Week 4 Quiz

Let A = $\{x \mid -2 \le x \le 5\}$, B = $\{x \mid -9 \le x \le 2\}$ and C = $\{x \mid 2 \le x \le 4\}$, where x represents an integer number. Determine the sets $(A - C) \cup A$, $(A \cap B) - C$ and $B \cap C^c$.

1.)
$$A = \{-1, 0, 1, 2, 3, 4, 5\}$$
 $B = \{-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2\}$ $C = \{2, 3\}$ $(A - C) \cup A = \{-1, 0, 1, 4, 5\} \cup \{-1, 0, 1, 2, 3, 4, 5\} = \{-1, 0, 1, 2, 3, 4, 5\}$ $(A \cap B) - C = \{-1, 0, 1, 2\} - \{2, 3\} = \{-1, 0, 1\}$ $B \cap C^{C} = \{-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1\}$

Use an element argument to prove the statement:

For all sets A, B and C,
$$(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$$

2.) Suppose $x \in (A \cup B) \cap (A \cup C)$. By definitions of union and intersect, $(x \in A \text{ or } x \in B)$ AND $(x \in A \text{ or } x \in C)$. This states that x is an element in sets A or B, and also x is an element in set A or C. It follows that x must be an element in A or an element in B and C.

On the other hand, $x \in A \cup (B \cap C)$ implies that $x \in A$ or $(x \in B \text{ AND } x \in C)$. This states that x is an element in A or an element in B and C.

Therefore, $x \in (A \cup B) \cap (A \cup C)$ follows that $x \in A \cup (B \cap C)$. Hence we can conclude that $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$ [what we needed to show.]

Construct an algebric proof for all sets A, B and C,

$$A \cup (B - C) = (A \cup B) - (C - A)$$

3.)
$$A \cup (B - C) = A \cup (B \cap C^{C})$$
 by Set Difference law
$$= (A \cup B) \cap (A \cup C^{C})$$
 by Distributive law
$$= (A \cup B) \cap (A^{c} \cap C)^{C}$$
 by DeMorgan's law
$$= (A \cup B) \cap (C \cap A^{C})^{C}$$
 by Commutative law
$$= (A \cup B) \cap (C - A)^{C}$$
 by Set Difference law
$$= (A \cup B) - (C - A)$$
 by Set Difference law

What are the terms a_0 , a_1 , a_2 and a_3 of the sequence $\{a_n\}$, where a_n equals:

1)
$$a_n = (-1)^{n+2} * n^3$$
 , For all n> =0

2)
$$a_n = 2$$

4.) 1.)
$$a_0 = (-1)^{0+2} * 0^3 = 0$$

 $a_1 = (-1)^{1+2} * 1^3 = -1$
 $a_2 = (-1)^{2+2} * 2^3 = 8$
 $a_3 = (-1)^{3+2} * 3^3 = -27$

2.)
$$a_0 = 2$$

 $a_1 = 2$
 $a_2 = 2$
 $a_3 = 2$

Given that, $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$. Use this identity to find a simple expression for $\sum_{k=1}^{n-1}\frac{1}{k(k+1)}$

5.)
$$\frac{1}{k} - \frac{1}{k+1} + \frac{1}{k+1} - \frac{1}{k+2} + \dots + \frac{1}{n-1} - \frac{1}{n} = \frac{1}{k} - \frac{1}{n}$$

a)
$$\sum_{i=3}^{7} \; (3i \; +5)$$

b)
$$\sum_{k=0}^{3} 2^{k+3}$$

c)
$$\sum_{i=3}^{5} 4 \cdot (-1)^{j}$$

6.a.)
$$\sum_{i=3}^{7} (3i+5) = \sum_{1}^{7} (3i+5) - \sum_{1}^{2} (3i+5)$$

$$= \left(\sum_{1}^{7} 3i + \sum_{1}^{7} 5\right) - \left(\sum_{1}^{2} 3i + \sum_{1}^{2} 5\right)$$

$$= \left(3\sum_{1}^{7} i + \sum_{1}^{7} 5\right) - \left(3\sum_{1}^{2} i + \sum_{1}^{2} 5\right)$$

$$= \left(3 \cdot \frac{7(7+1)}{2} + 7 \cdot 5\right) - \left(3 \cdot \frac{2(2+1)}{2} + 2 \cdot 5\right)$$

6.b.)
$$\sum_{k=0}^{3} 2^{k+3} = \sum_{k=0}^{3} 2^{k} \cdot 2^{3}$$

= $8 \sum_{k=0}^{3} 2^{k}$
= $8 \cdot \frac{2^{3+1} - 1}{2 - 1}$

6.c.)
$$\sum_{j=3}^{5} 4 \cdot (-1)^{j} = \sum_{j=0}^{5} 4 \cdot (-1)^{j} - \sum_{j=0}^{2} 4 \cdot (-1)^{j}$$
$$= \frac{4 \cdot (-1)^{5+1} - 4}{-1 - 1} - \frac{4 \cdot (-1)^{2+1} - 4}{-1 - 1}$$