Fairness Metrics (4):

Average Precision (AP, Scikit-Learn):

Summarizes precision-recall curve as the weighted mean of precisions achieved at each threshold (increase in recall from previous threshold used as weight):

$$ext{AP} = \sum_n (R_n - R_{n-1}) P_n$$

- Measure accuracy of classifiers
- Threshold invariant accuracy metric
- Does not capture behavior on different protected classes (expecting slight dip after fairness adjustment)

(Training Note: "trained classifiers using different number of synthetic pairs for 4 different attributes, and found that AP stabilizes after 160,000 pairs, which is what we used to train our classifiers.")

Difference in Equality of Opportunity (DEO, Lokhande et al.):

Absolute Difference between false negative rates for both gender expressions

- Threshold Variant

(Definition from paper)

A classifier h satisfies Equality of Opportunity (EO) if h(x) is independent of the protected attribute s for $y \in \{0, 1\}$.

Equivalently, h satisfies the EO if $d_h^y = 0$ where we set $\mu_h^{s_i} = e_h^{s_i} \mid (y \in \{0, 1\}) =: e_h^{s_i, y_i}$, conditioning on both s and y.

Depending on choice of y in $\mu_h^{s_i}$, two different metrics:

- 1. y = 0 corresponds to h with equal False Positive Rate (FPR) across s_i
- 2. y = 1 corresponds to h with equal False Negative Rate (FNR) across s_i

(These observations observed in this paper from NeurIPS 2016)

h satisfies Equality of Odds if $d_h^0 + d_h^1 = 0$ (i.e. h equalizes both TPR and RPR across s)

Bias Amplification (BA, Wang and Russakovsky):

Measures how much more often a target attribute is predicted with a protected attribute than the ground truth value. (So measuring correlation, in layman's)

Threshold variant

Let,

 $P_{t \mid g}$ the fraction of images with protected attribute g that have target attribute t.

 $P_{\hat{t} \mid g}$ the fraction of images with protected attribute g that have <u>predicted</u> target attribute \hat{t}

 $P_{t,a}$ the fraction of images with target t and protected attribute g

 P_t and P_g - the fraction of images with attribute t and g respectively

To Compute:

For each target, protected attribute:

if
$$P_{t,g} > P_t P_g$$
:

add $(P_{t|g} - P_{\hat{t}|g})$

else:

add $-(P_{t|g} - P_{\hat{t}|g})$

(A negative value implies that the bias now exists in a different direction than in the training data)

Divergence Between Score Distributions (KL, Chen and Wu)

 $s_{g,t}$ represents a smoothed histogram of classifier scores of a certain protected attribute label and a target label, appropriately normalized as a probability distribution.

For each target attribute label t, measure

$$KL[s_{g=-1,t}||s_{g=1,t}] + KL[s_{g=1,t}||s_{g=-1,t}]$$

Measuring the divergence of g = -1 and g = 1 score distributions, separately for positive and negative attribute samples

(Stricter notion of equalized odds)