IV.Basic Structural Properties of Networks

January 29, 2018

1 All imports

```
In [1]: import numpy as np
    import networkx as nx
    import math
    import itertools
    import matplotlib.pyplot as plt
    import pandas as pd
    import seaborn as sns
```

2 Utils

```
In [2]: def draw(G,**kwargs):
            if len(G)<20:
                nx.draw_spring(G,
                                node_size=400,
                                with_labels=True)
            else:
                nx.draw_spring(G,
                                node_size=10,
                                with_labels=False)
In [3]: def create_undirected_graph(edges):
            G=nx.Graph()
            G.add_edges_from(edges)
            return G
In [4]: def create_directed_graph(edges):
            DG=nx.DiGraph()
            DG.add_edges_from(edges)
            return DG
In [5]: def load_graph_from_tsv(file):
            f = open(file,"r")
            text = f.readlines()
            clean = lambda x:x.strip("\n").split(" ")
            node_pairs = list(map(clean,text[2:]))
```

```
node_pairs = [(int(x[0]),int(x[1])) for x in node_pairs]
node_pairs[:4]
G = nx.Graph()
G.add_edges_from(node_pairs)
return G
```

3 IV.5

Take an undirected network and measure the correlation between different centrality measures. The correlation can either be estimated with the centrality values (Spearman) or with their associated ranking (Kendall). Construct an example of a graph where one node has a small degree centrality but a high betweenness centrality.

```
Given 2 random variables (or sets of observation) X and Y, we have Pearson Correlation: \frac{\text{Cov}(X,Y)}{\sigma(X)\sigma(Y)}

Kendall Correlation: After ordering the observation pairs, use \frac{(number.of.concordant.pairs) - (number.of.discordant.pairs)}{\frac{1}{2}n(n-1)}
```

Spearman Correlation: Pearson correlation after mapping the observations X_i , Y_i to their ranks.

Dataset used: The propo dataset used consists of nodes representing proteins and edges representing pairs of interacting proteins.

print("\n\n" + str(metric.capitalize()) + ' correlation:')

Builds correlation matrices for the different metrics

for metric in ['pearson', 'kendall', 'spearman']:

def correlation_of_centrality_metrics(df):

print(df.corr(metric))

Out[8]:		betweenness	closeness	degree	katz	pagerank
	count	1870.000000	1870.000000	1870.000000	1870.000000	1870.000000
	mean	0.001891	0.091932	2.435294	0.020112	0.000535
	std	0.006035	0.051226	3.164618	0.011416	0.000374
	min	0.000000	0.000000	1.000000	0.013533	0.000313
	25%	0.000000	0.080883	1.000000	0.014203	0.000362
	50%	0.000000	0.112335	1.000000	0.016208	0.000446
	75%	0.001219	0.126392	3.000000	0.021312	0.000548
	max	0.129420	0.183020	56.000000	0.200559	0.009283

In [9]: correlation_of_centrality_metrics(df)

Pearson correlation:

	betweenness	closeness	degree	katz	pagerank
betweenness	1.000000	0.297399	0.837694	0.818457	0.739478
closeness	0.297399	1.000000	0.302620	0.456009	0.090823

degree	0.837694	0.302620	1.000000	0.868335	0.929309
katz	0.818457	0.456009	0.868335	1.000000	0.726429
pagerank	0.739478	0.090823	0.929309	0.726429	1.000000

Kendall correlation:

	betweenness	closeness	degree	katz	pagerank
betweenness	1.000000	0.409058	0.813356	0.548139	0.548832
closeness	0.409058	1.000000	0.359753	0.713957	-0.081977
degree	0.813356	0.359753	1.000000	0.569681	0.638604
katz	0.548139	0.713957	0.569681	1.000000	0.064198
pagerank	0.548832	-0.081977	0.638604	0.064198	1.000000

Spearman correlation:

	betweenness	closeness	degree	katz	pagerank
betweenness	1.000000	0.523995	0.897253	0.676930	0.699047
closeness	0.523995	1.000000	0.463058	0.880813	-0.064068
degree	0.897253	0.463058	1.000000	0.687259	0.764166
katz	0.676930	0.880813	0.687259	1.000000	0.176845
pagerank	0.699047	-0.064068	0.764166	0.176845	1.000000

Out[10]: <seaborn.axisgrid.PairGrid at 0x7f36d0163ac8>

