Luego de bajar los datos fue necesario ajustar las unidades de las variables de interes. Los datos de presión se pasaron de [hPa] a [Pa], y la temperatura de [$^{\circ}$ C] a [K]. También se transformó la razón de mezcla (en [g/Kg]) a la humedad especifica q (adimensional).

a) La temperatura virtual T_v la calculamos para cada fila de datos usando la expresión

$$T_v = T(1+0.61q), (1)$$

donde T es la temperatura en Kelvin y q la humedad específica. Por otro lado, la densidad ρ fue obtenida a partir de la ecuación de estado, es decir

$$\rho = \frac{P}{R_d T_v},\tag{2}$$

con P la presión y $R_d = 287,04 \left[\frac{\text{J}}{\text{Kg K}} \right]$

b) Para Z1 se consideraron la siguientes expresiones de la atmósfera standard.

$$T(z) = T_0 + mz \tag{3}$$

$$P(z) = P_0 \left(\frac{T(h)}{T_0}\right)^{-\frac{g}{mR_d}} \tag{4}$$

La ecuación (3) indica que la temperatura decrese de forma lineal con la altura, a una m. Además se asume que la temperatura en la superficie (z = 0) es T_0 . Por otro lado, (4) muestra como la presión depende de la temperatura y del gradiente de temperatura (m). Para relacionar ambas cantidades remplazamos (3) en (4). Luego nos queda

$$P = P_0 \left(\frac{T_0 + mz}{T_0}\right)^{-\frac{g}{mR_d}}$$

$$\left(\frac{P}{P_0}\right)^{-\frac{mR_d}{g}} = \frac{T_0 + mz}{T_0}$$

$$T_0 \left(\frac{P}{P_0}\right)^{-\frac{mR_d}{g}} = T_0 + mz$$

$$T_0 \left[\left(\frac{P}{P_0}\right)^{-\frac{mR_d}{g}} - 1\right] = mz$$

Con esto obtenemos que la altura es

$$Z1 = \frac{T_0}{m} \left[\left(\frac{P}{P_0} \right)^{-\frac{m R_d}{g}} - 1 \right] \tag{5}$$

Consideraremos T_0 y P_0 como los valores de temperatura y presión del primer nivel (primera fila de datos), y m = -6.5/1000 (indicando que la temperatura disminuye en 6.5°C cada 1000 metros), $R_d = 287,04$ [J/Kg K], y g = 9,78 [m/s²]. Entonces, usamos la ecuación (5) en cada fila de datos para obtener la altura Z1.

Para Z2 se consideró la ecuación hipsométrica dada por

$$Z2_2 - Z2_1 = \frac{R_d \langle T \rangle}{g} \ln \left(\frac{P_1}{P_2} \right) \tag{6}$$

con $\langle T \rangle$ el promedio de las temperaturas virtuales en los puntos 1 y 2. Como esta ecuación nos proporciona el espesor entre dos puntos, se calculó el espesor entre cada par consecutivo de datos, y luego se hizo una suma acumulativa para registrar Z2.

A continuación presentamos las tablas con los datos.

Pres. [Pa]	Temp [K]	q	Virt.Temp [K]	$\rho [{\rm Kg/m^3}]$	Z1 [m]	Z2 [m]	Pres. [Pa]	Temp [K]	q	Virt.Temp [K]	$\rho~[{\rm Kg/m^3}]$	Z1 [m]	Z2 [m]
100300.0	291.95	0.01238	294.154748	1.187908	-0.000000	0.000000	100000.0	289.55	0.00981	291.282696	1.196032	-0.000000	0.000000
100000.0	291.95	0.01238	293.874932	1.185482	25.853894	25.824381	99500.0	289.15	0.00780	290.525776	1.193153	42.832027	42.685476
95400.0	289.35	0.001194	291.016193	1.142060	430.360310	426.069349	92500.0	283.35	0.00790	284.715464	1.131848	661.565808	646.050014
93700.0	209.35	0.00944	291.942250	1.112000	583.851720	580.377143	92000.0	283.05	0.00785	284.405385	1.126958	707.194623	691.267797
							91300.0	282.75	0.00779	284.093600	1.119610	771.413287	754.917198
92500.0	290.15	0.00898	291.739384	1.104598	693.561072	690.705000	88700.0	289.95	0.00317	290.510676	1.063700	1013.483810	1003.973175
85100.0	287.95	0.00637	289.068887	1.025618	1396.783479	1394.853853	85000.0	288.55	0.00321	289.115010	1.024250	1368.066215	1364.653363
85000.0	288.15	0.00647	289.287242	1.023640	1406.619982	1404.840563	80400.0	286.15	0.00242	286.572415	0.977416	1826.751541	1830.530470
84700.0	288.55	0.00668	289.725784	1.018483	1436.185786	1434.928273	78700.0	285.85	0.00130	286.076679	0.958407	2001.649168	2009.811705
83400.0	290.35	0.00375	291.014176	0.998411	1565.291972	1567.329590	75600.0	285.35	0.00036	285.412663	0.922797	2328.608348	2346.056461
80700.0	288.35	0.00645	289.484513	0.971194	1838.726674	1846.201217	75100.0	285.15	0.00024	285.191746	0.917404	2382.355687	2401.577888
77800.0	286.35	0.00580	287.363106	0.943205	2140.789472	2153.722909	70000.0	280.55	0.00036	280.611609	0.869060	2947.807210	2976.040916
77400.0	286.35	0.00626	287.443456	0.938093	2183.165360	2197.215564	58200.0	268.05	0.00065	268.156282	0.756123	4396.568801	4395.233966
76600.0	286.75	0.00335	287.335974	0.928745	2268.451579	2284.817863	53800.0	264.25	0.00010	264.266119	0.709248	4998.168534	5000.470190
74800.0	284.55	0.00706	285.775443	0.911873	2463.013395	2483.719413	53000.0	263.35	0.00018	263.378916	0.701056	5111.799096	5116.083900
73600.0	283.55	0.00668	284.705410	0.900616	2594.836665	2618.606135	50200.0	260.25	0.00111	260.426215	0.671547	5520.763903	5528.593619
70000.0	281.75	0.00618	282.812141	0.862298	3001.025845	3033.478554	50000.0	260.05	0.00111	260.208630	0.669431	5550.676084	5559.068113
65200.0	279.55	0.00487	280.380459	0.810135	3569.771187	3615.502767	47400.0	257.65	0.00100	257.719153	0.640751	5948.624826	5961.039544
64200.0	279.55	0.00394	280.221870	0.798161	3692.503504	3742.585647	47000.0	257.05	0.00037	257.108016	0.636854	6011.406816	6024.913427
62800.0	280.95	0.00173	281.246487	0.777911	3866.954313	3924.913472	46200.0	255.85	0.00037	255.909306	0.628946	6138.279205	6153.556393
59500.0	278.35	0.00173	278.643743	0.743918	4290.964328	4364.295917	42600.0	250.05	0.00038	250.112538	0.593378	6732.218776	6742.175728
57300.0	276.35	0.00403	277.029351	0.720587	4584.334908	4669.734065	41400.0	249.65	0.00041	249.726143	0.577556	6939.231944	6951.438977
52500.0	270.45	0.00380	271.076903	0.674721	5257.497937	5358.144206							
50000.0	268.25	0.00145	268.487267	0.648790	5628.057367	5740.757475	40000.0	248.25	0.00045	248.318145	0.561189	7186.976650	7201.447878
49700.0	268.05	0.00063	268.153012	0.645701	5673.525903	5788.091440	38800.0	247.45	0.00025	247.487736	0.546180	7404.978135	7422.322913
47100.0	264.85	0.00248	265.250665	0.618617	6077.183110	6204.107386	31500.0	234.45	0.00012	234.467162	0.468043	8863.249721	8816.834466
45600.0	262.45	0.00228	262.815015	0.604467	6318.335639	6452.601480	30000.0	231.45	0.00010	231.464118	0.451539	9196.309449	9146.135466
43000.0	259.85	0.00163	260.108369	0.575933	6751.981830	6898.449381	26300.0	223.75	0.00005	223.756824	0.409484	10079.542755	9995.677386
40300.0	258.05	0.00006	258.059445	0.544055	7225.377411	7387.660951	25800.0	222.65	0.00004	222.655433	0.403686	10206.495522	10120.800342
40000.0	257.65	0.00003	257.654715	0.540853	7279.547847	7444.120597	25000.0	221.25	0.00004	221.255398	0.393644	10413.824089	10324.698547
39300.0	257.05	0.00003	257.054704	0.532629	7407.235822	7577.162392	23900.0	219.05	0.00003	219.054009	0.380106	10707.850153	10612.540527
39000.0	256.55	0.00003	256.554695	0.529593	7462.523265	7634.806077	23300.0	217.85	0.00003	217.853987	0.372604	10872.872653	10774.659536
31400.0	243.85	0.00001	243.851487	0.448603	8993.384321	9145.698677	21700.0	220.65	0.00001	220.651346	0.342618	11330.385897	11238.293209
30000.0	241.45	0.00030	241.494185	0.432785	9307.533450	9467.398152	20900.0	219.85	0.00000	219.850000	0.331190	11569.463543	11480.228523
29600.0	240.65	0.00038	240.705783	0.428413	9399.467079	9562.071670	20800.0	219.85	0.00000	219.850000	0.329605	11599.866556	11511.175969
29100.0	239.45	0.00038	239.505505	0.423287	9515.808625	9681.525993	20000.0	220.25	0.00000	220.250000	0.316353	11847.446177	11764.939469
25000.0	231.25	0.00013	231.268338	0.376601	10536.350381	10693.958203	18400.0	219.65	0.00000	219.650000	0.291840	12367.674916	12301.738195
20000.0	218.65	0.00002	218.652668	0.318664	11983.280901	12084.645870	18000.0	218.85	0.00000	218.850000	0.286539	12503.431609	12442.654648
19900.0	218.35	0.00002	218.352664	0.317506	12015.081626	12116.747096	15200.0	212.35	0.00000	212.350000	0.249373	13528.946240	13480.279612
19700.0	217.85	0.00001	217.851329	0.315038	12079.073003	12181.257874	15000.0	211.85	0.00000	211.850000	0.246672	13607.895290	13562.537703
16500.0	210.05	0.00001	210.050000	0.273665	13182.182285	13253.744722	14600.0	210.45	0.00000	210.450000	0.241692	13768.383900	13728.928863
15000.0	205.85	0.00000	205.850000	0.253862	13760.072411	13823.699597	13700.0	213.05	0.00000	213.050000	0.224025	14142.924411	14129.204908
13800.0	201.65	0.00000	201.650000	0.238418	14257.090730	14312.043275	13200.0	211.55	0.00000	211.550000	0.217379	14359.687994	14359.228253
13100.0	201.05	0.00000	200.450000	0.236418	14563.401674	14617.381750	11300.0	205.15	0.00000	205.150000	0.191895	15249.330807	15280.394153
10100.0	194.65	0.00000	194.650000	0.227679	16049.004472	16081.042958	11000.0	204.05	0.00000	204.050000	0.187808	15400.697242	15441.103290
							10200.0	201.85	0.00000	201.850000	0.176047	15821.334791	15885.990084
10000.0	194.65	0.00000	194.650000	0.178979	16104.391496	16137.888381	10000.0	201.85	0.00000	201.850000	0.172595	15930.652031	16003.305513
7000.0	198.25		198.250000	0.123011	18021.907798	18232.071835	7000.0	210.25	0.00000	210.250000	0.115990	17830.531593	18248.232490
5000.0	206.05	0.00000	206.050000	0.084539	19715.045489	20305.403023	5000.0	210.85	0.00000	210.850000	0.082614	19508.096311	20333.414106
3000.0	213.25	0.00000	213.250000	0.049011	22086.490061	23556.542990	3000.0	216.25	0.00000	216.250000	0.048331	21857.729046	23616.038482
2000.0	218.25	0.00001	218.251331	0.031925	23811.025463	26183.552802	2000.0	223.25	0.00002	223.252724	0.031210	23566.402689	26314.474807

c) A continuación mostramos los perfiles de temperatura

Figura 1: Temperatura en relación a la altura Z1 Figura 2: Temperatura en relación a la altura Z2 Notamos como en ambas figuras, a baja altura $(z < 10000 \mathrm{m})$ la temperatura es mayor para el registro de verano, aunque para el registro de invierno, los datos de mas baja altura presentan harta variación.

De las tablas podemos notar que en el registro de verano hay mas humedad específica q. Esto podría deberse a que la estación de radiosondeos se encuentra en Antofagasta, cercano a la costa, donde las altas temperaturas provocan más vaporización del agua del mar.