5. Scheduling della CPU. Esercizi

• (5.1) Sia dato il seguente insieme di processi, arrivati nell'ordine $P_1,...,P_5$, tutti presenti al tempo 0 e con durata e priorità indicate:

Processo	Durata	priorità
P_I	10	3
P_2	1	1
P_3	2	3
P_{4}	1	4
P_5	5	2

5.	Scheo	duling	della	CPU.	Esercizi
-			-	010.	

- (5.1) (cont.)
- disegnare gli schemi di Gantt che illustrano l'esecuzione dei processi con algoritmi di scheduling FCFS, SJF, priorità senza prelazione (numero basso indica priorità maggiore) e RR (quanto = 1).
- Calcolare il tempo di completamento (turnaround), e il tempo di attesa per ciascun processo e per ciascun algoritmo di scheduling indicato.
- 3. Dire quale algoritmo fornisce il minor tempo medio di attesa (relativo cioè a tutti i processi)

5. Scheduling della CPU. Esercizi

• (5.2) Si supponga che i seguenti processi arrivino in esecuzione al tempo indicato e che consumeranno la quantità di tempo indicata. Si supponga uno scheduling non pre-emptive e di decidere sulla base delle informazioni disponibili al momento in cui le decisioni vanno prese.

Processo	t. di arrivo	burst time
P_I	0.0	8
P_2	0.4	4
P_3	1.0	1

	5.Scheduling della CPU. Esercizi	
•	(5.2) (cont.)	
1.	Calcolare il turnaround medio dei processi usando gli algoritmi di scheduling FCFS e SJF	
2.	quale è il turnaround medio se si lascia inattiva la CPU per la prima unità di tempo e poi si usa SJF? (l'idea è di non assegnare la CPU fino a che non sono presenti tutti i processi per prendere la decisione migliore)	
	5. Scheduling della CPU. Esercizi	
•	 (5.3) Dire se esiste, e quale è, la relazione fra le seguenti coppie di algoritmi di scheduling: priorità e SJF code multiple con retroazione e FCFS priorità e FCFS RR e SJF 	
i	5.Scheduling della CPU. Esercizi	
•	(5.4) Si consideri un algoritmo di scheduling a breve termine che favorisce i processi che hanno usato poco la CPU di recente. Perché questo algoritmo favorisce i processi I/O bound, ma non provoca starvation nei processi CPU bound?	

##