

From Raw Data to Meaningful Features

Andreas Damianou

University of Sheffield, UK

Summer School on Machine Learning and Data Science

27 June, 2016 Makerere University, Uganda

Working with data

- Data-science: everything revolves around a dataset
- Dataset: the set of data (to be) collected for our algorithms to learn from
- Example: child development dataset

height	weight		
1.33	20	 	child 1
1.40	28	 -	child 2
1.20	12	 	child 3
1.28	25	 -	child 4
1.15	18	 -	child 5

Working with data

- Data-science: everything revolves around a dataset
- Dataset: the set of data (to be) collected for our algorithms to learn from
- Example: child development dataset

Working with data

- Data-science: everything revolves around a dataset
- Dataset: the set of data (to be) collected for our algorithms to learn from
- Example: child development dataset

Notation

It's convenient to use notation from linear algebra.

$$Y = \begin{bmatrix} y_{1,1} & y_{1,2} & \dots & y_{1,d} \\ y_{2,1} & y_{2,2} & \dots & y_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n,1} & y_{n,2} & \dots & y_{n,d} \end{bmatrix}$$

 $n ext{ rows}$ → $n ext{ instances}$ $d ext{ columns}$ → $d ext{ features}$ (dimensions)

So, the matrix Y contains *d*-dimensional data

Notation

It's convenient to use notation from linear algebra.

$$Y = \begin{bmatrix} y_{1,1} & y_{1,2} & \dots & y_{1,d} \\ y_{2,1} & y_{2,2} & \dots & y_{2,d} \\ \vdots & \vdots & & \vdots \\ y_{n,1} & y_{n,2} & \dots & y_{n,d} \end{bmatrix}$$

n rows → n instancesd columns → d features (dimensions)

So, the matrix Y contains d-dimensional data

With linear algebra notation, we can write operations more succinctly.

E.g., if W is a $d \times k$ matrix, what does Y*W do? What happens if k < d? If k > d?

What is "dimensionality"?

 Simply, the number of features used for describing each instance.

• In the previous example: height and width.

 The number of features depends on our selection or limitations during data collection.

 Out of many possible feature-sets describing our data, we want to keep only those that help with the particular task (task-dependent).

Feature selection: The task of selecting which features to include in our dataset, out of all the possible features that we could have considered.

Example: Task is to classify children into the normal vs underdevelopment class.

Which feature combination makes more sense? Why?

- [height, weight, gender]

- Which feature combination makes more sense? Why?
 - [height, weight, gender]
 - [height, gender]

- Which feature combination makes more sense? Why?
 - [height, weight, gender]
 - [height, gender]
 - [height, weight, gender, BMI]

where BMI =
$$\frac{\text{weight}}{\text{height}^2}$$

- Which feature combination makes more sense? Why?
 - [height, weight, gender]
 - [height, gender]
 - [height, weight, gender, BMI]
 - [height, weight, eye color]

where BMI =
$$\frac{\text{weight}}{\text{height}^2}$$

- Which feature combination makes more sense? Why?
 - [height, weight, gender]
 - [height, gender]

 - [height, weight, eye color]
 - Other Suggestions?

[height, weight, gender, BMI] where
$$BMI = \frac{weight}{height^2}$$

- Data having large number of features, d
- Examples
 - Micro-array data
 - Images

- Data having large number of features, d
- Examples
 - Micro-array data
 - Images

- - -

[0, 2, 0, 190, 10, 0, 0, 0, 255, 255, 120, 0, 0, 20, ...]

[2, 4, 0, 8, 20, 120, 0, 255, 187, 42, 0, 122, 0, 1, ...]

[0, 12, 150, 22, 70, 0, 255, 255, 120, 0, 0, 12, 5, ...]

[0, 2, 0, 190, 10, 0, 0, 0, 255, 255, 120, 0, 0, 20, ...]

[2, 4, 0, 8, 20, 120, 0, 255, 187, 42, 0, 122, 0, 1, ...]

[0, 12, 150, 22, 70, 0, 255, 255, 120, 0, 0, 12, 5, ...]

With the human eye we can spot the similarity of the 1st and 3rd image. But the computer only sees huge sequences of numbers (pixel intensities)!!

Feature extraction

Create a **new** set of features out of the original ones which came with the raw data. This is done through some algorithm or transformation **dependent on the nature of the data**.

Contours from images

Original feature space

Extracted feature space

SURF features

Source: docs.opencv.org

Parenthesis:

Q: How would we do **Feature Selection** to image data?

Original data

Feature Extraction

Back to Feature Selection

Dropping one of the oriinal features:

Dimensionality reduction

2nd way: Another solution is to transform the two features into one by projecting them to a **new manifold (geometrical subspace)**.

Dimensionality reduction

2nd way: Another solution is to transform the two features into one by projecting them to a **new manifold (geometrical subspace)**.

Dimensionality reduction

2nd way: Another solution is to transform the two features into one by projecting them to a **new manifold (geometrical subspace)**.

Eigendecomposition

Gives a feeling of the properties of the matrix

Eigendecomposition

Gives a feeling of the properties of the matrix

- u1 and u2 define the axes with maximum variances, where the data is most spread
- To reduce the dimensionality I project the data on the axis where data is the most spread
- There is no class information given

Notation

It's convenient to use notation from linear algebra.

onvenient to use notation from linear algebra.

$$Y = \begin{bmatrix}
y_{1,1} & y_{1,2} & \dots & y_{1,d} \\
y_{2,1} & y_{2,2} & \dots & y_{2,d} \\
\vdots & \vdots & \ddots & \vdots \\
y_{n,1} & y_{n,2} & \dots & y_{n,d}
\end{bmatrix}$$

The proposition of the property of the prope

With linear algebra notation, we can write operations more succinctly.

E.g., if W is a $d \times k$ matrix, what does Y*W do? What happens if k < d? If k > d?

 We need to optimise in order to minimise the distance between the true point and its reconstrcution:

$$x^* = \underset{x}{\operatorname{argmin}} \| y - \operatorname{rec}(x) \|_2$$

 x
 $y \text{ is 1 times d}$
 $x \text{ is 1 times q}$

- rec(x) = x W'
- · What is the dimensionality of *W*"?
- · Answer: *d times q*
- Then: x = y W. Now W is q times d.
- We can determine both x and W by solving an optimisation problem (called eigenvalue problem)

Principal Component Analysis

- · Remember: data are noisy!
- · Trade-off: reduce size / noise without losing too much information

Why do dimensionality reduction?

Pre-process data for another task (e.g. classification)

Compression (lossy)

Visualisation

Data understanding / clearing

Recap

- Data = sets of features, consistent (in nature) across instances
- Raw features are not always ideal.
 - Feature Selection: Drop some of the original features
 - Feature Extraction: Create new features out of the original ones
 - Dimensionality Reduction: Project the features to a new geometrical subspace
- The above methods depend on the task and the nature of the data.