$11a_{11} (K11a_{11})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 5u^{57} + 12u^{56} + \dots + 2b + 7, -13u^{57} - 30u^{56} + \dots + 2a - 17, u^{58} + 3u^{57} + \dots + 2u + 1 \rangle$$

 $I_2^u = \langle b + a, a^2 - a + 1, u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 60 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 5u^{57} + 12u^{56} + \dots + 2b + 7, -13u^{57} - 30u^{56} + \dots + 2a - 17, u^{58} + 3u^{57} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{13}{2}u^{57} + 15u^{56} + \dots + \frac{21}{2}u + \frac{17}{2} \\ -\frac{5}{2}u^{57} - 6u^{56} + \dots - \frac{3}{2}u - \frac{7}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{57} - u^{56} + \dots + \frac{1}{2}u + \frac{3}{2} \\ \frac{1}{2}u^{57} + u^{56} + \dots + \frac{3}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 6u^{57} + 13u^{56} + \dots + 10u + 7 \\ -\frac{9}{2}u^{57} - 10u^{56} + \dots - \frac{7}{2}u - \frac{11}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{9}{2}u^{57} + 9u^{56} + \dots + \frac{13}{2}u + \frac{11}{2}u - \frac{13}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - 12u^{56} + \dots + \frac{13}{2}u - \frac{13}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $7u^{57} + 19u^{56} + \cdots + 5u + 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{58} + 2u^{57} + \dots + 3u + 1$
c_2	$u^{58} + 26u^{57} + \dots + 5u + 1$
c_3, c_8	$u^{58} - u^{57} + \dots + 4u + 4$
<i>C</i> ₅	$u^{58} - 2u^{57} + \dots - 5u + 1$
c_6, c_{10}	$u^{58} + 3u^{57} + \dots + 2u + 1$
c_{7}, c_{9}	$u^{58} + 15u^{57} + \dots + 168u + 16$
c_{11}	$u^{58} - 33u^{57} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{58} + 26y^{57} + \dots + 5y + 1$
c_2	$y^{58} + 14y^{57} + \dots + 29y + 1$
c_3, c_8	$y^{58} - 15y^{57} + \dots - 168y + 16$
	$y^{58} + 2y^{57} + \dots + 53y + 1$
c_6, c_{10}	$y^{58} - 33y^{57} + \dots + 2y + 1$
c_{7}, c_{9}	$y^{58} + 53y^{57} + \dots + 2784y + 256$
c_{11}	$y^{58} - 13y^{57} + \dots + 42y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.936894 + 0.279112I		
a = 1.047720 + 0.605690I	1.77616 + 0.94992I	4.44755 - 1.71410I
b = 0.369891 - 0.435412I		
u = 0.936894 - 0.279112I		
a = 1.047720 - 0.605690I	1.77616 - 0.94992I	4.44755 + 1.71410I
b = 0.369891 + 0.435412I		
u = -0.916311 + 0.325300I		
a = -0.44495 + 1.43722I	1.56865 - 3.63401I	0.50067 + 8.81328I
b = -0.115014 - 1.191470I		
u = -0.916311 - 0.325300I		
a = -0.44495 - 1.43722I	1.56865 + 3.63401I	0.50067 - 8.81328I
b = -0.115014 + 1.191470I		
u = 0.879809 + 0.411472I		
a = -1.87353 - 0.91118I	-0.11517 + 4.84774I	-0.96980 - 7.14409I
b = -0.963620 + 0.647776I		
u = 0.879809 - 0.411472I		
a = -1.87353 + 0.91118I	-0.11517 - 4.84774I	-0.96980 + 7.14409I
b = -0.963620 - 0.647776I		
u = -0.872696 + 0.564700I		
a = 0.11167 - 1.42828I	-4.33981 - 1.99854I	-7.41077 + 3.19574I
b = 0.724370 - 0.075036I		
u = -0.872696 - 0.564700I		
a = 0.11167 + 1.42828I	-4.33981 + 1.99854I	-7.41077 - 3.19574I
b = 0.724370 + 0.075036I		
u = -0.961005 + 0.511826I		
a = -0.391548 + 1.205530I	-0.45426 - 4.86179I	0
b = -0.865496 - 0.577881I		
u = -0.961005 - 0.511826I		
a = -0.391548 - 1.205530I	-0.45426 + 4.86179I	0
b = -0.865496 + 0.577881I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.091850 + 0.182421I		
a = 0.618739 + 0.378922I	2.16202 + 0.77457I	0
b = -0.033551 - 0.584136I		
u = 1.091850 - 0.182421I		
a = 0.618739 - 0.378922I	2.16202 - 0.77457I	0
b = -0.033551 + 0.584136I		
u = -0.114948 + 0.879124I		
a = 0.293332 + 0.657468I	2.14956 + 9.66192I	-1.84579 - 7.09878I
b = 1.34552 - 1.00402I		
u = -0.114948 - 0.879124I		
a = 0.293332 - 0.657468I	2.14956 - 9.66192I	-1.84579 + 7.09878I
b = 1.34552 + 1.00402I		
u = -0.847792 + 0.237371I		
a = 1.00423 - 1.29055I	1.09083 + 1.19632I	-2.67942 + 2.86295I
b = -0.610270 + 1.159360I		
u = -0.847792 - 0.237371I		
a = 1.00423 + 1.29055I	1.09083 - 1.19632I	-2.67942 - 2.86295I
b = -0.610270 - 1.159360I		
u = -0.620020 + 0.619213I		
a = 0.637420 + 0.321223I	-5.05702 - 2.63543I	-8.96800 + 3.93457I
b = 0.877359 + 0.237702I		
u = -0.620020 - 0.619213I		
a = 0.637420 - 0.321223I	-5.05702 + 2.63543I	-8.96800 - 3.93457I
b = 0.877359 - 0.237702I		
u = -0.089885 + 0.858078I		
a = -0.112768 - 0.635694I	4.07167 + 4.42773I	1.08988 - 2.76799I
b = -0.786700 + 1.168860I		
u = -0.089885 - 0.858078I		
a = -0.112768 + 0.635694I	4.07167 - 4.42773I	1.08988 + 2.76799I
b = -0.786700 - 1.168860I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.985848 + 0.568576I		
a = 0.69359 - 1.33426I	-2.89029 - 9.39325I	0
b = 1.237080 + 0.630163I		
u = -0.985848 - 0.568576I		
a = 0.69359 + 1.33426I	-2.89029 + 9.39325I	0
b = 1.237080 - 0.630163I		
u = -0.468879 + 0.677261I		
a = 0.599662 - 0.565289I	-4.36361 + 4.61978I	-7.52611 - 4.69531I
b = 1.104110 - 0.515806I		
u = -0.468879 - 0.677261I		
a = 0.599662 + 0.565289I	-4.36361 - 4.61978I	-7.52611 + 4.69531I
b = 1.104110 + 0.515806I		
u = -0.008417 + 0.809874I		
a = 0.341800 - 0.733041I	4.43701 + 1.53415I	1.72366 - 2.51421I
b = 0.587922 + 1.243870I		
u = -0.008417 - 0.809874I		
a = 0.341800 + 0.733041I	4.43701 - 1.53415I	1.72366 + 2.51421I
b = 0.587922 - 1.243870I		
u = 1.191990 + 0.080409I		
a = -0.975096 - 0.416483I	0.90066 - 2.88860I	0
b = 0.809328 + 0.659275I		
u = 1.191990 - 0.080409I		
a = -0.975096 + 0.416483I	0.90066 + 2.88860I	0
b = 0.809328 - 0.659275I		
u = 0.038017 + 0.792195I		
a = -0.558913 + 0.868902I	2.81999 - 3.64889I	-0.72605 + 2.41695I
b = -1.20038 - 1.07211I		
u = 0.038017 - 0.792195I		
a = -0.558913 - 0.868902I	2.81999 + 3.64889I	-0.72605 - 2.41695I
b = -1.20038 + 1.07211I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.135832 + 0.774619I		
a = 0.029723 + 0.956439I	-1.07636 + 2.53447I	-5.45479 - 2.49966I
b = 0.224876 - 0.143157I		
u = -0.135832 - 0.774619I		
a = 0.029723 - 0.956439I	-1.07636 - 2.53447I	-5.45479 + 2.49966I
b = 0.224876 + 0.143157I		
u = 1.181050 + 0.400971I		
a = -0.091410 - 1.158760I	2.74272 + 1.35672I	0
b = -0.061904 + 0.135595I		
u = 1.181050 - 0.400971I		
a = -0.091410 + 1.158760I	2.74272 - 1.35672I	0
b = -0.061904 - 0.135595I		
u = 0.653392 + 0.334802I		
a = -0.95931 - 1.89944I	-0.81275 - 1.40752I	-3.05190 + 0.70072I
b = -0.695507 - 0.477939I		
u = 0.653392 - 0.334802I		
a = -0.95931 + 1.89944I	-0.81275 + 1.40752I	-3.05190 - 0.70072I
b = -0.695507 + 0.477939I		
u = -0.480577 + 0.547338I		
a = -0.133346 + 0.235167I	-1.79712 + 0.58239I	-4.29390 - 0.53701I
b = -0.763916 + 0.261710I		
u = -0.480577 - 0.547338I		
a = -0.133346 - 0.235167I	-1.79712 - 0.58239I	-4.29390 + 0.53701I
b = -0.763916 - 0.261710I		
u = -1.211310 + 0.439886I		
a = 1.64164 - 0.97222I	6.48025 - 0.70893I	0
b = -1.21429 + 1.19635I		
u = -1.211310 - 0.439886I		
a = 1.64164 + 0.97222I	6.48025 + 0.70893I	0
b = -1.21429 - 1.19635I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.188910 + 0.500899I		
a = 0.126269 - 1.350040I	2.01751 - 7.25755I	0
b = 0.214574 + 0.310119I		
u = -1.188910 - 0.500899I		
a = 0.126269 + 1.350040I	2.01751 + 7.25755I	0
b = 0.214574 - 0.310119I		
u = 1.207870 + 0.472373I		
a = -0.30001 - 2.69705I	6.24695 + 8.22888I	0
b = -1.30956 + 1.04786I		
u = 1.207870 - 0.472373I		
a = -0.30001 + 2.69705I	6.24695 - 8.22888I	0
b = -1.30956 - 1.04786I		
u = 1.218760 + 0.453390I		
a = 0.67289 + 2.30853I	8.06195 + 2.97069I	0
b = 0.72918 - 1.22228I		
u = 1.218760 - 0.453390I		
a = 0.67289 - 2.30853I	8.06195 - 2.97069I	0
b = 0.72918 + 1.22228I		
u = -1.217390 + 0.461266I		
a = -1.34002 + 1.45284I	8.00524 - 6.08837I	0
b = 0.58894 - 1.38167I		
u = -1.217390 - 0.461266I		
a = -1.34002 - 1.45284I	8.00524 + 6.08837I	0
b = 0.58894 + 1.38167I		
u = 1.249820 + 0.409605I		
a = 1.42176 + 1.29568I	8.16003 - 0.02626I	0
b = -0.67640 - 1.24410I		
u = 1.249820 - 0.409605I		
a = 1.42176 - 1.29568I	8.16003 + 0.02626I	0
b = -0.67640 + 1.24410I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.264910 + 0.391892I		
a = -1.67105 - 0.82125I	6.42683 - 5.27485I	0
b = 1.27143 + 1.06896I		
u = 1.264910 - 0.391892I		
a = -1.67105 + 0.82125I	6.42683 + 5.27485I	0
b = 1.27143 - 1.06896I		
u = -1.225810 + 0.504607I		
a = -0.43554 + 2.29097I	7.47129 - 9.35808I	0
b = -0.86675 - 1.23626I		
u = -1.225810 - 0.504607I		
a = -0.43554 - 2.29097I	7.47129 + 9.35808I	0
b = -0.86675 + 1.23626I		
u = -1.228790 + 0.519584I		
a = 0.05132 - 2.55286I	5.5002 - 14.7239I	0
b = 1.40940 + 1.03866I		
u = -1.228790 - 0.519584I		
a = 0.05132 + 2.55286I	5.5002 + 14.7239I	0
b = 1.40940 - 1.03866I		
u = 0.160056 + 0.305941I		
a = 0.49573 + 2.06046I	-0.32061 + 1.54716I	-2.16073 - 4.65280I
b = -0.330626 + 0.576257I		
u = 0.160056 - 0.305941I		
a = 0.49573 - 2.06046I	-0.32061 - 1.54716I	-2.16073 + 4.65280I
b = -0.330626 - 0.576257I		

II.
$$I_2^u = \langle b + a, a^2 - a + 1, u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ -a \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a \\ -a+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -a \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ -a \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ -a \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4a + 1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$u^2 + u + 1$
$c_3, c_7, c_8 \ c_9$	u^2
c_4	$u^2 - u + 1$
c_6	$(u+1)^2$
c_{10}, c_{11}	$(u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$y^2 + y + 1$
c_3, c_7, c_8 c_9	y^2
c_6, c_{10}, c_{11}	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.500000 + 0.866025I	1.64493 - 2.02988I	3.00000 + 3.46410I
b = -0.500000 - 0.866025I		
u = -1.00000		
a = 0.500000 - 0.866025I	1.64493 + 2.02988I	3.00000 - 3.46410I
b = -0.500000 + 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^2 + u + 1)(u^{58} + 2u^{57} + \dots + 3u + 1)$
c_2	$(u^2 + u + 1)(u^{58} + 26u^{57} + \dots + 5u + 1)$
c_3, c_8	$u^2(u^{58} - u^{57} + \dots + 4u + 4)$
c_4	$ (u^2 - u + 1)(u^{58} + 2u^{57} + \dots + 3u + 1) $
c_5	$(u^2 + u + 1)(u^{58} - 2u^{57} + \dots - 5u + 1)$
c_6	$((u+1)^2)(u^{58} + 3u^{57} + \dots + 2u + 1)$
c_{7}, c_{9}	$u^2(u^{58} + 15u^{57} + \dots + 168u + 16)$
c_{10}	$((u-1)^2)(u^{58} + 3u^{57} + \dots + 2u + 1)$
c_{11}	$((u-1)^2)(u^{58} - 33u^{57} + \dots + 2u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^2 + y + 1)(y^{58} + 26y^{57} + \dots + 5y + 1)$
c_2	$(y^2 + y + 1)(y^{58} + 14y^{57} + \dots + 29y + 1)$
c_3, c_8	$y^2(y^{58} - 15y^{57} + \dots - 168y + 16)$
<i>C</i> ₅	$(y^2 + y + 1)(y^{58} + 2y^{57} + \dots + 53y + 1)$
c_6, c_{10}	$((y-1)^2)(y^{58} - 33y^{57} + \dots + 2y + 1)$
c_{7}, c_{9}	$y^2(y^{58} + 53y^{57} + \dots + 2784y + 256)$
c_{11}	$((y-1)^2)(y^{58}-13y^{57}+\cdots+42y+1)$