CSCE 222: Discrete Structures for Computing Section 503 Fall 2016

Joseph Martinsen

September 29, 2016

Problem Set 5

Due: 2 October 2016 (Sunday) before 11:59 p.m. on eCampus (ecampus.tamu.edu). You must show your work in order to recieve credit.

Problem 1. (25 points)

Suppose that A, B, and C are sets. Prove or disprove that (A - B) - C = (A - C) - B.

Solution.

Suppose
$$A = \{1, 2, 3\}$$

 $B = \{1, 2, 3, 4\}$
 $C = \{1\}$

Then
$$B-C=\{2,3,4\}$$

 $A-(B-C)=1$
Also $A-B=\emptyset$
Then $(A-B)-C=\emptyset$
 $\therefore (A-B)-C\neq (A-C)-B$

Problem 2. (25 points)

Determine whether the symmetric difference is associative; that is, if A, B, and C are sets, does it follow that $A \oplus (B \oplus C) = (A \oplus B) \oplus C$?

- a. Use a Venn diagram.
- b. Use a membership table.
- c. Use set identities.

Solution.

- a. Use a Venn diagram.
- b. Membership table

A	B	C	$A \oplus B$	$B \oplus C$	$(A \oplus B) \oplus C$	$A \oplus (B \oplus C)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	0	0	0
1	0	0	1	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	1	0	0	1	1

 $A \oplus (B \oplus C) = (A \oplus B) \oplus C$ because they have the same truth values

c. Use set identities.

Problem 3. (25 points)

Determine whether f is a function from \mathbb{Z} to \mathbb{R} if

- a. $f(n) = \pm n$
- b. $f(n) = \left\lceil \frac{n}{2} \right\rceil$
- c. $f(n) = \sqrt{n^2 + 1}$
- d. $f(n) = \sqrt{n}$
- e. $f(n) = \frac{1}{n^2 4}$

Solution.

- a. $f(n) = \pm n$
- b. $f(n) = \left\lceil \frac{n}{2} \right\rceil$
- c. $f(n) = \sqrt{n^2 + 1}$
- d. $f(n) = \sqrt{n}$
- e. $f(n) = \frac{1}{n^2 4}$

Problem 4. (25 points)

Consider the function
$$f: \mathbb{Z} \to (\mathbb{N} - \{0\})$$
 where $f(n) = \begin{cases} 1 - 2n & n \leq 0 \\ 2n & n > 0 \end{cases}$

- a. Prove that f is a bijection by showing that it is both injective and surjective.
- b. Find the inverse function f^{-1} .

Solution.

- a. Prove that f is a bijection by showing that it is both injective and surjective.
- b. Find the inverse function f^{-1} .

Aggie Honor Statement: On my honor as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment.

Checklist: Did you...

- 1. abide by the Aggie Honor Code?
- 2. solve all problems?
- 3. start a new page for each problem?
- 4. show your work clearly?
- 5. type your solution?
- 6. submit a PDF to eCampus?