2021 AMC 12A Problems/Problem 16

The following problem is from both the 2021 AMC 10A #16 and 2021 AMC 12A #16, so both problems redirect to this page.

Contents

- 1 Problem
- 2 Solution 1
- 3 Solution 2
- 4 Solution 3 (answer choices)
- 5 Solution 4
- 6 Video Solution by Punxsutawney Phil
- 7 Video Solution by Hawk Math
- 8 Video Solution by Answer Choice
- 9 Video Solution by pi_is_3.14 (Using Algebra)
- 10 Video Solution by TheBeautyofMath
- 11 See also

Problem

In the following list of numbers, the integer n appears n times in the list for $1 \leq n \leq 200$.

$$1, 2, 2, 3, 3, 3, 4, 4, 4, 4, \dots, 200, 200, \dots, 200$$

What is the median of the numbers in this list?

(A) 100.5

(B) 134

(C) 142

(D) 150.5

(E) 167

Solution 1

There are $1+2+..+199+200=\frac{(200)(201)}{2}=20100$ numbers in total. Let the median be k. We want to find the median k such that

$$\frac{k(k+1)}{2} = 20100/2,$$

or

$$k(k+1) = 20100.$$

Note that $\sqrt{20100} \approx 142$. Plugging this value in as k gives

$$\frac{1}{2}(142)(143) = 10153.$$

 $10153-14\overline{2}<\overline{10050}$, so 142 is the $\overline{152}$ nd and $\overline{153}$ rd numbers, and hence, our desired answer. $\overline{(C)}$ 142

Note that we can derive $\sqrt{20100} \approx 142$ through the formula

$$\sqrt{n} = \sqrt{a+b} \approx \sqrt{a} + \frac{b}{2\sqrt{a}+1},$$

where a is a perfect square less than or equal to m. We set a to 19600, so $\sqrt{a}=140$, and b=500. We then have

$$npprox 140+rac{500}{2(140)+1}pprox 142$$
. ~approximation by ciceronii

Note by Fasolinka (use answer choices): Once you know that the answer is in the 140s range by the approximation, it is highly improbable for the answer to be anything but C.

Solution 2

The
$$x$$
th number of this sequence is $\left\lceil \frac{-1 \pm \sqrt{1+8x}}{2} \right\rceil$ via the quadratic formula. We can see that if we halve x we end up getting $\left\lceil \frac{-1 \pm \sqrt{1+4x}}{2} \right\rceil$. This is approximately the number divided by $\sqrt{2}$. $\frac{200}{\sqrt{2}} = 141.4$ and since 142 looks like the only number close to it, it is answer C 0142 ~Lopkiloinm

Solution 3 (answer choices)

We can look at answer choice C, which is 142 first. That means that the number of numbers from 1 to 142 is roughly the number of numbers from 143 to $\overline{2}00$.

The number of numbers from 1 to 142 is $\frac{142(142+1)}{2}$ which is approximately 10000. The number of numbers from 143 to 200 is $\frac{200(200+1)}{2} - \frac{142(142+1)}{2}$ which is approximately 10000 as well. Therefore, we can be relatively sure the answer choice is C 142.

-PureSwag

Solution 4

We can arrange the numbers in the following pattern:

We can see this as a isosceles right triangle, with legs of length 200.

Let \mathcal{X} be the side length such that both sides of the triangle have the same area. The desired answer is then around \mathcal{X} because about half of the numbers in the list fall on each side.

Solving for \boldsymbol{x} yields:

$$\frac{x^2}{2} = \frac{1}{2} \cdot \frac{200^2}{2}$$

$$x^2 = \frac{1}{2} \cdot 200^2$$

$$x = \frac{200}{\sqrt{2}} = 100\sqrt{2} \approx 141.$$

We see that C is the closest to x by far, and thus, can be relatively certain this is the answer.

~thinker123

Video Solution by Punxsutawney Phil

https://youtube.com/watch?v=vsE_ezaV4Xs

Video Solution by Hawk Math

https://www.youtube.com/watch?v=AjQARBvdZ20

Video Solution by Answer Choice

https://www.youtube.com/watch?v=YxWjDcUcaeQ&list=PLexHyfQ8DMuKqltG3cHT7Di4jhVl6L4YJ&index=13 ~North America Math Contest Go Go Go

Video Solution by pi_is_3.14 (Using Algebra)

https://youtu.be/HkwgH9Lc1hE

Video Solution by TheBeautyofMath

https://youtu.be/CTXQunZpBA4

~IceMatrix

See also

2021 AMC 10A (Problems · Answer Key · Resources (http://www.artofproblemsolving.com/community/c1 3))		
Preceded by Problem 15	Followed by Problem 17	
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25		
All AMC 10 Problems and Solutions		

2021 AMC 12A (Problems · Answer Key · Resources (http://www.artofproblemsolving.com/community/c1 3))	
Preceded by Problem 15	Followed by Problem 17
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25	
All AMC 12 Problems and Solutions	

The problems on this page are copyrighted by the Mathematical Association of America (http://www.maa.org)'s American

Retrieved from "https://artofproblemsolving.com/wiki/index.php?title=2021_AMC_12A_Problems/Problem_16&oldid=169361"

Copyright © 2022 Art of Problem Solving