EE 381 Final Exam Formula Sheet – You may write on this paper.

Name, I.D. #, Date: _____

$$P({X = x}) = {}_{n}C_{x} p^{x} (1-p)^{(n-x)} \text{ with } x = 0, 1, 2, \dots, n \text{ and } {}_{n}C_{x} = \frac{n!}{(n-x)!x!}$$

$$\mu = np$$
 $\sigma = \sqrt{np(1-p)}$

$$P({X = x}) = e^{-\lambda} \frac{\lambda^x}{x!}$$
 $\mu = \lambda$ $P({Y = y}) = p(1 - p)^{(y-1)}$ $\mu = \frac{1}{p}$

$$P(\lbrace Y=k\rbrace) = \frac{r^{C_{k}} w^{C_{n-k}}}{N^{C_{n}}} \text{ with } r+w=N$$

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-(z^2/2)}$$
 with $-\infty < z < \infty$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(1/2)[(x-\mu)/\sigma]^2}$$
 with $-\infty < x < \infty$

$$f_T(t) = \lambda e^{-\lambda t}$$
 for $t \ge 0$

$$f_Y(y) = \frac{1}{b-a}$$
 with $a < y < b$

$$z = \frac{X - \mu}{\sigma}$$
 $z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}}$ $z = \frac{\bar{x} - \mu}{s/\sqrt{n}}$ $z = \frac{S_n - n\mu}{\sqrt{n}\sigma}$ with $S_n = \sum_{i=1}^n X_i$ $X = z\sigma + \mu$

$$E(X) = \sum x f_X(x)$$
 $E(X) = \int x f_X(x)$ $E(Y) = \int g(x) f_X(x) dx$ for $Y = g(X)$

$$\bar{x}-E < \mu < \bar{x}+E$$
 where $E=t_{\alpha/2} \frac{s}{\sqrt{n}}$ with d.f. = n – 1

$$\sqrt{\frac{s^2(n-1)}{X_P^2}} < \sigma < \sqrt{\frac{s^2(n-1)}{X_I^2}}$$
 with d.f. = n - 1

$$\bar{x} = \frac{\sum x}{n}$$
 $\sigma = \sqrt{\frac{\sum (X - \mu)^2}{N}}$ $s = \sqrt{\frac{n \sum x^2 - (\sum x)^2}{n(n-1)}}$

1 – α	$Z_{\alpha/2}$
99%	2.58
95%	1.96
90%	1.65

$$\hat{p} - E where $E = Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$$

$$Var(X) = E[(X - \mu)^2]$$
 $Var(X) = E(X^2) - \mu^2$ $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - \mu_X \mu_Y + \mu_Y \mu_Y + \mu$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \qquad P(A \cap B \cap C) = P(A)P(B)P(C)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$F_X(x) = P(\{X \le x\})$$
 $S_\infty = \frac{1}{1-\alpha}$ for $\sum_{k=0}^\infty \alpha^k$ where $0 < \alpha < 1$

$$z = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$
 with d.f. = n - 1 $f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$