Predicting Donations to an International Health Organization

Carolyn Cotterman
UC Berkeley, Biostatistics Group

Introduction

Watsi (www.watsi.org) posts photos and descriptions of people in poor countries who are in need of a medical treatment that they cannot afford. Each patient profile remains on the site until the patient's treatment is fully funded by donors accessing the site. Using Python's webpage parsing and machine-learning tools, I explore the determinants of donation rate. In particular, do patients who smile in their photo get funded more quickly?

Data Exploration

Who gets money fastest?

Who's smiling?

Time trends?

Measures of variable importance

- # Observational unit = patient
- # Outcome measure = mean dollars donated per day to patient
- # Predictors / controls:
 - Total cost of treatment
 - Patient age
 - Patient gender (surmised)
 - Region (Latin America vs. Asia vs. Africa)
 - Facial expression in photo (0-1 scale, 0 is unhappy)
 - Time trend
 - Day-of-the-week

Random Forest

Linear Regression

Dep. Variable: dol		lars_per_day	R-squared:		0.254		
Model:		OLS	Adj. R-squared:		0.251		
Method:	I	east Squares	F-statistic:		82.50		
Date:	Thu,	Thu, 12 Dec 2013 03:38:02 973				2.71e-60 -6824.2 1.366e+04	
Time:							
No. Observation	ons:						
Df Residuals:		968	BIC:		1.368e+04		
Df Model:		4					
=========	coef	std err	t	P> t	========= [95.0% Coi	nf. Int	
Intercept	 164.0544	35.007	4.686	0.000	95 . 356	232.7	
weekend_post	-106.7809	24.661	-4.330	0.000	-155.175	-58.3	
treat_cost	0.3176	0.020	16.021	0.000	0.279	0.3	
patient_age	-1.1834	0.518	-2.285	0.023	-2.200	-0.1	
smile_scale	-72.0287	41.767	-1.725	0.085	-153.992	9.9	
Omnibus:		278.654	Durbin-Watson:		=======	1.280	
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera (JB):		781.732		
Skew:		1.449	Prob(JB):		1.77e-170		
Kurtosis:		6.299	Cond. No.		5.07e+03		

Inverse Probability of Treatment Weighted (IPTW)

Point estimate for average treatment effect of smiling: \$34 per day Non-parametric bootstrap indicates no statistical significance.

Extensions

- # Explore additional covariates (e.g., text processing)
- # Employ more robust statistcal procedures
- # Determine optimal patient mix for maximizing total donations (across patients for Watsi as a whole)

