CS4487 - Machine Learning

Lecture 7 - Linear Dimensionality Reduction

Dr. Antoni B. Chan

Dept. of Computer Science, City University of Hong Kong

Outline

- 1. Linear Dimensionality Reduction for Vectors
 - A. Principal Component Analysis (PCA)
 - B. Random Projections
 - C. Fisher's Linear Discriminant (FLD)
- Linear Dimensionality Reduction for Text
 A. Latent Semantic Analysis (LSA)
 B. Non-negative Matrix Factorization (NMF)

 - C. Latent Dirichlet Allocation (LDA)

Dimensionality Reduction

- Goal: Transform high-dimensional vectors into low-dimensional vectors.
 - Dimensions in the low-dim data represent co-occurring features in high-dim data.
 - Dimensions in the low-dim data may have semantic meaning.
- For example: document analysis
 - high-dim: bag-of-word vectors of documents
 - low-dim: each dimension represents similarity to a topic.

Latent Semantic Analysis (LSA)

- Also called Latent Semantic Indexing
- Consider a bag-of-word representation (e.g., TF, TF-IDF)
 - document vector X_i
 - $x_{i,j}$ is the frequency of word j in document i
- Approximate each document vector as a weighted sum of topic vectors. • $\mathbf{x} = \sum_{n=1}^p w_p \mathbf{v}_p$

 - Topic vector \mathbf{v}_p contains co-occuring words.
 - o corresponds to a particular topic or theme.
 - Weight W_p represents similarity of the document to the p-th topic.
- Objective:
 - minimize the squared reconstruction error (Similar to PCA):
 - $\mathbf{min}_{\mathbf{v},\mathbf{w}} \sum_{i} ||\mathbf{x}_{i} \mathbf{x}_{i}^{\wedge}||^{2}$

- Represent each document by its topic weights.
 - Apply other machine learning algorithms...
- Advantage:
 - Finds relations between terms (synonymy and polysemy).
 - distances/similarities are now comparing topics rather than words.
 - higher-level semantic representation

Example on Spam Email dataset

- use bag-of-words representation with 50 words
- term-frequency (TF) normalization

```
In [2]: # Load spam/ham text data from directories
    textdata = datasets.load_files("email", encoding="utf8", decode_error="replace")

# convert to bag-of-words representation
    cntvect = feature_extraction.text.CountVectorizer(stop_words='english', max_features=50)
    X = cntvect.fit_transform(textdata.data)
    Y = textdata.target

# TF representation
    tf_trans = feature_extraction.text.TfidfTransformer(norm='ll', use_idf=False)
    Xtf = tf_trans.fit_transform(X)

# print the vocabulary
    print(cntvect.vocabulary_)

{'10': 2, 'brands': 13, 'office': 38, 'isidoro': 29, 'contact': 17, 'john': 30
    , 'good': 23, 'today': 46, 'files': 22, 'l5mg': 4, 'email': 21, '120': 3, 'goo
    gle': 24 'payment': 40 'answer': 10 'inform': 27 'percocet': 41 '30mg': 6
```

```
{'10': 2, 'brands': 13, 'office': 38, 'isidoro': 29, 'contact': 17, 'john': 30
, 'good': 23, 'today': 46, 'files': 22, '15mg': 4, 'email': 21, '120': 3, 'goo
gle': 24, 'payment': 40, 'answer': 10, 'inform': 27, 'percocet': 41, '30mg': 6
, 'codeine': 15, 'peter': 42, 'mr': 34, 'just': 31, 'address': 9, '30': 5, '50
': 7, 'watches': 49, 'number': 37, 'com': 16, 'buy': 14, 'bags': 11, 'bank': 1
2, 'new': 35, '000': 1, 'online': 39, 'cost': 18, 'mg': 33, 'visa': 48, 'pills
': 43, 'united': 47, 'hi': 25, 'status': 44, 'store': 45, '60': 8, '00': 0, 'i
nformation': 28, 'country': 19, 'http': 26, 'day': 20, 'nigeria': 36, 'kamara'
: 32}
```

LSA on Spam data

- Apply LSA with 5 topics
 - implemented as TruncatedSVD

```
In [3]: lsa = decomposition.TruncatedSVD(n_components=5, random_state=4487)
Wlsa = lsa.fit_transform(Xtf)

# components
V = lsa.components_
```

Topic vectors

• topic vectors contain frequent co-occuring words

```
In [5]: vocab = asarray(cntvect.get_feature_names())
    lsafig = plot_topics(lsa, vocab)
    lsafig
```

Out[5]:

Document representation

• Documents are a combination of topics

In [8]: plot_doc_topic(Xtf[4,:], Wlsa[4,:], lsa, vocab)

Problem with LSA

- In the topic vector, the "frequency" of a word can be negative!

 Doesn't really make sense for document bag-of-words model.

Problems with LSA

- The weights for each topic can be negative!

 Topics should only be "additive"

 Topics should increase probability of some topic-related words, but not decrease probability of other words.

 It doesn't make sense to "remove" a topic using a negative topic weight.

In [12]: pfig Out[12]: Email 2 Email 4 Email 7 Email 16 1.0 1.0 1.0 1.0 0.8 b.8 b.8 þ.8 0.6 b.6 þ.6 þ.6 -SA weights 0.4 b.4 b.4 b.4 0.2 þ.2 þ.2 þ.2 b.o 0.0 0.0 þ.o -0.20.2

Non-negative Matrix Factorization (NMF)

- **Solution:** constrain the topic vector and weights to be non-negative.
- Similar to LSA
 - Approximate each document vector as a weighted sum of topic vectors. $\hat{\mathbf{x}_j} = \sum_{n=1}^p w_p \mathbf{v}_p$

 - But now, each entry of topic vector $\mathbf{v}_p \geq 0$ and topic weight $w_p \geq 0$
 - Objective: minimize the squared reconstruction error
 - $\circ \min_{\mathbf{v},\mathbf{w}} \sum_{j} ||\mathbf{x}_{j} \mathbf{x}_{j}^{\hat{}}||^{2}$
 - subject to the non-negative constraints.

```
In [13]:
         # Run NMF
         nmf = decomposition.NMF(n_components=5)
          Wnmf = nmf.fit transform(Xtf)
          # components
          V = nmf.components_
```

Topic vector

- all non-negative entries
- looks much cleaner (less small entries)

Document vector

• additive combination of topics

In [15]: plot_doc_topic(Xtf[2,:], Wnmf[2,:], nmf, vocab)

In [16]: plot_doc_topic(Xtf[4,:], Wnmf[4,:], nmf, vocab)

Sparseness

- For NMF representation, most topic weights for a document are zero.
 - this is called a *sparse* representation.
 - each document is only composed of a few topics.

In [19]: spfig Out[19]: Email 2 Email 4 Email 7 Email 16 1.00 1,00 1,00 1,00 0 75 0 75 0 75 0.75 LSA weights 0.50 **0**l50 0.50 0|50 0 25 0 25 0.25 0 25 0.00 000 000 oloo <u>0</u> 25 -0.25<u>0</u> 25 <u> 0</u> 25 4 Ó 2 4 4 1.00 1,00 1,00 1,00 0.75 0 75 0 75 0 75 **NMF** weights 0|50 0.50 0|50 0|50 0 25 0 25 0 25 0.25 0.00 0.00 oloo oloo -0.252 Ó 2 Ó ż ò

Problem with NMF

- While the weights and component vectors are non-negative, NMF does not enforce them to be probabilities.
- TF/TFIDF is a probabilistic model of words in a document
 - the vector of probabilities sums to 1
 - probabilities are between 0 and 1
- The NMF components and weights are difficult to interpret.

Latent Dirichlet Allocation (LDA)

- Use a generative probabilistic framework to model topics and documents.
- A document is composed of a mixture of topics.
 - **Each topic has its own distribution of words (topic vector \beta_k).**
 - Topic vectors are shared among documents.

 - Each document has its own topic weighting.
 The d-th document: $\hat{\mathbf{X}_d} = \sum_{k=1}^K \theta_{d,k} \boldsymbol{\beta}_k$
 - \circ $\theta_{d,k}$ is the probability of the k-th topic occurring in the d-th document.
 - \circ β_k is the topic vector for the k-th topic.

LDA graphical model

- Each node is a random variable.
- Plates (boxes) denote a vector of random variables.
 - The size is given in the bottom-right corner.

- LDA generative model
 - 1. For each topic $k = 1 \dots K$:
 - A. Sample the topic vector β_k from a Dirichlet distribution.
 - 2. For each document $d = 1 \dots D$:
 - A. Sample the topic weights θ_d from a Dirichlet distribution.
 - B. For each word-position $n = 1 \dots N$:
 - a. Sample a topic $z_{d,n}$.
 - b. Sample a word $w_{d,n}$ from topic $z_{d,n}$.

LDA implementation

- Input X is the word counts from CountVectorizer.
- Important parameters:
 - n_components The number of topics (K).
 - doc_topic_prior Smoothing parameter (α) for the topic weights θ .
 - topic word prior Smoothing parameter (η) for the topic vector β .
- Note: in the sklearn implementation,
 - the topic weights are not normalized on output.
 - the topic vectors are not normalized in components
 - can be parallelized (n jobs)

/anaconda3/lib/python3.5/site-packages/sklearn/decomposition/online_lda.py:536 : DeprecationWarning: The default value for 'learning_method' will be changed from 'online' to 'batch' in the release 0.20. This warning was introduced in 0.18.

DeprecationWarning)

- Topic vectors
 - Note that there is a small probability for each word (controlled by smoothing parameter η).

In [23]: plot_topics(lda, vocab)

• Document vector

• Note the small probability for each topic (controlled by smoothing parameter α).

Comparison of topic weights

• LDA weights are probabilities.

In [28]:

compfig

Out[28]:

Linear Dimensionality Reduction - Summary

- **Goal:** given set of input vectors $\{\mathbf{x}_i\}_{i=1}^n$, with $\mathbf{x}_i \in \mathbb{R}^d$, represent each input vector as lower-dimensional vector $\mathbf{w}_i \in \mathbb{R}^p$.
 - Approximate \mathbf{x} as a weighted sum of basis vectors $\mathbf{v}_j \in \mathbb{R}^d$ $\circ \ x = \sum_{j=1}^p w_j \mathbf{v}_j$
 - minimize the reconstruction error of X.
 - enables faster processing, or reduces noise.

Name	Objective	Advantages	Disadvantages
Principal component analysis (PCA)	minimize reconstruction error; preserve the most variance of data	 captures correlated dimensions, removes redundant dimensions, removes noise. closed-form solution 	- does not consider end goal (e.g., classification)
Random Projections	sample random basis vectors.	fast.preserves pairwise distancesbetween points (up to accuracy factor).	- adds noise to the pairwise distances.
Fisher's Linear Discriminant (FLD)	maximize class separation	- preserves class separation	- requires class information
Latent Semantic Analysis (LSA)	minimize reconstruction error	- topic vectors have semantic meaning (co-occuring words) - closed-form solution	 topic weights and topic vectors can be negative does not consider end goal (e.g., classification)
Non-negative Matrix Factorization (NMF)	minimize reconstruction error; non-negative weights and basis vectors.	- "additive" topic/parts model for text or images - sparse topic weights.	- solution requires iterative algorithm does not consider end goal (e.g., classification)
Latent Dirichlet Allocation (LDA)	document is a mixture of topics.	- generative probabilistic model. - robust when dataset size is small.	- inference/training can be slow for larger datasets.

Other things

- Feature Normalization
 - PCA and LDA are based on the covariance between input dimensions.
 - applying per-feature normalization will yield a different PCA result!
 - o normalizing each input dimension changes the relative covariances.

Out[31]:

