STATISTICS 452/652: Statistical Learning and Prediction

November 30, 2020

Final Review Outline

(Reading: ISLR Sections 3.1–3.4)

1 Regression Review

1.1 Intro Stat

- Distributions and models
- Sampling distributions and the effects of sampling on statistics
- \bullet Standard errors and relationship to n

1.2 Simple Linear Regression

- Model and parameters
- Least squares
- Sampling distribution of regression estimates
- Sampling variability in predicted values

1.3 Multiple Linear Regression

- Model and parameters
- Least Squares
- Hyperplane
- Multicollinearity

1.4 How the Universe Works

- $Y = g(\mathbb{X}) + \delta$
 - True structure, universal function, universal predictor
 - Irreducible error
- Approximating truth with model f(X)
- Bias-Variance Tradeoff (BVT)
 - Bias of a model
 - Variance of a model
- Modeling is managing BVT

2 Evaluating Models

- Sums of squares, sMSE
- Prediction error, MSPE
- Overfitting
- Sample re-use, resampling, data splitting
 - Training/validation/test sets
 - Random splits
 - Cross-validation
 - Bootstrap
- Using resampling methods to select models
- relative error

3 Extensions of Variables

- Categorical explanatories
 - Binary indicator/dummy variables
 - How R does it
- Feature Engineering
 - Transformations
 - * Polyniomials
 - Interactions
 - Arbitrary functions of multiple variables

4 Simplifying Models

• Relationship between model complexity and BVT

4.1 Subset Selection

- All Subsets regression
- Stepwise selection
 - Forward
 - Backward
 - Hybrid methods
- Criteria
 - MSPE
 - Information Criteria

4.2 Shrinkage

- Using something other than least squares
 - Penalized least squares
- Ridge regression
 - Shrinkage penalty
 - Tuning parameter
 - * GCV
- LASSO
 - Simultaneous shrinkage and variable selection
 - LASSO penalty
 - * Choosing tuning parameter with CV

4.3 Dimension Reduction

- Reduce complexity of models
- Allow n < p
- Principal Components Analysis
 - Rotate axes to account for variance in X

- Project data onto PC
- Principal Components Regression
 - Choose smaller number of PCs, M < p, for model
 - Ignores Y
- Partial Least Squares
 - Similar to PC, but uses Y to help select components
 - Choose smaller number than p to work with

5 Flexible Regression Models

- Regions and indicator variables
- Step Functions
- Basis Function

5.1 Splines

- Regression/Basis/Cubic Splines
 - Piecewise polynomials
 - Knots
 - Smoothness constraints
- Natural Splines
- Smoothing Splines
 - Natural splines with lots of knots and shrinkage
 - Equivalent Degrees of Freedom
- Local Polynomial Regression (LOESS)
 - Kernel-weighted function within a neighbourhood
- Mostly limited to 1 dimension

5.2 Spline Applications in Higher Dimensions

- Generalized Additive Models
 - Like linear regression, but with splines in each dimension
 - Limited ability to model interactions
- Projection Pursuit
 - Create components optimally
 - Fit spline to component
 - Repeat on residuals

6 Modern Statistical Learning Machines

6.1 Neural nets

- Hidden layer(s) of Hidden nodes
- Weights
- Activation function
- Decay/shrinkage
- Poorly identified parameters
 - Slow Convergence
 - Sub-optimal minimum
 - Multiple re-starts
- Tuning!
- Pre-process data for nnet()

6.2 Trees

- Decision tree concept
- Splitting/partitioning data
 - recursively applied to resulting subsets
- Stopping rules
- Pruning
- Properties of predictions

6.3 Ensembles

- Bagging
 - Bootstrap aggregation
 - Refitting learners to resamples
 - Averaging across resamples
 - Properties
- Random Forest
 - Bagging regression trees
 - Added tweak of subsampling variables at each split
 - Variable Importance
 - Tuning
- Boosting
 - Fitting small trees in sequence to residuals
 - Incrementing prediction function by small amount
 - * Shrinkage
 - Tuning

7 Classification

7.1 Problem of Classification

- Categorical response variable
 - -K possible classes at each x
 - Discrete distribution for P(Y = k|X = x)
 - "True" class
 - Irreducible error
- \bullet Goal is to predict "true" class (most likely class) at each x
 - Classifier is a machine f(X) that guesses true class
 - Bayes classifier
- Misclassification rate
- Confusion matrix
- Decision boundaries
- BVT

K Nearest Neighbour Classifier

- \bullet Predictions based on most likely class among M neighbours
- M controls BVT
- Not great in higher dimensions

8 Linear Classifiers

8.1 Logistic regression

- Model log-odds (logit) as linear regression
- Estimates P(Y = k | X = x) for each k
- Multi-response (baseline) logits for multiple classes
- Linear decision boundaries

8.2 Discriminant Analysis

- Multivariate normal distribution for X within each class
- \bullet Linear discriminant analysis
 - Equal variances and correlations across groups
 - Linear decision boundaries.
- Quadratic Discriminant Analysis
 - Unequal variances and correlations across groups
 - Quadratic decision boundaries
- Choice is BVT

9 Nonlinear extensions

- Generalized Additive model
 - Extension of logistic regression
 - Uses splines for each variable instead of linear terms
 - Created flexible decision boundaries
 - No interactions
- Naive Bayes

- Extension of discriminant analysis
- Assumes correlations are all 0
- Kernel density estimate or normal
- PCA rotation or not

10 Tree-based classifiers

- Classification tree
 - Splits to increase node purity
 - Prediction is larges class in terminal node
 - Pruning
- Random forests
 - Bagging classification trees
 - Subset of variables for each split
 - Trees vote on class
 - Variable importance
- Boosting
 - Slowly build machine
 - Lots of small trees
 - R function doesn't work for K > 2

11 Modern Machines

- Neural Nets
 - Response indicators
 - Estimating means
 - Softmax function
 - Classifier is highest score
 - Same tuning as for regression
- Support Vector Machines
 - Just for classification
 - Optimal separating hyperplane
 - Support vectors

- Margin
- Maximal margin hyperplane
- Add slack and penalize for nonseparable cases
 - * Cost is a tuning parameter
- Expand dimension for better separation
- Linear SVM becomes nonlinear in original space
- Kernel functions
 - * Gaussian Radial Basis
 - * Polynomial
 - * Tuning parameters on each
- Multiclass SVM
 - * Series of 1 vs 1 SVMs
 - * Class with most votes wins.