La Blockchain de Ethereum

La Blockchain de Ethereum (1)

- Es diferente a la estructura de Bitcoin
 - Se parecen
 Cada nodo almacena una copia de la Blockchain
- Diferencias
 - Transaction-based State Machine
 - Los nodos de Ethereum almacenan el estado (state) más reciente de cada Smart Contract, además de las transacciones de ether.
 - La estructura interna
 - El algoritmo de minado (Ethash)

La Blockchain de Ethereum (2)

- ¿Transaction-based State Machine? (1)
 - Funciona como una máquina de estados
 - Es decir una máquina que lee una serie de inputs y que, en base a dichos inputs, pasa a otro estado.

La Blockchain de Ethereum (3)

- ¿Transaction-based State Machine? (2)
 - Se empieza en un "genesis state" antes de cualquier transacción.
 - Cuando hay transacciones se "pasa" a otro estado final.
 - El estado final representa el "estado actual" de Ethereum.

La Blockchain de Ethereum (4)

- ¿Transaction-based State Machine? (3)
 - El "estado actual" tiene millones de transacciones que se agrupan en bloques.
 - Cada bloque tiene una serie de transacciones y está encadenado al bloque anterior.

La Blockchain de Ethereum (5)

- ¿Transaction-based State Machine? (y 4)
 - Para pasar de un estado a otro, la transacción debe ser validada.
 - Para ser validada la transacción pasa el proceso de minado.
 - Cualquier nodo de la red que se declare como minero puede intentar crear y validar un bloque (proof-ofwork). El minero es recompensado con Ether.
 - Cada vez que se añade un nuevo bloque, se generan nuevos token Ethers.

La Blockchain de Ethereum (6)

- Estructura Interna (1)
 - Accounts
 - States
 - Transactions

La Blockchain de Ethereum (7)

- Estructura Interna (1) Accounts (1)
 - Representan el estado actual
 - Son objetos que se comunican a través de un framework de mensajeria.
 - Se identifican con un address de 160 bits.
 - Cada account tiene un estado asociado (state).
 - Existen dos tipos:
 - Externally Owned Accounts (EOA).
 - Contract Accounts (CA).

La Blockchain de Ethereum (8)

- Estructura Interna (2) Accounts (y 2)
 - Las EOA puede enviar mensajes a otra EOA (transferencia de valor) o CA (activa / invoca el código del contrato) firmando una transacción con un private key.
 - CA no pueden iniciar nuevas transacciones por su cuenta.

La Blockchain de Ethereum (9)

- Estructura Interna (3) States (1)
 - El estado (state) de la Account se compone de cuatro elementos:
 - Nonce:
 - Si EOA → representa el número de transacciones enviadas desde account address.
 - Si CA → número de contratos creados por la account.
 - Balance: Total de wei en propiedad del address. (1 ether == 1018 wei).
 - codeHash: hash del EVM code. (EOA == empty string).
 - storageRoot: hash del root node del Merkel Patricia Tree.
 Es en sí mismo un árbol.

La Blockchain de Ethereum (10)

- Estructura Interna (4) States (2)
 - Gráficamente:

La Blockchain de Ethereum (11)

- Estructura Interna (5) States (3)
 - El estado global consiste en mapear los accounts addresses y los account states en un Merkle Patricia Tree
 - Gran número de hojas al final con los datos
 - Nodos intermedios donde cada nodo es el hash de los nodos hijos
 - El root node se forma con el hash de los nodos hijos en la raíz del árbol

La Blockchain de Ethereum (13)

- Estructura Interna (7) States (y 5)
 - La ventaja de usar Merkle Patricia Tree es
 - root node es criptográficamente dependiente de la información almacenada en el árbol
 - por tanto, el hash del root node puede ser utilizado como una prueba de identidad de los datos.
 - Para validar un dato, se puede realizar lo que se denomina Merkle Proof. Requiere:
 - El dato a validar
 - El root node hash
 - El branch (que son los hashes desde el dato al root node).

La Blockchain de Ethereum (13)

- Estructura Interna (8) Transacciones
 - nonce: cuenta del número de transacciones del sender.
 - gasPrice: número de wei que el sender está dispuesto a pagar.
 - gasLimit: cantidad máxima de gas que el sender pagaría.
 - to: recipient account address.
 - value: cantidad de wei que sender envía al recipient.
 - v, r, s: usados para generar la firma del sender.

Ethash (1)

- Es un algoritmo de tipo PoW
- Es una variante del algoritmo Dagger (Vitalik Buterin) Hashimoto (Thaddeus Dryja)
- Necesita una estructura de datos de 1Gb para operar (el DAG)
 - Se genera al iniciar Ethereum por primera vez
 - Se actualiza cada N bloques (30000 bloques)
 - Tiene un número mágico al principio aleatorio
 - Es una tabla de n x 4 bytes (n = 16777186)

Ethash (2)

- Objetivos que persigue:
 - Ser resistente al uso de ASIC
 - Los bloques deben de ser verificables muy rápidamente por clientes ligeros
 - El objetivo es calcular un nonce usando:
 - la información de la cabecera del bloque
 - Subconjuntos aleatorios de la información del DAG (uso intensivo de E/S y de RAM) + SHA3

Ethash (y 3)

Ethash Hashing Algorithm

