CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGGATCCTCTAGAGATCCCT CGACCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGA CAGGCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGC AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGGC TCCAGCAGCATCAGCAGCCCCCAGGACCGGGGGGAGGCACAGGTGGCCCCCACCACCCGGAGG AGCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGA AGGCCACCCGCCTGGAGGCACAGGCCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCT TCTGGTGTTGGCAGTGGGCGCACAGAGCACGCCTACCGGCCCGGCCGTTAGGGTGTGCT GTCCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCC TCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATTTATAGGACCGCCTAC CGCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCCGGCTGGAAGAG GACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAG GGAGCTGTGCCAGCCTGGCCGCTGCCGCTGCCAGGATGGCGGGGTGACACTTGCCAG TCAGATGTGGATGAATGCAGTGCTAGGAGGGGGGGGGTGTCCCCAGCGCTGCATCAACACCGC $\tt CGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTG$ TGCCCAAGGGAGGGCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAG GAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCT GGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCC CTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGCCCCAACATGCTGGGGGTC CCACCCTGGCTACCCCCACCCTGGTTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCA GCTGAGGGAAGGTACGAGTTCCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCC CGGAGGCTGGGTGGGGCCTCAGTGGGGGCTGCTGCCTGACCCCCAGCACAATAAAAATGAAA AGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGT TACAAAT

MTDSPPPGHPEEKATPPGGTGHEGLSGGAADVASGVGSGRHRARLPARPLGCVLSRAHGDPV SESFVQRVYQPFLTTCDGHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGAC GAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCW EGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLAS OALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 93-97, 270-274

N-myristoylation sites.

amino acids 19-25, 78-84, 97-103, 100-106, 103-109, 157-163, 191-197, 265-271

Amidation site.

amino acids 26-30

Aspartic acid and asparagine hydroxylation site. amino acids 152-164

Cell attachment sequence.

amino acids 130-133

EGF-like domain cysteine pattern signature.

amino acids 123-135

CGGTTCTTGGTGCCCCTGGGCATCACCAACATAGCCATCGACTTCGGGGAGCAGGCCTTGAA CCGGGGCATTGCTGTCAAGGAGGATGCAGTCGAGATGCTGGCCAGCTACGGGCTGGCGT ACTCCCTCATGAAGTTCTTCACGGGTCCCATGAGTGACTTCAAAAATGTGGGCCTGGTGTTT GTGAACAGCAAGAGACAGGACCAAAGCCGTCCTGTGTATGGTGGTGGCAGGGGCCATCGC TGCCGTCTTTCACACACTGATAGCTTATAGTGATTTAGGATACTACATTATCAATAAACTGC ACCATGTGGACGAGTCGGTGGGGAGCAAGACGAGAAGGGCCTTCCTGTACCTCGCCGCCTTT CCTTTCATGGACGCAATGGCATGGACCCATGCTGGCATTCTCTTAAAACACAAATACAGTTT TTCACAGTCACCTGGAATGCCGGGAGCCCCTGCTCATCCCGATCCTCCTTGTACATGGGC GCACTTGTGCGCTGCACCACCCTGTGCCTGGGCTACTACAAGAACATTCACGACATCATCCC $\tt TGACAGAAGTGGCCCGGAGCTGGGGGGAGATGCAACAATAAGAAGATGCTGAGCTTCTGGT$ GGCCTTTGGCTCTAATTCTGGCCACACAGAGAATCAGTCGGCCTATTGTCAACCTCTTTGTT TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATA CCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTTATCCTGCTTTCGACAGAATAACCCCAGCAACAACTGGTGAGCACGAGCAACACAGTCACGGCAGCCCACATC AAGAAGTTCACCTTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTTGGAC ACCCAACGTGTCTGAGAAAATCTTGATAGACATCATCGGAGTGGACTTTGCCTTTGCAGAAC TCTGTGTTGTTCCTTTGCGGATCTTCTCCTTCTTCCCAGTTCCAGTGAGGGCGCAT CTCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTCCTTGCCCCCAGCTCTGTGCTGCG GATCATCGTCCTCATCGCCAGCCTCGTGGTCCTACCCTACCTGGGGGTGCACGGTGCGACCC TGGGCGTGGGCTCCTCCTGGCGGGCTTTGTGGGAGAATCCACCATGGTCGCCATCGCTGCG TGCTATGTCTACCGGAAGCAGAAAAAGAAGATGGAGAATGAGTCGGCCACGGAGGGGGAAGA AGAATGAA<u>TAA</u>GGCACGGGACGCCATGGGCACTGCAGGGACGGTCAGGATGACACTTC GAAAGAGGCCTTGATTTAAAGGTTTCGTGTCAATTCTCTAGCATACTGGGTATGCTCACACT TTCATACCCCTGCCTCACGAAAACCCAAAAGACACAGCTGCCTCACGGTTGACGTTGTCC TCCTCCCTGGACAATCTCCTCTTGGAACCAAAGGACTGCAGCTGTGCCATCGCGCCTCGGT CACCCTGCACAGCAGGCCACAGACTCTCCTGTCCCCCTTCATCGCTCTTAAGAATCAACAGG TTAAAACTCGGCTTCCTTGATTTGCTTCCCAGTCACATGGCCGTACAAAGAGATGGAGCCC CGGTGGCCTCTTAAATTTCCCTTCTGCCACGGAGTTCGAAACCATCTACTCCACACATGCAG GAGGCGGTTGCACCCTGCAGCCCGGAGTCCCCGTTCACACTGAGGAACGGAGACCTGTGAC CACAGCAGGCTGACAGATGGACAGAATCTCCCGTAGAAAGGTTTGGTTTGAAATGCCCCGGG GGCAGCAAACTGACATGGTTGAATGATAGCATTTCACTCTGCGTTCTCCTAGATCTGAGCAA GCTGTCAGCTCACCCCCACCGTGTATATACATGAGCTAACTTTTTTAAATTGTCACAAAA $\tt CTTTCCTGAAGGTCGCATTAGAGCGAGTCACATGGAGCATCCTAACTTTGCATTTTAGTTTT$ TACAGTGAACTGAAGCTTTAAGTCTCATCCAGCATTCTAATGCCAGGTTGCTGTAGGGTAAC TTTTGAAGTAGATATTACCTGGTTCTGCTATCCTTAGTCATAACTCTGCGGTACAGGTAA TTGAGAATGTACTACGGTACTTCCCTCCCACACCATACGATAAAGCAAGACATTTTATAACG ATACCAGAGTCACTATGTGGTCCTCCCTGAAATAACGCATTCGAAATCCATGCAGTGCAGTA TATTTTCTAAGTTTTGGAAAGCAGGTTTTTTCCTTTAAAAAAATTATAGACACGGTTCACT AAATTGATTTAGTCAGAATTCCTAGACTGAAAGAACCTAAACAAAAAAATATTTTAAAGATA TAAATATATGCTGTATGTTATGTAATTTATTTTTAGGCTATAATACATTTCCTATTTTCGC ATTTTCAATAAAATGTCTCTAATACAAAAA

MVKFPALTHYWPLIRFLVPLGITNIAIDFGEQALNRGIAAVKEDAVEMLASYGLAYSLMKFF
TGPMSDFKNVGLVFVNSKRDRTKAVLCMVVAGAIAAVFHTLIAYSDLGYYIINKLHHVDESV
GSKTRRAFLYLAAFPFMDAMAWTHAGILLKHKYSFLVGCASISDVIAQVVFVAILLHSHLEC
REPLLIPILSLYMGALVRCTTLCLGYYKNIHDIIPDRSGPELGGDATIRKMLSFWWPLALIL
ATQRISRPIVNLFVSRDLGGSSAATEAVAILTATYPVGHMPYGWLTEIRAVYPAFDKNNPSN
KLVSTSNTVTAAHIKKFTFVCMALSLTLCFVMFWTPNVSEKILIDIIGVDFAFAELCVVPLR
IFSFFPVPVTVRAHLTGWLMTLKKTFVLAPSSVLRIIVLIASLVVLPYLGVHGATLGVGSLL
AGFVGESTMVAIAACYVYRKQKKKMENESATEGEDSAMTDMPPTEEVTDIVEMREENE

Transmembrane domains:

amino acids 86-106, 163-179, 191-205, 237-253, 327-343, 357-374, 408-423, 431-445

CCTGACAGAAGTGCCCCGGAGCTGGGGGAGATNCAACATTAAGAAGATGCTGAGCTTCTGGT
GCCNTTTGGCTCTAATTCTGGCCACACAGAGAANCAGTCGGCCTATTGTCAACCTCTTTGTT
TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATA
CCCTGTGGGTCACATACCGCTGGTTGACGGAAATCCGTGCTGTGTATCCTGCTTTCG
ACAAGAATAACCCCAGCAACAAACTGGTGAGCACGAGCAACAACAGTCACGGCGGCCCACATC
AAGAAGTTCACCTTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTGGAC
ACCCAACGTGTCTGNGAAAATCTTGATAGACATCATCGGAGTGGACTTTGCCTTTGCAGAAC
TCTGTGTTTTTCCTTTTGCGGATCTTCCTCTTCCCAGTTCCAGTCACAGTGAGGGCGCAT
CTCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTC

TGACGGAATCCCGGGCTGGGTATCCTGGTTTNGACAAGATAAACCCCCAGCAANAAATTGGGGAGCAGGGCAAAACAGTNACGGGCAGCCCACATCAAGAAGTTCACCTTNGTTTGNATGGNTCTGTCAACTCACGCTNTGTTTCGTGATGTTTTGGACACCCCAAAGTGTTTTGAGAAAATTTTGATAGACATNATCGGAGTGGANTTTGCCTTTGCAGAANTTTGNGTTGTTCTTTTCCCAGTTCCAGTGCACAGNGAGGGCGCATCTCACCGGGNGGNTGATGACANTGAAGAAACCTTTGTCCTTGCCCCAGCTNTTTGGTGCGGATCATTGTCCTNATNGCCAGCCTTGTGGCGCCTACCTACCTGGCGGGGTGCACCTTGGCGGGCA

 $\tt GCCCCGCGCCCCGGCGCCCCGAAGCCGGGAGCCACCGCC{\color{red} ATG} GGGGCCTGCCTGGGA \\$ GCCTGCTCCCTGCTCAGCTGCGCGTCCTGCGGCTCTGCCCCCTGCATCCTGTGCAG ${\tt TGGGGGTGCTGGTGTCCATCATTATGCTGAGCCCGGGCGTGGAGAGTCAGCTCTACAAGCTG}$ $\verb|CCCTGGGTGTGTGAGGAGGGGGCCGGGATCCCCACCGTCCTGCAGGGCCACATCGACTGTGG|\\$ ${\tt AATGGGTTTTGGTTCTTTAAGTTCCTGATCCTGGTGGGCCTCACCGTGGGTGCCTTCTACAT}$ $\tt CTACTTGCTGTCGATCGCGGCCGTGGCGCTGATGTTCATGTACTACACTGAGCCCAGCGGCT$ $\tt GCCACGAGGGCAAGGTCTTCATCAGCCTCAACCTCACCTTCTGTGTCTGCGTGTCCATCGCT$ ${\tt GCTGTCCTGCCCAAGGTCCAGGACGCCCAACTCGGGTCTGCAGGCCTCGGTCAT}$ CACCCTCTACACCATGTTTGTCACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCA ACCCCCATTTGCCAACCCAGCTGGGCAACGAGACAGTTGTGGCAGGCCCCGAGGGCTATGAG ${\tt ACCCAGTGGTGGGATGCCCCGAGCATTGTGGGCCTCATCATCTTCCTCCTGTGCACCCTCTT}$ ${\tt TTTGACAACGAGCAGGACGGCGTCACCTACAGCTACTCCTTCTTCCACTTCTGCCTGGTGCT}$ GGCCTCACTGCACGTCATGATGACGCTCACCAACTGGTACAAGCCCGGTGAGACCCGGAAGA ${\tt TGATCAGCACGTGGACCGCCGTGTGGGTGAAGATCTGTGCCAGCTGGGCAGGGCTGCTCCTC}$ ${\tt CACAGCCTGCCATCTGGTGCCTCCTGCCACCTGGTGCCTCTGGGTGACAGCCAACCT}$ $\tt GCCCCCTCCCCACACCAATCAGCCAGGCTGAGCCCCCACCCCTGCCCCAGGCTCCAGGACCTG$ $\tt CTGCTGGAGAGGGGGGAACTCCCACCACAGTGGGGCATCCGGCACTGAAGCCCTGGTGTT$ $\tt CCTGGTCACGTCCCCCAGGGGACCCTGCCCCTTCCTGGACTTCGTGCCTTACTGAGTCTCT$ AAGACTTTTTCTAATAAACAAGCCAGTGCGTGTAAAAAAA

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVE
SQLYKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFFTLLMLCVSSSRD
PRAAIQNGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQLVLLIDFAHSW
NQRWLGKAEECDSRAWYAGLFFFTLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFC
VCVSIAAVLPKVQDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVA
GPEGYETQWWDAPSIVGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVA
ACEGRAFDNEQDGVTYSYSFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICAS
WAGLLLYLWTLVAPLLLRNRDFS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257, 272-283, 324-340, 391-406, 428-444

GAGCGAGGCCGGGGACTGAAGGTGTGGGTGTCGAGCCCTCTGGCAGAGGGTTAACCTGGGTC ${\tt AAATGCACGGATTCTCACCTCGTACAGTTACGCTCTCCCGCGGCACGTCCGCGAGGACTTGA}$ ACCGCGGAGCTTTCTCTGTAGAGCATTGTGCCTATTTCCCCGAGTCTTTGCTGCCGAAGCTG TATTACCCGGAATCTGGATGGGACCGCCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAG AATTTCAAAGGACCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGCCATCATTGGCTGGG TGTATGGGGGAATACCAGCTTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCA ${\tt GAAATTTATCATAACCGGTTTGATGCTGTGCAATCTGCACATCGTGCTGCCACACGAGGCTT}$ TGAACACTAGTCTGAATGTATACCGAAATAAAGATGCCTTAAGCCATTTTGTAATTGCAGGA ${\tt GCTGTCACGGGAAGTCTTTTTAGGATAAACGTAGGCCTGCGTGGCCTGGTGGCAT}$ AATTGGAGCCTTGCTGGGCACTCCTGTAGGAGGCCTGCTGATGGCATTTCAGAAGTACGCTG GTGAGACTGTTCAGGAAAGAAAACAGAAGGATCGAAAGGCACTCCATGAGCTAAAACTGGAA GAGTGGAAAGGCAGACTACAAGTTACTGAGCACCTCCCTGAGAAAATTGAAAGTAGTTTACG GGAAGATGAACCTGAGAATGATGCTAAGAAAATTGAAGCACTGCTAAAACCTTCCTAGAAACC GCAGTAAATAAAACATTTCGCAAAAGATTAAAGTTGAATTTTACAGTTT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA23318
><subunit 1 of 1, 285 aa, 1 stop</pre>

><MW: 32190, pI: 9.03, NX(S/T): 2

MEVPPPAPRSFLCRALCLFPRVFAAEAVTADSEVLEERQKRLPYVPEPYYPESGWDRLRELF GKDEQQRISKDLANICKTAATAGIIGWVYGGIPAFIHAKQQYIEQSQAEIYHNRFDAVQSAH RAATRGFIRYGWRWGWRTAVFVTIFNTVNTSLNVYRNKDALSHFVIAGAVTGSLFRINVGLR GLVAGGIIGALLGTPVGGLLMAFQKYAGETVQERKQKDRKALHELKLEEWKGRLQVTEHLPE KIESSLREDEPENDAKKIEALLNLPRNPSVIDKQDKD

Important Features:

Signal Peptide:

amino acids 1-24

Transmembrane domains:

amino acids 76-96 and 171-195

N-glycosylation site:

amino acids 153-156

CGGAAGTCCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATCTGGATGGGACCGCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAGAATTTCAAAGGA
CCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGTGTATTGGGGGAA
TACCAGCTTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGAGAAATTTATCAT
AACCGGTTTGATGCTGCAATCTGCACATCGTGCTGCCACACGAGGCTTCATTCGTTCATG
GCTGGCGCCGAACC

TCAAGTTTGTCCGTAGGTCGAGAGAAGGCCATGGAGGTGCCGCCACCGCGAGCTT
TTTTCTGTAGAGCATTGTGCCTATTTCCCCGAGTTTTTGCTGCCGAAGCTGTGACTGCCGAT
TCGGAAGTCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATTTGGATGGACCGCCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAGAATTTCAAAGG
ACCTTGCTGATATNTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGGTGTATGGGGGA
ATACCAGCTTTTATTCATGNTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTTATNA
TAACC

GCGTTGCTGCCCCGCCTGGGCCAGGCCCCAAAGGCAAGGACAAAGCAGCTGTCAGGGAACCT GCTTCGCGTGTTCCAAGAACTGCCTGTGCGCCCTCAACCTGCTTTACACCTTGGTTAGTCTG $\tt CTGCTAATTGGAATTGCTGCGTGGGGCATTGGCTTCGGGCTGATTTCCAGTCTCCGAGTGGT$ GTTCAGTTTTCTGTATCTTGCGCTTGTTTAGCCCTGAACCAGGAGCAACAGGGTCAGCTTCT GGAGGTTGGTTGGAACAATACGGCAAGTGCTCGAAATGACATCCAGAGAAATCTAAACTGCT $\tt GTGGGTTCCGAAGTGTTAACCCAAATGACACCTGTCTGGCTAGCTGTTTAAAAGTGACCAC$ ${\tt TCGTGCTCGCCATGTGCTCCAATCATAGGAGAATATGCTGGAGAGGTTTTGAGATTTGTTGG}$ ${\tt TGGCATTGGCCTGTTCTTCAGTTTTACAGAGATCCTGGGTGTTTTGGCTGACCTACAGATACAAGATACAGAT$ $\tt GGAACCAGAAAGACCCCCGCGCGAATCCTAGTGCATTCCTT{\color{red}{\textbf{TGA}}} \tt TGAGAAAACAAGGAAGAT$ ${\tt TTCCTTTCGTATTATGATCTTGTTCACTTTCTGTTAATTTTCTGTTAAGCTCCATTTGCCAGT}$ ${\tt TTAAGGAAGGAAACACTATCTGGAAAAGTACCTTATTGATAGTGGAATTATATTTTTACT$ $\tt CTATGTTTCTCTACATGTTTTTTTTTTCTTTCCGTTGCTGAAAAATATTTGAAACTTGTGGTCTC$ ${\tt TGAAGCTCGGTGGCACCTGGAATTTACTGTATTCATTGTCGGGCACTGTCCACTGTGGCCTT}$ ${\tt TCTGAACGTACATCTCACTGGTATAATTATATGTAGCACTGTGCTGTAGATAGTTCCTAC}$ TAAAAATGATAATTTACTTGTAGTCTTTTATGATTACACCAATGTATTCTAGAAATAGTTAT $\tt GTCTTAGGAAATTGTGGTTTAATTTTTGACTTTTACAGGTAAGTGCAAAGGAGAAGTGGTTT$ CATGAAATGTTCTAATGTATAATAACATTTACCTTCAGCCTCCATCAGAATGGAACGAGTTT TGAGTAATCAGGAAGTATATCTATATGATCTTGATATTGTTTTATAATAATTTGAAGTCTAA ${\tt AAGACTGCATTTTAAACAAGTTAGTATTAATGCGTTGGCCCACGTAGCAAAAAGATATTTG}$ ATTATCTTAAAAATTGTTAAATACCGTTTTCATGAAATTTCTCAGTATTGTAACAGCAACTT GTCAAACCTAAGCATATTTGAATATGATCTCCCATAATTTGAAATTGAAATCGTATTGTGTG ATTAAAAGAAAGTAATGGAAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA39979

><subunit 1 of 1, 204 aa, 1 stop

><MW: 22147, pI: 8.37, NX(S/T): 3

MVCGGFACSKNCLCALNLLYTLVSLLLIGIAAWGIGFGLISSLRVVGVVIAVGIFLFLIALV GLIGAVKHHQVLLFFYMIILLLVFIVQFSVSCACLALNQEQQGQLLEVGWNNTASARNDIQR NLNCCGFRSVNPNDTCLASCVKSDHSCSPCAPIIGEYAGEVLRFVGGIGLFFSFTEILGVWL TYRYRNOKDPRANPSAFL

Signal Peptide:

amino acids 1-34

Transmembrane domains:

amino acids 47-63, 72-95 and 162-182

AATCCCAAATTCCCCAATTTTTTTGGNCTTTTTAGGGAAAGATGTGTTGTGGTAAAAAGTGT
TAGTATAAAAATGATAATTTACTTGTAGTCTTTTATGATTACACCAATGTATTCTAGAATAG
TTAGTCTTAGGAAATTGTGGTTTAATTTTTGACTTTTACAGGTAAGTGCAAAGGAGAAGTG
GTTTCATGAAATGTTCTAATGTATAATAACATTTACCTTCAGCCTCCCATCAGAATGGAACG
AGTTTTGAGAATCCAGGAAGTATATCTATATGATCTTGATATTTTTTATATATTTGAAG
TCTAAAAGACTGCATTTTTAAACAAGTTAGTATTAATGCGTTGGCCCACGTAGCAAAAAGAT
ATTTGATTATCTTAAAAATTGTTAAATACCGTTTTCATGAAAGTTCTCAGTATTGTAACAGC
AACTTGTCAAACCTAAGCATATTTGAATATGATCTCCCATAATTTGAAATTGAAATCGTATT
GTGTGGAGGAAATGGCAATCTTATGTGTGCTGAAGGACACAGTAAGAGCACCAAGTTGTGCC
CCACTTGC

ATGATTATTCTGTTACTTGTATTTATTGTTCAGTTTTATGGTATCTTGCGCTTGTTTAGCCC
CTGAAACCAGGAGCAACAGGGNNCAGCTTCCTGGAGGTTGGTTGGCAACAATCACGGCCAAG
TGACTCCGCAAATGACATCCCAGAGAAATCCTAAACTGCTGTGGGTTCCGAAGTGTTAACCC
AAATGACACCTGTCTGGCTNGCTGTGTTAAAAGTGACCACTCGTGCTCGCCATGTGCTCCAA
TCATAGGAGAATATGC

CAGTCACCATGAAGCTGGGCTGTGTCCTCATGGCCTGGGCCCTCTACCTTTCCCTTGGTGTG CTCTGGGTGGCCAGATGCTACTGGCTGCCAGTTTTGAGACGCTGCAGTGTGAGGGACCTGT TCCAGGTCAAGGCCTACACTTTCAGTGAACCCTTCCACCTGATTGTGTCCTATGACTGGCTG ATCCTCCAAGGTCCAGCCAAGCCAGTTTTTGAAGGGGACCTGCTGGTTCTGCGCTGCCAGGC CTGGCAAGACTGGCCACTGACTCAGGTGACCTTCTACCGAGATGGCTCAGCTCTGGGTCCCC CCGGGCCTAACAGGGAATTCTCCATCACCGTGGTACAAAAGGCAGACAGCGGGCACTACCAC TGCAGTGGCATCTTCCAGAGCCCTGGTCCTGGGATCCCAGAAACAGCATCTGTTGTGGCTAT CACAGTCCAAGAACTGTTTCCAGCGCCAATTCTCAGAGCTGTACCCTCAGCTGAACCCCAAG CAGGAAGCCCCATGACCCTGAGTTGTCAGACAAAGTTGCCCCTGCAGAGGTCAGCTGCCCGC CTCCTCTTCTACAAGGATGGAAGGATAGTGCAAAGCAGGGGGCTCTCCTCAGAATT CCAGATCCCCACAGCTTCAGAAGATCACTCCGGGTCATACTGGTGTGAGGCAGCCACTGAGG ACAACCAAGTTTGGAAACAGAGCCCCCAGCTAGAGATCAGAGTGCAGGGTGCTTCCAGCTCT GCTGCACCTCCCACATTGAATCCAGCTCCTCAGAAATCAGCTGCTCCAGGAACTGCTCCTGA GGAGGCCCCTGGGCCTCTGCCTCCGCCGCCAACCCCATCTTCTGAGGATCCAGGCTTTTCTT CTCCTCTGGGGATGCCAGATCCTCATCTGTATCACCAGATGGGCCTTCTTCTCAAACACATG CAGGATGTGAGAGTCCTCCTCGGTCACCTGCTCATGGAGTTGAGGGAATTATCTGGCCACCA GAAGCCTGGGACCACAAAGGCTACTGCTGAATAGAAGTAAACAGTTCATCCATGATCTCACT TAACCACCCAATAAATCTGATTCTTTATTTTCTCTTCCTGTCCTGCACATATGCATAAGTA CTTTTACAAGTTGTCCCAGTGTTTTGTTAGAATAATGTAGTTAGGTGAGTGTAAATAAATTT ATATAAAGTGAGAATTAGAGTTTAGCTATAATTGTGTATTCTCTCTTTAACACAACAGAATTC TGCTGTCTAGATCAGGAATTTCTATCTGTTATATCGACCAGAATGTTGTGATTTAAAGAGAA CTAATGGAAGTGGATTGAATACAGCAGTCTCAACTGGGGGCCAATTTTTGCCCCCCAGAGGACA TTGGGCAATGTTTGGAGACATTTTGGTCATTATACTTGGGGGGTTGGGGGATGGTGGGATGT GTGTCTACTGGCATCCAGTAAATAGAAGCCAGGGGTGCCGCTAAACATCCTATAATGCACAG GGCAGTACCCCACAACGAAAAATAATCTGGCCCAAAATGTCAGTTGTACTGAGTTTGAGAAA CCCCAGCCTAATGAAACCCTAGGTGTTGGGCTCTGGAATGGGACTTTGTCCCTTCTAATTAT TATCTCTTTCCAGCCTCATTCAGCTATTCTTACTGACATACCAGTCTTTAGCTGGTGCTATG AAGGTGATGGCATTAAGAAGTGGGCCTTTGGGAAGTGATTAGATCAGGAGTGCAGAGCCCTC ATGATTAGGATTAGTGCCCTTATTTAAAAAGGCCCCAGAGAGCTAACTCACCCTTCCACCAT ATGAGGACGTGGCAAGAAGATGACATGTATGAGAACCAAAAAACAGCTGTCGCCAAACACCG ACTCTGTCGTTGCCTTGATCTTGAACTTCCAGCCTCCAGAACTATGAGAAATAAAATTCTGG TTGTTTGTAGCCTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40594

><subunit 1 of 1, 359 aa, 1 stop

><MW: 38899, pI: 5.21, NX(S/T): 0

MKLGCVLMAWALYLSLGVLWVAQMLLAASFETLQCEGPVCTEESSCHTEDDLTDAREAGFQV
KAYTFSEPFHLIVSYDWLILQGPAKPVFEGDLLVLRCQAWQDWPLTQVTFYRDGSALGPPGP
NREFSITVVQKADSGHYHCSGIFQSPGPGIPETASVVAITVQELFPAPILRAVPSAEPQAGS
PMTLSCQTKLPLQRSAARLLFSFYKDGRIVQSRGLSSEFQIPTASEDHSGSYWCEAATEDNQ
VWKQSPQLEIRVQGASSSAAPPTLNPAPQKSAAPGTAPEEAPGPLPPPPTPSSEDPGFSSPL
GMPDPHLYHOMGLLLKHMODVRVLLGHLIMELRELSGHOKPGTTKATAE

Signal sequence:

amino acids 1-17

Leucine zipper pattern sequence:

amino acids 12-33

Protein kinase C phosphorylation site:

amino acids 353-355

CCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGGGCCACCAGAAGTT $\tt ATCTTACTGGGCCTGCTACTCCTGGGGCACCTAACAGTGGACACTTATGGCCGTCCCATCCT$ ${\tt ACCCCCTGCAAGGCTACACCCCAAGTCTTGGTGAAGTGGCTGGTACAACGTGGCTCAGACCCT}$ GTCACCATCTTTCTACGTGACTCTTCTGGAGACCATATCCAGCAGGCAAAGTACCAGGGCCG CCTGCATGTGAGCCACAAGGTTCCAGGAGATGTATCCCTCCAATTGAGCACCCTGGAGATGG ATGACCGGAGCCACTACACGTGTGAAGTCACCTGGCAGACTCCTGATGGCAACCAAGTCGTG AGAGATAAGATTACTGAGCTCCGTGTCCAGAAACTCTCTGTCTCCAAGCCCACAGTGACAAC ${\tt TGGCAGCGGTTATGGCTTCACGGTGCCCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTCCCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTCCAGGCTCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTCCAGGCTCCAGGCTCCAGGCTCCAGGCTCCAGGCTCCAGGCTCCAGGCTCCAGGCTCCAGGCTCAATGCCAGGCTCAGGCTCCAGGCTCAGGCTCAGGCTCAGGCTCCAGGCTCAGGCTCAGGCTCAGGCTCCAGGCTGCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCT$ GGGGTTCTCCCCATCAGTTATATTTGGTATAAGCAACAGACTAATAACCAGGAACCCATC AAAGTAGCAACCCTAAGTACCTTACTCTTCAAGCCTGCGGTGATAGCCGACTCAGGCTCCTA TTTCTGCACTGCCAAGGGCCAGGTTGGCTCTGAGCAGCACAGCGACATTGTGAAGTTTGTGG TCAAAGACTCCTCAAAGCTACTCAAGACCAAGACTGAGGCACCTACAACCATGACATACCCC TGGAGAGACCAGTGCTGGGCCAGGAAAGAGCCTGCCTGTCTTTGCCATCATCCTCATCATCT CCTTGTGCTGTATGGTGGTTTTTACCATGGCCTATATCATGCTCTGTCGGAAGACATCCCAA $\tt CAAGAGCATGTCTACGAAGCAGCCAGG{\color{red}{TAA}}GAAAGTCTCTCCTCTTCCATTTTTGACCCCGT$ $\tt CCCTGCCCTCAATTTTGATTACTGGCAGGAAATGTGGAGGAGGGGGGGTGTGGCACAGACCC$ ${\tt AATCCTAAGGCCGGAGGCCTTCAGGGTCAGGACATAGCTGCCTTCCCTCTCAGGCACCTT}$ AACCAGGACCACAGCCCCAAGTCCCTTCTTATGGGTGGTGGGCTCTTGGGCCATAGGGCACA ${\tt CCAGTGATGAGCCAACTTCCCAGAATCTGGGCAACAACTACTCTGATGAGCCCTGCATAGGA}$ ${\tt CAGGATCTGCTGACATAATTGCCTAGTCAGTCCTTGCCTTCTTCCCTGCT}$ ACCTCTCTTCCTGGATAGCCCAAAGTGTCCGCCTACCAACACTGGAGCCGCTGGGAGTCACT ${\tt GGCTTTGCCCTGGAATTTGCCAGATGCATCTCAAGTAAGCCAGCTGCTGGATTTGGCTCTGG}$ GCCCTTCTAGTATCTCTGCCGGGGGCTTCTGGTACTCCTCTAAATACCAGAGGGAAGATG $\tt CCAGAAGACCCGAGGGAGGCTCAGCTCTGCCAGCTCAGAGGACCAGCTATATCCAGGATCAT$ $\tt TTCTCTTTCTTCAGGGCCAGACAGCTTTTAATTGAAATTGTTATTTCACAGGCCAGGGTTCA$ ATCATAACAGC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45416

><subunit 1 of 1, 321 aa, 1 stop

><MW: 35544, pI: 8.51, NX(S/T): 0

MGILLGLLLGHLTVDTYGRPILEVPESVTGPWKGDVNLPCTYDPLQGYTQVLVKWLVQRGS
DPVTIFLRDSSGDHIQQAKYQGRLHVSHKVPGDVSLQLSTLEMDDRSHYTCEVTWQTPDGNQ
VVRDKITELRVQKLSVSKPTVTTGSGYGFTVPQGMRISLQCQARGSPPISYIWYKQQTNNQE
PIKVATLSTLLFKPAVIADSGSYFCTAKGQVGSEQHSDIVKFVVKDSSKLLKTKTEAPTTMT
YPLKATSTVKQSWDWTTDMDGYLGETSAGPGKSLPVFAIILIISLCCMVVFTMAYIMLCRKT
SQQEHVYEAAR

Signal Sequence:

amino acids 1-19

Glycosaminoglycan attachment site:

amino acids 149-152

Transmembrane domain:

amino acids 282-300

GGCTGCAGCCACCTCGCGCGCACCCCGAGGCGCCCGCGCCCAGCTCGCCCGAGGTCCGTCGGA GGCGCCCGCCCCCGGAGCCAAGCAGCAACTGAGCGGGAAGCGCCCGCGTCCGGGGATC $\texttt{GGG} \underline{\textbf{ATG}} \texttt{TCCCTCCTTCTTCTCTTGCTAGTTTCCTACTATGTTGGAACCTTGGGGACTCA}$ CACTGAGATCAAGAGGGGGAGAAAAGGTCACTTTGCCCTGCCACCATCAACTGGGGC TTCCAGAAAAAGACACTCTGGATATTGAATGGCTGCTCACCGATAATGAAGGGAACCAAAAA GTGGTGATCACTTACTCCAGTCGTCATGTCTACAATAACTTGACTGAGGAACAGAAGGGCCG ${\tt AGTGGCCTTTGCTTCCAATTTCCTGGCAGGAGATGCCTCCTTGCAGATTGAACCTCTGAAGC}$ ${\tt CCAGTGATGAGGGCCGGTACACCTGTAAGGTTAAGAATTCAGGGCGCTACGTGTGGAGCCAT}$ GTCATCTTAAAAGTCTTAGTGAGACCATCCAAGCCCAAGTGTGAGTTGGAAGGAGAGCTGAC A GAAG GAAG T GACCT TGCAGT TGGAGT CATCCT CTGGCACAGAGC CCATTGT GTATTACTGGCAGCGAATCCGAGAGAAAGAGGGAGGATGAACGTCTGCCTCCCAAATCTAGGATT GACTACAACCACCCTGGACGAGTTCTGCTGCAGAATCTTACCATGTCCTACTCTGGACTGTA $\tt CCAGTGCACAGCAGCAACGAAGCTGGGAAGGAAAGCTGTGTGGTGCGAGTAACTGTACAGT$ ATGTACAAAGCATCGGCATGGTTGCAGGAGCAGTGACAGGCATAGTGGCTGGAGCCCTGCTG GAGACCTAATGAAATTCGAGAAGATGCTGAAGCTCCAAAAGCCCGTCTTGTGAAACCCAGCT $\tt CCTCTTCCTCAGGCTCTCGGAGCTCACGCTCTGGTTCTTCCTCCACTCGCTCCACAGCAAAT$ ACGGTCTGAATTACAATGGACTTGACTCCCACGCTTTCCTAGGAGTCAGGGTCTTTGGACTC TTCTCGTCATTGGAGCTCAAGTCACCAGCCACAACCAGATGAGAGGTCATCTAAGTAGCA GTGAGCATTGCACGGAACAGATTCAGATGAGCATTTTCCTTATACAATACCAAACAAGCAAA ${\tt AGGATGTAAGCTGATTCATCTGTAAAAAGGCATCTTATTGTGCCTTTAGACCAGAGTAAGGG}$ AAAGCAGGAGTCCAAATCTATTTGTTGACCAGGACCTGTGGTGAGAAGGTTGGGGAAAGGTG AGGTGAATATACCTAAAACTTTTAATGTGGGATATTTTGTATCAGTGCTTTGATTCACAATT TTCAAGAGGAAATGGGATGCTGTTTGTAAATTTTCTATGCATTTCTGCAAACTTATTGGATT ATTAGTTATTCAGACAGTCAAGCAGAACCCACAGCCTTATTACACCTGTCTACACCATGTAC TGAGCTAACCACTTCTAAGAAACTCCAAAAAAGGAAACATGTGTCTTCTATTCTGACTTAAC TTCATTTGTCATAAGGTTTGGATATTAATTTCAAGGGGAGTTGAAATAGTGGGAGATGGAGA AGAGTGAATGAGTTTCTCCCACTCTATACTAATCTCACTATTTGTATTGAGCCCAAAATAAC ${\tt TATGAAAGGAGACAAAAATTTGTGACAAAGGATTGTGAAGAGCTTTCCATCTTCATGATGTT}$ ATGAGGATTGTTGACAAACATTAGAAATATATAATGGAGCAATTGTGGATTTCCCCTCAAAT CAGATGCCTCTAAGGACTTTCCTGCTAGATATTTCTGGAAGGAGAAAATACAACATGTCATT TATCAACGTCCTTAGAAAGAATTCTTCTAGAGAAAAAGGGATCTAGGAATGCTGAAAGATTA CCCAACATACCATTATAGTCTCTTCTTCTGAGAAAATGTGAAACCAGAATTGCAAGACTGG ATTGCACTCCAGCCTGGGTGACAGAGCGGGACTCCGTCTC

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA45419

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41281, pI: 8.33, NX(S/T): 3

MSLLLLLLVSYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGNQKV
VITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRYVWSHV
ILKVLVRPSKPKCELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERLPPKSRID
YNHPGRVLLQNLTMSYSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVTGIVAGALLI
FLLVWLLIRRKDKERYEEEERPNEIREDAEAPKARLVKPSSSSSGSRSSRSGSSSTRSTANS
ASRSQRTLSTDAAPQPGLATQAYSLVGPEVRGSEPKKVHHANLTKAETTPSMIPSOSRAPOTV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 232-251

GACGCGGCTGCAGTCGCGGCGCTTCTCCCCGCCTGGGCGGCCTCGCCGCTGGGCAGGTGCTGAGCGCCCCTAG GCCCGGGAGGCGGCGGTGGATGCGGCGCTGGGCAGAAGCAGCCGCCGATTCCAGCTGCCCCGCGCGCCCCCGGGCC GCCCGCCGAGCCACACCACGATGATCGCGGGCTCCCTTCTCCTGCTTGGATTCCTTAGCACCACCACACACTCAG CCAGAACAGAAGGCCTCGAATCTCATTGGCACATACCGCCATGTTGACCGTGCCACCGGCCAGGTGCTAACCTGT GACAAGTGTCCAGCAGGAACCTATGTCTCTGAGCATTGTACCAACACCAGCCTGCGCGTCTGCAGCAGTTGCCCT GTGGGGACCTTTACCAGGCATGAGAATGGCATAGAGAAATGCCATGACTGAGTCAGCCATGCCCATGCCCATG ATTGAGAAATTACCTTGTGCTGCCTTGACTGACCGAGAATGCACTTGCCCACCTGGCATGTTCCAGTCTAACGCT ACCTGTGCCCCCCATACGGTGTGTCCTGTGGGTTGGGGTGTGCGGAAGAAAGGGACAGAGACTGAGGATGTGCGG ${\tt TGTAAGCAGTGTGCTCGGGGTACCTTCTCAGATGTGCCTTCTAGTGTGATGAAATGCAAAGCATACACAGACTGT}$ $\tt CTGAGTCAGAACCTGGTGGTGATCAAGCCGGGGACCAAGGAGACAACGTCTGTGGCACACTCCCGTCCTTC$ ${\tt TCCAGCTCCACCTTCCCCTGGCACAGCCATCTTTCCACGCCCTGAGCACATGGAAACCCATGAAGTCCCT}$ TCCTCCACTTATGTTCCCAAAGGCATGAACTCAACAGAATCCAACTCTTCTGCCTCTGTTAGACCAAAGGTACTG GCCACTGGGGGCGAGAAGTCCAGCACGCCCATCAAGGGCCCCCAAGAGGGGGACATCCTAGACAGAACCTACACAAG CATTTGACATCAATGAGCATTTGCCCTGGATGATTGTGCTTTTCCTGCTGGTGGTGGTTGTGTGTTGTGTG TGCAGTATCCGGAAAAGCTCGAGGACTCTGAAAAAAGGGGCCCCGGCAGGATCCCAGTGCCATTGTGGAAAAGGCA $\tt GGGCTGAAGAAATCCATGACTCCAACCCAGAACCGGGAGAAATGGATCTACTACTGCAATGGCCATGGTATCGAT$ AGGGAGGTTGCTGCTTTCTCCAATGGGTACACAGCCGACCACGAGCGGGCCTACGCAGCTCTGCAGCACTGGACC AT CCGGGGCCCCGAGCCAGCCTCGCCCAGCTAATTAGCGCCCTGCGCCAGCACCGGAGAAACGATGTTGTGGAG AAGATTCGTGGGCTGATGGAAGACACCACCCAGCTGGAAACTGACAAACTAGCTCTCCCGATGAGCCCCAGCCCG ATTCCCCAGGCTGAGGACAAACTAGACCGGCTATTCGAAATTATTGGAGTCAAGAGCCAGGCAGCCAGACC $\tt CTCCTGGACTCTGTTTATAGCCATCTTCCTGACCTGCTG\frac{TAG}{A}ACATAGGGATACTGCATTCTGGAAATTACTCA$ TCTCTCTCTTTTTTTTAAATAACTCTTCTGGGAAGTTGGTTTATAAGCCTTTGCCAGGTGTAACTGTTGTGAA ATACCCACCACTAAAGTTTTTTAAGTTCCATATTTTCTCCATTTTTGCCTTCTTATGTATTTTCAAGATTATTCTC TTCTTAAAAGTATAATGGCATCTTGTGAATCCTATAAGCAGTCTTTATGTCTCTTAACATTCACACCTACTTTTT AAAAACAAATATTATTACTATTTTTATTATTGTTCTTTATAAATTTTCTTAAAGATTAAGAAAATTTAAGA $\tt CCCCATTGAGTTACTGTAATGCAATTCAACTTTGAGTTATCTTTTAAATATGTCTTGTATAGTTCATATTCATGG$ $\tt CTGAAACTTGACCACACTATTGCTGATTGTATGGTTTTCACCTGGACACCGTGTAGAATGCTTGATTACTTGTAC$ GACAACTGGGCCACCAAAGAACTTGAACTTCACCTTTTAGGATTTGAGCTGTTCTGGAACACATTGCTGCACTTT $\tt GGAAAGTCAAAATCAAGTGCCAGTGGCGCCCTTTCCATAGAGAATTTGCCCAGCTTTGCTTTAAAAGATGTCTTG$ TTTTTTATATACACATAATCAATAGGTCCAATCTGCTCTCAAGGCCTTGGTCCTGGTGGGATTCCTTCACCAATT ACTTTAATTAAAAATGGCTGCAACTGTAAGAACCCTTGTCTGATATATTTGCAACTATGCTCCCATTTACAAATG AAAAAAAA

></usr/segdb2/sst/DNA/Dnaseqs.min/ss.DNA52594

><subunit 1 of 1, 655 aa, 1 stop

><MW: 71845, pI: 8.22, NX(S/T): 8

MGTSPSSSTALASCSRIARRATATMIAGSLLLLGFLSTTTAQPEQKASNLIGTYRHVDRATG
QVLTCDKCPAGTYVSEHCTNTSLRVCSSCPVGTFTRHENGIEKCHDCSQPCPWPMIEKLPCA
ALTDRECTCPPGMFQSNATCAPHTVCPVGWGVRKKGTETEDVRCKQCARGTFSDVPSSVMKC
KAYTDCLSQNLVVIKPGTKETDNVCGTLPSFSSSTSPSPGTAIFPRPEHMETHEVPSSTYVP
KGMNSTESNSSASVRPKVLSSIQEGTVPDNTSSARGKEDVNKTLPNLQVVNHQQGPHHRHIL
KLLPSMEATGGEKSSTPIKGPKRGHPRQNLHKHFDINEHLPWMIVLFLLLVLVVVIVVCSIRK
SSRTLKKGPRQDPSAIVEKAGLKKSMTPTQNREKWIYYCNGHGIDILKLVAAQVGSQWKDIY
QFLCNASEREVAAFSNGYTADHERAYAALQHWTIRGPEASLAQLISALRQHRRNDVVEKIRG
LMEDTTQLETDKLALPMSPSPLSPSPIPSPNAKLENSALLTVEPSPQDKNKGFFVDESEPLL
RCDSTSSGSSALSRNGSFITKEKKDTVLRQVRLDPCDLQPIFDDMLHFLNPEELRVIEEIPQ
AEDKLDRLFEIIGVKSQEASQTLLDSVYSHLPDLL

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 350-370

ATGGGAAGCCAGTAACACTGTGGCCTACTATCTCTTCCGTGGTGCCATCTACATTTTTGGGA CATGGGGGAAAATGATCCGCCTGCTGTTGAAGCCCCCTTCTCATTCCGATCGCTTTTTTGGCC TTGATGATTTGAAAATAAGTCCTGTTGCACCAGATGCAGATGCTGTTGCTGCACAGATCCTG TCACTGCTGCCATTGAAGTTTTTTCCAATCATCGTCATTGGGATCATTGCATTGATATTAGC ACTGGCCATTGGTCTGGGCATCCACTTCGACTGCTCAGGGAAGTACAGATGTCGCTCATCCT TTAAGTGTATCGAGCTGATAGCTCGATGTGACGGAGTCTCGGATTGCAAAGACGGGGAGGAC GAGTACCGCTGTGTCCGGGTGGTCGTCAGAATGCCGTGCTCCAGGTGTTCACAGCTGCTTC GTGGAAGACCATGTGCTCCGATGACTGGAAGGGTCACTACGCAAATGTTGCCTGTGCCCAAC TGGGTTTCCCAAGCTATGTGAGTTCAGATAACCTCAGAGTGAGCTCGCTGGAGGGCAGTTC CGGGAGGAGTTTGTGTCCATCGATCACCTCTTGCCAGATGACAAGGTGACTGCATTACACCA $\tt CTCAGTATATGTGAGGGAGGGATGTGCCTCTGGCCACGTGGTTACCTTGCAGTGCACAGCCT$ TGGCCCTGGCAGGCCAGCCTTCAGTTCCAGGGCTACCACCTGTGCGGGGGCTCTGTCATCAC GCCCCTGTGGATCATCACTGCTGCACACTGTGTTTATGACTTGTACCTCCCCAAGTCATGGA CCATCCAGGTGGGTCTAGTTTCCCTGTTGGACAATCCAGCCCCATCCCACTTGGTGGAGAAG ATTGTCTACCACAGCAAGTACAAGCCAAAGAGGCTGGGCAATGACATCGCCCTTATGAAGCT ACTTCCCCGATGGAAAAGTGTGCTGGACGTCAGGATGGGGGGCCACAGAGGATGGAGGTGAC GCCTCCCTGTCCTGAACCACGCGGCCGTCCCTTTGATTTCCAACAAGATCTGCAACCACAG GGACGTGTACGGTGGCATCATCTCCCCCTCCATGCTCTGCGCGGGCTACCTGACGGGTGGCG TTAGTGGGAGCGACCAGCTTTGGCATCGGCTGCGCAGAGGTGAACAAGCCTGGGGTGTACAC CCGTGTCACCTCCTCCTGGACTGGATCCACGAGCAGATGGAGAGACCTAAAAACCTGAA GAGGAAGGGGACAAGTAGCCACCTGAGTTCCTGAGGTGATGAAGACAGCCCGATCCTCCCCT GGACTCCCGTGTAGGAACCTGCACACGAGCAGACACCCTTGGAGCTCTGAGTTCCGGCACCA GTAGCAGGCCCGAAAGAGGCACCCTTCCATCTGATTCCAGCACAACCTTCAAGCTGCTTTTT GTTTTTTTTTTTGAGGTGGAGTCTCGCTCTGTTGCCCAGGCTGGAGTGCAGTGGCGAAA TCCCTGCTCACTGCAGCCTCCGCTTCCCTGGTTCAAGCGATTCTCTTGCCTCAGCTTCCCCA AGGGTTTCACCATGTTGGCCAGGCTGCTCTCAAACCCCTGACCTCAAATGATGTGCCTGCTT CAGCCTCCCACAGTGCTGGGATTACAGGCATGGGCCACCACGCCTAGCCTCACGCTCCTTTC TGATCTTCACTAAGAACAAAAGAAGCAGCAACTTGCAAGGGCGGCCTTTCCCACTGGTCCAT TGCAAAGCCACCAACAGCCACTCAGAAAAGACGCACCAGCCCAGAAGTGCAGAACTGCAGTC ${\tt TTTCACATGTGGGGAGGTTAATCTAGGAATGACTCGTTTAAGGCCTATTTTCATGATTTCTT}$ CATTGTCTGGCGTGTCTGCGTGGACTGGTGAATCAAAATCATCCACTGAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45234
><subunit 1 of 1, 453 aa, 1 stop
><MW: 49334, pI: 6.32, NX(s/T): 1</pre>

MGENDPPAVEAPFSFRSLFGLDDLKISPVAPDADAVAAQILSLLPLKFFPIIVIGIIALILA
LAIGLGIHFDCSGKYRCRSSFKCIELIARCDGVSDCKDGEDEYRCVRVGGQNAVLQVFTAAS
WKTMCSDDWKGHYANVACAQLGFPSYVSSDNLRVSSLEGQFREEFVSIDHLLPDDKVTALHH
SVYVREGCASGHVVTLQCTACGHRRGYSSRIVGGNMSLLSQWPWQASLQFQGYHLCGGSVIT
PLWIITAAHCVYDLYLPKSWTIQVGLVSLLDNPAPSHLVEKIVYHSKYKPKRLGNDIALMKL
AGPLTFNEMIQPVCLPNSEENFPDGKVCWTSGWGATEDGGDASPVLNHAAVPLISNKICNHR
DVYGGIISPSMLCAGYLTGGVDSCQGDSGGPLVCQERRLWKLVGATSFGIGCAEVNKPGVYT
RVTSFLDWIHEQMERDLKT

Signal Peptide: amino acids 1-20

Transmembrane domain: amino acids 240-284

CGCCCGGCCCCGGCTCGGCGCCCCGCGTGGGATGGTGCAGCGCTCGCCGCCCGGGCCCGAGAGCTGCTGCACTGAAG $\texttt{GCCGGCGACG} \underline{\textbf{ATG}} \texttt{GCAGCGCCCGCTGCCCGTGTCCCCCGCCCGCGCCCTGCTCGCCCTGGCCGGTGCTCT}$ GCTCGCGCCCTGCGAGGCCCGAGGGGTGAGCTTATGGAACCAAGGAAGAGCTGATGAAGTTGTCAGTGCCTCTGT TCGGAGTGGGGACCTCTGGATCCCAGTGAAGAGCTTCGACTCCAAGAATCATCCAGAAGTGCTGAATATTCGACT ACGGGGATATTCTGATTCAGCAGTCAGTCTCAGCACGTGTTCTGGTCTCAGGGGGACTTATTGTGTTTGAAAATGA AAGCTATGTCTTAGAACCAATGAAAAGTGCAACCAACAGATACAAACTCTTCCCAGCGAAGAAGCTGAAAAGCGT ATGGGCAAGAAGGCATAAAAGAGAGACCCTCAAGGCAACTAAGTATGTGGAGCTGGTGATCGTGGCAGACAACCG AGAGTTTCAGAGGCAAGGAAAAGATCTGGAAAAAGTTAAGCAGCGATTAATAGAGATTGCTAATCACGTTGACAA GTTTTACAGACCACTGAACATTCGGATCGTGTTGGTAGGCGTGGAAGTGTGGAATGACATGGACAAATGCTCTGT AAGTCAGGACCCATTCACCAGCCTCCATGAATTTCTGGACTGGAGGAAGATGAAGCTTCTACCTCGCAAATCCCA TGACAATGCGCAGCTTGTCAGTGGGGTTTATTTCCAAGGGACCACCATCGGCATGGCCCCAATCATGAGCATGTG CACGGCAGACCAGTCTGGGGGAATTGTCATGGACCATTCAGACAATCCCCTTGGTGCAGCCGTGACCCTGGCACA TGAGCTGGGCCACAATTTCGGGATGAATCATGACACACTGGACAGGGGCTGTAGCTGTCAAATGGCGGTTGAGAA GGAGACCAGCCTGGAGAAAGGAATGGGGGTGTGCCTGTTTAACCTGCCGGAAGTCAGGGAGTCTTTCGGGGGCCA ${\tt GAAGTGTGGGAACAGATTTGTGGAAGAAGGAGGAGTGTGACTGTGGGGGAGCCAGAGGAATGTATGAATCGCTG}$ CTGCAATGCCACCACCTGTACCCTGAAGCCGGACGCTGTGCGCACATGGGCTGTGCTGTGAAGACTGCCAGCT GAAGCCTGCAGGAACAGCGTGCAGGGACTCCAGCAACTCCTGTGACCTCCCAGAGTTCTGCACAGGGGCCAGCCC GAGAGATGCTAAATGTGGAAAAATCCAGTGTCAAGGAGGTGCCAGCCGGCCAGTCATTGGTACCAATGCCGTTTC ${\tt CATGCCGGACCCAGGGCTTGTGCTGCAGGCACAAAGTGTGCAGATGGAAAAATCTGCCTGAATCGTCAATGTC$ ${\tt AAATATTAGTGTCTTTGGGGTTCACGAGTGTGCAATGCAGTGCCACGGCAGAGGGGTGTGCAACAACAGGAAGAA}$ TCCATGACAACAGACACAACACAGTTCTCGGGGCTCAGGAGGGGAAGTCCAGCCTACCAGGCACGTCTGCAGAAA AGAGTAGCAGGTTACCACTCTGGCAGGCCCCAGCCCTGCAGCAAGGAGGAAGAAGGCTCAAAAGTCTGGCCTTTC ACTGAGCCTCCACAGCAGTGGGGGAGAAGCAAGGGTTGGGCCCAGTGTCCCCTTTCCCCAGTGACACCTCAGCCT TGGCAGCCCTGATGACTGGTCTCTGGCTGCAACTTAATGCTCTGATATGGCTTTTAGCATTTATTATATGAAAAT TGAAACAAACTGGAGAAGAAGGTAGGAGAAAGGCCGGTGAACTCTGGCTCTTTGCTGTGGACATGCGTGACCAGC AGTACTCAGGTTTGAGGGTTTGCAGAAAGCCAGGGAACCCACAGAGTCACCAACCCTTCATTTAACAAGTAAGAA TGTTAAAAAGTGAAAACAATGTAAGAGCCTAACTCCATCCCCCGTGGCCATTACTGCATAAAATAGAGTGCATTT GAAAT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49624
><subunit 1 of 1, 735 aa, 1 stop
><MW: 80177, pI: 7.08, NX(S/T): 5</pre>

MAARPLPVSPARALLLALAGALLAPCEARGVSLWNQGRADEVVSASVRSGDLWIPVKSFDSK
NHPEVLNIRLQRESKELIINLERNEGLIASSFTETHYLQDGTDVSLARNYTGHCYYHGHVRG
YSDSAVSLSTCSGLRGLIVFENESYVLEPMKSATNRYKLFPAKKLKSVRGSCGSHHNTPNLA
AKNVFPPPSQTWARRHKRETLKATKYVELVIVADNREFQRQGKDLEKVKQRLIEIANHVDKF
YRPLNIRIVLVGVEVWNDMDKCSVSQDPFTSLHEFLDWRKMKLLPRKSHDNAQLVSGYYFQG
TTIGMAPIMSMCTADQSGGIVMDHSDNPLGAAVTLAHELGHNFGMNHDTLDRGCSCQMAVEK
GGCIMNASTGYPFPMVFSSCSRKDLETSLEKGMGVCLFNLPEVRESFGGQKCGNRFVEEGEE
CDCGEPEECMNRCCNATTCTLKPDAVCAHGLCCEDCQLKPAGTACRDSSNSCDLPEFCTGAS
PHCPANVYLHDGHSCQDVDGYCYNGICQTHEQQCVTLWGPGAKPAPGICFERVNSAGDPYGN
CGKVSKSSFAKCEMRDAKCGKIQCQGGASRPVIGTNAVSIETNIPLQQGGRILCRGTHVYLG
DDMPDPGLVLAGTKCADGKICLNRQCQNISVFGVHECAMQCHGRGVCNNRKNCHCEAHWAPP
FCDKFGFGGSTDSGPIRQAEARQEAAESNRERGQGQEPVGSQEHASTASLTLI

Signal peptide: amino acids 1-28

TCCCAAGGCTTCTTGGATGGCAGATGATTNTGGGGTTTTGCATTGTTTCCCTGACAACGAAA
ACAAAACAGTTTTGGGGGTTCAGGAGGGGGAANTCCAGCCTACCCAGGAAGTTTGCAGAAACA
GTGCAAGGAAGGCAGGANTTCCTGGTTGAGNTTTTTGNTAAAACATGGACATGNTTCAGTG
CTGCTCNTGAGAGAGTAGCAGGTTACCACTTTTGGCAGGCCCAGCCCTGCAGCAAGGAGGA
AGAGGACTCAAAAGTTTGGCCTTTCACTGAGCCTCCACAGCAGTGGGGGAGAAGCAAGGGTT
GGGCCCAGTGTCCCCTTTCCCCAGTGACACCTCAGCCTTGGCAGCCCTGATAACTGGTNTNT
GGCTGCAANTTAATGCTNTGATATGGCTTTTAGCATTTATTATATGAAAATAGCAGGGTTTT
AGTTTTTAATTTATCAGAGACCCTGCCACCCATTCCATNTCCATCCAAG

CATCCTGCAACATGGTGAAACCACGCCTGGCTAATTTTGTTGTTATTTTTGGTAGAGATGGGA AAAGTGCTGGGATTACAGGCGAGTGCAACCACCCGGCCACAAACTTTTTAAGAAGTTAAT GAAACCATACCTTTTACATTTTTAATGACAGGAAAATGCTCACAATAATTGTTAACCCAAAA TTCTGGATACAAAGTACAATCTTTACTGTGTAAATACATGTATATGTACTATATGAAAATA TACCAAATATCAATAATACTTATCTCTGGGTAAAAACCTCTTCTCATACCCTGTGCTAACAA CTTTTAACAAAAATTTGCATCACTTTTAAGAATCAAGAAAAATTTCTGAAGGTCATATGGG ACAGAAAAAAAACCAAGGGAAAAATCACGCCACTTGGGAAAAAAAGATTCGAAATCTGCCT TTTTATAGATTTGTAATTAATAAGGTCCAGGCTTTCTAAGCAACTTAAATGTTTTGTTTCGA ${\tt ACACTGAGCAGCAGCTGGACACACGGCACACTGATCCAA} \underline{{\tt ATG}} {\tt GGTAAGGGGATGGTGGCGA}$ $\tt TGCTCATTCTGGGTCTGCTACTTCTGGCGCTGCTCCTACCCGTGCAGGTTTCTTCATTTGTT$ $\verb|CCTTTAACCAGTATGCCGGAAGCTACTGCAGCCGAAACCACAAAGCCCTCCAACAGTGCCCT|\\$ CAGGTCAAGAAACAGCTACAGTTCTCCAACCCATACACTAAAACCGAATCCAAATGGTGCCT AGAAGTTCAATGTGGCAAGGAAAAAAACCAGGTCTTCATCAAATCTACTAATTTCACTCCTT GACTAGATGATAAATGCCTGTACTCCCAGTACTTTGGGAGGCCTAGGCCGGCGGATCACCTG AGGTCAGGAGTTTGAGACTAACCTGGCCAAAATGGTGAAACCCCCATCTGTACTAAAAATACA AATATTGACTGGGCGTGGTGAGTGCCTGTGATCCCAGCTACTCAGGTGGCTGAAGCAGG ACAATCACTTGAACTCAGGAGGCAGAGGTTGCAGTGAGGTGAGATCGCGCTACTGCACTCTA AGACCATCCTGGCTAATACAGTGAAACCCTGTCTCTACTAAAAATACAAAAAATTAGCCGGG GATGGTGGCAGCACCTGGAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATAGCGTGAA $\tt CTCAGGAGGCGGAGCTTGCAGTGAGCCGAGATTGCGCTACTGCACTCCAGCCTGGGCGACAG$

></usr/seqdb2/sst/DNa/Dnaseqs.min/ss.DNA48309
><subunit 1 of 1, 67 aa, 1 stop
><MW: 6981, pI: 7.47, NX(S/T): 0
MGKGMVAMLILGLLLLLLLPVQVSSFVPLTSMPEATAAETTKPSNSALQPTAGLLVVLLAL
LHLYH

Signal peptide:

amino acids 15-27

TGTACACGGCCGACATGTTCACGCACGGGATCCAGAGCGCCGCGCACTTCGTCATGTTCTTCGCGCCCTGGTGTG GACACTGCCAGCGGCTGCAGCCGACTTGGAATGACCTGGGAGACAAATACAACAGCATGGAAGATGCCAAAGTCT ATGTGGCTAAAGTGGACTGCACGGCCCACTCCGACGTGTGCTCCGCCCAGGGGGTGCGAGGATACCCCACCTTAA AGCTTTTCAAGCCAGGCCAAGAAGCTGTGAAGTACCAGGGTCCTCGGGACTTCCAGACACTGGAAAACTGGATGC GGCTGTATGAGCTCTCAGCAAGCAACTTTGAGCTGCACGTTGCACAAGGCGACCACTTTATCAAGTTCTTCGCTC CGTGGTGTGGTCACTGCAAAGCCCTGGCTCCAACCTGGGAGCAGCTGGCTCTGGGCCTTGAACATTCCGAAACTG ${\tt TCAAGATTGGCAAGGTTGATTGTACACAGCACTATGAACTCTGCTCCGGAAACCAGGTTCGTGGCTATCCCACTC}$ TGGAGTCGCAGCTGCAGCGCACAGAGACTGGAGCGACGGAGACCGTCACGCCCTCAGAGGCCCCGGTGCTGGCAG TAACCTTCATCAAGTTTTATGCTCCATGGTGTGGTCATTGTAAGACTCTGGCTCCTACTTGGGAGGAACTCTCTA AAAAGGAATTCCCTGGTCTGGCGGGGGTCAAGATCGCCGAAGTAGACTGCACTGCTGAACGGAATATCTGCAGCA ATTCTTTATTAAGTTAAGTTTCTCTAAGTAAATGTGTAACTCATGGTCACTGTGTAAACATTTTCAGTGGCGATA TATCCCCTTTGACCTTCTCTTGATGAAATTTACATGGTTTCCTTTGAGACTAAAATAGCGTTGAGGGAAATGAAA CCACGAGTTCTGGAAAGGTGGCCTTGTGGCAGTATTGACGTTCCTCTGATCTTAAGGTCACAGTTGACTCAATAC TGTGTTGGTCCGTAGCATGGAGCAGATTGAAATGCAAAAACCCACACCTCTGGAAGATACCTTCACGGCCGCTGC GTGCCTGAGTAAGAGAATGCTGATGCCATAACTTTATGTGTCGATACTTGTCAAATCAGTTACTGTTCAGGGGAT TGGATGTCTTCCTTAGAAAGGGTAGGCATGGAAAATTCCACGAGGCTCATTCTCAGTATCTCATTAACTCATTGA ${\tt TCTGCAGCCCTGAAGGGCCCTAACTAGAGTTCTAGAGTTTCTGATTCTGATTCTCAGTAGTCCTTTTAGAGGGCCCTAACTAGAGTTCTAGAGGTTCTAGAGTTCTGATTCTGATTCTCAGTAGTCCTTTTAGAGGGCCCTAACTAGAGTTCTAGAGGTTCTAGAGTTCTGATTC$ CTTGCTATACTTGGTCTGCTTCAAGGAGGTCGACCTTCTAATGTATGAAGAATGGGATGCATTTGATCTCAAGAC ACTCATGCTGTCCTTGTGATTAAACACCTCTATCTCCCTTGGGAATAAGCACATACAGGCTTAAGCTCTAAGATA $\tt CCCATACGCAAGGGGATGTGGATACTTGGCCCAAAGTAACTGGTGGTAGGAATCTTAGAAACAAGACCACTTATA$ $\tt CTGTCTGTCTGAGGCAGAAGATAACAGCAGCATCTCGACCAGCCTCTGCCTTAAAGGAAATCTTTATTAATCACG$ TATGGTTCACAGATAATTCTTTTTTTAAAAAAACCCAACCTCCTAGAGAAGCACAACTGTCAAGAGTCTTGTACA GATACTTTCTAAATAAACTCTTTTTTTTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA46776

><subunit 1 of 1, 432 aa, 1 stop

><MW: 47629, pI: 5.90, NX(S/T): 0

MPARPGRLLPLLARPAALTALLLLLIGHGGGGRWGARAQEAAAAADGPPAADGEDGQDPHS
KHLYTADMFTHGIQSAAHFVMFFAPWCGHCQRLQPTWNDLGDKYNSMEDAKVYVAKVDCTAH
SDVCSAQGVRGYPTLKLFKPGQEAVKYQGPRDFQTLENWMLQTLNEEPVTPEPEVEPPSAPE
LKQGLYELSASNFELHVAQGDHFIKFFAPWCGHCKALAPTWEQLALGLEHSETVKIGKVDCT
QHYELCSGNQVRGYPTLLWFRDGKKVDQYKGKRDLESLREYVESQLQRTETGATETVTPSEA
PVLAAEPEADKGTVLALTENNFDDTIAEGITFIKFYAPWCGHCKTLAPTWEELSKKEFPGLA
GVKIAEVDCTAERNICSKYSVRGYPTLLLFRGGKKVSEHSGGRDLDSLHRFVLSQAKDEL

Signal sequence:

amino acids 1-32

 $\tt CTTTTCTGAGGAACCACAGCA{\color{blue}A}{\color{blue}T}{\color{blue}G}{\color{blue}A}{\color{blue}T}{\color{blue}G}{\color{blue}C}{\color{blue}A}{\color{blue}T}{\color{blue}G}{\color{blue}C}{\color{blue}A}{\color{blue}T}{\color{blue}G}{\color{blue}A}{\color{blue}A}{\color{blue}C}{\color{blue}C}{\color{blue}A}{\color{blue}A}{\color{blue}A}{\color{blue}C}{\color{blue}A}{\color{blue}A}{\color{blue}A}{\color{blue}C}{\color{blue}A}{\color{blue}A}{\color{blue}A}{\color{blue}C}{\color{blue}A}{\color{blue}A}{\color{blue}A}{\color{blue}A}{\color{blue}C}{\color{blue}A}{\color{blue}A}{\color{blue}A}{\color{blue}A}{\color{blue}C}{\color{blue}A}{\color{blue}A}{\color{blue}A}{\color{blue}A}{\color{blue}C}{\color{blue}A}{\color{blue}A}{\color{blue}A}{\color{blue}A}{\color{blue}C}{\color{blue}A}{$ $\tt CCTCCTGGTACTATTTCTTTTGCAAATTCAGAGTCTGGGTCTGGATATTGATAGCCGTCCTA$ CCGCTGAAGTCTGTGCCACACACACAATTTCACCAGGACCCAAAGGAGATGATGGTGAAAAA GGAGATCCAGGAGAAGAGGGAAAGCATGGCAAAGTGGGACGCATGGGGCCGAAAGGAATTAA ${\tt AGGGTGACAAAGGGGAAAAAGGTTTGCTTGGAATACCTGGAGAAAAAGGCAAAGCAGGTACT}$ $\tt GTCTGTGATTGTGGAAGATACCGGAAATTTGTTGGACAACTGGATATTAGTATTGCTCGGCT$ ${\tt TCTACTACATCGTGCAGGAAGAAGAAGAACTACAGGGAATCCCTAACCCACTGCAGGATTCGG}$ ${\tt GGTGGAATGCTAGCCAAGGATGAAGCTGCCAACACTCATCGCTGACTATGTTGC}$ $\tt CCATCTTACCATGTACTTTGTCTGTGAGTTCATCAAGAAGAAAAAG{\color{red}{TAA}}CTTCCCTCATCCT$ ${\tt ATTGTACTACATTTGATCTGAGTCAACATAGCTAGAAAATGCTAAACTGAGGTATGGAGCCT}$ ССАТСАТСАААААААААААААА

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50980
><subunit 1 of 1, 277 aa, 1 stop</pre>

><MW: 30645, pI: 7.47, NX(S/T): 2

MNGFASLLRRNQFILLVLFLLQIQSLGLDIDSRPTAEVCATHTISPGPKGDDGEKGDPGEEG
KHGKVGRMGPKGIKGELGDMGDQGNIGKTGPIGKKGDKGEKGLLGIPGEKGKAGTVCDCGRY
RKFVGQLDISIARLKTSMKFVKNVIAGIRETEEKFYYIVQEEKNYRESLTHCRIRGGMLAMP
KDEAANTLIADYVAKSGFFRVFIGVNDLEREGQYMSTDNTPLQNYSNWNEGEPSDPYGHEDC
VEMLSSGRWNDTECHLTMYFVCEFIKKKK

Signal peptide:

amino acids 1-25

GGTTCTATCGATTCGACTCGGCCACACTGGCCGGATCCTCTAGAGATCCCTCGACCTCGAC GCCAGCGCACGCGCGCTCCCTGGAAGGAGAAGTCTCAGCTAGAACGAGCGGCCCTAGGTTTT ${\tt AGCTACACCTCTGGCCGCAGTTGCGCTGGCTTCCGGCGGACTTGGCCTTTGCGGTGCGAGCT}$ CTGTGCTGCAAAAGGGCTCTTCGAGCTCGCGCCCTGGCCGGGCTGCCGCCGACCCGGAAGG ACACCTTTCTCATTCACGGCTCGCGGCGCTTTAGCTACTCAGAGGCGGAGCGCGAGAGTAAC AGGGCTGCACGCGCCTTCCTACGTGCGCTAGGCTGGGACTGGGGACCCGACGGCGGCGACAG GAAGCGGCGCGAGTTTGCCGGAGGGGACGGTGCCGCCAGAGGTGGAGGAGCCGCCGCCCCT CTGTCACCTGGAGCAACTGTGGCGCTGCTCCCCCGCTGGCCCAGAGTTTCTGTGGCTCTG GTTCGGGCTGGCCAAGGCCGGCCTGCGCACTGCCTTTGTGCCCACCGCCCTGCGCCGGGGCC GAGTCCCTGGAGCCGGACCTGCCCGCCCTGAGAGCCATGGGGCTCCACCTGTGGGCTGCAGG GGCCAGTGCCAGGATACCTCTCTCCCCCCAGAGCATAACAGACACGTGCCTGTACATCTTC ACCTCTGGCACCACGGGCCTCCCCAAGGCTGCTCGGATCATCTGAAGATCCTGCAATG TCTACCACATGTCCGGTTCCCTGCTGGGCATCGTGGGCTGCATGGGGCATTGGGGCCACAGTG GTGCTGAAATCCAAGTTCTCGGCTGGTCAGTTCTGGGAAGATTGCCAGCAGCACAGGGTGAC GGTGTTCCAGTACATTGGGGAGCTGTGCCGATACCTTGTCAACCAGCCCCCGAGCAAGGCAG AACGTGGCCATAAGGTCCGGCTGGCAGTGGGCAGCGGGCTGCGCCCAGATACCTGGGAGCGT TTTGTGCGGCGCTTCGGGCCCCTGCAGGTGCTGGAGACATATGGACTGACAGAGGGCAACGT GGCCACCATCAACTACACAGGACAGCGGGGGGGGGTGGTGCTTCCTGGCTTTACAAGC ATATCTTCCCCTTCTCCTTGATTCGCTATGATGTCACCACAGGAGAGCCAATTCGGGACCCC ${\tt CAGGGGCACTGTATGGCCACATCTCCAGGTGAGCCAGGGCTGCTGGTGGCCCCGGTAAGCCA}$ GCAGTCCCCATTCCTGGGCTATGCTGGCGGGCCAGAGCTGGCCCAGGGGAAGTTGCTAAAGG ATGTCTTCCGGCCTGGGGATGTTTTCTTCAACACTGGGGACCTGCTGGTCTGCGATGACCAA ${\tt GGTTTTCTCCGCTTCCATGATCGTACTGGAGACACCTTCAGGTGGAAGGGGGAGAATGTGGC}$ CACAACCGAGGTGGCAGAGGTCTTCGAGGCCCTAGATTTTCTTCAGGAGGTGAACGTCTATG GAGTCACTGTGCCAGGGCATGAAGGCAGGGCTGGAATGGCAGCCCTAGTTCTGCGTCCCCCC ${\tt CACGCTTTGGACCTTATGCAGCTCTACACCCACGTGTCTGAGAACTTGCCACCTTATGCCCG}$ GCCCCGATTCCTCAGGCTCCAGGAGTCTTTGGCCACCACAGAGACCTTCAAACAGCAGAAAG TTCGGATGGCAAATGAGGGCTTCGACCCCAGCACCCTGTCTGACCCACTGTACGTTCTGGAC ${\tt CAGGCTGTAGGTGCCTACCTGCCCCTCACAACTGCCCGGTACAGCGCCCTCCTGGCAGGAAA}$ $\tt CCGTTGCAGGTGTACTGGGCTGTCAGGGATCTTTTCTATACCAGAACTGCGGTCACTATTTT$ AAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGTAGGGATAACAGGGTAATAAGC TTGGCCGCCATGGCCCAACTTGTTTATTGCAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50913
><subunit 1 of 1, 730 aa, 1 stop
><MW: 78644, pI: 7.65, NX(S/T): 2</pre>

MGVCQRTRAPWKEKSQLERAALGFRKGGSGMFASGWNQTVPIEEAGSMAALLLIPLLLLIPL
LLLKLHLWPQLRWLPADLAFAVRALCCKRALRARALAAAAADPEGPEGGCSLAWRLAELAQQ
RAAHTFLIHGSRRFSYSEAERESNRAARAFLRALGWDWGPDGGDSGGSAGEGERAAPGAGD
AAAGSGAEFAGGDGAARGGGAAAPLSPGATVALLLPAGPEFLWLWFGLAKAGLRTAFVPTAL
RRGPLLHCLRSCGARALVLAPEFLESLEPDLPALRAMGLHLWAAGPGTHPAGISDLLAEVSA
EVDGPVPGYLSSPQSITDTCLYIFTSGTTGLPKAARISHLKILQCQGFYQLCGVHQEDVIYL
ALPLYHMSGSLLGIVGCMGIGATVVLKSKFSAGQFWEDCQQHRVTVFQYIGELCRYLVNQPP
SKAERGHKVRLAVGSGLRPDTWERFVRRFGPLQVLETTGLTEGNVATINYTGQRGAVGRASW
LYKHIFPFSLIRYDVTTGEPIRDPQGHCMATSPGEPGLLVAPVSQQSPFLGYAGGPELAQGK
LLKDVFRPGDVFFNTGDLLVCDDQGFLRFHDRTGDTFRWKGENVATTEVAEVFEALDFLQEV
NVYGVTVPGHEGRAGMAALVLRPPHALDLMQLYTHVSENLPPYARPRFLRLQESLATTETFK
QQKVRMANEGFDPSTLSDPLYVLDQAVGAYLPLTTARYSALLAGNIRI

Type II transmembrane domain: amino acids 45-65

Other transmembrane domain: amino acids 379-398

 $\mathtt{cAMP-}$ and $\mathtt{cGMP-}$ dependent protein kinase phosphorylation site starting at amino acid 136

CUB domain protein motif amino acids 254-261

putative AMP-binding domain siganture amino acids 332-343

N-glycosylation sites amino acids 37-40 and 483-486

CCTGTGTTAAGCTGAGGTTTCCCCTAGATCTCGTATATCCCCAACACATACCTCCACGCACA GCTTGTCCATCTCCCGGGGGGGGGCGCGCGCGCCCCACCTTTGCCGCACACTCCGGC GAGCCGAGCCCCAGCGCTCCAGGATTCTGCGGCTCGGAACTCGGATTGCAGCTCTGAACCC ${\tt CCATCTGGCTTATAAAAGTTTGCTGAGCGCAGTCCAGAGGGCTGCGCTGCTCGTCCCTCGG}$ TCCCCGCCGGGGCGATGTGAAGGCTCGGAGCTGCGGAGAGGTCCGCCAGGCGTACGGTGCC AAGGGATTCAGCCTGGCGGACATCCCCTACCAGGAGATCGCAGGGGAACACTTAAGAATCTG TCCTCAGGAATATACATGCTGCACCACAGAAATGGAAGACAAGTTAAGCCAACAAAGCAAAC TCGAATTTGAAAACCTTGTGGAAGAGACAAGCCATTTTGTGCGCACCACTTTTGTGTCCAGG CATAAGAAATTTGACGAATTTTTCCGAGAGCTCCTGGAGAATGCAGAAAAGTCACTAAATGA TATGTTTGTACGGACCTATGGCATGCTGTACATGCAGAATTCAGAAGTCTTCCAGGACCTCT TTTTGGGCTCGGCTCCTGGAACGGATGTTTCAGCTGATAAACCCTCAGTATCACTTCAGTGA GGAAACTGAAGATTCAGGTTACCCGCGCCTTCATTGCTGCCAGGACCTTTGTCCAGGGGCTG ACTGTGGGCAGAGAGTTGCAAACCGAGTTTCCAAGGTCAGCCCAACCCCAGGGTGTATCCG TGGAATCTGTTTATAGATGCAATGCTCTTGGTGGCAGAGCGACTGGAGGGGCCATTCAACAT TGAGTCGGTCATGGACCCGATAGATGTCAAGATTTCTGAAGCCATTATGAACATGCAAGAAA ACAGCATGCAGGTGTCTGCAAAGGTCTTTCAGGGATGTGGTCAGCCCAAACCTGCTCCAGCC $\tt CTCAGATCTGCCCGCTCAGCTCCTGAAAATTTTAATACACGTTTCAGGCCCTACAATCCTGA$ GGAAAGACCAACAACTGCTGCAGGCACAAGCTTGGACCGGCTGGTCACAGACATAAAAGAGA AATTGAAGCTCTCTAAAAAGGTCTGGTCAGCATTACCCTACACTATCTGCAAGGACGAGGC GTGACAGCGGGCACGTCCAACGAGGAGGAATGCTGGAACGGGCACAGCAAAGCCAGATACTT GCCTGAGATCATGAATGATGGGCTCACCAACCAGATCAACAATCCCGAGGTGGATGTGGACA TCACTCGGCCTGACACTTTCATCAGACAGCAGATTATGGCTCTCCGTGTGATGACCAACAAA CTAAAAAACGCCTACAATGGCAATGATGTCAATTTCCAGGACACAAGTGATGAATCCAGTGG ${\tt CAGAGGCCCCGCAGTGGATCCCGACCGGAGAGAGGTGGACTCTTCTGCAGCCCAGCGTGGC}$ $\underline{\mathbf{A}}$ TCTTGGGTTTTTGGTCAGATGAAACTGCATTTTAGCTATCTGAATGGCCAACTCACTTCTT TTCTTACACTCTTGGACAATGGACCATGCCACAAAAACTTACCGTTTTCTATGAGAAGAGAG $\tt CTTCCTCTTCAGCTATCTGTGGGGACCTTGTTTATTCTAGAGAGAATTCTTACTCAA$ ATTTTTCGTACCAGGAGATTTTCTTACCTTCATTTGCTTTATGCTGCAGAAGTAAAGGAAT CTCACGTTGTGAGGGTTTTTTTTTTTTCTCATTTAAAAT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50914

><subunit 1 of 1, 555 aa, 1 stop

><MW: 62736, pI: 5.36, NX(S/T): 0

MPSWIGAVILPLLGLLLSLPAGADVKARSCGEVRQAYGAKGFSLADIPYQEIAGEHLRICPQ
EYTCCTTEMEDKLSQQSKLEFENLVEETSHFVRTTFVSRHKKFDEFFRELLENAEKSLNDMF
VRTYGMLYMQNSEVFQDLFTELKRYYTGGNVNLEEMLNDFWARLLERMFQLINPQYHFSEDY
LECVSKYTDQLKPFGDVPRKLKIQVTRAFIAARTFVQGLTVGREVANRVSKYSPTFGCIRAL
MKMLYCPYCRGLPTVRPCNNYCLNVMKGCLANQADLDTEWNLFIDAMLLVAERLEGPFNIES
VMDPIDVKISEAIMNMQENSMQVSAKVFQGCGQPKPAPALRSARSAPENFNTRFRPYNPEER
PTTAAGTSLDRLVTDIKEKLKLSKKVWSALPYTICKDESVTAGTSNEEECWNGHSKARYLPE
IMNDGLTNQINNPEVDVDITRPDTFIRQQIMALRVMTNKLKNAYNGNDVNFQDTSDESSGSG
SGSGCMDDVCPTEFFFVTTEAPAVDPDRREVDSSAAORGHSLLSWSLTCIVLALORLCR

Signal peptide:

amino acids 1-23

FIGURE 42A

GGAGGGAGATCAGGAAACGGCTTCTTCCTCACTTCGCCGCCTGGTGAGTGTCGGGGAGATTGGCAAACGCCTAGG AAAGGACTGGGGAAAATAGCCCTGGGAAAGTGGAGAAGGTGATCAGGAGGCCGGTCCACTACGGCAGTTTATCTG TCTGATCAGAGCCAGACGCGACGCGTCCACTTCGCAGTTCTTTCCAGGTGTGGGGACCGCAGGACAGACGGCCGA ${\tt AAAGTTCCTGTCCACTGTGATTCTCAATTCCTTGCTTTGTTTTTTCTCCAGAGAACTTTTGGGTGGAGATATTA}$ $\tt TGTGCGCCCGCAGCGGCGCGGGGCGCGTGGTTCTCCGCGTGGAGTCTCACCTGGGACCTGAGTGA\underline{ATG}GCTCCCA$ CGCTGGCAGGATTCTGGATCCTCTGCCTCCTCACTTATGGTTACCTGTCCTGGGGCCAGGCCTTAGAAGAGGAGG A CAAGCTCGCTGCCGAAGGAGTTAAACTGGAGAACTACTATGTCCAGCCTATTTGCACACCATCCAGGAGTCAGT $\tt CTCTGGACAATGCCACCCTACCTCAGAAACTGAAGGAGGTTGGATATTCAACGCATATGGTCGGAAAATGGCACT$ TGGGTTTTAACAGAAAAGAATGCATGCCCACCAGAAGAGGATTTGATACCTTTTTTGGTTCCCTTTTGGGAAGTG GGGATTACTATACACACTACAAATGTGACAGTCCTGGGATGTGTGGCTATGACTTGTATGAAAACGACAATGCTG CCTGGGACTATGACAATGGCATATACTCCACACAGATGTACACTCAGAGAGTACAGCAAATCTTAGCTTCCCATA ${\tt TCAACAACGTGACATTGGCTCTAAAGACTTATGGTTTCTATAACAACAGCATTATCATTTACTCTTCAGATAATG}$ $\tt GTGGCCAGCCTACGGCAGGAGGAGGAGTAACTGGCCTCTCAGAGGTAGCAAAGGAACATATTGGGAAGGAGGGATCC$ ${\tt ACTGGTACCCCACTCTCATTTCACTGGCTGAAGGACAGATTGATGAGGACATTCAACTAGATGGCTATGATATCT}$ GGGAGACCATAAGTGAGGGTCTTCGCTCACCCCGAGTAGATATTTTGCATAACATTGACCCCTATACACCAAGGC $\texttt{GAGGGTGGACCTATCTAACAGGTATCCAGGAATCG} \underline{\textbf{TGA}} \texttt{AGAAGCTCCTACGGAGGCTCTCACAGTTCAACAAAAC}$ GTGAGTCCTGAGTTCCACTGCTGTGCTTCAGTCAACTGACCAAACACTGCTTTGAATTATAGGAGGAGAACAATA ACCTACCATCCGCAAGCATGCTAATTTGATGGAAGTTACAGGGTAGCATGATTAAAACTACCTTTGATAAATTAC

FIGURE 42B

 ${\tt CACATGTGAACAGCTTGCACCTCATTTTACCATGCGTGAGGGAATGGCAAATAAGAATGTTTGAGCACACTGCCC}$ ${\tt GAAAAATATTTTGTTGTTTTTATAAAAAGTTATGCAAATGACTTTTATTTTATTTCCTGCATACCATTAGAAGA}$ $\textbf{ATTTTATTCATTTCTTCAAATTATCAAGCACTGTAATACTATAAATTAATGTAATACTGTGTGAATTCAGACTA$ $\tt GTATCATTGGTCCTAAAAAATAAAAATCTTTACTAATAGGCAATTGAAGGAATGGTTTGCTAACAACCACAGTAA$ ${\tt TATAATATGATTTTACAGATAGATGCTTCCCCTTGGCTATGACATGGAGAAAGATTTTCCCATAATAATAACTAA}$ ACATGCAAACGTCATGAGGAGAATTAAAGGAGTATTATCAGTAATGAAGTTTATCATGGGTCATCAATGAGCATA GATTGGTGTGGATCCTGTAGACCCTGGTGTTTTCTTTGAAGTGCCCTCTCCTAATGCAGAGGCCTTGAAGCTTAC AGTATACACTTGAAAAGTCACAGATAGCTAGAATTATGATCTTTGAAGTTATAACTGTGATCTGAAAATGTGTGT GGTGGTATGACAGCATACCATTAAATACATTTACATCACAGCTCAAAGGACTGTGATATAATCCATTTATATCAC AACTCAAAGGACTGTGATATAATCCATTTATATCACAGCTCACAGTTTCTGAAAATGTATAAAAGAATCTATAAT $\tt CTAGTACTGAAATTACTAAATTGGGTAAGATGATTTAAATGATTTTAATTTTAACATTTTATTTCTAGAATATAT$

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48296

><subunit 1 of 1, 515 aa, 1 stop

><MW: 56885, pI: 6.49, NX(S/T): 5

MAPRGCAGHPPPPSPQACVCPGKMLAMGALAGFWILCLLTYGYLSWGQALEEBEEGALLAQA
GEKLEPSTTSTSQPHLIFILADDQGFRDVGYHGSEIKTPTLDKLAAEGVKLENYYVQPICTP
SRSQFITGKYQIHTGLQHSIIRPTQPNCLPLDNATLPQKLKEVGYSTHMVGKWHLGFNRKEC
MPTRRGFDTFFGSLLGSGDYYTHYKCDSPGMCGYDLYENDNAAWDYDNGIYSTQMYTQRVQQ
ILASHNPTKPIFLYTAYQAVHSPLQAPGRYFEHYRSIININRRRYAAMLSCLDEAINNVTLA
LKTYGFYNNSIIIYSSDNGGQPTAGGSNWPLRGSKGTYWEGGIRAVGFVHSPLLKNKGTVCK
ELVHITDWYPTLISLAEGQIDEDIQLDGYDIWETISEGLRSPRVDILHNIDPYTPRQKMAPG
QQAMGSGTLQSSQPSECSTGNCLQEILATATGSPLSLSATWDRTGGTMNGSPCQLAKVYGFS
TSQPTHMRGWTYLTGIQES

Important Features:

Signal Peptide:

amino acids 1-37

Sulfatases signature 1. amino acids 120-132

Sulfatases signature 2. amino acids 168-177

Tyrosine kinase phosphorylation site. amino acids 163-169

N-glycosylation sites.

amino acids 157-160, 306-309 and 318-321

 $\tt CCGTGCGAGA{\color{red}{\underline{A}}} {\color{blue}{\underline{C}}} {$ $\tt GGGGTCTGTCACTATGGAACTAAACTGGCCTGCTGCTACGGCTGGAGAAGAAACAGCAAGGG$ GCAGATGCTTTCCAGGATACACCGGGAAAACCTGCAGTCAAGATGTGAATGAGTGTGGAATG AAACCCCGGCCATGCCAACACAGATGTGTGAATACACACGGAAGCTACAAGTGCTTTTGCCT ${\tt CAGTGGCCACATGCTCATGCCAGATGCTACGTGTGAACTCTAGGACATGTGCCATGATAA}$ ACTGTCAGTACAGCTGTGAAGACACAGAAGAAGACGGCCACAGTGCCTGTGTCCATCCTCAGGA $\tt CTCCGCCTGGCCCCAAATGGAAGAGACTGTCTAGATATTGATGAATGTGCCTCTGGTAAAGT$ CATCTGTCCCTACAATCGAAGATGTGTGAACACATTTGGAAGCTACTACTGCAAATGTCACA ATGGATAGCCATACGTGCAGCCACCATGCCAATTGCTTCAATACCCAAGGGTCCTTCAAGTG TAAATGCAAGCAGGGATATAAAGGCAATGGACTTCGGTGTTCTGCTATCCCTGAAAATTCTG AAAAACAGCATGAAAAAGAAGGCAAAAATTAAAAATGTTACCCCAGAACCCACCAGGACTCC ${\tt AAGAGAAAGCCCTGAAGAATGACATAGAGGAGCGAAGCCTGCGAGGAGATGTGTTTTTCCCT}$ AAGGTGAATGAAGCAGGTGAATTCGGCCTGATTCTGGTCCAAAGGAAAGCGCTAACTTCCAA ACTGGAACATAAAGATTTAAATATCTCGGTTGACTGCAGCTTCAATCATGGGATCTGTGACT $\tt GGAAACAGGATAGAGAAGATGATTTTGACTGGAATCCTGCTGATCGAGATAATGCTATTTGGCTATTGGCTATTTGGCTATTGGCTATTGGCTATTTGGCTATTGGATATTGGCTATTGGATATTGGCTATTGGATATTGGCTATTGGATATTGGGATATGGATATGGATATGGATATGGATATGGATATGGATATGGATATGGATATGGATATGGATGGATATGGATATGGATGGATATGGATATGGATG$ CCTACCTGACCTGCAACCCCAAAGCAACTTCTGTTTGCTCTTTGATTACCGGCTGGCCGGAG ACCACGAGTGAGGATGAAAAGTGGAAGACAGGGAAAATTCAGTTGTATCAAGGAACTGATGC TACCAAAAGCATCATTTTTGAAGCAGAACGTGGCAAGGGCAAAACCGGCGAAATCGCAGTGG ATGGCGTCTTGCTTGTTTCAGGCTTATGTCCAGATAGCCTTTTATCTGTGGATGACTGAATG GACCTCTGGCATTTTAGAATTACTAGCTGAAAAATTGTAATGTACCAACAGAAATATTATTG TAAGATGCCTTTCTTGTATAAGATATGCCAATATTTGCTTTAAATATCATATCACTGTATCT CCCTCCTCNGTATATCTGATTTGTATANGTANGTTGATGNGCTTCTCTCTACAACATTTCTA ${\tt GAAAATAGAAAAAAAGCACAGAGAAATGTTTAACTGTTTGACTCTTATGATACTTCTTGGA}$ TTGTATATTTAATTCTTTGTAATAATAA

MPLPWSLALPLLLSWVAGGFGNAASARHHGLLASARQPGVCHYGTKLACCYGWRRNSKGVCE
ATCEPGCKFGECVGPNKCRCFFGYTGKTCSQDVNECGMKPRPCQHRCVNTHGSYKCFCLSGH
MLMPDATCVNSRTCAMINCQYSCEDTEEGPQCLCPSSGLRLAPNGRDCLDIDECASGKVICP
YNRRCVNTFGSYYCKCHIGFELQYISGRYDCIDINECTMDSHTCSHHANCFNTQGSFKCKCK
QGYKGNGLRCSAIPENSVKEVLRAPGTIKDRIKKLLAHKNSMKKKAKIKNVTPEPTRTPTPK
VNLQPFNYEEIVSRGGNSHGGKKGNEEK

Signal peptide:

amino acids 1-21

EGF-like domain cysteine pattern signature.

amino acids 80-91

Calcium-binding EGF-like domains

amino acids 103-124, 230-251 and 185-206

GGGAGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTCCTGCTCTTGGTGCAGCTGCTG ${\tt AGAATGGGAGCTGACTGAT} \underline{\textbf{ATG}} \texttt{GTGGTGTGGGTGACTGGAGCCTCGAGTGGAATTGGTGAGG}$ ${\tt AGCTGGCTTACCAGTTGTCTAAACTAGGAGTTTCTCTTGTGCTGTCAGCCAGAAGAGTGCAT}$ GAGCTGGAAAGGGTGAAAAGAAGATGCCTAGAGAATGGCAATTTAAAAGAAAAAGATATACT TGTTTTGCCCCTTGACCTGACCGACACTGGTTCCCATGAAGCGGCTACCAAAGCTGTTCTCC ${\tt AGGAGTTTGGTAGAATCGACATTCTGGTCAACAATGGTGGAATGTCCCAGCGTTCTCTGTGC}$ $\tt ATGGATACCAGCTTGGATGTCTACAGAAAGCTAATAGAGCTTAACTACTTAGGGACGGTGTC$ CTCCGGGGTTTTTTTAATGGCCTTCGAACAGAACTTGCCACATACCCAGGTATAATAGTTTC TAACATTTGCCCAGGACCTGTGCAATCAAATATTGTGGAGAATTCCCTAGCTGGAGAAGTCA ${\tt CAAAGACTATAGGCAATAATGGAGACCAGTCCCACAAGATGACAACCAGTCGTTGTGTGCGG}$ $\tt CTGATGTTAATCAGCATGGCCAATGATTTGAAAGAAGTTTGGATCTCAGAACAACCTTTCTT$ GTTAGTAACATATTTGTGGCAATACATGCCAACCTGGGCCTGGTGGATAACCAACAAGATGG $\tt GGAAGAAAAGGATTGAGAACTTTAAGAGTGGTGTGGATGCAGACTCTTCTTATTTTAAAATC$ GAAAACATGAAAACAGCAATCTTCTTATGCTTCTGAATAATCAAAGACTAATTTGTGATTTT ATTGCCATGAATCTTGCAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA36343

><subunit 1 of 1, 289 aa, 1 stop

><MW: 32268, pI: 9.21, NX(S/T): 0

MVVWVTGASSGIGEELAYQLSKLGVSLVLSARRVHELERVKRRCLENGNLKEKDILVLPLDL
TDTGSHEAATKAVLQEFGRIDILVNNGGMSQRSLCMDTSLDVYRKLIELNYLGTVSLTKCVL
PHMIERKQGKIVTVNSILGIISVPLSIGYCASKHALRGFFNGLRTELATYPGIIVSNICPGP
VQSNIVENSLAGEVTKTIGNNGDQSHKMTTSRCVRLMLISMANDLKEVWISEQPFLLVTYLW
QYMPTWAWWITNKMGKKRIENFKSGVDADSSYFKIFKTKHD

Important Features:

Signal Peptide:

amino acids 1-31

Transmembrane domain:

amino acids 136-157

Tyrosine kinase phosphorylation site.

106-113 and 107-114

Homologous region to Short-chain alcohol dehydrogenase amino acids 80-90, 131-168, 1-13 and 176-185

GCGACGTGGGCACCGCCATCAGCTGTTCGCGCGTCTTCTCCTCCAGGTGGGGCAGGGGTTTC TTGCATCTTCTACACACTACAGCTATTGTTAGGTTGCCTGCGGACACGCTGGGCCTCTGTCC TGATGCTGCTGAGCTCCCTGGTGTCTCTCGCTGGTTCTGTCTACCTGGCCTGGATCCTGTTC TTCGTGCTCTATGATTTCTGCATTGTTTGTATCACCACCTATGCTATCAACGTGAGCCTGAT GTGGCTCAGTTTCCGGAAGGTCCAAGAACCCCAGGGCAAGGCTAAGAGGCACTGAGCCCTCA ACCCAAGCCAGGCTGACCTCATCTGCTTTGCTTTGGTCTTCAAGCCGCTCAGCGTGCCTGTG GACAGCGTGGCCCCGGCCCCCCAAGCCTCAGGAGGGCAACACAGTCCCTGGCGAGTGGCCC TGGCAGGCCAGTGTGAGGAGGCAAGGAGCCCACATCTGCAGCGGCTCCCTGGTGGCAGACAC $\tt CTGGGTCCTCACTGCTGCCCACTGCTTTGAAAAGGCAGCAGCAACAGAACTGAATTCCTGGT$ CAGTGGTCCTGGGTTCTCTGCAGCGTGAGGGGACTCAGCCCTGGGGCCGAAGAGGTGGGGGTG GCTGCCCTGCAGTTGCCCAGGGCCTATAACCACTACAGCCAGGGCTCAGACCTGGCCCTGCT $\tt CTACGCAATCTGCGCCTGCGTCTCATCAGTCGCCCCACATGTAACTGTATCTACAACCAGCT$ GCACCAGCGACACCTGTCCAACCCGGCCCGGCCTGGGATGCTATGTGGGGGCCCCCAGCCTG GGGTGCAGGGCCCCTGTCAGGGAGATTCCGGGGGCCCTGTGCTGTCCTCGAGCCTGACGGA ${\tt CACTGGGTTCAGGCTGGCATCATCAGCTTTGCATCAAGCTGTGCCCAGGAGGACGCTCCTGT}$ GCTGCTGACCAACACAGCTGCTCACAGTTCCTGGCTGCAGGCTCGAGTTCAGGGGGCAGCTT TCCTGGCCCAGAGCCCAGAGACCCCGGAGATGAGTGATGAGGACAGCTGTGTAGCCTGTGGA TCCTTGAGGACAGCAGGTCCCCAGGCAGGAGCACCCTCCCCATGGCCCTGGGAGGCCAGGCT GATGCACCAGGGACAGCTGGCCTGTGGCGGAGCCCTGGTGTCAGAGGAGGCGGTGCTAACTG CTGCCCACTGCTTCATTGGGCGCCAGGGCCCCAGAGGAATGGAGCGTAGGGCTGGGGACCAGA TCTGCCTGCCCTATCCTGACCACCACCTGCCTGATGGGGAGCGTGGCTGGGTTCTGGGACGG GCCCGCCCAGGAGCAGCATCAGCTCCCTCCAGACAGTGCCCGTGACCCTCCTGGGGCCTAG GGCCTGCAGCCGGCTGCATGCAGCTCCTGGGGGTGATGGCAGCCCTATTCTGCCGGGGATGG TGTGTACCAGTGCTGTGGGTGAGCTGCCCAGCTGTGAGGGCCTGTCTGGGGCACCACTGGTG ACTGGCAGGTCTACTTCGCCGAGGAACCAGAGCCCGAGGCTGAGCCTGGAAGCTGCCTGGCC AACATAAGCCAACCAGCTGC TGA CAGGGGGACCTGGCCATTCTCAGGACAAGAGAATGCAGGCAGGCAAATGGCATTACTGCCCCTGTCCTCCCCACCCTGTCATGTGTGATTCCAGGCAC CTCCCCACCCTGCAGGACAGGGGTGTCTGTGGACACTCCCACACCCCAACTCTGCTACCAAGC AAAATAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40571

MLLSSLVSLAGSVYLAWILFFVLYDFCIVCITTYAINVSLMWLSFRKVQEPQGKAKRHGNTV
PGEWPWQASVRRQGAHICSGSLVADTWVLTAAHCFEKAAATELNSWSVVLGSLQREGLSPGA
EEVGVAALQLPRAYNHYSQGSDLALLQLAHPTTHTPLCLPQPAHRFPFGASCWATGWDQDTS
DAPGTLRNLRLLISRPTCNCIYNQLHQRHLSNPARPGMLCGGPQPGVQGPCQGDSGGPVLC
LEPDGHWVQAGIISFASSCAQEDAPVLLTNTAAHSSWLQARVQGAAFLAQSPETPEMSDEDS
CVACGSLRTAGPQAGAPSPWPWEARLMHQGQLACGGALVSEEAVLTAAHCFIGRQAPEEWSV
GLGTRPEEWGLKQLILHGAYTHPEGGYDMALLLLAQPVTLGASLRPLCLPYPDHHLPDGERG
WVLGRARPGAGISSLQTVPVTLLGPRACSRLHAAPGGDGSPILPGMVCTSAVGELPSCEGLS
GAPLVHEVRGTWFLAGLHSFGDACQGPARPAVFTALPAYEDWVSSLDWQVYFAEEPEPEAEP
GSCLANISOPTSC

Important features:

Signal peptide:

amino acids 1-15

Homologous region to Serine proteases, trypsin family amino acids 79-95, 343-359 and 237-247

N-glycosylation sites.

amino acids 37-40 and 564-567

Kringle domains

amino acids 79-96, 343-360 and 235-247

GCATGTGGGTGCAGCCCTGGGAGCACTGTGGTTCTGCCTCACAGGAGCCCTGGAGGTCCAGG $\tt CCTGAGCCTGGCACAGCTCAACCTCATCTGGCAGCTGACAGATACCAAACA$ GCTGGTGCACAGCTTTGCTGAGGGCCAGGACCAGGGCAGCGCCTATGCCAACCGCACGGCCC GACGAGGGCAGCTTCACCTGCTTCGTGAGCATCCGGGGATTTCGGCAGCGCTGCCGTCAGCCT GCAGGTGGCCGCTCCCTACTCGAAGCCCAGCATGACCCTGGAGCCCAACAAGGACCTGCGGC $\tt CAGGGGACACGGTGACCATCACGTGCTCCAGCTACCAGGGCTACCCTGAGGCTGAGGTGTTC$ ${\tt TGGCAGGATGGCCAGGTGTGCCCCTGACTGGCAACGTGACCACGTCGCAGATGGCCAACGA}$ $\tt GCAGGGCTTGTTTGATGTGCACAGCGTCCTGCGGGTGGTGCTGGGTGCGAATGGCACCTACA$ GCTGCCTGGTGCGCAACCCCGTGCTGCAGCAGGATGCGCACCGCTCTGTCACCATCACAGGG AGAATGCAGGAGCTGAGGACCAGGATGGGGAGGAGAAGGCTCCAAGACAGCCCTGCAGCCT $\tt CTGAAACACTCTGACAGCAAAGAAGATGATGGACAAGAAATAGCCT{\color{red}GA}CCATGAGGACCAGG$ TGCCCCCAACAGATGCATCCTGCTCTGACAGGTGGGCTCCTTCTCCAAAGGATGCGATACAC AGACCACTGTGCAGCCTTATTTCTCCAATGGACATGATTCCCAAGTCATCCTGCTGCCTTTT GCCTTATTTCACAGTACATACATTTCTTAGGGACACAGTACACTGACCACATCACCACCCTC TTCTTCCAGTGCTGCGTGGACCATCTGGCTGCCTTTTTTCTCCAAAAGATGCAATATTCAGA $\tt CTGACTGACCCCTGCCTTATTTCACCAAAGACACGATGCATAGTCACCCCGGCCTTGTTTC$ TCCAATGGCCGTGATACACTAGTGATCATGTTCAGCCCTGCTTCCACCTGCATAGAATCTTT TCTTCTCAGACAGGGACAGTGCGGCCTCAACATCTCCTGGAGTCTAGAAGCTGTTTCCTTTC $\tt CCCTCCTTCCTCCCCAAGTGAAGACAGGGCCAGGGATGCTTTGGGGACACCG$ ${\tt AGGGGACTGCCCCCACCCCACCATGGTGCTATTCTGGGGCTGGGGCAGTCTTTTCCTGGC}$ $\tt TTGCCTCTGGCCAGCTCCTGGCCTCTGGTAGAGTGAGACTTCAGACGTTCTGATGCCTTCCG$ GATGTCATCTCTCCCTGCCCCAGGAATGGAAGATGTGAGGACTTCTAATTTAAATGTGGGAC AAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41386
><subunit 1 of 1, 316 aa, 1 stop, 1 unknown
><MW: -1, pI: 4.62, NX(S/T): 4</pre>

MLRRRGSPGMGVHVGAALGALWFCLTGALEVQVPEDPVVALVGTDATLCCSFSPEPGFSLAQ
LNLIWQLTDTKQLVHSFAEGQDQGSAYANRTALFPDLLAQGNASLRLQRVRVADEGSFTCFV
SIRDFGSAAVSLQVAAPYSKPSMTLEPNKDLRPGDTVTITCSSYQGYPEAEVFWQDGQGVPL
TGNVTTSQMANEQGLFDVHSVLRVVLGANGTYSCLVRNPVLQQDAHXSVTITGQPMTFPPEA
LWVTVGLSVCLIALLVALAFVCWRKIKQSCEEENAGAEDQDGEGEGSKTALQPLKHSDSKED
DGQEIA

Important features:
Signal peptide:

amino acids 1-28

Transmembrane domain: amino acids 251-270

N-glycosylation site. amino acids 91-94, 104-107, 189-192 and 215-218

Homologous region to Immunoglobulins and MHC amino acids 217-234

 $\tt CTGAACTTGTCTGAAGCCCTTGTCCGTAAGCCTTGAACTACGTTCTTAAATCTATGAAGTCG$ ${\tt AGGGACCTTTCGCTGCTTTTGTAGGGACTTCTTTCCTTGCTTCAGCAAC \textbf{ATG} AGGCTTTTCT}$ TGTGGAACGCGGTCTTGACTCTGTTCGTCACTTCTTTGATTGGGGGCTTTGATCCCTGAACCA GAAGTGAAAATTGAAGTTCTCCAGAAGCCATTCATCTGCCATCGCAAGACCAAAGGAGGGGA TTTGATGTTGGTCCACTATGAAGGCTACTTAGAAAAGGACGGCTCCTTATTTCACTCCACTC ACAAACATAACAATGGTCAGCCCATTTGGTTTACCCTGGGCATCCTGGAGGCTCTCAAAGGT TGGGACCAGGGCTTGAAAGGAATGTGTGTAGGAGAGAAAGAGAAAGCTCATCATTCCTCCTGC TCTGGGCTATGGAAAAGAAGGAAAAGGTAAAATTCCCCCAGAAAGTACACTGATATTTAATA TTGATCTCCTGGAGATTCGAAATGGACCAAGATCCCATGAATCATTCCAAGAAATGGATCTT AATGATGACTGGAAACTCTCTAAAGATGAGGTTAAAGCATATTTAAAGAAGGAGTTTGAAAA AAGATGAAGACAAAGATGGGTTTATATCTGCCAGAGAATTTACATATAAACACGATGAGTTA GGGAAGAAAAGCTAATTGGTCTTTGAATAGAAGACTTCTGGACAATTTTTCACTTTCACAG ATATGAAGCTTTGTTTTACTTTCTCACTTATAAATTTTAAAATGTTGCAACTGGGAATATACC ACGACATGAGACCAGGTTATAGCACAAATTAGCACCCTATATTTCTGCTTCCCTCTATTTTC TCCAAGTTAGAGGTCAACATTTGAAAAGCCTTTTGCAATAGCCCAAGGCTTGCTATTTTCAT GTTATAATGAAATAGTTTATGTGTAACTGGCTCTGAGTCTCTGCTTGAGGACCAGAGGAAAA TGGTTGTTGGACCTGACTTGTTAATGGCTACTGCTTTACTAAGGAGATGTGCAATGCTGAAG TTAGAAACAAGGTTAATAGCCAGGCATGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAG GCTGAGGCGGGCGGATCACCTGAGGTTGGGAGTTCGAGACCAGCCTGACCAACACGGAGAAA CCCTATCTCTACTAAAAATACAAAGTAGCCCGGCGTGGTGATGCGTGCCTGTAATCCCAGCT ATATGTATGCATTGAGACATGCTACCTAGGACTTAAGCTGATGAAGCTTGGCTCCTAGTGAT TGGTGGCCTATTATGATAAATAGGACAAATCATTTATGTGTGAGTTTCTTTGTAATAAAATG TATCAATATGTTATAGATGAGGTAGAAAGTTATATTTATATTCAATATTTACTTCTTAAGGC TAGCGGAATATCCTTCCTGGTTCTTTAATGGGTAGTCTATAGTATATTATACTACAATAACA TTGTATCATAAGATAAAGTAGTAAACCAGTCTACATTTTCCCATTTCTGTCTCATCAAAAAC TGGATCACTTGAGATCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCTTGTCTCTA CTAAAAATACAAAAATTAGCCAGGCGTGGTGGTGCACACCTGTAGTCCCAGCTACTCGGGAG GCTGAGACAGGAGATTTGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCAAGATTGTGCC CCTACAGCAGCTACTATTGAATAAATACCTATCCTGGATTTT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44194

><subunit 1 of 1, 211 aa, 1 stop

><MW: 24172, pI: 5.99, NX(S/T): 1

MRLFLWNAVLTLFVTSLIGALIPEPEVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSL FHSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEGKGKIPPEST LIFNIDLLEIRNGPRSHESFQEMDLNDDWKLSKDEVKAYLKKEFEKHGAVVNESHHDALVED IFDKEDEDKDGFISAREFTYKHDEL

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 176-179

Casein kinase II phosphorylation site.

amino acids 143-146, 156-159, 178-181 and 200-203

Endoplasmic reticulum targeting sequence.

amino acids 208-211

FKBP-type peptidyl-prolyl cis-trans isomerase

amino acids 78-114 and 118-131

EF-hand calcium-binding domain.

amino acids 191-203, 184-203 and 140-159

S-100/ICaBP type calcium binding domain

amino acids 183-203

 $\tt CCAACCATTCCTCCCTTGTAGTTCTCGCCCCCTCAAATCACCCTCTCCCGTAGCCCACCCGA$ $\tt CTAACATCTCAGTCTCTGAAA{\color{red} ATG} CACAGAGATGCCTGGCTACCTCGCCCTGCCTTCAGCCT$ $\tt CTGCCACCCTCAACGTCCTCAATGGCTCTGACGCCCGCCTGCCCTGCACCTTCAACTCCTGC$ TACACAGTGAACCACAAACAGTTCTCCCTGAACTGGACTTACCAGGAGTGCAACAACTGCTC TGAGGAGATGTTCCTCCAGTTCCGCATGAAGATCATTAACCTGAAGCTGGAGCGGTTTCAAG ACCGCGTGGAGTTCTCAGGGAACCCCAGCAAGTACGATGTGTCGGTGATGCTGAGAAACGTG $\tt CCATGGCAAGATCCATCTGCAGGTCCTCATGGAAGAGCCCCCTGAGCGGGACTCCACGGTGG$ ACTTCGTATCTCCCACCCTGCACCAAGAGTGACCCACTCTCTTCCATCCGAGAAACCTGCCA $\tt GGAGGGGCCGCTGTCACCTGCCCAGTGCTTGCCTGGCAGTGGCTTCAGAGAGGACCTGGTGG$ GGAGGGAGGGCTTTCCTGTGCTGACAGCGCTCCCTCAGGAGGGCCTTGGCCTGGCACGGCTG $\tt CTGCAGGCAAAGCTGGACATGTGCCCTGGCCCAGGAGGCCATGTTGGGCCCTCGTTTCCATT$ ${\tt GCTAGTGGCCTCCTTGGGGCTCCTGTTGGCTCCTAATCCCTTAGGACTGTGGATGAGGCCAGGCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCA$ AGTTTCAAAGTCAGCTGAGGGGCTGAGGGGTGGGGCTCCATGGTGAATGCAGGTTGCTGCAG GCTCTGCCTTCTCCATGGGGTAACCACCCTCGCCTGGGCAGGGCAGGCCAAGGCTGGGAAAT ${\tt GAGGAGGCCATGCACAGGGTGGGGCAGCTTTCTTTGGGGCTTCAGTGAGAACTCTCCCAGTT}$ GCCCTTGGTGGGGTTTCCACCTGGCTTTTGGCTACAGAGAGGGAAAGCCTGAGGCCG GCATAAGGGGAGGCCTTGGAACCTGAGCTGCCAATGCCAGCCCTGTCCCATCTGCGGCCACG ACAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCGGGTGGATTACCTCCAT CTGTTTAGTAGAAATGGGCAAAACCCCATCTCTACTAAAAAATACAAGAATTAGCTGGGCGTG $\tt GTGGCGTGTGCCTGTAATCCCAGCTATTTGGGAGGCTGAGGCAGGAGAATCGCTTGAGCCCG$ ATAGAGAGACTCCATCTCAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45415</pre>

<subunit 1 of 1, 215 aa, 1 stop

<MW: 24326, pI: 6.32, NX(S/T): 4

MHRDAWLPRPAFSLTGLSLFFSLVPPGRSMEVTVPATLNVLNGSDARLPCTFNSCYTVNHKQ FSLNWTYQECNNCSEEMFLQFRMKIINLKLERFQDRVEFSGNPSKYDVSVMLRNVQPEDEGI YNCYIMNPPDRHRGHGKIHLQVLMEEPPERDSTVAVIVGASVGGFLAVVILVLMVVKCVRRK KEQKLSTDDLKTEEEGKTDGEGNPDDGAK

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 161-179

Immunoglobulin-like fold:

amino acids 83-127

N-glycosylation sites.

amino acids 42-45, 66-69 and 74-77

TGCGGCGACCGTCGTACACCATGGGCCTCCACCTCCGCCCCTACCGTGTGGGGCTGCTCCCGGATGGCCTCCTGT CTGGTGATTTGGGTAACCAACTGGAAGCCAAGCTGGACAAGCCGACAGTGGTGCACTACCTCTGCTCCAAGAAGA $\tt CCGAAAGCTACTTCACAATCTGGCTGAACCTGGAACTGCTGCTGCTGTCATCATTGACTGCTGGATTGACAATA$ TCAGGCTGGTTTACAACAAAACATCCAGGGCCACCCAGTTTCCTGATGGTGTGGATGTACGTGTCCCTGGCTTTG $\tt GGAAGACCTTCTCACTGGAGTTCCTGGACCCCAGCAAAAGCAGCGTGGGTTCCTATTTCCACACCATGGTGGAGA$ AAAACGGGCCCTACTTCCTGGCCCTCCGCGAGATGATCGAGGAGATGTACCAGCTGTATGGGGGCCCCGTGGTGC TGGTTGCCCACAGTATGGGCAACATGTACACGCTCTACTTTCTGCAGCGGCAGCCGCAGGCCTGGAAGGACAAGT ATATCCGGGCCTTCGTGTCACTGGGTGCGCCCTGGGGGGGCGTGGCCAAGACCCTGCGCGTCCTGGCTTCAGGAG TGCTGCCCTACAACTACACATGGTCACCTGAGAAGGTGTTCGTGCAGACACCCACAATCAACTACACACTGCGGG AAGCCACGATGCCACCTGGCGTGCAGCTGCACTGCCTCTATGGTACTGGCGTCCCCACACCAGACTCCTTCTACT $A \texttt{GATGCTGGCCAACGCCACCCTGGCCTATCTGAAACGTGTGCTCCTTGGGCCC} \underline{\textbf{TGA}} \\ \texttt{CTCCTGTGCCACAGGA} \\$ ACTGCTGTGACCTTAGGACTGGCTCCACAGGGTGGACTGGCCTGGTCCCTGCTGGGGCCATG TGTCCCCCTATTCCTGTGGGCTTTTCATACTTGCCTACTGGGCCCTGGCCCCGCAGCCTTCCTATGAGGGATGTT ${\tt GCCACAGATAGGCCTGCCACTGGTCATGGGTAGCTAGAGCTGCTGGCTTCCCTGTGGCTTAGCTGGTGGCCAGCC}$ CCTGGGACATCTCACTCCACTCCTACCTCCCTTACCACCAGGAGCATTCAAGCTCTGGATTGGGCAGCAGATGTG GAAAGGGAATCCAAGGAAGCAGCCAAGGCTGCTCGCAGCTTCCCTGAGCTGCACCTCTTGCTAACCCCACCATCA TGAGGCCCCCTAGGGGCTTTCTGTCTGCCCCAGGGTGCTCCATGGATCTCCCTGTGGCAGCAGGCATGGAGAGT GGGGTTCCCAAAGACGCCTTCAGGCTGGACTGAGCTGCTCTCCCACAGGGTTTCTGTGCAGCTGGATTTTCTCTG $\tt TTGCATACATGCCTGGCATCTGTTCCCCCTTGTTCCTGAGTGGCCCCACATGGGGCTCTGAGCAGGCTGTATCTG$

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44189

><subunit 1 of 1, 412 aa, 1 stop

><MW: 46658, pI: 6.65, NX(S/T): 4

MGLHLRPYRVGLLPDGLLFLLLLIMILADPALPAGRHPPVVLVFGDLGNQLEAKLDKPTVVH
YLCSKKTESYFTIWLNLELLLPVIIDCWIDNIRLVYNKTSRATQFPDGVDVRVPGFGKTFSL
EFLDPSKSSVGSYFHTMVESLVGWGYTRGEDVRGAPYDWRRAPNENGPYFLALREMIEEMYQ
LYGGPVVLVAHSMGNMYTLYFLQRQPQAWKDKYIRAFVSLGAPWGGVAKTLRVLASGDNNRI
PVIGPLKIREQQRSAVSTSWLLPYNYTWSPEKVFVQTPTINYTLRDYRKFFQDIGFEDGWLM
RQDTEGLVEATMPPGVQLHCLYGTGVPTPDSFYYESFPDRDFKICFGDGDGTVNLKSALQCQ
AWQSRQEHQVLLQELPGSEHIEMLANATTLAYLKRVLLGP

Important features:

Signal peptide:

amino acids 1-28

Potential lipid substrate binding site:

amino acids 147-164

N-glycosylation sites.

amino acids 99-102, 273-276, 289-292 and 398-401

Lipases, serine proteins

amino acids 189-201

Beta-transducin family Trp-Asp repeat

amino acids 353-365

GGTGGTGGCGCGCGCGTGTGCTTGGTCTTCGCCTTGATCGTGTTCTCCTGCATCTATGGTG AGGGCTACAGCAATGCCCACGAGTCTAAGCAGATGTACTGCGTGTTCAACCGCAACGAGGAT ${\tt GCCTGCCGCTATGGCATCGGGGTGCTGGCCTTCCTGGCCTTCTTCTTGGT}$ GGTCGACGCGTATTTCCCCCAGATCAGCAACGCCACTGACCGCAAGTACCTGGTCATTGGTG ACCTGCTCTTCTCAGCTCTCTGGACCTTCCTGTGGTTTGTTGGTTTCTGCTTCCTCACCAAC ${\tt CAGTGGGCAGTCACCCGAAGGACGTGCTGGTGGGGGCCGACTCTGTGAGGGCAGCCAT}$ ${\tt CACCTTCAGCTTCTTTTCCATCTTCTCCTGGGGTGTGCTGGCCTCCCTGGCCTACCAGCGCT}$ ACAAGGCTGGCGTGGACGACTTCATCCAGAATTACGTTGACCCCACTCCGGACCCCAACACT GCCTACGCCTCCTACCCAGGTGCATCTGTGGACAACTACCAACAGCCACCCTTCACCCAGAA $\tt CGCGGAGACCACCGAGGGCTACCAGCCGCCCCTGTGTAC\underline{TGA}GTGGCGGTTAGCGTGGGAA$ GCCCCTCTCTTCACCTGTTCCATCCTGTGCAGCTGACACACCTCAAGGAGCCTCATAGCC ${\tt CACTCCTCCAGGGCACTTTTAGGAAAGGGTTTTTAGCTAGTGTTTTTCCTCGCTTTTAATGA}$ $\tt CCTCAGCCCGCCTGCAGTGGCTAGAAGCCAGCAGGTGCCCATGTGCTACTGACAAGTGCCT$ CAGCTTCCCCCGGCCCGGGTCAGGCCGTGGGAGCCGCTATTATCTGCGTTCTCTGCCAAAG ACTCGTGGGGGCCATCACACCTGCCCTGTGCAGCGGAGCCGGACCAGGCTCTTGTGTCCTCA GGCCTCTGGGCTGCCCCCGTGGTGTGAGGGCGGGGCTGGTGCTCATGGCACTTCCTCCTTG TGTGCCGAGTGTATTATAAAATCGTGGGGGAGATGCCCGGCCTGGGATGCTGTTTGGAGACG GAATAAATGTTTTCTCATTCAAAG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48304</pre>

<subunit 1 of 1, 224 aa, 1 stop

<MW: 24810, pI: 4.75, NX(S/T): 1

MESGAYGAAKAGGSFDLRRFLTQPQVVARAVCLVFALIVFSCIYGEGYSNAHESKQMYCVFN RNEDACRYGSAIGVLAFLASAFFLVVDAYFPQISNATDRKYLVIGDLLFSALWTFLWFVGFC FLTNQWAVTNPKDVLVGADSVRAAITFSFFSIFSWGVLASLAYQRYKAGVDDFIQNYVDPTP DPNTAYASYPGASVDNYQQPPFTQNAETTEGYQPPPVY

Important features:

Type II Transmembrane domain:

amino acids 1-45

Other transmembrane domains:

amino acids 74-90, 108-126 and 145-161

N-glycosylation site.

amino acids 97-100

ATGTTCAAGGCCTGTGAGGACTCCAAGAGAAAAGCCCGGGGCTACCTCCGCCTGGTGCCCCTGTTTGTGCTGCTG TTCCGCAGTGAAACCGCCAAAGCCCAGAAGATGCTCAAGGAGCTCATCACCAGCACCCGCCTGGGAACTTACTAC AACTCCAGCTCCGTCTATTCCTTTGGGGAGGGACCCCTCACCTGCTTCTTCTGGTTCATTCTCCAAATCCCCGAG CACCGCCGGCTGATGCTGAGCCCCGAGGTGGTGCAGGCACTGCTGGTGGAGGAGCTGCTGTCCACAGTCAACAGC ${\tt TCGGCTGCCCTACAGGGCCGAGTACGAAGTGGACCCCGAGGGCCTAGTGATCCTGGAAGCCAGTGTGAAA}$ GACATAGCTGCATTGAATTCCACGCTGGGTTGTTACCGCTACAGCTACGTGGGCCAGGGCCAGGTCCTCCGGCTG AAGGGGCCTGACCACCTGGCCTCCAGCTGCCTGTGGCACCTGCAGGGCCCCAAGGACCTCATGCTCAAACTCCGGATCACCTCGGTGTACGGCTGCAGCCGCCAGGAGCCCGTGGTGGAGGTTCTGGCGTCGGGGGGCCATCATGGCGGTC GTCTGGAAGAAGGGCCTGCACAGCTACTACGACCCCTTCGTGCTCCCGTGCAGCCGGTGGTCTTCCAGGCCTGT GAAGTGAACCTGACGCTGGACAACAGGCTCGACTCCCAGGGCGTCCTCAGCACCCCGTACTTCCCCAGCTACTAC TATGCACTGAGGAGGCAGAAGTATGATTTGCCGTGCACCCAGGGCCAGTGGACGATCCAGAACAGGAGGCTGTGT GGCTTGCGCATCCTGCAGCCCTACGCCGAGAGGATCCCCGTGGTGGCCACGGCCGGGATCACCATCAACTTCACC TCCCAGATCTCCCTCACCGGGCCCGGTGTGCGGGTGCACTATGGCTTGTACAACCAGTCGGACCCCTGCCCTGGA GAGAGAAACTGCGTTTGCAGAGCCACATTCCAGTGCAAAGAGGACAGCACATGCATCTCACTGCCCAAGGTCTGT GAAGAGGACAGCCATGACTACGACGTGGCGCTGCTGCAGCTCGACCACCCGGTGGTGCGCCTCGGCCGCCGTGCGC CCCGTCTGCCTGCCCGCGCGCTCCCACTTCTTCGAGCCCGGCCTGCACTGCTGGATTACGGGCTGGGGCGCCTTG GCCTATCGCTACCAGGTGACGCCACGCATGCTGTGCCGGCTACCGCAAGGGCAAGAAGGATGCCTGTCAGGGT GACTCAGGTGGTCCGCTGGTGTGCAAGGCACTCAGTGGCCGCTGGTTCCTGGCGGGGCTGGTCAGCTGGGGCCTG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49152

><subunit 1 of 1, 802 aa, 1 stop

><MW: 88846, pI: 6.41, NX(S/T): 7

MPVAEAPQVAGGQGDGGDGEEAEPEGMFKACEDSKRKARGYLRLVPLFVLLALLVLASAGVL
LWYFLGYKAEVMVSQVYSGSLRVLNRHFSQDLTRRESSAFRSETAKAQKMLKELITSTRLGT
YYMSSSVYSFGBGPLTCFFWFILQIPEHRRLMLSPEVVQALLVEELLSTVNSSAAVPYRAEY
EVDPEGLVILEASVKDIAALNSTLGCYRYSYVGQGQVLRLKGPDHLASSCLWHLQGPKDLML
KLRLEWTLAECRDRLAMYDVAGPLEKRLITSVYGCSRQEPVVEVLASGAIMAVVWKKGLHSY
YDPFVLSVQPVVFQACEVNLTLDNRLDSQGVLSTPYFPSYYSPQTHCSWHLTVPSLDYGLAL
WFDAYALRRQKYDLPCTQGQWTIQNRRLCGLRILQPYAERIPVVATAGITINFTSQISLTGIS
GVRVHYGLYNQSDPCPGEFLCSVNGLCVPACDGVKDCPNGLDERNCVCRATFQCKEDSTCIS
LPKVCDGQPDCLNGSDEEQCQEGVPCGTFTFQCEDRSCVKKPNPQCDGRPDCRDGSDEEHCD
CGLQGPSSRIVGGAVSSEGEWPWQASLQVRGRHICGGALIADRWVITAAHCFQEDSMASTVL
WTVFLGKVWQNSRWGGBVSFKVSRLLHPYHEEDSHDYDVALLQLDHPVVRSAAVRPVCLPA
RSHFFEPGLHCWITGWGALREGGPISNALQKVDVQLIPQDLCSEAYRYQVTPRMLCAGYRKG
KKDACQGDSGGPLVCKALSGRWFLAGLVSWGLGCGRPNYFGVYTRITGVISWIQQVVT

Important features:

Type II transmembrane domain:

amino acids 46-67

Serine proteases, trypsin family, histidine active site.

amino acids 604-609

N-glycosylation sites.

amino acids 127-130, 175-178, 207-210, 329-332, 424-427, 444-447 and 509-512

Kringle domains.

amino acids 746-758 and 592-609

Homologous region to Kallikrein Light Chain:

amino acids 568-779

Homologous region to Low-density lipoprotein receptor:

amino acids 451-567

GCACCCAGGGCCAGTGGACGATCCAGAACAGGAGGCTGTGTGGCTTGCGCATCCTGCAGCCC TACGCCGAGAGGATCCCCGTGGTGGCCACGGCCGGGATCACCATCAACTTCACCTCCCAGAT ${\tt TGCCCCAACGGCCTGGATGAGAGAAACTGCGTTTGCAGAGCCACATTCCAGTGCAAAGAGGA}$ ATGAAGAGCAGTGCCAGGAAGGGGTGCCATGTGGGACATTCACCTTCCAGTGTGAGGACCGG AGCTGCGTGAAGAAGCCCAACCCGCAGTGTGATGGGCGGCCCGACTGCAGGGACGGCTCGGA TGAGGAGCACTGTGACTGTGGCCTCCAGGGCCCCTCCAGCCGCATTGTTGGTGGAGCTGTGT $\verb|CCTCCGAGGGTGAGTGGCCATGGCAGGCCAGGCTCCAGGTTCGGGGTCGACACATCTGTGGG|\\$ GGGGCCCTCATCGCTGACCGCTGGGTGATAACAGCTGCCCACTGCTTCCAGGAGGACAGCAT GGCCTCCACGGTGCTGTGGACCGTGTTCCTGGGCAAGGTGTGGCAGAACTCGCGCTGGCCTG GAGAGGTGTCCTTCAAGGTGAGCCGCCTGCTCCTGCACCCGTACCACGAAGAGGACAGCCAT GGGGCGCCTTGCGCGAGGGCCGCCCATCAGCAACGCTCTGCAGAAAGTGGATGTGCAGTTG ATCCCACAGGACCTGTGCAGCGAGGCCTATCGCTACCAGGTGACGCCACGCATGCTGTGTGC $\tt CGGCTACCGCAAGGGCAAGAAGGATGCCTGTCAGGGTGACTCAGGTGGTCCGCTGGTGTGCA$ AGGCACTCAGTGGCCGCTGGTTCCTGGCGGGGCTGGTCAGCTGGGCCTGGGCCTGGCCCGG $\verb|CCTAACTACTTCGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGGT|\\$ ${\tt GACCTGAGGAACTGCCCCCTGCAAAGCAGGGCCCACCTCCTGGACTCAGAGAGCCCAGGGCCAGGGCCAGGGCCAGGGCCCAGGGCCA$ AACTGCCAAGCAGGGGGACAAGTAT

GGACGAGGGCAGATCTCGTTCTGGGGCAAGCCGTTGACACTCGCTCCCTGCCACCGCCCGGG $\tt CTCCGTGCCGCCAAGTTTTCATTTTCCACCTTCTCTGCCTCCAGTCCCCAGCCCCTGGCCG$ ${\tt AGAGAAGGGTCTTACCGGCCGGGATTGCTGGAAACACCAAGAGGTGGTTTTTGTTTTTTAAA}$ ${\tt ACTTCTGTTTCTTGGGAGGGGGTGTGGCGGGGGCAGG} \underline{{\tt ATG}} {\tt AGCAACTCCGTTCCTCTGCTCTG}$ GGCTGGAAGATAAGCTCCACAAACCCAAAGCTACACAGACTGAGGTCAAACCATCTGTGAGG TTTAACCTCCGCACCTCCAAGGACCCAGAGCATGAAGGATGCTACCTCTCCGTCGGCCACAG $\tt CCAGCCCTTAGAAGACTGCAGTTTCAACATGACAGCTAAAACCTTTTTCATCATTCACGGAT$ GGACGATGAGCGGTATCTTTGAAAACTGGCTGCACAAACTCGTGTCAGCCCTGCACACAAGA GAGAAAGACGCCAATGTAGTTGTGGTTGACTGGCTCCCCCTGGCCCACCAGCTTTACACGGA AGAAGGACGATTTTTCTCTCGGGAATGTCCACTTGATCGGCTACAGCCTCGGAGCGCACGTG GCCGGGTATGCAGGCAACTTCGTGAAAGGAACGGTGGGCCGAATCACAGGTTTGGATCCTGC $\tt CGGGCCCATGTTTGAAGGGGCCGACATCCACAAGAGGCTCTCTCCGGACGATGCAGATTTTG$ ${\tt TGGATGTCCTCCACACCTACACGCGTTCCTTCGGCTTGAGCATTGGTATTCAGATGCCTGTG}$ ${\tt TCCACCTCTTTGTTGACTCTCTGGTGAATCAGGACAAGCCGAGTTTTGCCTTCCAGTGCACT}$ ${\tt GACTCCAATCGCTTCAAAAAGGGGGATCTGTCTGAGCTGCCGCAAGAACCGTTGTAATAGCAT}$ ${\tt CAGGCATGCCTTTCAGAGGTAACCTTCAGTCCCTGGAGTGTCCC} \underline{{\tt TGA}}{\tt GGAAGGCCCTTAATA}$ ${\tt CAATCCAATCAAATCGTTGCAAATCAGATTACACTGTGCATGTCCTAGGAAAGGGAATCTTT}$ ΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑ

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49646
><subunit 1 of 1, 354 aa, 1 stop
><MW: 39362, pI: 8.35, NX(S/T): 2</pre>

MSNSVPLLCFWSLCYCFAAGSPVPFGPEGRLEDKLHKPKATQTEVKPSVRFNLRTSKDPEHE GCYLSVGHSQPLEDCSFNMTAKTFFIIHGWTMSGIFENWLHKLVSALHTREKDANVVVVDWL PLAHQLYTDAVNNTRVVGHSIARMLDWLQEKDDFSLGNVHLIGYSLGAHVAGYAGNFVKGTV GRITGLDPAGPMFEGADIHKRLSPDDADFVDVLHTYTRSFGLSIGIQMPVGHIDIYPNGGDF QPGCGLMDVLGSIAYGTITEVVKCEHERAVHLFVDSLVNQDKPSFAFQCTDSNRFKKGICLS CRKNRCNSIGYNAKKMRNKRNSKMYLKTRAGMPFRGNLQSLECP

Important features: Signal peptide: amino acids 1-16

Lipases, serine active site. amino acids 163-172

N-glycosylation sites.
amino acids 80-83 and 136-139

AGAAGAGTGCGGCGGGGGGGAGAAAACAACTCCAAAGTTGGCGAAAGGCACCGCCCCTACTCCCGGGCTGCCG CCGCCTCCCCGCCCCAGCCCTGGCATCCAGAGTACGGGTCGAGCCCGGGCCATGGAGCCCCCCTGGGGAGGCGG CACCAGGGAGCCTGGGCGCCCGGGGCTCCGCCGCGACCCCATCGGGTAGACCACAGAAGCTCCGGGACCCTTCCG $\tt GCACCTCTGGACAGCCCAGG{\color{red} \underline{\textbf{ATG}}} \tt CTGTTGGCCACCCTCCTCCTCCTCCTTGGAGGCGCTCTGGCCCATCCAG$ $\overline{ACCGGATTATTTTCCAAATCATGCTTGTGAGGACCCCCCAGCAGTGCTCTTAGAAGTGCAGGGCACCTTACAGA$ GGCCCTGGTCCGGGACAGCCGCACCTCCCCTGCCAACTGCACCTGGCTCATCCTGGGCAGCAAGGAACAGACTG ${\tt TCACCATCAGGTTCCAGAAGCTACACCTGGCCTGTGGCTCAGAGCGCTTAACCCTACGCTCCCCTCTCCAGCCAC}$ TGATCTCCCTGTGTGAGGCACCTCCCAGCCCTCTGCAGCTGCCCGGGGGCAACGTCACCATCACTTACAGCTATG AGTTTCAGTGCCTGAACCACCGCTGTGTATCTGCTGTCCAGCGCTGTGATGGGGTTGATGCCTGTGGCGATGGCT $\tt CTGATGAAGCAGGTTGCAGACCCCTTCCCTTGGCCTGACCCCAAGACCCGTCCCCTGCCTTGCAATG$ $\tt CTGGCCTGGGAGCCGAAGGCCTAGGTGAGCGCTGCTACAGTGAGGCACAGCGCTGTGACGGCTCATGGGACT$ $\tt GTGCTGACGGCACAGATGAGGAGGACTGCCCAGGCTGCCCACCTGGACACTTCCCCTGTGGGGCTGCTGGCACCT$ $\tt CTGGTGCCACAGCCTGCTGCCTGCTGACCGCTGCAACTACCAGACTTTCTGTGCTGATGGAGCAGATGAGA$ GACGCTGTCGGCATTGCCAGCCTGGCAATTTCCGATGCCGGGACGAGAAGTGCGTGTATGAGACGTGGGTGTGCG $\tt ATGGGCAGCCAGACTGTGCGGACGGCAGTGATGAGTGGGACTGCTCCTATGTTCTGCCCCGCAAGGTCATTACAG$ $\tt TTCGCACCCAGGAGTACAGCATCTTTGCCCCCCTCTCCCGGATGGAGGCTGAGATTGTGCAGCAGCAGCACCCC$ $\tt CTTCCTACGGGCAGCTCATTGCCCAGGGTGCCATCCCACCTGTAGAAGACTTTCCTACAGAGAATCCTAATGATA$ ACTCAGTGCTGGGCAACCTGCGTTCTCTGCTACAGATCTTACGCCAGGATATGACTCCAGGAGGTGGCCCAGGTG CAGGACCAACCCGGAGCCCCCTGGACCCCACACAGCAGTCCTGGCCCTGGAAGATGAGGACGATGTGCTACTGG ${\tt ACCACTTCCTTCCCTGGGATTTCAGGGGACTTGGTGGGCCTCCCGTTGACCCTATGTAGCTGCTATAAAGT}$ ${\tt TAAGTGTCCCTCAGGCAGGGAGAGGGCTCACAGAGTCTCCTCTGTACGTGGCCATGGCCAGACACCCCAGTCCCT}$ TCACCACCACCTGCTCCCCACGCCACCACTTTGGGTGGCTGTTTTTAAAAAGTAAAGTTCTTAGAGGATCATA GGTCTGGACACTCCATCCTTGCCAAAACCTCTACCCAAAAGTGGCCTTAAGCACCGGAATGCCAATTAACTAGAGA $\tt CCCTCCAGCCCCCAAGGGGAGGATTTGGGCAGAACCTGAGGTTTTGCCATCCACAATCCCTCCTACAGGGCCTGG$ $\tt CTCACAAAAAGAGTGCAACAAATGCTTCTATTCCATAGCTACGGCATTGCTCAGTAAGTTGAGGTCAAAAATAAA$ GGAATCATACATCTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49631

<subunit 1 of 1, 713 aa, 1 stop

<MW: 76193, pI: 5.42, NX(S/T): 4

MLLATLLLLLGGALAHPDRIIFPNHACEDPPAVLLEVQGTLQRPLVRDSRTSPANCTWLIL GSKEQTVTIRFQKLHLACGSERLTLRSPLQPLISLCEAPPSPLQLPGGNVTITYSYAGARAP MGQGFLLSYSQDWLMCLQEEFQCLNHRCVSAVQRCDGVDACGDGSDEAGCSSDPFPGLTPRP VPSLPCNVTLEDFYGVFSSPGYTHLASVSHPQSCHWLLDPHDGRRLAVRFTALDLGFGDAVH VYDGPGPPESSRLLRSLTHFSNGKAVTVETLSGQAVVSYHTVAMSNGRGFNATYHVRGYCLP WDRPCGLGSGLGAGEGLGERCYSEAQRCDGSWDCADGTDEEDCPGCPPGHFPCGAAGTSGAT ACYLPADRCNYQTFCADGADERCRHCQPGNFRCRDEKCVYETWVCDGQPDCADGSDEWDCS YVLPRKVITAAVIGSLVCGLLLVIALGCTCKLYAIRTQEYSIFAPLSRMEAEIVQQQAPPSY GQLIAQGAIPPVEDFPTENPNDNSVLGNLRSLLQILRQDMTPGGGPGARRRQRGRLMRRLVR RLRRWGLLPRTNTPARASEARSQVTPSAAPLEALDGGTGPAREGGAVGQQDGEQAPPLPIKA PLPSASTSPAPTTVPEAPGPLPSLPLEPSLLSGVVQALRGRLLPSLGPPGFTRSPPGPHTAV LALLEDEDDVLLVPLARPGVWVAEREDRPLLT

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 442-462

LDL-receptor class A (LDLRA) domain proteins amino acids 411-431, 152-171, 331-350 and 374-393

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49645

><subunit 1 of 1, 152 aa, 1 stop

><MW: 17170, pI: 9.62, NX(S/T): 1

MDNVQPKIKHRPFCFSVKGHVKMLRLALTVTSMTFFIIAQAPEPYIVITGFEVTVILFFILL
YVLRLDRLMKWLFWPLLDIINSLVTTVFMLIVSVLALIPETTTLTVGGGVFALVTAVCCLAD
GALIYRKLLFNPSGPYOKKPVHEKKEVL

Important features:

Potential type II transmembrane domain:

amino acids 26-42

Other potential transmembrane domain:

amino acids 44-65, 81-101 and 109-129

Leucine zipper pattern

amino acids 78-99 and 85-106

N-myristoylation site.

amino acids 110-115

Ribonucleotide reductase large subunit protein

amino acids 116-127

GGGCGAGAAGTAGGGGAGGCGTGTTCCGCCGCGGTGGCGGTTGCTATCGTTTTGCAGAACC
TACTCAGGCAGCCAGNTGAGAAGAGTTGAGGGAAAGTGCTGCTGCTGGGTCTGCAGACGCGA
TGGATAACGTGCAGCCGAAAATAAAACATCGCCCCTTCTGCTTCAGTGTAAAAGGCCACGTG
AAGATGCTGCGGCTGGCACTAACTGNGACATCTATGACCTTTTTTATNATCGCACAAGCCCC
TGAACCATATATTGTTATCACTGGATTTGAAGTCACCGTTATCTTATTTTTCATACTTTTAT
ATGTACTCAGACTTGATCGATTAATGAAGTGGTTATTTTGGCCTTTGCTTGATATTATCAAC
TCACTGGTAACAACAGTATTCATGCTCATCGTATCTGTTGGCACTGATACCAGAAACCAC
AACATTGACAGTTGGTGGAGGGGTGTTTGCACTTGTACACGCAGTATGCTGTNTTGCCGAC

CAGCCCCGCGCCGGCCGAGTCGCTGAGCCGCGGCTGCCGGACGGGACCGGCTAGG CTCTGCTGGCCCAGTGGCTCCTGCGCGCCCCGGAGCTGGCCCCCGCGCCCTTCACGCTG TGCCGAGCGCCACGCCGACGGCTTGGCGCTCGCCCTGGAGCCTGCCCTGGCGTCCCCCGCGG GCGCCGCCAACTTCTTGGCCATGGTAGACAACCTGCAGGGGGACTCTGGCCGCGGCTACTAC CTGGAGATGCTGATCGGGACCCCCCCGCAGAAGCTACAGATTCTCGTTGACACTGGAAGCAG TAACTTTGCCGTGGCAGGAACCCCGCACTCCTACATAGACACGTACTTTGACACAGAGAGGT CTAGCACATACCGCTCCAAGGGCTTTGACGTCACAGTGAAGTACACACAAGGAAGCTGGACG GGCTTCGTTGGGGAAGACCTCGTCACCATCCCCAAAGGCTTCAATACTTCTTTTCTTGTCAA CATTGCCACTATTTTTGAATCAGAGAATTTCTTTTTGCCTGGGATTAAATGGAATGGAATAC TTGGCCTAGCTTATGCCACACTTGCCAAGCCATCAAGTTCTCTGGAGACCTTCTTCGACTCC ATAAAGGAGACATCTGGTATACCCCTATTAAGGAAGAGTGGTACTACCAGATAGAAATTCTG AAATTGGAAATTGGAGGCCAAAGCCTTAATCTGGACTGCAGAGAGTATAACGCAGACAAGGC CATCGTGGACAGTGGCACCACGCTGCTGCGCCCAGAAGGTGTTTGATGCGGTGGTGG AAGCTGTGGCCCGCGCATCTCTGATTCCAGAATTCTCTGATGGTTTCTGGACTGGGTCCCAG $\tt CTGGCGTGCTGGACGAATTCGGAAACACCTTGGTCTTACTTCCCTAAAATCTCCATCTACCT$ GAGAGACGAGAACTCCAGCAGGTCATTCCGTATCACAATCCTGCCTCAGCTTTACATTCAGC ${\tt CCATGATGGGGGCCGGCCTGAATTATGAATGTTACCGATTCGGCATTTCCCCATCCACAAAT}$ GCGCTGGTGATCGGTGCCACGGTGATGGAGGGCCTTCTACGTCATCTTCGACAGAGCCCAGAA GAGGGTGGGCTTCGCAGCGAGCCCCTGTGCAGAAATTGCAGGTGCTGCAGTGTCTGAAATTT $\tt CCCATTTTGTGGATTGTGTCCTATGCGCTCATGAGCGTCTGTGGAGCCATCCTCCTTGTCTT$ AATCGTCCTGCTGCTGCCGTTCCGGTGTCAGCGTCGCCCCGTGACCCTGAGGTCGTCA $\tt ATGATGAGTCCTCTCTGGTCAGACATCGCTGGAAA{\color{red}{TGA}} ATAGCCAGGCCTGACCTCAAGCAA{\color{red}{CAA}} CAA{\color{red}{CAA}} CAA{\color{red}{CAA}}$ CCATGAACTCAGCTATTAAGAAAATCACATTTCCAGGGCAGCAGCCGGGATCGATGGTGGCG $\tt CTTTCTCCTGTGCCCACCCGTCTTCAATCTCTGTTCTGCTCCCAGATGCCTTCTAGATTCAC$ TGTCTTTTGATTCTTGATTTTCAAGCTTTCAAATCCTCCCTACTTCCAAGAAAAATAATTAA AAAAAAACTTCATTCTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45493
><subunit 1 of 1, 518 aa, 1 stop
><MW: 56180, pI: 5.08, NX(S/T): 2</pre>

MGALARALLLPLLAQWLLRAAPELAPAPFTLPLRVAAATNRVVAPTPGPGTPAERHADGLAL
ALEPALASPAGAANFLAMVDNLQGDSGRGYYLEMLIGTPPQKLQILVDTGSSNFAVAGTPHS
YIDTYFDTERSSTYRSKGFDVTVKYTQGSWTGFVGEDLVTIPKGFNTSFLVNIATIFESENF
FLPGIKWNGILGLAYATLAKPSSSLETFFDSLVTQANIPNVFSMQMCGAGLPVAGSGTNGGS
LVLGGIEPSLYKGDIWYTPIKEEWYYQIEILKLEIGGQSLNLDCREYNADKAIVDSGTTLLR
LPQKVFDAVVEAVARASLIPEFSDGFWTGSQLACWTNSETPWSYFPKISIYLRDENSSRSFR
ITILPQLYIQPMMGAGLNYECYRFGISPSTNALVIGATVMEGFYVIFDRAQKRVGFAASPCA
EIAGAAVSEISGPFSTEDVASNCVPAQSLSEPILWIVSYALMSVCGAILLVLIVLLLLPFRC
ORRERDEEVVNDESSLVPHWWK

Important features:
Signal peptide:
amino acids 1-20

Transmembrane domain: amino acids 466-494

N-glycosylation sites.
amino acids 170-173 and 366-369

Leucine zipper pattern.
amino acids 10-31 and 197-118

Eukaryotic and viral aspartyl proteases amino acids 109-118, 252-261 and 298-310

CGCCTCCGCCTTCGGAGGCTGACGCGCCCGGGCGCCGTTCCAGGCCTGTGCAGGGCGGATCG GCAGCCGCCTGGCGGCGATCCAGGCCGTGCGGGGCCTGGGCGGGAGCCGGGAGCCGGCGCC GGCATGGAGGCGCTGCTGGGCGCGGGGTTGCTGCTGGGCGCTTACGTGCTTGTCTACTA CAACCTGGTGAAGGCCCCGCCGTGCGGCGGCATGGGCAACCTGCGGGCCCCCACGCCCTGC TCACGGGCGCCAACAGCGGCATCGGAAAGATGACGGCGCTGGAGCTGGCGCCGCGGGGAGCG CGCGTGGTGCTGCCGCAGCCAGGAGCGCGGGGAGGCGGCTGCCTTCGACCTCCGCCA GGAGAGTGGGAACAATGAGGTCATCTTCATGGCCTTGGACTTGGCCAGTCTGGCCTCGGTGC GGGCCTTTGCCACTGCCTTTCTGAGCTCTGAGCCACGGTTGGACATCCTCATCCACAATGCC GGTATCAGTTCCTGTGGCCGGACCCGTGAGGCGTTTAACCTGCTGCTTCGGGTGAACCATAT TGGTGGTGGTAGCCTCAGCTGCCCACTGTCGGGGACGTCTTGACTTCAAACGCCTGGACCGC CCAGTGGTGGCGGCAGGAGCTGCGGGCATATGCTGACACTAAGCTGGCTAATGTACT GTTTGCCCGGGAGCTCGCCAACCAGCTTGAGGCCACTGGCGTCACCTGCTATGCAGCCCACC CAGGGCCTGTGAACTCGGAGCTGTTCCTGCGCCATGTTCCTGGATGGCTGCGCCCACTTTTG CGCCCATTGGCTGGCTGCTCCGGGCACCAAGAGGGGGTGCCCAGACACCCCTGTATTG TGCTCTACAAGAGGGCATCGAGCCCCTCAGTGGGAGATATTTTGCCAACTGCCATGTGGAAG AGGTGCCTCCAGCTGCCCGAGACGACCGGGCAGCCCATCGGCTATGGGAGGCCAGCAAGAGG CTGGCAGGGCTTGGGCCTGGGGAGGATGCTGAACCCGATGAAGACCCCCAGTCTGAGGACTC AGAGGCCCCATCTTCTCTAAGCACCCCCCACCCTGAGGAGCCCACAGTTTCTCAACCTTACC CCAGCCCTCAGAGCTCACCAGATTTGTCTAAGATGACGCACCGAATTCAGGCTAAAGTTGAG CCTGAGATCCAGCTCTCCTAACCCTCAGGCCAGGATGCTTGCCATGCCACTTCATGCTCCTT ${\tt GAAAACCTCGGATGTGTGAGGCCATGCCCTGGACACTGACGGGTTTGTGATCTTGACCTC}$ CGTGGTTACTTTCTGGGGCCCCAAGCTGTGCCCTGGACATCTCTTTTCCTGGTTGAAGGAAT ${\tt AATGGGTGATTATTTCTTCCTGAGAGTGACAGTAACCCCAGATGGAGAGATAGGGGTATGCT}$ ${\tt AGACACTGTGCTTCTCGGAAATTTGGATGTAGTATTTTCAGGCCCCACCCTTATTGATTCTG}$ ATCAGCTCTGGAGCAGAGGCAGGGAGTTTGCAATGTGATGCACTGCCAACATTGAGAATTAG TGAACTGATCCCTTTGCAACCGTCTAGCTAGCTAGTTAAATTACCCCCCATGTTAATGAAGCG GAATTAGGCTCCCGAGCTAAGGGACTCGCCTAGGGTCTCACAGTGAGTAGGAGGAGGGCCTG GGATCTGAACCCAAGGGTCTGAGGCCAGGGCCGACTGCCGTAAGATGGGTGCTGAGAAGTGA GTCAGGGCAGGCAGCTGGTATCGAGGTGCCCCATGGGAGTAAGGGGACGCCTTCCGGGCGG ATGCAGGCTGGGGTCATCTGTATCTGAAGCCCCTCGGAATAAAGCGCGTTGACCGCCAAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48227
<subunit 1 of 1, 377 aa, 1 stop
<MW: 40849, pI: 7.98, NX(S/T): 0</pre>

MEALLLGAYULVYYNLVKAPPCGGMGNLRGRTAVVTGANSGIGKMTALELARRGAR
VVLACRSQERGEAAAFDLRQESGNNEVIFMALDLASLASVRAFATAFLSSEPRLDILIHNAG
ISSCGRTREAFNLLLRVNHIGPFLLTHLLLPCLKACAPSRVVVVASAAHCRGRLDFKRLDRP
VVGWRQELRAYADTKLANVLFARELANQLEATGVTCYAAHPGPVNSELFLRHVPGWLRPLLR
PLAWLVLRAPRGGAQTPLYCALQEGIEPLSGRYFANCHVEEVPPAARDDRAAHRLWEASKRL
AGLGPGEDAEPDEDPQSEDSEAPSSLSTPHPEEPTVSQPYPSPQSSPDLSKMTHRIQAKVEP
EIOLS

Important features:
Signal peptide:
amino acids 1-16

Glycosaminoglycan attachment site. amino acids 46-49

Short-chain alcohol dehydrogenase family amino acids 37-49 and 114-124

GGAGGAGACAGCCTCCTGGGGGGCAGGGGTTCCCTGCCTCTGCTCCTCCTCCTCATCATCGGAGGCATGGCTCAG GACTCCCCGCCCCAGATCCTAGTCCACCCCCAGGACCAGCTGTTCCAGGGCCCTGCCCTGCCAGGATGAGCTGC CCACACCACCTCCTGCCTGATGGGACCCTTCTGCTGCTACAGCCCCCTGCCCGGGGACATGCCCACGATGGCCAG TTTACTCTGGAATGTGGGCCGCCCTGGGGCCACCCAGAGCCCACAGTCTCATGGTGGAAAGATGGGAAACCCCTG CCTGCAGAGGGCCCCAAGCCTAGACCGGCGGTGTGGCTCAGCTGGAAGGTCAGTGGCCCTGCTGCGCCCAA TCTTACACGCCTTGTTCAGGACCCAGACTGCCCCGGGAGGCCAGGGAGCTCCGTGGGCAGAGAGCTGCTGGCC GGCTGGCAGAGCGCAGAGCTTCGAGGCCTCCACTGGGGCCAAGACTACGAGTTCAAAGTGAGACCATCCTCTGGC GTGACTCTAAAGCCTGGCAATGGCACTGTCTTTGTGAGCTGGGTCCCACCACCTGCTGAAAACCACAATGGCATC ATCCGTGGCTACCAGGTCTGGAGCCTGGGCAACACATCACTGCCACCAGCCAACTGGACTGTAGTTGGTGAGCAG ACCCAGCTGGAAATCGCCACCCATATGCCAGGCTCCTACTGCGTGCAAGTGGCTGCAGTCACTGGTGCTGGAGCT GGTCCCTGGACCCTGGAGCAGCTGAGGGCTACCTTGAAGCGGCCTGAGGTCATTGCCACCTGCGGTGTTGCACTC GACCCACTAGACTGTCGTCGCTCCTTGCTCTCCTGGGACTCCCGAAGCCCCGGCGTGCCCCTGCTTCCAGACACC GTCAGGCGCCTCCCACCCCAGCTGGCCCAGCTCTCCAGCCCCTGTTCCAGCTCAGACAGCCTCTGCAGCCGCAGG GGACTCTCTTCTCCCCGCTTGTCTCTGGCCCCTGCAGAGGCCTTGGAAGGCCAAAAAGAAGCAGGAGCTGCAGCAT GCCAACAGTTCCCCACTGCTCCGGGGCAGCCACTCCTTGGAGCTCCGGGCCTGTGAGTTAGGAAATAGAGGTTCC AAGAACCTTTCCCAAAGCCCAGGAGCTGTGCCCCAAGCTCTGGTTGCCTGGCGGGCCCTGGGACCGAAACTCCTC AGCTCCTCAAATGAGCTGGTTACTCGTCATCTCCCTCCAGCACCCCTCTTTCCTCATGAAACTCCCCCAACTCAG CTTAGCCCCTGCAGTCCCCCTAGCCCCCAGGCCTCTTCCCTCTCTGGCCCCAGCCCAGCTTCCAGTCGCCTGTCC AGCTCCTCACTGTCATCCCTGGGGAGGATCAAGACAGCGTGCTGACCCCTGAGGAGGTAGCCCTGTGCTTGGAA CTCAGTGAGGGTGAGGAGACTCCCAGGAACAGCGTCTCTCCCATGCCAAGGGCTCCTTCACCCCCCACCACCTAT GGGTACATCAGCGTCCCAACAGCCTCAGAGTTCACGGACATGGGCAGGACTGGAGGAGGGGGGGCCCCAAGGGG GGAGTCTTGCTGTGCCCACCTCGGCCCTGCCTCACCCCCACCCCAGCGAGGGCTCCTTAGCCAATGGTTGGGGC GCTCACTTTGCCCGGGCCCTGGCAGTGGCTGTGGATAGCTTTGGTTTCGGTCTAGAGCCCAGGGAGGCAGACTGC GTCTTCATAGATGCCTCATCACCTCCCTCCCCACGGGATGAGATCTTCCTGACCCCCAACCTCTCCCTGCCCCTG TGGGAGTGGAGGCCAGACTGGTTGGAAGACATGGAGGTCAGCCACACCCAGCGGCTGGGAAGGGGGATGCCTCCC TGGCCCCTGACTCTCAGATCTCTTCCCAGAGAAGTCAGCTCCACTGTCGTATGCCCAAGGCTGGTGCTTCTCCT ACCTGGGCTGTGTGTGTGTGTGTGTGTTTCTCTGCAGCTGGGGTCCACCTTCCCAAGCCTCCAGAGAG TTCTCCCTCCACGATTGTGAAAACAAATGAAAACAAAATTAGAGCAAAGCTGACCTGGAGCCCTCAGGGAGCAAA ACATCATCTCCACCTGACTCCTAGCCACTGCTTTCTCCTCTGTGCCATCCACCACCACCACGGTTGTTTTGGC CTGAGGAGCAGCCCTGCCTGCTCTTCCCCCACCATTTGGATCACAGGAAGTGGAGGAGCCAGAGGTGCCTTT GTGGAGGACAGCAGTGGCTGCTGGGAGAGGGCTGTGGAGGAGGAGGAGCAGCTTCTCGGAGCCCCTCTCAGCCTTACCT TATGAGACCGTAGGTCAAAAGCACCATCCTCGTACTGTTGTCACTATGAGCTTAAGAAATTTGATACCATAAAAT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41404
<subunit 1 of 1, 985 aa, 1 stop</pre>

<MW: 105336, pI: 6.55, NX(S/T): 7

MGGMAQDSPPQILVHPQDQLFQGPGPARMSCQASGQPPPTIRWLLNGQPLSMVPPDPHHLLP DGTLLLLQPPARGHAHDGQALSTDLGVYTCEASNRLGTAVSRGARLSVAVLREDFQIQPRDM VAVVGEQFTLECGPPWGHPEPTVSWWKDGKPLALQPGRHTVSGGSLLMARAEKSDEGTYMCV ATNSAGHRESRAARVSIQEPQDYTEPVELLAVRIQLENVTLLNPDPAEGPKPRPAVWLSWKV SGPAAPAQSYTALFRTQTAPGGOGAPWAEELLAGWOSAELGGLHWGODYEFKVRPSSGRARG PDSNVLLLRLPEKVPSAPPQEVTLKPGNGTVFVSWVPPPAENHNGIIRGYQVWSLGNTSLPP ANWTVVGEQTOLEIATHMPGSYCVQVAAVTGAGAGEPSRPVCLLLEOAMERATOEPSEHGPW TLEOLRATLKRPEVIATCGVALWLLIJGTAVCIHRRRRARVHIJGPGIJYRYTSEDATIKHRMD HSDSQWLADTWRSTSGSRDLSSSSSLSSRLGADARDPLDCRRSLLSWDSRSPGVPLLPDTST FYGSLIAELPSSTPARPSPOVPAVRRLPPOLAOLSSPCSSSDSLCSRRGLSSPRLSLAPAEA WKAKKKQELQHANSSPLLRGSHSLELRACELGNRGSKNLSOSPGAVPOALVAWRALGPKLLS SSNELVTRHLPPAPLFPHETPPTOSQOTOPPVAPOAPSSILLPAAPIPILSPCSPPSPOASS LSGPSPASSRLSSSLSSLGEDODSVLTPEEVALCLELSEGEETPRNSVSPMPRAPSPPTTY GYISVPTASEFTDMGRTGGGVGPKGGVLLCPPRPCLTPTPSEGSLANGWGSASEDNAASARA SLVSSSDGSFLADAHFARALAVAVDSFGFGLEPREADCVFIDASSPPSPRDEIFLTPNLSLP LWEWRPDWLEDMEVSHTQRLGRGMPPWPPDSQISSQRSQLHCRMPKAGASPVDYS

Important features:

Transmembrane domain:

amino acids 448-467

N-glycosylation sites:

amino acids 224-227, 338-341, 367-370, 374-377, 658-661 and 926-929

N-myristoylation sites.

amino acids 47-52, 80-85, 88-93, 99-104, 105-110, 181-186, 272-277, 290-295, 355-360, 403-408, 462-467, 561-566, 652-657, 849-854 and 876-881

Phosphotyrosine interaction domain proteins

amino acids 740-753

CCCAGGTTATGAAGCCCTGGAGGGCCCCAGAGGAAATCAGCGGGTTCGAAGGGGACACTGTGT CCCTGCAGTGCACCTACAGGGAAGAGCTGAGGGACCACCGGAAGTACTGGTGCAGGAAGGGT GGGATCCTCTCTCTCGCTGCTCTGGCACCATCTATGCAGAAGAAGAAGACCCAGGAGACAAT GAAGGGCAGGGTGTCCATCCGTGACAGCCGCCAGGAGCTCTCGCTCATTGTGACCCTGTGGA ACCTCACCTGCAAGACGCTGGGGAGTACTGGTGTGGGGTCGAAAAACGGGGCCCCGATGAG TCTTTACTGATCTCTGTTCGTCTTTCCAGGACCCTGCTGTCCTCCCCTCCCCTTCTCCCAC CTTCCAGCCTCTGGCTACAACACGCCTGCAGCCCAAGGCAAAAGCTCAGCAAACCCAGCCCC CAGGATTGACTTCTCCTGGGCTCTACCCGGCAGCCACCACCAGCCAAGCAGGGGAAGACAGGG GCTGAGGCCCCTCCATTGCCAGGGACTTCCCAGTACGGCACGAAAGGACTTCTCAGTACAC AGGAACCTCTCCTCACCCAGCGACCTCTCCTCCTGCAGGGAGCTCCCGCCCCCCCATGCAGC TGGACTCCACCTCAGCAGAGGACACCAGTCCAGCTCTCAGCAGTGGCAGCTCTAAGCCCAGG GTGTCCATCCCGATGGTCCGCATACTGGCCCCAGTCCTGGTGCTGAGCCTTCTGTCAGC CGCAGGCCTGATCGCCTTCTGCAGCCACCTGCTCCTGTGGAGAAAGGAAGCTCAACAGGCCA CGGAGACACAGAGGAACGAGAAGTTCTGGCTCTCACGCTTGACTGCGGAGGAAAAGGAAGCC $\tt GCTGGGCTTCTCGAAGTTTGTCTCAGCG\underline{TAG} \tt GGCAGGAGGCCCTCCTGGCCAGGCCAGCAGT$ GAAGCAGTATGGCTGGATCAGCACCGATTCCCGAAAGCTTTCCACCTCAGCCTCAGAG TCCAGCTGCCGGACTCCAGGGCTCTCCCCAGGCTCTCCCCAGGCTCTCCTCTTGCATGTTCCA GCCTGACCTAGAAGCGTTTGTCAGCCCTGGAGCCCAGAGCGGTGGCCTTGCTCTTCCGGCTG GAGACTGGGACATCCCTGATAGGTTCACATCCCTGGGCAGAGTACCAGGCTGCTGACCCTCA GCAGGGCCAGACAAGGCTCAGTGGATCTGGTCTGAGTTTCAATCTGCCAGGAACTCCTGGGC TGGCGTCCTCAGACTTAGTCCCACGGTCTCCTGCATCAGCTGGTGATGAAGAGAGCATGCT GGGGTGAGACTGGGATTCTGGCTTCTCTTTGAACCACCTGCATCCAGCCCTTCAGGAAGCCT GTGAAAAACGTGATTCCTGGCCCCACCAAGACCCACCAAAACCATCTCTGGGCTTGGTGCAG GACTCTGAATTCTAACAATGCCCAGTGACTGTCGCACTTGAGTTTGAGGGCCAGTGGGCCTG ATGAACGCTCACACCCCTTCAGCTTAGAGTCTGCATTTGGGCTGTGACGTCTCCACCTGCCC TCCAGGCCTTGGTCAGGTCAGGTGCACATTGCAGGATAAGCCCAGGACCGGCACAGAAGTGG TTGCCTTTNCCATTTGCCCTCCCTGGNCCATGCCTTCTTGCCTTTGGAAAAAATGATGAAGA AAACCTTGGCTCCTTGTCTGGAAAGGGTTACTTGCCTATGGGTTCTGGTGGCTAGAGA GAAAAGTAGAAAACCAGAGTGCACGTAGGTGTCTAACACAGAGGAGAGTAGGAACAGGGGCGG ATACCTGAAGGTGACTCCGAGTCCAGCCCCTGGAGAAGGGGTCGGGGGTGGTGGTAAAGTA GCACAACTACTATTTTTTCTTTTTCCATTATTATTGTTTTTTAAGACAGAATCTCGTGCT GCTGCCCAGGCTGGAGTGCAGTGGCACGATCTGCAAACTCCGCCTCCTGGGTTCAAGTGATT TTTGTACTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGAC CTCAAATGAGCCTCCTGCTTCAGTCTCCCAAATTGCCGGGATTACAGGCATGAGCCACTGTG TCTGGCCCTATTTCCTTTAAAAAGTGAAATTAAGAGTTGTTCAGTATGCAAAACTTGGAAAG ATGGAGGAGAAAAGGAAAAGGAAGAAAAAATGTCACCCATAGTCTCACCAGAGACTATCAT TATTTCGTTTTGTTGTACTTCCTTCCACTCTTTTCTTCTTCACATAATTTGCCGGTGTTCTT TTTACAGAGCAATTATCTTGTATATACAACTTTGTATCCTGCCTTTTCCACCTTATCGTTCC GCTGCATAAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44196
<subunit 1 of 1, 332 aa, 1 stop</pre>

<MW: 36143, pI: 5.89, NX(S/T): 1

MRLLVLLWGCLLLPGYEALEGPEEISGFEGDTVSLQCTYREELRDHRKYWCRKGGILFSRCS
GTIYAEEEGQETMKGRVSIRDSRQELSLIVTLWNLTLQDAGEYWCGVEKRGPDESLLISLFV
FPGPCCPPSPSPTFQPLATTRLQPKAKAQQTQPPGLTSPGLYPAATTAKQGKTGAEAPPLPG
TSQYGHERTSQYTGTSPHPATSPPAGSSRPPMQLDSTSAEDTSPALSSGSKPRVSIPMVRI
LAPVLVLLSLLSAAGLIAFCSHLLLWRKEAQQATETQRNEKFWLSRLTAEEKEAPSQAPEGD
VISMPPLHTSEEBLGFSKFVSA

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domain: amino acids 248-269

N-glycosylation site.

amino acids 96-99

Fibrinogen beta and gamma chains C-terminal domain. amino acids 104-113

Ig like V-type domain: amino acids 13-128

GCCGCAGAGCCAGACAGCCGAGAAACAGGTGGACAGTGTGAAAGAACCAGTGGTCTC GCTCTGTTGCCCAGGCTAGAGTGTACTGGCGTGATCATAGCTCACTGCAGCCTCAGACTCCT GGACTTGAGAAATCCTCCTGCCTTAGCCTCCTGCATATCTGGGACTCCAGGGGTGCACTCAA GCCCTGTTTCTTCTCTGTGAGTGGACCACGGAGGCTGGTGAGCTGCCTGTCATCCCAA AGCTCAGCTCTGAGCCAGAGTGGTGGTGGCTCCACCTCTGCCGCCGGCATAGAAGCCAGGAG TCAGCTGCCTGCTACCCTCCAGTGAGGCCAAGCTCTACGGTCGTTGTGAACTGGCCAGAGTG $\tt CTACATGACTTCGGGCTGGACGGATACCGGGGATACAGCCTGGCTGACTGGGTCTGCCTTGC$ TTATTTCACAAGCGGTTTCAACGCAGCTGCTTTGGACTACGAGGCTGATGGGAGCACCAACA ${\tt ACGGGATCTTCCAGATCAACAGCCGGAGGTGGTGCAGCAACCTCACCCCGAACGTCCCCAAC}$ $\tt GTGTGCCGGATGTACTGCTCAGATTTGTTGAATCCTAATCTCAAGGATACCGTTATCTGTGC$ ${\tt CATGAAGATAACCCAAGAGCCTCAGGGTCTGGGTTACTGGGAGGCCTGGAGGCATCACTGCC}$ AGGGAAAAGACCTCACTGAATGGGTGGATGGCTGTGACTTC ${\tt CAGCAGGCTGGGAAATGTGGTTTGGTTCCTGACCTAGGCTTGGGAAGACAAGCCAGCGAATA}$ AAGGATGGTTGAACGTGAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52187
<subunit 1 of 1, 146 aa, 1 stop
<MW: 16430, pI: 5.05, NX(S/T): 1
MLLALVCLLSCLLPSSEAKLYGRCELARVLHDFGLDGYRGYSLADWVCLAYFTSGFNAAALD</pre>

YEADGSTNINGI FQINSRRWCSNLTPNVPNVCRMYCSDLLNPNLKDTVICAMKITQBPQGLGY WEAWRHHCQGKDLTEWVDGCDF

Important features:
Signal peptide:
amino acids 1-18

N-myristoylation site. amino acids 67-72

Homolgous region to Alpha-lactalbumin / lysozyme C proteins. amino acids 34-58 (catalytic domain), 111-132 and 66-107

AGCCGCTGCCCCGGGCCGCCGCGCGCGCACCATGAGTCCCCGCTCGTGCCTTCC GCTGCGCCTCCTCGTCTTCGCCGTCTTCTCAGCCGCCGAGCAACTGGCTGTACCTGGCCA AGCTGTCGTCGGTGGGGAGCATCTCAGAGGGGGGGAGACGTGCGAGAAACTCAAGGGCCTGATC CAGAGGCAGGTGCAGATGTGCAAGCGGAACCTGGAAGTCATGGACTCGGTGCCCCCGCGTGC CCAGCTGGCCATTGAGGAGTGCCAGTACCAGTTCCGGAACCGGCGCTGGAACTGCTCCACAC TCGACTCCTTGCCCGTCTTCGGCAAGGTGGTGACGCAAGGGACTCGGGAGGCGGCCTTCGTG TACGCCATCTTCGGCAGGTGTGGCCTTTGCAGTGACGCGGGCGTGCAGCAGTGGGGAGCT GGAGAAGTGCGGCTGTGACAGGACAGTGCATGGGGTCAGCCCACAGGGCTTCCAGTGGTCAG GATGCTCTGACAACATCGCCTACGGTGTGGCCCTTCTCACAGTCGTTTGTGGATGTGCGGGAG AGAAGCAAGGGGGCCTCGTCCAGCAGAGCCCTCATGAACCTCCACAACAATGAGGCCGGCAG GAAGGCCATCCTGACACACATGCGGGTGGAATGCAAGTGCCACGGGGTGTCAGGCTCCTGTG AGGTAAAGACGTGCTGGCGAGCCGTGCCGCCCTTCCGCCAGGTGGGTCACGCACTGAACGAG AAGTTTGATGGTGCCACTGAGGTGGAGCCACGCCGCGTGGGCTCCTCCAGGGCACTGGTACC ACGCAACGCACAGTTCAAGCCGCACACAGATGAGGACCTGGTGTACTTGGAGCCTAGCCCCG ACTTCTGTGAGCAGGACATGCGCAGCGGCGTGCTGGGCACGAGGGGCCGCACATGCAACAAG GGTGGAGCTGCACGCTGCAAATTCCACTGGTGCTGCTTCGTCAAGTGCCGGC AGTGCCAGCGGCTCGTGGAGTTGCACACGTGCCGA<u>TGA</u>CCGCCTGCCTAGCCCTGCGCCGGC AACCACCTAGTGGCCCAGGGAAGGCCGATAATTTAAACAGTCTCCCACCACCTACCCCAAGA ${\tt ACCAGGCAGCCAACCCAAGGGCACCAACCAGGGCCTCCCCAAAGCCTGGGCCTTTGTGGCT}$ GCCACTGACCAAAGGGACCTTGCTCGTGCCGCTGGCTGCCGCATGTGGCTGCCACTGACCA $\tt CTCAGTTGTTATCTGTGTCCGTTTTTCTACTTGCAGACCTAAGGTGGAGTAACAAGGAGTAT$ TACCACCACATGGCTACTGACCGTGTCATCGGGGAAGAGGGGGCCTTATGGCAGGGAAAATA GGTACCGACTTGATGGAAGTCACACCCTCTGGAAAAAAGAACTCTTAACTCTCCAGCACACA TACACATGGACTCCTGGCAGCTTGAGCCTAGAAGCCATGTCTCTCAAATGCCCTGAGAAAGG GAACAAGCAGATACCAGGTCAAGGGCACCAGGTTCATTTCAGCCCTTACATGGACAGCTAGA GGTTCGATATCTGTGGGTCCTTCCAGGCAAGAAGAGGGGAGATGAGAGCCAAGAGACGACTGAA GTCCCACCCTAGAACCCAGCCTGCCCCAGCCTGCCCCTGGGAAGAGGAAACTTAACCACTCC ${\tt CCAGACCCAGGCAGGCATATAGGCTGCCATCCTGGACCAGGGATCCCGGCTGTGCCTT}$ GAGAGGGAGAAAGGGCTGTGCCTTTGCAGTCATGCCCGAGTCACCTTTCACAGCACTGTTCCTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48328</pre>

<subunit 1 of 1, 351 aa, 1 stop

<MW: 39052, pI: 8.97, NX(S/T): 2

MSPRSCLRSLRLLVFAVFSAAASNWLYLAKLSSVGSISEETCEKLKGLIQRQVQMCKRNLE
VMDSVRRGAQLAIEECQYQFRNRRWNCSTLDSLPVFGKVVTQGTREAAFVYAISSAGVAFAV
TRACSSGELEKCGCDRTVHGVSPQGFQWSGCSDNIAYGVAFSQSFVDVRERSKGASSSRALM
NLHNNEAGRKAILTHMRVECKCHGVSGSCEVKTCWRAVPPFRQVGHALKEKFDGATEVEPRR
VGSSRALVPRNAQFKPHTDEDLVYLEPSPDFCEQDMRSGVLGTRGRTCNKTSKAIDGCELLC
CGRGFHTAQVELAERCSCKFHWCCFVKCRQCORLVELHTCR

Important features:

Signal peptide: amino acids 1-22

N-glycosylation sites.

amino acids 88-91 and 297-300

Wnt-1 family signature.

amino acids 206-215

Homologous region to Wnt-1 family proteins

amino acids 183-235, 305-350, 97-138, 53-92 and 150 -174

CGGACGCGTGGGCGGACGCGTGGGCGGACGCGTGGGCTGGGTGCCTGCAT CGCCATGGACACCACCAGGTACAGCAAGTGGGGCGGCAGCTCCGAGGAGGTCCCCGGAGGGC CCTGGGGACGCTGGGTGCACTGGAGCAGGAGACCCCTCTTCTTGGCCCTGGCTGTCCTGGTC ACCACAGTCCTTTGGGCTGTGATTCTGAGTATCCTATTGTCCAAGGCCTCCACGGAGCCCGC GTGCCCTGAAGGAGGAGGTCGGAGACTGCCACAGCTGCTCGGGGACGCAGGCGCAGCTG CAGACCACGCGCGCGAGCTTGGGGAGGCGCAGGCGAAGCTGATGGAGCAGGAGCGCCCCT $\tt GCGGGAACTGCGTGAGCGCTGACCCAGGGCTTGGCTGAAGCCGGCAGGGGCCGTGAGGACG$ TCCGCACTGAGCTGTTCCGGGCGCTGGAGGCCGTGAGGCTCCAGAACAACTCCTGCGAGCCG TGCCCCACGTCGTGCCTTCCGAGGGCTCCTGCTACTTTTTCTCTGTGCCAAAGACGAC GTGGGCGCGCGCAGATCACTGCGCAGATGCCAGCGCGCACCTGGTGATCGTTGGGGGCC CAGCCACTGGAACCAGGGAGAGCCCAATGACGCTTGGGGGGCGCGAGAACTGTGTCATGATGC AAAAGGCACAACTGCTGACCCCGCCCAGTGCCCTGGAGCCGCGCCCATTGCAGCATGTCGTA CATCCACCGCTGCTGAGTCTCAGAAACACTTGGCCCAACATAGCCCTGTCCAGCCCAGTGCC TGGGCTCTGGGACCTCCATGCCGACCTCACCTCACTCACGCAGACCCAACCTAACC TCCACTAGCTCCAAAATCCCTGCTCCTGCGTCCCCGTGATATGCCTCCACTTCTCTCCCTAA CCAAGGTTAGGTGACTGAGGACTGGAGCTGTTTGGTTTTCTCGCCATTTTCCACCAAACTGGA AGCTGTTTTTGCAGCCTGAGGAAGCATCAATAAATATTTGAGAAATGAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56352</pre>

<subunit 1 of 1, 293 aa, 1 stop

<MW: 32562, pI: 6.53, NX(S/T): 2

MDTTRYSKWGGSSEEVPGGPWGRWVHWSRRPLFLALAVLVTTVLWAVILSILLSKASTERAA LLDGHDLLRTNASKQTAALGALKEEVGDCHSCCSGTQAQLQTTRAELGEAQAKLMEQESALR ELRERVTQGLAEAGRGREDVRTELFRALEAVRLQNNSCEPCPTSWLSFEGSCYFFSVPKTTW AAAQDHCADASAHLVIVGGLDEQGFLTRNTRGRGYWLGLRAVRHLGKVQGYQWVDGVSLSFS HWNQGEPNDAWGRENCVMMLHTGLWNDAPCDSEKDGWICEKRHNC

Important features:

Type II transmembrane domain: amino acids 31-54

N-glycosylation sites.

amino acids 73-76 and 159-162

Leucine zipper pattern.

amino acids 102-123

N-myristoylation sites.

amino acids 18-23, 133-138 and 242-247

C-type lectin domain signature.

amino acids 264-287

GCCAGGGGAAGAGGTGATCCGACCCGGGGAAGGTCGCTGGGCAGGGCGAGTTGGGAAAGCG GCAGCCCCGCCGCCCCCCAGCCCCTTCTCCTCCTTTCTCCCACGTCCTATCTGCCTCTCG GCCCTCTGCGCTCTCCTGGCCACTCTCGGCGCCGCCGGCCAGCCTCTTGGGGGAGAGTC CATCTGTTCCGCCAGAGCCCCGGCCAAATACAGCATCACCTTCACGGGCAAGTGGAGCCAGA CGGCCTTCCCCAAGCAGTACCCCCTGTTCCGCCCCCCTGCGCAGTGGTCTTCGCTGCTGGGG GCCGCGCATAGCTCCGACTACAGCATGTGGAGGAAGAACCAGTACGTCAGTAACGGGCTGCG CGACTTTGCGGAGCGCGGGGGGCCTGGGCGCTGATGAAGGAGATCGAGGCGGCGGGGGAGG CGCTGCAGAGCGTGCACGAGGTGTTTTCGGCGCCCGCCGTCCCCAGCGGCACCGGGCAGACG ${\tt TCGGCGGAGCTGGAGGTGCAGCGCAGGCACTCGCTGGTCTCGTTTGTGGTGCGCATCGTGCCC}$ CAGCCCCGACTGGTTCGTGGGCGTGGACAGCCTGGACCTGTGCGACGGGGACCGTTGGCGGG TCCCCCAACTTCGCCACCATCCCGCAGGACACGGTGACCGAGATAACGTCCTCTCTCCCAG CCACCGGCCAACTCCTTCTACTACCGGGGTGAAGGCCCTGCCTCCCATCGCCAGGGTGA AGGGACAATGAGATTGTAGACAGCGCCTCAGTTCCAGAAACGCCGCTGGACTGCGAGGTCTC CCTGTGGTCGTCCTGGGGACTGTGCGGAGGCCACTGTGGGAGGCTCGGGACCAAGAGCAGGA CTCGCTACGTCCGGGTCCAGCCCGCCAACAACGGGAGCCCCTGCCCCGAGCTCGAAGAAGAG GCTGAGTGCGTCCCTGATAACTGCGTCTAAGACCAGAGCCCCGCAGCCCCTGGGGCCCCCCG GAGCCATGGGGTGTCGGGGGCTCCTGTGCAGGCTCATGCTGCAGGCGCCGAGGGCACAGGG GGTTTCGCGCTGCTCCTGACCGCGGTGAGGCCGCCGCGCCGACCATCTCTGCACTGAAGGGCCCT CCCCCGTGTCCCGTCTCTCAGCCTCCTCCTCCTGCAGGATAAAGTCATCCCCAAGGCTC CAGCTACTCTAAATTATGTCTCCTTATAAGTTATTGCTGCTCCAGGAGATTGTCCTTCATCG TCCAGGGGCCTGGCTCCCACGTGGTTGCAGATACCTCAGACCTGGTGCTCTAGGCTGTGCTG AGCCCACTCTCCCGAGGGCGCATCCAAGCGGGGGCCACTTGAGAAGTGAATAAATGGGGCGG TTTCGGAAGCGTCAGTGTTTCCATGTTATGGATCTCTCTGCGTTTGAATAAAGACTATCTCT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53971

><subunit 1 of 1, 331 aa, 1 stop

><MW: 35844, pI: 5.45, NX(S/T): 2

MENPSPAAALGKALCALLLATLGAAGQPLGGESICSARAPAKYSITFTGKWSQTAFPKQYPL
FRPPAQWSSLLGAAHSSDYSMWRKNQYVSNGLRDFAERGEAWALMKEIEAAGEALQSVHEVF
SAPAVPSGTGQTSAELEVQRRHSLVSFVVRIVPSPDWFVGVDSLDLCDGDRWREQAALDLYP
YDAGTDSGFTFSSPNFATIPQDTVTEITSSSPSHPANSFYYPRLKALPPIARVTLLRLRQSP
RAFIPPAPVLPSRDNEIVDSASVPETPLDCEVSLWSSWGLCGGHCGRLGTKSRTRYVRVQPA
NNGSPCPELEERAECVPDNCV

Important features:
Signal peptide:
amino acids 1-26

GGCGGCGTCCGTGAGGGGCTCCTTTGGGCAGGGGTAGTGTTTGGTGTCCCTGTCTTGCGTGA ${\tt TATTGACAAACTGAAGCTTTCCTGCACCACTGGACTTAAGGAAGAGTGTACTCGTAGGCGGA}$ ${\tt CAGCTTTAGTGGCCGGCCGGCCGCTCTCATCCCCCGTAAGGAGCAGAGTCCTTTGTACTGAC}$ CAAGATGAGCAACATCTACATCCAGGAGCCTCCCACGAATGGGAAGGTTTTATTGAAAACTA ${\tt CAGCTGGAGATATTGACATAGAGTTGTGGTCCAAAGAAGCTCCTAAAGCTTGCAGAAATTTT}$ ATCCAACTTTGTTTGGAAGCTTATTATGACAATACCATTTTTCATAGAGTTGTGCCTGGTTT CATTCAAAGATGAATTTCATTCACGGTTGCGTTTTAATCGGAGAGGACTGGTTGCCATGGCA AATGCTGGTTCTCATGATAATGGCAGCCAGTTTTTCTTCACACTGGGTCGAGCAGATGAACT TAACAATAAGCATACCATCTTTGGAAAGGTTACAGGGGATACAGTATATAACATGTTGCGAC TGTCAGAAGTAGACATTGATGATGACGAAAGACCACATAATCCACAAAATAAAAGCTGT GAGGTTTTGTTTAATCCTTTTGATGACATCATTCCAAGGGAAATTAAAAGGCTGAAAAAAGA GAAACCAGAGGAGGAAGTAAAGAAATTGAAACCCAAAGGCACAAAAAATTTTAGTTTACTTT CATTTGGAGGAGGAAGCTGAGGAAGAAGAGGAGGAAGTAAATCGAGTTAGTCAGAGCATGAAG GGCAAAAGCAAAAGTAGTCATGACTTGCTTAAGGATGATCCACATCTCAGTTCTGTTCCAGT TGTAGAAAGTGAAAAAGGTGATGCACCAGATTTAGTTGATGATGAGAGAAGATGAAAGTGCAG TTAAAAAAGGACACAAGTGCGAATGTTAAATCAGCTGGAGAAGGAGAAGTGGAGAAGAAATC AGTCAGCCGCAGTGAAGAGCTCAGAAAAGAAGCAAGACAATTAAAACGGGAACTCTTAGCAG CAAAACAAAAAAAGTAGAAAATGCAGCAAAACAAGCAGAAAAAAAGAAGTGAAGAGGAAGAA GCCCCTCCAGATGGTGCTGTTGCCGAATACAGAAGAGAAAAGCAAAAGTATGAAGCTTTGAG GAAGCAACAGTCAAAGAAGGGAACTTCCCGGGAAGATCAGACCCTTGCACTGCTGAACCAGT TTAAATCTAAACTCACTCAAGCAATTGCTGAAACACCTGAAAATGACATTCCTGAAACAGAA GTAGAAGATGATGAAGGATGGATGTCACATGTACTTCAGTTTGAGGATAAAAGCAGAAAAGT GAAAGATGCAAGCATGCAAGACTCAGATACATTTGAAATCTATGATCCTCGGAATCCAGTGA GAGAATAATGATAACCAGAACTTGCTGGAAATGTGCCTACAATGGCCTTGTAACAGCCATTG TTCCCAACAGCATCACTTAGGGGTGTGAAAAGAAGTATTTTTGAACCTGTTGTCTGGTTTTG AAAAACAATTATCTTGTTTTGCAAATTGTGGAATGATGTAAGCAAATGCTTTTGGTTACTGG TACATGTGTTTTTTCCTAGCTGACCTTTTATATTGCTAAATCTGAAATAAAATAACTTTCCT ТССАСААААААААААААААААААААААА

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50919

><subunit 1 of 1, 472 aa, 1 stop

><MW: 53847, pI: 5.75, NX(S/T): 2

MSNIYIQEPPTNGKVLLKTTAGDIDIELWSKEAPKACRNFIQLCLEAYYDNTIFHRVVPGFI
VQGGDPTGTGSGGESIYGAPFKDEFHSRLRFNRRGLVAMANAGSHDNGSQFFFTLGRADELN
NKHTIFGKVTGDTVYNMLRLSEVDIDDDERPHNPHKIKSCEVLFNPFDDIIPREIKRLKKEK
PEEEVKKLKPKGTKNFSLLSFGEEABEEEEEVNRVSQSMKGKSKSSHDLLKDDPHLSSVPVV
ESEKGDAPDLVDDGEDESAEHDEYIDGDEKNLMRERIAKKLKKDTSANVKSAGEGEVEKKSV
SRSEELRKEARQLKRELLAAKQKKVENAAKQAEKRSEEEEAPPDGAVAEYRREKQKYEALRK
QQSKKGTSREDQTLALLNQFKSKLTQAIAETPENDIPETEVEDDEGWMSHVLQFEDKSRKVK
DASMODSDTFEIYDPRNPVNKRRRESKKLMREKKERR

Important features:
Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 109-112 and 201-204

Cyclophilin-type peptidyl-prolyl cis-trans isomerase signature. amino acids 49-66

Homologous region to Cyclophilin-type peptidyl-prolyl cis-trans isomerase

amino acids 96-140, 49-89 and 22-51

CCCGCCTCGGCTTTGAGGCGAGAGAGTGTCCCAGACCCATTTCGCCTTGCTGACGGCGTCG AGCCCTGGCCAGACATGTCCACAGGGTTCTCCTTCGGGTCCGGGACTCTGGGCTCCACCACC GTGGCCGCCGGCGGACCAGCACAGGCGGCGTTTTCTCCTTCGGAACGGGAACGTCTAGCAA CCCTTCTGTGGGGCTCAATTTTGGAAATCTTGGAAGTACTTCAACTCCAGCAACTACATCTG GGAGGAACAAATACAGGTGCCTTGCACACCAAGAGGCCTCAAGTGGTCACCAAATATGGAAC CCTGCAAGGAAAACAGATGCATGTGGGGAAGACACCCATCCAAGTCTTTTTAGGAGTCCCCT TCTCCAGACCTCCTCTAGGTATCCTCAGGTTTGCACCTCCAGAACCCCCGGAGCCCTGGAAA GGAATCAGAGATGCTACCACCTACCCGCCTGGATGGAGTCTCGCTCTGTCGCCAGGCTGGAG TGCAGTGGCACGATCTCGGCTCACTGCAACCTCCGCGTTCAAGCGAGTCTCCTGC CTCAGCCTCTGAGTGTCTGGGGCTACAGGTGCCTGCAGGAGTCCTGGGGCCAGCTGGCCTCG GAACGTGTACGCCGCGCGCGCGCCCGGGGATCCCCAGCTGCCAGTGATGGTCTGGTTCC GAGAAAGTGGTGCTGGTGTTTCTGCAGCACAGGCTCGGCATCTTCGGCTTCCTGAGCACGGA AGGAGAACATCGCAGCCTTCGGGGGAGACCCAGGAAATGTGACCCTGTTCGGCCAGTCGGCG GGGGCCATGAGCATCTCAGGACTGATGATGTCACCCCTAGCCTCGGGTCTCTTCCATCGGGC CATTTCCCAGAGTGGCACCGCGTTATTCAGACTTTTCATCACTAGTAACCCACTGAAAGTGG ${\tt CCAAGAAGGTTGCCCACCTGGCTGGATGCAACCACAACAGCACACAGATCCTGGTAAACTGC}$ CTGAGGGCACTATCAGGGACCAAGGTGATGCGTGTGTCCAACAAGATGAGATTCCTCCAACT GAACTTCCAGAGAGACCCGGAAGAGATTATCTGGTCCATGAGCCCTGTGGTGGATGGTGTGG TGATCCCAGATGACCCTTTGGTGCTCCTGACCCAGGGGAAGGTTTCATCTGTGCCCTACCTT $\tt CTAGGTGTCAACAACCTGGAATTCAATTGGCTCTTGCCTTATAATATCACCAAGGAGCAGGT$ ACCACTTGTGGTGGAGGAGTACCTGGACAATGTCAATGAGCATGACTGGAAGATGCTACGAA ACCGTATGATGGACATAGTTCAAGATGCCACTTTCGTGTATGCCACACTGCAGACTGCTCAC TACCACCGAGAAACCCCAATGATGGGAATCTGCCCTGCTGGCCACGCTACAACAAGGATGAA AAGTACCTGCAGCTGGATTTTACCACAAGAGTGGGCATGAAGCTCAAGGAGAAGAAGATGGC TTTTTGGATGAGTCTGTACCAGTCTCAAAGACCTGAGAAGCAGAGGCAATTCTAAGGGTGGC TATGCAGGAAGGAGCCAAAGAGGGGTTTGCCCCCACCATCCAGGCCCTGGGGAGACTAGCCA TGGACATACCTGGGGACAAGAGTTCTACCCACCCCAGTTTAGAACTGCAGGAGCTCCCTGCT GCCTCCAGGCCAAAGCTAGAGCTTTTGCCTGTTGTGTGGGACCTGCACTGCCCTTTCCAGCC TGACATCCCATGATGCCCCTCTACTTCACTGTTGACATCCAGTTAGGCCAGGCCCTGTCAAC ACCACACTGTGCTCAGCTCTCCAGCCTCAGGACAACCTCTTTTTTTCCCTTCTTCAAATCCT $\verb|CCCACCCTTCAATGTCTCCTTGTGACTCCTTCTTATGGGAGGTCGACCCAGACTGCCACTGC|\\$ TCACATTGGCCTGGAGGCCTAGGGCAGGTTGTGACATGGAGCAAACTTTTGGTAGTTTGGGA TCTTCTCCCACCCACACTTATCTCCCCCAGGGCCACTCCAAAGTCTATACACAGGGGTGG TCTCTTCAATAAAGAAGTGTTGATTAGAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44179</pre>

<subunit 1 of 1, 545 aa, 1 stop</pre>

<MW: 58934, pI: 9.45, NX(S/T): 4

MSTGFSFGSGTLGSTTVAAGGTSTGGVFSFGTGTSSNPSVGLNFGNLGSTSTPATTSAPSG
FGTGLFGSKPATGFTLGGTNTGALHTKRPQVVTKYGTLQGKQMHVGKTPIQVFLGVPFSRPP
LGILRFAPPEPPEPWKGIRDATTYPPGWSLALSPGWSAVARSRLTATSASRVQASLLPQPLS
VWGYRCLQESWGQLASMYVSTRERYKWLRFSEDCLYLNVYAPARAPGDPQLPVMVWFPGGAF
IVGAASSYEGSDLAAREKVVLVFLQHRLGIFGFLSTDDSHARGNWGLLDQMAALRWVQENIA
AFGGDPGNVTLFGQSAGAMSISGLMMSPLASGLFHRAISQSGTALFRLFITSNPLKVAKKVA
HLAGCNHNSTQILVNCLRALSGTKVMRVSNKMRFLQLNFQRDPEEIIWSMSPVVDGVVIPDD
PLVLLTQGKVSSVPYLLGVNNLEFNWLLPYNITKEQVPLVVEEYLDNVNEHDWKMLRNRMMD
IVQDATFVYATLOTAHYHRETPMMGICPAGHATTRMKSTCSWILPOEWA

Important features:

Signal peptide:

amino acids 1-29

Carboxylesterases type-B serine active site.

amino acids 312-327

Carboxylesterases type-B signature 2.

amino acids 218-228

N-glycosylation sites.

amino acids 318-321, 380-383 and 465-468

 $\tt GAGAACAGGCCTGTCTCAGGCAGGCCCTGCGCCTCTATGCGGAGATGCTACTGCCACTGCT$ GCTGTCCTCGCTGGCGGGCTCCCAGGCTATGGATGGGAGATTCTGGATACGAGTGCAGG AGTCAGTGATGGTGCCGGAGGGCCTGTGCATCTCTGTGCCCTGCTCTTTCTCCTACCCCCGA CAAGGGTGCTCCTGTGGCCACAAACCACCAGAGTCGAGAGGTGGAAATGAGCACCCGGGGCC GATTCCAGCTCACTGGGGATCCCGCCAAGGGGAACTGCTCCTTGGTGATCAGAGACGCGCAG ATGCAGGATGAGTCACACTACTTCTTTCGGGTGGAGAGGGAAGCTATGTGACATATAATTT CATGAACGATGGGTTCTTTCTAAAAGTAACAGTGCTCAGCTTCACGCCCAGACCCCAGGACC ACAACACCGACCTCACCTGCCATGTGGACTTCTCCAGAAAGGGTGTGAGCGCACAGAGGACC GTCCGACTCCGTGTGGCCTATGCCCCCAGAGACCTTGTTATCAGCATTTCACGTGACAACAC GCCAGCCCTGGAGCCCCAGCCCCAGGGAAATGTCCCATACCTGGAAGCCCAAAAAGGCCAGT TCCTGCGGCTCCTCTGTGCTGCTGACAGCCAGCCCCCTGCCACACTGAGCTGGGTCCTGCAG AACAGAGTCCTCTCCTCGTCCCATCCCTGGGGCCCTAGACCCCTGGGGCTGGAGCTGCCCGG GGTGA AGGCTGGGGATTCAGGGCGCTACACCTGCCGAGCGGAGAACAGGCTTGGCTCCCAGC AGCGAGCCCTGGACCTCTCTGTGCAGTATCCTCCAGAGAACCTGAGAGTGATGGTTTCCCAA GCAAACAGGACAGTCCTGGAAAACCTTGGGAACGGCACGTCTCTCCCAGTACTGGAGGGCCA GGGGACAGGTTCTGAGCCCCTCCCAGCCCTCAGACCCCGGGGTCCTGGAGCTGCCTCGGGTT CAAGTGGAGCACGAAGGAGAGTTCACCTGCCACGCTCGGCACCCACTGGGCTCCCAGCACGT CTCTCTCAGCCTCTCCGTGCACTATAAGAAGGGACTCATCTCAACGGCATTCTCCAACGGAG CGTTTCTGGGAATCGGCATCACGGCTCTTCTTTTCCTCTGCCTGGCCCTGATCATCATGAAGATTCTACCGAAGACGGACTCAGACAGAAACCCCGAGGCCCAGGTTCTCCCGGCACAGCAC GATCCTGGATTACATCAATGTGGTCCCGACGGCTGGCCCCCTGGCTCAGAAGCGGAATCAGA AAGAACCAGAAAAAGCAGTATCAGTTGCCCAGTTTCCCAGAACCCAAATCATCCACTCAAGC CCCAGAATCCCAGGAGAGCCAAGAGGAGCTCCATTATGCCACGCTCAACTTCCCAGGCGTCA GACCCAGGCCTGAGGCCCGGATGCCCAAGGGCACCCAGGCGGATTATGCAGAAGTCAAGTTC CAATGAGGGTCTCTTAGGCTTTAGGACTGGGACTTCGGCTAGGGAAGGTAGAGTAAGAG CCAGCACTTTGGGAGGTTGAGGTGGGCAGATCGCCTGAGGTCGGGAGTTCGAGACCAGCCTG GCCAACTTGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGCATGGTGGCAGG CGCCTGTAATCCTACCTACTTGGGAAGCTGAGGCAGGAGAATCACTTGAACCTGGGAGACGG AGGTTGCAGTGAGCCAAGATCACACCATTGCACGCCAGCCTGGGCAACAAAGCGAGACTCCA TCTCAAAAAAAAATCCTCCAAATGGGTTGGGTGTCTGTAATCCCAGCACTTTGGGAGGCTA AGGTGGGTGGATTGCTTGAGCCCAGGAGTTCGAGACCAGCCTGGGCAACATGGTGAAACCCC CAGACATTTAAACCAGAGCAACTCCATCTGGAATAGGAGCTGAATAAAATGAGGCTGAGACC TACTGGGCTGCATTCTCAGACAGTGGAGGCATTCTAAGTCACAGGATGAGACAGGAGGTCCG ATCCCACCAAAACCAAGTTGGCCACGAGAGTGACCTCTGGTCGTCCTCACTGCTACACTCCT GACAGCACCATGACAGTTTACAAATGCCATGGCAACATCAGGAAGTTACCCGATATGTCCCA AAAGGGGGGGGATGAATAATCCACCCCTTGTTTAGCAAATAAGCAAGAAATAACCATAAAA GTGGGCAACCAGCAGCTCTAGGCGCTGCTCTTGTCTATGGAGTAGCCATTCTTTTGTTCCTT TACTTTCTTAATAAACTTGCTTTCACCTTAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA54002

><subunit 1 of 1, 544 aa, 1 stop

><MW: 60268, pI: 9.53, NX(S/T): 3

MLLPLLLSSLLGGSQAMDGRFWIRVQESVMVPEGLCISVPCSFSYPRQDWTGSTPAYGYWFK
AVTETTKGAPVATNHQSREVEMSTRGRFQLTGDPAKGNCSLVIRDAQMQDESQYFFRVERGS
YVTYNFMNDGFFLKVTVLSFTPRPQDHNTDLTCHVDFSRKGVSAQRTVRLRVAYAPRDLVIS
ISRDNTPALEPQPQGNVPYLEAQKGQFLRLLCAADSQPPATLSWVLQNRVLSSSHPWGPRPL
GLELPGVKAGDSGRYTCRAENRLGSQQRALDLSVQYPPENLRVMVSQANRTVLENLGNGTSL
PVLEGQSLCLVCVTHSSPPARLSWTQRGQVLSPSQPSDPGVLELPRVQVEHEGEFTCHARHP
LGSQHVSLSLSVHYKKGLISTAFSNGAFLGIGITALLFLCLALIIMKILPKRRTQTETPRPR
FSRHSTILDYINVVPTAGPLAQKRNQKATFNSPRTPPPPGAPSPESKKNQKKQYQLPSFFEP
KSSTQAPESQESQESLHYATINFPGVRPRPEARMPKGTQADYAEVKFQ

Important features:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 100-103, 297-300 and 306-309

Immunoglobulins and major histocompatibility complex proteins signature.

amino acids 365-371

TGAAGAGTAATAGTTGGAATCAAAAGAGTCAACGCAATGAACTGTTATTTACTGCTGCGTTT TATGTTGGGAATTCCTCTCTATGGCCTTGTCTTGGAGCAACAGAAAACTCTCAAACAAGA AAGTCAAGCAGCCAGTGCGATCTCATTTGAGAGTGAAGCGTGGCTGGGTGTGGAACCAATTT TTTGTACCAGAGGAAATGAATACGACTAGTCATCACATCGGCCAGCTAAGATCTGATTTAGA CAATGGAAACAATTCTTTCCAGTACAAGCTTTTGGGAGCTGGAGCTGGAAGTACTTTTATCA TTGATGAAAGAACAGGTGACATATATGCCATACAGAAGCTTGATAGAGAGGAGCGATCCCTC TACATCTTAAGAGCCCAGGTAATAGACATCGCTACTGGAAGGGCTGTGGAACCTGAGTCTGA GTTTGTCATCAAAGTTTCGGATATCAATGACAATGAACCAAAATTCCTAGATGAACCTTATG AGGCCATTGTACCAGAGATGTCTCCAGAAGGAACATTAGTTATCCAGGTGACAGCAAGTGAT GCTGACGATCCCTCAAGTGGTAATAATGCTCGTCTCCTCTACAGCCTTACTTCAAGGCCAGCC ATATTTTCTGTTGAACCAACAACAGGAGTCATAAGAATATCTTCTAAAATGGATAGAGAAC TGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGATTGGTCAGCCAGGAGCGTTG TCTGGAACAACAGTGTATTAATTAAACTTTCAGATGTTAATGACAATAAGCCTATATTTAA AGAAAGTTTATACCGCTTGACTGTCTCTGAATCTGCACCCACTGGGACTTCTATAGGAACAA TCATGCCATATGATAATGACATAGGAGAGAATGCAGAAATGGATTACAGCATTGAAGAGGAT GATTCGCAAACATTTGACATTATTACTAATCATGAAACTCAAGAAGGAATAGTTATATTAAA AAAGAAAGTGGATTTTGAGCACCAGAACCACTACGGTATTAGAGCAAAAGTTAAAAACCATC ATGTTCCTGAGCAGCTCATGAAGTACCACACTGAGGCTTCCACCACTTTCATTAAGATCCAG GTGGAAGATGTTGATGAGCCTCCTCTTTTCCTCCTTCCATATTATGTATTTGAAGTTTTTGA AGAAACCCCACAGGGATCATTTGTAGGCGTGGTGTCTGCCACAGACCCAGACAATAGGAAAT CTCCTATCAGGTATTCTATTACTAGGAGCAAAGTGTTCAATATCAATGATAATGGTACAATC ACTACAAGTAACTCACTGGATCGTGAAATCAGTGCTTGGTACAACCTAAGTATTACAGCCAC AGAAAAATACAATATAGAACAGATCTCTTCGATCCCACTGTATGTGCAAGTTCTTAACATCA ATGATCATGCTCCTGAGTTCTCTCAATACTATGAGACTTATGTTGTGAAAATGCAGGCTCT GGTCAGGTAATTCAGACTATCAGTGCAGTGGATAGAGATGAATCCATAGAAGAGCACCATTT TTACTTTAATCTATCTGTAGAAGACACTAACAATTCAAGTTTTACAATCATAGATAATCAAG ATAACACAGCTGTCATTTTGACTAATAGAACTGGTTTTAACCTTCAAGAAGAACCTGTCTTC TACATCTCCATCTTAATTGCCGACAATGGAATCCCGTCACTTACAAGTACAACACCCTTAC ${\tt CATCCATGTCTGTGACTGTGACAGTGGGAGCACACAGACCTGCCAGTACCAGGAGCTTG}$ TGCTTTCCATGGGATTCAAGACAGAAGTTATCATTGCTATTCTCATTTGCATTATGATCATA TTTGGGTTTATTTTTTGACTTTGGGTTTAAAACAACGGAGAAAACAGATTCTATTTCCTGA GAAAAGTGAAGATTTCAGAGAGAATATATTCCAATATGATGATGAAGGGGGTGGAGAAGAAG ATACAGAGGCCTTTGATATAGCAGAGCTGAGGAGTAGTACCATAATGCGGGAACGCAAGACT CGGAAAACCACAAGCGCTGAGATCAGGAGCCTATACAGGCAGTCTTTGCAAGTTGGCCCCGA CAGTGCCATATTCAGGAAATTCATTCTGGAAAAGCTCGAAGAAGCTAATACTGATCCGTGTG CCCCTCCTTTTGATTCCCTCCAGACCTACGCTTTTGAGGGAACAGGGTCATTAGCTGGATCC CTGAGCTCCTTAGAATCAGCAGTCTCTGATCAGGATGAAAGCTATGATTACCTTAATGAGTT GGGACCTCGCTTTAAAAGATTAGCATGCATGTTTTGGTTCTGCAGTGCAGTCAAATAATTAGG GCTTTTTACCATCAAAATTTTTAAAAGTGCTAATGTGTATTCGAACCCAATGGTAGTCTTAA AGAGTTTTGTGCCCTGGCTCTATGGCGGGGAAAGCCCTAGTCTATGGAGTTTTCTGATTTCC CTGGAGTAAATACTCCATGGTTATTTTAAGCTACCTACATGCTGTCATTGAACAGAGATGTG GGGAGAAATGTAAACAATCAGCTCACAGGCATCAATACAACCAGATTTGAAGTAAAATAATG TAGGAAGATATTAAAAGTAGATGAGAGGACACAAGATGTAGTCGATCCTTATGCGATTATAT CATTATTTACTTAGGAAAGAGTAAAAATACCAAACGAGAAAATTTAAAGGAGCAAAAATTTG CAAGTCAAATAGAAATGTACAAATCGAGATAACATTTACATTTCTATCATATTGACATGAAA ATTGAAAATGTATAGTCAGAGAAATTTTCATGAATTATTCCATGAAGTATTGTTTCCTTTAT TTAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53906

><subunit 1 of 1, 772 aa, 1 stop

><MW: 87002, pI: 4.64, NX(S/T): 8

MNCYLLLRFMLGIPLLWPCLGATENSQTKKVKQPVRSHLRVKRGWVWNQFFVPEEMNTTSHH
IGQLRSDLDNGNNSFQYKLLGAGAGSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIAT
GRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTASDADDPSSGNNARL
LYSLLQGQPYFSVEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSD
VNDNKPIFKESLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHE
TQEGIVILKKKVDFEHQNHYGIRAKVKNHHVPEQLMKYHTEASTTFIKIQVEDVDEPPLFLL
PYYVFEVFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNINDNGTITTSNSLDREISA
WYNLSITATEKYNIEQISSIPLYVQVLNINDHAPEFSQYYETYVCENAGSGQVIQTISAVDR
DESIEEHHFYFNLSVEDTNNSSFTIIDNQDNTAVILTNRTGFNLQEEPVFYISILIADNGIP
SLTSTNTLTIHVCDCGDSGSTQTCQYQELVLSMGFKTEVIIAILICIMIIFGFIFLTLGLKQ
RRKQILFPEKSEDFRENIFQYDDEGGGEEDTEAFDIAELRSSTIMRERKTRKTTSAEIRSLY
RQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSSLESAVSDQD
ESYDYLMELGEPKFKRLACMFGSAVOSNN

Important features:
Signal peptide:
amino acids 1-21

Transmembrane domain: amino acids 597-617

N-glycosylation sites.

amino acids 57-60, 74-77, 419-423, 437-440, 508-511, 515-518, 516-519 and 534-537

Cadherins extracellular repeated domain signature.

amino acids 136-146 and 244-254

ATTTCAAGGCCAGCCATATTTTNTGTTGAACCAACAACAGGAGTCATAAGAATATTTTNTA
AAATGGATAGAACACGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGATTGGT
CAGCCAGGAGCGTTGTNTGGAACAACAAGTGTATTAATTAAACTTTCAGATGTTAATGACAA
TAAGCCTATATTTAAAGAAAGTTTAATACCGCTTGACTGTNTNTGAATCTGCACCCACTGGGA
NTTNTATAGGAACAATCATGGCATATGATAATGACATAGGAGAAATGGATTAC
AGCATTGAAGAGGATGATTCGCAAACATTTGACATTATT

CCAGAGCTTCTCCAGCGGCGCGCGCGAGCAGCGGCTCCCCGCCTTAACTTCCTCCGCGGGG TTCATTCTCGCCTTCCTGGGATGGATCGGCGCCATCGTCAGCACTGCCCTGCCCCAGTGGAG GATTTACTCCTATGCCGGCGACAACATCGTGACCGCCCAGGCCATGTACGAGGGGCTGTGGA TGTCCTGCGTGTCGCAGAGCACCGGGCAGATCCAGTGCAAAGTCTTTGACTCCTTGCTGAAT AGCAATCTTTGTGGCCACCGTTGGCATGAAGTGTATGAAGTGCTTGGAAGACGATGAGGTGC AGAAGATGAGGATGCCATTGGGGGTGCGATATTTCTTCTTGCAGGTCTGGCTATTTTA GTTGCCACAGCATGGTATGGCAATAGAATCGTTCAAGAATTCTATGACCCTATGACCCCAGT TTCTGGGAGGTGCCCTACTTTGCTGTTCCTGTCCCCGAAAACAACCTCTTACCCAACACCA AGGCCCTATCCAAAACCTGCACCTTCCAGCGGGAAAGACTACGTGTGACACAGAGGCAAAAG GAGAAAATCATGTTGAAACAAACCGAAAATGGACATTGAGATACTATCATTAACATTAGGAC ACCCATGTGTTAAAATACTCAGTGCTAAACATGGCTTAATCTTATTTTATCTTCCTCA ATATAGGAGGGAAGATTTTTCCATTTGTATTACTGCTTCCCATTGAGTAATCATACTCAAAT ATAGACAGTAAAATACTATTCTCATTATGTTGATACTAGCATACTTAAAATATCTCTAAAAT ${\tt AGGTAAATGTATTTAATTCCATATTGATGAAGATGTTTATTGGTATATTTTCTTTTTCGTCC}$ TTATATACATATGTAACAGTCAAATATCATTTACTCTTCTTCATTAGCTTTGGGTGCCTTTG CCACAAGACCTAGCCTAATTTACCAAGGATGAATTCTTTCAATTCTTCATGCGTGCCCTTTT CATATACTTATTTTTTTTTTACCATAATCTTATAGCACTTGCATCGTTATTAAGCCCTTAT TTGTTTGTGTTTCATGGTCTCTATCTCCTGAATCTAACACATTTCATAGCCTACATTTTA GTTTCTAAAGCCAAGAAGAATTTATTACAAATCAGAACTTTGGAGGCAAATCTTTCTGCATG ACCAAAGTGATAAATTCCTGTTGACCTTCCCACACAATCCCTGTACTCTGACCCATAGCACT $\tt CTTGTTTGCAAAATATTTGTCCAATTGAGTAGCTGCATGCTGTTCCCCCAGGTGTTGT$ AACACAACTTTATTGATTGAATTTTTAAGCTACTTATTCATAGTTTTATATCCCCCCTAAACT ACCTTTTTGTTCCCCATTCCTTAATTGTATTGTTTTCCCAAGTGTAATTATCATGCGTTTTA TATCTTCCTAATAAGGTGTGGTCTGTTTGTCTGAACAAAGTGCTAGACTTTCTGGAGTGATA ATCTGGTGACAAATATTCTCTCTGTAGCTGTAAGCAAGTCACTTAATCTTTCTACCTCTTTT TTCTATCTGCCAAATTGAGATAATGATACTTAACCAGTTAGAAGAGGTAGTGTGAATATTAA TTAGTTTATATTACTCTTATTCTTTGAACATGAACTATGCCTATGTAGTGTCTTTATTTCCT ${\tt CAGCTGGCTGAGACACTGAAGAAGTCACTGAACAAAACCTACACGTACCTTCATGTGATT}$ ${\tt CACTGCCTTCTCTCTACCAGTCTATTTCCACTGAACAAAACCTACACACATACCTTCAT}$ GTGGTTCAGTGCCTTCCTCTCTCTCTACCAGTCTATTTCCACTGAACAAACCTACGCACATAC $\tt CTTCATGTGGCTCAGTGCCTTCTCTCTCTACCAGTCTATTTCCATTCTTTCAGCTGTGTCT$ GACATGTTTGTGCTCTGTTCCATTTTAACAACTGCTCTTACTTTTCCAGTCTGTACAGAATG $\tt CTATTTCACTTGAGCAAGATGATGTAATGGAAAGGGTGTTGGCACTGGTGTCTGGAGACCTG$ GATTTGAGTCTTGGTGCTATCAATCACCGTCTGTGTTTTGAGCAAGGCATTTGGCTGCTGTAA GCTTATTGCTTCATCTGTAAGCGGTGGTTTGTAATTCCTGATCTTCCCACCTCACACTGATC TTGTGGGGATCCAGTGAGATAGAATACATGTAAGTGTGGTTTTGTAATTTAAAAAGTGCTAT ACTAAGGGAAAGAATTGAGGAATTAACTGCATACGTTTTGGTGTTGCTTTTCAAATGTTTGA AAATAAAAAAAATGTTAAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52185

><subunit 1 of 1, 211 aa, 1 stop. ><MW: 22744, pI: 8.51, NX(S/T): 1

MANAGLQLLGFILAFLGWIGAIVSTALPQWRIYSYAGDNIVTAQAMYEGLWMSCVSQSTGQI QCKVFDSLLNLSSTLQATRALMVVGILLGVIAIFVATVGMKCMKCLEDDEVQKMRMAVIGGA IFLLAGLAILVATAWYGNRIVQEFYDPMTPVNARYEFGQALFTGWAAASLCLLGGALLCCSC

Important features:

PRKTTSYPTPRPYPKPAPSSGKDYV

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-102, 118-142 and 161-187

N-glycosylation site.

amino acids 72-75

PMP-22 / EMP / MP20 family proteins

amino acids 70-111

ABC-2 type transport system integral membrane protein amino acids 119-133

ACCCTTGACCCAACGCGGCCCCCGACCGNTTCATGGCCAAACGCGGGNCTCCAGCTGTTGG
GCTTCATTCTCCCCTTCCTGGGATGGACCGCCCATCNTCAGCACTGCCCCAGTG
GAGGATTTACTCCTATNCCGGCNACAACATCGTGACCGCCCAGGCCNTGTACGAGGGGCTGT
GGATGTCCTGCGTGTCGCAGAGCACCCGGGCAGATCCAGTGCAAAGTCTTTGACTCCCTTGCT
GAATCTGAGCAGCACATTGCAAGCAACCCGTGCCTTGATGGTGGTTGGCATCCTCCTGGAGG
TGATAGCAATCTTNNTGGCCACCGTTGTNNNTGAAGTGTTATGAAGTGCTTGGAAGACGATGA
GGTGCAGAAGATGAGGATGGCTGTCATTGGGGGCGCGATATTTCTTCTTGCAGGTCTGGCTA
TTTTAGTTGCCCACGCATGGTATGGCAATAGAATCGTTCAAGAATTCTATGACCCTATGACCGA

GGGCCCGACCATTATCCAACCGGGNTCACTGTTGGCTCATCTCCCTCCTGGATGAANCGCGC
CATCNTCAGACTCCCTGCCCCATGGAGATTTNNCCTATGCTGGCGACAACATCNTGACCCCC
AGCCATGTACGAGGGGCTTTGAACGTCNGCGTGTCGCAGANCACCGGGCAGATCCAGTGCAA
AGTCTTTGACTCCTTGCTGAATCTGNGCAGCACTTGCAGCAACCCNTGCCCTGATGGTGGT
TGGCATCCTCCTGGGAGTGATAGCAATCTTTGTGGCCACCGTTGGCATGAAGTGTATGAAGT
GCTTGGAAGACGATGAGGTGCAGAAGATGAGGATGGCTGTCATTGGGGGCGCGATATTTCTT
CTTGCAGGTCTGGCTATTTNNNGTTGCCACAGCATGGTATGGCAATAGAATCGTTCAAGAAT
TCTATGACCCTATGACCCCAGTCAATGCCAGGTACGAATTTGGTCAGGGCTCCTCTTCACTGGC
TGGGCTGCTGCTTCTCTCCCTTCTGGGAGGTGCCCTACTTTGCTGTTCCTGCGA

AGAGCACCGGCAGATCCCAGTNCAAAGTCTTTGACCCTTGCTGAATCTGAGCAGCACATTNC
AAGCAACCCCTTGCCTTGAAGGTGGTTGNCATCCCCCCTGGGAGTGAATAGCAATCTTTGTG
GCCACCGTTGGCATGAAGTNTATGAAGTGCTTGGAAGACGATGAGGTGCAGAAGATGAGGAT
GGCTGTCATTGGGGGCGCGATATTTCTTCTTGCAGGTCTGGCTATTTTAGTNNCCACAGCAT
GGTATGGCAATAGNATNNTTCGNGGNTTCTATGACCCTATGACCCCAGTCAATGCCAGGTAC
GAATTTGGTCAGGCTCTCTTCACTGGCTGGCTGCTTCTCTCTGCCTTCTGGGAGGTGC
CCTACTTTGCTGTTCCCCGAA

 $\label{thm:constraint} TCATAGGGGGGCGCGATATTTTTCTTGCAGGTTATTTTAGTTGCCACAGCATGGTA\\ TGGCAATAGAATCGTTCAAGAATTNTATGACCCTATGACCCCAGTCAATGCCAGGTACGAAT\\ TTGGTCAGGCTCTNTTCACTGGNTGGGCTGCTTCTNTNNGCCTTNTGGGAGGTGCCCTA\\ CTTTGCTGTTCCTG$

 ${\tt ACCGGTCCCGGCCTTTTTGTAAAACTTAAAGCGGGCGCAGCATTAACGCTTCCCGCCCCGGT}$ $\tt CAGGTCCTGAGCCTCGAGCCGCAGCACGAGCTCAAATTCCGAGGTCCCTTCACCGATGTTGT$ CACCACCAACCTAAAGCTTGGCAACCCGACAGACCGAAATGTGTGTTTTAAGGTGAAGACTA ${\tt CAGCACCACGTAGGTACTGTGAGGCCCCAACAGCGGAATCATCGATGCAGGGGCCTCAATT}$ ${\tt CAAAACCGGAAGACCTTATGGATTCAAAACTTAGATGTGTGTTTGAATTGCCAGCAGAGAAT}$ GATAAACCACATGATGTAGAAATAAAATAAAATTATATCCACAACTGCATCAAAGACAGAAAC ${\tt ACCAATAGTGTCTAAGTCTCTGAGTTCTTTTTGGATGACACCGAAGTTAAGAAGGTTATGG}$ AAGAATGTAAGAGGCTGCAAGGTGAAGTTCAGAGGCTACGGGAGGAGAACAAGCAGTTCAAG ${\tt TCGTTGGTGTAATTATTGGGAAGATTGCCTTG} \underline{{\tt TAG}} {\tt AGGTAGCATGCACAGGATGGTAAATTG}$ $\hbox{\tt GATTGGTGGATCCACCATATCATGGGATTTAAATTTATCATAACCATGTGTAAAAAAGAAATT}$ AGATACACACACACAAATATAATGTAACGATCTTTTAGAAAGTTAAAAATGTATAGTAACTG ATTGAGGGGGAAAAAGAATGATCTTTATTAATGACAAGGGAAACCATGAGTAATGCCACAAT $\tt GGCATATTGTAAATGTCATTTTAAACATTGGTAGGCCTTGGTACATGATGCTGGATTACCTC$ ${\tt TCTTAAAATGACACCCTTCCTCGCCTGTTGGTGCTGGCCCTTGGGGAGCTGGAGCCCAGCAT}$ ${\tt TGACTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGACCAA}$ ${\tt GCTAAATTTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTTAATGCATA}$ ${\tt TTTAACTTATTTAATGTATTTCATCTCATGTTTTCTTATTGTCACAAGAGTACAGTTAATGC}$ $\tt TGCGTGCTGAACTCTGTTGGGTGAACTGGTATTGCTGCTGGAGGGCTGTGGGCTCCTCT$ $\tt GTCTCTGGAGAGTCTGGTCATGTGGAGGTGGGGGTTTATTGGGATGCTGGAGAGAGCTGCCA$ ${\tt TAGTTGAGAGTTTGACTGTGAATTAATTTTATGCCATAAAAGACCAACCCAGTTCTGTTTGA}$ $\tt CTATGTAGCATCTTGAAAAGAAAAATTATAATAAAGCCCCCAAAATTAAGAAAA$

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53977

<subunit 1 of 1, 243 aa, 1 stop

<MW: 27228, pI: 7.43, NX(S/T): 2

MAKVEQVLSLEPQHELKFRGPFTDVVTTNLKLGNPTDRNVCFKVKTTAPRRYCVRPNSGIID AGASINVSVMLQPFDYDPNEKSKHKFMVQSMFAPTDTSDMEAVWKEAKPEDLMDSKLRCVFE LPAENDKPHDVEINKIISTTASKTETPIVSKSLSSSLDDTEVKKVMEECKRLQGEVQRLREE NKQFKEEDGLRMRKTVQSNSPISALAPTGKEEGLSTRLLALVVLFFIVGVIIGKIAL

Important features:
Transmembrane domain:

amino acids 224-239

N-glycosylation site. amino acids 68-71

N-myristoylation site.
amino acids 59-64, 64-69 and 235-240

CCCTGGTGGTTTTGTTCTTTAATTCGTTGGTGTAATTNTTGGGAAGATTGCTTGTAGAGGTA
GNATGCACCNGGCTGGTAAATTGGATTGGTGGATCCACCATATCCATGGGATTTAAATTTAT
CATAACCATGTGTAAAAAGAAATTAATGTATGATGACCATNTCACAGGTATTGCCTTTAAATT
ACCCATCCCTGNANACACATACACAGATACACANANACAAATNTAATGTAACGATNTTTTAG
AAAGTTAAAAATGTATAGTAAC

TGCTTTCCGTGTCTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTTGATGAACAGAGTC
AGAAGCCCAAAGGAATTGCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTG
TGTTGACTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGAC
CAAGCTAAATTTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTTAATGC
ATATTTAACTTATTTAATGTATTTCATCTCATGTTTTTCTTATTGTCACAAGAGTACAGTTAA
TGCTGCGTGC

AAACCTTTAAAAGTTGAGGGGAAAAGAATGATCCTTTATTAATGACAAGGGAAACCNTGNGT
AATGCCACAATGGCATATTGTAAATGTCATTTTAAACATTGGTAGGCCTTGGTACATGATGC
TGGATTACCTCTCTTAAAATGACACCCTTCCTCGCCTGTTGGTGCCCCTTGGGGAGCTN
GAGCCCAGCATGCTGGGGAGTGCGGTCTGCCCACACAGTAGTCCCCANGTGGCCCANTCCC
GGCCCAGCATGCTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGANTGATGA
ACAGAGTCAGAAGCCCAAAGGAATTGCANTGTGGCAGCATCAGANGTANTNGTCATAAGTGA
GAGGCGTGTGTTGANTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCANTT
AAAGGGNCCAAGNTAAATTTGTATTGGTTCATGTAGTGAAGTCAAANTGTTATTCAGAGATG
TTTAATGCATATTTAANTTATTTAATGTATTTCATNTCATGTTTTCTTTATTGTCACAAGGGT
ACAGTTAATGCTGCGTGCTGCAANTCTGTTGGGTGAANTGGTATTGCTG

GGCTCCCAGCTGCAGCGTCCCCGCCCGCCTCCTCGGGAGCTCTGATCTCAGCTGACAGTGCC CTCGGGGACCAAACAAGCCTGGCAGGGTCTCACTTTGTTGCCCAGGCTGGAGTTCAGTGCCA ${\tt CTACAGGACAAAATTAGAAGATCAAA}$ ${\tt ATG}$ ${\tt GAAAATATGCTGCTTTGGTTGATATTTTTCACC}$ GGTACCCCGGATTGTCAGTGAAAGGACTTTCCATCTCACCAGCCCCGCATTTGAGGCAGATG $\tt CTTTCTGAATTGGAGGATTATCTTTCCTATGAGACTGTCTTTGAGAATGGCACCCGAACCTT$ AACCAGGGTGAAAGTTCAAGATTTGGTTCTTGAGCCGACTCAAAATATCACCACAAAGGGAG TATCTGTTAGGAGAAAGAGACAGGTGTATGGCACCGACAGCAGGTTCAGCATCTTGGACAAA AGGTTCTTAACCAATTTCCCTTTCAGCACAGCTGTGAAGCTTTCCACGGGCTGTAGTGGCAT TCTCATTTCCCCTCAGCATGTTCTAACTGCTGCCCACTGTGTTCATGATGGAAAGGACTATG TCAAAGGGAGTAAAAAGCTAAGGGTAGGGTTGTTGAAGATGAGGAATAAAAGTGGAGGCAAG AAACGTCGAGGTTCTAAGAGGAGCAGGAGAGAGCTAGTGGTGGTGACCAAAGAGAGGGTAC CAGAGAGCATCTGCAGGAGAGAGCGAAGGGTGGGAGAAGAAAAAAATCTGGCCGGGGTC AGAGGATTGCCGAAGGGAGGCCTTCCTTTCAGTGGACCCGGGTCAAGAATACCCACATTCCG AAGGGCTGGGCACGAGGAGGCATGGGGGACGCTACCTTGGACTATGACTATGCTCTTCTGGA GCTGAAGCGTGCTCACAAAAAGAAATACATGGAACTTGGAATCAGCCCAACGATCAAGAAAA TGCCTGGTGGAATGATCCACTTCTCAGGATTTGATAACGATAGGGCTGATCAGTTGGTCTAT CGGTTTTGCAGTGTCCGACGAATCCAATGATCTCCTTTACCAATACTGCGATGCTGAGTC GGGCTCCACCGGTTCGGGGGTCTATCTGCGTCTGAAAGATCCAGACAAAAAGAATTGGAAGC GCAAAATCATTGCGGTCTACTCAGGGCACCAGTGGGTGGATGTCCACGGGGTTCAGAAGGAC TACAACGTTGCTGTTCGCATCACTCCCCTAAAATACGCCCAGATTTGCCTCTGGATTCACGG ${\tt GAACGATGCCAATTGTGCTTACGGC} \underline{{\tt TAA}} {\tt CAGAGACCTGAAACAGGGCGGTGTATCATCTAAA}$ TCACAGAGAAAACCAGCTCTGCTTACCGTAGTGAGATCACTTCATAGGTTATGCCTGGACTT GAACTCTGTCAATAGCATTTCAACATTTTTCAAAAATCAGGAGATTTTCGTCCATTTAAAAAA TGTATAGGTGCAGATATTGAAACTAGGTGGGCACTTCAATGCCAAGTATATACTCTTCTTTA ${\tt CATGGTGATGAGTTTCATTTGTAGAAAAATTTTGTTGCCTTCTTAAAAATTAGACACACTTT}$ AAACCTTCAAACAGGTATTATAAATAACATGTGACTCCTTAATGGACTTATTCTCAGGGTCC TACTCTAAGAAGAATCTAATAGGATGCTGGTTGTGTATTAAATGTGAAATTGCATAGATAAA GGTAGATGGTAAAGCAATTAGTATCAGAATAGAGACAGAAAGTTACAACACAGTTTGTACTA $\tt CTCTGAGATGGATCCATTCAGCTCATGCCCTCAATGTTTATATTGTGTTATCTGTTGGGTCT$ CAAAACTAATAACTGTTTTACTGCTTTAAGAAATAACAATTACAATGTGTATTATTTAAAAA TGGGAGAAATAGTTTGTTCTATGAAATAAACCTAGTTTAGAAATAGGGAAGCTGAGACATTT TAAGATCTCAAGTTTTTATTTAACTAATACTCAAAATATGGACTTTTCATGTATGCATAGGG AAGACACTTCACAAATTATGAATGATCATGTGTTGAAAGCCACATTATTTTATGCTATACAT CTTTTTCTCCTTGACAAAATCCAGCTTTTGTATGAGGACTATAGGGTGAATTCTCTGATTAG TAATTTTAGATATGTCCTTTCCTAAAAATGAATAAAATTTATGAATATGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57253
<subunit 1 of 1, 413 aa, 1 stop
<MW: 47070, pI: 9.92, NX(S/T): 3</pre>

MENMLLWLIFFTPGWTLIDGSEMEWDFMWHLRKVPRIVSERTFHLTSPAFEADAKMMVNTVC
GIECQKELPTPSLSELEDYLSYETVFENGTRTLTRVKVQDLVLEPTQNITTKGVSVRRKRQV
YGTDSRFSILDKRFLTNFPFSTAVKLSTGCSGILISPQHVLTAAHCVHDGKDYVKGSKKLRV
GLLKMRNKSGGKKRRGSKRSREASGGDQREGTREHLQERAKGGRRKKSGRGQRIAEGRPS
FQWTRVKNTHIPKGWARGGMGDATLDYDYALLELKRAHKKKYMELGISPTIKKMPGGMIHFS
GFDNDRADQLVYRFCSVSDESNDLLYQYCDAESGSTGSGVYLRLKDPDKKNWKRKIIAVYSG
HQWVDVHGVQKDYNVAVRITPLKYAQICLWIHGNDANCAYG

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 90-93, 110-113 and 193-196

Glycosaminoglycan attachment site.

amino acids 236-239

Serine proteases, trypsin family, histidine active site. amino acids 165-170

AATGTGAGAGGGGCTGATGGAAGCTGATAGGCAGGACTGGAGTGTTAGCACCAGTACTGGAT GTGACAGCAGGCAGAGGAGCACTTAGCAGCTTATTCAGTGTCCGATTCTGATTCCGGCAAGG $\tt ATCCAAGC \underline{ATG} GAATGCTGCCGTCGGGCAACTCCTGGCACACTGCTCCTCTTTCTGGCTTTC$ $\tt CTGCTCCTGAGTTCCAGGACCGCACGCTCCGAGGAGGACCGGGACGGCCTATGGGATGCCTG$ GGGCCCATGGAGTGAATGCTCACGCACCTGCGGGGGAGGGGCCTCCTACTCTCTGAGGCGCT GCCTGAGCAGCAGAGCTGTGAAGGAAGAATATCCGATACAGAACATGCAGTAATGTGGAC TGCCCACCAGAAGCAGGTGATTTCCGAGCTCAGCAATGCTCAGCTCATAATGATGTCAAGCA AGTGCCAAGCCAAAGGAACAACCCTGGTTGTTGAACTAGCACCTAAGGTCTTAGATGGTACG $\tt CGTTGCTATACAGAATCTTTGGATATGTGCATCAGTGGTTTATGCCAAATTGTTGGCTGCGA$ TCACCAGCTGGGAAGCACCGTCAAGGAAGATAACTGTGGGGTCTGCAACGGAGATGGGTCCA CCTGCCGGCTGGTCCGAGGGCAGTATAAATCCCAGCTCTCCGCAACCAAATCGGATGATACT GTGGTTGCACTTCCCTATGGAAGTAGACATATTCGCCTTGTCTTAAAAGGTCCTGATCACTT ATATCTGGAAACCAAAACCCTCCAGGGGACTAAAGGTGAAAACAGTCTCAGCTCCACAGGAA CTTTCCTTGTGGACAATTCTAGTGTGGACTTCCAGAAATTTCCAGACAAAGAGATACTGAGA ATGGCTGGACCACTCACAGCAGATTTCATTGTCAAGATTCGTAACTCGGGCTCCGCTGACAG AGCAACCGTGTGGTTGCTGACCAATACTGTCACTATTACCCAGAGAACATCAAACCCAAACC ${\tt CAAGCTTCAGGAGTGCAACTTGGATCCTTGTCCAGCCAGTGACGGATACAAGCAGATCATGC}$ TCGTGTGGGGGGGCATCCAGAGCCGGGCAGTTTCCTGTGTGGAGGAGGACATCCAGGGGCA TGTCACTTCAGTGGAAGAGTGGAAATGCATGTACACCCCTAAGATGCCCATCGCGCAGCCCT ${\tt GCAACATTTTTGACTGCCCTAAATGGCTGGCACAGGAGTGGTCTCCGTGCACAGTGACATGT}$ GGCCAGGGCCTCAGATACCGTGTGGTCCTCTGCATCGACCATCGAGGAATGCACACAGGAGG CTGTAGCCCAAAAACAAAGCCCCACATAAAAGAGGAATGCATCGTACCCACTCCCTGCTATA AACCCAAAGAGAAACTTCCAGTCGAGGCCAAGTTGCCATGGTTCAAACAAGCTCAAGAGCTA ${\tt GAAGAAGGAGCTGTTGTCAGAGGAGCCCTCG} {\color{red}{\bf TAA}} {\tt GTTGTAAAAGCACAGACTGTTCTATA}$ ${\tt TTTGAAACTGTTTTGATAAGAAAGCAGTGTCTCACTGGTTGTAGCTTTCATGGGTTCTGA}$ AAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58847
<subunit 1 of 1, 525 aa, 1 stop
<MW: 58416, pI: 6.62, NX(S/T): 1</pre>

MECCRRATPGTLLLFLAFLLLSSRTARSEEDRDGLWDAWGPWSECSRTCGGGASYSLRRCLS
SKSCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVKHHGQFYEWLPVSNDPDNPCSLKCQ
AKGTTLVVELAPKVLDGTRCYTESLDMCISGLCQIVGCDHQLGSTVKEDNCGVCNGDGSTCR
LVRGQYKSQLSATKSDDTVVALPYGSRHIRLVLKGPDHLYLETKTLQGTKGENSLSSTGTFL
VDNSSVDFQKFPDKEILRMAGPLTADFIVKIRNSGSADSTVQFIFYQPIIHRWRETDFFPCS
ATCGGGYQLTSAECYDLRSNRVVADQYCHYYPENIKPKPKLQECNLDPCPASDGYKQIMPYD
LYHPLPRWEATPWTACSSSCGGGIQSRAVSCVEEDIQGHVTSVEEWKCMYTPKMPIAQPCNI
FDCPKWLAQEWSPCTVTCGQGLRYRVVLCIDHRGMHTGGCSPKTKPHIKEECIVPTPCYKPK
EKLPVEAKLPWFKOAQELEEGAAVSEEPS

Important features:
Signal peptide:
amino acids 1-25

N-glycosylation site. amino acids 251-254

Thrombospondin 1 amino acids 385-399

von Willebrand factor type C domain proteins amino acids 385-399, 445-459 and 42-56

GCCCGCCGGTTCGTGGGGCCCAGGGTCCAGCGGCTGCGCAGAGGCGGGGACCCCGGCCTCAT GCACGGGAAGACTGTGCTGATCACCGGGGCGAACAGCGGCCTGGGCCGCCCACGGCCGCCG ${\tt GCGGCGGGTCAGCTCCGCCGAGCTCCGCCAGGCCGCGGAGTCCGGCCCAGAGCCTGGCGT}$ ATCTTCCAGTGCCCTTACATGAAGACTGAAGATGGGTTTGAGATGCAGTTCGGAGTGAACCA TCTGGGGCACTTTCTACTCACCAATCTTCTCCTTGGACTCCTCAAAAGTTCAGCTCCCAGCA GGATTGTGGTAGTTTCTTCCAAACTTTATAAATACGGAGACATCAATTTTGATGACTTGAAC AGTGAACAAAGCTATAATAAAAGCTTTTGTTATAGCCGGAGCAAACTGGCTAACATTCTTTT TACCAGGGAACTAGCCCGCCGCTTAGAAGGCACAAATGTCACCGTCAATGTGTTGCATCCTG $\tt GTATTGTACGGACAAATCTGGGGGAGGCACATACACATTCCACTGTTGGTCAAACCACTCTTC$ $\tt GGCCTCTTCACCTGAGGTAGAAGGAGTGTCAGGAAGATACTTTGGGGATTGTAAAGAGGAAG$ AACTGTTGCCCAAAGCTATGGATGAATCTGTTGCAAGAAAACTCTGGGATATCAGTGAAGTG ATGGTTGGCCTGCTAAAATAGGAACAAGGAGTAAAAGAGCTGTTTATAAAACTGCATATCAG TTATATCTGTGATCAGGAATGGTGTGGATTGAGAACTTGTTACTTGAAGAAAAAGAATTTTG ${\tt ATATTGGAATAGCCTGCTAAGAGGTACATGTGGGTATTTTGGAGTTACTGAAAAATTATTTT}$ $\tt GTACAATGAAAAATACAATTATATTGTAAAATTATAACTGGGCAAGCATGGATGACATATTA$ ${\tt ATATTTGTCAGAATTAAGTGACTCAAAGTGCTATCGAGAGGTTTTTCAAGTATCTTTGAGTT}$ ${\tt TCATGGCCAAAGTGTTAACTAGTTTTACTACAATGTTTGGTGTTTGTGGGAAATTATCTGC}$ ${\tt CTGGTGTGCACACAAGTCTTACTTGGAATAAATTTACTGGTAC}$

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58747</pre>

<subunit 1 of 1, 336 aa, 1 stop</pre>

<MW: 36865, pI: 9.15, NX(S/T): 2

MAVATAAAVLAALGGALWLAARRFVGPRVQRLRRGGDPGLMHGKTVLITGANSGLGRATAAE
LLRLGARVIMGCRDRARAEEAAGQLRRELRQAAECGPEPGVSGVGELIVRELDLASLRSVRA
FCQEMLQEEPRLDVLINNAGIFQCPYMKTEDGFEMQFGVNHLGHFLLTNLLLGLLKSSAPSR
IVVVSSKLYKYGDINFDDLNSEQSYNKSFCYSRSKLANILFTRELARRLEGTNVTVNVLHPG
IVRTNLGRHIHIPLLVKPLFNLVSWAFFKTPVEGAQTSIYLASSPEVEGVSGRYFGDCKEEE
LLPKAMDESVARKLWDISEVMVGLLK

Important features:

Signal peptide:

amino acids 1-21

Short-chain alcohol dehydrogenase family protein amino acids 134-144, 44-56 and 239-248

N-glycosylation site.

amino acids 212-215 and 239-242

GGGGATTGTAAAGAGGAAGNACTGTGCCCAAAGNTATGGATGAATCTGTTGCAAGAAAATTN
TGGGATATCAGTGAAGTGATGGTTNGCCTGCTAAAATAGGAACAAGGAGTAAAAGAGCTGTT
TATAAAACTGCATATCAGTTATATCTGTGATCAGGAATGGTGTGGGATTGAGAACTTGTTACT
TGAAGAAAAAGAATTTTGATATTTGGAATAGCCTGNTAAGAGGNACATGTGGGTATTTTGGAG
TTACTGAAAAATTATTTTTGGGATAAGAGAATTTCAGCAAAGATGTTTTAAAATTATATAGT
AAGTATAATGAATAATAAGTACAATGAAAAAATAATATATTGTAAAAATTATATATGGGCA
AGCATGGATGACATATTAATATTTTGTCAGAATTAAGTGACTCAAAGTGCTATCGAGAGGTTT
TTCAAGTATCTTTGAGTTTCATGGCCAAAGTGTTAACTAGTTTTACTACAATGTTTGGTGTT
TGTGTGGAAAATTATCTGCCTGGCTT

GAGAGGACGAGGTGCCGCTGCCTGGAGAATCCTCCGCTGCCGTCGGCTCCCGGAGCCCAGCC $\tt CCCAGCGTTACC\underline{ATG}CATCCTGCCGTCTTCCTATCCTTACCCGACCTCAGATGCTCCCTTCT$ GCTCCTGGTAACTTGGGTTTTTACTCCTGTAACAACTGAAATAACAAGTCTTGCTACAGAGA ATATAGATGAAATTTTAAACAATGCTGATGTTGCTTTAGTAAATTTTTATGCTGACTGGTGT $\tt CGTTTCAGTCAGATGTTGCATCCAATTTTTGAGGAAGCTTCCGATGTCATTAAGGAAGAATT$ TCCAAATGAAAATCAAGTAGTGTTTGCCAGAGTTGATTGTGATCAGCACTCTGACATAGCCC AGAGATACAGGATAAGCAAATACCCAACCCTCAAATTGTTTCGTAATGGGATGATGAAG AGAGAATACAGGGGTCAGCGATCAGTGAAAGCATTGGCAGATTACATCAGGCAACAAAAAAG TGACCCCATTCAAGAAATTCGGGACTTAGCAGAAATCACCACTCTTGATCGCAGCAAAAGAA ATATCATTGGATATTTTGAGCAAAAGGACTCGGACAACTATAGAGTTTTTGAACGAGTAGCG AATATTTTGCATGATGACTGTGCCTTTCTTTCTGCATTTGGGGATGTTTCAAAACCGGAAAG ATATAGTGGCGACAACATAATCTACAAACCACCAGGGCATTCTGCTCCGGATATGGTGTACT ${\tt TGGGAGCTATGACAAATTTTGATGTGACTTACAATTGGATTCAAGATAAATGTGTTCCTCTT}$ $\tt GTCCGAGAAATAACATTTGAAAATGGAGAGGAGTGACAGAAGAAGGACTGCCTTTTCTCAT$ ${\tt ACTCTTTCACATGAAAGAAGATACAGAAAGTTTAGAAATATTCCAGAATGAAGTAGCTCGGC}$ AATTAATAAGTGAAAAAGGTACAATAAACTTTTTACATGCCGATTGTGACAAATTTAGACAT CCTCTTCTGCACATACAGAAAACTCCAGCAGATTGTCCTGTAATCGCTATTGACAGCTTTAG GCATATGTATGTGTTTGGAGACTTCAAAGATGTATTAATTCCTGGAAAACTCAAGCAATTCG TATTTGACTTACATTCTGGAAAACTGCACAGAGAATTCCATCATGGACCTGACCCAACTGAT ${\tt AAAAACAGTTTGTAAGCCTTTCAACAGCAGCATCAACCTACGTGGTGGAAATAGTAAACCTA}$ ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57689</pre>

<subunit 1 of 1, 406 aa, 1 stop

<MW: 46927, pI: 5.21, NX(S/T): 0

MHPAVFLSLPDLRCSLLLLVTWVFTPVTTEITSLATENIDEILNNADVALVNFYADWCRFSQ
MLHPIFEEASDVIKEEFPNENQVVFARVDCDQHSDIAQRYRISKYPTLKLFRNGMMMKREYR
GQRSVKALADYIRQQKSDPIQEIRDLAEITTLDRSKRNIIGYFEQKDSDNYRVFERVANILH
DDCAFLSAFGDVSKPERYSGDNIIYKPPGHSAPDMVYLGAMTNFDVTYNWIQDKCVPLVREI
TFENGEELTEEGLPFLILFHMKEDTESLEIFQNEVARQLISEKGTINFLHADCDKFRHPLLH
IQKTPADCPVIAIDSFRHMYVFGDFKDVLIPGKLKQFVFDLHSGKLHREFHHGPDPTDTAPG
EQAQDVASSPPESSFQKLAPSEYRYTLLRDRDEL

Important features:

Signal peptide:

amino acids 1-29

Endoplasmic reticulum targeting sequence.

amino acids 403-406

Tyrosine kinase phosphorylation site.

amino acids 203-211

Thioredoxin family proteins

amino acids 50-66

ATTAAGGAAGAATTTCCAAATGAAAATCAAGTAGTNTTTGCCAGAGTNGATTGTATCAGCA CTCTGACATAGCCCAGAGATACAGGATAAGCAAATACCCAACCCTCAAATTGTTTCGTAATG GGATGATGATGATGAAGAGAGAATACAGGGTCAGCGATCAGTGAAAGCATTGGCAGATTA

 $\tt CTGCCGCGCTCATCTTCTTCGCCATTTGGCACATTATAGCATTTGATGAGCTGAAGACTGAT$ ${\tt TACAAGAATCCTATAGACCAGTGTAATACCCTGAATCCCCTTGTACTCCCAGAGTACCTCAT}$ $\tt CCACGCTTTCTTGTGTCATGTTTCTTTTGTGCAGCAGAGTGGCTTACACTGGGTCTCAATA$ $\tt GTGCAAATTAGCTTTTTATCTTCTAGCATTTTTTTACTACCTATATGGCATGATCTATGTTT$ ${\tt CAAATGAAGGGATTCTATCCAGCAAGATCCTGTCCAAGAGTAGCCTGTGGAATCTGATCAGT}$ ${\tt TACTTTAAAAAATGACTCCTTATTTTTAAATGTTTCCACATTTTTGCTTGTGGAAAGACTG}$ ${\tt GATTACCTCTGGTGTTGACAGGTTTGAACTTGCACTTCTTAAGGAACAGCCATAATCCTCTG}$ ${\tt AATGATGCATTAATTACTGACTGTCCTAGTACATTGGAAGCTTTTGTTTATAGGAACTTGTA}$ $\tt GGGCTCATTTTGGTTTCATTGAAACAGTATCTAATTATAAATTAGCTGTAGATATCAGGTGC$ $\tt TTCTGATGAAGTGAAAATGTATATCTGACTAGTGGGAAACTTCATGGGTTTCCTCATCTGTC$ ATGTCGATGATTATATATGGATACATTTACAAAAATAAAAAGCGGGAATTTTCCCTTCGCTT GAATATTATCCCTGTATATTGCATGAATGAGAGATTTCCCATATTTCCATCAGAGTAATAAA TATACTTGCTTTAATTCTTAAGCATAAGTAAACATGATATAAAAATATATGCTGAATTACTT $\tt GTGAAGAATGCATTTAAAGCTATTTTAAATGTGTTTTTATTTGTAAGACATTACTTATTAAG$ TACTACAGATTTTCAAAACTGAATGAGAGAAAATTGTATAACCATCCTGCTGTTCCTTTAGT GCAATACAATAAAACTCTGAAATTAAGACTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA23330
<subunit 1 of 1, 144 aa, 1 stop
<MW: 16699, pI: 5.60, NX(S/T): 0
MAFTFAAFCYMLALLLTAALIFFAIWHIIAFDELKTDYKNPIDQCNTLNPLVLPEYLIHAFF
CVMFLCAAEWLTLGLNMPLLAYHIWRYMSRPVMSGPGLYDPTTIMNADILAYCQKEGWCKLA</pre>

Important features: Signal peptide: amino acids 1-20

FYLLAFFYYLYGMIYVLVSS

Type II transmembrane domain: amino acids 11-31

Other transmembrane domain: amino acids 57-77 and 123-143

CGGACGCGTGGGGGAAACCCTTCCGAGAAAACAGCAACAAGCTGAGCTGCTGTGACAGAGGG GAACAAGATGGCGGCGCGAAGGGGAGCCTCTGGGTGAGGACCCAACTGGGGCTCCCGCCGC TGCTGCTGACCATGGCCTTGGCCGGAGGTTCGGGGACCGCTTCGGCTGAAGCATTTGAC TCGGTCTTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACAC CTACCCTAAGGAAGAGGAGTTGTACGCATGTCAGAGAGGTTGCAGGCTGTTTTCAATTTGTC AGTTTGTGGATGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACA GAAGCATATTCCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCC ATTCGCTGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTC CTCTAACTCTGGTGAGGTCATTCTGGAGTGACATGATGGACTCCGCACAGAGCTTCATAACC TCTTCATGGACTTTTTATCTTCAAGCCGATGACGGAAAAATAGTTATATTCCAGTCTAAGCC AGAAATCCAGTACGCACCACATTTGGAGCAGCCCTACAAATTTGAGAGAATCATCTCTAA GCAAAATGTCCTATCTGCAAATGAGAAATTCACAAGCGCACAGGAATTTTCTTGAAGATGGA GAAAGTGATGGCTTTTTAAGATGCCTCTCTCTTAACTCTGGGTGGATTTTAACTACAACTCT TGTCCTCTGGTGATGGTATTGCTTTGGATTTGTTGTGCAACTGTTGCTACAGCTGTGGAGC CTAAACAGATATCCAGCTTCTTCTCTTGTGGTTGTTAGATCTAAAACTGAAGATCATGAAGA AGCAGGCCTCTACCTACAAAAGTGAATCTTGCTCATTCTGAAATTTAAGCATTTTTCTTTT AAAAGACAAGTGTAATAGACATCTAAAATTCCACTCCTCATAGAGCTTTTAAAATGGTTTCA TTGGATATAGGCCTTAAGAAATCACTATAAAATGCAAATAAAGTTACTCAAATCTGTG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA26847
<subunit 1 of 1, 323 aa, 1 stop
<MW: 36223, pI: 5.06, NX(S/T): 1</pre>

MAAPKGSLWVRTQLGLPPLLLLIMALAGGSGTASAEAFDSVLGDTASCHRACQLTYPLHTYP
KEEELYACQRGCRLFSICQFVDDGIDLNRTKLECESACTEAYSQSDEQYACHLGCQNQLPFA
ELRQEQLMSLMPKMHLLFPLTLVRSFWSDMMDSAQSFITSSWTFYLQADDGKIVIFQSKPEI
QYAPHLEQEPTNLRESSLSKMSYLQMRNSQAHRNFLEDGESDGFLRCLSLNSGWILTTTLVL
SVMVLLWICCATVATAVEQYVPSEKLSIYGDLEFMNEQKLNRYPASSLVVVRSKTEDHEEAG
PLPTKVNLAHSEI

Important features:
Signal peptide:
amino acids 1-31

Transmembrane domain: amino acids 241-260

N-glycosylation site. amino acids 90-93

TTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACACCTACCC
TAAGGAAGAGGAGTTGTACGCATGTCAGAGAGGAGTTGCAGGTGTTTCAATTTGTCAGTTTG
TGGATGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACAGAAGCA
TATTCCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCCATTCGC
TGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTCCTCTAA
CTCTGGTGAGGTCATTCTGGAGTGACATGATGGACTCCGC

GGGGCGCCGCTGGGGCCCGCGCCCGCGCCTCATCTGAGGGCGCACGGCCCGCGACCGAGC $\tt GTGCGGACTGGCCTCCCAAGCGTGGGGCGACAAGCTGCCGGAGCTGCA\underline{ATG}GGCCGCGGCTG$ GGGATTCTTGTTTGGCCTCCTGGGCGCCGTGTGGCTCAGCTCGGGCCACGGAGAGGAGC $\tt AGCCCCCGGAGACAGCGGCACAGAGGTGCTTCTGCCAGGTTAGTGGTTACTTGGATGATTGT$ ${\tt ACTTCTTGAAAGTGACTACTTTAGGTATTACAAGGTAAACCTGAAGAGGCCGTGTCCTTTCT}$ ATTCAGTCCCCTGAAGCTGAATATGTAGATTTGCTTCTTAATCCTGAGCGCTACACTGGTTA A GACAATTAAAAGACCTTTAAATCCTTTGGCTTCTGGTCAAGGGACAAGTGAAGAGAACACT $\tt TTTTACAGTTGGCTAGAAGGTCTCTGTGTAGAAAAAAGAGCATTCTACAGACTTATATCTGG$ $\tt GGAGAAGGTCCAAGAAGGCTTAAGAACTTGTATTTTCTCTACTTAATAGAACTAAGGGCTTT$ ATCCAAAGTGTTACCATTCTTCGAGCGCCCAGATTTTCAACTCTTTACTGGAAATAAAATTC AGGATGAGGAAAACAAAATGTTACTTCTGGAAATACTTCATGAAATCAAGTCATTTCCTTTG ${\tt CATTTGATGAGAATTCATTTTTTGCTGGGGATAAAAAAGAAGCACACAAACTAAAGGAGGA}$ $\tt CTTTCGACTGCATTTTAGAAATATTTCAAGAATTATGGATTGTGTTTGGTTGTTTTAAATGTC$ AAATTGATAGCAAATATGCCAGAAAGTGGACCTAGTTATGAATTCCATCTAACCAGACAAGA ${\tt AATAGTATCATTATTCAACGCATTTGGAAGAATTTCTACAAGTGTGAAAGAATTAGAAAACT}$ ${\tt AATGGAGGCGAAAGAGTGGAATTTCATTCAAAGGCATAATAGCAATGACAGTCTTAAGCCAA}$ ${\tt ACATTTATATAAAGTTGCTTTTGTAAAGGAGAATTATATTGTTTTAAGTAAACACATTTTT}$ AAAAATTGTGTTAAGTCTATGTATAATACTACTGTGAGTAAAAGTAATACTTTAATAATGTG ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53974
<subunit 1 of 1, 468 aa, 1 stop
<MW: 54393, pI: 5.63, NX(S/T): 2</pre>

MGRGWGFLFGLLGAVWLLSSGHGEQPPETAAQRCFCQVSGYLDDCTCDVETIDRFNNYRLF
PRLQKLLESDYFRYYKVNLKRPCPFWNDISQCGRRDCAVKPCQSDEVPDGIKSASYKYSEEA
NNLIEECEQAERLGAVDESLSEETQKAVLQWTKHDDSSDNFCEADDIQSPEAEYVDLLLNPE
RYTGYKGPDAWKIWNVIYEENCFKPQTIKRPLNPLASGQGTSEENTFYSWLEGLCVEKRAFY
RLISGLHASINVHLSARYLLQETWLEKKWGHNITEFQQRFDGILTEGEGPRRLKNLYFLYLI
ELRALSKVLPFFERPDFQLFTGNKIQDEENKMLLLEILHEIKSFPLHFDENSFFAGDKKEAH
KLKEDFRLHFRNISRIMDCVGCFKCRLWGKLQTQGLGTALKILFSEKLIANMPESGPSYEFH
LTRQEIVSLFNAFGRISTSVKELENFRNLLQNIH

Important features: Signal peptide: amino acids 1-23

N-glycosylation site.
amino acids 280-283 and 384-387

Amidation site. amino acids 94-97

Glycosaminoglycan attachment site. amino acids 20-23 and 223-226

Aminotransferases class-V pyridoxal-phosphate amino acids 216-222

Interleukin-7 proteins amino acids 338-343

GCTGGAAATATGGATGTCATCTACGAGAAACTGTTTTAAGCCACAGACAATTAAAAGACCTT
TAAATCCTTTGGCTTCTGGTCAAGGGACAAGTGAAGAGAACACTTTTTACAGTTGGCTAGAA
GGTCTCTGTGTAGAAAAAAGAGCATTCTACAGACTTATATCTGGCCTACATGCAAGCATTAA
TGTGCATTTGAGTGCAAGATATCTTTTACAAGAGACCTGGTTAGAAAAGAAATGGGGACACA
ACATTACAGAATTTNAACAGCGATTTGATGGAATTTGACTGAAGGAGAAGGTCCAAGAAG
CTTAAGAACTTGTATTTTCTCTACTTAATAGAACTAAGGGCTTTATCCAAAGTGTTACCATT
CTTNGAGCGCCCAGATTTTCAACTNTTTACTGGAAATAAAATTCAGGATGAGGNAAACAAAA
TGTTACTTTTGGAAATACTTCATGAAATCAAGTCATTTCCTTTGCATTTTGATGAGAATTCA
TTTTTTTGCTG

AGTGAAGAAAACAGAAAAGGAGGGGACAGAGGCCCAGAGGACTTCTCATACTGGACAGAAAC TCTCTGCTCCCCCTTTAACCTGGATGAACATCACCCACGCCTATTCCCAGGGCCACCAGAAG GCCCCCTGGGATGGGCCTTCAGGCGACCGGAGGGGGGACGTTTATCGCTGCCCTGTAGGGGG GGCCCACAATGCCCCATGTGCCAAGGGCCACTTAGGTGACTACCAACTGGGAAATTCATCTC ATCCTGCTGTGAATATGCACCTGGGGATGTCTCTGTTAGAGACAGATGGTGATGGGGGATTC ATGGTGAGC \underline{TAA} GGAGAGGGTGGTGGCAGTGTCTCTGAAGGTCCATAAAAGAAAAAAAGAGAAAAGGTAGGTAATGTCAGGGAGTAGTCTTCATGCCTCCTTCAACTGGGAGCATGTTCTGAGGGT GCCCTCCCAAGCCTGGGAGTAACTATTTCCCCCATCCCCAGGCCTGTGCCCCTCTCTGGTCT CGTGCTTGTGGCAGCTCTGTCTTCAGTTCTGGGATATGTGCCCGTGTGGATGCTTCATTCCA GCCTCAGGGAAGCCTGGCACCCACTGCCCAACGTGAGCCAGAGGAAGGCTGAGTACTTGGTT CCTGCATGGCTATCCTCATTGCTACCTAATGTGCTTGCAAAAGCTCCATGTTTCCTAACAGA GTGGGCAGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACTCCAT CTCTACTAAAAAAAAAAAAATACAAAAATTAGCTGGGTGCGCTAGTGCATGCCTGTAATCTC ATCTACTCGGGAGGCTAAGACAGGAGACTCTCACTTCAACCCAGGAGGTGGAGGTTGCGGTG AGCCAAGATTGTGCCTCTGCACTCTAGCGTGGGTGACAGAGTAAGCGAGACTCCATCTCAAA AATAATAATAATAATTCAGACTCCTTATCAGGAGTCCATGATCTGGCCTGGCACAGTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57039

><subunit 1 of 1, 124 aa, 1 stop

><MW: 13352, pI: 5.99, NX(S/T): 1

 ${\tt MELPFVTHLFLPLVFLTGLCSPFNLDEHHPRLFPGPPEAEFGYSVLQHVGGQQRWMLVGAPW} \\ {\tt DGPSGDRRGDVYRCPVGGAHNAPCAKGHLGDYQLGNSSHPAVNMHLGMSLLETDGDGGFMVS} \\$

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 70-73

N-glycosylation site.

amino acids 98-101

Integrins alpha chain proteins

amino acids 67-81

AAAGTTACATTTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTTTG GGCAGAAAGGAGGGTGCTTCGGAGCCCGCCCTTTCTGAGCTTCCTGGGCCGGCTCTAGAACA GAGATGGACAGAATGCTTTATTTTGGAAAGAAACAATGTTCTAGGTCAAACTGAGTCTACCA AATGCAGACTTTCACAATGGTTCTAGAAGAAATCTGGACAAGTCTTTTCATGTGGTTTTTTCT TCTGTACTCTCAACCAACATGAAGCATCTCTTGATGTGGAGCCCAGTGATCGCGCCTGGAGA AACAGTGTACTATTCTGTCGAATACCAGGGGGAGTACGAGAGCCTGTACACGAGCCACATCT GGATCCCCAGCAGCTGGTGCTCACTCACTGAAGGTCCTGAGTGTGATGTCACTGATGACATC ACGGCCACTGTGCCATACAACCTTCGTGTCAGGGCCACATTGGGCTCACAGACCTCAGCCTG GAGCATCCTGAAGCATCCCTTTAATAGAAACTCAACCATCCTTACCCGACCTGGGATGGAGA TCACCAAAGATGGCTTCCACCTGGTTATTGAGCTGGAGGACCTGGGGCCCCAGTTTGAGTTC CTTGTGGCCTACTGGAGGAGGGAGCCTGGTGCCGAGGAACATGTCAAAATGGTGAGGAGTGG GGGTATTCCAGTGCACCTAGAAACCATGGAGCCAGGGGCTGCATACTGTGTGAAGGCCCAGA GGAGAGGCCATTCCCCTGGTACTGGCCCTGTTTGCCTTTGTTGGCTTCATGCTGATCCTTGT GGTCGTGCCACTGTTCGTCTGGAAAATGGGCCGGCTGCTCCAGTACTCCTGTTGCCCCGTGG TGGTCCTCCCAGACACCTTGAAAATAACCAATTCACCCCAGAAGTTAATCAGCTGCAGAAGG GAGGAGGTGGATGCCTGTGCCACGGCTGTGATGTCTCCTGAGGAACTCCTCAGGGCCTGGAT CTCA<u>TAG</u>GTTTGCGGAAGGGCCCAGGTGAAGCCGAGAACCTGGTCTGCATGACATGGAAACC ATGAGGGGACAAGTTGTGTTTCTGTTTTCCGCCACGGACAAGGGATGAGAAGTAGGAAGA $\tt CTGGGAAAAGTGACTTCATCCCTTCGGTCCTAAGTTTTCTCATCTGTAATGGGGGAATTACC$ TGTTTCTGGAGAGCAGGACATAAATGTATGATGAGAATGATCAAGGACTCTACACACTGGGT GGCTTGGAGAGCCCACTTTCCCAGAATAATCCTTGAGAGAAAAGGAATCATGGGAGCAATGG TGTTGAGTTCACTTCAAGCCCAATGCCGGTGCAGAGGGGAATGGCTTAGCGAGCTCTACAGT AGGTGACCTGGAGGAAGGTCACAGCCACACTGAAAATGGGATGTGCATGAACACGGAGGATC TGTTGGTAAAGTACAGAATTCAGCAAATAAAAAGGGCCACCCTGGCCAAAAGCGGTAAAAAA AAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57033
<subunit 1 of 1, 311 aa, 1 stop
<MW: 35076, pI: 5.04, NX(S/T): 2</pre>

MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLLMWSPVIAPGE
TVYYSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQTSAW
SILKHPFNRNSTILTRPGMEITKDGFHLVIELEDLGPQFEFLVAYWRREPGAEEHVKMVRSG
GIPVHLETMEPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAFVGFMLILV
VVPLFVWKMGRLLQYSCCPVVVLPDTLKITNSPQKLISCRREEVDACATAVMSPEELLRAWIS

Important features:
Signal peptide:

amino acids 1-29

Transmembrane domain: amino acids 230-255

N-glycosylation site.
amino acids 40-43 and 134-137

Tissue factor proteins. amino acids 92-119

Integrins alpha chain proteins amino acids 232-262

GAGGAGATGCGGGAGGACCTGGAGTTAGGTGGCTTGGGAGAGCTTAATGAAAAGAGAAC GGAGAGGGGTGTGGGTTAGGAACCAAGAGGTAGCCCTGTGGGCAGCAGAAGGCTGAGAGGA GTAGGAAGATCAGGAGCTAGAGGGAGACTGGAGGGTTCCGGGAAAAGAGCAGAGGAAAGAGG AAAGACACAGAGAGAGAGAGAGAAGAAGAGTGGGTTTGAAGGGCGGATCTCAGTCCCTG GCTGCTTTGGCATTTGGGGAACTGGGACTCCCTGTGGGGAGGAGAGGAAAGCTGGAAGTCCT GCTGGTACTCTGGGCTGCACTGGGGGCAGCAGCTCACATCGGACCAGCACCTGACCCCGAGG ACTGGTGGAGCTACAAGGATAATCTCCAGGGAAACTTCGTGCCAGGGCCTCCTTTCTGGGGC GCTGAAGAGGGTTCTTTATGACCCCTTTCTGCCCCCATTAAGGCTCAGCACTGGAGGAGAGA GTGGTCAATGTGTCTGGAGGTCCCCTCCTTTACAGCCACCGACTCAGTGAACTGCGGCTGCT GTTTGGAGCTCGCGACGGAGCCGGCTCGGAACATCAGATCAACCACCAGGGCTTCTCTGCTG $\tt CCCAATGGCCTGGCCATTCTCAGCCTCTTTGTCAACGTTGCCAGTACCTCTAACCCATTCCT$ ${\tt CAGTCGCCTCCTTAACCGCGACACCATCACTCGCATCTCCTACAAGAATGATGCCTACTTTC}$ TCTCTCAGCACCCCGCCCTGCTCCGAGACTGTCACCTGGATCCTCATTGACCGGGCCCTCAA ${\tt TATCACCTCCCTTCAGATGCACTCCCTGAGACTCCTGAGCCAGAATCCTCCATCTCAGATCT}$ TCCAGAGCCTCAGCGGTAACAGCCGGCCCCTGCAGCCCTTGGCCCACAGGGCACTGAGGGGC $\verb|AACAGGGACCCCGGCACCCCGAGAGGCGCTGCCGAGGCCCCAACTACCGCCTGCATGTGGA|$ ${\tt TGGTGTCCCCCATGGTCGC} \underline{{\tt TGA}} {\tt GACTCCCCTTCGAGGATTGCACCCGCCCGTCCTAAGCCTC}$ CCCACAAGGCGAGGGGAGTTACCCCTAAAACAAAGCTATTAAAGGGACAGAATACTTA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA34353
<subunit 1 of 1, 328 aa, 1 stop
<MW: 36238, pI: 9.90, NX(S/T): 3</pre>

MGAAARLSAPRALVLWAALGAAAHIGPAPDPEDWWSYKDNLQGNFVPGPPFWGLVNAAWSLC
AVGKRQSPVDVELKRVLYDPFLPPLRLSTGGEKLRGTLYNTGRHVSFLPAPRPVVNVSGGPL
LYSHRLSELRLLFGARDGAGSEHQINHQGFSAEVQLIHFNQELYGNFSAASRGPNGLAILSL
FVNVASTSNPFLSRLLNRDTITRISYKNDAYFLQDLSLELLFPESFGFITYQGSLSTPPCSE
TVTWILIDRALNITSLQMHSLRLLSQNPPSQIFQSLSGNSRPLQPLAHRALRGNRDPRHPER
RCRGPNYRLHVDGVPHGR

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 177-199

N-glycosylation site.

amino acids 118-121, 170-173 and 260-263

Eukaryotic-type carbonic anhydrases proteins

amino acids 222-270, 128-164 and 45-92

 $\tt GTTCGTGTCCCCGCCCCTCGCTCCTGCAGCTACTGCTCAGAAACGCTGGGGGCGCCCACCCTGGCAGACTAACGAA$ ATCCTGAGGTCATTCATTATGAAGTGTACCGCGCGGGAGTGGCTCAGAGTAACCACAGTGCTGTTCATGGCTAGA GCAATTCCAGCCATGGTGGTTCCCAATGCCACTTTATTGGAGAAACTTTTGGAAAAATACATGGATGAGGATGGTGAGTGGTGGATAGCCAAACAACGAGGGAAAAGGGCCATCACAGACAATGACATGCAGAGTATTTTGGACCTTCAT AATAAATTACGAAGTCAGGTGTATCCAACAGCCTCTAATATGGAGTATATGACATGGGATGTAGAGCTGGAAAGA $\tt TTGGGAGCACACTGGGGAAGATATAGGCCCCCGACGTTTCATGTACAATCGTGGTATGATGAAGTGAAAGACTTT$ ${\tt CAGGTCGTGTGGGCAACTAGTAACAGAATCGGTTGTGCCATTAATTTGTGTCATAACATGAACATCTGGGGGCAG}$ ATATGGCCCAAAGCTGTCTACCTGGTGTGCAATTACTCCCCAAAGGGAAACTGGTGGGGCCATGCCCCTTACAAA CATGGGCGGCCCTGTTCTGCTTGCCCACCTAGTTTTGGAGGGGGGCTGTAGAGAAAATCTGTGCTACAAAGAAGGG TCAGACAGGTATTATCCCCCTCGAGAAGAGGAAACAAATGAAATGAAACGACAGCAGTCACAAGTCCATGACACC CATGTCCGGACAAGATCAGATGATAGTAGCAGAAATGAAGTCATAAGCGCACAGCAAATGTCCCAAATTGTTTCT AGTAAAGCTAAAGTTATTGGCAGTGTACATTATGAAATGCAATCCAGCATCTGTAGAGCTGCAATTCATTATGGT ATAATAGACAATGATGGTGGCTGGGTAGATATCACTAGACAAGGAAGAAGCATTATTTCATCAAGTCCAATAGA AATGGTATTCAAACAATTGGCAAATATCAGTCTGCTAATTCCTTCACAGTCTCTAAAGTAACAGTTCAGGCTGTG ACTTGTGAAACAACTGTGGAACAGCTCTGTCCATTTCATAAGCCTGCTTCACATTGCCCAAGAGTATACTGTCCT TGCAGAGCAGCAGTACATGCTGGAGTGGTTCGAAATCACGGTGGTTATGTTGATGTAATGCCTGTGGACAAAAGA AAGACCTACATTGCTTCTTTCAGAATGGAATCTTCTCAGAAAGTTTACAGAATCCTCCAGGAGGAAAGGCATTC AGAGTGTTTGCTGTTGTG AACTGAATACTTGGAAGAGGACCATAAAGACTATTCCAAATGCAATATTTCTGAATTTTGTATAAAACTGTACATTACTGTACAGAGTACATCAACTATTTTCAGCCCAAAAAGGTGCCAAATGCATATAAATCTTGATAAACAAAGTCTATAAAATAAAACATGGGACATTAGCTTTGGGAAAAGTAATGAAAATATAATGG $\tt TTTTAGAAATCCTGTGTTAAATATTGCTATATTTTCTTAGCAGTTATTTCTACAGTTAATTACATAGTCATGATT$ GTTCTACGTTTCATATATATATGGTGCTTTGTATATGCCACTAATAAAATGAATCTAAACATTGAATGTGAATG AAATTGAGGTCACATATTTTCTTTTGTATCCTGGCAAATACTCCTGCAGGCCAGGAAGTATAATAGCAAAAAGTT ATATTGCCATATCATGGTACCTATAATGGTGATATATTTGTTTCTATGAAAAATGTATTGTGCTTTGATACTAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45417
<subunit 1 of 1, 500 aa, 1 stop
<MW: 56888, pI: 8.53, NX(S/T): 2</pre>

MKCTAREWLRVTTVLFMARAIPAMVVPNATLLEKLLEKYMDEDGEWWIAKQRGKRAITDNDM
QSILDLHNKLRSQVYPTASNMEYMTWDVELERSAESWAESCLWEHGFASLLPSIGQNLGAHW
GRYRPPTFHVQSWYDEVKDFSYPYEHECNPYCPFRCSGPVCTHYTQVVWATSNRIGCAINLC
HNMNIWGQIWPKAVYLVCNYSPKGNWWGHAPYKHGRPCSACPPSFGGGCRENLCYKEGSDRY
YPPREEETNEIERQQSQVHDTHVRTRSDDSSRNEVISAQQMSQIVSCEVRLRDQCKGTTCNR
YECPAGCLDSKAKVIGSVHYEMQSSICRAAIHYGIIDNDGGWVDITRQGRKHYFIKSNRNGI
QTIGKYQSANSFTVSKVTVQAVTCETTVEQLCPFHKPASHCPRVYCPRNCMQANPHYARVIG
TRVYSDLSSICRAAVHAGVVRNHGGYVDVMPVDKRKTYIASFQNGIFSESLQNPPGGKAFRV
FAVV

Important features:

Signal peptide:

amino acids 1-20

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 protein amino acids 165-186, 196-218, 134-146, 96-108 and 58-77

N-glycosylation site amino acids 28-31

GCGGAGACAAGCGCAGAGCGCACGGCCACAGACAGCCCTGGGCATCCACCGACGGCG CAGCCGGAGCCAGCAGAGCCGGAAGGCGCCCCCGGGCAGAAAGCCGAGCAGAGCTGGGT $\tt GGCGTCTCCGGGCCGCCTCCGACGGGCCAGCGCCCTCCCC\underline{ATG}TCCCTGCTCCCACGCCG$ ACACCGCGCGTGTGGACGGGTCCAAATGCAAGTGCTCCCGGAAGGGACCCAAGATCCGCTAC AGCGACGTGAAGAAGCTGGAAATGAAGCCAAAGTACCCGCACTGCGAGGAGAAGATGGTTAT AGAGCACCAAGCGCTTCATCAAGTGGTACAACGCCTGGAACGAGAAGCGCAGGGTCTACGAA GAATAGGGTGAAAAACCTCAGAAGGGAAAACTCCAAACCAGTTGGGAGACTTGTGCAAAGGA TTTCTCACAGGCATAAGACACAAATTATATATTGTTATGAAGCACTTTTTACCAACGGTCAG TTTTTACATTTTATAGCTGCGTGCGAAAGGCTTCCAGATGGGAGACCCATCTCTTGTGCT ${\tt CCAGACTTCATCACAGGCTGCTTTTTATCAAAAAGGGGAAAACTCATGCCTTTCCTTTTTAA}$ AAAATGCTTTTTTGTATTTGTCCATACGTCACTATACATCTGAGCTTTATAAGCGCCCGGGA GGAACAATGAGCTTGGTGGACACATTTCATTGCAGTGTTGCTCCATTCCTAGCTTGGGAAGC TTCCGCTTAGAGGTCCTGGCGCCTCGGCACAGCTGCCACGGGCTCTCCTGGGCTTATGGCCG $\tt GTCACAGCCTCAGTGTGACTCCACAGTGGCCCCTGTAGCCGGGCAAGCAGGAGCAGGTCTCT$ $\tt CTGCATCTGTTCTCTGAGGAACTCAAGTTTGGTTGCCAGAAAAATGTGCTTCATTCCCCCCT$ GGTTAATTTTTACACACCCTAGGAAACATTTCCAAGATCCTGTGATGGCGAGACAAATGATC $\tt CTTAAAGAAGGTGTGGGGTCTTTCCCAACCTGAGGATTTCTGAAAGGTTCACAGGTTCAATA$ TTTAATGCTTCAGAAGCATGTGAGGTTCCCAACACTGTCAGCAAAAACCTTAGGAGAAAACT TAAAAATATATGAATACATGCGCAATACACAGCTACAGACACACATTCTGTTGACAAGGGAA AACCTTCAAAGCATGTTTCTTTCCCTCACCACAACAGAACATGCAGTACTAAAGCAATATAT TTGTGATTCCCCATGTAATTCTTCAATGTTAAACAGTGCAGTCCTCTTTCGAAAGCTAAGAT GACCATGCGCCCTTTCCTCTGTACATATACCCTTAAGAACGCCCCCTCCACACACTGCCCCC CAGTATATGCCGCATTGTACTGCTGTTATATGCTATGTACATGTCAGAAACCATTAGCAT TGCATGCAGGTTTCATATTCTTTCTAAGATGGAAAGTAATAAAATATATTTGAAATGTAAAA AAAAAAAAA

 ${\tt MSLLPRRAPPVSMRLLAAALLLLLALYTARVDGSKCKCSRKGPKIRYSDVKKLEMKPKYPH} \\ {\tt CEEKMVIITTKSVSRYRGQEHCLHPKLQSTKRFIKWYNAWNEKRRVYEE}$

Signal sequence:

amino acids 1-34

GTTAACTGCTCTTGCCATCAAGTTCACCCTCATTGACAGCCCAAGCACAGTATCCAGTTGTCAACACAAATTATGG CAAAATCCGGGGCCTAAGAACACCGTTACCCAATGAGATCTTGGGTCCAGTGGAGCAGTACTTAGGGGTCCCCTA TGCCTCACCCCCACTGGAGAGAGGCGGTTTCAGCCCCCAGAACCCCCGTCCTCCTGGACTGGCATCCGAAATAC TACTCAGTTTGCTGCTGTGTGCCCCCAGCACCTGGATGAGAGATCCTTACTGCATGACATGCTGCCCATCTGGTT TACCGCCAATTTGGATACTTTGATGACCTATGTTCAAGATCAAAATGAAGACTGCCTTTACTTAAACATCTACGT GCCCACGGAAGATGGAGCCAACACAAAGAAAAACGCAGATGATATAACGAGTAATGACCGTGGTGAAGACGAAGA ${\tt TATTCATGATCAGAACAGTAAGAAGCCCGTCATGGTCTATATCCATGGGGGATCTTACATGGAGGGCACCGGCAACCAACCGGCAACAACAAA$ ${\tt CATGATTGACGGCAGCATTTTGGCAAGCTACGGAAACGTCATCGTGATCACCATTAACTACCGTCTGGGAATACT}$ AGGGTTTTTAAGTACCGGTGACCAGGCAGCAAAAGGCAACTATGGGCTCCTGGATCAGATTCAAGCACTGCGGTG $\tt CCTGTCCAGCTGGGCAGTGAACTACCAGCCGGCCAAGTACACTCGGATATTGGCAGACAAGGTCGGCTGCAACAT$ GCTGGACACCACGGACATGGTAGAATGCCTGCGGAACAAGAACTACAAGGAGCTCATCCAGCAGACCATCACCCC GGCCACCTACCACATAGCCTTCGGGCCGGTGATCGACGGCGACGTCATCCCAGACGACCCCCAGATCCTGATGGA GCAAGGCGAGTTCCTCAACTACGACATCATGCTGGGCGTCAACCAAGGGGAAGGCCTGAAGTTCGTGGACGCAT GCACGCGCAGTACGGCTCCCCCACCTACTTCTATGCCTTCTATCATCACTGCCAAAGCGAAATGAAGCCCAGCTG GGCAGATTCGGCCCATGGTGATGAGGTCCCCTATGTCTTCGGCATCCCCATGATCGGTCCCACCGAGCTCTTCAG $\tt TTGTAACTTTTCCAAGAACGACGTCATGCTCAGCGCCGTGGTCATGACCTACTGGACGAACTTCGCCAAAACTGG$ AACGAAAGTGGCTTTCTGGTTGGAACTCGTTCCTCATTTGCACAACTTGAACGAGATATTCCAGTATGTTTCAAC AACCACCAAACGCCCAGCAATCACTCCTGCCAACAATCCCAAACACTCTAAGGACCCTCACAAAACAGGGCCTGA GGACACAACTGTCCTCATTGAAACCAAACGAGATTATTCCACCGAATTAAGTGTCACCATTGCCGTCGGGGCGTC GCTCCTCTCCTCAACATCTTAGCTTTTGCGGCGCTGTACTACAAAAAGGACAAGAGGCGCCATGAGACTCACAG GCGCCCCAGTCCCCAGAGAAACACCACAAATGATATCGCTCACATCCAGAACGAAGAGATCATGTCTCTGCAGAT A GAAGAGGGAAAGGAGAGAGAGAGAGAGAGAGAGAAAGAAAGTCTCCAGACCAGGAATGTTTTTGTCCCACTAAGATCAACTTCTGACCCTGTGAAATGTGAGAAGTACACATTTCTGTTAAAATAACTGCTTTAAGATCTCTACCA $\tt CTCCAATCAATGTTTAGTGTGATAGGACATCACCATTTCAAGGCCCCGGGTGTTTCCAACGTCATGGAAGCAGCT$ AGAGAAGGAAACGTAGAAATTTATTATAAAAGAATGGACTGTGCAGCGAAATCTGTACGGTTCTGTGCAAAGAG GTGTTTTGCCAGCCTGAACTATATTTAAGAGACTTTGT

MLNSNVLLWLTALAIKFTLIDSQAQYPVVNTNYGKIRGLRTPLPNEILGPVEQYLGVPYASP
PTGERRFQPPEPPSSWTGIRNTTQFAAVCPQHLDERSLLHDMLPIWFTANLDTLMTYVQDQN
EDCLYLNIYVPTEDGANTKKNADDITSNDRGEDEDIHDQNSKKPVMVYIHGGSYMEGTGNMI
DGSILASYGNVIVITINYRLGILGFLSTGDQAAKGNYGLLDQIQALRWIEENVGAFGGDPKR
VTIFGSGAGASCVSLLTLSHYSEGLFQKAIIQSGTALSSWAVNYQPAKYTRILADKVGCNML
DTTDMVECLRNKNYKELIQQTITPATYHIAFGPVIDGDVIPDDPQILMEQGEFLMYDIMLGV
NQGEGLKFVDGIVDNEDGVTPNDFDFSVSNFVDNLYGYPEGKDTLRETIKFMYTDWADKENP
ETRRKTLVALFTDHQWVAPAVAADLHAQYGSPTYFYAFYHHCQSEMKPSWADSAHGDEVPYV
FGIPMIGPTELFSCNFSKNDVMLSAVVMTYWTNFAKTGDPNQPVPQDTKFIHTKPNRFEEVA
WSKYNPKDQLYLHIGLKPRVRDHYRATKVAFWLELVPHLHNLNEIFQYVSTTTKVPPPDMTS
FPYGTRRSPAKIWPTTKRPAITPANNPKHSKDPHKTGPEDTTVLIETKRDYSTELSVTIAVG
ASLLFLNILAFAALYYKKDKRRHETHRRPSPQRNTTNDIAHIQNEEIMSLQMKQLEHDHECE
SLQAHDTLRLTCPPDYTLTLRRSPDDIPLMTPNTITMIPNTLTGMQPLHTFNTFSGGQNSTN
LPHGHSTTRV

Signal sequence:

amino acids 1-24

Transmembrane domains:

amino acids 189-204, 675-692

GGGAAAGATGCCGCCGACTCTGGGACCCCTTGGGTCGTGGCAGCAGTGGCGGCGATGTTTGT CGGCTCGGGATGGGTCCAGGATGTTACTCCTTCTTCTTTTGTTGGGGTCTGGGCAGGGGCCA CAGCAAGTCGGGGCGGTCAAACGTTCGAGTACTTGAAACGGGAGCACTCGCTGTCGAAGCC CTACCAGGGTGTGGGCACAGGCAGTTCCTCACTGTGGAATCTGATGGGCAATGCCATGGTGA TGACCCAGTATATCCGCCTTACCCCAGATATGCAAAGTAAACAGGGTGCCTTGTGGAACCGG GTGCCATGTTTCCTGAGAGACTGGGAGTTGCAGGTGCACTTCAAAATCCATGGACAAGGAAA GAAGAATCTGCATGGGATGGCTTGGCAATCTGGTACACAAAGGATCGGATGCAGCCAGGGC CTGTGTTTGGAAACATGGACAAATTTGTGGGGGCTGGGAGTATTTGTAGACACCTACCCCAAT GAGGAGAAGCAGCAAGAGCGGGTATTCCCCTACATCTCAGCCATGGTGAACAACGGCTCCCT CAGCTATGATCATGAGCGGGATGGGCGGCCTACAGAGCTGGGAGGCTGCACAGCCATTGTCC GCAATCTTCATTACGACACCTTCCTGGTGATTCGCTACGTCAAGAGGCATTTGACGATAATG ATGGATATTGATGGCAAGCATGAGTGGAGGGACTGCATTGAAGTGCCCGGAGTCCGCCTGCC CCGCGGCTACTACTTCGGCACCTCCTCCATCACTGGGGATCTCTCAGATAATCATGATGTCA TTTCCTTGAAGTTGTTTGAACTGACAGTGGAGAGAACCCCAGAAGAGGGAAAAGCTCCATCGA GATGTGTTCTTGCCCTCAGTGGACAATATGAAGCTGCCTGAGATGACAGCTCCACTGCCGCC $\tt CCTGAGTGGCCTGTCTTCCTCATCGTCTTTTTCTCCCTGGTGTTTTCTGTATTTGCCA$ TAGTCATTGGTATCATACTCTACAACAAATGGCAGGAACAGAGCCGAAAGCGCTTCTACTGA GCCCTCCTGCTGCCACCACTTTTGTGACTGTCACCCATGAGGTATGGAAGGAGCAGGCACTG GCCTGAGCATGCAGCCTGGAGAGTGTTCTTGTCTCTAGCAGCTGGTTGGGGACTATATTCTG TCACTGGAGTTTTGAATGCAGGGACCCCGCATTCCCATGGTTGTGCATGGGGACATCTAACT $\tt CTGGTCTGGGAAGCCACCCCAGGGCAATGCTGCTGTGATGTGCCTTTCCCTGCAGTCC$ AGAATTTCATAGCCCAGGCTGCCGTGTTGTTTGACTCAGAAGGCCCTTCTACTTCAGTTTTG TCTTCCCTGCCTTACCTTCCTTTCACTCCATTCATTGTCCTCTCTGTGTGCAACCTGAGCTG GGAAAGGCATTTGGATGCCTCTCTGTTGGGGCCTGGGGCTGCAGAACACCCTGCGTTTCAC TGGCCTTCATTAGGTGGCCCTAGGGAGATGGCTTTCTGCTTTGGATCACTGTTCCCTAGCAT GGGTCTTGGGTCTATTGGCATGTCCATGGCCTTCCCAATCAAGTCTCTTCAGGCCCTCAGTG AAGTTTGGCTAAAGGTTGGTGTAAAAATCAAGAGAAGCCTGGAAGACATCATGGATGCCATG GATTAGCTGTGCAACTGACCAGCTCCAGGTTTGATCAAACCAAAAGCAACATTTGTCATGTG GTCTGACCATGTGGAGATGTTTCTGGACTTGCTAGAGCCTGCTTAGCTGCATGTTTTGTAGT TACGATTTTTGGAATCCCACTTTGAGTGCTGAAAGTGTAAGGAAGCTTTCTTCTTACACCTT TGCTGTTCTCATGTTCCAAGTCTGAGAGCAACAGACCCTCATCATCTGTGCCTGGAAGAGTT CACTGTCATTGAGCAGCACAGCCTGAGTGCTGGCCTCTGTCAACCCTTATTCCACTGCCTTA TTTGACAAGGGGTTACATGCTGCTCACCTTACTGCCCTGGGATTAAATCAGTTACAGGCCAG AGTCTCCTTGGAGGCCTGGAACTCTGAGTCCTCCTATGAACCTCTGTAGCCTAAATGAAAT ACCTGCAGTAGGGATAACAGGGTAATAAGCTTGGCCGCCATGG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50911

><subunit 1 of 1, 348 aa, 1 stop

><MW: 39711, pI: 8.70, NX(S/T): 1

MAATLGPLGSWQQWRRCLSARDGSRMLLLLLLLGSGQGPQQVGAGQTFEYLKREHSLSKPYQ GVGTGSSSLWNLMGNAMVMTQYIRLTPDMQSKQGALWNRVPCFLRDWELQVHFKIHGQGKKN LHGDGLAIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVFPYISAMVNNGSLSY DHERDGRPTELGGCTAIVRNLHYDTFLVIRYVKRHLTIMMDIDGKHEWRDCIEVPGVRLPRG YYFGTSSITGDLSDNHDVISLKLFELTVERTPEEEKLHRDVFLPSVDNMKLPEMTAPLPPLS GLALFLIVFFSLVFSVFAIVIGIILYNKWQEQSRKRFY

Signal sequence:

amino acids 1-38

Transmembrane domain:

amino acids 310-329

CCGAGCCGGCCGCAGCGACCGGGCCGGCCTGGGACCATGGGCGTGAGTGCAATCTACGGATCAGTCT ${\tt GACATGTTCCCGATTTGAGGTGAAACCATGAAGAGAAAATAGAATACTTAATA{\color{red}{\textbf{ATG}}}CTTTTCCGCAACCGCTTCT}$ $\overline{\texttt{TGCTGCTGGCCCTGGCTGCTGCCTTTGTGAGCCTCAGCCTGCAG}}\overline{\texttt{TTCTTCCACCTGATCCCGGTGT}}$ CGACTCCTAAGAATGGAATGAGTAGCAAGAGTCGAAAGAGAATCATGCCCGACCCTGTGACGGAGCCCCTGTGA CAGACCCCGTTTATGAAGCTCTTTTGTACTGCAACATCCCCAGTGTGGCCGAGCGCAGCATGGAAGGTCATGCCC AAACAAAGCGACCAGAAATTGACTGCACTCTGGTGGCTAACAGGAAACCGTATCACCCAAAACTGGAAGCTTTCA ${\tt TTAGTCACATGTCAAAAGGATCCGGAGCCTCTTTCGAAAGCCCCTTGAACTCCTTGCCTCTTTACCCAAATCACC}$ TCTATCTAAAGAAACACAAACTCCTGCCCAATGATTGGTCTGCAGACCAGCTCTATTTAGAGACCACTGGGAAAA AGCGTCGTCAGTACCTCCTACGTTTGAAAAACAGCCAGCTGGAGAAGACCTACGGGGAGATGGCCAAGATCGTGG ATGTCCCCACCAAGCAGCTTAGAGCTGCCAACCCCATAGACTCCATGCTCTGCCACTTCTGCCACAATGTCAGCT TTCCCTGTACCAGAAATGGCTGTGTGACATGGAGCACTTCAAGGTAATTAAGACCCATCAGATCGAGGATGAAA GGGAAAGACGGGAGAAAATTGTACTTCGGGTATTCTCCTGGGTGCCCACCCCATCCTGAACCAAACCATCG GCCGGATGCAGCGTGCCACCGAGGGCAGGAAAGAAGAGCTCTTTGCCCTCTACTCTGCTCATGATGTCACTCTGT ${\tt CACCAGTTCTCAGTGCCTTGGGCCTTTCAGAAGCCAGGTTCCCAAGGTTTGCAGCCAGGTTGATCTTTGAGCTTT}$ GGCAAGACAGAGAAAAGCCCAGTGAACATTCCGTCCGGATTCTTTACAATGGCGTCGATGTCACATTCCACACCT $\tt CTTTCTGCCAAGACCACCACAAGCGTTCTCCCAAGCCCATGTGCCCGCTTGAAAACTTGGTCCGCTTTGTGAAAA$ $\tt GGGACATGTTTGTAGCCCTGGGTGGCAGTGGTACAAATTATTATGATGCATGTCACAGGGAAGGATTC\underline{\textbf{TAA}} \texttt{AAGG}$ TATGCAGTACAGCAGTATAGAATCCATGCCAATACAGAGCATAGGGAAAGGTCCACTTCTAGTTTTGTCTGTTAC ${\tt AAGCACATTGCTGCAATGTGGTACGTGAATTGCTTGGTACAAAATGGCCAGTTCACAGAGGAATAGAAGGTACTT}$ TCTTCTGGCCTGCCCCATGTTACTATGTGATGGAACCAGCACCACCAAAATTTTTTTAATCTTAGACATT ${\tt GCCAGATTGTAAATATTTCAGACTGTGTGGACCAAAAGGCCACATACAGTCTCTGTCATAACTACTCAACTCTGT}$ TTCTGAAGCAGGAAAGCCACCACAGACAGACATACATAAAGGAATATGTGTAGCTGGGTTCCCAGGCCAGACAAAACA GATGGTGACCAGACTTGGCCCCTGGGCTGTAGTTTGCTGACCCCTCATCTAAAAAATAGGCTATACTACAATTGC AACTGATTAGAAGAATACTTGATGTTTATGATGATGTTGTGGTACAAGATAGTTTTAAGTATGTTCTAAATATTTGT TTCTAAGACCAGTTTTAGATGACTCTTATTCCTGTAGTAATATTCAATTTGCTGTACCTGCTTGGTGGTTAGAAG AGAACTTTGCTATTAGGTAGTTTACAGATCTTTATAAGGTGTTTTATATATTAGAAGCAATTATAATTACATCTG TGATTTCTGAACTAATGGTGCTAATTCAGAGAAATGGAAAGTGAAAGTGAGATTCTCTGTTGTCATCGGCATTCC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48329
><subunit 1 of 1, 480 aa, 1 stop</pre>

><MW: 55240, pI: 9.30, NX(S/T): 2

MLFRNRFLLLLALAALLAFVSLSLQFFHLIPVSTPKNGMSSKSRKRIMPDPVTEPPVTDPVY
EALLYCNIPSVAERSMEGHAPHHFKLVSVHVFIRHGDRYPLYVIPKTKRPEIDCTLVANRKP
YHPKLEAFISHMSKGSGASFESPLNSLPLYPNHPLCEMGELTQTGVVQHLQNGQLLRDIYLK
KHKLLPNDWSADQLYLETTGKSRTLQSGLALLYGFLPDFDWKKIYFRHQPSALFCSGSCYCP
VRNQYLEKEQRRQYLLRLKNSQLEKTYGEMAKIVDVPTKQLRAANPIDSMLCHFCHNVSFPC

 $\label{tem:tem:complete} TRNGCVDMEHFKVIKTHQIEDERERREKKLYFGYSLLGAHPILNQTIGRMQRATEGRKEELF\\ ALYSAHDVTLSPVLSALGLSEARFPRFAARLIFELWQDREKPSEHSVRILYNGVDVTFHTSF\\ CQDHHKRSPKPMCPLENLVRFVKRDMFVALGGSGTNYYDACHREGF$

Signal sequence:

GCCGCTGTTCACCAATCGGGGAGAGAAAAGCGGAGATCCTGCTCGCCTTGCACGCGCCTGAAGCACAAAGCAGAT AGCTAGGAATGAACCATCCCTGGGAGTATGTGGAAACAACGGAGGAGCTCTGACTTCCCAACTGTCCCATTCTAT ${\tt TCCTGCGCGACTGCACCGGGACTACAAAGGGCTTGTCCTGCTGGGAATCCTCCTGGGGACTCTGTGGGAGACCGG}$ ATGCACCCAGATACGCTATTCAGTTCCGGAAGAGCTGGAGAAAGGCTCTAGGGTGGGCGACATCTCCAGGGACCT GGGGCTGGAGCCCCGGGAGCTCGCGGAGCGCGGAGTCCGCATCATCCCCAGAGGTAGGACGCAGCTTTTCGCCCT GAATCCGCGCAGCGCAGCTTGGTCACGGCGGGCAGGATAGACCGGGAGGAGCTCTGTATGGGGGCCATCAAGTG TCAATTAAATCTAGACATTCTGATGGAGGATAAAGTGAAAATATATGGAGTAGAAGTAGAAGTAAGGGACATTAA $\tt CGACAATGCGCCTTACTTTCGTGAAAGTGAATTAGAAATAAAAATTAGTGAAAATGCAGCCACTGAGATGCGGTT$ $\tt CCCTCTACCCCACGCCTGGGATCCGGATATCGGGAAGAACTCTCTGCAGAGCTACGAGCTCAGCCCGAACACTCA$ CATCCGCGTGATGGTTCTGGATGCGAACGACAACGCACCAGCGTTTGCTCAGCCCGAGTACCGCGCGAGCGTTCC GGAGAATCTGGCCTTGGGCACGCAGCTGCTTGTAGTCAACGCTACCGACCCTGACGAAGGAGTCAATGCGGAAGT GAGGTATTCCTTCCGGTATGTGGACGACAAGGCGGCCCAAGTTTTCAAACTAGATTGTAATTCAGGGACAATATC $\tt CGCCAGCTCGGTTCCCGAAAACTCTCCCAGAGGGACATTAATTGCCCTTTTAAATGTAAATGACCAAGATTCTGA$ GGAAAACGGACAGGTGATCTGTTTCATCCAAGGAAATCTGCCCTTTAAATTAGAAAAATCTTACGGAAATTACTA TAGTTTAGTCACAGACATAGTCTTGGATAGGGAACAGGTTCCTAGCTACAACATCACAGTGACCGCCACTGACCG GGGAACCCCGCCCTATCCACGGAAACTCATATCTCGCTGAACGTGGCAGACACCCAACGACAACCCGCCGGTCTT $\tt CGACCCCGACTGTGAAGAGAACGCCCAGATCACTTATTCCCTGGCTGAGAACACCATCCAAGGGGCAAGCCTATC$ GTCCTACGTGTCCATCAACTCCGACACTGGGGTACTGTATGCGCTGAGCTCCTTCGACTACGAGCAGTTCCGAGA $\tt CACGGCGGAGCCCTGCTGGACAGAGACGCGCTCAAGCAGAGCCTCGTAGTGGCCGTCCAGGACCACGGCCAGCCTCGGGCCAGGCCTGGAGGACCACGGCCAGGCCAGGCCTGGAGGAGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCA$ $\tt CCTCGAGTCTCCAGCTAACTCTGAAACCTCAGACCTCACTCTGTACCTGGTGGTAGCGGTGGCCGCGGTCTCCTG$ ${\tt CATGCTCGTCAGCCAGGAGAGCTTTGAAAAAAGCGAGCCCCTTTTGCTGTCAGGTGATTCGGTATTTTCTAAAGA}$ ${\tt TGGAGTGCAGCGGTACGATCATAGCTCACTGCGGCCTCAAACTCCTAGGCTCAAGCAATTATCCCACCTTTGCCT}$ $\tt CTATCTATCTATCTATTACTTTCTTGTACAGACGGGAGTCTCACGCCTGTAATCCCAGTACTTTGGGAGGC$ $\overline{\text{AAAAATACAAAATTAGCCGGGCGTGGTGGTGCATGTCTGTAATCCCAGCTACTTGGGAGGGCTGAGTCAGGAGAAT}$ TGCTTTAACCTGGGAGGTGGAGGTTGCAATGAGCTGAGATTGTGCCATTGCACTCCAGCCTGGGCAACAAGAGTG AAACTCTATCTCA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48306
><subunit 1 of 1, 916 aa, 1 stop
><MW: 100204, pI: 4.92, NX(S/T): 4</pre>

MIPARLHRDYKGLVLLGILLGTLWETGCTQIRYSVPEELEKGSRVGDISRDLGLEPRELAER
GVRIIPRGRTQLFALNPRSGSLVTAGRIDREELCMGAIKCQLNLDILMEDKVKIYGVEVEVR
DINDNAPYFRESELEIKISENAATEMRFPLPHAWDPDIGKNSLQSYELSPNTHFSLIVQNGA
DGSKYPELVLKRALDREEKAAHHLVLTASDGGDPVRTGTARIRVMVLDANDNAPAFAQPEYR
ASVPENLALGTQLLVVNATDPDEGVNAEVRYSFRYVDDKAAQVFKLDCNSGTISTIGELDHE
ESGFYQMEVQAMDNAGYSARAKVLITVLDVNDNAPEVVLTSLASSVPENSPRGTLIALLNVN
DQDSEENGQVICFIQGNLPFKLEKSYGNYYSLVTDIVLDREQVPSYNITTVTATDRGTPPLST
ETHISLNVADTNDNPPVFPQASYSAYIPENNPRGVSLVSVTAHDPDCEENAQITYSLAENTI
QGASLSSYVSINSDTGVLYALSSFDYEQFRDLQVKVMARDNGHPPLSSNVSLSLFVLDQNDN
APEILYPALPTDGSTGVLAPRSAEPGYLVTKVVAVDRDSGQNAWLSYRLLKASEPGLFSVG
HTGEVRTARALLDRDALKQSLVVAVQDHGQPPLSATVTLTVAVADSIPQVLADLGSLESPA
NSETSDLTLYLVVAVAAVSCVFLAFVILLALRRWHKSRLLQASGGGLTGAPASHFVGVD
GVQAFLQTYSHEVSLTTDSRKSHLIFPQPNYADMLVSQESFEKSEPLLLSGDSVFSKDSHGL
IEVSLYQIFFLFFFNCSVSQAGVQRYDHSSLRPQTPFLKQLSHLCLRCNRDYRCKPPTVCLS
IYLSIYLSIYLLISCTDGSLTPVIPVLWEAEAGGSPEVGSLRPA

Signal sequence:

amino acids 1-30

Transmembrane domains:

amino acids 693-711, 809-823, 869-888

GCTCCAGAATCGTGTACCAGGCAGAGAACTGAAGTACTGGGGCCTCCTCCACTGGGTCCGAA ${\tt TCAGTAGGTGACCCCGGCCCTGGATTCTGGAAGACCTCACC{\tt ATG}GGACGCCCCGACCTCGT}$ GCGGCCAAGACGTGGATGTTCCTGCTCTTGCTGGGGGGAGCCTGGGCAGGACACTCCAGGGC ACAGGAGGACAAGGTGCTGGGGGGTCATGAGTGCCAACCCCATTCGCAGCCTTGGCAGGCGG $\tt CCTTGTTCCAGGGCCAGCAACTACTCTGTGGCGGTGTCCTTGTAGGTGGCAACTGGGTCCTT$ ACAGCTGCCCACTGTAAAAAACCGAAATACACAGTACGCCTGGGAGACCACAGCCTACAGAA TAAAGATGGCCCAGAGCAAGAAATACCTGTGGTTCAGTCCATCCCACACCCCTGCTACAACA GCAGCGATGTGGAGGACCACAACCATGATCTGATGCTTCTTCAACTGCGTGACCAGGCATCC CTGGGGTCCAAAGTGAAGCCCATCAGCCTGGCAGATCATTGCACCCAGCCTGGCCAGAAGTG CACCGTCTCAGGCTGGGGCACTGTCACCAGTCCCCGAGAGAATTTTCCTGACACTCTCAACT GTGCAGAAGTAAAAATCTTTCCCCAGAAGAAGTGTGAGGATGCTTACCCGGGGCAGATCACA GATGGCATGGTCTGTGCAGGCAGCAAAGGGGCCTGACACGTGCCAGGGCGATTCTGGAGG $\tt CCCCCTGGTGTGTGATGGTGCACTCCAGGGCATCACATCCTGGGGCTCAGACCCCTGTGGGA$ GGTCCGACAAACCTGGCGTCTATACCAACATCTGCCGCTACCTGGACTGGATCAAGAAGATC $\tt ATAGGCAGGAGGGC\underline{TGA} \tt TTCTAGGATAAGCACTAGATCTCCCTTAATAAACTCACAACTCT$ CTGGTTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48336
<subunit 1 of 1, 260 aa, 1 stop
<MW: 28048, pI: 7.87, NX(S/T): 1</pre>

MGRPRPRAAKTWMFLLLLGGAWAGHSRAQEDKVLGGHECQPHSQPWQAALFQGQQLLCGGVL VGGNWVLTAAHCKKPKYTVRLGDHSLQNKDGPEQEIPVVQSIPHPCYNSSDVEDHNHDLMLL QLRDQASLGSKVKPISLADHCTQPGQKCTVSGWGTVTSPRENFPDTLNCAEVKIFPQKKCED AYPGQITDGMVCAGSSKGADTCQGDSGGPLVCDGALQGITSWGSDPCGRSDKPGVYTNICRY LDWIKKIIGSKG

Important Features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 51-71

N-glycosylation site.

amino acids 110-113

Serine proteases, trypsin family, histidine active site. amino acids 69-74 and 207-217

Tyrosine kinase phosphorylation site.

amino acids 182-188

Kringle domain proteins motif

amino acids 205-217

GGCGCCGGTGCACCGGGCGGGCTGAGCGCCTCCTGCGGCCCGGCCTGCGCCCCGGCCCGGCCCCGC CGCGCCGCCCACCCCGGCCCGGCCCCCTAGCCCCGCCCGGGCCCGCGCCCGC CCCCGGCCGGCGGGAACCGGCGGATTCCTCGCGCGTCAAACCACCTGATCCCATAAAAC TGCGGACCCGGCGGGGGAGACGGCCCCCCCGAAACGACTTTCAGTCCCCGACGCGC CTGTGGCTGCAGGCCTGGCAGGTGGCAGCCCCATGCCCAGGTGCCTGCGTATGCTACAATGA GCCCAAGGTGACGACAAGCTGCCCCAGCAGGGCCTGCAGGCTGTGCCCGTGGGCATCCCTG CTGCCAGCCAGCGCATCTTCCTGCACGGCAACCGCATCTCGCATGTGCCAGCTGCCAGCTTC CGTGCCTGCCGCAACCTCACCATCCTGTGGCTGCACTCGAATGTGCTGGCCCGAATTGATGC GGCTGCCTTCACTGGCCTGGCCCTCCTGGAGCAGCTGGACCTCAGCGATAATGCACAGCTCC GGTCTGTGGACCCTGCCACATTCCACGGCCTGGGCCGCCTACACACGCTGCACCTGGACCGC TGCGGCCTGCAGGAGCTGGGCCCGGGGCTGTTCCGCGGCCTGCCCTGCAGTACCTCTA $\tt CCTGCAGGACAACGCGCTGCAGGCACTGCCTGATGACACCTTCCGCGACCTGGGCAACCTCA$ CACACCTCTTCCTGCACGGCAACCGCATCTCCAGCGTGCCCGAGCGCGCCTTCCGTGGGCTG CACAGCCTCGACCGTCTCCTACTGCACCAGAACCGCGTGGCCCATGTGCACCCGCATGCCTT CCGTGACCTTGGCCGCCTCATGACACTCTATCTGTTTGCCAACAATCTATCAGCGCTGCCCA CTGAGGCCCTGCCTGCGTGCCCTGCAGTACCTGAGGCTCAACGACAACCCCTGGGTG TGTGACTGCCGGGCACGCCCACTCTGGGCCTGCAGAAGTTCCGCGGCTCCTCCGA GGTGCCCTGCAGCCTCCCGCAACGCCTGGCCGTGACCTCAAACGCCTAGCTGCCAATG ACCTGCAGGGCTGCGCCACCGGCCCTTACCATCCCATCTGGACCGGCAGGGCCACC ACTGGAGCCTGGAAGACCAGCTTCGGCAGGCAATGCGCTGAAGGGACGCGTGCCGCCCGGTG ACAGCCCGCCGGGCAACGGCTCTGGCCCACGGCACATCAATGACTCACCCTTTGGGACTCTG $\tt CCTGGCTCTGAGCCCCCGCTCACTGCAGTGCGGCCCGAGGGCTCCGAGCCACCAGGGTT$ CCCCACCTCGGGCCCTCGCCGGAGGCCAGGCTGTTCACGCAAGAACCGCACCCGCAGCCACT GCCGTCTGGGCCAGGCAGCGGGGGTGGCGGGACTGGTGACTCAGAAGGCTCAGGTGCC CTACCCAGCCTCACCTGCAGCCTCACCCCCTGGGCCTGGCGCTGCTGTGGACAGTGCT GGGGTCTCTCCACGCCGCCAAGCCAGCCGGGCGGCCGACCCGTGGGGCAGGCCAGGCCAG GCATTTATTTTACTTGTGTAAAAATATCGGACGACGTGGAATAAAGAGCTCTTTTCTTAAA AAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44184

><subunit 1 of 1, 473 aa, 1 stop

><MW: 50708, pI: 9.28, NX(S/T): 6

MKRASAGGSRLLAWVLWLQAWQVAAPCPGACVCYNEPKVTTSCPQQGLQAVPVGIPAASQRI
FLHGNRISHVPAASFRACRNLTILWLHSNVLARIDAAAFTGLALLEQLDLSDNAQLRSVDPA
TFHGLGRLHTLHLDRCGLQELGPGLFRGLAALQYLYLQDNALQALPDDTFRDLGRLTHLFLH
GNRISSVPERAFRGLHSLDRLLLHQNRVAHVHPHAFRDLGRLMTLYLFANNLSALPTEALAP
LRALQYLRLNDNPWVCDCRARPLWAWLQKFRGSSSEVPCSLPQRLAGRDLKRLAANDLQGCA
VATGPYHPIWTGRATDEEPLGLPKCCQPDAADKASVLEPGRPASAGNALKGRVPPGDSPPGN
GSGFRHINDSPFGTLPGSAEPPLTAVRPEGSEPPGFPTSGPRRRPGCSRKNRTRSHCRLGQA
GSGGGGTGDSEGSGALPSLTCSLTPLGLALVLWTVLGPC

Important features:

Signal peptide:

amino acids 1-26

Leucine zipper pattern.

amino acids 135-156

Glycosaminoglycan attachment site.

amino acids 436-439

N-glycosylation site.

amino acids 82-85, 179-183, 237-240, 372-375 and 423-426

VWFC domain

amino acids 411-425

GGAAGTCCACGGGGAGCTTGGATGCCAAAGGGAGGACGGCTGGGTCCTCTGGAGAGGACTAC TCACTGGCATATTTCTGAGGTATCTGTAGAATAACCACAGCCTCAGATACTGGGGACTTTAC AGTCCCACAGAACCGTCCTCCCAGGAAGCTGAATCCAGCAAGAACAATGGAGGCCAGCGGGA GGCGCGGCGGAACCTAGAAGCTATTCTGTGGTGGAGGAAACTGAGGGCAGCTCCTTTGTCAC CAATTTAGCAAAGGACCTGGGTCTGGAGCAGAGGGAATTCTCCAGGCGGGGGTTAGGGTTG TTTCCAGAGGGAACAAACTACATTTGCAGCTCAATCAGGAGACCGCGGATTTGTTGCTAAAT GAGAAATTGGACCGTGAGGATCTGTGCGGTCACACAGAGCCCTGTGTGCTACGTTTCCAAGT GTTGCTAGAGAGTCCCTTCGAGTTTTTTCAAGCTGAGCTGCAAGTAATAGACATAAACGACC ACTCTCCAGTATTTCTGGACAAACAAATGTTGGTGAAAGTATCAGAGAGCAGTCCTCCTGGG ACTACGTTTCCTCTGAAGAATGCCGAAGACTTAGATGTAGGCCAAAACAATATTGAGAACTA TATAATCAGCCCCAACTCCTATTTTCGGGTCCTCACCCGCAAACGCAGTGATGGCAGGAAAT ACCCAGAGCTGGTGCTGGACAAAGCGCTGGACCGAGAGGAAGAAGCTGAGCTCAGGTTAACA CTCACAGCACTGGATGGTGGCTCTCCGCCCAGATCTGGCACTGCTCAGGTCTACATCGAAGT CCTGGATGTCAACGATAATGCCCCTGAATTTGAGCAGCCTTTCTATAGAGTGCAGATCTCTG AGGACAGTCCGGTAGGCTTCCTGGTTGTGAAGGTCTCTGCCACGGATGTAGACACAGGAGTC AACGGAGAGATTTCCTATTCACTTTTCCAAGCTTCAGAAGAGATTGGCAAAACCTTTAAGAT CAATCCCTTGACAGGAGAAATTGAACTAAAAAAACAACTCGATTTCGAAAAAACTTCAGTCCT ATGAAGTCAATATTGAGGCAAGAGATGCTGGAACCTTTTCTGGAAAATGCACCGTTCTGATT CAAGTGATAGATGTGAACGACCATGCCCCAGAAGTTACCATGTCTGCATTTACCAGCCCAAT ACCTGAGAACGCGCCTGAAACTGTGGTTGCACTTTTCAGTGTTTCAGATCTTGATTCAGGAG AAAATGGGAAAATTAGTTGCTCCATTCAGGAGGATCTACCCTTCCTCCTGAAATCCGCGGAA AACTTTTACACCCTACTAACGGAGAGACCACTAGACAGAGAAAGCAGAGCGGAATACAACAT ${\tt CACTATCACTGTCACTGACTTGGGGACCCCTATGCTGATAACACAGCTCAATATGACCGTGC}$ TGATCGCCGATGTCAATGACAACGCTCCCGCCTTCACCCCAAACCTCCTACACCCTGTTCGTC CACCAACGCCCAGGTCACCTACTCGCTGCTGCCGCCCCAGGACCCGCACCTGCCCCTCACAT GCCCTGCAGGGGTTCCAGTTCCGCGTGGGCGCTTCAGACCACGGCTCCCCGGCGCTGAGCAG CTGGTGACCAAGGTGGTGGCGGTGGACGGCGACTCGGGCCAGAACGCCTGGCTGTCGTACCA GCTGCTCAAGGCCACGGAGCTCGGTCTGTTCGGCGTGTGGGCGCACAATGGCGAGGTGCGCA CCGCCAGGCTGCTGAGCGAGCGCGACGCGACGCCAAGCACAGGCTGGTGGTCGTCAAGGAC AATGGCGAGCCTCCGCGCCACCGCCACGCTGCACGTGCTCCTGGTGGACGGCTTCTC CCAGCCCTACCTGCCTCTCCCGGAGGCGGCCCGACCCAGGCCCAGGCCCACTTGCTCACCG TCTACCTGGTGGCGTTGGCCTCGGTGTCTTCGCTCTTTTCGGTGCTCCTGTTC $\tt GTGGCGGTGCGGCTGTGTAGGAGGAGCAGGGCGGCCTCGGTGGGTCGCTGCTTGGTGCCCGA$ GGGCCCCCTTCCAGGGCATCTTGTGGACATGAGCGGCACCAGGACCCTATCCCAGAGCTACC AGTATGAGGTGTGTCTGGCAGGAGGCTCAGGGACCAATGAGTTCAAGTTCCTGAAGCCGATT ATCCCCAACTTCCCTCCCCAGTGCCCTGGGAAAGAAATACAAGGAAATTCTACCTTCCCCAA ${\tt TAACTTTGGGTTCAATATTCAG{\color{red}{\textbf{T}}\underline{\textbf{GA}}}CCA{\color{blue}{\textbf{CATAGTTGACTTTACATTCCATAGGTATTTTATTT}}}$ TTACTCTTGATTTTTCTCATGTTCTTTCTCCCTTTGTTTTAAAGTGAACATTTACCTTTATT CCTGGTTCTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48314
<subunit 1 of 1, 798 aa, 1 stop</pre>

<MW: 87552, pI: 4.84, NX(S/T): 5

MEASGKLICRQRQVLFSFLLLGLSLAGAAEPRSYSVVEETEGSSFVTNLAKDLGLEQREFSR
RGVRVVSRGNKLHLQLNQETADLLLNEKLDREDLCGHTEPCVLRFQVLLESPFEFFQAELQV
IDINDHSPVFLDKQMLVKVSESSPPGTTFPLKNAEDLDVGQNNIENYIISPNSYFRVLTRKR
SDGRKYPBLVLDKALDREEBAELRLTLTALDGGSPPRSGTAQVYIEVLDVNDNAPEFEQPFY
RVQISEDSPVGFLVVKVSATDVDTGVNGEISYSLFQASEEIGKTFKINPLTGEIBLKKQLDF
EKLQSYEVNIEARDAGTFSGKCTVLIQVIDVNDHAPEVTMSAFTSPIPENAPETTVALFSVS
DLDSGENGKISCSIQEDLPFLLKSAENFYTLLTERPLDRESRAEYNITITVTDLGTPMLITQ
LNMTVLIADVNDNAPAFTQTSYTLFVRENNSPALHIRSVSATDRDSGTNAQVTYSLLPPQDN
HLPLTSLVSINADNGHLFALRSLDYEALQGFQFRVGASDHGSPALSSEALVRVVVLDANDNS
PFVLYPLQNGSAPCTELVPRAAEPGYLVTKVVAVDGDSGQNAWLSYQLLKATELGLFGVWAH
NGEVRTARLLSERDAKHRLVVLVKDNGEPPRSATATLHVLLVDGFSQPYLPLPEAAPTQAQ
ADLLTVYLVVALASVSSLFLFSVLLFVAVRLCRRSRAASVGRCLVPEGPLPGHLVDMSGTRT
LSQSYQYEVCLAGGSGTNEFKFLKPIIPNFPPCCPGKEIQGNSTFPNNFGFNIO

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 685-712

Cadherins extracellular repeated domain signature.

amino acids 122-132, 231-241, 336-346, 439-449 and 549-559

ATP/GTP-binding site motif A (P-loop).

amino acids 285-292

N-glycosylation site.

amino acids 418-421, 436-439, 567-570 and 786-789

ACCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGCCGTAGCCGTGC GCCGATTGCCTCTCGGCCTGGGCAATGCTCCCGGCTGCCGGTCGACGACCGCCCCGCGTCAT GCGGCTCCTCGGCTGGCAAGTATTGCTGTGGGTGCTGGGACTTCCCGTCCGCGGCGTGG AGGTTGCAGAGGAAAGTGGTCGCTTATGGTCAGAGGAGCAGCCTGCTCACCCTCTCCAGGTG GGGGCTGTGTACCTGGGTGAGGAGGAGCTCCTGCATGACCCGATGGCCCAGGACAGGCCAGC AGAAGAGGCCAATGCGGTGCTGGGGCTGGACACCCAAGGCGATCACATGGTGATGCTGTCTG $\tt GGAGGAGCGGAGGACTCAAGGTGCAACGTCCGAGAGAGCCTTTTCTCTCTGGATGGCGCTGG$ AGCACACTTCCCTGACAGAGAAGAGAGGAGTATTACACAGAGCCAGAAGTGGCGGAATCTGACG CAGCCCCGACAGAGGACTCCAATAACACTGAAAGTCTGAAATCCCCCAAAGGTGAACTGTGAG GAGAGAAACATTACAGGATTAGAAAATTTCACTCTGAAAATTTTAAATATGTCACAGGACCT ${\tt TATGGATTTTCTGAACCCAAACGGTAGTGACTGTACTCTAGTCCTGTTTTACACCCCGTGGT}$ GCCGCTTTTCTGCCAGTTTGGCCCCTCACTTTAACTCTCTGCCCCGGGCATTTCCAGCTCTT TGTTCCTAATATTTTATTTCAAGGAGCTAAACCAATGGCCAGATTTAATCATACAGATC GAACACTGGAAACACTGAAAATCTTCATTTTTAATCAGACAGGTATAGAAGCCAAGAAGAAT GTGGTGGTAACTCAAGCCGACCAAATAGGCCCTCTTCCCAGCACTTTGATAAAAAGTGTGGA GAAAGAAGTTGGAAAGAGGAACTTCAATCCTTCGTTTCAGAAATTAGTGCTACAGTTTCATA CATTTTCTCCAGTGACGTGTTGACTTGAAACTTCAGGCAGATTAAAAGAATCATTTGTTGAA CAACTGAATGTATAAAAAATTATAAACTGGTGTTTTAACTAGTATTGCAATAAGCAAATGC AAAAATATTCAATAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48333

><subunit 1 of 1, 360 aa, 1 stop

><MW: 39885, pI: 4.79, NX(S/T): 7

MVPAAGRRPPRVMRLLGWWQVLLWVLGLPVRGVEVAEESGRLWSEBQPAHPLQVGAVYLGEE
ELLHDPMGQDRAAEEANAVLGLDTQGDHMVMLSVIPGEAEDKVSSEPSGVTCGAGGAEDSRC
NVRESLFSLDGAGAHFPDREEEYYTEPEVAESDAAPTEDSNNTESLKSPKVNCEERNITGLE
NFTLKILNMSQDLMDFLNPNGSDCTLVLFYTPWCRFSASLAPHFNSLPRAFPALHFLALDAS
QHSSLSTRFGTVAVPNILLFQGAKPMARFNHTDRTLETLKIFIFNQTGIEAKKNVVVTQADQ
IGPLPSTLIKSVDWLLVFSLFFLISFIMYATIRTESIRWLIPGQEQEHVE

Important features:

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 321-340

Homologous region to dilsufide isomerase

amino acids 212-302

N-glycosylation site.

amino acids 165-168, 181-184, 187-190, 194-197, 206-209, 278-281 and 293-296

Thioredoxin domain

amino acids 211-227

CGCTGCTGCTCTCCTCGCCTCGCACTGCTGCCTGGGCTCGGCGCGGGGCTCTTCCTC TTTGGCCAGCCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCCATCCCGGTCAACCTGCA GCTGTGCCACGGCATCGAATACCAGAACATGCGGCTGCCCAACCTGCTGGGCCACGAGACCA TGAAGGAGGTGCTGGAGCAGGCCGCGCTTGGATCCCGCTGGTCATGAAGCAGTGCCACCCG GACACCAAGAAGTTCCTGTGCTCGCTCTTCGCCCCCGTCTGCCTCGATGACCTAGACGAGAC CATCCAGCCATGCCACTCGCTCTGCGTGCAGGTGAAGGACCGCTGCGCCCCGGTCATGTCCG $\verb|CCTTCGGCTTCCCCTGGCCCGACATGCTTGAGTGCGACCGTTTCCCCCAGGACAACGACCTT| \\$ TGCATCCCCTCGCTAGCAGCGACCACCTCCTGCCAGCCACCGAGGAAGCTCCAAAGGTATG TGAAGCCTGCAAAAATAAAATGATGATGACAACGACATAATGGAAACGCTTTGTAAAAATG ATTTTGCACTGAAAATAAAAGTGAAGGAGATAACCTACATCAACCGAGATACCAAAATCATC CTGGAGACCAAGAGCAAGACCATTTACAAGCTGAACGGTGTGTCCGAAAGGGACCTGAAGAA ATCGGTGCTGTGGCTCAAAGACAGCTTGCAGTGCACCTGTGAGGAGATGAACGACATCAACG CGCCCTATCTGGTCATGGGACAGAAACAGGGTGGGGAGCTGGTGATCACCTCGGTGAAGCGG ${\tt TGGCAGAAGGGGCAGAGAGAGTTCAAGCGCATCTCCCGCAGCATCCGCAAGCTGCAAGCTGCTA}$ GTCCCGGCATCCTGATGGCTCCGACAGGCCTGCTCCAGAGCACGGCTGACCATTTCTGCTCC GGGATCTCAGCTCCCGATCCCCAAGCACACTCCTAGCTGCTCCAGTCTCAGCCTGGGCAGCT TCCCCCTGCCTTTTGCACGTTTGCATCCCCAGCATTTCCTGAGTTATAAGGCCCACAGGAGTG GATAGCTGTTTTCACCTAAAGGAAAAGCCCACCCGAATCTTGTAGAAATATTCAAACTAATA AAATCATGAATATTTTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50920

><subunit 1 of 1, 295 aa, 1 stop

><MW: 33518, pI: 7.74, NX(S/T): 0

MLQGPGSLLLLFLASHCCLGSARGLFLFGQPDFSYKRSNCKPIPVNLQLCHGIEYQNMRLPN
LLGHETMKEVLEQAGAWIPLVMKQCHPDTKKFLCSLFAPVCLDDLDETIQPCHSLCVQVKDR
CAPVMSAFGFPWPDMLECDRFPQDNDLCIPLASSDHLLPATEEAPKVCEACKNKNDDDNDIM
ETLCKNDFALKIKVKEITYINRDTKIILETKSKTIYKLNGVSERDLKKSVLWLKDSLQCTCE
EMNDINAPYLVMGQKQGGELVITSVKRWQKGQREFKRISRSIRKLQC

Important features:

Signal peptide:

amino acids 1-20

Cysteine rich domain, homolgous to frizzled N terminus amino acids 6-153

GTGGAGGCCGCCGACGATGCCGGGGCCGACGCGCGAGCCCGGG AGCCTGCTCAACTGCTCCAACGCCACGCTGTGGCTCAGCTTTGCACCTGTGGCTGACGTCAT TGCTGAGGACTTGGTCCATGGAGCAGATCAACTGGCTGTCACTGGTCTACCTCGTGG TATCCACCCCATTTGGCGTGGCGGCCATCTGGATCCTGGACTCCGTCGGGCTCCGTGCGGCG ACCATCCTGGGTGCGTGGCTGAACTTTGCCGGGAGTGTGCTACGCATGGTGCCCTGCATGGT AGAGCCTGGTCATCTTCTCCCAGCCAAGCTGGCTGCCTTGTGGTTCCCAGAGCACCAGCGA GCCACGGCCAACATGCTCGCCACCATGTCGAACCCTCTGGGCGTCCTTGTGGCCAATGTGCT GTCCCCTGTGCTGAGAAGGGTGAGGACATTCCGTTAATGCTCGGTGTCTATACCATCC CTGCTGGCGTCTCCCTGTCTCCACCATCTGCCTGTGGGAGAGTGTGCCCCCCACCCCG CATGTGGAACAAGGCCTATGTCATCCTGGCTGTGTGCTTGGGGGGAATGATCGGGATCTCTG $\tt CCAGCTTCTCAGCCCTCCTGGAGCAGATCCTCTGTGCAAGCGGCCACTCCAGTGGGTTTTCC$ GGCCTCTGTGGCGCTCTTCATCACGTTTGGGATCCTGGGGGCACTGGCTCTCGGCCCCTA TGTGGACCGGACCAAGCACTTCACTGAGGCCACCAAGATTGGCCTGTGCCTGTTCTCTCTGG CCTGCGTGCCCTTTGCCCTGGTGTCCCAGCTGCAGGGACAGACCCTTGCCCTGGCTGCCACC TGCTCGCTCGCGCTGTTTGGCTTCTCGGTGGGCCCCGTGGCCATGGAGTTCGCCGTCGA GTGTTCCTTCCCCGTGGGGGGGGGGCTGCCACAGGCATGATCTTTGTGCTGGGGCAGGCCG AGGGAATACTCATCATGCTGGCAATGACGGCACTGACTGTGCGACGCTCGGAGCCGTCCTTG TCCACCTGCCAGCAGGGGGAGGATCCACTTGACTGGACAGTGTCTCTGCTGCTGATGGCCGG CCTGTGCACCTTCTTCAGCTGCATCCTGGCGGTCTTCTTCCACACCCCATACCGGCGCCTGC AGGCCGAGTCTGGGGAGCCCCCCTCCACCCGTAACGCCGTGGGCGGCGCAGACTCAGGGCCG GGTGTGGACCGAGGGGGGCAGCAGGAAGGGCTGGGGTCCTGGGGCCCAGCACGGCGACTCCGGA AGACTCGCAGGCAGGGTCCAAGCGTCCAGGTTTATTGACCCGGCTGGGTCTCACTCCTCTT CTCCTCCCGTGGGTGATCACG<u>TAG</u>CTGAGCGCCTTGTAGTCCAGGTTGCCCGCCACATCGA CCGGGAGCGAATTACAAGCGCGCACCTGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50988

><subunit 1 of 1, 560 aa, 1 stop

><MW: 58427, pI: 6.86, NX(S/T): 2

MAGPTEAETGLAEPRALCAQRGHRTYARRWVFLLAISLLNCSNATLWLSFAPVADVIAEDLV
LSMEQINWLSLVYLVVSTPFGVAAIWILDSVGLRAATILGAWLNFAGSVLRMVPCMVVGTQN
PFAFLMGGQSLCALAQSLVIFSPAKLAALWFPEHQRATANMLATMSNPLGVLVANVLSPVLV
KKGEDIPLMLGVYTIPAGVVCLLSTICLWESVPPTPPSAGAASSTSEKFLDGLKLQLMWNKA
YVILAVCLGGMIGISASFSALLEQILCASGHSSGFSGLCGALFITFGILGALALGPYVDRTK
HFTEATKIGLCLFSLACVPFALVSQLQGQTLALAATCSLLGLFGFSVGPVAMELAVECSFPV
GEGAATGMIFVLGQAEGILIMLAMTALTVRRSEPSLSTCQQGEDPLDWTVSLLLMAGLCTFF
SCILAVFFHTPYRRLQAESGEPPSTRNAVGGADSGPGVDRGGAGRAGVLGPSTATPECTARG
ASLEDPRGPGSPHPACHRATPRAQGPAATDAPSRPGRLAGRVOASRFIDPAGSHSSFSSPWVIT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 61-79, 98-112, 126-146, 169-182, 201-215, 248-268, 280-300, 318-337, 341-357, 375-387, 420-441

N-glycosylation site.

amino acids 40-43 and 43-46

Glycosaminoglycan attachment site.

amino acids 468-471

GTCCCACATCCTGCTCAACTGGGTCAGGTCCCTCTTAGACCAGCTCTTGTCCATCATTTGCTGAAGTGGACCAAC TAGTTCCCCAGTAGGGGGTCTCCCCTGGCAATCTTGATCGGCGTTTGGACATCTCAGATCGCTTCCAATGAAGA TGGCCTTGCCTTGGGGTCCTGCTTGTTTCATAATCATCTAACTATGGGACAAGGTTGTGCCGGCAGCTCTGGGGG AAGGAGCACGGGGCTGATCAAGCCATCCAGGAAACACTGGAGGACTTGTCCAGCCTTGAAAGAACTCTAGTGGTT ${\tt TCTGAATCTAGCCCACTTGGCGGTAAGC} \underline{{\tt ATG}} \underline{{\tt ATGCAACTTCTGCAACTTCTGCTGGGGCTTTTGGGGCCAGGTGG}$ GCTGGAAATCTCTGAGAGCGCCTCTCTGCGAACCCGGATCCCCCTGGACAGAGCTCTTGACCCAGACACAGGCCC TAACACCCTGCACACTCTGTCTCCCAGTGAGCACTTTGCCTTGGATGTCATTGTGGGCCCTGATGAGAC CTATGACAATGGGAACCCCCCCAAGTCAGGTACCAGCTTGGTCAAGGTCAACGTCTTGGACTCCAATGACAATAG CCCTGCGTTTGCTGAGAGTTCACTGGCACTGGAAATCCAAGAAGATGCTGCACCTGGTACGCTTCTCATAAAACT GACCGCCACAGACCCTGACCAAGGCCCCAATGGGGAGGTGGAGTTCTTCCTCAGTAAGCACATGCCTCCAGAGGT GCTGGACACCTTCAGTATTGATGCCAAGACAGGCCAGGTCATTCTGCGTCGACCTCTAGACTATGAAAAGAACCC TGCCTACGAGGTGGATGTTCAGGCAAGGGACCTGGGTCCCAATCCTATCCCAGCCCATTGCAAAGTTCTCATCAA GGTTCTGGATGTCAATGACAACATCCCAAGCATCCACGTCACATGGGCCTCCCAGCCATCACTGGTGTCAGAAGC ${\tt TCTTCCCAAGGACAGTTTTATTGCTCTTGTCATGGCAGATGACTTGGATTCAGGACACAATGGTTTGGTCCACTG}$ AGCCAAGAAACAGCTCAGCATTCAGATCAGTGACATCAACGACAATGCACCTGTGTTTGAGAAAAGCAGGTATGA AGTCTCCACGCGGGAAAACAACTTACCCTCTCTTCACCTCATTACCATCAAGGCTCATGATGCAGACTTGGGCAT TAATGGAAAAGTCTCATACCGCATCCAGGACTCCCCAGTTGCTCACTTAGTAGCTATTGACTCCAACACAGGAGA GGTCACTGCTCAGAGGTCACTGAACTATGAAGAGATGGCCGGCTTTGAGTTCCAGGTGATCGCAGAGGACAGCGG GCAACCCATGCTTGCATCCAGTGTCTCTGTGTGGGTCAGCCTCTTGGATGCCCAATGATAATGCCCCAGAGGTGGT AAATGAAGCCCACCTCTTCATCCTCAACCCTCATACGGGGCAGCTGTTCGTCAATGTCACCAATGCCAGCAGCCT ${\tt CATTGGGAGTGGGAGCTGGAGATAGTAGTAGAGGACCAGGGAAGCCCCCCTTTACAGACCCGAGCCCTGTT}$ GAGGGTCATGTTTGTCACCAGTGTGGACCACCTGAGGGACTCAGCCCGCAAGCCTGGGGCCTTGAGCATGTCGAT GCTGACGGTGATCTGCCTGGCTGTACTGTTGGGCATCTTCGGGTTGATCCTGGCTTTGTTCATGTCCATCTGCCG GACAGAAAAGAAGGACAACAGGGCCTACAACTGTCGGGAGGCCGAGTCCACCTACCGCCAGCAGCCCAAGAGGCC CCACCTCACCCCGACCCTGTACAGGACGCTGCGTAATCAAGGCAACCAGGGAGGCCCGGCGGAGAGCCGAGAGGT TGGAGACCAGGGCAGTGAGGAAGCCCCACAGAGGCCACCAGCCTCCTCTGCAACCCTGAGACGGCAGCGACATCT TGCCTTCGCCGAGCGGAACCCCGTGGAGGAGCTCACTGTGGATTCTCCTCCTGTTCAGCAAATCTCCCAGCTGCT AGGGCCTTTGGATCCTGAAGAGGACCTCTCTGTGAAGCAACTGCTAGAAGAAGAGGCTGTCAAGTCTGCTGGACCCCAGCACAGGTCTGGCCCTGGACCGGCTGAGCGCCCTGACCCGGCCTGGATGGCGAGACTCTCTTTTGCCCCTCAC CACCAACTACCGTGACAATGTGATCTCCCCGGATGCTGCAGCCACGGAGGAGCCGAGGACCTTCCAGACGTTCGG GCTGGAGATGCTGCTGGAACAGCGCTCCAGCATGCCCGTGGAGGCCGCCTCCGAGGCGCTGCGGCGGCTCTCGGT AAAGACGGGGACTGAGGGCAGAGGCAGCAGCAGCAGCAGCAGCAGCTGCCTGTGAACATACCTCAGACGCCT TGACCAAAGCAGCCCCTTGTAAGCAGCTCTGAGTCTTTTGGAGGACAGGGACGGTTTGTGGCTGAGATAAGTGTT AAAGGGTGGCCTTCTTGGGTAGCAGGAGTCAGGGGGGCTGTACCCTGGGGGTGCCAGGAAATGCTCTCTGACCTAT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48331
<subunit 1 of 1, 1184 aa, 1 stop
<MW: 129022, pI: 5.20, NX(S/T): 5</pre>

 $\mathtt{MMQLLQLLLGLLGPGGYLFLLGDCQEVTTLTVKYQVSEEVPSGTVIGKLSQELGREERRRQA$ GAAFQVLQLPQALPIQVDSEEGLLSTGRRLDREQLCRQWDPCLVSFDVLATGDLALIHVEIO VLDINDHQPRFPKGEQELEISESASLRTRIPLDRALDPDTGPNTLHTYTLSPSEHFALDVIV GPDETKHAELIVVKELDREIHSFFDLVLTAYDNGNPPKSGTSLVKVNVLDSNDNSPAFAESS LALEIQEDAAPGTLLIKLTATDPDQGPNGEVEFFLSKHMPPEVLDTFSIDAKTGQVILRRPL DYEKNPAYEVDVQARDLGPNPIPAHCKVLIKVLDVNDNIPSIHVTWASQPSLVSEALPKDSF IALVMADDLDSGHNGLVHCWLSQELGHFRLKRTNGNTYMLLTNATLDREQWPKYTLTLLAQD QGLQPLSAKKQLSIQISDINDNAPVFEKSRYEVSTRENNLPSLHLITIKAHDADLGINGKVS YRIQDSPVAHLVAIDSNTGEVTAQRSLNYEEMAGFEFQVIAEDSGQPMLASSVSVWVSLLDA ${\tt NDNAPEVVQPVLSDGKASLSVLVNASTGHLLVPIETPNGLGPAGTDTPPLATHSSRPFLLTT}$ IVARDADSGANGEPLYSIRNGNEAHLFILNPHTGQLFVNVTNASSLIGSEWELEIVVEDOGS PPLQTRALLRVMFVTSVDHLRDSARKPGALSMSMLTVICLAVLLGIFGLILALFMSICRTEK KDNRAYNCREAESTYRQQPKRPQKHIQKADIHLVPVLRGQAGEPCEVGQSHKDVDKEAMMEA ${\tt GWDPCLQAPFHLTPTLYRTLRNQGNQGAPAESREVLQDTVNLLFNHPRQRNASRENLNLPEP}$ QPATGQPRSRPLKVAGSPTGRLAGDQGSEEAPQRPPASSATLRRQRHLNGKVSPEKESGPRO ${\tt ILRSLVRLSVAAFAERNPVEELTVDSPPVQQISQLLSLLHQGQFQPKPNHRGNKYLAKPGGS}$ ${\tt RSAIPDTDGPSARAGGQTDPEQEEGPLDPEEDLSVKQLLEEELSSLLDPSTGLALDRLSAPD}$ PAWMARLSLPLTTNYRDNVISPDAAATEEPRTFQTFGKAEAPELSPTGTRLASTFVSEMSSL LEMLLEQRSSMPVEAASEALRRLSVCGRTLSLDLATSAASGMKVQGDPGGKTGTEGKSRGSS SSSRCL

Important features:
Signal peptide:
amino acids 1-13
Transmembrane domain:
amino acids 719-739
N-glycosylation site.
amino acids 415-418, 582-585, 659-662, 662-665 amd 857-860
Cadherins extracellular repeated domain signature.
amino acids 123-133, 232-242, 340-350, 448-458 and 553-563

 $\tt CGGACGCGTGGGCGACGCGTGGGGGAGAGCCGCAGTCCCGGCTGCAGCACCTGGGAGAAGG$ $\tt GCAGGAGCCTTCCTTACACTTCGCC{\color{red} A} \underline{\textbf{TG}} \\ \tt AGTTTCCTCATCGACTCCAGCATCATGATTACCT$ $\tt CCCAGATACTATTTTTGGATTTGGGTGGCTTTTCTTCATGCGCCAATTGTTTAAAGACTAT$ GAGATACGTCAGTATGTTGTACAGGTGATCTTCTCCGTGACGTTTGCATTTTCTTGCACCAT $\tt GTTTGAGCTCATCTTTGAAATCTTAGGAGTATTGAATAGCAGCTCCCGTTATTTTCACT$ ${\tt GGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTTTCATGGTGCCTTTTTACATTGGC}$ TATTTATTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTTTTCCTGTCTCTT ATGGCTGACCTTTATGTATTTCTTCTGGAAACTAGGAGATCCCTTTCCCATTCTCAGCCCAA AACATGGGATCTTATCCATAGAACAGCTCATCAGCCGGGTTGGTGTGATTGGAGTGACTCTC ATGGCTCTTCTTCTGGATTTGGTGCTGTCAACTGCCCATACACTTACATGTCTTACTTCCT CAGGAATGTGACTGACACGGATATTCTAGCCCTGGAACGGCGACTGCTGCAAACCATGGATA TGATCATAAGCAAAAAGAAAAGGATGGCAATGGCACGGAGAACAATGTTCCAGAAGGGGGAA GTGCATAACAAACCATCAGGTTTCTGGGGAATGATAAAAAGTGTTACCACTTCAGCATCAGG TTTTTCTGGAAACAGCTGATCTATATGCTACCAAGGAGAGAATAGAATACTCCAAAACCTTC ${\tt AAGGGGAAATATTTTAATTTTCTTGGTTACTTTTTCTCTATTTACTGTGTTTTGGAAAATTTT}$ CATGGCTACCATCAATATTGTTTTTGATCGAGTTGGGAAAACGGATCCTGTCACAAGAGGCA TTGAGATCACTGTGAATTATCTGGGAATCCAATTTGATGTGAAGTTTTGGTCCCAACACATT TCCTTCATTCTTGGGAATAATCATCGTCACATCCATCAGAGGATTGCTGATCACTCTTAC AGATAATGGGCATGTACTTTGTCTCCTCTGTGCTGATCCGAATGAGTATGCCTTTAGAA TACCGCACCATAATCACTGAAGTCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTT ${\tt TGATGTGATCTTCCTGGTCAGCGCTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAAC}$ ${\tt AGGCACCAGAGAAGCAAATGGCACCTTGAACTTAAGCCTACTACAGACTGTTAGAGGCCAGT}$ $\tt GGTTTCAAAATTTAGATATAAGAGGGGGGAAAAATGGAACCAGGGCCTGACATTTTATAAAC$ AAACAAAATGCTATGGTAGCATTTTTCACCTTCATAGCATACTCCTTCCCCGTCAGGTGATA GCAGAGAGCATCCCGTGTGGATATGAGGCTGGTGTAGAGGCGGAGAGGAGCCAAGAAACTAA AGGTGAAAAATACACTGGAACTCTGGGGCAAGACATGTCTATGGTAGCTGAGCCAAACACGT AGGATTTCCGTTTTAAGGTTCACATGGAAAAGGTTATAGCTTTGCCTTGAGATTGACTCATT ACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEI
LGVLNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFF
WKLGDPFPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDI
LALERRLLQTMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQ
QEVDALEELSRQLFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVF
DRVGKTDPVTRGIEITVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISS
SKSSNVIVLLLAQIMGMYFVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSA
LSSILFLYLAHKOAPEKOMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

CATGGGAAGTGGAGCCGAGCCTTCCTTACACTCGCCATGAGTTTCCTCATCGACTCCAGCA
TCATGATTACCTCCCNGANACTATTTTTTGGATTTGGGTGGCTTTTCTTCNGCGCCAATGTT
TAAAGACTATGAGATACGTCAGTATGTTGTACNGGTGATCTTCTCCGTGACGTTTGCCATTT
CTTGCACCATGTTTGAGCTCATCATCTTTGAAATCTTNGGAGTATTGAATAGCAGCTCCCGT
TATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTNTCATGGTGCCTTT
TTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTTTT
CCTGTCTCTTATGGCTGACCTTTATGTATTTCCAG

GTGTTGCCCTTGGGGAGGGGAAGGGGAGCCNGGCCCTTTCCTAAAATTTGGCCAAGGGTTTC
TTTNTTGAATTCCGGGTTNNGNATACCTTCCCAGAAAATATTTTTTTGGATTTGGGTAGNTT
TTTTTCATGCGCCAATTGTTTAAAGACTATGAGATACGTCAGTATGTTGTACAGGTGATNTT
NTCCGTGACGTTTGCATTTTCTTGCACCATGTTTGAGCTCATCATNTTTGAAATNTTAGGAG
TATTGAATAGCAGCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATC
CTGGTTTTCATGGTGCCTTTTTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCA
TAAACAACGACTGCTTTTTTCCTGTCTNTTATGGCTGACCTTTATGTATTTNTTNTTGGAAAN
TAGGAGATCCCTTTCCCATTCTC

GGAGGCCAGCCAGGCCTCTTCGGCTTCTCTGTGGCCCTGCACCGGCAGTTGCAGCCCCGACCCCAGAGCTG GCTGCTGGTGGGTGCTCCCCAGGCCCTGGCTCTTCCTGGGCAGCAGCGGAATCGCACTGGAGGCCTCTTCGCTTG CCCGTTGAGCCTGGAGGAGACTGACTGCTACAGAGTGGACATCGACCAGGGAGCTGATATGCAAAAGGAAAGCAA GGAGAACCAGTGGTTGGGAGTCAGTGTTCGGAGCCAGGGGCCTGGGGGCAAGATTGTTACCTGTGCACACCGATA CCTGGCCATCCGGGATGAGTTGGATGGTGGGGAATGGAAGTTCTGTGAGGGACGCCCCCAAGGCCATGAACAATT CTATAATTGGAAGGGCACGGCCAGGGTGGAGCTCTGTGCACAGGGCTCAGCGGACCTGGCACACCTGGACGACGG TCCCTACGAGGCGGGGGAGAGAAGGAGCAGGACCCCCGCCTCATCCCGGTCCCTGCCAACAGCTACTTTGGCTT CTCTATTGACTCGGGGAAAGGTCTGGTGCGTGCAGAAGAGCTGAGCTTTGTGGCTGGAGCCCCCCGCGCCAACCA CAAGGGTGCTGTGGTCATCCTGCGCAAGGACAGCGCCAGTCGCCTGGTGCCCGAGGTTATGCTGTCTGGGGAGCG TGCCCCCTACTTCTTTGAGCGCCAAGAAGAGCTGGGGGGTGCTGTGTATGTGTACTTGAACCAGGGGGGTCACTG GGCTGGGATCTCCCCTCTCCGGCTCTGCGGCTCCCCTGACTCCATGTTCGGGATCAGCCTGGCTGTCCTGGGGGA CCTCAACCAAGATGGCTTTCCAGATATTGCAGTGGGTGCCCCCTTTGATGGTGATGGGAAAGTCTTCATCTACCA $\tt TGGGAGCAGCCTGGGGGTTGTCGCCAAACCTTCACAGGTGCTGGAGGGCGAGGCTGTGGGCATCAAGAGCTTCGG$ $\tt CTACTCCCTGTCAGGCAGCTTGGATATGGATGGGAACCAATACCCTGACCTGGTGGGGCTCCCTGGCTGACAC$ TCCCCGTGTGACGTTCCTGAGCCGTAACCTGGAAGAACCCAAGCACCAGGCCTCGGGCACCGTGTGGCTGAAGCA $\tt CCAGCATGACCGAGTCTGTGGAGACGCCATGTTCCAGCTCCAGGAAAATGTCAAAGACAAGCTTCGGGCCATTGT$ AGTGACCTTGTCCTACAGTCTCCAGACCCCTCGGCTCCGGCGACAGGCTCCTGGCCAGGGGCTGCCTCCAGTGGC $\tt CCCCATCCTCAATGCCCACCAGCCCAGCCCAGCGGGGCAGAGATCCACTTCCTGAAGCAAGGCTGTGGTGAAGA$ CAAGATCTGCCAGAGCAATCTGCAGCTGGTCCACGCCCGCTTCTGTACCCGGGTCAGCGACACGGAATTCCAACC TCTGCCCATGGATGTGGATGGAACAACAGCCCTGTTTGCACTGAGTGGGCAGCCAGTCATTGGCCTGGAGCTGAT GGTCACCAACCTGCCATCGGACCCAGCCCCAGCCCCAGGCTGATGGGGATGATGCCCATGAAGCCCAGCTCCTGGT CATGCTTCCTGACTCACTGCACTACTCAGGGGTCCGGGCCCTGGACCCTGCGGAGAAGCCACTCTGCCTGTCCAA TGAGAATGCCTCCCATGTTGAGTGTGAGCTGGGGAACCCCATGAAGAGAGGTGCCCAGGTCACCTTCTACCTCAT CCTTAGCACCTCCGGGATCAGCATTGAGACCACGGAACTGGAGGTAGAGCTGCTGTTGGCCACGATCAGTGAGCA GCAGAAAGGGCTTTGCTCTCCCAGGCCCAACATCCTCCACCTGGATGTGGACAGTAGGGATAGGAGGCGGCGGGA CAGCTTTGACCGCGCGGCTGTGCTGCATGTCTGGGGCCGTCTCTGGAACAGCACCTTTCTGGAGGAGTACTCAGC ${\tt TGTGAAGTCCCTGGAAGTGATTGTCCGGGCCAACATCACAGTGAAGTCCTCCATAAAGAACTTGATGCTCCGAGA}$ TGCCTCCACAGTGATCCCAGTGATGGTATACTTGGACCCCATGGCTGTGGCAGAAGGAGTGCCCTGGTGGGT GTTCAAGGAGAGAGACGGGCACCATCCTGAGGAACAACTGGGGCAGCCCCCGGCGGAGGGCCCGGATGCACA $\tt TGAGAAGGGCAGGGGTGTCCTGATGCAAAGGTGGGGAGAAGGGATCCTAATCCCTTCCTCTCCCATTCACCCTGT$ GTAACAGGACCCCAAGGACCTGCCTCCCCGGAAGTGCCTTAACCTAGAGGGTCGGGGAGGAGGTTGTGTCACTGA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA55737

><subunit 1 of 1, 1141 aa, 1 stop

><MW: 124671, pI: 5.82, NX(S/T): 5

 ${\tt MAGARSRDPWGASGICYLFGSLLVELLFSRAVAFNLDVMGALRKEGEPGSLFGFSVALHRQL}$ QPRPQSWLLVGAPQALALPGQQANRTGGLFACPLSLEETDCYRVDIDQGADMQKESKENQWL GVSVRSQGPGGKIVTCAHRYEARQRVDQILETRDMIGRCFVLSQDLAIRDELDGGEWKFCEG RPQGHEQFGFCQQGTAAAFSPDSHYLLFGAPGTYNWKGTARVELCAQGSADLAHLDDGPYEA GGEKEODPRLIPVPANSYFGFSIDSGKGLVRAEELSFVAGAPRANHKGAVVILRKDSASRLV PEVMLSGERLTSGFGYSLAVADLNSDGWPDLIVGAPYFFERQEELGGAVYVYLNQGGHWAGI SPLRLCGSPDSMFGISLAVLGDLNQDGFPDIAVGAPFDGDGKVFIYHGSSLGVVAKPSQVLE GEAVGIKSFGYSLSGSLDMDGNQYPDLLVGSLADTAVLFRARPILHVSHEVSIAPRSIDLEO PNCAGGHSVCVDLRVCFSYIAVPSSYSPTVALDYVLDADTDRRLRGQVPRVTFLSRNLEEPK HQASGTVWLKHQHDRVCGDAMFQLQENVKDKLRAIVVTLSYSLQTPRLRRQAPGQGLPPVAP ${\tt ILNAHQPSTQRAEIHFLKQGCGEDKICQSNLQLVHARFCTRVSDTEFQPLPMDVDGTTALFA}$ ${\tt LSGQPVIGLELMVTNLPSDPAQPQADGDDAHEAQLLVMLPDSLHYSGVRALDPAEKPLCLSN}$ ENASHVECELGNPMKRGAQVTFYLILSTSGISIETTELEVELLLATISEOELHPVSARARVF IELPLSIAGMAIPQQLFFSGVVRGERAMQSERDVGSKVKYEVTVSNQGOSLRTLGSAFLNIM WPHEIANGKWLLYPMQVELEGGOGPGOKGLCSPRPNILHLDVDSRDRRRRELEPPEOOEPGE RQEPSMSWWPVSSAEKKKNITLDCARGTANCVVFSCPLYSFDRAAVLHVWGRLWNSTFLEEY SAVKSLEVIVRANITVKSSIKNLMLRDASTVIPVMVYLDPMAVVAEGVPWWVILLAVLAGLL VLALLVLLLWKMGFFKRAKHPEATVPQYHAVKIPREDRQQFKEEKTGTILRNNWGSPRREGP DAHPILAADGHPELGPDGHPGPGTA

Important features:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 1040-1062

N-glycosylation sites.

amino acids 86-89, 746-749, 949-952, 985-988 and 1005-1008

Integrins alpha chain proteins.

amino acids 1064-1071, 384-408, 1041-1071, 317-346, 443-465, 385-407, 215-224, 634-647, 85-99, 322-346, 470-479, 442-466, 379-408 and 1031-1047

AAGCAGCGAGTTGGCAGAGCAGGGCTGCATTTCCAGCAGGAGCTGCGAGCACAGTGCTGGCT TGGATGATAAACAATGGCTCACCACAATCTCTCAGTATGACAAGGAAGTCGGACAGTGGAAC AAATTCCGAGACGAAGTAGAGGATGATTATTTCCGCACTTGGAGTCCAGGAAAACCCTTCGA TCAGGCTTTAGATCCAGCTAAGGATCCATGCTTAAAGATGAAATGTAGTCGCCATAAAGTAT GCATTGCTCAAGATTCTCAGACTGCAGTCTGCATTAGTCACCGGAGGCTTACACACAGGATG AAAGAAGCAGGAGTAGACCATAGGCAGTGGAGGGGTCCCATATTATCCACCTGCAAGCAGTG $\tt CCCAGTGGTCTATCCCAGCCCTGTTTGTGGTTCAGATGGTCATACCTACTCTTTTCAGTGCA$ AACTAGAATATCAGGCATGTGTCTTAGGAAAACAGATCTCAGTCAAATGTGAAGGACATTGC CCATGTCCTTCAGATAAGCCCACCAGTACAAGCAGAAATGTTAAGAGAGCATGCAGTGACCT GGAGTTCAGGGAAGTGGCAAACAGATTGCGGGACTGGTTCAAGGCCCTTCATGAAAGTGGAA GTCAAAACAAGAAGACAAAAACATTGCTGAGGGCCTGAGAGAAGCAGATTCGATACCAGCATC TTGCCAATTTGCAAGGACTCACTTGGCTGGATGTTTAACAGACTTGATACAAACTATGACCT GCTATTGGACCAGTCAGAGCTCAGAAGCATTTACCTTGATAAGAATGAACAGTGTACCAAGG CATTCTTCAATTCTTGTGACACATACAAGGACAGTTTAATATCTAATAATGAGTGGTGCTAC TGCTTCCAGAGACAGCAAGACCCACCTTGCCAGACTGAGCTCAGCAATATTCAGAAGCGGCA AGGGGTAAAGAAGCTCCTAGGACAGTATATCCCCCTGTGTGATGAAGATGGTTACTACAAGC CAACACAATGTCATGGCAGTGTTGGACAGTGCTGGTGTTGACAGATATGGAAATGAAGTC ATGGGATCCAGAATAAATGGTGTTGCAGATTGTGCTATAGATTTTGAGATCTCCGGAGATTT TGCTAGTGGCGATTTTCATGAATGGACTGATGATGAGGGATGATGAAGACGATATTATGAATG ${\tt CATGATGTATACATT} \underline{{\tt TGA}} {\tt TTGATGACAGTTGAAATCAATAAATTCTACATTTCTAATATTTA}$ CAAAAATGATAGCCTATTTAAAATTATCTTCTCCCCAATAACAAAATGATTCTAAACCTCA AAGAATCATTTGCTTTGAGTTTTTATATTCCTTACACAAAAAGAAAATACATATGCAGTCTA GTCAGACAAAATAAAGTTTTGAAGTGCTACTATAATAAATTTTTCACGAGAACAAACTTTGT AAATCTTCCATAAGCAAAATGACAGCTAGTGCTTGGGATCGTACATGTTAATTTTTTGAAAG ATAATTCTAAGTGAAATTAAAATAAATAAATTTTTAATGACCTGGGTCTTAAGGATTTAGG AAAAATATGCATGCTTTAATTGCATTTCCAAAGTAGCATCTTGCTAGACCTAGATGAGTCAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49829
><subunit 1 of 1, 436 aa, 1 stop</pre>

><MW: 49429, pI: 4.80, NX(S/T): 0

MLKVSAVLCVCAAAWCSQSLAAAAAVAAAGGRSDGGNFLDDKQWLTTISQYDKEVGQWNKFR
DEVEDDYFRTWSPGKPFDQALDPAKDPCLKMKCSRHKVCIAQDSQTAVCISHRRLTHRMKEA
GVDHRQWRGPILSTCKQCPVVYPSPVCGSDGHTYSFQCKLEYQACVLGKQISVKCBGHCPCP
SDKPTSTSRNVKRACSDLEFREVANRLRDWFKALHESGSQNKKTKTLLRPERSRFDTSILPI
CKDSLGWMFNRLDTNYDLLLDQSELRSIYLDKNEQCTKAFFNSCDTYKDSLISNNEWCYCFQ
RQQDPPCQTELSNIQKRQGVKKLLGQYIPLCDEDGYYKPTQCHGSVGQCWCVDRYGNEVMGS
RINGVADCAIDFEISGDFASGDFHEWTDDEDDEDDIMNDEDEIEDDDEDEGDDDDGGDDHDVYI

Important features:

Signal peptide:

amino acids 1-16

Leucine zipper pattern.

amino acids 246-267

N-myristoylation sites.

amino acids 357-362, 371-376 and 376-381

Thyroglobulin type-1 repeat proteins

amino acids 353-365 and 339-352

CAGACTCCAGATTTCCCTGTCAACCACGAGGAGTCCAGAGAGGAAACGCGGAGCGGAGACAACAGTACCTGACGC $\tt GCTCTGCCTCCGGTGCTGCCTGGGGCGGCCGGCTTCACACCTTCCCTCGATAGCGACTTCACCTTTACCCTT$ $\tt CCCGCCGGCCAGAAGGAGTGCTTCTACCAGCCCATGCCCCTGAAGGCCTCGCTGGAGATCGAGTACCAAGTTTTA$ GATGGAGCAGGATTAGATATTGATTTCCATCTTGCCTCTCCAGAAGGCAAAACCTTAGTTTTTGAACAAAGAAAA ${\tt TCAGATGGAGTTCACACTGTAGAGACTGAAGTTGGTGATTACATGTTCTGCTTTGACAATACATTCAGCACCATT}$ TCTGAGAAGGTGATTTTCTTTGAATTAATCCTGGATAATATGGGAGAACAGGCACAAGAACAAGAAGATTGGAAG AAATATATTACTGGCACAGATATATTGGATATGAAACTGGAAGACATCCTGGAATCCATCAACAGCATCAAGTCC AGACTAAGCAAAAGTGGGCACATACAAATTCTGCTTAGAGCATTTGAAGCTCGTGATCGAAACATACAAGAAAGC AACTTTGATAGAGTCAATTTCTGGTCTATGGTTAATTTAGTGGTCATGGTGGTGGTGTCAGCCATTCAAGTTTAT ATGCTGAAGAGTCTGTTTGAAGATAAGAGGAAAAGTAGAACT<u>TAA</u>AACTCCAAACTAGAGTACGTAACATTGAAA AATGAGGCATAAAAATGCAATAAACTGTTACAGTCAAGACCATTAATGGTCTTCTCCAAAATATTTTGAGATATAAAAGTAGGAAACAGGTATAATTTTAATGTGAAAATTAAGTCTTCACTTTCTGTGCAAGTAATCCTGCTGATCCAG AGTCTGTTTTTAACAGGTTCTATTACCCAGAACTTTTTTGTAAATGCGGCAGTTACAAATTAACTGTGGAAGTTT TCAGTTTTAAGTTATAAATCACCTGAGAATTACCTAATGATGATTGAATAAATCTTTAGACTACAAAAGCCCAA CTTTTCTCTATTTACATATGCATCTCTCCTATAATGTAAATAGAATAATAGCTTTGAAATACAATTAGGTTTTTG AGATTTTTATAACCAAATACATTTCAGTGTAACATATTAGCAGAAAGCATTAGTCTTTGTACTTTGCTTACATTC $\tt CCAAAAGCTGACATTTTCACGATTCTTAAAAACACAAAGTTACACTTACTAAAATTAGGACATGTTTTCTCTTTG$ AAATGAAGAATATAGTTTAAAAGCTTCCTCCTCCATAGGGACACATTTTCTCTAACCCTTAACTAAAGTGTAGGA $\tt TTTTAAAATTAAATGTGAGGTAAAATAAGTTTATTTTTAATAGTATCTGTCAAGTTAATATCTGTCAACAGTTAA$ TAATCATGTTATGTTAACTTTTTAACATGATTGCTGACTTGGATAATTCATTATCAGCAGCAGTTATGAAGGAAATA $\tt TTGCTAAAATGATCTGGGCCTACCATAAATAAATATCTCCTTTTCTGAGCTCTAAGAATTATCAGAAAACAGGAA$ ${\tt AAACTTTGGCTGTAGGTTTTATTTTCTACAAGAATTCTGGTTTGAATTATTTTTGTAAGCAGGTACATTTTATA}$ TAAAATGGCCTTTCTGAACACTTTATTTATTGATGTTGAAGTAAGGATTAGAACATAGACTCCCAAGTTTTAAA ${\tt TCAAGTACTAGTAATTTAACTTCATCATGAATGAACTATAATTTTTAAGTTATGCCCATTTATAACGTTGTTTAT$ GACTACATTGTGAGTTAGAAACAAACTTAAAATTTGGGGTATAGAACCCCTCAACAGGTTAGTAATGCTGGAATT $\tt CTTGATGAGCAATAATGATAACCAGAGAGTGATTTCATTTACACTCATAGTAGTATAAAAAGAGATACATTTCCC$ TCTTAGGCCCCTGGGAGAAGAGCAGCTTAGATTTCCCTACTGGCAAGGTTTTTAAAAATGAGGTAAATGCCGTAT $\tt ATGATCAATTACCTTAATTGGCCAAGAAAATGCTTCAGGTGTCTAGGGGTATCCTCTGCAACACTTGCAGAACAA$ AGGTCAATAAGATCCTTGCCTATGAATACCCCTCCCTTTTGCGCTGTTAAATTTGCAATGAGAAGCAAATTTACA GTACCATAACTAATAAAGCAGGGTACAGATATAAACTACTGCATCTTTTCTATAAAACTGTGATTAAGAATTCTA $\tt CCTCTCCTGTATGGCTGTTACTGTACTGTACTCTGTACTCTTACCTAACAATGAATTTGTTACATAATCTTCT$ ACATGTATGATTTGTGCCACTGATCTTAAACCTATGATTCAGTAACTTCTTACCATATAAAAACGATAATTGCTT TATTTGGAAAAGAATTTAGGAATACTAAGGACAATTATTTTTATAGACAAAGTAAAAAGACAGATATTTAAGAGG ${\tt CATAACCAAAAAAGCAAAACTTGTAAACAGAGTAAAAATCTTTAATATTTCTAAAGACATACTGTTTATCTGCTT}$ ${\tt CATATGCTTTTTTAATTTCACTATTCCATTTCTAAATTAAAGTTATGCTAAATTGAGTAAGCTGTTTATCACTT}$ ${\tt CATAATGTAGCAGTTACCGTGTTCACCTCACACTAAGGCCTAGAGTTTGCTCTGATATGCATTTGGATGATTAAT}$ ${\tt CACATAATGGTGTCTTAAAATTGACAAAAAATGAGCACTTACAATTGTATGTCTCCTCAAATGAAGATTCTTTAT}$ $\tt GTGAAATTTTAAAAGACATTGATTCCGCATGTAAGGATTTTTCATCTGAAGTACAATAATGCACAATCAGTGTTG$ $\tt CTCAAACTGCTTTATACTTATAAACAGCCATCTTAAATAAGCAACGTATTGTGAGTACTGATATGTATATAATAA$ AAATTATCAAAGGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52196

><subunit 1 of 1, 229 aa, 1 stop

><MW: 26017, pI: 4.73, NX(S/T): 0

MGDKIWLPFPVLLLAALPPVLLPGAAGFTPSLDSDFTFTLPAGQKECFYQPMPLKASLEIEY QVLDGAGLDIDFHLASPEGKTLVFEQRKSDGVHTVETEVGDYMFCFDNTFSTISEKVIFFEL ILDNMGBQAQEQEDWKKYITGTDILDMKLEDILESINSIKSRLSKSGHIQILLRAFEARDRN IQESNFDRVNFWSMVNLVVMVVVSAIQVYMLKSLFEDKRKSRT

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 195-217

N-myristoylation site.

amino acids 43-48

Tyrosine kinase phosphorylation site.

amino acids 55-62

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56965</pre>

<subunit 1 of 1, 175 aa, 1 stop

<MW: 19330, pI: 7.25, NX(S/T): 1

MLPPMALPSVSWMLLSCLILLCQVQGEETQKELPSPRISCPKGSKAYGSPCYALFLSPKSWM DADLACQKRPSGKLVSVLSGAEGSFVSSLVRSISNSYSYIWIGLHDPTQGSEPDGDGWEWSS TDVMNYFAWEKNPSTILNPGHCGSLSRSTGFLKWKDYNCDAKLPYVCKFKD

Important features:

Signal peptide:

amino acids 1-26

C-type lectin domain signature.

amino acids 146-171

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56405</pre>

<subunit 1 of 1, 125 aa, 1 stop

<MW: 13115, pI: 5.90, NX(S/T): 1

 $\label{thm:magtrlallalvlaacgelapalrcyvcpeptgvsdcvtiatcttnetmckttlysreivyp \\ FQGDSTVTKSCASKCKPSDVDGIGQTLPVSCCNTELCNVDGAPALNSLHCGALTLLPLLSLRL \\$

Important features:

Signal peptide:

amino acids 1-17

N-glycosylation site.

amino acids 46-49

GAGTCCTTCTGAGATGATGGCTCTGGGCGCAGCGGAGCTACCCGGGTCTTTGTCGCGATGG TAGCGGCGGCTCTCGGCGGCCACCCTCTGCTGGGAGTGAGCGCCACCTTGAACTCGGTTCTC AATTCCAACGCTATCAAGAACCTGCCCCCACCGCTGGGCGCGCTGCGGGGCACCCAGGCTC TGCAGTCAGCGCCGCGCGGGAATCCTGTACCCGGGCGGGAATAAGTACCAGACCATTGACA ACTACCAGCCGTACCCGTGCGCAGAGGACGAGGAGTGCGGCACTGATGAGTACTGCGCTAGT CCCACCCGCGGAGGGGACGCAGGCGTGCAAATCTGTCTCGCCTGCAGGAAGCGCCGAAAACG CTGCATGCGTCACGCTATGTGCTGCCCCGGGAATTACTGCAAAAATGGAATATGTGTCTT CTGATCAAAATCATTTCCGAGGAGAAATTGAGGAAACCATCACTGAAAGCTTTGGTAATGAT CATAGCACCTTGGATGGGTATTCCAGAAGAACCACCTTGTCTTCAAAAATGTATCACACCAA ${\tt AGGACAAGAAGGTTCTGTTTGTCTCCGGTCATCAGACTGTGCCTCAGGATTGTGTTGTGCTA}$ GACACTTCTGGTCCAAGATCTGTAAACCTGTCCTGAAAGAAGGTCAAGTGTGTACCAAGCAT ${\tt AGGAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGTTGTTACTGTGGAGAAGGTCTGTC}$ TTGCCGGATACAGAAAGATCACCATCAAGCCAGTAATTCTTCTAGGCTTCACACTTGTCAGA TTTTATGACCTTCATCAACTCAATCCTAAGGATATACAAGTTCTGTGGTTTCAGTTAAGCAT TCCAATAACACCTTCCAAAAACCTGGAGTGTAAGAGCTTTGTTTCTTTATGGAACTCCCCTG TGATTGCAGTAAATTACTGTATTGTAAATTCTCAGTGTGGCACTTACCTGTAAATGCAATGA AACTTTTAATTATTTTCTAAAGGTGCTGCACTGCCTATTTTTCCTCTTGTTATGTAAATTT TTGTACACATTGATTGTTATCTTGACTGACAAATATTCTATATTGAACTGAAGTAAATCATT TCAGCTTATAGTTCTTAAAAGCATAACCCTTTACCCCCATTTAATTCTAGAGTCTAGAACCCA AGGATCTCTTGGAATGACAAATGATAGGTACCTAAAATGTAACATGAAAATACTAGCTTATT TTCTGAAATGTACTATATTGCTTAAATTATTTCCCTTTAGGCTGTGATAGTTTTTGA AATAAAATTTAACATTTAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57530</pre>

<subunit 1 of 1, 266 aa, 1 stop

<MW: 28672, pI: 8.85, NX(S/T): 1

MMALGAAGATRVFVAMVAAALGGHPLLGVSATLNSVLNSNAIKNLPPPLGGAAGHPGSAVSA
APGILYPGGNKYQTIDNYQPYPCAEDEECGTDEYCASPTRGGDAGVQICLACRKRRKRCMRH
AMCCPGNYCKNGICVSSDQNHFRGEIEETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEG
SVCLRSSDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRCYCGEGLSCRIQ
KDHHOASNSSRLHTCORH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 256-259

Fungal ${\rm Zn}(2)$ -Cys(6) binuclear cluster domain

amino acids 110-126

GAGGAACCTACCGGTACCGGCGCGCGCGTGGTAGTCGCCGGTGTGGCTGCACCTCACCAATCCCGTGCGCCGGG GGGTTTGAGGATGGGGGGGTAGCTACAGGAAGCGACCCCGCGATGGCAAGGTATATTTTTGTGGAATGAAAAGGA AGTATTAGAAATGAGCTGAAGACCATTCACAGATTAATATTTTTTGGGGACAGATTTGTGATGCTTGATTCACCCT TGAAGTAATGTAGACAGAAGTTCTCAAATTTGCATATTACATCAACTGGAACCAGCAGTGAATCTTAATGTTCAC GATCATTCTCTGTTTTCTGATAGTGTATATGGCCATTTTAGTGGGCACAGATCAGGATTTTTACAGTTTACTTGG AGTGTCCAAAACTGCAAGCAGTAGAGAAATAAGACAAGCTTTCAAGAAATTGGCATTGAAGTTACATCCTGATAA AAACCCGAATAACCCAAATGCACATGGCGATTTTTTAAAAATAAAATAGAGCATATGAAGTACTCAAAGATGAAGA TCTACGGAAAAAGTATGACAAATATGGAGAAAAGGGACTTGAGGATAATCAAGGTGGCCAGTATGAAAGCTGGAA CTATTATCGTTATGATTTTGGTATTTATGATGATGATCCTGAAATCATAACATTGGAAAGAAGAGAATTTGATGC TGCTGTTAATTCTGGAGAACTGTGGTTTGTAAATTTTTACTCCCCAGGCTGTTCACACTGCCATGATTTAGCTCC CACATGGAGAGACTTTGCTAAAGAAGTGGATGGGTTACTTCGAATTGGAGCTGTTAACTGTGGTGATGATAGAAT GCTTTGCCGAATGAAAGGAGTCAACAGCTATCCCAGTCTCTTCATTTTTCGGTCTGGAATGGCCCCAGTGAAATA TCATGGAGACAGATCAAAGGAGAGTTTAGTGAGTTTTGCAATGCAGCATGTTAGAAGTACAGTGACAGAACTTTG AGGAGGAGATTGTTTGACTTCACAGACACGACTCAGGCTTAGTGGCATGTTGTTTCTCAACTCATTGGATGCTAA AGAAATATATTTGGAAGTAATACATAATCTTCCAGATTTTGAACTACTTTCGGCAAACACTAGAGGATCGTTT GGCTCATCGTGGCTGTTATTTTTCATTTTGGAAAAAATGAAAATTCAAATGATCCTGAGCTGAAAAAACCT AAAAACTCTACTTAAAAATGATCATATTCAAGTTGGCAGGTTTGACTGTTCCTCTGCACCAGACATCTGTAGTAA TCTGTATGTTTTCAGCCGTCTCTAGCAGTATTTAAAGGACAAGGAACCAAAGAATATGAAATTCATCATGGAAA GAAGATTCTATATGATATACTTGCCTTTGCCAAAGAAAGTGTGAATTCTCATGTTACCACGCTTGGACCTCAAAA TTTTCCTGCCAATGACAAGAACCATGGCTTGTTGATTTCTTTGCCCCCTGGTGTCCACCATGTCGAGCTTTACT ACCAGAGTTACGAAGAGCATCAAATCTTCTTTATGGTCAGCTTAAGTTTGGTACACTAGATTGTACAGTTCATGA GGGACTCTGTAACATGTATAACATTCAGGCTTATCCAACAACAGTGGTATTCAACCAGTCCAACATTCATGAGTA TGAAGGACATCACTCTGCTGAACAAATCTTGGAGTTCATAGAGGATCTTATGAATCCTTCAGTGGTCTCCCTTAC ACCCACCACCTTCAACGAACTAGTTACACAAAGAAAACACAACGAAGTCTGGATGGTTGATTTCTATTCTCCGTG GTGTCATCCTTGCCAAGTCTTAATGCCAGAATGGAAAAGAATGGCCCGGACATTAACTGGACTGATCAACGTGGG CAGTATAGATTGCCAACAGTATCATTCTTTTTGTGCCCAGGAAAACGTTCAAAGATACCCTGAGATAAGATTTTT TCCCCCAAAATCAAATAAAGCTTATCAGTATCACAGTTACAATGGTTGGAATAGGGATGCTTATTCCCTGAGAAT CTGGGGTCTAGGATTTTTACCTCAAGTATCCACAGATCTAACACCTCAGACTTTCAGTGAAAAAGTTCTACAAGG GAAAAATCATTGGGTGATTGATTTCTATGCTCCTTGGTGTGGACCTTGCCAGAATTTTGCTCCAGAATTTGAGCT AGCTGGGATCAGGGCCTATCCAACTGTTAAGTTTTATTTCTACGAAAGAGCAAAGAGAAATTTTCAAGAAGAGCA GATAAATACCAGAGATGCAAAAGCAATCGCTGCCTTAATAAGTGAAAAATTGGAAACTCTCCGAAATCAAGGCAA GAGGAATAAGGATGAACTT<u>TGA</u>TAATGTTGAAGATGAAGAAAAGTTTAAAAGAAATTCTGACAGATGACATCAG AAGACACCTATTTAGAATGTTACATTTATGATGGGAATGAACATTATCTTAGACTTGCAGTTGTACTGCCA GAATTATCTACAGCACTGGTGTAAAAGAAGGGTCTGCAAACTTTTTCTGTAAAGGGCCGGTTTATAAATATTTTA GACTTTGCAGGCTATAATATATGGTTCACACATGAGAACAAGAATAGAGTCATCATGTATTCTTTGTTATTTGCT TTTAACAACCTTTAAAAAATATTAAAACGATTCTTAGCTCAGAGCCATACAAAAGTAGGCTGGATTCAGTCCATG ATCTACATAAATGTCTAAGTTGTATAAAGTCCACTTTCCCTTCACGTTTTTTTGGCTGACCTGAAAAGAGGGTAACT TAGTTTTTGGTCACTTGTTCTCCTAAAAATGCTATCCCTAACCATATATTTATATTTCGTTTTAAAAACACCCAT ${\tt AAATTTGAGCAACAGTAAGTGCACAAATTCTGTAGTTTGCTGTATCATCCAGGAAAACCTGAGGGAAAAAAATTA}$ TAGCAATTAACTGGGCATTGTAGAGTATCCTAAATATGTTATCAAGTATTTAGAGTTCTATATTTTAAAGATATA TGTGTTCATGTATTTTCTGAAATTGCTTTCATAGAAATTTTCCCACTGATAGTTGATTTTTTGAGGCATCTAATAT TTTTTCACTCCTGTCCAGTCTATTTATTCAAATAGGAAAAATTACTTTACAGGTTGTTTTACTGTAGCTTAT AATGATACTGTAGTTATTCCAGTTACTAGTTTACTGTCAGAGGGCTGCCTTTTTCAGATAAATATTGACATAATA ACTGAAGTTATTTTATAAGAAAATCAAGTATATAAATCTAGGAAAGGGATCTTCTAGTTTCTGTGTTGTTTAGA CTCAAAGAATCACAAATTTGTCAGTAACATGTAGTTGTTTAGTTATAATTCAGAGTGTACAGAATGGTAAAAATT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56439</pre>

<subunit 1 of 1, 747 aa, 1 stop

<MW: 86127, pI: 7.46, NX(S/T): 2

MGVWLNKDDYIRDLKRIILCFLIVYMAILVGTDQDFYSLLGVSKTASSREIRQAFKKLALKL HPDKNPNNPNAHGDFLKINRAYEVLKDEDLRKKYDKYGEKGLEDNQGGQYESWNYYRYDFGI YDDDPEIITLERREFDAAVNSGELWFVNFYSPGCSHCHDLAPTWRDFAKEVDGLLRIGAVNC GDDRMLCRMKGVNSYPSLFI FRSGMAPVKYHGDRSKESLVSFAMQHVRSTVTELWTGNFVNS IQTAFAAGIGWLITFCSKGGDCLTSQTRLRLSGMLFLNSLDAKEIYLEVIHNLPDFELLSAN TLEDRLAHHRWLLFFHFGKNENSNDPELKKLKTLLKNDHIQVGRFDCSSAPDICSNLYVFQP SLAVFKGQGTKEYEIHHGKKILYDILAFAKESVNSHVTTLGPQNFPANDKEPWLVDFFAPWC PPCRALLPELRRASNLLYGQLKFGTLDCTVHEGLCNMYNIQAYPTTVVFNQSNIHEYEGHHS AEQILEFIEDLMNPSVVSLTPTTFNELVTQRKHNEVMVDFYSPWCHPCQVLMPEWKRMART LTGLINVGSIDCQQYHSFCAQENVQRYPEIRFFPPKSNKAYQYHSYNGWNRDAYSLRIWGLG FLPQVSTDLTPQTFSEKVLQGKNHWVIDFYAPWCGPCQNFAPSFELLARMIKGKVKAGKVDC QAYAQTCQKAGIRAYPTVKFYFYERAKRNFQEEQINTRDAKAIAALISEKLETLRNQGKRNKDEL

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 744-747

Cytochrome c family heme-binding site signature.
amino acids 158-163

Nt-dnaJ domain signature.

amino acids 77-96

N-glycosylation site.

amino acids 484-487

GCCATGAACATCATCCTAGAAATCCTTCTGCTTCTGATCACCATCATCTACTCCTACTTCGA GTCGTTGGTGAAGTTTTTCATTCCTCAGAGGAGAAAATCTGTGGCTGGGGAGATTGTTCTCA TTACTGGAGCTGGGCATGGAATAGGCAGGCAGACTACTTATGAATTTGCAAAACGACAGAGC ATATTGGTTCTGTGGGATATTAATAAGCGCGGTGTGGAGGAAACTGCAGCTGAGTGCCGAAA ACTAGGCGTCACTGCGCATGCGTATGTGGTAGACTGCAGCAACAGAGAAGAGATCTATCGCT CTCTAAATCAGGTGAAGAAGAAGTGGGTGATGTAACAATCGTGGTGAATAATGCTGGGACA GTATATCCAGCCGATCTTCTCAGCACCAAGGATGAAGAGATTACCAAGACATTTGAGGTCAA CATCCTAGGACATTTTTGGATCACAAAAGCACTTCTTCCATCGATGATGGAGAGAAATCATG GCCACATCGTCACAGTGGCTTCAGTGTGCGGCCACGAAGGGATTCCTTACCTCATCCCATAT TGTTCCAGCAAATTTGCCGCTGTTGGCTTTCACAGAGGTCTGACATCAGAACTTCAGGCCTT GGGAAAAACTGGTATCAAAACCTCATGTCTCTGCCCAGTTTTTGTGAATACTGGGTTCACCA AAAATCCAAGCACAAGATTATGGCCTGTATTGGAGACAGATGAAGTCGTAAGAAGTCTGATA GATGGAATACTTACCAATAAGAAAATGATTTTTGTTCCATCGTATATCAATATCTTTCTGAG ACTACAGAAGTTTCTTCCTGAACGCGCCTCAGCGATTTTAAATCGTATGCAGAATATTCAAT TATGCATGATAATGATATGAATAGTTTCGAATCAATGCTGCAAAGCTTTATTTCACATTTTT ATTACCTGTCTTCCTGATTCTCAAGAATATTTACGTAGTTTTTTCATAGGTCTGTTTTTTCCTT TCATGCCTCTTAAAAACTTCTGTGCTTACATAAACATACTTAAAAGGTTTTCTTTAAGATAT TTTATTTTCCATTTAAAGGTGGACAAAAGCTACCTCCCTAAAAGTTAAATACAAAGAGAACT TATTTACACAGGGAAGGTTTAAGACTGTTCAAGTAGCATTCCAATCTGTAGCCATGCCACAG ATCTCAACCTGGACATATTTTAAGATTCAGCATTTGAAAGATTTCCCTAGCCTCTTCCTTTT TCATTAGCCCAAAACGGTGCAACTCTATTCTGGACTTTATTACTTGATTCTGTCTTCTCTATT AACTCTGAAGTCCACCAAAAGTGGACCCTCTATATTTCCTCCCTTTTTTATAGTCTTATAAGA TACATTATGAAAGGTGACCGACTCTATTTTAAATCTCAGAATTTTAAGTTCTAGCCCCATGA TAACCTTTTTCTTTGTAATTTATGCTTTCATATATCCTTGGTCCCAGAGATGTTTAGACAAT TTTAGGCTCAAAAATTAAAGCTAACACAGGAAAAGGAACTGTACTGGCTATTACATAAGAAA CAATGGACCCAAGAGAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56409

<subunit 1 of 1, 300 aa, 1 stop

<MW: 33655, pI: 9.31, NX(S/T): 1

MNIILEILLLITIIYSYLESLVKFFIPQRRKSVAGEIVLITGAGHGIGRQTTYEFAKRQSI LVLWDINKRGVEETAAECRKLGVTAHAYVVDCSNREEIYRSLNQVKKEVGDVTIVVNNAGTV YPADLLSTKDEEITKTFEVNILGHFWITKALLPSMMERNHGHIVTVASVCGHEGIPYLIPYC SSKFAAVGFHRGLTSELQALGKTGIKTSCLCPVFVNTGFTKNPSTRLWPVLETDEVVRSLID GILTNKKMIFVPSYINIFLRLOKFLPERASAILNRMONIOFEAVVGHKIKMK

Important features:

Signal peptide:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 30-33 and 58-61

Short-chain alcohol dehydrogenase family protein amino acids 165-202, 37-49, 112-122 and 210-219

CGGCGGCGCTGCGGCGCGAGGTGAGGGGCGCGAGGTGAGGGCGCGAGGTTCCCAGCAGG ATGCCCCGGCTCTGCAGGAAGCTGAAGTGAGAGGCCCGGAGAGGGCCCAGCCCGGGGC AGGATGACCAAGGCCCGGCTGTTCCGGCTGTGGCTGGTGCTGGGGTCGGTGTTCATGATCCT $\tt GCTGATCATCGTGTACTGGGACAGCGCAGCGCGCGCGCACTTCTACTTGCACACGTCCTTCT$ CTAGGCCGCACACGGGGCCGCCGCTGCCCACGCCCGGGCCGGACAGGGACAGGGAGCTCACG GCCGACTCCGATGTCGACGAGTTTCTGGACAAGTTTCTCAGTGCTGGCGTGAAGCAGAGCGA CCTTCCCAGAAAGGAGACGGAGCACCCCCCCCCGCGGGAGCATGGAGGAGAGCGTGAGAG CGGAGGAGCGTGCTGCGGGGCTTCTGCGCCAACTCCAGCCTGGCCTTCCCCACCAAGGAGCG CGCATTCGACGACATCCCCAACTCGGAGCTGAGCCACCTGATCGTGGACGACCGGCACGGGG CCATCTACTGCTACGTGCCCAAGGTGGCCTGCACCAACTGGAAGCGCGTGATGATCGTGCTG AGCGGAAGCCTGCTGCACCGCGGTGCGCCCTACCGCGACCCGCTGCGCATCCCGCGCGAGCA CGTGCACAACGCCAGCGCGCACCTGACCTTCAACAAGTTCTGGCGCCGCTACGGGAAGCTCT CCCGCCACCTCATGAAGGTCAAGCTCAAGAAGTACACCAAGTTCCTCTTCGTGCGCGACCCC TTCGTGCGCCTGATCTCCGCCTTCCGCAGCAGCTTCGAGCTGGAGAACGAGGAGTTCTACCG CAAGTTCGCCGTGCCCATGCTGCGGCTGTACGCCAACCACCACCAGCCTGCCCGCCTCGGCGC GCGAGGCCTTCCGCGCTGGCCTCAAGGTGTCCTTCGCCAACTTCATCCAGTACCTGCTGGAC CCGCACACGGAGAAGCTGGCGCCCTTCAACGAGCACTGGCGGCAGGTGTACCGCCTCTGCCA CCCGTGCCAGATCGACTACGACTTCGTGGGGAAGCTGGAGACTCTGGACGAGGACGCCGCGC AGCTGCTGCAGCTACTCCAGGTGGACCGGCAGCTCCGCTTCCCCCCGAGCTACCGGAACAGG ACCGCCAGCAGCTGGGAGGAGGACTGGTTCGCCAAGATCCCCCTGGCCTGGAGGCAGCAGCT GTATAAACTCTACGAGGCCGACTTTGTTCTCTTCGGCTACCCCAAGCCCGAAAACCTCCTCC AGTTTTTTATGACCTACGATTTTGCAATCTGGGCTTCTTGTTCACTCCACTGCCTCTATCC ATTGAGTACTGTATCGATATTGTTTTTTAAGATTAATATTTTCAGGTATTTAATACGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56112

<subunit 1 of 1, 414 aa, 1 stop

<MW: 48414, pI: 9.54, NX(S/T): 4

MTKARLFRLWLVLGSVFMILLIIVYWDSAGAAHFYLHTSFSRPHTGPPLPTPGPDRDRELTA
DSDVDEFLDKFLSAGVKQSDLPRKETEQPPAPGSMEESVRGYDWSPRDARRSPDQGRQQAER
RSVLRGFCANSSLAFPTKERAFDDIPNSELSHLIVDDRHGAIYCYVPKVACTNWKRVMIVLS
GSLLHRGAPYRDPLRIPREHVHNASAHLTFNKFWRRYGKLSRHLMKVKLKKYTKFLFVRDPF
VRLISAFRSKFELENEEFYRKFAVPMLRLYANHTSLPASAREAFRAGLKVSFANFIQYLLDP
HTEKLAPFNEHWRQVYRLCHPCQIDYDFVGKLETLDEDAAQLLQLLQVDRQLRFPPSYRNRT
ASSWEEDWFAKIPLAWROOLYKLYEADFVLFGYPKPENLLRD

Important features:

Signal peptide:

amino acids 1-31

N-glycosylation sites.

amino acids 134-137, 209-212, 280-283 and 370-373

TNFR/NGFR family cysteine-rich region protein

amino acids 329-332

TCGGGCCAGAATTCGGCACGAGGCGCACGAGGGCGACGGCCTCACGGGGCTTTGGAGGTGA AAGAGGCCCAGAGTAGAGAGAGAGAGAGACCGACGTACACGGGATGGCTACGGGAACGCGCT GCCTTCGTGAACAGCGGGGCCCGAGTGGTTATCTGCGACAAGGATGAGTCTGGGGGCCGGGC CCTGGAGCAGGAGCTCCCTGGAGCTGTCTTTATCCTCTGTGATGTGACTCAGGAAGATGATG TGAAGACCCTGGTTTCTGAGACCATCCGCCGATTTGGCCGCCTGGATTGTGTTGTCAACAAC GCTGGCCACCACCCCCACAGAGGCCTGAGGAGACCTCTGCCCAGGGATTCCGCCAGCT GCTGGAGCTGAACCTACTGGGGACGTACACCTTGACCAAGCTCGCCCTCCCCTACCTGCGGA AGAGTCAAGGGAATGTCATCAACATCTCCAGCCTGGTGGGGGCAATCGGCCAGGCCAGGCA GTTCCCTATGTGGCCACCAAGGGGGCAGTAACAGCCATGACCAAAGCTTTGGCCCTGGATGA AAGTCCATATGGTGTCCGAGTCAACTGTATCTCCCCAGGAAACATCTGGACCCCGCTGTGGG AGGAGCTGGCAGCCTTAATGCCAGACCCTAGGGCCACAATCCGAGAGGGCATGCTGGCCCAG $\tt CCACTGGGCCGCATGGGCCAGCCCGCTGAGGTCGGGGCTGCGGCAGTGTTCCTGGCCTCCGA$ AGCCAACTTCTGCACGGGCATTGAACTGCTCGTGACGGGGGGGTGCAGAGCTGGGGTACGGGT $\tt GCAAGGCCAGTCGGAGCACCCCCGTGGACGCCCCCGATATCCCTTCCTGATTT$ $\tt CTACTTGGGGCCCCCTTCCTAGGACTCTCCCACCCCAAACTCCAACCTGTATCAGATGCAGC$ $\tt CCCCAAGCCCTTAGACTCTAAGCCCAGTTAGCAAGGTGCCGGGTCACCCTGCAGGTTCCCAT$ AAAAACGATTTGCAGCC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56045
<subunit 1 of 1, 270 aa, 1 stop
<MW: 28317, pI: 6.00, NX(S/T): 1</pre>

MATGTRYAGKVVVVTGGGRGIGAGIVRAFVNSGARVVICDKDESGGRALEQELPGAVFILCD VTQEDDVKTLVSETIRRFGRLDCVVNNAGHHPPPQRPEETSAQGFRQLLELNLLGTYTLTKL ALPYLRKSQGNVINISSLVGAIGQAQAVPYVATKGAVTAMTKALALDESPYGVRVNCISPGN IWTPLWEELAALMPDPRATIREGMLAQPLGRMGQPAEVGAAAVFLASEANFCTGIELLVTGG ABLGYGCKASRSTPVDAPDIPS

Important features: N-glycosylation site. amino acids 138-141

Short-chain alcohol dehydrogenase family protein amino acids 10-22, 81-91, 134-171 and 176-185

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59294</pre>

<subunit 1 of 1, 180 aa, 1 stop

<MW: 20437, pI: 9.58, NX(S/T): 1

MDWPHNLLFLLTISIFLGLGQPRSPKSKRKGQGRPGPLAPGPHQVPLDLVSRMKPYARMEEY ERNIEEMVAQLRNSSELAQRKCEVNLQLWMSNKRSLSPWGYSINHDPSRIPVDLPEARCLCL GCVNPFTMQEDRSMVSVPVFSQVPVRRRLCPPPPRTGPCRQRAVMETIAVGCTCIF

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 75-78

Homologous region to IL-17 amino acids 96-180.

GCGCCGCCAGGCGTAGGCGGGGGGCCCTTGCGTCTCCCGCTTCCTTGAAAAACCCGGCGGG $\texttt{GCGCCCAAC} \underline{\textbf{ATG}} \texttt{GCGGGTGGGCCGCTGCGGCCCGCAGCTAACGGCGCCTCGGCCCTGGAT}$ TCCAGCCCATGACCGCCTCCAACTGGACGCTGGTGATGGAGGGCGAGTGGATGCTGAAATTT TACGCCCCATGGTGTCCATCCTGCCAGCAGACTGATTCAGAATGGGAGGCTTTTGCAAAGAA TGGTGAAATACTTCAGATCAGTGTGGGGAAGGTAGATGTCATTCAAGAACCAGGTTTGAGTG GCCGCTTCTTTGTCACCACTCTCCCAGCATTTTTTCATGCAAAGGATGGGATATTCCGCCGT TATCGTGGCCCAGGAATCTTCGAAGACCTGCAGAATTATATCTTAGAGAAGAAATGGCAATC AGTCGAGCCTCTGACTGGCTGGAAATCCCCAGCTTCTCTAACGATGTCTGGAATGGCTGGTC TTTTTAGCATCTCTGGCAAGATATGGCATCTTCACAACTATTTCACAGTGACTCTTGGAATT TCTGGTCTTGGTGGTAATATCAGAATGTTTCTATGTGCCACTTCCAAGGCATTTATCTGAGC GTTCTGAGCAGAATCGGAGATCAGAGGAGGCTCATAGAGCTGAACAGTTGCAGGATGCGGAG GAGGAAAAAGATGATTCAAATGAAGAAGAAAACAAAGACAGCCTTGTAGATGATGAAGAAGA GAAAGAAGATCTTGGCGATGAGGATGAAGCAGGAGGAAGAAGAGGAGGAGGACAACTTGGCTG ACCCGGGAGGAAGTAGAGCCTGAGGAGGCTGAAGAAGGCATCTCTGAGCAACCCTGCCCAGC TGACACAGAGGTGGTGGAAGACTCCTTGAGGCAGCGTAAAAGTCAGCATGCTGACAAGGGAC ${\tt TGTAG} {\tt ATTTAATGATGCGTTTTCAAGAATACACCACCAAAACAATATGTCAGCTTCCCTTTGG}$ CCTGCAGTTTGTACCAAATCCTTAATTTTTCCTGAATGAGCAAGCTTCTCTTAAAAGATGCT $\tt CTCTAGTCATTTGGTCTCATGGCAGTAAGCCTCATGTATACTAAGGAGAGTCTTCCAGGTGT$ GACAATCAGGATATAGAAAAACAAACGTAGTGTTGGGATCTGTTTGGAGACTGGGATGGGAA CAAGTTCATTTACTTAGGGGTCAGAGAGTCTCGACCAGAGGAGGCCATTCCCAGTCCTAATC AGCACCTTCCAGAGACAAGGCTGCAGGCCCTGTGAAATGAAAGCCAAGCAGGAGCCTTGGCT ${\tt CCTGAGCATCCCCAAAGTGTAACGTAGAAGCCTTGCATCCTTTTCTTGTGTAAAGTATTTAT}$ TTTTGTCAAATTGCAGGAAACATCAGGCACCACAGTGCATGAAAAATCTTTCACAGCTAGAA ATTGAAAGGGCCTTGGGTATAGAGAGCAGCTCAGAAGTCATCCCAGCCCTCTGAATCTCCTG TGCTATGTTTTATTTCTTACCTTTAATTTTTCCAGCATTTCCACCATGGGCATTCAGGCTCT CCACACTCTTCACTATTATCTCTTGGTCAGAGGACTCCAATAACAGCCAGGTTTACATGAAC TGTGTTTGTTCATTCTGACCTAAGGGGTTTAGATAATCAGTAACCATAACCCCTGAAGCTGT GACTGCCAAACATCTCAAATGAAATGTTGTGGCCATCAGAGACTCAAAAGGAAGTAAGGATT AAGTTTTCTAAGCAATATTTTTCAAGCCAGAAGTCCTCTAAGTCTTGCCAGTACAAGGTAGT $\tt CTTGTGAAGAAAGTTGAATACTGTTTTGTTTTCATCTCAAGGGGTTCCCTGGGTCTTGAAC$ TACTTTAATAATAACTAAAAAACCACTTCTGATTTTCCTTCAGTGATGTGCTTTTGGTGAAA ${\tt GAATTAATGAACTCCAGTACCTGAAAGTGAAAGATTTGATTTTGTTTCCATCTTCTGTAATC}$ TTCCAAAGAATTATATCTTTGTAAATCTCTCAATACTCAATCTACTGTAAGTACCCAGGGAG GCTAATTTCTTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56433
<subunit 1 of 1, 349 aa, 1 stop</pre>

<MW: 38952, pI: 4.34, NX(S/T): 1

MAGGRCGPQLTALLAAWIAAVAATAGPEEAALPPEQSRVQPMTASNWTLVMEGEWMLKFYAP WCPSCQQTDSEWEAFAKNGEILQISVGKVDVIQEPGLSGRFFVTTLPAFFHAKDGIFRRYRG PGIFEDLQNYILEKKWQSVEPLTGWKSPASLTMSGMAGLFSISGKIWHLHNYFTVTLGIPAW CSYVFFVIATLVFGLFMGLVLVVISECFYVPLPRHLSERSEQNRRSEEAHRAEQLQDAEEEK DDSNEEENKDSLVDDEEEKEDLGDEDBAEEEEEEDNLAAGVDEERSEANDQGPPGEDGVTRE EVEPEEAEEGISEQPCPADTEVVEDSLRORKSOHADKGL

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 191-211

N-glycosylation site.

amino acids 46-49

Thioredoxin family proteins. (homologous region to disulfide isomerase)

amino acids 56-72

Flavodoxin proteins

amino acids 173-187

ATCTGGTTGAACTACTTAAGCTTAATTTGTTAAACTCCGGTAAGTACCTAGCCCACATGATT ${\tt CAAATGCTATATCTATTCAGGGGCTCTCAAGAACA} {\color{blue} {\tt ATG}} {\color{blue} {\tt GAAATATCATCCTGATTTAGAAAAT}$ TTGGATGAAGATGGATATACTCAATTACACTTCGACTCTCAAAGCAATACCAGGATAGCTGT TGTTTCAGAGAAAGGATCGTGTGCTGCATCTCCTCCTTGGCGCCTCATTGCTGTAATTTTGG GAATCCTATGCTTGGTAATACTGGTGATAGCTGTGGTCCTGGGTACCATGGGGGTTCTTTCC AGCCCTTGTCCTCCTAATTGGATTATATATGAGAAGAGCTGTTATCTATTCAGCATGTCACT AAATTCCTGGGATGGAAGTAAAAGACAATGCTGGCAACTGGGCTCTAATCTCCTAAAGATAG ACAGCTCAAATGAATTGGGATTTATAGTAAAACAAGTGTCTTCCCAACCTGATAATTCATTT CTCTTCTAACTTATTTCAGATCAGAACCACAGCTACCCAAGAAAACCCATCTCCAAATTGTG TATGGATTCACGTGTCAGTCATTTATGACCAACTGTGTAGTGTGCCCTCATATAGTATTTGT GAGAAGAAGTTTTCAATG**TAA**GAGGAAGGGTGGAGAAGGAGAGAAATATGTGAGGTAGTA AGGAGGACAGAAAACAGAACAGAAAAGAGTAACAGCTGAGGTCAAGATAAATGCAGAAAATG TTTAGAGAGCTTGGCCAACTGTAATCTTAACCAAGAAATTGAAGGGAGAGGCTGTGATTTCT ${\tt CACTTTGTTACCCAGGCTGGAGTGCAGTGGCACAATCTCGACTCACTGCAGCTATCTCTCGCC}$ CTCAGCCCCTCAAGTAGCTGGGACTACAGGTGCATGCCACCATGCCAGGCTAATTTTTGGTG TTTTTTGTAGAGACTGGGTTTTGCCATGTTGACCAAGCTGGTCTCTAACTCCTGGGCTTAAG $\verb|CCCAAGCTTGAATTTTCATTCTGCCATTGACTTGGCATTTACCTTGGGTAAGCCATAAGCGA|\\$ ATCTTAATTTCTGGCTCTATCAGAGTTGTTTCATGCTCAACAATGCCATTGAAGTGCACGGT GTGTTGCCACGATTTGACCCTCAACTTCTAGCAGTATATCAGTTATGAACTGAGGGTGAAAT ATATTTCTGAATAGCTAAATGAAGAAATGGGAAAAAATCTTCACCACAGTCAGAGCAATTTT ATTATTTTCATCAGTATGATCATAATTATGATTATCATCTTAGTAAAAAGCAGGAACTCCTA CTTTTTCTTTATCAATTAAATAGCTCAGAGAGTACATCTGCCATATCTCTAATAGAATCTTT TTTTTTTTTTTTTTTTGAGACAGAGTTTCGCTCTTGTTGCCCAGGCTGGAGTGCAACGG CACGATCTCGGCTCACCGCAACCTCCGCCCCCTGGGTTCAAGCAATTCTCCTGCCTCAGCCT CCCAAGTAGCTGGGATTACAGTCAGGCACCACCACCCGGCTAATTTTGTATTTTTTAGT AGAGACAGGGTTTCTCCATGTCGGTCAGGGTAGTCCCGAACTCCTGACCTCAAGTGATCTGC $\tt CTGCCTCGGCCTCCCAAGTGCTGGGATTACAGGCGTGAGCCACTGCACCCAGCCTAGAATCT$ TGTATAATATGTAATTGTAGGGAAACTGCTCTCATAGGAAAGTTTTCTGCTTTTTAAATACA ACAAGTATTAACATTTTGGAATATGTTTTATTAGTTTTTGTGATGTACTGTTTTACAATTTTT ACCATTTTTTTCAGTAATTACTGTAAAATGGTATTATTGGAATGAAACTATATTTCCTCATG ${\tt TGCTGATTTGTCTTATTTTTTCATACTTTCCCACTGGTGCTATTTTTATTTCCAATGGATA}$ $\tt TTTCTGTATTACTAGGGAGGCATTTACAGTCCTCTAATGTTGATTAATATGTGAAAAGAAAT$ ${\tt TGTACCAATTTTACTAAATTATGCAGTTTAAAATGGATGATTTTATGTTATGTGGATTTCAT}$

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53912

<subunit 1 of 1, 201 aa, 1 stop

<MW: 22563, pI: 4.87, NX(S/T): 1

MEYHPDLENLDEDGYTQLHFDSQSNTRIAVVSEKGSCAASPPWRLIAVILGILCLVILVIAV VLGTMGVLSSPCPPNWIIYEKSCYLFSMSLNSWDGSKRQCWQLGSNLLKIDSSNELGFIVKQ VSSQPDNSFWIGLSRPQTEVPWLWEDGSTFSSNLFQIRTTATQENPSPNCVWIHVSVIYDQL CSVPSYSTCRKKFSM

Important features:

Type II transmembrane domain:

amino acids 45-65

cAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 197-200

N-myristoylation sites.

amino acids 35-40 and 151-156

Homologous region to LDL receptor

amino acids 34-67 and 70-200.

 $\tt CACAGGCTGGAGTGGTGTGATCTTGGCTCATCGTAACCTCCACCTCCCGGGTTCAAGTGATTCTCATGCC$ TCGCTGCTGCAGACGACACTGTTCCTGCTGAGTCTCCTGCTCCAAGGTGCCCACGGCAGGGGCCACAGG GAAGACTTTCGCTTCTGCAGCCAGCGGAACCAGACACAGAGCAGCCTCCACTACAAACCCACACCAGACCTG CGCATCTCCATCGAGAACTCCGAAGAGGCCCTCACAGTCCATGCCCCTTTCCCTGCAGCCCACCCTGCTTCCCGA TCCTTCCCTGACCCCAGGGGCCTCTACCACTTCTGCCTCTACTGGAACCGACATGCTGGGAGATTACATCTTCTC TATGGCAAGCGTGACTTCTTGCTGAGTGACAAAGCCTCTAGCCTCCTCTGCTTCCAGCACCAGGAGGAGAGCCTG GCCAGCTTCACCTTCTCCTTCCACAGTCCTCCCCACACGGCCGCTCACAATGCCTCGGTGGACATGTGCGAGGTC AAAAGGGACCTCCAGCTGCTCAGCCAGTTCCTGAAGCATCCCCAGAAGGCCTCAAGGAGGCCCTCGGCTGCCCCC GCCAGCCAGCAGTTGCAGAGCCTGGAGTCGAAACTGACCTCTGTGAGATTCATGGGGGACATGGTGTCCTTCGAG GAGGACCGGATCAACGCCACGGTGTGGAAGCTCCAGCCCACAGCCGGCCTCCAGGACCTGCACATCCACTCCCGG CGGAGCGGGGAGGCTGAGAAGAGACTCCTCCTGGTGGACTTCAGCAGCCAAGCCCTGTTCCAGGACAAGAATTCC AGCCAAGTCCTGGGTGAGAAGGTCTTGGGGATTGTGGTACAGAACACCAAAGTAGCCAACCTCACGGAGCCCGTG GTGCTCACTTTCCAGCACCAGCTACAGCCGAAGAATGTGACTCTGCAATGTGTGTTCTGGGTTGAAGACCCCACA TTGAGCAGCCCGGGGCATTGGAGCAGTGCTGGGTGTGAGACCCGTCAGGAGAAACCCAAACATCCTGCTTCTGC AACCACTTGACCTACTTTGCAGTGCTGATGGTCTCCTCGGTGGAGGTGGACGCCGTGCACAAGCACTACCTGAGC GTGCCCTGCCGTGCAGGAGGAAACCTCGGGACTACACCATCAAGGTGCACATGAACCTGCTGCTGGCCGTCTTC CTGCTGGACACGAGCTTCCTGCTCAGCGAGCCGGTGGCCCTGACAGGCTCTGAGGCTGCCGAGCCAGTGCC ATCTTCCTGCACTTCTCCCTGCTCACCTGCCTTTCCTGGATGGGCCTCGAGGGGTACAACCTCTACCGACTCGTG $\tt GTGGAGGTCTTTGGCACCTATGTCCCTGGCTACCTACTCAAGCTGAGCGCCATGGGCTGGGGCTTCCCCATCTTT$ GGCGTCATCTACCCTTCCATGTGCTGGATCCGGGACTCCCTGGTCAGCTACATCACCAACCTGGGCCTCTTCAGC CTGGTGTTTCTGTTCAACATGGCCATGCTAGCCACCATGGTGGTGCAGATCCTGCGGCTGCGCCCCCACACCCAA TTTGCTTCTGGCACCTTCCAGCTTGTCGTCCTCTACCTTTTCAGCATCACCTCCTTCCAAGGCTTCCTCATC ${\tt AGGCTCCCCATCAGCTCGGGCAGCACCTCGTCCAGCCGCATC} {\tt TAG} {\tt GCCTCCAGCCCACCTGCCCATGTGATGAAG}$ GCCTTGGGGACTACTCGGCTCTCACTCAGCTCCCACGGGACTCAGAAGTGCGCCGCCATGCTGCCTAGGGTACTG TCCCCACATCTGTCCCAACCCAGCTGGAGGCCTGGTCTCTCCTTACAACCCCTGGGCCCAGCCCTCATTGCTGGG TCCTCCTCCCAGGGCCTCCTTGCTCCTTCGTTCACAGCTGGGGGTCCCCGATTCCAATGCTGTTTTTTTGGGGA GTGGTTTCCAGGAGCTGCCTGGTGTCTGCTGTAAATGTTTGTCTACTGCACAAGCCTCGGCCTGCCCCTGAGCCA $\tt GGCTCGGTACCGATGCGTGGGCTAGGTCCCTCTGTCCATCTGGGCCTTTGTATGAGCTGCATTGCCCTTG$ CTCACCCTGACCAAGCACACGCCTCAGAGGGGCCCTCAGCCTCTCCTGAAGCCCTCTTGTGGCAAGAACTGTGGA CCATGCCAGTCCGTCTGGTTTCCATCCCACCACTCCAAGGACTGAGACTGACCTCCTCTGGTGACACTGGCCTA GAGCCTGACACTCTCCTAAGAGGTTCTCTCCAAGCCCCCAAATAGCTCCAGGCGCCCTCGGCCGCCCATCATGGT GGGAGCCATCATTCCTGCCTGGGAATCCTGGAAGACTTCCTGCAGGAGTCAGCGTTCAATCTTGACCTTGAAGAT GGGAAGGATGTTCTTTTACGTACCAATTCTTTTGTCTTTTGATATAAAAAGAAGTACATGTTCATTGTAGAGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50921

<subunit 1 of 1, 693 aa, 1 stop</pre>

<MW: 77738, pI: 8.87, NX(S/T): 7

MTPQSLLQTTLFLLSLLFLVQGAHGRGHREDFRFCSQRNQTHRSSLHYKPTPDLRISIENSE EALTVHAPFPAAHPASRSFPDPRGLYHFCLYWNRHAGRLHLLYGKRDFLLSDKASSLLCFQH QEESLAQGPPLLATSVTSWWSPQNISLPSAASFTFSFHSPPHTAAHNASVDMCELKRDLQLL SQFLKHPQKASRPSAAPASQQLQSLESKLTSVRFMGDMVSFEEDRINATVWKLQPTAGLQD LHHSRQEEEQSEIMEYSVLLPRTLFQRTKGRSGEAEKRLLLVDFSSQALFQDKNSSQVLGE KVLGIVVQNTKVANLTEPVVLTFQHQLQPKNVTLQCVFWVEDPTLSSPGHWSSAGCETVRRE TQTSCFCNHLTYFAVLMVSSVEVDAVHKHYLSLLSYVGCVVSALACLVTIAAYLCSRVPLPC RRKPRDYTIKVHMNLLLAVFLLDTSFLLSEPVALTGSEAGCRASAIFLHFSLLTCLSWMGLE GYNLYRLVVEVFGTYVPGYLLKLSAMGWGFPIFLVTVALVDVDNYGPIILAVHRTPEGVIY PSMCWIRDSLVSYITNLGLFSLVFLFNMAMLATMVVQILRLRPHTQKWSHVLTLLGLSLVLG LPWALIFFSFASGTFQLVVLYLFSIITSFQGFLIFIWYWSMRLQARGGPSPLKSNSDSARLP ISSGSTSSSST

Important features:

Signal peptide:

amino acids 1-25

Putative transmembrane domains:

amino acids 382-398, 402-420, 445-468, 473-491, 519-537, 568-590 and 634-657

Microbodies C-terminal targeting signal.

amino acids 691-693

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 198-201 and 370-373

N-glycosylation sites.

amino acids 39-42, 148-151, 171-174, 234-237, 303-306, 324-327 and 341-344

G-protein coupled receptors family 2 proteins

amino acids 475-504

TCCTTTTCAAAAACTGGAGACACAGAAGAGGGCTCTAGGAAAAAGTTTTGGATGGGATTATGTGGAAACTACCCT $\verb|TTCTCCTGCTGACATCTGCCCTGGCCGGCCAGAGACAGGGGGACTCAGGCGGAATCCAACCTGAGTAGTAAATTCC||$ AGTTTTCCAGCAACAAGGAACAGAACGGAGTACAAGATCCTCAGCATGAGAGAATTATTACTGTGTCTACTAATG AGGAAAATGTATGGATACAACTTACGTTTGATGAAAGATTTGGGCTTGAAGACCCAGAAGATGACATATGCAAGT ATGATTTTGTAGAAGTTGAGGAACCCAGTGATGGAACTATATTAGGGCGCTGGTGTGGTTCTGGTACTGCTACCAG GAAAACAGATTTCTAAAGGAAATCAAATTAGGATAAGATTTGTATCTGATGAATATTTTCCTTCTGAACCAGGGT ${\tt TCTGCATCCACTACAACATTGTCATGCCACAATTCACAGAAGCTGTGAGTCCTTCAGTGCTACCCCCTTCAGCTTCAGCTTCAGCTGCTACCCCCTTCAGCTTCAGCTTCAGCTGCTACCCCCTTCAGCTTCA$ TGCCACTGGACCTGCTTAATAATGCTATAACTGCCTTTAGTACCTTGGAAGACCTTATTCGATATCTTGAACCAG GAAAATCCAGAGTGGTGGATCTGAACCTTCTAACAGAGGAGGTAAGATTATACAGCTGCACACCTCGTAACTTCT ACCATGAGGAGTGTGACTGTGTGCAGGGGGGGGAGCACAGGAGGATAGCCGCATCACCAGCAGCAGCTCTTGCCCA ${\tt GAGCTGTGCAGTGCAGTGGCTGATTCTATTAGAGAACGTATGCGTTATCTCCATCCTTAATCTCAGTTGTTTGCT}$ ${\tt TAAATAGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTTCAGTTCTTTTCAGTTCTTTTCAGTTCTTTTCAGTTCTTTCAGTTCTTTCAGTTCTTTCAGTTCTTTTCAGTTCTTTCAGTTCTTTCAGTTCTTTCAGTTCTTTCAGTTCTTTCAGTTCTTTCAGTTCTTTTCAGTTCTTTTCAGTTCTTTTCAGTTCTTTTCAGTTCTTTTCAGTTCTTTTCAGTTCA$ GATACGGCTTAGGGTAATGTCAGTACAGGAAAAAAACTGTGCCAAGTGAGCACCTGATTCCGTTGCCTTAAC ATGTAAACCAGAACATTCTATGTACTACAAACCTGGTTTTTAAAAAGGAACTATGTTGCTATGAATTAAACTTGT $\tt GTCATGCTGATAGGACAGACTGGATTTTCATATTTCTTATTAAAATTTCTGCCATTTAGAAGAAGAGAACTACA$ ${\tt TTCATGGTTTGGAAGAGATAAACCTGAAAAGAAGAGGGCCTTATCTTCACTTTATCGATAAGTCAGTTTATTTG}$ ${\tt TTTCATTGTGTACATTTTTATATTCTCCTTTTGACATTATAACTGTTGGCTTTTCTAATCTTGTTAAATATATCT}$ ATTTTTACCAAAGGTATTTAATATTCTTTTTATGACAACTTAGATCAACTATTTTTAGCTTAGGTAAATTTTTCT ${\tt AAACACAATTGTTATAGCCAGAGGAACAAAGATGATATAAAATATTGTTGCTCTGACAAAAATACATGTATTTCA}$ ${\tt TTCTCGTATGGTGCTAGAGTTAGATTAATCTGCATTTTAAAAAACTGAATTGGAATAGAATTGGTAAGTTGCAAACTGAATTGGAAATTGGAATTG$ GACTTTTTGAAAATAATTAAATTATCATATCTTCCATTCCTGTTATTGGAGATGAAAATAAAAAGCAACTTATGA AAGTAGACATTCAGATCCAGCCATTACTAACCTATTCCTTTTTTGGGGAAATCTGAGCCTAGCTCAGAAAAACAT AAAGCACCTTGAAAAAGACTTGGCAGCTTCCTGATAAAGCGTGCTGTGCTGTGCAGTAGGAACACATCCTATTTA TTGTGATGTTGTGGTTTTATTATCTTAAACTCTGTTCCATACACTTGTATAAATACATGGATATTTTTATGTACA ${\tt GAAGTATGTCTCTTAACCAGTTCACTTATTGTACTCTGGCAATTTAAAAGAAAATCAGTAAAATATTTTGCTTGT}$ AAAATGCTTAATATNGTGCCTAGGTTATGTGGTGACTATTTGAATCAAAAATGTATTGAATCATCAAATAAAAGA

MSLFGLLLTSALAGQRQGTQAESNLSSKFQFSSNKEQNGVQDPQHERIITVSTNGSIHSPR FPHTYPRNTVLVWRLVAVEENVWIQLTFDERFGLEDPEDDICKYDFVEVEEPSDGTILGRWC GSGTVPGKQISKGNQIRIRFVSDEYFPSEPGFCIHYNIVMPQFTEAVSPSVLPPSALPLDLL NNAITAFSTLEDLIRYLEPERWQLDLEDLYRPTWQLIGKAFVFGRKSRVVDLNLLTEEVRLY SCTPRNFSVSIREELKRTDTIFWPGCLLVKRCGGNCACCLHNCNECQCVPSKVTKKYHEVLQ LRPKTGVRGLHKSLTDVALEHHEECDCVCRGSTGG

Signal sequence: amino acids 1-14

CCCATCTCAAGCTGATCTTGGCACCTCTCATGCTCTCTTCAACCAGACCTCTACATTCCATTTTGGAAGA AGACTAAAAATGGTGTTTCCAATGTGGACACTGAAGAGACAAATTCTTATCCTTTTTAACATAATCCTAATTTCC AAACTCCTTGGGGCTAGATGGTTTCCTAAAACTCTGCCCTGTGATGTCACTCTGGATGTTCCAAAGAACCATGTG ATCGTGGACTGCACAGACAAGCATTTGACAGAAATTCCTGGAGGTATTCCCACGAACACCACGAACCTCACCCTC ACCATTAACCACATACCAGACATCTCCCCAGCGTCCTTTCACAGACTGGACCATCTGGTAGAGATCGATTTCAGA TGCAACTGTGTACCTATTCCACTGGGGTCAAAAAACAACATGTGCATCAAGAGGCTGCAGATTAAACCCAGAAGC CCTAGCTTACAGCTTCTCAGCCTTGAGGCCAACAACATCTTTTCCATCAGAAAAGAGAATCTAACAGAACTGGCC AACATAGAAATACTCTACCTGGGCCAAAACTGTTATTATCGAAATCCTTGTTATGTTTCATATTCAATAGAGAAA GATGCCTTCCTAAACTTGACAAGGTTAAAAGTGCTCTCCCTGAAAGATAACAATGTCACAGCCGTCCCTACTGTT TTGCCATCTACTACAGAACTATATCTCTACAACAACATGATTGCAAAAAATCCAAGAAGATGATTTTAATAAC CTCAACCAATTACAAATTCTTGACCTAAGTGGAAATTGCCCTCGTTGTTATAATGCCCCCATTTCCTTGTGCGCCG TGTAAAAATAATTCTCCCCTACAGATCCCTGTAAATGCTTTTGATGCGCTGACAGAATTAAAAGTTTTACGTCTA CACAGTAACTCTCTTCAGCATGTGCCCCCAAGATGGTTTAAGAACATCAACAACTCCAGGAACTGGATCTGTCC CAAAACTTCTTGGCCAAAGAAATTGGGGATGCTAAATTTCTGCATTTTCTCCCCAGCCTCATCCAATTGGATCTG TCTTTCAATTTTGAACTTCAGGTCTATCGTGCATCTATGAATCTATCACAGCATTTTCTTCACTGAAAAGCCTG AAAATTCTGCGGATCAGAGGATATGTCTTTAAAGAGTTGAAAAGCTTTAACCTCTCGCCATTACATAATCTTCAA AATCTTGAAGTTCTTGATCTTGGCACTAACTTTATAAAAATTGCTAACCTCAGCATGTTTAAACAATTTAAAAAGA CTGAAAGTCATAGATCTTTCAGTGAATAAAATATCACCTTCAGGAGATTCAAGTGAAGTTGGCTTCTGCTCAAAT GCCAGAACTTCTGTAGAAAGTTATGAACCCCAGGTCCTGGAACAATTACATTATTTCAGATATGATAAGTATGCA AGGAGTTGCAGATTCAAAAACAAAGAGGCTTCTTTCATGTCTGTTAATGAAAGCTGCTACAAGTATGGGCAGACC AATCTGTCAGGAAATCTCATTAGCCAAACTCTTAATGGCAGTGAATTCCAACCTTTAGCAGAGCTGAGATATTTG GACTTCTCCAACAACCGGCTTGATTTACTCCATTCAACAGCATTTGAAGAGCTTCACAAACTGGAAGTTCTGGAT ATAAGCAGTAATAGCCATTATTTTCAATCAGAAGGAATTACTCATATGCTAAACTTTACCAAGAACCTAAAGGTT ACTCTGGAATTCAGAGGAAATCACTTAGATGTTTTATGGAGGAGAGGTGATAACAGATACTTACAATTATTCAAG AATCTGCTAAAATTAGAGGAATTAGACATCTCTAAAAATTCCCTAAGTTTCTTGCCTTCTGGAGTTTTTGATGGT ATGCCTCCAAATCTAAAGAATCTCTCTTTGGCCAAAAATGGGCTCAAATCTTTCAGTTGGAAGAACTCCAGTGT AGAAGCCTCAAGAATCTGATTCTTAAGAATAATCAAATCAGGAGTCTGACGAAGTATTTTCTACAAGATGCCTTC CAGTTGCGATATCTGGATCTCAGCTCAAATAAAATCCAGATGATCCAAAAGACCAGCTTCCCAGAAAATGTCCTC AACAATCTGAAGATGTTGCTTTTGCATCATAATCGGTTTCTGTGCACCTGTGATGCTGTGTGTTGTCTGGTGG GTTAACCATACGGAGGTGACTATTCCTTACCTGGCCACAGATGTGACTTGTGTGGGGCCAGGAGCACACAGGGC CAAAGTGTGATCTCCCTGGATCTGTACACCTGTGAGTTAGATCTGACTAACCTGATTCTGTTCTCACTTTCCATA TCTGTATCTCTCTCTCTCATGGTGATGACGACAGCACGTCACCTCTATTTCTGGGATGTGTGGTATATTTACCAT TTCTGTAAGGCCAAGATAAAGGGGTATCAGCGTCTAATATCACCAGACTGTTGCTATGATGCTTTTATTGTGTAT GACACTAAAGACCCAGCTGTGACCGAGTGGGTTTTGGCTGAGCTGGTGGCCAAACTGGAAGACCCAAGAGAGAAAA CATTTAATTTATGTCTCGAGGAAAGGGACTGGTTACCAGGGCAGCCAGTTCTGGAAAACCTTTCCCAGAGCATA CAGCTTAGCAAAAAGACAGTGTTTGTGATGACAGACAAGTATGCAAAGACTGAAAATTTTAAGATAGCATTTTAC TCCAAGTTCCTCCAGCTCCGGAAAAGGCTCTGTGGGAGTTCTGTCCTTGAGTGGCCAACAAACCCGCAAGCTCAC CCATACTTCTGGCAGTGTCTAAAGAACGCCCTGGCCACAGACAATCATGTGGCCTATAGTCAGGTGTTCAAGGAA ACGGTC $\underline{TAG}CCCTTCTTTGCAAAACACAACTGCCTAGTTTACCAAGGAGAGGCCTGGC$

MVFPMWTLKROILILFNIILISKLLGARWFPKTLPCDVTLDVPKNHVIVDCTDKHLTEIPGG IPTNTTNLTLTINHIPDISPASFHRLDHLVEIDFRCNCVPIPLGSKNNMCIKRLOIKPRSFS GLTYLKSLYLDGNOLLEIPOGLPPSLOLLSLEANNIFSIRKENLTELANIEILYLGQNCYYR NPCYVSYSIEKDAFLNLTKLKVLSLKDNNVTAVPTVLPSTLTELYLYNNMIAKIOEDDFNNL NOLOILDLSGNCPRCYNAPFPCAPCKNNSPLOIPVNAFDALTELKVLRLHSNSLOHVPPRWF KNINKLOELDLSONFLAKEIGDAKFLHFLPSLIOLDLSFNFELOVYRASMNLSOAFSSLKSL KILRIRGYVFKELKSFNLSPLHNLONLEVLDLGTNFIKIANLSMFKOFKRLKVIDLSVNKIS PSGDSSEVGFCSNARTSVESYEPOVLEOLHYFRYDKYARSCRFKNKEASFMSVNESCYKYGO TLDLSKNSIFFVKSSDFOHLSFLKCLNLSGNLISOTLNGSEFOPLAELRYLDFSNNRLDLLH STAFEELHKLEVLDISSNSHYFQSEGITHMLNFTKNLKVLQKLMMNDNDISSSTSRTMESES LRTLEFRGNHLDVLWREGDNRYLOLFKNILKLEELDISKNSLSFLPSGVFDGMPPNLKNLSL AKNGLKSFSWKKLOCLKNLETLDLSHNOLTTVPERLSNCSRSLKNLILKNNOIRSLTKYFLO DAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLLLHHNRFLCTCDAVWFVWWVNHTEVTIP YLATDVTCVGPGAHKGOSVISLDLYTCELDLTNLILFSLSISVSLFLMVMMTASHLYFWDVW YIYHFCKAKIKGYORLISPDCCYDAFIVYDTKDPAVTEWVLAELVAKLEDPREKHFNLCLEE RDWLPGOPVLENLSOSIOLSKKTVFVMTDKYAKTENFKIAFYLSHORLMDEKVDVIILIFLE KPFQKSKFLQLRKRLCGSSVLEWPTNPQAHPYFWQCLKNALATDNHVAYSQVFKETV

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 840-860

GGGTACCATTCTGCGCTGCTGCAAGTTACGGAATGAAAAATTAGAACAACAGAAACATGGAAAACATGTTCCTTC AGTCGTCAATGCTGACCTGCATTTTCCTGCTAATATCTGGTTCCTGTGAGTTATGCGCCGAAGAAAATTTTTCTA GAAGCTATCCTTGTGATGAGAAAAAGCAAAATGACTCAGTTATTGCAGAGTGCAGCAATCGTCGACTACAGGAAG CATTTCAAGGGCTGCAAAATCTCACTAAAATAAATCTAAACCACACCCCAATGTACAGCACCAGAACGGAAATC CCGGTATACAATCAAATGGCTTGAATATCACAGACGGGGCATTCCTCAACCTAAAAAACCTAAGGGAGTTACTGC TTGAAGACAACCAGTTACCCCAAATACCCTCTGGTTTGCCAGAGTCTTTGACAGAACTTAGTCTAATTCAAAACA ATATATACAACATAACTAAAGAGGGCATTTCAAGACTTATAAACTTGAAAAATCTCTATTTGGCCTGGAACTGCT ATTTTAACAAAGTTTGCGAGAAAACTAACATAGAAGATGGAGTATTTGAAACGCTGACAAATTTGGAGTTGCTAT CACTATCTTTCAATTCTCTTTCACACGTGCCACCCAAACTGCCAAGCTCCCTACGCAAACTTTTTCTGAGCAACA CCCAGATCAAATACATTAGTGAAGAAGATTTCAAGGGATTGATAAATTTAACATTACTAGATTTAAGCGGGAACT GTCCGAGGTGCTTCAATGCCCCATTTCCATGCGTGCCTTGTGATGGTGGTGCTTCAATTAATATAGATCGTTTTG CTTTTCAAAACTTGACCCAACTTCGATACCTAAACCTCTCTAGCACTTCCCTCAGGAAGATTAATGCTGCCTGGT TTAAAAATATGCCTCATCTGAAGGTGCTGGATCTTGAATTCAACTATTTAGTGGGAGAAATAGTCTCTGGGGCAT TTTTAACGATGCTGCCCCGCTTAGAAATACTTGACTTGTCTTTTAACTATAAAGGGGAGTTATCCACAGCATA TTAATATTTCCAGAAACTTCTCTAAACTTTTGTCTCTACGGGCATTGCATTTAAGAGGTTATGTGTTCCAGGAAC TCAGAGAAGATGATTTCCAGCCCCTGATGCAGCTTCCAAACTTATCGACTATCAACTTGGGTATTAATTTTATTA AGCAAATCGATTTCAAACTTTTCCAAAATTTCTCCAATCTGGAAATTATTTACTTGTCAGAAAACAGAATATCAC CGTTGGTAAAAGATACCCGGCAGAGTTATGCAAATAGTTCCTCTTTTCAACGTCATATCCGGAAACGACGCTCAA CAGATTTTGACCCACATTCGAACTTTTATCATTTCACCCGTCCTTTAATAAAGCCACAATGTGCTGCTT ATGGAAAAGCCTTAGATTTAAGCCTCAACAGTATTTTCTTCATTGGGCCAAACCAATTTGAAAATCTTCCTGACA TTGCCTGTTTAAATCTGTCTGCAAATAGCAATGCTCAAGTGTTAAGTGGAACTGAATTTTCAGCCATTCCTCATG TCAAATATTTGGATTTGACAAACAATAGACTAGACTTTGATAATGCTAGTGCTCTTACTGAATTGTCCGACTTGG AAGTTCTAGATCTCAGCTATAATTCACACTATTTCAGAATAGCAGGCGTAACACATCATCTAGAATTTATTCAAA ATTTCACAAATCTAAAAGTTTTAAACTTGAGCCACAACAACATTTATACTTTAACAGATAAGTATAACCTGGAAA GCAAGTCCCTGGTAGAATTAGTTTTCAGTGGCAATCGCCTTGACATTTTGTGGAATGATGATGACAACAGGTATA TCTCCATTTTCAAAGGTCTCAAGAATCTGACACGTCTGGATTTATCCCTTAATAGGCTGAAGCACATCCCAAATG AAGCATTCCTTAATTTGCCAGCGAGTCTCACTGAACTACATATAAATGATAATATGTTAAAGTTTTTTAACTGGA TATCTGACTTTACATCTTCCCTTCGGACACTGCTGCTGAGTCATAACAGGATTTCCCACCTACCCTCTGGCTTTC TTTCTGAAGTCAGTAGTCTGAAGCACCTCGATTTAAGTTCCAATCTGCTAAAAACAATCAACAAATCCGCACTTG AAACTAAGACCACCACAAATTATCTATGTTGGAACTACACGGAAACCCCTTTGAATGCACCTGTGACATTGGAG ATTTCCGAAGATGGATGGATGAACATCTGAATGTCAAAATTCCCAGACTGGTAGATGTCATTTGTGCCAGTCCTG GGGATCAAAGAGGGAAGAGTATTGTGAGTCTGGAGCTAACAACTTGTGTTTCAGATGTCACTGCAGTGATATTAT TTTTCTTCACGTTCTTTATCACCACCATGGTTATGTTGGCTGCCCTGGCTCACCATTTGTTTTACTGGGATGTTT GGTTTATATATATGTGTGTTTTAGCTAAGGTAAAAGGCTACAGGTCTCTTTCCACATCCCAAACTTTCTATGATG AGAGCCGAGACAAAAACGTTCTCCTTTGTCTAGAGGAGAGGGATTGGGACCCGGGATTGGCCATCATCGACAACC TCATGCAGAGCATCAACCAAAGCAAGAAAACAGTATTTGTTTTAACCAAAAAATATGCAAAAAGCTGGAACTTTA CAGTGTTACAGCATTCTCAGTATTTGAGGCTACGGCAGCGGATCTGTAAGAGCTCCATCCTCCAGTGGCCTGACA ACCCGAAGGCAGAAGGCTTGTTTTGGCAAACTCTGAGAAATGTGGTCTTGACTGAAAATGATTCACGGTATAACA ATATGTATGTCGATTCCATTAAGCAATACTGACGTTAAGTCATGATTTCGCGCCCATAATAAAGATGCAAAG GAATGACATTTCTGTATTAGTTATCTATTGCTATGTAACAAATTATCCCAAAACTTAGTGGTTTAAAACAACAC TTTGCTGGCCCACAGTTTTTGAGGGTCAGGAGTCCAGGCCCAGCATAACTGGGTCCTCTGCTCAGGGTGTCTCAG AGGCTGCAATGTAGGTGTTCACCAGAGACATAGGCATCACTGGGGTCACACTCATGTGGTTGTTTTCTGGATTCA ATCAGAGCTAGCAAAAAAGAGAGGTTGCTAGCAAGATGAAGTCACAATCTTTTGTAATCGAATCAAAAAAGTGAT ATCTCATCACTTTGGCCATATTCTATTTGTTAGAAGTAAACCACAGGTCCCACCAGCTCCATGGGAGTGACCACC TGACTGCTGTCCTGGGATGGCCTGCTATCTTGATGATAGATTGTGAATATCAGGAGGCAGGGATCACTGTGGACC ATCTTAGCAGTTGACCTAACACATCTTCTTTTCAATATCTAAGAACTTTTGCCACTGTGACTAATGGTCCTAATA TTAAGCTGTTGTTTATATCTATCATATCTATGGCTACATGGTTATATTATGCTGTGGTTGCGTTCGGTTTTAT TTACAGTTGCTTTTACAAATATTTGCTGTAACATTTGACTTCTAAGGTTTAGATGCCATTTAAGAACTGAGATGG ATAGCTTTTAAAGCATCTTTTACCTTCTTACCATTTTTTAAAAGTATGCAGCTAAATTCGAAGCTTTTGGTCTATA

MENMFLQSSMLTCIFLLISGSCELCAEENFSRSYPCDEKKONDSVIAECSNRRLOEVPOTVG KYVTELDLSDNFITHITNESFOGLONLTKINLNHNPNVOHONGNPGIOSNGLNITDGAFINL KNLRELLLEDNQLPQIPSGLPESLTELSLIQNNIYNITKEGISRLINLKNLYLAWNCYFNKV CEKTNIEDGVFETLTNLELLSLSFNSLSHVPPKLPSSLRKLFLSNTQIKYISEEDFKGLINL $\verb|TLLDLSGNCPRCFNAPFPCVPCDGGASINIDRFAFQNLTQLRYLNLSSTSLRKINAAWFKNM|$ PHLKVLDLEFNYLVGEIVSGAFLTMLPRLEILDLSFNYIKGSYPQHINISRNFSKLLSLRAL HLRGYVFQELREDDFQPLMQLPNLSTINLGINFIKOIDFKLFONFSNLEIIYLSENRISPLV KDTRQSYANSSSFORHIRKRRSTDFEFDPHSNFYHFTRPLIKPOCAAYGKALDLSLNSIFFI GPNQFENLPDIACLNLSANSNAQVLSGTEFSAIPHVKYLDLTNNRLDFDNASALTELSDLEV LDLSYNSHYFRIAGVTHHLEFIONFTNLKVLNLSHNNIYTLTDKYNLESKSLVELVFSGNRI. DILWNDDDNRYISIFKGLKNLTRLDLSLNRLKHIPNEAFLNLPASLTELHINDNMLKFFNWT LLQQFPRLELLDLRGNKLLFLTDSLSDFTSSLRTLLLSHNRISHLPSGFLSEVSSLKHLDLS SNLLKTINKSALETKTTTKLSMLELHGNPFECTCDIGDFRRWMDEHLNVKIPRLVDVICASP GDQRGKSIVSLELTTCVSDVTAVILFFFTFFITTMVMLAALAHHLFYWDVWFIYNVCLAKVK GYRSLSTSOTFYDAYISYDTKDASVTDWVINELRYHLEESRDKNVLLCLEERDWDPGLAIID NLMOSINQSKKTVFVLTKKYAKSWNFKTAFYLALQRLMDENMDVIIFILLEPVLQHSQYLRL RQRICKSSILQWPDNPKAEGLFWQTLRNVVLTENDSRYNNMYVDSIKOY

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 826-848

CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTTAGAGATCCCTCGACCTCGACCCACGCGCCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGA ${\tt CAGGCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGC}$ AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGGC TCCAGCAGCATCAGCAGCCCCCAGGACCGGGGGGCACAGGTGGCCCCCACCACCCCGGAGGA GCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAA GGCCACCCGCCTGGAGGCACAGGCCATGAGGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTT CTGGTGTTGGCAGTGGGCGCACAGAGCACGCCTACCGGCCCGTAGGGTGTGTGCTGT CCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGC CGCAGCCTGGGCTGGCCCCTGCCAGGCCTCGCTACGCGTGCTGCCCGGCTGGAAGAGACGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAGGGA GCTGTGTCCAGCCTGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCA GATGTGGATGAATGCAGTGCTAGGAGGGGGGGCTGTCCCCAGCGCTGCATCAACACCGCCGG CAGTTACTGGTGCCAGTGTTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGC CCAAGGGAGGCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAGGAA GAAGTGCAGAGGCTGCAGGTCCAGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGC CCCACTGCACAGCCTCGCAGGCACTCGCAGCCTCCCGCACCCCGCCACCCTCC GACTGAGCCCTCACGCCGCCTGCAGCCCCCATGCCCCTGCCCAACATGCTGGGGGTCCAG TTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCAC CCCTGGCTACCCCACCCTGGCTACCCCAACGCCATCCCAAGGCCAGGTGGGCCCTCAGCTG AGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCCAGGCCCGGAG GCTGGGTGGGGCCTCAGTGGGGGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTGA CGACCTGCAGAAGCTTGCCCGCCATGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAAT

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR CPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG RIDSLSEOISFLEEOLGSCSCKKDS

Signal sequence:

1-19

GCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAG GGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGGCTCC AGCAGCATCAGAGCAGCCCCTGTGGTTGGCAGCAAAGTTCAGCTTGGCTGGGCCCGCTGTGA GGGGCTTCGCGCTACGCCCTGCGGTGTCCCGAGGGCTGAGGTCTCCTCATCTTCTCCCTAGC AGTGGATGAGCAACCCAACGGGGGCCCCGGGGAGCGAACTGGCCCCGAGGGAGCAACCCC AAAGCCACATCTGTAGCCAGGATGAGCAGTGTGAATCCAGGCAGCCCCCAGGACCGGGGAGG CACAGGTGGCCCCCACCACCGGAGGAGCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTC $\verb|TCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCCGCCTGGAGGCACAGGCCATGAGGGGCC||$ TCTCAGGAGGTGCTGATGTGGCTTCTGGTGTTGGCAGTGGGCGCACAGAGCACGCCTA CCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCG TGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTAC CGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCTGCCAGGCCTCGCTA CGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATAT GCCAGCCGCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCGCTGCCCTGCA GGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTG TCCCCAGCGCTGCATCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCC TGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCG ACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGGTCCAGGGTGGACCTGCT GGAGGAGAGCTGCAGCTGGTGCTGGCCCCACTGCACGCCTGGCCTCGCAGGCACTGGAGC ATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCATCGAC CTCGTGACTGCCCAGCGCTCCAGGCTGGACTGAGCCCCTCACGCCCCCTGCAGCCCCCCATG CCCCTGCCCAACATGCTGGGGTCCAGAAGCCACCTCGGGGTGACTGAGCGGAAGGCCAGGC AGGGCCTTCCTCCTCCTCCCCCCTCCCCCTCCGGAGGCTCCCCAGACCCTGGCATGGGAT GGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACCCCCACCCTGGCTACCCCAACGCCA TCCCAAGGCCAGGTGGACCCTCAGCTGAGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGAC CCCCAGCACAATAAAAATGAAACGTG

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR CPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

CCCACGCGTCCGAAGCTGGCCCTGCACGCCTGCAAGGGAGGCTCCTGTGGACAGGCCAGGCA GGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGCTAGGG TCCATCTCCAGTCCCAGGACACAGCGGCCACCATGGCCACGCCTGGGCTCCAGCAGCAT CAGCAGCCCCCAGGACCGGGGGGGGCACAGGTGGCCCCCACCACCCGGAGGAGCAGCTCCTGC CCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCGC $\tt CTGGAGGCACAGGCC{\textbf{ATG}} AGGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTTCTGGTGTTGGC$ AGTGGGCGCACAGAGCACGCCTACCGGCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACG GGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGAC GGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGG GCTGGCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTC CTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAAGCTGTGTCCAG CCTGGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGA ATGCAGTGCTAGGAGGGGGGGCTGTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGT GCTGCAGTCCAGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACA GCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCC GGGTCCTGCTCCAGAAAGACTCGTGACTGCCCAGCGCCCCAGGCTGGACTGAGCCCC TCACGCCGCCCTGCAGCCCCCATGCCCCAACATGCTGGGGGTCCAGAAGCCACCTCG GGGTGACTGAGCGGAAGGCCAGGCAGGCCTTCCTCCTCCTCCTCCCCCTTCCTCGGGAG GCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACC CCTCAGTGGGGGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTG

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR CPAGWRGDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG RIDSLSEQISFLEEOLGSCSCKKDS

Signal sequence:

1-19

GGTTGCCACAGCTGGTTTAGGGCCCCGACCACTGGGGCCCCTTGTCAGGAGGAGACAGCCTCCCGGCCCGGGGAG AGTTGGGTCTCCGTGTTTCAGGCCGGCTCCCCCTTCCTGGTCTCCCCTTCTCCCGCTGGGCCGGTTTATCGGGAGG AGATTGTCTTCCAGGGCTAGCAATTGGACTTTTGATGATGTTTGACCCAGCGGCAGGAATAGCAGGCAACGTGAT TTCAAAGCTGGGCTCAGCCTCTGTTTCTTCTCTCTGTGTAATCGCAAAACCCATTTTGGAGCAGGAATTCCAATCA ATGGCCGCGTCATGATGGCCCGGCAAAAGGGCATTTTCTACCTGACCCTTTTCCTCATCCTGGGGACATGTACAC TCTTCTTCGCCTTTGAGTGCCGCTACCTGGCTGTTCAGCTGTCTCCTGCCATCCCTGTATTTGCTGCCATGCTCT TCCTTTCTCCATGGCTACACTGTTGAGGACCAGCTTCAGTGACCCTGGAGTGATTCCTCGGGCGCTACCAGATG AAGCAGCTTTCATAGAAATGGAGATAGAAGCTACCAATGGTGCGGTGCCCCAGGGCCAGCGACCACCGCCTCGTA TCAAGAATTTCCAGATAAACAACCAGATTGTGAAACTGAAATACTGTTACACATGCAAGATCTTCCGGCCTCCCC ATGGCAATATTGTGAAGAACTGCTGTGAAGTGCTGTGTGGCCCCCTTGCCCCCCAGTGTGCTGGATCGAAGGGGTA TTTTGCCACTGGAGGAAAGTGGAAGTCGACCTCCCAGTACTCAAGAGACCAGTAGCAGCCTCTTGCCACAGAGCC CAGCCCCCACAGAACACCTGAACTCAAATGAGATGCCGGAGGACAGCAGCACTCCCGAAGAGATGCCACCTCCAG TAATTAGGGCTATGAGAGATTTCAGGTGAGAAGTTAAACCTGAGACAGAGAGCAAGTAAGCTGTCCCTTTTAACT GTTTTTCTTTGGTCTTTAGTCACCCAGTTGCACACTGGCATTTTCTTGCTGCAAGCTTTTTTTAAATTTCTGAACT $\tt CCATGGCCTCAGCCACAGGGTCCCCTTGGACCCCCTCTCTTCCCTCCAGATCCCAGCCCTCCTGCTTGGGGTCAC$ TGGTCTCATTCTGGGGCTAAAAGTTTTTGAGACTGGCTCAAATCCTCCCAAGCTGCTGCACGTGCTGAGTCCAGA GGCAGTCACAGAGACCTCTGGCCAGGGGATCCTAACTGGGTTCTTGGGGTCTTCAGGACTGAAGAGGAGGAGGAG TGGGGTCAGAAGATTCTCCTGGCCACCAAGTGCCAGCATTGCCCACAAATCCTTTTAGGAATGGGACAGGTACCT CAGGAATGGCAGTAATAAAAGTCTGCACTTTGGTCATTTCTTTTCCTCAGAGGAAGCCCGAGTGCTCACTTAAAC ACTATCCCCTCAGACTCCCTGTGTGAGGCCTGCAGAGGCCCTGAATGCACAAATGGGAAACCAAGGCACAGAGAG CGGCTGAGTGAGGGAAAGCCCAGCACTGCTGCCCTCTCGGGTAACTCACCCTAAGGCCTCGGCCCACCTCTGGCT ATGGTAACCACACTGGGGGCTTCCTCCAAGCCCCGCTCTTCCAGCACTTCCACCGGCAGAGTCCCAGAGCCACTT CACCCTGGGGGTGGGCTGTGGCCCCCAGTCAGCTCTGCTCAGGACCTGCTCTATTTCAGGGAAGAAGATTTATGT ATTATATGTGGCTATATTTCCTAGAGCACCTGTGTTTTCCTCTTTCTAAGCCAGGGTCCTGTCTGGATGACTTAT $\tt GCGGTGGGGGAGTGTAAACCGGAACTTTTCATCTATTTGAAGGCGATTAAACTGTGTCTAATGCA$

MSVMVVRKKVTRKWEKLPGRNTFCCDGRVMMARQKGIFYLTLFLILGTCTLFFAFECRYLAV QLSPAIPVFAAMLFLFSMATLLRTSFSDPGVIPRALPDEAAFIEMEIEATNGAVPQGQRPPP RIKNFQINNQIVKLKYCYTCKIFRPPRASHCSICDNCVERFDHHCPWVGNCVGKRNYRYFYL FILSLSLLTIYVFAFNIVYVALKSLKIGFLETLKETPGTVLEVLICFFTLWSVVGLTGFHTF LVALNQTTNEDIKGSWTGKNRVQNPYSHGNIVKNCCEVLCGPLPPSVLDRRGILPLEESGSR PPSTQETSSSLLPQSPAPTEHLNSNEMPEDSSTPEEMPPPEPPPPPPPPQBAAEAEK

Putative transmembrane domains:

amino acids 36-55 (type II TM), 65-84, 188-208, 229-245

AAAACCCTGTATTTTTTACAATGCAAATAGACAATNANCCTGGAGGTCTTTGAATTAGGTAT
TATAGGGATGGTGGGGTTGATTTTTNTTCCTGGAGGCTTTTGGACTCTCNCTTTCT
CCCACAGAGCNCTTCGACCATCACTGCCCCTGGGTGGGGAATTGTGTTGGAAAGAGGAACTA
CCGCTANTTCTACCTCTTCATCCTTTNTCTCTCCCNCCTCACAATCTATGTCTTCGCCTTCA
ACATCGT

GTTGTGTCCTTCAGCAAAACAGTGGATTTAAATCTCCTTGCACAAGCTTGAGAGCAACACAA AAAAAAATCATGAAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAATCTTCAC GGGGCTGCTCTCTGTGTCTCTTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTTCC CCAAAGCTATGGACAACGTGACGGTCCGGCAGGGGGGAGAGCGCCACCCTCAGGTGCACTATT GACAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTATGCTGGGAATGA CAAGTGGTGCCTGGATCCTCGGGTGGTCCTTCTGAGCAACACCCAAACGCAGTACAGCATCG CACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATTTC TTCAGATATCTCCATTAATGAAGGGAACAATATTAGCCTCACCTGCATAGCAACTGGTAGAC GAATACTTGGAAATTCAGGGCATCACCCGGGAGCAGTCAGGGGACTACGAGTGCAGTGCCTC CAATGACGTGGCCGCGCCCGTGGTACGGAGGTAAAGGTCACCGTGAACTATCCACCATACA TTTCAGAAGCCAAGGGTACAGGTGTCCCCGTGGGACAAAAGGGGACACTGCAGTGTGAAGCC TCAGCAGTCCCCTCAGCAGAATTCCAGTGGTACAAGGATGACAAAAGACTGATTGAAGGAAA GAAAGGGGTGAAAGTGGAAAACAGACCTTTCCTCTCAAAACTCATCTTCTTCAATGTCTCTG AACATGACTATGGGAACTACACTTGCGTGGCCTCCAACAAGCTGGGCCACACCAATGCCAGC ATCATGCTATTTGGTCCAGGGGCGCCGTCAGCGAGGTGAGCAACGGCACGTCGAGGAGGGCAGG $\tt CTGCGTCTGGCTGCTCTTCTGGTCTTGCACCTGCTTCTCAAATTT{\color{red}{TGA}}{TGA}{TGTGAGTGCC}$ CGACAGCAACCAATCAGATATATACAAATGAAATTAGAAGAAACACAGCCTCATGGGACAGA AATTTGAGGGAGGGAACAAAGAATACTTTGGGGGGAAAAGAGTTTTAAAAAAGAAATTGAA AATTGCCTTGCAGATATTTAGGTACAATGGAGTTTTCTTTTCCCAAACGGGAAGAACACAGC ${\tt ACACCCGGCTTGGACCCACTGCAAGCTGCATCGTGCAACCTCTTTGGTGCCAGTGTGGGCAA}$ GGGCTCAGCCTCTCTGCCCACAGAGTGCCCCCACGTGGAACATTCTGGAGCTGGCCATCCCA AATTCAATCAGTCCATAGAGACGAACAGAATGAGACCTTCCGGCCCAAGCGTGGCGCTGCGG GCACTTTGGTAGACTGTGCCACCACGGCGTGTGTTGTGAAACGTGAAATAAAAAGAGCAAAA AAAAA

MKTIQPKMHNSISWAIFTGLAALCLFQGVPVRSGDATFPKAMDNVTVRQGESATLRCTIDNR VTRVAWLNRSTILYAGNDKWCLDPRVVLLSNTQTQYSIEIQNVDVYDEGPYTCSVQTDNHPK TSRVHLIVQVSPKIVEISSDISINEGNNISLTCIATGRPEPTVTWRHISPKAVGFVSEDEYL EIQGITREQSGDYECSASNDVAAPVVRRVKVTVNYPPYISEAKGTGVPVGQKGTLQCEASAV PSAEFQWYKDDKRLIEGKKGVKVENRPFLSKLIFFNVSEHDYGNYTCVASNKLGHTNASIML FGPGAVSEVSNGTSRRAGCVWLLPLLVLHLLLKF

Signal peptide: amino acids 1-28

ATCACCGCCTGGCCCGACTCCACCATGAACGTCGCGCTGCAGGAGCTGGGAGCTGGCAGCAACGTGGGATTCCAG ${\tt AAGGGGACAAGACAGCTGTTAGGCTCACGCAGCTGGAGCTGGTCTTAGCAGGTGCCTCTTACTGCTGGCT}$ GCACTGCTTCTGGGCTTGTGGCCCTAGGGGTCCAGTACCACAGAGCCCATCCCACAGCACCTGCCTTACA GAGGCCTGCATTCGAGTGGCTGGAAAAATCCTGGAGTCCCTGGACCGAGGGGTGAGCCCCTGTGAGGACTTTTAC CAGTTCTCCTGTGGGGGCTGGATCGGAGGAACCCCCTGCCCGATGGGCGTTCTCGCTGGAACACCTTCAACAGC CAGAAGACACAGCGCTTCTACCTATCTTGCCTACAGGTGGAGCGCATTGAGGAGCTGGGAGCCCAGCCACTGAGA GACCTCATTGAGAAGATTGGTGGTTGGAACATTACGGGGCCCTGGGACCAGGACAACTTTATGGAGGTGTTGAAG GCAGTAGCAGGGACCTACAGGGCCACCCCATTCTTCACCGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAGC AATGTTATCCAGGTGGACCAGTCTGGGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAG GAGCAGATGCAGCAGCTGCTGGAGTTGGAGATACAGCTGGCCAACATCACAGTGCCCCAGGACCAGCGGCGCGAC GAGGAGAAGATCTACCACAAGATGAGCATTTCGGAGCTGCAGGCTCTGGCGCCCCCATGGACTGGCTTCGAGTTC CAGGTGTCAGAGCTCATCAACCGCACGGAACCAAGCATCCTGAACAATTACCTGATCTGGAACCTGGTGCAAAAG ACAACCTCAAGCCTGGACCGACGCTTTGAGTCTGCACAAGAGAAGCTGCTGGAGACCCTCTATGGCACTAAGAAG TCCTGTGTGCCGAGGTGGCAGACCTGCATCTCCAACACGGATGACGCCCTTGGCTTTGCTTTGGGGTCACTCTTC GAGGCCCTGGGACAGCTGGTTTGGATGGATGAGAAGACCCGCCAGGCAGCCAAGGAGAAAGCAGATGCCATCTAT GATATGATTGGTTTCCCAGACTTTATCCTGGAGCCCAAAGAGCTGGATGATGTTTATGACGGGTACGAAATTTCT ${\tt GAAGATTCTTTCTTCCAAAACATGTTGAATTTGTACAACTTCTCTGCCAAGGTTATGGCTGACCAGCTCCGCAAG}$ CCTCCCAGCCGAGACCAGTGGAGCATGACCCCCCAGACAGTGAATGCCTACTACCTTCCAACTAAGAATGAGATC GTCTTCCCCGCTGGCATCCTGCAGGCCCCCTTCTATGCCCGCAACCACCCCAAGGCCCTGAACTTCGGTGGCATC GGTGTGGTCATGGGCCATGACTTGACGCATGCCTTTGATGACCAAGGGCGCGGAGTATGACAAAGAAGGGAACCTG TACCAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGAGAACATTACTGACAACGGGGGGCTGAAG GCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATGGGGAGCAGCAGCAGCTGCCAGCCGTGGGGCTCACC AACCACCAGCTCTTCTTCGTGGGATTTGCCCAGGTGTGGTGCTCGGTCCGCACACCAGAGAGCTCTCACGAGGGG CACTTCGGCTGCCCTGTCGGCTCCCCCATGAACCCAGGGCAGCTGTGTGAGGTGTGG ACCTGGATCAGGGGGAGAAATGGCCAGCTGTCACCAGACCTGGGGCAGCTCTCCTGACAAAGCTGTTTGCTCTTGGGTTGGGAGGAAGCAA ATGCAAGCTGGGCTGGGTCTAGTCCCTCCCCCCCACAGGTGACATGAGTACAGACCCTCCTCAATCACCACATTG TGCCTCTGCTTTGGGGGTGCCCCTGCCTCCAGCAGAGCCCCCACCATTCACTGTGACATCTTTCCGTGTCACCCT

MNVALQELGAGSNVGFQKGTRQLLGSRTQLELVLAGASLLLAALLLGCLVALGVQYHRDPSH
STCLTEACIRVAGKILESLDRGVSPCEDFYQFSCGGWIRRNPLPDGRSRWNTFNSLWDQNQA
ILKHLLENTTFNSSSEAEQKTQRFYLSCLQVERIEELGAQPLRDLIEKIGGWNITGPWDQDN
FMEVLKAVAGTYRATPFFTVYISADSKSSNSNVIQVDQSGLFLPSRDYYLNRTANEKVLTAY
LDYMEELGMLLGGRPTSTREQMQQVLELEIQLANITVPQDQRRDEEKIYHKMSISELQALAP
SMDWLEFLSFLLSPLELSDSEPVVVYGMDYLQQVSELINRTEPSILNNYLIWNLVQKTTSSL
DRRFESAQEKLLETLYGTKKSCVPRWQTCISNTDDALGFALGSLFVKATFDRQSKEIAEGMI
SEIRTAFEEALGQLVWMDEKTRQAAKEKADAIYDMIGFPDFILEPKELDDVYDGYEISEDSF
FQNMLNLYNFSAKVMADQLRKPPSRDQWSMTPQTVNAYYLPTKNEIVFPAGILQAPFYARNH
PKALNFGGIGVVMGHELTHAFDDQGREYDKEGNLRPWWQNESLAAFRNHTACMEEQYNQYQV
NGERLNGRQTLGENITDNGGLKAAYNAYKAWLRKHGEEQQLPAVGLTNHQLFFVGFAQVWCS
VRTPESSHEGLVTDPHSPARFRVLGTLSNSRDFLRHFGCPVGSPMNPGQLCEVW

Type II Transmembrane domain: amino acids 32-57

CGGCTCCCGGCCGGCCCGGCGCCCGGCCCAGAGCCCCCCGTGCTGCCCATCCGTTCTGAGAAGGAGCCGCTGCC GCGGTGCCTGGGACCCGGGGCAGCCCCCGGGGGGGGCACACGGCGAGCTGGGCAGCGGCCTCCAGC AGTCTCGCTGCTGCGCTCTAGCCTCCGCTTCTCTATCTCCTACAGGCGGCTGGACCGCCCTACCAGGATCCGCTT $\tt CTCAGACTCCAATGGCAGTGTCCTGTTTGAGCACCCTGCAGCCCCAAGATGGCCTGGTCTGTGGGGTGTG$ ${\tt GCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAGGAACCAGGCTTTGCTGAGGTGCTGCCCAACCTGACAGT}$ ${\tt CAGTGGACACATTGCTGCCAGGAAGAGCTGCGACGTCCTGCAAAGTGTCCTTTGTGGGGCTAATGCCCTGATCCC}$ AGTCCAAACGGGTGCTGCCGGCTCAGCCAGCCTCACTCTGCTAGGAAATGGCNCCCTGATCCTCCAGGTGCAATT GGTAGGGACAACCAGTGAGGTGGTGGCCATGACACTGGAAACCAAGCCTCAGCGGAGGGATCAGCCCACTGTCCT $\tt CCCTGTGAAGAGCCAAGCAGGGCACGCCTGGCTTTCCTTGGATACCCACTGTCACCTGCACTATGAAGTGCT$ GCTGGCTGGGCTTGGTGGCTCAGAACAAGGCACTGTCACTGCCCACCTCCTTGGGCCTCCTGGAACGCCAGGGCC GCACCTGGCAAAAGGCATGGCTTCCCTGATGATCACCACCAAGGTAGCCCCAGAGGGGAGCTCCGAGGGCAGCCT GCGGGCGCTGGGGGCTCCGGATACAGCCTCTGCTGCGCCGCCTGTGGTGCCTGGTCTCCCGGCCCTAGCGCCCGC TCGCTGGGCGCCCAACTACGACCCGCTCTGCTCACTCTGCACCTGCCAGAGACGAACGGTGATCTGTGACCCGGT GGTGTGCCCACCGCCCAGCTGCCCACACCCGGTGCAGGCTCCCGACCAGTGCTGCCCTGTTTGCCCTGGCTGCTA CTGTGCCCAGCCTGTGCGTGTCAACCCCACCGACTGCTGCAAACAGTGTCCAGGTGAGGCCCACCCCCAGCTGGG CCCCTCAGTGCCCCCGTTTGGAGAGATGAGCTGTATCACCTGCAGATGTGGGGTAAGTGGGGAGCAGAGGCTTGT ATGAAGGTCACCCAGCTGTGTGCACTGACCTGTTTAGAAAATACTGGCCTTTCTGGGACCAAGGCAGGGATGCTT TGCCCTGCCCTCTATGCCTCTGTGCCTCTCCACTCCCTCTCCCACACACTCCCCTCCTCTGTCTCC AAGTGACCAAGAGGATGGGGCCTGAGCTGGGGAAGGGGTGGCATCGAGGACCTTCTTGCATTCTCCTGTGGGAAG $\tt CCCAGTGCCTTTGCTCCTGTCCTGCCTCTACTCCCACCCCCACTACCTCTGGGAACCACAGCTCCACAAGGGG$ GAGAGGCAGCTGGGCCAGACCGAGGTCACAGCCACTCCAAGTCCTGCCCTGCCACCCTCGGCCTCTGTCCTGGAA ${\tt GCCCCACCCCTTTCTTCCTGTACATAATGTCACTGGCTTGTTGGGATTTTTAATTTATCTTCACTCAGCACCAAG}$ ATTTCTTTTTCAGTCTTTGGGCATGAGGTTGGCTCTTTGTGGCCAGGAACCTGAGTGGGGCCTGGTGGAGAAGGG GCNGAGAGTAGGAGGTGAGAGAGAGGAGGCTCTGACACTTGGGGAGCCTGAAAGAGACCTGGAGAGGCAGAGGATAG ${\tt TTTGAAGTTGCTCCAGAGAGAGAATCAAAGGTGTCACCAGCCCCTCTCTCCCTTCCCTTCCCTTTCCCTTTCT}$ TTCCCTCCCTCCCCTCCCCTCCCCTCC

GGCCGAGCGGGGTGCTGCGCGGCGGCCGTGATGGCTGACGGCGGGGCCGGGCAGGGGA TCCACCATGAACGTCGCGCTGCAGGAGCTGGGAGCTGGCAGCAACGTGGGATTCCAGAAGGG GACAAGACAGCTGTTAGGCTCACGCACGCAGCTGGAGCTGGTCTTAGCAGGTGCCTCTCTAC TGCTGGCTGCACTGCTTCTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCA TCCCACAGCACCTGCCTTACAGAGGCCTGCATTCGAGTGGCTGGAAAAATCCTGGAGTCCCT GGAACCCCCTGCCCGATGGGCGTTCTCGCTGGAACACCTTCAACAGCCTCTGGGACCAAAAC CAGGCCATACTGAAGCACCTGCTTGAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAGCA GAAGACACAGCGCTTCTACCTATCTTGCCTACAGGTGGAGCGCATTGAGGAGCTGGGAGCCC AGCCACTGAGAGACCTCATTGAGAAGATTGGTGGTTGGAACATTACGGGGCCCTGGGACCAG GACAACTTTATGGAGGTGTTGAAGGCAGTAGCAGGGACCTACAGGGCCACCCCATTCTTCAC CGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAGCAATGTTATCCAGGTGGACCAGTCTG GGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAGAAAGTAAGGAAC $\tt ATCTTCCGAACCCCCATCCCTACCCCTGGCTGAGCTGGGCTGATCCCTGTTGACTTTTCCCT$ $\tt TTGCCAAGGGTCAGAGCAGGGAAGGTGAGCCTATCCTGTCACCTAGTGAACAAACTGCCCCT$ $\tt CCTTTCTTTCTTCTTCCTCCCTCCCTCCCTTCTTCTTCCCTTTCTTCTTCT$ ${\tt TCTTATTCTTCTAGTAGGTTTCATAGACACCTACTGTGTGCCAGGTCCAGTGGGGGGAATTCG}$ GAGATATAAGTTTCCGAGCCATTGCCACAGGAAGCGTTCAGTGTCGATGGGTTCATGGACCT AGATAGGCTGATAACAAAGCTCACAAGAGGGTCCTGAGGATTCAGGAGAGACTTATGGAGCC AGCAAAGTCTTCCTGAAGAGATTGCATTTGAGCCAGGTCCTGTAG

ATGCCTACTACCTTCCAACTAAGAATGAGATCGTCTTCCCCGCTGGCATCCTGCAGGCCCCC $\tt TTCTATGCCCGCAACCACCCCAAGGCCCTGAACTTCGGTGGCATCGGTGTGGTCATGGGCCAAGGCCCTGAACTTCGGTGGCCATCGGTGTGGTCATGGGCCAAGGCCCTGAACTTCGGTGGCCAAGGCCCTGAACTTCGGTGGCCAAGGCCCAAGGCCCTGAACTTCGGTGGCCATCGGTGTGGTCATGGGCCAAGGCCCAAGGCCCTGAACTTCGGTGGCCAAGGCCCAAGGCCCAAGGCCCTGAACTTCGGTGGCCATCGGTGGTGGTCATGGGCCAAGGCCCAAGGCCCAAGGCCCTGAACTTCGGTGGCATCGGTGGTGGTCATGGGCCAAGGCCAAGGCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCAAGGCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCAAGGCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCAAGGCCAAGGCCAAGGCCAAGGCAAGGCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCAAGGCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGCCAAGGC$ ${\tt TGAGTTGACGCATGCCTTTGATGACCAAGGGGCGCGAGTATGACAAAGAAGGGAACCTGCGGC}$ $\tt CCTGGTGGCAGAATGAGTCCCTGGCAGCCTTCCGGAACCACACGGCCTGCATGGAGGAACAG$ TACAATCAATACCAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGAGAACAT TGCTGACAACGGGGGGCTGAAGGCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATG $\tt GGGAGGAGCAGCCAGCCGTGGGGGCTCACCAACCACCAGCTCTTCTTCGTGGGATTT$ TGGATCAGGGGAGAAATGGCCAGCTGTCACCAGACCTGGGGCAGCTCTCCTGACAAAGCTGT ${\tt GGTGACATGAGTACAGACCCTCCTCAATCACCACATTGTGCCTCTGGTTTGGGGGTGCCCCT}$ GTCTGGGTGGGGAGGCCAGTTCCCATAGGAAGGAGTCTGCCTCTTCTGTCCCCAGGCTCACT TACCTCCTGGACTTCTCCCCAGGCTCACTCAGTGCGCACTTAGGGGTGGACTCAGCTCTGTC TGGCTCACCCTCACGGGCTACCCCCACCTCACCCTGTGCTCCTTGTGCCACTGCTCCCAGTG TGCCCACTGTTTCCCTGGGCTGAGAGGGGAAGTGCATATGTGTAGCGGGTACTGGTTCCTGT GTCTTAGGGCACAAGCCTTAGCAAATGATTGATTCTCCCTGGACAAAGCAGGAAAGCAGATA GAGCAGGGAAAAGGAAGAACAGAGTTTATTTTTACAGAAAAGAGGGTGGGAGGGTGTGGTCT TGGCCCTTATAGGACC

CCCACGCGTCCGAGCCGCCCGAGAATTAGACACACTCCGGACGCGGCCAAAAGCAACCGAGA AAAAAAAAAAATCCTGTGGCGCGCCGCCTGGTTCCCGGGAAGACTCGCCAGCACCAGGGGG $\tt CTGCCTGCTACCCTCCTGCCTCCCGGCTGGACAGAGTGTGGACTTCCCCTGGGCGGCCGTGG$ ACAACATGATGGTCAGAAAAGGGGACACGGCGGTGCTTAGGTGTTATTTGGAAGATGGAGCT TCAAAGGGTGCCTGGCTGAACCGGTCAAGTATTATTTTTGCGGGAGGTGATAAGTGGTCAGT GGATCCTCGAGTTTCAATTTCAACATTGAATAAAAGGGACTACAGCCTCCAGATACAGAATG ATGCAGGTGCATCTAACTGTGCAAGTTCCTCCTAAGATATATGACATCTCAAATGATATGAC CGTCAATGAAGGAACCAACGTCACTCTTACTTGTTTGGCCACTGGGAAACCAGAGCCTTCCA TTTCTTGGCGACACATCTCCCCATCAGCAAAACCATTTGAAAATGGACAATATTTGGACATT TATGGAATTACAAGGGACCAGGCTGGGGAATATGAATGCAGTGCGGAAAATGCTGTGTCATT ${\tt CCCAGATGTGAGGAAAGTAAAAGTTGTTGTCAACTTTGCTCCTACTATTCAGGAAATTAAAT}$ $\tt CTGGCACCGTGACCCCGGACGCAGTGGCCTGATAAGATGTGAAGGTGCAGGTGTGCCGCCT$ CCAGCCTTTGAATGGTACAAAGGAGAGAAGAAGCTCTTCAATGGCCAACAAGGAATTATTAT TCAAAATTTTAGCACAAGATCCATTCTCACTGTTACCAACGTGACACAGGAGCACTTCGGCA ${\tt CCAAGTACAGCCCAGTATGGAATTACCGGGAGCGCTGATGTTCTTTTTCTCCTGCTGGTACCT}$ TGTGTTGACACTGTCCTCTTTCACCAGCATATTCTACCTGAAGAATGCCATTCTACAATAAA TTCAAAGACCCATAAAAGGCTTTTAAGGATTCTCTGAAAGTGCTGATGGCTGGATCCAATCT GGTACAGTTTGTTAAAAGCAGCGTGGGATATAATCAGCAGTGCTTACATGGGGATGATCGCC TTCTGTAGAATTGCTCATTATGTAAATACTTTAATTCTACTCTTTTTTGATTAGCTACATTA CCTTGTGAAGCAGTACACATTGTCCTTTTTTTAAGACGTGAAAGCTCTGAAATTACTTTTAG ${\tt AGGATATTAATTGTGATTTCATGTTTGTAATCTACAACTTTTCAAAAGCATTCAGTCATGGT}$ $\tt CTGCTAGGTTGCAGGCTGTAGTTTACAAAAACGAATATTGCAGTGAATATGTGATTCTTTAA$ GGCTGCAATACAAGCATTCAGTTCCCTGTTTCAATAAGAGTCAATCCACATTTACAAAGATG TAACACATATCTAGATTTTTCTGCTTGCATGATATTCAGGTTTCAGGAATGAGCCTTGTAAT ATAACTGGCTGTGCAGCTCTGCTTCTCTTTCCTGTAAGTTCAGCATGGGTGTGCCTTCATAC AATAATATTTTCTCTTTGTCTCCAACTAATATAAAATGTTTTGCTAAATCTTACAATTTGA AAGTAAAAATAAACCAGAGTGATCAAGTTAAACCATACACTATCTCTAAGTAACGAAGGAGC TATTGGACTGTAAAAATCTCTTCCTGCACTGACAATGGGGTTTGAGAATTTTGCCCCACACT AACTCAGTTCTTGTGATGAGAGACAATTTAATAACAGTATAGTAAATATACCATATGATTTC TTTAGTTGTAGCTAAATGTTAGATCCACCGTGGGAAATCATTCCCTTTAAAATGACAGCACA GTCCACTCAAAGGATTGCCTAGCAATACAGCATCTTTTCCTTTCACTAGTCCAAGCCAAAAA TTTTAAGATGATTTGTCAGAAAGGGCACAAAGTCCTATCACCTAATATTACAAGAGTTGGTA AGCGCTCATCATTAATTTTATTTTGTGGCAGGTATTATGACAGTCGACCTGGAGGGTATGGA TATGGATATGGACGTTCCAGAGACTATAATGGCAGAAACCAGGGTGGTTATGACCGCTACTC AGGAGGAAATTACAGAGACAATTATGACAACTGAAATGAGACATGCACATAATATAGATACA CAAGGAATAATTTCTGATCCAGGATCGTCCTTCCAAATGGCTGTATTTATAAAGGTTTTTGG AGCTGCACTGAAGCATCTTATTTTATAGTATATCAACCTTTTGTTTTTAAATTGACCTGCCA

MMLLVQGACCSNQWLAAVLLSLCCLLPSCLPAGQSVDFPWAAVDNMVRKGDTAVLRCYLED GASKGAWLNRSSIIFAGGDKWSVDPRVSISTLNKRDYSLQIQNVDVTDDGPYTCSVQTQHTP RTMQVHLTVQVPPKIYDISNDMTVNEGTNVTLTCLATGKPEPSISWRHISPSAKPFENGQYL DIYGITRDQAGEYECSAENAVSFPDVRKVKVVVNFAPTIQEIKSGTVTPGRSGLIRCEGAGV PPPAFEWYKGEKKLFNGQQGIIIQNFSTRSILTVTNVTQEHFGNYTCVAANKLGTTNASLPL NPPSTAQYGITGSADVLFSCWYLVLTLSSFTSIFYLKNAILQ

Important features of the protein: Signal peptide:

amino acids 1-31

amino acids 1-31

Transmembrane domain:

amino acids 326-345

N-glycosylation sites.

amino acids 71-75, 153-157, 273-277, 284-288, 292-296, 305-309

Casein kinase II phosphorylation site.

amino acids 147-151, 208-212, 224-228

Tyrosine kinase phosphorylation site.

amino acids 178-186

N-myristoylation sites.

amino acids 7-13, 63-70, 67-73, 151-157, 239-245, 291-297, 302-308, 319-325

Myelin P0 protein:

amino acids 92-121

 ${\tt AGTGGTTCGATGGGAAGGATCTTTCTCCAAGTGGTTCCTCTTGAGGGGGAGCATTTCTGCTGG}$ CTCCAGGACTTTGGCCATCTATAAAGCTTGGCAATGAGAAAATAAGAAAATTCTCAAGGAGGA $\tt CGAGCTCTTGAGTGAGACCCAACAAGCTGCTTTTCACCAAATTGCAATGGAGCCTTTCGAAA$ TCAATGTTCCAAAGCCCAAGAGGAGAAATGGGGTGAACTTCTCCCTAGCTGTGGTGGTCATC TACCTGATCCTGCTCACCGCTGGCGCTGGGCTGCTGGTGGTCCAAGTTCTGAATCTGCAGGC GCGGCTCCGGGTCCTGGAGATGTATTTCCTCAATGACACTCTGGCGGCTGAGGACAGCCCGT CCTTCTCCTTGCTGCAGTCAGCACACCCTGGAGAACACCTGGCTCAGGGTGCATCGAGGCTG ${\tt CAAGTCCTGCAGGCCCAACTCACCTGGGTCCGCGTCAGCCATGAGCACTTGCTGCAGCGGGT}$ AGACAACTTCACTCAGAACCCAGGGATGTTCAGAATCAAAGGTGAACAAGGCGCCCCAGGTC TTCAAGGTCACAAGGGGGCCATGGCCTGGTGCCCTGGCCCGGGGACCACCTGCT GAGAAGGGAGCCAAGGGGCTATGGGACGAGATGGAGCAACAGGCCCCTCGGGACCCCAAGG CCCACCGGAGTCAAGGGAGGCGGGCCTCCAAGGACCCCAGGGTGCTCCAGGGAAGCAAG GAGCCACTGGCACCCCAGGACCCCAAGGAGAAGGGCAAAAGGCGATGGGGGTCTCATT GGCCCAAAAGGGGAAACTGGAACTAAGGGAGAAAAGGAGACCTGGGTCTCCCAGGAAGCAA ${\tt AGGGGACAGGGGCATGAAAGGAGATGCAGGGGTCATGGGGGCCTCCTGGAGCCCAGGGGAGTA}$ AAGGTGACTTCGGGAGGCCAGGCCCACCAGGTTTGGCTGGTTTTCCTGGAGCTAAAGGAGAT CAAGGGTGAGCCTGGCAGTGCTCCCCTGGGCGAGCAGGACTTCCAGGGAGCCCCGGGA GTCCAGGAGCCACAGGCCTGAAAGGAAGCAAAGGGGACACAGGACTTCAAGGACAGCAAGGA AGAAAAGGAGAATCAGGAGTTCCAGGCCCTGCAGGTGTGAAGGGAGAACAGGGGAGCCCAGG GCTGGCAGGTCCCAAGGGAGCCCCTGGACAAGCTGGCCAGAAGGGAGACCAGGGAGTGAAAG GATCTTCTGGGGAGCAAGGAGTAAAGGGGAGAAAAAGGTGAAAGAGGTGAAAACTCAGTGTCC GTCAGGATTGTCGGCAGTAGTAACCGAGGCCGGGCTGAAGTTTACTACAGTGGTACCTGGGG GACAATTTGCGATGACGAGTGGCAAAATTCTGATGCCATTGTCTTCTGCCGCATGCTGGGTT GTTCAGTGTCGGGGCACGGAGAGTACCCTGTGGAGCTGCACCAAGAATAGCTGGGGCCATCA $\tt TGACTGCAGCCACGAGGAGGACGCAGGCGTGGAGTGCAGCGTC\underline{TGA}CCCGGAAACCCTTTCA$ $\tt CTTCTCTGCTCCCGAGGTGTCCTCGGGGCTCATATGTGGGAAGGCAGAGGATCTCTGAGGAGT$ TCCCTGGGGACAACTGAGCAGCCTCTGGAGAGGGGCCCATTAATAAAGCTCAACATCATTGA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA68886

><subunit 1 of 1, 520 aa, 1 stop

><MW: 52658, pI: 9.16, NX(S/T): 3

MRNKKILKEDELLSETQQAAFHQIAMEPFEINVPKPKRRNGVNFSLAVVVIYLILLTAGAGL
LVVQVLNLQARLRVLEMYFLHDTLAABGDFSFSLLQSAHPGEHLAQGASRLQVLQAQLTWV
VSHEHLLQRVDMFTQNFGMFFIKGEQGAFGLQGHKGAMGMPGAPGFPGPPGPAEKGAKGAMGRD
GATGPSGPQGPPGVKGEAGLQGPQGAPGKQGATGTPGPQGEKGSKGDGGLIGPKGETGTKGE
KGDLGLFGSKGBRGMKGDAGVMGPPGAQGSKGDFGRPGPFGLAGFPGAKGDGQQGRKGESGVPGPA
PPGAVGHPGAKGEPGSAGSPGRAGLFGSPGSPGATGLKGSKGDTGLQGQQGRKGESGVPGPA
GVKGEQGSPGLAGPKGAPGQAGQKGDQGVKGSSGEQGVKGEKGERGENSVSVRIVGSSNRGR
AEVYYSGTWGTICDDEWQNSDAIVFCRMLGYSKGRALYKVGAGTGQIWLDNVQCRGTESTLW
SCTKNSWGHHDCSHEEDAGVECSV

Transmembrane domain:

amino acids 47-66 (type II)

N-glycosylation sites.

amino acids 43-47, 83-87, 136-140

Tyrosine kinase phosphorylation site.

amino acids 432-440

N-myristoylation sites.

amino acids 41-47, 178-184, 253-259, 274-280, 340-346, 346-352, 400-406, 441-447, 475-481, 490-496, 515-521

Amidation site.

amino acids 360-364

Leucine zipper pattern.

amino acids 56-78

Speract receptor repeat

amino acids 422-471, 488-519

Clq domain proteins.

amino acids 151-184, 301-334, 316-349

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52758

<subunit 1 of 1, 98 aa, 1 stop

<MW: 11081, pI: 6.68, NX(S/T): 1

 ${\tt MKLMVLVFTIGLTLLLGVQAMPANRLSCYRKILKDHNCHNLPEGVADLTQIDVNVQDHFWDG} \\ {\tt KGCEMICYCNFSELLCCPKDVFFGPKISFVIPCNNQ}$

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 72-76

Tyrosine kinase phosphorylation site.

amino acids 63-71

GCGCAGTAGAGCAGCACAGGCGCGGGTCCCGGGAGGCCGGCTCTGCTCGCGCCGAGATG TAAAATCCTCCAATGAAGCTACTAACATTACTCCAAAGCATAATATGAAAGCATTTTTGGAT GAATTGAAAGCTGAGAACATCAAGAAGTTCTTACATAATTTTACACAGATACCACATTTAGC AGGAACAGAACAAACTTTCAGCTTGCAAAGCAAATTCAATCCCAGTGGAAAGAATTTGGCC TGGATTCTGTTGAGCTAGCTCATTATGATGTCCTGTTGTCCTACCCAAATAAGACTCATCCC AACTACATCTCAATAATTAATGAAGATGGAAATGAGATTTTCAACACATCATTATTTGAACC ACCTCCTCCAGGATATGAAAATGTTTCGGATATTGTACCACCTTTCAGTGCTTTCTCTCCTC AAGGAATGCCAGAGGGCGATCTAGTGTATGTTAACTATGCACGAACTGAAGACTTCTTTAAA $\tt TTGGAACGGGACATGAAAATCAATTGCTCTGGGAAAATTGTAATTGCCAGATATGGGAAAGT$ ${\tt TTTCAGAGGAAATAAGGTTAAAAATGCCCAGCTGGCAGGGGCCAAAGGAGTCATTCTCTACT}$ $\tt CCGACCCTGCTGACTACTTTGCTCCTGGGGTGAAGTCCTATCCAGACGGTTGGAATCTTCCT$ GGAGGTGGTGCCAGCGTGGAAATATCCTAAATCTGAATGGTGCAGGAGACCCTCTCACACC AGGTTACCCAGCAAATGAATATGCTTATAGGCGTGGAATTGCAGAGGCTGTTGGTCTTCCAA GTATTCCTGTTCATCCAATTGGATACTATGATGCACAGAAGCTCCTAGAAAAAATGGGTGGC TCAGCACCACCAGATAGCAGCTGGAGAGGGAAGTCTCAAAAGTGCCCTACAATGTTGGACCTGG CTTTACTGGAAACTTTTCTACACAAAAAGTCAAGATGCACATCCACTCTACCAATGAAGTGA $\tt CTGGGAGGTCACCGGGACTCATGGGTGTTTGGTGGTATTGACCCTCAGAGTGGAGCAGCTGT$ CAATTTTGTTTGCAAGCTGGGATGCAGAAGAATTTGGTCTTCTTGGTTCTACTGAGTGGGCA GAGGAGAATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATATTAATGCTGACTCATCTAT AGAAGGAAACTACACTCTGAGAGTTGATTGTACACCGCTGATGTACAGCTTGGTACACAACC TAACAAAAGAGCTGAAAAGCCCTGATGAAGGCTTTGAAGGCAAATCTCTTTATGAAAGTTGG ACTAAAAAAAGTCCTTCCCCAGAGTTCAGTGGCATGCCCAGGATAAGCAAATTGGGATCTGG AAATGATTTTGAGGTGTTCTTCCAACGACTTGGAATTGCTTCAGGCAGAGCACGGTATACTA AAAATTGGGAAACAAATTCAGCGGCTATCCACTGTATCACAGTGTCTATGAAACATAT GAGTTGGTGGAAAAGTTTTATGATCCAATGTTTAAATATCACCTCACTGTGGCCCAGGTTCG AGGAGGGATGGTGTTTGAGCTAGCCAATTCCATAGTGCTCCCTTTTGATTGTCGAGATTATG $\tt CTGTAGTTTTAAGAAAGTATGCTGACAAAATCTACAGTATTTCTATGAAACATCCACAGGAA$ ATGAAGACATACAGTGTATCATTTGATTCACTTTTTTCTGCAGTAAAGAATTTTACAGAAAT TGCTTCCAAGTTCAGTGAGAGACTCCAGGACTTTGACAAAAGCAACCCAATAGTATTAAGAA TGATGAATGATCAACTCATGTTTCTGGAAAGAGCATTTATTGATCCATTAGGGTTACCAGAC AGGCCTTTTTATAGGCATGTCATCTATGCTCCAAGCAGCCACAACAAGTATGCAGGGGAGTC ATTCCCAGGAATTTATGATGCTCTGTTTGATATTGAAAGCAAAGTGGACCCTTCCAAGGCCT ${\tt TTGAGTGAAGTAGCC} \underline{{\tt TAA}} {\tt GAGGATTTTTTAGAGAATTCGTATTGAATTTGTGTGTGTATGTCA}$ $\tt CTCAGAAAGAATCGTAATGGGTATATTGATAAATTTTAAAATTGGTATATTTGAAATAAAGT$ TGAATATTATATAA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA52756

><subunit 1 of 1, 750 aa, 1 stop

><MW: 84305, pI: 6.93, NX(S/T): 10

MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEATNITPKHNMKAFL
DELKAENIKKFLHNFTQIPHLAGTEQNFQLAKQIQSQWKEFGLDSVELAHYDVLLSYPNKTH
PNYISIINEDGNEIFNTSLFEPPPPGYENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFF
KLERDMKINCSGKIVIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDGWNL
PGGGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYYDAQKLLEKMG
GSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTNEVTRIYMVIGTLRGAVEPDRYV
ILGGHRDSWVFGGIDPQSGAAVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEW
AEENSRLLQERGVAYINADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYES
WTKKSPSPEFSGMPRISKLGSGNDFFFQRLGIASGRARYTKNWETNKFSGYPLYHSVYET
YELVEKFYDPMFKYHLTVAQVRGGMVFELANSIVLPPDCRDYAVVLRKYADKIYSISMKHPQ
EMKTYSVSFDSLFSAVKNFTEIASKFSERLQDFDKSNPIVLRMMNDQLMFLERAFIDPLGLP
DRPFYRHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTVQAAAE
TLSEVA

Signal sequence:

amino acids 1-40

N-glycosylation sites.

amino acids 76-80, 121-125, 140-144, 153-157, 195-199, 336-340, 459-463, 476-480, 638-642

Tyrosine kinase phosphorylation sites.

amino acids 363-372, 605-613, 606-613, 617-626

N-myristoylation sites.

amino acids 85-91, 168-174, 252-258, 256-262, 282-288, 335-341, 360-366, 427-433, 529-535, 707-713