Upper bounds for average Bayes accuracy in terms of mutual information

Charles Zheng and Yuval Benjamini

September 7, 2016

These are preliminary notes.

1 Introduction

Suppose X and Y are continuous random variables (or vectors) which have a joint distribution with density p(x,y). Let $p(x) = \int p(x,y)dy$ and $p(y) = \int p(x,y)dx$ denote the respective marginal distributions, and p(y|x) = p(x,y)/p(x) denote the conditional distribution.

Mutual information is defined

$$I[p(x,y)] = \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy.$$

ABE_k, or k-class Average Bayes accuracy is defined as follows. Let $X_1, ..., X_K$ be iid from p(x), and draw Z uniformly from 1, ..., k. Draw $Y \sim p(y|X_Z)$. Then, the average Bayes accuracy is defined as

$$ABA_k[p(x,y)] = \sup_f \Pr[f(x_1, ..., x_k, y) = Z]$$

where the supremum is taken over all functions f. A function f which achieves the supremum is

$$f_{Bayes}(x_1, ..., x_k, y) = \operatorname{argmax}_{z \in \{1, ..., k\}} p(y|x_z),$$

where an arbitrary rule can be employed to break ties. Such a function f_{Bayes} is called a Bayes classification rule. It follows that ABA_k is given explicitly

by

$$ABA_{k} = \frac{1}{k} \int \left[\prod_{i=1}^{k} p(x_{i}) dx_{i} \right] \int dy \frac{\sum_{i=1}^{k} p(y|x_{i})^{2}}{\sum_{i=1}^{k} p(y|x_{i})}.$$

2 Problem formulation

Let \mathcal{P} denote the collection of all joint densities p(x, y) on finite-dimensional Euclidean space. For $\iota \in [0, \infty)$ define $C_k(\iota)$ to be the largest k-class average Bayes error attained by any distribution p(x, y) with mutual information not exceeding ι :

$$C_k(\iota) = \sup_{p \in \mathcal{P}: I[p(x,y)] \le \iota} ABA_k[p(x,y)].$$

A priori, $C_k(\iota)$ exists since ABA_k is bounded between 0 and 1. Furthermore, C_k is nondecreasing since the domain of the supremum is monotonically increasing with ι .

It follows that for any density p(x, y), we have

$$ABA_k[p(x,y)] \le C_k(I[p(x,y)]).$$

Hence C_k provides an upper bound for average Bayes error in terms of mutual information.

Conversely we have

$$I[p(x,y)] \ge C_k^{-1}(ABA_k[p(x,y)])$$

so that C_k^{-1} provides a lower bound for mutual information in terms of average Bayes error.

On the other hand, there is no nontrivial *lower* bound for average Bayes error in terms of mutual information, nor upper bound for mutual information in terms of average Bayes error, since

$$\inf_{p \in \mathcal{P}: I[p(x,y)] \le \iota} ABA_k[p(x,y)] = \frac{1}{k}.$$

regardless of ι .

The goal of this work is to attempt to compute or approximate the functions C_k and C_k^{-1} .

3 Special case

We work out the special case where p(x,y) lies on the unit square, and p(x) and p(y) are both the uniform distribution. In this case, the mutual information I[p(x,y)] is equal to the joint entropy H[p(x,y)].

To be continued.

4 General case

We claim that the constants $C_k^{unif}(\iota)$ obtained for the special case also apply for the general case, i.e.

$$C_k(\iota) = C_k^{unif}(\iota).$$

We make use of the following Lemma:

Lemma. Suppose X, Y, W, Z are continuous random variables, and that $W \perp Y|Z$, $Z \perp X|Y$, and $W \perp Z|(X,Y)$. Then,

$$I[p(x,y)] = I[p((x,w),(y,z))]$$

and

$$ABA_k[p(x,y)] = ABA_k[p((x,w),(y,z))].$$

Proof. Due to conditional independence relationships, we have

$$p((x, w), (y, z)) = p(x, y)p(w|x)p(z|y).$$

It follows that

$$\begin{split} \mathrm{I}[p((x,w),(y,z))] &= \int dx dw dy dz \ p(x,y) p(w|x) p(z|w) \log \frac{p((x,w),(y,z))}{p(x,w) p(y,z)} \\ &= \int dx dw dy dz \ p(x,y) p(w|x) p(z|w) \log \frac{p(x,y) p(w|x) p(z|y)}{p(x) p(y) p(w|x) p(z|y)} \\ &= \int dx dw dy dz \ p(x,y) p(w|x) p(z|w) \log \frac{p(x,y)}{p(x) p(y)} \\ &= \int dx dy \ p(x,y) \log \frac{p(x,y)}{p(x) p(y)} = \mathrm{I}[p(x,y)]. \end{split}$$

Also,

$$\begin{aligned} \text{ABA}_{k}[p((x,w),(y,z))] &= \int \left[\prod_{i=1}^{k} p(x_{i},w_{i}) dx_{i} dw_{i} \right] \int dy dz \frac{\sum_{i=1}^{k} p(y,z|x_{i},w_{i})^{2}}{\sum_{i=1}^{k} p(y,z|x_{i},w_{i})} \\ &= \int \left[\prod_{i=1}^{k} p(x_{i},w_{i}) dx_{i} dw_{i} \right] \int dy \frac{\sum_{i=1}^{k} p(y|x_{i})^{2}}{\sum_{i=1}^{k} p(y|x_{i})} \int p(z|y) dz \\ &= \int \left[\prod_{i=1}^{k} p(x_{i}) dx_{i} \right] \left[\prod_{i=1}^{k} \int dw_{i} p(w_{i}|x_{i}) \right] \int dy \frac{\sum_{i=1}^{k} p(y|x_{i})^{2}}{\sum_{i=1}^{k} p(y|x_{i})} \\ &= \int \left[\prod_{i=1}^{k} p(x_{i}) dx_{i} \right] \int dy \frac{\sum_{i=1}^{k} p(y|x_{i})^{2}}{\sum_{i=1}^{k} p(y|x_{i})} = \text{ABA}_{k}[p(x,y)]. \end{aligned}$$

Next, we use the fact that for any p(x, y) and $\epsilon > 0$, there exists a discrete distribution $p_{\epsilon}(\tilde{x}, \tilde{y})$ such that

$$|\mathrm{I}[p(x,y)] - \mathrm{I}[p_{\epsilon}(\tilde{x},\tilde{y})]| < \epsilon,$$

where for discrete distributions, one defines

$$I[p(x,y)] = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}.$$

We require the additional condition that the marginals of the discrete distribution are close to uniform: that is, for some $\delta > 0$, we have

$$\sup_{x,x':p_{\epsilon}(x)>0 \text{ and } p_{\epsilon}(x')>0} \frac{p_{\epsilon}(x)}{p_{\epsilon}(x')} \leq 1 + \delta.$$

and likewise

$$\sup_{y,y':p_{\epsilon}(y)>0 \text{ and } p_{\epsilon}(y')>0} \frac{p_{\epsilon}(y)}{p_{\epsilon}(y')} \leq 1 + \delta.$$

To construct the discretization with the required properties, choose a regular rectangular grid Λ over the domain of p(x,y) sufficiently fine so that partitioning X,Y into grid cells, we have

$$|\mathrm{I}[p(x,y)] - \mathrm{I}[\tilde{p}(\tilde{x},\tilde{y})]| < \epsilon.$$

[NOTE: to be written more clearly] Next, define