Aproximando
$$\left(1+\sqrt{2}\right)^n$$

Adaptado de Dmitry Fuchs, UC Davis, em Berkeley Math Circle 2015-2016*.

Guilherme Zeus Dantas e Moura

zeusdanmou@gmail.com

Matematicamente

19 de abril de 2021

^{*}O material original está disponível aqui.

Esquentando

Sem usar calculadora, tente aproximar:

►
$$(1+\sqrt{2})^1 \approx 2,4142...$$
 ► $(1+\sqrt{2})^6 \approx 197,9949...$

►
$$(1+\sqrt{2})^2 \approx 5,8284...$$
 ► $(1+\sqrt{2})^7 \approx 478,0021...$

►
$$(1+\sqrt{2})^3 \approx 14,0711...$$
 ► $(1+\sqrt{2})^8 \approx 1153,9991...$

O número $(1+\sqrt{2})^n$ fica cada vez mais perto de um inteiro!

Esquentando

$$\begin{array}{lll} & \frac{\left(1+\sqrt{2}\right)^{0}}{\sqrt{2}} \approx 0,7071 & \frac{\left(1+\sqrt{2}\right)^{5}}{\sqrt{2}} \approx 57,9914 \dots \\ & \frac{\left(1+\sqrt{2}\right)^{1}}{\sqrt{2}} \approx 1,7071 \dots & \frac{\left(1+\sqrt{2}\right)^{6}}{\sqrt{2}} \approx 140,0036 \dots \\ & \frac{\left(1+\sqrt{2}\right)^{2}}{\sqrt{2}} \approx 4,1213 \dots & \frac{\left(1+\sqrt{2}\right)^{7}}{\sqrt{2}} \approx 337,9985 \dots \\ & \frac{\left(1+\sqrt{2}\right)^{3}}{\sqrt{2}} \approx 9,9497 \dots & \frac{\left(1+\sqrt{2}\right)^{8}}{\sqrt{2}} \approx 816,0006 \dots \\ & \frac{\left(1+\sqrt{2}\right)^{4}}{\sqrt{2}} \approx 24,0208 \dots & \frac{\left(1+\sqrt{2}\right)^{9}}{\sqrt{2}} \approx 1969,9997 \dots \end{array}$$

O número $\frac{(1+\sqrt{2})^n}{\sqrt{2}}$ fica cada vez mais perto de um inteiro!

Vamos fazer casos pequenos!

Por que $(1+\sqrt{2})^5$ é tão próximo de 82?

Sabemos que

$$(1+x)^5 = 1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5.$$

Jogando $x = \sqrt{2}$,

$$(1+\sqrt{2})^5 = 1+5\sqrt{2}+20+20\sqrt{2}+20+4\sqrt{2}.$$

Jogando $x = -\sqrt{2}$

$$(1 - \sqrt{2})^5 = 1 - 5\sqrt{2} + 20 - 20\sqrt{2} + 20 - 4\sqrt{2}.$$

Somando as equações,

$$(1+\sqrt{2})^5 + (1-\sqrt{2})^5 = 82.$$

Sabemos que

$$(1+\sqrt{2})^5+(1-\sqrt{2})^5=82.$$

Como $\left|1-\sqrt{2}\right|<1$, o número $\left(1-\sqrt{2}\right)^5$ é bem pequeno.

$$\left(1+\sqrt{2}\right)^5\approx 82.$$

 $\mathfrak{n}=5$ não é especial! Isso funciona para todo $\mathfrak{n}.$

•
$$(1 + \sqrt{2})^n + (1 - \sqrt{2})^n$$
 é inteiro.

$$ightharpoonup (1-\sqrt{2})^n$$
 é pequeno.

E na divisão por $\sqrt{2}$?

$$\frac{\left(1+\sqrt{2}\right)^5}{\sqrt{2}} = \frac{1}{\sqrt{2}} + 5 + 10\sqrt{2} + 20 + 10\sqrt{2} + 4$$
$$\frac{\left(1-\sqrt{2}\right)^5}{\sqrt{2}} = \frac{1}{\sqrt{2}} - 5 + 10\sqrt{2} - 20 + 10\sqrt{2} - 4$$

Podemos subtrair as equações

$$\frac{\left(1+\sqrt{2}\right)^5}{\sqrt{2}} - \frac{\left(1-\sqrt{2}\right)^5}{\sqrt{2}} = 58.$$

$$\frac{(1+\sqrt{2})^5}{\sqrt{2}} - \frac{(1-\sqrt{2})^5}{\sqrt{2}} = 58.$$
$$\frac{(1+\sqrt{2})^5}{\sqrt{2}} \approx 58.$$

De novo, n = 5 não é especial! Isso funciona para todo n.

•
$$\frac{(1+\sqrt{2})^n}{\sqrt{2}} - \frac{(1-\sqrt{2})^n}{\sqrt{2}}$$
 é inteiro.

$$ightharpoonup \frac{(1-\sqrt{2})^n}{\sqrt{2}}$$
 é pequeno.

Isso só funciona com $1 + \sqrt{2}$?

Não!

- ► Também funciona com $(1+\sqrt{3})^n$ e com $\frac{(1+\sqrt{3})^n}{\sqrt{3}}$.
- $(1+\sqrt{4})^n$ também é próximo de inteiro, mas esse é menos interessante...
- Funciona com $(1+\sqrt{5})^n$?

Por exemplo, $(1+\sqrt{3})^{10} \approx 23167,956... \text{ e } (2+\sqrt{5})^4 \approx 321,997...$

Agora que desvendamos o porquê dessas calculações serem bem próximas de inteiros, **que perguntas podemos fazer?**

Que inteiros são esses?

Agora que a gente sabe o motivo, vamos olhar para quais inteiros são esses.

n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

$$(1+\sqrt{2})^n$$
 (aprox.) | 2 | 6 | 14 | 34 | 82 | 198 | 478 | 1154 | 2786 | 6726
 $\frac{(1+\sqrt{2})^n}{\sqrt{2}}$ (aprox.) | 2 | 4 | 10 | 24 | 58 | 140 | 338 | 186 | 1970 | 4756

Magicamente, observamos que, nas duas sequências da tabela acima,

$$a_{n+2}=2a_{n+1}+a_n.$$

Você consegue provar esse fato?

Dica: Olhe para a sequência $b_n = (1+\sqrt{2})^n$, sem aproximar.

Que inteiros são esses?

Se definirmos $b_n = (1 + \sqrt{2})^n$, sem aproximar, também temos

$$b_{n+2} = 2b_{n+1} + b_n,$$

que é verdade pois

$$(1+\sqrt{2})^2 = 1 + 2\sqrt{2} + 2 = 2(1+\sqrt{2}) + 1$$

e então, multiplicando por $(1+\sqrt{2})^n$

$$(1+\sqrt{2})^{n+2} = 2(1+\sqrt{2})^{n+1} + (1+\sqrt{2})^n.$$

Que inteiros são esses?

Sabemos que

$$b_{n+2} = 2b_{n+1} + b_n$$
.

Também sabemos que:

- ightharpoonup a_{n+2} e $2a_{n+1} + a_n$ são inteiros.
- $a_{n+2} \approx b_{n+2}.$
- $ightharpoonup 2a_{n+1} + a_n \approx 2b_{n+1} + b_n.$

Logo, provamos que

$$a_{n+2} = 2a_{n+1} + a_n.$$

Resumo da brincadeira

A sequência a_n é descrita das seguintes maneiras:

- ▶ Motivação inicial: a_n é o inteiro mais próximo de $(1+\sqrt{2})^n$, para n grande.
- Fórmula exata: $a_n = (1 + \sqrt{2})^n + (1 \sqrt{2})^n$

▶ Recorrência:
$$\begin{cases} a_1 = 2, \\ a_2 = 6, \\ a_{n+2} = 2a_{n+1} + a_n \end{cases}$$

Observação: Dá pra fazer a mesma coisa com as sequências $\frac{\left(1+\sqrt{2}\right)^n}{\sqrt{2}}$, $(1+\sqrt{3})^n$, ...

Agora que desvendamos varios mistérios sobre a sequência a_n , que novos caminhos podemos seguir?

Mudando de perspectiva

O que fizemos até agora foi

Motivação \Longrightarrow Fórmula Exata \Longrightarrow Recorrência.

Será que conseguimos usar o nosso aprendizado para conseguir fazer

Recorrência \Longrightarrow Fórmula Exata.

Por exemplo, você deve conhecer a sequência de Fibonacci, definida por $F_0=0,\, F_1=1$ e

$$F_{n+2} = F_{n+1} + F_n$$
.

Como podemos achar uma fórmula exata?

Uma nova quest!

Considere uma sequência $\alpha_0,\alpha_1,\alpha_2,\dots$ que satisfaz, para todo $n\geqslant 0,$

$$a_{n+2} = K \cdot a_{n+1} + L \cdot a_n$$

para K e L fixos. Conseguimos descobrir uma fórmula direta para \mathfrak{a}_n ? Perceba que essa condição é bem simples. Ela diz que:

$$\begin{cases} a_2 = Ka_1 + La_0 \\ a_3 = Ka_2 + La_1 \\ a_4 = Ka_3 + La_2 \\ \vdots \end{cases}$$

Uma nova quest!

$$\begin{cases} a_2 = Ka_1 + La_0 \\ a_3 = Ka_2 + La_1 \\ a_4 = Ka_3 + La_2 \\ \vdots \end{cases}$$

Existem infinitas sequências. Basta escolher a_0 e a_1 arbitrariamente.

Já que existem infinitas soluções, uma boa ideia é achar soluções bonitas!

Alguém tem alguma sugestão? Dica: Lembrem-se do que a gente já fez.

Solução conveniente para a nova quest

Vamos considerar $a_n = \alpha^n$, com α constante. A nossa condição vira

$$\begin{cases} \alpha^2 = K\alpha + L \\ \alpha^3 = K\alpha^2 + L\alpha \\ \alpha^4 = K\alpha^3 + L\alpha^2 \\ \vdots \end{cases}$$

Todas essas equações são equivalentes a

$$\alpha^2 = K\alpha + L$$
.

Portanto, se pegarmos α como raiz do polinômio x^2-Kx-L , a sequência $\alpha_n=\alpha^n$ funciona!

Achando novas soluções...

De modo geral, sabemos que $x^2 - Kx - L$ possui duas raízes, α e β .

As sequências (α^n) e (β^n) funcionam!

Quaisquer sequências $(A\alpha^n)$ e $(B\beta^n)$ funcionam!

A soma das sequências, $(A\alpha^n + B\beta^n)$, também funciona!

Isso é um ótimo progresso! Achamos **várias** sequências que funcionam, mas será que achamos todas?

Dica: o que define uma sequência que funciona?

Achamos todas as soluções?

Achamos as soluções $(A\alpha^n + B\beta^n)$.

Uma solução é definida por α_0 e $\alpha_1.$ Se for da forma acima, terá que valer

$$\begin{cases} a_0 = A + B \\ a_1 = A\alpha + B\beta \end{cases}$$

Conseguimos reescrever como

$$\begin{cases} A = \frac{\alpha_0 \beta - \alpha_1}{\beta - \alpha} \\ B = \frac{\alpha_0 \alpha - \alpha_1}{\alpha - \beta} \end{cases}$$

Juntando os pedaços...

Considere uma sequência a_0, a_1, a_2, \ldots que satisfaz $a_{n+2} = Ka_{n+1} + La_n$. Sejam α e β as raízes de $x^2 - Kx - L = 0$.

A sequência

$$\left(\frac{a_0\beta - a_1}{\beta - \alpha} \cdot \alpha^n + \frac{a_0\alpha - a_1}{\alpha - \beta} \cdot \beta^n\right)$$

também satizfaz a recorrência, e também tem os mesmos termos iniciais.

Portanto, como \mathfrak{a}_0 e \mathfrak{a}_1 definem unicamente uma solução, as duas sequências citadas são iguais! Ou seja, **qualquer** sequência que satisfaz a recorrência é da forma $(A\alpha^n + B\beta^n)$.

 ${\it Observação:} \ {\rm Isso} \ {\rm s\'o} \ {\rm funciona} \ {\rm quando} \ \alpha \neq \beta.$

Hora de arregaçar as mangas

 \blacktriangleright Calcule uma fórmula direta para o n-ésimo termo da sequência de Fibonacci, definida por $F_0=0,\,F_1=1$ e

$$F_{n+2} = F_{n+1} + F_n$$
.

 \blacktriangleright Calcule uma fórmula direta para o n-ésimo termo da sequência definida por $\alpha_0=1,\;\alpha_1=5$ e

$$a_{n+2} = 4a_{n+1} - 3a_n.$$

Hora de arregaçar as mangas

▶ Calcule uma fórmula direta para o n-ésimo termo da sequência de Fibonacci, definida por $F_0 = 0$, $F_1 = 1$ e

$$F_{n+2} = F_{n+1} + F_n$$
.

Hora de arregaçar as mangas

 \blacktriangleright Calcule uma fórmula direta para o n-ésimo termo da sequência definida por $\alpha_0=1,\;\alpha_1=5$ e

$$a_{n+2} = 4a_{n+1} - 3a_n.$$

Próximos passos?

Que novas perguntas podemos fazer? Que novos caminhos podemos seguir?

- ▶ O que acontece quando o polinômio tem raíz dupla? Ou seja, $\alpha = \beta$?
- Será que conseguimos resolver recorrências da forma $a_{n+3} = K \cdot a_{n+2} + L \cdot a_{n+1} + M \cdot a_n$?
- ▶ É assim que a gente ensina um computador a resolver recorrências?

Agora vocês escolhem! Que pergunta vocês querem tentar responder?

PS: Estou escondendo o fato de que eu não preparei essa última parte.

O que acontece quando o polinômio tem raíz dupla? Ou seja, $\alpha = \beta$?

Vamos fazer casos pequenos. Pegaremos $\alpha=\beta=1$. O polinômio é $(x-1)^2=x^2-2x+1$.

A sequência a_0, a_1, a_2 segue a recorrência

$$a_{n+2} = 2a_{n+1} - a_n \iff \frac{a_{n+2} + a_n}{2} = a_{n+1}$$

A sequência $(\alpha^n) = (1)$ funciona. Em geral, a sequência $(A\alpha^n) = (A)$ funciona. A sequência (n) funciona. Em geral, a sequência (Bn) funciona. Finalmente, a sequência (A + Bn) funciona.

$$\begin{cases} a_0 = A \\ a_1 = A + B \end{cases} \iff \begin{cases} A = a_0 \\ B = a_1 - a_0 \end{cases}$$

O que acontece quando o polinômio tem raíz dupla? Ou seja, $\alpha=\beta$?

Pegaremos $\alpha = \beta$. O polinômio é $(x - \alpha)^2 = x^2 - 2\alpha x + \alpha^2$. A sequência $\alpha_0, \alpha_1, \alpha_2$ segue a recorrência

$$a_{n+2} = \underbrace{(2\alpha)}_{K} a_{n+1} + \underbrace{(-\alpha^2)}_{L} a_n$$

A sequência (α^n) funciona. Em geral, a sequência $(A\alpha^n)$ funciona. A sequência $(n\alpha^n)$ funciona. Em geral, a sequência $(Bn\alpha^n)$ funciona. Finalmente, a sequência $((A+Bn)\alpha^n)$ funciona.

$$\begin{cases} a_0 = A \\ a_1 = (A+B)\alpha \end{cases} \iff \begin{cases} A = a_0 \\ B = \frac{a_1}{\alpha} - a_0 \end{cases}$$

É assim que a gente ensina um computador a resolver recorrências?

O que é um computador? Modelo 1:

- ▶ Uma moeda pra fazer operações: soma, multiplicação de reais.
- ▶ Conseguimos manipular e guardar reais.

Como calcular o F_n ?

- ▶ Recorrência: ~ n moedas.
- ► Fórmula direta: ~ 2n moedas.

$$F_{n} = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{n} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \right)$$

Computador

Queremos contruir uma função power(a, b), que calcula a^b .

- ightharpoonup power(a, 0) := 1
- ightharpoonup power(a, 2n) := power(a, n)²

Quantas moedas gastamos?

ightharpoonup ~ $2 \log(n)$ moedas.

O que é um computador? Modelo 2:

- ▶ Uma moeda pra fazer operações: soma, multiplicação de inteiros.
- Conseguimos manipular e guardar inteiros.

Vamos criar uma nova classe dos números legais. Número legal é um número da forma $a + b\sqrt{5}$. Esse conjunto é chamado de $\mathbb{Z}[\sqrt{5}]$. No computador, a gente vai guardar o número $a + b\sqrt{5}$ como legal(a, b).

- ightharpoonup legal(a, b) + legal(c, d) := legal(a + c, b + d)
- ightharpoonup legal(a, b) · legal(c, d) := legal(ac + 5bd, ad + bc)
- $(a + b\sqrt{5})(c + d\sqrt{5}) = (ac + 5bd) + (ad + bc)\sqrt{5}$

Calcular power(legal(a, b), n) gasta $\sim 14 \log n$ moedas. Por extenso:

- ightharpoonup Primeiro calcule legal(x, y) := power(legal(1, 1), n).
- $ightharpoonup 2^{n-1} := power(2, n-1).$
- $F_n := u/2^{n-1}$.

Isso gasta algo na ordem de $\sim \log n$ moedas.