

# افکار سازگار نوشتار نابکار ریاضیات گسسته سودابه محمدهاشمی - کیمیا محمدطاهری

هرگاه نویسندهای توانایی درست نوشتن را نداشته باشد در انتقال صحیح تراوشات فکری خود به خواننده ناکام میماند. نوشتار در خصوص مباحث علم ریاضیات گسسته نیز علاوه بر درک درست از مفاهیم، نیاز به دانش «صحیح نوشتن» و روش به تحریر درآوردن مسائل و اثبات ها دارد تا بتواند هدف انتقال بی کم و کاست به خواننده را کسب نماید.

چیزی که واقعا اهمیت دارد این است که با درست نوشتن، خواننده درک صحیحی از راه و روش حل مسائل و اثبات ها کسب کند و توانایی درک و خلاقیت در کشف روشهای حل مسائل را در خود ارتقاء بخشد. در بیشتر مواقع اثبات مسائل آسان و منطق حل مسائل بسیار دست یافتنی به نظر می آید ولی در واقع در زمان نوشتن حل مسائل و اثبات ها رویکرد اشتباهی را پیش می گیریم. به همین خاطر است که ما نیاز داریم یاد بگیریم که چگونه اثبات ها را دنبال کنیم.

هر چند که رعایت حداقل معیارهای درست نویسی و پیشبرد مرحله به مرحله ی حل مسائل و اثبات ها با استدلال های منطقی، خیال ما را نسبت به درست و معتبر بودن نوشته ی خود راحت می نماید ولی مطالعه ی متون فنی و تعمق در نوشتارهای غنیِ ما را به مرحله ای از بلوغ در نویسندگی می رساند که علاوه بر رسیدن به بهترین نتیجه ی ممکن، ما را در انتقال صحیح معنا و مفهوم و درك صحیح نوشته بسیار موفق می سازد.

و در نهایت زمانی که فرا بگیریم، چگونه با اتکا به استدلال های درست اثباتمان را کامل کنیم، به فهم عمیق تری از مسائل میرسیم. پایه و بنیاد درست نویسی بسیار آسان است. تنها کافی است که دقت نماییم تا جملات استفاده شده به یکی از اشکال زیر باشد:

- ١. يا خود فرض مسئله باشد
- ٢. يا به صورت كاملا شفاف و واضح از جملات قبلي نتيجه شده باشد.
  - ٣. و يا درستى آن قبلا اثبات شده باشد.

در این جزوه تمام سعی و کوشش ما بر این بوده است تا شما را بیشتر با «درست نویسی» و نکاتی که خواننده را به این جهت سوق دهد آشنا کنیم. امید است که فراگیری نکات «درست نویسی» در تمامی مراحل زندگی راهبر و راهنمای شما باشد.

انواع نكات

در این جزوه با سه دسته نکته مواجه هستیم:

- ۱. دسته E: نکات درست نویسی که رعایت نکردن آن باعث ناقص شدن اثبات و در نتیجه کسر نمره می شود.
- ۲. دسته N: نکات درست نویسی که رعایت کردن آنها واجب نیست، امابه خوانایی راه حل، ابهام زدایی، پرهیز از تکرار و جلوگیری از خطا کمک می کنند.
  - ۳. دسته T: دام های آموزشی و خطا های رایج در حل سوالات.

افكار سازگار نوشتار نابكار رياضيات گسسته

# فصل ۱: شمارش

# سؤال ١٠١.

سه مهرهٔ رخ متمایز و صفحه شطرنجی 8 × 8 داریم. به چند روش میتوان این سه مهره را در سه خانه از این صفحه قرار داد به طوری که حداقل یک مهره وجود داشته باشد که توسط هیچ مهره ای تهدید نمی شود؟

#### پاسخ .

سوال را با اصل متمم حل مى كنيم: - كل حالات:

 $64 \times 63 \times 62$ 

- حالات نامطلوب: حالاتي كه همه رخ ها تهديد بشوند.

رخ اول برای قرار گیری در صفحه شطرنجی ۶۴ حالت دارد، حال چون رخ اول باید تهدید بشود رخ دوم را باید در سطر یا ستون رخ اول قرار بدهیم که ۱۴ حالت دارد. چون رخ سوم هم باید تهدید بشود باید در سطر یا ستون یکی از رخ ها باشد که در مجموع شامل ۶ خانه در سطر یا ستون مشترک دو رخ قبلی و ۱۴ خانه در سطرها یا ستون های غیر مشترک دو رخ است. پس کل حالت ها برابر است با:

$$64 \times 14 \times 20$$

- حالات مطلوب: طبق اصل متمم برابر است با:

$$64 \times 63 \times 62 - 64 \times 14 \times 20$$

#### نکات:

n۱:T.I نشمردن همه حالت ها: در اینجا تمام حالات نامطلوب محاسبه نشده است، زیرا این امکان وجود دارد که رخ اول توسط رخ دوم تهدید نشود و این حالت در نظر گرفته نشده است.

.... n : N : M بهتر بود اشاره شود که به دلیل تمایز رخ ها چنین نتیجه ای گرفته شده است.

# پاسخ .

- كل حالات:

 $64 \times 63 \times 62$ 

- حالات نامطلوب: حالاتي كه همه رخ ها تهديد بشوند.

 $64\times7\times20\times2$ 

افكار سازگار نوشتار نابكار رياضيات گسستا

- حالات مطلوب: طبق اصل متمم برابر است با:

$$64 \times 63 \times 62 - 64 \times 14 \times 20$$

نکات:

n٣:N.III نبود توضیحات کافی برای عبارت: به دلیل نبود توضیحات کافی، تشخیص چرایی غلط بودن جواب نهایی ممکن نیست.

#### پاسخ صحيح .

- كل حالات: به دليل تمايز رخ ها برابر است با:

$$P(64,3) = 64 \times 63 \times 62$$

- حالات نامطلوب: حالاتی که همه رخ ها تهدید بشوند. دو حالت داریم:

١. رخ اول رخ دوم را تهدید کند:

رخ اول برای قرار گیری در صفحه شطرنجی ۶۴ حالت دارد، حال چون رخ اول باید توسط رخ دوم تهدید بشود رخ دوم را باید در سطر یا ستون رخ اول قرار بدهیم که ۱۴ حالت دارد. چون رخ سوم هم باید تهدید بشود باید در سطر یا ستون یکی از رخ ها باشد که در مجموع شامل ۶ خانه در سطر یا ستون مشترک دو رخ است. پس کل حالت ها برابر است بات با ستون های غیر مشترک دو رخ است. پس کل حالت ها برابر است با:

$$64 \times 14 \times 20$$

۲. رخ اول رخ دوم را تهدید نکند:

رخ اول برای قرار گیری در صفحه شطرنجی ۶۴ حالت دارد، حال چون رخ اول نباید توسط رخ دوم تهدید بشود رخ دوم را در خانه ای به جز سطر یا ستون رخ اول قرار بدهیم که ۴۹ حالت دارد. حال رخ سوم باید هر دو رخ را تهدید کند پس باید در یکی از محل های تقاطع سطر و ستون رخ اول و رخ دوم قرار بگیرد که دو حالت دارد، پس کل حالت ها برابر است با:

$$64 \times 49 \times 2$$

- حالات مطلوب: طبق اصل متمم برابر است با:

$$64 \times 63 \times 62 - (64 \times 14 \times 20 + 64 \times 49 \times 2)$$

#### سؤال ۲.۱.

اتحاد زير را ثابت كنيد.

$$1^{2\binom{n}{1}} + 2^{2\binom{n}{2}} + 3^{2\binom{n}{3}} + \dots + n^{2\binom{n}{n}} = n(n+1)2^{n-2}$$

پاسخ .

فرض کنید  $P=\sum_{k=0}^n k^2 \binom{n}{k}$  بیانگر تعداد راه های انتخاب یک کمیته از بین n کاندیدا است به طوری که یک فرد یا دو فرد متمایز، رئیس کمیته باشند. حال این شمارش را به روش دیگری انجام می دهیم.

افكار سازگار نوشتار نابكار رياضيات كسسته

۱. با فرض داشتن یک رئیس، رئیس را انتخاب کرده و تصمیم می گیریم که بقیه افراد حضور داشته باشند یا خیر و حالات به دست آمده را جمع مي كنيم با حالاتي كه ٢ رئيس را انتخاب كرديم در مورد حضور يا عدم حضور بقيه افراد تصميم گرفتيم:

$$P = n \times 2^{n-1} + n \times (n-1) \times 2^{n-2} = n \times (n+1) \times 2^{n-2}$$

از تساوی این ۲ حالت حکم مساله اثبات می شود:

$$\sum_{k=0}^{n} k^{2} \binom{n}{k} = n \times (n+1) \times 2^{n-2}$$

#### نكات:

n imes(n-1) عدم تطابق توضیحات با فرمول نوشته شده، انتخاب دو رئیس از میان n نفر  $\binom{n}{2}$  حالت دارد نه n۴:E.IV

na:N.V بهتر است روش اثبات (دوگانه شماری)ذکر شود

n9:E.VI یک طرف دوگانه شماری که نیازمند اثبات است، بدیهی در نظر گرفته شده است.

#### پاسخ صحیح .

سوال را با دوگانه شماری حل می کنیم: فرض کنید P بیانگر تعداد راه های انتخاب یک کمیته از بین n کاندیدا است به طوری که یک فرد رئیس کمیته و یک نفر معاون باشند و رئیس و معاون می توانند یک نفر باشند. شمارش این راه ها به ۲ روش امکان پذیر است.

۱. با فرض یکسان بودن رئیس و معاون، رئیس را انتخاب کرده و تصمیم می گیریم که بقیه افراد حضور داشته باشند یا خیر و حالات به دست آمده را جمع میکنیم با حالاتی که رئیس و معاون متمایز را انتخاب کردیم و در مورد حضور یا عدم حضور بقیه افراد تصمیم

$$P = n \times 2^{n-1} + n \times (n-1) \times 2^{n-2} = n \times (n+1) \times 2^{n-2}$$

۲. ابتدا این که چه اعضایی کمیته و رئیس و معاون را تشکیل دهند را انتخاب می کنیم که این تعداد می تواند هر عددی باشد، سپس رئیس و معاون یکسان یا متمایز را از بین آن ها انتخاب می کنیم:

$$P = \sum_{k=0}^{n} \binom{n}{k} (k(k-1) + k) = \sum_{k=0}^{n} k^{2} \binom{n}{k}$$

از تساوى ٢ حالت فوق حكم مساله اثبات مى شود:

$$\sum_{k=0}^{n} k^{2} \binom{n}{k} = n \times (n+1) \times 2^{n-2}$$

#### سؤال ٣.١.

۶۰ دانشجو در کلاس ریاضیات گسسته حضور دارند.در میان هر ۱۰ نفر از این کلاس ، حداقل ۳ نفر نمره مبانی یکسانی دارند. ثابت کنید در این کلاس ۱۵ نفر وجود دارند که نمره مبانی آن ها یکسان است.

پاسخ .

در نظر میگیریم حداکثر تعداد تکرار از یک نمره ۱۴ عدد است که در این صورت حداقل به ۵ نمره متفاوت نیاز است . در این صورت باز میتوان گروه ۱۰ تایی را از دانش آموزان انتخاب کرد که حداکثر دو نفر نمره یکسان داشته باشند . پس فرض اولیه غلط بوده و مشخص میشود که لااقل از یکی از نمرات وجود دارد که ۱۵ دانش آموز یا بیشتر آن نمره را دارند.

نکات:

nv:N.VII در پاسخ از برهان خلف استفاده شده ولی از آن نام برده نشده است و باید توجه کنیم فرض خلف را حتما بیان کنیم.

nA:N.VIII باید اصل لانه کبوتری که از آن استفاده کرده است را نام میبرد و نحوه استفاده از آن مشخص شود. sec:۲

na:T.IX پاسخ كامل نيست. پاسخ درست و كامل در پايين آمده است.

### پاسخ صحیح .

از برهان خلف استفاده می کنیم. فرض خلف: فرض کنید در این کلاس هیچ ۱۵ نفری وجود نداشته باشند که نمره ی مبانی آنها یکسان باشد. در این صورت حداکثر ۱۴ نفر وجود دارند که نمره ی یکسان داشته باشند. بنابراین طبق اصل لانه کبوتری حداقل به اندازه ی سقف  $\frac{60}{14}$  یعنی ۵ نمره ی متفاوت در کلاس وجود دارد. مسئله را به دو حالت تقسیم می کنیم ؛

- ۱. اگر پنج نمره ی متمایز وجود داشته باشند که از هر کدام ۲ عضو (دو نفر در کلاس که آن نمره را دارند) وجود داشته باشد؛ در این صورت از هر کدام از این نمرات دو عضو را درنظر گرفته و به مجموعه ای ۱۰ عضوی می رسیم که هیچ سه نفری در آن نمره ی یکسان ندارند که این خلاف فرض مسئله است و به تناقض رسیدیم. پس فرض خلف رد شده و حداقل ۱۵ نفر وجود دارند که نمره ی یکسانی داشته باشند.
- 7. اگر پنج نمره ی متمایز، هرکدام دارای حداقل دو عضو وجود نداشته باشند؛ در این صورت  $k \leq 4$  نمره ی متمایز با بیش از یک عضو داریم (مجموعه ی این نمرات را A بنامیم) که با توجه به فرض خلف، حداکثر تعداد  $k \times k$  عضو را پوشش می دهند. بنابراین حداقل  $k \times k$  عضو باقی مانده که هیچ دو تایی نمی توانند دارای نمره ی یکسان باشند (در غیر این صورت تعداد نمره های متمایز دارای بیشتر مساوی ۲ عضو به حداقل  $k \times k$  می رسد). بنابراین هر یک از این اعضا دارای نمره ی متمایز است (مجموعه ی این اعضا را B بنامیم). می توان با انتخاب دو عضو از هر نمره ی مجموعه ی A و تمام اعضای مجموعه ی B به مجموعه ی متشکل از این اعضا را B بنامیم). می توان با انتخاب دو عضو رسید که  $k \times k$  عضو رسید که  $k \times k$  و هیچ سه عضوی در آن دارای نمره ی یکسان نیستند. هر ده عضوی از این مجموعه انتخاب شود، نقض فرض مسئله است و به تناقض رسیدیم. پس فرض خلف رد شده و حداقل ۱۵ نفر وجود دارند که نمره ی یکسانی داشته باشند.

#### سؤال ۴.۱.

. وریب عبارت  $x^{12}$  در بسط عبارت  $(1-4x)^{-5}$  را بیابید ضریب عبارت

پاسخ .

طبق بسط دوجمله ای داریم:

$$\frac{1}{(1-4x)^5} = \sum_{k=0}^{\infty} \binom{k+4}{k} 4^k x^k$$

(E.XI) . ام دنباله  $a_n$  ضریب  $x^{12}$  است ۱۲ جمله ۱۲

$$\longrightarrow a_{12} = \begin{pmatrix} 16 \\ 12 \end{pmatrix} 4^{12}$$

افكار سازگار نوشتار نابكار ریاضیات گسس

نكات:

 $\operatorname{sec}$ : ابهتر است اصل بسط دوجمله ای هم نوشته شود.  $\operatorname{nn}$ :  $\operatorname{N.X}$ 

sec:۲ قبل از استفاده از متغیر باید آن را تعریف کرد. تعریف دنباله  $a_n$  ضروری است. n۱۱:E.XI

پاسخ صحیح .

طبق جدول Useful Generating Functions از كتاب Wosen از كتاب اشاره كردند داريم:

$$(1-x)^{-n} = \sum_{k=0}^{\infty} {n+k-1 \choose k} x^k$$

بنابراین در این سوال داریم:

$$(1-4x)^{-5} = \sum_{k=0}^{\infty} {5+k-1 \choose k} (4x)^k$$

جمله  $x^{12}$  به ازای مقدار k=12 ساخته می شود. بنابراین جواب برابر خواهد بود با:

$$\binom{16}{12}(4)^{12}$$

چند عدد طبیعی حداکثر ۹ رقمی وجود دارد که مجموع ارقام آن برابر با ۳۲ باشد؟

پاسخ .

سوال را با اصل شمول و عدم شمول حل مي كنيم:

$$|A_1 \cup A_2 \cup \ldots \cup A_9| = \binom{9}{1}|A_1| + \binom{9}{2}|A_1 \cap A_2| + \ldots + \binom{9}{9}|A_1 \cap A_2 \cap \ldots \cap A_9|$$

حال مقدار عبارت ها را حساب مي كنيم:

$$|A_1| = {30 \choose 8}$$
$$|A_1 \cap A_2| = {20 \choose 8}$$
$$|A_1 \cap A_2 \cap A_3| = {10 \choose 8}$$

برای بقیه جمله ها جواب برابر ۱۰ است. حال از اصل متمم برای به دست آوردن جواب نهایی استفاده می کنیم: -کل حالات:

$$\binom{40}{8}$$

- حالات مطلوب:

$$\binom{40}{8} - \binom{9}{1} \binom{30}{8} + \binom{9}{2} \binom{20}{8} - \binom{9}{3} \binom{10}{8}$$

نكات:

تعریف متغیر های  $A_i$  ضروری است، چون در غیر این صورت منظور از بقیه استدلال ها به هیج وجه مشخض نیست n۱۲:E.XII

n۱۳:E.XIII اثبات و یا در صورت وضوح، اشاره به تقارن میان مجموعه ها برای استفاده از اصل شمول و عدم شمول به این شکل ضروری است.

### پاسخ صحيح .

زقم i ام این عدد را با  $x_i$  نشان می دهیم، بنابراین به دنبال یافتن تعداد جواب های صحیح معادله زیر هستیم:

$$\sum_{1}^{9} x_i = 32$$

 $\forall i \in [1, 9], i \in N : x_i \le 9$ 

تعداد جواب های صحیح این معادله را به کمک اصل متمم پیدا می کنیم

کل حالات: تعداد جواب های صحیح نامنفی معادله  $x_i=32$  .این یک معادله سیاله است و تعداد جواب های صحیح آن برابر است با:

$$\binom{40}{8}$$

-حالات نامطلوب: تعداد جواب های صحیح نامنفی معادله  $\sum_{1}^{9}x_{i}=32$  به طوری که:

 $(\exists i \in [1, 9], i \in N : x_i \ge 10)$ 

حال اگر مجموعه حالت هایی که در آن  $x_i \geq 10$  است را با  $A_i$ نشان دهیم، کافی است تعداد اعضای اجتماع این مجموعه ها را بیابیم طبق اصل شمول و عدم شمول و با توجه به تقارن میان  $A_i$  ها داریم:

$$|A_1 \cup A_2 \cup \dots \cup A_9| = \binom{9}{1}|A_1| + \binom{9}{2}|A_1 \cap A_2| + \dots + \binom{9}{9}|A_1 \cap A_2 \cap \dots \cap A_9|$$

برای محاسبه مقدار عبارت ها، در معادله سیاله متناظر، در صورتی که  $x_i \geq 10$  بود قرار می دهیم  $x_i = y_i + 10$  و در غیر این صورت قرار می دهیم  $x_i = y_i$ ، حال اگر تعداد i هایی را که به ازای آن ها  $i \geq 10$  است را با  $i \geq 10$  نشان بدهیم، حال به دنبال تعداد جواب های صحیح نامنفی معادله سیاله  $i \geq 10$  هستیم، که برابر است با:

$$\binom{40-10k}{8}$$

حال مقدار عبارت ها را حساب مي كنيم:

$$|A_1| = \binom{30}{8} \tag{k=1}$$

$$|A_1 \cap A_2| = \binom{20}{8} \tag{k=2}$$

افكار سازگار نوشتار نابكار وياضيات گسسته

$$|A_1 \cap A_2 \cap A_3| = \binom{10}{8} \tag{k = 3}$$

برای بقیه جمله ها جواب برابر ۱۰ است. یس کل حالات نامطلوب برابر است با:

$$\binom{9}{1}\binom{30}{8} - \binom{9}{2}\binom{20}{8} + \binom{9}{3}\binom{10}{8}$$

- حالات مطلوب: طبق اصل متمم برابر است با:

$$\binom{40}{8} - \binom{9}{1} \binom{30}{8} + \binom{9}{2} \binom{20}{8} - \binom{9}{3} \binom{10}{8}$$

#### سؤال ٤.١.

با استفاده از توابع مولد نشان دهید تعداد روش های انتخاب ۴ عضو دو به دو نامتوالی از مجموعه اعداد ۱،۲،۳،...، برابر با انتخاب ۴ از ۳-n است.

## پاسخ .

یک زیرمجموعه از این نوع مثلا او۳و۷و۱۰ را انتخاب و نابرابری های اکید

0 < 1 < 3 < 7 < 10 < n + 1

را در نظر میگیریم. و بررسی میکنیم چند عدد صحیح بین هر دو عدد متوالی از این اعداد وجود دارند. در اینجا ۰ و ۱ و  $\pi$  و ۲ و  $\pi$  اب دست می آوریم: ۰ زیرا عددی صحیح بین ۰ و ۱ وجود ندارد و ۱ زیرا تنها عدد ۲ بین ۱ و  $\pi$  وجود دارد و  $\pi$  زیرا اعداد صحیح  $\pi$  و ۵ و  $\pi$  بین  $\pi$  و ۷ وجود دارند و  $\pi$  زیرا اعداد صحیح برابر  $\pi$  و ۲ است.  $\pi$  و ۷ و جود دارند و  $\pi$  دارند و  $\pi$  . . . مجموع این ۵ عدد صحیح برابر  $\pi$  .  $\pi$  و  $\pi$  .  $\pi$  .  $\pi$  .  $\pi$  .  $\pi$  .  $\pi$  . و ۲ میراند و  $\pi$  . . . مجموع این ۵ عدد صحیح برابر

پس تابع مولد زیر را داریم.

$$G(x) = (1+x^2+x^3+\ldots)^2(x+x^2+x^3+\ldots)^3 = (\sum_{k=0}^\infty x^k)^2(\sum_{k=0}^\infty x^{k+1})^3 = \frac{1}{(1-x)^2} \cdot (\frac{x}{1-x})^3 = \frac{x^3}{(1-x)^5} = x^2(1-x)^{-5} = x^3\sum_{k=0}^\infty \binom{k+4}{k}x^k = \sum_{k=0}^\infty \binom{k+4}{k}x^{k+3} = (E.XV) \sum_{k=0}^\infty \binom{k+1}{k-3}x^k$$
 
$$\binom{n-3}{n-7} = \binom{n-3}{4}$$
 به دنبال ضریب  $x^{n-4}$  میگشتیم پس  $x^{n-4}$  و جواب نهایی برابر است با

#### نکات:

n۱۴:E.XIV مثال زدن باید به صورتی باشد که حذف آن اختلالی در فهم جواب ایجاد نکند . در اینجا اگر مثال پاراگراف اول را حذف کنیم مشخص نیست تابع مولد برچه اساسی نوشته شده است. پس باید توضیحی درمورد تابع مولد و جمله ای که به دنبال ضریب آن هستیم sec: بدهیم ا

یاز هست که کاملا گفته شود چه تغییر متغیری انجام میشود . در اینجا تغییر متغیر  $k \to k+3$  را داریم. همیشه ماهنگام تغییر متغیر توجه کنیم ممکن است کران ها تغییر کنند. در اینجا کران پایین از صفر به سه میرود.  $\sum_{k=3}^{\infty} {k+1 \choose k-3} x^k$ 

n۱۶: N.XVI در طی پاسخ به سوال خوب است دقت کنیم همه ی اعداد را یا فارسی یا انگلیسی بنویسیم. ۳

پاسخ .

تابع مولد فاصله از مبدا:

$$G(x) = (1 + x + x^{2} + ...)(x + x^{2} + x^{3} + ...)^{3}$$

در مجموع ۴-n عدد داریم . توان های x باید بین مبدا و مقصد باشند پس باید توانی از x را که کوچک تر یا مساوی ۳-۴ هستند را بیابیم:

$$G(x) = \frac{x^3}{(1-x)^4} = x^3 (1-x)^{-4} = x^3 \sum_{k=0}^{\infty} {k+3 \choose 3} x^k$$

$$\longrightarrow \sum_{k=0}^{\infty} {x+k \choose k} = \frac{1}{(1+x)^{k+1}} \longrightarrow k+3 \le n-4 \to k \le n-7$$

$$\binom{n+1}{r+1} = \sum_{k=r}^{n} \binom{k}{r} \tag{1}$$

مجموع حالات:

$$\longrightarrow \sum_{k=0}^{n-7} \binom{k+3}{3} \xrightarrow{(1)} \binom{n-7+4}{4} = \binom{n-3}{4}$$

نکات:

n۱۷:E.XVII به هنگام جایگذاری در فرمول باید جایگذاری ها واضح باشد. در این مثال در فرمول (۱) کران پایین از ۲ هست ولی در قسمتی که از آن استفاده شده کران پایین از ۱ است. همین مطلب گویای آن است که به توضیحات بیشتری نیاز هست. ۶ec:۴ عبارت زیر صورت کامل شده این نکته است:

$$\longrightarrow \sum_{k=0}^{n-7} {k+3 \choose k} = \sum_{k=3}^{n-4} {k \choose k-3} = \sum_{k=3}^{n-4} {k \choose 3} \xrightarrow[r \to 3, n \to n-4]{(1)} \xrightarrow[q \to 3]{(1)}$$

#### پاسخ صحیح .

تعداد عضوهای انتخاب نشده کوچکتر از عضو اول انتخاب شده را  $x_1$ ، عضوهای انتخاب نشده بین عضو اول و دوم انتخاب شده را  $x_2$ ، عضوهای انتخاب نشده بین عضو دوم و سوم انتخاب شده را  $x_3$ ، عضوهای انتخاب نشده بین عضو دوم و سوم انتخاب شده را  $x_3$ ، عضوهای انتخاب نشده بزرگ تر از چهارمین عضو انتخاب شده را  $x_4$  می گیریم. کافی است تعداد جوابهای صحیح نامنفی معادله زیر را با شرایط  $x_1, x_5 \geq 0$   $x_2, x_3, x_4 \geq 1$  شرایط ایکان میرایم

$$x_1 + x_2 + x_3 + x_4 + x_5 = n - 4$$

که برابر است با ضریب  $x^{n-4}$  در عبارت:

$$(1+x+x^2+\ldots)(x+x^2+x^3+\ldots)(x+x^2+x^3+\ldots)(x+x^2+x^3+\ldots)(1+x+x^2+\ldots) = \frac{x^3}{(1-x)^5}$$

. بنابراین کافی است ضریب  $x^{n-7}$  را در بسط  $(1-x)^{-5}$  بشماریم

طبق جدول Useful Generating Functions از کتاب Rosen که استاد نیز به آن اشاره کردند داریم:

$$(1-x)^{-n} = \sum_{k=0}^{\infty} {n+k-1 \choose k} x^k$$

بنابراین در این سوال داریم:

$$(1-x)^{-5} = \sum_{k=0}^{\infty} {5+k-1 \choose k} x^k = \sum_{k=0}^{\infty} {k+4 \choose k} x^k = \sum_{k=0}^{\infty} {k+4 \choose 4} x^k$$

به ازای n-7 ساخته می شود. بنابراین جواب برابر است با:  $x^{n-7}$ 

$$\binom{n-3}{4}$$

#### سؤال ٧.١.

اتحاد زير را ثابت كنيد.

$$\sum_{i=0}^{n} i \binom{n}{i}^2 = \frac{n}{2} \binom{2n}{n}$$

پاسخ .

$$A = \sum_{i=0}^{n} i \binom{n}{i}^2 \xrightarrow{\times 2} 2A = \sum_{i=0}^{n} i \binom{n}{i}^2 + \sum_{i=0}^{n} i \binom{n}{i}^2 \xrightarrow{j=n-i} 2A = \sum_{i=0}^{n} i \binom{n}{i}^2 + \sum_{i=0}^{n} i \binom{n}{i}^2 + \sum_{j=0}^{n} i \binom{n}{j}^2 + \sum_{j=0}^{n} i \binom{$$

بنابراین میدانیم که:

$$2A = n\binom{2n}{n} \to A = \frac{n}{2}\binom{2n}{n}$$

نکات:

n۱۸:N.XVIII باید فرمول و اتحاد های مورد استفاده و رفرنس معتبر آن ذکر شود . به عنوان رفرنس اسم اتحاد هم کافی است.

اسخ صحيح .

طبق اتحاد واندرموند داريم:

$$\sum_{i=0}^{k} \binom{m}{i} \binom{n}{k-i} = \binom{m+n}{k}$$

$$A = \sum_{i=0}^{n} i \binom{n}{i}^2 \xrightarrow{\times 2} 2A = \sum_{i=0}^{n} i \binom{n}{i}^2 + \sum_{i=0}^{n} i \binom{n}{i}^2 \xrightarrow{j=n-i}$$

$$2A = \sum_{i=0}^{n} i \binom{n}{i}^2 + \sum_{j=0}^{n} (n-j) \binom{n}{n-j}^2 \to 2A = \sum_{i=0}^{n} i \binom{n}{i}^2 + \sum_{j=0}^{n} (n-j) \binom{n}{j}^2 =$$

$$\sum_{i=0}^{n} (i+(n-i)) \binom{n}{i}^2 \to 2A = n \sum_{i=0}^{n} \binom{n}{i}^2 \to 2A = n \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i} \xrightarrow{m=n=k}$$

$$2A = n \binom{2n}{n} \to A = \frac{n}{2} \binom{2n}{n}$$