

COMP90042 LECTURE 17

RETRIEVAL USING BM25 AND LANGUAGE MODELS

OVERVIEW

- Two leading methods for modern IR
 - ▶ BM25
 - Language models
- Inspired by nice theory and highly effective

RECAP: VECTOR SPACE MODEL

- Document are bag-of-words, represented as TF*IDF vectors and normalised
- Queries represented as binary term occurrence vectors
- Cosine measure of similarity between a query and document
- Efficient algorithm for finding ranked list of documents by cosine score

OKAPI BM25

- Why not try other forms of term weighting than TF*IDF?
- Can we capture various aspects in simple formula
 - idf
 - tf
 - document length
 - query tf
- Then seek to tune each component

OKAPI BM25

$$w_t = \left\lfloor \log rac{N - f_t + 0.5}{f_t + 0.5}
ight
floor \ imes rac{(k_1 + 1)f_{d,t}}{k_1 \left((1 - b) + b rac{L_d}{L_{ave}}
ight) + f_{d,t}} \ imes rac{(k_3 + 1) f_{q,t}}{k_3 + f_{q,t}}$$
 (tf and doc. length)

- Parameters k₁, b, k₃ need to be tuned
 - defaults $k_1 = 1.5$, b = 0.5, $k_3 = 0$
- BM25 most widely used method in IR

IDF COMPONENT

 Slight difference to standard IDF (what happens when df nears N?)

$$\left\lceil \log \frac{N - f_t + 0.5}{f_t + 0.5} \right\rceil$$

- Inspired by the Binary Independence Model
 - frames retrieval as ranking by probability of relevance, P(R = 1 | d, q) where R = 0 or 1 is (ir-)relevance, d = document, q = query
 - various simplifying assumptions to make practical (and avoid the need for manual relevance feedback)

DOCUMENT TF COMPONENT

Next component is based on TF

$$\frac{(k_1+1)f_{d,t}}{k_1\left((1-b)+b\frac{L_d}{L_{ave}}\right)+f_{d,t}}$$

- Consider what happens when
 - ▶ $k_1 = 0$ or limit as $k_1 \rightarrow \infty$
 - $b = 0 \dots b = 1$
- b controls length based term to reward high frequency terms in shorter documents

QUERY TF COMPONENT

$$\frac{\left(k_3+1\right)f_{q,t}}{k_3+f_{q,t}}$$

- Sometimes we have long form queries
 - E.g., sentences, paragraphs or documents ('documents like this one')
- Repeated terms in query might be important
 - tuneable parameter k₃ modulates between binary occurrence and query frequency count
- ► consider $k_3 = 0$ and limit $k_3 \rightarrow \infty$ Copyright 2017 The University of Melbourne

ROLE OF K₁

with b=0.5

ROLE OF B

with $k_1 = 1.5$, $l_{ave} = 200$, $f_{t,d} = 3$

LANGUAGE MODELS FOR IR

- Alternative probabilistic approach to IR
 - compelling theory
 - highly effective
- Probabilistic IR (motivating BM25)

$$P(R=1|q,d)$$

Language model

LANGUAGE MODELS

- Recap: assigns a probability to a sequence of tokens
 - uses a Markov assumption
 - parameterised by simple token frequencies in training data
 - use careful smoothing / backoff to deal with low counts and unseen events
- Seen before for NLP, where we typically
 - train high order LM over large corpus
 - apply to sentence to find its probability, sample the next word, etc.

LANGUAGE MODELS IN IR

Estimate the probability of a query given LM over document

$$P(q|d) = \prod_{t \in q} P(t|d)$$

- where P(t|d) is a unigram language model trained on document d
- E.g., maximum likelihood estimate

$$P(t|d) = \frac{f_{t,d}}{L_d}$$

- where L_d is the length in words of document
- Finally, rank documents by decreasing P(q|d)

INTUITION

P(q|d) asks:

- How likely is that the model that generated the document, also generated the query?
- Understood as searcher behaviour:
 - Searcher told (or learns) to build queries using words likely to occur in relevant documents
 - Thus, their query attempts to approximate language of relevant documents
 - Testing against document language models then reasonable

PROBABILISTIC FORMULATION

 Consider probability of document, given q (query) and r (binary relevance)

$$P(d|q,r) = \frac{P(d,q,r)}{P(q,r)}$$
 Drop document independent values (irrelevant to ranking)
$$= \frac{P(q|d,r)P(d|r)P(r)}{P(q,r)}$$

$$\propto P(q|d,r)P(d|r)$$
 Assume uniform prior for $P(d|r)$

LANGUAGE MODELS IN IR VS NLP

- For retrieval we have a language model per document
 - versus a single language model of a corpus in NLP
- Use simple unigram language model, i.e., bag-of-words
 - versus high order language models to capture word order
- Apply several different LMs to a single query
 - versus a single LM applied to several sentences

SMOOTHING

- Terms appear sparsely in documents
 - MLE for unseen terms results in P(t|d) = 0
 - LM gives query non-zero probability if all query terms appear in d; effectively a conjunction querying mechanism
 - also problems with poor probability estimates for low count terms (e.g., tf=1)
- Use smoothing to address these problems
 - combine document-specific LM with LM over whole corpus, P(t), e.g., using interpolation or Dirichlet smoothing $P(q|d) = \prod_{t \in a} \frac{f_{t,d} + \alpha P(t)}{L_d + \alpha}$

Copyright 2017 The University of Melbourne

INDEXING AND QUERYING WITH LM-IR

- Need to index various values
 - term frequencies, $f_{d,t}$
 - document lengths, L_d (in words)
 - unigram language model over complete corpus, P(t)
- TF and lengths stored in inverted index, as in the VSM
- Querying can be performed as before
 - minor change to retrieval score computation

EXAMPLE

Step 1: estimate corpus language model P(t)

p(two)	p(tea)	p(me)	p(you)
1/6	1/3	1/4	1/4

doc1	Two for tea and tea for two
doc2	Tea for me and tea for you
doc3	You for me and me for you

- Step 2: estimate document LMs P(t|d) (setting alpha = 0.5)
 - E.g., p(two|d) = (2 + 0.5 * 1/6) / (4 + 0.5)= 0.463

	p(two d)	p(tea d)	p(me d)	p(you d)
doc1	0.463	0.481	0.028	0.028
doc2	0.019	0.481	0.25	0.25
doc3	0.019	0.037	0.472	0.472

QUERYING

- For q="tea you"
 - p(q|d=1) = p(tea | d=1) p(you | d=1)= 0.481 x 0.028 = 0.014
 - p(q|d=2) = p(tea | d=2) p(you | d=2)= 0.481 x 0.25 = **0.120**
 - p(q|d=3) = p(tea | d=3) p(you | d=3)= 0.037 x 0.472 = 0.017

	p(two d)	p(tea d)	p(me d)	p(you d)
doc1	0.463	0.481	0.028	0.028
doc2	0.019	0.481	0.25	0.25
doc3	0.019	0.037	0.472	0.472

RELATION TO TF*IDF

Consider log probability with Dirichlet smoothed LM

$$\log P(q|d) = \sum_{t \in q} \log(f_{t,d} + \alpha P(t)) - \log(L_d + \alpha)$$

- Components are
 - log term frequency; and
 - a form of document length normalisation
- For rare words in collection αP(t) is small, so value of ft,d becomes more important in ranking (similar effect to IDF)

SOFTWARE

- Various toolkits implement optimised versions of BM25 and LMs
 - Lemur http://www.lemurproject.org
 - Terrier http://terrier.org/
 - Apache Lucene http://lucene.apache.org/

SUMMARY

- BM25 scoring formula for VSM IR
- Language models for IR
- Reading
 - MRS 11.4.3 "Okapi BM25: A non-binary model"
 - MRS Ch12 "Language models for information retrieval" (mainly 12.2)