Diamonds price prediction

Done by: Renad Albishri Eman Alshehri

Overview

In this project, we are working on a dataset that consists of information about the diamonds and features that price depend on, such as Clarity, Color, etc.

Goals

- Which variables are significant in predicting the price of a diamonds
- Build a model to predict the diamonds price.
- Choose the model that give us the best predict.

Methodology

Dataset

The dataset used in this project was obtained by scraping data from brilliant earth(online website) that offers one of the largest collections of diamonds available for sale.

Dataset contains:

119,000 rows 10 features

Id, URL, Shape, Carat, Cut, Color, Report, Type, LW, Price

It's a great dataset for machine learning and working with data analysis and visualization.

Outlier

After

EDA cont....

After cleaning the data, the dataset becomes: 65,000 rows 7 features

Features and target correlation

Regression and feature engineering

Feature engineering

Before

After

```
Linear Regression val R^2: 0.854
Ridge Regression val R^2: 0.854
Degree 2 polynomial regression val R^2: 0.947
Degree 3 polynomial regression val R^2: 0.958
Degree 4 polynomial regression val R^2: 0.964
Degree 5 polynomial regression val R^2: 0.967
Degree 6 polynomial regression val R^2: 0.972
Degree 7 polynomial regression val R^2: 0.952
Lasso Regression val R^2: 0.854
ElasticNet Regression val R^2:0.854
```

```
Linear Regression val R^2: 0.904
Ridge Regression val R^2: 0.904
Degree 2 polynomial regression val R^2: 0.969
Degree 3 polynomial regression val R^2: 0.975
Degree 4 polynomial regression val R^2: 0.979
Degree 5 polynomial regression val R^2: 0.981
Degree 6 polynomial regression val R^2: 0.979
Degree 7 polynomial regression val R^2: 0.976
Lasso Regression val R^2: 0.875
ElasticNet Regression val R^2:0.904
```

Predicted models

	R^2 training	R^2 validation
Linear Regression	0.905	0.904
Polynomial Regression degree 4	0.977	0.979
Polynomial Regression degree 5	0.980	0.981
Polynomial Regression degree 6	0.984	0.979
Lasso Regression	0.875	0.875
Ridge Regression	0.905	0.904
Elastic Net	0.905	0.904

Predicted models

	R^2 training	R^2 validation
Linear Regression	0.905	0.904
Polynomial Regression degree 4	0.977	0.979
Polynomial Regression degree 5	0.980	0.981
Polynomial Regression degree 6	0.984	0.979
Lasso Regression	0.875	0.875
Ridge Regression	0.905	0.904
Elastic Net	0.905	0.904

Selected model

	R^2 test	RMSE	
Polynomial Regression degree 5	0.9807	0.1413	

The result of the best model (Polynomial Regression d=5)

Conclusion

- Most significant feature in predicting the price of a diamonds is Carat.
- The least features affect in predicting the price of a diamonds are Color, LW, and shape.
- Selection model to predict diamonds price is Polynomial Regression(degree 5)