Modelamiento de Procesos: Tarea 2.

Alejandro D. J. Gómez Flórez *

* Universidad Nacional de Colombia, Sede Medellín, (e-mail: ajgomezf@unal.edu.co)

Resumen

El presente trabajo tiene como objetivo el desarrollo de la segunda tarea del curso, el cual consiste en el desarrollo y simulación del modelo dinámico de un reactor químico.

Keywords: simulación, modelamiento de procesos, comsol, matlab.

1. INTRODUCCIÓN

Se parte del diagrama que representa la reaccion en la Figura 2.

Figura 1. Reacciones de Denbigh

Establecer las velocidades de reacción, partiendo de la siguiente expresión:

$$k_i = A_0 e^{E_a/RT} \tag{1}$$

A continuación se presentan las reacciones obtenidas a partir del enunciado y de la deducción del orden de reacción a partir de las unidades de (1):

$$2A \to R$$
 (2)

$$A \to T$$
 (3)

$$R \to S$$
 (4)

$$2R \to U$$
 (5)

Las velocidades obtenidas son las siguientes:

$$r_{A \to R} = k_1 (C_A / \omega_A)^2 \tag{6}$$

$$r_{A \to T} = k_2 C_A / \omega_A \tag{7}$$

$$r_{R \to S} = k_3 C_R / \omega_R \tag{8}$$

$$r_{R \to U} = k_4 (C_R / \omega_R)^2 \tag{9}$$

La relación de velocidad de reacción por componente se presenta a continuación:

$$r_{A \to R} = 2r_R \tag{10}$$

$$r_{A \to T} = r_T \tag{11}$$

$$r_{R \to S} = r_S \tag{12}$$

$$r_{R \to U} = 2r_U \tag{13}$$

Estas velocidades de reacción quedan en unidades de $\left[\frac{Kmol}{m^3s}\right]$.

2. BALANCE POR COMPONENTE

Los flujos másicos para este sistema se definen de manera genérica como:

$$\dot{m_i} = C_i F_i \tag{14}$$

Las velocidades de reacción molares se definen como:

$$\hat{r}_i = \omega_i r_i \tag{15}$$

Donde ω_i es el peso especifico del componente i. Realizamos el balance de masas.

$$\frac{dM_A}{dt} = \frac{d(C_A V)}{dt} = m\dot{}_{A1} - m\dot{}_{A2} - \hat{r}_{A \to R} V - \hat{r}_{A \to T} V$$
(16)

$$\frac{dM_T}{dt} = \frac{d(C_T V)}{dt} = \hat{r}_T V - \dot{m}_T \tag{17}$$

$$\frac{dM_R}{dt} = \frac{d(C_R V)}{dt} = \hat{r}_R V - \hat{r}_{R \to S} V - \hat{r}_{R \to U} V - \dot{m}_R \tag{18}$$

$$\frac{dM_S}{dt} = \frac{d(C_S V)}{dt} = \hat{r}_S V - \dot{m}_S \tag{19}$$

$$\frac{dM_S}{dt} = \frac{d(C_S V)}{dt} = \hat{r}_S V - \dot{m}_S$$

$$\frac{dM_U}{dt} = \frac{d(C_U V)}{dt} = \hat{r}_U V - \dot{m}_U$$
(20)

Reemplazando por la definición (14) y (15):

$$\frac{d(C_A V)}{dt} = C_{A_0} F - C_A F - \omega_A r_{A \to R} V - \omega_A r_{A \to T} V$$
(21)

$$\frac{d(C_T V)}{dt} = \omega_T r_T V - C_T F \tag{22}$$

$$\frac{d(C_RV)}{dt} = \omega_R r_R V - \omega_R r_{R\to S} V - \omega_R r_{R\to U} V - C_R F$$
(23)

$$\frac{d(C_S V)}{dt} = \omega_S r_S V - C_S F \tag{24}$$

$$\frac{d(C_S V)}{dt} = \omega_S r_S V - C_S F$$

$$\frac{d(C_U V)}{dt} = \omega_U r_U V - C_U F$$
(24)

Luego:

$$\frac{d(C_A V)}{dt} = C_{A_0} F - C_A F - \omega_A r_{A \to R} V - \omega_A r_{A \to T} V$$
(26)

$$\frac{d(C_T V)}{dt} = \omega_T(r_{A \to T})V - C_T F \tag{27}$$

$$\frac{d(C_R V)}{dt} = \omega_R r_R V - \omega_R r_{R \to S} V - \omega_R r_{R \to U} V - C_R F$$
(28)

$$\frac{d(C_S V)}{dt} = \omega_S(r_{R \to S})V - C_S F \tag{29}$$

$$\frac{d(C_U V)}{dt} = \omega_U \left(\frac{r_{R \to U}}{2}\right) V - C_U F \tag{30}$$

Realizamos las sustituciones de las velocidades de reacción y las equivalencias obtenidas en (10) (11) (12) (13)

$$\frac{dC_A}{dt} = \frac{C_{A_0}F}{V} - \frac{C_AF}{V} - \frac{k_1C_A^2}{\omega_A} - k_2C_A \tag{31}$$

$$\frac{dC_T}{dt} = \frac{\omega_T}{\omega_A} K_2 C_A - \frac{C_T F}{V} \tag{32}$$

$$\frac{dC_R}{dt} = \frac{\omega_R}{\omega_A} \frac{k_1 C_A^2}{2} - k_3 C_R - \frac{k_4 C_R^2}{\omega_R} - \frac{C_R F}{V}$$
 (33)

$$\frac{dC_S}{dt} = \frac{\omega_S}{\omega_R} k_3 C_R - \frac{C_S F}{V} \tag{34}$$

$$\frac{dC_U}{dt} = \frac{\omega_U}{\omega_R} \frac{k_4 C_R^2}{2} - \frac{C_U F}{V} \tag{35}$$

3. BALANCE DE ENERGÍA

Definimos el intercambio de calor como:

$$\dot{Q} = UA(T - T_i) \tag{36}$$

Establecemos las ecuaciones del tanque que nos servirán para el desarrollo del modelo dinámico de la temperatura:

$$H = MC_nT (37)$$

$$\hat{H}_{A_0} = C_p T_A \tag{38}$$

$$\dot{m}_{svt} = \rho_{svt} F \tag{39}$$

$$\dot{m}_{A_0} = \rho_A F_A \tag{40}$$

Establecemos el balance de Entalpía para el tanque:

$$\frac{dH}{dt} = \frac{d(m_{svt}C_pT)}{dt} = \dot{m}_{A_0}\hat{H}_A + \dot{m}_A\hat{H}_{A_0}
+ \hat{r}_{A\to R}\Delta\hat{H}_{A\to R}V
+ \hat{r}_{A\to T}\Delta\hat{H}_{A\to T}V
+ \hat{r}_{R\to S}\Delta\hat{H}_{R\to S}V
+ \hat{r}_{R\to U}\Delta\hat{H}_{R\to U}V
- \dot{Q}$$
(41)

Realizando las substituciones obtenemos:

$$\frac{dT}{dt} = \frac{F_A T_A}{V} - \frac{FT}{V} - \frac{\dot{Q}}{V \rho_{svt} C_p} + \frac{\hat{r}_{A \to R} \Delta \hat{H}_{A \to R}}{\rho_{svt} C_p} + \frac{\hat{r}_{A \to T} \Delta \hat{H}_{A \to T}}{\rho_{svt} C_p} + \frac{\hat{r}_{R \to S} \Delta \hat{H}_{R \to S}}{\rho_{svt} C_p} + \frac{\hat{r}_{R \to U} \Delta \hat{H}_{R \to U}}{\rho_{svt} C_p}$$

$$(42)$$

Establecemos las ecuaciones de la chaqueta que nos servirán para el desarrollo del modelo dinámico de la temperatura:

$$H_j = m_j C_{pj}(T_j) (43)$$

$$H_{jin} = C_{pj}(T_{jin} - T_{ref}) \tag{44}$$

$$H_{jin} = C_{pj}(T_{jin} - T_{ref})$$

$$H_{jout} = C_{pj}(T_j - T_{ref})$$

$$(44)$$

$$\dot{m}_{jin} = \dot{m}_{jout} \tag{46}$$

Establecemos el balance de Entalpía para la chaqueta:

$$\frac{dH_j}{dt} = \dot{m}_{jin}\hat{H}_{jin} - \dot{m}_{jout}\hat{H}_{jout} + \dot{Q}$$
 (47)

Al hacer los respectivos reemplazos, obtenemos:

$$\frac{dT_j}{dt} = \frac{F}{V}(T_{j0} - T_j) + \frac{\dot{Q}}{V_{cata}(\rho_{H_2O})C_{pj}}$$
(48)

4. SIMULACIÓN

Las ecuaciones obtenidas que representan el modelo dinámico del sistema son:

$$\frac{dC_A}{dt} = \frac{C_{A_0}F}{V} - \frac{C_AF}{V} - \frac{k_1C_A^2}{\omega_A} - k_2C_A \tag{49}$$

$$\frac{dC_T}{dt} = \frac{\omega_T}{\omega_A} K_2 C_A - \frac{C_T F}{V} \tag{50}$$

$$\frac{dC_R}{dt} = \frac{\omega_R}{\omega_A} \frac{k_1 C_A^2}{2} - k_3 C_R - \frac{k_4 C_R^2}{\omega_R} - \frac{C_R F}{V}$$
 (51)

$$\frac{dC_S}{dt} = \frac{\omega_S}{\omega_R} k_3 C_R - \frac{C_S F}{V} \tag{52}$$

$$\frac{dC_U}{dt} = \frac{\omega_U}{\omega_R} \frac{k_4 C_R^2}{2} - \frac{C_U F}{V} \tag{53}$$

$$\frac{dT}{dt} = \frac{F_A T_A}{V} - \frac{FT}{V} - \frac{\dot{Q}}{V \rho_{svt} C_p}$$

$$+\frac{\hat{r}_{A\to R}\Delta\hat{H}_{A\to R}}{\rho_{svt}C_p} + \frac{\hat{r}_{A\to T}\Delta\hat{H}_{A\to T}}{\rho_{svt}C_p}$$
 (54)

$$+\frac{\hat{r}_{R\to S}\Delta\hat{H}_{R\to S}}{\rho_{svt}C_p}+\frac{\hat{r}_{R\to U}\Delta\hat{H}_{R\to U}}{\rho_{svt}C_p}$$

$$\frac{dT_j}{dt} = \frac{F}{V}(T_{j0} - T_j) + \frac{\dot{Q}}{V_{cata}(\rho_{H_2Q})C_{nj}}$$
 (55)

Realizamos la simulación en el software MATLAB (2020). definiendo el script presente en (Gomez (2020)). El resultado obtenido, se presenta en el gráfico de la figura

Figura 2. Resultados Simulación

REFERENCIAS

Gomez, A. (2020). Simulacion de reactor, Modelamiento de procesos. Universidad Nacional de Colombia sede Medellín. URL https://git.io/JTfEP.

MATLAB (2020). version 9.8.0 (R2020a). The Math-Works Inc., Natick, Massachusetts.