LIBRAR – CONCEITOS BÁSICOS DE LIBRAS USANDO REALIDADE AUMENTADA E REALIDADE VIRTUAL

Aluno(a): Luan Ribeiro da Silva

Orientador: Dalton Solano dos Reis

Roteiro

- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos correlatos
- Requisitos
- Especificação
- Implementação
- Resultados e discussões
- Conclusões e sugestões
- Extensões

Introdução

Ensino da Libras nas escolas

Tornar mais divertido

Inclusão da tecnologia

Objetivos

Disponibilizar um sistema na plataforma móvel para o aprendizado dos conceitos básicos da Libras.

Objetivos

- Disponibilizar ao usuário a possibilidade de visualizar todas as letras do alfabeto e algarismos numéricos em uma mão virtual 3D
- Disponibilizar ao usuário um jogo usando RA para poder entender os conceitos básicos da Libras
- Disponibilizar ao usuário um jogo usando RV para o mesmo ter um ponto de vista diferente do sinal na Libras enquanto entende os conceitos básicos

Fundamentação Teórica

Libras

- Língua Brasileira de Sinais
- Língua oficial dos deficientes auditivos
- É uma língua gestual-visual
- Português: sujeito → verbo → objeto
- Libras: Objeto → verbo → sujeito
- Português: eu vou para casa
- Libras: casa vou eu

Fundamentação Teórica

- Realidade Aumentada
 - É uma interação entre o mundo real e virtual

Fundamentação Teórica

- Realidade Virtual
 - Interação com o usuário em um ambiente tridimensional
 - Sentido predominante é a visão

Trabalhos Correlatos

 Realidade aumentada como ferramenta de apoio na alfabetização de crianças com surdez usuárias da língua brasileira de sinais

Trabalhos Correlatos

 Aprendendo números em libras com a tecnológica da realidade aumentada

Trabalhos Correlatos

Jogando com a realidade aumentada e

aprendendo libras

Requisitos

- Requisitos funcionais
 - ter uma mão 3D para exibir o sinal em Libras
 - módulo para visualizar cada letra ou algarismo numérico em Libras
 - ter a possibilidade de rotacionar a mão 3D
 - módulo para treinar Libras com um jogo associativo usando realidade aumentada
 - utilizar oito marcadores de RA para o jogo associativo
 - exibir no lado esquerdo da tela os resultados do jogo associativo
 - módulo para treinar Libras com um jogo de raciocínio rápido usando realidade virtual e HMD

Requisitos

- Requisitos funcionais
 - exibir um contador regressivo de vinte e cinco segundos durante o jogo de raciocínio rápido
 - exibir a quantidade de erros cometidas durante o jogo de raciocínio rápido, podendo ser no máximo duas vezes
 - tela inicial para escolher se o conteúdo será em cima de letras ou algarismos numéricos
 - botões para o usuário voltar a tela inicial, voltar a tela para escolher o conteúdo do módulo e executar novamente as animações dos sinais

Requisitos

- Requisitos não funcionais
 - executar o sistema em dispositivos móveis com sistema operacional Android e iOS
 - utilizar o ambiente de desenvolvimento Unity para o desenvolvimento do sistema
 - utilizar o Vuforia junto com o Unity para o desenvolvimento da RA no sistema
 - utilizar o Google VR junto com o Unity para o desenvolvimento da RV no sistema
 - executar o sistema no modo offline

<<MonoBehaviour>>

GameVRScript

- MaxTimer : float - MaxErrors : int
- + progress : GameObject + menuObject : GameObject
- + gameVRObject : GameObject
- + aleatorySignalText : Text
- + secondText : Text
- + numberErrorsText : Text
- + finishText : Text
- + gameOverText : Text
- objectClick : GameObject
- scriptProgress : ProgressRadialBehaviour
- hands : GameObject[]
- letters : string[]
- numbers : string[]
- currentSignals : string[]
- aleatorySignals : string[]
- aleatorySignal : string
- timer : float
- beginTimer : boolean
- errors : int
- Start(): void
- Update() : void
- LoadVR() : IEnumerator
- CloseVR(): IEnumerator
- + BackButton(): void
- + StartProgress(objectClick: GameObject): void
- + CancelProgress(): void
- + ExecuteAction(): void
- Init(): void
- + LearnNumbersButton(): void
- + LearnLettersButton(): void
- CreateSignals(): void
- + CheckChooseSignal(): void
- ShowHideHands(show: boolean): void
- FinishGame(): void
- GameOver() : void
- + RestartGame(): void
- + ReloadSignalButton(): void

Especificação

<<MonoBehaviour>> LearnSignalScript

- + uppercaseLetterText : Text
- + lowerLetterText : Text
- + numberText : Text
- + signalsObject : GameObject
- + menuObject : GameObject
- transformHand : Transform
- animatorHand : Animator
- letters : string[]
- numbers : string[]
- currentSignals : string[]
- positionCurrentSignal: int
- Start(): void
- Update(): void
- Init() : void
- PlayAnimationSignal(): void
- + BackButton(): void
- + MenuButton(): void
- + LearnNumbersButton(): void
- + LearnLettersButton(): void
- + NextSignalButton(): void
- + PreviousSignalButton(): void
- + ReloadSignalButton() : void

<<MonoBehaviour>> MainMenuScript

- Start() : void
- Update() : void
- + BackButton() : void
- + LoadGameARScene(): void
- + LoadLearnSignalScene(): void
- + LoadGameVRScene(): void
- LoadScene(scene : string) : IEnumerator

<<MonoBehaviour>> <<ITrackableEventHandler>>

DetectTrackable

- Start() : void
- Update() : void
- + OnTrackableStateChanged(previousStatus: TrackableBehaviour.Status, newStatus: TrackableBehaviour.Status): void

<<MonoBehaviour>> DetectTrigger

- + text : GameObject
- + spriteCheck : Sprite
- gameARScript : GameARScript
- Start() : void
- Update() : void
- OnTriggerEnter(other : Colider) : void
- OnTriggerExit(other : Colider) : void

<<MonoBehaviour>> GameARScript

+ menuObject : GameObject

- + markersObject : GameObject
- + finishText : Text
- + gameOverText : Text
- + errorsText : Text
- + spriteUncheck : Sprite
- letters : string[]
- numbers : string[]
- currentSignals : string[]
- aleatorySignals : string[]
- markersResult : GameObject[]
- markersLetters : GameObject[]
- textResults : GameObject[]
- imagesTextResult : GameObject[]
- errors : int
- totalErrors : int
- Start() : void
- Update() : void
- StartVuforia() : IEnumerator
- OnVuforiaStarted() : void
- Init() : void
- RestartGame(): void
- CreateMarkers() : void
- + BackButton() : void
- + GameNumbersButton() : void
- + GameLettersButton() : void
- + CheckFinishGame(signal: string): void
- + CheckErrors(): void

- Ferramentas utilizadas
 - Unity 3D
 - SDK Vuforia
 - SDK Google VR
 - Augmented reality marker generator
 - Photoshop
 - CadNav
 - Blender

Marcadores

Mão 3D

Animações dos sinais

Animações dos sinais

Aprendendo Libras

Aprender os Sinais

Jogo Associativo

Jogo de Raciocínio Rápido


```
void CreateMarkers()
    aleatorySignals = new string[] { "", "", "", "" };
    int[] positionMarkers = { 0, 1, 2, 3 };
    for (int i = 0; i < 4; i++)
        string signal = currentSignals[Random
                              .Range(0, currentSignals.Length)];
        while (System.Array.IndexOf(aleatorySignals, signal) != -1]
            signal = currentSignals[Random
                          .Range(0, currentSignals.Length)];
        aleatorySignals[i] = signal;
        markersSignals[i].name += signal;
        textResults[i].GetComponent<Text>().text = signal;
        imagesTextResult[i].name += signal;
        int position = positionMarkers[Random
                            .Range(0, positionMarkers.Length)];
        positionMarkers = positionMarkers.ToList()
                             .Where (x => x != position).ToArray();
        markersLetters[position].name += signal;
        markersLetters[position]
                .GetComponentInChildren<TextMesh>().text = signal;
```



```
void OnTriggerEnter(Collider other)
   if (gameObject.tag.Equals(other.tag))
       return;
   char signal = gameObject.name[gameObject.name.Length - 1];
   if (signal.Equals(other.gameObject
                             .name[other.gameObject.name.Length - 1]))
       text.GetComponent<TextMesh>().color = Color.blue;
       GameObject.Find("ImageTextResult" + signal)
                    .GetComponent<Image>().sprite = spriteCheck;
       gameARScript.CheckFinishGame(signal.ToString());
   else
       text.GetComponent<TextMesh>().color = Color.red;
       gameARScript.CheckErrors();
```



```
public void StartProgress(GameObject objectClick)
    this.objectClick = objectClick;
    scriptProgress.IncrementValue(100);
public void CancelProgress()
    scriptProgress.Value = 0.01f;
    scriptProgress.TransitoryValue = 0;
public void ExecuteAction()
    CancelProgress();
    ExecuteEvents.Execute<IPointerClickHandler>(
          objectClick,
          new PointerEventData(EventSystem.current),
          ExecuteEvents.pointerClickHandler);
```

Resultados e Discussões

- Experimento
 - ABADA
 - Turma com 5 alunos
 - Todos deficientes auditivos e alguns com deficiências psicológicas
 - Realizado uma demonstração do sistema
 - Testes acompanhados

Resultados e Discussões

- Resultado do experimento
 - Um pouco de dificuldade no primeiro módulo
 - Um pouco de dificuldade no início do segundo módulo para associar os marcadores
 - Um pouco de dificuldade no início do terceiro módulo com o HMD
 - Alunos que usavam óculos
 - Padrões de botões
 - No final, todos ficaram usando sozinho o sistema

		_		
Características / Trabalhos correlatos	Ferramenta desenvolvida	Freire et al. (2015)	Santos e Souza et al. (2013)	Santos e Lobo et al. (2013)
Plataforma	Smartphone	Computador	Computador	Computador
Exibir os sinais em 3D	X	Sim	Parcialmente	Parcialmente
Realidade Aumentada	X	X	x	X
Realidade Virtual	X			
Associar os objetos virtuais	X	X	x	X
Consultar o sinal de um algarismo numérico ou letra	X			
Forma de associação dos marcadores	Sistema de colisão	Marcador fiducial	Marcador fiducial	Não informado
Ferramentas utilizadas	Unity, SDK Vuforia e Google VR	ARToolKit	ARToolKit	ARToolKit

Conclusões e Sugestões

Objetivos do sistema alcançados

Ferramentas utilizadas foram adequadas

Contribuição social

Contribuição científica

Extensões

- implementar no segundo módulo a possibilidade de o usuário usar o HMD para poder ficar com as duas mãos livres para manusear os marcadores
- criar um sistema de pontuação por usuário para o segundo e terceiro módulo do sistema
- implementar uma interface em Libras para o sistema
- melhorar o desempenho do segundo módulo de RA, para funcionar melhor em smartphones e tablets com hardware mais limitado

Apresentação Prática

