Molecular Weight Distributions in Step-Growth Polymerizations

Model 1: Probabilities of Forming Different Chain Lengths

Recall that in a step-growth polymerization of AB-type monomers, the extent of reaction p gives the fraction of 'A' groups that have reacted.

In terms of probabilities, the *probability* that a particular 'A' group reacts (turns into an 'a' group) is p, while the probability that it *does not* react (remains an 'A' group) is 1 - p:

Each molecule has some combination of unreacted 'A' groups and reacted 'a' groups, each of which occurs with probability p or (1-p) as appropriate:

The *total* probability of forming this molecule is just the product of the probabilities for each group:

$$P(molecule) = \underbrace{(p \times p \times p \times \dots)}_{\text{one factor of p for each reacted 'a' group}} \times \underbrace{((1-p) \times (1-p) \times \dots)}_{\text{one factor of (1-p) for each unreacted 'A' group}}$$

or, more concisely,

 $P(molecule) = p^{\text{(number of reacted 'a' groups)}} \times (1-p)^{\text{(number of unreacted 'A' groups)}}$

Critical Thinking Questions:

- 1. Consider an AbabaB trimer:
 - a) How many monomers came together to form this molecule (that is, what is its degree of polymerization)?
 - b) How many unreacted 'A' groups are in this molecule?

c) How many reacted 'a' groups are in this molecule?
d) What is the probability of forming an AbabaB trimer?
2. More generally, consider a molecule with degree of polymerization i (that is, a molecule that was made by linking together i AB-type monomers).
a) How many unreacted 'A' groups are in this molecule?
b) How many reacted 'a' groups are in this molecule?
c) What is the probability of forming a molecule with degree of polymerization i ?
Information:
The $probability$ that a molecule is has degree of polymerization i is the same as the $fraction$ of $molecules$ that have degree of polymerization i .
Critical Thinking Questions:
3. Complete the following statement:
"The fraction of molecules, x_i , that have degree of polymerization i is"

Model 2: Chain Length Distributions

The following table gives selected values of x_i calculated at two different extents of reaction, p, using the expression you derived in Model 1:

i	x_i when $p = 0.5$	x_i when $p = 0.9$
1	0.5	0.1
2	0.25	0.09
3	0.125	0.08
5	0.0313	0.065
10	$9.7 \text{x} 10^{-4}$	0.0387
15	$3.1 \text{x} 10^{-5}$	0.0229
20	$9.5 \text{x} 10^{-7}$	0.0135

Critical Thinking Questions:

4. Plot the data given in Model 2 on the following axes. Make sure to use a different symbol for points corresponding to p = 0.5 than for the points corresponding to p = 0.9.

© BY-NC-SA J. Laaser 2019 Page 3 of 7

5.	How are the plots for $p=0.5$ and $p=0.9$ similar, and how are they different? Briefly describe your observations in 2-3 complete sentences.
6.	What is the $most\ probable$ chain length for each value of p ? Briefly explain your answer in 1-2 complete sentences.
7.	Can the fraction of chains with length $i+1$ ever be greater than the fraction of chains with length i ? Justify your answer in 2-3 complete sentences.

Model 3: M_n and M_w for Step-Growth Polymerizations

To calculate M_n and M_w , we need to know n_i , or the total number of chains with i monomers.

If we started with v_A^0 monomers, then when the extent of reaction is equal to p, there will be $(1-p)v_A^0$ unreacted A groups left. Recalling that the number of unreacted A groups is equal to the number of molecules in the reaction mixture, this lets us write

 $n_i = \text{(fraction of molecules that have length } i) \times \text{(number of molecules in reaction mixture)}$

$$= (p^{i-1}(1-p)) ((1-p)v_A^0)$$

= $p^{i-1}(1-p)^2 v_A^0$

If we plug this expression into our equation for M_n , we get

$$M_n = \frac{\sum_i n_i M_i}{\sum_i n_i} = M_0 \frac{\sum_i p^{i-1} (1-p)^2 i}{\sum_i p^{i-1} (1-p)^2}$$

where M_0 is the molecular weight of the monomer $(M_i = M_0 i)$.

Evaluating these sums (see Exercise 2), we obtain

$$M_n = \frac{M_0}{1-p}$$
 or $N_n = \frac{M_n}{M_0} = \frac{1}{1-p}$

which is exactly what we came up with in our previous activity on degree of polymerization.

Similarly, plugging the above expression for n_i into our expression for M_w and evaluating the sums, we obtain

$$M_w = \frac{\sum_i n_i M_i^2}{\sum_i n_i M_i} = M_0 \frac{1+p}{1-p}$$
 or $N_w = \frac{M_w}{M_0} = \frac{1+p}{1-p}$

Critical Thinking Questions:

8. Calculate the dispersity for a step-growth reaction with extent of reaction p.

9. What is the value of the dispersity when p = 0? Briefly comment on whether or not this answer makes sense.

10. What is the value of the dispersity when p = 1?

11. Can the dispersity of a polymer produced by a step-growth polymerization ever be greater than 2? Briefly defend your answer in 1-2 complete sentences.

Exercises:

- 1. Suppose you synthesized a polymer by step-growth polymerization and found that it had a dispersity of 1.86.
 - a) What must the extent of reaction have been in this polymerization?
 - b) What would you expect the number-average degree of polymerization of this polymer to be?
- 2. Show that the summation expression for M_n given in Model 3 simplifies to the expected result by doing the following:
 - a) First, show that the summation expression for M_n given in Model 3 can be rewritten

$$M_n = M_0 \frac{\sum_i i p^{i-1}}{\frac{1}{p} \sum_i p^i}$$

b) The denominator of this expression is just a geometric series. Recall that if p < 1, then

$$\sum_{i=1}^{\infty} p^i = \frac{p}{1-p}$$

Substitute this expression into your equation for M_n and simplify.

c) The remaining sum can be calculated by differentiating both sides of the equation for $\sum_i p^i$. Carry out this differentiation to show that

$$\sum_{i=1}^{\infty} i p^{i-1} = \frac{1}{(1-p)^2}$$

d) Finally, substitute this expression into M_n and show that you obtain the expected solution.