Lecture 12 - Constrained Optimization via Lagrange Multipliers

October 24, 2022

Goals: Setup the equations for the Lagrange multiplier method for a constrained optimization problem, and use them to determine local extrema.

The types of problems we will be considering are optimization problems of the form: maximize or minimize a function $f: \mathbb{R}^n \to \mathbb{R}$ subject to a constraint $g(\mathbf{x}) = c$. In other words, if we restrict our set of points to some level set of another function, what is the max/min of f?

Some examples include a company maximizing revenue subject to certain resource constraints or minimizing the cost for a construction company to build something subject to a budget constraint.

Here's some motivation as to why the method we will discuss works:

Theorem 12.2.1: Suppose $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ are functions, and consider the problem of finding a local maximum (or local minimum) of f on the region where $g(\mathbf{x}) = c$ (the constraint region). If a local extremum of f on the constraint region occurs at the point \mathbf{a} , then either

- $\nabla g(\mathbf{a}) = \mathbf{0}$, or layrage militaries
- $\nabla f(\mathbf{a}) = \lambda \nabla g(\mathbf{a})$, where λ is a constant that depends on \mathbf{a} .

The result of Theorem 12.2.1 tells us that if we want to solve a constrained optimization problem (i.e. "maximize/minimize f subject to g = c"), then we can get a list of possible points by solving

 $\sqrt{\bullet} \nabla g = 0$ for points on the constraint g = c, and

This is referred to as the method of Lagrange Multipliers.

Example 1: Find the maximum value of the function f(x,y) = -2x + 2y subject to $x^2 + y^2 = 9$.

Example 2: Find the minimum value of f(x,y) = y subject to $x^2 - y^3 = 0$.

Example 3: Find the points on the curve $8y^2 - 4x^3 + x^4 = 0$ closest to the point (3,0), and then compute that minimal distance.

$$y = \frac{15x_3 - 15x_5}{5(x-3)} = \frac{15x_3(x-3)}{5(x-3)}$$

$$\lambda = \frac{2(x-3)}{4x^2(x-3)} = \frac{1}{2x^2}$$
 $\lambda = \frac{2y}{16y} = \frac{1}{8}$

$$\frac{3(5)\lambda_{1}}{4} = \frac{5\lambda_{2}}{1} - \frac{5}{10} = 0 , \lambda_{1} + \frac{7}{10} = 0$$

$$\frac{8}{10} = \frac{5\lambda_{2}}{10} - \frac{5}{10} = 0 , \lambda_{1} + \frac{7}{10} = 0$$

$$\frac{8}{10} = \frac{5\lambda_{2}}{10} - \frac{5}{10} = 0 , \lambda_{1} + \frac{7}{10} = 0$$

(2, 5)

$$g(-2,43=0)$$

Pow, chule un powith points ~1 $+$ + $+$ + $+$ min @ port

 $f(2,52)$
 $f(0,0)$
 $f(3,-527/8)$
 $f(4,0)$
 $f(3,-527/8)$

Q:	for	U.	a.ver	· Cun	ve	o .	how	do .	we	km	Mel	،لد ر	netm	
												•		
			mb											
		اس جا	t	, w	. do	direk	n al	. ~	الار مها	inver	۸.			
Q:	Still	confus), /er	v 6	effing	deno	meter	Fo	200	gne	U	PKE-101	L	
	boints	,	Dare 1	Shu	Ć ¢	r x	; N)m4 iq	s the	TUSA	ر ،			
<i>O</i> :	0	M	mma I	- Mar	عمو ²	المركز الم	ر اوه	nt ne	1)	tourpus t	~ all	funch	به . ن	
W .	•	A.	(TO/W)		t, (N)	~. D	/	•	L:5	touth tys ,	wl _	ed by .		
		**	(2400)	7	56(4)				٧١,	•				