

近世代数 (H) 讲义

Author: 吕长乐

Institute: 中国科学技术大学

Date: 2025 年 7 月

本讲义整理于 2020 年网课期间陈小伍老师近世代数 (H) 网课的板书,仅供参考,每年实际授课内容与之有出入

目录

Chapter	·1 环论	1
1.1	集合与映射	1
1.2	环的定义	4
1.3	商环与理想	7
1.4	分式域和商域	10
1.5	一元多项式环	13
1.6	添根构造	16
1.7	欧氏整环	19
1.8	Gauss 整数环	22
1.9	唯一因子分解整环	26
1.10	拾遗	30
Chapter	· 2 域扩张	32
2.1	域扩张和单扩张	32
2.2	域的代数扩张	35
2.3	分裂域	38
2.4	有限域	42
2.5	分圆域	45
Chapter	: 3 群论	48
3.1	群的基本定义	48
3.2	循环群	50
3.3	正规子群	53
3.4	对称群	56
3.5	群作用	61
3.6	Sylow 子群	65
3.7	群的表现	68
3.8	有限生成 Abel 群	71
Chapter	· 4 Galois 理论	75
4.1	Galois 扩张	75
4.2	Galois 对应	78

		目录
4.3	例子和应用	81
4.4	Galois 大定理	85
附录 A	2024 春近世代数 (H) 期末	89

Chapter 1 环论

1.1 集合与映射

记号: 集合 $X, Y, Z \cdots$, 子集 $X \subseteq Y$, 映射 $f: X \to Y$ 或 $X \xrightarrow{f} Y, x \mapsto f(x)$.

Example 1.1 恒等映射: $\mathrm{Id}_X: X \to X, x \mapsto x$.

Example 1.2 包含映射: 对 $S \subseteq X$, 定义 inc : $S \to X$, $s \mapsto s$.

Example 1.3 限制映射: 对映射 $f: X \to Y$ 和 $S \subseteq X$, 定义 f 在 S 上的限制 $f|_S: S \to X$, $s \mapsto f(s)$.

Definition 1.1

两个映射 $f: X \to Y$ 和 $f': X' \to Y'$ 称为相等,若 X = X', Y = Y' 且 $f(x) = f'(x) (\forall x \in X)$.

两个映射 $f: X \to Y$ 和 $g: Y \to Z$ 的**复合**定义为映射 $g \circ f: X \to Z, x \mapsto g(f(x))$.

映射 $f: X \to Y$ 称为**单射**,若 f(x) = f(x'),则 x = x',此时也记作 $X \stackrel{f}{\hookrightarrow} Y$.

映射 $f: X \to Y$ 称为**满射**,若 $\forall y \in Y, \exists x \in X, \text{s.t.} f(x) = y$,此时也记作 $X \stackrel{f}{\to} Y$.

若映射 $f: X \to Y$ 既单又满,则称 f 为**双射**,记为 $X \stackrel{\stackrel{)}{\sim}}{\rightarrow} Y$.

Proposition 1.1

(1) Id_X 为双射, inc 为单射.

(2) 映射的复合满足结合律 $h \circ (g \circ f) = (h \circ g) \circ f$, 其中 $f: X \to Y, g: Y \to Z, h: Z \to W$.

(3) 有单位元: $\forall f: X \to Y, f = f \circ \operatorname{Id}_X = \operatorname{Id}_Y \circ f.$

对映射 $f: X \to Y$,我们也可以定义它的像 $Im(f) = \{f(x): x \in X\} \subseteq Y$,则有如下的交换图表

其中 $\bar{f}(x) = f(x)$. 分解 $f = \text{inc} \circ \bar{f}$ 也称为 f 的**典范分解**.

利用已有的集合也可以构造出新的集合,例如无交并 $X \sqcup Y$,乘积 $X \times Y$,映射集合 $\mathrm{Map}(X,Y) = \{f: X \to Y\}$,所有子集构成的集合 $\mathcal{P}(X) = \{S \subseteq X\}$.

Proposition 1.2

- (1) Map $(X, \{0,1\}) \xrightarrow{\sim} \mathcal{P}(X), f \mapsto S_f = \{x \in X : f(x) = 1\}.$
- (2) $\operatorname{Map}(X \sqcup Y, Z) \xrightarrow{\sim} \operatorname{Map}(X, Z) \times \operatorname{Map}(Y, Z), f \mapsto (f|_X, f|_Y).$
- (3) $\operatorname{Map}(X, Y \times Z) \xrightarrow{\sim} \operatorname{Map}(X, Y) \times \operatorname{Map}(X, Z), g \mapsto (g_1, g_2),$ 其中 g_1, g_2 为 g 的第一和第二分量.

在集合上我们可以赋予如下的等价关系.

Definition 1.2

集合 X 上的**等价关系**是一个集合 $R \subseteq X \times X$,满足下面的三个条件:

- (1) 自反性: $(x,x) \in R, \forall x \in X$.
- (2) 对称性: $(x,y) \in R$, 则 $(y,x) \in R$.
- (3) 传递性: $(x,y) \in R, (y,z) \in R$, 则 $(x,z) \in R$.

我们记 $(a,b) \in R$ 作 $a \stackrel{R}{\sim} b$, 语义清晰时也可省略 R.

对 $a \in X$, 定义 a 的等价类为集合 $[a] = \{x \in X : x \stackrel{R}{\sim} a\} \subseteq X$, 任意 $x \in [a]$ 称为一个代表元.

商集 $^{X}/_{R}\subseteq\mathcal{P}(X)$ 为等价类构成的集合,**商映射**定义为 $\pi_{R}:X woheadrightarrow X/_{R},a\mapsto [a].$

一个集合 $S \subseteq X$ 称为关于等价关系 R 的**完全代表元系**,如果 $\forall x \in X, \exists ! s \in S, \text{s.t.} s \overset{R}{\sim} x.$

Example 1.4 令 $X = \mathbb{Z}$, 定义 $a \sim b$ 当且仅当 3|(a - b), 不难验证这确实是一个等价关系,此时 $S = \{0,1,2\}$ 为一个完全代表元系.

不难注意到等价类满足如下性质:

- (1) 若 $b \sim a$, 则 [a] = [b].
- (2) 若 $[a] \cap [a'] \neq \emptyset$, 则 [a] = [a'].

故有

Proposition 1.3

若 $S \subseteq X$ 为完全代表元系,则

- $(1) S \stackrel{\text{inc}}{\hookrightarrow} X \stackrel{\pi_R}{\twoheadrightarrow} X/_R, s \mapsto [s] \ \mathcal{A} \otimes \mathfrak{A}.$
- $(2) X = \sqcup_{s \in S}[s]$ 为无交并.

这自然地给出了分拆的概念

Definition 1.3

集合 X 的一个**分拆**是指一族子集 $\{X_i : i \in I\} \subseteq \mathcal{P}(X)$ 使得

- (1) $X_i \neq \emptyset (\forall i \in I)$.
- (2) $\forall i \neq j, X_i \cap X_j = \emptyset$.
- (3) $X = \bigcup_{i \in I} X_i$.

根据上面的讨论,每一个 X 上的等价关系都给出了 X 的一个分拆,事实上反过来也成立: 给定 X 的分拆 $\{X_i: i\in I\}$,定义 $x\sim y$ 当且仅当 $\exists i\in I, \text{s.t.} x\in X_i, y\in X_i$. 可以验证 \sim 确实是一个等价关系. 进而 X 上的等价关系和 X 的分拆之间有一一对应.

在本节的最后我们给出一个重要的等价关系的例子.

Theorem 1.1 (映射基本定理)

对任意映射 $f:X\to Y$, 定义 $x\stackrel{f}{\sim} x'$ 当且仅当 f(x)=f(x'),则 $\stackrel{f}{\sim}$ 是 X 上的一个等价关系,等价类 $[x]=f^{-1}(f(x))$.

此外 f 诱导了双射 $\bar{f}: X/_{f} \xrightarrow{\sim} \text{Im}(f), [x] \mapsto f(x)$, 并且有如下的交换图表

$$X \xrightarrow{f} Y$$

$$\downarrow^{\pi_f} \qquad \qquad \inf$$

$$X/_{f} \xrightarrow{\overline{f}} \operatorname{Im}(f)$$

该定理的证明为简单的验证, 在此省略.

1.2 环的定义

Definition 1.4

环 (更精确地说是含幺交换环) 是一个非空集合 R 和 R 上的二元运算 + 和 · (通常称为加法和乘法),满足:

- (A1) 加法结合律: (a+b)+c=a+(b+c).
- (A2) 加法交换律: a + b = b + a.
- (A3) 零元: $\exists 0_R \in R, \text{s.t.} a + 0_R = a(\forall a \in R).$
- (A4) 负元: $\forall a \in R, \exists b \in R, \text{s.t.} a + b = 0_R$, 此时记 b = -a.
- (M1) 乘法结合律: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- (M2) 幺元: $\exists 1_R \in R, \text{s.t.} a \cdot 1_R = a(\forall a \in R).$
- (D1) 分配律 1: $(a+b) \cdot c = a \cdot c + b \cdot c$.
- (D2) 分配律 2: $a \cdot (b+c) = a \cdot b + a \cdot c$.

借助负元也可以定义环上的减法: a-b=a+(-b),

Example 1.5 整数环 $\mathbb{Z} = (\mathbb{Z}, +, \cdot)$.

Example 1.6 Gauss 整数环 $\mathbb{Z}[i] = \{m + ni : m, n \in \mathbb{Z}\} \subseteq \mathbb{C}$.

Example 1.7 有理系数一元多项式环 $\mathbb{Q}[x]$.

Example 1.8 同余类环 $\mathbb{Z}_n = \{[0], [1], \cdots, [n]\}.$

容易验证环有如下的基本性质

Proposition 1.4

对环R,有

- (1) $\forall a \in R, -(-a) = a$.
- (2) $\forall a \in R, n \in \mathbb{Z}$, 可以先对非负的 n 通过累加定义a **的** n **倍**na, 再通过取负元对负值的 n 定义 na. 则有 (m+n)a=ma+na.
 - (3) 消去: a + b = a + c, 则 b = c.
 - $(4) \forall n \in \mathbb{Z}, 有 n1_R \in R$, 且 $na = (n1_R) \cdot a$.
 - (5) 广义分配律: $(\sum_{i=1}^{n} a_i) \cdot (\sum_{j=1}^{m} b_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} (a_i \cdot b_j).$
- (6) 对 $a \in R, n \in \mathbb{N}$,可以通过累乘定义 a 的 n 次方 a^n ,则有二项式定理 $(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i \cdot b^{n-i}$.

乘法可逆的元素在环中受到我们的关注.

Definition 1.5

 $a \in R$ 称为**乘法可逆元**,或者称为**单位**,若 $\exists b \in R, \text{s.t.} a \cdot b = 1_R$. 此时记 $b = a^{-1}$,称为 a 的逆. $U(R) = \{a \in R : a$ 可逆 $\}$ 称为 R 的**单位群**.

Proposition 1.5

- U(R) 确实为群 (群会在之后定义), 即:
 - (1) $1_R \in U(R)$.
 - (2) $a, b \in U(R)$, 则 $a \cdot b \in U(R)$.
 - (3) a ∈ U(R), $⋈ a^{-1} ∈ U(R)$.

证明 (2) $(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = 1_R$, 故 $a \cdot b \in U(R)$ (3) $a^{-1} \cdot a = 1_R$, 故 $a^{-1} \in U(R)$.

Example 1.9 对任意环 R, 0_R 不可逆, 1_R 可逆, -1_R 可逆,它们的逆都是它们本身.

Example 1.10 对可逆元有乘法消去: $\forall a \in U(R), x, y \in R, a \cdot x = a \cdot y, \text{则 } x = y.$

Example 1.11 $U(\mathbb{Z}) = \{1, -1\}, U(\mathbb{Q}) = \mathbb{Q} - \{0\}, U(\mathbb{Z}_n) = \{[m] : (m, n) = 1\}, U(\mathbb{Z}[i]) = \{\pm 1, \pm i\}.$

Definition 1.6

环 R 称为整环,若 $a \cdot b = 0_R$,则必有 $a = 0_R$ 或 $b = 0_R$. 环 R 称为域,若 $R - \{0_R\} = U(R)$.

*

Proposition 1.6

- (1) 整环上有乘法消去律,即若 $a \cdot b = a \cdot c, a \neq 0_R$,则b = c.
- (2) 域为整环, 反之不一定成立. 但有限整环必为域,

证明 (1) 由条件 $a \cdot (b-c) = 0_R$, 再由整环的定义 $b-c = 0_R$, b=c.

(2) 设 R 为域, $a \neq 0_R, b \neq 0_R$,则只须证 $a \cdot b \neq 0_R$. 这是因为由于 R 为域,有 $a, b \in U(R)$,则 $a \cdot b \in U(R) = R - \{0_R\}$,即 $a \cdot b \neq 0_R$. \mathbb{Z} 是整环但不是域.

现在设 R 是有限整环,则任何 $x \neq 0_R$,若任意 $i \neq j \in \mathbb{N}, x^i \neq x^j$,则 $\{x^k : k \in \mathbb{N}\} \subseteq R$ 是无限集,矛盾! 故 $\exists i > j \in \mathbb{N}$ 使得 $x^i = x^j$,由于 R 为整环有消去律 $x \cdot x^{i-j-1} = 1$,故 $x \in U(R)$,R 是域. \square **Example 1.12** \mathbb{Q} , \mathbb{R} , \mathbb{C} 均为域, \mathbb{Z} 和 $\mathbb{Z}[i]$ 不是域.

Example 1.13 \mathbb{Z}_n 为整环 \iff n=p 为素数 \iff \mathbb{Z}_n 为域,此时也记 $\mathbb{Z}_n=\mathbb{F}_p$.

Definition 1.7

R是环, $S \subseteq R$ 是一个包含 1_R 的关于 R 的加法和乘法封闭的子集,则称 S 为 R 的**子环**,不难 验证 S 关于继承的加法和乘法确实成为一个环.

K 是域, $S \subseteq K$ 是子环, 则 S 称为**子域**, 若 $\forall 0_S \neq a \in S$, 有 $a^{-1} \in S$. 同样不难验证此时 S 确

实是一个域.

.

Proposition 1.7

 $\mathbb{Q}(i) = \{a + bi : a, b \in \mathbb{Q}\}$ 的子域只有 \mathbb{Q} 和 $\mathbb{Q}(i)$ 本身.

证明 设 S 为子域,则 $1 \in S$,由于加法封闭可知 $\mathbb{Z} \subseteq S$,再由于为子域,故 $\forall n \in \mathbb{Z} - \{0\}, \frac{1}{n} \in S$,则 $\mathbb{Q} \subseteq S$.

若 $\mathbb{Q} \neq S$, 则存在 $a+bi \in S, a,b \in \mathbb{Q} \subseteq S, b \neq 0$, 则由加法封闭 $bi \in S$,故 $i=\frac{1}{b} \cdot bi \in S$,则任何 $a',b' \in \mathbb{Q} \subseteq S$,有 $a'+b'i \in S$,即 $S=\mathbb{Q}(i)$.

1.3 商环与理想

Definition 1.8

映射 $\theta: R \to S$ 称为**环同态**, 若

- $(1) \theta(a+b) = \theta(a) + \theta(b), \theta(a \cdot b) = \theta(a) \cdot \theta(b), \forall a, b \in R.$
- (2) $\theta(1_R) = 1_S$.

若环同态 θ 为双射,则称为**环同构**.

Remark 由定义,若 $\theta: R \to S$ 为环同态,则 $\theta(0_R) = 0_S$, $\theta(a^m) = \theta(a)^m$, $\theta(a - b) = \theta(a) - \theta(b)$, 特别 地 $\theta(a^{-1}) = \theta(a)^{-1}$,即 $\theta(U(R)) \subseteq U(S)$.

Example 1.14 任意环 R, 存在同态 $\mathbb{Z} \to R$, $n \mapsto n1_R$, 称为 R 的**特征同态**.

Example 1.15 不存在 \mathbb{Q} 到 \mathbb{Z}_8 的环同态: 若存在这样的环同态 θ , 则 $\theta(1) = \bar{1}, \theta(8) = \theta(1) + \theta(1) + \cdots + \theta(1)$ (共 8 个)= 0, 又 8 \in $U(\mathbb{Q})$, 故 0 \in $U(\mathbb{Z}_8)$, 矛盾!

Proposition 1.8

证明 显然 $\theta^{-1}(1_S) = 1_R$. 对 $x, y \in S$, 由于 $\theta(\theta^{-1}(x+y) = x+y = \theta(\theta^{-1}(x) + \theta^{-1}(y))$ 以及 θ 为双射,有 $\theta^{-1}(x+y) = \theta^{-1}(x) + \theta^{-1}(y)$.

同理可证 $\theta^{-1}(x \cdot y) = \theta^{-1}(x) \cdot \theta^{-1}(y)$. 同时显然 θ^{-1} 为双射,故为环同构.

Example 1.16 Aut(\mathbb{Z}) = { $\mathrm{Id}_{\mathbb{Z}}$ }, Aut($\mathbb{Z}[i]$) = { $\mathrm{Id}_{\mathbb{Z}[i]}$, σ }, 其中 σ 为取复共轭.

Definition 1.9

对环同态 θ , 定义 θ 的**核**为 $\ker(\theta) = \theta^{-1}(0_S) \subseteq R$.

沿用第一节的记号,则 $a \stackrel{\theta}{\sim} b$ 当且仅当 $a-b \in \ker(\theta)$. 此外 $[a] = a + \ker(\theta)$, $R / \underset{\epsilon}{\wedge} \stackrel{\text{1:1}}{\leftrightarrow} \operatorname{Im}(\theta)$. 对 $\ker(\theta)$ 我们有如下观察:

- $(1) \ker(\theta)$ 对加法和乘法封闭.
- $(2) \ker(\theta)$ 不是子环,因为 $1_R \notin \ker(\theta)$.
- (3) $\forall a \in R, r \in \ker(\theta),$ $有 a \cdot r \in \ker(\theta).$

这提示我们进行如下的定义

Definition 1.10

非空子集 $I \subseteq R$ 称为理想,记作 $I \triangleleft R$,若

- (1) $\forall a, b \in I$, f $a + b \in I$.
- (2) $\forall a \in R, r \in I$, 有 $a \cdot r \in I$.

Remark (1) $R \triangleleft R$,此外的理想称为真理想,显然 $I \triangleleft R$ 为真理想等价于 $1_R \notin I$.

- (2) $\{0_R\}$ ⊲ R, 它与 R 本身称为 R 的平凡理想.
- (3) $\forall a \in R, (a) = aR = \{a \cdot r : r \in R\} \triangleleft R,$ 这种理想称为主理想.
- (4) I_1, I_2 为 R 的理想,则 $I_1 + I_2, I_1I_2, I_1 \cap I_2$ 也为 R 的理想.

Lemma 1.1

R 是域 \iff R 仅有平凡理想.

 \Diamond

证明 \Rightarrow : 若存在 $I \triangleleft R$ 且存在 $0_R \neq a \in I$,则 $1_R = a^{-1} \cdot a \in I$,则 I = R. \Leftarrow : 任意 $0_R \neq a \in R$,则由假设 (a) = R,故 $1 \in (a)$, $\exists b$,s.t. $a \cdot b = 1_R$,故 $a \in U(R)$,R 为域.

Example 1.17 我们来分类 \mathbb{Z} 的所有理想. 设 $\{0\} \neq I \triangleleft \mathbb{Z}$,则取 $0 \neq n \in I$ 使得 |n| 最小,首先有 $n\mathbb{Z} \subseteq I$. 其次任意 $r \in I$,由带余除法 $r = nq + r', q \in \mathbb{Z}, 0 \le r' < |n|$,则 $r' = r - nq \in I$,由 n 的选取有 r' = 0,故 $n|r, I \subseteq n\mathbb{Z}$. 综上 $I = n\mathbb{Z}$.

故 \mathbb{Z} 的所有理想为 $n\mathbb{Z}(n \in \mathbb{N})$.

Definition 1.11

 $I \triangleleft R$,则定义 $a \equiv b \mod I \iff a-b \in I$,不难验证这给出了一个等价关系,则可以定义 $R/I = R/\equiv = \{\bar{a}: a \in R\}.$

R/I 上有自然的运算 $\bar{a} + \bar{b} = \overline{a + b}, \bar{a} \cdot \bar{b} = \overline{a \cdot b}$ (可以验证良定性),则 R/I 是一个环,称为**商环**. 定义 can: $R \to R/I, a \mapsto \bar{a}$ 为自然的满同态,则显然 $\ker(\operatorname{can}) = I$.

Proposition 1.9 (核理想的泛性质)

 $\theta:R\to S\; \text{为环同态}\,,\,\,I\triangleleft R\text{, can}:R\twoheadrightarrow R/I\,,\,\,\text{则}\,\,I\subseteq\ker(\theta)\Longleftrightarrow\exists\theta':R/I\to S\,,\,\,\text{使得}\,\,\theta=\theta'\circ\text{can}.$

证明 \Rightarrow : 直接定义 $R/I \xrightarrow{\theta'} S, \bar{a} \mapsto \theta(a)$. 还需验证良定性,即不依赖于代表元的选取:取 $\bar{a} = \bar{a'}$,则 $a - a' \in I \subseteq \ker(\theta)$,故 $\theta(a) = \theta(a')$.

$$\Leftarrow: I = \ker(\operatorname{can}) \subseteq \ker(\theta).$$

Theorem 1.2 (环同态基本定理)

设 $\theta:R\to S$ 为环同态,则存在唯一环同构 $\bar{\theta}:R/\ker(\theta)\stackrel{\sim}{\to}\mathrm{Im}\theta$, 使得如下图表交换

$$\begin{array}{ccc}
R & \xrightarrow{\theta} & S \\
\downarrow^{\operatorname{can}} & & \operatorname{inc} \\
R/\ker(\theta) & \xrightarrow{\overline{\theta}} & \operatorname{Im}\theta
\end{array}$$

 ∞

这是映射基本定理的特殊情形.

Example 1.18 $\theta: R \to S$ 为单的等价于 $\ker(\theta) = \{0_R\}$,此时有 $\overline{\theta}: R \xrightarrow{\sim} \operatorname{Im}\theta$.

若 θ 是满的,则 $S \simeq R/\ker(\theta)$.

Example 1.19 考虑之前定义的特征映射 $\phi: \mathbb{Z} \to R, m \mapsto m1_R, \ \, 则 \ker(\phi) = n\mathbb{Z}(n=0 \ \text{或} \ n \geq 2).$

n=0 时 ϕ 是单的; $n\geq 2$ 时 ϕ 不单,有 $\overline{\phi}:\mathbb{Z}_n\hookrightarrow R$. 两种情况下均称 n 为 R 的特征, 记为 $\mathrm{char}(R)$. 可以证明对整环 R,R 的特征为 0 或素数 p.

Example 1.20 考虑 $I \triangleleft R, J \triangleleft R, I \subseteq J$,则可定义: $R/I \rightarrow R/J, a+I \mapsto a+J$ (可验证良定性), $\ker = \{a+I: a \in J\} \triangleleft R/I$,应用同态基本定理,我们有:

$$(R/I)/(J/I) \xrightarrow{\sim} R/J$$

 $\overline{a} + J/I \mapsto a + J$

进一步地,给定 $I \triangleleft R$,我们有如下的双射:

$$\{J \triangleleft R : I \subseteq J\} \leftrightarrow \{K : K \triangleleft R/I\}$$

$$J \mapsto J/I = \{a+I : a \in J\}$$

练习:证明上面的对应是一一对应,并且利用之给出 \mathbb{Z}_n 的所有理想.

1.4 分式域和商域

考虑整环 R, 定义 $R^* = R - \{0\}$, 则定义 $R \times R^*$ 上的关系

$$(a,x) \sim (b,y) \iff a \cdot y = b \cdot x \in R.$$

仍然不难验证这确实是一个等价关系,则定义**分式** $\frac{a}{x}$ 为 (a,x) 在 $R \times R^*$ 中的等价类,故

$$\frac{a}{x} = \frac{a'}{x'} \Longleftrightarrow ax' = a'x \in R.$$

定义分式的全体为 $\operatorname{Frac}(R) = (R \times R^*)/_{\sim} \subseteq \mathcal{P}(R \times R^*)$. 我们自然定义其上的运算:

$$\frac{a}{x} + \frac{b}{y} = \frac{ay + bx}{xy}, \frac{a}{x} \cdot \frac{b}{y} = \frac{ab}{xy}.$$

首先整环告诉我们 $xy \neq 0_R$, 故能定义如上的分式. 其次可以验证上述定义不依赖于代表元的选取:

设 $\frac{a}{x} = \frac{a'}{x'}, \frac{b}{y} = \frac{b'}{y}$, 即 ax' = a'x, by' = b'y, 则只需 $\frac{ay+bx}{xy} = \frac{a'y'+b'x'}{x'y'}, \frac{ab}{xy} = \frac{a'b'}{x'y'}$. 第二个式子是显然的,第一个式子:

(ay + bx)(x'y') - (a'y' + b'x')(xy) = ax'yy' + by'xx' - a'xyy' - b'yxx' = 0, 故证明了良定性.

Proposition 1.10

- (1) (Frac(R), +, ·) 是含幺交换环,并且是域,称为环R的分式域.
- (2) 可定义单同态 $\operatorname{can}_R: R \hookrightarrow \operatorname{Frac}(R), a \mapsto \frac{a}{1_R}$, 且 can_R 是同构当且仅当 R 是域.

证明 (1) 加法和乘法如上面定义,可自然定义零元 $\frac{0_R}{1_R}$,幺元 $\frac{1_R}{1_R}$,负元 $-\frac{a}{x} = \frac{-a}{x}$,且对 $\forall \frac{a}{x} \neq \frac{0_R}{1_R}$,有 $\frac{a}{x} \cdot \frac{x}{a} = \frac{1_R}{1_R}$,故可逆,则 $\operatorname{Frac}(R)$ 为域.

(2) 不难验证为同态,且 $\frac{a}{1_R} = \frac{0_R}{1_R}$ 等价于 $a = 0_R \in R$, 故 can_R 为单同态. 若为同构,则由 $\operatorname{Frac}(R)$ 为域有 R 为域.

反之设 R 为域,则任意 $\frac{a}{x} \in \operatorname{Frac}(R)$,有 $\frac{a}{x} = \frac{x^{-1}a}{1_R} \in \operatorname{Im}(\operatorname{can}_R)$,故为同构.

Proposition 1.11 (can_R 的泛性质)

R 整环, K 域, 则 \forall 单同态 $\phi: R \hookrightarrow K$, $\exists ! \tilde{\phi}: \operatorname{Frac}(R) \hookrightarrow K$, 使得有下面的交换图表.

$$R \xrightarrow{\operatorname{can}_R} \operatorname{Frac}(R)$$

$$\downarrow^{\phi}_{K} \xrightarrow{\exists !\tilde{\phi}}$$

证明 唯一性: 若 $\tilde{\phi}$ 存在,则 $\tilde{\phi}(\frac{a}{la}) = \phi(a)$,故

$$\tilde{\phi}(\frac{a}{x}) = \tilde{\phi}(\frac{a}{1_{R}} \cdot (\frac{x}{1_{R}})^{-1}) = \tilde{\phi}(\frac{a}{1_{R}}) \cdot (\tilde{\phi}(\frac{x}{1_{R}}))^{-1} = \phi(a) \cdot \phi(x)^{-1}.$$

即 φ 由上式唯一确定.

存在性: 只用验证 $\tilde{\phi}$: $\mathrm{Frac}(R) \to K$, $\frac{a}{x} \mapsto \phi(a) \cdot \phi(x)^{-1}$ 是一个良定的单同态,并满足上面的交换图表.

良定性: 若 $\frac{a}{x} = \frac{a'}{x'}$,则ax' = a'x,只需证 $\phi(a) \cdot \phi(x)^{-1} = \phi(a') \cdot \phi(x')^{-1}$,这等价于 $\phi(a) \cdot \phi(x') = \phi(a') \cdot \phi(x)$,由 ϕ 是同态,这成立.

单同态且满足交换图表:易验证是单同态,且 $\tilde{\phi}(\operatorname{can}_{\mathbf{R}}(a)) = \tilde{\phi}(\frac{a}{1_R}) = \phi(a), \forall a \in R$,故得证. \square Remark 由上面讨论, $\tilde{\phi}:\operatorname{Frac}(R) \to K$ 为同构 $\Longleftrightarrow \forall w \in K$ 可以表示为 $\phi(a) \cdot \phi(x)^{-1}$ 的形式.

Example 1.21 $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$, $\operatorname{Frac}(\mathbb{Z}[i]) = \mathbb{Q}(i)$:由上面的命题,对单嵌入 $\operatorname{inc}: \mathbb{Z}[i] \hookrightarrow \mathbb{Q}(i)$,可以得到诱导映射: $\operatorname{Frac}(\mathbb{Z}[i]) \hookrightarrow \mathbb{Q}(i)$.

又对任意 $a+bi\in\mathbb{Q}(i)$,由于 $a,b\in\mathbb{Q}$,可以取 $m'\in\mathbb{N}-\{0\}$ 和 $m,n\in\mathbb{Z}$,使得 $a+bi=\frac{m+ni}{m'}=(m+ni)\cdot(m')^{-1}$,则由上面的 Remark,诱导映射给出了同构 $\operatorname{Frac}(\mathbb{Z}[i])\stackrel{\sim}{\to}\mathbb{Q}(i)$.

Example 1.22 对域 F, (1) 若 $\operatorname{char} F = 0$,则有单嵌入 $\mathbb{Z} \hookrightarrow F$,再由泛性质存在唯一的嵌入 $\mathbb{Q} \stackrel{\theta}{\hookrightarrow} F, \frac{n}{m} \mapsto (n1_F)(m1_F)^{-1}$.

我们自然地将 \mathbb{Q} 视为 F 的子域,并且 F 自然成为一个 \mathbb{Q} - 线性空间.

(2) 若 char F = p > 0, 类似地可以将 \mathbb{F}_p 嵌入到 F 中,F 成为 \mathbb{F}_p -线性空间.

Remark 在 $Frac(\mathbb{Z}) = \mathbb{Q}$ 中可以将每个分式化简为既约表达式 $\frac{m}{n}$, 其中 n > 0, (m, n) = 1. 但是在一般的分式域 Frac(R) 中不存在这样的既约表达式!

Definition 1.12

真理想 $P \triangleleft R$ 称为**素理想**,若 $a \cdot b \in P$,则 $a \in P$ 或 $b \in P$. 定义 R 的所有素理想构成的集合 Spec(R) 称为 R 的**素谱**.

真理想 $\mathfrak{m} \triangleleft R$ 称为**极大理想**,若任意 $\mathfrak{m} \subseteq I \triangleleft R$,必有 $I = \mathfrak{m}$ 或者 I = R. 定义 R 的所有极大理想构成的集合 $\mathrm{Max}(R)$ 称为 R 的**极大谐**.

素理想和极大理想有如下的基本性质.

Proposition 1.12

- (1) {0_R} ⊲R 是素理想 \iff R 是整环
- (2) 真理想 P ⊲ R 是素理想 \iff R/P 是整环
- (3) 真理想 $m \triangleleft R$ 是极大理想 \iff R/m 是域. 特别地, 极大理想均为素理想.
- (4) 对环 R, $Max(R) \neq \emptyset$.

证明 (1) 是 (2) 的特例,故只需证 (2). \Rightarrow : 取 $\bar{a}, \bar{b} \in R/P$ 为非零等价类,则 $a \notin P, b \notin P$, 由于 P 为素理想,有 $a \cdot b \notin P$,则 $\bar{a} \cdot \bar{b} = \overline{a \cdot b} \neq \bar{0}$,故 R/P 为整环.

 \Leftarrow : 若 $a \cdot b \in P$, 则 $\bar{a} \cdot \bar{b} = \bar{0} \in R/P$,则由 R/P 为整环, $\bar{a} = \bar{0}$ 或者 $\bar{b} = \bar{0}$,则 $a \in P$ 或 $b \in P$,故 P 为素理想.

 $(3) \Rightarrow : \forall \overline{0} \neq \overline{x} \in R/\mathfrak{m}, \ \mathbb{M} \ x \notin \mathfrak{m}, \ \text{故}$

$$\mathfrak{m} \subsetneq (x) + \mathfrak{m} = \{ax + y : a \in R, y \in \mathfrak{m}\} \triangleleft R$$

又 m 为极大理想,有 (x) + m = R,则存在 $a_0 \in R, y \in \mathfrak{m}$ 使得 $a_0x + y = 1_R \in R$,即 $\bar{a_0}\bar{x} = \bar{1}$,故 $\bar{x} \in U(R/\mathfrak{m})$.

 \Leftarrow : 若 R/\mathfrak{m} 为域,则对 $\mathfrak{m} \subsetneq I \triangleleft R$,有 $\{\bar{0}\} \subsetneq I/\mathfrak{m} \triangleleft R/\mathfrak{m}$. 由域只有平凡理想, $I/\mathfrak{m} = R/\mathfrak{m}$,则 I=R.

(4) 利用集合论中的 Zorn 引理可以证明,这里省略.

Example 1.23 $Max(\mathbb{Z}) = \{(p) : p > 0$ 为素数 $\}$, $Spec(\mathbb{Z}) = \{(0)\} \cup Max(\mathbb{Z})$.

Definition 1.13

 $0_R \neq a \in R$ 称为素元,若 $(a) \in \operatorname{Spec}(R)$.

 $0_R \neq a \in R$ 称为**不可约元**,若 $a \notin U(R)$,且若 a = bc,则 b 可逆或者 c 可逆.

Remark (1) 对素元 a, 由于 $(a) \neq R$, 故 a 不可逆.

- (2) a 为素元 \iff $\{a|xy \Rightarrow a|x$ 或者 $a|y\}$.
- (3) \mathbb{Z} 的素元为 $\{\pm p : p = 2, 3, 5, 7 \cdots \}$,它们也是全体不可约元.

Proposition 1.13

R 为整环,则素元均为不可约元.

证明 设 a 为素元,故 $a \neq 0_R$ 且 $a \in U(R)$. 设 a = bc,则 $a|bc \Rightarrow a|b$ 或者 a|c. 不妨 a|b,令 b = ax,则 $a = axc \Rightarrow xc = 1_R$,故 $xc = 1_R$,这 $xc = 1_R$,

Example 1.24 令 $R = \mathbb{Z}[\sqrt{-3}] = \{m + n\sqrt{-3} : m, n \in \mathbb{Z}\} \subseteq \mathbb{C}, \ \ \text{则 } 4 = 2 \cdot 2 = (1 + \sqrt{-3}) \cdot (1 - \sqrt{-3}).$ 2 是不可约元(模长法): 若 a = bc,则 2 = |a| = |b||c|,则不妨 |b| = 1,设 $b = m + n\sqrt{-3}$,则 $|b|^2 = m^2 + 3n^2 = 1$,故 $m = \pm 1, n =$,即 $b = \pm 1 \in U(R)$.

2 不是素元: $2|(1+\sqrt{-3})(1-\sqrt{-3})$, 但 $2\nmid (1+\sqrt{-3})$ 且 $2\nmid (1-\sqrt{-3})$.

1.5 一元多项式环

对环 R, x 为一个符号(不一定为 R 中元素),定义 R 上关于 x 的一元多项式为形式和 f(x) = $a_n x^n + \dots + a_1 x + a_0 = \sum_{i=0}^n a_i x^i$. 其中 $a_i x^i$ 称为单项式,即多项式为单项式的形式和. 称两个多项式相 等是指对应位置的系数均相等. 这里我们特别地约定 $0_R x^i$ 略去, $1_R x^i = x^i$.

对于如上的一个多项式, 若 $a_n \neq 0_R$, 则称 $a_n x^n$ 为 f(x) 的**首项**, a_n 为**首项系数**, **常数项**为 a_0 , 次数 $\deg f(x) = n$. 记 R[x] 为 R 上关于 x 的多项式全体所构成的集合.

 $f(x) \in R[x]$ 称为首一,若 $a_n = 1_R$. 定义零多项式为 $0_R x + 0_R = 0_R$,我们不定义 $\deg(0_R)$.

Proposition 1.14

R[x] 自然成为环.

证明 加法:将对应位置系数相加即可

乘法: $f(x) = \sum_{i=0}^{n} a_i x^i, g(x) = \sum_{j=0}^{m} b_j x^j,$ 则定义 $f(x) \cdot g(x) = \sum_{l=0}^{m+n} c_l x^l,$ 其中 $c_l = \sum_{l=0}^{m+n} c_l x^l$,其中 $c_l = \sum_{l=0}^{m+n} a_l x^l$,其中 $c_l = \sum_{l=0}^{m} a_l x^l$,是元为零多项式,也记为 $a_l x^l$,是元为取值恒为 $a_l x^l$,以记为 $a_l x^l$,也记为 $a_l x^l$ 。

负元:
$$f(x) = \sum_{i=0}^{n} a_i x^i$$
, 定义 $-f(x) = \sum_{i=0}^{n} (-a_i) x^i$.

Remark 有自然的环嵌入 $R \hookrightarrow R[x], a \mapsto a$, 注意后者的含义是取值恒为 a 的常值多项式.

Proposition 1.15

R 为整环,则 R[x] 为整环.

证明 若 f(x) 和 g(x) 均非零,则设 $f(x) = a_n x^n +$ 低次项, $g(x) = b_m x^m +$ 低次项,其中 $a_n \neq 0_R, b_m \neq 0_R$ 0_R .

有 $f(x) \cdot g(x) = a_n b_m x^{n+m} +$ 低次项,由于 R 为整环, $a_n b_m \neq 0$,故 $f(x) \cdot g(x) \neq 0$.

Remark 由上面的证明过程,若 f(x), g(x) 非零,则 $\deg(f(x)g(x)) = \deg f(x) + \deg g(x)$.

Proposition 1.16 (多项式环的泛性质)

设 R 为环, \forall 环同态 $\psi:R\to S$ 和 $s\in S$, $\exists !$ 环同态 $\tilde{\psi}:R[x]\to S$,使得 $\tilde{\psi}|_R=\psi,\tilde{\psi}(x)=s$.

证明 定义 $\tilde{\psi}(a_n x^n + \dots + a_1 x + a_0) = \psi(a_n) s^n + \dots + \psi(a_1) s + \psi(a_0)$, 并验证为同态即可. **Example 1.25** 考虑恒等同态: $Im_R: R \to R$, 固定 $a \in R$, 应用上面的命题, 我们可以得到同态 $ev_a: R[x] \to R, x \mapsto a$. 该同态也称为 a 处的**赋值同态**.

 $ev_a(f(x)) = a_n a^n + \dots + a_1 a + a_0 \in R$ 称为 f 在 a 处的值,记为 f(a)(更严格的写法应为 f(x)(a)).

Example 1.26 对 $f(x) \in R[x]$,利用上面的赋值同态可以定义所谓的多项式函数

$$f: R \to R, a \mapsto f(a) = \operatorname{ev}_a(f) \in R.$$

故 $f \in \text{Map}(R, R)$. 注意记号 f 和 f(x) 之间的区别!

下面我们来考虑域上的一元多项式. 总设 k 是一个域.

首先我们可以对多项式做首一化: 设 $f(x) = a_n x^n + \dots + a_0, a_n \neq 0_k$,则 a_n 可逆,故 $\bar{f}(x) = x^n + (a_n^{-1} a_{n-1}) x^{n-1} + \dots + (a_n^{-1} a_0)$ 为首一多项式,f(x) 和 $\bar{f}(x)$ 之间差一个单位 a_n ,称 f(x) 和 $\bar{f}(x)$ 相伴.

此外域上的多项式还可以进行如下的带余除法.

Proposition 1.17

 $f(x) \in k[x], 0_k \neq h(x) \in k[x]$,则存在唯一的 $g(x), r(x) \in k[x]$,使得 $f(x) = q(x) \cdot h(x) + r(x)$,且满足 $r(x) = 0_k$ 或者 $\deg r < \deg h$. 我们称 q(x) 为 f(x) 关于 h(x) 的商, r(x) 为余式.

证明 若 $\deg h > \deg f$,则取 g(x) = 0, r(x) = h(x)即可.

否则设 $f(x) = b_m x^m + \cdots, h(x) = a_n x^n + \cdots, m \ge n,$ 则 $f(x) - \frac{b_m}{a_n} x^{m-n} h(x) = b'_{m-1} x^{m-1} + \cdots$. 则得到了想要的分解.

Proposition 1.18

给定 $f(x) \in k[x], a \in k$,则 $\exists ! q(x) \in k[x], \text{s.t.} f(x) = q(x) \cdot (x-a) + f(a)$.

证明 又上面的命题,存在 $r \in k$ 使得 $f(x) = q(x) \cdot (x - a) + r$. 将 ev_a 作用于两边,则有 $f(a) = q(a) \cdot (a - a) + r$, r = f(a).

Remark 由该命题 $(x-a)|f(x) \iff f(a) = 0_k$. 所以求解 f(x) 在 k 中的根的问题就转化为了考虑 x-a 是否为 $f(x) \in k[x]$ 的因子.

Definition 1.14

整环 R 称为主理想整环 (PID), 若任意 $I \triangleleft R$ 为主理想.

Theorem 1.3

 \mathbb{Z} 和 k[x] 均为 PID.

证明 由之前对 ℤ 所有理想的列举可知为 PID.

对 $0 \neq I \triangleleft k[x]$,取 $h(x) \in I$ 为 I 中次数最小的多项式,则显然 $(h(x)) \subseteq I$. 另一方面, $\forall f(x) \in I$,有分解 $f(x) = q(x) \cdot h(x) + r(x)$,满足 $r(x) = 0_k$ 或者 $\deg r < \deg h$. 由于 $r(x) = f(x) - q(x)h(x) \in I$ 和 h(x) 的选取,只能 r(x) = 0,则 h(x)|f(x),故 I = (h(x)).

PID 有如下的基本性质.

Proposition 1.19

(1) R 为 PID,则可以定义所谓的最大公因子: $\forall a,b \in R, \exists d \in R$,使得 d|a,d|b,且对 $\forall d'|a,d'|b$,有 d'|d. 此时记 $d = \gcd(a,b)$. 它在相伴意义下是唯一的,且满足 Bezout 等式: $\exists u,v \in R, \text{s.t.} ua + vb = d$.

- (2) R 为 PID,则素元等价于不可约元.
- (3) R 为 PID, 则 $Spec(R) = \{(0)\} \cup Max(R)$.
- 证明 (1) 由于 R 为 PID, 故存在 $d \in R$ 使得 (a) + (b) = (d). 则 d 为所求,且显然满足 Bezout 等式.
- (2) 只需证若 a 为不可约元,则为素元. 设 a|bc, $a \nmid b$, 则由于 a 不可约(可以理解为 a 的因子本质上只有 1 和 a 本身),有 gcd(a,b) = 1. 由 Bezout 等式,存在 $u,v \in R$ 使得 1 = va + ub, c = vac + ubc, 右边为 a 的倍数,故 a|c.
- (3) 对任意 $0 \neq P$ 为素理想,只需证其极大. 考虑 $(a) = P \subset I = (b) \subsetneq R$, 则 $b \notin U(R)$,且 b|a. 由于 a 为素元,则存在单位 u,使得 b = ua. 故 P = (a) = (b) = I.

我们将上述 PID 的性质应用到 k[x] 上.

对 $f(x), g(x) \in k[x]$,定义它们的**最大公因式**为首一的多项式 $h(x) \in k[x]$,使得 h(x) 满足上面最大公因数的定义,即 h(x)|f(x), h(x)|g(x),且若 a(x)|f(x), a(x)|g(x),则 a(x)|h(x).

定义 k 上的**不可约多项式**为 k[x] 中的不可约元 $f(x)(\deg f \ge 1)$,则 f(x) 和 (f(x)) 给出了 k 上首一不可约多项式和 k[x] 的极大理想之间的一一对应. 这也告诉我们对于不可约多项式 f(x), $k[x] \Big/ (f(x))$ 是一个域. 这个观点将在之后一直被我们使用.

Proposition 1.20

对 $\lambda \in k, k \to k^{[x]}/(x-\lambda), a \mapsto a + (x-\lambda)$ 为同构.

而对于 $\deg f \geq 2$ 的情况我们会在下一节开始进行讨论.

1.6 添根构造

k 为域,k[x] 为 PID,对 $f(x) \in k[x]$,考虑其解集 $\mathrm{Root}_k(f) = \{\alpha \in k : f(\alpha) = 0_k\} \subseteq k$.

Lemma 1.2

 $|\text{Root}_k(f)| \le \deg f(x)$.

 \Diamond

证明 对 $\deg f$ 归纳, $\deg f = 1$ 时显然成立,设对 $1 \leq \deg g \leq n$ 都成立,则对 $\deg f = n+1$,若 f 在 k 中无根,则显然成立.否则取 $\alpha \in \operatorname{Root}_k(f)$,有 $x - \alpha | f(x)$,则存在 $g(x) \in k[x]$, $f(x) = (x - \alpha)g(x)$.

则任取 $\beta \neq \alpha \in \operatorname{Root}_k(f)$,则在 β 处取值有 $f(\beta) = (\beta - \alpha)g(\beta) = 0$,即 $g(\beta) = 0$, $\beta \in \operatorname{Root}_k(g)$. 又比较次数有 $\deg g = n$,由归纳假设 $|\operatorname{Root}_k(g)| \leq n$,故 $|\operatorname{Root}_k(f)| \leq 1 + n$.

再考虑 $k \subset K$ 为更大的域,则 $f(x) \in k[x] \subseteq K[x]$,有如下性质.

Proposition 1.21

- (1) $\operatorname{Root}_k(f) \subseteq \operatorname{Root}_K(f)$.
- (2) f(x) 在 K 中为不可约多项式,则 f(x) 在 k 不可约. 但反之不成立.
- (3) 对 f(x), $g(x) \in k[x]$, 有 $gcd_k(f,g) = gcd_K(f,g)$.

_

- 证明 (1) 显然. (2) 若 f(x) 在 K 上不可约,则若 $f(x) = g(x)h(x), g(x), h(x) \in k[x]$,由 K 上的不可约,不妨 $g(x) \in U(K[x]) = K \{0\}$,则 $g(x) \in k \{0\} = U(k[x])$,故 f(x) 在 k 上不可约. 反之不成立:例 如 $k = \mathbb{R}, K = \mathbb{C}, f(x) = x^2 + 1$.
- (3) 记 $d(x) = \gcd_K(f,g), d'(x) = \gcd_k(f,g)$,则由于 d(x)|f(x), d'(x)|g(x) in $k[x] \subseteq K[x]$,有 d(x)|d(x) in K[x].

同时在 K[x] 上利用 Bezout 等式,存在 $u(x), v(x) \in K[x]$,使得 d(x) = u(x)f(x) + v(x)g(x),由 d'(x)|f(x), d'(x)|g(x),有 d'(x)|d(x),故得证.

现在我们可以来讨论添根构造. 考虑 $f(x) \in k[x]$ 为首一不可约多项式, $\deg f \geq 2$,则同上节最后可知 $K = {}^{k[x]}/{}_{(f(x))} \triangleleft k[x]$ 为一个域,首先有自然的域嵌入: $\theta : k \hookrightarrow K, \lambda \mapsto \bar{\lambda} = \theta(\lambda) = \lambda + (f(x))$. 我们通常把 $\theta(\lambda)$ 也记为 λ .

在此基础上,对一般的 $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 \in k[x]$,可以定义 $\theta(f) = x^n + \overline{a_{n-1}}x^{n-1} + \dots + \overline{a_0} \in K[x]$. 则我们可以讲 f(x) 视为 K 上的多项式. 有如下的关键观察:

Proposition 1.22

- (1) 记 $u = x + (f(x)) \in K$, 则 $u \in \text{Root}_K(\theta(f))$, 即 u 为 "f(x)" 在 K 上的根.
- (2) 自然地将 K 视为 k- 向量空间,则 $\dim_k K = \deg f(x) = n$.

T

证明 (1)

$$\theta(f)(u) = u^n + \overline{a_{n-1}}u^{n-1} + \dots + \overline{a_1}u + \overline{a_0}$$

$$= \overline{x}^n + \overline{a_{n-1}}\overline{x}^{n-1} + \dots + \overline{a_1}\overline{x} + \overline{a_0}$$

$$= \overline{x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0} = \overline{f(x)} = \overline{0} = 0_K$$

(2) 我们断言: $\{1_k, u, \dots, u^{n-1}\}$ 构成了 K 的一组 k- 基.

首先,对任意 $\overline{g(x)} \in K[x]$,在 k[x] 中进行带余除法 g(x) = f(x)q(x) + r(x),则 $\overline{g(x)} = \overline{r(x)}$,且 r(x) = 0 或者 $\deg r(x) < n$. 故

$$\overline{g(x)} = \overline{r(x)} = \overline{b_{n-1}x^{n-1} + \dots + b_1x + b_0}$$

$$= \overline{b_{n-1}x^{n-1} + \dots + \overline{b_1}\overline{x} + \overline{b_0}}$$

$$= b_{n-1}u^{n-1} + \dots + b_1u + b_0$$

故 $\{1_k, u, \dots, u^{n-1}\}$ 一起 k-张成了 K.

则只需证它们 k- 线性无关. 设 $c_{n-1}u^{n-1}+\cdots+c_1u+c_0=0_K, c_i\in k$, 即 $\overline{c_{n-1}x^{n-1}}+\cdots+\overline{c_1x}+\overline{c_0}=\overline{c_{n-1}x^{n-1}+\cdots+c_1x+c_0}=0_K$, 则 $f(x)|c_{n-1}x^{n-1}+\cdots+c_1x+c_0$, 由于 $\deg f(x)=n$, 只能 $c_i=0$. □

Proposition 1.23 (添根构造的泛性质)

设 $k \stackrel{\theta}{\hookrightarrow} K = {^k[x]}/{(f(x))}$ 如上,任给 $k \stackrel{\delta}{\hookrightarrow} F$ 以及 $\alpha \in \operatorname{Root}_F(\delta(f))$,其中 $\delta(f) = x^n + \delta(a_{n-1})x^{n-1} + \dots + \delta(a_1)x + \delta(a_0)$.则 $\exists ! K \stackrel{\delta'}{\hookrightarrow} F$,使得 $\delta' \circ \theta = \delta, \delta'(u) = \alpha$.

证明 可以定义 $\delta'': k[x] \to F, \lambda \in k \mapsto \delta(\lambda), x \mapsto \alpha$. 则由条件 $f(x) \in \ker(\delta''), (f(x)) \subseteq \ker(\delta'')$. 又 k[x] 为 PID, 设 $\ker(\delta'') = (g(x)),$ 有 g(x)|f(x), 因为 f(x) 不可约, 只能 f(x) 与 g(x) 相伴, 即 (f(x)) = (g(x)).

则由核理想的泛性质存在单同态 $\delta': K = {}^{k[x]}/{}_{(f(x))} \hookrightarrow F, u = \overline{x} \mapsto \alpha$,且满足图表交换. \Box **Example 1.27** 取 $k = \mathbb{R}, f(x) = x^2 + 1$,则 K 的 \mathbb{R} -基为 $\{1_K, u\}$. 由于 $u \in \operatorname{Root}_K(x^2 + 1)$,对 $a, b, a', b' \in \mathbb{R}$,可以计算

$$(au + b)(a'u + b') = aa'u^2 + (ab' + ba')u + bb'$$
$$= aa'(-1_K) + (ab' + ba')u + bb' = (ab' + ba')u + (bb' - aa').$$

这给出了 K 的乘法结构,以此可以证明 $K \to \mathbb{C}, u \mapsto i$ 为一个域同构,即 $\mathbb{R}^{[x]}/_{(x^2+1)} \simeq \mathbb{C}.$

Example 1.28 $\mathbb{F}_2 = \{\bar{0}, \bar{1}\}$,可以验证 $x^2 + x + \bar{1} \in \mathbb{F}_2(x)$ 不可约(二次,故只要验证没有 \mathbb{F}_2 的根),故可以考虑 $\mathbb{F}_2 \hookrightarrow \mathbb{F}_2[x]/_{(x^2 + x + \bar{1})} = \mathbb{F}_4$. \mathbb{F}_4 的 \mathbb{F}_2 -基为 $\{\bar{1}, u\}$,故 $|\mathbb{F}_4| = 4$, $\mathbb{F}_4 = \{\bar{0}, \bar{1}, u, u + \bar{1}\}$. 我们可以在 \mathbb{F}_4 上做基本的计算(注意 \mathbb{F}_4 和 \mathbb{Z}_4 不同构!).

由于 $u \in \text{Root}_{\mathbb{F}_4}(x^2 + x + \bar{1})$,则 $u^2 = u + \bar{1}$,有 $u^{-1} = u^2$, $u^3 = \bar{1}$. 也立即有 $(u + \bar{1})^{-1} = u$. 并且 $x^2 + x + \bar{1} = (x - u)(x - (u + \bar{1}))$,故 $\text{Root}_{\mathbb{F}_4}(x^2 + x + \bar{1}) = \{u, u + \bar{1}\}$.

也可以这样求逆: 在 \mathbb{F}_2 中由于 $\gcd(x+\bar{1},x^2+x+\bar{1})=\bar{1}$, 故存在 $a(x)(x+\bar{1})+b(x)(x^2+x+\bar{1})=\bar{1}$. 则提升到 \mathbb{F}_4 中有 $a(u)(u+\bar{1})=\bar{1}$, 即 $(u+\bar{1})^{-1}=a(u)$. 不难发现 $a(x)=x,b(x)=\bar{1}$ 符合要求,故 $(u+\bar{1})^{-1}=u$.

Example 1.29 $\mathbb{F}_3 = \{\bar{0}, \bar{1}, \bar{2}\}$, 同样可以验证 $x^2 + \bar{1} \in \mathbb{F}_3[x]$ 中不可约,则考虑 $\mathbb{F}_9 = \frac{\mathbb{F}_3[x]}{(x^2 + \bar{1})}$, 有 $\{\bar{1}, u\}$ 给出 \mathbb{F}_9 的一组 \mathbb{F}_3 -基.

 \mathbb{F}_9 中有 $u^2 + \bar{1} = \bar{0}, u^2 = \bar{2}, u^4 = \bar{1}$. 故 $u^{-1} = u^3 = \bar{2}u$. 故 $x^2 + \bar{1} = (x+u)(x-u) = (x-u)(x-\bar{2}u)$, 即 $\mathrm{Root}_{\mathbb{F}_{\rightarrow}}(x^2 + \bar{1}) = \{u, \bar{2}u\}$.

我们可以计算 $(\bar{1}+\bar{2}u)^{-1}$, 仍然是回到 $\mathbb{F}_3[x]$ 中,有 $\gcd(\bar{1}+\bar{2}x,x^2+\bar{1})=\bar{1}$, 注意到 $x^2+\bar{1}=(\bar{2}x+\bar{2})(\bar{1}+\bar{2}x)+\bar{1}$, 则 $(\bar{2}u+\bar{1})^{-1}=\bar{2}u+\bar{2}$.

1.7 欧氏整环

Definition 1.15

整环 R 称为**欧氏整环** (ED),若存在 $\phi: R^* = R - \{0\} \rightarrow \mathbb{N}$,满足: $\forall a,b \in R^*, \exists q,r \in R$,使得 a = qb + r,且 $r = 0_R$ 或者 $\phi(r) < \phi(b)$.

Example 1.30 $R = \mathbb{Z}, \phi(a) = |a|$, 则常规的带余除法给出了定义中的分解, 故为 ED. 注意满足定义的分解可能不唯一: 例如 $33 = 3 \cdot 9 + 6 = 4 \cdot 9 + (-3)$.

Example 1.31 k 为域,R = k[x],则令 $\phi = \deg$,多项式的带余除法给出了定义中的分解,故为 ED. 取 $\phi = 2 \deg$ 也符合条件,故定义中的 ϕ 选取也不唯一.

Proposition 1.24

 $ED \Rightarrow PID$.

证明 仿照 k[x] 为 PID 的证明. 任取 $0 \neq I \triangleleft R$, 则取 $0 \neq b \in I$ 使得 $\phi(b)$ 最小,显然 $(b) \subseteq I$.

另一方面, $\forall a\in I, a=qb+r$ 为定义中的分解,则 $r=a-qb\in I$,由 b 的选取只能 r=0,b|a,故 $a\in (b)$,则 I=(b).

Remark 利用代数数论的知识可以证明 $\mathbb{Z}[\frac{1+\sqrt{-19}}{2}]$ 是 PID, 但不是 ED.

Proposition 1.25

 $\mathbb{Z}[i] \not\to ED$.

证明 定义 $N: \mathbb{Q}(i)^* \to \mathbb{Q}, m+ni \mapsto m^2+n^2$, 则有 $N(z \cdot w) = N(z)N(w)$. 断言 N 限制在 $\mathbb{Z}[i]^*$ 上符合 ED 的定义.

 $\forall x, y \in \mathbb{Z}[i]^*,$ 考虑

$$\frac{x}{y} = \frac{x \cdot \overline{y}}{N(y)} = \alpha + \beta i = (m+ni) + ((\alpha - m) + (\beta - n)i.)$$

其中 $\alpha, \beta \in \mathbb{Q}, m, n \in \mathbb{Z}$, 使得 $|\alpha - m| \leq \frac{1}{2}, |\beta - n| \leq \frac{1}{2}$.

則令 $q = m + ni, r = x - qy = y \cdot ((\alpha - m) + (\beta - n)i) \in \mathbb{Z}[i]$. 由于

$$N(r) = N(y) \cdot ((\alpha - m)^2 + (\beta - n)^2) \le \frac{1}{2}N(y) < N(y).$$

故 N 符合定义, 得证.

上面定义的 N 有一些小的应用.

Example 1.32 计算 $U(\mathbb{Z}[i])$. 设 $x = m + ni \in U(\mathbb{Z}[i])$, 则 xy = 1, N(x)N(y) = 1, 只能有 $N(x) = m^2 + n^2 = 1$, 则 $x = \pm 1, \pm i$, 显然这些数确实也可逆,故 $U(\mathbb{Z}[i]) = \{\pm 1, \pm i\}$.

Example 1.33 计算 $\mathbb{Z}[i]$ 中的最大公因数. 例如计算 $\gcd(4+7i,3+4i)$, 我们使用辗转相除类似的方法,

由于 N(4+7i) = 65 > N(3+4i) = 25, 故用"大"的去比"小"的,即

$$\frac{4+7i}{3+4i} = \frac{8+i}{5} = 2 + (\frac{-2}{5} + \frac{i}{5}).$$

则 $4 + 7i = 2 \cdot (3 + 4i) - (2 + i)$, gcd(4 + 7i, 3 + 4i) = gcd(3 + 4i, 2 + i). 又由于 $\frac{3+4i}{2+i} = 2 + i$, 故 gcd(4 + 7i, 3 + 4i) = 2 + i.

Proposition 1.26

$$\mathbb{Z}[\sqrt{-2}] = \{m + b\sqrt{-2} : m, n \in \mathbb{Z}\} \not\supset ED.$$

证明 定义 $N: \mathbb{Q}(\sqrt{-2})^* \to \mathbb{Q}, m + n\sqrt{-2} \mapsto m^2 + 2n^2,$ 则有 $N(z \cdot w) = N(z)N(w)$. 断言 N 限制在 $\mathbb{Z}[\sqrt{-2}]^*$ 上符合 ED 的定义.

 $\forall x, y \in \mathbb{Z}[\sqrt{-2}]^*$, 同之前有

$$\frac{x}{y} = q + (\varepsilon + \eta \sqrt{-2}).$$

其中 $\alpha, \beta \in \mathbb{Q}, q \in \mathbb{Z}[\sqrt{-2}]$, 使得 $\varepsilon \leq \frac{1}{2}, \eta \leq \frac{1}{2}$.

則令 $r = x - qy = y \cdot (\varepsilon + \eta \sqrt{-2}) \in \mathbb{Z}[\sqrt{-2}]$. 由于

$$N(r) = N(y) \cdot (\varepsilon^2 + 2\eta^2) \le \frac{3}{4}N(y) < N(y).$$

故 N 符合定义, 得证.

Remark 类似可以计算 $U(\mathbb{Z}[\sqrt{-2}]) = \{\pm 1\}.$

然而 $\mathbb{Z}[\sqrt{-3}] = \{m + n\sqrt{-3} : m, n \in \mathbb{Z}\}$ 不是 ED! 因为它甚至不是 PID: 在 1.4 节的末尾我们证明了 2 是不可约元但不是素元,又 PID 中不可约元等价于素元,故它不是 PID.

Proposition 1.27

令 $\omega=\frac{-1+\sqrt{-3}}{2}$ 为三次单位根, $\mathbb{Z}[\omega]=\{m+n\omega:m,n\in\mathbb{Z}\}\subseteq\mathbb{Q}(\sqrt{-3})$ 称为 Eisenstein 整数环,它是 ED.

证明 仍然对 $z \in \mathbb{Q}(\sqrt{-3})$ 定义模长 $N(z) = N(a+bi) = a^2 + b^2$, 特别有 $N(a+b\omega) = a^2 + b^2 - ab$, 其中 $a,b \in \mathbb{Q}$.

则与之前相同, $\forall x, y \in \mathbb{Z}[\omega]$, 可以有分解

$$\frac{x}{y} = q + (\varepsilon + \eta \omega).$$

其中 $q \in \mathbb{Z}[\omega], |\varepsilon| \leq \frac{1}{2}, |\eta| \leq \frac{1}{2},$ 则 $x = qy + r', r' \in \mathbb{Z}[\omega],$ 且有

$$N(r') = (\eta^2 + \varepsilon^2 - \varepsilon \eta)N(y) \le (\frac{1}{4} + \frac{1}{4} + \frac{1}{4})N(y) < N(y).$$

则得到定义中的分解,故得证.

Remark 由于 $1+\sqrt{-3}$ 与 2 在 $\mathbb{Z}[\omega]$ 中相伴, 故不能像在 $\mathbb{Z}[\sqrt{-3}]$ 这种那样通过 $2\cdot 2 = (1+\sqrt{-3})(1-\sqrt{-3})$ 来说明 2 不是素元. 这也和我们这里说明的 $\mathbb{Z}[\omega]$ 是 **PID** 是符合的.

Example 1.34 $z \in \mathbb{Z}[\omega]$,则 N(x) = 1,由此不难求出 $U(\mathbb{Z}[\omega]) = \{\pm 1, \pm \omega, \pm \omega^2\}$.

Proposition 1.28

 $\mathbb{Z}[\sqrt{2}] = \{m + n\sqrt{2} : m, n \in \mathbb{Z}\} \not\ni ED.$

证明 定义 $N: \mathbb{Q}(\sqrt{2})^* \to \mathbb{Q}, a+b\sqrt{2} \mapsto |a^2-2b^2|$. 仍然重复上面的步骤, 对任意 $x,y \in \mathbb{Z}[\sqrt{2}]$, 有分解 $x = qy + r', q \in \mathbb{Z}[\sqrt{2}], r' = (a+b\sqrt{2})y.$

其中 $a, b \in \mathbb{Q}, |a| \leq \frac{1}{2}, |b| \leq \frac{1}{2},$ 故 $N(r') = |a^2 - 2b^2|N(y) \leq \frac{3}{4}N(y) < N(y).$

Example 1.35 利用同样的方法可以证明 $\mathbb{Z}[\sqrt{3}]$ 为 ED, 但需要取的更精细一些.

最后还有一个抽象的判断一个环不是 PID 的方法,进而可以初步判断一个环是否为 ED.

Definition 1.16

对包含 \mathbb{Q} 的域 F, 称 $\alpha \in F$ 为**代数整数**,若存在 $f(x) \in \mathbb{Z}[x]$ 首一,使得 $f(\alpha) = 0$. 记 $\mathcal{O}_F = \{\alpha \in F | \alpha \}$ 为代数整数 $\{\alpha \in F | \alpha \}$

Proposition 1.29

(1) \mathcal{O}_F 是 F 的子环,且 $\operatorname{Frac}(\mathcal{O}_F) = F$.

(2) 设环 $R \subseteq \mathcal{O}_F$,则若 $R \to PID$ (事实上对后面将要定义的 UFD 也对),则 $R = \mathcal{O}_F$.

证明超出本课范围,故略去.

Example 1.36 令 $F = \mathbb{Q}(\sqrt{-3})$, 则显然 $\mathbb{Z}[\sqrt{-3}] \subsetneq \mathbb{Z}[\omega] \subseteq \mathcal{O}_F$. 则又上面的命题, $\mathbb{Z}[\sqrt{-3}]$ 不是 PID,故不是 ED.

Example 1.37 同样的方法可以说明 $\mathbb{Z}[\sqrt{5}]$ 不是 ED.

Remark 对任意上面的域 F, 代数整数环 \mathcal{O}_F 是 **Dedekind 整环**,见代数数论.

 \Diamond

1.8 Gauss 整数环

首先再次强调一下相伴的概念.

Definition 1.17

整环 R 中非零元素 a, b 称为相伴,若 $\exists u \in U(R)$ 使得 a = ub, 这也等价于说 (a) = (b).

不难验证相伴关系式 R^* 上的相伴关系. 且对于 PID, 可以看出素元集合在相伴关系下和极大理想有一一对应.

我们本节的目标是讨论 Gauss 整数环 $\mathbb{Z}[i]$ 的素元(称为 Gauss 素数),又回忆 $\mathbb{Z}[i] = \{\pm 1, \pm i\}$,故 $\mathbb{Z}[i]$ 上的相伴关系是简单的(m+ni 相伴于 -m-ni, -n+mi, n-mi),则可以借此得到 Gauss 整数环的所有素理想.

Example 1.38 通过之前定义的模长可以验证 1+i 是 Gauss 素数,则 $2=(-i)(1+i)^2$ 不为 Gauss 素数.

Proposition 1.30

有环同构 $\mathbb{Z}[i]/(1+i) \xrightarrow{\sim} \mathbb{F}_2$.

证明 记 I = (1 + i). 先证 $\{0, 1\}$ 构成了摸 I 的完全代表系.

 $\forall z=m+ni\in\mathbb{Z}[i],$ 则 $z\equiv(m-n)\mod I,$ 故显然 $z\equiv0$ or $1\mod I.$ 又由于 $1\notin I,$ 故 $0\not\equiv1$ mod I. 故为完全代表系.

则 $\mathbb{Z}[i]/(1+i) = \{0+I,1+I\}, \ \ \mathbb{Z}(1+I)+(1+I)=2+I=0+I(因为 \ 2=(1+i)(1-i)\in I),$ 故商环同构于 \mathbb{F}_2 .

Example 1.39 练习:讨论 $\mathbb{Z}^{[i]}/_{(2)}$ 的性质.

先把之前利用模长来处理素性的方法一般化:

Lemma 1.3

 $z \in \mathbb{Z}[i]$, 若 N(z) = p 为素数,则 z 为 Gauss 素数.

证明 若 $z = x \cdot y \in \mathbb{Z}[i]$,则 N(z) = N(x)N(y) = p,只能 N(x) = 1 或者 N(y) = 1,则 x 或者 y 可逆, z 不可约,则由 PID 为素元.

Lemma 1.4

设p为4k+3型素数,则p也为Gauss素数.

证明 设 $p = x \cdot y$ 为非平凡的分解,则 $p^2 = N(x)N(y)$,只能 N(x) = N(y) = p. 设 x = m + ni,则 $m^2 + n^2 \equiv 3 \mod 4$,矛盾! 故得证.

再考虑 4k+1 型素数.

Example 1.40 对 4k + 1 型素数 5,它不是 Gauss 素数: 5 = (1 + 2i)(1 - 2i),则 1 + 2i 和 1 - 2i 为 Gauss 素数且不相伴. 对 13 = (2 + 3i)(2 - 3i),17 = (1 + 4i)(1 - 4i) 有类似的讨论.

上面的例子具有一般性:

Theorem 1.4 (Fermat 二平方和)

p 为奇素数,则 $p=4k+1 \Longleftrightarrow \exists a,b \in \mathbb{N}, p=a^2+b^2$. 且这样的 a,b 是唯一的, 进而 p 唯一地给 出两个互不相伴的 Gauss 素数 a+bi,a-bi.

证明 只需证 \Rightarrow . 唯一性的证明是初等的,在此省略. 证明存在性只需证 p 在 $\mathbb{Z}[i]$ 中有非平凡分解,等价于证明 $\mathbb{Z}[i]/_{(p)}$ 不是整环.

又由于 4|p-1,-1 是模 p 的二次剩余,则 $x^2+\bar{1}=\bar{0}$ 在 \mathbb{F}_p 中有解,故 $\mathbb{F}_p[x]/_{(x^2+\bar{1})}$ 不是整环. 我们断言: 有环同构 $\mathbb{Z}^{[i]}/_{(p)} \overset{\sim}{\to} \mathbb{F}_p[x]/_{(x^2+\bar{1})}$. 则存在性得证. 剩下的工作就是证明这个环同构.

第一步: 定义 $\mathbb{Z}[x] \hookrightarrow \mathbb{Z}[i], n \mapsto n \in \mathbb{Z}, x \mapsto i$, 由同态基本定理有 $\mathbb{Z}[x]/(x^2+1) \xrightarrow{\theta} \mathbb{Z}[i]$.

第二步: 考虑 θ 也给出了 $\mathbb{Z}[x]/(x^2+1)$ 的理想 $(p,x^2+1)/(x^2+1)$ 和 $\mathbb{Z}[i]$ 的理想 (p) 之间的一一对应,则 θ 诱导了

$$\mathbb{Z}[x]/(x^2+1)/(p,x^2+1)/(x^2+1) \stackrel{\sim}{\to} \mathbb{Z}[i]/(p).$$

反复使用 $(R/I)/(J/I) \xrightarrow{\sim} R/J$, 我们有

$$\mathbb{Z}[x]/(x^2+1)/(p,x^2+1)/(x^2+1) \xrightarrow{\simeq} \mathbb{Z}[x]/(p,x^2+1) \xrightarrow{\simeq} \mathbb{Z}[x]/(p)/(p,x^2+1)/(p)$$

第三步: 考虑自然的同构 $\mathbb{Z}[x]/(p) \xrightarrow{\sim} \mathbb{F}_p[x]$, 它也给出了 $\mathbb{Z}[x]/(p)$ 的理想 $(p,x^2+1)/(p)$ 到 $\mathbb{F}_p[x]$ 的理想 $(x^2+\bar{1})$ 之间的——对应,故诱导了同构

$$\frac{\mathbb{Z}[x]/(p)}{/(p,x^2+1)/(p)} \xrightarrow{\sim} \mathbb{F}_p[x]/(x^2+\bar{1}).$$

综上得证.

这样我们完全得到了所有的 Gauss 素数

Theorem 1.5 (相伴意义下 Gauss 素数分类)

在相伴意义下,Gauss 素数有如下类: (1) 1+i, (2) p=4k+3 素数, (3) $a\pm bi$, 0< a< b, 其中 $a^2+b^2=p$ 为 4k+1 型素数.

证明 显然这些为互不相伴的 Gauss 素数,现在任取 z 为 Gauss 素数,则有 $z|N(z)=p_1^{t_1}\cdots p_s^{t_s}$,后者 为素因数分解,则 $N(z)=z_1\cdots z_m, z_i$ 为定理中的 Gauss 素数. 由于 z 素,只能对某个 $i,z|z_i$,故 z 与

 z_i 相伴.

现在我们可以在 $\mathbb{Z}[i]$ 中进行素分解.

Lemma 1.5

证明 由条件 $(a+bi)(a-bi)=p|z\cdot\bar{z}$, 则 $(a+bi)|z\cdot\bar{z}$, 即 (a+bi)|z 或 $(a+bi)|\bar{z}$, 后者显然等价于 $(a-bi)|\bar{z}$.

Example 1.41 z = 29 - 2i, 则 $N(z) = 845 = 5 \times 13^2$, 由上面引理 (1+2i)|(29-2i) 或 (1-2i)|(29-2i). 不 难算得 29 - 2i = (1+2i)(5-12i). 同理 (2+3i)|(5-12i) 或 (2-3i)|(5-12i),算得 $-(2+3i)^2 = 5-12i$, 故最终有 $29 - 2i = -(2+3i)^2(1+2i)$.

Remark 利用同样的方法可以对 Gauss 整环中任何元素进行素分解,事实上可以证明:对任意 ED 都可以进行素分解(利用对 $\phi(r)$ 归纳).

通过 $\mathbb{Z}[i]$ 上的素分解可以解决如下初等数论中的问题.

Theorem 1.6 (二平方定理)

 $n\geq 2$, 则 n 可以写成二平方和 $\Longleftrightarrow n=2^lp_1^{m_1}\cdots p_t^{m_t}$, 其中若 $p_i=4k+3$ 型素数,则 m_i 为偶数.

证明 \Leftarrow : $n = (1^2 + 1^2)^l \prod_i (p_i^2)^{\frac{m_i}{2}} \prod_j (a_j^2 + b_j^2)^{m_j}$, 其中下标 i 对应 4k + 3 型素数,j 对应 4k + 1 型素数, a_i, b_i 为二平方和定理中的分解.

⇒: 由条件存在 $z \in \mathbb{Z}[i]$, n = N(z), 对 z 进行素分解 $z = z_1 \cdots z_t$, 则 $n = N(z_1) \cdots N(z_t)$, 其中 $N(z_i)$ 只能为 2, p(4k+1 型) 和 $p^2(p 为 4k+3 型)$,

最后来考察 $\mathbb{Z}[i]$ 的素理想. 首先考虑一般的环嵌入 $R \stackrel{\theta}{\hookrightarrow} S$, 对 $q \in \operatorname{Spec} S$, 则 $q \cap R \triangleleft R$ 为素理想 (这里 $q \cap R$ 中的 q 是通过 θ 拉回而视作 R 中的理想), 故有诱导映射 $\theta^* : \operatorname{Spec} S \to \operatorname{Spec} R$.

再考虑 $\mathbb{Z} \stackrel{\theta}{\hookrightarrow} \mathbb{Z}[i]$ 以及诱导映射 $\mathrm{Spec}\mathbb{Z}[i] \stackrel{\theta^*}{\twoheadrightarrow} \mathrm{Spec}\mathbb{Z}$. 不难有对应 $(0) \mapsto (0), (1+i) \mapsto 2\mathbb{Z}, (p) \mapsto p\mathbb{Z}(p=4k+3), (a\pm bi) \mapsto p\mathbb{Z}(p=a^2+b^2=4k+1)$. 则有 $|(\theta^*)^{-1}(p\mathbb{Z})|=1$ or 2.

每个 $I \in \mathrm{Spec}(\mathbb{Z})$ 的原像称为纤维. 下图直观表现了 $\mathbb{Z}[i]$ 的素理想到 \mathbb{Z} 的素理想的具体对应 (摘自陈小伍老师板书).

Remark 上面所用到的" $q \cap R \triangleleft R$ 为素理想 ":考虑 $\theta : R \hookrightarrow S \twoheadrightarrow S/q$, ker $\theta = q \cap R$, 则有嵌入 $R \Big/_{\theta^{-1}(q)} \hookrightarrow S/q$, 后者为整环,故前者为整环,即 $q \cap R$ 为素理想.

用范畴论的语言来说 Spec 具有函子性, 但 Max 没有!

图 1.1: $\operatorname{Spec}\mathbb{Z}[i]$ 到 $\operatorname{Spec}\mathbb{Z}[i]$ 的对应

Example 1.42 $\mathbb{Z}^{[i]}/_{(3)}$ 为域, 不难验证模 (3) 的完全代表元系为 $\{a+bi:a,b=0,1,2\}$, 则为九元域. 或者利用 Fermat 二平方定理中的同构 $\mathbb{Z}^{[i]}/_{(3)} \overset{\sim}{\to} \mathbb{F}_3[x] \Big/_{(x^2+\bar{1})}$, 结合例 1.29 同样得到这个域为九元域. **Example 1.43** 考虑 $\mathbb{Z}^{[i]}/_{(1+2i)}$, $\{0,1,2,3,4\}$ 为模 I=(1+2i) 的完全代表元系:由于 i-2 和 1+2i 相伴,对任意 m+ni,有

$$m + ni = (m + 2n) + n(i - 2) \equiv m + 2n \mod I.$$

不难验证 0,1,2,3,4 模 I 不等价,且 $5k+j\equiv j \mod I$,故有 $\mathbb{Z}[i]/(1+2i)$ 为五元域.

上面的结果可以一般化,证明留作练习.

Proposition 1.31

(1) 若 $p = a^2 + b^2(a < b)$ 为 4k + 1 型素数,则 $\mathbb{Z}[i]/(a + bi) \xrightarrow{\sim} \mathbb{F}_p$.

(2) 若
$$p=4k+3$$
 型素数,则 $\mathbb{Z}[i]/(p)$ 是大小为 p^2 的域.

1.9 唯一因子分解整环

Definition 1.18

整环R称为唯一因子分解整环(UFD), 若它满足

- (1) 存在不可约分解: $\forall 0 \neq a \in R U(R), \exists c_1, \dots, c_r$ 不可约, 使得 $a = c_1 \cdots c_r$.
- (2) 不可约分解唯一: 若 $a=c_1\cdots c_r=c_1'\cdots c_t'$ 如上,则 r=t 且存在置换 π 使得 c_i 和 $c_{\pi(i)}'$ 相 伴 ($\forall 1\leq i\leq r$).

Proposition 1.32

设R为UFD,则(1)R中不可约元等价于素元.

- (2) $\forall a \in R$ 有标准分解: $\exists u \in U(R), p_1, \cdots p_r$ 不可约且互不相伴, $n_i \geq 1$,使得 $a = up_1^{n_1} \cdots p_r^{n_r}$. 此时 a 的因子形如 $vp_1^{m_1} \cdots p_r^{m_r}, v \in U(R), 0 \leq m_i \leq n_i$,故共有 $(n_1 + 1) \cdots (n_r + 1)$ 个互不相伴的因子.
- (3) 总可以定义最大公约元、最小公倍元.
- (4) 令 $K = \operatorname{Frac}(R)$, 则任意 $\frac{a}{b} \in K$ 可以化为相伴意义下唯一既约形式 $\frac{a'}{b'}$, $\gcd(a',b') \sim 1$.

证明 (1) 只需证不可约元 a 为素元,设 a|bc,则

$$S = b_1 \cdots b_r c_1 \cdots c_t = b \cdot c = a \cdot d = ad_1 \cdots d_s.$$

其中 $b_1, \dots, b_r; c_1, \dots, c_t; d_1, \dots, d_s$ 为 b, c, d 的不可约分解. 又由于 S 的不可约分解的唯一性,必须存在 b_i 或者 c_j 使得 $a \sim b_i$ 或 c_j ,则 a|b 或 a|c|, a 为素元.

- (2) 若 $a \in U(R)$, 则 a = a 为所求分解. 否则取 $a = c_1 \cdots c_r$ 为不可约分解,再将所有相伴的不可约元合并在一起即可. 对 b|a, 设 $up_1^{n_1} \cdots p_r^{n_r} = a = bc$, 设 b 的标准分解为 $b = vuq_1^{s_1} \cdots q_t^{s_r}$, 由 a 的不可约分解的唯一性,只能 $q_i \in \{p_1, \dots, p_r\}, s_i \leq$ 对应的 n_i .
- (3) 对 $a = up_1^{n_1} \cdots p_r^{n_r}, b = vp_1^{m_1} \cdots p_r^{m_r}$, 其中 $n_j, m_i \geq 0$, 则 $\gcd(a,b) \sim p_1^{\min(n_1,m_1)} \cdots p_r^{\min(n_i,m_i)}$, 最小公倍元取次数的 \max 即可.
- (4) 将 a,b 同时消掉 $\gcd(a,b)$ 则得到既约形式,唯一性: 若 $\frac{a}{b}=\frac{c}{d},\gcd(a,b)\sim 1\sim\gcd(c,d)$,则 ad=bc,则只能 a|c,c|a,故 $a\sim c$,同理 $b\sim d$.

Noether 整环也是一种存在不可约分解的例子.

Definition 1.19

- (I) 对环 R 和 $X \subseteq R$, 包含 X 的最小理想为 $(X) = RX = \{\sum a_i x_i : a_i \in R, x_i \in X\}$, 其中求和 为有限求和. 理想 $I \triangleleft R$ 称为**有限生成**,若存在有限集合 X,使得 I = (X),此时 X 称为 I 的生成元集.
- (2) 环 R 称为 Noether 的, 若 $\forall I \triangleleft R$ 有限生成.

Proposition 1.33

- (1) 显然 PID 均为 Noether 环.
- (2) Hilbert 基定理: 若 R 为 Noether 环,则 $R[x_1,\cdots,x_n]$ 及其商环也为 Noether 环.
- (3) R为 Noether 环,则 R中不存在真理想的无限真升链.

证明 只证 (3). 若存在真理想的无限真升链 $I_1 \subsetneq I_2 \subsetneq \cdots$,考虑 $I = \bigcup_i I_i \triangleleft R$,则取 I 的生成元集 $X = \{x_1, \cdots, x_r\}$. 由于 x_i 属于 I_j 的并,存在 m_i 使得 $x_i \in I_{m_i}$,令 $N = \max_{1 \leq i \leq r} m_i$,有 $I_N = I_{N+1} = \cdots$,矛盾.

Theorem 1.7

R 为 Noether 整环,则 $\forall a \in R$ 有不可约分解.

证明 否则 $\exists a \in R$ 无不可约分解,则 a 可约,设 $a = a_1 \cdot a_2$,则不妨 a_1 没有不可约分解,继续设 $a_1 = a_{11}a_{12}$,且 a_{11} 没有不可约分解,则该过程可以一直进行下去,进而得到真理想的无限真升链 $(a) \subsetneq (a_1) \subsetneq (a_{11}) \subsetneq \cdots$,矛盾!

下面的命题给出了素分解和不可约分解之间的关系.

Proposition 1.34

- (1) 设 R 为整环, a 有素分解, 则 a 的不可约分解唯一.
- (2) 若整环 R 有不可约分解(例如 R 是 Noether 的),则 R 为 $UFD \iff R$ 中不可约元均为素元. 特别地,PID 均为 UFD.

证明 (1) 设素分解为 $a = p_1 \cdots p_r$, 再任取不可约分解 $a = c_1 \cdots c_t$, 有 $p_1 | c_1 \cdots c_t$, 通过调整下表不妨 $p_1 | c_1$, 由 c_1 不可约只能 $p_1 \sim c_1$, 再依次对后面的元素进行同样操作,则在调整下标后 $t = r, p_i \sim c_i$.

- (2) ⇒: 由命题 1.32 已知
- ⇐: 只需证不可约分解唯一,由于不可约元均为素元,故存在素分解,由(1)得证.

Example 1.44 利用命题 1.29 和例 1.36 中的论证,可知 $\mathbb{Z}[\sqrt{-3}]$ 不是 UFD.

Remark UFD 不一定为 PID, 例如 $\mathbb{C}[x,y],\mathbb{Z}[x]$. 它们为 UFD 直接来自于下面的 Gauss 定理,同时也很容易看出它们不为 PID.

本节的最后来讨论多项式环是否是 UFD. 有如下的定理

Theorem 1.8 (Gauss)

R 为 UFD, 则 $R[x_1, \cdots, x_n]$ 为 UFD.

下面均假设 R 为 UFD.,因为这种情况下多项式不再能直接首一化,我们要先引入本原多项式的概念.

Definition 1.20

对 $f(x)=a_nx^n+\cdots+a_1x+a_0\in R[x]$, 定义 f(x) 的容量为 $c(f)=\gcd(a_0,\cdots,a_n)\in R$. 若 $c(f)\gcd 1$, 则称 f(x) 为本原多项式.

Lemma 1.6 (Gauss 引理)

 $f(x), g(x) \in R[x] \land \emptyset$, \emptyset , \emptyset , $f(x) \cdot g(x) \land \emptyset$.

 \Diamond

证明 这里提供两种证法,分别对应具体和抽象的语言.

法一: 设
$$f(x) = \sum_{i=0}^{n} a_i x^i, g(x) = \sum_{j=0}^{m} b_j x^j,$$
 则 $f(x)g(x) = \sum_{l=0}^{n+m} c_l, c_l = \sum_{i+j=l} a_i b_j.$ 若 $f(x)g(x)$ 不本原,则存在 p 素,使得 $p|c_l(\forall l)$.

同时由于 f,g本原,存在唯一 $0 \le i_0 \le n, 0 \le j_0 \le m$, 使得 $p|a_0,\cdots,p|a_{i_0-1},p\nmid a_{i_0},p|b_0,\cdots,p|b_{j_0-1},p\nmid b_{j_0}$,则

$$c_{i_0+j_0} = (a_0b_{i_0+j_0} + \dots + a_{i_0-1}b_{j_0+1}) + a_{i_0}b_{j_0} + (a_{i_0+1}b_{j_0-1} + \dots + a_{i_0+j_0}b_0).$$

第一个和第三个括号都是 p 的倍数, 但 $p \nmid a_{i_0}b_{i_0}$,则 $p \nmid c_{i_0+i_0}$,矛盾!

法二: 仍然设 f(x)g(x) 不本原,则取素元 $p|c_l(\forall l)$,并定义 $\pi:R \to R/(p), r\mapsto \bar{r}$,自然诱导同态 $\pi:R[x]\to (R/(p))[x]$.

则 $\ker \pi = p \cdot R[x], \pi(f(x)g(x)) = \pi(f(x)) = \pi(g(x)) = \bar{0}.$ 由于 R/(p) 为整环,故 (R/(p))[x] 也为整环,则不妨 $\pi(f(x)) = 0, f \in \ker \pi = p \cdot R[x], 与 f$ 本原矛盾!

现在来证明 Gauss 定理.

证明 记 $K = \operatorname{Frac}(R)$,则 $f(x) \in R[x] \subseteq K[x]$,后者为 PID,进而为 UFD.在 R[x]中 $f(x) = c(f) \cdot f_0(x) = c_1 \cdots c_r f_0(x)$,其中 c_i 不可约(从而为素元), f_0 本原.

构造类似上面法二中的同态 $\pi:R[x]\to (R/(c_i))[x]$, $\ker \pi=c_i\cdot R[x]$, 故由同态基本定理 $R[x]/(c_i)\overset{\sim}{\to} R/(c_i)[x]$ 为整环,则 $c_i\in R[x]$ 也为素元.

由于 K[x] 为 UFD, 考虑不可约分解 $f_0(x)=f_1(x)\cdots f_s(x), f_i(x)\in K[x]$ 不可约. 通分有 $f_i(x)=\frac{1}{a}\tilde{f}_i(x)=\frac{c(\tilde{f})}{a}\cdot\overline{f_i}(x)$.

故可以写成 $f_0=h\overline{f_1}\cdots\overline{f_s}$, 其中 $h\in K$, 不妨设为 $h=\frac{a}{b}$, $\overline{f_i}(x)$ 为 R[x] 中的本原多项式. 则 $bf_0=a\overline{f_1}\cdots\overline{f_s}$.

由 Gauss 引理 $\overline{f_1}\cdots\overline{f_s}$ 也为 R[x] 中本原多项式,则对两边同时取容量,有 $a\sim b$,则得到分解 $f_0=\overline{f_1}\cdots\overline{f_s}$. 由 $f_i(x)$ 在 K[x] 不可约可知 $\overline{f_i}(x)$ 在 K[x] 中不可约.

若 $\overline{f_i}(x) = g(x)h(x), g(x), h(x) \in k[x]$, 由 $\overline{f_i}(x)$ 在 K[x] 中不可约,不妨 $g(x) \in U(K[x]) = K - \{0\}$, 则 $g(x) = a \in R - \{0\}$, 则 $a|\overline{f_i}(x)$ in R[x], 又由于 $\overline{f_i}(x)$ 在 R[x] 中本原,只能 $a \in U(R[x])$, 故 $\overline{f_i}(x)$ 在

R[x] 中不可约. 则我们得到了 f(x) 在 R[x] 中的不可约分解.

下面只需证 $\overline{f_i}(x)$ 在 R[x] 中还是素元,则得到了素分解,由命题 1.34, $f(x) \in R[x]$ 的不可约分解 唯一,则得证.

首先证明 $\overline{f_i}(x) \cdot R[x] = (\overline{f_i}(x) \cdot K[x]) \cap R[x]$, 左边包含于右边显然,则任取 $g(x) = \overline{f_i}(x) \cdot h(x) \in R[x]$, $h(x) \in K[x]$, 通分并提出容量有 $h(x) = \frac{a}{b}h_0(x)$, 其中 $h_0(x)$ 在 R[x] 中本原,则 $bg(x) = a\overline{f_i}(x)h_0(x)$, 再次使用 Gauss 引理并两边取容量有 bc(g) = a, $\frac{a}{b} \in R$, 故 $h(x) \in R[x]$, $g(x) \in \overline{f_i}(x) \cdot R[x]$. 右边包含于左边.

则考虑 $\phi: R[x] \hookrightarrow K[x] \to K[x] \to K[x]$ $\Big/_{\big(\overline{f_i}(x)\big)} = L$,有 $\ker \phi = (\overline{f_i}(x) \cdot K[x]) \cap R[x] = \overline{f_i}(x) \cdot R[x]$,则 $R[x] \Big/_{\big(\overline{f_i}(x) \cdot R[x]\big)} \hookrightarrow L$,由 L 为整环,有 $R[x] \Big/_{\big(\overline{f_i}(x) \cdot R[x]\big)}$ 为整环,则 $\overline{f_i}(x)$ 在 R[x] 中是素元. \square

1.10 拾遗

Theorem 1.9 (中国剩余定理, CRT)

设 $I_1, \cdots, I_n \triangleleft R$ 且 $I_i + I_j = R(\forall i, j)$ (即两两互素),则环同态

$$R \xrightarrow{\theta} \prod_{i=1}^{n} (R/I_i)$$

$$r \mapsto (r + I_1, \cdots, r + I_n)$$

诱导了同构

$$R/I_1 \cap \cdots \cap I_n \xrightarrow{\sim} \prod_{i=1}^n R/I_i.$$

证明 首先由于 $I_1 + I_2 = I_1 + I_3 = R$, 有

$$R = RR = (I_1 + I_2)(I_1 + I_3) = I_1^2 + I_2I_1 + I_1I_3 + I_2I_3 \subseteq I_1 + I_2I_3 \subseteq R.$$

故 $R = I_1 + I_2 I_3$, 以此类推有 $I_1 + I_2 \cdots I_n = R$, 由对称性 $\forall 1 \leq i \leq n, I_i + \prod_{j \neq i} I_j = R$.

显然 $\ker \theta = I_1 \cap I_2 \cdots \cap I_n$, 故只需证 θ 是满射.

 $\forall a_1, \cdots, a_n \in R, \forall 1 \leq i \leq n,$ 由上面所证 $I_i + \prod_{j \neq i} I_j = R,$ 存在 $b_i \in I_i, c_i \in \prod_{j \neq i} I_j,$ s.t. $b_i + c_i = 1$. 令 $b = a_1b_1 + \cdots + a_nb_n,$ 可知 $\theta(b) = (a_1 + I_1, \cdots, a_n + I_n)$. 故满射得证.

Example 1.45 对于 (m,n)=1, 有 $\mathbb{Z}_{mn}=\mathbb{Z}\Big/(m)\cap(n)\stackrel{\sim}{\to}\mathbb{Z}_m\times\mathbb{Z}_n$. 可以验证 $U(\mathbb{Z}_{mn})=U(\mathbb{Z}_m\times\mathbb{Z}_n)=U(\mathbb{Z}_m)\times U(\mathbb{Z}_n)$.

在 Gauss 定理的证明中,我们证明了对 $\overline{f_i(x)}$ 本原,若它在 K[x] 中不可约 $(K = \operatorname{Frac}(R))$,则在 R[x] 中不可约. 事实上反过来也成立.

Proposition 1.35

R 为 UFD, K = Frac(R), $f(x) \in R[x]$ 本原多项式,则 f(x) 在 R[x] 中不可约 \iff f(x) 在 K[x] 中不可约.

证明 只需证 \Rightarrow : 设在 K[x] 中 $f(x) = h_1(x)h_2(x)$, 其中 $\deg h_i < \deg f$, 通分并提出容量有 $bf(x) = a\tilde{h_1}(x)\tilde{h_2}(x)$, $\tilde{h_i}(x) \in R[x]$ 本原,由 Gauss 引理 $\tilde{h_1}(x)h_2(x)$ 本原,故两边取容量有 $a \sim b$,即 $f(x) = \tilde{h_1}(x)\tilde{h_2}(x)$,与在 R[x] 中不可约矛盾.

Example 1.46 显然在 R[x] 中的不可约性更容易判断,故在 K[x] 中的不可约性问题可以得到简化. 例如 $f(x) = x^3 + 3x - 2 \in \mathbb{Z}[x] \subseteq \mathbb{Q}[x]$,不难验证 f(x) 无整根,则 \mathbb{Z} 中不可约,由上面的命题它在 $\mathbb{Q}[x]$ 中也不可约.

Example 1.47 考虑 $k[x,y] = (k[x])[y], y^3 - x^2$ 在 k[x,y] 中不可约: 设 $y^3 - x^2 = (y - a(x))(y^2 + b(x,y)),$ 则 $a(x)|x^2$ in k[x], 只能 $a(x) = \lambda, \lambda x, \lambda x^2$, 对每种情况讨论可知不可能. 进而 $y^3 - x^2$ 在 k(x)[y] 中不可

约.

练习: 令 $A={^k[x,y]}/{(y^3-x^2)}$ 为整环,找出 A 的一组 k-基. 并判断 A 是否为 UFD(Hint: 考虑 $\overline{y^3}$ 的不可约分解.

上面将问题划归为了 R[x] 中的不可约性判定, Eisenstein 判别法是一个重要的工具.

Theorem 1.10 (Eisenstein 判别法)

R 为 UFD, $f(x) = c_n x^n + \dots + c_1 x + c_0 \in R[x]$ 本原多项式,设存在 $p \in R$ 为素元使得 $p \nmid c_n, p | c_{n-1}, \dots, p | c_1, p | c_0, p^2 \nmid c_0$,则 f(x) 在 R[x] 中不可约.

证明 依然提供对应具体和抽象语言的两种证明方法, 总设 f(x) = g(x)h(x) 为非平凡分解, $g(x) = \sum_{0 \le i \le m} a_i x^i, h(x) = \sum_{0 \le j \le n-m} b_j x^j$.

法一:由于 $p|c_0, p^2 \nmid c_0 = a_0b_0$,不妨设 $p \nmid b_0, p|a_0$.则存在 $1 \leq i_0 \leq \deg g < n = \deg f$ 使得 $p|a_0, \dots, p|a_{i_0-1}, p \nmid a_{i_0}, 则$

$$c_{i_0} = a_{i_0}b_0 + (a_{i_0-1}b_1 + \dots + a_0b_{i_0}).$$

括号内为 p 的倍数, $p \nmid a_{i_0}b_0$, 则 $p \nmid c_{i_0}$. 矛盾!

法二: 考虑满同态: $R[x] \stackrel{\pi}{\to} (R/p)[x]$, 将 R/(p) 嵌入到域 K' 中,则 $\pi(g \cdot h) = \pi(g) \cdot \pi(h) = \overline{c_n} x^n \in K'[x]$, 由于 K'[x] 为 UFD, 则只能 $\pi(g) = \bar{\xi} x^m$, $\pi(h) = \bar{\eta} x^{n-m}$,则 $p|a_0, p|b_0$,有 $p^2|c_0 = a_0b_0$,矛盾!

Example 1.48 对 $n \ge 1$, $x^n - 2$ 在 $\mathbb{Q}[x]$ 中不可约: 取 p = 2, 则由 Eisenstein 判别法有 $\mathbb{Z}[x]$ 中不可约,由命题 1.35 得证.

Example 1.49 p 素, $f(x) = \frac{x^{p}-1}{x-1} = 1 + x + \dots + x^{p-1}$,则令 $g(x) = f(x+1) = x^{p-1} + px^{p-2} + \binom{p}{2}x^{p-3} + \dots + p$,对 p 使用 Eisenstein 判别法有 g(x) 在 $\mathbb{Z}[x]$ 不可约. 故 f(x) 在 $\mathbb{Z}[x]$ 不可约 (为什么?),进而 f(x) 在 $\mathbb{Q}[x]$ 中不可约.

Chapter 2 域扩张

2.1 域扩张和单扩张

Definition 2.1

域扩张是指单的域同态 $\theta: k \hookrightarrow K$, 记为 K/k(不是商!). 此时 k 通过 $\theta(k)$ 自然地视为 K 的子域.

Example 2.1 考虑 k[x] 中的 $d \geq 2$ 次不可约多项式 f(x),则 $K = \frac{k[x]}{f(x)}$ 为域,有自然的嵌入 $k \hookrightarrow K, \lambda \mapsto \overline{\lambda} = \lambda + (f(x))$.

回忆 $u = x + (f(x)) \in K$, 有 $u \in \text{Root}_K(f)$, 且 $\{1, u, \dots, u^{d-1}\}$ 构成 K 的一组 k- 基.

Example 2.2 考虑 k[x] 的分式域 $k(x) = \{\frac{f(x)}{g(x)} : g(x) \neq 0\} = \{\frac{f(x)}{g(x)} : g(x) \neq 0, \gcd(f,g) = 1, g \, \text{首} - \},$ 称 为 k 上的**有理函数域**,显然有嵌入 $k \hookrightarrow k[x] \subseteq k(x), \lambda \mapsto \lambda \mapsto \frac{\lambda}{4}$. 故 k(x)/k 是域扩张.

Remark \forall 域扩张 $\theta: k \hookrightarrow K$, 则 K 有 k-线性空间的结构 $(K, +, \cdot)$, 其中加法自然定义,数乘定义为 $\lambda \cdot v = \theta(\lambda) \cdot v$, $\lambda \in k$, $v \in K$. 这个线性空间依赖于 θ .

Definition 2.2

对域扩张 $\theta: k \hookrightarrow K, \theta': k \hookrightarrow K'$, 则称 θ 和 θ' 同构,若存在域同构 $\phi: K \to K'$, 使得 $\phi \circ \theta = \theta'$. 称 ϕ 为 θ 到 θ' 的**域扩张同构**.

当 $\theta' = \theta, K' = K$ 时,从 θ 到 θ 的域同构称为 θ 的**自同构**,所有这样的自同构的集合称为域扩张 K/k 的自同构群,记作 Aut(K/k).

Remark 域扩张同构 ϕ 同时也是 k- 线性空间同构: $\forall \lambda \in k, v \in k, \phi(\lambda \cdot v) = \phi(\theta(\lambda) \cdot v) = \phi(\theta(\lambda)) \cdot \phi(v) = \theta'(\lambda) \cdot \phi(v) = \lambda \cdot \phi(v) \in K'$.

在进一步讨论所谓的单扩张之前要引入如下的记号: 对 $R \subseteq S$ 为子环, 固定 $\alpha \in S$, 定义 $R[\alpha] = \{\sum r_i \alpha^i : r \in R\} \subseteq S$ 为 S 中包含 R 和 α 的最小子环, 其中求和为有限和. 注意这里 $R[\alpha]$ 和之前的多项式环 R[x] 不一样! 更一般地,考虑环嵌入 $\theta : R \hookrightarrow S$, $\alpha \in S$, 则定义 $R[\alpha]$ 为同时包含 $\theta(R)$ 和 s 的最小子环.

对域而言,考虑 $k \subseteq K$ 为子域, $\alpha \in K$,记 $k(\alpha) = \{(\sum r_i \alpha^i)(\sum r_j' \alpha^j)^{-1} : r_i, r_j' \in k, \sum r_j' \alpha^j \neq 0_k\}$ 为 K 中包含 k 和 α 的最小子域,求和为有限和.更一般地对域扩张 $\theta: k \hookrightarrow K$ 和 $\alpha \in K$,定义 $k(\alpha) = \theta(k)(\alpha)$ 为 K 的子域.

Example 2.3 对 $\mathbb{Q} \subseteq \mathbb{C}$, 有 $\mathbb{Q}[i] = \mathbb{Q}(i) = \{a + bi : a, b \in \mathbb{Q}\}.$

现在可以定义单扩张.

Definition 2.3

域扩张 K/k 称为**单扩张**, 若 $\exists \alpha \in K$, 使得 $K = k(\alpha)$. 此时称 α 为 K 的**域生成元**.

Example 2.4 $k \leftarrow K = {^k[x]}/{(f(x))}, u = x + (f(x)) \in K, \ \mathbb{M} \ K = k(u) = k[u].$

Example 2.5 $k \leftarrow k(x), x = \frac{x}{1}, \text{ M} \ k \hookrightarrow k[x] \subsetneq k(x).$

Definition 2.4

对域扩张 K/k, $\alpha \in K$ 称为 k 上的**代数元**,若存在 $f(x) \in k[x]$, 使得 $f(\alpha) = 0_K$. 否则称 α 为 k 上超越元.

Example 2.7 对 \mathbb{C}/\mathbb{Q} , $\sqrt{2}$ 和 $\omega = e^{\frac{2\pi i}{3}}$ 为 \mathbb{Q} 上代数元. Example 2.8 对 k(x) / k, x 为 k 上超越元.

Theorem 2.1

对 $K/k, \alpha \in K$, 设 α 为 k 上代数元,则存在唯一首一不可约多项式 $f(x) \in k[x]$ 使得 $f(\alpha) = 0_K$, 且若 $g(x) \in k[x]$ 使得 $g(\alpha) = 0_K$,则有 f(x)|g(x). 这样的 f(x) 称为 α 关于 k 的**最小多项式**.

证明 考虑 $\operatorname{ev}_{\alpha}: k[x] \to K, g(x) \mapsto g(\alpha)$, 则由于 k[x] 为 PID, 有 $\operatorname{ker}(\operatorname{ev}_{\alpha}) = (f(x))$, 其中 f(x) 首一且 $f(\alpha) = 0_K$. 又 $k[x] / (f(x)) \hookrightarrow K$, 后者为整环,故前者为整环,f(x) 不可约.

则若对 $g(x) \in k[x]$ 有 $g(\alpha) = 0$,则 $g(x) \in (f(x))$,有 f(x)|g(x),故 f(x) 即为所求,得证. \Box **Example 2.9** 对 \mathbb{C}/\mathbb{Q} , $x^3 - 2$ 为 $\sqrt[3]{2}$ 的最小多项式. 练习:求 $\sqrt{2} + \sqrt{3}$ 的最小多项式.

Example 2.10 对 $\theta: k \hookrightarrow K$ 和 $\theta': k \hookrightarrow K'$, 设 $\phi: K \to K'$ 为域扩张同构,则 α 为 k 上代数 $\Longleftrightarrow \phi(\alpha)$ 在 k 上代数,且此时它们有一样的最小多项式.

下面的定理明确了单扩张的结构.

Theorem 2.2 (单扩张的结构定理)

设 $\theta: k \hookrightarrow K$ 和 $\alpha \in K$ 使得 $K = k(\alpha)$.

- (1) 若 α 代数,设 α 的最小多项式为 f(x), $\deg f(x) = d$,则 $\dim_k K = d < \infty$,且 K 有 k-基 $\{1,\alpha,\cdots,\alpha^{d-1}\},K=k[\alpha]$,进一步有 $\theta:k\to K$ 和 $k\to k[x]\Big/(f(x))$ 同构.
- (2) 若 α 超越,则 $\dim_k K = \infty, k[\alpha] \subseteq K$,且有域扩张 θ 和 $k \to k(x)$ 之间的同构.

证明 (1) 若 α 代数,考虑 $\operatorname{ev}_{\alpha}: k[x] \to K$,则由核理想的泛性质有同构 $k[x] \Big/ (f(x)) \xrightarrow{\xi} K, u \mapsto \alpha, \overline{\lambda} \mapsto \theta(\lambda)$.则 $\operatorname{Im} \xi = K$ 为包含 α 和 k 最小子环,即 $k[\alpha]$,且有 k — 基 $\{1, \alpha, \cdots, \alpha^{d-1}\}$.同时显然有如下的交

换图表

(2) 不难反证来验证 $\{1,\alpha,\cdots,\alpha^n,\cdots\}$ 在 k 上线性无关,则 $\dim_k K=\infty$. 又由于 $\operatorname{ev}_\alpha:k[x]\to K$ 为单射,由分式域的泛性质,有

则 $\xi: k(x) \to K, \lambda \in k \to \theta(\lambda), x \mapsto \alpha$, 故为 θ 和 $k \to k(x)$ 之间的域同构. 同时由 $k[x] \subsetneq k(x)$ 和图表的交换性,有 $k[\alpha] \subsetneq K$.

Example 2.11 $\mathbb{Q}(\sqrt[3]{2})$ \Big/\mathbb{Q} 有 \mathbb{Q} -基 $1, \sqrt[3]{2}, \sqrt[3]{4}$. 特别地 $1, \sqrt[3]{2}, \sqrt[3]{4}$ 是 \mathbb{Q} -线性无关的. 对应的结果对 $n \geq 2$ 都成立.

Example 2.12 练习: 有域扩张的同构 $\mathbb{Q}(\sqrt[3]{2\omega})/\mathbb{Q} \stackrel{\sim}{\to} \mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$, 但 $\mathbb{Q}(\sqrt[3]{2\omega})$ 和 $\mathbb{Q}(\sqrt[3]{2})$ 作为 \mathbb{C} 的子域 不相等.

2.2 域的代数扩张

Definition 2.5

K/k 称为**代数扩张**, 若 $\forall \alpha \in K$ 为 k 上的代数元.

*

Lemma 2.1

有限维 (f.d.) 扩张 $K/k(\mathbb{P} \dim_k K < \infty)$ 均为代数扩张.

 \Diamond

证明 对 $\alpha \in K$, 有 $k \subseteq k(\alpha) \subseteq K$, 由于 K/k 有限维,有 $\dim_k k(\alpha) < \infty$,则由单扩张结构定理有 α 代数.

或者由 $\{1, \alpha, \dots, \alpha^n, \dots\}$ 是 k-线性无关的可以找到 α 在 k[x] 中的零化多项式,故 α 代数. \square

Proposition 2.1 (维数公式)

 $k\subseteq E\subseteq K$ 为域扩张链,若 E/k 和 F/E 均 f.d.,则 K/k 也 f.d.,且 $\dim_k K=\dim_k E\cdot\dim_E K$.

证明 线性代数练习. 取 E 的 k-基 $\{u_1, \dots, u_n\}$ 和 K 的 E-基 $\{v_1, \dots, v_m\}$, 则 $\{u_i v_j : 1 \le i \le n, 1 \le j \le m\}$ 为 K 的 k-基:

(1) k-线性张成: $\forall \alpha \in K$, 有

$$\alpha = \sum_{j} y_j v_j = \sum_{j} (\sum_{i} \lambda_{ij} u_i) v_j = \sum_{i,j} \lambda_{ij} u_i v_j, y_j \in E, \lambda_{ij} \in k.$$

(2) k-线性无关: $\forall \lambda_{ij} \in k$ 且 $\sum_{ij} \lambda_{ij} u_i v_j = 0$,则 $\sum_j (\sum_i \lambda_{ij} u_i) v_j = 0$,由 $\{v_j\}$ 的 E-无关性有 $\sum_i \lambda_{ij} u_i = 0 (\forall j)$,再次由 $\{u_i\}$ 的 k-无关性有 $\lambda_{ij} = 0$.

Example 2.13 计算 $K=\mathbb{Q}(\sqrt{2},\sqrt{3})$ 的 \mathbb{Q} -维数. 首先 $\sqrt{2}$ 在 \mathbb{Q} 的最小多项式为 x^2-2 , $\{1,\sqrt{2}\}$ 为 $\mathbb{Q}(\sqrt{2})$ 的 \mathbb{Q} -基.

再考虑 $\sqrt{3}$ 在 $\mathbb{Q}(\sqrt{2})$ 上的最小多项式. 显然 $x^2-3\in\mathbb{Q}(\sqrt{2})[x]$ 首一且零化 $\sqrt{3}$,且在 $\mathbb{Q}(\sqrt{2})[x]$ 中不可约: 只需证 x^2-3 在 $\mathbb{Q}(\sqrt{2})$ 中无根. 设 $(a+b\sqrt{2})^2=3$,则 $a^2+2b^2=3$,2ab=0,故只能 a=b=0. 则 x^2-3 为所求的最小多项式,故 $\{1,\sqrt{3}\}$ 为 K 的 $\mathbb{Q}(\sqrt{2})$ -基.

则 $\dim_{\mathbb{Q}} K = 2 \cdot 2 = 4$, 且 K 的一组 \mathbb{Q} -基为 $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$.

Example 2.14 ω 为三次单位根, $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$. 已知 $\mathbb{Q}(\sqrt[3]{2})$ 的 \mathbb{Q} -维数为 3,一组基为 $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$. 再求 ω 在 $\mathbb{Q}(\sqrt[3]{2})$ 上的最小多项式.

注意到 x^2+x+1 首一且化零 ω , 故只需证 x^2+x+1 在 $\mathbb{Q}(\sqrt[3]{2})$ 上不可约,则只需证无根. 这是显然的,因为 x^2+x+1 无实根,而 $\mathbb{Q}(\sqrt[3]{2})\subseteq\mathbb{R}$.

故 K 的 \mathbb{Q} 维数为 $2 \cdot 3 = 6$, 一组基为 $\{1, \sqrt[3]{2}, \sqrt[3]{4}, \omega, \sqrt[3]{2}\omega, \sqrt[3]{4}\omega\}$.

以 $\mathbb{Q} \subseteq \mathbb{Q}(\omega) \subseteq \mathbb{Q}(\sqrt[3]{2}, \omega)$ 的顺序考虑也可以,则第二步需要证明 $x^3 - 2$ 在 $\mathbb{Q}(\omega)$ 上不可约,作为练习.

Example 2.15 K/k 为 f.d. 扩张, $\alpha \in K$ 的最小多项式为 f(x), 则 $\deg f | \dim_k K$.

回顾: K/k 称为有限生成,若 $\exists \alpha_1, \dots, \alpha_n \in K$ 使得 $K = k(\alpha_1, \dots, \alpha_n)$.

Theorem 2.3

K/k 为 f.d. 扩张 \iff K/k 为代数且有限生成的.

 \Diamond

证明 \Rightarrow : 取 K 的 k- 基 u_1, \dots, u_n ,有 $K = k(u_1, \dots, u_n)$.

 \Leftarrow : 设 $K = k(\alpha_1, \dots, \alpha_n)$, 则 $k \subseteq k(\alpha_1) \subseteq k(\alpha_1, \alpha_2) \dots \subseteq K$. 由 $k(\alpha_1)$ 在 k 上代数,故由单扩张结构定理有 $k(\alpha_1)/k$ 为 f.d. 扩张,依次类推任意 i 有 $k(\alpha_1, \dots, \alpha_i) \Big/_{k(\alpha_1, \dots, \alpha_{i-1})}$ 为 f.d. 扩张,故由维数公式有 K/k 也 f.d.

Proposition 2.2

 $k \subseteq E \subseteq K$, 则 K/k 代数 \iff K/E 和 E/k 都代数.

证明 ⇒: 显然

 \Leftarrow : 任取 $\alpha \in K$, 取 $\alpha^n + u_{n-1}\alpha^{n-1} + \cdots + u_1\alpha + u_0 = 0, u_i \in E$, 则 α 在 $k(u_0, u_1, \cdots, u_{n-1}) \subseteq E$ 上代数. 考虑 $k \subseteq k(u_0, \cdots, u_{n-1}) \subseteq k(u_0, \cdots, u_{n-1}, \alpha)$, 第一个扩张有限生成且代数,第二个为代数的单扩张,故 $k(u_0, \cdots, u_{n-1}, \alpha) / k$ 有限维,则代数. 进而 α 在 k 上代数.

下面我们讨论代数闭域的概念.

Definition 2.6

对 K/k,定义 E 为 K 中 α 上代数元的集合,称为 k 在 K 中的**代数闭包**. 域 K 称为**代数闭域**,若任意代数扩张 $K \subseteq E$,有 $K \xrightarrow{\sim} E$.

Proposition 2.3

- (1) 对域扩张 K/k, E 为如上的代数闭包,则 E 是 K 的子域,且 $\forall u \in K-E$,有 u 在 E 上超越.
- (2) K 为代数闭域 \iff 任意 K[x] 中不可约多项式都是一次的 \iff 任意多项式 $f(x) \in K[x]$ 完全分裂.
- (3)(代数基本定理) € 为代数闭域.
- (4) 任意域 k, 存在代数扩张 $k \hookrightarrow \bar{k}$ 且 \bar{k} 代数闭域, 称 \bar{k} 为 k 的**代数闭包**.

证明 在当下我们只证明 (1). 首先证明 E 是子域: 对 $\alpha, \beta \in E$, 考虑 $k \subseteq k(\alpha) \subseteq k(\alpha, \beta)$, 两个扩张均为代数的单扩张,故 $k(\alpha,\beta) / k$ 为代数扩张,有 $\alpha \pm \beta, \alpha \cdot \beta, \alpha^{-1}$ 在 k 上代数.

再考虑 $\forall u \in K - E$,若 u 在 E 上代数,则 $k \subset E \subseteq E(u)$ 的两个扩张均代数,有 E(u) / k 代数,则 $u \in E$,矛盾!

Example 2.16 对 \mathbb{C}/\mathbb{Q} , 定义 $\overline{\mathbb{Q}}$ 为 \mathbb{Q} 在 \mathbb{C} 中的代数闭包. 可以证明 $\overline{\mathbb{Q}}$ 为可数的代数闭域. $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) =$

Aut(ℚ) 称为绝对 Galois 群.

分裂域和 Galois 群会在后面重点研究.

本节的最后来讨论延拓同态的问题: 对域同构 $\sigma: k \xrightarrow{\sim} k'$ 以及域扩张 E/k, E'/k', 如何将 σ 延拓到 E 上? 即寻找 $\tilde{\sigma}: E \to E', \tilde{\sigma}|_k = \sigma$.

$$E \xrightarrow{\tilde{\sigma}} E'$$

$$\uparrow \qquad \qquad \uparrow$$

$$k \xrightarrow{\tilde{\sigma}} k'$$

处理这种问题的工具是如下的关键引理.

Lemma 2.2 (美键引理)

 $\sigma: k \to k'$ 为域同构,E/k, E'/k' 为域同构,设 $\alpha \in E$ 有最小多项式 $f(x) \in k[x]$,则设 $\beta \in \mathrm{Root}_{E'}(\sigma(f))$,存在唯一 σ 的延拓 $\tilde{\sigma}: k(\alpha) \xrightarrow{\sim} k'(\beta) \subseteq E', \alpha \mapsto \beta$.

特别地, 共有 $|\text{Root}_{E'}(\sigma(f))|$ 个延拓 $\tilde{\sigma}: k(\alpha) \to E'$.

证明 定义 $\tilde{\sigma}(\lambda) = \lambda \in k, \tilde{\sigma}(\alpha) = \beta$, 则只需证这么定义的 $\tilde{\sigma}$ 为域同构. 这由如下的交换图表立得:

$$k(\alpha) \longleftarrow {}^{k[x]}/(f(x))$$

$$\downarrow^{\tilde{\sigma}} \qquad \qquad \downarrow^{\tilde{\sigma}}$$

$$k'(\beta) \longleftarrow {}^{k'[x]}/(\sigma(f)(x))$$

同时若有延拓 $\tilde{\sigma}: k(\alpha) \to E'$, 必有 $\tilde{\sigma}(\alpha) \in \text{Root}_{E'}(\sigma(f))$,故得证.

2.3 分裂域

Definition 2.7

 $f(x) \in k[x]$ 的**分裂域**是指 E/k 使得

- (1) f(x) 在 E 上分裂,即 $f(x) = c(x \alpha_1) \cdots (x \alpha_n), \alpha_i \in E$.
- (2) $E = k(\alpha_1, \cdots, \alpha_n)$.

Remark 易见 E/k 为有限生成且代数的扩张,故 dim_k $E < \infty$.

Remark 分裂域确实存在: 设 $f(x) = f_1(x)\tilde{f}(x)$, $f_1(x)$ 不可约且 $\deg f_1 \geq 2$, 则令 $u_1 = \bar{x} \in K_1 = k[x] / (f_1(x))$. 在 $K_1[x]$ 中有分解 $f(x) = (x - u_1)f_{11}(x)\tilde{f}(x)$. 再对 $g(x) = f_{11}(x)\tilde{f}(x)$ 做同样的操作,由于多项式次数一直降低,故设在域 K 时终止,有 $f(x) = c(x - \alpha_1)\cdots(x - \alpha_n)$ in K[x], 则取 $E = k(\alpha_1, \dots, \alpha_n)$ 即可.

下面是求分裂域的例子.

Example 2.17 $f(x) = \mathbb{Q}[x]$, 则有 $f(x) = (x - z_1) \cdots (x - z_n) \in \mathbb{C}[x]$, $z_i \in \mathbb{C}$, 则 $E = \mathbb{Q}(z_1, \dots, z_n)$, E/\mathbb{Q} 为分裂域.

例如 $x^3 - 2 \in \mathbb{Q}[x]$ 的分裂域为 $\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}$, $(x^2 - 2)(x^2 - 3) \in \mathbb{Q}[x]$ 的分裂域为 $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$. **Example 2.18** $f(x) = x^2 + x + \bar{1} \in \mathbb{F}_2[x]$, 则考虑嵌入 $\mathbb{F}_2 \hookrightarrow \frac{\mathbb{F}_2[x]}{(x^2 + x + \bar{1})} = \mathbb{F}_4$ 以及 $u = x + (x^2 + x + \bar{1})$. 回忆 $x^2 + x + \bar{1} = (x + u)(x + u + \bar{1})$ in $\mathbb{F}_4[x]$, 故分裂域为 $\mathbb{F}_2(u, u + \bar{1})/\mathbb{F}_2 = \mathbb{F}_4/\mathbb{F}_2$. **Example 2.19** $f(x) = x^2 + \bar{1} \in \mathbb{F}_3[x]$, 则考虑嵌入 $\mathbb{F}_3 \hookrightarrow \frac{\mathbb{F}_3[x]}{(x^2 + \bar{1})} = \mathbb{F}_9$ 以及 $v = x + (x^2 + \bar{1})$. 回忆 $x^2 + \bar{1} = (x + v)(x - v)$ in $\mathbb{F}_3[x]$, 故分裂域为 $\mathbb{F}_9/\mathbb{F}_3$.

可以计算分解 $x^2 - x - \overline{1} = (x - v + \overline{1})(x + v + \overline{1})$, 故 $\mathbb{F}_9/\mathbb{F}_3$ 也是 $x^2 - x - \overline{1}$ 的分裂域.

下面的定理进一步回答了之前的延拓同态问题.

Theorem 2.4

给定域同构 $\sigma: k \to k'$, 对 $f(x) \in k[x]$ 有分裂域 E/k, $\sigma(f) \in k[x]$ 有分裂域 E'/k', 则 σ 可以延拓 为域同构 $\delta: E \to E'$, 且这样的延拓至多有 $\dim_k E = \dim_{k'} E' < \infty$ 个.

证明 对 $\dim_k E$ 归纳, $\dim_k E = 1$ 时 $k \xrightarrow{\sim} E$, 则 f(x) 在 k 上分裂,故 $\sigma(f)$ 在 k' 上分裂,有 k' = E',则只能 $\delta = \sigma$.

再设 $\dim_k E > 1$ 且结论对 $\dim_k E$ 更小的时候均成立,则对 $f(x) = (x - \alpha_1) \cdots (x - \alpha_n), \alpha_i \in E$,设 $\alpha_1 \notin k$,则 α_1 在 k 有最小多项式 $g(x), \deg g \geq 2$,故 g(x)|f(x),记 f(x) = g(x)h(x),则 $\sigma(f) = (x - \beta_1) \cdots (x - \beta_n) = \sigma(g)\sigma(h), \beta_i \in E'$,故 $\sigma(g)$ 在 E' 中有根.

$$E \xrightarrow{\delta} E'$$

$$\uparrow \qquad \qquad \uparrow$$

$$k(\alpha_1) \xrightarrow{\sigma'} k'(\beta_1)$$

$$\uparrow \qquad \qquad \uparrow$$

$$k \xrightarrow{\sigma} k'$$

不妨取 $\beta_1 \in E'$ 使得 $\sigma(g)(\beta_1) = 0$,则由关键引理,有延拓 $\sigma' : k(\alpha_1) \to k'(\beta_1), \alpha_1 \mapsto \beta_1$,这样的 延拓有 $|\operatorname{Root}_{E'}(\sigma(g))| \leq \deg \sigma(g) = \deg g = \dim_k k(\alpha_1)$ 个.

又由于 $\dim_{k(\alpha_1)} E < \dim_k E$,由归纳假设,存在 σ' 的延拓 $\delta : E \to E'$,且至多有 $\dim_{k(\alpha_1)} E$ 个. 综上 σ 的延拓 δ 存在,且数量至多为 $\dim_k k(\alpha_1) \cdot \dim_{k(\alpha_1)} E = \dim_k E$ 个.

Example 2.20 考虑 $f(x) = x^3 - 2 \in \mathbb{Q}[x]$, 分裂域 $E = \mathbb{Q}(\sqrt[3]{2}, \omega)$, 我们想计算 $\operatorname{Aut}(E/\mathbb{Q}) = \operatorname{Aut}(\mathbb{Q})$. 只需要找 $\operatorname{Id}_{\mathbb{Q}}$ 的所有延拓 δ .

这种题的解决方法在上面的定理证明过程中也体现出来了,即逐步延拓. 对 $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2}) \subseteq E$, 先考虑延拓到 $\mathbb{Q}(\sqrt[3]{2})$ 上. 对应上面证明中的记号,则 $g(x) = x^3 - 2$, $\alpha_1 = \sqrt[3]{2}$, 需要找 $\beta_1 \in E = E'$ 为 $\sigma(g) = g$ 的根,有 3 个: $\sqrt[3]{2}$, $\sqrt[3]{2}\omega$, $\sqrt[3]{2}\omega^2$, 对应了 3 个到 $\mathbb{Q}(\sqrt[3]{2})$ 上的延拓 σ' ,将 $\sqrt[3]{2}$ 打到 β_1 .

$$E \xrightarrow{\delta:\omega\mapsto\beta_1'} E$$

$$\uparrow \qquad \uparrow$$

$$\mathbb{Q}(\sqrt[3]{2}) \xrightarrow{\sigma':\sqrt[3]{2}\mapsto\beta_1} \mathbb{Q}(\beta_1)$$

$$\uparrow \qquad \uparrow$$

$$\mathbb{Q} \xrightarrow{\mathrm{Id}} \mathbb{Q}$$

固定 β_1 , 再考虑 ω 在 $\mathbb{Q}(\sqrt[3]{2})$ 上的最小多项式为 $g'(x) = x^2 + x + 1 = 0$, 在 $E = E' \perp \sigma'(g') = g'$ 找 根 β'_1 , 有两个: ω, ω^2 , 对应 $E = \mathbb{Q}(\sqrt[3]{2})(\omega)$ 上的两个延拓 δ , 把 ω 打到对应的 β'_1 .

则总共有 6 种延拓, |Aut(E)| = 6, 每个延拓由它在 $\sqrt[3]{2}$ 和 ω 上的取值决定.

Example 2.21 考虑 $\mathbb{F}_2 \hookrightarrow \mathbb{F}_4 = \mathbb{F}_2[x] \Big/ (x^2 + x + \bar{1})$, 欲求 $\operatorname{Aut}(\mathbb{F}_4) = \operatorname{Aut}(\mathbb{F}_4/\mathbb{F}_2)$.

令 $u = x + (x^2 + x + \overline{1})$, 则 $\mathbb{F}_4 = \mathbb{F}_2(u)$, 考虑 u 在 \mathbb{F}_2 上的最小多项式 $x^2 + x + \overline{1}$, 它在 \mathbb{F}_4 上有根 $u, u + \overline{1}$, 故有两个到 \mathbb{F}_4 的延拓,分别将 u 打到 u 和 $u + \overline{1}$.

$$\mathbb{F}_{4} \xrightarrow{\delta: u \mapsto u, u + \bar{1}} \mathbb{F}_{4}$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathbb{Q} \xrightarrow{\mathrm{Id}} \mathbb{Q}$$

在上面的证明过程中也看到多项式重根的存在性会影响延拓的数量, 所以需要对重根进行研究.

Definition 2.8

称 $0 \neq f(x) \in k[x]$ 有重根,若存在 E/k 和 $a \in E$,使得 $(x-a)^2 \mid E$. 对 $f(x) = a_n x^n + \dots + a_1 x + a_0 \in k[x]$,定义其**形式微分**为 $f'(x) = (na_n) x^{n-1} + \dots + 2a_2 x + a_1 \in k[x]$.

Example 2.22 $(x^2 + 1)^2 \in \mathbb{R}[x]$ 无实根,但有重根.

Remark 可以验证 (f(x)g(x))' = f(x)g'(x) + f'(x)g(x), 且 $\deg f' \leq \deg f - 1$, 可以取到严格的小于: 例 如 $n1_k = 0_k$ 时.

Lemma 2.3

 $f(x) \in k[x]$ 无重根 $\iff \gcd_k(f, f') = 1$.

证明 \Leftarrow : 若存在 E/k 使得 $(x-a)^2|f(x)$, 则 $1 = \gcd_k(f,f') = \gcd_E(f,f')$. 又 $(x-a)^2|f(x)$, 有 (x-a)|f'(x), 故 $(x-a)|\gcd_E(f,f')$, 矛盾!

⇒: 若 $\gcd_k(f, f') = g(x)$, 则取 K 使得 g(x) 在 K 上分裂,则取 $a \in K$ 使得 (x-a)|g(x), 故 (x-a)|f', 则 $(x-a)^2|f$: 否则 f(x) = (x-a)h(x), $h(a) \neq 0$, 求微分并在 a 取值有 $f'(a) = h(a) \neq 0$, 与 (x-a)|f' 矛盾,故 f 有重根.

Definition 2.9

 $0 \neq f(x) \in k[x]$ 称为 k 上**可分**的,若 f(x) 的不可约因子均无重根.

Lemma 2.4

若 $\operatorname{char} k = 0$, 则任意 $f(x) \in k[x]$ 均可分.

证明 任取 $g(x) \in k[x]$ 不可约,由 $\operatorname{char} k = 0$ 有 $\deg g' = \deg g - 1, g' \neq 0$,则 $\gcd(g, g') = 1$,无重根. \square **Example 2.23** 取 $k = \mathbb{F}_p(t)$,则 $|k| = \infty$,且 $\operatorname{char} k = p$,可以验证 $x^p - t \in k[x]$ 不可约,但有重根. 结合定理 2.4 的证明过程和可分的定义,则有

Theorem 2.5

条件同定理 2.4,则 $f(x) \in k[x]$ 可分 \iff 这样的延拓 δ 恰有 $\dim_k E$ 个. 即此时 $|\operatorname{Aut}(E/k)| = \dim_k E$.

Remark 可分多项式 $f(x) \in k[x]$ 的分裂域 E, 则记 $\operatorname{Aut}(E/k) = \operatorname{Gal}(E/k)$ 称为 E/k 的 Galois 群,也记作 $\operatorname{Gal}_k(f)$. 课程最后将会更系统地学习 Galois 理论,其核心在于将 $\operatorname{Gal}(E/k)$ 的子群和 E 的子域建立对应. 下面先给出一个例子.

Theorem 2.6 (Galois 对应)

对有限维域扩张 E/k,对每个子群 $H \leq \operatorname{Aut}(E/k)$,其固定子域定义为 $E^H = \{z \in E : \sigma(z) = z, \forall \sigma H\} \subseteq E$. 对每个中间域 $k \subseteq K \subseteq E$, 定义 $\operatorname{Aut}(E/K) = \{\sigma \in \operatorname{Aut}(E) : \sigma|_K = \operatorname{Id}|_K\}$. 则有对应 $\{H \leq \operatorname{Aut}(E/K)\}$ $\underset{\operatorname{Aut}(E/K) \leftarrow K}{\overset{H \to E^H}{\rightleftharpoons}} \{k \subseteq K \subseteq E : K$ 中间域 $\}$. 当 E/k 为某个可分多项式的分裂域时,该对应为一一对应,且上述为互逆映射.

Example 2.24 令 $E = \mathbb{Q}(\sqrt[3]{2}, \omega)$ 为 $x^3 - 2 \in \mathbb{Q}[x]$ 的分裂域,则 $\dim_{\mathbb{Q}} E = 6$. $X = \text{Root}_{E}(x^3 - 2) = \{\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2\}$,则令 S(X) 为 X 上的置换全体,显然 |S(X)| = 3! = 6. 则 Aut(E) 和 S(X) 之间有一一对应.

Example 2.25 练习:验证 $x^4 + x + \bar{1} \in \mathbb{F}_2[x]$ 不可约,进而 $\mathbb{F}_{2^4} = \frac{\mathbb{F}_2[x]}{(x^4 + x + \bar{1})}$,求 \mathbb{F}_{2^4} 的所有子域,并求 $x^4 + x + \bar{1}$ 在 $\mathbb{F}_{2^4}[x]$ 中的分解.

2.4 有限域

现在设 E 是有限域,设 char E = p > 0,则有嵌入 $\mathbb{F}_p \hookrightarrow E$,且 E 上有 \mathbb{F}_p -线性空间结构,故 $\dim_{\mathbb{F}_p} E = n \iff E \simeq \mathbb{F}_p \times \cdots \times \mathbb{F}_p$,此时有 $|E| = p^n$.

Definition 2.10

 $\sigma: E \xrightarrow{\sim} E, a \mapsto a^p$ 是一个域同构, 称为 Frobenius 自同构.

Example 2.26 对 $\mathbb{F}_4 = \mathbb{F}_2[x] / (x^2 + x + \bar{1})$,则 $\mathbb{F}_4 = \{\bar{0}, \bar{1}, u, u + \bar{1}\}$,且 $u^2 = u + \bar{1}$,则 Frobenius 自同构 $\sigma(u) = u + \bar{1}$, $\sigma(u + \bar{1}) = u^2 + \bar{1} = u$,故 $\sigma \neq \mathrm{Id}_{\mathbb{F}_4}$,且显然有 $\sigma^2 = \mathrm{Id}_{\mathbb{F}_4}$.

Lemma 2.5

证明 固定 $a \in E^*$, 由于 E 有限,必然存在 i < j 使得 $a^i = a^j, a^{j-i} = \bar{1}$, 取 d 为最小的满足 $a^d = \bar{1}$ 的 正整数,则 $H = \{\bar{1}, a, \cdots, a^{d-1}\}$ 两两不同,且为 E^* 的子群,由后面群论将要证明的 Lagrange 定理,有 $d|(p^n-1)$,故 $a^{p^n-1} = \bar{0}$.

下面来证明 p^n 阶的有限域是存在唯一的.

Theorem 2.7

 $\forall n \in \mathbb{N}$ 和 p 素,存在唯一 p^n 阶有限域,记为 \mathbb{F}_{n^n} .

证明 唯一性: 若 $E \neq p^n$ 阶域,则由上面的引理, $\forall a \in E \neq x^{p^n} - x$ 的根,故有 $x^{p^n} - x = \prod_{a \in E} (x - a)$, E/\mathbb{F}_p 为 $x^{p^n} - x$ 的分裂域. 则唯一确定.

存在性: 再反过来取 E 是如上的分裂域,则 E/\mathbb{E}_p 为有限维扩张, $|E|<\infty$. 再定义 $K=\{a\in E:a^{p^n}=a\}\subseteq E$. 不难验证 K 是子域,且由于 $x^{p^n}-x$ 无重根 (验证 $\gcd(f,f')=1$),有 $|K|=p^n$. 又由于 E 是分裂域,有 K=E,故 $|E|=p^n$.

Remark 我们实际上也证明了在 \mathbb{F}_{p^n} 中有 $x^{p^n} - x = \prod_{a \in \mathbb{F}_{n^n}} (x - a)$.

Proposition 2.4

$$\mathbb{F}_p[x]$$
 中有分解 $x^{p^n} - x = \prod_{d \mid n} \prod_{f \in M_d} f(x)$, 其中 $M_d = \{f(x) : \deg f = d, \mathbb{1}$ 有一不可约 $\}$.

证明 设 $f(x)|x^{p^n}-x$ 且首一不可约 in $\mathbb{F}_p[x]$, 取 $a \in \mathbb{F}_{p^n}$ 使得 f(a)=0, 则考虑域扩张 $\mathbb{F}_p \subseteq \mathbb{F}_p(a) \subseteq \mathbb{F}_{p^n}$, 第一个扩张的维数为 $\deg f$, 则由维数公式必有 $\deg f|n$.

另一方面 $\forall g(x) \in \mathbb{F}_p[x]$ 首一不可约,设 $\deg g = d|n$,则考虑 $\mathbb{F}_p \hookrightarrow K = \frac{\mathbb{F}_p[x]}{(g(x))}$,有

 $\dim_{\mathbb{F}_p} K = d$, 故由引理 2.5 有 u = x + (g(x)) 满足 $u^{p^d} - u = 0$. 则 $g(x)|(x^{p^d} - x)|(x^{p^n} - x)$, 最后 一步用到 $(p^d - 1)|(p^n - 1)$. 故得证.

Example 2.27 p = 2 时,有 $x^4 - x = x(x + \bar{1})(x^2 + x + \bar{1}), x^8 - x = x(x + \bar{1})(x^3 + x^2 + \bar{1})(x^3 + x + \bar{1}).$ 练习:给出 $x^{16} - x$ 在 $\mathbb{F}_2[x]$ 的分解和 $x^9 - x$ 在 $\mathbb{F}_3[x]$ 中的分解.

下面来讨论有限域的子域.

Proposition 2.5

E 为 p^n 阶有限域,则 (1) 若 $K \subseteq E$ 为子域,则 $|K| = p^d$, d 满足 d|n

(2) $\forall d | n$, 存在唯一子域 $K \subseteq E$ 使得 $|K| = p^d$.

证明 (1) 考虑 $\mathbb{F}_p \subseteq K \subseteq E$,利用维数公式即可.

(2) 设 $|K| = p^d$, 同定理 2.7 可以证明 $K = \{a \in E : a^{p^d} - a = \bar{0}\} \subseteq E$, 且不难验证 K 确实是 E 的子域.

Example 2.28 对 \mathbb{F}_{2^6} ,它有三个真子域 \mathbb{F}_2 , $\mathbb{F}_{2^2} = K_1$, $\mathbb{F}_{2^3} = K_2$.

设 $b \in K_1 \cap K_2$, 则 $\sigma^2(b) = \sigma^3(b) = b$, 故 $\sigma(b) = \sigma(\sigma^2(b)) = b$, 故 $\sigma(b) \in \mathbb{F}_2$, 即 $\sigma(b) \in \mathbb{F}_2$, 即 $\sigma(b) \in \mathbb{F}_2$.

进一步,由于 $|K_1|=4$, $|K_2|=8$, $|K_1\cap K_2|=2$, 有 $|K_1\cup K_2|=10$, 则有 54 个 $u\in E-(K_1\cup K_2)$. 对任意一个这样的 u, 均有 $\mathbb{F}_2(u)$ 既不包含于 K_1 也不包含于 K_2 , 则只能 $\mathbb{F}_2(u)=E$.

下面的命题说明上面的这种 u 的存在性是普遍的.

Proposition 2.6

对任意 n, 存在次数为 n 的 $\mathbb{F}_p[x]$ 上的不可约多项式 f(x).

证明 对 $n = q_1^{n_1} \cdots q_s^{n_s}$ 为素分解,则 E 恰有 s 个极大真子域 K_i , $|K_i| = p^{\frac{n}{q_i}}$. 不难验证 $\sum_{i=1}^{s} p^{\frac{n}{q_i}} \leq s \cdot p^{\frac{n}{2}} < p^n$, 故这些极大子域不能覆盖 E.

即存在 $u \in E$ 且 $u \notin K_i(\forall 1 \le i \le s)$. 此时有 $\mathbb{F}_p(u) = E$, 则 E/\mathbb{F}_p 为单扩张, u 的最小多项式 f(x) 的次数为 n. 则 f(x) 为所求.

Remark (1) $\forall 1 \leq i \leq n-1$, 有 $\sigma^i(u) \neq u$: 显然 $\sigma^n(u) = u$, 则取最小的 d 使得 $\sigma^d(u) = u$, 有 d|n. 否则

设 n = dq' + d', d' < d, 有 $u = \sigma^n(u) = \sigma^{d'}(u)$, 与 d 的定义矛盾! 则有命题 2.5 的证明有 u 落在某个 p^d 阶子域中,与 u 的选取矛盾!

- (2) 进而 $\forall 1 \leq i \neq j \leq n-1$, 有 $\sigma^i(u) = \sigma^j(u)$.
- (3) f(x) 为 u 的最小多项式,则由于 f(u) = 0,有 $0 = \sigma(f(u)) = f(\sigma(u))$,则 u 和 $\sigma(u)$, \cdots , $\sigma^{n-1}(u)$ 都有一样的最小多项式,进而 $f(x) = \prod_{i=1}^{n} (x \sigma^{i}(u))$.

Theorem 2.8

 $\delta(u) = \sigma^i(u).$

$$\operatorname{Aut}(E) = \{\operatorname{Id}, \sigma, \cdots, \sigma^{n-1}\}.$$

证明 设 $\delta: E \to E$ 为自同构, $\delta|_{\mathbb{F}_p} = \operatorname{Id}|_{\mathbb{F}_p}$,仍然取u如上,则若 $g(\delta(u)) = 0$,有 $\delta(g(u)) = g(\delta(u)) = 0$,即g(u) = 0,同理则有g(u) = 0 等价于 $g(\delta(u)) = 0$.故u与 $\delta(u)$ 有相同的最小多项式.则存在i使得

又 $E = \mathbb{F}_p(u)$, 则容易验证 $\forall w \in E$, 有 $\delta(w) = \sigma^i(w)$, 即 $\delta = \sigma^i$. 又由于 $\sigma^i(u) \neq \sigma^j(u) (i \neq j)$, 故 $\sigma^i \neq \sigma^j (i \neq j)$. 故得证.

对任意 $d|n, H_d = \{\mathrm{Id}, \sigma^d, \cdots, \sigma^{d \cdot \frac{n}{d}}\} \leq \mathrm{Aut}(E)$ 为子群,它们构成了 $\mathrm{Aut}(E)$ 的所有子群. 更进一步地有如下的 Galois 对应.

Theorem 2.9 (有限群的 Galois 对应)

 $|E|=p^n$ 为有限域,则存在一一对应 $\{K\subseteq E$ 为子域 $\}\Longleftrightarrow \{H\le \operatorname{Aut}(E)$ 为子群 $\}.$

其中任意 $K \subseteq E$ 对应了 $\operatorname{Aut}(E/K) = \{\delta \in E : \delta(a) = a(\forall a \in K)\},$

 $H_d \leq \operatorname{Aut}(E)$ 对应了 $K_d = \{a \in E : \sigma^d(a) = a\}.$

可以验证两边的对应是互逆的,所有子域以及所有自同构群的子群都分别与 $\{1 \le d \le n : d \mid n\}$ ——对应.

2.5 分圆域

在域 k 中, ω 称为 n 次单位根,若 $\omega^n=1_k$. 若 d 为最小的满足 $\omega^d=1_k$ 的正整数,则称 ω 为**本原** d 次单位根,记 $\mathrm{ord}(\omega)=d$ 为 ω 的阶.

Lemma 2.6

设 $\operatorname{ord}(\omega) = d$, 则 $\omega^n = 1 \iff d|n$.

证明 ⇐: 显然.

$$\Rightarrow$$
: 若 $n = dq + r, r < d$, 则 $\omega^n = 1 = \omega^{dq+r} = \omega^r$, 由 d 的定义有 $r = 0, d \mid n$.

Remark 若 chark = p > 0, ord $(\omega) = d$, 则 $p \nmid d$. 否则设 $d = d_1 p$, 则有 $\omega^d - 1 = (\omega^{d_1})^p - 1 = (\omega^{d_1} - 1)^p = 0$, 故 $\omega^{d_1} = 1$, 与 d 的定义矛盾.

Example 2.29 $|E| = p^n$ 为有限域,则 $\omega \in E^*$, 有 $\operatorname{ord}(\omega)|(p^n - 1)$.

Proposition 2.7

k 为域, $\omega \in k$ 为 d 次本原单位根,则 $\mathrm{Root}_k(x^d-1)=\{1,\omega,\cdots,\omega^{d-1}\} \leq k^*$ 为 d 阶子群. 反之,对任意 $H \leq k^*$ 为 d 阶子群,存在 d 次本原单位根 ω 使得 $H=\{1,\omega,\cdots,\omega^{d-1}\}$,且这样的 H 是唯一的.

在此暂时不给出证明.

下面我们重点关注复数域上的单位根. $\forall n \geq 2$, 定义 $\xi = \xi_n = e^{\frac{2\pi i}{n}}$, 则 $x^n - 1 = (x - 1)(x - \xi)\cdots(x - \xi^{n-1})$, $\{1, \xi, \dots, \xi^{n-1}\} \leq \mathbb{C}^*$ 为 n 阶子群.

Proposition 2.8

所有 n 次本原单位根为 $\{\xi^m : 1 \le m \le n, (m, n) = 1\}$, 共有 $\phi(n)$ 个.

证明 设 gcd(m,n) = d, 则 $(\xi^m)^{\frac{n}{d}} = 1$. 另一方面若 $(\xi^m)^k = 1$, 则由引理 2.6 有 n|mk, 则 $\frac{n}{d}|k$. 故 $ord(\xi^m) = \frac{n}{(m,n)}$, 即 ξ^m 本原 n 次当且仅当 (m,n) = 1.

Definition 2.11

n 次**分圆域**定义为 $\mathbb{Q}(\xi_n)$, 也恰为 $x^n - 1 \in \mathbb{Q}[x]$ 的分裂域.

n 次**分圆多项式**定义为 $\Phi_n(x) = \prod_{1 \leq m \leq n-1, (m,n)=1} (x-\xi^m) \in \mathbb{C}[x]$. 显然有 $\deg \Phi_n(x) = \phi(n)$.

Example 2.30 $\mathbb{Q}(\xi_2) = \mathbb{Q}, \mathbb{Q}(\xi_3) = \mathbb{Q}(\frac{-1+\sqrt{3}i}{2}, \mathbb{Q}(\xi_4) = \mathbb{Q}(i).$ $\Phi_1(x) = x - 1, \Phi_2(x) = x + 1, \Phi_3(x) = x^2 + x + 1.$

Lemma 2.7

$$x^n-1=\prod_{d\mid n}\Phi_d(x)$$
,进而 $\Phi_n(x)=rac{x^n-1}{\prod\limits_{d\mid n,d< n}\Phi_d(x)}\in\mathbb{Z}[x].$

证明 $\forall d | n$, 由 $\operatorname{ord}(\xi^m) = \frac{n}{(m,n)}$, d 次本原单位根全体为 $\mu_d = \{\xi^{m' \cdot \frac{n}{d}} : 1 \leq m' \leq d-1, (m', \frac{n}{d}) = 1\}$. 进而 $\{1, \xi, \cdots, \xi^{n-1}\} = \sqcup_{d \mid n} \mu_d = \sqcup_{d \mid n} \mu_d = \{\xi^{m' \cdot \frac{n}{d}} : 1 \leq m' \leq d-1, (m', \frac{n}{d}) = 1\}$. 故 $x^n - 1 = (x-1)(x-\xi)\cdots(x-\xi^{n-1}) = \prod_{d \mid n} \prod_{\operatorname{ord}(\omega) = d} (x-\omega) = \prod_{d \mid n} \Phi_d(x).$

我们归纳证明 $\Phi_n(x) \in \mathbb{Z}[x]$. 设对 d < n 都成立,则考虑 $\Phi_n(x) = \frac{x^n - 1}{\prod\limits_{d \mid n, d < n} \Phi_d(x)}$,由归纳假设分母为首一的整系数多项式. 则问题转化为 f(x) = g(x)h(x),其中 f(x), $g(x) \in \mathbb{Z}[x]$, $h(x) \in \mathbb{C}[x]$,且 g(x) 首一,要证明 $h(x) \in \mathbb{Z}[x]$.

在 $\mathbb{Z}[x]$ 上做带余除法 f(x) = g(x)q(x) + r(x), 其中 $q(x), r(x) \in \mathbb{Z}[x]$ 且 r = 0 或 $\deg r < \deg g$, 则 g(q-h) = r, 比较次数只能有 r = 0, q = h, 故 $h(x) \in \mathbb{Z}[x]$.

Example 2.31 由此可以更方便地计算出分圆多项式,例如 $\Phi_4(x) = x^2 + 1$, $\Phi_5(x) = x^4 + x^3 + x^2 + x + 1$ 等.

最后讨论域扩张 $\mathbb{Q}(\xi_n)/\mathbb{Q}$ 的性质.

Theorem 2.10 (Gauss, 1801)

 $\Phi_n(x) \in \mathbb{Z}[x]$ 不可约.

 \sim

进而直接有

Theorem 2.11

- $(1)\xi = \xi_n$ 在 \mathbb{Q} 上的最小多项式为 $\Phi_n(x)$.
- (2) $\dim_{\mathbb{Q}} \mathbb{Q}(\xi_n) = \phi(n)$.
- (3) 有一一对应 $\operatorname{Aut}(\mathbb{Q}(\xi_n)/\mathbb{Q}) = \operatorname{Aut}(\mathbb{Q}(\xi_n)) \xrightarrow{\sim} U(\mathbb{Z}_n), \sigma \mapsto \bar{k}$, 其中 σ 由 $\sigma(\xi) = \xi^k$ 决定. 事实上这是一个群同构,特别地 $|\operatorname{Aut}(\mathbb{Q}(\xi_n))| = \phi(n)$.

下面来证明定理 2.10, 即 $\Phi_n(x)$ 不可约. 首先是 n=p 为素数的情况,此时 $\Phi_p(x)=\frac{x^p-1}{x-1}$,之前利用 Eisenstein 判别法证明过它不可约.

对一般的 $\xi = \xi_n$, 取其 \mathbb{Z} 上最小多项式 f(x), 则 $f(x)|\Phi_n(x)$. 我们断言: 若 p 素且 $p \nmid n$, $z \not > n$ 次本原单位根,则 f(z) = 0 能推出 $f(z^p) = 0$.

对任何与 n 互素的 $k \le n-1$,做素分解 $k = p_1 \cdots p_s$,则 $p_1, p_2 \nmid n$,则由断言 $f(\xi^{p_1}) = 0$,进一步由 ξ^{p_1} 也为 n 次本原单位根,再次用断言有 $f(\xi^{p_1p_2}) = f((\xi^{p_1})^{p_2}) = 0$. 依次类推有 $f(\xi^k) = 0$,从而任何 n 次本原多项式均为 f 的根,则只能 $\Phi_n(x)|f(x)$,则 $\Phi_n(x) = f(x) \in \mathbb{Z}[x]$ 为最小多项式,不可约.

则只需证明断言. 若断言不成立,则 z^p 的最小多项式为 $g(x) \in \mathbb{Z}[x]$, 设 g(x) 本原(为什么?),

则 $f(x)|g(x^p), f(x) \neq g(x)$ 且 $g(x)|(x^n-1)$. 则利用引理 2.7 中的论证可知存在 $h(x) \in \mathbb{Z}[x]$ 使得 $x^n-1=f(x)g(x)h(x)$.

考虑
$$\mathbb{Z}[x] \to \mathbb{F}_p[x], f(x) \mapsto \overline{f}(x).$$
 设 $g(x) = x^m + b_{m-1}x^{m-1} + b_0$,则
$$\overline{g}(x^p) = (x^m)^p + (\overline{b_{m-1}}x^{m-1})^p + \dots + \overline{b_0} = (x^m + \overline{b_{m-1}}x^{m-1} + \dots + b_0)^p = (\overline{g}(x))^p$$

注意到第一个等号使用了 Fermat 小定理,第二个等号利用了 $\mathbb{F}_p[x]$ 中 $(a+b)^p=a^p+b^p$. 则 $\bar{f}(x)|(\bar{g}(x))^p$. 考虑 $x^n-\bar{1}=\bar{f}(x)\bar{g}(x)\bar{h}(x)$ in $\mathbb{F}_p[x]$. 由于 $\bar{f}(x)$ 和 $\bar{g}(x)$ 有共同的不可约因子(这里用到 $\mathbb{F}_p[x]$ 是 UFD,这也是放在 \mathbb{F}_p 中考虑的原因!),故 $x^n-\bar{1}$ 有重根.

另一方面
$$gcd(x^n - \bar{1}, \bar{n}x^{n-1}) = \bar{1}$$
,与引理 2.3 矛盾! 故原命题得证.

下面是一个综合运用 Galois 对应和分圆理论的例子.

Example 2.32 令 $E = \mathbb{Q}(\xi_8 = \xi) = \mathbb{Q}(\frac{\sqrt{2} + \sqrt{2}i}{2}) = \mathbb{Q}(\sqrt{2}, i)$. 有一一对应 $\operatorname{Aut}(E) \xrightarrow{\sim} U(\mathbb{Z}_8) = \{\bar{1}, \bar{3}, \bar{5}, \bar{7}\}$. 其中 $\bar{1}$ 对应 Id_E , $\bar{3}$ 对应 $\tau : \xi \mapsto \xi^3$, $i = \xi^2 \mapsto \xi^6 = -i$, $\xi^3 \mapsto \xi$, $\bar{5}$ 对应 $\delta : \xi \mapsto -\xi$, $\xi^2 = i \mapsto \xi^{10} = i$, $\bar{7}$ 对应 $\sigma : \xi \mapsto \xi^7 = \bar{\xi}$,即取复共轭.

现在我们要求 \mathbb{Q} 和 E 的中间域,由 Galois 对应,只需考虑 $H \leq \operatorname{Aut}(E)$ 的固定子域. 又由于同构 $\operatorname{Aut}(E) \xrightarrow{\sim} U(\mathbb{Z}_8)$,转化为考虑 $U(\mathbb{Z}_8)$ 的子群,只有平凡子群和 $\{\bar{1},\bar{3}\},\{\bar{1},\bar{5}\},\{\bar{1},\bar{7}\}$,则对应 $\operatorname{Aut}(E)$ 的平凡子群和子群 $H_1 = \{\operatorname{Id}_E,\tau\}, H_2 = \{\operatorname{Id}_E,\delta\}, H_3 = \{\operatorname{Id}_E,\sigma\}$. 平凡子群对应平凡中间域.

可以验证: $E^{H_1} = E^{\tau} = \mathbb{Q}(\sqrt{2}i), E^{H_2} = E^{\delta} = \mathbb{Q}(i), E^{H_3} = E^{\sigma} = \mathbb{Q}(\sqrt{2}).$ 故有三个非平凡的中间域 $\mathbb{Q}(\sqrt{2}i), \mathbb{Q}(i), \mathbb{Q}(\sqrt{2}).$ 它们都是 2 维的.

事实上后面我们将会看到固定子域的维数等于自同构群的指数,这也与我们这里的结果相吻合.

Chapter 3 群论

3.1 群的基本定义

Definition 3.1

- 一个群G是指一个非空集合及其上面的二元运算 (G,\cdot) , 其中·称为乘法, 满足如下条件:
 - (G1) 结合律: $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c).$
 - (G2) 有 幺元: $\exists 1_G \in G$, s.t. $a \cdot 1_G = a = 1_G \cdot a (\forall a \in G)$.
 - (G3) 有逆元: $\forall a \in R, \exists b \in G, \text{s.t.} a \cdot b = 1_G = b \cdot a$. 这样的 b 唯一,称为 a 的逆,记为 a^{-1} .

此外, 若 G 还满足 $a \cdot b = b \cdot a(\forall a, b \in G)$, 则称 G 为 **Abel** 群.

群有如下的基本性质,其验证是初等的,在此省略.

Proposition 3.1

- (1) 乘法消去律: $a \cdot b = a \cdot c \Rightarrow b = c, b \cdot a = c \cdot a \Rightarrow b = c.$
- (2) $\forall a, b \in G, (a^{-1})^{-1} = a, (a \cdot b)^{-1} = b^{-1} \cdot a^{-1}.$
- $(3)(\cdot)^{-1}: G \to G, a \mapsto a^{-1}$ 为双射.
- $(4) \forall a \in G, n \in \mathbb{Z}$, 可以定义 $a^n \in G$, 且满足 $a^{m+n} = a^m \cdot a^n$.

Definition 3.2

非空子集 $H\subseteq G$ 称为**子群**,若它对乘法和求逆封闭,即 $\forall a,b\in H,$ 有 $a\cdot b\in H,a^{-1}\in H.$ 记 $H\leq G.$

Remark 由定义易知 H 自然也称为群, $1_G \in H$ 也是 H 的幺元. $\{1_G\}$ 和 G 本身是 G 的平凡子群.

Example 3.1 对环 $(R, +, \cdot)$, (R, +) 自然成为一个 Abel 群,该群的幺元是 0_R , $a \in R$ 的逆元是 -a. 它称为 R 的加法群.

Example 3.2 环 R, 则其单位群 U(R) 和自同构群 Aut(R) 为群.

Example 3.3 域扩张 K/k, 其自同构群 Aut(K/k) 为群.

Example 3.4 线性群: $GL_n(\mathbb{R}) \leq GL_n(\mathbb{C}), SL_n(\mathbb{C}), SO(n), O(n)$.

Example 3.5 对 $P \subseteq \mathbb{R}^n$, 定义其对称群为 $\Sigma(P) = \{g \in O(n) : g(P) = P\} \leq O_n$. 例如 $\Sigma(S^1) = O_2$, $\Sigma(S)$ 由四个旋转 90 度和四个沿对称轴反射组成,其中 S 是正方形.

Example 3.6 X 是一个集合,一个 X 上的置换是指双射 $\sigma: X \to X$,则 X 的对称群 S(X) 是由 X 上所有置换构成的群.

Cayley 定理:任何群都本质上是一个对称群的子群.

Theorem 3.1 (Lagrange)

有限群G的子群为H,则|G|是|H|的倍数.

 \Diamond

证明 定义 $a \sim b$ 若 $ab^{-1} \in H$, 即 Ha = Hb. 显然 $a \sim a$, 且若 $a \sim b$, 有 $ba^{-1} = (ab^{-1})^{-1} \in H$, 故 $b \sim a$. 此外若 $a \sim b$, $b \sim c$, 故 $ac^{-1} = ab^{-1}bc^{-1} \in H$, 则 $a \sim c$. 故 $ac^{-1} \in H$, 则 $a \sim c$. 故 $ac^{-1} \in H$, 则 $a \sim c$.

~ 的等价类 [a] 为 $Ha = \{ha : h \in H\}$ 称为 H 的右陪集,则有左陪集分解 $G = \sqcup_{i \in I} Ha_i$,其中 $\{a_i\}_{i \in I}$ 为 H 的右陪集完全代表元系.又 $H \to Ha$, $h \mapsto ha$ 为双射,故 |H| = |Ha|,则 |G| = |H||I|. \square **Remark** (1) 记 |I| = [G : H] 为 H 的指数,则 |G| = |H|[G : H].

(2) 可以类似定义左陪集 $aH = \{ah : h \in H\}$, 它是等价关系 \sim' 的等价类,其中 $a \sim' b \iff aH = bH$. 可证若 $\{a_i\}$ 为 H 的右陪集完全代表元系,则 $\{a_i^{-1}\}$ 为 H 的左陪集代表元系.

Definition 3.3

 $a \in G$ 的**阶**定义为满足 $a^d = 1$ 的最小正整数 d, 记作 $\mathrm{ord}(a)$. 若不存在正整数 d 使得 $a^d = 1$, 则记 $\mathrm{ord}(a) = \infty$.

Proposition 3.2

- (1) G 为有限群,则任意 $a \in G$ 是有限阶的,进一步地有 $ord(a) \mid |G|$.
- (2) 若 $\operatorname{ord}(a) = d < \infty$, 则 $a^n = 1 \Longleftrightarrow d \mid n$.

证明 (1) 由于 G 有限,故必然存在 i < j,使得 $a^i = a^j$,则 $a^{i-j} = 1$,故有限阶,记 $\operatorname{ord}(a) = d$,则 $H = \{1, a, \dots, a^{d-1}\}$ 为 G 的大小为 d 的子群,则由 Lagrange 定理即得.

(2) ⇒: 设 n = dq + r, r = 0 或 r < d, 则 $1 = a^n = (a^d)^q \cdot a^r = a^r$, 由 d 的定义有 r = 0, 则 $d \mid n$. \Leftarrow : 显然.

3.2 循环群

Definition 3.4

G,G' 为群,则映射 $f:G\to G'$ 称为**群同态**,若 $\forall a,b\in G, f(a\cdot b)=f(a)\cdot f(b)$. 若 f 还是双射,则称为**群同构**.

Remark (1) 若 $f: G \to G'$ 为群同态,则 $f(1_G) = f(1_G \cdot 1_G) = f(1_G) \cdot f(1_G)$,则 $f(1_G) = 1_{G'}$. 此外 $\forall a \in G, \ f(a^{-1}) \cdot f(a) = f(a^{-1} \cdot a) = f(1_G) = 1'_G$,故 $f(a^{-1}) = (f(a))^{-1}$.

- (2) 若 $f: G \xrightarrow{\sim} G'$ 为同构,则 $\forall a \in G, \operatorname{ord}(f(a)) = \operatorname{ord}(a)$.
- (3) $G \xrightarrow{I} G, g \mapsto g^{-1}$ 为同构 $\iff G \neq Abel$ 群.

Example 3.7 $H \leq G$ 为子群,则 inc : $H \hookrightarrow G, h \mapsto h$ 为单同态.

Example 3.8 det : $GL(n, \mathbb{C}) \to \mathbb{C}^*, A \mapsto \det(A)$ 为群同态.

Example 3.9 令 n 次单位根的集合为 $M_n = \{z \in \mathbb{C} : z^n = 1\} \leq \mathbb{C}^*$,则 $M_n \xrightarrow{\sim} (\mathbb{Z}_n, +), e^{\frac{2\pi k i}{n}} \mapsto \bar{k}$ 为群 同构.

Definition 3.5

对群 G, H,定义它们的**直积**为群 $G \times H = \{(g,h): g \in G, h \in H\}$ 其乘法定义为 $(g,h) \cdot (g',h') = (g \cdot g',h \cdot h')$,幺元 $1_{G \times H} = (1_G,1_H)$,逆元 $(g,h)^{-1} = (g^{-1},h^{-1})$.

Remark (1) 显然有恒等映射的分解 $G \hookrightarrow G \times H \twoheadrightarrow G, g \mapsto (g, 1_H) \mapsto (g)$.

- (2) $(g,h) = (1_G,h) \cdot (g,1_H)$.
- (3) $\operatorname{ord}(g, h) = \operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h)).$

Example 3.10 Klein 四元群定义为 $V_4 = M_2 \times M_2$, 其中 $M_2 = \{1, -1\}$. 则 ord(1, 1) = 1, ord(1, -1) =ord(-1, 1) =ord(-1, -1) = 2, 通过比较阶可知 V_4 不与 \mathbb{Z}_4 同构. 事实上 $V_4 \simeq U(\mathbb{Z}_8)$.

Definition 3.6

对群 G 和子集 $X \subseteq G$, 记 $(X) = \{x_1x_2 \cdots x_n : x_i \in X \text{ or } x_i^{-1} \in X, n \ge 1\}$. 可以验证它为 G 的子群,为包含 X 的最小子群,称为集合 X 生成的子群.

 $\ddot{A}(X) = G$, 则称 X 为 G 的生成元集,特别地,若 $\exists a \in G$ 使得 G = (a), 则称 G 为**循环群**, a 为 G 的**生成元**.

Example 3.11 (\mathbb{Z} , +) 为循环群, ±1 均为生成元.

Example 3.12 (\mathbb{Z}_n , +) 为循环群, $\bar{1}$ 为生成元.

Example 3.13 若 G 和 G' 同构,则 G 循环当且仅当 G' 循环. 此外显然循环群为 Abel 群.

Proposition 3.3

若G为循环群,则G同构于 \mathbb{Z} 或者 \mathbb{Z}_n .

证明 若 $\operatorname{ord}(a) = n < \infty$, 则可以验证 $(a) = \{1, a, a^2, \cdots, a^{n-1}\} \xrightarrow{\sim} \mathbb{Z}_n, a^l \mapsto \overline{l}$ 为同构 若 $\operatorname{ord}(a) = \infty$, 则 $\forall n \neq m \in \mathbb{Z}, a^n \neq a^m$, 则 $(\mathbb{Z}, +) \xrightarrow{\sim} (a), n \mapsto a^n$ 为同构.

更精细地,我们有

Proposition 3.4

设G=(a)为循环群,则

- (1) 若 $|G| = \infty$, 则 G 恰有两个生成元 a, a^{-1} , G 的子群只有 $\{1_G\}$ 和 (a^d) , 其中 $d \ge 1$. 且 (a^d) 和 G 同构.
- (2) 若 |G| = n, 则 G 恰有 $\phi(n)$ 个生成元 $\{a^k : (k,n) = 1, 1 \le k \le n 1\}$, 且对任意 d|n, 存在唯一的 d 阶子群 $H_d = (a^{\frac{n}{d}}) \le G$. 进一步地,G 的子群和 $\{d : 1 \le d \le n, d|n\}$ 形成一一对应.

本节的最后我们讨论循环群的抽象刻画.

Proposition 3.5

设群 G 满足 $|G| = n < \infty$, 则 G 为循环群 \iff G 中有 n 阶元.

证明 \Rightarrow : 设 G = (a), 则 $\operatorname{ord}(a) = n$.

 \Leftarrow : 设 $g \in G$ 且 $\operatorname{ord}(g) = n$, 则 $(g) = \{1, g, \cdots, g^{n-1}\} \subseteq G$, 比较集合大小,只能有 G = (g), 故循环.

Example 3.14 Klein 四元群 V₄ 不是循环群.

Example 3.15 M_d 为 d 次单位根的集合,则有 $M_2 \times M_3 \simeq M_6$: 因为有 6 阶元 $(1,\omega)$.

Example 3.16 由中国剩余定理,有环同构 $\mathbb{Z}_2 \times \mathbb{Z}_3 \simeq \mathbb{Z}_6$,则有对应的加法群同构.

Example 3.17 若 |G| = p 素数、则 G 为 p 阶循环群.

Theorem 3.2

设 $|G| = n < \infty$, 则 G 是循环群 $\iff \forall d | n$, 至多存在唯一一个 d 阶子群.

证明 ⇒: 由命题 3.4(2) 立得

 \Leftarrow : 对任意 d|n, 定义 $S_d = \{g \in G : \operatorname{ord}(g) = d\}$, 则 $G = \sqcup_{d|n} S_d$. 由命题 3.5, 只需要证 $S_n \neq \emptyset$.

首先若 $g \in S_d$,则 (g) 为 G 的 d 阶子群,记为 H_d ,又至多只有一个 d 阶子群 M_d ,故 g 为 M_d 的生成元,由命题 3.4(2), M_d 有 $\phi(d)$ 个生成元,故 $|S_d| \le \phi(d)$.

另一方面,
$$n = |G| = \sum_{d|n} |S_d| \le \sum_{d|n} \phi(d) = n$$
,故只能 $|S_d| = \phi(d)$. 特别地有 $S_n \ne \emptyset$.

Example 3.18 Klein 四元群有三个 2 阶子群,分别由 (1,-1),(-1,-1) 和 (-1,1) 生成,故它不是循环群.

Theorem 3.3

设k为域,且 $G \le k^*$ 为有限子群,则G为循环群.

 \Diamond

证明 记 $|G|=n<\infty$,若 d|n,则设 $H_d\leq G$ 为 d 阶子群,则若 $h\in H_d$,有 $h^d=1_G=1_k$,即 $H_d\subseteq \operatorname{Root}_k(x^d-1_k)$.比较集合大小有 $H_d=\operatorname{Root}_k(x^d-1_k)$.故至多只有一个 d 阶子群,故由定理 3.2 得证.

Example 3.19 设 E/\mathbb{F}_p 为域扩张,且 $|E| < \infty$,则由上述定理, E^* 为循环群,设 $E^* = (v)$,故 $E = \mathbb{F}_p(v)$. **Example 3.20** 回忆 $\mathbb{F}_9 = \frac{\mathbb{F}_3[x]}{(x^2 + \bar{1})}$, $u = x + (x^2 + \bar{1})$. 则 \mathbb{F}_9^* 同构于 \mathbb{Z}_8 . 不难验证 u 为四阶元, $(u) = \{\bar{1}, u, \bar{2}, \bar{2}u\}$.

练习: \mathbb{F}_9 中有 4 个八阶元, 分别为 $u+\bar{1}, u+\bar{2}, \bar{2}u+\bar{1}, \bar{2}u+\bar{2}$. 它们均为 \mathbb{F}_9 的生成元.

Example 3.21 \mathbb{C}^* 的有限子群恰为 n 次单位根的集合 M_d . 但 \mathbb{C}^* 本身不是循环群.

3.3 正规子群

对群同态 $f: G \to G'$, 与环同态类似地可以定义像 $Im(f) = \{f(g): g \in G\}$, 核 $ker(f) = \{h \in G: f(h) = 1_{G'}\}$, 显然它们都是 G' 的子群.

记 $N = \ker(f) \leq G$, 则 $f(a) = f(b) \iff ab^{-1} \in N \iff Na = Nb$, 同理也等价于 Nb = Na.

同时我们注意到,对任意的 $a \in G$, 若 $b \in aN$, 则 $a^{-1}b \in N$, 故 $ba^{-1} \in N$, 即 $b \in Na$, $aN \subseteq Na$. 同理反向的包含关系也成立,故 aN = Na. 这启示我们定义如下:

Definition 3.7

子群 N < G 称为正规子群, 记作 $N \triangleleft G$, 若 $\forall a \in G$, 有 aN = Na.

Example 3.22 由上面的讨论,若 $f: G \to G'$ 为群同态,则 $\ker(f) \triangleleft G$.

Example 3.23 对环同态 $f: R \to R'$, $\ker(f) \triangleleft R$ 为理想,但不是子环!

Example 3.24 G 为 Abel 群,则任何子群为正规子群.

Example 3.25 群 G 的中心 $Z(G) = \{g \in G : gh = hg, \forall h \in G\}$ 是 G 的正规子群.

Example 3.26 若 $H \leq G$, 且 [G:H] = 2, 则有 $H \triangleleft G$.

定义子群 N 的共轭为 $aNa^{-1}=\{ana^{-1}:n\in N\}$,不难验证它也是 G 的子群. 则由定义 $N\triangleleft G\Longleftrightarrow N=aNa^{-1}, \forall a\in G.$

Example 3.27 令 $G = GL_2(\mathbb{F}_2) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{F}_2, ad - bc \neq \bar{0} \}.$ (a, b) 有 3 个选择,固定 (a, b) 后 (c, d) 有 2 个选择,故 |G| = 6.

不难验证 $\begin{pmatrix} \bar{1} & \bar{1} \end{pmatrix}$ 的阶为 2. 它生成了子群 $H = \{\begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}, \begin{pmatrix} \bar{1} & \bar{1} \\ \bar{0} & \bar{1} \end{pmatrix}\}$.

可以验证 $\begin{pmatrix} \bar{0} & \bar{1} \\ \bar{1} & \bar{0} \end{pmatrix}^{-1} H \begin{pmatrix} \bar{0} & \bar{1} \\ \bar{1} & \bar{0} \end{pmatrix} = \{ \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}, \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{1} & \bar{1} \end{pmatrix} \} \neq H$, 故 H 不是 G 的正规子群.

令 $h=\left(\begin{smallmatrix} \bar{0}&\bar{1}\\ \bar{1}&\bar{1}\end{smallmatrix}\right)$,同样可以验证 $\mathrm{ord}(h)=3$,故 N=(h) 为 G 的指数为 2 的子群,进而为正规子群.

Example 3.28 det: $GL_n(\mathbb{C}) \to \mathbb{C}^*$, $A \mapsto \det A$, 其核 $SL_n(\mathbb{C}) \triangleleft GL_n(\mathbb{C})$.

Definition 3.8

对 $N \triangleleft G$, 定义**商群** $G/N = \{aN: a \in G\}$,定义乘法为 $\bar{a} \cdot \bar{b} = a \cdot b$. 幺元 $1_{G/N} = \bar{1} = N$. 此时有典范同态 $\operatorname{can}: G \twoheadrightarrow G/N, a \mapsto \bar{a}$. 显然有 $\operatorname{ker}(\operatorname{can}) = N$.

与之前一样地我们有如下的群同态基本定理.

Theorem 3.4 (群同态基本定理)

设 $f: G \to H$ 为群同态,则 f 诱导唯一环同构 $\bar{f}: G/\ker(f) \xrightarrow{\sim} \operatorname{Im} f$,使得如下图表交换

$$\begin{array}{ccc} G & \xrightarrow{f} & H \\ & \downarrow^{\operatorname{can}} & & \operatorname{inc} \uparrow \\ G / \ker(f) & \xrightarrow{\overline{f}} & \operatorname{Im} f \end{array}$$

C

Example 3.29 考虑 \mathbb{R}^2 中的正方形 \Box , 其顶点为 A(1,1), B(-1,1), C(-1,-1), D(1,-1). 设 $g = \Sigma(\Box) = \{g \in O(2) : g(\Box) = \Box\} \leq O(2)$. 则显然有群同态: $\Sigma(\Box) \xrightarrow{\phi} S(V), g \mapsto \phi(g) = g|_V$, 其中 $V = \{A, B, C, D\}$ 为正方形的顶点集.

 ϕ 是单射: 若 $g|_V=\operatorname{Id}|_V$, 则 g(A)=A,g(B)=B, 即 $g(\overrightarrow{OA})=\overrightarrow{OA},g(\overrightarrow{OB})=\overrightarrow{OB}$. 由 $g\in O(2)$ 可知 $g=\operatorname{Id}_{\mathbb{R}^2}$.

又熟知 $O(2) = SO(2) \sqcup \{g \in O(2) : \det(g) = -1\}$, 前面的部分为旋转,则在 ϕ 下对应于正方形的 $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$ 四个角度的旋转. 后面的部分为镜像对称,则在 ϕ 下对应正方形关于四条对称轴的镜像对称. 特别地, $|\Sigma(\Box)| = 8$,则 $S(V) \simeq S_4$ 有 8 阶子群.

Example 3.30 对 $f(x) = x^3 - 2 \in \mathbb{Q}[x]$, 考虑其分裂域 $E = \mathbb{Q}(\sqrt[3]{2}, \omega)$. 则由于 f(x) 可分,有 $|\operatorname{Aut}(E/\mathbb{Q})| = |\operatorname{Aut}(E)| = \dim_{\mathbb{Q}} E = 6$. 记 $X = \operatorname{Root}_{E}(x^3 - 2)$,它是一个三元集.

对每个 $\sigma \in \operatorname{Aut}(E)$ 和 $a \in X$, 有 $\sigma(a)^3 = \sigma(a^3) = 2$, 故 $\sigma(a) \in X$, 进而有群同态 $\phi : \operatorname{Aut}(E) \to S(x), \sigma \mapsto \sigma|_X$.

同样有 ϕ 是单的: 若 $\sigma|_X = \operatorname{Id}_X$,则 $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}$, $\sigma(\omega) = \omega$,有 $\sigma|_E = \operatorname{Id}_E$. 则由于 $|\operatorname{Aut}(E)| = |S(X)|$,只能 ϕ 为双射,进而为群同构.

上面的情形用更一般的语言描述,即为可分多项式的分裂域的自同构诱导根集上的置换.

最后再看几个群同态基本定理的抽象应用.

Theorem 3.5 (对应定理)

设 $N \triangleleft G$,则有一一对应 $\{K: N \leq K \leq G\} \leftrightarrow \{H: H \leq G/N\}, K \mapsto K/N$. 且 $K \triangleleft G \iff (K/N) \triangleleft (G/N)$,此时有同构 $(G/N) \Big/ (K/N) \cong G/K$.

证明 设 $K' \leq G/N$,则定义 $K = \{g \in G : \bar{g} \in K'\}$,有 $N \leq K \leq G$,此时 K' = K/N.

另一方面,若 $K \triangleleft G$,考虑 $G/N \twoheadrightarrow G/K$, $gN \mapsto gK$,它是良定的,且核为 K/N,则由同态基本定理, $(K/N) \triangleleft (G/N)$,且 $(G/N) / (K/N) \simeq G/K$.

练习: 补充上面证明的细节.

Theorem 3.6 (同构定理)

设 $N \triangleleft G, H \leq G$,则

- (1) NH = HN, $\mathbb{L} N \leq NH \leq G$.
- $(2) \ (N\cap H) \triangleleft H, \ \text{\mathbb{H}} \ {}^H \Big/ N \cap H \xrightarrow{\sim} {}^{NH} \Big/ N.$

 \Diamond

证明 (1) 是直接的验证.

(2) 思路是考虑 $H \to {}^{NH}\Big/_N \hookrightarrow G/N, h \mapsto \bar{h}$,其像为 ${}^{NH}\Big/_N$,核为 $N \cap H$,则由同态基本定理即得.

3.4 对称群

回忆对抽象的集合 X, 定义其对称群 $S(X) = \{\sigma: X \xrightarrow{1:1} X\}$ 为 X 上置换所构成的集合. 它关于映射的复合成为群.

Proposition 3.6

若存在双射 $\delta: X \to Y$,则有群同构: $\Phi: S(x) \to S(Y), \sigma \mapsto \delta \circ \sigma \circ \delta^{-1}$. 特别地,定义 $S_n = S(\underline{n})$,其中 $\underline{n} = \{1, 2, \cdots, n\}$,则若 |X| = n,有 $S(X) \xrightarrow{\sim} S_n$.

故下面我们主要研究 S_n . 定义如下的记号: 若 $\sigma \in S_n$, 则将 σ 记为 $\begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$, 则自然地有 $\sigma^{-1} = \begin{pmatrix} \sigma(1) & \sigma(2) & \cdots & \sigma(n) \\ 1 & 2 & \cdots & n \end{pmatrix}$.

首先 S_1 平凡, S_2 为二阶循环群,它们均为 Abel 群.

再考察 S_3 , 设 $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$, 则 $\sigma^{-1} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \sigma$, 即 $\sigma^2 = \text{Id.}$ 再设 $\delta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$,则 $\delta^{-1} = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \end{pmatrix} = \delta^2$,故 $\delta^3 = \text{Id.}$

再令 $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$, 有 $\sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \delta$, $\tau \circ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \neq \sigma \circ \tau$, 故 S_3 不是 Abel 群! 事实上这对更一般的对称群也正确.

Proposition 3.7

若 $n \geq 3$, 则 S_n 不是 Abel 群.

证明 对任意的 n, $S_n \hookrightarrow S_{n+1}, \sigma \mapsto \overline{\sigma}$, 其中 $\overline{\sigma} : \underline{n+1} \to \underline{n+1}, i \mapsto \sigma(i) (1 \le i \le n), n+1 \mapsto n+1$. 则特别地对 $n \ge 3, S_3 \hookrightarrow S_n$,故由 S_3 非 Abel,有 S_n 非 Abel.

下面再用轮换表述置换. 对 $i_1, i_2, \dots, i_t \in \underline{n}, t \geq 2$ 两两不同,令 $(i_1 i_2 \dots i_t) \in S_n$ 表示 $i_1 \mapsto i_2 \mapsto \dots i_{t-1} \mapsto i_t \mapsto i_1$,而保持其它位置不动的置换,它也被称为 t- 轮换. 当 t = 2 时称之为对换. 不难验证轮换有如下性质:

Lemma 3.1

对 t-轮换 $c = (i_1 i_2 \cdots i_t)$, 有

- (1) ord(c) = t, \mathbb{H} $c^{-1} = (i_t i_{t-1} \cdots i_1)$.
- (2) 它可以表示成 $\frac{n(n-1)}{2}$ 个对换的积 (即复合).

Example 3.31 用轮换的语言,有 $S_2 = \{ \mathrm{Id}, (12) \}, S_3 = \{ \mathrm{Id}, (12), (13), (23), (123), (132) \}.$

Lemma 3.2

对任意的置换 σ , 有 $\sigma \circ (i_1 i_2 \cdots i_t) \circ \sigma^{-1} = (\sigma(i_1) \sigma(i_2) \cdots \sigma(i_t))$.

特别地, 若轮换 $\sigma, \tau \in S_n$ 不相交, 则 $\sigma\tau = \tau\sigma$.

证明 显然 $\sigma \circ (i_1 i_2 \cdots i_t) = (\sigma(i_1)\sigma(i_2) \cdots \sigma(i_t)) \circ \sigma$, 故 $\sigma \circ (i_1 i_2 \cdots i_t) \circ \sigma^{-1} = (\sigma(i_1)\sigma(i_2) \cdots \sigma(i_t))!$ 再由不交的条件,有 $\sigma(i_i) = i_i (1 \le j \le t)$,则结果显然成立.

Example 3.32 S_3 中, $(12)(23)(12) = (\sigma(2)\sigma(3)) = (13) \neq (23)$, 其中 $\sigma = (12)$. 再次有 S_3 非 Abel. $(23)(12)(23) = (\tau(1)\tau(2)) = (13) = (12)(23)(12)$, 其中 $\tau = (23)$. 这种等式在更一般的情况下也成立,称为辫关系.

Proposition 3.8

对任意 $\sigma \in S_n$, 存在唯一的表达式 $\sigma = c_1 c_2 \cdots c_l$, 其中 c_i 为互不相交的轮换.

证明 取最小的 t 使得 $\sigma^t(1) = 1$, 则令 $c_1 = (1\sigma(1) \cdots \sigma^{t-1}(1))$, 再取 $j \neq \{1, \sigma(1), \cdots, \sigma^{t-1}(1)\}$, 对 j 做同样的操作得到 c_2 ,再以此类推即可.

Example 3.33 在 S_7 中,令 $\sigma = (456)(567)(761)$,则可以写为 $\sigma = (16)(45)$.

Definition 3.9

对 $\sigma \in S_n$, 将 $\sigma = c_1 c_2 \cdots c_t$ 唯一写为不相交的轮换,记 λ_i 为表达式中长度为 i 的轮换个数,则显然 $\sum i \lambda_i = n$, 定义 $1^{\lambda_1} 2^{\lambda_2} \cdots n^{\lambda_n}$ 为 σ 的型.

Theorem 3.7

 S_n 中的元素共轭 \iff 它们同型.

证明 \Rightarrow : 设 $\sigma = c_1 c_2 \cdots c_t$ 为不交轮换之积, 则 $h \sigma h^{-1} = (h c_1 h^{-1})(h c_2 h^{-1}) \cdots (h c_t h^{-1})$, 由引理 3.2, 同样为不交轮换之积,且对应轮换的长度不变,则 σ 和 $h \sigma h^{-1}$ 同型.

 \Leftarrow : 若 σ 和 σ' 同型,则设 $\sigma=(ab\cdots c)\cdots(\alpha\beta\cdots\gamma)$ 为不交分解,长度与之对应地有 $\sigma'=(a'b'\cdots c')\cdots(\alpha'\beta'\cdots\gamma')$,则定义 τ 为 $a\mapsto a',\cdots c\mapsto c',\cdots,\alpha\mapsto\alpha',\cdots,\gamma\mapsto\gamma'$.有 $\tau\sigma\tau^{-1}=\sigma'$.

Example 3.34 在 S_3 中根据型有如下的共轭分类:

Example 3.35 在 S_4 中根据型有如下的共轭分类:

$$1^{2}2^{1} | (12), (13), (14), (23), (24), (34)$$

$$2^{2} | (12)(34), (13)(24), (14)(23)$$

$$1^{1}3^{1} | (123), (124), (132), (134), (142), (143), (234), (243)$$

$$4^{1} | (1234), (1243), (1324), (1342), (1423), (1432)$$

特别地注意到 $S_3 \hookrightarrow S_4$ 对共轭不封闭, 故不为正规子群.

Example 3.36 回忆在例 3.29 中我们将正方形的对称群嵌入为 S_4 中的 8 阶子群 H. 我们将正方形的顶点逆时针标为 1234.

 $(1234) \in H$, 它对应逆时针旋转 90 度,且 $(13) \in H$, 它对应沿连接 24 的对角线镜像对称,故 $H' = (1234), (13)) \subseteq H$,

又 $(13) \notin ((1234))$,故 |H'| > 4,又 $H' \subseteq H$ 且为 S_4 的子群,结合 Lagrange 定理只能有 |H'| = 8,即 H = H' = ((1234), (13)).

练习:将正方形的顶点逆时针标为 1324 和 1243,分别计算对应的 S_4 的 8 阶子群.

Lemma 3.3

 $\forall \sigma \in S_n$ 可以写成若干个对换之积.

 $^{\circ}$

证明 只需把轮换写成对换之积,这是容易的: $(i_1i_2\cdots i_t)=(i_{t-1}i_t)\cdots(i_2i_t)(i_1i_t)$.

Proposition 3.9

记 $s_i = (i, i+1)$, 则 S_n 可由 s_1, \dots, s_{n-1} 生成, 且 s_i 满足:

- (1) $s_i^2 = 1 \ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$.
- (2) $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$. 这一关系被称为辫关系 (braid relation).
- (3) $s_i s_j = s_j s_i (\forall |i j| \ge 2)$.

证明 由引理 3.3,只需证任意的对换 (ij) 可以用这些 s_k 生成. 不妨 i < j, 对 j - i 归纳. 当 j - i = 1 时显然成立,若 j - i < m 时成立,当 j - i = m 时,由于

$$(ij) = (i+1,j)(i,i+1)(i+1,j)^{-1} = (i+1,j)(i,i+1)(i+1,j)$$

由归纳假设, (i+1,j) 和 (i,i+1) 均可以由这些 s_k 所生成, 故得证. 最后的几个等式容易验证.

最后再来讨论奇偶置换的概念. 首先注意到有嵌入 $S_n \hookrightarrow GL_n(\mathbb{R}), \sigma \mapsto P_\sigma, P_\sigma$ 是对应的置换矩阵,它将 e_i 打为 $e_{\sigma(i)}$,不难验证这是一个单同态.

再复合 $\det: GL_n(\mathbb{R}) \to \mathbb{R}^*$,并注意到置换方阵的行列式为 ± 1 ,故有同态 $\mathrm{sign}: S_n \to \{\pm 1\}$.则 $\mathrm{sign}(\sigma) = -1$ 等价于它可以被写成奇数个对换之积,此时称之为奇置换,否则称为偶置换.

Definition 3.10

 $A_n = \ker(\text{sign}) \triangleleft S_n$ 是偶置换的集合, 称为 n 阶交错群.

Remark 由于 $S_n/A_n = \{\pm 1\}$, 故 $|A_n| = \frac{1}{2}n!$.

Example 3.37 $A_3 = \{ \mathrm{Id}, (123), (132) \} \triangleleft S_3.$ 考虑 S_3 的非平凡子群,由 Lagrange 定理,必须为 2 阶或者 3 阶的.

找 2 阶子群只用找 2 阶元,故有 3 个,对应 $\{Id,(12)\},\{Id,(13)\},\{Id,(23)\},$ 由例 3.34 中的表格,它们都不是共轭封闭的、即不为正规子群.

找3阶子群只用找3阶元,有2个三阶元,故只有一个3阶子群,就是 A_3 ,它是正规子群.

Example 3.38 考虑 S_4 的所有非平凡正规子群. 一个子群 $N \leq S_4$ 是正规的当且仅当它是共轭类的并. 回忆例 3.35 中给出 S_4 的共轭类, 类的大小分别为 1,6,3,8,6.

由于 Lagrange 定理,|N| 只能为 12,8,6,4,3,2. 且子群必须包含恒等元所在的类,故只可能 |N| 为 12=1+3+8 或 4=1+3. 前者对应 A_4 ,后者为 $K_4=\{\mathrm{Id},(12)(34),(13)(24),(14)(23)\}$ \triangleleft S_4 ,由于 $(12)(34)\cdot(13)(24)=(14)(23)$,有 $K_4=\mathbb{Z}_2\times\mathbb{Z}_2$,即为 Klein 四元群. 综上 S_4 的非平凡正规子群为 A_4,K_4 .

下面解决了 $n \ge 5$ 的情形.

Definition 3.11

若群 G 没有非平凡的正规子群,则称之为单群.

Example 3.39 若 G 为有限 Abel 群,则 G 是单群等价于 G 为素数阶循环群. 证明作为练习.

Theorem 3.8

 $n \geq 5$, 则 A_n 为单群.

C

证明 首先注意到 A_n 可以由 3-轮换生成. 这是因为对 $i \neq j, r \neq s$, 若 j = r, 则 (ij)(rs) = (jsi), 否则 (ij)(rs) = (ris)(ijr).

进一步地,任取两个 3-轮换 (ijk), (i'j'k'), 它们同型,故 S_n 中共轭,即取 $\gamma \in S_n$, 使得 $\gamma(ijk)\gamma^{-1} = (i'j'k')$,若 $\gamma \notin A_n$,则取 $r \neq s$ 且 $r, s \notin \{i', j', k'\}$ (注意到这里用到了 $n \geq 5!$),则令 $\gamma' = (rs)\gamma \in A_n$,且

$$\gamma'(ijk)\gamma'^{-1} = (rs)(i'j'k')(rs)^{-1} = (i'j'k')$$

故 (ijk) 和 (i'j'k') 在 A_n 中共轭.

对 $\{1\} \neq N \triangleleft A_n$,可以证明 N 必然包含一个 3-轮换(参考课本),则所有的 3-轮换都在 N 中,又由于 A_n 由 3-轮换生成,故 $N=A_n$.

下面是一个直接的推论.

Proposition 3.10

 $n \geq 5$, 则 A_n 是 S_n 的唯一非平凡正规子群

^

证明 若 $N \triangleleft S_n$ 是非平凡正规子群, 则考虑 $A_n \hookrightarrow S_n \twoheadrightarrow S_n/N$, 其核为 $N \cap A_n \triangleleft A_n$, 由 A_n 为单群,只能 $A_n = \{1\}$ 或 A_n 本身.

若 $N \cap A_n = A_n$, 则 $A_n \subseteq N$, 由 Lagrange 定理只能 $N = A_n$.

若 $N \cap A_n = \{1\}$, 则 $A_n \hookrightarrow S_n/N$, 比较集合的大小只能 |N| = 2. 由于 $N - \{\text{Id}\}$ 只能为奇置换,则只能 $N = \{\text{Id}, (ij)\}$, 它不对共轭封闭,则不为 S_n 的正规子群,矛盾. 综上非平凡正规子群只有 A_n . \square

Example 3.40 A_4 不是单群! 在 A_4 中,有 $(143)(12)(34)(143)^{-1} = (13)(24)$,故 (12)(34) 和 (13)(24) 共 轭,同理与 (14)(23) 也共轭,故 $K_4 \triangleleft A_4$.

	大小	共轭类
利用后面将要提到的轨道-稳定化子公式可以计算出 A4 的共轭类表格	1	Id
	3	(12)(34), (13)(24), (14)(23)
	4	(123), (134), (142), (243)
	4	(124), (132), (143), (234)

进而 A_4 没有 6 阶子群: 若存在指数为 2, 故正规子群,由共轭类的大小可知不可能.

3.5 群作用

Definition 3.12

称群 G 左作用于集合 X, 记作 $G \curvearrowright X$, 是指存在映射 $\psi: G \times X \to X, (g,x) \mapsto \psi(g,x) = g.x$, 满足

- (1) $1_G.x = x, \forall x \in X$.
- (2) $h.(g.x) = (hg).x, \forall h, g \in G, x \in X$ 此时称 X 为 G-集合.

Example 3.41 S(X) 自然作用在 X 上: 定义 $\psi: S(X) \times X \to X, (\sigma, x) \mapsto \sigma(x)$. 即 X 为 S(X)-集合. Example 3.42 若 $G \curvearrowright X$, 则 $G \curvearrowright \mathcal{P}(X) = \{Y: Y \subseteq X\}$.

设 (X, ψ) 为 G- 集,则 $\rho: G \to S(X), g \mapsto \rho(g)$ 为群同态,其中 $\rho(g): X \to X, x \mapsto g.x.$ 首先该映射良定:由于 $g.(g^{-1}.x) = x$,故 $\rho(g)$ 为满射,且若 g.x = g.y,则 $x = g^{-1}.(g.x) = y$,故 $\rho(g)$ 为单射,即 $\rho(g)$ 确实是 S(X) 中的元素. 其次由群作用定义中的 (2) 可以验证为同态.

反之任意群同态 $\rho:G\to S(Y)$, 给出了 Y 的一个 G- 集结构: 定义 $\psi:G\times Y\to Y, (g,y)\mapsto \rho(g)(y)=g.y,$ 则 $1_G.y=\rho(1_G)(y)=\mathrm{Id}(y)=y,$ 且

$$\rho(h)(\rho(g)(y)) = (\rho(h) \circ \rho(g))(y) = \rho(hg)(y) = (hg).y.$$

则 ψ 给出了 Y 的 G-集结构.

则综上 G 在 X 上的作用可以等价地通过群同态 $\rho:G\to S(X)$ 来理解. 此时每个元素 $g\in G$ 可以表示为具体的 $\rho(g)\in S(X)$.

Definition 3.13

设 $G \cap X, x \in X$,则定义

- (1) x 的 G **轨道**为 $\mathcal{O}_x = \{g.x : g \in G\} \subseteq X$.
- (2) x 的稳定化子为 $G_x = \{g \in G : g.x = x\} \le G$.
- (3) 称该 G-作用为**可迁**的,或者称为**传递**的,若只有一个轨道,即 $\forall x,y \in X, \exists g \in G, \text{s.t.} x = g.y.$

Remark 在 X 上定义关系 $x \sim y \iff \exists g \in G, \text{s.t.} y = g.x,$ 可以验证这是一个等价关系,且等价类即为轨道 \mathcal{O}_x . 则由等价类的分解 $X = \sqcup_{x \in I} \mathcal{O}_x$, 也称为 X 的 G-轨道分解.

Lemma 3.4

设
$$x = h.y, h \in G$$
, 则 $G_x = hG_yh^{-1}$.

证明 若 $g \in G_y$, 则 $(hgh^{-1}).x = (hg).y = h.(g.y) = h.y = x$,即 $hG_yh^{-1} \subseteq G_x$. 另一方面若 $g \in G_x$,则同理 $(h^{-1}gh).y = h^{-1}.(g.x) = y$,则 $G_x \subseteq hG_yh^{-1}$.

Example 3.43 设 $H \leq G$, 则有 $G \curvearrowright G/H$, g.aH = gaH,该作用称之为左陪集作用,它是可迁的. 不难验证 $G_{aH} = aHa^{-1}$, 特别地 $G_H = H$.

若 $H = \{1_G\}$, 则变为 $G \curvearrowright G$, g.x = gx, 称为左正则作用.

Example 3.44 自然作用 $S(X) \curvearrowright X$ 是可迁的.

Example 3.45 再次考察例 3.30 的例子. 考虑域扩张 K/k, 则有自然作用 ${\rm Aut}(K/k) \curvearrowright K, \sigma.\mu = \sigma(\mu) \in K$. 设 $f(x) \in k[x]$, 根集为 ${\rm Root}_K(f) = \{\mu \in K : f(\mu) = 0\}$, 对 $\sigma \in {\rm Aut}(K/k)$ 和 $f(\mu) = 0$, 有 $\sigma(f(\mu)) = f(\sigma(\mu)) = 0$, 进而有作用 ${\rm Aut}(K/k) \curvearrowright {\rm Root}_K(f)$.

更进一步地设 K 是 $f(x) \in k[x]$ 的分裂域,则 $\mathrm{Root}_K(f) = \{\mu_1, \cdot, \mu_n\} \subseteq K$,记该集合为 R,则 有 $\mathrm{Aut}(K/k) \curvearrowright R$. 若 $\sigma(\mu_i) = \mu_i(\forall 1 \leq i \leq n)$,则由于 $K = k(\mu_1, \cdots, \mu_n)$,有 $\sigma|_K = \mathrm{Id}|_K$,故 $\mathrm{Aut}(K/k) \hookrightarrow S(R) = S_n$.

Example 3.46 回忆 $GL_2(\mathbb{F}_{\neq})$, 定义 $V = \mathbb{F}_2 \oplus \mathbb{F}_2$, 则有 $GL_2(\mathbb{F}_2) \curvearrowright V^* = V - \{(\bar{0}, \bar{0})^T\}$, 且 $GL_2(\mathbb{F}_2) \hookrightarrow S(V^*) = S_3$. 又由于 $|GL_2(\mathbb{F}_2)| = 6$, 只能为同构.

Theorem 3.9 (轨道-稳定化子公式)

设 $G \curvearrowright X, x \in X$, 则有一一对应 $f: G/G_x = \{gG_x: g \in G\} \xrightarrow{1:1} \mathcal{O}_x, gG_x \mapsto g.x.$ 进而结合 Lagrange 定理有 $|\mathcal{O}_x| = [G:G_x] \mid |G|$.

证明 f 良定: 若 $gG_x = g'G_x$, 则 $g = g'h, h \in G_x$, 进而 g.x = (g'h).x = g'.x.

f 单射: 若 g.x = g'.x, 则 $(g^{-1}g').x = x$, 故 $g^{-1}g' \in G_x$, $gG_x = g'G_x$.

满射显然, 故得证.

Definition 3.14

对 $G \curvearrowright X$, 诱导了群同态 $\rho: G \to S(X)$, 则 $\ker \rho = \bigcap_{x \in X} G_x$ 称为作用的核. 若 $\ker \rho = \{1_G\}$, 则 称为**忠实**作用.

若 $\forall x \in X, G_x = \{1_G\}$, 则称为**自由**作用. 显然自由作用是忠实的.

Remark 若 $G \curvearrowright X$ 自由,则由轨道-稳定化子公式,有 $|\mathcal{O}_x| = |G|$,此时 $|G| \mid |X|$,因为 $X = \sqcup_{x \in I} \mathcal{O}_x$. Example 3.47 左正则作用 $G \curvearrowright G$, g.x = gx 是自由作用. 则有嵌入 $G \hookrightarrow S(G)$.

同理右正则作用 $G \curvearrowright G, g.x = xg^{-1}$ 也自由.

Example 3.48 $H \leq G$, 则 $H \curvearrowright G$, h.x = hx, 它是自由的,且轨道为左陪集.

Example 3.49 对 $G \curvearrowright X$, 定义不动点集 $X^G = \{x \in X : g.x = x, \forall g \in G\} = \{x \in X : G_x = G\}$, 则若 $X^G \neq \emptyset$, 有 $G \curvearrowright X^G$ 是平凡作用.

考虑共轭作用 $G \curvearrowright X = G, g.x = gxg^{-1}$, 若 G 为 Abel 群,则这显然为平凡作用.

对 $x \in X$, 其轨道为 $C_x = \{gxg^{-1} : g \in G\}$, 即 x 所在的共轭类. 特别地,若 $C_x = \{x\}$, 则 $x \in Z(G)$. x 的稳定化子为 $Z(x) = \{g \in G : gx = xg\} \le G$, 则 $Z(G) \subseteq Z(X)$, 且由轨道-稳定化子公式,有 $|C_x| \cdot |Z(x)| = |G|$, 特别地 $|C_x| \mid |G|$.

进一步地有所谓的类等式

$$|G| = |Z(G)| + \sum_{|C_x| > 1} |C_x| = |Z(G)| + \sum_{|C_x| > 1} \frac{|G|}{|Z(x)|}.$$

Example 3.50 A_4 中, $Z(123) = \{ \sigma \in A_4 : \sigma(123)\sigma^{-1} = (123) \} = \{ \sigma \in A_4 : (\sigma(1)\sigma(2)\sigma(3)) = (123) \} = \{ \mathrm{Id}, (123), (132) \}.$ 则由 $|C_{(123)}||Z(123)| = |A_4| = 12$,有 $|C_{(123)}| = 4$. 可以验证 (134), (142), (243) 均与 (123) 共轭,则它们恰好组成 (123) 的共轭类. 类似可以计算其他共轭类.

Example 3.51 对正则作用 $G \curvearrowright G$, 可以考虑共轭作用 $G \curvearrowright C_x$.

特别地,考虑 $S_4 \curvearrowright X = \{(12)(34), (13)(24), (14)(23)\}$,分别令 (12)(34), (13)(24), (14)(23) 为 A, B, C,则有共轭作用 $S_4 \to S(X) = S_3, g \mapsto (x \in X \mapsto gxg^{-1})$. 可以验证核为 $K_4 = X \cup \{\text{Id}\}$,故比较集合大小为满射,则 $S_4/K_4 \stackrel{\sim}{\to} S_3$.

Example 3.52 对 $H \leq G$, G 共轭作用于 $X_H = \{H' \leq G : H'$ 共轭于 $H\}$, $g.H' = gH'g^{-1} \in X_H$. 正规化子定义为 $N_G(H) = \{g \in G : gHg^{-1} = H\} \leq G$, 由轨道-稳定化子公式,有 $|G| = |N_G(H)||X_H|$.

则 $H \triangleleft G \iff |X_H| = 1 \iff N_G(H) = G$.

Definition 3.15

p素数, 群 G 称为 p-群, 若 $|G| = p^n$.

Proposition 3.11

p-群有非平凡的中心, 进而不是单群.

证明 设 $|G| = p^n$, 则只能 $|Z(G)| = p^r$, 若 r = 0, 则由类等式

$$p^{n} = 1 + \sum_{|C_x| > 1} |C_x| = 1 + \sum_{|C_x| > 1} \frac{p^n}{|Z(x)|}.$$

又中心非平凡, $|Z(x)| < p^n$, 则 $|C_x| = p^k (j \ge 1)$, 两边模 p 可知矛盾.

Proposition 3.12

 p^2 阶群是 Abel 群,同构于 \mathbb{Z}_{p^2} 或者 $\mathbb{Z}_p \times \mathbb{Z}_p$.

证明 由中心平凡,取 $1 \neq g \in Z(G)$,若为循环群,则 $\operatorname{ord}(g) = p^2$,G 同构于 \mathbb{Z}_{p^2} .

若不为循环群, $\operatorname{ord}(g) = p$,则令 $H = \langle g \rangle \subseteq Z(G)$. 取 $1 \neq g' \notin H$,则 $\operatorname{ord}(g') = p$,考虑 $1 \leq i, j, k, l \leq p - 1, g^i g'^j = g^k g'^l$,则由于 $g' \notin \langle g \rangle$,只能 i = k, j = l,即 $\{g^i g'^j : 1 \leq i, j \leq p - 1\}$ 为大小为 $p^2 - 2p + 1$ 的集合.

则比较集合大小有 $\langle g, g' \rangle = G$. 且 $\{g^i g'^j : 1 \le i, j \le p-1\} = \{g'^i g^j : 1 \le i, j \le p-1\}$, 又 $g^k \in Z(G), \forall 1 \le k \le p-1$, 故 $(g^k g'^l)(g^x g'^y) = g^{k+x} g'^{l+y} = (g^x g'^y)(g^k g'^l)$, 故 G 为 Abel 群.

$$\diamondsuit K = \langle g' \rangle$$
, 此时可以验证 $H \times K \to G, (g^i, g'^j) \mapsto g^i g'^j$ 为同构,故 $G \simeq \mathbb{Z}_p \times \mathbb{Z}_p$.

最后看一个利用正则表示的例子.

Theorem 3.10

若 G 为有限群, 且 $|G| = 4k + 2 \ge 6$, 则 G 不是单群.

 \Diamond

证明 记 |G| = 2n, 考虑左正则表示 $\rho: G \to S(G) = S_{2n}$, 则由于 ρ 忠实,有 $G \simeq \rho(G)$. 故不妨 G 是一个置换群. 注意到 G 中必有二阶元素 g, 从而 $\rho(g)$ 为一些对换 $(a, \rho(g)a)$ 的积,即为 n 个对换之积,由条件 ρ 为奇置换,则 $\rho(G)$ 包含奇置换,故 $\rho(G)$ 中的偶置换构成了 $\rho(G)$ 的指数 2 的子群,则为正规子群.

3.6 Sylow 子群

Definition 3.16

若 $|G| = p^r m, p \nmid m, p$ 为素数,则子群 $P \leq G$ 称为 Sylow p-子群,若 $|P| = p^r$.

*

我们的主定理是如下的 Sylow 定理.

Theorem 3.11 (Sylow 定理)

设 $|G| = p^r m, p \nmid m$, 则

- (1) 总存在 Sylow p-子群,且它们之间互相共轭.
- (2) Sylow p-子群的个数是 m 的因子, 且形如 kp+1.
- (3) 任意 p— 子群 $B \le G$, 存在 Sylow p-子群 P 使得 $B \le P \le G$.

证明 这里只证明存在 Sylow p-子群,剩余命题的证明参照课本.

 $|G|=p^rm,p\nmid m,$ 令 $X=\{U\subseteq G:|U|=p^r\}\subseteq \mathcal{P}(G),$ 由于 $G\curvearrowright \mathcal{P}(G),g.U=gU,$ 则 $G\curvearrowright X.$ 又 $|X|=\binom{p^rm}{p^r}=\frac{n(n-1)\cdots(n-p^r+1)}{p^r(p^r-1)\cdots 1},$ 比较分子分母 p 的次数可以验证 $p\nmid |X|.$

进行轨道分解 $X = \sqcup_U \mathcal{O}_U$,则存在 $U \in X$,使得 $p \nmid |\mathcal{O}_U|$.此时 $G_U = \{g \in G : gU = u\} \leq G$,则 $|G_U||\mathcal{O}_U| = p^r m$,即 $|G_U| = p^r m'$,m' | m.

另一方面, 存在自由作用 $G_U \curvearrowright U, g.u = gu \in U, 则 |G_U| |U|, |G_U| = p^r$, 只能 $|G_U| = p^r$. 则存在 Sylow p-子群.

Example 3.53 $|S_4| = 3^1 \cdot 2^3$, 则 Sylow 3-子群为三阶子群,只需要找三阶元,有 8 个三阶元,故有 4 个三阶子群 $\{ \mathrm{Id}, (123), (132) \}$, $\{ \mathrm{Id}, (124), (142) \}$, $\{ \mathrm{Id}, (134), (143) \}$, $\{ \mathrm{Id}, (234), (243) \}$.

Sylow 2-子群为 8 阶子群,且个数为 3 的因子,形如 2k+1,则只能为 1 个或 3 个. 若只有 1 个 Sylow 2-子群,则它为正规子群(为什么?),但回忆 S_4 没有 8 阶正规子群,则只能为 3 个 Sylow 2-子群.

回忆例 3.36 中通过正方形的对称群找到了 S_4 的 8 阶子群,且通过对正方形的顶点重新编号,总共可以得到 3 个 8 阶子群,则得到了所有的 Sylow 2-子群,分别为 $H_2=(K_4,(12)),H_3=(K_4,(13)),H_4=(K_4,(14)).$

Example 3.54 $|A_4| = 3^1 \cdot 2^2$, 则 Sylow 3-子群为 3 阶子群,有 8 个三阶元,故有 4 个三阶子群,同 S_4 的情形.

Sylow 2-子群为 4 阶子群,又 $K_4 \triangleleft A_4$ 为四阶正规子群,则由于 Sylow 2-子群互相共轭,只有 K_4 这一个 Sylow 2-子群.

 \Diamond

Sylow 定理可以帮助我们确定某些特定群的结构.

Theorem 3.12 (Cauchy)

设p为|G|的素因子,则G含有p阶元.

证明 考虑 G 的 Sylow p-子群 $P \leq G$, 则取 $1 \neq g \in P$, 有 $\operatorname{ord}(g) = p^{r'}, 1 \leq r' \leq r$, 则取 $g' = g^{p^{r'}-1}$, 有 $\operatorname{ord}(g') = p$.

Proposition 3.13

35 阶群必然同构于 $\mathbb{Z}_5 \times \mathbb{Z}_7 \simeq \mathbb{Z}_{35}$.

证明 若 $|G| = 35 = 5 \times 7$, 则 Sylow 5-子群的个数为 7 的因子且形如 5k+1, 只能为 1 个, 记为 $\mathbb{Z}_5 \simeq P \triangleleft G$, 同理有唯一的 7 阶子群 $\mathbb{Z}_7 \simeq Q \triangleleft G$.

 $P - \{1\}$ 为 5 阶元, $Q - \{1\}$ 为 7 阶元,则 $P \cap Q = \{1\}$. 且任意 $g \in P, h \in Q, (ghg^{-1})h^{-1} = g(hg^{-1}h^{-1}) \in P \cap Q$, 故只能 gh = hg.

从而 $\Phi: P \times Q \to G, (h,g) \mapsto hg$ 为同态: $\Phi((h_1,g_1)\cdot (h_2,g_2)) = \Phi(h_1h_2,g_1g_2) = h_1h_2g_1g_2 = h_1g_1h_2g_2 = \Phi(h_1,g_1)\cdot \Phi(h_2,g_2),$ 倒数第二步用到了可交换性. 且显然为单同态,则比较集合大小有 Φ 为同构. 故由中国剩余定理 $G \simeq \mathbb{Z}_5 \times \mathbb{Z}_7 \simeq \mathbb{Z}_{35}$.

更一般地有

Proposition 3.14

设 G 为 Abel 群,且有素因数分解 $|G|=p_1^{s_1}\cdots p_r^{s_r}$,则存在唯一的 Sylow p_i -子群,且有典范同构 $P_1\times P_2\cdots\times P_r\stackrel{\sim}{\to} G, (g_1,g_2,\cdots,g_r)\mapsto g_1g_2\cdots g_r.$

Sylow 定理可以帮助我们找到正规子群,进而说明某些群不是单群.

Proposition 3.15

(1) 108 阶群不为单群 (2) 56 阶群不是单群.

证明 (1) $|G| = 108 = 2^2 \cdot 3^3$, 则同上,Sylow 3-子群只能有 1 个,记为 $P \triangleleft G$. 则考虑左诱导作用 $G \curvearrowright G/P, g.(hP) = ghP$,它是可迁作用,对应了 $\rho : G \to S(G/P) = S_4$. 它的像不是平凡的,故 $\ker \rho \neq G$,且由于 $[G : \ker \rho] \leq 24$,只能 $\ker \rho \triangleleft G$ 是非平凡的 G 的正规子群.

(2) 设 $|G| = 56 = 7 \times 8$, 则 7 阶子群个数为 8 的因子且形如 7k + 1. 若只有 1 个,则为正规子群,得证. 下设有 8 个 7 阶子群 H_1, \dots, H_8 .

则 $H_i - \{1\}$ 为 7 阶元,且 $H_i \cap H_i = \{1_G\}, \forall i \neq j, 则$

$$\cup_{1 \le i \le 8} H_i = \{1_G\} \bigcup \sqcup_{1 \le i \le 8} (H_i - \{1_G\}).$$

则左边的元素个数为 1+(7-1)+8=49, 考虑 Sylow 2-子群 Q, 它的大小为 B, 且 $Q-\{1_G\}$ 中的元

素阶只能为 2,4,8,则 $Q-\{1_G\}\subseteq (\cup_{1\leq i\leq 8}H_i)^c$,则比较元素个数只能这两个集合相等,则 Q 唯一确定,即只有一个 Sylow 2-子群,为正规子群.

更多的例子可以参考课本例定理 3 和定理 4, 它们分别指出了 pq 阶和 p^2q 阶的群不是单群,这里 p,q 为素数. 则它们结合定理 3.10 以及命题 3.11,可以对大部分小阶群进行排除,再单独排除少数没有 筛掉的情形可以得到

Theorem 3.13

若 G 为非 Abel 单群,则 $|G| \ge 60$,且取等当且仅当 $G \simeq A_5$.

 \Diamond

3.7 群的表现

对非空抽象集合 X, 则定义 $X^{-1} = \{x^{-1} : x \in X\}$, 其中 x^{-1} 称为**形式逆**. 则 $X \sqcup X^{-1}$ 称为**字母**集合. 我们约定 $(x^{-1})^{-1} = x$.

定义**字** (word) 为 $w = x_1 x_2 \cdots x_n, x_i \in X \sqcup X^{-1}$, 字 w 称为**既约**的,若不存在 $x_i = x_{i+1}^{-1}$. 约定长度 为 0 的字为**空字**,记为 1.

Proposition 3.16

任何字可以约化为唯一的既约字.

证明 留作练习.

Definition 3.17

对非空抽象集合 X, X 上的**自由群**为 $F(X) = \{X$ 上既约字全体 $\}$, 上面的乘法定义为两个字的连接并约化, 幺元为空字 I. 若 $|X| < \infty$, 称 F(X) 为有限生成自由群.

Example 3.55 $X = \{a\}, \, \text{则 } F(X) = \{a^n : n \in \mathbb{Z}\}$ 为无限循环群.

Proposition 3.17 (自由群的泛性质)

设 G 为群,则对任何映射 $f: X \to G$, f 可以唯一延拓为群同态 $\tilde{f}: X \to G$.

证明 至多唯一性: 若 \tilde{f} 存在,则只能 $\tilde{f}(x^{-1}) = f(x)^{-1}$, 进而 $\tilde{f}(x_1x_2\cdots x_n) = \tilde{f}(x_1)\tilde{f}(x_2)\cdots \tilde{f}(x_n)$. 存在性: $\forall x \in X$, 定义 $\tilde{f}(x) = f(x)$, $\tilde{f}(x^{-1}) = f(x)^{-1}$, 对一般的 $w = x_1x_2\cdots x_n \in F(X)$, 定义 $tildef(w) = \tilde{f}(x_1)\tilde{f}(x_2)\cdots \tilde{f}(x_n)$. 可以验证这是满足条件的延拓同态.

Proposition 3.18

任意群 G 均为某个自由群的商群.

证明 设 $X\subseteq G$ 为 G 的生成元集,则对 $X\hookrightarrow G$ 包含映射使用泛性质,有延拓 $\tilde{f}:F(X)\twoheadrightarrow G$,则由同态基本定理有 $G\simeq F(X)\Big/_{\ker \tilde{f}}$.

Definition 3.18

群 G 的**有限表现**是指 $G = \langle x_1, \cdots, x_n \mid r_1, r_2, \cdots, r_m \rangle, m, n < \infty$, 其中 x_i 为生成元, $r_i \in F(x_1, \cdots, x_n)$ 为关系. 也可以记为 $G = \langle x_1, \cdots, x_n \mid r_1 = 1, r_2 = 1, \cdots, r_m = 1 \rangle$. 这也同义于 $F(x_1, x_2, \cdots, x_n) / N(r_1, \cdots, r_m)$,其中 $N(r_1, \cdots, r_m)$ 为 $F(x_1, \cdots, x_n)$ 中包含 r_1, \cdots, r_m 的最小正规子群.

Remark 不难验证 $N(r_1, \dots, r_m)$ 为 $\{wr_i w^{-1} : w \in F, 1 \le i \le m\}$ 生成的子群.

Proposition 3.19 (有限表现的泛性质)

 $G = \langle x_1, \cdots, x_n \mid r_1, r_2, \cdots, r_m \rangle$, H 为群,对映射 $f : X = \{x_1, \cdots, x_n\} \to H$, 则 f 可以延拓为群同态 $G \to H \iff f(x_1), \cdots, f(x_n)$ 在 H 中满足关系 $r_i, 1 \le i \le m$.

证明 ⇒: 显然.

 \Leftarrow : 利用自由群的泛性质,有延拓 $\tilde{f}: F(X) \to H$,则 $f(x_1), \cdots, f(x_n)$ 在 H 中满足关系 $r_i, 1 \le i \le m$ 说明 $r_1, \cdots, r_m \in \ker \tilde{f}$,进而 $N(r_1, \cdots, r_m) \subseteq \ker \tilde{f}$. 由核的泛性质,诱导了唯一的同态 $\bar{f} = F(X) \Big/_{N(r_1, \cdots, r_m)} \to H, x_i \mapsto f(x_i)$.

Example 3.57 考虑 $M_n = \{1, \omega, \cdots, \omega^{n-1}\} \subseteq \mathbb{C}^*, \omega = e^{\frac{2\pi i}{n}}$. 我们来说明 $M_n = \langle g \mid g^n = 1 \rangle$.

考虑单元素集合上的映射 $f:\{g\}\to M_n, g\mapsto \omega$, 则由自由群的泛性质,存在延拓 $\tilde{f}:F(\{g\}) \twoheadrightarrow M_n, g^l\to\omega^l (l\in\mathbb{Z})$. 则 $g^n\in\ker\tilde{f}$, 进而 $N(g^n)\subseteq\ker\tilde{f}$. 故由核的泛性质有诱导映射 $\bar{f}:\langle g\mid g^n=1\rangle \twoheadrightarrow M_n, g\mapsto\omega$. 比较两边集合大小可知为同构.

Example 3.58 回忆 S_3 可以由 (12) 和 (23) 生成,考虑二元集合上的映射 $f: X = \{a, b\} \hookrightarrow S_3, a \mapsto (12), b \mapsto (23)$. 则有延拓 $\tilde{f}: F(X) \twoheadrightarrow S_3$. 则 $N(a^2, b^2, (ab)^3) \subseteq \ker \tilde{f}$, 进而有诱导映射 $\bar{f}: F/N = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle \twoheadrightarrow S_3$.

通过 $\bar{a} = \bar{a}^{-1}$, $\bar{b} = \bar{b}^{-1}$ 可以避免 \bar{a}^{-1} , \bar{b}^{-1} 的出现,且利用 $\overline{aba} = \overline{bab}$, 可以验证任意 F/N 中元素可以约化为 $\bar{1}$, \bar{a} , \bar{b} , \overline{ab} , \overline{ba} , \overline{aba} , 则 $|F/N| \le 6$. 比较集合大小有 \bar{f} 为同构.

故
$$S_3 = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle = \langle a, b \mid a^2 = b^2 = 1, aba = bab \rangle.$$

Example 3.59 考虑 n 个顶点的正多边形,定义 D_n 为它在 \mathbb{R}^2 中的对称群,即 O(2) 中保持该多边形的元素的集合. 则记 a 为逆时针转 $\frac{2\pi}{n}$, b 为关于一个对称轴的对称,则 $a^n=1,b^2=1$, $D_n=< a,b>$. 特别地有 $|D_n|=2n$.

不难发现 a,b 满足 $(ab)^2=1$,进而我们希望验证 $D_n=\langle x,y\mid x^n=y^2=(xy)^2=1\rangle$. 过程同上面一样地,定义 $N=N(x^n,y^2,xyxy)$,利用泛性质我们直接考虑延拓的诱导映射 $\phi: F(x,y)\Big/N \to D_n, \bar x\mapsto a, \bar y\mapsto b$.

考虑任意 F/N 中的字 w, $\bar{w} = \overline{x_1 x_2 \cdots x_n}$, $x_i \in \{x^{\pm 1}, y^{\pm 1}\}$, 则通过 $\bar{y}^{-1} = \bar{y}$ 保证 \bar{y}^{-1} 不出现, $\bar{x}^{-1} = \bar{x}^{n-1}$ 保证 \bar{x}^{-1} 不出现,并利用 $\bar{y}\bar{x} = \bar{x}^{n-1}\bar{y}$ 将所有 \bar{y} 移到右边,最终可以化为 $\bar{w} = \bar{x}^s\bar{y}^t(0 \le s \le n-1, 0 \le t \le 1)$,进而 $|F/N| \le 2n$. 故比较集合大小有 ϕ 为同构.

还可以验证 $D_n = \langle s, t \mid s^2 = t^2 = (st)^n = 1 \rangle$, 则考虑延拓映射 $F(s,t) \rightarrow D_n, s \mapsto ab, t \mapsto b$, 则 $s^2, t^2, (st)^n$ 均包含在核中,故有诱导映射 $\psi : \frac{F(s,t)}{N(s^2, t^2, (st)^n)} \rightarrow D_n$. 同样可以保证 $\bar{s}^{-1}, \bar{t}^{-1}$ 不出现,且 $\bar{ts} = \bar{st}^{n-1}$,则可以化为 $(\bar{st})^k$ 或者 $(\bar{st})^k \bar{s}, 0 \leq k \leq n-1$,则 $|F/N| \leq 2n$,同理有 ψ 为同构.

进一步也可以定义无限的多面体群 $D_\infty=\langle s,t\mid s^2=t^2=1\rangle$, 它是一个无限的群,且可以作用在 \mathbb{R}^2 上.

Example 3.60 考虑四元数群 \mathbb{Q}_8 ,可以证明 $\mathbb{Q}_8 = \langle x, y \mid x^4 = 1, x^2 = y^2, yx = x^3y \rangle$. 证明过程与上面相似,在此省略.

3.8 有限生成 Abel 群

对加法群 A, B (自然是 Abel 的),定义它们的直和为 $A \oplus B = A \times B = \{(a,b) : a \in A, b \in B\}$,加 法定义为 (a,b) + (a',b') = (a+a',b+b'),则 $A \oplus B$ 也是 Abel 群.

Example 3.61 对 $n \ge 1$, 记 $\mathbb{Z}^n = \mathbb{Z} \oplus \mathbb{Z} \cdots \oplus \mathbb{Z} (n \ \uparrow)$. 它由 e_1, \cdots, e_n), 其中 $e_i = (0, \cdots, 1, 0, \cdots 0)$, 只有第 i 位为 1 其余为 0.

我们称 \mathbb{Z}^n 为秩为 n 的自由 Abel 群. 可以验证 \mathbb{Z}^n 有群表现 $\langle x_1, \dots, x_n \mid x_i x_j = x_j x_i, i \neq j \rangle$.

Definition 3.19

对 Abel 群 A, 有限子集 $S \subseteq A$ 称为有限基, 若

- (1) S 生成 $A: \forall a \in A, \exists n_i \in \mathbb{Z}, s_i \in S, a = n_1 s_1 + \cdots + n_l s_l.$
- (2) S 是 \mathbb{Z} -线性无关的: $\forall s_1, \cdots, s_l \in S$ 两两不同,若 $n_1s_1 + \cdots + n_ls_l = 0_A, n_i \in \mathbb{Z}$,则 $n_i = 0$.

Example 3.62 $\{e_1, \dots, e_n\}$ 为 \mathbb{Z}^n 的有限基.

Proposition 3.20

- (1) 有限生成的 Abel 群存在有限基 \iff $A \simeq \mathbb{Z}^n$.
- (2) 设 A 为有限生成 Abel 群,则存在 n 和 $K \leq \mathbb{Z}^n$ 使得 $A \simeq \mathbb{Z}^n/K$.

证明 (1) ⇐: 已知.

 \Rightarrow : 设 A 有有限基 $S = \{v_1, \dots, v_n\}$, 则定义同态: $\mathbb{Z}^n \to A, e_i \mapsto v_i$. 由定义中条件 (1) 可知为满射,条件 (2) 可知为单射,则有同构 $A \simeq \mathbb{Z}^n$.

(2) 取 A 的生成元集 $\{v_1, \dots, v_n\}$, 仍然考虑满同态 $\phi: \mathbb{Z}^n \to A, e_i \mapsto v_i$, 则有 $A \simeq \mathbb{Z}^n / \ker \phi$.

Theorem 3.14

若 $K \leq \mathbb{Z}^n$, 则 K 有限生成.

 ∞

证明 n=1 时, K 只能为 0 或者 $d\mathbb{Z}$, 则显然有限生成.

n=2 时, $K \leq (\mathbb{Z}e_1) \oplus (\mathbb{Z}e_2)$. 则考虑 $(K \cap \mathbb{Z}e_1) \leq \mathbb{Z}e_1 \simeq \mathbb{Z}$ 有限生成. 有同构

$$K/_{K \cap \mathbb{Z}e_1} \to K + \mathbb{Z}e_1/_{\mathbb{Z}e_1}, x + (K \cap \mathbb{Z}e_1) \mapsto x + \mathbb{Z}e_1.$$

进而 $K/_{K \cap \mathbb{Z}e_1} \subseteq \mathbb{Z}^2/_{\mathbb{Z}e_1} \simeq \mathbb{Z}e_2$, 则有限生成.

练习: 若 $N \triangleleft G$, N 和 G/N 都有限生成,则 G 有限生成.

则使用该结论有 K 有限生成. n > 2 的情形类似, 在此省略.

下面我们引入矩阵的语言. 记 $M_{n\times m}(\mathbb{Z})$ 为 n 行 m 列的整数矩阵的全体, 对 $A\in M_{n\times m}(\mathbb{Z})$, 可以定义群同态 $\phi_A:\mathbb{Z}^m\to\mathbb{Z}^n, \overrightarrow{v}\mapsto A\overrightarrow{v}$.

进一步地任意群同态 $f: \mathbb{Z}^m \to \mathbb{Z}^n$, 取 A 为以 $f(e_1), \dots, f(e_m)$ 为列向量拼成的 $n \times m$ 矩阵,则有 $f = \phi_A$. 即有

Proposition 3.21

 $M_{n\times m}(\mathbb{Z})$ 中的矩阵与 $\mathbb{Z}^n \to \mathbb{Z}^m$ 的群同态——对应,且矩阵乘法对应群同态的复合,即若 $A \in M_{n\times m}(\mathbb{Z}), B \in M_{p\times n}(\mathbb{Z}),$ 有 $\phi_B \circ \phi_A = \phi_{BA} : \mathbb{Z}^m \to \mathbb{Z}^p$.

Example 3.63 利用这个结论我们可以证明: 若 $\mathbb{Z}^n \xrightarrow{\sim} \mathbb{Z}^m$, 则 n = m.

Definition 3.20

对 $A \in M_{n \times m}(\mathbb{Z})$, 则定义 $\phi_A : \mathbb{Z}^m \to \mathbb{Z}^n$ 的**余核**为 $\operatorname{Cok}(\phi_A) = \mathbb{Z}^n / \operatorname{Im}(\phi_A)$.

-10

Proposition 3.22

任意有限生成 Abel 群均同构与某个 $Cok(\phi_A)$.

证明 由命题 3.20(2), 设 $G \simeq \mathbb{Z}^n/K$, 由定理 3.14, K 有限生成, 设 $K = \langle v_1, \cdots, v_m \rangle$, 则定义 $\phi_A : \mathbb{Z}^m \to \mathbb{Z}^n, e_i \to v_i$, 则有 $G \simeq \operatorname{Cok}(\phi_A)$.

故有限生成 Abel 群的考察转化为 $Cok(\phi_A)$ 的考察.

考虑 $GL_n(\mathbb{Z}) = \{A \in M_n(\mathbb{Z}) : \exists B \in M_n(\mathbb{Z}), AB = BA = I_n\} = \{A \in M_n(\mathbb{Z}) : \det A = \pm 1\}.$ 则显然 $A \in GL_n(\mathbb{Z})$ 当且仅当 $\phi_A : \mathbb{Z}^n \to \mathbb{Z}^n$ 为群同构.

与线性代数中一样地可以定义整数矩阵的相抵: 对 $A, B \in M_{n \times m}(\mathbb{Z})$, 称他们 \mathbb{Z} -相抵,若存在 $P \in GL_n(\mathbb{Z})$, $Q \in GL_m(\mathbb{Z})$ 使得 B = PAQ. 注意相抵是一个等价关系.

Proposition 3.23

若 A, B 是 \mathbb{Z} -相抵,则 $Cok(\phi_A) \simeq Cok(\phi_B)$.

证明 设 B = PAQ, 其中 $\phi_P : \mathbb{Z}^n \to \mathbb{Z}^n$, $\phi_Q : \mathbb{Z}^m \to \mathbb{Z}^m$ 为同构,考察如下的交换图表

$$\mathbb{Z}^{m} \xrightarrow{\phi_{A}} \mathbb{Z}^{n} \xrightarrow{\operatorname{can}_{A}} \operatorname{Cok}(\phi_{A})$$

$$\stackrel{\sim}{\phi_{Q}} \uparrow \qquad \stackrel{\sim}{\phi_{P}} \uparrow \qquad \stackrel{\leftarrow}{\phi_{P}} \downarrow$$

$$\mathbb{Z}^{m} \xrightarrow{\phi_{B}} \mathbb{Z}^{n} \xrightarrow{\operatorname{can}_{B}} \operatorname{Cok}(\phi_{B})$$

可以验证 $\overline{\phi_P}$ 为同构,细节留作练习.

则有限生成 Abel 群的结构问题可以通过找矩阵的相抵标准型来简化. 我们通过整数矩阵的行列变换来进行相抵简化:可以行列互换,行列乘以 ±1,将某行(列)的若干倍加到另一行(列)上(也即"打洞").可以获得如下的 Smith 标准型.

 \Diamond

 \Box

Theorem 3.15 (Smith 标准型)

证明 线性代数习题,略.

Example 3.64 $A = \begin{pmatrix} 2 & 4 \\ 6 & 5 \end{pmatrix} \sim \begin{pmatrix} 2 & 4 \\ 0 & -7 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 \\ 0 & -7 \end{pmatrix} \sim \begin{pmatrix} 2 & -7 \\ 0 & -7 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 \\ 0 & -7 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 \\ 0 & 14 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 \\ 0 & 14 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & 14 \end{pmatrix} = B$, 进 $\overrightarrow{\mathbb{Z}}^2 / ((2,6)^T, (4,5)^T) = \operatorname{Cok}(\phi_A) \simeq \operatorname{Cok}(\phi_B) = \mathbb{Z}_{14}$.

注意到我们使用了如下结论(可以自行证明): 若 $N_1 \triangleleft G_1, N_2 \triangleleft G_2, N_1 \times N_2 \triangleleft G_1 \times G_2$,则 $G_1 \times G_2 \Big/_{N_1 \times N_2} \simeq (G_1/N_1) \times (G_2/N_2)$.

总而言之,对一般的有限生成 Abel 群 G,则由命题 3.22,G 同构于 $Cok(\phi_A)$,又 A 可以相抵于 Smith 标准型 B,则由命题 3.23,有 $G \simeq Cok(\phi_B)$.

这里 $\phi_B: \mathbb{Z}^m \to \mathbb{Z}^n, e_i \mapsto d_i e_i (i \leq r)$ 或0(i > r). 则 $\mathrm{Im}\phi_B = \mathbb{Z}(d_1 e_1) \oplus \cdots \oplus \mathbb{Z}(d_r e_r)$. 故由定义有 $\mathrm{Cok}(\phi_B) \simeq \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_r} \oplus \mathbb{Z}^{n-r}$. 于是我们有下面的结构定理.

Theorem 3.16 (有限生成 Abel 群结构定理)

任意有限生成 Abel 群 G, 存在 $s \ge 0, 1 \le d_1 \mid \cdots \mid d_r$ 使得

$$G \simeq \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_r} \oplus \mathbb{Z}^s$$
.

特别地, 若G有限, 则 $G \simeq \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_n}$.

有一些简单的情形:

Proposition 3.24

- (1) 若 $A \in M_n(\mathbb{Z})$, 且 $\det A \neq 0$, 则 $|\operatorname{Cok}(\phi_A)| < \infty$, 且 $|\operatorname{Cok}(\phi_A)| = |\det A|$.
- (2) 若 $K \leq \mathbb{Z}^n$, 则存在 \mathbb{Z}^n 的基 e_1, \dots, e_n 和 $d_1 \mid \dots \mid d_r (r \leq n)$, 使得 K 恰好以 $d_1 e_1, \dots, d_r e_r$ 为 基.

证明 (1) $\det A \neq 0$, 则 Smith 标准型 B 的对角元为 d_1, \dots, d_n 均非 0,则

$$\operatorname{Cok}(\phi_A) \simeq \operatorname{Cok}(\phi_B) \simeq \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_n}$$

则 $|\operatorname{Cok}(\phi_A)| = |\operatorname{Cok}(\phi_B)| = d_1 \cdots d_n = |\det A|$.

(2) 设 $K = \text{Im}\phi_A$, A 的 Smith 标准型为 B, 则有交换图表

$$\mathbb{Z}^{m} \xrightarrow{\phi_{A}} \mathbb{Z}^{n}$$

$$\stackrel{\sim}{\phi_{Q}} \uparrow \qquad \stackrel{\phi_{P}}{\phi_{P}} \uparrow$$

$$\mathbb{Z}^{m} \xrightarrow{\phi_{B}} \mathbb{Z}^{n}$$

则 $K = \phi_P(\operatorname{Im}\phi_B)$, 特别地 $K \cup \phi_P(d_1e_1), \dots, \phi_P(d_re_r)$ 为基,其中 e_1, \dots, e_n 为 \mathbb{Z}^n 的标准基. \square

Definition 3.21

Abel 群 G 的扭子群为 $t(G) = \{g \in G : \operatorname{ord}(g) < \infty\} \leq G$.

*

Theorem 3.17

设 G 为有限生成 Abel 群,则存在内直和 $G=t(G)\oplus F$,其中 F 是有限生成自由 Abel 群,被称为 t(G) 的补 (注意 $F\leq G$ 不唯一!). 且 $|t(G)|<\infty$,同构于 $\mathbb{Z}_{d_1}\oplus\cdots\oplus\mathbb{Z}_{d_r}$.

证明 由结构定理有同构 $\theta: G \to \mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_r} \oplus \mathbb{Z}^s$, 将有限部分记为 A, 自由部分记为 B, 则 $G = \theta(A) \oplus \theta(B)$.

只需要说明 $\theta(A) = t(G)$. 首先显然有 $A \simeq \theta(A) \leq t(G)$, 另一方面若 $g \in t(G)$, ord(g) = k, 则设分解 g = a + b, 其中 $a \in \theta(A)$, $b \in \theta(B)$, 则 a 有限阶,设 ord(a) = l, 则 kla + klb = klg = 0, 即 klb = 0, 由 b 自由只能有 b = 0, 进而 $t(G) \subseteq \theta(A)$. 故得证.

Example 3.65 $G = \mathbb{Z}_2 \oplus \mathbb{Z}$, 则 $t(G) = \mathbb{Z}_2 \oplus 0$,可以验证 $0 \oplus \mathbb{Z}$ 和 $\mathbb{Z}(-1,1)$ 均为 t(G) 的补.

下面将扭子群进一步约化. 首先回忆中国剩余定理给出若 p_1, \dots, p_r 为不同的素数,则有

$$\mathbb{Z}_{p_1^{i_1}\cdots p_r^{i_r}}\simeq \mathbb{Z}_{p_1^{i_1}}\times \cdots \times \mathbb{Z}_{p_r^{i_r}}.$$

则 t(G) 可以写成 Sylow p-子群的积.

Proposition 3.25

G 为有限 Abel 群,则 $G\simeq (\mathbb{Z}_{p_1^{s_{11}}}\oplus \cdots \oplus \mathbb{Z}_{p_1^{s_{1t_1}}})\oplus \cdots \oplus (\mathbb{Z}_{p_r^{s_{r1}}}\oplus \cdots \oplus \mathbb{Z}_{p_r^{s_{rt_r}}})$. 称 $p_i^{s_{ij}}$ 为 G 的初等因子.

Example 3.66 设 $|G| = 1500 = 2^2 \times 3^1 \times 5^3$ 且 G 为 Abel 群,则 2^2 可以对应 \mathbb{Z}_4 , $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ 共两种, 3^1 对应 \mathbb{Z}_3 共 1 种, 5^3 对应 \mathbb{Z}_{125} , $\mathbb{Z}_{25} \oplus \mathbb{Z}_5$, $\mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$ 共 3 种,则 G 有六种结构.

Chapter 4 Galois 理论

4.1 Galois 扩张

对域扩张 K/k, 记 Gal(K/k) = Aut K/k 为域扩张 K/k 的 Galois 群.

Lemma 4.1

若 $\dim_k K < \infty$,则 $|\operatorname{Gal}(K/k)| \le \dim_k K < \infty$. 特别地当 K = (k, f(x)) 为某个可分多项式 $f(x) \in k[x]$ 的分裂域时,有 $|\operatorname{Gal}(K/k)| = \dim_k K$.

证明 与定理 2.4 的证明思路一致,这里再回忆一遍. 仍然对 $\dim_k K$ 归纳. 当 $\dim_k K = 1$ 时显然成立. 若 $\dim_k K > 1$ 且对 $\dim_k K$ 更小的时候成立,则取 $\alpha \in K - k$. 由于 $\dim_k K < \infty$,则 α 在 k 上代数。则取最小多项式 $f(x) \in k[x]$. 设有 $\mathrm{Id}: k \to k$ 到 $k(\alpha)$ 上的延拓 δ ,则 $0 = \delta(f(\alpha)) = f(\delta(\alpha))$,即 $\delta(\alpha) \in \mathrm{Root}_k(f)$.

由于延拓 $\delta: k(\alpha) \to K$ 由 $\delta(\alpha)$ 确定,故 $k(\alpha)$ 上的延拓 δ 的个数为 $|\text{Root}_k(f)| \leq \deg f(x)) = \dim_k k(\alpha)$.

再由归纳假设, δ 到 K 上的延拓个数小于等于 $\dim_{k(\alpha)} K$,故 $\mathrm{Id}: k \to k$ 到 K 上的延拓至多有 $\dim_k k(\alpha) \dim_{k(\alpha)} K = \dim_k K$ 个. 当 K 为可分多项式的分裂域时上面的不等号都能取到等号,则得证.

进一步考虑 $G \leq \operatorname{Aut}(K)$, 则 $G \curvearrowright K$, $\sigma.v = \sigma(v)$, 考虑不变子域 $K^G = \{v \in K : \sigma(v) = v, \forall \sigma \in G\} \subseteq K$. 我们有如下观察:

- (1) 若 H < G,则有 $K^G \subset K^H \subset K$,特别地有 $K^{\mathrm{Id}_K} = K$.
- (2) 若 $G \leq \operatorname{Aut}(K/k)$, 则 $k \subseteq K^G \subseteq K$. 特别地有 $k \subseteq K^{\operatorname{Gal}(K/k)}$.
- (3) 取 $G \le \operatorname{Aut}(K)$, 则 $G \le \operatorname{Aut}(K/K^G)$.

关于 K^G 有如下更精确的刻画:

Theorem 4.1

若 $G \leq Aut(K/k)$ 为有限子群,则

- (1) $[K : K^G] = |G|$.
- (2) $G = \operatorname{Gal}(K/K^G)$.

C

证明 设 $|G| = n, k = K^G$, 则 $n = |G| \le \dim_k K$, 则我们只需证 $\dim_k K \le n$.

若不然,则存在 $e_1, \dots, e_{n+1} \subseteq K$ 是 k-线性无关的,则考虑 $n \times (n+1)$ 的 K 矩阵 $A = (\sigma_i(e_j))_{i,j}$, 其中 $G = \{\sigma_1 = 1, \dots, \sigma_n\}$.

取 $V = \{v \in K^{n+1} : Av = 0\}$ 为 A 的零空间,则它是非空的 (这里给出了本质区别). 我们有如下的重要观察: 若 $v \in V, \tau \in G$,则 $\tau(v) \in V$. 下面证明之.

设 $v = (\lambda_1, \dots, \lambda_{n+1})^T$, 则由 $v \in V$, 有 $\forall \sigma \in G, 0 = \sum_{i=1}^{n+1} \lambda_i \sigma(e_i)$. 则两边作用 τ 有

$$0 = \sum_{i=1}^{n+1} \tau(\lambda_i) \cdot \tau \sigma(e_i), \forall \sigma \in G.$$

又所有的 $\tau\sigma(\sigma \in G)$ 也取遍了所有的 G 中元素,即有

$$0 = \sum_{i=1}^{n+1} \tau(\lambda_i) \cdot \sigma(e_i), \forall \sigma \in G.$$

故 $\sigma(v) \in V$.

现在取非零的 $v=(\lambda_1,\cdots,\lambda_{n+1})^T\in V$ 使得其非零分量数最少,由于 $\sum \lambda_i e_i=0$,显然至少有两个非零分量,则不妨设 $v=(1,\lambda_2,\cdots,0)$. 再次由于 $\sum \lambda_i e_i=0$ 以及 e_i 是 k-线性无关的,故 v 中的分量不会都在 K 中,则不妨设 $\lambda_2\notin k=K^G$.

则存在 $\sigma \in G$ 使得 $\sigma(\lambda_2) \neq \lambda_2$, 又由上面的观察有 $v - \sigma(v) \in V$. 另一方面 $0 \neq v - \sigma(v) = (0, \lambda_2 - \sigma(\lambda_2), \dots, 0)^T$ 的非零分量个数比 v 更少,与 v 的选取矛盾!则矛盾.

现在考虑有限维域扩张 K/k,记 $G=\mathrm{Gal}(K/k)$,则引理 4.1 给出 $|G|\leq \dim_k K<\infty$. 下面的定理 给出了这里取等的等价刻画.

Theorem 4.2

以下命题等价:

- $(1) k = K^G.$
- $(2) |G| = \dim_k K.$
- (3) $\forall \alpha \in K$, 则 α 在 k 上的最小多项式无重根且在 K 上分裂.
- (4) K = (k, f(x)) 为可分多项式 $f(x) \in k[x]$ 的分裂域.

此时称 K/k 为有限 Galois 扩张.

证明 定理 4.1 给出了 $(1) \iff (2)$, 此外已知 $(4) \Rightarrow (2)$, 则只需证明 $(2) \Rightarrow (3) \Rightarrow (4)$.

(2) ⇒ (3): 对任意 $\alpha \in K$, k 上最小多项式为 g(x), 则仍然考虑如下的扩张

则延拓 δ 的个数为 $|\operatorname{Root}_K g(x)| \leq \deg g(x) = \dim_k k(\alpha)$. 由 (2) 的条件这里必须取等,则 $|\operatorname{Root}_K g(x)| = \deg g(x)$,即 g(x) 在 K 上分裂且无重根.

 $(3) \Rightarrow (4)$: 设 $K = k(\alpha_1, \dots, \alpha_n)$, 则设 α_i 的最小多项式为 $g_i(x)$, 定义 $f(x) = g_1(x) \dots g_n(x)$, 则 f(x) 在 K 上分裂且可分, K = (k, f(x)).

Remark 若 K/k 为有限 Galois, 且 $k \subseteq E \subseteq K$ 为中间域,则 K/E 为有限 Galois 扩张,因为 K = (k, f(x)) = (E, f(x)).

Example 4.1 考虑 $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2}) \subseteq (\mathbb{Q}, x^3 - 2) = \mathbb{Q}(\sqrt[3]{2}, \omega)$. 后面的域扩张为 Galois 的,但第一个域扩张 $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ 不是(见例 4.2).

Example 4.2 对 Galois 扩张 K/k, 设 $H \leq G = Gal(K/k)$, 则 $H = Gal(K/K^H)$, $|H| = [K : K^H]$.

由 Galois 扩张有 $|G| = \dim_k K$, 则由 Lagrange 定理 |G| = [G:H]|H|,即 $\dim_k K = [G:H][K:K^H]$,则 $[G:H] = \dim_k K^H$. 这是一个非常有用的结论!

下面给出了 E/k 是 Galois 扩张的条件.

Proposition 4.1

设 K/k 有限 Galois 扩张, $k \subseteq E \subseteq K$ 为中间域, 则

E/k 是 Galois 的 $\iff \forall \sigma \in \operatorname{Gal}(K/k), \sigma(E) = E.$

证明 \Rightarrow : 若 E/k 为 Galois 扩张,设 $E=(k,g(x))=k(\beta_1,\cdots,\beta_m)$,其中 $g(x)=(x-\beta_1)\cdots(x-\beta_m)\in k[x]$. 则对 $\sigma\in G=\mathrm{Gal}(K/k)$,有 $\sigma(E)=k(\sigma(\beta_1),\cdots,\sigma(\beta_m))$.

由于 $g(\beta_i) = 0$, 则 $g(\sigma(\delta_i)) = \sigma(g(\delta_i)) = 0$, 故 $\sigma(\beta_i) \in \{\beta_1, \dots, \beta_m\}$. 从而 $\sigma(E) = E$.

 \Leftarrow : $\forall b \in E \subseteq K$, 考虑其 k 上最小多项式 $g(x) \in k[x]$, 则又 K/k 是 Galois 扩张可知 g(x) 可分且在 K 上分裂,则设 $g(x) = (x - \beta_1) \cdots (x - \beta_m) \in k[x]$, 其中 $\beta_i \in K$.

不妨设 $\beta_1 = b$, 则对任意 $i \geq 2$, 仍然考虑

则 $\sigma \in \operatorname{Gal}(K/k)$, 且 $\sigma(\beta_1) = \beta_i$, 由条件 $\beta_i \in E$, 故最终 g(x) 在 E 上分裂且可分,则 E/k 为 Galois 扩张.

4.2 Galois 对应

对有限 Galois 扩张有如下的 Galois 对应.

Proposition 4.2 (绝对 Galois 对应)

任意域 K, 有一一对应

$$\{G \leq \operatorname{Aut}(K)\} \ \stackrel{G o K^G}{\mathop{
ightless}_{\operatorname{Gal}(K/k) \leftarrow k}} \{k \subseteq K : K/k$$
为有限 Galois 扩张 $\}$

Proposition 4.3 (相对 Galois 对应)

设 K/k 为有限 Galois 扩张,则有一一对应

$$\{G \leq \operatorname{Gal}(K/k)\} \underset{\operatorname{Gal}(K/E) \leftarrow E}{\overset{H \to K^H}{\rightleftharpoons}} \{k \subseteq E \subseteq K : E \text{为中间域}\}$$

Example 4.3 考虑 $\mathbb{Q} \subseteq K = (\mathbb{Q}, x^3 - 2) = \mathbb{Q}(\sqrt[3]{2}, \omega)$, 则 K/\mathbb{Q} 为有限 Galois 扩张,且 $\dim_{\mathbb{Q}} K = 6$.

则 $G \curvearrowright K$ 且保持 x^3-2 的根,故 $G \curvearrowright X = \operatorname{Root}_K(x^3-2) = \{a=\sqrt[3]{2}, b=\sqrt[3]{2}\omega, c=\sqrt[3]{2}\omega^2\}$. 这是一个忠实作用,则有嵌入 $G \hookrightarrow S(X) = S_3$. 比较集合大小可知有同构 $G \simeq S(X) = S_3$.

设 $(ab) \in S(X)$ 对应 σ_1 , 则 $\sigma: \sqrt[3]{2} \leftrightarrow \sqrt[3]{2} \omega$ 且保持 $\sqrt[3]{2} \omega^2$ 不动. 此时有 $\sigma(\omega) = \sigma(\frac{\sqrt[3]{2}\omega}{\sqrt[3]{2}}) = \frac{\sqrt[3]{2}}{\sqrt[3]{2}\omega} = \omega^2$. 注意到由于 $\sigma(\mathbb{Q}(\sqrt[3]{2})) = \mathbb{Q}(\sqrt[3]{2}\omega) \neq \mathbb{Q}(\sqrt[3]{2})$, 则有上一节的命题 4.1,可知 $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ 不是 Galois 扩张.

考虑 G 的子群 $H = \{\sigma.\mathrm{Id}\}$,我们来求 K^H .

首先有 $[K:K^H]=|H|=2$,则 $\dim_{\mathbb{Q}}K^H=3$. 同时又知道 $\sqrt[3]{2}\omega^2$ 在 σ_1 下保持不动,则 $\mathbb{Q}(\sqrt[3]{2}\omega^2)\subseteq K^H$. 比较两边维数可知 $K^H=\mathbb{Q}(\sqrt[3]{2}\omega^2)$. 它是 K 的子域.

Example 4.4 考虑定理 2.9 中的有限域 Galois 对应. 设 $\dim_{\mathbb{F}_p} K = n$,即 $K = (\mathbb{F}_p, x^{p^n} - x)$,则 K/\mathbb{F}_p 是 Galois 扩张. 且熟知 $\mathrm{Gal}(K/\mathbb{F}_p) = \{1, \sigma, \cdots, \sigma^{n-1}\} \simeq (\mathbb{Z}_n, +)$,其中 σ 为 Frobenius 同构.

则 K 的子域对应于 $Gal(K/\mathbb{F}_p)$ 的子群,即为 $\langle \sigma^d \rangle$ (其中 d|n),它的不动子域为 $\{a \in K : \sigma^d(a) = a\} = Root_K(x^{p^d} - x)$.

Example 4.5 对有限群 G, 则设 $G \leq S_n$,显然 $S_n \curvearrowright k(t_1, \dots, t_n) = K$,即 n 元有理函数域,其中 $\sigma(t_i) = t_{\sigma(i)}$,则 $G \curvearrowright K, G \leq \operatorname{Aut}(K)$,进而由绝对 Galois 对应, $G \simeq \operatorname{Gal}(K/K^G)$.

下面用偏序集和格的语言描述 Galois 对应.

Definition 4.1

给定非空集合 L, L 上的偏序是 L 上的一个二元关系 \leq ,满足

- (1) 自反性: $\forall a \in L, a \leq a$.
- (2) 反对称性: 若 $a \le b, b \le a$, 则 a = b.
- (3) 传递性: 若 $a \le b, b \le c$, 则 $a \le c$.

此时称 (L, \leq) 是一个偏序集.

Example 4.6 对群 G,则 G 的子群构成的集合 $Sub(G) = \{H : H \leq G\}$ 关于集合的包含关系成为一个偏序集.

Definition 4.2

设 (*L*,≤) 为偏序集.

- (1) 设 $a,b \in L$, 定义 $a \lor b \in L$ 为 a,b 的**最小上界** (若存在则唯一) 满足
 - (i) $a \leq (a \vee b), b \leq (a \vee b)$.
 - (ii) $a \le c, b \le c$, \emptyset $a \lor b \le c$.
- (2) 设 $a,b \in L$, 定义 $a \land b \in L$ 为 a,b 的**最大下界**(若存在则唯一)满足
 - (i) $(a \wedge b) \leq a, (a \wedge b) \leq b$.
 - (ii) $c \le a, c \le b$, 则 $c \le a \land b$.

若 L 满足 $\forall a,b \in L$, $a \lor b$ 和 $a \land b$ 都存在,则称偏序集 (L, \leq) 为**格**.

Example 4.7 G 是群,则 Sub(G) 是一个格: 对 $H,U \leq G$,则 $H \vee U = \langle H,U \rangle = \{s_1 \cdots s_n : n \geq 1, s_i \in H \cup U\}, H \wedge U = H \cap U$.

Example 4.8 对域扩张 K/k,定义格 Lat(K/k) 为中间域的集合,集合的包含关系作为偏序关系.

对 E, F 为中间域,有 $E \wedge F = E \cap F, E \vee F$ 为 E, F 生成的子域,即 $\{(\sum e_j f_j)(\sum e_i f_i)^{-1} : e_i, e_j \in E, f_i, f_j \in F\}$.

Example 4.9 对格 (L, \leq) ,可以定义反格 (L^{op}, \leq^{op}) ,其中 $a \leq^{op} b \iff b \leq a$,则 $a \wedge^{op} b = a \vee b$, $a \vee^{op} b = a \wedge b$.

Example 4.10 对 $n \ge 1$, 定义 $L_n = \{d : 1 \le d \le n, d | n\}$, 定义 $d \le d' \iff d | d'$, 则 (L_n, \le) 为偏序集. 且 $d_1 \lor d_2 = \text{lcm}(d_1, d_2), d_1 \land d_2 = \text{gcd}(d_1, d_2)$. 故 (L_n, \le) 为格.

取 $C_n = \langle g \mid g^n = 1 \rangle = \{1, g, \dots, g^{n-1}\}$, 则有格同构 $\mathrm{Sub}(C_n) \xrightarrow{\sim} L_n, \langle g^{\frac{n}{d}} \rangle \mapsto d$.

Lemma 4.2

若 L, L' 为格,且 $f: L \to L'$ 为偏序集的同构,即 f 为双射且 f, f^{-1} 均保持偏序关系,则 f 保持 \land 以及 \lor .

证明 $a \le a \lor b, b \le a \lor b,$ 则 $f(a) \le f(a \lor b), f(b) \le f(a \lor b),$ 则 $f(a) \lor f(b) \le f(a \lor b).$

记 $d = f^{-1}(f(a) \vee f(b))$, 则 $f(a) \leq f(d)$, $f(b) \leq f(d)$, 则 $a \leq d$, 故 $a \vee b \leq d$. 则 $f(a \vee b) \leq f(d) = f(a) \vee f(b)$.

综上有
$$f(a) \lor f(b) = f(a \lor b)$$
, 对 \land 同理.

则我们可以利用上面的语言叙述如下的 Galois 理论基本定理.

Theorem 4.3 (Galois 理论基本定理)

设 K/k 为有限 Galois 扩张, 令 G = Gal(K/k), 则有格同构

$$Sub(G) \stackrel{H \to K^H}{\rightleftharpoons}_{Gal(K/E) \leftarrow E} Lat(K/k)^{op}$$

则立即有如下推论

Proposition 4.4

 $(1) \ \ {\not =} \ \ H, U \le G, \quad \text{则} \ \ K^{H \lor U} = K^H \cap K^U, K^{H \cap U} = K^H \lor K^U.$

4.3 例子和应用

首先观察 $G \curvearrowright \operatorname{Sub}(G) = \{H : H \leq G\}, \sigma.H = \sigma H \sigma^{-1}, \, \text{则 } H$ 在该作用下不动等价于 $H \triangleleft G$.

类似地考虑 $G \curvearrowright \text{Lat}(K/k), \sigma.E = \sigma(E) \subseteq K$. 则由命题 3.1,有 E 在该作用下不动等价于 E/k 是 Galois 扩张. 这提示我们进行下面的论断

Theorem 4.4

$$k\subseteq E\subseteq K$$
,则 E/k 是 $Galois$ 扩张 \Longleftrightarrow $Gal(K/E)\triangleleft G$,且此时有 $G/_{Gal(K/E)}\stackrel{\sim}{\to} Gal(K/k)$.

证明 若证第一个命题,由命题 4.1 和 Galois 对应,只需要证明 σ Gal $(K/E)\sigma^{-1} = \text{Gal}(K/\sigma(E))$,并直接设 $E = K^H$,则只需证明 $K^{\sigma H \sigma^{-1}} = \sigma(K^H)$. 这是因为

$$\begin{split} K^{\sigma H \sigma^{-1}} &= \{\lambda \in K : \sigma h \sigma^{-1}(\lambda) = \lambda, \forall h \in H\} \\ &= \{\lambda \in K : h \sigma^{-1}(\lambda) = \sigma^{-1}(\lambda)\} \\ &= \{\lambda \in K : h \sigma^{-1} \in K^H\} = \sigma(K^H) \end{split}$$

此时考虑 $G \to \operatorname{Gal}(K/E), \sigma \mapsto \sigma|_E$, 核显然为 $\operatorname{Gal}(K/E)$, 则有群同态基本定理得证.

对于偏序集 (L, \leq) ,可以画出所谓的 Hesse 图来表示偏序关系.

Example 4.11 记 $L_{12} = \{d : d \mid 12\} = \{1, 2, 3, 4, 6, 12\}$, 则可画出 L_{12} 的 Hesse 图. 进而有 $C_{12} = \langle \sigma \mid \sigma^{12} = 1 \rangle$ 的 Hesse 图.

Example 4.12 令 $G = \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) = \{1, \sigma, \cdots, \sigma^{n-1}\}$, 其中 σ 为 Frobenius 自同构,则有一一对应 $\operatorname{Sub}(G) \leftrightarrow \operatorname{Lat}(\mathbb{F}_{p^n}/\mathbb{F}_p), \langle \sigma^d \rangle \mapsto E_d = \{a \in \mathbb{F}_{p^n} : \sigma^d(a) = a\}$. 则借此可以画出 $\mathbb{F}_{p^{12}}$ 的 Hesse 图,作为练习.

Example 4.13 考虑 $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$. 则 $G = \operatorname{Gal}(K/\mathbb{Q}) \xrightarrow{\sim} S(A = \sqrt[3]{2}, B = \sqrt[3]{2}\omega, C = \sqrt[3]{2}\omega^2) = S_3$.

Galois 对应给出格同构 Sub $(G) \leftrightarrow \operatorname{Lat}(K/\mathbb{Q})^{op}$,则通过计算固定子域分别可以画出 $G = S_3$ 和 K 的 Hesse 图. 下面是一个计算固定子域的例子,整体思路就是:对于每个子群先找出在这个子群作用下的不变元,再利用 $\dim_k K^H = [G:H]$ 得到 $\dim_k K^H$,通过比较维数说明固定子域就是这些不变元生成的域.

考虑 $H = \{ \mathrm{Id}, (ABC), (ACB) \}$, 则 $\dim_{\mathbb{Q}} K^H = [G:H] = 2$,注意到 $\omega = \frac{B}{A} = \frac{C}{B} = \frac{A}{C}$ 在 (ABC) 和 (ACB) 下不变,故 $\mathbb{Q}(\omega) \subseteq K^H$,比较维数只能有 $K^H = \mathbb{Q}(\omega)$. 特别地,由于 $(ABC) \triangleleft G$,则 $\mathbb{Q}(\omega)/\mathbb{Q}$ 是 Galois 扩张,这实际上也是显然的,因为 $\mathbb{Q}(\omega) = (\mathbb{Q}, x^2 + x + 1)$.

再考虑 (AB) 不是 G 的自由子群,则它对应的固定子域扩张 $\mathbb{Q}(\sqrt[3]{2}\omega^2)/\mathbb{Q}$ 不是 G Galois 扩张.

Example 4.14 考虑 $K = (\mathbb{Q}, (x^2 - 2)(x^2 - 3)) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$,则 $\dim_{\mathbb{Q}} K = 4$,且有 Galois 群的嵌 人 $G = \operatorname{Gal}(K/\mathbb{Q}) \hookrightarrow S(\sqrt{2} = A, -\sqrt{2} = B, \sqrt{3} = C, -\sqrt{3} = D) = S_4$,由于为 Galois 扩张,则 $|G| = \dim_k K = 4$,进而 $G = K_4 = \{\operatorname{Id}, (AB), (CD), (AB)(CD)\}$.

仍然可以通过找固定子域的方式画出 G 和 K 的 Hesse 图.

特别地 K 的非平凡子域只有 $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3})$ 和 $\mathbb{Q}(\sqrt{6})$ 三个. 取 $u=a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}$, 其中 a,b,c 至少有两个非 0,则 u 不属于任意一个中间域, $K=\mathbb{Q}(u)$.

下面再看几个抽象的应用.

Theorem 4.5 (Steinitz)

设 K/k 为有限维扩张,则 K/k 为单扩张 \iff K/k 只有有限个中间域.

证明 \Rightarrow : 设 $K = k(\alpha)$, 则任取中间域 $k \subseteq E \subseteq K$, 设 α 在 E 上的最小多项式 $g(x) \in E[x] \subseteq K[x]$. 并 取 α 在 k 上的最小多项式 $f(x) \in k[x]$, 有 $g(x) \mid f(x)$. 故 g(x) 只有有限多个.

记 $g(x) = x^m + c_1 x^{m-1} + \dots + c_m, c_i \in E$, 则令 $B = k(c_1, \dots, c_m)$, 有 $g(x) \in B[x]$, $B \subseteq E$. 此时 有 $K = k(\alpha) = E(\alpha) = B(\alpha)$. 又由于 [K : E] = m = [K : B],则 E = B. 又 g(x) 只有有限多个,则对 应的系数只有有限多种,即 E = B 只有有限多个.

 \Leftarrow : 当 k 是有限域的时候有限维扩张 K/k 始终为单扩张,则无需证明. 故设 k 是无限域. 设 $K=k(\alpha_1,\cdots,\alpha_t)$,则对 $\forall t\in k$,有 $k\subseteq E_t=k(\alpha_1+t\alpha_2)\subseteq k(\alpha_1,\alpha_2)\subseteq K$.

由于中间域只有有限个,则存在 $t_1 \neq t_2 \in k$ 使得 $E_{t_1} = E_{t_2} = E$,即 $\alpha_1 + t_1\alpha_2, \alpha_1 + t_2\alpha_2 \in D$,进 而 $\alpha_1, \alpha_2 \in E$. 故 $E = k(\alpha_1, \alpha_2) = k(\alpha_1 + t_1\alpha_2)$. 则用新的 E 代替 $k, K = E(\alpha_1 + t_1\alpha_2, \alpha_3, \dots, \alpha_t)$. 反 复运用同样的论证可知 K/k 为单扩张.

Theorem 4.6 (Galois 本原元定理)

设 K/k 为有限维可分扩张,则为单扩张. 这里可分扩张指任意 $\alpha \in K$, α 在 k 上的最小多项式可分.

证明 设 $K = k(\alpha_1, \dots, \alpha_r)$, 其中 α_i 在 k 上的最小多项式为 $g_i[x] \in k[x]$. 令 $g(x) = g_1(x) \dots g_r(x) \in k[x] \subseteq K[x]$ 可分, 则 $k \subseteq K \subseteq (K, g(x)) = (k, g(x)) = E$.

则 E/k 是 Galois 扩张且由 Galois 对应,只有有限个中间域,则由 Steinitz 定理,E/k 是单扩张,则 K/k 是单的.

最后来证明知名的代数基本定理.

Theorem 4.7 (代数基本定理)

€是代数封闭的.

M

- 证明 (1) 若 $\mathbb{R} \subsetneq K$, 则取 $\alpha \in K$, 在 \mathbb{R} 上最小多项式 f(x), 则由维数公式 $\deg f = \dim_{\mathbb{R}} \mathbb{R}(\alpha) \mid \dim_{\mathbb{R}} K$. 又熟知奇数次实多项式有实根,只能 $\deg f$ 为偶数,则 $\dim_{\mathbb{R}} K$ 为偶数.
- (2) 若 $\mathbb{C} \subseteq K$, 则 $\dim_{\mathbb{C}} K \neq 2$. 否则设 $K = \mathbb{C}(\alpha)$, 有 α 在 \mathbb{C} 上的最小多项式为 $x^2 + ax + b \in \mathbb{C}[x]$, 但不难验证这在 \mathbb{C} 上是可约的,矛盾!
- (3) 现在取 $h(x) \in \mathbb{C}[x]$ 不可约,有 $\deg f(x) \geq 2$,此时有 $\mathbb{R} \subseteq \mathbb{C} \subsetneq K = (\mathbb{C}, f(x)) = (\mathbb{R}, (x^2+1)f(x))$. 则 K/\mathbb{R} 为有限 Galois 扩张,取 $G = \operatorname{Gal}(K/\mathbb{R})$.

若 $|G| = 2^r m, 2 \nmid m$, 则取 Sylow 2-子群 P, 有 [G:P] 为奇数,进而 $\dim_{\mathbb{R}} K^P = [G:P]$ 为奇数,由 (1) 只能 m = 1, 故 $|G| = 2^r, \dim_{\mathbb{C}} K = 2^{r-1}$.

再考虑 $G' = \operatorname{Gal}(K/\mathbb{C}) \hookrightarrow G$,有 $|G'| = 2^{r-1}$,取 $H \leq G'$ 使得 [G':H] = 2(证明见后),则有 $\dim_{\mathbb{C}} K^H = [G':H] = 2$,与 (2) 矛盾!

需要补充中间用到的一个引理.

Lemma 4.3

任意 p-群 U, 存在 $V \le U$ 使得 [V:U] = p.

 \sim

证明 设 $|G| = p^n$. 对 n 归纳, n = 1 时显然,若对 $1 \le m < n$ 均成立,则考虑 n 时的情形.

我们知道 Z(G) 是非平凡的,则 $|G/Z(G)| = p^m (0 \le m < n)$. 若 m < 0,则由归纳假设和商群的子群的对应存在 G/Z(G) 的指数为 p 的子群 N/Z(G),故 N 为所求.

若 m=0,此时 G=Z(G) 为 Abel 群,故 $G=\mathbb{Z}_{p^{s_1}}\times\cdots\times\mathbb{Z}_{p^{s_t}}$,其中 $s_i\geq 1$.则取 $N=\mathbb{Z}_{p^{s_1-1}}\times\mathbb{Z}_{p^{s_2}}\times\cdots\times\mathbb{Z}_{p^{s_t}}$ 为所求.

4.4 Galois 大定理

Definition 4.3

域扩张 E/k 称为 type-m 的**根式扩张**, 若 $E=k(\alpha)$ 且 $\alpha^m=a\in k$.

若 $k = E_0 \subseteq E_1 \subseteq \cdots \subseteq E_n$ 满足 E_i/E_{i-1} 均为根式扩张,则称为根式扩张塔.

Example 4.15 若 E/k 为 type-m 的根式扩张,且 k 包含 m 次本原单位根 ω ,则若 $E=k(\alpha)$, $\alpha^m=a\in k$,有 $x^m-a=(x-\alpha)(x-\omega\alpha)\cdots(x-\omega^{n-1}\alpha)$,则 $E=(k,x^m-\alpha)$,为有限 Galois 扩张,进而有嵌入 $Gal(E/k)\hookrightarrow (\mathbb{Z}_m,+)$, $\sigma\mapsto \bar{i}$,其中 $\sigma(\alpha)=\omega^i\alpha$,则 Gal(E/k) 是 Abel 群.

Example 4.16 仍然设 E/k 为 type-m 的根式扩张且设 E/k 是 Galois 扩张,若 $\operatorname{char} k = 0$,则考虑 $E' = (E, x^m - 1)$ 和 $k' = (k, x^m - 1) = k(\omega)$,由上面的例子有 Abel 群嵌入 $\operatorname{Gal}(E'/k') \hookrightarrow (\mathbb{Z}_m, +)$,且有另一组 Abel 群的嵌入 $\operatorname{Gal}(k'/k) \hookrightarrow (\mathbb{Z}_m, +)$.则考虑

Definition 4.4

 $f(x) \in k[x]$ 称为**根式可解**,若存在根式扩张塔 $k = E_0 \subseteq E_1 \subseteq \cdots \subseteq E_n$,使得 f(x) 在 E_n 中分 裂.

Example 4.17 设 $f(x) = x^2 + bx + c \in \mathbb{C}[x]$, 则 $k = \mathbb{Q}(b,c) \subseteq \mathbb{C}$, $E = (k, f(x)) = k(r_1, r_2)$, 则有根式扩 张塔 $k = E_0 \subseteq E = k(r_1, r_2) \subseteq E_1 = k(\alpha)$. 其中 r_1, r_2 为 f(x) 的两个根, α 满足 $\alpha^2 = b^2 - 4c$.

此外我们有如下定义

Definition 4.5

- (1) $f(x) \in k[x]$ 的 Galois 群为 $\operatorname{Gal}_k(f) = \operatorname{Gal}((k, f(x)))/k$.
- (2) 有限群 G 称为**可解群**,若存在子群链 $G = G_0 \supseteq G_1 \cdots G_n = \{1\}$,满足 $G_{i+1} \triangleleft G_i$ 且 G_i/G_{i+1} 为 Abel 群,每个相邻子群的商也称为**因子**.

Example 4.18 若有正合列 $0 \to G_1 \to G \to G/G_1 \to 0$ 且 $G_1, G/G_1$ 为 Abel 群,则 G 可解. 特别地, S_3 可解: $0 \to A_3 \hookrightarrow S_3 \to C_2 \to 0$.

Example 4.19 若有 $0 \to G_2 \to G1 \to G_1/G_2 \to 0$ 且 $G_1, G_1/G_2$ 为 Abel 群,则 G_1 可解,此时若还有 $0 \to G_1 \to G \to G/G_1 \to 0$ 且 G/G_1 为 Abel 群,则 G 可解.

Example 4.20 Abel 群显然可解.

Example 4.21 p-群可解: $0 \to Z(G) \to G \to G/Z(G) \to 0$.

Example 4.22 (1) G 可解,则 $H \leq G$ 也可解

(2) $N \triangleleft G$, 则 G 可解 \iff N 和 G/N 都可解.

Example 4.23 $S_n (n \geq 5)$ 不可解,进而 $A_5 \triangleleft S_5$ 不可解.

则可以讨论 Galois 大定理:

Theorem 4.8 (Galois 大定理)

 $\mathrm{char} k = 0, f(x) \in k[x], \, \, \mathrm{M} \, f(x) \, \, \mathrm{根式可解} \Longleftrightarrow \mathrm{Gal}_k(f) \, \, \mathrm{可解}.$

 \Diamond

证明 \Rightarrow : 若 $f(x) \in k[x]$ 根式可解,则存在 $k \subseteq K = (k, f(x)) \subseteq E$ 使得 E/k 为根式扩张塔,且 E/k 为有限 Galois 扩张. 又由于 K 为可分多项式 f(x) 分裂域有 K/k 为有限 Galois 扩张. 则有

$$\operatorname{Gal}(E/K) \stackrel{\triangleleft}{\hookrightarrow} \operatorname{Gal}(E/k) \twoheadrightarrow \operatorname{Gal}_k(f)$$

则只需证 Gal(E/k) 可解.

考虑根式扩张塔 $k = E_0 \subseteq E_1 \subseteq \cdots \subseteq E_n = E$, 其中 E_i/E_{i-1} 为 type- m_i 的根式扩张.

- (i) 若 k 有充分多的单位根,由上面的例 4.15, 不断使用 Galois 对应,有 $\forall i, E_i/E_{i-1}$ 是 Galois 扩张,且 $\operatorname{Gal}(E_i/E_{i-1})$ 是 Abel 群:考虑正规子群链 $\operatorname{Gal}(E_m/E_0) \supseteq \operatorname{Gal}(E_m/E_1) \supseteq \cdots$ 即可. 此时 $\operatorname{Gal}(E_n/k)$ 可解.
- (ii) 对一般的特征 0 的 k, 设 $E = k(\alpha_1, \dots, \alpha_r)$, 取 α_i 的最小多项式 $f_i(x) \in k[x]$, 故 $g(x) = f_1(x) \dots f_r(x)$ 可分, 定义 K = (E, g(x)) = (k, g(x)), 则 K/k 为 Galois 扩张,设 $Gal(K/k) = \{1 = \sigma_0, \sigma_1, \dots, \sigma_p\}$.

考虑 $k\cdots\subseteq E\subseteq E\vee\sigma_1(E)\subseteq E\vee\sigma_1(E)\vee\sigma_2(E)\cdots\subseteq E\vee\sigma_1(E)\cdots\vee\sigma_p(E)=E_m$. 这仍然是一个根式扩张塔,并且 $\forall 1\leq i\leq p,$ 有 $\sigma_i(E_m)=E_m$ (自行验证!). 故 E_m/k 为 Galois 扩张.

现在转化为考察根式扩张塔 $k = E_0 \subseteq E_1 \cdots \subseteq E_m$ 使得 E_m/k 为 Galois 扩张,取 M 为每一步根式扩张的 type 的最小公倍数,令 $E'_m = (E_m, x^M - 1)$ 和 $k' = (k, x^M - 1)$,则由 (i) 可知 $\operatorname{Gal}(E'_m/k')$ 是可解群,且也有 $\operatorname{Gal}(k'/k)$ 是 Abel 群,则可以考虑

则 $Gal(E'_m/k)$ 是可解群,故 $Gal(E_m/k)$ 作为其商群为可解群,进而 $Gal_k(f)$ 作为 $Gal(E_m/k)$ 的商群也可解.

 \Leftarrow : 设 K = (k, f(x)) 且 Gal(K/k) = G 可解.

(i) 若 k 中有 |G| 次本原单位根. 首先由于 G 可解,有正规子群链 $G \supseteq G_1 \cdots$,则 $Z = G/G_1$ 是

Abel 群. 可以找到(自行验证!) Z 的子群 Z' 使得指数 [Z:Z']=p 为素数. 则由商群的子群对应,存在 $H \triangleleft G$ 使得 $G/H \simeq Z/Z' \simeq C_p$ 为阶 p 的循环群.

则此时 K^H/k 为有限 Galois 扩张,且 $\mathrm{Gal}(K^H/k) \simeq G/H \simeq C_p$. 由条件 k 中包含 p 次单位根 ω . 取 $c \in K^H - k$ 使得 $K^H = k(c)$,并记 $c_i = \sigma^{i-1}(c) (1 \le i \le p)$.

定义
$$d_i = c_1 + c_2\omega^i + c_3\omega^{2i} + \dots + c_p\omega^{(p-1)i} \in K^H$$
, 则

$$\sigma(d_i) = c_2 + c_3\omega^i + \dots + c_1\omega^{(p-1)i} = \omega^{-i}d_i$$

进而 $\sigma(d_i^p) = d_i^p, d_i^p \in k$. 同时 d_1, \dots, d_p 由 c_1, \dots, c_p 乘上由 $1, \omega, \dots, \omega^{p-1}$ 组成的 Vandemond 矩阵得到,该行列式非零,故 c_1, \dots, c_p 也是 d_1, \dots, d_p 的 k-线性组合,由 $c \notin k$ 可知必然存在 $d_i \notin k$. 则 $K^H = k(d_i)$ 且 $d_i^p \in k$,故 K^H/k 为 type p-的根式扩张.

记 $K^H = k_1$, 则有 $k \subseteq k_1 \subseteq K$, 其中 k_1/k 根式扩张,且由于 $Gal(K/k_1)$ 为 Gal(K/k) 的子群故也可解,则通过和上面一样的论证存在 $k_1 \subseteq k_2 \subseteq K$, 且 k_2/k_1 为根式扩张.

反复进行同样的论证,则有根式扩张塔 $k = k_0 \subseteq k_1 \subseteq k_2 \cdots \subseteq k_m = K$,有 f(x) 根式可解.

(ii) 一般情况下,考虑 $k \subseteq K \subseteq K' = K(\omega)$, $k' = k(\omega)$,其中 ω 为 |G| 次本原单位根. 则 $k \subseteq k'$ 为根式扩张,由于 $K \subseteq K'$,故 f(x) 在 K' 中分裂,故只需证 $k' \subseteq K'$ 存在根式扩张塔. 由 (i) 只需证明 Gal(K'/k') 也可解. 事实上有如下的

其中利用 Galois 对应,有 $\operatorname{Gal}(K'/K) \cap \operatorname{Gal}(K'/k') = \operatorname{Gal}(K'/K') = \operatorname{Gal}(K'/K') = \operatorname{Id}_{K'}$,故确实有嵌入 $\operatorname{Gal}(K'/k') \hookrightarrow G$,由 G 可解有 $\operatorname{Gal}(K'/k') \hookrightarrow G$ 可解,则得证.

最后来给出应用 Galois 大定理的例子,其中包含了著名的高次(≥5次)一般方程根式不可解.

Example 4.24 对 $f(x) = x^5 - 4x + 2 \in \mathbb{Q}[x]$ 不可约, 不难验证 $Root_{\mathbb{C}}(f) = \{\alpha_1, \dots, \alpha_5\}$, 其中 α_1, α_2 为 共轭复根, $\alpha_3, \alpha_4, \alpha_5$ 为实根.

考虑分裂域 $K = \mathbb{Q}(\alpha_1, \dots, \alpha_5) \subseteq \mathbb{C}$,则有 $G = \operatorname{Gal}_{\mathbb{Q}}(f) \hookrightarrow S_5 = S(\alpha_1, \dots, \alpha_5)$.

首先有 $\dim_{\mathbb{Q}} \mathbb{Q}(r_1) = 5$, 则 $5 \mid \dim_{\mathbb{Q}} E = |Gal_{\mathbb{Q}}(f)|$, 进而 G 中有五阶元,即存在某个 5-轮换 σ .

其次 $\sigma: K \to K, z \mapsto \bar{z} \in G$, 且对应 $(12) \in S_5$, 故 $(12) \in G$.

事实上,任意一个 5-轮换 σ 和 (12) 能生成 S_5 (自行验证!),则只能 $G \simeq S_5$,不可解! 进而 f(x) 不根式可解, $\mathbb{Q} \subseteq K$ 不能嵌入到根式扩张塔中.

Example 4.25 考虑 n 元有理函数域 $F = k(t_1, t_2, \dots, t_n)$,其一般方程为 $f(x) = x^n - t_1 x^{n-1} + t_2 x^{n-2} + t_2 x^{n-2}$

 $\cdots + (-1)^n t_n \in F[x]$, 则引入 n 个变元 y_1, \cdots, y_n ,并记 p_1, \cdots, p_n 为 y_1, \cdots, y_n 为对应的对称多项式,则考虑环同态: $\sigma: k[t_1, \cdots, t_n] \to k[p_1, \cdots, p_n], t_i \mapsto p_i$,它显然是一个满同态.

设 f(x) 在 F 上的分裂域为 $E = F(x_1, \dots, x_n)$, 则考虑环同态 $\tau : k[y_1, \dots, y_n] \to k[x_1, \dots, x_n]$, $y_i \mapsto x_i$. 此时有 $\tau(\sigma(t_i)) = \tau(\sum y_{j_1} \dots y_{j_i}) = \sum x_{j_1} \dots x_{j_i} = t_i$, 即 $\tau \sigma = 1$, 进而 σ 也是单同态,则为环同构.

进而可以扩张成商域的同构,仍然记为 $\sigma: F = k(t_1, \cdots, t_n) \xrightarrow{\sim} k(p_1, \cdots, p_n)$. 设 $\sigma(f(x)) = g(x)$, 则 $k(y_1, \cdots, y_n)$ 为 g(x) 在 $k(p_1, \cdots, p_n)$ 上的分裂域, $k(x_1, \cdots, x_n)$ 为 F 上的分裂域, 进而有分裂域 同构 $\sigma: k(x_1, \cdots, x_n) \to k(y_1, \cdots, y_n)$, 且 $\sigma(F) = k(p_1, \cdots, p_n)$.

有 Galois 群同构 $\operatorname{Gal}_F(f) = \operatorname{Gal}({}^{k(x_1,\cdots,x_n)}/{}_{k(t_1,\cdots,t_n)}) \simeq \operatorname{Gal}({}^{k(y_1,\cdots,y_n)}/{}_{k(p_1,\cdots,p_n)}) \simeq S_n.$

于是若 $\operatorname{char} k = 0$ 且 $n \ge 5$ 时,一般方程 f(x) = 0 根式不可解.

附录 A 2024 春近世代数 (H) 期末

由本人考后回忆,可能与原题有小偏差.

- 一、设 E/\mathbb{Q} 为 $x^4 18 \in \mathbb{Q}[x]$ 的分裂域.
 - (1) 计算 $\dim_{\mathbb{Q}} E$.
 - (2) 判断 $x^4 18$ 在 $\mathbb{Q}(i)[x]$ 上是否可约.
 - (3) 计算 $\dim_{\mathbb{Q}}(E \cap \mathbb{Q}(\sqrt{2} + \sqrt{3}))$.
 - (4) 写出 $Gal(E/\mathbb{Q})$ 在 $S(Root(x^4 18))$ 中的像.
 - (5) 写出 E 的所有子域.
- \Box , $\diamondsuit L_n = \mathbb{C}(x^n + x^{-n}).$
 - (1) 计算 $\dim_{L_n} \mathbb{C}(x)$.
 - (2) 判断: 是否有 $L_n \subseteq L_m \iff m|n$?
 - (3) 写出 $\mathbb{C}(x)/L_4$ 的所有中间域.
- 三、设 G 为有限群, $H \leq G$ 为真子群,则 $G \neq \bigcup_{g \in G} gHg^{-1}$, 并在 G 是无穷群时给出反例.

四、对秩为 2 的有限生成 Abel 群 A 以及满同态 $\theta:A \to \mathbb{Z} \oplus \mathbb{Z}$,证明 $\ker(\theta)=t(A)$. 这里 t(A) 指 A 的扭子群.