14.1 - Functions of Several Variables

Domain and Range

Define a set of n-tuples in \mathbb{R}^n : $D=(x_1,x_2,x_3,\ldots x_n)$ A real-valued function f on D has w such that $w=f(x_1,x_2,x_3,\ldots x_n)$ In this case, D is the domain, and w is the range

Inputs that lead to a divide by zero of imaginary numbers are excluded from the domain

(a) These are functions of two variables. Note the restrictions that apply to their domains in order to obtain a real value for the dependent variable z.

Function	Domain	Range
$z = \sqrt{y - x^2}$	$y \ge x^2$	$[0,\infty)$
$z = \frac{1}{xy}$	$xy \neq 0$	$(-\infty,0) \cup (0,\infty)$
$z = \sin xy$	Entire plane	[-1, 1]

(b) These are functions of three variables with restrictions on some of their domains.

Function	Domain	Range
$w = \sqrt{x^2 + y^2 + z^2}$	Entire space	$[0,\infty)$
$w = \frac{1}{x^2 + y^2 + z^2}$	$\left(x,y,z\right)\neq\left(0,0,0\right)$	$(0,\infty)$
$w = xy \ln z$	Half-space $z > 0$	$(-\infty, \infty)$

Boundary point: on the boundary of a set

Interior point: fully contained in the set

A region is **bounded** if it lies inside a disk of finite radius. A region is **unbounded** if it is not bounded.

Graphs and Level Curves

The set of points where a function f(x,y) has a constant value c is a **level** curve of f. The set of all points (x,y,f(x,y)) in space for the domain of f is the graph of f. Graph is also called the surface, z=f(x,y)

For functions of 2 variables: can't graph them effectively, but can see how they behave by looking at their level surfaces