Pannon Egyetem Mérnöki Kar

SEGÉDLET

Műszaki áramlástan feladatgyűjtemény

Műszaki áramlástan Műszaki áramlástan és hőtan I. Műszaki áramlás- és hőtan

Tartalomjegyzék

\mathbf{A}	apadatok	2
	A tárgy adatai	
	A segédlet célja	
	Ajánlott szakirodalom	2
1.	Hidrostatika	3
2 .	Veszteségmentes csőáramlások	4
3.	Folyadékáramlás erőhatásai, kifolyás tartályból	5
4.	Valós folyadék áramlása csővezetékben	6
	10. feladat: Szívócső számítása	6
5.	Összenyomhatatlan folyadék egyméretű áramlása	9

Alapadatok

A tárgy adatai

Név: Műszaki áramlástan Kód: VEMKGEB143H

Kreditérték: 3 (2 elmélet, 1 gyakorlat)

Követelmény típus: vizsga

Szervezeti egység: Gépészmérnöki Intézet

Előadás látogatása: kötelező Gyakorlat látogatása: kötelező

Számonkérés: a félév végén zárthelyi, írásbeli és szóbeli vizsga

A segédlet célja

A segédlet célja.

A segédlet kidolgozása még folyamatban van.

Ajánlott szakirodalom

• Irodalom.

Hidrostatika

Veszteségmentes csőáramlások

Folyadékáramlás erőhatásai, kifolyás tartályból

Valós folyadék áramlása csővezetékben

10. feladat: Szívócső számítása

Szerző	Bertók Dániel, AUDWOS
Szak	Biomérnök
Félév	2019/2020 II. (tavaszi) félév

Az ábrán látható szívócső teljes hossza $l_{\Sigma}=11\,\mathrm{m},~d=0,1\,\mathrm{m}$ átmérője, $\lambda=0,03$ a csősúrlódási tényező, $c=3\,\frac{\mathrm{m}}{\mathrm{s}}$ az áramlás sebessége, az idomdarabok veszteségtényezői: lábszelep $\zeta_L=3$, ívdarabok $\zeta_k=0,5.~H=5\,\mathrm{m}$ magasság, $\varrho_V=1000\,\frac{\mathrm{kg}}{\mathrm{m}^3},~p_0=1\,\mathrm{bar},~g=9,81\,\frac{\mathrm{m}}{\mathrm{s}^2}$

- a) Mekkora a nyomás a szívócső A pontjában a szivattyú belépésénél?
- b) Mekkora a szívócső egyenértékű csőhosszúsága?

4.1. ábra. Szívócső kialakítása

a)

A veszteség és a p_A nyomás meghatározása:

Az áramvonal nem a lábszeleptől indul, hanem a nyugvó folyadék felszíntől, ezért $c_1=0\,\frac{\mathrm{m}}{\mathrm{s}}$ A második ζ_k valószínűleg felesleges, mert előtte kell a nyomást meghatározni.

$$p_0 = 1 \,\text{bar} = 100\,000 \,\text{Pa} \tag{4.1}$$

A tömegfajlagos energia veszteséget az alábbi egyenlet segítségével határozhatjuk meg:

$$Y_{veszt} = \sum_{i=1}^{2} \zeta_i \frac{c^2}{2} + \sum_{j=1}^{1} \lambda_j \frac{l_j}{d_j} \frac{c^2}{2}$$
(4.2)

A csőkeresztmetszet felülete kiszámítható:

$$A = \frac{d^2\pi}{4} \tag{4.3}$$

A csővezetékrendszer tömegfajlagos energia veszteségének egyenletébe behelyettesítve, az alábbi összefüggést kapjuk:

$$Y_{veszt} = \left(\zeta_L + 2\zeta_k + \lambda \frac{l}{d}\right) \frac{c^2}{2} \tag{4.4}$$

$$Y_{veszt} = \frac{c^2 \lambda \Sigma l}{2d} + c^2 \zeta_k + \frac{c^2 \zeta_L}{2} \tag{4.5}$$

Behelyettesítve a számértékeket, megkapjuk a tömegfajlagos energiaveszteség értékét:

$$Y_{veszt} = \frac{9\frac{\text{m}^2}{\text{s}^2} \cdot 0,03 \cdot 11\,\text{m}}{2 \cdot 0,1\,\text{m}} + 9\frac{\text{m}^2}{\text{s}^2} \cdot 0,5 + \frac{9\frac{\text{m}^2}{\text{s}^2} \cdot 3}{2}$$
(4.6)

$$Y_{veszt} = 32,85 \frac{J}{kg} \tag{4.7}$$

Veszteséges Bernoulli-egyenlet:

$$\frac{c_1^2}{2} + \frac{p_1}{\varrho_V} + z_1 g = \frac{c_2^2}{2} + \frac{p_2}{\varrho_V} + z_2 g + Y_{veszt} \tag{4.8}$$

$$c_1 = 0, c_2 = c, z_1 = 0, z_2 = H, p_1 = p_0$$
 (4.9)

Az egyenletetbe behelyettesítve:

$$\frac{p_0}{\varrho_V} = \frac{c^2}{2} + gH + Y_{veszt} + \frac{p_2}{\varrho_V}$$
 (4.10)

$$\frac{100\,000\,\mathrm{Pa}}{1000\,\frac{\mathrm{kg}}{\mathrm{m}^3}} = \frac{9\,\frac{\mathrm{m}^2}{\mathrm{s}^2}}{2} + 9.81\,\frac{\mathrm{m}}{\mathrm{s}^2} \cdot 5\,\mathrm{m} + 32.85\,\frac{\mathrm{J}}{\mathrm{kg}} + \frac{p_2}{1000\,\frac{\mathrm{kg}}{\mathrm{m}^3}}$$
(4.11)

Tehát az A pontban uralkodó nyomás:

$$p_2 = 13\,600\,\mathrm{Pa}$$
 (4.12)

b)

Egyenértékű csőhosszúság számítása:

$$l_E = \Sigma l + (\zeta_L + 2\zeta_k) \frac{d}{\lambda} \tag{4.13}$$

$$l_E = 11 \,\mathrm{m} + (3 + 2 \cdot 0, 5) \cdot \frac{0.1 \,\mathrm{m}}{0.03}$$
 (4.14)

$$\underline{l_E = 24,33 \,\mathrm{m}} \tag{4.15}$$

Összenyomhatatlan folyadék egyméretű áramlása