NEUTRINO-NUCLEUS INTERACTIONS

By: Deepti Hariharan

RA1531010010003

B.Sc. Physics III year

Department of Physics and Nanotechnology

Guide: Dr. Rohit Dhir

A Brief History of Neutrinos

 Hypothesized by Pauli to account for the continuous shape of the β spectrum.

Confirmed in the Cowan-Reines neutrino experiment:

$$\bar{\nu}_e + p^+ \rightarrow n^0 + e^+$$

• The μ and τ neutrinos were later discovered.

Types of Scattering

Elastic

Kinetic energy and momentum conserved.

Nucleus acquires momentum and moves.

Inelastic

Kinetic energy not conserved, momentum conserved.

Nucleus is excited.

Quasi-elastic

Limiting case of inelastic scattering – transfer of energy from incident particle is very small.

Nucleus is excited.

Supernova Core-Collapse

A supernova is the explosion marking the end of a massive star(>10 M_{\odot}).

- Fusion process:
 - Hydrogen burns out and fusion slows down.
 - The star gravitationally collapses.
 - Contraction leads to rise in temperature.
 - Helium fuses into carbon and progressively to higher elements.
 - Iron is a highly stable nucleus and cannot undergo further fusion.
 - Unstable star collapses further.

Neutrino Release

- γ rays are produced which disintegrate iron nucleus to lighter nuclei.
- When M_{star} > Chandrasekhar mass limit (~1.4 M_{\odot}): $p^+ + e^- \rightarrow n^0 + \nu_e$
- Further release of energy in the form of energetic neutrinos and antineutrinos.
- Energy of these supernova neutrinos is ~25 MeV.
- The neutrinos escape the core.
- They interact with the nuclei present on the way out mainly C, O, He, H.

Area of Work

Study of interactions of low energy neutrinos with light nuclei to help understand the core-collapse event of supernovae.

Scope of Project

- Determining properties like mass and studying neutrino oscillations.
- Solar neutrinos help understand reactions happening in the sun and other stars.
- Understanding the underlying mechanism of supernova core-collapse event.
- The Cosmic Neutrino Background (CvB) gives an insight into the early universe.

References

- Measurement of γ-rays from Giant Resonances of ¹⁶O and ¹²C with Application to Supernova Neutrino Detection, JPS Conf. Proc., 010048 (2016)
- Analysis of γ-ray Production in Neutral-Current Neutrino-Oxygen Interactions at Energies above 200MeV, PRL 108, 052505 (2012)
- Signal for Supernova v_{μ} and v_{τ} Neutrinos in Water Cherenkov Detectors, 0031-9007/96/76(15)/2629(4)
- Inelastic Neutrino-Nucleus Interactions within the Spectral Function Formalism, *PRL* 118, 142502 (2017)
- Introductory Nuclear Physics Chapter 9, 11, K.S.
 Krane
- Particle Physics Chapter 2, B.R. Martin and G. Shaw

THANK YOU

NEUTRINO-NUCLEUS INTERACTIONS

By: Deepti Hariharan

RA1531010010003

B.Sc. Physics III year

Department of Physics and Nanotechnology

Guide: Dr. Rohit Dhir

MODES OF DECAY

$$p + {}^{12}C \rightarrow p' + {}^{12}C *$$

• Electromagnetic (Direct) Decay – decay by emission of radiation (γ -rays):

$$^{12}C* \rightarrow ^{12}C + \gamma$$

 Hadronic Decay – decay to a nucleus by release of particle:

12
C* \rightarrow p + 11 B
 12 C* \rightarrow n + 11 C
 12 C* \rightarrow t + 9 B
 12 C* \rightarrow d + 10 B
 12 C* \rightarrow α + 8 Be

OPTICAL POTENTIAL MODEL

- Analogous to refraction in optics.
- Real part of potential gives the elastic scattering and the imaginary part takes into account the absorption (inelastic scattering).

$$U = V + i W$$

V represents a nuclear shell model potential.

i W gives the absorption effects of the nucleus.

The spin-orbit terms and the Coulombic potentials have to be added for more accuracy:

$$U(r) = U_R(r) + U_{V,A}(r) + U_{S,A}(r) + U_S(r) + U_C(r)$$

• $U_R(r)$ gives the real potential accounting for the elastic scattering:

$$U_R(r) \propto -V f(r, R, a)$$

It represents a potential well of depth V.

- $U_{V,A}(r)$ and $U_{S,A}(r)$ gives the absorption effect in the nucleus.
- $U_s(r)$ is the spin-orbit interaction term which gives the polarization effect:

$$U_{S}(r) \propto s \cdot l V_{S} \frac{1}{r} \frac{d}{dr} f(r, R_{S}, a_{s})$$

• $U_C(r)$ is the Coulombic potential:

$$U_{\rm C}({\rm r}) \propto \frac{Z_1 Z_2 e^2}{R_{\rm C}}$$

Here, the form factor, f(r, R, a) is of the form:

$$f(r, R, a) \propto \frac{1}{1+e^{\frac{r-R}{a}}}$$

The optical model is especially useful for calculating the energy averaged cross section for oscillations with large width and where compound nuclear reactions are significant.

FORM FACTOR

The form factor 'f(r, R, a)' can be found in two ways:

- Theoretical calculations
- Experiments

Experiment:

The gamma ray from the reactions are analyzed to obtain the decay width.

First, the gain must be calibrated and stabilized.

EXPERIMENTAL ANALYSIS OF γ-RAYS

The γ-ray spectrum from the experiment was fitted using

asymmetric gaussian

$$f(x) = p_0 e^{-\frac{(x-p_1)^2}{2\sigma^2}}$$
 where $\sigma = p_2(x + p_1) + p_3$

• Full width at half maximum gives the gain shift parameter defined as

$$g_s = p_1 + \sigma$$

CONCLUSION

- The gain calibration has been found.
- Next, energy calibration must be done and compared with the theoretical values.

THANK YOU

Neutrino-Nucleus Interactions

BY: DEEPTI HARIHARAN

RA1531010010003

B.Sc. Physics III year

Department of Physics and Nanotechnology

GUIDE: DR. ROHIT DHIR

Experiment

392 MeV proton beam is scattered off pure carbon and cellulose and measured by 25 NaI(TI) counters to obtain systematic experimental data.

Proton beam excites ¹²C and ¹⁶O to giant resonant states.

Gain Calibration

Gain calibration is done to correct the shift in gain value due to continuous radio-activation of counters.

Gain parameter, g_s is defined as the half value:

For all runs, the gain shift parameter is obtained:

It was done for the 15.1 MeV giant resonance state of ¹²C.

Gain Correction

Gain shift correction is done with respect to the first run.

Conclusion

The relative length of the error bar and the stability of the curve shows how good and reliable a counter is and how much calibration is required.

THANK YOU

Neutrino-Nucleus Interactions

By: Deepti Hariharan

RA1531010010003

B.Sc. Physics III year

Department of Physics and Nanotechnology

Guide: Dr. Rohit Dhir

Introduction

- First hypothesized by Pauli, developed by Fermi and later confirmed in the Cowan-Reines experiment.
- Neutrinos are charge-less, leptonic particles that interact only via the weak forces.

Importance in Supernovae

- Core-collapse supernovae emit large number of neutrinos and antineutrinos of all flavors.
- Second largest signal is expected to come from neutral-current inelastic scattering of neutrinos (v_u / v_τ) with 12 C, 16 O and protons.
- ¹²C and ¹⁶O are excited to giant resonances which emit gamma rays during de-excitation.

• No systematic data exists for gamma ray production for giant resonances of ¹²C and ¹⁶O.

Optical Potential Model

Theoretical framework for understanding the interaction potential.

Given by sum of central and spin-orbit potentials:

$$U(r) = U_C(r) + U_S(r)\boldsymbol{\sigma} \cdot \boldsymbol{l}$$

where
$$U_C(r) = V_C - V f_o(r) - iW f_v(r) + 4iW_s \frac{d}{dr} f_s(r)$$

and
$$U_S(r) = (\frac{\hbar^2}{mc})^2 \frac{1}{r} \left[V_S \frac{d}{dr} f_{vs}(r) + i W_S \frac{d}{dr} f_{ss}(r) \right]$$

The form factor is of the Woods – Saxon form:

$$f(r) = \frac{1}{1 + e^{\frac{r - R}{a}}}$$

It give the scattering amplitude.

Experiment

392 MeV proton beam is scattered off pure carbon and cellulose.

Proton beam excites ¹²C and ¹⁶O to giant resonant states which decay by release of gamma rays and measured by 25 NaI(Tl) counters.

Experimental Analysis of

y-rays

- Shift in gain is observed due to radio-activation of PMTs leads to decrease in energy resolution.
- Peak region was fitted with asymmetric gaussian:

$$f(ADC) = p_0 e^{\frac{-(ADC - p_1)^2}{2\sigma^2}}$$

 $\sigma = p_2(ADC + p_1) + p_3.$

• Gain parameter is the half value.

Gain Shift Correction

• It is corrected with respect to first run.

• This has been done for all counters for the 15.1 MeV giant resonance state of ¹²C.

Conclusion

- The first three columns are unstable and unreliable they receive the forward angle radiation.
- The last two rows are reliable for accurate measurements.

Gives systematic data for background comparison during neutrino experiments in large-scale detectors.

Scope

- Helps understand the supernova core-collapse event.
- Can also help understand the neutrino mass hierarchy problem and give and insight into physics beyond the Standard Model.

THANK YOU