Singular Value Decomposition

Rohit Budhiraja, IITK

Applied Linear Algebra for Wireless Communications

Recap and agenda for today's class

- Discussed the concept of positive definite matrices
- Discuss singular value decomposition
 - Chapter 6.6 of the book
- Discuss Hermitian and Unitary matrices
 - Chapter 9.2 of the book

Singular Value Decomposition (1)

- Singular Value Decomposition (SVD) is a highlight of linear algebra
- Consider a rectangular $m \times n$ matrix A with rank r
- We will diagonalize this A, but not by $X^{-1}AX$
- Eigenvectors in *X* have three big problems:
 - $A\mathbf{x} = \lambda \mathbf{x}$ requires A to be a square matrix
 - They are usually not orthogonal
 - There are not always enough eigenvectors
- Singular vectors of A solve all those problems in a perfect way
- SVD actually provides the right bases for the four subspaces
- ullet Price we pay is to have two sets of singular vectors, $oldsymbol{u}$'s and $oldsymbol{v}$'s
 - \mathbf{u} 's are in \mathbf{R}^m and the \mathbf{v} 's are in \mathbf{R}^n

Singular Value Decomposition (2)

- ullet u's and ullet's give bases for the four fundamental subspaces
 - $\mathbf{u}_1, \dots, \mathbf{u}_r$ is an orthonormal basis for the column space
 - $\mathbf{u}_{r+1}, \dots, \mathbf{u}_m$ is an orthonormal basis for the left nullspace $N(A^T)$
 - $\mathbf{v}_1, \dots, \mathbf{v}_r$ is an orthonormal basis for the row space
 - $\mathbf{v}_{r+1}, \dots, \mathbf{v}_n$ is an orthonormal basis for the nullspace N(A)
- ullet More than just orthogonality, these basis vectors diagonalize the matrix A

$$A\mathbf{v}_1 = \sigma_1\mathbf{u}_1, A\mathbf{v}_2 = \sigma_2\mathbf{u}_2, \dots, A\mathbf{v}_r = \sigma_r\mathbf{u}_r$$

• Singular values σ_1 to σ_r are positive numbers as σ_i is length of $A\mathbf{v}_i$

$$||A\mathbf{v}_i||^2 = (A\mathbf{v}_i)^T (A\mathbf{v}_i) = (\sigma_i \mathbf{u}_i)^T (\sigma_i \mathbf{u}_i) = \sigma_i^2 \mathbf{u}_i^T \mathbf{u}_i = \sigma_i^2$$

$$\Rightarrow ||A\mathbf{v}_i|| = \sigma_i$$

• These σ_i go into a diagonal matrix Σ_r

Singular Value Decomposition (3)

- Since **u**'s are orthonormal, the matrix U_r with those r columns has $U_r^T U_r = I$
- ullet Since $oldsymbol{v}$'s are orthonormal, the matrix V_r with those r columns has $V_r^{\mathcal{T}}V_r=I$
- Equations $A\mathbf{v}_i = \sigma_i \mathbf{u}_i$ tell us column by column that $AV_r = U_r \Sigma_r$

$$\begin{array}{ccc} (m \text{ by } n)(n \text{ by } r) \\ \boldsymbol{A}\boldsymbol{V_r} = \boldsymbol{U_r}\boldsymbol{\Sigma_r} & A \end{array} \left[\begin{array}{ccc} \boldsymbol{v}_1 & \cdot \cdot \boldsymbol{v}_r \end{array} \right] = \left[\begin{array}{ccc} \boldsymbol{u}_1 & \cdot \cdot \boldsymbol{u}_r \end{array} \right] \left[\begin{array}{ccc} \sigma_1 & & \\ & \cdot & \\ & & \sigma_r \end{array} \right]$$

- This is the heart of the SVD, but there is more
- Those v's and u's account for the row space and column space of A
- We have n-r more **v**'s and m-r more **u**'s
 - They are from the nullspace N(A) and the left nullspace $N(A^T)$
- They are automatically orthogonal to the first \mathbf{v} 's and \mathbf{u} 's
 - because the whole nullspaces are orthogonal

Singular Value Decomposition (4)

We now include all the v's and u's in V and U

$$\begin{pmatrix} (m \text{ by } n)(n \text{ by } n) \\ AV \text{ equals } U\Sigma \\ (m \text{ by } m)(m \text{ by } n) \end{pmatrix} A \begin{bmatrix} v_1 \cdot \cdot v_r \cdot \cdot v_n \\ \end{bmatrix} = \begin{bmatrix} u_1 \cdot \cdot u_r \cdot \cdot u_m \end{bmatrix} \begin{bmatrix} \sigma_1 \\ & \sigma_r \end{bmatrix}$$

- So these matrices become square. We still have $AV = U\Sigma$
- The new Σ is $m \times n$
 - It is $r \times r \Sigma_r$ with m-r extra zero rows and n-r new zero columns
- ullet Real change is in shapes of U and V, which are square matrices
- We also have $V^{-1} = V^T$ So $AV = U\Sigma$: becomes $A = U\Sigma V^T$
 - This is the Singular Value Decomposition
- ullet We need to show how those amazing $oldsymbol{u}$'s and $oldsymbol{v}$'s can be constructed

Proof of SVD

• The \mathbf{v} 's are orthonormal eigenvectors of A^TA

$$A^{T}A = (U\Sigma V^{T})^{T}U\Sigma V^{T} = V\Sigma^{T}U^{T}U\Sigma V^{T} = V\Sigma^{T}\Sigma V^{T}$$

- V: Eigenvector matrix for symmetric positive (semi) definite matrix A^TA
- And $\Sigma^T \Sigma$ must be the eigenvalue matrix of $(A^T A)$: each σ_i^2 is $\lambda(A^T A)$!
- Now $A\mathbf{v}_i = \sigma_i \mathbf{u}_i$ tells us about unit vectors \mathbf{u}_1 to \mathbf{u}_r
- Essential point that SVD succeeds is that \mathbf{u}_1 to \mathbf{u}_r are orthogonal

- $\mathbf{u}'s$ are eigenvectors of AA^T
- Complete \mathbf{v} 's and \mathbf{u} 's to n \mathbf{v} 's and m \mathbf{u} 's with orthogonal basis from N(A) and $N(A^T)$
- We have found U, Σ , and V in $A = U\Sigma V^T$

Complex vectors and matrices

- Consider complex vector z and matrix A
- Main message of this section can be presented in one sentence
 - While transposing a complex vector **z** or matrix A, take complex conjugate
- Conjugate transpose

$$\bar{\mathbf{z}}^T = [\bar{z}_1, \cdots, \bar{z}_n] = z^H$$

- Here is one reason to go to $\bar{\mathbf{z}}$ length squared of a real vector is $x_1^2+\cdots+x_r^2$,
- The length squared of a complex vector is not $z_1^2 + \cdots + z_r^2$
- With that wrong definition, the length of (1, i) would be $1^2 + i^2 = 0$
- A non-zero vector would have zero length which is not good
- Instead of $(a + bi)^2$ we want $a^2 + b^2$, the absolute value squared
 - This is (a + bi) times (a bi)

Length of a complex vector

- For each component we want z_j times \bar{z}_j , which is $|z_i|^2 = a_i^2 + b_i^2$
- That comes when the components of z multiply the components of \bar{z}

$$\begin{bmatrix} \bar{z}_1, \cdots, \bar{z}_n \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} = |z_1|^2 + \cdots + |z_n|^2$$

$$\bar{\mathbf{z}}^T \mathbf{z} = ||\mathbf{z}||^2$$

$$\mathbf{z}^H \mathbf{z} = ||\mathbf{z}||^2$$

- z^H is the z Hermitian and length ||z|| is the square root of z^Hz
- Similarly we have A^H . If $A = \begin{bmatrix} 1 & i \\ 0 & 1+i \end{bmatrix}$ then $A^H = \begin{bmatrix} 1 & 0 \\ -i & 1-i \end{bmatrix}$

Operation on complex vectors and matrices

- Inner product of real or complex vectors \mathbf{u} and \mathbf{v} is $\mathbf{u}^H \mathbf{v}$
- With complex vectors \mathbf{u} and \mathbf{v} , $\mathbf{u}^H \mathbf{v}$ is different from $\mathbf{v}^H \mathbf{u}$
- Conjugate transpose of $(AB)^H = B^H A^H$
- Hermitian matrix: If $S = S^H$
- If $S = S^H$ and **z** is a real /complex column vector, the number $\mathbf{z}^H S \mathbf{z}$ is real
 - Proof: $(\mathbf{z}^H S \mathbf{z})^H = \mathbf{z}^H S \mathbf{z}$
 - If conjugate transpose of number is the same number, then number is real
- Every eigenvalue of a Hermitian matrix is real.
 - Proof: $Sz = \lambda z \Rightarrow z^H Sz = \lambda z^H z \Rightarrow z^H Sz = \lambda ||z||^2$
 - ullet Since λ is obtained by dividing two real numbers, it is real
- Eigenvectors of a Hermitian matrix are orthogonal (when they correspond to different eigenvalues)
- Unitary matrix: square matrix Q such that $Q^HQ=I$