

SLCS006O-OCTOBER 1979-REVISED MAY 2009

QUAD DIFFERENTIAL COMPARATORS

FEATURES

- Single Supply or Dual Supplies
- Wide Range of Supply Voltage
 - Max Rating: 2 V to 36 V
 - Tested to 30 V: Non-V Devices
 - Tested to 32 V: V-Suffix Devices
- Low Supply-Current Drain Independent of Supply Voltage: 0.8 mA (Typ)
- Low Input Bias Current: 25 nA (Typ)

LM139, LM139A... D, J, OR W PACKAGE
LM239... D, N, OR PW PACKAGE
LM239A... D PACKAGE
LM339, LM339A... D, DB, N, NS, OR PW PACKAGE
LM2901... D, N, NS, OR PW PACKAGE
(TOP VIEW)

- Low Input Offset Current: 3 nA (Typ) (LM139)
- Low Input Offset Voltage: 2 mV (Typ)
- Common-Mode Input Voltage Range Includes Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage: ±36 V
- Low Output Saturation Voltage
- Output Compatible With TTL, MOS, and CMOS

NC - No inter nal connection

DESCRIPTION/ORDERING INFORMATION

These devices consist of four independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies also is possible, as long as the difference between the two supplies is 2 V to 36 V, and V_{CC} is at least 1.5 V more positive than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

The LM139 and LM139A are characterized for operation over the full military temperature range of -55°C to 125°C. The LM239 and LM239A are characterized for operation from -25°C to 125°C. The LM339 and LM339A are characterized for operation from 0°C to 70°C. The LM2901, LM2901AV, and LM2901V are characterized for operation from -40°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

www.ti.com

ORDERING INFORMATION(1)

T _A	V _{IO} max AT 25°C	MAX V _{CC}	PACI	KAGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
			PDIP – N	Tube of 25	LM339N	LM339N
			SOIC D	Tube of 50	LM339D	LMaao
			SOIC – D	Reel of 2500 LM339DR		LM339
	5 mV	30 V	SOP - NS	Reel of 2000	LM339NSR	LM339
			SSOP - DB	Reel of 2000	LM339DBR	LM339
			TOOOD DW	Tube of 90	LM339PW	1,000
000 1 7000			TSSOP – PW	Reel of 2000	LM339PWR	L339
0°C to 70°C			PDIP – N	Tube of 25	LM339AN	LM339AN
			2010 P	Tube of 50	LM339AD	1.1.1000.1
			SOIC – D	Reel of 2500	LM339ADR	LM339A
	2 mV	30 V	SOP - NS	Reel of 2000	LM339ANSR	LM339A
			SSOP – DB	Reel of 2000	LM339ADBR	L339A
				Tube of 90	LM339APW	
			TSSOP – PW	Reel of 2000	LM339APWR	L339A
			PDIP – N	Tube of 25	LM239N	LM239N
				Tube of 50	LM239D	
	5 mV	30 V	SOIC – D	Reel of 2500	LM239DR	LM239
-25°C to 85°C				Tube of 90	LM239PW	
23 0 10 03 0			TSSOP – PW	Reel of 2000	LM239PWR	L239
				Tube of 50	LM239AD	
	2 mV	30 V	SOIC – D	Reel of 2500	LM239ADR	LM239A
			PDIP – N	Tube of 25	LM2901N	LM2901N
				Tube of 50	LM2901D	
			SOIC – D	Reel of 2500	LM2901DR	LM2901
	7 mV	30 V	SOP - NS	Reel of 2000	LM2901NSR	LM2901
				Tube of 90	LM2901PW	
-40°C to 125°C			TSSOP – PW	Reel of 2000	LM2901PWR	L2901
			SOIC - D	Reel of 2500	LM2901VQDR	L2901V
	7 mV	32 V	TSSOP – PW	Reel of 2000	LM2901VQPWR	L2901V
			SOIC - D	Reel of 2500	LM2901AVQDR	L2901AV
	2 mV	32 V	TSSOP – PW	Reel of 2000	LM2901AVQPWR	L2901AV
			CFP – W	Tube of 25	LM139W	LM139W
			CDIP – J	Tube of 25	LM139J	LM139J
	5 mV	30 V	LCCC – FK	Tube of 55	LM139FK	LM139FK
				Tube of 50	LM139D	
			SOIC – D	Reel of 2500	LM139DR	LM139D
-55°C to 125°C			CFP – W	Tube of 25	LM139AW	LM139AW
55°C to 125°C			CDIP – J	Tube of 25	LM139AJ	LM139AJ
	2 mV	30 V	LCCC – FK	Tube of 55	LM139AFK	LM139AFK
				Tube of 50	LM139AD	
			SOIC - D	Reel of 2500	LM139ADR	LM139AD

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

⁽²⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

SYMBOL (EACH COMPARATOR)

SCHEMATIC (EACH COMPARATOR)

All current values shown are nominal.

SLCS006O-OCTOBER 1979-REVISED MAY 2009

www.ti.com

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage ⁽²⁾			36	V
V_{ID}	Differential input voltage (3)			±36	V
V_{I}	Input voltage range (either input)		-0.3	36	٧
Vo	Output voltage			36	V
Io	Output current			20	mA
	Duration of output short circuit to ground ⁽⁴⁾		Uı	nlimited	 -
		D package		86	
		DB package		96	 -
θ_{JA}	Package thermal impedance, junction to free air (5) (6)	N package		80	°C/W
		NS package		76	 -
		PW package		113	 -
		FK package		5.61	
θ_{JC}	Package thermal impedance, junction to case (7)(8)	J package		15.05	°C/W
		W package		14.65	
T_{J}	Operating virtual-junction temperature			150	°C
	Case temperature for 60 s	FK package		260	ô
	Lead temperature 1,6 mm (1/16 in) from case for 60 s	J package		300	°C
T _{stg}	Storage temperature range	<u>-</u>	-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- All voltage values, except differential voltages, are with respect to network ground.
- Differential voltages are at IN+ with respect to IN-.
- Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
- Maximum power dissipation is a function of T_J (max), θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J \text{ (max)} - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7.
- Maximum power dissipation is a function of T_J (max), θ_{JC} , and T_C . The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_J (max) - T_C)/\theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- The package thermal impedance is calculated in accordance with MIL-STD-883.

ELECTRICAL CHARACTERISTICS

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CON	NDITIONS ⁽¹⁾	T _A ⁽²⁾	LM	139		LM1	39A		UNIT
	PARAMETER	IESI CON	NUTTONS	'A''	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		$V_{CC} = 5 \text{ V to}$		25°C		2	5		1	2	.,
V _{IO}	Input offset voltage	$V_{IC} = V_{ICR} m$ $V_{O} = 1.4 V$					9			4	mV
	Input offset current	V _O = 1.4 V		25°C		3	25		3	25	nA
I _{IO}	input onset current	V _O = 1.4 V		Full range			100			100	IIA
	Input bias current	V _O = 1.4 V		25°C		-25	-100		-25	-100	nA
I _{IB}	input bias current	V _O = 1.4 V		Full range			-300			-300	IIA
\/	Common-mode			25°C	0 to V _{CC} - 1.5			0 to V _{CC} - 1.5			V
V _{ICR}	input-voltage range ⁽³⁾		1		0 to V _{CC} - 2			0 to V _{CC} - 2			V
A _{VD}	Large-signal differential-voltage amplification	$V_{CC+} = \pm 7.5$ $V_{O} = -5 \text{ V to}$		25°C		200		50	200		V/mV
	High lovel output ourrent	V 4.V	V _{OH} = 5 V	25°C		0.1			0.1		nA
I _{OH}	High-level output current	$V_{ID} = 1 V$	V _{OH} = 30 V	Full range			1			1	μΑ
\/	Low lovel output voltage	V 4 V	1 1	25°C		150	400		150	400	mV
V _{OL}	Low-level output voltage	$V_{ID} = -1 V$,	I _{OL} = 4 IIIA	Full range			700			700	IIIV
I _{OL}	Low-level output current	$V_{ID} = -1 V$,	V _{OL} = 1.5 V	25°C	6	16		6	16		mA
I _{CC}	Supply current (four comparators)	V _O = 2.5 V,	No load	25°C		0.8	2		0.8	2	mA

- (1) All characteristics are measured with zero common-mode input voltage, unless otherwise specified.
- (2) Full range (MIN to MAX) for LM139 and LM139A is –55°C to 125°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.
- (3) The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC+} 1.5 V; however, one input can exceed V_{CC}, and the comparator will provide a proper output state as long as the other input remains in the common-mode range. Either or both inputs can go to 30 V without damage.

SWITCHING CHARACTERISTICS

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

PARAMETER	TEST COM	NDITIONS	LM139 LM139A TYP	UNIT
Doonanaa tima	R_L connected to 5 V through 5.1 k Ω , $C_L = 15 \text{ pF}^{(1)(2)}$	100-mV input step with 5-mV overdrive	1.3	
Response time	$C_L = 15 pF^{(1)(2)}$	TTL-level input step	0.3	μs

C_L includes probe and jig capacitance.

(2) The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

ELECTRICAL CHARACTERISTICS

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS ⁽¹⁾	T _A ⁽²⁾		239 339			39A 39A		UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
		$V_{CC} = 5 \text{ V to } 30$		25°C		2	5		1	3	
V _{IO}	Input offset voltage	$V_{IC} = V_{ICR} min$ $V_{O} = 1.4 V$,	Full range			9			4	mV
L	Input offset current	V _O = 1.4 V		25°C		5	50		5	50	nA
I _{IO}	input onset current	V _O = 1.4 V		Full range			150			150	IIA
	Input bias current	V _O = 1.4 V		25°C		-25	-250		-25	-250	nA
I _{IB}	input bias current	V _O = 1.4 V		Full range			-400			-400	ПА
.,	Common-mode			25°C	0 to V _{CC} - 1.5			$V_{\rm CC} - 1.5$			V
V _{ICR}	input-voltage range ⁽³⁾			Full range	0 to V _{CC} - 2			0 to V _{CC} - 2			V
A _{VD}	Large-signal differential-voltage amplification	$V_{CC} = 15 \text{ V},$ $V_{O} = 1.4 \text{ V to } 1$ $R_{L} \ge 15 \text{ k}\Omega \text{ to } 1$	1.4 V, V _{CC}	25°C	50	200		50	200		V/mV
	High-level output current	V - 1 V	V _{OH} = 5 V	25°C		0.1	50		0.1	50	nA
I _{OH}	nign-level output current	$V_{ID} = 1 V$	$V_{OH} = 30 \text{ V}$	Full range			1			1	μΑ
\/	Low lovel output voltege	V 1 V	I 4 m ^	25°C		150	400		150	400	mV
V _{OL}	Low-level output voltage	$V_{ID} = -1 V$,	$I_{OL} = 4 \text{ mA}$	Full range			700			700	IIIV
I _{OL}	Low-level output current	$V_{ID} = -1 V$,	V _{OL} = 1.5 V	25°C	6	16		6	16		mA
I _{CC}	Supply current (four comparators)	V _O = 2.5 V,	No load	25°C		0.8	2		0.8	2	mA

- (1) All characteristics are measured with zero common-mode input voltage, unless otherwise specified.
- (2) Full range (MIN to MAX) for LM239/LM239A is -25°C to 85°C, and for LM339/LM339A is 0°C to 70°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.
- (3) The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC+} 1.5 V; however, one input can exceed V_{CC}, and the comparator will provide a proper output state as long as the other input remains in the common-mode range. Either or both inputs can go to 30 V without damage.

SWITCHING CHARACTERISTICS

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

PARAMETER	TEST CON	DITIONS	LM239 LM239A LM339 LM339A	UNIT
			TYP	
Pagagonag tima	R_L connected to 5 V through 5.1 kΩ, $C_L = 15 \text{ pF}^{(1)(2)}$	100-mV input step with 5-mV overdrive	1.3	
Response time	$C_L = 15 \text{ pF}^{(1)(2)}$	TTL-level input step	0.3	μs

⁽¹⁾ C_L includes probe and jig capacitance.

(2) The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

ELECTRICAL CHARACTERISTICS

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	DADAMETED	TEST CONI	OUTLONIC(1)	T (2)	LM	2901		UNIT
	PARAMETER	TEST CONL	DITIONS	T _A ⁽²⁾	MIN	TYP	MAX	UNII
			Non A devices	25°C		2	7	
.,	land offert values	$V_{IC} = V_{ICR} \min$	Non-A devices	Full range			15	\/
V _{IO}	Input offset voltage	$V_O = 1.4 \text{ V},$ $V_{CC} = 5 \text{ V to MAX}^{(3)}$	A-suffix devices	25°C		1	2	mV
			A-sumx devices	Full range			4	
	land effect compat	\/ 4.4\/				5	50	A
I _{IO}	Input offset current	V _O = 1.4 V		Full range			200	nA
	land him admin	\/ 4.4\/		25°C		-25	-250	A
I _{IB}	Input bias current	V _O = 1.4 V	V _O = 1.4 V				-500	nA
V	Common-mode			25°C	0 to V _{CC} - 1.5			V
V _{ICR}	input-voltage range (4)							V
A _{VD}	Large-signal differential-voltage amplification	$V_{CC} = 15 \text{ V}, V_{O} = 1.4 \text{ V}$ $R_{L} \ge 15 \text{ k}\Omega \text{ to } V_{CC}$	to 11.4 V,	25°C	25	100		V/mV
	High-level output current	\/ 4.\/	V _{OH} = 5 V	25°C		0.1	50	nA
I _{OH}	nign-ievei output current	V _{ID} = 1 V	$V_{OH} = V_{CC} MAX^{(3)}$	Full range			1	μΑ
			Non-V devices	25°C		150	500	
V_{OL}	Low-level output voltage	$V_{ID} = -1 V$, $I_{OI} = 4 \text{ mA}$	V-suffix devices	20 0		150	400	mV
		.OL - 111111	All devices	Full range			700	
I _{OL}	Low-level output current	V _{ID} = −1 V,	V _{OL} = 1.5 V	25°C	6	16		mA
	Supply current	V _O = 2.5 V,	V _{CC} = 5 V	25°C		0.8	2	mA
I _{CC}	(four comparators)	No load	$V_{CC} = MAX^{(3)}$	25 0		1	2.5	ША

⁽¹⁾ All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

SWITCHING CHARACTERISTICS

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

PARAMETER	TEST CON	LM2901	UNIT	
FARAMETER	TEST CON	DITIONS	TYP	ONIT
Decrease time	R_L connected to 5 V through 5.1 k Ω ,	100-mV input step with 5-mV overdrive	1.3	
Response time	R_L connected to 5 V through 5.1 k Ω , C_L = 15 pF ⁽¹⁾⁽²⁾	TTL-level input step	0.3	μs

⁽¹⁾ C_L includes probe and jig capacitance.

⁽²⁾ Full range (MIN to MAX) for LM2901 is -40°C to 125°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

⁽³⁾ V_{CC} MAX = 30 V for non-V devices, and 32 V for V-suffix devices

⁽⁴⁾ The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC+} – 1.5 V; however, one input can exceed V_{CC}, and the comparator will provide a proper output state as long as the other input remains in the common-mode range. Either or both inputs can go to V_{CC} MAX without damage.

⁽²⁾ The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

TYPICAL CHARACTERISTICS

OUTPUT SATURATION VOLTAGE

TYPICAL CHARACTERISTICS (continued)

RESPONSE TIME FOR VARIOUS OVERDRIVES NEGATIVE TRANSITION

RESPONSE TIME FOR VARIOUS OVERDRIVES POSITIVE TRANSITION

www.ti.com 4-May-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-7700801VCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
5962-87739012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-8773901CA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
5962-8773901DA	ACTIVE	CFP	W	14	1	TBD	A42 SNPB	N / A for Pkg Type
77008012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
7700801CA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
7700801DA	ACTIVE	CFP	W	14	1	TBD	A42 SNPB	N / A for Pkg Type
JM38510/11201BCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
LM139AD	ACTIVE	SOIC	D	14	50	TBD	CU NIPDAU	Level-3-245C-168 HR
LM139ADG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM139ADR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
LM139ADRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM139AFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
LM139AJ	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
LM139AJB	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
LM139AN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
LM139AW	ACTIVE	CFP	W	14	1	TBD	A42 SNPB	N / A for Pkg Type
LM139AWB	ACTIVE	CFP	W	14	1	TBD	A42 SNPB	N / A for Pkg Type
LM139D	ACTIVE	SOIC	D	14	50	TBD	CU NIPDAU	Level-1-220C-UNLIM
LM139DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM139DR	ACTIVE	SOIC	D	14	2500	TBD	CU NIPDAU	Level-1-220C-UNLIM
LM139DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM139FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
LM139FKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
LM139J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
LM139JB	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
LM139N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
LM139W	ACTIVE	CFP	W	14	1	TBD	A42 SNPB	N / A for Pkg Type
LM139WB	ACTIVE	CFP	W	14	1	TBD	A42 SNPB	N / A for Pkg Type
LM239AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239ADG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239ADRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
						no Sb/Br)		
LM239AN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
LM239D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM239NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM239PW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239PWE4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239PWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239PWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239PWRE4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM239PWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901AVQDR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEA Level-1-235C-UNLIM
LM2901AVQDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901AVQPWR	ACTIVE	TSSOP	PW	14	2000	TBD	CU NIPDAU	Level-1-250C-UNLIM
LM2901AVQPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
LM2901DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (3)
LM2901NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM2901NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901PW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901PWE4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901PWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901PWLE	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI
LM2901PWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901PWRE4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901PWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901QD	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI
LM2901QN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
LM2901VQDR	ACTIVE	SOIC	D	14	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEA Level-1-235C-UNLIM
LM2901VQDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2901VQPWR	ACTIVE	TSSOP	PW	14	2000	TBD	CU NIPDAU	Level-1-250C-UNLIM
LM2901VQPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339ADBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339ADBRG4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339ADG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339ADRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339AN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM339ANE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM339ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
						no Sb/Br)		
LM339ANSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339APW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339APWE4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339APWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339APWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339APWRE4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339APWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339DBLE	OBSOLETE	SSOP	DB	14		TBD	Call TI	Call TI
LM339DBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339DBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339DBRG4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM339NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM339NSLE	OBSOLETE	SO	NS	14		TBD	Call TI	Call TI
LM339NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339PW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339PWE4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339PWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339PWLE	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI
LM339PWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

www.ti.com 4-May-2009

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
						no Sb/Br)		
LM339PWRE4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339PWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM339Y	OBSOLETE			0		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM139, LM139-SP, LM239A, LM2901, LM2901AV, LM2901V:

Automotive: LM239A-Q1, LM2901-Q1, LM2901AV-Q1, LM2901V-Q1

Enhanced Product: LM239A-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 4-May-2009

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM239ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LM239ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LM239DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LM239DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LM239PWR	TSSOP	PW	14	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
LM2901DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LM2901DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LM2901NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
LM2901PWR	TSSOP	PW	14	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
LM339ADBR	SSOP	DB	14	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
LM339ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LM339ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LM339ANSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
LM339APWR	TSSOP	PW	14	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
LM339DBR	SSOP	DB	14	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
LM339DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LM339DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
LM339NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

Device		Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM339PWR	TSSOP	PW	14	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM239ADR	SOIC	D	14	2500	333.2	345.9	28.6
LM239ADR	SOIC	D	14	2500	346.0	346.0	33.0
LM239DR	SOIC	D	14	2500	346.0	346.0	33.0
LM239DR	SOIC	D	14	2500	333.2	345.9	28.6
LM239PWR	TSSOP	PW	14	2000	346.0	346.0	29.0
LM2901DR	SOIC	D	14	2500	333.2	345.9	28.6
LM2901DR	SOIC	D	14	2500	346.0	346.0	33.0
LM2901NSR	SO	NS	14	2000	346.0	346.0	33.0
LM2901PWR	TSSOP	PW	14	2000	346.0	346.0	29.0
LM339ADBR	SSOP	DB	14	2000	346.0	346.0	33.0
LM339ADR	SOIC	D	14	2500	346.0	346.0	33.0
LM339ADR	SOIC	D	14	2500	333.2	345.9	28.6
LM339ANSR	SO	NS	14	2000	346.0	346.0	33.0
LM339APWR	TSSOP	PW	14	2000	346.0	346.0	29.0
LM339DBR	SSOP	DB	14	2000	346.0	346.0	33.0
LM339DR	SOIC	D	14	2500	333.2	345.9	28.6

PACKAGE MATERIALS INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM339DR	SOIC	D	14	2500	346.0	346.0	33.0
LM339NSR	SO	NS	14	2000	346.0	346.0	33.0
LM339PWR	TSSOP	PW	14	2000	346.0	346.0	29.0

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AB.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated