Description of the Halfar Ice Model

This document provides a quick reference to what we refer to as the Halfar Model, which describes the diffusion of a piece of ice. Note that this model conserves the mass of ice; ice is neither created nor destroyed in this model, a known limitation that prevents extensions of the model to include melting or ice deposition. However, it is still a useful model in the context of the ASKEM evaluation.

For more information about the model than presented here, refer to Section 8.1.1 Halfar dome in the <u>CISM documentation</u>. Further reading can be found at <u>Halfar 1984</u> and in Buehler's notes (provided in the supplementary materials). The most important equations are listed below:

• The general shallow ice approximation (SIA) ice evolution equation is

$$\frac{\delta H}{\delta t} = \nabla \cdot (\Gamma H^{n+2} |\nabla H|^{n-1} \nabla H)$$

(when using the Halfar Decapodes model, use the model that corresponds to this equation)

- The Glen flow law exponent, n, is usually n = 3. Γ is defined as: $\Gamma = \frac{2}{n+2}A(\rho g)^n$.
- For n = 3, the time dependent solution of the SIA using Halfar's approximation is:

$$H(t,r) = H_0 \left(\frac{t_0}{t}\right)^{\frac{1}{9}} \left[1 - \left(\left(\frac{t_0}{t}\right)^{\frac{1}{18}} \frac{r}{R_0}\right)^{\frac{4}{3}} \right]^{\frac{3}{7}}$$

Where $t_0 = \frac{1}{18 \Gamma} \left(\frac{7}{4}\right)^3 \frac{R_0^4}{H_0^7}$, and H_0 , R_0 are the central height of the dome and its radius at characteristic time $t = t_0$

The default parameter values are:

Parameter	Value and Unit
n (Glen's flow law exponent)	3 [unitless]
g (gravitational acceleration)	9.8101 [m/s ²]
ρ (density of ice)	910 [kg/m ³]
A (ice softness)	1E-16 [Pa ⁻³ /s]