EGZAMIN Z MATEMATYKI DYSKRETNEJ LUTY 2005, TERMIN POPRAWKOWY, CZĘŚĆ A, CZAS: 120 MIN.

Zadanie 1

Podaj zwartą (bez symboli \sum i \cdots) postać sumy

$$\sum_{k=1}^{n} \left\lfloor \sqrt{k} \right\rfloor.$$

Zadanie 2

Znajdź wszystkie rozwiązania układu kongruencji

$$\begin{cases} 30|8x+2\\ 35|11x-1 \end{cases}$$

Zadanie 3

Niech $u_k = (-2)^{k-1}$ Pokaż, że

$$\sum_{k=1}^{m} u_k \binom{m}{k} = \begin{cases} 0 \text{ dla parzystego } m \\ 1 \text{ dla nieparzystego } m. \end{cases}$$

Następnie udowodnij wzór

$$|A_1 \div A_2 \div \cdots \div A_n| = \sum_{1 \le i_1 < i_2 < \cdots < i_k \le n} u_k |A_{i_1} \cap \cdots \cap A_{i_k}|$$

gdzie $A \div B$ oznacza różnicę symetryczną, a sumowanie odbywa się po wszystkich ciągach niepustych.

Zadanie 4

Ile jest ciągów długości n złożonych z cyfr 0,1,2, w których żadne dwa zera nie są obok siebie? Ułóż i rozwiąż odpowiednią zależność rekurencyjną otrzymując zwartą postać rozwiązania (bez symboli \sum i · · ·).

Powodzenia!

EGZAMIN Z MATEMATYKI DYSKRETNEJ LUTY 2005, TERMIN POPRAWKOWY, CZĘŚĆ B, CZAS: 120 MIN.

Zadanie 5

Przypuśćmy, że \mathcal{P} jest programem w postaci while do Program ten uruchamiamy ze ściśle określonymi danymi. Zakończenie pracy programu \mathcal{P} zależy od zajścia pewnych zdarzeń losowych. W związku z tym mamy pewną przestrzeń probabilistyczną z prawdopodobieństwem P i w tej przestrzeni zdarzenia losowe A_i oraz B_i dla wszystkich $i \in N$ (0 \notin N). Zdarzenie A_i zachodzi wtedy i tylko wtedy, gdy pętla w programie \mathcal{P} została wykonana przynajmniej i razy, a zdarzenie B_i zachodzi wtedy i tylko wtedy, gdy program \mathcal{P} zakończył pracę (dokładnie) po i-krotnym wykonaniu zawartej w nim pętli. Przyjmijmy, że prawdopodobieństwo warunkowe $P(A_i|B_i)$ nie zależy od i i jest równe p. Znajdź prawdopodobieństwo zdarzenia C polegającego na tym, że program \mathcal{P} nigdy nie zakończy pracy.

Zadanie 6

Oblicz liczbę drzew spinających grafu $K_{3,3}$.

Zadanie 7

Skonstruuj algorytm wielomianowy znajdujący liczbę chromatyczną dowolnego grafu stopnia 3.

Zadanie 8

 $Pokryciem\ wierzchołkowym\ nazywamy\ podzbiór\ wierzchołków\ grafu\ taki że każda krawędź grafu jest incydentna z pewnym z tych wierzchołków. <math>Cyklicznym\ pokryciem\ krawędziowym\ digrafu\ nazywamy\ taki\ podzbiór\ krawędzi\ digrafu, że każdy\ (skierowany)\ cykl\ digrafu\ zawiera\ pewną\ krawędź\ z\ tego\ podzbioru. Pokaż wielomianową\ redukcję\ problemu\ istnienia\ pokrycia\ wierzchołkowego\ mocy\ k\ w\ grafie\ do\ problemu\ istnienia\ cyklicznego\ pokrycia\ krawędziowego\ rozmiaru\ k\ w\ digrafie.$

Powodzenia!