Universality of quantum circuit

Ryuhei Mori

Tokyo Institute of Technology

Universality of a quantum circuit

Theorem (Universality of finite gate set)

For any unitary matrix $U \in L(\mathbb{C}^{2^n})$ and $\epsilon > 0$, there is a quantum circuit with X, Y, Z, H, S, T, CNOT gates computing \widetilde{U} satisfying $D(U,\widetilde{U}) < \epsilon$.

- Any unitary matrix can be decomposed to a product of two-level unitary matrices. Done
- 2 Any two-level unitary matrix can be decomposed to a product of controlled-unitary gates. Done
- **3** Any controlled-untary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.
- 4 Any single-qubit gate can be approximated by X, Y, Z, H, S and T.

Special unitary group

- U(n) :=the set of $n \times n$ unitary matrices.
- SU(n) := the set of $n \times n$ unitary matrices U with det(U) = 1.
- U(n) and SU(n) are groups.
- For $U \in SU(n)$ and $V \in U(n)$, $VUV^{\dagger} \in SU(n)$.
- For $V \in U(n)$ and $W \in U(n)$, $VWV^{\dagger}W^{\dagger} \in SU(n)$.
- For $U \in U(n)$, there exists $V \in SU(n)$ and $\theta \in \mathbb{R}$ such that $U = e^{i\theta}V$.

Theorem

Any controlled-unitary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.

- 1 Controlled-U(2) with single controlled qubit.
- **2** Controlled-SU(2) with n controlled qubits.
- 3 Controlled-U(2) with n controlled qubits.

Decomposition of single qubit unitary

Lemma

Any single qubit unitary $U \in U(2)$, there is single qubit unitary matrices A, B, C such that ABC = I and $e^{i\alpha}AXBXC = U$.

From this lemma,

Decomposition of single qubit unitary

Lemma

Any single qubit unitary $U \in U(2)$, there is single qubit unitary matrices A, B, C and $\alpha \in \mathbb{R}$ such that ABC = I and $e^{i\alpha}AXBXC = U$.

Proof.

For any $U \in U(2)$, there exists $\alpha \in [0, 2\pi)$ and $V \in SU(2)$ such that $U = e^{i\alpha} V$.

For
$$R_Z(\theta) = \begin{bmatrix} e^{-i\frac{\theta}{2}} & 0\\ 0 & e^{i\frac{\theta}{2}} \end{bmatrix}$$
, $XR_Z(\theta)XR_Z(-\theta) = R_Z(-2\theta)$.

For any $V \in \overline{SU}(2)$, there exists $\theta \in [0, 2\pi)$ and $P \in SU(2)$ such that

$$V = PR_Z(-2\theta)P^{\dagger} = PXR_Z(\theta)XR_Z(-\theta)P^{\dagger}.$$

$$A=P$$
, $B=R_Z(\theta)$, $C=R_Z(-\theta)P^{\dagger}$ satisfy the conditions.

Theorem

Any controlled-unitary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.

- 1 Controlled-U(2) with single controlled qubit. Done
- 2 Controlled-SU(2) with n controlled qubits.
- 3 Controlled-U(2) with n controlled qubits.

Group commutator and controlled-unitary

Theorem

For any $U \in SU(2)$, controlled-U gate with n controlled qubits can be realized by $O(n^2)$ CNOT and arbitrary single-qubit gates without ancillas (working qubits).

Proof.

Induction on n. For the group commutator decomposition $U = VWV^{\dagger}W^{\dagger}$ using $V = PiXP^{\dagger}$, $W = PR_Z(\theta)P^{\dagger} \in SU(2)$ for some $\theta \in [0, 2\pi)$ and $P \in SU(2)$.

$$S_n = 4S_{n/2} = 4^{\log n} S_1 = O(n^2).$$

Theorem

Any controlled-unitary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.

- 1 Controlled-U(2) with single controlled qubit. Done
- 2 Controlled-SU(2) with n controlled qubits. Done
- 3 Controlled-U(2) with n controlled qubits.

Controlled-U(2) with n controlled qubits

For any $U \in U(2)$, there exists $V \in SU(2)$ and $\alpha \in \mathbb{R}$ such that $U = e^{i\alpha}V$.

$$A_n = S_n + A_{n-1} = O(n^3)$$

Theorem

Any controlled-unitary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.

- 1 Controlled-U(2) with single controlled qubit. Done
- 2 Controlled-SU(2) with n controlled qubits. Done
- 3 Controlled-U(2) with n controlled qubits. Done

Universality of a quantum circuit

Theorem (Universality of finite gate set)

For any unitary matrix $U \in L(\mathbb{C}^{2^n})$ and $\epsilon > 0$, there is a quantum circuit with X, Y, Z, H, S, T, CNOT gates computing \widetilde{U} satisfying $D(U,\widetilde{U}) < \epsilon$.

- Any unitary matrix can be decomposed to a product of two-level unitary matrices. Done
- 2 Any two-level unitary matrix can be decomposed to a product of controlled-unitary gates. Done
- 3 Any controlled-untary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates. Done
- 4 Any single-qubit gate can be approximated by X, Y, Z, H, S and T.

Approximation of a single-qubit gate is sufficient

Theorem

Any single-qubit gate can be approximated by X, Y, Z, H, S and T.

This theorem shows the universality of the gate set with CNOT. Assume $D(U_i, V_i) \le \epsilon$ for i = 1, ..., m.

$$\begin{split} &D\big(U_mU_{m-1}\cdots U_1,\,V_mV_{m-1}\cdots V_1\big)\\ &\leq \sum_{i=1}^m D\,\big(U_m\cdots U_iV_{i-1}\cdots V_1,\,U_m\cdots U_{i+1}V_i\cdots V_1\big) \quad \text{(triangle inequality)}\\ &= \sum_{i=1}^m D\,\big(U_i,\,V_i\big) \quad \text{(unitary invariance)}\\ &< m\epsilon. \end{split}$$

Universality of X, Y, Z, H, S, T

Universality of X, Y, Z, H, S, T

$$T \cong R_Z(\pi/4)$$
. $HTH \cong R_X(\pi/4)$.

$$R_{Z}(\pi/4)R_{X}(\pi/4) = \left[\cos\frac{\pi}{8}I - i\sin\frac{\pi}{8}Z\right] \left[\cos\frac{\pi}{8}I - i\sin\frac{\pi}{8}X\right]$$

$$= \cos^{2}\frac{\pi}{8}I - i\sin\frac{\pi}{8}\left[\cos\frac{\pi}{8}(X+Z) + \sin\frac{\pi}{8}Y\right]$$

$$=: \cos\frac{\eta}{2}I - i\sin\frac{\eta}{2}\left(n_{x}X + n_{Y}Y + n_{Z}Z\right)$$

$$= R_{\widehat{n}}(\eta)$$

where η satisfying $\cos(\eta/2) = \cos^2(\pi/8)$ and \widehat{n} is a unit vector along with $(\cos\frac{\pi}{8},\sin\frac{\pi}{8},\cos\frac{\pi}{8})$. Here, η is an irrational multiple of π . $HR_{\widehat{n}}(\eta)H = R_{\widehat{m}}(\eta)$ where \widehat{m} is a unit vector along with $(\cos\frac{\pi}{8}, -\sin\frac{\pi}{8}, \cos\frac{\pi}{8})$.

For any $U \in SU(2)$, there exists $n \in \mathbb{Z}_{\geq 0}$ and $\alpha_1, \dots, \alpha_n \in [0, 2\pi)$ such that $U = R_{\widehat{n}}(\alpha_1)R_{\widehat{m}}(\alpha_2)R_{\widehat{n}}(\alpha_3)\cdots R_{\widehat{n}}(\alpha_n)$.

Universality of two rotations 1/2

Universality of two rotations 2/2

Theorem

For any $U \in SU(2)$, there exists $n \in \mathbb{Z}_{\geq 0}$ and $\alpha_1, ..., \alpha_n \in [0, 2\pi)$ such that $U = R_{\widehat{n}}(\alpha_1)R_{\widehat{m}}(\alpha_2)R_{\widehat{n}}(\alpha_3) \cdots R_{\widehat{n}}(\alpha_n)$.

Proof.

Let $|\psi\rangle$ and $|\psi^{\perp}\rangle$ be the eigenvectors of $R_{\widehat{n}}(\theta)$.

Let
$$|\varphi\rangle := U |\psi\rangle$$
, $|\varphi^{\perp}\rangle := U |\psi^{\perp}\rangle$.

There exists $n \in \mathbb{Z}_{>0}$ and $\theta_0, \theta_1, \alpha_1, ..., \alpha_n \in [0, 2\pi)$ such that

$$|\varphi\rangle = e^{i\theta_0} R_{\widehat{n}}(\alpha_1) R_{\widehat{m}}(\alpha_2) R_{\widehat{n}}(\alpha_3) \cdots R_{\widehat{m}}(\alpha_{n-1}) R_{\widehat{n}}(\alpha_n) |\psi\rangle |\varphi^{\perp}\rangle = e^{i\theta_1} R_{\widehat{n}}(\alpha_1) R_{\widehat{m}}(\alpha_2) R_{\widehat{n}}(\alpha_3) \cdots R_{\widehat{m}}(\alpha_{n-1}) R_{\widehat{n}}(\alpha_n) |\psi^{\perp}\rangle.$$

Universality of a quantum circuit

Theorem (Universality of finite gate set)

For any unitary matrix $U \in L(\mathbb{C}^{2^n})$ and $\epsilon > 0$, there is a quantum circuit with X, Y, Z, H, S, T, CNOT gates computing \widetilde{U} satisfying $D(U,\widetilde{U}) < \epsilon$.

- Any unitary matrix can be decomposed to a product of two-level unitary matrices. Done
- 2 Any two-level unitary matrix can be decomposed to a product of controlled-unitary gates. Done
- 3 Any controlled-untary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates. Done
- 4 Any single-qubit gate can be approximated by X, Y, Z, H, S and T. Done

Solovay-Kitaev theorem

Theorem

Assume $\{U_1, ..., U_k\}$ generates a dense subset of SU(2). Then, any $U \in SU(2)$ can be approxmiated with error ϵ by $[\log(1/\epsilon)]^c$ multiplications of $\{U_1, ..., U_k\}$ for some constant c.

Assignments

- **1** Show a quantum circuit for controlled- $\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$ gate with two controlled qubits using the CNOT gates and arbitrary single-qubit gates.
- 2 [Advanced] Show a quantum circuit for controlled- $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ gate with two controlled qubits using six CNOT gates and seven T and T^{\dagger} gates.