Machine Learning Reading Group

Speeding Up Distributed Machine Learning Using Codes

Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and Kannan Ramchandran, *Fellow*, IEEE, March 2018

University "Transilvania"
Faculty of Mathematics and Informatics
Brasov
07.Nov.2018

Kerestély Árpád k arpi2004@yahoo.co.uk

Distributed Machine Learning

- largescale machine learning and data analytics has shifted towards massively large distributed systems
- more commonly the domain that uses "massively large distributed systems" is called Cloud Computing

What is Codes?

- Codes refers to coding (modifying, transforming) some messages
- The two usages of message coding are:
 - Coded Computation
 - Coded Shuffling

Cloud Computing

- comprising individually small and unreliable computational nodes (lowend, commodity hardware)
- enable the execution of production-scale tasks on data sizes of the order of petabytes (1 PB = 1000 TB)
- modern distributed systems for ML: Apache Spark (based on Hadoop)
- computational primitive: MapReduce

Cloud Computing

- the workflow of distributed machine learning algorithms in a largescale system can be decomposed into three functional phases: a storage, a communication, and a computation phase
- for many Machine Learning algorithms:
 - Communication: data shuffling
 - Computation: matrix multiplication

Cloud Computing Bottlenecks

- performance of a modern distributed system is significantly affected by anomalous system behavior and bottlenecks
 - straggler nodes
 - system failures
 - communication bottlenecks

Coded Computation example

- ullet a system with three worker nodes, noted $oldsymbol{W}_i$ and one master, noted $oldsymbol{M}$
- the goal is to compute matrix multiplication AX for data matrix $A \in \mathbb{R}^{q \times r}$ and input matrix $X \in \mathbb{R}^{r \times s}$
- the data matrix is divided into two submatrices $A_1 \in \mathbb{R}^{q/2 \times s}$ and $A_2 \in \mathbb{R}^{q/2 \times s}$ stored in node 1 and 2; the sum of the two submatrices is stored in node 3
- ullet after the master node transmits $m{X}$ the workers compute the multiplication and send the result back to the master
- the master can compute AX as soon as it receives any two computation results

Coded Computation

- Coded Computation designs parallel tasks for a linear operation using erasure codes such that its runtime is not affected by up to a certain number of stragglers (may be node failures)
- Matrix multiplication is one of the most basic linear operations and is the workhorse of a host of machine learning and data analytics algorithms, e.g., gradient descent based algorithm for regression problems, power-iteration like algorithms for spectral analysis and graph ranking applications

Coded Shuffling example

- ullet a system with two worker nodes, noted $oldsymbol{W_i}$ and one master, noted $oldsymbol{M}$
- the data set consists of 4 batches noted A_i which are stored as shown below
- the objective of the master is to transmit $m{A}_3$ to the first worker and $m{A}_4$ to the second
- the solution is that the master sends a multicast message $A_2 + A_3$ to the worker nodes, since the workers can decode the desired batches using the stored batches
- compared to the naïve shuffling scheme in which the master node transmits A_2 and A_3 separately, this shuffling scheme can save 50% of the communication cost, speeding up the overall machine learning algorithm (considering that the cost of sending a multicast message is the same as the cost for sending a unicast message)

The core idea of optimizations

- Trade computation for communication by introducing redundancy into subtasks of a distributed algorithm such that the original task's result can be decoded from a subset of the subtask results
- Possible by using erasure codes

	Computation (sec)	Communication (sec)	Total (sec)
TeraSort	15.53	945.72	961.25

trade computation for communication

Coded Computing, Salman Avestimehr, et.al

http://www-bcf.usc.edu/~avestime/papers/CodedComputingWeb2018.pdf

Erasure code

- An erasure code is a method of introducing redundancy to information for robustness to noise.
- A method that encodes a message of *k* symbols into a longer message of *n* coded symbols such that the original *k* message symbols can be recovered by decoding a subset of coded symbols.
- The article proposes the usage of MDS (Maximum Distance Separable) codes

Conclusions

- Coded matrix multiplication significantly outperforms the one with the uncoded matrix multiplication in the gradient descent algorithm for linear regression; the average runtime is reduced by 31.3% to 35.7%.
- Using *Coded shuffling*, the communication overhead for data-shuffling is reduced by more than 81% compared to uncoded shuffling. Thus, at a very low storage overhead for caching, the algorithm can be significantly accelerated.