Rec'd PCT/PTO 27 DFC 2004

30.07 0 3 REC'D 1 9 SEP 2003 WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年 7月 8日

出 願 番 号 Application Number:

特願2002-199022

[ST. 10/C]:

[JP2002-199022]

出 願 人
Applicant(s):

独立行政法人産業技術総合研究所

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 9月 5日

【曹類名】 特許願

【整理番号】 230N02077

【提出日】 平成14年 7月 8日

【あて先】 特許庁長官 殿

【国際特許分類】 G01N 27/12

【発明者】

【住所又は居所】 愛知県名古屋市守山区大字下志段味字穴ケ洞2266番

地の98 独立行政法人産業技術総合研究所中部センタ

一内

【氏名】 伊豆 典哉

【発明者】

【住所又は居所】 愛知県名古屋市守山区大字下志段味字穴ケ洞2266番

地の98 独立行政法人産業技術総合研究所中部センタ

ー内

【氏名】 申 ウソク

【発明者】

【住所又は居所】 愛知県名古屋市守山区大字下志段味字穴ケ洞2266番

地の98 独立行政法人産業技術総合研究所中部センタ

一内

【氏名】 村山 宣光

【特許出願人】

【識別番号】 301021533

【氏名又は名称】 独立行政法人産業技術総合研究所

【代表者】 吉川 弘之

【連絡先】 部署名 独立行政法人産業技術総合研究所 産学官連携

部門中部産学官連携センター 担当者 中田正人 電

話番号 052-736-7065

【提出物件の目録】

【物件名】 明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【発明の名称】 抵抗型酸素センサとそれを使った酸素センサ装置及び空燃比制御システム

【特許請求の範囲】

【請求項1】 酸化物半導体からなる酸素ガス検出部分と基板を構成要素として含む抵抗型酸素センサであって、酸化物半導体が、セリウムイオンとジルコニウムイオンを含む酸化物であり、かつ、セリウムイオンとジルコニウムイオンの物質量の和に対するジルコニウムイオンの物質量の割合が0.5~40mol%であることを特徴とする抵抗型酸素センサ。

【請求項2】 セリウムイオンとジルコニウムイオンの物質量の和に対するジルコニウムイオンの物質量の割合が $5\sim40\,\mathrm{mol}$ %であることを特徴とする請求項1に記載の抵抗型酸素センサ。

【請求項3】 800 \mathbb{C} における抵抗率が20 \mathbb{Q} m以下であり、かつ、600 \mathbb{C} から900 \mathbb{C} において抵抗率 ρ が酸素分圧 \mathbb{P} 0 \mathbb{C} 1 \mathbb{C} 1 \mathbb{C} 2 における \mathbb{C} 3 が、4から5.5 であることを特徴とする請求項1又は2に記載の抵抗型酸素センサ。

【請求項4】 酸素ガス検出部分と電気回路的に直列に接続された、出力の 温度依存性を抑えるための温度補償部分を有する請求項1から3のいずれかに記 載の抵抗型酸素センサ。

【請求項5】 抵抗型酸素センサの温度を制御するためのヒータを有する請求項1から4のいずれかに記載の抵抗型酸素センサ。

【請求項6】 請求項1から5のいずれかに記載の抵抗型酸素センサを構成 要素として含むことを特徴とする酸素センサ装置。

【請求項7】 一定電圧を負荷できる器具と電圧を測定できる器具を有する 請求項6に記載の酸素センサ装置。

【請求項8】 請求項1から5のいずれかに記載の抵抗型酸素センサを構成 要素として含むことを特徴とする燃焼機関の空燃比を制御するための空燃比フィードバック制御システム。

【請求項9】 燃焼機関が、自動車用燃焼機関である請求項8に記載の空燃

比フィードバック制御システム。

【請求項10】 請求項1から5のいずれかに記載の抵抗型酸素センサを含むことを特徴とする自動車排ガス触媒劣化検知システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、例えば、排ガスの浄化率向上や燃費向上のための、主に自動車排ガスの空燃比を制御するための空燃比フィードバック制御システムに使われる酸素分圧を測定する酸素センサに関するものであり、更に詳しくは、雰囲気ガスの酸素分圧に応じて抵抗率が変化する酸化物半導体からなるガス検出部分を有している酸素センサに関するものである。

[0002]

【従来の技術】

これまで、自動車用の酸素センサとして、例えば、主として、固体電解質のものが用いられてきた(特開昭55-137334号公報)。このタイプのセンサは、基準極と測定極の酸素分圧の違いを起電力として測定するものであり、必ず基準極が必要であるため、構造が複雑であり、小型化が困難であるという問題点があった。この問題点を克服するために、例えば、基準極を必要としない抵抗型酸素センサが開発されている(特開昭62-174644号公報)。この抵抗型酸素センサの測定原理を簡単に説明すると、まず、雰囲気の酸素分圧が変化したときに、酸化物半導体の酸素空孔濃度が変化する。酸化物半導体の抵抗率あるいは電気伝導度は、酸素空孔濃度と1対1の対応関係があり、酸素空孔濃度の変化に伴い、酸化物半導体の抵抗率が変化する。その抵抗率を測定することにより、雰囲気の酸素分圧を知ることができる。

[0003]

抵抗型酸素センサは、酸素分圧が変化したときの出力の応答性に劣るという問題点があった(特開平07-63719号公報)。また、抵抗型酸素センサの酸化物半導体として酸化チタニウムが使われてきが、この材料は耐久性や安定性に劣るという問題点があった。これらの問題点を克服するために、本発明者らは、

酸化物半導体として酸化セリウムを用いた抵抗型酸素センサの研究開発を行ってきた。酸化セリウムは腐食ガス中において耐久性があることが知られている(E.B. Varhegyi et al., Sensors and Actuator B, 18-19 (1994) 569)。酸化セリウムを用いた抵抗型酸素センサにおいて酸化セリウムの粒径を200nmまで小さくすることにより、応答性が改善された(特願 2001-257118号)。

[0004]

しかしながら、このセンサは、酸化物半導体である酸化セリウムの電気伝導度が小さい、すなわち、抵抗率が大きいという問題点や、センサの作動温度が低くなるにつれ、電気伝導度(出力)の酸素分圧依存性が小さくなるという問題点もあった。更に、応答速度を改善する必要もあった。

[0005]

また、セリウムイオンとジルコニウムイオンの物質量の和に対するジルコニウムイオンの物質量の割合(以下、ジルコニウムイオン濃度と記載する)が80m ol%以上であるセリウムイオンとジルコニウムイオンを含む酸化物を使った酸素センサが報告されている(Guo-Long Tanら、Thin Solid Films 330(1998)59-61)。しかし、このセンサは、その検出原理としては基準極と測定極の酸素分圧の違いを起電力として測定する酸素濃淡電池を使ったものであり、抵抗型酸素センサではない。

[0006]

【発明が解決しようとする課題】

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術における諸問題を抜本的に解決することを目標として鋭意研究を進める過程で、酸素ガス検出部分が酸化物半導体からなる抵抗型酸素センサにおいて、酸化物半導体としてセリウムイオンと特定濃度のジルコニウムイオンを含む酸化物を使用することにより所期の目的を達成し得ることを見出し、更に研究を重ねて、本発明を完成するに至った。

本発明は、酸素ガス検出部分が酸化セリウムだけである抵抗型酸素センサより も、酸素分圧変化に対する出力の応答時間が短く、かつ、酸化物半導体の抵抗率

本発明は、応答時間が短く、低い抵抗率であり、酸素分圧依存性が大きい抵抗型酸素センサを提供することを目的とするものである。更に、本発明は、ボイラーなどの燃焼効率最適化のための空燃比フィードバック制御システムに使われる酸素センサ装置を提供することを目的とするものである。

[0007]

【課題を解決するための手段】

上記課題を解決するための本発明は、以下の技術的手段から構成される。

- (1)酸化物半導体からなる酸素ガス検出部分と基板を構成要素として含む抵抗型酸素センサであって、酸化物半導体が、セリウムイオンとジルコニウムイオンを含む酸化物であり、かつ、セリウムイオンとジルコニウムイオンの物質量の和に対するジルコニウムイオンの物質量の割合が0.5~40mol%であることを特徴とする抵抗型酸素センサ。
- (2)セリウムイオンとジルコニウムイオンの物質量の和に対するジルコニウムイオンの物質量の割合が $5\sim40\,\mathrm{mol}$ %であることを特徴とする前記(1)に記載の抵抗型酸素センサ。
- (3) 800 ℃における抵抗率が200 ⋒以下であり、かつ、600 ℃から90 0 ℃において抵抗率 ρ が酸素分圧P の1 / n 無に比例するという関係式 ρ ∞ P 1 n におけるn が、4 から5 . 5 であることを特徴とする前記(1)又は(2)に記載の抵抗型酸素センサ。
- (4)酸素ガス検出部分と電気回路的に直列に接続された、出力の温度依存性を抑えるための温度補償部分を有する前記(1)から(3)のいずれかに記載の抵抗型酸素センサ。
 - (5)抵抗型酸素センサの温度を制御するためのヒータを有する前記(1)から
 - (4)のいずれかに記載の抵抗型酸素センサ。
- (6)前記(1)から(5)のいずれかに記載の抵抗型酸素センサを構成要素として含むことを特徴とする酸素センサ装置。

- (7) 一定電圧を負荷できる器具と電圧を測定できる器具を有する前記 (6) に記載の酸素センサ装置。
- (8) 前記(1) から(5) のいずれかに記載の抵抗型酸素センサを構成要素として含むことを特徴とする燃焼機関の空燃比を制御するための空燃比フィードバック制御システム。
- (9)燃焼機関が、自動車用燃焼機関である前記(8)に記載の空燃比フィードバック制御システム。
- (10)前記(1)から(5)のいずれかに記載の抵抗型酸素センサを含むことを特徴とする自動車排ガス触媒劣化検知システム。

[0008]

【発明の実施の形態】

次に、本発明について、更に詳細に説明する。

本発明の抵抗型酸素センサは、酸素ガス検出部分が酸化物半導体からなる抵抗型酸素センサにおいて、酸化物半導体が、セリウムイオンとジルコニウムイオンを含む酸化物であり、ジルコニウムイオン濃度が 0.5~40 m o 1%、好ましくは 5~40 m o 1%であることを特徴とするものである。図 1に、本発明の抵抗型酸素センサの構造の一例を示す。酸化物半導体からなるガス検出部分 3 と出力の温度依存性を抑えるための温度補償部分 4 が基板 1 上に配置され、更に、ガス検出部分と温度補償部分に電気を流すために電極 2 が配置される。ただし、本発明の抵抗型酸素センサの構造は、図 1 のものに限定されるものではなく、使用目的に応じて任意に設計することができる。

[0009]

酸素ガス検出部分の形態としては、好適には、厚膜あるいは薄膜などが例示されるが、これらに限定されるものではない。酸素ガス検出部分の作製方法は特に限定されるものではないが、例えば、厚膜を作製する場合は、スクリーン印刷法などにより製膜する方法が例示される。更に、これを簡単に説明すると、セリウムイオンとジルコニウムイオンを含む酸化物の粉末をあらかじめ作製する。粉末の作製方法は、沈殿法、噴霧熱分解法が例示される。また、酸化セリウムと酸化ジルコニウムを混合し、1400から1700℃の高温で固相焼結させ、それを

[0010]

本発明のセンサでは、酸素ガス検出部分の抵抗率を測定するために電極が必要であり、電極として、Pt、Pdなどの貴金属が例示されるが、これらに限定されるものではない。また、電極の作製方法も限定されない。

[0011]

ヒータ付の抵抗型酸素センサの場合は、例えば、基板にセラミックヒータなどを取り付ける。ただし、ヒータの取り付け位置、ヒータの形状、ヒータの特性については特に限定するものではない。これにより、排ガスの温度が低い場合でも、600~1000℃の任意の温度にセンサを暖めることが可能である。

$[0\ 0\ 1\ 2]$

本発明の酸素センサ装置は、本発明の抵抗型酸素センサと電気回路部とセンサ 出力などの表示部とを基本的構成要素として任意に設計することができる。この 装置の電気回路の一例を図2に示す。この図では、ヒータ部分の回路は省略して ある。点線で囲んだ部分が抵抗型酸素センサである。ガス検出部分と温度補償部 分を直列に接続し、一定電圧を負荷し、ガス検出部分の電位差をセンサ出力とし て読み取る。

[0013]

本発明では、燃焼機関の空燃比を制御するための空燃比フィードバック制御システムが提供される。ここで、空燃比とは空気と燃料の比であり、酸素分圧と空燃比とは1対1の関係が成り立つ。本発明において、例えば、自動車用空燃比フィードバック制御システムは、例えば、本発明の抵抗型酸素センサと、エンジンに流入する空気の流量を測定する流量計と、エンジンに燃料を入れる燃料噴射器

[0014]

本発明において、燃焼機関の燃焼効率最適化のための空燃比フィードバック制御システムは、例えば、本発明の抵抗型酸素センサと、燃焼機関に流入する空気の流量を測定する流量計と、燃焼機関内に入れる燃料を制御する燃料制御器と、酸素センサや流量計からの信号を受け取り、計算を行い、燃料制御器に出力信号を送る電子制御ユニットとを基本的構成要素として任意に設計することができる

[0015]

本発明において、自動車排ガス触媒劣化検知システムは、例えば、本発明の抵抗型酸素センサと、酸素センサからの信号を読み取り計算し触媒が劣化したかどうかを判断する電子制御ユニットと、電子制御ユニットからの信号を受けとり、触媒が劣化したかどうかを示す表示部とを基本的構成要素として任意に設計することができる。

[0016]

【作用】

本発明では、酸化物半導体である酸化セリウムからなるガス検出部分にジルコニウムイオンを添加することにより、酸素ガス検出部分の表面における表面反応が活性化し、応答性が改善できたものと考えられる。また、ジルコニウムイオン 濃度が20mo1%まではジルコニウムイオンを添加することにつれ、電子導電率が増加し、酸素ガス検出部分の抵抗率が減少する。酸化セリウムでは、電子はセリウムイオン上をホッピングしながら動いていると考えられているが、これに、ジルコニウムイオンを添加することにより格子定数が小さくなり、電子のホッピング距離が減少するため電子導電率が増加すると推察される。また、ジルコニウムイオン濃度を20mo1%以上添加すると、逆に添加するにつれ、抵抗率が大きくなったが、これは、ジルコニウムイオンの添加量が多くなると、電子がホッピングできるセリウムイオンの濃度が減るため、あるいは、析出する正方晶の

[0017]

更に、ジルコニウムイオンを添加することにより出力の酸素分圧依存性が大きくなる。酸素分圧依存性が小さい原因は、電子導電率と酸素イオン導電率の差が小さいためである。ジルコニウムイオンを添加することにより、電子導電率が大きくなる結果、酸素イオン導電率との差が大きくなり、酸素センサとしての出力の酸素分圧依存性が大きくなる。

[0018]

【実施例】

次に、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例によって何ら限定されるものではない。

実施例1

硝酸セリウム水溶液とオキシ硝酸ジルコニウム水溶液を所定の濃度で混合し、その混合水溶液を噴霧熱分解し、微粒子からなる粉末を得た。微粒子の平均粒径は、200から250nmであった。得られた粉末と有機溶媒のビヒクルとを混合したペーストを酸化アルミニウム基板上にスクリーン印刷により印刷した。次に、空気中500で加熱し、引き続き、空気中1200で加熱し、厚膜を得た。

[0019]

スパッタ法により白金電極を設け、センサを作製した。酸素分圧を変えることのできる測定室にセンサを置き、上記白金電極間の電気抵抗率を直流二端子法により測定し、センサ特性を評価した。本実施例では、直流二端子で測定したが、測定する抵抗の大きさが比較的大きいため、直流四端子法で測定した抵抗率とほぼ同じである。

[0020]

1200℃で焼成後の厚膜の組織を走査電子顕微鏡により観察したところ、平均粒径は、200から250nmであった。焼成後の厚膜のX線回折分析を行ったところ、ジルコニウムイオン濃度が、0.5から20mol%までは立方晶の単相であったが、30mol%以上では立方晶と正方晶の二相混合であった。立

[0021]

【表1】

ジルコニウムイオ	立方晶(111)	正方晶(111)
ン濃度(mol %)	角度(2 Θ/°)	角度(2 Θ/°)	強度比 / ˌ/፲。
0	28.52		
0.5	28.56		
1	28.58		
2	28.60		
5	28.64		
10	28.78		
20	28.84		
30	28.92	29.92	0.08
40	28.92	29.92	0.19
60	28.92	29.90	1.02

[0022]

次に、種々の温度における上記センサの酸素ガス検出部分の抵抗率を表 2 に示す。また、ジルコニウムイオンを添加していない試料(無添加試料:従来品)の抵抗率を ρ_0 とし、規格化した抵抗率 ρ/ρ_0 を表 3 に示す。測定雰囲気は、酸素分圧 1 a t mであり、厚膜の大きさは、全ての試料で同じである。ジルコニウムイオンを 0. 5 m o 1 %添加することにより、6 0 0 $\mathbb C$ から 8 0 0 $\mathbb C$ における抵抗率は、無添加の抵抗率の約 5 0 %まで減少した。 2 0 m o 1 %以上ではジルコニウムイオンを添加するにつれ抵抗率は減少した。 2 0 m o 1 %以上ではジル

[0023]

【表2】

	$ ho$ ($\Omega_{ m m}$)													
温度(℃)		ジルコニウムイオン濃度(mol %)												
/mix(0)	0	0.5	1	2	5	10	20	30	40	60				
600	2560	1380	1040	1088	829	479	443	580	1130	1250				
700	530	258	205	211	136	77.1	54.2	74.9	175	335				
800	121	57.5	53.8	47.0	26.4	15.4	9.31	13.6	31.4	91.9				
900	28.6	15.8	17.6	12.5	6.71	4.15	2.28	3.18	7.39	40.0				
1000	7.02	7.23	6.69	5.56	2.14	1.67	0.75	1.30	2.09	15.3				

[0024]

【表3】

	ρ/ρ ₀													
	ジルコニウムイオン 濃 度(mol %)													
温度 (°C)	0	0.5	1	2	5	10	20	30	40	60				
600	1.000	0.536	0.405	0.424	0.323	0.187	0.173	0.226	0.439	0.488				
700	1.000	0.486	0.387	0.398	0.257	0.145	0.102	0.141	0.330	0.632				
800	1.000	0.472	0.441	0.386	0.216	0.126	0.076	0.112	0.257	0.754				
900	1.000	0.551	0.617	0.437	0.235	0.145	0.080	0.111	0.259	1.400				
1000	1.000	1.029	0.953	0.793	0.305	0.237	0.107	0.185	0.297	2.173				

[0025]

種々の温度における上記センサの酸素分圧依存性を表 4 に示す。ここで、 n は

[0026]

【表4】

$n (\rho \propto P^{1/n})$												
	ジルコニウムイオン濃度(mol %)											
温度(℃)	0	0.5	1	2	5	10	20	30	40	60		
600	11.7	8.2	11.5	7.8	6.0	6.1	4.7	4.9	5.6	47.5		
700	9.0	7.4	8.9	7.2	5.4	5.4	4.5	4.6	5.0	27.9		
800	7.3	7.1	7.7	6.7	5.4	5.2	4.6	4.8	5.0	17.5		
900	6.4	6.7	7.4	6.8	5.7	5.8	4.9	5.1	5.5	20.7		
1000	6.3	7.0	7.5	7.5	6.1	6.2	5.4	5.3	5.7	20.9		

[0027]

[0028]

t ₉₀ /s											
	ジルコニウムイオン濃度(mol %)										
温度(℃)	0	0.5	1	2	5	10	20	30	40	60	
600	42	22	17	14	10	10	11	11	12	13	
700	16	11	13	14	5	8	6	7	6	8	
800	11	9	10	8	5	7	6	6	5	9	
900	7	7	8	7	4	7	7	6	4	9	
1000	6	5	7	6	4	7	6	6	4	6	

[0029]

以上の結果から、ジルコニウムイオン濃度が0.5から40mo1%であると、応答時間、抵抗率、酸素分圧依存性が従来品(無添加の酸化セリウムを使った抵抗型酸素センサ)に比べて改善されたことが明らかとなった。また、ジルコニウムイオン濃度が5から40mo1%である場合では、従来品と比べ抵抗率が小さく、応答時間が短く、酸素分圧依存性を示す因子nが $4\sim7$ の範囲であった。更に、酸化ジルコニウムを10から30mo1%添加した場合では、応答時間は600Cでは約11秒、700Cから1000Cでは約5秒、800Cにおける抵抗率は200m以下、酸素分圧依存性を示すnが $4\sim6$ の範囲であり、特に優れた特性を示した。

[0030]

実施例2

焼成温度を1100℃に変更した以外は実施例1と同様にしてセンサを作製した。厚膜の組織を走査電子顕微鏡により観察したところ、平均粒径は、実施例1とほぼ同じであったが、粒子と粒子のつながったところであるネックの大きさは実施例1と比べて小さかった。表6に示されるように、ジルコニウムイオン濃度が20mo1%の抵抗率は実施例1と比べてわずかに大きかったが、従来品よりは小さかった。酸素分圧依存性を示すnの値は4から5.6であり、実施例1と同様に、無添加の従来品と比べて酸素分圧依存性は改善された。応答時間も従来

[0031]

【表 6】

	219	5 m	n (p	$\infty P^{1/n}$)	t ₉₀ /s		
温度(℃)	20 mol %	0 mol %	20 mol %	0 mol %	20 mol %	0 mol %	
600	666	5260	5.65	12.05	8.5	14.0	
700	82.9	706	4.63	9.35	7.0	7.0	
800	14.9	153	4.59	7.19	6.0	7.0	
900	3.66	38.9	4.83	6.37	6.0	6.5	
1000	1.17	11.1	5.35	5.88	6.0	7.0	

[0032]

【発明の効果】

以上詳述したように、本発明は、酸素ガス検出部分が酸化物半導体からなる抵抗型酸素センサにおいて、酸化物半導体が、セリウムイオンとジルコニウムイオンを含む酸化物であり、かつ、ジルコニウムイオン濃度が、0.5~40mol%であることを特徴とするものであり、本発明により、1)改善された性能を有する抵抗型酸素センサを提供できる、2)上記センサの酸素ガス検出部分の抵抗率を小さくでき、かつ、酸素分圧依存性を大きくすることができ、更に、抵抗型酸素センサの応答時間を短縮することができる、3)上記センサを含む酸素センサ装置及び空燃比制御システムを提供できる、という格別の効果が奏される。

【図面の簡単な説明】

【図1】

本発明の抵抗型酸素センサの構造を示す外観図である。

【図2】

本発明の抵抗型酸素センサを含む酸素センサ装置の動作を示す回路図である。

図面

BEST AVAILABLE COPY

【図1】

- 1 • 基板
- 2·・・電極 3・・・酸素ガス検出部分(酸化物半導体)
- 4…温度補償部分

【書類名】

要約書

なし

【要約】

【課題】 主に自動車排ガスの酸素ガス分圧を測定するために使用される抵抗型酸素センサであって、酸素分圧変化に対する出力の応答時間が短く、かつ、酸化物半導体の抵抗率が小さく、更に、出力の酸素分圧依存性が大きい、抵抗型酸素センサを提供する。

【解決手段】 酸素ガス検出部分が酸化物半導体からなる抵抗型酸素センサにおいて、酸化物半導体が、セリウムイオンとジルコニウムイオンを含む酸化物であり、セリウムイオンとジルコニウムイオンの物質量の和に対するジルコニウムイオンの物質量の割合が0.5~40mol%、より好ましくは5~40mol%であることを特徴とする抵抗型酸素センサ。

【選択図】

麻 2 0 0 2 - 1 9 9 0 2 2

出願人履歴情報

識別番号

[301021533]

1. 変更年月日 [変更理由]

2001年 4月 2日 新規登録

住 所氏 名

東京都千代田区霞が関1-3-1 独立行政法人産業技術総合研究所