



# PAISA GENIOUS TEAM



**Bioengineer and Data Scientist:** 

As the lead data scientist in our project Cristina:

- Managed feature engineering, data cleansing, and conducted data mining to create insightful visualizations
- Constructed the gold data set, essential for visualization and ML models
- Executed machine learning models for sentiment analysis, enhancing project insights

**Mechanical Engineer and Data Engineer** 

As the lead data engineer in our project Daverson:

- Orchestrated Databricks workspace deployment on AWS, integrating Github for efficient CI/CD.
- Designed lakehouse data architecture, unifying data warehouses and data lakes.
- Created ELT pipelines for batch and streaming incremental data ingestion



### The Challenge

Create an innovative data solution (web apps, chatbots, dashboards, model interfaces...) to empower businesses with insights from product reviews.

### Stage 1

Understand the problem and define a solution approach.

Day 1 Day 2

# Datathon Challenge

# Roadmap

Stage 2

deploy \* services, set up

GitHub repo. First batch

and

Day 5

Choose

workspace

ingestion

Day 3

technologies,

create

### Stage 3

Data architecture design, data engineering for batch and stream ingestion. Exploratory data analysis

Day 6 Day 8

### Stage 4

Data engineering for streaming, data cleansing, feature engineering and data visualization. Combine the data from both sources

Day 9

**Day 11** 

### Stage 5

Machine learning models, frontend design, final design dashboard, documentation and presentation

# aws databricks TextBlob

# MAIN TECHNOLOGIES



### **DATABRICKS + APACHE SPARK**

Databricks combines data warehouses & data lakes into a lakehouse architecture.



heterogeneous hardware

### **AWS + DELTA LAKE**

- Amazon S3 serves as the data lake, coupled with Delta Lake, which functions as the storage layer
- AWS EC2 instances as the compute resources for Databricks clusters



utilization

### **MLFLOW + TEXTBLOB + NLTK**

- Distributed capabilities for large-scale experiments
- Efficient experiment tracking, reproducibility and scalability

### DATA ARCHITECTURE

For this challenge, Team Paisa Genious proposes a Delta Lakehouse architecture using Databricks with AWS Cloud, which offers an integrated solution for both batch and streaming data processing

Databricks:

Big data platform<sup>x</sup>

- AWS:
- Storage Compute resources



### DATA ENGINEERING WITH DATABRICKS

#### **BATCH**

- 1. Extract and Load data to the Lake house
  Auto-loader: Incrementally load new data files as they arrive
- 2. Transform, Clean and Filter
  Spark structured streaming: Processing and transformation tasks with a batch-like behavior





### **STREAMING**

- 1. Extract and Load data to the Lake house
  Spark structured streaming: Stream data from event hub
- 2. Transform Data, Clean and Filter
  Spark structured streaming: Processing and transforming tasks as data becomes available





# DATA ENGINEERING WITH DATABRICKS Gold Layer: Business level Aggregates

The Gold layer aims to deliver continuously updated, clean data to downstream users and applications, including machine learning models, ad-hoc queries, and analytics tools.



## **EXPLORATORY DATA ANALYSIS**

Data cleaning

Feature exploration

New variables

Pattern recognition

Report generation

- -Missing values and duplicate records.
- -Variables imputation: price, main\_cat, brand, title.
- -Removing unwanted characters, converting to lowercase, and handling special cases: reviewText, title, main\_cat, brand
- -Number of unique customers,.
- -Number of unique products.
- -Number of unique reviews
- -"Month"
- -"Year"
- -"Sentiment":
- positive, negative and neutral
- -Number of words per review

Time Series analysis:

-Number of review per vear.

Number of review per month.

- -average of overall ratings per year
- -Setiment analysis per year

FINAL DASHBOARD

## REPORT FROM HISTORICAL DATA



### **Review Verification Impact:**

Does sentiment differ between verified and non-verified reviews, and do verified reviews tend to be more credible?



### **Review Length and Sentiment:**

Are longer or shorter reviews more likely to have a positive or negative sentiment?



### **Product Prioritization:**

Which product categories receive the most feedback, and are they also the ones with higher satisfaction?









### SENTIMENT ANALISYS FROM HISTORICAL + STREAMING DATA



BRAND REPUTATION ASSESSMENT



STRATEGIC DECISION MAKING







# SENTIMENT ANALYSIS ML MODEL

| areaUnderROC | in the test | e test data = 0.7015227408116935 |          |         |  |
|--------------|-------------|----------------------------------|----------|---------|--|
|              | precision   | recall                           | f1-score | support |  |
| neg 0        | 0.59        | 0.68                             | 0.63     | 1748239 |  |
| pos 1        | 0.72        | 0.64                             | 0.68     | 2259976 |  |
| accuracy     |             |                                  | 0.66     | 4008215 |  |
| macro avg    | 0.66        | 0.66                             | 0.66     | 4008215 |  |
| weighted avg | 0.67        | 0.66                             | 0.66     | 4008215 |  |







Amazon reviews- Gold



Removal of html tags

Removal of URLs

Filtering of repeated

Removal numerical Characters

Special Characters

Emoticons and emojis

Preprocessed Perform Reviews Labeling

> Build and train ML model.

Register the model -Staging.

Inferences

POSIIVE

**NEGATIVE** 

Offline store

ml*flow* 

TextBlob

### SENTIMENT ANALISYS DASHBOARD



- ☐ Prioritizing Focus Areas
- **☐** Sentiment Overview
- **☐** Monitoring Trends
- ☐ Customer Engagement
- ☐ Historical Insights
- ☐ Seasonal Patterns



# FRONTEND AND CONTINOUS DEPLOYMENT



### **Local Dev Commit**





**Frontend and** Dashboard





# CHALLENGES AND CONCLUSIONS



**SMALL TEAM** 



LIMITED TIME FRAME



**LIMITED RESOURCES** 

### **AWS DAILY COST RESOURCES**



