

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková					
	organizace, Praskova 399/8, Opava, 746 01					
Název operačního programu	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5					
Registrační číslo projektu	CZ.1.07/1.5.00/34.0129					
Název projektu	SŠPU Opava – učebna IT					
Typ šablony klíčové aktivity:	V/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných					
Typ sationy kilcove activity:	kompetencí žáků středních škol (32 vzdělávacích materiálů)					
Název sady vzdělávacích materiálů:	Praxe II a III					
Popis sady vzdělávacích materiálů:	Frézování + CNC obrábění, 2. a 3. ročník					
Sada číslo:	H-02					
Pořadové číslo vzdělávacího materiálu:	23					
Označení vzdělávacího materiálu:	1/0/ F2 INOVACE II 02 22					
(pro záznam v třídní knize)	VY_52_INOVACE_H-02-23					
Název vzdělávacího materiálu:	Řezné podmínky					
Zhotoveno ve školním roce:	2011/2012					
Jméno zhotovitele:	Josef Švrčina					

Volba řezných podmínek pro frézování

Efektivní frézovací proces probíhá jen za předem stanovených řezných podmínek. Řezná rychlost se volí pro největší průměr nástroje (frézy). Řezné podmínky jsou určeny podle obrobitelnosti materiálu obrobku, jakosti břitu nástroje, způsobu práce (hrubování na čisto, čelními nebo válcovými frézami), podle druhu řezné (chladicí) kapaliny a způsobu upnutí obrobku.

Řezná rychlost

Řezná rychlost při frézování je dráha, kterou urazí hrana břitu každého zubu frézy v metrech za minutu. Řeznou rychlost zjistíme výpočtem ze vzorce, v dílenské praxi z tabulek.

Posuvy

Posuv je dráha, kterou obrobek vykoná za pohybu do záběru. Zpravidla se udává v mm na jednu rozteč zubů frézy (posuv na zub), u strojů je však většinou udáván v mm/min. Posuv na zub zjistíme v tabulkách a jednoduchým výpočtem převedeme na posuv za jednu minutu použitelný na stroji.

s/min = sz·z·n

Řezné podmínky při frézování

			Frézova á hlava		Kotoučové a vákové frézy		Čelní vákové a stopkové frézy		Tvarové frézy		
Titida obrobitalnost	Obráběný naterál	Nástroj	v (m/min-1	52 (mm)	v (m/min-1	52 (mm)	v (m/min-1	52 (mm)	v (m/min-1	SZ (MANN)	Mazání a chlazení
14b	Ocel	RO	30	0,1 =2 0,3	24	0,1 až 0,35	25	0,1 až 0,25	25	0,05 až 0,15	emulze
l	500 - 600 MPa	SK	120	0.1 ± 0.2	160	0,15 🕳 0,25	120	01 ぎ0 ろ	n/a	n/a	za sucha
13b	Ocel 600 - 700 MPa	RD SK	26 110	0,1 až 0,2 0,1 až 0,2		0,1 až 0,3 0,15 až 0,25		0,1 až 0,25 0,1 až 0,25			emulze za sucha
12b	Ocel	RO	20	01 2 02	16	0,1 až 0,2	20	0,1 až 0,2	18	Q03 až Q1	emuke
	700 - 800 MPa	SK	90			0,15 = 0,25		0,1 až 0,2			za sucha
шь	Ocel 850 - 1000 MPa	RD SK	16 75	0,1 až 0,2 0,1 až 0,15		0,1 až 0,2 0,15 až 0,25		0,1 až 0,2 0,1 až 0,15		Q03ažQ1 n/a	emulze za sucha
12a	Šedá litina	(RO	35	0,1 až 0,3	20	0,1 až 0,2	30	0,1 až 0,2	24	Q05ažQ1	za sucha
l	170 HB	sx	85	0,1 až 0,35	70	0,1 22 0,25	65	0,1 až 0,3	n/a	n/a	za sucha
11a	Šedá litina 190 HB	RO SK	25 70	0,1 až 0,3 0,1 až 0,25				0,1 až 0,15 0,1 až 0,2			za sucha za sucha
	Bronz	RD	45	0,2 až 0,4	40	0,1 22 0,25	60	Q1 až 0,25	50	Q05ažQ2	za sucha
		sx	120	0,2 až 0,4	150	0,1 až 0,3	150	0,1 až 0,3	n/a	n/a	za sucha
	Hliník	RO	200	0,1 = 2 0,3	250	0,1 až 0,3	100	0,1 až 0,2	150	005až02	za sucha
		sx	600	0,1 až 0,25	500	0,1 až 0,2	600	0,1 až 0,2	n/a	n/a	adit.olej

Volba otáček frézování za pomoci kalkulátoru

Na některých frézkách se vyskytuje jednoduché zařízení k určování řezných podmínek frézování a je spojené s pákou volby otáček. Toto zařízení se nazývá "Kalkulátor" a i přes své rozsahové omezení je významným pomocníkem při volbě řezných podmínek v dílenské praxi.

K určení vhodného počtu otáček vřetena můžeme u některých frézek použít kalkulátor, který má tři soustředné kruhy. Vnitřní kruh (1) pevně spojený s pákou (2) má na obvodu čísla udávající průměr frézy. Počty otáček jsou vyznačeny na vnějším mezikruží (3) pevně spojeném s vnitřním kruhem (1). Mezi těmito kruhy je mezikruží (4), které lze vůči nim libovolně natočit. Jsou na něm nakresleny barevné křivky, pomocí kterých lze určit hodnoty řezných rychlostí pro obrábění vyznačených materiálů. Mezikruží (4) s barevnými křivkami je rozděleno dvěma soustřednými kružnicemi na tři pole. Části barevných křivek, ležící ve vnějším poli, určují řezné rychlosti pro hrubování, střední pole pro opracování střední a vnitřní pro opracování jemné. Na vnějším obvodu mezikruží jsou uvedeny

řezné rychlosti v rozsahu 4,5 až 280 m/min. Páku (2) můžeme natočit vždy o 90 st. do čtyř poloh, vyznačených na víku rychlostní skříně čtyřmi předlitými výstupky. Pákou (5) můžeme natočením zařadit tři různé rychlosti, při stejné poloze páky (2). Pro určování otáček vřetene vycházíme z průměru frézy. Nastavíme piktogram frézy (6) na středním mezikruží (4) tak, aby šipka vycházející od kóty směřovala k číslu udávajícímu průměr frézy. Pak vyhledáme barevnou křivku odpovídající obráběnému materiálu a na ni tu část, která odpovídá jakosti obrobené plochy. Otáčky řezné rychlosti pro daný materiál, žádané jakosti obrobené plochy a danému průměru frézy jsou na vnějším mezikruží (3) proti určenému úseku barevné křivky.

Volba posuvů

Velikost posuvů při frézování se zpravidla udává v mm na jednu rozteč zubů frézy, ale také za jednu minutu nebo pro jednu otáčku frézy. Velikost posuvů volíme podle mechanických vlastností obráběného materiálu, podle druhu, tvaru, materiálu a počtu zubů frézy, podle řezné rychlosti, šířky záběru a velikosti přísuvu. Také tuhost celé obráběcí soustavy a výkonnost frézky mají vliv na optimální posuv při obrábění. Na hrubování volíme posuvy velké, na hlazení malé.

Posuv v mm na jednu otáčku válcových a čelních fréz.

Válcové a čelní frézy	Frézovaný materiál
2,0	Měkké oceli s pevností až 600 Mpa
1,6	Oceli s pevností až 900 Mpa
1,3	Oceli zušlechtěné s pevnosti až 1000 Mpa
2,5	Litiny s tvrdostí až 180 BR
2,5	Měď
2,0	Mosaz a bronz
1,0	Lehké kovy a jejich slitiny

Praktická činnost v hodinách

V hodinách praktického vyučování jsou žáci seznámeni s významem a využitím řezné rychlosti při obrábění na frézce. Učitel žáky seznámí s postupem určení optimálních řezných podmínek za použití kalkulátoru a dílenských tabulek. Následně při praktickém předvedení a ukázce na konkrétním stroji jsou prezentovány předešlé teoretické závěry. Žáci si pod vedením vyučujícího vyzkoušejí nastavení řezných podmínek a ověří si prakticky důležitost správné volby řezných podmínek. Důležité je upozornit na odlišnosti při obrábění válcovou nebo čelní válcovou frézou.

Cíl

V průběhu vyučování jsou žáci v rámci šablony č. 23 – řezné podmínky seznámeni s postupem k určením a následnému použití řezné rychlosti a posuvu při frézování. Žáci si rozšíří teoretické vědomosti o praktickou dovednost.

Seznam použité literatury

- DR. DOBROSLAV NĚMEC A KOLEKTIV. Strojírenská technologie II: pro 2. ročník středních průmyslových škol strojnických. 1. vyd. Praha: SNTL, 1985.
- DR. DOBROSLAV NĚMEC A KOLEKTIV. Strojírenská technologie 3: Strojní obrábění. 1. vyd. Praha:
 SNTL, 1979.
- HAVLÍČEK, Ing. Josef, Ing. J. BENEŠ, K. HAVRÁNEK. Dílenská praxe: pro I. ročník středních průmyslových škol strojnických. 2. vyd. Praha: Státní pedagogické nakladatelství, 1962. Učebnice odborných škol.