VP160 Recitation Class VI

Zeyi Ren

UM-SJTU Joint Institute

July 5, 2021

- 1 Lagrangian Mechanics
- Momentum
- Collision
- Center of Mass
- **Rocket Propulsion**

Generalized coordinates

Any coordinates describing motions.

Generalized coordinates

Lagrangian Mechanics •00000

Any coordinates describing motions.

e.g.

Generalized coordinates

Any coordinates describing motions.

e.g.

$$\begin{cases} \begin{array}{c} q_1(t) \\ q_2(t) \\ \dots \\ q_n(t) \end{array} \Rightarrow \begin{cases} \begin{array}{c} q_1\dot(t) \\ q_2\dot(t) \\ \dots \\ q_n\dot(t) \end{array} \text{ (generalized velocity)} \end{cases}$$

Degree of freedom (usually denoted by f)

The minimum number of independent generalized coordinates needed to describe the system's motions.

000000

Degree of freedom (usually denoted by f)

The minimum number of independent generalized coordinates needed to describe the system's motions.

In general,

Lagrangian Mechanics

000000

$$f = 3N - m$$

where N is the number of particles, and m is the number of constraints (number of equations that relate unknowns).

Degree of freedom (usually denoted by f)

The minimum number of independent generalized coordinates needed to describe the system's motions.

In general,

$$f = 3N - m$$

where N is the number of particles, and m is the number of constraints (number of equations that relate unknowns).

Exercise 1

Find the degree of freedom:

Hamilton's Principle

Lagrangian Mechanics

Real path $\iff \delta S = 0$

(δ : variational differential, S is a functional: a function that maps functions into numbers.)

5/16

Hamilton's Principle

Lagrangian Mechanics

000000

Real path
$$\iff \delta S = 0$$

 (δ) : variational differential, S is a functional: a function that maps functions into numbers.)

↓ How?

Euler-Lagrange Equation

For
$$i = 1, 2, ..., f$$
:

$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}) - \frac{\partial L}{\partial q_i} = 0$$

Hamilton's Principle

000000

Real path
$$\iff \delta S = 0$$

(δ : variational differential, S is a functional: a function that maps functions into numbers.)

How?

Euler-Lagrange Equation

For i = 1, 2, ..., f:

$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}) - \frac{\partial L}{\partial q_i} = 0$$

Learn more about variational and how to derive Hamilton's Principle, visit https://zhuanlan.zhihu.com/p/126115834

https://zhuanlan.zhihu.com/p/139018146

Exercise 2

A simple pendulum of length b and mass m moves attached to a massless rim of radius a rotating with constant angular velocity ω . How many degrees of freedom do we have here? Find the Lagrangian.

6/16

Find the equations of motion of a particle of mass m constrained to move on the surface of a sphere, acted upon a conservative force $\mathbf{F}=F_0\hat{n}_\theta$ with F_0 a constant.

Hint. To find the potential energy find the scalar product $\mathbf{F} \cdot d\mathbf{r}$ for the infinitesimal displacement on the sphere and use the fact that it is equal to -dU (the force is conservative).

Exercise 4

Lagrangian Mechanics

Double pendulum:

- identify the generalized coordinates;
- (2) find the Lagrangian;
- (3) write down the Euler-Lagrange equations of motion;

Definition

$$\vec{p} = m\vec{v}$$

Definition

$$\vec{p} = m\vec{v}$$

Rewrite Newton's second law

$$\vec{F} = \frac{d\vec{p}}{dt}$$

(when m is not varying, $F = m \frac{d\vec{v}}{dt} = m\vec{a}$)

Definition

$$\vec{p} = m\vec{v}$$

Rewrite Newton's second law

$$\vec{F} = \frac{d\vec{p}}{dt}$$

(when m is not varying, $F = m \frac{d\vec{v}}{dt} = m\vec{a}$)

Impulse Theorem

$$\vec{p_2} - \vec{p_1} = \int_{t_1}^{t_2} \vec{F} dt$$

$$\vec{p} = m\vec{v}$$

Rewrite Newton's second law

$$\vec{F} = \frac{d\vec{p}}{dt}$$

(when m is not varying, $F = m \frac{d\vec{v}}{dt} = m\vec{a}$)

Impulse Theorem

$$\vec{p_2} - \vec{p_1} = \int_{t_1}^{t_2} \vec{F} dt$$

• If $\vec{F_{ext}} = 0$, for a system, $\Delta \vec{p} = 0 \Leftrightarrow p = \text{Const}$ (Conservation of momentum)

Application of Conservative of Momentum

• Non-central Collision (e.g. explosion)

$$\vec{p_{before}} = \vec{p_{after}}$$

Application of Conservative of Momentum

Non-central Collision (e.g. explosion)

$$\vec{p_{before}} = \vec{p_{after}}$$

- Central Collision
 - Elastic

*
$$e = (\vec{v_2}' - \vec{v_1}')/(\vec{v_1} - \vec{v_2}) = 1$$

★ Conservation of energy

Non-central Collision (e.g. explosion)

$$\vec{p_{before}} = \vec{p_{after}}$$

Collision

- Central Collision
 - Elastic

*
$$e = (\vec{v_2}' - \vec{v_1}')/(\vec{v_1} - \vec{v_2}) = 1$$

- ★ Conservation of energy
- Inelastic
 - $\star e < 1$
 - ★ Energy loss

Non-central Collision (e.g. explosion)

$$\vec{p_{before}} = \vec{p_{after}}$$

- Central Collision
 - Elastic

*
$$e = (\vec{v_2}' - \vec{v_1}')/(\vec{v_1} - \vec{v_2}) = 1$$

- ★ Conservation of energy
- Inelastic
 - $\star e < 1$
 - ★ Energy loss
- Completely Inelastic
 - $\star e = 0$
 - * stick to each other

Exercise 5

Assume m_1 , m_2 , m_3 , k is known. Release m_1 , the collision between m_1 and m_2 is completely inelastic. Find h so that m_3 can just leave the ground.

Center of Mass

$$r_C = \frac{\sum m_i r_i}{\sum m_i}$$
$$r_C = \frac{\int r_i dm}{\int dm}$$

$$r_C = \frac{\int r_i dm}{\int dm}$$

Center of Mass

$$r_C = \frac{\sum m_i r_i}{\sum m_i}$$

$$r_C = \frac{\int r_i dm}{\int dm}$$

Pappus Law

First Theorem:

$$S=2\pi sx$$

Second Theorem:

$$V = 2\pi Ax$$

where x is the distance from the reference axis and the center of mass.

• An important fact:

$$\vec{F_{ext}} = 0 \Leftrightarrow \vec{p} = \textit{Const} \Leftrightarrow \vec{v_c} = \textit{Const}$$

13 / 16

Rocket Propulsion

$$mv + Fdt = (m + dm)(v + dv) - udm$$

$$m\frac{dv}{dt} = (u - v)\frac{dm}{dt} + F$$

Reminder

What FoR are we looking at?

Exercise 6

A rope with length I and mass m is placed vertically. At the beginning, the lower end of the rope just touches the ground. Release the rope, find the support force of the ground with respect to x.

Reference

Yigao Fang.

VP160 Recitation Slides.

2020

Haoyang Zhang.

VP160 Recitation Slides.

2020