

Yiming MA

Contents

	Introduction			
	1.1	Motivation		
		1.1.1	A Deterministic Model	
		1.1.2	A Stochastic Model	
		1.1.3	A Network Model	
		1.1.4	A Random Network Model	
•	Duo	habili4	wand Dandam Variables	
			y and Random Variables	
	2.1	Proba	bility Theory	

Chapter 1

Introduction

1.1 Motivation

Suppose we are modelling COVID. Let

- S be he number of the susceptible;
- I be the number of the infected;
- R be the number of the removed (those who have either recovered or died).

1.1.1 A Deterministic Model

A deterministic model might be

$$\begin{split} \dot{S} &= - \, \beta I S, \\ \dot{I} &= \! \beta I S - \gamma I, \\ \dot{R} &= \! \gamma I. \end{split}$$

But there are some problems in this model:

- S, I and R are integers, so it does not make sense to talk about \dot{S} , \dot{I} and \dot{R} .
- There is variability in when contacts are made and lead to infection.

1.1.2 A Stochastic Model

A better model might be stochastic

$$\mathbb{P}(S \to S - 1 \& I \to I - 1 \text{ in } \Delta t) = \beta I S \Delta t + o(\Delta t)$$

$$\mathbb{P}(I \to I - 1 \& R \to R + 1 \text{ in } \Delta t) = \gamma I \Delta t + o(\Delta t).$$

The problem of this model is that contacts are usually not made uniformally in the whole population.

1.1.3 A Network Model

We can use a network model, in which nodes represent individuals and edge weights represent contact rates, to avoid uniform contacts. But tis is unrealistic: the network is too big to represent 60 million people in the UK.

1.1.4 A Random Network Model

Based on the network model, we can make probability distributions on networks and derive probabilistic conclusions over the combination of stochastic dynamics and randomness of networks.

Chapter 2

Probability and Random Variables

2.1 Probability Theory

Suppose we are doing an experiment which have different random outcomes.

Definition 2.1.1 (Sample Spaces). The **sample space** of the experiment is the set of all possible outcomes, denoted as Ω .

Definition 2.1.2 (Sigma Algebra). The σ -algebra of subsets of Ω , denoted as \mathcal{F} , is a set of subsets of Ω which satisfies:

- $\Omega \in \mathcal{F}$;
- $A \in \mathcal{F} \implies A^c \in \mathcal{F}$;
- $\{A_i|i\in\mathcal{I}\}\subset\mathcal{F} \text{ with }\mathcal{I} \text{ being countable }\Longrightarrow\bigcup_{i\in\mathcal{I}}A_i\in\mathcal{F}.$

Remark. We say \mathcal{I} is countable if there exists a one-to-one map from \mathcal{I} into \mathbb{Z} , so "countable" includes "finite".

Example 2.1.1. If Ω is countable, we usually take $\mathcal{F} = 2^{\Omega}$, which is the power set of Ω .

Example 2.1.2. When Ω is not countable, e.g. [0,1], if you allow Axiom of Choice, then there exist unmeasurable subsets, and