The Chain Rule

Introduction

In this Section we will see how to obtain the derivative of a composite function (these are often referred to as 'functions of a function'). To do this we use the **chain rule**. This rule can be used to obtain the derivatives of functions such as e^{x^2+3x} (the exponential function of a polynomial); $\sin(\ln x)$ (the sine function of the logarithmic function); $\sqrt{x^3+4}$ (the square root function of a polynomial).

Prerequisites

Before starting this Section you should ...

- ① be able to differentiate standard functions
- ② be able to use the product and quotient rule for finding derivatives

Learning Outcomes

After completing this Section you should be able to ...

- ✓ differentiate a function of a function using the chain rule
- ✓ differentiate a power function

1. What is a function of a function?

When we use a function like $\sin 2x$ or $e^{\ln x}$ or $\sqrt{x^2+1}$ we are in fact dealing with composite functions or functions of a function.

 $\sin 2x$ is the sine function of 2x. This is, in fact, how we 'read' it:

 $\sin 2x$ is read 'sine of 2x'

Similarly $e^{\ln x}$ is the exponential function of the logarithm of x:

 $e^{\ln x}$ is read 'e to the power of $\ln x$ '

Finally $\sqrt{x^2+1}$ is also a composite function. It is the square root function of the polynomial $x^2 + 1$:

 $\sqrt{x^2+1}$ is read as the 'square root of (x^2+1) '

When we talk about functions of a function in a general setting we will use the notation f(g(x))where both f and g are functions.

Example Specify the functions f, g for the composite functions

- (a) $\sin 2x$
- (b) $\sqrt{x^2+1}$ (c) $e^{\ln x}$

Solution

(a) Here f is the sine function and g is the polynomial 2x. We often write:

$$f(g) = \sin g$$
 and $g(x) = 2x$

- (b) Here $f(g) = \sqrt{g}$ and $g(x) = x^2 + 1$ (c) In this case $f(g) = e^g$ and $g(x) = \ln x$

In each case the original function of x is obtained when g(x) is substituted into f(g).

Specify the functions f, g for the composite functions (a) $\cos(3x^2 - 1)$ (b) $\sinh(e^x)$ (c) $(x^2 + 3x - 1)^{1/3}$

Your solution

(a)

$$f(g) = \cos g \qquad g(x) = 3x^2 - 1$$

Your solution

(b)

$$f(\theta) = \sin \theta \qquad \theta(x) = \epsilon_x$$

Your solution

(c)

$$1 - x\xi + 2x = (x)\varrho \qquad ^{\xi/1}\varrho = (\varrho) f$$

2. The Derivative of a function of a function

To differentiate a function of a function we use the following key point:

Key Point

If y = f(g(x)), that is, a function of a function, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}g} \cdot \frac{\mathrm{d}g}{\mathrm{d}x}$$

This is called the **chain rule**.

Example Find the derivatives of the following composite functions and check the result using other methods

(a)
$$(2x^2-1)^2$$

(b)
$$\ln e^x$$

Solution

(a) Here
$$y = f(g(x))$$
 where $f(g) = g^2$ and $g(x) = 2x^2 - 1$. Thus

$$\frac{\mathrm{d}f}{\mathrm{d}g} = 2g \quad \text{and} \quad \frac{\mathrm{d}g}{\mathrm{d}x} = 4x \quad \therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = 2g.(4x) = 2(2x^2 - 1)(4x) = 8x(2x^2 - 1)$$

This result is easily checked by using the rule for differentiating products:

$$y = (2x^2 - 1)(2x^2 - 1)$$
 so $\frac{\mathrm{d}y}{\mathrm{d}x} = 4x(2x^2 - 1) + (2x^2 - 1)(4x) = 8x(2x^2 - 1)$ as obtained above

Solution

(b) Here y = f(g(x)) where $f(g) = \ln g$ and $g(x) = e^x$. Thus

$$\frac{\mathrm{d}f}{\mathrm{d}g} = \frac{1}{g}$$
 and $\frac{\mathrm{d}g}{\mathrm{d}x} = e^x$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{g} \cdot e^x = \frac{1}{e^x} \cdot e^x = 1$$

This is easily checked since, of course,

$$y = \ln e^x = x$$

and so, obviously $\frac{dy}{dx} = 1$ as above.

Obtain the derivatives of the following functions

- (a) $(2x^2 5x + 3)^9$ (b) $\sin(\cos x)$ (c) $\left(\frac{2x+1}{2x-1}\right)^3$
- (a) What are f, g in this case?

Your solution

- (a)
- f(q) =

q(x) =

$$\xi + x\xi - zx\zeta = (x)\theta \qquad \theta = \theta = 0$$

Now obtain the derivative using the chain rule

Your solution

intermediate stage of specifying f, g?

 $9(2x^2-5x+3)^8(4x-5)$. Can you see how to obtain the derivative without going through the

(b) Again, specify f and g

Your solution

(b)

$$x \cos = (x)\delta$$
 θ u

Now use the chain rule to obtain the derivative

Your solution

$$x$$
 uis $[(x sos)sos] -$

Your solution

(c)

$$-\frac{(1+x2)21}{4(1-x2)}$$

3. A Power function

An example of a function of a function which often occurs is the so-called power function $[g(x)]^k$ where k is any rational number. This is an example of a function of a function in which

$$f(g) = g^k$$

Thus, using the chain rule: if

$$y = [g(x)]^k$$

then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}g} \cdot \frac{\mathrm{d}g}{\mathrm{d}x} = k \, g^{k-1} \frac{\mathrm{d}g}{\mathrm{d}x}.$$

For example, if $y = (\sin x + \cos x)^{1/3}$ then $\frac{dy}{dx} = \frac{1}{3}(\sin x + \cos x)^{-2/3}(\cos x - \sin x)$.

Find the derivatives of the following power functions
(a) $y = \sin^3 x$ (b) $y = (x^2 + 1)^{1/2}$ (c) $y = (e^{3x})^7$

(a)
$$y = \sin^3 x$$

(b)
$$y = (x^2 + 1)^{1/2}$$

(c)
$$y = (e^{3x})^{n}$$

(a) Note here that $\sin^3 x$ is the conventional way of writing $(\sin x)^3$. Now find the derivative.

Your solution

(a)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3(\sin x)^2 \cos x \text{ which we would normally write as } 3\sin^2 x \cos x$$

Answers

Tour solution

(q)

(c)

Your solution

note that $(e^{3x})^7 = e^{21x}$ \therefore $\frac{\mathrm{d}y}{\mathrm{d}x} = 21e^{21x}$ directly.

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 7(e^{3x})^6 (3e^{3x}) = 21(e^{3x})^7 = 21e^{21x}$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}(x^2 + 1)^{-1/2}2x = \frac{x}{\sqrt{x^2 + 1}}$

1. (a) $-\frac{20(2x+1)^3}{(3x-1)^5}$

(b) $2(3x+1)\sec^2(3x^2+2x)$

(c) $6x\sin(6x^2-2)$: (remember $\sin 2x = 2\sin x\cos x$)

 $(1 - 2x^2)^2$ (1)

(b) $(x^2 + 2x)$

 $^{4}\left(\frac{1+x2}{1-x8}\right) (8)$