图论 homework 10 第九章部分

9

通过原网络的可行流构造附加网络的流:

1. 对于 $e \in E(D)$, f'(e) = f(e)

2. 对于
$$e=(x_0,x_i)$$
 , $f'(e)=\sum_{e\in eta(x_i)}f(e)$

3. 对于
$$e=(y_i,y_0)$$
 , $f'(e)=\sum_{e\in lpha(y_i)}f(e)$

对于第三类边, 可能出现 $f'(e) > c(y_j, y_0)$ 的情况, 由于只有上界的网络必然存在可行流, 所以可以通过减载使 f' 为合法的流函数, 且 (y_i, y_0) 都满载.

12

 \Rightarrow 若网络中没有顶点子集漏掉或冒出流,则取任意 $v \in V(G)$,有

$$\begin{array}{l} \sum_{e \in \alpha(v)} c(e) - \sum_{e \in \beta(v)} b(e) \geq 0, \\ \sum_{e \in \alpha(v)} b(e) - \sum_{e \in \beta(v)} c(e) \leq 0 \text{ . 此时存在流满足} \\ \forall e \in E(D), c(e) \geq f(e) \geq b(e), \\ \forall v \in V(D) - s, t, \\ \sum_{e \in \alpha(v)} f(e) = \sum_{e \in \beta(v)} f(e) \text{ . 即存在可行流} \end{array}$$

← 若网络中存在可行流,则

$$\sum_{v \in V'} \sum_{e \in \alpha(v)} f(e) - \sum_{v \in V'} \sum_{e \in \beta(v)} f(e) = \sum_{e \in \alpha(V')} f(e) - \sum_{e \in \beta(V')} f(e) = 0$$
.则 $\sum_{e \in \alpha(V')} b(e) \le \sum_{e \in \alpha(V')} f(e) = \sum_{e \in \beta(V')} f(e) \le \sum_{e \in \beta(V')} c(e)$.即 V' 不会漏掉流.同理, V' 不会冒出流.得证.

17

输入: 有供需需求的网络 $N = (D, X, Y, \sigma, \rho, c)$.

输出: N 的最大流 f, 或判定 N 没有可行流.

- 1. 构造 N 的附加网络 $N' = (D', x_0, y_0, c')$
- 2. 用 2F 算法求出 N'的最大流函数 f'
- 3. 若f'满足: 任给 $1 \leq j \leq n$, f'使边 (y_j, y_0) 满载, 在转第4步, 否则, 输出结论 N没有可行流, 算法停止.
- 4. 对 $1 \leq j \leq n$, 将 $c(y_j,y_0)$ 改为正无穷,再次使用2F算法求最大流,最后将f'限制在网络 N上,即任给 $e \in E(D)$,令 f(e)=f'(e),则 f就是N的最大流. 算法停止.