Resumo de Cálculo em uma Variável Complexa

Sumário

Números Complexos e propriedades (Week 1)

Exponencial, Limite e Derivada (Week 2)

Equações de Cauchy-Riemann (Week 3)

Cauchy-Riemann, Eq. de Laplace e Integral (Week 4)

Números Complexos e propriedades (Week 1)

Propriedades 1 As seguintes propriedades valem para quaisquer $z, w, t \in \mathbb{C}$:

(a)
$$z + (w + t) = (z + w) + t$$

(b)
$$z + w = w + z$$

(c)
$$0 + z = z$$

(d)
$$z + (-z) = 0$$

(e)
$$z \cdot (w \cdot t) = (z \cdot w) \cdot t$$

(f)
$$zw = wz$$

$$(g) 1 \cdot z = z$$

(h)
$$z \cdot z^{-1} = 1 \text{ se } z \neq 0$$

(i)
$$z \cdot (w+t) = z \cdot w + z \cdot t$$

Definição 1 Um número complexo z é da forma $z=x+iy, \ x,y\in\mathbb{R}$ e $i=\sqrt{-1}$, que podemos escrever como um par de variáveis de \mathbb{R}^2 de forma que z=(x,y).

Definição 2 (Soma e produto nos complexos) Seja z=(x,y) e $w=(a,b), x,y,a,b \in \mathbb{R}$, definimos soma e produto, para manter consistência com as propriedades acima, da seguinte forma

$$z + w = (x + a, y + b)$$
$$z \cdot w = (xa - yb, xb + ya)$$

Definição 3 (O Módulo) Seja z = x + iy um complexo, então o **módulo** ("tamanho") de um número complexo é definido por

$$\mid z \mid = \sqrt{x^2 + y^2}$$

Definição 4 (O Conjugado) Seja z = x + iy um complexo, então o conjurado de um número complexo é definido por

$$\overline{z} = x - iy$$

Propriedades 2 (Propriedades do conjugado) As seguintes propriedades valem para quaisquer $z, w \in \mathbb{C}$:

(a)
$$\overline{\overline{z}} = z$$
, $\overline{z \pm w} = \overline{z} \pm \overline{w}$ $e \overline{zw} = \overline{zw}$

(b)
$$\overline{z/w} = \overline{z}/\overline{w} \text{ se } w \neq 0$$

(c)
$$z + \overline{z} = 2Re(z) \ e \ z - \overline{z} = 2iImg(z)$$

- (d) $z \in \mathbb{R}$ se e somente se $\overline{z} = z$
- (e) z é imaginário puro se e somente se $\overline{z} = z$

Definição 5 (A Forma Polar) Seja $z = x + iy \ com \ z \neq 0$, então podemos escrever z como

$$z = r(\cos(\theta) + \sin(\theta))$$

Com as sequintes propriedades

1.
$$r = |z|$$

2.
$$cos(\theta) = \frac{x}{|r|}$$

3.
$$sen(\theta) = \frac{y}{|x|}$$

Teorema 1 Seja $n \in \mathbb{Z}_{++}$ e $z = r(cos(\theta) + isen(\theta))$. Então

$$z^n = r^n(\cos(n\theta) + i\sin(n\theta))$$

Exponencial, Limite e Derivada (Week 2)

Definição 6 (Função exponencial) Seja $z \in \mathbb{C}$ com z = x + iy, $x, y \in \mathbb{R}$, então

$$e^z := e^x(cos(y) + isen(y))$$

Definição 7 (Cosseno e seno complexo) Para $z \in \mathbb{C}$, vamos definir

$$\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz})$$

$$sen(z) = \frac{1}{2i}(e^{-iz} - e^{-iz})$$

Propriedades 3 (Cos e sen) Seja $z=x+iz,\ x,y\in\mathbb{R}$. Então

- (a) cos(z) = cos(x)cosh(y) isen(x)senh(y)
- (b) sen(z) = sen(x)cosh(y) + icos(x)senh(y)
- (c) $|\cos z|^2 = \cos^2(x) + \sinh^2(y)$
- (d) $| senz |^2 = sen^2(x) + senh^2(y)$

Definição 8 (Função logaritmo) Seja $z \in \mathbb{C}, z \neq 0^1$

$$Ln(z) = ln \mid z \mid +iArg(z)$$

$$ln(z) = ln \mid z \mid +iarg(z)$$

Definição 9 (Limite) Seja $z_0 \in \mathbb{C}$ um ponto de acumulação de $D \subset \mathbb{C}$ e seja $f: D \to \mathbb{C}$. Dizemos que

$$\lim_{z \to z_0} f(z) = l$$

Quando para todo $\varepsilon > 0$, $\exists \delta > 0$ tal que

$$z \in D - \{z_0\} \ e \ |z - z_0| < \delta \Longrightarrow |f(z) - l| < \varepsilon$$

Definição 10 (Continuidade) Seja $f: D \subset \mathbb{C} \to \mathbb{C}$ e $z_0 \in D$. Dizemos que $f \notin$ contínua em z_0 se para todo $\varepsilon > 0$, $\exists \delta > 0$ tal que

$$z \in D - \{z_0\} \ e \ |z - z_0| < \delta \Longrightarrow |f(z) - f(z_0)| < \varepsilon$$

¹Aqui: $Arg(z) = \theta, \ \theta \in (-\pi, \pi] \ e \ Arg(z) = \theta$

Definição 11 (Diferenciabilidade) Seja $f: D \subset \mathbb{C} \to \mathbb{C}$ e $z_0 \in D$ ponto de acumulação de D. Se existe o limite

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

dizemos que f é diferenciável em z_0 (ou derivável) e denotamos o limite acima por $f'(z_0)$.

Definição 12 (Funções Analíticas) Seja $f:D\subset\mathbb{C}\to\mathbb{C}$, f é dita analítica no domínio D se f é diferenciável em todos os pontos de D. E também é dita analítica em um ponto $z_0\in D$ se f é analítica em uma vizinhança de z_0 .

Equações de Cauchy-Riemann (Week 3)

Teorema 2 (Cauchy-Riemann (ida)) Seja f(z) = u(x,v) + iv(x,y) definida e continua em alguma vizinhança de z = x + iy e suponha f diferenciável em z. Então, as derivadas parciais de u e v existem e satisfazem²

$$u_x(z) = v_y(z)$$
 e $u_y(z) = -v_x(z)$

Corolário 2.1 Se f é analítica em um domínio D, então as derivadas parciais de u e v existem em D e

$$u_x(z) = v_y(z)$$
 e $u_y(z) = -v_x(z)$

$$f' = u_x + iv_x$$
 e $f' = v_y - iu_y$

Teorema 3 (Cauchy-Riemann (volta)) Se as funções reais u(x,y) e v(x,y) de variáveis $x,y \in \mathbb{R}$ tiverem derivadas parciais contínuas satisfazem as equações de Cauchy-Riemann em algum domínio D, então a função complexa f(z) = u(x,y) + iv(x,y) é analítica em D, com z = x + iy.

Cauchy-Riemann, Eq. de Laplace e Integral (Week 4)

Teorema 4 (Eq. de Laplace) Se f(z) = u(x,y) + iv(x,y) é analítica em um domínio D, (e as derivadas segundas de u e v existem e são continuas)³, então ambas u e v satisfazem a equação de Laplace.

$$\nabla u = u_{xx} + u_{yy} = 0$$

$$\nabla v = v_{xx} + v_{yy} = 0$$

Teorema 5 (Trigonométricas e logaritmo) Seja $z_1 \in \mathbb{C}$ e $z_2 \in \mathbb{C} - \{0\}$, temos que vale que

$$\sin'(z_1) = \cos(z_1)$$

$$\cos'(z_1) = -\sin(z_1)$$

$$Ln'(z_2) = \frac{1}{z_2}$$

²Chamadas aqui de Equações de Cauchy-Riemann

³Mais adiante, veremos que a parte em parenteses não é necessária.

Definição 13 (Integral) Seja $C \in \mathbb{C}$ uma curva $e \ f : D \subset \mathbb{C} \to \mathbb{C}$ com D contendo a curva C, então a integral de f na curva C é definida por

$$\int_{C} f(z)dz := \lim_{n \to \infty} \sum_{m=1}^{n} f(w_m) \Delta z_m$$

Onde $\Delta z_m = z_m - z_{m-1}$ e w_m um ponto de C no arco que liga z_m a z_{m-1} . Em particular quando z(a) = z(b) temos uma curva fechada e denotamos a integral como

$$\oint_C f(z)dz$$

Propriedades 4 (Propriedades da Integral) Consequências diretas da definição de integral

1. Linearidade:

$$\int_{C} \alpha f_1(z) + \beta f_2(z) dz = \alpha \int_{C} f_1(z) dz + \beta \int_{C} f_2(z) dz$$

2. Caminho inverso:

$$\int_{-C} f(z)dz = -\int_{C} f(z)dz$$

 $Em\ que\ -C\ \'e\ a\ curva\ parametrizada\ no\ sentido\ contrário\ a\ C.$

3. Partição da Curva:

$$\int_C f(z)dz = \int_{C_1} f(z)dz + \int_{C_2} f(z)dz$$

Onde $C = C_1 \cup C_2$

Teorema 6 Seja f(z) = u(z) + iv(z) uma função analítica em torno da curva C. Podemos escrever

$$\int_{C} f(z)dz = \int_{C} G + i \int_{C} H \tag{1}$$

Em que $G, H : D \subset \mathbb{R}^2 \to \mathbb{R}^2$ com

$$G(x,y) := (u(x,y), -v(x,y))$$

 $H(x,y) := (v(x,y), u(x,y))$

e D contém a curva C, por Cauchy-Riemann os jacobianos J_G e J_H são simétricos i.e. G e H são conservativos e as integrais da Equação 1 são indeprendentes de caminho.