Floating point (instruction formats)	R-R	R-R	R-R	R-R	R-R
Instruction name	ARMv8	MIPS64	PowerPC	RISC-V	SPARC v.9
Add single, double	FADD	ADD.*	FADD*	FADD.*	FADD*
Subtract single, double	FSUB	SUB.*	FSUB*	FSUB.*	FSUB*
Multiply single, double	FMUL	MUL.*	FMUL*	FMUL.*	FMUL*
Divide single, double	FDIV	DIV.*	FDIV*	FDIV.*	FDIV*
Square root single, double	FSQRT	SQRT.*	FSQRT*	FSQRT.*	FSQRT*
Multiply add; Negative multiply add: single, double	FMADD, FNMADD	MADD.* NMAD.*	FMADD*, FNMADD*	FMADD.* FNMADD.*	
Multiply subtract single, double, Negative multiply subtract: single, double	FMSUB, FNMSUB	MSUB.*, NMSUB.*	FMSUB*, FNMSUB*	FMSUB.*, FNMSUB.*	
Copy sign or negative sign double or single to another FP register	FMOV, FNEG	FMOV.*, FNEG.*	FMOV*, FNEG*	FSGNJ.*, FSGNJN.*	FMOV*, FNEG*
Replace sign bit with XOR of sign bits single double	FABS	FABS.*	FABS*	FSGNJX.*	FABS*
Maximum or minimum single, double	FMAX, FMIN	MAX.*, MIN.*		FMAX.*, FMIN.*	
Classify floating point value single double		CLASS.*		FCLASS.*	
Compare	FCMP	CMP.*	FCMP*	FCMP.*	FCMP*
Convert between FP single or double and FP single or double, OR integer single or double, signed and unsigned with rounding	FCVT	CVT, CEIL, FLOOR		FCVT	F*T0*

FIGURE E.13 Desktop RISC floating-point instructions equivalent to RV64G ISA with an empty entry meaning that the instruction is unavailable. ARMv8 uses the same assembly mnemonic for single and double precision; the register designator indicates the precision. "*" is used as an abbreviation for S or D. For floating point compares all conditions: equal, not equal, less than, and less-then or equal are provided. Moves operate in both directions from/to integer registers. Classify sets a register based on whether the floating point quantity is plus or minus infinity, denorm, +/-0, etc.). The sign-injection instructions take two operands, but are primarily used to form fl oating point move, negate, and absolute value, which are separate instructions in the other ISAs.