ON f-HARMONIC MORPHISMS BETWEEN RIEMANNIAN MANIFOLDS

YE-LIN OU *

Abstract

f-Harmonic maps were first introduced and studied by Lichnerowicz in [18] (see also Section 10.20 in Eells-Lemaire's report [10]). In this paper, we study a subclass of f-harmonic maps called f-harmonic morphisms which pull back local harmonic functions to local f-harmonic functions. We prove that a map between Riemannian manifolds is an f-harmonic morphism if and only if it is a horizontally weakly conformal f-harmonic map. This generalizes the well-known Fuglede-Ishihara characterization for harmonic morphisms. Some properties and many examples as well as some non-existence of f-harmonic morphisms are given. We also study the f-harmonicity of conformal immersions.

1. f-Harmonic maps vs. F-harmonic maps

1.1 f-harmonic maps

Let $f:(M,g) \longrightarrow (0,\infty)$ be a smooth function. An f-harmonic map is a map $\phi:(M^m,g) \longrightarrow (N^n,h)$ between Riemannian manifolds such that $\phi|_{\Omega}$ is a critical point of the f-energy (see [18], and [10], Section 10.20)

$$E_f(\phi) = \frac{1}{2} \int_{\Omega} f |\mathrm{d}\phi|^2 dv_g,$$

for every compact domain $\Omega \subseteq M$. The Euler-Lagrange equation gives the f-harmonic map equation ([5], [25])

(1)
$$\tau_f(\phi) \equiv f\tau(\phi) + d\phi(\operatorname{grad} f) = 0,$$

where $\tau(\phi) = \text{Tr}_g \nabla d\phi$ is the tension field of ϕ vanishing of which means ϕ is a harmonic map.

Date: 03/28/2011.

¹⁹⁹¹ Mathematics Subject Classification. 58E20, 53C12.

 $Key\ words\ and\ phrases.\ f$ -harmonic maps, f-harmonic morphisms, F-harmonic maps, harmonic morphisms, p-harmonic morphisms.

^{*}Supported by NSF of Guangxi (P. R. China), 2011GXNSFA018127.

 $_{2}$ YE-LIN OU *

Example 1. Let φ , ψ , $\phi : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be defined as

$$\varphi(x, y, z) = (x, y),$$

$$\psi(x, y, z) = (3x, xy), \text{ and }$$

$$\phi(x, y, z) = (x, y + z).$$

Then, one can easily check that both φ and ψ are f-harmonic map with $f = e^z$, φ is a horizontally conformal submersion whilst ψ is not. Also, ϕ is an f-harmonic map with $f = e^{y-z}$, which is a submersion but not horizontally weakly conformal.

1.2 F-harmonic map

Let $F:[0,+\infty) \longrightarrow [0,+\infty)$ be a C^2 -function, strictly increasing on $(0,+\infty)$, and let $\varphi:(M,g) \longrightarrow (N,h)$ be a smooth map between Riemannian manifolds. Then φ is said to be an F-harmonic map if $\varphi|_{\Omega}$ is a critical point of the F-energy functional

$$E_F(\varphi) = \int_{\Omega} F(\frac{|d\varphi|^2}{2}) v_g,$$

for every compact domain $\Omega \subseteq M$. The equation of F-harmonic maps is given by ([2])

(2)
$$\tau_F(\varphi) \equiv F'(\frac{|d\varphi|^2}{2})\tau(\varphi) + \varphi_*\left(\operatorname{grad} F'(\frac{|d\varphi|^2}{2})\right) = 0,$$

where $\tau(\varphi)$ denotes the tension field of φ .

Harmonic maps, p-harmonic maps, and exponential harmonic maps are examples of F-harmonic maps with F(t) = t, $F(t) = \frac{1}{p}(2t)^{p/2}$ (p > 4), and $F(t) = e^t$ respectively ([2]).

In particular, p-harmonic map equation can be written as

(3)
$$\tau_p(\varphi) = |d\varphi|^{p-2} \tau(\varphi) + d\varphi(\operatorname{grad}|d\varphi|^{p-2}) = 0,$$

1.3 Relationship between f-harmonic and F-harmonic maps

We can see from Equation (1) that an f-harmonic map with f = constant > 0 is nothing but a harmonic map so both f-harmonic maps and F-harmonic maps are generalizations of harmonic maps. Though we were warned in [5] that f-harmonic maps should not be confused with F-harmonic maps and p-harmonic maps, we observe that, apart from critical points, any F-harmonic map is a special f-harmonic maps. More precisely we have

Corollary 1.1. Any F-harmonic map $\varphi:(M,g) \longrightarrow (N,h)$ without critical points, i.e., $|d\varphi_x| \neq 0$ for all $x \in M$, is an f-harmonic map with $f = F'(\frac{|d\varphi|^2}{2})$.

In particular, a p-harmonic map without critical points is an f-harmonic map with $f = |d\varphi|^{p-2}$

Proof. Since F is a C^2 -function and strictly increasing on $(0, +\infty)$ we have F'(t) > 0 on $(0, +\infty)$. If the F-harmonic map $\varphi: (M, g) \longrightarrow (N, h)$ has no critical points, i.e., $|d\varphi_x| \neq 0$ for all $x \in M$, then the function $f: (M, g) \longrightarrow (0, +\infty)$ with $f = F'(\frac{|d\varphi|^2}{2})$ is a smooth and we see from Equations (2) and (1) that the F-harmonic map φ is an f-harmonic map with $f = F'(\frac{|d\varphi|^2}{2})$. The second statement follows from the fact that for a p-harmonic map, $F(t) = \frac{1}{p}(2t)^{p/2}$ and hence $f = F'(\frac{|d\varphi|^2}{2}) = |d\varphi|^{p-2}$.

Another relationship between f-harmonic maps and harmonic maps can be characterized as follows.

Corollary 1.2. A map $\phi:(M^m,g) \longrightarrow (N^n,h)$ is f-harmonic if and only if $\phi:(M^m,f^{\frac{2}{m-2}}g) \longrightarrow (N^n,h)$ is a harmonic map.

Proof. The statement that the f-harmoninicity of $\phi: (M^m, g) \longrightarrow (N^n, h)$ implies the harmonicity of $\phi: (M^m, f^{\frac{2}{m-2}}g) \longrightarrow (N^n, h)$ was stated and proved in [18] (see also Section 10.20 in [10]). It is not difficult to see that the converse is also true. In fact, let $\bar{g} = f^{\frac{2}{m-2}}g$, a straightforward computation shows that

$$\tau(\varphi, \bar{g}) = f^{\frac{-m}{m-2}} \tau_f(\varphi, g),$$

which completes the proof of the corollary.

1.4 A physical motivation for the study of *f***-harmonic maps:** In physics, the equation of motion of a continuous system of spins with inhomogeneous neighbor Heisenberg interaction (such a model is called the inhomogeneous Heisenberg ferromagnet) is given by

(4)
$$\frac{\partial u}{\partial t} = f(x)(u \times \Delta u) + \nabla f \cdot (u \times \nabla u),$$

where $\Omega \subseteq \mathbb{R}^m$ is a smooth domain in the Euclidean space, f is a real-valued function defined on Ω , $u(x,t) \in S^2$, \times denotes the cross products in \mathbb{R}^3 and Δ is the Laplace operator on \mathbb{R}^m . Physically, the function f is called the coupling function, and is the continuum limit of the coupling constants between the neighboring spins. Since u is a map into S^2 it is well known that the tension field of u can be written as $\tau(u) = \Delta u + |\nabla u|^2 u$, and one can easily check that the right hand side of the inhomogeneous Heisenberg spin system (4) can be written as $u \times (f\tau(u) + \nabla f \cdot \nabla u)$. It follows that u is a smooth stationary solution of (4) if and only if $f\tau(u) + \nabla f \cdot \nabla u = 0$, i.e., u is an f-harmonic map. So

there is a one-to-one correspondence between the set of the stationary solutions of the inhomogeneous Heisenberg spin system (4) on the domain Ω and the set of f-harmonic maps from Ω into 2-sphere. The above inhomogeneous Heisenberg spin system (4) is also called inhomogeneous Landau-Lifshitz system (see, e.g., [6], [7], [9], [14], [16], [17], for more details).

Using Corollary 1.2 we have the following example which provides many stationary solutions of the inhomogeneous Heisenberg spin system defined on \mathbb{R}^3 .

Example 2. $u: (\mathbb{R}^3, ds_0) \longrightarrow (N^n, h)$ is an f-harmonic map if and only if $u: (\mathbb{R}^3, f^2ds_0) \longrightarrow (N^n, h)$ is a harmonic map. In particular, there is a 1-1 correspondence between harmonic maps from 3-sphere $S^3 \setminus \{N\} \equiv (\mathbb{R}^3, \frac{4ds_0}{(1+|x|^2)^2}) \longrightarrow (N^n, h)$ and f-harmonic maps with $f = \frac{2}{1+|x|^2}$ from Euclidean 3-space $\mathbb{R}^3 \longrightarrow (N^n, h)$. When $(N^n, h) = S^2$, we have a 1-1 correspondence between the set of harmonic maps $S^3 \longrightarrow S^2$ and the set of stationary solutions of the inhomogeneous Heisenberg spin system on \mathbb{R}^3 . Similarly, there is a 1-1 correspondence between harmonic maps from hyperbolic 3-space $H^3 \equiv (D^3, \frac{4ds_0}{(1-|x|^2)^2}) \longrightarrow (N^n, h)$ and f-harmonic maps $(D^3, ds_0) \longrightarrow (N^n, h)$ with $f = \frac{2}{1-|x|^2}$ from unit disk in Euclidean 3-space.

1.5 A little more about f-harmonic maps

Corollary 1.3. If $\phi: (M^m, g) \longrightarrow (N^n, h)$ is an f_1 -harmonic map and also an f_2 -harmonic map, then $\operatorname{grad}(f_1/f_2) \in \ker d\phi$.

Proof. This follows from

$$\tau_{f_1}(\phi) \equiv f_1 \tau(\phi) + d\phi(\operatorname{grad} f_1) = 0,$$

$$\tau_{f_2}(\phi) \equiv f_2 \tau(\phi) + d\phi(\operatorname{grad} f_2) = 0,$$

and hence

$$d\phi(\operatorname{grad}\ln\left(f_1/f_2\right))=0.$$

Proposition 1.4. A conformal immersion $\phi:(M^m,g)\longrightarrow (N^n,h)$ with $\phi^*h=\lambda^2g$ is f-harmonic if and only if it is m-harmonic and $f=C\lambda^{m-2}$. In particular, an isometric immersion is f-harmonic if and only if f=const and hence it is harmonic.

Proof. It is not difficult to check (see also [26]) that for a conformal immersion $\phi: (M^m, g) \longrightarrow (N^n, h)$ with $\phi^* h = \lambda^2 g$, the tension field is given by

$$\tau(\phi) = m\lambda^2 \eta + (2 - m) d\phi (\operatorname{grad} \ln \lambda),$$

so we can compute the f-tension field to have

$$\tau_f(\phi) = f[m\lambda^2 \eta + d\phi \left(\operatorname{grad} \ln(\lambda^{2-m} f)\right)],$$

where η is the mean curvature vector of the submanifold $\phi(M) \subset N$. Noting that η is normal part whilst $d\phi$ (grad $\ln \lambda^{2-m} f$) is the tangential part of $\tau_f(\phi)$ we conclude that $\tau_f(\phi) = 0$ if and only if

$$\begin{cases} m\lambda^2 \eta = 0, \\ d\phi \left(\operatorname{grad} \ln(\lambda^{2-m} f) \right) = 0. \end{cases}$$

It follows that $\eta = 0$ and grad $(\ln(\lambda^{2-m} f)) = 0$ since ϕ is an immersion. From these we see that ϕ is a minimal conformal immersion which means it is an m-harmonic map ([26]) and that $f = C\lambda^{m-2}$. Thus, we obtain the first statement. The second statement follows from the first one with $\lambda = 1$.

2. f-Harmonic morphisms

A horizontally weakly conformal map is a map $\varphi:(M,g)\longrightarrow(N,h)$ between Riemannian manifolds such that for each $x \in M$ at which $d\varphi_x \neq 0$, the restriction $d\varphi_x|_{H_x}: H_x \longrightarrow T_{\varphi(x)}N$ is conformal and surjective, where the horizontal subspace H_x is the orthogonal complement of $V_x = \ker d\varphi_x$ in T_xM . It is not difficult to see that there is a number $\lambda(x) \in (0, \infty)$ such that $h(d\varphi(X), d\varphi(Y)) =$ $\lambda^2(x)g(X,Y)$ for any $X,Y\in H_x$. At the point $x\in M$ where $\mathrm{d}\varphi_x=0$ one can let $\lambda(x) = 0$ and obtain a continuous function $\lambda: M \longrightarrow R$ which is called the dilation of a horizontally weakly conformal map φ . A non-constant horizontally weakly conformal map φ is called horizontally homothetic if the gradient of $\lambda^2(x)$ is vertical meaning that $X(\lambda^2) \equiv 0$ for any horizontal vector field X on M. Recall that a C^2 map $\varphi:(M,q)\longrightarrow (N,h)$ is a p-harmonic morphism (p>1) if it preserves the solutions of p-Laplace equation in the sense that for any p-harmonic function $f: U \longrightarrow \mathbb{R}$, defined on an open subset U of N with $\varphi^{-1}(U)$ non-empty, $f \circ \varphi : \varphi^{-1}(U) \longrightarrow \mathbb{R}$ is a p-harmonic function. A p-harmonic morphism can be characterized as a horizontally weakly conformal p-harmonic map (see [11], [15], [19] for details).

Definition 2.1. Let $f:(M,g) \longrightarrow (0,\infty)$ be a smooth function. A C^2 -function $u:U \longrightarrow \mathbb{R}$ defined on an open subset U of M is called f-harmonic if

(5)
$$\Delta_f^M u \equiv f \Delta^M u + g(\operatorname{grad} f, \operatorname{grad} u) = 0.$$

A continuous map $\phi: (M^m, g) \longrightarrow (N^n, h)$ is called an f-harmonic morphism if for every harmonic function u defined on an open subset V of N such that $\phi^{-1}(V)$ is non-empty, the composition $u \circ \phi$ is f-harmonic on $\phi^{-1}(V)$.

Theorem 2.2. Let $\phi: (M^m, g) \longrightarrow (N^n, h)$ be a smooth map. Then, the following are equivalent:

- (1) ϕ is an f-harmonic morphism;
- (2) ϕ is a horizontally weakly conformal f-harmonic map;
- (3) There exists a smooth function λ^2 on M such that

$$\Delta_f^M(u \circ \phi) = f\lambda^2(\Delta^N u) \circ \phi$$

for any C^2 -function u defined on (an open subset of) N.

Proof. We will need the following lemma to prove the theorem.

Lemma 2.3. ([15]) For any point $q \in (N^n, h)$ and any constants C_{σ} , $C_{\alpha\beta}$ with $C_{\alpha\beta} = C_{\beta\alpha}$ and $\sum_{\alpha=1}^{n} C_{\alpha\alpha} = O$, there exists a harmonic function u on a neighborhood of q such that $u_{\sigma}(q) = C_{\sigma}$, $u_{\alpha\beta}(q) = C_{\alpha\beta}$.

Let $\phi:(M^m,g)\longrightarrow (N^n,h)$ be a map and let $p\in M$. Suppose that $\phi(x)=(\phi^1(x),\phi^2(x),\cdots,\phi^n(x))$ is the local expression of ϕ with respect to the local coordinates $\{x^i\}$ in the neighborhood $\phi^{-1}(V)$ of p and $\{y^\alpha\}$ in a neighborhood V of $Q=\phi(p)\in N$. Let $Q:V\longrightarrow \mathbb{R}$ defined on an open subset Q of Q. Then, a straightforward computation gives

$$\Delta_f^M(u \circ \phi) = f\Delta^M(u \circ \phi) + d(u \circ \phi)(\operatorname{grad} f)
= fu_{\alpha\beta}g(\operatorname{grad}\phi^{\alpha}, \operatorname{grad}\phi^{\beta}) + fu_{\alpha}\Delta^M\phi^{\alpha} + d(u \circ \phi)(\operatorname{grad} f)
= fg(\operatorname{grad}\phi^{\alpha}, \operatorname{grad}\phi^{\beta})u_{\alpha\beta} + [f\Delta^M\phi^{\sigma} + (\operatorname{grad} f)\phi^{\sigma}]u_{\sigma}.$$
(6)

By Lemma 2.3, we can choose a local harmonic function u on $V \subset N$ such that $u_{\sigma}(q) = C_{\sigma} = 0 \ \forall \ \sigma = 1, 2, \dots, n, \ u_{\alpha\beta}(q) = 1 \ (\alpha \neq \beta)$, and all other $u_{\rho\sigma}(q) = C_{\rho\sigma} = 0$ and substitute it into (6) to have

(7)
$$g(\operatorname{grad}\phi^{\alpha}, \operatorname{grad}\phi^{\beta}) = 0, \ \forall \ \alpha \neq \beta = 1, 2, \dots, n.$$

Note that the choice of such functions implies

(8)
$$h^{\alpha\beta}(\phi(p)) = 0, \ \forall \ \alpha \neq \beta = 1, 2, \cdots, n.$$

Another choice of harmonic function u with $C_{11}=1$, $C_{\alpha\alpha}=-1$ ($\alpha\neq 1$) and all other $C_{\sigma}, C_{\alpha\beta}=0$ for Equation (6) gives

(9)
$$g(\operatorname{grad}\phi^1, \operatorname{grad}\phi^1) - g(\operatorname{grad}\phi^\alpha, \operatorname{grad}\phi^\alpha) = 0, \ \forall \ \alpha \neq \beta = 2, 3, \dots, n.$$

Note also that for these choices of harmonic functions u we have

(10)
$$h^{11}(\phi(p)) - h^{\alpha\alpha}(\phi(p)) = 0, \ \forall \ \alpha \neq \beta = 2, 3, \dots, n.$$

It follows from (7), (8), (9) and (10) that the f-harmonic morphism ϕ is a horizontally weakly conformal map

(11)
$$q(\operatorname{grad}\phi^{\alpha}, \operatorname{grad}\phi^{\beta}) = \lambda^{2} h^{\alpha\beta} \circ \phi.$$

Substituting horizontal conformality equation (11) into (6) we have

$$\Delta_f^M(u \circ \phi) = f\lambda^2 (h^{\alpha\beta} \circ \phi) u_{\alpha\beta} + [f \Delta^M \phi^{\sigma} + (\operatorname{grad} f)\phi^{\sigma}] u_{\sigma}
= f\lambda^2 (\Delta^N u) \circ \phi + [f \Delta^M \phi^{\sigma} + f\lambda^2 (h^{\alpha\beta} \bar{\Gamma}_{\alpha\beta}^{\sigma}) \circ \phi + (\operatorname{grad} f)\phi^{\sigma}] u_{\sigma}
(12) = f\lambda^2 (\Delta^N u) \circ \phi + \operatorname{d} u (\tau_f(\phi))$$

for any function u defined (locally) on N. By special choice of harmonic function u we conclude that the f-harmonic morphism is an f-harmonic map. Thus, we obtain the implication " $(1) \Longrightarrow (2)$ ". Note that the only assumption we used to obtain Equation (12) is the horizontal conformality (11). Therefore, it follows from (12) that " $(2) \Longrightarrow (3)$ ". Finally, " $(3) \Longrightarrow (1)$ " is clearly true. Thus, we complete the proof of the theorem.

Similar to harmonic morphisms we have the following regularity result.

Corollary 2.4. For $m \geq 3$, an f-harmonic morphism $\phi : (M^m, g) \longrightarrow (N^n, h)$ is smooth.

Proof. In fact, by Corollary 1.1, if $m \neq 2$ and $\phi : (M^m, g) \longrightarrow (N^n, h)$ is an f-harmonic morphism, then $\phi : (M^m, f^{2/(m-2)}g) \longrightarrow (N^n, h)$ is a harmonic map and hence a harmonic morphism, which is known to be smooth (see, e. g., [4]).

It is well known that the composition of harmonic morphisms is again a harmonic morphism. The composition law for f-harmonic morphisms, however, will need to be modified accordingly. In fact, by the definitions of harmonic morphisms and f-harmonic morphisms we have

Corollary 2.5. Let $\phi: (M^m, g) \longrightarrow (N^n, h)$ be an f-harmonic morphism with dilation λ_1 and $\psi: (N^n, h) \longrightarrow (Q^l, k)$ a harmonic morphism with dilation λ_2 . Then the composition $\psi \circ \phi: (M^m, g) \longrightarrow (Q^l, k)$ is an f-harmonic morphism with dilation $\lambda_1(\lambda_2 \circ \phi)$.

More generally, we can prove that f-harmonic morphisms pull back harmonic maps to f-harmonic maps.

Proposition 2.6. Let $\phi: (M^m, g) \longrightarrow (N^n, h)$ be an f-harmonic morphism with dilation λ and $\psi: (N^n, h) \longrightarrow (Q^l, k)$ a harmonic map. Then the composition $\psi \circ \phi: (M^m, g) \longrightarrow (Q^l, k)$ is an f-harmonic map.

Proof. It is well known (see e.g., [4], Proposition 3.3.12) that the tension field of the composition map is given by

$$\tau(\psi \circ \phi) = d\psi(\tau(\phi)) + \operatorname{Tr}_q \nabla d\psi(d\phi, d\phi),$$

from which we have the f-tension of the composition $\psi \circ \phi$ given by

(13)
$$\tau_f(\psi \circ \phi) = d\psi(\tau_f(\phi)) + f \operatorname{Tr}_g \nabla d\psi(d\phi, d\phi).$$

Since ϕ is an f-harmonic morphism and hence a horizontally weakly conformal f-harmonic map with dilation λ , we can choose a local orthonormal frame $\{e_1, \ldots, e_n, e_{n+1}, \ldots, e_m\}$ around $p \in M$ and $\{e_1, \ldots, e_n\}$ around $\phi(p) \in N$ so that

$$\begin{cases} d\phi(e_i) = \lambda \epsilon_i, & i = 1, \dots, n, \\ d\phi(e_\alpha) = 0, & \alpha = n + 1, \dots, m. \end{cases}$$

Using these local frames we compute

$$\operatorname{Tr}_{g} \nabla \operatorname{d} \psi(\operatorname{d} \phi, \operatorname{d} \phi) = \sum_{i=1}^{m} \nabla \operatorname{d} \psi(\operatorname{d} \phi e_{i}, \operatorname{d} \phi e_{i}) = \lambda^{2} \left(\sum_{i=1}^{n} \nabla \operatorname{d} \psi(\epsilon_{i}, \epsilon_{i}) \right) \circ \phi$$
$$= \lambda^{2} \tau(\psi) \circ \phi.$$

Substituting this into (13) we have

$$\tau_f(\psi \circ \phi) = f d\psi(\tau(\phi)) + f\lambda^2 \tau(\psi) \circ \phi + d(\psi \circ \phi)(\operatorname{grad} f)$$
$$= d\psi(\tau_f(\phi)) + f\lambda^2 \tau(\psi) \circ \phi,$$

from which the proposition follows.

Theorem 2.7. Let $\phi: (M^m, g) \longrightarrow (N^n, h)$ be a horizontally weakly conformal map with $\varphi^*h = \lambda^2 g|_{\mathcal{H}}$. Then, any two of the following conditions imply the other one.

- (1) ϕ is an f-harmonic map and hence an f-harmonic morphism;
- (2) grad($f\lambda^{2-n}$) is vertical;
- (3) ϕ has minimal fibers.

Proof. It can be check (see e.g., [4]) that the tension field of a horizontally weakly conformal map $\phi: (M^m, g) \longrightarrow (N^n, h)$ is given by

$$\tau(\phi) = -(m-n)d\phi(\mu) + (2-n)d\phi(\operatorname{grad} \ln \lambda),$$

where λ is the dilation of the horizontally weakly conformal map ϕ and μ is the mean curvature vector field of the fibers. It follows that the f-tension field of ϕ can be written as

$$\tau_f(\phi) = -(m-n)f d\phi(\mu) + f d\phi(\operatorname{grad} \ln \lambda^{2-n}) + d\phi(\operatorname{grad} f),$$

or, equivalently,

$$\tau_f(\phi) = f[-(m-n)d\phi(\mu) + d\phi(\operatorname{grad}\ln(f\lambda^{2-n}))] = 0.$$

From this we obtain the theorem.

An immediate consequence is the following

Corollary 2.8. (a) A horizontally homothetic map (in particular, a Riemannian submersion) $\phi: (M^m, g) \longrightarrow (N^n, h)$ is an f-harmonic morphism if and only if $-(m-n)\mu + \text{grad ln } f$ is vertical;

- (b) A weakly conformal map $\phi: (M^m, g) \longrightarrow (N^m, h)$ with conformal factor λ of same dimension spaces is f-harmonic and hence an f-harmonic morphism if and only if $f = C\lambda^{m-2}$ for some constant C > 0;
- (c) An horizontally weakly conformal map $\phi:(M^m,g)\longrightarrow (N^2,h)$ is an f-harmonic map and hence an f-harmonic morphism if and only if $-(m-2)\mu+$ grad $\ln f$ is vertical.

Using the characterizations of f-harmonic morphisms and p-harmonic morphisms and Corollary 1.1 we have the following corollary which provides many examples of f-harmonic morphisms.

Corollary 2.9. A map $\phi: (M^m, g) \longrightarrow (N^n, h)$ between Riemannian manifolds is a p-harmonic morphism without critical points if and only if it is an f-harmonic morphism with $f = |d\phi|^{p-2}$.

Example 3. Möbius transformation $\phi: \mathbb{R}^m \setminus \{0\} \longrightarrow \mathbb{R}^m \setminus \{0\}$ defined by

$$\phi(x) = a + \frac{r^2}{|x - a|^2}(x - a)$$

is an f-harmonic morphism with $f(x) = C(\frac{r}{|x-a|})^{2(m-2)}$. In fact, it is well known that the Möbius transformation is a conformal map between the same dimensional spaces with the dilation $\lambda = \frac{r^2}{|x-a|^2}$. It follows from [20] that ϕ is an m-harmonic morphism, and hence by Corollary 2.9, the inversion is an f-harmonic morphism with $f = |\mathrm{d}\phi|^{m-2} = (\sqrt{m}\lambda)^{m-2} = C(\frac{r}{|x-a|})^{2(m-2)}$.

The next example is an f-harmonic morphism that does not come from a p-harmonic morphism,

Example 4. The map from Euclidean 3-space into hyperbolic plane $\phi: (\mathbb{R} \times \mathbb{R} \times \mathbb{R}^+, ds_0^2) \longrightarrow H^2 \equiv (\mathbb{R} \times \{0\} \times \mathbb{R}^+, \frac{1}{z^2} ds_0^2)$ with $\phi(x, y, z) = (x, 0, \sqrt{y^2 + z^2})$ is an f-harmonic morphism with f = 1/z. Similarly, we know from [12] that the map $\phi: H^3 \equiv (\mathbb{R} \times \mathbb{R} \times \mathbb{R}^+, \frac{1}{z^2} ds_0^2) \longrightarrow H^2 \equiv (\mathbb{R} \times \{0\} \times \mathbb{R}^+, \frac{1}{z^2} ds_0^2)$ with $\phi(x, y, z) = (x, 0, \sqrt{y^2 + z^2})$ is a harmonic morphism. It follows from Example 2

that the map from Euclidean space into hyperbolic plane $\phi: (\mathbb{R} \times \mathbb{R} \times \mathbb{R}^+, ds_0^2) \longrightarrow H^2 \equiv (\mathbb{R} \times \{0\} \times \mathbb{R}^+, \frac{1}{z^2} ds_0^2)$ with $\phi(x, y, z) = (x, 0, \sqrt{y^2 + z^2})$ is an f-harmonic map with f = 1/z. Since this map is also horizontally weakly conformal it is an f-harmonic morphism by Theorem 2.2.

Example 5. Any harmonic morphism $\phi:(M^m,g)\longrightarrow (N^n,h)$ is an f-harmonic morphism for a positive function f on M with vertical gradient, i.e., $d\phi(\operatorname{grad} f)=0$. In particular, the radial projection $\phi:\mathbb{R}^{m+1}\setminus\{0\}\longrightarrow S^m,\ \phi(x)=\frac{x}{|x|}$ is an f-harmonic morphism for $f=\alpha(|x|)$, where $\alpha:(0,\infty)\longrightarrow (0,\infty)$ is any smooth function. In fact, we know from [4] that the radial projection is a harmonic morphisms and on the other hand, on can check that the function $f=\alpha(|x|)$ is positive and has vertical gradient.

Using the property of f-harmonic morphisms and Sacks-Uhlenberg's well-known result on the existence of harmonic 2-spheres we have the following proposition which gives many examples of f-harmonic maps from Euclidean 3-space into a manifold whose universal covering space is not contractible.

Proposition 2.10. For any Riemannian manifold whose universal covering space is not contractible, there exists an f-harmonic map $\phi: (\mathbb{R}^3, ds_0^2) \longrightarrow (N^n, h)$ from Euclidean 3-space with $f(x) = \frac{2}{1+|x|^2}$.

Proof. Let ds_0^2 denote the Euclidean metric on \mathbb{R}^3 . It is well known that we can use the inverse of the stereographic projection to identify $\left(\mathbb{R}^3, \frac{4ds_0^2}{(1+|x|^2)^2}\right)$ with $S^3 \setminus \{N\} = \{(u_1, u_2, u_3, u_4) | \sum_{i=1}^4 u_i^2 = 1, u_4 \neq 1\}$, the Euclidean 3-sphere minus the north pole. In fact, the identification is given by the isometry

$$\sigma: \left(\mathbb{R}^3, \frac{4ds_0^2}{(1+|x|^2)^2}\right) \longrightarrow S^3 \setminus \{N\} \subseteq \mathbb{R}^4$$

with $\sigma(x_1, x_2, x_3) = (\frac{2x_1}{1+|x|^2}, \frac{2x_2}{1+|x|^2}, \frac{2x_3}{1+|x|^2}, \frac{|x|^2-1}{1+|x|^2})$. One can check that under this identification, the Hopf fiberation $\phi: \left(\mathbb{R}^3, \frac{4ds_0^2}{(1+|x|^2)^2}\right) \cong S^3 \setminus \{N\} \longrightarrow S^2$ can be written as

$$\phi(x_1, x_2, x_3) = (|z|^2 - |w|^2, 2zw),$$

where $z=\frac{2x_1}{1+|x|^2}+i\frac{2x_2}{1+|x|^2}, \quad w=\frac{2x_3}{1+|x|^2}+i\frac{|x|^2-1}{1+|x|^2}.$ It is well known (see, e.g., [4]) that the Hopf fiberation ϕ is a harmonic morphism with dilation $\lambda=2$. So, by Corollary 1.1, $\phi:\left(\mathbb{R}^3,\ ds_0^2\right)\longrightarrow S^2$ is an f-harmonic map with $f=\frac{2}{1+|x|^2}$. It is easy to see that this map is also horizontally conformal submersion and hence, by Theorem 2.2, it is an f-harmonic morphism. On the other hand, by a well-known result of Sacks-Uhlenbeck's, we know that there is a harmonic map $\rho:S^2\longrightarrow$

 (N^n,h) from 2-sphere into a manifold whose covering space is not contractible. It follows from Proposition 2.6 that the composition $\rho \circ \phi : (\mathbb{R}^3, ds_0^2) \longrightarrow (N^n, h)$ is an f-harmonic map with $f = \frac{2}{1+|x|^2}$.

Remark 1. We notice that the authors in [8] and [14] used heat flow method to study the existence of f-harmonic maps from closed unit disk $D^2 \longrightarrow S^2$ sending boundary to a single point. The f-harmonic morphism $\phi: (\mathbb{R}^3, ds_0^2) \longrightarrow S^2$ in Proposition 2.10 clearly restrict to an f-harmonic map $\phi: (D^3, ds_0^2) \longrightarrow S^2$ from 3-dimensional open disk into S^2 . It would be interesting to know if there is any f-harmonic map from higher dimensional closed disk into two sphere. Though we know that $\phi: (M^m, g) \longrightarrow (N^n, h)$ being f-harmonic implies $\phi: (M^m, f^{\frac{2}{m-2}}g) \longrightarrow (N^n, h)$ being harmonic we need to be careful trying to use results from harmonic maps theory since a conformal change of metric may change the curvature and the completeness of the original manifold (M^m, g) .

As we remark in Example 5 that any harmonic morphism is an f-harmonic morphism provided f is positive with vertical gradient, however, such a function need not always exist as the following proposition shows.

Proposition 2.11. A Riemannian submersion $\phi:(M^m,g) \longrightarrow (N^n,h)$ from non-negatively curved compact manifold with minimal fibers is an f-harmonic morphism if and only if f=C>0. In particular, there exists no nonconstant positive function on S^{2n+1} so that the Hopf fiberation $\phi:S^{2n+1} \longrightarrow (N^n,h)$ is an f-harmonic morphism.

Proof. By Corollary 2.8, a Riemannian submersion $\phi:(M^m,g)\longrightarrow (N^n,h)$ with minimal fibers is an f-harmonic morphism if and only if grad $\ln f$ is vertical, i.e., $\mathrm{d}\phi(\mathrm{grad}\ln f)=0$. This, together with the following lemma will complete the proof of the proposition.

Lemma: Let $\phi:(M^m,g)\longrightarrow (N^n,h)$ be any Riemannian submersion of a compact positively curved manifold M. Then, there exists no (nonconstant) function $f:M\longrightarrow \mathbb{R}$ such that $\mathrm{d}\phi(\mathrm{grad}\ln f=0)$.

Proof of the Lemma: Suppose $f:(M^m,g)\longrightarrow \mathbb{R}$ has vertical gradient. Consider

$$(M, e^{\varepsilon f}g)$$

where $\varepsilon > 0$ is a sufficiently small constant.

If ε is small enough, then $e^{2\varepsilon f}g$ is positively curved. One can check that

(14)
$$\phi: (M, e^{2\varepsilon f}g) \longrightarrow (N, h)$$

is a horizontally homothetic submersion with dilation $\lambda^2 = e^{-2\varepsilon f}$ since f has vertical gradient. By the main theorem in [24] we conclude that the map ϕ defined in (14) is a Riemannian submersion, which implies that the dilation and hence the function f has to be a constant.

Remark 2. It would be very interesting to know if there exists any f-harmonic morphism (or f-harmonic map) $\phi: S^{2n+1} \longrightarrow (N^n, h)$ with non-constant f. Note that for the case of n=2, the problem of classifying all f-harmonic morphisms $\phi: (S^3, g_0) \longrightarrow (N^2, h)$ (where g_0 denotes the standard Euclidean metric on the 3-sphere) amounts to classifying all harmonic morphisms $\phi: (S^3, f^2g_0) \longrightarrow (N^2, h)$ from conformally flat 3-spheres. A partial result on the latter problem was given in [13] in which the author proves that a submersive harmonic morphism $\phi: (S^3, f^2g_0) \longrightarrow (N^2, h)$ with non-vanishing horizontal curvature is the Hopf fiberation up to an isometry of (S^3, g_0) . This implies that there exists no submersive f-harmonic morphism $\phi: (S^3, g_0) \longrightarrow (N^2, h)$ with non-constant f and the horizontal curvature $K_{\mathcal{H}}(f^2g_0) \neq 0$.

Proposition 2.12. For $m > n \geq 2$, a polynomial map (i.e. a map whose component functions are polynomials) $\phi : \mathbb{R}^m \longrightarrow \mathbb{R}^n$ is an f-harmonic morphism if and only if ϕ is a harmonic morphism and f has vertical gradient.

Proof. Let $\phi: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ be a polynomial map (i.e. a map whose component functions are polynomials). If ϕ is an f-harmonic morphism, then, by Theorem 2.2, it is a horizontally weakly conformal f-harmonic map. It was proved in [1] that any horizontally weakly conformal polynomial map between Euclidean spaces has to be harmonic. This implies that ϕ is also a harmonic morphism, and in this case we have $d\phi(\operatorname{grad} f) = 0$ from (1).

Example 6. $\phi: \mathbb{R}^3 \cong \mathbb{R} \times \mathbb{C} \longrightarrow \mathbb{C}$ with $\phi(t,z) = p(z)$, where p(z) is any polynomial function in z, is an f-harmonic morphism with $f(t,z) = \alpha(t)$ for any positive smooth function α .

Finally, we would like to point out that our notion of f-harmonic morphisms should not be confused with h-harmonic morphisms studied in [11] and [3], where an h-harmonic function is defined to be a solution of $\Delta u + 2g(\operatorname{grad} \ln h), \operatorname{grad}(u)) = 0$ (or equivalently, $h\Delta u + 2du(\operatorname{grad} h) = 0$), and an h-harmonic morphism is a continuous map between Riemannian manifolds which pulls back local harmonic functions to h-harmonic functions.

Acknowledgments. I am very grateful to F. Wilhelm for some useful conversations during the preparation of the paper, especially, I would like to thank him for offering the proof of the Lemma in the proof of Proposition 2.11.

References

- [1] R. Ababou, P. Baird, and J. Brossard, *Polynômes semi-conformes et morphismes har-moniques* Math. Z. 231 (1999), no. 3, 589–604.
- [2] M. Ara, Geometry of F-harmonic maps Kodai Math. J. 22 (1999), no. 2, 243–263.
- [3] P. Baird and S. Gudmundsson, p-Harmonic maps and minimal submanifolds, Math. Ann., 294 (1992), 611-624.
- [4] P. Baird and J. C. Wood, *Harmonic morphisms between Riemannian manifolds*, London Math. Soc. Monogr. (N.S.) No. 29, Oxford Univ. Press (2003).
- [5] N. Course, f-harmonic maps, Thesis, University of Warwick, Coventry, CV4 7AL, UK, 2004.
- [6] J. Cieśliński, A. Sym, and W. Wesselius, On the geometry of the inhomogeneous Heisenberg ferromagnet: non-integrable case, J. Phys. A. Math. Gen. 26 (1993) 1353-1364.
- [7] J. Cieśliński, P. Goldstein, and A. Sym, On integrability of the inhomogeneous Heisenberg ferromagnet model: Examination of a new test, J. Phys. A: Math. Gen., 1994, 27: 1645-1664.
- [8] N. Course, f-harmonic maps which map the boundary of the domain to one point in the target, New York J. Math. 13 (2007), 423-435.
- [9] M. Daniel, K. Porsezian, and M. Lakshmanan, On the integrability of the inhomogeneous spherically symmetric Heisenberg ferromagnet in arbitrary dimension, J. Math Phys, 1994, 35(10): 64986510.
- [10] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68.
- [11] B. Fuglede, *Harmonic morphisms between Riemannian manifolds*, Ann. Inst. Fourier (Grenoble), vol **28** (1978), 107-144.
- [12] S. Gudmundsson, *The geometry of harmonic morphisms*, Ph. D. Thesis, University of Leeds, UK, 1992.
- [13] S. Heller, *Harmonic morphisms on conformally flat 3-spheres*, Bull. London Math. Soc., doi:10.1112/blms/bdq089, to appear.
- [14] P. Huang and H. Tang, On the heat flow of f-harmonic maps from D^2 into S^2 , Nonlinear Anal. 67 (2007), no. 7, 21492156.
- [15] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19(2) (1979), 215-229.
- [16] M. Lakshmanan and R. K. Bullough, Geometry of generalised nonlinear Schrödinger and Heisenberg ferromagnetic spin equations with x-dependent coefficients, Phys. Lett. A, 1980, 80(4): 287292.
- [17] Y. X. Li and Y. D. Wang, Bubbling location for f-harmonic maps and inhomogeneous Landau-Lifshitz equations, Comment. Math. Helv. 81 (2) (2006) 433448.
- [18] A. Lichnerowicz, Applications harmoniques et variétés kähleriennes, Symposia Mathematica III, Academic Press, London, 1970, pp. 341–402.
- [19] E. Loubeau, On p-harmonic morphisms, Diff. Geom. and its appl., 12(2000), 219-229.
- [20] J. Manfredi and V. Vespri, n-harmonic morphisms in space are Möbius transformations, Michigan Math. J. 41 (1994), 135142.
- [21] Y.-L. Ou, p-Harmonic morphisms, minimal foliations, and rigidity of metrics, J. Geom. Phys. 52 (4) (2004) 365381.

- [22] Y.-L. Ou, On p-harmonic morphisms and conformally flat Spaces, Math. Proc. Camb. Phil. Soc. (2005), 139-317.
- [23] Y.-L. Ou, p-Harmonic morphisms, biharmonic morphisms, and nonharmonic biharmonic maps, J. of Geo. Phy, Vol. 56, No. 3, 2006, 358-374.
- [24] Y.-L. Ou and F. Wilhelm, Horizontally homothetic submersions and nonnegative curvature. Indiana Univ. Math. J. 56 (2007), no. 1, 243261.
- [25] S. Ouakkas, R. Nasri, and M. Djaa, On the f-harmonic and f-biharmonic maps, JP J. Geom. Topol. 10 (1), (2010), 11-27.
- [26] H. Takeuchi, Some conformal properties of p-harmonic maps and regularity for sphere-valued p-harmonic maps, J. Math. Soc. Japan, 46(1994), 217-234.

School of Mathematics and Computer Science, Guangxi University for Nationalities, 188 East Daxue Road, Nanning, Guangxi 530006, P. R. China E-mail:yelinou@hotmail.com