Lecture 23: Gravity Godint Torque

1

		of the Earth will feel a Stronger go
acceleration than In	e part that is forther from Earth. T	his graduces a tarque on the SC.
Note: Earth is app	proximated as a point mass.	
î,	\$ \$\hat{\hat{\hat{\hat{\hat{\hat{\hat{	£0,,02,03} = orbit frame Ĝ 11 kc ∂2 11 h
· Ře	/ \	
	Additionally, we can a	also have a body-Axad frame.
	- 12	
Angular Wording of the O	no no	
w _{oN} = nô₂	11	
For a body-fixed from:		
Wan = WBO +	₩ _{ON}	
et expression for gravity	andient-tran:	
hanty force acting on some		
17 = M = 1		
R3 R3	$m = -\frac{n(R+T)dm}{(R+T)^3}$	
(reminder: The		
Scarify gradient trypne ab		
L=JB Fxdf	=-M FXR du	
Need an expression for de		
Re+F -3 = Res 21+	$2(\vec{R}_{e}\cdot\vec{r}) + \frac{r^{2}}{R^{2}}3^{-3/2}$	
Binomial Expan		
- re (1	- 3(Re 7) + H.O.T. }	

Drop H.O.T.:

$$\vec{L} = \frac{M}{R_c^3} \vec{R}_c \times \int_{B} \vec{r} \left(1 - \frac{3 \vec{R}_c \cdot \vec{r}}{R_c^2} \right) dm$$

$$\vec{r} dm = 0 \quad b/c \quad definition \quad d. CM$$

$$\vec{L} = \frac{3 A}{R_c^3} \vec{R}_c \times \int_{-\vec{r}} (\vec{r} \cdot \vec{R}_c) dm$$

- Assumes 2BP granty (point mass)

b/c the inertra matrix would be diagnal in this case.

- Approximation b/c drogged the H.O.T. in the binemial expension

Given air definition of the axes:

$$\vec{R}_c = R_c \hat{o}_q$$

$$\stackrel{\circ}{L} = \frac{3_{A}}{R_c^3} \left(-I_{23} \hat{o}_1 + I_{13} \hat{o}_2 \right)$$

Zero torque if the orbit frame is aliqued with the principal exes of the body,

Can also write the forgue in the body-fixed fine assuming minipal exes:

- No targue if
$$I_{11}=I_{22}=I_{33}$$
 \Rightarrow Splend $I_{11}=I_{22}=I_{33}$ \Rightarrow Splend $I_{11}=I_{22}=I_{33}$

- If Re 12 parallel with one of the provipul axes, then

```
Attribule of 5/c in response to torque:
                                                    Describe the attitude using 3-2-1 rotation matrix
                                                                                                         = pitch
Q= roll

(θ= cosθ

SP = SM Ψ

SO CΘ Ψ + CO Θ + n (SOSΘ S Ψ + CO C Ψ)

(CO CΘ Ψ - SOΘ + n (COSΘ S Ψ - SOCΨ)

Note: n= mun motion
      Small angle assumption & linearize.

\begin{array}{ccc}
B \vec{\omega}_{\text{BN}} &= \begin{bmatrix} \dot{\phi} + n \psi \\ \dot{\phi} + n \end{bmatrix} & \Rightarrow & \overrightarrow{\omega}_{\text{BN}} & \xrightarrow{\sim} \begin{bmatrix} \dot{\phi} + n \psi \\ \dot{\phi} \\ \dot{\psi} - n \phi \end{bmatrix}

            Now unte torque using P, Q, Q
                                                              R_{c} = \begin{bmatrix} -sm\theta \\ sm\phi\cos\theta \\ \cos\phi\cos\theta \end{bmatrix}
R_{c}
                                                                8 = \frac{3}{2} \frac{1}{10} \frac{1}{1
                                                                 livean ze:
                                                                      8 1 2 3n<sup>2</sup> (423-122) € 
- (I<sub>11</sub>-I<sub>23</sub>) € ← does not depend on Y (yaw)
                                     For pitch $ soll to be stabilizing, require: I_{22}> I_{33} $ I_{11}> I_{33} =) make I_1 $ I_2 <0
                                                                                                                                 For a cylindrical 5/c, the long exis shall be aligned with inorder to be stabilised
                                                                                                                                                                                                       by granty predient terque.
```