## **Iitaka** fibration

**Theorem 1** (Iitaka fibration, ref. [Laz04, Theorem2.1.33]). Let X be a normal projective variety, and L a line bundle on X such that  $\kappa(X,L) > 0$ . Then for all sufficiently large  $k \in N(X,L)$ , the rational mappings  $\phi_k : X \to Y_k$  are birationally equivalent to a fixed algebraic fibre space

$$\phi_{\infty}: X_{\infty} \to Y_{\infty}$$

of normal varieties, and the restriction of L to a very general fibre of  $\phi_{\infty}$  has Iitaka dimension = 0. More specifically, there exists for large  $k \in N(X, L)$  a commutative diagram

$$\begin{array}{ccc} X & \xrightarrow{u_{\infty}} & X_{\infty} \\ \phi_{k} \downarrow & & \downarrow \phi_{\infty} \\ Y_{k} & \xrightarrow{-v_{k}} & Y_{\infty} \end{array}$$

of rational maps and morphisms, where the horizontal maps are birational and  $u_{\infty}$  is a morphism. One has  $\dim Y_{\infty} = \kappa(X, L)$ . Moreover, if we set  $L_{\infty} = u_{\infty}^* L$ , and take  $F \subseteq X_{\infty}$  to be a very general fibre of  $\phi_{\infty}$ , then

$$\kappa(F, L_{\infty}|F) = 0.$$

More precisely, the assertion is that the last displayed formula holds for the fibres of  $\phi_{\infty}$  over all points in the complement of the union of countably many proper subvarieties of  $Y_{\infty}$ .

## Appendix

## References

[Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. I. Vol. 48. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Classical setting: line bundles and linear series. Springer-Verlag, Berlin, 2004, pp. xviii+387. ISBN: 3-540-22533-1. DOI: 10.1007/978-3-642-18808-4. URL: https://doi.org/10.1007/978-3-642-18808-4 (cit. on p. 1).

Date: October 22, 2025, Author: Tianle Yang, My Homepage

