

Ranking Models

Probabilistic Relevance Models

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

The ranking problem

Given

o Some evidence of the user's need

Produce

- o A list of matching information items
- \circ In decreasing order of relevance

The ranking problem

Given

o Some evidence of the user's need query

Produce

- A list of matching information items documents
- o In decreasing order of relevance

The ranking problem

Ranking under uncertainty

Queries are uncertain

Short and underspecified

Documents are uncertain

Quality varies, natural language is ambiguous

Relevance estimates are bound to be uncertain

o Probability theory allows reasoning under uncertainty

Probabilistic ranking at a glance

Probabilistic relevance models

- o Binary Independence Model (BIM)
- o Best Match models (e.g., BM25)

Bayesian network models

Language models

Information-theoretic models

Probability Ranking Principle (PRP)

Ranking documents by decreasing probability of relevance results in optimal effectiveness, provided that probabilities are estimated (1) with certainty and (2) independently.

• Robertson, 1977

Probabilistic ranking

Assume binary notion of relevance

 $\circ R = 1$ (or R): if document d is relevant w.r.t query q

 $\circ R = 0$ (or \overline{R}): otherwise

Probabilistic ranking orders documents decreasingly by their estimated probability of relevance w.r.t. query

 $\circ f(q,d) = P(R|d,q)$

Probability recap #1: Bayes' rule

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

A way of updating probabilities

- \circ From the prior P(A), derive the posterior P(A|B)
- \circ Given evidence B and likelihood P(B|A)

Direct estimation

$$f(q,d) = P(R|d,q) = \frac{P(d|R,q)P(R|q)}{P(d|q)}$$

For a given query q

• How likely is d among R? P(d|R,q)

• How likely is R in general? P(R|q)

 \circ How likely is d (regardless of R)? P(d|q)

Do we need to estimate all these?

Probability recap #2: odds of an event

$$O(A) = \frac{P(A)}{P(\bar{A})} = \frac{P(A)}{1 - P(A)}$$

Provide a "multiplier" for how probabilities change

 \circ Probability of an event occurring vs.

Probability of the event not occurring

Order preserving transformation

Odds estimation

$$f(q,d) = O(R|d,q) = \frac{P(R|d,q)}{P(\overline{R}|d,q)}$$

$$= \frac{P(d|R,q)P(R|q)/P(d|q)}{P(d|\overline{R},q)P(\overline{R}|q)/P(d|q)}$$

$$= \frac{P(d|R,q)}{P(d|\overline{R},q)} \frac{P(R|q)}{P(\overline{R}|q)}$$

Odds estimation

$$f(q,d) = O(R|d,q) \propto \frac{P(d|R,q)}{P(d|\bar{R},q)}$$

How to estimate P(d|R,q)?

Estimating P(d|R,q)

To make a probabilistic ranking strategy precise, we need to estimate the contribution of individual terms

- Find measurable term-level statistics that affect judgments about document relevance
- Combine these statistics to estimate the probability of relevance of the entire document

Binary independence assumption

"Binary"

 \circ Documents and queries as incidence vectors

•
$$q = (x_1, x_2, ..., x_{|V|})$$
 with $x_i \in \{0,1\}$

$$\bullet \ d = (y_1, y_2, \dots, y_{|V|}) \ \text{with} \ y_i \in \{0,1\}$$

"Independence"

No association between terms (not true, but works)

Binary Independence Model (BIM)

$$\begin{split} f(q,d) &= O(R|d,q) \propto \frac{P(d|R,q)}{P(d|\bar{R},q)} \\ &\approx \prod_t \frac{P(y_t|R,q)}{P(y_t|\bar{R},q)} \quad \begin{array}{l} \text{term} \\ \text{independence} \end{array} \end{split}$$

Further simplifying assumption

o Out-of-query terms do not matter

Binary Independence Model (BIM)

$$\begin{split} f(q,d) &= O(R|d,q) \propto \frac{P(d|R,q)}{P(d|\bar{R},q)} \\ &\approx \prod_t \frac{P(y_t|R,q)}{P(y_t|\bar{R},q)} \\ &\approx \prod_t \frac{P(y_t|R)}{P(y_t|\bar{R})} \quad \text{out-of-query terms dropped} \end{split}$$

Binary Independence Model (BIM)

$$f(q,d) \approx \prod_{t \in d} \frac{P(y_t|R)}{P(y_t|\bar{R})} \qquad \frac{p_t}{u_t}$$
$$\times \prod_{t \notin d} \frac{P(\bar{y}_t|R)}{P(\bar{y}_t|\bar{R})} \qquad \frac{1 - p_t}{1 - u_t}$$

Binary Independence Model (BIM)

$$\begin{split} f(q,d) &\approx \prod_{t \in d} \frac{p_t}{u_t} \times \prod_{t \notin d} \frac{1 - p_t}{1 - u_t} \\ &\times \left(\prod_{t \in d} \frac{1 - u_t}{1 - p_t} \times \prod_{t \in d} \frac{1 - p_t}{1 - u_t} \right) \quad \begin{array}{l} \textit{trick:} \\ \textit{multiply by "1"} \end{array} \end{split}$$

Binary Independence Model (BIM)

$$\begin{split} f(q,d) &\approx \prod_{t \in d} \frac{p_t}{u_t} \times \prod_{t \in d} \frac{1-u_t}{1-p_t} \\ &\times \prod_{t \in d} \frac{1-p_t}{1-u_t} \times \prod_{t \notin d} \frac{1-p_t}{1-u_t} \end{split} \qquad \begin{array}{c} \textit{rearranging} \\ \textit{all products} \\ \end{split}$$

Binary Independence Model (BIM)

$$\begin{split} f(q,d) &\approx \prod_{t \in d} \frac{p_t(1-u_t)}{u_t(1-p_t)} \\ &\times \prod_t \frac{1-p_t}{1-u_t} \quad \begin{array}{l} \textit{document-independent} \\ \textit{component dropped} \\ \end{split}$$

Binary Independence Model (BIM)

$$\begin{split} f(q,d) &\approx \prod_{t \in d} \frac{p_t(1-u_t)}{u_t(1-p_t)} \\ &\propto \log \prod_{t \in d} \frac{p_t(1-u_t)}{u_t(1-p_t)} \quad \begin{array}{l} \textit{order preserving} \\ \textit{transformation} \\ &= \sum_{t \in d} \log \frac{p_t(1-u_t)}{u_t(1-p_t)} \end{split}$$

Nice, but how do we get p_t and u_t ?

Probability estimates in practice

$$p_t = P(y_t|R)$$

- \circ Cannot estimate without actual relevance data
- ightarrow assume constant (e.g., $p_t=0.5$)

$$u_t = P(y_t|\bar{R})$$

- o Non-relevant documents are the vast majority
 - \rightarrow assume collection statistics ($u_t = n_t/n$)

Probability estimates in practice

$$\begin{split} f(q,d) &\approx \sum_{t \in d} \log \frac{p_t(1-u_t)}{u_t(1-p_t)} \\ &= \sum_{t \in d} \log \frac{0.5(1-n_t/n)}{n_t/n(1-0.5)} \\ &= \sum_{t \in d} \log \frac{n-n_t}{n_t} \approx \sum_{t \in d} \log \frac{n}{n_t} \end{split}$$

How effective is BIM?

How effective is BIM?

BIM was originally designed for short catalog records of fairly consistent length (e.g., titles or abstracts)

Works reasonably well in these contexts

For modern full-text search collections, a model should pay attention to term frequency and document length

o BM25 is sensitive to these quantities

Okapi BM25

Binary Independence Model

$$\circ f(q,d) \approx \sum_{t \in q \cap d} \log \frac{n}{n_t}$$

Okapi/BM25 [Robertson and Walker, 1994]

$$\circ f(q,d) = \textstyle \sum_{t \in q} c(t,q) \frac{(k_1+1) \, c(t,d)}{c(t,d) + k_1 \left((1-b) + b \frac{|d|}{avdl}\right)} \log \frac{n+1}{n_t}$$

Summary

Relevance cannot be predicted with certainty

 \circ Probabilistic theory provides a solid framework

BIM makes a few assumptions

- o Boolean representations of docs/queries/relevance
- \circ Terms are independent of one another
- \circ Out-of-query terms do not affect ranking

References

<u>Introduction to Information Retrieval</u>, Ch. 11 Manning et al., 2008

Search Engines: Information Retrieval in Practice, Ch. 7

Croft et al., 2009

The Probabilistic Relevance Framework

Robertson and Zaragoza, FnTIR 2009

 $UF {\color{red} {m} \atop {m}} G \quad {\tiny UNIVERSIDADE\ FEDERAL \atop DE\ MINAS\ GERAIS}$

Coming next...

Language Models

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br