Lecture 3: Groups

Filipp Furche

Chem 150/250 Fall 2023

10/04/2022

http://ffgroup.chem.uci.edu

Multiplication on Sets

Definition

A set of elements $\mathcal{G} = \{a, b, c, \ldots\}$ with a multiplication (composition) $a \cdot b$ is a group iff

- (i) $c = a \cdot b \in \mathcal{G}$ (closure), and c is unique
- (ii) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (associativity)
- (iii) $\forall a \in \mathcal{G} \exists$ identity element $e \in \mathcal{G}$, i.e. $a \cdot e = a$
- (iv) $\forall a \in \mathcal{G} \exists \text{ inverse } a^{-1}, \text{ i.e., } a \cdot a^{-1} = e.$
 - A group $\mathcal{G} = \{a, b, c, ...\}$ is Abelian (commutative) iff $a \cdot b = b \cdot a$ (commutativity).
 - The order ord G is the number of group elements.
 - The order of $a \in \mathcal{G}$ is the smallest integer m such that $a^m = e$.

Examples

- ullet Integers ${\mathbb Z}$ with addition
- Invariance (symmetry) operations
- Matrix groups
- Permutations

Subgroups

A group $\mathcal H$ is a subgroup of $\mathcal G$ iff $\mathcal H\subset\mathcal G$ and $\mathcal G$ and $\mathcal H$ share the same multiplication.

• $\operatorname{ord}\mathcal{H} < \operatorname{ord}\mathcal{G}$

Classes

The set K_a is a (conjugacy) class of $a \in \mathcal{G}$ iff

$$K_a = \{b \cdot a \cdot b^{-1} | b \in G\}.$$

- Each group element belongs to some class.
- A group is Abelian iff each element has its own class.
- Conjugate elements, i.e., elements of the same class, are of the same order.
- The K_a generally do not form a group!