Lycée Remada Tataouine

Année Scolaire: 2017 – 2018

Date: 23 Janvier 2018

Professeur : M^{R} Hamdi

CLASSES: $1^{\text{ères}} S_3$ et S_4

Durée: 90 minutes

Devoir de synthèse $N^{\circ}1$

Mathématiques

Exercice 1 (4 points)

Pour chacune des questions suivantes une seule réponse est exacte, cocher la bonne case.

Questions	Réponses
1. Le réel $(\sqrt{2} + \sqrt{6})^2$ est égal à	$\square \ 4 + 8\sqrt{3}$
	\square 8 + 4 $\sqrt{3}$
	\square 8 + $\sqrt{12}$
2. Le réel $\sin(79^{\circ})$ est égal à	$\square \cos(11^\circ)$
	$\square \sin(11^\circ)$
	$\square \cos(79^\circ)$
3. Si EFG est un triangle isocèle et	$\Box \tan(\widehat{FGE}) = 1$
rectangle en F alors	$\Box \tan(\widehat{FEG}) = 2$
	$\Box \tan(\widehat{EGF}) = 3$
4. Il existe un angle aigu, dont la	$\square \sin x = 0, 9 \text{ et } \cos x = 0, 44$
mesure en degré vaut x , tel que :	$\Box \cos x = 10^{-3} \text{ et } \sin x = 0,99$

Exercice 2 (7 points)

Soit x un nombre réel, on donne l'expression :

$$A(x) = (2x - 1)^{2} - 2x\left(1 + 2x - \frac{1}{2}x^{2}\right) - 1$$

- 1. Calculer A(-1), $A(\sqrt{6})$ et $A(\sqrt{3})$
- 2. a/ Développer puis réduire A(x)
 - b/ Factoriser A(x)
 - c/ Factoriser $1 A(\sqrt{3})$ et $1 + A(\sqrt{3})$

3. On donne les réels $p = \frac{A(\sqrt{3}) - 1}{\sqrt{26}}$ et $q = \frac{1 + A(\sqrt{3})}{\sqrt{26}}$

a/Comparer, en justifiant votre réponse, les réels p et q

b/ Montrer que les réels p et q sont inverses.

c/ En déduire qu'on a :
$$\frac{p}{q} + \frac{q}{p} - (p - q)^2 = 2$$

4. Montrer, sans calculer $p^2 + q^2$, que l'on a :

$$p^2 + q^2 > 2$$

Exercice 3 (6 points)

Soit ABC un triangle isocèle en A tels que : $AB = 5\,cm$ et $\widehat{ACB} = 45^\circ$

- 1. a/ Prouver que le triangle ABC est rectangle en A puis le construire b/ En déduire la distance BC
- 2. On désigne par H le projeté orthogonal de A sur la droite (BC) a/Montrer que H est le milieu du segment [BC]

b/ Montrer que
$$AH = \frac{5\sqrt{2}}{2} cm$$

Exercice 4 (3 points)

1. Soit x la mesure en degré d'un angle aigu. Montrer l'égalité suivante :

$$(\sin x - 2\cos x)^2 + (\cos x + 2\sin x)^2 = 5$$

2. Soit x la mesure en degré d'un angle aigu \widehat{ABC} tel que : $\tan x = \frac{8}{5}$ Construire l'angle \widehat{ABC} puis déduire sa mesure en l'arrondissant à un degré près