

Algorithms and Data Structures (CSci 115)

California State University Fresno
College of Science and Mathematics
Department of Computer Science
H. Cecotti

Learning outcomes

- Shortest path algorithms
 - ➤ Using graph data structures
 - Focus on All-Pairs Shortest Paths
 - → Dynamic programming

Introduction

Goal

- > We want to find, for **every pair** of vertices $(u, v) \in V \times V$, a shortest (least-weight) path from u to v
 - o where the weight of a path is the sum of the weights of its constituent edges
 - $\circ \rightarrow \delta(u,v)$ (same definition as in previous class)

Output

- **≻**Table
 - Entry in u's row and v's column = weight of a shortest path from u to v
 - \circ \rightarrow we store the results somewhere and update, like for the sequence of matrices

Possible solutions

Solution

- Solve an all-pairs shortest-paths problem by running a **single-source** shortest-paths algorithm |V| times, once for each vertex as the source.
- ➤ If (all edge weights are non-negative)
- ➤ Then we can use Dijkstra's algorithm
- > If we use the linear-array implementation of the min-priority queue
- \triangleright Then the running time is O(V³+VE)

Implementation of the min-priority queue

- ➤ Binary min-heap (variation of the max-heap used for the heap sort)
 - $\circ \rightarrow$ Running time of O(VE log(V))
 - Improvement if the graph is sparse.
- > Fibonacci heap (coming in next classes)
 - \circ \rightarrow Running time of O(V² log V + VE)

Possible solutions

- If (the graph has negative-weight edges)
- Then we cannot use Dijkstra's algorithm 😕
- So,
 - > Run the **slower** Bellman-Ford algorithm once from **each** vertex
 - \triangleright Running time of O(V²E) which on a dense graph is O(V⁴)
- But we can do better if we want to investigate the relation of the all-pairs shortest-paths problem to
 - > Matrix multiplication and study its algebraic structure ©
- Remarks for the implementation
 - ➤ Single-source algorithms →
 - o **Adjacency-list** representation of the graph
 - ➤ All pairs algorithms →
 - Adjacency matrix representation of the graph (most of them)

The solution

Representation of the graph

➤ Vertex: 1,2,..., |V| → input is a matrix W of size n x n representing the edge weights of an n-vertex directed graph G

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ \text{the weight of directed edge } (i, j) & \text{if } i \neq j \text{ and } (i, j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i, j) \notin E. \end{cases}$$

Output

- Table of the all-pairs shortest-paths algorithms
 - Matrix D of size n x n
 - d_{ii} = weight of a shortest path from vertex i to vertex j
 - \circ $\delta(i,j)$ = **the** shortest path weight from vertex i to vertex j, then d_{ij} = $\delta(i,j)$ at termination.

The solution

- To solve the all-pairs shortest-paths on W
 - ➤ We need to compute:
 - The shortest-path weights
 - \circ A predecessor matrix $\Pi = (\pi_{ii})$
 - where π_{ii} is NIL if either i=j or there is no path from i to j
 - and otherwise π_{ii} is the predecessor of j on some shortest path from i.
- The subgraph induced by the ith row of Π should be a shortest-paths tree with root i.
- For each vertex ieV, the **predecessor subgraph** of G for i is $G_{\pi i} = (V_{\pi i}, E_{\pi i})$
 - > where
 - \circ $V_{\pi i}$: the set of vertices of $G_{\pi i}$ with non-NIL predecessors + the source i
 - $\circ V_{\pi i} = \{ j \in V : \pi_{ij}! = NIL \} \cup \{i\}$
 - \circ E_{πi}: the set of edges induced by the values for vertices
 - $\circ E_{\pi i} = \{(\pi_{ii}, j) \in E : j \in V_{\pi i} \{i\}\}\$

The solution

- Display the shortest path for all the pairs
 - > Pseudo code

```
PRINT-ALL-PAIRS-SHORTEST-PATH (\Pi, i, j) // from i to j

1 if i == j

2 print i

3 elseif \pi_{ij} == \text{NIL}

4 print "no path from" i "to" j "exists"

5 else PRINT-ALL-PAIRS-SHORTEST-PATH (\Pi, i, \pi_{ij}) // from i to \pi_{ij}

6 print j
```

- Dynamic-programming formulation
 - >to solve the all-pairs shortest-paths problem on a directed graph
 - o negative-weight edges **may** be present
 - NO negative-weight cycles
- Complexity
 - $>\theta(V^3)$
 - 3 nested loops going through the vertices
- Approach
 - ➤ It considers the intermediate vertices of a shortest path
 - o where an *intermediate* vertex of a simple path $p=\langle v_1,...v_l \rangle$ is:
 - any vertex of p other than v_1 or v_1 , any vertex in the set $\{v_2,...,v_{l-1}\}$

- Remember the multiplication of matrices...
 - ➤ Dynamic programming ...
 - Path p is a shortest path from vertex i to vertex j, and
 - k is the highest-numbered intermediate vertex of p.
 - Path p1, the portion of path p from vertex i to vertex k, has all intermediate vertices in the set {i,..,k-1}
 - Path p2, the portion of path p from vertex k to vertex j, has all intermediate vertices in the set $\{k,...,j\}$

■ How does it work? (1)

- \triangleright Under the assumption that the vertices of G are V={1,...,n}
- ➤ We consider a subset {1,..,k} of vertices for some k
- ➤ For any pair of vertices (i,j)
 - Consider all paths from i to j whose intermediate vertices are all drawn from {1,..,k}
 - Let p be a minimum weight (simple) path from among them
- > The Floyd-Warshall algorithm uses a relationship
 - o between path p and shortest paths from i to j with **all intermediate vertices** in the set {1,...,k-1}.
 - The relationship depends on whether or not k is an intermediate vertex of path p.

■ How does it work? (2)

- >If (k is **not** an intermediate vertex of path p)
 - **Then** all intermediate vertices of path p are in {1,2,..k-1}
 - \circ \rightarrow a shortest path from vertex i to vertex j with all intermediate vertices in $\{1,2,..,k-1\}$
 - is **also** a shortest path from i to j with all intermediate vertices in {1,..,k}
- >If (k is an intermediate vertex of path p)
 - Then we decompose p into i to k through p1, and k to j through p2
 - o p1 is a shortest path from i to k with all intermediate vertices in {1,2,..,k}.
 - We can make a stronger statement
 - All intermediate vertices of p1 are in the set {1,2,..,k-1} because vertex k is not an intermediate vertex of path p1
 - → p1 is a shortest path from i to k with all intermediate vertices in {1,2,..,k-1}
 - The same way, p2 is a shortest path from vertex k to vertex j with all intermediate vertices in {1,2,...,k-1}.

Recursive solution

- \triangleright Let $d_{ii}(k)$ be the weight of a shortest path
 - \circ from vertex i to vertex j (i \rightarrow j)
- rightharpoonup for which all intermediate vertices are in the set {1,2,...,k}.
 - When k=0, a path from vertex i to vertex j with no intermediate vertex numbered higher than 0 has no intermediate vertices at all!
 - \circ Such a path has **at most 1 edge** \rightarrow d_{ij}(0)=w_{ij}

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

- Bottom-up procedure
 - \triangleright to compute the values $d_{ii}(k)$ in order of increasing values of k
- Pseudo-code

```
FLOYD-WARSHALL(W)

1  n = W.rows

2  D^{(0)} = W

3  for k = 1 to n

4  let D^{(k)} = (d_{ij}^{(k)}) be a new n \times n matrix

5  for i = 1 to n

6  for j = 1 to n

7  d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})

8  return D^{(n)}
```

Construction of the solution

>Solution 1

- Compute the matrix D of shortest-path weights
- \circ **Then** Construct the predecessor matrix Π from D (Π = pi upper case)

≻Solution 2

- \circ Compute the predecessor matrix Π while the algorithm computes the matrices D(k)
- \circ Compute a sequence of matrices $\Pi(1)$, $\Pi(2)$, ..., $\Pi(n)$ where Π and $\Pi(n)$
- \circ And we define $\pi_{ij}(k)$ as the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1,2,..,k\}$

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty \;, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty \;. \end{cases} \qquad \pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \;, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \;. \end{cases}$$

Example

- ightharpoonup The sequence of matrices $D^{(k)}$ and $\Pi^{(k)}$ computed by the Floyd-Warshall algorithm
 - For the graph:

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 1 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

- Transitive closure of a directed graph
 - **➤ Question**: to determine whether G contains a path from i to j for all vertex pairs (i, j)
- Transitive closure of G:
 - ➤The graph G*=(V,E*) where
 E*= { (i,j) : ∃ a path from vertex i to vertex j in G}
- How to do it:

$$ightharpoonup$$
 OR

$$\rightarrow$$
+ \rightarrow AND

$$t_{ij}^{(0)} = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i,j) \notin E, \\ 1 & \text{if } i = j \text{ or } (i,j) \in E, \end{cases}$$
and for $k \geq 1$,
$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee \left(t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)} \right).$$

Transitive closure

➤ Pseudo code

```
TRANSITIVE-CLOSURE (G)

1  n = |G.V|

2  let T^{(0)} = (t_{ij}^{(0)}) be a new n \times n matrix

3  for i = 1 to n

4  for j = 1 to n

5   if i = j or (i, j) \in G.E

6   t_{ij}^{(0)} = 1

7   else t_{ij}^{(0)} = 0

8  for k = 1 to n

9  let T^{(k)} = (t_{ij}^{(k)}) be a new n \times n matrix

10  for i = 1 to n

11  for j = 1 to n

12  t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})

13  return T^{(n)}
```

Example

$$T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

Conclusion

- To wisely select the algorithm to get the shortest path(s)
 - ➤ In relation to what has to be computed
 - Single source/destination vs. all the pairs
- To wisely select the data structure to support the graph
 - ➤ Sparse or not?
 - ➤ Priority queue → Fibonacci heap
- Other algorithms
 - ➤ Johnson's algorithm for sparse graphs

Questions?

- Reading
 - ➤ Csci 115 book: Section 9.6
 - You have the code look carefully to how it is implemented
 - ➤Introduction to Algorithms, Chapter 24, 25.

