Data Structures and Algorithms

Conf. dr. ing. Guillaume Ducoffe

guillaume.ducoffe@fmi.unibuc.ro

Vectors

• Static Data Structures: The array

• From array to vector: push_back() and push_front()

• Binary Search

Range Searching

Mo's algorithm

The array

- Allocate enough consecutive space for the data.
- \longrightarrow We only need to store the address of the first element.

```
string trivialities[2] = { "this", "class"};
// *trivialities == trivialities[0]
```

Support double indexing.

```
int class = 5;
int exam = 3;
int grades[class][exam];
```


Simple routines

• Swap between two elements. Complexity: $\mathcal{O}(1)$ void swap(vector<int>& a, int i, int j) { int tmp = a[i]; //copy of value a[i] a[i] = a[j]; //overriding of a[i] a[j] = tmp;• Inversion of a sub-vector of length ℓ . Complexity: $\mathcal{O}(\ell)$ void invert(vector<int>& a, int first, int last) { for(int i = first, j = last; i < j; i++, j--){</pre> swap(a,i,j)

The array cont'd

- Pro's
 - Easy Access/Modification of a data
 - "Fast" range searching techniques, even for unsorted data

- Con's
 - Static allocation: the (maximal) number of elements must be fixed in advance

Need to resize...

From arrays to vectors

For us (and most programming languages...) a vector augments the array data structure with some new operations, in particular:

- **void** push_back(**int**). Increases the size by one unit and inserts an element at the end of the array.
- **void** push_front(**int**). Increases the size by one unit and inserts an element at the beginning of the array.

Our main algorithmic issue: despite students' dreams, these new operations are not in $\mathcal{O}(1)$. This is because (if there is not enough space available) we need to reallocate all former n elements.

Can we do better?

Doubling arrays

Implementation of push_back

- Our *n*-size array is embedded in some n'-array, for $n' \ge n$.
- \longrightarrow we may store the logical size n in some additional variable.
- push_back in $\mathcal{O}(1)$ as long as n' > n.
- If n' = n, then we create a bigger 2n-array and we reallocate.

Amortized complexity: $\mathcal{O}(1)$

Proof: at least n/2 elements were inserted since the last time we made a resize.

Potential function: $4 \times \#$ number of insertions - \sum length of all vectors created

Implementation of push_back and push_front

- Same idea as before, but our *n*-size array may not start at 0.
- \longrightarrow Need for another intermediate variable storing the position i_0 of the first element.
- We need to resize if:
 - Either n' = n and a push_back occurs;
 - Or $i_0 = 0$ and a push_front occurs.
- Whenever we resize, we triple the size of the vector $(n' \longmapsto 3n')$.
 - + we embed our n-size vector between pos. n' and 2n'
- \implies At least n'/3 insertions since the last time we made a resize.

Advanced operations on vectors

Range Searching

Global Input: an *n*-size vector a[]

Definition

A range query rq(i,j) asks for some information about the elements between positions i and j.

Examples:

- their sum;
- the max./min. element
- searching a value: given some value e, does there exist an integer $i \le k \le j$ s.t. a[k] = e?
- etc.

<u>Ex</u>: Searching e = 11 in [0,1,3,6,11,18,45]

<u>Ex</u>: Searching e = 11 in [0,1,3,6,11,18,45]

Step 1: Compare e with the median

[0,1,3,6,11,18,45], we have e > 6

<u>Ex</u>: Searching e = 11 in [0,1,3,6,11,18,45]

Step 1: Compare e with the median

[0,1,3,6,11,18,45], we have e > 6

Step 2: Keep searching on the right (why so?)

Search e in [11,18,45]

<u>Ex</u>: Searching e = 11 in [0,1,3,6,11,18,45]

Step 1: Compare e with the median

[0,1,3,6,11,18,45], we have e > 6

Step 2: Keep searching on the right (why so?)

Search e in [11,18,45]

Step 3: [11, 18, 45], e < 18 \longrightarrow Go left

Ex: Searching e = 11 in [0,1,3,6,11,18,45]

Step 1: Compare e with the median

[0,1,3,6,11,18,45], we have e > 6

Step 2: Keep searching on the right (why so?)

Search e in [11,18,45]

Step 3: [11, 18, 45], e < 18 \longrightarrow Go left

Step 4: [11], $e = 11 \longrightarrow STOP$.

Binary search

Implementation

```
//Searching e between a[l] and a[u]
int dichoSearch(const vector<int>& a, int e, int 1, int u) {
  //Case of an empty range
  if(1 > u)
     return -1;
  //Computation of the median
   int m = (u+1)/2;
   if(a[m] == e)
     return m;
   else if(a[m] < e)
     return dichoSearch(a,e,m+1,u);
   else
     return dichoSearch(a,e,1,m-1);
```

Binary search

Complements

- A powerful method which also applies to "almost sorted" arrays
 (more on that during the labs/seminars)
- The index returned by dichoSearch may not be the <u>first</u> occurrence of the searched element e (and not the last one either).

```
Ex: [0,1,2,3,3,3,4,5,13], e = 3 \longrightarrow m = 4 and a[m] == e
```

Binary search

Complements

- A powerful method which also applies to "almost sorted" arrays
 (more on that during the labs/seminars)
- The index returned by dichoSearch may not be the <u>first</u> occurrence of the searched element e (and not the last one either).

Ex:
$$[0,1,2,3,3,3,4,5,13]$$
, e = 3 \longrightarrow m = 4 and a[m] == e

<u>Solution</u>: Continue the search (left) **but include the median in the range**

$$[0,1,2,3,3,3,4,5,13] \rightarrow [0,1,2,3,3] \rightarrow [0,1,2,3,3]$$

 $\rightarrow [3,3] \rightarrow [3] \rightarrow STOP$

Variation of Binary Search

```
Function first()
```

```
//Searching the first occurence of e between a[l] and a[u]
int first(const vector<int>& a, int e, int 1, int u) {
   //Case of an empty range
   if(1 > u)
      return -1;
//Case of a single element
   if(1==u)
      return (a[1] == e) ? 1 : -1;
   //Computation of the median
   int m = (u+1)/2;
   if(a[m] < e)
      return first(a,e,m+1,u);
   else
      return first(a,e,l,m);
```

Question: How many elements in the range considered?

- Step 1: *n* elements
- Step 2:
- Step 3:
- Step i+1:

Question: How many elements in the range considered?

- Step 1: *n* elements
- Step 2: n/2 elements
- Step 3:
- Step i+1:

Question: How many elements in the range considered?

• Step 1: *n* elements

• Step 2: n/2 elements

• Step 3: n/4 elements

• Step i+1:

Question: How many elements in the range considered?

• Step 1: *n* elements

• Step 2: n/2 elements

• Step 3: n/4 elements

• Step i+1: $n/2^i$ elements

Question: How many elements in the range considered?

• Step 1: *n* elements

• Step 2: n/2 elements

• Step 3: n/4 elements

• Step i+1: $n/2^i$ elements

Complexity in $O(\log n)$ (for an array)

Searching a value in an unsorted vector

Mo's algorithm

- 1) Partition the *n*-vector a[] in \sqrt{n} blocks of equal size $n/\sqrt{n} = \sqrt{n}$.
- 2) Let b[] be a copy of a[]. Sort each of the \sqrt{n} blocks separately in the copy. Pre-processing time: $\mathcal{O}(n) + \sqrt{n} \times \mathcal{O}(\sqrt{n}^2) = \mathcal{O}(n\sqrt{n})$.
- 3) Searching value e between pos. i and j.
 - Let B_1, B_2, \ldots, B_r be the blocks <u>fully</u> between i and j. Binary search in their sorted copies.
 - The block containing a[i] (resp., a[j]) may start before i (resp., end after j). Linear search of value e amongst the $\leq \sqrt{n}$ elements in this block that are between pos. i and j.

Query time: $\mathcal{O}(\sqrt{n}) + \mathcal{O}(r \cdot \log n) = \mathcal{O}(\sqrt{n} \log n)$.

Example

```
Input: a[] = {3,44,1,7,23,19,0,101,89}
Sorted copy: b[] = {1,3,44,7,19,23,0,89,101}
```

- Search for some value e between i = 1 and j = 6.
 - Binary search in the block 7, 19, 23 (fully between i and j)
 - Exhaustive search in the partial block 44, 1
 - Exhaustive search in the partial block 0.

Remark: Exhaustive Search in a[]. Binary search in b[].

Another example: Sum of elements

Mo's algorithm + dynamic programming:

1) In an auxiliary \sqrt{n} -size vector c[], store the sum of all elements within the same block.

```
\underline{Ex}: if a[] = {3,44,1,7,23,19,0,101,89} then c[] = {48,49,190}.
```

- 3) Sum of all elements between pos. i and j.
 - Let B_1, B_2, \ldots, B_r be the blocks <u>fully</u> between i and j. Sum the pre-computed values for these blocks (in c[]).
 - The block containing a[i] (resp., a[j]) may start before i (resp., end after j). Sum of the $\leq \sqrt{n}$ elements in this block that are between pos. i and j.

<u>Ex.</u> i = 1, j = 6. The sum equals 44+1+c[1]+0.

Sum of elements: Comparison between two methods

- Using Mo's algorithm + dynamic programming.
 - Pre-processing in $\mathcal{O}(n)$ time and space;
 - Query time in $\mathcal{O}(\sqrt{n})$;
 - If an element of the vector a[] is modified, then we can update the vector c[] in $\mathcal{O}(1)$ (at most one block is impacted)
- Alternative method: Store in an auxiliary vector the values $b[i] = \sum_{k=0}^{i} a[k]$. Pre-processing: O(n)
 - Query time in $\mathcal{O}(1)$! Return b[j] b[i]+a[i]
 - But if an element of the vector a[] is modified, then updating the vector b[] may require $\mathcal{O}(n)$ time

Questions

