CSCI 677 HW 1

Jingyun Yang 8357011225.

1. Rotation Matrix.

- 2. Reverse Projection of Points and Lines on Image.
 - a) Let a point in camera coordinate system that will project to (\hat{x}, \hat{y}) be (x, y, z). Then,

Therefore, all points that will project to (\hat{x}, \hat{y}) can be expressed in form $(\hat{x}z, \hat{y}z, z)$, where $z \in \mathbb{R}$.

Therefore, the equation of the line is, in vector form,

b) For a point (x, y, z) to be projected to line given by parameters (a,b,c), the following equation must hold:

$$(a.\frac{x}{2}+b.\frac{y}{2}+c=0.$$

Therefore, the equation of the plane on which points can be projected to the specified line is

Written in homogeneous wordinates, the equation of the plane is

3. Intrinsic Parameters, Extrinsic Parameters, and Vanishing Points

a) Intrinsic Matrix.

From the equation for K,

$$|\zeta = \begin{pmatrix} 0 & -d \cot \theta & x_0 \\ 0 & \frac{\beta}{8 |N \theta} & y_0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Plugging in $d=\beta=200(px/mm)\times 50=1000$, $\theta=-\frac{\pi}{2}$, $\chi_0=y_0=500$, we get

$$K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -(000 & 100) \\ 1000 & 0 & 1 \end{pmatrix}.$$

b) Extrinsic Parameters

i) Compute matrix M.

The notation matrix R is

$$R = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \overline{5}/2 & -4 \\ 0 & 1/2 & \overline{5}/2 \end{array}\right).$$

Using the fact that (5000, 4000, 2000) in world coordinate system is equivalent to (0,0,0) in casera coordinate system, we build an equation

$$\begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & t_1 \\
0 & \frac{3}{4} t_2 & t_2 \\
0 & \frac{4}{4} t_2 & t_3 \\
0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
1000 \\
4000 \\
2000 \\
2000 \\
1
\end{pmatrix},$$

where $(t_1 t_2 t_3)^T$ is the vector t.

By solving the equation above, we get

Applying M=K(Rt), we get

$$M = \begin{pmatrix} 1000 & 250 & 2505 & -15000,000-500005 \\ 0 & -5005+250 & 500+25013 & -2000,000+1,500,00015 \\ 0 & 1/2 & 53/2 & -200053-100053 \end{pmatrix}.$$

(i) The infinity point on every line in vertical direction is $(0, 1, 0, 0)^T$.

By projecting the infinity point on the image plane usry p=M.Pw, we get

in homogeneous coordinates.

Converting book to normal coordinate system, we get the coordinates for the vanishing point:

iii) Similarly, using infinity point $(X_0 \circ Z_0 \circ)^T$, where $\vec{r} = (X_0 \circ Z_0)^T$ is the direction of the lines satisfying $||\vec{r}|| = 1$. We get the homogeneous complicates of the vanishing point:

Converting back to normal coordinate system, we get

iv) Since all postits in part (ii) are on the line y= Jour 1000 13, also, for all x tik, solving

$$\int \frac{x_0}{\frac{2}{2}} = \frac{\sqrt{3}}{100} (x-500)$$

$$(x_0^2 + \frac{2}{20})^2 = 1$$

will yield a solution for Xo and Zo, whose vanishing point is at $(x, 500 + \frac{(000)}{3})$.
Therefore, the equation of the horizontal line is