Logic Circuits and Digital Design Project #2

Mustafa Tokgöz 171044077

C code of multiplication that I implement:

```
If(a<0 && b<0){
    a=-a;
    b=-b;
}
If(a<0 && b>0){
    temp=a;
    a=b;
    b=temp;
}
mult=0;
While(a>0){
    mult=mult+b;
    a=a-1;
}
```


Datapath Organization

When I make the datapath, Firstly I thought that I should make converter that if two number both are negative then make them to posistive and If a is negative and b is positive then swap elements each other. So In my datapath I did this part firstly. I use 16 bit registers in input and output. Alp Arslan Teacher said that you can ignore results that pass 16 bit numbers. So I design this circuit for 16 bit results.

This part is converting negative to positive or swapping elements if It is necessary. Then I use multiplexers to choose numbers that I want. After that I did something that checks the number is equal to 0 or not with comparator.

After that , I needed to do subtraction by using adder.So I add -1 to a to do subtraction and I had to do it by using only one adder becouse of Project rule.So I use multiplexer here to choose -1 or mult and a or b .

Then I use demultiplexer to choose addition or subtraction. Then I put a register to keep mult and result.

Datapath

New Finite State Machine after datapath

State Table

PS	Inputs	NS
P2 P1 P0	Lt gt eq go	N2 N1 N0
0 0 0	0	0 0 0
0 0 0	1	0 0 1
0 0 1		0 1 0
0 1 0		0 1 1
0 1 1	0 1 0 -	0 1 0
0 1 1	1 0 0 -	1 0 0
0 1 1	0 0 1 -	1 0 0
1 0 0		0 0 0

$$N2 = P2'P1'P0 Lt + P2'P1P0eq$$

$$N1 = P2'P1'P0 + P2'P1P0' + P2'P1P0gt$$

$$N0 = P2'P1'P0'go + P2'P1P0'$$

When I simplify these equations

$$N2 = P2'P1P0(Lt+eq)$$

$$N1 = P2'(P1'P0+P1P0') + P2'P1P0gt$$

$$N0 = P2'P0'(P1'go+P1)$$

State	P2	P1	PO	LA	LB	Mult	S(A/B)	S(-1/M)	Sub/add	SA	Res
S0	0	0	0	0	0	0	0	0	0	0	0
S1	0	0	1	1	1	1	0	0	0	0	0
S2	0	1	0	0	0	1	1	1	1	0	0
S3	0	1	1	1	0	0	0	0	0	1	0
S4	1	0	0	0	0	1	0	0	0	0	1

LA=S1+S3

LB=S1

Mult=S1+S2+S4

S(A/B)=S2

S(-1/M)=S2

Sub/add=S2

SA=S3

Res=S4

Then I designed Control unit in logisim and made the connection between control unit and datapath.

Results=

When a and b positive numbers for example b=4(0100) and a=2(010) then result is 8(1000)

When a is negative and b is positive ,b=2 and a=-2 then result is - -4

When a is positive and b is negative b=-1 and a=2 then result is -2

When a and b are both negative , b = -4 and a = -12 then result is 48

Mustafa Tokgöz 171044077