STAT 135 Lecture 5

Henry Liev

2 July 2025

Method 0.1

Delta Method:

 $Y, E(Y) = \mu, Var(Y) = \sigma^2$

Approximate Var(f(Y))

Remark 0.2

 $\sqrt{n}(f(\bar{X}) - f(\mu)) \approx \mathcal{N}(0, f'(\mu)^2 \sigma^2)$

Remark 0.3

Large sample properties of MLE

- 1. MLE is consistent: $\hat{\theta} \to \theta$
- 2. MLE are asymptotically normal
- 3. MLE is asymptotically efficient (optimality)

Remark 0.4

Intuition about consistency:

$$L(\theta) = \sum_{i=1}^{n} log(f(x_i|\theta))$$

$$\frac{1}{n} \sum_{i=1}^{n} log(f(x_i|\theta)) \xrightarrow{p} E(log(f(x|\theta)))$$

The maximizing θ of the average of the log-likelihood tends towards the θ that maximizes the expected log-likelihood.

Definition 0.5

A sequence of estimators T_n of a parameter is **consistent** if

$$T_n \stackrel{p}{\to} \theta$$

Definition 0.6

Convergence in probability

$$X_n \stackrel{p}{\to} \theta, \forall \varepsilon > 0, P(|X_n - \theta| > \varepsilon) \to 0 \text{ as } n \to \infty$$

Definition 0.7

Information about θ (Fisher Information)

$$I(\theta) = E\left[\left[\frac{\partial}{\partial \theta}\log(f(x|\theta))\right]^2\right]$$

 $\sqrt{n}(\hat{\theta}_{MLE} - \theta) \xrightarrow{d} \mathcal{N}(0, \frac{1}{I(\theta)})$ Minimizes variance by maximizing the information

Lemma 0.8

$$I(\theta) = -E\left[\frac{\partial^2}{\partial \theta^2}\log(f(x|\theta))\right]$$

Definition 0.9

Relative rate of change of density at x

$$\left(\frac{f'(x)}{f(x)}\right)^2$$

2

Method 0.10

MLE Playbook:

How to use MLE:

- 1. Find $\hat{\theta}_{MLE}$, maximize the likelihood
 - Write down log likelihood
 - $\bullet~$ Take derivative and set to 0
 - Solve
- 2. Find $I(\theta)$

Usually use $-E\left[\frac{\partial^2}{\partial \theta^2}\log(f(x|\theta))\right]$

3. Form approximate interval: $\hat{\theta}_{MLE} \pm 1.96 \frac{1}{\sqrt{nI(\hat{\theta}_{MLE})}}$

Example 0.11

$$X_1, \dots, X_n \overset{i.i.d}{\sim} \exp(\lambda)$$

$$\hat{\theta}_{MLE} = \frac{1}{\bar{X}}$$

$$\frac{1}{\bar{X}} \pm 1.96 \frac{1}{\sqrt{nI(\lambda)}}$$

$$\log(f(x|\theta)) = \log(\lambda) - \lambda x$$

$$\frac{\partial}{\partial \lambda} \log(f(x|\lambda)) = \frac{1}{\lambda} - x$$

$$\frac{\partial^2}{\partial \lambda^2} \log(f(x|\lambda)) = -\frac{1}{\lambda^2}$$

$$I(\lambda) = \frac{1}{\lambda^2}$$

$$\hat{\theta}_{MLE} \pm 1.96 \frac{1}{\sqrt{\frac{n}{\bar{X}^2}}}$$

When can we get CIs?

- 1. \overline{X} CLT
- 2. $f(\overline{X})$ is a smooth function of \overline{X} (Delta Method)
- 3. MLE

Definition 0.12

Parametric Bootstrap

A way to get CIs with simulation instead of math

Method 0.13

$$X_1, \dots, X_n \stackrel{i.i.d}{\sim} f(x|\theta)$$

 $\hat{\theta}$ estimates θ_0 (' θ_0 is the true value of θ)

Think about the distribution of $\hat{\theta} - \theta_0$

Suppose we have a distribution such that 95% of the distribution is contained in the interval (a,b)

$$P(a \le \hat{\theta} - \theta_0 \le b) = 0.95$$

$$P(-b \le \theta_0 - \hat{\theta} \le -a) = 0.95 \ P(\hat{\theta} - b \le \theta_0 \le \hat{\theta} - a) = 0.95$$

$$(\hat{\theta} - b, \hat{\theta} - a)$$
 is a 95% CI for θ_0

Don't know θ_0 or distribution of $\hat{\theta} - \theta_0$, estimate θ_0 using $\hat{\theta}$ and create an estimated density $f(x|\hat{\theta})$ by simulating from $f(x|\hat{\theta})$, with which we can find \hat{a} and \hat{b}

Use \hat{a} and \hat{b} to get a CI

Example 0.14

$$X_1, \dots, X_{50} \overset{i.i.d}{\sim} \operatorname{Poisson}(\lambda)$$

 $\lambda = 3$, but we don't know it

 \bar{X} as our estimator of λ

- 1. Compute $\bar{X}_{\hat{\theta}} \to 3.2$
- 2. Take 10000 samples of size 50 from Poisson(3.2)
- 3. Compute θ^* for each sample
- 4. Approximate CI = $(\hat{\theta} \hat{b}, \hat{\theta} \hat{a})$