Weekly Quiz #8

Problem 1.

Which of the following functions is increasing $(0, \infty)$?	
--	--

Answers *

$$f(x) = 13 - x^3$$

$$f(x) = -4x + 1$$

$$f(x) = -4x^2$$

$$\checkmark$$
 x^2

Problem 2.

Which of the following functions, when defined on the set of non-negative real numbers, is decreasing?

Answers *

$$f(x) = 2x$$

$$f(x) = x^{1/2}$$

$$f(x) = x^3 + 4x^2 + x + 1$$

$$f(x) = -2(x^2 + 9)$$

Problem 3.

Let $f(x) = x^3 + 3x^2 - 45x + 4$. Then the local extrema of $f(x)$ are

Answers *

A local minimum of -179 at $x=5$ and a local maximum of 77 at $x=-3$.

A local minimum of
$$-77$$
 at $x=3$ and a local maximum of 179 at $x=-5$.

A local minimum of
$$-179$$
 at $x=-5$ and a local maximum of -77 at $x=3$.

A local minimum of
$$-77$$
 at $x = 3$ and a local maximum of 77 at $x = 5$.

Problem 4

For what values of x does the function $f(x) = x^3 - 9x^2 - 120x + 6$ have a local minimum?

Answers *

V	10		

Problem 5.

The graph of $y = x^3 - 5x^2 + 4x + 2$ has a local minimum at

Answers *

(0.46, 0)

(2.94, -4.05)

(4.06, 2.87)

Problem 6.

The graph of $y=x^3-2x^2-5x+2$ has a local maximum at

Answers *

(2.12, 0)

(2.12, -8.061)

(-0.786, 0)

(-0.786, 4.209)

Problem 7.

Find the relative extrema for the following functions by (1) determining the critical value(s) and (2) determining whether at these critical values the function is a relative maximum or minimum (or possible inflection point).

	$f(x) = -8x^2 + 12x + 3$	
Answers *	•	
\checkmark	x = 3 /4 , relative maximum	
	x = 3/4 , relative minimum	
	x = -3/4, relative minimum	
	x = -3/4, relative maximum	
Problen	n 8.	
value	the relative extrema for the following functions by (1) determining the cree(s) and (2) determining whether at these critical values the function is a rimum or minimum (or possible inflection point). $f(x) = (x-1)^3$	
Answers	*	
~	x = 1, inflection point	
	x = 1, relative minimum	
	x = 1, relative maximum	

x = 1 is not a critical value

Problem 9.

Optimize the following function by (1) finding the critical value(s) at which the function is optimized and (2) testing the second-order condition to distinguish between a relative maximum or minimum and (3) the values of the relative extrema for the function. For the following given function

$$f(x) = x^2 + 6x + 9$$

Which if the following is correct?

Answers	•
	x = -3, relative maximum, $f(-3) = 0$
0	x = 3, relative minimum, $f(-3) = 0$
V	x = -3, relative minimum, $f(-3) = 0$
	x = -3, relative minimum, $f(-3) = -1$

Problem 10.

Optimize the following function by (1) finding the critical value(s) at which the function is optimized and (2) testing the second-order condition to distinguish between a relative maximum or minimum and (3) the value(s) of the relative extrema for the function. For the following giving function

$$f(x) = x^3 + 6x^2 - 96x + 23$$

Which of the following choices is correct?

Answers *

Problem 11

Which of the following statements is true based on the given figure.

Answers *

/ 4	

A, B, and C are critical points.

C and A are inflection points.

A, B, and C are relative extrema.

Only A and C are critical points

Problem 12.

Find the critical points in the following figure at which the derivative does **not** exist.

Answers *

Points B, C, and D

Points B and C

Point D

A and D

Problem 13.

Find the intervals of concavity of the function $f(x) = 4x^3 - 3x^2 - 1$

by solving equation f''(x) = 0 (see the definition of concavity).

Answers *

Concave up on $(\frac{1}{4},\infty$) $% =-\frac{1}{4}$ and concave down on $(-\infty,\frac{1}{4})$

Concave up on $(\frac{\sqrt{2}}{2}, \infty$) and concave down on $(-\infty, \frac{\sqrt{2}}{2})$

Concave up on $(0.5,\infty)$ and concave down on $(-\infty,0.5)$

Concave up on $(-\frac{\sqrt{2}}{2},\!\infty\,)\,$ and concave down on $(-\infty,\!-\frac{\sqrt{2}}{2}\,)\,$

Problem 14.

The local extrema of $f(x) = -x^3 + 6x^2 + 6$ occur at which of the following x-values?

Answers*

local maximum at x=0, local minimum at x=4

local maximum at x = 4, local minimum at x = 0

local minimum at x = 0, 4

local maximum at x = 2

Problem 15.

What is he x-coordinate of the inflection point on the graph	of
$f(x) = -x^3/3 + 5x^2 + 24$	

Answers *		
	5	
	0	
\checkmark	-5	
	-10	