Secção de Engenharia Química e Bioquímica, Departamento de Química, FCT NOVA Termodinâmica para Engenharia Química e Biológica 4º teste 17-18h30 16 de Dezembro, 2022

1. Na figura representa-se o diagrama de equilíbrio líquido-líquido do sistema etanol(ETA) + ciclohexano(CIC) a 1 bar. a) Mistura-se ETA e CIC a 310 K e deixa-se repousar até se atingir o equilíbrio. Calcule a composição global da mistura, sabendo que é de 0.5 a razão molar entre as quantidades da fase mais rica em ETA e da fase mais rica em CIC. b) Esboce o diagrama de equilibrio líquido-vapor T-x,y do sistema ETA + CIC a 1 bar, sabendo que exibe desvios positivos à Lei de Raoult e tem um azeótropo para x_{ETA} = 0.46 (a 1 bar, T_{Vap, ETA} = 353.5 K e T_{Vap,CIC} = 351.08 K). (4.5 val)

2. a) A 25 °C, a solubilidade do fenol sólido em água é x_{fenol} = 0.075. Calcule $\gamma_{i,fenol}$ em água a 25 °C, e comente a sua resolução. **b)** Tome para a solubilidade do fenol sólido em água, para formar uma solução líquida diluída ideal, o valor x_{fenol} = 0.693 a 25 °C, e calcule a entalpia de dissolução do fenol líquido numa grande quantidade de água. **(5 val)** Δ_{fus} H (fenol) = 11.51 kJ mol⁻¹ Δ_{fus} H (fenol) = 40.8 °C

3. Num reactor vazio introduz CO_2 e H_2 gasosos de forma a realizar a reacção de Sabatier: CO_2 (g) + 4 H_2 (g) \rightarrow CH_4 (g) + 2 H_2O (g). No equilíbrio a 800 K e 50 bar, a pressão parcial de H_2 é de 6.8 bar e as pressões parciais de CO_2 e CH_4 são iguais. A esta temperatura, o valor da constante de equilíbrio é de 0.126. a) Calcule as fracções molares de todas as espécies no equilíbrio. b) Sabendo que ΔH^o para a reacção é de -188.4 kJ mol⁻¹ a 800 K,

	Cp, _G /J K ⁻¹ mol ⁻¹	B/cm ³ mol ⁻¹
CO ₂ (g)	35	7.7
H ₂ (g)	29.2	16.2
CH ₄ (g)	36.8	34.1
H ₂ O (g)	34.1	-40.7

calcule ΔS° a 25 °C. c) Imagine que queria calcular a composição da mistura reaccional no equilíbrio, a 800 K e 100 bar. Como procederia? Justifique. (6 val) Equação de estado para os componentes gasosos: z = 1 + BP/RT

4. a) Calcule a actividade da espécie $(NH_4)_3PO_4$ numa solução aquosa de concentração 0.005 mol kg⁻¹ em $(NH_4)_3PO_4$ e 0.006 mol kg⁻¹ em Cal_2 , a 25 °C. Utilize a lei limite de Debye-Hückel para o coeficiente de actividade iónica médio do electrólito: $log_{10}\gamma_{\pm} = -0.509|z_{+}z_{-}|\sqrt{FI}$, em que $FI = 0.5 \Sigma m_i z_i^2$. **b)** Qual é a condição limite a que deve obedecer o coeficiente de actividade iónica médio, e o que significam os desvios a essa condição limite? **(4.5 val)**