线代笔记

mny

2023年9月18日

目录

1	线性空间 1.1 实数中运算的性质		
	1.2 $(\mathbb{R}^m, +, *)$ 为一个线性空间		
	1 线性空间		
	线性空间 \mathbb{R}^m , m 是一个自然数. $m=1$ 时, 是实数. 有两个代数运算 + 和 *, 有两个特殊元素 0 和 1 .		
1.	1 实数中运算的性质		

- + 满足的性质:
 - 交换的, a + b = b + a

 - 加法满足结合律 a + (b + c) = (a + b) + c
- *满足的性质:
 - 交换的 a * b = b * a
 - 对于一个非 0 元素 a, 存在一个元素 b, 使得 a*b=1, $b=a^{-1}$
 - 结合律 a * (b * c) = (a * b) * c

+ 和 * 满足分配律: a*(b+c) = a*b + a*c

定义
$$\mathbf{1.1.}$$
 \mathbb{R}^m 中的元素为 $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$, 其中 $a_1,\ldots a_m$ 为任意实数.
$$\mathbb{R}^m$$
 中的元素 $v = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$ 称为列向量. 有时一个元素表示为 $\begin{bmatrix} a_1, a_2, \cdots, a_m \end{bmatrix}$, 称作行向量.

 \mathbb{R}^m 上定义两个运算 + 和 *(用列向量来表示)

定义 1.2. + 加法: 任意两个列向量 a,b 得到一个新的列向量.

$$v + w = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_m + b_m \end{bmatrix}$$
(1.1)

例 1.1. 在
$$\mathbb{R}^2$$
 中, $\begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$

定义 1.3. * 数乘: 任意一个实数 c, 以及一个列向量 v, 得到一个新的列向量 cv

$$cv = c \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} = \begin{bmatrix} ca_1 \\ ca_2 \\ \vdots \\ ca_m \end{bmatrix}$$

$$(1.2)$$

1.2 $(\mathbb{R}^m, +, *)$ 为一个线性空间

两种运算满足:

- 交換律 v + w = w + v
- 结合律 $c_1(c_2v) = (c_1c_2)v$
- $\oint \mathbb{R}^{2} c(v+w) = cv + cw$

• 通过加法可以定义减法运算
$$v-w=\begin{bmatrix}a_1\\a_2\\\vdots\\a_m\end{bmatrix}-\begin{bmatrix}b_1\\b_2\\\vdots\\b_m\end{bmatrix}=\begin{bmatrix}a_1-b_1\\a_2-b_2\\\vdots\\a_m-b_m\end{bmatrix}.$$

• 给定一组 \mathbb{R}^m 中的向量, (v_1, v_2, \ldots, v_n) , 可以构成新的向量

$$x_1v_1 + x_2v_2 + \dots + x_nv_n$$
 $(x_1, \dots, x_n$ 为实数) (1.3)

这个新的向称为 (v_1, v_2, \ldots, v_n) 的线性组合.

1.3 矩阵

定义 1.4. $m \times n$ 矩阵,

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$(1.4)$$

 a_{ij} 为实数

从线性空间的角度, 矩阵可以有下列的理解:

• 从矩阵列的角度,
$$A = \begin{bmatrix} \vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n \end{bmatrix}$$

• 从矩阵行的角度,
$$A = \begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 \\ \vdots \\ \vec{v}_m \end{bmatrix}$$

固定 m 和 n, 矩阵空间上可以定义两个自然的运算

定义 1.5. 矩阵加法:

$$A = (a_{ij}), \quad B = (b_{ij}), \quad (A+B)_{ij} = (a_{ij} + b_{ij})$$
 (1.5)

定义 1.6. 数乘, 任意一个实数 c, 一个矩阵 A, 得到

$$(cA)_{ij} = (ca_{ij}) (1.6)$$

定义 1.7. 矩阵乘法.

定义: 矩阵乘法是把一个 $m \times n$ 矩阵乘上一个 $n \times k$ 矩阵, 得到一个 $m \times k$ 矩阵. 运算规则:

$$(C)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{m} a_{ik}b_{kj}$$

$$(1.7)$$

矩阵乘法的性质:

• 结合律:

$$(AB) C = A (BC) \tag{1.8}$$

• 分配律:

$$A(B+C) = AB + AC \tag{1.9}$$

$$(A+B)C = AC + AB \tag{1.10}$$

• 矩阵乘法不满足交换律

$$AB \stackrel{\pi - \text{ce}}{\neq} BA \tag{1.11}$$

不论交换有没有定义,都不一定相等.

矩阵乘法的几种理解:

- C = AB, C_{ij} 为把 A 的第 i 行和 B 的第 j 列乘起来.
- 从矩阵 A 的列向量的角度看

$$A = \left[\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n \right] \tag{1.12}$$

那么 C 的第 j 列为 A 的列向量的线性组合, 组合系数为 B 的第 j 列,

$$b_{1i}\vec{v}_1 + b_{2i}\vec{v}_2 + \dots + b_{ni}\vec{v}_n \tag{1.13}$$

• 从矩阵 B 的行向量来看

$$B = \begin{bmatrix} \vec{w}_1 \\ \vec{w}_2 \\ \vdots \\ \vec{w}_m \end{bmatrix} \tag{1.14}$$

矩阵 C 的第 i 行为 B 的行向量的线性组合, 组合系数为矩阵 A 的第 i 行.

$$a_{i1}\vec{w}_1 + a_{i2}\vec{w}_2 + \dots + a_{in}\vec{w}_n$$
 (1.15)

几种特殊矩阵:

• 方阵: 行和列数目一致, $n \times n$

• 零矩阵: 元素都为 0

• n 阶单位矩阵:

$$\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}$$
(1.16)

对角线全为1

• 上三角矩阵:

$$\begin{bmatrix}
* & * & \cdots & * \\
0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & *
\end{bmatrix}$$
(1.17)

• 下三角矩阵:

$$\begin{bmatrix}
* & 0 & \cdots & 0 \\
* & * & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & *
\end{bmatrix}$$
(1.18)