Word2Vec

Skip-Gram Model

- 1. We generate our one hot input vector $x \in \mathbb{R}^{|V|}$ of the center word.
- 2. We get our embedded word vector for the center word $v_c = \mathcal{V}x \in \mathbb{R}^n$
- 3. Generate a score vector $z = \mathcal{U}v_c$.
- 4. Turn the score vector into probabilities, $\hat{y} = \operatorname{softmax}(z)$. Note that $\hat{y}_{c-m}, \dots, \hat{y}_{c-1}, \hat{y}_{c+1}, \dots, \hat{y}_{c+m}$ are the probabilities of observing each context word.
- 5. We desire our probability vector generated to match the true probabilities which is $y^{(c-m)}, \ldots, y^{(c-1)}, y^{(c+1)}, \ldots, y^{(c+m)}$, the one hot vectors of the actual output.

Skip-Gram Model

minimize
$$J = -\log P(w_{c-m}, \dots, w_{c-1}, w_{c+1}, \dots, w_{c+m} | w_c)$$

 $= -\log \prod_{j=0, j \neq m}^{2m} P(w_{c-m+j} | w_c)$
 $= -\log \prod_{j=0, j \neq m}^{2m} P(u_{c-m+j} | v_c)$
 $= -\log \prod_{j=0, j \neq m}^{2m} \frac{\exp(u_{c-m+j}^T v_c)}{\sum_{k=1}^{|V|} \exp(u_k^T v_c)}$
 $= -\sum_{j=0, j \neq m}^{2m} u_{c-m+j}^T v_c + 2m \log \sum_{k=1}^{|V|} \exp(u_k^T v_c)$

$$J = -\sum_{j=0, j \neq m}^{2m} \log P(u_{c-m+j}|v_c)$$
$$= \sum_{j=0, j \neq m}^{2m} H(\hat{y}, y_{c-m+j})$$

CBOW

- 1. We generate our one hot word vectors for the input context of size $m:(x^{(c-m)},\ldots,x^{(c-1)},x^{(c+1)},\ldots,x^{(c+m)})\in \mathbb{R}^{|V|}$).
- 2. We get our embedded word vectors for the context $(v_{c-m} = \mathcal{V}x^{(c-m)}, v_{c-m+1} = \mathcal{V}x^{(c-m+1)}, \dots, v_{c+m} = \mathcal{V}x^{(c+m)} \in \mathbb{R}^n)$
- 3. Average these vectors to get $\hat{v} = \frac{v_{c-m} + v_{c-m+1} + \dots + v_{c+m}}{2m} \in \mathbb{R}^n$
- 4. Generate a score vector $z = \mathcal{U}\hat{v} \in \mathbb{R}^{|V|}$. As the dot product of similar vectors is higher, it will push similar words close to each other in order to achieve a high score.
- 5. Turn the scores into probabilities $\hat{y} = \operatorname{softmax}(z) \in \mathbb{R}^{|V|}$.
- 6. We desire our probabilities generated, $\hat{y} \in \mathbb{R}^{|V|}$, to match the true probabilities, $y \in \mathbb{R}^{|V|}$, which also happens to be the one hot vector of the actual word.

CBOW

minimize
$$J = -\log P(w_c | w_{c-m}, \dots, w_{c-1}, w_{c+1}, \dots, w_{c+m})$$

$$= -\log P(u_c | \hat{v})$$

$$= -\log \frac{\exp(u_c^T \hat{v})}{\sum_{j=1}^{|V|} \exp(u_j^T \hat{v})}$$

$$= -u_c^T \hat{v} + \log \sum_{j=1}^{|V|} \exp(u_j^T \hat{v})$$

$$H(\hat{y}, y) = -\sum_{j=1}^{|V|} y_j \log(\hat{y}_j)$$

Let us concern ourselves with the case at hand, which is that *y* is a one-hot vector. Thus we know that the above loss simplifies to simply:

$$H(\hat{y}, y) = -y_i \log(\hat{y}_i)$$

Negative Sampling

$$P(D = 1|w, c, \theta) = \sigma(v_c^T v_w) = \frac{1}{1 + e^{(-v_c^T v_w)}}$$

$$\begin{split} \theta &= \underset{\theta}{\operatorname{argmax}} \prod_{(w,c) \in D} P(D=1|w,c,\theta) \prod_{(w,c) \in \tilde{D}} P(D=0|w,c,\theta) \\ &= \underset{\theta}{\operatorname{argmax}} \prod_{(w,c) \in D} P(D=1|w,c,\theta) \prod_{(w,c) \in \tilde{D}} (1-P(D=1|w,c,\theta)) \\ &= \underset{\theta}{\operatorname{argmax}} \sum_{(w,c) \in D} \log P(D=1|w,c,\theta) + \sum_{(w,c) \in \tilde{D}} \log (1-P(D=1|w,c,\theta)) \\ &= \underset{\theta}{\operatorname{argmax}} \sum_{(w,c) \in D} \log \frac{1}{1+\exp(-u_w^T v_c)} + \sum_{(w,c) \in \tilde{D}} \log (1-\frac{1}{1+\exp(-u_w^T v_c)}) \\ &= \underset{\theta}{\operatorname{argmax}} \sum_{(w,c) \in D} \log \frac{1}{1+\exp(-u_w^T v_c)} + \sum_{(w,c) \in \tilde{D}} \log (\frac{1}{1+\exp(u_w^T v_c)}) \end{split}$$

$$J = -\sum_{(w,c)\in D} \log \frac{1}{1 + \exp(-u_w^T v_c)} - \sum_{(w,c)\in \tilde{D}} \log(\frac{1}{1 + \exp(u_w^T v_c)})$$

For skip-gram, our new objective function for observing the context word c - m + j given the center word c would be

$$-\log \sigma(u_{c-m+j}^T \cdot v_c) - \sum_{k=1}^K \log \sigma(-\tilde{u}_k^T \cdot v_c)$$

For CBOW, our new objective function for observing the center word u_c given the context vector $\hat{v} = \frac{v_{c-m} + v_{c-m+1} + ... + v_{c+m}}{2m}$ would be

$$-\log \sigma(u_c^T \cdot \hat{v}) - \sum_{k=1}^K \log \sigma(-\tilde{u}_k^T \cdot \hat{v})$$