* Calculus

- -> Why do we need calculus
- -> Functions
- Limits & Continuity
- -> some impositant functions

do we need calculus 9 (1) Distance [(2) Fytuse ACCUSIAGI: gen line = 100%. black line = 100%.

Why black line is betten 9 -> Grain Function LOSS Function -> Eggnon Yellow -> High GAREM -> Less Black - Very less

We want to find the best-fit line.

... We age interested in finding

who was a wb. For simplicity,

let's assume who, who a wob E[0, 20] and with step size of 0.1

How many possible values w, when we are wo can take?

.. Total possible

Vaginable ω_1 ω_2 ω_0 lines = Possible Values 201 201 201 (201)³

". We need to find the best line farom these 2013 lines. Thy Buttone

-> ML context:

labels f(2, 72)= (0, x, + (2222+60)

A Misc - Gain & Loss Functions

agranux
$$G(\vec{\omega}, \omega_0, \vec{\chi}, \vec{y}) = \frac{\vec{\omega}}{|\vec{\omega}|} \frac{\vec{\omega} \cdot \vec{\chi}_1 + \omega_0}{|\vec{\omega}|} \cdot \vec{y}$$

$$= \frac{1}{1+0} \frac{\overrightarrow{\omega} \cdot \overrightarrow{\chi}_i + \omega_0}{\|\overrightarrow{\omega}\|} \cdot \forall i$$

$$\frac{4}{2}a_{1} = a_{1} + a_{2} + a_{3} + a_{4}$$
 $\frac{4}{1=1}a_{1} = a_{1} + a_{2} + a_{3} + a_{4}$
 $\frac{4}{1=1}a_{1} = a_{1} + a_{2} + a_{3} + a_{4}$

* Limits & Continuity

$$= x^{2}$$

$$= x^{2}$$

$$(x,y)$$

$$y = f(x)$$

$$(x,y)$$

$$\lim_{z\to 0^+} f(xz) = 0$$

$$\lim_{z\to 0^+} f(xz) = 0$$

* Some impositant/most used functions:

597.No.	1	2	3	4	5	6	7	8	9	
function	y=2			y= x	y=ln(x)	y =	y= 5m(x)	J = (25(2L)	J= tan(x)	
Dumain	[-a,+a]	R-803	R or [-05,+06]	[-02,+0]	R+	1 ± ēx	R	R	R	
	[-w, +w]		R+	R+	R	(0,1)	[-1,1]	[-1, 1]	R	
MNDN2 9	7	N	4	7	7	4	7	7	N	
Plot										

* Diffenentiation

Slope =
$$m = tan \theta$$
 x_1
 $y = m x + c$
 x_2
 x_3
 x_4
 x_5
 x_5
 x_6
 x_7
 x_8
 x_8

$$m = \frac{y_2 - y_1}{z_2 - z_1} = \frac{Rise}{Run} = \frac{\Delta y}{\Delta x}$$

Ad Now on, if Dx is almost 0, we will call Dx it dx & Dy as dy is slope = dy/dx

$$\begin{aligned}
& = f(x) \\
& = \chi_{1}(x)
\end{aligned}$$

$$= \chi_{2}(x)$$

$$= \chi_{1}(x) = \chi_{2}(x)$$

$$= \chi_{1}(x) = \chi_{2}(x)$$

$$= \chi_{1}(x) = \chi_{2}(x)$$

$$= \chi_{1}(x) = \chi_{2}(x)$$

$$= \chi_{2}(x)$$

$$= \chi_{2}(x)$$

$$= \chi_{2}(x)$$

$$= \chi_{2}(x)$$

$$= \chi_{2}(x)$$

$$= \chi_{2}(x)$$

... $f(x_2) = f(x_1 + h)$

Supe of the To find slape at a point, chave m:

$$\frac{\Delta y}{\Delta x} = \frac{\partial_2 - \partial_1}{\partial_2 - \alpha_1}$$

$$= \frac{f(x_2) - f(x_1)}{\partial_2 - \alpha_1}$$

$$= \frac{f(x_2) - f(x_1)}{\partial_2 - \alpha_1}$$

$$= \frac{f(x_1 + h) - f(x_1)}{\partial_2 - \alpha_1}$$

To find slope at a point,

dx h>0

lim f(x+h)-f(x)

At Let's vasify this formula! Let $J = x^2 \Rightarrow dy = 2x$

X	у	dχ	x + h	f(x+h)	dy	dy/ax	27 =	lim	f(x+h)-f(x)
2	4	0.00001	2-00001	4-00004	0.00004	4 =	2x9	h-0	h
3	9	0.00001	3.00001	9.00006	0.00006	6 =	=2x9		
4	16	0.00001	4.00001	16.00008	0.00008	8 =	229		

A function is continuous at a point 'a' if & only if:

 $\lim_{x\to a^{-}} f(x) = \lim_{x\to a^{+}} f(x) = \lim_{x\to a^{-}} f(x)$

Anactically, (1) If we can draw the function curve without lifting our pen & (2) If the cyrre doesn't have shap warness

(3)
$$\frac{d}{dx} \sin x = \cos x$$
 (5) $\frac{d}{dx} \log x = \frac{1}{x}$

$$\frac{4}{ds}$$
 cos $x = -\sin x$

$$\frac{d}{dx}e^{x}=e^{x}$$

* Imp Rules Of Differentiation:

① Sum Rule:
$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

(2) Anoduct Rule:
$$\frac{d}{dx}(f(x),g(x)) = g(x)\frac{d}{dx}f(x) + f(x)\frac{d}{dx}g(x)$$

(3) Division Rule,
$$\frac{d}{dx} \frac{f(x)}{f(x)} = \frac{g(x)}{dx} \frac{d}{f(x)} - \frac{f(x)}{dx} \frac{d}{dx} g(x)$$

(anatient Rule) $\frac{d}{dx} \frac{f(x)}{dx} = \frac{g(x)}{dx} \frac{d}{dx} \frac{f(x)}{dx} - \frac{f(x)}{dx} \frac{d}{dx} \frac{g(x)}{dx}$

(4) Chain Rule:
$$\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x)$$

$$\frac{1}{2} \left(\frac{1}{2} \right) + \text{Nege:}$$

$$1) = 5 \times 4$$

$$(2) \frac{d}{dx} (3x^4) = 12x^3$$

$$(3) \frac{d}{dx} (2x^3 + 3x^2)$$

$$= \frac{d}{dx} 2x^3 + \frac{d}{dx} 3x^2$$

$$= 6x^2 + 6x$$

$$4) \frac{d}{dx} (5x^{2} + 18)$$

$$dx$$

$$= \frac{d}{dx} 5x^{2} + \frac{d}{dx} 18$$

=10x+0

$$\int \frac{d}{dx} (x \cdot \log x)$$

$$= \log x \cdot \frac{d}{dx} x + x \cdot \frac{d}{dx} \log x$$

$$= \log x + \frac{x}{x}$$

$$= \log x + 1$$

$$\frac{G}{dx} \frac{d}{dx} \frac{\log x}{x}$$

$$= \frac{d}{dx} \log x - \log x \frac{d}{dx} x$$

$$= \frac{d}{dx} \log x - \frac{d}{dx} x$$

$$=\frac{2x \cdot \frac{1}{2x} - \log x \cdot 1}{2x^2}$$

$$=\frac{1 - \log x}{x^2}$$

$$\frac{d}{dx}$$
 $\sin(3x^4)$

$$= \cos(3x^4) \cdot \frac{d}{dx} 3x^4$$

$$= \cos(3x^4) \cdot 12x^3$$

=
$$12 \times 3 \cos(3x^4)$$

(8)
$$\frac{d}{dx}$$
 $\cos(5x^2 + 2x)$

$$= -5in(5x^2 + 2x)$$

=
$$-\sin(5x^2+2x)\cdot(10x+2)$$

(g)
$$\frac{d}{dx} = 5x^3 - 3x^2$$

$$= e^{5x^3 - 3x^2} \cdot d(5x^3 - 3x^2)$$

$$= e^{5x^3 - 3x^2} \cdot (15x^2 - 6x)$$

(10)
$$\frac{d}{dx} = lwg(x) \cdot sin(x)$$

$$= e^{\log x \cdot \sin x} \cdot \frac{d}{dx} (\log x \cdot \sin x)$$

$$= -\sin(5x^2 + 2x) \frac{d}{dx} (5x^2 + 2x) = e^{\log x \cdot \sin x} (\sin x \cdot \frac{1}{x} + \log x \cos x)$$

$$\frac{2}{\sqrt{1+e^{2}}}$$

$$\frac{dy}{dx} = \frac{e^{-x}}{(1+e^{x})^{2}} = \frac{1}{(1+e^{x})} \cdot \frac{e^{-x}}{(1+e^{x})} = \frac{1}{(1+e^{x})} \cdot \left(1 - \frac{1}{1+e^{x}}\right)$$

$$\frac{d}{dx} f(x) = f(x) \left(1 - f(x)\right) \quad \text{for } f(x) = \frac{1}{1 + e^{x}}$$

* Towards gradient descent - What is anymanularyming $f(x) = -(x-2)^2$ (i) Maximum possible value of far) - max (fax)) (11) Value of a when for is maximum. > aggmax for) afromax $G(\vec{\omega}, \omega_0, \chi, \vec{\lambda}) = \frac{1}{2} \frac{\vec{\omega} \cdot \vec{\chi} + \omega_0}{\|\vec{\omega}\|} \cdot \vec{\lambda}_1$ $\vec{\omega}, \omega_0$

value of with when of is maximum

Differentiation in context of ML (gradiend descent): Let's say graph (on curve) of own gain function is as below: suppose photit of an organization can be given as a function of sales (X) as: $f(x) = 41 - 72x - 18x^2$ $f(x) = -72 - 36x \Rightarrow f'(x) = -36$ A If f"(a) < 0 then the function is concave downwards (/) at that point. But if f"(x)>0 then the function is concave upwards (V) at that point

Steps to heach to optima (either minima or maxima):
(1) Compute f'a)

(2) Equate f'(x) to 0 & find value of x (at x=c)

(3) calculate value of F"(x) at each value of 2.

(a) If $f''(\alpha) > 0 \Rightarrow x = c$ is a minimal if $f''(\alpha) < 0 \Rightarrow x = c$ is a maximal of $f''(\alpha) = 0 \Rightarrow x = c$ is neither maximal order minimal but it is a saddle point

Examle: $0f(x) = 41 - 72x - 16x^2$ $2f(x) = 41 - 32x - 72x^2 - 18x^3$ ① step-1: f'(x) = -72 - 36x, $f(x) = -32 - 144x - 54x^2$ ② Step-2: Let f'(1)=0 > -36x=72 => |x=-2| $54x^2 + 144x + 32 = 0 \Rightarrow x = -0.245$ of x = -2.422In this type of case we may get more than one values of 2. (3) Step-3: f''(x) = -36 for x = -2 (or, for any value of x) $f''(x) = -144 - 108 \times 1.5 = -0.245, f''(x) = -117.54$ Δ for $\chi = -2.422$, $f''(\alpha) = 117.58$

(a) $f''(x) < 0 \Rightarrow \chi = -2$ is a maxima while $f''(-2.422) > 0 \Rightarrow \chi = -2.422$ $f''(-0.245) < 0 \Rightarrow \chi = -0.245$ is a maxima is a minima