Name:	
MATH 308	ωτ. · · · · · · · · · · · · · · · · · · ·
Fall 2021	"It is impossible to be a mathematician without being a poet in soul."
HW 15: Due 11/22	– Sofia Kovalevskaya

Problem 1. (10pt) Perform the following computations modulo 3:

- (a) 1234 + 2345
- (b) 1784 · 2021
- (c) 1996¹⁹⁹⁷
- (d) 2²⁰⁰⁰

Problem 2. (10pt) Prove that an integer N is divisible by 3 if and only if its the sum of its digits is divisible by 3.

Problem 3. (10pt) Prove that for all $n, m \in \mathbb{Z}_{\geq 0}$ that $101^n - 77^m$ is divisible by 4.

Problem 4. (10pt) Find the ones digit of 2^{98} and the tens digit of 7^{100} .

Problem 5. (10pt) For the following congruences, find a solution or explains why none exists.

- (a) $2x \equiv 3 \mod 7$
- (b) $6x \equiv 5 \mod 8$
- (c) $4x \equiv 8 \mod 22$

Problem 6. (10pt) Use the Chinese Remainder Theorem to find the solutions modulo 60 to...

 $x\equiv 3\mod 4$

 $x \equiv 2 \mod 3$

 $x \equiv 4 \mod 5$