

Wydział Elektroniki, Fotoniki i Mikrosystemów

Sterowanie Procesami Dyskretnymi

Problemy jednomaszynowe

Członkowie grupy: Eryk Sikora, 263453

Aleksander Biskup, 264346

Prowadzący zajęcia: dr inż. Agnieszka Wielgus Grupa zajęciowa: Poniedziałek $11^{15}-13^{00}$

Spis treści

1	Opis problemu
2	Wybrane algorytmy
3	Algorytm własny
	3.1 Opis
	3.2 Pseudokod
4	Wyniki eksperymentu numerycznego
5	Wnioski

1 Opis problemu

kilka zdań, typu: dana jest jedna maszyna oraz zbiór J=1,2,..., j,..., N zadań. Zadania charakteryzują się W ramach wykonywanych ćwiczeń przerabiane były podstawowe problemy jednomaszynowe. Jak sama nazwa wskazuje dostępna była jedna maszyna oraz zbiory zadań o różnej ilości zadań. Każdy zbiór wyróżniał się unikalnymi zależnościami wartości r_j , q_j oraz p_j , umożliwiając tym samym sprawdzenie poprawności implementowanych algorytmów szeregowania zadań.

2 Wybrane algorytmy

- 1. Algorytmy heurystyczne oparte o sortowanie (po r_j i q_j)
- 2. Przegląd zupełny
- 3. Algorytm Schrage (z i bez wywłaszczeń)
- 4. Algorytm Carliera
- 5. Algorytm własny

3 Algorytm własny

3.1 Opis

Zamysłem algorytmu własnego jest nadawanie priorytetów na podstawie czasu stygnięcia, a następnie sprawdzanie pomiędzy czasami rozpoczęcia pracy nad zadaniami nie powstają luki. Jeśli luka zostaje wykryta, algorytm podejmuje próbę wykonania zadania o mniejszym priorytecie, o czasie wykonania równym lub mniejszym niż czas przerwy pomiędzy zadaniami wykonywanymi według priorytetu. Algorytm rozważa wzięcie tylko jednego z zadań o mniejszym priorytecie natomiast wybiera takie, które będzie wykonywać się najdłużej aby zapełnić lukę w możliwie jak największym stopniu.

Algorithm 1 Algorytm Bisora

```
1: ogrinal \leftarrow main \ list
2: current item occur time
3: orginal \ size \leftarrow list \ size
4: temporary, top item
5: idleQueue \leftarrow priority queue ordered by compareByIdleTime
6: helpQueue \leftarrow priority queue ordered by compareByIdleTime
7: workQueue \leftarrow priority queue ordered by compareByWorkAndOccurTime
   for each item in main list do
       idleQueue.push(item)
10: main_list.clear()
11: list \ size \leftarrow 0
12:
   while list size < orginal size do
       current item occur time \leftarrow idleQueue.top().getOccurTime()
13:
       temporary \leftarrow idleQueue.top()
14:
       idleQueue.pop()
15:
       while not idleQueue.isEmpty() do
16:
17:
           top item \leftarrow idleQueue.top()
           item \ total \ time \leftarrow top \ item.getOccurTime() + top \ item.getWorkTime()
18:
19:
           if current item occur time < item total time then
               helpQueue.push(top\_item)
20:
           else
21:
               workQueue.push(top\ item)
22:
23:
           idleQueue.pop()
       if not workQueue.isEmpty() then
24:
           top item \leftarrow workQueue.top()
25:
26:
           workQueue.pop()
27:
           main\_list.push\_back(top\_item)
       main list.push back(temporary)
28:
29:
       while not workQueue.isEmpty() do
           top item \leftarrow workQueue.top()
30:
31:
           workQueue.pop()
32:
           idleQueue.push(top\ item)
       while not helpQueue.isEmpty() do
33:
           top item \leftarrow helpQueue.top()
34:
35:
           helpQueue.pop()
36:
           idleQueue.push(top\ item)
       list\_size \leftarrow list\_size + 1
37:
```

4 Wyniki eksperymentu numerycznego

Link do sheetsa z wynikami w tabeli

Rozmiar problemu	5	6	7	9	10	11
Wartość kryterium	0212	2.4	2010	2264	746	12050
Sort r_j	2313	34	3212	2364	746	13959
Czas dział. alg. Sort r_j [ms]	41	6	9	7	7	8
Błąd względny wykonania kryterium	0,04%	$6,\!25\%$	0,00%	0,00%	$16,\!38\%$	0,70%
Wartość kryterium	2822	43	3414	3235	886	20300
$\mathbf{Sort} \; \mathbf{q_j}$	2022	45	3414	3233	000	20300
Czas dział. alg. Sort q_j [ms]	37	7	8	6	8	8
Błąd względny wykonania kryterium	22,06%	$34,\!38\%$	6,29%	36,84%	38,22%	46,44%
Wartość przeglądu zupełnego	2312	32	3212	2364	641	13862
Czas działanai przeglądu zupełnego [ms]	3234	21239	41278	2170404	22127281	244114441
Błąd względny wykonania kryterium	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
Wartość kryterium	2321	32	3212	2364	806	14801
Konstr.	2321	32	3212	2004	800	14001
Czas dział. alg.	56	22	30	31	33	43
Konstr. [ms]						
Błąd względny wykonania kryterium	0,39%	0,00%	0,00%	0,00%	25,74%	6,77%
Wartość kryterium	2313	32	3212	2364	687	13959
Schrage V1						
Czas dział. alg. Schrage V1 [ms]	66	12	18	17	34	17
Błąd względny wykonania kryterium	0,04%	0,00%	0,00%	0,00%	7,18%	0,70%
Wartość kryterium	2313	32	3212	2364	687	13959
Schrage V2						
Czas dział. alg. Schrage V2 [ms]	134	18	44	38	46	205
Błąd względny wykonania kryterium	0,04%	0,00%	0,00%	0,00%	7,18%	0,70%
Wartość kryterium	52273	32	3212	2251	641	13826
Schrage z wywłaszczeniem					_	
Czas dział. alg. Schrage z wywłaszczeniem [ms]	228	18	91	64	61	469
Błąd względny wykonania kryterium	2160,94%	0,00%	0,00%	4,78%	0,00%	0,26%

Tabela 1: Tabela wyników działania poszczególnych algorytmów dla różnych zbiorów zadań

5 Wnioski

- Dla większych zbiorów danych algorytm Schrage zwraca nieprawidłowy wynik. Może być to spowodowane tzw. corner case, którego nie udało się odnaleźć podczas debugowania.
- Algorytm Schrage został zaimplementowany na dwa różne sposoby, pierwszy z nich opiera się na wektorach, drugi na
 kolejkach priorytetowych. Zazwyczaj dają one jednakowe wyniki, natomiast czasami występują różnice. Z obserwacji
 wynika, że ten dający mniejszy wynik był tym poprawnie działającym.