Note: for any problem involving hypothesis testing, you will need to justify your answer by explicitly defining your null hypothesis \mathcal{H}_0 and alternative hypothesis \mathcal{H}_1 and reporting an appropriate p-value.

- 1. Recent results suggest that children with ADHD also tend to watch more TV than children who are not diagnosed with the disorder. To examine this relationship, a researcher obtains a random sample of N=36 children, 8 to 12 years old, who have been diagnosed with ADHD. Each child is asked to keep a journal recording how much time each day is spent watching TV. The average daily time for the sample is $\overline{X}=4.9$ hours. It is known that the average time for the general population (without ADHD) is 4.1 hours, with $\sigma=1.8$.
 - (a) Compute a 95% confidence interval for μ , the population mean for children with ADHD.
 - (b) Perform a hypothesis test to decide whether children with ADHD spend significantly more time watching TV than the general population.
- 2. A researcher is testing the effectiveness of a new herbal supplement that claims to improve memory performance. A sample of N=25 college students is obtained and each student takes the supplement daily for six weeks. At the end of the 6-week period, each student is given a standardized memory test and average score for the sample is $\overline{X}=39$. For the general population of college students, the distribution of test scores is normal with a mean of 35 and $\sigma=15$.
 - (a) Compute a 95% confidence interval for μ , the population mean memory score for college students who have taken the supplement.
 - (b) Perform a hypothesis test to decide whether students taking the supplement have significantly better memory scores than the general population.
- 3. A sample of N=5 individuals is selected from a population with a mean of 70. A treatment is administered to the individuals in the sample and, after treatment, the sample has a mean of $\overline{X}=74$ and SS=50.
 - (a) Compute a 95% confidence interval for μ , the population mean for the treatment group.
 - (b) Compute an appropriate effect size (e.g., Cohen's d) for the treatment.
 - (c) Perform a hypothesis test to decide whether the population mean of the treatment group is significantly larger than the mean of the general population.
- 4. A researcher would like to evaluate the effect of a new reading program for second-grade students. For the past 5 years, a standardized test given at the end of the second grade has produced a mean score of 45. A sample of N=25 students is placed in the new program, and at the end of the school year, they obtain a mean test score of $\overline{X}=51$ with SS=9600.
 - (a) Compute a 95% confidence interval for μ , the population mean score for students in the reading program.
 - (b) Compute an appropriate effect size (e.g., Cohen's d) for the effect of the reading program.
 - (c) Perform a hypothesis test to decide whether the population mean score for students in the new reading program is significantly different from the mean score for second graders in general.

PSYC 2317: Statistical Methods for Psychology

Tarleton State University

Exam 2 Practice Problems

5. A psychologist is examining the influence of an older sibling in the development of social skills. A sample of 24 three-year-old children is obtained. Half of these children had no siblings and the others had at least one older sibling who is within 5 years of the child's age. The psychologist records a social skills score for each child and obtained the following data.

No sibling	Older sibling
$N_1 = 12$	$N_2 = 12$
$\overline{X}_1 = 17$	$\overline{X}_2 = 24$
$SS_1 = 580$	$SS_2 = 608$

- (a) Compute a 95% confidence interval for $\mu_1 \mu_2$, the population mean difference in social skills...
- (b) Compute an appropriate effect size (e.g., Cohen's d) for the effect of having an older sibling.
- (c) Perform a hypothesis test to decide whether the population mean social skills score for children with no siblings is significantly reduced compared to children with an older sibling.