Logic Specification and Z Schema

Basic Logic Operators

- Logical negation (¬)
- Logical conjunction (Λ or &)
- Logical disjunction (V or ||)
- Logical implication (→)
- Logical equality (= or ↔)

Logic Negation

• NOT p (also written as ¬p)

Logic Conjunction

p AND q (also written as p ∧ q, p & q, or p·q)

p	q	p . q
1	1	1
1	0	0
0	1	0
0	0	0

Logic Disjunction

p OR q (also written as p V q or p + q)

p	\boldsymbol{q}	p+q
1	1	1
1	0	1
0	1	1
0	0	0

Logic Implication

p implies q (also written as p → q, not p or q)

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
E	F	T

Logic Equality

• **p EQ q** (also written as p = q, $p \leftrightarrow q$, or $p \equiv q$)

p	q	$p \equiv q$
T	Ŧ	T
T	Ē	F
F	T	F
F	F	T

First-order logic

 While propositional logic deals with simple declarative propositions, first-order logic additionally covers predicates and quantification.

 Each interpretation of first-order logic includes a domain of discourse over which the quantifiers range.

Predicate

- A predicate resembles a function that returns either True or False.
- Consider the following sentences: "Socrates is a philosopher", "Plato is a philosopher".
- In propositional logic these are treated as two unrelated propositions, denoted for example by p and q.
- In first-order logic, however, the sentences can be expressed in a more parallel manner using the predicate Phil(a), which asserts that the object represented by a is a philosopher.

Quantifier

- \forall universal quantifier; \exists existential quantifier
- Let Phil(a) assert a is a philosopher and let Schol(a) assert that a is a scholar
- For every a, if a is a philosopher then a is a scholar. $\forall a(\text{Phil}(a) \rightarrow \text{Schol}(a))$
- If a is a philosopher then a is a scholar.

$$\exists a(\text{Phil}(a) \land \neg \text{Schol}(a)).$$

Z notation

 The Z notation, is a formal specification language used for describing and modeling computing systems.

 It is targeted at the clear specification of computer programs and the formulation of proofs about the intended program behavior.

Z Schemas

- The Z schema is a graphical notation for describing
 - State spaces
 - operations

- The declarations part of the schema will contains:
 - A list of variable declarations
 - References to other schemas (schema inclusion)

 The predicate part of a schema contains a list of predicates, separated either by semi-colons or new lines.

State Space Schemas

 Here is an example state-space schema, representing part of a system that records details about the phone numbers of staff.

```
_PhoneBook _____
known : IP NAME
tel : NAME → PHONE
dom tel = known
```

Assume that NAME is a set of names, and PHONE is a set of phone numbers.

Operation Schemas

- In specifying a system operation, we must consider:
 - The objects that are accessed by the operation;
 - The pre-conditions of the operation, i.e., the things that must be true for the operation to succeed;
 - The post-conditions, i.e., the things that will be true after the operation, if the pre-condition was satisfied before the operation.

- Consider the 'lookup' operation: input a name, output a phone number.
 - This operation accesses the PhoneBook schema;
 - It does not change it;
 - It takes a single 'input', and produces a single output;
 - Pre-condition: the name is known to the database.

- This illustrates the following Z conventions:
 - Placing the name of the schema in the declaration part 'includes' that schema;
 - 'input' variable names are terminated by a question mark;
 - 'output' variables are terminated by an exclamation mark;
 - The \equiv (Xi) symbol means that the PhoneBook schema is not changed; if we write a Δ (delta) instead, it would mean that the PhoneBook schema did change.

Add a name/phone pair to the phone book.

```
\triangle AddName \_
\triangle PhoneBook
name? : NAME
phone? : PHONE
name? \not\in known
tel' = tel \cup \{name? \mapsto phone?\}
```

 Appending a 'to a variable means "the variable after the operation is performed".

Example: Order Invoicing

[OrderId, Product]

 $OrderState ::= pending \mid invoiced$

Stock _____stock : bag Product

 $Order == \{order : bag Product \mid order \neq \emptyset\}$

Order Invoices

OrderInvoices _____

 $orders: OrderId \rightarrow Order$

 $orderStatus: OrderId \rightarrow OrderState$

dom orders = dom orderStatus

State

 $State _$ Stock OrderInvoices $newids : \mathbb{P} OrderId$ $dom \ orders \cap newids = \emptyset$

State' $stock' = \emptyset$ $orders' = \emptyset$ newids' = OrderId

```
\Delta State
State
State'
newids' = newids \setminus dom \ orders'
```

```
InvoiceOrder \triangle \triangleState id?: OrderId orders(id?) \sqsubseteq stock orderStatus(id?) = pending stock' = <math>stock \ orders(id?) orders' = orders orderStatus' = orderStatus \oplus \{id? \mapsto invoiced}
```

 $Report ::= OK \mid order_not_pending \mid not_enough_stock \mid no_more_ids$

InvoiceError _______ EState id?: OrderId rep!: Report

 $orderStatus(id?) \neq pending$ $rep! = order_not_pending$

```
	extstyle 	ext
```

A total operation for ordering

```
InvoiceOrderOp == \\ (InvoiceOrder \land Success) \lor InvoiceError \lor StockError
```

- Z is a popular formal specification language.
- Use of Z requires knowledge of set theory, functions and discrete mathematics, including first-order logic.
- Like the earlier formal systems examined, there are several variants of Z.

- In its simplest form a Z specification consists of 4 sections:
 - I. Given sets, data types, and constants
 - 2. State definitions
 - 3. Initial state
 - 4. Operations
- It uses standard set and logic operators: ∃, ⊃,⇒
- It uses some additional symbols such as ⊕, →,⊲.

Given sets

- A Z specification begins with a list of given sets. These are sets that need not be defined in detail.
- The names of given sets appears in brackets, e.g., [Button] to represent the set of buttons in the elevator problem.

declarations

predicates

State definition

- ▶ A Z specification consists of a number of schemata.
- ▶ Each schemata consists of a group of variable declarations and a list of predicates that constrain the values of the variables.
- A schemata S is defined as:

declarations

predicates

- For the elevator problem, there are four subsets of Button:
 - floor buttons
 - elevator buttons
 - buttons (the set of all buttons in the elevator problem)
 - pushed (the set of buttons that have been pushed and are therefore on).
- The symbol \mathbb{P} denotes powerset (the set of all subsets of a given set).

Button_State

floor_button elevator_button:

buttons:

pushed:

P Button

P Button

P Button

floor_button \cap elevator_button = \emptyset

floor_button U elevator_button = buttons

Initial state

- The abstract initial state describes the state of the system when it is first turned on.
- This is a vertical schema definition (as opposed to a horizontal one).
- The initial state above tells us that when the elevator is first turned on, the set pushed is initially empty; that is, all buttons are off.

Operations

- If a button is pushed for the first time, then that button is turned on and added to the set pushed.
- The Δ in the first line of the schema tells us that operation changes the state of Button_State.
- The operation has one input variable, button? The ? symbol denotes an input variable, whereas the ! symbol denotes an output variable.

```
Dutton_State
button?: Button

(button? ∈ buttons) Λ

(((button? ∉ pushed) ∧ (pushed' = pushed ∪ {button?})) ∨

((button? ∈ pushed) ∧ (pushed' = pushed)))
```

Z

- The predicate part of the operation consists of a group of preconditions that must hold before the operation is invoked, and a group of postconditions that must hold after the operation is complete.
- If the operation is invoked without the preconditions being satisfied, then unspecified (read unpredictable) results occur.
- pushed' denotes an updated value of pushed.

- When an elevator arrives at a floor, if the corresponding floor button is on, then it must be turned off, similarly for the corresponding elevator button.
- ▶ The symbol \ denotes set difference
- The solution below is an oversimplification on that it does not distinguish between up and down floor buttons.

```
______Floor_Arrival

ΔButton_State
button?: Button

(button? ∈ buttons) Λ

(((button? ∈ pushed) Λ (pushed' = pushed \ {button?})) ∨

((button? ∉ pushed) Λ (pushed' = pushed)))
```

- Z is fairly widely used and has been employed on some large scale projects.
- Easy to find faults in Z specifications, especially during inspections of the specification, and inspection of the design and/or code against the formal specification.
- 2. Need to be precise when using Z, resulting in fewer ambiguities, contradictions and omissions than an informal specification.
- 3. Can use Z to perform a formal proof of correctness.
- 4. Professionals with high school math can be taught to write Z specifications (although more mathematical sophistication is required to do the proof).
- 5. Use of Z decreases software cost by decreasing overall development time.
- 6. Natural language specifications (for the customer for example) derived from a Z specification has fewer problems than a natural language description written from scratch without a formal description to act as a guide.

Z, Petri nets and beyond

- > Z, like Petri nets, is still undergoing development.
- Researchers are constantly extending Z and Petri nets to provide greater functionality, power and flexibility.
- There are temporal versions of Z which allow the predicates to cover time dependant semantics.
- There are many other formalisms including:
 - Anna
 - Gist
 - VDM
 - CSP
 - Hoare axiomatics
 - Operational semantics
 - Denotational semantics
 - Larch
 - OBJ
 - Lotos