3. Information Gain

2022-06-19

Contents

```
check structure
  split data
  5
  # install.packages("FSelector")
# Load FSelector package for Feature Selection
library(FSelector)
# Load "caTools" package for data partitioning
library(caTools)
# Load tidyverse package
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.5
        v purrr
           0.3.4
## v tibble 3.1.6
        v dplyr
           1.0.7
## v tidyr 1.1.4
        v stringr 1.4.0
## v readr
    2.1.0
        v forcats 0.5.1
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
       masks stats::lag()
```

```
# Import data set and save it as empdata
empdata <- read.csv("EmployeeData.csv", stringsAsFactors = TRUE) #convert string variables to factor va</pre>
```

check structure

```
# Check the summary of the dataset
summary(empdata)
```

```
Attrition
                                        BusinessTravel
                                                         DailyRate
##
        Age
          :18.00
##
                   No :1202
                              Non-Travel
                                                            : 102.0
  Min.
                                               : 150
                                                       Min.
                                                       1st Qu.: 465.0
   1st Qu.:30.00
                   Yes: 270
                              Travel_Frequently: 278
                              Travel_Rarely
## Median :36.00
                                               :1044
                                                       Median: 802.0
## Mean :36.79
                                                       Mean : 802.6
##
   3rd Qu.:42.00
                                                       3rd Qu.:1157.0
  Max.
          :60.00
                                                       Max.
                                                             :1499.0
##
##
                    Department DistanceFromHome
                                                   Education
  Human Resources
                         : 63
                                Min. : 1.000
                                                 Min.
                                                       :1.000
                                                 1st Qu.:2.000
  Research & Development:962
                                1st Qu.: 2.000
   Sales
                                Median : 7.000
                                                Median :3.000
##
                         :447
##
                                Mean : 9.183
                                                 Mean
                                                        :2.913
##
                                3rd Qu.:14.000
                                                 3rd Qu.:4.000
##
                                Max.
                                       :29.000
                                                 Max. :5.000
##
##
            EducationField EmployeeCount EmployeeNumber
                                                          EnvironmentSatisfaction
## Human Resources: 27
                           Min. :1
                                         Min. : 1.0
                                                         L1:286
                           1st Qu.:1
                                         1st Qu.: 491.8
## Life Sciences
                   :607
                                                         L2:287
## Marketing
                   :159
                           Median:1
                                         Median :1023.0
                                                         L3:453
## Medical
                   :464
                                                         L4:446
                           Mean
                                :1
                                         Mean
                                               :1026.3
                   : 83
## Other
                           3rd Qu.:1
                                         3rd Qu.:1557.2
##
                                         Max.
                                                :2070.0
   Technical Degree:132
                           Max.
                                : 1
##
##
                  HourlyRate
                                   JobLevel
                                                                   JobRole
      Gender
##
   Female:589
                Min. : 30.00
                                 Level1:544 Sales Executive
                                                                       :326
                1st Qu.: 48.00
                                 Level2:534
                                              Research Scientist
                                                                       :292
##
   Male :883
                Median : 66.00
##
                                 Level3:218
                                             Laboratory Technician
                                                                       :260
##
                Mean : 65.91
                                 Level4:107
                                              Manufacturing Director
##
                3rd Qu.: 83.25
                                 Level5: 69
                                              Healthcare Representative:131
##
                Max.
                       :100.00
                                              Manager
                                                                       :103
##
                                              (Other)
                                                                       :215
  JobSatisfaction MaritalStatus MonthlyIncome
                                                   MonthlyRate
                                                        : 2094
## L1:289
                   Divorced:327
                                  Min. : 1009
                                                  Min.
## L2:280
                   Married:674
                                  1st Qu.: 2911
                                                  1st Qu.: 8044
## L3:442
                   Single :471
                                  Median: 4933
                                                  Median :14236
##
  L4:461
                                  Mean
                                         : 6512
                                                  Mean
                                                        :14311
##
                                  3rd Qu.: 8384
                                                  3rd Qu.:20463
##
                                         :19999
                                  Max.
                                                  Max.
                                                         :26999
##
## NumCompaniesWorked Over18
                               OverTime
                                          PercentSalaryHike PerformanceRating
## Min.
                      Y:1472
                                                 :11.00
          :0.000
                               No :1045
                                          Min.
                                                           L3:1246
## 1st Qu.:1.000
                               Yes: 427
                                          1st Qu.:12.00
                                                           L4: 226
```

```
## RelationshipSatisfaction StandardHours AvailableStocks TotalWorkingYears
## L1:277
                           Min.
                                  :80
                                         Min. :0.0000 Min.
                                                                : 0.0
## L2:303
                           1st Qu.:80
                                         1st Qu.:0.0000 1st Qu.: 6.0
## L3:460
                           Median:80
                                         Median :1.0000
                                                         Median:10.0
## L4:432
                           Mean :80
                                         Mean :0.7928
                                                         Mean :11.3
##
                           3rd Qu.:80
                                         3rd Qu.:1.0000
                                                         3rd Qu.:15.0
##
                                         Max. :3.0000
                           Max. :80
                                                         Max.
                                                                :40.0
##
## TrainingTimesLastYear YearsAtCompany
                                         YearsInCurrentRole
## Min.
         :0.0
                        Min. : 0.000
                                         Min. : 0.000
                         1st Qu.: 3.000
## 1st Qu.:2.0
                                         1st Qu.: 2.000
## Median :3.0
                        Median : 5.000
                                         Median : 3.000
## Mean :2.8
                        Mean : 7.026
                                         Mean : 4.233
  3rd Qu.:3.0
                        3rd Qu.: 9.250
                                         3rd Qu.: 7.000
##
## Max. :6.0
                        Max. :40.000
                                         Max. :18.000
##
## YearsSinceLastPromotion YearsWithCurrManager
## Min. : 0.000
                          Min. : 0.000
## 1st Qu.: 0.000
                          1st Qu.: 2.000
## Median : 1.000
                          Median : 3.000
## Mean : 2.189
                          Mean : 4.122
## 3rd Qu.: 3.000
                          3rd Qu.: 7.000
## Max. :15.000
                          Max. :17.000
##
# Check the structure of the dataset
str(empdata)
## 'data.frame':
                   1472 obs. of 33 variables:
                            : int 38 49 37 33 37 32 59 30 38 36 ...
## $ Age
## $ Attrition
                            : Factor w/ 2 levels "No", "Yes": 1 1 2 1 2 1 1 1 2 1 ...
## $ BusinessTravel
                            : Factor w/ 3 levels "Non-Travel", "Travel_Frequently",..: 3 2 3 2 3 2 3 3
## $ DailyRate
                            : int 1102 279 1373 1392 591 1005 1324 1358 216 1299 ...
## $ Department
                            : Factor w/ 3 levels "Human Resources",..: 3 2 2 2 2 2 2 2 2 ...
## $ DistanceFromHome
                            : int 1 8 2 3 2 2 3 24 23 27 ...
## $ Education
                            : int 2 1 2 4 1 2 3 1 3 3 ...
## $ EducationField
                            : Factor w/ 6 levels "Human Resources",..: 2 2 5 2 4 2 4 2 2 4 ...
                            : int 1 1 1 1 1 1 1 1 1 1 ...
## $ EmployeeCount
                            : int 1 2 4 5 7 8 10 11 12 13 ...
   $ EmployeeNumber
## $ EnvironmentSatisfaction : Factor w/ 4 levels "L1", "L2", "L3", ...: 2 3 4 4 1 4 3 4 4 3 ...
```

: Factor w/ 2 levels "Female", "Male": 1 2 2 1 2 2 1 2 2 2 ...

: Factor w/ 5 levels "Level1", "Level2", ...: 2 2 1 1 1 1 1 1 3 2 ...

: Factor w/ 4 levels "L1", "L2", "L3", ...: 4 2 3 3 2 4 1 3 3 3 ...

: int 5993 5130 2090 2909 3468 3068 2670 2693 9526 5237 ...

: Factor w/ 9 levels "Healthcare Representative",..: 8 7 3 7 3 3 3 3 5 1

: Factor w/ 3 levels "Divorced", "Married", ...: 3 2 3 2 2 3 2 1 3 2

: int 19479 24907 2396 23159 16632 11864 9964 13335 8787 16577 ...

Median :14.00

Mean :15.21

3rd Qu.:18.00

:25.00

Max.

Median :2.000

Mean :2.692

3rd Qu.:4.000

Max. :9.000

\$ Gender
\$ HourlyRate

\$ JobLevel

\$ JobSatisfaction

\$ NumCompaniesWorked

\$ MaritalStatus
\$ MonthlyIncome

\$ MonthlyRate

\$ JobRole

: int 8 1 6 1 9 0 4 1 0 6 ...

: int 94 61 92 56 40 79 81 67 44 94 ...

```
## $ Over18
                              : Factor w/ 1 level "Y": 1 1 1 1 1 1 1 1 1 1 ...
## $ OverTime
                             : Factor w/ 2 levels "No", "Yes": 2 1 2 2 1 1 2 1 2 1 ...
## $ PercentSalaryHike : int 11 23 15 11 12 13 20 22 21 13 ...
## $ PerformanceRating : Factor w/ 2 levels "L3","L4": 1 2 1 1 1 1 2 2 2 1 ...
## $ RelationshipSatisfaction: Factor w/ 4 levels "L1", "L2", "L3", ...: 1 4 2 3 4 3 1 2 2 2 ...
## $ StandardHours : int 80 80 80 80 80 80 80 80 80 ...
## $ AvailableStocks
                            : int 0 1 0 0 1 0 3 1 0 2 ...
## $ TotalWorkingYears : int 8 10 7 8 6 8 12 1 10 17 ...
## $ TrainingTimesLastYear : int 0 3 3 3 2 3 2 2 3 ...
                        : int 6 10 0 8 2 7 1 1 9 7 ...
## $ YearsAtCompany
## $ YearsInCurrentRole
                            : int 4707270077...
## $ YearsSinceLastPromotion : int 0 1 0 3 2 3 0 0 1 7 ...
## $ YearsWithCurrManager : int 5 7 0 0 2 6 0 0 8 7 ...
```

redundant variables

```
# Remove redundant variables
empdata[c("EmployeeCount", "EmployeeNumber", "Over18", "StandardHours")] <- NULL
```

split data

```
# Set a seed
set.seed(10)

# Generate a vector named partition for data partitioning
partition = sample.split(empdata$Attrition, SplitRatio = 0.8)

# Create training set: training
training = subset(empdata, partition == TRUE)

# Create test set: test
test = subset(empdata, partition == FALSE)
```

feature selection

information.gain()

```
## BusinessTravel
                                         7.728928e-03
## DailyRate
                                         0.000000e+00
## Department
                                         3.237261e-03
## DistanceFromHome
                                      0.000000e+00
## Education
                                         0.000000e+00
## EducationField
                             5.607006e-03
## EnvironmentSatisfaction 6.421067e-03
## Gender
                                         5.283335e-04
## HourlyRate
                                         0.000000e+00
## JobLevel
                                       2.979136e-02
## JobRole
                                       3.470475e-02
## JobSatisfaction
                                         4.224659e-03
## MaritalStatus
                                         1.131948e-02
## MonthlyIncome
                                      2.678926e-02
## MonthlyRate
                                         0.000000e+00
## NumCompaniesWorked 0.000000e+00
## OverTime
                                         4.043795e-02
## PercentSalaryHike 0.000000e+00
## PerformanceRating 7.588943e-05
## RelationshipSatisfaction 1.156400e-03
## AvailableStocks 1.255604e-02
## TotalWorkingYears 2.236349e-02
## TrainingTimesLastYear 0.000000e+00
## VorsatCompany 1.681804e-03
## YearsAtCompany 1.681804e-02
## YearsInCurrentRole 1.124040e-02
## YearsSinceLastPromotion 0.000000e+00
## YearsWithCurrManager 1.333016e-02
```

sorting the result

order()

Use order() function to sort the attributes with respect to their information gain values. Then, use barplot() function to illustrate the result.

Filter features where the information gain is not zero library(dplyr) attr_weights %>% filter(attr_importance > 0)

##		attr_importance
##	Age	2.915686e-02
##	BusinessTravel	7.728928e-03
##	Department	3.237261e-03
##	EducationField	5.607006e-03
##	EnvironmentSatisfaction	6.421067e-03
##	Gender	5.283335e-04
##	JobLevel	2.979136e-02
##	JobRole	3.470475e-02
##	JobSatisfaction	4.224659e-03
##	MaritalStatus	1.131948e-02
##	MonthlyIncome	2.678926e-02
##	OverTime	4.043795e-02
##	PerformanceRating	7.588943e-05
##	RelationshipSatisfaction	1.156400e-03
##	AvailableStocks	1.255604e-02
##	TotalWorkingYears	2.236349e-02
##	YearsAtCompany	1.681804e-02
##	YearsInCurrentRole	1.124040e-02
##	YearsWithCurrManager	1.333016e-02

cutoff.k()

filter the most informative k attributes

cutoff.k() orders the attributes according to their information gain and returns the first k.

cutoff.k.percent(weights, k) selects k* 100% of attributes.

```
# cutoff.k(weights,k)
```

```
# Use cutoff.k() to find the most informative 19 attributes
filtered_attributes <- cutoff.k(attr_weights, 19)
# Print filtered attributes
print(filtered_attributes)</pre>
```

cutoff.biggest.diff(weights) selects a subset of attributes which are significantly better than others.

```
## [1] "OverTime"
                                  "JobRole"
## [3] "JobLevel"
                                  "Age"
## [5] "MonthlyIncome"
                                  "TotalWorkingYears"
## [7] "YearsAtCompany"
                                  "YearsWithCurrManager"
## [9] "AvailableStocks"
                                  "MaritalStatus"
## [11] "YearsInCurrentRole"
                                 "BusinessTravel"
## [13] "EnvironmentSatisfaction" "EducationField"
## [15] "JobSatisfaction"
                                  "Department"
## [17] "RelationshipSatisfaction" "Gender"
## [19] "PerformanceRating"
```

 ${\it \# Use \ cutoff.biggest.diff() \ to \ a \ subset \ of \ attributes \ which \ are \ significantly \ better \ than \ other \ cutoff.biggest.diff(attr_weights)}$

```
## [1] "OverTime"
```

ggplot

plot "Attrition" vs "OverTime"

rename categories

revalue()

```
# Revalue categories for the plot. Load 'plyr' package library(plyr)
```

- ## -----
- ## You have loaded plyr after dplyr this is likely to cause problems.
- ## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
- ## library(plyr); library(dplyr)

```
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
       summarize
## The following object is masked from 'package:purrr':
##
##
       compact
# Rename categories for illustration
training$JobRole <- revalue(training$JobRole,</pre>
                            c("Healthcare Representative" = "HealthRep",
                              "Human Resources" = "HR",
                              "Laboratory Technician" = "LabTech",
                              "Manager" = "Mgr",
                              "Manufacturing Director" = "ManufDir",
                              "Research Director" = "ResDir",
                              "Research Scientist" = "ResSci",
                              "Sales Executive" = "SaleExec",
                              "Sales Representative" = "SaleRep"))
barplotdata = table(training$Attrition, training$JobRole)
# Use barplot function to plot Attrition vs JobRole
barplot(barplotdata, main = "Attrition vs Job Role",
        xlab="JobRole",col=c("steelblue","orange"),
        legend=rownames(barplotdata), cex.names = 0.70, beside = TRUE)
```

Attrition vs Job Role

plot Attrition vs JobLevel

Attrition vs JobLevel

plot Attrition vs Monthly Income

```
# Plot Attrition vs Monthly Income
ggplot(training, aes(x = MonthlyIncome, fill = Attrition)) +
  geom_density(alpha = 0.7) +
  scale_fill_manual(values = c("#386cb0","#fdb462"))
```


subset training set

```
# Select a subset of the dataset by using filtered_attributes
datamodelling <- training[filtered_attributes]</pre>
```

```
datamodelling["target"] <- training["Attrition"]
# or
datamodelling$target <- training$Attrition</pre>
```

Since filtered_attributes does not include the target variable, Attrition column is not present in our constructed data file. Adding it to the data file is needed for model building .