Векторные вычисления в С++

Векторные функции

SIMD

SIMD Single Instruction Multiple Data Одна команда Несколько данных

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix} = \begin{pmatrix} a_1 \circ b_1 \\ a_2 \circ b_2 \\ a_3 \circ b_3 \\ a_4 \circ b_4 \end{pmatrix}$$

Четыре операции ∘ за время одной операции ∘

Иструкции AVX

Заголовок immintrin.h

Документация

256-битные типы данных

m256	m256i
8 float	32 char
	16 short
m256d	8 int
4 double	4 long long

Иструкции AVX

Инструкции, которые мы будем использовать

1. Загрузка данных

```
(a) __m256d _mm256_setzero_pd() dst[0]=0; dst[1]=0; dst[2]=0; dst[3]=0;
```

- (b) __m256d _mm256_set1_pd(double v) dst[0]=v; dst[1]=v; dst[2]=v; dst[3]=v;
- (c) __m256d _mm256_set_pd(double a, double b,
 double c, double d)
 dst[0]=d; dst[1]=c; dst[2]=b; dst[3]=a;
- (d) __m256d _mm256_loadu_pd(const double* a)
 dst[i]=a[i];

Иструкции AVX

2. Выгрузка данных

```
(a) __m256d _mm256_storeu_pd(double *dst, __m256d a)
   dst[i]=a[i];
```

3. Арифметические операции

- (a) __m256d _mm256_add_pd(__m256d a, __m256d b) dst[i]=a[i]+b[i];
- (b) __m256d _mm256_mul_pd(__m256d a, __m256d b)
 dst[i]=a[i]*b[i];

