Operating Systems and Concurrency

Lecture 1 introduction

Module goals:

- Introduce the fundamental concepts and principles of an Operating System and Concurrency.
- Help to understand how programs rely on the OS.
- Understand the basic writing of concurrent (also known as parallel) code.

What you should know by now(Labs):

- Fundamentals of OS concepts
- How to use operating system APIs and how OS schedulers work(HUGE CW we had)
- Concurrency

The exam

- It will be 120 minutes focused on:
 - Knowledge
 - Understanding
 - Application
- The exam will be 3 of 4 questions accounting for 75% of the module
- Sample questions and exams are on moodle

Past exams(links)

- Exam 2009-2010
- Exam 2010-2011
- Exam 2011-2012
- Exam 2012-2013

Module content

This table is confusing but he gave it out like that

Subject	Lectures	Lecturer
Introduction to OS	1-2	GDM
Processes, Thread	3-4	GDM
Concurrency and Deadlocks	5-6	GDM
Memory management, Swapping and virtual memory	4-5	IT
File Systems	3-4	IT

Subject	Lectures	Lecturer
Visualization	1	IT
Revision	2	IT

Definitions

You should know these by now but let me refresh your memory

- File Systems: Physical location of a file(on disk)
- Abstraction: Covering up complex process with nice high level functions and methods
- Concurrency: Allowing programs to run at the same time(without them causing conflicts)
- Security: I can't be bothered to explain this one come on guys

When an OS comes in handy?

An OS is basically a massive layer of abstraction between code and the actual Hardware and this comes in handy on a series of occasions because as programmers we can forget about hardware limitations(sometimes) and focus on algorithms.

Examples of OS abstraction:

- OSs will find a way of dealing with data when memory(RAM) is full, of course this won't be super fast and efficient but it will make the program work(this is called Swap memory on some operating systems)
- OSs will optimize the usage of memory when only certain data in an array is needed instead of all of it
- OSs will handle processes so a computer can "Multi task" making you resource intensive program bearable to use while doing other tasks.

For these and many more reasons you love your OS because it allows you to be lazy and not have to worry about the hardware most of the time you write code.

Quote this next line on the exam for some ez marks:

"All problems in computer science can be solved by another level of indirection" Dr David Wheeler PhD in computer science 1951

Concurrency

One of the most important features of modern Operating Systems is their implementations of Concurrency. These allow programmers to implements code that will run asynchronously in multiple CPU cores theoretically speeding up

your program to up to twice its normal speed. Modern CPUs are what we call multi-core or multi-threaded this means that one single CPU can do multiple operations at the same time, as long of course they don't rely on the result of another core computation.

Kernel mode

To achieve concurrency and what is called Multi-programming(concurrent code) most modern OSs work with multiple modes notably Kernel mode and User mode. The OS will transition between both modes in a controlled manner usually having a mode bit which will distinguish between both operation modes.

- Kernel mode is a more complete version of the lower level OS allowing all instructions available for the CPU
- User mode is one level of abstraction above Kernel mode and allows only a subset of instructions which can and will access Kernel mode when necessary

One way of visualizing this is User mode occurs on applications and programs where kernel mode occurs on the operating system level.

Lecture conclusions

The OS sits on top of hardware and has full access to its features while providing abstraction for the User/Programmer. It also controls the user by switching between different modes with different levels of access to the hardware.

Different OSs have different purposes and implementations but most of the time the focus on the following: Memory management, CPU scheduling, multiprogramming, file system, communication, memory management, interrupt handling, GUI, Browser

Lecture 2 more introduction

When talking about Operating systems we are most of the time thinking about abstraction and because of that is important to understand how the computer fetches, decode and executes data.

The basic cycle

As mentioned before CPUs follow a basic cycle which consists of:

- fetching
- decoding
- executing

Figure 1: Simplified computer model(Tanenbaum)

This means that regardless of what the CPU is doing it will always need to get some data, understand it and only them modify it. All CPUs are different as in they have different instruction sets and perform operations slightly differently. However all CPUs have registers as they are essential as they provide really fast memory.

Registers are extremely fast compared to other types of memory. However they are fairly limited on what they can hold and many times are designed to contain important information for the OS such as a program counter and the mode bit.

Memory management

Given the following code the results will be most likely different for the print statement, every time the program is ran.

```
#include <stdio.h>
int iVar = 0;
void main() {
    int i = 0;
    while(i < 10) {
        iVar++;
        sleep(2);
        printf("Address:%u; Value:%d\n",&iVar, iVar);
        i++;
    }
}</pre>
```

This is because the program is printing the position of the variable in memory. And the C program does not care were their variables are stored it only asks the

OS to store it. That means although the code might stay the same the OS will put the data on a different location as it sees fit. This is good as we can forget about where our variables and arrays are and only worry about names which are a lot easier to work with.

Physical and Logical Memory

This whole following paragraph is overly complicated just know that $physical\ address = logical\ address + offset$ and look at the picture

Memory is quite easily represented as a array of bits we have a position and a value which can be 0 or 1. This can also easily be translated into a array of bytes depending on how you want to see it. While working with memory as an Operating System you start at position 0 until the MAX(that being the amount of memory the computer). However when dealing with smaller scale programs physical memory is not necessary as we won't(at least we should) require the whole memory of the computer. Thanks to that we have something called logical addressing. This means that at the time you run a program it gets its own memory starting from 0 and going as far as it needs(the OS will define that). For the OS its quite simple to deal with this as it only needs an offset value for example if something in memory 0 logical is on address 1024 in real memory the logical memory at address 1 will be on address 1025 on physical memory. This adds a layer of security as it prevents processes overwriting it other's memory.

Figure 2: MMU = Memory managment unit

Interrupts

An interrupt is a temporary pause on a process. This occur for different reasons such as:

- Timer interrupts caused by the CPU clock(Allows for multi-tasking)
- I/O interrupts, due to I/O completion or error codes
- Software generated (Errors)

Because the CPU follows a basic cycle an interrupt will only happen after if has finished it cycle this prevents an interrupt from corrupting data in a register and affecting the process when the interrupt is over. This means the CPU only checks for interrupts after every cycle.

Hardware

Moore's law is one of the most famous laws when it comes to computer hardware and it states:

"The number of transistors on an integrated circuit (chip) doubles roughly every two years"

This means that in theory computer performance should double every two years. However this does not work like that because of many other computing bottlenecks. One of the main reasons this doesn't happen is because having twice as much power doesn't mean we can do two tasks at the same time. At least not in exactly half the time because most of the times we require one task to end before we start the following task.

Parallelism

Parallelism occurs when we have two or more tasks running in parallel(at the exact same time) and those two tasks do not overwrite each other. This is often hard to achieve for a number of reasons. However newer CPUs do a lot of work to allow high level languages to address parallelism in an easier manner. Problems such as load balancing and process scheduling are major areas of work for CPU and OS developers as they need to make parallelism more abstract in order to promote smaller developers to use it efficiently and get the most computing efficiency out of their computers.

Previous exam question: "Describe how, in your opinion, recent developments in computer architecture and computer design have influenced operating system design?" One thing to consider in this question is that Windows XP didn't support multi threading while today almost every single consumer grade CPU(for PCs) has at least 2 threads or even 2 cores.

Memory hierarchy

This is quite self explanatory but I will mention because it is in the slides. Faster memory is used for processing and slower memory for long term storage following this order:

- CPU cache RAM Hard Drives