Seminar on Moduli Theory Lecture 4

Neeraj Deshmukh

September 18, 2020

Last Week

- Forms of \mathbb{P}^1 .
- ② Blow-ups.
- Scheme without a closed point.

Morphisms

Definition

Let \mathcal{P} be a property of morphisms of schemes. Let $f: X \to Y$ be a morphism which satisfies \mathcal{P} . Then,

- **1** We say that \mathcal{P} is affine-local on the target if given any affine open cover $\{V_i\}$ of Y, $f: X \to Y$ has \mathcal{P} if and only if the restriction $f: f^{-1}(V_i) \to V_i$ has \mathcal{P} for each i.
- ② We say that \mathcal{P} is affine-local on the source if given any affine open cover $\{U_i\}$ of X, $X \to Y$ has \mathcal{P} if and only if the composite $U_i \to Y$ has \mathcal{P} for each i.

Using affine communication lemma one can then show that it suffices to check the above statements on single affine open cover.

Something flat, something finitely presented/finite type, something finite.

Not all properties are like this. For example, separatedness, properness, quasi-compactness, etc.

Something ramified, something smooth, something singular.

 $\mathsf{Open} \Rightarrow \mathsf{\acute{e}tale} \Rightarrow \mathsf{fppf} \Rightarrow \mathsf{fpqc}$

What are morphisms to \mathbb{P}^n ?

Amitsur's Lemma

Let $f:A\to B$ be a faithfully flat ring map. Then, the following sequence of A-modules is exact:

$$0 \to A \overset{f}{\to} B \overset{e_1-e_2}{\to} B \otimes_A B$$