線形代数I演習

- 第16回2次正方行列の行列式,平面の一次変換-

担当: 佐藤 弘康

定義.
$$2$$
次正方行列 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ に対し、スカラー

$$\det(A) = ad - bc$$

を行列 A の行列式と呼ぶ、

□クラメールの公式 連立1次方程式

$$\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$$

の解は

$$x = \frac{\det \begin{pmatrix} e & b \\ f & d \end{pmatrix}}{\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}}, \quad y = \frac{\det \begin{pmatrix} a & e \\ c & f \end{pmatrix}}{\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}}$$

で与えられる. ただし, $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0$ とする.

問題 16.1. 次の連立方程式を、2つの方法(行基本変形と、クラメールの公式)を 用いて解を求めよ、

(1)
$$\begin{cases} 2x - y = 1 \\ x + 3y = 4 \end{cases}$$
 (2)
$$\begin{cases} 3x - 2y = 1 \\ 2x - 5y = -3 \end{cases}$$

(2)
$$\begin{cases} 3x - 2y = 1 \\ 2x - 5y = -3 \end{cases}$$

□一次変換 2次正方行列 A に対し、平面 \mathbf{R}^2 の点(ベクトル)を \mathbf{R}^2 の点 に移す写像 $\varphi_A: \mathbf{R}^2 \to \mathbf{R}^2$ を $\varphi_A(\mathbf{x}) = A\mathbf{x}$ により定義することができる $(\mathbf{x} \in \mathbf{R}^2)$. この写像 φ_A を行列 A から定まる一次変換(または線形変換)と呼ぶ(教科書 $\mathbf{p}.60$ を参照).

問題 16.2. 次の2次正方行列に対して、それが定める一次変換がどのような写像か説明せよ(平面内の点をどのように移すか調べよ).

(1)
$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 (2) $P_{12} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

(3)
$$E_1(k) = \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$$
, $E_2(k) = \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$ (ただし, $k \neq 0$)

(4) 宿題:
$$E_{12}(k) = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$$
, $E_{21}(k) = \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}$ (ただし, $k \neq 0$)

例題. 行列
$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$
 は \mathbf{R}^2 の一次変換

$$(x,y) \xrightarrow{\varphi_A} (x-y,x)$$

を定める.方程式 y=2x-1 が定める直線は, φ_A によりどのような直線に移るか調べよ.

解. 直線 y = 2x - 1 上の点は媒介変数 $t \in \mathbf{R}$ を用いて,(t, 2t - 1) と表すことができる(直線の媒介変数表示).したがって,この直線上の点は変換 ω_A により,

$$(t, 2t-1) \xrightarrow{\varphi_A} (-t+1, t)$$

に移る. x = -t + 1, y = t とおいて、t を消去すると y = -x + 1 を得る。つまり φ_A により、直線 y = 2x - 1 は直線 y = -x + 1 に移ることがわかる。

問題 **16.3**. 行列 $A = \begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix}$ が定める一次変換 φ_A により、次の方程式が定める直線がどのようなものに移るか調べよ.

(1)
$$y = 2x + 1$$
 (2) $y = -3x - 2$

問題 **16.4.** $A = (a_1, a_2), B = (b_1, b_2)$ を \mathbb{R}^2 上の原点 O 以外の点とする.線分 OA と OB を 2 辺にもつ平行四辺形の面積は、行列

$$\begin{pmatrix}
a_1 & b_1 \\
a_2 & b_2
\end{pmatrix}$$
(16.1)

の行列式の絶対値に等しいことを示せ、ただし、ベクトル $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ 、 $\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ は線形独立であるとする。

■ 行列式の符号について

2次正方行列 A は平面の一次変換 φ_A を定め、平面内の図形を φ_A で移すと、その面積は $|\det(A)|$ 倍される。一次変換とは、原点を中心とした回転作用や、ある方向へ平面全体を伸ばしたり、縮めたりする作用を何回か施す変換である。 $\det(A) \neq 0$ のとき、変換 φ_A を施すことにより、平面内の図形は伸びたり縮んだりするものの、おおざっぱな形は変わらない。ただし、行列式が負の行列の場合は、その作用により図形は裏返ってしまう (下図参照)。また、行列式が 0 の場合、平面内の図形は直線か 1 点に縮んでしまう (問題 16.3)。

図: 一次変換による像.
$$A=\left(\begin{array}{cc} 3/2 & 1/2 \\ 1/2 & 1 \end{array}\right), \quad B=\left(\begin{array}{cc} -1 & 1 \\ 1 & 1/2 \end{array}\right)$$