Support Vector Machines in the Primal

Mingmin Chi

Fudan University, Shanghai, China

Outline

- 1 Linear Support Vector Machines in the Primal
- Regularization and SVMs
- 3 Kernels
- Mon-linear SVMs in the Primal

- Linear Support Vector Machines in the Primal
- Regularization and SVMs
- 3 Kernels
- 4 Non-linear SVMs in the Primal

Objective Function

 Recall that the primal objective function for the soft-margin SVMs with constraints is

$$\frac{1}{2}\|\mathbf{w}\|^{2} + C\sum_{i=1}^{n} \xi_{i}, \text{ s.t. } \forall_{i=1}^{n} : y_{i}\left(\mathbf{w}^{\top}\mathbf{x}_{i} + b\right) \geq 1 - \xi_{i}, \xi_{i} \geq 0$$

Objective Function

 Recall that the primal objective function for the soft-margin SVMs with constraints is

$$\frac{1}{2}\|\mathbf{w}\|^{2} + C\sum_{i=1}^{n} \xi_{i}, \text{ s.t. } \forall_{i=1}^{n} : y_{i}\left(\mathbf{w}^{\top}\mathbf{x}_{i} + b\right) \geq 1 - \xi_{i}, \xi_{i} \geq 0$$

 By the algebra operation, the constraints can be integrated in the objective function such that the objective function without constraints is:

$$\frac{1}{2}\|\mathbf{w}\|^2 + C\sum_{i=1}^n V\left(y_i, \mathbf{w}^\top \mathbf{x}_i + b\right)$$

Hinge Loss Function

Losses for training samples

 $V(y_i, \mathbf{w}^{\top} \mathbf{x}_i + b)$ is the loss for the training patterns $\mathbf{x}_i \in \mathbf{X}_l$, defined by $V(y, \mathbf{t}) = \max(0, 1 - y\mathbf{t})$. This is so-called *hinge loss*

Hinge Loss Function

Losses for training samples

 $V\left(y_i, \mathbf{w}^{\top} \mathbf{x}_i + b\right)$ is the loss for the training patterns $\mathbf{x}_i \in \mathbf{X}_l$, defined by $V(y, \mathbf{t}) = \max(0, 1 - y\mathbf{t})$. This is so-called *hinge loss*

Hinge Loss Function

Losses for training samples

 $V\left(y_i, \mathbf{w}^{\top} \mathbf{x}_i + b\right)$ is the loss for the training patterns $\mathbf{x}_i \in \mathbf{X}_l$, defined by $V(y, \mathbf{t}) = \max(0, 1 - y\mathbf{t})$. This is so-called *hinge loss*

The objective function of SVMs is $convex \Rightarrow no$ local minima

Support Vectors

• Only the training sample with $V(y_i, f(\mathbf{x}_i)) \neq 0$ makes a contribution on the loss function,

Support Vectors

- Only the training sample with $V(y_i, f(\mathbf{x}_i)) \neq 0$ makes a contribution on the loss function, i.e., $y_i f(\mathbf{x}_i) < 1$
- The samples with the nonzero losses are support vectors

Quadratic Loss Function

We can approximate the hinge loss by a quadratic form

Quadratic Loss Function (Contd)

• To do so, we can replace $V(y, \mathbf{t}) = \max(0, 1 - y\mathbf{t})$ by $V(y, \mathbf{t}) = \max(0, 1 - y\mathbf{t})^2$

Quadratic Loss Function (Contd)

- To do so, we can replace $V(y, \mathbf{t}) = \max(0, 1 y\mathbf{t})$ by $V(y, \mathbf{t}) = \max(0, 1 y\mathbf{t})^2$
- We use the L2-norm loss in the primal objective function as follows:
 - with constraints

$$\frac{1}{2}\|\mathbf{w}\|^2 + C\sum_{i=1}^n \xi_i^2, \text{ s.t. } \forall_{i=1}^n : y_i\left(\mathbf{w}^\top \mathbf{x}_i + b\right) \ge 1 - \xi_i, \xi_i \ge 0$$

without constraints:

$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n V\left(y_i, \mathbf{w}^\top \mathbf{x}_i + b\right)$$

where $V(y, t) = \max(0, 1 - yt)^2$

Loss Functions

In general, we can write down the common used L1/L2-norm loss as follows:

with constraints

$$\frac{1}{2}\|\mathbf{w}\|^{2} + C\sum_{i=1}^{n} \xi_{i}^{p}, \text{ s.t. } \forall_{i=1}^{n} : y_{i}\left(\mathbf{w}^{\top}\mathbf{x}_{i} + b\right) \geq 1 - \xi_{i}, \xi_{i} \geq 0$$

without constraints:

$$\frac{1}{2}\|\mathbf{w}\|^2 + C\sum_{i=1}^n V\left(y_i, \mathbf{w}^\top \mathbf{x}_i + b\right)$$

where $V(y, \mathbf{t}) = \max(0, 1 - y\mathbf{t})^p$

$$p = 1$$
: Hinge loss

p = 1: Hinge loss

- Non-differentiable
- Used in dual SVMs in the last lecture

p = 1: Hinge loss

- Non-differentiable
- Used in dual SVMs in the last lecture

p = 2: Quadratic loss

p = 1: Hinge loss

- Non-differentiable
- Used in dual SVMs in the last lecture

p = 2: Quadratic loss

- Differentiable
- Used in primal SVMs by gradient descent

p = 1: Hinge loss

- Non-differentiable
- Used in dual SVMs in the last lecture

p = 2: Quadratic loss

- Differentiable
- Used in primal SVMs by gradient descent

In general, the $V(\cdot,\cdot)$ could be any loss function but usually is chosen to be convex for the ease of optimization problems

Finite Newton Method

Implementation

 Mangasarian finite newton method (Mangasarian, 2002) does iterations of the form

$$eta_{t+1} = eta_t - \delta_k \mathbf{p}_k$$
 and $\mathbf{p}_k = -H_k^{-1} \nabla_k$

The step size δ_k is chosen to satisfy an Armijo condition that ensures convergence

Modified Newton method (Keerthi and DeCoste, 2005)

- Linear Support Vector Machines in the Primal
- Regularization and SVMs
- 3 Kernels
- 4 Non-linear SVMs in the Primal

Empirical Risk Functionals

Recall that the empirical risk functional is defined as

$$R_{\text{emp}}[f] = \frac{1}{n} \sum_{i=1}^{n} V(y_i, f(\mathbf{x}_i))$$

Empirical Risk Functionals

Recall that the empirical risk functional is defined as

$$R_{\text{emp}}[f] = \frac{1}{n} \sum_{i=1}^{n} V(y_i, f(\mathbf{x}_i))$$

for the classical regularization Networks

$$V(y_i, f(\mathbf{x}_i)) = (y_i - f(\mathbf{x}_i))^2$$

Empirical Risk Functionals

Recall that the empirical risk functional is defined as

$$R_{\text{emp}}[f] = \frac{1}{n} \sum_{i=1}^{n} V(y_i, f(\mathbf{x}_i))$$

for the classical regularization Networks

$$V(y_i, f(\mathbf{x}_i)) = (y_i - f(\mathbf{x}_i))^2$$

for the support vector classification:

$$V(y_i, f(\mathbf{x}_i)) = |1 - y_i f(\mathbf{x}_i)|_+, \text{ where } |t|_+ = \begin{cases} t, & t \ge 0 \\ 0, & t < 1 \end{cases}$$

Empirical Risk Functionals (Contd)

Empirical risk functional is defined as

$$R_{\text{emp}}[f] = \frac{1}{n} \sum_{i=1}^{n} V(y_i, f(\mathbf{x}_i))$$

Empirical Risk Functionals (Contd)

Empirical risk functional is defined as

$$R_{\text{emp}}[f] = \frac{1}{n} \sum_{i=1}^{n} V(y_i, f(\mathbf{x}_i))$$

for the support vector classification:

$$V(y_i, f(\mathbf{x}_i)) = |1 - y_i f(\mathbf{x}_i)|_+, \text{ where } |t|_+ = \begin{cases} t, & t \ge 0 \\ 0, & t < 1 \end{cases}$$

Empirical Risk Functionals (Contd)

Empirical risk functional is defined as

$$R_{\text{emp}}[f] = \frac{1}{n} \sum_{i=1}^{n} V(y_i, f(\mathbf{x}_i))$$

for the support vector classification:

$$V(y_i, f(\mathbf{x}_i)) = |1 - y_i f(\mathbf{x}_i)|_+, \text{ where } |t|_+ = \begin{cases} t, & t \ge 0 \\ 0, & t < 1 \end{cases}$$

for the support vector regression:

$$V\left(y_i, f(\mathbf{x}_i)\right) = |y_i - f(\mathbf{x}_i)|_{\epsilon}, \text{ where } |t|_{\epsilon} = \left\{ egin{array}{l} 0, & |t| \leq \epsilon \\ |t| - \epsilon, & |t| > \epsilon \end{array}
ight.$$

Regularized Risk Functionals

 The problem of approximating a function from sparse data is ill-posed and a classical way to solve it is regularization theory

Regularized Risk Functionals

- The problem of approximating a function from sparse data is ill-posed and a classical way to solve it is regularization theory
- With small-sized training dataset problem, we would like to formulate the classification problem as a variational problem of finding the function f that minimizes the functional

$$\min_{f \in \mathcal{H}} R_{\text{reg}}[f] = R_{\text{emp}}[f] + \lambda \Omega[f]$$

where

- $\Omega[f]$ is a smooth function and usually chosen to be convex, e.g., $||f||_{\mathcal{H}}^2$
- λ is the regularization parameter

The objective function of SVMs

SVMs are the typical application of the regularized risk functional:

$$\begin{aligned} \min_{f \in \mathcal{H}} R_{\text{reg}}[f] &= R_{\text{emp}}[f] + \lambda \Omega[f] \\ &= \frac{1}{n} \sum_{i=1}^{n} V(y_i, f(\mathbf{x}_i)) + \lambda \|f\|_{\mathcal{H}}^2 \end{aligned}$$

where

$$V(y_i, f(\mathbf{x}_i)) = |1 - y_i f(\mathbf{x}_i)|_+, \text{ where } |t|_+ = \begin{cases} t, & t \ge 0 \\ 0, & t < 1 \end{cases}$$

The objective function of SVMs (Contd)

• We usually write down the objective of SVMs as follows:

$$\min_{f \in \mathcal{H}} R_{\text{reg}}[f] = \frac{1}{2} \|f\|_{\mathcal{H}}^2 + C \sum_{i=1}^n V(y_i, f(\mathbf{x}_i))$$

where
$$C = \frac{1}{2n\lambda}$$

• When $\lambda = 0$, i.e., $C \propto \infty$, the hard-margin SVMs recovery.

- Linear Support Vector Machines in the Primal
- Regularization and SVMs
- 3 Kernels
- 4 Non-linear SVMs in the Primal

Reproducing Property

• Define the following reproducing kernel map for a kernel $k(\cdot, \cdot)$:

$$\phi: \mathbf{x} \to k(\mathbf{x}, \cdot)$$

i.e., to each point \mathbf{x} in the original space we associate a function $k(\mathbf{x}, \cdot)$ (example)

• We now construct a vector space containing all linear combinations of the functions $k(\mathbf{x}, \cdot)$

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \cdot)$$

for arbitrarily $\{\mathbf{x} \in \mathcal{X}\}_{i=1}^n$. This will be used to construct our RKHS \mathcal{H} .

Reproducing Kernel Hilbert Space (RKHS)

- The Hilbert space L₂ is too "big" for our purposes, containing too many non-smooth functions. One approach to obtaining restricted, smooth spaces is the Reproducing Kernel Hilbert Space (RKHS) approach. A RKHS is "smaller" than a general Hilbert space.
- We now define an inner product. Let $f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \cdot)$ and $g(\cdot) = \sum_{i=1}^{n} \beta_i k(\mathbf{x}_i', \cdot)$, such that $f, g \in \mathcal{H}$ and define

$$< f, g> = \sum_{ij} \alpha_i \beta_j k(\mathbf{x}_i, \mathbf{x}_j^{'})$$

• For any $f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \cdot)$, we have

$$\langle f, k(\mathbf{x}, \cdot) \rangle = \sum_{i=1}^{n} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) = f(\mathbf{x})$$

Representer Theory

(Kimeldorf and Wahba, 1970).

• Assume \mathcal{H} is the RKHS associated to the kernel k, each minimizer $f \in \mathcal{H}$ of the regularized risk

$$c(y_i, f(\mathbf{x}_i)) + \lambda \Omega[f]$$

admits a representation of the form

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

- Linear Support Vector Machines in the Primal
- Regularization and SVMs
- 3 Kernels
- Non-linear SVMs in the Primal

Feature Spaces

Preprocess the data with

$$\phi: \mathcal{X} \to \mathcal{H}$$
 $\mathbf{x} \to \phi(\mathbf{x}),$

where ${\cal H}$ is a dot product space and learn the mapping from $\phi({\bf x})$ to the output ${\it y}$

• Usually, $\dim(\mathcal{X}) \ll \dim(\mathcal{H})$, capacity control or complexity of the hypothesis space

Nonlinear Mapping (Example)

$$\phi : \mathbb{R}^2 \to \mathbb{R}^3$$

$$(x_1, x_2) \to (z_1, z_2, z_3) : (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$\phi(\mathbf{x}_1)^{\top} \phi(\mathbf{x}_2) = (\mathbf{x}_1^{\top} \mathbf{x}_2)^2$$

Nonlinear Mapping (Example, Contd)

$$\phi : \mathbb{R}^{2} \to \mathbb{R}^{3}$$

$$(x_{1}, x_{2}) \to (z_{1}, z_{2}, z_{3}) : (x_{1}^{2}, x_{2}^{2}, \sqrt{2}x_{1}x_{2})$$

$$\phi(\mathbf{x}_{1})^{\top}\phi(\mathbf{x}_{2}) = (\mathbf{x}_{1}^{\top}\mathbf{x}_{2})^{2}$$

$$\phi : \mathbb{R}^{2} \to \mathbb{R}^{4}$$

$$(x_{1}, x_{2}) \to (z_{1}, z_{2}, z_{3}, z_{4}) : (x_{1}^{2}, x_{2}^{2}, x_{1}x_{2}, x_{2}x_{1})$$

$$\phi(\mathbf{x}_{1})^{\top}\phi(\mathbf{x}_{2}) = (\mathbf{x}_{1}^{\top}\mathbf{x}_{2})^{2}$$

Primal Formulation

If the kernel exists, we can define the mapping

$$\phi(\mathbf{x}) = k(\cdot, \mathbf{x})$$

• By the Representer theorem, we have

$$f(\cdot) = \sum_{i=1}^{n} \beta_i k(\cdot, \mathbf{x}_i)$$

and with the reproducing property, we have

$$f(\mathbf{x}) = \langle f(\cdot), k(\cdot, \mathbf{x}) \rangle = \sum_{i=1}^{n} \beta_i k(\mathbf{x}, \mathbf{x}_i)$$
 (1)

Primal Formulation (Contd)

• Taking (1) into the objective function of SVMs, we have

$$\frac{1}{2} \sum_{i=1}^{n} \beta_{i} k(\mathbf{x}_{i}, \cdot) \sum_{j=1}^{n} \beta_{j} k(\cdot, \mathbf{x}_{j}) + C \sum_{i=1}^{n} V \left(y_{i}, \sum_{j=1}^{n} \beta_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j}) \right)$$

$$= \frac{1}{2} \boldsymbol{\beta}^{\top} \mathbf{K} \boldsymbol{\beta} + C \sum_{i=1}^{n} V \left(y_{i}, \mathbf{K}_{i}^{\top} \boldsymbol{\beta} \right)$$

where $\mathbf{K}_i = [k(\mathbf{x}_i, \mathbf{x}_j)]_{j=1}^n \in \mathbb{R}^{n \times 1}$ is the i^{th} column of \mathbf{K}

• If $V(\cdot, \cdot)$ is differentiable, the optimum value β^* can be obtained by gradient descent with respect to β

Newton Method for Nonlinear Primal SVM

Define I^0 an $n \times n$ diagonal matrix with the first n_{sv} entries being 1 and the others 0 [?].

$$I^0 \equiv \left(egin{array}{cccc} 1 & & & & & \\ & \ddots & & & 0 & & \\ & & 1 & & & \\ & & 0 & & & \\ & 0 & & \ddots & & \\ & & & & 0 \end{array} \right)$$

Gradient

$$\begin{split} \nabla &=& 2\lambda K\beta + \sum_{i=1}^{n_{\text{SV}}} K_i \frac{\partial L}{\partial t} (y_i, K_i^{\top}\beta) \\ &=& 2\lambda K\beta + 2\sum_{i=1}^{n_{\text{SV}}} K_i y_i (y_i K_i^{\top}\beta - 1) \\ &=& 2(\lambda K\beta + KI^0(K\beta - Y)), \end{split}$$

Hessian:
$$H = 2(\lambda K + K \mathbf{I}^0 K)$$

Newton step:
$$\beta \leftarrow \beta - H^{-1}\nabla$$

$$\begin{split} \beta &= \left(\begin{array}{cc} (\lambda I_{n_{\text{SV}}} + K_{\text{SV}})^{-1} & 0 \\ 0 & 0 \end{array} \right) Y, \\ &= \left(\begin{array}{cc} (\lambda I_{n_{\text{SV}}} + K_{\text{SV}})^{-1} Y_{\text{SV}} \\ 0 \end{array} \right). \end{split}$$

- When the labeled samples $(\mathbf{x}_i)_{i=1}^n$ are mapped to the feature space, they span a vectorial subspace \mathcal{S} ($\mathcal{S} \subset \mathcal{H}$), whose dimension is at most n.
- By choosing a basis for $\mathcal S$ and expressing the coordinates of all the points in that basis, we can then directly work in $\mathcal S$.
- Let $(\mathbf{v}_1, \dots, \mathbf{v}_n) \in \mathcal{S}$ be orthonormal basis of \mathcal{S} with \mathbf{v}_i expressed as:

$$\mathbf{v}_p = \sum_{j=1}^n \mathbf{A}_{jp} \Phi(\mathbf{x}_j), \quad 1 \le p \le n$$

• Since $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ is an orthonormal basis (i.e., $\mathbf{v}_p^{\top} \mathbf{v}_q = \delta_{pq}$), we have

$$\mathbf{A}^{\mathsf{T}}\mathbf{K}\mathbf{A} = \mathbf{I}$$

• As we have $\mathbf{v}_p = \sum_{i=1}^n \mathbf{A}_{jp} \Phi(\mathbf{x}_j), \ 1 \le p \le n,$

$$\mathbf{v}_{p}^{\top}\mathbf{v}_{q} = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{A}_{ip} \mathbf{A}_{jq} \Phi(\mathbf{x}_{i})^{\top} \Phi(\mathbf{x}_{j})$$

$$= (\mathbf{A}^{\top} \mathbf{K} \mathbf{A})_{pq}$$

$$= \delta_{pq}$$

• This is equivalent to $\mathbf{K} = (\mathbf{A}\mathbf{A}^{\top})^{-1}$

If we can use the following map ψ : ℝ^d → ℝⁿ and recalling that Φ : ℝ^d → ℋ, we can express the transformed data based on a kernel function:

$$\tilde{\mathbf{x}}_i = \psi(\mathbf{x}_i) = \phi(\mathbf{x}_i)^{\top} \mathbf{A}_i$$

• The *p*-th component of $\psi(\mathbf{x}_i)$ can be derived as follows:

$$\psi_p(\mathbf{x}_i) = \Phi(\mathbf{x}_i)^{\top} \mathbf{v}_p = \sum_{j=1}^n \mathbf{A}_{jp} k(\mathbf{x}_i, \mathbf{x}_j), 1 \leq p \leq n$$

It is easy to check that:

$$\psi(\mathbf{x}_i)^\top \psi(\mathbf{x}_j)$$

 If we can use the following map ψ : ℝ^d → ℝⁿ and recalling that Φ : ℝ^d → ℋ, we can express the transformed data based on a kernel function:

$$\tilde{\mathbf{x}}_i = \psi(\mathbf{x}_i) = \phi(\mathbf{x}_i)^{\top} \mathbf{A}_i$$

• The *p*-th component of $\psi(\mathbf{x}_i)$ can be derived as follows:

$$\psi_{p}(\mathbf{x}_{i}) = \Phi(\mathbf{x}_{i})^{\top} \mathbf{v}_{p} = \sum_{j=1}^{n} \mathbf{A}_{jp} k(\mathbf{x}_{i}, \mathbf{x}_{j}), 1 \leq p \leq n$$

It is easy to check that:

$$\psi(\mathbf{x}_i)^\top \psi(\mathbf{x}_j) = (k(\mathbf{x}_i, \cdot)^\top \mathbf{A}_i)^\top k(\mathbf{x}_j, \cdot)^\top \mathbf{A}_j$$

• If we can use the following map $\psi : \mathbb{R}^d \to \mathbb{R}^n$ and recalling that $\Phi : \mathbb{R}^d \to \mathcal{H}$, we can express the transformed data based on a kernel function:

$$\tilde{\mathbf{x}}_i = \psi(\mathbf{x}_i) = \phi(\mathbf{x}_i)^{\top} \mathbf{A}_i$$

• The *p*-th component of $\psi(\mathbf{x}_i)$ can be derived as follows:

$$\psi_p(\mathbf{x}_i) = \Phi(\mathbf{x}_i)^{\top} \mathbf{v}_p = \sum_{j=1}^n \mathbf{A}_{jp} k(\mathbf{x}_i, \mathbf{x}_j), 1 \leq p \leq n$$

• It is easy to check that:

$$\psi(\mathbf{x}_i)^{\top}\psi(\mathbf{x}_j) = (k(\mathbf{x}_i,\cdot)^{\top}\mathbf{A}_i)^{\top}k(\mathbf{x}_j,\cdot)^{\top}\mathbf{A}_j$$
$$= \mathbf{A}_i^{\top}k(\mathbf{x}_i,\cdot)^{\top}k(\mathbf{x}_j,\cdot)\mathbf{A}_j$$

If we can use the following map ψ : ℝ^d → ℝⁿ and recalling that Φ : ℝ^d → ℋ, we can express the transformed data based on a kernel function:

$$\tilde{\mathbf{x}}_i = \psi(\mathbf{x}_i) = \phi(\mathbf{x}_i)^{\top} \mathbf{A}_i$$

• The *p*-th component of $\psi(\mathbf{x}_i)$ can be derived as follows:

$$\psi_{p}(\mathbf{x}_{i}) = \Phi(\mathbf{x}_{i})^{\top} \mathbf{v}_{p} = \sum_{j=1}^{n} \mathbf{A}_{jp} k(\mathbf{x}_{i}, \mathbf{x}_{j}), 1 \leq p \leq n$$

It is easy to check that:

$$\psi(\mathbf{x}_i)^{\top} \psi(\mathbf{x}_j) = (k(\mathbf{x}_i, \cdot)^{\top} \mathbf{A}_i)^{\top} k(\mathbf{x}_j, \cdot)^{\top} \mathbf{A}_j$$

$$= \mathbf{A}_i^{\top} k(\mathbf{x}_i, \cdot)^{\top} k(\mathbf{x}_j, \cdot) \mathbf{A}_j$$

$$= k(\mathbf{x}_i, \mathbf{x}_j)$$

1 Computing the kernel matrix in terms of the training set \mathbf{X}_l and the related kernel parameters α , i.e.,

① Computing the kernel matrix in terms of the training set \mathbf{X}_l and the related kernel parameters α , i.e., $\mathbf{K} = \text{Compute_Kernel}(\mathbf{X}_l, \alpha)$

- Computing the kernel matrix in terms of the training set \mathbf{X}_l and the related kernel parameters α , i.e., $\mathbf{K} = \text{Compute_Kernel}(\mathbf{X}_l, \alpha)$
- ② Since **A** must satisfy $\mathbf{A}^{\top}\mathbf{K}\mathbf{A} = \mathbf{I}$,

- Computing the kernel matrix in terms of the training set \mathbf{X}_l and the related kernel parameters α , i.e., $\mathbf{K} = \text{Compute_Kernel}(\mathbf{X}_l, \alpha)$
- 2 Since **A** must satisfy $\mathbf{A}^{\top}\mathbf{K}\mathbf{A} = \mathbf{I}$, this is equivalent to $\mathbf{K} = (\mathbf{A}\mathbf{A}^{\top})^{-1}$

- Omputing the kernel matrix in terms of the training set \mathbf{X}_l and the related kernel parameters α , i.e., $\mathbf{K} = \text{Compute_Kernel}(\mathbf{X}_l, \alpha)$
- 2 Since **A** must satisfy $\mathbf{A}^{\top}\mathbf{K}\mathbf{A} = \mathbf{I}$, this is equivalent to $\mathbf{K} = (\mathbf{A}\mathbf{A}^{\top})^{-1}$
- **3** With the map $\psi : \mathbb{R}^d \to \mathbb{R}^n$ and $\Phi : \mathbb{R}^d \to \mathcal{H}$,

- Computing the kernel matrix in terms of the training set \mathbf{X}_l and the related kernel parameters α , i.e., $\mathbf{K} = \text{Compute_Kernel}(\mathbf{X}_l, \alpha)$
- ② Since **A** must satisfy $\mathbf{A}^{\top}\mathbf{K}\mathbf{A} = \mathbf{I}$, this is equivalent to $\mathbf{K} = (\mathbf{A}\mathbf{A}^{\top})^{-1}$
- **3** With the map $\psi: \mathbb{R}^d \to \mathbb{R}^n$ and $\Phi: \mathbb{R}^d \to \mathcal{H}$, we have $\tilde{\mathbf{X}}_I = \mathbf{K}^{\mathsf{T}} \mathbf{A} = (\mathbf{A}^{\mathsf{T}})^{-1}$

- Ocomputing the kernel matrix in terms of the training set \mathbf{X}_l and the related kernel parameters α , i.e., $\mathbf{K} = \text{Compute_Kernel}(\mathbf{X}_l, \alpha)$
- ② Since **A** must satisfy $\mathbf{A}^{\top}\mathbf{K}\mathbf{A} = \mathbf{I}$, this is equivalent to $\mathbf{K} = (\mathbf{A}\mathbf{A}^{\top})^{-1}$
- With the map $\psi : \mathbb{R}^d \to \mathbb{R}^n$ and $\Phi : \mathbb{R}^d \to \mathcal{H}$, we have $\tilde{\mathbf{X}}_I = \mathbf{K}^\top \mathbf{A} = (\mathbf{A}^\top)^{-1}$
- So we can get the new representation of the input data with $\tilde{\mathbf{X}}_l$ by the Cholesky decomposition on the kernel function \mathbf{K} , i.e., $\tilde{\mathbf{X}}_l = \text{chol}(\mathbf{K})$

- Omputing the kernel matrix in terms of the training set \mathbf{X}_l and the related kernel parameters α , i.e., $\mathbf{K} = \text{Compute_Kernel}(\mathbf{X}_l, \alpha)$
- ② Since **A** must satisfy $\mathbf{A}^{\top}\mathbf{K}\mathbf{A} = \mathbf{I}$, this is equivalent to $\mathbf{K} = (\mathbf{A}\mathbf{A}^{\top})^{-1}$
- With the map $\psi : \mathbb{R}^d \to \mathbb{R}^n$ and $\Phi : \mathbb{R}^d \to \mathcal{H}$, we have $\tilde{\mathbf{X}}_I = \mathbf{K}^\top \mathbf{A} = (\mathbf{A}^\top)^{-1}$
- So we can get the new representation of the input data with $\tilde{\mathbf{X}}_l$ by the Cholesky decomposition on the kernel function \mathbf{K} , i.e., $\tilde{\mathbf{X}}_l = \text{chol}(\mathbf{K})$

With the new representation of the input data set $\tilde{\mathbf{X}}$, we can train the linear SVMs in the primal.