GRAMATICAS Y AUTÓMATAS FINITOS

Dada la gramática $G = (\{S;A\}; \{a;b\}; P;S)$

$$P = \begin{cases} S \rightarrow \lambda / aS / bA \\ A \rightarrow bA / \lambda \end{cases}$$

1) Clasificarla

G es una gramática de **tipo 3** o sea **regular**, ya que en las derivaciones de cada paso de las producciones, está λ , o un elemento del alfabeto no terminal junto a uno del alfabeto terminal, en este caso a derecha. Por eso se llama **gramática regular a derecha.**

2) Hallar el lenguaje regular que genera G, L(G)

Para hallar el lenguaje generado construiremos el árbol de derivación en base a las producciones.

Puede verse Que el *árbol de derivación* nos da las *hojas* que son las palabras del lenguaje generado por la gramática G, o sea *L*(*G*).

También podemos ver que *L(G)* es *un lenguaje infinito* por lo tanto no podremos nombrarlo por extensión, entonces tendremos que dar su *expresión regular*,o sea dar la forma y la estructura que tiene las palabras de *L(G)*.

Observando el árbol vemos que las palabras generadas son del tipo $a^n b^m$ con $n \ge 0$, $m \ge 0$ ya que hay palabras que solo tienen a a ó a b,

Recordemos que todo carácter $x^0 = \lambda$, por lo tanto, por ejemplo $aab^0 = aa$ El lenguaje es entonces

$$L(G) = \{ w \in V^* / w = a^n b^m ; n \ge 0; m \ge 0 \},$$

que también puede expresarse como L(G) = a*b*

3) Hallar el Autómata Finito AF que reconoce dicho lenguaje

Recordemos que un Autómata Finito es una máquina de estado que permite reconocer un lenguaje de tipo 3.

Su estructura es $AF = (Q; V; \delta; q_0; F)$

Vamos a partir del conjunto de producciones de la gramática G, o sea :

$$P = \begin{cases} S \to \lambda / aS / bA \\ A \to bA / \lambda \end{cases}$$

- Cada elemento del alfabeto V_N será un estado del AF
- Las transiciones las haremos de acuerdo a las reglas de derivación en P.
- Si el elemento distinguido deriva en λ , entonces el estado inicial será también final.
- Siempre apelaremos a la observación, la intuición y la prueba y error.

Quedaría entonces:

$$AF = (\{q_0; q_1\}; \{a; b\}; \delta; q_0; \{q_0; q_1\})$$

La función de transición δ queda

δ	а	b
q 0	q 0	q 1
q ₁		q 1

Podemos verificar que el **AF** reconoce las palabras del lenguaje **L(G)**, y además **AF** es un autómata finito determinístico.

Ejercicio

Dado el AF = ({q₀;q₁,q₂,q₃};{0, 1, 2, 3};
$$\delta$$
 ; q₀ ; {q₂, q₃})

Sea su diagrama de estados.

a) Definir la función de transición δ

δ	0	1	2	3
q 0	q ₁	q 0		
q ₁		q ₂		
q ₂			q ₁	Q з
q ₃				

b) Indicar si es o no determinístico

El **AF es determinístico** ya que de un estado cualquiera a través de un caracter solo va a un estado.

En la función de transición no hay dos estados en ningún casillero, o sea como dice la definición:

$$|\delta (q;a)| \le 1$$
; $\forall q \in Q$; $\forall a \in V$

c) Indicar la gramática que genera el L(G) que reconoce AF

$$G = (\{0, 1, 2, 3\}; \{A, B, C\}; P; A)$$

$$P = \begin{cases} A \rightarrow 1A / 0B \\ B \rightarrow 1C \\ C \rightarrow 2B / 3 \end{cases}$$

d) Indicar el lenguaje generado por **G** dando su expresión regular.