AHP

Yuqi Lou 21/07/2023

Understanding User Preferences for social characteristics Features in IBM SkillsBuild Chatbot: Analysis using the Analytic Hierarchy Process (AHP)

```
library(ahpsurvey)
library(magrittr)
library(pheatmap)

atts = c(
    'Proactivity', 'Conscientiousness', 'Damage control',
    'Thoroughness', 'Emotional intelligence', 'Identity',
    'Personality'
)

df = read.csv('C:/Users/louyu/D_AHP/extents.csv')
user_profiles = read.csv('C:/Users/louyu/D_AHP/user_profiles.csv')
```



```
# Create the box plot
par(mar = c(10, 5, 4, 2) + 0.1)
boxplot(data_matrix,
    main = "Overall preference of the Social Charateristic Features",
    ylab = "Values",
    las = 2)
```

Overall preference of the Social Charateristic Features


```
split_dataframe_by_column <- function(data_frame, user_prof, column_name) {</pre>
  # Get unique values of the specified column
  unique_values <- unique(user_prof[[column_name]])</pre>
  # Create an empty list to store the subsets
  dataframes_list <- list()</pre>
  # Split the data frame by the specified column and store subsets in the list
  for (value in unique_values) {
    indices = which(user_prof[[column_name]] == value)
    subset_df = data_frame[indices, ]
    dataframes_list[[as.character(value)]] <- subset_df</pre>
  }
  return(dataframes_list)
plot_heat_map = function(data_frame, user_profiles, column_name, column_full_name) {
  df_list = split_dataframe_by_column(data_frame, user_profiles, column_name)
  column names = names(df list)
  agg_ahps = c()
  for (value in column_names) {
    ahp_value = df_list[[value]] %>%
      ahp.mat(atts = atts, reciprocal = TRUE)
    eigentrue = ahp.indpref(ahp_value, atts, method = "eigen")
    agg = ahp.aggpref(ahp_value, atts, method = "eigen")
    data_matrix <- as.matrix(eigentrue)</pre>
    agg_ahps = rbind(agg_ahps, agg)
    if (nrow(eigentrue) == 1 & all(eigentrue[1, ] == eigentrue[1, 1])) {
      cat(paste("WARNING: there is only one rows of", value, "in",
                  column_full_name,
                  "\nand all columns have the same value.",
                  "\nThe heatmap is omitted due to R will output error in this case.",
                  "\nBut this row will show up in the",
                  paste("\nPreferred Social Charateristic Features of different", column_full
_name)))
      next
    }
    full_name_with_brakets = paste0("(", column_full_name, ")")
    pheatmap(data matrix,
                                    # Set to TRUE if you want to cluster rows
             cluster rows = FALSE,
             cluster cols = FALSE,
                                    # Set to TRUE if you want to cluster columns
             color = colorRampPalette(c("white", "black"))(100),
             main = paste("Preferred Social Charateristic Features of different", value, full
_name_with_brakets))
  }
  rownames(agg_ahps) <- column_names</pre>
  data_matrix <- as.matrix(agg_ahps)</pre>
  pheatmap(data_matrix,
```

```
# Set to TRUE if you want to cluster rows
           cluster rows = FALSE,
           cluster cols = FALSE,
                                   # Set to TRUE if you want to cluster columns
           color = colorRampPalette(c("white", "black"))(100),
           main = paste("Preferred Social Charateristic Features of different", column_full_n
ame))
plot_box_plot = function(data_frame, user_profiles, column_name, column_full_name) {
 df_list = split_dataframe_by_column(data_frame, user_profiles, column_name)
 column_names = names(df_list)
 all_values = c() # Create a vector to store all data points
 group_labels = c() # Create a vector to store group labels
 for (value in column_names) {
    ahp_value = df_list[[value]] %>%
      ahp.mat(atts = atts, reciprocal = TRUE)
    eigentrue = ahp.indpref(ahp_value, atts, method = "eigen")
   data_vector <- as.vector(eigentrue)</pre>
   all_values = c(all_values, data_vector) # Concatenate data vectors
   group_labels = c(group_labels, rep(value, length(data_vector)))
 }
 # Get the number of boxplots to be plotted
 num_plots <- length(column_names)</pre>
 # Create a vector of colors for the boxplots
 boxplot_colors <- rainbow(num_plots)</pre>
 par(mar = c(9, 5, 4, 2) + 0.1)
 # Create the boxplot with all data points
 boxplot(all_values,
          col = rep(boxplot_colors, each = ncol(eigentrue)),
          at = 1:(num_plots * ncol(eigentrue)),
          main = paste("Preferred Social Charateristic Features of different", column_full_na
me),
          ylab = "Values",
          # xlab = rep(names(eigentrue), each = num_plots),
          las = 2)
 # Add group labels to the x-axis
 # xis(side = 1, at = 1:(num_plots * ncol(eigentrue)),
        labels = rep(names(eigentrue), each = num_plots), las = 2)
 # Create the Legend
 par(xpd = TRUE)
 legend("topright", legend = column names, fill = boxplot colors, bty = "n", inset = c(0,
0))
}
```

AHP on Whether interacted with IBM Chatbot

AHP on Whether interacted with IBM SkillsBuild Chatbot is omitted since all participants answered yes.

AHP on age

plot_heat_map(df, user_profiles, "age", "age")

Preferred Social Charateristic Features of different 18 - 24 years old (age)

Preferred Social Charateristic Features of different 25-34 years old (age)

Preferred Social Charateristic Features of different Under 18 (age)

Preferred Social Charateristic Features of different 35-44 years old (age)

Preferred Social Charateristic Features of different age

plot_box_plot(df, user_profiles, "age", "age")

Preferred Social Charateristic Features of different age

AHP on gender

plot_heat_map(df, user_profiles, "gender", "gender")

Preferred Social Charateristic Features of different Female (gender)

Preferred Social Charateristic Features of different Male (gender)

Preferred Social Charateristic Features of different Prefer not to say (gender)

Preferred Social Charateristic Features of different Non-binary (gender)

Preferred Social Charateristic Features of different gender

plot_box_plot(df, user_profiles, "gender", "gender")

Preferred Social Charateristic Features of different gender

AHP on Educational Background

plot_heat_map(df, user_profiles, "edu", "Educational Background")

d Social Charateristic Features of different Master's Degree (Educational Backgrou

Social Charateristic Features of different Bachelor's Degree (Educational Backgro

ed Social Charateristic Features of different Ph.D. or higher (Educational Backgroun

red Social Charateristic Features of different High School (Educational Background

ed Social Charateristic Features of different Educational Background

plot_box_plot(df, user_profiles, "edu", "Educational Background")

Preferred Social Charateristic Features of different Educational Backgro

AHP on Familiarity with emerging technologies

plot_heat_map(df, user_profiles, "fam", "Familiarity with emerging technologies")

d Social Charateristic Features of different 4 (Familiarity with emerging technologi

d Social Charateristic Features of different 3 (Familiarity with emerging technologi

Ⅎ Social Charateristic Features of different 5 (Familiarity with emerging technologi€

d Social Charateristic Features of different 2 (Familiarity with emerging technologi

d Social Charateristic Features of different 1 (Familiarity with emerging technologi

d Social Charateristic Features of different Familiarity with emerging technologies

plot_box_plot(df, user_profiles, "fam", "Familiarity with emerging technologies")

erred Social Charateristic Features of different Familiarity with emerging te

AHP on Frequency of Chatbot Usage

plot_heat_map(df, user_profiles, "freq", "Frequency of using Chatbots")

ferred Social Charateristic Features of different 5 (Frequency of using Chatbots)

ferred Social Charateristic Features of different 4 (Frequency of using Chatbots)

ferred Social Charateristic Features of different 1 (Frequency of using Chatbots)

ferred Social Charateristic Features of different 2 (Frequency of using Chatbots)

ferred Social Charateristic Features of different 3 (Frequency of using Chatbots)

Iferred Social Charateristic Features of different Frequency of using Chatbots

plot_box_plot(df, user_profiles, "freq", "Frequency of using Chatbots")

Preferred Social Charateristic Features of different Frequency of using Characteristic Features of Usin

AHP on Overall satisfaction (IBM Chatbot)

plot_heat_map(df, user_profiles, "sat", "Overall satisfaction (IBM Chatbot)")

rred Social Charateristic Features of different 3 (Overall satisfaction (IBM Chatbot))

rred Social Charateristic Features of different 2 (Overall satisfaction (IBM Chatbot))

red Social Charateristic Features of different 5 (Overall satisfaction (IBM Chatbot))

rred Social Charateristic Features of different 4 (Overall satisfaction (IBM Chatbot))

WARNING: there is only one rows of 1 in Overall satisfaction (IBM Chatbot)
and all columns have the same value.
The heatmap is omitted due to R will output error in this case.
But this row will show up in the
Preferred Social Charateristic Features of different Overall satisfaction (IBM Chatbot)

rred Social Charateristic Features of different Overall satisfaction (IBM Chatbot)

 $\verb|plot_box_plot(df, user_profiles, "sat", "Overall satisfaction (IBM Chatbot)")| \\$

eferred Social Charateristic Features of different Overall satisfaction (IBM

