- 1. Give regular expressions for the following languages.
 - i) The set of all strings with an equal number of 0's and 1's, such that no prefix has two more 0's than 1's, nor two more l's than 0's.
 - ii) $L = \{a^n b^m : n < 4, m \le 3\}.$

$$(01+10)^*$$

$$(\varepsilon + a)(\varepsilon + aa)(\varepsilon + b)(\varepsilon + bb)$$
 $(a + \varepsilon)^3(b + \varepsilon)^3$

$$(a+\varepsilon)^3(b+\varepsilon)^3$$

2. Prove $L = \{0^n | n \text{ is a perfect square}\}$ is not regular.

取
$$s = 0^{N^2}$$
, 则 $|xy^2z| < N^2 + N < (N+1)^2$, 而且 $|xy^2z| > |xyz| = N^2$. 完整证明:

设该语言为 L, 假设 L 是正则的,

那么存在正整数 N, 对于任意的 $w \in L(|w| > N)$ 满足泵引理。

取 $w = 0^{N^2}$, 显然 $w \in L$; 那么有 w = xyz, 且 |xy| < N, |y| > 0;

而且 xy^2z 应属于 L, 但是

由
$$|xy^2z| = |xyz| + |y| = N^2 + |y| \le N^2 + |xy| \le N^2 + N < N^2 + 2N + 1 = (N+1)^2$$
 和 $|xy^2z| > |xyz| = N^2$ (因为 $|y| > 0$)

得 |xy²z| 不可能是完全平方数

所以 $xy^2z \notin L$, 所以与假设矛盾, 所以 L 不是正则的。

3. If L is a language, and a is a symbol, then L/a, the quotient of L and a, is the set of strings w such that wa is in L. For example, if $L = \{a, aab, baa\}$, then $L/a = \{\varepsilon, ba\}$. Prove that if L is regular, so is L/a. Hint: Start with a DFA for L and consider the set of accepting states.

$$\diamondsuit L = L(M)$$
, 其中 $M = (Q, \Sigma, \delta, q_0, F)$

构造
$$M' = (Q, \Sigma, \delta, q_0, F')$$
, 其中 $F' = \{q | \delta(q, a) \in F\}, q \in Q, a \in \Sigma$

先证明 L(M') = L/a, 再证明 L(M') 正则

$$\therefore \forall w \in L(M') \ \mathbb{P} \ \delta(q_0, w) \in F' \ \mathbb{P} \ \delta(\delta(q_0, w), a) \in F \therefore w \in L/a$$

又 :: $\forall w \in L/a$ 有 $wa \in L$ 即 $\delta(q_0, wa) \in F$ 即 $\delta(\delta(q_0, w), a) \in F$ 即 $\delta(q_0, w) \in F'$:: $w \in L(M')$

4. Here is a transition table for a DFA:

	0	1
$\rightarrow q_1$	q_2	q_1
q_2	q_3	q_1
$*q_3$	q_3	q_2

$$R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1} \cup R_{ij}^{k-1}$$

$$\tag{1}$$

$$R_{ij}^{0} = \begin{cases} \{a | \delta(q_i, a) = q_j\} & i \neq j \\ \{a | \delta(q_i, a) = q_j\} \cup \{\varepsilon\} & i = j \end{cases}$$
 (2)

a) Give all the regular expressions $R_{ij}^{(0)}$, $R_{ij}^{(1)}$ and $R_{ij}^{(2)}$. Try to simplify the expressions as much as possible. Note: Think of state q_i as if it were the state with integer number i.

q_i as if it were the state with integer number v .					
	k = 0	k = 1	k=2	k=2 等价于	
R_{11}^k	$\varepsilon + 1$	1*	$1^* + 1^*0(11^*0)^*11^*$	$(1+01)^*$	
R_{12}^k	0	1*0	1*0	(1+01)*0	
R_{13}^k	Ø	Ø	1*0(11*0)*0	(1+01)*00	
R_{21}^k	1	11*	(11*0)*11*		
R_{22}^k	ε	$\varepsilon + 11^*0$	$\varepsilon + 11^*0$		
R_{23}^k	0	0	(11*0)*0		
R_{31}^k	Ø	Ø	1(11*0)*11*		
R_{32}^k	1	1	1(11*0)*		
R_{33}^k	$\varepsilon + 0$	$\varepsilon + 0$	$\varepsilon + 0 + 1(11^*0)^*0$	$\varepsilon + 0 + 10 + 11(1 + 01)*00$	

b) Give a regular expression for the language of the automaton.

$$(1+01)*00(0+10+11(1+01)*00)*$$