CSEN 1003: Compilers

Tutorial 9 - Semantic Analysis I

CFGs are not enough!

 The parse tree generated by the syntax analyzer is of minimal use to the task of semantic analysis.

CFGs are not enough!

- The parse tree generated by the syntax analyzer is of minimal use to the task of semantic analysis.
- Solution? Augment the CFGs with semantic rules.

CFGs are not enough!

- The parse tree generated by the syntax analyzer is of minimal use to the task of semantic analysis.
- Solution? Augment the CFGs with semantic rules.

Example

Production	Semantic Rule
$E \rightarrow E_1 + T$	$E.val = E_1.val + T.val$
$E \rightarrow T$	E.val = T.val
$T \rightarrow T_1 * F$	$T.val = T_1.val * F.val$
	T.val = F.val
extstyle F ightarrow extstyle extstyle	$F.val = \mathbf{digit}.lexval$

Today's Plan

- Syntax-Directed Definitions
- 2 Syntax-Directed Translations
- 3 Recap

SDDs

• Symbols of the grammar have associated attributes.

SDDs

- Symbols of the grammar have associated attributes.
- Attributes carry information about the meaning of the program and how to translate it.

SDDs

- Symbols of the grammar have associated attributes.
- Attributes carry information about the meaning of the program and how to translate it.
- Computed by semantic rules.

Example

Produc	tion	Semantic Rule
$E \rightarrow$	$E_1 + T$	$E.val = E_1.val + T.val$
$E \rightarrow$	T	E.val = T.val
$T \rightarrow$	$T_1 * F$	$T.val = T_1.val * F.val$
$T \rightarrow$	F	T.val = F.val
$F \rightarrow$	digit	$F.val = \mathbf{digit}.lexval$

Input: 3+4*5

 Attributes in the previous example can be computed in any bottom up traversal.

- Attributes in the previous example can be computed in any bottom up traversal.
- Attributes similar to the previous example are called synthesized attributes.

- Attributes in the previous example can be computed in any bottom up traversal.
- Attributes similar to the previous example are called synthesized attributes.
- An attribute of a node is synthesized if its value is determined from other attributes of itself or the attributes of its direct children.

- Attributes in the previous example can be computed in any bottom up traversal.
- Attributes similar to the previous example are called synthesized attributes.
- An attribute of a node is synthesized if its value is determined from other attributes of itself or the attributes of its direct children.
- Unfortunately, using synthesized attributes is not always possible.

Typical Example - Eliminating Left Recursion

Typical Example - Eliminating Left Recursion

Example

Extend the previous SDD to handle the expressions given in 9-1.

Production	Semantic Rule
$E \rightarrow T E'$	E.val = E'.val, E'.inh = T.val
$E' \rightarrow + T E'_1$	E'_1 .inh = E .inh + T .val, E .val = E'_1 .val
$E' \rightarrow \varepsilon$	E'.val = E' .inh
$T \rightarrow F T'$	T'.inh = F.val, T.val = T'.val
$T' \rightarrow *F T'_1$	T'_1 .inh = T' .inh * F .val, T' .val = T'_1 .val
$T' \rightarrow \varepsilon$	T^{7} .val = T' .inh
$F \rightarrow digit$	F.val = digit.lexval

Typical Example - Eliminating Left Recursion

 An attribute is inherited if its value is determined by its parent or sibling attributes.

- An attribute is inherited if its value is determined by its parent or sibling attributes.
- But how do we determine the order of evaluation when we have inherited attributes?

- An attribute is inherited if its value is determined by its parent or sibling attributes.
- But how do we determine the order of evaluation when we have inherited attributes?
 - Construct the dependency graph.
 - 2 If the dependency graph is a DAG, an evaluation is valid. An order can be constructed by topological sorting.

- An attribute is inherited if its value is determined by its parent or sibling attributes.
- But how do we determine the order of evaluation when we have inherited attributes?
 - ① Construct the dependency graph.
 - If the dependency graph is a DAG, an evaluation is valid. An order can be constructed by topological sorting. Procedure: Use a queue
 - a Enqueue a node n with zero in-degree.
 - **6** Remove n from the graph together will all emanating arcs.
 - Repeat a,b until the graph becomes empty.
 - d Start dequeuing from the queue. Evaluate a node when it is dequeued.

Some Special SDDs

Some Special SDDs

Definition

An SDD is *S-attributed* if all the attributes are synthesized.

Some Special SDDs

Definition

An SDD is *S-attributed* if all the attributes are synthesized.

Definition

An SDD is *L-attributed* if $\forall B \rightarrow \alpha A\beta$:

- **1** Every inherited attribute of A depends on inherited attributes of B and attributes of symbols of α .
- **2** Every synthesized attribute of B depends on $\alpha A\beta$ or on inherited attributes of B.

Example

Determine if the following is consistent with the definition of S-attributed or L-attributed SDDs or neither. The grammar is $A \rightarrow BCD$.

1 A.s = B.i + C.s.

Example

Determine if the following is consistent with the definition of S-attributed or L-attributed SDDs or neither. The grammar is $A \rightarrow BCD$.

A.s = B.i + C.s.I -attributed.

Example

- A.s = B.i + C.s.I -attributed.
- **2** A.s = B.i + C.s and D.i = A.i + B.s.

Example

- A.s = B.i + C.s.I -attributed.
- **2** A.s = B.i + C.s and D.i = A.i + B.s. L-attributed.

Example

- A.s = B.i + C.s.L-attributed.
- **2** A.s = B.i + C.s and D.i = A.i + B.s. L-attributed.
- 3 A.s = B.s + D.s.

Example

- A.s = B.i + C.s.L-attributed.
- **2** A.s = B.i + C.s and D.i = A.i + B.s. L-attributed.
- 3 A.s = B.s + D.s.S-attributed.

Example

- A.s = B.i + C.s.L-attributed.
- **2** A.s = B.i + C.s and D.i = A.i + B.s. L-attributed.
- 3 A.s = B.s + D.s.S-attributed.
- **4** A.s = D.i, B.i = A.s + C.s, C.i = B.s, and D.i = B.i + C.i.

Example

Determine if the following is consistent with the definition of S-attributed or L-attributed SDDs or neither. The grammar is $A \rightarrow BCD$.

- A.s = B.i + C.s.L-attributed.
- **2** A.s = B.i + C.s and D.i = A.i + B.s. L-attributed.
- 3 A.s = B.s + D.s.S-attributed.
- **4** A.s = D.i, B.i = A.s + C.s, C.i = B.s, and D.i = B.i + C.i.

Neither.

Example

Determine if the following is consistent with the definition of S-attributed or L-attributed SDDs or neither. The grammar is $A \rightarrow BCD$.

- A.s = B.i + C.s.L-attributed.
- **2** A.s = B.i + C.s and D.i = A.i + B.s. L-attributed.
- 3 A.s = B.s + D.s.S-attributed.
- **4** A.s = D.i, B.i = A.s + C.s, C.i = B.s, and D.i = B.i + C.i.

Neither.

Today's Plan

- 1 Syntax-Directed Definitions
- 2 Syntax-Directed Translations
- 3 Recap

 Pieces of code associated at various positions in the RHS of a production rule.

- Pieces of code associated at various positions in the RHS of a production rule.
- The pieces of code generate the translation.

- Pieces of code associated at various positions in the RHS of a production rule.
- The pieces of code generate the translation.
- Better suited for implementation.

- Pieces of code associated at various positions in the RHS of a production rule.
- The pieces of code generate the translation.
- Better suited for implementation.
- To convert an L-attributed SDDs to SDTs:
 - Insert the action that computes an inherited attribute immediately before its corresponding grammar symbol on the RHS.
 - 2 Insert the action that computes a synthesized attribute at the end of the rule.

Example

Convert the following SDD to an SDT.

Production	Semantic Rule
$E \rightarrow T E'$	E.val = E'.val, E'.inh = T.val
$E' \rightarrow + T E'_1$	$E'_1.inh = E.inh + T.val, E.val = E'_1.val$
$E' \rightarrow \varepsilon$	E'.val = E' .inh

Example

Convert the following SDD to an SDT.

Production	Semantic Rule
$E \rightarrow T E'$	E.val = E'.val, E'.inh = T.val
$E' \rightarrow + T E'_1$	E_1' .inh $= E$.inh $+ T$.val, E .val $= E_1'$.val
$E' \rightarrow \varepsilon$	E'.val = E'.inh

Today's Plan

- Syntax-Directed Definitions
- 2 Syntax-Directed Translations
- Recap

Covered Topics

- 1 Syntax Directed Definitions.
- 2 Syntax Directed Translations.

Next Week: Semantic Analysis II