Rachunek macierzowy i statystyka

wielowymiarowa

Laboratorium 2. Eliminacja Gaussa i LU-faktoryzacja

Ivan Smaliakou, Jakub Karbowski

26 marca 2024

1 Eliminacja Gaussa bez pivotyngu

1.1 Pseudokod

1.2 Kod

```
def gaussian_elimination_no_pivoting(A: np.array, B: np.array):
    A = A.copy()
    B = B.copy()
    assert len(A.shape) == 2
    assert len(B.shape) == 1

for i in range(A.shape[1]):
    # always start from the diag element, so as a result it'll yeild low-ech
    for j in range(i, A.shape[0]):
        el = A[j][i]
        # 1's elemination part
        if i == j:
              if el != 1:
```

```
A, B = row_divide(A, B, j, i)
             else:
                 if el != 0:
                     A, B = rows\_eliminate(A, B, j, i)
    return (np. around (A), np. around (B))
# would return the new matrix with row divided by the element A_iijj
def row_divide(A: np.array, B: np.array, ii, jj):
    n = A[ii][jj]
    for j in range(len(A[ii])):
        A[ii][j] /= n
    B[ii] /= n
    return (A, B)
def rows_eliminate(A: np.array, B: np.array, ii, jj):
    A_{\text{-}}copy = A.copy()
    B_{\text{-}}copy = B.copy()
    support_row_index = ii + 1 if ii < A.shape[0] - 1 and A_copy[ii + 1][jj] !=
    if A_{copy}[support_{row_{index}}][jj] = 0:
        raise ValueError('support value must be non-zero')
    support_row_multiplier = A_copy[ii][jj] / A_copy[support_row_index][jj]
    for j in range(len(A[support_row_index])):
        A_copy[support_row_index][j] *= support_row_multiplier
    B_copy[support_row_index] *= support_row_multiplier
    for j in range(len(A[support_row_index])):
        A[ii][j] -= A_copy[support_row_index][j]
    B[ii] -= B_copy[support_row_index]
    return (A, B)
```

1.3 Porównanie z MATLAB

W środowisku MATLAB nie znalazłem odpowiedniej funkcji dla eliminacji Gaussa bez pivotingu. Poza tym każda eliminacja dzieje w swój sposób.

2 Eliminacja Gaussa z pivotyngiem

2.1 Pseudokod

```
begin for i=0 to n_wierszy{ if A[i][i] == 0{ for j = 0 to n_wierszy{
```

```
}
     for i=0 to n_columny
          for j=i to n_wierszy
               \begin{array}{ccc} i\,f & i == \,j \,\,\{ \\ & A\,[\,j\,] \,/\!\!=\, A\,[\,j\,]\,[\,j\,]\,; \end{array}
               } else {
                   A[j] = A[i] * A[j][i];
          end
    end
end
2.2
      Kod
def row_divide(A: np.array, B: np.array, ii, jj):
    n = A[ii][jj]
     for j in range(len(A[ii])):
         A[ii][j] /= n
    B[ii] /= n
     return (A, B)
def rows_eliminate(A: np.array, B: np.array, ii, jj):
     A_{\text{-}}\text{copy} = A.\operatorname{copy}()
    B_{\text{-}}copy = B.copy()
     support\_row\_index = ii + 1 if ii < A.shape[0] - 1 and A\_copy[ii + 1][jj] !=
     if A_{\text{copy}}[\text{support}_{\text{row}}][\text{jj}] = 0:
          raise ValueError('support value must be non-zero')
     support_row_multiplier = A_copy[ii][jj] / A_copy[support_row_index][jj]
     for j in range(len(A[support_row_index])):
          A_copy[support_row_index][j] *= support_row_multiplier
    B_copy[support_row_index] *= support_row_multiplier
     for j in range(len(A[support_row_index])):
         A[ii][j] -= A_copy[support_row_index][j]
    B[ii] -= B_copy[support_row_index]
     return (A, B)
def swap(A, b, i):
    A_{\text{-}}\text{copy} = A.\text{copy}()
    b = copy = b \cdot copy()
```

if i == j {continue}; A[i],A[j] = A[j], A[i];

```
for j in range (A_copy.shape [0]):
         if j == i:
              continue
         if A_{\text{copy}}[j][i] \stackrel{!}{=} 0 and A_{\text{copy}}[i][j] \stackrel{!}{=} 0:
              swap_buff = A_copy[j].copy()
              swap_buff_b = b_copy[j]
              A_{\text{copy}}[j] = A_{\text{copy}}[i] \cdot \text{copy}()
              A_copy[i] = swap_buff
              b_{copy}[j] = b_{copy}[i]
              b_{copy}[i] = swap_buff_b
              return (A_copy, b_copy)
    raise ValueError('row for pivoting is not found')
def gaussian_elimination_pivoting(A: np.array, b: np.array):
    assert len (A. shape) == 2
    assert len(b.shape) == 1
    for i in range (A. shape [0]):
         if A[i][i] == 0:
              A, b = \operatorname{swap}(A, b, i)
    display (pd. DataFrame (A))
    return gaussian_elimination_no_pivoting(A, b)
```

2.3 Porównanie z MATLAB

W środowisku MATLAB nie znalazłem odpowiedniej wbudowanej funkcji dla eliminacji Gaussa z pivotingiem. Poza tym każda eliminacja dzieje w swój sposób.

3 LU faktoryzacja bez pivotyngu

3.1 Pseudokod

3.2 Kod

```
def LU_no_pivoting(A, B):
A = A.copy()
B = B.copy()
C = np.identity(A.shape[0])
assert len(A.shape) == 2
assert len(B.shape) == 1

for i in range(A.shape[1]):
    # always start from the diag element, so as a result it'll yeild low-ech for j in range(i+1, A.shape[0]):
    el = A[j][i]
    if el != 0:
        A, B, mult = rows_eliminate_lu(A, B, j, i)
        C[j][i] = mult
return (A, B, C) # C is an L matrix
```

3.3 Porównanie z MATLAB

W MATLAB istneją tylko opcja LU faktoryzacji z pivoryngiem (częstkowym lub pełnym - do wyboru). Więc możemy sprawdzić w taki sposób: $P_{matlab} \times L_{kod} \times U_{kod} = L_{matlab} \times U_{matlab}, \text{gdzie index } X_{matlab} \text{ oznacza zmienną z MATLABU, a } X_{kod}$ - zmienną z kodu. Załóżmy macierz zródłowa A ma postać:

<u>Tabela</u> 1: Macierz A

0.8147	0.6324	0.9575	0.9572
0.9058	0.0975	0.9649	0.4854
0.1270	0.2785	0.1576	0.8003
0.9134	0.5469	0.9706	0.1419

Wówczas lewa strona przyjmi postać L*:

Tabela 2: Lewa strona L*

0.9134	0.5469	0.9706	0.1419
0.9058	0.0975	0.9649	0.4854
0.8147	0.6324	0.9575	0.9572
0.127	0.2785	0.1576	0.8003

Oraz prawa strona przyjmi postać R*:

Tabela 3: Prawa strona R*

0.9134	0.5469	0.9706	0.1419
0.9058	0.0975	0.9649	0.4854
0.8147	0.6324	0.9575	0.9572
0.127	0.2785	0.1576	0.8003

L*=R* ■

4 LU factorizacja z pivotingiem

4.1 Pseudokod

```
begin
    U = A. copy();
    L = identity_matrix(A.size);
    P = identity_matrix(A.size);
    for i=0 to n_columny
        for j=n_wierszy to i (inversed)
            if abs(A[j][i]) > abs(A[i][i])
                swap(A, j, i);
                break;
        end
    end
    for i=0 to n_columny
        for j=i to n_wierszy
            L[j][i] = U[j][i];
            U[j] = U[i] * U[j][i];
        end
    end
    return L, U
end
```

4.2 Kod

```
def swap(A, b, P, i, j):
    A_copy = A.copy()
    b_copy = b.copy()
    P_copy = P.copy()
    temp = A_copy[i].copy()
    A_copy[i] = A_copy[j].copy()
    A_copy[j] = temp
    temp_b = b_copy[i]
```

4.3 Porównanie z MATLAB

LU faktoryzacja z piovtyngiem w MATLAB oraz własna faktoryzacja mogą być oparte na różnych elementach macierzy A. Zatem dla weryfikacji zastosowano formuły:

formuly:
$$A = P_{matlab}^{-1} \times L_{matlab} \times U_{matlab} = P_{kod}^{-1} \times L_{kod} \times U_{kod};$$
 Niech A=

Tabela 4: Macierz A

0	0.6324	0.9575	0.9572
0.9058	0	0.9649	0.4854
0.1270	0.2785	0	0.8003
0.9134	0.5469	0.9706	0

4.3.1 Część MATLAB

Wówczas z MATLABu otzymujemy L_{matlab} :

Tabela 5: Macierz L_{matlab}

1	0	0	0
0.9058	1	0	0
0.9917	-0.8576	1	0
0.1390	0.3201	-0.5481	1

oraz U_{matlab} :

Tabela 6: Macierz U_{matlab}

0.9134	0.5469	0.9706	0
0	0.6324	0.9575	0.9572
0	0	0.8055	1.3063
0	0	0	1.2098

oraz P_{matlab} :

Tabela 7: Macierz P_{matlab}

0	0	0	1
1	0	0	0
0	1	0	0
0	0	1	0

wtedy lewa strona L* = $P_{matlab}^{-1} \times L_{matlab} \times U_{matlab} = A$

Tabela 8: Macierz $P_{matlab}^{-1} \times L_{matlab} \times U_{matlab}$

0	0.6324	0.9575	0.9572
0.9058	0	0.9649	0.4854
0.1270	0.2785	0	0.8003
0.9134	0.5469	0.9706	0

oraz L_{kod} :

Tabela 9: Macierz L_{kod}

1	0	0	0
0	1	0	0
0.99167944	-0.85760513	1	0
0.13904095	0.32014312	-0.53609298	1

oraz U_{kod} :

Tabela 10: Macierz U_{kod}

0.9134	0.5469	0.9706	0
0	0.6324	0.9575	0.9572
0	0	0.82353	1.30629963
0	0	0	1.19415707

oraz P_{kod} :

Tabela 11: Macierz P_{kod}

0	0	0	1
1	0	0	0
0	1	0	0
0	0	1	0

Wówczas prawa strona P* = $P_{kod}^{-1} \times L_{kod} \times U_{kod} = A$

Tabela 12: Macierz $P_{kod}^{-1} \times L_{kod} \times U_{kod}$

0	0.6324	0.9575	0.9572
0.9058	0	0.9649	0.4854
0.1270	0.2785	0	0.8003
0.9134	0.5469	0.9706	0

L*=P* ■