VacationPy

Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

In [162]:

```
# Dependencies and Setup
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import requests
import gmaps
import os

# Import API key
from api_keys import g_key
```

In [163]:

```
os.getcwd()
```

Out[163]:

'/Users/huiyingzheng/Desktop/GT Databootcamp/python-api-challenge/We atherPy'

Store Part I results into DataFrame

· Load the csv exported in Part I to a DataFrame

In [164]:

```
# Define the path to get the excel data
filepath = os.path.join("..", "output_data", "weather_data.csv")
map_weather = pd.read_csv(filepath)
map_weather.head()
```

Out[164]:

	City	Cloudiness	Country	Date	Humidity	Lat	Lng	Max Temp	Wind Speed
0	Byron Bay	75	AU	1587265703	65	-28.65	153.62	298.15	3.10
1	Albany	1	US	1587265932	44	42.60	-73.97	277.59	0.45
2	Snåase	99	NO	1587265997	85	64.25	12.38	276.19	1.49
3	Thompson	5	CA	1587265933	40	55.74	-97.86	263.15	3.10
4	Bandarbeyla	73	SO	1587266208	69	9.49	50.81	300.31	2.68

Humidity Heatmap

- · Configure gmaps.
- Use the Lat and Lng as locations and Humidity as the weight.
- · Add Heatmap layer to map.

In [165]:

```
# Create coordinates list
locations = map weather[["Lat", "Lng"]]
figure layout = {
    'width': '400px',
'height': '300px',
    'border': '1px solid black',
    'padding': '1px',
    'margin': '0 auto 0 auto'
}
weight factor = map weather["Humidity"]
fig = gmaps.figure(map type="HYBRID")
# Create heat layer
heat layer = gmaps.heatmap layer(locations, weights=weight factor,
                                   dissipating=False, max intensity=weight factor.
max(),
                                   point radius=1.3)
# Add layer
fig.add layer(heat layer)
# Display figure
fig
```

Create new DataFrame fitting weather criteria

- Narrow down the cities to fit weather conditions.
- · Drop any rows will null values.

In [166]:

```
# A max temperature lower than 80 degrees but higher than 70.
# Wind speed less than 10 mph.
# Zero cloudiness.
# Drop any rows that don't contain all three conditions. You want to be sure the weather is ideal.
# Because open weather website uses Kelvin unit for temperature, need to create fahrenheit
map_weather["Max Temp (F)"] = (map_weather["Max Temp"] - 273.15) * 9/5 + 32

map_weather_rd = map_weather.loc[(map_weather["Max Temp (F)"] >= 70) & (map_weather["Max Temp (F)"] >= 80) & (map_weather["Wind Speed"]<=10) & (map_weather["Cloudiness"] == 0)]
map_weather_rd.head()
map_weather_rd</pre>
```

Out[166]:

	City	Cloudiness	Country	Date	Humidity	Lat	Lng	Max Temp	Wind Speed	N Te
125	Sabha	0	LY	1587266081	19	27.04	14.43	295.36	6.83	71.9
187	Sechura	0	PE	1587265964	76	-5.56	-80.82	296.29	5.68	73.€
436	Riohacha	0	CO	1587266270	73	11.54	-72.91	299.50	4.35	79.4
453	Samaná	0	DO	1587266273	86	19.21	-69.34	296.65	2.73	74.3
526	Alta Floresta	0	BR	1587266281	89	-9.88	-56.09	294.59	1.55	70.

Hotel Map

- Store into variable named hotel_df.
- Add a "Hotel Name" column to the DataFrame.
- Set parameters to search for hotels with 5000 meters.
- Hit the Google Places API for each city's coordinates.
- Store the first Hotel result into the DataFrame.
- Plot markers on top of the heatmap.

In [167]:

```
# get city name for each row
hotel_city = list(map_weather_rd['City'])[0]
# Build the endpoint URL
target url = ('https://maps.googleapis.com/maps/api/geocode/json?'
    'address={0}&key={1}').format(hotel city, g key)
geo_data = requests.get(target_url).json()
city lat = geo data['results'][0]['geometry']['location']['lat']
city lng = geo data['results'][0]['geometry']['location']['lng']
params['location'] = f"{city lat},{city lng}"
# add keyword to params dict
# params['keyword'] = restr type
# assemble url and make API request
print(f"Retrieving Results for Index {index}: {hotel city}.")
response = requests.get(base_url, params=params).json()
# extract results
results = response['results']
```

Retrieving Results for Index 526: Sabha.

```
In [168]:
```

```
hotel df = pd.DataFrame(map weather rd[['City','Lat','Lng']])
hotel df['Hotel Name'] = ""
hotel_df['City Lat'] = ""
hotel df['City Lng'] = ""
# use iterrows to iterate through pandas dataframe
for index, row in hotel df.iterrows():
    # get city name for each row
    hotel city = row['City']
    # Build the endpoint URL
    target url = ('https://maps.googleapis.com/maps/api/geocode/json?'
        'address={0}&key={1}').format(hotel city, g key)
    geo data = requests.get(target url).json()
    city lat = geo data['results'][0]['geometry']['location']['lat']
    city lng = geo data['results'][0]['geometry']['location']['lng']
    params['location'] = f"{city lat},{city lng}"
    # add keyword to params dict
    # params['keyword'] = restr type
    # assemble url and make API request
    print(f"Retrieving Results for Index {index}: {hotel city}.")
    response = requests.get(base url, params=params).json()
    # extract results
    results = response['results']
    try:
        print(f"Closest {hotel city} hotel is {results[0]['name']}.")
        hotel_df.loc[index, 'Hotel Name'] = hotel_city
        hotel df.loc[index, 'City Lat'] = city lat
        hotel df.loc[index, 'City Lng'] = city lng
    except (KeyError, IndexError):
        print("Missing field/result... skipping.")
    print("----")
Retrieving Results for Index 125: Sabha.
. مركز الفؤاد للقلب والشرايين Closest Sabha hotel is
Retrieving Results for Index 187: Sechura.
Closest Sechura hotel is Restaurant El Club.
Retrieving Results for Index 436: Riohacha.
Closest Riohacha hotel is FEPASDE Productos & Servicios S.A..
Retrieving Results for Index 453: Samaná.
Closest Samaná hotel is Kelly Copy.
Retrieving Results for Index 526: Alta Floresta.
Closest Alta Floresta hotel is Stanichesch's House.
```

In [169]:

```
hotel_df.head()
```

Out[169]:

	City	Lat	Lng	Hotel Name	City Lat	City Lng
125	Sabha	27.04	14.43	Sabha	27.0365	14.429
187	Sechura	-5.56	-80.82	Sechura	-5.56224	-80.8188
436	Riohacha	11.54	-72.91	Riohacha	11.5384	-72.9168
453	Samaná	19.21	-69.34	Samaná	19.2058	-69.3363
526	Alta Floresta	-9.88	-56.09	Alta Floresta	-9.86722	-56.087

In [170]:

In []:

In []:

```
# Add marker layer ontop of heat map
# Display Map
```