Real Analysis Homework 7

Alexander J. Tusa

December 11, 2018

1. Section 4.1

- **1.** Determine a condition on |x-1| that will assure that:
 - (a) $|x^2 1| < \frac{1}{2}$ We notice first that $|x^2 - 1| = |x - 1||x + 1|$.

Consider the case where |x-1| < 1. Then we have that -1 < x-1 < 1 and thus -3 < 1 < x+1 < 3 and thus |x+1| < 3.

Hence we have that $|x^2 - 1| = |(x - 1)(x + 1)| = |x - 1||x + 1| < 1 \cdot 3 = 3$.

Now, since $\frac{1}{6} < 1$, if $|x-1| < \frac{1}{6}$, then |x+1| < 3 and thus $|x^2-1| = |(x-1)(x+1)| = |x-1||x+1| < \frac{1}{6} \cdot 3 = \frac{1}{2}$.

- :. If we let $|x-1| < \frac{1}{6}$ then $|x^2 1| < \frac{1}{2}$.
- (c) $|x^2 1| < 1/n$ for a given $n \in \mathbb{N}$.

Notice that $0 < \frac{1}{n} \le 1$, and thus $0 < \frac{1}{3n} \le \frac{1}{3} < 1$.

So, by Part (a), we have that if $|x-1| < \frac{1}{3n}$, then |x+1| < 3. Hence, $|x^2-1| = |(x-1)(x+1)| = |x-1||x+1| < \frac{1}{3n} \cdot 3 = \frac{1}{n}$.

- \therefore If $|x-1| < \frac{1}{3n}$, then $|x^2 1| < \frac{1}{n}$.
- 7. Show that $\lim_{x\to c} x^3 = c^3$ for any $c \in \mathbb{R}$. (Hint: Use c=2)

Suppose |x-2| < 1.

$$|x^3 - 8| = |x - 2||x^2 + 2x + 4|$$

1

So, we have

$$|x^{2} + 2x + 4| = |(x^{2} - 4x + 4) + 6x|$$

$$= |(x - 2)^{2} + 6(x - 2) + 12|$$

$$\leq |x - 2|^{2} + 6|x - 2| + 12$$

$$< 1 + 6 + 12 = 19$$

So we have that if we let $\delta = \min\{1, \frac{\varepsilon}{19}\}$, then we have that $\lim_{x\to c} x^3 = c^3$, for c=2.

More generally, we have the following:

 $\forall c \in \mathbb{R}$, let b = |c| + 1. Then we have that if |x| < b, then

$$|x^{2} + cx + c^{2}| \le |x|^{2} + |c||x| + |c|^{2} \le 3b^{2}$$

Now, if we let $\varepsilon > 0$ be arbitrary, we have that for $\delta = \frac{\varepsilon}{3b^2}$ and x such that $|x - c| < \delta$, then

$$|x^{3} - c^{3}| = |(x - c)(x^{2} + cx + c^{2})|$$

$$\leq |x - c||x^{2} + cx + c^{2}|$$

$$\leq 3b^{2}|x - c|$$

$$< 3b^{2}\frac{\varepsilon}{3b^{2}}$$

$$= \varepsilon$$

Hence we have that $\lim_{x\to c} x^3 = c^3$, $\forall c \in \mathbb{R}$.

9. Use either the $\varepsilon - \delta$ definition of the limit or the Sequential Criterion for limits, to establish the following limit:

(b)
$$\lim_{x \to 1} \frac{x}{1+x} = \frac{1}{2}$$

Let $\varepsilon > 0, \ \delta = \min\{\frac{1}{2}, \varepsilon\}$. Now for $0 < |x - 1| < \delta \le \frac{1}{2}$, we have:

$$\left| \frac{x}{1+x} - \frac{1}{2} \right| = \left| \frac{2x - (1+x)}{2(1+x)} \right|$$

$$= \left| \frac{x-1}{2(1+x)} \right|$$

$$< |x-1| \qquad (|x-1| < \frac{1}{2} \implies x+1 > \frac{3}{2})$$

$$< \delta$$

$$< \varepsilon$$

And thus by the $\varepsilon - \delta$ definition of the limit, we have

$$\lim_{x \to 1} \frac{x}{1+x} = \frac{1}{2}$$

10. Use the definition of a limit to show that

(a)
$$\lim_{x\to 2} (x^2 + 4x) = 12$$

$$|x-2| < 1 \implies |x^2 + 4x - 12| \le |(x+6)(x-2)|$$

$$\le |x+6||x-2|$$

$$= |x-2+8||x-2|$$

$$\le (|x-2|+8)|x-2|$$

$$\le (1+8)|x-2| \qquad (|x-2|<1)$$

$$= 9|x-2|$$

For $\delta = \min\{1, \frac{\varepsilon}{9}\}$ and x such that $|x-2| < \delta$ we have that $|x^2 + 4x - 12| < \varepsilon$.

$$\lim_{x \to 2} x^2 + 4x = 12.$$
(b)
$$\lim_{x \to -1} \frac{x+5}{2x+3} = 4$$

(b)
$$\lim_{x \to -1} \frac{x+5}{2x+3} = 4$$

$$\left| \frac{x+5}{2x+3} - 4 \right| = \left| \frac{x+5-4(2x+3)}{2x+3} \right|$$

$$= \left| \frac{-7x-7}{2x+3} \right|$$

$$= 7 \left| \frac{x+1}{2x+3} \right|$$

$$= \frac{7|x+1|}{|2x+3|}$$

Now, if $|x+1| < \frac{1}{4}$, then

$$-\frac{5}{4} < x < -\frac{3}{4} \implies \frac{1}{2} < 2x + 3 < \frac{3}{2}$$
$$\implies 0 < \frac{1}{2x+3} < 2$$
$$\implies \left| \frac{x+5}{2x+3} - 4 \right| \le \frac{7|x+1|}{|2x+3|}$$
$$< 14|x+1|$$

Thus, let $\delta := \min\{\frac{1}{4}, \frac{\varepsilon}{14}\}.$

$$\therefore \lim_{x \to -1} \frac{x+5}{2x+3} = 4$$

15. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by the setting f(x) := x if x is rational, and f(x) = 0 if x is irrational.

3

(a) Show that f has a limit at x = 0.

 $\forall \varepsilon > 0$, choose $\delta = \varepsilon$. Then we have that $\forall x \in \mathbb{R}$ with $|x| < \delta$, we have

$$|f(x) - 0| = |f(x)| = \begin{cases} |x|, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

$$\implies |f(x)| < \varepsilon$$

- \therefore We have that f has a limit of 0 at x = 0.
- (b) Use a sequential argument to show that if $c \neq 0$, then f does not have a limit at c.

Let $\{x_n\}$ and $\{y_n\}$ be two sequences, both converging to c s.t. $x_n \in \mathbb{R} \setminus \mathbb{Q}$ and since the rationals and irrationals are dense in the set of real numbers, $y_n \in \mathbb{Q} \ \forall \ n \in \mathbb{N}$.

Thus, $f(x_n) = 0 \, \forall n$ and $f(y_n) = y_n \, \forall n$. This yields that $f(x_n) \to 0$, but $f(y_n) = y_n \to c$. Thus we now have that $\lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(y_n)$. Hence we have that f does not have a limit at x = c.

2. Use the definition of a limit to establish the following limits:

(a)
$$\lim_{x \to 1} \frac{x^2 - x - 2}{2x - 3} = 2$$

We want to show the following $\forall \varepsilon > 0$:

$$\left| \frac{x^2 - x - 2}{2x - 3} - 2 \right| = \left| \frac{x^2 - x - 2 - 4x + 6}{2x - 3} \right|$$

$$= \left| \frac{x^2 - 5x + 4}{2x - 3} \right|$$

$$= \frac{|x - 4||x - 1|}{|2x - 3|}$$

$$< \varepsilon$$

So, we have for the numerator:

$$|x-4| = |(x-1)-3|$$

= $|x-1|-3$
 $\le 1-3$
= -2

And for the denominator we have for |x-1|:

$$-1 < x - 1 < 1$$

$$0 < x < 2$$

$$0 < 2x < 4$$

$$-3 < 2x - 3 < 1$$

$$-\frac{1}{3} > \frac{1}{2x - 3}$$

$$\frac{1}{2x - 3} < -\frac{1}{3}$$

This then yields that

$$\frac{|x-4||x-1|}{|2x-3|} < (-2) \cdot \left(-\frac{1}{3}\right)|x-1| < \varepsilon$$

Which then gives us that

$$|x-1| < \frac{3\varepsilon}{2}$$

Hence if we let $\delta = \min\{1, \frac{3\varepsilon}{2}\}$, and x such that $|x-1| < \delta$ gives us that $\left|\frac{x^2-x-2}{2x-3}-2\right| = \frac{|x-4||x-1|}{|2x-3|} < \varepsilon$, $\forall \varepsilon > 0$.

$$\therefore \lim_{x \to 1} \frac{x^2 - x - 2}{2x - 3} = 2$$

(b)
$$\lim_{x\to 5} (x^2 - 3x + 1) = 11$$

We want to show the following $\forall \varepsilon > 0$:

$$|x^2 - 3x + 1 - 11| = |x^2 - 3x - 10|$$

= $|x - 5||x + 2|$
 $< \varepsilon$

So we have the following for |x+2|:

$$|x + 2| = |(x - 5) + 7|$$

= $|x - 5| + 7$
 $\leq 1 + 7$
= 8

This then yields that $|x-5||x+2|<8|x-5|=\varepsilon$, and thus $|x-5|<\frac{\varepsilon}{8}$.

So if we let $\delta = \min\{1, \frac{\varepsilon}{8}\}$, and x such that $|x-5| < \delta$, we have that $|x^2 - 3x - 1| = |x-5||x+2| < \varepsilon$.

$$\therefore \lim_{x \to 5} (x^2 - 3x + 1) = 11$$

3. Find a $\delta > 0$ so that $|x-2| < \delta$ implies that

(a)
$$|x^2 + x - 6| < 1$$

Note that $|x^2+x-6|=|x-2||x+3|$. So, we have that $|x+3|=|(x-2)+5|=|x-2|+5\leq 1+5=6$. Thus we have that $6|x-2|<1 \Longrightarrow |x-2|<\frac{1}{6}$. So if we let $\delta=\min\{1,\frac{1}{6}\}=\frac{1}{6}$ gives us that $|x-2|<\delta$.

(b)
$$|x^2 + x - 6| < 1/n$$
 for a given $n \in \mathbb{N}$

By similar logic as the previous problem, we have that if we let $\delta = \min\{1, \frac{1}{6n}\} = \frac{1}{6n}$, we have that $|x-2| < \delta$.

(c)
$$|x^2 + x - 6| < \varepsilon$$

Suppose that |x-2| < 1. Then we have that $|x+3| = |(x-2)+5| \le |x-2|+5 < 6$. So we have that if we let $\delta = \min\{1, \frac{\varepsilon}{6}\}$, we have that $|x-2| < \delta$.

4. Show that for any
$$a$$
, $\lim_{x\to a} F(x)$ does not exist for $F(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$

Let x_n = sequence of rationals $\to a$, and let y_n = sequence of irrationals such that $\to a$. Then we have that $\lim f(x_n) = 1$ and $\lim f(y_n) = 0$. Thus by *Theorem 4.1.9*, we have that $\lim f(x)$ does not exist.

5. Let
$$f(x) = \begin{cases} 3x + 2 & \text{if } x \text{ is rational} \\ 6 - x & \text{if } x \text{ is irrational} \end{cases}$$

(a) Show
$$\lim_{x \to 1} f(x) = 5$$

Let $\varepsilon > 0$ be given. Then we have the following for |f(x) - L|:

$$|f(x) - 5| = \begin{cases} |(3x + 2) - 5| \\ |(6 - x) - 5| \end{cases}$$
$$= \begin{cases} |3x - 3| \\ |1 - x| \end{cases}$$
$$= \begin{cases} 3|x - 1| \\ |x - 1| \end{cases}$$
$$= \varepsilon$$

6

Thus, let $\delta = \min\{\varepsilon, \frac{\varepsilon}{3}\}$, and we have that $\lim_{x \to 1} f(x) = 5$.

(b) Show
$$\lim_{x\to a} f(x)$$
 does not exist if $a \neq 1$.

Let x_n be a sequence of rational numbers such that $x_n \neq a$, $\forall n \in \mathbb{N}$, and $\lim(x_n) = a$. Let y_n be a sequence of irrational numbers such that $y_n \neq a$, $\forall n \in \mathbb{N}$, and $\lim(y_n) = a$. Then we have that $\lim_{x \to a} f(x_n) = 3a + 2$, and that $\lim_{x \to a} f(y_n) = 6 - a$. Thus, we have that if the limit exists, then $\lim x \to a f(x_n) = \lim_{x \to a} f(y_n)$. So,

$$3a + 2 = 6 - a$$

$$4a + 2 = 6$$

$$4a = 4$$

$$a = 1$$

However, since we have that $a \neq 1$, we have that by Theorem 4.1.8 (The Divergence Criteria), we know that $3a + 2 \neq 6 - a \implies \lim_{x \to a} f(x_n) \neq \lim_{x \to a} f(y_n)$, and thus this limit does not exists if $a \neq 1$.

- **6.** Let $f: [-1,1] \to \mathbb{R}$ be given by, $f(x) = \begin{cases} 0, & \text{if } x = \pm \frac{1}{n} \text{ where } n \in \mathbb{N} \\ 1, & \text{otherwise} \end{cases}$ Find the limit, if it exists, using the definition of a limit.
 - (a) $\lim_{x \to \frac{3}{8}} f(x)$

Notice first that the range of f is $R(f) := \{0, 1\}$. This yields that $\varepsilon = 0$, or $\varepsilon = 1$. However, by the definition of a limit, we have that $\varepsilon > 0$, and thus $\varepsilon = 1$. This gives us a guarantee that ε will always equal 1. Thus all we need to worry about is finding a δ , that doesn't need to be in terms of ε .

First, recall the definition of a limit when a function $f: A \to \mathbb{R}$ for $A \subseteq \mathbb{R}$, and c is a cluster point of A:

$$\lim_{x \to c} f(x) = L \implies \forall \ \varepsilon > 0 \ \exists \ \delta > 0 \ \text{s.t.} \ x \in A \land 0 < |x - c| < \delta \implies |f(x) - L| < \varepsilon$$

However, also recall the definition of a cluster point of A for $c \in \mathbb{R}$:

$$\forall \ \delta > 0 \ \exists \ x \in V_{\delta}(c) := \{x \in A : |x - c| < \delta\} = (c - \delta, c + \delta) \text{ s.t. } x \neq c$$

So we have now that if we observe the different parts of the piecewise function that create the domain are the following sets: $B := \{-1, -\frac{1}{2}, -\frac{1}{3}, \dots, \frac{1}{3}, \frac{1}{2}, 1\}$ and $C := [-1, 1] \setminus B$.

We now note that since $c=\frac{3}{8}$, we know by evaluating the limit through substitution, $\lim_{x\to\frac{3}{8}}=1$. Thus we also know that since $\frac{3}{8}$ is not of the form $\pm\frac{1}{n}$ for $n\in\mathbb{N}$, that by the corollaries to *The Archimedian Property*, there exists a rational number between any two real numbers. Thus we have that there must exist two rational numbers $p,q\in\mathbb{Q}$ s.t. $p<\frac{3}{8}< q$.

We note by the elements of B that if we let $p=\frac{1}{3}$ and let $q=\frac{1}{2}$ we have that $\frac{1}{3}<\frac{3}{8}<\frac{1}{2}$. So we now have that since δ must be defined such that $0<|x-c|<\delta$, we can solve for δ as being $\frac{3}{8}-\frac{1}{3}=\frac{1}{24}$, since $\frac{1}{3}<\frac{1}{2}$, and thus we have that if we let $\delta=\frac{1}{24}$, then $(c-\delta,c+\delta)$ is such that $|x-c|<\delta$.

$$\therefore \lim_{x \to \frac{3}{8}} f(x) = 1 \text{ when } |x - \frac{3}{8}| < \delta \text{ for } \delta = \frac{1}{24}$$

(b)
$$\lim_{x \to -\frac{1}{3}} f(x)$$

By applying similar logic as the previous problem, we notice that since $-\frac{1}{2}<-\frac{1}{3}<-\frac{1}{4}$, since δ does not need to be defined in terms of ε since $\varepsilon=1$, we have that we can let $\delta=|-\frac{1}{3}+\frac{1}{4}|=\frac{1}{12}$, since $\delta>0$. Thus, we have that the cluster point $-\frac{1}{3}$ is defined such that $|x+\frac{1}{3}|<\frac{1}{12}$. Hence $\lim_{x\to -\frac{1}{3}}f(x)=0$.

(c)
$$\lim_{x\to 0} f(x)$$

We have that the limit does not exist when x=0. We can see this if we let $x_n=\frac{1}{n}\to 0$, and $y_n=\frac{\sqrt{2}}{n}\to 0$. Then we have that $f(x_n)=0$ and $f(y_n)=1$. Thus we have that $\lim_{x\to 0}f(x)$ does not exist.

7. Section 4.2

3. Find $\lim_{x\to 0} \frac{\sqrt{1+2x}-\sqrt{1+3x}}{x+2x^2}$ where x>0.

Recall Theorem 4.2.4:

Theorem. let $A \subseteq \mathbb{R}$, let f and g be functions on A to \mathbb{R} , and let $c \in \mathbb{R}$ be a cluster point of A. Further, let $b \in \mathbb{R}$.

i. If
$$\lim_{x\to c} f = L$$
 and $\lim_{x\to c} g = M$, then

$$\lim_{x \to c} (f + g) = L + M,$$

$$\lim_{x \to c} (f - g) = L - M,$$

$$\lim_{x \to c} (fg) = LM,$$

$$\lim_{x \to c} (bf) = bL.$$

ii. If $h: A \to \mathbb{R}$, if $h(x) \neq 0$ for all $x \in A$, and if $\lim_{x \to c} h = H \neq 0$, then

$$\lim_{x \to c} \left(\frac{f}{h} \right) = \frac{L}{H}$$

This yields the following:

$$\lim_{x \to 0} \frac{\sqrt{1+2x} - \sqrt{1+3x}}{x+2x^2} = \lim_{x \to 0} \frac{(1+2x) - (1+3x)}{(x+2x^2)(\sqrt{1+2x} + \sqrt{1+3x})}$$

$$= \lim_{x \to 0} \frac{-x}{x(1+2x)(\sqrt{1+2x} + \sqrt{1+3x})}$$

$$= \lim_{x \to 0} \frac{-1}{(1+2x)(\sqrt{1+2x} + \sqrt{1+3x})}$$

$$= \frac{-1}{(1+0)(\sqrt{1+0} + \sqrt{1+0})}$$
 by Theorem 4.2.4
$$= \frac{-1}{1(2)}$$

$$= \frac{-1}{2}$$

Thus we have that $\lim_{x\to 0}\frac{\sqrt{1+2x}-\sqrt{1+3x}}{x+2x^2}=-\frac{1}{2}$

4. Prove that $\lim_{x\to 0} \cos(1/x)$ does not exist but that $\lim_{x\to 0} x\cos(1/x) = 0$

Proof. Let $x_n := \left((2n+1)\frac{\pi}{2}\right)^{-1} \implies x_n \to 0$. And also let $y_n := (2n\pi)^{-1}$. Then we have that $y_n \to 0$. We can now note that $\cos\left(\frac{1}{x_n}\right) = \cos\left((2n+1)\frac{\pi}{2}\right) = 0$, and that $\cos\left(\frac{1}{y_n}\right) = \cos(2n\pi) = 1$. This yields that $\cos\left(\frac{1}{x_n}\right) \to 0$ and $\cos\left(\frac{1}{y_n}\right) \to 1$.

Recall the Sequential Criterion:

Theorem (Sequential Criterion). Let $f: A \to \mathbb{R}$ and let c be a cluster point of A. Then the following are equivalent.

- i. $\lim_{x\to c} f = L$.
- ii. For every sequence (x_n) in A that converges to c such that $x_n \neq c$ for all $n \in \mathbb{N}$, the sequence $(f(x_n))$ converges to L.

So we have that $\lim_{x\to 0}\cos\left(\frac{1}{x}\right)$ doesn't exist. However, $\lim_{x\to 0}x\cos\left(\frac{1}{x}\right)=0$. This is given to us by the fact that $\left|x\cos\left(\frac{1}{x}\right)\right|\leq |x|$. Thus, if we let $\delta=\varepsilon$, we have that $\lim_{x\to 0}x\cos\left(\frac{1}{x}\right)=0$.

6. Use the definition of the limit to prove the first assertion in Theorem 4.2.4(a).

Proof. Let $\varepsilon > 0$ be given.

Since we have that $\lim_{x\to c} f(x) = L$, by the definition of the limit, we know that $\exists \delta_f > 0 \text{ s.t. } |x-c| < \delta_f \implies |f(x) - L| < \frac{\varepsilon}{2}$.

Since $\lim_{x\to c} g(x) = M$, then we have that by the definition of the limit, we know that $\exists \delta_g > 0 \text{ s.t. } |x-c| < \delta_g \implies |g(x) - M| < \frac{\varepsilon}{2}$.

Now, define $\delta = \max\{\delta_f, \delta_g\}$. Then we have that for $|x - c| < \delta$:

$$|(f(x) + g(x)) - (L + M)| = |(f(x) - L) + (g(x) - M)|$$

$$\leq |f(x) - L| + |g(x) - M|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

This yields that by the definition of the limit again, we have that $\lim_{x\to c} (f+g)(x) = L+M$.

 \therefore We have that if $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then $\lim_{x\to c} (f+g)(x) = L+M$.

A similar argument can be used to show the case for subtraction.

- **9.** Let f, g be defined on A to \mathbb{R} and let c be a cluster point of A.
 - (a) Show that if both $\lim_{x\to c} f$ and $\lim_{x\to c} (f+g)$ exist, then $\lim_{x\to c}$ exists.

Proof. Since we have that $\lim_{x\to c} f$ and $\lim_{x\to c} (f+g)$ exist, by Theorem 4.2.4 we have that $\lim_{x\to c} g = \lim_{x\to c} ((f+g)-f)$ also exists.

$$\therefore \exists \lim_{x \to c} f \land \exists \lim_{x \to c} (f + g) \implies \exists \lim_{x \to c} g.$$

(b) If $\lim_{x\to c} f$ and $\lim_{x\to c} fg$ exist, does it follow that $\lim_{x\to c} g$ exists?

If we have that $\lim_{x\to c} f$ and $\lim_{x\to c} fg$ exist, then we have that $\lim_{x\to c} g$ doesn't necessarily have to exist. Consider the following:

Let $c=0, f(x)=x, g(x)=\frac{1}{x}$. Then we have that $\lim_{x\to c}f(x)=\lim_{x\to 0}x=0$, and that $\lim_{x\to c}fg(x)=\lim_{x\to 0}x\cdot\frac{1}{x}=\lim_{x\to 0}1=1$. However, we have that $\lim_{x\to c}g(x)=\lim_{x\to 0}\frac{1}{x}$ does not exist.

10. Give examples of functions f and g such that f and g do not have limits at a point c, but such that both f+g and fg have limits at c.

Consider the following: Let $c=0, f(x)=\mathrm{sgn}(x), g(x)=-\mathrm{sgn}(x)$. By the definition of the signum function, we know that $\lim_{x\to 0}$ sgn does not exist. This yields that $\lim_{x\to 0}$ also does not exit. However, we have that (f+g)(x)=0 and $(f\cdot g)(x)=-1$ for $x\neq 0$, and $(f\cdot g)(0)=0$. This gives us that $\lim_{x\to 0}(f+g)(x)=0$ and that $\lim_{x\to 0}(f\cdot g)(x)=-1$.

- 11. Determine whether the follow limits exist in \mathbb{R} .
 - (a) $\lim_{x\to 0} \sin(1/x^2)$ $(x \neq 0)$

 $\lim_{x\to 0} \sin \frac{1}{x^2}$ for $x \neq 0$ does not exist.

Consider $f(x) = \sin \frac{1}{x^2}$, and $x \neq 0$. Also, let $x_n = \frac{1}{\sqrt{n\pi}}$ for $n \in \mathbb{N}$. Then we have that $\lim x_n = \frac{1}{\pi} \cdot \lim \frac{1}{\sqrt{n}} = 0$. Thus $f(x_n) = \sin \frac{1}{x_n^2} = \sin \frac{1}{\frac{1}{n\pi}} = \sin n\pi = 0$. Which yields $\lim f(x_n) = 0$.

Now, let
$$y_n = \frac{1}{\sqrt{(4n+1)\frac{\pi}{2}}} = \sin(4n+1)\frac{\pi}{2} = 1$$
. Thus $\lim f(y_n) = 1$.

Hence we have that (x_n) and (y_n) both converge to 0, however the sequences $(f(x_n))$ and $(f(y_n))$ converge to two complete separate limits.

- $\therefore \lim_{x \to 0} f(x) = \lim_{x \to 0} \sin \frac{1}{x^2} \text{ does not exist.}$
- **(b)** $\lim_{x\to 0} x \sin(1/x^2)$ $(x \neq 0)$

 $\lim_{x \to 0} x \sin \frac{1}{x^2} = 0.$

Lemma 0.1. Let $A \subseteq \mathbb{R}$, let $f, g : A \to \mathbb{R}$, and let c be a cluster point of A. Suppose that $\lim_{x\to c} g(x) = 0$ and that f is bounded on some neighborhood of c. We want to show that $\lim_{x\to c} fg(x) = 0$.

Since f is bounded on some neighborhood of c, we know that $\exists \delta_0 > 0$ and M > 0 such that $|x - c| < \delta_0 \implies |f(x)| < M$.

Let $\varepsilon > 0$ be given. Since $\lim_{x \to c} g(x) = 0$, we know that $\exists \delta_1 > 0$ such that $|x - c| < \delta_1 \implies |g(x)| = |g(x) - 0| < \frac{\varepsilon}{M}$.

Choose $\delta := \min\{\delta_0, \delta_1\}$. Thus we now have

$$|x - c| < \delta \implies |f(x)| < M \text{ and } |g(x)| < \frac{\varepsilon}{M} \implies |f(x)g(x)| < \varepsilon$$

Thus we have that by the definition of the limit, $\lim_{x\to c} fg(x) = 0$.

Proof. Let
$$f(x) = \begin{cases} \sin\frac{1}{x^2}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

and let g(x) = x for $x \in \mathbb{R}$.

Then we have that $|f(x)| \leq 1 \ \forall \ x \in \mathbb{R}$. This gives us that f is bounded in \mathbb{R} . Hence $\lim_{x\to 0} g(x) = \lim_{x\to 0} x = 0$. Thus we have that by $Lemma\ 0.1$, we have that $\lim_{x\to 0} f(x) = 0 \implies \lim_{x\to 0} x \sin\frac{1}{x^2} = 0$.

- **13.** Functions f and g are defined on R by f(x) := x + 1 and g(x) := 2 if $x \neq 1$ and g(1) := 0.
 - (a) Find $\lim_{x\to 1} g(f(x))$ and compare with the value of $g(\lim_{x\to 1} f(x))$.

We first note that $\lim_{x\to 1} f(x) = \lim_{x\to 1} (x+1) = 2$. Thus we have that $g(\lim_{x\to 1} f(x)) = 1$ g(2) = 2.

Now,
$$g(f(x)) = g(x+1) = \begin{cases} 2 & x \neq 0 \\ 0 & x = 0 \end{cases}$$

Now, $g(f(x)) = g(x+1) = \begin{cases} 2 & x \neq 0 \\ 0 & x = 0 \end{cases}$ Thus we have that $\lim_{x \to 1} g(f(x)) = 2$. Thus we have that $\lim_{x \to 1} g(f(x)) = 2 = 0$ $g(\lim_{x \to 1} f(x)).$

(b) Find $\lim_{x\to 1} f(g(x))$ and compare with the value of $f(\lim_{x\to 1} g(x))$.

$$f(g(x)) = \begin{cases} f(2) & x \neq 1 \\ f(0) & x = 1 \end{cases} = \begin{cases} 3 & x \neq 1 \\ 1 & x = 1 \end{cases}$$

 $f(g(x)) = \begin{cases} f(2) & x \neq 1 \\ f(0) & x = 1 \end{cases} = \begin{cases} 3 & x \neq 1 \\ 1 & x = 1 \end{cases}$ Thus we have that $\lim_{x \to 1} f(g(x)) = 3$. Now $\lim_{x \to 1} g(x) = 2$, we have that $f(\lim_{x \to 1} g(x)) = 3$ f(2) = 3.

$$\therefore \lim_{x \to 1} f(g(x)) = f(\lim_{x \to 1} g(x)).$$

- **8.** Prove or justify if true. Provide a counterexample if false.
 - (a) $\lim_{x \to 3a} f(x) = 3 \lim_{x \to a} f(x)$

This is a false statement. Consider the function $f(x) := \frac{1}{x}$. Then we have that if a = 4:

$$\lim_{x \to 3(4)} f(x) = \lim_{x \to 12} \frac{1}{x} = \frac{1}{12}$$

However, we also have the following:

$$3\lim_{x\to 4} f(x) = 3\lim_{x\to 4} \frac{1}{x} = \frac{3}{4}$$

Thus, we have that

$$\lim_{x \to 3(4)} \frac{1}{x} = \frac{1}{12} \neq \frac{3}{4} = 3 \lim_{x \to 4} \frac{1}{x}$$

And thus

$$\lim_{x \to 3a} f(x) \neq 3 \lim_{x \to a} f(x)$$

(b)
$$\lim_{x \to a} f(3x) = 3 \lim_{x \to a} f(x)$$

This is also a false statement. Consider $f(x) = \frac{1}{x}$ and a = 5. Then we have

$$\lim_{x \to 5} f(3x) = \lim_{x \to 5} \frac{1}{3x} = \frac{1}{15}$$

 But

$$3\lim_{x\to 5} f(x) = 3\lim_{x\to 5} \frac{1}{x} = \frac{3}{5}$$

Thus we have that

$$\lim_{x\to 5}\frac{1}{3x}=\frac{1}{15}\neq \frac{3}{5}=3\lim_{x\to 5}\frac{1}{x}$$

Hence

$$\lim_{x \to a} f(3x) \neq 3 \lim_{x \to a} f(x)$$

(c)
$$\lim_{x \to 3a} f(x) = \lim_{x \to a} f(3x)$$

This statement is true.

Proof. Let
$$y = \frac{x}{3}$$
. Then we have that $x = 3y$. Thus as $x \to 3a$, we get that $y \to a$. Thus $\lim_{x \to 3a} f(x) = \lim_{y \to a} f(3y) = \lim_{x \to a} f(3a)$.