# Recall:



**Next:** Some applications of systems of linear equations:

- Computations of traffic flow.
- Balancing chemical equations.
- Google PageRank.

#### Computations of traffic flow



**Problem.** Find the flow rate of cars on each segment of streets.

### Note:

- flow into an intersection = flow out of that intersection
- total flow in = total flow out

total: 
$$85 + x_4 = 120 + x_5$$
  
@A:  $85 = x_1 + x_2$   
@B:  $x_1 + x_3 + 45 = 120$   
@C:  $x_2 + x_4 = x_3 + 70$   
@D:  $70 = 45 + x_5$   
|  $x_4 - x_5 = 35$   
|  $x_4 - x_5 = 35$   
|  $x_1 + x_2 = 85$   
|  $x_1 + x_3 = 75$   
|  $x_2 - x_3 + x_4 = 70$   
|  $x_3 - x_5 = 25$ 

# augmented matrix:

$$\begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ 0 & 0 & 0 & 1 & -1 & 35 \\ 1 & 1 & 0 & 0 & 0 & 65 \\ 1 & 0 & 1 & 0 & 0 & 75 \\ 0 & 0 & 1 & -1 & 1 & 0 & 60 \\ 0 & 1 & -1 & 1 & 0 & 70 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{reduction}} \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ 0 & 1 & 0 & 1 & 0 & 0 & 75 \\ 0 & 0 & 1 & 0 & 0 & 60 \\ 0 & 0 & 0 & 0 & 1 & 25 \end{bmatrix} \xrightarrow{\text{reduction}} \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ 0 & 1 & -1 & 0 & 0 & 75 \\ 0 & 0 & 0 & 1 & 0 & 60 \\ 0 & 0 & 0 & 0 & 1 & 25 \end{bmatrix} \xrightarrow{\text{reduction}} \xrightarrow{\text$$

## Balancing chemical equations

#### Burning propane:

$${}^{4}_{x_{1}}C_{3}H_{8} + {}^{5}_{x_{2}}O_{2} \rightarrow {}^{3}_{x_{3}}CO_{2} + {}^{4}_{x_{4}}H_{2}O$$

#### Note:

- The numbers  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$  are positive integers.
- The number of atoms of each element on the left side is the same as the number of atoms of that element on the right side.

LEFT = RIGHT

C: 
$$3x_1 = x_3$$

H:  $8x_1 = 2x_4$ 

O:  $2x_2 = 2x_3 + x_4$ 
 $\frac{1}{2} = \frac{1}{2} = \frac$ 

# Google PageRank

# Early search engines:



# Google search engine:



# How to rank webpages?

# Very simple ranking:

ranking of a page 
$$=$$
  $\begin{pmatrix} number of links \\ pointing to that page \end{pmatrix}$ 



**Problem.** This is very easy to manipulate.

# How to rank webpages?

Google PageRank: Links from highly ranked pages are worth more than links from lower ranked pages.

If:

- $\bullet$  the rank of a page is x
- the page has *n* links to other pages

then each link from that page is worth x/n.







Adding this equation eliminates the trivial solution.