	Maximum Likelihood Estimator
	(Gold standard for estimation) Asympthic efficiency property: variance of 425 is the smallest from the class of smill estimaters.
*	KL-divergence
	The measure rul is used to evaluate proximily by 2 distu functions, typically 2 durity que
	Suppose that f and g are density functions and X - f(.) (random variable).
X	renkt divergence.
	$LL(flig) = E_{\star} \left[log \frac{f(X)}{g(X)} \right]$
	Do - parameter of true data generating model (OGP)
	$X \sim f(\cdot, \theta_0)$ Parameter space. Parameter space.
xpertation sof to ob use pafils	trow are we going to find a model from the set of possible models? -> Look at Kl divergence.
use par	$E_{\Theta}[\log f(X, \Theta_{\Theta})]$ Wrengence b/w actual to sample

Eo [log
$$\frac{f(X, \theta_0)}{f(X, \theta_0)}$$
] = $-E_{\theta_0}$ [log $\frac{f(X, \theta)}{f(X, \theta_0)}$]

| log $\frac{f(X, \theta)}{f(X, \theta_0)}$] > $-log \left(\frac{f(X, \theta)}{f(X, \theta_0)}\right)$
 E_{θ_0} [log $\frac{f(X, \theta)}{f(X, \theta_0)}$] > $-log \left(\frac{f(X, \theta)}{f(X, \theta_0)}\right)$
 E_{θ_0} [$\frac{f(X, \theta)}{f(X, \theta_0)}$] = $\int_{-\infty}^{\infty} \frac{f(X, \theta)}{f(X, \theta_0)} f(X, \theta_0) dX$
 $= 1$

| $\frac{f(X, \theta)}{f(X, \theta_0)}$] = $\int_{-\infty}^{\infty} \frac{f(X, \theta)}{f(X, \theta_0)} dX$

| $\frac{f(X, \theta)}{f(X, \theta_0)}$] = 0

| $\frac{f(X, \theta)}{f(X, \theta_0)}$] = 0
| $\frac{f(X, \theta)}{f(X, \theta_0)}$] = 0
| $\frac{f(X, \theta)}{f(X, \theta_0)}$] = 0
| $\frac{f(X, \theta)}{f(X, \theta_0)}$] = 0
| $\frac{f(X, \theta)}{f(X, \theta_0)}$] = 0
| $\frac{f(X, \theta)}{f(X, \theta_0)}$] = 0
| $\frac{f(X, \theta)}{f(X, \theta_0)}$] | $\frac{f(X, \theta)}{f(X, \theta_0)}$ | $\frac{f(X, \theta)}{f(X,$

	or in the above model (the pareametric model);
	$E_{\Theta_o}[\log \frac{f(X, \theta_o)}{f(X, \Theta)}]$ in win then $\theta = \theta_o$.
(Rewriting;
	$\mathbb{E}_{\theta_0} \left[\log f(x, \theta_0) \right] - \mathbb{E}_{\theta_0} \left[\log f(x, \theta) \right]$
	Do = argmin-ED [log f(X,D)] De (1)
	= argmx Eo. [by f(x,0)]
	Log-likelihood function
*	Jake fixed values of a set: -
	Eni Ji=1
	$L(\theta) = E_{\theta}[\log f(X, \theta)]$
	$\widehat{l}(\theta) = \sum_{i=1}^{n} \log f(x_i, \theta) \qquad \text{(Sample log-likelihod)}$
	$\hat{\theta} = \underset{M \in \mathcal{H}}{\operatorname{argmax}} \hat{L}(\theta)$ is the MLE.
	$\widehat{L}(\theta) = \underbrace{1}_{N} \underbrace{\sum_{i=1}^{n} log f(X_{i}, \theta)}_{N}$ (Max. across those f^{n} would work as a R.V.)
	(Max. across those for would work as a R.V.)

Example:

Assume
$$X \sim N(\mu_0, 1)$$

Potential set of models $\int_{\mathbb{R}^2} N(\mu_1 1)$, $\mu \in \mathbb{R}^2$
 $\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} e^{-\frac{(x-\mu)^2}{2}}$

log livelihood $\int_{\mathbb{R}^2} e^{-\frac{(x-\mu)^2}{2}}$
 $\hat{L}(\mu) = -\frac{1}{2} \log_2(2\pi) - \frac{(x-\mu)^2}{2}$
 $\hat{L}(\mu) = -\frac{1}{2} \log_2(2\pi) - \frac{1}{2} \sum_{i=1}^{2} (x_i - \mu)^2$

Estimator:

 $\hat{L}_{MIS} = \underset{\mathbb{R}^2}{\operatorname{argmax}} \left(-\frac{1}{2} \log_2(2\pi) - \frac{1}{2} \sum_{i=1}^{2} (x_i - \mu)^2 \right)$

Taking derivation to find the max;

 $\frac{1}{2} \sum_{i=1}^{2} (x_i - \hat{\mu}_{MIS}) = 0$
 $\frac{1}{2} \sum_{i=1}^{2} x_i - \frac{1}{2} \sum_{i=1}^{2} x_i -$

	Next class: -
1,	Go back to risk pu b use taylor expansion for linearilitation. (like in delta function).
	for lineoxilitation. [like In delta function).