

Frequency Generator for CPU, PCle Gen1* & Fully Buffered DIMM Clocks

ICS9FG1201H

Description

ICS9FG1201 follows the Intel DB1200G Differential Buffer Specification. This buffer provides 12 output clocks for CPU Host Bus, PCI Express, or Fully Buffered DIMM applications. The outputs are configured with two groups. Both groups (DIF 9:0) and (DIF 11:10) can be equal to or have a gear ratio to the input clock. A differential CPU clock from a CK410 or CK410B main clock generator, such as the ICS954101 or ICS932S401, drives the ICS9FG1201. ICS9FG1201 can provide outputs up to 400MHz.

Key Specifications

- DIF output cycle-to-cycle jitter < 50ps
- DIF output-to-output skew < 50ps within a group
- DIF output-to-output skew < 100ns across all outputs
- 56-pin SSOP/TSSOP package
- Available in RoHS compliant packaging

Features/Benefits

- Power up default is all outputs in 1:1 mode
- DIF_(9:0) can be "gear-shifted" from the input CPU Host Clock
- DIF_(11:10) can be "gear-shifted" from the input CPU Host Clock
- Spread spectrum compatible
- Supports output clock frequencies up to 400 MHz
- 8 Selectable SMBus addresses
- SMBus address determines PLL or Bypass mode

Funtional Block Diagram

Pin Configuration

CLK_IN# 3 54 IREF SMB_A0 4 53 OE10_11# OE0# 5 52 DIF_11 DIF_0 6 51 DIF_11# OE1# 8 49 GND DIF_1 9 48 DIF_10 DIF_1 10 47 DIF_10# VDD 11 46 FS_A_410 OE2# 15 OE9# DIF_2 13 04 OE9# DIF_2 13 04 OE9# DIF_2 15 42 DIF_9# OE2# 15 42 DIF_9# OE2# 15 OE8# DIF_3 16 OS 41 OE8# DIF_3 16 OS 41 OE8# DIF_3 17 40 DIF_8 OE3# 18 39 DIF_8# DIF_4 19 38 VDD OE4# 21 36 DIF_7 VDD 22 35 DIF_7# OE4# 21 36 DIF_7 VDD 22 35 DIF_7# OE7# OE5# 25 32 DIF_6# OE5# 26 31 OE6# SMB_A1 27 30 SMB_A2_PLLBYP# SMBDAT 28 SMBCLK 56-pin SSOP & TSSOP
--

Functionality Table

50 4 440 ¹	CLK_IN (CPU FSB)	DIF_(9:0) Output	DIF_(11:10) Output	
FS_A_410 ¹	MHz	MHz	MHz	
1	100.00	100.00	100.00	
1	133.33	133.33	133.33	
1	166.66	166.66	166.66	
1		RESERVED		
0	200.00	200.00	200.00	
0	266.66	266.66	266.66	
0	333.33	333.33	333.33	
0	400.00	400.00	400.00	

^{1.} FS_A_410 is a low-threshold input. Please see the V_{IL_FS} and V_{IH_FS} specifications in the Input/Supply/Common Output Parameters Table for correct values.

Power Groups

Pin N	umber	Description			
VDD	GND	Description			
56	55	Main PLL, Analog			
11,22,38,50	12,23,37,49	DIF clocks			

Pin Description

Pin#	Pin Name	Туре	Pin Description
_	LUCLI DAU		3.3V input for selecting PLL Band Width
1	HIGH_BW#	IN	0 = High, 1= Low
2	CLK_IN	IN	Input for reference clock.
3	CLK_IN#	IN	"Complementary" reference clock input.
4	SMB_A0	IN	SMBus address bit 0 (LSB)
_	050#	INI	Active low input for enabling DIF pair 0.
5	OE0#	IN	1 = tri-state outputs, 0 = enable outputs
6	DIF_0	OUT	0.7V differential true clock output
7	DIF_0#	OUT	0.7V differential complement clock output
0	OF1#	INI	Active low input for enabling DIF pair 1.
8	OE1#	IN	1 = tri-state outputs, 0 = enable outputs
9	DIF_1	OUT	0.7V differential true clock output
10	DIF_1#	OUT	0.7V differential complement clock output
11	VDD	PWR	Power supply, nominal 3.3V
12	GND	PWR	Ground pin.
13	DIF_2	OUT	0.7V differential true clock output
14	DIF_2#	OUT	0.7V differential complement clock output
15	OE2#	IN	Active low input for enabling DIF pair 2.
13	OL2#	IIN	1 = tri-state outputs, 0 = enable outputs
16	DIF_3	OUT	0.7V differential true clock output
17	DIF_3#	OUT	0.7V differential complement clock output
18	OE3#	IN	Active low input for enabling DIF pair 3.
10	OE3#	IIN	1 = tri-state outputs, 0 = enable outputs
19	DIF_4	OUT	0.7V differential true clock output
20	DIF_4#	OUT	0.7V differential complement clock output
21	OE4#	IN	Active low input for enabling DIF pair 4
Z 1	OE4#	IIN	1 = tri-state outputs, 0 = enable outputs
22	VDD	PWR	Power supply, nominal 3.3V
23	GND	PWR	Ground pin.
24	DIF_5	OUT	0.7V differential true clock output
25	DIF_5#	OUT	0.7V differential complement clock output
26	OE5#	IN	Active low input for enabling DIF pair 5.
20	OE5#	IIN	1 = tri-state outputs, 0 = enable outputs
27	SMB_A1	IN	SMBus address bit 1
28	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant

Pin Description (continued)

Pin#	Pin Name	Туре	Pin Description
29	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
			SMBus address bit 2. When Low, the part operates as a fanout buffer
			with the PLL bypassed. When High, the part operates as a zero-delay
30	SMB_A2_PLLBYP#	IN	buffer (ZDB) with the PLL operating.
			0 = fanout mode (PLL bypassed), 1 = ZDB mode (PLL used)
			Active low input for enabling DIF pair 6.
31	OE6#	IN	1 = tri-state outputs, 0 = enable outputs
32	DIF_6#	OUT	0.7V differential complement clock output
33	DIF_6	OUT	0.7V differential true clock output
			Active low input for enabling DIF pair 7.
34	OE7#	IN	1 = tri-state outputs, 0 = enable outputs
35	DIF_7#	OUT	0.7V differential complement clock output
36	DIF_7	OUT	0.7V differential true clock output
37	GND	PWR	Ground pin.
38	VDD	PWR	Power supply, nominal 3.3V
39	DIF_8#	OUT	0.7V differential complement clock output
40	DIF_8	OUT	0.7V differential true clock output
4.4			Active low input for enabling DIF pair 8.
41	OE8#	IN	1 = tri-state outputs, 0 = enable outputs
42	DIF_9#	OUT	0.7V differential complement clock output
43	DIF_9	OUT	0.7V differential true clock output
4.4	050#	INI	Active low input for enabling DIF pair 9.
44	OE9#	IN	1 = tri-state outputs, 0 = enable outputs
			Vtt_PwrGd# is an active low input used to determine when latched
45	VTT DWDCD#/DD	INI	inputs are ready to be sampled. PD is an asynchronous active high
45	VTT_PWRGD#/PD	IN	input pin used to put the device into a low power state. The internal
			clocks, PLLs and the crystal oscillator are stopped.
			3.3V tolerant low threshold input for CPU frequency selection. This
46	FS_A_410	IN	pin requires CK410 FSA. Refer to input electrical characteristics for
			Vil_FS and Vih_FS threshold values.
47	DIF_10#	OUT	0.7V differential complement clock output
48	DIF_10	OUT	0.7V differential true clock output
49	GND	PWR	Ground pin.
50	VDD	PWR	Power supply, nominal 3.3V
51	DIF_11#	OUT	0.7V differential complement clock output
52	DIF_11	OUT	0.7V differential true clock output
53	OE10_11#	IN	Active low input for enabling output pairs 10 and 11.
50	0210_11#	""	1 = tri-state outputs, 0 = enable outputs
			This pin establishes the reference current for the differential current-
54	IREF	OUT	mode output pairs. This pin requires a fixed precision resistor tied to
-			ground in order to establish the appropriate current. 475 ohms is the
			standard value.
55	GNDA	PWR	Ground pin for the PLL core.
56	VDDA	PWR	3.3V power for the PLL core.

ICS9FG1201 Programmable Gear Ratios

110	SMBus Byte 0				Input	Output	Gear Ratio	lı		PU FSB) a juencies (•	ut
FS_A_410	Bit 3	Bit 2	Bit 1	Bit 0	(m)	(n)	(n/m)	200.0	266.7	320.0	333.3	400.0
0	0	0	0	0	3	1	0.333	66.7	88.9	106.7	111.1	133.3
0	0	0	0	1	5	2	0.400	80.0	106.7	128.0	133.3	160.0
0	0	0	1	0	12	5	0.417	83.3	111.1	133.3	138.9	166.7
0	0	0	1	1	2	1	0.500	100.0	133.3	160.0	166.7	200.0
0	0	1	0	0	5	3	0.600	120.0	160.0	192.0	200.0	240.0
0	0	1	0	1	8	5	0.625	125.0	166.7	200.0	208.3	250.0
0	0	1	1	0	3	2	0.667	133.3	177.8	213.3	222.2	266.7
0	0	1	1	1	4	3	0.750	150.0	200.0	240.0	250.0	300.0
0	1	0	0	0	6	5	0.833	166.7	222.2	266.7	277.8	333.3
0	1	0	<u>0</u>	1	1	1	1.000	200.0	<u> 266.7</u>	<u>320.0</u>	333.3	<u>400.0</u>
0	1	0	1	0	5	6	1.200	240.0	320.0	384.0	400.0	NA
0	1	0	1	1	4	5	1.250	250.0	333.3	400.0	NA	NA
0	1	1	0	0	3	4	1.333	266.7	355.6	NA	NA	NA
0	1	1	0	1	2	3	1.500	300.0	400.0	NA	NA	NA
0	1	1	1	0	3	5	1.667	333.3	NA	NA	NA	NA
0	1	1	1	1	1	2	2.000	400.0	NA	NA	NA	NA
								CLK	IN (CPU	FSB) Fre	quency	(MHz)
								100	133.33	160	166.67	
1	0	0	0	0	3	1	0.333					
1	0	0	0	1	5	2	0.400	NA	53.3	64.0	66.7	
1	0	0	1	0	12	5	0.417	NA	55.6	66.7	69.4	
1	0	0	1	1	2	1	0.500	50.0	66.7	80.0	83.3	
1	0	1	0	0	5	3	0.600	60.0	80.0	96.0	100.0	
1	0	1	0	1	8	5	0.625	62.5	83.3	100.0	104.2	
1	0	1	1	0	3	2	0.667	66.7	88.9	106.7	111.1	
1	0	1	1	1	5	4	0.800	80.0	106.7	128.0	133.3	
1	1	0	0	0	6	5	0.833	NA	111.1	133.3	138.9	
1	1	0	<u>0</u>	1	1	1	1.000	100.0	133.3	<u>160.0</u>	166.7	
1	1	0	1	0	5	6	1.200	120.0	160.0	192.0	200.0	
1	1	0	1	1	4	5	1.250	125.0	166.7	200.0	208.3	
1	1	1	0	0	3	4	1.333	133.3	177.8	213.3	222.2	
1	1	1	0	1	2	3	1.500	150.0	200.0			
1	1	1	1	0	3	5	1.667	166.7	222.2	266.7	277.8	
1	1	1	1	1	1	2	2.000	200.0	266.7	320.0	333.3	

Note: Lines in **BOLD** are Power-up defaults for FS_A_410 = 0 and 1 respectively.

Shaded areas are shown for reference only and are not necessarily valid operating points

General SMBus serial interface information for the ICS9FG1201H

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D0 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address D0 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D1 $_{\mbox{\tiny (H)}}$
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Ind	ex Block W	e Operation	
Cor	ntroller (Host)	ICS (Slave/Receiver)	
Т	starT bit		
Slave	Address D0 _(H) *		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begir	ning Byte N		
			ACK
	\rightarrow	'te	
	\Diamond	Byte	\Diamond
	\Q	×	\Q
			\Diamond
Byte	e N + X - 1		
			ACK
Р	stoP bit		

Index Disels Write Operation

Ind	ex Block Rea	ad	Operation			
Con	troller (Host)	IC	S (Slave/Receiver)			
Т	starT bit					
Slave	Address D0 _(H) *					
WR	WRite					
			ACK			
Begir	nning Byte = N					
			ACK			
RT	Repeat starT					
Slave	Address D1 _(H) *					
RD	ReaD					
		ACK				
		D	ata Byte Count = X			
	ACK					
			Beginning Byte N			
	ACK					
		X Byte	\Q			
	\Q	B	\Q			
	\Q	×	\Q			
	\Q					
			Byte N + X - 1			
N	Not acknowledge					
Р	stoP bit					

^{*} Note: See SMBus Address Mapping (page 6), for programming SMBus Read/Write Address

SMBusTable: Gear Ratio Select Register

Byte	0	Pin #	Name	Control Function	Type	0 1		PWD
Bit 7	DIF	(9:0)	Group of 10 g	ear ratio enable	RW	Gear Ratio	1:1	1
Bit 6	DIF(11:10)	Group of 2 ge	ear ratio enable	RW	Gear Ratio	1:1	1
Bit 5	- Reserved RW				1			
Bit 4	-		Gear Ratio FS	Gear Ratio FS4 (FS_A_410)				Latch
Bit 3		-	Gear R	Gear Ratio FS3		See 9F	FG1201	1
Bit 2	- Gear		Gear R	atio FS2	RW	Programn	nable Gear	0
Bit 1	- Gear		Gear R	Ratio FS1	RW	Ratios	Table	1
Bit 0		-	Gear R	atio FS0	RW			1

SMBusTable: Output Control Register

Byte	1	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	35	, 36	DIF_7	Output Control	RW	Hi-Z	Enable	1
Bit 6	32	, 33	DIF_6	Output Control	RW	Hi-Z	Enable	1
Bit 5	24	, 25	DIF_5	Output Control	RW	Hi-Z	Enable	1
Bit 4	19	,20	DIF_4	Output Control	RW	Hi-Z	Enable	1
Bit 3	16	5,17	DIF_3	Output Control	RW	Hi-Z	Enable	1
Bit 2	13	3,14	DIF_2	Output Control	RW	Hi-Z	Enable	1
Bit 1	9,	,10	DIF_1	Output Control	RW	Hi-Z	Enable	1
Bit 0	6	5,7	DIF_0	Output Control	RW	Hi-Z	Enable	1

SMBusTable: Output and PLL BW Control Register

Byte	2	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7			Res	erved				1
Bit 6	see	note	PLL_BV	V# adjust	RW	High BW	Low BW	1
Bit 5	see note BYPASS#		BYPASS# te	est mode / PLL	RW	Bypass	PLL	1
Bit 4			Res	Reserved				1
Bit 3	51	,52	DIF_11	Output Control	RW	Hi-Z	Enable	1
Bit 2	47	7,48	DIF_10	Output Control	RW	Hi-Z	Enable	1
Bit 1	42	2,43	DIF_9	Output Control	RW	Hi-Z	Enable	1
Bit 0	39	9,40	DIF_8	Output Control	RW	Hi-Z	Enable	1

Note: Bit 6 is wired OR to the pin 1 input, any 0 selects High BW

Note: Bit 5 is wired OR to the pin 30 input, any 0 selects Fanout Bypass mode

SMBusTable: Output Enable Readback Register

Byte	3 Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	34	Readback - OE7# Input		R	Readback		Х
Bit 6	31	Readback - OE6# Input			Rea	Х	
Bit 5	26	Readback - OE5# Input			Rea	Х	
Bit 4	21	Readback	Readback - OE4# Input		Readback		Х
Bit 3	18	Readback	- OE3# Input	R	Rea	ıdback	Х
Bit 2	15	Readback	- OE2# Input	R	Rea	ıdback	Х
Bit 1	8	Readback - OE1# Input		R	Readback		Х
Bit 0	5	Readback	- OE0# Input	R	Rea	ıdback	Х

SMBusTable: Output Enable Readback Register

Byte	4	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	•	46	Readback	- FS_A_410	R	Read	lback	Х
Bit 6		1	Readback -	HIGH_BW# In	R	Readback Readback		Х
Bit 5	• •	30	Readback - SME	3_A2_PLLBYP# In	R	Readback		Х
Bit 4			Res	erved	R	Read	Readback	
Bit 3			Res	erved	R	Readback Readback		X
Bit 2	•	53	Readback - C	E10_11# Input	R	Read	Readback	
Bit 1	•	44	Readback -	- OE9# Input	R	Readback		Х
Bit 0	•	41	Readback -	- OE8# Input	R	Read	lback	Χ

SMBusTable: Vendor & Revision ID Register

OIII Daoi		or a rickision ib ricgisi					
Byte	5 Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	RID3		R	-	-	Х
Bit 6	-	RID2	REVISION ID	R	-	-	Х
Bit 5	-	RID1	REVISION ID	R	-	-	Х
Bit 4	-	RID0		R	-	-	Х
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2	VENDOBID	R	-	-	0
Bit 1	-	VID1	VENDOR ID	R	-	-	0
Bit 0	-	VID0		R	-	-	1

SMBusTable: DEVICE ID

Byte	6	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	Device II	D 7 (MSB)	RW	Rese	erved	1
Bit 6		-	Devic	ce ID 6	RW	Reserved		1
Bit 5		-	Devic	ce ID 5	RW	Reserved		0
Bit 4		-	Devid	ce ID 4	RW	Rese	Reserved	
Bit 3		-	Devic	ce ID 3	RW	Rese	erved	0
Bit 2		-	Devid	ce ID 2	RW	Rese	erved	0
Bit 1		-	Devid	ce ID 1	RW	Reserved		0
Bit 0		-	Devid	ce ID 0	RW	Rese	erved	1

SMBusTable: Byte Count Register

Byte	7	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7		-	BC7		RW	ı	ı	0
Bit 6		-	BC6		RW	ı	ı	0
Bit 5			BC5	Writing to this register	RW	-	-	0
Bit 4			BC4	Writing to this register configures how many	RW	-	-	0
Bit 3			BC3	bytes will be read back.	RW	-	-	1
Bit 2			BC2	bytes will be lead back.	RW	-	-	0
Bit 1			BC1		RW	-	-	0
Bit 0		-	BC0		RW	-	-	1

SMBusTable: 1:1 PLL Frequency Selection

Byte	8	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED				0
Bit 6			RESERVED			0		
Bit 5				RESERVED				0
Bit 4				RESERVED			0	
Bit 3				RESERVED				0
Bit 2		-	Frequenc	y Select C	RW	Coc 0FC10	04114.4 D11	Х
Bit 1		-	Frequenc	y Select B	RW See 9FG1201H 1:1 PLL Programming Table		1	
Bit 0		-	FS_/	A_410	RW	Fiogrami	illig rable	Latch

SMBusTable: Reserved Register

Byte	9	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED				0
Bit 6				RESERVED				0
Bit 5				RESERVED				0
Bit 4				RESERVED				0
Bit 3				RESERVED				0
Bit 2				RESERVED				0
Bit 1				RESERVED				0
Bit 0				RESERVED				0

SMBus Table: M/N Programming Enable

Byte	10	Pin #	Name	Control Function	Туре	0	1	PWD
				Gear PLL and 1:1 PLL				
Bit 7	-	-	M/N_EN	M/N Programming	RW	Disable	Enable	0
				Enable				
Bit 6				RESERVED				X
Bit 5				RESERVED				Х
Bit 4				RESERVED				Х
Bit 3				RESERVED				Х
Bit 2				RESERVED				Х
Bit 1				RESERVED				Х
Bit 0				RESERVED				X

SMBus Table: Gear PLL Frequency Control Register

Byte	11 F	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				RESERVED				Х
Bit 6				RESERVED				Х
Bit 5	-		Gear PLL M Div5		RW			Х
Bit 4	-		Gear PLL M Div4		RW			Χ
Bit 3	-		Gear PLL M Div3	M Divider Programming	RW	See 9FG1	201H M/N	Χ
Bit 2	-		Gear PLL M Div2	bits	RW	programn	ning Table	Χ
Bit 1	-		Gear PLL M Div1		RW			Χ
Bit 0	-		Gear PLL M Div0		RW			Χ

SMBus Table: Gear PLL Frequency Control Register

Byte	12	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7		-	Gear PLL N Div7		RW			Х
Bit 6		-	Gear PLL N Div6		RW			Х
Bit 5			Gear PLL N Div5		RW			Χ
Bit 4		-	Gear PLL N Div4	N Divider Programming	RW	See 9FG1	201H M/N	Х
Bit 3			Gear PLL N Div3	bits	RW	programm	ning Table	Χ
Bit 2		-	Gear PLL N Div2		RW			Х
Bit 1		-	Gear PLL N Div1		RW			Х
Bit 0		-	Gear PLL N Div0		RW			Χ

SMBusTable: Gear PLL Output Divider Register

<u> </u>	20101	0.00.	EE Oatpat Divider rice	J. O. C.				
Byte 1	3	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7				RESERVED				0
Bit 6				RESERVED				0
Bit 5				RESERVED				0
Bit 4				RESERVED				0
Bit 3			GoutDiv 3		RW			Χ
Bit 2			GoutDiv 2	Gear Output Divider	RW	See Gear C	Output Divider	Χ
Bit 1			GoutDiv 1	Gear Output Divider	RW	Ta	able	Χ
Bit 0			GoutDiv 1		RW			Χ

SMBusTable: Reserved Register

Byte	14	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7				RESERVED				0
Bit 6				RESERVED				0
Bit 5				RESERVED				0
Bit 4				RESERVED				0
Bit 3				RESERVED				0
Bit 2				RESERVED				0
Bit 1				RESERVED				0
Bit 0				RESERVED				0

SMBusTable: Reserved Register

Byte	15	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7				RESERVED				0
Bit 6				RESERVED				0
Bit 5				RESERVED				0
Bit 4				RESERVED				0
Bit 3				RESERVED				0
Bit 2				RESERVED				0
Bit 1				RESERVED				0
Bit 0				RESERVED				0

SMBusTable: Reserved Register

Byte	16	Pin #	Name	Control Function	Type	0	1	PWD	
Bit 7				RESERVED					
Bit 6				RESERVED					
Bit 5				RESERVED					
Bit 4			RESERVED					0	
Bit 3				RESERVED				0	
Bit 2				RESERVED				0	
Bit 1			RESERVED				0		
Bit 0				RESERVED					

SMBus Table: 1:1 PLL Frequency Control Register

Byte	17	Pin #	Name	Control Function	Туре	0	1	PWD		
Bit 7				RESERVED						
Bit 6				RESERVED				0		
Bit 5		-	1:1 PLL M Div5		RW			Х		
Bit 4		-	1:1 PLL M Div4		RW			Χ		
Bit 3		-	1:1 PLL M Div3	M Divider Programming	RW	See 9FG1	1201H M/N	Χ		
Bit 2		-	1:1 PLL M Div2	bits	RW	programn	ning Table	Χ		
Bit 1		-	1:1 PLL M Div1		RW			Χ		
Bit 0		-	1:1 PLL M Div0		RW			Х		

SMBus Table: 1:1 PLL Frequency Control Register

		· · · -	Lifequency Control i	logicioi				
Byte	18 P	in #	Name	Control Function	Type	0	1	PWD
Bit 7	•		1:1 PLL N Div7		RW			Х
Bit 6	-		1:1 PLL N Div6		RW			Χ
Bit 5	-		1:1 PLL N Div5		RW			Χ
Bit 4	-		1:1 PLL N Div4	N Divider Programming	RW	See 9FG1	201H M/N	Χ
Bit 3	-		1:1 PLL N Div3	bits	RW	programn	ning Table	Х
Bit 2	-		1:1 PLL N Div2		RW			Х
Bit 1	-		1:1 PLL N Div1		RW			Χ
Bit 0	-		1:1 PLL N Div0		RW			Х

SMBusTable: 1:1 PLL Output Divider Register

			- Output Dividor Hogi							
Byte	19	Pin #	Name	Control Function	Type	0	1	PWD		
Bit 7				RESERVED				0		
Bit 6				RESERVED				0		
Bit 5				RESERVED				0		
Bit 4				RESERVED						
Bit 3			1outDiv 3		RW			Х		
Bit 2			1outDiv 2	1:1 Output Divider	RW	See 1:1 Ou	utput Divider	Х		
Bit 1			1outDiv 1	RW Table						
Bit 0			1outDiv 1		RW			Х		

SMBusTable: Reserved Register

Byte 2	20	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7			RESERVED				0	
Bit 6			RESERVED				0	
Bit 5			RESERVED				0	
Bit 4			RESERVED				0	
Bit 3				RESERVED				0
Bit 2				RESERVED				0
Bit 1			RESERVED				0	
Bit 0			RESERVED				0	

SMBusTable: Test Byte Register

Byte 21	Test	Test Function	Туре	Test Result	PWD
Bit 7	`	ICS ONLY TEST	RW	Reserved	0
Bit 6		ICS ONLY TEST	RW	Reserved	0
Bit 5		ICS ONLY TEST	RW	Reserved	0
Bit 4		ICS ONLY TEST	RW	Reserved	0
Bit 3		ICS ONLY TEST	RW	Reserved	0
Bit 2		ICS ONLY TEST	RW	Reserved	0
Bit 1		ICS ONLY TEST	RW	Reserved	0
Bit 0		ICS ONLY TEST	RW	Reserved	0

Note: Do NOT write to Bit 21. Erratic device operation will result!

Absolute Max

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
3.3V Core Supply Voltage	VDD_A		GND - 0.5		$V_{DD} + 0.5V$	V	1
3.3V Logic Supply Voltage	VDD_In		GND - 0.5		$V_{DD} + 0.5V$	V	1
Storage Temperature	Ts		-65		150	°C	1
Ambient Operating Temp	Tambient		0		70	°C	1
Case Temperature	Tcase				115	°C	1
Input ESD protection	ESD prot	Human Body Model	2000		•	\ /	4

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD} = 3.3 \text{ V } +/-5\%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Input High Voltage	V_{IH}	3.3 V +/-5%	2		$V_{DD} + 0.3$	٧	1
Input Low Voltage	V_{IL}	3.3 V +/-5%	V _{SS} - 0.3		0.8	V	1
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	
Input Low Current	I _{IL1}	V _{IN} = 0 V; Inputs with no pull- up resistors	-5			uA	
Low Threshold Input- High Voltage	V _{IH_FS}	3.3 V +/-5%, Applies to FS_A_410 pin	0.7		V _{DD} + 0.3	V	1
Low Threshold Input- Low Voltage	V_{IL_FS}	3.3 V +/-5%, Applies to FS_A_410 pin	V _{SS} - 0.3		0.35	V	1
Operating Current	I _{DD3.3OP}	all outputs driven			400	mA	1
Powerdown Current	I _{DD3.3PD}	all diff pairs driven			70	mA	1
1 GWCIGOWII GUITCIR	טספיטיים.	all differential pairs tri-stated			12	mA	1
Input Frequency	Fi	$V_{DD} = 3.3 \text{ V}$	100		400	MHz	3
Pin Inductance	L_{pin}				7	nΗ	1
Input Conscitance	C_{IN}	Logic Inputs			6	pF	1
Input Capacitance	C _{OUT}	Output pin capacitance			5	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up or de- assertion of PD# to 1st clock			1.8	ms	1
Modulation Frequency		Triangular Modulation	30		33	kHz	1
Tdrive_PD#		DIF output enable after PD# de-assertion			300	us	1
Tfall_Pd#		PD# fall time of			5	ns	1
Trise_Pd#		PD# rise time of			5	ns	2
SMBus Voltage	V_{MAX}	Maximum input voltage			5.5	٧	1
Low-level Output Voltage	V_{OL}	@ I _{PULLUP}			0.4	V	1
Current sinking at V _{OL} = 0.4 V	I _{PULLUP}		4			mA	1
SCLK/SDATA Clock/Data Rise Time	T _{RI2C}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Clock/Data Fall Time	T _{FI2C}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1

IDT™/ICS™ Frequency Generator for CPU, PCIe Gen1* & Fully Buffered DIMM Clocks

ICS9FG1201H 10/22/07

Electrical Characteristics - DIF 0.7V Current Mode Differential Pair

 $T_{A} = 0 - 70^{\circ}\text{C}; \ V_{DD} = 3.3 \ V + / -5\%; \ C_{L} = 2pF, \ R_{S} = 33.2\Omega, \ R_{P} = 49.9\Omega, \ I_{REF} = 475\Omega$

PARAMETER	SYMBOL	$R_S=33.2\Omega$, $R_P=49.9\Omega$, $I_{REF}=4/3\Omega$ CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_O = V_x$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on	660		850		1,3
Voltage Low	VLow	single ended signal using oscilloscope math function.	-150		150	mV	1,3
Max Voltage	Vovs	Measurement on single ended			1150		1
Min Voltage	Vuds	signal using absolute value.	-300			mV	1
Crossing Voltage (abs)	Vcross(abs		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
y		400MHz nominal	2.4993		2.5008	ns	2
		400MHz spread	2.4993		2.5133	ns	2
		333.33MHz nominal	2.9991		3.0009	ns	2
		333.33MHz spread	2.9991		3.016	ns	2
		266.66MHz nominal	3.7489		3.7511	ns	2
		266.66MHz spread	3.7489		3.77	ns	2
A	Turnical	200MHz nominal	4.9985		5.0015	ns	2
Average period	Tperiod	200MHz spread	4.9985		5.0266	ns	2
		166.66MHz nominal	5.9982		6.0018	ns	2
		166.66MHz spread	5.9982		6.0320	ns	2
		133.33MHz nominal	7.4978		7.5023	ns	2
		133.33MHz spread	7.4978		7.5400	ns	2
		100.00MHz nominal	9.9970		10.0030	ns	2
		100.00MHz spread	9.9970		10.0533	ns	2
	1	400MHz nominal/spread	2.4143			ns	1,2
		333.33MHz nominal/spread	2.9141			ns	1,2
		266.66MHz nominal/spread	3.6639			ns	1,2
Absolute min period	T_{absmin}	200MHz nominal/spread	4.8735			ns	1,2
·		166.66MHz nominal/spread	5.8732			ns	1,2
		133.33MHz nominal/spread	7.3728			ns	1,2
		100.00MHz nominal/spread	9.8720			ns	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525 \text{V} V_{OL} = 0.175 \text{V}$	175		700	ps	1
Rise Time Variation	d-t _r	311 11221 10L 111101		\vdash	125	ps	1
Fall Time Variation	d-t _f			\vdash	125	ps	1
Duty Cycle	d-t _f	Measurement from differential wavefrom	45	Н	55	% %	1
Jitter, Cycle to cycle	t _{JCYC-CYC}	PLL mode, from differential wavefrom			50	ps	1,4,5
Notes:	t _{JBYP}	Bypass mode as additive jitter			50	ps	1,4

Notes:

IDT™/ICS™ Frequency Generator for CPU, PCIe Gen1* & Fully Buffered DIMM Clocks

ICS9FG1201H 10/22/07

^{1.} Guaranteed by design and characterization, not 100% tested in production.

^{2.} All Long Term Accuracy and Clock Period specifications are guaranteed assuming that the input frequency meets CK410B accuracy requirements 3.IREF = VDD/(3xRR). For RR = 475Ω (1%), IREF = 2.32mA. IOH = $6 \times IREF$ and VOH = 0.7V @ $ZO=50\Omega$.

^{4.} Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.

^{5.} Measured from differential cross-point to differential cross-point

^{6.} All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.

Electrical Characteristics - Skew and Differential Jitter Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V} + /-5\%$

Group	Parameter	Description	Min	Тур	Max	Units	Notes
CLK_IN, DIF[x:0]	t _{SPO_PLL}	Input-to-Output Skew in PLL mode (1:1 only), nominal value @ 25°C, 3.3V	-500		500	ps	1,2,4,5,6, 10
CLK_IN, DIF[x:0]	t _{PD_BYP}	Input-to-Output Skew in Bypass mode (1:1 only), nominal value @ 25°C, 3.3V	2.5		4.5	ns	1,2,3,5, 10
DIF[11:10]	t _{SKEW_G2}	Output-to-Output Skew Group of 2 (Common to Bypass and PLL mode)			50	ps	1,2,10
DIF[9:0]	t _{SKEW_G10}	Output-to-Output Skew Group of 10 (Common to Bypass and PLL mode)			50	ps	1,2,10
DIF[11:0]	t _{SKEW_A12}	Output-to-Output Skew across all 12 outputs (Common to Bypass and PLL mode - all outputs at same gear)			100	ps	1,2,3,10
PLL Jitter Peaking	jpeak-hibw	(HIGH_BW# = 0)	0		2.5	dB	9,10
PLL Jitter Peaking	j peak-lobw	(HIGH_BW# = 1)	0		2	dB	9,10
PLL Bandwidth	pll _{HIBW}	$(HIGH_BW\# = 0)$	2		4	MHz	10,11
PLL Bandwidth	pll_LOBW	(HIGH_BW# = 1)	0.7		1.4	MHz	10,11
Jitter, Phase	+	PCle Gen 1 phase jitter (1.5 - 22 MHz)			108	ps	1,7,8,10
Jiller, Fridse	t _{jphase} PLL	FBD phase jitter (11-33 MHz)			3	ps rms	1,7,8,10

NOTES:

- 1. Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.
- 2. Measured from differential cross-point to differential cross-point
- 3. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.
- 4. This parameter is deterministic for a given device
- 5. Measured with scope averaging on to find mean value.
- 6. t is the period of the input clock
- 7. See http://www.pcisig.com for complete specs
- 8. Device driven by 932S401EGLF or equivalent
- 9. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
- 10. Guaranteed by design and characterization, not 100% tested in production.
- 11. Measured at 3 db down or half power point.

SRC Reference Clock								
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure					
L1 length, Route as non-coupled 50 ohm trace.	0.5 max	inch	1					
L2 length, Route as non-coupled 50 ohm trace.	0.2 max	inch	1					
L3 length, Route as non-coupled 50 ohm trace.	0.2 max	inch	1					
Rs	33	ohm	1					
Rt	49.9	ohm	1					

Down Device Differential Routing	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm differential trace.	2 min to 16 max	inch	1
L4 length, Route as coupled stripline 100 ohm differential trace.	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm differential trace.	0.25 to 14 max	inch	2
L4 length, Route as coupled stripline 100 ohm differential trace.	0.225 min to 12.6 max	inch	2

Alternative termination for LVDS and other common differential signals. Figure 3.

Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note
0.45 v	0.22v	1.08	33	150	100	100	
0.58	0.28	0.6	33	78.7	137	100	
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible
0.60	0.3	1.2	33	174	140	100	Standard LVDS

R1a = R1b = R1

R2a = R2b = R2

Cable connected AC coupled application, figure 4

Component	Value	Note
R5a,R5b	8.2K 5%	
R6a,R6b	1K 5%	
Сс	0.1 uF	
Vcm	0.350 volts	

56-Lead, 300 mil Body, 25 mil, SSOP

21.01.00		meters	In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α	2.41	2.80	.095	.110	
A1	0.20	0.40	.008	.016	
b	0.20	0.34	.008	.0135	
С	0.13	0.25	.005	.010	
D	SEE VAF	RIATIONS	SEE VARIATIONS		
Е	10.03	10.68	.395	.420	
E1	7.40	7.60	.291	.299	
е	0.635	BASIC	0.025	BASIC	
h	0.38	0.64	.015	.025	
L	0.50	1.02	.020	.040	
N	SEE VARIATIONS		SEE VAF	RIATIONS	
α	0°	8°	0°	8°	

VARIATIONS

	N	Dn	nm.	D (inch)		
		MIN	MAX	MIN	MAX	
	56	18.31	18.55	.720	.730	

Reference Doc.: JEDEC Publication 95, MO-118

10-0034

Ordering Information

ICS 9FG1201HFLF-T

Example:

IDT™/ICS™ Frequency Generator for CPU, PCIe Gen1* & Fully Buffered DIMM Clocks

ICS9FG1201H 10/22/07

56-Lead 6.10 mm. Body, 0.50 mm. Pitch TSSOP (240 mil) (20 mil)

	(2-10	111111	(20 11111)		
	In Millir	neters	In Inches		
SYMBOL	COMMON DI	MENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		1.20	-	.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VAR	IATIONS	SEE VARIATIONS		
Е	8.10 B	ASIC	0.319 BASIC		
E1	6.00	6.20	.236	.244	
е	0.50 B	ASIC	0.020 E	BASIC	
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAR	IATIONS	
α	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS

N	D m	m.	D (inch)		
	MIN	MAX	MIN	MAX	
56	13.90	14.10	.547	.555	

Reference Doc.: JEDEC Publication 95, M O-153

10-0039

Ordering Information

ICS 9FG1201HGLF-T

Example:

Revision History

Rev.	Issue Date	Description	Page #
Α	10/22/07	Release to Final.	-

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

408-284-6578 pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners.

Printed in USA