Chapter 8 Calculs algébriques

8.1 Le symbole somme \sum

Exercice 8.1 (*)

Comparer les cinq sommes suivantes

$$S_{1} = \sum_{k=1}^{4} k^{3}$$

$$S_{2} = \sum_{n=1}^{4} n^{3}$$

$$S_{3} = \sum_{k=0}^{4} k^{3}$$

$$S_{4} = \sum_{k=2}^{5} (k-1)^{3}$$

$$S_{5} = \sum_{k=1}^{4} (5-k)^{3}$$

Exercice 8.2 (***)

Démontrer par récurrence l'assertion suivante:

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \sum_{k=1}^{n-1} k^3 < \frac{n^4}{4} < \sum_{k=1}^n k^3.$$

Exercice 8.5 (*)

Compléter les égalités suivantes.

1.
$$\sum_{k=1}^{10} k^2 = \sum_{k=1}^{9} k^2 + \cdots$$
2.
$$\sum_{k=0}^{10} 2^k = \sum_{k=1}^{10} 2^k + \cdots$$
3.
$$\sum_{k=1}^{3} \frac{1}{k} = \sum_{l=3}^{3} \frac{1}{l-2}$$
7.
$$\sum_{k=1}^{3} (-1)^k \frac{k^2}{(2k)!} = \sum_{k=0}^{2} (-1)^{k-1} \frac{k^2}{(2k)!} = \sum_{k=0}^{2} \cdots$$
8.
$$\sum_{k=1}^{3} (-1)^k \frac{2k}{k+1} = \sum_{k=0}^{5} (-1)^m \frac{m}{k}$$

Exercice 8.6 (**)

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par

$$u_0 = 1$$
 et $u_{n+1} = \sum_{k=0}^{n} u_k$.

Montrer par récurrence (avec prédécesseurs) que pour tout $n \ge 1$, on a $u_n = 2^{n-1}$.

Exercice 8.7 (***)

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_1=3$ et pour tout $n\geq 1$,

$$u_{n+1} = \frac{2}{n} \sum_{k=1}^{n} u_k.$$

Démontrer que, pour tout $n \in \mathbb{N}^*$, on a $u_n = 3n$.

Exercice 8.9 (**)

En remarquant que l'on peut écrire

$$\frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1},$$

où a, b sont des constantes à déterminer, simplifier la somme

$$\sum_{k=1}^{n} \frac{1}{k(k+1)}.$$

Exercice 8.10 (**)

Soit $n \in \mathbb{N}$. Calculer les sommes suivantes

1.
$$\sum_{k=2}^{n} k(1-k)$$
,

2.
$$\sum_{k=0}^{3n} 2\left(k - \frac{1}{2}\right)$$
,

$$3. \sum_{k=0}^{n} \left(1 - \frac{k}{n}\right),$$

3.
$$\sum_{k=0}^{n} \left(1 - \frac{k}{n}\right),$$
4.
$$\sum_{k=2}^{n} \ln\left(\frac{k+2}{k}\right).$$

Exercice 8.11 (**)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombre complexes et $4\leq p\leq q$ deux entiers naturels. Simplifier la somme

$$\sum_{k=p-3}^{q-1}(u_{k+1}-u_{k-1})$$

Exercice 8.12 (**)

Calculer

$$\sum_{k=2}^{n} \ln \left(1 - \frac{1}{k^2} \right).$$

Exercice 8.13 (**)

Calculer $\sum_{k=1}^{n} k \times k!$ à l'aide d'un télescopage. **Exercice 8.15** (**)

1. Montrer que pour tout $k \geq 2$,

$$\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k}.$$

2. En déduire que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{1}{k^2} \le 2.$$

Exercice 8.16 (**)

Soit $n \ge 1$. On considère les deux sommes

$$S_n = \sum_{k=1}^n (2k-1)^3 = 1^3 + 3^3 + 5^3 + \dots + (2n-1)^3$$

$$\tilde{S}_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n \times (n+1)}.$$

- 1. (a) Calculer S_1 , S_2 et S_3 .
 - (b) Démontrer par récurrence que pour $n \ge 1$, $S_n = 2n^4 n^2$.
- **2.** (a) Déterminer deux réels α et β tels que

$$\forall p \in \mathbb{N}^{\star}, \frac{1}{p(p+1)} = \frac{\alpha}{p} + \frac{\beta}{p+1}.$$

- (b) En déduire une expression simple de \tilde{S}_n .
- (c) Retrouver ce résultat en effectuant un raisonnement par récurrence.

Exercice 8.17 (***)

1. Montrer

$$\forall n \in \mathbb{N}^{\star}, \sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} - \sqrt{n-1}.$$

2. En déduire la partie entière de

$$\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{10000}}\right).$$

Exercice 8.18 (***)

Montrer qu'il existe $(a, b, c) \in \mathbb{R}^3$ tels que

$$\forall k \in \mathbb{N}^{\star}, \frac{3k+4}{k(k+1)(k+2)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{k+2}.$$

Déterminer la valeur de

$$S = \sum_{k=1}^{n} \frac{3k+4}{k(k+1)(k+2)}.$$

Exercice 8.21 (***)

1. Établir que pour tout $k \in \mathbb{N}^*$,

$$\arctan\left(\frac{1}{k^2+k+1}\right) = \arctan\frac{1}{k} - \arctan\frac{1}{k+1}.$$

2. Soit $n \in \mathbb{N}$. Calculer la valeur de la somme

$$S_n = \sum_{k=0}^n \arctan\left(\frac{1}{k^2 + k + 1}\right).$$

3. En déduire que la suite $(S_n)_{n\in\mathbb{N}}$ converge et calculer sa limite.

Exercice 8.23 (****)

On pose pour tout $n \in \mathbb{N}$,

$$u_n = \int_0^{\pi/4} \tan^{2n}(x) \, \mathrm{d}x.$$

1. Montrer que pour tout $k \in \mathbb{N}$,

$$u_{k+1} + u_k = \int_0^{\pi/4} (1 + \tan^2(x)) \tan^{2k}(x) dx = \frac{1}{2k+1}.$$

2. En faisant apparaître un télescopage, montrer que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} = \frac{\pi}{4} + (-1)^n u_{n+1}.$$

(a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante, c'est-à-dire

$$\forall n \in \mathbb{N}, u_{n+1} \leq u_n.$$

(b) En déduire l'encadrement

$$\forall n \in \mathbb{N}, 0 \le u_{n+1} \le \frac{1}{4n+2}.$$

4. En déduire finalement la limite

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$$

ce que l'on note aussi $\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}.$

8.2 Sommes usuelles

Exercice 8.24 (*)

Calculer

1. $\sum_{k=1}^{n} k$.

3. $\sum_{k=1}^{n} i$.
4. $\sum_{k=1}^{n} n$.

 $2. \sum_{i=1}^{n} k.$

Exercice 8.25 (**)

Simplifier, pour $n \in \mathbb{N}^{\star}$, les sommes suivantes.

1. $\sum_{k=1}^{n+1} k - \sum_{l=0}^{n} l;$

2. $\sum_{k=0}^{n} (2k+1);$

3. $\sum_{k=1}^{n} k(k-1);$ 4. $\sum_{k=1}^{n} k(k+1)(k+2).$

Exercice 8.26 (**)

1. Montrer par récurrence

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

2. Calculer le nombre de carrés que l'on peut dessiner sur un échiquier 8 x 8 (les côtés sont parallèles aux bords de l'échiquier et les sommets sont des sommets des cases de l'échiquier). Généraliser avec un échiquier $n \times n$.

Exercice 8.29 (*)

Simplifier les sommes suivantes.

1.
$$\sum_{i=0}^{n} i(i-1)$$
.

2.
$$\sum_{j=1}^{n} (2j-1)$$
.

Exercice 8.33 (**)

Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}$.

- 1. Montrer que $1 e^x = -2e^{x/2} \sinh \frac{x}{2}$.
- 2. Simplifier

$$\sum_{k=0}^{n} \operatorname{ch}(kx).$$

On exprimera le résultat avec les fonctions ch et sh.

Exercice 8.35 (***)

Soit $(a, b) \in \mathbb{R}^2$ et $n \in \mathbb{N}^*$.

1. Calculer

$$\sum_{k=0}^{n-1} \cosh(a + kb) \text{ et } \sum_{k=0}^{n-1} \sinh(a + kb).$$

2. Résoudre l'équation d'inconnue $x \in \mathbb{R}$

$$\sum_{k=0}^{100} \operatorname{sh}(2+kx) = 0. \tag{1}$$

Exercice 8.37 (***)

Définissons une suite par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}u_n + n - 1$.

- 1. Démontrer que pour tout $n \ge 3$, u_n est positif. En déduire que pour tout $n \ge 4$, on a $u_n \ge n 2$. En déduire la limite de la suite.
- 2. Définissons maintenant la suite $v_n = 4u_n 8n + 24$. Montrer que la suite (v_n) est une suite géométrique, donner son premier terme et sa raison. Montrer que pour tout $n \in \mathbb{N}$, $u_n = 7\left(\frac{1}{2}\right)^n + 2n 6$. Remarquer que u_n est la somme d'une suite géométrique et d'une suite arithmétique dont on précisera les raisons et les premiers termes. En déduire une formule pour la quantité $u_0 + u_1 + ... + u_n$ en fonction de l'entier n.

Exercice 8.39 (*)

Simplifier les sommes suivantes.

1.
$$\sum_{k=1}^{n} (-1)^k$$
.

$$2. \sum_{i=1}^{n+1} \frac{2^i}{3^{2i-1}}.$$

Exercice 8.40 (****) Écriture en base b

Soit $b \ge 2$ un entier. On souhaite démontrer que tout entier $n \ge 1$ s'écrit de manière unique

$$n = \sum_{k=0}^{p} a_k b^k$$

avec $p \ge 0$, $a_k \in [0, b - 1]$ et $a_p \ge 1$.

1. Existence: démontrer l'existence en procédant par récurrence forte. Pour l'hérédité, on pourra utiliser la division euclidienne de *n* par *b*.

98

2. Unicité: on suppose que n admet deux décompositions distinctes

$$n = \sum_{k=0}^{p} a_k b^k = \sum_{k=0}^{p'} a'_k b^k.$$

On peut supposer $p \ge p'$. Quitte à compléter la suite a'_k par $a'_{p+1} = \cdots = a'_p = 0$, on peut supposer que p = p'.

Soit $\ell \in [0, p]$ le plus grand possible tel que $a_{\ell} \neq a'_{\ell}$.

- (a) Vérifier que $\left(a_{\ell}-a_{\ell}'\right)b^{\ell}=\sum_{k=0}^{\ell-1}\left(a_{k}'-a_{k}\right)b^{k}.$
- (b) Démontrer que, pour toute suite finie $c_0,\dots,c_{\ell-1}$ avec $0\leq c_k\leq b-1,$ on a

$$\sum_{k=0}^{\ell-1} c_k b^k < b^{\ell}.$$

- (c) Conclure.
- 3. Donner l'écriture de 37 écrit en base 10) en base 2, puis en base 3.

Exercice 8.41 (**)

Calculer

$$\sum_{k=1}^{n-1} \binom{n}{k} 2^{k-2}.$$

Exercice 8.43 (**)

- **1.** Pour $p, k \in \mathbb{N}$, exprimer $\binom{p+k}{p}$ en fonction de $\binom{p+k+1}{p+1}$ et $\binom{p+k}{p+1}$.
- **2.** Soit $n, p \in \mathbb{N}$. Calculer la somme

$$S = \sum_{k=0}^{n} \binom{p+k}{p}.$$

Exercice 8.45 (*)

Développer.

1.
$$(a+b)^7$$
.

2.
$$(1-3x)^5$$
.

Exercice 8.46 (**)

Calculer le coefficient de x^3 dans le développement de

$$\left(2x-\frac{1}{4x^2}\right)^{12}.$$

Exercice 8.47 (*)

Calculer.

- 1. Le terme en x^5 du développement de $(x-2)^8$.
- **2.** Le terme en x^{20} du développement de $(x^2 y^2)^{14}$.
- 3. Le terme en x^6 du développement de $(3 4x^2)^5$.

4. Le terme en x^4 et le terme en x^6 du développement de $\left(x^2 + \frac{1}{x}\right)^{14}$.

Exercice 8.50 (*)

En utilisant la formule du binôme de Newton, calculer 1 000 003⁵.

Exercice 8.51 (*)

Soit $n \in \mathbb{N}$. Simplifier les sommes suivantes.

1.
$$\sum_{k=0}^{n} \frac{1}{3^k} \binom{n}{k}$$
.

2.
$$\sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^{k+1}}{2^k}$$
. **3.** $\sum_{k=0}^{n} \binom{n}{k} 3^{2k+1}$.

3.
$$\sum_{k=0}^{n} \binom{n}{k} 3^{2k+1}$$
.

Exercice 8.52 (***)

Soit *n* un entier naturel

1. Montrer qu'il existe $(p_n, q_n) \in \mathbb{N}^2$ tel que

$$\left(1+\sqrt{2}\right)^n = p_n + q_n\sqrt{2}.$$

- **2.** Exprimer $(1 \sqrt{2})^n$ à l'aide de p_n , q_n et $\sqrt{2}$.
- **3.** En déduire une relation entre p_n et q_n .
- **4.** Calculer $\left| \left(1 + \sqrt{2} \right)^n \right|$ en fonction de p_n .

Exercice 8.53 (***)

Pour $0 \le k \le p \le n$, démontrer que $\binom{n}{k}\binom{n-k}{p-k} = \binom{p}{k}\binom{n}{n}$.

En déduire que

$$\sum_{k=0}^{n} \binom{n}{k} \binom{n-k}{p-k} = 2^{p} \binom{n}{p}$$

et
$$\sum_{k=0}^{p} (-1)^k \binom{n}{k} \binom{n-k}{p-k} = 0.$$

Exercice 8.54 (**)

Soit $n \in \mathbb{N}^*$. Calculer $A_n = \sum_{k=0}^n k \binom{n}{k}$ de deux manières différentes.

- **1.** En dérivant de deux façons la fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto (1+x)^n$.
- **2.** En utilisant la relation $k \binom{n}{k} = n \binom{n-1}{k-1}$ valable pour $n, k \in \mathbb{N}^*$.

Exercice 8.55 (****) Une formule d'inversion

On considère deux suites de nombres (f_n) et (g_n) liées par la relation suivante

$$\forall n \in \mathbb{N}, f_n = \sum_{k=0}^n \binom{n}{k} g_k. \tag{1}$$

- 1. En utilisant la formule du binôme de Newton, calculer le terme général de la suite $(f_n)_{n\in\mathbb{N}}$, si on prend successivement pour terme général de la suite $(g_n)_{n\in\mathbb{N}}$ les quantités
 - (a) $g_n = 1$;

(b) $g_n = 2^n$;

- (c) $g_n = (-1)^n$; (d) $g_n = e^{na}$ où a est un réel fixé.
- 2. Démontrer par récurrence la relation réciproque suivante

$$\forall n \in \mathbb{N}, g_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} f_k. \tag{2}$$

8.3 Généralisation de la notation \sum

Exercice 8.58 (**)

Simplifier les sommes suivantes.

$$1. \sum_{0 \le i, j \le n} x^{i+j}.$$

2.
$$\sum_{1 \le i,j \le n} (i+j)^2$$
.

Exercice 8.59 (***)

Pour $p \in \mathbb{N}^*$ et $n \in \mathbb{N}^*$, on pose

$$S_p(n) = 1^p + 2^p + \dots + n^p.$$

- 1. Rappeler sans démonstration les expressions de $S_1(n)$, $S_2(n)$ et $S_3(n)$.
- 2. Soit $(p,n) \in \mathbb{N}^2$. En calculant de deux manières la somme télescopique $\sum_{k=0}^{n} ((k+1)^{p+1} k^{p+1})$, montrer

$$\sum_{i=1}^{p} \binom{p+1}{i} S_i(n) = (n+1)^{p+1} - (n+1). \tag{1}$$

3. En déduire que, pour tout $n \in \mathbb{N}^*$,

$$1^4 + 2^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}.$$
 (2)

Exercice 8.60 (**)

Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, calculer

$$V_n = \sum_{i=1}^n \sum_{j=1}^n x^{i+j}.$$

Exercice 8.62 (****)

On se donne a_1, a_2, \ldots, a_n dans \mathbb{R} . Montrer que

$$\sum_{j=1}^{n} \left(\sum_{k=1}^{n} \frac{a_j a_k}{j+k} \right) \ge 0.$$

Préciser le cas d'égalité.

Exercice 8.63 (*)

Compléter les interversions suivantes:

1.
$$\sum_{i=1}^{n} \sum_{j=i}^{n} a_{i,j} = \sum_{\bullet} a_{i,j} = \sum_{j=\bullet}^{\bullet} \sum_{i=\bullet}^{\bullet} a_{i,j}$$
.

2.
$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i,j} = \sum_{\bullet} a_{i,j} = \sum_{j=\bullet}^{\bullet} \sum_{i=\bullet}^{\bullet} a_{i,j}.$$

3.
$$\sum_{i=1}^{n} \sum_{j=1}^{i} a_{i,j} = \sum_{\bullet} a_{i,j} = \sum_{j=\bullet}^{\bullet} \sum_{i=\bullet}^{\bullet} a_{i,j}.$$

4.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} = \sum_{\bullet} a_{i,j} = \sum_{j=\bullet}^{\bullet} \sum_{i=\bullet}^{\bullet} a_{i,j}.$$

Exercice 8.64 (***)

Calculer, pour tout $n \in \mathbb{N}^*$,

$$S_n = \sum_{1 \le i \le j \le n} ij.$$

Exercice 8.65 (***)

Simplifier les sommes suivantes.

$$1. \sum_{1 \le i < j \le n} (i+j).$$

3.
$$\sum_{1 \le i \le j \le n} (j - i).$$
4.
$$\sum_{1 \le i \le j \le n} \frac{i^2}{j}.$$

$$2. \sum_{1 \le i \le j \le n} \frac{i}{j+1}.$$

$$4. \sum_{1 \leq i \leq j \leq n} \frac{i^2}{j}.$$

Exercice 8.67 (***)

Calculer

$$S = \sum_{1 \le i \le j \le n} \frac{i^2}{j(j+1)}.$$

Exercice 8.68 (***)

Calculer

$$\sum_{0 \le p \le q \le n} \binom{n}{p} 2^q.$$

Exercice 8.69 (****)

Pour $n \ge 1$, on note

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

le *n*-ième nombre harmonique.

1. Calculer

$$S = \sum_{i=1}^{n} \left(\sum_{k=1}^{i} \frac{k}{i+1} \right).$$

- 2. Pour $k \ge 1$, exprimer $\sum_{k=1}^{n} \frac{1}{i+1}$ comme la différence de deux termes de la suite $(H_n)_{n \ge 1}$.
- **3.** En écrivant S comme une somme double, en déduire

$$\sum_{k=1}^{n} k H_k = \frac{n(n+1)}{2} \left(H_{n+1} - \frac{1}{2} \right).$$

Exercice 8.70 (****)

Calculer

$$S = \sum_{1 \le i \le k \le n} \frac{i2^k}{k(k+1)}.$$

Exercice 8.72 (***)

Pour tout entier n, on note

$$Q_n = \sum_{k=0}^n k^3.$$

1. Montrer que

$$\sum_{k=1}^{n} k^3 + \sum_{k=1}^{n} k^2 = 2 \sum_{1 \le j \le k \le n} jk.$$

2. Montrer ensuite

$$2\sum_{1 \le j \le k \le n} jk = \sum_{j=1}^{n} j^2 + \left(\sum_{j=1}^{n} j\right)^2.$$

3. À l'aide des questions précédentes, retrouver l'expression de \mathcal{Q}_n vue en cours.

Exercice 8.73 (***)

On considère (a_k) , (b_k) , (c_k) , (d_k) des familles de nombres réels.

1. Donner une expression développée (relativement simple) de

$$\sum_{1 \leq j < k \leq n} \left(a_j b_k - a_k b_j \right) \left(c_j d_k - c_k d_j \right).$$

2. En déduire l'identité de Lagrange:

$$\sum_{1 \le j < k \le n} \left(a_j b_k - a_k b_j \right)^2 = \left(\sum_{k=1}^n a_k^2 \right) \left(\sum_{k=1}^n b_k^2 \right) - \left(\sum_{k=1}^n a_k b_k \right)^2.$$

3. Puis l'inégalité de Cauchy-Schwarz:

$$\sum_{k=1}^{n} a_k b_k \le \sqrt{\sum_{k=1}^{n} a_k^2} \sqrt{\sum_{k=1}^{n} b_k^2}.$$

Exercice 8.74 (***)

Soit $n \in \mathbb{N}^*$.

- 1. Calculer la somme $S_1 = \sum_{1 \le i, j \le n} i + j$.
- 2. Calculer la somme

$$S_2 = \sum_{1 \le i, j \le n} \min(i, j).$$

On pourra scinder cette somme en deux.

3. En déduire l'expression de la somme $S_3 = \sum_{1 \le i,j \le n} \max(i,j)$.

Pour $i, j \in \mathbb{N}$, on note

ıe

$$\min(i,j) = \begin{cases} i & \text{si } i \leq j \\ j & \text{si } i > j \end{cases} \quad \text{et} \quad \max(i,j) = \begin{cases} j & \text{si } i \leq j \\ i & \text{si } i > j \end{cases}.$$

8.4 Le symbole produit \prod

Exercice 8.76 (*)

Calculer

1.
$$\prod_{k=1}^{n} k$$
.

2. $\prod_{i=1}^{n} k$.

4. $\prod_{k=1}^{n} n$.

Exercice 8.77 (**)

Soit $n \in \mathbb{N}^*$. Exprimer à l'aide de factorielles

- 1. $2 \times 4 \times \cdots \times (2n)$;
- **2.** $1 \times 3 \times \cdots \times (2n-1)$;
- 3. le terme général de la suite (u_n) donnée par la relation de récurrence

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{2n+1}{n+1}u_n.$$

Exercice 8.78 (*)

Calculer les nombres suivants:

$$\sum_{k=1}^{3} \sum_{h=1}^{k} 1, \qquad \sum_{k=1}^{3} \sum_{h=1}^{k} h, \qquad \sum_{k=1}^{3} \sum_{h=1}^{k} k,$$

$$\sum_{k=1}^{3} \prod_{h=1}^{k} h, \qquad \sum_{k=1}^{3} \prod_{h=1}^{k} k, \qquad \prod_{k=1}^{3} \sum_{h=1}^{k} h,$$

$$\prod_{k=1}^{3} \sum_{h=1}^{k} k, \qquad \prod_{k=1}^{3} \prod_{h=1}^{k} h, \qquad \prod_{k=1}^{3} \prod_{h=1}^{k} k.$$

Exercice 8.79 (**)

Soit $a \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$. Pour $n \in \mathbb{N}^*$, on pose

$$p_n = \prod_{p=1}^n \cos \frac{a}{2^p}.$$

- **1.** Pour $n \in \mathbb{N}^*$, simplifier $p_n \sin \frac{a}{2^n}$.
- **2.** En déduire $\lim_{n\to+\infty} p_n$.