INTRODUCTORY LECTURE

We begin with the abstract definition of a group;

Definition 0.0.1. A group is an ordered pair (G, μ) , where G is a set and $\mu: G \times G \to G$ is a binary operation, satisfying the following axioms:

- (1) (associativity) $\mu(\mu(a,b),c) = \mu(a,\mu(b,c))$ for any $a,b,c \in G$
- (2) (identity) there exists $e \in G$ such that for any $a \in G$ we have $\mu(a, e) = \mu(e, a) = a$
- (3) (inverses) for any $a \in G$, there is an element $a^{-1} \in G$ such that $\mu(a, a^{-1}) = \mu(a^{-1}, a) = e$.

Here is a simple first example of a group:

Example 0.0.2 (the integers). Let \mathbb{Z} denote

Date: September 4, 2019.