

Epsilon-Delta Definition of a Limit in Physics — Documentation

Exported 9/13/2025 · Presented by Mejbah Ahammad

Formal Definition of a Limit

Formal Definition of a Limit

For a function f(x) and a point c, we say:

$$\lim_{x o c}f(x)=L$$

if and only if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that:

$$0<|x-c|<\delta \implies |f(x)-L|$$

Breaking Down the Definition:

- ε (epsilon) Any positive tolerance around the limit value L
- δ (delta) A corresponding neighborhood around the point c
- $0<|x-c|<\delta$ x is within δ of c but not equal to c
- $|f(x) L| < \varepsilon$ f(x) is within ε of L

Key Insight: We can make f(x) as close as we want to L by choosing x sufficiently close to c.

Proving a Limit Using Epsilon-Delta

Proving a Limit Using Epsilon-Delta

Example: Prove that $\lim_{x \to 2} (3x+1) = 7$

Step 1: Set up the proof

We need to show: For every $\varepsilon > 0$, there exists $\delta > 0$ such that:

$$0<|x-2|<\delta \implies |(3x+1)-7|$$

Step 2: Work backwards to find δ

Simplify the condition:

$$|(3x+1)-7| = |3x-6| = 3|x-2| < \varepsilon$$

Therefore: $|x-2|<rac{arepsilon}{3}$

Step 3: Choose δ

Choose: $\delta = \frac{\varepsilon}{3}$

Step 4: Verify the proof

If $0<|x-2|<\delta=rac{arepsilon}{3}$, then:

$$|(3x+1)-7|=3|x-2|<3\cdot\frac{\varepsilon}{3}=\varepsilon$$

Therefore: $\lim_{x\to 2}(3x+1)=7$ ✓

Why Limits Matter in Physics

Why Limits Matter in Physics

The epsilon-delta definition of limits is fundamental to all of physics. Here are key applications:

Kinematics

- Instantaneous Velocity: $v=\lim_{\Delta t \to 0} rac{\Delta x}{\Delta t}$ Acceleration: $a=\lim_{\Delta t \to 0} rac{\Delta v}{\Delta t}$
- Angular Velocity: $\omega = \lim_{\Delta t \to 0} \frac{\overline{\Delta v}}{\overline{\Delta t}}$

Electromagnetism

- Electric Field: $E=\lim_{q o 0} rac{F}{q}$
- Current Density: $J=\lim_{\Delta A \to 0} \frac{\Delta I}{\Delta A}$ Magnetic Field: $B=\lim_{I \to 0} \frac{F}{I \cdot L}$

Thermodynamics

- Density: $ho = \lim_{\Delta V \to 0} \frac{\Delta m}{\Delta V}$ Pressure: $P = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A}$
- Heat Capacity: $C = \lim_{\Delta T \to 0} \frac{\Delta Q}{\Delta T}$

Key Insight: All fundamental physics concepts rely on the rigorous foundation provided by epsilon-delta limits!

Epsilon-Delta Definition: Visual Representation

Epsilon-Delta Definition: Visual Representation

Understanding the geometric meaning of $\lim_{x o c} f(x) = L$

Visual Interpretation:

- Gradient curve: Function f(x) with rainbow colors
- **Red point:** Point *c* on x-axis
- **Blue point:** Point L on y-axis
- **Green point:** (c, f(c)) the function point we're approaching
- **Purple interval:** δ -neighborhood around c
- Orange band: ε -tolerance around L
- • Cyan lines: Vertical projections from δ -interval to function
- **Quantized Section 8** Yellow lines: Horizontal projections from function to ε -band
- ullet Pink points: Function values at boundaries $f(c-\delta)$ and $f(c+\delta)$

Mathematical Statement: $0<|x-c|<\delta \implies |f(x)-L|<arepsilon$