CÁLCULO II

Cláudio Martins Mendes

Segundo Semestre de 2002

Contents

1	Funções com Valores Vetoriais					
	1.1	Definições - Propriedades	2			
	1.2	Movimentos no Espaço	3			
2	Fun	Funções de Várias Variáveis 19				
	2.1	Noções Topológicas no \mathbb{R}^n	9			
	2.2	Funções - Limites - Continuidade	8			
		2.2.1 Definição	8			
		2.2.2 Gráficos	0			
	2.3	Curvas e Superfícies de Nível	3			
	2.4	Funções Limitadas	7			
	2.5	Limites	0			
	2.6	Continuidade	6			
	2.7	Derivadas Parciais e Funções Diferenciáveis	2			
		2.7.1 Derivadas Parciais	2			
		2.7.2 Derivadas parciais de ordem superior	5			
		2.7.3 Diferenciabilidade	9			
		2.7.4 Regras da Cadeia	0			
		2.7.5 Gradiente - Curva de Nível - Superfície de Nível	5			
		2.7.6 Derivada Direcional 8	3			

Chapter 1

Funções com Valores Vetoriais

Até aqui trabalhamos com funções $f: \mathbb{R} \to \mathbb{R}$ ou $g: \mathbb{N} \to \mathbb{R}$ (seqüencias).

Estudaremos agora funções com valores vetorias. As mesmas são úteis para descrever superfícies e curvas espaciais. São também úteis para descrever o movimento de objetos no espaço.

1.1 Definições - Propriedades

Definição 1.1.1. $F: I \to \mathbb{R}^3$, $I \subset \mathbb{R}$, intervalo $F(t) = (f_1(t), f_2(t), f_3(t))$ ou $F(t) = f_1(t)\vec{\imath} + f_2(t)\vec{\jmath} + f_3(t)\vec{k}$ é dita uma **função com valores vetoriais**.

Definição 1.1.2. Se $F(t) = (f_1(t), f_2(t), f_3(t))$ então

$$\lim_{t \to a} F(t) = \left(\lim_{t \to a} f_1(t), \lim_{t \to a} f_2(t), \lim_{t \to a} f_3(t) \right).$$

Definição 1.1.3. F é dita contínua em a se $\lim_{t\to a} F(t) = F(a)$.

Definição 1.1.4. F tem derivada F'(t) se $F'(t) = \lim_{h \to 0} \frac{F(t+h) - f(t)}{h}$. Observe que

$$\lim_{h \to 0} \frac{F(t+h) - f(t)}{h} = \left(\lim_{h \to 0} \frac{f_1(t+h) - f_1(t)}{h}, \lim_{h \to 0} \frac{f_2(t+h) - f_2(t)}{h}, \lim_{h \to 0} \frac{f_3(t+h) - f_3(t)}{h} \right)$$

$$= (f_1'(t), f_2'(t), f_3'(t)).$$

Definição 1.1.5.
$$\int_{a}^{b} F(t)dt = \left(\int_{a}^{b} f_{1}(t)dt, \int_{a}^{b} f_{2}(t)dt, \int_{a}^{b} f_{3}(t)dt\right)$$
ou
$$\int_{a}^{b} F(t)dt = \int_{a}^{b} f_{1}(t)dt \cdot \vec{i} + \int_{a}^{b} f_{3}(t)dt \cdot \vec{j} + \int_{a}^{b} f_{3}(t)dt \cdot \vec{k}.$$

Propriedades: Consideremos:

$$F, G: I \rightarrow \mathbb{R}^3$$

$$\mu: I \rightarrow \mathbb{R}$$

(i)
$$(F+G)'(t) = F'(t) + G'(t)$$

(ii)
$$(\mu \cdot F)'(t) = \mu(t)F'(t) + \mu'(t)F(t)$$

(iii)
$$(F \bullet G)'(t) = F(t) \cdot G'(t) + F'(t) \cdot G(t)$$
, onde \bullet denota o produto escalar.

(iv)
$$(F \times G)'(t) = F'(t) \times G'(t) + F'(t) \times G(t)$$
, onde \times denota o produto vetorial.

Faremos a prova de (iii). As outras serão deixadas como exercício.

Prova de (iii):

Seja
$$F(t) = f_1(t)\vec{\imath} + f_2(t)\vec{\jmath} + f_3(t)\vec{k}$$
 e $G(t) = g_1(t)\vec{\imath} + g_2(t)\vec{\jmath} + g_3(t)\vec{k}$.

$$(F \bullet G)(t) = \sum_{i=1}^{3} f_i(t) \cdot g_i(t)$$

$$(F \bullet G)'(t) = \left(\sum_{i=1}^{3} f_i(t) \cdot g_i(t)\right)' = \sum_{i=1}^{3} (f_i(t) \cdot g_i(t))' =$$

$$= \sum_{i=1}^{3} (f_i(t) \cdot g_i'(t) + f_i'(t) \cdot g_i(t)) = \sum_{i=1}^{3} f_i(t) \cdot g_i'(t) + \sum_{i=1}^{3} f_i'(t) \cdot g_i(t) =$$

$$= F(t) \bullet G'(t) + F'(t) \bullet G(t) .$$

Passaremos a nos utilizar de funções do tipo acima para estudar os movimentos no espaço.

1.2 Movimentos no Espaço

Para descrever o movimento de uma partícula no espaço precisamos explicar onde a partícula está em cada instante de tempo t de um certo intervalo. Assim, a cada instante t no intervalo considerado I, corresponde um ponto $\gamma(t)$ e o movimento é descrito por uma função $\gamma:I\to\mathbb{R}^3$.

Definição 1.2.1. Uma curva no \mathbb{R}^3 é uma aplicação contínua $\gamma:I\to\mathbb{R}^3$, onde I é um intervalo da reta.

$$\gamma(t) = (\gamma_1(t) \,,\, \gamma_2(t) \,,\, \gamma_3(t)) \,.$$

As equações : $\begin{cases} x=\gamma_1(t)\\ y=\gamma_2(t) & \text{são chamadas equações paramétricas de } \pmb{\gamma}.\\ z=\gamma_3(t) \end{cases}$

Como vimos, a função vetorial γ tem derivada $\gamma'(t)$ em $t \in I$ se

$$\gamma'(t) = \lim_{h \to 0} \frac{\gamma(t+h) - \gamma(t)}{h}$$
.

Lembre-se: $\gamma'(t) = (\gamma'_1(t), \gamma'_2(t), \gamma'_3(t))$.

Definição 1.2.2. $\gamma: I \to \mathbb{R}^3$ uma curva. **Traço de** γ é a imagem do intervalo I por γ . γ é dita **diferenciável de classe** C^r se γ_1 , γ_2 , γ_3 o forem em I.

A figura a seguir mostra que o vetor $\frac{\gamma(t+h)-\gamma(t)}{h}$ tem a direção que, conforme h tende a zero, aproxima-se da direção que costumamos chamar a direção tangente à curva γ em $\gamma(t)$.

A derivada $\gamma'(t)$ se existe e é diferente do vetor nulo é chamada o **vetor tangente** a γ em $\gamma(t)$. Ele é usualmente representado com a origem em $\gamma(t)$, como na figura.

Exemplos:

1. $\gamma: [0, 2\pi] \to \mathbb{R}^2$ definida por $\gamma(t) = (\cos t, \, \text{sen } t)$.

Temos $\gamma'(t) = (-\text{sen } t, \cos t)$.

Notemos que:

(i)
$$\|\gamma'(t)\| = 1$$

(ii)
$$\gamma'(t) \bullet \gamma(t) = 0$$

2.
$$\gamma: \left[0, \frac{5\pi}{2}\right] \to \mathbb{R}^3; \ \gamma(t) = (\cos t, \, \text{sen } t, \, t).$$

3. $\gamma: [0, \pi] \to \mathbb{R}^2$; dada por $\gamma(t) = (\cos 2t, \text{ sen } 2t)$.

Compare com o exemplo 1. Note que diferentes curvas podem ter o mesmo traço.

4. Curvas podem ser, em geral, muito arbitrárias. Por exemplo, existe uma curva contínua, a curva de Peano, cujo traço é o quadrado $[0,1] \times [0,1] \subset \mathbb{R}^2$ (Para maiores detalhes o leitor pode consultar o Livro de Elon Lages Lima, Elementos de Topologia Geral , pg. 252)

Muitas vezes chamamos o vetor $\gamma'(t)$ como o **vetor velocidade**. Isto tem sentido pois estamos entendendo uma curva como o movimento de uma partícula no espaço. Esse movimento é descrito em função do tempo por $\gamma(t)$. Observe que o número $\frac{\|\gamma(t+h)-\gamma(t)\|}{|h|},$ para h pequeno, é a velocidade média de γ no intervalo de t a t+h. Se $\gamma'(t)$ existe, não é

difícil provar que

$$\|\gamma'(t)\| = \lim_{h \to 0} \frac{\|\gamma(t+h) - \gamma(t)\|}{|h|}.$$

De fato: Notemos que

$$0 \leq \left| \frac{\|\gamma(t+h) - \gamma(t)\|}{|h|} - \|\gamma'(t)\| \right| \leq$$

$$\leq \left\| \frac{\|\gamma(t+h) - \gamma(t)\|}{|h|} - \gamma'(t) \right\| \to 0, \quad \text{com} \quad h \to 0.$$

Logo
$$\frac{\|\gamma(t+h) - \gamma(t)\|}{|h|} \to \|\gamma'(t)\|$$
, com $h \to 0$.

(*) Usamos a propriedade $\left| \|\vec{u}\| - \|\vec{v}\| \right| \le \|\vec{u} - \vec{v}\|$.

Assim $\|\gamma'(t)\|$ é um limite de velocidades médias sobre intervalos arbitrariamente pequenos. Por esta razão $\|\gamma'(t)\|$ é chamado a velocidade de γ no ponto $\gamma(t)$ e $\gamma'(t)$ é dito o vetor velocidade de γ no ponto $\gamma(t)$.

Definição 1.2.3. Uma curva $\gamma: I \to \mathbb{R}^3$ é dita **regular (ou suave)** se for diferenciável de classe C^1 e se $\gamma'(t) = (\gamma_1'(t), \gamma_2'(t), \gamma_3'(t)) \neq (0,0,0), \forall t \in I$.

Definição 1.2.4. $\gamma:[a,b] \to \mathbb{R}^3$ é dita regular por partes (ou suave por partes) se existir uma partição finita de [a,b] em subintervalos tal que a restrição de γ a cada subintervalo seja regular. γ é dita **fechada** se $\gamma(a) = \gamma(b)$. Se γ é fechada e o seu traço não se intercepta em nenhum outro ponto então γ é dita curva fechada simples.

Fechada não simples

7

Exemplos:

1.
$$\gamma: [-1, 1] \to \mathbb{R}^2$$
, $\gamma(t) = (t^3, t^2)$.

$$\int y = t^2 = (t^3)^{2/3} = x^{2/3}$$

 $\left\{\begin{array}{l} y=t^2=(t^3)^{2/3}=x^{2/3}\\\\ {\rm Assim\ o\ traço\ da\ curva\ est\'a\ contido\ no\ gr\'afico\ da\ função\ }\ y=x^{2/3}\,. \end{array}\right.$

Notemos que $\gamma \in C^{\infty}$. Ainda $\gamma'(t) = (3t^2, 2t), t \in (-1, 1)$.

 γ não é regular, uma vez que $\gamma'(0) = (0,0)$.

 γ é regular por partes.

Obs. Note a diferença entre traço de curva e gráfico de $f: \mathbb{R} \to \mathbb{R}$.

2.
$$\gamma : \mathbb{R} \to \mathbb{R}^2$$
, $\gamma(t) = (t^3 - 4t, t^2 - 4)$.

$$\gamma'(t) = (3t^2 - 4, 2t) \neq (0, 0), \quad \forall t \in \mathbb{R}.$$

$$\gamma \in C^{\infty}$$
.

Assim γ é regular.

Note:
$$\gamma(-2) = \gamma(2) = (0,0)$$

$$\gamma'(-2) = (8, -4)$$
 e $\gamma'(2) = (8, 4)$

3. O gráfico de uma função contínua $y=f(x),\ a\leq x\leq b$, pode ser parametrizado assim: $\left\{\begin{array}{ll} x=t\\ y=f(t) \end{array}\right.$

$$\begin{cases} x = t \\ y = f(t) \end{cases} \quad t \in [a, b]$$

Um resultado que temos é o seguinte: uma curva regular (ou suave) não tem bicos (quinas).

De fato:

Uma curva regular é tal que o vetor tangente varia de maneira contínua.

Em um bico (quina) a mudança do vetor tangente só pode ser contínua se no bico ele for nulo (contra a regularidade da curva).

A recíproca deste resultado não é verdadeira. Para tanto consideremos o exemplo:

$$\gamma: \mathbb{R} \to \mathbb{R}^3, \, \gamma(t) = (t^3, t^3).$$

Neste caso $\gamma'(0)=(0,0)$ e assim γ não é regular mas o seu traço não forma bico.

Iremos agora fazer uma convenção:

Seja
$$\gamma:[a,b]\to\mathbb{R}^3$$
 .

Iremos denotar por $-\gamma$ a curva definida como:

$$-\gamma: [a,b] \to \mathbb{R}^3, \ -\gamma(t) = \gamma(a+b-t).$$

Exercícios:

1. Mostre que se $\|\gamma(t)\|$ é constante então $\gamma^{\,\prime}(t)$ é ortogonal a $\gamma(t),\,\forall\,t\in I\,.$

Resolução:

Temos
$$(\gamma \bullet \gamma)(t) = \gamma(t) \bullet \gamma(t) = ||\gamma(t)||^2 = C$$
.

Derivando obtemos $(\gamma \bullet \gamma)'(t) = 0$.

Usando a propriedade da derivada do produto escalar obtemos:

$$(\gamma \bullet \gamma)'(t) = 2 \gamma'(t) \bullet \gamma(t)$$
.

Logo
$$\gamma'(t) \bullet \gamma(t) = 0$$
.

Assim $\gamma'(t)$ é ortogonal a $\gamma(t)$, $\forall t \in I$.

Observe: Se $\|\gamma(t)\|$ é constante então a extremidade de $\gamma(t)$ se desloca sobre uma superfície esférica de centro na origem. O vetor tangente $\gamma'(t)$ é sempre ortogonal a um raio da esfera.

2. A figura abaixo é descrita por um ponto P sobre uma circunferência de raio a que rola sobre o eixo x. Esta curva é chamada **ciclóide**. Determinar uma parametrização dela.

Seja P(x, y).

O giro da circunferência implica que $\ OB = \operatorname{arco}\ BP = a.t\,.$

Logo:
$$x = OB - AB = OB - PQ = at - a \operatorname{sen} t = a(t - \operatorname{sen} t)$$
.

Também
$$y = BC - QC = a - a\cos t = a(1 - \cos t)$$
.

Portanto a ciclóide tem a representação paramétrica:

$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t). \end{cases}$$

Assim: $\frac{dx}{dt}=a(1-\cos t)$ e $\frac{dy}{dt}=a\sin t$, que são funções contínuas. Ainda, estas se anulam em $t=2\,n\,\pi$, $\forall\,n\in\mathbb{N}$. Logo a ciclóide não é suave.

Nota 1: Vamos registrar aqui algumas propriedades da ciclóide. Para maiores detalhes o leitor pode consultar o Livro Cálculo com Geometria Analítica - Vol. 2 - Simmons - pg. 259.

Nota 2: Vamos aqui também apresentar algumas curiosidades à respeito desta curva. O leitor interessado em maiores detalhes pode consultar o Livro citado anteriormente na Nota 1, pg. 264.

Na situação representada abaixo, consideremos o problema de deslizar arruela sob ação da gravidade somente.

Qual deve ser a forma do arame (trajetória) que permita a arruela ir de A até B no menor tempo possível?

A resposta é uma ciclóide (invertida) com A na origem.

Não é o segmento de reta.

(Menor tempo: braquistócrona)

Soltando-se a arruela em **qualquer** ponto entre A e B o tempo levado até chegar a B é o mesmo.

(Tempos iguais: Tautócrona)

Ambos problemas foram resolvidos no sec. XVII pelos Irmãos Bernouilli.

O comprimento de uma curva é a distância total percorrida pela partícula móvel. Prova-se que dada uma curva diferenciável de classe C^1 , $\gamma:[a,b]\to\mathbb{R}^3$, seu comprimento é dado por

$$c(\gamma) = \int_{a}^{b} \|\gamma'(t)\| dt$$

Vejamos uma interpretação:

 $\|\gamma'(t_i)\| \cdot \Delta_i \simeq$ comprimento do arco destacado, melhorando a aproximação quando $\Delta_i \to 0$. Assim:

$$c(\gamma) = \lim_{\Delta_i \to 0} \sum_{i=1}^n \|\gamma_i'(t_i)\| \cdot \Delta_i = \int_a^b \|\gamma'(t)\| dt$$

Observação: O Leitor interessado na dedução desta fórmula pode consultar, por exemplo, o livro Advanced Calculus - Buck - pg. 321.

Exemplos:

1. $\gamma: [0, 2\pi] \to \mathbb{R}^2, \quad \gamma(t) = (\cos t, 0)$

O comprimento da curva é 4. Calcule pela definição.

2. Calcular o comprimento da hélice circular $\gamma(t)=(\cos t\,,\,\sin\,t)\,,\,\,t\in[0,2\pi]$

$$c(\gamma) = \int_0^{2\pi} \sqrt{\sin^2 t + \cos^2 t + 1} \ dt = \int_0^{2\pi} \sqrt{2} \ dt = 2\sqrt{2} \ \pi$$

- 3. Calcular o comprimento do gráfico da função de classe $C^1\,,\;\;f:[a,b]\to\mathbb{R}\,.$ Podemos pensar na parametrização $\;\gamma:[a,b]\to R^2\,,\;\;\gamma(t)=(t,f(t)).$ $c(\gamma)=\int_a^b\sqrt{1+[f'(t)]^2}\;dt\;\;\text{-}\;\;\text{fórmula já deduzida anteriormente}.$
- 4. **Definição:** Seja $\gamma:[a,b]\to\mathbb{R}^3$. $\gamma(t)$ vetor posição. $\gamma'(t)$ vetor velocidade. $\gamma''(t)$ vetor aceleração. Consideremos a situação:

Conclua que $\gamma^{\,\prime\prime}(t)$ aponta para o lado côncavo de $\gamma\,,$ como ilustrado acima.

Exemplos:

1. Uma partícula desloca-se num plano obedecendo a lei:

$$\gamma: [0,2] \to \mathbb{R}^2, \quad \gamma(t) = (t^2 - t)\vec{i} + t\vec{j}$$

Determine a velocidade e a aceleração no instante t. Esboce a trajetória e represente geometricamente $\gamma'(1)$ e $\gamma''(1)$.

$$\gamma'(t) = (2t - 1)\vec{\imath} + \vec{\jmath}$$

$$\gamma''(t) = 2\vec{\imath}$$

$$\gamma(1) = (0, 1)$$

$$\gamma'(1) = \vec{\imath} + \vec{\jmath}$$

$$\gamma''(1) = 2\vec{\imath}.$$

2. Uma partícula percorre uma circunferência com velocidade angular constante. Mostre que a aceleração é representada por um vetor de módulo constante, orientado para o centro da circunferência (este vetor é chamado aceleração centrípeta).

Sem perda de generalidade, podemos supor:

$$\theta = \hat{\text{angulo}}$$
 formado por \overrightarrow{OP} no instante t .

Temos: velocidade angular w = constante.

Assim: $\theta = w \cdot t$.

Logo:
$$\begin{cases} x = a \cos(wt) \\ y = a \sin(wt). \end{cases}$$

$$\begin{split} \gamma(t) &= a\cos(wt)\vec{\imath} + a\,\sin(wt)\vec{\jmath}\;.\\ \gamma'(t) &= -a\,w\,\sin(wt)\vec{\imath} + a\,w\cos(wt)\vec{\jmath}\;.\\ \gamma''(t) &= -a\,w^2\cos(wt)\vec{\imath} - a\,w^2\cos(wt)\vec{\jmath}\;. \end{split}$$

Temos então que:

$$\|\gamma''(t)\| = a w^2$$
 e $\gamma''(t) = -w^2 \gamma(t)$

o que comprova que $\gamma''(t)$ aponta para o centro da circunferência.

3. Consideremos o movimento dado por:

$$\gamma(t) = a\cos(wt)\vec{i} + a\,\sin(wt)\vec{j} + h\,\vec{k}$$

 $\vec{w} = w\,\vec{k}$ - chamado velocidade angular de γ .

$$\vec{w} \times \gamma(t) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & w \\ a\cos(wt) & a\sin(wt) & k \end{vmatrix} = -aw\sin(wt)\vec{i} + aw\cos(wt)\vec{j} = \gamma'(t).$$

Portanto: o vetor velocidade é o produto vetorial da velocidade angular \vec{w} pelo vetor posição $\gamma(t)$.

Vamos agora examinar o comportamento de um projetil disparado por um canhão.
 Introduzimos o sistema de coordenadas.

Vamos desprezar a resistência do ar, considerando apenas a força da gravidade.

Seja
$$\|\vec{v_0}\| = v_0$$

$$\vec{g} = -g \vec{\jmath}$$
, onde $||\vec{g}|| = g = 9,8m/s^2$

Pela 2a. Lei de Newton $(\vec{F} = m \vec{a})$ temos:

$$m \vec{a} = m \vec{g}$$

ou

$$\gamma''(t) = \vec{g}$$

Integrando:

$$\gamma'(t) = t \cdot \vec{q} + \vec{c}$$

Temos que $\vec{v}_0 = \gamma'(0) = \vec{c}$

Logo
$$\gamma'(t) = t \vec{g} + \vec{v}_0$$

Integrando novamente:

$$\gamma(t) = \frac{1}{2} t^2 \vec{g} + t \vec{v}_0 + \vec{d}$$

Ainda: $\vec{0} = \gamma(0) = \vec{d}$

Logo:
$$\gamma(t) = \frac{1}{2} t^2 \vec{g} + t \vec{v_0} = -\frac{1}{2} t^2 g \vec{j} + t (\vec{v_0} \cos \alpha \vec{i} + v_0 \sin \alpha \vec{j})$$

Temos então as equações paramétricas:

(*)
$$\begin{cases} x = (v_0 \cos \alpha)t \\ y = -\frac{1}{2}t^2g + (v_0 \sin \alpha)t \end{cases}$$

Eliminando t, temos:

 $y=\frac{-g}{2v_0^2\cos^2\alpha}~x^2+(\mathrm{tg}~\alpha)x$ - o que mostra que a trajetória é uma parábola.

Alcance (ou ponto A):

Fazemos y = 0 em (*)

$$t(-\frac{1}{2} g t + v_0 \operatorname{sen} \alpha) = 0$$

t = 0 - corresponde ao ponto 0 ou $t = \frac{2v_0 \operatorname{sen} \alpha}{g}$ - corresponde ao ponto A.

Substituindo na 1a. equação de (*) obtemos:

$$x = v_0 \cos \alpha \, \frac{2 v_0 \operatorname{sen} \, \alpha}{q} = \frac{v_0^2 \operatorname{sen}(2\alpha)}{q} \, .$$

Em particular: alcance máximo se sen $(2\alpha)=1$ ou seja $\alpha=45^{0}$.

Altura Máxima:

$$y' = -\operatorname{tg} + v_0 \operatorname{sen} \alpha = 0$$

 $t = \frac{v_0 \operatorname{sen} \alpha}{a}$

Assim a altura máxima ocorre em
$$t = \frac{v_0 \sin \alpha}{g}$$
 e $h_{\text{max}} = \frac{v_0^2 \sin^2 \alpha}{2g}$.

Chapter 2

Funções de Várias Variáveis

2.1 Noções Topológicas no \mathbb{R}^n

Consideremos $P = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

Associamos ao ponto P um número real chamado sua norma, definido por:

$$||P|| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$$

Se $P \in \mathbb{R}^2$, então $||P|| = (x_1^2 + x_2^2)^{1/2}$, que é reconhecida com "distância" do ponto P à origem, ou seja, o comprimento do vetor associado a P.

Analogamente, para $P \in \mathbb{R}$, $P \in \mathbb{R}^3$, etc...

Usamos agora a definição de norma para definir distância no \mathbb{R}^n . Dizemos que a distância entre os pontos P e Q é dada por $\|P-Q\|$.

Se
$$P = (x_1, \dots, x_n)$$
 e $Q = (y_1, \dots, y_n)$, então

$$d(P,Q) = ||P - Q|| = [(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2]^{1/2}$$

Observação: Esta é a *distância euclidiana*. Observamos que, além deste, há outros conceitos de distância.

Ao espaço \mathbb{R}^n , com esta distância, costumamos chamar de *ESPAÇO EUCLIDIANO*.

Definição 2.1.1. Chama-se **bola aberta** de centro $P_0 \in \mathbb{R}^n$ e raio $\delta > 0$, ao seguinte conjunto:

$$B(P_0, \delta) = \{ P \in \mathbb{R}^n \mid d(P, P_0) < \delta \}$$

Chama-se **bola fechada** de centro $P_0 \in \mathbb{R}^n$ e raio $\delta > 0$ ao conjunto

$$\overline{B}(P_0, \delta) = \{ P \in \mathbb{R}^n \mid d(P, P_0) < \delta \}$$

Chama-se **esfera** de centro $P_0 \in \mathbb{R}^n$ e raio $\delta > 0$, ao conjunto

$$S(P_0, \delta) = \{ P \in \mathbb{R}^n \mid d(P, P_0) = \delta \}$$

Observação: Uma bola aberta de centro P_0 e raio $\delta > 0$ também será chamada uma vizinhança de raio δ do ponto P_0 .

Notação: $V_{\delta}(P_0)$

Dado um conjunto $S \subset \mathbb{R}^n$, qualquer, todo ponto do \mathbb{R}^n tem uma das propriedades:

- (a) dizemos que P é **ponto interior** a S, se existe $\delta > 0$ tal que $B(P, \delta) \subset S$.
- (b) dizemos que P é **ponto exterior** a S, se existe $\delta > 0$ tal que $B(P, \delta)$ não contém qualquer elemento de S, isto é, $B(P, \delta) \cap S = \emptyset$;
- (c) dizemos que P é **ponto fronteira** de S, quando P não é interior nem exterior a S, isto é, $\forall \, \delta > 0$, $B(P, \delta)$ contém pontos de S e pontos que não são de S.

Exemplos:

(1) P é exterior a S

Q é interior a S

R é fronteira de S

(2)
$$S = \left\{ \left(\frac{1}{n}, \frac{1}{n} \right), n \in N \right\}$$

P é ponto fronteira de S

Q é ponto fronteira de S

R é ponto exterior a S

Definição 2.1.2. Seja $A \subset R^n$. Dizemos que A é **aberto**, se todo ponto de A for interior $a \ A$, isto é, $\forall \ P \in A$, $\exists \ \delta > 0$ tal que $B(P, \delta) \subset A$.

Exemplos:

1. \mathbb{R}^n é aberto no \mathbb{R}^n

$$2. \ A = \{ P \in \mathbb{R}^2 \mid \ \|P\| < 1 \}$$

Seja
$$P_0 \in A \Leftrightarrow ||P_0|| = r < 1$$

Consideremos
$$B\left(P_0, \frac{1-r}{2}\right)$$

Mostremos que $B\left(P_0, \frac{1-r}{2}\right) \subset A$

$$P \in B\left(P_0, \frac{1-r}{2}\right) \Longrightarrow \|P\| = \|P - P_0 + P_0\| \le \|P - P_0\| + \|P_0\| = \|P - P_0\| + r < \frac{1-r}{2} + r < 1.$$

- 3. Qualquer $B(P_0, \delta)$ é um conjunto aberto no \mathbb{R}^n .
- 4. $C = \{(x, y) \in \mathbb{R}^2 \mid |x| + |y| < 1\}$

5. $C \cup \{(0,1)\}$ não é aberto.

Observação: Dado um conjunto $A \subset \mathbb{R}^n$, o conjunto dos pontos interiores a A é chamado interior de A e é denotado por int A ou \mathring{A} .

Analogamente, ext A ou front A.

Definição 2.1.3. Dado $A \subset \mathbb{R}^n$, dizemos que P é um **ponto de acumulação** de A, se qualquer vizinhança de P contém um ponto de A, diferente de P.

Exemplos:

1. Todo ponto $P \in \mathbb{R}^n$ é ponto de acumulação do \mathbb{R}^n .

2. Nenhum ponto $P \in \mathbb{R}^n$ é ponto de acumulação do conjunto \emptyset .

3.
$$A = \{(x,y) \mid x^2 + y^2 < 1\}$$

O conjunto dos pontos de acumulação de $\,A\,$ é: $\,\{(x,y)\mid x^2+y^2\leq 1\}\,$

4.
$$A = \{(x, y) \mid y > x\} \cup \{(1, 0)\}$$

- $(1,0) \in A$ mas **não é** ponto de acumulação de A.
- $(1,1) \notin A$ mas é ponto de acumulação de A.

Conjunto dos pontos de acumulação de $A:\{(x,y)\mid y\geq x\}$.

5.
$$A = \left\{ \left(\frac{1}{n}, -\frac{1}{n} \right) \mid n \in N \right\}$$

Observe que $(0,0) \notin A$ e que (0,0) é o **único** ponto de acumulação de A.

Exercício:

Mostre que se P é ponto de acumulação de um conjunto A, então toda $B(P,\delta)$ contém infinitos pontos de A.

Conclua disto que um conjunto finito não pode ter pontos de acumulação.

Definição 2.1.4. Dado um conjunto $A \subset \mathbb{R}^n$, dizemos que P é um **ponto isolado** de A se $P \in A$ e P **não** é ponto de acumulação de A.

Exemplos:

- 1. Vide exemplo (4) da definição 3:
 - (1,0) é ponto isolado de A
 - (2,1) não é ponto isolado de A (não pertence a A).

2. Vide exemplo (3) da definição 3: O conjunto A não tem pontos isolados.

Definição 2.1.5. Um conjunto A é **fechado** se todo ponto de acumulação de A pertence a A.

Exemplos:

- 1. \mathbb{R}^n é fechado
- 2. Ø é fechado
- 3. $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ não é fechado
- 4. Vide exemplo (4) da definição 3: A não é fechado
- 5. Vide exemplo (5) da definição 3: A não é fechado

Exercícios:

- 1. Prove que todo conjunto finito é fechado.
- 2. O conjunto $\{(x,y)\in\mathbb{R}^2\mid x=y\}$ é fechado em \mathbb{R}^2 ?

Observação: Na linguagem comum as palavras *aberto* e *fechado* são exclusivas e totalizantes. Tal fato não ocorre aqui, como mostram os exemplos abaixo:

conjuntos	aberto	fechado
$(x,y) \mid x^2 + y^2 < 1$	sim	não
conjunto finito	não	sim
$\left\{ \frac{1}{n} \mid n \in N \right\}$	não	não
\mathbb{R}^2	sim	sim

Teorema 2.1.6. Um conjunto é fechado se, e somente se, seu complementar é aberto.

Prova:

 (\rightarrow) Seja F - conjunto fechado

 $\forall P \in \mathcal{C}F \Leftrightarrow P \not\in F \text{ (fechado)} \Rightarrow P \text{ não}$ é ponto de acumulação de $F \Leftrightarrow \exists \, \delta > 0$ tal que $B(P,\delta) \subset \mathcal{C}F$. Portanto $\mathcal{C}F$ é aberto.

 (\leftarrow) Seja CF - conjunto aberto

Consideremos P um ponto de acumulação qualquer de F. Mostremos que $P \in F$.

Suponhamos que $P \notin F \Rightarrow P \in \mathcal{C}F$ (aberto).

 $\Rightarrow \exists \delta > 0$ tal que $B(P, \delta) \subset \mathcal{C}F \Rightarrow P$ não é ponto de acumulação de F (contra hipótese). Logo $P \in F$ e assim F é fechado.

Definição 2.1.7. $A \subset \mathbb{R}^n$ é dito **limitado** se existe $\delta > 0$ tal que $A \subset B(0, \delta)$.

Exemplos:

- 1. Qualquer $B(P, \delta)$ é um conjunto limitado
- 2. $\{(1,m) \mid m \in N\}$ não é limitado
- 3. $\{(\text{sen } x, \cos x) \mid x \in R\}$ é limitado. Desenhe-o.

Vamos agora enunciar um dos resultados básicos do Cálculo, que garante a existência de pontos de acumulação. Para a prova, o leitor pode consultar o livro: Advanced Calculus, Buck, pg. 38.

Teorema 2.1.8 (Bolzano-Weierstrass). Todo subconjunto infinito e limitado do \mathbb{R}^n tem pelo menos um ponto de acumulação.

Definição 2.1.9. Um conjunto $A \subset \mathbb{R}^n$ se diz **compacto** quando é fechado e limitado.

Exemplos:

- 1. Todo conjunto finito é compacto
- 2. Toda bola fechada do \mathbb{R}^n é compacta
- 3. $[a,b] \times [c,d] \subset \mathbb{R}^2$ é compacto

Definição 2.1.10. Uma coleção $\{\Omega_{\alpha}\}_{\alpha\in I}$ de conjuntos abertos é chamada uma cobertura aberta ou um recobrimento aberto do conjunto $A \subset \mathbb{R}^n$ se $A \subset \bigcup_{\alpha\in I} \Omega_{\alpha}$.

Exemplos:

- 1. $\{B(0,n)\}_{n\in\mathbb{N}}$ cobertura aberta do \mathbb{R}^n
- 2. $\{B(P,1)\}_{P\in\mathbb{Z}^n}$ cobertura aberta do \mathbb{R}^n
- 3. $\{B(P,\frac{1}{2})\}_{P\in\mathbb{Z}^n}$ não é cobertura aberta do \mathbb{R}^n mas é de \mathbb{Z}^n

Definição 2.1.11. Seja Ω uma cobertura de $A \subset \mathbb{R}^n$. Uma subcoleção Ω' de Ω é dita uma subcobertura de A relativamente a Ω se Ω' ainda é cobertura de A.

Observação: Se o número dos conjuntos na subcobertura é finito ela é dita subcobertura finita.

Exemplo:

1. $\{B(0,n)\}_{n\in\mathbb{N}}$ cobertura do \mathbb{R}^n $\{B(0,n)\}_{n\in\mathbb{N}}$ subcobertura do \mathbb{R}^n relativa a cobertura acima

Uma caracterização de grande valor teórico dos conjuntos compactos (cuja prova pode ser encontrada em Advanced Calculus, Buck, pg. 39) é a seguinte:

Teorema 2.1.12 (Heine-Borel). Toda cobertura aberta de um conjunto compacto $A \subset \mathbb{R}^n$ admite uma subcobertura finita.

Exercícios:

- 1. Se $A \in B$ são conjuntos fechados, mostre que $A \cap B \in A \cup B$ são também fechados.
- 2. Esboce os seguintes conjuntos:

$$A = \{(x, y) \in \mathbb{R}^2 \mid \max\{|x|, |y|\} < 1\}$$
$$B = \{(x, y) \in \mathbb{R}^2 \mid |x| + |y| < 1\}$$

- 3. Pense e veja se concorda:
 - (i) O conjunto $\{x \in R \mid 0 < x < 1\}$ é aberto;
 - (ii) O conjunto $\{(x,0,0) \in \mathbb{R}^3 \mid 0 < x < 1\}$ não é aberto;
 - (iii) Qualquer plano $\tilde{\mathbf{nao}}$ é aberto no \mathbb{R}^3 .
- 4. Qual é a fronteira do conjunto

$$P = \{(x, y) \in \mathbb{R}^2 \mid x, y \in \mathbb{Q}\}\$$

Observe que $\mathbb{R}^2 - P = \{(x,y) \in \mathbb{R}^2 \mid (x,y) \not\in P\}$ não é um conjunto aberto.

- 5. Determine os pontos de acumulação, a fronteira e o interior dos seguintes conjuntos:
 - (a) $\{(x,y) \in \mathbb{R}^2 \mid x \ge 0\}$
 - (b) $\{(x,y) \in \mathbb{R}^2 \mid |x| = |y|\}$
 - (c) $\{(x,y) \in \mathbb{R}^2 \mid x,y \in \mathbb{Z}\}$
 - (d) \mathbb{R}^3
 - (e) $\{(x,y) \mid x^2 y^2 \ge 1\}$
 - (f) $\left\{ \left(\frac{1}{m}, \frac{1}{n}\right) \mid m, n \in \mathbb{N} \right\}$. Esboce o conjunto.
 - (g) $\{(x,y,z) \mid x^2+y^2+z^2>4\}$
- 6. Citar as propriedades que se aplicam a cada um dos conjuntos do exercício anterior, dentre as seguintes: aberto, fechado, limitado, finito.
- 7. Seja S o conjunto de todos os pontos (x,y) tais que $y=\sin\frac{1}{x}$ e x>0. Determine $\overset{\circ}{S}$. S é fechado? Determine front S.
- 8. Considere $S = \{(x,y) \mid x^2 + y^2 = 1 \text{ ou } y = 0 \text{ e } 0 \le x \le 1\}$. Determine $\overset{\circ}{S}$. S é fechado?

9. Justifique porque **não** se pode aplicar o teorema de Heine-Borel aos seguintes conjuntos e respectivos recobrimentos:

$A = [a, b] \times [c, d]$	$A = \mathbb{R}^2$	$A = V_1(0) \subset \mathbb{R}^2$
$\{S_y\}_{y\in[c,d]}$	$ \{V_{\delta}(0)\}_{\delta\in N} $	$\{V_r(0)\}_{0 < r < 1}$
onde $S_y = [a, b] \times \{y\}$		

- 10. Mostre que um ponto fronteira de S que não está em S é um ponto de acumulação de S .
- 11. Determine um subconjunto do \mathbb{R}^2 com exatamente três pontos de acumulação. Será possível conseguir um subconjunto do \mathbb{R}^2 com exatamente três pontos interiores?
- 12. Prove que um conjunto $A \subset \mathbb{R}^n$ que não tenha pontos de acumulação não tem pontos interiores.

2.2 Funções - Limites - Continuidade

2.2.1 Definição

Definição 2.2.1. Seja $A \subset \mathbb{R}^n$. Uma **função** f definida em A com valores em \mathbb{R} \acute{e} uma correspondência que associa a cada ponto de A um e um só número real.

Os pontos de A são chamados variáveis independentes.

Notação: $f:A\subset\mathbb{R}^n\to\mathbb{R}$.

O conjunto A é chamado **domínio de** f.

O conjunto $B = \{f(P) \mid P \in A\}$ é chamado **imagem de f** e denotado por Im(f) .

Observação: Durante o curso de Cálculo I estudamos funções $f:I\subset\mathbb{R}\to\mathbb{R}$. Generalizações deste conceito podem ser feitas das mais diversas maneiras. Por exemplo, $f:I\subset\mathbb{R}\to\mathbb{R}^2$, $g:A\subset\mathbb{R}^2\to\mathbb{R}$, $h:A\subset\mathbb{R}^2\to\mathbb{R}^2$, $\ell:A\subset\mathbb{R}^3\to\mathbb{R}^3$, etc.

Todos estes casos aparecerão durante o curso, mas em especial estaremos trabalhando com $f:A\subset\mathbb{R}^n\to\mathbb{R}$, mais particularmente com $f:A\subset\mathbb{R}^2\to\mathbb{R}$.

Exemplos:

1. $f:A\subset\mathbb{R}^3\to\mathbb{R}$ f(x,y,z)=altura em relação ao plano xy

$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

2. $P_i:\mathbb{R}^n\to\mathbb{R}$ $(x_1,\dots,x_n)\to x_i \ \ \mathbf{i\text{-}\acute{e}sima\ projeç\~{a}o}\ \mathrm{por\ exemplo},\ n=3\ \ \mathrm{e}\ \ i=2\,,\ \ (x,y,z)\to y\,.$

Exercício: Encontre o domínio da função dada por $f(x,y) = \frac{y}{\sqrt{x-y^2}}$.

Encontre também os pontos (x, y) para os quais f(x, y) = 1.

Resolução:

A expressão só faz sentido nos pontos (x,y)tais que $x-y^2>0$ ou seja $x>y^2\,.$

Ainda:
$$f(x,y) = 1 \Leftrightarrow y = \sqrt{x - y^2} \Rightarrow y^2 = x - y^2 \Leftrightarrow x = 2y^2$$
.

A seguir representamos o domínio de f e os pontos onde f(x,y)=1 .

Observação: Analogamente como feito para função $h: \mathbb{R} \to \mathbb{R}$ podemos definir, ponto a ponto, a soma, o produto, a divisão de duas funções $f,g:A\subset \mathbb{R}^n\to \mathbb{R}$. Por exemplo: a função soma f+g é definida por: $(f+g)(P)=f(P)+g(P), \ \forall\, P\in A$.

2.2.2 Gráficos

Definição 2.2.2. $f:A\subset\mathbb{R}^n\to\mathbb{R}$. Chama-se **gráfico de f** ao subconjunto do \mathbb{R}^{n+1} definido por

$$G_f = \{ (P, f(P)) \mid P \in A \}.$$

Observação: Como o gráfico é um subconjunto do R^{n+1} e no papel podemos representar até o \mathbb{R}^3 então podemos desenhar o gráfico de funções de no máximo duas variáveis, isto é, n=2.

Exemplos:

(2)
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $f(P) = 2$
 $G_f = \{(x, y, 2) / x, y \in \mathbb{R}\}$

(4)
$$f: A \subset \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \to x^2 + y^2$
 $A = \{(x,y) \in \mathbb{R}^2 / x \ge 0, y \ge 0\}$
 $G_f = \{(x,y,x^2 + y^2) / x \ge 0, y \ge 0\}$

(5)
$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(P) = \text{distância de } P \text{ ao}$$
 ponto (0,0), ou seja,
$$f(x,y) = \sqrt{x^2 + y^2}$$

(6)
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \to x^2$
 $G_f = \{(x,y,x^2) \mid x,y \in \mathbb{R}\}$

Exercícios

1. Esboce o gráfico de $f:A\subset\mathbb{R}^2\to\mathbb{R}$ tal que f(P)= distância do ponto P ao ponto (0,0) onde $A=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\geq 1\}.$

- 2. Tente definir uma função $f:\mathbb{R}^2\to\mathbb{R}$ cujo gráfico seja uma "telha eternit" .
- 3. Esboce o gráfico de $f(x,y) = x^2 + |y|$.

2.3 Curvas e Superfícies de Nível

Existe uma outra técnica gráfica, útil, para descrever o comportamento de uma função de duas variáveis. O método consiste em descobrir no plano xy os gráficos das equações f(x,y)=k para diferentes valores de k. Os gráficos obtidos desta maneira são chamados as **curvas de nível** da função f.

$$f:A\subset\mathbb{R}^2\to\mathbb{R}$$

Curva de nível $k : \{(x, y) \in A \text{ tal que } f(x, y) = k\}$.

ou

Exemplos:

1. z = f(x, y) = altura em relação ao nível do mar (definida em uma pequena porção aproximadamente plana).

Nossas curvas de nível correspondem às **linhas de contorno** em uma mapa topográfico.

 $2. \ f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = x^2 + y^2$$

As curvas de nível são os gráficos das equações $x^2+y^2=k$.

3. $f: D \subset \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \frac{1}{x^2 + y^2}$$
 Curvas de nível: $x^2 + y^2 = c$.

4.
$$z = f(x, y) = x^2 - y^2$$

Curvas de nível:

$$x^2 - y^2 = c$$

$$c=0 \to |x|=|y|$$

 $c \neq 0$ - hipérboles

Se f é uma função de três variáveis x,y,z então, por definição, as **superfícies de nível** de f são os gráficos de f(x,y,z)=k, para diferentes valores de k .

$$f:A\subset\mathbb{R}^3\to\mathbb{R}$$

Superfícies de nível $k:\{(x,y,z)\in A \text{ tal que } f(x,y,z)=k\}\,.$

Em aplicações, por exemplo, se f(x, y, z) é a temperatura no ponto (x, y, z) então as superfícies de nível são chamadas **superfícies isotermas**. Se f(x, y, z) representa potencial elas são chamadas **superfícies equipotenciais**.

Exemplos:

$$\begin{array}{ll} (2) & g:\mathbb{R}^3\to\mathbb{R}\\ & g(x,y,z)=x^2+y^2+z^2\\ & \text{superfícies de nível}\\ & x^2+y^2+z^2=k\geq 0\\ & \text{Superfícies esféricas de centro na origem} \end{array}$$

(3) $h: \mathbb{R}^3 \to \mathbb{R}$ $h(x, y, z) = \frac{y}{e^x}$ superfícies de nível $y = ke^x$

2.4 Funções Limitadas

Definição 2.4.1. $f:A\subset\mathbb{R}^n\to\mathbb{R}$ diz-se **limitada** em um conjunto $B\subset A$ se existir uma constante $K\in R$ tal que $|f(P)|\leq K,\ \forall\ P\in B$.

Exemplos:

1.
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $f(x,y) = 2x + y$

$$B=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq a^2\}$$
 f é limitada em B ; senão vejamos:
$$|f(x,y)|=|2x+y|\leq 2|x|+|y|\leq 2a+a=3a\,.$$

$$\begin{split} 2. \ f: \mathbb{R}^2 - \{(0,0)\} &\to \mathbb{R} \\ f(x,y) &= \frac{1}{x^2 + y^2} \\ f \ \text{n\~ao\'e limitada em } \mathbb{R}^2 \,. \end{split}$$

Definição 2.4.2. $f: A \subset \mathbb{R}^n \to R$ diz-se limitada em um ponto $P_0 \in A$ se existir $\delta > 0$ tal que f seja limitada em $A \cap B(P_0, \delta)$.

Exemplo:

$$\begin{split} f: \mathbb{R}^2 - \{(0,0)\} &\to \mathbb{R} \\ f(x,y) &= \frac{1}{x^2 + y^2} \\ \text{não \'e limitada em} \\ \mathbb{R}^2 - \{(0,0)\} \text{ mas \'e limitada} \\ \text{em qualquer ponto de} \\ \mathbb{R}^2 - \{(0,0)\} \,. \end{split}$$

Teorema 2.4.3. Se uma função é limitada em todos os pontos de um conjunto compacto C então ela é limitada em C.

Prova:

Para todo $P \in C$ existe $B(P, \delta_p)$ tal que

$$|f(Q)| < K_p$$
, $\forall Q \in C \cap B(P, \delta_p)$.

Como C é compacto, pelo Teorema de Heine-Borel existe um número finito de bolas abertas $B(P_1, \delta_{p_1}), \ldots, B(P_n, \delta_{p_n})$ que recobrem C.

Temos as constantes K_{p_1}, \ldots, K_{p_n} .

Seja
$$K = \max\{K_{p_1}, \ldots, K_{p_n}\}$$
.

Então,

$$P \in C \Leftrightarrow \exists P_i \text{ tal que } P \in B(P_i, \delta_{p_i}) \Leftrightarrow |f(P)| < K_{p_i} \leq K$$
.

Portanto f é limitada em C.

Exercícios:

1. Determinar os domínios máximos de cada uma das funções abaixo, esboçando-os graficamente:

(a)
$$z = \arcsin \frac{x}{x+y}$$

(b)
$$z = \frac{\ln(x - 2y)}{\sqrt{y - 2x}}$$

(c)
$$z = \ln(36 - 4x^2 - 9y^2)$$

$$(d) \quad z = \frac{x}{y^2 - 4x}$$

(e)
$$z = \sqrt{x^2 - y^2} + \sqrt{x^2 + y^2 - 1}$$

2. Esboce o gráfico de:

(a)
$$f(x,y) = x^2 + y^2 - \sqrt{x^2 + y^2}$$

(b)
$$g(x,y) = \sin \frac{1}{x}$$
, $x \neq 0$

3. Considere no \mathbb{R}^2 o seguinte conjunto:

$$H = \{(x, y) \in \mathbb{R}^2 \mid x \le y \le x + 1\}.$$

Considere ainda $f: H \to \mathbb{R}$ dada por $f(x,y) = x^2 + y^2$. Observe que f é limitada em todo ponto do conjunto H mas não é limitada em H. Compare com o resultado dado no Teorema 5.4.3.

4. Traçar curvas de nível para as funções

(a)
$$f(x,y) = xy$$

(b)
$$g(x,y) = \cos x$$

5. Determinar as superfícies de nível das funções:

(a)
$$f(x, y, z) = \frac{x^2 + y^2}{z}$$

(b)
$$g(x, y, z) = x + 2y$$

6. Ache as curvas de nível de $f: \mathbb{R}^2 \to \mathbb{R}$ definida por f(x,y) = sen(x-y). Esboce o gráfico de f.

2.5 Limites

Definição 2.5.1. Escrevemos $\lim_{P\to P_0} f(P) = L$ e dizemos que **limite da função** f **no ponto** P_0 **é igual a** L quando:

 $(i) \ f: A \subset \mathbb{R}^n \to \mathbb{R} \ e \ P_0 \ \'e \ ponto \ de \ acumulação \ de \ A \, .$

(ii) Correspondendo a cada $\varepsilon > 0$ existe um $\delta > 0$ tal que

$$0 < ||P - P_0|| = d(P, P_0) < \delta \} \implies |f(P) - L| < \varepsilon$$

Observação: Quando $\lim_{P\to P_0} f(P)=0$ diremos frequentemente que f é **infinitésima** no ponto P_0 .

Exemplos:

1.
$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \to x$$

f é infinitésima no ponto (0,0)

De fato:

Sabemos que $|x| = \sqrt{x^2} \le \sqrt{x^2 + y^2}$

Dado $\varepsilon > 0$ tomamos $\delta \le \varepsilon$.

Então,

$$\sqrt{x^2 + y^2} < \delta \Longrightarrow |x| < \delta \le \varepsilon$$

$$2. f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x,y) = x + y^2$$

$$\lim_{(x,y)\to(2,1)} f(x,y) = 3$$

De fato:

Sabemos que

$$|x+y^2-3| = |x-2+y^2-1| \le |x-2| + |y+1| |y-1|$$

Então, dado $\varepsilon > 0$ tomamos $\delta = \min \left\{ 1, \frac{\varepsilon}{4} \right\}$.

Logo, |y+1| < 3.

Teremos,

$$[(x-2)^2 + (y-1)^2]^{1/2} < \delta \Rightarrow x + y^2 - 3| \le |x-2| + |y+1| \, |y-1| \le \delta + 3\delta = 4\delta \le 4\frac{\varepsilon}{4} = \varepsilon$$

Propriedades:

- 1. Se $f:\mathbb{R}^n\to\mathbb{R}$ tem limite em um ponto P_0 então este limite é único.
- 2. Se $\lim_{P \to P_0} f(P) = L_1$ e $\lim_{P \to P_0} g(P) = L_2$ então, $\lim_{P \to P_0} (f+g)(P) = L_1 + L_2$ e $\lim_{P \to P_0} (fg)(P) = L_1 L_2$

3. Se
$$\lim_{P\to P_0}f(P)=L\neq 0$$
, então, $\lim_{P\to P_0}\frac{1}{f(P)}=\frac{1}{L}$

Ainda se
$$\lim_{P\to P_0}g(P)=M$$
 , então, $\lim_{P\to P_0}\frac{g(P)}{f(P)}=\frac{M}{L}$

4. Se uma função tem limite em um ponto P_0 então ela é limitada em P_0 . (P_0 pertencente ao domínio da função).

Observação: A recíproca não vale. (Dê um contra exemplo).

- O produto de um infinitésimo em um ponto por uma limitada no ponto é um infinitésimo no ponto.
- 6. Teorema da Conservação do Sinal:

Se $\lim_{P\to P_0} f(P) = L \neq 0$, então existe $B(P_0, \delta)$ na qual as imagens f(P) têm o mesmo sinal de L (exceto, possívelmente, $f(P_0)$).

No caso de uma variável vimos que existem somente duas "direções" através das quais o ponto P pode se aproximar do ponto P_0 . Introduzimos então as noções de limite à esquerda e à direita. No caso de duas variáveis (ou mais) temos um número infinito de "modos de aproximação".

O caso geral é coberto pela seguinte definição:

Definição 2.5.2. Sejam S um conjunto no qual f está definida e P_0 um ponto de acumulação de S. Dizemos que f(P) converge para L conforme P aproxima-se de P_0 em S e escrevemos

$$\lim_{\substack{P \to P_0 \\ P \in S}} f(P) = L$$

se, e somente se, correspondendo a cada $\varepsilon > 0$ existe um $\delta > 0$ tal que

$$\begin{cases}
0 < ||P - P_0|| < \delta \\
P \in S
\end{cases} \implies |f(P) - L| < \varepsilon$$

Observação: Um importante caso especial é quando S é um segmento ou um arco de curva.

Teorema 2.5.3. Se f(P) está definida para todos pontos P em uma vizinhança de P_0 , exceto, possivelmente, em P_0 e $\lim_{P\to P_0} f(P) = L$, então o limite de f(P) existe para P aproximandose de P_0 em qualquer conjunto S que tenha P_0 como ponto de acumulação e sempre tem o mesmo valor L.

Prova:

Dados P_0 e S nas condições.

Dado $\varepsilon > 0$.

Como $\lim_{P\to P_0} f(P) = L$, sabemos que existe $\delta > 0$, tal que $0 < \|P-P_0\| < \delta \Rightarrow |f(P)-L| < \varepsilon$. Isto ainda é verdadeiro se $P \in S$.

Assim segue que
$$\lim_{\substack{P \to P_0 \\ P \in S}} f(P) = L$$
.

Observação:

Este teorema fornece um critério:

Se os limites em dois caminhos diferentes são diferentes então o limite não existe.

Exemplos:

1.
$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x,y) = \begin{cases} 1, \ para \ x \neq 0 \\ 0, \ para \ x = 0 \end{cases}$$

$$S_1 = \{(x, y) \in \mathbb{R}^2 \mid y = 0\}$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in S_1}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in S_1}} 1 = 1$$

$$S_2 = \{(x, y) \in \mathbb{R}^2 \mid x = 0\}$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in S_2}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in S_2}} 0 = 0$$

Portanto, não existe $\lim_{(x,y)\to(0,0)} f(x,y)$

2.
$$f: \mathbb{R}^2 - \{(0,0) \to \mathbb{R}\}$$

$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$

$$\left. egin{aligned} P \in & \operatorname{eixo} y \\ P \in & \operatorname{eixo} x \end{aligned} \right\} \Longrightarrow xy = 0 \Longrightarrow f(P) = 0$$

Logo f(P) converge para $\mathbf 0$ conforme P aproxima-se de 0 através dos eixos coordenados.

É verdade que $\lim_{P\to 0} f(P) = 0$?

$$P = (x, y)$$

$$|f(P)| = \frac{|xy|}{\sqrt{x^2 + y^2}} = \frac{|x||y|}{\sqrt{x^2 + y^2}} \le \frac{\sqrt{x^2 + y^2} \cdot \sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} = \sqrt{x^2 + y^2}$$

Assim dado $\varepsilon > 0$ podemos tomar $\delta = \varepsilon$ e teremos

$$0 < ||P - 0|| < \delta = \varepsilon \implies |f(P) - 0| < \varepsilon$$

Portanto, $\lim_{P\to 0} f(P) = 0$.

3.
$$g: \mathbb{R}^2 - \{(0,0)\} \to R$$

$$g(x,y) = \frac{xy}{x^2 + y^2}$$

 $g(P)\equiv 0$ quando P está em um dos eixos coordenados, de modo que g(P) converge para 0 quando P aproxima-se de 0 pelos eixos. Entretanto $\lim_{P\to 0}g(P)$ não existe.

Seja
$$S = \{(x, y) \in \mathbb{R}^2 \mid x = y\}$$

$$g(P) = g(x, x) = \frac{1}{2}$$
$$\lim_{\substack{P \to 0 \\ P \in S}} g(P) = \frac{1}{2} \neq 0$$

Portanto, $\lim_{P\to 0} g(P)$ não existe.

Observamos que $g(x, mx) = \frac{m}{1+m^2}$ e que g(0, y) = 0 e assim o gráfico de g é constituído por retas horizontais. Tente esboça-lo.

4.
$$F: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}$$

$$F(x,y) = \frac{xy^2}{x^2 + y^4}$$

Se P pertence a um dos eixos, F(P) = 0

Sobre a reta y = x:

$$F(P) = F(x,x) = \frac{x}{1+x^2}$$
 de modo que $\lim_{\substack{P \to 0 \ P = (x,x)}} F(P) = 0$.

De fato, F(P) converge para 0 conforme P aproxima-se da origem ao longo de toda reta passando pela origem.

Vejamos:

Seja
$$y = mx$$

F(P) =
$$F(x, mx) = \frac{m^2x}{1 + m^4x^2}$$
 e assim $\lim_{\substack{P \to 0 \ y = mx}} F(P) = 0$.

Apesar disto, **não** é verdade que $\lim_{P\to 0} F(P) = 0$.

Tomemos
$$S = \{(x, y) | y^2 = x\}$$

$$F(P) = F(y^2, y) = \frac{1}{2}$$

$$\lim_{N \to \infty} F(R) = \frac{1}{2}$$

$$\lim_{\substack{P \to 0 \\ P \in S}} F(P) = \frac{1}{2}.$$

2.6 Continuidade

Definição 2.6.1. Sejam $f: A \subset \mathbb{R}^n \to \mathbb{R}$, P_0 um ponto de acumulação de A com $P_0 \in A$. $f \notin dita$ contínua em P_0 se $\lim_{P \to P_0} f(P) = f(P_0)$, ou seja:

$$dado \varepsilon > 0$$
, $\exists \delta > 0$ tal que

$$\left\| P - P_0 \right\| < \delta$$
 $P \in A$
 $\Rightarrow |f(P) - f(P_0)| < \varepsilon$.

Definição 2.6.2. Uma função f é dita **contínua em um conjunto B** quando for contínua em todo ponto de B.

Exemplos:

1.
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 $f(x,y) = x + y$

Seja
$$(x_0, y_0) \in \mathbb{R}^2$$

Dado
$$\varepsilon > 0$$

Queremos $\delta > 0$ tal que

$$[(x - x_0)^2 + (y - y_0)^2]^{1/2} < \delta \Longrightarrow |x + y - (x_0 + y_0)| < \varepsilon$$

mas

$$|x + y - (x_0 + y_0)| \le |x - x_0| + |y - y_0| < \delta + \delta = 2\delta$$

Basta tomar
$$\delta = \frac{\varepsilon}{2}$$
.

2.
$$p_1: \mathbb{R}^2 \to \mathbb{R}$$

$$p_1(x,y) = x$$

 p_1 é contínua no \mathbb{R}^2 .

Olhe a ilustração ao lado.

Qual o δ apropriado?

3.
$$p_i: \mathbb{R}^n \to \mathbb{R}$$

$$p_i(x_1, \dots, x_n) = x_i$$

$$p_i \text{ \'e contínua no } \mathbb{R}^n.$$

4.
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

f não é contínua em (0,0).

Propriedades:

- 1. A soma de m funções contínuas em um ponto é uma função contínua no ponto.
- 2. O produto de m funções contínuas em um ponto é uma função contínua no ponto.

Consequência: Denotando $x = (x_1, x_2, \dots, x_n)$, uma polinômial P(x) em x_1, \dots, x_n é uma soma de parcelas do tipo:

$$ax_1^{\ell_1} \cdot x_2^{\ell_2} \cdots x_n^{\ell_n}$$
 onde
$$\begin{cases} a - \text{constante} \\ \ell_i \in N, & i = 1, \dots, n \end{cases}$$

que pode ser escrita como

$$a \left[p_1(x) \right]^{\ell_1} \cdots \left[p_n(x) \right]^{\ell_n}$$

que é contínua, como produto de funções contínuas.

Logo, usando a propriedade (1), toda polinomial é contínua.

- 3. Dada uma função contínua e $\neq 0$ em um ponto, então a recíproca é contínua naquele ponto.
- 4. Se uma função é contínua e $\neq 0$ em um ponto, ela possui sinal constante em alguma vizinhança daquele ponto.
- 5. Se uma função é contínua em um conjunto compacto, então ela é limitada nesse conjunto.

De fato:

Como a função tem limite em todos os pontos do conjunto, ela é limitada em todos os pontos do conjunto compacto. Pelo teorema 5.4.3 ela é limitada no conjunto.

Definição 2.6.3. $f: A \subset \mathbb{R}^n \to \mathbb{R}$, $B \subset A$.

Imagem do conjunto B pela função f é o conjunto $f(B) = \{f(P) \mid P \in B\}.$ Assim, por exemplo, a função f é dita limitada em B se f(B) é limitado.

Observação: Com esta definição a propriedade (5) pode ser enunciada assim:

Se f é contínua em K onde K é compacto então f(K) é limitado. Como $f(K) \subset R$ e é limitado, temos pelo **axioma do sup**, que existe $L = \sup f(K)$ e $\ell = \inf f(K)$.

Teorema 2.6.4. Se uma função é contínua em um conjunto compacto então existe um ponto onde ela atinqe seu extremo superior e um ponto onde ela atinqe seu extremo inferior.

Prova:

Suponhamos que f não assuma $L = \sup f(K)$.

Logo f(P) < L, $\forall P \in K$.

Seja g(P) = L - f(P) > 0, contínua.

Assim, $\frac{1}{g(P)}$ é contínua no compacto K. Então $\frac{1}{g(P)} = \frac{1}{L - f(P)}$ é limitada em $K \Rightarrow \exists \ H$ tal que $\frac{1}{L - f(P)} < H$, $\ \forall \ P \in K$.

Logo
$$L - f(P) > \frac{1}{H} \Rightarrow L - \frac{1}{H} > f(P), \quad \forall P \in K.$$

Portanto, L não é extremo superior (contra hipótese).

Fica como exercício a demonstração para extremo inferior.

Definição 2.6.5. Sejam $f:A\subset\mathbb{R}^n\to B\subset\mathbb{R}$ e $g:B\to\mathbb{R}$. A função composta de gcom f, $indicada por g \circ f$ é definida por

$$g \circ f : A \subset \mathbb{R}^n \to \mathbb{R}$$

 $(g \circ f)(p) = g(f(P))$

Teorema 2.6.6. Sejam $f:A\subset\mathbb{R}^n\to B\subset\mathbb{R}$ e $g:B\to\mathbb{R}$ tais que f seja contínua em P_0 e g contínua em $f(P_0)$. Então $g\circ f$ é contínua em P_0 .

Prova:

Dado $\varepsilon > 0$.

Queremos $\delta > 0$ tal que

$$||P - P_0|| < \delta$$

$$P \in A$$

$$\Rightarrow |(g \circ f)(P) - (g \circ f)(P_0)| < \varepsilon .$$

Sabemos que existe $\delta_1 = \delta_1(\varepsilon, f(P_0))$ tal que

$$|z - f(P_0)| < \delta_1 \Longrightarrow |g(z) - g(f(P_0))| < \varepsilon$$
.

Como fé contínua em P_0 sabemos que dado $\delta_1>0\,,~~\exists~\delta_2>0~$ tal que

$$||P - P_0|| < \delta_2$$

$$P \in A$$

$$\Rightarrow |f(P) - f(P_0)| < \delta_1.$$

Logo para

$$||P - P_0|| < \delta_2 \Longrightarrow |f(P) - f(P_0)| < \delta_1 \Longrightarrow |g(f(P)) - g(f(P_0))| < \varepsilon.$$

Portanto, $g \circ f$ é contínua em P_0 .

Exercícios:

1. Mostrar, pela definição, que $\lim_{\substack{x\to 2\\y\to 0}}(x^2+y^2-4)=0$.

2. Seja a função
$$f(x,y)=\left\{ egin{array}{ll} 1\;,\;\;x\geq 0\\ -1\;,\;\;x<0\;. \end{array} \right.$$

Prove que a função tem limite igual a 1 nos pontos (x_0, y_0) com $x_0 > 0$ e que tem limite igual a -1 nos pontos (x_0, y_0) com $x_0 < 0$. Prove ainda que não tem limite nos pontos $(0, y_0)$.

3. Sejam A e B dois pontos no espaço e seja $f(P) = \|P - A\| - \|P - B\|$. f é uma função limitada? Você pode mostrar que, para qualquer P_0 , $\lim_{P \to P_0} f(P) = f(P_0)$?

- 4. Prove, usando a definição de limite, que: $\lim_{\substack{x \to 1 \\ y \to 2}} (x^2 + 2yx + y^2) = 9$.
- 5. Determinar o valor dos seguintes limites, quando existirem:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{1 + x^2 + y^2}$$
 (b) $\lim_{\substack{x\to 0\\y\to 0}} \frac{x}{x^2 + y^2}$

(b)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x}{x^2 + y^2}$$

(c)
$$\lim_{\substack{x \to 0 \\ y \to 0}} (x^2 + y^2) \operatorname{sen} \left(\frac{1}{xy}\right)$$
 (d)
$$\lim_{\substack{x \to 4 \\ y \to \pi}} x^2 \operatorname{sen} \left(\frac{y}{x}\right)$$

(e)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{(1 + y^2) \operatorname{sen} x}{x}$$
 (f)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{1 + x - y}{x^2 + y^2}$$

(d)
$$\lim_{\substack{x \to 4 \\ y \to \pi}} x^2 \operatorname{sen}\left(\frac{y}{x}\right)$$

(e)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{(1+y^2)\sin x}{x}$$

(f)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{1+x-y}{x^2+y^2}$$

(g)
$$\lim_{\substack{x \to 0 \\ y \to 0 \\ z \to 0}} \frac{4x - y - 3z}{2x - 5y + 2z}$$

- 6. Usando a definição, prove que f(x,y) = xy + 6x é contínua em:
 - (a) (1,2)
 - (b) (x_0, y_0)
- 7. Investigue a continuidade de cada uma das funções abaixo, no ponto (0,0):

(a)
$$f(x,y) = \begin{cases} \frac{x}{3x+5y} & , 3x+5y \neq 0 \\ 0 & , 3x+5y = 0 \end{cases}$$

(b)
$$g(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} &, \text{ se } (x,y) \neq (0,0) \\ 0 &, \text{ se } (x,y) = (0,0) \end{cases}$$

8. (a) Mostre que a função
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} &, & (x,y) \neq (0,0) \\ 0 &, & (x,y) = (0,0) \end{cases}$$
 é limitada em \mathbb{R}^2 .

51

(b) Mostre que f(x,y) não tem limite em (0,0).

(c) Caso exista, determine o valor
$$\lim_{\substack{x\to 0\\y\to 0}} \left[\operatorname{sen}(x+y) \frac{x^2-y^2}{x^2+y^2} \right]$$
.

9. Investigue a continuidade no ponto (0,0) da função abaixo:

$$f(x,y) = \begin{cases} xy \frac{x-y}{x^2 + y^2} , & (x,y) \neq (0,0) \\ 0 & , & (x,y) = (0,0) \end{cases}$$

2.7 Derivadas Parciais e Funções Diferenciáveis

2.7.1 Derivadas Parciais

Seja z = f(x, y) definida em um conjunto aberto A e seja $(x_0, y_0) \in A$. Então para x suficientemente próximo de x_0 todos os pontos (x, y_0) estão em A. Assim podemos considerar $z = f(x, y_0)$ como uma função de x, em um pequeno intervalo em torno de x_0 . A derivada em x_0 desta função de x (se a derivada existir) é chamada **derivada parcial de f em ralação a x no ponto (x_0, y_0)**.

Notações:

$$z_x(x_0, y_0)$$
; $\frac{\partial z}{\partial x}(x_0, y_0)$

Assim:

$$f_x(x_0, y_0) = \left[\frac{df(x, y_0)}{dx}\right]_{x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
.

Interpretação Geométrica

Podemos interpretar geometricamente a derivada parcial como uma inclinação. Consideramos a secção da superfície z = f(x, y) pelo plano vertical $y = y_0$. Neste plano a curva $z = f(x, y_0)$ tem uma tangente com inclinação $f_x(x_0, y_0)$ em x_0 .

 $tg \ \alpha = f_x(x_0, y_0)$

 y_0

outras ilustrações:

Considerando z como uma função de y, para x fixo, obtemos de maneira semelhante uma outra derivada parcial $f_y=\frac{\partial f}{\partial y}=f_2=z_y=\frac{\partial z}{\partial y}$ que também pode ser vista como uma inclinação.

Temos

$$f_y(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

Observação: Para se achar as derivadas parciais de uma função dada por uma lei de formação podem-se aplicar as regras usuais para funções de uma variável, tratando-se todas as variáveis independentes, exceto uma, como constantes.

Exemplo: Se $f(x,y) = x^2y + y\cos x$, determine $f_x(1,0)$ e $f_y(1,0)$.

Resolução: Mantendo y constante e derivando em relação a x obtemos $f_x(x,y) = 2xy - y$ sen x e assim $f_x(1,0) = 0$.

Mantendo x constante e derivando em relação a y obtemos $f_y(x,y) = x^2 + \cos x$ e assim $f_y(1,0) = 2$.

Para o caso de n variáveis x_1, x_2, \ldots, x_n :

Qual a derivada parcial no ponto $(x_1^0, x_2^0, \dots, x_n^0)$ relativamente a x_1 da função $f(x_1, \dots, x_n)$? Fixando-se x_2, x_3, \dots, x_n a nossa função fica sendo função de uma variável x_1 , $f(x_1, x_2^0, \dots, x_n^0)$.

Assim

$$\frac{\partial f}{\partial x_1}(x_1^0,\dots,x_n^0) = \left[\frac{df(x_1,x_2^0,\dots,x_n^0)}{dx_1}\right]_{x_1^0}$$

Exemplo: $z = f(x_1, x_2, x_3) = x_1 \cos x_2 + x_3$

 $f_1(x_1,x_2,x_3)=\cos x_2$; $f_2(x_1,x_2,x_3)=-x_1$ sen x_2 ; $f_3(x_1,x_2,x_3)=1$ onde estamos usando a notação f_i para $\frac{\partial f}{\partial x_i}$.

2.7.2 Derivadas parciais de ordem superior

Se f é uma função de duas variáveis x e y, então f_x e f_y são também funções de duas variáveis. Se estas funções f_x e f_y estiverem definidas em um aberto A poderemos considerar suas derivadas parciais $(f_x)_x$, $(f_x)_y$, $(f_y)_x$ e $(f_y)_y$ chamadas **derivadas parciais de segunda ordem de f**, denotadas como segue:

$$(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$$

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$$

$$(f_y)_x = f_{yx} = f_{21} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

$$(f_y)_y = f_{yy} = f_{22} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}$$

Se estas derivadas parciais existirem em todos os pontos de um aberto A, poderemos falar nas derivadas parciais de terceira ordem, e assim sucessivamente.

De forma completamente análoga definimos as derivadas parciais de ordem superior para função de três ou mais variáveis.

Definição 2.7.1. Seja $f: A \subset \mathbb{R}^n \to \mathbb{R}$, A aberto. $f \notin dita$ de **classe** \mathbf{C}^k $(k \geq 1)$ **em** $\mathbf{B} \subset A$ se as derivadas parciais até a ordem k existirem e forem contínuas em todos os pontos de B. $f \notin dita$ de **classe** \mathbf{C}^{∞} se $f \notin de$ classe \mathbf{C}^k , $\forall k \geq 1$.

Notação: $f \in C^k$ ou $f \in C^{\infty}$.

Exemplo 1: A função z = f(x,y) = xy é de classe C^{∞} já que $f_x(x,y) = y$; $f_y(x,y) = x$; $f_{xy}(x,y) = f_{yx}(x,y) = 1$ e todas as demais derivadas parciais de qualquer ordem são nulas. Como as funções acima e a função nula são contínuas temos que $f \in C^{\infty}$.

Exemplo 2: A função z = f(x, y) = x sen $y + y^2 \cos x$ é de classe C^{∞} .

Observação: Nestes dois exemplos notamos que $f_{xy}(x,y) = f_{yx}(x,y)$, isto é, a ordem de derivação não influi no resultado, mas isto nem sempre é válido.

De fato:

Consideremos z = f(x, y) = x + |y|

$$f_x(x,y) \equiv 1 \qquad \qquad f_{xy}(0,0) = 0$$

No entanto $f_y(0,0)$ não existe e assim $f_{yx}(0,0)$ não existe.

O próximo Teorema fornece condições sob as quais podemos afirmar que $f_{xy}=f_{yx}$

Teorema 2.7.2 (Teorema de Schwarz ou Teorema de Clairaut). Seja z = f(x, y) tal que f, f_x , f_y e f_{xy} sejam contínuas em um conjunto aberto A. Seja $P_0 = (x_0, y_0) \in A$. Então $f_{yx}(P_0)$ existe e $f_{yx}(P_0) = f_{xy}(P_0)$.

Prova:

Seja $\phi(x) = f(x, y_0 + k) - f(x, y_0)$, onde k e y_0 são fixados.

Para x suficientemente próximo de x_0 e k pequeno, ϕ é uma função da única variável x, diferenciável no intervalo $(x_0, x_0 + h)$ e contínua em $[x_0, x_0 + h]$, h pequeno.

Para esta função aplicamos o Teorema do Valor Médio para funções de uma variável, entre

 $x_0 \in x_0 + h$, obtendo:

$$\phi(x_0 + h) - \phi(x_0) = h \cdot \phi'(x_0 + \theta_1 h)$$
 onde $0 < \theta_1 < 1$

Assim: $\phi(x_0 + h) - \phi(x_0) = h [f_x(x_0 + \theta_1 h, y_0 + k) - f_x(x_0 + \theta_1 h, y_0)].$

Agora para cada h aplicamos o Teorema do Valor Médio novamente para a segunda variável, obtendo:

$$\phi(x_0 + h) - \phi(x_0) = h \cdot k \left[f_{xy}(x_0 + \theta_1 h, y_0 + \theta_2 k) \right]$$

onde também $0 < \theta_2 < 1$.

Relembrando o significado de ϕ podemos escrever:

$$[f(x_0 + h, y_0 + k) - f(x_0 + h, y_0)] - [f(x_0, y_0 + k) - f(x_0, y_0)] = h \cdot k f_{xy}(x_0 + \theta_1 \cdot h, y_0 + \theta_2 \cdot k)$$

Dividindo por k e fazendo $k \to 0$ obtemos $f_y(x_0 + h, y_0) - f_y(x_0, y_0) = h f_{xy}(x_0 + \theta_1 h, y_0)$, desde que f_{xy} é contínua.

Novamente usando a continuidade de f_{xy} , dividimos por h e fazemos $h \to 0$ e obtemos

$$f_{yx}(x_0, y_0) = f_{xy}(x_0, y_0)$$

Observação: Vejamos outro exemplo onde não temos a igualdade $f_{xy} = f_{yx}$.

Consideremos:

$$f(x,y) = \begin{cases} xy \cdot \frac{x^2 - y^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

$$f_{xy}(0,0) \neq f_{yx}(0,0)$$

De fato,

$$f_x(x,y) = xy \cdot \frac{4xy^2}{(x^2 + y^2)^2} + y \cdot \frac{x^2 - y^2}{x^2 + y^2}, \quad (x,y) \neq (0,0)$$

$$f_y(x,y) = xy \cdot \frac{-4yx^2}{(x^2 + y^2)^2} + x \cdot \frac{x^2 - y^2}{x^2 + y^2}, \quad (x,y) \neq (0,0)$$

$$f_x(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0,0)}{\Delta x} = 0$$

$$f_y(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = 0$$

$$f_{xy}(0,0) = \lim_{\Delta y \to 0} \frac{f_x(0,\Delta y) - f_x(0,0)}{\Delta y} = -1$$

$$f_{yx}(0,0) = \lim_{\Delta x \to 0} \frac{f_y(\Delta x, 0) - f_y(0,0)}{\Delta x} = 1$$

Observação: No exemplo anterior podemos observar que f, f_x e f_y são contínuas em todo \mathbb{R}^2 . Assim, pelo Teorema anterior f_{xy} não pode ser contínua em (0,0), pois caso o fosse $f_{xy}(0,0) = f_{yx}(0,0)$, o que não é o caso. Obtenha uma expressão para f_{xy} e tente provar a não continuidade.

Exercícios:

1. Se
$$f(x,y) = (x-y) \sin(3x+2y)$$
 calcule: (a) $f_x\left(0,\frac{\pi}{3}\right)$, (b) $f_y\left(0,\frac{\pi}{3}\right)$

2. Calcule u_x e u_y quando:

(a)
$$u = e^{xy} \operatorname{sen}(x+y)$$
 (b) $u = \ln(x^4 + y^4) \operatorname{arcsen}\sqrt{1 - x^2 - y^2}$

3. Se
$$f(x,y) = \begin{cases} \frac{x^2y^2 + xy}{x+y} & \text{para } x \neq -y \\ 0 & \text{para } x = -y \end{cases}$$

- (a) calcule $f_x(x,0)$ e $f_y(0,y)$;
- (b) observe que f não é constante em nenhuma vizinhançade (0,0).

4. Ache
$$\frac{\partial^3 f}{\partial x^2 \partial y}(x, y)$$
 se $f(x, y) = \ln(x + y)$

5. Mostre que
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$
 está satisfeita por:
(a) $\ln(x^2 + y^2)$ (b) $x^3 - 3xy^2$

6. Mostre que a função definida por

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} &, & x \neq 0 \\ 0 &, & x = 0 \end{cases}$$

é diferenciável para todo x, mas não é de classe C^1 em x=0.

7. Calcule $f_y(1,2)$ onde $f(x,y) = x^{x^{x^y}} + \text{sen } (\pi x)[x^2 + \text{sen } (x+y) + e^x \cos^2 y].$

Sugestão: Existe uma maneira muito fácil de fazer isto.

- 8. Sejam $g, h : \mathbb{R}^2 \to \mathbb{R}$, contínuas. Defina $f : \mathbb{R}^2 \to \mathbb{R}$ por $f(x,y) = \int_0^x g(t,0)dt + \int_0^y h(1,t)dt$
 - (a) Mostre que $f_x(x,y) = g(x,0)$ e que $f_y(x,y) = h(1,y)$
 - (b) Ache uma função $\overline{f}:\mathbb{R}^2\to\mathbb{R}$ tal que $\overline{f}_x(x,y)=x$ e $\overline{f}_y(x,y)=y$

2.7.3 Diferenciabilidade

Quando uma função de uma variável é derivável em um ponto, ela é também contínua neste ponto. Observe agora o que acontece com o exemplo abaixo:

Exemplo:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} &, \text{ para } (x,y) \neq (0,0) \\ 0 &, \text{ para } (x,y) = (0,0) \end{cases}$$

Note que não existe limite no ponto (0,0) (visto anteriormente), e assim, f não é contínua em (0,0).

Mas f é derivável em relação a x e a y em (0,0). De fato:

Fixando-se
$$y = 0 \Longrightarrow z = f(x, 0) \equiv 0$$
, e assim $f_x(0, 0) = 0$.

Fixando-se
$$x = 0 \Longrightarrow z = f(0, y) \equiv 0$$
, e assim $f_y(0, 0) = 0$.

Assim é possível com a função tenha todas as derivadas parciais em um ponto e que não seja contínua naquele ponto.

Vamos então introduzir o conceito de diferenciabilidade, que vai garantir a continuidade da função. Na realidade ele implicará que o gráfico da função não tem quinas, e em particular,

que não tem saltos. Será introduzido por analogia com o conceito de diferenciabilidade de funções de uma variável.

Para uma variável:

y = f(x) é **diferenciável** em x_0 , se existe uma reta passando por $(x_0, f(x_0))$ de equação

$$Y = f(x_0) + m(x - x_0)$$
,

tal que a diferença f(x)-Y seja um infinitésimo de ordem superior, em comparação com $x-x_0$, quando $x\to x_0$, isto é:

$$\lim_{x \to x_0} \frac{f(x) - Y}{x - x_0} = 0$$

y = f(x) é **derivável** no ponto x_0 , se existe o seguinte limite:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Mas ser derivável é equivalente a ser diferenciável (para funções de uma variável).

De fato:

 \implies Suponhamos f derivável em x_0 .

Então existe
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = m$$
.

Consideremos a reta de equação $Y = f(x_0) + m(x - x_0)$

$$\lim_{x \to x_0} \frac{f(x) - Y}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0) - m(x - x_0)}{x - x_0} = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} - m \right) = 0$$

Portanto f é diferenciável em x_0 .

 \iff Suponhamos f diferenciável em x_0 .

$$0 = \lim_{x \to x_0} \frac{f(x) - Y}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0) - m(x - x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} - m \right) \Longrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - m$$

Portanto f é derivável em x_0 .

Assim, geometricamente, podemos traçar uma tangente ao gráfico da função f pelo ponto $(x_0, f(x_0))$.

Exercício Conceitual:

Seja f diferenciável em x_0 . Seja $P_0=(x_0,y_0)$ onde $y_0=f(x_0)$. Se P é um outro ponto da curva C descrita por y=f(x) e β é o ângulo entre o vetor $P-P_0$ e a reta tangente a C em P_0 , mostre que

$$\beta \to 0$$
 com $P \to P_0$.

Reciprocamente, mostre que se $\beta \to 0$, então f é diferenciável em P_0 .

Nota: O exercício acima mostra que em um sentido preciso o ângulo entre a reta tangente e a curva é zero no ponto de tangência.

Para duas variáveis:

Diz-se que z = f(x, y) é **diferenciável** num ponto (x_0, y_0) , se existe um plano pelo ponto $(x_0, y_0, f(x_0, y_0))$, de equação:

$$Z = f(x_0, y_0) + A(x - x_0) + B(y - y_0) ,$$

tal que a diferença f(x,y)-Z seja um infinitésimo de ordem superior, em comparação com $\alpha=\sqrt{(x-x_0)^2+(y-y_0)^2}$ quando $\alpha\to 0$, isto é:

$$\lim_{\alpha \to 0} \frac{f(x,y) - Z}{\alpha} = 0 \tag{*}$$

Em notação alternativa, tomando $x=x_0+h\;$ e $\;y=y_0+k$ e chamando

$$E(h,k) = f(x,y) - Z = f(x_0 + h, y_0 + k) - [f(x_0, y_0) + Ah + Bk]$$

(*) pode ser reescrita como

$$\lim_{(h,k)\to(0,0)} \frac{E(h,k)}{\|(h,k)\|} = 0 \tag{**}$$

Logo, $f(x_0 + h, y_0 + k) = f(x_0, y_0) + Ah + Bk + E(h, k)$.

Passando ao limite, com $(h,k) \rightarrow (0,0)$, obtemos:

$$\lim_{\substack{h \to 0 \\ k \to 0}} f(x_0 + h, y_0 + k) = f(x_0, y_0)$$

Acabamos de provar que se f é **diferenciável** em (x_0, y_0) , então f é **contínua** em (x_0, y_0) . Voltemos em (**), fazendo k = 0

Obtemos:

$$\lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0) - Ah}{|h|} = 0$$

Mas isto equivale a:

$$\lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0) - Ah}{h} = 0$$

ou

$$\lim_{h \to 0} \left[\frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} - A \right] = 0$$

ou

$$\lim_{h \to 0} \left[\frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \right] = A$$

Assim, $f_x(x_0, y_0) = A$.

Analogamente, $f_y(x_0, y_0) = B$.

Portanto: se f for diferenciável num ponto (x_0, y_0) , então f tem derivadas parciais nesse ponto. Além disso, o plano de equação

$$(**) Z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

aproxima o gráfico de z=f(x,y) no seguinte sentido:

$$\lim_{\alpha \to 0} \frac{f(x, y) - Z}{\alpha} = 0$$

ou, na notação alternativa

$$\lim_{(h,k)\to(0,0)} \frac{E(h,k)}{\|(h,k)\|} = 0$$

Este é um modo de exprimir o fato de que o plano **é tangente** à superfície no ponto $(x_0, y_0, f(x_0, y_0))$.

Exemplos:

$$1. \ z = g(x, y) = x + y$$

gé diferenciável em $(x_0,y_0), \ \ \forall \ (x_0,y_0) \in \mathbb{R}^2 \,.$

De fato:

Consideremos o plano

$$Z = x_0 + y_0 + 1(x - x_0) + 1(y - y_0) = x + y$$

$$\frac{g(x,y)-Z}{\alpha}=0 \to 0 \quad \text{com} \quad \alpha \to 0$$

2.
$$z = f(x, y) = xy$$

f é diferenciável em $(x_0, y_0), \ \forall \ (x_0, y_0) \in \mathbb{R}^2$.

De fato:

Consideremos o plano

$$Z = x_0 y_0 + y_0 (x - x_0) + x_0 (y - y_0)$$

$$\frac{f(x,y) - Z}{\alpha} = \frac{x(y - y_0) - x_0(y - y_0)}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} = \frac{(x - x_0)(y - y_0)}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} \to 0$$

com $\alpha \to 0$ (já visto anteriormente).

3. $p_1(x,y) = x$

 p_1 é diferenciável em $(x_0, y_0), \ \forall \ (x_0, y_0) \in \mathbb{R}^2$.

De fato:

Consideremos o plano

$$Z = x_0 + 1(x - x_0) = x$$

$$\frac{p_1(x,y) - Z}{\alpha} = 0 \to 0 \quad \text{com} \quad \alpha \to 0.$$

Observação 1: Olhe detalhadamente os exemplos (1) e (3). Qual é o tipo de gráfico destas funções? Qual seria o plano esperado para resolver o problema da diferenciabilidade?

Observação 2: No caso de uma função f ser diferenciável em um ponto, nós podemos mostrar que em um sentido preciso o ângulo entre o plano tangente e a superfície é zero no ponto de tangência. é uma generalização do exercício conceitual dado anteriormente.

Propriedades:

- A soma (também o produto) de duas funções diferenciáveis em um ponto é uma função diferenciável no ponto.
- 2. Se uma função $f(x,y) \neq 0$ é diferenciável em um ponto, então a recíproca é diferenciável nesse ponto.

3. Toda polinomial em duas variáveis $P(x,y) = \sum_{i,j} a_{ij} x^i y^j$ é diferenciável, como soma e produto de diferenciáveis.

Observação 1: Já vimos que toda função diferenciável é contínua, mas nem toda contínua é diferenciável.

Exemplo:

z = f(x, y) = |x| + |y| é contínua em (0,0).

Fixando $y = 0 \Longrightarrow z = |x| \Longrightarrow \frac{\partial z}{\partial x} (0,0)$ não existe.

Sabemos que se z = f(x, y) é diferenciável, então ela tem derivadas parciais. Assim, z = |x| + |y| não é diferenciável em (0, 0).

Observação 2: Vimos que se z = f(x, y) é diferenciável em (x_0, y_0) , então existem $f_x(x_0, y_0)$ e $f_y(x_0, y_0)$. No entanto, pode acontecer que existam $f_x(x_0, y_0)$ e $f_y(x_0, y_0)$ e $f_y(x_0, y_0)$ e $f_y(x_0, y_0)$.

Exemplos:

1.
$$z = f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} &, \text{ para } (x,y) \neq (0,0) \\ 0 &, \text{ para } (x,y) = (0,0) \end{cases}$$

Já foi visto anteriormente que $f_x(0,0) = f_y(0,0) = 0$. Ainda: f não é contínua (e portanto não é diferenciável) em (0,0).

2.
$$z = g(x, y) = \sqrt{|xy|}$$

Observe que $g_x(0,0)=g_y(0,0)=0$ e que g é contínua em todo ponto do plano.

Ainda assim, g não é diferenciável na origem, pois:

$$\frac{E(h,k)}{\|(h,k)\|} = \frac{g(h,k) - [g(0,0) + 0 \cdot h + 0 \cdot k]}{\|(h,k)\|} = \frac{\sqrt{|h k|}}{\sqrt{h^2 + k^2}}$$

não tende a zero com $(h,k) \to (0,0)$ (observe o que acontece na direção h=k).

Tente esboçar o gráfico de g.

Algumas vezes é dificil verificar diretamente a diferenciabilidade da função. O próximo teorema dá uma condição suficiente para que uma função f seja diferenciável e é importante dada a facilidade de verificação de suas hipóteses.

Teorema 2.7.3 (Critério de Diferenciabilidade). Se as derivadas parciais f_x e f_y existirem em um conjunto aberto A contendo P_0 e forem contínuas em P_0 , então f será diferenciável em P_0 .

Prova: Consideremos $P_0 = (x_0, y_0)$. Como A é aberto, para h e k suficientemente pequenos o retângulo formado pelos 4 pontos: (x_0, y_0) , $(x_0 + \Delta x, y_0)$, $(x_0, y_0 + \Delta y)$ e $(x_0 + \Delta x, y_0 + \Delta y)$ está contido em A.

Temos então que $\Delta f = f(P) - f(P_0) = f(x_0 + h, y_0 + k) - f(x_0, y_0) = [f(x_0 + h, y_0 + k) - f(x_0 + h, y_0)] + [f(x_0 + h, y_0) - f(x_0, y_0)].$

Usando o Teorema do Valor Médio para funções de uma variável sobre cada uma das diferenças acima, obtemos:

$$\Delta f = f_y(x_0 + h, y_1) \cdot k + f_x(x_1, y_0) \cdot h$$

Por hipótese, f_x e f_y são contínuas em P_0 e assim

$$f_x(x_1, y_0) = f_x(x_0, y_0) + \eta_1$$
 e $f_y(x_0 + h, y_1) = f_y(x_0, y_0) + \eta_2$

onde ambos η_1 e η_2 tendem a zero com $||(h,k)|| \to 0$.

Assim:
$$\Delta f = f_x(x_0, y_0) \cdot h + f_y(x_0, y_0) \cdot k + \eta_1 \cdot h + \eta_2 \cdot k$$
.

Pela definição de diferenciabilidade nós temos somente que mostrar:

$$\frac{n_1 \cdot h + n_2 \cdot k}{\sqrt{h^2 + k^2}} \to 0$$

mas

$$\left| \frac{n_1 \cdot h + n_2 \cdot k}{\sqrt{h^2 + k^2}} \right| \le (|n_1| + |n_2|) \to 0$$

conforme $\sqrt{h^2 + k^2} \to 0$.

Exemplo:

Seja
$$z = f(x, y) = \operatorname{sen}(xy)$$

$$f_x(x,y) = y \cdot \cos(xy)$$

$$f_y(x,y) = x \cdot \cos(xy)$$

são contínuas em todo ponto $(x,y) \in \mathbb{R}^2$. Logo pelo teorema anterior, $f(x,y) = \operatorname{sen}(xy)$ é diferenciável em todo ponto $(x,y) \in \mathbb{R}^2$.

Observação: Embora o teorema anterior pareça resolver todos os problemas no que se refere a mostrar que uma função é diferenciável, há casos em que ele não se aplica, ou seja: existem funções diferenciáveis em um ponto cujas derivadas parciais não são contínuas neste ponto. Neste caso a verificação da diferenciabilidade deve ser feita pela definição. Veja o exemplo a seguir:

Exemplo:

Seja

$$f(x,y) = \begin{cases} (x^2 + y^2) \cdot \operatorname{sen}\left(\frac{1}{x^2 + y^2}\right) &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

- (a) Determine f_x e f_y ;
- (b) Mostre que f_x e f_y não são contínuas em (0,0);
- (c) Prove que f é diferenciável em \mathbb{R}^2 .

Resolução:

(a)
$$f_x(x,y) = \begin{cases} 2x \operatorname{sen}\left(\frac{1}{x^2 + y^2}\right) - \frac{2x}{(x^2 + y^2)} \cdot \cos\left(\frac{1}{x^2 + y^2}\right) &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

 $f_y(x,y) = \begin{cases} 2y \operatorname{sen}\left(\frac{1}{x^2 + y^2}\right) - \frac{2y}{(x^2 + y^2)} \cdot \cos\left(\frac{1}{x^2 + y^2}\right) &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$

- (b) $\lim_{t\to 0} f_x(t,t)$ e $\lim_{t\to 0} f_y(t,t)$ não existem e portanto f_x e f_y não são contínuas em (0,0).
- (c) Para verificar que f é diferenciável em (0,0) note que

$$\frac{E(h,k)}{\|(h,k)\|} = \sqrt{(h^2 + k^2)} \cdot \operatorname{sen}\left(\frac{1}{h^2 + k^2}\right) \quad \text{e que} \quad \lim_{(h,k) \to (0,0)} \frac{E(h,k)}{\|(h,k)\|} = 0$$

A Diferencial

Seja f(x,y) diferenciável em (x_0,y_0) e consideremos a transformação linear $L: \mathbb{R}^2 \to \mathbb{R}$ dada por

$$L(h, k) = f_x(x_0, y_0)h + f_y(x_0, y_0)k$$
.

Voltando à condição de diferenciabilidade notamos que

$$E(h,k) = f(x_0 + h, y_0 + k) - f(x_0, y_0) - [f_x(x_0, y_0)h + f_y(x_0, y_0)k] = \Delta f - L(h, k),$$

onde
$$\Delta f = f(x_0 + h, y_0 + k) - f(x_0, y_0).$$

Assim:

$$\lim_{(h,k)\to(0,0)} \frac{\Delta f - L(h,k)}{\|(h,k)\|} = 0$$

ou seja $L(h, k) \sim \Delta f$, para $||(h, k)|| \sim 0$.

Chamamos a transformação linear L de **diferencial** de f em (x_0, y_0) .

Dizemos que $L(h,k) = f_x(x_0,y_0)h + f_y(x_0,y_0)k$ é a diferencial de f em (x_0,y_0) relativa aos acréscimos h e k.

Em **notação clássica** a diferencial de f em (x,y) relativa aos acréscimos dx e dy é indicada por dz (ou df)

$$dz = f_x(x, y)dx + f_y(x, y)dy$$

Assim, para acréscimos pequenos,

$$\Delta z \sim dz$$
.

Chamando $\eta = \frac{\Delta f - df}{\|(h, k)\|}$, a condição de diferenciabilidade pode ser reformulada como: f é **diferenciável** em (x_0, y_0) se, e somente se, $\Delta f = df + \eta \cdot \sqrt{h^2 + k^2}$, onde $\eta \to 0$ com $\|(h, k)\| \to 0$.

Observação 1: Em geral, $\Delta z \neq dz$. Quando $h = \Delta x$ e $k = \Delta y$ são pequenos, então dz constitui uma aproximação de Δz .

Observação 2: Podemos dizer que a diferencial é uma função de quatro variáveis independentes, a saber: as coordenadas x, y do ponto considerado e os acréscimos Δx e Δy .

Exemplos:

1. Se $z = f(x,y) = 3x^2 - xy$, calcule Δz e dz se (x,y) muda de (1,2) para (1.01,1.98). Temos:

$$dz = (6x - y)dx + (-x)dy$$

Substituindo $x=1, y=2, dx=\Delta x=0.01$ e $dy=\Delta y=-0.02$, obtemos:

$$dz = (6-2)(0.01) + (-1)(-0.02) = 0.06$$

Calculando diretamente Δz , teríamos:

$$\Delta z = 0.0605.$$

Assim, o erro envolvido é 0.0005.

2. O raio e a altura de uma caixa de forma cilíndrica são medidos como 3m e 8m respectivamente, com um possível erro de $\pm 0.05m$. Use diferenciais para calcular o erro máximo no cálculo do volume

$$V = \pi r^2 h$$

$$dV = \frac{\partial V}{\partial r} dr + \frac{\partial V}{\partial h} dh = 2\pi r h dr + \pi r^2 dh$$
Substituindo $r = 3$, $h = 8$, $dr = dh = \pm 0.05$, temos:
$$dV = 48\pi(\pm 0.05) + 9\pi(\pm 0.05) = \pm 2.85\pi \simeq \pm 8.95m^3.$$

Resultados análogos valem para funções de n-variáveis (n > 2).

Por exemplo:

$$f$$
 é **diferenciável** em um ponto $P_0=(a_1,a_2,\ldots,a_n)$ em \mathbb{R}^n se
$$f(P)=f(P_0)+A_1h_1+A_2h_2+\cdots+A_nh_n+\eta\cdot\sqrt{h_1^2+\cdots+h_n^2}\quad \text{tal que}\quad \eta\to 0$$
 conforme $\|P-P_0\|=\sqrt{h_1^2+\cdots+h_n^2}\to 0$, onde $P=(a_1+h_1,a_2+h_2,\ldots,a_n+h_n)$.

Neste caso: $f_{x_i}(P_0) = f_i(P_0) = A_i$, i = 1, ..., n.

Exercícios:

1. Justifique porque a função

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^6} &, \text{ se } (x,y) \neq (0,0) \\ 0 &, \text{ se } (x,y) = (0,0) \end{cases}$$

não é diferenciável na origem.

2. Calcular as diferenciais das funções dadas abaixo:

(a)
$$z = e^x y^2$$
 (b) $z = x^2 \sqrt{1 + xy^2}$

- 3. As dimensões de uma caixa retangular fechada são medidas como sendo 3, 4 e 5 metros, com um possível erro de 5cm. Use diferenciais para aproximar o erro máximo no cálculo de :
 - (a) área da superfície da caixa;
 - (b) volume da caixa.
- 4. Seja f(x) diferenciável com f(0) = 0 e $f(x) \neq 0$ para $x \neq 0, x \in \mathbb{R}$.

Seja
$$g(x,y) = \begin{cases} \frac{f(x)f(y)}{f^2(x) + f^2(y)} &, \text{ para } (x,y) \neq (0,0) \\ 0 &, \text{ para } (x,y) = (0,0) \end{cases}$$

- (i) Mostre que existe $g_x(0,0)$ e $g_y(0,0)$;
- (ii) Mostre que g(x, y) não é diferenciável em (0, 0).
- 5. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $|f(x,y)| \le x^2 + y^2$. Mostre que f é diferenciável em (0,0).

2.7.4 Regras da Cadeia

Muitas vezes a função z=f(x,y) é dada sob a forma de função composta, em que os argumentos x, y são eles próprios funções de t

$$x = \phi_1(t) \qquad \qquad y = \phi_2(t).$$

Então, $z=f(\phi_1(t)\,,\,\phi_2(t))$ e podemos, portanto, falar em diferenciabilidade relativamente a t .

Teorema 2.7.4. Sejam $\phi_1(t)$ e $\phi_2(t)$ diferenciáveis em t_0 e z = f(x,y) diferenciável no ponto $P_0 = (\phi_1(t_0), \phi_2(t_0))$. Então $z(t) = f(\phi_1(t), \phi_2(t))$ é diferenciável no ponto t_0 e ainda

$$\left(\frac{dz}{dt}\right)_{t_0} = \left(\frac{\partial z}{\partial x}\right)_{P_0} \cdot \left(\frac{d\phi_1}{dt}\right)_{t_0} + \left(\frac{\partial z}{\partial y}\right)_{P_0} \cdot \left(\frac{d\phi_2}{dt}\right)_{t_0} .$$

Prova:

Como z é diferenciável em P_0 , temos em particular que:

$$\Delta z = \left(\frac{\partial z}{\partial x}\right)_{P_0} \cdot \Delta x + \left(\frac{\partial z}{\partial y}\right)_{P_0} \cdot \Delta y + \alpha \eta$$

onde $\eta \to 0$ com $\alpha \to 0$ e $\alpha = \sqrt{(\Delta x)^2 + (\Delta y)^2}$ sendo que

$$\begin{cases} \Delta x = \phi_1(t_0 + \Delta t) - \phi_1(t_0) \\ \Delta y = \phi_2(t_0 + \Delta t) - \phi_2(t_0) \end{cases}$$

Logo, para $\Delta t \neq 0$

$$(*) \qquad \frac{\Delta z}{\Delta t} = \left(\frac{\partial z}{\partial x}\right)_{P_0} \frac{\Delta x}{\Delta t} + \left(\frac{\partial z}{\partial y}\right)_{P_0} \frac{\Delta y}{\Delta t} \pm \eta \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2}$$

Observemos que

$$\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \left(\frac{d\phi_1}{dt}\right)_{t_0} \quad \text{e} \quad \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} = \left(\frac{d\phi_2}{dt}\right)_{t_0}$$

ainda:

$$\Delta t \to 0 \Longrightarrow [\Delta x \to 0 \text{ e } \Delta y \to 0]$$

pois ϕ_1 e ϕ_2 sendo diferenciáveis em t_0 são contínuas em t_0 .

Passando ao limite a expressão (*) com $\Delta t \rightarrow 0$, temos:

$$\left(\frac{dz}{dt}\right)_{t_0} = \left(\frac{\partial z}{\partial x}\right)_{P_0} \cdot \left(\frac{d\phi_1}{dt}\right)_{t_0} + \left(\frac{\partial z}{\partial y}\right)_{P_0} \cdot \left(\frac{d\phi_2}{dt}\right)_{t_0}.$$

pois $\eta \to 0$ com $\Delta t \to 0$ e $[(\Delta x/\Delta t)^2 + (\Delta y/\Delta t)^2] \to L \in \mathbb{R}$ com $\Delta t \to 0$.

Exemplos:

1.
$$z = f(x, y) = e^{xy}$$
 onde
$$\begin{cases} x = \text{sen } t \\ y = \cos t \end{cases}$$

1º modo:

$$x_0 = \operatorname{sen} t_0$$

$$y_0 = \cos t_0$$

$$\left(\frac{dz}{dt}\right)_{t_0} = y_0 e^{x_0 y_0} \cos t_0 + x_0 e^{x_0 y_0} \cdot -\text{sen } t_0 = e^{x_0 y_0} \left[\cos^2 t_0 - \text{sen }^2 t_0\right].$$

 $2^{\underline{\mathbf{0}}}$ modo:

$$z(t) = e^{\sin t \cos t}$$

$$\left(\frac{dz}{dt}\right)_{t_0} = e^{\operatorname{sen}t_0 \cos t_0} \left(\operatorname{sen} t_0 \cdot - \operatorname{sen} t_0 + \cos t_0 \cos t_0 \right) = e^{\operatorname{sen}t_0 \cos t_0} \left(\cos^2 t_0 - \operatorname{sen}^2 t_0 \right).$$

Observação: Podemos pensar que a regra da cadeia seja dispensável, já que podemos primeiro fazer as substituições e depois derivar. Na verdade, ainda continuamos fazendo uso da regra da cadeia mesmo depois de fazermos as substituições.

2.
$$z = f(x,y) = x^2 + y$$
 onde $x = t^3$, $y = t^2$
$$\left(\frac{dz}{dt}\right)_{t_0} = 6t_0^5 + 2t_0$$

Observação: Vale um teorema análogo para o caso de n variáveis.

Enunciado:

Sejam $x_i=x_i(t)$ $i=1,\ldots,n$ funções diferenciáveis em t_0 . Seja $z=f(x_1,\ldots,x_n)$ diferenciável em $P_0=(x_1(t_0),\ldots,x_n(t_0))$. Então $z(t)=f(x_1(t),\ldots,x_n(t))$ é diferenciável em t_0 e

$$\left(\frac{dz}{dt}\right)_{t_0} = \sum_{i=1}^n \left(\frac{dz}{dx_i}\right)_{P_0} \cdot \left(\frac{dx_i}{dt}\right)_{t_0}$$

Generalização:

Sejam $z = f(x_1, \ldots, x_n)$ onde

$$x_1 = x_1(t_1, \dots, t_s)$$

:

$$x_n = x_n(t_1, \dots, t_s)$$

Temos então:

$$\left(\frac{\partial z}{\partial t_i}\right)\left(t_1^0,\ldots,t_s^0\right) = \sum_{i=1}^n \left(\frac{\partial z}{\partial x_j}\right)_{P_0} \cdot \left(\frac{\partial x_j}{\partial t_i}\right)\left(t_1^0,\ldots,t_s^0\right) .$$

onde
$$P_0 = (x_1(t_1^0, \dots, t_s^0), \dots, x_n(t_1^0, \dots, t_s^0)).$$

Na prática, costuma-se escrever:

$$\frac{\partial z}{\partial t_i} = \sum_{j=1}^n \frac{\partial z}{\partial x_j} \cdot \frac{\partial x_j}{\partial t_i} .$$

Exemplo:

$$z = f(x,y) = e^{xy}$$
 onde
$$\begin{cases} x = x(r,s) = r + s \\ y = y(r,s) = r - s \end{cases}$$

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial r} = e^{r^2 - s^2} \cdot 2r$$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s} = e^{r^2 - s^2} \cdot (-2s)$$

Exercício:

Seja
$$z = f(x, y) = \frac{2x + y}{y - 2x}$$
 onde
$$\begin{cases} x = 2u - 3v \\ y = u + 2v \end{cases}$$

Calcular:

(a)
$$\frac{\partial f}{\partial u}$$
 (b) $\frac{\partial f}{\partial v}$ (c) $\frac{\partial^2 f}{\partial u^2}$ (d) $\frac{\partial^2 f}{\partial v^2}$ (e) $\frac{\partial^2 f}{\partial u \partial v}$ no ponto $u=2$ e $v=1$.

Respostas:

(a)
$$7$$
 (b) -14 (c) 21 (d) 112 (e) -49

Observação: é freqüente encontrar-se z = f(x, y) com y = y(x). Neste caso, z = f(x, y(x)) = z(x). Ainda

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dx} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}$$

Portanto

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}$$

Exercícios:

1. (a) Mostre que para uma função f(x,y) ter como curvas de nível circunferências com centro na origem é necessário e suficiente que $x \frac{\partial f}{\partial y} = y \frac{\partial f}{\partial x}$.

Sugestão: as equações paramétricas da circunferência com centro na origem e

raio a são:

$$\begin{cases} x = a \cos t \\ y = a \sin t \end{cases}$$

- (b) Dê dois exemplos de funções diferenciáveis na origem cujas curvas de nível sejam circunferências.
- 2. Seja $f(x,y)=x^2+y^2$. Considere a curva $y=\phi(x)=x^3$ e calcule:

(a)
$$\frac{\partial z}{\partial x}(1,1)$$

(b)
$$\frac{dz}{dx}(1)$$

2.7.5 Gradiente - Curva de Nível - Superfície de Nível

Definição 2.7.5. Seja z = f(x,y) com derivadas parciais no ponto P. Chamamos gradiente de f no ponto P = (x,y) e indicamos por $\nabla f(P)$ ao vetor:

$$\nabla f(P) = \left(\frac{\partial f}{\partial x}\right)_P \cdot \vec{i} + \left(\frac{\partial f}{\partial y}\right)_P \cdot \vec{j}$$

$$Se \ w = f(x,y,z) \ e \ P = (x,y,z) \ ent \\ \tilde{ao} \ \nabla f(P) = \left(\frac{\partial f}{\partial x}\right)_P \cdot \vec{i} + \left(\frac{\partial f}{\partial y}\right)_P \cdot \vec{j} + \left(\frac{\partial f}{\partial z}\right)_P \cdot \vec{k}$$

Exemplos:

(1)
$$f(x,y) = \frac{1}{6}(x^2 + y^3)$$

$$\nabla f(x,y) = \frac{1}{3} x \vec{i} + \frac{1}{2} y^2 \vec{j}$$

(2)
$$g(x, y, z) = \frac{1}{2}(x^2 + y^2 + z^2)$$

$$\nabla g(x,y,z) = x\,\vec{i} + y\,\vec{j} + z\,\vec{k}$$

(3)
$$h(x,y) = x^2 - y^2$$

 $\nabla h(1,0) = 2\vec{i}$
Curva de Nível por $(1,0)$:
 $\{(x,y) \mid x^2 - y^2 = 1\}$

Neste exemplo notamos que $\nabla h(1,0)$ é normal à curva de nível de h que passa por (1,0). O resultado a seguir mostra que este fato, sob certas condições, é geral:

Teorema 2.7.6. Seja z = f(x, y) diferenciável em $P_0 = (x_0, y_0)$ com $\nabla f(P_0) \neq \vec{0}$. Então $\nabla f(P_0)$ é normal à curva de nível γ que passa por P_0 (estamos supondo γ uma curva regular numa vizinhança de P_0).

Prova:

Seja $\gamma(t)=(x(t),y(t))$ a curva de nível de f(x,y) tal que $\gamma(t_0)=P_0$.

Assim temos que

$$z(t) = f(x(t), y(t)) \equiv k \tag{*}$$

Como γ e fsão diferenciáveis, podemos usar a Regra da Cadeia para diferenciar ambos

os membros de (*), obtendo:

$$\frac{\partial f}{\partial x}(P_0) \cdot \left(\frac{dx}{dt}\right)_{t_0} + \frac{\partial f}{\partial y}(P_0) \cdot \left(\frac{dy}{dt}\right)_{t_0} = 0$$

A equação anterior pode ser reescrita como

$$\langle \nabla f(P_0), \gamma'(t_0) \rangle = 0$$

Exercício:

1. Achar um vetor normal à curva $y=x+{\rm sen}\ x$ no ponto $x=\pi/2$.

10 modo:

Definimos

$$F(x,y) = (x + \operatorname{sen} x) - y$$

Vemos que a curva considerada

é uma curva de nível da função

diferenciável F. Assim, para calcular

um vetor normal basta calcular
$$\nabla F\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2} + 1\right) = \vec{i} - \vec{j}$$

Portanto o vetor $\vec{i} - \vec{j}$ é normal à curva y = x + sen x no ponto $x = \frac{\pi}{2}$.

20 modo:

A equação vetorial da curva é:

$$\vec{r}(x) = x\,\vec{i} + (x + \mathrm{sen}\ x)\vec{j}$$

O vetor tangente é

$$\frac{d\vec{r}}{dx} = \vec{i} = (1 + \cos x)\vec{j}$$

no ponto $x = \frac{\pi}{2}$ temos

$$\left(\frac{d\vec{r}}{dx}\right)\left(\frac{\pi}{2}\right) = \vec{i} + \vec{j}$$

Verifica-se que $\vec{\eta} = \vec{i} - \vec{j}$ é tal que

$$<\left(\frac{d\vec{r}}{dx}\right)\left(\frac{\pi}{2}\right),\ \vec{\eta}> = 0 \Longleftrightarrow \eta \perp \left(\frac{d\vec{r}}{dx}\right)\left(\frac{\pi}{2}\right).$$

Exercícios:

- 1. Achar as equações
 - (a) da tangente

(b) do plano normal à curva
$$\begin{cases} x=t-\cos t\\ y=3+\sin 2t & \text{no ponto } t=\frac{\pi}{2}\\ z=1+\cos 3t \end{cases}$$

Resposta: plano normal: $2(x - \frac{\pi}{2}) - 2(y - 3) + 3(z - 1) = 0$.

- 2. Consideremos g e f tais que $g(x,y) = e^{x+y}$, f'(0) = (1,2) e f(0) = (1,-1). Calcular F'(0), onde F(t) = g(f(t)).
- 3. Considere f(x,y) = xy + 1.
 - (a) Desenhe as curvas de nível $f(x,y) \equiv 0, f(x,y) = 1, f(x,y) = 2.$
 - (b) Desenhe alguns vetores gradientes de f .
 - (c) O que acontece com $\nabla f(0,0)$ e com a curva de nível que passa por (0,0)?
- 4. Em cada um dos casos abaixo, desenhe um número suficiente de vetores para ilustrar o campo gradiente de f:

- (a) $f(x,y) = \frac{1}{2}(x^2 y^2)$
- (b) f(x, y, z) = x + y + z
- (c) f(x, y, z) = 20 z

Vamos agora generalizar o resultado visto na última seção, para funções de 3 variáveis.

Suponhamos que S seja uma superfície com equação F(x,y,z)=k, ou seja, uma superfície de nível da função F, e seja $P_0=(x_0,y_0,z_0)$ um ponto sobre S.

Seja ainda $\gamma(t)=(x(t),y(t),z(t))$ uma curva arbitrária, contida na superfície S, tal que $\gamma(t_0)=P_0$.

Assim temos F(x(t), y(t), z(t)) = k (*).

Seja γ e F são diferenciáveis, podemos usar a Regra da Cadeia para diferenciar ambos os lados de (*), como se segue:

$$\frac{\partial F}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial F}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial F}{\partial z} \cdot \frac{dz}{dt} = 0$$

Como $\nabla F=\langle F_x,Fy,F_z\rangle$ e $\gamma'(t)=\left(\frac{dx}{dt},\frac{dy}{dt},\frac{dz}{dt}\right)$ a equação anterior pode ser reescrita como

$$<\nabla F$$
, $\gamma'(t)>=0$

Em particular, quando $t=t_0\,,$ temos $\gamma(t_0)=(x_0\,,\,y_0\,,\,z_0)$ e assim

$$<\nabla F(x_0, y_0, z_0), \gamma'(t_0)> = 0$$

A equação anterior nos diz que o vetor gradiente em P_0 , $\nabla F(x_0, y_0, z_0)$, é normal ao vetor $\gamma'(t_0)$ de **qualquer** curva de nível γ em S que passe por P_0 .

Se $\nabla F(x_0, y_0, z_0) \neq \vec{0}$ é natural definir o **plano tangente** à superfície de nível F(x, y, z) = k em $P_0 = (x_0, y_0, z_0)$ como o plano que passa por P_0 e tem como vetor normal o vetor $\nabla F(x_0, y_0, z_0)$.

Assim uma equação do plano tangente seria:

$$(*)$$
 $F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_y(x_0, y_0, z_0)(z - z_0) = 0$

Observação: No caso especial em que S seja o gráfico de z = f(x, y), com f diferenciável em (x_0, y_0) podemos reescrever a equação como

$$F(x, y, z) = f(x, y) - z = 0$$
 e

entender S como uma superfície de nível (com k=0) de F. Então

$$F_x(x_0, y_0, z_0) = f_x(x_0, y_0)$$

$$F_y(x_0, y_0, z_0) = f_y(x_0, y_0)$$

$$F_z(x_0, y_0, z_0) = -1$$

Logo (*) se torna

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0$$

ou

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Então, nossa nova, mais geral, definição do plano tangente é consistente com a definição que foi dada no caso de diferenciabilidade para funções de duas variáveis.

Exemplos:

1. Dada a superfície regular

$$S: x^2yz + 3y^2 = 2xz^2 - 8z$$
.

encontrar:

- (a) Equação do plano tangnete no ponto (1,2,-1).
- (b) Equação da normal à superfície no mesmo ponto.
- (c) Em que ponto a normal encontra
aa o plano x + 3y 2z = 10.

Resolução:

(a) Definimos

$$F(x,y,z) = x^2yz + 3y^2 - 2xz^2 + 8z$$
 - diferenciável em todo \mathbb{R}^3

Notamos que S é superfície de nível de F, pois $F(S) \equiv 0$

$$\nabla F(1, 2, -1) = -6\vec{i} + 11\vec{j} + 14\vec{k}$$

Pelo resultado anterior $\nabla F(1,2,-1)$ é normal à superfície S no ponto (1,2,-1), e assim, a equação do plano tangente é

$$-6(x-1) + 11(y-2) + 14(z+1) = 0,$$

ou seja

$$6x - 11y - 14z + 2 = 0.$$

(b)
$$P - P_0 = t(-6, 11, 14)$$

 $(x - 1, y - 2, z + 1) = t(-6, 11, 14)$

$$\begin{cases}
x = 1 - 6t \\
y = 2 + 11t & t \in \mathbb{R} \\
z = -1 + 14t
\end{cases}$$

(c) Substituindo um ponto geral da reta que é da forma (1-6t, 2+11t, -1+14t) na equação do plano x+3y-2z=10 temos

$$(1 - 6t) + 3(2 + 11t) - 2(-1 + 14t) = 10$$

$$t = -1$$

Portanto o ponto de encontro será (7, -9, -15).

2. Dada a curva $(x, y, z) = (e^t, e^{-t}, \sqrt{2}t)$.

Qual a equação do plano normal à curva no ponto P, correspondente a t=0?

Resolução:

$$P = (1, 1, 0)$$

Plano normal à curva é o plano normal à tangente

$$\vec{r}(t) = e^t \vec{i} + e^{-t} \vec{j} + \sqrt{2} t \vec{k}$$

$$\frac{d\vec{r}}{dt}(t) = e^t \vec{i} - e^{-t} \vec{j} + \sqrt{2} \vec{k}$$

$$\frac{d\vec{r}}{dt}(0) = 1\vec{i} - 1\vec{j} + \sqrt{2}\vec{k} = \vec{v}$$

A equação do plano normal será do tipo

$$x - y + \sqrt{2}z + d = 0$$

mas deve passar pelo ponto (1,1,0)

$$1 - 1 + 0 + d = 0 \Longleftrightarrow d = 0$$

Portanto, **plano normal:** $x - y + \sqrt{2}z = 0$.

3. Dada a superfície $z=x^2+2xy+y^3,$ determinar a reta normal no ponto (1,2,13).

Resolução:

Definimos

$$F(x,y,z) = x^2 + 2xy + y^3 - z \;\; \text{-} \;\; \text{diferenciável em} \;\; \mathbb{R}^3$$

A superfície dada é uma superfície de nível de ${\cal F}$.

 $\nabla F(1,2,13) = (6,14,-1)$ é um vetor normal à superfície dada, no ponto (1,2,13).

Equação da reta normal

$$\begin{cases} x = 1 + 6\lambda \\ y = 2 + 14\lambda \\ z = 13 - \lambda \end{cases}$$

Exercícios:

1. Determinar a equação do plano tangente à superfície $z=x^2+y^2$ no ponto (1,2,5). Resposta: 2x+4y-z-5=0.

- 2. Determinar o plano tangente a $z = \sqrt{9 x^2 y^2}$ no ponto (1, 2, 2). Resposta: x + 2y + 2z 9 = 0.
- 3. Ache um vetor normal e o plano tangente ao gráfico de $f(x,y) = xy + ye^x$ em (x,y) = (1,1).
- 4. Ache os pontos do parabolóide $z = x^2 + y^2 1$ nos quais a reta normal à superfície coincide com a reta que liga a origem a estes pontos.
- 5. Dar a equação do plano tangente à superfície regular $S: x^2 + 2y^2 + 3z^2 = 36$ no ponto (1,2,3).
- 6. Ache a equação do plano tangente à superfície $z = x^2 + 5xy 2y^2$ no ponto (1, 2, 3).
- 7. Ache o plano tangente e a reta normal ao hiperbolóide de uma folha $x^2 + y^2 z^2 = 4$ no ponto (2, -3, 3).
- 8. (a) Encontre a equação do plano tangente à superfície $f(x, y, z) = x^2 + y^2 z^2 = 0$ no ponto $(1, 1, \sqrt{2})$.
 - (b) Mostre que a superfície e o plano têm uma reta comum.
 - (c) Qual é o ângulo entre esta reta e o vetor $\nabla f(1, 1, \sqrt{2})$?

2.7.6 Derivada Direcional

Definição 2.7.7. Consideremos z = f(x, y) definida em um aberto do \mathbb{R}^2 e seja $\vec{v} = (v_1, v_2)$ um vetor unitário ($\|\vec{v}\| = 1$). A **derivada direcional** de f no ponto P_0 na direção \vec{v} é o valor do limite:

$$\lim_{t\to 0} \frac{f(P_0+t\vec{v})-f(P_0)}{t} \ , \ quando \ este \ limite \ existir.$$

Notação:

$$D_{\vec{v}}f(P_0)$$
 ou $\left(\frac{\partial f}{\partial \vec{v}}\right)(P_0)$

$$D_{\vec{v}}(P_0) = \operatorname{tg} \, \alpha$$

Exemplos:

1. Dada a função $f(x,y)=x^2-xy+5y$, calcular $D_{\left(\frac{3}{5}\,,\;-\frac{4}{5}\right)}f(-1,2)$.

Resolução:

Verifica-se que
$$\left\| \left(\frac{3}{5}, -\frac{4}{5} \right) \right\| = 1$$

$$f(P_0 + t\vec{v}) = \dots = 13 - \frac{36}{5}t + \frac{21}{25}t^2$$

$$f(-1,2) = 13$$

$$\lim_{t \to 0} \frac{f(P_0 + t\vec{v}) - f(P_0)}{t} = -\frac{36}{5}$$

Portanto,
$$D_{\left(\frac{3}{5}, -\frac{4}{5}\right)} f(-1, 2) = -\frac{36}{5}$$

2.
$$f(x, y, z) = 2xy - z^2$$

Calcular a derivada direcional em (2,-1,1) na direção $\vec{v}=(3,1,-1)$.

Observe que $\|\vec{v}\| = \sqrt{11}$

$$\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{1}{\sqrt{11}} (3, 1, -1)$$

$$f(P_0 + t\vec{u}) = \dots = -5 + \frac{5t^2}{11}$$

$$f(P_0) = -5$$

$$\lim_{t \to 0} \frac{f(P_0 + t\vec{u}) - f(P_0)}{t} = \lim_{t \to 0} \frac{5t}{11} = 0.$$

Exercícios:

1. Prove que $D_{\vec{i}}f(a,b) = f_x(a,b)$

$$D_{\vec{i}}f(a,b) = f_y(a,b)$$

Vejamos a resolução de $D_{\vec{i}}f(a,b)$

$$\vec{i} = (1,0)$$

$$D_{\vec{i}}f(a,b) = \lim_{t \to 0} \frac{f[(a,b) + t(1,0)] - f(a,b)}{t} = \lim_{t \to 0} \frac{f(a+t,b) - f(a,b)}{t} = f_x(a,b)$$

2. Responda: se $D_{\vec{v}} f(P_0) = k$ então $D_{-\vec{v}} f(P_0) = ?$

Teorema 2.7.8. Consideremos $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ com A aberto e f diferenciável em $P_0 \in A$. Para todo $\vec{v} \in \mathbb{R}^2$ com $||\vec{v}|| = 1$, existe a $D_{\vec{v}} f(P_0)$ e ainda:

$$D_{\vec{v}}f(P_0) = \langle \nabla f(P_0), \vec{v} \rangle$$

Prova:

Sejam $\vec{v} = (v_1, v_2)$ e $P_0 = (x_0, y_0)$ fixos.

Consideremos a função $F(t)=f(x_0+tv_1\,,\,y_0+tv_2)$ onde t é tal que $(x_0+tv_1\,,\,y_0+tv_2)\in A$.

F pode ser vista como composta de funções e como tal ela é diferenciável no ponto t=0. Usando a Regra da Cadeia obtemos:

$$F'(0) = f_x(x_0, y_0)v_1 + f_y(x_0, y_0)v_2 = \langle \nabla f(P_0), \vec{v} \rangle$$

mas

$$F'(0) = \lim_{t \to 0} \frac{F(t) - F(0)}{t} = \lim_{t \to 0} \frac{f(x_0 + tv_1, y_0 + tv_2) - f(x_0, y_0)}{t} = D_{\vec{v}} f(P_0)$$

Assim

$$D_{\vec{v}} f(P_0) = \langle \nabla f(P_0), \vec{v} \rangle$$

Observação 1: Vemos que a derivada direcional $D_{\vec{v}} f(P_0)$ é a projeção escalar do $\nabla f(P_0)$ na direção \vec{v} .

$$D_{\vec{v}} f(P_0) = \|\nabla f(P_0)\| \|\vec{v}\| \cos \theta =$$
$$= \|\nabla f(P_0)\| \cos \theta$$

Observação 2: O teorema afirma que se f é diferenciável em um ponto P_0 , então f tem todas as derivadas direcionais em P_0 . E a recíproca, é verdadeira?

Vejamos um exemplo em que f tem todas as derivadas direcionais em P_0 , mas f não é diferenciável em P_0 .

$$f(x,y) = \begin{cases} \frac{x|y|}{\sqrt{x^2 + y^2}} &, & (x,y) \neq (0,0) \\ 0 &, & (x,y) = (0,0) \end{cases}$$

Seja $\vec{v} = (v_1, v_2) \text{ com } ||\vec{v}|| = 1$.

$$D_{\vec{v}} f(0,0) = \lim_{t \to 0} \frac{tv_1 |tv_2|}{t\sqrt{t^2(v_1^2 + v_2^2)}} = \frac{v_1 |v_2|}{\sqrt{v_1^2 + v_2^2}} = v_1 |v_2|$$

Ainda se

$$\Delta f = f(x, y) - f(0, 0) = 0 + \sqrt{x^2 + y^2} \cdot \eta$$

então

$$\eta = \frac{x|y|}{x^2 + y^2} \not\to 0 \text{ com } \begin{cases} x \to 0 \\ y \to 0 \end{cases}$$

Portanto f não é diferenciável em (0,0).

De maneira análoga define-se derivada direcional para funções de 3 ou mais variáveis. Resultados análogos aos anteriores permanecem válidos.

Exercícios:

1. Supondo f diferenciável, quando a derivada direcional é máxima e quando é mínima?

Resolução:

Admitamos $\nabla f(P_0) \neq \vec{0}$

$$D_{\vec{v}} f(P_0) = \|\nabla f(P_0)\| \cos \theta.$$

Logo, é máxima quando $\cos \theta = 1 \iff \theta = 0$.

Portanto $D_{\vec{v}} f(P_0)$ é máxima quando \vec{v} tem o mesmo sentido de $\nabla f(P_0)$.

é mínima quando $\cos \theta = -1 \iff \theta = \pi$.

Portanto $D_{\vec{v}} f(P_0)$ é mínima quando \vec{v} tem sentido oposto ao de $\nabla f(P_0)$.

2. Supondo f diferenciável, quando a derivada direcional é nula?

Resolução:

$$D_{\vec{v}} f(P_0) = \|\nabla f(P_0)\| \cos \theta = 0$$
$$\nabla f(P_0) = \vec{0} \quad \text{ou} \quad \cos \theta = 0 \iff \theta = \frac{\pi}{2}$$

Ilustração para o caso $f:\mathbb{R}^2\to\mathbb{R}$

Portanto se $\nabla f(P_0) \neq \vec{0}$ a derivada direcional é nula na direção normal ao $\nabla f(P_0)$, logo, na direção de uma curva ou de uma superfície, de nível.

3. Seja $w = f(x, y, z) = 2xy - z^2$.

Calcular a derivada direcional de w no ponto $P_0 = (2, -1, 1)$, no sentido de $\vec{v} = (2, 2, 1)$.

Resolução:

Observemos que f é diferenciável em todo \mathbb{R}^3 e que $\|\vec{v}\|=3$.

Façamos $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \left(\frac{2}{3}\,,\,\frac{2}{3}\,,\,\frac{1}{3}\right)$

$$\nabla f(P_0) = -2\vec{i} + 4\vec{j} - 2\vec{k}$$
$$D_{\vec{u}}f(P_0) = \langle \nabla f(P_0), \vec{u} \rangle = \frac{2}{3}$$

- 4. A temperatura num ponto (x,y) do plano é dada por $T(x,y)=\frac{100xy}{x^2+y^2}$.
 - (a) Calcule a derivada direcional no ponto (2.1), no sentido que faz um ângulo de 60° com o semi-eixo positivo dos x.

- (b) Em que direção, a partir de (2.1), é máxima a derivada direcional?
- (c) Qual o valor deste máximo?

Resolução:

- (a) Consideremos $\vec{u} = \frac{1}{2}\vec{i} + \frac{\sqrt{3}}{2}\vec{j}$ vetor unitário na direção de interesse $\nabla T(2,1) = \ldots = -12\vec{i} + 24\vec{j}$ $\frac{\partial T}{\partial u}(2,1) = \langle \nabla T(2,1), \vec{u} \rangle = -6 + 12\sqrt{3}$
- (b) É máxima no sentido do gradiente, isto é, do vetor $-12\,\vec{i} + 24\,\vec{j}$
- (c) O máximo é o módulo do gradiente = $12\sqrt{5}$.
- 5. Achar a derivada direcional de $F(x,y,z)=x^2yz^3$ ao longo da curva $(e^{-t}, 2\text{sen } t+1, t-\cos t)$, no ponto P_0 , onde t=0.

Resolução:

No instante t=0 o ponto P_0 correspondente é $P_0=(1,1,-1)$.

Temos que $\nabla F(x, y, z) = (2xyz^3, x^2z^3, 3x^2yz^2).$

Assim
$$\nabla F(P_0) = -2\vec{i} - \vec{j} + 3\vec{k}$$

O vetor posição da curva é dado por $\vec{r}(t) = e^{-t}\vec{i} + (2\text{sen }t+1)\vec{j} + (t-\cos t)\vec{k}$ Logo, o vetor tangente à curva é:

$$\frac{d\vec{r}}{dt} = e^{-t}\vec{i} + 2\cos t\vec{j} + (1 + \sin t)\vec{k}$$

Calculado no ponto correspondente a t=0 temos $-1\vec{i}+2\vec{j}+1\vec{k}$.

Seja $\vec{u} = \frac{1}{\sqrt{6}}(-1,2,1)$ - vetor unitário na direção de interesse

Como F é diferenciável em P_0 , pelo Teorema 5.3.8 temos

$$\frac{\partial F}{\partial \vec{u}}(P_0) = \langle \nabla F(P_0), \, \vec{u} \rangle = \frac{\sqrt{6}}{2}$$

Exercícios:

- 1. Ache o valor absoluto da derivada direcional em (1,0,1) da função $f(x,y,z)=4x^2y+y^2z$ na direção normal em (1,1,1) à superfície $x^2+2y^2+z^2=4$.
- 2. Se a temperatura em um ponto (x, y, z) de uma bola sólida de raio 3 centrada em (0,0,0) é dada por T(x,y,z) = yz + zx + xy ache a direção, a partir de (1,1,2), na qual a temperatura cresce mais rapidamente.
- 3. Sendo f diferenciável em \mathbb{R}^2 , qual o significado geométrico para o fato de $\nabla f(x,y)=0$
 - (a) em um ponto;
 - (b) em todos os pontos.
- 4. Se $f(x,y) = x^2 y^2$, calcule a derivada direcional de f na direção $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ no ponto (1,1).
- 5. Se $f(x,y)=e^{x+y}$, calcule a derivada direcional de f no ponto (1,1) na direção da curva definida por $g(t)=(t^2,t^3)$ em g(2) para t crescendo.
- 6. A temperatura num ponto (x,y) do plano xy é dada por $T = \frac{y}{x^2 + y^2}$.
 - (a) Calcule a derivada direcional no ponto (1,2) no sentido que faz um ângulo de 45° com o semi-eixo positivo dos x.
 - (b) No sentido de P para Q onde P=(x,y) e Q=(0,0), no ponto P.
- 7. Suponha que você esteja sentado no ponto $\left(-\frac{3}{2}, \frac{3}{8}, \frac{3}{4}\right)$ de uma superfície que tem por equação z = -x 2y. Qual é a direção em que você deve começar a escorregar para atingir o plano xy o mais depressa possível?
- 8. Seja $f(x,y) = x^2 + y^2$. Observe que $\nabla f(0,0) = \vec{0}$, o que deixa de indicar qual a direção em que temos o máximo crescimento de f(x,y) a partir de (0,0). Isto é razoável? O que acontece em uma vizinhança de (0,0)?
- 9. A interseção do gráfico da função diferenciável z=f(x,y) com o plano x=1 é uma reta. O gráfico, a seguir, representa curvas de nível de f.

 Calcule:

- (i) $f_x(1,0)$
- (ii) $f_y(1,0)$
- (iii) $D_{\vec{v}}f(1,0)$ onde $\vec{v}=2\vec{i}+2\vec{j}$
- (iv) Levando em conta direção, sentido e módulo, desenhe o vetor gradiente de f no ponto (1,0).

10. A interseção do gráfico da função diferenciável z=f(x,y) com o plano y=1 é uma reta.

O gráfico a seguir representa curvas de nível de f . Calcule:

- (a) $f_x(1,1)$
- (b) $f_y(1,1)$
- (c) $D_{\vec{v}}f(1,1)$ onde $\vec{v}=2\vec{i}-3\vec{j}$
- (d) Levando em conta direção, sentido e módulo, desenhe o vetor gradiente de f em (1,1).

11. Seja
$$f(x,y)=\begin{cases} \frac{xy}{\sqrt{x^2+y^2}} &, & (x,y)\neq (0,0)\\ 0 &, & (x,y)=(0,0) \end{cases}$$
 Mostre que $f_x(0,0)=f_y(0,0)=0$ mas que o gráfico de f não tem plano tangente em

(0,0).

12. Considere
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- (a) Mostre que f tem derivada direcional, em qualquer direção, em (0,0).
- (b) Mostre que f não é diferenciável em (0,0).

13. Seja
$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- (a) Mostre que f não é diferenciável em (0,0).
- (b) Considere $\gamma:(-1,1)\to\mathbb{R}^2$ uma curva diferenciável tal que $\gamma(0)=(0,0)$. Mostre que $f\circ\gamma:(-1,1)\to\mathbb{R}$ é diferenciável em todos os pontos de (-1,1).
- (c) Compare com o resultado enunciado na Regra da Cadeia.