Построение метода динамического выравнивания многомерных временных рядов, устойчивого к локальным колебаниям сигнала.

Кулагин Петр Андреевич

Московский физико-технический институт

Консультанты: Глеб Моргачев, Алексей Гончаров Эксперт: Стрижов В. В.

8 мая 2020 г.

Цель работы — анализ свойств ансамбля локальных моделей

Задача

Нахождение оптимального алгоритма, устойчивого к колебаниям сигнала при близком расположении датчиков.

Методы решения

Использование L2 расстояния между сигналами.

Использование расстояния DTW между сигналами.

Требования к универсальному аппроксиматору

- Локальные модели должны быть простыми.
- Локальные модели должны аппроксимировать разные подмножества объектов, т. е. быть независимыми.

Список литературы

- Parinya Sanguansat Multiple Multidimensional Sequence Alignment Using General Dynamic Time Warping, 2020.
- Skutkova Helena, Vitek Martin, Babula Petr, Kizek Rene, Provaznik Ivo Classification of genomic signals using dynamic time warping, BMC Bioinformatics, 2007.
- ten Holt, Gineke and Reinders, Marcel and Hendriks, Emile Multi-dimensional dynamic time warping for gesture recognition, Annual Conference of the Advanced School for Computing and Imaging, 2007
- Jörg P. Bachmann and Johann-Christoph Freytag High Dimensional Time Series Generators. CoRR, 2018.

Постановка задачи

Классификация временных рядов

Рассматриваем множество временных рядов $\{X_i\}_{i=1}^n \in \mathbb{R}^k$ и метки классов $Y_i \in \{0, 1\}$

Требуется для $X \in \mathbb{R}^k$ предсказать класс при этом ассuracy = $\frac{TP+TN}{TP+TN+FP+FN} \to max$

Метод kNN. Используем функцию расстояния между 2 временными рядами $\rho(x,y)$ Ищем k ближайших к объекту х по метрике ρ .

Предсказание - самый частый класс.

Цель подобрать как можно лучшую ρ .

Гипотеза порождения данных

Выборка порождена К датчиками-измерителями.

Каждый датчик имеет определённое положение в пространстве и поэтому значения сигналов у каждого датчика имеют жёсткую привязку не только ко времени, но и к расположению датчика.

Алгоритм DTW

Временной ряд

Временной ряд - последовательность измерений, произведенных в определённые промежутки времени.

 $\mathbf{X} = \{X_1, \dots, X_n\}$ - временной ряд.

 $X_i \in \mathbb{R}$ - одномерный временной ряд.

 $X_i \in \mathbb{R}^K$ - многомерный временной ряд.

DTW - алгоритм, позволяющий посчитать расстояние между 2 временными рядами, устойчивый к сдвигам, растяжениям/сжатиям.

Алгоритм расстояния DTW

Определение

Рассмотрим два временных ряда Q и C разной длины: $Q=q_1,q_2,\ldots,q_i,\ldots,q_n;$ $C=c_1,c_2,\ldots,c_i,\ldots,c_m$

Рассматриваем матрицу расстояний

- 1) $d_{ij} = \rho(q_i, c_j)$
- 2) Матрица трансформаций $D_{ij} = d_{ij} + min(D_{i-1j}, D_{i-1j-1}, D_{ij-1});$
- 3) Выравнивающий путь: строим путь трансформации W минимизирует общее расстояние между Q и С $W=w_1,w_2,\ldots,w_k,\ldots,w_K$, где $w_k=(i,j)_k$, $d(w_k)=(q_ic_j)$
- 4) $\rho_{DTW}(Q, C) = min \frac{\sum_{k=1}^{K} d(w_k)}{K}$

В случае многомерных временных рядов большое значение имеет расстояние между измерениями.

$$L2(q, c) = \sum_{i=1}^{n} (q_i - c_i)^2$$

$$DTW(q, c) = DTW(q, c)c\rho = (x - y)^2$$

Примеры выравнивания многомерных временных рядов

Примеры выравнивания многомерных временных рядов

Базовый эксперимент

Цель базового эксперимента

Показать, что существуют случаи, когда DTW расстояние между сигналами показывает лучший результат, но зачастую работает медленнее, чем L2 расстояние.

Генерация временных рядов

2 временных ряда, в которых сигнал "гуляет"в противоположных направлениях по датчикам.

Длина временного ряда - 30

DTW - 4

L2 - 60

Базовый эксперимент

Генерация временных рядов

2 временных ряда, в котором одни датчики улавливают сигнал в 2 раза быстрее, например, стоят ближе к источнику.

Длина временного ряда - 30

DTW - 2

L2 - 60

Базовый эксперимент

Временной эксперимент

Подсчитаем среднее время работы DTW алгоритма с использованием L2 и DTW метрик.

Размерность сигнала: 3 Количество измерений: 50

Количество временных рядов: 20

Среднее время было посчитано 100 запусками на произвольной паре

временных рядов.

Полученные результаты

Было продемонстрировано значение метрики DTW для поиска расстояний между сигналами в многомерном случае. Однако затрачиваемое время на порядок медленнее L2 алгоритма. Поэтому стоит использование L2 или DTW будет по ситуации.

Дальнейшие исседования

- К сожалению, загруженный датасет оказался не с очень хорошим качеством данных (по крайней мере несколько первых строк), поэтому оба классификатора выдавали accuracy = 1, что не должно являться правдой. Нужно подробнее исследовать набор данных или найти новые.
- Найти конструкции построения датасета для классификации алгоритмически, когда классы, задаваемые DTW и L2 будут сильно различаться.