### ДЗ11\_bioinfa

# Сорокина Тамара, Боб-204

## Отчёт по улучшению сборки генома вируса гриппа

На семинаре мы работали с данными секвенирования вируса гриппа, которые лежат по пути:

/projects/mipt\_dbmp\_biotechnology/genome\_de\_novo/

Для начала провели сборку с разными наборами параметров, в основном через SPAdes, а также попробовали Platanus. Качество сборки сравнивали с помощью Quast.

Что получилось в начале:

| Statistics without reference | platanus_k39_contig | platanus_k49_contig | platanus_k63_contig | scaffolds |
|------------------------------|---------------------|---------------------|---------------------|-----------|
| # contigs                    | 42                  | 42                  | 40                  | 49        |
| # contigs (>= 0 bp)          | 42                  | 42                  | 40                  | 49        |
| # contigs (>= 1000 bp)       | 0                   | 1                   | 1                   | 1         |
| # contigs (>= 5000 bp)       | 0                   | 0                   | 0                   | 0         |
| # contigs (>= 10000 bp)      | 0                   | 0                   | 0                   | 0         |
| # contigs (>= 25000 bp)      | 0                   | 0                   | 0                   | 0         |
| # contigs (>= 50000 bp)      | 0                   | 0                   | 0                   | 0         |
| Largest contig               | 895                 | 1032                | 1032                | 1069      |
| Total length                 | 8094                | 8078                | 7606                | 15 064    |
| Total length (>= 0 bp)       | 8094                | 8078                | 7606                | 15 064    |
| Total length (>= 1000 bp)    | 0                   | 1032                | 1032                | 1069      |
| Total length (>= 5000 bp)    | 0                   | 0                   | 0                   | 0         |
| Total length (>= 10000 bp)   | 0                   | 0                   | 0                   | 0         |
| Total length (>= 25000 bp)   | 0                   | 0                   | 0                   | 0         |
| Total length (>= 50000 bp)   | 0                   | 0                   | 0                   | 0         |
| N50                          | 327                 | 298                 | 235                 | 440       |
| N90                          | 71                  | 71                  | 71                  | 148       |
| auN                          | 371.1               | 409.7               | 429.8               | 484.1     |
| L50                          | 9                   | 8                   | 7                   | 12        |
| L90                          | 25                  | 27                  | 29                  | 37        |
| GC (%)                       | 44.22               | 43.98               | 44.33               | 45.47     |
| Mismatches                   |                     |                     |                     |           |
| # N's per 100 kbp            | 0                   | 0                   | 0                   | 0         |
| # N's                        | 0                   | 0                   | 0                   | 0         |

SPAdes показал себя лучше, чем Platanus — сборки получились более полные и с длинными контигами. Поэтому дальше решено было улучшать именно сборку через SPAdes.

## Что дальше:

Чтобы получить ещё более качественную сборку, добавим больше значений k-меров (21,33,55,77,99,111). Это нужно для того, чтобы получить длинные контиги, которые лучше "перекрывают" повторы и реже дают разрывы. Минус в том, что длинные k-меры могут «пропустить» участки с редкими вариантами, но при хорошем покрытии это не критично.

#### Запустим сборку так:

python3 /projects/mipt\_dbmp\_biotechnology/soft/SPAdes-4.1.0-Linux/bin/spades.py \ --careful -k 21,33,55,77,99,111 \

- -1 /projects/mipt\_dbmp\_biotechnology/genome\_de\_novo/7\_S4\_Loo1\_R1\_oo1.fastq \
- -2 /projects/mipt\_dbmp\_biotechnology/genome\_de\_novo/7\_S4\_Loo1\_R2\_oo1.fastq \
- -o ~/homeworks/hw\_11/genome\_assembly\_results/spades

### Прогоним всё через Quast:

- ~/soft/bin/quast.py -o ~/homeworks/hw\_11/assembly\_analysis -m o --threads 1  $\setminus$
- ~/classes/class\_11/genome\_assembly\_results/k39/platanus\_k39\_contig.fa \
- ~/classes/class\_11/genome\_assembly\_results/k49/platanus\_k49\_contig.fa \
- ~/classes/class\_11/genome\_assembly\_results/k63/platanus\_k63\_contig.fa \
- ~/classes/class\_11/genome\_assembly\_results/spades/scaffolds.fasta \
- ~/homeworks/hw\_11/genome\_assembly\_results/spades/hw\_scaffolds.fasta

#### Что изменилось:



- Общая длина сборки стала ближе к реальной длине генома гриппа (~13 Кб). Раньше было немного больше — возможно, были пересобраны повторы. Теперь могли что-то недособрать, но зато меньше лишнего.
- **N50** стал больше это значит, что среди самых "вкладных" контигов теперь есть более длинные, а значит, сборка стала менее фрагментированной.
- **L50** стал меньше то есть для того, чтобы покрыть половину сборки, теперь нужно меньше контигов, что тоже хорошо.
- То же самое с **N90** и **L90** улучшения видны.
- **auN**, которая обобщает все метрики N1–N100, тоже выросла значит, в целом сборка получилась лучше.

### Вывод:

Добавление длинных k-меров и параметра --careful дало лучший результат — метрики выросли, сборка стала аккуратнее и ближе к настоящему геному. Такую стратегию можно использовать как хороший подход для сборки небольших вирусных геномов.