Análise de Regressão

Davi Wentrick Feijó

2023-04-17

Exemplo 1 A taxa de metabolismo é importante em estudos sobre aumento de peso, dieta e exercício. Em um estudo com 19 indivíduos selecionados aleatoriamente entre os submetidos a um estudo de dieta, foram coletados dados sobre a massa do corpo sem gordura e a taxa metabólica em repouso. A massa do corpo sem gordura é o peso da pessoa, eliminada toda a gordura, e é dada em quilogramas. A taxa de metabolismo é medida em calorias queimadas a cada 24 horas e os pesquisadores acham que a massa do corpo sem gordura tem grande influência sobre ela.

massa	taxa
62.0	1792
62.9	1666
36.1	995
54.6	1425
48.5	1396
42.0	1418
47.4	1362
50.6	1502
42.0	1256
48.7	1614
40.3	1189
33.1	913
51.9	1460
42.4	1124
34.5	1052
51.1	1347
41.2	1204
51.9	1867
46.9	1439

Calcule o estimadores abaixo manualmente (com arredondamentos):

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n X_i Y_i - n\bar{X}\bar{Y}}{\sum_{i=1}^n X_i^2 - n\bar{X}^2}$$

$$\hat{\beta_0} = \bar{Y} - \hat{\beta_1} \bar{X}$$

Os valores encontrados em sala foram os seguintes:

$$\hat{\beta_0} = 117.44$$

$$\hat{\beta}_1 = 26.79$$

Com os coeficientes obtidos a nossa equacao ficou assim:

 $\hat{Y} = 117.44 + 26.79x$

Aplicando a equacao encontrada nos dados podemos obter o valor estimado (sabendo que x= massa)

massa	taxa	estimado
62.0	1792	1778.420
62.9	1666	1802.531
36.1	995	1084.559
54.6	1425	1580.174
48.5	1396	1416.755
42.0	1418	1242.620
47.4	1362	1387.286
50.6	1502	1473.014
42.0	1256	1242.620
48.7	1614	1422.113
40.3	1189	1197.077
33.1	913	1004.189
51.9	1460	1507.841
42.4	1124	1253.336
34.5	1052	1041.695
51.1	1347	1486.409
41.2	1204	1221.188
51.9	1867	1507.841
46.9	1439	1373.891

Para verificar se esse valor estimado está condizente podemos calcular os residuos e soma-los, devemos encontrar que a soma dos reisudos é 0. Dado que a forma de se calcular os residuos segue essa funcao:

$$e_i = y_i - \hat{y_i}$$

onde e_i é o resíduo para a i-ésima observação, y_i é o valor observado da variável dependente para a i-ésima observação e \hat{Y}_i é o valor previsto pela reta de regressão para a i-ésima observação.

massa	taxa	estimado	residuo
62.0	1792	1778.420	13.580
62.9	1666	1802.531	-136.531
36.1	995	1084.559	-89.559
54.6	1425	1580.174	-155.174
48.5	1396	1416.755	-20.755
42.0	1418	1242.620	175.380
47.4	1362	1387.286	-25.286
50.6	1502	1473.014	28.986
42.0	1256	1242.620	13.380
48.7	1614	1422.113	191.887
40.3	1189	1197.077	-8.077
33.1	913	1004.189	-91.189
51.9	1460	1507.841	-47.841
42.4	1124	1253.336	-129.336
34.5	1052	1041.695	10.305
51.1	1347	1486.409	-139.409
41.2	1204	1221.188	-17.188
51.9	1867	1507.841	359.159
46.9	1439	1373.891	65.109