COMP S264F Unit 1: Logic

Dr. Keith Lee
School of Science and Technology
The Open University of Hong Kong

Course Aim & Learning Outcomes

 This course aims to lay the foundation of discrete mathematics of students which will be used in studying other computing courses.

Learning outcomes:

- Formulate a range of problems in computing using the notions of set and function;
- Explain and apply logical notations and different proof techniques to solve discrete mathematical problems;
- Identify different types of counting problems and apply combinatorial methods to solve these problems;
- Analyze mathematical problems involving random processes using probability theory.
- See the Course Guide for the course contents, assessment scheme and textbook.

More about this course

 Cover the foundational structures for the practice of computer science and engineering.

Fundamental tasks in computer science	How this course would help you?		
Translate imprecise specification into a working system	Precise, reliable and powerful thinking		
Get the details right and giving formal proofs for them	Ability to state and prove non-trivial facts		
Apply well-known algorithms to your problems	Familiarity with logic, combinatorics, discrete probabilities that are concepts underlying all more advanced courses in computer science.		

Use Python programs to help you understand conceptual materials.

Overview

- Propositions, Compound propositions
- Logical operators: \neg , \wedge , \vee , \otimes , \rightarrow , \leftrightarrow
- Truth tables
- Tautology, Contradiction, Logical equivalence
- A logical puzzle
- De Morgan's laws
- Predicates, Universal quantifier, Existential quantifier

Logic

- It is about a set of rules, which gives precise meaning to mathematical statements and forms the basis of all mathematical reasoning.
- A good understanding of logic allows us to distinguish between valid and invalid mathematical argument.

Logic (cont')

- Proofs in computer science and mathematics require a precisely stated proposition to be proved.
- Natural language is imprecise:
- 1. You fail the course when your overall continuous assessment score (OCAS) is less than 40 or your exam score is less than 40.
- → You fail the course if both of your OCAS and exam scores are less than 40. Correct or not?
- 2. You are now in the main campus (MC) or the Jockey club campus (JCC).
- → You are now in MC and JCC. Correct or not?

Basic terminology: Propositions

- A <u>proposition</u> is a statement that is either true or false, but not both.
- Which of the following statements are propositions?
- > Hong Kong is a special administrative region of China.
- \geq 2 + 2 = 3.
- What time is it?
- > Read this carefully.
- > X + 1 = 4.

Compound Propositions

- A compound proposition is formed from propositions using *logical operators*.
- Example:
 "711 is a prime number" and "2 + 2 = 4"
- Other logical operators:
 negation, and, or, exclusive or, implication, biconditional

Compound Propositions (cont')

Let p and q be two propositions.

Negation (not)	$\neg p$	(read as " not p")
 Conjunction (and) 	$p \wedge q$	
Disjunction (or)	$p \vee q$	
Exclusive or	$p\otimes q$	
 Implication 	$p \rightarrow q$	1
 Biconditional 	$p \leftrightarrow q$	1

 A logical operator can be defined precisely using a truth table, which displays the relationships between the truth values of a compound proposition and that of its constituting propositions.

Negation, And, Or, Exclusive Or

Truth table for ¬(negation), ∧(and), ∨(or), ⊗(exclusive or):

p	q	¬ p	$p \wedge q$	$p \vee q$	p⊗q	
Т	Т	F	Т	Т	F	
Т	F	F	F	Т	Т	
F	Т	Т	F	Т	Т	T: true
F	F	Т	F	F	F	F: false

 A truth table lists out all the possible values of different logical statements in different scenarios.

Examples

- True or False?
- "Today is Tuesday" ⊗ "Yesterday is Monday"
- "Today is Tuesday" ⊗ "Today is not Tuesday"
- "Today is in October" ⊗ "Christmas is in November"

Implication

• The implication $p \rightarrow q$ (or $p \Rightarrow q$) is the proposition that is **false** when p is true and q is false, and true otherwise.

Truth table:

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

• $p \rightarrow q$ is often read as "p implies q", or "if p, then q".

Examples

True or False?

- If Vanessa is a woman, then she is the programme leader of Computing.
- If Keith is a woman, then she is the king of China.
- Keith's age > $10 \Rightarrow 1+1=3$
- YC's age < $10 \implies 1+1 = 2$

Double Implication (Biconditional)

• The biconditional $p \leftrightarrow q$ (or $p \Leftrightarrow q$) is the **true** when both p and q have the <u>same</u> truth value, and is **false** otherwise.

Truth table:

p	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

p ↔ q is often read as "p if and only if q", or "p is necessary and sufficient for q", or "p is equivalent to q".

Examples

True or False? Let A = YC's age + Keith's age.

A is even ↔ A+1 is odd

Examples

True or False?
Let A = YC's age + Keith's age.

- A is even ↔ A+1 is odd
- ➤ Case 1: If A is even, then A+1 is odd.
- ➤ Case 2: If A is odd, then A+1 is even.
- >True
- >True if A = 63 (i.e., "A is prime" is false; "A+1 is odd" is false).
- > False if A = 79 (i.e., "A is prime" is true; "A+1 is odd" is false).

Tautology, Contradiction

- Let P be a compound proposition made up of the propositions $p_1, p_2, ..., p_n$.
- P is called a **tautology** if P is always **true** for any $p_1, p_2, ..., p_n$.
- E.g., $p \lor \neg p$ $(p \land \neg p) \rightarrow q$
- Intuitively, a tautology is a proposition whose <u>structure</u> guarantees its truth. The truth values of individual propositions do not matter.
- P is called a contradiction if P is always false for any p₁, p₂,
 ..., p_n.

Logical Equivalence

- Let P and Q be compound propositions made up of the propositions $p_1, p_2, ..., p_n$.
- P is said to be <u>logical equivalent</u> to Q, if P and Q always have the same truth value for any $p_1, p_2, ..., p_n$.

```
Example. P: p \wedge p
Q: p
```

- Notation. $P \equiv Q$
- Alternate definition: $P \leftrightarrow Q$ is always true for any $p_1, p_2, ..., p_n$.

Example:

• Is $p_1 \wedge p_2 \equiv p_1$?

Example

- Is $p_1 \land p_2 \equiv p_1$? No.
- If p_1 denotes "10 > 1" and p_2 denotes "10 < 20", then $p_1 \land p_2 \leftrightarrow p_1$ $\equiv T \land T \leftrightarrow T$ $\equiv T \leftrightarrow T$ $\equiv T$
- If p_1 denotes "10 > 1" and $\underline{p_2}$ denotes "10 < 2", then $p_1 \land p_2 \leftrightarrow p_1$ $\equiv T \land F \leftrightarrow T$ $\equiv F \leftrightarrow T$ $\equiv F$

Different forms, but same meaning

- Prove that P is (logical) equivalent to Q.
- Prove that P ≡ Q.
- Prove that $P \leftrightarrow Q$ is always true for all $p_1, p_2, ..., p_n$.
- Prove that $P \leftrightarrow Q$ is a tautology.

Examples

True or False?

•
$$\neg$$
 ((3=4 \lor 4=4) \land (3=2 \lor 2=2))

Solution:

$$\neg$$
 ((3=4 \lor 4=4) \land (3=2 \lor 2=2))

$$\equiv \neg ((F \lor T) \land (F \lor T))$$

$$\equiv \neg (T \land T) \equiv \neg T \equiv F$$

•
$$4=6 \to 3=3$$

•
$$(3=2 \lor 4=4) \to \neg (4=4)$$

•
$$3=4 \land \neg (2=4 \lor 3=3)$$

Examples (cont')

•
$$(3=2 \lor 4=4) \rightarrow \neg (4=4)$$

 $\equiv (F \lor T) \rightarrow \neg T$
 $\equiv T \rightarrow F \equiv F$

•
$$3=4 \land \neg (2=4 \lor 3=3)$$

 $\equiv F \land \neg (F \lor T)$
 $\equiv F$

Proof with Truth Table

Prove that the following propositions are tautology.

$$(p \rightarrow q) \equiv (\neg q \rightarrow \neg p)$$

$$> (\neg p \lor q) \equiv (p \rightarrow q)$$

How to prove such a claim? Use a Truth Table.

p	q	_	_		$\neg q \rightarrow \neg p$	$\neg p \lor q$
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	F	F
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

Set up Python Environment

- This course's Python programs are Jupyter Notebook files (.ipynb files), and will be put on this GitHub repository: https://github.com/cskeith/COMPS264F
- You may run our Python programs on your computer:
 - 1. Install **Anaconda**: https://www.anaconda.com/products/individual
 - Anaconda comes with Jupyter Notebook, which can be used to open and run .ipynb files.
 - 3. But I recommend running .ipynb files in **Visual Studio Code**: https://code.visualstudio.com/download
 - 4. You may find some tutorials on the Internet, e.g., https://code.visualstudio.com/docs/python/jupyter-support
- They can also be run online (but cannot be saved) interactively at: https://mybinder.org/v2/gh/cskeith/COMPS264F/master

Propositions in Python

- Python supports truth values: True, False
- However, only three logical operators are provided:

Logical operator	Example
and	x and y
or	x or y
not	not x

- Biconditional ↔: Use the Python comparison operator ==.
 E.g., (x == y)
- Exclusive or ⊗, Implication →: Define as follows:

$$> p \otimes q \equiv (p \wedge \neg q) \vee (\neg p \wedge q)$$

$$> p \rightarrow q \equiv (\neg p \lor q)$$

[By Slide 23]

Generating Truth Table by Python

To generate the truth tables of exclusive or, implication:

```
unit01.ipynb
def xor(p, q):
   return (p and not q) or (not p and q)
def implies(p, q):
   return not p or q
def table1():
   for p in [True, False]:
       for q in [True, False]:
          print("%7r%7r | %7r%7r" %
               (p, q, xor(p, q), implies(p, q) ) )
table1()
```

Generating Truth Table by Python (cont')

Another way is to use 0, 1 to replace False, True:

```
unit01.ipynb
def xor(p, q):
   return (p and not q) or (not p and q)
def implies(p, q):
   return not p or q
def table2():
   print( " p q | xor implies" )
   print( "----" )
   for p in [1, 0]:
       for q in [1, 0]:
           print("%3d%3d" %3d%3d" %
                 (p, q, xor(p, q), implies(p, q) ) )
table2()
```

Puzzle

- In the middle of the journey to afterlife, you need to select whether to go East or West at a branch.
- One is the path to <u>hell</u> and the other is to <u>heaven</u>, but you cannot tell which is which.
- A knowledgeable man called Tom knows the way. Yet you are informed that Tom either always tells the truth or always lies.
- You are allowed to ask Tom to determine the way to heaven.
 What to ask?

If you can ask two questions, the problem is trivial. Let *P* be the proposition "East is the way to heaven".

- ➤ Question 1: 4 > 5?
- ➤ Question 2: Is P true or false?
- You are allowed to ask only one question!

Solving the Puzzle

- Let P = "East is the way to heaven", and let Q = "Tom always lies".
- Question: Is "P * Q" true or false? (* is an unknown operator.)
- Case 1: Tom always tells the truth (Q = false).

```
(P * Q) \equiv (P * false)
```

Case 2: Tom always lies (Q = true).

```
\neg (P * Q) \equiv \neg (P * true)
```

Aim: In either case, we want Tom's answer to reflect P's truth value.

```
Is it possible that P * false = P and P * true = \neg P?
```

Solving the Puzzle

- Let P = "East is the way to heaven", and let Q = "Tom always lies".
- Question: Is "P * Q" true or false? (* is an unknown operator.)
- ➤ Case 1: Tom always tells the truth (Q = false).

```
(P * Q) \equiv (P * false)
```

Case 2: Tom always lies (Q = true).

```
\neg (P * Q) \equiv \neg (P * true)
```

Aim: In either case, we want Tom's answer to reflect P's truth value.

```
Is it possible that P * false \equiv P \quad and \quad P * true \equiv \neg P ? Yes! Use exclusive OR. P \otimes false \equiv P; P \otimes true \equiv \neg P
```

 Question for Tom: Is "(East is the way to heaven) ⊗ (You always lie)" true or false?

De Morgan's laws

• Theorem
$$\neg(p \lor q) \equiv (\neg p \land \neg q)$$

 $\neg(p \land q) \equiv (\neg p \lor \neg q)$

Again, we can use a truth table to prove the laws.

p q	¬ p	$\neg q$	$\neg(p \lor q)$	(¬p ∧ ¬q)	$\neg(p \land q)$	$(\neg p \lor \neg q)$
ТТ	F	F	F	F	F	F
ΤF	F	Т	F	F	Т	Т
F T	Т	F	F	F	Т	Т
FF	Т	Т	Т	Т	Т	Т

More equivalence

Distributive laws:

•
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

•
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

Associative laws:

•
$$p \lor (q \lor r) \equiv (p \lor q) \lor r$$

•
$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

Commutative laws:

•
$$p \wedge q \equiv q \wedge p$$

Trivial equivalence:

•
$$\neg (\neg p) \equiv p$$

Example

Prove that $(p \land q) \rightarrow (p \lor q) \equiv \text{true}$.

```
Proof.

(p \land q) \rightarrow (p \lor q)

\equiv \neg (p \land q) \lor (p \lor q) [as a \rightarrow b \equiv (\neg a) \lor b]

\equiv (\neg p \lor \neg q) \lor (p \lor q) [De Morgan's law]

\equiv (p \lor \neg p) \lor (q \lor \neg q)

\equiv \text{true} \lor \text{true}

\equiv \text{true}
```

Ambiguity

Let p denote the proposition "if X > 3, then X < 5".

What is the truth value of *p*?

- In a daily conversation, if somebody mentions p to you, you probably say "NO" or false.
- Why? Because we assume that p means
 "No matter what X is, if X > 3, then X < 5".
- Denote the above statement as q.
- Of course, \mathbf{q} is false since when X = 10, $X > 3 \rightarrow X < 5$ is false.

Predicates

- "X > 3" is neither true nor false unless the value of X is specified.
- Let P(x) denote the statement "x > 3".
- Then we can say that P(2) is false, P(5) is true, etc.
- P(x) is called a propositional function; once the value of x is fixed, P(x) has a value either true or false.
- P is also called the **predicate** (dictionary meaning: the part of a sentence that is not a subject), i.e., greater than 3.

Propositional functions with 2 or more variables

- Let Q(x, y) denote the statement "x = y + 3".
- Q(6, 3) is true.
- Q(1, 2) is false.
- Let R(x, y, z) denote the statement "x + y = z".
- R(1, 2, 3) is true.
- R(3, 4, 5) is false.

Quantification

- Let P(x) denote the statement "x > 0 and x < 10".
- P(x) isn't a proposition, but P(1), P(2) are all propositions and are true.
- Basically, there are two ways to convert P(x) into a proposition.
- > Fix x to a certain value, say, 10: P(10)
- Quantify x:
 - "P(x) is true for all values of x" (universal quantification).
 - "There exists one value of x such that P(x) is true" (existential quantification).

Universal quantifier

- Quantification assumes that the set of possible values of x is well defined, say, the set of positive integers.
- This set of values is called the domain or universe of discourse.
- Universal quantification: " $\forall x P(x)$ " denotes the proposition "P(x) is true for all values of x in the domain".
- ∀ is often read as "for all", "for every", or "for any".
- E.g., ∀x (x + 1 > 0) is true.
 ∀x (x 5 > 0) is false.

Existential quantifier

- Quantification assumes that the set of possible values of x is well defined, say, the set of positive integers.
- This set of values is called the domain or universe of discourse.
- Existential quantification: " $\exists x P(x)$ " denotes the proposition "There exists an x in the domain such that P(x) is true".
- ∃ is often read as "there exists".
- E.g., $\exists x (x + 1 > 0)$ is true. $\exists x (x 5 > 0)$ is true.

Finite Domain

- Consider a variable x of which the domain contains a fixed number of values, say, 1, 2, 3, 4, and 5.
- $\forall x P(x)$ is equivalent to $P(1) \land P(2) \land P(3) \land P(4) \land P(5)$.

• $\exists x P(x)$ is equivalent to $P(1) \lor P(2) \lor P(3) \lor P(4) \lor P(5)$.

Negation

```
Is \neg(\forall x P(x)) equivalent to \exists x \neg P(x)?

I.e., \neg(\forall x P(x)) \Leftrightarrow \exists x \neg P(x) is true or false?
```

- YES.
- Suppose "¬(∀x P(x))" is true.
 ∀x P(x) is false.
 There exists x such that P(x) is false.
 "∃ x ¬P(x)" is true.
- Suppose "¬(∀x P(x))" is false.
 ∀x P(x) is true.
 "∃ x ¬P(x)" is false.

Similarly, $\neg(\exists x P(x))$ equivalent to $\forall x \neg P(x)$.

Existential quantifier in Python

$\exists x (x + 1 > 0)$

- To evaluate the above proposition with existential quantifier in Python, we need to assume a finite and reasonably small domain (for the set of positive integers), e.g., U = [1, 2, 3, 4, 5, 6].
- Then, we can use list comprehension, as follows:

Universal quantifier in Python

```
\forall x (x - 5 > 0)
```

 We use negation to change it to a proposition with existential quantifier:

```
\neg \forall \mathbf{x} (x - 5 > 0)
\equiv \exists \mathbf{x} \neg (x - 5 > 0)
\equiv \exists \mathbf{x} (x - 5 \le 0)
```

unit01.ipynb

```
def example2():
    U = [1, 2, 3, 4, 5, 6]
    result = [x for x in U if x - 5 <= 0]
    print("result =", result)
    print('"For all x, x - 5 > 0" =', len(result) == 0)

example2()
```

• If result is not empty, each such item is a counterexample.

Multiple quantifiers

• $\forall x \forall y P(x, y)$

True: P(x, y) is true for all x, y.

False: There is an x and a y such that P(x, y) is false.

• $\forall x \exists y P(x, y)$

True: For every (all) x, there is a y such that P(x, y) is true.

False: There is an x such that for every y, P(x, y) is false.

• $\exists x \forall y P(x, y)$

True: There is an x such that for every y, P(x, y) is true.

False: For every (all) x, there is a y such that P(x, y) is false.

• ∃ x ∃ y P(x, y)

True: There is an x and a y such that P(x, y) is true.

False: P(x, y) is false for all x, y.

Examples

- Let P(x, y) denote x + y = 3.
- Assume x and y are chosen from a domain with a fixed number of values {-1, 0, 1, 2, 3, 4}.

True or False?

- $\forall x \forall y P(x, y)$
- $\forall x \exists y P(x, y)$
- ∃ x ∀y P(x, y)
- ∃ x ∃ y P(x, y)

$\exists x \forall y P(x, y)$


```
\forall x \forall y (x+y=3)

    We use negation on it:

 \neg \forall x \forall y (x+y=3)
 \equiv \exists \mathbf{x} \neg \forall \mathbf{y} (x+y=3)
 \equiv \exists x \exists y \neg (x+y=3)
 \equiv \exists x \exists y (x+y \neq 3)
                                                                            unit01.ipynb
def mqex1():
     U = [-1, 0, 1, 2, 3, 4]
     result = [(x, y) for x in U for y in U if x + y != 3
     print("result =", result)
     print('"For all x, for all y, x+y = 3" = ', len(result) == 0)
mqex1()
```

$$\forall \mathbf{x} \ \forall \mathbf{y} \ (\mathbf{x} + \mathbf{y} = 3)$$

Output of mqex1():

```
result = [(-1, -1), (-1, 0), (-1, 1), (-1, 2), (-1, 3), (0, -1), (0, 0), (0, 1), (0, 2), (0, 4), (1, -1), (1, 0), (1, 1), (1, 3), (1, 4), (2, -1), (2, 0), (2, 2), (2, 3), (2, 4), (3, -1), (3, 1), (3, 2), (3, 3), (3, 4), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)]
"For all x, for all y, x+y = 3" = False
```

• Therefore, $\forall x \forall y \ (x+y=3) \equiv \text{false as we have the}$ counterexample that when x=-1 and y=-1, $x+y=-2 \neq 3$.

```
∀x∃y (x+y = 3)We use negation on it:
```

```
\neg \forall x \exists y (x+y=3)
\equiv \exists x \neg \exists y (x+y=3)
```

$$\forall \mathbf{x} \exists \mathbf{y} (x+y=3)$$

Output of mqex2():

```
X = [] result = [(-1, [4]), (0, [3]), (1, [2]), (2, [1]), (3, [0]), (4, [-1])] "For all x, there exists y s.t. x+y = 3" = True
```

Proof.

- For any integer $-1 \le x \le 4$, $x + y = 3 \Rightarrow y = 3 x$ \Rightarrow y is an integer such that $3-4 \le y \le 3-(-1)$, i.e., $-1 \le y \le 4$.
- Therefore, $\forall x \exists y (x+y=3) \equiv \text{true}$.

```
\exists x \forall y (x+y=3)
```

We use negation on the following predicate:

```
\neg \forall y (x+y=3)
\equiv \exists y (x+y \neq 3)
```

unit01.ipynb

$$\exists x \forall y (x+y=3)$$

Output of mqex3():

```
X = [] result = [(-1, [-1, 0, 1, 2, 3]), (0, [-1, 0, 1, 2, 4]), (1, [-1, 0, 1, 3, 4]), (2, [-1, 0, 2, 3, 4]), (3, [-1, 1, 2, 3, 4]), (4, [0, 1, 2, 3, 4])] "There exists x s.t. for all y, x+y = 3" = False
```

Proof.

• For any integer $-1 \le x \le 4$, we can set y = x such that x+y = 2x is an even number and is not equal to the odd number 3.

Therefore, $\exists x \forall y (x+y=3) \equiv \text{false}$.

```
\exists \mathbf{x} \exists \mathbf{y} (x+y=3)
```

$$\exists x \exists y (x+y=3)$$

Output of mqex4():

```
result = [(-1, 4), (0, 3), (1, 2), (2, 1), (3, 0), (4, -1)]
"There exists x and y s.t. x+y = 3" = True
```

Proof.

- When x=-1, y=4, x+y=3.
- Therefore, $\exists x \exists y (x+y=3) \equiv \text{true}$.

Examples

- Let P(x, y) denote x + y > 3.
- Assume x and y are chosen from the set of integers.

True or False?

• $\forall x \ \forall y \ P(x, y)$

• $\forall x \exists y P(x, y)$

• ∃ x ∀y P(x, y)

Translating sentences into logical expressions

- Let B(x, y) denote the statement "y is a friend of x".
- Which statements have the meaning "<u>Everyone has exactly</u> one friend"?
- $\forall x \exists y \mathbf{B}(x, y)$
- $\forall x \exists y (B(x, y) \land \forall z \neg B(x, z))$
- $\forall x \exists y (B(x, y) \land \forall z [z=y \lor \neg B(x, z)])$
- $\forall x \exists y (B(x, y) \land \forall z [z \neq y \rightarrow \neg B(x, z)])$
- $\forall x \exists y \forall z (B(x, y) \land [z \neq y \rightarrow \neg B(x, z)])$