Kawasaki Quantum Summer Camp 2024

量子機械学習

Jul 30, 2024

沼田祈史 Kifumi Numata IBM Quantum

あなたにピッタリのオススメ作品

機械学習

教師あり学習

教師なし学習

強化学習

猫や犬の写真がラベル付けされた集合から、新しい猫や犬の写真を識別する。

映画の視聴履歴に基づいて視聴 者をグループ分けし、新しい映 画を推薦する。 囲碁のプレイ方法をアルゴリズ ムで学習する。

機械学習

教師あり学習

ラベル付きデータ (x_i, y_i) : マッピングする関数y = f(x)を 学習。

猫や犬の写真がラベル付け された集合から、新しい猫 や犬の写真を識別する。

教師なし学習

何らかの構造を学習。

映画の視聴履歴に基づいて視聴 者をグループ分けし、新しい映 画を推薦する。

強化学習

行動に応じて報酬が得られる環 境で、期待される報酬を最大 化。

囲碁のプレイ方法をアルゴリズ ムで学習する。

機械学習

教師あり学習

ラベル付きデータ (x_i, y_i) : マッピングする関数y = f(x)を 学習。

例) 猫や犬の写真がラベル付けされた 集合から、新しい猫や犬の写真を識別す る。

教師なし学習

ラベルのないデータ:何らかの構造を学習。

例)映画の視聴履歴に基づいて視聴者をグループ分けし、新しい映画を推薦する。

強化学習

行動に応じて報酬が得られる環境で、期待される報酬を最大化。

例) 「パックマン」のプレイ方法をアルゴリズムで学習する。

イチゴとリンゴをどうやってコンピューターは 見分けるのでしょうか?

特徴をもとに判別しています。イチゴとリンゴを区別する特徴は何でしょう?

イチゴとリンゴ 丸い↑ とがって すべすべ ぶつぶつ

どちらの方がよく分類できているでしょうか?

右図の方が境界線と最も近いデータ点との距離が長い

より安定した分け方

SVM(サポートベクターマシン) とは

データを2つのグループに分ける手法(2値分類)

- グループ間の境界面を定める分析手法
- ・マージン(境界線と最近接データ点との距離)をできるだけ大きく取るように最適化 。

直線で分けられないデータの場合

このようなデータセットは、 2グループに分けられることは 明らかですが、 境界線が直線にはなりません。 (線形に分離できないといいます)

データマッピングで分類

特徴量を高次元化(特徴量マッピング)することで、平な(線形な)境界面で切り分けることができます。

量子SVM(サポートベクターマシン)

特徴量を量子空間に特徴量マッピングすることで、線形な境界面で切り分けます。

データを量子機械学習のために符号化する手法(代表的なもの)

1. 計算基底符号化

例) データセット
$$X = \{x_1 = 101, x_2 = 111\}$$

量子状態
$$|x\rangle = \frac{1}{\sqrt{2}}(|101\rangle + |111\rangle)$$

2. 振幅符号化

例)
$$X = \{x_1 = (1.5, 0), x_2 = (-2, 3)\}$$

例)
$$X = \left\{x_1 = (1.5,0), \quad x_2 = (-2,3)\right\}$$
 $|x\rangle = \frac{1}{\sqrt{15.25}}(1.5|00\rangle - 2|10\rangle + 3|11\rangle)$

3. 角度符号化

例) データポイント
$$x = (x_1, x_2)$$

$$S_{x} = RY(x_{1}) \otimes RY(x_{2})$$

4. 角度符号化の応用

例)
$$x = (x_1, x_2)$$

量子力一ネルSVM

データを量子データにエンコード(符号化)する際に、 パラメーター(量子ゲートの回転角 θ)を使った、角度符号化の応用の **量子特徴量マップ(Feature Map)**を使って、回転角 θ の部分にデータを入れます。

量子力一ネルSVM

データを量子特徴量マップ(Feature Map)でエンコードした後、

量子回路で量子カーネル(類似度)の計算を行い、 量子カーネルを使って、古典SVM計算(線形な境界面で分ける2値分類)で学習・分類を 行います。

ベクトルとは

「大きさ」と「向き」を持った量です。

ベクトルは、数が横や縦に一列に並んだ形 をしています。

横ベクトルの例
$$縦ベクトルの例$$
 $(5 3)$ $\begin{pmatrix} 5 \\ 3 \end{pmatrix}$

ベクトルを拡張して、数を長方形の形に並べたものが行列です。

行列の例

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

カーネル(類似度)計算は、ベクトルの内積の発展形

直行した ベクトルの 内積は0

自分自身との内積は1

カーネル(類似度)行列

全く違う特徴:0(白)同じ特徴:1(濃紺/赤)

ベクトルとは

「大きさ」と「向き」を持った量です。

量子計算は、ベクトルと行列の計算

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$q - H - H |0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.707 \\ 0.707 \end{pmatrix} = \frac{1}{\sqrt{2}} \ (|0\rangle + |1\rangle)^{-1}$$

行列と縦ベクトルの積

黄色の行と青色の列の成分を1つずつかけて、全てたし合わせて、ベクトルの一つの成分(緑色)となる。

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} a_{11}v_1 + \cdots + a_{1n}v_n \\ \vdots & \cdots & \vdots \\ a_{m1}v_1 + \cdots + a_{mn}v_n \end{pmatrix}$$

高度な内容) 量子計算は、ベクトルと行列の計算

$$\begin{array}{c} q_0 - H - \\ = \frac{1}{\sqrt{2}}(\ket{0} + \ket{1}) \otimes \frac{1}{\sqrt{2}}(\ket{0} + \ket{1}) &= \frac{1}{2}(\ket{00} + \ket{01} + \ket{10} + \ket{11}) \\ = \frac{1}{2}\left(\begin{bmatrix}1\\1\end{bmatrix} \otimes \begin{bmatrix}1\\1\end{bmatrix}\right) = \frac{1}{2}\begin{bmatrix}1\\1\\1\end{bmatrix} = \frac{1}{2}\left(\begin{bmatrix}1\\0\\0\end{bmatrix} + \begin{bmatrix}0\\1\\0\\0\end{bmatrix} + \begin{bmatrix}0\\0\\1\\0\end{bmatrix} + \begin{bmatrix}0\\0\\0\\1\end{bmatrix}\right) \end{array}$$

$$\frac{q_{0} - H}{q_{1}} = \frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}$$

ベクトルとベクトルの**テンソル積**:左側のベクトルの成分に右側のベクトルをかける。

ポイント:

量子状態はベクトル!

$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \otimes \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \\ \vdots \\ v_n \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$$

量子カーネル

各データ対に対して内積(量子カーネル $\langle \Phi(\vec{x})|\Phi(\vec{x})\rangle$)を計算、測定してカーネル行列を作っていきます。 $\Phi^{\dagger}(\vec{x})$

1個目のデータと1個目のデータの内積

量子カーネル

各データ対に対して内積(量子カーネル $\langle \Phi(\vec{x})|\Phi(\vec{x})\rangle$)を計算、測定してカーネル行列を作っていきます。 $\Phi^{\dagger}(\vec{x})$

今回は、25個の学習データと10個のテストデータに対して、 以下を計算します:

- 学習データ同士 (例:25x25の行列)
- 学習データとテストデータ(例:25x10の行列)

演習

手書き文字(数字)データで量子カーネルを使った機械学習を学んだ後、洋服の画像について、学習分類を行ってみます。

JupyterHubでの実行

(1) Webブラウザー(Edge、Safari、Chrome、Firefoxなど)で https://54.150.216.95にログイン。

(2) ユーザ名とパスワード(メールで配布)を 入力して、「Sign in」をクリック。

(3) この画面になったら成功です!

Kawasaki Campが終わった後、Qiskitを実行する場合

(1) Google Colabratory (https://colab.research.google.com/) を使う。 毎回、以下のコマンドを最初に実行する必要があります。

```
!pip install qiskit qiskit[visualization] qiskit-ibm-runtime qiskit-aer
!pip install qiskit-algorithms qiskit-nature scikit-learn
!pip install --prefer-binary pyscf
```

参照ブログ: https://qiita.com/kifumi/private/51a5d2a420e6318f78fb

(2) qBraid (https://www.qbraid.com) を使う。 実機で実行する場合は、以下のコマンドを実行する必要があります。

%pip uninstall --yes simplejson

Mature

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

Machine learning gets a boost from quantum computing PAGE 179 & 209

CELL BIOLOGY THE SECRET LIFE OF THE CELL

Internal interactions that drive cellular processes PAGE 162

BIOTECHNOLOGY

REWRITING THE GENOME

Time for a moratorium on human germline editing? PAGE 145,165 & 175

MEDICAL RESEARCH

MALARIA TRANSMISSION

A possible fix for insecticide resistance in mosquitoes PAGE 185 & 239

→ NATURE.COM/NATURE 14 March 2019 £10 Vol. 567, No. 7747

Supervised learning with quantum-enhanced feature spaces

Vojtěch Havlíček, Antonio D. Córcoles ⊠, Kristan Temme ⊠, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow & Jay M. Gambetta

2

Depth

3

量子カーネルSVMの参考文献

量子カーネルSVM:最も普及している量子カーネルアルゴリズム。

- Yunchao Liu, Srinivasan Arunachalam and Kristan Temme, *A rigorous and robust quantum speed-up in supervised machine learning* (2020), <u>arXiv:2010.02174</u>.
 - 量子カーネルSVMが特定の入力データクラスに対して従来の方法よりも高速化することを証明。
- Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven and Jarrod R. McClean, *Power of data in quantum machine learning* (2020), <u>arXiv:2011.01938</u>.

 量子カーネルSVMを使用して、量子機械学習アルゴリズムのデータの計算能力を定量化し、量子モデルが従来のモデルを上回ることができる条件を提示。
- Lloyd, Seth, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran, *Quantum embeddings for machine learning* (2020), <u>arXiv preprint arXiv:2001.03622</u>
 - 量子カーネルアラインメント(最適化できるパラメーターを持つ構造)を可能にする量子メトリック学習と呼ばれる手法を提示。

量子ビットとベクトル

	量子	ベクトル・行列表示		
ピット	0と1の重ね合わせ α× 0> +β× 1>	$ 0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, 1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $ \boldsymbol{\psi}\rangle = \alpha 0\rangle + \beta 1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ $\alpha, \beta:$ 確率振幅 $ \alpha ^2 + \beta ^2 = 1$		
論理 ゲート	X, H, CNOT など X	$\begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{21} \end{pmatrix}$ $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha' \\ \beta' \end{pmatrix}$ 量子ゲート 入力 出力 ビット		

例)Xゲートの場合

$$X \mid 0 \rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \cdot 1 + 1 \cdot 0 \\ 1 \cdot 1 + 0 \cdot 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \mid 1 \rangle$$

量子計算は、行列の計算

代表的な量子ゲート一覧

	行列表現	Qiskitのコード	回路表示	
Xゲート	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	X	_ x	ビット反転
Yゲート	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	y	- Y	位相・ビット反転
Zゲート	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	Z	- z -	位相反転
Hゲート	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	h	- н -	重ね合わせを作る
CNOTゲート	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} $	CX		量子もつれを作る
Sゲート	$\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$	S	- 5 -	pi/2位相シフト
Tゲート	$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}$	t	- <i>T</i> -	pi/4位相シフト