DATABASE SYSTEMS

Theoretical Assignment

Dr Paolo Guagliardo

Released: 6 Nov 2015 - Due: 27 Nov 2015 at 16:00

Before you begin, please read carefully the policy on Late coursework and Academic misconduct and related links, in particular the Guidelines on plagiarism.

Submission instructions: Hand in your paper (handwritten or typed) to the ITO by the stated deadline. If you do not type, please make sure that your handwriting is legible.

Problem 1 (15 marks). Let R be a relation with two attributes, A and B, and let S be a relation with a single attribute, C. Express the relational calculus query $\{x \mid \exists y \ R(x,y) \land \forall z \ \big(S(z) \to R(x,z)\big)\}$ in relational algebra.

Problem 2 (10 marks). What is the answer to the query of Problem 1 when $R = \{(a_1, b_1), (a_1, c_1), (a_2, c_1), (a_1, b_2), (a_3, b_1), (a_2, b_1), (a_3, b_2)\}$ and $S = \{b_1, b_2\}$? Justify your answer (correct solutions without an appropriate explanation will get zero marks).

Problem 3 (20 marks). Are the following schedules conflict serializable? Justify your answers. For those that are, give an equivalent serial schedule.

T_1	T_2	T_3	T_4	T_1	T_2	T_3	T_4	T_5
read(A)					read(X)			
		read(B)		$write(\mathrm{X})$				
	read(A)					$read(\mathrm{X})$		
			read(B)		read(Y)			
$read(\mathrm{C})$				write(Y)				
		read(A)			read(Z)			
			$write(\mathrm{B})$			$write(\mathrm{Z})$		
	$read(\mathrm{B})$							$read(\mathbf{Z})$
	$read(\mathrm{C})$							$write(\mathbf{Z})$
		$read(\mathrm{C})$					write(Y)	
$write(\mathrm{C})$					'	'		'
		$write(\mathrm{C})$						

Problem 4 (20 marks). Consider a database schema over attributes A, B, C, D, E, F, G with the following functional dependencies:

$$BD \rightarrow C \;,\; BC \rightarrow DG \;,\; BFG \rightarrow D \;,\; CA \rightarrow D \;,\; BCA \rightarrow FE \;,\; B \rightarrow DA \;,\; DG \rightarrow BF \;,\; BE \rightarrow GFA \;$$

Each of the following questions is worth 5 marks:

- (a) Find the candidate keys and the prime attributes of this schema.
- (b) Compute a minimal cover of this schema.
- (c) Produce a 3NF decomposition.
- (d) Produce a BCNF decomposition of this schema. Is it dependency-preserving? Justify your answer.

Problem 5 (15 marks). Consider a relation R with two attributes, A and B, and a relation S with a single attribute, B. Can the relational algebra query $\pi_A(R) \times (\pi_B(R) \cap S)$ be expressed in terms of $\pi, \sigma, \times, \rho$? If yes, produce an equivalent expression using only the given operators; otherwise, explain why it is so (answers without appropriate justification will get zero marks).

Problem 6 (20 marks). Prove that the algorithm below returns the closure $C_F(X)$ of X w.r.t. F and that its running time is $O(n^2)$, where n is the size (i.e., number of attributes) of the schema.

```
INPUT: a set F of FDs, and a set X of attributes

OUTPUT: C_F(X)

Initialize unused to F

Initialize closure to X

repeat

if Y \to Z \in unused and Y \in closure then

Remove Y \to Z from unused

Add Z to closure

end if

until no more changes

return closure
```

TOTAL: 100 marks.