Rappel

L'analyse Combinatoire.

L'analyse combinatoire comprend l'ensemble de méthodes qui permettent de déterminer le nombre de tous les résultats possibles d'une expérience, c –à –d, déterminer le nombre d'éléments d'un ensemble.

1. Arrangements (sans répétition).

<u>Définition 1</u> Un *arrangement* p à p de n éléments est un ensemble <u>ordonné</u> de p éléments. Le nombre des arrangements distincts p à p de n éléments est donné par

$$A_n^p = n(n-1)...(n-p+1) = \frac{n!}{(n-p)!}.$$

2. Arrangements avec répétition.

<u>Définition 2</u> Un *arrangement avec répétition* p à p de n éléments est un arrangement où chaque élément peut être répété jusqu'à p fois. Le nombre total de tels arrangements est donc égale à n^p .

Remarques.

- 1- Mathématiquement, A_n^p est le nombre d'injections d'un ensemble E contenant p éléments vers un ensemble F contenant n éléments.
- 2- n^p est le nombre de fonctions d'un ensemble E contenant p éléments vers un ensemble F contenant n éléments.

3. Permutations (sans répétition).

Si on prend p=n, on obtient un cas particulier des arrangements, appelés *permutations*.

<u>Définition 3</u> Une permutation de n éléments est un ensemble ordonné de ces n éléments. Le nombre de permutations est donc égale à $A_n^n = n!$.

Remarque. Mathématiquement, n! est le nombre de bijections d'uns ensemble E dans E, tel que Card E = n.

4. Permutations avec répétition.

<u>Définition 4.</u> On considère n objets, parmi les quels r_1 sont semblables entre eux, r_2 sont semblables entre eux, . . . , r_k sont semblables entre eux, avec $r_1 + r_2 + \ldots + r_k \le n$. On appelle *permutation avec répétition* (r_1, r_2, \ldots, r_k) de n objets, toutes partitions de ces n objets entre objets entre k parties tel que la $i^{\text{ème}}$ partie ait r_i éléments $i = \overline{1, k}$. Le nombre total de ces permutation est

$$P_n(r_1, r_2, \ldots, r_k) = \frac{n!}{r_1! r_2! \ldots r_k!}.$$

5. Combinaison.

<u>Définition 5.</u> On appelle *combinaison* p à p des n éléments $(n \le p)$ d'un ensemble E, tout sous ensemble ayant p éléments. Le nombre des ces combinaisons noté par C_n^p est donnée par

$$C_n^p = \frac{A_n^p}{A_p^p} = \frac{n!}{p!(n-p)!}.$$

5.1. Propriétés des combinaisons.

1-
$$\forall n \ge 1$$
, $C_n^0 = C_n^n = 1$ et $C_n^1 = C_n^{n-1} = n$.

2-
$$\forall n \geq 0, \forall 0 \leq p \leq n, C_n^p = C_n^{n-p}$$
.

3-
$$\forall n \ge 0, \forall 1 \le p \le n-1, C_n^p = C_{n-1}^{p-1} + C_{n-1}^p$$

5.2. Triangle de Pascal.

La propriété 3 nous permet de construire le triangle de Pascal suivant

	0	1	2	3	4	
0	1					
1	1	1				
2	1	2	1			
3	1	3	3	1		
4	1	4	6	4	1	

5.3. Théorème du binôme de Newton

Soient un entier non nulle n et deux réels a et b. Alors, on a $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$..

2

Remarques.

$$1- 2^n = \sum_{k=0}^n C_n^k .$$

2-
$$0 = \sum_{k=0}^{n} (-1)^k C_n^k$$
.