IT Eszközök Technológiája 9. házi feladat

Kiadva: 2017-11-13 Beadási határidő: 2017-11-20 12h Beadható: 2017-11-24 12h

A házi feladatot a tantárgyi portálon kell beadni, a beadási határidőig. A beadási határidő után még néhány napig a házi feladat beadható, ennek lejárta után viszont semmilyen indokkal nem fogadható el. Csak az eredményt és a nevet kell felírni (lehetőség szerint elektronikusan, mivel a feltöltés maximális mérete 2MB), a levezetések nem szükségesek.

 Olvassa el a megadott alkalmazási segédletet, különös tekintettel a bevezetőre és a szoftver lehetőségekre, a PCB helyes tervezéséről szóló részeket nyugodtan ugorja át ☺
 How to Increase the Analog-to-Digital Converter Accuracy in an Application

A cikket elolvastam

П

2. Egy 10 bites A/D converter referencia feszültsége 4,096V. Mekkora lesz az LSB, FS és a kvantálás jel zaj viszonya?

LSB=4mV, FS=4092mV, S/N= 61,76dB

3. Mekkora a feszültség egy 12 bites, 1,024V referencia feszültségű A/D konverter bemenetén, az A/D regiszter 0x000, 0x123, 0x800, 0xABC, 0xFFF értékeinél, ha az átalakító

a) unipoláris?

0x000	0x123	0x800	0xABC	0xFFF
OV	72,75mV	512mV	687mV	1,02375V

b) bipoláris? (a számábrázolás kettes komplemens.)

0x000	0x123	0x800	0xABC	0xFFF
0V	145,5mV	-1,024V	-674mV	-0.5mV

c) hogyan kell a bipoláris konverterből származó adatot int-té konvertálni? Ki kell terjeszteni a 12. bitet.

if (ad & 0x800)

 $ad = ^0xFFF;$

4. A 17. dia flash konverterének kapcsolási rajza előállítja a 7. dián látható karakterisztikát? Mi lesz a különbség, és hogyan kellene a kapcsolási rajzot módosítani?

Nem, mivel V_{REF} /8, V_{REF} ·2/8 stb.-vel hasonlítunk össze. A 7. dián lévő karakterisztikán a töréspontok pedig V_{REF} /16, V_{REF} ·3/16 ...

A legalsó és legfelső ellenállást kellene R/2-re cserélni.

5. Folytassa a 25. dián lévő konverziót! (programmal vagy táblázatkezelővel!) Milyen értéket mérünk, ha a decimátor 8 bites? Mekkora a 255. lépésben az integrátor feszültsége? 169/256 · 5V= 3,30078125V, az integrátor feszültsége pedig 1,5V 6. Keressen egy 1,024V-os feszültségreferencia integrált áramkört valamelyik nagy elektronikai disztribútor cég katalógusában! Milyen határok között várható egy adott példány kimenetének feszültsége 25°C-on? Hogyan változik ez a feszültség 0 és 55°C között?
Pl. TI LM4140.

A kezdeti pontosság ±0,1%, tehát 1022,976mV .. 1025,024mV A változás max 3ppm/°C, azaz max. 0,17mV a teljes hőmérséklettartományra.

- 7. Egyenfeszültséget szeretnénk mérni, túlmintavételezéssel és átlagolással. A mintavételezési sebességünk 20kHz.
 - a) Legalább hány mintát kell venni, hogy elnyomjuk a hálózati váltakozófeszültségből (50Hz) származó zavart?
 - Legalább egy teljes periódust kell végigmintavételezni, 20ms-ot. Azaz 400 mintát.
 - b) Hány darab mintát kell venni, hogy firmware módosítás nélkül termékünk az egész világon használható legyen?
 - 50Hz-es és 60Hz-es váltakozó jelnek megfelelő egész számú periódust kell mintavételezni. Ha 2000 mintát veszünk, az 5db 50Hz-es és 6 teljes 60Hz-es periódus.
- 8. Egy mikrokontroller 10bites, unipoláris A/D konverterének referencia feszültsége 2,048V. Egy lineáris feszültségkimenetű hőmérséklet mérő szenzort szeretnénk mintavételezni, amelynek feszültsége 650mV 25°C-on, érzékenysége pedig -2mV/°C.
 - a) Milyen érték lesz az AD átalakító regiszterében -25°C esetén?
 -25°C-on a "szenzor" (valójában egy dióda) feszültsége kb. 750mV, a regiszterben 375 lesz.
 - b) Egy bit megváltozásnak hány °C változás felel meg?
 Egy bit megváltozásának 2mV feszültségváltozás, azaz 1°C felel meg.

A rendszer felbontásának javítása érdekében analóg előfeldolgozást készítünk, amelynek átviteli függvénye: $V_{out}=A(V_{in}-V_1)$ (azaz egy fix feszültséget kivonunk és a különbséget A-szorosára erősítjük) Határozza meg az analóg előfeldolgozás paramétereit (A, V_1), ha 0 és 100°C között szeretnénk mérni, az elérhető legnagyobb pontossággal!

100°C-on a szenzor feszültsége 500mV, 0°C pedig 700mV. Ebből könnyen adódik, hogy V_{out}=10(V_{in}–500mV), ha nagyon precízek vagyunk, akkor az erősítés 10,24 kell, hogy legyen, de ennyire nem érdemes erőlködni.