import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report

data= pd.read_csv('iris.csv')
data.head()

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

data.describe

<pre><bound method<="" pre=""></bound></pre>	NDFrame.desc	ribe of	sepal_length	sepal_	width	petal_length	petal_w
0	5.1	3.5	1.4	0.2	set	osa	
1	4.9	3.0	1.4	0.2	set	osa	
2	4.7	3.2	1.3	0.2	set	osa	
3	4.6	3.1	1.5	0.2	set	osa	
4	5.0	3.6	1.4	0.2	set	osa	
• •	• • •	• • •		• • •		• • •	
145	6.7	3.0	5.2	2.3	virgin	ica	
146	6.3	2.5	5.0	1.9	virgin	ica	
147	6.5	3.0	5.2	2.0	virgin	ica	
148	6.2	3.4	5.4	2.3	virgin	ica	
149	5.9	3.0	5.1	1.8	virgin	ica	
[150 rows x 5	columns]>						

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
```

```
Column
                        Non-Null Count Dtype
     - - -
                         _____
      0
          sepal length 150 non-null
                                         float64
      1
          sepal width
                        150 non-null
                                         float64
      2
          petal length 150 non-null
                                         float64
                                         float64
          petal width
                        150 non-null
                                         object
      4
          species
                        150 non-null
     dtypes: float64(4), object(1)
     memory usage: 6.0+ KB
#Define What X and y are in our Dataset
y = data['species']
X = data.drop('species', axis = 1)
print(X.head())
print(y.head())
        sepal length sepal width petal length
     0
                 5.1
                              3.5
                                             1.4
                                                          0.2
                 4.9
                                                          0.2
     1
                              3.0
                                             1.4
     2
                 4.7
                              3.2
                                             1.3
                                                          0.2
     3
                 4.6
                              3.1
                                             1.5
                                                          0.2
     4
                 5.0
                              3.6
                                             1.4
                                                          0.2
     0
          setosa
     1
          setosa
     2
          setosa
     3
          setosa
     4
          setosa
     Name: species, dtype: object
# Now, use the function of overall Data, For Training and Test, 20% for testing and 80% for 1
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42
.....
# We will use a Standard Scaler, to scale the features for Preprocessing
# Scaling of features in data science means,
# Feature Scaling is a technique to standardize the independent features present
#in the data in a fixed range. It is performed during the data pre-processing to handle highl
#varying magnitudes or values or units.
scaler = StandardScaler()
scale = scaler.fit(X train)
X_train = scale.transform(X_train)
X test = scale.transform(X test)
# Creating a model logistic regression
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)
pred = model.predict(X test)
```

score = accuracy_score(y_test, pred)
score

1.0

Creating a Confusion Matrix

confusion_matrix(y_test, pred)

Confusion Martix metrics, Build Classification Report
matrix = classification_report(y_test, pred)
print('classification report: \n', matrix)

classification report:

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	10
versicolor	1.00	1.00	1.00	9
virginica	1.00	1.00	1.00	11
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

✓ 0s completed at 2:20 PM

