

CPE/EE 695: Applied Machine Learning

Lecture 3 - 1: Linear Regression

Dr. Shucheng Yu, Associate Professor

Department of Electrical and Computer Engineering

Stevens Institute of Technology

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Polynomial Regression

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Minimize E(w) for unknown w. (maximum likelihood)

Linear model prediction:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Linear model prediction:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Observed value of \hat{y} would be:

$$y = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n + \varepsilon$$

Linear model prediction:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Vectorized form:

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \cdot \mathbf{x}$$

Linear model prediction:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Vectorized form:

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \cdot \mathbf{x}$$

Mean Square Error (MSE) cost function:

$$MSE(X, h_w) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^T \cdot \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^2$$

Linear model prediction:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Vectorized form:

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \cdot \mathbf{x}$$

Mean Square Error (MSE) cost function:

$$MSE(X, h_w) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^T \cdot \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^2$$

Normal Equation (closed-form solution):

$$\widehat{w} = (X^T \cdot X)^{-1} \cdot X^T \cdot y$$

 \widehat{w} : the value of that minimizes the cost function

X : the training data set

 \boldsymbol{y} : the vector of target values containing $\mathbf{y}^{(1)}$ to $\mathbf{y}^{(m)}$

Linear model prediction:

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Vectorized form:

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \cdot \mathbf{x}$$

Mean Square Error (MSE) cost function:

$$MSE(X, h_w) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}^T \cdot \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^2$$

Normal Equation (closed-form solution):

$$\widehat{w} = (X^T \cdot X)^{-1} \cdot X^T \cdot y$$

 \widehat{w} : the value of that minimizes the cost function

X : the training data set

 \boldsymbol{y} : the vector of target values containing $\mathbf{y^{(1)}}$ to $\mathbf{y^{(m)}}$

Complexity: $O(n^3)$

Gradient Descent:

$$w^{(next\ step)} = w - \alpha \cdot \nabla_w MSE(w)$$

1870

What is Grade Descent?

A first-order iterative optimization algorithm to find the minimum of a multivariable function $F(\mathbf{x})$.

Rational:

If F(x) is differentiable around a point A, F decreases **fastest** from A in the direction of negative gradient of F(x) at A (i.e., $-\nabla F(A)$). In other words, let

$$A_{n+1} = A_n - \alpha * \nabla F(A)$$

for small enough α , we have $F(A_{n+1}) \leq F(A_n)$.

Through a set of such points A_0 , A_1 , ..., it converges to a **local minimum**.

If function F(x) is **convex**, the local minimum is the **global minimum**.

Gradient Descent:

Learning rate λ is very important

Gradient Descent:

1) Batch Gradient Descent

Using ALL data sets to calculate the gradient and update w:

$$\frac{\partial}{\partial w_{i}} = \frac{2}{m} \sum_{i=1}^{m} (w^{T} \cdot x^{(i)} - y^{(i)}) x_{j}^{(i)}$$

- Stochastic Gradient Descent
 Using one RANDOM sample to calculate the gradient and update w.
- 3) Mini-batch Gradient Descent (using a small random set of samples)

Gradient Descent:

Local minimum issue

Batch Gradient Descent: converges fast, more likely to have local minimum **Stochastic** Gradient Descent: converges slower, less likely to have local minimum

Mini-Batch Gradient Descent: in the middle of the two.

Regularized Linear Models

Ridge Regression

Cost function:
$$E(w) = MSE(w) + \frac{\alpha}{2} \sum_{i=1}^{m} w_i^2$$

It has a closed-form solution
$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$
.

Lasso Regression

Cost function:
$$E(w) = MSE(w) + \alpha \sum_{i=1}^{m} |w_i|$$

No closed-from solution for w;

But it tends to eliminate the weights of least important features.

Elastic Net

Cost function:
$$E(w) = MSE(w) + \lambda_1 \sum_{i=1}^m w_i^2 + \lambda_2 \sum_{i=1}^m |w_i|$$

In the middle of Ridge and Lasso.

Usually is preferred over Lasso or Ridge.

Cost Functions

Mean Square Error (MSE):

$$MSE(X,h) = \frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}^{(i)}) - y^{(i)})^2$$

Root Mean Square Error (RMSE):

$$RMSE(X, h) = \sqrt{MSE}$$
 (Euclidean norm)

Mean Absolute Error (MAE):

$$MAE(X,h) = \frac{1}{m} \sum_{i=1}^{m} |h(x^{(i)}) - y^{(i)}|$$
 (Manhattan norm)

 $l_k norm$ of a vector v with n elements: $||v||_k = (|v_0|^k + \cdots + |v_n|^k)^{\frac{1}{k}}$

The higher the norm index, the more it focuses on large values and neglect small ones. Therefore, RMSE is more sensitive to outliers than MAE.

stevens.edu