龙门吊问题的数学建模

摘要

摘要的具体内容。

关键字: 关键词1 关键词2 关键词3

目录

一、问题重	述																						•		2
1.1 问题	题的提出																								2
二、符号说	明																•								2
三、问题分	析																•								2
四、模型假	设																•				. .	•			3
五、建立模	型																•				. .	•			3
5.1 货物	物运动的	动力学	模型	ī.																					3
5.2 对扫	罢角、效	率的优	化模	模型													•					•	•	•	5
六、模型求	解																•								5
七、模型检	验																•					•		•	5
八、总结与	推广																•								5
参考文献																	•								5
					_	— ,	`	ĵ	可是	题	重	į	<u>术</u>												
1.1 问题的]提出																								
					_	_	`	行	分	号	访	担	月												
	符号														意	ĹΫ	′					_			
			木条宽度(cm)																						

三、问题分析

题目给出的龙门吊问题可以看作二维的质点运动问题,

四、模型假设

五、建立模型

5.1 货物运动的动力学模型

如图所示建立坐标系:

设吊车位置坐标为 x_a , 速度为 v_a ; 货物的位置 (x,y), 速度 v, 水平速度 v_x , 缆绳与竖直方向的角度为 θ (顺时针为正)。令 $T_1=t_1$, $T_2=t_1+t_2$, $T_3=t_1+t_2+t_3$, $T_4=t_1+t_2+t_3+t_4$ 。吊绳能承受的最大拉力 $T_{max}=20000g$, g 取 $9.8m/s^2$ 。

取货物为研究对象,用分析力学方法,取广义坐标 θ

(1) 当 $0 \le t \le T_1$ 时, 吊车匀加速运动,对于货物有如下拉格朗日函数:

$$L_1 = \frac{m}{2} \left(l^2 \dot{\theta}^2 - 2al\dot{\theta}t\cos\theta + a^2t^2 \right) + mgl\cos\theta$$

代入拉格朗日方程

$$\frac{d}{dt}\left(\frac{\partial L_1}{\partial \dot{\theta}}\right) - \frac{\partial L_1}{\partial \theta} = 0$$

得到运动微分方程:

$$l\ddot{\theta} + a\dot{\theta}t\sin\theta - a\cos\theta + g\sin\theta = 0$$

初始条件 $\theta|_{t=0} = 0$, $\dot{\theta}|_{t=0} = 0$

由 $\theta(t)$, $0 \leqslant t \leqslant T_1$, 有

$$\begin{cases} x = x_a - l\theta \sin \theta = \frac{a}{2}t^2 - l\sin \theta \\ v_x = v_a - l\dot{\theta}\cos \theta = at - l\dot{\theta}\cos \theta \end{cases}$$

(2) 当 $T_1 \le t \le T_2$ 时,吊车匀速运动,对于货物同上可得运动微分方程:

$$\begin{split} \ddot{\theta} + \frac{g}{l}\sin\theta &= 0 \\ \end{split}$$
 初始条件
$$\left\{ \begin{array}{l} \theta|_{t=T_1^+} = \theta|_{t=T_1^-} \\ \dot{\theta}\Big|_{t=T_1^+} = \dot{\theta}\Big|_{t=T_1^-} \end{array} \right. \end{split}$$

此时有:

$$\begin{cases} x = x_a - l\theta \sin \theta = \frac{a}{2}T_1^2 + aT_1(t - T_1) - l\sin \theta \\ v_x = v_a - l\dot{\theta}\cos \theta = aT_1 - l\dot{\theta}\cos \theta \end{cases}$$

(3) 当 $T_2 \le t \le T_3$ 时,吊车匀减速运动,对于货物同 (1) 可得运动微分方程:

$$l\ddot{\theta} + a(T_1 + T_2 - t)\dot{\theta}\sin\theta + a\cos\theta + g\sin\theta = 0$$
初始条件
$$\begin{cases} \theta|_{t=T_2^+} = \theta|_{t=T_2^-} \\ \dot{\theta}|_{t=T_2^-} = \dot{\theta}|_{t=T_2^-} \end{cases}$$

此时有:

$$\begin{cases} v_x = a (T_1 + T_2 - t) - l\dot{\theta}\cos\theta \\ x = x_2 + aT_1(t - T_2) - \frac{a}{2}(t - T_2)^2 - l\sin\theta \end{cases}$$

(4) 当 $T_3 < t < T_4$ 时,吊车匀速运动,对于货物同 (1) 可得运动微分方程:

$$\begin{split} \ddot{\theta} + \frac{g}{l}\sin\theta &= 0 \\ \end{split}$$
 初始条件
$$\left\{ \begin{array}{l} \theta|_{t=T_3^+} = \theta|_{t=T_3^-} \\ \dot{\theta}\Big|_{t=T_3^+} = \dot{\theta}\Big|_{t=T_3^-} \end{array} \right. \end{split}$$

此时有:

$$\begin{cases} v_x = a (T_1 + T_2 - T_3) - l\dot{\theta}\cos\theta \\ x = x_3 + a (T_1 + T_2 - T_3) (t - T_3) - l\sin\theta \end{cases}$$

整个过程中的最大摆角 $\theta_{\text{max}} = \max \theta(t)$, $0 \le t \le T_4$,

对于货物最终的水平速度,取第四段匀速过程中货物水平速度绝对值的最大值 $v_{4xmax} = max\{v_x, T_3 \le t \le T_4\}$, 要求 $v_{4max} \le 0.5m/s$ 。

运动全过程中货物的竖直速度 $v_y = -l\dot{\theta}\sin\theta$, $0 \le t \le T_4$, 对速度求导可得水平、竖直方向的加速度,由此可以计算整个运动过程中每一时刻的拉力:

$$\begin{cases} F_x = ma_x \\ F_y = mg - ma_y \end{cases}$$

要求 $F \leq F_{max}, 0 \leq t \leq T_4$

5.2 对摆角、效率的优化模型

六、 模型求解

七、模型检验

八、总结与推广

参考文献

[1]

附录的内容。