Aude EVRARD	Gonzalo BECKER

11. Compléter les tableaux ci-dessous par les résolutions en distance et en vitesse pour chaque gamme de distance et de vitesse. Commentaires.

D'après le point 10, la résolution en distance peut se calculer comme $\Delta R = c/2B$ et, d'après le point 9, la résolution en vitesse peut se calculer comme $\Delta v = c/(2f_{min}NT_R)$. Alors, les tables peuvent se remplir en applicant ces deux formules:

Distance Max (m)	Résolution (m)	
5	0.039	
10	0.078	
20	0.156	
50	0.390	
100	0.781	
200	1.563	

Vitesse Ma (Km/h)	Résolution (Km/h)
25	0.396
50	0.793
100	1.586
200	2.929

12. Compléter le tableau ci-dessous pour les différentes situations (distance/vitesse/SER).

La densité de puissance émise peut se calculer comme

$$S = \frac{P_T \cdot G_{antenne}}{4\pi R^2}$$

Si l'on assume une emission isotrope depuis le cible, d'aire σ , la densité de puissance qui rebondit est

$$S_r = \frac{P_T.\,G_{antenne}.\,\sigma}{(4\pi R^2)^2}$$

Si l'on envisage que l'aire effective de l'antenne est $A_e=\lambda^2 G_{antenne}/(4\pi)$, on arrive a la puissance reçue par le radar:

$$P_{reçue} = \frac{P_T \ G_{antenne}^2 \sigma \lambda^2}{(4\pi)^3 R^4} = \frac{EIRP \ G_{antenne} \sigma \lambda^2}{(4\pi)^3 R^4}$$

Où $EIRP=20dBm,\,G_{antenne}\geq 10dBi,\,\lambda=c/f=3.922\,.\,10^{-3}m$

À partir de là, il est possible de calculer les valeurs demandés:

Distance Vitesse relative	Cible/SER (dBm^2)	$P_{reçue}(dBm)$	$\frac{T_R[us]}{B[MHz]}[ps^2]$	N [dBm]	SNR [dB]
$d = 35 m$ $v_R = 5 km/h$	Piéton -5	-117.86	0.37	-124.4	6.5
$d = 100 m$ $v_R = 100 km/h$	Voiture 20	-111.11	0.18	-118.4	7.3
$d = 200 m$ $v_R = 70 km/h$	Camion 30	-113.15	0.37	-118.4	5.3

13. Calculer la puissance de bruit N sachant que la bande de bruit prise en compte ici est liée à l'échantillonnage du signal qui donne la fréquence Doppler.

La puissance de bruit peut se calculer comme:

$$N = k . BW . (F_R T_0)$$

Où
$$BW = 1/T_R$$

14. Calculer les SNR et compléter le tableau précédent

$$SNR[dB] = P_{recue}[dBm] - N[dBm]$$

15. Quel traitement approprié est réalisé sur une trame pour obtenir simultanément la distance et la vitesse ?

La distance et la vitesse peuvent être obtenues à partir d'une transformée de Fourier 2D du signal reçu, à chaque chirp (pour la distance) et à des points dans différents chirps qui ont la même fréquence (pour la vitesse). Cette idée est représentée dans le schéma suivant :

Fig. 2 The basic principle of the FMCW radar with the sawtooth shape modulation: (a) the transmitted and received signal, (b) the corresponding beat frequency, and (c) the beat signal processing flow.

Source:

https://www.researchgate.net/publication/330951560 Assisting the visually impaired Multi target warning through millimeter wave radar and RGB-depth sensors/figures?lo=1