Larissa Degen de Almeida

Métrica de Buracos Negros: Singularidade, Horizonte de Eventos e Ergosfera

Alegre - ES, Brasil 2021

Larissa Degen de Almeida

Métrica de Buracos Negros: Singularidade, Horizonte de Eventos e Ergosfera

Trabalho de Conclusão de Curso apresentado a Universidade Federal do Espírito Santo, como parte dos requisitos para obtenção do título de Licenciado em Física.

Universidade Federal do Espírito Santo - UFES Centro de Ciências Exatas, Naturais e da Saúde

Orientador: Prof. Dr. Roberto Colistete Júnior

Alegre - ES, Brasil 2021

Larissa Degen de Almeida

Métrica de Buracos Negros: Singularidade, Horizonte de Eventos e Ergosfera

Trabalho de Conclusão de Curso apresentado a Universidade Federal do Espírito Santo, como parte dos requisitos para obtenção do título de Licenciado em Física.

Aprovado em: 08 de Outubro de 2021.

Comissão Examinadora:

Prof. Dr. Roberto Colistete Júnior Orientador

Professor Dr. Júnior Diniz Toniato

Professor MSc. Ramón Giostri Campos

Alegre - ES, Brasil

Agradecimentos

Agradeço a meus pais, Gercino e Sônia, pelo apoio para que eu pudesse ficar todo esse tempo na graduação. As minhas irmãs, Amanda e Giseli, meu cunhado Miguel e especialmente meu sobrinho Theo. Meus avós Theofilo, Elzina, Maria Derlinda e Argeuni. E meus tios, tias e primos.

Agradeço a meu orientador Roberto Colistete Júnior por embarcar nessa ideia junto comigo.

Ao Robson por me apoiar em todos os momentos, e aos Amigos que fiz em Alegre. Muito obrigada.

Resumo

Uma das soluções encontradas para as equações de campo de Einstein são os buracos negros. Estas soluções são descritas através de métricas, que contém características intrínsecas a uma única solução, como massa, rotação e carga elétrica. Estes objetos ainda possuem regiões em que existem singularidades, onde as leis da Física não funcionam, bem como regiões com horizonte de eventos e ergosfera. Numa modelagem computacional em Python, conseguimos visualizar o horizonte de eventos, a ergosfera e o comportamento dos buracos negros em relação aos parâmetros que caracterizam cada um.

Palavras-chave: Relatividade Geral, Buraco Negro, Horizonte de Eventos, Ergosfera.

Lista de ilustrações

Figura 1 –	Imagem reconstruída a partir de observações do buraco negro	
	da galáxia Messier 87 [9]	11
Figura 2 -	Horizonte de eventos de Schwarzschild no plano xz , com $M=4.2$.	20
Figura 3 -	Horizonte de eventos de Schwarzschild no plano xz , com $M=2.1$.	21
Figura 4 -	Horizonte de eventos e ergosfera de Kerr no plano xz , com	
	$M = 4.2 \text{ e } a = 4.0. \dots$	22
Figura 5 –	Horizonte de eventos e ergosfera de Kerr no plano xz , com	
	$M = 4.2 \text{ e } a = 3.3. \dots$	22
Figura 6 –	Horizonte de eventos e ergosfera tridimensionais de Kerr com	
	M=4.2 e $a=4.0$, as superfícies seriam todas fechadas, aqui es-	
	tão abertas para permitir a visualização das superfícies interiores.	
		23
Figura 7 –	Visualização em perspectiva tridimensional dos horizontes de	
	eventos, ergosferas e da singularidade de anel do buraco negro	
	de Kerr [20]	24
Figura 8 -	Horizonte de eventos e ergosfera de Kerr-Newman no plano xz ,	
	com $M = 4.2$, $a = 3.0$ e $Q = 2.0$	25
Figura 9 –	Horizonte de eventos e ergosfera de Kerr-Newman no plano xz ,	
	com $M = 4.2$, $a = 2.0$ e $Q = 2.0$	26
Figura 10 –	Horizonte de eventos e ergosfera de Kerr-Newman no plano xz ,	
	com $M = 4.2$, $a = 3.0$ e $Q = 2.9$	26
Figura 11 –	Horizonte de eventos de Reissner-Nordström no plano xz , com	
	$M = 4.2 \text{ e } Q = 2.0. \dots$	28
Figura 12 –	Horizonte de eventos de Reissner-Nordström no plano xz , com	
	$M = 4.2 \text{ e } Q = 3.9.\dots$	28

Lista de tabelas

Tabela 1 – Características dos buracos negros físicos

Sumário

1	INTRODUÇÃO	10
1.1	Apresentação	10
1.2	Objetivos	11
2	REFERENCIAL TEÓRICO	13
2.1	Gravitação Newtoniana	13
2.2	Teoria da Relatividade Restrita e Geral	13
2.3	Métrica de Schwarzschild	15
2.4	Métrica de Kerr	16
2.5	Métrica de Kerr-Newman	16
2.6	Métrica de Reissner-Nordström	17
3	METODOLOGIA	18
3.1	Singularidade	18
3.2	Horizonte de Eventos	18
3.3	Ergosfera	19
3.4	Desenvolvimento	19
4	RESULTADOS E DISCUSSÕES	20
4.1	Horizonte de Eventos de Schwarzschild	20
4.2	Horizonte de Eventos e Ergosfera de Kerr	21
4.3	Horizonte de Eventos e Ergosfera de Kerr-Newman	25
4.4	Horizonte de Eventos de Reissner-Nordström	27
5	CONSIDERAÇÕES FINAIS	30
	REFERÊNCIAS	31
A	CÓDIGO FONTE	35

A .1	Código Fonte dos Gráficos de Horizonte de Eventos de	
	Schwarszchild	5
A.2	Código Fonte dos Gráficos de Horizonte de Eventos e Ergos-	
	fera de Kerr	5
A.3	Código Fonte do Gráfico Tridimensional do Horizonte de	
	Eventos e Ergosfera de Kerr	6
A.4	Código Fonte dos Gráficos de Horizonte de Eventos e Ergos-	
	fera de Kerr-Newman	8
A.5	Código Fonte dos Gráficos de Horizonte de Eventos de	
	Reissner-Nordström	9

1 Introdução

1.1 Apresentação

Entre os séculos XVII e XVIII, houve uma mudança de cenário na Física, onde era apenas sobre teorias e pensamentos aristotélicos, todas as coisas eram formadas por 4 elementos, o céu era apenas o que era visto a olho nu, para o começo de uma Física robusta, onde teorias e experimentos começaram a ser feitos provando que temos muito o que aprender e conhecer sobre todas as coisas que nos cercam.

Sir Isaac Newton (1642 – 1727), desenvolvedor da Lei da Gravitação Universal [1], em seus estudos conseguiu correlacionar que um objeto caindo em direção ao chão pode ter a mesma explicação que um objeto como a Lua orbitar a Terra. A Lei da Gravitação Universal diz que dois corpos com massa se atraem devido a uma força exercida pelo produto de suas massas e inversamente proporcional ao quadrado da distância entre as mesmas, esta denominada força gravitacional, a qual todos os corpos do universo estariam submetidos.

Quando Einstein, no começo do século XX, apresenta seus artigos da Teoria da Relatividade Especial [2] e Teoria da Relatividade Geral [3], com seus estudos sobre a invariância da velocidade da luz, a unificação de três dimensões espaciais com a dimensão temporal, isso muda a percepção que a gravidade é uma força de ação imediata entre os corpos com massa e traz que a gravidade é uma propriedade geométrica do espaço-tempo. De imediato, a teoria satisfaria a explicação do avanço do periélio de Mercúrio.

Apenas um ano após a apresentação dos artigos da teoria da relatividade geral, um físico alemão chamado Karl Schwarzschild (1873-1916), encontra uma solução para as Equação de Campo de Einstein. Na solução, ele descreve sobre um corpo de densidade infinita que deforma a malha do espaço-tempo com tamanha proporção que qualquer objeto que ultrapasse uma certa região gravitacional não tem a oportunidade de retornar [4]. Mais tarde, esta região do espaço seria denominada como Buraco Negro [5].

Hoje são aceitas pela comunidade quatro soluções que representam buracos negros físicos. Cada solução é descrita por uma métrica, esta caracteriza o buraco negro, com parâmetros de massa, de possuir ou não momento angular e carga elétrica. Cada solução particular gera regiões entorno da singularidade, o horizonte de eventos e a ergosfera.

Existem cerca de 200 bilhões de buracos negros supermassivos localizados em centro de galáxias e 20 quintilhões de buracos negros estelares, estes formados pelo colapso gravitacional de uma estrela [6]. Em 2019, um grupo de cerca de 200 cientistas divulgaram um trabalho que durou cerca de 2 anos, com quase 4 milhões de gigabytes de dados coletados por 8 telescópios, eles conseguiram gerar a primeira imagem de um buraco negro supermassivo que fica a uma distância de 55 milhões de anos-luz da Terra, localizado no centro da galáxia Messier 87 [7]. E no ano de 2020, foram laureados com o Prêmio Nobel de Física [8] os cientistas Roger Penrose, Reinhard Genzel e Andrea Ghez, por seus trabalhos sobre a natureza dos buracos negros.

Figura 1 – Imagem reconstruída a partir de observações do buraco negro da galáxia Messier 87 [9].

1.2 Objetivos

Neste trabalho apresentamos as principais métricas de buracos negros aceitas pela comunidade científica e o comportamento destas em relação à singularidade, horizonte de eventos e ergosfera. Estas regiões serão modeladas na linguagem

de programação Python [10], de modo a gerar gráficos que possibilitam visualizar e exemplificar de maneira clara e objetiva a estrutura do espaço-tempo nas proximidades de um buraco negro.

2 Referencial Teórico

2.1 Gravitação Newtoniana

Em 1687 Isaac Newton (1643-1727), publicou seu livro *Princípios Matemáticos* da Filosofia Natural [1], neste livro há postulado que traz a ideia de que um corpo em qualquer lugar do Universo atrai outro corpo em sua direção por uma força que é diretamente proporcional ao produto de suas massas, mas inversamente proporcional ao quadrado da distância que os separa. Este postulado é conhecido como Lei da Gravitação Universal, dado pela equação:

$$F = G \frac{m_1 \cdot m_2}{r^2} \tag{2.1}$$

Onde F é a força atrativa na direção da reta que passa pelo centro das duas massas, G é a constante gravitacional de valor $6,674184 \cdot 10^{-11} m^3 kg^{-1}s^{-1}$, m_1 e m_2 são as massas dos corpos envolvidos e r é a distância entre eles. Esta lei explica o porquê de uma maçã ao se desprender da árvore cai em direção ao solo, e também como a Lua tem seu movimento em torno da Terra, e os planetas em torno do Sol. Newton acreditava que, por se tratar de uma força instantânea que agia sobre todos os corpos, esta se estenderia por todo universo com velocidade infinita.

2.2 Teoria da Relatividade Restrita e Geral

Com o passar dos anos e a evolução do conhecimento científico, temos que no começo do século XX, em 1905, Albert Einstein (1879-1955) apresentou para à comunidade científica o artigo da Teoria da Relatividade Restrita [2], com dois postulados que assumem a invariância da velocidade da luz e que todas as leis da natureza são as mesmas para todos os sistemas de referência inerciais.

Esses postulados trazem consequências diretas que o espaço e o tempo não são absolutos, são relativos aos observadores e que a luz, um fenômeno eletromagnético,

possui velocidade finita, e nada no universo ultrapassa sua velocidade. E isso vai contra teoria gravitacional de Newton, se aumentarmos a distância entre os corpos, os efeitos gravitacionais seriam sentidos imediatamente, pois viajam em velocidade infinita.

Em 1915, Einstein apresenta a Teoria da Relatividade Geral [3], onde ele amplia a abordagem da Teoria da Relatividade Restrita para referenciais não inerciais. Nesta, ele traz a ideia de que a gravidade não é uma força, mas o resultado da deformação do espaço-tempo provocado por uma distribuição de massa e energia. Ele descreve essa teoria matematicamente na forma das equações de campo:

$$R_{\mu\nu} - \frac{R}{2}g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu} \tag{2.2}$$

Na equação 2.2, $R_{\mu\nu}$ é o tensor de curvatura de Ricci, R o escalar de curvatura de Ricci, $g_{\mu\nu}$ é o tensor métrico, $T_{\mu\nu}$ é o tensor de energia-momento, G é a constante gravitacional e c a velocidade da luz. Esta equação é tensorial com 10 componentes independentes que resultam em 10 equações diferenciais parciais acopladas.

Pouco tempo depois de Einstein apresentar esta equação, o físico Karl Schwarzschild (1873-1916) encontra uma solução particular que mostra o comportamento do campo gravitacional ao redor de um corpo esféricamente simétrico segundo a Teoria da Relatividade Geral [4]. E ao calcular o efeito da curvatura do espaço-tempo exterior a um corpo, e se a massa do corpo fosse comprimida até um espaço suficientemente pequeno, o tecido do espaço-tempo se deformaria gerando um campo gravitacional tão intenso que qualquer objeto não sairia da região ao redor do corpo, inclusive a luz. Esta solução apresenta os Buracos Negros.

Obter uma solução das equações de campo é de extrema complexidade, por se tratarem de equações não-lineares. São utilizados tensores métricos [11], ou apenas métricas, para descrever a solução, estas determinam algumas propriedades do espaço, como distância, homogeneidade, volume, isotropia, curvatura, etc. O papel da Relatividade Geral é determinar a geometria do espaço-tempo.

São aceitas pela comunidade científica quatro métricas que descrevem buracos negros físicos, são as métricas de: Schwarzschild [4], Kerr [12], Kerr-Newman [13] e Reissner-Nordström [14-15]. Existem dezenas de outras métricas teóricas para buracos negros, como AdS [16], Demiański-Newman [17], Vaidya [18], mas para

este trabalho foram escolhidas as quatro métricas aceitas pela comunidade, pois com elas as previsões da Relatividade Geral são verificadas observacionalmente [19] e porque outras métricas existentes são derivações dessas quatro escolhidas.

Tal como é usual na comunidade científica de Relatividade Geral, a maioria das expressões seguintes de métricas, equações dos horizontes de eventos, das ergosferas, etc, adotarão constantes com valor natural adimensional unitário (1): G, c e a multiplicação de constantes $4\pi\epsilon_0$. Como resultado, M, a e Q passam a ter a mesma unidade, de comprimento.

2.3 Métrica de Schwarzschild

Karl Schwarzschild (1873-1916) descreve uma solução exata das equações de campo de Einstein para o campo gravitacional de uma massa pontual [20]. Ele descreve a métrica em quadri coordenadas (c t, r, θ , ϕ) usando coordenadas esféricas:

$$g_{\mu\nu} = \begin{bmatrix} -\left(1 - \frac{r_s}{r}\right) & 0 & 0 & 0\\ 0 & \left(1 - \frac{r_s}{r}\right)^{-1} & 0 & 0\\ 0 & 0 & r^2 & 0\\ 0 & 0 & 0 & r^2 \sin^2\theta \end{bmatrix}$$
(2.3)

Com o elemento de linha:

$$ds^{2} = -\left(1 - \frac{r_{s}}{r}\right)dt^{2} + \frac{dr^{2}}{1 - \frac{r_{s}}{r}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$
 (2.4)

Onde o valor de r_s , o Raio de Schwarzschild, é definido como:

$$r_s = \frac{2GM}{c^2} \tag{2.5}$$

sendo G a constante gravitacional de Newton, M a massa e c a velocidade da luz no vácuo. Esta métrica descreve um buraco negro com massa, sem momento angular e sem carga elétrica.

2.4 Métrica de Kerr

O matemático Roy Kerr (1934), em 1963, encontrou uma solução para as equações de campo. Ele demonstrou a geometria espaço-temporal ao redor de um corpo massivo em rotação, ou podemos descrever como a existência de um buraco negro em rotação (momento angular). Kerr descreve a métrica a partir da métrica de Schwarzschild, onde ele substitui o que era r = 0 para $r^2 + a^2 \cos^2 \theta = 0$, usando coordenadas de Boyer-Lindquist temos [22]:

$$g_{\mu\nu} = \begin{bmatrix} -\left(1 - \frac{2Mr}{\Sigma}\right) & 0 & 0 & -\frac{2aMrsin^2\theta}{\Sigma} \\ 0 & \frac{\Sigma}{\Delta} & 0 & 0 \\ 0 & 0 & \Sigma & 0 \\ -\frac{2aMrsin^2\theta}{\Sigma} & 0 & 0 & sin^2\theta \left(r^2 + a^2 + \frac{2Mra^2sin^2\theta}{\Sigma}\right) \end{bmatrix}$$
(2.6)

E o elemento de linha:

$$ds^{2} = -\left(1 - \frac{2Mr}{\Sigma}\right)dt^{2} - \frac{4Marsin^{2}\theta}{\Sigma}dtd\phi + \frac{\Sigma}{\Delta}dr^{2} + \Sigma d\theta^{2} + \left(r^{2} + a^{2} + \frac{2Mra^{2}sin^{2}\theta}{\Sigma}\right)sin^{2}\theta d\phi^{2}$$

$$(2.7)$$

Onde:

$$\Delta \equiv r^2 - 2Mr + a^2 \tag{2.8}$$

$$\Sigma \equiv r^2 + a^2 \cos^2 \theta \tag{2.9}$$

Com massa M e $a=\frac{|\vec{J}|}{M},$ onde $J=|\vec{J}|$ é o momento angular do corpo com rotação.

2.5 Métrica de Kerr-Newman

A partir da métrica de Kerr, outra solução foi encontrada por Ezra T. Newman (1965), onde ele adiciona um parâmetro de carga elétrica. O buraco negro então possui momento angular \vec{J} e carga elétrica total Q. Sua métrica é descrita pelo elemento de linha usando coordenadas de Boyer–Lindquist [24]:

$$ds^{2} = -\frac{\Delta}{\Sigma}(dt - asin^{2}\theta d\phi)^{2} + \frac{sin^{2}\theta}{\Sigma}((r^{2} + a^{2})d\phi - adt)^{2} + \frac{\Sigma}{\Delta}dr^{2} + \Sigma d\theta^{2}$$
 (2.10)

Onde:

$$\Delta = r^2 - r_s r + a^2 + r_Q^2 \tag{2.11}$$

$$r_Q^2 = \frac{Q^2 G}{4\pi\epsilon_0 c^4} \tag{2.12}$$

Onde r_s é dado pela equação (2.5), Σ pela equação (2.9), G é a constante gravitacional de Newton, M a massa do corpo, Q a carga elétrica do corpo e ϵ_0 é a permissividade elétrica do vácuo. Esta métrica é a mais genérica.

2.6 Métrica de Reissner-Nordström

Desenvolvida por Gunnar Nordström (1881-1923) e Hans Reissner (1874-1967), esta métrica apresenta uma massa com simetria esférica, estática e carregada eletricamente. A métrica é descrita em quadri coordenadas (c t, r, θ , ϕ) usando coordenadas esféricas [25]:

$$g_{\mu\nu} = \begin{bmatrix} -\left(1 - \frac{r_s}{r} + \frac{r_Q^2}{r^2}\right) & 0 & 0 & 0\\ 0 & \left(1 - \frac{r_s}{r} + \frac{r_Q^2}{r^2}\right)^{-1} & 0 & 0\\ 0 & 0 & r^2 & 0\\ 0 & 0 & 0 & r^2 \sin^2\theta \end{bmatrix}$$
(2.13)

Com o elemento de linha:

$$ds^{2} = -\left(1 - \frac{r_{s}}{r} + \frac{r_{Q}^{2}}{r^{2}}\right)c^{2}dt^{2} + \left(1 - \frac{r_{s}}{r} + \frac{r_{Q}^{2}}{r^{2}}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + sen^{2}\theta d\phi^{2}) \quad (2.14)$$

Onde r_s é dado pela equação (2.5) e r_Q^2 é dado pela equação (2.12).

3 Metodologia

Uma vez apresentadas as métricas, vamos abordar estruturas que formam junto à singularidade o buraco negro. O problema escolhido foi desenvolver um código simples para demonstrar o comportamento dos buracos negros diante de suas características:

Métrica	Massa M	Rotação \vec{J}	Carga elétrica Q
Schwarzschild	Sim	Não	Não
Kerr	Sim	Sim	Não
Kerr-Newman	Sim	Sim	Sim
Reissner-Nordström	Sim	Não	Sim

Tabela 1 – Características dos buracos negros físicos.

Estas características geram estruturas conhecidas como horizonte de eventos e ergosfera. Como as métricas deduzem equações complexas para demonstrar estas estruturas, a parametrização destas equações foram a melhor escolha para a produção de gráficos em Python, possibilitando criar um código de poucas linhas e considerado simples.

3.1 Singularidade

Singularidade é um ponto ou região onde as teorias da Física não mais funcionam, ou seja, perdem a capacidade de predição, inclusive a Relatividade Geral. As singularidades são obtidas da análise dos invariantes de curvatura da Relatividade Geral na métrica respectiva.

3.2 Horizonte de Eventos

A estrutura do horizonte de eventos é uma região onde há uma intensa ação do campo gravitacional. Qualquer objeto que a ultrapasse não mais retornará, nem

mesmo a luz poderá retornar, pois, a velocidade de escape desta região é superior à velocidade da luz.

3.3 Ergosfera

Esta estrutura surge apenas aos buracos negros com rotação, ou seja, momento angular $|\vec{J}|$, pois é formada a partir de um arrasto gravitacional dos referenciais gerado pelo movimento de rotação. Esta é uma região do espaço-tempo imediatamente externa ao horizonte de eventos, mas diferentemente desta, na ergosfera objetos e até mesmo a luz conseguem retornar.

3.4 Desenvolvimento

O desenvolvimento do algorítimo dos gráficos começou pela escolha da linguagem de programação Python. Bem como algumas ferramentas e softwares que facilitam o cálculo científico. As ferramentas escolhidas para o trabalho foram o LaTeX [26], GitHub [27] e Jupyter Notebook [28], todas gratuitas e de código fonte aberto (FOSS - Free and Open Source Software). E o módulo Python SymPy [29] (Symbolic Python) foi utilizado para visualização gráfica.

Após, a pesquisa procuramos identificar as equações de singularidade, do horizonte de eventos e da ergosfera na forma paramétrica, essas expressam funções explícitas com variáveis independentes e podem descrever superfícies. Optou-se pela forma paramétrica por facilitar a escrita do código e obtendo um resultado muito próximo do esperado. E para as variáveis m, a e Q foram adotados números arbitrários.

Utilizando o Python e SymPy foram definidas as equações paramétricas com o valor determinado para variáveis. Denotando o horizonte de eventos interno e externo como: r_hor_m e r_hor_p , respectivamente m para o valor da equação negativa interna e p para positiva externa. Bem como as equações da ergosfera interna e externa como: r_erg_m e r_erg_p , respectivamente m para equação interna negativa e p para positiva externa.

4 Resultados e Discussões

4.1 Horizonte de Eventos de Schwarzschild

O horizonte de eventos ou raio de Schwarzschild, é estabelecido através da equação:

$$r_s = \frac{2GM}{c^2} \tag{4.1}$$

O gráfico no plano xz obtido para a solução de Schwarzschild:

Figura 2 – Horizonte de eventos de Schwarzschild no plano xz, com M=4.2.

Dimuindo a variável M, temos:

Figura 3 – Horizonte de eventos de Schwarzschild no plano xz, com M=2.1.

O resultado desse gráfico mostra o comportamento esperado do buraco negro que possui apenas a massa M como parâmetro, uma superfície esférica (circunferência na seção do plano xz) representando o horizonte de eventos e a singularidade no centro do buraco negro de Schwarzschild. Podemos observar, nas figuras (2) e (3), que o horizonte de eventos cresce linearmente com a massa M.

4.2 Horizonte de Eventos e Ergosfera de Kerr

A equação do horizonte de eventos:

$$r_{H\pm} = M \pm \sqrt{M^2 - a^2} \tag{4.2}$$

A equação da ergosfera:

$$r_{E+} = M \pm \sqrt{M^2 - a^2 \cos^2 \theta}$$
 (4.3)

O gráfico no plano xz obtido para a solução de Kerr:

Figura 4 – Horizonte de eventos e ergosfera de Kerr no plano xz, com M=4.2 e a=4.0.

Diminuindo a variável a, temos:

Figura 5 – Horizonte de eventos e ergosfera de Kerr no plano xz, com M=4.2 e a=3.3.

Visualização tridimensional da métrica de Kerr:

Figura 6 – Horizonte de eventos e ergosfera tridimensionais de Kerr com M=4.2 e a=4.0, as superfícies seriam todas fechadas, aqui estão abertas para permitir a visualização das superfícies interiores.

O resultado dos gráficos demonstram o comportamento esperado do buraco negro com massa M e densidade de massa de momento angular a. Podemos ver o achatamento nos polos devido ao termo $\cos^2\theta$ que está na raiz quadrada e a existência da região ergosfera, compreendida entre a superfície externa da ergosfera, em verde e a superfície do horizonte de eventos externo, em azul. Nesta região há um arrasto gravitacional, em que algumas partículas ficam presas e tem momento angular junto ao buraco negro.

Com uma pequena diminuição da densidade por unidade de massa de momento angular a, notamos que o achatamento da superfície externa da ergosfera (em verde) fica mais suave, o aumento da superfície do horizonte de eventos externo (em azul) e a diminuição da superfície do horizonte de eventos interno (em vermelho) e da superfície da ergosfera interna (em laranja), isso é consistente com a rotação

mais lenta do buraco negro. E também devido a rotação, a singularidade neste buraco negro se comporta como um anel, no gráfico identificamos como uma dobra equatorial da ergosfera mais interna, em laranja. A equação do anel de singularidade [30] é dada por:

$$x^2 + y^2 = a^2, \ z = 0 (4.4)$$

Figura 7 – Visualização em perspectiva tridimensional dos horizontes de eventos, ergosferas e da singularidade de anel do buraco negro de Kerr [20].

Com exemplo observacional da métrica de Kerr, podemos citar o buraco negro da galáxia Messier 87 (M87), com as seguintes estimativas a partir de dados observacionais: massa $M=(6,5\pm0,2_{stat}\pm0,7_{sys})\cdot10^9M_{sol}$ [31], $a=0,9\pm0,1$ (isto resulta em uma velocidade de rotação de aproximadamente 40% da velocidade da luz) [32] e raio de Schwarzschild $r_s\simeq120\,\mathrm{UA}$ (cerca de 120 vezes a distância da Terra ao Sol)[33].

Para a métrica de Kerr e as duas métricas seguintes, existe o conceito de buraco negro extremo [34] que possui a menor massa M possível para dados valores de a e Q. E outro conceito é a singularidade nua [35], que ocorre para certos valores dos parâmetros do buraco negro tais que não existe horizonte de eventos, expondo a singularidade.

4.3 Horizonte de Eventos e Ergosfera de Kerr-Newman

A equação do horizonte de eventos interno e externo :

$$r_{H\pm} = M \pm \sqrt{M^2 - a^2 - r_Q^2} \tag{4.5}$$

A equação da ergosfera interna e externa:

$$r_{E\pm} = M \pm \sqrt{M^2 - a^2 \cos^2 \theta - r_Q^2} \tag{4.6}$$

O gráfico no plano xz obtido para a solução de Kerr-Newman:

Figura 8 – Horizonte de eventos e ergosfera de Kerr-Newman no plano xz, com $M=4.2,\ a=3.0$ e Q=2.0.

Diminuindo a variável a, temos:

Figura 9 – Horizonte de eventos e ergosfera de Kerr-Newman no plano xz, com $M=4.2,\,a=2.0$ e Q=2.0.

Aumentando a variável Q, temos:

Figura 10 – Horizonte de eventos e ergosfera de Kerr-Newman no plano xz, com $M=4.2,\ a=3.0$ e Q=2.9.

O resultado deste gráfico demonstra o comportamento do buraco negro mais geral, com massa M, densidade por unidade de massa de momento angular a e com carga elétrica Q. Podemos ver o achatamento nos polos devido ao termo $\cos^2\theta$ que está na raiz quadrada e a existência da região ergosfera, compreendida entre a superfície externa da ergosfera, em verde e a superfície do horizonte de eventos externo, em azul. Uma região onde há um arrasto gravitacional, em que algumas partículas ficam presas e tem momento angular junto ao buraco negro.

Com a mudança dos dois parâmetros a e Q, temos uma clara mudança no visual dos gráficos, mantendo o mesmo valor de M. Ao diminuir a, temos a diminuição da região de ergosfera entre as superfícies da ergosfera externa e o horizonte de eventos externo), a diminuição das superfícies de ergosfera interna (em laranja) e de horizonte de eventos interno (em vermelho), estas regiões quase se sobrepondo devido ao campo magnético moderado gerado pela rotação do corpo com carga elétrica. Ao aumentar o valor de Q, vemos as superfícies internas, de ergosfera interna (em laranja) e horizonte de eventos interno (em vermelho), aumentarem consideravelmente, enquanto que as superfícies externas (ergosfera e o horizonte de eventos externos) diminuírem, devido a um campo magnético mais intenso gerado pela rotação do corpo com maior carga elétrica. Devido à rotação, a singularidade da métrica de Kerr-Newman tem também o comportamento de anel de singularidade, equação (4.4).

4.4 Horizonte de Eventos de Reissner-Nordström

A equação do horizonte de eventos é escrita como:

$$r_{\pm} = M \pm \sqrt{M^2 - r_Q^2} \tag{4.7}$$

O gráfico no plano xz obtido para a solução de Reissner-Nordström:

Figura 11 – Horizonte de eventos de Reissner-Nordström no plano xz, com M=4.2 e Q=2.0.

Aumentando a variável Q, temos:

Figura 12 – Horizonte de eventos de Reissner-Nordström no plano xz, com M=4.2 e Q=3.9.

O resultado do gráfico demonstra o comportamento de um buraco negro com massa M e carga elétrica Q. Possui dois horizontes de eventos, um externo (em azul) e outro interno (em vermelho), que condiz com a natureza de simetria entre as duas regiões. Quando o horizonte de eventos interno aumenta, o horizonte de eventos externo diminui. A singularidade desta métrica está no centro do buraco negro de Reissner-Nordström. Se Q for nula, esta métrica se reduz à métrica de Schwarzschild.

5 Considerações Finais

Métricas denotam características dos buracos negros, com massa, momento angular e carga elétrica e também as regiões do horizonte de eventos e da ergosfera. Sabemos que estas regiões junto da singularidade formam a estrutura do buraco negro e são de grande importância de estudos. Neste trabalho, buscamos trazer, utilizando Python e SymPy, a visualização dessas regiões, assim podemos ver seu comportamento, que depende diretamente do valor dos parâmetros.

O buraco negro com métrica de Schwarzschild possui apenas a massa M como parâmetro, assim temos apenas uma região de horizonte de eventos. Com a adição de um parâmetro de densidade por unidade de massa de momento angular a, visivelmente temos o aparecimento de mais três regiões, um horizonte de eventos interno e duas regiões de ergosfera, uma externa e uma interna. Este é o buraco negro com métrica de Kerr.

O buraco negro com métrica de Kerr-Newman, possui os três parâmetros, massa M, densidade por unidade de massa de momento angular a e a carga elétrica Q. Visualmente temos um buraco negro parecido com o de Kerr, mas ao adicionar o parâmetro de carga elétrica Q temos os horizontes de eventos interno e externo e as ergosferas interna e externa passando a depender também de Q.

O buraco negro com métrica de Reissner-Nordström se assemelha à métrica de Schwarzschild. Ao introduzir o parâmetro de carga elétrica Q, notamos o aparecimento de um horizonte de eventos interno, tal que os horizontes de eventos interno e externo passam a depender não só da massa M mas também da carga elétrica Q.

Buracos negros são resultados das equações de campo de Einstein e extremamente complexos. Têm regiões de singularidade no espaço em que as leis da Física atuais, incluindo a Relatividade Geral, não mais funcionam. Têm regiões dentro das superfícies de horizonte de eventos (externo) em que não só a matéria, mas mesmo a luz não escapa. Tanto a parte teórica como a parte observacional de buracos negros continuam em franco desenvolvimento, em busca de compreender cada vez mais a natureza dos buracos negros.

- [1] NEWTON, I. Philosophiae naturalis principia mathematica. 1687. Disponível em: https://www.wdl.org/pt/item/17842/. Acesso em: 15 ago. 2021.
- [2] EINSTEIN A., Zur elektrodynamik bewegter körper. Annalen der physik 322, 891–921 (1905). Disponível em: https://doi.org/10.1002/andp.19053221004. Acesso em 15 ago. 2021.
- [3] EINSTEIN A., Die feldgleichungen der gravitation. Sitzung der physikalischemathematischen Klasse 25, 844–847 (1915). Disponível em: https://einsteinpapers.princeton.edu/vol6-doc/276. Acesso em: 15 ago. 2021.
- [4] SCHWARSZCHILD, K. On the gravitational field of mass point according to Einstein's theory. Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1916 (1916) 189-196. Disponível em: https://arxiv.org/abs/physics/9905030v1. Acesso em: 15 ago 2021.
- [5] BURACO NEGRO. In: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2021. Disponível em: https://pt.wikipedia.org/w/index.php?title=Buraco_negro&oldid=61969354. Acesso em: 25 ago. 2021.
- [6] Buraco negro pode engolir nossa galáxia inteira? Entenda o fenômeno. Disponível em: https://www.uol.com.br/tilt/faq/buraco-negro-o-que-e-como-se-forma-foto-e-muito-mais.htm. Acesso em: 17 de out. 2021.
- [7] Uma imagem e o fim do misterioso horizonte de eventos de um Buraco Negro. Disponível em: https://fisica.alegre.ufes.br/uma-imagem-e-o-fim-do-misterioso-horizonte-de-eventos-de-um-buraco-negro. Acesso em: 19 de out. 2021.
- [8] THE NOBEL PRIZE. disponível em: https://www.nobelprize.org/. Acesso em: 19 de out. 2021.
- [9] First Image of a Black Hole. Disponível em: https://www.eso.org/public/images/eso1907a/. Accesso em: 19 de out. 2021.
- [10] PYTHON. Disponível em: https://www.python.org/. Acesso em: 16 set. 2021

[11] TENSOR MÉTRICO. In: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2020. Disponível em: https://pt.wikipedia.org/w/index.php?title = Tensor_m%C3%A9trico&oldid=58256987>. Acesso em: 23 ago . 2021.

- [12] KERR, R. P. "Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics." Phys. Rev. Let. 11, 237-238, 1963. Disponível em: https://doi.org/10.1103/PhysRevLett.11.237. Acesso em: 14 de out 2021.
- [13] NEWMAN, E. T., et al., J. Math. Phys. 6, 918 (1965).
- [14] REISNNER, H (1916). "Über die Eigengravitation des elektrischen Feldes nach der Einstein'schen Theorie". Annalen der Physik 50: 106–120. Acesso em: 19 de out. 2021.
- [15] NORDSTRÖM, G (1918). "On the Energy of the Gravitational Field in Einstein's Theory". Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk., Amsterdam 26: 1201–1208. Acesso em: 19 de out. 2021.
- [16] BENGTSSON, I., SANDIN, P., Anti-de Sitter space, squashed and stretched. Class.Quant.Grav.23:971-986,2006. Disponível em: 10.1088/0264-9381/23/3/022. Acesso em: 19 de out. 2021.
- [17] COLISTETE Jr., R.; GABRIEL, J.; MARCILHACY, G.; SANTOS, N. O.; "Parametrization of singularities of the Demianski-Newman spacetimes", p. 158-164. In: . São Paulo: Blucher, 2017. ISSN 2358-2359. disponível em: DOI 10.5151/phyproviii-efa-35. Acesso em: 19 de out. 2021.
- [18] NG IBOHAL., Rotating metrics admitting non-perfect fluids in General Relativity. Gen.Rel.Grav. 37 (2005) 19-51. Disponível em: 10.1007/s10714-005-0002-6. Acesso em: 19 de out. 2021.
- [19] RODRIGUES ALMEIDA, C. Buracos Negros: mais de 100 anos de história. Cadernos de Astronomia, Vitória, v. 2, n. 1, p. 93, 2021. DOI: 10.47456/Cad.Astro.v2n1. 33499. Disponível em: https://periodicos.ufes.br/astronomia/article/view/33499. Acesso em: 14 out. 2021.
- [20] SAA, A. Cem anos de buracos negros: o centenário da solução de Schwarszchild. Seção Especial Ondas Gravitacionais, Rev. Bras. Ensino Fís. 38 (4), 2016. Disponível em: https://doi.org/10.1590/1806-9126-RBEF-2016-0191. Acesso em:

15 ago 2021.

[21] SIQUEIRA-BATISTA, R.; HELAYËL NETO, J. A. Buracos negros estelares: A geometria do espaço-tempo de Schwarzschild. Cadernos de Astronomia, Vitória, v. 2, n. 2, p. 123, 2021. DOI: 10.47456/Cad.Astro.v2n2.34640. Disponível em: https://periodicos.ufes.br/astronomia/article/view/34640. Acesso em: 18 set. 2021.

- [22] TEUKOLSKY, Saul A. The Kerr Metric. Classical and Quantum Gravity, vol. 32, n. 12, p. 124006, 2015. Disponível em: https://iopscience.iop.org/article/10.1088/0264-9381/32/12/124006. Acesso em: 25 de ago. 2021.
- [23] VISSER, Matt. VICTORIA U., Wellington. Jun, 2007. The Kerr spacetime: A Brief introduction. Disponível em: arXiv:0706.0622 (gr-qc). Acesso em: 25 de ago. 2021.
- [24] ADAMO, T. The Kerr-Newman metric: A Review. (Cambridge U., DAMTP), E.T. Newman(Pittsburgh U.) (Oct 24, 2014). Disponível em: http://www.scholarpedia.org/article/Kerr-Newman_metric. Acesso em: 25 ago 2021.
- [25] NORDEBO, J. The Reissner-Nordström metric. 2016. Disponível em: https://www.diva-portal.org/smash/get/diva2:912393/FULLTEXT01.pdf. Acesso em: 01 set. 2021.
- [26] LaTex, A document preparation system. Disponível em: https://www.latex-project.org/. Acesso em: 25 de set. 2021.
- [27] GITHUB, Inc. Disponível em: https://github.com/. Acesso em: 25 de set. 2021.
- [28] JUPYTER NOTEBOOK. Disponível em: https://jupyter.org/. Acesso em: 19 de out. 2021.
- [29] SYMPY, Documentation. Disponível em: https://docs.sympy.org/latest/modules/plotting.html. Acesso em: 25 de set. 2021.
- [30] SINGULARIDADE DO ANEL. n: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2020. Disponível em: https://en.wikipedia.org/w/index.php?title=Ring_singularity&oldid=1030737229. Acesso em: 29 set. 2021.
- [31] The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. The Astrophysical

Journal . 875 (1). Disponível em: DOI: 10.3847/2041-8213/ab1141. Acesso em: 19 de out. 2021.

- [32] TAMBURINI, F.; THIDÉ, B.; DELLA VALLE, M. "Medição da rotação do buraco negro M87 a partir de sua luz torcida observada". Avisos mensais da Royal Astronomical Society: Letters. Vol. 492 no. 1. pp. L22 L27. Disponível em: DOI: 10.1093 / mnrasl / slz176. Acesso em: 19 de out. 2021.
- [33] AKIYAMA, K.; LU, Ru-Sen; PEIXE, Vincent L; et al. "Observações VLBI de 230 GHz de M87: Estrutura de escala de horizonte de eventos durante um estado de raio y de energia muito alta aprimorado em 2012". The Astrophysical Journal, Volume 807, Number 2. Disponível em: DOI: 10.1088 / 0004-637X / 807/2/150. Acesso em: 19 de out. 2021.
- [34] CARROLL, S.M., JOHNSON, M.C., RANDALL, L. Extremal limits and black hole entropy. JHEP 0911:109,2009. Disponível em: DOI: 10.1088/1126-6708/2009/11/109. Acesso em: 19 de out. 2021.
- [35] SHAIKA R., KOCHERLAKOTA P., NARAYAN R., JOSHI P. S. Shadows of spherically symmetric black holes and naked singularities. MNRAS 482, 52 (2019). Disponível em: arXiv:1802.08060 [astro-ph.HE]. Acesso em: 19 de out 2021.
- [36] Repositório Larissa-degen/TCC-Buracos-Negros. Disponível em: https://github.com/Larissa-degen/TCC-Buracos-Negros. Acesso em: 19 de out. 2021.

A Código Fonte

Para mais informações, o código fonte Python e o documento desse TCC estão disponíveis no repositório público GitHub "Larissa-degen/TCC-Buracos-Negros" [36].

A.1 Código Fonte dos Gráficos de Horizonte de Eventos de Schwarszchild

A.2 Código Fonte dos Gráficos de Horizonte de Eventos e Ergosfera de Kerr

```
from sympy import *

from sympy.plotting.plot import plot_parametric

def figura_Kerr(M, a):

theta = Symbol('theta')

r_erg_m = M - sqrt(M**2 - (a**2)*(cos(theta)**2))

r_erg_p = M + sqrt(M**2 - (a**2)*(cos(theta)**2))

r_hor_m = M - sqrt(M**2 - a**2)
```

```
r_hor_p = M + sqrt(M**2 - a**2)
                          p = plot_parametric((sqrt(r_erg_m**2 + a**2)*sin(theta), r_erg_m**2 + a**2 + a**2)*sin(theta), r_erg_m**2 + a**2 + a*
                                        cos(theta)),
                                                                                                            (\operatorname{sqrt}(r_{\underline{m}**2} + a**2)*\sin(\operatorname{theta}), r_{\underline{m}**2}
10
                                                                                                                          cos(theta)),
                                                                                                            (\operatorname{sqrt}(r_{p}**2 + a**2)*\sin(\operatorname{theta}), r_{p}*
                                                                                                                          cos(theta)),
12
                                                                                                            (\operatorname{sqrt}(r_{erg_p}**2 + a**2)*\sin(\operatorname{theta}), r_{erg_p}*
                                                                                                                          cos(theta)),
                                                                                                            (theta, 0, 2*pi), aspect_ratio=(1, 1), xlim
                                                                                                                          =[-10.5, 10.5], \text{ ylim} = [-7.5, 7.5],
                                                                                                            xlabel="x", ylabel="z", legend=True,
14
                                                                                                             title="Kerr, M={}, a={}\n".format(M, a), size
                                                                                                                         =(8, 8), show=False)
16
                          p[0]. line_color = 'orange'
                          p[0].label = 'erg-'
                          p[1]. line color = 'red'
                          p[1].label = 'hor-'
                          p[2].line\_color = 'blue'
                          p[2].label = 'hor+'
                          p[3].line\_color = 'green'
                         p[3].label = 'erg+'
                         p.show()
         figura_Kerr (4.2, 4.0)
26 figura Kerr (4.2, 3.3)
```

A.3 Código Fonte do Gráfico Tridimensional do Horizonte de Eventos e Ergosfera de Kerr

```
from sympy import *

from sympy.plotting.plot import plot3d_parametric_surface

def figura_Kerr_3D(M, a):

theta, phi = symbols('theta, phi')

r_erg_m = M - sqrt(M**2 - (a**2)*(cos(theta)**2))

r_erg_p = M + sqrt(M**2 - (a**2)*(cos(theta)**2))

r_hor_m = M - sqrt(M**2 - a**2)

r_hor_p = M + sqrt(M**2 - a**2)
```

```
p = plot3d_parametric_surface((sqrt(r_erg_m**2 + a**2)*cos(phi)*
           sin(theta),
                                            \operatorname{sqrt}(\operatorname{r} \operatorname{erg} \operatorname{m} **2 + \operatorname{a} **2) * \sin(\operatorname{phi}) *
10
                                                 sin(theta), r_erg_m*cos(theta),
                                             (phi, 0.0*pi, 2*pi), (theta, 0, pi
                                                )),
                                            (sqrt(r_hor_m**2 + a**2)*cos(phi)*
12
                                               \sin(theta),
                                            sqrt(r_hor_m**2 + a**2)*sin(phi)*
                                                 sin(theta), r_hor_m*cos(theta),
14
                                             (phi, 0.0*pi, 1.0*pi), (theta, 0,
                                                 pi)),
                                            (sqrt(r_hor_p**2 + a**2)*cos(phi)*
                                               sin (theta),
                                            \operatorname{sqrt}(r_{p**2} + a**2)*\sin(phi)*
16
                                                 sin(theta), r_hor_p*cos(theta),
                                             (phi, 1.0*pi, 1.5*pi), (theta, 0,
                                                 pi)),
                                           (sqrt(r_erg_p**2 + a**2)*cos(phi)*
18
                                               sin (theta),
                                            \operatorname{sqrt}(r_{erg_p}**2 + a**2)*\sin(\operatorname{phi})*
                                                 sin(theta), r_erg_p*cos(theta),
                                             (phi, 0.0*pi, 0.5*pi), (theta, 0,
20
                                                 pi)),
                                           xlim = [-10.5, 10.5], ylim = [-10.5,
                                               10.5, size = (10, 10),
                                           xlabel="x", ylabel="y", zlabel="z",
22
                                            title="Kerr, M={}, a={}\n".format(M
                                               , a), show=False)
       p[0].surface\_color = lambda x, y, z : z
24
       p[1]. surface color = lambda x, y, z : -z
       p[2].surface_color = lambda x, y, z : y
26
       p[3].surface\_color = lambda x, y, z : x
       p.show()
  figura_Kerr_3D(4.2, 4.0)
```

A.4 Código Fonte dos Gráficos de Horizonte de Eventos e Ergosfera de Kerr-Newman

```
from sympy import *
  from sympy.plotting.plot import plot_parametric
3 def figura_Kerr_Newman(M, a, Q):
       theta = Symbol('theta')
       r_{erg} = M - sqrt(M**2 - (a*cos(theta))**2 - Q**2)
       r_{erg} = M + sqrt(M**2 - (a*cos(theta))**2 - Q**2)
       r_{m} = M - sqrt(M**2 - a**2 - Q**2)
       r_hor_p = M + sqrt(M**2 - a**2 - Q**2)
       p = plot\_parametric((sqrt(r\_erg\_m**2 + a**2)*sin(theta), r\_erg\_m**
           cos(theta)),
                              (\operatorname{sqrt}(r_{\operatorname{m}}**2 + a**2)*\sin(\operatorname{theta}), r_{\operatorname{m}}*
                                  cos(theta)),
                              (\operatorname{sqrt}(r_{p**2} + a**2)*\sin(\operatorname{theta}), r_{p**2}
11
                                  cos(theta)),
                              (\operatorname{sqrt}(r_{erg_p}**2 + a**2)*\sin(\operatorname{theta}), r_{erg_p}*
                                  cos(theta)),
                              (theta, 0, 2*pi), aspect_ratio=(1, 1), xlim
13
                                 =[-10, 10], \text{ ylim} = [-8.0, 8.0],
                              title="Kerr-Newman, M={}, a={}, Q={}\n"
15
                                 format(M, a, Q), size = (8, 8), show=False)
       p[0].line_color = 'orange'
       p[0].label = 'erg-'
17
       p[1].line\_color = 'red'
       p[1].label = 'hor-'
19
       p[2].line\_color = 'blue'
       p[2].label = 'hor+'
       p[3].line_color = 'green'
       p[3].label = 'erg+'
       p.show()
25 figura_Kerr_Newman (4.2, 3.0, 2.0)
  figura_Kerr_Newman(4.2, 2.0, 2.0)
27 figura_Kerr_Newman (4.2, 3.0, 2.9)
```

A.5 Código Fonte dos Gráficos de Horizonte de Eventos de Reissner-Nordström

```
1 from sympy import *
  from sympy.plotting.plot import plot_parametric
3 def figura_Reissner_Nordstrom (M, Q):
       theta = Symbol('theta')
       r_{m} = M - sqrt(M**2 - Q**2)
       r_hor_p = M + sqrt(M**2 - Q**2)
       p = plot_parametric((r_hor_m*sin(theta), r_hor_m*cos(theta)), (
          r_hor_p*sin(theta), r_hor_p*cos(theta)),
                             (theta, 0, 2*pi), aspect_ratio=(1, 1), xlim
                                 =[-10, 10], \text{ ylim} = [-10, 10],
                             \verb|xlabel| = "x" \;, \quad \verb|ylabel| = "z" \;, \quad \verb|legend| = True \;,
                              title="Reissner-Nordstrom, M={}, Q={}\n".
                                 format(M, Q), size = (8, 8),
                             show=False)
11
       p[0].line\_color = 'red'
       p[0].label = 'hor-'
       p[1].line_color = 'blue'
       p[1].label = 'hor+'
15
       p.show()
17 figura_Reissner_Nordstrom (4.2, 2.0)
  figura_Reissner_Nordstrom (4.2, 3.9)
```