

Deep Learning: Hyperparameter Tuning

Rückblick

- Welche Möglichkeiten gibt es neuronale Netze in Keras zu erzeugen?
- Was sind Dense-Layer?
- Wir haben 10 Merkmale am Eingang und 100 Hidden-Neuronen in der 1. Schicht. Wie groß ist die Gewichtsmatrix? Wie groß ist der Bias-Vektor?
- Wie viele Output-Knoten gibt es typischerweise bei Regression und bei Klassifikation?
- Was ist eine typische Loss-Funktion für Regression?
- Was ist eine typische Aktivierungsfunktion in der Output-Schicht für Regression?
- Was ist eine geeignete Metrik für Regression?
- Wann werden Labels onehotencoded?
- Was ist eine typische Aktivierungsfunktion in der Output-Schicht für Klassifikation?
- Was ist die typische Loss-Funktion für Klassifikation?
- Was ist eine geeignete Metrik für Klassifikation?
- Wie erkennt man Overfitting?
- Wie erkennt man Underfitting?

Underfitting und Overfitting

Underfitting:

- Großer Fehler bei Trainingsdaten
- Großer Fehler bei Testdaten
- Modell ist zu einfach
- Merkmale sind nicht aussagekräftig
- Starke Messunsicherheit

Overfitting:

- Geringer Fehler bei Trainingsdaten
- Großer Fehler bei Testdaten
- Modell ist zu komplex
- Zu wenige Trainingsdaten
- Zu hohe Variabilität
- Trainings- und Testdaten sind zu unterschiedlich

Fleischkonsum

Gesetz der großen Zahlen

Trainings- und
Testdaten
sind statistisch sehr
unterschiedlich

Viele Daten: Trainings- und Testdaten sind statistisch sehr ähnlich

Bernd Ebenhoch, Trainer für Machine Learning und Deep Learning

Trainings-, Test- und Validierungsdaten

X_train

y_train

Modellparameter Optimierung der

Prüfen auf

Overfitting

und Auswahl der besten

X_val

y_val

Vergleich verschiedener Modelle Hyperparameter

X_test

Hyperparameter auch für andere Prüfen ob gefundene **Testdaten ideal sind**

Prognose der unbekannten Daten

X_application

Aufteilung in Trainings- und Testdaten

- Die Testdaten (und Validierungsdaten) sollen nicht in die Modellparameter einfließen und äquivalent zu den Anwendungsdaten sein
- Wenn Daten nochmal in einzelnen Unterklassen gegliedert sind, sollten die Unterklassen in den Trainingsund Testdaten jeweils komplett verwendet werden
- Beispiel: Wir wollen für neue Personen das Geschlecht aus einem Bild erkennen
- Es gibt im Datensatz nur wenige Personen die aber jeweils mit mehreren Bildern vertreten sind
- Alle Bilder von einer Person sollten dann entweder zum Training oder Testen verwendet werden
- Dadurch ist sichergestellt, dass die Testdaten den Anwendungsdaten entsprechen und wirklich geprüft wird, ob neue Personen identifiziert werden können
- Wenn es sehr viele Duplikate gibt (z. B. durch Oversampling), sollten die Duplikate nicht in den Trainingsund Testdaten gleichzeitig vorkommen
- Stratifizierung: Um Klassen gleichmäßig auf Trainings- und Testdaten zu verteilen insbesondere wenn es nur wenige Datenpunkte pro Klasse gibt
- jeweils separate Modelle zu fitten. Die Modelle werden mit der mittleren Validierungsmetrik beurteilt, um Cross-Validation: Die Daten werden in unterschiedliche Trainings- und Validierungspakete aufgeteilt um statistische Effekte insbesondere bei kleinen Datensätzen auszugleichen

04.07.25, 23:00

Beispiel zu Underfitting und Overfitting

import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.preprocessing import PolynomialFeatures from sklearn.model_selection import train_test_split, ShuffleSplit, cross_val_score

np.random.seed(0) X = (np.arange(100)-35)/15

y = 0.9*X - 2 * (X ** 2) + 0.5 * (X ** 3) + 0.9*np.random.normal(-3, 3, 100) X = X[:, np.newaxis] $polynomial_features=PolynomialFeatures(degree=15, include_bias=False)$ $X_poly=polynomial_features.fit_transform(X)$

X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.3, random_state=0)

model = LinearRegression()
model.fit(X_train, y_train)
print(model.coef_)
y_pred_train = model.predict(X_train)
y_pred_test = model.predict(X_test)
y_pred= model.predict(X_poly)

r2_train = r2_score(y_train,y_pred_train)

print('R2-score (Training):', r2_train)

r2_test = r2_score(y_test,y_pred_test) print('R2-score (Testing):', r2_test)

plt.scatter(X, y, s=10) plt.plot(X, y_pred, color='m') plt.show()

Hyperparameter optimieren

Gruppe A: 11-, 12-Regularisierung, Buch S. 428-429, S. 187 – 193 (allgemein)

Gruppe B: Drop-Out, Buch S. 429-432

Gruppe C: Early-Stopping, Buch S. 373, 193-194 (allgemein)

Gruppe D: Optimierung der Netz-Größe, Buch S. 378-385

Inhalte: Theorie des Verfahrens

Einfaches Beispiel zur Anwendung der Funktion

Implementierung in "Overfitting moons.py" und Optimierung der Hyperparameter

Dauer: 13:45 Uhr, anschließend Präsentation

Aus Machine Learning: L2-Regularisierung

https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression

Ridge-Regression implementiert eine L2-Regularisierung mit

dem Strafterm $|l2||\mathbf{w}||^2$

Import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.model_selection import train_test_split

np.random.seed(0) X = (np.arange(100)-35)/15

y = 0.9*X - 2*(X**2) + 0.5*(X**3) + 0.9*np.random.normal(-3, 3, 100)

X = X[:, np.newaxis]

polynomial_features= PolynomialFeatures(degree=18)

 $X_poly = polynomial_features.fit_transform(X)$

X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.3, random_state=0)

model = Ridge(**alpha=1e-6**, normalize=True) model.fit(X_train, y_train)

y_pred= model.predict(X_poly)

plt.scatter(X, y, s=10) plt.plot(X, y_pred, color='m')

plt.show()

Je größer I2, umso stärker die Regularisierung

L1-, L2-Regularisierung

 In Keras ist Regularisierung auf Gewichtungen, Bias und nach der Aktivierung möglich

tf.keras.regularizers.l1(I1=0.01)

• tf.keras.regularizers.l2(I2=0.01)

tf.keras.regularizers.l1l2(l1=0.01, l2=0.01)

 $loss = loss + l1|\mathbf{w}|$

 $loss = loss + l2||\mathbf{w}||^2$

 $loss = loss + l1|\mathbf{w}| + l2||\mathbf{w}||^2$

L1 wirkt stärker auf kleine Werte, L2 wirkt stärker auf große Werte

Z. B. Wert=0.05 |1=0.01 → 0.0005, Wert=0.05 |2=0.01 → 0.000025

Z. B. Wert=0.95 | 1=0.01 → 0.0095, Wert=0.95 | 2=0.01 → 0.009025

Dropout

- Zufällige Outputs der vorherigen Schicht (z. B. 20%) werden während des Trainings auf 0 gesetzt
- Bei jedem Trainingsschritt werden andere Outputs ausgeschaltet
- Die Werte nach dem Dropout werden um die mittlere Dropout-Rate erhöht, so dass der Mittelwert des Outputs statistisch unverändert bleibt
- Das neuronale Netz lernt wichtige Verbindungen redundant aufzubauen
- Z. B. um Kopf von Zahl zu unterscheiden sind nur einige Pixel relevant
- Bei der Prediction sind alle Outputs aktiv
- Dropout kann das Training verlangsamen

Early-Stopping

- Fitprozess abbrechen, sobald der
 Validationscore schlechter wird
- Patience: Anzahl Epochen ohne Verbesserung
- Restore_best_weigths (nur wenn über early-stopping gestoppt wird)

early_stopping=keras.callbacks.EarlyStopping(
monitor="val_accuracy",
min_delta=0,
patience=200,
verbose=0,
mode="auto",
baseline=None,
restore_best_weights=True,
start_from_epoch=0)

history=model.fit(X_train, y_train,, epochs=1000, verbose=True, validation_data=(X_test, y_test), callbacks=[early_stopping])

Es erfolgt eine genaue Anpassung an die Validierungsdaten → mit Testdaten beurteilen

Bernd Ebenhoch, Trainer für Machine Learning und Deep Learning

PDF is viewer

Netzparameter

- Um Overfitting zu vermeiden, sollte die Anzahl der Schichten und Anzahl der Neuronen pro Schicht so gering wie möglich sein
- Eine Optimierung ist z. B. durch den keras_tuner (separate Bibliothek) möglich

```
n_neurons = hp.Int('n_neurons', min_value=10, max_value=100, step=10)
n_layers = hp.Int('n_layers', min_value=2, max_value=6, step=1)
                                                                                                                                                                                                                     model.add(keras.layers.InputLayer(input_shape=[2]))
                                                                                                                                                 model = keras.models.Sequential()
```

model.add(keras.layers.Dense(n_neurons, activation="relu")) for i in range(n_layers):

model.compile(loss="binary_crossentropy",metrics=['accuracy'], optimizer='Adam') optimizer = keras.optimizers.Adam(learning_rate=0.01) model.add(keras.layers.Dense(1, activation='sigmoid'))

tuner = kt.Hyperband(build_model, objective='val_accuracy',max_epochs=1000,factor=3,directory='my_dir', project_name='overfitting_moons_keras_tuner') # Die Hyperparameter nach wenigen Epochen vergleichen

tuner.search(x_train, y_train, epochs=1000, validation_data=(x_test, y_test),callbacks=[early_stopping])

Ubungsvorschläge

- Wie erkennt man Overfitting und Underfitting?
- Welche Methoden gibt es um Overfitting zu vermeiden?
- Beispiel 'Overfitting moons.py' nachvollziehen
- Neuronales Netz verkleinern (Z. B. eine Schicht mit 200 Neuronen)
- Drop-out optimieren
- Regularisierung optimieren
- Patience für Early-Stopping wählen
- Automatische Hyperparameter-Optimierung mit keras-tuner