POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI

KIERUNEK: INFORMATYKA

SPECJALNOŚĆ: INŻYNIERIA SYSTEMÓW INFORMATYCZNYCH

PRACA INŻYNIERSKA

Zarządzanie zadaniami w systemie obrazowania wielospektralnego

Task management for hyperspectral imaging system

AUTOR:

Aleksander Cieślak

PROWADZĄCY PRACĘ:

dr inż. Tadeusz Tomczak

OCENA PRACY:

Spis treści

1.	Cel	projektu		
2.	Obi	Obrazowanie wielospektralne		
	2.1.	Format danych		
		2.1.1. Konsekwencje formatu danych		
	2.2.	Dane w systemie Gerbil		
		2.2.1. Wpływ hierarchii danych na proces wykonania		

Spis rysunków

2.1.	Schemat kostki wielospektralnego	6
2.2.	Graf zależności danych w systemie Gerbil	7

Spis tabel

Rozdział 1

Cel projektu

Celem niniejszej pracy jest projekt i implementacja modułu zarządzania zadaniami dla systemu Gerbil (http://gerbilvis.org/). Jest to system do analizy i wizualizacji danych wielospektralnych. Gerbil posiada zestaw potężnych algorytmów przetwarzania obrazów oraz uczenia maszynowego, które przekładają się na szerokie spektrum funkcjonalności. Jednak jego słabym punktem jest warstwa zarządzania danymi oraz potok przetwarzania danych. To z kolei powoduje niestabilność całej aplikacji. W ramach pracy dyplomowej został zaproponowany system, który rozwiązuje wyżej wspomniane problemy. System ten pozwala na bezpieczny dostęp do danych w całej aplikacji oraz gwarantuje zachowanie właściwego potoku przetwarzania danych.

Rozdział 2

Obrazowanie wielospektralne

Obrazowanie wielospektralne jest techniką rejestracji obrazu za pomocą fal elektromagnetycznych o wybranej częstotliwości spośród widma spektroskopowego. Podczas gdy ludzkie oko widzi w głównie w trzech zakresach spektralnych (czerwonym, niebieskim oraz żółtym), obraz wielospektralny jest rejestrowany w znacznie większej ilości zakresów (przykładowo 31).

2.1. Format danych

Dane wielospektralne są często nazywane kostką wielospektralną.

Rys. 2.1: Schemat kostki wielospektralnego

Na rysunku 2.1 zilustrowano układ danych w kostce wielospektralnej. Kostka taka składa się z n_x pikseli x. Każdy piksel jest wektorem współczynników spektralnych o długości n_D , gdzie n_D jest liczbą obrazów spektralnych, na które składa się dana wielospektralna. Każdy współczynnik x_d jest wartością reakcji sensorycznej dla odpowiadającego pasma spektralnego b_d skoncentrowanego wokół fali λ_d . W skrócie obraz wielospektralny jest zbiorem obrazów rejestrowanych przy użyciu fal elektromagnetycznych o zadanych długościach.

2.1.1. Konsekwencje formatu danych

Ze względu na swoją charakterystykę obrazy wielospektralne mogą bezproblemowo osiągać rozmiary setek megabajtów, lub nawet gigabajtów. Większość danych pochodnych, które są

efektem analizy tego obrazu posiadają podobne rozmiary. Informacja ta jest kluczowa podczas projektowania mechanizmu zarządzania danymi w takim systemie. Biorąc pod uwagę rozmiar danych mechanizm taki powinien:

- unikać tworzenia zbędnych kopi danych,
- dokonywać obliczeń danych wyłącznie na żądanie,
- zwalniać z pamięci dane, które nie są już wizualizowane przez aplikację.

2.2. Dane w systemie Gerbil

Oryginalny obraz wielospektralny jest traktowany jako dana wejściowa w systemie. Na jego podstawie powstają dane pochodne. Są to głównie kolejne obrazy oraz histogramy wielospektralne. Do stworzenia prototypu mechanizmu zarządzania danymi oraz procesem przetworzenia użyte zostały poniższe dane:

- image oryginalny obraz wielospektralny. Dana ta jest obliczana podczas inicjalizacji systemu. Użytkownik może wejść w interakcję z systemem dopiero gdy image zostanie przetworzone.
- **ROI (Region of Interest)** wyselekcjonowany podzbiór danych, w tym przypadku wybrane prostokątne zaznaczenie obrazu,
- image.IMG fragment obrazu oryginalnego zdeterminowany przez ROI,
- **image.NORM** image.IMG po normalizacji wektora agregującego piksele na przestrzeni pasm spektralnych,
- image.GRAD gradient obrazu image.IMG,
- image.PCA image.IMG po zastosowaniu metody PCA (analizy głównych składowych),
- image.GRADPCA image.GRAD po zastosowaniu metody PCA,
- **bands.*.N** pojedynczy N-ty obraz spektralny danej reprezentacji (przykładowo bands.NORM.6),
- dist.IMG histogram wielospektralny obrazu image.IMG,
- dist.tmp.IMG dana pomocnicza używana do uzyskania danej dist.IMG.

Z racji, że jedne dane produkują inne, łatwo jest zdefiniować hierarchię danych w tym systemie.

Rys. 2.2: Graf zależności danych w systemie Gerbil

Na rysunku 2.2 przedstawiono diagram zależności danych. Dane jednego koloru należą do tej samej grupy semantycznej. Przykładowo, image.NORM, image.GRAD, image.GRADPCA itp. są reprezentacjami obrazu oryginalnego. Dane posiadają również swoje metadane. Przykładowo metadaną ROI jest ROI.diff, które określa różnicę pomiędzy aktualnym a poprzednim ROI.

2.2.1. Wpływ hierarchii danych na proces wykonania

Analizując rysunek 2.2 można dojść do wniosku, że proces przetworzenia danych jest dyktowany poprzez ich hierarchię. Przykładowo, do obliczenia image.GRADPCA wymagane jest aby dane image, ROI, image.IMG oraz image.GRAD były już przetworzone. Dodatkowo można określić porządek, w którym te dane powinny zostać obliczone:

- 1. image (podczas inicjalizacji systemu),
- 2. ROI,
- 3. image.IMG,
- 4. image.GRAD,
- 5. image.GRADPCA.