Grau de Matemàtiques. Curs 2015-2016. Semestre de tardor MÈTODES NUMÈRICS I

PRÀCTICA 11: Zeros de funcions

Exercici 1

Feu una funció que implementi el mètode de la secant:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}, \quad n = 1, 2, 3, \dots$$

La capçalera serà

int secant(double *x,double prec,double iter)

on x[0] i x[1] són les aproximacions inicials, prec és la precisió desitjada i iter és el nombre màxim d'iteracions permeses. Per a concloure que hi ha convergència cal que $|x_n - x_{n-1}| < \text{prec}$ o $|f(x_n)| < \text{prec}$. La funció retornarà 0 si ha aconseguit trobar un zero amb la precisió desitjada i sense arribar al nombre màxim d'iteracions, i 1 altrament. En el primer cas, el zero estarà en x[1].

Nota: Aquesta funció haurà d'invocar a una altra funció de capçalera double fun(double x) que contindrà la funció a la que li volem trobar un zero.

Exercici 2

Donada una funció $f: \mathbb{R} \to \mathbb{R}$, i $\epsilon > 0$ definim el conjunt $B(\alpha, \epsilon) \subset \mathbb{R}^2$ de la següent manera: Diem que $(x, y) \in B(\alpha, \epsilon)$ si usant el mètode de la secant per a la funció f amb condicions inicials $x_0 = x$, $x_1 = y$, existeix un n tal que $|x_n - \alpha| < \epsilon$.

Feu un programa principal per a generar els conjunts $B(\alpha_i,\epsilon)$, i=1,2,3, per als tres zeros de la funció $f(x)=x^3-x$. Per això s'ha de fer el següent: Considereu un quadrat $[-a,a]\times[-a,a]\subset\mathbb{R}^2$, i genereu en aquest quadrat condicions inicials $x^{(i)}=-a+ih$, $y^{(j)}=-a+jh$, $i,j=0,\ldots,n$ on h=2a/n. Si $(x^{(i)},y^{(j)})\in B(\alpha_k,\epsilon)$, escriurem el punt $(x^{(i)},y^{(j)})$ en un fitxer de nom zero.k. Una vegada executat el programa podem dibuixar els conjunts $B(\alpha_i,\epsilon)$ usant gnuplot amb els fitxers generats zero.1, zero.2 i zero.3. Podeu usar n=500, $\epsilon=10^{-10}$, iter = 50 i a=4.