

Model Optimization and Tuning Phase Template

Date	15 July 2024
Team ID	740087
Project Title	SpaceX Falcon 9 First Stage Landing Success Predictor
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values				
	• • •	-				
1		ı				
_	-	-				

Performance Metrics Comparison Report (2 Marks):

Optimized Metric

Logistic Regression					
	<pre>cm = confusion_matrix(y_test, lr_pred) cm</pre>				
	} array([[3,	1], 14]])			
	<pre>print(classification_report(y_test,lr_pred))</pre>				
	}	precision	recall	f1-score	support
		0 1.00	0.75	0.86	4
		1 0.93	1.00	0.97	14
	accurac	у		0.94	18
	macro av		0.88	0.91	18
	weighted av	g 0.95	0.94	0.94	18

Final Model	Reasoning

Logistic Regression was selected due to its superior performance across all evaluated metrics, including high accuracy (95.4%), exceptional AUC score (99.9%), robust precision (95.2%) and recall (100%), and

Logistic Regression

р т						
Decision Tree						
	<pre>cm = confusion_matrix(y_test, dt_pred) cm</pre>					
	array([[4, 0], [1, 13]])					
	<pre>print(classification_report(y_test,dt_pred))</pre>					
	precision recall f1-score support					
	Ø 1	0.80 1.00	1.00 0.93	0.89 0.96	4 14	
	accuracy macro avg weighted avg	0.90 0.96	0.96 0.94		18 18 18	
KNeighbors						
Classifier	cm = confusion_r	matrix(y_te	est, knn_p	red)		
	array([[4, 0]	,])				
	<pre>print(classification_report(y_test,knn_pred))</pre>					
	, pı	recision	recall t	f1-score	support	
	0 1	0.80	1.00	0.89 0.96	4	
	accuracy		0.06	0.94	18	
	macro avg weighted avg	0.96	0.94	0.93 0.95	18 18	
Random Forest						
Kandom Polest						
	<pre>] cm = confusion_matrix(y_test, rf_pred) cm</pre>					
	array([[4, 0]] ,]])				
	<pre>print(classification_report(y_test,rf_pred))</pre>					
	B 1	orecision	recall	f1-score	support	
	0 1	0.80 1.00	1.00 0.93	0.89 0.96	4 14	
	accuracy macro avg weighted avg	0.90 0.96	0.96 0.94	0.94 0.93 0.95	18 18 18	

Final Model Selection Justification (2 Marks):

balanced F1 score (97.5%). Its consistency in outperforming other models like Decision Tree, KNN, and Random Forest demonstrates reliability and suitability for predicting SpaceX Falcon 9 first stage landing success. Moreover, its interpretability and computational efficiency make it an optimal choice for this prediction task.