实验名称 光的等厚干涉现象与应用

一、预习

预习指导书,设牛顿环的第m级暗环半径为 r_m ,该处对应的空气隙厚度为d,凸透镜的 凸面曲率半径为R,空气隙折射率取m=1,推导出牛顿环的第m级暗环半径 r_m ,的表达式

$$r_{m} = \sqrt{m\lambda \left(R - \frac{m\lambda}{4}\right)}$$

如右围,推导地下:

$$\mathcal{K}\lambda \otimes \mathcal{K} = \sqrt{2R^{2} \frac{m\lambda}{2} - (\frac{m\lambda}{2})^{2}} = \sqrt{m\lambda(R - \frac{m\lambda}{4})}$$

二、原始数据记录

1.

牛顿环测透镜曲率半径数据记录

环的序数	m	31 36. 78 3	30 36.72 0	29 36,656	28 36.591	27 36, 521	26 36,451	25 36,3 80	24 36.310	23 36.23 8	22 36.164	21 36. oð 7
环的位置读数	左					1 '				rt. 820		•
/mm	右						, ,	'		18.622		,
		28.499	28.559	28,625	28.694	28.763	28,827	28.896	28.965	29.040	29. (0	29.(84
环的序数	n	20 36,0/0	19 3 5,9 3 5	18 35. 8 5 8	17 3s,772	16 کھ ا۔عد	15 3r, 600	14 35.506	13 35, 4(0	12 35.315	11 35, یار	10 35. 102
环的位置读数	左									24.888		
/mm	右			,			_			19.550		,
2.	λ = 5	29.268 89.3 nn	29.34S r			29.600	29.686 	29.779; docm	9.870 d=	29.969 Lh 2 D B	30.070	30.173 確心登

测量次数	第 <i>i</i> 条干涉条纹位置 <i>x</i> ₁ (mm)	第 (i+10) 条干涉条纹位置 x ₂ (mm)
1	21.179	29.358
2	21.702	29.851
3	22, 165	34.294
4	21.479	29.613
5	21.870	2 9 . 02/

21.515 29.682

教师 姓名 签字 是 3

三、数据处理

用逐差法求 D_m^2 - D_n^2 的平均值; 计算曲率半径 R 的平均值及不确定度; 计算磁带的厚度, 要有完整的计算过程。

解: (一) 牛顿环实验:

 D_m^2 的计算如下:

环的序数	m	31	30	29	28	27
环的位置读数	左	26.363	26.298	26.237	26.168	26.099
/mm	右	18.075	18.138	18.202	18.269	18.338
环的直径 D _m /mm		8.288	8.160	8.035	7.899	7.761
D_m^2		68.69	66.59	64.56	62.39	60.23

环的序数	m	26	25	24	23	22	21
环的位置读数	左	26.032	25.961	25.891	25.820	25.745	25.670
/mm	右	18.417	18.480	18.552	18.622	18.698	18.777
环的直径 D _m /mm		7.615	7.481	7.339	7.198	7.047	6.893
D_m^2		57.99	55.97	53.86	51.81	49.66	47.51

 D_n^2 的计算如下:

环的序数	n	20	19	18	17	16
环的位置读数	左	25.590	25.510	25.430	25.345	25.257
/mm	右	18.860	18.932	19.007	19.095	19.178
环的直径 D _n /mm		6.730	6.578	6.423	6.250	6.079
D_n^2		45.29	43.27	41.25	39.06	36.95

环的序数	n	15	14	13	12	11	10
环的位置读数	左	25.170	25.079	24.987	24.888	24.785	24.673
/mm	右	19.263	19.355	19.440	19.550	19.648	19.769
环的直径 D _n /mm		5.907	5.724	5.547	5.338	5.137	4.904
D_n^2		34.89	32.76	30.77	28.49	26.39	24.05

 D_m^2 - D_n^2 的计算如下:

环的序数	m	31	30	29	28	27
	n	20	19	18	17	16
D_m^2 - D_n^2		23.40	23.32	23.31	23.33	23.28

环的序数	m	26	25	24	23	22	21
	n	15	14	13	12	11	10
D_m^2 - D_n^2		23.10	23.20	23.09	23.32	23.27	23.46

根据逐差法,得
$$\overline{D_m^2 - D_n^2} = \frac{1}{11} \sum_{n=10}^{20} (D_{n+11}^2 - D_n^2) = 23.28 \text{mm}^2$$
。

曲率半径
$$\overline{R} = \frac{\overline{D_m^2 - D_n^2}}{4(m-n)\lambda} = \frac{23.28 \text{mm}^2}{44 \times 589.3 \text{nm}} = 897.8 \text{mm}$$
。

下面计算不确定度。

$$U_{\overline{D_m^2 - D_n^2}} = \sqrt{S_{\overline{D_m^2 - D_n^2}}^2 + u^2} \simeq S_{\overline{D_m^2 - D_n^2}} = \sqrt{\frac{1}{11 \times 10} \sum_{i=1}^{11} [(D_m^2 - D_n^2)_i - (\overline{D_m^2 - D_n^2})]^2}$$

环的序数	m	31	30	29	28	27	26
	n	20	19	18	17	16	15
$(D_m^2 - D_n^2)_i - (\overline{D_m^2 - D_n^2})$		0.12	0.04	0.03	0.05	0.00	-0.18
$[(D_m^2 - D_n^2)_i - (\overline{D_m^2 - D_n^2})]$	2	0.01440	0.001600	0.0009000	0.002500	0.00	0.03240

环的序数	序数 m		24	23	22	21
	n	14	13	12	11	10
$(D_m^2 - D_n^2)_i - (\overline{D_m^2 - D_n^2})$		-0.08	-0.19	0.04	-0.01	0.18
$[(D_m^2 - D_n^2)_i - (\overline{D_m^2 - D_n^2})]^2$		0.006400	0.03610	0.001600	0.0001000	0.03240

此处所有的平方结果都保留四位有效数字。

代入计算得
$$U_{\frac{D_m^2-D_n^2}{D_m^2-D_n^2}}=0.03416$$
mm²。

不确定度
$$U_{\overline{R}} = \frac{U_{\overline{D_m^2 - D_n^2}}}{4(m-n)\lambda} = \frac{0.03416}{44 \times 589.3} \,\text{mm} = 1.317 \,\text{mm}$$
。

相对误差
$$E = \frac{U_{\overline{R}}}{\overline{R}} \times 100\% = \frac{1.317}{897.8} \times 100\% = 0.1467\%$$
。

(二)测量磁带厚度实验

劈棱到磁带端的总长 \bar{L} = 3.90cm = 39.0mm

10个条纹间距及其平均值如下: (共测了6组数据)

实验次数/次	1	2	3	4	5	6
x ₁ /mm	21.179	21.702	22.165	21.479	20.870	21.515
x ₂ /mm	29.358	29.851	30.294	29.613	29.021	29.682
l/mm	8.179	8.149	8.129	8.134	8.151	8.167

$$\overline{l}=8.152\mathrm{mm}$$
,则单位长度干涉条纹条数为 $\frac{10}{\overline{l}}=1.227\mathrm{mm}^{-1}$,

磁带厚度
$$d = \frac{h\overline{L}\lambda}{2} = \frac{1.227 \times 39.0 \times 589.3}{2}$$
 nm = 14.10 μ m

四、实验结论及现象分析

根据逐差法,得
$$\overline{D_m^2 - D_n^2} = \frac{1}{11} \sum_{n=10}^{20} (D_{n+11}^2 - D_n^2) = 23.28 \text{mm}^2$$
。

曲率半径
$$\overline{R} = \frac{\overline{D_m^2 - D_n^2}}{4(m-n)\lambda} = \frac{23.28 \text{mm}^2}{44 \times 589.3 \text{nm}} = 897.8 \text{mm}$$
。

不确定度
$$U_{\overline{R}} = \frac{U_{\overline{D_m^2 - D_n^2}}}{4(m-n)\lambda} = \frac{0.03416}{44 \times 5893} \text{ mm} = 1.317 \text{ mm}$$
。

相对误差
$$E = \frac{U_{\overline{R}}}{\overline{R}} \times 100\% = \frac{1.317}{897.8} \times 100\% = 0.1467\%$$
。

磁带厚度
$$d = \frac{h\overline{L}\lambda}{2} = \frac{1.227 \times 39.0 \times 589.3}{2}$$
 nm = 14.10 μ m 。

五、讨论题

- 1. 理论上牛顿环中心是个暗点,实际上看到的往往是个忽明忽暗的班,其原因是什么?对透镜曲率半径R测量有无影响?
- 2. 实验中,若平板玻璃上有微小的凸起,则凸起处的干涉条纹会发生如何变化?
- 答: 1. 因为牛顿环装置的平凸透镜和底板玻璃接触时,由于接触压力引起形变,使接触处并非一个点而是一圆面;装置也不可能完全密封(可能有微尘进入),引入附加光程差。所以牛顿环中心的光程差不一定对应 $\frac{\lambda}{2}$,可能略大或略小,当它恰好等于半波长偶数倍的时候,此处就出现亮条纹了。

对透镜的曲率半径测量无影响。因为在我们的数据处理中,已经去除了实验装置圆心处附加厚度的影响。推导如下: (图见实验报告第1页预习题)

假定该实验装置圆心处附加厚度为a,则图中第k级条纹对应空气层的厚度为 d_k +a。形成暗纹的条件为: $\Delta = 2(d_k + a) + \lambda/2 = (2k + 1)\lambda/2, k = 0,1,2,\cdots$,得 $d_k + a = k\lambda/2, k = 0,1,2,\cdots$

由勾股定理仍有 $R^2=(R-d_k)^2+r_k^2$,因此仍有 $2Rd_k-d_k^2=r_k^2$,式中第二项很小,可以忽略,再将上式代入,得到 $r_k^2=2R(k\lambda/2-a)=Rk\lambda-2Ra$ 。

取 k=m 、 k=n ,将 r_n^2 和减得 $r_n^2-r_n^2=(m-n)R\lambda$,得不含a的表达式 $R=\frac{r_m^2-r_n^2}{(m-n)\lambda}$,或者本

次实验中使用的 $R = \frac{D_m^2 - D_n^2}{4(m-n)\lambda}$ 。可见,R的表达式与a无关,所以对透镜曲率半径R测量无影响。

2. 凸起处的干涉条纹会向外(背离劈尖方向)弯曲。