Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών

Πράξεις με δυαδικούς αριθμούς

(λογικές πράξεις)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Πράξεις με δυαδικούς αριθμούς

• Εισαγωγή

- Ο υπολογιστής μπορεί να εκτελέσει
 - Λογικές πράξεις (δυαδικής λογικής)
 - Αριθμητικές πράξεις
- Οι πράξεις εκτελούνται
 - Σε ομάδες bits: «δυαδικούς αριθμούς»

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική

- Εισαγωγή
- Δυαδική λογική
- Η δυαδική λογική ταιριάζει με την τεχνολογία του τρανζίστορ
 - 2 καταστάσεις: ON-OFF, 1-0
 - Ψηφιακά ηλεκτρονικά (2 στάθμες)
- Δυαδική άλγεβρα Boole
 - Λογική άλγεβρα
 - Συσχέτιση με διακοπτικά κυκλώματα
 - Η εργασία του Shannon (1938)

C.E.Shannon

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Ποσότητες Δυαδικής Λογικής

- Εισαγωγή
- Δυαδική λογική
- Στη δυαδική λογική άλγεβρα
 - Υπάρχουν 2 «ποσότητες» (σύμβολα):
 - Αληθές ή 1 ή ΝΑΙ
 - Ψευδές ή 0 ή ΟΧΙ
 - Ένα δυαδικό ψηφίο (bit) έχει τιμή 0 ή 1
- Στα ψηφιακά ηλεκτρονικά κυκλώματα:
 - 0 ή «χαμηλή τάση» ή «η μια φορά ρεύματος»
 - 1 ή «υψηλή τάση» ή «η άλλη φορά ρεύματος»
 - Ανάλογα με την τεχνολογία, ένα bit αναπαρίσταται με αντίστοιχη κατάσταση σε ένα ηλεκτρονικό κύκλωμα

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

.

Bits & Bytes

- Εισαγωγή
- Δυαδική λογική
- Bit
 - Η μικρότερη λογική ποσότητα η μικρότερη μονάδα δεδομένων - 0 ή 1.
- Byte
 - Ομάδα 8 bits
 - Η ελάχιστη ποσότητα που μπορεί να χειριστεί ο υπολογιστής κατά την εκτέλεση μιας πράξης
 - Μια σειρά από bytes αναπαριστά έναν δυαδικό «αριθμό»
 - Αποθήκευση: σε καταχωρητές ή στη μνήμη

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Η ανατομία ενός byte • Εισαγωγή το περισσότερο σημαντικό bit το λιγότερο Δυαδική λο σημαντικό bit bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 • Γιατί είναι αυτή η σειρά των bits; • Γιατί το λιγότερο σημαντικό bit είναι δεξιά και το περισσότερο σημαντικό αριστερά; • Θα φανεί όταν μιλήσουμε για αριθμητικές πράξεις Προς το παρόν, το byte είναι απλώς μια οκτάδα bits Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Πράξεις Δυαδικής Λογικής

- Εισαγωγή
- Δυαδική λογική
- Στη δυαδική λογική άλγεβρα
 - Καθορίζονται λογικές πράξεις μεταξύ των λογικών ποσοτήτων 0 και 1 (bits)
- Στα ψηφιακά ηλεκτρονικά κυκλώματα:
 - Κύκλωμα δέχεται ως είσοδο την ηλεκτρική αναπαράσταση των 0 και 1
 - Και παράγει στην έξοδό του την ηλεκτρική αναπαράσταση του αποτελέσματος μιας λογικής πράξης
 - Το κύκλωμα υλοποίησης της λογικής πράξης ονομάζεται πύλη (gate).

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Βασικές Λογικές Πράξεις

- Εισαγωγή
- Δυαδική Λογική
- Αποκλειστικό Ή (XOR)
 - το αποτέλεσμα είναι 1, όταν μόνο το X ή μόνο το Y είναι 1
 - 1 XOR X = X XOR 1 = NOT X
 - 0 XOR X = X XOR 0 = X
 - $XXOR\ Y = A \cdot B' + A' \cdot B$

Πίνακας Αλήθειας

X	Y	XOR
0	0	0
0	1	1
1	0	1
1	1	0

X = - X XOR Y $Y = - \mathring{y}$ $X \oplus Y$ σύμβολο πύλης XOR

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

21

Βασικές Λογικές Πράξεις

- ΕισαγωγήΔυαδική Λογική
- XNOR: Η συμπληρωματική συνάρτηση της XOR
 - το αποτέλεσμα είναι 1, όταν τα X και Y είναι όμοια
 - συνάρτηση «ισοδυναμίας»

Πίνακας Αλήθειας

!
Υλοποίηση πύλης XNOR:
χρησιμοποιώντας συνδυασμούς άλλων πυλών
X xnor Y = XY + X'Y'
XY+X'Y'

X	Y	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

22

Λογικές πράξεις σε ομάδες bits

- Λογικές Πράξεις
- Ο υπολογιστής μπορεί να εφαρμόσει λογικές πράξεις στα δεδομένα μας
 - Δεδομένα = σειρές από 0 και 1
 - Όχι όμως σε μεμονωμένα bits!!
 - Αλλά: σε ομάδες των 8, 16, 32 ή 64 bits ταυτόχρονα

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

23

Ο τελεστής ΝΟΤ σε δυαδικούς αριθμούς

• Λογικές πράξεις

1 ______ 0 _____ 1 _____ 1 _____ 0 ______ 1 ______ 0

Η "μέθοδος" του υλικού (hardware): πολλαπλές ίδιες

μονάδες εκτελούν την ίδια λειτουργία παράλληλα 10011000 NOT 01100111

• Η έξοδος Υ. εξαρτάται μόνο από την είσοδο Α.

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

24

Ο τελεστής ΑΝΟ σε δυαδικούς αριθμούς

• Λογικές πράξεις

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Ο τελεστής ΟR σε δυαδικούς αριθμούς

25

26

• Λογικές πράξεις

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Μάσκες

• Λογικές Πράξεις

- Για να αλλάξουμε την τιμή μεμονωμένων
 bits μέσα σε μια ομάδα
 - Για να θέσουμε επιλεγμένα bits σε 1
 - Για να θέσουμε επιλεγμένα bits σε 0
 - Για να αντιστρέψουμε επιλεγμένα bits
 - Χωρίς να επηρεάζουμε τα υπόλοιπα!
 - αυτά διατηρούν την τιμή τους, είτε 0 είτε 1
- Μάσκα: σειρά bits, επιλεγμένη ώστε:

Bits Εισόδου op Μάσκα → Νέα ομάδα bits

- op = AND, OR $\acute{\eta}$ XOR
- Νέα ομάδα περιέχει το επιθυμητό αποτέλεσμα

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

2.7

Μάσκα AND: για να θέσουμε bits στο 0

• Λογικές πράξεις

0 AND X = 0

1 AND X = X

 Ζητούμενο: σε λέξη των 8 bits να τεθούν σε 0 τα 3 λιγότερο σημαντικά bits.

Λέξη: 1 0 0 1 1 0 1 0 AND Μάσκα: 111111000 Νέα: 1 0 0 1 1 0 0 0

- Η AND μάσκα περιέχει:
 - 0 στα bits που θα γίνουν 0
 - 1 στα bits που θα παραμείνουν ως έχουν

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

28

Μάσκα OR: για να θέσουμε bits στο 1

• Λογικές πράξεις

 Ζητούμενο: σε λέξη των 8 bits να τεθούν σε 1 τα bits 0,4 και 5.

Λέξη: 1 0 0 1 1 0 0 0 OR Μάσκα: 0 0 1 1 0 0 0 1

Νέα: 10111001

• Η OR μάσκα περιέχει:

• 1 στα bits που θα γίνουν 1

0 OR X = X1 OR X = 1

• 0 στα bits που θα παραμείνουν ως έχουν

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

29

Μάσκα XOR: για να αντιστρέψουμε bits

• Λογικές πράξεις

• Ζητούμενο: σε λέξη των 8 bits να αντιστραφούν τα bits 3,6 και 7.

Λέξη: 1 0 0 1 1 0 0 0 XOR

Μάσκα: <u>11001000</u>

Νέα: 0 1 0 1 0 0 0 0

- Η XOR μάσκα περιέχει:
 - 1 στα bits που θα αντιστραφούν
 - 0 στα bits που θα παραμείνουν ως έχουν

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

30

Ολίσθηση (Shift)

αριστερή ολίσθηση

δεξιά ολίσθηση

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

31