Polarisation d'une onde électromagnétique

	i olarisation (d the onde electromagnetique
1	Description d'une onde électromagnétique	Une onde électromagnétique est constituée : - d'un champ électrique \vec{E} qui vibre et se propage
		- d'un champ magnétique $ec{B}$ qui vibre et se propage
		$ec{E}$: champ électrique
		Direction de propagation
		\overrightarrow{B} : champ magnétique
		Les champs \vec{E} et \vec{B} sont perpendiculaires entre eux.
		Les champs $ec{E}$ et $ec{B}$ sont perpendiculaires à la direction de
		propagation.
	Direction de polarisation d'une onde électromagnétique	Direction du champ électrique ${\cal E}$
3	Plan de polarisation	Plan contenant le champ électrique \vec{E} direction (axe)
4	Lumière naturelle	Lumière non polarisée pour laquelle toutes les directions de polarisation sont présentes aléatoirement.
5	Exemples de lumière naturelle	Lumière émise par le soleil, ou par une lampe à incandescence ou
		encore une lampe à vapeur de sodium
	Exemple de lumière partiellement polarisée	La lumière réfléchie est partiellement polarisée.
7	Lumière polarisée rectilignement	Lumière qui a une seule direction de polarisation

8	Représentation du champ électrique \vec{E} dans un plan perpendiculaire à la direction de propagation de l'onde pour une lumière []	Représentation du champ électrique \vec{E} dans un plan perpendiculaire à la direction de propagation de l'onde pour une lumière naturelle
9	Représentation du champ électrique \vec{E} dans un plan perpendiculaire à la direction de propagation de l'onde pour une lumière []	Représentation du champ électrique \vec{E} dans un plan perpendiculaire à la direction de propagation de l'onde pour une lumière polarisée verticalement
10	On obtient une lumière polarisée rectilignement à l'aide d'une source de lumière non polarisée et d'un [].	
11	Montage avec un polariseur et un analyseur	$\stackrel{+}{\longrightarrow}$ $\stackrel{P}{\longleftarrow}$ $\stackrel{\alpha}{\longleftarrow}$ $\stackrel{\alpha}{\longleftarrow}$ $\stackrel{\alpha}{\longleftarrow}$ $\stackrel{\alpha}{\longleftarrow}$ $\stackrel{\alpha}{\longleftarrow}$ $\stackrel{\alpha}{\longleftarrow}$ $\stackrel{\alpha}{\longleftarrow}$ $\stackrel{\alpha}{\longleftarrow}$ polariseur analyseur
		lumière naturelle incidente lumière polarisée rectilignement selon $\vec{e_p}$, rectilignement selon $\vec{e_g}$ rectilignement selon $\vec{e_g}$ rectilignement selon $\vec{e_g}$ lumière polarisée rectilignement selon $\vec{e_g}$ lumière polarisée rectilignement selon $\vec{e_g}$ lumière polarisée lumière polarisée à partir d'une lumière naturelle.
		L'analyseur est le deuxième filtre polarisant.

12	Montage avec un polariseur et analyseur	Le polariseur et l'analyseur ont des
12	croisés.	aves de transmission
	0101303.	perpendiculaires :
		perpendiculation.
		lumière non polariseur horizontal polarisée
40		polariseur vertical
13	Effet d'un polariseur sur	L'onde est entièrement transmise si la direction
	une onde polarisée	de transmission du polariseur correspond à la
	rectilignement:	direction de polarisation de l'onde.
14	Effet d'un polariseur	L'onde est non transmise si la direction de
14	sur une onde	transmission du polariseur est perpendiculaire
	polarisée y	à la direction de polarisation de l'onde.
	rectilignement :	a la direction de polarication de l'ender
	3	Lumière non
		transmise
15	Effet d'un polariseur	L'onde est partiellement transmise si la direction
	sur une onde polarisée	de transmission du polariseur n'est pas parallèle
	rectilignement:	y à la direction de polarisation de l'onde (Sur cet
		exemple, seule la composante verticale de
		Lumière partiellement l'onde est transmise) transmise
16	Substance optiquement active	Substance qui a la propriété de faire Substance
	' '	tourner la direction de polarisation de optiquement
		toute lumière polarisée qui la active
		traverse.
		lumière polarisée
47	The colution of outline court of	horizontalement
17	Une solution est optiquement active	Une solution est optiquement active lorsque le soluté est chiral.
	lorsque le soluté est [].	

18	Une molécule est chirale lorsqu'[].	Une molécule est chirale lorsqu'elle n'est pas superposable à son image dans un miroir.
19	Pouvoir rotatoire	Angle α de rotation de la direction de polarisation lors de la traversée d'une solution optiquement active. Par convention α est mesuré positivement dans le sens des aiguilles d'une montre pour un observateur recevant le rayon lumineux.
20	Loi de biot	Le pouvoir rotatoire α est proportionnel à la concentration massique c_m de la solution optiquement active et à la longueur I de la solution traversée. $\alpha = [\alpha_0] \cdot l \cdot c_m$
		Unités : α : pouvoir rotatoire en degré
		$ \alpha_0 $: pouvoir rotatoire spécifique qui dépend de la longueur d'onde utilisée, de la température et de l'espèce chimique étudiée. Il s'exprime en °.mL.g $^{-1}$.dm $^{-1}$
		I : longueur de la solution traversée en dm
21	Les pouvoirs rotatoires spécifiques de deux énantiomères sont []. Ainsi, le pouvoir rotatoire d'un mélange racémique est [].	c : concentration massique de la solution en g.mL ⁻¹ Les pouvoirs rotatoires spécifiques de deux énantiomères sont opposés. Ainsi, le pouvoir rotatoire d'un mélange racémique est nul par compensation. Mélange racémique : mélange de deux énantiomères en quantité égale.
22	Pouvoir rotatoire d'une solution contenant	Enantiomères : deux molécules chirales images l'une de l'autre dans un miroir. Le pouvoir rotatoire de la solution est égale à la somme algébrique
22	plusieurs substances optiquement actives :	du pouvoir rotatoire de la solution est egale à la somme algebrique du pouvoir rotatoire des différentes substances actives. $\alpha = \sum_i \left[\alpha_0\right]_i \cdot l \cdot c_{m,i}$
23	Polarimétrie	Mesure du pouvoir rotatoire d'une solution