

MA5332M reference board

About this document

Scope and purpose

The REF_MA5332BTLSPS reference board is a single BTL channel, 200 W/ch (4 Ω at 40 V) class D audio power amplifier for home audio systems. This reference board demonstrates how to use the MA5332M IC with a single power supply and design an optimum PCB layout using an Infineon integrated class D IC. This reference design does not require additional heatsink or fan cooling for normal operation (one-eighth of continuous rated power). The reference design provides all the required housekeeping power supplies for ease of use.

Applications

- Smart speakers
- Sound bars
- Sub-woofers
- Powered speakers
- Musical instrument amplifiers
- Car audio amplifiers

Features

- Output power:
 - 200 W x 1 channels (10 percent THD+N, 4Ω at 40 V)
- Multiple protection features:
 - Overcurrent protection (OCP), high-side and low-side
 - Overtemperature protection (OTP)
- Pulse width modulator (PWM):
 - Self-oscillating half-bridge topology with optional clock synchronization

Table of contents

Abo	ut this documentut this document	1	Ĺ
Tabl	le of contents	1	L
1	Specifications	3	3
2	REF_MA5332BTLSPS overview		
3	Setup guide		
4	Audio analyzer setup		
5	Operating the board		
5.1	Test setup	8	3
5.2	Power-up sequence	8	3
5.3	Audio functionality tests	8	3
5.4	Power-down sequence		
6	Audio performance	<u>s</u>)

MA5332M reference board

Specifications

6.1	Power vs. THD+N	9
6.2	Frequency response	9
6.3	Noise floor	10
6.4	Noise floor with 1 V _{RMS} output	10
7	Efficiency	11
8	Thermal information	12
8.1	Thermal performance	12
8.2	Heatsink	
9	Gain setting	14
9.1	Gain design flow	14
9.2	V _{bus} calculation	15
9.3	AC gain setting	
9.4	DC gain setting	
10	Schematic	17
11	PCB	18
11.1	PCB specifications	
11.2	PCB layout	
12	Bill of materials (BOM)	21
Revis	sion history	

MA5332M reference board

1 Specifications

Table 1 General test conditions

Condition		Notes/conditions
Supply voltage	+40 V	Unipolar power supply
Rated load impedance	4 Ω	Resistive load
Self-oscillating frequency	400 kHz	No input signal, adjustable
Voltage gain	23 dB	1 V _{RMS} input yields rated power

Table 2 Electrical data

Data	Typical	Notes/conditions
Infineon devices	MA5332 integrated class D IC	
Modulator	Self-oscillating, second-order sigma	a-delta modulation, analog input
Output power (1 percent THD+N)	150 W	1 kHz, RL = 4 Ω
Output power (10 percent THD+N)	200 W	1 kHz, RL = 4 Ω
Rated load impedance	4 Ω	Resistive load
Idling supply current	+75 mA	No input signal, +40 V
Signal-to-noise ratio (SNR)	e ratio (SNR) 96 dB Filter: A-weighting (1201) SPCL Gain setting: 23 dB	
Residual noise	140 μV	Filter: A-weighting (12017), 20 kHz SPCL Gain setting: 23 dB
Channel efficiency	90 percent	Single-channel driven, 200 W, class D stage

REF_MA5332BTLSPS overview

2 REF_MA5332BTLSPS overview

Figure 1 REF_MA5332BTLSPS board

The REF_MA5332BTLSPS features a single BTL channel self-oscillating type PWM for the lowest component count, convenient single power supply and highest performance and robust design. This topology represents an analog version of a second-order sigma-delta modulation, with the class D switching stage inside the loop. The benefit of the sigma-delta modulation, in comparison to the carrier-signal based modulation, is that all the error in the audible frequency range is shifted to the inaudible upper-frequency range by nature of its operation. Also, sigma-delta modulation enables the designer to apply sufficient error correction.

The REF_MA5332BTLSPS self-oscillating topology consists of the following essential functional blocks:

- Front-end integrator
- PWM comparator
- · Level shifters
- Integrated gate drivers and MOSFETs
- Output LPF

infineon

REF_MA5332BTLSPS overview

Figure 2 Simplified block diagram of the class D amplifier

Setup guide

3 Setup guide

Figure 3 Typical connectors

 Table 3
 Connector descriptions

Analog input	J3	Analog balanced input	
Output	J1	Analog output	
Power	J8	Single power supply	

Audio analyzer setup

4 Audio analyzer setup

Figure 4 Audio analyzer connections

MA5332M reference board

(infineon

Operating the board

5 Operating the board

5.1 Test setup

- 1. Connect $4 \Omega 250$ W dummy loads to output connector (J1 as shown in **Figure 3**) and parallel it with the input of the audio precision (AP) analyzer.
- 2. Connect the audio signal generator (ASG) to J3 for analog signal respectively (AP).
- 3. Set up the power supply with voltages of 40 V; set the current limit to 7 A.
- 4. Turn off the power supply before connecting to "on" of the unit under test (UUT).
- 5. Connect the power supply to J8, as shown in Figure 3.

5.2 Power-up sequence

- 6. Turn on the power supply.
- 7. Quiescent current for the supply should be 75 mA \pm 10 mA at 40 V.
- 8. Turn on the switch S1 (middle position).

5.3 Audio functionality tests

- 8. Set the AP's analog analyzer to 20 kHz AES17 filter.
- 9. Connect the audio signal from the AP to J3.
- 10. Sweep the audio signal voltage from 15 mV $_{\text{RMS}}$ to 1.5 V $_{\text{RMS}}$.
- 11. Run the AP test as shown in Figures 5 to 12, below.

5.4 Power-down sequence

- 12. Turn off the switch S1 (side position).
- 13. Turn off power supply.
- 14. All LEDs turn off when housekeeping power supplies are off.

(infineon

Audio performance

6 Audio performance

6.1 Power vs. THD+N

Test conditions:

 $V_{bus} = 40 \text{ V}$

Input signal = 1 kHz

Load impedance = 4Ω

 $F_{PWM} = 400 \text{ kHz}$

Figure 5 Power vs. THD+N 4 Ω load

6.2 Frequency response

Test conditions:

 V_{bus} = 40 V

Output power = 1 W

Load impedance = 4Ω

 $F_{PWM} = 400 \text{ kHz}$

Figure 6 Frequency response 4 Ω load

User Manual 9 of 25 V 1.0

(infineon

Audio performance

6.3 Noise floor

Test conditions:

 $V_{bus} = 40 \text{ V}$

No input signal

Load impedance = 4Ω

 $F_{PWM} = 400 \text{ kHz}$

Figure 7 Noise floor 4 Ω load

6.4 Noise floor with 1 V_{RMS} output

Test conditions:

 $V_{bus} = 40 \text{ V}$

Output = $1 V_{RMS}$ at 1 kHz

Load impedance = 4Ω

 $F_{PWM} = 400 \text{ kHz}$

Figure 8 Noise floor with 1 V_{RMS} output 4 Ω load

Efficiency

7 Efficiency

Test conditions:

 $V_{bus} = 40 \text{ V}$

Output = $1 V_{RMS}$ at 1 kHz

Load impedance = 4Ω

 $F_{PWM} = 400 \text{ kHz}$

Figure 9 REF_MA5332BTLSPS 4 Ω load stereo, Vbus = 40 V

MA5332M reference board

Thermal information

8 Thermal information

Test conditions:

 $V_{bus} = 40 \text{ V}$

Input signal = 1 kHz

Both channels driven

 $F_{PWM} = 400 \text{ kHz}$

Load = 4Ω

8.1 Thermal performance

Table 4 Thermal performance (with heatsink)

Output power(W)	Temperature (°C)	Record time (minutes)
18.75	71.4	30
200	109	1
200	144	5

Figure 10 $1/8 P_{out} = 18.75 W$ with 4 Ω load 40 V with heatsink

Note: Temperature saturated at 71.4°C after 30 minutes.

Thermal information

Figure 11 Peak power $P_{out} = 200 \text{ W}$ with $4 \Omega \text{ load } 40 \text{ V}$ with heatsink

Note: Maximum temperature 109.2°C at 1 minute and 144°C at 5 minutes.

8.2 Heatsink

Figure 12 Heatsink dimensions

infineon

Gain setting

9 Gain setting

The REF_MA5332BTLSPS reference board has two gain settings for the single power supply application, which is different from the split power supplies application. The AC gain setting (red path in **Figure 13**) is the same as the normal gain setting, and the ratio of RFB and $R_{\rm in}$ is the AC gain. The DC gain setting (blue path in **Figure 13**) depends on the desired bus voltage and rated output power.

Figure 13 AC and DC path

9.1 Gain design flow

The gain design flow is shown below.

Figure 14 Gain design flow

- 1. Set target rated power and load impedance.
- 2. Calculate V_{bus} based on rated power and load impedance.
- 3. Calculate required AC gain and $R_{\mbox{\tiny ACin}}.$
- 4. Calculate R_{DCin}.

MA5332M reference board

(infineon

Gain setting

9.2 V_{bus} calculation

V_{bus} is calculated by the load impedance and clipping power (normally 75 percent of RMS power).

$$V_{\text{bus}} = (2 * P_{\text{clipping}} * R_{\text{load}})^{(1/2)} / M$$

M is maximum modulation index, normally M = 90 percent

$$V_{bus} = (2*200*75\%*4)^{(1/2)*90\%}$$

= 38.5 V

Use 40 V as V_{bus} in this design.

9.3 AC gain setting

AC gain is the mean ratio of the signal amplitude at the output to the amplitude at the input.

In the REF_MA5332BTLSPS design, assume the maximum input signal is up to 5 V_{n-n} balanced input.

Set the gain when input is 5 V_{p-p} and the clipping voltage is 74 Vp-p (93 percent of V_{bus}^{*} 2 = 40*2 V for BTL).

Desired total voltage gain = 74/5 = 14.8

Total voltage gain = gain (op-amp stage)*gain (class D stage)

Set op-amp gain to maximum to have the minimum noise floor. Set the op-amp gain based on the supply of the op-amp, which is 10 V in this design. The maximum output of the op-amp is 9.9 V, which is decided by the parameters of the op-amp.

15 of 25

So the maximum op-amp voltage gain is 9.9/(1.414*2) = 3.5.

Gain (class D stage) = total voltage gain/gain (op-amp stage)

$$= 14.8/3.5$$

In the current design preset values below:

$$R_{FB(OPAMP \, stage)} = R30 = 34.8 \, k\Omega$$

$$R_{in(OPAMP\; stage)} = R15 = 10 \; k\Omega$$

 $R_{FB(class\ D\ stage)}$ = R135 = 47.5 k Ω (recommended to fix the value as 47.5 k Ω)

$$R_{in(class \ D \ stage)} = R31+R3 = (3.3+8.2) \ k\Omega$$

Total voltage gain = gain (op-amp stage)*gain (class D stage)

=
$$[R_{FB(OPAMP stage)}/R_{in(OPAMP stage)}]^*[R_{FB(class D stage)}/R_{in(class D stage)}]$$

= (R30/R15)*(R13/(R31+R3))

= (34.8/10)*(47.5/(3.3+8.2))

= 3.48*4.13

= 14.37 (close to 14.8)

Gain (dB) = $20*\log(14.37) = 23.15 dB$

User Manual

MA5332M reference board

infineon

Gain setting

9.4 DC gain setting

DC gain is to set the output DC operation point at half of the V_{bus}.

Output DC operation point = ½*V_{bus} = V_{ref}*DC gain

$$V_{ref} = \frac{1}{2} * of V_{AA}$$

DC gain =
$$\frac{1}{2}$$
* V_{bus}/V_{ref}

=
$$(R_{FB(class D stage)} + R_{DCin})/R_{DCin}$$

With
$$R_{FB(class\ D\ stage)} = 47.5\ k\Omega$$

$$R_{FB(class\ D\ stage)}/R_{DCin} = (1/2*V_{bus}/2-V_{ref})/V_{ref}$$

$$\Rightarrow R_{DCin} = R_{FB(class\ D\ stage)} *V_{ref} / (\frac{1}{2} *V_{bus} - V_{ref})$$

$$R7 == R8 = R30*5/(V_{bus}/2-5) = 47.5*5/(40/2-5) = 15.8 \text{ k}\Omega$$

Schematic

10 Schematic

Figure 15 Schematic

MA5332M reference board

11 PCB

11.1 PCB specifications

- Two-layer SMT PCB with through-holes
- 1/16 thickness
- 2/0 oz. copper
- FR4 material
- 10 mil lines and spaces
- Solder mask to be green enamel EMP110 DBG (carapace) or Enthone endplate DSR-3241 or equivalent
- Silkscreen to be white epoxy non-conductive per IPC-RB 276 standard
- All exposed copper must be finished with tin-lead Sn 60 or 63 for 100 μ inches thick
- Tolerance of PCB size shall be 0.010 to 0.000 inches
- Tolerance of all holes is ±0.003 inches
- PCB acceptance criteria as defined for class II PCB standards

PCB layout 11.2

Figure 16 **Board top view**

Figure 17 Board bottom view

Bill of materials (BOM)

12 Bill of materials (BOM)

Table 5 Board BOM

No.	Part number	Designator	Description	Quantity	Vendor
1	565-1106-ND	C1, C2,C11, C13	Aluminum capacitor 10 μF 20% 50 V radial	4	Digikey
2	490-1500-1-ND	C3, C4, C6, C7	Ceramic capacitor 2200 pF 50V 10% X7R 0603	4	Digikey
3	587-2668-1-ND	C5, C8	Ceramic capacitor 10 μF 10 V X7R 10% 0805	2	Digikey
4	399-1082-1-ND	C9, C10	Ceramic capacitor 1000 pF 50 V X7R 0603	2	Digikey
5	490-5519-1-ND	C12, C14	Ceramic capacitor 10 μF 16 V X6S 0805	2	Digikey
6	445-1418-1-ND	C15, C16, C17	Ceramic capacitor 0.10 μF 100 V X7R 10% 0805	3	Digikey
7	445-1377-1-ND	C18, C19, C20, C21	Ceramic capacitor 0.1 μF 100 V X7R 10% 1206	4	Digikey
8	495-4721-ND	C24, C43	Film capacitor 1 μF 10% 450 V DC radial	2	Digikey
9	1928-1956-1-ND	C25	Film capacitor 0.1 μF 20% 250 V DC 2824	1	Digikey
10	URS2A331MHD	C27, C34, C35, C36	Aluminum capacitor 330 μF 20% 100 V radial	4	Digikey
11	490-1483-1-ND	C28, C29	Ceramic capacitor 220 pF 50 V X7R 0603	2	Digikey
12	478-1429-1-ND	C30	Ceramic capacitor 4.7 μF 10 V Y5V 0805	1	Digikey
13	445-1601-1-ND	C31	Ceramic capacitor 10 μF 16 V X7R 1206	1	Digikey
14	565-1056-ND	C37, C38	Aluminum capacitor 22 μF 20% 25 V radial, 22 μF 25 V elect. VR radial	2	Digikey
15	160-1183-1-ND	CLIP1	LED green clear 0603 SMD	1	Digikey
16	RF071MM2SCT-ND	D1, D2, D3, D4	Switch diode 100 V 400 MW SOD123	4	Digikey
17	MURA120T3GOSCT-ND	D5, D6, D7, D8	General-purpose diode 200 V 2 A SMA	4	Digikey
18	MA5332	IC1	2-channel integrated digital audio amplifier	1	Infineon
19	296-2421-1-ND	IC2	IC op-amp GP 2 circuit 8SOIC	1	Digikey

MA5332M reference board

Bill of materials (BOM)

No.	Part number	Designator	Description	Quantity	Vendor
			2-position terminal block		
20	ED2779-ND	J1', J8'	plug	2	Digikey
			2-position terminal block		
21	ED2779-ND	J1', J8'	plug	2	Digikey
			Terminal block HDR		
22	A98249-ND	J3	3POS 90-degree 5 mm	1	Digikey
			Terminal block plug		_
23	A113286-ND	J3'	3POS STR 5 mm	1	Digikey
24	CPD1521C-100M	L1	2" 1 10 μH inductor	1	Codaca
			LED 468 nm blue clear		
25	160-1646-1-ND	ON1	0603 SMD	1	Digikey
	MJD44H11T4GOSCT-		Transistor NPN Epitax		Digikey or
26	ND	Q1	100 V 3 A TO-220	1	Mouser
			Resistor SMD 100K Ω 5%		
27	RHM100KGCT-ND	R1, R2	1/10 W 0603	2	Digikey
	CR0603-FX-		Resistor SMD 8.2K Ω 1%		
28	8201ELFCT-ND	R3, R4	1/10 W 0603	2	Digikey
	RMCF0603JT10R0CT-		Resistor 10 Ω 1/10 W 5%		
29	ND	R5, R33	0603 SMD	2	Digikey
			Resistor SMD 4.7K Ω 1%		
30	311-4.70KHRCT-ND	R6, R9	1/10 W 0603	2	Digikey
	RMCF0603FT15K8CT-		Resistor 15.8K Ω 1%		
31	ND	R7, R8	1/10 W 0603	2	Digikey
			Resistor 220 Ω 1/10 W 5%		
			0603 SMD, resistor 620 Ω		
32	YAG3652CT-ND	R10, R11	1/10 W 5% 0603 SMD	2	Digikey
	044 47 EVEDOT ND	D40 D40	Resistor SMD 47.5K Ω 1%		S: 11
33	311-47.5KFRCT-ND	R12, R13	½ W 1206	2	Digikey
•	DUNA OVOCT ND	D14 D45 D46 D46	Resistor 10K Ω 1/10 W 5%		S: 11
34	RHM10KGCT-ND	R14, R15, R16, R18	0603 SMD	4	Digikey
25	RMCF0603JT4R70CT-	D47 D40 D00	Resistor TF 1/10 W 4.7 Ω		D: 11
35	ND	R17, R19, R20	5% 0603	3	Digikey
26	RMCF0603JT22K0CT-	D04 D00	Resistor 22K Ω 5% 1/10 W		D: 11
36	ND	R21, R22	0603	2	Digikey
27	RNCP0805FTD11K0CT-	Daa	Resistor 11K Ω 1% ¼ W		Distiliant
37	ND	R23	0805	1	Digikey
20	RMCF2512JT180RCT-	D24	Axial resistor 1.0K Ω 1 W	1	Digilian
38	ND	R24	5% metal oxide	1	Digikey
20	211 1 0ADCT ND	DOE DOC	Resistor 1.0 OHM 1/8W		Digilian
39	311-1.0ARCT-ND	R25, R26	5% 0805 SMD	2	Digikey
40	RMCF0603FT34K8CT-	D27 D20	Resistor 34.8K Ω 1% 1/10		Dia:less
40	ND	R27, R30	W 0603	2	Digikey
41	DT4 OVCT ND	D20	Resistor SMD 10 Ω 5%		Digilian
41	PT10XCT-ND	R28	1 W 2512	1	Digikey

V 1.0

MA5332M reference board

Bill of materials (BOM)

No.	Part number	Designator	Description	Quantity	Vendor
42	311-100KCRCT-ND	R29	Resistor SMD 100K Ω 1% 1/8 W 0805	1	Digikey
43	RHM3.3KGCT-ND	R31, R32	Resistor SMD 3.3K Ω 5% 1/10 W 0603	2	Digikey
44	RMCF2512JT1K20CT- ND	R34, R38	Resistor 1.2K Ω 5% 1 W 2512	2	Digikey
45	RMCF0805JT2K20CT- ND	R39, R40	Resistor 2.2K Ω 5% 1/8 W 0805	2	Digikey
46	360-1768-ND	S1	Toggle switch SPDT 0.4 VA 28 V	1	Digikey
47	BZT52C11-FDICT-ND	Z1	Zener diode 11 V 500 MW SOD123	1	Digikey
48	8401K-ND	1/2" standoffs 4-40	Hexagonal standoff #4-40 aluminum 1/2"	5	Digikey
49	H724-ND	4-40 nut	Hexagonal nut 4-40 stainless steel	5	Digikey
50	H729-ND	No. 4 lock washer	Internal washer lock #4 SS	5	Digikey
51	Heatsink	Heatsink	1560*970*406.57 (mil)	1	_
52	BER161-ND	Thermal pad	Thermal pad	1/8	Digikey
53	Screws		Depends on holes on the heatsink	2	_

Note: *Heatsink is an option for AMP.

Note: 25 to deliver higher power.

MA5332M reference board

Revision history

Revision history

Document version	Date of release	Description of changes		
V 1.0	2021-10-11	First release		

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-10-11

Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference UM_2102_PL88_2013_192558

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

REFMA5332BTLSPSTOBO1