4.1: One-to-one and Inverse Functions

Supplementary Notes

A function f is one-to-one if $f(x_1) \neq f(x_2)$ for any distinct x_1 and x_2 in the domain of f.

Vertical Line Test: If every vertical line intersects the graph of f at most once, then f is a function

<u>Horizontal Line Test</u>: If every horizontal line intersects the graph of f at most once, then f is one-to-one

Any one-to-one function f has an inverse f^{-1} with the following properties

- $x \xrightarrow{f} y$ if and only if $x \xleftarrow{f^{-1}} y$
- (domain of f) = (range of f^{-1}) AND (range of f) = (domain of f^{-1})
- The graphs of f and f^{-1} are symmetric about the line y = x

1

Exercises

- 1. Find the formula for the inverse of the function $f(x) = \frac{-2x+1}{-x+3}$
- 2. Find the inverse of f(x) = -4x + 2 on [-2, 2].

3. If $f(x) = a(x-3)^2 + 2$ on $(3, \infty)$ and a < 0, then the inverse function is

A.
$$f^{-1}(x) = \sqrt{\frac{x-2}{a}} + 3$$
 on $(2, \infty)$

B.
$$f^{-1}(x) = \sqrt{\frac{x-2}{a}} + 3$$
 on $(-\infty, 2)$

C.
$$f^{-1}(x) = \frac{1}{a(x-3)^2+2}$$
 on $(3, \infty)$

D.
$$f^{-1}(x) = -\sqrt{\frac{x-2}{a}} + 3$$
 on $(3, \infty)$

E.
$$f^{-1}(x) = -\sqrt{\frac{x-2}{a}} + 3$$
 on $(-\infty, 2)$