VN46AF, VN66AF, VN88AF n-Channel Enhancement-mode Vertical Power MOSFET

FEATURES

- · High speed, high current switching
- · Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- . Simple DC biasing
- · Extended safe operating area
- · Inherently temperature stable

ABSOLUTE MAXIMUM RATINGS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Drain-source Voltage
VN46AF 40V
VN66AF 60V
VN88AF 80V
Drain-gate Voltage
VN46AF40V
VN66AF 60V
VN88AF
Continuous Drain Current (see note 1) 1.7A
Peak Drain Current (see note 2) 3.0A
Continuous Forward Gate Current2.0mA
Peak-gate Forward Current 100mA
Peak-gate Reverse Current 100mA
Gate-source Forward (Zener) Voltage+15V
Gate-source Reverse (Zener) Voltage0.3V
Thermal Resistance, Junction to Case 10.4°C/W
Continuous Device Dissipation at (or below)
25°C Case Temperature
Linear Derating Factor96mW/°C
Operating Junction
Temperature Range40 to +150°C
Storage Temperature Range40 to +150°C
Lead Temperature
(1/16 in. from case for 10 sec)+300°C

- Note 1. T_C = 25°C; controlled by typical r_{DS(on)} and maximum power dissipation.
- Note 2. Pulse width 80 µsec, duty cycle 1.0%.
- Note 3. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- · Switching power supplies
- . DC to DC inverters
- . CMOS and TTL to high current interface
- · Line drivers
- Logic buffers
- · Pulse amplifiers

CHIP TOPOGRAPHY

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

GUADA ÓTEDIOTIO				VN46AF			VN66AF			VN88AF			UNIT	TEST CONDITIONS		
CHARACTERISTIC					TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	URI	TEST CONDITIONS		
		BVDSS Drain-Source Breakdown	40			60			80			V	Vas = 0, ID = 10 4			
2			40			60			80				Vgs = 0, Ip = 2.5mA			
3		Vgs(th)	Gate-Threshold Voltage	3.0	1.7		0.8	1.7		8.0	1.7			VDS = VGS, ID = 1mA		
4		Igss	Gate-Body Leakage		0.01	. 10		0.01	10		0.01	10		VGS = 10V, VDS = 0		
5				[100			100			100		VGS = 10V, VDS = 0, TA = 125°C	C (Note 2)	
6	S T					10			10			10	μΑ	Vps = Max. Rating, Vgs = 0		
7	A T	lines	Zero Gate Voltage Drain Current			100			100			100		Vps = 0.8 Max. Rating, Vgs = 0, (Note 2)		
8	1				100			100			100		nA	Vps = 25V, Vgs = 0		
9	۲	ID(on)	ON-State Drain Current	1.0	2		1.0	2	<u> </u>	1.0	2		_A_	Vps = 25V, Vgs = 10V		
10		VDS(on)	Drain-Source Saturation Voltage		0.3			0.3			0.4		٧	Vgs = 5V, ID = 0.1A	(Note 1)	
11					1.0	1.5		1.0	1.5		1.4	1.7		Vgs = 5V, ID = 0.3A		
12]				1.0			1.0			1.3	L		VGS = 10V, ID = 0.5A		
11 12 13				L	2.2	3.0		2.2	3.0		2.2	4.0		Vas = 10V, ID = 1.0A		
14		Qts .	Forward Transconductance	150	250		150	250		150	250	L	mΩ	VDS = 24V, ID = 0.5A, f = 1KHz		
15		Ciss	Input Capacitance			50			50			50	}	Vgs = 0, Vps = 25V, f = 1.0MHz		
16	Ÿ	Crss	Reverse Transfer Capacitance	<u> </u>		10		L_	10			10	pF			
17	N	Coss	Common-Source Output Capacitance			50			50			50				
18	c	td(on)	Turn-ON Delay Time	_	2	5	1	2	5		2	5	-		(Note 2)	
19		tr	Rise Time		2	5		2	5		2	5	ns		}	
20		ta(off)	Turn-OFF Delay Time		2	5		2	5		2	5		Į		
21		tr	Fall Time		2	5		2	5		2	5				

Note 1. Pulse test — 80μ s pulse, 1% duty cycle.

Note 2. Sample test.

THERMAL RESPONSE

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION Tc = 25°C

BREAKDOWN
VOLTAGE VARIATION
WITH TEMPERATURE

TEMPERATURE – $^{\circ}$ C