

Módulo 3: VLAN

Conmutación, enrutamiento y Wireless Essentials v7.0 (SRWE)

Objetivos del módulo

Título del módulo: Protocolos y modelos

Objetivo del módulo: Explicar cómo los protocolos de red permiten que los dispositivos accedan a recursos de red locales y remotos.

Título del tema	Objetivo del tema	
Descripción general de las VLAN	Explique la finalidad de las VLAN en una red conmutada.	
Redes VLAN en un entorno conmutado múltiple	Explique cómo un switch reenvía tramas según la configuración de VLAN en un entorno conmutado múltiple.	
Configuración de VLAN	Configure un puerto para switch que se asignará a una VLAN según los requisitos.	
Enlaces troncales de la VLAN	Configure un puerto de enlace troncal en un switch LAN.	
Protocolo de enlace troncal dinámico	Configure el protocolo de enlace troncal dinámico (DTP).	

3.1 Descripción general de las VLAN

Descripción general de las VLAN Definiciones de VLAN

Las VLAN son conexiones lógicas con otros dispositivos similares.

La colocación de dispositivos en varias VLAN tienen las siguientes características:

- Proporciona segmentación de los diversos grupos de dispositivos en los mismos switches
- Proporciona una organización más manejable
 - Difusiones, multidifusión y unidifusión se aíslan en la VLAN individual
 - Cada VLAN tendrá su propia gama única de direcciones IP
 - Dominios de difusión más pequeños

Descripción general de las VLAN Beneficios de un diseño de VLAN

Los beneficios de usar VLAN son los siguientes:

Beneficios	Descripción
Dominios de difusión más pequeños	Dividir la LAN reduce el número de dominios de difusión
Seguridad mejorada	Solo los usuarios de la misma VLAN pueden comunicarse juntos
Eficiencia de TI mejorada	Las VLAN pueden agrupar dispositivos con requisitos similares, por ejemplo, profesores frente a estudiantes
Reducción de costos	Un switch puede admitir varios grupos o VLAN
Mejor rendimiento	Pequeños dominios de difusión reducen el tráfico y mejoran el ancho de banda
Gestión Simple	Grupos similares necesitarán aplicaciones similares y otros recursos de red

5

Descripción general de las VLAN Tipos de VLAN

VLAN predeterminada – VLAN 1

- La VLAN predeterminada
- La VLAN nativa predeterminada
- La VLAN de administración predeterminada
- No se puede eliminar ni cambiar el nombre

Nota: Aunque no podemos eliminar VLAN1, Cisco recomendará que asignemos estas características predeterminadas a otras VLAN

Switch# show vlan brief			
VLAN Name Stat	us Ports		
1 default acti	ve Fa0/1, Fa0/2, Fa0/3, Fa0/4		
	Fa0/5, Fa0/6, Fa0/7, Fa0/8		
	Fa0/9, Fa0/10, Fa0/11, Fa0/12		
	Fa0/13, Fa0/14, Fa0/15, Fa0/16		
	Fa0/17, Fa0/18, Fa0/19, Fa0/20		
	Fa0/21, Fa0/22, Fa0/23, Fa0/24		
	Gi0/1, Gi0/2		
1002 fddi-default	act/unsup		
1003 token-ring-default	act/unsup		
1004 fddinet-default	act/unsup		
1005 trnet-default	act/unsup		
<u> </u>	·		

Descripción general de las VLAN

Tipos de VLAN (Cont.)

VLAN de datos

- Dedicado al tráfico generado por el usuario (correo electrónico y tráfico web).
- VLAN 1 es la VLAN de datos predeterminada porque todas las interfaces están asignadas a esta VLAN.

VLAN nativa

- Esto se utiliza sólo para enlaces troncales.
- Todas las tramas están etiquetadas en un enlace troncal 802.1Q excepto las de la VLAN nativa.

VLAN de administración

- Esto se utiliza para el tráfico SSH/Telnet VTY y no debe ser llevado con el tráfico de usuario final.
- Normalmente, la VLAN que es el SVI para el switch de capa 2. Cisco y/o sus filiales. Todos los derechos reservados. Información

Descripción general de las VLAN

Tipos de VLAN (Cont.)

VLAN de voz

- Se requiere una VLAN separada porque el tráfico de voz requiere:
 - Ancho de banda asegurado
 - Alta prioridad de QoS
 - Capacidad para evitar la congestión
 - Retraso menos de 150 ms desde el origen hasta el destino
- Toda la red debe estar diseñada para admitir la voz.

3.2 VLAN en un entorno de conmutación múltiple

VLAN en un Entorno de Conmutación Múltiple

Definición de troncales de VLAN

Un enlace troncal es un enlace punto a punto entre dos dispositivos de red.

Funciones troncales de Cisco:

- Permitir más de una VLAN
- Extender la VLAN a través de toda la red
- De forma predeterminada, admite todas las VLAN
- Soporta enlace troncal 802.1Q

VLAN en un Entorno de Conmutación Múltiple

Redes sin VLAN

Sin VLAN, todos los dispositivos conectados a los switches recibirán todo el tráfico de unidifusión, multidifusión y difusión.

PC1 sends out a local Layer 2 broadcast. The switches forward the broadcast frame out all available ports.

VLAN en un entorno de conmutación múltiple

Redes con VLAN

Con las VLAN, el tráfico de unidifusión, multidifusión y difusión se limita a una VLAN. Sin un dispositivo de capa 3 para conectar las VLAN, los dispositivos de diferentes VLAN no pueden comunicarse.

PC1 sends out a local Layer 2 broadcast. The switches forward the broadcast frame only out ports configured for VLAN10.

VLAN en un Entorno de Conmutación Múltiple Identificación de VLAN con una etiqueta

- El encabezado IEEE 802.1Q es de 4 Bytes
- Cuando se crea la etiqueta, se debe volver a calcular el FCS.
- Cuando se envía a los dispositivos finales, esta etiqueta debe eliminarse y el FCS vuelve a calcular su número original.

Campo de etiqueta VLAN 802.1Q	Función	
Tipo	 Campo de 2 bytes con hexadecimal 0x8100 Esto se conoce como ID de Protocolo de Etiqueta (TPID) 	
Prioridad de usuario	Valor de 3 bits que admite	
Identificador de formato canónico (CFI)	Valor de 1 bit que puede admitir tramas de Token Ring en Ethernet	
VLAN ID (VID)	 Identificador de VLAN de 12 bits que puede admitir hasta 4096 VLAN 	

VLAN en un Entorno de Conmutación Múltiple VLAN nativas y etiquetado 802.1Q

Conceptos básicos de 802.1Q:

CISCO

- El etiquetado se realiza normalmente en todas las VLAN.
- El uso de una VLAN nativa se diseñó para uso heredado, como el Switch en el ejemplo.
- A menos que se modifique, VLAN1 es la VLAN nativa.
- Ambos extremos de un enlace troncal deben configurarse con la misma VLAN nativa.
- Cada troncal se configura por separado, por lo que es posible tener una VLAN nativa diferente en troncales separados.

VLAN en un Entorno de Conmutación Múltiple Etiquetado de VLAN de voz

El teléfono VoIP es un switch de tres puertos:

- El switch utilizará CDP para informar al teléfono de la VLAN de voz.
- El teléfono etiquetará su propio tráfico (Voz) y puede establecer el coste de servicio (CoS). CoS es QoS para la capa 2.
- El teléfono puede o no etiquetar tramas de la PC.

Tráfico	Función de etiquetado
VLAN de voz	etiquetado con un valor de prioridad de clase de servicio (CoS) de capa 2 apropiado
VLAN de acceso	también se puede etiquetar con un valor de prioridad CoS de capa 2
VLAN de acceso	no está etiquetado (sin valor de prioridad CoS de capa 2)

VLAN en un Entorno de Conmutación Múltiple

Ejemplo de verificación de VLAN de voz

El comando **show interfaces fa0/18 switchport** puede mostrarnos las VLAN de datos y voz asignadas a la interfaz.

```
S1# show interfaces fa0/18 switchport
Name: Fa0/18
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 20 (student)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: 150 (voice)
```


Rangos de VLAN en Catalyst

Los switches Catalyst 2960 y 3650 admiten más de 4000 VLAN.

- Rango normal VLAN 1-1005, utilizado en pequeñas y medianas empresas. Se guardan en vlan.dat en flash.
- Rango extendido VLAN 1006-4094, usado por los proveedores de servicios. Menos opciones que las VLAN de rango normal. Se guardan en runningconfig. No admite VTP

	Switch# show vlan brief			
	VLAN	Name	Status	Ports
1.	1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gi0/1, Gi0/2
	1002	fddi-default		act/unsup
	1003	token-ring-default		act/unsup
	1004	fddinet-default		act/unsup
	1005	trnet-default		act/unsup

VLAN ID	Tipo	Uso
0 y 4095	Reservado	Para uso exclusivo del sistema.
1	Utilizable	VLAN nativa por defecto para todos los puertos. Se crea automáticamente y no puede ser modificada o eliminada.
2 – 1001	Utilizable	Rango de uso general. Pueden ser creadas, modificas o eliminadas.
1002 - 1005	Utilizable	Están reservados para VLAN heredadas. VLANs por defecto en dispositivos para FDDI y Token Ring. Se crean automáticamente y no pueden ser eliminadas.

Comandos de creación de VLAN

Los detalles de la VLAN se almacenan en el archivo vlan.dat. Crea VLAN en el modo de configuración global.

Tarea	Comando de IOS
Ingresar al modo de configuración global.	Switch# configure terminal
Crear una VLAN con un número de identificación válido.	Switch(config)# vlan vlan-id
Especificar un nombre único para identificar la VLAN.	Switch(config-vlan)# name vlan-name
Volver al modo EXEC con privilegios.	Switch (config-vlan) # end

Configuración de VLAN **Ejemplo de creación de VLAN**

- Si el Student PC va a estar en VLAN 20, primero crearemos la VLAN y luego la nombraremos.
- Si no lo nombra, Cisco IOS le dará un nombre predeterminado de vlan y el número de cuatro dígitos de la VLAN. Por ejemplo, vlan0020 para VLAN 20.

Indicador	Comando
S1#	configure terminal
S1(config)#	vlan 20
S1(config-vlan)#	name student
S1(config-vlan)#	end

Comandos de asignación de puertos de VLAN

Una vez creada la VLAN, podemos asignarla a las interfaces correctas.

Tarea	Comando
Ingresar al modo de configuración global.	Switch# configure terminal
Ingresa al modo de configuración de interfaz.	Switch(config)# interface interface-id
Establezca el puerto en modo de acceso.	Switch(config-if)# switchport mode access
Asigna el puerto a una VLAN.	Switch(config-if)# switchport access vlan vlan-id
Vuelve al modo EXEC con privilegios.	Switch(config-if)# end

Ejemplo de asignación de puerto VL

Podemos asignar la VLAN a la interfaz del puerto.

- Una vez que el dispositivo se asigna la VLAN, el dispositivo final necesitará la información de dirección IP para esa VLAN
- Aquí, Student PC recibe 172.17.20.22

Indicador	Comando
S1#	configure terminal
S1(config)#	interface fa0/18
S1(config-if)#	switchport mode Access
S1(config-if)#	switchport access vlan 20
S1(config-if)#	end

Datos de configuración de VLAN y VLAN de voz

Un puerto de acceso solo se puede asignar a una VLAN de datos. Sin embargo, también se puede asignar a una VLAN de voz para cuando un teléfono y un dispositivo final estén fuera del mismo puerto de conmutación.

Ejemplo de VLAN de voz y datos

- Queremos crear y nombrar VLAN de voz y datos.
- Además de asignar la VLAN de datos, también asignaremos la VLAN de voz y activaremos QoS para el tráfico de voz a la interfaz.
- El switch Catalyst más reciente creará automáticamente la VLAN, si aún no existe, cuando se asigne a una interfaz.

Nota: QoS está más allá del alcance de este curso. Aquí mostramos el uso del comando mls qos trust [cos | device cisco-phone | dscp | ip-precedence].

```
S1(config) # vlan 20
S1(config-vlan) # name student
S1(config-vlan) # vlan 150
S1(config-vlan) # name VOICE
S1(config-vlan) # exit
S1(config-vlan) # exit
S1(config-if) # switchport mode access
S1(config-if) # switchport access vlan 20
S1(config-if) # mls qos trust cos
S1(config-if) # switchport voice vlan 150
S1(config-if) # end
```

```
% Access VLAN does not exist. Creating vlan 30 \,
```

Configuración de VLAN Verifique la información de VLAN

Use el comando **show vlan** . La sintaxis completa es:

show vlan [brief | id vlan-id | name vlan-name | summary]

```
S1# show vlan summary

Number of existing VLANs : 7

Number of existing VTP VLANs : 7

Number of existing extended VLANS : 0
```

```
S1# show interface vlan 20
Vlan20 is up, line protocol is up
Hardware is EtherSVI, address is 001f.6ddb.3ec1 (bia 001f.6ddb.3ec1)
MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set

(Output omitted)
```

Tarea	Opción de comando
Muestra el nombre de VLAN, el estado y sus puertos una VLAN por linea.	brief
Muestra información sobre el número de ID de VLAN identificado.	id vlan-id
Muestra información sobre el número de ID de VLAN identificado. El nombre de vlane es una cadena ASCII de 1 a 32 caracteres.	name vlan-name
Muestra el resumen de información de la VLAN.	resume

CISCO CONTIGENCIAL GE CISCO 25

Cambiar pertenencia al puerto VLAN

Hay varias formas de cambiar la membresía de VLAN:

- vuelva a ingresar el comando switchport access vlan vlan-id
- use no switchport access vlan para volver a colocar la interfaz en la VLAN 1

Utilice los comandos show vlan brief o show interface fa0/18 switchport para verificar la asociación correcta de VLAN.

```
S1(config) # interface fa0/18
S1(config-if) # no switchport access vlan
S1(config-if)# end
S1#
S1# show vlan brief
VLAN Name
                          Status
                                     Ports
                                  Fa0/1, Fa0/2, Fa0/3, Fa0/4
     default
                        active
                                  Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                  Fa0/9, Fa0/10, Fa0/11, Fa0/12
                                  Fa0/13, Fa0/14, Fa0/15, Fa0/16
                                  Fa0/17, Fa0/18, Fa0/19, Fa0/20
                                  Fa0/21, Fa0/22, Fa0/23, Fa0/24
                                  Gi0/1, Gi0/2
                        active
1002 fddi-default
                        act/unsup
1003 token-ring-default act/unsup
1004 fddinet-default
                        act/unsup
1005 trnet-default
                        act/unsup
```

```
S1# show interfaces fa0/18 switchport
Name: Fa0/18
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
```

Configuración de VLAN Eliminar VLAN

Elimine las VLAN con el_comando **no vlan** *vlan-id* .

Precaución: antes de eliminar una VLAN, reasigne todos los puertos miembros a una VLAN diferente..

- Elimine todas las VLAN con los comandos delete flash:vlan.dat o delete vlan.dat.
- Vuelva a cargar el switch al eliminar todas las VLAN.

Nota: Para restaurar el valor predeterminado de fábrica, desconecte todos los cables de datos, borre la configuración de inicio y elimine el archivo vlan.dat y, a continuación, vuelva a cargar el dispositivo.

Comandos de configuración troncal

Configure y verifique las troncales VLAN. Los troncales son capa 2 y transportan tráfico para todas las VLAN.

Tarea	Comando de IOS
Ingresar al modo de configuración global.	Switch# configure terminal
Ingresa al modo de configuración de interfaz.	Switch(config)# interface interface-id
Establece el puerto en modo de enlace permanente.	Switch(config-if)# switchport mode trunk
Cambia la configuración de la VLAN nativa a otra opción que no sea VLAN 1.	Switch(config-if)# switchport trunk native vlan vlan-id
Especifica la lista de VLAN que se permitirán en el enlace troncal.	Switch(config-if)# switchport trunk allowed vlan vlan-list
Vuelve al modo EXEC con privilegios.	Switch(config-if)# end

Ejemplo de configuración

Las subredes asociadas a cada VLAN son:

- VLAN 10 Faculty/Staff 172.17.10.0/24
- VLAN 20 Students 172.17.20.0/24
- VLAN 30 Guests 172.17.30.0/24
- VLAN 99 Native 172.17.99.0/24

El puerto F0/1 en S1 está configurado como un puerto troncal.

Nota: Se asume un switch 2960 que utiliza el etiquetado 802.1q. Los switches de capa 3 requieren que la encapsulación se configure antes del modo troncal.

Indicador	Comando
S1(config)#	interface fa0/1
S1(config-if)#	switchport mode trunk
S1(config-if)#	switchport trunk native vlan 99
S1(config-if)#	switchport trunk allowed vlan 10,20,30,99
S1(config-if)#	end

confidencial de Cisco

30

Verifique la configuración de troncales

- Establezca el modo troncal y la VLAN nativa.
- Observe el comando sh int fa0/1 switchport :
 - Se establece en troncal administrativamente
 - Se establece como troncal operacionalmente (en funcionamiento)
 - La encapsulación es dot1q.
 - VLAN nativa establecida en VLAN 99.
 - Todas las VLAN creadas en el switch pasarán tráfico en este troncal.

```
S1(config) # interface fa0/1
51(config-if) # switchport mode trunk
S1(config-if) # no switchport trunk native vlan 99
S1(config-if) # end
S1# show interfaces fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dotig
Operational Trunking Encapsulation: dotig
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 99 (VLAN0099)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dotlg
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
 (output omitted)
```

Restablezca el troncal al estado predeterminado

- Restablezca la configuración predeterminada del troncal con el comando no.
 - Todas las VLAN permitidas para pasar tráfico
 - VLAN nativa = VLAN 1
- Verifique la configuración predeterminada.

```
S1(config) # interface fa0/1
S1(config-if) # no switchport trunk allowed vlan
S1(config-if) # no switchport trunk native vlan
S1(config-if) # end
```

```
S1# show interfaces fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1g
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1g
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
(output omitted)
```

Restablezca el troncal al estado predeterminado (Cont.)

Restablezca el troncal a modo de acceso con el comando **switchport mode access** :

- Se establece en una interfaz de acceso administrativamente
- Se establece como una interfaz de acceso operacionalmente (en funcionamiento)

```
S1(config) # interface fa0/1
S1(config-if) # switchport mode access
S1(config-if)# end
S1# show interfaces fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
(output omitted)
```

3.5 Protocolo de Enlace Dinámico (DTP)

Protocolo de Enlace Dinámico Introducción al DTP

El Protocolo de Enlace Troncal Dinámico (DTP) es un protocolo propietario de Cisco.

Las características de DTP son las siguientes:

- Activado de forma predeterminada en switches Catalyst 2960 y 2950.
- Dynamic-Auto es el valor predeterminado en los switches 2960 y 2950.
- Puede desactivarse con el comando nonegotiate.
- Puede volver a activarse configurando la interfaz en dinámico automático.
- Establecer un switch en un troncal estático o acceso estático evitará problemas de negociación con los comandos switchport mode trunk o switchport mode access.

```
S1(config-if) # switchport mode trunk
S1(config-if) # switchport nonegotiate

S1(config-if) # switchport mode dynamic auto
```

Protocolo de enlace dinámico

Modos de interfaz negociados

El comando **switchport mode** tiene opciones adicionales.

Utilice el comando **switchport nonegotiate** interface configuration para detener la negociación DTP.

Opción	Descripción
Acceso	Modo de acceso permanente y negocia para convertir la interfaz vecina en un enlace de acceso
Dinámico automático	Se convertirá en una interfaz troncal si la interfaz vecina se configura en modo troncal o deseable.
Dinámico deseable	Busca activamente convertirse en un troncal negociando con otras interfaces automáticas o deseables.
Enlace troncal	Modo de enlace permanente y negocia para convertir el enlace vecino en un enlace troncal.

Resultados del protocolo de enlace troncal dinámico de una configuración DTP

Las opciones de configuración de DTP son las siguientes:

	Dinámico automático	Dinámico deseado	Troncal	Acceso
Dinámico automático	Acceso	Troncal	Troncal	Acceso
Dinámico deseado	Troncal	Troncal	Troncal	Acceso
Troncal	Troncal	Troncal	Troncal	Conectividad Iimitada
Acceso	Acceso	Acceso	Conectividad limitada	Acceso

Protocolo de enlace dinámico

Verifique el modo DTP

La configuración predeterminada de DTP depende de la versión y plataforma del IOS de Cisco.

- Utilice el comando show dtp interface para determinar el modo DTP actual.
- La práctica recomienda que las interfaces se configuren para acceder o troncal y para desconectarse DTP.

```
S1# show dtp interface fa0/1
DTP information for FastEthernet0/1:
TOS/TAS/TNS: ACCESS/AUTO/ACCESS
TOT/TAT/TNT: NATIVE/NEGOTIATE/NATIVE
Neighbor address 1: C80084AEF101
Neighbor address 2: 000000000000
Hello timer expiration (sec/state): 11/RUNNING
Access timer expiration (sec/state): never/STOPPED
Negotiation timer expiration (sec/state): never/STOPPED
Multidrop timer expiration (sec/state): never/STOPPED
FSM state: S2:ACCESS
# times multi & trunk 0
Enabled: yes
In STP: no
```

Práctica del módulo y Cuestionario

Nuevos Términos y Comandos

- VLAN
- Dominio de difusión lógico
- VLAN de datos
- VLAN predeterminada
- VLAN nativa
- VLAN de administración
- show vlan brief
- VLAN de voz
- Enlace troncal de VLAN
- Segmentación de VLAN
- IEEE 802.1Q
- Etiquetado de VLAN
- Identificador de formato canónico (CFI)

- Prioridad del usuario
- ID de VLAN
- Tipo
- show interfaces int switchport

Práctica del módulo y Cuestionario

Nuevos Términos y Comandos

- Redes VLAN de rango normal
- Redes VLAN de rango extendido
- vlan vlan-id
- name vlan-name
- switchport mode access
- switchport access vlan vlan-id
- interface range
- no switchport access vlan vlan-id
- no vlan vlan-id
- delete flash:vlan.dat

- delete vlan.dat
- show vlan
- show interfaces
- show vlan summary
- show interfaces vlan vlan_id
- switchport mode trunk
- switchport trunk allowed vlan vlan_list
- switchport trunk native
 vlan vlan_id
- no switchport trunk allowe d vlan

- no switchport trunk native vlan
- show interfaces switchpor
 t
- no switchport access vlan vlan_id
- show interfaces trunk
- show interfaces int_id trunk

