

ENAR 1 of 17

Introduction to fMRI data

Inference Tools

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

Is SGPV ready to use in practice?

Evidence-based Second-Generation p-values on Functional Magnetic Resonance Imaging Data

Ya-Chen Lin

Department of Biostatistics Vanderbilt University March 23, 2020

Introduction to fMRI data

ENAR 2 of 17

Introduction to fMRI data

Inferenc Tools

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

Is SGPV ready to use in practice?

Task-induced fMRI

- Participants are engaged with tasks
- Look for localized brain activation patterns
- Statistical inference relies on p-values

P-values as an inference tool - good or bad?

ENAR 3 of 17

Introduction to fMRI data

Inference Tools

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

Is SGPV ready to use

Advantages:

- Simple computation
- Widely used in all fields

Disadvantages:

- Interpretation issues¹
- Statistical v.s. Clinical significance²

¹Hubbard et al. (2003)

²Mark et al. (2016); Ranganathan et al. (2015)

SGPV brings in interval null testing

ENAR 4 of 17

Introduction to fMRI data

Inference Tools

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

Is SGPV ready to use in practice?

Point null hypothesis H₀

and interval null hypothesis $[H_0^-, H_0^+]$

Data-supported hypothesis \widehat{H} and confidence interval $[CI^-, CI^+]$

¹Dr. Jeffrey Blume's slides

Simple interpretation as fraction of overlap

ENAR 5 of 17

Introduction to fMRI data

Inference Tools

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

Is SGPV ready to use in practice?

Works with confidence, credible, and support intervals

¹Dr. Jeffrey Blume's slides

The computation of SGPV is concise

ENAR 6 of 17

Introduction to fMRI data

Inference Tools

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

¹Dr. Hakmook Kang's slides

Balancing power and Type I error rate is challenging in fMRI analysis

ENAR 7 of 17

Introduction to fMRI data

Inference Tools

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

Is SGPV ready to use in practice?

Nature of the data

- Conduct analysis on large number of voxels
- Data are noisy

Multiple comparison adjustments

- Control FWER (Random Field Theory (RFT))
- Control False Discovery Rate (FDR)

¹Single subject simulation results from Kang et al. (2015)

Settings to simulate task-induced fMRI data

ENAR 8 of 17

Introduction to fMRI data

Inference Tools

generation p-values (SGPV)

Statistical inference in fMRI data analysis

- Spatio-temporally correlated data
- ullet 32 imes 32, 2-D images with two active regions
- At each voxel and a time, with P stimuli, $Y_{\nu}(t) = \sum_{p=1}^{P} X_{p}(t) \beta_{\nu}^{p} + \epsilon_{\nu}(t)$
- Clinically null region

 - 10 × 10 region
 - $\beta^1 = \beta^2 = 0$
- Vary time lengths and sample sizes
- Gaussian kernel with FWHM = 8 mm

Visualize the true image

ENAR 9 of 17

Introduction to fMRI data

Inferenc Tools

generation p-values (SGPV)

Statistical inference in fMRI data analysis

Is SGPV ready to use

Estimation and Inference of simulation

ENAR 10 of 17

Introduction to fMRI data

Inference Tools

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

- 1. Fit the linear model at each voxel to estimate β^2 β^1
- 2. SGPV clinical null region:
 - $0 \pm \text{IQR}(\text{all } \hat{\beta^2} \hat{\beta^1} \text{ in CSF}) / 6$
- Methods compared:
 - SGPV: Compute SGPV with 95% CI
 - FDR : Compute p-values; control at FDR = 0.05
 - RFT : Compute z-scores; control error probability at 0.05
- 4. Fair comparison: Dichotimized SGPV (D-SecondP)
 - Voxels with SGPV = 0 are deemed as significant
 - Voxels with SGPV = 1 are deemed as insignificant
 - Voxels with 0 < SGPV < 1 (inconclusive region) are deemed as insignificant

SGPV obtains power and keep Type I error rate steady

ENAR 11 of 17

Introduction to fMRI data

Inference

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

Is SGPV ready to us

Participants and task in real fMRI data

ENAR 12 of 17

Introduction to fMRI data

Inference Tools

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

Is SGPV ready to us in practice?

Data:

- 29 women with major depression disorders, aged between 45 and 75
- Spatial attention task that measures attention bias Analysis:
 - 1. Linear model at each voxel to estimate $\beta^2 \beta^1$
 - 2. Compute SGPV with clinical null region
 - ullet 0 \pm IQR/6 using estimates from voxels in CSF
 - 3. For voxels outside of CSF
 - Compute SGPV with 95% CI
 - Control z-scores with RFT at 0.05
 - Control p-values with FDR at 0.05
 - 4. Data Decimation

SGPV method is the most robust method

ENAR 13 of 17

Introduction to fMRI data

Inference Tools

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

Visualization of the results

ENAR 14 of 17

Introduction to fMRI data

Tools

generation p-values (SGPV)

Statistical inference in fMRI data analysis

SGPV offers good properties in fMRI analysis

ENAR 15 of 17

Introduction to fMRI data

Inference Tools

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

- 1. Convenient and simple interpretation
- Incorporate clinical information (in fMRI: data collected from CSF)
- Provide transparency, rigor and reproducibility of scientific results
- 4. Reduce false positives in fMRI data analysis

Tools have been developed; more are coming

ENAR 16 of 17

Introduction to fMRI data

Inference Tools

generation p-values (SGPV)

Statistical inference in fMRI data analysis

Is SGPV ready to use in practice?

Method:

- "An Introduction to Second-Generation p-Values", Blume et al. (2019)
- "Second-generation p-values: Improved rigor, reproducibility, transparency in statistical analyses", Blume et al. (2018)

2. R package:

- github.com/weltybiostat/sgpv
- 3. R-shiny app for fMRI analysis (work in progress)
 - Offer clear explanation of SGPV
 - Provide interactive visualization
 - Download results with format compatible with other imaging software

Acknowledgments

ENAR 17 of 17

Introduction to fMRI data

Inferenc Tools

Secondgeneration p-values (SGPV)

Statistical inference in fMRI data analysis

Is SGPV ready to use in practice?

Advisor: Prof. Hakmook Kang, Department of Biostatistics, Vanderbilt University

SGPV method:

- Prof. Jeffrey Blume, Department of Biostatistics, Vanderbilt University
- Valerie Welty, Department of Biostatistics, Vanderbilt University

Collaborators:

- Dr. Warren Taylor, Department of Psychiatry, Vanderbilt University
- Brian Boyd, Department of Psychiatry, Vanderbilt University