1 A take on percolation theory

The problem of percolation through a regular lattice can be approached from two directions: in the limit of *site percolation* only the decoration of the lattice sites is cnsidered. If two neighboring sites are occupied by the percolating species they are assigned to one *cluster* of sites. The system is percolating, if it exhibits at least one infinitely extended cluster. Let P_{∞}^{site} be the probability that such an inifinite cluster exists. Given the probability p of a lattice site being occupied by the percolating species there exists a critical concentration $p = p_{\text{c}}^{\text{site}}$, the site percolation threshold, below which P_{∞} is exactly equal to zero.

The second limit for the description of percolation considers the *bonds* between sites. The same

1.1 Site percolation

For an infinite lattice with a concentration p of the conducting species, the *percolation* probability $P_{\infty}(p)$, i.e., the probability that an occupied site is part of a percolating (infinite) cluster is given by

$$P_{\infty}(p) = \begin{cases} \hat{B}_{p} \left(\frac{p}{p_{c}} - 1\right)^{\beta_{p}} & \text{for } p > p_{c} \\ 0 & \text{else} \end{cases} , \tag{1}$$

where the critical concentration p_c is the *site percolation threshold*. The prefactor \hat{B}_p and the exponent β_p both depend on the lattice and the concentration.