

Graphentheorie I

Martin Thoma | 2. Juli 2013

INSTITUT FÜR STOCHASTIK

Contents

Grundlagen

2 Königsberger Brückenproblem

Graph

Graph

Ein Graph ist ein Tupel (V, E), wobei $V \neq \emptyset$ die Knotenmenge und $E \subseteq V \times V$ die Kantenmenge bezeichnet.

TODO: 8 Bilder von Graphen

Inzidenz

Inzidenz

Sei $v \in V$ und $e = (v_1, v_2) \in E$.

v heißt **inzident** zu $e :\Leftrightarrow v = v_1$ oder $v = v_2$

TODO: 8 Bilder von Graphen

Vollständige Graphen

Vollständiger Graph

Sei G = (V, E) ein Graph.

G heißt vollständig : $\Leftrightarrow E = V \times V \setminus \{ v \in V : \{ v, v \} \}$

Ein vollständiger Graphen mit n Knoten wird als K_n bezeichnet.

TODO: 8 Bilder von Graphen TODO: $K_1, K_2, ... K_8$

5/22

Bipartite Graphen

Bipartite Graph

Sei G = (V, E) ein Graph und $A, B \subset V$ zwei disjunkte Knotenmengen $mit \ V \setminus A = B.$

G heißt bipartit

 $\Leftrightarrow \forall_{e=\{v_1,v_2\}\in E}: (v_1\in A \text{ und } v_2\in B) \text{ oder } (v_1\in B \text{ und } v_2\in A)$

TODO: 8 Bilder von Graphen

Vollständig bipartite Graphen

Vollständig bipartite Graphen

Sei G=(V,E) ein bipartiter Graph und $\{\,A,B\,\}$ bezeichne die Bipartition.

G heißt vollständig bipartit : $\Leftrightarrow \forall_{a \in A} \forall_{b \in B} : \{ \ a, b \ \} \in E$

TODO: 8 Bilder von Graphen

7/22

Vollständig bipartite Graphen

Bezeichnung: Vollständig bipartite Graphen mit der Bipartition $\{A, B\}$ bezeichnet man mit $K_{|A|,|B|}$.

TODO: $K_{2,2}$ TODO: $K_{2,3}$ TODO: $K_{3,3}$

Kantenzug

Kantenzug

Sei G = (V, E) ein Graph.

Dann heißt eine Folge e_1,e_2,\ldots,e_s von Kanten, zu denen es Knoten v_0,v_1,v_2,\ldots,v_s gibt, so dass

- $e_1 = \{ v_0, v_1 \}$
- $e_2 = \{ v_1, v_2 \}$
- . . .
- $e_s = \{ v_{s-1}, v_s \}$

gilt ein Kantenzug, der v_0 und v_s verbindet und s seine Länge.

TODO: 8 Bilder

Geschlossener Kantenzug

Geschlossener Kantenzug

Sei G=(V,E) ein Graph und $A=(e_1,e_2\ldots,e_s)$ ein Kantenzug.

A heißt **geschlossen** : $\Leftrightarrow v_s = v_0$.

Weg

Weg

Sei G = (V, E) ein Graph und $A = (e_1, e_2, \dots, e_s)$ ein Kantenzug.

A heißt **Weg** : $\Leftrightarrow \forall_{i,j \in [1,s] \cap \mathbb{N}} : i \neq j \Rightarrow e_i \neq e_j$.

TODO: 8 Bilder

11/22

Kreis

Kreis

Sei G = (V, E) ein Graph und $A = (e_1, e_2 \dots, e_s)$ ein Kantenzug.

A heißt $\mathbf{Kreis} :\Leftrightarrow A$ ist geschlossen und ein Weg.

Zusammenhängender Graph

Zusammenhängender Graph

Sei G = (V, E) ein Graph.

G heißt **zusammenhängend** : $\Leftrightarrow \forall v_1,v_2\in V$: Es ex. ein Kantenzug, der v_1 und v_2 verbindet

Grad eines Knotens

Grad eines Knotens

Der **Grad** eines Knotens ist die Anzahl der Kanten, die von diesem Knoten ausgehen.

Isolierte Knoten

Hat ein Knoten den Grad 0, so nennt man ihn **isoliert**.

Königsberger Brückenproblem

TODO: Allgemeine Beschreibung

Übersetzung in einen Graphen

TODO: Übersetzung in Graph

Eulerscher Kreis

Eulerscher Kreis

Sei G ein Graph und A ein Kreis in G.

A heißt eulerscher Kreis : $\Leftrightarrow \forall_{e \in E} : e \in A$.

Eulerscher Graph

Ein Graph heißt eulersch, wenn er einen eulerschen Kreis enthält.

Eulerscher Kreis

TODO: K_5 eulerkreis animieren

Satz von Euler

Satz von Euler

Wenn ein Graph G eulersch ist, dann hat jeder Knoten von G geraden Grad.

Wenn G einen Knoten mit ungeraden Grad hat, ist G nicht eulersch.

Umkehrung des Satzes von Euler

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jeder Knoten geraden Grad hat, dann ist G eulersch.

Beweis per Induktion TODO

Offene eulersche Linie

Offene eulersche Linie

Sei ${\cal G}$ ein Graph und ${\cal A}$ ein Weg, der kein Kreis ist.

A heißt **offene eulersche Linie** von $G : \Leftrightarrow$ Jede Kante in G kommt genau ein mal in A vor.

Ein Graph kann genau dann "in einem Zug" gezeichnet werden, wenn er eine offene eulersche Linie besitzt.

Offene eulersche Linie

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie : $\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

TODO: Haus des Nikolaus-Animation. TODO: Beweis