MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI

Olimpiada de Fizică - Etapa naţională 30 ianuarie – 4 februarie 2011 Arad

Proba teoretică

Grila de evaluare şi de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema I O modelare pentru suspensia rulotei		Puncta
1.	Pentru:		0,50p
	$\mathbf{K} \cdot (\ell_0 - \ell_1) = \mathbf{M} \cdot \mathbf{g}$	0,25p	
	$\ell_1 = \ell_0 - \frac{M \cdot g}{k}$	0,25p	
2.	Pentru:		1,50p
	$ \left(M \cdot a = -M \cdot g + k \cdot \left(\ell_0 - \ell_1 - y \right) \right) $		
	$\begin{cases} a = -\frac{k \cdot y}{M} \end{cases}, \text{ cu } y = \ell - \ell_1$	0,25p	
	$a = -\omega^2 \cdot y$, cu notaţia $\omega^2 = k/M$	0,25p	
	$y(t) = A \cdot \sin(\omega \cdot t + \varphi)$	0,25p	
	condiţiile iniţiale $\begin{cases} y(t=0) = y_0 \\ v(t=0) = 0 \end{cases}$	0,25p	
	$\begin{cases} \varphi = \frac{\pi}{2} \\ A = y_0 \end{cases}$	0,25p	
	Ecuaţia de mişcare pe verticală a remorcii (a punctului <i>A</i> din figură)		
	$y(t) = y_0 \cdot \sin\left(\sqrt{\frac{k}{M}} \cdot t + \pi/2\right)$	0,25p	
3.	Pentru:		0,50p
	Y ₀ Y ₀ 3 ¹ /2 Y ₀ 2 0 7/8 1/2 51/8 37/4 77/8 1/2 51/8 37/4 77/8 1/2 51/8 37/4 77/8 1/2 1/2	0,50p	

4. Pentru:

expresia vitezei punctului A

$$v(t) = y_0 \cdot \omega \cdot \cos(\omega \cdot t + \pi/2)$$

1,25p 0,25p

$$y^2 + \frac{v^2}{\omega^2} = y_0^2$$

0,25p

$$\frac{y^2}{y_0^2} + \frac{v^2}{y_0^2 \cdot \omega^2} = 1$$

0,25p

0,50p

5. Pentru:

3,50p

$$\begin{cases} M \cdot a = -M \cdot g + k \cdot (\ell_0 - \ell_1 - y) - h \left| \frac{\Delta \ell}{\Delta t} \right| \\ M \cdot a = -k \cdot y - h \left| \frac{\Delta \ell}{\Delta t} \right| \end{cases}$$
 0,50p

$$\left| \frac{\Delta \ell}{\Delta t} \right| = \left| \frac{\Delta (\ell_1 + y)}{\Delta t} \right| = \frac{\Delta y}{\Delta t}$$
 0,25p

$$a = \frac{\Delta}{\Delta t} \left(\frac{\Delta y}{\Delta t} \right)$$
, unde Δ are semnificaţia unei variaţii foarte mici 0,25p

$$M \cdot \frac{\Delta}{\Delta t} \left(\frac{\Delta y}{\Delta t} \right) + h \cdot \frac{\Delta y}{\Delta t} + k \cdot y = 0$$
 0,25p

ecuația de mișcare a punctului A are expresia

$$\frac{\Delta}{\Delta t} \left(\frac{\Delta y}{\Delta t} \right) + \frac{h}{M} \cdot \frac{\Delta y}{\Delta t} + \frac{k}{M} \cdot y = 0$$
 0,25p

expresia vitezei instantanee a punctului A

$$v(t) = \frac{\Delta y}{\Delta t} = A \cdot e^{\alpha \cdot t} \cdot \left[\alpha \cdot \cos(\beta \cdot t) - \beta \cdot \sin(\beta \cdot t) \right]$$
0,25p

expresia accelerației instantanee a punctului A

$$\begin{cases} a = \frac{\Delta}{\Delta t} \left(\frac{\Delta y}{\Delta t} \right) \\ a = A \cdot e^{\alpha \cdot t} \cdot \left\{ \alpha \cdot \left[\alpha \cdot \cos(\beta \cdot t) - \beta \cdot \sin(\beta \cdot t) \right] + \left[-\alpha \cdot \beta \cdot \sin(\beta \cdot t) - \beta^2 \cdot \cos(\beta \cdot t) \right] \end{cases}$$
 0,25p

$$\alpha^{2} \cdot \cos(\beta \cdot t) - 2\beta \cdot \alpha \cdot \sin(\beta \cdot t) - \beta^{2} \cdot \cos(\beta \cdot t) + \frac{h}{M} \cdot \left[\alpha \cdot \cos(\beta \cdot t) - \beta \cdot \sin(\beta \cdot t)\right] + \frac{k}{M} \cdot \cos(\beta \cdot t) = 0$$

$$0,25p$$

$\begin{cases} \alpha^2 - \beta^2 + \alpha \cdot \frac{h}{M} + \frac{k}{M} = 0 \\ -2\beta \cdot \alpha - \frac{h}{M} \cdot \beta = 0 \end{cases} \qquad 0,25p \\ \alpha = -\frac{h}{2M} = -\frac{\lambda}{2} \cdot \sqrt{\frac{k}{M}} \qquad 0,25p \\ \beta = \sqrt{\frac{k}{M}} \cdot \sqrt{1 - \frac{\lambda^2}{4}} \qquad 0,25p \\ h < 2 \cdot \sqrt{k \cdot M} \qquad 0,25p \\ \lambda \in [0;2) \qquad 0,25p \end{cases}$ 6. Pentru: $\alpha = -0.64$ $\beta \cong 4.0 \text{s}^{-1} \qquad 0,25p \\ y(t) = e^{-0.64t} \cdot \cos(4t) \ dm \qquad 0,25p \\ y(t) = e^{-0.64t} \cdot \left[-0.64 \cdot \cos(4 \cdot t) - 4 \cdot \sin(4 \cdot t) \right] \qquad 0,25p \\ y(t = \pi/2) = e^{-0.32\pi} \cdot \left[-0.64 \cdot dm \qquad 0,25p \\ v(t = \pi/2) = e^{-0.32\pi} \cdot \left(-0.64 \right) \cong -0.3 \ dm \cdot \text{s}^{-1} \qquad 0,25p \\ v(t = \pi/2) = e^{-0.32\pi} \cdot \left(-0.64 \right) \cong -0.3 \ dm \cdot \text{s}^{-1} \qquad 0,25p \\ 0.96ciu \qquad 1,00p \\ 0.9ficiu \qquad 1,00p \\ 0.9ficiu \qquad 1,00p \\ 10p \end{cases}$			
$\beta = \sqrt{\frac{k}{M}} \cdot \sqrt{1 - \frac{\lambda^2}{4}} \qquad 0,25p$ $h < 2 \cdot \sqrt{k \cdot M} \qquad 0,25p$ $\lambda \in [0;2) \qquad 0,25p$ 6. Pentru: $\alpha = -0.64$ $\beta = 4,0 \text{s}^{-1} \qquad 0,25p$ $y(t) = e^{-0.64t} \cdot \cos(4t) \ dm \qquad 0,25p$ $y(t) = e^{-0.64t} \cdot \left[-0.64 \cdot \cos(4 \cdot t) - 4 \cdot \sin(4 \cdot t) \right] \qquad 0,50p$ $y(t = \pi/2) = e^{-0.32\pi} = e^{-1.0} = 0.4 \ dm \qquad 0,25p$ $v(t = \pi/2) = e^{-0.32\pi} \cdot (-0.64) = -0.3 \ dm \cdot s^{-1} \qquad 0,25p$ $Oficiu \qquad 0,100p$	$\begin{cases} \alpha^2 - 1 \\ -2 \end{pmatrix}$	$\beta^{2} + \alpha \cdot \frac{h}{M} + \frac{k}{M} = 0$ $\beta \cdot \alpha - \frac{h}{M} \cdot \beta = 0$ 0,25p	
$h < 2 \cdot \sqrt{k \cdot M}$ 0,25p $\lambda \in [0; 2)$ 0,25p 6. Pentru: 1,00p $\alpha = -0.64$ $\beta \cong 4.0 \text{ s}^{-1}$ 0,25p $y(t) = e^{-0.64t} \cdot \cos(4t) dm$ 0,25p $v(t) = e^{-0.64t} \cdot [-0.64 \cdot \cos(4t) - 4 \cdot \sin(4t)]$ 0,50p $v(t) = e^{-0.64t} \cdot [-0.64 \cdot \cos(4t) - 4 \cdot \sin(4t)]$ 0,25p $v(t) = \pi/2 = e^{-0.32\pi} = e^{-1.0} = 0.4 dm$ 0,25p $v(t) = \pi/2 = e^{-0.32\pi} \cdot (-0.64) = -0.3 dm \cdot s^{-1}$ 0,25p	$\alpha = -$	$\frac{h}{2M} = -\frac{\lambda}{2} \cdot \sqrt{\frac{k}{M}}$ 0,25p	
6. Pentru: 1,00p $a = -0.64$ $\beta \cong 4.0 \text{ s}^{-1}$ $y(t) = e^{-0.64t} \cdot \cos(4t) \ dm$ $v(t) = e^{-0.64t} \cdot \left[-0.64 \cdot \cos(4 \cdot t) - 4 \cdot \sin(4 \cdot t) \right]$ $y(t) = e^{-0.64t} \cdot \left[-0.64 \cdot \cos(4 \cdot t) - 4 \cdot \sin(4 \cdot t) \right]$ $y(t) = \pi/2 = e^{-0.32\pi} \cong e^{-1.0} \cong 0.4 \ dm$ $v(t) = \pi/2 = e^{-0.32\pi} \cdot (-0.64) \cong -0.3 \ dm \cdot s^{-1}$ 0,25p $0,75p$ $0,25p$ $0,25p$ $0,25p$ $0,25p$ $0,25p$	$\beta = \sqrt{1}$	$\sqrt{\frac{k}{M}} \cdot \sqrt{1 - \frac{\lambda^2}{4}} $ 0,25p	
6. Pentru: 1,00p $\alpha = -0.64 \\ \beta \cong 4.0 s^{-1} \qquad 0.25p$ $y(t) = e^{-0.64 t} \cdot \cos(4t) dm \qquad 0.25p$ 7. Pentru: 0,75p $v(t) = e^{-0.64 t} \cdot [-0.64 \cdot \cos(4 \cdot t) - 4 \cdot \sin(4 \cdot t)] \qquad 0.25p$ $y(t = \pi/2) = e^{-0.32\pi} \cong e^{-1.0} \cong 0.4 dm \qquad 0.25p$ $v(t = \pi/2) = e^{-0.32\pi} \cdot (-0.64) \cong -0.3 dm \cdot s^{-1} \qquad 0.25p$ Oficiu 1,00p	h < 2	. √ <i>k</i> · <i>M</i> 0,25p	
7. Pentru: $v(t) = e^{-0.64t} \cdot [-0.64 \cdot cos(4 \cdot t) - 4 \cdot sin(4 \cdot t)]$ 0,25p $y(t = \pi/2) = e^{-0.32\pi} \cdot (-0.64) \cong -0.3 \text{ dm} \cdot s^{-1}$ 0,25p Officiu 0,25p	λ∈[0; 2) 0,25p	
$\beta \cong 4,0 \text{ s}^{-1}$ $y(t) = e^{-0.64t} \cdot \cos(4t) \ dm$ $0,25p$ $0,50p$ 7. Pentru: $v(t) = e^{-0.64t} \cdot \left[-0.64 \cdot \cos(4 \cdot t) - 4 \cdot \sin(4 \cdot t) \right]$ $y(t = \pi/2) = e^{-0.32\pi} \cong e^{-1.0} \cong 0,4 \ dm$ $v(t = \pi/2) = e^{-0.32\pi} \cdot (-0.64) \cong -0.3 \ dm \cdot s^{-1}$ $0,25p$	6. Pentr	u:	1,00p
$\beta \cong 4,0 \text{ s}^{-1}$ $y(t) = e^{-0.64t} \cdot \cos(4t) \ dm$ $0,25p$ $0,50p$ 7. Pentru: $v(t) = e^{-0.64t} \cdot \left[-0.64 \cdot \cos(4 \cdot t) - 4 \cdot \sin(4 \cdot t) \right]$ $y(t = \pi/2) = e^{-0.32\pi} \cong e^{-1.0} \cong 0,4 \ dm$ $v(t = \pi/2) = e^{-0.32\pi} \cdot (-0.64) \cong -0.3 \ dm \cdot s^{-1}$ $0,25p$	$\alpha = -$	0.64	
7. Pentru: $0,50p$ $v(t) = e^{-0.64t} \cdot cos(4t) \ dm$ $v(t) = e^{-0.64t} \cdot [-0.64 \cdot cos(4 \cdot t) - 4 \cdot sin(4 \cdot t)]$ $v(t) = e^{-0.64t} \cdot [-0.64 \cdot cos(4 \cdot t) - 4 \cdot sin(4 \cdot t)]$ $v(t) = \pi/2 = e^{-0.32\pi} \cong e^{-1.0} \cong 0,4 \ dm$ $v(t) = \pi/2 = e^{-0.32\pi} \cdot (-0.64) \cong -0.3 \ dm \cdot s^{-1}$ $O,25p$ $v(t) = 0.32\pi \cdot (-0.64) \cong -0.3 \ dm \cdot s^{-1}$ $O,25p$ $v(t) = 0.32\pi \cdot (-0.64) \cong -0.3 \ dm \cdot s^{-1}$ $O,25p$ $0,25p$ $0,25p$ $0,25p$ $0,25p$ $0,25p$ $0,25p$		0.25	
7. Pentru: $0,50p$ $v(t) = e^{-0.64 \cdot t} \cdot [-0.64 \cdot cos(4 \cdot t) - 4 \cdot sin(4 \cdot t)] \qquad 0,25p$ $y(t = \pi/2) = e^{-0.32\pi} \cong e^{-1.0} \cong 0.4 \ dm \qquad 0.25p$ $v(t = \pi/2) = e^{-0.32\pi} \cdot (-0.64) \cong -0.3 \ dm \cdot s^{-1} \qquad 0.25p$ Oficiu 1,00p			
7. Pentru: 0,75p $v(t) = e^{-0.64 \cdot t} \cdot \left[-0.64 \cdot \cos(4 \cdot t) - 4 \cdot \sin(4 \cdot t) \right] $ 0,25p $y(t = \pi/2) = e^{-0.32\pi} \cong e^{-1.0} \cong 0.4 \ dm $ 0,25p $v(t = \pi/2) = e^{-0.32\pi} \cdot (-0.64) \cong -0.3 \ dm \cdot s^{-1} $ 0,25p	y(t) =	$e^{-0.64 \cdot t} \cdot cos(4t) dm$ 0,25p	
$v(t) = e^{-0.64 \cdot t} \cdot \left[-0.64 \cdot \cos(4 \cdot t) - 4 \cdot \sin(4 \cdot t) \right] $ $v(t) = e^{-0.64 \cdot t} \cdot \left[-0.64 \cdot \cos(4 \cdot t) - 4 \cdot \sin(4 \cdot t) \right] $ $v(t) = \pi/2 = e^{-0.32\pi} \approx e^{-1.0} \approx 0.4 dm $ $v(t) = \pi/2 = e^{-0.32\pi} \approx e^{-1.0} \approx 0.4 dm $ $v(t) = \pi/2 = e^{-0.32\pi} \cdot (-0.64) \approx -0.3 dm \cdot s^{-1} $ $0.25p$ Oficiu $0.25p$ $0.25p$			
$y(t = \pi/2) = e^{-0.32\pi} \cong e^{-1.0} \cong 0.4 dm$ 0,25p $v(t = \pi/2) = e^{-0.32\pi} \cdot (-0.64) \cong -0.3 dm \cdot s^{-1}$ 0,25p Oficiu 1,00p	7. Pentr	u:	0,75p
$v(t = \pi/2) = e^{-0.32 \cdot \pi} \cdot (-0.64) \cong -0.3 \ dm \cdot s^{-1}$ 0.25p 1,00p	v(t)=	$e^{-0.64 \cdot t} \cdot [-0.64 \cdot \cos(4 \cdot t) - 4 \cdot \sin(4 \cdot t)]$ 0,25p	
Oficiu 1,00p	y(t =	$\pi/2$) = $e^{-0.32\pi} \cong e^{-1.0} \cong 0.4 \ dm$ 0.25p	
-9	\ \v(t =	$\pi/2$) = $e^{-0.32 \cdot \pi} \cdot (-0.64) \cong -0.3 \ dm \cdot s^{-1}$ 0.25p	
	Oficiu		
	10p		

Delia DAVIDESCU – Centrul Naţional pentru Evaluare şi Examinare – M E C T S Conf. univ. dr. Adrian DAFINEI - Facultatea de Fizică – Universitatea Bucureşti

MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI

Olimpiada de Fizică - Etapa naţională 30 ianuarie – 4 februarie 2011 Arad

Proba teoretică

Grila de evaluare şi de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema a II-a O modelare electrică pentru axon		Punctaj
a.	Pentru:		3,50p
	precizarea că adăugarea unei noi "celule" la o reţea electrică presupusă infinită nu modifică valoarea rezistenţei electrice echivalente $R_{\rm e}$ a reţelei	1,00p	
	$2 \cdot R_1 + \frac{R_2 \cdot R_e}{R_2 + R_e} = R_e$	1,00p	
	$R_{e} = R_{1} + \sqrt{R_{1}^{2} + 2 \cdot R_{1} \cdot R_{2}}$	1,00p	
	$R_{\rm e} = 3.2 M \Omega$	0,50p	
b.	Pentru:		2,50p
	expresia diferenței de potențial dintre punctele a și b		
	$U_{ab} = I \cdot \left(2 \cdot R_1 + \frac{R_2 \cdot R_e}{R_2 + R_e} \right)$	0,50p	
	expresia diferenței de potențial dintre nodurile c și d $U_{cd} = I \cdot \frac{R_2 \cdot R_e}{R_2 + R_e}$	0,50p	
	$U_{cd} = \frac{U_{ab}}{1+\beta}$	0,50p	
	expresia diferenței de potențial pe cea de-a n -a rezistență R_2 , numărată de la capătul rețelei marcat prin punctele a și b $U_n = \frac{U_{ab}}{(1+\beta)^n}$	1,00p	
C.	Pentru:		1,00p
	numărul n de "celule" din reţeaua electrică ce modelează propagarea pulsului de tensiune de-a lungul unei distanţe $d=2.0mm$ în lungul axont	0,25p	
	$n = \frac{d}{\Delta x}$	υ,Ζυμ	
	<i>n</i> = 2000	0,25p	
	$\frac{U_n}{U_{ab}} \cong 3.4 \cdot 10^{-4}$	0,50p	

d.	Pentru:		1,50p
	$\beta' = \frac{2 \cdot R_1 \cdot \left(R_e' + R_2'\right)}{R_e' \cdot R_2'}$	0,50p	
	$U_n = \frac{G_{ab}}{(1+\beta')^n}$	0,50p	
	$\frac{U_n'}{U_{ab}} \cong 0.9$ pentru $n = 2000$	0,50p	
e.	Pentru:		0,50p
	diferenţa de potenţial dintre interiorul şi exteriorul membranei axonului, fără stat mielinic $U_n \cong 3.4 \cdot 10^{-4} \cdot U_{ab}$ (pentru o distanţă de 2,0 mm)		
	diferenţa de potenţial dintre interiorul şi exteriorul membranei axonului, cu stat mielinic segmentat $U_n^{'} \cong 0.9 \cdot U_{ab}$ (pentru o distanţă de 2,0 mm dintre două noduri Ranvier consecutive)	0,25p	
	precizarea că axonul învelit cu un strat segmentat de mielină asigură o atenuare mai mică a semnalului electric	0,25p	
Oficiu			1,00p
TOTAL Problema a II-a			10p

Delia DAVIDESCU – Centrul Naţional pentru Evaluare şi Examinare – M E C T S Conf. univ. dr. Adrian DAFINEI - Facultatea de Fizică – Universitatea Bucureşti

MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI

Olimpiada de Fizică - Etapa naţională 30 ianuarie – 4 februarie 2011 Arad

Proba teoretică

Grila de evaluare şi de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema a III-a O modelare pentru aparatul de aer condițion	at	Punctaj
a.1.	Pentru:		2,75p
	$\frac{\mathbf{Q}_{r}}{\Delta \tau} = \mathbf{q} = \alpha (T_2 - T_1)$	0,50p	
	$\varepsilon = \frac{Q_r}{ L } = \frac{Q_r}{ Q_c - Q_r} = \frac{1}{2} \frac{T_1}{T_2 - T_1} \Longrightarrow Q_r = \frac{ L }{2} \frac{T_1}{T_2 - T_1}$	1,25p	
	$T_1^2 - 2T_1\left(T_2 + \frac{P}{4\alpha}\right) + T_2^2 = 0 \Rightarrow T_1 = T_2 - \frac{P}{4\alpha}\left(\sqrt{1 + \frac{8\alpha T_2}{P}} - 1\right).$	0,75p	
	T₁ = 297,3 K≈ 297 K, sau t₁ = 24,1 °C.	0,25p	
a.2.	Pentru:		0,75p
	$\varepsilon = \frac{1}{4} \left(\sqrt{1 + \frac{8\alpha T_2}{P}} - 1 \right)$	0,50p	
	$\varepsilon = 13,6$	0,25p	
b.	Pentru: Instalația de aer condiționat funcționează ca o mașină frigorifică		2,00p
	$P = 2\alpha \frac{(T_2 - T_1)^2}{T_1}$	0,50p	
	Dacă t_1 = 20,0 °C şi t_2 = 30,0 °C, atunci puterea instalaţiei de aer		
	condiţionat este P_1 . Dacă $t_2 = t_{2, max}$, atunci instalaţia funcţionează continuu şi, conform enunţului, puterea consumată de la sursa de alimentare este $P_2 = P_1/\beta_1$.	0,50p	
	$2\alpha \frac{(T_{2,\text{max}} - T_1)^2}{T_1} = \frac{2\alpha}{\beta_1} \frac{(T_2 - T_1)^2}{T_1},$	0,25p	
	$T_{2,\text{max}} = T_1 + \frac{T_2 - T_1}{\sqrt{\beta_1}}$	0,50p	
	$T_{2,max}$ = 305,7 K ≈ 306 K, sau $t_{2,max}$ = 32,5 °C	0,25p	

C.	Pentru:		3,50p
	Instalaţia de aer condiţionat funcţionează ca o pompă de căldură		
	$\frac{ \mathbf{Q}_c }{\Delta \tau} = -\mathbf{q} = \alpha (T_1 - T_2)$	0,50p	
	$\varepsilon = \frac{\left Q_c\right }{\left L\right } = \frac{\left Q_c\right }{\left Q_c\right - Q_r} = \frac{1}{2} \frac{T_1}{T_1 - T_2}$	1,00p	
	$P = 2\alpha \frac{(T_1 - T_2)^2}{T_1}$	0,50p	
	Dacă t_1 = 20,0 °C şi t_2 = 10,0 °C, atunci puterea instalaţiei de aer condiţionat este P_3 . Dacă t_2 = $t_{2, min}$, atunci instalaţia funcţionează continuu şi, conform enunţului, puterea consumată de la sursa de alimentare este P_4 = P_3/β_2	0,50p	
	$2\alpha \frac{(T_1 - T_{2,min})^2}{T_1} = \frac{2\alpha}{\beta_2} \frac{(T_1 - T_2)^2}{T_1}$	0,25p	
	$T_{2,min} = T_1 - \frac{T_1 - T_2}{\sqrt{\beta_2}}$	0,50p	
	$T_{2,min} = 273.2 \text{ K} \approx 273 \text{ K}, \text{ sau } t_{2,min} = 0 \text{ °C}.$	0,25p	4.00
Oficiu			1,00p
TOTAL Problema a III - a			10p

Conf. univ. dr. Sebastian POPESCU - Facultatea de Fizică, Universitatea "Alexandru Ioan Cuza" - Iași