

Computer Architecture

OpenMP assignment Mandelbrot set

Serafin.Benito@uclm.es

Contents

- Mandelbrot Set
- Programming Mandelbrot
- Test of the program
- Parallelization with OpenMP
- Execution times
- Handout

Mandelbrot Set

Best known of fractals

Represented in the complex plane: number $x+i\cdot y$ corresponds to the coordinate point (x,y)

Set definition

- Let's call M to the Mandelbrot Set
- Given a complex number c, we build the sequence defined by:

$$z_0 = 0$$

$$z_{n+1} = z_n^2 + c$$

• $c \in M$ if and only if the sequence is bounded. Ex.:

```
• c = -1 + i \rightarrow 0, -1 + i, -i, -1 + i, -i, -1 + i... bounded
```

•
$$c = -1 \rightarrow 0, -1, 0, -1...$$
 bounded

•
$$c=1 \rightarrow 0, 1, 2, 5, 26, 677...$$
 not

• Thus,
$$-1+i\in M$$
, $-1\in M$ and $1\not\in M$

Programming Mandelbrot

- There's no know method that, $\forall c$, tells if $c \in M$ or $c \notin M$
 - All representations of the Mandelbrot set are approximate
- We know that $c \in M$ iff $\forall n \in \mathbb{N}$ $|z_n| \leq 2$
- The algorithm computes (from c) the terms of the sequence up to a maximum of terms:
 - If it founds a term $z_n where |z_n| > 2$, $c \notin M$
 - Otherwise, it considers $c \in M$ although it may not be (maybe in the rest of the sequence there's a term with modulo >2)

Input file

Execution:

<executable> <input file>

- The input file is a text file with the following format:
 - 1st line: number of images to generate
 - An additional line per every image. Possible line formats:
 - ◆ 1 <minor abscissa> <major abscissa> <minor ordinate> <major ordinate> <image file name>
 - ◆ 2 <abcissa center of square> <ordinate center> <square size> <image file name>
 - The image file name can't have more than 15 characters nor a dot

Sequential program

- A. Open the input file and read the number of images
- B. For every image
 - Read image type (1 = rectangular, 2 = square)
 - B1. Compute, in pixels, witch and height of the image
 - B2. Open and configure ppm image file
 - B3. For every pixel compute coordinate (x,y) and call function mandel_val that determines if it can belong to the Mandelbrot set or not
 - B4. Compute the color of the pixel that corresponds to number $x + y \cdot i$ and print it in the image file
 - B5. Print the time taken to obtain the image

Function mandel_val

- Parameters list: (x,y,max_iter)
- From c = x + i⋅y, it generates the terms of its sequence (p_real + i⋅p_imag) up to a a maximum of max_iter-1 terms:
 - If a term whose module is >2 is found, the loop is broken and index j of that term of the sequence returned
 - The color of the pixel will depend on the number j of iterations
 - Otherwise, it returns -1 (number $x + i \cdot y$ will be drawn in white, as belonging to the Mandelbrot Set)

Test of the program

Create the input file. With the following content, for example:

It will create 2 images (1st line):

- First square (2 in the beginning of 2nd line), in file cuadrado.ppm centered in (-0.2, 0.8) and a square of size 0.05
- Second rectangular (1 in the beginning of 3rd line), in file rectangulo.ppm, from abscissa -2 to abscissa 1, and ordinates from -1 to 1
- Compile and run the program as described in the initial comment lines
- Try to change the input file an test cocrete zones
 - The smallest the area explored, the biggest the zoom
 - The most interesting zones are at the borders

Parallelization with OpenMP

- Build a mandelbrot_paralelo.c as a result of the parallelization of the sequential version with OpenMP (mandelbrot_secuencial.c)
- The computations of the sequences that correspond to the complex numbers of the zone to explore are independent →
 - → the can be performed in parallel

Parallelization with OpenMP

- At the time of parallelizing, the order in which results are generated is different from the sequential execution
- But pixels must be printed in the image file (that we'll call mandelbrot_paralelo.ppm) in the same order used by the sequential algorithm.
- Suggestion: store the generated results in a matrix and, when complete, use the matrix to print the pixels
 - Points B4 and B5 of the algorithm, now must be solved separately

Execution times

- Using the same input file, run the sequential and parallel program (without the schedule clause)
- Check they produce the same pictures
- Compare the timing for each case
- Try to use the schedule clause as described in the next slide
- Leave in the parallel program the schedule clause that provided the best results

Schedule clause

- Study the effect of using the schedule clause of the for directive:
 - Measure the time for the generation of each picture sometimes using the schedule(static,tt) clause and others the schedule(dynamic,tt) testing different values of tt
 - Compare the times for every picture with the ones in the parallel program without using the schedule clause, and with the ones of the sequential version
 - Include a comment at the end of the code with the most relevant results obtained and a reasonable explanation of them
 - Especify: processor model and number of cores

Handout

Upload to Campus Virtual the file mandelbrot_paralelo.c before two weeks starting from today

And remember that cheating is a bad idea!

We'll check it.