

SOME BASIC PRINCIPLES OF KINETICS

Sebastian Matera

Long time multi-scale simulations of activated events: from theory to practice

June 24 - 28, 2024, SISSA, Trieste

WHAT IS KINETICS?

OUTLINE

Introductory Stochastics

Basic concepts, Stochastic Processes, Markov Jump Processes

Stationary States

Ergodicity, microscopic reversibility, Detailed Balance

Parameter Dependence

Smoothness, Local Sensitivity, Fisher Information, Linear Response

SOME BASIC CONCEPTS FROM PROBABILITY THEORY

Random variable:

I

- outcomes $i \in \Omega \subseteq \mathbb{Z}^D$
- Probability $P(i) \ge 0$, $\sum_{i \in \Omega} P(i) = 1$

Expectation

$$\langle f \rangle = \sum_{i \in \Omega} f(i) P(i)$$

Multivariate

$$P(i;j) = P(i|j) P(j)$$

joint conditional marginal
(i AND j) (i IF j) (ONLY j)

$$P(j) = \sum_{i \in \Omega} P(i;j)$$

Statistical independence

$$P(i|j)=P(i) \Leftrightarrow P(i;j)=P(i)P(j)$$

$$\begin{pmatrix} 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 2 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 2 & 1 & 2 & 1 \\ 1 & 0 & 2 & 1 & 2 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 2 \\ \end{pmatrix}$$

STOCHASTIC PROCESSES

Parametric family of random variables I(t)

$$i_1, t_1; i_2, t_2; i_3, t_3... t_1 < t_2 < t_3... i_1, i_2, i_3... \in \Omega$$

$$P(i_3,t_3) = \sum_{i_2} P(i_3,t_3;i_2,t_2) = \sum_{i_2} P(i_3,t_3|i_2,t_2) P(i_2,t_2)$$

$$P(i_3,t_3|i_1,t_1) = \sum_{i_2} P(i_3,t_3;i_2,t_2|i_1,t_1) = \sum_{i_2} P(i_3,t_3|i_2,t_2;i_1,t_1) P(i_2,t_2|i_1,t_1)$$

MARKOV JUMP PROCESSES

MARKOV PROCESSES

$$P(i_3,t_3|i_1,t_1) = \sum_{i_2} P(i_3,t_3;i_2,t_2|i_1,t_1) = \sum_{i_2} P(i_3,t_3|i_2,t_2;i_1,t_1) P(i_2,t_2|i_1,t_1)$$

Markov property

$$P(i_3,t_3|i_2,t_2;i_1,t_1...)=P(i_3,t_3|i_2,t_2)$$
 $t_3>t_2>t_1$

Chapman-Kolgomorov equation

$$\Rightarrow P(i_3,t_3|i_1,t_1) = \sum_{i_2} P(i_3,t_3|i_2,t_2) P(i_2,t_2|i_1,t_1)$$

$$\Rightarrow P(i_N, t_N; i_{N-1}, t_{N-1}; ...; i_2, t_2 | i_1, t_1) = P(i_N, t_N | i_{N-1}, t_{N-1}) P(i_{N-1}, t_{N-1} | i_{N-2}, t_{N-2}) ... P(i_2, t_2 | i_1, t_1)$$

Markov chain

$$P(i, N \Delta t | j, 0) = (F_N \cdot F_{N-1} \cdot \dots \cdot F_1) \quad \text{with} \quad F_{n, ij} = P(i, n \Delta t | j, (n-1) \Delta t)$$

CKE AS ODE: THE MASTER EQUATION

• Based on transitions (events) $i \to j$: $\frac{d}{dt} P(i,t) = \sum_{i} w_{ij}(t) P(j,t) - \sum_{i} w_{ji}(t) P(i,t)$

with the transition rate $w_{ij}(t) := \lim_{\Delta t \to 0} \frac{P(i, t + \Delta t \mid j, t)}{\Delta t}$

• Based on processes ξ (d $_{\xi}$ =j-i): $\frac{d}{dt}P(i,t) = \sum_{\xi} a_{\xi}(i-d_{\xi},t)P(i-d_{\xi},t) - \sum_{\xi} a_{\xi}(i,t)P(i)$

with the propensity/rate/intensity function $a_{\xi}(i,t) = w_{i+d_{\xi},i}(t)$

Short hand notation

$$\frac{d}{dt}P(t) = \Gamma(t)P(t)$$

 $\Gamma^{\mathsf{T}}(t)$: Generator of the stochastic motion

FORMULATION IN TERMS OF POISSON PROCESSES

Temporal evolution of probabilities

$$\frac{d}{dt}P(i,t) = \sum_{\xi} a_{\xi}(i-d_{\xi},t)P(i-d_{\xi},t) - \sum_{\xi} a_{\xi}(i,t)P(i)$$

Temporal evolution of states

$$\Leftrightarrow I(t) = I_0 + \sum_{\xi} d_{\xi} N_{\xi} \left(\int_{t_0}^t a_{\xi}(I(t'), t') dt' \right)$$

- Independent unit rate Poisson processes N_{ξ}
- Basis of the First Reaction kMC

ENOUGH OF MATHEMATICS

Reduction of surface oxide on Pd(100) by CO (M.J. Hoffmann, K. Reuter, M. Scheffler)

FOR A MINUTE

STATIONARY PROCESSES

Same statistics for

$$I(t)$$
 and $I(t+\delta t)$, $\forall t, \delta t$

Multitime probabilities

$$P(i_{n},t_{n};i_{n-1},t_{n-1};i_{n-2},t_{n-2};...)=P(i_{n},t_{n}+\delta t;i_{n-1},t_{n-1}+\delta t;i_{n-2},t_{n-2}+\delta t;...)$$

Markov processes

$$P(i,t)=P_s(i)$$

$$P(i,t+\Delta t | j,t)=P(i,\Delta t | j,0)$$

ERGODICITY

Does a stochastic process relax towards a stationary distribution? Is it unique? Can we employ time averaging?

Homogeneous Process:

$$\Gamma(t) = G = const \Rightarrow \frac{d}{dt} P(t) = G P(t)$$

$$\Rightarrow P(i, t + \Delta t \mid j, t) = P(i, \Delta t \mid j, 0) = \left[e^{G \Delta t} \right]_{ii} \Rightarrow P(t) = e^{G t} P(0)$$

Observables

$$\langle f \rangle (t) = \sum_{i} f_{i} P_{i}(t) = : \langle f, P(t) \rangle = (f, e^{G\Delta t} P(0)) = (e^{G^{T}\Delta t} f, P(0)) = (f(t), P(0))$$

$$\frac{d}{dt} f(t) = G^{T} f(t)$$

ERGODICITY

Frobenius Theorem:

Let $|\Omega| < \infty$ and let the generator G be irreducible. Then, there is a unique stationary distribution P_{s_i} , i.e.

$$GP_s(t)=0$$
, $P_{s,i}>0$, $\sum_i P_{s,i}=1$

is invertable.

Further, the solution of the ME P(t) relaxes against P_s.

$$\lim_{t\to\infty} P(i,t\,|\,j,0) = P_s(i)$$

Or, in physical language:

For a finite state Markov model, there exist no multiple stationary distributions if we can reach from every state i every other state.

Models obeying the Frobenius theorem are ergodic

ERGODICITY: EXAMPLES

Ergodic: Ising model

$$CO(gas) + * \leftrightarrow CO^*$$

Nearest neighbor interactions

Non-ergodic: dissociative ad/desoprtion

$$O_2(gas) + 2 * \leftrightarrow 2O^*$$

- Two stationary states: Even vs. Odd #O
- No Langmuir isotherm

Non-ergodic: ZGB model

$$O_2(gas)+2* \rightarrow 2O^*$$

 $CO(gas)+* \rightarrow CO^*$
 $O^*+CO^* \rightarrow CO_2(gas)+2*$

ERGODICITY: CONSEQUENCES

Expected values

$$\langle f \rangle_{s} = \sum_{i \in \Omega} f(i) P_{s}(i) = \lim_{t \to \infty} \lim_{N \to \infty} \frac{1}{N} \sum_{n=1^{N}} f(I_{n}(t))$$

Estimator

$$\langle f \rangle_{s} \approx \overline{f}(t) := \frac{1}{N} \sum_{n=1^{N}} f(I_{n}(t)), \quad t \gg t_{relax}, \quad t_{relax} = \left| \lambda_{2}(G) \right|^{-1}$$

Time averaging

$$\langle f \rangle_{s} = \sum_{i \in \Omega} f(i) P_{s}(i) = \lim_{t \to \infty} \frac{1}{t} \int_{0^{t}} f(I_{n}(t')) dt'$$

estimator

$$\widetilde{f} = \frac{1}{t} \int_{t_0}^{t_0+t} f(I_n(t')) dt', \quad \left\langle \left| \widetilde{f} - \left\langle f \right\rangle_s \right|^2 \right\rangle \leq C_1 t^{-1} + C_2 t^{-2} e^{-\alpha t_0}$$

ERGODICITY: CONSEQUENCES

CONDITIONALLY ERGODIC/STATIONARY

- Original state space Ω
- Initial state I_0
- Define restricted state space

$$\Omega(I_0) = [i \in \Omega | i \text{ can be reached from } I_0]$$

 The inverse process should exist for physically meaningfull models

$$w_{ij} \neq 0 \Rightarrow w_{ji} = 0$$

- \rightarrow Every state in Ω (I_0) is connected to every other
- \rightarrow Ergodic in Ω (I_0)

CONDITIONAL ERGODICITY/STATIONARITY

ZGB model

O₂ ad/desoprtion

DETAILED BALANCE: EQUILIBRIUM

Stationarity:

$$\sum_{i} w_{ij} P_{s}(j) - w_{ji} P_{s}(i) = 0$$

Equilibrium: Detailed Balance

$$w_{ij}P_{s}(j)-w_{ji}P_{s}(i)=0$$

$$\frac{w_{ij}}{w_{ji}} = \frac{P_s(i)}{P_s(j)} = \frac{P_c(i)}{P_c(j)} = \exp\left(-\frac{E_f(i) - E_f(j)}{kT}\right)$$

Microscopic reversibility

$$\frac{w_{ij}}{w_{ji}} = \exp\left(-\frac{E_f(i) - E_f(j)}{kT}\right)$$

$$w_{ij}P_s(j)-w_{ji}P_s(i)\neq 0$$

Ad/desoprtion

$$CO(gas) + * \leftrightarrow CO^*$$

$$O_2(gas) + 2 * \leftrightarrow 2O^*$$

Diffusion

Catalysis

$$O_2(gas)+2* \leftrightarrow 2O^*$$

 $CO(gas)+* \leftrightarrow CO^*$
 $O^*+CO^* \leftrightarrow CO_2(gas)+2*$

ANOTHER LITTLE PAUSE

FRITZ-HABER-INSTITUT | SEBASTIAN MATERA

PARAMETER DEPENDENCE

Typically models depend some parameter $k \in \mathbb{R}^{M}$

$$\frac{d}{dt}P(t)=G(k)P(t) \Rightarrow \langle f \rangle (t,k)=\sum_{i}f(i|k)P(i,t|k)$$

Restrict to

$$G(k) = \sum_{m=1}^{M} k_m G_m$$

e.g. for CO oxidation

$$O_2(gas)+2* \leftrightarrow 2O^*$$
 $CO(gas)+* \leftrightarrow CO^*$
 $O^*+CO^* \leftrightarrow CO_2(gas)+2*$

$$G(k) = k_{CO ad.} G_{CO ad.} + k_{CO des.} G_{CO des.} + k_{O_2 ad.} G_{O_2 ad.} + k_{O_2 des.} G_{O_2 des.} + k_{CO_2 ad.} G_{CO_2 ad.} + k_{CO_2 ad.} +$$

PARAMETER DEPENDENCE

Derivatives of expected values

$$\frac{\partial^{L}}{\partial k_{m_{1}}...\partial k_{m_{L}}} \langle f \rangle (t,k) = \sum_{i} \sum_{S} \frac{\partial^{|S|} f(i|k)}{\prod_{m' \in S} \partial k_{m'}} \frac{\partial^{|S|} P(i,t|k)}{\prod_{m' \in S} \partial k_{m'}}$$

Suppose t, $|\Omega| < \infty$, f(i|k) from \mathbb{C}^{∞} , then

$$\left|\frac{\partial^L}{\partial k_{m_1}...\partial k_{m_L}}\langle f\rangle(t,k)\right|<\infty$$

Idea of proof

$$\left| \frac{\partial}{\partial k_m} P(t|k) \right| = \left| \frac{\partial}{\partial k_m} e^{tG} \right| = \left| \int_0^t e^{(t-u)G} G_m e^{uG} du \right| < \infty$$

Why

- Sensitivity Analysis
- Optimize
- Couple with other simulations
- Surrogates

Remark:

For $t \to \infty$ (stationary case), it is more complicated. Seems to hold if the process is ergodic.

LOCAL SENSITIVITY ANALYSIS

Sensitivity analysis:

Parameters are typically uncertain!

Which uncertainties influence the outcome of our model?

Simplest approach: Linearize!

$$X_{m} = \frac{\partial \langle f \rangle}{\partial k_{m}}$$

Local Sensitivity Analysis

- Errors must be small!
- Everything but simple for kMC
- Therefore seldom conducted

RATE-DETERMINING STEPS

Expected reaction rate (turnover frequency)

$$TOF := \sum_{\xi \in R} \langle a_{\xi} \rangle_{s} = \langle R \rangle_{s}$$

Degree of Rate Sensitivity

$$X_{m} = \frac{k_{m}}{\text{TOF}} \frac{\partial \text{TOF}}{\partial k_{m}} = \frac{k_{m}}{\text{TOF}} \sum_{\xi \in R} \left\langle \frac{\partial a_{\xi}}{\partial k_{m}} \right\rangle + \frac{1}{\text{TOF}} X_{0,m}$$

$$X_{0,m} = \sum_{\xi \in R} \sum_{i} a_{\xi}(i) \frac{\partial P_{s}(i)}{\partial \log k_{m}}$$

BOUNDS FOR THE SENSITIVITY

Pathwise relative entropy: Upper bound for sensitivity index

$$|X_{0,m}| \le \sqrt{CI_{mm}}$$
 Fischer-Information

Integrated time correlation function

$$C = \int_{0}^{\infty} \langle \delta TOF(e^{tG} \delta TOF) \rangle_{s} dt$$

For the problem at hand

$$I_{mm} = \langle R_m \rangle$$

which is a consequence of

$$G(k) = \sum_{m=1}^{M} k_m G_m$$

Take home

Results are insensitive to rare reactions!

LINEAR RESPONSE THEORY

Idea:

$$\frac{d}{dt}P(t) = (G + \epsilon G_m)P(t)$$

Standard 1st order perturbation theory

$$X_{0,m} = \int_{0}^{\infty} \left(\delta R, e^{Gt} G_{m} P_{s} \right) dt = \left(\delta R, G^{\#} G_{m} P_{s} \right)$$

$$= \left(\delta R \Delta t, \sum_{l=0}^{\infty} P_{kMC}^{l} G_{m} P_{s} \right)$$

Convergent sum (truncate) → direct sampling of sensitivities

Some properties

$$\sum_{m} X_{0,m} = 0$$

$$\sum_{m} X_{m} = 1$$

$$TOF = \sum_{m} \frac{\partial TOF}{\partial k_{m}} k_{m}$$

$$E_{app} := \frac{\partial TOF}{\partial \beta} = \sum_{m} X_{m} E_{act.,m}$$

Campell's Degree of Rate Control

$$X_{rc,\alpha} = X_{f(\alpha)} + X_{r(\alpha)}$$

LOCAL SENSITIVITY ANALYSIS

CO oxidation on RuO₂ (110)

- 26 elementary steps
- There is no single RDS

FINAL SLIDE

- Intro Markov jump procresses
- Relaxation, stationary behavior
 - Ergodicity
- Parameter dependicity
 - Smoothness
 - Local sensitivity
 - Rate-determining steps
- What I did not talk about
 - Relaxation times, Eigenmodes, Oscillations
 - Global Sensitivity
 - The "curse"
 - How to get approximations aside traditional kMC (Meanfield, hierarchies, tensor networks, accelleration)

LITERATURE

Literature

- Markov theory
 - Gardiner, CW. Elements of Stochastic Methods, AIP Publishing, 2021.
 - Van Kampen, NG. Stochastic processes in physics and chemistry. Elsevier, 1992.
- Google "Frobenius continuous time Markov chains"
- Local sensitivity:
 - Hoffmann, MJ, Engelmann, F, SM. JCP, 146.4 (2017).
 - Pantazis, Y., & Katsoulakis, MA (2013). JCP, 138(5).

Advanced

- SM, Schneider, WF, Heyden, A, & Savara, A (2019). ACS Catalysis, 9(8), 6624-6647.
- Global sensitivity
 - Döpking, S, & SM. (2017). CPL, 674, 28-32.
 - Döpking, S,... & SM. (2018). JCP, 148(3).
 - Dortaj, S, & SM. (2023). JCP, 159(9).
- kmos, accelerated kMC, hierarchies, tensor trains
 - Hoffmann, MJ, SM, & Reuter, K. (2014). CPC, 185(7), 2138-2150.
 - Dybeck, EC, Plaisance, CP, & Neurock, M (2017). JCTC, 13(4), 1525-1538.
 - Herschlag, GJ, Mitran, S, & Lin, G (2015). JCP, 142(23).
 - Gelß, P, SM, & Schütte, C (2016). J. Comp. Phys., 314, 489-502.

ERGODIC EXAMPLES

Ising model

- Spins on a lattice
- Flip "spin" up or down
- Nearest neighbor interactions

Li diffusion in graphite

- Cross-layer diffusion >5eV vs. ~1eV intralayer.
- Cross-layer diffusion happens on timescales of 10^x years at room temperatur