在线算法

什么是在线算法

- 考虑以下现实场景中
 - 输入随时间逐步到达
 - 算法需要做出一些"即时"决策。
- 例子
 - 买股票
 - 滴滴上匹配司机

举例: 租还是买?

打篮球

- 坤坤没有篮球,但他经常会去打 篮球
- 打篮球需要篮球, 价目表如下
 - 租一个篮球: 10元
 - 买一个篮球: 200元
- 作为ikun, 你需要帮坤坤做决定, 现在是坤坤租篮球的第*x*天了, 请问他该**继续租**, 还是**买下**一个篮球呢?

IKUN讨论时间

如何评价我们的在线算法 (策略)

- 上帝的策略是什么?
 - 假设我们知道坤坤会打几天篮球,我们应该怎么办?
- 我们能达到最优策略吗?
- 回顾: 近似算法中的近似比
- 你会怎么定义算法的好坏?

竞争比

- 如果一个算法在任何情况下都满足
 - $-ALG \leq \Gamma \cdot OPT$
 - OPT: Offline Optimal (上帝的最优解)
- 我们称
 - 这个算法达到了 Γ **竞争比** (Competitive Ratio)
 - 这个算法是一个 Γ **竞争** 的算法 (Γ-Competitive)
- 你的算法能达到什么竞争比?

2竞争的算法

- 如果输入的价格
 - 租的价格是1
 - 买的价格是 b (为了方便假设b为整数)
- 算法:
 - 如果b ≤ 1, 买。
 - 如果b > 1, 持续租 b 1 天后, 如果坤坤又去打篮球, 就买。
- 分析:
 - 如果坤坤最终玩的天数 < b 天 , 那么最优解就是一直租 , 我们是最优解。
 - 如果坤坤最终玩的天数 $\geq b$ 天,那么最优解应该是一开始就买
 - 最优解: b
 - 我们花的钱: (b-1) + b = 2b-1

我们能做的更好吗?

- 你们怎么认为?
- 你们打算怎么证明?

证明2竞争就是最好的算法

- 如果算法在 $t \le b 1$ 天以内就选择买篮球,坤坤可能会在第 t 天后再也不打篮球了,此时:
 - 算法花费: t-1+b
 - 最优解花费: t-1
 - 比例: $\frac{t-1+b}{t-1} \ge 2$
- 如果算法租了b 1 天仍然没有买,坤坤可能打**一辈子**篮球,此时:
 - 算法花费: $\geq b + (b-1)$
 - 最优解花费: b
 - 比例: $\frac{2b-1}{b} \rightarrow 2$

我们真的没有办法了吗?

ikun从不放弃

- 能不能利用随机性?
- 如果算法没有随机性
 - 任何一个确定型的策略都有一个对应地未来使他比较差。
- 如果算法具有随机性
 - 任何一个未来我可能都有机会是好的。
- 举例:
 - 买股票: A或B, 第二天会有一个涨。
 - 如果我固定买一个,最坏情况我就是不会涨。
 - 如果我随机挑一个,无论哪个涨,我都有一定的收益。

随机算法的评价方法

- 随机算法的竞争比定义
- 对任何输入情况
 - $-E[ALG] \le \Gamma \cdot OPT$
- 所以我们需要保证
 - 如果坤坤最后玩了d天,
 - $\max_{d} \frac{E[ALG(d)]}{OPT(d)} \le \Gamma$

怎么随机?

随机想法

- 为了简单, 我们以一个例子来说明
 - 租: 1元
 - 买: 100元
- 原确定型算法: 在b天买。
- 是不是可以留一定的概率早一点买?

算法1

- 为了简单,我们缩放一下价格
 - 租: 1元
 - 买: 100元
- 随机算法
 - 以50%的概率在第100天买
 - 以50%的概率在第80天买
- 请大家计算现在的期望收益的近似比。

如何进一步

• 算法定义

- 随机选择一个t, 让坤坤在第t天打篮球的时候买下篮球。
- $-\Pr[t=i]=p_i$
- $\forall i > b, p_i = 0$

• 算法表现

- 如果最终坤坤打了ർ天篮球
- $OPT(d) = \min\{d, b\}$
- 算法表现如何呢?

$$E[ALG(d)] = p_1 \cdot b + p_2 \cdot (1+b) + p_3 \cdot (2+b) + \cdots + p_d \cdot (d-1+b) + \sum_{i>d} p_i \cdot d$$

随机算法

• 随机算法的竞争比定义

$$- \max_{d} \frac{E[ALG(d)]}{OPT(d)} \le \Gamma$$

$$E[ALG(d)] = p_1 \cdot b + p_2 \cdot (1+b) + p_3 \cdot (2+b) + \cdots + p_d \cdot (d-1+b) + \sum_{i>d} p_i \cdot d$$

• 我们需要设置恰当的 p_i 使得

$$\max_{d \geq 1} \frac{p_1 \cdot b + p_2 \cdot (1+b) + p_3 \cdot (2+b) + \cdots p_d \cdot (d-1+b) + \sum_{i > d} p_i \cdot d}{\min\{d,b\}} \leq \Gamma$$

放缩小技巧

- 我们需要考虑 *d* > *b* 的情况吗?
- d > b相比d = b
 - OPT 总是等于b, 无影响。
 - 对于算法呢?由于 $\forall i > b, p_i = 0$,无影响。
- 所以我们仅需要考虑去证明

$$\max_{1\leq d\leq b}\frac{p_1+p_2\cdot(1+b)+p_3\cdot(2+b)+\cdots p_d\cdot(d-1+b)+\sum_{d< i\leq b}p_i\cdot d}{d}\leq \Gamma$$

数学时间!

转换成连续问题

- 我们把p₁ ... p_b的选择看成一个函数的选择。
- $p(i) = p_i$
- 离散版本

$$\max_{1 \leq d \leq b} \frac{p_1 \cdot b + p_2 \cdot (1+b) + p_3 \cdot (2+b) + \cdots p_d \cdot (d-1+b) + \sum_{d < i \leq b} p_i \cdot d}{d} \leq \Gamma$$

• 连续版本

$$\max_{d \in [0,b]} \frac{\int_0^d p(t)(b+t)dt + d \cdot \int_d^b p(t) dt}{d} \le \Gamma$$

平衡的思维(非严格)

$$\max_{d \in [0,b]} \frac{\int_0^d p(t)(b+t)dt + d \cdot \int_d^b p(t) dt}{d} \le \Gamma$$

- 我们想要找到最好的p(t)使得最差的d最好,我们应该尽可能让不同d之间表现相同。
- 所以, 我们尝试求解:

$$\forall d \in [0, b], \qquad \frac{\int_0^d p(t)(b+t)dt + d \cdot \int_d^b p(t) dt}{d} = \Gamma$$

求解

$$\forall d \in [0, b], \qquad \frac{\int_0^d p(t)(b+t)dt + d \cdot \int_d^b p(t) dt}{d} = \Gamma$$

$$\int_0^d p(t)(b+t)dt + d \cdot \int_d^b p(t)dt = \Gamma d$$

$$p(d)(b+d) + \int_d^b p(t)dt - dp(d) = \Gamma$$

$$bp'(d) - p(d) = 0$$

$$p(d) = \alpha \cdot e^{\frac{d}{b}}$$

怎么继续确定p(d)?

很简单!

- 我们需要的p函数是概率分布,所以
- $\int_0^b p(t)dt = 1$
- 结合 $p(x) = \alpha \cdot e^{\frac{x}{b}}$
- 得到 $p(x) = \frac{1}{b(e-1)}e^{\frac{x}{b}}$

$$\forall d \in [0, b], \qquad \frac{\int_0^d p(t)(b+t)dt + d \cdot \int_d^b p(t) dt}{d} = \Gamma = \frac{e}{e-1} \approx 1.58$$

这个随机算法是最好的吗?

- 我们在课上不做介绍,但是我们可以证明:
- 没有随机算法可以达到比 $\frac{e}{e-1}$ 更好的竞争比。

在线匹配

广告投放问题

平台有很多条广告需要投放,但是用户的访问是在线到达的,每个用户适合的广告也不同,我们该怎么成功投放尽可能多合适的广告给用户?

广告(离线顶点)

广告(离线顶点) 用户(在线顶点)

选择匹配点

广告(离线顶点) 用户(在线顶点)

选择匹配点

广告(离线顶点) 用户(在线顶点)

用户到达

广告(离线顶点) 用户(在线顶点)

选择匹配点

广告(离线顶点) 用户(在线顶点)

用户到达

广告(离线顶点) 用户(在线顶点)

选择匹配点

广告(离线顶点) 用户(在线顶点)

用户达到

在线二分图匹配问题

广告(离线顶点) 用户(在线顶点)

选择匹配点

最终目标

- 目标: 获得尽可能多的匹配点
- 竞争比: Γ
 - 算法获得的匹配: ALG
 - 最终图中的最大匹配: OPT
 - $-ALG \ge \Gamma \cdot OPT$
- 你能证明多好的竞争比?

一些讨论

- 贪心算法
 - 策略: 能匹配就匹配
 - 可以达到多少竞争比?
- 如果不允许随机性, 最好的竞争比是多少?

贪心算法竞争比

- 贪心算法
 - 策略: 能匹配就匹配
 - 可以达到竞争比0.5
- 分析思路
 - 对于任何一条最优解选择的边,其左右两个端点至少有一个被贪心算法所选择。
 - 贪心算法匹配的点数>最优解匹配的边数> 0.5倍最优解匹配的点数

确定型算法竞争比上界

• 没有确定型算法可以突破0.5竞争比

你该选谁?

是否可以使用随机算法?

Ranking 算法

- 由 Karp, Vazirani, and Vazirani 在 1990 年提出.
- $E(ALG) \ge \left(1 \frac{1}{e}\right)OPT$.
- 1990年时,这个算法的分析非常的复杂.
- 在2013 年 Devanur 等人把他变得简单且可拓展。

Ranking Algorithm

■ Ranking: 给每个离线顶点均匀随机一个 rank ∈ [0,1).

Ranking Algorithm

■ Ranking: 给每个离线顶点均匀随机一个 rank ∈ [0,1).

Ranking Algorithm

■ Ranking: 给每个离线顶点均匀随机一个 rank ∈ [0,1).

分析方法: 分饼

- 在匹配时分饼
 - 每次匹配一条边
 - ALG会增加1
 - 相当于我们获得了1份饼
 - 我们把这一份饼分给这条边的两个端点。
- 如何分析竞争比?
 - 如果对于图中的任意一条边,两端点分到的饼数量都至少为Г。
 - $\forall (u, v) \in E, y_u + y_v \ge \Gamma$
 - 说明算法的竞争比至少为Γ。
 - 为什么?

贪心算法分析再现

- 对半分饼策略
- 容易证明
- $\bullet \ \forall (u,v) \in E, y_u + y_v \ge 0.5$

贪心算法的分饼策略

- 当 Ranking 算法匹配一条边后
 - $-u \text{ get } 0.5 \rightarrow x_u = 0.5$
 - $-v \text{ get } 0.5 \rightarrow x_v = 0.5$
 - 提前固定一个分饼函数 $g(r) = e^{r-1}$.
 - v 获得 $g(r_v) \rightarrow y_v = g(r_v)$.
 - $u 获得 1 g(r_v) \rightarrow y_u = 1 g(r_v)$
- 简单理解
 - rank越小, 分的饼越少

证明目标

- 我们希望证明
- $E(y_u + y_v) \ge 1 \frac{1}{e}$, $\forall (u, v) \in E$.
- 这可以推出
 - $-E(Ranking) \ge \left(1 \frac{1}{e}\right)OPT$

任选一条边 (u,v) 开始证明

- 我们固定任意一种v之外的点的rank,称之为 $\vec{r}(-v)$ 。
- 然后我们证明
- $E_{r_v}[y_u + y_v | \vec{r}(-v)] \ge 1 \frac{1}{e}$
- 这可以推出

讨论两种情况

- 当我们固定某一种 $\vec{r}(-v)$ 之后,让我们分情况讨论
- 如果*v*从来不存在, *u*会匹配谁?
 - 固定 $\vec{r}(-v)$ 之后,这个情况是固定的。
 - 情况 1: u和某个z匹配
 - 情况 2: u不和任何人匹配

情况 1: ॥ 没有匹配任何人

- 如果v回来了,会发生什么事?
- 发生的事情和v的rank有关吗?
- *v* 一定被*u*匹配吗?
- $E_1[y_u + y_v] \ge \int_0^1 g(r) dr$

情况2: ॥ 和某个 Z 匹配

- 不妨定义 $r_z = \theta$.
- 如果v回来了,会放生什么事?
- 如果 $r_v < \theta$?
 - v 一定会被匹配吗?
 - ν一定会被μ匹配吗?
 - v分到的饼: $y_v \ge g(r_v)$
- *u*会获得多少饼?
 - 情况 1: v的加入没有影响 u 匹配的点: $y_u = 1 g(\theta)$.
 - 情况 2: v的加入影响了u 匹配的点,u的饼会发生什么变化?

- 简单的影响
 - u直接抛弃了原选项z选择了v。
 - $-y_u = 1 g(r_v) > 1 g(\theta)$
 - 回顾: $g(r) = e^{r-1}$

复杂的影响- w 选择了 v

- 复杂的影响
 - w 选择了 v
 - $-v_1$ 是 w 原来的选择

- 复杂的影响
 - w 选择了 v
 - $-v_1$ 是 w 原来的选择
 - w_2 抛弃了原来的选择,选了 v_1 。

- 复杂的影响
 - w 选择了 v
 - $-v_1$ 是 w 原来的选择
 - w_2 抛弃了原来的选择,选了 v_1 。

- 复杂的影响
 - w 选择了 v
 - $-v_1$ 是 w 原来的选择
 - w_2 抛弃了原来的选择,选了 v_1 。
 - $-w_3$ 抛弃了原来的选择,选择 v_2 。

- 复杂的影响
 - w 选择了 v
 - $-v_1$ 是 w 原来的选择
 - w_2 抛弃了原来的选择,选了 v_1 。
 - w_3 抛弃了原来的选择,选择 v_2 。
 - 问题: 如果这个过程最终影响了u, 会怎么样?

• 复杂的影响

- w 选择了 v
- $-v_1$ 是 w 原来的选择
- w_2 抛弃了原来的选择,选了 v_1 。
- w_3 抛弃了原来的选择,选择 v_2 。
- 问题: 如果这个过程最终影响了u, 会怎么样?
 - *u*一定是因为更想要*v*₉₉而不要*z*。
 - 所以 $y_u = 1 g(r_{v_{99}}) \ge 1 g(\theta)$

总结

- 任意固定一条边(u,v), 对任意一种 $\vec{r}(-v)$ 。
- 情况 1: *u* 没有匹配

$$-g(r)=e^{r-1}$$

$$- E_{r_v}[y_u + y_v] \ge \int_0^1 g(r) dr = 1 - \frac{1}{e}$$

- 情况 2: u 匹配了 $r_z = \theta$:
 - $y_v \ge g(r_v) \text{ if } y_v < \theta$
 - $-y_u \ge 1 g(\theta)$ for all $y_v \in [0,1)$
 - $-E_{r_v}[y_u + y_v] \ge \int_0^{\theta} g(r)dr + 1 g(\theta) = 1 \frac{1}{e}$
- So, $E[y_u + y_v] \ge 1 \frac{1}{e}$