Complex Differential Geometry

Exercise 1. holomorphic functions

a) Let $f: \mathbb{C}^n \to \mathbb{C}$ be a holomorphic function. The functions $u = \Re(f)$ and $v = \Im(f)$ are harmonic With the Cauchy-Riemann-DGL:

$$\frac{\partial u}{\partial x_i} = \frac{\partial v}{\partial v_i} \quad \frac{\partial u}{\partial v_i} = -\frac{\partial v}{\partial x_i} \quad \forall \ i \in \mathbb{N}$$

We get:

$$\frac{\partial^2 u}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\frac{\partial u}{\partial x_i} \right) = \frac{\partial}{\partial x_i} \frac{\partial v}{\partial y_i} = \frac{\partial}{\partial y_i} \frac{\partial v}{\partial x_i} = \frac{\partial}{\partial y_i} \left(-\frac{\partial u}{\partial y_i} \right) = -\frac{\partial^2 u}{\partial y_i^2}$$
$$\frac{\partial^2 v}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(-\frac{\partial u}{\partial y_i} \right) = -\frac{\partial}{\partial y_i} \frac{\partial u}{\partial x_i} = -\frac{\partial}{\partial y_i} \left(\frac{\partial v}{\partial y_i} \right) = -\frac{\partial^2 v}{\partial y_i^2}$$

Therefore:

$$\Delta u = \sum_{i=1}^{n} \left(\frac{\partial^{2} u}{\partial x_{i}^{2}} + \frac{\partial^{2} u}{\partial y_{i}^{2}} \right) = 0$$
$$\Delta v = \sum_{i=1}^{n} \left(\frac{\partial^{2} v}{\partial x_{i}^{2}} + \frac{\partial^{2} v}{\partial y_{i}^{2}} \right) = 0$$

- b) Let $U\subset\mathbb{C}^n$ be a connected open subset. Every non-constant harmonic function $f:U\to\mathbb{R}$ has no extremum on U
- c) Show that any holomorphic function $f: M \to \mathbb{C}$, where M is a compact complex manifold, is constant
- d) Deduce that \mathbb{C}^n does not have any compact complex submanifolds of postive dimension.

Exercise 2. Hopf manifolds

Generalize the construction of the Hopf manifold as follows: Let $\lambda_1, \ldots, \lambda_n$ be complex numbers such that $|\lambda_i| > 1$ for each $i = 1, \ldots, n$. Consider the action of \mathbb{Z} on $\mathbb{C}^n \setminus \{0\}$ given by

$$k \cdot (z_1, \ldots, z_n) = (\lambda_1^k z_1, \ldots, \lambda_n^k z_n)$$

where $k \in \mathbb{Z}$. Show that the quotient $(\mathbb{C}^n \setminus \{0\})/\mathbb{Z}$ is again diffeomorphic to $S^1 \times S^{2n-1}$. (Hint: Find a suitable map $\Phi : \mathbb{R} \times S^{2n-1} \to \mathbb{C}^n \setminus \{0\}$ such that for all $k \in \mathbb{Z}$ the relation $k \cdot \Phi(t, u) = \Phi(t + k, u)$ holds.)

Exercise 3. vector fields

For a complex manifold M denote by $H^0(M,TM)$ the space of holomorphic vector fields on M. Let M_1 , M_2 be two compact complex manifolds and let $M=M_1\times M_2$ be their product (as a complex manifold). Prove that

$$H^{0}(M,TM) \stackrel{\sim}{=} H^{0}(M_{1},TM_{1}) \oplus H^{0}(M_{2},TM_{2})$$

Give examples to show that if the compactness assumption is dropped, then the result may or may not hold.