ECEN 664 Nanotech Fabrication Final Presentation

Enhancement on Ferroelectric Material Fabrication and Its Applications based on Computation In-Memory

Reference Paper

Y. -S. Kuo, S. -Y. Lee, C. -C. Lee, S. -W. Li and T. -S. Chao, "CMOS-Compatible Fabrication of Low-Power Ferroelectric Tunnel Junction for Neural Network Applications," in IEEE Transactions on Electron Devices, vol. 68, no. 2, pp. 879-884, Feb. 2021, doi: 10.1109/TED.2020.3045955.

CEEN, Chun-Sheng Wu

Outline

- Ferroelectric Material Introduction Why Important?
- Ferroelectric Material Based Transistor
 - Ferroelectric Tunnelling Junction (FTJ) Transistor
 - Ferroelectric Field Effect Transistor (FeFET) <= Challenge
- Improvement
 - Transistor Characteristic: Gate-All-Around (GAA) Double Layer FeFET
 - Applications: Novel SRAM, Computation In-Memory (CIM) Unit
- Summary

Ferroelectric Material Introduction

• Under different fabrication factors, ferroelectric material behaves various hysteresis curves

- By imposing positive voltage, the alignment of ferroelectric material becomes uniform. On the contrary, the alignment becomes amorphous with negative voltage
- Uniformity helps increasing the current

Determine high/low (1/0) states by distinguishing current level => Phenomenal Non-volatile Memory!!

Ferroelectric Material Based Transistor

Ferroelectric Tunneling Junction (FTJ) Transistor

Metal-Ferro-Insulator-Metal (MFIM)

Metal-Ferro-Insulator-Poly_Si (MFIS)

- Two common stacking methods are MFIM and MFIS
- Due to the screening length and series resistance, MFIS has much better conductance than MFIM
- Higher conductance lowers the action voltage, which is beneficial for dynamic energy consumption

Ferroelectric Material Based Transistor (Cont.)

Ferroelectric Tunneling Junction (FTJ) Transistor

Best Performance

- Additional metal layer to increase the electrons transmission
- Potential to gate fabrication

Ferroelectric Material Based Transistor (Cont.)

Ferroelectric Field Effect Transistor (FeFET)

- Imposed V_G makes internal ferro structure changed to uniform (1) or amorphous (0)
- Stored states can be applied to memory without dynamic updating
- BUT, How to increase the current to at least mA?

Improvement - Gate-All-Around (GAA) Double Layer FeFET

Wet-etching to fabricate nanowires

-> 4-directional ALD to deposit enclosing structures

- Every stick is a single channel connected from gate to active regions, stacking from body (metal) to internal poly-silicon (Poly-Si)
- Double Layer GAA nanowire can further increase current with multiple gate channels

Improvement – GAA Double Layer FeFET (Cont.)

Footprint = 10nm

- Significantly reduce the channel length modulation (CLM)
- With GAA double layer structure, current increase from 0.5 mA/um to 1.1mA/um $@V_D = 1V$, $V_G = 1V$
- Besides active current increase, GAA structure benefits the gate controllability by more contact areas between channels and gate

Improvement - Replace 8T SRAM with 4T structure

- Replace conventional PMOS to p-FeFET to store the desired states
 - Keep similar read/write accessibility
 - Enable dynamic modulation by synchronize control with time signal
 - Reduce the area by 50%

Read / Write in This SRAM

Read

- 1. bitline & blitline_b & control precharge to be "1"
- 2. "0" will pass from Q/Qb
- Turn control & bitline & bitline_b into "0" to regain initial state (gnd depends on the piplining)
- 4. Float ports

Write

- 1. Precharge control to "1" and bitline & bitline_b to be "0"
- 2. Write to the gate of FeFETs to change states
- 3. Turn off ports

^{**}need big width in nmos to make sure data passing

Improvement - Transform FeFET into a Convolution Unit

- Convolution layer with non-volatile stored weights
 - Eliminate redundant time of computing and communication
 - In universal pipelining machine, it can reduce 65% time with parallelized instructions
 - Better reinforce training efficiency while the neural network grows deeper

w_b/w	read (input)	node_a	output
0/1	GND	0	0
0/1	VDD	0	0
1/0	GND	X	0
1/0	VDD	Χ	1

Proposed CIM Unit

Summary

- GAA Double Layer Technology helps increase active current by 120%
- Modified Fe-SRAM can reduce the effective area by 50%
- Applying FeFET into CIM can eliminate the time of computing and communication between processors, therefore decreasing 65% of time in universal pipelining machine

Thanks for Your Attention:)