DYNAMIC PROGRAMMING

Dynamic Programming

- ☐ It is a useful mathematical technique for making a sequence of interrelated decisions.
- □ Systematic procedure for determining the optimal combination of decisions.
- ☐ There is no standard mathematical formulation of "the" Dynamic Programming problem.
- Knowing when to apply dynamic programming depends largely on experience with its general structure.

João Miguel da Costa Sousa / Alexandra Moutinho

202

Prototype example

- Stagecoach problem
- ☐ Fortune seeker wants to go from Missouri (A) to California (J) in the mid-19th century.
- ☐ Journey has 4 stages.
- ☐ Cost is the life insurance of a specific route; lowest cost is equivalent to safest trip.

João Miguel da Costa Sousa / Alexandra Moutinho

204

Costs

 \square Cost c_{ii} of going from state i to state j is:

	Ε	F	G
В	7	4	6
С	3	2	4
D	4	1	5

J H 3 I 4

➤ **Problem**: which route minimizes the total cost of the policy?

João Miguel da Costa Sousa / Alexandra Moutinho

205

Solving the problem

- Note that greedy approach does not work.
 - Solution $A \rightarrow B \rightarrow F \rightarrow I \rightarrow J$ has total cost of 13.
 - However, e.g. $A \rightarrow D \rightarrow F$ is cheaper than $A \rightarrow B \rightarrow F$.
- □ Other possibility: trial-and-error. Too much effort even for this simple problem.
- Dynamic programming is much more efficient than exhaustive enumeration, especially for large problems.
- ☐ Starts from the last stage of the problem, and enlarges it one stage at a time.

João Miguel da Costa Sousa / Alexandra Moutinho

206

Formulation

João Miguel da Costa Sousa / Alexandra Moutinho

- □ Decision variables x_n (n = 1, 2, 3, 4) are the immediate destination of stage n.
 - Route is $A \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4$, where $X_4 = J$.
- ☐ Total cost of the best overall *policy* for the remaining *stages* is $f_n(s, x_n)$
 - Actual state is s, ready to start stage n, selecting x_n as the immediate destination.
- $\Box x_n^*$ minimizes $f_n(s, x_n)$ and $f_n^*(s, x_n)$ is the minimum value of $f_n(s, x_n)$:

 $f_n^*(s) = \min_{x_n} f_n(s, x_n) = f_n(s, x_n^*)$

Formulation

where

 $f_n(s_i x_n)$ = immediate cost (stage n) + minimum future cost (stages n+1 onward) = $C_{cx} + f_{n+1}^*(x_n)$

□ Value of c_{sx_n} given by c_{ij} where i = s (current state) and $j = x_n$ (immediate destination).

Description Find $f_1^*(A)$ and the corresponding route.

• Dynamic programming finds successively $f_4^*(s)$, $f_3^*(s)$, $f_2^*(s)$ and finally $f_1^*(A)$.

João Miguel da Costa Sousa / Alexandra Moutinho

208

Solution procedure

- □ When n = 4, the route is determined by its current state s (H or I) and its final destination J.
- \square Since $f_4^*(s) = f_4^*(s, J) = C_{s,J}$, the solution for n = 4:

s	$f_4^*(s)$	X4*
Н	3	J
1	4	J

João Miguel da Costa Sousa / Alexandra Moutinho

200

Stage n = 3

- □ Needs a few calculations. If fortune seeker is in state F_i , he can go to either H or I with costs $c_{F,H} = 6$ or $c_{F,I} = 3$.
- ☐ Choosing H, the minimum additional cost is $f_4^*(H) = 3$. Total cost is 6 + 3 = 9.
- Choosing *I*, the total cost is 3 + 4 = 7. This is smaller, and it is

the optimal choice for state *F*.

João Miguel da Costa Sousa / Alexandra Moutinho

Stage n = 3

☐ Similar calculations can be made for the two possible states s = E and s = G, resulting in the table for n = 3:

	$f_3(s, x_3) = c_{sx_3} + f_4^*(x_3)$			
s x ₃	Н	I	$f_3^*(s)$	x ₃ *
Ε	4	8	4	Н
F	9	7	7	1
G	6	7	6	Н

João Miguel da Costa Sousa / Alexandra Moutinho

211

Stage n = 2

- ☐ In this case, $f_2^*(s, x_2) = c_{sx_2} + f_3^*(x_2)$.
- Example for node *C*:
 - $X_2 = E$: $f_2^*(C, E) = c_{C,E} + f_3^*(E) = 3 + 4 = 7 \leftarrow \text{optimal}$
 - $x_2 = F$: $f_2^*(C, F) = c_{C,F} + f_3^*(F) = 2 + 7 = 9$.
 - $X_2 = G$: $f_2^*(C, G) = c_{C,G} + f_3^*(G) = 4 + 6 = 10$.

Stage n = 2

□ Similar calculations can be made for the two possible states s = B and s = D, resulting in the table for n = 2:

	$f_2(s, x_2)$				
5 X ₂	Ε	F	G	$f_2^*(s)$	X2*
В	11	11	12	11	E or F
С	7	9	10	7	Ε
D	8	8	11	8	E or F

João Miguel da Costa Sousa / Alexandra Moutinho

Stage *n* = 1

☐ Just one possible starting state: A.

• $X_1 = B$: $f_2^*(A, B) = c_{A,B} + f_2^*(B) = 2 + 11 = 13$.

• $x_1 = C$: $f_2^*(A, C) = c_{A,C} + f_2^*(C) = 4 + 7 = 11 \leftarrow \text{optimal}$

• $x_1 = D$: $f_2^*(A, D) = c_{A,D} + f_2^*(D) = 3 + 8 = 11 \leftarrow \text{optimal}$

☐ Results in the table:

	$f_1(s, x_1) = c_{sx_1} + f_2^*(x_1)$				
3 X ₁	В	С	D	$f_{1}^{*}(s)$	X ₁ *
Α	13	11	11	11	C or D

João Miguel da Costa Sousa / Alexandra Moutinho

214

Characteristics of DP

- The problem can be divided into stages, with a policy decision required at each stage.
 - **Example**: 4 stages and life insurance policy to choose.
 - Dynamic programming problems require making a sequence of interrelated decisions.
- 2. Each stage has a number of **states** associated with the beginning of each stage.
 - **Example:** states are the possible territories where the fortune seeker could be located.
 - States are possible conditions in which the system might be.

João Miguel da Costa Sousa / Alexandra Moutinho

216

Characteristics of DP

- 3. Policy decision transforms the current state to a state associated with the beginning of the next stage.
 - Example: fortune seeker's decision led him from his current state to the next state on his journey.
 - DP problems can be interpreted in terms of networks: each node correspond to a state.
 - Value assigned to each link is the immediate contribution to the objective function from making that policy decision.
 - In most cases, objective corresponds to finding the shortest or the longest path.

João Miguel da Costa Sousa / Alexandra Moutinho

217

Characteristics of DP

- 4. The solution procedure finds an optimal policy for the overall problem. Finds a prescription of the optimal policy decision at each stage for each of the possible states.
 - Example: solution procedure constructed a table for each stage, n, that prescribed the optimal decision, x_n*, for each possible state s.
 - In addition to identifying optimal solutions, DP provides a policy prescription of what to do under every possible circumstance (why a decision is called policy decision). This is useful for sensitivity analysis.

João Miguel da Costa Sousa / Alexandra Moutinho

...0

Characteristics of DP

- 5. Given the current state, an *optimal policy for the remaining stages* is *independent* of the policy decisions adopted in *previous stages*.
 - Optimal immediate decision depends only on current state and not on how it was obtained: this is the principle of optimality for DP.
 - Example: at any state, the insurance policy is independent on how the fortune seeker got there.
 - Knowledge of the current state conveys all information necessary for determining the optimal policy henceforth (Markovian property). Problems lacking this property are not Dynamic Programming Problems.

João Miguel da Costa Sousa / Alexandra Moutinho

Characteristics of DP

- 6. Solution procedure begins by *finding the optimal policy for the last stage*. Solution is usually trivial.
- A recursive relationship that identifies optimal policy for stage n, given optimal policy for stage n+1, is available.
 - * Example: recursive relationship was

$$f_n^*(s) = \min_{x_n} \{c_{sx_n} + f_{n+1}^*(x_n)\}$$

Recursive relationship differs somewhat among dynamic programming problems.

João Miguel da Costa Sousa / Alexandra Moutinho

220

Characteristics of DP

7. (cont.) Notation:

N = number of stages.

n =label for current stage (n = 1, 2, ..., N).

 $s_n = \text{current } state \text{ for stage } n.$

 x_n = decision variable for stage n.

 $x_n^* = \text{optimal value of } x_n \text{ (given } s_n \text{)}.$

 $f_n(s_n, x_n) = \text{contribution of stages } n, n+1, \ldots, N \text{ to objective}$ function if system starts in state s_n at stage n,
immediate decision is x_n , and optimal decisions
are made thereafter.

$$f_n^*(s_n) = f_n(s_n, x_n^*)$$

João Miguel da Costa Sousa / Alexandra Moutinho

221

Characteristics of DP

7. (cont.) Recursive relationship:

$$\begin{split} &f_n^*(s_n) = \max_{x_n} \left\{ f_n(s_n, x_n) \right\} \quad \text{or} \quad f_n^*(s_n) = \min_{x_n} \left\{ f_n(s_n, x_n) \right\} \\ &\text{where } f_n(s_n, x_n) \text{ is written in terms of } s_n, x_n, f_{n+1}^*(s_{n+1}) \text{ , and} \\ &\text{probably some measure of the immediate contribution of } x_n \\ &\text{to the objective function.} \end{split}$$

- Using recursive relationship, solution procedure starts at the end and moves backward stage by stage.
 - > Stops when optimal policy starting at *initial* stage is found.
 - > The optimal policy for the entire problem is found.
 - Example: the tables for the stages show this procedure.

João Miguel da Costa Sousa / Alexandra Moutinho

222

Characteristics of DP

8. (cont.) For DP problems, a table such as the following would be obtained for each stage (n = N, N-1, ..., 1):

João Miguel da Costa Sousa / Alexandra Moutinho

223

Deterministic dynamic programming

☐ Deterministic problems: the state at the next stage is completely determined by the state and policy decision at the current stage.

- Form of the objective function: minimize or maximize the sum, product, etc. of the contributions from the individual stages.
- Set of states: may be discrete or continuous, or a state vector. Decision variables can also be discrete or continuous.

João Miguel da Costa Sousa / Alexandra Moutinho

224

Example: distributing medical teams

- ☐ The World Health Council has five medical teams to allocate to three underdeveloped countries.
- Measure of performance: additional person-years of life, i.e., increased life expectancy (in years) times country's population.

	Thousands of additional person-years of life					
		Country				
Medical teams	1	2	3			
0	0	0	0			
1	45	20	50			
2	70	45	70			
3	90	75	80			
4	105	110	100			
5	120	150	130			

João Miguel da Costa Sousa / Alexandra Moutinho

Formulation of the problem

- ☐ Problem requires three *interrelated decisions*: how many teams to allocate to the three countries (stages).
- $\square x_n$ is the number of teams to allocate to stage n.
- ☐ What are the states? What changes from one stage to another?
- $\Box s_n$ = number of medical teams still available for remaining countries (n, ..., 3).
- \square Thus: $s_1 = 5$, $s_2 = 5 X_1 = s_1 X_1$, $s_3 = s_2 X_2$.

João Miguel da Costa Sousa / Alexandra Moutinho

Overall problem

 $\Box p_i(x_i)$: measure of performance from allocating x_i medical teams to country i.

Maximize
$$\sum_{i=1}^{3} p_i(x_i)$$
, subject to

$$\sum_{i=1}^{3} x_i = 5,$$

and x_i are nonnegative integers.

João Miguel da Costa Sousa / Alexandra Moutinho

228

230

Policy

☐ *Recursive relationship* relating functions:

$$f_n^*(s_n) = \max_{x_n = 0, 1, \dots, s_n} \left\{ p_n(x_n) + f_{n+1}^*(s_n - x_n) \right\}, \text{ for } n = 1, 2$$

$$f_3^*(s_3) = \max_{x_n=0,1,\dots,s_3} p_3(x_3)$$

João Miguel da Costa Sousa / Alexandra Moutinho

229

Solution procedure, stage n = 3

 \square For last stage n = 3, values of $p_3(x_3)$ are the last column of table. Here, $x_3^* = s_3$ and $f_3^*(s_3) = p_3(s_3)$.

	Thousands of additional person-years of life			
		Country		
Medical teams	1	2	3	
0	0	0	0	
1	45	20	50	
2	70	45	70	
3	90	75	80	
4	105	110	100	
5	120	150	130	

= 3:	s ₃	$f_3^*(s_3)$	x ₃ *
	0	0	0
	1	50	1
	2	50 70 80	2
	3	80	3
	4	100	4
	5	130	5

João Miguel da Costa Sousa / Alexandra Moutinho

Stage n = 2

 \square Here, finding x_2^* requires <u>calculating</u> $f_2(s_2, x_2)$ for the values of $x_2 = 0$, 1, ..., s_2 . Example for $s_2 = 2$:

	Thousands of additional person-years of life			
		Country		
Medical teams	1	2	3	
0	0	0	0	
1	45	20	50	
2	70	45	70	
3	90	75	80	
4	105	110	100	
5	120	150	130	

João Miguel da Costa Sousa / Alexandra Moutinho

Continuous dynamic programming

- \square Previous examples had a **discrete** state variable s_n , at each stage.
- ☐ They all have been **reversible**; the solution procedure could have moved backward or forward stage by stage.
- □ Next example is *continuous*. As s_n can take any values in certain intervals, the solutions $f_n^*(s_n)$ and x_n^* must be expressed as *functions* of s_n .
- ☐ Stages in the next example will correspond to *time periods*, so the solution *must* proceed backwards.

João Miguel da Costa Sousa / Alexandra Moutinho

238

Example: scheduling jobs

- ☐ The company Local Job Shop needs to schedule employment jobs due to seasonal fluctuations.
 - Machine operators are difficult to hire and costly to train.
 - Peak season payroll should not be maintained afterwards.
 - Overtime work on a regular basis should be avoided.
- ☐ Minimum requirements in near future:

Season	Spring	Summer	Autumn	Winter	Spring
Requirements	255	220	240	200	255

João Miquel da Costa Sousa / Alexandra Moutinho

239

Example: scheduling jobs

- ☐ Employment above level in the table costs \$2,000 per person per season.
- ☐ Total cost of changing level of employment from one season to the other is \$200 times the square of the difference in employment levels.
- ☐ Fractional levels are possible due to part-time employees.

João Miguel da Costa Sousa / Alexandra Moutinho

240

Formulation

- ☐ From data, maximum employment should be 255 (spring). It is necessary to find the level of employment for other seasons. *Seasons* are *stages*.
- ☐ One cycle of four seasons, where stage 1 is summer and stage 4 is spring (known employment).
- $\square x_n$ = employment level for stage n (n =1,2,3,4); x_4 =255
- r_n = minimum employment requirement for stage n: r_1 =220, r_2 =240, r_3 =200, r_4 =255. Thus:

$$r_n \le x_n \le 255$$

João Miguel da Costa Sousa / Alexandra Moutinho

241

Formulation

- \square Cost for stage $n = 200(x_n x_{n-1})^2 + 2000(x_n r_n)$
- \square State s_n : employment in the preceding season x_{n-1}

$$s_n = x_{n-1}$$
 (n=1: $s_1 = x_0 = x_4 = 255$)

Problem:

Choose
$$x_1$$
, x_2 and x_3 as to minimize $\sum_{i=1}^{4} \left[2000(x_i - x_{i-1})^2 + 200(x_i - r_i) \right]$, subject to $r_i \le x_i \le 255$, for $i = 1, 2, 3, 4$

João Miguel da Costa Sousa / Alexandra Moutinho

...

Data

Choose
$$x_1$$
, x_2 and x_3 as to minimize $\sum_{i=1}^{4} \left[2000(x_i - x_{i-1})^2 + 200(x_i - r_i) \right]$, subject to $r_i \le x_i \le 255$, for $i = 1, 2, 3, 4$

n	r _n	Feasible x_n	Possible $s_n = x_{n-1}$	Cost
1	220	$220 \le X_1 \le 255$	S ₁ = 255	$200(X_1 - 255)^2 + 2000(X_1 - 220)$
2	240	$240 \le X_2 \le 255$	$220 \le S_2 \le 255$	$200(X_2 - X_1)^2 + 2000(X_2 - 240)$
3	200	$200 \le X_3 \le 255$	$240 \le s_3 \le 255$	$200(x_3 - x_2)^2 + 2000(x_3 - 200)$
4	255	x ₄ = 255	$200 \le S_4 \le 255$	$200(255 - x_3)^2$

João Miguel da Costa Sousa / Alexandra Moutinho

Formulation

☐ Recursive relationship:

$$f_n^*(s_n) = \min_{r_n \le x_n \le 255} \left\{ 200(x_n - s_n)^2 + 2000(x_n - r_n) + f_{n+1}^*(x_n) \right\}$$

☐ Basic structure of the problem:

João Miguel da Costa Sousa / Alexandra Moutinho

Stage 2

□ The solution has to be feasible for 220 \leq s₂ \leq 255 (i.e., 240 \leq x₂ \leq 255 for 220 \leq s₂ \leq 255)!

$$x_{2}^{*} = \frac{2s_{2} + 240}{3}$$
 only feasible for 240 $\leq s_{2} \leq$ 255.

□ Need to solve for feasible value of x_2 that minimizes $f_2(s_2, x_2)$ when 220 $\leq s_2 \leq$ 240.

For
$$s_2 < 240$$
, $\frac{\partial}{\partial x_2} f_2(s_2, x_2) > 0$ for $240 \le x_2 \le 255$
so $x_2^* = 240$.

João Miguel da Costa Sousa / Alexandra Moutinho

F

Stage 2 and Stage 1

S ₂	$f_2^*(\mathfrak{s}_2)$	X ₂ *
$220 \le S_2 \le 240$	$200(240-s_2)^2+115000$	240
240 ≤ S ₂ ≤ 255	$200/9[(240-s_2)^2+(255-s_2)^2 (270-s_2)^2]+2000(s_2-195)$	(252+240)/3

☐ Stage 1: procedure is similar.

S1	$f_{\scriptscriptstyle 1}^{\;*}(s_{\scriptscriptstyle 1})$	X,*
255	185000	247.5

> Solution:

•
$$x_1^* = 247.5, x_2^* = 245, x_3^* = 247.5, x_4^* = 255$$

➤Total cost of \$185,000

João Miguel da Costa Sousa / Alexandra Moutinho

How?

251

Deterministic continuous problem

☐ Consider the following nonlinear programming problem:

Maximize $Z=x_1^2x_2$, subject to $x_1^2+x_2 \le 2$.

(There are no nonnegativity constraints.)

☐ Use dynamic programming to solve this problem.

João Miguel da Costa Sousa / Alexandra Moutinho

252

Probabilistic dynamic programming

- ☐ State at next stage is *not* completely determined by state and policy decision at current stage.
- ☐ There is a *probability distribution* for determining the next state, see <u>figure</u>.
 - S = number of possible states at stage n + 1.
 - system goes to i (i = 1, 2, ..., S) with probability p_i given state s_n and decision x_n at stage n.
 - C_i = contribution of stage n to objective function.
- ☐ If <u>figure</u> is expanded to all possible states and decisions at all stages, it is a <u>decision tree</u>.

João Miguel da Costa Sousa / Alexandra Moutinho

253

Probabilistic dynamic programming

- □ Relation between $f_n(s_n, x_n)$ and $f_{n+1}^*(s_{n+1})$ depends upon form of overall objective function.
- **Example**: *minimize* the *expected sum* of the contributions from individual stages.
 - f_n(s_n, x_n) is the minimum expected sum from stage n onward, given state s_n and policy decision x_n at stage n:

$$f_n(s_{n,i}x_n) = \sum_{i=1}^{s} p_i \Big[C_i + f_{n+1}^*(i)\Big]$$

wit

 $f_{n+1}^*(i) = \min_{x} f_{n+1}(i, x_{n+1})$

João Miguel da Costa Sousa / Alexandra Moutinho

Example: determining reject allowances

- The Hit-and-Miss Manufacturing Company received an order to supply 1 item of a particular type.
 - Customer requires specified stringent quality requirements.
 - Manufacturer has to produce more than one to achieve one acceptable. Number of extra items is the reject allowance.
 - Probability of acceptable or defective is 1/2.
 - Number of acceptable items in a lot of size L has a binomial distribution: probability of not acceptable items is (1/2)^L.
 - Setup cost = \$300, cost per item = \$100. Maximum production runs = 3. Cost of no acceptable item after 3 runs = \$1,600.

João Miguel da Costa Sousa / Alexandra Moutinho

256

Formulation

- ☐ Objective: determine policy regarding lot size (1+reject allowance) for required production run(s) that minimizes total expected cost.
- \square Stage n = production run n (n = 1,2,3),
- $\square x_n = \text{lot size for stage } n$,
- □ State s_n = number of acceptable items still needed (1 or o) at the beginning of stage n.

Basic structure of the problem

• At stage 1, state $s_1 = 1$.

João Miguel da Costa Sousa / Alexandra Moutinho

257

Formulation

- $\Box f_n(s_n, x_n)$ = total expected cost for stages $n_1, ..., 3$ and optimal decisions are:
 - $\bullet f_n^*(s_n) = \min_{x = 0.1} f_n(s_n, x_n)$
 - $f_n^*(0) = 0$.
- ☐ Monetary unit is \$100. Contribution to $\underline{\cos t}$ from stage n is $[K(x_n) + x_n]$, with

$$K(x_n) = \begin{cases} 0, & \text{if } x_n = 0 \\ 3, & \text{if } x_n > 0 \end{cases}$$

• Note that $f_{4}^{*}(1) = 16$.

João Miguel da Costa Sousa / Alexandra Moutinho

258

 $K(n) + x_n - \left(\frac{1}{2}\right)^{x_n} f_{n+1}^*(1)$

$$f_n^*(\mathbf{1}) = \min_{\mathbf{x}_n = 0, 1, 2, \dots} \left\{ K(\mathbf{x}_n) + \mathbf{x}_n + 0.5^{\mathbf{x}_n} f_{n+1}^*(\mathbf{1}) \right\}$$

for n = 1, 2, 3

João Miguel da Costa Sousa / Alexandra Moutinho

259

Probabilistic problem

- ☐ An enterprising young statistician believes that she has developed a system for winning a popular Las Vegas game. Her colleagues do not believe that her system works, so they have made a large bet with her that if she starts with three chips, she will not have at least five chips after three plays of the game. Each play of the game involves betting any desired number of available chips and then either winning or losing this number of chips. The statistician believes that her system will give her a probability of 2/3 of winning a given play of the game.
- ☐ Assuming the statistician is correct, use dynamic programming to determine her optimal policy regarding how many chips to bet (if any) at each of the three plays of the game. The decision at each play should take into account the results of earlier plays. The objective is to maximize the probability of winning her bet with her colleagues.

João Miguel da Costa Sousa / Alexandra Moutinho