400206584

1-1 & 1-2 Concatenate all trials for each channel together and used "pspectrum" function. Then removed pink noise by fitting 1/F, using "polyfit" function.

Table 1 Dominant Frequency (Hz)

Full	Before	After
Trial	Cue	Cue
13.1119	13.0992	13.5249

1-3-Used pspectrum's STFT option for each signal; then averaged PSD over trials for each channel.

• 1-4-

There is a similarity; as we can see there is an slight increase in PSD magnitude after Cue onset around the dominant frequency (dark red areas).

• 2-1"After cue" dominant frequency is chosen for rest of the experiment:

• 2-2 - 2-5-

2 trials were chosen to show as demonstration (trials 300 & 310) which wave gets stronger after cue.

Both trials have higher PGD after cue.

Direction histogram

Trial 300 changes gradient direction after cue while trial 310 stays the same.

 2-6-Histogram for all time points show that we have more gradient directions around 0°, 130° and 330°.

We know that wave has higher PGD; we will show histogram for PGDs above 0.5.

It is still consistent with directions from all time points (we have waves most of the times).

• 2-7-

Histogram for all time points and averages over time and trial shows we have majority of speed below 1 m/s (mostly below 0.8 m/s).

In both average over time and trial we see same results as Sejnowski's reported results (0.1-0.8 m/s) while majority are below 0.5 m/s.

