

HMS LINCS Center

Mining LINCS drug-response databases to identify novel activities of investigational breast cancer therapeutics

Caitlin Mills 4/4/2017 U54-HL127365

Disclosure Information AACR Annual Meeting 2017 Caitlin E. Mills

I have no financial relationships to disclose.

I will not discuss off label use and/or investigational use in my presentation.

Overview

- Overview of current HMS LINCS breast cancer profiling effort
 - Clinically relevant kinase inhibitors
 - Triple negative breast cancer (TNBC)
 - PDX models
- Focused follow-up work on CDK4/6 inhibitors
- Snapshot of available, and future datasets relevant to breast cancer

Dataset collection

- Focus on triple negative breast cancer
 - Unmet clinical need
 - Poor prognosis
 - No targeted therapy options
- Dose response to kinase inhibitors of clinical relevance
- Baseline profiling under matched conditions
 - Transcriptomics
 - Total and phosphoproteomics

Selection of relevant cell lines and drug treatments

		Receptor	Molecular
	Cell Line	Status	Subtype
r	BT-20	TNBC	Basal A
	HCC1143	TNBC	Basal A
	HCC1806	TNBC	Basal A
	HCC1937	TNBC	Basal A
	HCC70	TNBC	Basal A
	MDA-MB-468	TNBC	Basal A
	BT-549	TNBC	Basal B
	CAL-51	TNBC	Basal B
	HCC1395	TNBC	Basal B
20 TNBC	HCC38	TNBC	Basal B
ZU TNDC	Hs 578T	TNBC	Basal B
	MDA-MB-157	TNBC	Basal B
	MDA-MB-231	TNBC	Basal B
	MDA-MB-436	TNBC	Basal B
	SUM1315	TNBC	Basal B
	SUM149	TNBC	Basal B
	SUM159	TNBC	Basal B
	CAL-85-1	TNBC	Basal
	CAL-120	TNBC	Luminal
•	MDA-MB-453	TNBC	Luminal
ſ	CAMA-1	HR+	Luminal
	HCC1428	HR+	Luminal
6 HR+ -	HCC1500	HR+	Luminal
011111	MCF7	HR+	Luminal
	MDA-MB-134	HR+	Luminal
	T47D	HR+	Luminal
4 Harlama	HCC1954	HER2amp	Basal A
4 Her2amp	HCC1419	HER2amp	Luminal
-	MDA-MB-361	HER2amp	Luminal
	SK-BR-3	HER2amp	Luminal
2 NM -	hTERT-hME1	NM	Basal
	MCF 10A	NM	Basal
ſ	PDX-DFCI-1206		N/A
4 from PDX	PDX-DFCI-1258		N/A
+ 1101111 DX	PDX-DFCI-1328		N/A
•	PDX-HCI-002	TNBC	N/A

	Primary	Clinical	
Drug Name	Target	Status	
Alpelisib/BYL719	PI3Ka	Phase 3	٦
TGX221	PI3Kb	Preclinical	П
Taselisib/GDC0032	PI3Ka, g, d	Phase 1/2	П
Pictilisib/GDC0941	pan PI3K	Phase 2	П
Buparlisib/NVP-BKM120	pan PI3K	Phase 2	П
INK128/MLN0128	mTORC1/2	Phase 2	П
Torin2	mTOR/ATM/ATR	Tool	П
Everolimus	mTOR1	Approved	П
Ipatasertib/GDC0068	AKT	Phase 1/2	П
PF-4708671	p70S6K	Phase 1	П
Neratinib/HKI272	EGFR/HER2	Phase 3	ı
Tivantinib/ARQ197	MET	Phase 3	ı
Cabozantinib	VEGFR2/MET	Approved	ı
Cediranib/AZD2171	VEGFR/cKIT	Phase 3	ı
Ceritinib/LDK378	ALK	Phase 2/3	
Saracatinib/AZD0530	SRC	Phase 2/3	П
Dasatinib	BCR/ABL	Approved	П
Trametinib/GSK1120212	MEK	Phase 2	П
Luminespib/NVP-AUY922	HSP90	Phase 2	ı
Palbociclib/PD0332991	CDK4/6	Phase 3	ı
Dinaciclib/SCH727965	pan CDK	Phase 1	ı
Abemaciclib/LY2835219	CDK4/6	Phase 3	ı
Volasertib/BI6727	PLK	Phase 2/3	ı
AZD7762	CHK1/2	Phase 1	۲
Olaparib/AZD2281	PARP	Phase 3	٦
ABT-737	Bcl2/XL	Tool	
A-1210477	Mcl-1	Tool	П
Vorinostat	HDAC	Phase 2	7
Paclitaxel	Chemotherapy	Approved	٦
Doxorubicin	Chemotherapy	Approved	
Cisplatin	Chemotherapy	Approved	ل
Etoposide	Topoisomerase II		٦
Topotecan	Topoisomerase I	Approved	
Bleomycin	Radiomimetic	Approved	
lonizing radiation	DNA damage	Approved	٧

24 kinase inhibitors

4 misc inhibitors
3 chemo

4 DNA damage

LINCS cell line and compound resources

Experimental workflow

Dye-drop assay protocol

Image analysis

1. Segment nuclei

2. Measure LDR signal

3. Classify live/dead cells

Well	Row	Column	Cell Line	Time point	Treatment	Dose (uM)	Cell count	Dead cell count	Cell count t=0
C2		3	2MCF10A		Staurosporine	1	5091	1833	1954
C3		3	3MCF10A		Staurosporine	1	5929	2137	1954
C4		3	4MCF10A		Staurosporine	1		2021	1954
C5		3	5MCF10A	72	DMSO	0	8000	297	1954
C6		3	6MCF10A	72	Staurosporine	0.316	6613	1142	1954
C7		3	7MCF10A	72	DMSO	0	7732	329	1954
C8		3	8MCF10A	72	Staurosporine	1	5463	2473	1954
D2		1	2MCF10A		DMSO	0	8746	88	1954
D3		1	3MCF10A	72	Staurosporine	0.316	6168	1496	1954
D4			4MCF10A	72	Staurosporine	0.1	7941	636	1954
D5		4	5MCF10A	72	DMS0	0	8529	360	1954
D6			6MCF10A		Staurosporine	0.316		1157	1954
D7		4	7MCF10A		DMS0	0	8872	160	1954
D8		1	8MCF10A		DMS0	0		73	1954
C2			2MCF10A		Staurosporine	1	5091	1833	1954
C3			3MCF10A		Staurosporine	1	5929	2137	1954
C4			4MCF10A		Staurosporine	1	5663	2021	1954
C5			5MCF10A		DMS0	0		297	1954
C6			6MCF10A		Staurosporine	0.316		1142	1954
C7			7MCF10A		DMS0		7732	329	1954
C8			8MCF10A		Staurosporine	1	5463	2473	1954
D2		1	2MCF10A		DMS0	0.316	8746	1496	1954
D3		1	3MCF10A		Staurosporine				
D4			4MCF10A		Staurosporine	0.1	7941	636	1954
D5 D6		1	5MCF10A		DMS0	0.316	8529 6994	360 1157	1954
D7		-	6MCF10A 7MCF10A		Staurosporine DMSO	0.316	8872	1157	1954
D8	_	1	8MCF10A		DMS0			73	1954
C2			2MCF10A		Staurosporine	1	5091	1833	1954
C3		á	3MCF10A		Staurosporine	1		2137	1954
C4		3	4MCF10A		Staurosporine	1	5663	2021	1954
C5			5MCF10A		DMSO		8000	297	1954
C6		1	6MCF10A		Staurosporine	0.316	6613	1142	1954
C7		3	7MCF10A		DMSO	0.000	7732	329	1954
C8			8MCF10A		Staurosporine	1		2473	1954
D2			2MCF10A	72	DMSD	0	8746	88	1954
D3		1	3MCF10A	72	Staurosporine	0.316	6168	1496	1954
D4		1	4MCF10A	72	Staurosporine	0.1	7941	636	1954
D5		1	5MCF10A	72	DMSO	0	8529	360	1954
D6		1	6MCF10A	72	Staurosporine	0.316	6994	1157	1954
D7		4	7MCF10A	72	DMS0	0	8872	160	1954
D8		1	8MCF10A		DMS0	0	9166	73	1954
C2		3	2MCF10A		Staurosporine	1		1833	1954
C3		3	3MCF10A		Staurosporine	1			1954
C4		3	4MCF10A		Staurosporine	1	5663	2021	1954
C5		3	5MCF10A		DMS0				1954
C6		3	6MCF10A		Staurosporine	0.316		1142	1954
C7		3	7MCF10A		DMS0		7732	329	1954
C8 D2			8MCF10A 2MCF10A		Staurosporine DMSO	1 0		2473	1954
D2 D3			3MCF10A		Staurosporine	0.316		1496	1954
D4		1	4MCF10A		Staurosponine Staurosponine	0.316	7941	636	1954
D5			5MCF10A		DMSO	0.1	8529	360	1954
D6		1	6MCF10A		Staurosporine	0.316			1954
D7			7MCF10A		DMS0	0.516		160	1954
D8			8MCF10A		DMS0	-	9166		1954
C2			2MCF10A		Staurosporine	1	5091	1833	1954
C3		3	3MCF10A		Staurosporine	1	5929	2137	1954
C4		1	4MCF10A		Staurosporine	1	5663	2021	1954
C5		3	5MCF10A		DMSO	0	8000	297	1954
C6			6MCF10A		Staurosporine	0.316			1954
C7		3	7MCF10A		DMS0	0.000		329	1954
C8		3	8MCF10A		Staurosporine	1	5463	2473	1954
D2			2MCF10A		DMSO	- 0	8746	88	1954
D3			3MCF10A		Staurosporine	0.316			1954
D4			4MCF10A		Staurosporine	0.1	7941	636	1954
D5		1	5MCF10A		DMSO	0	8529	360	1954
D6			6MCF10A	72	Staurosporine	0.316	6994	1157	1954
D7		1	7MCF10A	72	DMS0	0	8872	160	1954
		1	8MCF10A	72	DMS0	0	9166	73	1954

GR values rely on three measures of cell count

Hafner*, Niepel* et al. Nat Methods, 2016, 13:521-7

GR values are independent of the division rate and directly relate to the phenotype

Hafner*, Niepel* et al. Nat Methods, 2016, 13:521-7.

Dose response results - MCF10A cells

Dose response results – all cell lines

Dose response results – CDK4/6 inhibitors

Abemaciclib has a higher efficacy and induces death in all breast cancer cell lines

Clinical characteristics of CDK4/6 inhibitors

Drug	Palbociclib (Pfizer) (PD0332991, Ibrance)	Ribociclib (Novartis) (LEE011)	Abemaciclib (Eli Lilly) (LY2835219)
IC ₅₀ (in vitro kinase assay, recombinant proteins)	CDK4 (D1): 11 nmol/L CDK4 (D3): 9 nmol/L CDK6 (D2): 15 nmol/L CDK1:>10 μmol/L CDK2:>10 μmol/L (66, 67)	CDK4: 10 nmol/L CDK6: 39 nmol/L CDK1: >100 µmol/L CDK2: >50 µmol/L (1,89)	CDK4 (D1): 0.6-2 nmol/L CDK6 (D1): 2.4-5 nmol/L CDK 9: 57 nmol/L CDK1: >1 µmol/L CDK2: >500 nmol/L (1, 88)
PK	T _{max} 4.2–5.5 hr ty ₂ 25.9–26.7 hr (69, 70)	T _{max} 4 hr t _{1/2} 24-36 hr (90, 91)	T _{max} 4-6 h t _{1/2} 17-38 h (crosses blood:brain barrier; refs. 92, 93)
PD	Reduced RB phosphorylation in paired tumor biopsies, along with reduced fluorothymidine-PET uptake (75)	Reduced RB phosphorylation and Ki67 expression in paired tumor biopsies (90)	Reduced RB phosphorylation and topoisomerase IIα expression in paired tumor and skin biopsies (92)
Dosing	125 mg daily (3 weeks, 1-week drug holiday) or 200 mg daily (2 weeks, 1-week drug holiday; refs. 69, 70)	600 mg daily (3 weeks, 1-week drug holiday; ref. 90)	200 mg twice daily (continuous dosing; ref. 92)
Major dose-limiting toxicities	Neutropenia, thrombocy topenia	Neutropenia, thrombocytopenia	Fatigue
Other reported adverse events	Anemia, nausea, anorexia, fatigue, diarrhea (69, 70)	Mucositis Prolonged EKG QTc interval Elevated creatinine Nausea (90)	Diarrhea Neutropenia (92)

How does ribociclib compare?

Abemaciclib remains the outlier with dose escalation.

Does polypharmacology play a role?

Ribociclib

Abemaciclib

Polypharmacology results in a different phosphoproteomic profile in MCF7 cells

Polypharmacology results in a different transcriptional profile in MCF7 cells at 6h

Summary

- TNBC profiling data collection is complete
 - Expansion is being planned
- First focused follow-up study associated inhibitor polypharmacology with enhanced efficacy
- Additional follow-up projects are underway
- Data will be released as a LINCS resource for future hypothesis testing and generation

Datasets currently available https://lincs.hms.harvard.edu

- Dose response metrics (20120, 20136)
 - Dose responses, and immunofluorescence in 4 cell lines treated with 6 compounds
 - Analysis of dose response data for 53 cell lines treated with 62 small molecules
- LINCS pilot phase joint project (20237-52, 20259-60)
 - Dose responses, high throughput imaging, and L1000 data for 6 cell lines treated with 107 compounds
- Density- and context- dependence of dose responses (20256-8)
 - Dose responses for 6 cell lines at differing plating densities treated with 12 compounds
- Multiplexed cyclic immunofluorescence imaging (20266-7)
 - MCF10A cells treated with 9 compounds, probed with 21 antibodies
- TNBC response to PI3K/Akt/mTor inhibition
 - 6 cell lines, 28 compounds biased toward the PI3K/Akt/mTor pathway

Datasets currently available https://lincs.hms.harvard.edu

- Dose response metrics (20120, 20136)
 - Dose responses, and immunofluorescence in 4 cell lines treated with 6 compounds
 - Analysis of dose response data for 53 cell lines treated with 62 small molecules
- LINCS pilot phase inint
 - Dose responses treated with 107

nint nraiget (20227_52 20250_60\

ary of Integrated vork-based ılar Signatures

PUBLICATIONS

DATA EXPLORATION SOFTWARE

- Density- and cont
 - Dose responses12 compounds
- Multiplexed cyclic
 - MCF10A cells tr
- TNBC response to
 - 6 cell lines, 28 c

Other Reagents

Datasets

Datasets

To find <u>datasets</u> from <u>LINCS publications</u>, type the relevant PMID in the datasets search box below.

Search: breast

Download: Excel (XLSX), Comma-separated (CSV)

30 Datasets

	HMS Dataset ID	<u>Dataset Title</u>	HMS Dataset Type
\ \	20120	Metrics other than potency reveal systematic	Analysis
)	variation in responses to cancer drugs	
	20136	Breast cell line dose response to target inhibition	Microscopy/Imaging
		measured by high throughput microscopy	
	20137	Basal profile of receptor tyrosine kinase signaling	ELISA
		network measured by ELISA	
	20138	Cell signaling response to growth factors measured	Microscopy/Imaging

Acknowledgments

Sorger lab & LSP

- Peter Sorger
- Liz Williams
- Marc Hafner
- Mario Niepel
- Mirra Chung
- Robert Everley
- Alison Erikson
- Sarah Boswell
- Artem Sokolov
- Kartik Subramanian
- Chris Chen
- Stephanie Davis

MGH

Dejan Juric

ICCB-L

- Caroline Shamu
- Jen Smith
- Stuart Rudnicki
- Richard Siu
- Rachel Warden

Zhao lab

- Thanh Von
- Haluk Yuzugullu

Brugge lab

Dan Stover

