

INTEGRACIÓN PARTE 1

Definición:

Sean F y f dos <u>funciones</u> definidas sobre el mismo <u>intervalo</u> (en general, sobre el mismo dominio). F es <u>una primitiva</u> de f si y sólo si F' = f.

$$\int x^2 dx = \frac{x^3}{3} + 2$$
 ya que derivada de $\left(\frac{x^3}{3} + 2\right) = 3\frac{x^2}{3} + 2 = x^2$ o bien

$$\int x^2 dx = \frac{x^3}{3} - 1$$
 ya que derivada de $\left(\frac{x^3}{3} - 1\right) = 3\frac{x^2}{3} + (-1)^2 = x^2$ o bien

$$\int x^2 dx = \frac{x^3}{3} + 5 \text{ ya que } derivada \ de \left(\frac{x^3}{3} + 5\right) = 3\frac{x^2}{3} + 5 = x^2$$

$$\int x^2 dx = \frac{x^3}{3} + k$$

Observación:

Como podemos observar la constante puede ser cualquier número real; generalmente la llamamos k. Se genera entonces una familia de funciones que en el caso de nuestro ejemplo

$$\operatorname{es} \int x^2 dx = \frac{x^3}{3} + k$$

Mientras que la derivada de una función, cuando existe, es única, no es el caso de la primitiva, pues si F es una primitiva de f, también lo es F + k, donde k es cualquier constante real.

Otro ejemplo.

Busquemos una primitiva de x(2-3x).

Es decir
$$\int x(2-3x)dx$$

Como no se conoce primitivas de un producto, desarrollemos la expresión: $x(2-3x)=2x-3x^2$.

Donde 2x es la derivada de x^2 , $3x^2$ es la de x^3 , por lo tanto $\int (2x - 3x^2)dx$ tiene como primitiva $x^2 - x^3 + k$. Es decir,

$$\int (2x - 3x^2) dx = x^2 - x^3 + k.$$

Condición Inicial

❖Si se da una condición $F(x_0) = y_0$ (que recibe el nombre de *condición inicial* cuando se trata de un problema de física por ejemplo), entonces la constante k es unívocamente determinada. En el ejemplo, si se impone F(2) = 3, entonces k = 7.

Definición

Se define integral indefinida al conjunto de todas las primitivas de la función f. Se representa por la expresión

$$\int f(x)dx$$

Se lee integral de **f** de x diferencial de x. Al símbolo que inicia la expresión (y que tiene forma de **"s"** alargada su significado es el de suma) se le llama signo integral y a lo que le sigue integrando.

Una forma práctica de calcular la **integral indefinida** de una función. Basta calcular una primitiva F(x), y la integral indefinida es el conjunto de todas las funciones que se obtienen de una sumar una constante cualquiera a la primitiva F. Así,

$$\int (x)dx = F(x) + C$$

Una forma práctica de calcular la **integral indefinida** de una función. Basta calcular una primitiva F(x), y la integral indefinida es el conjunto de todas las funciones que se obtienen de una sumar una constante cualquiera a la primitiva F. Así,

$$\int f(x)dx = F(x) + C$$

Propiedades de la integral indefinida

1. Integral de una constante.

$$\int c dx = cx + k$$

$$\int 2 dx = 2x + k$$

2. Integral de una potencia

$$\int x^n dx = \frac{x^{n+1}}{n+1} + k \quad \text{para } n \neq -1$$

$$\int x^5 dx = \frac{x^6}{6} + k$$

$$\int x^{-2} dx = \frac{x^{-2+1}}{-2+1} + k = \frac{x^{-1}}{-1} + k = -\frac{1}{x} + k$$

3. Integral de una constante por función

$$\int c.f(x) dx = c \int f(x) dx$$

$$\int 6x^5 dx = 6 \int x^5 dx = 6 \frac{x^6}{6} + k = x^6 + k$$

$$\int \frac{5}{x^2} dx = 5 \int x^{-2} dx = -5x^{-1} + k$$

$$\int \frac{1}{2} x^{-\frac{1}{2}} dx = \frac{1}{2} \int x^{-\frac{1}{2}} dx = \frac{1}{2} \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + k = \frac{1}{2} \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + k = \sqrt{x} + k$$

4. Integral de x-1

$$\int x^{-1} dx = \int \frac{1}{x} dx = \ln|x| + k$$

$$\int \frac{1}{3x} dx = \frac{1}{3} \int x^{-1} dx = \frac{1}{3} \ln|x| + k$$
$$\int \frac{1}{x+5} dx = \ln|x+5| + k$$

$$\int \frac{3}{2x+6} dx = \int \frac{3}{2(x+3)} dx = \frac{3}{2} \int \frac{1}{x+3} dx = \frac{3}{2} \ln|x+3| + k$$

5. Integral de una suma de funciones

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx =$$

$$\int x^2 + x \quad dx = \int x^2 dx + \int x \quad dx = \frac{x^3}{3} + \frac{x^2}{2} + k$$

$$\int x^{-1} + sen \ x \ dx = \int x^{-1} dx + \int sen \ x \ dx = \ln|x| - \cos x + k$$

6. Integral de una diferencia de funciones

$$\int [f(x) - g(x)] dx = \int f(x) dx - \int g(x) dx =$$

$$\int x^{2} - x - 3 dx = \int x^{2} dx - \int x dx - \int 3 dx = \frac{x^{3}}{3} - \frac{x^{2}}{2} - 3x + k$$

$$\int x^{-1} - \cos x dx = \int x^{-1} dx - \int \cos x dx = \ln|x| - \sin x + k$$

7. Integrales de funciones trigonométricas seno y coseno

$$\int sen \ x \ dx = -\cos x + k$$

$$\int \cos x \ dx = sen \ x + k$$

$$\int 3 \cos x \, dx = 3 \sin x + k$$

$$\int sen(x - \pi) dx = -\cos(x - \pi) + k$$

$$\int sen 3x \, dx = \int \frac{1}{3} \cdot 3 \cdot sen 3x \, dx = \frac{1}{3} \int 3 \cdot sen 3x \, dx = -\frac{1}{3} \cos 3x + k$$

8. Integrales de exponenciales

$$\int e^{x} dx = e^{x} + k$$

$$\int e^{x+1} dx = e^{x+1} + k$$

$$\int a^{x} \ln a \quad dx = a^{x} + k$$

$$\int e^{2x} dx = \frac{1}{2} \int 2 e^{2x} dx = \frac{1}{2} e^{2x} + k$$

$$\int e^{2x+1} dx = \frac{1}{2} \int 2e^{2x+1} dx = \frac{1}{2} e^{2x+1} + k$$

$$\int 2^{x} dx = \frac{2^{x}}{\ln 2} + k$$

$$9. \left[\int f(x) dx \right] = f(x)$$

$$\int 2x \, dx = ((2\frac{x^2}{2}) + k)' = (x^2 + k)' = 2x$$

$$\mathbf{10.} \int (f(x)dx) = f(x) + k$$

$$\int (x^2 dx)' = \int 2x dx = 2 \int x dx = 2 \frac{x^2}{2} + k = x^2 + k$$

11.
$$\forall \alpha, \beta \in R : \int [\alpha f(x) \pm \beta g(x)] dx = \alpha \int f(x) dx \pm \beta \int g(x) dx$$

$$\int 2x^{-1} + 3\cos x \, dx = 2\int x^{-1} dx + 3\int \cos x \, dx = 2\ln|x| - 3\sin x + k$$

Integrales Definidas

Se trata de encontrar el área de algunas regiones muy especiales como la definida en la Fig. 1, aquellas que están limitadas por el eje horizontal, las verticales por (a, o) y (b, o), y la gráfica de una función f tal que f(x) o, para todo x de [a, b]. Conviene denotar esta región por R(f, a, b)

Fig. 1

> El número que asignaremos eventualmente como área de R(f, a, b) recibirá el nombre de integral de f sobre [a, b]. En realidad, la integral se definirá también para funciones f que no satisfacen la condición f (x) ≥ 0, para todo x de [a, b]. Si f es la función dibujada en la Fig. 2,

Fig. 2

 La integral representará la diferencia entre las áreas de las regiones de sombreado claro y de sombreado fuerte

> Supongamos que una curva situada por encima del eje x representa la gráfica de la función y = f(x). Intentemos encontrar el área S de la superficie limitada por la curva y = f(x), el eje x y las rectas que, pasando por los puntos x = a y x = b, son paralelas al eje y.

Fig. 3

Para resolver este problema se procede como sigue. Dividimos el intervalo [a, b] en n partes, no necesariamente iguales. Notamos la longitud de la primera parte por Δx_1 , la de la segunda por Δx_2 , y así sucesivamente hasta la última, Δx_n . En cada parte elegimos los números $\xi_1, \xi_2, ..., \xi_n$, y escribimos la suma

$$S_n = f(\xi_1) \Delta x_1 + f(\xi_2) \Delta x_2 + \dots + f(\xi_n) \Delta x_n$$

 S_n es evidentemente igual a la suma de las áreas de los rectángulos de la Fig. 3

Cuanto más fina sea la subdivisión, es decir cuanto mas pequeños son los subintervalos del intervalo [a,b] (la hacemos tender a cero), más próxima se hallará S_n al área S. Si consideramos una sucesión de tales valores por división del intervalo [a,b] en partes cada vez más pequeñas, entonces la suma S_n tenderá a S.

La posibilidad de dividir el intervalo [a, b] en partes desiguales exige definir lo que entendemos por subdivisiones 'cada vez más pequeñas'. Suponemos no sólo que n crece indefinidamente, sino también que la longitud del mayor Δx_i en la n-ésima subdivisión tiende a cero. Así:

$$S = \lim_{m \neq x} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

El cálculo del área buscada se ha reducido a calcular el límite anterior, hemos obtenido una definición rigurosa del concepto de área:

$$S = \lim_{\substack{m \neq x \ \Delta x_1 \to 0}} \sum_{i=1}^{N} f(\xi_i) \Delta x_i = \int_{a}^{b} f(x) dx$$

• **<u>Definición</u>**: Se llama **integral definida** de la función f(x) en el intervalo [a, b], y se nota por

$$S = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^{n} f(\varepsilon_i) \Delta x_i = \int_{a}^{b} f(x) dx$$

La expresión f(x) dx se llama integrando; a y b son los límites de integración; a es el límite inferior, y b, el límite superior.

Teorema : Sea **f** integrable sobre [a, b] y definase **F** sobre [a, b] por

$$F(x) = \int_{\alpha}^{x} f(x) dx$$

Si f es continua en c de [a, b], entonces F es derivable en c, y

$$F'(c) = f(c)$$

Si f es integrable sobre [a, b] y f = F' para alguna función F, entonces

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

La igualdad

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

❖Es la famosa fórmula de Newton y Leibnitz, que reduce el problema de calcular la integral definida de una función a la obtención de una primitiva de la misma, y constituye así un enlace entre el cálculo diferencial y el integral. π

> Muchos de los problemas concretos estudiados se resuelven automáticamente con esta fórmula, que establece sencillamente que la integral definida de la función f(x) en el intervalo [a, b] es igual a la diferencia entre los valores de cualquiera de sus primitivas en los extremos superior e inferior del intervalo. La diferencia se acostumbra a escribir así:

$$F(x) \begin{vmatrix} b \\ a \end{vmatrix} = F(b) - F(a)$$

La igualdad

$$\left(\frac{x^3}{3}\right)^2 = x^2$$

muestra que la función x³/3 es una primitiva de la función x². Así, por la fórmula de Newton y Leibnitz,

$$\int_0^a x^2 dx = \frac{x^3}{3} \bigg|_0^a = \frac{a^3}{3} - \frac{0}{3} = \frac{a^3}{3}$$

Propiedades de la integral definida

Sean f(x) y g(x) son continuas en el intervalo de integración [a, b]:

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{1}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{1}^{1} = \frac{1}{3} - \frac{1}{3} = 0$$

$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$

$$\int_{1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{1}^{2} = \frac{1}{8} - \frac{1}{3} = \frac{1}{12}$$
 (1)

$$-\int_{2}^{1} x^{2} dx = -\left(\frac{x^{3}}{3}\right)\Big|_{2}^{1} = -\left(\frac{1}{3} - \frac{1}{8}\right) = -\left(-\frac{1}{12}\right) = \frac{1}{12}$$
 (2) por lo tanto (1)=(2)

3.
$$\int_a^b cf(x)dx = c \int_a^b f(x)dx$$
, siendo c una constante

$$\int_{1}^{2} 3.x^{2} dx = 3 \frac{x^{3}}{3} \Big|_{1}^{2} = 5$$

$$\int_a^b [f(x)\pm g(x)]dx = \int_a^b f(x)dx \pm \int_a^b g(x)dx$$

$$\int 2x^{-1} + 3\cos x \, dx = 2\int x^{-1} dx + 3\int \cos x \, dx = 2\ln|x| - 3\sin x + k$$

$$\int_{2}^{3} 2x + 3x^{2} dx = \int_{2}^{3} 2x dx + \int_{2}^{3} 3x^{2} dx = 2 \int_{2}^{3} x dx + 3 \int_{2}^{3} x^{2} dx = 2 \left(\frac{x^{2}}{2}\right)_{2}^{3} + 3 \left(\frac{x^{3}}{3}\right)_{2}^{3} = 5 + 19 = 24$$

 π

$$\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx = \int_{a}^{b} f(x)dx$$
 cuando $a < c < b$

$$\int_{3}^{7} x^{2} dx = \left(\frac{x^{3}}{3}\right)_{3}^{7} = \left(\frac{7^{3}}{3} - \frac{3^{3}}{3}\right) = \frac{343}{3} - \frac{27}{3} = \frac{316}{3}$$
 (1)

$$\int_{3}^{5} x^{2} dx + \int_{5}^{7} x^{2} dx = \left(\frac{x^{3}}{3}\right)_{3}^{5} + \left(\frac{x^{3}}{3}\right)_{5}^{7} = \left(\frac{125}{3} - \frac{27}{3}\right) + \left(\frac{343}{3} - \frac{125}{3}\right) = \frac{98}{3} + \frac{218}{3} = \frac{316}{3}$$
 (2)

$$(1)=(2)$$