

CyC - Practica 5

Facundo Tomatis

(Ejercicio 1)

Consigna:

Sean L_1 y L_2 , dos lenguajes definidos sobre $\{0,1\}^*$

- $L_1 = \{0^n 1/n \ge 0\}$
- $L_2 = \{1^n 0/n \ge 0\}$
- a) Demuestre que existe una reducción ($L_1 \alpha L_2$)
- **b)** Idem para $L_2 = \{\lambda\}$
- c) Idem para $L_2 = \{1^n 0/n > 0\}$

Respuesta:

a) $L_1 \alpha L_2$ M_f es una maquina de turing que ejecuta la funcion de reducibilidad. $M_f = \langle Q, \Sigma, \Gamma, \delta, q_0, q_d \rangle Q = \{q_0\} \Sigma = \{0, 1\} \Gamma = \{B, 0, 1\}$

- 1. M_f siempre se detiene \mathbf{Z} ya que el alfabeto es finito.
- 2. $w \in L_1 \Leftrightarrow M_f(w) \in L_2$ **\(\vec{\vec{\vec{v}}}\)** se puede observar viendo la MT
- $\mathbf{b)} \ \mathrm{con} \ L_2 = \{\lambda\}$

c) con $L_2 = \{1^n 0/n > 0\}$

(Ejercicio 2)

Consigna:

Sean L_1 y L_2 , dos lenguajes tales que existe una reducción ($L_1 \alpha L_2$)

- a) Qué se puede afirmar de L_1 si se sabe que $L_2 \in \mathbb{R}$
- b) Qué se puede afirmar de L_1 si se sabe que $L_2 \in (\text{CO-RE} \text{RE})$
- c) Qué se puede afirmar de L_2 si se sabe que $L_1 \in \mathbb{R}$
- d) Qué se puede afirmar de L_2 si se sabe que $L_1 \in (\text{CO-RE} \text{RE})$

Respuesta:

- a) Se puede afirmar que si $L_2 \in \mathbb{R} \Rightarrow L_1 \in \mathbb{R}$. (demostración en diapos)
- b) Se puede afirmar que $L_1 \in \text{CO-RE}$, tambien podemos saber que $\overline{L_1} \in RE$ ya que $\overline{L_2} \in RE$ por lo que $L_1 \notin RE$, entonces se puede afirmar que $L_1 \in (\text{CO-RE} RE)$
- c) Nada, ya que este puede ser un lenguaje de cualquiera de \mathscr{L}
- d) Se puede afirmar que: (CO-RE RE) = (CO-RE R) \therefore $L_1 \notin R, L_1 \notin RE \Rightarrow L_2 \notin R, L_2 \notin RE$ por contrarreciproca

(Ejercicio 3)

Consigna:

Sean HP y L_u los lenguajes $Halting\ Problem\ y\ Lenguaje\ Universal\ respectivamente.$

- HP = $\{(<M>,w) / M \text{ se detiene con input } w\}$
- $L_u = \{(<M>, w) / M \text{ acepta } w\}$

Demuestre que existe una reducción HP α L_u

Respuesta:

HP se reduce a L_u construyendo una maquina M_f que si la maquina es invalida (en HP acepta esto) hacer una maquina <M'> que acepte todo w, si el par es invalido la maquina queda igual, si la maquina rechaza w (transicion a q_R que en HP luego va a q_A) cambiar la delta de transicion q_R por q_A , estos cambios son finitos y el checkeo de si la maquina es invalida o no solo requiere utilizar un parser que tiene finitos movimientos.

(Ejercicio 4)

Consigna:

Sea HP_{λ} el problema de detención a partir de la cinta en blanco

• $HP_{\lambda} = \{ <M > / M \text{ se detiene con input } \lambda \}$

Demuestre que existe una reducción $HP \alpha HP_{\lambda}$

Respuesta:

Existe una M_f que tenga como entrada la tupla (<M>, w) y tenga como salida una <M'> tal que esta borre la cinta y una vez borrada escribe la palabra w "a mano", luego vaya a la posición inicial de la palabra y comience a funcionar como la maquina original. Por lo que si <M> paraba con w <M'> va a parar y si <M> loopeaba con w <M'> tambien va a loopear.

Esta M_f es computable ya que realiza finitas modificaciones a la maquina original (la palabra es finita y por lo tanto el reposicionarse tambien).

(Ejercicio 5)

Consigna:

Demuestre que $L_V \notin RE$

•
$$L_V = \{(\langle M \rangle)/L(M) = \varnothing\}$$

Considere que si <M> es un código inválido de máquina de Turing también pertenece a L_V (ya que no reconoce ningún string). Así L_V es el complemento del lenguaje $L_{NV} = \{(<$ M $>)/L(M) \neq \varnothing\}$ (Ayuda: puede utilizar el complemento de L_u para encontrar una reducción)

Respuesta:

Ver ejercicio 13 practica 4:

$$L_{NV} = \overline{L_V} \implies L_{NV} \in RE, \overline{L_V} \in RE \implies L_V \notin RE$$

Otra forma:

 $\overline{L_u} \alpha L_V$

 M_f de $\overline{L_u} \alpha L_V$