Intégration

Convergence en mesure

18 octobre 2021 **ENS Paris-Saclay**

(18)

Soit (X, \mathcal{A}, μ) un espace mesuré et soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables de (X, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On dit que la suite $(f_n)_{n\mathbb{N}}$ converge en mesure vers f si:

$$\forall \varepsilon > 0, \lim_{n} \mu(\{|f_n - f| > \varepsilon\}) = 0.$$

- **1.** Montrer que si $\mu(X) < \infty$ et la suite $(f_n)_{n \in \mathbb{N}}$ converge μ -p.p. vers f, alors elle converge en mesure vers f.
- **2.** Réciproquement, supposons que $(f_n)_{n\in\mathbb{N}}$ converge en mesure vers f.
 - (a) Montrer qu'il existe une sous-suite $(f_{n_k})_{k>1}$ telle que :

$$\forall k \ge 1, \ \mu(\{|f_{n_k} - f| > 1/k\}) < 1/k^2.$$

- (b) Soit $A = \bigcup_{p \in \mathbb{N}^*} \bigcap_{k \geq p} \{ |f_{n_k} f| \leq 1/k \}$. Montrer que $(f_{n_k})_{k \geq 1}$ converge vers f sur A et que $\mu(A^c) = 0$ (en d'autres termes, $(f_n)_{n \in \mathbb{N}}$ possède une sous-suite qui converge μ -p.p. vers f).
- 1. Déjà, par théorème, f est une fonction mesurable dans les mêmes ensembles que les $(f_n)_{n\in\mathbb{N}}$. En particulier, les $|f_n-f|$ sont mesurables.

Soit $\varepsilon > 0$. Notons, pour $n \in \mathbb{N}$, $A_n = \{|f_n - f| \le \varepsilon\}$, qui est bien mesurable dans X (par la remarque précédente, et en remarquant que les $[-\varepsilon, \varepsilon]$ sont des boréliens de \mathbb{R}). De plus, on note $B_n = \bigcap_{k > n} A_k$. Détaillons :

$$B_n = \{ x \in A \mid \forall k \ge n, |f_n(x) - f(x)| \le \varepsilon \}.$$

Il suit, par définition de la convergence simple, que $B = \bigcup_{n \geq 0} B_n$ contient tous les x pour lesquels $(f_n)_{n \in \mathbb{N}}$ converge simplement vers f. Par ailleurs, la suite des B_n est, par construction, croissante pour l'inclusion. L'ensemble $X \setminus B$ étant mesurable et contenant uniquement des x pour lesquels $(f_n)_{n \in \mathbb{N}}$ ne converge pas simplement, on en déduit qu'il est de mesure nulle par définition de la convergence μ -p.p. Cette remarque ainsi que la convergence monotone donnent donc :

$$\lim \mu(B_n) = \mu(B) = \mu(X) < \infty.$$

Par ailleurs, puisque $\forall n \in \mathbb{N}, A_n \supset B_n$ il vient :

$$\mu(X) \ge \mu(A_n) \ge \mu(B_n)$$
 d'où $\mu(A_n) \xrightarrow{\infty} \mu(X)$,

par application du théorème d'encadrement. Enfin :

$$\lim \mu(\{|f_n - f| > \varepsilon\}) = \lim \mu(X \setminus A_n) = \mu(X) - \mu(A_n) \xrightarrow{\infty} 0.$$

2. (a) On réécrit la définition de la convergence en mesure de la façon suivante :

$$\forall \varepsilon > 0, \forall \iota > 0, \exists N \in \mathbb{N}, \forall n \ge N, \ \mu(\{|f_n - f| > \varepsilon\}) < \iota.$$

En faisant prendre à ε et ι les valeurs respectives de 1/k et $1/k^2$, il vient :

$$\exists N_k \in \mathbb{N}, \forall n \ge N, \ \mu(\{|f_n - f| > 1/k\}) < 1/k^2.$$

Alors, la suite définie par : $n_1 = N_1$ et, pour $k \ge 1$, $n_{k+1} = \max(n_k + 1, N_{k+1})$ convient (on procède ainsi pour conserver la stricte croissance de la suite).

2. (b) Le procédé est ici similaire à la question 1 : soit $x \in A$. Soit $\varepsilon > 0$. Par définition :

$$\exists p \in \mathbb{N}, \forall k \ge p \left| f_{n_k}(x) - f(x) \right| \le 1/k$$
 donc
$$\exists p \in \mathbb{N}, \forall k \ge \max(p, 1/\varepsilon), \ \left| f_{n_k}(x) - f(x) \right| \le \varepsilon$$

Et ainsi $(f_{n_k})_{k\geq}$ converge simplement vers f sur A. Par ailleurs, en supposant f mesurable, A l'est aussi en raisonnant comme à la question 1. On a de plus :

$$A^{c} = \bigcap_{p \in \mathbb{N}^{*}} \bigcup_{k \ge p} \{ |f_{n_{k}} - f| > 1/k \}$$
or
$$\sum_{k=1}^{\infty} \mu(\{ |f_{n_{k}} - f| > 1/k \}) \le \sum_{k=1}^{\infty} \frac{1}{k^{2}} = \frac{\pi^{2}}{6} < \infty,$$

et par le théorème de Borel-Cantelli, la mesure de A^c est nulle.