mpi* - lycée montaigne informatique

TD4 - Stabilité et lemme de l'étoile

Exercice 1

Question 1. Montrer que $L = \{y^2, y \in \{0, 1\}^*\}$ n'est pas régulier.

Question 2. Montrer que $L = \{w \in \{0,1\}^*, w \text{ a autant de } 0 \text{ que de } 1\}$ n'est pas régulier.

Question 3. Montrer que $L = \{w \in \{0,1\}^*, w \text{ a moins de } 0 \text{ que de } 1\}$ n'est pas régulier.

Question 4. Montrer que $L = \{a^{2n}b^n, n \ge 0\}$ n'est pas régulier.

Question 5. Montrer que $L = \{a^p b^q, p \neq q\}$ n'est pas régulier.

Question 6. Montrer que $L = \{a^2, a^3, a^5, a^7, a^{11}, a^{13}, \dots\}$, langage des mots ayant un nombre premier de a, n'est pas régulier.

Exercice 2

Soit Σ un alphabet. Soit $u \in \Sigma^*$. On dit que v est un préfixe propre de u si et seulement s'il existe $w \in \Sigma^* \setminus \{\epsilon\}$ tel que $u = v \cdot w$. Soit L un langage régulier. Montrer que $\min(L) = \{u \in L \mid u \text{ ne possède pas de préfixe propre dans } L\}$ est un langage régulier en exprimant $\min(L)$ en fonction de L et d'autres langages réguliers, et en utilisant les propriétés de stabilité des langages réguliers.

Exercice 3

Soit L un langage régulier sur un alphabet Σ . À partir d'un DFA $\mathcal A$ reconnaissant L, montrer que les langages suivants sont réguliers en construisant un DFA, NFA ou ε -NFA défini en fonction de $\mathcal A$.

Question 1. $mirror(L) = \{w \in \Sigma^* \mid w^R \in L\}$

Question 2. $\frac{1}{2}L=\{u\in\Sigma^*\mid \exists v\in\Sigma^*, (|u|=|v|)\land (u\cdot v\in L)\}$

Exercice 4

Un langage L est fini si et seulement s'il existe une borne finie sur la longueur de ses mots. L'algorithme suivant décide la finitude d'un langage régulier L sur un alphabet Σ en acceptant L si et seulement si ce dernier est fini.

- 1. Trouver un nombre n satisfaisant la condition du lemme de l'étoile.
- **2.** Si pour tout $w \in \Sigma^*$ tel que $n \leq |w| \leq 2n-1$, on a $w \notin L$, alors L est accepté sinon L est rejeté.

Démontrer la validité de cet algorithme. Pour cela, on peut :

- \bullet démontrer que pour tout langage régulier L, le point 1 peut être satisfait;
- démontrer la proposition suivante qui est implicitement contenue dans le point 2 de l'algorithme. Soit L un langage régulier et n un nombre satisfaisant la condition du lemme de l'étoile. Alors :

$$\exists w \in L : n \leqslant |w| \leqslant 2n - 1 \Rightarrow L \text{ infini}$$
 (1)

$$\neg \exists w \in L : n \leqslant |w| \leqslant 2n - 1 \Rightarrow L \text{ fini} \tag{2}$$

Exercice 5

Dans cet exercice, Σ désigne l'alphabet $\{a, b\}$.

Si K et L deux langages sur un alphabet, leur *mélange*, noté $K \sqcup L$, est le langage défini par :

$$\{u_0v_0u_1v_1\dots u_nv_n \mid u_0\dots u_n \in K, v_0\dots v_n \in L\}$$

Question 1. Montrer que si L et K sont réguliers alors $L \sqcup K$ l'est aussi.

Question 2. Soient les langages définis par récurrence par $L_0 = \{\varepsilon\}$ et pour tout entier naturel $n, L_{n+1} = L_n \sqcup (ab)^*$. Montrer que L_n est l'ensemble des mots w qui vérifients $|w|_a = |w|_b$ et pour tout préfixe u de w, $|u|_b \leqslant |u|_a \leqslant |u|_b + n$.