Model Documentation of the 'NN10'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^8 u$$
 $\in \mathbb{R}^3 w \in \mathbb{R}^3 z$ $\in \mathbb{R}^2 y \in \mathbb{R}^3$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t) \tag{1c}$$

Outputs: z

2.1 Exemplary parameter values

	- v -
Symbol	Value
	$\begin{bmatrix} 0 & -1.0 & 0 & 0 & 0 & 0 & 1.0 \end{bmatrix}$
	$\begin{bmatrix} 1.0 & 2.0 & 0 & 0 & 1.0 & 0 & 0 & -2.0 \end{bmatrix}$
	0 -1.0 0 0 5.0 0 0
A	$\begin{bmatrix} 0 & 0 & 1.0 & 0 & -7.0 & 0 & 0 & -2.0 \end{bmatrix}$
21	$\begin{bmatrix} 0 & -1.0 & 0 & 1.0 & 4.0 & 0 & 0 & 2.0 \end{bmatrix}$
	$\begin{bmatrix} 0 & -2.0 & 0 & 0 & 2.0 & 0 & 0 & 3.0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 & 0 & -1.0 & 1.0 & 0 & -2.0 \end{bmatrix}$
	$\begin{bmatrix} 0 & -1.0 & 0 & 0 & 1.0 & 0 & 1.0 & -1.0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 1.0 & 2.0 \end{bmatrix}$
	1.0 0 1.0
	$\begin{bmatrix} -1.0 & -1.0 & -3.0 \end{bmatrix}$
B	1.0 0 1.0
	0 2.0 4.0
	2.0 1.0 5.0
	$\begin{bmatrix} -1.0 & 1.0 & 1.0 \end{bmatrix}$
	$\begin{bmatrix} 1.0 & -1.0 & -1.0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 1.0 & 2.0 \end{bmatrix}$
	1.0 0 1.0
T.	$\begin{bmatrix} -1.0 & -1.0 & -3.0 \end{bmatrix}$
	1.0 0 1.0
B_1	0 2.0 4.0
	2.0 1.0 5.0
	$\begin{bmatrix} -1.0 & 1.0 & 1.0 \end{bmatrix}$
	1.0 -1.0 -1.0
C_1	
	$[0 \ 1.0 \ 0 \ 0 \ -2.0 \ 0 \ 0 \ 0]$
C	0 0 0 0 1.0 0 0 0
C	$\begin{bmatrix} 0 & 0 & 0 & 0 & 1.0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & $
D_{11}	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
D_{12}	
D_{21}	
ν_{21}	
	[0 0 0]

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

NN10 X. A. Wang, "Grassmannian, Central Projection, and Output Feedback Pole Assignment of Linear Systems", TOAC, Vol. 41, Nr. 6, pp. 786-794, 1996 Example 3.7

4 Simulation

Figure 1: Simulation of the NN10.

References

[1] . A. Wang, "Grassmannian, Central Projection, and Output Feedback Pole Assignment of Linear Systems", TOAC, Vol. 41, Nr. 6, pp. 786-794, 1996 Example 3.7