EC500: Robot Learning and Vision for Navigation

Eshed Ohn-Bar

Feb 6, 2023

1

Reminders

Homework are expected to be individual assignments

 Project can be done individually or in groups of two (expectation are in relative to the group size) Previously...

- Paradigms for Sensorimotor Agents
- Behavior Cloning, Covariate Shift, Dagger,
 Dagger + Sampling

$$\underset{\theta}{\operatorname{argmin}} \ \underbrace{\mathbb{E}_{(s^*,a^*)\sim P^*} \left[\mathcal{L}\left(a^*, \pi_{\theta}(s^*)\right) \right]}_{=\sum_{i=1}^{N} \mathcal{L}\left(a_i^*, \pi_{\theta}(s_i^*)\right)}$$

3

Conditional Imitation Learning

Codevilla, Mu'ller, López, Koltun and Dosovitskiy: End-to-End Driving Via Conditional Imitation Learning. ICRA, 2018.

Conditional Imitation Learning: Network Architecture

- ► This paper proposes two network architectures:
 - \blacktriangleright (a) Extract features C(c) and concatenate with image features I(i)
 - ▶ (b) Command c acts as switch between specialized submodules
- ► Measurements *m* capture additional information (here: speed of vehicle)

Codevilla, Muller, Lopez, Koltun and Dosovitskiy: End-to-End Driving Via Conditional Imitation Learning. ICRA, 2018.

Dagger is very slow to converge in practice, training+testing (roll-out) iterations are inefficent

DAGGER with Critical States and Replay Buffer

Sampling Strategies:

- ► Task-based: Sample uniformly from "left", "right", "straight"
- ► Policy-based: Use test-time dropout to estimate epistemic uncertainty
- ► Expert-based: Highest loss or deviation in brake signal wrt. expert

DAGGER with Critical States and Replay Buffer

Sampling Strategies:

- Task-based: Sample uniformly from "left", "right", "straight"
- ► Policy-based: Use test-time dropout to estimate epistemic uncertainty
- ► Expert-based: Highest loss or deviation in brake signal wrt. expert

weather conditions

WetNoon

HardRainNoon

ClearSunset

images in training data

ClearNoon

weather conditions

DAgger Iter 1

■ Brake ■ Steer Left ■ Go Straight ■ Steer Right

150000

100000

50000

Behavior Cloning

images in training data

weather conditions

Our Approach Iter 2

Our Approach Iter 1

weather conditions

Our Approach Iter 3

weather conditions

Agent has to learn

- Perception
- Prediction
- Planning
- Control

How can we decompose this problem?

- Perception
- Prediction
- Planning
- Control

- Perception
- Prediction
- Planning
- Control => PID Controller

- Perception
- Prediction
- Planning => Future waypoints
- Control => PID Controller

- Perception=>BEV (Bird's Eye View)
- Prediction
- Planning => Future waypoints
- Control => PID Controller

privileged agent

Trained with imitation learning from human experts

sensorimotor agent

Trained with imitation learning from the privileged agent

But isn't it the same supervised learning problem? why would learning a model from simplified input help?

But isn't it the same supervised learning problem? why would learning a model from simplified input help?

Efficient data augmentation

(a) Road map

(b) Rotation and shift aug.

(a) Privileged agent imitates the expert

(a) Privileged agent imitates the expert

(b) Sensorimotor agent imitates the privileged agent

$$\mathsf{softargmax}(oldsymbol{y}) = \sum_i rac{e^{y_i/T}}{\sum_j e^{y_j/T}} i$$

$$\mathsf{softargmax}(oldsymbol{y}) = \sum_i rac{\mathrm{e}^{y_i/T}}{\sum_j \mathrm{e}^{y_j/T}} i$$

white-box	on-policy	
		20
		16
	\checkmark	64
\checkmark		96
\checkmark	\checkmark	100
	white-box	white-box on-policy

Table 1: Ablation study on the *CoRL2017* benchmark (CARLA 0.9.5, "navigation" condition, test town, test weather). Two key advantages of the presented decomposition – white-box supervision and on-policy trajectories – each substantially improve performance and together achieve 100% success rate on the benchmark.

Supervision	white-box	on-policy	
Direct			20
Two stage			16
Two stage		\checkmark	64
Two stage	√		96
Two stage	✓	\checkmark	100
	·		

Table 1: Ablation study on the *CoRL2017* benchmark (CARLA 0.9.5, "navigation" condition, test town, test weather). Two key advantages of the presented decomposition – white-box supervision and on-policy trajectories – each substantially improve performance and together achieve 100% success rate on the benchmark.

Supervision	white-box	on-policy	
Direct			20
Two stage			16
Two stage		\checkmark	64
Two stage	√		96
Two stage	V	V	100

Table 1: Ablation study on the *CoRL2017* benchmark (CARLA 0.9.5, "navigation" condition, test town, test weather). Two key advantages of the presented decomposition – white-box supervision and on-policy trajectories – each substantially improve performance and together achieve 100% success rate on the benchmark.

Learning by Cheating

			CARLA ≤0.9.5			CARLA 0.9.6			
Task	Weather	CIL[6]	CAL[20]	CILRS[7]	LBC	LBC	PV	AT	
Empty Regular Dense	train	48 ± 3 27 ± 1 10 ± 2	36 ± 6 26 ± 2 9 ± 1	51 ± 1 44 ± 5 38 ± 2	$ \begin{array}{c} 100 \pm 0 \\ 96 \pm 5 \\ 89 \pm 1 \end{array} $	$ \begin{array}{c c} 100 \pm 0 \\ 94 \pm 3 \\ 51 \pm 3 \end{array} $	100 ± 0 95 ± 1 46 ± 8	100 ± 0 99 ± 1 60 ± 3	
Empty Regular Dense	test	24 ± 1 13 ± 2 2 ± 0	25 ± 3 14 ± 2 10 ± 0	90 ± 2 87 ± 5 67 ± 2	${f 100} \pm 2 \ {f 94} \pm 4 \ {f 85} \pm 1$	70 ± 0 62 ± 2 39 ± 8	100 ± 0 93 ± 2 45 ± 10	100 ± 0 99 ± 1 59 ± 6	
Table 3: Comparison of the success rate of the presented approach (LBC) to the previous approaches on the <i>NoCrash</i> benchmark in the test town. (The supplement provides results on the training town.)									

CADIACOC

CADIA ZOOF

Table 3: Comparison of the success rate of the presented approach (LBC) to the previous approaches on the *NoCrash* benchmark in the test town. (The supplement provides results on the training town.) PV denotes the performance of the privileged agent, AT is the performance of the built-in CARLA autopilot. Since the graphics and simulator behavior changed significantly with CARLA 0.9.6, we evaluate and compare our method on CARLA 0.9.5. CILRS was also run on this version of CARLA. Our approach outperforms prior work by significant factors, achieving 100% success rate in the "Empty" condition and reaching 85% success rate or higher in other conditions.

Learning by Cheating

Dian Chen, Brady Zhou, Vladlen Koltun, Philipp Krähenbühl

Very difficult to do in the real-world, either Dagger or Learning by Cheating

ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst

Mayank Bansal

MAYBAN@WAYMO.COM

Waymo Research Mountain View, CA 94043, USA

Alex Krizhevsky*

AKRIZHEVSKY@GMAIL.COM

Abhijit Ogale

OGALE@WAYMO.COM

Waymo Research

Mountain View, CA 94043, USA

https://arxiv.org/pdf/1812.03079.pdf

- 30 million samples from 60 days of driving
- Structured input from perception, not raw pixels
- Augmentation to handle distribution shift (compounding errors)

Input Representation – Easier to Learn From

Figure 1: Driving model inputs (a-g) and output (h).

Architecture and Auxiliary Tasks

Output Representation – Trajectory of Waypoints

Figure 3: (a) Schematic of ChauffeurNet. (b) Memory updates over multiple iterations.

Issue with Temporal Imitation Learning

"During training, the model is provided the past motion history as one of the inputs. Since the past motion history during training is from an expert demonstration, the net can learn to cheat by just extrapolating from the past rather than understanding the underlying causes of the behavior."

Addressed with past motion dropout

Beyond Pure Imitation Learning – Synthetic Data for Handling Distribution Shift

Figure 5: Trajectory Perturbation. (a) An original logged training example where the agent is driving along the center of the lane. (b) The perturbed example created by perturbing the current agent location (red point) in the original example away from the lane center and then fitting a new smooth trajectory that brings the agent back to the original target location along the lane center.

Beyond Pure Imitation Learning – Auxiliary Losses

$$\mathcal{L}_{collision} = \frac{1}{WH} \sum_{x} \sum_{y} B_k(x, y) \cdot Obj_k^{gt}(x, y)$$

$$\mathcal{L}_{onroad} = \frac{1}{WH} \sum_{x} \sum_{y} B_k(x, y) \cdot (1 - Road^{gt}(x, y))$$

B_k- predicted agent box (k - timestep)Obj – Ground truth boxesRoad – road regions

Beyond Pure Imitation Learning –

Imitation Dropout

set imitation loss to be 0 randomly

$$\mathcal{L} = w_{imit} \sum_{\ell \in \mathcal{L}_{imit}} \ell + w_{env} \sum_{\ell \in \mathcal{L}_{env}} \ell$$

With Stop Signs Rendered No Stop Signs Rendered

With Box Rendered

No Box Rendered

Nudging Around a Parked Car

Traj Perturbation

Past Dropout

Environment Losses

Imitation Dropout

Slowing down for a Slow Car

M0 = Imitation with Past Dropout

M1 = M0 + Traj Perturbation M2 = M1 + Environment Losses M4 = M2 + Imitation Dropout

(Human Expert) Data is Essential

(Human Expert) Data is Essential

One Company to Rule Them All?

vahoo/finance

Tesla has 'key advantage' over other automakers, analyst says

Waymo ordered "up to 82,000" vehicles in 2018. Today, it has "well over 600"

Forbes

Tesla: King Of Self-Driving Cars? Unbelievable

Full as Collecting Insure amount of data from its

Underlying Development Process is Inefficient

Difficult for one entity to capture all modes (<u>unsafe</u>)
Bulk of data is kept private (<u>inaccessible</u>, <u>unsafe</u>)
Redundancy and high cost (<u>slow progress</u>, <u>urgent</u>
<u>application</u>)

Underlying Development Process is Inefficient

Difficult for one entity to capture all modes (<u>unsafe</u>)
Bulk of data is kept private (<u>inaccessible, unsafe</u>)
Redundancy and high cost (<u>slow progress, urgent</u>
<u>application</u>)

Q: How to **efficiently** learn a navigation policy?

A: <u>Learn by watching (third-person) agents</u> to leverage all available demonstration sources in a scene.

Learning from All Humans in the Scene

Learning to Drive by Watching

```
Observations: s = [I, v] (image, speed)
```

Command: $c \in \mathcal{C} = \{ \text{ Left, Right, Forward } \}$

Actions: $a \in \mathcal{A} = [-1, 1]^2$

Policy: $\pi(a|s)$

Trajectories: $au^{observed} = \{(\hat{m{s}}_t, \hat{m{a}}_t^*)\}_{t=1}^T$

Trajectories:
$$au^{expert} = \{(s_t, a_t^*)\}_{t=1}^T$$

Robotics Today

IIIIIlalion III

Jones SS. The development of imitation in infancy. 2009 Bandura A. Social Learning Theory.

Robotics Today

Full access to sensory state, ego-expert actions

IIIIIlalion III

Jones SS. The development of imitation in infancy. 2009 Bandura A. Social Learning Theory.

Robotics Today

Jones SS. The development of imitation in infancy. 2009
Bandura A. Social Learning Theory.

III III lalioii III

(1) Humans transform observations to their points of view

(2) Infer others' expert actions

Compact Bird's-Eye-View (BEV) State Representation

Enables relatively straightforward perspective transform

Compact Bird's-Eye-View (BEV) State Representation

Enables relatively straightforward perspective transform

Missing information regrading the *original perspective*!

Handling Occluded Regions With Visibility Map

Waypoint-Based Action Representation

$$au^{observed} = \{(\mathbf{\hat{s}}_t, \, \mathbf{\hat{a}}_t^*)\}_{t=1}^T au^{observed} = \{(\mathbf{\hat{s}}_t, \, \mathbf{\hat{w}}_t^*)\}_{t=1}^T$$

Waypoint-Based Action Representation

$$au^{observed} = \{(\hat{\mathbf{s}}_t, \, \hat{\mathbf{a}}_t^*)\}_{t=1}^T \Rightarrow au^{observed} = \{(\hat{\mathbf{s}}_t, \, \hat{\mathbf{w}}_t^*)\}_{t=1}^T$$

$$\mathcal{L}_{\mathsf{behavior\text{-}cloning}} = \mathbb{E}_{(\mathbf{s}, \mathbf{w}) \sim \mathbf{D}}[\ell_1(\mathbf{w}, f_{\theta}(\mathbf{s}))]$$

Low-Data Regime on CARLA Benchmark

<u>Metric</u>: Percentage of successfully completed episodes (success rate)

Low-Data Adaptation Benchmark

Town 3: Novel routes, intersection types, 5-lane junctions, roundabouts, tunnels

Results

Model	One Hour Training	10 Minutes Training	New Town
Ego (Baseline)	46	24	40
LbW	64	34	60
LbW + Visibility (Early)	52	28	60
LbW + Visibility (Late)	92	52	100

Driving Results on Town 2

(<u>10 Minutes</u> of Policy Training Data)

Conditional Imitation Learning

Observations: s = [I, v] (image, speed)

Command: $c \in \mathcal{C} = \{ \text{ Left, Right, Forward } \}$

Actions: $a \in \mathcal{A} = [-1,^2]$

Policy: $\pi(\boldsymbol{a}|\boldsymbol{s},\,c)$

Architecture (trained end-to-end):

Optimization? Generalization? Task supervision? Safety?

Covariate shift?
Catastrophic failure?

Codevllia, et al., ICCV'19, ICRA'18

Conditional Imitation Learning

Observations: s = [I, v] (image, speed)

Command: $c \in \mathcal{C} = \{ \text{ Left, Right, Forward } \}$

Actions: $a \in \mathcal{A} = [-1,^2]$

Policy: $\pi(a|s, c)$

Optimization?
Generalization?
Task supervision?
Safety?
Covariate shift?
Catastrophic failure?

Codevllia, et al., ICCV'19, ICRA'18

Humans Use Situation-Specific Awareness and Strategies

M. R. Endsley. Toward a Theory of Situation Awareness in Dynamic Systems, 2000. C. C. Macadam. Understanding and modeling the human driver. Vehicle System Dynamics, 2003.

Most networks fit a Gaussian to labels

- "Standard" probability distribution
- Has two parameters:
 - mean (µ) and
 - standard deviation (σ)
- Probability Density Function:

$$N(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

PROBLEM: NORMAL DISTRIBUTION MIGHT NOT FIT DATA

What if the data is complicated?

- It's easy to "fit" a normal model to any data.
 - Just calculate μ and σ
- But this might not fit the data well.

MIXTURE OF NORMALS

Three groups of parameters:

- means (µ): location of each component
- standard deviations (σ): width of each component
- Weight (π): height of each curve
- Probability Density Function:

Mixture Density Networks, Bishop, 1994

FEEDFORWARD MSE NETWORK

Here's a simple two-hidden-layer network (286 parameters), trained to produce the above result.

```
model = Sequential()
model.add(Dense(15, batch_input_shape=(None, 1), activation='tanh'))
model.add(Dense(15, activation='tanh'))
model.add(Dense(1, activation='linear'))
model.compile(loss='mse', optimizer='rmsprop')
model.fit(x=x_data, y=y_data, batch_size=128, epochs=200, validation_split=0.15)
```

FEEDFORWARD MDN SOLUTION

And, here's a simple two-hidden-layer MDN (510 parameters), that achieves the above result! Much better!

```
N_MIXES = 5

model = Sequential()
model.add(Dense(15, batch_input_shape=(None, 1), activation='relu'))
model.add(Dense(15, activation='relu'))
model.add(mdn.MDN(1, N_MIXES)) # here's the MDN layer!
model.compile(loss=mdn.get_mixture_loss_func(1,N_MIXES), optimizer='rmsprop')
model.summary()
```

Inspiration: World Models (Didn't Work Very Well...)

<u>Step 1</u>: Learn **generative model** of game environment (VAE)

<u>Step 2</u>: Learn dynamics and control models in **latent space** (CMA-ES)

Method	Score
DQN	343
A3C	652
World Models	906

Fails beyond simplest settings. Mixture Density Network (MDN) is key.

Ha and Schmidhuber, Recurrent World Models Facilitate Policy Evolution, NeurIPS 2018

Proposed Learning Situational Driving (LSD) Framework

Observations: s = [I, v] (image, speed) Command: $c \in \mathcal{C} = \{ \text{ Left, Right, Forward } \}$ Actions: $a \in \mathcal{A} = [-1.^21]$ Policies: $\Pi = \{\pi_{\theta}, \dots, {}^{K}\!\pi_{\theta}\}$ Parameters: $\Theta = \{\theta, \phi, \Psi\}$ $\pi_{\theta}(\boldsymbol{a}|\boldsymbol{s}, c) = \sum_{k=1}^{K} \alpha_{\theta}^{k}(\boldsymbol{s}, c) \pi_{\theta}^{k}(\boldsymbol{a}|\boldsymbol{s}, c) + \Psi \begin{bmatrix} q_{\phi}(\boldsymbol{I}) \\ v \\ c \end{bmatrix}$ Mixture *Expert* Context Weights *Models* **Embedding** $\pi_{ heta}^k(a|s, c) = \mathcal{N}\left(a|\mu_{ heta}^k(s, c), \operatorname{diag}(\sigma_{ heta}^k(s, c)^2)\right)$

Key Idea

Learn specialized experts and combine in a context-dependent

Multistep Model Training and Optimization

Step 1: Learn **mixture of experts** via imitati α_{MoE} =-log[$\sum_{k=1}^{K} \alpha_{\theta}^{k} \pi_{\theta}^{k}$]

Step 2: Learn a general purpose context encoder $q_{\scriptscriptstyle b}$ as a β -VAE

$$\mathcal{L}_{\mathsf{VAE}}$$
 = β KL $(q_{\phi}(z|\mathbf{I}) || \mathcal{N}_{0}) + ||d_{\phi}(z) - \mathbf{I}||^{2}$

Step 3: Task-driven policy refinement with CMA-ES for $\mathbb{E}_{\pi_{\Theta}}[\sum_{t} r_{t}]$

CARLA Benchmark

<u>Metric</u>: Percentage of successfully completed episodes (success rate)

Town 1: Training Town 2: Testing

Results & Emergent Driving Behavior Modes

Driving Task	CIRL (ECCV18)	CILRS (ICCV19)	LSD (ours, step 1)	LSD+Reward (ours, steps 1-3)
Straight (Static) One Turn (Static)	100 71	96 84	100 100	100 100
Navigation (Static)	53	69	98	100
Dense Traffic	41	66	92	98

Acceleration distribution of three different experts during testing

LSD (<u>Times-out</u> due to reflection) LSD+Reward (<u>Success</u>)

Further Readings

- Learning by Cheating, Conference on Robot Learning, 2019
- Learning by Watching, CVPR, 2021
- Learning monocular reactive UAV control in cluttered natural environments, ICRA 2013
- Learning Situational Driving, CVPR, 2020