John の楕円体定理 (中心対称な場合)

1

命題 1.1. $A,B\subset\mathbb{R}^n$ とし, $T:\mathbb{R}^n\to\mathbb{R}^n$ を同型な線型変換とする. 適当な $s\geq 0$ に対して

 $TA \subset TB \subset sTA$

が成り立つとき、

 $A \subset B \subset sA$

が成り立つ.

証明. 明らかにそう. □

命題 1.2. (John の楕円体定理の簡単バージョン). $K \subset \mathbb{R}^n$ を中心対称, 有界な閉凸体で内部が空でない集合とする. このとき, $E \subset K$ を K に含まれる体積最大の楕円体とする.

$$E \subset K \subset \sqrt{n}E$$

が成り立つ.

証明。(sketch). E 適当な線型変換を行なって、はじめから開球 B だと思うことにしておく. $K\subsetneq \sqrt{n}B$ とすると、 $x\in K$ で

$$\sqrt{n} < \|x\|$$

を満たすものがとれる。適当に \mathbb{R}^n の基底をとりかえて, 正規直交基底 u_1,\ldots,u_n で u_1 が x 方向になるようにとる.

$$R := \operatorname{Conv}(B \cup \{-x, x\})$$

と定めると、 $B \cup \{-x,x\} \subset K$ なので、K が凸集合であることから、 $R \subset K$ が成り立つ。B を u_1 方向に a>1 倍し、 u_2,\ldots,u_n 方向にそれぞれ b<1 倍してつくられる楕円体 E(a,b) 考える。 $E(a,b) \subset R$ に含まれており、

$$vol(E(a,b)) = ab^{n-1}vol(B)$$

が成り立つ. $a>\sqrt{n}$ なので, a,b をうまくとれば, $\mathrm{vol} B<\mathrm{vol} E(a,b)$ が成り立つことから, B が K に含まれる体積最大の楕円体であることに矛盾する.