

Hartree-Fock exchange with localized orbitals for fast and efficient calculations with Quantum ESPRESSO

Ivan Carnimeo

Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste Universita' di Udine, Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Udine

Hybrid functional are very popular due to their accuracy and predictive capabilities. However implementation with plane wave based methods is computationally heavy.

TARGET

A fast method for the evaluation of Fock exchange with plane waves

OUTLINE

- Exchange with localized orbitals
- Computational performances
- Accuracy of the method on realistic systems

We want to solve a set of Kohn-Sham equations

$$\hat{f}\psi_k(\mathbf{r}) = \varepsilon_k \psi_k(\mathbf{r})$$
 $k = 1, 2, ..., N$

...where in the Fock operator there is also the exact Hartree-Fock exchange contribution (Hybrid functionals)

$$\hat{f} = -\frac{1}{2}\nabla^2 + \hat{V}_{ext} + \hat{V}_{Hxc}[n] + \hat{V}_X[\gamma]$$

$$\gamma(\mathbf{r}, \mathbf{r}') = \sum_{i}^{N} \psi_{i}(\mathbf{r}) \psi_{i}^{*}(\mathbf{r}')$$

The Exchange potential has to be computed along the SCF

$$\hat{V}\psi_j(\mathbf{r}) = e^2 \sum_{i}^{N} \psi_i(\mathbf{r}) \int d\mathbf{r}' \frac{\psi_i^*(\mathbf{r}')\psi_j(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

PROOF OF CONCEPT

the exchange integrals vanish for vanishing products of orbitals

$$\hat{V}\psi_j(\mathbf{r}) = e^2 \sum_{i}^{N} \psi_i(\mathbf{r}) \int d\mathbf{r}' \frac{\psi_i^*(\mathbf{r}')\psi_j(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

EFFICIENT ALGORITHM

- A fast and efficient localization
- Projection of the exchange operator on the localized basis set compatible with the ACE method
- An efficient and safe truncation criterion

EFFICIENT ALGORITHM

- A fast and efficient localization
- Projection of the exchange operator on the localized basis set compatible with the ACE method
- An efficient and safe truncation criterion

$$\Psi_{ki} = \psi_i(\mathbf{r}_k)$$

$$\Psi_{ki} = \psi_i(\mathbf{r}_k)$$
 $i = 1, ..., N$ $k = 1, ..., N_R$

$$\mathbf{W} = \Psi \cdot \mathbf{U}$$

 ${f U}$ is computed from the QRCP of Ψ

An efficient implementation of the SCDM method

Prescreening broadcast

Scalar code

Distributed QRCP with a SCALAPACK implementation

Damle, Lin, Ying, *JCTC*, 11, 1463 (2015); Damle, Lin, Ying, *SIAM J. Sci. Comput.*, 39, B1178 (2017); Damle, Lin, Ying, JCP, 334, 1 (2017)

The prescreening is done by choosing the grid points where the norm of the density is greater than scdmden
threshold, and the norm of the gradient is lower than scdmgrd threshold.

DenThr = scdmden
$$\cdot \langle n \rangle$$

GrdThr = scdmgrd $\cdot \langle \nabla n \rangle$

	Spread Before	Spread after	Grid	Used
Cya + Sugar (52)	12.73	4.71	729000	393
Water (711)	38.52	0.74	11390625	2898
Si (1005)	175.16	2.35	1728000	3024
TiO ₂ (246)	38.39	1.00	10077696	6449

EFFICIENT ALGORITHM

- A fast and efficient localization
- Projection of the exchange operator on the localized basis set compatible with the ACE method
- An efficient and safe truncation criterion

$$\hat{W} |\psi_i\rangle = \sum_{pq}^{N_P} \hat{V} |w_p\rangle \cdot (\mathbf{M}^{-1})_{pq} \cdot \langle w_q | \hat{V} | \psi_i \rangle$$

$$\hat{V}\psi_j(\mathbf{r}) = e^2 \sum_{i}^{N} \psi_i(\mathbf{r}) \int d\mathbf{r}' \frac{\psi_i^*(\mathbf{r}')\psi_j(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$\hat{V}w_j(\mathbf{r}) = e^2 \sum_{i}^{N} w_i(\mathbf{r}) \int d\mathbf{r}' \frac{w_i^*(\mathbf{r}')w_j(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Using the ACE formalism, the exchange potential on the canonical KS orbitals, can be computed from the exchange potential on localized orbitals:

L-ACE

Carnimeo, Baroni, Giannozzi, arXiv:1801.09263 (2018); Lin, *JCTC*, 12, 2242 (2016); Löwdin, *IJQC*, 4, 231 (1971)

EFFICIENT ALGORITHM

- A fast and efficient localization
- Projection of the exchange operator on the localized basis set compatible with the ACE method
- An efficient and safe truncation criterion

$$\hat{V}w_j(\mathbf{r}) = e^2 \sum_{i}^{N} w_i(\mathbf{r}) \int d\mathbf{r}' \frac{w_i^*(\mathbf{r}')w_j(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$S_{ij} = \int d\mathbf{r} |w_i(\mathbf{r})| \cdot |w_j(\mathbf{r})| < S_{thr}$$

The electrostatic integrals can be neglected whenever the absolute overlap integral is lower than localization thr

Carnimeo, Baroni, Giannozzi, arXiv:1801.09263 (2018)


```
&system
  ibrav=6,
  celldm(1) = 47.075876
  celldm(3) = 0.600000,
  nat=86, ntyp=3,
  nbnd = 132
                                   [occ + virt]
  ecutwfc = 80.0,
  ecutfock = 160.0,
                                   [ge ecutwfc]
  ecutrho = 320.0,
  input dft='pbe0'
  nspin = 2
                                   [new]
  tot magnetization = 2.0d0
  ace=.true.
                                   [default]
  localization thr = 0.004
  scdmden = 1.0
  scdmgrd = 10.0
```

Giannozzi et al., JPCM, 29, 465901 (2017)

Setup: 80 CPU, 4 GB x core

Test: Water clusters (up to **300 atoms**) at B3LYP/80/320/320 Ry

Computational SCF times

Scaling with respect to the system size: the exponent is 3.5 for Full, 2.8 for ACE and drops to 2.0 using L-ACE(0.004)

Carnimeo, Baroni, Giannozzi, arXiv:1801.09263 (2018)

Setup: 80 CPU, 4 GB x core

Test: Water clusters (up to **300 atoms**) at B3LYP/80/320/320 Ry

Error distribution of the force components for the 100 molecules water cluster

MAE of binding and HOMO energies

	ΔBE (kcal/mol)	ΔHOMO (eV)
ACE	0	0
L-ACE(0.001)	0.0002	0.0000
L-ACE(0.002)	0.0012	0.0000
L-ACE(0.004)	0.0040	0.0001
BLYP	0.4015	1.3834

Carnimeo, Baroni, Giannozzi, arXiv:1801.09263 (2018)

Setup: 576 CPU, 118 GB x 16 nodes

Test: Water clusters (up to **711 atoms**) at B3LYP/80/320/320 Ry

ACE >24h (approx 25h)

L-ACE(0.004) 1h50m

L-ACE(0.004)+ecutfock 1h20m

HOMO energies Max error: 0.0005 eV

Binding energies per molecule Max error: 0.02 kcal/mol

Setup: 576 CPU, 118 GB x 16 nodes

Test: TiO2 clusters (up to **246 atoms**)

246 atoms60/120/240 Ry
ACE 11h (*)
L-ACE(0.005) 3h (*)

105 atoms 80/160/320 Ry ACE 6h30m L-ACE(0.005) 3h50m

Mattioli, Bonapasta, Bovi, Giannozzi, JPCC, 118, 51 (2014)

Setup: 576 CPU, 118 GB x 16 nodes
Test: Si clusters (up to 1005 atoms)

	ACE	L-ACE (0.002)	L-ACE (0.005)
Size		283 atoms (9 A	radius)
Cutoffs		20/80/80 F	Ry
Time	1h24	-	0h53m
Gap (eV)	3.5340	-	3.53 29
Tot. force Ry/au	0.325011	-	0.3250 40

Size	1	005 atoms (15 /	A radius)
Cutoffs		15/30/60 F	Ry
Time	16h	6h20m	3h48m
Gap (eV)	2.6371	2.63 82	2.63 90
To.I force Ry/au	0.567834	0.5678 50	0.567 956

PRO

- High accuracy
- Efficiency (both CPU time and memory requirement)
- Suitable for ANY type of computational facilities, from single workstation calculations to large supercomputers

CON

- The method is approximate
- Thresholds need to be tuned

Summary of implementations

	ACE	L-ACE
Gamma only	V	V
Spin polarized	V	V
K-points	V	X
Non collinear spin	V	X
Non cubic cells	V	V
Reduced EXX grids	V	V
Virtual orbitals* (band gaps)	V	V
USPP	V	X
·	· · · · · · · · · · · · · · · · · · ·	

^{*} Compatibility with virtual orbitals:

only the occupied manifold is localized ov integrals always computed (virtuals assumed completely delocalized) vv integrals not necessary for ground state SCF

Carnimeo, Baroni, Giannozzi, arXiv:1801.09263 (2018) Giannozzi et al., JPCM, 29, 465901 (2017)

Conclusions and perspectives

- Hybrid functionals for large molecular systems, e.g. nanoparticles and fragmented clusters
- Work is in progress for the extension to K-points, in particular for calculations on large surfaces.
- Further improvements possible with R-space Poisson solver or FFTs on reduced boxes (e.g. **cp.x**)
- Can be combined with advanced parallelization strategies

Acknowledgements

- Paolo Giannozzi (University of Udine) and Stefano Baroni (SISSA)
- Stefano de Gironcoli (SISSA) and Pietro Delugas (SISSA)
- Lin Lin (University of California and Lawrence Berkeley National Laboratory, Berkeley)

Thank you for the attention.