Full unbinned analysis

Giacomo D'Amico, Tim Unbehaun, Julia Djuvsland

Unbinned likelihood

$$N_{pred} \equiv \int dE \int d{f r} \; \; \phi(E,{f r})$$
 \int Observed flux $-2\log {\cal L} = 2 \cdot N_{pred} - 2 \sum_i \phi(E_i,{f r}_i)$

Is there a way to get this quantity for all events (i=1,..., N) without having to define a binning in reconstructed energy and direction and without having to perform an interpolation?

For the i-th event with observed energy Ei and reconstructed direction ri

Observed flux
$$\phi(E_i,\mathbf{r}_i) = \int dE' \int d\mathbf{r}' \ \mathrm{D}(E_i|E',\mathbf{r}') \times \mathrm{P}(\mathbf{r}_i|E',\mathbf{r}') \times \mathrm{A}(E',\mathbf{r}') \times \phi'(E',\mathbf{r}')$$
 i = 1, ..., total # of events Numerical integration

$$\phi(E_i, \mathbf{r}_i) = \sum_k \Delta E_k' \sum_{l,b} \Delta \mathbf{r}_{l,b}' \operatorname{D}(E_i | E_k', \mathbf{r}_{l,b}') \times \operatorname{P}(\mathbf{r}_i | E_k', \mathbf{r}_{l,b}') \times \operatorname{A}(E_k', \mathbf{r}_{l,b}') \times \phi'(E_k', \mathbf{r}_{l,b}')$$

i: index from 1 to total number of events

k: index of binning in **true energy**

I: index of binning in right ascension

b: index of binning in declination

Unlike the "binned" approach, we only need a "true" geometry which is used for performing the numerical integration

For the i-th event with observed energy Ei and reconstructed direction ri

$$\phi(E_i, \mathbf{r}_i) = \sum_k \Delta E_k' \sum_{l,b} \Delta \mathbf{r}_{l,b}' \operatorname{D}(E_i | E_k', \mathbf{r}_{l,b}') \times \operatorname{P}(\mathbf{r}_i | E_k', \mathbf{r}_{l,b}') \times \operatorname{A}(E_k', \mathbf{r}_{l,b}') \times \phi'(E_k', \mathbf{r}_{l,b}')$$

taking into account the circular symmetry of the IRF

$$\phi(E_i, \mathbf{r}_i) = \sum_{k} \Delta E_k' \sum_{l,b} \Delta \mathbf{r}_{l,b}' \quad D(E_i | E_{i,k}', O_{l,b}) \times P(d_{i,l,b} | E_k', O_{l,b}) \times A(E_k', O_{l,b}) \times \phi'(E_k', \mathbf{r}_{l,b}')$$

$$O_{l,b} = |r_{l,b}' - \text{pointing}| \qquad d_{i,l,b} = |r_{l,b}' - r_i|$$

"Offset" = distance between the telescope pointing and the true direction

"rad" = distance between the true and the reconstructed direction

Dataset used for the tests

DataStore.from_dir("\$GAMMAPY_DATA/hess-dl3-dr1")

 $obs_id = 23523$

```
events = obs1.events.select_energy( (0.8*u.TeV, 20*u.TeV))
events = events.select_offset( (0,1.5)*u.deg)
len(events.table)
1665
```

Table length=7613				
EVENT_ID	TIME	RA	DEC	ENERGY
	s	deg	deg	TeV
int64	float64	float32	float32	float32
5407363825684	123890826.66805482	84.97964	23.89347	10.352011
5407363825695	123890826.69749284	84.54751	21.004095	4.0246882
5407363825831	123890827.23673964	85.39696	19.41868	2.2048872
5407363825970	123890827.79615426	81.93147	20.79867	0.69548655
5407363826067	123890828.26131463	85.98302	21.053099	0.86911184
5407363826095	123890828.41393518	86.97305	21.837437	4.1240892
5407363826128	123890828.52555823	83.40073	19.771587	1.6680022
5407363826168	123890828.6829524	82.25036	19.22003	4.7649446
5407363826383	123890829.53362775	83.18322	22.008213	0.7920148
7198365188529	123892511.59526515	85.58907	21.491413	0.6518216
7198365188578	123892511.85330749	85.239136	23.94445	6.0601764
7198365188605	123892511.93477488	82.4973	22.135513	0.5850589
7198365188619	123892512.01627827	81.832565	20.889784	0.79988396
7198365188742	123892512.49603844	83.06237	22.34547	0.5771867
7198365188792	123892512.74561787	83.14342	23.21574	9.994803
7198365188797	123892512.78117561	81.45052	22.960012	5.6078057
7198365188816	123892512.85406923	84.41192	21.330505	0.5524084
7198365188843	123892513.0062654	84.47432	21.634737	1.1091197

Approach #1: True geometry tailored to the event reconstructed energy and direction

Approach #2: True geometry tailored to the source model

PSF example for 2 different events and for a small source

PSF example for 2 different events and for a big source


```
model_gauss = SkyModel(
    spatial_model = GaussianSpatialModel( lon_0 = "184.557 deg", lat_0 = "-5.784 deg", sigma = '0.01 deg', frame = 'galactic'),
    spectral_model = LogParabolaSpectralModel( amplitude ='3.5e-11 cm-2 s-1 TeV-1', reference = '1 TeV', alpha = 1.8, beta = 0.4),
    name = 'crab_model_gauss'
```

Sigma = 0.01 deg.

Ignoring the event energy (fixed to 1 TeV for all events)


```
1e7
  2.00
                                                                  0.0
  1.75
  1.50
  1.25
1/ TeV
   1.00
  0.75
  0.50
  0.25
  0.00
             0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
                Npred / bin_volume interp. [ 1/ TeV sr ]
```

Sigma = 0.1 deg.

1e6

Ignoring the event energy (fixed to 1 TeV for all events)


```
0.0
1/ TeV sr
    0
                     Npred / bin_volume interp. [ 1/ TeV sr ]
                        = dataset.npred()
         mapnpred
                        = mapnpred.copy()
         mapnpred2
         mapnpred2.data = mapnpred.data/ mapnpred.geom.bin_volume().to( "TeV sr" ).value
                      = mapnpred2.interp_by_coord( events.map_coord( mapnpred2.geom ))/ u.Unit( "TeV sr" )
```

Sigma = 1 deg.

Ignoring the event energy (fixed to 1 TeV for all events)

