Wärme- und Stoffübertragung I

Einführung in das Thema Rippen

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Video Übersicht

Grundkenntnisse zum Thema Rippen

- Was sind Rippen?
- Welche Wärmetransportprozesse finden bei der Berechnung des Wärmeübergangs an Rippen Berücksichtigung?
- Qualitativer Verlauf des Temperaturprofils in einer Rippe.

Bilanzerstellung und Herleitung der DGL für Rippen

- Aufstellen der Energiebilanz für Rippen
- Herleitung der Differenzialgleichung für Rippen

Rippen-Anwendung

Beispiele:

Rippenrohr

https://tibometals.de

Schöck Isokorb https://www.schock-na.com/view/5752

https://www.infineon.com

Infineon's Hybrid PACK 2 power module

Abdoli et al., 2015,10.1016/j.ijthermalsci.2014.12.021

Heizung

Rippe: Vor- und Nachteile

Vorteil:

- Zusätzliche Oberfläche
- Durch vergrößerte Oberfläche wird Wärme besser vom gut leitenden Festkörper zur schlecht leitenden Flüssigkeit/Gas transportiert

Nachteil:

- Höherer Materialverbrauch
- Zusätzliches Gewicht und Volumen
- Erhöhter Druckverlust

Kühlkörpr mit Rippen

Wärmeabfuhr durch Rippen

- Wärmeleitung von Boden in die Rippen hinein
- Konvektive Wärmeabgabe über die Seitenflächen der Rippe an die umgebende Flüssigkeit

Temperaturprofil in Rippen

Welche Temperaturprofil ist richtig?

Aufgrund des erhöhten Temperaturunterschieds zur Umgebung wird am Anfang mehr Wärme abgegeben

- Am Fuß: Großer Temperaturunterschied zur Umgebung
- Am Kopf: Niedriger Temperaturunterschied zur Umgebung

Temperaturprofil in Rippen

Welche Temperaturprofil ist richtig?

Aufgrund des erhöhten Temperaturunterschieds zur Umgebung wird am Anfang mehr Wärme abgegeben

- Am Fuß: Großer Temperaturunterschied zur Umgebung
- Am Kopf: Niedriger Temperaturunterschied zur Umgebung

Wie wird der an die Umgebung übertragene Wärmestrom berechnet?

Wie wird der an die Umgebung übertragene Wärmestrom berechnet?

 $\dot{Q}_{\rm ax}$: Wärmeleitung in axialer Richtung

 $d\dot{Q}_{
m Konv}$: Konvektive Wärmeabfuhr auf die Umgebung

 Δx : Länge des finiten Elements

 A_0 : Querschnittsfläche der Rippe

Aaußen: Äußere Oberflächenfläche (Mantelfläche)

des finiten Elements

U: Umfang der Rippe

T_{IJ}: Umgebungstemperatur

Wie wird der an die Umgebung übertragene Wärmestrom berechnet?

 $\dot{Q}_{\rm ax}$: Wärmeleitung in axialer Richtung

 $d\dot{Q}_{\mathrm{Konv}}$: Konvektive Wärmeabfuhr auf die Umgebung

 Δx : Länge des finiten Elements

 A_Q : Querschnittsfläche der Rippe

Aaußen: Äußere Oberflächenfläche (Mantelfläche)des

finiten Elements

U: Umfang der Rippe

T_U: Umgebungstemperatur

Wie wird der an die Umgebung übertragene Wärmestrom berechnet?

Energiebilanz um ein finites Element in der Rippe:

$$\dot{Q}_{\rm ax}(x) - \dot{Q}_{\rm ax}(x + \Delta x) - d\dot{Q}_{\rm Konv}(x) = 0$$

$$\dot{Q}_{\mathrm{aX}}(x) = A_Q \cdot \dot{q}_{\mathrm{aX}}^{\prime\prime}(x)$$

$$\dot{Q}_{\mathrm{aX}}(x + \Delta x) = \dot{Q}_{\mathrm{aX}}(x) + \frac{d\dot{Q}(x)}{dx} \cdot \Delta x$$

$$d\dot{Q}_{konv}(x) = A_{außen} \cdot \dot{q}_{Konv}^{"}(x)$$

Wie wird der an die Umgebung übertragene Wärmestrom berechnet?

$$0 = -\frac{d\dot{q}_{\rm ax}^{"}(x)}{dx} \cdot \Delta x \cdot A_Q - A_{\rm außen} \cdot \dot{q}_{\rm Konv}^{"}(x)$$

Fourier-Gesetz:

$$\dot{q}_{\rm ax}^{"}(x) = -\lambda \cdot \frac{dT}{dx}$$

Konvektiver Wärmeübergang:

$$\dot{q}_{\mathrm{Konv}}^{\prime\prime}(x) = \alpha \cdot (T(x) - T_u)$$

Wie wird der an die Umgebung übertragene Wärmestrom berechnet?

 $\dot{q}_{\rm ax}^{\prime\prime}(x)$ und $\dot{q}_{\rm Konv}^{\prime\prime}$ in den Bilanz einsetzen:

$$\lambda \cdot A_Q \cdot \Delta x \cdot \frac{d^2T}{dx^2} = \alpha \cdot U \left(T(x) - T_u\right)$$

Inhomogene Differenzialgleichung 2. Ordnung

Verständnisfragen

Was sind Rippen und wozu werden diese eingesetzt?

Welche Wärmeströme werden in der Herleitung der Rippen-DGL berücksichtigt?

Wie verläuft das Temperaturprofil in einer Rippe (aus physikalischen Überlegungen)?

