

Universidade Tecnológica Federal do Paraná - Campus Curitiba

IA- Redes Neurias

Rede Multi-Layer Perceptron (MLP)

Perceptron e Adaline

Prof. Myriam Delgado

Perceptron e Adaline

Y∈ {0,1}

Aplicação em Problemas de Classificação Linearmente Separáveis

Prof. Myriam Delgado

Perceptron e Adaline

Y∈ {-α, +α}
Aplicação em
Aproximação
De Funções
(combinação
Linear de
Funções não
Lineares)

Prof. Myriam Delgado

Perceptron' e Adaline

Perceptron': MLP de camada única (aceita diferentes funções de ativação)

Multi-Layer Perceptron

Neurônio na MLP: função de ativação Sigmoide

Neurônio na MLP: partição x1 x x2

O que acontece se alterarmos os pesos w1, w2?

$$\Theta = 0$$
, w1=1, w2=3

O que acontece se alterarmos os pesos w1, w2?

$$\Theta = 0$$
, W1=3, w2=1

O que acontece se alterarmos o limiar Θ , e os Pesos w1, w2?

 $\Theta = 10$, W1=3, w2=1

O que acontece se alterarmos o limiar Θ , e os Pesos w1, w2?

$$\Theta$$
=-10, W1=3, w2=1

Multi-Layer Perceptron

- o Arquitetura da rede
- o Modelo do neurônio: função de ativação
- Treinamento
- Aplicação

O Treinamento de vários neurônios permite o ajuste dos parâmetros (pesos e bias) modelando diferentes saídas no nível hidden

Multi-Layer Perceptron

MLP para aproximação de funções

MLP híbrida: cam Tg Hiperbólica (N_h)

f = Tangente Hiperbólica (hidden)

MLP híbrida: cam Linear(N_s)

f = função Linear (saída)

MLP Híbrida (Perceptron' + Adaline)

Aprendizado Conexionista (MLP híbrida)

O papel dos pesos

Aprendizado Conexionista (MLP híbrida)

O papel dos pesos

$$y = c_0 + c_1 g(b_1 x + a_1) + c_2 g(b_2 x + a_2)$$

Exemplo: Forma "construtiva" de aproximação de um mapeamento não-linear

Exemplo: Forma "construtiva" de aproximação de um mapeamento não-linear

$$f(\mathbf{w}) = \underbrace{c_1 g(b_1 x + a_1)}_{a} + \underbrace{c_2 g(b_2 x + a_2)}_{b} + \underbrace{c_3 g(b_3 x + a_3)}_{c} + \underbrace{c_4 g(b_4 x + a_4)}_{d} + \underbrace{c_5 g(b_5 x + a_5)}_{e} + \underbrace{c_0}_{bias}$$

$$f(\mathbf{w}) = \underbrace{c_1 g(b_1 x + a_1)}_{a} + \underbrace{c_2 g(b_2 x + a_2)}_{b} +$$

$$+\underbrace{c_5g(b_5x+a_5)}_{e}$$

$$+\underbrace{c_3g(b_3x+a_3)}_{c}$$

$$+ c_0$$

$$+\underbrace{c_4g(b_4x+a_4)}_{d}$$

MLP Híbrida (Perceptron' + Adaline)

MLP Híbrida (Perceptron' + Adaline)

O Treinamento permite o ajuste dos parâmetros (pesos e bias) o qual modela a curva do mapeamento entrada – saída (1 entrada e 1 saída no exemplo acima)

Aproximação de Funções