Matrix Experiments Using Orthogonal Arrays

Comments on HW#2 and Quiz #1 Questions on the Reading Quiz Brief Lecture Paper Helicopter Experiment

Learning Objectives

- Introduce the concept of matrix experiments
- Define the balancing property and orthogonality
- Explain how to analyze data from matrix experiments
- Get some practice conducting a matrix experiment

Static Parameter Design and the P-Diagram

Parameter Design Problem

- Define a set of control factors (A,B,C...)
- Each factor has a set of discrete levels
- Some desired response η (A,B,C...) is to be maximized

Robust System Design

Full Factorial Approach

- Try all combinations of all levels of the factors $(A_1B_1C_1, A_1B_1C_2,...)$
- If no experimental error, it is guaranteed to find maximum
- If there is experimental error, replications will allow increased certainty
- BUT ... #experiments = #levels#control factors

Additive Model

• Assume each parameter affects the response independently of the others

$$\eta(A_i, B_j, C_k, D_i) = \mu + a_i + b_j + c_k + d_i + e$$

This is similar to a Taylor series expansion

$$f(x,y) = f(x_o, y_o) + \frac{\partial f}{\partial x}\Big|_{x=x_o} \cdot (x - x_o) + \frac{\partial f}{\partial y}\Big|_{y=y_o} \cdot (y - y_o) + \text{h.o.t}$$

One Factor at a Time

	Control Factors				
Expt.	A	В	С	D	
No.					
1	2	2	2	2	η_1
2	1	2	2	2	η_2
3	3	2	2	2	η_3
4	2	1	2	2	η_4
5	2	3	2	2	η_5
6	2	2	1	2	η_6
7	2	2	3	2	η_7
8	2	2	2	1	η_8
9	2	2	2	3	η_9

Orthogonal Array

	Control Factors				
Expt.	A	В	С	D	
No.					
1	1	1	1	1	η_1
2	1	2	2	2	η_2
3	1	3	3	3	η_3
4	2	1	2	3	η_4
5	2	2	3	1	η_5
6	2	3	1	2	η_6
7	3	1	3	2	η_7
8	3	2	1	3	η_8
9	3	3	2	1	η_9

Notation for Matrix Experiments

Why is this efficient?

- One factor at a time
 - Estimated response at A₃ is $\eta_3 = \mu + a_3 + e_3$
- Orthogonal array
 - Estimated response at A₃ is $\eta_3 = \mu + a_3 + 1/3(e_7 + e_7 + e_7)$
 - Variance sums for independent errors
 - − Error variance ~ 1/replication number

Factor Effect Plots

- Which CF levels will you choose?
- What is your scaling factor?

Prediction Equation

$$\eta(A_i, B_j, C_k, D_i) = \mu + a_i + b_j + c_k + d_i + e$$

Inducing Noise

	Control Factors				
Expt. No.	A	В	С	D	
No.					
1	1	1	1	1	η_1
2	1	2	2	2	η_2
3	1	3	3	3	η_3
4	2	1	2	2	η_4
5	2	2	3	1	η_5
6	2	3	1	2	η_6
7	3	1	3	3	η_7
8	3	2	1	3	η_8
9	3	1	2	1	η_9

	Noise Factor
Expt.	N
No.	
1	1
2	2

Analysis of Variance (ANOVA)

- ANOVA helps to resolve the relative magnitude of the factor effects compared to the error variance
- Are the factor effects real or just noise?
- I will cover it in Lecture 7
- You may want to try the Mathcad "resource center" under the help menu

