MATH 612 (HOMEWORK 2)

HIDENORI SHINOHARA

Exercise. (Exercise 1) Fix G and let $\alpha: H \to H'$ be given. Let $0 \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} H \to 0, 0 \to G_1 \xrightarrow{g_1} G_0 \xrightarrow{g_0} H \to 0$ be free resolutions. By Lemma 3.1(a), we obtain two homomorphisms $\alpha_1: F_1 \to G_1, \alpha_0: F_0 \to G_0$ which commutes with f_i, g_i, α . Then we obtain two chain complexes

$$0 \leftarrow \operatorname{Hom}(F_1, G) \xleftarrow{f_1^*} \operatorname{Hom}(F_0, G) \xleftarrow{f_0^*} \operatorname{Hom}(H, G) \leftarrow 0$$
$$0 \leftarrow \operatorname{Hom}(F_1, G') \xleftarrow{f_1^*} \operatorname{Hom}(F_0, G') \xleftarrow{f_0^*} \operatorname{Hom}(H, G') \leftarrow 0.$$

with induced maps $\alpha_1^*, \alpha_0^*, \alpha^*$ forming a chain map from the chain complex on the bottom to the one on the top. Then α_1^* induces a map from $\operatorname{Ext}(H', G) \to \operatorname{Ext}(H, G)$.

Fix H and let $f: G \to G'$ be given. Let $0 \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} H \to 0$ be a free resolution of H. We obtain two cochain complexes where f_* is a chain map from the top one to the bottom one.

$$0 \leftarrow \operatorname{Hom}(F_1, G) \xleftarrow{f_1^*} \operatorname{Hom}(F_0, G) \xleftarrow{f_0^*} \operatorname{Hom}(H, G) \leftarrow 0$$
$$0 \leftarrow \operatorname{Hom}(F_1, G') \xleftarrow{f_1^*} \operatorname{Hom}(F_0, G') \xleftarrow{f_0^*} \operatorname{Hom}(H, G') \leftarrow 0.$$

 f_* indeed makes the diagram commute because for any $\sigma \in \text{Hom}(H,G)$,

$$f_*(f_0^*(\sigma)) = f_*(\sigma \circ f_0)$$

$$= f \circ (\sigma \circ f_0)$$

$$= (f \circ \sigma) \circ f_0$$

$$= f_0^*(f \circ \sigma)$$

$$= f_0^*(f_*(\sigma)).$$

Similarly, $f_*(f_1^*(\sigma)) = f_1^*(f_*(\sigma))$ for every $\sigma \in \text{Hom}(F_0, G)$. Since a chain map induces a homomorphism on cohomology groups, f induces a map from $\text{Ext}(H, G) \to \text{Ext}(H, G')$.

Exercise (Exercise 1.2)

$$0 \longrightarrow F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} H \longrightarrow 0$$

$$\downarrow \cdot n \qquad \downarrow \cdot n \qquad \downarrow \cdot n$$

$$0 \longrightarrow F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} H \longrightarrow 0$$

turn into two chain complexes with a chain map

$$0 \longleftarrow \operatorname{Hom}(F_{1}, G) \xleftarrow{f_{1}^{*}} \operatorname{Hom}(F_{0}, G) \xleftarrow{f_{0}^{*}} \operatorname{Hom}(H, G) \longleftarrow 0$$

$$(\cdot n)^{*} \uparrow \qquad (\cdot n)^{*} \uparrow \qquad (\cdot n)^{*} \uparrow$$

$$0 \longleftarrow \operatorname{Hom}(F_{1}, G) \xleftarrow{f_{1}^{*}} \operatorname{Hom}(F_{0}, G) \xleftarrow{f_{0}^{*}} \operatorname{Hom}(H, G) \longleftarrow 0.$$

This diagram commutes because a group homomorphism for abelian groups commute with multiplication by n. Therefore, $(\cdot n)^*$ induces a homomorphism on $\operatorname{Ext}(H,G) = \operatorname{Hom}(F_1,G)/\operatorname{im}(f_1^*)$. Moreover, $\forall \phi + \operatorname{im}(f_1^*) \in \operatorname{Ext}(H,G)$,

$$(\cdot n)^*(\phi + \operatorname{im}(f_1^*)) = \phi \circ (\cdot n) + \operatorname{im}(f_1^*)$$

where $(\phi \circ (\cdot n))(x) = \phi(n(x)) = n(\phi(x)) = (n\phi)(x)$ for all $x \in F_1$. Therefore, the map induced by $(\cdot n)^*$ is simply multiplication by n.

$$0 \longleftarrow \operatorname{Hom}(F_1,G) \xleftarrow{f_1^*} \operatorname{Hom}(F_0,G) \xleftarrow{f_0^*} \operatorname{Hom}(H,G) \longleftarrow 0$$

$$\downarrow^{(\cdot n)_*} \qquad \downarrow^{(\cdot n)_*} \qquad \downarrow^{(\cdot n)_*}$$

$$0 \longleftarrow \operatorname{Hom}(F_1,G) \xleftarrow{f_1^*} \operatorname{Hom}(F_0,G) \xleftarrow{f_0^*} \operatorname{Hom}(H,G) \longleftarrow 0.$$

For every $\phi \in \text{Hom}(H,G)$ and $x \in F_0$,

$$((\cdot n)_*(f_0^*(\phi)))(x) = ((\cdot n)_*(\phi \circ f_0))(x)$$

$$= n((\phi \circ f_0)(x))$$

$$= n(\phi(f_0(x)))$$

$$= ((\cdot n)_*\phi)(f_0(x))$$

$$= f_0^*((\cdot n)_*\phi)(x).$$

Similarly, $(\cdot n)_*$ commutes with f_1^* , so $(\cdot n)_*$ is a chain map. For any $\phi + \operatorname{im}(f_1^*) \in \operatorname{Ext}(H, G)$, $(\cdot n)_*(\phi + \operatorname{im}(f_1^*)) = n\phi + \operatorname{im}(f_1^*)$, so it is multiplication by n.