GNURadio Support for Real-time Video Streaming over a DSA Network

Debashri Roy

Authors: Dr. Mainak Chatterjee, Dr. Tathagata Mukherjee, Dr. Eduardo Pasiliao Affiliation: University of Central Florida, Orlando, FL.

Outline

- Challenges
- Objective
- Channel Model
- Adaptation Techniques
- Spectrum Sensing
- Experimental Setup
- Experimental Results
- Summary

Challenges

- Radio communication is fraught with uncertainties
 - o Signal fading due to multi-path propagation
- Shadowing due to manmade and natural objects
- Interference
 - Natural and manmade noise
 - Other radio signals (adjacent band, intermodulation products, etc.)

Thus, ever-changing channel condition

- Channel Adaptive Video Streaming
- Intelligent Spectrum Allocation and Sharing

Adaptive Streaming

- •Cisco's Visual Networking Index (VNI) Forecast:
 - •Internet Video: 18,000 GB per second in 2016; 71,300 GB per second in 2021
 - •Live Video: 5,400 GB per second in 2016; 9,300 GB per second in 2021
- Streaming Mechanisms:
 - Adobe HTTP Dynamic Streaming (HDS)
 - Apple HTTP Live Streaming (HLS)
 - Microsoft Smooth Streaming (MSS)
- Dynamic Adaptive Streaming over HTTP (DASH)
 - Stores multiple copies of same video of 2 10 seconds segments
 - Netflix, YouTube content based providers

Spectrum Sharing

- Spectrum allocation policy created spectrum scarcity
 - Disproportionate usage
 - Some do not use what has been allocated; some need more
- FCC is pushing for solutions.

Spatial Reuse of Spectrum – Dynamic Spectrum Access (DSA)

Objective

- How to adapt to varying channel conditions for sustaining video QoS
 - How to adapt RF parameters based on feedback
 - How to adapt source coding parameters based on feedback
- To demonstrate the adaptation process for real time video transmission over SDR
 - How to identify PU presence using energy detection algorithm?
 - To identify usable channels for SUs
 - To implement DSA for SUs to use best channels

General Approach

Pathloss Modeling: Simplified Pathloss

$$PL_{dB}(d) = 10\log_{10}\frac{P_r}{P_t} = 20\log(\frac{\lambda}{4\pi d_0}) + 10\gamma\log[\frac{d_0}{d}]$$

Shadowing and Fading Model: Ricean with indoor LOS

$$\psi(x) = \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp{-\frac{(x - \mu_d)^2}{2\sigma_s^2}}$$

- Channel to Source Coding:

 O Mean Power loss: $\mu_d = 20\log(\frac{\lambda}{4\pi d_0}) + 10\gamma\log[\frac{d_0}{d}]$
 - Deviation: $\sigma_s \sim [-2.6134to2.6134]$

- Objective: Maximize the video quality metrics based on source coding, and hardware capability constraints depending on channel condition.
- *L*: number of non-uniform divisions for mapping channel to source coding.

Channel Adaptation Technique

- Channel to Source Coding:
 - Minimum and Maximum Bitrate:

$$\varepsilon_{min}(d) = \varepsilon_{MIN} ford \le 1$$
$$\frac{\varepsilon_{MIN} \times \mu_{d=1}}{\zeta(\mu_d)} ford > 1$$

$$\varepsilon_{max}(d) = \varepsilon_{MAX} ford \le 1$$
$$\frac{\varepsilon_{MAX} \times \mu_{d=1}}{\zeta(\mu_d)} ford > 1$$

• Quantitive Encoding Rates:

$$\varepsilon_i = \varepsilon_{i-1} + v_i for 2 \le i \le (L-1)$$

 $\varepsilon_1 = \varepsilon_{min}(d), and \varepsilon_L = \varepsilon_{max}(d)$

Spectrum Sensing and Selection

• 3 State Markov Chain Model

Primary User (PU) Activity Model

Secondary User (SU) Activity Model

Spectrum Sensing and Selection

SUCF

- Video Source
 - o Web Camera
- Encoder
 - H.264 codec
- Streamer
 - Gstreamer
- Transmitter
 - o Signal Processing: GNURadio
 - FeedbackAdaptation
 - o Transmitthrough USRP B210 SDR
- Receiver
 - o Receiver through USRP B210 SDR
 - o Signal Processing: GNURadio
 - Channel Feedback Sender
- Spectrum Sensor
 - o Sensing through USRP B210 SDR
 - o Threshold based ED Algorithm
 - o Send new Frequency to Transmitter and Receiver
- Decoder and Display
 - H.264 decoder
 - Mplayer display

- Video Source
 - o Web Camera
- Encoder
 - H.264 codec
- Streamer
 - Gstreamer
- Transmitter
 - o Signal Processing: GNURadio
 - FeedbackAdaptation
 - o Transmitthrough USRP B210 SDR
- Receiver
 - Receiver through USRP B210 SDR
 - o Signal Processing: GNURadio
 - Channel Feedback Sender
- Spectrum Sensor
 - o Sensing through USRP B210 SDR
 - o Threshold based ED Algorithm
 - o Send new Frequency to Transmitter and Receiver
- Decoder and Display
 - H.264 decoder
 - Mplayer display

File Sink

*.avi

File Sink

*.ts

- Video Source
 - o Web Camera

- o H.264 decoder
- Mplayer display

Connector

- Video Source
 - o Web Camera
- Encoder
 - o H.264 codec
- Streamer
 - Gstreamer
- Transmitter
 - o Signal Processing: GNURadio
 - FeedbackAdaptation
 - o Transmitthrough USRP B210 SDR
- Receiver
 - Receiver through USRP B210 SDR
 - o Signal Processing: GNURadio
 - Channel Feedback Sender
- Spectrum Sensor
 - o Sensing through USRP B210 SDR
 - o Threshold based ED Algorithm
 - Send new Frequency to Transmitter and Receiver
- Decoder and Display
 - H.264 decoder
 - Mplayer display

GNURadio

- Video Source
 - o Web Camera
- Encoder
 - H.264 codec
- Streamer
 - o Gstreamer
- Transmitter
 - o Signal Processing: GNURadio
 - o FeedbackAdaptation
 - o Transmitthrough USRP B210 SDR
- Receiver
 - o Receiver through USRP B210 SDR
 - o Signal Processing: GNURadio
 - Channel Feedback Sender
- Spectrum Sensor
 - o Sensing through USRP B210 SDR
 - o Threshold based ED Algorithm
 - o Send new Frequency to Transmitter and Receiver
- Decoder and Display
 - H.264 decoder
 - Mplayer display

Video Source

Adjustin

Paramet

Displa

UCF

- Video Source
 - Web Camera
- Encoder
 - H.264 codec
- Streamer
 - Gstreamer
- Transmitter
 - Signal Processing: GNURadio
 - Feedback Adaptation
 - Transmitthrough USRP B210 SDR
- Receiver
 - Receiver through USRP B210 SDR
 - Signal Processing: GNURadio
 - Channel Feedback Sender
- Spectrum Sensor
 - Sensing through USRP B210 SDR
 - Threshold based ED Algorithm
 - Send new Frequency to Transmitter and Receiver
- Decoder and Display
 - H.264 decoder
 - Mplayer display

- Video Source
 - Web Camera
- Encoder
 - o H.264 codec
- Streamer
 - Gstreamer
- Transmitter
 - o Signal Processing: GNURadio
 - FeedbackAdaptation
 - o Transmitthrough USRP B210 SDR
- Receiver
 - Receiver through USRP B210 SDR
 - o Signal Processing: GNURadio
 - Channel Feedback Sender
- Spectrum Sensor
 - o Sensing through USRP B210 SDR
 - o Threshold based ED Algorithm
 - Send new Frequency to Transmitter and Receiver
- Decoder and Display
 - H.264 decoder
 - Mplayer display

Gstreamer Pipeline: Source → Encoding → Streaming

Video Transmitter Modeled using GNURadio Flowgraph

Video Receiver Modeled using GNURadio Flowgraph

Software Defined Radios

- Hardware components of the past
 - o Modulators, demodulators, amplifiers, etc

- Today's Software components
 - o Modulators, demodulators, amplifiers, etc

USRP B210 SDR by Ettus Research

- Advantages
 - Low-cost
 - o Commercially available
 - Easy signal processing
 - Easy configuration/re-configuration

Configuration Parameters

Parameters	Values
Experimental Scenario	Indoor
Pathloss Model	Simplified Pathloss
Channel Fading Model	Ricean
Starting Frequency	910 MHz (ISM band)
Channel Bandwidth	3 MHz
Modulation Scheme	Gaussian Minimum Shift Keying (GMSK)
Error Control Mechanism	None
Transmitter Channel Gain	80 dB
Receiver Channel Gain	70 dB
Antenna Gain	3 dBi
Min Encoding Bitrate	512 Kbps
Max Encoding Bitrate	2048 Kbps
Encoder Frame Rate	25 fps
Spectrum Sensing Method	Energy Detection (ED)
Video Codec	H.264
Streaming Encapsulation	MPEG-TS
Video QoS	Peak Signal to Noise Ratio (PSNR) Structural SIMilarity (SSIM)
Each Experiment Time	5 minute

Experimental Scenario

(a) Live Video Capture and Transmit

(b) RF Environment

(c) Video Receiver

☐ Video Quality of Ideal Channel with Distance

Video Quality for Continuous Changing Channel Implementing Channel Adaption Algorithm

☐ Video Quality for Fixed Channel Implementing Dynamic Spectrum Access

☐ Video Quality for Continuous Changing Channel Implementing Dynamic Spectrum Access

Video Quality of Ideal Channel with Distance

- → Video Quality degrades with increasing distance.
- → Good Quality video is achieved until 12 meter distance indoor.

Video Quality for Continuous Changing Channel Implementing Channel Adaption Algorithm

No of Changes in Channel Condition (/minute)

- No of Changes in Channel Condition (/minute)
- → Video Quality degrades with more unstable channels.
- → Good Quality video is achieved until 40 changes per minute until 8 meters distance.
- → Good Quality video is achieved until 30 changes per minute until 12 meters distance.

Video Quality for Fixed Channel Implementing Dynamic Spectrum Access

- → DSA implementation provides better video quality than Non-DSA ones.
- → Video Quality degrades with increasing number of frequency hopping.
- → Good Quality video is achieved until 3-5 hoppings per minute for indoor situation.

Video Quality for Continuous Changing Channel Implementing Dynamic Spectrum Access

→ DSA implementation for adaptive channel provides better video quality than non-adaptive one.

Summary

- Implemented feedback-controlled adaptive mechanism of video transmission for unstable channel implementing Dynamic Spectrum Access.
- Better video quality implementing DSA as opposed to non-DSA based methods.
- A solution for real-time adaptive video streaming with GNURadio and SDRs for contested wireless environment.
- Code available: https://github.com/debashriroy/video-over-dsa

Thank You