

R= Recharge

h= hydraulic head

b= thickness of the aguiten

L= Length of Island

Considering the problem have a steady state flow, we get to

The boundary condition is,
when,
$$x = L$$
, $h \ge 0$.

From $0 \Rightarrow 12$

From $0 \Rightarrow 12$

From $0 \Rightarrow 12$

The boundary condition is,
when $0 \Rightarrow 12$
 $0 \Rightarrow 1$

2) LCTZ - Zubnote O + not 47 C, Z - L Splitting the island my drawlie head in hz - Rting (x2010 2 Long of others) Internal of the text of the text of the second of 2) h 2 k (Lx-x2) (1 1 10) FOR , he, he, he, he, ht, ht, he, ho, ho hi - 2hr + hg = -dx = [Fron ha] 20 42 - 243 + 44 = - 942 = [Fon 43] shy - the + he = -dx2 = Then hel ルラー2んをナルチ = - dx2 草 [Fon hs] 16-54++48=-9x = [200 ps] HO - 5410 + 411 = -9x5 = [LOU 40]

NO - 5410 + 410 = -9x5 = [LOU 40]

NO - 540 + 410 = -9x5 = [LOU 40]

Numerical Solution

FOR. 1-D steady state condition,

d2h z - k

Splitting the island hydraulic head into 10 parts along with two heads from river we get,

1 hol hi ha halhalhalhalhalhalhalhalhal

For hi, (1 - 2 - 2 - 2x2 R)

FOR, h2, h3, h4, h5, h6, h7, h8, h9, h10

 $h_1 - 2h_2 + h_3 = -dx^2 \frac{R}{T} [For h_2]$ $h_2 - 2h_3 + h_4 = -dx^2 \frac{R}{T} [For h_3]$ $h_3 - 2h_4 + h_5 = -dx^2 \frac{R}{T} [For h_6]$ $h_4 - 2h_5 + h_6 = -dx^2 \frac{R}{T} [For h_6]$ $h_5 - 2h_6 + h_7 = -dx^2 \frac{R}{T} [For h_6]$ $h_6 - 2h_7 + h_8 = -dx^2 \frac{R}{T} [For h_8]$ $h_7 - 2h_6 + h_9 = -dx^2 \frac{R}{T} [For h_9]$ $h_8 - 2h_9 + h_{10} = -dx^2 \frac{R}{T} [For h_9]$ $h_9 - 2h_{10} + h_{11} = -dx^2 \frac{R}{T} [For h_{10}]$

After organizing them for matrix visualizations -2h,+h2z-dx2 k - ho h, -2h2 + h3 = -dx2 B h2 - 2h3 + h4 = -dx2 B hz - 2h4 +h5 = - dx2 B 14-2h5+h6 = -d22 12 45-246747 - dx2 & 0000 a.h. - 2h7+h8 = - 1828 8888.0- 3 ht-2hethg=-1x2 k h8-2hg th10=-dx2 & hg-2h10 +1= -dx2 k-ha From the matrix solvetion in excel

The matrix is-

-210000000000 m 10 h 71 1 -2 1 0 0 0 0 0 0 0 0 1-21000000 0 0 1-2100000 0 0 0 1 -2 1 0 0 00 0 0 0 0 1 -21 0 00 mg = -d22 0 0 0 0 1 - 2 1 0 0 0 0 0 0 0 0 0 1 - 210 0000001-21 hs 0000001-2 hio der Bt-hu :AX=B where, N = A-1B

er gets

Given that, not made prising par 10 124

Rechange, Rz 0-002 m/1 Transmissivity, T= 1500 m2/d Length > L = 5000 m = 250000 ·

x = -0.3333

ng-2hio than - desta From the matrix solution in Excel me gets

1- 2 16 6667 m 00000000 s-1 1 1 1 1 1 1 2 1 3 m 0000000 s-1 1 1 1 1 1 1 1 1 1 1 1 0000000 s-1 x 3 2 h m 0000 15-1000 ng = 14,6867m00015-1000 546 - h6 2015 m 0015-100000 nt = 14.6667 m1000000 ns 21.4 ms-10000000 hg 2 3 m hiv 2 1.66,67 m

A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R
	Parameters																
Recharge	0.002	2 m/d						$dx^2(R/T)-h_0$	-0.333333								
Transmissivity	1500	m^2/d						$dx^2(R/T)$	-0.333333								
Length	5000	m						$dx^2(R/T)$	-0.333333								
dx	500	1						dx ² (R/T)	-0.333333								
dx ²	250000							dx ² (R/T)	-0.333333								
								$dx^2(R/T)$	-0.333333								
1								$dx^2(R/T)$	-0.333333								
								$dx^2(R/T)$	-0.333333								
								$dx^{2}(R/T)$	-0.333333								
		-	-					dx ² (R/T)-h ₁₁	-0.33333								
			1		-	Coefficient	Matriy										
-2	1	. 0	0 0	0				0	0		h1		-0.333333				
1			. 0								h2		-0.333333				
0											h3		-0.333333				
0	0						-	_			h4		-0.333333				
0	0									Х	h5	=	-0.333333				
0	0	0	0								h6		-0.333333				
0	0	0	0				1				h7		-0.333333				
0	0	0	0	0	0			1	0		h8		-0.333333				
0	0	0	0	0	0	0	1	-2	1		h9		-0.333333				
0	0	0	0	0	0	0	0	1	-2		h10		-0.333333				
						se Coeffici										Solution	
-0.909090909	-0.818181818	-0.727273	-0.636364	-0.545455	-0.454545	-0.363636	-0.272727	-0.18181818	-0.090909		-0.333333		1.666667		h1	1.666667	m
-0.818181818											-0.333333		3		h2	3	m
-0.727272727	-1.454545455	-2.181818	-1.909091	-1.636364	-1.363636	-1.090909	-0.818182	-0.54545455	-0.272727		-0.333333		4		h3		m
-0.636363636											-0.333333		4.666667		h4	4.666667	m
-0.545454545	-1.090909091	-1.636364	-2.181818	-2.727273	-2.272727	-1.818182	-1.363636	-0.90909091	-0.454545	X	-0.333333	=	5		h5	5	m
-0.454545455											-0.333333		5		h6	5	m
-0.363636364											-0.333333		4.666667		h7	4.666667	m
-0.272727273 -											-0.333333		4		h8	4	m
-0.181818182 -											-0.333333		3		h9		m
-0.090909091 -	-0.181818182	-0.272727	-0.363636	-0.454545	-0.545455	-0.636364	-0.727273	-0.81818182	-0.909091		-0.333333		1.666667		h10	1.666667	m