Approximating exponential family models (not single distributions) with a two-network architecture

EFN faster

-ELBO target

Sean R. Bittner¹, John P. Cunningham²

 1 Department of Neuroscience and 2 Department of Statistics, Columbia University Medical Center

Motivation

- Variational inference (VI) incurs a cost of optimization to find optimal variational parameters $\theta^* \in \Theta$ of the approximate inference model.
- Intractable exponential family models
- an exp fam likelihood
- -i.i.d. observations
- a nonconjugate prior have a fixed-dimensionality natural parameterization η with increased sampling.
- ullet If we can learn a smooth function $f_{\phi^*}: H \to \Theta$ mapping η to θ^* ,

there is potential for large savings through amortized variational inference.

Methods

Background: topic stuff

column 1 column 2

Application 1: 4-neuron V1 model_

More stuff_

Emergent properties:

Summary

- Summary point 1
- Summary point 2

References

- 1. Loaiza-Ganem, G., Y. Gao., and J. P. Cunningham. "Maximum entropy flow networks." ICLR (2017).
- 2. Dipoppa, M., et al. "Vision and locomotion shape the interactions between neuron types in mouse visual cortex." Neuron (2018).
- 3. Mastrogiuseppe, F., and S. Ostojic. "Linking connectivity, dynamics, and computations in low-rank recurrent neural networks." Neuron (2018).

Acknowledgements

NSF Graduate Research Fellowship, DGE-1644869, McKnight Endowment Fund, NIH NINDS 5R01NS100066, Simons Foundation 542963, NSF 1707398, The Gatsby Charitable Foundation