Reducibility Part I

Deciders

- Some Turing machines always halt; they never go into an infinite loop.
- Turing machines of this sort are called deciders.
- For deciders, accepting is the same as not rejecting and rejecting is the same as not accepting.

Decidable Languages

- A language L is called **decidable** iff there is a decider M such that $\mathcal{L}(M) = L$.
- Given a decider M, you can learn whether or not a string $w \in \mathcal{L}(M)$.
 - Run *M* on *w*.
 - Although it might take a staggeringly long time, M will eventually accept or reject w.
- The set \mathbf{R} is the set of all decidable languages.

 $L \in \mathbf{R}$ iff L is decidable

All Languages

A_{TM} and HALT

- Both A_{TM} and HALT are undecidable.
 - There is no way to decide whether a TM will accept or eventually terminate.
- However, both A_{TM} and HALT are recognizable.
 - We can always run a TM on a string *w* and accept if that TM accepts or halts.
- Intuition: The only general way to learn what a TM will do on a given string is to run it and see what happens.

Resolving an Asymmetry

A New Complexity Class

- A language L is in **RE** iff there is a TM M such that
 - if $w \in L$, then M accepts w.
 - if $w \notin L$, then M does not accept w.
- A TM *M* of this sort is called a *recognizer*, and *L* is called *recognizable*.
- A language L is in co-RE iff there is a TM M such that
 - if $w \in L$, then M does not reject w.
 - if $w \notin L$, then M rejects w.
- A TM M of this sort is called a co-recognizer, and L is called co-recognizable.

- Intuitively, **RE** consists of all problems where a TM can exhaustively search for **proof** that $w \in L$.
 - If $w \in L$, the TM will find the proof.
 - If $w \notin L$, the TM cannot find a proof.
- Intuitively, co-**RE** consists of all problems where a TM can exhaustively search for a **disproof** that $w \in L$.
 - If $w \in L$, the TM cannot find the disproof.
 - If $w \notin L$, the TM will find the disproof.

RE and co-RE Languages

- A_{TM} is an **RE** language:
 - Simulate the TM *M* on the string *w*.
 - If you find that M accepts w, accept.
 - If you find that *M* rejects *w*, reject.
 - (If *M* loops, we implicitly loop forever)
- \overline{A}_{TM} is a co-**RE** language:
 - Simulate the TM M on the string w.
 - If you find that *M* accepts *w*, reject.
 - If you find that M rejects w, accept.
 - (If *M* loops, we implicitly loop forever)

RE and co-RE Languages

- $\overline{L}_{\rm D}$ is an **RE** language.
 - Simulate M on $\langle M \rangle$.
 - If you find that M accepts $\langle M \rangle$, accept.
 - If you find that M rejects $\langle M \rangle$, reject.
 - (If *M* loops, we implicitly loop forever)
- $L_{\rm D}$ is a co-**RE** language.
 - Simulate M on $\langle M \rangle$.
 - If you find that M accepts $\langle M \rangle$, reject.
 - If you find that M rejects $\langle M \rangle$, accept.
 - (If *M* loops, we implicitly loop forever)

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L.

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'.

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in L$

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in \underline{L}$ iff $w \notin \overline{L}$.

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in \underline{L}$ iff $w \notin \overline{L}$.

M' does not reject w

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects wiff M accepts wiff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$ iff $w \in \overline{L}$.

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects wiff M accepts wiff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject *w*

iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$ iff $w \in L$.

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects wiff M accepts wiff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$ iff $w \in \overline{L}$.

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects w iff M accepts w iff $w \in \underline{L}$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$ iff $w \in \overline{L}$.

The same approach works if we flip the accept and reject states of a co-recognizer for \overline{L} .

Theorem: $L \in \mathbf{RE} \text{ iff } \overline{L} \in \text{co-RE}.$

Proof Sketch: Start with a recognizer M for L. Then, flip its accepting and rejecting states to make machine M'. Then

M' rejects wiff M accepts wiff $w \in L$ iff $w \notin \overline{L}$.

M' does not reject w iff M' accepts w or M' loops on w iff M rejects w or M loops on w iff $w \notin L$ iff $w \in \overline{L}$.

The same approach works if we flip the accept and reject states of a co-recognizer for \overline{L} .

- Every language in R is in both RE and co-RE.
- Why?
 - A decider for L accepts all $w \in L$ and rejects all $w \notin L$.
- In other words, $\mathbf{R} \subseteq \mathbf{RE} \cap \text{co-}\mathbf{RE}$.
- Question: Does $\mathbf{R} = \mathbf{RE} \cap \text{co-RE}$?

Which Picture is Correct?

Which Picture is Correct?

• Theorem: If $L \in \mathbf{RE}$ and $L \in \mathbf{co-RE}$, then $L \in \mathbf{R}$.

- Theorem: If $L \in \mathbf{RE}$ and $L \in \text{co-RE}$, then $L \in \mathbf{R}$.
- **Proof sketch:** Since $L \in \mathbf{RE}$, there is a recognizer M for it.

- Theorem: If $L \in \mathbf{RE}$ and $L \in \text{co-RE}$, then $L \in \mathbf{R}$.
- **Proof sketch:** Since $L \in \mathbf{RE}$, there is a recognizer M for it. Since $L \in \text{co-}\mathbf{RE}$, there is a co-recognizer \overline{M} for it.

- Theorem: If $L \in \mathbf{RE}$ and $L \in \text{co-RE}$, then $L \in \mathbf{R}$.
- **Proof sketch:** Since $L \in \mathbf{RE}$, there is a recognizer M for it. Since $L \in \text{co-}\mathbf{RE}$, there is a co-recognizer \overline{M} for it.

This TM *D* is a decider for *L*:

- Theorem: If $L \in \mathbf{RE}$ and $L \in \text{co-RE}$, then $L \in \mathbf{R}$.
- **Proof sketch:** Since $L \in \mathbf{RE}$, there is a recognizer M for it. Since $L \in \text{co-}\mathbf{RE}$, there is a co-recognizer \overline{M} for it.

This TM *D* is a decider for *L*:

D= "On input w:
 Run M on w and \overline{M} on w in parallel.
 If \underline{M} accepts w, accept.
 If \overline{M} rejects w, reject.

The Limits of Computability

Time-Out For Announcements!

Friday Four Square!

Today at 4:15PM outside Gates

Two Handouts Online

24: Additional Proofs on TMs

 See alternate proofs of why various languages are or are not R, RE, or co-RE.

25: Extra Practice Problems

- By popular demand, extra questions on topics you'd like some more practice with!
- Solutions released Monday.

Picking up Problem Sets

 If you pick up problem sets from the filing cabinet,

please put all other papers back into the filing cabinet when you're done!

- If you don't:
 - they get mixed with problem sets from other classes and lost,
 - it causes a fire hazard, and
 - I get flak from the building managers about making a mess.

Your Questions

"Can you recommend software for designing and / or simulating Turing machines?"

http://www.jflap.org/

"Is there a difference between when a TM "runs" another TM as a subroutine vs. when it "simulates running" another TM?"

"Sometime my brain is stuck and I make silly and stupid mistakes [...]. What [do] you do when you are stuck on a problem?" Back to CS103!

A Repeating Pattern

$L = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \epsilon \}$

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \varepsilon \rangle$.
- Run R on $\langle M, \varepsilon \rangle$.
- If R accepts $\langle M, \varepsilon \rangle$, then H accepts $\langle M, \varepsilon \rangle$.
- If R rejects $\langle M, \varepsilon \rangle$, then H rejects $\langle M, \varepsilon \rangle$."

From $\overline{\mathrm{A}}_{\scriptscriptstyle\mathrm{TM}}$ to $L_{\scriptscriptstyle\mathrm{D}}$

H = "On input $\langle M \rangle$:

- Construct the string $\langle M, \langle M \rangle \rangle$.
- Run R on $\langle M, \langle M \rangle \rangle$.
- If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M, \langle M \rangle \rangle$.
- If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M, \langle M \rangle \rangle$."

From HALT to A_{TM}

H = "On input $\langle M, w \rangle$:

- Build M into M' so M' loops when M rejects.
- Run D on $\langle M', w \rangle$.
- If D accepts $\langle M', w \rangle$, then H accepts $\langle M, w \rangle$.
- If D rejects $\langle M', w \rangle$, then H rejects $\langle M, w \rangle$."

The General Pattern

Machine H

The General Pattern

Machine H

H = "On input w:

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

- Intuitively, problem *A* reduces to problem *B* iff a solver for *B* can be used to solve problem *A*.
- Reductions can be used to show certain problems are "solvable:"

If A reduces to B and B is "solvable," then A is "solvable."

Formalizing Reductions

- In order to make the previous intuition more rigorous, we need to formally define reductions.
- There are many ways to do this; we'll explore two:
 - Mapping reducibility (today / Monday), and
 - Polynomial-time reducibility (next week).

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

$$\Sigma_2^*$$

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

• A **reduction** from A to B is a function $f: \Sigma_1^* \to \Sigma_2^*$ such that

- Every $w \in A$ maps to some $f(w) \in B$.
- Every $w \notin A$ maps to some $f(w) \notin B$.
- *f* does not have to be injective or surjective.

Why Reductions Matter

- If language *A* reduces to language *B*, we can use a recognizer / co-recognizer / decider for *B* to recognize / co-recognize / decide problem *A*.
 - (There's a slight catch we'll talk about this in a second).
- How is this possible?

$$w \in A$$
 iff $f(w) \in B$

$w \in A$ iff $f(w) \in B$

$w \in A$ iff $f(w) \in B$

Machine H

Machine H

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

Machine H

H = "On input w:

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

H accepts w

Machine H

H = "On input w:

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

H accepts w
iff
R accepts f(w)

Machine H

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

Machine H

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

Machine H

- Transform the input w into f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

$$\mathscr{L}(H) = A$$

Thanks to Alan Kaptanoglu for this image.

A Problem

• Recall: *f* is a reduction from *A* to *B* iff

$$w \in A \quad \text{iff} \quad f(w) \in B$$

- Under this definition, any language A reduces to any language B unless $B = \emptyset$ or Σ^* .
- Since $B \neq \emptyset$ and $B \neq \Sigma^*$, there is some $w_{yes} \in B$ and some $w_{no} \notin B$.
- Define $f: \Sigma_1^* \to \Sigma_2^*$ as follows:

$$f(w) = \begin{cases} w_{yes} & if \ w \in A \\ w_{no} & if \ w \notin A \end{cases}$$

• Then *f* is a reduction from *A* to *B*.

A Problem

- Example: let's reduce L_D to 0*1*.
- Take $w_{yes} = 01$, $w_{no} = 10$.
- Then f(w) is defined as

$$f(w) = \begin{cases} 01 & if \ w \in L_{D} \\ 10 & if \ w \notin L_{D} \end{cases}$$

• There is no TM that can actually evaluate the function f(w) on all inputs, since no TM can decide whether or not $w \in L_{\mathbb{D}}$.

• There is no TM that can actually evaluate the function f(w) on all inputs, since no TM can decide whether or not $w \in L_{\mathbb{D}}$.

- This general reduction is mathematically well-defined, but might be impossible to actually compute!
- To fix our definition, we need to introduce the idea of a computable function.
- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a **computable function** if there is some TM M with the following behavior:

"On input w:

Compute f(w) and write it on the tape.

Move the tape head to the start of f(w).

Halt."

$$f(1^n) = 1^{3n+1}$$

$$f(\mathbf{1}^n) = \mathbf{1}^{3n+1}$$

$$f(w) = \begin{cases} 1^{mn} & \text{if } w = 1^n \times 1^m \\ \varepsilon & \text{otherwise} \end{cases}$$

$$f(w) = \begin{cases} 1^{mn} & \text{if } w = 1^n \times 1^m \\ \varepsilon & \text{otherwise} \end{cases}$$

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

$$f(\langle M \rangle) = \langle M, \langle M \rangle \rangle$$

Mapping Reductions

- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a mapping reduction from A to B iff
 - For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$.
 - *f* is a computable function.
- Intuitively, a mapping reduction from A to B says that a computer can transform any instance of A into an instance of B such that the answer to B is the answer to A.

Mapping Reducibility

- If there is a mapping reduction from language A to language B, we say that language A is mapping reducible to language B.
- Notation: $A \leq_{\mathbf{M}} B$ iff language A is mapping reducible to language B.
- Note that we reduce *languages*, not machines.

Machine H

- Compute f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

Machine H

H = "On input w:

- Compute f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

If R is a decider for B, then H is a decider for A.

Machine H

H = "On input w:

- Compute f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

If R is a decider for B, then H is a decider for A.

If R is a recognizer for B, then H is a recognizer for A.

Machine H

H = "On input w:

- Compute f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

If R is a decider for B, then H is a decider for A.

If R is a recognizer for B, then H is a recognizer for A.

If R is a co-recognizer for B, then H is a co-recognizer for A.

H = "On input w:

- Compute f(w).
- Run machine R on f(w).
- If R accepts f(w), then H accepts w.
- If R rejects f(w), then H rejects w."

If R is a decider for B, then H is a decider for A.

If R is a recognizer for B, then H is a recognizer for A.

If R is a co-recognizer for B, then H is a co-recognizer for A.

- Theorem: If $B \in \mathbf{R}$ and $A \leq_{\mathrm{M}} B$, then $A \in \mathbf{R}$.
- Theorem: If $B \in \mathbf{RE}$ and $A \leq_{\mathrm{M}} B$, then $A \in \mathbf{RE}$.
- Theorem: If $B \in \text{co-RE}$ and $A \leq_{\text{M}} B$, then $A \in \text{co-RE}$.
- Intuitively: $A \leq_{\mathrm{M}} B$ means "A is not harder than B."

- Theorem: If $A \notin \mathbf{R}$ and $A \leq_{\mathrm{M}} B$, then $B \notin \mathbf{R}$.
- Theorem: If $A \notin \mathbf{RE}$ and $A \leq_{\mathrm{M}} B$, then $B \notin \mathbf{RE}$.
- Theorem: If $A \notin \text{co-RE}$ and $A \leq_{\text{M}} B$, then $B \notin \text{co-RE}$.
- Intuitively: $A \leq_{\mathrm{M}} B$ means "B is at at least as hard as A."

If this one is "easy" (R, RE, co-RE)... $A \leq_{\scriptscriptstyle{\mathsf{M}}} B$

"easy" (R, RE, co-RE) too.

If this one is "hard" (not R, not RE, or not co-RE)...

$$A \leq_{\mathrm{M}} B$$

... then this one is "hard" (not R, not RE, or not co-RE) too.