

Mutually Regressive Point Processes

Ifigeneia Apostolopoulou 1 , Scott Linderman 2 , Kyle Miller 3 and Artur Dubrawski 1,3

 1 Machine Learning Department, Carnegie Mellon University 2 Department of Statistics, Stanford University, 3 AutonLab

Introduction

Many phenomena and applications involve asynchronous events such as social media dynamics, neuronal activity, or high frequency financial markets. Point Processes (PPs) can model distributions of sequences of events.

- The Cox Process is characterized by a stochastic intensity function but it does not capture temporal correlations explicitly.
- The Linear Hawkes Process (HP) can capture purely excitatory temporal interactions.
- Non-Linear Hawkes Processes allow for both excitatory and inhibitory interactions but their inference is generally intractable.
- Poisson Process Generalized Linear Models (PP-GLMs) are efficient, discrete-time approximations of Non-Linear Hawkes Processes, but they can turn out to be poor generative models. Moreover, the estimated regression coefficients may vary widely depending on the boundaries chosen for aggregation.

Contributions

- We develop the first class of **Bayesian** point process models—Mutually Regressive Point Processes (MR-PP)—that allow for nonlinear temporal interactions while still admitting an efficient, fully-Bayesian inference algorithm in **continuous time**.
- Soft relational constraints can be established by a joint prior.
- MR-PP recovers **physiological** neuronal **dynamics**. • MR-PP achieves competitive predictive likelihood.

Hierarchical Mutually Regressive Point Process

A Gaussian prior for the weights is assumed:

$$oldsymbol{w}_n \sim \mathcal{N}(oldsymbol{\mu}_n, oldsymbol{\Sigma}_n).$$

An inverse relationship between the excitatory and the repulsive effect of type m on type n can be imposed with a SparseNormal-Gamma prior defined as:

$$\tau_{m,n} \sim \text{Gamma}(\nu_{\tau}\phi(\alpha_{m,n}) + \alpha_{\tau}, \beta_{\tau}),$$

$$\mu_{m,n} \sim \mathcal{N}(-(\nu_{\mu}\phi(\alpha_{m,n}) + \alpha_{\mu})^{-1}, (\lambda_{\mu}\tau_{m,n})^{-1}),$$

where the constants are positive and ϕ is a monotonically increasing function.

Mutually Regressive Point Process: a generalization of the Hawkes Process

A Point Process $\mathcal{PP}(\lambda(t))$ is characterized by an intensity function $\lambda(t)$, so that in an infinitesimally wide interval [t, t+dt], the probability of the arrival of a new event is $\lambda(t)dt$.

A negative weight $w_{m,n} \ll 0$ indicates that events of type m inhibit future events of type n since $h_m(t)$ decreases $p_n(t)$.

Bayesian inference

Latent Events for Tractability

The likelihood of the sequence $\mathcal{T} \triangleq \{t_i\}$ of an event sequence generated by a point process $\mathcal{PP}(\lambda(t))$ in [0,T] is:

$$p(\mathcal{T} \mid \lambda(t)) = \exp\left\{-\int_0^T \lambda(t) dt\right\} \times \prod_i \lambda(t_i)$$

The integral can be intractable for non-linear $\lambda(t)$.

$$\tilde{\mathcal{T}}_n \sim \mathcal{PP}(\lambda_n^*(t) \times (1 - p_n(t)))$$

The joint likelihood of the observed (\dot{T}_n) and latent events (\tilde{T}_n) is:

$$p(\dot{\mathcal{T}}_n \cup \tilde{\mathcal{T}}_n \mid \lambda_n(t)) \propto \exp\left\{-\int_0^T \lambda_n^*(t) dt\right\} \times \prod_i \lambda_n^*(t_i^n).$$

Pólya-Gamma Augmentation

The sigmoidal term destroys the conjugacy and yields non-Gaussion posteriors for \boldsymbol{w}_n . Pólya-Gamma latent variables ω_i^n associated with each event t_i^n render the model conjugate.

The posterior for sampling ω_i^n is a Pólya-Gamma distribution:

$$p(\omega_i^n \mid \dots) = \mathcal{PG}_m(\omega_i^n; 1, \boldsymbol{w}_n^T \boldsymbol{h}(t_i^n)).$$

Multineuronal study

The log-likelihood of the MR-PP for the held-out, second half of the spike train, is larger.

Discussion

- Relevant Application Domains: modeling clinical events, complex biological networks, or sequential events in financial markets
- <u>Model Refinements</u>: variational inference for scalability, hyperparameters selection
- <u>Prediction Tasks</u>: causality, network structure discovery

Work partially supported by DARPA under award FA8750-17-2-013, Onassis Foundation. and A.G. Leventis Foundation.

Synthetic validation

- The types are self-excited $(w_{i,i} \approx 0 \text{ and } \alpha_{i,i} > 0.015)$ and cross-inhibited by the other type $(w_{i,j} << 0 \text{ and } \alpha_{i,j} < 0.015)$.
- Correct temporal correlations between the event types were identified.
- The predictive log-likelihood of the learned MR-PP for 1,000 held-out event sequences is almost equal to that of the real parameters.

Analysis of stability of single neuron spiking dynamics

PP-GLMs may yield non-physiological spiking patterns when used as generative models because of explosive firing rates although they pass the goodness-of-fit test. On the other hand, MR-PP both passes the goodness-of-fit test (p - value > 0.05) and generates stable spike trains similar to those used for the learning. We used the Kolmogorov-Smirnov (KS) test after applying the time-rescaling theorem on the learned intensities and the real spike sequences.

Stability analysis of the MR-PP for spike patterns from monkey cortex