—clears the User Outgoing Mailbox Status [1] / PCI Incoming Mailbox Status [1] and sets the User Outgoing Mailbox Empty Interrupt Flag [1].
User Outgoing Mail 0 [7:0] PCI Incoming Mail 0 [7:0] addr 0x1E[7:0]	Write/User Read/PCI	TR/ HTR	0	User Outgoing Mailbox 0 Mailbox data written by ADSP- 21160 cluster bus to be read via PCI. On an ADSP-21160 cluster bus write—sets the User Outgoing Mailbox Status [0] / PCI Incoming Mailbox Status [0] and the PCI Incoming Mailbox Full Interrupt Flag [0]. On a PCI read—clears the User Outgoing Mailbox Status [0] / PCI Incoming Mailbox Status [0] and sets the User Outgoing Mailbox Empty Interrupt Flag [0].

Table 3-98Control Register Offset 0x20

Register Name: PCI_ID Register Offset: 0x20									
Bits	Function	Function							
63-56	0000_000	0000_000							
55-48	00		DMA Interrupt [5:0] [PCI	Only]					
47-40	PCI Incomin	PCI Incoming MB Full [7:0] [PCI Only]							
39-32	PCI Outgoii	PCI Outgoing MB Empty [7:0] [PCI Only]							
31-24	0000			l ₂ O Interrupt[3:0] [User Only]					
23-16	BIST Start Interrupt [User]	Interrupt Interrupt							
15-8	User Outgoing MB Empty[7:0] [User Only]								
7-0	User Incoming MB Full[7:0] [User Only]								
Note:	_L								

For addr 0x20 and 0x22, all registers labeled as "user" are used for the generation of **PCFlg** (should match interface signal name).

All registers labeled "PCI" are used for the generation of INTA# (should match pin name).

Table 3-99User Interrupt Description

Name	Туре	Reset By	Reset Value	Function
User Interrupt	Read Only	TR/ HTR	0	User Interrupt (PCI Only) Status of the signal PCInt :
addr 0x20[56]				1 PCInt== 1 0 PCInt== 0

Table 3-100DMA Interrupt Description

Name	Туре	Reset By	Reset Value	Function
DMA Interrupt[5] addr 0x20[53] PCI addr 0x20[21] user	Read/Write 1 to Clear	TR/ HTR	0	Chain Descriptor Fetch End Interrupt 1 Last Chain Descriptor has been fetched (EOC detected) 0 EOC has not been encountered
DMA Interrupt[4] addr 0x20[52] PCI addr 0x20[22] user	Read/Write 1 to Clear	TR/ HTR	0	Chain Mode DMA Interrupt 1 Chain Mode has completed all data transfers O Chain Mode is idle or has not completed all data transfers
DMA Interrupt[3] addr 0x20[51] PCI addr 0x20[19] user	Read/Write 1 to Clear	TR/ HTR	0	Receive DMA Channel 1 Interrupt 1 Receive DMA Channel 1 has completed all requested data transfers. O Receive DMA Channel 1 has not completed all requested data transfers.
DMA Interrupt[2] addr 0x20[50] PCI addr 0x20[18] user	Read/Write 1 to Clear	TR/ HTR	0	Receive DMA Channel O Interrupt 1 Receive DMA Channel O has completed all requested data transfers. O Receive DMA Channel O has not completed all requested data transfers.
DMA Interrupt[1] addr 0x20[49] PCI addr 0x20[17] user	Read/Write 1 to Clear	TR/ HTR	0	Transmit DMA Channel 1 Interrupt 1 Transmit DMA Channel 1 has completed all requested data transfers. O Transmit DMA Channel 1 has not completed all requested data transfers.
DMA Interrupt [0] addr 0x20[48] PCI addr 0x20[16] user	Read/Write 1 to Clear	TR/ HTR	0	Transmit DMA Channel 0 Interrupt Transmit DMA Channel 0 has completed all requested data transfers. Transmit DMA Channel 0 has not completed all requested data transfers.

Table 3-101PCI Incoming MB Full Description

Name	Туре	Reset By	Reset Value	Function
PCI Incoming Mail Full [7:0] Status	Read/ Write 1 to Clear	TR/ HTR	0	PCI Incoming Mail Full Status[7:0] 1 PCI Incoming Mailbox is full O PCI Incoming Mailbox is not full
addr 0x20[47:40]				

Table 3-102 PCI Outgoing MB Empty

Name	Туре	Reset By	Reset Value	Function
PCI Outgoing Mail Empty [7:0] Status addr 0x20[39:32]	Read/ Write 1 to Clear	TR/ HTR	0	PCI Outgoing Mail Empty Status[7:0] 1 PCI Outgoing Mailbox is empty 0 PCI Outgoing Mailbox is not empty

Table 3-103 I₂O Interrupt Description

Name	Туре	Reset By	Reset Value	Function
l ₂ O Interrupt[3] addr 0x20[27]	Read /Write 1 to Clear	TR/HTR	1	Outbound Free List Full 1 PCI writes to I ₂ O Outbound Queue Pointer 0 Write 1 to clear
I ₂ O Interrupt[2] addr 0x20[26]	Read /Write 1 to Clear	TR/HTR	0	Outbound Post List Empty 1 PCI reads from I ₂ O Outbound Queue Pointer 0 Write 1 to clear
l ₂ O Interrupt[1] addr 0x20[25]	Read /Write 1 to Clear	TR/HTR	0	Inbound Post List Full 1 PCI writes to I ₂ O Outbound Queue Pointer 0 Write 1 to clear
I ₂ O Interrupt[0] addr 0x20[24]	Read /Write 1 to Clear	TR/HTR	1	Inbound Free List Empty 1 PCI reads from I ₂ O Outbound Queue Pointer 0 Write 1 to clear

Table 3-104

BIST Start Interrupt Description

Name	Туре	Reset By	Reset Value	Function
BIST Start Interrupt addr 0x20[23]	Read /Write 1 to Clear	TR/ HTR	0	Built In Self Test (BIST) Interrupt 1 Built In Self Test (BIST) Interrupt Requested
dddi 0x20[20]				0 No BIST Interrupt pending

Table 3-105

SPCI Interrupt Description

Name	Туре	Reset By	Reset Value	Function
Single PCI Interrupt addr 0x20[22]	Read /Write 1 to Clear	TR/ HTR	0	Single PCI Interrupt 1 Single PCI Controller has completed 0 No SPCI interrupt pending May be accessed from ADSP-21160 cluster bus only

Table 3-106

User Outgoing MB Empty Description

Name	Туре	Reset By	Reset Value	Function
User Output Mail Empty Interrupt Status [7:0]	Read /Write 1 to Clear	TR/ HTR	0	User Output Mail Empty Interrupt Status 1 Interrupt pending 0 No interrupt pending
addr 0x20[15:8]				May be accessed from ADSP-21160 cluster bus only

Table 3-107

User Incoming MB Full Description

Name	Туре	Reset By	Reset Value	Function
PCI Output Mail Full Interrupt Status [7:0] addr 0x20[7:0]	Read /Write 1 to Clear	TR/ HTR	0	PCI Output Mail Full Interrupt Status [7:0] 1 Interrupt pending 0 No interrupt pending May be accessed from ADSP-21160 cluster bus only

Table 3-108Control Register Offset 0x22

Register Name: PCI_ID Register Offset: 0x22							
Bits	Function						
63-56	0000_000				User Mask [PCI]		
55-48	00	00 DMA Interrupt Mask[5:0] [PCI Only]					
47-40		PCI Incoming Mail Box Full Interrupt Mask[7:0]/ User OMB Full Interrupt Mask[7:0] (PCI only)					
39-32		PCI OMB Empty Interrupt Mask[7:0]/ User Incoming Mail Box Empty Interrupt Mask[7:0] (PCI Only)					
31-24	0000			I ₂ O Interrupt Mask[3:0] [User Only]			
23-16	BIST Mask [User]	Single PCI Interrupt Mask [User]	DMA Interrupt Mask[5:0]	[User Only]			
15-8	PCI Incoming Mail Box Empty interrupt Mask[7:0]/ User OMB Empty Interrupt Mask[7:0] (user Only)						
7-0	PCI OMB Full Interrupt Mask[7:0]/ User Incoming Mailbox Full Interrupt Mask[7:0] (user Only)						
Note:	1						

For addr 0x20 and 0x22, all registers labeled as "user" are used for the generation of **PCFlg** (should match interface signal name).

All registers labeled "PCI" are used for the generation of INTA (should match pin name).

Table 3-109User Interrupt Mask Description

Name	Туре	Reset By	Reset Value	Function
User interrupt Mask	Read/Write	TR/ HTR	0	User Interrupt Mask 1 Allow interrupts on PCInt
addr 0x22[56]				O Mask interrupts on PCInt

Table 3-110DMA Interrupt Mask Description

Name	Туре	Reset	Reset	Function
DMA Interrupt Mask[5] addr 0x22[53] PCI addr 0x22[21] user	Read/Write	TR/ HTR	Value 0	Chain Descriptor Fetch End Interrupt 1 Allow interrupt 0 Mask interrupt
DMA Interrupt Mask[4] addr 0x22[52] PCI addr 0x22[20] user	Read/Write	TR/ HTR	0	Chain Mode DMA Interrupt 1 Allow interrupt 0 Mask interrupt
DMA Interrupt Mask[3] addr 0x22[51] PCI addr 0x22[19] user	Read/Write	TR/ HTR	0	Receive Channel 1 Interrupt 1 Allow interrupt 0 Mask interrupt
DMA Interrupt Mask[2] addr 0x22[50] PCI addr 0x22[18] user	Read/Write	TR/ HTR	0	Receive Channel O Interrupt 1 Allow interrupt O Mask interrupt
DMA Interrupt Mask[1] addr 0x22[49] PCI addr 0x22[17] user	Read/Write	TR/ HTR	0	Transmit Channel 1 Interrupt 1 Allow interrupt 0 Mask interrupt
DMA Interrupt Mask[0] addr 0x22[48] PCI addr 0x22[16] user	Read/Write	TR/ HTR	0	Transmit Channel 0 Interrupt 1 Allow interrupt 0 Mask interrupt

Table 3-111PCI Incoming Mailbox Full Interrupt Mask/User OMB Full Interrupt Mask

Name	Туре	Reset By	Reset Value	Function
PCI IMB Full Interrupt Mask [7:0] User OMB Full Interrupt Mask [7:0]	Read/ Write	TR/HTR	0	PCI Incoming Mailbox Full Interrupt Mask/User Outgoing Mailbox Full Interrupt Mask
addr 0x22[47:40]				Enable Interrupt Disable Interrupt

Table 3-112PCI OMB Empty Interrupt Mask/User IMB Empty Interrupt Mask

Name	Туре	Reset By	Reset Value	Function
PCI OMB Empty Interrupt Mask [7:0] User IMB Empty Interrupt Mask [7:0]	Read/ Write	TR/HTR	0	PCI Outgoing Mailbox Empty Interrupt Mask/User Incoming Mailbox Empty Interrupt Mask
addr 0x22[39:32]				Enable Interrupt Disable Interrupt

Table 3-113 I₂O Interrupt Mask

Name	Туре	Reset By	Reset Value	Function
I ₂ O Interrupt Mask[3]	Read/Write	TR/HTR	0	Outbound Free List Full Interrupt Mask
addr 0x22[27]				Enable Interrupt Disable Interrupt
I ₂ O Interrupt Mask[2]	Read/Write	TR/HTR	0	Outbound Post List Empty
addr 0x22[26]				Interrupt Mask 1 Enable Interrupt O Disable Interrupt
I2O Interrupt Mask[1]	Read/Write	TR/HTR	0	Inbound Post List Full Interrupt Mask
addr 0x22[25]				Enable Interrupt Disable Interrupt
I ₂ O Interrupt Mask[0]	Read/Write	TR/HTR	0	Inbound Free List Empty Interrupt Mask
addr 0x22[24]				Enable Interrupt Disable Interrupt

Table 3-114

BIST Mask

Name	Туре	Reset By	Reset Value	Function
BIST Mask	Read/Write	TR/HTR	0	Built-In Self Test Interrupt Mask
				1 Enable Interrupt
addr 0x22[23]				O Disable Interrupt

Table 3-115

Single PCI (SPCI) Interrupt Mask

Name	Туре	Reset By	Reset Value	Function
Single PCI Interrupt Mask	Read/Write	TR/	0	Single PCI Interrupt Mask
		HTR		1 Enable Interrupt
addr 0x22[22]				0 Disable Interrupt

Table 3-116

PCI IMB Empty Interrupt Mask/User OMB Empty Interrupt Mask

Name	Туре	Reset By	Reset Value	Function
PCI IMB Empty Interrupt Mask[7:0] User OMB Empty Interrupt Mask[7:0]	Read/Write	TR/ HTR	0	PCI IMB Empty Interrupt Mask [7:0] User OMB Empty Interrupt Mask [7:0] Enable Interrupt Disable Interrupt
addr 0x22[15:8]				

Table 3-117

PCI OMB Full Interrupt Mask/User IMB Full Interrupt Mask

Name	Туре	Reset By	Reset Value	Function
PCI OMB Full Interrupt Mask [7:0] User IMB Full Interrupt Mask [7:0]	Read/Write	TR/ HTR	0	PCI OMB Full Interrupt Mask [7:0] User IMB Full Interrupt Mask [7:0] 1 Enable Interrupt O Disable Interrupt
addr 0x22[7:0]				

Table 3-118Control Register Offset 0x24

Register l	Name: PCI_ID	Register Offse	et: 0x24						
Bits	Function	Function							
63-56	0000	0000				PCI Error Status[3:0] [PED, MRT, MA. RTA]			
55-48	00	00 Master Channel Error Status[5:0]							
47-40	0	Target User RDWR [User]	Target Address Valid [User]	Target User Request [User]	Target User Multiple [User]	barCS[2:0] [User Only]			
39-32	user_be_red	7[7:0] [User C	Only]						
31-24	0000				I ₂ O Status[3	3:0]			
23-16	BIST Start [User]	0	Chain DMA Start/Done#[4:0] Pointer Fetch End						
15-8	PCI Incomin	PCI Incoming MB Status[7:0]/User Outgoing MB Status[7:0]							
7-0	PCI Outgoii	ng MB Status[7:0]/User Inc	oming MB Sto	atus[7:0]				

Table 3-119 PCI Error Status Flags Description

Name	Туре	Reset By	Reset Value	Function
PCI Error Status[3] Parity Error Flag Detected (PED) addr 0x24[42:40]	Read /Write 1 to Clear	TR/ HTR	0	Parity Error 1 Parity Error Detected 0 No parity errors detected
PCI Error Status[2] Maximum Retry Flag Timeout (MTA) addr 0x24[58]	Read /Write 1 to Clear	TR/ HTR	0	Maximum Retry Timeout 1 Retry Timeout 0 No Retry Timeout
PCI Error Status[1] Master Abort (MA) addr 0x24[57])	Read /Write 1 to Clear	TR/ HTR	0	Master Abort 1 Master Abort has occurred 0 No master aborts have occurred
PCI Error Status [0] Received a Target Abort addr 0x24[56]	Read /Write 1 to Clear	TR/ HTR	0	Received a Target Abort 1 Target abort has occurred 0 No target aborts have occurred

Table 3-120 Error Description

Name	Туре	Reset By	Reset Value	Function
Master Channel Error Status[5] Single PCI Access (SPCI) addr 0x24[53]	Read Only	TR/ HTR	0	SPCI Error 1 An error has occurred on a SPCI access 0 No errors
Master Channel Error Status[4] Chain DMA Mode addr 0x24[52]	Read Only	TR/ HTR	0	Chain Mode Error 1 An error has occurred during a Chain Mode access 0 No errors
Master Channel Error Status[3] Receive DMA Channel 1 addr 0x24[51]	Read Only	TR/ HTR	0	Receive DMA Channel 1 1 An error has occurred during a Receive DMA Channel 1 access 0 No errors
Master Channel Error Status[2] Receive DMA Channel 0 addr 0x24[50]	Read Only	TR/ HTR	0	Receive DMA Channel 0 1 An error has occurred during a Receive DMA Channel 0 access 0 No errors
Master Channel Error Status[1] Transmit DMA Channel 1 addr 0x24[49] (Sheet 1 of 2)	Read Only	TR/ HTR	0	Transmit DMA Channel 1 1 An error has occurred during a Transmit DMA Channel 1 access 0 No errors

Table 3-120

Error Description (Continued)

Name	Туре	Reset By	Reset Value	Function
Master Channel Error Status[0] Transmit DMA Channel 0 addr 0x24[48]	Read Only	TR/ HTR	0	Transmit DMA Channel 0 1 An error has occurred during a Transmit DMA Channel 0 access 0 No errors
(Sheet 2 of 2)				

Table 3-121

Target Interface Description

Name	Туре	Reset By	Reset Value	Function
Reserved	Read Only	TR/ HTR	0	Reserved
addr 0x24[46]				

Table 3-122

Target Address Valid Description

Name	Туре	Reset By	Reset Value	Function
Reserved	Read Only	TR/ HTR	0	Reserved
addr 0x24[45]				

Table 3-123

Target User Request Description

Name	Туре	Reset By	Reset Value	Function
Reserved	Read Only	TR/ HTR	0	Reserved
addr 0x24[44]				

Table 3-124Target User Multiple Description

Name	Туре	Reset By	Reset Value	Function
Reserved	Read Only	TR/ HTR	0	Reserved
addr 0x24[43]				

Table 3-125 barCS Description

Name	Туре	Reset By	Reset Value	Function
Reserved	Read Only	TR/ HTR	0	Reserved
addr 0x24[42:40]				

target_region	Function (32 bits)	Function (64 bits)		
000	Base Address Region O Match (≥0x100 only)	Base Address Region 0 Match (≥0x100 only)		
001	Base Address Region 1 Match	Not Applicable		
010	Base Address Region 2 Match	Base Address Region 2 Match		
011	Base Address Region 3 Match	Not Applicable		
100	Base Address Region 4 Match	Base Address Region 4 Match		
101	Base Address Region 5 Match	Not Applicable		
110	Expansion ROM	Expansion ROM (32 bits only)		
111	Configuration Space (0x40–0x7FF)	Configuration Space (0x40–0x7FF) (32 bits only)		

Table 3-126 user_be_req Description

Name	Туре	Reset By	Reset Value	Function
Reserved	Read Only	TR/ HTR	0	Reserved
addr 0x24[39:32]				

Table 3-127 I₂O Status Description

Name	Туре	Reset By	Reset Value	Function
I ₂ O Status[3] addr 0x24[27]	Read Only	TR/HTR	0	 I₂O Outbound Free List Full PCI has written to the I₂O Outbound Queue Pointer returning a free frame pointer to the Outbound Free List Register. The register is full. ADSP-21160 cluster bus has read from the Outbound Queue Pointer, fetching a free frame pointer from the Outbound Free List Register. The register is empty.
I ₂ O Status[2] addr 0x24[26]	Read Only	TR/HTR	1	 I₂O Outbound Post List Empty PCI has read from the I₂O Outbound Queue Pointer, fetching a message frame pointer from the Outbound Post List Register. The register is empty. ADSP-21160 cluster bus has written to the I₂O Outbound Queue Pointer, placing a message frame pointer in the Outbound Post List Register. The register is full.
I ₂ O Status[1] addr 0x24[25]	Read Only	TR/HTR	0	 I₂O Inbound Post List Full PCI has written to the inbound queue pointer, placing a message frame pointer in the Inbound Post List Register. The register is full. ADSP-21160 cluster bus has read from the inbound queue pointer, fetching a message frame pointer from the Inbound Post List Register. The register is empty.
I ₂ O Status[0] addr 0x24[24]	Read Only	TR/HTR	1	Inbound Free List Empty Inbound Free List Register is empty. PCI has read from the inbound queue pointer, fetching a free frame pointer from the Inbound Free List Register. The register is empty. ADSP-21160 cluster bus has written to the inbound queue pointer, returning a free frame pointer to the Inbound Free List Register. The register is full.

Table 3-128BIST Start Description

Name	Туре	Reset By	Reset Value	Function
BIST Start	Read Only	TR/ HTR	0	BIST Status 1 PCI has requested a BIST
addr 0x24[23]				O No BIST request pending May be read from the ADSP-21160 cluster bus only

Table 3-129Chain Pointer Fetch End Description

Name	Туре	Reset By	Reset Value	Function
Chain Pointer Fetch End	Read Only	TR/ HTR	0	Chain Descriptor Fetch Status 1 The chain has started but the last
addr 0x24[21]				descriptor has not been fetched yet. O Otherwise

Table 3-130DMA Start/Done# Description

Name	Туре	Reset By	Reset Value	Function
DMA Start/ Done#[4]	Read/Write	TR/HTR	0	Chain Mode Start/Done Starts the Chain Mode DMA Controller. May
addr 0x24[20]				be written or read from either the PCI bus or ADSP-21160 cluster bus.
				A simultaneous write results in the logical OR of the data bits. (If PCI bus writes a "1" and the ADSP-21160 cluster bus writes a "0" on the same clock cycle, a "1" get written, or vice-versa.)
				Write:
				1 Start Chain Mode
				0 No effect
				Read:
				1 Chain Mode running
				0 Chain Mode idle
(Sheet 1 of 3)				

Table 3-130DMA Start/Done# Description (Continued)

Name	Туре	Reset By	Reset Value	Function
DMA Start/	Read/Write	TR/HTR	0	Receive Channel 1 Start/Done
Done#[3] addr 0x24[19]				Starts the Receive DMA Channel 1 controller. May be written or read from either the PCI bus or ADSP-21160 cluster bus.
				A simultaneous write results in the logical OR of the data bits. (If PCI bus writes a "1" and the ADSP-21160 cluster bus writes a "0" on the same clock cycle, a "1" get written, or vice-versa.)
				Write:
				1 Start Receive DMA Channel 1
				0 No Effect
				Read:
				Receive DMA Channel 1 running Receive DMA Channel 1 idle
DMA Start/	Read/Write	TR/HTR	0	Receive Channel 0 Start/Done
Done#[2]	Redd/ VVIIIe	INJIIIN		Starts the Receive DMA Channel 0 controller.
addr 0x24[18]				May be written or read from either the PCI bus or ADSP-21160 cluster bus.
				A simultaneous write results in the logical OR of the data bits. (If PCI bus writes a "1" and the ADSP-21160 cluster bus writes a "0" on the same clock cycle, a "1" get written, or vice-versa.)
				Write:
				1 Start Receive DMA Channel 0
				0 No Effect
				Read:
				Receive DMA Channel 0 Running Receive DMA Channel 0 Idle
/cl . o (o)				3 Receive Divisi Chamber o Idio
(Sheet 2 of 3)				

Table 3-130DMA Start/Done# Description (Continued)

Name	Туре	Reset By	Reset Value	Function
DMA Start/	Read/Write	TR/HTR	0	Transmit Channel 1 Start/Done
Done#[1]				Starts the Transmit DMA Channel 1 controller.
addr 0x24[17]				May be written or read from either the PCI bus or ADSP-21160 cluster bus.
				A simultaneous write results in the logical OR of the data bits. (If PCI bus writes a "1" and the ADSP-21160 cluster bus writes a "0" on the same clock cycle, a "1" get written, or vice-versa.)
				Write:
				1 Start Transmit DMA Channel 1
				0 No Effect
				Read: 1 Transmit DMA Channel 1 running
				1 Transmit DMA Channel 1 running 0 Transmit DMA Channel 1 idle
DMA Start/	Read/Write	TR/HTR	0	Transmit Channel 0 Start/Done
Done#[0]				Starts the Transmit DMA Channel 0 controller.
addr 0x24[16]				May be written or read from either the PCI bus or ADSP-21160 cluster bus.
				A simultaneous write results in the logical OR of the data bits. (If PCI bus writes a "1" and the ADSP-21160 cluster bus writes a "0" on the same clock cycle, a "1" is written, or vice-versa.)
				Write:
				1 Start Transmit DMA Channel 0
				0 No Effect
				Read:
				1 Transmit DMA Channel 0 running
				O Transmit DMA Channel O idle
(Sheet 3 of 3)				

Table 3-131PCI Incoming MB Status/User Outgoing MB Status

Name	Туре	Reset By	Reset Value	Function
PCI Incoming MB Status[7:0] User Outgoing MB Status[7:0]	Read/Write	TR/HTR	0	PCI Incoming/User Outgoing Mail Status
				 Mail data byte is full
addr 0x24[15:8]				O Mail data byte is empty

Table 3-132 PCI Outgoing MB Status/User Incoming MB Status

Name	Туре	Reset By	Reset Value	Function
PCI Outgoing MB Status[7:0] User Incoming MB Status[7:0]	Read/Write	TR/HTR	0	PCI Outgoing/User Incoming Mail Status 1 Mail data byte is full
addr 0x24[7:0]				O Mail data byte is empty

Table 3-133Control Register Offset 0x26

Register Name: PCI_ID Register Offset: 0x26				
Bits	Function			
63-56	Single PCI Access Address Register[63:56]			
55-48	Single PCI Access Address Register[55:48]			
47-40	Single PCI Access Address Register[47:40]			
39-32	Single PCI Access Address Register[39:32]			
31-24	Single PCI Access Address Register[31:24]			
23-16	Single PCI Access Address Register[23:16]			
15-8	Single PCI Access Address Register[15:8]			
7-0	Single PCI Access Address Register[7:0]			

Table 3-134Single PCI Access Address Register Description

Name	Туре	Reset By	Reset Value	Function
SPCI Access Address Register[63:0]	Read/Write	TR/HTR	0	Single PCI (SPCI) Access Target Address Register
addr 0x26[63:0]				Contains the target address for a Single PCI access.
				If a 32-bit access, upper 32 bits should be 0.
				May be accessed from the ADSP- 21160 cluster bus only.

Table 3-135Control Register Offset 0x28

Register Name: PCI_ID Register Offset: 0x28				
Bits	Function			
63-56	Single PCI Access Data Register[63:56]			
55-48	Single PCI Access Data Register[55:48]			
47-40	Single PCI Access Data Register[47:40]			
39-32	Single PCI Access Data Register[39:32]			
31-24	Single PCI Access Data Register[31:24]			
23-16	Single PCI Access Data Register[23:16]			
15-8	Single PCI Access Data Register[15:8]			
7-0	Single PCI Access Data Register[7:0]			

Table 3-136Single PCI Access Data Register Description

Name	Туре	Reset By	Reset Value	Function
Single PCI Access	Read/Write	TR/HTR	0	Single PCI (SPCI) Access Data Register.
Data Register[63:0]				On SPCI Write—data to be used for SPCI write operation.
addr 0x28[63:0]				On SPCI Read—when SPCI completes, will contain the data resulting from the SPCI operation.
				May be accessed from the ADSP-21160 cluster bus only.

Table 3-137Control Register Offset 0x2A

Register Name: PCI_ID Register Offset: 0x2A		
Bits	Function	
63-56	Reserved [63:56]	
55-48	Reserved [55:48]	
47-40	Reserved [47:40]	
39-32	Reserved [39:32]	
31-24	Reserved [31:24]	
23-16	Reserved [23:16]	
15-8	Reserved [15:8]	
7-0	Reserved [7:0]	

Table 3-138Reserved Description

Name	Туре	Reset By	Reset Value	Function
Reserved	N/A	N/A	0	Reserved
				Should be set to 0.
addr 0x2A[63:0]				

Table 3-139Control Register Offset 0x2C

Register Name: PCI_ID Register Offset: 0x2C			
Bits	Function		
63-56	Receive FIFO0[63:56]		
55-48	Receive FIFO0[55:48]		
47-40	Receive FIFO0[47:40]		
39-32	Receive FIFO0[39:32]		
31-24	Receive FIFO0[31:24]		
23-16	Receive FIFO0[23:16]		
15-8	Receive FIFO0[15:8]		
7-0	Receive FIFO0[7:0]		

Table 3-140Receive FIFO0 Description

Name	Туре	Reset By	Reset Value	Function
Receive FIFO0[63:0]	Read Only	TR/HTR	0	Receive FIFO0
addr 0x2C[63:0]				Contains the data presently at the output of Receive FIFOO.
				The FIFO will advance if the FIFO is read from and the Dest_Rd bit is set (0x40 bit[3]).
				May be accessed from the ADSP- 21160 cluster bus only.

Table 3-141Control Register Offset 0x2E

Register Name: PCI_ID	Register Name: PCI_ID Register Offset: 0x2E			
Bits	Function			
63-56	Receive FIFO1[63:56]			
55-48	Receive FIFO1[55:48]			
47-40	Receive FIFO1[47:40]			
39-32	Receive FIFO1[39:32]			
31-24	Receive FIFO1[31:24]			
23-16	Receive FIFO1[23:16]			
15-8	Receive FIFO1[15:8]			
7-0	Receive FIFO1[7:0]			

Table 3-142Receive FIFO1 Description

Name	Туре	Reset By	Reset Value	Function
Receive FIFO1[63:0]	Read Only	TR/HTR	0	Receive FIFO1
addr 0x2E[63:0]				Contains the data presently at the output of Receive FIFO1.
				The FIFO will advance if the FIFO is read from and the Dest_Rd bit is set (0x40 bit[3]).
				May be accessed from the ADSP- 21160 cluster bus only.

Table 3-143Control Register Offset 0x30

Register Name: PCI_I	Register Name: PCI_ID Register Offset: 0x30			
Bits	Function			
63-56	Transmit FIFO0[63:56]			
55-48	Transmit FIFO0[55:48]			
47-40	Transmit FIFO0[47:40]			
39-32	Transmit FIFO0[39:32]			
31-24	Transmit FIFO0[31:24]			
23-16	Transmit FIFO0[23:16]			
15-8	Transmit FIFO0[15:8]			
7-0	Transmit FIFO0[7:0]			

Table 3-144Transmit FIFO0 Description

Name	Туре	Reset By	Reset Value	Function
Transmit FIFO0[63:0]	Write Only	N/A	N/A	Transmit FIFOO.
addr 0x30[63:0]				Data for Transmit FIFO0. The FIFO will accept the data and advance if the FIFO is written to.
				May be accessed from the ADSP- 21160 cluster bus only.

Table 3-145Control Register Offset 0x32

Register Name: PCI_ID Register Offset: 0x32			
Bits	Function		
63-56	Transmit FIFO1[63:56]		
55-48	Transmit FIFO1[55:48]		
47-40	Transmit FIFO1[47:40]		
39-32	Transmit FIFO1[39:32]		

Table 3-145Control Register Offset 0x32

Register Name: PCI_ID Register Offset: 0x32			
Bits	Function		
31-24	Transmit FIFO1[31:24]		
23-16	Transmit FIFO1[23:16]		
15-8	Transmit FIFO1[15:8]		
7-0	Transmit FIFO1 [7:0]		

Table 3-146Transmit FIFO1 Description

Name	Туре	Reset By	Reset Value	Function
Transmit FIFO1[63:0]	Write Only	N/A	N/A	Transmit FIFO1
				Data for Transmit FIFO1.
addr 0x32[63:0]				The FIFO will accept the data and advance if the FIFO is written to.
				May be accessed from the ADSP- 21160 cluster bus only.

Table 3-147Control Register Offset 0x34

Register N	Register Name: PCI_ID Register Offset: 0x34							
Bits	Function							
63-56	0000_0000)						
55-48	0000_00					DMA Arbitr Mode[1:0]	ration	
47-40	DMA Arbitr	ation Priority[7:0]						
39-32	0000			DMA 32/6	4#[3:0]			
31-24	0000			DMA SPC[1	1:0]	00		
23-16	0	O Transmit FIFO DMA Cancel[4:0] Flush[1:0]						
15-8	000		BIST Done BIST Code[3:0] [User Only] [User]					
7-0	0	BE En[1:0]	Max Retry[1:0]	FIFO Thresh	10[1:0]	lat en	

Table 3-148DMA Arbitration Mode Description

Name	Туре	Reset By	Reset Value	Function
DMA ArbitrationMode[1:0] addr 0x34[49:48]	Read/Write	TR/HTR	0	Master DMA Arbitration Mode OO Round Robin O1 Prioritized 10 Reserved 11 Reserved

Table 3-149DMA Arbitration Priority

Name	Туре	Reset By	Reset Value	Function
DMA Arbitration Priority[7:6] addr 0x34[47:46]	Read/Write	TR/HTR	0	DMA Receive Channel 1 Arbitration Priority 00 Low Priority 01 Medium Low Priority 10 Medium High Priority 11 High Priority
DMA Arbitration Priority[5:4] addr 0x34[45:44]	Read/Write	TR/HTR	0	DMA Receive Channel 0 Arbitration Priority 00 Low Priority 01 Medium Low Priority 10 Medium High Priority 11 High Priority
DMA Arbitration Priority[3:2] addr 0x34[43:42]	Read/Write	TR/HTR	0	DMA Transmit Channel 1 Arbitration Priority 00 Low Priority 01 Medium Low Priority 10 Medium High Priority 11 High Priority
DMA Arbitration Priority[1:0] addr 0x34[41:40]	Read/Write	TR/HTR	0	DMA Transmit Channel 0 Arbitration Priority 00 Low Priority 01 Medium Low Priority 10 Medium High Priority 11 High Priority

Table 3-150 DMA 32/64# Description

Name	Туре	Reset By	Reset Value	Function
DMA 32/64#[3]	Read/Write	TR/HTR	0	Default DMA Channel Bus Width Receive Channel 1
addr 0x34[35]				0 32 or 64 (auto detect) 1 32 bits only
DMA 32/64#[2]	Read/Write	TR/HTR	0	Default DMA Channel Bus Width Receive Channel 0
addr 0x34[34]				0 32 or 64 (auto detect) 1 32 bits only
DMA 32/64#[1]	Read/Write	TR/HTR	0	Default DMA Channel Bus Width Transmit Channel 1
addr 0x34[33]				0 32 or 64 (auto detect) 1 32 bits only
DMA 32/64#[0]	Read/Write	TR/HTR	0	Default DMA Channel Bus Width Transmit Channel 0
addr 0x34[32]				0 32 or 64 (auto detect) 1 32 bits only

Table 3-151Receive DMA Special Command Enable

Name	Туре	Reset By	Reset Value	Function
DMA SPC[1]	Read/Write	TR/HTR	0	DMA Special Command Enable: Receive Channel 1
addr 0x34[27]				O Use only "memory read" (MR) 1 Use commands MR, MRM, MRL when appropriate.
DMA SPC[0]	Read/Write	TR/HTR	0	DMA Special Command Enable: Receive Channel 0
addr 0x34[26]				O Use only "memory read" (MR) 1 Use commands MR, MRM, MRL when appropriate.

Table 3-152Transmit FIFO Flush Description

Name	Туре	Reset By	Reset Value	Function
Transmit FIFO Flush[1] addr 0x34[22]	Read/Write	TR/HTR	0	Transmit FIFO1 Flush Flushes the Transmit FIFO1. The DMA operation must be idle. May be written or read from either the PCI bus or ADSP- 21160 cluster bus. A simultaneous write results in the logical OR of the data bits. (If PCI bus writes a "1" and the ADSP-21160 cluster bus writes a "0" on the same clock cycle, a "1" gets written, and vice-versa.) Write: 1 Flush Transmit FIFO1 and related pipeline 0 No Effect Read: 1 Flushing operation is running 0 Flushing is complete
Transmit FIFO Flush[0] addr 0x34[21]	Read/Write	TR/HTR	0	Transmit FIFO0 Flush Flushes the Transmit FIFO0. The DMA operation must be idle. May be written or read from either the PCI bus or ADSP-21160 cluster bus. A simultaneous write results in the logical OR of the data bits. (If PCI bus writes a "1" and the ADSP-21160 cluster bus writes a "0" on the same clock cycle, a "1" gets written, and vice-versa.) Write: 1 Flush Transmit FIFO0 and related pipeline O No Effect Read: 1 Flushing operation is running O Flushing is complete

Table 3-153DMA Cancel Description

Name	Туре	Reset By	Reset Value	Function
DMA Cancel[4]	Read/Write	TR/HTR	0	DMA Cancel Chain Mode
addr 0x34[20]				0 Cancel complete 1 Cancel chaining (write) Cancel not done (read)
DMA Cancel[3]	Read/Write	TR/HTR	0	DMA Cancel Master Receive Channel 1
addr 0x34[19]				0 Cancel complete 1 Cancel DMA (write) Cancel not done (read)
DMA Cancel[2]	Read/Write	TR/HTR	0	DMA Cancel Master Receive Channel 0
addr 0x34[18]				0 Cancel complete 1 Cancel DMA (write) Cancel not done (read)
DMA Cancel[1]	Read/Write	TR/HTR	0	DMA Cancel Master Transmit Channel 1
addr 0x34[17]				0 Cancel complete 1 Cancel DMA (write) Cancel not done (read)
DMA Cancel[0]	Read/Write	TR/HTR	0	DMA Cancel Master Transmit Channel 0
addr 0x34[16]				0 Cancel complete 1 Cancel DMA (write) Cancel not done (read)

Table 3-154Built-In Self Test (BIST) Done Description

Name	Туре	Reset By	Reset Value	Function
BIST Done [User]	Write Only	TR/HTR	0	Built-In Self Test Done
				O BIST idle or running
addr 0x34[12]				1 BIST done

Table 3-155Built-In Self Test (BIST) Completion Code Description

Name	Туре	Reset By	Reset Value	Function
BIST Code[3:0]	Read/Write	TR/HTR	0	BIST Completion Code
addr 0x34[11:8]				O BIST OK 1–15 BIST failure

Table 3-156Master Byte Enable Generation

Name	Туре	Reset By	Reset Value	Function
Be En[1:0]	Read/Write	TR/HTR	0	Master Byte Enable Generation
				O Automatic generation of Byte enables
addr 0x34[6:5]				1 Transmit FIFO Byte enables

Table 3-157Maximum Master Retry Timeout Description

Name	Туре	Reset By	Reset Value	Function
Max Retry[1:0] addr 0x34[4:3]	Read/Write	TR/HTR	0	$\begin{array}{lll} \textbf{Maximum Master Retry Timeout} \\ 00 &=& 30 \ \mu s \\ 01 &=& 30 \ ms \\ 10 &=& 30 \ s \\ 11 &=& Infinite \end{array}$

Table 3-158 FIFO Threshold Timeout Description

Name	Туре	Reset By	Reset Value	Function
FIFO Thresh TO[1:0] addr 0x34[2:1]	Read/Write	TR/HTR	0	FIFO Threshold Timeout 00 = 100 PCI clocks (CLK) 01 = 10,000 PCI clocks (CLK) 10 = 1,000,000 PCI clocks (CLK) 11 = Never Flush

Table 3-159Latency Timeout Enable Description

Name	Туре	Reset By	Reset Value	Function
lat en	Read/Write	TR/HTR	1	Master Latency Timeout Enable
addr 0x34[0]				Latency Timeout Counter Enabled Latency Timeout Counter Disabled

Table 3-160Control Register Offset 0x36

Register Name: PCI_IE	Register Name: PCI_ID Register Offset: 0x36				
Bits	Function				
63-56	Reserved [63:56]				
55-48	Reserved [55:48]				
47-40	Reserved [47:40]				
39-32	Reserved [39:32]				
31-24	Reserved [31:24]				
23-16	Reserved [23:16]				
15-8	Reserved [15:8]				
7-0	Reserved [7:0]				

Table 3-161Reserved Register Description

Name	Туре	Reset By	Reset Value	Function
Reserved	N/A	N/A	0	Reserved Must be set to 0.
addr 0x36[63:0]				Must be set to U.

Table 3-162Control Register Offset 0x38

Register Name: PC	Register Name: PCI_ID Register Offset: 0x38				
Bits	Function				
63-56	Reserved [63:56]				
55-48	Reserved [55:48]				
47-40	Reserved [47:40]				
39-32	Reserved [39:32]				
31-24	Reserved [31:24]				
23-16	Reserved [23:16]				
15-8	Reserved [15:8]				
7-0	Reserved [7:0]				

Table 3-163Reserved Register Description

Name	Туре	Reset By	Reset Value	Function
Reserved	N/A	N/A	0	Reserved Must be set to 0.
addr 0x38[63:0				

Table 3-164Control Register Offset 0x3A

Register Name: PCI_ID Register Offset: 0x3A				
Bits	Function			
63-56	Reserved [30:23]			
55-48	Reserved [22:15]			
47-40	Reserved [14:7]			
39-32	Reserved [6:0]	Software Reset		
31-24	Reserved [30:23]			
23-16	Reserved [22:15]			
15-8	Reserved [14:7]			
7-0	Reserved [6:0]	Total Reset		

Table 3-165Reserved Register Description

Name	Туре	Reset By	Reset Value	Function
Reserved addr 0x3A[63:33] and addr 0x3A[31:1]	N/A	N/A	0	Reserved Must be set to 0.

Table 3-166Software Reset Register Description

Name	Туре	Reset By	Reset Value	Function
Software Reset addr 0x3A[32]	Write Only	TR/HTR	0	Software Reset of ADSP-21160 Side 1 Assert fpga_reset 0 Deassert fpga_reset May be accessed from the PCI only. 32-bit write only.

Table 3-167Total Reset Register Description

Name	Туре	Reset By	Reset Value	Function
Total Reset	Write Only	N/A	N/A	Host Total Reset (HTR)
addr 0x3A[0]				Executes a Host Total Reset (HTR). Self clearing. 1 Perform a Host Total Reset (HTR) 0 No effect May be accessed from the PCI only. 32-bit write only.

Table 3-168Control Register Offset 0x3C

Register Name: PCI_ID Register Offset: 0x3C					
Bits	Function				
63-56	Target Control Address[63:56]				
55-48	Target Control Address[55:48]				
47-40	Target Control Address[47:40]				
39-32	Target Control Address[39:32]				
31-24	Target Control Address[31:24]				
23-16	Target Control Address[23:16]				
15-8	Target Control Address[15:8]				
7-0	Target Control Address[7:3]	000			

Table 3-169Target Control Address Description

Name	Туре	Reset By	Reset Value	Function
Reserved	Read Only	TR/HTR	0	Reserved
addr 0x3C[63:3]				

Table 3-170Control Register Offset 0x3E

Register Name: PCI_I	Register Name: PCI_ID Register Offset: 0x3E				
Bits	Function				
63-56	Target Control Data[63:56]				
55-48	Target Control Data[55:48]				
47-40	Target Control Data[47:40]				
39-32	Target Control Data[39:32]				
31-24	Target Control Data[31:24]				
23-16	Target Control Data[23:16]				
15-8	Target Control Data[15:8]				
7-0	Target Control Data[7:0]				

Table 3-171Target Control Data Description

Name	Туре	Reset By	Reset Value	Function
Reserved	Read/Write	TR/HTR	0	Reserved
addr 0x3E[63:0]				

3.3.2 SHARC Interface Control Registers

This section describes the memory locations and settings for the SharcFIN's SHARC interface registers. All addresses described in this section are offsets from the base address of MS2 and are accessible from the ADSP-21160 DSPs and from the PCI interface. Table 3-172 gives the memory mapping for the user-configurable registers in the SharcFIN.

Note

Most of the user-configurable registers are already set and do not require you to program them. You will only need to set them if you are writing your own host interface programs.

Table 3-172Memory Map for the SHARC Interface Control Registers

Address	Register	Туре	Description
0x40	Address Override	R/W	Allows addressing of IOP registers when ADSP-21160 is using a host packing mode
0x41	Status	R/O	General set of status registers. Indicates ADSP-21160 cluster bus status, and last reset source
0x42	Peripheral Bus Configuration	R/W	Configures and shows status of wait cycles of the 8-bit peripheral bus
0x43	Watchdog Configuration	$WORM^*$	Enables and disables the watchdog timer
0x44	PMC+ Configuration	R/W	Configures the PMC+ interface
0x45	SD Size Config	R/W	Resets and reinitializes the SDRAM controller
0x46	Onboard I ² C Control	R/W	Controls the I ² C interface
0x47	PMC I ² C Control	R/W	Controls the I ² C interface to the PMC+ interface
0x48	DMA Address	R/W	Sets the address of DMA to be performed (writes into the register the address that the DMA is supposed to be operating on)
0x49	DMA Configuration	R/W	Controls various features of the SharcFIN DMA engine: size of DMA, increment size of DMA, other various configuration bits
0x4A	SD Window	R/W	Selects which 16 MB of SDRAM the PCI interface will view
0x4B-4F	Unused		
0x50,52, 54,56	H110, H210, H310, H410	R/W	Configure ADSP-21160 DSPs' interrupts; show status of interrupts
0x51,53, 55,57	Reserved		
0x58	PCInt	R/W	Configures PCI interrupt
0x5A	PMCI0	R/W	Configures PMC interrupt
0x59, 0x5B–5D	Unused		
0x5E	Flag Status	R/O	Shows state of all flags
0x5F	IRQ Status	R/O	Shows state of all interrupts

^{*} Write Once Read Many

Address Override Register

The *Address Override* register (offset 0x40) configures how the ADSP-21160 DSPs access the least significant 32 bits on the ADSP-21160 cluster bus. It allows access to the DSPs' IOP space before the ADSP-21160's SYSCON register¹ has been configured.

Note Only use this register if you are writing your own host interface programs.

Table 3-173Address Override Register Description

Bit	Name	Туре	Reset By	Reset Value	Function
0	A0 Override En*	Read/Write		0	Address override enable for booting across the PCI bus
1	Overridden A0*	Write Only		0	Overridden address
2	BusLockReq	Write Only		0	Bus Lock Request. Requests the SharcFIN to acquire the ADSP-21160 cluster bus and locks access to the bus so that only the SharcFIN can access it. O = Disabled 1 = Requests that the SharcFIN acquire the ADSP-21160 cluster bus and not give it up
3	Destructive FIFO Read Enable	Write Only		1	Determines whether a read to the DMA FIFOs will cause the FIFOs to advance 0 = A read to the DMA FIFOs does not cause the FIFOs to advance 1 = A read to the DMA FIFOs causes the FIFOs to advance
4	Host Clock Disable	Read/Write		0	Disables the clock to the ADSP-21160 DSPs. This is used to address powerup anomalies on current editions of ADSP-21160 processors. 1 = Disables clock 0 = Clock enabled

^{*} Do not use the Address Override bits (BO and B1) under normal setup conditions. If you are running the board in standalone mode and are booting across the PCI bus, you can change these bits. However, exercise extreme caution since data loss or corruption will occur if you set the bits improperly.

^{1.} The SYSCON register is a register in the ADSP-21160 DSPs that contains the MSIZE bits and is used to select the packing mode for synchronous and asynchronous transfers performed by the host.

Status Register

The *Status* register is a 16-bit read only register (offset 0x41) that gives information about various features on the board.

Table 3-174Contents of the Status Register

Bit	Name	Туре	Reset By	Reset Value	Function
0	PMCHostCfg	Read Only		Set in hardware	Indicates whether SharcFIN is configured for a PMC host site or a PMC daughter card. 1 = On baseboard 0 = On PMC
1	StandAlone	Read Only		Set by jumper	Determines whether PCI side resets are accepted by the SharcFIN 1 = PCI resets ignored 0 = PCI resets accepted
2	Bus Locked	Read Only		0	Indicates whether the SharcFIN has locked and acquired the ADSP-21160 cluster bus 0 = Cluster bus is not locked 1 = Cluster bus is locked
3	Last Reset Source	Read Only		0	Indicates whether the PCI interface or the watchdog was the source of the last board reset 0 = PCI reset 1 = Watchdog/external reset
4	SpareInput Pin	Read Only		1	Spare external input signal

Peripheral Bus Configuration Register

The **Peripheral Bus Configuration** register (offset 0x42) allows you to configure the wait cycles of the peripheral bus.

Table 3-175Contents of the Peripheral Bus Configuration Register

Bit	Name	Туре	Reset By	Reset Value	Function
3:0	PCI to Pbus Wait	Read/Write		0101 B0: 1 B1: 0 B2: 1 B3: 0	Select the number of wait cycles the SharcFIN will wait before completing a transaction on the peripheral bus. The actual value of wait cycles is one greater than the value in the register (for example, if the register value = 0, the number of wait cycles = 1). O101 =Default setting (6 wait cycles)
4	Pbus Ack Enable	Read/Write		0	Selects whether the SharcFIN will monitor the peripheral bus Ack line after the peripheral bus wait time has expired. O = SharcFIN will wait the selected number of wait cycles and consider the transaction complete* 1 = SharcFIN will wait the selected number of wait cycles and then monitor the Ack line
5	Pbus Reset	Read/Write		0	Resets the peripheral bus reset line, the Flash, and the UART. The reset stays active until cleared by another write to the register.† O = No reset 1 = Resets Flash, UART, and all devices on the peripheral bus

^{*} Five wait cycles is the minimum amount of wait cycles required to talk to the Flash memory.

[†] You can also reset the Flash, the UART, and all devices on the peripheral bus via a board reset.

Watchdog Configuration Register

The *Watchdog Configuration* register (offset 0x43) is a WORM (Write Once Read Many) register that allows you to enable or disable the watchdog timer, set its time-out time, and select which processor will reset its timer. Once the watchdog is enabled, it cannot be disabled except by a board reset (hence the WORM designation), which can be from the PCI interface, the watchdog, or an external source.

Table 3-176Contents of the Watchdog Configuration Register

Bit	Name	Туре	Reset By	Reset Value	Function
1:0	WDEn1, WDEn0	WORM		00	Enable the watchdog timer and select its time-out time. 00 = Disabled 10 = Enabled; short time-out (200 ms) 01 = Enabled; medium time-out (600 ms) 11 = Enabled; long time-out (1.2 s)
3:2	Unused				
7:4	H4F1 En, H3F1 En, H2F1 En, H1F1 En	WORM		0000	Selects which processor will strobe the watchdog timer.* 0001 = 21160-1 FLAG1 will strobe the watchdog 0010 = 21160-2 FLAG1 will strobe the watchdog 0100 = 21160-3 FLAG1 will strobe the watchdog 1000 = 21160-4 FLAG1 will strobe the watchdog

^{*} You can select more than one processor, but it is not recommended.

PMC+ Configuration Register

The **PMC+ Configuration** register (offset 0x44) is a read/write register that configures the bus mode lines of the PMC+ interface and allows you to read their status. Table 3-177 below shows the contents of the **PMC+ Configuration** register.

Table 3-177Contents of the PMC+ Configuration Register

Bit	Name	Туре	Reset By	Reset Value	Function
0	PMC Flg/Int En	Read/Write		0	Configures the PMC+ interface's bus mode lines to be used as flag interrupts.* 1 = The PMC+ interface's bus mode lines will be used as flag interrupts 0 = The PMC+ interface's bus mode lines will be used as bus mode lines

Table 3-177Contents of the PMC+ Configuration Register (Continued)

Bit	Name	Туре	Reset By	Reset Value	Function
3:1	BusMode2, BusMode3, BusMode4	Read/Write		BusMode2: 1 BusMode3: 0 BusMode4: 0	Tells the PMC site whether or not it should drive BusMode1 to indicate its presence. When the flag/interrupts are disabled (by PMC Flg/Int En bit), the BusMode lines work according to the PMC specification. Bits 1–3 are Bus Mode lines 2–4. B1 = 1 Bus Mode line 2 B2 = 0 Bus Mode line 3 B3 = 0 Bus Mode line 4
4	BusMode 1	Read Only			Bus Mode line 1 is an input [†] . It indicates that a PMC card is present on the board. [‡] 0 = PMC board is present
5	BusMode2	Read Only			Current status of BusMode2 line
6	BusMode3	Read Only			Current status of BusMode3 line
7	BusMode4	Read Only			Current status of BusMode4 line

^{*} The option of using the bus mode lines as flag interrupts is a feature of BittWare's PMC+ form factor; to work properly, it must be enabled on both the PMC+ card and the host board.

[†] Bits 3:1 are outputs. Bit 4 is an input.

Refer to the IEEE P138.1 Standard Physical and Environmental Layers for PCI Mezzanine Cards: PMC (PMC Specification) for details on the operation of these lines.

Onboard I²C Control Register

The **Onboard I^2C Control** register (offset 0x46) controls the I^2C interface. The I^2C interface is a two-wire bus; one wire is a clock signal, and the other is a data signal. Both the clock and the data lines are pulled up. Table 3-178 shows the contents of the register.

As per standard I²C, both the clock and data lines are pulled high. Devices on the I²C bus either do not drive the bus, or they drive it low. Any device on the I²C bus can drive either the clock or data line low when required. You can also read the actual status of the lines.

Table 3-178Contents of the Onboard I²C Control Register

Bit	Name	Туре	Reset By	Reset Value	Function
0	Clock	Read/Write		1	On write, drives the clock line. On read, shows the state of the clock line
1	Data	Read/Write		1	On write, drives the data line. On read, shows the state of the data line
2	Clock Drive	Read Only		1	
3	Data Drive	Read Only		1	

When you write a 1 to either the clock or data line in this register, the SharcFIN does not drive the corresponding line. When you write a 0 to either the clock or the data line, the SharcFIN drives the corresponding line to 0. When you read either line, you read the actual state of the line rather than what you have written to it. If you are not driving the line, it will be 0 if another device is driving it and 1 if nothing is driving it. Table 3-179 shows the effect of the values written to the *Clock* and *Data* bits.

Table 3-179Effects of Values Written to the Clock and Data Bits (BO, B1)

Value Written	Description
0	Drives the line low; when read back, shows 0
1	When read back, shows the actual state of the I ² C line

PMC I²C Control Register

The **PMC l_2C Control** register (offset 0x47) controls the I^2C interface to the PMC+ interface. The settings for this register are the same as the settings for the **Onboard l^2C** register, except that all settings apply to the PMC+ interface I^2C instead of the on-board I^2C .

SDRAM Configuration Registers

The SharcFIN contains two registers that configure the SDRAM:

- SDRAM Size Configuration Register (offset 0x45)
- SDRAM Window Register (offset 0x4A)

SDRAM Size Configuration Register. The *SDRAM Size Configuration* register sets the size of the SDRAM. The settings for this register depend on the type of SDRAM modules used on the DSP board. Table 3-180 below shows the contents of the register.

Table 3-180Contents of the SDRAM Size Configuration Register

Bit	Name	Туре	Reset By	Reset Value	Function	
1:0	SD Bank Size 1:0	Read/Write		0	Determine how the SDRAM controller uses the SharcFIN's CSO and CS1 (chip select 0 and 1) pins. The chip select pins allow the SharcFIN to seamlessly connect to two banks of SDRAM. CSO selects SDRAM bank 0, and CS1 selects SDRAM bank 1.	
					BO B1 Result O O CSO always active O 1 CS1 active when 32-bit word address bit 24 is high; otherwise CSO is active 1 O CS1 active when 32-bit word address bit 25 is high; otherwise CSO is active 1 1 CS1 active when 32-bit word address bit 26 is high; otherwise CSO is active	
2	SD RF Size	Read/Write		1	Sets the refresh rate of the SDRAM 0 = 4K refreshes every 64 milliseconds 1 = 8K refreshes every 64 milliseconds	
3	SD Reset	Write Only		0	Writing a 1 resets the SDRAM controller and reinitializes the SDRAM	

SDRAM Window Register. The *SDRAM Window* register is a 5-bit register that lets you select which 16 MB section of memory in the SDRAM to view from the host over the PCI interface. From the PCI side, the SDRAM is mapped into BAR4 with a 4 Mword (16 Mbyte) window viewable at a time. The offset into BAR4 provides bits 0 through 21 of the address of the SDRAM word to be accessed. The contents of the 5-bit *SD Window* register (address 0x4A) are appended to bits 22 through 26 of the address to complete the address and thereby select the 4 Mword window to be accessed. Table 3-181 lists the bits included in this register. For more information, refer to section 2.3.

Note

You will not need to configure this register since the Diag21k utility, which is included with the DSP21k-SF Toolkit, will set these bits.

Table 3-181Contents of the SDRAM Window Register

Bit	Name	Туре	Reset By	Reset Value Description	
0	Window A0	Write Only		0	Selects window AO of the SDRAM
1	Window A1	Write Only		1	Selects window A1 of the SDRAM
2	Window A2	Write Only		0	Selects window A2 of the SDRAM
3	Window A3	Write Only		0	Selects window A3 of the SDRAM
4	Window A4	Write Only		0	Selects window A4 of the SDRAM

DMA Address Register

The **DMA Address** register (offset 0x48) configures the address of the current DMA location. This register is incremented as the DMA progresses, allowing you to monitor the DMA engine's current address. You must reset this register each time if you wish to repeat a DMA on the same address range as last time. This register cannot be written to while the DMA start bit is set, but it can be read from at any time. The section entitled "Using the SharcFIN-Based DMA Engine" on page 62 describes this register in more detail.

Table 3-182Contents of the DMA Address Register

Bit	Name	Туре	Reset By	Reset Value	Function
0	Unused	Read Only			
27:1	A[27:1]	Read/Write		0	Indicates the current DMA location
31:28	Unused	Read Only			

DMA Configuration Register

The **DMA Configuration** register (offset 0x49) controls various features of the SharcFIN DMA engine, including starting a DMA, size of the DMA, increment size of the DMA, and other various configuration bits. Table 3-183 describes the contents of the register. The section entitled "Using the SharcFIN-Based DMA Engine" on page 62 explains this register in more detail. This register can not be written while the DMA start bit is set, but it can be read from at any time.

Table 3-183Contents of the DMA Configuration Register

Bit	Name	Туре	Reset By	Reset Value	Description
15:0	DMACntB[15:0]	Read/Write		Χ*	DMA transfer count (in 64-bit words) bits. All are settable.
22:16	DMA Stride B[6:0]	Read/Write		Х	Stride or address increment bits. These bits will typically be set to 0x01.
23	Unused				Unwritable; fixed at 0.
24	DMAStart	Read/Write		0	Setting the bit to 1 starts the DMA; it resets to 0 when the DMA is complete.
25	DMA Channel Select	Read/Write		0	Selects the PCI channel being operated on (0 or 1)
26	DMA Direction	Read/Write		0	Selects whether a PCI transmit or receive DMA is being performed. 0 = PCI receive DMA (PCI to 21160/SDRAM) 1 = PCI transmit DMA (21160/SDRAM to PCI)
27	DMA Interrupt	Read/Write		0	If this bit is set at the start of the DMA, the SharcFIN generates an interrupt in the interrupt multiplexer on completion of the DMA. Any write to this register clears the interrupt.
28	Burst Disable	Read/Write		0	1 = Disable bursting on the ADSP-21160 side. Must be set to 1 when the address increment > 0x01. If it is set when the address increment <= 0x01, it functions but will slow things down. 0 = Bursting enabled
29	DMA Buslock	Read/Write		0	1 = SharcFIN requests the ADSP-21160 cluster bus when the start bit is set, and once it obtains the bus, keeps it until the DMA completes.
(Sheet	1 of 2)	•		_	•

Table 3-183Contents of the DMA Configuration Register

Bit	Name	Туре	Reset By	Reset Value	Description		
31:30	DMA Xfer Length B[1:0]	Read/Write		00	be set registe	Set the DMA transfer length. These bits must be set along with the bits in the PCI control register at 0x1A and 0x1B (0x68 byte address).	
					B30	B31	Result
					0	0	Data transferred during each access of the bus = eight 64-bit words
					1	0	Data transferred during each access of the bus = sixteen 64-bit words
					0	1	Data transferred during each access of the bus = thirty-two 64-bit words
					1	1	Data transferred during each access of the bus = sixty-four 64-bit words
					or Tra with c	insmit	ding Receive FIFO almost empty FIFO almost full flags must be set ponding value (length –1, so for must be set to 7).
(Sheet 2	2 of 2)		ı		L		

^{*} X = Unknown

Interrupt Configuration Registers

The SharcFIN features an interrupt multiplexer for each ADSP-21160, the PCI interface, and the PMC+ interface. Inputs to the multiplexers are flags from each ADSP-21160, a PCI side flag, PMC flags, UART flags, and a DMA flag. The registers at offsets 0x50 to 0x5A (see Table 3-184 on page 3-189) provide the interrupt multiplexers (see also section 2.4.2). Table 3-185 lists the settings for the ADSP-21160 interrupt multiplexers, Table 3-186 lists the settings for the PCI interrupt multiplexer, and Table 3-187 lists the settings for the PMC+ interrupt multiplexer.

The interrupt multiplexer registers are 32-bit registers that allow you to select the desired input sources. The first 16 bits [15:0] are read/write and select the source that will generate an interrupt to the processor; each of the bits corresponds to one of the flag inputs to the multiplexer. The second 16 bits [31:16] are read only and show which of the enabled interrupts are generating an interrupt, each bit corresponding to one of the flag inputs. Bits [31:16] are masked interrupt lines; when one of the flag inputs and its corresponding bit in bits [15:0] of the configuration register is high, the corresponding bit in bits [31:16] is also set to indicate the source of the input. Bits [31:16] are masked by 21160-1 IRQ0's interrupt mask.

Table 3-184ADSP-21160 Interrupt Configuration Registers

Address	Register	Description
0x50	H1I0	Configures the operation of 21160-1 IRQ0
0x51	Unused	
0x52	H2I0	Configures the operation of 21160-2 IRQO
0x53	Unused	
0x54	H3I0	Configures the operation of 21160-3 IRQO
0x55	Unused	
0x56	H4I0	Configures the operation of 21160-4 IRQO
0x57	Unused	
0x58	PCInt	Configures the operation of the PCI interrupt
0x59	Unused	
0x5A	PMCI0	Configures the operation of PMC+ IRQO

Table 3-185Settings for the ADSP-21160 Interrupt Configuration Registers (0x50, 0x52, 0x54, 0x56)

Bit	Name	Туре	Reset Value	Description [*]	
0	H1F0	Read/Write	0	Enables 21160-1 FLAGO to cause an interrupt	
1	H1F1	Read/Write	0	Enables 21160-1 FLAG1 to cause an interrupt	
2	H2F0	Read/Write	0	Enables 21160-2 FLAGO to cause an interrupt	
3	H2F1	Read/Write	0	Enables 21160-2 FLAG1 to cause an interrupt	
4	H3F0	Read/Write	0	Enables 21160-3 FLAGO to cause an interrupt	
5	H3F1	Read/Write	0	Enables 21160-3 FLAG1 to cause an interrupt	
6	H4F0	Read/Write	0	Enables 21160-4 FLAGO to cause an interrupt	
7	H4F1	Read/Write	0	Enables 21160-4 FLAG1 to cause an interrupt	
8	PCFlg	Read/Write	1	Enables the PCI interface to cause an interrupt	
9	PMCFlg0	Read/Write	0	Enables FLAGO from the PMC interface to cause an interrupt	
(Sheet	(Sheet 1 of 2)				

Table 3-185Settings for the ADSP-21160 Interrupt Configuration Registers (0x50, 0x52, 0x54, 0x56)

Bit	Name	Туре	Reset Value	Description*	
10	Unused		0		
11	PRFlg	Read/Write	0	Enables a flag from the peripheral bus to cause an interrupt	
12	UART0	Read/Write	0	Enables a flag from UARTO to cause an interrupt	
13	UART1	Read/Write	0	Enables a flag from UART1 to cause an interrupt	
14	DMAInterrupt	Read/Write	0	Enables a DMA interrupt	
15	Unused		0		
16	H1F0	Read Only	0	Indicates that 21160-1 FLAGO is generating an interrupt	
17	H1F1	Read Only	0	Indicates that 21160-1 FLAG1 is generating an interrupt	
18	H2F0	Read Only	0	Indicates that 21160-2 FLAGO is generating an interrupt	
19	H2F1	Read Only	0	Indicates that 21160-2 FLAG1 is generating an interrupt	
20	H3F0	Read Only	0	Indicates that 21160-3 FLAGO is generating an interrupt	
21	H3F1	Read Only	0	Indicates that 21160-3 FLAG1 is generating an interrupt	
22	H4F0	Read Only	0	Indicates that 21160-4 FLAGO is generating an interrupt	
23	H4F1	Read Only	0	Indicates that 21160-4 FLAG1 is generating an interrupt	
24	PCFlg	Read Only	0	Indicates that a PCI flag is generating an interrupt	
25	PMCFlg0	Read Only	0	Indicates that PMC+ FLAGO is generating an interrupt	
26	Unused		0		
27	PRFlg	Read Only	0	Indicates that a peripheral bus flag is generating an interrupt	
28	UARTO	Read Only	0	Indicates that UARTO flag is generating an interrupt	
29	UART1	Read Only	0	Indicates that UART1 flag is generating an interrupt	
30	DMAInterrupt	Read Only	0	Indicates that a DMA flag is generating an interrupt	
31	Unused		0		
(Shee	(Sheet 2 of 2)				

^{*} All descriptions in this column apply when bits are set to 1.

Table 3-186Settings for the PCI Interrupt Configuration Register (0x58)

Bit	Name	Туре	Reset Value	Description*
0	H1F0	Read/Write	1	Enables 21160-1 FLAGO to cause an interrupt
1, 3, 5, 7	Unused		0	
2	H2F0	Read/Write	1	Enables 21160-2 FLAGO to cause an interrupt
4	H3F0	Read/Write	1	Enables 21160-3 FLAGO to cause an interrupt
6	H4F0	Read/Write	1	Enables 21160-4 FLAGO to cause an interrupt
8	PCFlg	Read/Write	0	Enables the PCI interface to cause an interrupt
9	PMCFlg0	Read/Write	0	Enables FLAGO from the PMC interface to cause an interrupt
10	Unused		0	
11	PRFlg	Read/Write	0	Enables a flag from the peripheral bus to cause an interrupt
12	UARTO	Read/Write	0	Enables a flag from UARTO to cause an interrupt
13	UART1	Read/Write	0	Enables a flag from UART1 to cause an interrupt
14	DMAInterrupt	Read/Write	0	Enables a DMA interrupt
15, 17, 19, 21, 23	Unused		0	
16	H1F0	Read Only	0	Indicates that 21160-1 FLAGO is generating an interrupt
18	H2F0	Read Only	0	Indicates that 21160-2 FLAGO is generating an interrupt
20	H3F0	Read Only	0	Indicates that 21160-3 FLAGO is generating an interrupt
22	H4F0	Read Only	0	Indicates that 21160-4 FLAGO is generating an interrupt
24	PCFlg	Read Only	0	Indicates that a PCI flag is generating an interrupt
25	PMCFlg0	Read Only	0	Indicates that PMC+ FLAGO is generating an interrupt
26	Unused		0	
27	PRFlg	Read Only	0	Indicates that a peripheral bus flag is generating an interrupt
28	UARTO	Read Only	0	Indicates that UARTO flag is generating an interrupt
29	UART1	Read Only	0	Indicates that UART1 flag is generating an interrupt
30	DMAInterrupt	Read Only	0	Indicates that a DMA flag is generating an interrupt
31	Unused		0	

^{*} All descriptions in this column apply when bits are set to 1.

Table 3-187Settings for the PMC+ Interrupt Configuration Register (0x5A)

Bit	Name	Туре	Reset Value	Description*
0	H1F0	Read/Write	0	Enables 21160-1 FLAGO to cause an interrupt
1, 3, 5, 7	Unused		0	
2	H2F0	Read/Write	0	Enables 21160-2 FLAGO to cause an interrupt
4	H3F0	Read/Write	0	Enables 21160-3 FLAGO to cause an interrupt
6	H4F0	Read/Write	0	Enables 21160-4 FLAGO to cause an interrupt
8	PCFlg	Read/Write	0	Enables the PCI interface to cause an interrupt
9	PMCFlg0	Read/Write	0	Enables FLAGO from the PMC interface to cause an interrupt
10	Unused		0	
11	PRFlg	Read/Write	0	Enables a flag from the peripheral bus to cause an interrupt
12	UARTO	Read/Write	0	Enables a flag from UARTO to cause an interrupt
13	UART1	Read/Write	0	Enables a flag from UART1 to cause an interrupt
14	DMAInterrupt	Read/Write	0	Enables a DMA interrupt
15, 17, 19, 21, 23	Unused		0	
16	H1F0	Read Only	0	Indicates that 21160-1 FLAGO is generating an interrupt
18	H2F0	Read Only	0	Indicates that 21160-2 FLAGO is generating an interrupt
20	H3F0	Read Only	0	Indicates that 21160-3 FLAGO is generating an interrupt
22	H4F0	Read Only	0	Indicates that 21160-4 FLAGO is generating an interrupt
24	PCFlg	Read Only	0	Indicates that a PCI flag is generating an interrupt
25	PMCFlg0	Read Only	0	Indicates that PMC+ FLAGO is generating an interrupt
26	Unused		0	
27	PRFlg	Read Only	0	Indicates that a peripheral bus flag is generating an interrupt
28	UARTO	Read Only	0	Indicates that UARTO flag is generating an interrupt
29	UART1	Read Only	0	Indicates that UART1 flag is generating an interrupt
30	DMAInterrupt	Read Only	0	Indicates that a DMA flag is generating an interrupt
31	Unused		0	

^{*} All descriptions in this column apply when bits are set to 1.

Flag and Interrupt Status Registers

The registers at offsets 0x5E and 0x5F are 16-bit unmasked registers that show the status of all flags and interrupts. The register at 0x5E shows the status of the flags, and 0x5F shows the status of the interrupts. Table 3-188 and Table 3-189 describe the bits in the registers. For additional explanation of these registers, refer to the section entitled "Determining the Status of the Interrupts" on page 31.

Table 3-188Contents of the Flag Status Register

Bit	Name	Туре	Reset Value	Description
0	H1F0	Read Only	0	Status of 21160-1 FLAGO
1	H1F1	Read Only	0	Status of 21160-1 FLAG1
2	H2F0	Read Only	0	Status of 21160-2 FLAGO
3	H2F1	Read Only	0	Status of 21160-2 FLAG1
4	H3F0	Read Only	0	Status of 21160-3 FLAGO
5	H3F1	Read Only	0	Status of 21160-3 FLAG1
6	H4F0	Read Only	0	Status of 21160-4 FLAGO
7	H4F1	Read Only	0	Status of 21160-4 FLAG1
8	PCFlg	Read Only	0	Status of PCI flag
9	PMCFlg0	Read Only	0	Status of PMC+ FLAGO
10	Unused		0	
11	PRFlg	Read Only	0	Status of peripheral bus flag
12	UARTO	Read Only	0	Status of UARTO flag
13	UART1	Read Only	0	Status of UART1 flag
14	DMAInterrupt	Read Only	0	Status of DMA flag
15	Unused		0	

Table 3-189Contents of the Interrupt Status Register

Bit	Name	Туре	Reset Value	Description
0	H1I0	Read Only	0	Status of 21160-1 IRQO
1	HIII	Read Only	0	Status of 21160-1 IRQ1
2	H2I0	Read Only	0	Status of 21160-2 IRQO
3	H2I1	Read Only	0	Status of 21160-2 IRQ1
4	H3I0	Read Only	0	Status of 21160-3 IRQO
5	H3I1	Read Only	0	Status of 21160-3 IRQ1
6	H4I0	Read Only	0	Status of 21160-4 IRQO
7	H4I1	Read Only	0	Status of 21160-4 IRQ1
8	PCInt	Read Only	0	Status of PCI interrupt
9	PMCI0	Read Only	0	Status of PMC+ IRQ0
10	PMCI1	Read Only	0	Status of PMC+ IRQ1
15:11	Unused	Read Only	0	

Chapter 4 Hardware Description

This chapter describes the physical characteristics of the SharcFIN chip. It includes the following information:

- A detailed description of each signal (section 4.1)
- The chip's pinout (section 4.2)
- The chip's layout and dimensions (section 4.3)

4.1 SharcFIN Signal Descriptions

The following signal types are taken from the PCI Bus Specification:

- in Input is a standard input-only signal
- out Totem Pole Output is a standard active driver
- t/s Tri-State¹ is a bi-directional, tri-state input/output pin
- s/t/s Sustained tri-state is an active low tri-state signal owned and driven by one agent at a time. The agent that drives an s/t/s pin low must drive it high for at least one clock before letting it float. A new agent cannot start driving an s/t/s signal any sooner than one clock after the previous owner tri-states it. A pull-up is required to sustain the inactive state until another agent drives it, and must be provided by the central source.
- o/d Open Drain allows multiple devices to share as wire-OR

Note

For active low signals, the signal name is designated by an overline. For example, the TRDY signal is asserted low when the target is ready to complete a data transfer. Signals that are not designated by an overline are asserted when they assume the logic high state.

Table 4-1PCI Interface Signal Definitions

Signal	Туре	Description
AD[63:0]	t/s	Address/Data Address and data are multiplexed on the same PCI bus pins. A PCI bus transaction consists of an address phase followed by one or more data phases. An address phase occurs on the first or first+second CLK cycle in which FRAME is asserted. A data transfer occurs on the CLK cycles in which IRDY and TRDY are both asserted.
(Sheet 1 of 5)		

^{1.} Tri-State is a Registered Trademark of National Semiconductor.

Table 4-1PCI Interface Signal Definitions (Continued)

Signal	Туре	Description
C/BE[7:0]	t/s	Command/Byte Enable Bus commands and byte enables are multiplexed on the same pins. These pins define the current bus command during an address phase. During a data phase, these pins are used as Byte Enables, with C/BE[0] enabling byte 0 (Least Significant Byte (LSB)) and C/BE[7] enabling byte 7 (Most Significant Byte (MSB)). The commands are active high, and the byte enables are active low.
		C/BE[3:0] Command Type 0b0000 Interrupt Acknowledge 0b0010 Special Cycle 0b0010 I/O Read 0b0011 I/O Write 0b0100 Reserved 0b0101 Reserved 0b0111 Memory Read 0b111 Memory Write 0b1000 Reserved 0b1001 Reserved 0b1001 Reserved 0b1001 Reserved 0b1010 Configuration Read 0b1011 Configuration Write 0b1000 Memory Read Multiple 0b1101 Dual Address Cycle (DAC) 0b1110 Memory Read Line 0b1111 Memory Write and Invalidate
PAR	t/s	PCI Parity Line Parity is always driven as even from all AD[31:0] and C/BE[3:0] signals. The parity is valid during the clock following the address phase and is driven by the bus master. During a data phase for write transactions, the bus master sources this signal on the clock following IRDY active. During a data phase for read transactions, this signal is driven by the target and is valid on the clock following TRDY active. The PAR signal has the same timing as AD[31:0], delayed by one clock.
PCICLK	in	PCI Clock The rising edge of this signal is the reference upon which all other PCI signals are based except for RST and INTA. The maximum CLK frequency for the PCI portion of the SharcFIN is 75 MHz, and the minimum is DC (0 Hz). The SharcFIN is a fully static device; and since no phase-lock-loops (PLLs) are used on CLK, the SharcFIN supports all forms of clock gating techniques, such as spread spectrum and clock run.

Table 4-1PCI Interface Signal Definitions (Continued)

Signal	Туре	Description
RST	in	PCI Reset Signal Reset brings the SharcFIN to a known state: • All PCI bus output signals tri-stated • All open drain signals (e.g. SERR) floated • All registers set to their factory defaults • Master and Target are returned to an idle state • All FIFOs emptied • User-reset is asserted • Automatic 32/64-bit PCI bus sizing on rising edge
FRAME	s/t/s	PCI Frame This signal is driven by the current bus master to indicate the beginning and duration of a bus transaction. When FRAME is first asserted, it indicates a bus transaction is beginning with valid addresses and bus command present on AD[63:0] and C/BE[7:0] (or AD[31:0] and C/BE[3:0]). Data transfers continuing while FRAME is deasserted indicate the transaction is in a final data phase or has completed.
ĪRDY	s/t/s	PCI Initiator Ready This signal is always driven by the bus master to indicate its ability to complete the current data phase. During write transactions, it indicates AD[63:0] (or AD[31:0]) contains valid data.
TRDY	s/t/s	PCI Target Ready This signal is driven by the selected target to indicate the target is able to complete the current data phase. During read transactions, it indicates AD[63:0] (or AD[31:0]) contains valid data. Wait states occur until both TRDY and IRDY are asserted together.
STOP	s/t/s	PCI Stop The STOP signal is driven by a selected target and conveys a request to the bus master to stop the current transaction.
IDSEL	in	PCI Initialization Device Select This pin is used as a chip select during configuration read or write transactions. It is valid only during first address phase.
DEVSEL	s/t/s	PCI Device Select This signal is driven by a target decoding and recognizing one of its bus addresses. It informs a bus master that an agent has decoded a current bus cycle.
INTA	o/d	PCI Interrupt A This signal is defined as optional and level-sensitive. Driving it low will interrupt the host. The INTA interrupt is to be used for any single function device requiring an interrupt capability.
(Sheet 3 of 5)		

BittWare, Inc.

Table 4-1PCI Interface Signal Definitions (Continued)

Signal	Туре	Description
PERR	s/t/s	PCI Parity Error Detected Only for reporting data parity errors for all bus transactions except for Special Cycles. It is driven by the agent receiving data two clock cycles after the data phase when parity was detected to be in error. This signal is driven inactive (high) for one clock cycle prior to returning to the tri-state condition.
SERR	o/d	PCI System Error Used to report address and data parity errors on Special Cycle commands and any other error condition having a catastrophic system impact. Special Cycle commands are not received by the SharcFIN.
REQ64	s/t/s	PCI Request 64-bit Transfer When asserted by the current bus master, indicates it desires to transfer data using 64 bits. REQ64 has the same timing as FRAME. REQ64 also has meaning at the end of the reset as described in section 2.6.
ACK64	s/t/s	PCI Acknowledge 64-bit Transfer When actively driven by the device that has positively decoded its address as the target of the current access, indicates the target is willing to transfer data using 64 bits. ACK64 has the same timing as DEVSEL. Only asserted if REQ64 is asserted in the same transaction.
PAR64	t/s	Parity Upper (PCI 64-bit parity line) The Parity Upper dword is the even parity bit that protects AD[63:32] and C/BE[7:4]. PAR64 is valid one clock after the initial address phase when REQ64 is asserted and the DAC command is indicated on C/BE[3:0]. PAR64 is also valid the clock after the second address phase of a DAC command when REQ64 is asserted. PAR64 is stable and valid for 64-bit data phases one clock after either IRDY is asserted on a write transaction or TRDY is asserted on a read transaction. PAR64 has the same timing as AD[63:32], but delayed by one clock. The master drives PAR64 for address and write data phases. The target drives PAR64 for read data phases.
REQ	out/t/s	PCI Request Request indicates to the arbiter that this agent desires use of the bus. This is a point-to-point signal. Every master has its own REQ which must be tristated while RST is asserted. REQ is always driven after reset.
GNT	in	Grant Grant indicates to the agent that access to the bus has been granted. This is a point-to-point signal. Every master has its own GNT which must be ignored while RST is asserted.
TDI	in	Test Data Input Used to serially shift test data and test instructions into the device during Test Access Port (TAP) operation.
(Sheet 4 of 5)		

Table 4-1PCI Interface Signal Definitions (Continued)

Signal	Туре	Description
TDO	out	Test Output Used to serially shift test data and test instructions out of the device during TAP operation.
тск	in	Test Clock Used to clock state information and test data into and out of the device during the operation of the TAP.
TMS	in	Test Mode Select Used to control the state of the TAP controller in the device.
TRST	in	Test Reset Provides an asynchronous initialization of the TAP controller. This signal is optional in IEEE Standard 1149.1.
(Sheet 5 of 5)		

Table 4-2 SHARC Interface Signal Definitions

Signal	Туре	Description					
ADSP-21160 Signal	ADSP-21160 Signals						
H_WrH	t/s	ADSP-21160 High Word Write Connects directly to the ADSP-21160 cluster bus WrH line.					
H_Wrl	t/s	ADSP-21160 Low Word Write Connects directly to the ADSP-21160 cluster bus Wrl line.					
H_RdH	t/s	ADSP-21160 High Word Read Connects directly to the ADSP-21160 cluster bus RdH line.					
H_RdL	t/s	ADSP-21160 Low Word Read Connects directly to the ADSP-21160 cluster bus RdL line.					
H_Data[63:0]	t/s	ADSP-21160 Data Bits Connect directly to the ADSP-21160 cluster bus Data[63:0] lines.					
H_Addr[31:0]	t/s	ADSP-21160 Address Bits Connect directly to the ADSP-21160 cluster bus Addr[31:0] lines.					
H_Ack	t/s	ADSP-21160 Ack Line Connects directly to the ADSP-21160 cluster bus Ack line.					
(Sheet 1 of 6)							

Table 4-2 SHARC Interface Signal Definitions (Continued)

Signal	Туре	Description
H_Brst	t/s	ADSP-21160 Burst Signal Connects directly to the ADSP-21160 cluster bus Brst line.
H_HBR	out	ADSP-21160 Host Bus Request Connects directly to the ADSP-21160 cluster bus HBR line.
H_HBG	in	ADSP-21160 Host Bus Grant Connects directly to the ADSP-21160 cluster bus HBG line.
H_SBTS	out	ADSP-21160 Suspend/Bus Tristate Connects directly to the ADSP-21160 cluster bus SBTS line.
H_MSO	t/s	ADSP-21160 Memory Select 0 (SDRAM) Gets passed to MS (memory select) lines on SDRAM. Connects directly to the ADSP-21160 cluster bus MSO line.
H_MS1	t/s	ADSP-21160 Memory Select 1 (Flash, UART, Peripheral Bus) Gets passed through to PR_FlashSel, PR_UART, and PR_UBSEL by SharcFIN. Connects directly to the ADSP-21160 cluster bus MS1 line.
H_MS2	t/s	ADSP-21160 Memory Select 2 (SharcFIN) Selects SharcFIN for target operation by an ADSP-21160. Connects directly to the ADSP-21160 cluster bus MS2 line.
H_MS3	t/s	ADSP-21160 Memory Select 3 (Unused) Unused. Connects directly to the ADSP-21160 cluster bus MS3 line.
H_BMS	in	ADSP-21160 Boot Memory Select Input to SharcFIN. Gets passed through to PR_FlashSel by SharcFIN. Connects directly to the ADSP-21160 cluster bus BMS line.
H_Page	in	ADSP-21160 External Memory Page Miss Connects directly to the ADSP-21160 Page line.
H1_DMAR	out	ADSP-21160-1 DMA Request 1 Line Connects directly to the ADSP-21160-1 DMAR line.
H2_DMAR	out	ADSP-21160-2 DMA Request 1 Line Connects directly to the ADSP-21160-2 DMAR line.
H3_DMAR	out	ADSP-21160-3 DMA Request 1 Line Connects directly to the ADSP-21160-3 DMAR line.
H4_DMAR	out	ADSP-21160-4 DMA Request 1 Line Connects directly to the ADSP-21160-4 DMAR line.
H1_IRQ0	out	ADSP-21160-1 IRQ0 Connects directly to the ADSP-21160-1 IRQ0 line.
(Sheet 2 of 6)		

Table 4-2 SHARC Interface Signal Definitions (Continued)

Signal	Туре	Description
H2_IRQ0	out	ADSP-21160-2 IRQ0
		Connects directly to the ADSP-21160-2 IRQ0 line.
H3_IRQ0	out	ADSP-21160-3 IRQ0
		Connects directly to the ADSP-21160-3 IRQ0 line.
H4_IRQ0	out	ADSP-21160-4 IRQ0
		Connects directly to the ADSP-21160-4 IRQO line.
H1_IRQ1	out	ADSP-21160-1 IRQ1
		Connects directly to the ADSP-21160-1 IRQ1 line. Its output is H3_Flag1 AND H4_Flag1 . (Either flag low generates an interrupt.)
H2_IRQ1	out	ADSP-21160-2 IRQ1
		Connects directly to the ADSP-21160-2 IRQ1 line. Its output is H3_Flag1 AND H4_Flag1 . (Either flag low generates an interrupt.)
H3_IRQ1	out	ADSP-21160-3 IRQ1
		Connects directly to the ADSP-21160-3 IRQ1 line. Its output is H1_Flag1 AND H2_Flag1 . (Either flag low generates an interrupt.)
H4_IRQ1	out	ADSP-21160-4 IRQ1
		Connects directly to the ADSP-21160-4 IRQ1 line. Its output is H1_Flag1 AND H2_Flag1 . (Either flag low generates an interrupt.)
H1_Flag0	in	ADSP-21160-1 Flag0
		Connects directly to the ADSP-21160-1 FLAG0 line. Generates an interrupt in the interrupt multiplexer when low and enabled.
H2_Flag0	in	ADSP-21160-2 Flag0
		Connects directly to the ADSP-21160-2 FLAG0 line. Generates an interrupt in the interrupt multiplexer when low and enabled.
H3_Flag0	in	ADSP-21160-3 Flag0
		Connects directly to the ADSP-21160-3 FLAG0 line. Generates an interrupt in the interrupt multiplexer when low and enabled.
H4_Flag0	in	ADSP-21160-4 Flag0
		Connects directly to the ADSP-21160-4 FLAG0 line. Generates an interrupt in the interrupt multiplexer when low and enabled.
H1_Flag1	in	ADSP-21160-1 Flag1
		Connects directly to the ADSP-21160-1 FLAG1 line.
H2_Flag1	in	ADSP-21160-2 Flag1
		Connects directly to the ADSP-21160-2 FLAG1 line.
(Sheet 3 of 6)		

Table 4-2 SHARC Interface Signal Definitions (Continued)

Signal	Туре	Description						
H3_Flag1	in	ADSP-21160-3 Flag1						
		Connects directly to the ADSP-21160-3 FLAG1 line.						
H4_Flag1	in	ADSP-21160-4 Flag1						
		Connects directly to the ADSP-21160-4 FLAG1 line.						
ResetO	out	ADSP-21160 Reset						
		Connects to Reset line on all ADSP-21160 processors.						
Clock Signals								
ClkEn		ADSP-21160 Clock Enable						
CIRETI	out	Enables clocks to all ADSP-21160s to fix their PLL power-up issue. Active low (low should enable clocks).						
LClk	in	Clock to FPGA						
		Must be same frequency as ADSP-21160s and must not be disabled by ClkEn .						
Spare Input	in	Unused FPGA Pin						
		Pull up if unused. Can be read at configuration register 0x41 bit[4].						
Peripheral Bus Signo	als							
PR_Addr[20:0]	out	Peripheral Bus Address Bits						
PR_Data[7:0]	t/s	Peripheral Bus Data Bits						
PR_ACK	in	Peripheral Bus Ack Line						
PR_FLASHSel	out	Peripheral Bus Flash Select						
		Connects to boot Flash select line.						
PR_UARTSel	out	Peripheral Bus UART Select						
		Connects to UART select line.						
PR_Wr	out	Peripheral Bus Write						
PR_Int	in	Peripheral Bus Interrupt Line						
PR_Rst	out	Peripheral Bus Reset						
PR_Rd	out	Peripheral Bus Read						
PR_UBSel	out	Peripheral Bus Connector Select Line						
UARTInt0	in	Peripheral Bus UART Interrupt Line 0						
(Sheet 4 of 6)								

Table 4-2 SHARC Interface Signal Definitions (Continued)

Signal	Туре	Description
UARTInt1	in	Peripheral Bus UART Interrupt Line 1
UART_Rst	out	Peripheral Bus UART Reset
SDRAM Signals		
SD_A10	out	SDRAM A10 Line
SD_AddrMux	out	SDRAM Address Mux Line Switches in row and column address lines.
SD_CKE	out	SDRAM Clock Enable
SD_DQML	out	SDRAM Low Word Data Mask Line
SD_DQMH	out	SDRAM High Word Data Mask Line
SD_WE	out	SDRAM Write Enable
SD_RAS	out	SDRAM RAS
SD_CAS	out	SDRAM CAS
SD_CSO	out	SDRAM Bank O Chip Select
SD_CS1	out	SDRAM Bank 1 Chip Select
Watchdog Signals		
WD_Tcl	out	Watchdog Tickle Signal
WD_Rst	in	External Reset/Watchdog Reset Input
WD_TDly	t/s	Watchdog Tickle Delay
Standalone Signals		
StAlone	in	Standalone Signal
		Disables PCI interface when pulled low.
PMC Interface Signa	ıls	
PA_BusM1	t/s	PMC Site Bus Mode 1
PA_BusM2	t/s	PMC Site Bus Mode 2
(Sheet 5 of 6)	· .	

Table 4-2 SHARC Interface Signal Definitions (Continued)

Signal	Туре	Description
PA_BusM3	t/s	PMC Site Bus Mode 3
PA_BusM4	t/s	PMC Site Bus Mode 4
PMC_Host	in	PMC Host Select Line
		High = PMC host; Low = PMC card
I ² C Interface Signals	;	
P_SCL	t/s	Secondary I ² C Bus Clock Line Pull up
P_SDA	t/s	Secondary I ² C Bus Data Line Pull up
H_SDA	t/s	SharcFIN Configuration EEPROM Clock Line Pull up
H_SCL	out	SharcFIN Configuration EEPROM Data Line Pull up
H_EEPWP	out	SharcFIN Configuration EEPROM Write Protect
(Sheet 6 of 6)		

4.2 Pinout

Table 4-3SharcFIN Pinout

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A1	NC	B5	REQ	C9	H_Ack	D13	NC	E17	P33V
A2	NC	B6	AD[18]	C10	H_Brst	D14	H_Addr[01]	E18	P33V
A3	AD[29]	B7	AD[22]	C11	H_MS0	D15	H2_DMAR	E19	SD_CAS
A4	AD[27]	В8	RST	C12	H_Data[00]	D16	PR_Rd	E20	H_Data[40]
A5	AD[30]	В9	V(I/O)	C13	H_Data[15]	D17	NC	E21	H_Data[19]
A6	IDSEL	B10	H_RdH	C14	H_SBTS	D18	NC	E22	H_Data[26]
A7	AD[26]	B11	H_Data[10]	C15	PR_Wr	D19	GND	F1	DEVSEL
A8	NC	B12	H_Data[09]	C16	ClkEn	D20	PR_Data[6]	F2	NC
A9	H_Wrl	B13	H_Data[14]	C17	H_HBG	D21	H_Data[24]	F3	AD[17]
A10	H_Data[07]	B14	PR_Ack	C18	H_Addr[07]	D22	H_Data[41]	F4	NC
A11	H_Data[04]	B15	H_HBR	C19	WD_Tcl	E1	PERR	F5	NC
A12	H_Data[12]	B16	PR_Addr[01]	C20	PR_Data[7]	E2	AD[15]	F6	GND
A13	H_Data[11]	B17	H_Addr[06]	C21	SD_AddrMu x	E3	AD[25]	F7	P33V
A14	H_Data[13]	B18	PR_Addr[07]	C22	H_Data[42]	E4	AD[23]	F8	GND
A15	SD_DQMH	B19	PR_Addr[05]	D1	C/BE[2]	E5	NC	F9	GND
A16	PR_Addr[08]	B20	TCK	D2	PAR	E6	P33V	F10	GND
A17	PR_Addr[06]	B21	NC	D3	AD[19]	E7	AD[20]	F11	H_Data[05]
A18	SD_RAS	B22	NC	D4	C/BE[3]	E8	AD[28]	F12	H_Data[02]
A19	H_Addr[05]	C1	AD[21]	D5	NC	E9	NC	F13	GND
A20	PR_Data[5]	C2	NC	D6	NC	E10	H_RdL	F14	ResetO
A21	NC	C3	NC	D7	AD[24]	E11	P33V	F15	GND
A22	NC	C4	NC	D8	NC	E12	H_Data[01]	F16	P33V
В1	NC	C5	AD[31]	D9	NC	E13	H_Data[17]	F17	H_Data[18]
B2	NC	C6	GNT	D10	NC	E14	SD_DQML	F18	SD_WE
В3	TDO	C7	NC	D11	H_Data[08]	E15	H1_DMAR	F19	H_Data[36]
B4	AD[16]	C8	V(I/O)	D12	H_Data[03]	E16	H_Addr[08]	F20	H_Data[23]

(Sheet 1 of 4)

Table 4-3 SharcFIN Pinout (Continued)

Pin	Signal								
F21	H_Data[31]	H6	AD[14]	J13	GND	K20	H_Data[51]	M5	PCICLK
F22	H_Data[30]	H7	P33V	J14	GND	K21	H_Data[56]	M6	GND
G1	C/BE[1]	Н8	GND	J15	P33V	K22	H_Data[55]	M7	GND
G2	AD[13]	H9	P33V	J16	GND	L1	AD[06]	M8	P33V
G3	NC	H10	P33V	J17	H_Data[49]	L2	StAlone	M9	GND
G4	SERR	H11	H_Data[06]	J18	H_Data[45]	L3	PMC_Host	M10	GND
G5	GND	H12	GND	J19	NC	L4	NC	M11	GND
G6	P33V	H13	NC	J20	H_Data[54]	L5	WD_Rst	M12	GND
G7	GND	H14	P33V	J21	H_Data[46]	L6	ACK64	M13	GND
G8	ĪNTĀ	H15	GND	J22	H_Data[53]	L7	GND	M14	GND
G9	GND	H16	H_Data[29]	K1	TRDY	L8	P33V	M15	P33V
G10	H_WrH	H17	H_Data[22]	K2	NC	L9	GND	M16	GND
G11	GND	H18	H_Data[27]	К3	FRAME	L10	GND	M17	UARTInt0
G12	NC	H19	NC	K4	STOP	L11	GND	M18	UARTInt1
G13	H_Data[16]	H20	H_Data[35]	K5	ĪRDY	L12	GND	M19	NC
G14	GND	H21	H_Data[44]	K6	P33V	L13	GND	M20	LCIk
G15	GND	H22	H_Data[48]	K7	P33V	L14	GND	M21	Spare Input
G16	GND	J1	AD[09]	K8	GND	L15	P33V	M22	H_Data[60]
G17	H_Data[21]	J2	C/BE[0]	К9	GND	L16	GND	N1	AD[08]
G18	H_Data[20]	J3	NC	K10	GND	L17	H_Data[62]	N2	NC
G19	H_Data[28]	J4	AD[10]	K11	GND	L18	H_Data[58]	N3	AD[07]
G20	H_Data[25]	J5	GND	K12	GND	L19	H_Data[59]	N4	AD[05]
G21	H_Data[38]	J6	GND	K13	GND	L20	H_Data[52]	N5	P33V
G22	H_Data[43]	J7	GND	K14	GND	L21	H_Data[57]	N6	REQ64
H1	AD[12]	J8	P33V	K15	GND	L22	H_Data[63]	N7	P33V
H2	NC	J9	GND	K16	H_Data[47]	M1	AD[04]	N8	GND
Н3	AD[11]	J10	GND	K17	H_Data[37]	M2	NC	N9	GND
H4	NC	J11	GND	K18	H_Data[50]	M3	AD[02]	N10	GND
H5	P33V	J12	GND	K19	H_Data[39]	M4	AD[00]	NII	GND

Table 4-3 SharcFIN Pinout (Continued)

Pin	Signal								
N12	GND	P19	H_Addr[09]	T4	AD[59]	U11	H3_Flag1	V18	PR_Addr[10]
N13	GND	P20	PR_Data[4]	T5	GND	U12	H_Page	V19	H_Addr[18]
N14	GND	P21	H2_IRQ1	T6	AD[62]	U13	H_BMS	V20	PR_Addr[14]
N15	GND	P22	PR_Data[0]	T7	GND	U14	WD_TDly	V21	H_Addr[14]
N16	H_Data[61]	R1	C/BE[7]	T8	GND	U15	GND	V22	H_Addr[10]
N17	H_Data[33]	R2	NC	Т9	GND	U16	H_Addr[27]	W1	AD[54]
N18	PR_Data[1]	R3	C/BE[5]	T10	H_Addr[02]	U17	GND	W2	AD[51]
N19	NC	R4	NC	T11	GND	U18	P33V	W3	AD[50]
N20	H_Data[32]	R5	AD[63]	T12	H3_IRQ0*	U19	PR_Addr[15]	W4	NC
N21	H_Data[34]	R6	PAR64	T13	H1_Flag1	U20	H_Addr[15]	W5	NC
N22	PR_Data[2]	R7	NC	T14	PR_Addr[04]	U21	P_SCL	W6	AD[44]
P1	AD[01]	R8	GND	T15	PR_Addr[11]	U22	P_SDA	W7	NC
P2	AD[03]	R9	P33V	T16	GND	V1	AD[55]	W8	NC
Р3	NC	R10	H_EEPWP	T17	H_Addr[16]	V2	AD[56]	W9	PA_BusM2
P4	C/BE[6]	R11	NC	T18	PR_Addr[16]	V3	NC	W10	H_SCL
P5	GND	R12	GND	T19	NC	V4	AD[47]	W11	PR_Addr[02]
P6	P33V	R13	H4_DMAR	T20	H_Addr[19]	V5	P33V	W12	H2_IRQ0
P7	GND	R14	P33V	T21	H_Addr[22]	V6	AD[40]	W13	H_MS3
P8	GND	R15	GND	T22	H_Addr[12]	V7	AD[36]	W14	SD_CKE
P9	GND	R16	P33V	U1	AD[61]	V8	NC	W15	H3_Flag0
P10	GND	R17	P33V	U2	AD[58]	V9	H_SDA	W16	H_Addr[26]
P11	GND	R18	H_Addr[20]	U3	AD[53]	V10	H_Addr[03]	W17	NC
P12	GND	R19	PR_ADDR[13]	U4	NC	V11	V(I/O)	W18	NC
P13	GND	R20	PR_ADDR[09]	U5	AD[57]	V12	H_MS1	W19	NC
P14	GND	R21	H_Addr[13]	U6	GND	V13	UART_Rst	W20	H_Addr[21]
P15	GND	R22	PR_Addr[19]	U7	P33V	V14	SD_A10	W21	H_Addr[11]
P16	GND	T1	C/BE[4]	U8	P33V	V15	H_Addr[30]	W22	PR_Addr[12
P17	PR_Data[3]	T2	AD[60]	U9	PA_BusM4	V16	H_Addr[31]	Y1	AD[52]
P18	PR_Addr[20]	T3	NC	U10	PR_Addr[03]	V17	P33V	Y2	AD[49]

Table 4-3 SharcFIN Pinout (Continued)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
Y3	NC	Y17	H_Addr[28]	AA9	NC	AB1	NC	AB15	PR_Rst
Y4	NC	Y18	H_Addr[04]	AA10	PA_BusM3	AB2	NC	AB16	H2_Flag1
Y5	AD[41]	Y19	H_Addr[25]	AA11	PR_Addr[00]	AB3	TDI	AB17	H_Addr[29]
Y6	AD[37]	Y20	NC	AA12	H4_IRQ0	AB4	AD[43]	AB18	H2_Flag0
Y7	AD[38]	Y21	H_Addr[24]	AA13	H3_DMAR	AB5	AD[46]	AB19	TRST
Y8	AD[34]	Y22	H_Addr[17]	AA14	PR_UARTSel	AB6	AD[42]	AB20	PR_Addr[17]
Y9	NC	AA1	NC	AA15	SD_CS0	AB7	AD[33]	AB21	NC
Y10	H4_IRQ1	AA2	NC	AA16	PR_Addr[18]	AB8	AD[32]	AB22	NC
Y11	H3_IRQ1	AA3	AD[45]	AA17	H1_Flag0	AB9	V(I/O)	AB17	H_Addr[29]
Y12	H1_IRQ1	AA4	AD[39]	AA18	H4_Flag0	AB10	PA_BusM1	AB18	H2_Flag0
Y13	H_MS2	AA5	AD[35]	AA19	TMS	AB11	H_Addr[00]	AB19	TRST
Y14	PR_FLASHSel	AA6	AD[48]	AA20	H_Addr[23]	AB12	H4_Flag1	AB20	PR_Addr[17]
Y15	SD_CS1	AA7	NC	AA21	NC	AB13	H1_IRQ0	AB21	NC
Y16	PR_UBSel	AA8	NC	AA22	NC	AB14	PR_Int	AB22	NC
(Shee	et 4 of 4)								

4.3 PWB Layout

Figure 4-1 484 PBGA Mechanical Drawing of the SharcFIN

harc® Appendix A Timing Diagrams

This appendix provides timing diagrams for the SharcFIN.

TBD

SharcFIN ASIC