Final Report

Zaher Khateeb - MLOps 24

We aim to build two robust machine learning pipelines to address the client's business problems: (without changing the model type or hyperparameters)

- 1. An improved model for predicting the success of marketing campaigns for term deposits using the bank marketing dataset.
- 2. An enhanced model for assessing credit risk using the German credit risk dataset.

Objectives:

- Develop an automatic feature selection step to improve model performance.
- Measure improvement using predefined ROC-AUC metric.

Customer Consumption:

- The marketing model will provide insights and predictions to optimize campaign strategies, targeting the most likely customers for term deposits.
- The credit risk model will offer more accurate risk assessments to inform lending decisions and reduce default rates.

Personnel

Y-Data:

• Project Lead: Zaher

Metrics

Qualitative Objectives:

- Enhance the efficiency of marketing campaigns.
- Improve the accuracy of credit risk assessments.

Quantifiable Metrics:

- 1. Marketing Model:
 - Baseline ROC-AUC: 0.89
 - Target improvement: Increase ROC-AUC by 2% (0.91)
- 2. Credit Risk Model:
 - o Baseline ROC-AUC: 0.78
 - Target improvement: Increase ROC-AUC by 2% (0.80)

Analyses Execution

- 1. Iterating over the analyses_to_run list.
- Checking if each analysis is defined in the analysis_methods dictionary.
- 3. For each valid analysis, iterating over the trained_pipelines.

4. Executing the specified analysis method on each pipeline.

Analyses Methods

Three specific types of analyses are defined in the ModelImprover class:

1. Uncertainty Analysis

- **Purpose**: To understand the confidence level of the model's predictions.
- **Method**: Uses a baseline ensemble Monte Carlo method to calculate the uncertainty of the model's predictions.

2. Feature Importance Analysis

- **Purpose**: To determine the importance of different features used by the model.
- **Method**: Uses SHAP values to plot feature importance and SHAP summary plots, and selects features based on their SHAP values.

3. Feature Performance Analysis

- **Purpose**: To analyze the performance of individual features in contributing to the model's predictions.
- **Method**: Assesses how changes in feature values affect model accuracy or other performance metrics, identifying weaknesses in the model's use of certain features.

Utility Classes and Methods

1. Uncertainty

• Methods:

 baseline_ensemble_monte_carlo: Calculates the uncertainty of the model's predictions using ensemble Monte Carlo simulations.

2. Explainability

Methods:

- plot_feature_importance: Plots the importance of each feature.
- plot_shap_summary: Creates a SHAP summary plot.
- select_features_based_on_shap: Selects features based on their SHAP values.

3. FeaturePerformanceWeaknessAnalyzer

o Methods:

- analyze_feature_performance: Analyzes the performance of individual features.
- plot_metric_drops: Plots the performance drops for vulnerable features.

Data and Model Parameters

Each analysis method receives a comprehensive set of parameters:

- **pipeline_name**: The name of the pipeline.
- pipeline: The pipeline object.

- **model**: The trained model.
- all_feature_names: List of all feature names.
- **X_train_processed**: Processed training dataset.
- **X_test_processed**: Processed test dataset.
- **X_test**: Original test dataset.
- **y_train**: Training labels.
- **y_test**: Test labels.
- auc: AUC score of the model.