Úloha A09

Peter Váš, 20ZE

V tejto úlohe sme simulovali časový vývoj 2D Isingovho modelu. Model pozostáva z 2D mriežky rozmerov N x N (v našom prípade 512 x 512), kde každý uzol reprezentuje magnetický spin $s_i = \pm 1$.

Potom môžeme vyjadriť celkovú magnetizáciu systému: $m=\sum_{i=1}^{N*N}s_i$. Každý spin má istú pravdepodobnosť prechodu na opačný stav, ktorá závisí od energie daného spinu, okolitých spinov a takisto od teploty systému. Pre pravdepodobosť prechodu zo stavu i do j platí

 $P_{i o j} = rac{1}{1+e^{(E_j-E_i)/(k_BT)}}$. Algoritmus spočíva v otáčaní náhodných spinov s danou P. Ak sledujeme systém dostatočne dlho, získame závislosť m(T). Ak je teplota nižšia ako kritická T_c , prevládne jedna orientácia spinov (feromagnetické vlastnosti) , ak je vyššia, spiny sa zorientujú náhodne. Pre kritickú teplotu platí $T_c = 2/\ln(1+\sqrt{2}) \approx 2.269$. Pri T = 0 bude $m=\pm 1$.

Môžeme vidieť, že naozaj sa spiny zorientujú v jednom smere pre $T < T_c$, a pre $T > T_c$ bude orientácia náhodná. Čím väčší je rozdiel T a T_c , tým rýchlejšie dosiahneme dané usporiadanie. Pre T = 2:

