Expression Prec Expression tree is a binary kee wherein a give binary tree with operands as deaf nodes and operators as internal nodes Algorithm to contract an exp tree. up 2 7 Scoun the given expression from left to right.

up at 7 Initialize 2 stacks manely a tree stack and operator up3 If the scanned symbol is (a) an operand - construct a node for the operand I push the ope node onto the stack. (b) an operator - if operator stack is empty of the precedence of the operator on the top of the operator stack is cers than the precedence of the scanned operator, construct a node for the operator & push it onto the operator shack else 1 pop 2 nodes from the tree stack & attach them as the right of the left child of push the operator node onto & the tree stack and prish the scanned operator onto the operator stack. spop an operator node from the operator stack.). Until the operator stack becomes empty pop an typ 4 operator node from the operator stack and 2 nodes from the free stack, attaching them as the right and the left child and push the operator node onto the free stack Step 5 Return tree stack to get your exp. tree

NODE creatinode (char item) NODE timp; temp = (NODE) malloc (street (struct node)); temp - data = iam; timp -> lift = NULL; timp > right = NULL; return timp, int precede (char c) switch (c) case \$': rehirn 5; case ": return 3; case `+': case '-': Whimm 1; NODE meate exptree (char infix [15] char symbol NODE treestack [20], opstack [20], temp t , 1, 2; int top1=-1, top2=-1, i, for (1=0; infix[i] 1=10'; i++) symbol = infix[i]; if (is alnum (symbol)) temp= weati-node (symbol); treestack [++ topi] = temp;

elre temp = creak_node (symbol); if (top2==-1) H preced (symbol) >proced preced (opostock (top2) - data)) opstack [++ top2] = timp; elre hite (preced (cymbal) = preced (opstack [top2]-sdab, 2 t = opstack [top2--]; 1 = treestack[top1--]; d = treestack [top 1--]; tonight = 2; t - left = l; ? zopstack[++top] = t; } while (top2 1=-1) t = opstack Ltop2 --]; & = treestack [top1 --]; 1 = treestack [top1--]; t -> right = 4; tout = l; treestack [++top1] = t; when treestack [top1]; // write preorder, inorder, postorder 11 change % d to % J. int main () NODE Lost = NULL; chas infix [20];

print ("In Read the expression (n"); scanf (" / e ", winfix); prints ("In Preordu traversal is"); Preorder (root): print ("In Inordu traversal is In"); inordu (not); prints ("In Postordu traversal is In"); 3 postorder (most); (b-c) *d

all	Q Write a short note on threeded binary tree. classmate Date
	Threadid Binary Frees.
	Drawback of bin tree
_	time consumed à mon for traversal operation
-	time consumed à more for traversal operation
_	To find the successor / predection in
	nou time.
	(G)
	A Linkson
	To overcome this we go for threaded bin trees. (based on traversal) consists of head node which contains add of
	(based on traversal) consists of head node which contains addr of
6	708 - woole.
0	In-threaded bin tree
	Pre- u
	2 types
	uft nghư
	predicesser successor

	Heap.
	A manufic :
	Heap is a binary tree with 2 additional properties:
	U '
0	Structural property - good tast with all wells 2 hours
	Structural property - governt complete si node. The tree should be almost complete binary tree.
(2)	Parent dominant property -
	Parent should be more dominant to run
	Parent dominant property - Parent should be more dominant so her isospaniel to it children
	There are 2 types of heaps:
_	2 1 W tries taislas value johen
0	Max heap - Parent should now ing my
	Max heap - Parent should have higher value, when compared to its children.
	Min heap - Parent should have lesser value compand to its children.
(2)	1 -16 AND
25.5	To us chilanin,
-	eg: Max herp
	SO 275 < 150
	25 1 45 < 50
	(50)
	(25) (95) (60)
	Min Wear
	(10) , 20 LUD >10
	(40) , sot 25 × 20
	(E) (E)

Porgram to implement priority greve using #include < stdio.h> # include - stallb. h> int extractmen (int a [10]) int max if (n == 0) print ("Heap is empty"); else Max = a[1]; a[i] = a[n]; void buildheap (int a [10]) for (1= n/2: ; i>=1; i-heapify (a,î); void heapify (intrasposs, int. i) ent left, night, largest, 4t = 2+2; right = 2+1+1; if (left <= n ff a[ut] > a[i]) largest = 4t; largest = i; if (right <= n & a [right] > a [luyest] largest = right; swap (Gali), & a [largest]; heapify (a, largest);

int main (). int a lio], i, ch, del Privil ("In Read no of elements printi (" 1. Po wat heap In 2. Delite In 3. Exit In"); painty ("Read choice in"); scary (" "/d" fch); switch (ch) case 1: print (" Read no of elements In"); scary ("1/d" In); print (" Read clements in"); for (i=1; i<=n; i++) scanf ("Yod", La[i]); buildheap (a), printf (" famule of the constructing heap in "); for (i=1; i<=n; i++) print (~1.d t 4), a[i]); break; case 2: del = extractmax(a); if (del !=-1) print (" furner dulited is /d In" del print ("In Elemente of the deletionin"); har (i=1; i<=n;i++") print (" r.d lt", a [i]); default: exit(0); void swap (int *a, int *b) ing temp; tump = ka; da = 46; *6 = temp;