Fall 2018 Complex Analysis Preliminary Exam

University of Minnesota

Where possible, computations have been also done using SageMath code available on GitHub at github.com/tekaysquared/prelims (feel free to make pull requests!)

1. Tell the values of i^i .

Proof. Recall that z^i is given by $e^{i \log z}$ on a suitably defined branch of the logarithm. As long as we choose a branch whose branch-cut is not along the positive imaginary axis, we see $\log i = i\pi/2 + 2\pi i k$ since $e^{\pi i/2}e^{2\pi i k} = e^{i\pi/2} = i$

Thus, for $k \in \mathbb{Z}$, i^i takes on the values of

$$e^{i \log i} = e^{i(\pi i/2 + 2\pi i k)} = e^{-\pi/2 + 2\pi k}$$

on the positive real axis.

2. Write the Laurent expansion of $f(z) = \frac{1}{z^4 - 1}$ centered at 0 and convergent in |z| > 1.

Proof. Factor out z^{-4} to see that

$$f(z) = \frac{1}{z^4(1 - 1/z^4)}$$
$$= \frac{1}{z^4} \sum_{n=0}^{\infty} \frac{1}{z^{4n}}$$

which converges for $|1/z^4| < 1$ which is to say for |z| > 1. So then f has a Laurent expansion

$$f(z) = \sum_{n = -\infty}^{\infty} a_n z^n$$

where

$$a_n = \begin{cases} 1 & n = -4k \text{ for nonzero positive integers } k \\ 0 & \text{otherwise} \end{cases}$$

6. Determine the radius of convergence of the power series for $\log z$ at $z_0 = -4 + 3i$.

Proof. Let R denote the radius of convergence of the power series of $\log z$ centered at z_0 . Now, note that there is no logarithm which takes a value at 0, since $e^w = 0$ is never true for $w \in \mathbb{C}$. Thus, the power series expansion can converge for a disk of radius at most |-4+3i-0|=5, and so

$$R \leq 5$$
.

On the other hand, it is a theorem that if Ω is a simply connected subset of \mathbb{C} which does not contain 0 then there is a branch of the logarithm which is holomorphic on Ω . Observe that the open disk

 $D_5(-4+3i):=\{z\in\mathbb{C}: |-4+3i-z|<5\}$ is simply connected and does not contain zero. Thus, there is a branch of the logarithm (call it \log_{D_5}) which is holomorphic on D_5 . Since we have constructed a disk of radius 5 on which there is a holomorphic logarithm, we see that

$$R \geq 5$$
.

Since we have bounded R both above and below by 5, we see that R = 5.