1. Системи числення

1.1 Що таке система числення і які бувають системи числення

Системою числення називають сукупність прийомів запису чисел. Розрізнюють позиційні і непозиційні системи числення.

Непозиційні системи числення

Прикладом непозиційної системи числення ϵ так звані римські цифри. У цій системі смисл кожного символу не залежить від місця, на якому він стоїть. Так запис LXXX познача ϵ число 80. Символ X ма ϵ значення 10 незалежно від його місця у запису.

Позиційні системи числення

У позиційній системі числення значення цифри в зображенні числа залежить від її положення (позиції) у послідовності цифр, що зображують число. Наприклад, запис

5237

у позиційній системі числення означає, що це число містить 7 одиниць, 3 десятки, 2 сотні і 5 тисяч, тобто 5237 - це скорочене позначення виразу

$$5 \times 10^{3} + 2 \times 10^{2} + 3 \times 10^{1} + 7 \times 10^{0}$$

Число 10, що присутнє у кожному доданкові, називають *основою* системи числення, а саму систему *десятковою* системою числення. Зверніть увагу, що для запису числа в десятковій системі ми використовуємо рівно десять цифр, які називають *алфавітом* системи числення

Цифра (символ), що позначає основу, тобто у даному разі число «десять», відсутня. За принципом позиційної системи це число позначається одиницею в наступній позиції. Для того, щоб підкреслити, що число задане саме у десятковій системі пишуть (5237)₁₀.

Ми користуємось десятковою системою з цілком зрозумілих причин - на руках у людини десять пальців. Ми звикли до неї, і ніколи свідомо не підкреслюємо значення основи. Але немає ніяких перешкод побудувати систему числення, якщо за основу взяти будь-яке інше натуральне число. Візьмемо, наприклад, за основу позиційної системи число 7, тоді запис (123)₇ буде означати вираз

$$1 \times 7^{2} + 2 \times 7^{1} + 3 \times 7^{0}$$

Якщо виконати арифметичні дії, то отримаємо число 49 + 14 + 3 = 66. Тобто

$$(123)_7 = (66)_{10}.$$

Нагадаємо, що у сімковій системі для запису чисел використовуються тільки 7 цифр: 0,1,2,3,4,5,6 і наступні числа у цій системі будуть позначатися таким чином: 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 30 ... і т.д.

Зверніть увагу, що в будь-якій системі число рівне основі має вигляд 10, тому множення (ділення) на основу зводиться до перенесення коми, яка розділяє цілу і дробову частину на одну позицію праворуч (ліворуч):

(12)
$$7 \times (7)$$
 $10 = (12)$ $7 \times (10)$ $7 = (120)$ 7 .

3 числами у сімковій системі числення всі арифметичні операції виконуються за тими ж правилами, що і в десятковій системі.

Основа системи може бути більшою за 10. У світі широко вживаною до певного часу була дванадцяткова система числення (12 фаланг пальців на руці!). Залишки її зберігаються ще подекуди у грошових одиницях, у мірах довжини (1 фут дорівнює 12 дюймам). У стародавньому Вавилоні вживалася досить складна система з основою 60. Від неї ми зараз маємо поділення години на 60 хвилин, хвилини на 60 секунд, центрального кута кола на 360 градусів.

1.2 Системи числення і комп'ютери

2.1 Шістнадцяткова система числення

В комп'ютерних технологіях широко використовується шістнадцяткова система числення. Певна річ, що треба мати 16 символів для позначення цифр. Перші десять цифр можна запозичити з десяткової системи числення, а що до решти, то їх домовилися позначати великими латинськими літерами:

Таким чином запис (2CF) ₁₆ буде означати вираз

$$2 \times 16^{2} + 12 \times 16^{1} + 15 \times 16^{0} = (944)_{10}.$$

Двійкова і вісімкова системи числення

Окрім шістнадцяткової системи в комп'ютерних технологіях використовуються двійкова, а також вісімкова системи числення, які як і шістнадцяткова система мають основою степені двійки.

Алфавіт двійкової системи складається з двох цифр: 0, 1. Ці цифри мають спеціальну назву *біт* від англійського «binary digit». Запис вигляду (101101) 2 означає вираз

$$1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = (45)_{10}.$$

Нижче у таблиці 1 подані перші шістнадцять цілих чисел, записаних у різних системах числення.

Таблиця 1

иолици т			
Десяткова система	Двійкова система	Вісімкова система	Шістнадцяткова система
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Зверніть увагу, що для запису чисел таблиці у двійковій системі знадобилося не більше ніж чотири біта.

Дріб у двійковій системі записується за тими ж правилами, що і десятковий дріб, але при підрахунку значення треба використовувати від'ємні степені двійки. Запис (0,1101) 2 означає

$$1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4} = 1 \times 0,5 + 1 \times 0,25 + 0 \times 0,125 + 1 \times 0,0625 = (0,8125)_{10}.$$

1.3 Перехід від десяткової до інших систем числення

Досі ми переходили від заданої системи числення до десяткової, а зараз розглянемо як знайти запис поданого десяткового числа у будь-якій довільній системі числення.

Якщо число ціле, то його потрібно послідовно ділити на основу системи доти, доки частка не стане меншою ніж основа. Залишки, що будуть отримані у процесі ділення записані у зворотному порядку, починаючи з останньої частки, і будуть шуканим записом. Наведемо приклади.

Знайти запис цілого числа (12135) 10 у шістнадцятковій системі.

Тобто (12135) $_{10}$ = (2F67) $_{16}$.

Знайти запис числа (100) 10 у двійковій системі числення.

Тобто (100) $_{10}$ = (1100100) $_2$.

Щоб перевести десятковий дріб в іншу систему, треба застосовувати дещо інший алгоритм. Поданий дріб треба ділити на число обернене основі системи. Сутність алгоритму покажемо на прикладі.

Знайти запис числа (0,375) 10 у двійковій системі числення.

$$\begin{array}{c|ccccc}
0,375 & 0,5 & & & & & \\
0 & 0 & 0 & & & & \\
0,375 \times 2 & = & 0,75 & & & & 0,5 & & \\
0,5 & & I & & & & & \\
0,25 \times 2 & = & 0,5 & & & & 0,5 & \\
& & & & & I
\end{array}$$

Випишемо отримані частки у прямому порядку - це і буде шуканий запис:

(0,375) $_{10}$ = (0,011) $_2$. Отриманий дріб ε скінченим і точно дорівнює заданому числу. Якщо число не ε кратним степеню 0,5, то двійковий дріб буде нескінченим і перехід до двійкової системи можна здійснити тільки приблизно. Наведемо приклад.

Знайти запис числа (0,8) 10 у двійковій системі числення.

У цьому випадку отримано нескінчений періодичний двійковий дріб:

(0,8) $_{10}$ = $(0,\,11001100110011001100.\,\dots)$ $_2$. Як бачимо, дріб скінчений в одній системі , - в іншій має нескінчене зображення.

Якщо число має цілу і дробову частини, то кожна з цих частин переводиться окремо за своїм алгоритмом.

1.4 Перехід від двійкової до вісімкової і шістнадцяткової системи

Для переводу цілого числа з двійкової системи до вісімкової його попередньо треба розбити на тріади, а потім кожну тріаду замінити відповідним цифрою вісімкової системи:

Щоб перейти до шістнадцяткової системи треба зробити так само, тільки поділяти потрібно не на тріади, а на тетради, і замінювати їх шістнадцятковою цифрою:

(11D5)₁₆

Цілком очевидно, що діючи у зворотному порядку, можна переходити від вісімкової і шістнадцяткової системи до двійкової.

Такий суто механічний перехід тут ϵ можливим тільки завдяки тому, що основи цих систем мають спільне кратне 2.

Якщо порівняти записи одного і того ж числа в різних системах, то видно, що шістнадцяткова система ε більш економною щодо кількості використовуваних символів і це ε її перевагою перед двійковою системою.

1.5 Змішаний двійково- десятковий запис чисел

В літературі з комп'ютерних технологій можна ще зустріти поняття двійково-десяткової системи представлення чисел, коли кожен розряд десяткового числа кодується відповідним двійковим числом, наприклад, для числа 5973.

1.6 Чому в комп'ютерах застосовується двійкова система числення

Обчислювальна машина являє собою технічний пристрій, представлення чисел у якому пов'язане з конкретною фізичною реалізацією його елементів. Найпростішою, а значить найдешевшою і найнадійнішою ϵ конструкція комп'ютера, в якому для представлення чисел використовується двійкова система числення.

Дійсно, алфавіт двійкової системи має тільки дві цифри, а це значить, що біт можна моделювати за допомогою фізичного пристрою, який може знаходитися у двох стійких станах. Прикладами можуть слугувати звичайний електричний вимикач - він має два стани «увімкнуто» і «вимкнено», електронний прилад тріод - він пропускає електричний струм, або ні в залежності від того, чи є напруга на сітці, чи ні, феритове кільце - воно може мати магнітне поле двох протилежних орієнтацій, електричний конденсатор - його обкладки теж можуть бути заряджені двома протилежними способами, електромагнітні реле - його контакти можуть бути замкнені, або розімкнені в залежності від того, чи проходить струм через його обмотку, чи ні і таке інше.

На переваги двійкової системи для виконання обчислень звернув увагу ще Д.Непер (1550-1617), відомий як автор таблиць логарифмів. Рекомендація з використання двійкової системи для побудови обчислювальних машин в літературі вперше зустрічається у французького інженера Р.Вальта (1931). До такої ж думки дійшли одночасно і незалежно німець К.Цузе (1934), американець болгарського походження Д.Атанасов (1937).

Щодо елементної бази, то перша цифрова обчислювальна машина була побудована на електромеханічних реле (К.Цузе 1941р, Німеччина). Машина, в якій вперше було застосовано принцип електричного зберігання інформації, була побудована на електронних лампах і конденсаторах (Д.Атанасов 1942, США). В конструкції сучасних комп'ютери використовують напівпровідники.

Теоретично доведено, що найбільш економічними і найбільш швидкодійнішими були б комп'ютери, якби вони використовували систему числення з основою 2,718281828....(основа натуральних логарифмів). Але технічно вони були б дуже складними. Реалізація близької до неї трійкової системи теж не спрощує конструкцію. Отже найближчою до оптимальної залишається двійкова система, яка й застосовується в сучасних комп'ютерах.

Контрольні запитання і завдання

- 1. Що таке система числення?
- 2. Які бувають системи числення?
- 3. Чим непозиційна система числення відрізняється від позиційної?
- 4. Запишіть числа (324) $_5$, (201) $_3$, (11451) $_8$, (10101011) $_2$, (AD1F) $_{16}$, у десятковій системі числення.
- 5. Переведіть число 325 у двійкову, вісімкову і шістнадцяткову системи числення.
- 6. Переведіть числа 0,5625, 0,3 у двійкову систему числення.

- 7. Запишіть таблицю множення для систем числення, які мають основою числа 2, 3, 5, 8. 8. Виконати дії над числами, заданими у вісімковій системі числення: $(123)_8+(3643)_8$; $(5312)_8-(2567)_8$; $(2340)_8\times(2)_8$; $(165)_8\times(3)_8$.
- 10. Які з чисел записані неправильно?

- 11. Число (1011101100001) 2 помножити на 8.
- 12. Запишіть число (1011101100001) $_2$ у вісімковій і шістнадцятковій системі.
- 13. Запишіть числа (5В0С7Е1F) $_{16}$, (17563247) $_8\,$ у двійковій системі.
- 14. Чому в комп'ютерах застосовується двійкова система числення?

Словник

1.	Система числення	Number system
2.	Основа системи	Base of the number system
3.	Алфавіт	Alphabet
4.	Позиційна система	Positional number system
5.	Двійкова система	Binary number system
6.	Вісімкова система	Octal number system
7.	Десяткова система	Decimal number system
8.	Шістнадцяткова система	Hexadecimal number system
9.	Двійково-десятковий запис	Binary-coded decimal
10.	Біт	Bit (BInary digiT)