Title

D. Zack Garza

January 9, 2020

Contents

1 Thursday January 9th

1

1 Thursday January 9th

Recall: For M^n a closed smooth manifold, consider a smooth map $f: M^n \to \mathbb{R}$.

Definition: A critical point p of f is non-degenerate iff $\det(H := \frac{\partial^i f}{\partial x_i \partial x_j}(p)) \neq 0$ in some coordinate system U.

Lemma (The Morse Lemma): For any non-degenerate critical point p there exists a coordinate system around p such that

$$f(x_1, \dots, x_n) = f(p) - x_1^2 - x_2^2 - \dots - x_{\lambda}^2 + x_{\lambda+1}^2 + \dots + x_n^2$$

 λ is called the *index of f at p*.

Lemma: λ is equal to the number of *negative* eigenvalues of H(p).

Proof: A change of coordinates sends $H(p) \to A^t H(p) A$, which (exercise) has the same number of positive and negative values.

Exercise: show this assuming that A is invertible and not necessarily orthogonal.

This means that f can be written as the quadratic form

$$\begin{bmatrix} -2 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 \\ 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}.$$

Proof of Morse Lemma:

Suppose that we have a coordinate chart U around p such that $p \mapsto 0 \in U$ and f(p) = 0.

Step 1 – **Claim:** There exists a coordinate system around p such that

$$f(x) = \sum_{i,j=1}^{n} x_i x_j h_{ij}(x),$$

where $h_{ij}(x) = h_{ji}(x)$.

Proof: Pick a convex neighborhood V of $0 \in \mathbb{R}^n$.

