

STOR 320 Modeling V

Lecture 18

Yao Li

Department of Statistics and Operations Research UNC Chapel Hill

Introduction

- Read Chapter 23 (R4DS)
- Previously: Numeric Variables
- New Focus
 - Categorical Predictor Variables
 - Interaction Effects
- Understand Using Multiple Datasets and Visualizations

Example 1: Data

- Data Overview
 - Enjoyment (E)
 - Food (F)
 - Condiment (C)
 - 80 Observations

Enjoyment <dbl></dbl>		Condiment <chr></chr>	
81.92696	Hot Dog	Mustard	
84.93977	Hot Dog	Mustard	
90.28648	Hot Dog	Mustard	
89.56180	Hot Dog	Mustard	
97.67683	Hot Dog	Mustard	

Enjoyment Visualized

Example 1: Data

Food Visualized

Condiment Visualized

Example 1: Question

Question of Interest

Can We Predict a Person's Culinary Enjoyment if...

We Serve Them a Particular Item:

- Hot Dog
- Ice Cream

With a Particular Condiment

- Mustard
- Chocolate Sauce

Regressing E on F

- $\hat{E} = 77.5 0.283F$
- Questions:
 - What Does 77.5 Represent?
 - What About -0.283?

What is R Doing?

```
CONDIMENT$Food[1:6]
## [1] "Hot Dog" "Hot Dog" "Hot Dog" "Hot Dog
" "Hot Dog" "Hot Dog"
head (model matrix (CONDIMENT, Enjoyment~Food))
## # A tibble: 6 x 2
     `(Intercept)` `FoodIce Cream`
           <dbl>
                              <dbl>
```


Example 1: Interpretation

- Regressing E on F
 - $\hat{E} = 77.5 0.283F$

•
$$F = \begin{cases} 0 & if \ Hot \ Dog \\ 1 & if \ Ice \ Cream \end{cases}$$

- If You Eat a Hot Dog, $\hat{E} = 77.5 - 0.283(0) = 77.5$
- If You Eat Ice Cream, $\hat{E} = 77.5 - 0.283(1) = 77.217$
- P-value = 0.934 for the Parameter Estimated by 0.283 (Not Statistically Significant)

Example 1: Interpretation

Understanding This Visually

9

Regressing E on C

•
$$\hat{E} = 79.2 - 3.73C$$

Not Significant: P-value > 0.05

•
$$C = \begin{cases} 0 & if \ Chocolate \ Sauce \\ 1 & if \ Mustard \end{cases}$$

Regressing E on C + F

•
$$\hat{E} = 79.3 - 0.283F - 3.73C$$

•
$$F = \begin{cases} 0 & \text{if Hot Dog} \\ 1 & \text{if Ice Cream} \end{cases}$$

•
$$C = \begin{cases} 0 & if \ Chocolate \ Sauce \\ 1 & if \ Mustard \end{cases}$$

What does 79.3 Represent?

Obtaining Predicted Values

```
## Food Condiment fit lwr upr
## 1 Hot Dog Chocolate Sauce 79.32368 73.49373 85.15363
## 2 Hot Dog Mustard 75.59862 69.76867 81.42857
## 3 Ice Cream Chocolate Sauce 79.04103 73.21108 84.87098
## 4 Ice Cream Mustard 75.31598 69.48603 81.14593
```


Prediction Visualization

Interaction Effect

```
EvFC.Full.Model=lm(Enjoyment~Food+Condiment+Food*Condiment,data=CONDIMENT)
tidy (EvFC.Full.Model)
## # A tibble: 4 x 5
                               estimate std.error statistic p.value
                                  <dbl>
                                           <dbl>
                                                 <dbl>
                                                           <dbl>
## 1 (Intercept)
                               65.3
                                           1.12 58.3 7.18e-65
                            27.7 1.58 17.5 2.11e-28
## 2 FoodIce Cream
                            24.3 1.58 15.3 5.58e-25
## 3 CondimentMustard
                                  -56.0 2.24 -25.0 1.95e-38
## 4 FoodIce Cream:CondimentMustard
```

$$\hat{E} = 65.32 + 27.73F + 24.29C - 56.03FC$$

•
$$F = \begin{cases} 0 & if \ Hot \ Dog \\ 1 & if \ Ice \ Cream \end{cases}$$
• $C = \begin{cases} 0 & if \ Chocolate \ Sauce \\ 1 & if \ Mustard \end{cases}$
• $FC = \begin{cases} 0 & otherwise \\ 1 & if \ Ice \ Cream \ and \ Mustard \end{cases}$

Interaction Effect

$$\hat{E} = 65.32 + 27.73F + 24.29C - 56.03FC$$
•
$$F = \begin{cases} 0 & \text{if Hot Dog} \\ 1 & \text{if Ice Cream} \end{cases}$$
•
$$C = \begin{cases} 0 & \text{if Chocolate Sauce} \\ 1 & \text{if Mustard} \end{cases}$$
•
$$FC = \begin{cases} 0 & \text{otherwise} \\ 1 & \text{if Ice Cream and Mustard} \end{cases}$$

Hot dog with Chocolate = 65.32

Hot dog with Mustard= 65.32 + 24.29

Ice cream with Chocolate = 65.32 + 27.73

Ice cream with Mustard = 65.32 + 27.73 + 24.29 - 56.03

- Understanding This Visually
 - What Is Different?

Example 1: Summary

- Summary
 - Categorical Predictors
 - Purpose:
 - Generalize t-test
 - Estimate Difference in Means Between Groups

Example 2: Data

- Data Overview
 - Popular Built-in Data
 - Sepal.Width (W)
 - Sepal.Length (L)
 - Species (S)
 - 150 Observations

```
IRIS=iris[,c(1,2,5)]
names(IRIS)=c("L", "W", "S")
head (IRIS)
    5.1 3.5 setosa
     4.9 3.0 setosa
     4.7 3.2 setosa
     4.6 3.1 setosa
   5 5.0 3.6 setosa
## 6 5.4 3.9 setosa
```


Example 2: Question

Question of Interest

Can We Explain the Variation in Sepal Width Using Sepal Length and Species (setosa, versicolor, virginica)?

Multiple Models

```
model1=lm(W~L, IRIS)
tidy (model1)
## # A tibble: 2 x 5
                estimate std.error statistic p.value
     term
     <chr>
                    <dbl>
                              <dbl>
                                        <dbl>
                                                 <dbl>
                             0.254
## 1 (Intercept) 3.42
                                        13.5 1.55e-27
## 2 L
                  -0.0619
                             0.0430
                                        -1.44 1.52e- 1
```

$$\hat{E} = 3.42 - 0.06L$$

```
model2=lm(W~L+S,IRIS)
tidy (model2)
## # A tibble: 4 x 5
                estimate std.error statistic p.value
    term
     <chr>
                   <dbl>
                             <dbl>
                                       <dbl>
                                                <dbl>
## 1 (Intercept)
                   1.68
                            0.235
                                        7.12 4.46e-11
## 2 L
                   0.350
                          0.0463
                                      7.56 4.19e-12
## 3 Sversicolor -0.983
                                      -13.6 7.62e-28
                          0.0721
## 4 Svirginica
                  -1.01
                            0.0933
                                      -10.8 2.41e-20
```

Setosa: $\hat{E} = 1.68 + 0.35L$ Versicolor: $\hat{E} = 1.68 + 0.35L - 0.983$

/irainica: $\hat{F} = 1.60 + 0.55L + 0.76$

Virginica: $\hat{E} = 1.68 + 0.35L - 1.01$

Full Model Estimated

```
model3=lm(W\sim L+S+L*S, IRIS)
                       tidy (model3)
                    # A tibble: 6 x 5
                                     estimate std.error statistic
                                                                    p.value
                      term
                                                   <dbl>
                      <chr>
                                        <dbl>
                                                             <dbl>
                                                                       <dbl>
                                       -0.569
                                                  0.554
                                                             -1.03 3.06e- 1
                 ## 1 (Intercept)
Adjustment
                ## 2 L
                                                              7.23 2.55e-11
                                        0.799
                                                  0.110
In Mean
                   3 Sversicelor
                                                   0.713
                                                              2.02 4.51e- 2
                                        1.44
                                                                                 Adjustment
                    4 Svirginica
                                        2.02
                                                   0.686
                                                              2.94 3.85e- 3
                                                                                 In Slope
                                                              3.58 4.65e- 4
                    5 L:Sversicolor
                                       -0.479
                                                   0.134
                   6 L:Svirginica
                                       -0.567
                                                   0.126
                                                             -4.49 1.45e- 5
```

Setosa: $\hat{E} = 0.799L - 0.569$

Versicolor: $\hat{E} = (0.799 - 0.479)L + 1.44 - 0.569$

Virginica: $\hat{E} = (0.799 - 0.567)L + 2.02 - 0.569$

Example 2: Predictions

Gathering Predictions

150 Predictions for 3 Models

- Variable Named "model"
- Allows Us To Quickly Create Graphics That Compare Models

Example 2: Visualization

Visualizing Models

Example 2: Summary

- Summary
 - Numerical Response Variable
 - Categorical & Numerical Explanatory Variables

Example 3: Data

- Data Overview
 - Advertising Data
 - Sales
 - TV
 - Radio
 - 200 Observations

<pre>```{r, message=F} Ad = read_csv("Advertising.txt")[,c(2,3,5)] head(Ad) ```</pre>				
TV <dbl></dbl>	Radio <dbl></dbl>	Sales <dbl></dbl>		
230.1	37.8	22.1		
44.5	39.3	10.4		
17.2	45.9	9.3		
151.5	41.3	18.5		
180.8	10.8	12.9		
8.7	48.9	7.2		

Numbers in thousands

Example 3: Question

Question of Interest

Can We Explain the Variation in Sales Using TV and Radio advertising budget?

Example 3: Question

Example 3: Question

Model 1

```
model1=lm(Sales~TV+Radio,Ad)
tidy(model1)
## # A tibble: 3 x 5
               estimate std.error statistic p.value
    term
    <chr>
                <dbl>
                           <dbl>
                                    <dbl>
                                            <dbl>
  1 (Intercept) 2.92
                         0.294
                                    9.92 4.57e-19
                                    32.9 5.44e-82
             0.0458
                         0.00139
                         0.00804
## 3 Radio
                 0.188
                                    23.4 9.78e-59
```

Model1: $\hat{E} = 2.92 + 0.046TV + 0.188Radio$

Example 3: Model Selection

- AIC = $-2 \ln(\hat{L}) + 2p$
 - goodness of fit: $2 \ln(\hat{L})$
 - \hat{L} : the maximized value of the likelihood of the model
 - p: number of parameters in the model
- BIC = $-2\ln(\hat{L}) + p\ln(n)$
 - n: number of observations in the data


```
model2=lm(Sales~TV*Radio,Ad)
tidy(model2)
## # A tibble: 4 x 5
                estimate std.error statistic p.value
    term
    <chr>
                  <dbl>
                                      <dbl>
                                              <dbl>
                            <dbl>
  1 (Intercept) 6.75
                        0.248
                                      27.2 1.54e-68
                                                             Adjustment
             0.0191 0.00150
                                 12.7 2.36e-27
                                                             In Slope
  3 Radio
                 0.0289 0.00891
                                          1.4Ue- 3
                 0.00109 0.0000524
                                      20.7 2.76e-51
     TV:Radio
```

Model2: $\hat{E} = 6.75 + 0.019TV + 0.029Radio + 0.001TV \times Radio$

$$\hat{E} = 6.75 + (0.019 + 0.001Radio) \times TV + 0.029Radio$$

$$\hat{E} = 6.75 + 0.019TV + (0.029 + 0.001TV) \times Radio$$

Example 3: Predictions

Gathering Predictions

200 Predictions for 2 Models

Example 3: Visualization

Visualizing Prediction vs. True Value

Example 3: Summary

- Summary for Lectures on Categorical Predictor and Interactions
 - Numerical Response Variable
 - Categorical Predictor
 - Interaction between Two Categorical Predictors
 - Interaction between Two Categorical and Numerical Predictor
 - Interaction between Two Numerical Predictors