1

## DESCRIPTION

## COMMUNICATION SYSTEM AND COMMUNICATION METHOD

- 5 Technical Field
  - [0001] The present invention relates to a communication system and communication method in the case of using Mobile IP (Internet Protocol) as a communication protocol and further using Mobility Anchor Points.
- 10 Background Art

20

25

- [0002] Recently, Mobile IP has increasingly been studied in mobile communications (for example, Non-patent Document 1).
- [0003] Mobile IP is a protocol for automatically detecting a migration of a terminal between networks and enabling communications in a network after the migration in the same way as in a network before the migration.

  Mobile IP compensates for migrations in IP level, and has characteristics that the IP is not dependent on an

application to use and techniques under layer 2.

- [0004] The schematic operation of Mobile IP will be described below. FIGs.1A and 1B are schematic diagrams illustrating Mobile IP, where FIG.1A is a schematic diagram illustrating Mobile Ipv4, and FIG.1B is a schematic diagram illustrating Mobile Ipv6.
- [0005] As shown in FIG.1A, procedures for registering a care-of address in Mobile Ipv4 are as follows: 1. A

terminal moves to a cell (step ST11). 2. The terminal receives an Agent Advertisement periodically transmitted from a FA (Foreign Agent) (step ST12). 3. The terminal acquires a care-of address from the Agent Advertisement.

5 4. The terminal registers the care-of address with the FA (step ST13). 5. The FA registers the care-of address with a Home Agent (step ST14).

10

15

20

[0006] The FA is not necessary in Mobile Ipv6. Therefore, the use of Mobile Ipv6 has been discussed widely.

Each terminal has a unique address called the home address, and uses a care-of address in a migration place. Accordingly, each terminal is assigned a care-of address as well as the home address. Each terminal needs to register the care-of address with the Home Agent when migrating to another cell. As shown in FIG.1B, the registration of a care-of address is carried out in following procedures: 1. A terminal moves to another cell (step ST21). 2. The terminal receives a Router Advertisement periodically transmitted from an Access Router (step ST22). 3. The terminal generates a care-of address from the Router Advertisement. 4. The terminal registers the care-of address with the Home Agent (step ST23).

[0007] There is a method of installing a Mobility Anchor
25 Point (hereinafter abbreviated as "MAP") on an upper layer
of a plurality of Access Routers (hereinafter abbreviated
as "ARs") to cause hierarchical registration of care-of

address, and thereby intending fast handover and reduction in load on the Home Agent (hereinafter abbreviated as "HA"). FIG. 2 is a diagram illustrating a configuration of a mobile IP network using MAPs.

- [0008] A Mobile Node (hereinafter abbreviated as "MN") 5 needs to register a care-of address with the MAP as well The MN detects Prefixes of the MAP and AR from as the HA. the Router Advertisement (hereinafter abbreviated as "RA") transmitted from the AR, and using the Prefixes and an 10 Interface Identifier of the MN, generates two care-of addresses, a Regional Care-Of Address (hereinafter abbreviated as "RCOA") and On-Link Care-Of Address (hereinafter abbreviated as "LCOA"). Only the RCOA needs to be registered with the HA, and the number of registrations 15 with the HA is significantly reduced. When moving between ARs, a change in LCOA is required, but only registration with the MAP is necessary. Since the MAP exists relatively nearer than the HA, registration time is short, enabling fast handover. In FIG.2, AR1 to AR8 use the same LCOA, 20 while AR9 to AR16 use the same LCOA.
  - [0009] The aforementioned operation is shown in FIG.3. FIG.3 is a flow diagram illustrating an example of the operation in the conventional network.
- [0010] Initial setting is performed in ST51. In ST52, it is determined whether a terminal has moved between MAPs. When the terminal has moved between MAPs, the processing flow proceeds to ST53. When the terminal has not moved

between MAPs, the processing flow proceeds to ST54. In ST53, the RCOA is registered with the HA. In ST54, the LCOA is registered with the MAP, and the processing flow returns to ST52. A list of terms of Mobile IP is shown in Table 1.

[Table 1]

5

- [0011] However, in the aforementioned constitution using MAPs, it is necessary to register the care-of address with both the MAP and HA in handover between MAPs. It is thus an issue to reduce delay time in handover between MAPs. [0012] In order to overcome the aforementioned issue, i.e. to reduce the delay time in handover between MAPs, a method is considered for installing MAPs hierarchically (for example, Non-patent Document 2).
- Non-patent Document 1: Charles E. Perkins, "Mobile IP",
  IEICE Communications Magazines, MAY 2002,
  Non-patent Document 2: Kono, et al., "Study on Terminal
  Mobility Analogy Method for Multilayer Dispersive IP
  Mobility Control System, CQ2002-77.
- Disclosure of Invention

  Problems to be Solved by the Invention

  [0013] However, in the conventional apparatus, such a problem exists that the number of MAPs becomes extremely large in the case of hierarchically setting the MAPs to reduce the delay time in handover between MAPs caused by registrations of a care-of address with both the MAP and HA in the handover between MAPs.

  [0014] It is an object of the present invention to provide

a communication system and communication method enabling significant reduction in delay in handover between MAPs without increasing the number of MAPs to install.

[Means for Solving the Problem]

[0015] A communication system of the invention adopts a constitution provided with a mobility anchor point which is connected to a plurality of access routers, and issues a care-of address to a communication terminal apparatus communicating with one of the access routers, the access 10 is communicating with routers οf which the one communication terminal apparatus and transmits the care-of address to the communication terminal apparatus, a network which connects the mobility anchor point and the access routers and transmits the care-of address to 15 a home agent to which the communication terminal apparatus belongs, and the home agent which stores the care-of address and a home address in association with each other for each communication terminal apparatus, and transmits data that is transmitted to the home address of the 20 communication terminal apparatus to a destination indicated by the care-of address, where the mobility anchor point issues another care-of address effective in a cell of an access router and in another cell to the communication terminal apparatus communicating with the 25 access router with the cell being adjacent to the another cell that belongs to another mobility anchor point. [0016] In a communication method of the invention, in

a communication system provided with a mobility anchor point which is connected to a plurality of access routers, and issues a care-of address to a communication terminal apparatus communicating with one of the access routers, the access routers one of which is communicating with the communication terminal apparatus and transmits the care-of address to the communication terminal apparatus, a network which connects the mobility anchor point and the access routers and transmits the care-of address to 10 a home agent to which the communication terminal apparatus belongs, and the home agent which stores the care-of address and a home address in association with each other for each communication terminal apparatus, and transmits data that is transmitted to the home address of the 15 communication terminal apparatus to a destination indicated by the care-of address, another care-of address effective in a cell of an access router and in another cell is transmitted to the communication terminal apparatus communicating with the access router where the cell is adjacent to the another cell that belongs to another mobility anchor point.

Advantageous Effects of the Invention

20

[0017] According to the present invention, communications using Mobile IP as a communication protocol and further using MAPs, by assigning one more 25 care-of address to register with a Home Agent to cells on either side of the boundary of MAPs, it is possible

to significantly reduce delay in handover between the MAPs without increasing the number of MAPs to install. Brief Description of Drawings

- 5 FIG.1A is a schematic diagram illustrating Mobile IP;
  - FIG.1B is a schematic diagram illustrating another Mobile IP:
- FIG.2 is a diagram illustrating a configuration of a Mobile IP network using MAPs;
  - FIG.3 is a flow diagram illustrating an example of operation in a conventional network;
- FIG.4 is a block diagram illustrating a configuration of a communication system according to 15 Embodiment 1 of the invention;
  - FIG. 5 is a flow diagram illustrating an example of operation in the communication system of this Embodiment; and
- FIG.6 is a block diagram illustrating a configuration of a communication system according to Embodiment 2 of the invention.

Best Mode for Carrying Out the Invention

25

[0019] The inventor of the invention has noted that since it is necessary to register the care-of address with both the MAP and HA in handover between MAPs, the delay time increases in the handover between MAPs, and that when MAPs are installed hierarchically to reduce the delay

time in handover between MAPs, the number of MAPs to install remarkably increases, and reached the invention.

[0020] In other words, it is a gist of the invention assigning one more care-of address to register with a Home Agent to cells on either side of the boundary of Mobility Anchor Points in communications using Mobile IP as a communication protocol and further using MAPs, and thereby overcoming the above-mentioned problem.

[0021] Embodiments of the present invention will specifically be described below with reference to

[0022]

10

(Embodiment 1)

accompanying drawings.

It is a feature of Embodiment 1 of the invention 15 assigning one more care-of address to register with a Home Agent to cells on either side of the boundary of Mobility Anchor Points in communications using Mobile IP as a communication protocol and further using MAPs, and thereby largely reducing delay in handover between 20 MAPs, without increasing the number of MAPs to install. [0023] Embodiment 1 will be described below. FIG.4 is a block diagram illustrating a configuration of a communication system according to Embodiment 1 of the The system of FIG. 4 is principally comprised invention. of MAP 101, MAP 102, network 103, CN 104, HA 106, MN 107 25 and ARs 111 to 126.

[0024] In FIG.4, MAP 101 issues a Router Advertisement

to ARs 111 to 118. Particularly, MAP 101 assigns a plurality of Router Advertisements that are a source of a care-of address (RCOA) to register with the HA to AR 118 of a cell on either side of the boundary of areas for each MAP.

[0025] Similarly, MAP 102 issues a care-of address to ARs 119 to 126. Particularly, MAP 102 assigns a plurality of Router Advertisements that are a source of care-of address (RCOA) to register with HA to AR 119 of a cell on either side of the boundary of areas for each MAP. By this means, ARs 111 to 118 use the same care-of address (RCOA), and ARs 119 to 126 use the same care-of address (RCOA).

[0026] In other words, two care-of addresses (RCOAs) to register with the Home Agent are assigned to cells (ARs 118 and 119) on either side of the boundary of Mobility Anchor Points.

15

20

[0027] Network 103 is a network to connect to MAP 101, MAP 102, Router 105 and HA 106. CN 104 is a communicating party that communicates with MN 107 via Network 103. Router 105 transmits a packet to CN 104 among received packets to CN 104.

[0028] HA 106 stores the RCOA of MN 107, and delivers a packet to MN 107 to the RCOA.

25 [0029] MN 107 receives a Router Advertisement transmitted from an AR that is a communicating party among ARs 119 to 126, and generates care-of addresses, RCOA

and LCOA, from the Router Advertisement. More specifically, MN 107 detects Prefixes of the MAP and AR from the RA, and generates two care-of addresses, RCOA and LCOA of the MN 107. Then, MN 107 transmits the generated RCOA and LCOA to HA 106 via the AR of communicating party and the MAP to which the AR belongs.

[0030] ARS 111 to 118 transmit a Router Advertisement generated by MAP 101 to a MN (for example, MN 107) in communication. ARS 111 to 118 further transmit RCOA and LCOA issued from MN 107 to MAP 101.

- [0031] Similarly, ARs 119 to 126 transmit a Router Advertisement generated by MAP 102 to a MN in communication.

  ARS 119 to 126 further transmit RCOA and LCOA issued from MN 107 to MAP 102.
- 15 [0032] In Embodiment 1 of the invention, for example, as shown in FIG.4, one more care-of address (RCOA) to register with the Home Agent is assigned to cells (ARs 8 and 9 in FIG.4) on either side of the boundary of Mobility Anchor Points.
- 20 [0033] The operation of the system with the aforementioned constitution will be described below.

  FIG.5 is a flow diagram illustrating an example of the operation in the communication system of this Embodiment.

  [0034] In the present invention, following processing
- 25 is carried out in the case of performing handover between MAPs.

[0035] Initial setting is performed in ST201.

[0036] In ST202, it is determined whether a terminal (for example, NN 107 in FIG.4) has moved to a cell on either side of the boundary of MAPs (for example, a cell of AR 118 in FIG.4). When the terminal has moved to the cell on either side of the boundary of MAPs, the processing flow proceeds to ST203. When the terminal has not moved to the cell on either side of the boundary of MAPs, the processing flow proceeds to ST204.

[0037] In ST203, another care-of address (RCOA) to beforehand register with the HA is registered with the HA before a migration between MAPs (before moving to AR 9 in FIG.4). Herein, another RCOA to register with the HA is effective in cells (ARs 118 and 119 in FIG.4) on either side of the boundary of MAPs. Accordingly, the cells on either side of the boundary of MAPs use the same second RCOA, and thus use two RCOAs.

[0038] In ST204, it is determined whether the terminal has completed a migration between MAPs (migration from AR 8 to AR 9 in FIG.4). When the terminal has completed the migration between MAPs, the processing flow proceeds to ST205. When the terminal has not completed the migration between MAPs, the processing flow proceeds to ST206.

20

[0039] In ST205, the LCOA of AR 119 is registered with the MAP. Herein, another RCOA to register with the HA is already registered with the HA. Accordingly, in ST206, the terminal is only required to register the LCOA of

AR 9 with the MAP to be allowed to communicate.

5

10

15

20

25

When moving from the cell (AR119 in FIG.4) adjacent to the boundary of MAPs to another cell, it is necessary to register a first RCOA to register with the However, it is only required to register HA with the HA. the first RCOA with the HA during a period of time of existing in the cell (AR119 in FIG.4) adjacent to the boundary of MAPs, and therefore, the delay does not increase. Accordingly, even in handover between MAPs, only registering the LCOA with the MAP allows communications, and it is thereby possible to largely reduce the delay in handover between MAPs.

[0041] Thus, according to Embodiment 1, in communications using MAPs, another care-of address to register with the HA is assigned to cells on either side of the boundary of MAPs, and it is thereby possible to significantly reduce the delay in handover between the MAPs, without increasing the number of MAPs to install. In addition, the aforementioned descriptions explain the case where a single cell is effective on either side of the boundary of MAPs to assign another care-of address, but the number of cells effective in the care-of address may be plural. In other words, it is possible to optionally set the number of cells effective in the second care-of address.

[0043] Further, described above is the case of registering the second care-of address with the HA, but

the present invention is not limited to such a case. For example, it is also possible to install a router on a layer higher than the MAP to manage the second care-of address.

5 [0044]

20

(Embodiment 2)

When moving speed of a terminal is high, there is a fear that the terminal has moved over the boundary of MAPs before completing registration of another care-of address as described above. Therefore, it is required to increase the number of cells effective in another care-of address to assign to cells on either side of the boundary of MAPs. However, as the number of cells effective in another care-of address increases, the number of cells for the HA to manage increases, and an issue arises that the load required for control becomes heavy.

[0045] Then, in Embodiment 2 of the invention, the number of cells is made variable which is effective in another care-of address to assign to cells on either side of the boundary of MAPs, and it is thus intended to implement both reduction in delay in handover between MAPs and easiness in control.

[0046] FIG.6 is a diagram illustrating a configuration of a communication system according to Embodiment 2 of the invention. In addition, the same structural elements as in FIG.4 are assigned the same reference numerals to

omit descriptions thereof.

15

[0047] MAP 301 issues a Router Advertisement to ARs 111 to 118. Then, MAP 301 detects moving speed of a terminal (for example, MN 107), and assigns a plurality of Router Advertisements of a source of care-of address (RCOA) to register with the HA to AR(s) of one or more cells corresponding to the moving speed. In addition, MAP 301 assigns a plurality of Router Advertisements to cells in ascending order of distance from the boundary of MAPs.

10 Further, the number of cells to assign a plurality of advertisements is increased, as the moving speed of a terminal is higher.

[0048] Similarly, MAP 302 issues a care-of address to ARs 119 to 126. Then, MAP 302 detects moving speed of a terminal (for example, MN 107), and assigns a plurality of Router Advertisements of a source of care-of address (RCOA) to register with the HA to AR(s) of one or more cells corresponding to the moving speed.

[0049] For example, using two kinds of second care-of addresses (care-of address allowing one cell on either side of the boundary to be effective in the care-of address as shown in FIG.4, and care-of address allowing two cells on either side of the boundary to be effective in the care-of address as shown in FIG.6), the MAP selects the second care-of address to assign corresponding to the moving speed of the terminal.

[0050] In other words, the MAP assigns a care-of address

allowing one cell on either side of the boundary to be effective in the care-of address as shown in FIG.4 when the moving speed of the terminal is low, while assigning another care-of address allowing two cells on either side of the boundary to be effective in the care-of address as shown in FIG.6 when the moving speed of the terminal is high.

[0051] Described herein is the case of using two kinds of second care-of addresses, but the present invention is not limited to such a case. It is also possible to set the arbitrary number of second care-of addresses.

[0052] Thus, according to Embodiment 2, by varying the number of cells effective in one more care-of address corresponding to the moving speed of a terminal, it is possible to implement both reduction in delay in handover between MAPs and easiness in control.

[0053] In addition, the present invention is not limited to the aforementioned Embodiments, and is capable of being carried into practice with various modifications thereof.

For example, the aforementioned Embodiments describe the case of implementing the invention as a communication system, but the invention is not limited to such a case.

The communication system may be implemented as software.

[0054] For example, it may be possible storing a program
to execute the above-mentioned communication method
beforehand in ROM (Read Only Memory), and operating the
program by a CPU (Central Processor Unit).

[0055] Further, it may be possible storing a program to execute the above-mentioned communication method in a computer readable storage medium, further storing the program stored in the storage medium in RAM (Random Access

5 Memory) of a computer, and operating the computer according to the program.

[0056] The present application is based on the Japanese Patent Application No.2003-400347 filed on November 28, 2003, entire content of which is expressly incorporated by reference herein.

Industrial Applicability

10

[0057] The present invention is suitable for use in communications using Mobile IP as a communication protocol.