Nuclear penalized multinomial regression for predicting at bat outcomes in baseball

Scott Powers, Trevor Hastie and Robert Tibshirani

Stanford University

August 1, 2016

Outline

- 1. Motivation
 - Ridge regression
 - Relationships between outcome classes
- 2. Leveraging structure between outcome classes
 - Reduced rank regression
 - Nuclear penalized multinomial regression (NPMR)
- Results
 - Validation
 - Interpretation

The Problem

- Baseball = sequence of matchups between 1 batter, 1 pitcher
- Each matchup results in F, G, K, BB, HBP, 1B, 2B, 3B or HR

Nuccio DiNuzzo | Chicago Tribune

 If Kris Bryant bats against Chris Sale, what is probability of each possible outcome?

Multinomial regression

What is probability Kris Bryant hits home run against Chris Sale?

$$\eta_{
m HR}=lpha_{
m HR}+eta_{
m HR:Kris\ Bryant}+\gamma_{
m HR:Chris\ Sale}$$

$$\mathbb{P}(
m HR)=rac{e^{\eta_{
m HR}}}{\sum_{k\in\mathcal{O}}e^{\eta_k}}$$

Multinomial regression

What is probability Kris Bryant hits home run against Chris Sale?

$$\eta_{\rm HR} = \alpha_{\rm HR} + \beta_{\rm HR:Kris~Bryant} + \gamma_{\rm HR:Chris~Sale}$$

$$\mathbb{P}(\mathsf{HR}) = rac{e^{\eta_{\mathsf{HR}}}}{\sum_{k \in \mathcal{O}} e^{\eta_k}}$$

More generally,

$$\eta_{ik} = \alpha_k + \beta_{k:B_i} + \gamma_{k:P_i}$$

$$\mathbb{P}(Y_i = k) = \frac{e^{\eta_{ik}}}{\sum_{k' \in \mathcal{O}} e^{\eta_{ik'}}}$$

Ridge multinomial regression

- i = 1, ..., n, indexes plate appearances (PA)
- $\mathcal{O} = \{ F, G, K, BB, HBP, 1B, 2B, 3B, HR \}$
- $\mathcal{B} = \{ Kris Bryant, ..., Zach Cozart \}$
- $P = \{Chris Sale, ..., Zack Britton\}$

For some $\lambda > 0$,

$$\underset{\alpha,\beta,\gamma}{\operatorname{minimize}} - \sum_{i=1}^{n} \log \mathbb{P}(Y_i = y_i) + \lambda \sum_{k \in \mathcal{O}} \left(\sum_{B \in \mathcal{B}} \beta_{k:B}^2 + \sum_{P \in \mathcal{P}} \gamma_{k:P}^2 \right)$$

Matrix notation

$$\mathbf{X} = \begin{pmatrix} \overbrace{1 & \dots & 0 & 0 & \dots & 0} \\ 0 & \dots & 0 & 0 & \dots & 1 \\ 0 & \dots & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} \beta_{F:KB} & \dots & \beta_{HR:KB} \\ \dots & \dots & \dots & \beta_{F:ZC} & \dots & \beta_{HR:ZC} \\ \gamma_{F:ZC} & \dots & \beta_{HR:ZC} \\ \gamma_{F:ZS} & \dots & \gamma_{HR:ZS} \\ \dots & \dots & \dots \\ \gamma_{F:ZB} & \dots & \gamma_{HR:ZB} \end{pmatrix}$$

$$\underbrace{n \times (|\mathcal{B}| + |\mathcal{P}|)}_{n \times p} \qquad \underbrace{(|\mathcal{B}| + |\mathcal{P}|) \times |\mathcal{O}|}_{p \times K}$$

Matrix notation

$$\mathbf{X} = \begin{pmatrix} \overbrace{1 & \dots & 0 & 0 & \dots & 0} \\ 0 & \dots & 0 & 0 & \dots & 1 \\ 0 & \dots & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} \beta_{F:KB} & \dots & \beta_{HR:KB} \\ \dots & \dots & \dots & \dots \\ \beta_{F:ZC} & \dots & \beta_{HR:ZC} \\ \gamma_{F:CS} & \dots & \gamma_{HR:CS} \\ \dots & \dots & \dots & \dots \\ \gamma_{F:ZB} & \dots & \gamma_{HR:ZB} \end{pmatrix}$$

$$\underbrace{n \times (|\mathcal{B}| + |\mathcal{P}|)}_{n \times p} \qquad \underbrace{(|\mathcal{B}| + |\mathcal{P}|) \times |\mathcal{O}|}_{p \times K}$$

Structure between plate appearance outcomes Ordering:

$$\mathsf{K} < \mathsf{G} < \mathsf{F} < \mathsf{BB} < \mathsf{HBP} < \mathsf{1B} < \mathsf{2B} < \mathsf{3B} < \mathsf{HR}$$

Structure between plate appearance outcomes Ordering:

$$\mathsf{K} < \mathsf{G} < \mathsf{F} < \mathsf{BB} < \mathsf{HBP} < \mathsf{1B} < \mathsf{2B} < \mathsf{3B} < \mathsf{HR}$$

Structure:

Reduced-rank multinomial regression

$$\underset{\alpha \in \mathbb{R}^K, \ \mathbf{B} \in \mathbb{R}^{p \times K}}{\operatorname{minimize}} - \ell(\alpha, \mathbf{B}; \mathbf{X}, \mathbf{Y}) + \lambda \cdot \operatorname{rk}(\mathbf{B})$$

$$\mathbf{B} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{r=1}^{\mathsf{rk}(\mathbf{B})} \sigma_r \mathbf{u}_r \mathbf{v}_r^T$$

- CRAN package VGAM implements reduced-rank vector generalized linear models (RR-VGLMs, Yee and Hastie, 2003)
- Far too slow to fit on full season of MLB play-by-play data
- Not a convex optimization problem

Nuclear penalized multinomial regression

NPMR:

$$\underset{\alpha \in \mathbb{R}^K, \ \mathbf{B} \in \mathbb{R}^{p \times K}}{\text{minimize}} - \ell(\alpha, \mathbf{B}; \mathbf{X}, \mathbf{Y}) + \lambda ||\mathbf{B}||_*$$

$$||\mathbf{B}||_* = \sum_{r=1}^{\mathsf{rk}(\mathbf{B})} \sigma_r$$

- Convex relaxation of reduced-rank regression
- Solved via accelerated proximal gradient descent
- Implemented on CRAN in npmr

Baseball application details

- n = 181,577 PA. For i^{th} PA, observe:
 - B_i : **B**atter (403 unique batters)
 - P_i: Pitcher (361 unique pitchers)
 - Si: Stadium
 - H_i: indicator batter is on **H**ome team
 - O_i : indicator batter has **O**pposite handedness of pitcher's

Model:

$$\mathbb{P}(Y_i = k) = \frac{e^{\eta_{ik}}}{\sum_{k' \in \mathcal{O}} e^{\eta_{ik'}}} \text{for } k \in \mathcal{O}, \text{ where}$$
$$\eta_{ik} = \alpha_k + \beta_{k:B_i} + \gamma_{k:P_i} + \delta_{k:S_i} + \zeta_k H_i + \theta_k O_i$$

Fitting:

$$\underset{\alpha \in \mathbb{R}^9, \ \mathbf{B} \in \mathbb{R}^{796 \times 9}}{\text{minimize}} - \ell(\alpha, \mathbf{B}; \mathbf{X}, \mathbf{Y}) + \lambda(||\mathbf{B}_{\mathcal{B}}||_* + ||\mathbf{B}_{\mathcal{P}}||_* + ||\mathbf{B}_{\mathcal{S}}||_*)$$

Validation of NPMR v ridge regression

Results on 5% of season

Batters:

Latent	I								
variable	1	2	3	4	5	6	7	8	9
1B	0.38	-0.28	-0.68	0.42	-0.14	-0.07	0.34	-0.03	-0.03
2B	0.03	-0.02	-0.06	-0.46	0.03	-0.77	0.31	0.26	0.17
3B	0.01	-0.00	-0.00	-0.27	0.16	0.09	0.31	0.00	-0.89
BB	-0.16	-0.10	-0.06	-0.45	-0.40	0.31	0.42	-0.52	0.24
F	0.14	0.87	0.09	0.25	-0.12	-0.07	0.35	-0.09	0.02
G	0.43	-0.36	0.72	0.22	-0.12	-0.02	0.33	0.02	0.03
HBP	-0.01	-0.01	-0.03	-0.01	0.85	0.22	0.36	-0.09	0.31
HR	-0.04	0.05	-0.06	-0.14	-0.19	0.47	0.23	0.80	0.14
K	-0.79	-0.15	0.09	0.45	-0.07	-0.17	0.33	0.06	-0.06
Corresponding	3.66	2.20	1.23	0.00	0.00	0.00	0.00	0.00	0.00

Pitchers:

Latent									
variable	1	2	3	4	5	6	7	8	9
1B	0.16	0.24	-0.34	0.48	-0.46	-0.27	0.42	-0.34	0.05
2B	0.01	0.03	-0.01	0.57	0.71	0.23	0.27	0.00	-0.20
3B	-0.00	-0.01	-0.05	-0.17	-0.12	0.38	-0.14	-0.61	-0.65
BB	0.07	-0.04	-0.69	-0.46	0.12	0.23	0.43	0.22	-0.01
F	0.37	-0.74	0.33	-0.01	-0.14	0.07	0.41	-0.04	0.00
G	0.26	0.62	0.51	-0.27	-0.03	0.19	0.42	0.07	-0.01
HBP	-0.01	0.01	0.00	0.19	-0.31	-0.10	-0.00	0.65	-0.66
HR	0.01	-0.00	0.05	-0.30	0.35	-0.79	0.16	-0.19	-0.31
K	-0.87	-0.09	0.18	-0.03	-0.13	0.05	0.42	-0.05	0.00
Corresponding	1.98	1.54	0.32	0.00	0.00	0.00	0.00	0.00	0.00
diagonal									

Results on full season

Batters

Pitchers

Tool	TTO	Power	Discipline
	More K, BB	More F, HR	More BB
_ 1	J Bautista	A Pujols	M Cabrera
Тор	B Harper	D Murphy	B Zobrist
5	C Carter	N Arenado	J Votto
	C Davis	S Perez	B Posey
	G Stanton	W Flores	M Brantley
ъ.	B Pena	M Bourne	Y Gomes
Bot	I Suzuki	A Gose	S Gennett
5	E Aybar	S Peterson	S Rodriguez
	D Gordon	D DeShields	D Santana
	B Revere	R Perez	E Rosario
	More G, 1B	More K, BB	More K

Contact	Trajectory	Command	
More K, BB	More G, 1B	More K, G	
C Allen	S Dyson	C Kershaw	
Z Britton	J Petricka	E Scribner	
C Kimbrel	B Treinen	L Gregerson	
A Miller	B Anderson	P Hughes	
D Betances	B Ziegler	M Pineda	
P Hughes	Y Petit	J Grimm	
M Buehrle	D Haren	M Lorenzen	
J Collmenter	T Clippard	E Butler	
J Nicolino	Y Garcia	S Oberg	
S O'Sullivan	C Young	R Detweiler	
More F, G	More F, HR	More BB, HR	

Results on full season

Conclusions

- Results not significant improvement over ridge but
 - Interpretation of results provides interesting insight
 - NPMR natural for structed outcome space
- Method applicable to other problems
 - e.g. Robinson (1989) vowel data
- Simulation: NPMR beats ridge in low-rank regime, not much worse in full rank regime

References

Anderson (1984) Regression and ordered categorical variables. JRSS B

Baumer and Zimbalist (2014) The Sabermetric Revolution

Hastie, Tibshirani and Wainwright (2015) Statistical Learning with Sparsity: The Lasso and Generalizations

Lu et al. (2009) Convex optimization methods for dimension reduction and coefficient estimation in multivariate linear regression. *Mathematical programming*

Toh and Yun (2009) An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. *Pacific Journal of Optimization*

Yee and Hastie (2003) Reduced-rank vector generalized linear models. Statistical Modelling

Yuan et al. (2007) Dimension reduction and coefficient estimation in multivariate linear regression. $JRSS\ B$

Backup slides

Initialize $\mathbf{B}^{(0)}$

Gradient descent:
$$\mathbf{B}^{(t+1)} = \mathbf{B}^{(t)} - s\nabla \ell(\mathbf{B}^{(t)})$$

Initialize **B**⁽⁰⁾

Gradient descent:
$$\mathbf{B}^{(t+1)} = \mathbf{B}^{(t)} - s\nabla \ell(\mathbf{B}^{(t)})$$

Proximal gradient descent (PGD):

$$\mathbf{B}^{(t+1)} = \mathbf{prox}_{s\lambda||\cdot||_*} \left(\mathbf{B}^{(t)} - s\nabla \ell(\mathbf{B}^{(t)}) \right)$$

Proximal map for nuclear norm: soft-thresholding singular values

$$\begin{split} \mathbf{B} &= \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T & [\mathcal{S}_{s\lambda}(\mathbf{\Sigma})]_{rr} = (\sigma_r - s\lambda)_+ \\ & \mathbf{prox}_{s\lambda||\cdot||_*}(\mathbf{B}) = \mathbf{U} \mathcal{S}_{s\lambda}(\mathbf{\Sigma}) \mathbf{V}^T \end{split}$$

Proximal map for nuclear norm: soft-thresholding singular values

$$\mathbf{B} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$
 $[\mathcal{S}_{s\lambda}(\mathbf{\Sigma})]_{rr} = (\sigma_r - s\lambda)_+$ $\mathbf{prox}_{s\lambda||\cdot||_*}(\mathbf{B}) = \mathbf{U} \mathcal{S}_{s\lambda}(\mathbf{\Sigma}) \mathbf{V}^T$

Repeat until convergence:

1.
$$\alpha^{(t+1)} = \alpha^{(t)} + s\mathbf{1}^{T} \left(\mathbf{Y} - \hat{\mathbf{P}}(\alpha^{(t)}, \mathbf{B}^{(t)}) \right)$$

2. $\mathbf{B}^{(t+1)} = \mathbf{prox}_{s\lambda||\cdot||*} \left(\mathbf{B}^{(t)} + s\mathbf{X}^{T} \left(\mathbf{Y} - \hat{\mathbf{P}}(\alpha^{(t)}, \mathbf{B}^{(t)}) \right) \right)$

sublinear convergence b/c gradient is Lipschitz (Nesterov, 2007)

Accelerated PGD

Initialize $\alpha^{(0)}$, $\mathbf{A}^{(0)}$, $\mathbf{B}^{(0)}$, and iterate until convergence:

1.
$$\alpha^{(t+1)} = \alpha^{(t)} + s \mathbf{1}^T \left(\mathbf{Y} - \hat{\mathbf{P}}(\alpha^{(t)}, \mathbf{A}^{(t)}) \right)$$

2.
$$\mathbf{A}^{(t+1)} = \mathbf{B}^{(t)} + \frac{t}{t+3} (\mathbf{B}^{(t)} - \mathbf{B}^{(t-1)})$$

3.
$$\mathbf{B}^{(t+1)} = \mathbf{prox}_{s\lambda||\cdot||_*} \left(\mathbf{A}^{(t+1)} + s\mathbf{X}^T \left(\mathbf{Y} - \hat{\mathbf{P}}(\alpha^{(t+1)}, \mathbf{A}^{(t+1)}) \right) \right)$$

Much faster! Implemented on CRAN in npmr package.

Simulation study

 Y_i simulated independently from:

$$\mathbb{P}(Y_i = k) = \frac{e^{\mathbf{X}\beta_k}}{\sum_{\ell=1}^8 e^{\mathbf{X}\beta_\ell}} \text{ for } i = 1, ..., n \text{ and } k = 1, ..., 8$$
$$\mathbf{x}_i \overset{\text{i.i.d.}}{\sim} \mathsf{Normal}(\vec{0}_{12}, \mathbb{I}_{12})$$

Low rank setting

Full rank setting

$$\mathbf{B}_{12\times8} = \mathbf{A}_{12\times2}\mathbf{C}_{2\times8}$$

 $B_{jk} \stackrel{\text{i.i.d.}}{\sim} \mathsf{Normal}(0,1)$

$$A_{j\ell} \overset{\text{i.i.d.}}{\sim} \mathsf{Normal}(0,1)$$

$$C_{\ell k} \overset{\mathsf{i.i.d.}}{\sim} \mathsf{Normal}(0,1)$$

Simulation results

Vowel data set

Robinson (1989) vowel data:

Vowel	Word	Vowel	Word
i	heed	0	hod
I	hid	C:	hoard
Е	head	U	hood
Α	had	u:	who'd
a:	hard	3:	heard
Υ	hud		

- 15 subjects (8 in training set, 7 in test set)
- K = 11, n = 528, p = 10 and m = 462

Results on vowel data

