Chữa bài tập $2.1 \rightarrow 2.11$

Cao hoc - Khoa học dữ liệu

Trường Đại học Khoa học Tự nhiên - ĐHQGHN *Hà Nội 2023*

Ngày 23 tháng 12 năm 2024

- Bài 2.1: Đỗ Chí Chung
- Bài 2.2: Lê Minh Hiếu
- Bài 2.3: Lã Đức Nam
- Bài 2.4: Hoàng Nhật Minh
- Bài 2.5: Trần Nam Khánh
- 6 Bài 2.6: Lê Trung Đức
- 🕜 Bài 2.7: Phạm Đăng Dương
- Bài 2.8: Nguyễn Như Quỳnh
- Bài 2.9: Đoàn Mạnh Toàn
- 10 Bài 2.10: Vũ Trung Kiên
- 1 Bài 2.11: Phạm Hồng Nghĩa

- Bài 2.1: Đỗ Chí Chung
- 2 Bài 2.2: Lê Minh Hiếu
- Bài 2.3: Lã Đức Nam
- Bài 2.4: Hoàng Nhật Minh
- Bài 2.5: Trần Nam Khánh
- 🌀 Bài 2.6: Lê Trung Đức
- Bài 2.7: Phạm Đăng Dương
- Bài 2.8: Nguyễn Như Quỳnh
- Bài 2.9: Đoàn Mạnh Toàn
- 10 Bài 2.10: Vũ Trung Kiên
- 🕕 Bài 2.11: Phạm Hồng Nghĩa

Bài 2.1 Đề bài

Trong bài toán này, chúng ta xem xét hai cách viết thành phần hệ thống của một mô hình hồi quy tuyến tính đơn giản.

- 1. Giải thích ý nghĩa của hằng số β_0 khi thành phần hệ thống được viết là $\mu=\beta_0+\beta_1x$.
- 2. Giải thích ý nghĩa của hằng số α_0 khi thành phần hệ thống được viết là $\mu=\alpha_0+\beta_1(x-\bar{x})$.

Chữa bài 2.1 - 1

Xét 2 cách viết phương trình hồi quy đơn biến. Cách 1:

$$\mu = \beta_0 + \beta_1 x \tag{1}$$

Cách 2:

$$\mu = a_0 + \beta_1(x - \bar{x}) \tag{2}$$

Giải thích nghĩa hệ số chặn trong hai cách viết.

Đối với cách 1, hệ số chặn β_0 cho biết giá trị dự đoán của biến phụ thuộc Y trong trường hợp giá trị của biến độc lập X=0.

Đối với cách 2, hệ số chặn a_0 cho biết giá trị dự đoán của biến Y khi trường hợp giá trị của biến độc lập X bằng giá trị trung bình \bar{x} .

- Bài 2.1: Đổ Chí Chung
- Bài 2.2: Lê Minh Hiếu
- Bài 2.3: Lã Đức Nam
- 4 Bài 2.4: Hoàng Nhật Minh
- Bài 2.5: Trần Nam Khánh
- 🌀 Bài 2.6: Lê Trung Đức
- Bài 2.7: Phạm Đăng Dương
- Bài 2.8: Nguyễn Như Quỳnh
- 9 Bài 2.9: Đoàn Mạnh Toàn
- Dài 2.10: Vũ Trung Kiêr
- Bài 2.11: Phạm Hồng Nghĩa

Đề bài

Đối với hồi quy tuyến tính đơn giản, hãy chứng minh rằng các nghiệm đồng thời của $\partial S/\partial \beta_0=0$ và $\partial S/\partial \beta_1=0$ trong (2.4) $\frac{\partial S(\beta_0,\beta_1)}{\partial \beta_0}=2\sum_{i=1}^n w_i(y_i-\mu_i)$ và (2.5) $\frac{\partial S(\beta_0,\beta_1)}{\partial \beta_1}=2\sum_{i=1}^n w_ix_i(y_i-\mu_i)$ tạo ra các nghiệm được hiển thị trong (2.6) $\hat{\beta}_0=\bar{y}_w-\hat{\beta}_1\bar{x}_w$ và (2.7) $\hat{\beta}_1=\frac{SS_{xy}}{SS_x}=\frac{\sum_{i=1}^n w_i(x_i-\bar{x}_w)y_i}{\sum_{i=1}^n w_i(x_i-\bar{x}_w)^2}$ trong đó

$$\bar{x}_w = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$$

và

$$\bar{y}_w = \frac{\sum_{i=1}^n w_i y_i}{\sum_{i=1}^n w_i}$$

(trang 36-37).

6/56

Ta có
$$\mu_{i} = \beta_{0} + \beta_{1}x_{i}$$
 $\bar{x}_{w} = \frac{\sum_{i=1}^{n} w_{i}x_{i}}{\sum_{i=1}^{n} w_{i}}$ $\bar{y}_{w} = \frac{\sum_{i=1}^{n} w_{i}y_{i}}{\sum_{i=1}^{n} w_{i}}$

$$(1) \frac{\partial S(\beta_{0}, \beta_{1})}{\partial \beta_{0}} = 2 \sum_{i=1}^{n} w_{i}(y_{i} - (\beta_{0} + \beta_{1}x_{i})) = 0$$

$$= \sum_{i=1}^{n} w_{i}(y_{i} - \beta_{0} - \beta_{1}x_{i}) = \sum_{i=1}^{n} w_{i}y_{i} - w_{i}\beta_{0} - w_{i}\beta_{1}x_{i}$$

$$\rightarrow \sum_{i=1}^{n} w_{i}\beta_{0} = \sum_{i=1}^{n} w_{i}y_{i} - w_{i}\beta_{1}x_{i} = \beta_{0} \sum_{i=1}^{n} w_{i} = \sum_{i=1}^{n} w_{i}y_{i} - \beta_{1} \sum_{i=1}^{n} w_{i}x_{i}$$

$$\rightarrow \beta_{0} = \frac{\sum_{i=1}^{n} w_{i}y_{i}}{\sum_{i=1}^{n} w_{i}} - \beta_{1} \frac{\sum_{i=1}^{n} w_{i}x_{i}}{\sum_{i=1}^{n} w_{i}}$$

$$= \bar{y}_{w} - \beta_{1}\bar{x}_{w}$$

$$(2) \frac{\partial S(\beta_{0}, \beta_{1})}{\partial \beta_{1}} = 2 \sum_{i=1}^{n} w_{i} x_{i} (y_{i} - \mu_{i}) = 0$$

$$= \sum_{i=1}^{n} w_{i} x_{i} (y_{i} - (\beta_{0} + \beta_{1} x_{i})) = \sum_{i=1}^{n} w_{i} x_{i} (y_{i} - \beta_{0} - \beta_{1} x_{i})$$

$$= \sum_{i=1}^{n} w_{i} x_{i} y_{i} - \sum_{i=1}^{n} w_{i} x_{i} \beta_{0} - \sum_{i=1}^{n} w_{i} x_{i} \beta_{1} x_{i} = \sum_{i=1}^{n} w_{i} x_{i} y_{i} - \beta_{0} \sum_{i=1}^{n} w_{i} x_{i} - \beta_{1} \sum_{i=1}^{n} w_{i} x_{i}^{2}$$

$$= \sum_{i=1}^{n} w_{i} x_{i} y_{i} - (\bar{y}_{w} - \beta_{1} \bar{x}_{w}) \sum_{i=1}^{n} w_{i} x_{i} - \beta_{1} \sum_{i=1}^{n} w_{i} x_{i}^{2}$$

$$\rightarrow (\bar{y}_{w} - \beta_{1} \bar{x}_{w}) \sum_{i=1}^{n} w_{i} x_{i} + \beta_{1} \sum_{i=1}^{n} w_{i} x_{i}^{2} = \sum_{i=1}^{n} w_{i} x_{i} y_{i}$$

$$= \bar{y}_{w} \sum_{i=1}^{n} w_{i} x_{i} - \beta_{1} \bar{x}_{w} \sum_{i=1}^{n} w_{i} x_{i} + \beta_{1} \sum_{i=1}^{n} w_{i} x_{i}^{2} = \sum_{i=1}^{n} w_{i} x_{i} y_{i}$$

$$= \beta_{1} \left(\sum_{i=1}^{n} w_{i} x_{i}^{2} - \bar{x}_{w} \sum_{i=1}^{n} w_{i} x_{i} \right) = \sum_{i=1}^{n} w_{i} x_{i} y_{i} - \bar{y}_{w} \sum_{i=1}^{n} w_{i} x_{i}$$

$$\rightarrow \beta_{1} = \frac{\sum_{i=1}^{n} w_{i} x_{i} y_{i} - \bar{y}_{w} \sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i} x_{i}^{2} - \bar{x}_{w} \sum_{i=1}^{n} w_{i} x_{i}}$$

Ta có:

$$\sum_{i=1}^{n} w_{i} x_{i} y_{i} - \bar{y}_{w} \sum_{i=1}^{n} w_{i} x_{i} = \sum_{i=1}^{n} w_{i} x_{i} y_{i} - \frac{\sum_{i=1}^{n} w_{i} y_{i}}{\sum_{i=1}^{n} w_{i}} \sum_{i=1}^{n} w_{i} x_{i}$$

$$= \sum_{i=1}^{n} w_{i} x_{i} y_{i} - \frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}} \sum_{i=1}^{n} w_{i} y_{i} = \sum_{i=1}^{n} w_{i} (x_{i} - \bar{x}_{w}) y_{i}$$

$$\sum_{i=1}^{n} w_{i} x_{i}^{2} - \bar{x}_{w} \sum_{i=1}^{n} w_{i} x_{i} = \sum_{i=1}^{n} w_{i} x_{i}^{2} - \bar{x}_{w} \bar{x}_{w} \sum_{i=1}^{n} w_{i}$$

$$= \sum_{i=1}^{n} w_{i} x_{i}^{2} - 2 \bar{x}_{w} \bar{x}_{w} \sum_{i=1}^{n} w_{i} + \bar{x}_{w}^{2} \sum_{i=1}^{n} w_{i}$$

$$= \sum_{i=1}^{n} w_{i} x_{i}^{2} - 2 \bar{x}_{w} \sum_{i=1}^{n} w_{i} x_{i} + \bar{x}_{w}^{2} \sum_{i=1}^{n} w_{i} = \sum_{i=1}^{n} w_{i} x_{i}^{2} - 2 \sum_{i=1}^{n} w_{i} x_{i} \bar{x}_{w} + \sum_{i=1}^{n} w_{i} \bar{x}_{w}^{2}$$

$$= \sum_{i=1}^{n} w_{i} (x_{i}^{2} - 2 x_{i} \bar{x}_{w} + \bar{x}_{w}^{2}) = \sum_{i=1}^{n} w_{i} (x_{i} - \bar{x}_{w}) (x_{i} - \bar{x}_{w}) = \sum_{i=1}^{n} w_{i} (x_{i} - \bar{x}_{w})^{2}$$

Thay vào ta có:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n w_i (x_i - \bar{x}_w) y_i}{\sum_{i=1}^n w_i (x_i - \bar{x}_w)^2}$$

- Bài 2.1: Đổ Chí Chung
- Bài 2.2: Lê Minh Hiếu
- Bài 2.3: Lã Đức Nam
- 4 Bài 2.4: Hoàng Nhật Minh
- Bài 2.5: Trần Nam Khánh
- Bài 2.6: Lê Trung Đức
- Bài 2.7: Phạm Đăng Dương
- Bài 2.8: Nguyễn Như Quỳnh
- 9 Bài 2.9: Đoàn Mạnh Toàn
- Dài 2.10: Vũ Trung Kiêr
- Bài 2.11: Phạm Hồng Nghĩa

Bài 2.3 Đề bài

Trong trường hợp hồi quy tuyến tính đơn giản với tất cả các trọng số được đặt thành một, hãy chỉ ra rằng

$$X^T W X = \begin{bmatrix} n & \sum X \\ \sum X & \sum X^2 \end{bmatrix}$$

trong đó tổng là trên i=1,2,...,n. Do đó, hãy chỉ ra rằng

$$\hat{\beta}_1 = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

12 / 56

1

$$X = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$

$$X^T = \begin{bmatrix} 1 & \dots & 1 \\ x_1 & \dots & x_n \end{bmatrix}$$

$$W = \begin{bmatrix} w_1 & 0 & 0 & \dots & 0 \\ 0 & w_2 & 0 & \dots & 0 \\ & & \ddots & & \\ 0 & \dots & \dots & w_n \end{bmatrix}$$

¹LinearRegressionModels - trang 44

$$X^{T}WX = \begin{bmatrix} 1 & \cdots & 1 \\ x_{1} & \cdots & x_{n} \end{bmatrix} \begin{bmatrix} w_{1} & 0 & 0 & \cdots & 0 \\ 0 & w_{2} & 0 & \cdots & 0 \\ & & \ddots & & \\ 0 & \cdots & \cdots & w_{n} \end{bmatrix} \begin{bmatrix} 1 & x_{1} \\ \vdots & \vdots \\ 1 & x_{n} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \dots & 1 \\ x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} w_1 & w_1 x_1 \\ \vdots & \vdots \\ w_n & w_n x_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n w_i & \sum_{i=1}^n w_i x_i \\ \sum_{i=1}^n w_i x_i & \sum_{i=1}^n w_i (x_i)^2 \end{bmatrix}$$

Khi tất cả trọng số $w_i = 1$, kết quả là:

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{bmatrix}$$

14 / 56

Chữa bài 2.3 - 3

Cho $\beta=\left|eta_0^{eta_0}\right|$. Trong ký hiệu ma trận $\mu=Xeta$ sao cho sai số so với giá trị dư đoán và giá trị thực tế của chúng ta là

$$d = y - \mu = y - X\beta$$

trong đó μ và β là các vectơ có độ dài n (số quan sát) và p+1 (2 đối số với hồi quy tuyến tính đơn giản, giá trị cắt và độ dốc), tương ứng, và X là môt ma trân có n hàng và p+1 côt.

Tổng bình phương có trong số S^2 của chúng ta trở thành

$$S = (y - X\beta)^{T} W (y - X\beta)$$

$$= y^{T} W y - y^{T} W X \beta - (X\beta)^{T} W y + (X\beta)^{T} W X \beta$$

$$= y^{T} W y - y^{T} W X \beta - \beta^{T} X^{T} W y + \beta^{T} X^{T} W X \beta$$

²Coefficient Estimates - LinearRegressionModels - trang 44 (3) (2) (2)

Chữa bài 2.3 - 4

Tìm β sao cho S min, chúng ta cần tìm $\frac{dS}{d\beta}$ và đặt nó thành 0.

$$\frac{dS}{d\beta} = 0 - y^T WX - X^T Wy + 2X^T WX\beta$$
$$= 2X^T WX\beta - 2X^T Wy =_{set} 0 \to X^T WX\beta = X^T Wy$$
$$\hat{\beta} = (X^T WX)^{-1} X^T Wy$$

Chúng ta đã có X^TWX . Bây giờ chúng ta cần tìm nghịch đảo của nó, cũng như X^TWy .

$$(X^{T}WX)^{-1} = \begin{bmatrix} \sum_{i=1}^{n} w_{i} & \sum_{i=1}^{n} w_{i}x_{i} \\ \sum_{i=1}^{n} w_{i}x_{i} & \sum_{i=1}^{n} w_{i}(x_{i})^{2} \end{bmatrix}^{-1}$$

$$= \frac{1}{\sum_{i=1}^{n} w_{i} \sum_{i=1}^{n} w_{i}(x_{i})^{2} - (\sum_{i=1}^{n} w_{i}x_{i})^{2}} \begin{bmatrix} \sum_{i=1}^{n} w_{i}(x_{i})^{2} & -\sum_{i=1}^{n} w_{i}x_{i} \\ -\sum_{i=1}^{n} w_{i}x_{i} & \sum_{i=1}^{n} w_{i} \end{bmatrix}$$

$$X^{T}Wy = \begin{bmatrix} 1 & \dots & 1 \\ x_{1} & \dots & x_{n} \end{bmatrix} \begin{bmatrix} w_{1} & 0 & 0 & \dots & 0 \\ 0 & w_{2} & 0 & \dots & 0 \\ & & \ddots & & \\ 0 & \dots & \dots & w_{n} \end{bmatrix} \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & \dots & 1 \\ x_{1} & \dots & x_{n} \end{bmatrix} \begin{bmatrix} w_{1}y_{1} \\ \vdots \\ w_{n}y_{n} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} w_{i}y_{i} \\ \sum_{i=1}^{n} w_{i}y_{i}x_{i} \end{bmatrix}$$

$$\hat{\beta} = (X^T W X)^{-1} X^T W y \text{ và } X^T W y = \begin{bmatrix} \sum_{i=1}^n w_i y_i \\ \sum_{i=1}^n w_i y_i \sum_{i=1}^n (w_i x_i)^2 - \sum_{i=1}^n w_i y_i x_i \sum_{i=1}^n w_i x_i \end{bmatrix}$$

$$\rightarrow \hat{\beta} = \begin{bmatrix} \frac{\sum_{i=1}^n w_i y_i \sum_{i=1}^n (w_i x_i)^2 - \sum_{i=1}^n w_i y_i x_i \sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i y_i \sum_{i=1}^n (w_i x_i)^2 - (\sum_{i=1}^n w_i y_i x_i \sum_{i=1}^n w_i} \end{bmatrix} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}$$

khi $w_i = 1$, ta có

$$\hat{\beta}_1 = \frac{n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2} = \frac{\sum_{i=1}^n x_i y_i - \frac{\sum_{i=1}^n x_i \sum_{i=1}^n y_i}{n}}{\sum_{i=1}^n x_i^2 - \frac{(\sum_{i=1}^n x_i)^2}{n}}$$

- 1 Bài 2.1: Đỗ Chí Chung
- Bài 2.2: Lê Minh Hiếu
- Bài 2.3: Lã Đức Nam
- 4 Bài 2.4: Hoàng Nhật Minh
- Bài 2.5: Trần Nam Khánh
- Bài 2.6: Lê Trung Đức
- Bài 2.7: Phạm Đăng Dương
- Bài 2.8: Nguyễn Như Quỳnh
- 9 Bài 2.9: Đoàn Mạnh Toàn
- Dài 2.10: Vũ Trung Kiêr
- 🕕 Bài 2.11: Phạm Hồng Nghĩa

Chứng minh rằng ước lượng bình phương nhỏ nhất của β trong mô hình hồi quy tuyến tính là $\hat{\beta} = (X^T W X)^{-1} X^T W y$, bằng cách làm theo các bước sau.

1. Chứng minh rằng

$$S = (y - X\beta)^T W(y - X\beta) = y^T Wy - 2\beta^T X^T Wy + \beta^T X^T WX\beta$$

- . S là tổng của các độ lệch bình phương.
- 2. Phân biệt S theo β để tìm $dS/d\beta$. (Gợi ý: Phân biệt $\beta^T M\beta$ theo β đối với bất kỳ ma trận tương thích M nào cho $2M\beta$.
- 3. Sử dụng kết quả trước đó để tìm giá trị của $\hat{\beta}$ tối thiểu hóa giá trị của S.

Chữa bài 2.4 - Chứng minh ước lượng theo phương pháp bình phương tối thiếu của eta

Ta cần chứng minh rằng ước lượng bình phương tối thiểu của β trong mô hình hồi quy tuyến tính là:

$$\hat{\beta} = (X^T W X)^{-1} X^T W y$$

Ước lượng bình phương tối thiểu của β trong mô hình hồi quy tuyến tính là một ước lượng giá trị của các tham số β sao cho tổng sai số bình phương giữa giá trị dự đoán và giá trị thực tế là nhỏ nhất. Có nghĩa là ta cần tìm β sao cho biểu thức S là nhỏ nhất

Bước 1: Khai triển biểu thức S Biểu thức tổng sai số được cho bởi:

$$S = (y - X\beta)^{T} W(y - X\beta)$$
$$S = y^{T} Wy - y^{T} WX\beta - \beta^{T} X^{T} Wy + \beta^{T} X^{T} WX\beta$$

Vì W là ma trận đối xứng, ta có:

$$y^{T}WX\beta = \beta^{T}X^{T}Wy$$
$$S = y^{T}Wy - 2\beta^{T}X^{T}Wy + \beta^{T}X^{T}WX\beta$$

Chữa bài 2.4 - 2

Bước 2: Tính đạo hàm của S đối với β Để tìm giá trị của β tối thiểu hóa S, ta tính đạo hàm của S theo β :

$$\frac{dS}{d\beta} = -2X^T W y + 2X^T W X \beta$$

Đặt đạo hàm này bằng 0 để tìm điểm cực trị:

$$-2X^TWy + 2X^TWX\beta = 0$$

Giải phương trình trên và xét tính cực tiểu

$$X^T W X \beta = X^T W y$$

Đạo hàm bậc hai của S theo β là:

$$\frac{d^2S}{d\beta^2} = 2X^T W X$$

Chữa bài 2.4 - 3

Xét tính xác định dương của $X^T W X$:

- ullet W là ma trận đối xứng và xác định dương (giả thiết trọng số hợp lệ).
- X^TWX là xác định dương nếu X có các cột độc lập tuyến tính.
- \bullet Vì X^TWX xác định dương, nên

$$\forall \mathbf{v} \neq 0, \ \mathbf{v}^T (X^T W X) \mathbf{v} > 0.$$

Vì vậy $\beta = (X^T W X)^{-1} X^T W y$ là điểm cực tiểu Cuối cùng, ta có ước lượng bình phương tối thiểu của β :

$$\hat{\beta} = (X^T W X)^{-1} X^T W y$$

- Bài 2.1: Đổ Chí Chung
- Bài 2.2: Lê Minh Hiểu
- ③ Bài 2.3: Lã Đức Nam
- Bài 2.4: Hoàng Nhật Minh
- 5 Bài 2.5: Trần Nam Khánh
- 6 Bài 2.6: Lê Trung Đức
- Bài 2.7: Phạm Đăng Dương
- Bài 2.8: Nguyễn Như Quỳnh
- 9 Bài 2.9: Đoàn Mạnh Toàn
- 10 Bài 2.10: Vũ Trung Kiên
- Bài 2.11: Phạm Hồng Nghĩa

Bài 2.5 Đề bài

Đối với hồi quy tuyến tính đơn giản, hãy chứng minh rằng $\hat{\beta}_1$ được xác định bởi (2.7)

$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_x} = \frac{\sum_{i=1}^n w_i (x_i - \bar{x}_w) y_i}{\sum_{i=1}^n w_i (x_i - \bar{x}_w)^2}$$

là một ước lượng không chệch của β_1 . Nghĩa là, hãy chứng minh rằng $E[\hat{\beta}_1]=\beta_1$. (Gợi ý: $\sum w_i(x_i-\bar{x})a=0$ đối với bất kỳ hằng số a nào.)

Theo (2.7):

$$\hat{B}_{1} = \frac{\sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})(y_{i})}{\sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})^{2}}$$

$$= \frac{\sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})(\beta_{0} + \beta_{1}x_{i} + \varepsilon_{i})}{\sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})(x_{i} - \bar{x}_{w})}$$

$$= \frac{\sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})\beta_{0} + \sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})\beta_{1}x_{i} + \sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})\varepsilon_{i}}{\sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})x_{i} - \sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})\bar{x_{w}}}$$

Với gợi ý đã cho: $\sum w_i(x_i-\bar{x})a=0$, a là hằng số $\to \sum_{i=1}^n W_i(x_i-\bar{x}_w)\beta_0=0$ và $\sum_{i=1}^n W_i(x_i-\bar{x}_w)\bar{x}_w=0$ do β_0 và \bar{x}_w được coi là hằng số.

Tính kỳ vọng:

$$E(\hat{\beta}_{1}) = E\left[\frac{\sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})\beta_{1}x_{i}}{\sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})x_{i}}\right] + E\left[\frac{\sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})\varepsilon_{i}}{\sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})x_{i}}\right]$$

$$= E[\beta_{1}] + \frac{\sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})E[\varepsilon_{i}]}{\sum_{i=1}^{n} W_{i}(x_{i} - \bar{x}_{w})x_{i}}$$

Do $E\left[arepsilon_i
ight]=0 o E[\hat{eta}_1]=E[eta_1]=eta_1 o \hat{eta}_1$ là ước lượng không chệch của eta_1 (DPCM)

- Bài 2.1: Đổ Chí Chung
- Bài 2.2: Lê Minh Hiểu
- Bài 2.3: Lã Đức Nam
- Bài 2.4: Hoàng Nhật Minh
- Bài 2.5: Trần Nam Khánh
- 6 Bài 2.6: Lê Trung Đức
- Bài 2.7: Phạm Đăng Dương
- Bài 2.8: Nguyễn Như Quỳnh
- Bài 2.9: Đoàn Mạnh Toàn
- Dài 2.10: Vũ Trung Kiêr
- Bài 2.11: Phạm Hồng Nghĩa

Bài 2.6 Đề bài

Chứng minh rằng $\hat{\beta}=(X^TWX)^{-1}X^TWy$ là một ước lượng không chệch của β . Nghĩa là, chứng minh $E[\hat{\beta}]=\beta$.

Model có dạng:
$$y = X\beta + \epsilon$$
,

với random noise có điều kiện là: $\mathbb{E}[\epsilon] = 0$ and $Var(\epsilon) = \sigma^2 W^{-1}$.

Weighted Least Square se là: $\hat{\beta} = (X^T W X)^{-1} X^T W_V$.

Ta thay thế $y = X\beta + \epsilon$:

$$\hat{\beta} = (X^T W X)^{-1} X^T W (X \beta + \epsilon).$$

Sau đó nhân triển khai ra sẽ được:

$$\hat{\beta} = (X^T W X)^{-1} X^T W X \beta + (X^T W X)^{-1} X^T W \epsilon.$$

Phần tử đầu tiên có phép nhân ma trận nghịch đảo nên rút gọn được:

$$(X^T W X)^{-1} X^T W X \beta = \beta.$$

Do đó:

$$\hat{\beta} = \beta + (X^T W X)^{-1} X^T W \epsilon.$$

Kỳ vọng của $\hat{\beta}$ sẽ là:

$$\mathbb{E}[\hat{\beta}] = \mathbb{E}\left[\beta + (X^T W X)^{-1} X^T W \epsilon\right].$$

Theo tính chất tuyến tính của kỳ vọng:

$$\mathbb{E}[\hat{\beta}] = \mathbb{E}[\beta] + \mathbb{E}\left[(X^T W X)^{-1} X^T W \epsilon \right].$$

Vì β là hằng số nên: $\mathbb{E}[\beta] = \beta$.

Vì $(X^TWX)^{-1}X^TW$ là hằng số, và $\mathbb{E}[\epsilon]=0$:

$$\mathbb{E}\left[(X^TWX)^{-1}X^TW\epsilon\right] = (X^TWX)^{-1}X^TW\mathbb{E}[\epsilon] = 0.$$

Nên:

$$\mathbb{E}[\hat{\beta}] = \beta + 0 = \beta \text{ (dpcm)}$$

- Bài 2.1: Đổ Chí Chung
- Bài 2.2: Lê Minh Hiểu
- Bài 2.3: Lã Đức Nam
- 4 Bài 2.4: Hoàng Nhật Minh
- Bài 2.5: Trần Nam Khánh
- 6 Bài 2.6: Lê Trung Đức
- Bài 2.7: Phạm Đăng Dương
- Bài 2.8: Nguyễn Như Quỳnh
- 9 Bài 2.9: Đoàn Mạnh Toàn
- 10 Bài 2.10: Vũ Trung Kiêr
- Bài 2.11: Phạm Hồng Nghĩa

Bài 2.7 Đề bài

Chứng minh rằng ma trận phương sai-hiệp phương sai của $\hat{\beta}$ là $var[\hat{\beta}] = (X^T W X)^{-1} \sigma^2$, sử dụng $var[Cy] = Cvar[y]C^T$ cho ma trận hằng số C.

Biểu thức:

$$\hat{\beta} = (X^T W X)^{-1} X^T W y$$

$$= (X^T W X)^{-1} X^T W (X \beta + \epsilon)$$

$$= (X^T W X)^{-1} X^T W X \beta + (X^T W X)^{-1} X^T W \epsilon$$

$$= (X^T W X - I_{\alpha} n \hat{n} n)$$

Có $(X^T WX)^{-1} X^T WX = I$, nên

$$\hat{\beta} = I\beta + (X^T W X)^{-1} X^T W \epsilon = \beta + (X^T W X)^{-1} X^T W \epsilon$$

Khi đó:

$$\begin{aligned} var[\hat{\beta}] &= var[\beta + (X^TWX)^{-1}X^TW\epsilon] \\ &= var[\beta] + var[(X^TWX)^{-1}X^TW\epsilon] \end{aligned}$$
 với $var[\beta] = 0$ nên $var[\hat{\beta}] = var[(X^TWX)^{-1}X^TW\epsilon]$

Ta có $(X^TWX)^{-1}X^TW$ là một hằng số giống C,

$$var[\hat{\beta}] = (X^T W X)^{-1} X^T W \ var[\epsilon] \ ((X^T W X)^{-1} X^T W)^T$$

Lấy $var[\epsilon] = \sigma^2 W^{-1}$ ta có:

$$var[\hat{\beta}] = (X^{T}WX)^{-1}X^{T}W(\sigma^{2}W^{-1})(X^{T}W)^{T}((X^{T}WX)^{-1})^{T}$$

$$= (X^{T}WX)^{-1}X^{T}W(\sigma^{2}W^{-1})(W^{T}X)((X^{T}WX)^{T})^{-1}$$

$$= (X^{T}WX)^{-1}X^{T}W(\sigma^{2}W^{-1})(W^{T}X)(X^{T}W^{T}X)^{-1}$$

Mà $WW^{-1} = I$ nên:

$$var[\hat{\beta}] = \sigma^{2}(X^{T}WX)^{-1}X^{T} I (W^{T}X)(X^{T}W^{T}X)^{-1}$$
$$= \sigma^{2}(X^{T}WX)^{-1}X^{T}(W^{T}X)(X^{T}W^{T}X)^{-1}$$

$$var[\hat{\beta}] = \sigma^2(X^TWX)^{-1}X^T(W^TX)(X^TW^TX)^{-1}$$

$$= \sigma^2(X^TWX)^{-1}(X^TW^TX)(X^TW^TX)^{-1}$$

$$Max (X^TW^TX)(X^TW^TX)^{-1} = I$$

$$var[\hat{\beta}] = \sigma^2(X^TWX)^{-1}I$$

$$= \sigma^2(X^TWX)^{-1} \text{ (đpcm)}$$

- Bài 2.1: Đổ Chí Chung
- Bài 2.2: Lê Minh Hiếu
- 📵 Bài 2.3: Lã Đức Nam
- Bài 2.4: Hoàng Nhật Minh
- Bài 2.5: Trần Nam Khánh
- 6 Bài 2.6: Lê Trung Đức
- Bài 2.7: Phạm Đăng Dương
- Bài 2.8: Nguyễn Như Quỳnh
- Bài 2.9: Đoàn Mạnh Toàn
- 10 Bài 2.10: Vũ Trung Kiêr
- Bài 2.11: Phạm Hồng Nghĩa

Chứng minh rằng thống kê F (2.28)

$$F = \frac{ssR_{EG}/(p'-1)}{RSS/(n-p')} = \frac{MSR_{EG}}{MSE}$$

 $va R^2 (2.29)$

$$R^2 = \frac{ssR_{EG}}{SST} = 1 - \frac{RSS}{SST}$$

có liên quan với nhau bởi

$$F = \frac{R^2/(p'-1)}{(1-R^2)/(n-p')}$$

Định lý 2.29:

$$R^2 = \frac{ssR_{EG}}{SST} = 1 - \frac{RSS}{SST}$$

Từ đó, ta có:

$$_{SS}R_{EG} = R^2 \cdot SST$$

RSS = $(1 - R^2) \cdot SST$

Thay vào Định lý 2.28:

$$F = \frac{\frac{R^2 \cdot SST}{p'-1}}{\frac{(1-R^2) \cdot SST}{n-p'}}$$

Rút gọn:

$$F = rac{R^2/(p'-1)}{(1-R^2)/(n-p')}$$
 (dpcm)

- Bài 2.1: Đổ Chí Chung
- Bài 2.2: Lê Minh Hiểu
- Bài 2.3: Lã Đức Nam
- Bài 2.4: Hoàng Nhật Minh
- Bài 2.5: Trần Nam Khánh
- Bài 2.6: Lê Trung Đức
- Bài 2.7: Phạm Đăng Dương
- Bài 2.8: Nguyễn Như Quỳnh
- Bài 2.9: Đoàn Mạnh Toàn
- 10 Bài 2.10: Vũ Trung Kiêr
- Bài 2.11: Phạm Hồng Nghĩa

Bài 2.9 Đề bài

Hãy xem xét một mô hình hồi quy tuyến tính đơn giản với thành phần hệ thống $\mu=\beta_0+\beta_1x$. Giả sử chúng ta muốn thiết kế một thí nghiệm với n=5 quan sát, khi σ^2 được biết là 1. Giả sử ba thiết kế cho thí nghiệm được xem xét. Trong Thiết kế A, các giá trị của biến giải thích là x=[1,1,-1,-1,0]. Trong Thiết kế B, các giá trị là x=[1,1,1,1,-1]. Trong Thiết kế C, các giá trị là x=[1,0,5,0,-0,5,-1].

- Viết ma trận mô hình X cho mỗi thiết kế.
- ② Tính $var[\hat{\mu}]$ cho mỗi thiết kế.
- Vẽ đồ thị $var[\hat{\mu}]$ cho x_g giữa -1 và 1. Khi nào Thiết kế A được ưa chuộng hơn và tại sao? Khi nào Thiết kế B được ưa chuộng hơn và tại sao? Khi nào Thiết kế C được ưa chuộng hơn và tại sao?

Chữa bài 2.9: Viết ma trận mô hình X cho mỗi thiết kế

$$X = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_5 \end{bmatrix} \qquad X_A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \\ 1 & -1 \end{bmatrix}$$
$$X_B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad X_C = \begin{bmatrix} 1 & 1 \\ 1 & 0.5 \\ 1 & 0 \\ 1 & -0.5 \\ 1 & -1 \end{bmatrix}$$

Chữa bài 2.9: Tính $var[\hat{\mu}]$ cho mỗi thiết kế - 1

 $var[\hat{\mu}]=x(X^TWX)^{-1}x^T\sigma^2$. Theo đề, $\sigma^2=1$, và vì không có trọng số nên W = I

$$var[\hat{\mu}_{A}] = \begin{bmatrix} 1 & x \end{bmatrix} \left(\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} I \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 \\ x \end{bmatrix} 1$$

Sử dụng định thức để tính nghịch đảo và tiếp tục tính toán:

$$= \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} 0.2 & 0 \\ 0 & 0.25 \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}$$
$$= 0.2 + 0.25x^{2}$$

Chữa bài 2.9: Tính $var[\hat{\mu}]$ cho mỗi thiết kế - 2

Sử dụng R để tính, ta có
$$(X^TWX)^{-1} = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.25 \end{bmatrix}$$

Chữa bài 2.9: Tính $var[\hat{\mu}]$ cho mỗi thiết kế - 3

$$var[\hat{\mu}_{B}] = \begin{bmatrix} 1 & x \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} I \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 \\ x \end{bmatrix} 1$$

$$= \begin{bmatrix} 1 & x \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 \\ x \end{bmatrix}$$

$$= \begin{bmatrix} 1 & x \end{bmatrix} \begin{pmatrix} \frac{1}{16} \begin{bmatrix} 5 & -3 \\ -3 & 5 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}$$

$$= \frac{5x^{2} - 6x + 5}{16}$$

Chữa bài 2.9: Tính $var[\hat{\mu}]$ cho mỗi thiết kế - 4

$$var[\hat{\mu}_C] = \begin{bmatrix} 1 & x \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0.5 & 0 & -0.5 & -1 \end{bmatrix} \begin{bmatrix} I \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0.5 & 0 \\ 1 & -0.5 & 1 & -1 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 \\ x \end{bmatrix} 1$$

$$= \begin{bmatrix} 1 & x \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 2.5 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 \\ x \end{bmatrix}$$

$$= \begin{bmatrix} 1 & x \end{bmatrix} \begin{pmatrix} \frac{1}{12.5} \begin{bmatrix} 2.5 & 0 \\ 0 & 5 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}$$

$$= \frac{2.5 + 5x^2}{12.5} = \frac{1 + 2x^2}{5}$$

Chữa bài 2.9: - 5

```
x <- seq(-1, 1, length=100)
varA <- function(x){0.2 + 0.25*x^2}
varB <- function(x){(5 - 6*x + 5*x^2)/16}
varC <- function(x){(5 - 6*x + 5*x^2)/16}
va <- varA(x); vB <- varB(x); vC <- varC(x)
plot( range(c(vA, VB, vC)) ~ range(x), type="n", ylim=c(0, 1.2), ylab="Var. of predictions", xlab="x values", las=1)
lines(varA(x) ~ x, lty=1, lwd=2)
lines(varB(x) ~ x, lty=2, lwd=2)
lines(varC(x) ~ x, lty=3, lwd=2)
legend("top", lwd=2, lty=1:3, legend=c("Design A", "Design B", "Design C"))</pre>
```


Design A nói chung có phương sai bé trên tập X. Design B có phương sai bé hơn khi X lớn (X lớn hơn tầm 0.3). Design C có phương sai tương tự design A, nhưng nhìn chung có phương sai lớn hơn trên tập X.

- Bài 2.1: Đổ Chí Chung
- Bài 2.2: Lê Minh Hiểu
- Bài 2.3: Lã Đức Nam
- 4 Bài 2.4: Hoàng Nhật Minh
- Bài 2.5: Trần Nam Khánh
- 🌀 Bài 2.6: Lê Trung Đức
- Bài 2.7: Phạm Đăng Dương
- Bài 2.8: Nguyễn Như Quỳnh
- 9 Bài 2.9: Đoàn Mạnh Toàn
- 10 Bài 2.10: Vũ Trung Kiên
- Bài 2.11: Phạm Hồng Nghĩa

Bài 2.10 Đề bài

Giả sử rằng biến phản hồi định lượng y và biến hiệp phương x có liên quan với nhau bởi một hàm trơn f sao cho $\mu = f(x)$ trong đó $\mu = E[y]$.

- Giả sử rằng các đạo hàm cần thiết tồn tại, hãy tìm khai triển chuỗi Taylor bậc nhất của f(x) khai triển quanh \bar{x} , trong đó \bar{x} là giá trị trung bình của x.
- Sắp xếp lại biểu thức này thành dạng mô hình hồi quy bội.
- Giải thích tại sao điều này ngụ ý rằng các mô hình hồi quy là tuyến tính cục bộ.

Chữa bài 2.10 - 1

Giả sử rằng biến phản ứng định lượng y và hiệp phương sai x là liên quan bởi một số hàm trơn f sao cho $\mu=f(x)$ trong đó M=E[y]

$$f(x) \approx f(k) + f'(k)(x-k) + \frac{f''(k)}{2}(x-k)^2$$

Trong bối cảnh câu hỏi của chúng ta, chúng ta có

$$\mu = f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + \frac{f''(\bar{x})}{2}(x - \bar{x})^2 + \dots$$

(2) Từ biểu thức ở slide trước ta chuyển về dạng hồi quy:

$$\mu = f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + \frac{f''(\bar{x})}{2}(x - \bar{x})^2 + \dots$$
$$= \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \dots$$

(3) Vì khi $x - \overline{x} << 0$ phép tính gần đúng Taylor f(x) là tuyến tính, miền cực bộ xung quanh $k = \overline{x}$ là xấp xỉ tuyến tính.

- Bài 2.1: Đổ Chí Chung
- Bài 2.2: Lê Minh Hiểu
- Bài 2.3: Lã Đức Nam
- Bài 2.4: Hoàng Nhật Minh
- Bài 2.5: Trần Nam Khánh
- Bài 2.6: Lê Trung Đức
- Bài 2.7: Phạm Đăng Dương
- Bài 2.8: Nguyễn Như Quỳnh
- Bài 2.9: Đoàn Mạnh Toàn
- 10 Bài 2.10: Vũ Trung Kiên
- 1 Bài 2.11: Phạm Hồng Nghĩa

Bài 2.11 Đề bài

Trong Phần 2.7, một cách giải thích cho mô hình có thành phần hệ thống $\mu = E[log(y)] = \beta_0 + \beta_1 x$ đã được thảo luận.

- **1** Sử dụng khai triển chuỗi Taylor của log(y) quanh $\mu = E[y]$.
- ② Tìm giá trị kỳ vọng của cả hai vế của phương trình này và do đó chứng minh rằng $E[log(y)] \approx log(E[y]) = log(\mu)$.
- 3 Sử dụng thông tin này, chứng minh rằng sự gia tăng giá trị của x thêm 1 có liên quan $(x \hat{a} p x \hat{i})$ với sự thay đổi của μ theo hệ số $exp(\beta_1)$.

Chữa bài 2.11 - 1: Sử dụng khai triển chuỗi Taylor của log(y) quanh $\mu = E[y]$

Khai triển Taylor:

$$f(a) + rac{f'(a)}{1!}(x-a) + rac{f''(a)}{2!}(x-a)^2 + rac{f'''(a)}{3!}(x-a)^3 + \dots = \sum_{n=0}^{\infty} rac{f^{(n)}(a)}{n!}(x-a)^n.$$

$$f(y) = \ln(y) = f(\mu) + f'(\mu)(y - \mu) + f''(\mu)(y - \mu)^2 + \dots$$
$$= \ln(\mu) + \frac{1}{\mu}(y - \mu) - \frac{1}{2\mu^2}(y - \mu)^2 + \dots$$

54 / 56

Chữa bài 2.11 - 2: Chứng minh rằng $E[log(y)] \approx log(E[y]) = log(\mu)$

Chúng ta sẽ bắt đầu bằng cách lấy kỳ vọng của từng học kỳ.

$$E[\ln(y)] = E[\ln(\mu)] + E[\frac{1}{\mu}(y-\mu)] - E[\frac{1}{2\mu^2}(y-\mu)^2] + \dots$$

Vì μ và $\mathit{In}(\mu)$ là hằng số, nên ta có

$$E[ln(y)] = ln(\mu) + \frac{1}{\mu}E[(y - \mu)] - \frac{1}{2\mu^2}E[(y - \mu)^2] + \dots$$

Khi đó, $E[(y-\mu)]=0$ và $E[(y-\mu)^2]=var(y)$ sao cho ta còn lại

$$E[In(y)] = In(\mu) - \frac{1}{2\mu^2}var(y) + ...$$

Nói cách khác,

$$E[ln(y)] \approx ln(\mu)$$

55 / 56

Chữa bài 2.11 - 3: sự gia tăng giá trị của x thêm 1 có liên quan (xấp xỉ) với sự thay đối của μ theo hệ số $exp(\beta_1)$

Với $E[ln(y)] \approx ln(\mu) \approx \beta_0 + \beta_1 x$, thì x tăng 1 đơn vị sẽ gây ra β_1 thay đổi thành $ln(\mu)$. Nhưng chúng ta phải thể hiện sư thay đổi thành μ (không phải $ln(\mu)$).

Để làm điều này, chúng ta có thể đảo ngược logarit tư nhiên bằng cách lũy thừa cả hai vế của phương trình.

$$e^{(\ln(\mu))} = \mu = e^{(\beta_0 + \beta_1 x)} = e^{\beta_0} \times e^{\beta_1 x}$$

Vì vậy, một đơn vị tăng trong x theo **cấp số nhân** sẽ làm tăng μ theo hệ số e^{β_1} . Ví du, lấy μ_0 là μ khi x=2 sao cho $\mu_0=e^{\beta_0}\times e^{2\beta_1}$. Bây giờ lấy μ_1 là μ khi x=3 sao cho $\mu_1=e^{\beta_0}\times e^{3\beta_1}$. Khi đó

$$rac{\mu_1}{\mu_0} = rac{e^{eta_0} imes e^{3eta_1}}{e^{eta_0} imes e^{2eta_1}} = e^{eta_1}$$

