Propagacja fal w środowisku mobilnym

Spektrum fal radiowych

Podział spektrum fal radiowych

Napisał SP8QED

Sunday, 06 March 2005

od	do	długość fal	nazwa i oznaczenie międzynarodowe	inne oznaczenia	nazwa i oznaczenie polskie
3Hz	30Hz	100 tys. km-10 tys. km	ULF ultra low frequency ELF		p
30Hz	300Hz	10 tys. km-1 tys. km	extremly low frequency		
300Hz	3000Hz	1000km-100km	VF voice frequency		fale b. długie,
3kHz	30kHz	100km-10km	VLF very low frequency		fale myriametrowe
30kHz	300kHz	10km-1km	LF low frequency	LW - long wave	fale długie, fale kilometrowe
300kHz	3MHz	1000m-100m	MF medium frequency	MW - medium wave	fale średnie, fale hektometrowe
3MHz	30MHz	100m-10m	HF high frequency	KW - ?	fale krótkie, fale dekametrowe, KF
30MHz	300MHz	10m-1m	VHF very high frequency		UKF fale ultrakrótkie, fale metrowe
300MHz	3GHz	100cm-10cm	UHF ultra high frequency SHF		fale decymetrowe
3GHz	30GHz	10cm-1cm	super high frequency EHF		fale centymetrowe
30GHz	300GHz	10mm-1mm	extremly high frequency		fale milimetrowe

Prędkość, długość, częstotliwość fali

Prędkość światła=długość fali x częstotliwość =
=3 x 10⁸m/s =300 000 km/s

System	Frequency	Wavelength
AC current	60 Hz	5,000 km
FM radio	100 MHz	3 m
Cellular	800 MHz	37.5 cm
Ka band satellite	20 GHz	15 mm
Ultraviolet light	10 ¹⁵ Hz	10 ⁻⁷ m

Propagacja fali przyziemnej (Ground Wave)

- Rozprzestrzenia wzdłuż konturów powierzchni Ziemi
- Może być propagowana na znaczne odległości
- częstotliwości aż do 2 MHz

Np.

AM radio

- Sygnał odbijany od zjonizowanego poziomu atmosfery do powierzchni Ziemi
- Sygnał może wykonać pewną liczbę skoków, tam i z powrotem między jonosferą i powierzchnią Ziemi
- Efekt odbicia jest spowodowany załamaniem fali
- Np.
 - Radio amatorskie
 - CB radio

Propagacja w linii widoczności (Line-of-Sight, LOS)

- Antena nadająca i antena odbiorcza muszą być w linii pola widzenia (dla fal powyżej 30 MHz)
- Załamanie
 - Fale mikrofalowe uginają się lub załamuja w atmosferze
 - Prędkość fali elektromagnetycznej jest funkcją gęstości medium
 - Gdy fala zmienia medium, zmienia się jej prędkość
 - Fale uginają sie lub załamują się na granicy między jednym i drugim medium

Zakresy fal radiowych

Classification Band	Initials	Frequency Range	Characteristics	
Extremely low	ELF	< 300 Hz		
Infra low	ILF	$300~Hz\sim 3~kHz$		
Very low	VLF	$3~kHz\sim30~kHz$		
Low	LF	$30~kHz\sim300~kHz$	Surface/ground wave	
Medium	MF	$300 \; kHz \sim 3 \; MHz$		
High	HF	$3~MHz\sim30~MHz$	Sky wave	
Very high	VHF	$30~MHz\sim300~MHz$	Space wave	
Ultra high	UHF	$300~MHz\sim 3~GHz$		
Super high	SHF	$3~GHz\sim30~GHz$		
Extremely high	EHF	$30~GHz\sim300~GHz$	Satellite wave	
Tremendously high	THF	$300~GHz\sim3000~GHz$		

Mechanizmy propagacji

odbicie

- Na propagację fali wpływają obiekty, które są duże w porównaniu z długością fali
 - np. powierzchnia Ziemi, budynki, ściany, itp.

Załamanie

- Na droge radiową między nadajnikiem i odbiornikiem mają wpływ kształty z ostrymi nieregularnymi krawędziami
- Fale uginają się w pobliżu przeszkód gdy tylko obok nich przechodzą

Rozproszenie

- Obiekty mniejsze niż długość fali
 - np. liście, znaki drogowe, lampy

Efekty propagacji radiowej

Propagacja w próżni

Moc sygnału otrzymanego w odleglości d: $P_{r} = \frac{A_{e}G_{t}P_{t}}{4\pi d^{2}}$

$$P_{\rm r} = \frac{A_e G_t P_t}{4\pi d^2}$$

gdzie P_t jest transmitowaną mocą, A_e jest efektywnym obszarem, a G, jest zyskiem anteny

Anteny

Dookólna (Omnidirectional) Antena – niska wydajność w bezprzewodowych sieciach ad hoc z powodu ograniczonych możliwości wykorzystania przestrzeni.

Węzły w strefie ciszy

Antena kierunkowa – lepsze możliwości wykorzystania przestrzeni. Ale węzeł w dalszym ciągu nie jest w stanie całkowicie wykorzystać "pasmo

Komunikacja kierunkowa

- Określane również jako Multiple Beam Antenna Array (MBAA) – wykorzystuje w pełni pasmo przestrzenne.
- węzeł może inicjować więcej niż jedna jednoczesnych transmisji (lub odbiorów).

4

Zysk anteny

- Jest miarą kierunkowości anteny; jest określany przez moc wyjściową w specyficznym kierunku porównywaną do mocy produkowanej we wszystkich kierunkach przez doskonałą antenę dookólną
- Dla kołowej reflektorowej anteny zysk G anteny:

$$G = \eta (\pi D f/c)^2, c = \lambda f$$

 η = współczynnik efektywności (zależy od rozkładu pola elektrycznego, strat, rp., zwykle 0.55)

D=średnica

tak więc $G = \eta (\pi D / \lambda)^2$ (c-prędkość światła)

Przykład:

- Antena ze średnicą D=2 m, częstotliwośc f= 6 GHz, długość fali =0.05m, G=39.4 db
- Częstotliwość=14GHz, D=2, długość fali=0.021m, G=46.9 db
- Im wyższa częstotliwość tym wyższy zysk dla anteny tego samego rozmiaru

•

Propagacja naziemna

Moc otrzymanego sygnału:

$$P_r = \frac{G_t G_r P_t}{L}$$

gdzie G_r jest zyskiem anteny odbiornika, L jest stratą propagacji w kanale, tzn.

(szybkie tłumienie) (powolne tłumienie) (stratą drogi)

4

Strata mocy (path loss) w próżni

- Jest to wielkość mocy utraconej w przestrzeni
- Definicja utraty mocy L_p:

$$L_P = \frac{P_t}{P_r},$$

Strata mocy w prożni:

$$L_{PF}(dB) = 32.45 + 20\log_{10} f_c(MHz) + 20\log_{10} d(km),$$

gdzie f_c jest częstotliwością nośną.

Widać, że im większa f_c tym więsza jest strata mocy

Strata odległościowa (path loss) w próżni

Prosta formuła:

$$L_p = A d^{-\alpha}$$

gdzie

A i α: stałe propagacji

d: odległość między nadajnikiem i odbiornikiem

 a: ma wartośc 3 ~ 4 w typowym miejskim obszarze

Przykład strat odległościowych (w próżni)

Strata odległościowa (obszar miejski (urban), podmiejski (suburban), otwarty (open))

Urban area:

$$L_{PU}(dB) = 69.55 + 26.16 \log_{10} f_c(MHz) - 13.82 \log_{10} h_b(m) - \alpha \left[h_m(m) \right] + \left[44.9 - 6.55 \log_{10} h_b(m) \right] \log_{10} d(km)$$

where

$$\alpha \left[h_m(m) \right] = \begin{cases} \left[1.1 \log_{10} f_c(MHz) - 0.7 \right] h_m(m) - \left[1.56 \log_{10} f_c(MHz) - 0.8 \right], & \textit{for } l \, \text{arg e city} \\ 8.29 \left[\log_{10} 1.54 h_m(m) \right]^2 - 1.1, & \textit{for } f_c \leq 200 MHz \\ 3.2 \left[\log_{10} 11.75 h_m(m) \right]^2 - 4.97, & \textit{for } f_c \geq 400 MHz \end{cases}, & \textit{for small \& medium city} \end{cases}$$

Suburban area:

$$L_{PS}(dB) = L_{PU}(dB) - 2 \left[\log_{10} \frac{f_c(MHz)}{28} \right]^2 - 5.4$$

Open area:

$$L_{PO}(dB) = L_{PU}(dB) - 4.78 \left[\log_{10} f_c(MHz)\right]^2 + 18.33 \log_{10} f_c(MHz) - 40.94$$

Strata odległościowa

- Straty odległościowe w zmniejszającym się porządku:
 - Obszar miejski (duże miasto)
 - Obszar miejski (średnie i małe miasto)
 - Podmiejski obszar
 - Otwarty obszar

Przykład strat odległościowych (obszar miejski: duże miasto)

Przykład strat odległościowych (obszar zabudowany: średnie i małe miasta)

Przykład strat odległościowych (obszar podmiejski)

Przykład strat odległościowych (otwarty obszar)

Tłumienie fali radiowej (fading)

Powolne tłumienie

- Jest spowodowane długoterminowymi przestrzennymi i czasowymi zmianami w odległościach między nadajnikiem i odbiornikiem, które powodują zmiany w średnim poziomie
- Poziom otrzymywanego sygnału okreslany jest rozkładem lognormal z funkcją rozkładu prawdopodobieństwa

$$p(M) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(M-\overline{M})^2}{2\sigma^2}},$$

gdzie M jest faktycznym otrzymanym sygnałem na poziomie m w decybelach (db)(tzn. $M=10\log_{10}m$), \overline{M} -średni dla obszaru poziom sygnału, tzn. średnia z M określona na dostatecznie długiej odległości, σ -standardowe odchylenie w decybelach

Rozkład log-normal

Funkcja rozładu prawdopodobieństwa otrzymywanego poziomu sygnału

Szybkie tłumienie

- Sygnał z nadajnika może być odbity od takich obiektów jak wzgórza, budynki lub pojazdy
 - gdy MS znajduje się daleko od BS to rozkład otrzymanego sygnału podlega rozkładowi Rayleigh

$$p(r) = \frac{r}{\sigma^2} e^{-\frac{r^2}{2\sigma^2}}, \quad r > 0$$

gdzie o jest standardowym odchyleniem

Środkowa wartość ^I_m sygnału wewnątrz przykładowego zakresu powinna spełniać warunek:

$$P(r \le r_m) = 0.5$$

• To odpowiada $r_{\rm m} = 1.777 \sigma$

Rozkład Rayleigh

Funkcja rozładu prawdopodobieństwa otrzymywanego poziomu sygnału

Szybkie tłumienie (cd.)

 Gdy MS jest daleko od BS to krzywa rozkładu otrzymywanego sygnału podlega rozkładowi Rician; jego funkcja rozkładu prawdopodobieństwa:

$$p(r) = \frac{r}{\sigma^2} e^{-\frac{r^2 + \alpha^2}{2\sigma^2}} I_0\left(\frac{r\alpha}{\sigma}\right), \quad r \ge 0$$

gdzie:

σ - standardowe odchylenie

 $I_{\scriptscriptstyle 0}$ - funkcja Bessela zerowego rzędu

-

Rozkład Rician

Funkcja rozładu prawdopodobieństwa otrzymywanego poziomu sygnału

Przesunięcie Dopplera

- Effekt Dopplera: gdy fala od nieruchomej BS i odbiornik MS poruszają się naprzeciwko siebie, to częstotliwość otrzymywanego sygnału nie będzie taka sama jak u źródła
- Przesunięcie Doplera w częstotliwości
 - Gdy oni poruszają się naprzeciw to częstotliwość otrzymywanego sygnału będzie większa niż u źródla
 - Gdy oni oddalają się to częstotliwość się zmniejsza

gdzie
$$\mathbf{f_c}$$
 jest częst $f_{\it R}=f_{\it C}-f_{\it D}$ a źródła, $\mathbf{f_d}$ jest częstotliwością Doplera

Przesunięcie Doplera w częstotliwości

$$f_D = \frac{v}{\lambda} \cos\theta$$

gdzie v jest pręakością ms,

 λ jest długością fali nośnika

Efekt poruszającej się prędkości

Rozpostarcie opóźnienia

- W czasie propagacji sygnału od nadajnika do odbiornika, sygnał odbija się raz lub więcej
- To powoduje, że sygnał przychodzi różnymi drogami
- Każda droga ma inną długość, tak więc czas przybycia sygnału różnymi drogami jest różny
- Ten efekt, który powoduje rozpostarcie sygnału nazywany jest "rozpostarciem opóżnienia"

Rozpostarcie opóźnienia

 Rozpostarcie opóźnienia wynosi około 3us w obszarze miejskim i do 10us w terenie pagórkowatym

4

Interferencja międzysymbolowa

- Jest wynikiem wielotorowości sygnałów i spowodowanch tym opóźnień czasowych
- Ma wpływ na stopę błędów kanału (patrz, rysunek)
- Drugi multipath sygnał jest opóźniony tak dużo, że jego część może być otrzymana w czasie interwału drugiego symbolu
- aby mieć mała bitową stopę błędu

$$R < \frac{1}{2\tau_d}$$

 R (prędkość transmisji cyfrowej) jest ograniczona przez rozpostarcie opóźnienia

Interferencja międzysymbolowa

Pasmo koherencji (spójności)

- Pasmo koherencji B_c:
 - reprezentuje korelację między 2-ma zanikającymi sygnałami o częstotliwościach f₁ i f₂
 - jest funkcją rozprzestrzeniania opóżnienia
 - dwie częstotliwości, które są większe niż pasmo koherenčji zanikają niezależnie od siebie
 - koncepcja użyteczna dla dywersyfikacji odbioru: wiele kopii tej samej wiadomości jest wysyłanych przy uzyciu róznych częstotliwości

Międzykanałowa interferencja

- Komórki mające tą samą częstotliwość interferują między sobą
- r_d jest chcianym sygnałem
- r_u jest interferującym niechcianym sygnałem
- β jest współczynnikiem protekcji, takim że $r_d \leq \beta r_u$ (takim, że sygnały interferują najmniej)
- Jeżeli P jest prawdopodobieństwem, że $r_d \leq \beta r_u$
- Prawdopodobieństwo międzykanałowe $P_{co} = P$