1)Advertising

```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.linear_model import LinearRegression
    from sklearn.linear_model import Lasso,RidgeCV,Ridge
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split
```

In [2]: df=pd.read_csv(r"C:\Users\HP\Downloads\Advertising.csv")
 df

Out[2]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

In [3]: | df.head()

Out[3]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

```
In [4]: | df.tail()
Out[4]:
                TV Radio Newspaper Sales
         195
               38.2
                      3.7
                               13.8
                                      7.6
         196
               94.2
                      4.9
                                8.1
                                     14.0
         197 177.0
                                6.4
                                     14.8
                      9.3
         198 283.6
                     42.0
                               66.2
                                     25.5
         199 232.1
                      8.6
                                8.7
                                     18.4
In [5]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 4 columns):
              Column
                         Non-Null Count Dtype
              ____
                         -----
          0
              TV
                         200 non-null
                                          float64
                                          float64
          1
              Radio
                         200 non-null
          2
              Newspaper 200 non-null
                                          float64
              Sales
                         200 non-null
                                          float64
         dtypes: float64(4)
         memory usage: 6.4 KB
```

Linear Regression

```
In [6]: feature=df.columns[0:3]
    target=df.columns[-1]
    x=df[feature].values
    y=df[target].values

In [7]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

0.9094112577349186

Ridge

```
In [8]: ridgeReg=Lasso(alpha=10)
    ridgeReg.fit(x_train,y_train)
        train_score_ridge=ridgeReg.score(x_train,y_train)
        test_score_ridge=ridgeReg.score(x_test,y_test)
        print("\n Lasso Model \n")
        print("train score for ridge model is {}".format(train_score_ridge))
        print("test score for ridge model is {}".format(test_score_ridge))
```

Lasso Model

train score for ridge model is 0.8809055630163277 test score for ridge model is 0.8750753072424735

Lasso

```
In [9]: lassoReg=Lasso(alpha=10)
    lassoReg.fit(x_train,y_train)
        train_score_lasso=lassoReg.score(x_train,y_train)
        test_score_lasso=lassoReg.score(x_test,y_test)
        print("\n Lasso Model \n")
        print("train score for lasso model is {}".format(train_score_lasso))
        print("test score for lasso model is {}".format(test_score_lasso))
```

Lasso Model

train score for lasso model is 0.8809055630163277 test score for lasso model is 0.8750753072424735

Lasso cross validation

```
In [10]: from sklearn.linear_model import LassoCV
    lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10]).fit(x_train,y_train)
    print("The train score for lasso model is {}".format(lasso_cv.score(x_train,y_train))
    print("The train score for lasso model is {}".format(lasso_cv.score(x_test,y_test)))
```

The train score for lasso model is 0.8983224157890476 The train score for lasso model is 0.9094111361092692

Ridge cross validation

```
In [11]: ridge_cv=RidgeCV(alphas=[0.0001,0.001,0.01,0.1,1,10]).fit(x_train,y_train)
    print("The train score for ridge model is {}".format(ridge_cv.score(x_train,y_train))
    print("The train score for ridge model is {}".format(ridge_cv.score(x_test,y_test)))
```

The train score for ridge model is 0.8983224075269427 The train score for ridge model is 0.9093961316810872

Comparision b/w ridge & Linear Regression

Comparision between Ridge,Lasso & Linear Regression

2) vehicle selection

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn.linear_model import LinearRegression
   from sklearn.linear_model import Lasso,RidgeCV,Ridge
   from sklearn.preprocessing import StandardScaler
   from sklearn.model_selection import train_test_split
```

In [2]: df=pd.read_csv(r"C:\Users\HP\Downloads\fiat500_VehicleSelection_Dataset (5).csv")
df

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	рор	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

Linear Regression

```
In [5]: feature=df.columns[3:6]
    target=df.columns[-1]
    x=df[feature].values
    y=df[target].values
```

```
In [6]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

0.8228774643074158

Ridge

```
In [7]: ridgeReg=Lasso(alpha=10)
    ridgeReg.fit(x_train,y_train)
        train_score_ridge=ridgeReg.score(x_train,y_train)
        test_score_ridge=ridgeReg.score(x_test,y_test)
        print("\n Lasso Model \n")
        print("train score for ridge model is {}".format(train_score_ridge))
        print("test score for ridge model is {}".format(test_score_ridge))
```

Lasso Model

train score for ridge model is 0.8462884214607971 test score for ridge model is 0.8228443743079964

Lasso

```
In [8]: lassoReg=Lasso(alpha=10)
    lassoReg.fit(x_train,y_train)
        train_score_lasso=lassoReg.score(x_train,y_train)
        test_score_lasso=lassoReg.score(x_test,y_test)
        print("\n Lasso Model \n")
        print("train score for lasso model is {}".format(train_score_lasso))
        print("test score for lasso model is {}".format(test_score_lasso))
```

Lasso Model

train score for lasso model is 0.8462884214607971 test score for lasso model is 0.8228443743079964

Lasso cross validation

```
In [9]: from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,1,10]).fit(x_train,y_train)
print("The train score for lasso model is {}".format(lasso_cv.score(x_train,y_train))
print("The train score for lasso model is {}".format(lasso_cv.score(x_test,y_test))
```

The train score for lasso model is 0.8462884214607971 The train score for lasso model is 0.8228443743079964

Ridge cross validation

```
In [10]: ridge_cv=RidgeCV(alphas=[0.0001,0.001,0.01,0.1,1,10]).fit(x_train,y_train)
    print("The train score for ridge model is {}".format(ridge_cv.score(x_train,y_train))
    print("The train score for ridge model is {}".format(ridge_cv.score(x_test,y_test)))
```

The train score for ridge model is 0.8463001992263106 The train score for ridge model is 0.8228741469736836

comparision b/w Ridge & Linear Regression

In [12]: plt.figure(figsize=(10,10)) plt.plot(feature,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,color='bl.plot(lasso_cv.coef_,alpha=0.7,linestyle='none',marker='d',markersize=6,color='bl.plt.plot(feature,regr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,colorplt.xticks(rotation=90) plt.legend() plt.title("comparision plot of Ridge,Lasso and Linear Regression model") plt.show()

In []:	