

CÁLCULO EN VARIAS VARIAS VARIABLES

Ing. Civil Adolfo Vignoli – 2023 -

Función vectorial

Sean $f_1(t), ..., f_n(t)$ funciones reales.

$$D = D_1 \cap D_2 \cap \cdots \cap D_n$$
; donde D_i es el dominio de $f_i(t)$

La función

 $r:D\subset\mathbb{R} o \mathbb{R}^n$; $r(t)=(f_1(t),...,f_n(t))$ es una función vectorial

de variable real.

 $f_1(t), ..., f_n(t)$ son las funciones componentes de r

Límite de funciones vectoriales

Sean
$$\mathbf{r}(t) = (f_1(t), ..., f_n(t))$$
 función vectorial y

$$\boldsymbol{L} = (L_1, \dots, L_n)$$
 vector.

 \boldsymbol{r} tiene límite \boldsymbol{L} cuando t tiende a t_0 ; si

$$\lim_{t \to t_0} \mathbf{r}(t) = \left(\lim_{t \to t_0} f_1(t), \dots, \lim_{t \to t_0} f_n(t) \right) = (L_1, \dots, L_n) = \mathbf{L}$$

Continuidad en un punto

Una función vectorial $oldsymbol{r}(t)$ es continua en un punto $oldsymbol{t} = oldsymbol{t_0}$ de su

dominio si
$$\lim_{t \to t_0} r(t) = r(t_0)$$

r(t) es continua si es continua en cada punto de su dominio.

Derivada de una función vectorial en un punto

Sea $\mathbf{r}(t) = (f_1(t), ..., f_n(t))$ función vectorial, $f_1(t), \dots, f_n(t)$ derivables sobre un intervalo abierto $J; t_0 \in J$.

La derivada de r(t) en el punto t_0 es

$$\mathbf{r}'(t_0) = \lim_{h \to 0} \frac{\mathbf{r}(t_0 + h) - \mathbf{r}(t_0)}{h} = (f'_1(t_0), \dots, f'_n(t_0))$$

Se denota $r'(t) = \frac{dr}{dt}$ r(t) es derivable si es derivable en cada punto de su dominio.

La curva descripta por r(t) es regular o suave si r'(t) es continua y nunca se anula.

Interpretación geométrica de la derivada de una función vectorial en un punto t_0 del dominio.

Supongamos r(t) una función de tres componentes:

$$\mathbf{r}'(t_0) = (f'_1(t_0), f'_2(t_0), f'_3(t_0))$$

es un vector tangente a la curva de la función r(t).

Integral indefinida

Sea $\mathbf{r}(t) = (f_1(t), ..., f_n(t))$ función vectorial, con $f_1(t), ..., f_n(t)$

funciones escalares integrables.

$$\int \mathbf{r}(t)dt = \left(\int f_1(t) dt, \dots, \int f_n(t) dt\right) = \mathbf{R}(t) + \mathbf{C}$$

Integral indefinida de r(t)

R(t) es una función vectorial primitiva de r(t), es decir: $\frac{dR}{dt} = r$

$$\boldsymbol{C} = (c_1, \dots, c_n)$$
 vector constante.

Integral definida

Sea
$$r(t) = (f_1(t), ..., f_n(t)),$$

$$f_1(t), ..., f_n(t)$$
 funciones integrables en $[a, b]$

$$\int_a^b \mathbf{r}(t)dt = \left(\int_a^b f_1(t) dt, \dots, \int_a^b f_n(t) dt\right)$$

Integral definida de r(t) en [a, b]

Si R(t) es una función primitiva de r(t):

$$\int_a^b \mathbf{r}(t)dt = [\mathbf{R}(t)]_a^b = \mathbf{R}(b) - \mathbf{R}(a)$$

Función de *n* variables independientes

Sea $D = \{(x_1, ..., x_n)/x_1, ..., x_n \in A \subset \mathbb{R}\}$ conjunto de n-uplas.

Entonces, la función

 $f: D \subset \mathbb{R}^n \to \mathbb{R}; w = f(x_1, ..., x_n)$ es una función real f en D

Límite de una función de varias variables

Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$; $w = f(x_1, ..., x_n)$ función real f en D

El límite de una función $f(x_1, ..., x_n)$, cuando $(x_1, ..., x_n)$ tiende a $(a_1, ..., a_n)$ es el número real L; y escribimos

$$\lim_{(x_1,\ldots,x_n)\to(a_1,\ldots,a_n)} f(x_1,\ldots,x_n) = L$$
 si $\forall \, \varepsilon > 0$ $\exists \, \delta > 0$ /
$$(x_1,\ldots,x_n) \in D \quad y \quad 0 < \sqrt{(x_1-a_1)^2+\cdots+(x_n-a_n)^2} < \delta \implies |f(x_1,\ldots,x_n)-\mathbf{L}| < \varepsilon$$

Continuidad de una función real de varias variables

Sea
$$f: D \subset \mathbb{R}^n \to \mathbb{R}$$
; $w = f(x_1, ..., x_n)$ función real f en D

f es continua en $(a_1, ..., a_n)$, si

$$\lim_{(x_1, \dots, x_n) \to (a_1, \dots, a_n)} f(x_1, \dots, x_n) = f(a_1, \dots, a_n)$$

Una función es continua si es continua en todo su dominio.

Para que el límite exista, el límite debe ser el mismo cualquiera sea la trayectoria de acercamiento al punto $(a_1, ..., a_n)$.

Gráfica, curva de nivel y curva de contorno de funciones de dos

variables

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$; z = f(x, y) función real f de dos variables en D Curva de nivel: Conjunto de puntos en el plano donde la función f(x, y) tiene un valor constante: f(x, y) = c.

Gráfica: Conjunto de todos los puntos (x, y, f(x, y)) en el espacio, en donde $(x, y) \in D$.

Curva de contorno: Intersección del plano z = c con la superficie z = f(x, y).

Derivada parcial de una función de dos variables

Derivadas parciales de una función de varias variables

Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$; $w = f(x_1, ..., x_n)$ una función real de varias variables.

La derivada parcial de $f(x_1, ..., x_n)$ con respecto a x_i en el punto $(a_1, ..., a_n)$ es

$$\left. \frac{\partial y}{\partial x} \right|_{(a_1, \dots, a_n)} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots x_n) - f(a_1, \dots, a_i, \dots, a_n)}{h};$$

si el límite existe.

Derivada parcial de una función de dos variables

La derivada parcial con respecto a y en (x, y) cuando x se mantiene fija en x_0 es la razón de cambio de f en la dirección del eje y.

Es la pendiente de la recta tangente a la curva que es intersección entre la superficie z = f(x, y) con el plano $x = x_0$, en el punto P.

Derivadas direccionales en el plano

Sea f(x,y) definida en una región R del plano xy. $P_0=(x_0,y_0)\in R$. $u=(u_1,u_2)$ vector unitario. $x=x_0+su_1;\ y=y_0+su_2$ recta por P_0 paralela a u.

s: parámetro. Mide la longitud de arco desde P_0 en la dirección de u.

Si el límite existe, el número

$$\left(\frac{df}{ds}\right)_{u,P_0} = \lim_{s \to 0} \frac{f(x_0 + su_1, y_0 + su_2) - f(x_0, y_0)}{s}$$

es la derivada de f en P_0 en la dirección del vector unitario u.

Interpretación geométrica de la Derivada direccional en el plano

z = f(x, y) representa una superficie S en el espacio.

$$P = (x_0, y_0, f(x_0, y_0)) = (x_0, y_0, z_0)$$
 es un punto de S .

 $u = (u_1, u_2)$ vector en el plano xy.

 π es un plano vertical que pasa por P y es paralelo al vector u.

 $\pi \cap S$ es una curva C.

La derivada de f en P en la dirección de u es la razón de cambio de f en la dirección de u y es la pendiente de la recta tangente a la curva C en el punto P.

17

Derivada direccional en el plano-interpretación

La derivada de f en Pen la dirección de $oldsymbol{u}$ es la razón de cambio de f en la dirección de $m{u}$ y es la pendiente de la recta tangente a la curva *C* en el punto *P*.

Vector gradiente

El vector gradiente de f(x, y) en un punto $P_0 = (x_0, y_0)$ es el vector

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

el cual se obtiene al evaluar las derivadas parciales de f en P_0 .

Cálculo de la derivada direccional de una función f en un punto

Aplicando la regla de la cadena:

$$\left(\frac{df}{ds}\right)_{u,P_0} = \left(\frac{\partial f}{\partial x}\right)_{P_0} \frac{dx}{ds} + \left(\frac{\partial f}{\partial y}\right)_{P_0} \frac{dy}{ds} = \left(\frac{\partial f}{\partial x}\right)_{P_0} u_1 + \left(\frac{\partial f}{\partial y}\right)_{P_0} u_2 = 0$$

$$= \left[\left(\frac{\partial f}{\partial x} \right)_{P_0}, \left(\frac{\partial f}{\partial y} \right)_{P_0} \right]. (u_1, u_2) = (\nabla f)_{P_0}. u$$

en donde $u = (u_1, u_2)$ es un vector unitario

Propiedades de la derivada direccional

$$\left(\frac{df}{ds}\right)_{u,P_0} = (\nabla f)_{P_0}.u = \left|(\nabla f)_{P_0}\right||u|\cos\theta = \left|(\nabla f)_{P_0}\right|\cos\theta$$

- Si $\cos\theta=1, f$ crece más rápidamente. f crece más rápidamente en la dirección y sentido del vector gradiente.
- Si $\cos \theta = -1$, f decrece más rápidamente. f decrece más rápidamente en la dirección del vector gradiente y sentido opuesto.
- Si $\cos \theta = 0$, f no crece. El cambio de f es nulo en cualquier dirección ortogonal al vector gradiente (∇f no nulo).