

(b)

Polygon1:

There is a triangulation of the polygon with 3 colors in vertices.

Red - 4, green -5, blue -5

Therefore, based on the fisk's proof, we should use the 4 guards in red vertices.

Polygon2:

There is a triangulation of the polygon with 3 colors in vertices.

Red - 9, blue -8, orange -6

Therefore, based on the fisk's proof, we should use the 6 guards in orange vertices.

Polygon1:

First we can find a set of 4 red witness points that are respect to vertex guards, so $w_v(P1) >= 4$. Then we can find 4 yellow vertex guards that can see all the polygon. Thus, $4 \le w_v(P1) \le g_v(P1) \le 4$, so $w_v(P1) = g_v(P1) = 4$.

Polygon2:

First we can find a set of 5 red witness points that are respect to vertex guards, so $w_v(P1) >= 5$. Then we can find 5 purple vertex guards that can see all the polygon. Thus, $5 \le w_v(P2) \le g_v(P2) \le 5$, so $w_v(P2) = g_v(P2) = 5$.

Polygon1:

First we can find a set of 3 red witness points that are respect to guard points, the visibility polygons of the 3 points are pairwise disjoint, so w(P1) >= 3. Then we can find 3 blue guard points that can see all the polygons. Thus, $3 \le w(P1) \le g(P1) \le 3$, so, w(P1) = g(P1) = 3.

Polygon2:

First we can find a set of 5 red witness points that are respect to guard points, the visibility polygons of the 5 points are pairwise disjoint, so w(P2) >= 5. Then we can find 5 blue guard points that can see all the polygons. Thus, $5 \le w(P2) \le g(P2) \le 5$, so, w(P2) = g(P2) = 5.