CHAPTER 2 = 2 degrees of freedom systems

Solution
Give a displacement of to mass 2m and a displacement of to mass m

spring 2x is o stretched by x_1 and develops a restoring force $2kx_1$ (opposing the accn) spring k is compressed by (x_1-x_2) and develops a restoring force $k+x_1-x_2$) $k(x_1-x_2)$

 $2m_{x_{1}}^{2} = -2kx_{1} - k(x_{2}-x_{1})$

241/1 2Kx,+K(x-x)=0 2mi, +2Kx,

2 m x, t 3 tx x x x x = 0

$$2m \chi_1 = -2k\chi_1 - k(\chi_1 - \chi_2) = 0$$

$$2m \chi_1' + 2k\chi_1 + k(\chi_1 - \chi_2) = 0$$

$$2m \chi_1' + 3k\chi_1 - k\chi_2 = 0$$

$\wedge k(\chi_2 - \chi_1)$	WAY AND THE PROPERTY OF THE PARTY OF THE PAR
m	
m y n n n n	18.3
espring k is stretched (x2-x1) by	mass m being
displaced by 1/2. If thus	develops a restoring
force $k(x_2-x_1)$ that opposses mx_1^2	
$m\chi_2^2 = -k(\chi_2 - \chi_1)$	adda addala
2 of the same and row obligations	Live a Mirela cement
$m_{\lambda_{2}}^{2} + k(x_{2} - x_{1}) = 0$	in stam of A
$m\ddot{x}_1 + k x_1 - k x_1 = 0 \qquad 2a$	
E ESDECHUE AN EVO STIETCHELL S	111111111111111111111111111111111111111
Dier in Printing had the second	
Assume that the S'H.M of	the two
masses is of the gorm	
7 - A C- (114h)	R on (14 in)

 $x_1 = A \sin(\omega t + \phi)$ $x_2 = B \sin(\omega t + \phi)$ $x_1 = A \omega \cos(\omega t + \phi)$ $x_2 = B \omega \sin(\omega t + \phi)$ $x_2 = B \omega \sin(\omega t + \phi)$ $x_3 = -B \omega^2 \cos(\omega t + \phi)$

```
Replace the relevant terms from EHMI tho la and 2a
       2m\chi_1 + 3k\chi_1 - k\chi_2 = 0 la
    - 2mw2 A cin wt + 3KA cin wt - KB sin wt = 0
   (3KA - 2m w2 A) sin wt = kB sin ut
   (3k-2m\omega^2)A = kB
            \frac{A}{B} = \frac{k}{3k - 2m\omega^2}
                                                                 16
      m \mathcal{R}_2 + k \mathcal{R}_2 - k \mathcal{R}_1 = 0 2a
    - mw2 B sin wt + KBsin wt - KAsin wt = 0
     (KB- mw2 B) sin ut = KA sin wt
           B (K-MW2)B = KA
                     K-m\omega^2 = A
                                                                        25
      1\omega = 2b \Rightarrow \underline{K} = \underline{K - m\omega^2}

3K - 2m\omega^2
                               (3K-2m\omega^2)(k-m\omega^2) = K^2
                                3K^2 - 3Km\omega^2 - 3Km\omega^2 + 3m^2\omega^4 - K^2 = 0
                                2m2wt - 5kmw2 f ak2 = 0
                                \omega^{4} - \frac{5km\omega^{2}}{2m^{3}} + \frac{2k^{2}}{2m^{2}} = 0
\omega^{4} - \frac{5k\omega^{2}}{2m} + \frac{k^{2}}{m^{2}} = 0
\chi^{4} - \frac{5k\omega^{2}}{2m} + \frac{k^{2}}{m^{2}} = 0
 let p = \omega^2 = p^a = \omega^4

\omega^4 - \frac{5}{4}k\omega^2 + \frac{1}{2}k\omega^2 = 0 = p^2 - \frac{5}{4}k\omega^2 + \frac{1}{2}k\omega^2 = 0

\frac{1}{4}k\omega^2 + \frac{1}{2}k\omega^2 = 0 = p^2 - \frac{5}{4}k\omega^2 = 0
```

To solve for p using the quadratic germula

$$a = 1 \quad b = -5k \quad c = \frac{k^2}{2m}$$
 $R = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a} = \frac{5k}{4m} \pm \frac{1}{2} \sqrt{\frac{5k}{2m}}^2 + \frac{k^2}{m^2}$
 $= \frac{5k}{4m} \pm \frac{1}{4} \sqrt{\frac{25k^2 - 4k^2}{4m^2}} + \frac{3k}{4m^2} \pm \frac{1}{2} \sqrt{\frac{3k}{2m}} + \frac{3k}{4m^2} \pm \frac{1}{2} \sqrt{\frac{3k}{2m}}$
 $= \frac{5k}{4m} \pm \frac{1}{4} \sqrt{\frac{25k^2 - 16k^2}{4m^2}} + \frac{5k}{4m} \pm \frac{1}{2} \sqrt{\frac{3k}{2m}}$
 $= \frac{5k}{4m} \pm \frac{1}{4} \sqrt{\frac{3k}{2m}}$
 $= \frac{5k}{4m} \pm \frac{1}{4} \sqrt{\frac{3k}{2m}}$
 $= \frac{5k}{4m} \pm \frac{1}{4m} \sqrt{\frac{3k}{2m}}$
 $= \frac{5k}{4m} \pm \frac{1}{4m} + \frac{3k}{4m} + \frac{1}{4m} + \frac{1}{4m}$
 $= \frac{5k}{4m} \pm \frac{1}{4m} + \frac{1}{4m} + \frac{1}{4m} + \frac{1}{4m} + \frac{1}{4m} + \frac{1}{4m}$
 $= \frac{1}{4m} + \frac{1}{$

Win and Wan are the northeral frequencies of the system

Mode chape 1

$$\frac{A}{B} = \frac{K}{3k - 2m\omega^2}$$
 when $\omega^2 = \frac{2k}{m}$

$$= 7 \frac{A}{B} = \frac{K}{3K-2m(2K/m)} = \frac{K}{3K-4K} = \frac{K}{-K} = \frac{1}{-1}$$

The grequency of oscillation is $\frac{1}{T} = \frac{\sqrt{2}}{\sqrt{m}}$

Mode shape 2 $A = K - M\omega^2$ when $\omega^2 = K$ $\frac{A}{B} = \frac{K - m(K/2m)}{K} = \frac{K - K/2}{2} = \frac{2K + K}{2} = \frac{1}{2}$ A and B are in phone but the amplitude of B is twice that g A. The pewod of oscillation is $2\pi = 2\pi$ $W_{2n} = \sqrt{\frac{1}{2}m}$ While the frequency is 1 = 1/2m Note that \$ince the frequency in Frode 2 is smaller than that of mode I (M/2m < Jak/m), the oscillations in Mode 2 are slower than those of mode 1 44 A Žak >t

Alternat	ive solution approach	- The Eigen value & Eugen voctor
Recull	equations 1a and	20
	$-8kx_{1}-kx_{2}=0$ 1 a $-kx_{1}=0$ 2 a	
$\chi_1 = A$ $\chi_1 = A$ $\chi_1 = -A$	ion of undamped usoidal of them sin (wt to) w sos (ut to) w sin (ut to) w x,	systems such as this one the form $ \chi_z = B \sin(\omega t \phi) $ $ \chi_z = B \omega \cos(\omega t \phi) $ $ \chi_z^2 = -B \omega^2 \sin(\omega t \phi) $ $ = -\omega^2 \kappa_z $
- 2 m w2	ing for \mathring{x}_1 and $x_1 + 3kx_1 - kx_2 = 0$ $x + kx_2 - kx_1 = 0$	in 1a and 2a
- w2x,	$f \frac{3K}{2M} \times_{1} - \frac{K}{M} \times_{2} = \frac{1}{2M} \times_{1} = $	
$-\omega^2 x_2$	$+\frac{K}{m}\chi_2 - \frac{K}{m}\chi_1 =$	
(3K - 1)	\mathcal{N}^2 $\mathcal{X}_1 - \left(\frac{\kappa}{2m}\right) \mathcal{X}_2$	= 0
$-\left(\frac{K}{M}\right)$	$\chi_1 + \left(\frac{k - \omega^2}{m}\right)$	$\mathcal{L}_{\lambda} = 0$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
A matrix is multiplied by a vector to gold	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
A matrix is multiplied by a vector to goeld	
A matrix is multiplied by a vector to goeld	
A matrix is multiplied by a vector to goeld	
The null / sen year which is a grown or	
the null/zero vector which is a gorm of	
the eigenvalue/eigen vector equation with 1= w2	
re organization of eagen occurs again work work	
$(Q) = (A - IA)(x) = 0 \Rightarrow \lambda = \text{eigen value}$	
4) = (x 11) (x) = 2 /1 = Eigen value	
The only way @ is possible is if the determin	iant
of (A-II) is zero if we disregard the trivi	al
solution [x]=0	
SCHOOL (1)	
det (A-I)=0	
get (A IN) =0	
124 1 4 2	
$3K - W^2$ $-K$ $3K - \lambda$ $-K$ $3K - \lambda$ $-K$ $= 0$	
$\frac{2m}{m} = 0 = \frac{1}{2m} = 0$	
$-\frac{M}{K}$ $\frac{M}{K}$ $-M^2$ $\frac{M}{K}$ $-\lambda$	
$\frac{1}{2}$ $\frac{1}$	
$\left(\frac{3K-4}{2M}\right)\left(\frac{K-\lambda}{M}\right)-\frac{K^2}{2M^2}=0$	
(AIV)	

$$\frac{3k^2}{2m^2} - \frac{3k}{2m} \frac{\lambda}{m} - \frac{k}{M} \frac{\lambda}{m} + \frac{\lambda^2}{M^2} = 0$$

$$\int_{-\infty}^{\infty} \frac{3K + K}{M} \frac{1}{M} \frac{1}{M^2} \frac{1}{M^2} \frac{1}{M^2} = 0$$

$$\int_{Sm} \frac{3k+2k}{3m} \int_{Sm} \frac{1}{m^2} = 0$$

$$\frac{\lambda^{2} - 5k \lambda + k^{2}}{2m m^{2}} = 0 \qquad (9)$$

$$=> \lambda_1, z = \frac{5k}{4m} + \frac{3k}{4m} \Rightarrow \lambda_1 = \frac{2k}{4m} + \frac{2k}{4m}$$

$$\lambda_1 = W_{1n}^2 \implies W_{1n} = \sqrt{\frac{2K}{M}}$$
 $\lambda_2 = W_{2n}^2 = 7 W_{2n} = \sqrt{\frac{K}{2M}}$

Solaining the eigen vectors corresponding to $\lambda_1 = 2k$ from Q

$$\left(\frac{3k-2k}{2m}\right)\chi_{1}-\frac{k}{2m}\chi_{2}=0=\gamma-\frac{k}{2m}\chi_{1}-\frac{k}{2m}\chi_{2}=0$$

$$\frac{-k}{m} \chi_1 + \left(\frac{k}{m} - \frac{2k}{M}\right) \chi_2 = 0 \implies -\frac{k}{m} \chi_1 - \frac{k}{m} \chi_2 = 0 \quad \text{ii)}$$

You see that i) and ii) are multiples of each	
other and therefore we can use either to	
get x and xz	1
Using ii)	
$\frac{-K\chi_1 - K\chi_2 = 0}{M} = 7 - \frac{K\chi_1}{M} = \frac{1}{M} \chi_2$	
$-\chi_1 = \chi_2$	
Thoose $x_1 = 1 \implies x_2 = -1$	
The first eigen vector is thus (1) or if w	e
The first evgen vector is thus $\begin{pmatrix} 1 \end{pmatrix}$ or if w had chosen $x_1 = -1$ then $x_2 = 1$ \Rightarrow 8 igen vector $= \pm \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	
Obtaining the eigen vector corresponding to	
$\lambda = \frac{k}{2m}$ from Q	
3K - K - K 2m 2m	
$\left[\begin{array}{ccc} -K & K - K \\ m & m & \lambda m \end{array}\right] \left[\begin{array}{ccc} \lambda a & 0 \\ \end{array}\right]$	(8)
The state of the s	

$$\frac{2K}{2m} \chi_1 - \frac{K}{2m} \chi_2 = 0 \qquad iii)$$

$$-\frac{K}{m} \chi_1 + \frac{K}{2m} \chi_2 = 0 \qquad iv)$$

in and iv are multiples of each other and we can use either. Using iv

 $\frac{K}{m} \chi_{1} = \frac{K}{k} \chi_{2} = 7 \chi_{1} = \frac{1}{2} \chi_{2}$

2×1 = ×2

choosing $x_1 = 1$, $x_2 = 2$

There gore the second eigen vector is $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ or $\begin{pmatrix} -1 \\ -2 \end{pmatrix}$ if $x_1 = -1$ and $x_2 = -2$. Therefore this eigen vector is $\pm \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Note that the se eigen vectors are equal to the amplitude ratios A in the previous B

solution to the problem. Therefore eigen vectors
represent the mode shapes of the system.

Also

	\(\chi_1 \) = \(\chi_1 \) \(\chi_2 \) = \(\chi_1 \) \(\chi_1 \)	M + M	in j
			nn au
$\begin{cases} \chi_1 \\ \chi_2 \end{cases} = \begin{cases} -1 \\ 1 \end{cases}$	$\begin{cases} x_1 \\ x_2 \end{cases} = \begin{cases} x_1 \\ x_2 \end{cases}$	13	-) 70
	ab Alama		63
			undat.

The mode shape corresponding to $\omega_2 = JT_2 = JK$ is indicated by eigen vector $V_2 = \frac{1}{2} \left(\frac{1}{2} \right)$

Note that since $W_{\chi} = \sqrt{\frac{1}{m}} \times w_{\chi} \sqrt{\frac{2k}{m}}$, mode I has a higher frequency in more oscillations per cecond than mode 2.

An eigen junction is a set of independent junctions which are solutions to differential equations.
for this system, coupled system, the solution to
the digerential equations is
$2M\tilde{x}_{1}^{2} + 3kx_{1} - kx_{2} = 0$ $m\tilde{x}_{2}^{2} + kx_{2} - kx_{1} = 0$
is equal to the superposition of the two evgen
functions
eigengundwon = $\begin{cases} x_1 \\ x_2 \end{cases}$ $sin(\sqrt{\lambda_1} + \Phi) = \begin{cases} x_1 \\ x_2 \end{cases} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
eigen junction $z = \begin{cases} x_1 z & \text{Sin} \left(\sqrt{\lambda_2} k f \phi \right) \\ \left(x_2 \right) z & \left(x_1 \right) z \end{cases} = \frac{f(1)}{2}$
the solution es theregore
$\begin{cases} x_1 \\ x_2 \end{cases} = +C, \begin{cases} 1 \\ -1 \end{cases} \sin \left(\frac{x_1}{x_1} + \phi \right) + (t) C_2 \begin{cases} 1 \\ -2 \end{cases} \sin \left(\frac{x_1}{x_2} + \phi \right)$
6 0 (6 8)
mode 1 mode 2.