Quality in Times of Insanity: a Study of Quality Factor Investment Strategies in Stressed Markets

Thesis Defence 17.08.2023

Table of Contents

- 1. Motivation
- 2. Defining Quality
 - 2.1. Methodology
 - 2.2. Results
- 3. Detecting Financial Stress
 - 3.1. Methodology
 - 3.2. Results
- 4. Investment strategies
 - 4.1. Rule-Based
 - 4.2. k-Means Clustering
 - 4.3. Hidden Markov Model
- 5. Conclusion

Motivation

Defining Quality

Methodology

Factor investing approach with the construction methodology of Asness et al. (2019) and the metric selection conclusions from Hsu et al. (2019)

- 1. Select metrics describing profitability, payout, accounting quality, investment conservativeness
- 2. Standardise data for aggregation
- 3. Long top 30%, short bottom 30%
- 4. Apply market cap. weighting

Defining QualityResults

Disappointing performance...

... but there is still hope

	Market	Quality
Annualized total return	6%	2%
Volatility	16%	8%
Downside Volatility	10%	5%
Sharpe Ratio	33%	10%
Information Ratio	NaN	-21%
Sortino Ratio	50%	15%
Beta	100%	-23%
Max Drawdown	59%	24%
Downside Capture Ratio	100%	-25%

Detecting Financial Stress

Methodology

Financial stress is linked to a desire for safer assets (Hakkio et al. 2009)

- 1. Select common indicators and composite ones
- 2. Make stationary
- 3. Select relevant indicators
- 4. Remove redundant indicators

Detecting Financial Stress

Results

Indicators with a positive relation with quality returns and negative relation with the market returns

Investment Strategies Rule-Based

Using raw composite indicators with a defined switching threshold results in:

- Many stress periods
- Only a small Sharpe ratio increase
- A lack of robustness in results

	Calm		Stressed		All		
	Quality	Market	Quality	Market	Quality	Market	Strategy
Annualized Return	1%	10%	3%	4%	2%	5%	5%
Volatility	6%	9%	9%	18%	8%	16%	9%
Downside Volatility	4%	6%	6%	12%	5%	11%	6%
Sharpe Ratio	1%	99%	21%	23%	17%	33%	40%

Investment Strategies k-Means Clustering

Clustering similar periods to identify regimes leads to:

- Satisfactory performance
- Robust out of sample results
- Not using information contained in time sequence

	Calm		Stres	sed	All		
	Quality	Market	Quality	Market	Quality	Market	Strategy
Annualized Return	-2%	6%	41%	0%	4%	5%	11%
Volatility	8%	11%	12%	33%	9%	16%	11%
Downside Volatility	5%	7%	6%	22%	5%	11%	7%
Sharpe Ratio	-34%	51%	278%	13%	32%	34%	87%

Investment Strategies

Hidden Markov Model

Using Raw composite Indicators with a defined switching threshold results in:

- Similar performance
- Robust out of sample results
- Added complexity with nothing to show

	Calm		Stressed		All		
	Quality	Market	Quality	Market	Quality	Market	Strategy
Annualized Return	0%	8%	23%	-8%	4%	5%	10%
Volatility	8%	11%	13%	32%	9%	16%	11%
Downside Volatility	5%	7%	7%	21%	5%	11%	7%
Sharpe Ratio	-6%	67%	158%	-12%	32%	34%	83%

Conclusions

- 1. Economically intuitive quality characteristics are linked to stability in downward and volatile periods
- 2. There exist financial stress indicators which are linked to quality and market performance
- 3. Simple models can be used to find when to switch between portfolios

References

Asness, C. S., Frazzini, A., & Pedersen, L. H. (2019). Quality minus junk. Review of Accounting Studies, 24 (1), 34–112.

Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of finance, 52 (1), 57–82.

Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. The Journal of Finance, 47 (2), 427–465.

Hakkio, C. S., & Keeton, W. R. (2009). Financial stress: What is it, how can it be measured, and why does it matter. Economic Review, 94 (2), 5–50.

Hsu, J., Kalesnik, V., & Kose, E. (2019). What is quality? Financial Analysts Journal, 75 (2), 44–61.

Treynor, J. L. (1961). Toward a theory of market value of risky assets.