Áramtól átjárt elektromos tekercs mágneses terének tanulmányozása

I. A gyakorlat célkitűzése:

- Áramtól átjárt hengeres tekercs (szolenoid) belsejében kialakult mágneses tér indukciójának kísérleti meghatározása szondatekercs segítségével

II. Elméleti bevezető

Michael Faraday skót fizikus nevéhez fűződik az elektromágneses indukció jelenségének a felfedezése. Faraday ismerte fel először (1831), hogy a változó mágneses tér elektromos feszültséget gerjeszt, amely zárt vezető hurokban elektromos áramot eredményez. A zárt vezetőben megjelenő áramot indukált elektromos áramnak, a jelenséget elektromágneses indukciónak nevezzük.

Faraday-féle indukciótörvény értelmében az áramkörben indukált feszültség egyenlő a mágneses fluxus egységnyi idő alatti változásával, vagy másképp fogalmazva, a mágneses fluxus idő szerinti differenciál hányadosával:

$$u = -\frac{d\Phi_m}{dt}$$

Amennyiben az áramhurok N menetű tekercsre vonatkozik, az indukált feszültség értéke N-szerese az egyetlen menetben gerjesztett feszültség értékének:

$$u = -N \cdot \frac{d\Phi_m}{dt}$$

A mágneses fluxus nagyságát kifejező skaláris szorzat értéke $\Phi_m = \overrightarrow{B} \cdot \overrightarrow{dS} \equiv B \cdot dS \cdot \cos \theta$, ezért az indukált feszültségre felírhatjuk:

$$e = -N \cdot \frac{d}{dt} (B \cdot dS \cdot \cos \theta)$$

Az előbbi kifejezésből látható, hogy indukált feszültség gerjesztése többféle módon történhet:

- változtatva a \overrightarrow{B} nagyságát,
- változtatva a vezetőhurok dS felületének nagyságát,
- változtatva a \overrightarrow{B} vektor és a felületre merőleges \overrightarrow{dS} vektor iránya közti θ szög értékét.

A fentiekben ismertetett elméleti alapok segítségével lehetőségünk van a gyakorlatban megfogalmazott feladatpontok teljesítésére.

III. A kísérleti mérések menete

III.1. Áram által átjárt szolenoid mágneses terének kísérleti vizsgálata szondatekercs segítségével

Gyakorlatunkban olyan módszerrel ismerkedünk meg, amelyben egy szondatekercs segítségével meghatározzuk az áramtól átjárt szolenoid belsejében kialakult mágneses indukciót. A szondatekercs sokmenetű gyűrűtekercs.

Rajzoljuk le a kísérletben használt rendszert, amely tartalmaz egy hengeres alakú egyenes tekercset (szolenoid) és egy egyenfeszültségű áramforrást, áramkorlátozó izzólámpát, szondatekercset és mérőműszereket. A tekercs meneteiben folyó áram erősségét sorba kapcsolt árammérő segítségével mérjük. A szondatekercset tartalmazó mérőáramkörben ballisztikus galvanométert használunk az indukált töltésmennyiség meghatározása céljából. A szolenoid meneteiben folyó áramot egy elektromos izzólámpa ellenállása korlátozza, amely megakadályozza a tekercs túlzott felmelegedését $(j_{max} = 5A \ / mm^2)$.

A szolenoid N menetszáma, D átmérője, illetve a tekercs l hossza, közvetlenül leolvasható a kísérleti eszközről. A tekercs belsejébe csúsztatjuk a szondatekercset, amelynek paraméterei (tekercs N_{sz} menetszáma, d átmérője, illetve R_{sz} annak ohmos ellenállása) ugyancsak közvetlenül leolvasható.

Mágnestű segítségével hozzuk a szolenoidot olyan irányba, hogy annak szimmetria tengelye mutasson a helyi $\acute{E}-D$ irányba. Ezzel minimálisra csökkentjük a Földi mágneses tér indukáló hatását.

A ballisztikus galvanométer a mérőáramkörön áthaladó töltésmennyiséggel arányos maximális kitérést eredményez. A ballisztikus galvanométert tartalmazó mérőáramkört előbb hitelesítjük. Ehhez a galvanométer tekercsén ismert töltésmennyiséget vezetünk át:

$$Q_0 = C \cdot U_0$$

A Q_0 töltésmennyiséget ismert C kapacitású kondenzátornak, ismert U_0 feszültségen való feltöltésével nyerjük. Majd egy váltókapcsoló segítségével a feltöltött kondenzátor töltését a szondatekercs mérőáramkörére kapcsoljuk és a galvanométer tekercsének ellenállásán kisütjük. Ezzel meghatározzuk az ismert töltésmennyiség által okozott maximális x_0 kitérést:

$$x_0 = \kappa \cdot Q_0$$
,

ahol κ a mérőármakör érzékenységi tényezője.

A tükrös galvanométer fénycsóváját távoli ernyőre vetítjük, hogy pontosabb mérési eredményt kapjunk a kitérés nagyságára vonatkozóan. Ismételt méréseket végzünk a kitérés pontos meghatározása céljából.

A szolenoid belsejében kialakult mágneses indukció meghatározása céljából használt szondatekercset gyors mozdulattal eltávolítjuk a szolenoid belsejéből.

A szolenoid mágneses teréből gyorsan eltávolított szondatekercs viszonylagos helyzetének változása mágneses fluxusváltozást eredményez, melynek következtében a szondatekercsben elektromotoros feszültség indukálódik.

Faraday törvénye értelmében az N_{szonda} menetszámú szondatekercsben indukált elektromotoros feszültség:

$$u = -N_{sz} \cdot \frac{d\Phi_m}{dt}$$

A szondatekercsben indukált feszültség hatására áramlökés keletkezik a zárt mérőáramkörben. Ez az áramlökés a ballisztikus galvanométer tekercsének kitérését eredményezi. A változó erősségű i áram töltést szállít a mérőáramkörön keresztül, ezért felhasználva a fenti összefüggéseket, valamint a kezdeti feltételeket is figyelembe véve, kiszámíthatjuk az indukált Q_{ind} töltést:

$$\begin{split} Q_{induk\acute{a}lt} &= \int_{0}^{t} i dt = \int_{0}^{t} \frac{u}{R_{g} + R_{sz}} dt = \int_{0}^{t} \left(\frac{1}{R_{g} + R_{sz}} \right) \left(-\frac{N_{sz} \cdot d\phi}{dt} \right) dt \\ Q_{induk\acute{a}lt} &= - \left(\frac{N_{sz}}{R_{g} + R_{sz}} \right) \int_{\Phi_{max}}^{0} d\phi \end{split}$$

Gyakorlatunkban a szolenoid által gerjesztett homogén mágneses mezőből eltávolított szondatekercsben a mágneses fluxus a maximális ϕ_{max} értékről nullára csökken, ezért az indukált feszültség átlagos értékére felírhatjuk:

$$\overline{u} = -N_{sz} \cdot \frac{\Delta \Phi_m}{\Delta t}$$

amelyben, $\Delta \phi_m = 0 - \phi_{max}$, illetve Δt a szondatekercs eltávolításának időtartama.

A számítások során figyelembe vesszük, hogy a szondatekercs ellenállása R_{sz} és a ballisztikus galvanométer tekercsének R_g ellenállása sorosan kapcsolt R eredő ellenállást határoz meg. Az indukált feszültség és az ellenállás aránya meghatározza az átfolyó áram I átlagos erősségét:

$$I = \frac{\overline{u}}{R_g + R_{sz}}$$

$$\frac{Q_{ind}}{\Delta t} = \frac{-N_{sz} \cdot \frac{\Delta \phi_m}{\Delta t}}{R_g + R_{sz}}$$

$$\frac{Q_{ind}}{\Delta t} = \frac{-N_{sz} \cdot (0 - \Phi_{max})}{\left(R_g + R_{sz}\right) \cdot \Delta t \frac{N_{szonda} \cdot (B_t \cdot S_{szonda})}{\left(R_g + R_{sz}\right) \cdot \Delta t}$$

A kísérleti mérési eredmények behelyettesítésével meghatározzuk a szolenoid belsejében kialakult mágneses indukció B_t értékét:

$$B_t = \frac{4Q_{induk\acute{a}lt}}{N_{szonda} \cdot \pi \cdot d^2} \cdot \left(R_{szonda} + R_{galvan.} \right),$$

amelyben a szondatekercs közepes átmérője $d=6.7\,cm,~R_{sz}=78\,\Omega,~R_g=450\,\Omega,~N_{szonda}=500.$

Az indukált töltésmennyiség $Q_{indukált}$ nagyságát a kísérletileg mért áramlökés okozta maximális kitérés x_{max} nagysága és a mérőáramkör hitelesítése során meghatározott műszerállandó figyelembevételével kapjuk:

$$Q_{induk\'alt} = \frac{Q_0}{x_0} \cdot x_{max}$$

Végezzünk méréseket több pontban, egyenlő közönként a szolenoid közepétől a szolenoid széléig haladva! Ábrázoljuk grafikusan a mágneses indukció eloszlását a szolenoid tengelyén mért távolság függvényében!

Hasonlítsuk össze a mágneses tér indukcióját a tekercs tengelyének felezőpontjában, amelyet az elméleti képlet segítségével számítunk ki, illetve a kísérleti mérések alapján meghatározunk! Fogalmazzunk meg következtetéseket a kapott eredmények vonatkozásában!

III.2. Válaszoljon írásban az alábbi ellenőrző kérdésekre!

- Mi egy szolenoid és hogyan néz ki annak mágneses tere?
- Hogyan lehet kimutatni a mágneses erővonal irányítását a tekercs belsejében?
- Írja le mit jelent a ballisztikus galvanométer kalibrálása!
- Miért tér ki a galvanométer a szonda-tekercses mérések idején? Vázolja a folyamatot!
- Mi határozza meg, hogy milyen irányítással rendelkeznek a mágneses tér erővonalai egy egyenárammal átjárt tekercs esetében? Rajzoljon fel egy példát!