MODELADO DEL CONOCIMIENTO

LAURA DEL PINO DÍAZ Y AITOR DEL PINO SAAVEDRA HERNÁNDEZ
SISTEMAS INTELIGENTES 2 GRADO EN INGENIERÍA INFORMÁTICA – MENCIÓN EN COMPUTACIÓN

Tabla de contenido

ALCANCE DE LA PRÁCTICA	
ESCENARIO SELECCIONADO	
MODELADO DEL CONOCIMIENTO	
TAREA GENÉRICA	4
INFERENCIAS NECESARIAS	
CML	4
INSTRUCCIONES PARA HACER DISTINTAS EJECUCIONES	ε
CONSIDERACIONES SOBRE LOS VALORES DE LOS HECHOS	6
CASOS PROBADOS:	

ALCANCE DE LA PRÁCTICA

El problema a resolver por el sistema experto es la elaboración de un cuadrante en el que se distribuyan las averías de un hotel entre los distintos técnicos del departamento de mantenimiento atendiendo a las especialidades de cada uno y a las prioridades de las averías. Sin olvidar la asignación de los materiales y herramientas necesarias para cada una de las averías.

El hotel en el que está basado el proyecto tiene a su disposición 8 técnicos de mantenimiento y un jefe cuyo conocimiento es el que vamos a modelar.

Los elementos de conocimiento que vamos a modelar son los siguientes:

- Estimación de lo que dura la reparación de la avería.
- Experiencia asignando trabajos a subordinados más especializados.

La fuente de este conocimiento es el jefe del departamento de mantenimiento.

ESCENARIO SELECCIONADO

El escenario seleccionado para la implementación es aquel en el que:

- Todas las averías tardan una hora en ser reparadas.
- Las averías pueden ser reparadas por una única persona.
- Las jornadas de los trabajadores son de 8 horas.
- Solamente hay dos técnicos con ninguna, una o múltiples especialidades.

La razón por la que se selecciona estas "restricciones" al problema original es porque la asignación de las averías a los trabajadores se realiza en un espacio de memoria lineal del tamaño 8*numeroTrabajadores donde las primeras 8 rodajas de tiempo se corresponden con el horario del técnico 1 y las siguientes 8 rodajas son para el técnico 2 y así hasta llegar a numeroTrabajadores. Suponiendo que tengamos tareas para todos tendríamos que el número de soluciones sin repetición es el siguiente:

$$V_{(8*numTrabajadores),(8*numTrabajadores)} = \\ = \frac{(8*numTrabajadores)!}{(8*numTrabajadores)! - (8*numTrabajadores)!} = \\ = \frac{(8*numTrabajadores)!}{0!} = (8*numTrabajadores)!$$

Si aplicamos la ecuación anterior para *numTrabajadores* = 2 el resultado esperado será de 16!, cuyo valor es 20 922 789 888 000 variaciones sin repetición y teniendo en cuenta el orden. Como el coste temporal de generar tantas variaciones es alto, y si tenemos en cuenta que tras generarlas habrá que ordenar los elementos por prioridad el tiempo aumenta, lo que hemos decidido es quedarnos con un conjunto reducido de soluciones para ordenarlas y de ellas mostramos una sola.

Las tareas serán resueltas en el orden que determina la prioridad, siendo el orden indistinto cuando se tratan de dos tareas con la misma prioridad.

MODELADO DEL CONOCIMIENTO

TAREA GENÉRICA

La tarea genérica a la que se corresponde nuestro problema es planificación puesto que los elementos del problema son actividades que se asignan a dependencias temporales.

INFERENCIAS NECESARIAS

Las inferencias implementadas son:

- Generate o generación donde se generan un subconjunto de posibles soluciones.
- Select subset o reducción del conjunto de soluciones anterior de forma que se cumplan todas las restricciones.

Estas inferencias se corresponden el modelo de inferencia general de las tareas sintéticas.

CML

MODELO DEL CONOCIMIENTO DepartamentoMantenimiento
DOMINIO DEL CONOCIMIENTO TareasMantenimiento
ESQUEMA DEL DOMINIO EsquemaMantenimiento

CONCEPTO Avería

DESCRIPCIÓN: Tarea a asignar a un técnico.

ATRIBUTOS:

- Nombre
- Tipo
- Prioridad
- Identificador

FIN CONCEPTO Avería

CONCEPTO Técnico

DESCRIPCIÓN: Trabajador que realiza la reparación.

ATRIBUTOS:

- Nombre
- Especialidad
- Identificador

FIN CONCEPTO Técnico

CONCEPTO Solucion

DESCRIPCIÓN: Almacena las averias.

HAS-PARTS: Elementos(16)

FIN CONCEPTO Solución.

CONCEPTO Elemento

DESCRIPCIÓN: Contiene un valor dentro del dominio ATRIBUTES:

- Elemento (valor del dominio)
- Posicion
- Eliminado

FIN CONCEPTO Elemento

CONCEPTO Conjunto de soluciones

DESCRIPCIÓN: Contiene una posible solución para ser

ordenada

dicha avería.

TIENE-PARTES: solución FIN CONCEPTO Elemento

RELACIÓN correspondencia

ARGUMENTO-1: Averia.Identificador ARGUMENTO-2: Elementos.elemento

DESCRIPCIÓN: Si el identificador de avería y el valor de elemento es el mismo se interpreta como que la posición de ese elemento apunta a

FIN RELACIÓN correspondencia

RELACIÓN jornadaLaboral

ARGUMENTO-1: Tecnico.identificador

ARGUMENTO-2: Solución

DESCRIPCIÓN: El índice de cada elemento de la solución

se corresponde con el redondeo inferior del índice del elemento dividido entre 8.

FIN RELACIÓN jornadaLaboral

TIPO DE REGLA seleccion

ANTECEDENTES: Elementos, Tecnicos, Averias

CARDINALIDAD: 16
CONSECUENTE: Solución

CARDINALIDAD: 1

FIN TIPO DE REGLA

TIPO DE REGLA limitación conjunto soluciones
ANTECEDENTES: Solución

CARDINALIDAD: más de 10

CONSECUENTE: Solución CARDINALIDAD: 3

FIN TIPO DE REGLA

FIN DE ESQUEMA DE DOMINIO EsquemaMantenimiento

BASE DE CONOCIMIENTO bc-1

USA: seleccion DE EsquemaMantenimiento

EXPRESIONES:

RO: No se pueden repetir elementos

R1: Las averias apuntadas por elementos tienen al menos una de las especialidad del técnico al que está asignado mediante la función tecnico.id=rendondeoInferior(elemento.posición/8);

FIN BASE DE CONOCIMIENTO bc-1

BASE DE CONOCIMIENTO bc-2

USA: limitación conjunto soluciones

DE EsquemaMantenimiento

EXPRESIONES:

R2: Seleccionar 3 soluciones de las que se pueden generar.

R3: Ordenar los elementos de las 3 soluciones según la prioridad dentro de los espacios que se corresponden a la jornada laboral de cada operario en la solucion.

R4: Mostrar una única solución por pantalla

FIN BASE DE CONOCIMIENTO bc-2

FIN DOMINIO DEL CONOCIMIENTO TareasMantenimiento

INSTRUCCIONES PARA HACER DISTINTAS EJECUCIONES

CONSIDERACIONES SOBRE LOS VALORES DE LOS HECHOS

Las especialidades asignables a los técnicos y que concuerdan con los tipos de averías son las siguientes:

fontaneria electricidad albanileria inmobiliaria piscinero jardineria

Para conocer las especialidades de cada técnico y la información relacionada con cada avería se recomienda abrir el archivo "baseHechos.clp", y tabular en un papel o en una hoja de Excel la información que necesitemos para elaborar la depuración.

Por ejemplo la tabla siguiente relaciona los identificadores de las averías con su nivel de prioridad:

	Nivel 1	Nivel 2
Identificador	Abcdefgh ijkl	Mnop

Para extender el problema con más averías y/o más técnicos se recomienda seguir los siguientes pasos:

- 1. Añadir el hecho del Nuevo técnico dentro del *deffacts personal* con un id único, un nombre (se puede repetir) y las especialidades.
- 2. Añadir tantas averías como se necesiten hasta llegar a 8*numTécnicos averías en la base de hechos. Manteniendo el campo id con un valor único para cada una de ellas y sin olvidar añadir la especialidad del técnico en el campo tipo
- 3. En el fichero backtracking, ampliar los valores dentro de cada uno de los dominios existentes con los identificadores de las averías añadidas.
- 4. En el fichero backtracking, añadir tantos dominios como sea necesario hasta llegar a 8*numTrabajadores.

CASOS PROBADOS:

- 1. Caso corriente:
 - Dos técnicos con múltiples especialidades.
 - 16 averías de las especialidades de los dos técnicos.
 - 5 niveles de prioridad.
 - Selección de 3 soluciones sobre el conjunto de soluciones.
 - Tabla de prioridades:

	1	2	3	4	5
Id	Aloj	Dehk	Fi	В д	С
		mnp			

- Solución obtenida ordenada : oljpnmki ahedfgbc
- Prioridades asociadas:
 - 1112223 (para el primer técnico)
 - 1 2 2 2 3 4 4 5 (para el segundo técnico)
- Especialidades asociadas:
 - Primer técnico: fontaneria electricidad albanileria inmobiliaria.
 - Segundo técnico: fontaneria electricidad
 - Relación de las especialidades de averías del primer técnico:
 - Inmobiliaria
 - Albañilería
 - Albañilería
 - Electricidad
 - Inmobiliaria
 - Inmobiliaria
 - Albañilería
 - Albañilería
 - Todas concuerdan con alguna de las especialidades del técnico

- Relación de las especialidades de averías del segundo técnico:
 - Electricidad
 - Fontanería
 - Electricidad
 - Electricidad
 - Fontanería
 - Fontanería
 - Electricidad
 - Electricidad
 - Todas concuerdan con alguna especialidad del técnico.

2. Caso base:

- Uno de los dos técnicos no tiene especialidad
- No se espera que tenga solución y efectivamente no la tiene.