Bases de Datos 1

Alejandra Lliteras alejandra.lliteras@lifia.info.unlp.edu.ar

Temario de la clase

- Ejercicios pendientes de E/R
- Álgebra Relacional
 - Repaso general
 - Ejercicios

Ejercicios pendientes de Modelo de Entidades y Relaciones (Modelo E/R)

Modelo de ER

Ejercicio

Una empresa de correo quiere diseñar una base de datos para manejar la información referida a sus envíos.

La empresa tiene sucursales distribuidas por todo el país. De cada sucursal se conoce un número identificatorio, domicilio y localidad.

Los envíos que se generan en una sucursal, pueden ser telegramas, giros, cartas o encomiendas. Todos los envíos tienen un destinatario, un remitente, un precio y un código de rastreo.

Los telegramas tienen un texto. Los giros tienen un importe de dinero que se está enviando. Las cartas pueden ser simples, certificadas o expresas. Además, cuentan con un sellado. Existen dos tipos de sellados: el sello "rojo", que indica que el envío se abonó en la oficina del correo, y el sello "negro", que indica que el envío tenía estampillas por el valor del envío (son envíos dejados en los buzones o entregados en las sucursales sin la necesidad de abonarlo).

Modelo de ER

 Un posible modelo de ER (simplificado) para la empresa de correo

De Modelo de ER a Relacional

Ejercicio codigo_producto ○ marca codigoProveedor ∩nombreProveedor (1,1)(1,n)Artículo provistoPor Proveedor (1,n)nro cliente involucra \bigcirc nombre codigo_operación (1,n)○ teléfono fecha (1,n)(1,n)Cliente realiza Compra (G) CompraEfectivo CompraTarjeta nro_tarjeta tipo moneda

Expresar el modelo Relacional equivalente

Ó fecha_vencimiento

Artículo(codigo_producto, marca, modelo)
Proveedor(codigoProveedor, nombreProveedor)
provistoPor(codigo_Producto, codigoProveedor)
Cliente(nro_cliente, nombre, apellido, teléfono)
Compra(codigo_operacion, fecha)
CompraTarjeta(codigo_operacion, nro_tarjeta, fecha_vencimiento)
CompraEfectivo(codigo_operacion, tipo_moneda)
realiza(nro_cliente, codigo_operacion)
involucra(codigo_producto, nro_cliente, codigo_operacion)

De Modelo de ER a Relacional

Ejercicio codigo_producto ○ marca codigoProveedor ⊃nombreProveedor (1,1)(1,n)Artículo provistoPor Proveedor (1,n)nro cliente involucra nombre codigo operación (1,n)○ teléfono fecha (1,n)(1,n)Cliente realiza Compra (G) CompraTarieta CompraEfectivo nro_tarjeta

Cómo expresaría en lenguaje natural la lectura de este diagrama?

fecha_vencimiento

Un cliente realiza muchas compras, y una misma compra puede ser realizada por diversos clientes. Las compras pueden ser compras en efectivo, en tal caso se conoce el tipo de moneda, o bien compras con tarjeta. De las compras con tarjeta se conoce el número de tarjeta, y la fecha de vencimiento. Para cada compra se registra el código de operación y la fecha en la que se realiza. De cada compra realizada por un cliente involucrado en la misma, se conoce el o los artículos involucrados. Considerar que cada artículo es provisto por un único proveedor y que cada proveedor provee diversos artículos.

REPASO DE MODELO RELACIONAL

Etapas

Figura extraída de:

Garcia-Molina, H. (2008). Database systems: the complete book. Pearson Education India.

Modelo Relacional

- Álgebra Relacional -Lenguaje de Consulta
 - Operaciones fundamentales: son suficientes para expresar cualquier consulta en álgebra relacional
 - Selección (σ)
 - Proyección (Π)
 - Producto Cartesiano (X)
 - Renombre (**ρ**)
 - De una relación
 - De atributos de una relación
 - Unión (∪)
 - Diferencia ()

Modelo Relacional

- Álgebra Relacional -Lenguaje de Consulta
 - Operaciones adicionales:
 - No agregan potencia al álgebra, simplifican consultas.
 - Son reescribibles en término de operaciones fundamentales
 - Intersección (∩)
 - $R \cap S$ es equivalente a R (R S)
 - Producto Theta (|X|_θ)
 - $R |X|_{\theta} S$ es equivalente a $\sigma_{\theta}(R X S)$
 - Producto Natural (|X|)
 - R |X| S es equivalente a $\prod_{\text{lista}} (\mathbf{O}_{\text{condición}} (RXS))$
 - División (%)
 - Πatt(R) att(S) R Π att(R) att(S) ((Π att(R) att(S) (R)x S) –R)
 donde att(R) att(S) significan los atributos de la relación R menos los atributos de la relación S
 - Operación especial de Asignación (←)

AR- Lenguaje de Consulta

- Combinación de operaciones para formar consultas
 - Las operaciones se pueden usar
 - Aisladas o
 - Combinadas (expresiones)
 - Permiten resolver consultas complejas
 - Se usan paréntesis cuando es necesario agrupar operaciones
 - Notación lineal

Modelo Relacional

- Lenguaje de manipulación de datos
 - Operaciones de manipulación: se expresan usando la operación de asignación
 - Modifican la cantidad o los los valores de las tuplas de una relación

- Inserción (U)
- Eliminación ()
- Actualización (δ)

Dadas las siguientes tablas

- Mundial (año, pais)
- Cancha (nombre_cancha, ciudad, capacidad, año)
- Partido (fecha, año, eq1, eq2, cancha, goles_eq1, goles_eq2)

Resolver la siguiente consulta en AR:

a) ¿Qué equipos jugaron en el mundial 90 en todas las canchas habilitadas para ese mundial?

Modelo Relacional

- Operaciones fundamentales:
 - Selección (σ)
 - Proyección (Π)
 - Producto Cartesiano (X)
 - Renombre (ρ)
 - Unión (∪)
 - Diferencia ()
- Operaciones adicionales:
 - ■Intersección ()
 - •Producto Theta $(|X|_{\theta})$
 - •Producto Natural (|X|)
 - División (%)
 - Operación especial de Asignación (←)

Mundial (año, pais)
Cancha (nombre_cancha, ciudad,
capacidad, año)
Partido (fecha, año, eq1, eq2, cancha,
goles_eq1, goles_eq2)

Resolver las siguientes consultas en AR:

a) ¿Qué equipos jugaron en el mundial 90 en todas las canchas habilitadas para ese mundial?

Operaciones fundamentales:

- Selección (σ)
- Proyección (Π)
- Producto Cartesiano (X)
- Renombre (ρ)
- Unión (∪)
- Diferencia ()

Operaciones adicionales:

- Intersección ()
- •Producto Theta ($|X|_{\theta}$)
- Producto Natural (|X|)
- División (%)
- Operación especial de Asignación (←)

Mundial (año, pais)
Cancha (nombre_cancha, ciudad, capacidad, año)
Partido (fecha, año, eq1, eq2, cancha, goles_eq1, goles_eq2)

a) ¿Qué equipos jugaron en el mundial 90 en todas las canchas habilitadas para ese mundial?

Obtengo todos los equipos que jugaron partidos con la cancha en la que jugaron y el año

A
$$\leftarrow$$
 ($\Pi_{\text{eq1,cancha}}$ ($\sigma_{\text{año}=90}$ (Partido)) \cup $\Pi_{\text{eq2,cancha}}$ ($\sigma_{\text{año}=90}$ (Partido)))

Obtengo todas las canchas correspondientes al mundial del año 90

$$B \leftarrow \Pi_{\text{nombre cancha}}$$
 ($\sigma_{\tilde{a}\tilde{n}o=90}$ (Cancha)

Equipos que jugaron en el mundial 90 en todas las canchas habilitadas para ese mundial

```
 A \leftarrow (\Pi_{\text{eq1,cancha}} (\sigma_{\text{a\~no}=90} (\text{Partido})) \cup \Pi_{\text{eq2,cancha}} (\sigma_{\text{a\~no}=90} (\text{Partido})))   B \leftarrow \Pi_{\text{nombre\_cancha}} (\sigma_{\text{a\~no}=90} (\text{Cancha}))
```

A

eq1	cancha
E1	C1
E2	C2
E2	C1
E2	C3
E2	C4
E1	C2

В

cancha	
C1	
C2	
C3	
C4	

A % B

eq1	
E2	

INMUEBLE (<u>idInmueble</u>, nroCatastro, localidad, metrosCuadrados, tasacionFiscal, idPropietario)

PROPIETARIO(<u>idPropietario</u>, apellido, nombre, localidad, domicilio, dni) **MULTA**(idInmueble, <u>idMulta</u>, añoMulta, montoMulta, descripcionMulta)

Nota:

- No todos los inmuebles tienen multa
- Cada inmueble posee un único propietario
- a) Hallar aquellos propietarios que solamente poseen propiedades en la localidad de "San Carlos de Bariloche".
 Listar su nombre, apellido, localidad donde vive y el dni.

INMUEBLE(<u>idInmueble</u>, nroCatastro,localidad,metrosCuadrados,tasacionFiscal,idPropietario) PROPIETARIO(<u>idPropietario</u>, apellido, nombre, localidad, domicilio, dni) MULTA(idInmueble, <u>idMulta</u>, añoMulta, montoMulta, descripcionMulta)

Hallar aquellos propietarios que solamente poseen propiedades en la localidad de "San Carlos de Bariloche". Listar su nombre, apellido, localidad donde vive y el dni.

Hallar propietarios que poseen propiedades en otro lugar que no sea la localidad de "San Carlos de Bariloche"

Propietarios No Bariloche $\leftarrow \Pi_{\text{idPropietario}}$ ($\sigma_{\text{localidad} \neq \text{"San Carlos de Bariloche"}}$ (INMUEBLE))

Hallar propietarios que poseen propiedades en la localidad de "San Carlos de Bariloche"

Propietarios Bariloche $\leftarrow \Pi_{\text{idPropietario}}$ ($\sigma_{\text{localidad = "San Carlos de Bariloche"}}$ (INMUEBLE))

Hallar propietarios que poseen propiedades en la localidad de "San Carlos de Bariloche" y no tiene propiedades en otro lugar

PropietariosSOLOBariloche ← (PropietariosBariloche – PropietariosNoBariloche)

De los propietarios solo de propiedades de San Carlos de Bariloche, hallo nombre, apellido, localidad donde vive y el dni

 $\Pi_{\text{nombre,apellido,localidad,dni}}$ (Propietarios SOLO Bariloche |X| PROPIETARIO)

Lugar_trabajo (empleado, departamento)
Curso_departamento (departamento, curso)
Curso_realizado (empleado, curso)

a) ¿Quiénes son los empleados que han hecho todos los cursos, independientemente de qué departamento los exija?

Curso_realizado % Π_{curso} (Curso_departamento)

Ejercicio para entregar el miércoles 13/09 como parte del régimen de promoción.

El parcialito de promoción, es el miércoles 20/09.

Ejercicio para entregar

Lugar_trabajo (empleado, departamento)
Curso_departamento (departamento, curso)
Curso_realizado (empleado, curso)

b) ¿Qué empleados hicieron todos los cursos requeridos por su departamento?

Referencias del tema

- Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the ACM, 13(6), 377–387.
- Codd, E. F. (1979). Extending the database relational model to capture more meaning. ACM Transactions on Database Systems (TODS), 4(4), 397-434.
- Garcia-Molina, H. (2008). Database systems: the complete book. Pearson Education India.
- Korth, H. F., & Silberschatz, A. (1993). Fundamentos de Base de Datos. Segunda Edición en español.