Statistika I / Statistika A

Obsah

- Explorační analýza dat
- <u>Teorie pravděpodobnosti</u>
- Náhodná veličina
 - <u>Číselné charakteristiky náhodné veličiny</u>
- Náhodný vektor
 - Charakteristiky náhodného vektoru
- <u>Diskrétní rozdělení pravděpodobnosti</u>
 - Hypergeometrická náhodná veličina
 - Binomická náhodná veličina
 - Geometrická náhodná veličina
 - Negativně binomická náhodná veličina
 - Poissonovo rozdělení pravděpodobnosti
- Spojitá rozdělení pravděpodobnosti
 - Rovnoměrné rozložení
 - Exponenciální rozdělení
 - Erlangovo rozdělení
 - Weibullovo rozdělení
 - Normální rozdělení
 - Normované normální rozdělení
 - χ² rozdělení
 - Studentovo rozdělení
 - Fisherovo-Snedecorovo rozdělení
- <u>Limitní věty</u>
 - Centrální limitní věta
- Náhodné výběry a jejich zpracování
 - Teorie odhadu
 - Intervalový odhad
 - <u>Testování hypotéz</u>
 - ANOVA Analýza rozptylu
- Regresní analýza
 - Obecný lineární model

<u>Lineární regrese s jednou vysvětlující proměnnou</u>			

Vytvořeno na základě materiálů prof. Ing. Radima Briše, CSc. pro předmět **AM2401 Statistika I**. Učivo rozšířeno z materiálů RNDr. Anny Madryové, Ph.D. pro předmět **MM0403 Statistika A** v kombinované formě.

Explorační analýza dat

Data představují výsledky **datově generačního procesu** – z množiny měřených objektů (domain) vybíráme proměnné měřených veličin. Množina měřených hodnot musí být vyčerpávající a vzájemně vylučující. Data vybírám z několika charakteristických typů:

- **Kvalitativní proměnná** nabývá z předem daných hodnot, dělíme na **nominální** (má smysl hodnotu dané kategorie pojmenovat, k popisu slouží **četnost** proměnné) a **ordinální** (má smysl pořadí hodnoty dané kategorie). Dále se dělí na **alternativní** (vlastnosti, atributy, nabývají jedné ze dvou hodnot) nebo **množné**.
- **Kvantitativní proměnná** nabývá hodnoty z množiny \mathbb{R} . Mohou být **diskrétní** (nabývají diskrétních hodnot v **konečné**m počtu nebo **spočtené**m počtu) nebo **spojité**.

Nominální kvalitativní proměnná nabývají absolutní četnosti n_i , přičemž platí $\sum n_i=n$. Relativní četnost $p_i=\frac{n_i}{n}$, přičemž $\sum p_i=1$. Definujeme **modus** jako název varianty proměnné vykazující nejvyšší četnost. **Histogram** je klasickým grafem, v němž na jednu osu vynášíme varianty a na druhou jejich četnost. **Výsečový graf** prezentuje relativní četnosti jednotlivých variant pomocí plochami kruhových výsečí.

Ordinální kvalitativní proměnná využívá pro popis stejné charakteristiky jako pro popis nominální proměnné. **Kumulativní četnost** m_i definujeme jako počet hodnot proměnné, které nabývají varianty nižší nebo rovné dané variantě. Pokud $x_1 < \ldots < x_n$, platí $m_i = \sum_{j=1}^i n_j$. **Kumulativní relativní četnost** $F_i = \frac{m_i}{n}$. **Polygon kumulativních četností** je spojnicovým grafem, v němž se na vodorovnou osu vynáší jednotlivé varianty v pořadí od "nejmenší" do "největší" a na svislou osu nanášíme kumulativní četnosti. **Paretův graf** je často užívaným grafem spojením histogramu a polygonu kumulativních četností, v němž na vodorovnou osu vynášíme v pořadí od "největšího významu" po "nejmenší význam".

Kvantitativní proměnné využívá stejné charakteristiky jako pro popis ordinální proměnné. Definujeme miry polohy určující typické rozložení hodnot proměnné a miry variability určující variabilitu hodnot kolem své typické polohy. **Aritmetický průměr** je mírou polohy $\overline{x} = \frac{\sum x_i}{n}$. **Modus pro diskrétní proměnnou** jako hodnotu nejčastější varianty proměnné. **Modus pro spojité proměnné** považujeme za modus hodnotu, kolem níž je největší koncentrace hodnot proměnné. Pro určení hodnoty využijeme **shorth**, což je nejkratší interval, v němž leží alespoň 50 % hodnot proměnné. Modus \widehat{x} definujeme jako střed shorthu.

Kvantily x_p jsou statistiky, které charakterizují polohu jednotlivých hodnot v rámci proměnné. Rozdělují datový soubor na dvě části - 100p% a zbytek

- **Dolní kvartil** $x_{0.25}$ rozděluje datový soubor tak, že 25 % hodnot je menších než tento kvartil a zbytek, tj. 75 % větších nebo rovných.
- **Medián** $x_{0.5}$ rozděluje datový soubor tak, že 50 % hodnot je menších než medián a zbytek, tj. 50 % větších nebo rovných.

- **Horní kvartil** $x_{0.75}$ rozděluje datový soubor tak, že 75 % hodnot je menších než tento kvartil a zbytek, tj. 25 % větších nebo rovných.
- Decily rozdělují výběrový soubor na 10 stejně četných částí.
- Percentily dělí výběrový soubor na 100 stejně četných částí.

Lze říci, že hodnota p udává kumulativní relativní četnost kvantilu x_p . Kvantil a kumulativní relativní četnost jsou tedy inverzní hodnoty.

Empirická distribuční funkce ${f F}({f x})$ pro kvantitativní proměnnou – označme si $p(x_i)$ relativní četnost hodnoty x_i . Poté platí, že $F(x)=\sum p(x_i)$. Interkvalitové rozpětí IQR je mírou variability souboru a je definována jako vzdálenost mezi horním a dolním kvartilem $IQR=x_{0.75}-x_{0.25}$. Median Absolute Deviation from median (MAD) jakožto charakteristikou rozptýlenosti.

- 1. Výběrový soubor uspořádáme podle velikosti.
- 2. Určíme medián souboru $x_{0.5}$.
- 3. Pro každou hodnotu souboru určíme absolutní hodnotu její odchylky od mediánu $|y_i-x_{0.5}|$.
- 4. Absolutní odchylky od mediánu uspořádáme podle velikosti.
- 5. Určíme medián absolutních odchylek od mediánu, tj. MAD.

Mezi charakteristiky rozptýlenosti patří dále **výběrový rozptyl** $s^2 = \frac{\sum (x_i - \overline{x})^2}{n-1}$ a **směrodatná odchylka** $s = \sqrt{s^2}$. Odlehlou hodnotou **outlier** nazýváme hodnotu, která svou charakteristikou nepatří do datového souboru. Existují tři detekce outlier hodnot:

- 1. Za odlehlé pozorování lze považovat takovou hodnotu, jejíž absolutní hodnota **z-souřadnice** je větší než 3: $z_i = \frac{x_i \overline{x}}{s}$. Z-souřadnici můžeme interpretovat jako počet směrodatných odchylek, o kolik se hodnota liší od průměru.
- 2. Za odlehlé pozorování lze považovat takovou hodnotu, jejíž absolutní hodnota **mediánové souřadnice** je větší než 3: $m_i = \frac{x_i x_{0.5}}{1.483 \cdot MAD}$. Mediánová metoda je vhodnější než z-souřadnice díky menší závislosti na okrajových hodnotách.

Definujme čísla se specifickým významem: \mathbf{k} -tý obecný výběrový moment definujeme jako $m_k' = \frac{1}{n}\sum \left(x_i\right)^k, m_0' = 1, m_1' = \overline{x}$ a \mathbf{k} -tý centrální výběrový moment definujeme jako $m_k = \frac{1}{n}\sum \left(x_i-\overline{x}\right)^k, m_0 = 1, m_1 = 0, m_2 = s_0^2 = \frac{1}{n}\sum \left(x_i-\overline{x}\right)^2$. Výběrová šikmost vyjadřuje asymetrii rozložení hodnot kolem jejího průměru $\alpha = \frac{m_3}{s_0^3} = \frac{1}{n \cdot s^3} \cdot \sum \left(x_i-\overline{x}\right)^3$. Interpretujme: pokud $\alpha = 0$, tak jsou hodnoty proměnné kolem jejího průměru rozloženy symetricky; pokud $\alpha > 0$, tak u proměnné převažují hodnoty menší než průměr a pokud $\alpha < 0$, tak u proměnné převažují hodnoty větší než průměr. Výběrová špičatost $\beta = \frac{m_4}{s_0^4} - 3 = \frac{1}{n} \cdot \frac{\sum (x_i-\overline{x})^4}{s^4} - 3$ vyjadřuje podobnost rozdělení k normálnímu rozdělení. Interpretujme: pokud $\beta = 0$, tak špičatost odpovídá normálnímu rozdělení; pokud $\beta > 0$, tak je proměnná rozdělena špičatě a pokud $\beta < 0$, tak je proměnná rozdělena plošně.

UKvalitativní proměnné vizualizujeme pomocí **box-and-whiskers** grafu, který

reprezentuje minimum, dolní kvartil, medián, horní kvartil a maximum. Často se využívá s **histogramem četnosti** dělící datový soubor na třídy stejné délky a různé četnosti. **Číslicový histogram** (**steam and leaf plot**) dělí datový soubor na třídy stejné délky, v rámci každé třídy na lodyze máme listy určující jednotlivé položky v dané třídě.

Teorie pravděpodobnosti

Pokus je konečný děj, který probíhá při určitém souboru fyzikálních podmínek. **Náhodný pokus** je takový pokus, jehož výsledek je náhodný při konstantních podmínkách. **Hromadný pokus** je pokus, který můžeme libovolněkrát opakovat při konstantních podmínkách. Výsledky pokusů musí být neslučitelné (k dvěma různým výsledkům nemůže dojít současně) a vyčerpávající (k nějakému výsledku dojít musí) – množinu všech výsledků nazýváme $\Omega \neq \varnothing$ **základní prostor**. Jednoprvkové podmnožiny $\omega \subset \Omega$ nazýváme **elementární jev**. Libovolné podmnožiny $A \subset \Omega$ nazýváme **jevy**. **Jev nemožný** \varnothing nemůže nastat za žádných okolností. **Jev jistý** Ω nastane při každé realizaci náhodného pokusu.

Jevové pole $\mathcal S$ je systém podmnožin, pro který platí $A\in\mathcal S\Rightarrow \overline{A}\in\mathcal S$ (systém je uzavřený vůči svým doplňkům) a (A_1,\ldots) , $A_i\in\mathcal S\Rightarrow\bigcup A_i\in\mathcal S$. Elementy jevového pole nazýváme **náhodnými** jevy. Uspořádaná trojice $(\Omega,\mathcal S,P)$ tvoří **pravděpodobnostní prostor** náhodného pokus, kde **pravděpodobnostní funkce** $\mathbf P\colon\mathcal S\to\mathbb R$ splňuje $A\in\mathcal S:P(A)\geq 0$, $P(\Omega)=0$ a (A_1,\ldots) , $A_i\in\mathcal S,A_i\cap A_j=\varnothing:P\left(\bigcup A_i\right)=\sum P\left(A_i\right)$ (tzv. sigmaaditivita).

- $A, B \in \mathcal{S}, A \subset B \Rightarrow P(A) \leq P(B)$
- $P(\overline{A}) = 1 P(A)$
- $P(A B) = P(A) P(A \cap B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Podmíněná pravděpodobnost značí vztah $P\left(A|B\right)=\frac{P(A\cap B)}{P(B)}, P(B)\neq 0$. Jevy jsou **nezávislé**, pokud $P\left(A|B\right)=P(A)$ nebo P(B)=0. Pro nezávislé jevy platí $P(A\cap B)=P(A)\cdot P(B)$. Jevy A_1,\ldots,A_n jsou **stochasticky nezávislé** právě tehdy, když $P\left(\bigcap A_i\right)=\prod P\left(A_i\right)$.

Pro úplnou skupinu disjunktních jevů $B_1,..,B_n,B_i\cup B_j=\varnothing$ vyslovme **Total Probability Theorem**: $A\in\mathcal{S},P(A)=\sum P\left(A|B_i\right)\cdot P\left(B_i\right)=\sum P\left(A\cap B_i\right)$ a **Bayes Theorem**: $P\left(B_k|A\right)=\frac{P(A|B_k)\cdot P(B_k)}{\sum P(A|B_i)\cdot P(B_i)}$.

Náhodná veličina

Mějme pravděpodobnostní prostor (Ω,S,P) . **Náhodná veličina** X je reálná funkce prvků $\omega\in\Omega$ ze základního prostoru taková, že pro každé reálné $x\in\mathbb{R}$ je množina $\{\omega\in\Omega|X(\omega< x)\}\in S$, tj. náhodným jevem. Náhodná veličina je zobrazením $X:\Omega\to\mathbb{R}$ takové, že pro každé $x\in R$ platí $X\left((-\infty,x)\right)=\{\omega\in\Omega|X(\omega< x)\}\in S$. Množina $\{x=X(\omega),\omega\in\Omega\}$ se nazývá **základní soubor**.

Nechť X je náhodná veličina. Reálnou funkci F(t) definovanou pro všechna reálná $t \in \mathbb{R}$ vztahem

$$F(t) = P\{X \in (-\infty, t)\} = P(X < t)$$

Nazveme **distribuční funkcí** náhodné veličiny X. Jedná se tedy o funkci, která každému reálnému číslu přiřazuje pravděpodobnost, že náhodná veličina nabude hodnoty menší než toto reálné číslo.

1. Distribuční funkce je <u>nezáporné číslo menší nebo rovno jedné</u>.

2. Distribuční funkce je neklesající.

$$\forall x_1, x_2 \in \mathbb{R} : x_1 < x_2 \Rightarrow F(x_1) \leq F(x_2)$$

3. Distribuční funkce je zleva spojitá.

4.
$$\lim_{x \to \infty} F(x) = 1$$
, $\lim_{x \to -\infty} F(x) = 0$

5.
$$\forall a, b \in \mathbb{R}, a < b : P(a \leq X < b) = F(b) - F(a)$$

6.
$$P\left(x=x_{0}
ight)=\lim_{x
ightarrow x_{0}^{+}}F(x)-F\left(x_{0}
ight)$$

Pro **diskrétní náhodnou veličinu** platí, že existuje konečná nebo spočetná množina reálných čísel $M=\{x_1,\ldots,x_n,\ldots\}$ takových, že $P\left(X=x_i\right)>0, i=1,\ldots,n,\ldots$ a $\sum P\left(X=x_i\right)=1$. Funkce $P\left(x_i\right)=P(X=x_i)$ se nazývá **pravděpodobnostní funkcí** náhodné veličiny X. Distribuční funkce je schodovitá a platí pro ni $F(x)=\sum_{x_i< x}P(X=x_i)$.

Pro **spojitou náhodnou veličinu** platí, že distribuční funkce má tvar $F(x)=\int_{-\infty}^x f(t)dt$, kde f(x) je nezáporná funkce zvaná **hustota pravděpodobnosti**, pro kterou platí, že $\int_{-\infty}^\infty f(x)dx=1$. Ve všech bodech, kde existuje derivace distribuční funkce platí $f(x)=\frac{dF(x)}{dx}$. Platí, že

1.
$$P(X < a) = F(a) = \int_{-\infty}^a f(x) dx$$

2.
$$P(X \ge a) = 1 - F(a) = \int_{a}^{\infty} f(x) dx$$

3.
$$P(a \leq X < b) = F(b) - F(a) = \int_a^b f(x) dx$$

4.
$$P(X = x) = 0$$

Dvě náhodné veličiny X,Y jsou **nezávislé**, pokud pro náhodný vektor (viz Náhodný vektor) A=(X,Y) platí $F(x,y)=F_x(x)\cdot F_y(y)$.

Číselné charakteristiky náhodné veličiny

Obecný moment r-tého řádu $\mu_r' = EX^r = \int_{-\infty}^\infty x^r f(x) dx$.

Centrální moment r-tého řádu $\mu_r = E(X-EX)^r = \int_{-\infty}^{\infty}{(x-EX)^r f(x) dx}$.

Střední hodnota $EX = \mu = \int_{-\infty}^{\infty} x f(x) dx$

- E(aX + b) = aEX + b
- $E(X_1 + X_2) = EX_1 + EX_2$
- ullet $E\left(X_{1}X_{2}
 ight)=E\left(X_{1}
 ight)E(X_{2})$ pro nezávislé náhodné veličiny
- $Y = g(X) \Rightarrow EY = E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx$

Rozptyl
$$DX=\mu_2=E(X-EX)^2=EX^2-(EX)^2=\int_{-\infty}^{\infty}x^2f(x)dx-\left(\int_{-\infty}^{\infty}xf(x)dx\right)^2.$$

- $D(aX + b) = a^2DX$
- $D\left(X_1+X_2
 ight)=DX_1+DX_2$ pro nezávislé náhodné veličiny

Směrodatná odchylka $\sigma_x = \sqrt{DX}$

<u>Šikmost</u> (*skewness*) – mírou symetrie daného rozdělení $a_3=\frac{\mu_3}{\sigma_x^3}$ ($a_3=0$ symetrický soubor, $a_3<0$ negativně zešikmený soubor, $a_3>0$ pozitivně zešikmený soubor).

Špičatost ($\mathit{kurtosis}$) – míra plochosti/špičatosti $a_4=rac{\mu_4}{\sigma_x^4}$ ($a_4<3$ plošší, $a_4>3$ špičatější).

<u>Kvantily</u> jsou definovány jako v Explorační analýza dat $F\left(x_{p}
ight)=p$.

Modus \widehat{x} je pro diskrétní NV hodnota $P\left(X=\widehat{x}
ight)\geq P\left(X=x_i
ight)$, pro spojitou NV $f\left(\widehat{x}
ight)\geq f(x)$.

Náhodný vektor

Náhodným vektorem rozumíme sloupcový vektor složený z náhodných veličin $\mathbf{X}=(X_1,X_2,\ldots,X_n)$. **Sdružená distribuční funkce** náhodných veličin $F\left(x_1,...,x_2\right)=P\left(X_1< x_1,\ldots,X_n< x_n\right)$.

- $\lim_{\mathbf{x}\to-\infty} F(\mathbf{x}) = 0$
- $\lim_{\mathbf{x}\to\infty} F(\mathbf{x}) = 1$
- Funkce je neklesající a zleva spojitá v každé proměnné
- $\bullet \ \ P\left(a_{1} \leq X_{1} < b_{1}, a_{2} \leq Y < b_{2}\right) = F\left(b_{1}, b_{2}\right) F\left(b_{1}, a_{2}\right) F\left(a_{1}, b_{2}\right) + F(a_{1}, a_{2})$

V případě **náhodného vektoru s diskrétním rozdělením** definujeme sdruženou distribuční funkci jako $F\left(x_1,\ldots,x_n\right)=\sum_{x_{1i}< x_1,\ldots,x_{ni}< x_n}P(X_1=x_{1i},\ldots,X_n=x_{ni})$, kde $P(x_{1i},\ldots,x_{ni})$ je **sdružená**

pravděpodobnostní funkce. V případě **náhodného vektoru se spojitým rozdělením** platí běžné definice rozložené do více dimenzí.

Chceme-li určit distribuční funkci

veličiny X z dvousložkového vektoru, mluvíme o **marginální distribuční funkci** $F_x(x) = P(X < x) = \lim_{y \to \infty} F(x,y)$, $F_y(Y) = P(Y < y) = \lim_{x \to \infty} F(x,y)$.

Chceme-li určit hustotu pravděpodobnosti veličiny X z dvousložkového vektoru, mluvíme o **marginální** hustotě pravděpodobnosti $f_x(x)=\int_{y\to\infty}F(x,y)$, $f_y(y)=\int_{x\to\infty}F(x,y)$.

Složky X,Y dvousložkového náhodného vektoru jsou navzájem nezávislé právě tehdy, jsou-li nezávislé náhodné veličiny X,Y. Platí tedy, že $F(x,y)=F_x(x)F_y(y)$. Z těchto údajů můžeme vytvořit korelační tabulku.

Pro náhodný vektor je definována **podmíněná pravděpodobnostní funkce** $f\left(x|y
ight)=rac{f(x,y)}{f_{y}(y)}.$

Charakteristiky náhodného vektoru

Smíšený obecný moment řádu k,n: $\mu'_{kn}=E(X^kY^n)$.

Smíšený centrální moment řádu k,n: $\mu_{kn}=E\left[(X-EX)^k(Y-EY)^n
ight]$

Kovariance je nejjednodušším ukazatelem souvislosti dvou náhodných veličin $Cov(X,Y)=\mu_{11}=E\left[(X-EX)(Y-EY)\right]$. Kladná hodnota kovariance znamená, že se zvětšením hodnoty X se pravděpodobně zvýší i hodnota Y, oproti tomu záporná hodnota kovariance znamená, že se zvětšením hodnoty X se pravděpodobně sníží hodnota Y. Často definujeme kovarianční matici

$$egin{bmatrix} DX & Cov(X,Y) \ Cov(X,Y) & DY \end{bmatrix}$$

Jednoduchý korelační koeficient je mírou lineární závislosti dvou náhodných veličin definovaný jako $ho_{x,y}=rac{Cov(X,Y)}{\sqrt{DX\cdot DY}}$. Mohou být nekorelované, pozitivně korelované a negativně korelované.

Diskrétní rozdělení pravděpodobnosti

Definujme **Bernoulliho pokusy** posloupnost nezávislých pokusů majících pouze 2 možné výsledky a pravděpodobnost výskytu události p je konstantní v každém pokuse.

Poissonův proces popisuje výskyt náhodných událostí na nějakém pevném časovém intervalu – speciální případ bodového procesu. Každý proces musí dodržet následující předpoklady – rychlost výskytu událostí je konstantní v průběhu celého intervalu a jednotlivé události musí být nezávislé.

Hypergeometrická náhodná veličina

Předpokládejme, že v souboru N prvků M prvků s danou vlastností a zbylých (N-M) prvků tuto vlastnost nemá. Postupně vybereme ze souboru n prvků, z nichž žádný nevracíme zpět. Definujme náhodnou veličinu X jako počet se sledovanou vlastností ve výběru n prvků, pak tato veličina má hypergeometrické rozdělení s parametry N,M,n, což značíme $X\to H(N;M;n)$.

$$P(X=k) = rac{inom{M}{k}inom{N-M}{n-k}}{inom{N}{n}}$$

Hypergeometrické rozdělení využijeme při statistické kontrole jakosti, když zkoumáme jakost malého počtu výrobků nebo když kontrola má ráz destrukční zkoušky.

Binomická náhodná veličina

Binomická náhodná veličina X je definována jako počet výskytu události v n Bernoulliho pokusech. Pro rozložení veličiny $X \to Bi(n,p)$ musíme znát počet pokusů n a pravděpodobnost výskytu události p.

$$P(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$

Je-li výběrový poměr $\frac{n}{N}$ v hypergeometrickém rozdělení menší než 0,05, lze hypergeometrické rozdělení nahradit binomickým $H(N;M;n) \to Bi(n;\frac{M}{N})$.

Variantou binomické veličiny pro n=1 je **alternativní náhodná veličina**. Pokud $X \to A(p)$, poté P(X=1)=p, P(X=0)=1-p.

Geometrická náhodná veličina

Geometrická náhodná veličina X je definovaná jako počet Bernoulliho pokusů do prvního výskytu události, **včetně něj**. Značíme $X \to G(p)$, kde p je pravděpodobnost výskytu události.

$$P(X = n) = p(1 - p)^{n-1}$$

Negativně binomická náhodná veličina

Negativně binomická náhodná veličina X je definována jako počet Bernoulliho pokus; do k-tého výskytu události, včetně k-tého výskytu. Geometrická náhodná veličina je speciálním případem negativně binomické náhodné veličiny pro k=1. Značíme $X \to NB(k,p)$, kde k je požadovaný počet výskytů událostí a p je pravděpodobnost výskytu události.

$$P(X = n) = \binom{n-1}{k-1} p^k (1-p)^{n-k}$$

Poissonovo rozdělení pravděpodobnosti

Definujme si náhodný pokus jako Poissonův proces probíhající v čase t s rychlostí výskytu λ . Pokud veličina X značí počet výskytu události v časovém intervalu t poté $X \to Po(\lambda t)$.

$$P(X = k) = rac{(\lambda t)^k e^{-\lambda t}}{k!}$$

Je-li počet pokusů $n o \infty$ a pravděpodobnost výskytu události p o 0, poté můžeme binomické rozdělení aproximovat Poissonovým rozdělením $Bi(n,p) \sim Po(\lambda), \lambda = np$. Dobrou aproximaci splňují podmínky n>30 a p<0.3.

Spojitá rozdělení pravděpodobnosti

Pro nezápornou náhodnou veličinu X se spojitým rozdělením definujeme pro $F(t) \neq 1$ **intenzitu poruch** $\lambda(t) = \frac{f(t)}{1-F(t)}$. Představuje-li náhodná veličina X dobu do poruchy nějakého zařízení, pak intenzita poruch vyjadřuje, že pokud do času t nedošlo k žádné poruše, tak pravděpodobnost, že k ní dojde v následujícím okamžiku malé délky dt, je přibližně $\lambda(t) \cdot dt$.

Křivka na obrázku se nazývá **vanová křivka** a obvykle

se dělí na tři úseky.

1. V prvním úseku křivka poruch klesá. Odpovídající časový interval se nazývá **období časných poruch**. Příčinou zvětšené intenzity poruch v tomto období jsou poruchy v důsledku výrobních vad, nesprávné

montáže, chyb při návrhu nebo při výrobě.

- 2. Ve druhém úseku dochází k běžnému využívání zaběhnutého výrobku, k poruchám dochází většinou z vnějších příčin, nedochází k opotřebení, které by změnilo funkční vlastnosti výrobku. Např. exponenciální rozdělení.
- 3. Ve třetím úseku procesy stárnutí a opotřebení mění funkční vlastnosti výrobku, projevují se nastřádané otřesy, trhliny a intenzita poruch vzrůstá. Např. Erlangovo rozdělení.

Rovnoměrné rozložení

Rozložení s hustotou pravděpodobností je konstantní na intervalu $\langle a,b \rangle$. Náhodnou veličinu s tímto rozdělením značíme $X \to R(a,b)$

$$f(x) = \left\{egin{array}{ll} rac{1}{b-a} & x \in \langle a,b
angle \ 0 & jinde \end{array}
ight.$$

Exponenciální rozdělení

Mějme Poissonův proces, tj. v určitém časovém intervalu se s konstantní rychlostí výskytu λ objevují události, které jsou na sobě nezávislé. Poté exponenciální rozdělení značí dobu do výskytu první události. Náhodnou veličinu X s exponenciálním rozdělením značíme $X \to E(\lambda)$, kde λ je parametrem Poissonova procesu.

$$f(t) = \lambda e^{-\lambda t}$$

Exponenciální rozdělení bývá někdy nazýváno **rozdělení bez paměti** $P\left(X>(t_1+t_2)|X>t_1\right)=P(X>t_2)$. Toto rozdělení dobře popisuje dobu života zařízení, u kterých dochází k poruše ze zcela náhodných příčin.

Exponenciální rozdělení je využito v teorii hromadné obsluhy nebo v teorii spolehlivosti.

Erlangovo rozdělení

Určitým zobecněním exponenciální náhodné veličiny je veličina s Erlangovým rozdělením, která popisuje dobu do výskytu k-té události v Poissonově procesu. Erlangovo rozdělení je speciálním typem tzv. Gamma rozdělení pro k z množiny celých čísel. Značíme $X_k \to Erlang(k,\lambda)$, kde k je počet událostí (parametr tvaru) a λ je rychlost výskytu těchto událostí.

$$f(t) = \lambda e^{-\lambda t} \cdot rac{(\lambda t)^{k-1}}{(k-1)!}$$

Intenzita poruch je v případě Erlangova rozdělení rostoucí funkce a proto je toto rozdělení vhodné pro modelování procesů stárnutí.

Weibullovo rozdělení

Weibullovo rozdělení je velmi flexibilní a proto se jím

popisují veličiny jako doba do poruchy. Používá se při popisu komponent v období raných poruch nebo v období stárnutí. Weibullovo rozdělení má dva parametry Θ – parametr měřítka, scale, závisí na materiálu, namáhání a podmínkách užívání – a β – parametr tvaru, shape, na jeho hodnotě závisí tvar intenzity poruch a tím i vhodnost použití pro určité období doby života. Veličinu značíme $X \to W(\Theta,\beta)$.

$$F(t) = 1 - e^{-\left(rac{t}{\Theta}
ight)^eta}$$

Pro intenzitu poruch platí $\lambda(t) = konst. \cdot t^{\beta-1}$, tudíž tvar intenzity poruch závisí na volbě parametru β .

$0 < \beta < 1$	období dětských nemocí	klesající funkce
$\beta = 1$	období stabilního života	exponenciální rozdělení
1 <eta<2< th=""><th>období stárnutí</th><th>konvexní, rostoucí funkce</th></eta<2<>	období stárnutí	konvexní, rostoucí funkce
eta=2	období stárnutí	lineárně rostoucí funkce
eta > 2	období stárnutí	konkávní, rostoucí funkce

Normální rozdělení

Lze říci, že normální rozdělení je vhodným pravděpodobnostním modelem tehdy, působí-li na kolísání náhodné veličiny velký počet nepatrných a vzájemně nezávislých vlivů. Za určitých podmínek lze pomocí něj aproximovat řadu jiných spojitých i nespojitých rozdělení. Normální rozdělení má dva parametry: μ – střední hodnotu charakterizující polohu a σ^2 – rozptyl. Náhodnou veličinu s normálním rozdělením značíme $X \to N\left(\mu;\sigma^2\right)$.

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-\left(rac{x-\mu}{\sqrt{2}\sigma}
ight)^2}$$

Normované normální rozdělení

Normální rozdělení se středním hodnotou rovnou nule a jednotkovým rozptylem. To, že má náhodná veličina Z o N(0,1).

$$arphi(x) = rac{1}{\sqrt{2\pi}} \cdot e^{-rac{x^2}{2}}$$

Nechť $X \to N\left(\mu,\sigma^2\right)$, poté definujme $Z=\frac{X-\mu}{\sigma}$ se stejným, ale normovaným rozdělením. Mezi distribuční funkci normální a normované normální náhodné veličiny plat vztah $F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)$.

Pravidlo 6σ je jedním ze základních principů, na nichž stojí kontrola kvality a jakosti. Máme-li data pocházející z normálního rozdělení o parametrech μ,σ^2 , pak téměř všechna (99,8 %) leží v intervalu $\mu\pm3\sigma$.

χ^2 rozdělení

Nechť Z_1,\dots,Z_n jsou nezávislé náhodné veličiny, $Z_i\to N(0,1)$. Poté náhodná veličina $\chi^2_n=\sum Z_i^2\to \chi^2(n)$ má chí-kvadrát rozdělení o n stupních volnosti. $E\left(\chi^2_n\right)=n$, $D\left(\chi^2_n\right)=2n$.

Studentovo rozdělení

Náhodná veličina $t_n=rac{Z}{\sqrt{rac{\chi_n^2}{n}}}$ má Studentovo rozdělení o n stupních volnosti. $E\left(\chi_n^2\right)=0$, $D\left(\chi_n^2\right)=rac{n}{n-2}$.

Tvarem Studentova rozdělení je také symetrická zvonovitá křivka, stejně jako o normálního rozdělení. Pro velká n je rozdělení blízké k N(0,1).

Fisherovo-Snedecorovo rozdělení

Náhodná veličina $F_{n,m}=rac{rac{\chi_m^2}{n}}{rac{\chi_m^2}{m}}$ má Fisherovo-Snedecorovo rozdělení o m a n stupních volnosti. $E\left(F_{m,n}\right)=rac{m}{m-2}$. Pro velká m se střední hodnota blíží k 1.

Limitní věty

Definujme **konvergenci podle pravděpodobnosti ke konstantě**: je dána posloupnost náhodných veličin $\{X_n\}=(X_1,\ldots,X_n)$ a reálné číslo a, poté pokud pro $\varepsilon>0$ platí $\lim_{n\to\infty}P\left(|X_n-a|<\varepsilon\right)=1$, pak říkáme posloupnost $\{X_n\}$ konverguje ka podle pravděpodobnosti. Značíme $X_n\stackrel{p}{\to}\mu$.

Definujme **konvergenci v distribuci**: je dána posloupnost náhodných veličin $\{X_n\}$ a náhodná veličina X s distribuční funkcí F(x). Jestliže $\lim_{n\to\infty}F_n(x)=F(x)$, pak říkáme, že posloupnost náhodných veličin $\{X_n\}$ konverguje k náhodné veličině X v distribuci a F(x) nazýváme **asymptotickou distribuční funkcí**. Poté můžeme náhodnou veličinu X_n aproximovat asymptotickou distribučních funkcí.

Je-li X libovolná náhodná veličina se střední hodnotou EX a konečným rozptylem $DX=\sigma^2$, pak **Čebyševova nerovnost** odhaduje pravděpodobnost odchylky náhodné veličiny X od její střední hodnoty.

$$orall \epsilon > 0: P\left(|X - EX| \geq arepsilon
ight) \leq rac{DX}{arepsilon^2}$$

Čebyševova nerovnost pro případ, kdy chceme odhadnout pravděpodobnost, že náhodná veličina X je od své střední hodnoty vzdálená o více než k-násobek směrodatná odchylky σ

$$orall \sigma, k > 0: P\left(|X - EX| \geq k\sigma
ight) \leq rac{1}{k^2}$$

Zákon velkých čísel označuje tvrzení o konvergenci průměru v posloupnosti náhodných veličin: X_1,\ldots,X_n jsou nezávislé náhodné veličiny, jejichž střední hodnoty jsou rovny μ . Jestliže $\overline{X_n}$ definujeme jako $\overline{X_n}=\frac{1}{n}\sum_{j=1}^n X_j$, pak posloupnost $\left(\overline{X_n}\stackrel{p}{\to}\mu\right)$. Posloupnost nemusí mít stejné rozdělení, a zároveň nemáme žádné požadavky na jejich rozptyl.

Důsledkem zákona velkých čísel je **Bernoulliho věta**, která tvrdí, že relativní četnost sledovaného jevu stochasticky konverguje (konverguje podle pravděpodobnosti) k jeho pravděpodobnosti. Nechť X_1, X_2, \ldots jsou nezávislé náhodné veličiny s alternativním rozdělením s parametrem p, jestliže $\overline{X_n}$ definujeme jako $\overline{X_n} = \frac{1}{n} \sum X_j$, pak $(\overline{X_n} \stackrel{p}{\to} p)$.

Centrální limitní věta

O náhodných veličinách, jež konvergují v distribuci k normálnímu rozdělení, říkáme, že mají **asymptoticky normální rozdělení**.

Lindenberg-Lévy – jestliže X_1,\dots,X_n jsou nezávislé náhodné veličiny se stejnými středními hodnotami μ a se stejnými rozptyly σ^2 , pak platí

$$Y_n = rac{\sum X_i - n \mu}{\sigma \sqrt{n}} \Rightarrow \lim_{n o \infty} P(Y_n < u) = \Phi(u)$$

Čili Y_n má asymptoticky normální rozdělení N(0,1). Proto platí, že

1. $X=\sum X_i\Rightarrow EX=n\mu, DX=n\sigma^2$, rozdělení náhodné veličiny X lze aproximovat rozdělením $N\left(n\mu;n\sigma^2\right)$

2.
$$\overline{X}=rac{\sum X_i}{n}=rac{X}{n}\Rightarrow E\overline{X}=\mu, D\overline{X}=rac{\sigma^2}{n}$$
 rozdělení náhodné veličiny \overline{X} lze aproximovat rozdělením $N\left(\mu,rac{\sigma^2}{n}
ight)$

Moivre-Laplace – nechť X o Bi(n;p), EX = np; DX = np(1-p), potom pro velká n platí, že:

$$U=rac{X-np}{\sqrt{np(1-p)}}
ightarrow N(0,1)$$

Aproximace binomického rozdělení normálním se zlepšuje s rostoucím rozptylem. Poměrně dobré výsledky dává tato aproximace v případě, že np(1-p)>9 nebo $\min{\{np;n(1-p)\}}>5$.

Aproximace rozdělení výběrové relativní četnosti normálním rozdělením – máme-li n Bernoulliho pokusů, při kterých nastane k výskytů nějaké události, můžeme určit výběrovou relativní četnost $p=\frac{k}{n}=\frac{\sum X_i}{n}$, kde $X_i \to A(\pi)$. Na základě Lindenberg-Lévy můžeme tento součet aproximovat normálním rozdělením $\sum X_i = N\left(n\pi, n\pi(1-\pi)\right)$, jejich průměr $p \to N\left(\pi, \frac{\pi(1-\pi)}{\pi}\right)$ a $\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{\pi}}} \to N(0,1)$. Pro přesnější výpočty se provádí **oprava na spojitost**.

$$P\left(k_1 < \sum X_i < k_2
ight) = F\left(k_2
ight) - F\left(k_1
ight) pprox \Phi\left(rac{k_2 + 0.5 - np}{\sqrt{np(1-p)}}
ight) - \Phi\left(rac{k_1 - 0.5 - np}{\sqrt{np(1-p)}}
ight)$$

Aproximace Poissonova rozdělení normálním rozdělením – pokud interval (0,t) je dostatečně velký, lze Poissonovo rozdělení aproximovat $X \to Po(\lambda t) \to N(\lambda t, \lambda t)$ pro dostatečně velké t. Dále lze průměrný počet výskytů událostí za časovou jednotku aproximovat normálním rozdělením $Y = \frac{X}{t} \to N\left(\lambda, \frac{\lambda}{t}\right)$.

$$P\left(k_{1} < X < k_{2}
ight) = F\left(k_{2}
ight) - F\left(k_{1}
ight) pprox \Phi\left(rac{k_{2} + 0.5 - \lambda t}{\sqrt{\lambda t}}
ight) - \Phi\left(rac{k_{1} - 0.5 - \lambda t}{\sqrt{\lambda t}}
ight)$$

Náhodné výběry a jejich zpracování

Náhodný výběr je speciální náhodný vektor, jehož složky jsou nezávislé náhodné veličiny se stejným rozdělením pravděpodobnosti. Opakujeme-li n-krát nezávisle pokus, jehož výsledkem je náhodná veličina X s distribuční funkcí F(x), sledujeme náhodný výběr $X=\left(X_1,\ldots,X_n\right), X_i\sim F(x)$ z rozdělení F(x), kde n značí rozsah výběru. Obvykle rozdělujeme náhodné výběry na **malé** pro $n\leq 30$ a **velké** pro n>30. Náhodný výběr má simultánní distribuční funkci $F\left(x\right)=\prod F\left(x_i\right)$ a simultánní hustotu pravděpodobností $f\left(x\right)=\prod f\left(x_i\right)$.

1.
$$T_1\left(X
ight)=\overline{X_n}=rac{\sum_i X_i}{n}$$
, $E\overline{X_n}=EX_i$ výběrový průměr pro odhad střední hodnoty

2.
$$T_2\left(X\right)=\frac{1}{n-1}\sum_i\left(X_i-\overline{X_n}\right)^2$$
, $E\left(T_2\left(X\right)\right)=DX_i$ výběrový rozptyl, $T_3\left(X\right)=\sqrt{T_2\left(X\right)}=S$ výběrová směrodatná odchylka

Předpokládejme, že $X=\left(X_1,\ldots,X_n
ight), X_i o N\left(\mu,\sigma^2
ight)$. Definujme výběrová rozdělení

1.
$$\overline{X_n} o N\left(\mu, rac{\sigma^2}{n}
ight)$$

2.
$$Z_n=rac{\overline{X_n}-\mu}{\sigma}\sqrt{n}
ightarrow N(0,1)$$

3. $rac{S_n^2}{\sigma^2}(n-1) o \chi^2(n-1)$ jeden stupeň volnosti ztrácíme na náhradu μ za $\overline{X_n}$

4.
$$\frac{\left(\overline{X_n}-\mu\right)}{S}\sqrt{n} o t_{n-1}$$

Předpokládejme navíc, že $Y=\left(Y_{1},\ldots,Y_{m}
ight),Y_{i}
ightarrow N\left(\mu',{\sigma'}^{2}
ight)$.

5.
$$rac{\overline{X}-\overline{Y}-\left(\mu-\mu'
ight)}{\sqrt{rac{\sigma^2}{n}+rac{\sigma'^2}{m}}}
ightarrow N(0,1)$$

6.
$$\frac{\frac{S_x^2}{\sigma^2(n-1)}}{\frac{S_y^2}{\sigma^2(m-1)}} = \frac{\frac{S_x^2}{\sigma^2}}{\frac{S_y^2}{\sigma^{'2}}} o F_{n-1,m-1}$$

Předpokládejme navíc, že $\sigma_x^2 = \sigma_y^2$.

7.
$$\frac{\overline{X}-\overline{Y}-\left(\mu-\mu'\right)}{\sqrt{S_x^2(n-1)+S_y^2(m-1)}}\cdot\sqrt{\frac{nm}{n+m}}\cdot\sqrt{n+m-2} o t_{n+m-2}$$

Teorie odhadu

Nechť máme náhodný výběr $X=(X_1,\dots,X_n)\sim F(x,\Theta)$. Cílem naší teorie odhadu je pro známé pravděpodobnostní rozdělení F najít parametr $\Theta\in\Omega$, kde Ω značí parametrický prostor pomocí výběrové charakteristiky **odhadu** $\widehat{\Theta}=T\left(X\right)$ pro nalezení **bodového odhadu** t(x). Aby odhad byl přesný, požadujeme splnění tří vlastností odhadu – nestrannost, konzistence a efektivita.

Nestrannost odhadu – požadujeme, aby $\forall\Theta\in\Omega: E\widehat{\Theta}=\Theta$. Často požadujeme, aby byl odhad alespoň asymptoticky nestranný $\forall\Theta\in\Omega: \lim_{n\to\infty} E\widehat{\Theta}_n=\Theta$.

• Výběrový průměr $\widehat{\Theta}=\overline{X}$ je nestranným odhadem střední hodnoty.

Konzistence odhadu – požadujeme, aby byl nestranný nebo asymptoticky nestranný a zároveň $\lim_{n \to \infty} D\widehat{\Theta}_n = 0.$

• Výběrový průměr $\widehat{\Theta}=\overline{X}$ je konzistentním odhadem střední hodnoty, neboť $D\widehat{\Theta}=rac{\sigma^2}{n}n\stackrel{
ightarrow}{ o}\infty 0.$

Efektivnost odhadu – odhad je efektivní, značíme $\widehat{\Theta}_0$, právě tehdy když je nestranný a zároveň $\forall \widehat{\Theta}_1, E\widehat{\Theta}_1 = \Theta: D\widehat{\Theta}_0 \leq D\widehat{\Theta}_1$.

Intervalový odhad

Často hledáme **intervalový odhad** – hledáme funkce $T_D(X)$ a $T_H(X)$ tak, aby $P\left(T_D \leq \Theta \leq T_H\right) = 1 - \alpha$, kde α je nejčastěji 0.01. Těmto mezím říkáme **interval spolehlivosti pro** Θ se spolehlivostí $1 - \alpha$. Konkrétní reprezentaci $t_D\left(X\right)$ a $t_H(X)$ nazýváme **intervalový odhad pro** Θ se spolehlivostí $1 - \alpha$.

Rozdělme
$$\alpha=\alpha_1+\alpha_2; \alpha_1, \alpha_2\geq 0$$
 tak, aby $P\left(\Theta\leq T_H\left(X\right)\right)=1-\alpha_2$ a $P\left(\Theta< T_D\left(X\right)\right)=\alpha_1.$ Nejčastěji volíme $\alpha_1=\alpha_2=\frac{\alpha}{2}$ nebo $\alpha_1=\alpha, \alpha_2=0$ pro jednostranný interval spolehlivosti.

- 1. Zvolme vhodnou $T\left(X
 ight)$, ze které jsme schopni odvodit T_D a T_H .
- 2. Algebraickou metodou najděme T_D a T_H .

Testování hypotéz

Testování hypotéz je pojat jako rozhodovací proces, v němž proti sobě stojí dvě tvrzení. **Nulová hypotéza** H_0 představuje rovnovážný stav, bývá vyjádřena rovností. Jde o tvrzení o populaci, které je bráno jako předpoklad při testování. Oproti ní stavíme tzv. **alternativní hypotézu** H_A . Ta představuje porušení rovnovážného stavu a zapisujeme je nerovností nebo nerovnicí. Alternativní hypotézu volíme v souladu s daty.

Čistý test významnosti zodpovídá otázku, zda získaný náhodný výběr X je či není extrémní s ohledem na testovanou hypotézu (zda zjištěné údaje podporují nulovou hypotézu).

- 1. Formulace nulové hypotézy H_0 a alternativní hypotézy H_A .
- 2. Volba testové statistiky T(X) funkce výběru, která vyjadřuje sílu platnosti nulové hypotézy ve srovnání s hypotézou alternativní. Je třeba znát nulové rozdělení $F_0(x) = P\left(T\left(X\right) < x \middle| H_0\right)$.
- 3. Výpočet pozorované hodnoty testové statistky x_{OBS} .
 - 1. Je-li H_A ve tvaru "<": $p_{value} = F_0\left(x_{OBS}\right)$.
 - 2. Je-li H_A ve tvaru ">": $p_{value} = 1 F_0 (x_{OBS})$.
 - 3. Je-li H_A ve tvaru "eq" a nulové rozdělení je symetrické: $p_{value}=2\min\left\{F_0\left(x_{OBS}\right);1-F_0\left(x_{OBS}\right)
 ight\}$.
- 4. p_{value} určuje minimální hladinu významnosti, na níž bychom při daném výběrovém souboru mohli nulovou hypotézu zamítnout. Čím menší je p_{value} , tím silnější je výpověď náhodného výběru proti nulové hypotéze. Nejběžněji:
 - 1. Je-li $p_{value} < 0.01 = lpha$: zamítáme H_0 .
 - 2. Je-li $0.01 < p_{value} < 0.05$: nedokážeme rozhodnout.
 - 3. Je-li $p_{value} > 0.05$: nezamítáme H_0 .

Jelikož při rozhodování o nulové hypotéze vycházíme z výběrového souboru, který nemusí dostatečně přesně odpovídat vlastnostem základního souboru, můžeme se při rozhodování dopustit chyby.

$\text{Nezamítáme } H_0 \\ \text{SKUTEČNOST} \\ \text{Platí } H_0 \\ \text{Platí } H_A \\ \text{Platí } H_A \\ \text{Platí } H_A \\ \text{Pravděpodobnost } \beta \\ \text{Nezamítáme } H_0 \\ \text{OK, pravděpodobnost } 1-\alpha \\ \text{zvaná spolehlivost} \\ \text{Chyba 1. druhu,} \\ \text{pravděpodobnost } \alpha \text{ zvaná hladina významnosti} \\ \text{OK, pravděpodobnost } \gamma \coloneqq 1-\beta \\ \text{zvaná síla testu} \\ \text{Významnosti} \\ \text{Vyaná síla testu} \\ \text$

Pravděpodobnost chyby 2. druhu závisí na přesné hodnotě alternativní hypotézy.

Dokážeme určit β pro případ, že alternativní hypotéza je přesně specifikována. **Operativní charakteristika** je závislost pravděpodobnosti chyby 2. druhu na přesné specifikaci alternativní hypotézy.

Při testování více než dvou hypotéz nelze použít testování "po dvojicích", neboť $P\left(\min p_1,\ldots,p_k < p\right) pprox np \sim 1$.

ANOVA Analýza rozptylu

Předpokládejme k datových tříd z normálního rozdělení a mající stejný rozptyl – homeskedaticitu, každá z nich n_i hodnot ($N=\sum_i n_i$). Testujeme hypotézu $H_0:\mu_1=\ldots=\mu_k$ proti alternativně $H_A:\neg H_0$. Hledáme takovou testovou statistiku F, která nejen umožní implementaci H_0 , ale je i citlivá na platnost H_0 .

Sestavme **totální variabilitu** $SS_T = \sum_{i=1}^k \sum_{j=1}^{n_i} \left(X_{ij} - \overline{X} \right)^2$, kde \overline{X} je výběrový průměr ze všech pozorovaných hodnot. Rozdělme $SS_T = SS_w + SS_B = \sum_{i=1}^k \sum_{j=1}^{n_i} \left(X_{ij} - \overline{X_i} \right)^2 + \sum_{i=1}^k n_i \left(\overline{X_i} - \overline{X} \right)^2$, kde SS_W je vnitřní variabilita a SS_B je mezitřídní variabilita. Zaveďme **vnitřní výběrový rozptyl** jako $S_W^2 = \frac{SS_W}{N-k}$, **mezitřídní výběrový rozptyl** $S_B^2 = \frac{SS_B}{k-1}$ a **F-poměr** jako $F = \frac{S_B^2}{S_W^2} \to F_{k-1,N-k}$.

 $\textbf{Post Hoc} \text{ je proces, který provádíme v případě, že zamítneme } H_0. \text{ Cílem je vytvořit takové rozdělení datových tříd, v rámci kterých platí } H_0. \text{ Můžeme využít statistiku } LSD_{i,j} = \frac{\overline{X_i} - \overline{X_j} - (\mu_i - \mu_j)}{\sqrt{\frac{\sigma^2}{n_i} + \frac{\sigma^2}{n_j}}} \cdot \frac{1}{\sqrt{\frac{S_W^2}{\sigma^2}(N-k)}} = \frac{\overline{X_i} - \overline{X_j}}{S_W \cdot \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}}$

pro porovnání.

V případě, že nejsou splněny požadavky ANOVA analýzy, můžeme využít **Kruskal-Wallisův test**, kde rozhodujeme o $H_0: x_{0.5_1} = \ldots = x_{0.5_k}$.

Regresní analýza

Regrese značí systematické změny jedněch veličin při změnách jiných veličin a popis těchto změn matematickými funkcemi. Snažíme se tedy napozorované hodnoty vyrovnat vhodnou matematickou funkcí.

Vysvětlovaná (závisle) proměnná – proměnná v regresním modelu, jejíž chování se snažíme vysvětlit, popsat matematickou křivkou. Jedná se o proměnnou na levé straně regresní funkce a většinou ji označujeme symbolem A. **Vysvětlující (nezávisle) proměnné** – proměnné v regresním modelu, jejichž chování vysvětluje chování závisle proměnné Y. Jedná se o proměnné na pravé straně regresní funkce a většinou je označujeme symboly X, Z, \ldots

Obecný lineární model

$$Y = \mathbf{X}\beta + e$$

- ullet Y je náhodný vektor n hodnot vysvětlované proměnné
- ullet ${f X}$ je matice zadaných hodnot vysvětlujících proměnných o rozměrech n imes k
- eta je vektor p=k neznámých parametrů
- ullet e je vektor n hodnot náhodných chyb

Předpoklady obecného lineárního modelu

- 1. $orall i \leq n: Ee_i = 0$ náhodná složka nepůsobí systematickým způsobem na hodnoty vysvětlované proměnné Y
- 2. $\forall i \leq n: De_i = \sigma^2$ homoskedasticita náhodných složek, variabilita náhodné složky nezávisí na hodnotách vysvětlujících proměnných
- 3. $\forall i,j \leq n; i \neq j: Cov\left(e_i,e_j\right) = 0$ náhodné složky jsou nekorelované
- 4. **X** je nestochastická matice.
- 5. Parametry $\beta_j, j \leq k$ nabývají libovolných hodnot.

Pokud platí předpoklady 6 a 7, nazýváme model **regresní model**.

- 6. $h\left(\mathbf{X}\right)=k\wedge n>k$ mezi vysvětlujícími proměnnými nebyla funkční lineární závislost
- 7. $orall i \leq n : e_i \sim N$ toto také implikuje normalitu proměnné Y

Mezi několik regresních modelů patří:

• Obecná regresní přímka, nebo lineární regrese s jednou vysvětlující proměnnou

$$Y_i = eta_0 + eta_i x_i + e_i, X = egin{pmatrix} 1 & x_i \ \cdots & \cdots \ 1 & x_n \end{pmatrix}, eta = egin{pmatrix} eta_0 \ eta_1 \end{pmatrix}$$

Kvadratická regrese

$$Y_i = \beta_0 + \beta_i x_i + \beta_2 x_i^2 + e_i$$

Lineární regrese s jednou vysvětlující proměnnou

Mějme n>2 pozorování, tedy n dvojic (Y_i,x_i) , ze kterých sestavíme model $Y_i=\beta_0+\beta_ix_i+e_i$. Pro jeho určení využijeme metody nejmenších čtverců, tj. $\min\sum_{i=1}^n e_i^2$. Toto vede na soustavu normálních rovnic vedoucí k řešení $b_1=\frac{\sum_{i=1}^n (x_i-\overline{x})Y_i}{\sum_{i=1}^n (x_i-\overline{x})^2}$ a $b_0=\overline{Y}-b_1\overline{x}$. Odhadem hodnoty $E\left(Y|x\right)$ je poté statistika $\widehat{Y}(x)=b_0+b_1x$. Jako vektor **reziduí** považujeme $\widehat{e_i}=Y_i-\widehat{Y_i}$.

Pro hledání intervalového odhadu pro $E\left(Y|x
ight)$ budeme vycházet ze statistiky $rac{\widehat{Y}(x)-eta_0-eta_1x}{S_{\widehat{Y}}}\sim t_{n-2}.$