MA 212: Algebra I

Naman Mishra

August 2024

Contents

1	Grou	Groups														3					
	1.1	Cyclic groups																			7
		Orders of Elements .																			
	1.3	Generation of groups																			12

The course

Grading

This is tentative.

• Quizzes: 30%

• Midterm: 30%

• Final: 40%

Lecture 1. Friday
August 02

Chapter 1

Groups

Definition 1.1 (Binary operation). A binary operation \cdot on a set A is any map from $A \times A \to A$, written $(a, b) \mapsto a \cdot b$.

We say that \cdot is associative if for all $a, b, c \in A$,

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

and *commutative* if for all $a, b \in A$,

$$a \cdot b = b \cdot a$$
.

Examples.

- Addition and multiplication are associative and commutative binary operations on \mathbb{R} .
- Subtraction, division and exponentiation are non-associative and non-commutative binary operations.
- Composition is an associative but non-commutative binary operation on X^X .

Definition 1.2 (Group). A *group* is a set G equipped with a binary operation \cdot satisfying the following properties:

- (G1) **associativity:** \cdot is associative;
- (G2) **identity:** there exists an element $1_G = e \in G$ such that $1_G \cdot x = x \cdot 1_G = x$ for all $x \in G$;
- (G3) **inverse:** for every $x \in G$, there exists an element $y \in G$ such that $x \cdot y = y \cdot x = 1_G$. We write y as x^{-1} .

If \cdot is also commutative, we say that G is an abelian group.

A subset $H \subseteq G$ is a *subgroup* of G if H is a group with respect to the same binary operation \cdot . We write $H \leq G$.

Examples.

- $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ and $(\mathbb{C},+)$ are abelian groups.
- $(\mathbb{R}^{\times}, \cdot)$ is a group but (\mathbb{R}, \cdot) is not.
- $(GL_n(\mathbb{R}), \cdot)$ is a non-abelian group, where

$$\operatorname{GL}_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det A \neq 0 \}.$$

• For any $n \in \mathbb{N}^+$, (S_n, \circ) is a group, where

$$S_n = \{ \sigma \colon [n] \to [n] \mid \sigma \text{ is bijective} \}.$$

$$S_1 = \{1\},$$

 $S_2 = \{1, (12)\},$
 $S_3 = \{1, (12), (13), (23), (123), (132)\}.$

 S_1 and S_2 are abelian, but S_3 is not. Let x=(12) and y=(13), then $(x\circ y)(1)=x(3)=3$, $(x\circ y)(2)=x(2)=1$, $(x\circ y)(3)=x(1)=2$,

$$(y \circ x)(1) = y(2) = 2$$
, $(y \circ x)(2) = y(1) = 3$, $(y \circ x)(3) = y(3) = 1$.

• Let $H = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \mathbb{R} \right\}$. Then H is an abelian subgroup of the non-abelian $\mathrm{GL}_2(\mathbb{R})$.

Remarks (New groups from old).

• Let (A, \cdot) and (B, *) be groups. The cartesian product $A \times B$ is a group with respect to the operation

$$(a_1, b_1) \star (a_2, b_2) = (a_1 \cdot a_2, b_1 * b_2).$$

defined componentwise.

• Let X be a set and $S = \mathbb{R}^X$. Then S is an abelian group under addition (pointwise). In fact, if (G, \cdot) is a group, then G^X is a group under the operation

$$(f \cdot g)(x) = f(x) \cdot g(x).$$

If G is abelian, then so is G^X .

• Given any set A, we can form the group S(A) of all bijections from A to itself, under composition.

Proposition 1.3. Let (G,\cdot) be a group. Then

- (i) the identity element 1_G is unique;
- (ii) the inverse of each element $x \in G$ is unique;
- (iii) $(x^{-1})^{-1} = x \text{ for all } x \in G;$
- (iv) $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$ for all $x, y \in G$;
- (v) The product $a_1 a_2 \dots a_n$ does not depend on bracketing.

Proof.

(i) Suppose e and f are both identities of G. Then

$$e = e \cdot f = f$$
.

(ii) Suppose y and y' are both inverses of x. Then

$$xy = 1_G \implies y'xy = y' \implies y' = y.$$

(iii) We have

$$x \cdot x^{-1} = 1_G = x^{-1} \cdot x.$$

reinterpreted in the context of x^{-1} .

(iv) Checking

$$(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = xx^{-1} = 1_G.$$

Alternatively, let $z = (xy)^{-1}$. Then

$$(xy)z = 1_G$$

 $(x^{-1}x)yz = x^{-1}$
 $yz = x^{-1}$
 $(y^{-1}y)z = y^{-1}x^{-1}$
 $z = y^{-1}x^{-1}$

(v) Induct on n. Look at the rightmost left bracket

$$a_1 \dots a_n = (a_1 \dots a_k) \cdot (a_{k+1} \dots a_n).$$

Corollary 1.4 (Cancellation law). Let (G, \cdot) be a group. If $x, y, z \in G$ and xy = xz, then y = z.

Proof. Multiply by x^{-1} on the left.

Definition 1.5 (Order). The order of an element $x \in G$ is the smallest $n \in \mathbb{N}$ Monday such that $x^n = 1_G$ if it exists, and ∞ otherwise.

Examples.

- $G = \mathbb{Z}/n\mathbb{Z} = \{\bar{a} \mid 0 \leq a < n\}$ where $\bar{a} = \{a + kn \mid k \in \mathbb{Z}\}$ under the operation $\bar{a} + \bar{b} = \overline{a + b}$.
- $G = \mathbb{C}^{\times}$. All roots of unity have finite order.
- $G = GL_2(\mathbb{R})$. The matrix

$$\alpha_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

has order n if $\theta = \frac{2\pi}{n}$. [This is a homomorphism from $(\mathbb{R}, +)$ to (G, \cdot)]

• $G = GL_2(R)$ where R is a ring. Elements of the following set may have finite order.

$$\{g \in M_2(R) \mid \det(g) \text{ is a unit in } R\}$$

Proposition 1.6 (Crystallographic restriction). Let $x \in GL_2(\mathbb{Z})$. Then ord $x \in \{1, 2, 3, 4, 6, \infty\}$.

Definition 1.7 (Subgroup). A set $H \subseteq G$ is a *subgroup* of G if it is a group under the same operation. We write $H \leq G$.

Examples.

• $G = \mathbb{Z}$. Then $H \leq G \iff H = n\mathbb{Z}$ for some $n \in \mathbb{N}$.

Proof. Ignore the trivial case $H = \{0\}$. Let n be the smallest positive element of H. Then $n\mathbb{Z} \subseteq H$ by closure under addition. For any $m \in H$, write m = qn + r with $0 \le r < n$. Then $r = m - qn \in H$. Since n is the smallest positive element of H, r = 0. Thus $H \subseteq n\mathbb{Z}$.

• Let $|G| = 2k < \infty$. Then G has an element of order 2.

Proof. Suppose not. Then for any $x \in G \setminus \{1\}$, $x^{-1} \neq x$. Thus $G \setminus \{1\}$ is a disjoint union of pairs $\{x, x^{-1}\}$. This would imply |G| is odd.

• Let G be a group such that $x^2 = 1$ for all $x \in G$. Then G is abelian.

Proof. Let $x, y \in G$. Then

$$(xy)^2 = 1$$

$$\implies xyxy = 1$$

$$\implies xy = y^{-1}x^{-1} = yx$$

• Let G be a finite group where each element is its own inverse. What can be said about |G|?

 (G, \cdot) can be viewed as a vector space over $(\mathbb{F}_2, +, \cdot)$ with the scalar product of $x \in G$ and $c \in \mathbb{F}_2$ given by x^c . Let $n = \dim_{\mathbb{F}_2} G$ (possibly zero). Then $(G, \cdot) \cong (\mathbb{F}_2^n, +)$ and thus $|G| = 2^n$. (ref. structure theorem for finitely generated abelian groups)

Furthermore, \mathbb{F}_2^n is a group of this form for all n. Thus the groups of this form are precisely $\{\mathbb{F}_2^n \mid n \in \mathbb{N}\}$ (up to isomorphism).

Proposition 1.8. Let $H \subseteq G$. Then $H \leq G$ iff $H \neq \emptyset$ and H is closed under the operation $(x,y) \mapsto xy^{-1}$.

Proof. The "only if" direction is trivial.

Suppose $H \neq \emptyset$ and H is closed under the operation. Let x be any element of H. Then $1 = xx^{-1} \in H$. Now for any $y \in H$, $y^{-1} = 1y^{-1} \in H$. Now for any $x, y \in H$, $xy = x(y^{-1})^{-1} \in H$.

Proposition 1.9. Let $H \subseteq G$ be finite. Then $H \subseteq G$ iff $H \neq \emptyset$ and H is closed under multiplication.

Proof. Let

1.1 Cyclic groups

Given $x \in G$, look at the set $\langle x \rangle = \{x^n \mid n \in \mathbb{Z}\}$. This is a cyclic subgroup of G.

We wish to classify all cyclic subgroups (up to isomorphism).

Example. Let $H \leq G$ with |G| = n > 2, |H| = n - 1. Is this possible? No. Let $G \setminus H = \{x\}$. Then $x^{-1} = x$. Let $h \neq 1 \in H$. Then $xh = h' \in H$, so $x \in H$ (closure).

Generalising gives the following proposition.

Proposition 1.10. No group can be the union of two proper subgroups.

Proof. Suppose $G = H_1 \cup H_2$ where $H_1, H_2 \leq G$. Pick an $x \in H_1 \setminus H_2$ and $y \in H_2 \setminus H_1$. WLOG assume $xy \in H_1$. Then $y \in H_1$. This means at least one of $H_1 \setminus H_2$ and $H_2 \setminus H_1$ is empty.

Definition 1.11 (Homomorphism). Let G and H be groups. A map $\varphi \colon G \to H$ is a homomorphism from G to H if it respects the group operation. That is,

$$\varphi(xy) = \varphi(x)\varphi(y)$$

for all $x, y \in G$.

- If φ is bijective, it is called an *isomorphism*.
- If H = G, it is an automorphism.

G and H are isomorphic $(G \cong H)$ if there exists an isomorphism from G to H.

Definition 1.12 (Kernel). The kernel of a homomorphism $\varphi \colon G \to H$ is the set

$$\ker \varphi = \{ x \in G \mid \varphi(x) = 1_H \}.$$

The *image* of φ is the set

$$\operatorname{Im} \varphi = \{ \varphi(x) \mid x \in G \}.$$

Examples.

- det: $GL_2(\mathbb{R}) \to \mathbb{R}^{\times}$ is a homomorphism.
- $\mu \colon \mathbb{Z}/n\mathbb{Z} \to \mu_n$ given by

$$\mu(\bar{k}) = \exp\left(\frac{2\pi k}{n}\right)$$

is an isomorphism, where

$$\mu_n = \{n \text{th roots of unity}\} \subseteq \mathbb{C}.$$

- φ is injective iff $\ker \varphi = \{1_G\}.$
- exp: $(\mathbb{R},+) \to (\mathbb{R}^+,\cdot)$ is an isomorphism.
- $\mathbb{R}^{\times} \ncong \mathbb{C}^{\times}$.
- Let A, B be nonempty sets. Then $S_A \cong S_B$ iff A and B are in bijection.

Proof. Suppose τ is a bijection from A to B. Then $\sigma \mapsto \tau \sigma \tau^{-1}$ is an isomorphism from S_A to S_B .

If two groups are isomorphic, they are essentially the same group. An Lecture 3. isomorphism $\varphi \colon G \to H$ is only a "re-parameterization" of G in terms of H.

Wednesday August 07

Lemma 1.13. $|\langle x \rangle| = \operatorname{ord} x$.

Proof. If ord $x = \infty$, then $x^n \neq x^m$ for $n \neq m$. Thus $|\langle x \rangle| = \infty$.

If ord $x = n < \infty$, then x^0, x^1, \dots, x^{n-1} are distinct. Let $x^m \in \langle x \rangle$. Write $x^m = x^{qn+r} = x^r$ with $0 \le r < n$. Thus these n elements are the only ones in $\langle x \rangle$.

Proposition 1.14. Let G be a cyclic group. Then

- (i) if $|G| = \infty$, then $G \cong \mathbb{Z}$;
- (ii) if $|G| = n < \infty$, then $G \cong \mathbb{Z}/n\mathbb{Z}$.

Proof. Let $G = \langle x \rangle$. We want an isomorphism $\varphi \colon G \to \mathbb{Z}/n\mathbb{Z}$, where $n \in \mathbb{N} \cup \{\infty\}$. It suffices to define $\varphi(x)$ and extend it to all of G.

If $|G| = \infty$, define $\varphi(x) = 1$. Then $\varphi(x^n) = n$ for all $n \in \mathbb{Z}$. This is a bijection and $\varphi(ab) = \varphi(a) + \varphi(b)$ holds.

If $|G| = \{1, x, \dots, x^{n-1}\}$, define $\varphi(x) = \overline{1} \in \mathbb{Z}/n\mathbb{Z}$. Then $\varphi(x^m) = \overline{m}$ for all $m \in \mathbb{Z}$. It is clearly a surjection. The kernel is $\{x^m \in G : n \mid m\} = \{1\}$, so it is injective. Finally, $\varphi(x^m x^k) = \varphi(x^{m+k}) = \overline{m+k} = \overline{m} + \overline{k}$.

Cyclic groups are generated by a single element. What about groups generated by multiple elements?

Let $S \subseteq G$. Define two sets

$$\langle S \rangle_1 = \{ s_1^{\varepsilon_1} \dots s_k^{\varepsilon_k} \mid s_i \in S, \varepsilon_i \in \{\pm 1\} \}$$

$$= \{ s_1^{\alpha_1} \dots s_k^{\alpha_k} \mid s_i \in S, \alpha_i \in \mathbb{Z} \}$$

$$\langle S \rangle_2 = \bigcap_{S \subseteq H \le G} H.$$

Lemma 1.15. $\langle S \rangle_1 = \langle S \rangle_2 =: \langle S \rangle$.

Proof. $\langle S \rangle_2 \leq G$ since the intersection of subgroups is a subgroup. We first check that $\langle S \rangle_1 \leq G$ under multiplication (which is essentially concatenation). Inverses are given by $s_1^{\varepsilon_1} \dots s_k^{\varepsilon_k} \mapsto s_k^{-\varepsilon_k} \dots s_1^{-\varepsilon_1}$.

Moreover, $S \subseteq \langle S \rangle_1$. Thus $\langle S \rangle_2 \subseteq \langle S \rangle_1$.

Since $\langle S \rangle_2$ is a group containing S, closure under products and inverses implies $\langle S \rangle_1 \subseteq \langle S \rangle_2$.

Examples.

- S_n is generated by transpositions.
- $GL_n(\mathbb{R})$ is generated by the elementary matrices

$$E_{ij}(\lambda) = I_n + \lambda e_{ij}$$

where $e_{pq} = (\delta_{ip}\delta_{jq})_{i,j=1}^n$, taken together with the diagonal matrices. [swapping is done by $(a,b) \mapsto (a,a+b) \mapsto (-a,a+b) \mapsto (b,a+b) \mapsto (b,a)$]

- \mathbb{Q}^{\times} is not finitely generated. Take any finite set $S \subseteq \mathbb{Q}^{\times}$ and look at the numerators. There are finitely many primes in the numerators of S, so any prime not in the numerators of S is not in $\langle S \rangle$.
- $\operatorname{SL}_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) \mid \det M = 1 \}$ is generated by $E_{ij}(\lambda) = I_n + \lambda e_{ij}, \quad \text{with } i \neq j.$
- Let F be any infinite field. Then (F^{\times}, \cdot) is not finitely generated. If char F = p, then p is prime and

Suppose char F=0. Then F contains (an isomorphic copy of) \mathbb{Q} . For F^{\times} to be finitely generated, Q^{\times} would have to be finitely generated. We will later see that subgroups of finitely generated groups are finitely generated. We will also see that \mathbb{Q}^{\times} is not finitely generated. Thus F^{\times} is not finitely generated.

Lecture 4.
Friday
August 09

- $GL_n(F)$ is not finitely generated for any infinite field F.
 - There is an isomorphic copy of F^{\times} in $GL_n(F)$. If $GL_n(F)$ were finitely generated, so would F^{\times} .
 - det: $GL_n(F) \to F^{\times}$ is a surjective homomorphism. If $GL_n(F)$ were finitely generated, so would F^{\times} .

However, \mathbb{F}^{\times} is not finitely generated since it contains \mathbb{Q}^{\times} .

• In the non-abelian setting, a subgroup of a finitely generated group is not necessarily finitely generated. Let

$$G = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle \le GL_2(\mathbb{R}).$$

Let

$$H = \left\{ g \in G \mid g = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\} \le G.$$

Check that

$$H = \left\{ \begin{pmatrix} 1 & n/2^m \\ 0 & 1 \end{pmatrix} \middle| n, m \in \mathbb{Z} \right\}.$$

This is not finitely generated. H is isomorphic to the additive group of rationals with power-of-2 denominators. The span of any finite set

$$S = \{\frac{n_1}{2^{m_1}}, \dots, \frac{n_k}{2^{m_k}}\},\$$

cannot contain any rational with a denominator larger than $2^{\max m_i}$.

Exercise 1.16. Can any non-empty finite set S be given the structure of a group? What if S is countable? What if it is any set?

Solution. In the case |S| = n, there is an obvious isomorphism to $\mathbb{Z}/n\mathbb{Z}$. If $|S| = \aleph_0$, there is an obvious isomorphism to \mathbb{Z} .

If S is a set of sets, the symmetric difference $A\Delta B = (A \setminus B) \cup (B \setminus A)$ gives a group structure. Thus in pure set theory, any set can be given the structure of a group.

What if the elements of S are not sets?

1.2 Orders of Elements

Lemma 1.17. Let G be a group. If $x^m = x^n = 1$, then $x^{(m,n)} = 1$.

Proof. Bezout's identity.

Corollary 1.18. If $x^{\alpha} = 1$, then ord $x \mid \alpha$.

Proof. $(\operatorname{ord} x, \alpha) \leq \operatorname{ord} x$ by elementary number theory. But $x^{(\operatorname{ord} x, \alpha)} = 1$ (by the previous lemma) gives $(\operatorname{ord} x, \alpha) \geq \operatorname{ord} x$ by minimality of $\operatorname{ord} x$. Thus $(\operatorname{ord} x, \alpha) = \operatorname{ord} x$ so $\operatorname{ord} x \mid \alpha$.

Lemma 1.19. Let G be a group.

- (i) If ord $x = \infty$, then ord $x^k = \infty$ for every $k \in \mathbb{Z}^{\times}$.
- (ii) If ord $x = n < \infty$, then ord $x^k = n/(n, k)$.

Proof. It suffices to prove the second statement. Let $y = x^k$ and d = (n, k). Write $n = \tilde{n}d$ and $k = \tilde{k}d$. Suppose $y^m = 1$. Then by the previous corollary, $n \mid mk$ and so $\tilde{n} \mid m\tilde{k} \implies \tilde{n} \mid m$.

Thus
$$m \geq \tilde{n}$$
. But $y^{\tilde{n}} = x^{k\tilde{n}} = x^{n\tilde{k}} = 1$. Thus ord $y = \tilde{n}$.

Lemma 1.20. Let $H = \langle x \rangle$.

- (i) If ord $x = \infty$, then H is generated by x^a iff $a = \pm 1$.
- (ii) If ord x = n, then H is generated by x^a iff (a, n) = 1.

Proof. For the first case, assume $H = \mathbb{Z}$ by isomorphism. $\mathbb{Z} = a\mathbb{Z} \implies \exists n \in \mathbb{Z} \text{ s.t. } an = 1.$ Then |a| = 1. The converse is by inspection.

For the second, assume $H = \mathbb{Z}/n\mathbb{Z}$ by isomorphism. Let $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$ be a generator. Then ord $\bar{a} = n$. By the previous lemma, ord $\bar{a} = n/(n,a)$ (since ord $\bar{1} = n$).

Lecture 5. Monday August 12

1.3 Generation of groups

Lemma 1.21. Let G be a group and let $a, b \in G$ commute. Let ord a = m, ord b = n, $lcm(m, n) = \ell$. Then ord $ab \mid \ell$. If (m, n) = 1, then ord $ab = \ell$.

Proof. $(ab)^{\ell} = a^{\ell}b^{\ell} = 1.$

Now suppose that (m, n) = 1. Let $d = \operatorname{ord} ab \implies d \mid \ell$. Now

$$(ab)^d = 1 \implies a^d b^d = 1$$

 $\implies a^d = b^{-d}.$

Raising to the power m gives $a^{dm} = 1 = b^{-dm}$. Thus $n \mid md \implies n \mid d$ (coprime). Similarly $m \mid d$. Thus $nm = \ell \mid d$. Together with $d \mid \ell$, we get $d = \ell$.

Examples.

- If $(a, b) \neq 1$, we can't say anything. For example, $b = a^{-1}$ gives ord ab = 1.
- If $ab \neq ba$, things can go crazy. For example, $a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1/2 \\ 2 & 0 \end{pmatrix}$. Then $a^2 = b^2 = 1$ but $ab = \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix}$ has infinite order.

Definition 1.22 (Presentation).

Definition 1.23 (the dihedral group). For $n \geq 3$, the dihedral group D_{2n} is the group of rigid motions of a regular n-gon R_n in \mathbb{R}^2 .

Remark. A "rigid motion" is an isoemtry: a distance preserving bijection. For example, reflections and rotations. Note how rigid motions being a bijection (when restricted to the n-gon) implies that only those isometries that preserve the n-gon are allowed.

Rigid motions in \mathbb{R}^n are given by $x \mapsto Ax + b$ where $A \in O_n$, the set of orthogonal matrices in M_n .

$$(A_1, b_1) \circ (A_2, b_2) = (A_1 A_2, A_1 b_2 + b_1).$$

 $A_1A_2 \in O_n$ so the product is closed. Associativity is inherited from function composition. The identity is (1,0) and the inverse of (A,b) is $(A^\top, -A^\top b)$.

Lemma 1.24. Every point P on R_n is determined, among all other points on R_n , by its distance from any two fixed adjacent vertices of R_n .

That is, let A and B be adjacent vertices of R_n . Then for any $d_A, d_B \in \mathbb{R}^+$, there is at most one point P on R_n such that $d(P,A) = d_A$ and $d(P,B) = d_B$.

Proof. Look at the edge \overline{AB} .

Draw a circle of radius d_A around A and a circle of radius d_B around B. They intersect in at most two points, but they are on opposite sides of \overline{AB} . R_n is convex, so every point on R_n lies on one of only one side of \overline{AB} . Thus only one of these two points can lie on R_n .

Proposition 1.25. $|D_{2n}| = 2n$.

Proof. We first show that $|D_{2n}| \leq 2n$. Start with any two vertices A and B of R_n . Let $g \in D_{2n}$.

Claim. q takes vertices to vertices.

To see this, note that the vertices are special in that they are distinguised from all other points on \mathbb{R}_n as follows:

Let $P \in \mathbb{R}_n$ and r > 0 be small. We can find two points P'_r and P''_r on R_n such that $d(P, P'_r) = d(P, P''_r) = r$. If P is not a vertex, then $d(P'_r, P''_r) = 2r$. If P is a vertex, then $d(P'_r, P''_r) < 2r$.

Lecture 5

Thus we can distinguish between P being a vertex or not solely by the distance function. Since g is an isometry (even Lipschitz), this property is preserved. Thus g takes vertices to vertices.

Claim. g preserves adjacency of vertices.

Fix a vertex A on R_n . Then d(P, A) for a vertex distinct from A is minimized when P is adjacent to A. Since g preserves distances, g must take adjacent vertices to adjacent vertices.

Combining these two claims, we have proven that for any $P \in R_n$, g(P) is uniquely determined by its distance from g(A) and g(B), where A and B are any two adjacent vertices. Thus g is determined by g(A) and g(B).

By the first claim, there are n possible choices for g(A). By the second claim, there are 2 possible choices for g(B). Thus there are at most 2n possible g's.

Finally, we can produce 2n distinct elements as follows.

- Consider the *n* rotations: rotate by $2\pi k/n$ for $k \in n$.
- The *n* reflections:
 - For odd n, reflect over the line through a vertex and the midpoint of the opposite edge.
 - For even n, reflect over the line through two opposite vertices or through two opposite midpoints.

Each reflection fixes exactly two points. Any non-trivial rotation fixes no points. Thus the 2n elements are distinct.

Notation. Let r denote the counter-clockwise rotation by $2\pi/n$ and let s denote the reflection over the line through some fixed vertex V_0 .

Then
$$r^n = s^2 = 1$$
.

Observe that $\{1, r, r^2, \dots, r^{n-1}\}$ gives all the rotations in D_{2n} .

Lemma 1.26. All reflections in D_{2n} are given by $\{s, rs, r^2s, \ldots, r^{n-1}s\}$.

Proof. All of these elements are distinct, since $r^k \neq 1$ for 0 < k < n. None of these elements are rotations, since if $r^k s = r^m$ for some $k, m \in n$, then $s = r^{m-k}$, which is a contradiction.

Theorem 1.27.
$$|D_{2n}| = 2n$$
 and $D_{2n} = \{1, r, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\}.$

Proposition 1.28. In D_{2n} , $sr = r^{-1}s$.

Proof. From theorem 1.26, we know that rs is a reflection. Thus (rs)(rs) = 1, which immediately gives $sr = r^{-1}s$.

Next lecture:
$$D_{2n} = \langle r, s \mid r^n = s^2 = 1, sr = r^{-1}s \rangle$$
.