SAGARMATHA ENGINEERING COLLEGE

(TU Affiliated)

Sanepa, Lalitpur

LAB NO: 3

A LAB REPORT ON

MID POINT CIRCLE ALGORITHM

Submitted By:	Submitted 10:
Name:	Department of electronics and Computer Engineering
Faculty/Year:	Signature:
Roll No:	Date:
Date:	

COMPUTER GRAPHICS LAB-03

TITLE

MID POINT CIRCLE ALGORITHM

OBJECTIVES

✓ To be familiar with fundamental knowledge of Mid-point circle drawing algorithm and its implementation.

HARDWARE/SOFTWARE REQUIRED

✓ C Compiler

RELATED THEROY

Mid-point Circle Algorithm

A circle is defined as the set of points that are all at a given distance r from a center position (x_c, y_c) . The equation of circle is:

$$(x-x_c)^2 + (y-y_c)^2 = r^2$$

In the mid-point circle algorithm we use eight-way symmetry so only ever calculate the points for the top right eighth of a circle, and then use symmetry to get the rest of the points.

$$f_{circle}(x,y) \begin{cases} <0, & if(x,y) & is inside the circle boundary \\ =0, & if(x,y) & is on the circle boundary \\ >0, & if(x,y) & is outside the circle boundary \end{cases}$$

By evaluating this function at the midpoint between the candidate pixels we can make our decision

Sanepa, Lalitpur

ALGORITHM

COMPUTER GRAPHICS LAB-03

1. Input radius r and circle center (x_c, y_c) and obtain the first point on the circumference of a circle centered on the origin as

$$(x_0,y_0)=(0,r)$$

2. Calculate the initial value of the decision parameter as

$$P_0 = 5/4 - r$$

3. At each x_k position, starting at k = 0, perform the following test: If $p_k < 0$ /* next point (x_k+1,y_k) */

$$x_{k+1} = x_k + 1$$

 $y_{k+1} = y_k$
 $P_{k+1} = p_k + 2x_{k+1} + 1$

else

/*next point
$$(x_k+1,y_K-1)$$
 */

$$x_{k+1} = x_k + 1$$

 $y_{k+1} = y_k - 1$
 $P_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}$
Where $2x_{k+1} = 2x_k + 2$ and $2y_{k+1} = 2y_k - 2$

- 4. Determine the symmetry points in the other seven octants.
- 5. Move each calculated pixel position (x,y) onto the circular path centered on $(x_{\sigma}y_{\sigma})$ and plot the co-ordinate values:

$$x = x + x_c, y = y + y_c$$

6. Repeat steps 3 through 5 until $x \ge y$

COMPUTER GRAPHICS LAB-03 IMPLEMENTATION OF MID-POINT CIRCLE ALGORITHM

COMPUTER GRAPHICS LAB-03	
OUTPUT	
RESULT:	
Program is compiled, Mid-point circle algorithm implementation was done.	