CS201

MATHEMATICS FOR COMPUTER SCIENCE I

LECTURE 20

GROUPS

- Groups were originally defined to capture symmetries.
- They capture a structure present in wide varieties of objects, including numbers, permutations etc.
- We study them using the notions of subgroups, quotienting, and homomorphism.

Manindra Agrawal CS201: Lecture 20 3/15

SUBGROUPS

Group (H, \cdot) is a subgroup of group (G, \cdot) if $H \subseteq G$. It is a proper subgroup if $H \subset G$.

- $(2\mathbb{Z},+)$ is a proper subgroup of $(\mathbb{Z},+)$.
- Set of $n \times n$ invertible matrices over $\mathbb{Z}/\mathbb{Q}/\mathbb{R}/\mathbb{C}$ with determinant 1 is a proper subgroup of set of $n \times n$ invertible matrices.
- $(\{2^n \mid n \in \mathbb{Z}\}, *)$ is a proper subgroup of $(\mathbb{Q}, *)$.

SUBGROUP INDUCED EQUIVALENCE RELATION

- Let (H, \cdot) be a subgroup of (G, \cdot) .
- Define relation R_H on G as: aR_Hb if there exists $h \in H$ such that $a \cdot h = b$.

THEOREM

 R_H is an equivalence relation on G.

SUBGROUP INDUCED EQUIVALENCE RELATION

- R_H is reflexive: aR_Ha for all a with $a \cdot e = a$, $e \in H$.
- R_H is symmetric:
 - ► Suppose *aR_Hb*.
 - ▶ This means there exists $h \in H$ with $a \cdot h = b$.
 - ▶ Then $b \cdot h^{-1} = a$ and $h^{-1} \in H$ since H is a group.
 - ► Hence, *bR_Ha*.
- R_H is transitive:
 - ► Suppose aR_Hb and bR_Hc .
 - ▶ This means there exist $h, h' \in H$ with $a \cdot h = b$ and $b \cdot h' = c$.
 - ▶ Then $a \cdot (h \cdot h') = (a \cdot h) \cdot h' = b \cdot h' = c$ and $h \cdot h' \in H$.
 - ► Hence, aR_Hc .

QUOTIENT GROUP

- Relation R_H divides G into equivalence classes.
- For any a ∈ G, let [a] represent the equivalence class to which a belongs.
- Consider two equivalence classes [a] and [b].
- Let $a' \in [a]$ and $b' \in [b]$.
- Then $a' \cdot b' \in [a \cdot b]$:
 - ▶ We have $a \cdot h = a'$ and $b \cdot h' = b'$ for $h, h' \in H$.
 - ► So $a' \cdot b' = a \cdot h \cdot b \cdot h' = a \cdot b \cdot (h \cdot h')$.
- Conversely, any element of $[a \cdot b]$ can be written as a product of elements of [a] and [b]: $a \cdot b \cdot h = a \cdot (b \cdot h)$.
- Define operation o on equivalence classes as:

$$[a] \circ [b] = [a \cdot b].$$

QUOTIENT GROUP

- Let [G] denote the set equivalence classes of G.
- For $([G], \circ)$, closure clearly holds.
- Associativity holds since

$$([a] \circ [b]) \circ [c] = [a \cdot b] \circ [c] = [(a \cdot b) \cdot c] = [a \cdot (b \cdot c)] = [a] \circ ([b] \circ [c]).$$

Commutativity holds since

$$[a] \circ [b] = [a \cdot b] = [b \cdot a] = [b] \circ [a].$$

- Identity is [e] since $[a] \cdot [e] = [a]$.
- Inverse holds since

$$[a] \circ [a^{-1}] = [a \cdot a^{-1}] = [e].$$

8 / 15

QUOTIENT GROUP

- Therefore, $([G], \circ)$ is a group.
- It is called quotient group of G.
- It can be viewed as "dividing" G by H since elements of H become identity of [G].
- It is denoted as G/H.

Examples of Quotient Groups

- $\mathbb{Z}/2\mathbb{Z} = \{[0], [1]\}$ with group operation \oplus .
 - ▶ [0] is the identity.
 - ightharpoonup [1] \oplus [1] = [2] = [0].
- \mathbb{R}/\mathbb{Z} represents [0,1):
 - ▶ [a] can be viewed as fractional part of a.
- $\mathbb{R}/\mathbb{Q}\setminus[0]$ can be viewed as the set of all irrational numbers unrelated by rational numbers.

HOMOMORPHISMS

- There is a clear equivalence between
 - $ightharpoonup \mathbb{Z}/2\mathbb{Z}$ and addition modulo two,
 - $ightharpoonup \mathbb{R}/\mathbb{Z}$ and interval [0,1) with addition limited to fractional parts
- It is formalized through the notion of homomorphism and isomorphism.

Let (G, \cdot) and (H, \circ) be two groups and $\phi : G \mapsto H$ such that for all $a, b \in G$:

$$\phi(a\cdot b)=\phi(a)\circ\phi(b).$$

Function ϕ is called a homomorphism from G to H. If ϕ is also a bijection, then it is called an isomorphism.

Manindra Agrawal CS201: Lecture 20 11/15

EXAMPLES

- $\phi: \mathbb{Z}/2\mathbb{Z} \mapsto \{0,1\}$ is an isomorphism with $\phi([a] \circ [b]) = a + b \pmod{2}$.
- ullet $\phi: \mathbb{R}/\mathbb{Z} \mapsto [0,1)$ is an isomorphism with $\phi([a] \circ [b]) = a + b \pmod{1}$.
- Quotienting can also be defined through homomorphisms as follows.
- Let ϕ be a homomorphism from group (G, \cdot) to group (G', \circ) , define

$$H = \{ a \mid a \in G, \phi(a) = e' \},$$

where e is identify of G and e' identity of G'.

• Set H is called kernel of ϕ .

HOMOMORPHISM AND QUOTIENTING

- *H* is a subgroup of *G*:
 - ▶ If $a, b \in H$ then $\phi(a \cdot b) = \phi(a) \circ \phi(b) = e_{G'}$.

 - ▶ If $a \in H$ then $e' = \phi(e) = \phi(a \cdot a^{-1}) = \phi(a) \circ \phi(a^{-1})$ implying $\phi(a^{-1}) = e'$.
- $\phi(G)$ is a subgroup of G':
 - ▶ If $a', b' \in \phi(G)$ with $\phi(a) = a'$ and $\phi(b) = b'$ then $a' \circ b' = \phi(a) \circ \phi(b) = \phi(a \cdot b) \in \phi(G)$.
 - $e' \in \phi(G)$ as shown above.
 - ▶ If $a' \in \phi(G)$ with $\phi(a) = a'$ then $e' = \phi(e) = \phi(a \cdot a^{-1}) = a' \circ \phi(a^{-1})$.
 - ► Therefore, $\phi(a^{-1}) = a'^{-1} \in \phi(G)$.

HOMOMORPHISM AND QUOTIENTING

- Therefore, ϕ is an onto homomorphism from G to $\phi(G)$.
- If $\phi(a) = a'$ then

$$[a] = \{b \mid b \in G, \phi(b) = a'\}.$$

- ▶ $b \in [a]$ implies $b = a \cdot h$ for some $h \in H$. Therefore, $\phi(b) = \phi(a) \circ \phi(h) = a'$.
- $\phi(b) = a' = \phi(a)$ implies $e' = \phi(b) \circ \phi(a^{-1}) = \phi(b \cdot a^{-1})$. Therefore, $b \cdot a^{-1} \in H$.
- Therefore, ϕ is an isomorphism between G/H and $\phi(G)$.

Examples Revisited

- Let $\psi : \mathbb{Z} \mapsto \{0,1\}$ be defined as: $\psi(a) = a \pmod{2}$.
 - ψ is a homomorphism with $2\mathbb{Z}$ as its kernel.
 - ▶ Hence it is an isomorphism between $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}_2 = \{0,1\}$ with addition modulo 2.
- Let $\psi : \mathbb{R} \mapsto [0,1)$ be defined as: $\psi(a) = a \pmod{1}$.
- It is easily seen that ψ is an isomorphism between \mathbb{R}/\mathbb{Z} and [0,1)with addition modulo 1.

GROUPS VIA KERNELS

A homomorphism $\phi: G \mapsto G'$ gives rise to four groups: its kernel is a subgroup of G, its range is a subgroup of G', quotient of G by kernel and quotient of G' by range of ϕ are two quotient groups.