Universidade Federal de Pelotas

Centro de Desenvolvimento Tecnológico Curso de Engenharia de Computação

Disciplina: 22000274 - Princípios de Comunicação

Turma: 2021/1 – T1

Professores: Alan Rossetto & Vinícius Valduga

Trabalho 2 - Projeto de um sistema de comunicação em Frequência Modulada

Para a realização desta tarefa, considere o sistema de comunicação mostrado na Figura 1. Nele, duas mensagens estereofônicas, $m_L(t)$ e $m_R(t)$, precisam ser multiplexadas, moduladas em frequência e em seguida transmitidas através de um canal hipotético. Para a multiplexação estéreo, utilize a técnica vista em aula, adotando $\omega_p = 19$ kHz para o sinal piloto e $2\omega_p$ como frequência modulante do sinal de diferença. Mantenha a amplitude do sinal piloto em, no máximo, 30% da amplitude de m(t), a fim de evitar demasiada interferência deste no desvio de frequência provocado pela mensagem. Devido à ocupação do canal por outras comunicações, a largura de banda disponível para transmissão é de 200 kHz, a partir de uma frequência inferior $f_L = 76$ MHz até uma frequência superior $f_H = 76,2$ MHz. Os parâmetros da transmissão (índice de modulação β , desvio de frequência $\Delta\omega$, etc.) devem ser escolhidos de tal maneira que a largura de banda do sinal modulado não exceda a largura de banda alocada no canal. Por simplicidade, a demodulação do sinal FM pode ser feita com a função fmdemod, a qual é nativa do MATLAB®. Por outro lado, a demultiplexação da mensagem estéreo nas duas componentes $m'_L(t)$ e $m'_R(t)$ precisa ser implentada, devendo ser capaz de recuperar cada componente da mensagem na íntegra e sem distorções.

Figura 1: Sistema de comunicação hipotético.

As mensagens a serem transmitidas são:

$$m_{L}(t) = \frac{1}{10} \cdot \left[10 + A_{1} \cos(\omega_{1}t) + A_{2} \cos(\omega_{2}t) + A_{3} \cos(\omega_{3}t) + A_{4} \cos(\omega_{4}t) + A_{5} \cos(\omega_{5}t) + A_{6} \cos(\omega_{6}t) + A_{7} \cos(\omega_{7}t) + A_{8} \cos(\omega_{8}t) \right] e$$

$$m_{R}(t) = \frac{1}{10} \cdot \left[10 + A_{8} \cos(\omega_{1}t) + A_{7} \cos(\omega_{2}t) + A_{6} \cos(\omega_{3}t) + A_{5} \cos(\omega_{4}t) + A_{4} \cos(\omega_{5}t) + A_{3} \cos(\omega_{6}t) + A_{2} \cos(\omega_{7}t) + A_{1} \cos(\omega_{8}t) \right].$$

$$(2)$$

O parâmetro A está relacionado com a matrícula do aluno, i.e., $A_n = n$ -ésimo algarismo do número de matrícula, sem o dígito verificador. Os valores para o parâmetro ω são dados na Tabela 1.

Tabela 1: Frequências angulares a serem usadas nas Equações (1) e (2).

Parâmetro	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	ω_7	ω_8
Valor [rad/s]	640π	1.040π	1.700π	2.800π	4.600π	7.400π	12.200π	20.000π

Universidade Federal de Pelotas Centro de Desenvolvimento Tecnológico Curso de Engenharia de Computação

Disciplina: 22000274 – Princípios de Comunicação

Turma: 2021/1 – T1

Professores: Alan Rossetto & Vinícius Valduga

Tarefas: Utilizando o *software* MATLAB®, projete e descreva matematicamente o sistema de modo a cumprir as especificações apresentadas. Além disso, elabore figuras com:

- Os sinais modulantes $m_L(t)$ e $m_R(t)$ no domínio tempo e domínio frequência;
- O sinal multiplexado m(t) no domínio tempo e domínio frequência;
- O sinal de portadora no domínio tempo e domínio frequência;
- O sinal modulado em frequência no domínio tempo e domínio frequência;
- O sinal demodulado no domínio tempo e no domínio frequência;
- As mensagens demoduladas $m'_{\rm L}(t)$ e $m'_{\rm R}(t)$ no domínio tempo e domínio frequência, comparando-as com os sinais originalmente transmitidos.

Condições de entrega: Este trabalho deverá ser entregue na forma de relatório (em formato livre, porém com extensão *.pdf), o qual deve descrever o passo-a-passo do projeto, conter as justificativas para as escolhas realizadas e incluir as figuras com as formas de onda geradas em cada parte do sistema desenvolvido. O código gerado deve ser comentado e submetido em extensão tipo *.m juntamente com o relatório.