



# 学期汇报

陈嘉逸

2021-03-17

### 性格预测

• 基于学习行为预测学生的性格

### 基于会话的推荐

• 修改以往的两篇论文

01



02



# 1.1 问题描述



#### 研究问题

• 性格被证明在学习中起着重要的作用。如何通过学生的学习行为准确地预测学生的性格是值得关注的问题。

#### 已有数据

- 2063名学生的学习行为记录
- 学生性格 (Five-Factor Model) by TIPI 问卷

#### 目标

- 基于学生的学习行为,预测他在Five-Factor Model五个 维度的分值/分类
  - 分值预测: 直接预测某个维度的分值(1-7分)
  - 分类:根据一定的标准将1-7分化为多个类别
- 对比现有的预测模型,提出更好的模型,更准确地预测性格



Openness to experience

Conscientiousness

Low/Neutral/High

**E**xtraversion

1.0/2.0/.../7.0

**A**greeableness

**N**euroticism

# 1.2 此前进展



#### 早期工作

- 预处理数据
- · 分类/回归 Baseline实现

### 提升Accuracy

- 基于行为序列+attention预测性格: 关注某个具体的行为
- 例如 "在某课程A主动录音X次" 与 Conscientiousness 有显著的关联
- 性格之间的联系
  - 预测Extraversion的时候考虑其 他四个维度
  - 结果有些许提升

#### Imbalance问题

- 性格分布不平衡导致分类器都将性格预测为 多数类——高Accuracy却没有意义
  - 现有的研究很少关注性格中不平衡分布的问题
- 从数据的角度,尝试Oversampling 和 Undersampling的手段
- Oversampling: 提出基于Neighbor的样本 生成算法以及将GAN应用于样本生成
- -Undersampling: 尝试最新的模型
- **从模型的角度**:修改损失函数,将Focal Loss/GHM Loss 用于模型

# 1.3 标签之间的联系



| X | Υ | R       | P      |
|---|---|---------|--------|
| 0 | С | 0.3185  | 0      |
| 0 | E | 0.314   | 0      |
| 0 | Α | 0.2627  | 0      |
| 0 | N | -0.2579 | 0      |
| С | E | 0.1232  | 0      |
| С | Α | 0.3473  | 0      |
| С | N | -0.4661 | 0      |
| E | Α | 0.0463  | 0.0354 |
| E | N | -0.1974 | 0      |
| Α | N | -0.4406 | 0      |

|    | Model          | 0      | С      | E      | Α      | N      |
|----|----------------|--------|--------|--------|--------|--------|
| F1 | RF             | 0.3408 | 0.3117 | 0.2743 | 0.3325 | 0.3098 |
|    | SVM            | 0.3563 | 0.3461 | 0.3267 | 0.3956 | 0.3345 |
|    | KNN            | 0.3485 | 0.3078 | 0.2971 | 0.3645 | 0.3131 |
|    | DNN            | 0.3479 | 0.3479 | 0.3297 | 0.3911 | 0.3458 |
|    | DNN-MultiLabel | 0.3665 | 0.3922 | 0.3364 | 0.401  | 0.3592 |

www.islide.cc





- 相对Baseline提升并不明显,并且不是在每个维度 都管用
- 实验结果相对较低
  - G-Mean维持在0.35左右
  - 总体的F、Acc也在0.38左右, 达不到较好的 预测水平.
- 实验结果不稳定
  - 更换特征后,效果变化巨大

| Metric: G-Mean     |        |        |        |        |        |
|--------------------|--------|--------|--------|--------|--------|
| Model              | 0      | С      | E      | Α      | N      |
| SMOTE              | 0.3417 | 0.3751 | 0.3087 | 0.3288 | 0.3439 |
| <b>BDSMOTE</b>     | 0.3244 | 0.3705 | 0.2971 | 0.3378 | 0.3213 |
| ADASYM             | 0.3487 | 0.3915 | 0.3111 | 0.3339 | 0.3206 |
| <b>SMOTETomek</b>  | 0.3586 | 0.3821 | 0.3285 | 0.3365 | 0.3362 |
| <b>KMeansSMOTE</b> | 0.3267 | 0.3163 | 0.2909 | 0.312  | 0.2931 |
| Ours               | 0.353  | 0.407  | 0.3282 | 0.319  | 0.3651 |

| Metric: F          |        |        |        |        |        |
|--------------------|--------|--------|--------|--------|--------|
| Model              | 0      | С      | E      | Α      | N      |
| SMOTE              | 0.3624 | 0.387  | 0.3247 | 0.3379 | 0.3478 |
| BDSMOTE            | 0.3428 | 0.3864 | 0.3339 | 0.3462 | 0.3348 |
| ADASYM             | 0.3664 | 0.4028 | 0.3415 | 0.3481 | 0.3332 |
| <b>SMOTETomek</b>  | 0.3755 | 0.3913 | 0.3407 | 0.3434 | 0.3423 |
| <b>KMeansSMOTE</b> | 0.3572 | 0.3578 | 0.3304 | 0.3315 | 0.3386 |
| Ours               | 0.3679 | 0.4243 | 0.3442 | 0.344  | 0.3789 |

# 1.5 问题所在



#### 样本重叠

- 通过T-SNE进行可视化,发现样本重叠严重,因此分类 器难以进行分类
- 即使进行重采样,采样后的结果也很糟糕

#### 分类器输出

- 由于样本难以区分,分类器对3类输出的概率为 0.3/0.4/0.3,没有显著的区别。
- 因此类似Focal Loss 也无法很好地解决这样的问题

#### 特征选择

• 尝试过多种特征抽取的方式,均无效



# 1.5 问题所在

#### 理想的重采样



#### 现实的重采样



www.islide.cc



# 2.1 当前进展



### 修改以前的论文

### ○ 01.推荐 + 可解释性

- 考虑Sequential Pattern、重复点击以及Item Similarity
- 已经完成修改并投出.

### **O2.**Accuracy + Long Tail

- Accuracy 和 Coverage的权衡
- 目前正在收集Baseline的实验结果
- 以及自己的模型修改.



Why recommend this item



Recommend long tail items

# 3.1未来工作



#### 更好的序列建模

• Graph: 充分利用全局图信息和单个序列的信息

### 基于会话的推荐

#### 更多的评价指标

• 针对Long tail的问题,将Imbalance Learning的思想应用到基于会话的推荐



#### 个性化课程推荐

结合知识追踪、认知诊断,以及学生的画像,制定个性化的学习路径/推荐课程

## 学习资源推荐

THANKS

Q&A

陈嘉逸

2021-03-16