INTRODUCCIÓN

Una interrupción es la ocurrencia de un evento o condición la cuál causa una suspensión temporal del programa mientras la condición es atendida por otro subprograma.

Una interrupción dá la apariencia de que un sistema realiza varias tareas simultáneamente, pero la CPU sólo puede ejecutar una instrucción cada ciclo de máquina.

El proceso anterior se conoce como SUBRUTINA. La diferencia de un sistema con interrupciones es que la interrupción no se genera con una instrucción **CALL**, sino en respuesta a una llamada generada por HARDWARE o por SOFTWARE.

El programa que se ejecuta cuando se genera una interrupción se llama: RUTINA DE ATENCIÓN A INTERRUPCIÓN (ISR).

INTRODUCCIÓN

Cuando se genera una interrupción el programa principal se detiene y "salta" a atender la llamada a interrupción (subrutina).

La ISR se ejecuta y termina (regresa al programa principal) con una instrucción de retorno de interrupción IRET, entonces, el programa principal continua desde donde ocurrió la interrupción.

FUNCIONAMIENTO DE INTERRUPCIONES

Cuando se genera una interrupción el CPU termina de ejecutar la instrucción en curso y evalúa cual fue la fuente de interrupción como sigue:

- ❖ Respalda el contenido de registro PSW en la pila (especialmente IF e IT).
- ❖ Se desactivan las banderas IF e IT.
- ❖ Se respalda el contenido de CS e IP en la pila.
- ❖ Se recupera el contenido del vector de interrupción correspondiente y se coloca en IP y CS de modo que la siguiente instrucción se ejecute en la ISR direccionada por el vector.

FUNCIONAMIENTO DE INTERRUPCIONES

El procesador 8086 cuenta con cinco fuentes de interrupción:

Interrupción	Tipo	Descripción
INT #n	Software	Es una instrucción
INTR	Hardware	Int. Ext. Mascarable
NMI	Hardware	Int. Ext. no Mascarable
Interna	Software	Condiciones internas de error
RESET	Hardware	Señal de inicio del sistema

FUNCIONAMIENTO DE INTERRUPCIONES

La interrupción por RESET tiene la mas alta prioridad y es usada para reiniciar o restaurar el sistema.

La secuencia de prioridad de alta a baja en las interrupciones es:

- *** RESET**
- Error de división
- ❖ INT #n
- **❖ INTO**
- * NMI
- **❖ INTR**

VECTORES DE INTERRUPCIÓN

Un vector de interrupción es un numero de 4 bytes almacenado en el 1^{er} 1K Byte de la memoria (00000H – 003FFH) el cual define la tabla de vectores de interrupción, con un total de 256 interrupciones.

Cada vector contiene la dirección de un procedimiento **ISR**. Los primeros dos Bytes contienen a IP y los dos últimos contienen a CS donde se encuentra el código a ejecutar debido a la

interrupción.

TABLA DE VECTORES DE INTERRUPCIÓN

Estructura de la tabla de vectores de interrupción.

TABLA DE VECTORES DE INTERRUPCIÓN

DIRECCIÓN		DIRECCIÓN	
ОООН	Tipo 0 error al dividir	03СН	Tipo 15 No asignado
004H	Tipo 1 Paso único	040H	Tipo 16 Bios de video
008Н	Tipo 2 Terminal NMI	044H	
00CH	Tipo 3 Punto de ruptura		135 345
010H	Tipo 4 Sobreflujo (INTO)		A
014H	Tipo 5 BOUND	20.411	Tipo 14 al 31 Reservados
018H	Tipo 6 Codigo incorrecto	084H	Tipo 21 Servicios DOS
01CH	Tipo 7 Coproc no disponible	088H	
020H	Tipo 8 Tictac de reloj (18.2Hz)		
024H	Tipo 9 Teclado	07CH	27
028H	Tipo 10 Bus de sistema	080H	
02CH	Tipo 11 Segmento no presente		
030H 034H	Tipo 12 Sobreflujo en PILA		Tipo 32 al 255 Vectores de usuario
	Tipo 13 Protección general		
038H	Tipo 14 Falla de pagina	3FCH	
03CH		400H	

INSTRUCCIONES DE INTERRUPCIÓN

Los microprocesadores 8086 – 80486 tienen tres diferentes instrucciones de interrupción:

INTO. Esta instrucción de interrupción por sobreflujo es una interrupción condicional de software que evalua la banfera **OF**.

Si **OF** = 0 la instrucción **INTO** no se ejecuta, pero si la bandera OF = 1, entonces se ejecuta la interrupción del vector Tipo 4, es decir, la instrucción **INTO** llama al procedimiento **ISR** cuya dirección esta almacenada en el vector de interrupción Tipo 4 (dirección 00010H).

INSTRUCCIONES DE INTERRUPCIÓN

Los microprocesadores 8086 – 80486 tienen tres diferentes instrucciones de interrupción:

INT 3. Esta instrucción es un caso particular de la instrucción INTn, ya que sólo se genera un byte de código, el cual sirve para generar puntos de ruptura en el flujo del programa para la depuración de estos.

INSTRUCCIONES DE INTERRUPCIÓN

Los microprocesadores 8086 – 80486 tienen tres diferentes instrucciones de interrupción:

INT n. Esta instrucción llama al procedimiento de servicio de interrupción **ISR** que comienza en la dirección representada por el vector número **n.**

Para determinar la dirección del vector de interrupción donde se tienen los valores de [CS: IP] de la ISR, se multiplica el número del vector n por 4. Con ello se tiene la dirección inicial del vector de 4 bytes de longitud.

Existen 256 instrucciones para interrupción **INT n** por software. Cada una de estas genera 2 bytes de código. El primero contiene el código de operación y el segundo el valor del vector **n**.

INSTRUCCIONES DE INTERRUPCIÓN

FUNCIONES DEL DOS PARA INTERRUPCIONES (INT 21H)

El programa maestro que controla todo el sistema de E/S y las funciones internas de una PC es llamado sistema operativo.

El **DOS** (Disk Operating System) contiene varias rutinas en software que pueden ser usadas por el programador.

El Dos usa varias funciones de interrupción Tipo **INT n.** Estas funciones van desde **INT 00H** hasta **INT 27H** las cuales interaccionan con dispositivos como discos, video, E/S y funciones del sistema.

La INT 21H es usada para procesar acciones diversas las cuales deben estar contenidas en el registro AH (código de acción) antes de ejecutar la interrupción del DOS.

INSTRUCCIONES DE INTERRUPCIÓN

FUNCIONES DEL **DOS** PARA INTERRUPCIONES (INT 21H)

Dentro de las funciones de la **INT 21H** se encuentran las siguientes:

Acción	Descripción	Características
ООН	Terminar programa	Termina el programa y retorna el control al DOS
01H	Leer teclado con ECO	AL = ascii; Pantalla = ECO
02H	Desplegar carácter	DL = ascii
03H	Leer puerto serial COM1	AL = ascii
04H	Escribir puerto serial COM1	DL = ascii

INSTRUCCIONES DE INTERRUPCIÓN

FUNCIONES DEL **DOS** PARA INTERRUPCIONES (INT 21H)

Dentro de las funciones de la **INT 21H** se encuentran las siguientes:

Acción	Descripción	Características
05H	Escribir puerto paralelo LPT1	DL = ascii
08Н	Leer teclado sin ECO	AL = ascii
09H	Mostrar cadena de caracteres	DS: DX dir de cadena; fin de cadena = \$ (24H)
25H	Almacenamiento del vector de interrupción	AL = # interruptor; DS: DX = dirección de ISR
2AH	Leer fecha de sistema	CX=año; DH=mes; DL= día del mes; AL= dia semana

INSTRUCCIONES DE INTERRUPCIÓN

FUNCIONES DEL **DOS** PARA INTERRUPCIONES (INT 21H)

Dentro de las funciones de la **INT 21H** se encuentran las siguientes:

Acción	Descripción	Características
2BH	Establece tiempo de sistema	CX = año; DH = mes DL = día del mes
2CH	Leer tiempo de sistema	CH=horas; CL=minutos; DH=seg; DL=centecimas /seg
2DH	Establecer tiempo de sistema	CH=horas; CL=minutos; DH=seg; DL=centecimas /seg
30H	Leer versión de DOS	AH = fracción AL = enteros
4CH	Terminar proceso	Regresa el control al DOS

INSTRUCCIONES DE INTERRUPCIÓN

FUNCIONES DEL BIOS PARA INTERRUPCIONES

Las ISR's del *BIOS* (Basic Input Output System) se almacenan en memoria ROM, estas funciones controlan directamente los periféricos de E/S con o sin DOS cargado en un sistema.

INT 10H (Servicios de video). Esta interrupción controla directamente la pantalla de video de un sistema.

La instrucción INT 10H utiliza al registro AH para seleccionar el servicio de video peroporcionado por la interrupción.

INSTRUCCIONES DE INTERRUPCIÓN

FUNCIONES DEL BIOS PARA INTERRUPCIONES

Las ISR's del **BIOS** (Basic Input Output System) se almacenan en memoria ROM, estas funciones controlan directamente los periféricos de E/S con o sin DOS cargado en un sistema.

Acción	Descripción	Características
01H	Tipo de cursor	CH = número de línea inicial CL = número de línea final
02H	Selección de posición de cursor	BH=número de pagina; CH=renglón; CL=columna
03H	Leer posición de cursor	BH=número de pagina; DH=renglón; DL=columna; Cx = tamaño del cursor
10H	Establecer monitor VGA	AL=10H; BX=color (0-255) CH=verde; CL=azul; DH=rojo

INTERRUPCIONES POR HARDWARE

Las interrupciones por hardware se detectan a través de dos terminales del procesador, la interrupción no mascarable **NMI** y la interrupción mascarable **INTR**.

Siempre que se activa la terminal **NMI** ocurre una interrupción Tipo 2. Cuando se activa la terminal **INTR** se debe codificar externamente para seleccionar el vector de interrupción.

La señal INTA es una salida que se utiliza en respuesta a la señal INTR para obtener el numero de vector.

INTERRUPCIONES POR HARDWARE

Las interrupciones no mascarable **NMI** y mascarable **INTR** son entradas disparadas por flanco positivo (flanco de subida).

Para que se reconozca el flanco positivo la terminal NMI debe permanecer en un nivel bajo (0 lógico) almenos durante dos periódos de reloj.

Para que se reconozca el flanco positivo en la terminal INTR la bandera IF debe estar activada.

Una vez que ha sido reconocida la interrupción **INTR** se debe desactivar la bandera **IF** (CLI). En este instante la CPU retorna una señal de reconocimiento através de la terminal **INTA**'.

INTERRUPCIONES POR HARDWARE

La señal de reconocimiento causará que el dispositivo que interrumpe envíe a la CPU através del bus de datos ($\mathbf{d_0}$ - $\mathbf{d_7}$) la información del tipo de interrupción para generar el vector de interrupción.

En este momento la secuencia de interrupción es generada y se atiende la **ISR** hasta regresar con la instrucción **IRET**.

INTR		
INTA		
Datos	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
- Dia	agrama de tiempos de una interrupción mascarable -	

INTERRUPCIONES POR HARDWARE

INTERRUPCIONES POR HARDWARE

