CODE REPORT

Theory:

We've fading channel coefficient is,

$$h = \sum_{i=0}^{l-1} a_i \cos 2\pi F_c \tau_i - j \sum_{i=0}^{l-1} a_i \sin 2\pi F_c \tau_i$$

where, F_c is career frequency

 τ_i is delay in i^{th} path.

 a_i is attenuation factor

It can be written as,

$$h = x + jy$$

where,
$$x = \sum_{i=0}^{l-1} a_i \cos 2\pi F_c \tau_i$$
, $y = -\sum_{i=0}^{l-1} a_i \sin 2\pi F_c \tau_i$

Where x and y are sum of a large set of random variables because of random attenuation (a_i) and random delay (τ_i) . When we add a large set of random component variables, it results a Gaussian distribution by central limit theorem.

Now x and y assumed to be Gaussian Random variable with probability distribution function are $F_X(x) = \frac{1}{\sqrt{\pi}}e^{-x^2}$ and $F_{Y(y)} = \frac{1}{\sqrt{\pi}}e^{-y^2}$ respectively.

Writing h as magnitude and phase form we get,

$$h = ae^{j\emptyset}$$

where,
$$a = \sqrt{x^2 + y^2}$$
, $\phi = \tan^{-1} \frac{y}{x}$

where, the marginal distribution of a we get after integration is $F_A(a) = 2ae^{-a^2}$ (i.e Rayleigh distribution.)

In case of \emptyset , we get the marginal distribution $1/2\pi(i.e)$ uniform distribution).

Code Workflow:

Using the function

numpy.random.randn(N)

We can generate an array of normally distributed random numbers of size N with mean zero and unity standard variation.

The snippet below

h = (1/numpy.sqrt(2))*(numpy. random.randn(N) + numpy. random.randn(N)*1j)

creates an array of complex numbers with random components of size N=100000 with mean zero and variance 1/2.

With the help of abs function we calculated magnitude(modulus) of all elements and stored in array a.

And created the histogram class of above array a with uniform class size of 0.05 using the following snippet

pdfa, bin_edges = np.histogram(a,np.arange(0,4.05,0.05))

Probability of each histogram class can be calculated as,

$$P(i^{th} class) = \frac{frequency of i^{th} class}{N}$$

And, approximate density of each histogram class can be seen as,

$$PD(i^{th}class) = \frac{P(i^{th}class)}{size \ of \ i^{th}class}$$

Now plot of amplitude(magnitude) probability density is figured using following snippet,

```
#get plot of modulus graph
fig1 = plt.figure()
ax = fig1.add_axes([0,0,1,1])
ax.bar(np.arange(0,4,0.05), [ele/N/0.05 for ele in pdfa])
ax.set_title('PDF of Amplitude')
```

which generates graph like,

Indeed, the graph comes out to a Rayleigh distribution at $a = (Approx.) 0.71 \pm 0.05$ have maximum probability density value 0.85.

Similarly, in case of $\phi(Phase\ Graph)$ we get the graph below, In the following graph it can be seen that it follows nearly uniform distribution with p=.16(approx.)

