Knowledge Representation and Reasoning Exercise Sheet 3

Problem 1. A self restriction is a concept of the form $\exists r.\mathsf{Self}$ where r is a role; the semantics of self restrictions is as follows:

$$(\exists r.\mathsf{Self})^{\mathcal{I}} = \{ d \in \Delta^{\mathcal{I}} \mid (d, d) \in r^{\mathcal{I}} \}$$

Show that the extension of \mathcal{ALC} with self restrictions is more expressive than \mathcal{ALC} .

Solution:

We only need to show that no \mathcal{ALC} concept D can be equivalent to the concept $\exists r.\mathsf{Self}$. This is an easy consequence of the tree model property of \mathcal{ALC} . By dint of this property, D has a tree model; however, any model of $\exists r.\mathsf{Self}$ contains a loop, and thus is not a tree.

Problem 2. Recall the following theorem given in the lectures:

THEOREM (BOUNDED MODEL PROPERTY)

Let \mathcal{T} be an \mathcal{ALC} TBox, C an \mathcal{ALC} concept, and $n = \text{size}(\mathcal{T}) + \text{size}(C)$. If C has a model w.r.t. \mathcal{T} , then it has one of cardinality at most 2^n .

Prove this theorem (a sketch of the proof was already given in the lecture); additionally, show that the exponential bound cannot be improved on. For this purpose, define a sequence $(\mathcal{T}_n, C_n)_{n\geq 1}$ of \mathcal{ALC} TBoxes \mathcal{T}_n and concepts C_n such that

- 1. the sizes of \mathcal{T}_n and C_n are polynomial in n; and
- 2. no model of C_n with respect to \mathcal{T}_n can contain less than 2^n elements.

Solution:

Proof of theorem:

Let \mathcal{I} be a model of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$, and $S = \mathsf{sub}(\mathcal{T}) \cup \mathsf{sub}(C)$. Then we have $|S| \leq n$, and thus the domain of the S-filtration \mathcal{I} of \mathcal{I} satisfies $|\Delta^{\mathcal{I}}| \leq 2^n$ by Lemma 6.9 (see lecture notes). Thus, it remains to show that \mathcal{I} is a model of C w.r.t. \mathcal{T} .

Let $d \in \Delta^{\mathcal{I}}$ be such that $d \in C^{\mathcal{I}}$. Since $C \in S$, we know that $d \in C^{\mathcal{I}}$ implies $[d]_S \in C^{\mathcal{I}}$ by Lemma 6.11 (see lecture notes), and thus $C^{\mathcal{I}} \neq \emptyset$. In addition,

it is easy to see that \mathcal{J} is a model of \mathcal{T} . In fact, let $D \sqsubseteq E$ be a GCI in \mathcal{T} , and $[e]_S \in D^{\mathcal{J}}$. We must show $[e]_S \in E^{\mathcal{J}}$. Since $D \in S$, Lemma 6.11 yields $e \in D^{\mathcal{I}}$, and thus $e \in E^{\mathcal{I}}$ since \mathcal{I} is a model of \mathcal{T} . But then $E \in S$ implies $[e]_S \in E^{\mathcal{I}}$, again by Lemma 6.11.

Tightness of bound:

Even without a TBox we can construct concept descriptions C_n $(n \ge 1)$ such that, for each n, the models of C_n "contain" a full binary tree of depth n whose leaves are labeled with the 2^n disjoint concepts $\neg A_0 \sqcap \ldots \sqcap \neg A_{n-1}$, $A_0 \sqcap \neg A_1 \sqcap \ldots \sqcap \neg A_{n-1}$, $\neg A_0 \sqcap A_1 \sqcap \neg A_2 \ldots \sqcap \neg A_{n-1}$, $\ldots \sqcap A_{n-1}$, which can be seen as binary representations of the numbers $0, 1, 2, \ldots, 2^n - 1$:

$$C_n = \prod_{0 \le i \le n-1} (\forall r.)^i (\exists r. A_i \sqcap \exists r. \neg A_i) \sqcap \prod_{0 \le i \le j \le n-2} (\forall r.)^j ((A_i \to \forall r. A_i) \sqcap (\neg A_i \to \forall r. \neg A_i)).$$

Basically, the first conjunct of C_n (first line) ensures that an individual d at distance i from an element of C_n (i.e., one that can be reached from an element of C_n by an r-chain of length i) has two distinct r-successors d_1 and d_2 , one belonging to A_i and one not belonging to A_i . In addition, the "decision" taken at distance i (A_i or $\neg A_i$) stays the same for all r-successors of d_1 and d_2 , up to distance n-1. For this reason, any individual belonging to C_n has at distance n-1 at least 2^n r-successors labeled with binary encodings of the numbers $0,1,2,\ldots,2^n-1$. Note that this construction is similar to the one used in Chapter 5 to show PSpace-hardness of satisfiability in \mathcal{ALC} without TBoxes.

With a TBox, we can even enforce a sequence of 2^n elements, consecutively labeled with concepts encoding the numbers $0, 1, 2, \ldots, 2^n - 1$. Let $C_n = \neg A_0 \sqcap \ldots \sqcap \neg A_{n-1}$ and the TBox \mathcal{T}_n consist of the following GCIs: for all $0 \le i < n-1$

$$\begin{array}{c} \neg A_i \sqcap \bigcap_{0 \leq j < i} A_i \to \exists r. \top \sqcap \\ \forall r. (A_i \sqcap \bigcap_{0 \leq j < i} \neg A_i) \sqcap \\ \bigcap_{i+1 \leq j < n} ((A_j \to \forall r. A_j) \sqcap (\neg A_j \to \forall r. \neg A_j)). \end{array}$$

Basically, the TBox realizes a binary counter. In a model of C_n w.r.t. \mathcal{T}_n , we start with an element of C_n , which belongs to the concept encoding the number 0. As long as the number 2^n-1 is not yet reaches (i.e., one of the digits is still 0, corresponding to one of the A_i 's not being satisfied by the current individual), an r-successor is generated that belongs to the next number. This enforces the existence of a role change of length 2^n , on which the individuals belong the the encodings of the numbers $0, 1, 2, \ldots, 2^n - 1$, and are such all different.

Problem 3. Consider the following ALC-concept C:

$$C = \exists S.A \sqcap \forall S.(\neg A \sqcup \neg B) \sqcap \exists R.A \sqcap \forall R.B$$

Using the tableau algorithm for concept satisfiability show that C is satisfiable. Write down a finite tree interpretation \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$.

Solution:

Proceed as follows.

- The algorithm is initialised with $A_0 = \{a : C\}$.
- We can apply the \sqcap -rule three times to get $A_3 = A \cup \{a : \exists S.A, a : \forall S.(\neg A \sqcup \neg B), a : \exists R.A, a : \forall R.B\}$
- We can then apply the \exists -rule to $a: \exists S.A \in \mathcal{A}_3$ to get $\mathcal{A}_4 = \mathcal{A}_3 \cup \{(a,b): S,b:A\}$
- Then, we can apply the \forall -rule to $\{a: \forall S.(\neg A \sqcup \neg B), (a,b): S\} \subseteq \mathcal{A}_4$ to get $\mathcal{A}_5 = \mathcal{A}_4 \cup \{b: (\neg A \sqcup \neg B)\}$
- Next, we apply the \sqcup rule to $b:(\neg A \sqcup \neg B) \in \mathcal{A}_5$. If we choose $\mathcal{A}_6 = \mathcal{A}_5 \cup \{b: \neg A\}$, then we immediately get a clash and have to backtrack and choose $\mathcal{A}_6 = \mathcal{A}_5 \cup \{b: \neg B\}$.
- Next, apply the \exists -rule to $a: \exists R.A \in \mathcal{A}_6$ to get $\mathcal{A}_7 = \mathcal{A}_6 \cup \{(a,c): R,c:A\}$.
- Finally, we apply the \forall -rule to $\{a: \forall R.B, (a,c): R\} \subseteq \mathcal{A}_7$ to get $\mathcal{A}_8 = \mathcal{A}_7 \cup \{c: B\}$, with \mathcal{A}_8 being a complete and clash-free ABox.

The interpretation follows trivially from the ABox, and it is clear that $a^{\mathcal{I}} \in C^{\mathcal{I}}$, so $C^{\mathcal{I}} \neq \emptyset$. Finally, it is important to note that the rules could have been applied in a different order; the fact that the algorithm returns true given C and that we can obtain the required tree model from the final clash-free completion graph is independent from the order of rule applications.

Problem 4. Consider again the concept C from Problem 3.

- 1. Using the tableau algorithm for concept satisfiability w.r.t. a TBox show that C is satisfiable w.r.t. the TBox $\mathcal{T} = \{A \sqsubseteq \exists R.A\}$. To reduce non-determinism use the lazy unfolding version of the \sqsubseteq -rule rather than the general KB version of the rule this isn't correct in general as $A \sqsubseteq \exists R.A$ is cyclical, but it will work in this case.
- 2. Write down a finite (possibly non-tree) model \mathcal{I} of \mathcal{T} such that $C^{\mathcal{I}} \neq \emptyset$.
- 3. Specify a (possibly infinite) tree model \mathcal{I}' of \mathcal{T} such that $C^{\mathcal{I}'} \neq \emptyset$.

Solution:

The algorithm can proceed exactly as in Problem 3 to construct A_8 . We can then proceed as follows:

- apply the \sqsubseteq -rule twice to b and c to get $A_{10} = A_8 \cup \{b : \exists R.A, c : \exists R.A\}.$
- Apply the \exists -Rule twice to get $A_{12} = A_{10} \cup \{(b,d) : R, d : A, (c,e) : R, e : A\}.$
- apply the \sqsubseteq -rule twice more to d and e to get $A_{14} = A_{12} \cup \{d : \exists R.A, e : \exists R.A\}.$

Now, d is blocked by b and e is blocked by c so \mathcal{A}_{14} is complete and clash-free. Note that, again, the order of rule applications is irrelevant. From \mathcal{A}_{14} we can construct an ABox \mathcal{A}' by replacing (b,d):R and (c,e):R with "loop-back" role assertions (b,b):R and (c,c):R, and by removing $d:\exists R.A$ and $e:\exists R.A$. The finite model follows trivially from this ABox. To obtain a tree model we can "unravel" the loops to create two infinite R-chains connecting copies of b and c respectively.

Problem 5. The description logic \mathcal{ALCH} is obtained from \mathcal{ALC} by also allowing role inclusion axioms in the TBox. A role inclusion axiom is of the form $R \sqsubseteq S$ where R and S are atomic roles. An interpretation \mathcal{I} satisfies a role inclusion axiom $R \sqsubseteq S$ if $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$.

- 1. Provide a semantics for ALCH via translation to FOL by extending the one for ALC given in the Lecture Notes.
- 2. Modify the tableau algorithm for ALC concept satisfiability w.r.t. a TBox given in the Lecture Notes to support ALCH.
- 3. Use such modified algorithm to show that the concept C from Problem 3 is unsatisfiable w.r.t. the TBox $\mathcal{T} = \{A \sqsubseteq \exists R.A, S \sqsubseteq R\}$.

Solution:

The semantics via translation to FOL of role inclusion axioms is straightforward. \mathcal{ALCH} -concepts coincide with \mathcal{ALC} -concepts. So, we only need to define the transformation for the new type of TBox axiom we are introducing:

$$\pi(R \sqsubseteq S) = \forall x. \forall y. (R(x, y) \rightarrow S(x, y))$$

In order to support ALCH the easiest modification to the tableau algorithm from the Lecture Notes is to add a new completion rule as follows:

$$\sqsubseteq_R$$
-rule: if 1. $(a,b): R \in \mathcal{A}, R \sqsubseteq S \in \mathcal{T}$, and 2. $(a,b): S \notin \mathcal{A}$ then $\mathcal{A} \longrightarrow \mathcal{A} \cup \{(a,b): S\}$

The algorithm can proceed exactly as in Problem 4 to construct A_{14} , but the construction can continue as follows:

- apply the \sqsubseteq_R -rule to $(a,b): S \in \mathcal{A}_{14}$ to give $\mathcal{A}_{15} = \mathcal{A}_{14} \cup \{(a,b): R\}$.
- apply the \forall -rule to $\{a: \forall R.B, (a,b): R\} \subseteq \mathcal{A}_{15}$ to get $\mathcal{A}_{16} = \mathcal{A}_{15} \cup \{c: B\}$.

We now have a clash, and no further backtracking possibilities, so the algorithm will return "inconsistent".

Problem 6. Consider the First Order Logic (FOL) knowledge base K consisting of the following sentences:

$$\forall x. (\mathsf{Man}(x) \leftrightarrow \mathsf{Human}(x) \land \mathsf{Male}(x)) \tag{1}$$

$$\forall x. (\mathsf{Parent}(x) \leftrightarrow \mathsf{Human}(x) \land \exists y. (\mathsf{hasChild}(x,y) \land \mathsf{Human}(y))) \tag{2}$$

$$\forall x. (\mathsf{Father}(x) \leftrightarrow \mathsf{Man}(x) \land \exists y. (\mathsf{hasChild}(x, y) \land \mathsf{Human}(y))) \tag{3}$$

$$\forall x. (\mathsf{GrandFather}(\mathsf{x}) \leftrightarrow \mathsf{Man}(x) \land \exists y. (\mathsf{hasChild}(x,y) \land \mathsf{Parent}(y))) \tag{4}$$

Do the following:

- Write an \mathcal{ALC} TBox \mathcal{T} that is logically equivalent to \mathcal{K} .
- Determine whether the axiom

$GrandFather \sqsubseteq Parent$

is a logical consequence of \mathcal{T} by applying the \mathcal{ALC} tableau algorithm for concept satisfiability w.r.t. a TBox. (You can apply optimisations to reduce the number of rule applications).

Solution:

The following TBox \mathcal{T} is equivalent to \mathcal{K} :

 $\mathsf{Man} \equiv \mathsf{Human} \sqcap \mathsf{Male}$ $\mathsf{Parent} \equiv \mathsf{Human} \sqcap \exists \mathsf{hasChild.Human}$ $\mathsf{Father} \equiv \mathsf{Man} \sqcap \exists \mathsf{hasChild.Human}$ $\mathsf{GrandFather} \equiv \mathsf{Man} \sqcap \exists \mathsf{hasChild.Parent}$

This TBox is *unfoldable* according to the definition of unfoldability given in the slides. Hence, we do not need to apply the TBox rule and it suffices to use lazy unfolding.

To show that $\mathcal{T} \models \mathsf{GrandFather} \sqsubseteq \mathsf{Parent}$ using a tableau algorithm, we need to check whether the concept $C = \mathsf{GrandFather} \sqcap \neg \mathsf{Parent}$ is (un)satisfiable w.r.t. \mathcal{T} . We therefore initialise $\mathcal{A}_0 = \{a : C\}$ and proceed with tableau expansion as per the above examples. It is easy to see that all expansion choices lead to a clash, and that the entailment thus holds.