# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

# PCT

# WORLD INTELLECTUAL PROPERTY ORGANIZATION



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 99/29837 (11) International Publication Number: C12N 15/00 A2 17 June 1999 (17.06.99) (43) International Publication Date: (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, (21) International Application Number: PCT/EP98/07945 BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD. GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, (22) International Filing Date: 7 December 1998 (07.12.98) MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, (30) Priority Data: SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, 97121462.2 5 December 1997 (05.12.97) ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, EP 98118756.0 5 October 1998 (05.10.98) ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, EP TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (71) Applicant (for all designated States except US): EU-ROPÄISCHES LABORATORIUM FÜR MOLEKU-(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). LARBIOLOGIE (EMBL) [DE/DE]; Meyerhofstrasse 1, D-69117 Heidelberg (DE). Published (72) Inventors; and Without international search report and to be republished (75) Inventors/Applicants (for US only): STEWART, Franupon receipt of that report. cis [AU/DE]; Lärchenweg 3, D-69181 Leimen (DE). ZHANG, Youming [CN/DE]; Friedrich-Ebert-Anlage 51e, D-69117 Heidelberg (DE). BUCHHOLZ, Frank [DE/DE]; Neuenkirchener Weg 44a, D-28779 Bremen (DE). (74) Agents: WEICKMANN, H. et al.; Kopernikusstrasse 9, D-81679 München (DE).

(54) Title: NOVEL DNA CLONING METHOD

#### (57) Abstract

The invention refers to a novel method for cloning DNA molecules using a homologous recombination mechanism between at least two DNA molecules comprising: a) providing a host cell capable of performing homologous recombination, b) contacting in said host cell a first DNA molecule which is capable of being replicated in said host cell with a second DNA molecule comprising at least two regions of sequence homology to regions on the first DNA molecule, under conditions which favour homologous recombination between said first and second DNA molecules and c) selecting a host cell in which homologous recombination between said first and second DNA molecules has occurred.

# FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AJ | L Albania                  | ES | Spain               | LS | Lesotho               | SI | Slovenia                 |
|----|----------------------------|----|---------------------|----|-----------------------|----|--------------------------|
| A! | M Armenia                  | FI | Finland             | LT | Lithuania             | SK | Slovakia                 |
| A' | T Austria                  | FR | France              | LU | Luxembourg            | SN | Senegal                  |
| Al | U Australia                | GA | Gabon               | LV | Latvia                | SZ | Swaziland                |
| A2 | Z Azerbaijan               | GB | United Kingdom      | MC | Monaco                | TD | Chad                     |
| B/ | A Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TG | Togo                     |
| BI | B Barbados                 | GH | Ghana               | MG | Madagascar            | TJ | Tajikistan               |
| BI | E Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM | Turkmenistan             |
| BI | F Burkina Faso             | GR | Greece              |    | Republic of Macedonia | TR | Turkey                   |
| BC | G Bulgaria                 | HU | Hungary             | ML | Mali                  | TT | Trinidad and Tobago      |
| BJ | Benin                      | IE | Ireland             | MN | Mongolia              | UA | Ukraine                  |
| BF | R Brazil                   | IL | Israel              | MR | Mauritania            | UG | Uganda                   |
| BY | Y Belarus                  | IS | Iceland             | MW | Malawi                | US | United States of America |
| C/ |                            | IT | Italy               | MX | Mexico                | UZ | Uzbekistan               |
| CE | F Central African Republic | JP | Japan               | NE | Niger                 | VN | Viet Nam                 |
| CC | G Congo                    | KE | Kenya               | NL | Netherlands           | YU | Yugoslavia               |
| CI | H Switzerland              | KG | Kyrgyzstan          | NO | Norway                | zw | Zimbabwe                 |
| CI | Côte d'Ivoire              | KP | Democratic People's | NZ | New Zealand           |    |                          |
| CN | M Cameroon                 |    | Republic of Korea   | PL | Poland                |    |                          |
| CI | N China                    | KR | Republic of Korea   | PT | Portugal              |    |                          |
| CU | U Cuba                     | KZ | Kazakstan           | RO | Romania               |    |                          |
| C2 | Czech Republic             | LC | Saint Lucia         | RU | Russian Federation    |    |                          |
| DE | 3 Germany                  | LI | Liechtenstein       | SD | Sudan                 |    |                          |
| DF | C Denmark                  | LK | Sri Lanka           | SE | Sweden                |    |                          |
| EF | E Estonia                  | LR | Liberia             | SG | Singapore             |    |                          |
|    |                            |    |                     |    | 7-7                   |    |                          |
|    |                            |    |                     |    |                       |    |                          |
|    | <del></del>                |    |                     |    |                       |    |                          |

WO 99/29837

- 1 -

PCT/EP98/07945

# Novel DNA cloning method

10

15

20

25

30

#### Description

The invention refers to a novel method for cloning DNA molecules using a homologous recombination mechanism between at least two DNA molecules. Further, novel reagent kits suitable for DNA cloning are provided.

Current methods for cloning foreign DNA in bacterial cells usually comprise the steps of providing a suitable bacterial vector, cleaving said vector with a restriction enzyme and in vitro-inserting a foreign DNA fragment in said vector. The resulting recombinant vectors are then used to transform bacteria. Although such cloning methods have been used successfully for about 20 years they suffer from several drawbacks. These drawbacks are, in particular, that the in vitro steps required for inserting foreign DNA in a vector are often very complicated and time-consuming, if no suitable restriction sites are available on the foreign DNA or the vector.

Furthermore, current methods usually rely on the presence of suitable restriction enzyme cleavage sites in the vector into which the foreign DNA fragment is placed. This imposes two limitations on the final cloning product. First, the foreign DNA fragment can usually only be inserted into the vector at the position of such a restriction site or sites. Thus, the cloning product is limited by the disposition of suitable restriction sites and cloning into regions of the vector where there is no suitable restriction site, is difficult and often imprecise. Second, since restriction sites are typically 4 to 8 base pairs in length, they occur a multiple number of times as the size of the DNA molecules being used increases. This represents a practical limitation to the size of the DNA molecules that can be manipulated by most current cloning techniques. In particular, the larger sizes of DNA cloned into vectors such as cosmids, BACs, PACs and P1s are such that it is usually impractical to manipulate them directly by restriction enzyme based

- 2 -

techniques. Therefore, there is a need for providing a new cloning method, from which the drawbacks of the prior art have at least partly been eliminated.

According to the present invention it was found that an efficient homologous recombination mechanism between two DNA molecules occurs at usable frequencies in a bacterial host cell which is capable of expressing the products of the recE and recT genes or functionally related genes such as the redα and redß genes, or the phage P22 recombination system (Kolodner et al., Mol.Microbiol. 11 (1994) 23-30; Fenton, A.C. and Poteete, A.R., Virology 134 (1984) 148-160; Poteete, A.R. and Fenton, A.C., Virology 134 (1984) 161-167). This novel method of cloning DNA fragments is termed "ET cloning".

The identification and characterization of the E.coli RecE and RecT proteins is described Gillen et al. (J.Bacteriol. 145 (1981), 521-532) and Hall et al. (J.Bacteriol. 175 (1993), 277-287). Hall and Kolodner (Proc.Natl.Acad.Sci. USA 91 (1994), 3205-3209) disclose in vitro homologous pairing and strand exchange of linear double-stranded DNA and homologous circular single-stranded DNA promoted by the RecT protein. Any references to the use of this method for the cloning of DNA molecules in cells cannot be found therein.

15

20

25

30

The recET pathway of genetic recombination in E.coli is known (Hall and Kolodner (1994), supra; Gillen et al. (1981), supra). This pathway requires the expression of two genes, recE and recT. The DNA sequence of these genes has been published (Hall et al., supra). The RecE protein is similar to bacteriophage proteins, such as  $\lambda$  exo or  $\lambda$  Red $\alpha$  (Gillen et al., J.Mol.Biol.113 (1977), 27-41; Little, J.Biol.Chem. 242 (1967), 679-686; Radding and Carter, J.Biol.Chem. 246 (1971), 2513-2518; Joseph and Kolodner, J.Biol.Chem. 258 (1983), 10418-10424). The RecT protein is similar to bacteriophage proteins, such as  $\lambda$   $\beta$ -protein or  $\lambda$  Red $\beta$  (Hall et al.

- 3 -

(1993), supra; Muniyappa and Radding, J.Biol.Chem. 261 (1986), 7472-7478; Kmiec and Hollomon, J.Biol.Chem.256 (1981), 12636-12639). The content of the above-cited documents is incorporated herein by reference.

5

10

15

20

25

30

Oliner et al. (Nucl.Acids Res. 21 (1993), 5192-5197) describe in vivo cloning of PCR products in E.coli by intermolecular homologous recombination between a linear PCR product and a linearized plasmid vector. Other previous attempts to develop new cloning methods based on homologous recombination in prokaryotes, too, relied on the use of restriction enzymes to linearise the vector (Bubeck et al., Nucleic Acids Res. 21 (1993), 3601-3602; Oliner et al., Nucleic Acids Res. 21 (1993), 5192-5197; Degryse, Gene 170 (1996), 45-50) or on the host-specific recAdependent recombination system (Hamilton et al., J.Bacteriol. 171 (1989), 4617-4622; Yang et al., Nature Biotech. 15 (1997), 859-865; Dabert and Smith, Genetics 145 (1997), 877-889). These methods are of very limited applicability and are hardly used in practice.

The novel method of cloning DNA according to the present invention does not require in vitro treatments with restriction enzymes or DNA ligases and is therefore fundamentally distinct from the standard methodologies of DNA cloning. The method relies on a pathway of homologous recombination in E.coli involving the recE and recT gene products, or the reda and redß gene products, or functionally equivalent gene products. The method covalently combines one preferably linear and preferably extrachromosomal DNA fragment, the DNA fragment to be cloned, with one second preferably circular DNA vector molecule, either an episome or the endogenous host chromosome or chromosomes. It is therefore distinct from previous descriptions of cloning in E.coli by homologous recombination which either rely on the use of two linear DNA fragments or different recombination pathways.

- 4 -

The present invention provides a flexible way to use homologous recombination to engineer large DNA molecules including an intact > 76 kb plasmid and the E.coli chromosome. Thus, there is practically no limitation of target choice either according to size or site. Therefore, any recipient DNA in a host cell, from high copy plasmid to the genome, is amenable to precise alteration. In addition to engineering large DNA molecules, the invention outlines new, restriction enzyme-independent approaches to DNA design. For example, deletions between any two chosen base pairs in a target episome can be made by choice of oligonucleotide homology arms. Similarly, chosen DNA sequences can be inserted at a chosen base pair to create, for example, altered protein reading frames. Concerted combinations of insertions and deletions, as well as point mutations, are also possible. The application of these strategies is particularly relevant to complex or difficult DNA constructions, for example, those intended for homologous recombinations in eukaryotic cells, e.g. mouse embryonic stem cells. Further, the present invention provides a simple way to position site specific recombination target sites exactly where desired. This will simplify applications of site specific recombination in other living systems, such as plants and mice.

20

25

30

5

10

15

A subject matter of the present invention is a method for cloning DNA molecules in cells comprising the steps:

a) providing a host cell capable of performing homologous recombination.

b) contacting in said host cell a first DNA molecule which is capable of being replicated in said host cell with a second DNA molecule comprising at least two regions of sequence homology to regions on the first DNA molecule, under conditions which favour homologous recombination between said first and second DNA molecules and c) selecting a host cell in which homologous recombination between said first and second DNA molecules has occurred.

- 5 -

In the method of the present invention the homologous recombination preferably occurs via the recET mechanism, i.e. the homologous recombination is mediated by the gene products of the recE and the recT genes which are preferably selected from the E.coli genes recE and recT or functionally related genes such as the phage  $\lambda$  red $\alpha$  and red $\beta$  genes.

5

10

15

20

25

30

The host cell suitable for the method of the present invention preferably is a bacterial cell, e.g. a gram-negative bacterial cell. More preferably, the host cell is an enterobacterial cell, such as Salmonella, Klebsiella or Escherichia. Most preferably the host cell is an Escherichia coli cell. It should be noted, however, that the cloning method of the present invention is also suitable for eukaryotic cells, such as fungi, plant or animal cells.

Preferably, the host cell used for homologous recombination and propagation of the cloned DNA can be any cell, e.g. a bacterial strain in which the products of the recE and recT, or reda and redß, genes are expressed. The host cell may comprise the recE and recT genes located on the host cell chromosome or on non-chromosomal DNA, preferably on a vector, e.g. a plasmid. In a preferred case, the RecE and RecT, or Reda and Redß, gene products are expressed from two different regulatable promoters, such as the arabinose-inducible BAD promoter or the lac promoter or from non-regulatable promoters. Alternatively, the recE and recT, or reda and redß, genes are expressed on a polycistronic mRNA from a single regulatable or non-regulatable promoter. Preferably the expression is controlled by regulatable promoters.

Especially preferred is also an embodiment, wherein the recE or red $\alpha$  gene is expressed by a regulatable promoter. Thus, the recombinogenic potential of the system is only elicited when required and, at other times, possible undesired recombination reactions are limited. The recT or redß gene, on the other hand, is preferably overexpressed with respect to recE or red $\alpha$ . This may be accomplished by using a strong constitutive promoter, e.g. the

10

15

30

EM7 promoter and/or by using a higher copy number of recT, or redß, versus recE, or reda, genes.

For the purpose of the present invention any recE and recT genes are suitable insofar as they allow a homologous recombination of first and second DNA molecules with sufficient efficiency to give rise to recombination products in more than 1 in  $10^9$  cells transfected with DNA. The recE and recT genes may be derived from any bacterial strain or from bacteriophages or may be mutants and variants thereof. Preferred are recE and recT genes which are derived from E.coli or from E.coli bacteriophages, such as the red $\alpha$  and red $\beta$  genes from lambdoid phages, e.g. bacteriophage  $\lambda$ .

More preferably, the recE or reda gene is selected from a nucleic acid molecule comprising

- (a) the nucleic acid sequence from position 1320 (ATG) to 2159 (GAC) as depicted in Fig.7B,
- (b) the nucleic acid sequence from position 1320 (ATG) to 1998(CGA) as depicted in Fig.14B,
- (c) a nucleic acid encoding the same polypeptide within the degeneracy of the genetic code and/or
  - (d) a nucleic acid sequence which hybridizes under stringent conditions with the nucleic acid sequence from (a), (b) and/or (c).
- 25 More preferably, the recT or redß gene is selected from a nucleic acid molecule comprising
  - (a) the nucleic acid sequence from position 2155 (ATG) to 2961 (GAA) as depicted in Fig.7B,
  - (b) the nucleic acid sequence from position 2086 (ATG) to 2868 (GCA) as depicted in Fig.14B,
  - (c) a nucleic acid encoding the same polypeptide within the degeneracy of the genetic code and/or

- 7 -

(d) a nucleic acid sequence which hybridizes under stringent conditions with the nucleic acid sequences from (a), (b) and/or (c).

It should be noted that the present invention also encompasses mutants and variants of the given sequences, e.g. naturally occurring mutants and variants or mutants and variants obtained by genetic engineering. Further it should be noted that the recE gene depicted in Fig.7B is an already truncated gene encoding amino acids 588-866 of the native protein. Mutants and variants preferably have a nucleotide sequence identity of at least 60%, preferably of at least 70% and more preferably of at least 80% of the recE and recT sequences depicted in Fig.7B and 13B, and of the red $\alpha$  and redß sequences depicted in Fig.14B.

10

15

20

25

30

According to the present invention hybridization under stringent conditions preferably is defined according to Sambrook et al. (1989), infra, and comprises a detectable hybridization signal after washing for 30 min in 0.1 x SSC, 0.5% SDS at 55°C, preferably at 62°C and more preferably at 68°C.

In a preferred case the recE and recT genes are derived from the corresponding endogenous genes present in the E.coli K12 strain and its derivatives or from bacteriophages. In particular, strains that carry the sbcA mutation are suitable. Examples of such strains are JC8679 and JC 9604 (Gillen et al. (1981), supra). Alternatively, the corresponding genes may also be obtained from other coliphages such as lambdoid phages or phage P22.

The genotype of JC 8679 and JC 9604 is Sex (Hfr, F+, F-, or F'): F-.JC 8679 comprises the mutations: recBC 21, recC 22, sbcA 23, thr-1, ara-14, leu B 6, DE (gpt-proA) 62, lacY1, tsx-33, gluV44 (AS), galK2 (Oc), LAM-, his-60, relA 1, rps L31 (strR), xyl A5, mtl-1, argE3 (Oc) and thi-1. JC 9604 comprises the same mutations and further the mutation recA 56.

WO 99/29837

Further, it should be noted that the recE and recT, or red $\alpha$  and red $\beta$ , genes can be isolated from a first donor source, e.g. a donor bacterial cell and transformed into a second receptor source, e.g. a receptor bacterial or eukaryotic cell in which they are expressed by recombinant DNA means.

5

10

15

In one embodiment of the invention, the host cell used is a bacterial strain having an sbcA mutation, e.g. one of E.coli strains JC 8679 and JC 9604 mentioned above. However, the method of the invention is not limited to host cells having an sbcA mutation or analogous cells. Surprisingly, it has been found that the cloning method of the invention also works in cells without sbcA mutation, whether recBC + or recBC-, e.g. also in prokaryotic recBC + host cells, e.g. in E.coli recBC + cells. In that case preferably those host cells are used in which the product of a recBC type exonuclease inhibitor gene is expressed. Preferably, the exonuclease inhibitor is capable of inhibiting the host recBC system or an equivalent thereof. A suitable example of such exonuclease inhibitor gene is the  $\lambda$  red $\gamma$  gene (Murphy, J.Bacteriol. 173 (1991), 5808-5821) and functional equivalents thereof, respectively, which, for example, can be obtained from other coliphages such as from phage P22 (Murphy, J.Biol.Chem.269 (1994), 22507-22516).

20

More preferably, the exonuclease inhibitor gene is selected from a nucleic acid molecule comprising

- (a) the nucleic acid sequence from position 3588 (ATG) to 4002 (GTA) as depicted in Fig.14A,
- (b) a nucleic acid encoding the same polypeptide within the degeneracy of the genetic code and/or
  - (c) a nucleic acid sequence which hybridizes under stringent conditions (as defined above) with the nucleic acid sequence from (a) and/ or (b).

Surprisingly, it has been found that the expression of an exonuclease inhibitor gene in both recBC+ and recBC- strains leads to significant improvement of cloning efficiency.

- 9 -

The cloning method according to the present invention employs a homologous recombination between a first DNA molecule and a second DNA molecule. The first DNA molecule can be any DNA molecule that carries an origin of replication which is operative in the host cell, e.g. an E.coli replication origin. Further, the first DNA molecule is present in a form which is capable of being replicated in the host cell. The first DNA molecule, i.e. the vector, can be any extrachromosomal DNA molecule containing an origin of replication which is operative in said host cell, e.g. a plasmid including single, low, medium or high copy plasmids or other extrachromosomal circular DNA molecules based on cosmid, P1, BAC or PAC vector technology. Examples of such vectors are described, for example, by Sambrook et al. (Molecular Cloning, Laboratory Manual, 2nd Edition (1989), Cold Spring Harbor Laboratory Press) and Ioannou et al. (Nature Genet. 6 (1994), 84-89) or references cited therein. The first DNA molecule can also be a host cell chromosome, particularly the E.coli chromosome. Preferably, the first DNA molecule is a double-stranded DNA molecule.

The second DNA molecule is preferably a linear DNA molecule and comprises at least two regions of sequence homology, preferably of sequence identity to regions on the first DNA molecule. These homology or identity regions are preferably at least 15 nucleotides each, more preferably at least 20 nucleotides and, most preferably, at least 30 nucleotides each. Especially good results were obtained when using sequence homology regions having a length of about 40 or more nucleotides, e.g. 60 or more nucleotides. The two sequence homology regions can be located on the linear DNA fragment so that one is at one end and the other is at the other end, however they may also be located internally. Preferably, also the second DNA molecule is a double-stranded DNA molecule.

30

5

10

20

25

The two sequence homology regions are chosen according to the experimental design. There are no limitations on which regions of the first

- 10 -

DNA molecule can be chosen for the two sequence homology regions located on the second DNA molecule, except that the homologous recombination event cannot delete the origin of replication of the first DNA molecule. The sequence homology regions can be interrupted by non-identical sequence regions as long as sufficient sequence homology is retained for the homologous recombination reaction. By using sequence homology arms having non-identical sequence regions compared to the target site mutations such as substitutions, e.g. point mutations, insertions and/or deletions may be introduced into the target site by ET cloning.

10

15

The second foreign DNA molecule which is to be cloned in the bacterial cell may be derived from any source. For example, the second DNA molecule may be synthesized by a nucleic acid amplification reaction such as a PCR where both of the DNA oligonucleotides used to prime the amplification contain in addition to sequences at the 3'-ends that serve as a primer for the amplification, one or the other of the two homology regions. Using oligonucleotides of this design, the DNA product of the amplification can be any DNA sequence suitable for amplification and will additionally have a sequence homology region at each end.

20

25

30

A specific example of the generation of the second DNA molecule is the amplification of a gene that serves to convey a phenotypic difference to the bacterial host cells, in particular, antibiotic resistance. A simple variation of this procedure involves the use of oligonucleotides that include other sequences in addition to the PCR primer sequence and the sequence homology region. A further simple variation is the use of more than two amplification primers to generate the amplification product. A further simple variation is the use of more than one amplification reaction to generate the amplification product. A further variation is the use of DNA fragments obtained by methods other than PCR, for example, by endonuclease or restriction enzyme cleavage to linearize fragments from any source of DNA.

- 11 -

It should be noted that the second DNA molecule is not necessarily a single species of DNA molecule. It is of course possible to use a heterogenous population of second DNA molecules, e.g. to generate a DNA library, such as a genomic or cDNA library.

5

10

15

20

The method of the present invention may comprise the contacting of the first and second DNA molecules in vivo. In one embodiment of the present invention the second DNA fragment is transformed into a bacterial strain that already harbors the first vector DNA molecule. In a different embodiment, the second DNA molecule and the first DNA molecule are mixed together in vitro before co-transformation in the bacterial host cell. These two embodiments of the present invention are schematically depicted in Fig. 1. The method of transformation can be any method known in the art (e.g. Sambrook et al. supra). The preferred method of transformation or co-transformation, however, is electroporation.

After contacting the first and second DNA molecules under conditions which favour homologous recombination between first and second DNA molecules via the ET cloning mechanism a host cell is selected, in which homologous recombination between said first and second DNA molecules has occurred. This selection procedure can be carried out by several different methods. In the following three preferred selection methods are depicted in Fig.2 and described in detail below.

25

30

In a first selection method a second DNA fragment is employed which carries a gene for a marker placed between the two regions of sequence homology wherein homologous recombination is detectable by expression of the marker gene. The marker gene may be a gene for a phenotypic marker which is not expressed in the host or from the first DNA molecule. Upon recombination by ET cloning, the change in phenotype of the host strain conveyed by the stable acquisition of the second DNA fragment identifies the ET cloning product.

- 12 -

In a preferred case, the phenotypic marker is a gene that conveys resistance to an antibiotic, in particular, genes that convey resistance to kanamycin, ampillicin, chloramphenicol, tetracyclin or any other substance that shows bacteriocidal or bacteriostatic effects on the bacterial strain employed.

5

10

A simple variation is the use of a gene that complements a deficiency present within the bacterial host strain employed. For example, the host strain may be mutated so that it is incapable of growth without a metabolic supplement. In the absence of this supplement, a gene on the second DNA fragment can complement the mutational defect thus permitting growth. Only those cells which contain the episome carrying the intended DNA rearrangement caused by the ET cloning step will grow.

15

In another example, the host strain carries a phenotypic marker gene which is mutated so that one of its codons is a stop codon that truncates the open reading frame. Expression of the full length protein from this phenotypic marker gene requires the introduction of a suppressor tRNA gene which, once expressed, recognizes the stop codon and permits translation of the full open reading frame. The suppressor tRNA gene is introduced by the ET cloning step and successful recombinants identified by selection for, or identification of, the expression of the phenotypic marker gene. In these cases, only those cells which contain the intended DNA rearrangement caused by the ET cloning step will grow.

25

30

20

A further simple variation is the use of a reporter gene that conveys a readily detectable change in colony colour or morphology. In a preferred case, the green fluorescence protein (GFP) can be used and colonies carrying the ET cloning product identified by the fluorescence emissions of GFP. In another preferred case, the lacZ gene can be used and colonies carrying the ET cloning product identified by a blue colony colour when X-gal is added to the culture medium.

- 13 -

In a second selection method the insertion of the second DNA fragment into the first DNA molecule by ET cloning alters the expression of a marker present on the first DNA molecule. In this embodiment the first DNA molecule contains at least one marker gene between the two regions of sequence homology and homologous recombination may be detected by an altered expression, e.g. lack of expression of the marker gene.

5

10

15

20

25

30

In a preferred application, the marker present on the first DNA molecule is a counter-selectable gene product, such as the sacB, ccdB or tetracycline-resistance genes. In these cases, bacterial cells that carry the first DNA molecule unmodified by the ET cloning step after transformation with the second DNA fragment, or co-transformation with the second DNA fragment and the first DNA molecule, are plated onto a medium so the expression of the counter-selectable marker conveys a toxic or bacteriostatic effect on the host. Only those bacterial cells which contain the first DNA molecule carrying the intended DNA rearrangement caused by the ET cloning step will grow.

In another preferred application, the first DNA molecule carries a reporter gene that conveys a readily detectable change in colony colour or morphology. In a preferred case, the green fluorescence protein (GFP) can be present on the first DNA molecule and colonies carrying the first DNA molecule with or without the ET cloning product can be distinguished by differences in the fluorescence emissions of GFP. In another preferred case, the lacZ gene can be present on the first DNA molecule and colonies carrying the first DNA molecule with or without the ET cloning product identified by a blue or white colony colour when X-gal is added to the culture medium.

In a third selection method the integration of the second DNA fragment into the first DNA molecule by ET cloning removes a target site for a site specific recombinase, termed here an RT (for recombinase target) present

- 14 -

on the first DNA molecule between the two regions of sequence homology. A homologous recombination event may be detected by removal of the target site.

In the absence of the ET cloning product, the RT is available for use by the corresponding site specific recombinase. The difference between the presence or not of this RT is the basis for selection of the ET cloning product. In the presence of this RT and the corresponding site specific recombinase, the site specific recombinase mediates recombination at this RT and changes the phenotype of the host so that it is either not able to grow or presents a readily observable phenotype. In the absence of this RT, the corresponding site specific recombinase is not able to mediate recombination.

10

15

20

25

30

In a preferred case, the first DNA molecule to which the second DNA fragment is directed, contains two RTs, one of which is adjacent to, but not part of, an antibiotic resistance gene. The second DNA fragment is directed, by design, to remove this RT. Upon exposure to the corresponding site specific recombinase, those first DNA molecules that do not carry the ET cloning product will be subject to a site specific recombination reaction between the RTs that remove the antibiotic resistance gene and therefore the first DNA molecule fails to convey resistance to the corresponding antibiotic. Only those first DNA molecules that contain the ET cloning product, or have failed to be site specifically recombined for some other reason, will convey resistance to the antibiotic.

In another preferred case, the RT to be removed by ET cloning of the second DNA fragment is adjacent to a gene that complements a deficiency present within the host strain employed. In another preferred case, the RT to be removed by ET cloning of the second DNA fragment is adjacent to a reporter gene that conveys a readily detectable change in colony colour or morphology.

- 15 -

In another preferred case, the RT to be removed by ET cloning of the second DNA fragment is anywhere on a first episomal DNA molecule and the episome carries an origin of replication incompatible with survival of the bacterial host cell if it is integrated into the host genome. In this case the host genome carries a second RT, which may or may not be a mutated RT so that the corresponding site specific recombinase can integrate the episome, via its RT, into the RT sited in the host genome. Other preferred RTs include RTs for site specific recombinases of the resolvase/transposase class. RTs include those described from existing examples of site specific recombination as well as natural or mutated variations thereof.

5

10

15

20

25

30

The preferred site specific recombinases include Cre, FLP, Kw or any site specific recombinase of the integrase class. Other preferred site specific recombinases include site specific recombinases of the resolvase/transposase class.

There are no limitations on the method of expression of the site specific recombinase in the host cell. In a preferred method, the expression of the site specific recombinase is regulated so that expression can be induced and quenched according to the optimisation of the ET cloning efficiency. In this case, the site specific recombinase gene can be either integrated into the host genome or carried on an episome. In another preferred case, the site specific recombinase is expressed from an episome that carries a conditional origin of replication so that it can be eliminated from the host cell.

In another preferred case, at least two of the above three selection methods are combined. A particularly preferred case involves a two-step use of the first selection method above, followed by use of the second selection method. This combined use requires, most simply, that the DNA fragment to be cloned includes a gene, or genes that permits the identification, in the first step, of correct ET cloning products by the acquisition of a phenotypic

change. In a second step, expression of the gene or genes introduced in the first step is altered so that a second round of ET cloning products can be identified. In a preferred example, the gene employed is the tetracycline resistance gene and the first step ET cloning products are identified by the acquisition of tetracycline resistance. In the second step, loss of expression of the tetracycline gene is identified by loss of sensitivity to nickel chloride, fusaric acid or any other agent that is toxic to the host cell when the tetracycline gene is expressed. This two-step procedure permits the identification of ET cloning products by first the integration of a gene that conveys a phenotypic change on the host, and second by the loss of a related phenotypic change, most simply by removal of some of the DNA sequences integrated in the first step. Thereby the genes used to identify ET cloning products can be inserted and then removed to leave ET cloning products that are free of these genes.

15

20

25

10

5

In a further embodiment of the present invention the ET cloning may also be used for a recombination method comprising the steps of

- a) providing a source of RecE and RecT, or Reda and RedB, proteins,
- b) contacting a first DNA molecule which is capable of being replicated in a suitable host cell with a second DNA molecule comprising at least two regions of sequence homology to regions on the first DNA molecule, under conditions which favour homologous recombination between said first and second DNA molecules and
- c) selecting DNA molecules in which a homologous recombination between said first and second DNA molecules has occurred.

The source of RecE and RecT, or Reda and Redß, proteins may be either purified or partially purified RecE and RecT, or Reda and Redß, proteins or cell extracts comprising RecE and RecT, or Reda and Redß, proteins.

30

The homologous recombination event in this embodiment may occur in vitro, e.g. when providing a cell extract containing further components

WO 99/29837

required for homologous recombination. The homologous recombination event, however, may also occur in vivo, e.g. by introducing RecE and RecT, or Reda and Redß, proteins or the extract in a host cell (which may be recET positive or not, or redaß positive or not) and contacting the DNA molecules in the host cell. When the recombination occurs in vitro the selection of DNA molecules may be accomplished by transforming the recombination mixture in a suitable host cell and selecting for positive clones as described above. When the recombination occurs in vivo the selection methods as described above may directly be applied.

10

5

A further subject matter of the invention is the use of cells, preferably bacterial cells, most preferably, E.coli cells capable of expressing the recE and recT, or red $\alpha$  and redB, genes as a host cell for a cloning method involving homologous recombination.

15

20

25

30

Still a further subject matter of the invention is a vector system capable of expressing recE and recT, or red $\alpha$  and red $\beta$ , genes in a host cell and its use for a cloning method involving homologous recombination. Preferably, the vector system is also capable of expressing an exonuclease inhibitor gene as defined above, e.g. the  $\lambda$  red $\gamma$  gene. The vector system may comprise at least one vector. The recE and recT, or red $\alpha$  and red $\beta$ , genes are preferably located on a single vector and more preferably under control of a regulatable promoter which may be the same for both genes or a single promoter for each gene. Especially preferred is a vector system which is capable of overexpressing the recT, or red $\beta$ , gene versus the recE, or red $\alpha$ , gene.

Still a further subject matter of the invention is the use of a source of RecE and RecT, or Red $\alpha$  and Red $\beta$ , proteins for a cloning method involving homologous recombination.

- 18 -

A still further subject matter of the invention is a reagent kit for cloning comprising

(a) a host cell, preferably a bacterial host cell,

5

10

15

20

25

30

- (b) means of expressing recE and recT, or reda and redß, genes in said host cell, e.g. comprising a vector system, and
- (c) a recipient cloning vehicle, e.g. a vector, capable of being replicated in said cell.

On the one hand, the recipient cloning vehicle which corresponds to the first DNA molecule of the process of the invention can already be present in the bacterial cell. On the other hand, it can be present separated from the bacterial cell.

In a further embodiment the reagent kit comprises

- (a) a source for RecE and RecT, or Red $\alpha$  and Red $\beta$ , proteins and
  - (b) a recipient cloning vehicle capable of being propagated in a host cell and
  - (c) optionally a host cell suitable for propagating said recipient cloning vehicle.

The reagent kit furthermore contains, preferably, means for expressing a site specific recombinase in said host cell, in particular, when the recipient ET cloning product contains at least one site specific recombinase target site. Moreover, the reagent kit can also contain DNA molecules suitable for use as a source of linear DNA fragments used for ET cloning, preferably by serving as templates for PCR generation of the linear fragment, also as specifically designed DNA vectors from which the linear DNA fragment is released by restriction enzyme cleavage, or as prepared linear fragments included in the kit for use as positive controls or other tasks. Moreover, the reagent kit can also contain nucleic acid amplification primers comprising a region of homology to said vector. Preferably, this region of homology is located at the 5'-end of the nucleic acid amplification primer.

- 19 -

The invention is further illustrated by the following Sequence listings, Figures and Examples.

SEQ ID NO. 1: shows the nucleic acid sequence of the plasmid pBAD24-rec ET (Fig. 7).

SEQ ID NOs 2/3: show the nucleic acid and amino acid sequences of the truncated recE gene (t-recE) present on pBAD24-recET at positions 1320-2162.

SEQ ID NOs 4/5: show the nucleic acid and amino acid sequences of the recT gene present on pBAD24-recET at position 2155-2972.

SEQ ID NOs 6/7: show the nucleic acid and amino acid sequences of the araC gene present on the complementary stand to the one shown of pBAD24-recET at positions 974-996.

SEQ ID NOs 8/9: show the nucleic acid an amino acid sequences of the bla gene present on pBAD24-recET at positions 3493-4353.

SEQ ID NO 10: shows the nucleic acid sequence of the plasmid pBAD-ETy (Fig. 13).

SEQ ID No 11: shows the nucleic acid sequence of the plasmid pBADaßy (Fig. 14) as well as the coding regions for the genes reda (1320-200), redß (2086-2871) and redy (3403-3819).

SEQ ID NOs 12-14: show the amino acid sequences of the Reda,
Redß and Redy proteins, respectively. The redy
sequence is present on each of pBAD-ETy (Fig.
13) and pBAD-aßy (Fig. 14).

# Figure 1

5

10

15

20

25

30

A preferred method for ET cloning is shown by diagram. The linear DNA fragment to be cloned is synthesized by PCR using oligonucleotide primers that contain a left homology arm chosen to match sequences in the recipient episome and a sequence for priming in the PCR reaction, and a

- 20 -

right homology arm chosen to match another sequence in the recipient episome and a sequence for priming in the PCR reaction. The product of the PCR reaction, here a selectable marker gene (sm1), is consequently flanked by the left and right homology arms and can be mixed together in vitro with the episome before co-transformation, or transformed into a host cell harboring the target episome. The host cell contains the products of the recE and recT genes. ET cloning products are identified by the combination of two selectable markers, sm1 and sm2 on the recipient episome.

#### Figure 2

5

10

15

20

30

Three ways to identify ET cloning products are depicted. The first, (on the left of the figure), shows the acquisition, by ET cloning, of a gene that conveys a phenotypic difference to the host, here a selectable marker gene (sm). The second (in the centre of the figure) shows the loss, by ET cloning, of a gene that conveys a phenotypic difference to the host, here a counter selectable marker gene (counter-sm). The third shows the loss of a target site (RT, shown as triangles on the circular episome) for a site specific recombinase (SSR), by ET cloning. In this case, the correct ET cloning product deletes one of the target sites required by the SSR to delete a selectable marker gene (sm). The failure of the SSR to delete the sm gene identifies the correct ET cloning product.

#### 25 Figure 3

A simple example of ET cloning is presented.

(a) Top panel - PCR products (left lane) synthesized from oligonucleotides designed as described in Fig.1 to amplify by PCR a kanamycin resistance gene and to be flanked by homology arms present in the recipient vector, were mixed in vitro with the recipient vector (2nd lane) and cotransformed into a recET + E.coli host. The recipient vector carried an ampillicin

- 21 -

resistance gene. (b) Transformation of the sbcA E.coli strain JC9604 with either the PCR product alone (0.2  $\mu$ g) or the vector alone (0.3  $\mu$ g) did not convey resistance to double selection with ampicillin and kanamycin (amp + kan), however cotransformation of both the PCR product and the vector produced double resistant colonies. More than 95% of these colonies contained the correct ET cloning product where the kanamycin gene had precisely integrated into the recipient vector according to the choice of homology arms. The two lanes on the right of (a) show Pvu II restriction enzyme digestion of the recipient vector before and after ET cloning. (c) As for b, except that six PCR products (0.2  $\mu g$  each) were cotransformed with pSVpaZ11 (0.3  $\mu$ g each) into JC9604 and plated onto Amp + Kan plates or Amp plates. Results are plotted as Amp+Kan-resistant colonies, representing recombination products, divided by Amp-resistant colonies, representing the plasmid transformation efficiency of the competent cell preparation,  $\times~10^6$ . The PCR products were equivalent to the a-b PCR product except that homology arm lengths were varied. Results are from five experiments that used the same batches of competent cells and DNAs. Error bars represent standard deviation. (d) Eight products flanked by 50 bp homology arms were cotransformed with pSVpaZ11 into JC9604. All eight PCR products contained the same left homology arm and amplified neo gene. The right homology arms were chosen from the pSVpaZ11 sequence to be adjacent to (0), or at increasing distances (7-3100 bp), from the left. Results are from four experiments.

25

10

15

20

Figure 4

ET cloning in an approximately 100kb P1 vector to exchange the selectable marker.

A P1 clone which uses a kanamycin resistance gene as selectable marker and which contains at least 70kb of the mouse Hox a gene cluster was used. Before ET cloning, this episome conveys kanamycin resistance (top

panel, upper left) to its host E.coli which are ampillicin sensitive (top panel, upper right). A linear DNA fragment designed to replace the kanamycin resistance gene with an ampillicin resistance gene was made by PCR as outlined in Fig.1 and transformed into E.coli host cells in which the recipient Hox a/P1 vector was resident. ET cloning resulted in the deletion of the kanamycin resistance gene, and restoration of kanamycin sensitivity (top panel, lower left) and the acquisition of ampillicin resistance (top panel, lower right). Precise DNA recombination was verified by restriction digestion and Southern blotting analyses of isolated DNA before and after ET cloning (lower panel).

## Figure 5

5

10

15

20

ET cloning to remove a counter selectable marker

A PCR fragment (upper panel, left, third lane) made as outlined in Figs.1 and 2 to contain the kanamycin resistance gene was directed by its chosen homology arms to delete the counter selectable ccdB gene present in the vector, pZero-2.1. The PCR product and the pZero vector were mixed in vitro (upper panel, left, 1st lane) before cotransformation into a recE/recT+ E.coli host. Transformation of pZero-2.1 alone and plating onto kanamycin selection medium resulted in little colony growth (lower panel, left). Cotransformation of pZero-2.1 and the PCR product presented ET cloning products (lower panel, right) which showed the intended molecular event as visualized by Pvu II digestion (upper panel, right).

25

30

#### Figure 6

ET cloning mediated by inducible expression of recE and recT from an episome.

RecE/RecT mediate homologous recombination between linear and circular DNA molecules. (a) The plasmid pBAD24-recET was transformed into E.coli JC5547, and then batches of competent cells were prepared after induction of RecE/RecT expression by addition of L-arabinose for the times indicated

- 23 -

before harvesting. A PCR product, made using oligonucleotides e and f to contain the chloramphenicol resistance gene (cm) of pMAK705 and 50 bp homology arms chosen to flank the ampicililin resistance gene (bla) of pBAD24-recET, was then transformed and recombinants identified on chloramphenicol plates. (b) Arabinose was added to cultures of pBAD24-recET transformed JC5547 for different times immediately before harvesting for competent cell preparation. Total protein expression was analyzed by SDS-PAGE and Coomassie blue staining. (c) The number of chloramphenicol resistant colonies per  $\mu g$  of PCR product was normalized against a control for transformation efficiency, determined by including 5 pg pZero2.1, conveying kanamycin resistance, in the transformation and plating an aliquot onto Kan plates.

# Figure 7A

15

10

5

The plasmid pBAD24-recET is shown by diagram. The plasmid contains the genes recE (in a truncated form) and recT under control of the inducible BAD promoter (P<sub>BAD</sub>). The plasmid further contains an ampillicin resistance gene (Amp') and an araC gene.

20

## Figure 7B

The nucleic acid sequence and the protein coding portions of pBAD24-recET are depicted.

25

30

#### Figure 8

Manipulation of a large E.coli episome by multiple recombination steps. a Scheme of the recombination reactions. A P1 clone of the Mouse Hoxa complex, resident in JC9604, was modified by recombination with PCR products that contained the neo gene and two Flp recombination targets

- 24 -

(FRTs). The two PCR products were identical except that one was flanked by g and h homology arms (insertion), and the other was flanked by i and h homology arms (deletion). In a second step, the neo gene was removed by FIp recombination between the FRTs by transient transformation of a FIp expression plasmid based on the pSC101 temperature-sensitive origin (ts ori). b Upper panel; ethidium bromide stained agarose gel showing EcoR1 digestions of P1 DNA preparations from three independent colonies for each step. Middle panel; a Southern blot of the upper panel hybridized with a neo gene probe. Lower panel; a Southern blot of the upper panel hybridized with a Hoxa3 probe to visualize the site of recombination. Lanes 1, the original Hoxa3 P1 clone grown in E.coli strain NS3145. Lanes 2, replacement of the Tn903 kanamycin resistance gene resident in the P1 vector with an ampicillin resistance gene increased the 8.1 kb band (lanes 1), to 9.0 kb. Lanes 3, insertion of the Tn5-neo gene with g-h homology arms upstream of Hoxa3, increased the 6.7 kb band (lanes 1,2) to 9.0 kb. Lanes 4, Flp recombinase deleted the g-h neo gene reducing the 9.0 kb band (lanes 3) back to 6.7 kb. Lanes 5, deletion of 6 kb of Hoxa3 - 4 intergenic DNA by replacement with the i-h neo gene, decreased the 6.7 kb band (lanes 2) to 4.5 kb. Lanes 6, Flp recombinase deleted the i-h neo gene reducing the 4.5 kb band to 2.3 kb.

#### Figure 9

5

10

15

20

25

30

Manipulation of the E.coli chromosome. A Scheme of the recombination reactions. The endogenous lacZ gene of JC9604 at 7.8' of the E.coli chromosome, shown in expanded form with relevant Ava I sites and coordinates, was targeted by a PCR fragment that contained the neo gene flanked by homology arms j and k, and loxP sites, as depicted. Integration of the neo gene removed most of the lacZ gene including an Ava I site to alter the 1443 and 3027 bp bands into a 3277 bp band. In a second step, the neo gene was removed by Cre recombination between the loxPs by transient transformation of a Cre expression plasmid based on the pSC101

- 25 -

temperature-sensitive origin (ts ori). Removal of the neo gene by Cre recombinase reduces the 3277 band to 2111 bp. b ß-galactosidase expression evaluated by streaking colonies on X-Gal plates. The top row of three streaks show ß-galactosidase expression in the host JC9604 strain (w.t.), the lower three rows (Km) show 24 independent primary colonies, 20 of which display a loss of ß-galactosidase expression indicactive of the intended recombination event. c Southern analysis of E.coli chromosomal DNA digested with Ava I using a random primed probe made from the entire lacZ coding region; lanes 1,2, w.t.; lanes 3-6, four independent white colonies after integration of the j-k neo gene; lanes 7-10; the same four colonies after transient transformation with the Cre expression plasmid.

# Figure 10

5

10

15

20

25

30

Two rounds of ET cloning to introduce a point mutation, a Scheme of the recombination reactions. The lacZ gene of pSVpaX1 was disrupted in JC9604lacZ, a strain made by the experiment of Fig.9 to ablate endogenous lacZ expression and remove competitive sequences, by a sacB-neo gene cassette, synthesized by PCR to pIB279 and flanked by I and m homology arms. The recombinants, termed pSV-sacB-neo, were selected on Amp + Kan plates. The lacZ gene of pSV-sacB-neo was then repaired by a PCR fragment made from the intact lacZ gene using I and m homology arms. The m homology arm included a silent C to G change that created a BamH1 site. The recombinants, termed pSVpaX1', were identified by counter selection against the sacB gene using 7% sucrose. b &galactosidase expression from pSVpaX1 was disrupted in pSV-sacB-neo and restored in pSVpaX1°. Expression was analyzed on X-gal plates. Three independent colonies of each pSV-sacB-neo and pSVpaX1° are shown, c Ethidium bromide stained agarose gels of BamH1 digested DNA prepared from independent colonies taken after counter selection with sucrose. All ß-galactosidase expressing colonies (blue) contained the introduced BamH1 restriction site (upper panel). All white colonies displayed large

- 26 -

rearrangements and no product carried the diagnostic 1.5kb BamH1 restriction fragment (lower panel).

#### Figure 11

5

10

15

20

30

Transferance of ET cloning into a recBC + host to modify a large episome. a Scheme of the plasmid, pBAD-ETy, which carries the mobile ET system, and the strategy employed to target the Hoxa P1 episome. pBAD-ETy is based on pBAD24 and includes (i) the truncated recE gene (t-recE) under the arabinose-inducible  $P_{BAD}$  promoter; (ii) the recT gene under the EM7 promoter; and (iii) the redy gene under the Tn5 promoter. It was transformed into NS3145, a recA E.coli strain which contained the Hoxa P1 episome. After arabinose induction, competent cells were prepared and transformed with a PCR product carrying the chloramphenicol resistance gene (cm) flanked by n and p homology arms, n and p were chosen to recombine with a segment of the P1 vector. b Southern blots of Pvu II digested DNAs hybridized with a probe made from the P1 vector to visualize the recombination target site (upper panel) and a probe made from the chloramphenicol resistance gene (lower panel). Lane 1, DNA prepared from cells harboring the Hoxa P1 episome before ET cloning. Lanes 2-17, DNA prepared from 16 independent chloramphenicol resistant colonies.

#### Figure 12

Comparison of ET cloning using the recE/recT genes in pBAD-ETy with reda/redß genes in pBAD-aßy.

The plasmids pBAD-ETy or pBAD-aBy, depicted, were transformed into the E.coli recA-, recBC + strain, DK1 and targeted by a chloramphenical gene as described in Fig.6 to evaluate ET cloning efficiencies. Arabinose induction of protein expression was for 1 hour.

- 27 -

#### Figure 13A

The plasmid pBAD-ETy is shown by diagram.

#### 5 Figure 13B

The nucleic acid sequence and the protein coding portions of pBAD-ETy are depicted.

# 10 Figure 14A

The plasmid pBAD-aßy is shown by diagram. This plasmid substantially corresponds to the plasmid shown in Fig.13 except that the recE and recT genes are substituted by the reda and redß genes.

15

# Figure 14B

The nucleic acid sequence and the protein coding portions of pBAD- $\alpha$ Ry are depicted.

20

25

#### 1. Methods

#### 1.1. Preparation of linear fragments

Standard PCR reaction conditions were used to amplify linear DNA fragments. The sequences of the primers used are depicted in Table 1.

#### Table 1

The Tn5-neo gene from pJP5603 (Penfold and Pemberton, Gene 118 (1992), 145-146) was amplified by using oligo pairs a/b and c/d. The chloramphenicol (cm) resistant gene from pMAK705 (Hashimoto-Gotoh and

Sekiguchi, J.Bacteriol.131 (1977), 405-412) was amplified by using primer pairs e/f and n/p. The Tn5-neo gene flanked by FRT or loxP sites was amplified from pKaZ or pKaX (http://www.embl-heidelberg.de/ExternalInfo /stewart) using oligo pairs i/h, g/h and j/k. The sacB-neo cassette from pIB279 (Blomfield et al., Mol.Microbiol.5 (1991), 1447-1457) was amplified by using oligo pair I/m. The lacZ gene fragment from pSVpaZ11 (Buchholz et al., Nucleic Acids Res.24 (1996), 4256-4262) was amplified using oligo pair I'/m'. PCR products were purified using the QIAGEN PCR Purification Kit and eluted with  $H_2O_2$ , followed by digestion of any residual template DNA with Dpn I. After digestion, PCR products were extracted once with Phenol:CHCl<sub>3</sub>, ethanol precipitated and resuspended in  $H_2O$  at approximately 0.5  $\mu$ g/ $\mu$ l.

#### 1.2 Preparation of competent cells and electroporation

5

10

15

20

25

30

Saturated overnight cultures were diluted 50 fold into LB medium, grown to an OD600 of 0.5, following by chilling on ice for 15 min. Bacterial cells were centrifuged at 7,000 rpm for 10 min at 0°C. The pellet was resuspended in ice-cold 10% glycerol and centrifuged again (7,000 rpm, -5°C, 10 min). This was repeated twice more and the cell pellet was suspended in an equal volume of ice-cold 10% glycerol. Aliquots of 50  $\mu$ l were frozen in liquid nitrogen and stored at -80°C. Cells were thawed on ice and 1  $\mu$ l DNA solution (containing, for co-transformation, 0.3  $\mu$ g plasmid and 0.2  $\mu$ g PCR products; or, for transformation, 0.2  $\mu$ g PCR products) was added. Electroporation was performed using ice-cold cuvettes and a Bio-Rad Gene Pulser set to 25  $\mu$ FD, 2.3 kV with Pulse Controller set at 200 ohms. LB medium (1 ml) was added after electroporation. The cells were incubated at 37°C for 1 hour with shaking and then spread on antibiotic plates.

#### 1.3 Induction of RecE and RecT expression

- 29 -

E.coli JC5547 carrying pBAD24-recET was cultured overnight in LB medium plus 0.2% glucose, 100  $\mu$ g/ml ampicillin. Five parallel LB cultures, one of which (0) included 0.2% glucose, were started by a 1/100 inoculation. The cultures were incubated at 37°C with shaking for 4 hours and 0.1% L-arabinose was added 3, 2, 1 or 1/2 hour before harvesting and processing as above. Immediately before harvesting, 100  $\mu$ l was removed for analysis on a 10% SDS-polyacrylamide gel. E.coli NS3145 carrying Hoxa-P1 and pBAD-ET $\gamma$  was induced by 0.1% L-arabinose for 90 min before harvesting.

10

15

20

25

30

5

#### 1.4 Transient transformation of FLP and Cre expression plasmids

The FLP and Cre expression plasmids, 705-Cre and 705-FLP (Buchholz et al, Nucleic Acids Res. 24 (1996), 3118-3119), based on the pSC101 temperature sensitive origin, were transformed into rubidium chloride competent bacterial cells. Cells were spread on 25  $\mu$ g/ml chloramphenicol plates, and grown for 2 days at 30°C, whereupon colonies were picked, replated on L-agar plates without any antibiotics and incubated at 40°C overnight. Single colonies were analyzed on various antibiotic plates and all showed the expected loss of chloramphenicol and kanamycin resistance.

#### 1.5 Sucrose counter selection of sacB expression

The E.coli JC9604lacZ strain, generated as described in Fig.11, was cotransformed with a sacB-neo PCR fragment and pSVpaX1 (Buchholz et al, Nucleic Acids Res. 24 (1996), 4256-4262). After selection on  $100\,\mu\text{g/ml}$  ampicillin,  $50\,\mu\text{g/ml}$  kanamycin plates, pSVpaX-sacB-neo plasmids were isolated and cotransformed into fresh JC9604lacZ cells with a PCR fragment amplified from pSVpaX1 using primers I\*/m\*. Oligo m\* carried a silent point mutation which generated a BamHI site. Cells were plated on 7% sucrose,  $100\,\mu\text{g/ml}$  ampicillin,  $40\,\mu\text{g/ml}$  X-gal plates and incubated at

- 30 -

28°C for 2 days. The blue and white colonies grown on sucrose plates were counted and further checked by restriction analysis.

#### 1.6 Other methods

5

10

15

20

25

30

DNA preparation and Southern analysis were performed according to standard procedures. Hybridization probes were generated by random priming of fragments isolated from the Tn5 neo gene (Pvull), Hoxa3 gene (both HindIII fragments), lacZ genes (EcoR1 and BamH1 fragments from pSVpaX1), cm gene (BstB1 fragments from pMAK705) and P1 vector fragments (2.2 kb EcoR1 fragments from P1 vector).

#### 2. Results

# 2.1 Identification of recombination events in E.coli

To identify a flexible homologous recombination reaction in E.coli, an assay based on recombination between linear and circular DNAs was designed (Fig.1, Fig.3). Linear DNA carrying the Tn5 kanamycin resistance gene (neo) was made by PCR (Fig.3a). Initially, the oligonucleotides used for PCR amplification of neo were 60mers consisting of 42 nucleotides at their 5' ends identical to chosen regions in the plasmid and, at the 3' ends, 18 nucleotides to serve as PCR primers. Linear and circular DNAs were mixed in equimolar proportions and co-transformed into a variety of E.coli hosts. Homologous recombination was only detected in sbcA E.coli hosts. More than 95% of double ampicillin/kanamycin resistant colonies (Fig.3b) contained the expected homologously recombined plasmid as determined by restriction digestion and sequencing. Only a low background of kanamycin resistance, due to genomic integration of the neo gene, was apparent (not shown).

- 31 -

The linear plus circular recombination reaction was characterized in two ways. The relationship betweeen homology arm length and recombination efficiency was simple, with longer arms recombining more efficiently (Fig.3c). Efficiency increased within the range tested, up to 60 bp. The effect of distance between the two chosen homology sites in the recipient plasmid was examined (Fig.3d). A set of eight PCR fragments was generated by use of a constant left homology arm with differing right homology arms. The right homology arms were chosen from the plasmid sequence to be 0 - 3100 bp from the left. Correct products were readily obtained from all, with less than 4 fold difference between them, although the insertional product (0) was least efficient. Correct products also depended on the presence of both homology arms, since PCR fragments containing only one arm failed to work.

#### 2.2 Involvement of RecE and RecT

The relationship between host genotype and this homologous recombination reaction was more systematically examined using a panel of E.coli strains deficient in various recombination components (Table 2).

20

5

10

15

#### Table 2

Only the two sbcA strains, JC8679 and JC9604 presented the intended recombination products and RecA was not required. In sbcA strains, expression of RecE and RecT is activated. Dependence on recE can be inferred from comparison of JC8679 with JC8691. Notably no recombination products were observed in JC9387 suggesting that the sbcBC background is not capable of supporting homologous recombination based on 50 nucleotide homology arms.

30

25

To demonstrate that RecE and RecT are involved, part of the recET operon was cloned into an inducible expression vector to create pBAD24-recET

- 32 -

(Fig. 6a). the recE gene was truncated at its N-terminal end, as the first 588 a.a.s of RecE are dispensable. The recBC strain, JC5547, was transformed with pBAD24-recET and a time course of RecE/RecT induction performed by adding arabinose to the culture media at various times before harvesting for competent cells. The batches of harvested competent cells were evaluated for protein expression by gel electrophoresis (Fig.6b) and for recombination between a linear DNA fragment and the endogenous pBAD24-recET plasmid (Fig.6c). Without induction of RecE/RecT, no recombinant products were found, whereas recombination increased in approximate concordance with increased RecE/RecT expression. This experiment also shows that co-transformation of linear and circular DNAs is not essential and the circular recipient can be endogenous in the host. From the results shown in Figs.3, 6 and Table 2, we conclude that RecE and RecT mediate a very useful homologous recombination reaction in recBC E.coli at workable frequencies. Since RecE and RecT are involved, we refer to this way of recombining linear and circular DNA fragments as "ET cloning".

# 2.3 Application of ET cloning to large target DNAs

20

25

30

5

10

15

To show that large DNA episomes could be manipulated in E.coli, a > 76 kb P1 clone that contains at least 59 kb of the intact mouse Hoxa complex, (confirmed by DNA sequencing and Southern blotting), was transferred to an E.coli strain having an sbcA background (JC9604) and subjected to two rounds of ET cloning. In the first round, the Tn903 kanamycin resistance gene resident in the P1 vector was replaced by an ampicillin resistance gene (Fig.4). In the second round, the interval between the Hoxa3 and a4 genes was targeted either by inserting the neo gene between two base pairs upstream of the Hoxa3 proximal promoter, or by deleting 6203 bp between the Hoxa3 and a4 genes (Fig.8a). Both insertional and deletional ET cloning products were readily obtained (Fig.8b, lanes 2, 3 and 5) showing that the

- 33 -

two rounds of ET cloning took place in this large E.coli episome with precision and no apparent unintended recombination.

The general applicability of ET cloning was further examined by targeting a gene in the E.coli chromosome (Fig.9a). The ß-galactosidase (lacZ) gene of JC9604 was chosen so that the ratio between correct and incorrect recombinants could be determined by evaluating ß-galactosidase expression. Standard conditions (0.2  $\mu$ g PCR fragment; 50  $\mu$ l competent cells), produced 24 primary colonies, 20 of which were correct as determined by ß-galactosidase expression (Fig.9b), and DNA analysis (Fig.9c, lanes 3-6).

5

10

15

20

25

30

#### 2.4 Secondary recombination reactions to remove operational sequences

The products of ET cloning as described above are limited by the necessary inclusion of selectable marker genes. Two different ways to use a further recombination step to remove this limitation were developed. In the first way, site specific recombination mediated by either Flp or Cre recombinase was employed. In the experiments of Figs. 8 and 9, either Flp recombination target sites (FRTs) or Cre recombination target sites (loxPs) were included to flank the neo gene in the linear substrates. Recombination between the FRTs or loxPs was accomplished by Flp or Cre, respectively, expressed from plasmids with the pSC101 temperature sensitive replication origin (Hashimoto-Gotoh and Sekiguchi, J.Bacteriol. 131 (1977), 405-412) to permit simple elimination of these plasmids after site specific recombination by temperature shift. The precisely recombined Hoxa P1 vector was recovered after both ET and FIp recombination with no other recombination products apparent (Fig.8, lanes 4 and 6). Similarly, Cre recombinase precisely recombined the targeted lacZ allele (Fig.9, lanes 7-10). Thus site specific recombination can be readily coupled with ET cloning to remove operational sequences and leave a 34 bp site specific recombination target site at the point of DNA manipulation.

- 34 -

In the second way to remove the selectable marker gene, two rounds of ET cloning, combining positive and counter selection steps, were used to leave the DNA product free of any operational sequences (Fig. 10a).

5

10

15

20

25

30

Additionally this experiment was designed to evaluate, by a functional test based on ß-galactosidase activity, whether ET cloning promoted small mutations such as frame shift or point mutations within the region being manipulated. In the first round, the lacZ gene of pSVpaX1 was disrupted with a 3.3 kb PCR fragment carrying the neo and B.subtilis sacB (Blomfield et al., Mol.Microbiol. 5 (1991), 1447-1457) genes, by selection for kanamycin resistance (Fig. 10a). As shown above for other positively selected recombination products, virtually all selected colonies were white (Fig. 10b), indicative of successful lacZ disruption, and 17 of 17 were confirmed as correct recombinants by DNA analysis. In the second round, a 1.5 kb PCR fragment designed to repair lacZ was introduced by counter selection against the sacB gene. Repair of lacZ included a silent point mutation to create a BamH1 restriction site. Approximately one quarter of sucrose resistant colonies expressed ß-galactosidase, and all analyzed (17 of 17; Fig.10c) carried the repaired lacZ gene with the BamH1 point mutation. The remaining three quarters of sucrose resistant colonies did not express ß-galactosidase, and all analyzed (17 of 17; Fig.10c) had undergone a variety of large mutational events, none of which resembled the ET cloning product. Thus, in two rounds of ET cloning directed at the lacZ gene, no disturbances of ß-galactosidase activity by small mutations were observed, indicating the RecE/RecT recombination works with high fidelity. The significant presence of incorrect products observed in the counter selection step is an inherent limitation of the use of counter selection, since any mutation that ablates expression of the counter selection gene will be selected. Notably, all incorrect products were large mutations and therefore easily distinguished from the correct ET product by DNA analysis. In a different experiment (Fig. 5), we observed that ET cloning into pZero2.1 (InVitroGen) by counter selection against the ccdB gene gave

- 35 -

a lower background of incorrect products (8%), indicating that the counter selection background is variable according to parameters that differ from those that influence ET cloning efficiencies.

#### 5 2.5 Transference of ET cloning between E.coli hosts

10

15

20

25

30

The experiments shown above were performed in recBC- E.coli hosts since the sbcA mutation had been identified as a suppressor of recBC (Barbour et al., Proc.Natl.Acad.Sci. USA 67 (1970), 128-135; Clark, Genetics 78 (1974), 259-271). However, many useful E.coli strains are recBC+, including strains commonly used for propagation of P1, BAC or PAC episomes. To transfer ET cloning into recBC + strains, we developed pBAD-ETy and pBAD-aßy (Figs.13 and 14). These plasmids incorporate three features important to the mobility of ET cloning. First, RecBC is the major E.coli exonuclease and degrades introduced linear fragments. Therefore the RecBC inhibitor, Redy (Murphy, J.Bacteriol. 173 (1991), 5808-5821), was included. Second, the recombingenic potential of RecE/RecT, or Reda/Redß, was regulated by placing recE or reda under an inducible promoter. Consequently ET cloning can be induced when required and undesired recombination events which are restricted at other times. Third, we observed that ET cloning efficiencies are enhanced when RecT, or Redß, but not RecE, or Reda, is overexpressed. Therefore we placed recT, or redß, under the strong, constitutive, EM7 promoter.

pBAD-ETy was transformed into NS3145 E.coli harboring the original Hoxa P1 episome (Fig.11a). A region in the P1 vector backbone was targeted by PCR amplification of the chloramphenicol resistance gene (cm) flanked by n and p homology arms. As described above for positively selected ET cloning reactions, most (> 90%) chloramphenicol resistant colonies were correct. Notably, the overall efficiency of ET cloning, in terms of linear DNA transformed, was nearly three times better using pBAD-ETy than with similar experiments based on targeting the same episome in the sbcA host,

- 36 -

JC9604. This is consistent with our observation that overexpression of RecT improves ET cloning efficiencies.

A comparison between ET cloning efficiencies mediated by RecE/RecT, expressed from pBAD-ETy, and Reda/Redß, expressed from pBAD-aßy was made in the recA-, recBC + E.coli strain, DK1 (Fig.12). After transformation of E.coli DK1 with either pBAD-ETy or pBAD-aßy, the same experiment as described in Figure 6a,c, to replace the bla gene of the pBAD vector with a chloramphenicol gene was performed. Both pBAD-ETy or pBAD-aßy presented similar ET cloning efficiencies in terms of responsiveness to arabinose induction of RecE and Reda, and number of targeted events.

5

Table 2

| E.coli Strains Genotypes |                  | Amp+Kan | Amp                   |
|--------------------------|------------------|---------|-----------------------|
|                          |                  |         | x 10 <sup>8</sup> /μg |
| JC8679                   | recBC sbcA       | 318     | 2.30                  |
| JC9604                   | recA recBC sbcA  | 114     | 0.30                  |
| JC8691                   | recBC sbcA recE  | 0       | 0.37                  |
| JC5547                   | recA recBC       | 0       | 0.37                  |
| JC5519                   | recBC            | 0       | 1.80                  |
| JC15329                  | recA recBC sbcBC | 0       | 0.03                  |
| JC9387                   | recBC sbcBC      | 0       | 2.20                  |
| JC8111                   | recBC sbcBC recF | 0       | 2.40                  |
| JC9366                   | recA             | 0       | 0.37                  |
| JC13031                  | recJ             | 0       | 0.45                  |

#### Claims

A method for cloning DNA molecules in cells comprising the steps of:
 a) providing a host cell capable of performing homologous

5 recombination,

b) contacting in said host cell a first DNA molecule which is capable of being replicated in said host cell with a second DNA molecule comprising at least two regions of sequence homology to regions on the first DNA molecule, under conditions which favour homologous recombination between said first and second DNA molecules and

c) selecting a host cell in which homologous recombination between said first and second DNA molecules has occurred.

- 15 2. The method according to claim 1 wherein the homologous recombination occurs via the recET cloning mechanism.
  - 3. The method according to claim 2 wherein the host cell is capable of expressing recE and recT genes.

20

- 4. The method according to claim 3 wherein the recE and recT genes are selected from E.coli recE and recT genes or from λ redα and redß genes.
- 5. The method according to claim 3 or 4 wherein the host cell is transformed with at least one vector capable of expressing recE and/or recT genes.
- 6. The method of claim 3, 4 or 5 wherein the expression of the recE and/or recT genes is under control of a regulatable promoter.

10

20

- 7. The method of claim 5 or 6 wherein the recT gene is overexpressed versus the recE gene.
- 8. The method according to any one of claims 3 to 7 wherein the recE gene is selected from a nucleic acid molecule comprising
  - (a) the nucleic acid sequence from position 1320 (ATG) to 2159 (GAC) as depicted in Fig.7B,
  - (b) the nucleic acid sequence from position 1320 (ATG) to 1998 (CGA) as depicted in Fig.13B,
  - (c) a nucleic acid encoding the same polypeptide within the degeneracy of the genetic code and/or
  - (d) a nucleic acid sequence which hybridizes under stringent conditions with the nucleic acid sequence from (a), (b) and/or (c).
- 15 9. The method according to any one of claims 3 to 8 wherein the recT gene is selected from a nucleic acid molecule comprising
  - (a) the nucleic acid sequence from position 2155 (ATG) to 2961 (GAA) as depicted in Fig.7B,
  - (b) the nucleic acid sequence from position 2086 (ATG) to 2868 (GCA) as depicted in Fig.13B,
  - (c) a nucleic acid encoding the same polypeptide within the degeneracy of the genetic code and/or
  - (d) a nucleic acid sequence which hybridizes under stringent conditions with the nucleic acid sequences from (a), (b) and/or (c).
  - 10. The method according to any one of the previous claims wherein the host cell is a gram-negative bacterial cell.
- 11. The method according to claim 10 wherein the host cell is an Escherichia coli cell.

15

20

- 12. The method according to claim 11 wherein the host cell is an Escherichia coli K12 strain.
- 13. The method according to claim 12 wherein the E.coli strain is selected from JC 8679 and JC 9604.
- 14. The method according to any one of the previous claims wherein the host cell further is capable of expressing a recBC inhibitor gene.
- 15. The method according to claim 14 wherein the host cell is transformed with a vector expressing the recBC inhibitor gene.
  - 16. The method according to claim 14 or 15 wherein the recBC inhibitor gene is selected from a nucleic acid molecule comprising
    - (a) the nucleic acid sequence from position 3588 (ATG) to 4002 (GTA) as depicted in Fig.13B,
    - (b) a nucleic acid encoding the same polypeptide within the degeneracy of the genetic code and/or
    - (c) a nucleic acid sequence which hybridizes under stringent conditions (as defined above) with the nucleic acid sequence from (a) and/ or (b).
  - 17. The method according to any one of claims 13 to 16 wherein the host cell is a prokaryotic recBC+ cell.
  - 18. The method according to any one of the previous claims wherein the first DNA molecule is circular.
- 19. The method according to any one of the previous claims wherein the first DNA molecule is an extrachromosomal DNA molecule containing an origin of replication which is operative in the host cell.

20

- 20. The method according to claim 18 or 19 wherein the first DNA molecule is selected from plasmids, cosmids, P1 vectors, BAC vectors and PAC vectors.
- The method according to any one of claims 1-18 wherein the first DNA molecule is a host cell chromosome.
  - 22. The method according to any one of the previous claims wherein the second DNA molecule is linear.
  - 23. The method according to any one of the previous claims wherein the regions of sequence homology are at least 15 nucleotides each.
- The method according to one of claims 1 to 16 wherein the second

  DNA molecule is obtained by an amplification reaction.
  - 25. The method according to one of the previous claims wherein the first and/or second DNA molecules are introduced into the host cells by transformation.
  - 26. The method according to claim 25 wherein the transformation method is electroporation.
- 27. The method according to one of claims 1 to 26 wherein the first and second DNA molecules are introduced into the host cell simultaneously by co-transformation.
  - 28. The method according to one of claims 1 to 26 wherein the second DNA molecule is introduced into a host cell in which the first DNA molecule is already present.

10

15

25

- 42 -
- 29. The method according to one of the previous claims wherein the second DNA molecule contains at least one marker gene placed between the two regions of sequence homology and wherein homologous recombination is detected by expression of said marker gene.
- 30. The method according to claim 29 wherein gene presence is selected from antibiotic resistance genes, deficiency complementation genes and reporter genes.
- 31. The method of any one of claims 1 to 30 wherein the first DNA molecule contains at least one marker gene between the two regions of sequence homology and wherein homologous recombination is detected by lack of expression of said marker gene.
  - 32. The method of any one of claims 1 to 31 wherein said marker gene is selected from genes which, under selected conditions, convey a toxic or bacteriostatic effect on the cell, and reporter genes.
- 20 33. A method according to any one of the previous claims wherein the first DNA molecule contains at least one target site for a site specific recombinase between the two regions of sequence homology and wherein homologous recombination is detected by removal of said target site.
  - 34. A method for cloning DNA molecules comprising the steps of:(a) providing a source of RecE and RecT proteins,
    - (b) contacting a first DNA molecule which is capable of being replicated in a suitable host cell with a second DNA molecule comprising at least two regions of sequence homology to regions on the first DNA molecule, under conditions which favour homologous recombination between said first and second DMA molecules and

- 43 -

- (c) selecting DNA molecules in which homologous recombination between said first and second DNA molecules has occurred.
- 35. The method of claim 34 wherein said RecE and RecT or proteins are selected from E.coli RecE and RecT proteins or from phage  $\lambda$  Red $\alpha$  and Redß proteins.

5

10

20

30

36. The method of claim 34 or 35 wherein the recombination occurs in vitro.

37. The method of claim 34 or 35 wherein the recombination occurs in vivo.

- 38. Use of cells capable of expressing the recE and recT genes as a host cell for a cloning method involving homologous recombination.
  - 39. Use of a vector system capable of expressing recE and recT genes in a host cell for a cloning method involving homologous recombination.
  - 40. Use of claims 38 or 39 wherein the recE and recT genes are selected from E.coli recE and recT genes or from λ redα and redß genes.
- 41. Use of a source of RecE and RecT proteins for a cloning method involving homologous recombination.
  - 42. Use of claim 41 wherein said RecE and RecT or proteins are selected from E.coli RecE and RecT proteins or from phage λ Redα and Redß proteins.

WO 99/29837

- 43. A reagent kit for cloning comprising
  - (a) a host cell
  - (b) means of expressing recE and recT genes in said host cell and
  - (c) a recipient cloning vehicle capable of being replicated in said cell.

5

- 44. The reagent kit according to claim 43 wherein the means (b) comprise a vector system capable of expressing the recE and recT genes in the host cell.
- 10 45. The reagent kit according to claim 43 or 44 wherein the recE and recT genes are selected from E.coli recE and recT genes or from λ redα and redß genes.
  - 46. A reagent kit for cloning comprising
    - (a) a source for RecE and RecT proteins and
    - (b) a recipient cloning vehicle capable of being propagated in a host cell.
- 47. The reagent kit according to claim 46 further comprising a host cell suitable for propagating said recipient cloning vehicle.
  - 48. The reagent kit according to claim 46 or 47 wherein said RecE and RecT or proteins are selected from E.coli RecE and RecT proteins or from phage \(\lambda\) Red\(\alpha\) and Red\(\beta\) proteins.

25

- 49. The reagent kit according to any one of claims 43-48 further comprising means for expressing a site specific recombinase in said host cell.
- 50. The reagent kit according to any one of claims 43-49 further comprising nucleic acid amplification primers comprising a region of homology to said recipient cloning vehicle.



Figure 1

2/65

# Three ways to select recombinants



Figure 2

Figure 3

a









Distance between homology arms (bp) Figure 3

Figure 4a



Figure 4b



P1 DNA digested with EcoR I

hybridized with a bla probe (Amp)

hybridized with a Hoxa-3 probe

Lane 1: 1 of P1-Hox clone in NS3145 original

bacterial strain (Kan resistance)

Lane 2-3: 2 of P1-Hox clones in JC9604 before

homologous recombination (Kan resistance)

Lane 4-6: 3 of P1-Hox clones in JC9604 after

homologous recombination (Amp resistance)

Figure 5

plero-PHD (recombinant)

Plero-2.1 vector

AND DWA ladder PCR product \* Plero2.1

AND PCR product a



Figure 6



Figure 6





Figure 6

Figure 7a



t-recE --- truncated recE (from 588 aa ---> end. 866 aa)

## Figure 7b

1 ATCGATGCATAATGTGCCTGTCAAATGGACGAAGCAGGGATTC 44 TGCAAACCCTATGCTACTCCGTCAAGCCGTCAATTGTCTGATT 87 CGTTACCAA TTA TGA CAA CTT GAC GGC TAC ATC 293 4 • • • Ser Leu Lys Val Ala Val Asp 120 ATT CAC TIT TIC TIC ACA ACC GGC ACG GAA CTC 285 ¶Asn Val Lys Glu Glu Cys Gly Ala Arg Phe Glu 153 GCT CGG GCT GGC CCC GGT GCA TIT TIT AAA TAC 274 Ser Pro Ser Ala Gly Thr Cys Lys Phe Val 186 CCG CGA GAA ATA GAG TTG ATC GTC AAA ACC AAC 263 dArg Ser Phe Tyr Leu Gln Asp Asp Phe Gly Val 219 ATT GCG ACC GAC GGT GGC GAT AGG CAT CCG GGT 252 ¶Asn Arg Gly Val Thr Ala lle Pro Met Arg Thr 252 GGT GCT CAA AAG CAG CTT CGC CTG GCT GAT ACG 241 Thr Ser Leu Leu Leu Lys Ala Gln Ser lle Arg 285 TTG GTC CTC GCG CCA GCT TAA GAC GCT AAT CCC 230 € Gln Asp Glu Arg Trp Ser Leu Val Ser lie Gly 318 TAA CTG CTG GCG GAA AAG ATG TGA CAG ACG CGA 219 Leu Gln Gln Arg Phe Leu His Ser Leu Arg Ser 351 CGG CGA CAA GCA AAC ATG CTG TGC GAC GCT GGC 208 Pro Ser Leu Cys Val His Gln Ala Val Ser Ala **EcoRV** 384 GAT ATC AAA ATT GCT GTC TGC CAG GTG ATC GCT 197 ¶ lle Asp Phe Asn Ser Asp Ala Leu His Asp Ser 417 GAT GTA CTG ACA AGC CTC GCG TAC CCG ATT ATC 186∢lle Tyr Gln Cys Ala Glu Arg Val Arg Asn Asp

Figure 7b (cont'd)

450 CAT CGG TGG ATG GAG CGA CTC GTT AAT CGC TTC 175 

Met Pro Pro His Leu Ser Glu Asn Ile Ala Glu 483 CAT GCG CCG CAG TAA CAA TTG CTC AAG CAG ATT 164 Met Arg Arg Leu Leu Leu Gln Glu Leu Leu Asn 516 TAT CGC CAG CAG CTC CGA ATA GCG CCC TTC CCC 153 ¶ Ile Ala Leu Leu Glu Ser Tyr Arg Gly Glu Gly 549 TTG CCC GGC GTT AAT GAT TTG CCC AAA CAG GTC 142 

GIN GIV Ala Asn Ile Ile GIN GIV Phe Leu Asp 582 GCT GAA ATG CGG CTG GTG CGC TTC ATC CGG GCG 131 Ser Phe His Pro Gln His Ala Glu Asp Pro Arg 615 AAA GAA CCC CGT ATT GGC AAA TAT TGA CGG CCA 120 Phe Phe Gly Thr Asn Ala Phe IIe Ser Pro Trpera 648 GTT AAG CCA TTC ATG CCA GTA GGC GCG CGG ACG 109 Asn Leu Trp Glu His Trp Tyr Ala Arg Pro Arg 681 AAA GTA AAC CCA CTG GTG ATA CCA TTC GCG AGC 98 ¶ Phe Tyr Val Trp Gln His Tyr Trp Glu Arg Ala 714 CTC CGG ATG ACG ACC GTA GTG ATG AAT CTC TCC 87 Glu Pro His Arg Gly Tyr His His Ile Glu Gly 747 TGG CGG GAA CAG CAA AAT ATC ACC CGG TCG GCA 76 Pro Pro Phe Leu Leu IIe Asp Gly Pro Arg Cys 780 AAC AAA TIC TCG TCC CTG ATT TTT CAC CAC CCC 65 ¶ Val Phe Glu Arg Gly Gln Asn Lys Val Val Gly 813 CTG ACC GCG AAT GGT GAG ATT GAG AAT ATA ACC 54 Gin Gly Arg Ile Thr Leu Asn Leu Ile Tyr Gly 846 TTT CAT TCC CAG CGG TCG GTC GAT AAA AAA ATC 43 Lys Met Gly Leu Pro Arg Asp IIe Phe Phe Asp

## 14/65

| Figure             | 7b (co | nt'd)         |       |       |              |      |            |        |       |               |             |
|--------------------|--------|---------------|-------|-------|--------------|------|------------|--------|-------|---------------|-------------|
| 879                |        |               |       |       |              |      | AAT<br>lle |        |       |               | ACC<br>GI v |
|                    |        | •             |       |       |              |      |            |        |       |               | ,           |
| 912<br>21 <b>∢</b> |        |               |       |       |              |      | AAA<br>Phe |        |       |               |             |
|                    |        |               |       |       |              |      | CGC        |        |       |               |             |
| 10◀                | Leu    | Leu           | Pro   | Asp   | Asn          | Gl n | Ala        | Gl u   | Ala   | Me t          |             |
| 975                | ACT    | rttcz         | ATA ( | CTCC  | CGCCI        | T T  | CAGA       | GAAG   | AA(   | CAAT          | TGT         |
| 1015               | CCA    | YITAT         | GCA [ | TCAG  | ACATT        | rg c | CGTC       | ACTG(  | GIY   | CTTT          | CACT        |
| 1055               | GGC:   | CTT           | CTC ( | GCTAZ | ACCAZ        | AA C | CGGT       | AACC   | c cg( | CTTAI         | TAA         |
| 1095               | AAG    | CATTY         | CTG ( | TAAC  | AAAG         | CG G | GACC       | AAAG   | CA!   | rgac <i>i</i> | AAAA        |
| 1135               | ACG(   | CGTA          | ACA   | AAAG! | IGTC:        | ra T | AATC       | ACGG   | C AG  | )AAAA         | STCC        |
| 1175               | ACA!   | riga:         | rta ' | TTTG  | CACG         | GC G | TCAC       | ACTT   | r gc  | ratg(         | CCAT        |
|                    |        |               |       |       |              |      |            | amHl   |       |               |             |
| 1215               |        |               |       |       |              |      | AGCG(      |        |       |               |             |
| 1255               | TTT    |               |       | AACT  | CTCTZ<br>Eco |      | GTTT<br>Nc |        | A TA  | CCCG'         | LLLL        |
| 1295               | TTT    | Nhe<br>[GGGC] |       | CAGG  |              |      |            |        | GAT   | CCC           | GTA         |
|                    |        |               |       |       |              |      | 1          | ► Me t | Asp   | Pro           | Val         |
| 1332               | ÀTC    | GTA           | GAA   | GAC   | ATA          | GAG  | CCA        | GGT    | ATT   | TAT           | TAC         |
| 5                  | lle    | Val           | Gl u  | Asp   | lle          | Gl u | Pro        | GI y   | lle   | Tyr           | Tyr         |
| 1365               | GGA    | ATT           | TCG   | AAT   | GAG          | AAT  | TAC        | CAC    | GCG   | GGT           | CCC         |
| 16                 | GI y   | ile           | Ser   | Asn   | Gl u         | Asn  | Tyr        | Hi s   | Ala   | GI y          | Pro         |
| 1398               | CCT    | ΑΠΥ           | AGT   | AAG   | TCT          | CAG  | CTC        | GAT'   | GAC   | ATT           | GCT         |

Figure 7b (cont'd)

27 Gly lie Ser Lys Ser Gln Leu Asp Asp lie Ala 1431 GAT ACT CCG GCA CTA TAT TTG TGG CGT AAA AAT 38 Asp Thr Pro Ala Leu Tyr Leu Trp Arg Lys Asn 1464 GCC CCC GTG GAC ACC ACA AAG ACA AAA ACG CTC 49 Ala Pro Val Asp Thr Thr Lys Thr Leu 1497 GAT TTA GGA ACT GCT TTC CAC TGC CGG GTA CTT 60 Asp Leu Gly Thr Ala Phe His Cys Arg Val Leu EcoRI 1530 GAA CCG GAA GAA TTC AGT AAC CGC TTT ATC GTA 71 Glu Pro Glu Glu Phe Ser Asn Arg Phe Ile Val 1563 GCA CCT GAA TTT AAC CGC CGT ACA AAC GCC GGA 82 Ala Pro Glu Phe Asn Arg Arg Thr Asn Ala Gly 1596 AAA GAA GAA GAG AAA GCG TTT CTG ATG GAA TGC 93 Lys Glu Glu Glu Lys Ala Phe Leu Met Glu Cys 1629 GCA AGC ACA GGA AAA ACG GTT ATC ACT GCG GAA 104 Ala Ser Thr Gly Lys Thr Val lie Thr Ala Glu 1662 GAA GGC CGG AAA ATT GAA CTC ATG TAT CAA AGC 115 Glu Gly Arg Lys IIe Glu Leu Met Tyr Gln Ser

Figure 7b (cont'd) 1695 GTT ATG GCT TTG CCG CTG GGG CAA TGG CTT GTT 126 Val Met Ala Leu Pro Leu Gly Gln Trp Leu Val 1728 GAA AGC GCC GGA CAC GCT GAA TCA TCA ATT TAC 137 ▶ Glu Ser Ala Gly His Ala Glu Ser Ser lle Tyr 1761 TGG GAA GAT CCT GAA ACA GGA ATT TTG TGT CGG 148 Trp Glu Asp Pro Glu Thr Gly IIe Leu Cys Arg 1794 TGC CGT CCG GAC AAA ATT ATC CCT GAA TTT CAC 159 Cys Arg Pro Asp Lys IIe IIe Pro Glu Phe His 1827 TGG ATC ATG GAC GTG AAA ACT ACG GCG GAT ATT 170 Trp lie Met Asp Val Lys Thr Thr Ala Asp Ile 1860 CAA CGA TTC AAA ACC GCT TAT TAC GAC TAC CGC 181 ▶ Gln Arg Phe Lys Thr Ala Tyr Tyr Asp Tyr Arg 1893 TAT CAC GTT CAG GAT GCA TTC TAC AGT GAC GGT 192 Tyr His Val Gln Asp Ala Phe Tyr Ser Asp Gly' 1926 TAT GAA GCA CAG TTT GGA GTG CAG CCA ACT TTC 203 Tyr Glu Ala Gln Phe Gly Val Gln Pro Thr Phe 1959 GTT TTT CTG GTT GCC AGC ACA ACT ATT GAA TGC 214 Val Phe Leu Val Ala Ser Thr Thr Ile Glu Cys 1992 GGA CGT TAT CCG GTT GAA ATT TTC ATG ATG GGC

Figure 7b (cont'd)

225 Gly Arg Tyr Pro Val Glu lle Phe Met Met Gly 2025 GAA GAA GCA AAA CTG GCA GGT CAA CAG GAA TAT 236 Glu Glu Ala Lys Leu Ala Gly Gln Glu Tyr 2058 CAC CGC AAT CTG CGA ACC CTG TCT GAC TGC CTG 247 His Arg Asn Leu Arg Thr Leu Ser Asp Cys Leu Ball 2091 AAT ACC GAT GAA TGG CCA GCT ATT AAG ACA TTA 258 Asn Thr Asp Glu Trp Pro Ala IIe Lys Thr Leu 2124 TCA CTG CCC CGC TGG GCT AAG GAA TAT GCAA 269 Ser Leu Pro Arg Trp Ala Lys Glu Tyr AlaA 2155 ATG ACT AAG CAA CCA CCA ATC GCA AAA GCC GAT 1 Met Thr Lys Gin Pro Pro IIe Ala Lys Ala Asp 279 s nAs p• • • 2188 CTG CAA AAA ACT CAG GGA AAC CGT GCA CCA GCA 12 Leu Gin Lys Thr Gin Gly Asn Arg Ala Pro Ala 2221 GCA GTT AAA AAT AGC GAC GTG ATT AGT TTT ATT 23 Ala Val Lys Asn Ser Asp Val IIe Ser Phe IIe 2254 AAC CAG CCA TCA ATG AAA GAG CAA CTG GCA GCA 34 Asn Gln Pro Ser Met Lys Glu Gln Leu Ala Ala Ndel 2287 GCT CTT CCA CGC CAT ATG ACG GCT GAA CGT ATG 45 Ala Leu Pro Arg His Met Thr Ala Glu Arg Met

#### 18/65

Figure 7b (cont'd) 2320 ATC CGT ATC GCC ACC ACA GAA ATT CGT AAA GTT 56 lle Arg lle Ala Thr Thr Glu lle Arg Lys Val 2353 CCG GCG TTA GGA AAC TGT GAC ACT ATG AGT TTT 67▶ Pro Ala Leu Gly Asn Cys Asp Thr Met Ser Phe 2386 GTC AGT GCG ATC GTA CAG TGT TCA CAG CTC GGA 78 Val Ser Ala Ile Val Gin Cys Ser Gin Leu Gly 2419 CTT GAG CCA GGT AGC GCC CTC GGT CAT GCA TAT 89 Leu Glu Pro Gly Ser Ala Leu Gly His Ala Tyr 2452 TTA CTG CCT TTT GGT AAT AAA AAC GAA AAG AGC 100 ▶ Leu Leu Pro Phe Gly Asn Lys Asn Glu Lys Ser 2485 GGT AAA AAG AAC GTT CAG CTA ATC ATT GGC TAT 111 Gly Lys Lys Asn Val Gin Leu lie lie Giy Tyr 2518 CGC GGC ATG ATT GAT CTG GCT CGC CGT TCT GGT 122 ▶ Arg Gly Met Ile Asp Leu Ala Arg Arg Ser Gly 2551 CAA ATC GCC AGC CTG TCA GCC CGT GTT GTC CGT 133 ▶ Gln lle Ala Ser Leu Ser Ala Arg Val Val Arg 2584 GAA GGT GAC GAG TTT AGC TTC GAA TTT GGC CTT 144 ▶ Glu Gly Asp Glu Phe Ser Phe Glu Phe Gly Leu 2617 GAT GAA AAG TTA ATA CAC CGC CCG GGA GAA AAC 155▶Asp Glu Lys Leu Ile His Arg Pro Gly Glu Asn 2650 GAA GAT GCC CCG GTT ACC CAC GTC TAT GCT GTC 166 Glu Asp Ala Pro Val Thr His Val Tyr Ala Val 2683 GCA AGA CTG AAA GAC GGA GGT ACT CAG TTT GAA 177 Ala Arg Leu Lys Asp Gly Gly Thr Gin Phe Glu 2716 GTT ATG ACG CGC AAA CAG ATT GAG CTG GTG CGC 188 Val Met Thr Arg Lys Gin lie Glu Leu Val Arg

#### 19/65

Figure 7b (cont'd) 2749 AGC CTG AGT AAA GCT GGT AAT AAC GGG CCG TGG 199 ▶ Ser Leu Ser Lys Ala Gly Asn Asn Gly Pro Trp 2782 GTA ACT CAC TGG GAA GAA ATG GCA AAG AAA ACG 210 Val Thr His Trp Glu Glu Met Ala Lys Lys Thr 2815 GCT ATT CGT CGC CTG TTC AAA TAT TTG CCC GTA 221 Ala ile Arg Arg Leu Phe Lys Tyr Leu Pro Val 2848 TCA ATT GAG ATC CAG CGT GCA GTA TCA ATG GAT 232 Ser lie Glu lie Gin Arg Ala Val Ser Met Asp Psti 2881 GAA AAG GAA CCA CTG ACA ATC GAT CCT GCA GAT 243 ▶ Glu Lys Glu Pro Leu Thr lle Asp Pro Ala Asp 2914 TCC TCT GTA TTA ACC GGG GAA TAC AGT GTA ATC 254 Ser Ser Val Leu Thr. Gly Glu Tyr Ser Val Ile Balll HindIII 2947 GAT AAT TCA GAG GAA TAG ATCTAAGCTT 265 Asp Asn Ser Glu Glu ••• 2975 GGCTGTTTTG GCGGATGAGA GAAGATTTTC AGCCTGATAC 3015 AGATTAAATC AGAACGCAGA AGCGGTCTGA TAAAACAGAA 3055 TTTGCCTGGC GGCAGTAGCG CGGTGGTCCC ACCTGACCCC 3095 ATGCCGAACT CAGAAGTGAA ACGCCGTAGC GCCGATGGTA 3135 GTGTGGGGTC TCCCCATGCG AGAGTAGGGA ACTGCCAGGC 3175 ATCAAATAAA ACGAAAGGCT CAGTCGAAAG ACTGGGCCTT 3215 TCGTTTTATC TGTTGTTTGT CGGTGAACGC TCTCCTGAGT 3255 AGGACAAATC CGCCGGGAGC GGATTTGAAC GTTGCGAAGC 3295 AACGCCCGG AGGGTGGCGG GCAGGACGCC CGCCATAAAC 3335 TGCCAGGCAT CAAATTAAGC AGAAGGCCAT CCTGACGGAT

#### 20/65

Figure 7b (cont'd)

- 3375 GGCCTTTTTG CGTTTCTACA AACTCTTTTG TTTATTTTTC
- 3415 TAAATACATT CAAATATGTA TCCGCTCATG AGACAATAAC
- 3455 CCTGATAAAT GCTTCAATAA TATTGAAAAA GGAAGAGT AT
  1 Me
- 3495 G AGT ATT CAA CAT TTC CGT GTC GCC CTT ATT

  1 t Ser lie Gin His Phe Arg Val Ala Leu lie
- 3526 CCC TTT TTT GCG GCA TTT TGC CTT CCT GTT TTT 12 Pro Phe Phe Ala Ala Phe Cvs Leu Pro Val Phe
- 3559 GCT CAC CCA GAA ACG CTG GTG AAA GTA AAA GAT
- 23 Ala His Pro Glu Thr Leu Val Lys Val Lys Asp
- 3592 GCT GAA GAT CAG TTG GGT GCA CGA GTG GGT TAC
  - 34 Ala Glu Asp Gin Leu Gly Ala Arg Val Gly Tyr
- 3625 ATC GAA CTG GAT CTC AAC AGC GGT AAG ATC CTT
  - 45 ► IIe Giu Leu Asp Leu Asn Ser Gly Lys IIe Leu
- 3658 GAG AGT TTT CGC CCC GAA GAA CGT TTT CCA ATG
  - 56 ▶ Glu Ser Phe Arg Pro Glu Glu Arg Phe Pro Met
- 3691 ATG AGC ACT TTT AAA GTT CTG CTA TGT GGC GCG
  - 67 Met Ser Thr Phe Lys Val Leu Leu Cys Gly Ala
- 3724 GTA TTA TCC CGT GTT GAC GCC GGG CAA GAG CAA
  - 78 Val Leu Ser Arg Val Asp Ala Gly Gln Glu Gln
- 3757 CTC GGT CGC CGC ATA CAC TAT TCT CAG AAT GAC
  - 89 Leu Gly Arg Arg Ile His Tyr Ser Gln Asn Asp Scal
- 3790 TTG GTT GAG TAC TCA CCA GTC ACA GAA AAG CAT
  - 100 Leu Val Glu Tyr Ser Pro Val Thr Glu Lys His
- 3823 CTT ACG GAT GGC ATG ACA GTA AGA GAA TTA TGC
  - 111 Leu Thr Asp Gly Met Thr Val Arg Glu Leu Cys

Figure 7b (cont'd)

3856 AGT GCT GCC ATA ACC ATG AGT GAT AAC ACT GCG 122 Ser Ala Ala IIe Thr Met Ser Asp Asn Thr Ala 3889 GCC AAC TTA CTT CTG ACA ACG ATC GGA GGA CCG 133 Ala Asn Leu Leu Thr Thr Ile Gly Gly Pro 3922 AAG GAG CTA ACC GCT TTT TTG CAC AAC ATG GGG 144 Lys Glu Leu Thr Ala Phe Leu His Asn Met Gly 3955 GAT CAT GTA ACT CGC CTT GAT CGT TGG GAA CCG 155 Asp His Val Thr Arg Leu Asp Arg Trp Glu Pro 3988 GAG CTG AAT GAA GCC ATA CCA AAC GAC GAG CGT 166 Glu Leu Asn Glu Ala IIe Pro Asn Asp Glu Arg 4021 GAC ACC ACG ATG CCT GTA GCA ATG GCA ACA ACG 177 Asp Thr Thr Met Pro Val Ala Met Ala Thr Thr 4054 TTG CGC AAA CTA TTA ACT GGC GAA CTA CTT ACT 188 Leu Arg Lys Leu Leu Thr Gly Glu Leu Leu Thr 4087 CTA GCT TCC CGG CAA CAA TTA ATA GAC TGG ATG 199 Leu Ala Ser Arg Gln Gln Leu IIe Asp Trp Met 4120 GAG GCG GAT AAA GTT GCA GGA CCA CTT CTG CGC 210 FGIu Ala Asp Lys Val Ala Gly Pro Leu Leu Arg 4153 TCG GCC CTT CCG GCT GGC TGG TTT ATT GCT GAT 221 Ser Ala Leu Pro Ala Gly Trp Phe lle Ala Asp 4186 AAA TCT GGA GCC GGT GAG CGT GGG TCT CGC GGT 232 Lys Ser Gly Ala Gly Glu Arg Gly Ser Arg Gly 4219 ATC ATT GCA GCA CTG GGG CCA GAT GGT AAG CCC 243 lie lie Ala Ala Leu Gly Pro Asp Gly Lys Pro 4252 TCC CGT ATC GTA GTT ATC TAC ACG ACG GGG AGT 254 Ser Arg IIe Val Val IIe Tyr Thr Thr Gly Ser

Figure 7b (cont'd)

4285 CAG GCA ACT ATG GAT GAA CGA AAT AGA CAG ATC 265 Gin Ala Thr Met Asp Glu Arg Asn Arg Gin Ile 4318 GCT GAG ATA GGT GCC TCA CTG ATT AAG CAT TGG 276 Ala Glu IIe Gly Ala Ser Leu IIe Lys His Trp 4351 TAA CTGTCAGACC AAGTTTACTC ATATATACTT 287 • • • 4384 TAGATTGATT TACGCGCCCT GTAGCGCGC ATTAAGCGCG 4424 GCGGGTGTGG TGGTTACGCG CAGCGTGACC GCTACACTTG 4464 CCAGCGCCCT AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC 4504 CTTTCTCGCC ACGTTCGCCG GCTTTCCCCG TCAAGCTCTA 4544 AATCGGGGC TCCCTTTAGG GTTCCGATTT AGTGCTTTAC 4584 GGCACCTCGA CCCCAAAAAA CTTGATTTGG GTGATGGTTC 4624 ACGTAGTGGG CCATCGCCCT GATAGACGGT TTTTCGCCCT 4664 TIGACGTTGG AGTCCACGTT CTTTAATAGT GGACTCTTGT 4704 TCCAAACTTG AACAACACTC AACCCTATCT CGGGCTATTC 4744 TTTTGATTTA TAAGGGATTT TGCCGATTTC GGCCTATTGG 4784 TTAAAAATG AGCTGATTTA ACAAAAATTT AACGCGAATT 4824 TTAACAAAT ATTAACGTTT ACAATTTAAA AGGATCTAGG 4864 TGAAGATCCT TTTTGATAAT CTCATGACCA AAATCCCTTA 4904 ACGTGAGTTT TCGTTCCACT GAGCGTCAGA CCCCGTAGAA 4944 AAGATCAAAG GATCTTCTTG AGATCCTTTT TTTCTGCGCG 4984 TAATCTGCTG CTTGCAAACA AAAAAACCAC CGCTACCAGC 5024 GGTGGTTTGT TTGCCGGATC AAGAGCTACC AACTCTTTTT

## 23/65

| Figure | 7b (cont'd) |            |            |            |
|--------|-------------|------------|------------|------------|
| 5064   | CCGAAGGTAA  | CTGGCTTCAG | CAGAGCGCAG | ATACCAAATA |
| 5104   | CTGTCCTTCT  | AGTGTAGCCG | TAGTTAGGCC | ACCACTTCAA |
| 5144   | GAACTCTGTA  | GCACCGCCTA | CATACCTCGC | TCTGCTAATC |
| 5184   | CTGTTACCAG  | TGGCTGCTGC | CAGTGGCGAT | AAGTCGTGTC |
| 5224   | TTACCGGGTT  | GGACTCAAGA | CGATAGTTAC | CGGATAAGGC |
| 5264   | GCAGCGGTCG  | GGCTGAACGG | GGGGTTCGTG | CACACAGCCC |
| 5304   | AGCTTGGAGC  | GAACGACCTA | CACCGAACTG | AGATACCTAC |
| 5344   | AGCGTGAGCT  | ATGAGAAAGC | GCCACGCTTC | CCGAAGGGAG |
| 5384   | AAAGGCGGAC  | AGGTATCCGG | TAAGCGGCAG | GGTCGGAACA |
| 5424   | GGAGAGCGCA  | CGAGGGAGCT | TCCAGGGGGA | AACGCCTGGT |
| 5464   | ATCTTTATAG  | TCCTGTCGGG | TTTCGCCACC | TCTGACTTGA |
| 5504   | GCGTCGATTT  | TTGTGATGCT | CGTCAGGGGG | GCGGAGCCTA |
| 5544   | TGGAAAAACG  | CCAGCAACGC | GGCCTTTTTA | CGGTTCCTGG |
| 5584   | CCTTTTGCTG  | GCCTTTTGCT | CACATGTTCT | TTCCTGCGTT |
| 5624   | ATCCCCTGAT  | TCTGTGGATA | ACCGTATTAC | CGCCTTTGAG |
| 5664   | TGAGCTGATA  | CCGCTCGCCG | CAGCCGAACG | ACCGAGCGCA |
| 5704   | GCGAGTCAGT  | GAGCGAGGAA | GCGGAAGAGC | GCCTGATGCG |
| 5744   | GTATTTTCTC  | CTTACGCATC | TGTGCGGTAT | TTCACACCGC |
| 5784   | ATAGGGTCAT  | GGCTGCGCCC | CGACACCCGC | CAACACCCGC |
| 5824   | TGACGCGCCC  | TGACGGGCTT | GTCTGCTCCC | GGCATCCGCT |
| 5864   | TACAGACAAG  | CTGTGACCGT | CTCCGGGAGC | TGCATGTGTC |
| 5904   | AGAGGTTTTC  | ACCGTCATCA | CCGAAACGCG | CGAGGCAGCA |
| 5944   | AGGAGATGGC  | GCCCAACAGT | CCCCCGGCCA | CGGGGCCTGC |

## Figure 7b (cont'd)

| 5984 | CACCATACCC | ACGCCGAAAC | AAGCGCTCAT | GAGCCCGAAG |
|------|------------|------------|------------|------------|
| 5024 | TGGCGAGCCC | GATCTTCCCC | ATCGGTGATG | TCGGCGATAT |
| 5064 | AGGCGCCAGC | AACCGCACCT | GTGGCGCCGG | TGATGCCGGC |
| 5104 | CACGATGCGT | CCGGCGTAGA | GGATCTGCTC | ATGTTTGACA |
| 5144 | GCTTATC    |            |            |            |



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

Figure 8 b



Figure 9a



Figure 9

b



C



Figure 10a



Figure 10





Figure 11a



NS3145 (recA<sup>-</sup>, recBC<sup>+</sup>), P1 packaging strain



SUBSTITUTE SHEET (RULE 26)

Figure 11 b





SUBSTITUTE SHEET (RULE 26)

Figure 13 a



36/65

Figure 13b

- 1 ATCGATGCATAATGTGCCTGTCAAATGGACGAAGCAGGG
- 40 ATTCTGCAAACCCTATGCTACTCCGTCAAGCCGTCAATT
- 79 GTCTGATTCGTTACCAA TTA TGA CAA CTT GAC 293 ◆ • Ser Leu Lys Val
- 111 GGC TAC ATC ATT CAC TIT TIC TIC ACA ACC
- 288 ¶Ala Val Asp Asn Val Lys Glu Glu Cys Gly
- 141 GGC ACG GAA CTC GCT CGG GCT GGC CCC GGT
- 278 ¶ Ala Arg Phe Glu Ser Pro Ser Ala Gly Thr
- 171 GCA TTT TTT AAA TAC CCG CGA GAA ATA GAG
- 268 Cys Lys Lys Phe Val Arg Ser Phe Tyr Leu
- 201 TTG ATC GTC AAA ACC AAC ATT GCG ACC GAC
- 258 Gin Asp Asp Phe Gly Val Asn Arg Gly Val
- 231 GGT GGC GAT AGG CAT CCG GGT GGT GCT CAA
- 248 Thr Ala IIe Pro Met Arg Thr Thr Ser Leu
- 261 AAG CAG CTT CGC CTG GCT GAT ACG TTG GTC
- 238 Leu Leu Lys Ala Gin Ser Ile Arg Gin Asp
- 291 CTC GCG CCA GCT TAA GAC GCT AAT CCC TAA
- 228 dGlu Arg Trp Ser Leu Val Ser Ile Gly Leu
- 321 CTG CTG GCG GAA AAG ATG TGA CAG ACG CGA
- 218 € Gln Gln Arg Phe Leu His Ser Leu Arg Ser
- 351 CGG CGA CAA GCA AAC ATG CTG TGC GAC GCT
- 208 Pro Ser Leu Cys Val His Gln Ala Val Ser
- 381 GGC GAT ATC AAA ATT GCT GTC TGC CAG GTG
- 198∢Ala lie Asp Phe Asn Ser Asp Ala Leu His
- 411 ATC GCT GAT GTA CTG ACA AGC CTC GCG TAC

Figure 13b (cont'd)

188 Asp Ser lle Tyr Gln Cys Ala Glu Arg Val 441 CCG ATT ATC CAT CGG TGG ATG GAG CGA CTC 178 ¶ Arg Asn Asp Met Pro Pro His Leu Ser Glu 471 GTT AAT CGC TTC CAT GCG CCG CAG TAA CAA 168 Asn IIe Ala Glu Met Arg Arg Leu Leu Leu TTG CTC AAG CAG ATT TAT CGC CAG CAG CTC 158√Gln Glu Leu Leu Asn IIe Ala Leu Leu Glu 531 CGA ATA GCG CCC TTC CCC TTG CCC GGC GTT 148 Ser Tyr Arg Gly Glu Gly Gln Gly Ala Asn 561 AAT GAT TTG CCC AAA CAG GTC GCT GAA ATG 138 ¶ lle lle Gln Gly Phe Leu Asp Ser Phe His 591 CGG CTG GTG CGC TTC ATC CGG GCG AAA GAA 128 Pro Gln His Ala Glu Asp Pro Arg Phe Phe 621 CCC CGT ATT GGC AAA TAT TGA CGG CCA GTT 118 Gly Thr Asn Ala Phe lle Ser Pro Trp Asn 651 AAG CCA TTC ATG CCA GTA GGC GCG CGG ACG 108 Leu Trp Glu His Trp Tyr Ala Arg Pro Arg 681 AAA GTA AAC CCA CTG GTG ATA CCA TTC GCG 98 Phe Tyr Val Trp Gln His Tyr Trp Glu Arg 711 AGC CTC CGG ATG ACG ACC GTA GTG ATG AAT 88 ¶ Ala Glu Pro His Arg Gly Tyr His His Ile 741 CTC TCC TGG CGG GAA CAG CAA AAT ATC ACC 78 ¶ Glu Gly Pro Pro Phe Leu Leu IIe Asp Gly 771 CGG TCG GCA AAC AAA TTC TCG TCC CTG ATT 68 Pro Arg Cys Val Phe Glu Arg Gly Gln Asn

| Figure 1 |      |       |             |       |       |       |              |       |      |      |
|----------|------|-------|-------------|-------|-------|-------|--------------|-------|------|------|
|          |      |       | CAC<br>Va I |       |       |       |              |       |      |      |
| 831      | ATT  | GAG   | AAT<br>lle  | ATA   | ACC   | TTT   | CAT          | TCC   | CAG  |      |
|          |      |       | GAT<br>  e  |       |       |       |              |       |      |      |
|          |      |       | AAT<br>lle  |       |       |       |              |       |      |      |
|          |      |       | ATT<br>Asn  |       |       |       |              |       |      |      |
|          |      |       | ATT<br>Asn  |       |       |       |              |       | ACT  | ITTC |
| 982      | ATA  | CTCC  | CGCC        | ATTC: | AGAGA | AAGA  | AACC         | YTTAA | GTCC | TATA |
| 1021     | TGC  | ATCA  | GACA'       | rigc( | CGTC  | ACTG( | CGTC         | PTTT  | ACTG | GCTC |
| 1060     | TTC' | TCGC' | TAAC        | CAAA  | CCGG' | TAAC( | CCCG         | CTTA' | TTAA | AAGC |
| 1099     | ATT  | CTGT. | AACA        | AAGC  | GGGA  | CCAA  | AGCC         | ATGA  | CAAA | AACG |
| 1138     | CGT  | AACA  | AAAG        | TGTC  | TATA  | ATCA  | CGGC.        | AGAA  | AAGT | CCAC |
| 1177     | ATT  | GATT  | ATTT        | ĠCAC  | GGCG' | TCAC. | ĄCTT         | TGCT  | ATGC | CATA |
| 1216     | GCA  | TTTT  | TATC        | CATA  | AGAT  |       | BamH<br>GGAT |       | CCTG | ACGC |

#### 39/65

Figure 13b (cont'd) 1255 TTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTT Ncol BamHI Nhel EcoRI 1294 TTTTGGGCTAGCAGGAGGAAT TCACC ATG GAT CCC 1 Met Asp Pro 1329 GTA ATC GTA GAA GAC ATA GAG CCA GGT ATT 4 Val lle Val Glu Asp lle Glu Pro Gly lle 1359 TAT TAC GGA ATT TCG AAT GAG AAT TAC CAC 14 Tyr Tyr Gly lle Ser Asn Glu Asn Tyr His 1389 GCG GGT CCC GGT ATC AGT AAG TCT CAG CTC 24 Ala Gly Pro Gly Ile Ser Lys Ser Gln Leu 1419 GAT GAC ATT GCT GAT ACT CCG GCA CTA TAT 34 Asp Asp IIe Ala Asp Thr Pro Ala Leu Tyr 1449 TTG TGG CGT AAA AAT GCC CCC GTG GAC ACC 44 Leu Trp Arg Lys Asn Ala Pro Val Asp Thr 1479 ACA AAG ACA AAA ACG CTC GAT TTA GGA ACT 54 Thr Lys Thr Lys Thr Leu Asp Leu Gly Thr 1509 GCT TTC CAC TGC CGG GTA CTT GAA CCG GAA 64 Ala Phe His Cys Arg Val Leu Glu Pro Glu **EcoRI** 1539 GAA TTC AGT AAC CGC TIT ATC GTA GCA CCT 74 Glu Phe Ser Asn Arg Phe IIe Val Ala Pro 1569 GAA TTT AAC CGC CGT ACA AAC GCC GGA AAA 84 Glu Phe Asn Arg Arg Thr Asn Ala Gly Lys 1599 GAA GAA GAG AAA GCG TTT CTG ATG GAA TGC 94 FGlu Glu Glu Lys Ala Phe Leu Met Glu Cys 1629 GCA AGC ACA GGA AAA ACG GTT ATC ACT GCG 104 Ala Ser Thr Gly Lys Thr Val Ile Thr Ala

#### 40/65

Figure 13b (cont'd) 1659 GAA GAA GGC CGG AAA ATT GAA CTC ATG TAT 114 Glu Glu Gly Arg Lys IIe Glu Leu Met Tyr 1689 CAA AGC GTT ATG GCT TTG CCG CTG GGG CAA 124 Gin Ser Val Met Ala Leu Pro Leu Gly Gin 1719 TGG CTT GTT GAA AGC GCC GGA CAC GCT GAA 134 Trp Leu Val Glu Ser Ala Gly His Ala Glu 1749 TCA TCA ATT TAC TGG GAA GAT CCT GAA ACA 144 Ser Ser IIe Tyr Trp Glu Asp Pro Glu Thr 1779 GGA ATT TTG TGT CGG TGC CGT CCG GAC AAA 154 Gly IIe Leu Cys Arg Cys Arg Pro Asp Lys 1809 ATT ATC CCT GAA TIT CAC TGG ATC ATG GAC 164 lle lle Pro Glu Phe His Trp lle Met Asp 1839 GTG AAA ACT ACG GCG GAT ATT CAA CGA TTC 174 Val Lvs Thr Thr Ala Asp lle Gln Arg Phe 1869 AAA ACC GCT TAT TAC GAC TAC CGC TAT CAC 184 Lys Thr Ala Tyr Tyr Asp Tyr Arg Tyr His 1899 GTT CAG GAT GCA TTC TAC AGT GAC GGT TAT 194 Val Gin Asp Ala Phe Tyr Ser Asp Gly Tyr 1929 GAA GCA CAG TIT GGA GTG CAG CCA ACT TIC 204 Glu Ala Gln Phe Gly Val Gln Pro Thr Phe 1959 GIT TIT CIG GIT GCC AGC ACA ACT ATT GAA 214 Val Phe Leu Val Ala Ser Thr Thr lle Glu 1989 TGC GGA CGT TAT CCG GTT GAA ATT TTC ATG 224 Cys Gly Arg Tyr Pro Vai Glu IIe Phe Met 2019 ATG GGC GAA GAA GCA AAA CTG GCA GGT CAA 234 Met Gly Glu Glu Ala Lys Leu Ala Gly Gln

Figure 13b (cont'd)

- 2049 CAG GAA TAT CAC CGC AAT CTG CGA ACC CTG
  - 244 Gln Glu Tyr His Arg Asn Leu Arg Thr Leu
- 2079 TCT GAC TGC CTG AAT ACC GAT GAA TGG CCA
- 254 Ser Asp Cys Leu Asn Thr Asp Glu Trp Pro
- 2109 GCT ATT AAG ACA TTA TCA CTG CCC CGC TGG
- 264 Ala IIe Lys Thr Leu Ser Leu Pro Arg Trp
  Xhol Kpnl
- 2139 GCT AAG GAA TAT GCA AAT GAC TAGATCTCGAG 274 Ala Lys Glu Tyr Ala Asn Asp
- 2171 GTACCCGAGCACGTGTTGACAATTAATCATCGGCATAGT
- 2210 ATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAA
  Ncol
- 2249 CC ATG GCT AAG CAA CCA CCA ATC GCA AAA 1 Met Ala Lys Gln Pro Pro Ile Ala Lys
- 2278 GCC GAT CTG CAA AAA ACT CAG GGA AAC CGT
  - 10 Ala Asp Leu Gin Lys Thr Gin Giy Asn Arg
- 2308 GCA CCA GCA GCA GTT AAA AAT AGC GAC GTG
  - 20 Ala Pro Ala Ala Val Lys Asn Ser Asp Val
- 2338 ATT AGT TIT ATT AAC CAG CCA TCA ATG AAA
  - 30 lle Ser Phe lle Asn Gin Pro Ser Met Lys
- 2368 GAG CAA CTG GCA GCA GCT CTT CCA CGC CAT
  - 40 FGlu Gln Leu Ala Ala Leu Pro Arg His
- 2398 ATG ACG GCT GAA CGT ATG ATC CGT ATC GCC
  - 50 Met Thr Ala Glu Arg Met lle Arg lle Ala
- 2428 ACC ACA GAA ATT CGT AAA GTT CCG GCG TTA
- 60 Thr Thr Glu IIe Arg Lys Val Pro Ala Leu

#### 42/65

Figure 13b (cont'd)

2458 GGA AAC TGT GAC ACT ATG AGT TTT GTC AGT 70 Gly Asn Cys Asp Thr Met Ser Phe Val Ser 2488 GCG ATC GTA CAG TGT TCA CAG CTC GGA CTT 80 Ala Ile Val Gin Cys Ser Gin Leu Gly Leu 2518 GAG CCA GGT AGC GCC CTC GGT CAT GCA TAT 90 ▶ Glu Pro Gly Ser Ala Leu Gly His Ala Tyr 2548 TTA CTG CCT TTT GGT AAT AAA AAC GAA AAG 100 Leu Leu Pro Phe Gly Asn Lys Asn Glu Lys 2578 AGC GGT AAA AAG AAC GTT CAG CTA ATC ATT 110 ▶ Ser Gly Lys Lys Asn Val Gln Leu IIe IIe 2608 GGC TAT CGC GGC ATG ATT GAT CTG GCT CGC . 120 FGly Tyr Arg Gly Met IIe Asp Leu Ala Arg 2638 CGT TCT GGT CAA ATC GCC AGC CTG TCA GCC 130 Arg Ser Gly Gln IIe Ala Ser Leu Ser Ala 2668 CGT GTT GTC CGT GAA GGT GAC GAG TTT AGC 140 Arg Val Val Arg Glu Gly Asp Glu Phe Ser 2698 TTC GAA TTT GGC CTT GAT GAA AAG TTA ATA 150 Phe Glu Phe Gly Leu Asp Glu Lys Leu Ile 2728 CAC CGC CCG GGA GAA AAC GAA GAT GCC CCG 160 His Arg Pro Gly Glu Asn Glu Asp Ala Pro 2758 GTT ACC CAC GTC TAT GCT GTC GCA AGA CTG Thr His Val Tyr Ala Val Ala Arg Leu 170▶ Val 2788 AAA GAC GGA GGT ACT CAG TIT GAA GTT ATG 180 Lys Asp Gly Gly Thr Gln Phe Glu Val Met 2818 ACG CGC AAA CAG ATT GAG CTG GTG CGC AGC 190 ▶ Thr Arg Lys Gin lie Glu Leu Val Arg Ser

| F | igure 13 | 3b (con | t'd)      |       |       |       |         |       |               |       |        |
|---|----------|---------|-----------|-------|-------|-------|---------|-------|---------------|-------|--------|
| 2 | 848      |         |           |       |       |       |         |       |               |       |        |
|   | 200      | Leu     | Ser       | Lys   | Ala   | Gl y  | Asn     | Asn   | GI y          | Pro   | Trp    |
| 2 | 878      |         |           |       |       |       |         |       |               |       |        |
|   | 210      | Val     | Thr       | Hi s  | Trp   | Gl u  | Gl u    | Me t  | Ala           | Lys   | Lys    |
| 2 | 908      |         |           |       |       | •     |         |       |               |       |        |
|   | 220      | Thr     | Ala       | He    | Arg   | A rg  | Leu     | Phe   | Lys           | Tyr   | Leu    |
| 2 | 938      |         |           |       |       |       |         |       |               |       |        |
|   | 230▶     | Pro     | Val       | Ser   | Пe    | Gl u  | lle     | Gl n  | Arg           | Ala   | Val    |
| 2 | 968      |         |           |       |       |       |         |       |               |       |        |
|   | 240      | Ser     | Met       | Asp   | Gl u  | Lys   | Gl u    | Pro   | Leu           | Thr   | He     |
| 2 | 998      |         |           |       |       |       |         |       |               |       |        |
|   | 250▶     | Asp     | Pro       | Ala   | Asp   | Ser   | Ser     | vaı   | Leu           | inr   | GI y   |
| 3 | 028      |         |           |       |       |       | *       |       |               |       |        |
|   | 260      |         | ıyr<br>II |       | Val   | He    | Asp     | Asn   | Ser           | GIU   | GIU    |
| 3 | 058      |         |           |       |       | CTGCT | rgaac   | CATC  | AAGO          | CAAC  | AAA    |
|   | 270▶     | • • •   |           |       |       |       |         |       |               |       |        |
| 3 | 096      | ACAT    | CTGI      | MGT   | CAAAC | SACAC | CATO    | CCTIC | GAACI         | AAGG  | ACAA   |
| 3 | 135      | TTA     | ACAGI     | PAAT  | CAAAC | TAAAI | ACGO    | CAAA  | GAA           | ATGO  | CCGA   |
| 3 | 174      | TATO    | CTAT      | rtgg  | CATT  | TCT!  | CTTA    | rttc: | TAT           | CAACA | AATA   |
| ~ | 010      | 3.000   |           |       |       | Khol  | . ~ ~ ~ |       |               | 20001 | . 7.00 |
|   | 213      |         |           |       |       |       |         |       |               |       |        |
| 3 | 252      | ACTO    | CAGGO     | GCGC? | AAGGC | GCTG( | CTAAA   | AAGG  | AAGCC         | GAAC  | CACG   |
| 3 | 291      | TAGA    | AAAGO     | CCAG  | rccgo | CAGA  | AACGO   | GTGCT | rgaco         | CCCGC | SATG   |
| 3 | 330      | YPAA    | STCAC     | CTAC  | CTGGC | CTA?  | CTGC    | GACA  | \GGG <i>I</i> | AAA   | CGCA   |
| 3 | 369      | AGC     | CAA       | AGAG  | AAAGO | CAGGI | rager   | rtgcz | GTGC          | GCTT  | raca   |

| Figure 1            | 3b (con | it'd) |       |       |       |       |             |               |       |     |
|---------------------|---------|-------|-------|-------|-------|-------|-------------|---------------|-------|-----|
| 3408                | TGGC    | CGATA | AGCTA | GACI  | GGGC  | CGGTI | TATT        | GGAC          | CAGCA | AGC |
| 3447                | GAAC    | CCGGF | OTTA  | CCAC  | CTGC  | GGCG  | CCCI        | CIGO          | TAAG  | GTT |
| 3486                | GGGA    | AGCC  | CCTGC | CAAAC | TAAP  | CTGC  |             | CTTI<br>Sgill | CTTG  | CCG |
| 3525                | CCAA    | AGGAT | CTGA  | TGGC  | CGCAC | GGGZ  |             | •             | TGAT  | CAA |
| 3564                | GAGA    | ACAGO | SATGA | \GGA' | CGTT  |       | ATC<br>Met  |               |       |     |
| 3597<br>4▶          |         |       |       |       |       | ATC   |             | CAA           | AAG   |     |
| 3627                | TCA     | CTA   | ACC   | CCC   | TTT   | CCT   |             | TTC           | CTA   | ATC |
| 3657                | AGC     | CCG   | GCA   | TTT   | CGC   | GGG   | •           | TAT           | TTT   |     |
| 3687<br>34▶         |         |       |       |       |       |       | GCC<br>Ala  |               |       |     |
| 3717<br><b>44</b> ▶ |         |       |       |       |       |       | CTT<br>Leu  |               |       |     |
| 3747<br>54▶         |         |       |       |       |       |       | CAG<br>Gl n |               |       |     |
| 3777<br>64▶         |         |       |       |       |       |       | GAA<br>Gl u |               |       |     |
| 3807<br>74▶         |         |       |       |       |       |       | CCC<br>Pro  |               |       |     |
| 3837<br>84          |         |       |       |       |       |       | GAT<br>Asp  |               |       |     |
| 3867<br>94          |         |       |       |       |       |       | AAA<br>Lys  |               |       |     |

| Figure 1     | 3b (con | it'd) |       |       |             |       |       |       |            |              |
|--------------|---------|-------|-------|-------|-------------|-------|-------|-------|------------|--------------|
| 3897<br>104▶ |         |       |       |       | GAC<br>Asp  |       |       |       |            |              |
| 3927         | GAG     | CGC   | ATG   | GCA   |             | CAC   | ATC   | CGG   | TAC        | ATC          |
| 3957         | GTT     | GAA   | ACC   | ATT   |             | CAC   | CAC   | CAG   | GTT<br>Val | GAT<br>Asp   |
| 3987<br>134▶ |         |       |       |       | GTA<br>Va I |       | AACO  | SAGTZ |            | dIII<br>AGCI |
| 4019         | TGG     | CTGT  | TTG   | GCGG2 | ATGAG       | GAGAA | \GAT' | TTC   | AGCCI      | rga i        |
| 4058         | ACA     | SATT  | YLAA  | CAGA  | ACGCZ       | AGAAC | CGG'  | CTG   | AATA       | ACA          |
| 4097         | GAA     | rtigo | CTG   | CGG   | CAGTA       | AGCGC | CGTC  | GTCC  | CAC        | CTGA         |
| 4136         | ccc     | CATGO | CCGA  | ACTC  | AGAAC       | TGAZ  | ACGO  | CCGTA | AGCG(      | CCGA         |
| 4175         | TGG:    | ragto | TGG   | GTCT  | rccc        | CATGO | CGAG  | GTAG  | GGAI       | CTG          |
| 4214         | CCA     | GCA?  | CAA   | AAT   | AACGA       | AAGG  | CTC   | GTC   | AAAC       | ACT          |
| <b>425</b> 3 | GGG     | CCTT  | rcgT  | TTAT  | ICIGI       | TGT   | TGT   | CGGTC | AACC       | CTC          |
| 4292         | TCC     | rgag: | raggz | CAAZ  | ATCCC       | SCCG( | GAGO  | CGGAT | TTG        | AACG         |
| 4331         | TTG     | CGAAC | 3CAA( | CGGC  | CCGGZ       | \GGG1 | GGCC  | GGCZ  | AGGA(      | CGCC         |
| 4370         | CGC     | CATA  | AACTO | CCA   | GCAI        | CAA   | ATTA  | GCAC  | AAGO       | 3CCA         |
| 4409         | TCC     | rgac( | GATY  | GCC   | rrrr        | GCG1  | MICI  | TACAF | ACTO       | TTT          |
| 4448         | TGT     | LTAT. | rrtr  | CTAA  | ATACA       | ATTCA | AATZ  | TGT   | TCC        | CTC          |
| 4487         | ATG     | AGAC  | ATA   | ACCCI | rgata       | YTAA  | CTT   | AATA  | LATA       | TGA          |
| 4526         | AAA     | AGGAZ |       |       | AGI<br>Ser  |       |       |       |            |              |

Figure 13b (cont'd) 4556 CGT GTC GCC CTT ATT CCC TTT TTT GCG GCA 7 Arg Val Ala Leu lle Pro Phe Phe Ala Ala 4586 TTT TGC CTT CCT GTT TTT GCT CAC CCA GAA 17▶Phe Cys Leu Pro Val Phe Ala His Pro Glu 4616 ACG CTG GTG AAA GTA AAA GAT GCT GAA GAT 27 Thr Leu Val Lys Val Lys Asp Ala Glu Asp 4646 CAG TTG GGT GCA CGA GTG GGT TAC ATC GAA 37 ▶ Gin Leu Gly Ala Arg Val Gly Tyr lle Glu 4676 CTG GAT CTC AAC AGC GGT AAG ATC CTT GAG 47 Leu Asp Leu Asn Ser Gly Lys Ile Leu Glu 4706 AGT TIT CGC CCC GAA GAA CGT TIT CCA ATG 57 ▶ Ser Phe Arg Pro Glu Glu Arg Phe Pro Met 4736 ATG AGC ACT TTT AAA GTT CTG CTA TGT GGC 67 Met Ser Thr Phe Lys Val Leu Leu Cys Gly 4766 GCG GTA TTA TCC CGT GTT GAC GCC GGG CAA 77 Ala Val Leu Ser Arg Val Asp Ala Gly Gln 4796 GAG CAA CTC GGT CGC CGC ATA CAC TAT TCT 87 ▶ Glu Gln Leu Gly Arg Arg Ile His Tyr Ser Scal 4826 CAG AAT GAC TTG GTT GAG TAC TCA CCA GTC 97 Gln Asn Asp Leu Val Glu Tyr Ser Pro Val 4856 ACA GAA AAG CAT CTT ACG GAT GGC ATG ACA 107 Thr Glu Lys His Leu Thr Asp Gly Met Thr 4886 GTA AGA GAA TTA TGC AGT GCT GCC ATA ACC 117 Val Arg Glu Leu Cys Ser Ala Ala Ile Thr 4916 ATG AGT GAT AAC ACT GCG GCC AAC TTA CTT 127 Met Ser Asp Asn Thr Ala Ala Asn Leu Leu

Figure 13b (cont'd)

4946 CTG ACA ACG ATC GGA GGA CCG AAG GAG CTA 137 Leu Thr Thr IIe Gly Gly Pro Lys Glu Leu 4976 ACC GCT TTT TTG CAC AAC ATG GGG GAT CAT 147 Thr Ala Phe Leu His Asn Met Gly Asp His 5006 GTA ACT CGC CTT GAT CGT TGG GAA CCG GAG 157 Val Thr Arg Leu Asp Arg Trp Glu Pro Glu 5036 CTG AAT GAA GCC ATA CCA AAC GAC GAG CGT 167 Leu Asn Glu Ala IIe Pro Asn Asp Glu Arg 5066 GAC ACC ACG ATG CCT GTA GCA ATG GCA ACA 177 Asp Thr Thr Met Pro Val Ala Met Ala Thr 5096 ACG TIG CGC AAA CTA TIA ACT GGC GAA CTA 187 Thr Leu Arg Lys Leu Leu Thr Gly Glu Leu 5126 CTT ACT CTA GCT TCC CGG CAA CAA TTA ATA 197 Leu Thr Leu Ala Ser Arg Gln Gln Leu Ile 5156 GAC TGG ATG GAG GCG GAT AAA GTT GCA GGA 207 Asp Trp Met Glu Ala Asp Lys Val Ala Gly 5186 CCA CTT CTG. CGC TCG GCC CTT CCG GCT GGC 217 Pro Leu Leu Arg Ser Ala Leu Pro Ala Gly 5216 TGG TTT ATT GCT GAT AAA TCT GGA GCC GGT 227 Trp Phe lie Ala Asp Lys Ser Gly Ala Gly 5246 GAG CGT GGG TCT CGC GGT ATC ATT GCA GCA 237 FGIu Arg Gly Ser Arg Gly IIe IIe Ala Ala 5276 CTG GGG CCA GAT GGT AAG CCC TCC CGT ATC 247 Leu Gly Pro Asp Gly Lys Pro Ser Arg IIe 5306 GTA GTT ATC TAC ACG ACG GGG AGT CAG GCA 257 Val Val lie Tyr Thr Thr Gly Ser Gln Ala

| Figure 1     | 3b (cor | nt'd)   |               |       |                |         |               |          |       |      |
|--------------|---------|---------|---------------|-------|----------------|---------|---------------|----------|-------|------|
| 5336<br>267▶ |         |         |               |       |                |         |               |          |       |      |
| 5366<br>277▶ |         |         |               |       |                |         |               |          |       |      |
| 5396<br>287▶ |         | CTG     | rcag?         | ACCAZ | AGTT.          | ract(   | CATA          | )ATA     | CTTT  | AGAT |
| 5434         | TGAT    | TTAC    | CGCGC         | CCTY  | GTAG           | CGGC    | GCAT.         | raag(    | CGCG  | GCGG |
| 5473         | GTG     | rggr    | GTT           | ACGC  | GCAG(          | CGTGZ   | ACCG(         | CTAC     | ACTTY | GCCA |
| 5512         | GCG     | CCT     | AGCG(         | CCCG  | CTCC:          | rtrc    | GCTT.         | CTT      | CCCT  | rcct |
| 5551         | TTC     | rcgc    | CACG          | rtcg  | CCGG           | CTTT    | cccc          | GTCA/    | AGCT  | CTAA |
| 5590         | ATC     | GGGG    | CTC           | CCTT  | ragg(          | GTTC    | CGAT.         | rtag:    | IGCT. | TTAC |
| 5629         | GGCZ    | ACCTO   | CGAC          | CCCA  | AAAA           | ACTTO   | GATT.         | rggg:    | IGAT  | GGTT |
| 5668         | CAC     | GTAG    | rggg          | CAT   | CGCC           | CTGA    | raga(         | CGGT.    | TTTT( | CGCC |
| 5707         | CTT     | IGAC    | TTG           | SAGT  | CCAC           | GTTC    | TTA           | ATAG!    | rgga( | CTCT |
| 5746         | TGT.    | rcca?   | AACT:         | rgaa( | CAAC           | ACTC    | AACC          | CTAT(    | CTCG  | GGCT |
| 5785         | YTTA    | CTTT    | rgat'         | TAT   | AAGG           | GATT:   | rtgc          | CGAT'    | rtcg  | GCCT |
| 5824         | ATTX    | GGTT    | AAAA          | AATG  | AGCT           | GATT    | raac <i>i</i> | AAAA     | ATTT  | AACG |
| 5863         | CGAZ    | ATTT.   | raac <i>i</i> | AAAA  | TATT           | AACG    | TTTA(         | CAAT!    | rtaa. | AAGG |
| 5902         | ATC     | ragg:   | rgaa(         | SATC  | CTTT.          | rtga:   | YLAAT         | CTCA!    | IGAC( | CAAA |
| 5941         | ATC     | CCTT    | AACG!         | rgag' | TTTT           | CGTTY   | CCAC!         | rgag(    | CGTC  | AGAC |
| 5980         | CCC     | GTAG    | AAAA(         | GATC  | AAAG           | GATC!   | rtct.         | IGAG     | ATCC' | TTT  |
| 6019         | TTT     | CTGC    | GCGT2         | AATC  | IGCI           | GCTT    | GCAAZ         | ACAA     | AAAA  | ACCA |
| 6058         | CCG     | CTAC    | CAGC          | GTG   | GTTT           | GTTT    | GCCG(         | GATC     | AAGA  | GCTA |
| 6097         | CCA     | ۷ صلاحد | ملململما      | דררב: | <u>א</u> אכיכי | דא א יי | זיבירי        | ייירים ( | GCAG? | AGCG |

| Figure 1 | 3b (cont'd)                                 |
|----------|---------------------------------------------|
| 6136     | CAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTA     |
| 6175     | GGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATAC     |
| 6214     | CTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCAGT        |
| 6253     | GGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGA     |
| 6292     | TAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGG     |
| 6331     | GGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTAC     |
| 6370     | ACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGC     |
| 6409     | GCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCG     |
| 6448     | GTAAGCGGCAGGGTCGGAACAGGAGGGGAGGCGCACGAGGGAG |
| 6487     | CTTCCAGGGGAAACGCCTGGTATCTTTATAGTCCTGTC      |
| 6526     | GGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGA     |
| 6565     | TGCTCGTCAGGGGGGGGGGGCCTATGGAAAAACGCCAGC     |
| 6604     | AACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCT     |
| 6643     | TTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCT     |
| 6682     | GTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACC     |
| 6721     | GCTCGCCGCAGCGAACGACCGAGCGAGCGAGTCAGTG       |
| 6760     | AGCGAGGAAGCGGGAAGAGCGCCTGATGCGGTATTTTCTC    |
| 6799     | CTTACGCATCTGTGCGGTATTTCACACCGCATAGGGTCA     |
| 6838     | TGGCTGCGCCCGACACCCCGCCAACACCCGCTGACGCGC     |
| 6877     | CCTGACGGCTTGTCTGCTCCCGGCATCCGCTTACAGAC      |
| 6916     | AAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGT     |
| 6955     | TTTCACCGTCATCACCGAAACGCGCGAGGCAGCAAGGAG     |

## 50/65

# Figure 13b (cont'd)

| 6994 | ATGGCGCCCAACAGTCCCCCGGCCACGGGCCTGCCACC  |
|------|-----------------------------------------|
| 7033 | ATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGG |
| 7072 | CGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAG |
| 7111 | GCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCC |
| 7150 | ACGATGCGTCCGGCGTAGAGGATCTGCTCATGTTTGACA |
| 7189 | GCTTATC                                 |

Figure 14 a

WO 99/29837



#### 52/65

Figure 14b

### Nsil

- 1 ATCGATGCATAATGTGCCTGTCAAATGGACGAAGCAGGG
- 40 ATTCTGCAAACCCTATGCTACTCCGTCAAGCCGTCAATT
- 79 GTCTGATTCGTTACCAA TTA TGA CAA CTT GAC 293 ◆ • Ser Leu Lys Val
- 111 GGC TAC ATC ATT CAC TIT TTC TTC ACA ACC
- 288 ¶ Ala Val Asp Asn Val Lys Glu Glu Cys Gly
- 141 GGC ACG GAA CTC GCT CGG GCT GGC CCC GGT
- 278 Ala Arg Phe Glu Ser Pro Ser Ala Gly Thr
- 171 GCA TTT TTT AAA TAC CCG CGA GAA ATA GAG
- 268 Cys Lys Lys Phe Val Arg Ser Phe Tyr Leu
- 201 TTG ATC GTC AAA ACC AAC ATT GCG ACC GAC
- 258 GIn Asp Asp Phe Gly Val Asn Arg Gly Val
- 231 GGT GGC GAT AGG CAT CCG GGT GGT GCT CAA
- 248 Thr Ala IIe Pro Met Arg Thr Thr Ser Leu
- 261 AAG CAG CTT CGC CTG GCT GAT ACG TTG GTC
- 238 Leu Leu Lys Ala Gln Ser lle Arg Gln Asp
- 291 CTC GCG CCA GCT TAA GAC GCT AAT CCC TAA
- 228 dGlu Arg Trp Ser Leu Val Ser Ile Gly Leu
- 321 CTG CTG GCG GAA AAG ATG TGA CAG ACG CGA
- 218 4 Gln Gln Arg Phe Leu His Ser Leu Arg Ser
- 351 CGG CGA CAA GCA AAC ATG CTG TGC GAC GCT
- 208 Pro Ser Leu Cys Val His Gln Ala Val Ser
  - E∞RV
- 381 GGC GAT ATC AAA ATT GCT GTC TGC CAG GTG
- 198 Ala IIe Asp Phe Asn Ser Asp Ala Leu His

# Figure 14b (cont'd)

| 411 ATC<br>188 <b>A</b> sp   |  |  |  |  |
|------------------------------|--|--|--|--|
| 441 CCG<br>178 <b>4</b> A rg |  |  |  |  |
| 471 GTT<br>168◀Asn           |  |  |  |  |
| 501 TTG<br>158 <b>€</b> Gl n |  |  |  |  |
| 531 CGA<br>148 <b>S</b> er   |  |  |  |  |
| 561 AAT<br>138¶Ile           |  |  |  |  |
| 591 CGG<br>128 <b>P</b> ro   |  |  |  |  |
| 621 CCC<br>118 <b>€</b> Gl y |  |  |  |  |
| 651 AAG<br>108¶Leu           |  |  |  |  |
| 681 AAA<br>98¶Phe            |  |  |  |  |
| 711 AGC<br>88¶Ala            |  |  |  |  |
| 741 CTC<br>78¶Glu            |  |  |  |  |
| 771 CGG<br>68¶Pro            |  |  |  |  |

| Figure 1 | 4b (cor | nt'd) |             |             |             |       |          |       |         |              |
|----------|---------|-------|-------------|-------------|-------------|-------|----------|-------|---------|--------------|
|          |         |       |             | CCC<br>Gl y |             |       |          |       |         |              |
|          |         |       |             | ATA<br>Tyr  |             |       |          |       |         | CGG<br>Pro   |
| 861      | TCG     | GTC   | GAT         | AAA<br>Phe  | AAA         | ATC   | GAG      | ATA   | ACC     |              |
|          |         |       |             | CGG<br>Pro  |             |       |          |       |         |              |
|          |         |       |             | AAA<br>Phe  |             |       |          |       |         |              |
|          |         |       |             | TTG<br>Gl n |             |       |          |       | ACT.    | MTC          |
| 982      | ATA     | CTCC  | CGCCZ       | ATTC        | AGAG        | AAGA  | AACC     | YPTAA | GTCC    | TATA         |
| L021     | TGC     | ATCA  | GACA!       | rtgc        | CGTC        | ACTG  | CGTC     | TTTT  | ACTG    | GCTC         |
| L060     | TTC     | rcgc' | raac(       | CAAA        | CCGG'       | raac( | CCCG     | CTTA' | TTAA    | AAGC         |
| 1099     | ATT(    | CTGT  | AACA        | AAGC        | GGA(        | CCAA  | AGCC     | ATGA  | CAAA    | AACG         |
| 1138     | CGT     | AACA  | AAAG'       | IGTC:       | rata:       | ATCA  | CGGC     | AGAA  | AAGT(   | CCAC         |
| 1177     | ATT     | GATT  | ATTTY       | GCAC        | GGCG'       | rcac. | ACTT     | IGCT  | ATGC    | CATA         |
|          |         |       |             |             |             |       | BamH     |       |         |              |
| 1216     | GCA'    | TTTT  | TATC        | CATA        | AGAT        | TAGC  | GGAT     | CCTA  | CCTG    | ACGC         |
| 1255     | TTT     | TTAT  | CGCA        | ACTC        | ICTA        | CTGT  | TTCT     | CCAT. | ACCC    | GTTT         |
| 1294     | TTT     |       | hel<br>CTAG | CAGG        | Ecc<br>AGGA |       | _        |       | ACA Thr |              |
| •        |         |       |             | Pstl        |             |       | <u> </u> | •••   |         | <del>-</del> |
| 1329     | GAC     | ATT   | ATC         | CTG         | CAG         | CGT   | ACC      | GGG   | ATC     | GAT          |

#### 55/65

Figure 14b (cont'd)

4 Asp lie lie Leu Gin Arg Thr Gly lie Asp 1359 GTG AGA GCT GTC GAA CAG GGG GAT GAT GCG 14 Val Arg Ala Val Glu Gln Gly Asp Asp Ala 1389 TGG CAC AAA TTA CGG CTC GGC GTC ATC ACC 24 Trp His Lys Leu Arg Leu Gly Val Ile Thr 1419 GCT TCA GAA GTT CAC AAC GTG ATA GCA AAA 34 Ala Ser Glu Val His Asn Val lle Ala Lys 1449 CCC CGC TCC GGA AAG AAG TGG CCT GAC ATG 44 Pro Arg Ser Gly Lys Lys Trp Pro Asp Met 1479 AAA ATG TCC TAC TTC CAC ACC CTG CTT GCT 54 Lys Met Ser Tyr Phe His Thr Leu Leu Ala 1509 GAG GTT TGC ACC GGT GTG GCT CCG GAA GTT 64 Glu Val Cys Thr Gly Val Ala Pro Glu Val 1539 AAC GCT AAA GCA CTG GCC TGG GGA AAA CAG 74 Asn Ala Lys Ala Leu Ala Trp Gly Lys Gln **EcoRI** 1569 TAC GAG AAC GAC GCC AGA ACC CTG TTT GAA 84 Tyr Glu Asn Asp Ala Arg Thr Leu Phe Glu 1599 TTC ACT TCC GGC GTG AAT GTT ACT GAA TCC 94 Phe Thr Ser Gly Val Asn Val Thr Glu Ser 1629 CCG ATC ATC TAT CGC GAC GAA AGT ATG CGT 104 Pro lle lle Tyr Arg Asp Glu Ser Met Arg 1659 ACC GCC TGC TCT CCC GAT GGT TTA TGC AGT 114 Thr Ala Cys Ser Pro Asp Gly Leu Cys Ser 1689 GAC GGC AAC GGC CTT GAA CTG AAA TGC CCG 124 Asp Gly Asn Gly Leu Glu Leu Lys Cys Pro

Figure 14b (cont'd)

- 1719 TTT ACC TCC CGG GAT TTC ATG AAG TTC CGG 134 Phe Thr Ser Arg Asp Phe Met Lys Phe Arg 1749 CTC GGT GGT TTC GAG GCC ATA AAG TCA GCT 144 ▶ Leu Gly Gly Phe Glu Ala IIe Lys Ser Ala 1779 TAC ATG GCC CAG GTG CAG TAC AGC ATG TGG 154 ▶ Tyr Met Ala Gin Val Gin Tyr Ser Met Trp 1809 GTG ACG CGA AAA AAT GCC TGG TAC TTT GCC 164 Val Thr Arg Lys Asn Ala Trp Tyr Phe Ala 1839 AAC TAT GAC CCG CGT ATG AAG CGT GAA GGC 174 Asn Tyr Asp Pro Arg Met Lys Arg Glu Gly 1869 CTG CAT TAT GTC GTG ATT GAG CGG GAT GAA 184 ▶ Leu His Tyr Val Val IIe Glu Arg Asp Glu 1899 AAG TAC ATG GCG AGT TTT GAC GAG ATC GTG 194 Lys Tyr Met Ala Ser Phe Asp Glu ile Val 1929 CCG GAG TTC ATC GAA AAA ATG GAC GAG GCA 204 Pro Glu Phe IIe Glu Lys Met Asp Glu Ala 1959 CTG GCT GAA ATT GGT TTT GTA TTT GGG GAG 214 Leu Ala Glu lle Gly Phe Val Phe Gly Glu Kpnl
- 1989 CAA TGG CGA TAGATCCGGTACCCGAGCACGTGTTGA
  224 ▶ GIn Trp Arg • •
- 2025 CAATTAATCATCGGCATAGTATATCGGCATAGTATAATA
- 2064 CGACAAGGTGAGGAACTAAACC ATG AGT ACT GCA

  1 Met Ser Thr Ala
- 2098 CTC GCA ACG CTG GCT GGG AAG CTG GCT GAA 5 Leu Ala Thr Leu Ala Gly Lys Leu Ala Glu

| Figure 1            | Figure 14b (cont'd) |  |  |  |  |  |  |             |   |             |  |
|---------------------|---------------------|--|--|--|--|--|--|-------------|---|-------------|--|
| 2128<br>15          | CGT<br>A rg         |  |  |  |  |  |  |             |   | CAG<br>Gl n |  |
| 2158<br>25          | GAA<br>Gl u         |  |  |  |  |  |  | CAG<br>GI n |   |             |  |
| 2188<br>35          | TTT<br>Phe          |  |  |  |  |  |  |             |   | TTC<br>Phe  |  |
| 2218<br>45          | ATC                 |  |  |  |  |  |  |             |   | TAC<br>Tyr  |  |
| 2248<br>55          | GGC<br>GIy          |  |  |  |  |  |  |             |   |             |  |
| 2278<br>65          | GCC<br>Ala          |  |  |  |  |  |  |             |   |             |  |
| 2308<br>75          | CCG<br>Pro          |  |  |  |  |  |  |             | _ |             |  |
| 2338<br>85          | ATC<br>  e          |  |  |  |  |  |  |             |   | GGC<br>GI y |  |
| 2368<br>95 <b>1</b> | ATG<br>Met          |  |  |  |  |  |  |             |   | _           |  |
| 2398<br>105         | ACA<br>Thr          |  |  |  |  |  |  |             |   |             |  |
| 2428<br>115         | CAT<br>Hi s         |  |  |  |  |  |  |             |   |             |  |
| 2458<br>125         | GAA<br>Gl u         |  |  |  |  |  |  |             |   |             |  |
| 2488<br>135         | GAA<br>Gl u         |  |  |  |  |  |  |             |   |             |  |

Figure 14b (cont'd)

2518 TCG CAT CCC AAA CGG ATG TTA CGT CAT AAA 145 Ser His Pro Lys Arg Met Leu Arg His Lys 2548 GCC ATG ATT CAG TGT GCC CGT CTG GCC TTC 155 Ala Met lie Gin Cys Ala Arg Leu Ala Phe 2578 GGA TTT GCT GGT ATC TAT GAC AAG GAT GAA 165 Gly Phe Ala Gly Ile Tyr Asp Lys Asp Glu 2608 GCC GAG CGC ATT GTC GAA AAT ACT GCA TAC 175 Ala Glu Arg Ile Val Glu Asn Thr Ala Tyr Pstl 2638 ACT GCA GAA CGT CAG CCG GAA CGC GAC ATC 185 Thr Ala Glu Arg Gln Pro Glu Arg Asp Ile 2668 ACT CCG GTT AAC GAT GAA ACC ATG CAG GAG 195 Thr Pro Val Asn Asp Glu Thr Met Gln Glu 2698 ATT AAC ACT CTG CTG ATC GCC CTG GAT AAA 205 He Asn Thr Leu Leu He Ala Leu Asp Lys 2728 ACA TGG GAT GAC GAC TTA TTG CCG CTC TGT 215 Thr Trp Asp Asp Leu Leu Pro Leu Cys 2758 TCC CAG ATA TTT CGC CGC GAC ATT CGT GCA 225 Ser Gin lie Phe Arg Arg Asp lie Arg Ala 2788 TCG TCA GAA CTG ACA CAG GCC GAA GCA GTA 235 Ser Ser Glu Leu Thr Gln Ala Glu Ala Val 2818 AAA GCT CTT GGA TTC CTG AAA CAG AAA GCC 245 Lys Ala Leu Gly Phe Leu Lys Gln Lys Ala Balli Xhol 2848 GCA GAG CAG AAG GTG GCA GCA TAGATCTCGAG 255 Ala Glu Gln Lys Val Ala Ala •••

| Figure 14   | tb (cont<br><b>Hindl</b> |             |               |      |        |                |       |       |       |      |
|-------------|--------------------------|-------------|---------------|------|--------|----------------|-------|-------|-------|------|
| 2880        | •                        |             | TGCI          | GAAC | ATC    | AAGG           | CAAC  | AAAA  | CATC  | TGT  |
| 2919        | TGTC                     | 'AAAC       | ACAC          | CATO | CTTC   | SAAC           | AGGA  | CAAT  | TAAC  | AGT  |
| 2958        | TAAC                     | raaa:       | AAAA          | ACGC | CAAAZ  | GAAZ           | ATGO  | CGAT  | ATCC  | TAT  |
| 2997        | TGGC                     | 'ATTI       | TCTI          | TTAT | TTCI   | TAT            | CAACA | AAAT  | AGGTC | TAA  |
| 3036        | CCCA                     | -           | (hol<br>CTCGA | GCT1 | CAC    | CTG            | CCGCA | AGCA  | ACTCA | .GGG |
| 3075        | CGCA                     | AGGG        | CTGC          | TAAA | AGGA   | AAGCO          | GAAC  | ACGI  | AGAA  | AGC  |
| 3114        | CAGI                     | CCGC        | AGAA          | ACGO | TGC    | GAC            | CCCGC | ATGA  | ATGT  | CAG  |
| 3153        | CTAC                     | TGGC        | CTAT          | CIGO | SACAZ  | AGGGZ          | AAAA  | CGCAF | AGCGC | CAAA |
| 3192        | GAGA                     | AAGO        | AGGI          | AGCI | rTGCZ  | GTG            | GCTT  | CACAI | rggce | ATA  |
| 3231        | GCTA                     |             | GGGC          | CGGT | יבדים  | rgga(          | CAGC  | AGCC  | BAACC | CGGA |
| 3270        | ATTC                     | Pvu<br>CCAC | III<br>ECTGO  | GGCC | GCCC]  | CTG            | STAAC | GTTC  | GGAZ  | \GCC |
| 3309        | CTGC                     | AAAC        | TAAF          | CTGC | ATGO   | GCTT.          | CTTC  | GCCGC | CCAAC | GAT  |
| 3348        | CTGA                     | TGGC        | CGCAC         | GGGZ |        | 3gIII<br>AGAT( | CTGAT | CAAC  | SAGAC | CAGG |
| 3387        | ATGA                     | \GGA'I      | CGTT          |      |        |                |       |       |       | -    |
|             |                          |             |               |      | . Me t | •              |       | e Asr |       |      |
| 3418<br>6   | GAA<br>Gl u              |             |               |      |        |                |       |       |       |      |
| 3448        |                          |             |               |      |        |                |       |       |       |      |
| 16          | Thr                      | Pro         | Phe           | Pro  | Val    | Phe            | Leu   | lle   | Ser   | Pro  |
| 3478        |                          |             |               |      |        |                |       |       |       |      |
|             | Ala                      |             | _             | _    | -      |                |       |       |       |      |
| 3508<br>36▶ | Phe                      |             |               |      |        |                |       |       |       |      |

Figure 14b (cont'd)

| 3 | 3538<br>46 <b>▶</b> |     |             |       | CGT<br>A rg |       |        |       |        |        |              |
|---|---------------------|-----|-------------|-------|-------------|-------|--------|-------|--------|--------|--------------|
| 3 | 568                 |     |             | •     |             |       |        |       |        |        | •            |
|   |                     |     |             |       | Tyr         |       |        |       |        |        | Gl u         |
| 3 | 598<br>66▶          |     |             |       | GCA<br>Ala  |       |        |       |        |        |              |
| 3 | 628<br>76▶          |     |             |       | CTG<br>Leu  |       |        |       |        |        |              |
| 3 | 8658<br>86▶         |     |             |       | ATC         |       |        |       |        |        |              |
| 3 | 8688<br>96 <b>▶</b> |     |             |       | AAA<br>Lys  |       |        |       |        |        |              |
| 3 | 3718<br>106▶        |     |             |       | GAT<br>Asp  |       |        |       |        |        |              |
| 3 | 748<br>116▶         |     |             |       | CAC<br>Hi s |       |        |       |        |        |              |
| 3 | 3778<br>126▶        |     |             |       | CAC<br>Hi s |       |        | Val   | Asp    |        |              |
| _ |                     |     |             |       |             |       |        | Hin   |        |        | ~~~          |
| 7 | 808<br>136▶         |     | GAG<br>Gl u |       |             | AAC   | 3AG'17 | AGA A | AGC '  | I'IG ( | <i>3</i> CT' |
| 3 | 8839                | GTT | TIG         | GCG   | GAT         | GAG   | AGA    | AGA   | TTT    | TCA    | GCC          |
| 3 | 869                 | TGA | TAC         | AGAT. | ראאאי       | rcaga | AACG   | CAGAZ | AGCG(  | GTCTC  | GATA         |
| 3 | 907                 | AAA | CAGA        | YTTTY | GCCTC       | GCGC  | GCAG!  | ragco | GCGG'. | rggr   | CCA          |
| 3 | 946                 | CCT | GACCO       | CCAT  | GCCGZ       | ACTO  | CAGAZ  | AGTG  | AAAC   | GCCG". | ragc         |
| 3 | 985                 | GCC | GATGO       | GTAG! | IGIG        | GGT   | CTCC   | CCATO | GCGA(  | GAGT   | AGGG         |

| Figure 14b (cont d) |    |      |             |       |       |       |       |       |       |               |      |
|---------------------|----|------|-------------|-------|-------|-------|-------|-------|-------|---------------|------|
| 40                  | 24 | AACI | rgcca       | \GGC? | TCAF  | ATA   | AACC  | BAAAC | GCT   | CAGTO         | CGAA |
| 40                  | 63 | AGAC | CTGGG       | CCTI  | TCGI  | TTT   | ATCTG | TTGT  | rTTGI | CGGI          | GAA  |
| 41                  | 02 | CGCI | CTCC        | TGAG  | TAGO  | GACA  | ATCO  | CGCCC | GGAC  | GCGGI         | ATTT |
| 41                  | 41 | GAAC | CGTTC       | CGAP  | AGCAF | ACGGC | CCGG  | AGGC  | GTGGC | CGGGC         | CAGG |
| 41                  | 80 | ACGO | CCCGC       | CATA  | AACI  | rgccz | GGCA  | TCAF  | ATTA  | AGC           | AGAA |
| 42                  | 19 | GGCC | CATCO       | TGAC  | GGAT  | rggco | TTTT  | TGCC  | STTTC | CTACA         | AAAC |
| 42                  | 58 | TCTI | TTGI        | TTAT  | LLLL  | CTAP  | ATAC  | YPTA  | CAAAC | ATGI          | CATC |
| 42                  | 97 | CGCI | CATO        | AGAC  | CAATA | AACCC | TGAT  | מאבי  | (GCT) | CAAI          | TAAT |
| 43                  | 36 | ATTO | AAA         | AGGA  | AGAC  | _     |       |       |       | AA CZ<br>n Hi |      |
| 43                  | _  |      | CGT<br>A rg |       |       |       |       |       |       |               |      |
|                     |    |      | TTT<br>Phe  | -     |       |       |       |       |       |               |      |
|                     |    |      | ACG<br>Thr  |       |       |       |       |       |       |               |      |
|                     |    |      | CAG<br>Gl n |       |       |       |       |       |       |               |      |
|                     |    |      | CTG<br>Leu  |       |       |       |       |       |       |               |      |
|                     |    |      | AGT<br>Ser  |       |       |       |       |       |       |               |      |
|                     |    |      | ATG<br>Me t |       |       |       |       |       |       |               |      |

#### 62/65

Figure 14b (cont'd) 4578 GGC GCG GTA TTA TCC CGT GTT GAC GCC GGG 76 Gly Ala Val Leu Ser Arg Val Asp Ala Gly 4608 CAA GAG CAA CTC GGT CGC CGC ATA CAC TAT 86 Gin Glu Gin Leu Gly Arg Arg Ile His Tyr Scal 4638 TCT CAG AAT GAC TTG GTT GAG TAC TCA CCA 96 Ser Gln Asn Asp Leu Val Glu Tyr Ser Pro 4668 GTC ACA GAA AAG CAT CTT ACG GAT GGC ATG 106 Val Thr Glu Lys His Leu Thr Asp Gly Met 4698 ACA GTA AGA GAA TTA TGC AGT GCT GCC ATA 116 Thr Val Arg Glu Leu Cys Ser Ala Ala IIe. 4728 ACC ATG AGT GAT AAC ACT GCG GCC AAC TTA 126 Thr Met Ser Asp Asn Thr Ala Ala Asn Leu 4758 CTT CTG ACA ACG ATC GGA GGA CCG AAG GAG 136 Leu Leu Thr Thr lle Gly Gly Pro Lys Glu 4788 CTA ACC GCT TTT TTG CAC AAC ATG GGG GAT 146 Leu Thr Ala Phe Leu His Asn Met Gly Asp 4818 CAT GTA ACT CGC CTT GAT CGT TGG GAA CCG 156 His Val Thr Arg Leu Asp Arg Trp Glu Pro 4848 GAG CTG AAT GAA GCC ATA CCA AAC GAC GAG 166 Glu Leu Asn Glu Ala Ile Pro Asn Asp Glu 4878 CGT GAC ACC ACG ATG CCT GTA GCA ATG GCA 176 ▶ Arg Asp Thr Thr Met Pro Val Ala Met Ala 4908 ACA ACG TTG CGC AAA CTA TTA ACT GGC GAA 186 Thr Thr Leu Arg Lys Leu Leu Thr Gly Glu 4938 CTA CTT ACT CTA GCT TCC CGG CAA CAA TTA 196 Leu Leu Thr Leu Ala Ser Arg Gln Gln Leu

#### 63/65

Figure 14b (cont'd) 4968 ATA GAC TGG ATG GAG GCG GAT AAA GTT GCA 206 Ile Asp Trp Met Glu Ala Asp Lys Val Ala 4998 GGA CCA CTT CTG CGC TCG GCC CTT CCG GCT 216 Gly Pro Leu Leu Arg Ser Ala Leu Pro Ala 5028 GGC TGG TTT ATT GCT GAT AAA TCT GGA GCC 226 Gly Trp Phe IIe Ala Asp Lys Ser Gly Ala 5058 GGT GAG CGT GGG TCT CGC GGT ATC ATT GCA 236 Gly Glu Arg Gly Ser Arg Gly Ile Ile Ala 5088 GCA CTG GGG CCA GAT GGT AAG CCC TCC CGT 246 Ala Leu Gly Pro Asp Gly Lys Pro Ser Arg 5118 ATC GTA GTT ATC TAC ACG ACG GGG AGT CAG 256 lie Val Val lie Tyr Thr Thr Gly Ser Gln 5148 GCA ACT ATG GAT GAA CGA AAT AGA CAG ATC 266 Ala Thr Met Asp Glu Arg Asn Arg Gln Ile 5178 GCT GAG ATA GGT GCC TCA CTG ATT AAG CAT 276 Ala Glu IIe Gly Ala Ser Leu IIe Lys His 5208 TGG TAA CTGTCAGACCAAGTTTACTCATATATACTTT 286 Trp • • • 5245 AGATTGATTTACGCGCCCTGTAGCGCGCATTAAGCGCG 5284 GCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTT 5323 GCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCT 5362 TCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCT 5401 CTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCT TTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGAT 5440 5479 GGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTT

# 64/65

Figure 14b (cont'd)

| 5518 | CGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGA |
|------|-----------------------------------------|
| 5557 | CTCTTGTTCCAAACTTGAACAACACTCAACCCTATCTCG |
| 5596 | GGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCG |
| 5635 | GCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTT |
| 5674 | AACGCGAATTTTAACAAAATATTAACGTTTACAATTTAA |
| 5713 | AAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGAC |
| 5752 | CAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTC |
| 5791 | AGACCCCGTAGAAAGATCAAAGGATCTTCTTGAGATCC  |
| 5830 | TTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAA |
| 5869 | ACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGA |
| 5908 | GCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAG |
| 5947 | AGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTA |
| 5986 | GTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTAC |
| 6025 | ATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGC |
| 6064 | CAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAG |
| 6103 | ACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAAC |
| 6142 | GGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGAC  |
| 6181 | CTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGA |
| 6220 | AAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTA |
| 6259 | TCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAG |
| 6298 | GGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCC |
| 6337 | TGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTT |

# 65/65

| Figure 1 | 4b (cont'd)                               |
|----------|-------------------------------------------|
| 6376     | GTGATGCTCGTCAGGGGGGGGGGGGGCCTATGGAAAAACGC |
| 6415     | CAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTG   |
| 6454     | GCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGA   |
| 6493     | TTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGA   |
| 6532     | TACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTC   |
| 6571     | AGTGAGCGAGGAAGCGGGAAGAGCGCCTGATGCGGTATTT  |
| 6610     | TCTCCTTACGCATCTGTGCGGTATTTCACACCGCATAGG   |
| 6649     | GTCATGGCTGCGCCCGACACCCCGCTGAC             |
| 6688     | GCGCCTGACGGCTTGTCTGCTCCCGGCATCCGCTTAC     |
| 6727     | AGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTCAG     |
| 6766     | AGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCAA   |
| 6805     | GGAGATGGCGCCCAACAGTCCCCCGGCCACGGGCCTGC    |
| 6844     | CACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAA   |
| 6883     | GTGGCGAGCCCGATCTTCCCCCATCGGTGATGTCGGCGAT  |
| 6922     | ATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCC   |
| 6961     | GGCCACGATGCGTCCGGCGTAGAGGATCTGCTCATGTTT   |
| 7000     | GACAGCTTATC                               |

#### SEQUENCE LISTING

## (1) GENERAL INFORMATION:

- (i) APPLICANT:
  - (A) NAME: European Molecular Biology Laboratory

(EMBL)

- (B) STREET: Meyerhofstrasse 1
- (C) CITY: Heidelberg
- (E) COUNTRY: DE
- (F) POSTAL CODE (ZIP): D-69117
- (ii) TITLE OF INVENTION: Novel DNA Cloning Method
- (iii) NUMBER OF SEQUENCES: 14
- (iv) COMPUTER READABLE FORM:
  - (A) MEDIUM TYPE: Floppy disk
  - (B) COMPUTER: IBM PC compatible
  - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
  - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(EPO)

- (vi) PRIOR APPLICATION DATA:
  - (A) APPLICATION NUMBER: EP 97121562.2
  - (B) FILING DATE: 05-DEC-1997
- (vi) PRIOR APPLICATION DATA:
  - (A) APPLICATION NUMBER: EP 98118756.0
  - (B) FILING DATE: 05-OCT-1998
- (2) INFORMATION FOR SEQ ID NO: 1:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 6150 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: both
    - (D) TOPOLOGY: both
  - (vii) IMMEDIATE SOURCE:
    - (B) CLONE: pBAD24-recET
    - (ix) FEATURE:
      - (A) NAME/KEY: misc feature
      - (B) LOCATION: complement (96..974)
      - (D) OTHER INFORMATION:/product= "araC"
    - (ix) FEATURE:
      - (A) NAME/KEY: misc\_feature
      - (B) LOCATION: 1320...2162
      - (D) OTHER INFORMATION:/product= "t-recE"

#### (ix) FEATURE:

- (A) NAME/KEY: misc feature
- (B) LOCATION:2155..2972
- (D) OTHER INFORMATION:/product= "recT"

#### (ix) FEATURE:

- (A) NAME/KEY: misc\_feature
- (B) LOCATION: 3493.4353
- (D) OTHER INFORMATION:/product= "bla"

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ATCGATGCAT AATGTGCCTG TCAAATGGAC GAAGCAGGGA TTCTGCAAAC CCTATGCTAC 60 TCCGTCAAGC CGTCAATTGT CTGATTCGTT ACCAATTATG ACAACTTGAC GGCTACATCA 120 TTCACTTTT CTTCACAACC GGCACGGAAC TCGCTCGGGC TGGCCCCGGT GCATTTTTTA 180 AATACCCGCG AGAAATAGAG TTGATCGTCA AAACCAACAT TGCGACCGAC GGTGGCGATA 240 GGCATCCGGG TGGTGCTCAA AAGCAGCTTC GCCTGGCTGA TACGTTGGTC CTCGCGCCAG 300 CTTAAGACGC TAATCCCTAA CTGCTGGCGG AAAAGATGTG ACAGACGCGA CGGCGACAAG 360 CAAACATGCT GTGCGACGCT GGCGATATCA AAATTGCTGT CTGCCAGGTG ATCGCTGATG 420 480 TACTGACAAG CCTCGCGTAC CCGATTATCC ATCGGTGGAT GGAGCGACTC GTTAATCGCT 540 ...... TCCATGCGCC GCAGTAACAA TTGCTCAAGC AGATTTATCG CCAGCAGCTC CGAATAGCGC CCTTCCCCTT GCCCGGCGTT AATGATTTGC CCAAACAGGT CGCTGAAATG CGGCTGGTGC 600 GCTTCATCCG GGCGAAAGAA CCCCGTATTG GCAAATATTG ACGGCCAGTT AAGCCATTCA 660 TGCCAGTAGG CGCGCGGACG AAAGTAAACC CACTGGTGAT ACCATTCGCG AGCCTCCGGA 720 TGACGACCGT AGTGATGAAT CTCTCCTGGC GGGAACAGCA AAATATCACC CGGTCGGCAA 780 ACAAATTCTC GTCCCTGATT TTTCACCACC CCCTGACCGC GAATGGTGAG ATTGAGAATA 840 TAACCTTTCA TTCCCAGCGG TCGGTCGATA AAAAAATCGA GATAACCGTT GGCCTCAATC 900 GGCGTTAAAC CCGCCACCAG ATGGGCATTA AACGAGTATC CCGGCAGCAG GGGATCATTT 960 TGCGCTTCAG CCATACTTTT CATACTCCCG CCATTCAGAG AAGAAACCAA TTGTCCATAT 1020 TGCATCAGAC ATTGCCGTCA CTGCGTCTTT TACTGGCTCT TCTCGCTAAC CAAACCGGTA 1080 ACCCCGCTTA TTAAAAGCAT TCTGTAACAA AGCGGGACCA AAGCCATGAC AAAAACGCGT 1140 AACAAAAGTG TCTATAATCA CGGCAGAAAA GTCCACATTG ATTATTTGCA CGGCGTCACA 1200 CTTTGCTATG CCATAGCATT TTTATCCATA AGATTAGCGG ATCCTACCTG ACGCTTTTTA 1260 TCGCAACTCT CTACTGTTTC TCCATACCCG TTTTTTTGGG CTAGCAGGAG GAATTCACCA 1320 TGGATCCCGT AATCGTAGAA GACATAGAGC CAGGTATTTA TTACGGAATT TCGAATGAGA 1380 ATTACCACGC GGGTCCCGGT ATCAGTAAGT CTCAGCTCGA TGACATTGCT GATACTCCGG 1440 CACTATATTT GTGGCGTAAA AATGCCCCCG TGGACACCAC AAAGACAAAA ACGCTCGATT 1500 TAGGAACTGC TTTCCACTGC CGGGTACTTG AACCGGAAGA ATTCAGTAAC CGCTTTATCG 1560

TAGCACCTGA ATTTAACCGC CGTACAAACG CCGGAAAAGA AGAAGAGAAA GCGTTTCTGA 1620 TGGAATGCGC AAGCACAGGA AAAACGGTTA TCACTGCGGA AGAAGGCCGG AAAATTGAAC 1680 TCATGTATCA AAGCGTTATG GCTTTGCCGC TGGGGCAATG GCTTGTTGAA AGCGCCGGAC 1740 ACGCTGAATC ATCAATTTAC TGGGAAGATC CTGAAACAGG AATTTTGTGT CGGTGCCGTC 1800 CGGACAAAAT TATCCCTGAA TTTCACTGGA TCATGGACGT GAAAACTACG GCGGATATTC 1860 AACGATTCAA AACCGCTTAT TACGACTACC GCTATCACGT TCAGGATGCA TTCTACAGTG 1920 ACGGTTATGA AGCACAGTTT GGAGTGCAGC CAACTTTCGT TTTTCTGGTT GCCAGCACAA 1980 CTATTGAATG CGGACGTTAT CCGGTTGAAA TTTTCATGAT GGGCGAAGAA GCAAAACTGG 2040 CAGGTCAACA GGAATATCAC CGCAATCTGC GAACCCTGTC TGACTGCCTG AATACCGATG 2100 AATGGCCAGC TATTAAGACA TTATCACTGC CCCGCTGGGC TAAGGAATAT GCAAATGACT 2160 AAGCAACCAC CAATCGCAAA AGCCGATCTG CAAAAAACTC AGGGAAACCG TGCACCAGCA 2220 GCAGTTAAAA ATAGCGACGT GATTAGTTTT ATTAACCAGC CATCAATGAA AGAGCAACTG 2280 GCAGCAGCTC TTCCACGCCA TATGACGGCT GAACGTATGA TCCGTATCGC CACCACAGAA 2340 ATTCGTAAAG TTCCGGCGTT AGGAAACTGT GACACTATGA GTTTTGTCAG TGCGATCGTA 2400 CAGTGTTCAC AGCTCGGACT TGAGCCAGGT AGCGCCCTCG GTCATGCATA TTTACTGCCT 2460 TTTGGTAATA AAAACGAAAA GAGCGGTAAA AAGAACGTTC AGCTAATCAT TGGCTATCGC 2520 GGCATGATTG ATCTGGCTCG CCGTTCTGGT CAAATCGCCA GCCTGTCAGC CCGTGTTGTC 2580 CGTGAAGGTG ACGAGTTTAG CTTCGAATTT GGCCTTGATG AAAAGTTAAT ACACCGCCCG 2640 GGAGAAAACG AAGATGCCCC GGTTACCCAC GTCTATGCTG TCGCAAGACT GAAAGACGGA 2700 GGTACTCAGT TTGAAGTTAT GACGCGCAAA CAGATTGAGC TGGTGCGCAG CCTGAGTAAA 2760 GCTGGTAATA ACGGGCCGTG GGTAACTCAC TGGGAAGAAA TGGCAAAGAA AACGGCTATT 2820 CGTCGCCTGT TCAAATATTT GCCCGTATCA ATTGAGATCC AGCGTGCAGT ATCAATGGAT 2880 GAAAAGGAAC CACTGACAAT CGATCCTGCA GATTCCTCTG TATTAACCGG GGAATACAGT 2940 GTAATCGATA ATTCAGAGGA ATAGATCTAA GCTTGGCTGT TTTGGCGGAT GAGAGAAGAT 3000 TTTCAGCCTG ATACAGATTA AATCAGAACG CAGAAGCGGT CTGATAAAAC AGAATTTGCC 3060 TGGCGGCAGT AGCGCGGTGG TCCCACCTGA CCCCATGCCG AACTCAGAAG TGAAACGCCG 3120 TAGCGCCGAT GGTAGTGTGG GGTCTCCCCA TGCGAGAGTA GGGAACTGCC AGGCATCAAA 3180 TAAAACGAAA GGCTCAGTCG AAAGACTGGG CCTTTCGTTT TATCTGTTGT TTGTCGGTGA 3240 ACGCTCTCCT GAGTAGGACA AATCCGCCGG GAGCGGATTT GAACGTTGCG AAGCAACGGC 3300 CCGGAGGGTG GCGGGCAGGA CGCCCGCCAT AAACTGCCAG GCATCAAATT AAGCAGAAGG 3360 CCATCCTGAC GGATGGCCTT TTTGCGTTTC TACAAACTCT TTTGTTTATT TTTCTAAATA 3420 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA 3480 AAAAGGAAGA GTATGAGTAT TCAACATTTC CGTGTCGCCC TTATTCCCTT TTTTGCGGCA 3540 TTTTGCCTTC CTGTTTTTGC TCACCCAGAA ACGCTGGTGA AAGTAAAAGA TGCTGAAGAT 3600

| CAGTTGGGTG | CACGAGTGGG | TTACATCGAA | CTGGATCTCA | ACAGCGGTAA | GATCCTTGAG | 3660 |
|------------|------------|------------|------------|------------|------------|------|
| AGTTTTCGCC | CCGAAGAACG | TTTTCCAATG | ATGAGCACTT | TTAAAGTTCT | GCTATGTGGC | 3720 |
| GCGGTATTAT | CCCGTGTTGA | CGCCGGGCAA | GAGCAACTCG | GTCGCCGCAT | ACACTATTCT | 3780 |
| CAGAATGACT | TGGTTGAGTA | CTCACCAGTC | ACAGAAAAGC | ATCTTACGGA | TGGCATGACA | 3840 |
| GTAAGAGAAT | TATGCAGTGC | TGCCATAACC | ATGAGTGATA | ACACTGCGGC | CAACTTACTT | 3900 |
| CTGACAACGA | TCGGAGGACC | GAAGGAGCTA | ACCGCTTTTT | TGCACAACAT | GGGGGATCAT | 3960 |
| GTAACTCGCC | TTGATCGTTG | GGAACCGGAG | CTGAATGAAG | CCATACCAAA | CGACGAGCGT | 4020 |
| GACACCACGA | TGCCTGTAGC | AATGGCAACA | ACGTTGCGCA | AACTATTAAC | TGGCGAACTA | 4080 |
| CTTACTCTAG | CTTCCCGGCA | ACAATTAATA | GACTGGATGG | AGGCGGATAA | AGTTGCAGGA | 4140 |
| CCACTTCTGC | GCTCGGCCCT | TCCGGCTGGC | TGGTTTATTG | CTGATAAATC | TGGAGCCGGT | 4200 |
| GAGCGTGGGT | CTCGCGGTAT | CATTGCAGCA | CTGGGGCCAG | ATGGTAAGCC | CTCCCGTATC | 4260 |
| GTAGTTATCT | ACACGACGGG | GAGTCAGGCA | ACTATGGATG | AACGAAATAG | ACAGATCGCT | 4320 |
| GAGATAGGTG | CCTCACTGAT | TAAGCATTGG | TAACTGTCAG | ACCAAGTTTA | CTCATATATA | 4380 |
| CTTTAGATTG | ATTTACGCGC | CCTGTAGCGG | CGCATTAAGC | GCGGCGGGTG | TGGTGGTTAC | 4440 |
| GCGCAGCGTG | ACCGCTACAC | TTGCCAGCGC | CCTAGCGCCC | GCTCCTTTCG | CTTTCTTCCC | 4500 |
| TTCCTTTCTC | GCCACGTTCG | CCGGCTTTCC | CCGTCAAGCT | CTAAATCGGG | GGCTCCCTTT | 4560 |
| AGGGTTCCGA | TTTAGTGCTT | TACGGCACCT | CGACCCCAAA | AAACTTGATT | TGGGTGATGG | 4620 |
| TTCACGTAGT | GGGCCATCGC | CCTGATAGAC | GGTTTTTCGC | CCTTTGACGT | TGGAGTCCAC | 4680 |
| GTTCTTTAAT | AGTGGACTCT | TGTTCCAAAC | TTGAACAACA | CTCAACCCTA | TCTCGGGCTA | 4740 |
| TTCTTTTGAT | TTATAAGGGA | TTTTGCCGAT | TTCGGCCTAT | TGGTTAAAAA | ATGAGCTGAT | 4800 |
| ТТААСААААА | TTTAACGCGA | ATTTTAACAA | AATATTAACG | TTTACAATTT | AAAAGGATCT | 4860 |
| AGGTGAAGAT | CCTTTTTGAT | AATCTCATGA | CCAAAATCCC | TTAACGTGAG | TTTTCGTTCC | 4920 |
| ACTGAGCGTC | AGACCCCGTA | GAAAAGATCA | AAGGATCTTC | TTGAGATCCT | TTTTTTCTGC | 4980 |
| GCGTAATCTG | CTGCTTGCAA | ACAAAAAAAC | CACCGCTACC | AGCGGTGGTT | TGTTTGCCGG | 5040 |
| ATCAAGAGCT | ACCAACTCTT | TTTCCGAAGG | TAACTGGCTT | CAGCAGAGCG | CAGATACCAA | 5100 |
| ATACTGTCCT | TCTAGTGTAG | CCGTAGTTAG | GCCACCACTT | CAAGAACTCT | GTAGCACCGC | 5160 |
| CTACATACCT | CGCTCTGCTA | ATCCTGTTAC | CAGTGGCTGC | TGCCAGTGGC | GATAAGTCGT | 5220 |
| GTCTTACCGG | GTTGGACTCA | AGACGATAGT | TACCGGATAA | GGCGCAGCGG | TCGGGCTGAA | 5280 |
| CGGGGGGTTC | GTGCACACAG | CCCAGCTTGG | AGCGAACGAC | CTACACCGAA | CTGAGATACC | 5340 |
| TACAGCGTGA | GCTATGAGAA | AGCGCCACGC | TTCCCGAAGG | GAGAAAGGCG | GACAGGTATC | 5400 |
| CGGTAAGCGG | CAGGGTCGGA | ACAGGAGAGC | GCACGAGGGA | GCTTCCAGGG | GGAAACGCCT | 5460 |
| GGTATCTTTA | TAGTCCTGTC | GGGTTTCGCC | ACCTCTGACT | TGAGCGTCGA | TTTTTGTGAT | 5520 |
| GCTCGTCAGG | GGGGCGGAGC | CTATGGAAAA | ACGCCAGCAA | CGCGGCCTTT | TTACGGTTCC | 5580 |
| TGGCCTTTTG | CTGGCCTTTT | GCTCACATGT | TCTTTCCTGC | GTTATCCCCT | GATTCTGTGG | 5640 |

| ATAACCGTAT TACCGCCTTT GAGTGAGCTG ATACCGCTCG CCGCAGCCGA ACGACCGAC                                                                                                                  | GC 5700 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| GCAGCGAGTC AGTGAGCGAG GAAGCGGAAG AGCGCCTGAT GCGGTATTTT CTCCTTACC                                                                                                                  | GC 5760 |
| ATCTGTGCGG TATTTCACAC CGCATAGGGT CATGGCTGCG CCCCGACACC CGCCAACAC                                                                                                                  | CC 5820 |
| CGCTGACGCG CCCTGACGGG CTTGTCTGCT CCCGGCATCC GCTTACAGAC AAGCTGTGA                                                                                                                  | AC 5880 |
| CGTCTCCGGG AGCTGCATGT GTCAGAGGTT TTCACCGTCA TCACCGAAAC GCGCGAGGG                                                                                                                  | CA 5940 |
| GCAAGGAGAT GGCGCCCAAC AGTCCCCCGG CCACGGGGCC TGCCACCATA CCCACGCCG                                                                                                                  | A 6000  |
| AACAAGCGCT CATGAGCCCG AAGTGGCGAG CCCGATCTTC CCCATCGGTG ATGTCGGCG                                                                                                                  | A 6060  |
| TATAGGCGCC AGCAACCGCA CCTGTGGCGC CGGTGATGCC GGCCACGATG CGTCCGGCG                                                                                                                  | T 6120  |
| AGAGGATCTG CTCATGTTTG ACAGCTTATC                                                                                                                                                  | 6150    |
| (2) INFORMATION FOR SEQ ID NO: 2:                                                                                                                                                 |         |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 843 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: both</li> <li>(D) TOPOLOGY: both</li> </ul> |         |
| <pre>(vii) IMMEDIATE SOURCE:     (B) CLONE: t-recE</pre>                                                                                                                          |         |
| <pre>(ix) FEATURE:</pre>                                                                                                                                                          |         |
| ATG GAT CCC GTA ATC GTA GAA GAC ATA GAG CCA GGT ATT TAT TAC GGA Met Asp Pro Val Ile Val Glu Asp Ile Glu Pro Gly Ile Tyr Tyr Gly 1 5 10                                            | 48      |
| ATT TCG AAT GAG AAT TAC CAC GCG GGT CCC GGT ATC AGT AAG TCT CAG<br>Ile Ser Asn Glu Asn Tyr His Ala Gly Pro Gly Ile Ser Lys Ser Gln<br>20 25 30                                    | 96      |
| CTC GAT GAC ATT GCT GAT ACT CCG GCA CTA TAT TTG TGG CGT AAA AAT Leu Asp Asp Ile Ala Asp Thr Pro Ala Leu Tyr Leu Trp Arg Lys Asn 35 40 45                                          | 144     |
| GCC CCC GTG GAC ACC ACA AAG ACA AAA ACG CTC GAT TTA GGA ACT GCT Ala Pro Val Asp Thr Thr Lys Thr Lys Thr Leu Asp Leu Gly Thr Ala 50 60                                             | 192     |
| TTC CAC TGC CGG GTA CTT GAA CCG GAA GAA TTC AGT AAC CGC TTT ATC Phe His Cys Arg Val Leu Glu Pro Glu Glu Phe Ser Asn Arg Phe Ile 65                                                |         |
| GTA GCA CCT GAA TTT AAC CGC CGT ACA AAC GCC GGA AAA GAA GAA GAG<br>Val Ala Pro Glu Phe Asn Arg Arg Thr Asn Ala Gly Lys Glu Glu Glu<br>85 90 95                                    | 288     |
| AAA GCG TTT CIG ATG GAA TGC GCA AGC ACA GGA AAA ACG GTT ATC ACT<br>Lys Ala Phe Leu Met Glu Cys Ala Ser Thr Gly Lys Thr Val Ile Thr<br>100 105 110                                 | 336     |

| GCG<br>Ala        | GAA<br>Glu        | GAA<br>Glu<br>115 | GGC<br>Gly        | CGG<br>Arg        | AAA<br>Lys        | ATT<br>Ile        | GAA<br>Glu<br>120 | CTC<br>Leu        | ATG<br>Met        | TAT<br>Tyr        | CAA<br>Gln        | AGC<br>Ser<br>125 | Val               | ATG<br>Met        | GCT<br>Ala        |   | 384 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---|-----|
| TTG<br>Leu        | CCG<br>Pro<br>130 | CTG<br>Leu        | GGG<br>Gly        | CAA<br>Gln        | TGG<br>Trp        | CTT<br>Leu<br>135 | GTT<br>Val        | GAA<br>Glu        | AGC<br>Ser        | GCC<br>Ala        | GGA<br>Gly<br>140 | CAC<br>His        | GCT<br>Ala        | GAA<br>Glu        | TCA<br>Ser        | • | 432 |
| TCA<br>Ser<br>145 | ATT<br>Ile        | TAC<br>Tyr        | TGG<br>Trp        | GAA<br>Glu        | GAT<br>Asp<br>150 | CCT<br>Pro        | GAA<br>Glu        | ACA<br>Thr        | GGA<br>Gly        | ATT<br>Ile<br>155 | TTG<br>Leu        | TGT<br>Cys        | CGG<br>Arg        | TGC<br>Cys        | CGT<br>Arg<br>160 |   | 480 |
| CCG<br>Pro        | GAC<br>Asp        | AAA<br>Lys        | ATT<br>Ile        | ATC<br>Ile<br>165 | CCT<br>Pro        | GAA<br>Glu        | TTT<br>Phe        | CAC<br>His        | TGG<br>Trp<br>170 | ATC<br>Ile        | ATG<br>Met        | GAC<br>Asp        | GTG<br>Val        | AAA<br>Lys<br>175 | Thr               | ! | 528 |
| ACG<br>Thr        | GCG<br>Ala        | GAT<br>Asp        | ATT<br>Ile<br>180 | CAA<br>Gln        | CGA<br>Arg        | TTC<br>Phe        | AAA<br>Lys        | ACC<br>Thr<br>185 | GCT<br>Ala        | TAT<br>Tyr        | TAC<br>Tyr        | GAC<br>Asp        | TAC<br>Tyr<br>190 | CGC<br>Arg        | TAT<br>Tyr        | ! | 576 |
| CAC<br>His        | GTT<br>Val        | CAG<br>Gln<br>195 | GAT<br>Asp        | GCA<br>Ala        | TTC<br>Phe        | TAC<br>Tyr        | AGT<br>Ser<br>200 | GAC<br>Asp        | GGT<br>Gly        | TAT<br>Tyr        | GAA<br>Glu        | GCA<br>Ala<br>205 | CAG<br>Gln        | TTT<br>Phe        | GGA<br>Gly        | • | 624 |
| GTG<br>Val        | CAG<br>Gln<br>210 | CCA<br>Pro        | ACT<br>Thr        | TTC<br>Phe        | GTT<br>Val        | TTT<br>Phe<br>215 | CTG<br>Leu        | GTT<br>Val        | GCC<br>Ala        | AGC<br>Ser        | ACA<br>Thr<br>220 | ACT<br>Thr        | ATT<br>Ile        | GAA<br>Glu        | TGC<br>Cys        | • | 672 |
| GGA<br>Gly<br>225 | CGT<br>Arg        | TAT<br>Tyr        | CCG<br>Pro        | GTT<br>Val        | GAA<br>Glu<br>230 | ·Ile              | TTC<br>Phe        | ATG<br>Met        | ATG<br>Met        | GGC<br>Gly<br>235 | GAA<br>Glu        | GAA<br>Glu        | GCA<br>Ala        | AAA<br>Lys        | CTG<br>Leu<br>240 | • | 720 |
|                   | GGT<br>Gly        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | • | 768 |
|                   | AAT<br>Asn        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | £ | 316 |
|                   | GCT<br>Ala        |                   |                   |                   |                   |                   |                   | TAA<br>*          |                   |                   |                   |                   |                   |                   |                   | 8 | 343 |
| (2)               | IN                | FORM              | 1ATI              | ON :              | FOR               | SEQ               | ] ID              | NO                | : 3:              |                   |                   |                   |                   |                   |                   |   |     |

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 281 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Met Asp Pro Val Ile Val Glu Asp Ile Glu Pro Gly Ile Tyr Tyr Gly
1 5 10 15

Ile Ser Asn Glu Asn Tyr His Ala Gly Pro Gly Ile Ser Lys Ser Gln 20 25 30

Leu Asp Asp Ile Ala Asp Thr Pro Ala Leu Tyr Leu Trp Arg Lys Asn 35 40 45

Ala Pro Val Asp Thr Thr Lys Thr Lys Thr Leu Asp Leu Gly Thr Ala 50 55 60

Phe His Cys Arg Val Leu Glu Pro Glu Glu Phe Ser Asn Arg Phe Ile 65 70 75 80

Val Ala Pro Glu Phe Asn Arg Arg Thr Asn Ala Gly Lys Glu Glu 85 90 95

Lys Ala Phe Leu Met Glu Cys Ala Ser Thr Gly Lys Thr Val Ile Thr 100 105 110

Ala Glu Glu Gly Arg Lys Ile Glu Leu Met Tyr Gln Ser Val Met Ala 115 120 125

Leu Pro Leu Gly Gln Trp Leu Val Glu Ser Ala Gly His Ala Glu Ser 130 135 140

Ser Ile Tyr Trp Glu Asp Pro Glu Thr Gly Ile Leu Cys Arg Cys Arg 145 150 155 160

Pro Asp Lys Ile Ile Pro Glu Phe His Trp Ile Met Asp Val Lys Thr 165 170 175

Thr Ala Asp Ile Gln Arg Phe Lys Thr Ala Tyr Tyr Asp Tyr Arg Tyr 180 185 190

His Val Gln Asp Ala Phe Tyr Ser Asp Gly Tyr Glu Ala Gln Phe Gly
195 200 205

. Val Gln Pro Thr Phe Val Phe Leu Val Ala Ser Thr Thr Ile Glu Cys 210 215 220

Gly Arg Tyr Pro Val Glu Ile Phe Met Met Gly Glu Glu Ala Lys Leu 225 230 235 240

Ala Gly Gln Gln Glu Tyr His Arg Asn Leu Arg Thr Leu Ser Asp Cys 245 250 255

Leu Asn Thr Asp Glu Trp Pro Ala Ile Lys Thr Leu Ser Leu Pro Arg 260 265 270

Trp Ala Lys Glu Tyr Ala Asn Asp \*

#### (2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 810 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: both
  - (D) TOPOLOGY: both
- (vii) IMMEDIATE SOURCE:
  - (B) CLONE: recT
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION:1..810
    - (D) OTHER INFORMATION:/product= "recT"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

ATG ACT AAG CAA CCA CCA ATC GCA AAA GCC GAT CTG CAA AAA ACT CAG Met Thr Lys Gln Pro Pro Ile Ala Lys Ala Asp Leu Gln Lys Thr Gln 285 290 295

|                   |            |                   |                   |                   | GCA<br>Ala        |            |                   |                   |                   |                   |            |                   | Ile               |                   | TTT<br>Phe        | 96  |
|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|-----|
|                   |            |                   |                   |                   | ATG<br>Met        |            |                   |                   |                   |                   |            |                   |                   |                   | CGC<br>Arg        | 144 |
|                   |            |                   |                   |                   | CGT<br>Arg<br>335 |            |                   |                   |                   |                   | Thr        |                   |                   |                   | CGT<br>Arg<br>345 | 192 |
| AAA<br>Lys        | GTT<br>Val | CCG<br>Pro        | GCG<br>Ala        | TTA<br>Leu<br>350 | GGA<br>Gly        | AAC<br>Asn | TGT<br>Cys        | GAC<br>Asp        | ACT<br>Thr<br>355 | ATG<br>Met        | AGT<br>Ser | TTT<br>Phe        | GTC<br>Val        | AGT<br>Ser<br>360 | Ala               | 240 |
| ATC<br>Ile        | GTA<br>Val | CAG<br>Gln        | TGT<br>Cys<br>365 | TCA<br>Ser        | CAG<br>Gln        | CTC<br>Leu | GGA<br>Gly        | CTT<br>Leu<br>370 | GAG<br>Glu        | CCA<br>Pro        | GGT<br>Gly | AGC<br>Ser        | GCC<br>Ala<br>375 | Leu               | GGT<br>Gly        | 288 |
| CAT<br>His        | GCA<br>Ala | TAT<br>Tyr<br>380 | TTA<br>Leu        | CTG<br>Leu        | CCT<br>Pro        | TTT<br>Phe | GGT<br>Gly<br>385 | AAT<br>Asn        | AAA<br>Lys        | AAC<br>Asn        | GAA<br>Glu | AAG<br>Lys<br>390 | Ser               | GGT<br>Gly        | AAA<br>Lys        | 336 |
|                   |            |                   |                   |                   | ATC<br>Ile        |            |                   |                   |                   |                   |            |                   |                   |                   | GCT<br>Ala        | 384 |
| CGC<br>Arg<br>410 | CGT<br>Arg | TCT<br>Ser        | GGT<br>Gly        | CAA<br>Gln        | ATC<br>Ile<br>415 | GCC<br>Ala | AGC<br>Ser        | CTG<br>Leu        | TCA<br>Ser        | GCC<br>Ala<br>420 | Arg        | GTT<br>Val        | GTC<br>Val        | CGT<br>Arg        | GAA<br>Glu<br>425 | 432 |
|                   |            |                   |                   |                   | TTC<br>Phe        |            |                   |                   |                   |                   |            |                   |                   |                   | His               | 480 |
|                   |            |                   |                   |                   | GAA<br>Glu        |            |                   |                   |                   |                   |            |                   |                   | Ala               | GTC<br>Val        | 528 |
|                   |            |                   |                   |                   | GGA<br>Gly        |            |                   |                   |                   |                   |            |                   | Thr               |                   | AAA<br>Lys        | 576 |
|                   |            |                   |                   |                   | CGC<br>Arg        |            |                   |                   |                   |                   |            | Asn               |                   |                   | CCG<br>Pro        | 624 |
|                   |            |                   |                   |                   | GAA<br>Glu<br>495 |            |                   |                   |                   |                   | Thr        |                   |                   |                   | CGC<br>Arg<br>505 | 672 |
|                   |            |                   |                   |                   | CCC<br>Pro        |            |                   |                   |                   | Ile               |            | -                 |                   |                   | Ser               | 720 |
|                   |            |                   |                   |                   | CCA<br>Pro        |            |                   |                   | Asp               |                   |            |                   |                   | Ser               | GTA<br>Val        | 768 |
|                   |            |                   |                   |                   | AGT<br>Ser        |            |                   | Asp               |                   |                   |            |                   | *                 |                   |                   | 810 |

## (2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 270 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Met Thr Lys Gln Pro Pro Ile Ala Lys Ala Asp Leu Gln Lys Thr Gln 1 5 10

Gly Asn Arg Ala Pro Ala Ala Val Lys Asn Ser Asp Val Ile Ser Phe 20 25 30

Ile Asn Gln Pro Ser Met Lys Glu Gln Leu Ala Ala Leu Pro Arg
35 40 45

His Met Thr Ala Glu Arg Met Ile Arg Ile Ala Thr Thr Glu Ile Arg
50 55 60

Lys Val Pro Ala Leu Gly Asn Cys Asp Thr Met Ser Phe Val Ser Ala 65 70 75 80

Ile Val Gln Cys Ser Gln Leu Gly Leu Glu Pro Gly Ser Ala Leu Gly
85 90 95

His Ala Tyr Leu Leu Pro Phe Gly Asn Lys Asn Glu Lys Ser Gly Lys
100 105 110

Lys Asn Val Gln Leu Ile Ile Gly Tyr Arg Gly Met Ile Asp Leu Ala 115 120 125

Arg Arg Ser Gly Gln Ile Ala Ser Leu Ser Ala Arg Val Val Arg Glu 130 135 140

Gly Asp Glu Phe Ser Phe Glu Phe Gly Leu Asp Glu Lys Leu Ile His 145 150 155 160

Arg Pro Gly Glu Asn Glu Asp Ala Pro Val Thr His Val Tyr Ala Val 165 170 175

Ala Arg Leu Lys Asp Gly Gly Thr Gln Phe Glu Val Met Thr Arg Lys 180 185 190

Glm Ile Glu Leu Val Arg Ser Leu Ser Lys Ala Gly Asn Asn Gly Pro 195 200 205

Trp Val Thr His Trp Glu Glu Met Ala Lys Lys Thr Ala Ile Arg Arg 210 215 220

Leu Phe Lys Tyr Leu Pro Val Ser Ile Glu Ile Gln Arg Ala Val Ser 225 230 235 240

Met Asp Glu Lys Glu Pro Leu Thr Ile Asp Pro Ala Asp Ser Ser Val 245 250 255

Leu Thr Gly Glu Tyr Ser Val Ile Asp Asn Ser Glu Glu \* 260 265 270

#### (2) INFORMATION FOR SEQ ID NO: 6:

| 1 | 'i ʻ | ) SEQUENCE | CHARACTERISTICS: |   |
|---|------|------------|------------------|---|
| ٦ |      |            | CHARACIERISIICS  | : |

- (A) LENGTH: 876 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: both

## (vii) IMMEDIATE SOURCE:

(B) CLONE: araC

#### (ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION:complement (1..876)
- (D) OTHER INFORMATION:/product= "araC"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

| TGACAACTTG | ACGGCTACAT | CATTCACTTT | TTCTTCACAA | CCGGCACGGA | ACTCGCTCGG | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| GCTGGCCCCG | GTGCATTTTT | TAAATACCCG | CGAGAAATAG | AGTTGATCGT | CAAAACCAAC | 120 |
| ATTGCGACCG | ACGGTGGCGA | TAGGCATCCG | GGTGGTGCTC | AAAAGCAGCT | TCGCCTGGCT | 180 |
| GATACGTTGG | TCCTCGCGCC | AGCTTAAGAC | GCTAATCCCT | AACTGCTGGC | GGAAAAGATG | 240 |
| TGACAGACGC | GACGGCGACA | AGCAAACATG | CTGTGCGACG | CTGGCGATAT | CAAAATTGCT | 300 |
| GTCTGCCAGG | TGATCGCTGA | TGTACTGACA | AGCCTCGCGT | ACCCGATTAT | CCATCGGTGG | 360 |
| ATGGAGCGAC | TCGTTAATCG | CTTCCATGCG | CCGCAGTAAC | AATTGCTCAA | GCAGATTTAT | 420 |
| CGCCAGCAGC | TCCGAATAGC | GCCCTTCCCC | TTGCCCGGCG | TTAATGATTT | GCCCAAACAG | 480 |
| GTCGCTGAAA | TGCGGCTGGT | GCGCTTCATC | CGGGCGAAAG | AACCCCGTAT | TGGCAAATAT | 540 |
| TGACGGCCAG | TTAAGCCATT | CATGCCAGTA | GGCGCGCGA  | CGAAAGTAAA | CCCACTGGTG | 600 |
| ATACCATTCG | CGAGCCTCCG | GATGACGACC | GTAGTGATGA | ATCTCTCCTG | GCGGGAACAG | 660 |
| CAAAATATCA | CCCGGTCGGC | AAACAAATTC | TCGTCCCTGA | TTTTTCACCA | CCCCTGACC  | 720 |
| GCGAATGGTG | AGATTGAGAA | TATAACCTTT | CATTCCCAGC | GGTCGGTCGA | TAAAAAATC  | 780 |
| GAGATAACCG | TTGGCCTCAA | TCGGCGTTAA | ACCCGCCACC | AGATGGGCAT | TAAACGAGTA | 840 |
| TCCCGGCAGC | AGGGGATCAT | TTTGCGCTTC | AGCCAT     |            |            | 876 |

# (2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 292 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Met Ala Glu Ala Gln Asn Asp Pro Leu Leu Pro Gly Tyr Ser Phe Asn 1 5 10 15

Ala His Leu Val Ala Gly Leu Thr Pro Ile Glu Ala Asn Gly Tyr Leu 20 25 30

Asp Phe Phe Ile Asp Arg Pro Leu Gly Met Lys Gly Tyr Ile Leu Asn Leu Thr Ile Arg Gly Gln Gly Val Val Lys Asn Gln Gly Arg Glu Phe Val Cys Arg Pro Gly Asp Ile Leu Leu Phe Pro Pro Gly Glu Ile His His Tyr Gly Arg His Pro Glu Ala Arg Glu Trp Tyr His Gln Trp Val Tyr Phe Arg Pro Arg Ala Tyr Trp His Glu Trp Leu Asn Trp Pro Ser Ile Phe Ala Asn Thr Gly Phe Phe Arg Pro Asp Glu Ala His Gln Pro His Phe Ser Asp Leu Phe Gly Gln Ile Ile Asn Ala Gly Gln Gly Glu Gly Arg Tyr Ser Glu Leu Leu Ala Ile Asn Leu Leu Glu Gln Leu Leu 155 Leu Arg Arg Met Glu Ala Ile Asn Glu Ser Leu His Pro Pro Met Asp Asn Arg Val Arg Glu Ala Cys Gln Tyr Ile Ser Asp His Leu Ala Asp Ser Asn Phe Asp Ile Ala Ser Val Ala Gln His Val Cys Leu Ser Pro Ser Arg Leu Ser His Leu Phe Arg Gln Gln Leu Gly Ile Ser Val Leu 210 Ser Trp Arg Glu Asp Gln Arg Ile Ser Gln Ala Lys Leu Leu Leu Ser Thr Thr Arg Met Pro Ile Ala Thr Val Gly Arg Asn Val Gly Phe Asp

Asp Gln Leu Tyr Phe Ser Arg Val Phe Lys Lys Cys Thr Gly Ala Ser

Pro Ser Glu Phe Arg Ala Gly Cys Glu Glu Lys Val Asn Asp Val Ala

Val Lys Leu Ser 290

# (2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 861 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: both
  - (D) TOPOLOGY: both

# (vii) IMMEDIATE SOURCE:

(B) CLONE: bla

# (ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION:1..861
- (D) OTHER INFORMATION:/product= "bla"

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

|                   | ,                 | -, .              | - <u>-</u>        |                   | . J.              |                   |                   | 1011              |                   | יע ב                    | ט וע              | 0. (              | •                 |                   |                   |     |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| ATG<br>Met        | AGT<br>Ser        | ATT<br>Ile<br>295 | CAA<br>Gln        | CAT<br>His        | TTC<br>Phe        | CGT<br>Arg        | GTC<br>Val<br>300 | GCC<br>Ala        | CTT<br>Leu        | ATT<br>Ile              | CCC<br>Pro        | TTT<br>Phe<br>305 | TTT<br>Phe        | GCG<br>Ala        | GCA<br>Ala        | 48  |
| TTT<br>Phe        | TGC<br>Cys<br>310 | CTT<br>Leu        | CCT<br>Pro        | GTT<br>Val        | TTT<br>Phe        | GCT<br>Ala<br>315 | CAC<br>His        | CCA<br>Pro        | GAA<br>Glu        | ACG <sub>.</sub><br>Thr | CTG<br>Leu<br>320 |                   | AAA<br>Lys        | GTA<br>Val        | AAA<br>Lys        | 96  |
| GAT<br>Asp<br>325 | GCT<br>Ala        | GAA<br>Glu        | GAT<br>Asp        | CAG<br>Gln        | TTG<br>Leu<br>330 | GGT<br>Gly        | GCA<br>Ala        | CGA<br>Arg        | GTG<br>Val        | GGT<br>Gly<br>335       | TAC<br>Tyr        | ATC<br>Ile        | GAA<br>Glu        | CTG<br>Leu        | GAT<br>Asp<br>340 | 144 |
| CTC<br>Leu        | AAC<br>Asn        | AGC<br>Ser        | GGT<br>Gly        | AAG<br>Lys<br>345 | ATC<br>Ile        | CTT<br>Leu        | GAG<br>Glu        | AGT<br>Ser        | TTT<br>Phe<br>350 | CGC<br>Arg              | CCC<br>Pro        | GAA<br>Glu        | GAA<br>Glu        | CGT<br>Arg<br>355 | Phe               | 192 |
| CCA<br>Pro        | ATG<br>Met        | ATG<br>Met        | AGC<br>Ser<br>360 | ACT<br>Thr        | TTT<br>Phe        | AAA<br>Lys        | GTT<br>Val        | CTG<br>Leu<br>365 | CTA<br>Leu        | TGT<br>Cys              | GGC<br>Gly        | GCG<br>Ala        | GTA<br>Val<br>370 | Leu               | TCC<br>Ser        | 240 |
| CGT<br>Arg        | GTT<br>Val        | GAC<br>Asp<br>375 | GCC<br>Ala        | GGG<br>Gly        | CAA<br>Gln        | GAG<br>Glu        | CAA<br>Gln<br>380 | CTC<br>Leu        | GGT<br>Gly        | CGC<br>Arg              | CGC<br>Arg        | ATA<br>Ile<br>385 | CAC<br>His        | TAT<br>Tyr        | TCT<br>Ser        | 288 |
| CAG<br>Gln        | AAT<br>Asn<br>390 | GAC<br>Asp        | TTG<br>Leu        | GTT<br>Val        | GAG<br>Glu        | TAC<br>Tyr<br>395 | TCA<br>Ser        | CCA<br>Pro        | GTC<br>Val        | ACA<br>Thr              | GAA<br>Glu<br>400 | AAG<br>Lys        | CAT<br>His        | CTT<br>Leu        | ACG<br>Thr        | 336 |
| GAT<br>Asp<br>405 | GGC<br>Gly        | ATG<br>Met        | ACA<br>Thr        | GTA<br>Val        | AGA<br>Arg<br>410 | GAA<br>Glu        | TTA<br>Leu        | TGC<br>Cys        | AGT<br>Ser        | GCT<br>Ala<br>415       | GCC<br>Ala        | ATA<br>Ile        | ACC<br>Thr        | ATG<br>Met        | AGT<br>Ser<br>420 | 384 |
| GAT<br>Asp        | AAC<br>Asn        | ACT<br>Thr        | GCG<br>Ala        | GCC<br>Ala<br>425 | AAC<br>Asn        | TTA<br>Leu        | CTT<br>Leu        | CTG<br>Leu        | ACA<br>Thr<br>430 | ACG<br>Thr              | ATC<br>Ile        | GGA<br>Gly        | GGA<br>Gly        | CCG<br>Pro<br>435 | Lys               | 432 |
| GAG<br>Glu        | CTA<br>Leu        | ACC<br>Thr        | GCT<br>Ala<br>440 | TTT<br>Phe        | TTG<br>Leu        | CAC<br>His        | AAC<br>Asn        | ATG<br>Met<br>445 | GGG<br>Gly        | GAT<br>Asp              | CAT<br>His        | GTA<br>Val        | ACT<br>Thr<br>450 | Arg               | CTT<br>Leu        | 480 |
| GAT<br>Asp        | CGT<br>Arg        | TGG<br>Trp<br>455 | GAA<br>Glu        | CCG<br>Pro        | GAG<br>Glu        | CTG<br>Leu        | AAT<br>Asn<br>460 | GAA<br>Glu        | GCC<br>Ala        | ATA<br>Ile              | CCA<br>Pro        | AAC<br>Asn<br>465 | GAC<br>Asp        | GAG<br>Glu        | CGT<br>Arg        | 528 |
| Asp               | ACC<br>Thr<br>470 | Thr               | ATG<br>Met        | Pro               | GTA<br>Val        | Ala               | Met               | GCA<br>Ala        | Thr               | Thr                     | TTG<br>Leu<br>480 |                   | AAA<br>Lys        | CTA<br>Leu        | TTA<br>Leu        | 576 |
| ACT<br>Thr<br>485 | GGC<br>Gly        | GAA<br>Glu        | CTA<br>Leu        | CTT<br>Leu        | ACT<br>Thr<br>490 | CTA<br>Leu        | GCT<br>Ala        | TCC<br>Ser        | CGG<br>Arg        | CAA<br>Gln<br>495       | CAA<br>Gln        | TTA<br>Leu        | ATA<br>Ile        | GAC<br>Asp        | TGG<br>Trp<br>500 | 624 |
| ATG<br>Met        | GAG<br>Glu        | GCG<br>Ala        | GAT<br>Asp        | AAA<br>Lys<br>505 | GTT<br>Val        | GCA<br>Ala        | GGA<br>Gly        | CCA<br>Pro        | CTT<br>Leu<br>510 | CTG<br>Leu              | CGC<br>Arg        | TCG<br>Ser        | GCC<br>Ala        | CTT<br>Leu<br>515 | CCG<br>Pro        | 672 |
| GCT<br>Ala        | GGC<br>Gly        | TGG<br>Trp        | TTT<br>Phe<br>520 | ATT<br>Ile        | GCT<br>Ala        | GAT<br>Asp        | AAA<br>Lys        | TCT<br>Ser<br>525 | GGA<br>Gly        | GCC<br>Ala              | GGT<br>Gly        | GAG<br>Glu        | CGT<br>Arg<br>530 | GGG<br>Gly        | TCT<br>Ser        | 720 |

| CGC<br>Arg        | GGT<br>Gly        | ATC<br>Ile<br>535 | ATT<br>Ile | GCA<br>Ala | GCA<br>Ala        | CTG<br>Leu        | GGG<br>Gly<br>540 | CCA<br>Pro | GAT<br>Asp | GGT<br>Gly        | AAG<br>Lys        | CCC<br>Pro<br>545 | Ser        | CGT<br>Arg | ATC<br>Il  | e<br>e | 768 |
|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|------------|--------|-----|
| GTA<br>Val        | GTT<br>Val<br>550 | ATC<br>Ile        | TAC<br>Tyr | ACG<br>Thr | ACG<br>Thr        | GGG<br>Gly<br>555 | AGT<br>Ser        | CAG<br>Gln | GCA<br>Ala | ACT<br>Thr        | ATG<br>Met<br>560 | Asp               | GAA<br>Glu | CGA<br>Arg | AAT<br>As: | n      | 816 |
| AGA<br>Arg<br>565 | CAG<br>Gln        | ATC<br>Ile        | GCT<br>Ala | GAG<br>Glu | ATA<br>Ile<br>570 | GGT<br>Gly        | GCC<br>Ala        | TCA<br>Ser | CTG<br>Leu | ATT<br>Ile<br>575 | AAG<br>Lys        | CAT<br>His        | TGG<br>Trp | TAA<br>*   |            |        | 861 |

#### (2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 287 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala 1 5 10 15

Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr Leu Val Lys Val Lys 20 25 30

Asp Ala Glu Asp Gln Leu Gly Ala Arg Val Gly Tyr Ile Glu Leu Asp 35 40 45

Leu Asn Ser Gly Lys Ile Leu Glu Ser Phe Arg Pro Glu Glu Arg Phe 50 55 60

Pro Met Met Ser Thr Phe Lys Val Leu Leu Cys Gly Ala Val Leu Ser 65 70 75 80

Arg Val Asp Ala Gly Gln Glu Gln Leu Gly Arg Arg Ile His Tyr Ser 85 90 95

Gln Asn Asp Leu Val Glu Tyr Ser Pro Val Thr Glu Lys His Leu Thr
100 105 110

Asp Gly Met Thr Val Arg Glu Leu Cys Ser Ala Ala Ile Thr Met Ser 115 120 125

Asp Asn Thr Ala Ala Asn Leu Leu Leu Thr Thr Ile Gly Gly Pro Lys 130 135 140

Glu Leu Thr Ala Phe Leu His Asn Met Gly Asp His Val Thr Arg Leu 145 150 155 160

Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile Pro Asn Asp Glu Arg 165 170 175

Asp Thr Thr Met Pro Val Ala Met Ala Thr Thr Leu Arg Lys Leu Leu 180 185 190

Thr Gly Glu Leu Leu Thr Leu Ala Ser Arg Gln Gln Leu Ile Asp Trp 195 200 205

Met Glu Ala Asp Lys Val Ala Gly Pro Leu Leu Arg Ser Ala Leu Pro 210 215 220

Ala Gly Trp Phe Ile Ala Asp Lys Ser Gly Ala Gly Glu Arg Gly Ser

| 225 |     |            |            |            | 230 |     |            |            |            | 235 |     |            |            |            | 240 |
|-----|-----|------------|------------|------------|-----|-----|------------|------------|------------|-----|-----|------------|------------|------------|-----|
| Arg | Gly | Ile        | Ile        | Ala<br>245 | Ala | Leu | Gly        | Pro        | Asp<br>250 | Gly | Lys | Pro        | Ser        | Arg<br>255 | Ile |
| Val | Val | Ile        | Tyr<br>260 | Thr        | Thr | Gly | Ser        | Gln<br>265 | Ala        | Thr | Met | Asp        | Glu<br>270 | Arg        | Asn |
| Arg | Gln | Ile<br>275 | Ala        | Glu        | Ile | Gly | Ala<br>280 | Ser        | Leu        | Ile | Lys | His<br>285 | Trp        | *          |     |

#### (2) INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 7195 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: both
  - (D) TOPOLOGY: both

#### (vii) IMMEDIATE SOURCE:

(B) CLONE: pBAD-ETgamma

#### (ix) FEATURE:

- (A) NAME/KEY: misc\_feature
- (B) LOCATION: 3588.4004
- (D) OTHER INFORMATION:/product= "red gamma"

#### (xi) SEQUENCE DESCRIPTION: SEO ID NO: 10:

ATCGATGCAT AATGTGCCTG TCAAATGGAC GAAGCAGGGA TTCTGCAAAC CCTATGCTAC 60 TCCGTCAAGC CGTCAATTGT CTGATTCGTT ACCAATTATG ACAACTTGAC GGCTACATCA 120 TTCACTTTTT CTTCACAACC GGCACGGAAC TCGCTCGGGC TGGCCCCGGT GCATTTTTTA 180 AATACCCGCG AGAAATAGAG TTGATCGTCA AAACCAACAT TGCGACCGAC GGTGGCGATA 240 GGCATCCGGG TGGTGCTCAA AAGCAGCTTC GCCTGGCTGA TACGTTGGTC CTCGCGCCAG 300 CTTAAGACGC TAATCCCTAA CTGCTGGCGG AAAAGATGTG ACAGACGCGA CGGCGACAAG 360 CAAACATGCT GTGCGACGCT GGCGATATCA AAATTGCTGT CTGCCAGGTG ATCGCTGATG TACTGACAAG CCTCGCGTAC CCGATTATCC ATCGGTGGAT GGAGCGACTC GTTAATCGCT TCCATGCGCC GCAGTAACAA TTGCTCAAGC AGATTTATCG CCAGCAGCTC CGAATAGCGC CCTTCCCCTT GCCCGGCGTT AATGATTTGC CCAAACAGGT CGCTGAAATG CGGCTGGTGC 600 GCTTCATCCG GGCGAAAGAA CCCCGTATTG GCAAATATTG ACGGCCAGTT AAGCCATTCA 660 TGCCAGTAGG CGCGCGGACG AAAGTAAACC CACTGGTGAT ACCATTCGCG AGCCTCCGGA 720 TGACGACCGT AGTGATGAAT CTCTCCTGGC GGGAACAGCA AAATATCACC CGGTCGGCAA 780 ACAAATTCTC GTCCCTGATT TTTCACCACC CCCTGACCGC GAATGGTGAG ATTGAGAATA 840 TAACCTTTCA TTCCCAGCGG TCGGTCGATA AAAAAATCGA GATAACCGTT GGCCTCAATC 900 GGCGTTAAAC CCGCCACCAG ATGGGCATTA AACGAGTATC CCGGCAGCAG GGGATCATTT 960 TGCGCTTCAG CCATACTTT CATACTCCCG CCATTCAGAG AAGAAACCAA TTGTCCATAT 1020

| TGCATCAGAC ATTGCC  | GTCA CTGCGTCTT  | TACTGGCTCT   | TCTCGCTAAC | CAAACCGGTA | 1080 |
|--------------------|-----------------|--------------|------------|------------|------|
| ACCCCGCTTA TTAAAA  | GCAT TCTGTAACA  | A AGCGGGACCA | AAGCCATGAC | AAAAACGCGT | 1140 |
| AACAAAAGTG TCTATA  | ATCA CGGCAGAAA  | A GTCCACATTG | ATTATTTGCA | CGGCGTCACA | 1200 |
| CTTTGCTATG CCATAG  | CATT TTTATCCATA | A AGATTAGCGG | ATCCTACCTG | ACGCTTTTTA | 1260 |
| TCGCAACTCT CTACTG  | TTTC TCCATACCC  | TTTTTTTGGG   | CTAGCAGGAG | GAATTCACCA | 1320 |
| TGGATCCCGT AATCGT  | AGAA GACATAGAG  | CAGGTATTTA   | TTACGGAATT | TCGAATGAGA | 1380 |
| ATTACCACGC GGGTCCC | CGGT ATCAGTAAGT | CTCAGCTCGA   | TGACATTGCT | GATACTCCGG | 1440 |
| CACTATATTT GTGGCG  | TAAA AATGCCCCC  | TGGACACCAC   | AAAGACAAAA | ACGCTCGATT | 1500 |
| TAGGAACTGC TTTCCA  | CTGC CGGGTACTT  | AACCGGAAGA   | ATTCAGTAAC | CGCTTTATCG | 1560 |
| TAGCACCTGA ATTTAA  | CCGC CGTACAAAC  | CCGGAAAAGA   | AGAAGAGAAA | GCGTTTCTGA | 1620 |
| TGGAATGCGC AAGCACA | AGGA AAAACGGTTA | TCACTGCGGA   | AGAAGGCCGG | AAAATTGAAC | 1680 |
| TCATGTATCA AAGCGT  | TATG GCTTTGCCGC | TGGGGCAATG   | GCTTGTTGAA | AGCGCCGGAC | 1740 |
| ACGCTGAATC ATCAAT  | TTAC TGGGAAGAT  | CTGAAACAGG   | AATTTTGTGT | CGGTGCCGTC | 1800 |
| CGGACAAAAT TATCCC  | TGAA TTTCACTGGA | 1 TCATGGACGT | GAAAACTACG | GCGGATATTC | 1860 |
| AACGATTCAA AACCGC  | TTAT TACGACTACO | GCTATCACGT   | TCAGGATGCA | TTCTACAGTG | 1920 |
| ACGGTTATGA AGCACAC | GTTT GGAGTGCAG  | CAACTTTCGT   | TTTTCTGGTT | GCCAGCACAA | 1980 |
| CTATTGAATG CGGACG  | TTAT CCGGTTGAA  | TTTTCATGAT   | GGGCGAAGAA | GCAAAACTGG | 2040 |
| CAGGTCAACA GGAATA  | TCAC CGCAATCTGO | GAACCCTGTC   | TGACTGCCTG | AATACCGATG | 2100 |
| AATGGCCAGC TATTAAC | GACA TTATCACTGO | CCCGCTGGGC   | TAAGGAATAT | GCAAATGACT | 2160 |
| AGATCTCGAG GTACCCC | GAGC ACGTGTTGAC | : AATTAATCAT | CGGCATAGTA | TATCGGCATA | 2220 |
| GTATAATACG ACAAGG  | TGAG GAACTAAACO | ATGGCTAAGC   | AACCACCAAT | CGCAAAAGCC | 2280 |
| GATCTGCAAA AAACTCA | AGGG AAACCGTGCA | CCAGCAGCAG   | TTAAAAATAG | CGACGTGATT | 2340 |
| AGTTTTATTA ACCAGCO | CATC AATGAAAGAG | CAACTGGCAG   | CAGCTCTTCC | ACGCCATATG | 2400 |
| ACGGCTGAAC GTATGAT | TCCG TATCGCCACO | CACAGAAATTC  | GTAAAGTTCC | GGCGTTAGGA | 2460 |
| AACTGTGACA CTATGAC | GTTT TGTCAGTGCG | ATCGTACAGT   | GTTCACAGCT | CGGACTTGAG | 2520 |
| CCAGGTAGCG CCCTCGC | GTCA TGCATATTTA | CTGCCTTTTG   | GTAATAAAAA | CGAAAAGAGC | 2580 |
| GGTAAAAAGA ACGTTCA | AGCT AATCATTGGC | TATCGCGGCA   | TGATTGATCT | GGCTCGCCGT | 2640 |
| TCTGGTCAAA TCGCCAC | GCCT GTCAGCCCGT | GTTGTCCGTG   | AAGGTGACGA | GTTTAGCTTC | 2700 |
| GAATTTGGCC TTGATGA | AAAA GTTAATACAC | CGCCCGGGAG   | AAAACGAAGA | TGCCCCGGTT | 2760 |
| ACCCACGTCT ATGCTGT | TCGC AAGACTGAAA | GACGGAGGTA   | CTCAGTTTGA | AGTTATGACG | 2820 |
| CGCAAACAGA TTGAGCT | TGGT GCGCAGCCTG | AGTAAAGCTG   | GTAATAACGG | GCCGTGGGTA | 2880 |
| ACTCACTGGG AAGAAAT | TGGC AAAGAAAACG | GCTATTCGTC   | GCCTGTTCAA | ATATTTGCCC | 2940 |
| GTATCAATTG AGATCCA | AGCG TGCAGTATCA | ATGGATGAAA   | AGGAACCACT | GACAATCGAT | 3000 |
| CCTGCAGATT CCTCTGT | TATT AACCGGGGAA | TACAGTGTAA   | TCGATAATTC | AGAGGAATAG | 3060 |

ATCTAAGCTT CCTGCTGAAC ATCAAAGGCA AGAAAACATC TGTTGTCAAA GACAGCATCC 3120 TTGAACAAGG ACAATTAACA GTTAACAAAT AAAAACGCAA AAGAAAATGC CGATATCCTA 3180 TTGGCATTTT CTTTTATTTC TTATCAACAT AAAGGTGAAT CCCATACCTC GAGCTTCACG 3240 CTGCCGCAAG CACTCAGGGC GCAAGGGCTG CTAAAAGGAA GCGGAACACG TAGAAAGCCA 3300 GTCCGCAGAA ACGGTGCTGA CCCCGGATGA ATGTCAGCTA CTGGGCTATC TGGACAAGGG 3360 AAAACGCAAG CGCAAAGAGA AAGCAGGTAG CTTGCAGTGG GCTTACATGG CGATAGCTAG 3420 ACTGGGCGGT TTTATGGACA GCAAGCGAAC CGGAATTGCC AGCTGGGGCG CCCTCTGGTA 3480 AGGTTGGGAA GCCCTGCAAA GTAAACTGGA TGGCTTTCTT GCCGCCAAGG ATCTGATGGC 3540 GCAGGGGATC AAGATCTGAT CAAGAGACAG GATGAGGATC GTTTCGCATG GATATTAATA 3600 CTGAAACTGA GATCAAGCAA AAGCATTCAC TAACCCCCTT TCCTGTTTTC CTAATCAGCC 3660 CGGCATTTCG CGGGCGATAT TTTCACAGCT ATTTCAGGAG TTCAGCCATG AACGCTTATT 3720 ACATTCAGGA TCGTCTTGAG GCTCAGAGCT GGGCGCGTCA CTACCAGCAG CTCGCCCGTG 3780 AAGAGAAAGA GGCAGAACTG GCAGACGACA TGGAAAAAGG CCTGCCCCAG CACCTGTTTG 3840 AATCGCTATG CATCGATCAT TTGCAACGCC ACGGGGCCAG CAAAAAATCC ATTACCCGTG 3900 CGTTTGATGA CGATGTTGAG TTTCAGGAGC GCATGGCAGA ACACATCCGG TACATGGTTG 3960 AAACCATTGC TCACCACCAG GTTGATATTG ATTCAGAGGT ATAAAACGAG TAGAAGCTTG 4020 GCTGTTTTGG CGGATGAGAG AAGATTTTCA GCCTGATACA GATTAAATCA GAACGCAGAA 4080 GCGGTCTGAT AAAACAGAAT TTGCCTGGCG GCAGTAGCGC GGTGGTCCCA CCTGACCCCA 4140 TGCCGAACTC AGAAGTGAAA CGCCGTAGCG CCGATGGTAG TGTGGGGTCT CCCCATGCGA 4200 GAGTAGGGAA CTGCCAGGCA TCAAATAAAA CGAAAGGCTC AGTCGAAAGA CTGGGCCTTT 4260 CGTTTTATCT GTTGTTTGTC GGTGAACGCT CTCCTGAGTA GGACAAATCC GCCGGGAGCG 4320 GATTTGAACG TTGCGAAGCA ACGGCCCGGA GGGTGGCGGG CAGGACGCCC GCCATAAACT 4380 GCCAGGCATC AAATTAAGCA GAAGGCCATC CTGACGGATG GCCTTTTTGC GTTTCTACAA 4440 ACTCTTTTGT TTATTTTCT AAATACATTC AAATATGTAT CCGCTCATGA GACAATAACC 4500 CTGATAAATG CTTCAATAAT ATTGAAAAAG GAAGAGTATG AGTATTCAAC ATTTCCGTGT 4560 CGCCCTTATT CCCTTTTTTG CGGCATTTTG CCTTCCTGTT TTTGCTCACC CAGAAACGCT 4620 GGTGAAAGTA AAAGATGCTG AAGATCAGTT GGGTGCACGA GTGGGTTACA TCGAACTGGA 4680 TCTCAACAGC GGTAAGATCC TTGAGAGTTT TCGCCCCGAA GAACGTTTTC CAATGATGAG 4740 CACTTTTAAA GTTCTGCTAT GTGGCGCGGT ATTATCCCGT GTTGACGCCG GGCAAGAGCA 4800 ACTCGGTCGC CGCATACACT ATTCTCAGAA TGACTTGGTT GAGTACTCAC CAGTCACAGA 4860 AAAGCATCTT ACGGATGGCA TGACAGTAAG AGAATTATGC AGTGCTGCCA TAACCATGAG 4920 TGATAACACT GCGGCCAACT TACTTCTGAC AACGATCGGA GGACCGAAGG AGCTAACCGC 4980 TTTTTTGCAC AACATGGGGG ATCATGTAAC TCGCCTTGAT CGTTGGGAAC CGGAGCTGAA 5040 TGAAGCCATA CCAAACGACG AGCGTGACAC CACGATGCCT GTAGCAATGG CAACAACGTT 5100 GCGCAAACTA TTAACTGGCG AACTACTTAC TCTAGCTTCC CGGCAACAAT TAATAGACTG 5160 GATGGAGGCG GATAAAGTTG CAGGACCACT TCTGCGCTCG GCCCTTCCGG CTGGCTGGTT 5220 TATTGCTGAT AAATCTGGAG CCGGTGAGCG TGGGTCTCGC GGTATCATTG CAGCACTGGG 5280 GCCAGATGGT AAGCCCTCCC GTATCGTAGT TATCTACACG ACGGGGAGTC AGGCAACTAT 5340 GGATGAACGA AATAGACAGA TCGCTGAGAT AGGTGCCTCA CTGATTAAGC ATTGGTAACT 5400 GTCAGACCAA GTTTACTCAT ATATACTTTA GATTGATTTA CGCGCCCTGT AGCGGCGCAT 5460 TAAGCGCGGC GGGTGTGGTG GTTACGCGCA GCGTGACCGC TACACTTGCC AGCGCCCTAG 5520 CGCCCGCTCC TTTCGCTTTC TTCCCTTCCT TTCTCGCCAC GTTCGCCGGC TTTCCCCGTC 5580 AAGCTCTAAA TCGGGGGCTC CCTTTAGGGT TCCGATTTAG TGCTTTACGG CACCTCGACC 5640 CCAAAAACT TGATTTGGGT GATGGTTCAC GTAGTGGGCC ATCGCCCTGA TAGACGGTTT 5700 TTCGCCCTTT GACGTTGGAG TCCACGTTCT TTAATAGTGG ACTCTTGTTC CAAACTTGAA 5760 CAACACTCAA CCCTATCTCG GGCTATTCTT TTGATTTATA AGGGATTTTG CCGATTTCGG 5820 CCTATTGGTT AAAAAATGAG CTGATTTAAC AAAAATTTAA CGCGAATTTT AACAAAATAT 5880 TAACGTTTAC AATTTAAAAG GATCTAGGTG AAGATCCTTT TTGATAATCT CATGACCAAA 5940 ATCCCTTAAC GTGAGTTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAA GATCAAAGGA 6000 TCTTCTTGAG ATCCTTTTT TCTGCGCGTA ATCTGCTGCT TGCAAACAAA AAAACCACCG 6060 CTACCAGCGG TGGTTTGTTT GCCGGATCAA GAGCTACCAA CTCTTTTTCC GAAGGTAACT 6120 GGCTTCAGCA GAGCGCAGAT ACCAAATACT GTCCTTCTAG TGTAGCCGTA GTTAGGCCAC 6180 CACTTCAAGA ACTCTGTAGC ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAGTG 6240 GCTGCTGCCA GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG ATAGTTACCG 6300 GATAAGGCGC AGCGGTCGGG CTGAACGGGG GGTTCGTGCA CACAGCCCAG CTTGGAGCGA 6360 ACGACCTACA CCGAACTGAG ATACCTACAG CGTGAGCTAT GAGAAAGCGC CACGCTTCCC 6420 GAAGGGAGAA AGGCGGACAG GTATCCGGTA AGCGGCAGGG TCGGAACAGG AGAGCGCACG 6480 AGGGAGCTTC CAGGGGGAAA CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC 6540 TGACTTGAGC GTCGATTTTT GTGATGCTCG TCAGGGGGGC GGAGCCTATG GAAAAACGCC 6600 AGCAACGCGG CCTTTTACG GTTCCTGGCC TTTTGCTGGC CTTTTGCTCA CATGTTCTTT 6660 CCTGCGTTAT CCCCTGATTC TGTGGATAAC CGTATTACCG CCTTTGAGTG AGCTGATACC 6720 GCTCGCCGCA GCCGAACGAC CGAGCGCAGC GAGTCAGTGA GCGAGGAAGC GGAAGAGCGC 6780 CTGATGCGGT ATTTTCTCCT TACGCATCTG TGCGGTATTT CACACCGCAT AGGGTCATGG 6840 CTGCGCCCG ACACCCGCCA ACACCCGCTG ACGCGCCTG ACGGGCTTGT CTGCTCCCGG 6900 CATCCGCTTA CAGACAAGCT GTGACCGTCT CCGGGAGCTG CATGTGTCAG AGGTTTTCAC 6960 CGTCATCACC GAAACGCGCG AGGCAGCAAG GAGATGGCGC CCAACAGTCC CCCGGCCACG 7020 GGGCCTGCCA CCATACCCAC GCCGAAACAA GCGCTCATGA GCCCGAAGTG GCGAGCCCGA 7080 TCTTCCCCAT CGGTGATGTC GGCGATATAG GCGCCAGCAA CCGCACCTGT GGCGCCGGTG 7140

# ATGCCGGCCA CGATGCGTCC GGCGTAGAGG ATCTGCTCAT GTTTGACAGC TTATC 7195

- (2) INFORMATION FOR SEQ ID NO: 11:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 7010 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: both
    - (D) TOPOLOGY: both
  - (vii) IMMEDIATE SOURCE:
    - (B) CLONE: pBAD-alpha-beta-gamma
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION:1320..2000
    - (D) OTHER INFORMATION:/product= "red alpha"
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION: 2086..2871
    - (D) OTHER INFORMATION:/product= "red beta"
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION: 3403..3819
    - (D) OTHER INFORMATION:/product= "red gamma"
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

ATCGATGCAT AATGTGCCTG TCAAATGGAC GAAGCAGGGA TTCTGCAAAC CCTATGCTAC 60 TCCGTCAAGC CGTCAATTGT CTGATTCGTT ACCAATTATG ACAACTTGAC GGCTACATCA 120 TTCACTTTTT CTTCACAACC GGCACGGAAC TCGCTCGGGC TGGCCCCGGT GCATTTTTTA 180 AATACCCGCG AGAAATAGAG TTGATCGTCA AAACCAACAT TGCGACCGAC GGTGGCGATA 240 GGCATCCGGG TGGTGCTCAA AAGCAGCTTC GCCTGGCTGA TACGTTGGTC CTCGCGCCAG 300 CTTAAGACGC TAATCCCTAA CTGCTGGCGG AAAAGATGTG ACAGACGCGA CGGCGACAAG 360 CAAACATGCT GTGCGACGCT GGCGATATCA AAATTGCTGT CTGCCAGGTG ATCGCTGATG 420 TACTGACAAG CCTCGCGTAC CCGATTATCC ATCGGTGGAT GGAGCGACTC GTTAATCGCT 480 TCCATGCGCC GCAGTAACAA TTGCTCAAGC AGATTTATCG CCAGCAGCTC CGAATAGCGC 540 CCTTCCCCTT GCCCGGCGTT AATGATTTGC CCAAACAGGT CGCTGAAATG CGGCTGGTGC GCTTCATCCG GGCGAAAGAA CCCCGTATTG GCAAATATTG ACGGCCAGTT AAGCCATTCA 660 TGCCAGTAGG CGCGCGGACG AAAGTAAACC CACTGGTGAT ACCATTCGCG AGCCTCCGGA 720 TGACGACCGT AGTGATGAAT CTCTCCTGGC GGGAACAGCA AAATATCACC CGGTCGGCAA 780 ACAAATTCTC GTCCCTGATT TTTCACCACC CCCTGACCGC GAATGGTGAG ATTGAGAATA 840 TAACCTTTCA TTCCCAGCGG TCGGTCGATA AAAAAATCGA GATAACCGTT GGCCTCAATC 900 GGCGTTAAAC CCGCCACCAG ATGGGCATTA AACGAGTATC CCGGCAGCAG GGGATCATTT 960

| TGCC              | CTT               | CAG               | CAT               | ACTT              | rr c              | ATACT             | rccc              | G CC              | ATTC              | AGAG              | AAGA              | AAAC              | CAA '             | TTGTC             | CATA              | T  | 1020  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----|-------|
| TGC               | ATCAC             | BAC A             | ATTGO             | CCGT              | CA CI             | rgcgi             | CTT               | AT T              | CTGG              | CTCT              | TCT               | CGCT              | AAC (             | CAAAC             | CGGT              | Ά  | 1080  |
| ACC               | CCGC              | TA 7              | <b>LAAT</b>       | AAGC              | AT TO             | CTGTA             | AACA              | A AGO             | CGGGZ             | ACCA              | AAG               | CATO              | AC :              | AAAAA             | CGCG              | T  | 1140  |
| AACA              | )AAA              | STG 1             | CTA               | TAAT              | CA CO             | GCAC              | AAA               | A GTO             | CAC               | ATTG              | ATTA              | ATTTC             | CA (              | CGGCG             | TCAC              | 'A | 1200  |
| CTTT              | rgcta             | ATG (             | CATA              | AGCA:             | rr ri             | TATO              | CATA              | A AG              | ATTA              | GCGG              | ATC               | CTACC             | CTG I             | ACGCI             | TTTT              | Ά  | 1260  |
| TCGC              | CAACT             | CT (              | CTAC              | GTT:              | rc To             | CATA              | ACCC              | G TT              | TTTT:             | rggg              | CTAC              | CAGO              | SAG (             | GAATI             | CACC              | !  | 1319  |
| ATG<br>Met        | ACA<br>Thr        | CCG<br>Pro<br>290 | GAC<br>Asp        | ATT<br>Ile        | ATC<br>Ile        | CTG<br>Leu        | CAG<br>Gln<br>295 | CGT<br>Arg        | ACC<br>Thr        | GĞG<br>Gly        | ATC<br>Ile        | GAT<br>Asp<br>300 | GTG<br>Val        | AGA<br>. Arg      | GCT<br>Ala        |    | 1367  |
| GTC<br>Val        | GAA<br>Glu<br>305 | CAG<br>Gln        | GGG<br>Gly        | GAT<br>Asp        | GAT<br>Asp        | GCG<br>Ala<br>310 | TGG<br>Trp        | CAC<br>His        | AAA<br>Lys        | TTA<br>Leu        | CGG<br>Arg<br>315 | CTC<br>Leu        | GGC<br>Gly        | GTC<br>Val        | ATC<br>Ile        |    | 141.5 |
| ACC<br>Thr<br>320 | GCT<br>Ala        | TCA<br>Ser        | GAA<br>Glu        | GTT<br>Val        | CAC<br>His<br>325 | AAC<br>Asn        | GTG<br>Val        | ATA<br>Ile        | GCA<br>Ala        | AAA<br>Lys<br>330 | Pro               | CGC<br>Arg        | TCC<br>Ser        | GGA<br>Gly        | AAG<br>Lys<br>335 |    | 1463  |
| AAG<br>Lys        | TGG<br>Trp        | CCT<br>Pro        | GAC<br>Asp        | ATG<br>Met<br>340 | AAA<br>Lys        | ATG<br>Met        | TCC<br>Ser        | TAC<br>Tyr        | TTC<br>Phe<br>345 | CAC<br>His        | ACC<br>Thr        | CTG<br>Leu        | CTT<br>Leu        | GCT<br>Ala<br>350 | GAG<br>Glu        |    | 1511  |
| GTT<br>Val        | TGC<br>Cys        | ACC<br>Thr        | GGT<br>Gly<br>355 | GTG<br>Val        | GCT<br>Ala        | CCG<br>Pro        | GAA<br>Glu        | GTT<br>Val<br>360 | Asn               | GCT<br>Ala        | AAA<br>Lys        | GCA<br>Ala        | CTG<br>Lev<br>365 | GCC<br>Ala        | TGG<br>Trp        |    | 1559  |
| GGA<br>Gly        | AAA<br>Lys        | CAG<br>Gln<br>370 | TAC<br>Tyr        | GAG<br>Glu        | AAC<br>Asn        | GAC<br>Asp        | GCC<br>Ala<br>375 | AGA<br>Arg        | ACC<br>Thr        | CTG<br>Leu        | TTT<br>Phe        | GAA<br>Glu<br>380 | TTC<br>Phe        | ACT<br>Thr        | TCC<br>Ser        |    | 1607  |
| GGC<br>Gly        | GTG<br>Val<br>385 | AAT<br>Asn        | GTT<br>Val        | ACT<br>Thr        | GAA<br>Glu        | TCC<br>Ser<br>390 | CCG<br>Pro        | ATC<br>Ile        | ATC<br>Ile        | TAT<br>Tyr        | CGC<br>Arg<br>395 | GAC<br>Asp        | GAA<br>Glu        | AGT<br>Ser        | ATG<br>Met        |    | 1655  |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | Asp               |                   |                   | GGC<br>Gly        |                   |    | 1703  |
| GAA<br>Glu        | CTG<br>Leu        | AAA<br>Lys        | TGC<br>Cys        | CCG<br>Pro<br>420 | TTT<br>Phe        | ACC<br>Thr        | TCC<br>Ser        | CGG<br>Arg        | GAT<br>Asp<br>425 | Phe               | ATG<br>Met        | AAG<br>Lys        | TTC<br>Phe        | CGG<br>Arg<br>430 | CTC<br>Leu        |    | 1751  |
|                   |                   |                   |                   |                   |                   |                   |                   |                   | Tyr               |                   |                   |                   |                   | CAG<br>Gln        |                   |    | 1799  |
| AGC<br>Ser        | ATG<br>Met        | TGG<br>Trp<br>450 | GTG<br>Val        | ACG<br>Thr        | CGA<br>Arg        | AAA<br>Lys        | AAT<br>Asn<br>455 | GCC<br>Ala        | TGG<br>Trp        | TAC<br>Tyr        | TTT<br>Phe        | GCC<br>Ala<br>460 | AAC<br>Asn        | TAT<br>Tyr        | GAC<br>Asp        |    | 1847  |
| CCG<br>Pro        | CGT<br>Arg<br>465 | ATG<br>Met        | AAG<br>Lys        | CGT<br>Arg        | GAA<br>Glu        | GGC<br>Gly<br>470 | CTG<br>Leu        | CAT<br>His        | TAT<br>Tyr        | GTC<br>Val        | GTG<br>Val<br>475 | Ile               | GAG<br>Glu        | CGG<br>Arg        | GAT<br>Asp        |    | 1895  |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | Pro               |                   |                   | ATC<br>: Ile      |                   |    | 1943  |
|                   |                   |                   |                   |                   | Leu               |                   |                   |                   |                   | Phe               |                   |                   |                   | GAG<br>Glu<br>510 | Gln               |    | 1991  |

| TGG CGA TAG ATCCGGTACC CGAGCACGTG TTGACAATTA ATCATCGGCA Trp Arg *                                                                                 | 2040 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| TAGTATATCG GCATAGTATA ATACGACAAG GTGAGGAACT AAACC ATG AGT ACT Met Ser Thr 1                                                                       | 2094 |
| GCA CTC GCA ACG CTG GCT GGG AAG CTG GCT GAA CGT GTC GGC ATG GAT Ala Leu Ala Thr Leu Ala Gly Lys Leu Ala Glu Arg Val Gly Met Asp 5 10 15           | 2142 |
| TCT GTC GAC CCA CAG GAA CTG ATC ACC ACT CTT CGC CAG ACG GCA TTT Ser Val Asp Pro Gln Glu Leu Ile Thr Thr Leu Arg Gln Thr Ala Phe 20 25 30 35       | 2190 |
| AAA GGT GAT GCC AGC GAT GCG CAG TTC ATC GCA TTA CTG ATC GTT GCC Lys Gly Asp Ala Ser Asp Ala Gln Phe Ile Ala Leu Leu Ile Val Ala 40 45 50          | 2238 |
| AAC CAG TAC GGC CTT AAT CCG TGG ACG AAA GAA ATT TAC GCC TTT CCT<br>Asn Gln Tyr Gly Leu Asn Pro Trp Thr Lys Glu Ile Tyr Ala Phe Pro<br>55 60 65    | 2286 |
| GAT AAG CAG AAT GGC ATC GTT CCG GTG GTG GGC GTT GAT GGC TGG TCC Asp Lys Gln Asn Gly Ile Val Pro Val Val Gly Val Asp Gly Trp Ser 70 75 80          | 2334 |
| CGC ATC ATC AAT GAA AAC CAG CAG TTT GAT GGC ATG GAC TTT GAG CAG<br>Arg Ile Ile Asn Glu Asn Gln Gln Phe Asp Gly Met Asp Phe Glu Gln<br>85 90 95    | 2382 |
| GAC AAT GAA TCC TGT ACA TGC CGG ATT TAC CGC AAG GAC CGT AAT CAT<br>Asp Asn Glu Ser Cys Thr Cys Arg Ile Tyr Arg Lys Asp Arg Asn His<br>100 115 110 | 2430 |
| CCG ATC TGC GTT ACC GAA TGG ATG GAT GAA TGC CGC CGC GAA CCA TTC Pro Ile Cys Val Thr Glu Trp Met Asp Glu Cys Arg Arg Glu Pro Phe 120 125 130       | 2478 |
| AAA ACT CGC GAA GGC AGA GAA ATC ACG GGG CCG TGG CAG TCG CAT CCC<br>Lys Thr Arg Glu Gly Arg Glu Ile Thr Gly Pro Trp Gln Ser His Pro<br>135 140 145 | 2526 |
| AAA CGG ATG TTA CGT CAT AAA GCC ATG ATT CAG TGT GCC CGT CTG GCC<br>Lys Arg Met Leu Arg His Lys Ala Met Ile Gln Cys Ala Arg Leu Ala<br>150 160     | 2574 |
| TTC GGA TTT GCT GGT ATC TAT GAC AAG GAT GAA GCC GAG CGC ATT GTC Phe Gly Phe Ala Gly Ile Tyr Asp Lys Asp Glu Ala Glu Arg Ile Val 165 170 175       | 2622 |
| GAA AAT ACT GCA TAC ACT GCA GAA CGT CAG CCG GAA CGC GAC ATC ACT Glu Asn Thr Ala Tyr Thr Ala Glu Arg Gln Pro Glu Arg Asp Ile Thr 180 195           | 2670 |
| CCG GTT AAC GAT GAA ACC ATG CAG GAG ATT AAC ACT CTG CTG ATC GCC Pro Val Asn Asp Glu Thr Met Gln Glu Ile Asn Thr Leu Leu Ile Ala 200 205 210       | 2718 |
| CTG GAT AAA ACA TGG GAT GAC GAC TTA TTG CCG CTC TGT TCC CAG ATA<br>Leu Asp Lys Thr Trp Asp Asp Asp Leu Leu Pro Leu Cys Ser Gln Ile<br>215 220 225 | 2766 |
| TTT CGC CGC GAC ATT CGT GCA TCG TCA GAA CTG ACA CAG GCC GAA GCA Phe Arg Arg Asp Ile Arg Ala Ser Ser Glu Leu Thr Gln Ala Glu Ala 230 240           | 2814 |

| GTA AAA GCT CTT GGA TTC CTG AAA CAG AAA GCC GCA GAG CAG AAG GTG Val Lys Ala Leu Gly Phe Leu Lys Gln Lys Ala Ala Glu Gln Lys Val 245 250 255    | 2862 |
|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| GCA GCA TAG ATCTCGAGAA GCTTCCTGCT GAACATCAAA GGCAAGAAAA<br>Ala Ala *<br>260                                                                    | 2911 |
| CATCTGTTGT CAAAGACAGC ATCCTTGAAC AAGGACAATT AACAGTTAAC AAATAAAAAC                                                                              | 2971 |
| GCAAAAGAAA ATGCCGATAT CCTATTGGCA TTTTCTTTTA TTTCTTATCA ACATAAAGGT                                                                              | 3031 |
| GAATCCCATA CCTCGAGCTT CACGCTGCCG CAAGCACTCA GGGCGCAAGG GCTGCTAAAA                                                                              | 3091 |
| GGAAGCGGAA CACGTAGAAA GCCAGTCCGC AGAAACGGTG CTGACCCCGG ATGAATGTCA                                                                              | 3151 |
| GCTACTGGGC TATCTGGACA AGGGAAAACG CAAGCGCAAA GAGAAAGCAG GTAGCTTGCA                                                                              | 3211 |
| GTGGGCTTAC ATGGCGATAG CTAGACTGGG CGGTTTTATG GACAGCAAGC GAACCGGAAT                                                                              | 3271 |
| TGCCAGCTGG GGCGCCCTCT GGTAAGGTTG GGAAGCCCTG CAAAGTAAAC TGGATGGCTT                                                                              | 3331 |
| TCTTGCCGCC AAGGATCTGA TGGCGCAGGG GATCAAGATC TGATCAAGAG ACAGGATGAG                                                                              | 3391 |
| GATCGTTTCG C ATG GAT ATT AAT ACT GAA ACT GAG ATC AAG CAA AAG CAT Met Asp Ile Asn Thr Glu Thr Glu Ile Lys Gln Lys His  1 5 10                   | 3441 |
| TCA CTA ACC CCC TTT CCT GTT TTC CTA ATC AGC CCG GCA TTT CGC GGG<br>Ser Leu Thr Pro Phe Pro Val Phe Leu Ile Ser Pro Ala Phe Arg Gly<br>15 20 25 | 3489 |
| CGA TAT TTT CAC AGC TAT TTC AGG AGT TCA GCC ATG AAC GCT TAT TAC Arg Tyr Phe His Ser Tyr Phe Arg Ser Ser Ala Met Asn Ala Tyr Tyr 30 45          | 3537 |
| ATT CAG GAT CGT CTT GAG GCT CAG AGC TGG GCG CGT CAC TAC CAG CAG<br>Ile Gln Asp Arg Leu Glu Ala Gln Ser Trp Ala Arg His Tyr Gln Gln<br>50 55 60 | 3585 |
| CTC GCC CGT GAA GAG AAA GAG GCA GAA CTG GCA GAC GAC ATG GAA AAA<br>Leu Ala Arg Glu Glu Lys Glu Ala Glu Leu Ala Asp Asp Met Glu Lys<br>65 70 75 | 3633 |
| GGC CTG CCC CAG CAC CTG TTT GAA TCG CTA TGC ATC GAT CAT TTG CAA Gly Leu Pro Gln His Leu Phe Glu Ser Leu Cys Ile Asp His Leu Gln 80 85 90       | 3681 |
| CGC CAC GGG GCC AGC AAA AAA TCC ATT ACC CGT GCG TTT GAT GAC GAT Arg His Gly Ala Ser Lys Ser Ile Thr Arg Ala Phe Asp Asp Asp 95 100 105         | 3729 |
| GTT GAG TTT CAG GAG CGC ATG GCA GAA CAC ATC CGG TAC ATG GTT GAA<br>Val Glu Phe Gln Glu Arg Met Ala Glu His Ile Arg Tyr Met Val Glu<br>110 125  | 3777 |
| ACC ATT GCT CAC CAC CAG GTT GAT ATT GAT TCA GAG GTA TAA Thr Ile Ala His His Gln Val Asp Ile Asp Ser Glu Val * 130 135                          | 3819 |
| AACGAGTAGA AGCTTGGCTG TTTTGGCGGA TGAGAGAAGA TTTTCAGCCT GATACAGATT                                                                              | 3879 |
| AAATCAGAAC GCAGAAGCGG TCTGATAAAA CAGAATTTGC CTGGCGGCAG TAGCGCGGTG                                                                              | 3939 |
| GTCCCACCTG ACCCCATGCC GAACTCAGAA GTGAAACGCC GTAGCGCCGA TGGTAGTGTG                                                                              | 3999 |
| GGGTCTCCCC ATGCGAGAGT AGGGAACTGC CAGGCATCAA ATAAAACGAA AGGCTCAGTC                                                                              | 4059 |

WO 99/29837

| GAAAGACTGG | GCCTTTCGTT | TTATCTGTTG | TTTGTCGGTG | AACGCTCTCC | TGAGTAGGAC | 4119         |
|------------|------------|------------|------------|------------|------------|--------------|
| AAATCCGCCG | GGAGCGGATT | TGAACGTTGC | GAAGCAACGG | CCCGGAGGGT | GGCGGGCAGG | 4179         |
| ACGCCCGCCA | TAAACTGCCA | GGCATCAAAT | TAAGCAGAAG | GCCATCCTGA | CGGATGGCCT | 4239         |
| TTTTGCGTTT | CTACAAACTC | TTTTGTTTAT | TTTTCTAAAT | ACATTCAAAT | ATGTATCCGC | 4299         |
| TCATGAGACA | ATAACCCTGA | TAAATGCTTC | AATAATATTG | AAAAAGGAAG | AGTATGAGTA | 4359         |
| TTCAACATTT | CCGTGTCGCC | CTTATTCCCT | TTTTTGCGGC | ATTTTGCCTT | CCTGTTTTTG | 4419         |
| CTCACCCAGA | AACGCTGGTG | AAAGTAAAAG | ATGCTGAAGA | TCAGTTGGGT | GCACGAGTGG | 4479         |
| GTTACATCGA | ACTGGATCTC | AACAGCGGTA | AGATCCTTGA | GAGTTTTCGC | CCCGAAGAAC | 4539         |
| GTTTTCCAAT | GATGAGCACT | TTTAAAGTTC | TGCTATGTGG | CGCGGTATTA | TCCCGTGTTG | 4599         |
| ACGCCGGGCA | AGAGCAACTC | GGTCGCCGCA | TACACTATTC | TCAGAATGAC | TTGGTTGAGT | 4659         |
| ACTCACCAGT | CACAGAAAAG | CATCTTACGG | ATGGCATGAC | AGTAAGAGAA | TTATGCAGTG | 4719         |
| CTGCCATAAC | CATGAGTGAT | AACACTGCGG | CCAACTTACT | TCTGACAACG | ATCGGAGGAC | 4779         |
| CGAAGGAGCT | AACCGCTTTT | TTGCACAACA | TGGGGGATCA | TGTAACTCGC | CTTGATCGTT | 4839         |
| GGGAACCGGA | GCTGAATGAA | GCCATACCAA | ACGACGAGCG | TGACACCACG | ATGCCTGTAG | 4899         |
| CAATGGCAAC | AACGTTGCGC | AAACTATTAA | CTGGCGAACT | ACTTACTCTA | GCTTCCCGGC | 4959         |
| AACAATTAAT | AGACTGGATG | GAGGCGGATA | AAGTTGCAGG | ACCACTTCTG | CGCTCGGCCC | 5019         |
| TTCCGGCTGG | CTGGTTTATT | GCTGATAAAT | CTGGAGCCGG | TGAGCGTGGG | TCTCGCGGTA | 5079         |
| TCATTGCAGC | ACTGGGGCCA | GATGGTAAGC | CCTCCCGTAT | CGTAGTTATC | TACACGACGG | 5139         |
| GGAGTCAGGC | AACTATGGAT | GAACGAAATA | GACAGATCGC | TGAGATAGGT | GCCTCACTGA | 5199         |
| TTAAGCATTG | GTAACTGTCA | GACCAAGTTT | ACTCATATAT | ACTTTAGATT | GATTTACGCG | 5259         |
| CCCTGTAGCG | GCGCATTAAG | CGCGGCGGGT | GTGGTGGTTA | CGCGCAGCGT | GACCGCTACA | 5319         |
| CTTGCCAGCG | CCCTAGCGCC | CGCTCCTTTC | GCTTTCTTCC | CTTCCTTTCT | CGCCACGTTC | 5379         |
| GCCGGCTTTC | CCCGTCAAGC | TCTAAATCGG | GGGCTCCCTT | TAGGGTTCCG | ATTTAGTGCT | 5439         |
| TTACGGCACC | TCGACCCCAA | AAAACTTGAT | TTGGGTGATG | GTTCACGTAG | TGGGCCATCG | 5499         |
| CCCTGATAGA | CGGTTTTTCG | CCCTTTGACG | TTGGAGTCCA | CGTTCTTTAA | TAGTGGACTC | 5559         |
| TTGTTCCAAA | CTTGAACAAC | ACTCAACCCT | ATCTCGGGCT | ATTCTTTTGA | TTTATAAGGG | 5619         |
| ATTTTGCCGA | TTTCGGCCTA | TTGGTTAAAA | AATGAGCTGA | TTTAACAAAA | ATTTAACGCG | <b>56</b> 79 |
| AATTTTAACA | AAATATTAAC | GTTTACAATT | TAAAAGGATC | TAGGTGAAGA | TCCTTTTTGA | 5739         |
| TAATCTCATG | ACCAAAATCC | CTTAACGTGA | GTTTTCGTTC | CACTGAGCGT | CAGACCCCGT | 5799         |
| AGAAAAGATC | AAAGGATCTT | CTTGAGATCC | TTTTTTTCTG | CGCGTAATCT | GCTGCTTGCA | 5859         |
| ААСАААААА  | CCACCGCTAC | CAGCGGTGGT | TTGTTTGCCG | GATCAAGAGC | TACCAACTCT | 5919         |
| TTTTCCGAAG | GTAACTGGCT | TCAGCAGAGC | GCAGATACCA | AATACTGTCC | TTCTAGTGTA | 5979         |
| GCCGTAGTTA | GGCCACCACT | TCAAGAACTC | TGTAGCACCG | CCTACATACC | TCGCTCTGCT | 6039         |
| AATCCTGTTA | CCAGTGGCTG | CTGCCAGTGG | CGATAAGTCG | TGTCTTACCG | GGTTGGACTC | 6099         |

| AAGACGATAG | TTACCGGATA | AGGCGCAGCG | GTCGGGCTGA | ACGGGGGGTT | CGTGCACACA | 6159 |
|------------|------------|------------|------------|------------|------------|------|
| GCCCAGCTTG | GAGCGAACGA | CCTACACCGA | ACTGAGATAC | CTACAGCGTG | AGCTATGAGA | 6219 |
| AAGCGCCACG | CTTCCCGAAG | GGAGAAAGGC | GGACAGGTAT | CCGGTAAGCG | GCAGGGTCGG | 6279 |
| AACAGGAGAG | CGCACGAGGG | AGCTTCCAGG | GGGAAACGCC | TGGTATCTTT | ATAGTCCTGT | 6339 |
| CGGGTTTCGC | CACCTCTGAC | TTGAGCGTCG | ATTTTTGTGA | TGCTCGTCAG | GGGGGCGGAG | 6399 |
| CCTATGGAAA | AACGCCAGCA | ACGCGGCCTT | TTTACGGTTC | CTGGCCTTTT | GCTGGCCTTT | 6459 |
| TGCTCACATG | TTCTTTCCTG | CGTTATCCCC | TGATTCTGTG | GATAACCGTA | TTACCGCCTT | 6519 |
| TGAGTGAGCT | GATACCGCTC | GCCGCAGCCG | AACGACCGAG | CGCAGCGAGT | CAGTGAGCGA | 6579 |
| GGAAGCGGAA | GAGCGCCTGA | TGCGGTATTT | TCTCCTTACG | CATCTGTGCG | GTATTTCACA | 6639 |
| CCGCATAGGG | TCATGGCTGC | GCCCCGACAC | CCGCCAACAC | CCGCTGACGC | GCCCTGACGG | 6699 |
| GCTTGTCTGC | TCCCGGCATC | CGCTTACAGA | CAAGCTGTGA | CCGTCTCCGG | GAGCTGCATG | 6759 |
| TGTCAGAGGT | TTTCACCGTC | ATCACCGAAA | CGCGCGAGGC | AGCAAGGAGA | TGGCGCCCAA | 6819 |
| CAGTCCCCCG | GCCACGGGGC | CTGCCACCAT | ACCCACGCCG | AAACAAGCGC | TCATGAGCCC | 6879 |
| GAAGTGGCGA | GCCCGATCTT | CCCCATCGGT | GATGTCGGCG | ATATAGGCGC | CAGCAACCGC | 6939 |
| ACCTGTGGCG | CCGGTGATGC | CGGCCACGAT | GCGTCCGGCG | TAGAGGATCT | GCTCATGTTT | 6999 |
| GACAGCTTAT | С          |            |            |            |            | 7010 |

## (2) INFORMATION FOR SEQ ID NO: 12:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 227 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Met Thr Pro Asp Ile Ile Leu Gln Arg Thr Gly Ile Asp Val Arg Ala 1 5 10 15

Val Glu Gln Gly Asp Asp Ala Trp His Lys Leu Arg Leu Gly Val Ile 20 25 30

Thr Ala Ser Glu Val His Asn Val Ile Ala Lys Pro Arg Ser Gly Lys
35 40 45

Lys Trp Pro Asp Met Lys Met Ser Tyr Phe His Thr Leu Leu Ala Glu 50 55 60

Val Cys Thr Gly Val Ala Pro Glu Val Asn Ala Lys Ala Leu Ala Trp
65 70 75 80

Gly Lys Gln Tyr Glu Asn Asp Ala Arg Thr Leu Phe Glu Phe Thr Ser 85 90 95

Gly Val Asn Val Thr Glu Ser Pro Ile Ile Tyr Arg Asp Glu Ser Met 100 105 110

Arg Thr Ala Cys Ser Pro Asp Gly Leu Cys Ser Asp Gly Asn Gly Leu 115 120 125

Glu Leu Lys Cys Pro Phe Thr Ser Arg Asp Phe Met Lys Phe Arg Leu 130 135 140

Gly Gly Phe Glu Ala Ile Lys Ser Ala Tyr Met Ala Gln Val Gln Tyr 145 150 155 160

Ser Met Trp Val Thr Arg Lys Asn Ala Trp Tyr Phe Ala Asn Tyr Asp 165 170 175

Pro Arg Met Lys Arg Glu Gly Leu His Tyr Val Val Ile Glu Arg Asp 180 185 190

Glu Lys Tyr Met Ala Ser Phe Asp Glu Ile Val Pro Glu Phe Ile Glu 195 200 205

Lys Met Asp Glu Ala Leu Ala Glu Ile Gly Phe Val Phe Gly Glu Gln 210 215 220

Trp Arg \* 225

#### (2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 262 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Met Ser Thr Ala Leu Ala Thr Leu Ala Gly Lys Leu Ala Glu Arg Val 1 5 10 15

Gly Met Asp Ser Val Asp Pro Gln Glu Leu Ile Thr Thr Leu Arg Gln 20 25 30

Thr Ala Phe Lys Gly Asp Ala Ser Asp Ala Gln Phe Ile Ala Leu Leu 35 40 45

Ile Val Ala Asn Gln Tyr Gly Leu Asn Pro Trp Thr Lys Glu Ile Tyr 50 60

Ala Phe Pro Asp Lys Gln Asn Gly Ile Val Pro Val Val Gly Val Asp
65 70 75 80

Gly Trp Ser Arg Ile Ile Asn Glu Asn Gln Gln Phe Asp Gly Met Asp 85 90 95

Phe Glu Gln Asp Asn Glu Ser Cys Thr Cys Arg Ile Tyr Arg Lys Asp 100 105 110

Arg Asn His Pro Ile Cys Val Thr Glu Trp Met Asp Glu Cys Arg Arg 115 120 125

Glu Pro Phe Lys Thr Arg Glu Gly Arg Glu Ile Thr Gly Pro Trp Gln 130 135 140

Ser His Pro Lys Arg Met Leu Arg His Lys Ala Met Ile Gln Cys Ala 145 150 155 160

Arg Leu Ala Phe Gly Phe Ala Gly Ile Tyr Asp Lys Asp Glu Ala Glu 165 170 175

- Arg Ile Val Glu Asn Thr Ala Tyr Thr Ala Glu Arg Gln Pro Glu Arg 180 185 190
- Asp Ile Thr Pro Val Asn Asp Glu Thr Met Gln Glu Ile Asn Thr Leu 195 200 205
- Leu Ile Ala Leu Asp Lys Thr Trp Asp Asp Asp Leu Leu Pro Leu Cys 210 215
- Ser Gln Ile Phe Arg Arg Asp Ile Arg Ala Ser Ser Glu Leu Thr Gln 225 235 240
- Ala Glu Ala Val Lys Ala Leu Gly Phe Leu Lys Gln Lys Ala Ala Glu 245 250 255
- Gln Lys Val Ala Ala \* 260
- (2) INFORMATION FOR SEQ ID NO: 14:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 139 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:
- Met Asp Ile Asn Thr Glu Thr Glu Ile Lys Gln Lys His Ser Leu Thr 1 5 10
- Pro Phe Pro Val Phe Leu Ile Ser Pro Ala Phe Arg Gly Arg Tyr Phe 20 25 30
- His Ser Tyr Phe Arg Ser Ser Ala Met Asn Ala Tyr Tyr Ile Gln Asp 35 40 45
- Arg Leu Glu Ala Gln Ser Trp Ala Arg His Tyr Gln Gln Leu Ala Arg
  50 55 60
- Glu Glu Lys Glu Ala Glu Leu Ala Asp Asp Met Glu Lys Gly Leu Pro 65 70 75 80
- Gln His Leu Phe Glu Ser Leu Cys Ile Asp His Leu Gln Arg His Gly 85 90 95
- Ala Ser Lys Lys Ser Ile Thr Arg Ala Phe Asp Asp Val Glu Phe
  100 105 110
- Gln Glu Arg Met Ala Glu His Ile Arg Tyr Met Val Glu Thr Ile Ala 115 120 125
- His His Gln Val Asp Ile Asp Ser Glu Val \*

Table 1: Sequences of Oligos for PCR

Figure 3ab

left: TGACCCCTCACAAGGAGACGACCTTCCATGACCGAGTACAAGAGGGATGTAACGCACTGA right: TACAAATGTGGTATGGCTGATTATGATCCTCTAGAGTCGGTGCTCACTGCCCGCTTTCCA

template: pJP5603

targeting vector: pSV-paz11

Figure 3c

a-left: CTTCCATGACCGAGTACAAGAGGGATGTAACGCACTGA a-right: ATGATCCTCTAGAGTCGGTGCTCACTGCCCGCTTTCCA

b-left: AGACGACCTTCCATGACCGAGTACAAGAGGGATGTAACGCACTGAb-right: GCTGATTATGATCCTCTAGAGTCGGTGCTCACTGCCCGCTTTCCA

c-left: CACAAGGAGACGACCTTCCATGACCGAGTACAAGAGGGATGTAACGCACTGA c-right: TGGTATGGCTGATTATGATCCTCTAGAGTCGGTGCTCACTGCCCGCTTTCCA

d-left: TGACCCCTCACAAGGAGACGACCTTCCATGACCGAGTACAAGAGGGATGTAACGCACTGA d-right: TACAAATGTGGTATGGCTGATTATGATCCTCTAGAGTCGGTGCTCACTGCCCGCTTTCCA e-left:

CACGCCCTGACCCCTCACAAGGAGACGACCTTCCATGACCGAGTACAAGAGGGATGTAACGCACTGA e-right:

TAAAACCTCTACAAATGTGGTATGGCTGATTATGATCCTCTAGAGTCGGTGCTCACTGCCCGCTTTCCA f-left:

TCCCCTGACCCACGCCCCTGACCCCTCACAAGGAGGACGACCTTCCATGACCGAGTACAAGAGGGATGT AACGCACTGA

f-right:

TAAAGCAAGTAAAACCTCTACAAATGTGGTATGGCTGATTATGATCCTCTAGAGTCGGTGCTCACTGCCCGCTTTCCA

template: pJP5603

targeting vector: pSV-paz11

#### Figure 3d

a-left:

TCATCCTCTGCATGGTCAGGTCATGGATGAGCAGACGATGGTGCAGGATCAAGGGATCAAGGGAA a-right:

TAATGCGAACAGCGCACGGCGTTAAAGTTGTTCTGCTTCATCAGCAGGATGGCGAAGAACTCCAGCAT b-left:

CACGAGCATCATCCTCTGCATGGTCAGGTCATGGATGAGCAGACGATGGCAAGGGCTGCTAAAGGAA b-right:

TAATGCGAACAGCGCACGGCGTTAAAGTTGTTCTGCTTCATCAGCAGGATGGCGAAGAACTCCAGCAT c-left:

TAATGCGAACAGCGCACGGCGTTAAAGTTGTTCTGCTTCATCAGCAGGATGGCGAAGAACTCCAGCAT d-left:

TGCTGCTGAACGGCAAGCCGTTGCTGATTCGAGGCGTTAACCGTCACGACAAGGGCTGCTAAAGGAA d-right:

TAATGCGAACAGCGCACGGCGTTAAAGTTGTTCTGCTTCATCAGCAGGATGGCGAAGAACTCCAGCAT e-left:

TCTCTATCGTGCGGTGGTTGAACTGCACACCGCCGACGGCACGCTGATTCAAGGGCTGCTAAAGGAA e-right:

TAATGCGAACAGCGCACGGCGTTAAAGTTGTTCTGCTTCATCAGCAGGATGGCGAAGAACTCCAGCAT f-left:

TGGAGTGACGCAGTTATCTGGAAGATCAGGATATGTGGCGGATGAGCGCAAGGGCTGCTAAAGGAA

f-right:

TAATGCGAACAGCGCACGGCGTTAAAGTTGTTCTGCTTCATCAGCAGGATGGCGAAGAACTCCAGCAT g-left:

TGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCAAGGGCTGCTAAAGGAA g-right:

TAATGCGAACAGCGCACGGCGTTAAAGTTGTTCTGCTTCATCAGCAGGATGGCGAAGAACTCCAGCAT h-left:

TGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCAAGGGCTGCTAAAGGAA h-right:

TATTTTTGACACCAGACCAACTGGTAATGGTAGCGACCGGCGCTCAGCTGGCGAAGAACTCCAGCAT

template: pJP5603 targeting vector: pSV-paz11

Figure 4

left:

TCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGCCCACCAGC TGGTATGGCTGATTATGATC

right:

TCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTACCACCAGCTCTTTTCTACGGGGTCTGACGC

template: pBR322 targeting vector: Hoxa-P1

Figure 5

left:

TGCAGCTGGCACGGCTTTCCCGACTGGAAAGCGGGCAGTTAATACGACTCACTATAGGGAGAACAGGAAACAGCTATGCCCATAACACCCAGAGTA

right:

TGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCCTGACTCACTAGTGATGGTGATGTGG GGGGTGCCGCTCAGT

template: pmtrx (a pBluescipt vector carrying mouse trithorax cDNA)

targeting vector: pZero2.1

Figure 6

left:

TGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGGAGAAAAAAATCACT GGATATACCACCG

right:

TACAGGGCGCGTAAATCAATCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACGCCCCGCCCTGCCACTCATCGCA

template: pMAK705

targeting vector: pBAD-24 backbone Amp resistant gene

Figure 8

i:

TGCCAAGCTTGACCCACTGTGGAAGTGTTCCAAAAAGCGGGAAGGCTCTTGAGCTACTTCACTAACAAC

g:

TCACCATCTTCGGGCCATTTGTAGACTGGAATATTTCGAGCTATGAGTGTGCTACTTCACTAACAACCG

h.

TGGCCCCAGGGTGACGCGGACATGGAGTTGTCGCCAGGGCACTGGTCCATGAGAGTGCCAAGCTACTCGCGAC

template: pKaZ

targeting vector: Hoxa-P1

#### Figure 9

i

TAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCT TTGCCTGGTTTATAACTTCGTATAGCATACATTATACGAAGTTATGGGCTGCTAAAGGAAGCGGAACAC G

k:

TGGCAGTTCAGGCCAATCCGCGCGGATGCGGTGTATCGCCCACTTCAACATCAACGGTAATCGCCATTTGACCATATAACTTCGTATAATGTATGCTATACGAAGTTATCCCCAGAGTCCCGCTCAGAAGAACT template: pJP5603

targeting vector: JC9604 chromosome

#### Figure 10

1:

TAGCTTGGCACTGGCGTTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACCCATCAC ATATACCTGCCGTTCACTAT

m

template: pIB279

targeting vector: pSV-paX1

#### I\*: GCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAA

m\*

template: pSV-paz11

targeting vector: pSV-sacB-neo

#### Figure 11

n:

p:

TTCCCTCAAGAATTTTACTCTGTCAGAAACGGCCTTAACGACGTAGTCGAGGGACCTAGAAGTTCCTATACCTTCTAGAGAATAGGAACTTCATTATCACTTATTCAGGCGTAGCACCAGGCG

template: pMAK705 targeting vector: Hoxa-P1

#### Figure 12

left:

TGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGGAGAAAAAAATCACT GGATATACCACCG

right:

template: pMAK705

targeting vector: pBAD-24 backbone Amp resistant gene

#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/10, 15/90

**A3** 

(11) International Publication Number:

WO 99/29837

(43) International Publication Date:

17 June 1999 (17.06.99)

(21) International Application Number:

PCT/EP98/07945

(22) International Filing Date:

7 December 1998 (07.12.98)

(30) Priority Data:

97121462.2 98118756.0 5 December 1997 (05.12.97) EP

5 October 1998 (05.10.98) EP

(71) Applicant (for all designated States except US): EU-ROPÄISCHES LABORATORIUM FÜR MOLEKU-LARBIOLOGIE (EMBL) [DE/DE]; Meyerhofstrasse 1, D-69117 Heidelberg (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): STEWART, Francis [AU/DE]; Lärchenweg 3, D-69181 Leimen (DE). ZHANG, Youming [CN/DE]; Friedrich-Ebert-Anlage 51e, D-69117 Heidelberg (DE). BUCHHOLZ, Frank [DE/DE]; Neuenkirchener Weg 44a, D-28779 Bremen (DE).
- (74) Agents: WEICKMANN, H. et al.; Kopernikusstrasse 9, D-81679 München (DE).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:

22 July 1999 (22.07.99)

(54) Title: NOVEL DNA CLONING METHOD RELYING ON THE E. COLI RECE/RECT RECOMBINATION SYSTEM

#### (57) Abstract

The invention refers to a novel method for cloning DNA molecules using a homologous recombination mechanism between at least two DNA molecules comprising: a) providing a host cell capable of performing homologous recombination, b) contacting in said host cell a first DNA molecule which is capable of being replicated in said host cell with a second DNA molecule comprising at least two regions of sequence homology to regions on the first DNA molecule, under conditions which favour homologous recombination between said first and second DNA molecules and c) selecting a host cell in which homologous recombination between said first and second DNA molecules has occurred. In particular, it relies on the use of the E. coli RecE and RecT proteins, the bacteriophage Red-alpha and Red-beta proteins, or the phage P22 recombination system. The beneficial effects of concomitant expression of the RecBC inhibitor genes (e.g. Red-Gamma) is also examplified.



# FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL | Albania                  | ES | Spain               | LS | Lesotho               | SI | Slovenia                 |
|----|--------------------------|----|---------------------|----|-----------------------|----|--------------------------|
| AM | Armenia                  | FI | Finland             | LT | Lithuania             | SK | Slovakia                 |
| AT | Austria                  | FR | France              | LU | Luxembourg            | SN | Senegal                  |
| ΑŬ | Australia                | GA | Gabon               | LV | Latvia                | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom      | MC | Monaco                | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TG | Togo                     |
| BB | Barbados                 | GH | Ghana               | MG | Madagascar            | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece              |    | Republic of Macedonia | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary             | ML | Mali                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland             | MN | Mongolia              | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel              | MR | Mauritania            | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland             | MW | Malawi                | US | United States of America |
| CA | Canada                   | ΙT | Italy               | MX | Mexico                | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan               | NE | Niger                 | VN | Viet Nam                 |
| CG | Congo                    | KE | Kenya               | NL | Netherlands           | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan          | NO | Norway                | zw | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand           |    |                          |
| CM | Cameroon                 |    | Republic of Korea   | PL | Poland                |    |                          |
| CN | China                    | KR | Republic of Korea   | PT | Portugal              |    |                          |
| Cυ | Cuba                     | KZ | Kazakstan           | RO | Romania               |    |                          |
| CZ | Czech Republic           | LC | Saint Lucia         | RU | Russian Federation    |    |                          |
| DE | Germany                  | LI | Liechtenstein       | SD | Sudan                 |    |                          |
| DK | Denmark                  | LK | Sri Lanka           | SE | Sweden                |    |                          |
| EE | Estonia                  | LR | Liberia .           | SG | Singapore             |    |                          |
|    |                          |    |                     |    |                       |    |                          |
|    |                          |    |                     |    |                       |    |                          |

# INTERNATIONAL SEARCH REPORT

Ir ational Application No PCT/EP 98/07945

| IPC 6                      | SIFICATION OF SUBJECT MATTER C12N15/10 C12N15/90                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |                                                       |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| According                  | to International Patent Classification (IPC) or to both national class                                                                                                                                                                                                                                                                                                                                                                     | ification and IPC                                                                    |                                                       |  |  |  |  |  |
|                            | SEARCHED                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                                                       |  |  |  |  |  |
| Minimum d                  | documentation searched (classification system followed by classific C12N                                                                                                                                                                                                                                                                                                                                                                   | cation symbols)                                                                      |                                                       |  |  |  |  |  |
| Documenta                  | ation searched other than minimum documentation to the extent the                                                                                                                                                                                                                                                                                                                                                                          | at such documents are included in the fields s                                       | earched                                               |  |  |  |  |  |
| Electronic o               | data base consulted during the international search (name of data                                                                                                                                                                                                                                                                                                                                                                          | base and, where practical, search terms used                                         | i)                                                    |  |  |  |  |  |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                      |                                                       |  |  |  |  |  |
|                            | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                      |                                                       |  |  |  |  |  |
| Category °                 | Citation of document, with indication, where appropriate, of the                                                                                                                                                                                                                                                                                                                                                                           | relevant passages                                                                    | Relevant to claim No.                                 |  |  |  |  |  |
| X                          | OLINER J.D. ET AL.: "In vivo C<br>PCR Products in E. coli"<br>NUCLEIC ACIDS RESEARCH,<br>vol. 21, no. 22, 1993, pages 519<br>XP002064297<br>cited in the application                                                                                                                                                                                                                                                                       | •                                                                                    | 1-6,<br>8-13,19,<br>20,<br>22-27,<br>34,35,<br>37-42, |  |  |  |  |  |
| Υ                          | See page 5192, column 2, line 8 - line 31, and discussion section 46-48,50 18,28                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |                                                       |  |  |  |  |  |
| Y                          | NUSSBAUM A ET AL: "Restriction-homologous recombination of plasthe RecE pathway of Escherichia GENETICS, vol. 130, no. 1, January 1992, p37-49, XP002103370 see figures 1,7                                                                                                                                                                                                                                                                | 18,28                                                                                |                                                       |  |  |  |  |  |
| X Furth                    | er documents are listed in the continuation of box C.                                                                                                                                                                                                                                                                                                                                                                                      | Patent family members are listed in                                                  | n annex.                                              |  |  |  |  |  |
| * Special cat              | egories of cited documents :                                                                                                                                                                                                                                                                                                                                                                                                               | "T" later document published after the inter                                         | national filing date                                  |  |  |  |  |  |
| consider de "E" earlier de | A" document defining the general state of the art which is not considered to be of particular relevance considered to be of particular relevance considered to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention                                                                                                                                                     |                                                                                      |                                                       |  |  |  |  |  |
| which is<br>citation       | "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the |                                                                                      |                                                       |  |  |  |  |  |
| other m<br>"P" documer     | or other means  P* document published prior to the international filing date but  document published prior to the international filing date but                                                                                                                                                                                                                                                                                            |                                                                                      |                                                       |  |  |  |  |  |
|                            | ctual completion of the international search                                                                                                                                                                                                                                                                                                                                                                                               | "&" document member of the same patent for Date of mailing of the international sear |                                                       |  |  |  |  |  |
| 21                         | May 1999                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04/06/1999                                                                           |                                                       |  |  |  |  |  |
| Name and m                 | ailing address of the ISA<br>European Patent Office, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk                                                                                                                                                                                                                                                                                                                                       | Authorized officer                                                                   |                                                       |  |  |  |  |  |
|                            | Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                                                       | Lonnoy, O                                                                            |                                                       |  |  |  |  |  |

# INTERNATIONAL SEARCH REPORT

I national Application No PCT/EP 98/07945

| C.(Continue | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                   | 101725 98/0/945       |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Category *  | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                           | Relevant to claim No. |
| P,X         | ZHANG Y ET AL: "A new logic for DNA engineering using recombination in Escherichia coli" NATURE GENETICS, vol. 20, no. 2, October 1998, pages 123-128, XP002103371 see the whole document                                                    | 1-50                  |
| A           | KOLODNER R ET AL: "Homologous pairing proteins encoded by the Escherichia colirecE and recT genes" MOLECULAR MICROBIOLOGY, vol. 11, no. 1, 1994, pages 23-30, XP002064301 cited in the application                                           |                       |
| A           | LUISI-DELUCA C ET AL: "Genetic and physical analysis of plasmid recombination in recB recC sbcB and recB recC sbcA Escherichia coli K-12 mutants" GENETICS, vol. 122, 1989, pages 269-278, XP002064305                                       |                       |
| A           | DEGRYSE E: "Evaluation of Escherichia coli recBC sbcBC mutants for cloning by recombination in vivo" JOURNAL OF BIOTECHNOLOGY, vol. 2, no. 39, 15 April 1995, page 181-187 XP004036984                                                       |                       |
| A           | YANG X ET AL: "Homologous recombination based modification in Escherichia coli and germ line transmission in transgenic mice of a bacterial artificial chromosome" NATURE BIOTECHNOLOGY, vol. 15, September 1997, pages 859-865, XP002103372 |                       |
| A           | MURPHY K: "Lambda Gam protein inhibits the helicase and Chi-stimulated recombination activities of Escherichia coli RecBCD enzyme" JOURNAL OF BACTERIOLOGY, vol. 173, no. 18, September 1991, pages 5808-5821, XP002103373                   |                       |
|             | ·                                                                                                                                                                                                                                            |                       |