

Applied Cryptography CPEG 472/672 Lecture 1A

Instructor: Nektarios Tsoutsos

About the instructor

- Assistant professor
- Research areas
 - Cybersecurity
 - Applied cryptography
 - Hardware security
 - Embedded systems
 - Trustworthy computing
 - Privacy outsourcing

Introduce yourselves

- ⊙ Name?
- Degree/Academic Program?
- Advisor?
- Crypto background?
- Programming background?
- What are you hoping to learn in this course?
- What will be the biggest challenge?

Instructor Assistants

- Charles (Chaz) GouertPhD Candidate, ECE

Dimitris MourisPhD Candidate, ECE

Admin

- Lectures
 - ⊙ Time: Tuesday & Thursday 2:00-3:15pm
 - Location: ISE 417
- In-class practice
 - Laptop required for hands-on exercises
- Reading
 - Review assigned material before class
- Office hours
 - By appointment: tsoutsos+crypto@udel.edu

Admin

- Textbook
 - Serious Cryptography by J.-P. Aumasson
 - o ISBN: 9781593278267
 - Required textbook
 - Understanding Cryptography by C. Paar (optional)
 - o ISBN: 9783642041006
 - Available at UD bookstore
- Online resources
 - ⊙ CANVAS (courses/1496363)

Grades

- Midterm Exam: 15% (March 26, 2020)
- Homework Assignments: 50%
- Participation & in-class exercises: 10%
- Read the course policies
 - Late submission policy etc.
 - Academic integrity (very important)
- Curved grading

Syllabus

- In this course you will learn about:
 - Basics of encryption
 - Randomness generation
 - Security notions
 - Block and stream ciphers
 - Hash functions and keyed hashes
 - Authenticated encryption
 - Public key cryptography and elliptic curves
 - Homomorphic encryption
 - Key exchange

What is encryption?

- Make data incomprehensibleConfidentiality
- Uses an algorithm called cipher
 - Inputs: Key (k), Plaintext (ptxt)
 - Output: Ciphertext (ctxt)
 - Symmetric, asymmetric (or public key)
- \odot ctxt = Enc(k,ptxt)
- o ptxt = Dec(k,ctxt)

Classical ciphers: Caesar cipher

- Encrypt: Rotate right by 3
 - Wrap around if needed

Classical ciphers: Caesar cipher

Classical ciphers: Caesar cipher

- How to break Caesar??
- What are the possible keys??

- What if the rotation amount is variable?
 - Each index is rotated by a different amount
 - This is defined by a key

Classical ciphers: Vigenere cipher

Classical ciphers: Vigenere cipher

- - WBL appears twice!
 - Interval is 9 letters
- What does this mean?
 - Key length (DUH here) divides 9
- Other attacks?
 - Frequency analysis
 - Uneven distribution of letters in ptxt
- Vigenere better for short/shortlived ptxt

Two components of ciphers

- - Transformation with a unique inverse

- - Process ptxt of arbitrary size

Permutations

- Letter substitution in classical ciphers
 - Rotation by some amount
 - Cannot be just any substitution
 - Can I substitute A with D and B with D?
- Desirable properties
 - The permutation of inputs should be determined by a secret key
 - Different permutations for different keys
 - The permutations should look random

Modes of operation

- How to encrypt long messages?
- Ensure that repeating patterns in the plaintext disappear in the ciphertext
 - Should not reveal duplicates (leaks info)

• Concerns:

- If you find patterns in a ctxt, it is possible to perform frequency analysis
- Reusing the same key across different messages reveals patterns across ptxts

Vigenere with longer keys?

• Would Vigenere be secure if the key is as long as the message?

```
⊙ Key = KYN
```

- Is there a problem here?
- Both end with GR
 - This exposes similarities between the ptxts

The problem with classical ciphers

- The number of possible permutations can be very large
 - What is the number of permutations in the English alphabet?
 - ?
- Classical ciphers use only a fraction of these permutations
 - The cipher description is too simple
- Can we define secure permutations?

Perfect Encryption: OTP

- One time pad
- o ctxt = ptxt XOR k
- Requirements for k
 - K should be a long as ptxt
 - K should be random
- Reusing k reveals relationship between plaintexts

Reading for next lecture

Aumasson: Chapter 1