随机过程期末考试参考答案与评分标准

(2019年1月10日)

一、(30分)

- (1) (每空2分): a. (是); b. (是); c. (非); d. (是)。
- (2) (每空 2 分): a. (非); b. (非); c. (是); d. (是); e. (非)。
- (3) (每空3分) ($1/(\lambda_1 + \lambda_2 + \lambda_3)$), ($\lambda_1/(\lambda_1 + \lambda_2 + \lambda_3)$)。
- (4) (每空 3 分) $(\lambda^k x^{k-1} e^{-\lambda x}/(k-1)!)$, $(\lambda t^2/2)$

二、(6分)

若第 i 辆汽车于时刻 s(s < t)进入该公路,则 $P\{a < (t-s)V_i < b\} = F(\frac{b}{t-s}) - F(\frac{a}{t-s})$,故第 i 辆车于时刻 t 位于区间 (a,b)的概率 $p = \frac{1}{t} \int_0^t [F(\frac{b}{t-s}) - F(\frac{a}{t-s})] ds$,从而时刻 t 位于区间 (a,b)内的平均汽车辆数为 $\lambda pt = \lambda \int_0^t [F(\frac{b}{t-s}) - F(\frac{a}{t-s})] ds$ 。

三、(16分)

- (1) 易证马氏链为不可约($p_{i,j} \ge a_j > 0$, $\forall i \ne j$)、非周期($p_{0,0}^{(1)} = a_0 > 0$),且 $f_{0,0} = \sum_{i=0}^{+\infty} a_j = 1$,故常返;
 - (2) 求得: $\mu_0 = \sum_{n=1}^{+\infty} n f_{0,0}^{(n)} = \sum_{n=1}^{+\infty} n a_{n-1}$, 显然, 马氏链为正常返 $\Leftrightarrow \mu_0 < +\infty$;

(3)
$$\pi_j = \frac{1}{\mu_0} \sum_{k>j} a_k$$
, $(j \ge 0)$ •

四、(20分)

- (1) 四类: $\{1\},\{2\}$ 均为瞬过类, $d(1) = \infty, d(2) = 1$; $\{3\},\{4\}$ 为二遍历类(吸收态)。
- (2) 设T 为过程进入吸收态的时间,记 $f_{k,j} = P\{X_T = j \mid X_0 = k\}$, (k = 1,2; j = 3,4)则有:

$$\begin{split} f_{1,3} &= P\{X_T = 3 \mid X_0 = 1\} = \sum_i P\{X_T = 3 \mid X_1 = i\} p_{1,i} = 0.5 f_{2,3} + 0.3 \\ f_{1,4} &= \sum_i P\{X_T = 4 \mid X_1 = i\} p_{1,i} = 0.5 f_{2,4} + 0.2 \\ f_{2,3} &= \sum_i P\{X_T = 3 \mid X_1 = i\} p_{2,i} = 0.2 f_{2,3} + 0.4 \\ f_{2,4} &= \sum_i P\{X_T = 4 \mid X_1 = i\} p_{2,i} = 0.2 f_{2,4} + 0.4 \end{split}$$

解得: $f_{1.3} = 11/20$, $f_{1.4} = 9/20$, $f_{2.3} = f_{2.4} = 1/2$.

五、(16分)

$$EX(t) = EAE\cos(\omega_0 t + \Theta) = 0$$

(1)
$$\gamma_X(t+\tau,t) = EA^2E\cos[\omega_0(t+\tau) + \Theta]\cos(\omega_0t + \Theta) =$$

$$= \frac{1}{2}EA^2E\{\cos[\omega_0(2t+\tau) + 2\Theta] + \cos\omega_0\tau\} = \frac{1}{2}EA^2\cos\omega_0\tau$$

$$= 4\cos\omega_0\tau = R_X(\tau)$$

故 $\{X(t), t \in R\}$ 为宽平稳。

(2)
$$R_X(\tau) \leftrightarrow S(\omega) = 4\pi (\delta(\omega + \omega_0) + \delta(\omega - \omega_0))$$
.

六、(12分)

(1)
$$S(\omega) \leftrightarrow R(\tau) = \frac{2\sqrt{7}}{21} e^{-\sqrt{7}|\tau|} - \frac{1}{12} e^{-2|\tau|}$$
.

(2) 该过程的均值有遍历性,因为: $\int_{-\infty}^{\infty} |R(\tau)| d\tau < \infty$ 。