Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3201</u>	К работе допущен
Студенты Ткачук С.А. и Чуб Д.О.	Работа выполнена
Преподаватель Шоев В.И.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.01

Изучение электростатического поля методом моделирования

1. Цель работы

Изучить электростатическое поле методом моделирования.

2. Задачи, решаемые при выполнении работы

Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля на основе экспериментального моделирования распределения потенциала в слабо проводящей среде.

3. Объект исследования

Модель электростатического поля.

4. Метод экспериментального исследования

Лабораторный, моделирование

5. Рабочие формулы и исходные данные

Формулы:

Средняя напряженность между двумя точками, лежащими на одной силовой линии (φ_1 и φ_2 - потенциалы двух точек, l_{12} - длина участка силовой линии между точками)

$$\langle E_{12}\rangle\approx\frac{\varphi_1-\varphi_2}{l_{12}}\;(1)$$

Поверхностная плотность зарядов на проводнике (ε_0 - электрическая постоянная, $\Delta \varphi$ - изменение потенциала при смещении на малое расстояние Δl_n по нормали к поверхности проводника)

$$\sigma' \approx -\varepsilon_0 \frac{\Delta \varphi}{\Delta l_n}$$
 (2)

Исходные данные:

Электрическая постоянная $\varepsilon_0 = 8.85 \, \cdot 10^{-12} \, \frac{\Phi}{M}$

6. Измерительные приборы

	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Амперметр- вольтметр	Электронный	20 B	0.5%
2	Генератор напряжения	Электронный	450 Гц	50 Гц

7. Схема установки

Рис. 1: экспериментальная установка: электролитическая ванна с металлическими электродами, генератор напряжения, вольтметр, проводящее тело

8. Результаты прямых измерений и их обработки

Рис. 2: эквипотенциальные и силовые линии в среде без проводящего тела

Рис. 3: эквипотенциальные и силовые линии в среде с проводящим кольцом

9. Расчет результатов косвенных измерений

Для модели плоского конденсатора рассчитаем по формуле (1) величину напряженности в центре электролитической ванны и в окрестностях положительно заряженного электрода.

$$\langle E_{\text{центра}} \rangle \approx 44,44 \frac{\text{B}}{\text{M}}$$

 $\langle E_{+} \rangle \approx 45,45 \frac{\text{B}}{\text{M}}$

По формуле (2) рассчитаем поверхностную плотность электрического заряда на электродах.

$$\sigma' \approx 402,23 \cdot 10^{-12} \ \frac{\dot{\mathrm{K}\pi}}{\mathrm{m}^2}$$

Для конфигурации поля с проводящим кольцом найдем области с минимальной и максимальной напряженностью. Максимальная напряженность будет в области наибольшей плотности силовых линий, т. е. около правой границы кольца. Минимальной в области наименьшей плотности силовых линий, т. е. снизу от кольца.

$$\langle E_{max} \rangle = 66,67 \frac{B}{M}$$

 $\langle E_{min} \rangle = 23,26 \frac{B}{M}$

Рис. 4: график зависимости потенциала от координаты X при Y = 10 см

- конденсатор без проводящего кольца
- конденсатор с проводящим кольцом

10. Расчет погрешностей измерений

По формуле (3) найдем погрешность $\langle E_{\rm центра} \rangle$ и $\langle E_+ \rangle$:

$$\Delta \langle E_{\text{центра}} \rangle = 0,661 \frac{\text{B}}{\text{M}}$$
$$\Delta \langle E_{+} \rangle = 5,978 \frac{\text{B}}{\text{M}}$$

11. Окончательные результаты

$$\langle E_{\text{центра}} \rangle = 44,44 \pm 0,66 \frac{\text{B}}{\text{M}}$$
 $\varepsilon_{\langle E_{\text{центра}} \rangle} = 1,5\%$ $\langle E_{+} \rangle = 45,45 \pm 5,98 \frac{\text{B}}{\text{M}}$ $\varepsilon_{\langle E_{+} \rangle} = 13,2\%$

12. Вывод и анализ результатов работы

Было получено электростатическое поле методом моделирования. Было изучено распределение потенциалов и построены эквипотенциальные и силовые линии. Построены графики зависимости потенциалов от координат для двух конфигураций поля: с проводящим телом и без. На основе этих зависимостей можно сделать вывод, что кольцо создает область с постоянным потенциалом.