Image filtering in the frequency domain

Filip Malmberg

Summary of previous lecture

- Virtually all filtering is a local neighbourhood operation
- Convolution = linear and shift-invariant filters
 - e.g. mean filter, Gaussian weighted filter
 - kernel can sometimes be decomposed
- Many non-linear filters exist also
 - e.g. median filter, bilateral filter

Linear neighbourhood operation

 For each pixel, multiply the values in its neighbourhood with the corresponding weights, then sum.

- Two fundamental linear filtering operations.
- Correlation: move a filter mask over the image, and compute the sum of products at each location (exactly what we have done so far).
- Convolution: Same as correlation, but first rotate filter by 180 degrees (or *mirror* it in both x and y directions).

Consider a 1D signal and small filter:

Signal:

00000000100000000

Filter:

321

This signal is a discrete *impulse.*

What happens when we apply the filter as a *correlation*?

Consider a 1D signal and small filter:

Signal:

0000000001000000000

Filter:

321

What happens when we apply the filter as a *correlation*?

Result:

0000012300000

We get a "mirrored" copy of the filter at the location of the impulse! (Verify this)

Consider a 1D signal and small filter:

Signal:

0000000001000000000

Filter: Mirrored filter:

321 123

What happens when we instead apply the filter as a convolution?

Result:

0000032100000

We get a copy of the filter at the location of the impulse! (Verify this)

Convolution properties

- Convolving a function with a unit impulse yields a copy of the function at the location of the impulse.
- Convolving a function with a series of unit impulses "adds" a copy of the function at each impulse.

Convolution properties

• Linear:

- Scaling invariant:

$$(C f) \otimes h = C (f \otimes h)$$

- Distributive:

$$(f+g) \otimes h = f \otimes h + g \otimes h$$

• <u>Time Invariant</u>: (= shift invariant)

$$shift(f) \otimes h = shift(f \otimes h)$$

• Commutative:

$$f \otimes h = h \otimes f$$

Associative:

$$f \otimes (h_1 \otimes h_2) = (f \otimes h_1) \otimes h_2$$

Today's lecture

- The Fourier transform
 - The Discrete Fourier transform (DFT)
 - The Fourier transform in 2D
 - The Fast Fourier Transform (FFT) algorithm
- Designing filters in the Fourier (frequency) domain
 - filtering out structured noise

• Sampling, aliasing, interpolation

Convolutions have certain properties that makes it very interesting to study them in the Fourier domain!

Jean Baptiste Joseph Fourier

- Born 21 March 1768, Auxerre (Bourgogne region).
- Died 16 May 1830, Paris.
- Same age as Napoleon Bonaparte.
- Permanent Secretary of the French Academy of Sciences (1822-1830).
- Foreign member of the Royal Swedish Academy of Sciences (1830).

The Fourier transform

The Fourier transform

- Remarkably, all periodic functions satisfying some mild mathematical conditions can be expressed as a weighted *sum* of sines and cosines of different frequencies.
- Even functions that are not periodic can be expressed as an *integral* of sines and cosines multiplied by a weighting function.

Complex numbers

$$i = \sqrt{-1} \qquad \Rightarrow i \cdot i = -1$$

$$x = a + ib$$

$$x^* = a - ib$$

$$x x^* = a^2 + b^2 = ||x||^2 \qquad \qquad a = ||x|| \cos(4x)$$

$$4x = \arctan(\frac{b}{a}) \qquad b = ||x|| \sin(4x)$$

(Euler's formula) $e^{i\varphi} = \cos \varphi + i \sin \varphi$

(complex conjugate)

$$x = ||x||\cos(\langle x) + i||x||\sin(\langle x) = ||x||e^{i\langle x|}$$

Fourier basis function

$$e^{i\omega x} = \cos(\omega x) + i\sin(\omega x)$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

Fourier transform

$$F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$

$$f(x)$$

$$=$$

$$F(\omega_1)e^{i\omega_1 x}$$

$$+$$

$$F(\omega_2)e^{i\omega_2 x}$$

$$+$$

$$F(\omega_3)e^{i\omega_3 x}$$

Fourier transform

$$F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$

Fourier basis function

 $Ae^{i\omega X}+A^*e^{-i\omega X}$ is a real-valued function

Thus: we need negative frequencies!

For real-valued signals:

At frequency ω we have weight AAt frequency $-\omega$ we have weight A^*

$$F(-\omega) = F^*(\omega)$$

Inverse Fourier transform

Compare with the forward transform:

$$F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$

Fourier transform pairs

Properties of the Fourier transform

Spatial scaling

Amplitude scaling

Addition

Translation

Convolution

$$\mathcal{F}\{f \otimes h\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{h\}$$

$$\mathcal{F}\{f \cdot h\} = \mathcal{F}\{f\} \otimes \mathcal{F}\{h\}$$

Sampling

Continuous FT: $F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$

Discrete FT:
$$F[k] = \sum_{n=0}^{N-1} f[n] e^{-i\frac{2\pi}{N}kn}$$

k is the spatial frequency, $k \in [0, N-1]$

$$\omega = 2\pi k/N$$

$$\omega \in [0, 2\pi)$$

F[k] is defined on a limited domain (N samples), these samples are assumed to repeat periodically:

$$F[k] = F[k+N]$$

In the same way, f[n] is defined by N samples, assumed to repeat periodically:

$$f[n] = f[n+N]$$

$$F[k] = \sum_{n=0}^{N-1} f[n] e^{-i\frac{2\pi}{N}kn}$$

Why does the DFT only have positive frequencies?

What is the zero frequency?

Write out the value of F[0] for an input function f[n]. What does it mean?

$$F[k] = \sum_{n=0}^{N-1} f[n] e^{-i\frac{2\pi}{N}kn}$$

Inverse DFT

$$F[k] = \sum_{n=0}^{N-1} f[n] e^{-i\frac{2\pi}{N}kn}$$

$$f[n] = \frac{1}{N} \sum_{k=0}^{N-1} F[k] e^{i\frac{2\pi}{N}kn}$$
normalization
no minus sign

Fourier transform in 2D, 3D, etc.

- Simplest thing there is! the FT is separable:
 - Perform transform along x-axis,
 - Perform transform along y-axis of result,
 - Perform transform along z-axis of result, (etc.)

$$F[u,v] = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[n,m] e^{-i2\pi \left(\frac{un}{N} + \frac{vm}{M}\right)} = \sum_{m=0}^{M-1} \left(\sum_{n=0}^{N-1} f[n,m] e^{-i\frac{2\pi}{N}un}\right) e^{-i\frac{2\pi}{M}vm}$$

2D Fourier transform pairs

2D Fourier transform pairs

2D Fourier transform pairs

What is more important?

Jean Baptiste Joseph Fourier

magnitude

phase

What is more important?

Computing the DFT

- For an image with N pixels, the DFT contains N elements.
- Each element of the DFT can be computed as a sum of all N elements in the image.
- A naive implementation of the DFT the requires $O(N^2)$ time.
- This is impractical!

The Fast Fourier Transform (FFT)

- Clever algorithm to compute the DFT.
- Runs in $O(N \log N)$ time, rather than $O(N^2)$ time.
- Because of symmetry of the forward and inverse Fourier transforms, FFT can also compute the IDFT.

$$F[k] = F_{\text{even}}[k] + F_{\text{odd}}[k] e^{-i\frac{2\pi}{N}k} \qquad N = 2M$$

$$F[k+M] = F_{\text{even}}[k] - F_{\text{odd}}[k] e^{-i\frac{2\pi}{N}k}$$

$$N = 2^{n}$$

$$N = 2^{n}$$

Convolution in the Fourier domain

The Convolution property of the Fourier transform:

$$\mathscr{F}\{f\otimes h\} = \mathscr{F}\{f\}\cdot\mathscr{F}\{h\}$$

- Thus we can calculate the convolution through:
 - *F* = FFT(*f*)
 - *H* = FFT(*h*)
 - $G = F \cdot H$
 - *g* = IFFT(*G*)
- Convolution is an operation of O(NM)
 - N image pixels, M kernel pixels
- Through the FFT it is an operation of O(N log N)
 - Efficient if *M* is large!

Low-pass filtering

- Linear smoothing filters are all low-pass filters.
 - Mean filter (uniform weights)
 - Gauss filter (Gaussian weights)
- Low-pass means low frequencies are not altered, high frequencies are attenuated

High-pass filtering

- The opposite of low-pass filtering: low frequencies are attenuated, high frequencies are not altered
- The "unsharp mask" filter is a high-pass filter
- The Laplace filter is a high-pass filter

Band-pass filtering

- You can choose any part of the frequency axis to preserve (band-pass filter).
- Or you can attenuate a specific set of frequencies (band-stop filter).

Example: low-pass filtering

input image f

Fourier transform *F*

Example: frequency domain filtering

Fourier filter *H*

G = F H

filtered image *g*

Why the ringing?

What is the solution?

Example: frequency domain filtering

Structured noise

Structured noise

Filtering structured noise

Notch filter

Filtering structured noise

Notch filter, Gaussian

Filtering structured noise

Notch filter, Gaussian

Fourier analysis of sampling

$$F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$

Fourier analysis of sampling

Fourier analysis of interpolation

Aliasing

Aliasing

Aliasing

Avoid aliasing

frequency domain

$$F(\omega) = 0, \, \omega > \omega_{\rm c}$$

$$\omega_{\rm s} > 2\omega_{\rm c}$$
Minimum sampling frequency
Nyquist frequency

When we downsample, we only keep this part!

The spectrum is replicated, higher frequencies being duplicated as lower frequencies.

Example: Moire

Example: Moire

Summary of today's lecture

- The Fourier transform
 - decomposes a function (image) into trigonometric basis functions (sines & cosines)
 - is used to analyse frequency components
 - is computed independently for each dimension
- The DFT can be computed efficiently through the FFT algorithm
- Convolution can be studied through the FT
 - and filters can be designed in the Fourier domain

$$-\mathscr{F}\{f\otimes h\} = \mathscr{F}\{f\}\cdot\mathscr{F}\{h\}$$

Aliasing can be understood through the FT

Reading assignment

- The Fourier transform and the DFT
 - Sections 4.2, 4.4, 4.5, 4.6, 4.11.1
- Filtering in the Fourier domain
 - Sections 4.7, 4.8, 4.9, 4.10, 5.4
- Sampling and aliasing
 - Sections 4.3, 4.5.4
- The FFT
 - Section 4.11.3
- Exercises:
 - 4.14, 4.21, 4.22, 4.42, 4.43
 - 4.27, 4.29(feel free to solve these in MATLAB)

