Tarea 4 Programación declarativa

Peto Gutierrez Emmanuel Ernesto Rubén Palacios Gómez

22 de mayo de 2018

1.- Por definición $a \leq b$ implica que $\exists c \in \mathbb{N}$ tal que a+c=b.

Voy a etiquetar las flechas de manera única con una terna, de forma que a la flecha $a \xrightarrow{f} b$ le corresponde la terna f = (a, b, c). Por ejemplo $id_a = (a, a, 0)$ o si b = s(a) entonces a la flecha $a \to b$ le corresponde (a, b, 1). La composición se definirá así: Si tenemos que $a \le b$ y $b \le d$ y tenemos que a + c = b y b + e = d, entonces $(b, d, e) \circ (a, b, c) = (a, d, e + c)$. La primera entrada de la terna de la izquierda debe ser igual a la segunda entrada de la terna de la derecha.

Veremos que se cumple la asociatividad y la identidad por la izquierda y derecha.

Asociatividad: Sean $a,b,c,d\in\mathbb{N}$ tal que $a\leq b\leq c\leq d$. Sean f,g,h flechas tal que $a\stackrel{f}{\to}b,b\stackrel{g}{\to}c,c\stackrel{h}{\to}d$, donde f=(a,b,x),g=(b,c,y),h=(c,d,z). $g\circ f=(a,c,x+y)$ $h\circ g=(b,d,y+z)$ Luego, $h\circ (g\circ f)=(a,d,x+y+z)=(h\circ g)\circ f\blacksquare$

Identidad izquierda:
$$id_b \circ f$$
 donde $a \xrightarrow{f} b$. $(b, b, 0) \circ (a, b, c) = (a, b, c + 0) = (a, b, c) = f \blacksquare$

Identidad derecha:
$$f \circ id_a = (a, b, c) \circ (a, a, 0) = (a, b, c+0) = (a, b, c) = f \blacksquare$$

Un funtor $F:\mathbb{N}\to\mathbb{N}$ podría ser la función sucesor definida así: F(a)=S(a) F(a,b,c)=(S(a),S(b),c)

2.- Sean $f:x\to y, g:y\to z$ funciones de Haskell y x,y,z tipos de Haskell. $g\circ f:x\to z.$ $F(x)=a\to x$

$$\begin{split} F(y) &= a \to y \\ F(z) &= a \to z \\ F(f) &= F(x) \to F(y) = (a \to x) \to (a \to y) \\ F(g) &= F(y) \to F(z) = (a \to y) \to (a \to z) \\ F(g \circ f) &= (a \to x) \to (a \to z) = F(g) \circ F(f) \blacksquare \text{ Vemos que preserva la composición.} \end{split}$$

Sea $id_x = x \to x$ donde x es un tipo.

$$F(x) = a \to x$$

$$F(id_x) = (a \to x) \to (a \to x) = id_{F(x)} \blacksquare$$
 Preserva la identidad.

3.- Sean f, g, id_x definidos como en (2).

$$F_1(x) = (a, b) \rightarrow x$$

$$F_1(y) = (a, b) \rightarrow y$$

$$F_1(z) = (a,b) \rightarrow z$$

$$F_1(f) = ((a,b) \to x) \to ((a,b) \to y)$$

$$F_1(g) = ((a,b) \to y) \to ((a,b) \to z)$$

$$F_1(g \circ f) = ((a,b) \to x) \to ((a,b) \to z)$$

 $F_1(g)\circ F_1(f)=((a,b)\to x)\to ((a,b)\to z)=F_1(g\circ f)$ Preserva la composición

$$F_1(id_x) = ((a,b) \to x) \to ((a,b) \to x) = id_{F_1(x)} \blacksquare$$
 Preserva identidades.

$$\begin{split} F_2(f) &= (a \to (b \to x)) \to (a \to (b \to y)) \\ F_2(g) &= (a \to (b \to y)) \to (a \to (b \to z)) \\ F_2(g \circ f) &= (a \to (b \to x)) \to (a \to (b \to z)) \\ F_2(g) \circ F_2(f) &= (a \to (b \to x)) \to (a \to (b \to z)) \\ \hline Preserva la composición. \\ F_2(id_x) &= (a \to (b \to x)) \to (a \to (b \to x)) = id_{F_2(x)} \\ \hline Preserva la identidad. \end{split}$$

4.-

$$F_{1}(a) \xrightarrow{F_{1}(f)} F_{1}(b)$$

$$\uparrow_{2a} \uparrow_{\eta_{1a}} \qquad \uparrow_{2b} \uparrow_{\eta_{1b}}$$

$$F_{2}(a) \xrightarrow{F_{2}(f)} F_{2}(b)$$

Las composiciones $\eta_1 \circ \eta_2$ y $\eta_2 \circ \eta_1$ son funciones identidad, entonces solo se cumple la propiedad $\eta_1 \circ \eta_2 = F_2$ y $\eta_2 \circ \eta_1 = F_1$ si F_1 y F_2 son funtores identidad.

$$5.-$$

$$\eta: [] \Rightarrow []$$

$$\eta_a: [a] \rightarrow [a]$$

$$xs \mapsto sort \ xs$$

 η no es una transformación natural. Esto se debe a que sort solo se pue-

de aplicar a listas cuyos elementos sean comparables, es decir, que tengan definidas las operaciones <,>,=. Supongamos que tenemos una función de Haskell $f:Int\to Bool$ que decide si un número es par. Supongamos que ℓ es una lista de tipo Int, la operación $map\ f\ (sort\ \ell)$ está definida, pero $sort\ (map\ f\ \ell)$ no está definida, porque no podemos ordenar tipo Bool. Entonces $(map\ f)\ (sort\ \ell)\neq sort\ ((map\ f)\ \ell)$.

```
6.- Definamos la función Maybe\_fun así: Maybe\_fun :: (a \rightarrow b) \rightarrow Maybe a Maybe\_fun f Nothing = Nothing Maybe\_fun f (Just a) = Just (f a)
```

Utilizaré el término f(x) para describir el resultado de aplicar f a x en vez de f x, como sería en Haskell. Sea $f:a\to b$, veremos que el siguiente diagrama conmuta:

$$\begin{array}{ccc} Maybe & \xrightarrow{Maybe} & \xrightarrow{funf} & Maybe & b \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ &$$

```
Caso Nothing:
map \ f \ (\eta_a \ Nothing) = map \ f \ [] = []
\eta_b \ (Maybe\_fun \ f \ Nothing) = \eta_b \ Nothing = []
Por lo tanto map \ f \ (\eta_a \ Nothing) = \eta_b \ (Maybe\_fun \ f \ Nothing) \blacksquare
Caso x:
```