Power Transmission System Design

Sappinandana Akamphon

ME TSE

What We have Covered So Far

- Shafts
- Gears
- Bearings
- · Flexible Elements
- Power screws

Final Goal

- $\boldsymbol{\cdot}$ Design a power transmission system ...
- with multiple components ...
- · that interacts with one another ...

Where Do We Start?

- $\boldsymbol{\cdot}$ Given all the requirements: power, reduction ratio, speed ..
- · Which component should be designed first?

System design is typically iterative

- · Possibly multiple correct solutions
- Start from input or output
- · Proceed to the rest of the system
- · When contradiction arises, correct it
- And redesign other parts to fix that mistake
- · Lather, rinse, repeat ...

Order of Component Design

- 1. Determine the required T, v, ω , H, ...
- Input Output → gear / chain + sprocket / pulley + belt / power screw
- 3. Determine forces on shaft
- 4. Shafts \rightarrow what the input and output are mounted on
- 5. Determine forces on bearings
- 6. Bearings \rightarrow what the shaft made contact with
- 7. Determine forces on joints
- 8. Joints: springs, bolts, welds, ...
- 2, 4, 6, 8 \rightarrow already knows
- 1, 3, 5, $7 \rightarrow$ need a little dust off

Determine Required T, V, ω , H

- Problem usually gives a subset of mass, weight, torque, velocity, acceleration or ...
- Need to determine F and T on shaft depending on mechanism involved

Forces on Shaft

2 directions possible:

- Radial Loads: any forces \perp shaft axis (F_r, F_t)
- Axial Loads: any forces \parallel shaft axis

Determine forces on shaft

Gears: F_a , F_t , F_r Forces on shaft:

- $F_a \rightarrow \text{Axial load on shaft}$
- F_r and $F_t \perp$ shaft axis \rightarrow Radial load on shaft = $\sqrt{F_r^2 + F_t^2}$

Determining forces on shaft

Pulleys + Belts: F_1 , F_2 On shaft:

> • $F_1, F_2 \perp \text{shaft axis} \rightarrow \text{Radial}$ load on shaft $\approx F_1 + F_2$

Determining forces on shaft

Chain + Sprocket: F_1 On shaft:

• $F_1 \perp \text{shaft axis} \rightarrow \text{Radial load}$ on shaft

Shaft Design

- Radial load $\rightarrow F_r \rightarrow$ bending stress
- Axial load $\rightarrow F_a \rightarrow$ axial stress
- Torque \rightarrow $T \rightarrow$ torsion

$$\frac{1}{N_s} = \frac{\sigma_{ae}}{S_e} + \frac{\sigma_{me}}{S_y}$$
$$\sigma_{ae} = \left(\sigma_a^2 + 3\tau_a^2\right)^{1/2}$$
$$\sigma_{me} = \left(\sigma_m^2 + 3\tau_m^2\right)^{1/2}$$

Bearing Design

- Bearing equation needs radial load F_r and axial load F_a
- · Determine forces on bearings using equilibrium equations
- Proceed to design bearings using F_e derived from F_r and F_a

$$L = L_R K_r \left(\frac{C}{F_e}\right)^{10/3}$$
$$C = F_e \left(\frac{L}{K_r L_R}\right)^{0.3}$$

Forces on Joints

- Consider forces of components attached to joints
- Use equilibrium equation to determine the forces

Example

A motor drive is used to operate a well bucket. The maximum water weight the bucket can hold is 100 N. The minimum required speed of the bucket is 50 cm/s. The bucket is held by an unbreakable rope that loops around a 20-cm-radius pulley that is fitted onto the middle of a 1-m shaft.

The shaft is supported by a pair of bearings, one at each end. The input motor provides 100-W at 1200 rpm. The motor can be engaged/disengaged from the shaft with a disc clutch.

Example

Design:

- 1. Shaft (N_s = 2, S_y = 300 MPa, S_{ut} = 400 MPa, E = 210 GPa)
- 2. Disc Clutch (μ = 0.1)
- 3. Bearings

Required power = (100 N)(0.5 m/s) = 50 W

So the given motor works, assuming 100% efficiency

Assuming constant speed operation, required torque = 100(0.2) = 20N-m = Torque on shaft

Force on shaft = Rope tension = 100 N

Shaft:

$$\sigma_a = \frac{100(1)r}{4(\pi/4)r^4} = \frac{31.8}{r^3}$$

$$\sigma_m = 0$$

$$\tau_a = 0$$

$$\tau_m = \frac{20(r)}{(\pi/2)r^4} = \frac{12.7}{r^3}$$

Calculating equivalent amplitude and mean stresses

$$\sigma_{ae} = \sqrt{\sigma_a^2 + 3\tau_a^2} = \frac{31.8}{r^3}$$

$$\sigma_{me} = \sqrt{\sigma_m^2 + 3\tau_m^2} = \sqrt{3} \frac{12.7}{r^3} = \frac{22}{r^3}$$

Using Soderberg criteria,

$$\frac{1}{N_s} = \frac{\sigma_{ae}}{S_e} + \frac{\sigma_{me}}{S_y}$$

$$\frac{1}{2} = \frac{31.8}{r^3(0.5)(400 \times 10^6)} + \frac{22}{r^3(300 \times 10^6)}$$

$$r^3 = 4.65 \times 10^{-7}$$

$$r = 7.75 \times 10^{-3} \text{ m}$$

Disc Clutch: $\mu = 0.1$

A clutch – use wet lining.

	Domania Eristian	Maximun	n Pressure ^c	Maximum Bulk Temperature		
Friction Material ^a	Dynamic Friction Coefficient $f^{ m b}$	psi	kPa	$^{\circ}\mathbf{F}$	°C	
Molded	0.25-0.45	150-300	1030-2070	400-500	204–260	
Woven	0.25-0.45	50-100	345-690	400-500	204-260	
Sintered metal	0.15-0.45	150-300	1030-2070	450-1250	232-677	
Cork	0.30-0.50	8-14	55-95	180	82	
Wood	0.20-0.30	50-90	345-620	200	93	
Cast iron, hard steel	0.15-0.25	100-250	690-1720	500	260	

Pick woven material so that p_{max} = 500 kPa

Take $r_i = 0.6r_o$, number of disc N = 1, safety factor $N_s = 2$.

$$T_{design} = N_s T = \mu \pi p_{max} r_i \left(r_o^2 - r_i^2 \right)$$

$$2(20) = (0.1)\pi (500 \times 10^3)(0.6r_o) \left(r_o^2 - (0.6r_o)^2 \right)$$

$$r_o = 0.087 \text{ m}$$

Bearings:

Radial force = 100 N

Axial force is calculated from actuating force on clutch

$$F = p_{\text{max}} \pi \left(r_o^2 - r_i^2 \right)$$

= 7609 N

Use angular contact since large axial load.

$$\frac{F_a}{F_r} = 47.8$$
 $F_e = 0.911F_a$
 $= 6932 \text{ N}$

Bore (mm)	Radial Ball, $\alpha = 0^{\circ}$			Angular Ball, $\alpha = 25^{\circ}$			Roller		
	L00 Xlt (kN)	200 lt (kN)	300 med (kN)	L00 Xlt (kN)	200 lt (kN)	300 med (kN)	1000 Xlt (kN)	1200 lt (kN)	1300 med (kN)
10	1.02	1.42	1.90	1.02	1.10	1.88			
12	1.12	1.42	2.46	1.10	1.54	2.05			
15	1.22	1.56	3.05	1.28	1.66	2.85			
17	1.32	2.70	3.75	1.36	2.20	3.55	2.12	3.80	4.90
20	2.25	3.35	5.30	2.20	3.05	5.80	3.30	4.40	6.20
25	2.45	3.65	5.90	2.65	3.25	7.20	3.70	5.50	8.50
30	3.35	5.40	8.80	3.60	6.00	8.80	2.40^{a}	8.30	10.0
35	4.20	8.50	10.6	4.75	8.20	11.0	3.10^{a}	9.30	13.1
40	4.50	9.40	12.6	4.95	9.90	13.2	7.20	11.1	16.5
45	5.80	9.10	14.8	6.30	10.4	16.4	7.40	12.2	20.9
50	6.10	9.70	15.8	6.60	11.0	19.2	5.10^{a}	12.5	24.5
55	8.20	12.0	18.0	9.00	13.6	21.5	11.3	14.9	27.1
60	8.70	13.6	20.0	9.70	16.4	24.0	12.0	18.9	32.5

No other specifications, so assume reliability factor = 1, required life = 9×10^7

Application bearings are Xlt(55 mm), lt(35 mm), med(25 mm) = L11, 207, 305

Recalculate shaft to account for axial load

$$\sigma_a = \frac{100(1)r}{4(\pi/4)r^4} = \frac{31.8}{r^3}$$

$$\sigma_m = \frac{7609}{\pi r^2} = \frac{2422}{r^2}$$

$$\tau_a = 0$$

$$\tau_m = \frac{20(r)}{(\pi/2)r^4} = \frac{12.7}{r^3}$$

$$\sigma_{ae} = \sqrt{\sigma_a^2 + 3\tau_a^2} = \frac{31.8}{r^3}$$

$$\sigma_{me} = \sqrt{\sigma_m^2 + 3\tau_m^2} = \sqrt{\left(\frac{2422}{r^2}\right)^2 + 3\left(\frac{12.7}{r^3}\right)^2}$$

Using Soderberg criteria,

$$\begin{split} \frac{1}{N_s} &= \frac{\sigma_{ae}}{S_e} + \frac{\sigma_{me}}{S_y} \\ \frac{1}{2} &= \frac{31.8}{r^3 (0.5) (400 \times 10^6)} + \frac{\sqrt{\left(\frac{2422}{r^2}\right)^2 + 3\left(\frac{12.7}{r^3}\right)^2}}{(300 \times 10^6)} \end{split}$$

This must be solved analytically: r = 0.008 m = 8.0 mm

Check buckling,

$$N_{s} = \frac{P_{cr}}{F_{comp}}$$

$$P_{cr} = 2(4782) = \frac{\pi^{2}EI}{L_{e}^{2}}$$

$$I = \frac{\pi r^{4}}{4} = \frac{2(4782)(1)^{2}}{\pi^{2}(210 \times 10^{9})}$$

$$r = 8.76 \times 10^{-3} \text{ m}$$

Summary

- Many more variations of possible answers
- Different choices of steel, linings, factors will lead to different answers