Федеральное агентство связи

Сибирский Государственный Университет Телекоммуникаций и Информатики

Кафедра физики

Лабораторная работа № 6.10.

Исследование эффекта холла в полупроводниках

Выполнила: студентка группы ИП-014

Луговая А.С.

Преподаватель: Лубский В.В.

Новосибирск, 2020 г.

ЦЕЛЬ РАБОТЫ

- 1. Изучить теорию эффекта Холла.
- 2. Исследовать зависимость э.д.с. Холла (U_x) от величины индукции внешнего магнитного поля (B) и силы тока (I) , протекающего через образец.
- 3. Определить концентрацию основных носителей заряда (n) и их подвижность (μ) .

КРАТКАЯ ТЕОРИЯ

Эффектом Холла называют явление возникновения э.д.с. в помещённом в магнитное поле полупроводнике, по которому протекает электрический ток. Пусть полупроводник имеет форму параллелепипеда длиной l и сечением $a \cdot b$ и по нему протекает ток l перпендикулярно сечению. Полупроводник находится в однородном магнитном поле с индукцией \overline{B} , направление которой перпендикулярно направлению тока и указано на рис.10.1.

Рисунок 10.1 – Механизм возникновения холловской ЭДС

Опыт показывает, что между точками A и C ,расположенными на нижней и верхней гранях образца, возникает разность потенциалов, названная э.д.с. Холла, которая возрастает с увеличением тока I и вектора магнитной индукции $\overline{\mathrm{B}}$: $U_x \sim I \cdot B$. Объясняется возникновение U_x смещением движущихся зарядов к верхней или нижней грани образца под действием силы Лоренца. Если основными носителями заряда являются дырки, то силой Лоренца (рис.10.1) они отклоняются к нижней грани образца, и там

накопится положительный заряд, а на верхней останется не скомпенсированный отрицательный заряд. Если основными носителями заряда являются электроны, то они будут также отклоняться и накапливаться на нижней грани, создавая на ней отрицательный заряд. (Вспомните правило левой руки, по которому в данном случае определяем направление силы Лоренца). Величина силы Лоренца определяется соотношением:

$$\vec{F}_L = q[\vec{v}_d \cdot \vec{B}],\tag{1}$$

где q - заряд носителя, \vec{v}_d - его дрейфовая скорость. Смещение носителей заряда в поперечном (по отношению \vec{v}_d и \vec{B}) направлении прекратится тогда, когда сила Лоренца уравновесится силой Fэ электрического поля, создаваемого сместившимися зарядами. Если $\vec{B} \bot \vec{v}_d$, то:

$$qv_d \cdot B = qE_x. \tag{2}$$

Дрейфовая скорость может быть выражена из формулы для плотности дрейфового тока:

$$v_d = \frac{j}{q \cdot n}.\tag{3}$$

Если плотность тока Ј одинакова во всех точках сечения а .b , то:

$$j = \frac{I}{a \cdot b}.$$
(4)

После подстановки уравнений (4) и (3) в формулу (2) получим:

$$E_{\chi} = \frac{1}{an} \cdot \frac{IB}{ab}.$$
 (5)

Считая возникшее поле однородным, найдем холловское напряжение на контактах АС, используя связь напряженности E_x и разности потенциалов U_x :

$$U_{x} = -E_{x}a = -\frac{1}{an} \cdot \frac{IB}{h} = R_{x} \cdot \frac{IB}{h}.$$
 (6)

Величина $R_{\chi}=-rac{1}{qn}$ — называется постоянной Холла.

Предложенный вывод выражения для U_х нагляден, но недостаточно строг. Не был учтён статистический характер распределения носителей заряда по скоростям. Это значит, что уравнение (2) не может выполняться одновременно для всех электронов (или дырок), имеющих различные по величине и направлению скорости. Поэтому стационарное состояние наступает не тогда, когда сила Лоренца уравновешивает силу электрического поля Холла для каждого электрона, а тогда, когда ток, созданный холловским электрическим полем Ux, компенсирует ток, созданный действием силы

Лоренца. Однако результат строгой теории эффекта Холла для атомарных полупроводников *Ge* и *Si* практически не отличается от полученного нами. В нашей лабораторной работе используется датчик, Холла изготовленный из кремния.

Итак, измеренное значение напряжения Холла U_x и знание условий эксперимента (размеры образца, величина тока I, вектор магнитной индукции \overrightarrow{B}) дают возможность определить знак и концентрацию носителей заряда в полупроводнике. А параллельное измерение удельной электропроводности σ :

$$\sigma = q \cdot n \cdot \mu_n \tag{7}$$

того же образца позволяет вычислить и подвижность носителей заряда µ:

$$\mu = \frac{\sigma}{\sigma \cdot n} = \sigma \cdot R_{\chi} \tag{8}$$

Подвижность электрона μ_n и подвижность дырки μ_p численно равна скорости, которую приобретает электрон или дырка, в электрическом поле напряженностью равной единице, т.е.:

$$\mu_n = \frac{U_n}{E}; \ \mu_p = \frac{U_p}{E} \tag{9}$$

Подвижность электрона и дырки является одной из основных характеристик полупроводника, по которой можно судить о степени "загрязнения" материала неконтролируемыми примесями. Метод определения концентрации и подвижности носителей заряда по холловской э.д.с. и удельной проводимости является классическим методом научного исследования полупроводников.

ОПИСАНИЕ УСТАНОВКИ

Лабораторная работа выполняется при комнатной температуре с использованием постоянного тока через образец и магнитного поля электромагнита. Принципиальная схема измерительной установки изображена на рис.10.2

Рисунок 10.2 – Принципиальная схема измерительной установки

ИП 1, ИП 2 – источники питания схемы; mA1 – миллиамперметр для измерения силы тока через образец; V1 – вольтметр для измерения холловского напряжения и падения напряжения на образце; X – полупроводниковый образец для исследования эффекта Холла; ЭМ – электромагнит; A2 –амперметр для измерения силы тока через электромагнит.

Геометрические размеры образца кремния указаны на стенде. В условиях нашего эксперимента вектор магнитной индукции \overrightarrow{B} прямо пропорционален току электромагнита I_m : $\overrightarrow{B} = \alpha I_m$. График этой зависимости имеется на рабочем месте и позволяет определять значения В в теслах по экспериментальным значениям тока I_m . На образце имеется две пары электродов. Одна из них служит для измерения напряжения U на образце, другая - для измерения холловского напряжения U_x . Ток I в образце измеряется миллиамперметром mA1, расположенным в правой части установки. Холловское напряжение Ux измеряется цифровым вольтметром V1, расположенным в центральной части установки. Этот же вольтметр используется для измерения падения напряжения на образце U. Режим работы вольтметра переключается тумблером, расположенным справа от вольтметра. Изменение индукции В магнитного поля, в котором находится образец, производится регулированием тока I_m через электромагнит (ЭМ), измеряемого амперметром A2, расположенном в левой части установки.

ВЫПОЛНЕНИЕ РАБОТ

Nº	$I_{\text{oбp}}$, mA	U_{ofp} , V	$I_{\mathtt{Mar}}$, A	В, Тл	U_X , mV
1	4	3,36	0,2	0,04	7,2
2	4	3,36	0,4	0,08	11,9
3	4	3,36	0,6	0,12	17,6
4	4	3,36	0,8	0,16	22,7
5	4	3,36	1,0	0,2	28,2
6	4	3,36	1,2	0,24	33,3
7	4	3,36	1,4	0,28	37,7
8	4	3,36	1,6	0,32	43,1
9	4	3,36	1,8	0,36	47,5
10	4	3,36	2,0	0,4	52,4

В, Тл

Nº	$I_{\text{обр}}$, mA	U_{ofp}, V	I_{Mar}, A	В, Тл	U_X , mV
1	1	0,819	0,8	0,16	5,6
2	2	1,642	0,8	0,16	11,5
3	3	2,53	0,8	0,16	17,5
4	4	3,22	0,8	0,16	22,2
5	5	4,18	0,8	0,16	28,6
6	6	5,11	0,8	0,16	34,6
7	7	6,07	0,8	0,16	40,3
8	8	7,01	0,8	0,16	45,3
9	9	8,06	0,8	0,16	52,1

I, mA

Результаты измерений брались с первой таблицы

Nº	U_X , mV	В, Тл	$I_{\text{обр}}$, mA	<i>R</i> , м ³ /Кл	n , M^{-3}
1	7,2	0,04	4	$8,1 \cdot 10^{-3}$	$7,7\cdot 10^{20}$
2	11,9	0,08	4	$6,7 \cdot 10^{-3}$	$9.3 \cdot 10^{20}$
3	17,6	0,12	4	$6,6 \cdot 10^{-3}$	$9.5 \cdot 10^{20}$
4	22,7	0,16	4	$6,4 \cdot 10^{-3}$	$9.8 \cdot 10^{20}$
5	28,2	0,2	4	$6,3 \cdot 10^{-3}$	$9,9 \cdot 10^{20}$
6	33,3	0,24	4	$6,2 \cdot 10^{-3}$	$1\cdot 10^{21}$
7	37,7	0,28	4	$6,1\cdot 10^{-3}$	$1,02 \cdot 10^{21}$
8	43,1	0,32	4	$6.0 \cdot 10^{-3}$	$1,04 \cdot 10^{21}$
9	47,5	0,36	4	$5,94 \cdot 10^{-3}$	$1,05 \cdot 10^{21}$
10	52,4	0,4	4	$5,9 \cdot 10^{-3}$	$1,06 \cdot 10^{21}$

$$R_X = \frac{U_X \cdot b}{I \cdot B}$$

1)
$$R_X = \frac{7,2 \cdot 10^{-3} \cdot 0,18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0,04} = 8,1 \cdot 10^{-3} \text{ M}^3/\text{K}\pi$$

2) $R_X = \frac{11,9 \cdot 10^{-3} \cdot 0,18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0,08} = 6,7 \cdot 10^{-3} \text{ M}^3/\text{K}\pi$

3) $R_X = \frac{17,6 \cdot 10^{-3} \cdot 0,18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0,12} = 6,6 \cdot 10^{-3} \text{ M}^3/\text{K}\pi$

4) $R_X = \frac{22,7 \cdot 10^{-3} \cdot 0,18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0,16} = 6,4 \cdot 10^{-3} \text{ M}^3/\text{K}\pi$

5) $R_X = \frac{28,2 \cdot 10^{-3} \cdot 0,18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0,2} = 6,3 \cdot 10^{-3} \text{ M}^3/\text{K}\pi$

6) $R_X = \frac{33,3 \cdot 10^{-3} \cdot 0,18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0,24} = 6,2 \cdot 10^{-3} \text{ M}^3/\text{K}\pi$

2)
$$R_X = \frac{11.9 \cdot 10^{-3} \cdot 0.18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0.08} = 6.7 \cdot 10^{-3} \text{ M}^3/\text{K}_{\pi}$$

3)
$$R_X = \frac{17.6 \cdot 10^{-3} \cdot 0.18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0.12} = 6.6 \cdot 10^{-3} \text{ m}^3/\text{K}_{\text{M}}$$

4)
$$R_X = \frac{22.7 \cdot 10^{-3} \cdot 0.18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0.16} = 6.4 \cdot 10^{-3} \text{ m}^3/\text{K}$$

5)
$$R_X = \frac{28.2 \cdot 10^{-3} \cdot 0.18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0.2} = 6.3 \cdot 10^{-3} \text{ m}^3/\text{K}_{\pi}$$

6)
$$R_X = \frac{33,3 \cdot 10^{-3} \cdot 0,18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0,24} = 6,2 \cdot 10^{-3} \text{ м}^3/\text{Кл}$$

7)
$$R_X = \frac{37,7 \cdot 10^{-3} \cdot 0,18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0.28} = 6,1 \cdot 10^{-3} \text{ м}^3/\text{Кл}$$

8)
$$R_X = \frac{43.1 \cdot 10^{-3} \cdot 0.28}{4 \cdot 10^{-3} \cdot 0.32} = 6.0 \cdot 10^{-3} \text{ M}^3/\text{K}_{\pi}$$

9)
$$R_X = \frac{47.5 \cdot 10^{-3} \cdot 0.18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0.36} = 5.94 \cdot 10^{-3} \text{ M}^3/\text{K}_{\pi}$$

10)
$$R_X = \frac{52,4 \cdot 10^{-3} \cdot 0,18 \cdot 10^{-3}}{4 \cdot 10^{-3} \cdot 0,4} = 5,9 \cdot 10^{-3} \text{ м}^3/\text{Кл}$$

$$R_X = \frac{1}{q \cdot n}$$
, $n = \frac{1}{q \cdot R_X}$

1)
$$n = \frac{1}{1,6 \cdot 10^{-19} \cdot 8,1 \cdot 10^{-3}} = 7.7 \cdot 10^{20} \text{ m}^{-3}$$

2)
$$n = \frac{1}{1.6 \cdot 10^{-19} \cdot 6.7 \cdot 10^{-3}} = 9.3 \cdot 10^{20} \text{ m}^{-3}$$

3)
$$n = \frac{1}{1,6 \cdot 10^{-19} \cdot 6,6 \cdot 10^{-3}} = 9,5 \cdot 10^{20} \text{ M}^{-3}$$

4)
$$n = \frac{1}{1.6 \cdot 10^{-19} \cdot 6.4 \cdot 10^{-3}} = 9.8 \cdot 10^{20} \text{ m}^{-3}$$

5)
$$n = \frac{1}{1,6 \cdot 10^{-19} \cdot 6,3 \cdot 10^{-3}} = 9,9 \cdot 10^{20} \text{ M}^{-3}$$

6)
$$n = \frac{1}{1.6 \cdot 10^{-19} \cdot 6.2 \cdot 10^{-3}} = 1 \cdot 10^{21} \text{ m}^{-3}$$

7)
$$n = \frac{1}{1.6 \cdot 10^{-19} \cdot 6.1 \cdot 10^{-3}} = 1.02 \cdot 10^{21} \text{ M}^{-3}$$

8)
$$n = \frac{1}{1.6 \cdot 10^{-19} \cdot 6.0 \cdot 10^{-3}} = 1.04 \cdot 10^{21} \text{ m}^{-3}$$

9)
$$n = \frac{1}{1,6 \cdot 10^{-19} \cdot 5,94 \cdot 10^{-3}} = 1,05 \cdot 10^{21} \text{ m}^{-3}$$

10)
$$n = \frac{1}{1,6 \cdot 10^{-19} \cdot 5,9 \cdot 10^{-3}} = 1,06 \cdot 10^{21} \text{ M}^{-3}$$

$$\langle R_X \rangle = 6.4 \cdot 10^{-3} \text{ м}^3/\text{Кл}$$

$$\langle n \rangle = 9.79 \cdot 10^{20} \text{ m}^{-3}$$

$$\Delta n = \sqrt{\left[\frac{\sum (n_k - \langle n \rangle)^2}{(k-1)k}\right]} = \sqrt{\frac{(1,06 \cdot 10^{21} - 9,79 \cdot 10^{20})^2}{90}} = 8.54 \cdot 10^{18} \text{ m}^{-3}$$

$$\mu = R_x \cdot \sigma$$

$$\sigma = \frac{1}{\rho}$$

$$\rho = \frac{R \cdot S}{I}$$

$$R = \frac{U}{I}$$

$$S = a \cdot b$$

$$\sigma = \frac{I \cdot l}{U \cdot a \cdot b} = \frac{4 \cdot 6 \cdot 10^{-3}}{3,36 \cdot 3 \cdot 10^{-3} \cdot 0,18 \cdot 10^{-3}} = 7,6 \cdot 10^3 \text{ Cm/m}$$

$$\mu = \sigma \cdot R_x = 7.6 \cdot 10^3 \cdot 6.4 \cdot 10^{-3} = 48.64 \text{ m}^2/\text{B} \cdot \text{c}$$

вывод

Мы изучили эффект Холла, исследовали линейную зависимость э.д.с. Холла (U_x) от величины индукции внешнего магнитного поля (B) и силы тока (I), протекающего через образец, определили концентрацию основных носителей заряда $(n=9.79\cdot 10^{20}~{\rm M}^{-3})$ и их подвижность $(\mu=48.64~{\rm M}^2/{\rm B\cdot c})$.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какое явление называется эффектом Холла?

Эффект Холла — это возникновение в электрическом проводнике разности напряжений на краях образца (напряжения Холла) помещённом в поперечное магнитное поле, при протекании тока, перпендикулярному полю.

2. Почему разные знаки имеет холловское напряжение в материалах n и р типов проводимости?

Приложенное внешнее электрическое поле в зависимости от знака разности потенциалов либо дополнительно уменьшает концентрацию носителей, либо увеличивает их концентрацию.

3. Сделайте вывод формулы для U_x . В чем неточность этого вывода?

Величина силы Лоренца определяется соотношением:

$$\vec{F}_L = q[\vec{v}_d \cdot \vec{B}],\tag{1}$$

где q - заряд носителя, $ec{v}_d$ - его дрейфовая скорость. Если $ec{B} \bot ec{v}_d$, то:

$$qv_d \cdot B = qE_x. \tag{2}$$

Дрейфовая скорость может быть выражена из формулы для плотности дрейфового тока:

$$v_d = \frac{j}{q \cdot n}.\tag{3}$$

Если плотность тока Ј одинакова во всех точках сечения а .b , то:

$$j = \frac{I}{a \cdot b}.$$
(4)

После подстановки уравнений (4) и (3) в формулу (2) получим:

$$E_{x} = \frac{1}{qn} \cdot \frac{IB}{ab}.$$
 (5)

Считая возникшее поле однородным, найдем холловское напряжение на контактах АС, используя связь напряженности Ex и разности потенциалов U_x :

$$U_{x} = -E_{x}a = -\frac{1}{an} \cdot \frac{IB}{b} = R_{x} \cdot \frac{IB}{b}.$$
 (6)

Неточность вывода заключается в том, что не был учтён статистический характер распределения носителей заряда по скоростям. Это значит, что уравнение (2) не может выполняться одновременно для всех электронов (или дырок), имеющих различные по величине и направлению скорости. Поэтому стационарное состояние наступает не тогда, когда сила Лоренца уравновешивает силу электрического поля Холла для каждого электрона, а тогда, когда ток, созданный холловским электрическим полем Ux, компенсирует ток, созданный действием силы Лоренца.

- 4. Какой формы должен быть теоретический график $U_x = f(B)$? Линейный график
- 5. Какой формы должен быть график $U_{x} = f(I)$?

Линейный график

6. Что называется подвижностью электронов и дырок?

Подвижность электронов и дырок – скорость, которую приобретает электрон и дырка в электрическом поле с напряженностью равной единице.

7. Как изменится (увеличится или уменьшится) концентрация носителей заряда с увеличением температуры? Почему

С ростом температуры, концентрация носителей заряда увеличивается за счет переброса электронов из валентной зоны в зону проводимости.

ЗАДАЧА

1.3

Покажите, что холловскую э.д.с. можно представить в виде: $U_x = v_d B b$, где v_d - дрейфовая скорость носителей тока в проводнике шириной b , B - магнитная индукция поля.

Величина силы Лоренца определяется соотношением:

$$\vec{F}_L = q[\vec{v}_d \cdot \vec{B}],$$

Если $ec{B} \bot ec{v}_d$, то:

$$qv_d \cdot B = qE_x$$

Таким образом, напряженность электрического поля E_{x} :

$$E_x = v_d \cdot B$$

Разность потенциалов U_{x} :

$$U_{x}=E_{x}\cdot b$$
,

где b – ширина проводника

Подставим $v_d \cdot B$ в формулу:

$$U_x = v_d B b$$