Aprendizaje automático

Práctica 1 Grupo 84

Índice

1.	Introduc	ción	4
2.	Fase 1: R	zecogída de información	5
3.	Fase 2: C	clasíficación	7
2	3.1. Res	ultados tutoríal 1	7
	3.1.1.	Fícheros 1: prueba 1	8
	3.1.2.	Fícheros 1: prueba 2	9
	3.1.3.	Fícheros 1: prueba 3	10
	3.1.4.	Fícheros 1: prueba 4	11
	3.1.5.	Fícheros 2: prueba 1	12
	3.1.6.	Fícheros 2: prueba 2	13
	3.1. <i>7</i> .	Fícheros 2: prueba 3	14
	3.1.8.	Fícheros 2: prueba 4	15
í	3.2. Res	ultados keyboard	16
	3.2.1.	Fícheros 1: prueba 1	17
	3.2.2.	Fícheros 1: prueba 2	18
	3.2.3.	Fícheros 1: prueba 3	19
	3.2.4.	Fícheros 2: prueba 1	20
	3.2.5.	Fícheros 2: prueba 2	21
	3.2.6.	Fícheros 2: prueba 3	22
2	3.3. And	álísís final	23
4.	Fase 3: F	Regresión	24
-	4.1. Res	ultados de tutoríal 1	24
	4.1.1.	Prueba 1	24
	4.1.2.	Prueba 2.	26
	4.1.3.	Prueba 3.	27
	4.1.4.	Prueba 4.	27
-	4.2. Res	ultados Keyboard	28
		Fícheros 1: Prueba 1.	
	4.2.2.	Fícheros 1: Prueba 2.	30
		Fícheros 1: Prueba 3.	
		Fícheros 1: Prueba 4	
		Ficheros 2: Prueba 1	

	4.2.6.	Ficheros 2: Prueba 2	34
		Fícheros 2: Prueba 3	
	4.2.8.	Fícheros 2: Prueba 4.	. 36
4	.3. Ant	álísís final	37
		Construcción de un Agente Automático	
		as	
	_	ones y dificultades	

1. Introducción

El desarrollo de la práctica consiste en la aplicación de técnicas de Aprendizaje Automático para llevar a cabo tareas de predicción y clasificación. Para el desarrollo de la práctica se utilizará el simulador proporcionado que permite controlar a Pac – Man de manera automática y recoger la información del entorno.

Finalmente, el documento y con ello la práctica se dividirá en siete partes diferenciadas:

- Introducción: En este apartado se comenta brevemente el objetivo a alcanzar con el desarrollo del tutorial y se explica la estructura y contenido de cada uno de los apartados del documento.
- **Fase 1:** En esta fase se modificarán las funciones de extracción de características para que se creen ficheros de información legibles por Weka.
- Fase 2: En esta fase se construirá el modelo de clasificación que permitirá a Pac Man moverse hacia los fantasmas para comérselos.
- Fase 3: En esta fase se explorarán los algoritmos de predicción de Weka utilizando la experimentación y construir un modelo de predicción.
- **Fase 4:** En la cuarta fase se busca como objetivo construir un agente automático para que tome la decisión de qué acción ejecutar en cada instante.
- Respuestas a las preguntas del documento: En este apartado se responderán a cada una de las preguntas especificadas en el documento del tutorial.
- Conclusiones y problemas encontrados: En este apartado se comentarán las conclusiones sacadas con la realización del ejercicio, además los diversos problemas que se han conseguido solventar durante el trascurso de la práctica.

2. Fase 1: Recogida de información

En esta primera fase de la práctica se va a proceder a la extracción de las características de la ejecución del Pac – Man en un fichero legible por Weka, de esta forma la función de extracción servirá como base para la realización de la práctica. Una vez sacados los respectivos ficheros solicitados se adjuntarán en la entrega y se utilizarán para las siguientes fases.

Para la realización de fase 1 se ha reutilizado la función de extracción de características utilizada en el tutorial 1. Se han utilizado funciones pertenecientes al código para atributos de posición y distancias, mientras que para aquellos atributos relacionados con las paredes se ha tenido que elaborar un poco más el código. Una vez almacenados todos los atributos en sus variables correspondientes, se comprueba si el fichero existe o no y si está en el formato legible por weka siguiendo el siguiente diagrama:

A continuación se procederá a generar las instancias que contendrá el fichero. Siguiendo los atributos que se han tenido en cuenta para el desarrollo de la práctica, es necesario almacenar en una instancia todos los atributos de la misma, la acción anterior y la puntuación siguiente. En primer lugar, se almacena la acción de la primera instancia generada. En el siguiente tick se almacena la instancia completa, y en próximo tick se imprime la instancia del tick anterior, la acción primera y la puntuación actual. De este modo, se obtendría una instancia completa (con todos los atributos de ese tick), la acción anterior y la puntuación siguiente.

Finalmente se mostrará un listado con todos los atributos contemplados para facilitar el uso de estos en las fases posteriores.

- 1. **columna_pacman:** número de la columna en la que se encuentra el pacman.
- 2. **fila_pacman:** número de la fila en la que se encuentra el pacman.
- 3. num_fantasmas: número total de fantasmas (es nuestro caso siempre sería 4).
- 4. num_fantasmas_vivos: número de fantasmas que aún están vivos.
- 5. **columna_fantasma_1:** número de la columna en la que se encuentra el fantasma 1.

- 6. **fila_fantasma_1:** número de la fila en la que se encuentra el fantasma 1.
- 7. columna_fantasma_2: número de la columna en la que se encuentra el fantasma 2.
- 8. **fila_fantasma_2:** número de la fila en la que se encuentra el fantasma 2.
- 9. columna_fantasma_3: número de la columna en la que se encuentra el fantasma 3.
- 10. fila_fantasma_3: número de la fila en la que se encuentra el fantasma 3.
- 11. columna_fantasma_4: número de la columna en la que se encuentra el fantasma 4.
- 12. fila fantasma 4: número de la fila en la que se encuentra el fantasma 4.
- 13. **dist_1:** distancia de Manhattan entre la posición actual del pacman y la posición actual del fantasma 1.
- 14. **dist_2**: distancia de Manhattan entre la posición actual del pacman y la posición actual del fantasma 2.
- 15. **dist_3:** distancia de Manhattan entre la posición actual del pacman y la posición actual del fantasma 3.
- 16. **dist_4**: distancia de Manhattan entre la posición actual del pacman y la posición actual del fantasma 4.
- 17. **columna_fantasma_mas_cercano:** número de la columna en la que se encuentra el fantasma más cercano.
- 18. **fila_fantasma_mas_cercano:** número de la fila en la que se encuentra el fantasma más cercano.
- 19. **dist_columna_fantasma_cercano:** distancia en columnas entre la posición actual del pacman y la posición actual del fantasma más cercano.
- 20. **dist_fila_fantasma_cercano:** distancia en filas entre la posición actual del pacman y la posición actual del fantasma más cercano.
- 21. **dist_fantasma_cercano:** distancia de Manhattan entre la posición actual del pacman y la posición actual del fantasma más cercano (suma de los dos atributos anteriores).
- 22. num_comida: número de puntos de comida.
- 23. dist_comida: distancia al punto de comida más cercano.
- 24. **isWallNorth:** booleano que toma el valor "True" si justo al norte de la posición actual del pacman hay una pared, y toma el valor "False" en caso contrario.
- 25. **isWallSouth:** booleano que toma el valor "True" si justo al sur de la posición actual del pacman hay una pared, y toma el valor "False" en caso contrario.
- 26. **isWallEast:** booleano que toma el valor "True" si justo al este de la posición actual del pacman hay una pared, y toma el valor "False" en caso contrario.
- 27. **isWallWest:** booleano que toma el valor "True" si justo al oeste de la posición actual del pacman hay una pared, y toma el valor "False" en caso contrario.
- 28. distNorth: distancia entre la posición actual del pacman y la pared más cercana al norte.
- 29. distSouth: distancia entre la posición actual del pacman y la pared más cercana al sur.
- 30. **distEast:** distancia entre la posición actual del pacman y la pared más cercana al este.
- 31. distWest: distancia entre la posición actual del pacman y la pared más cercana al oeste.
- 32. score: puntuación actual.
- 33. dir_anterior_pacman: dirección anterior ejecutada.
- 34. **dir_pacman:** dirección a ejecutar.
- 35. next_score: siguiente puntuación.

3. Fase 2: Clasificación

3.1. Resultados tutoríal 1

Para la realización de este apartado se han tenido en cuenta los ficheros generados en la fase 1 utilizando el agente programado en el tutorial1. Con el objetivo de abarcar el mayor número de posibilidades para estudiar correctamente los resultados, además de utilizar los ficheros generados en la fase 1, se han creado otros ficheros que contienen un mayor número de instancias, aproximadamente el doble. A continuación se mostrarán los resultados obtenidos en cada una de las pruebas realizadas indicando "Ficheros" y "Prueba".

- "Ficheros 1" (instancias de la fase 1).
- "Ficheros 2" (instancias generadas posteriormente con el doble de instancias).

Las pruebas contempladas serían cuatro:

Id	Nº atributos	Atributos
Prueba 1	34	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
		21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34.
Prueba 2	33	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
		21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34.
Prueba 3	20	4, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
		31, 33, 34.
Prueba 4	15	4, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34.

3.1.1. Fícheros 1: prueba 1

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	71,9358%	72,6804%	68,1948%	70,9370%
	Logistic	82,2485%	84,5361%	71,9198%	79,5681%
Functions	MultilayerPerceptron	87,1513%	88,6598%	78,2235%	84,6782%
runctions	SimpleLogistic	81,7413%	85,0515%	78,5100%	81,7676%
	SMO	83,0938%	84,2784%	82,2350%	83,2024%
Lazy	IBk	86,5596%	87,3711%	76,7908%	83,5738%
Meta	Bagging	85,4607%	87,8866%	85,6734%	86,3402%
Misc	InputMappedClassifier	33,1361%	32,4742%	40,4011%	35,3371%
Rules	PART	86,0524%	83,7629%	73,3524%	81,0559%
	J48	86,8132%	85,5670%	78,2235%	83,5346%
Trees	LMT	87,7430%	86,3402%	77,0774%	83,7202%
	RandomForest	90,4480%	89,1753%	84,2407%	87,9547%
	Valor medio	80,1986%	80,6486%	74,5702%	78,4725%

3.1.2. Fícheros 1: prueba 2

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	71,7667%	71,6495%	69,3410%	70,9191%
	Logistic	81,9949%	84,7938%	72,4928%	79,7605%
Functions	MultilayerPerceptron	86,5596%	89,6907%	79,0831%	85,1111%
runctions	SimpleLogistic	81,9104%	83,2474%	81,9484%	82,3687%
	SMO	83,0093%	84,0206%	81,3754%	82,8018%
Lazy	IBk	86,6441%	87,1134%	77,3639%	83,7071%
Meta	Bagging	85,7143%	87,6289%	85,6734%	86,3389%
Misc	InputMappedClassifier	33,1361%	32,4742%	40,4011%	35,3371%
Rules	PART	86,4751%	87,1134%	74,4986%	82,6957%
	J48	86,7287%	86,0825%	72,4928%	81,7680%
Trees	LMT	87,6585%	86,3402%	80,2292%	84,7426%
	RandomForest	90,1099%	89,4330%	82,2350%	87,2593%
	Valor medio	80,1423%	80,7990%	74,7612%	78,5675%

3.1.3. Fícheros 1: prueba 3

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	73,2037%	74,7423%	69,0544%	72,3335%
	Logistic	80,4734%	82,4742%	77,6504%	80,1993%
Functions	MultilayerPerceptron	85,2916%	85,5670%	79,9427%	83,6004%
runctions	SimpleLogistic	80,0507%	81,9588%	82,8080%	81,6058%
	SMO	80,5579%	82,2165%	83,0946%	81,9563%
Lazy	IBk	86,6441%	87,8866%	79,6562%	84,7290%
Meta	Bagging	85,0380%	87,1134%	82,5215%	84,8910%
Misc	InputMappedClassifier	33,1361%	32,4742%	40,4011%	35,3371%
Rules	PART	87,1513%	87,1134%	71,0602%	81,7750%
	J48	85,9679%	87,3711%	74,2120%	82,5170%
Trees	LMT	86,2215%	88,9175%	77,6504%	84,2631%
	RandomForest	89,2646%	89,6907%	82,8080%	87,2544%
_	Valor medio	79,4167%	80,6271%	75,0716%	78,3718%

3.1.4. Fícheros 1: prueba 4

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	76,0778%	77,0619%	70,2006%	74,4468%
	Logistic	79,4590%	80,6701%	81,6619%	80,5970%
Functions	MultilayerPerceptron	86,2215%	86,0825%	78,5100%	83,6047%
Functions	SimpleLogistic	79,6281%	80,4124%	81,9484%	80,6630%
	SMO	79,7971%	79,6392%	83,0946%	80,8436%
Lazy	IBk	86,3060%	86,3402%	78,5100%	83,7187%
Meta	Bagging	84,5309%	87,6289%	82,2350%	84,7983%
Misc	InputMappedClassifier	33,1361%	32,4742%	40,4011%	35,3371%
Rules	PART	85,3762%	85,8247%	75,6447%	82,2819%
	J48	85,2916%	87,8866%	73,3524%	82,1769%
Trees	LMT	86,1369%	85,3093%	73,3524%	81,5995%
	RandomForest	88,5883%	89,4330%	81,9484%	86,6566%
	Valor medio	79,2125%	79,8969%	75,0716%	78,0603%

3.1.5. Ficheros 2: prueba 1

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	72,5766 %	72,9456 %	68,6695 %	71,3972%
	Logistic	83,5543 %	81,9216 %	74,3920 %	79,9560%
Functions	MultilayerPerceptron	88,1110 %	87,7370 %	76,5379 %	84,1286%
Functions	SimpleLogistic	82,7672 %	81,6688 %	80,1144 %	81,5168%
	SMO	83,6785 %	82,3009 %	79,5422 %	81,8405%
Lazy	IBk	88,7324 %	89,0013 %	71,2446 %	82,9928%
Meta	Bagging	88,8567 %	89,2541 %	82,9757 %	87,0288%
Misc	InputMappedClassifier	31,1930 %	30,7206 %	40,3433 %	34,0856%
Rules	PART	88,8152 %	88,1163 %	77,1102 %	84,6806%
	J48	88,5667 %	87,1049 %	78,5408 %	84,7375%
Trees	LMT	89,4366 %	86,3464 %	76,5379 %	84,1070%
	RandomForest	89,7266 %	90,5183 %	80,9728 %	87,0726%
	Valor medio	81,3346%	80,6363%	73,9151%	78,6287%

3.1.6. Fícheros 2: prueba 2

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	72,2867 %	72,8192 %	68,2403 %	71,1154%
	Logistic	83,4714 %	82,4273 %	76,1087 %	80,6691%
Functions	MultilayerPerceptron	88,0282 %	87,8635 %	74,8212 %	83,5710%
Functions	SimpleLogistic	82,4358 %	81,4159 %	79,9714 %	81,2744%
	SMO	83,5543 %	82,1745 %	80,1144 %	81,9477%
Lazy	IBk	88,8567 %	88,7484 %	71,2446 %	82,9499%
Meta	Bagging	88,6081 %	89,6334 %	81,8312 %	86,6909%
Misc	InputMappedClassifier	31,1930 %	30,7206 %	40,3433 %	34,0856%
Rules	PART	88,0696 %	87,1049 %	78,6838 %	84,6194%
	J48	87,9039 %	87,2314 %	78,2546 %	84,4633%
Trees	LMT	88,6081 %	86,2200 %	73,1044 %	82,6442%
	RandomForest	89,5609 %	90,2655 %	80,4006 %	86,7423%
	Valor medio	81,0481%	80,5521%	73,5932%	78,3978%

3.1.7. Fícheros 2: prueba 3

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	74,1094 %	72,3135 %	67,2389 %	71,2206%
	Logistic	81,0688 %	80,9102 %	78,3977 %	80,1256%
Functions	MultilayerPerceptron	86,2883 %	87,1049 %	76,3948 %	83,2627%
runctions	SimpleLogistic	80,6545 %	80,7838 %	81,8312 %	81,0898%
	SMO	81,0273 %	81,5424 %	82,1173 %	81,5623%
Lazy	IBk	88,7738 %	88,4956 %	74,1059 %	83,7918%
Meta	Bagging	88,8567 %	89,6334 %	79,9714 %	86,1538%
Misc	InputMappedClassifier	31,1930 %	30,7206 %	40,3433 %	34,0856%
Rules	PART	88,4010 %	87,9899 %	68,8126 %	81,7345%
	J48	88,4010 %	86,2200 %	70,6724 %	81,7645%
Trees	LMT	87,9039 %	84,9558 %	56,7954 %	76,5517%
	RandomForest	89,8923 %	90,2655 %	80,4006 %	86,8528%
	Valor medio	80,5475%	80,0780%	71,4235%	77,3496%

3.1.8. Fícheros 2: prueba 4

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	76,0563 %	75,4741 %	66,8097 %	72,7800%
	Logistic	80,0331 %	79,2668 %	79,2561 %	79,5187%
Functions	MultilayerPerceptron	86,0812 %	86,3464 %	79,2561 %	83,8946%
Functions	SimpleLogistic	80,1160 %	79,0139 %	78,8269 %	79,3189%
	SMO	79,6189 %	79,6460 %	81,4020 %	80,2223%
Lazy	IBk	88,3181 %	88,7484 %	70,1001 %	82,3889%
Meta	Bagging	88,6081 %	88,8748 %	79,8283 %	85,7704%
Misc	InputMappedClassifier	31,1930 %	30,7206 %	40,3433 %	34,0856%
Rules	PART	87,6553 %	86,9785 %	70,5293 %	81,7210%
	J48	88,2353 %	86,2200 %	66,5236 %	80,3263%
Trees	LMT	88,0696 %	86,2200 %	67,9542 %	80,7479%
	RandomForest	89,6437 %	88,6220 %	80,2575 %	86,1744%
	Valor medio	80,3024%	79,6776%	71,7573%	77,2458%

3.2. Resultados keyboard

Para la realización de este apartado se han tenido en cuenta los ficheros generados en la fase 1 utilizando el agente controlado por teclado. Con el objetivo de abarcar el mayor número de posibilidades para estudiar correctamente los resultados, además de utilizar los ficheros generados en la fase 1, se han creado otros ficheros que contienen las mismas instancias eliminando aquellas que contienen como acción "Stop". A continuación se mostrarán los resultados obtenidos en cada una de las pruebas realizadas indicando "Ficheros" y "Prueba".

- "Ficheros 1" (instancias de la fase 1).
- "Ficheros 2" (instancias similares que no contienen la acción "Stop").

Las pruebas contempladas serían tres:

Id	Nº atributos	Atributos
Prueba 1	33	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
		21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34.
Prueba 2	20	4, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
		31, 33, 34.
Prueba 3	15	4, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34.

3.2.1. Fícheros 1: prueba 1

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	74,0260%	69,4444%	69,3196%	70,9300%
	Logistic	84,9838%	84,3434%	80,1027%	83,1433%
Functions	MultilayerPerceptron	87,0942%	84,3434%	76,8935%	82,7770%
Functions	SimpleLogistic	84,7403%	85,8586%	81,5148%	84,0379%
	SMO	84,7403%	84,3434%	81,1297%	83,4045%
Lazy	IBk	87,4188%	86,8687%	77,2786%	83,8554%
Meta	Bagging	88,3117%	86,6162%	84,5956%	86,5078%
Misc	InputMappedClassifier	27,9221%	30,5556%	34,2747%	30,9175%
Rules	PART	85,8766%	83,8384%	77,7920%	82,5023%
	J48	87,7435%	86,6162%	80,1027%	84,8208%
Trees	LMT	88,2305%	83,0808%	77,6637%	82,9917%
	RandomForest	89,5292%	89,1414%	83,8254%	87,4987%
	Valor medio	80,8848%	79,5875%	75,3744%	78,6156%

3.2.2. Fícheros 1: prueba 2

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	74,6753%	70,9596%	69,8331%	71,8227%
	Logistic	84,0909%	83,8384%	79,2041%	82,3778%
Functions	MultilayerPerceptron	86,2825%	84,5960%	76,3800%	82,4195%
Functions	SimpleLogistic	84,2532%	83,3333%	80,7445%	82,7770%
	SMO	83,6039%	82,5758%	81,5148%	82,5648%
Lazy	IBk	87,5000%	85,6061%	79,7176%	84,2746%
Meta	Bagging	87,9058%	84,5960%	82,5417%	85,0145%
Misc	InputMappedClassifier	27,9221%	30,5556%	34,2747%	30,9175%
Rules	PART	88,0682%	83,5859%	78,0488%	83,2343%
	J48	87,3377%	85,6061%	79,4608%	84,1349%
Trees	LMT	88,0682%	83,8384%	77,0218%	82,9761%
	RandomForest	89,4481%	88,1313%	85,2375%	87,6056%
	Valor medio	80,7630%	78,9352%	75,3316%	78,3433%

3.2.3. Fícheros 1: prueba 3

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	76,8669%	73,4848%	70,4750%	73,6089%
	Logistic	83,9286%	84,3434%	80,7445%	83,0055%
Functions	MultilayerPerceptron	86,1201%	82,8283%	80,4878%	83,1454%
Functions	SimpleLogistic	84,2532%	84,0909%	81,2580%	83,2007%
	SMO	82,9545%	83,0808%	82,0282%	82,6878%
Lazy	IBk	87,1753%	85,6061%	78,9474%	83,9096%
Meta	Bagging	87,8247%	85,3535%	82,5417%	85,2400%
Misc	InputMappedClassifier	27,9221%	30,5556%	34,2747%	30,9175%
Rules	PART	87,0130%	85,8586%	79,3325%	84,0680%
	J48	88,0682%	87,8788%	80,8729%	85,6066%
Trees	LMT	87,5812%	85,8586%	76,2516%	83,2305%
	RandomForest	90,2597%	88,1313%	84,9807%	87,7906%
	Valor medio	80,8306%	79,7559%	76,0163%	78,8676%

3.2.4. Fícheros 2: prueba 1

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	75,6757%	71,6981%	72,2146%	73,1961%
	Logistic	83,8710%	83,8275%	80,8803%	82,8596%
Functions	MultilayerPerceptron	86,3993%	86,5229%	79,6424%	84,1882%
Functions	SimpleLogistic	84,3941%	84,9057%	82,6685%	83,9894%
	SMO	83,9582%	84,6361%	83,3563%	83,9835%
Lazy	IBk	86,3993%	85,7143%	77,1664%	83,0933%
Meta	Bagging	87,0968%	86,2534%	84,8693%	86,0732%
Misc	InputMappedClassifier	29,4682%	31,8059%	36,3136%	32,5292%
Rules	PART	85,3531%	82,2102%	78,1293%	81,8975%
	J48	87,2711%	86,2534%	79,9175%	84,4807%
Trees	LMT	85,2659%	81,1321%	75,5158%	80,6379%
	RandomForest	88,6661%	88,1402%	85,4195%	87,4086%
	Valor medio	80,3182%	79,4250%	76,3411%	78,6948%

3.2.5. Fícheros 2: prueba 2

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	76,7219%	73,5849%	73,0399%	74,4489%
	Logistic	84,3941%	82,7493%	81,1554%	82,7663%
Functions	MultilayerPerceptron	86,5737%	83,0189%	79,5048%	83,0325%
Functions	SimpleLogistic	83,5222%	83,2884%	82,5309%	83,1138%
	SMO	83,6966%	83,8275%	83,7689%	83,7643%
Lazy	IBk	86,3121%	84,3666%	79,9175%	83,5321%
Meta	Bagging	86,5737%	86,5229%	84,3191%	85,8052%
Misc	InputMappedClassifier	29,4682%	31,8059%	36,3136%	32,5292%
Rules	PART	86,9224%	82,4798%	78,8171%	82,7398%
	J48	86,8352%	85,1752%	80,0550%	84,0218%
Trees	LMT	85,7890%	82,7493%	79,5048%	82,6810%
	RandomForest	88,8405%	88,4097%	85,8322%	87,6941%
	Valor medio	80,4708%	78,9982%	77,0633%	78,8441%

3.2.6. Fícheros 2: prueba 3

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Bayes	NaiveBayes	79,5990%	76,5499%	74,0028%	76,7172%
	Logistic	84,1325%	84,0970%	82,6685%	83,6327%
Functions	MultilayerPerceptron	84,5684%	81,1321%	79,5048%	81,7351%
Functions	SimpleLogistic	84,1325%	84,0970%	82,6685%	83,6327%
	SMO	82,9119%	82,7493%	83,0812%	82,9141%
Lazy	IBk	87,0968%	84,6361%	78,8171%	83,5167%
Meta	Bagging	86,8352%	87,3315%	85,1444%	86,4370%
Misc	InputMappedClassifier	29,4682%	31,8059%	36,3136%	32,5292%
Rules	PART	85,7890%	85,1752%	79,0922%	83,3521%
	J48	87,0096%	87,0620%	80,7428%	84,9381%
Trees	LMT	87,0968%	85,1752%	77,0289%	83,1003%
	RandomForest	88,9276%	88,1402%	85,1444%	87,4041%
	Valor medio	80,6306%	79,8293%	77,0174%	79,1591%

3.3. Análísís final

En primer lugar, para la realización de esta práctica se han tenido en cuenta muchas pruebas previas que no aparecen reflejadas en el documento debido a la extensión de las mismas. Se ha comenzado con un grupo de atributos muy pequeño (los utilizados en el tutorial 1) y que consideramos que no contenían información suficiente para realizar un buen modelo, por lo que al observar los resultados de weka, se fueron añadiendo nuevos atributos que aportaran más valor. Una vez conseguido el número total de atributos, que son los que aparecen reflejados a la largo de este documento, se realizaron las pruebas anteriores (apartado 3.1 y 3.2).

A pesar de intentar mejorar constantemente el porcentaje de instancias clasificadas correctamente, nos hemos basado en lo que consideramos que aporta el atributo al modelo para elegir los adecuados. Los atributos de posición, aquellos que indican la fila y la columna en la que se encuentran el pacman y los fantasmas en el estado actual, podrían variar en función de las dimensiones del mapa e incluso no existir, por lo que podrían generar ruido, provocando que el agente automático no realice las acciones correctas. En cuanto a las distancias, a pesar de ser relevantes, ya que permiten saber si un fantasma está lejos o cerca del pacman, también hemos decidido eliminarlas porque para que el agente automático sea eficiente, tendría que ir primero a por el fantasma más cercano, por lo que hemos consideramos que estas distancias no aportarían valor y decidimos añadir nuevos atributos para representar simplemente la distancia entre la posición actual del pacman y el fantasma más cercano. En el caso de la comida, ocurriría lo mismo, independientemente del número de puntos de comida, el pacman solo cogerá aquellos cercanos a su posición que estén de camino a un fantasma y que le permitan aumentar la puntuación, por lo que se ha decido eliminar el atributo del total de puntos de comida y mantener simplemente la distancia al punto más cercano. En cuanto a los atributos que se ha decido mantener tenemos principalmente aquellos que hacen referencia a la posición de las paredes. Consideramos que estos se encuentran entre los atributos relevantes ya que la principal dificultad del juego es conseguir que el pacman vaya a los fantasmas cuando hay paredes entre ellos.

En el apartado 3.2, se han realizado las pruebas utilizando los ficheros de la fase 1 y unos nuevos ficheros generados en los cuales se han eliminado las instancias que contenía "Stop" como acción. Esta decisión ha sido tomada ya que consideramos que estas instancias eliminadas servirían únicamente para realizar la acción "Stop" y haciendo que el agente automático en determinados momentos se detenga.

Finalmente, para la selección de algoritmos nos hemos basado en varios aspectos. En primer lugar, nos ha parecido interesante elegir algoritmos de todas las categorías (bayes, functions, lazy, meta, misc, rules, trees) para estudiar su comportamiento; además de permitirnos apreciar la similitud entre muchos de ellos. Por otro lado, en muchos casos se han seleccionado algoritmos estudiados o mencionados en clase, por lo que utilizarlos nos ha favorecido en la compresión de ciertos aspectos teóricos. Finalmente, al observar los resultados de las pruebas anteriores, se puede concluir teóricamente que el algoritmo "InputMappedClassifier" sería el menos indicado para generar un buen modelo debido a su bajo porcentaje de instancias clasificadas correctamente y que, aunque el resto de los algoritmos presenten porcentajes similares, "RandomForest" destaca un poco por encima de estos.

4. Fase 3: Regresión

En esta fase se propone explorar los algoritmos de predicción de Weka de forma experimental y como consecuencia a ello se deberá construir un modelo de predicción con la información obtenida.

4.1. Resultados de tutoríal 1.

Para la ello de este apartado se han tenido en cuenta los ficheros generados en la fase 1 utilizando el agente programado en el tutorial1. En este caso, se han realizado pruebas con los ficheros de instancias generados por el agente automático del tutorial 1. En esta ocasión, no se han duplicado el valor de las instancias para hacer dos tipos de fichero ya que nos hemos analizado que los resultados obtenidos en ambas pruebas con distintos ficheros eran similares y obteníamos unos resultados muy parecidos. A continuación, se mostrarán los resultados obtenidos en cada una de las pruebas realizadas indicando la prueba realizada en cada caso.

Las pruebas contempladas serían cuatro:

Id	Nº atributos	Atributos
Prueba 1	35	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
		21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35.
Prueba 2	23	3, 4, 13,14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
		31, 32, 33, 34, 35
Prueba 3	23	1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 22, 24, 25, 26, 27, 32,
		33, 34, 35
Prueba 4	27	1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,19, 20, 21,
		22, 23, 32, 33, 34, 35

Finalmente, cabe destacar que el procedimiento de la elección de los dos mejores clasificadores en este caso ha sido distinto a la fase anterior ya que se ha tratado de encontrar el mejor utilizando todos los clasificadores posibles. Esto es, en la primera prueba comenzamos utilizando todos los posibles clasificadores con el mismo conjunto de atributos de los cuales se elegirán la mitad de los mejores resultados en la media de los valores obtenidos, en la segunda prueba con los mejores clasificadores seleccionados en la primera prueba se realizará otro análisis del coeficiente de correlación en otro conjunto de atributos diferentes y se seguirá eligiendo la mitad superior de la media de los resultados obtenidos. De esta forma, se conseguirá llegar a los dos mejores clasificadores utilizando distintos conjuntos de atributos en cada prueba.

4.1.1. Prueba 1.

Esta primera prueba se realizará con todos los atributos generados en el fichero de instancias es decir, 35 atributos y utilizaremos los 27 clasificadores disponibles en Weka.

		Cross Validati on	Supplied test set (samema ps)	Supplied test set (otherma ps)	Valor medio
	GaussianProcesses	0,9988	0,9989	0,9951	0,9976
Funtio	LinearRegression	0,9997	0,9995	0,9979	0,9990
ns	MultilayerPerceptron	0,9993	0,9995	0,9852	0,9947
	SMOReg	0,9996	0,9995	0,9978	0,9990

	Ibk	0,9963	0,9888	0,6506	0,8786
Lazy	KStar	0,9991	0,9974	0,5333	0,8433
	LWL	0,9426	0,9475	0,7343	0,8748
	AdditiveRegression	0,9843	0,9867	0,7959	0,9223
	Bagging	0,9996	0,9997	0,9865	0,9953
	CVParameterSelection	-0,1016	0	0	-0,0339
	MultiScheme	-0,1016	0	0	-0,0339
	RandomCommittee	0,9993	0,9979	0,8932	0,9635
	RandomizableFilteredClassifie				
Meta	r	0,9987	0,9985	0,8649	0,9540
	RandomSubSpace	0,9988	0,9946	0,9369	0,9768
	RegressionByDiscretization	0,9933	0,9928	0,9671	0,9844
	Stacking	-0,1016	0	0	-0,0339
	Vote	-0,1016	0	0	-0,0339
	WeightedInstancesHandlerWr				
	apper	-0,1016	0	0	-0,0339
Misc	InputMappedClassifier	-0,1016	0	0	-0,0339
	DecisionTable	0,9975	0,9976	0,7073	0,9008
Rules	M5Rules	0,9996	0,9995	0,998	0,9990
	ZeroR	-0,1016	0	0	-0,0339
	DecisionStump	0,9223	0,9247	0,763	0,8700
	M5P	0,9996	0,9995	0,998	0,9990
Trees	RandomForest	0,9993	0,9988	0,8994	0,9658
	RandomTree	0,9965	0,9563	0,8248	0,9259
	REPTree	0,9994	0,9995	0,978	0,9923
	Valor medio	0,7079	0,6484	0,7325	0,6963
	-				

4.1.2. Prueba 2.

Esta primera prueba se realizará con todos los atributos generados en el fichero de instancias es decir, 23 atributos y utilizaremos los 13 mejores clasificadores obtenidos en la prueba anterior.

		Cross Validatio n	Supplied test set (samemap s)	Supplied test set (othermap s)	Valor medio
	GaussianProcesses	0,999	0,9989	0,9952	0,9977
Funtion	LinearRegression	0,9997	0,9995	0,9981	0,9991
s	MultilayerPerceptron	0,9994	0,9996	0,9956	0,9982
	SMOReg	0,9996	0,9995	0,9979	0,9990
	AdditiveRegression	0,9845	0,9879	0,805	0,9258
	Bagging	0,9996	0,9996	0,9866	0,9953
	RandomCommittee	0,9988	0,999	0,9067	0,9682
Meta	RandomizableFilteredClassi fier	0,9985	0,9984	0,8146	0,9372
	RandomSubSpace	0,9962	0,9956	0,9757	0,9892
	RegressionByDiscretization	0,9932	0,9928	0,9503	0,9788
Rules	DecisionTable	0,9975	0,9976	0,7073	0,9008
Trees	M5P	0,9996	0,9995	0,9981	0,9991
11662	RandomForest	0,9994	0,999	0,9857	0,9947
	Valor medio	0,9973	0,9321	0,9975	0,9756

4.1.3. Prueba 3.

Esta primera prueba se realizará con todos los atributos generados en el fichero de instancias es decir, 23 atributos y utilizaremos los 7 mejores clasificadores obtenidos en la prueba anterior.

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
	GaussianProcesses	0,9989	0,9988	0,9961	0,9979
	LinearRegression	0,9996	0,9995	0,998	0,9990
Funtions	MultilayerPerceptron	0,9993	0,9995	0,9847	0,9945
	SMOReg	0,9996	0,9995	0,9978	0,9990
	RandomSubSpace	0,9985	0,9943	0,9464	0,9797
Trees	M5P	0,9996	0,9995	0,9971	0,9987
rrees	RandomForest	0,9993	0,9984	0,8896	0,9624
	Valor medio	0,9993	0,9728	0,9985	0,9902

4.1.4. Prueba 4.

Esta primera prueba se realizará con todos los atributos generados en el fichero de instancias es decir, 27 atributos y utilizaremos los 4 mejores clasificadores obtenidos en la prueba anterior.

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
Funtions	GaussianProcesses	0,9988	0,9989	0,9955	0,9977

LinearRegression	0,9997	0,9995	0,998	0,9991
MultilayerPerceptron	0,9994	0,9995	0,9921	0,9970
SMOReg	0,9996	0,9995	0,9978	0,9990
Valor medio	0,9994	0,9959	0,9994	0,9982

4.2. Resultados Keyboard.

Para la realización de este apartado se han tenido en cuenta los ficheros generados en la fase 1 utilizando el agente controlado por teclado. Con el objetivo de abarcar el mayor número de posibilidades para estudiar correctamente los resultados, además de utilizar los ficheros generados en la fase 1, se han creado otros ficheros que contienen las mismas instancias eliminando aquellas que contienen como acción "Stop". A continuación, se mostrarán los resultados obtenidos en cada una de las pruebas realizadas indicando "Ficheros" y "Prueba".

- "Ficheros 1" (instancias de la fase 1).
- "Ficheros 2" (instancias similares que no contienen la acción "Stop").

Las pruebas contempladas serían tres:

Id	Nº atributos	Atributos
Prueba 1	35	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
		21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35.
Prueba 2	23	3, 4, 13,14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
		31, 32, 33, 34, 35
Prueba 3	23	1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 22, 24, 25, 26, 27, 32,
		33, 34, 35
Prueba 4	27	1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,19, 20, 21,
		22, 23, 32, 33, 34, 35

Finalmente, cabe destacar que el procedimiento de la elección de los dos mejores clasificadores en este caso ha sido distinto a la fase anterior ya que se ha tratado de encontrar el mejor

utilizando todos los clasificadores posibles. Esto es, en la primera prueba comenzamos utilizando todos los posibles clasificadores con el mismo conjunto de atributos de los cuales se elegirán la mitad de los mejores resultados en la media de los valores obtenidos, en la segunda prueba con los mejores clasificadores seleccionados en la primera prueba se realizará otro análisis del coeficiente de correlación en otro conjunto de atributos diferentes y se seguirá eligiendo la mitad superior de la media de los resultados obtenidos. De esta forma, se conseguirá llegar a los dos mejores clasificadores utilizando distintos conjuntos de atributos en cada prueba.

4.2.1. Ficheros 1: Prueba 1.

Esta primera prueba se realizará con todos los atributos generados en el fichero de instancias es decir, 35 atributos y utilizaremos los 27 clasificadores disponibles en Weka.

		Cross Validati on	Supplied test set (otherma ps)	Supplied test set (samema ps)	Valor medio
	GaussianProcesses	0,9982	0,9984	0,9952	0,9973
Funtio	LinearRegression	0,9994	0,9995	0,9991	0,9993
ns	MultilayerPerceptron	0,9991	0,999	0,9857	0,9946
	SMOReg	0,9994	0,9995	0,999	0,9993
	Ibk	0,9951	0,99	0,8479	0,9443
Lazy	KStar	0,999	0,9955	0,8319	0,9421
	LWL	0,9405	0,9372	0,8705	0,9161
	AdditiveRegression	0,9784	0,9761	0,9319	0,9621
	Bagging	0,9995	0,9988	0,9326	0,9770
	CVParameterSelection	-0,067	0	0	-0,0223
	MultiScheme	-0,067	0	0	-0,0223
	RandomCommittee	0,9984	0,9956	0,9107	0,9682
	RandomizableFilteredClassifie				
Meta	r	0,9984	0,998	0,9685	0,9883
	RandomSubSpace	0,9975	0,9868	0,8988	0,9610
	RegressionByDiscretization	0,9897	0,9913	0,9546	0,9785
	Stacking	-0,067	0	0	-0,0223
	Vote	-0,067	0	0	-0,0223
	WeightedInstancesHandlerWr apper	-0,067	0	0	-0,0223
Misc	InputMappedClassifier	-0,067	0	0	-0,0223
	Decision Table	0,9901	0,9869	0,8655	0,9475
Rules	M5Rules	0,9994	0,9995	0,999	0,9993
	ZeroR	-0,067	0	0	-0,0223
	DecisionStump	0,9174	0,9166	0,8577	0,8972
	M5P	0,9994	0,9995	0,999	0,9993
Trees	RandomForest	0,9989	0,9935	0,9475	0,9800
	RandomTree	0,9963	0,9907	0,7643	0,9171
	REPTree	0,9991	0,9993	0,9443	0,9809
	Valor medio	0,7157	0,6853	0,7315	0,7109

4.2.2. Ficheros 1: Prueba 2.

Esta primera prueba se realizará con todos los atributos generados en el fichero de instancias es decir, 23 atributos y utilizaremos los 13 mejores clasificadores obtenidos en la prueba anterior.

		Cross Validatio n	Supplied test set (samemap s)	Supplied test set (othermap s)	Valor medio
	GaussianProcesses	0,9987	0,9989	0,9974	0,9983
Funtion	LinearRegression	0,9994	0,9995	0,9991	0,9993
s	MultilayerPerceptron	0,9991	0,9994	0,9909	0,9965
	SMOReg	0,9994	0,9995	0,999	0,9993
	AdditiveRegression	0,9821	0,9827	0,9448	0,9699
	Bagging	0,9995	0,9991	0,9305	0,9764
	RandomCommittee	0,9993	0,9965	0,9759	0,9906
Meta	RandomizableFilteredClassi				
	fier	0,997	0,9984	0,9387	0,9780
	RandomSubSpace	0,9971	0,9958	0,986	0,9930
	RegressionByDiscretization	0,9897	0,9913	0,9546	0,9785
Rules	DecisionTable	0,9896	0,9908	0,8698	0,9501
Trees	M5P	0,9994	0,9995	0,999	0,9993
11662	RandomForest	0,9993	0,9957	0,9817	0,9922
	Valor medio	0,9961	0,9667	0,9959	0,9863

4.2.3. Ficheros 1: Prueba 3.

Esta primera prueba se realizará con todos los atributos generados en el fichero de instancias es decir, 23 atributos y utilizaremos los 7 mejores clasificadores obtenidos en la prueba anterior.

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
	GaussianProcesses	0,9984	0,9987	0,9967	0,9979
	LinearRegression	0,9994	0,9995	0,9991	0,9993
Funtions	MultilayerPerceptron	0,9987	0,9986	0,993	0,9968
	SMOReg	0,9994	0,9995	0,999	0,9993
	RandomSubSpace	0,9968	0,9954	0,9587	0,9836
Trees	M5P	0,9945	0,9994	0,999	0,9976
rrees	RandomForest	0,9988	0,9923	0,95	0,9804
	Valor medio	0,9980	0,9851	0,9976	0,9936

4.2.4. Ficheros 1: Prueba 4.

Esta primera prueba se realizará con todos los atributos generados en el fichero de instancias es decir, 27 atributos y utilizaremos los 4 mejores clasificadores obtenidos en la prueba anterior.

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
	GaussianProcesses	0,9983	0,9986	0,9962	0,9977
Funtions	LinearRegression	0,9994	0,9995	0,9991	0,9993
runtions	MultilayerPerceptron	0,9991	0,9992	0,9815	0,9933
	SMOReg	0,9994	0,9995	0,999	0,9993
Valor medio		0,9991	0,9940	0,9992	0,9974

4.2.5. Ficheros 2: Prueba 1.

Esta primera prueba se realizará con todos los atributos generados en el fichero de instancias es decir, 35 atributos y utilizaremos los 27 clasificadores disponibles en Weka

		Cross Validati on	Supplied test set (samema ps)	Supplied test set (otherma ps)	Valor medio
	GaussianProcesses	0,9981	0,9983	0,9949	0,9971
Funtio	LinearRegression	0,9995	0,9995	0,9991	0,9994
ns	MultilayerPerceptron	0,9991	0,9987	0,9817	0,9932
	SMOReg	0,9994	0,9995	0,999	0,9993
	Ibk	0,9952	0,9897	0,8438	0,9429
Lazy	KStar	0,9989	0,9954	0,8272	0,9405
	LWL	0,9417	0,9385	0,8695	0,9166
	AdditiveRegression	0,9805	0,9804	0,9432	0,9680
	Bagging	0,9994	0,999	0,9238	0,9741
	CVParameterSelection	-0,0436	0	0	-0,0145
	MultiScheme	-0,0436	0	0	-0,0145
Meta	RandomCommittee	0,9986	0,9955	0,9551	0,9831
IVICTA	RandomizableFilteredClassifie				
	r	0,9985	0,996	0,9245	0,9730
	RandomSubSpace	0,9978	0,9887	0,8909	0,9591
	RegressionByDiscretization	0,991	0,9922	0,9538	0,9790
	Stacking	-0,0436	0	0	-0,0145

	Vote	-0,0436	0	0	-0,0145
	WeightedInstancesHandlerWr				
	apper	-0,0436	0	0	-0,0145
Misc	InputMappedClassifier	-0,0436	0	0	-0,0145
	Decision Table	0,9918	0,973	0,8717	0,9455
Rules	M5Rules	0,9994	0,8713	0,4787	0,7831
	ZeroR	-0,0436	0	0	-0,0145
	DecisionStump	0,9174	0,9165	0,8571	0,8970
	M5P	0,9931	0,9995	0,7602	0,9176
Trees	RandomForest	0,9991	0,993	0,9525	0,9815
	RandomTree	0,9975	0,9936	0,8527	0,9479
	REPTree	0,9993	0,9989	0,9421	0,9801
	Valor medio	0,7219	0,6601	0,7266	0,7028

4.2.6. Ficheros 2: Prueba 2.

Esta primera prueba se realizará con todos los atributos generados en el fichero de instancias es decir, 23 atributos y utilizaremos los 13 mejores clasificadores obtenidos en la prueba anterior.

		Cross Validatio n	Supplied test set (samemap s)	Supplied test set (othermap s)	Valor medio
	GaussianProcesses	0,9993	0,9989	0,9421	0,9982
Funtion	LinearRegression	0,9986	0,9988	0,9972	0,9994
s	MultilayerPerceptron	0,9995	0,9995	0,9991	0,9952
	SMOReg	0,9992	0,9991	0,9872	0,9993
Meta	AdditiveRegression	0,9994	0,9995	0,999	0,9684

	Bagging	0,9816	0,9804	0,9432	0,9732
	RandomCommittee		0,9993	0,9209	0,9895
	RandomizableFilteredClassi				
	fier	0,9992	0,9964	0,973	0,9722
	RandomSubSpace	0,9977	0,997	0,9218	0,9945
	RegressionByDiscretization	0,9983	0,9957	0,9895	0,9790
Rules	DecisionTable	0,991	0,9922	0,9538	0,9590
Tuoos	M5P	0,9893	0,9958	0,8918	0,9993
Trees	RandomForest	0,9994	0,9995	0,999	0,9907
	Valor medio	0,9963	0,9655	0,9961	0,9860

4.2.7. Fícheros 2: Prueba 3.

Esta primera prueba se realizará con todos los atributos generados en el fichero de instancias es decir, 23 atributos y utilizaremos los 7 mejores clasificadores obtenidos en la prueba anterior.

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
	GaussianProcesses	0,9983	0,9986	0,9966	0,9978
	LinearRegression	0,9994	0,9995	0,9991	0,9993
Funtions	MultilayerPerceptron	0,999	0,9988	0,9951	0,9976
	SMOReg	0,9994	0,9995	0,999	0,9993
	RandomSubSpace	0,9975	0,9904	0,9573	0,9817
Trees	M5P	0,9994	0,9995	0,7653	0,9214
rrees	RandomForest	0,9988	0,9924	0,9597	0,9836
	Valor medio		0,9532	0,9970	0,9830

4.2.8. Ficheros 2: Prueba 4.

Esta primera prueba se realizará con todos los atributos generados en el fichero de instancias es decir, 27 atributos y utilizaremos los 4 mejores clasificadores obtenidos en la prueba anterior.

		Cross Validation	Supplied test set (samemaps)	Supplied test set (othermaps)	Valor medio
	GaussianProcesses	0,9988	0,9924	0,9597	0,9975
Funtions	LinearRegression	0,9982	0,9985	0,9957	0,9994
Fulltions	MultilayerPerceptron	0,9995	0,9995	0,9991	0,9922
	SMOReg	0,9992	0,9991	0,9783	0,9993
Valor medio		0,9991	0,9930	0,9992	0,9971

4.3. Análísis final

En primer lugar, para la realización de esta práctica se han tenido en cuenta muchas pruebas previas que no aparecen reflejadas en el documento debido a la extensión de las mismas. Se ha comenzado con el grupo de atributos más grande que podemos aportar, es decir, todos los atributos posibles utilizados tanto en el tutorial 1 como en los ficheros de instancias generados por teclado al igual que se han utilizado todos los algoritmos posibles para tener el mayor conjunto de pruebas posible y así poder obtener resultados mejores. Una vez conseguido el número total de atributos, que son los que aparecen reflejados a la largo de este documento, se realizaron las pruebas anteriores (apartado 4.1 y 4.2), en las cuales se han ido reduciendo los conjuntos de atributos a la mitad eligiendo en cada conjunto los algoritmos cuyo coeficiente de correlación medio obtenido sean los mejores en cada caso.

Tras haber realizado las pruebas necesarias en la fase 2 hemos decidido utilizar los mismos atributos ya que eran los que maximizaban los porcentajes de acierto en este caso. Por esta razón, a pesar de intentar mejorar constantemente el porcentaje de instancias clasificadas correctamente, nos hemos basado en lo que consideramos que aporta el atributo al modelo para elegir los adecuados. Además, en la primera prueba como ya hemos comentado anteriormente hemos decido mantener todos los atributos tal cual se generaron para tener el mayor rango de pruebas posibles. En la segunda prueba se ha decidido quitar los atributos de posición, aquellos que indican la fila y la columna en la que se encuentran el pacman y los fantasmas en el estado actual, ya que podrían variar en función de las dimensiones del mapa e incluso no existir, por lo que podrían generar ruido, provocando que el agente automático no realice las acciones correctas. Por todo esto se decidió, quitarlos y demostrar que no mostraban gran relevancia a la hora de la predicción de datos. En la tercera prueba, decidimos obviar el cálculo de distancias ya que a pesar de ser relevantes permiten saber si un fantasma está lejos o cerca del pacman y por tanto permitirán que el agente automático sea eficiente ya que tendría que ir primero a por el fantasma más cercano. Por todo esto, esta prueba servirá para comprobar

la repercusión de estos atributos en la predicción de datos. La última prueba de predicción realizada tiene que ver principalmente con los atributos representativos de las paredes, en esta prueba se obvian los atributos que miden las distancias a las paredes más cercanas del pacman y también a la comprobación de si hay una pared a continuación del pacman, ya que consideramos que tienen relevancia para él en el proceso de realizar el siguiente movimiento. En el apartado 4.2, se han realizado las mismas pruebas que en el caso anterior utilizando los ficheros de la fase 1 y unos nuevos ficheros generados en los cuales se han eliminado las instancias que contenía "Stop" como acción. Esta decisión ha sido tomada ya que consideramos que estas instancias eliminadas servirían únicamente para realizar la acción "Stop" y haciendo que el agente automático en determinados momentos se detenga.

Finalmente, tras haber realizado todas las pruebas pertinentes hemos llegado a la conclusión de que los mejores algoritmos de predicción utilizados son: "LinearRegression" y "SMOReg" ya que para todas las pruebas realizadas obtenían los valores más altos del coeficiente de correlación (que mide la correlación estadística entre los datos predichos y los datos reales). Cabe destacar que a pesar de que la práctica pide denotar los dos mejores algoritmos de predicción para la puntuación de la ejecución del juego, los mejores resultados de las pruebas con Weka vienen dados únicamente del algoritmo "LinearRegression" en las pruebas 1, 2 y 4 para el fichero del tutorial 1 y con la ejecución de "Cross validation" aunque los resultados de SMOReg son los segundos mejores detrás del ya mencionado anteriormente.

5. Fase 4: Construcción de un Agente Automático

Para la realización de esta fase se han generado modelos a partir de los resultados obtenidos en las fases 2 y 3.

El objetivo de esta fase es conseguir un agente automático que realice las acciones adecuadas para la ejecución más eficiente del mapa en el que se encuentre. Para ello es necesario generar un modelo que se adapte a estas condiciones. A partir de los resultados obtenidos en las fases 2 y 3 se han generado diversos modelos para comprobar cual es el mejor. En primer lugar hemos seleccionado las combinaciones de algoritmos, pruebas y ficheros que mayores porcentajes de instancias clasificadas correctamente presentan. Los modelos seleccionados serían los siguientes:

Modelos generados a partir de los ficheros de entrenamiento del tutorial 1 (Clasificación).

Nombre	Ficheros	Prueba	Algoritmo	Opción
RF_1_1.model	1	1	RandomForest	Cross Validation
RF_1_2.model	1	2	RandomForest	Supplied test set (samemaps)
RF_1_4.model	1	4	RandomForest	Supplied test set (samemaps)
J48_1_4.model	1	4	J48	Supplied test set (samemaps)
RF_2_1.model	2	1	RandomForest	Supplied test set (samemaps)
RF_2_2.model	2	2	RandomForest	Cross Validation
RF_2_4.model	2	4	RandomForest	Cross Validation
J48_2_4.model	2	4	J48	Cross Validation

Modelos generados a partir de los ficheros de entrenamiento controlado por el teclado (Clasificación).

Nombre	Ficheros	Prueba	Algoritmo	Opción
RF_1_3_1.model	1	3	RandomForest	Cross Validation
RF_1_3_2.model	1	3	RandomForest	Supplied test set (samemaps)
RF_1_3_3.model	1	3	RandomForest	Supplied test set (othermaps)
RF_2_3_1.model	2	3	RandomForest	Cross Validation
RF_2_3_2.model	2	3	RandomForest	Supplied test set (othermaps)
J48_2_3.model	2	3	J48	Supplied test set (othermaps)

Modelos generados a partir de los ficheros de entrenamiento de la fase de predicción.

Nombre	Ficheros	Prueba	Algoritmo	Opción
LR_1.model	Tutorial1	1	LinearRegression	Cross Validation
LR_2.model	Tutorial1	2	LinearRegression	Cross Validation
LR_4.model	Tutorial1	4	LinearRegression	Cross Validation

Finalmente hemos seleccionado el modelo perteneciente al tutorial 1 de la fase de clasificación, a los ficheros "Ficheros 1", prueba 4, algoritmo J48.

6. Preguntas

A continuación se responderán a las preguntas propuestas en la práctica.

1. ¿Qué diferencias hay a la hora de aprender esos modelos con instancias provenientes de un agente controlado por un humano y uno automático?

Las diferencias a la hora de aprender modelos con instancias provenientes de un agente controlado por un humano y uno automático se basan principalmente en las ventajas e inconvenientes que presentan cada uno de ellos, ya que aunque para ciertas cosas puede ser mejor controlar el agente, en otras podría ser más eficiente el agente automático. A continuación se mostrará una tabla en la cual se podrán apreciar con mayor claridad las diferencias.

	Agente automático	Control humano
	Un agente automático	Un humano sabe reaccionar a las
	correctamente programado	distintas situaciones en las que se
	conocería el mapa en el que se	pueda encontrar el pacman,
	encuentra perfectamente, sabiendo	evitando paredes y sabiendo a
	donde se encuentran las paredes y	simple vista como llegar a los
Ventajas	los fantasmas, las distancias para	fantasmas, por lo que no existiría la
Ventajas	llegar a ellos y el camino más corto.	posibilidad de entrar en bucle.
	Además, esto se cumpliría tanto para	
	fantasmas fijos como para fantasmas	
	en movimiento, por lo que no se	
	generaría instancias que generen	
	ruido en el modelo.	
	No resulta sencillo programar un	A simple vista un humano no puede
	buen agente automático, por lo que	calcular con precisión la distancia a
	no siempre sabrá que hacer. En	la que se encuentran los fantasmas
	muchos casos podría entrar en	para ir a por el más cercano.
	bucle, no sabría evitar paredes por lo	Además en el caso de que estos se
	que si un fantasma se encuentra muy	encuentren en movimiento le
	"escondido" no podría alcanzarlo y	resultaría complicado alcanzarlos,
	nunca terminaría. Además, al	pudiendo realizar muchos
	introducir movimientos aleatorios	movimientos incorrectos que
Inconvenientes	para evitar los bucles, se realizarían	generarían ruido en el modelo. Por
inconvenientes	acciones sin sentido que dificultarían	otro lado el tiempo de reacción, por
	el correcto funcionamiento del	ejemplo, al principio de las partidas,
	agente.	generaría instancias que
	Como ejemplo podríamos tener	futuramente podría predecir una
	nuestro agente automático que	acción de "Stop", la cual no
	sigue un modelo que no siempre	aportaría eficiencia.
	genera las acciones correctas ya que	
	al predecir una acción ilegal	
	realizamos un movimiento aleatorio.	

- 2. Si quisieras transformar la tarea de regresión en clasificación ¿Qué tendrías que hacer? ¿Cuál crees que podría ser la aplicación práctica de predecir la puntuación?
- 3. ¿Qué ventajas puede aportar predecir la puntuación respecto a la clasificación de la acción? Justifica tu respuesta.
- 4. ¿Crees que se podría conseguir alguna mejora en la clasificación incorporando un atributo que indicase si la puntuación en el instante actual ha descendido o ha bajado?

7. Conclusiones y dificultades

Con la realización de esta práctica hemos podido comprender con mayor claridad en que consisten y cómo funcionan las técnicas de aprendizaje automático que se han ido viendo a lo largo del desarrollo de la asignatura; además, a pesar de llevar mucho tiempo y trabajo nos ha resultado interesante el enseñar al Pac-Man a jugar correctamente.

En cuanto a los problemas encontrados se podría decir que la práctica consiste en conseguir un agente automático que juegue de la mejor forma posible y no lo hemos conseguido. Sin embargo, consideramos que dicho problema se puede deber a la falta de entrenamiento del Pac-Man y a los errores que se han ido cometiendo al generar las instancias de las cuales dependen la clasificación y la predicción. Inicialmente, el agente programado en el tutorial 1 muchas veces realizaba acciones de forma aleatoria por lo que entraba en bucle en la mayoría de los mapas. Durante la realización de esta práctica hemos conseguido mejorar el control del agente utilizando nuevos métodos y funciones pertenecientes al código inicial que desconocíamos.

NOTA: En la carpeta "Código" hemos añadido el fichero game.py ya que desde el "main" se llama a la función "printLineData" en la fase 1, mientras que en la 4 no estaría contemplado este caso.