UNIVERSITY OF BRISTOL

Winter 2024 Examination Period

SCHOOL OF COMPUTER SCIENCE

Third Year Examination for the Degrees of Bachelor of Science Master of Engineering

Types and Lambda Calculus

TIME ALLOWED: 1 Hour

Answers to: Types and Lambda Calculus

Intended Learning Outcomes:

Credit will be given for partially correct answers. You may use any result from the course material, as long as it is labelled clearly. A reminder of key definitions is provided at the back of this section.

- **Q1**. *(a) For each of the following terms, give its normal form.
 - i. $(\lambda xy. x) \ge 3$
 - ii. ifz (pred 1) id const
 - iii. $(\lambda x. x z \underline{5}) (\lambda xy. y)$
 - iv. $(\lambda f.(\lambda x. f(x x))(\lambda x. f(x x)))(\lambda x. y)$
 - v. ifz Z 1

[10 marks]

Solution:

- i. <u>2</u>
- ii. <u>id</u>
- iii. <u>5</u>
- iv. y
- v. ifz Z <u>1</u>
- * (b) For each of the following typing judgements, give a type derivation to justify it.
 - i. $\vdash \lambda x$. pred $x : \mathsf{Nat} \to \mathsf{Nat}$
 - ii. $f: \mathsf{Nat} \to \mathsf{Nat}, g: \mathsf{Nat} \to \mathsf{Nat} \vdash \lambda x. g \ (f \ x): \mathsf{Nat} \to \mathsf{Nat}$
 - iii. \vdash fix $(\lambda x. x)$ S : Nat \rightarrow Nat

[10 marks]

Solution:

i.

ii. With $\Gamma = \{f : \mathsf{Nat} \to \mathsf{Nat}, g : \mathsf{Nat} \to \mathsf{Nat}\}$:

iii. With
$$A = Nat \rightarrow Nat$$

$$\begin{array}{c|c}
\hline
x:A \vdash x:A \\
\vdash \text{fix}: (A \to A) \to A & \vdash \lambda x. x:A \to A \\
\hline
\vdash \text{fix} (\lambda x. x):A & \vdash S:A \\
\vdash \text{fix} (\lambda x. x) S:A & \\
\hline
\end{array}$$

- **(c) One of the following two types is inhabited by a closed, *pure* term and the other is not. Identify which is inhabited, and justify your answer by giving a closed, pure term that inhabits the type.
 - i. $a \rightarrow b$

ii.
$$(a \rightarrow b) \rightarrow ((c \rightarrow b) \rightarrow d) \rightarrow a \rightarrow d$$

[5 marks]

Solution: Type (ii) has inhabitant $\lambda xyz.y(\lambda y.xz)$.

**(d) Let x be a variable and N a term. Prove the following by induction on M: for all terms M, if $x \notin FV(M)$ then M[N/x] = M.

[10 marks]

Solution: The proof is by induction on M.

- When M is a variable y, proceed as follows. Suppose (i) $x \notin FV(M)$. Then there are two cases:
 - If x = y, we have $FV(M) = \{x\}$, but this contradicts (i) and so the conclusion follows vacuously.
 - Otherwise, by definition, M[N/x] = y[N/x] = y = M.
- When M is a constant c, we suppose $x \notin FV(M)$ and, by definition, M[N/x] = c[N/x] = c = M.
- When M is an application PQ, we assume the induction hypotheses:

IH1 if
$$x \notin FV(P)$$
 then $P[N/x] = P$
IH2 if $x \notin FV(Q)$ then $Q[N/x] = Q$

Suppose (i) $x \notin FV(M)$. Then, by definition, $x \notin FV(P)$ and $x \notin FV(Q)$. Hence, it follows from (IH1) and (IH2) that P[N/x] = P and Q[N/x] = Q. By definition, therefore, M[N/x] = (PQ)[N/x] = P[N/x]Q[N/x] = PQ = M.

• When M is an abstraction $\lambda y. P$, we assume the induction hypothesis:

1. if
$$x \notin FV(P)$$
 then $P[N/x] = P$

Suppose $x \notin FV(M)$. By definition, either x = y or $x \notin FV(P)$, but, by the variable convention, we may assume $x \neq y$. Hence, we can apply the induction hypothesis to obtain P[N/x] = P and it follows by definition that $M[N/x] = (\lambda y. P)[N/x] = \lambda y. P[N/x] = \lambda y. P = M$.

***(e) Fix a one-hole context C[] containing no free variables, and a closed term M. Give a detailed proof that, if C[M] is typable, then $C[\underline{\text{div}}]$ is typable.

[10 marks]

Solution: First observe that \vdash div : A for any type A and any environment Γ :

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma \vdash \text{fix} : (A \to A) \to A} \frac{\Gamma, x : A \vdash x : A}{\Gamma \vdash \lambda x. x : A \to A}$$

$$\Gamma \vdash \text{fix} (\lambda x. x) : A$$

We prove that, for all A and all Γ , $\Gamma \vdash C[M]$: A implies $\Gamma \vdash C[\underline{\text{div}}]$: A, by induction on C[].

- When C is just a hole [], assume $\Gamma \vdash C[M] : A$. By definition $C[\underline{\text{div}}] = \underline{\text{div}}$, for which we have $\Gamma \vdash \text{div} : A$, by the above.
- When C is of shape P D[], we assume the induction hypothesis. Let A be a type and Γ an environment. Assume that $\Gamma \vdash C[M] : A$. Then, by inversion, there is some type B such that $\Gamma \vdash P : B \to A$ and $\Gamma \vdash D[M] : B$. Then it follows from the induction hypothesis that $\Gamma \vdash D[fix] : B$ and so the result follows by the definition of the type system.
- When C is of shape D[] Q, we assume the induction hypothesis. Let A be a type and Γ an environment. Suppose $\Gamma \vdash C[M] : A$. Then, by inversion, there is some type B such that $\Gamma \vdash D[M] : B \to A$ and $\Gamma \vdash Q : B$. It follows from the induction hypothesis that $\Gamma \vdash D[\underline{\operatorname{div}}] : B \to A$ and so the result follows by definition.
- When C is of shape $\lambda x. D[]$, we assume the induction hypothsis. Let A be a type and Γ an environment. Suppose $\Gamma \vdash C[M] : A$. Then, by inversion, A has shape $B \to C$ and $\Gamma, x : B \vdash D[M] : C$. Therefore, it follows from the induction hypothesis that $\Gamma, x : B \vdash D[\underline{\text{div}}] : C$ and the result follows by definition.
- *** (f) Suppose we add the following additional redex-contraction pair to the definition of redexes:

$$\lambda x. M \times / M$$
 when $x \notin FV(M)$

Prove that the induced notion of reduction is not confluent.

[5 marks]

Solution: Suppose the augmented notion of reduction remains confluent. A counterexample is λx . fix x. Using the augmented notion of reduction, we have λx . fix $x \rhd^*$ fix and λx . fix $x \rhd^* \lambda x$. x (fix x). However, fix is a normal form, so it follows from confluence that λx . x (fix x) \rhd^* fix. This is impossible, because for every $n \in \mathbb{N}$, the only term P that satisfies λx . x (fix x) $rac{p}{r}$ x, is x x. x (fix x).

Key Definitions for Types and Lambda Calculus

Terms

(Terms)
$$M$$
, N ::= $x \mid c \mid (\lambda x. M) \mid (MN)$
(Constants) c ::= fix $\mid Z \mid S \mid$ pred \mid ifz

A term is said to be *pure* just if it contains no constants. Abbreviations:

$$\underline{n} = S^n Z$$

$$\underline{id} = \lambda x. x$$

$$\underline{const} = \lambda xy. x$$

$$\underline{sub} = \lambda xyz. xz(yz)$$

$$\underline{div} = fix id$$

Free Variables

$$FV(x) = \{x\}$$

$$FV(c) = \emptyset$$

$$FV(PQ) = FV(P) \cup FV(Q)$$

$$FV(\lambda x. N) = FV(N) \setminus \{x\}$$

Substitution

$$c[N/x] = c$$

$$y[N/x] = y \qquad \text{if } x \neq y$$

$$y[N/x] = N \qquad \text{if } x = y$$

$$(PQ)[N/x] = P[N/x]Q[N/x]$$

$$(\lambda y. P)[N/x] = \lambda y. P \qquad \text{if } y = x$$

$$(\lambda y. P)[N/x] = \lambda y. P[N/x] \qquad \text{if } y \neq x \text{ and } y \notin FV(N)$$

Redexes

pred Z / Z
pred (S
$$N$$
) / N
ifz Z N P / N
ifz (S M) N P / P
(λx . M) N / $M[N/x]$
fix M / M (fix M)

One Step

$$C[] ::= [] | M C[] | C[] N | \lambda x. C[]$$

Define $M \triangleright N$ just if there is a context C[] and a redex/contraction pair P / Q such that M = C[P] and N = C[Q].

- If $M >^* N$ then the term N is said to be a **reduct** of M.
- If $M >^+ N$ then the term N is said to be a **proper reduct** of M.
- A term M without proper reduct is a **normal form**.
- A term M that can reduce to normal form has a normal form or is normalisable.
- A term *M* that has no infinite reduction sequences is said to be **strongly normalisable**.

Reduction and Conversion

- P > 0 Q just if P = Q.
- $P \triangleright^{k+1} Q$ just if there is some U such that $P \triangleright^k U$ and $U \triangleright Q$.

Define $M \triangleright^* N$ just if there is some n such that $M \triangleright^n N$.

We write $M \approx N$ just if there is a term P such that $M \triangleright^* P$ and $N \triangleright^* P$.

Type Assignment

(Types)
$$A, B ::= Nat \mid a \mid (A \rightarrow B)$$

Let \mathbb{C} be the following collection of type assignments:

$$\begin{split} \{\mathsf{Z} : \mathsf{Nat}\} \cup \{\mathsf{S} : \mathsf{Nat} \to \mathsf{Nat}\} \cup \{\mathsf{pred} : \mathsf{Nat} \to \mathsf{Nat}\} \\ \cup \{\mathsf{ifz} : \mathsf{Nat} \to A \to A \to A \mid A \in \mathbb{T}\} \\ \cup \{\mathsf{fix} : (A \to A) \to A \mid A \in \mathbb{T}\} \end{split}$$

The typing rules are:

$$x:A \in \Gamma \frac{}{\Gamma \vdash x:A} \text{ (TVar)} \qquad c:A \in \mathbb{C} \frac{}{\Gamma \vdash c:A} \text{ (TCst)}$$

$$\frac{\Gamma \vdash M : B \to A \quad \Gamma \vdash N : B}{\Gamma \vdash MN : A} \text{ (TApp)} \qquad x \notin \text{dom } \Gamma \frac{\Gamma \cup \{x : B\} \vdash M : A}{\Gamma \vdash \lambda x. M : B \to A} \text{ (TAbs)}$$

We say that a closed term M is **typable** just if there is some type A such that $\vdash M : A$ is derivable in the type system. If $\vdash M : A$, then M is said to be an **inhabitant** of A. The **pure-term inhabitation problem**, is the problem of, given a type A, determining if there a closed, *pure* term M such that $\vdash M : A$.