Adjunctions and the Yoneda Lemma

December 24, 2023

00VY

Contents

- 1 Adjunctions **00VZ**
- 1.1 Foundations 00W0

Let C and \mathcal{D} be two categories.

Definition 1.1.1.1. An **adjunction**¹ is a quadruple (F, G, η, ϵ) consisting of

- 1. A functor $F: C \to \mathcal{D}$;
- 2. A functor $G: \mathcal{D} \to \mathcal{C}$;
- 3. A natural transformation $\eta: \mathrm{id}_C \Longrightarrow G \circ F$;
- 4. A natural transformation $\epsilon \colon F \circ G \Longrightarrow \mathrm{id}_{\mathcal{D}};$

¹ Further Terminology: We also call (G, F) an **adjoint pair**, F a **left adjoint**, G a **right adjoint**, η the **unit** of the adjunction, and ϵ the **counit** of the adjunction.

such that we have equalities

of pasting diagrams in Cats₂.²

Example 1.1.1.2. Here are some examples adjunctions.

1. We have a triple adjunction

$$(\lceil - \rceil + \iota + \lfloor - \rfloor): \quad \mathbb{R} \leftarrow \iota \longrightarrow \mathbb{Z},$$

$$F \xrightarrow{\operatorname{id}_{F} \circ \eta} F \circ G \circ F \qquad G \xrightarrow{\eta \circ \operatorname{id}_{G}} G \circ F \circ G$$

$$\operatorname{id}_{F} \qquad \operatorname{id}_{G} \circ \epsilon \qquad \operatorname{id}_{G} \circ \epsilon \qquad (1.1.1.1)$$

called the **left** and **right triangle identities**, commute, or, again equivalently, for each $A \in \mathrm{Obj}(C)$ and each $B \in \mathrm{Obj}(\mathcal{D})$, the diagrams

commute.

²Equivalently, the diagrams

where \mathbb{Z} and \mathbb{R} are viewed as poset categories and $\iota \colon \mathbb{Z} \hookrightarrow \mathbb{R}$ is the canonical inclusion.

Proposition 1.1.1.3. Let $F, L: C \Rightarrow \mathcal{D}$ and $\mathcal{O} \mathbb{R}^4 \mathcal{D} \Rightarrow C$ be functors.

- 1. Characterisations. The following conditions equivalent:
 - (a) The pair (L, R) is an adjoint pair.
 - (b) We have a natural isomorphism of (pro)functors³

$$h^L \cong h_R$$
.

(c) For each $A \in \text{Obj}(C)$ and each $B \in \text{Obj}(\mathcal{D})$, we have an isomorphism

$$\operatorname{Hom}_{\mathcal{D}}(L_A, B) \cong \operatorname{Hom}_{\mathcal{C}}(A, R_B)$$

1. *Bijection.* For each $A \in \text{Obj}(C)$ and each $B \in \text{Obj}(\mathcal{D})$, we have a bijection

$$\operatorname{Hom}_{\mathcal{D}}(L_A, B) \cong \operatorname{Hom}_{\mathcal{C}}(A, R_B).$$

2. Naturality in \mathcal{D} . For each morphism $g \colon B \to B'$ of \mathcal{D} , the diagram

$$\operatorname{Hom}_{\mathcal{D}}(L_A, B) \xrightarrow{\operatorname{id}_{L_A}} \operatorname{Hom}_{\mathcal{C}}(A, R_B)$$

$$\downarrow h_g^{\operatorname{id}_{L_A}} \qquad \qquad h_{R_g}^{\operatorname{id}_{A}}$$

$$\operatorname{Hom}_{\mathcal{D}}(L_A, B') \xrightarrow{\operatorname{Hom}_{\mathcal{C}}(A, R_{B'})} \operatorname{Hom}_{\mathcal{C}}(A, R_{B'})$$

commutes.

3. *Naturality in C*. For each morphism $f: A \rightarrow A'$ of C, the diagram

$$\operatorname{Hom}_{\mathcal{D}}(L_A,B)$$
 $\cdots \rightarrow \operatorname{Hom}_{\mathcal{C}}(A,R_B)$
$$\left| \begin{array}{c} h_{\operatorname{id}_R}^f \\ h_{\operatorname{id}_R} \end{array} \right|$$

$$\operatorname{Hom}_{\mathcal{D}}(L_{A'},B)$$
 $\cdots \rightarrow \operatorname{Hom}_{\mathcal{C}}(A',R_B)$

commutes.

³That is, the following conditions are satisfied:

and the square below-left commutes iff the square below-right commutes:

$$L_{A} \xrightarrow{f^{\sharp}} B \qquad A \xrightarrow{f^{\flat}} R_{B}$$

$$L_{\phi} \downarrow \qquad \downarrow \psi \qquad \Longleftrightarrow \qquad \phi \downarrow \qquad \downarrow R_{\psi}$$

$$L_{A'} \xrightarrow{g^{\sharp}} B' \qquad A' \xrightarrow{g^{\flat}} R_{B'}.$$

(d) For each small category K, we have an adjunction

$$(L_* \dashv R_*)\colon \operatorname{\mathsf{Fun}}(\mathcal{K},C) \underbrace{\overset{L_*}{\underset{R_*}{\smile}}} \operatorname{\mathsf{Fun}}(\mathcal{K},\mathcal{D})$$

as witnessed by a natural isomorphism

$$Nat(L \circ F, G) \cong Nat(F, R \circ G)$$

natural in $\mathcal{K} \xrightarrow{F} C$ and $\mathcal{K} \xrightarrow{G} \mathcal{D}$.

(e) For each locally small category \mathcal{E} , we have an adjunction

$$(R^* \dashv L^*) \colon \operatorname{\mathsf{Fun}}(C,\mathcal{E}) \underbrace{\overset{R^*}{\underset{L^*}{\longleftarrow}}} \operatorname{\mathsf{Fun}}(\mathcal{D},\mathcal{E})$$

as witnessed by a natural isomorphism

$$Nat(F \circ R, G) \cong Nat(F, G \circ L)$$

natural in $C \xrightarrow{F} \mathcal{E}$ and $\mathcal{D} \xrightarrow{G} \mathcal{E}$.

- 4. Uniqueness. If G admits left/right adjoints F_1 and F_2 , then $F_1 \cong F_2$.
- 5. Stability Under Composition. If $F_1 \dashv G_1$ and $F_2 \dashv G_2$, Athen $(F_2 \circ F_1) \dashv (G_2 \circ G_1)$:

$$C \overset{F_1}{\underset{G_1}{\longleftarrow}} \mathcal{D} \overset{F_2}{\underset{G_2}{\longleftarrow}} \mathcal{E} \iff C \overset{F_2 \circ F_1}{\underset{G_2 \circ G_1}{\longleftarrow}} \mathcal{E}$$

- 6. Interaction With Co/Limits. The following statements true:
 - (a) **Left Adjoints Preserve Colimits (LAPC).** If F is a left adjoint, then F preserves all colimits that exist in C.
 - (b) **Right Adjoints Preserve Limits (RAPL).** If G is a right adjoint, then G preserves all limits that exist in G.
- 7. Interaction With Faithfulness. Let (F, G, η, ϵ) be an addition. The following conditions are equivalent:
 - (a) The functor *F* is faithful.
 - (b) For each $A \in Obj(C)$, the morphism

$$\eta_A \colon A \to G_{F_A}$$

is a monomorphism.

Dually, the following conditions are equivalent:

- (a) The functor *G* is faithful.
- (b) For each $A \in Obj(C)$, the morphism

$$\epsilon_A \colon F_{G_A} \to A$$

is an epimorphism.

⁴Moreover, writing $\theta \colon F_1 \stackrel{\cong}{\Longrightarrow} F_2$ for this isomorphism, the diagrams

commute; see [riehl:context].

8. Interaction With Fullness. Let (F, G, η, ϵ) be an adjoint conditions are equivalent:

- (a) The functor *F* is full.
- (b) For each $A \in Obj(C)$, the morphism

$$\eta_A \colon A \to G_{F_A}$$

is a split epimorphism.

Dually, the following conditions are equivalent:

- (a) The functor *G* is full.
- (b) For each $A \in Obj(C)$, the morphism

$$\epsilon_A \colon F_{G_A} \to A$$

is a split monomorphism.

- 9. Interaction With Fully Faithfulness I. Let (F, G, η, ϵ) be an adjunction. The following conditions are equivalent:
 - (a) The functor F is fully faithful.
 - (b) For each $A \in Obj(C)$, the morphism

$$\eta_A \colon A \to G_{F_A}$$

is an isomorphism.

- (c) The following conditions are satisfied:
 - i. The natural transformation

$$id_F \circ \eta \circ id_G \colon F \circ G \Longrightarrow F \circ G \circ F \circ G$$

is a natural isomorphism.

- ii. The functor F is conservative.
- iii. The functor *G* is essentially surjective.

Dually, the following conditions are equivalent:

- (a) The functor *G* is fully faithful.
- (b) For each $A \in Obj(C)$, the morphism

$$\epsilon_A \colon F_{G_A} \to A$$

is an isomorphism.

- (c) The following conditions are satisfied:
 - i. The natural transformation

$$id_G \circ \eta \circ id_F \colon G \circ F \Longrightarrow G \circ F \circ G \circ F$$

is a natural isomorphism.

- ii. The functor *G* is conservative.
- iii. The functor *F* is essentially surjective.
- 10. Interaction With Fully Faithfulness II. Let (F, G, η, ϵ) be an adjoint tion.
 - (a) If $G \circ F$ is fully faithful, then so is F.
 - (b) If $F \circ G$ is fully faithful, then so is G.

Proof. ??, Adjunctions Via Hom-Functors: See [riehl:context].

- ??, Uniqueness of Adjoints: This follows from the Yoneda lemma (??) and its dual (??).
- ??, Stability Under Composition: See [riehl:context].
- **??**: *Interaction With Limits and Colimits,* **??**: ⁵We prove **??** only, as **??** follows by duality (Limits and Colimits, **??** of **??**). Indeed, let $F: C \to \mathcal{D}$ be a functor admitting a right adjoint $G: \mathcal{D} \to C$. For each $Y \in \text{Obj}(\mathcal{D})$, we have isomorphisms

$$\operatorname{Hom}_{\mathcal{D}}(F_{\operatorname{colim}(D)},Y)\cong \operatorname{Hom}_{\mathcal{D}}(\operatorname{colim}(D),G_Y)$$

$$\cong \lim(\operatorname{Hom}_{\mathcal{D}}(D,G_Y)) \qquad \text{(Limits and Colimits, ?? of ??)}$$

$$\cong \lim(\operatorname{Hom}_{\mathcal{D}}(F_D,Y))$$

$$\cong \operatorname{Hom}_{\mathcal{D}}(\operatorname{colim}(F_D),Y), \qquad \text{(Limits and Colimits, ?? of ??)}$$

natural in $Y \in \text{Obj}(\mathcal{D})$. The result then follows from Categories, ??.

- ??: Interaction With Limits and Colimits, ??: This is dual to ??.
- **??**, *Interaction With Faithfulness*: See [riehl:context].
- **??**, *Interaction With Fullness*: See [riehl:context].
- **??**, *Interaction With Fully Faithfulness I*: See [riehl:context] and [loregian2020coend].
- **??**, Interaction With Fully Faithfulness II: See [stacks-project], [loregian2020coend], or [low:homotopical-algebra].

1.2 Existence Criteria for Adjoint Functors

Let C and \mathcal{D} be categories.

Theorem 1.2.1.1. Let $F: C \to \mathcal{D}$ and $G \circ \mathcal{D} \hookrightarrow C$ be functors.

⁵Reference: See [riehl:context].

- 1. Via Comma Categories. The following conditions with equivalent:
 - (a) The functor *F* has a right adjoint.

00W T

(b) For each $s \in \text{Obj}(\mathcal{D})$, the comma category $F \downarrow s \cong \int_{\mathcal{C}} [h_s^{F_-}]$ has a terminal object.

Dually, the following conditions are equivalent:

(a) The functor *G* has a left adjoint *F*.

00WL

(b) For each $s \in \mathrm{Obj}(C)$, the comma category $s \downarrow G \cong \int^C [h^s_{G_-}]$ has an initial object.

Moreover, when these conditions are satisfied, we have isomorphisms

$$F_A \cong \lim_{A \to G_X} (x),$$
 $G_{-} \cong \operatorname{colim}(x)$

$$G_B \cong \underset{F_x \to G_B}{\operatorname{colim}}(x),$$

natural in $A \in \text{Obj}(C)$ and $B \in \text{Obj}(\mathcal{D})$.

- 2. The General Adjoint Functor Theorem ⁶. Suppose that
 - (a) The category $\mathcal D$ has all limits and F commutes with them.
 - (b) The category *C* is complete and locally small.
 - (c) The Solution Set Condition. For each $X \in \text{Obj}(\mathcal{D})$, there exist
 - i. A small set I;
 - ii. A set $\{A_i\}_{i\in I}$ of objects of C;
 - iii. A set $\{f_i \colon X \to G_{A_i}\}$ of morphisms of \mathcal{D} ;

such that, for each $i \in I$ and each morphism $f: X \to G_A$, there exists a morphism $\phi_i \colon A_i \to A$ of C together with a factorisation

$$X \xrightarrow{f_i} G_{A_i} \xrightarrow{G_{\phi_i}} G_A.$$

$$f$$

Then *F* has a left adjoint.

3. The Special Adjoint Functor Theorem. Suppose that 00WP

⁶Further Terminology: Also called **Freyd's adjoint functor theorem**.

- (a) The category \mathcal{D} has all limits and F commutes with them.
- (b) The category *C* is complete, locally small, and well-powered.
- (c) The category *C* has a small cogenerating set.

Then *F* has a left adjoint.

- 4. Freyd's Representability Theorem I. Let $F: C \to \mathsf{Sets}$ be a **banc**tor. If
 - (a) The functor *F* commutes with limits;
 - (b) The category *C* is complete and locally small;
 - (c) The Solution Set Condition. There exists a set $\Phi \subset \mathrm{Obj}(C)$ such that, for each $c \in \mathrm{Obj}(C)$, there exist
 - $s \in \Phi$;
 - $y \in F_s$;
 - $f: s \to c$ in $Hom_{Sets}(s, c)$;

such that
$$F_{f(y)} = x$$
;

then F is representable.

- 5. Freyd's Representability Theorem II ⁸. Let $F: C \to \mathsf{Sets}$ be MP had the second of the s
 - (a) The functor *F* commutes with limits;
 - (b) There exist
 - A collection $\{x_{\alpha}\}_{{\alpha}\in I}$ of object of C;
 - For each $\alpha \in I$, an element f_{α} of $F_{x_{\alpha}}$

such that for each $y \in \text{Obj}(C)$ and each $g \in F_y$, there exists some $\alpha \in I$ and some morphism $\phi \colon x_i \to y$ such that $F_\phi(f_\alpha) = g$;

then F is representable.

- 6. *Co/Totality*. Suppose that 00WS
 - (a) The category C is locally small and cototal and \mathcal{D} is locally small.

Proof. ??, Via Comma Categories: We claim that ???? are indeed equivalent:

⁷A nice application of this theorem is given in [MSE276630], where it is used to abstractly show that Cats is cocomplete, avoiding the explicit construction of coequalisers in Cats given in ??.

⁸This is the statement of Freyd's representability theorem as found in [stacks-project].

⁹Reference: [riehl:context].

• $?? \Longrightarrow ??$: Let *F* be a left adjoint of *G*. Then

$$s \downarrow G \cong \int^{C} [h_{G_{-}}^{s}]$$
$$\cong \int^{C} [h_{-}^{F_{s}}],$$

where $h_{G_-}^s$ is corepresentable by F_s . By Fibred Categories, $\ref{fig:space}$ of $\ref{fig:space}$, it follows that the component $\eta_s \colon s \to G_{F_s}$ of the unit of the adjunction $F \dashv G$ at s is an initial object of $s \downarrow G$.

• ?? \Longrightarrow ??: For each $s \in \text{Obj}(\mathcal{D})$, write $\eta_s \colon s \to G_{F_s}$ for an initial object of $s \downarrow G$. This gives us a map of sets

$$F \colon \mathsf{Obj}(C) \longrightarrow \mathsf{Obj}(\mathcal{D})$$
$$s \longmapsto F_{\mathsf{s}}.$$

We now extend this map to a functor: given a morphism $f: s \to s'$ of C, we define $F_f: F_s \to F_{s'}$ to be the unique morphism making the diagram

$$\begin{array}{ccc}
s & \xrightarrow{f} & s' \\
 & \downarrow & \downarrow \\
G_{F_s} & ---- & G_{F_s} & G_{F_{s'}}
\end{array}$$

commute (which exists by the initiality of η_s). By the uniqueness of these morphisms, it follows that the assignment $s\mapsto F_s$ is indeed functorial. Moreover, we also obtain a natural transformation $\eta\colon \mathrm{id}_C \Longrightarrow G\circ F$. We now define a natural transformation

$$\phi \colon \operatorname{Hom}_{\mathcal{D}}(F_{-}, b) \Longrightarrow \operatorname{Hom}_{\mathcal{C}}(-, G_{b})$$

consisting of the collection

$$\{\phi_{s,b} \colon \operatorname{Hom}_{\mathcal{D}}(F_s, b) \Longrightarrow \operatorname{Hom}_{\mathcal{C}}(s, G_b)\}_{s \in \operatorname{Obj}(\mathcal{C})}$$

where $\phi_{s,b}$ is the map sending a morphism $g\colon F_s o b$ to the composition

$$s \xrightarrow{\eta_s} G_{F_s} \xrightarrow{G_g} G_b.$$

By the existence and uniqueness of morphisms from η_s to any other object $s \to G_b$ in $s \downarrow G$, it follows that the maps $\phi_{s,b}$ are bijective, showing F to be a left adjoint of G.

- **??**, *The General Adjoint Functor Theorem*: See [riehl:context].
- ??, The Special Adjoint Functor Theorem: See [riehl:context].
- **??**, Freyd's Representability Theorem I: See [riehl:context].
- ??, Freyd's Representability Theorem II: See [stacks-project].
- ??, Co/Totality: Omitted.

1.3 Adjoint String@OWT

To avoid clutter, in this section we will abbreviate long compositions of functors. For instance, we write $f_1 \circ f_2 \circ f_3 \circ f_4$ as $f_1 f_2 f_3 f_4$. Let C and \mathcal{D} be categories.

Definition 1.3.1.1. An **adjoint string of length** n^{10} is an n-tuple (f_1, \ldots, f_n) of functors between C and D such that

$$f_n \dashv f_{n+1}$$

for each $n \in \{1, ..., n-1\}$.

Proposition 1.3.1.2. Let C and \mathcal{D} be categorially

- Adjoint Triples as Adjunctions Between Adjunctions. An adjoint triple is eq@@WW alently an adjunction (F → G) → (G → H) between adjunctions. FIXME [nLab:adjoint-triple].
- 2. Adjunctions Induced by an Adjoint Triple. A triple adjunction $(f_1, 000)$ gives rise to two more adjunctions

$$(f_2f_1 \dashv f_2f_3): C \xrightarrow{f_2f_1} C$$

and

$$(f_1f_2 \dashv f_3f_2) \colon \mathcal{D} \xrightarrow{f_1f_2} \mathcal{D}$$

where f_2f_1 and f_2f_3 are monads in C and f_1f_2 and f_3f_2 are comonads in \mathcal{D} .

$$f_1$$
 + f_2
 f_2 + f_3

to denote the adjunctions $(f_1 \dashv f_2 \dashv f_3)$ and $(f_1f_2) \dashv (f_2f_3)$ simultaneously; the first horizontally and the latter vertically.

¹⁰Further Terminology: Also called an **adjoint** n-tuple.

 $^{^{11}[{}f nLab:adjoint-triple}]$ suggests writing

Proof. ??, Adjoint Triples as Adjunctions Between Adjunctions: Omitted. ??, Adjunctions Induced by an Adjoint Triple: Omitted.

Proposition 1.3.1.3. Let C and D be categories.

1. Adjunctions Induced by a Quadruple Adjunction. An adjoint quadruple ($\P WZ f_2 \dashv f_3 \dashv f_4$) gives rise to two adjoint triples

$$(f_2f_1 + f_2f_3 + f_4f_3): C \leftarrow f_2f_3 - C$$

$$\downarrow f_4f_3$$

and

$$(f_1f_2 + f_3f_2 + f_3f_4): \mathcal{D} \leftarrow f_3f_2 - \mathcal{D}$$

$$\downarrow f_3f_4$$

and six adjunctions

$$(f_1f_2f_3 + f_4f_3f_2): C \xrightarrow{f_1f_2f_3} \mathcal{D}$$
 $(f_3f_2f_1 + f_2f_3f_4): C \xrightarrow{f_3f_2f_1} \mathcal{D}$

$$(f_{2}f_{3}f_{2}f_{1} + f_{2}f_{3}f_{4}f_{3}): C \xrightarrow{f_{2}f_{3}f_{2}f_{1}} C \qquad (f_{3}f_{2}f_{1}f_{2} + f_{3}f_{2}f_{3}f_{4}):$$

$$C \xrightarrow{f_{3}f_{2}f_{1}f_{2}} C \qquad (f_{3}f_{2}f_{1}f_{2} + f_{3}f_{2}f_{3}f_{4}):$$

$$C \xrightarrow{f_{3}f_{2}f_{3}f_{4}} C$$

$$(f_{2}f_{1}f_{2}f_{3} + f_{4}f_{3}f_{2}f_{3}): \mathcal{D} \underbrace{\downarrow}_{f_{4}f_{3}f_{2}f_{3}} \mathcal{D} \qquad (f_{1}f_{2}f_{3}f_{2} + f_{3}f_{4}f_{3}f_{2}):$$

$$\mathcal{D} \underbrace{\downarrow}_{f_{3}f_{4}f_{3}f_{2}} \mathcal{D}$$

$$f_{5}f_{4}f_{3}f_{2}$$

where f_2f_1 , f_2f_3 , f_4f_3 , $f_2f_3f_2f_1$, $f_2f_3f_4f_3$, $f_3f_2f_1f_2$, and $f_3f_2f_3f_4$ are monads in C and f_1f_2 , f_3f_2 , f_3f_4 , $f_2f_1f_2f_3$, $f_4f_3f_2f_3$, $f_1f_2f_3f_2$, and $f_3f_4f_3f_2$ are comonads in \mathcal{D} .

Proof. ??, Adjunctions Induced by a Quadruple Adjunction: Omitted.

Proposition 1.3.1.4. Let $(f_1 \dashv \cdots \dashv f_n) : C \text{DOND} \mathcal{O} \mathcal{D}$ be an adjoint string.

1. For each $k \in \mathbb{N}$ with $1 \le k \le n-2$, we have 2 induced adjoint strings

$$f_1 f_2 \cdots f_{n-k} f_{n-k+1} \dashv f_{n-k+2} f_{n-k+1} \cdots f_3 f_2 \dashv \cdots \dashv f_{k-1} f_k \cdots f_{n-2} f_{n-1} \dashv f_n f_{n-1} \cdots f_{k+1} f_k$$

$$f_{n-k+1} f_{n-k} \cdots f_2 f_1 \dashv f_2 f_3 \cdots f_{n-k+1} f_{n-k+2} \dashv \cdots \dashv f_{n-1} f_{n-2} \cdots f_k f_{k-1} \dashv f_k f_{k+1} \cdots f_{n-1} f_n$$
of length $n-k$.

2. Inductively applying ?? to the induced adjoint strings, we get (including the 2 adjoint strings of ??) $2 \cdot 3^{n-k-1}$ adjoint strings of length k^{12} , for a grand total of 00X2

$$\sum_{k=2}^{n-1} 2(k-1) \cdot 3^{n-k-1} = \frac{1}{6} (3^n + 3) - n$$

adjunctions.13

3. In particular:

00X3

- (a) An adjoint triple induces 2 adjoint pairs.
- (b) An adjoint quadruple induces
 - 2 adjoint triples,
 - 6 adjoint pairs,

for a grand total of 10 adjunctions.

- (c) An adjoint quintuple induces
 - 2 adjoint quadruples,
 - 6 adjoint triples,
 - 18 adjoint pairs,

for a grand total of 36 adjunctions.

- (d) An adjoint sextuple induces
 - 2 adjoint quintuples,
 - 6 adjoint quadruples,

 $f_2f_3f_2f_1 + f_2f_3f_4f_3 + \cdots + f_kf_{k+1}f_kf_{k-1} + f_kf_{k+1}f_{k+2}f_{k+1} + \cdots + f_{n-2}f_{n-1}f_{n-2}f_{n-1} + f_{n-2}f_{n-1}f_nf_{n-1}.$

¹²These need not be unique.

¹³E.g. we have 4 adjoint strings of length n-2, such as

- 18 adjoint triples,
- 54 adjoint pairs,

for a grand total of 116 adjunctions.

- (e) An adjoint septuple induces
 - 2 adjoint sextuples,
 - 6 adjoint quintuples,
 - 18 adjoint quadruples,
 - 54 adjoint triples,
 - 162 adjoint pairs,

for a grand total of 358 adjunctions.

Proof. Omitted.

1.4 Reflective Subcategories

Let *C* be a category.

Definition 1.4.1.1. A subcategory C_0 of C is **deflective** if the inclusion functor $i: C_0 \hookrightarrow C$ of C_0 into C admits a left adjoint $L: C \to C_0$.

Example 1.4.1.2. Here are some examples the effective subcategories

1. CHaus ← Top ([riehl:context]). The category CHaus is a reflective subcategory of Top, as witnessed by the adjunction

$$(\beta \dashv \iota)$$
: Top $\xrightarrow{\beta}$ CHaus,

of Topological Spaces, ?? of ??.

2. CMon \hookrightarrow Mon. The category CMon is a reflective subcategory of Ab, as witnessed by the adjunction

$$(-)^{ab} \dashv \iota$$
: Mon $\xrightarrow{(-)^{ab}}$ CMon

of Monoids, ?? of ??.

3. Ab \hookrightarrow Grp ([riehl:context]). The category Ab is a reflective subcategory of

¹⁴ Further Terminology: The functor L is called the **reflector** or **localisation** of the adjunction $L \dashv i$.

Grp, as witnessed by the adjunction

$$(-)^{ab} \dashv \iota$$
: $\operatorname{Grp} \xrightarrow{(-)^{ab}} \operatorname{Ab}$

of Groups, ?? of ??.

4. $Ab^{tf} \hookrightarrow Ab$ ([riehl:context]). The full subcategory Ab^{tf} of Ab spanned by the torsion-free abelian groups is reflective in Ab. This is witnessed by the adjunction

$$((-)^{tf} \dashv \iota): Ab \xrightarrow{(-)^{tf}} Ab^{tf},$$

where $(-)^{tf}$: Ab \to Ab^{tf} is the functor defined on objects by sending an abelian group A to the quotient A/Tors(A), where Tors(A) is the torsion subgroup of A.

5. $\mathsf{Mod}_S \hookrightarrow \mathsf{Mod}_R$ ([riehl:context]). Let $\phi \colon R \to S$ be a morphism of rings. Then ϕ^* is full iff ϕ is an epimorphism, in which case the adjunction

$$(S \otimes_R (-) \dashv \phi^*): \operatorname{\mathsf{Mod}}_S \underbrace{\overset{S \otimes_R (-)}{\bot}}_{\phi^*} \operatorname{\mathsf{Mod}}_R$$

witnesses Mod_S as a reflective subcategory of Mod_R .

6. $\mathsf{Shv}(C) \hookrightarrow \mathsf{PSh}(C)$ ([riehl:context]). The category $\mathsf{Shv}(C)$ of sheaves on a site C is a reflective subcategory of $\mathsf{PSh}(C)$, as witnessed by the adjunction

$$((-)^{\#} \dashv \iota): PSh(C) \xrightarrow{(-)^{\#}} Shv(C),$$

of Sites, ??.

7. Cats ← sSets ([riehl:context]). The category Cats is a reflective subcategory of sSets, as witnessed by the adjunction

(Ho
$$\dashv$$
 N_•): $sSets \xrightarrow{L} Cats$

of Quasicategories, ?? of ??.

Proposition 1.4.1.3. Let C_0 be a reflective subtraction of C.

1. Characterisations. Let

00X8

be an adjunction. The following conditions are equivalent:

- (a) The functor ι is fully faithful.
- (b) The counit $\epsilon: L \circ \iota \Longrightarrow id_{\mathcal{D}}$ is a natural isomorphism.
- (c) The following conditions are satisfied:
 - i. The monad $(\iota \circ L, \mathrm{id}_{\iota} \circ \epsilon \circ \mathrm{id}_{L}, \eta)$ associated to the adjunction $L \dashv \iota$ is idempotent.
 - ii. The functor ι is conservative.
 - iii. The functor *L* is essentially surjective.
- (d) The functor L is the Gabriel–Zisman localisation of C with respect to the class S given by

$$S \stackrel{\text{def}}{=} \{ f \in \operatorname{Mor}(C) \mid L(f) \text{ is an isomorphism in } \mathcal{D} \}.$$

- (e) The functor *L* is dense.
- 2. Interaction With Limits. The inclusion $C_0 \hookrightarrow \mathcal{O}$ at all limits which exist in C.
- 3. Interaction With Colimits. The category C_0 admits that exist in C: given a diagram $D: \mathcal{I} \to C_0$ in C_0 , if $\operatorname{colim}(i \circ D)$ exists in C, then $\operatorname{colim}(D)$ exists in C_0 and we have

$$colim(D) \cong L(colim(i \circ D)).$$

Proof. ??, Characterisations: See [calculus-of-fractions-and-homotopy-theory] and [properties-of-dense-and-relative-adjoint-functors].

- ??, Interaction With Limits: See [riehl:context].
- **??**, *Interaction With Colimits*: See [riehl:context].

1.5 Coreflective Substitute Subst

Let *C* be a category.

Definition 1.5.1.1. A subcategory C_0 of **@@&Coreflective** if the inclusion functor $i: C_0 \hookrightarrow C$ of C_0 into C admits a right adjoint $R: C \to C_0$.

¹⁵ Further Terminology: The functor L is called the **coreflector** or **colocalisation** of the adjunction $i \dashv R$.

2 Presheaves and the Yoneda Lemma

2.1 Presheaves 00XE

Let *C* be a category.

Definition 2.1.1.1. A presheaf on C is a function $\mathcal{F}: C^{\mathsf{op}} \to \mathsf{Sets}$.

Definition 2.1.1.2. The **category of presh@aves** on C is the category $\mathsf{PSh}(C)$ defined by

$$PSh(C) \stackrel{\text{def}}{=} Fun(C^{op}, Sets).$$

Remark 2.1.1.3. In detail, the **category of presheaves on** C is the category $\mathsf{PSh}(C)$ where

- *Objects*. The objects of PSh(*C*) are presheaves on *C*;
- Morphisms. A morphism of PSh(C) from \mathcal{F} to \mathcal{G} is a natural transformation $\alpha \colon \mathcal{F} \Longrightarrow \mathcal{G}$;
- *Identities.* For each $\mathcal{F} \in \mathsf{Obj}(\mathsf{PSh}(\mathcal{C}))$, the unit map

$$\mathbb{F}_{\mathcal{F}}^{\mathsf{PSh}(\mathcal{C})} \colon \mathsf{pt} \to \mathsf{Nat}(\mathcal{F}, \mathcal{F})$$

of PSh(C) at \mathcal{F} is defined by

$$id_{\mathcal{F}}^{\mathsf{PSh}(\mathcal{C})} \stackrel{\text{def}}{=} id_{\mathcal{F}};$$

• *Composition.* For each $\mathcal{F}, \mathcal{G}, \mathcal{H} \in \mathsf{Obj}(\mathsf{PSh}(C))$, the composition map

$$\circ^{\mathsf{PSh}(C)}_{\mathcal{F},\mathcal{G},\mathcal{H}} \colon \mathsf{Nat}(\mathcal{G},\mathcal{H}) \times \mathsf{Nat}(\mathcal{F},\mathcal{G}) \to \mathsf{Nat}(\mathcal{F},\mathcal{H})$$

of $\mathsf{PSh}(C)$ at $(\mathcal{F},\mathcal{G},\mathcal{H})$ is defined by

$$\beta \circ_{\mathcal{F},\mathcal{G},\mathcal{H}}^{\mathsf{PSh}(C)} \alpha \stackrel{\text{def}}{=} \beta \circ \alpha.$$

2.2 Representable Presheaves

Let C be a category, let $U, V \in \text{Obj}(C)$, and let $f: U \to V$ be a morphism of C.

Definition 2.2.1.1. The **representable preshood associated to** U is the presheaf $h_U \colon C^{\mathsf{op}} \to \mathsf{Sets}$ on C where

• Action on Objects. For each $A \in \text{Obj}(C)$, we have

$$h_U(A) \stackrel{\text{def}}{=} \text{Hom}_{\mathcal{C}}(A, U);$$

• Action on Morphisms. For each morphism $f: A \to B$ of C, the image

$$h_U(f) \colon \underbrace{h_U(B)}_{\stackrel{\text{def}}{=} \operatorname{Hom}_C(B,U)} \to \underbrace{h_U(A)}_{\stackrel{\text{def}}{=} \operatorname{Hom}_C(A,U)}$$

of f by h_U is defined by

$$h_U(f) \stackrel{\text{def}}{=} f^*$$
.

Definition 2.2.1.2. A presheaf $\mathcal{F}: C^{\text{op}} \to \mathfrak{Botts}$ is **representable** if $\mathcal{F} \cong h_U$ for some $U \in \text{Obj}(C)$. ¹⁶

Definition 2.2.1.3. The representable natural transformation associated to f is the natural transformation $h_f \colon h_U \Longrightarrow h_V$ consisting of the collection

$$\left\{h_{f|A} \colon \underbrace{h_U(A)}_{\substack{\text{def}\\ = \text{Hom}_C(A,U)}} \to \underbrace{h_V(A)}_{\substack{\text{def}\\ = \text{Hom}_C(A,V)}}\right\}_{A \in \text{Obj}(C)}$$

where

$$h_{f|A} \stackrel{\text{def}}{=} f_*$$
.

Theorem 2.2.1.4. Let $\mathcal{F}: C^{op} \to \text{Sets boalth}$ esheaf on C. We have a bijection

$$\operatorname{Nat}(h_A, \mathcal{F}) \cong \mathcal{F}_A$$
,

natural in $A \in Obj(C)$, determining a natural isomorphism of functors

$$\operatorname{Nat}(h_{(-)}, \mathcal{F}) \cong \mathcal{F}.$$

Proof. The Natural Transformation $ev_{(-)}: Nat(h_{(-)}, \mathcal{F}) \Longrightarrow \mathcal{F}: Let ev_{(-)}: Nat(h_{(-)}, \mathcal{F}) \Longrightarrow \mathcal{F}$ be the natural transformation consisting of the collection

$$\{\operatorname{ev}_A \colon \operatorname{Nat}(h_A, \mathcal{F}) \to \mathcal{F}(A)\}_{A \in \operatorname{Obi}(C)}$$

with

$$ev_A(\alpha) = \alpha_A(id_A)$$

for each $\alpha \colon h_A \Longrightarrow \mathcal{F}$ in Nat (h_A, \mathcal{F}) .

The Natural Transformation $\xi_{(-)} \colon \mathcal{F} \Longrightarrow \operatorname{Nat}(h_{(-)},\mathcal{F}) \colon \operatorname{Let} \xi_{(-)} \colon \mathcal{F} \Longrightarrow \operatorname{Nat}(h_{(-)},\mathcal{F})$ be the natural transformation consisting of the collection

$$\{\xi_A \colon \mathcal{F}(A) \to \operatorname{Nat}(h_A, \mathcal{F})\}_{A \in \operatorname{Obi}(C)}$$

¹⁶In such a case, we call U a **representing object** for \mathcal{F} .

where $\xi_A \colon \mathcal{F}(A) \to \operatorname{Nat}(h_A, \mathcal{F})$ is the map sending an element f of $\mathcal{F}(X)$ to the natural transformation

$$\xi_{A,f}: h_A \Longrightarrow \mathcal{F}$$

consisting of the collection

$$\{(\xi_{A,f})_U \colon h_A(U) \to \mathcal{F}(U)\}_{A \in \mathsf{Obj}(C)}$$

where $(\xi_{A,f})_U \colon h_A(U) \to \mathcal{F}(U)$ is the morphism given by

$$(\xi_{A,f})_U : h_A(U) \longrightarrow \mathcal{F}(U)$$

 $(h: U \to A) \longmapsto \mathcal{F}(h)(f)$

for each $f: U \to A$ in $h_A(U)$.

 $ev_{(-)} \circ \xi_{(-)} = id_{\mathcal{F}}$: Let $f \in \mathcal{F}(X)$. We have

$$(\xi_{A,f})_U(\mathrm{id}_U) = \mathcal{F}(\mathrm{id}_U)(f),$$

= $\mathrm{id}_{\mathcal{F}(U)}(f)$
= f .

 $\xi_{(-)} \circ ev_{(-)} = id_{Nat(h_{(-)},\mathcal{F})}$: Let $\alpha \colon h_A \Longrightarrow \mathcal{F} \in Nat(h_A,\mathcal{F})$ and consider the diagram

$$\begin{array}{c|c} \operatorname{Hom}_{C}(A,A) & \xrightarrow{h_{f}} & \operatorname{Hom}_{C}(A,X) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

defined on elements by

Then it is clear that the natural transformation ξ is determined by $\xi_A(\mathrm{id}_A)=u$, since we must have

$$\xi_X(f) = \mathcal{F}(f)(u)$$

for each $X \in \text{Obj}(C)$ and each morphism $f: A \to X$ of C.

2.3 The Yoneda Entredding

Definition 2.3.1.1. The **covariant Yoned weight edding of** C^{17} is the functor C^{18}

$$\sharp_{\mathcal{C}} : \mathcal{C} \hookrightarrow \mathsf{PSh}(\mathcal{C})$$

where

• Action on Objects. For each $U \in Obj(C)$, we have

$$\sharp(U) \stackrel{\text{def}}{=} h_U;$$

• Action on Morphisms. For each morphism $f: U \to V$ of C, the image

$$\sharp(f) \colon \sharp(U) \to \sharp(V)$$

of f by \sharp is defined by

$$\sharp(f) \stackrel{\text{def}}{=} h_f.$$

Proposition 2.3.1.2. Let C be a category. **OOXR**

- 1. Fully Faithfulness. The Yoneda embeddin@@xfully faithful. 19
- 2. Preservation and Reflection of Isomorphisms. Let $A, B \in \mathrm{Obj}(C)$. The following conditions are equivalent:
 - (a) We have $A \cong B$.
 - (b) We have $h_A \cong h_B$.
 - (c) We have $h^A \cong h^B$.
- 3. Uniqueness of Representing Objects Up to Isomorphism. Let $\mathcal{F} \colon C^{\mathsf{op}} \to \mathsf{Sets} \ \mathsf{b@axU}$ presheaf. If there exist objects A and B of C such that we have

$$h_A \cong \mathcal{F}$$
,

$$h_B \cong \mathcal{F}$$
,

then $A \cong B$.

4. As a Free Cocompletion: The Universal Property. The pair $(PSh(C), \downarrow)$ **CONN** isting of

¹⁷ Further Terminology: Also called simply the **Yoneda embedding**.

¹⁸ Further Notation: Also written $h_{(-)}$, or simply \sharp .

¹⁹In other words, the Yoneda embedding is indeed an embedding.

- The category PSh(C) of presheaves on C;
- The Yoneda embedding $\sharp: C \hookrightarrow \mathsf{PSh}(C)$ of C into $\mathsf{PSh}(C)$;

satisfies the following universal property:

- **(UP)** Given another pair (\mathcal{A}, F) consisting of
 - A cocomplete category \mathcal{A} ;
 - A cocontinuous functor $F: C \to \mathcal{A}$;

there exists a cocontinuous functor $PSh(C) \xrightarrow{\exists !} \mathcal{A}$, unique up to natural isomorphism, making the diagram

commute, again up to natural isomorphism.

5. As a Free Cocompletion: 2-Adjointness. We have a 2-adjunction 00XW

(PSh
$$\dashv \iota$$
): Cats $\stackrel{\mathsf{PSh}}{\underbrace{\iota_2}}$ Cats $\overset{\mathsf{cocomp.}}{\underbrace{\iota_1}}$

witnessed by an adjoint equivalence of categories²⁰

$$\big(\mathrm{Lan}_{\, \boldsymbol{\xi}} \dashv \boldsymbol{\xi}^*\big) \colon \quad \mathsf{CoContFun}(\mathsf{PSh}(\mathcal{C}),\mathcal{D}) \underbrace{\overset{\mathrm{Lan}_{\, \boldsymbol{\xi}}}{\boldsymbol{\xi}^*}}_{\boldsymbol{\xi}^*} \mathsf{Fun}(\mathcal{C},\mathcal{D}),$$

natural in $C \in Obj(Cats)$ and $D \in Obj(Cats^{cocomp.})$, where

• We have a functor

$$\sharp_{\mathcal{C}}^* \colon \mathsf{CoContFun}(\mathsf{PSh}(\mathcal{C}), \mathcal{D}) \to \mathsf{Fun}(\mathcal{C}, \mathcal{D})$$

defined by

$$\sharp_{C}^{*}(F) \stackrel{\text{def}}{=} F \circ \sharp_{C},$$

i.e. by sending a functor $F \colon \mathsf{PSh}(C) \to \mathcal{D}$ to the composition

$$C \stackrel{\sharp_C}{\hookrightarrow} \mathsf{PSh}(C) \stackrel{F}{\longrightarrow} \mathcal{D};$$

²⁰In this sense, PSh(C) is the free cocompletion of C (although the term "cocompletion" is slightly

• We have a natural map

$$\operatorname{Lan}_{\mathcal{L}_C} : \operatorname{\mathsf{Fun}}(\mathcal{C}, \mathcal{D}) \to \operatorname{\mathsf{CoContFun}}(\operatorname{\mathsf{PSh}}(\mathcal{C}), \mathcal{D})$$

computed on objects by

$$\left[\operatorname{Lan}_{\mathcal{L}_{C}}(F)\right](\mathcal{F}) \cong \int_{A \in \mathcal{D}}^{A \in \mathcal{D}} \operatorname{Nat}(h_{A}, \mathcal{F}) \odot F_{A}$$
$$\cong \int_{A \in \mathcal{D}}^{A \in \mathcal{D}} \mathcal{F}^{A} \odot F_{A}$$

for each $\mathcal{F} \in \mathsf{Obj}(\mathsf{PSh}(\mathcal{C}))$.

Proof. ??, *Fully Faithfulness*: Let $A, B \in \text{Obj}(C)$. Applying ?? to the functor h_B (i.e. in the case $\mathcal{F} = h_B$), we have

$$\operatorname{Hom}_{\mathcal{C}}(A, B) \cong \operatorname{Nat}(h_A, h_B).$$

Thus \$\ \ \ is fully faithful.

??, Preservation and Reflection of Isomorphisms: This follows from ?? and ??.

??, Uniqueness of Representing Objects Up to Isomorphism: By composing the isomorphisms $h_A \cong \mathcal{F} \cong h_B$, we get a natural isomorphism $\alpha \colon h_A \stackrel{\cong}{\Longrightarrow} h_B$. By **??**, we have $A \cong B$.

??, As a Free Cocompletion: The Universal Property: This is a rephrasing of ??.

??: As a Free Cocompletion: 2-Adjointness: See [**nLab:free-cocompletion**].

2.4 Universal Objects

Definition 2.4.1.1. The **universal object** as different and the different and the element $u \in h_U(U)$ satisfying the following universal property: ²¹

(UP) For each $B \in \text{Obj}(C)$, the map

$$h_U(B) \longrightarrow h_U(U)$$

 $(f: B \to A) \longmapsto h_U(f)(u)$

is a bijection.

misleading, as $PSh(PSh(C)) \stackrel{\text{eq.}}{\neq} PSh(C)$.

²¹This is the element of $h_U(U)$ corresponding to the identity natural transformation $\mathrm{id}_{h_U}\colon h_U\Longrightarrow h_U$ under the isomorphism $h_U(U)\cong \mathrm{Hom}_{\mathsf{PSh}(C)}(h_U,h_U)$.

Remark 2.4.1.2. In other words, a universal object u associated to a representable functor $h_U \colon C \to \mathcal{D}$ represented by U is universal in the sense that every element of $h_U(A)$ is equal to the image of u via $h_U(f)$ for a unique morphism $f \colon A \to U$ of C.

Example 2.4.1.3. Let G be a group and co**n**ର୍ଷାଧିତ the functor $\operatorname{Bun}_G^{\operatorname{num}}(-)$: $\operatorname{Ho}(\operatorname{Top})^{\operatorname{op}} \to \operatorname{Sets}$ sending $[X] \in \operatorname{Ho}(\operatorname{Top})^{\operatorname{op}}$ to the set of numerable principal G-bundles on X. Then the universal numerable principal G-bundle $\gamma \colon \operatorname{EG} \to \operatorname{BG}$ is a universal object for $\operatorname{Bun}_G^{\operatorname{num}}(-)$.

Furthermore, the map sending γ to a principal G-bundle $P \to X$ on X is the pullback

$$f^* \colon \operatorname{Bun}^{\operatorname{num}}_G(\operatorname{BG}) \to \operatorname{Bun}^{\operatorname{num}}_G(X)$$

3 Copresheaves and the Contravariant Yoneda Lemma

3.1 Copresheaves 00Y2

Let *C* be a category.

Definition 3.1.1.1. A copresheaf on C is abhittor $F: C \to \mathsf{Sets}$.

Definition 3.1.1.2. The **category of copressiveness on** C is the category CoPSh(C) defined by

$$\mathsf{CoPSh}(C) \stackrel{\mathsf{def}}{=} \mathsf{Fun}(C, \mathsf{Sets}).$$

Remark 3.1.1.3. In detail, the **category of Popresheaves on** C is the category $\mathsf{CoPSh}(C)$ where

- *Objects*. The objects of CoPSh(*C*) are presheaves on *C*;
- *Morphisms.* A morphism of CoPSh(C) from F to G is a natural transformation $\alpha \colon F \Longrightarrow G$;
- *Identities.* For each $F \in Obj(CoPSh(C))$, the unit map

$$\mathbb{F}_F^{\mathsf{CoPSh}(C)} \colon \mathsf{pt} \to \mathsf{Nat}(F,F)$$

of CoPSh(C) at F is defined by

$$id_F^{\mathsf{CoPSh}(C)} \stackrel{\text{def}}{=} id_F;$$

• *Composition.* For each $F, G, H \in Obj(CoPSh(C))$, the composition map

$$\circ_{FGH}^{\mathsf{CoPSh}(C)} : \mathsf{Nat}(G,H) \times \mathsf{Nat}(F,G) \to \mathsf{Nat}(F,H)$$

of CoPSh(C) at (F, G, H) is defined by

$$\beta \circ_{FGH}^{\mathsf{CoPSh}(C)} \alpha \stackrel{\mathrm{def}}{=} \beta \circ \alpha.$$

3.2 Corepresentalle Copresheaves

Let C be a category, let $U, V \in \text{Obj}(C)$, and let $f: U \to V$ be a morphism of C.

Definition 3.2.1.1. The **corepresentable copy** sheaf associated to U is the copresheaf $h^U: C \to \mathsf{Sets}$ on C where

• Action on Objects. For each $A \in \text{Obj}(C)$, we have

$$h^{U}(A) \stackrel{\text{def}}{=} \text{Hom}_{C}(U, A);$$

• Action on Morphisms. For each morphism $f: A \to B$ of C, the image

$$h^U(f) : \underbrace{h^U(A)}_{\stackrel{\text{def}}{=} \operatorname{Hom}_C(U,A)} \to \underbrace{h^U(B)}_{\stackrel{\text{def}}{=} \operatorname{Hom}_C(U,B)}$$

of f by h^U is defined by

$$h^U(f) \stackrel{\text{def}}{=} f_*$$
.

Definition 3.2.1.2. A copresheaf $F: C \to \mathfrak{SolS}$ is **corepresentable** if $F \cong h^U$ for some $U \in \mathsf{Obj}(C).^{22}$

Definition 3.2.1.3. The corepresentable patteral transformation associated to f is the natural transformation $h^f:h^V\Longrightarrow h^U$ consisting of the collection

$$\left\{h_A^f \colon \underbrace{h^V(A)}_{\overset{\text{def}}{=} \operatorname{Hom}_C(V,A)} \to \underbrace{h^U(A)}_{\overset{\text{def}}{=} \operatorname{Hom}_C(U,A)}\right\}_{A \in \operatorname{Obj}(C}$$

where

$$h_A^f \stackrel{\text{def}}{=} f^*$$
.

 $^{^{22}}$ In such a case, we call U a **corepresenting object** for F.

Theorem 3.2.1.4. Let $F: C \to \mathsf{Sets}$ be a **QOP** resheaf on C. We have a bijection

$$\operatorname{Nat}(h^A, F) \cong F^A$$
,

natural in $A \in Obj(C)$, determining a natural isomorphism of functors

$$\operatorname{Nat}(h^{(-)}, F) \cong F.$$

Proof. This is dual to ??.

3.3 The Contravariant Yoneda Embedding

Definition 3.3.1.1. The contravariant Young embedding of C is the functor C

$$\mathcal{F}_C \colon C^{\mathsf{op}} \hookrightarrow \mathsf{Fun}(C,\mathsf{Sets})$$

where

• Action on Objects. For each $U \in Obj(C)$, we have

$$\Upsilon(U) \stackrel{\text{def}}{=} h^U;$$

• *Action on Morphisms.* For each morphism $f: U \to V$ of C, the image

$$f(f): f(V) \to f(U)$$

of f by Υ is defined by

$$\Upsilon(f) \stackrel{\text{def}}{=} h^f.$$

Proposition 3.3.1.2. Let C be a category. **00YD**

- 1. Fully Faithfulness. The contravariant Yon and Embedding is fully faithful. 24
- 2. Preservation and Reflection of Isomorphisms. Let $A, B \in \mathrm{Obj}(C)$. The following conditions are equivalent:
 - (a) We have $A \cong B$.
 - (b) We have $h_A \cong h_B$.
 - (c) We have $h^A \cong h^B$.

²³ Further Notation: Also written $h^{(-)}$, or simply \mathcal{A} .

²⁴In other words, the contravariant Yoneda embedding is indeed an embedding.

3. Uniqueness of Representing Objects Up to Isomorphism. Let $F: C \to \mathsf{Sets}$ be $\mathsf{200YG}$ copresheaf. If there exist objects A and B of C such that we have

$$h^A \cong F$$
, $h^B \cong F$.

then $A \cong B$.

- 4. As a Free Completion: The Universal Property. The pair $(CoPSh(C)^{\bullet \bullet})$ consisting of
 - The opposite $CoPSh(C)^{op}$ of the category of copresheaves on C;
 - The contravariant Yoneda embedding $\mathcal{L}: C \hookrightarrow \mathsf{CoPSh}(C)^\mathsf{op}$ of C into $\mathsf{CoPSh}(C)^\mathsf{op}$;

satisfies the following universal property:

- **(UP)** Given another pair (\mathcal{A}, F) consisting of
 - A complete category \mathcal{A} ;
 - A continuous functor $F: C \to \mathcal{A}$;

there exists a continuous functor $\mathsf{CoPSh}(C)^\mathsf{op} \xrightarrow{\exists !} \mathcal{A}$, unique up to natural isomorphism, making the diagram

commute, again up to natural isomorphism.

5. As a Free Completion: 2-Adjointness. We have a 2-adjunction 09YJ

(CoPSh^{op}
$$\dashv \iota$$
): Cats $\stackrel{\text{CoPSh}^{op}}{\underset{\iota}{\longleftarrow}}$ Cats comp.

witnessed by an adjoint equivalence of categories

$$\left(\mathrm{Ran}_{\mathcal{F}}^{\mathrm{op}}\dashv\mathcal{F}^*\right)\colon \quad \mathsf{ContFun}(\mathsf{CoPSh}(C)^{\mathrm{op}},\mathcal{D})\underbrace{\overset{\mathsf{Ran}_{\mathcal{F}}^{\mathrm{op}}}{\bot}}_{\mathcal{F}^*}\mathsf{Fun}(C^{\mathrm{op}},\mathcal{D}),$$

natural in $C \in \text{Obj}(\mathsf{Cats})$ and $\mathcal{D} \in \text{Obj}(\mathsf{Cats}^{\mathsf{comp.}})$.

Proof. This is dual to ??.

Appendices

Bicategories

A Other Chapters

*	
Sets	17. Bicategories
1. Sets	18. Internal Adjunctions
2. Constructions With Sets	Internal Category Theory
3. Pointed Sets	19. Internal Categories
4. Tensor Products of Pointed Sets	Cyclic Stuff
5. Relations	20. The Cycle Category
3. Relations	Cubical Stuff
6. Spans	21. The Cube Category
7. Posets	Globular Stuff
Indexed and Fibred Sets	22. The Globe Category
7. Indexed Sets	Cellular Stuff
8. Fibred Sets	23. The Cell Category
9. Un/Straightening for Indexed and	Monoids
Fibred Sets	24. Monoids
Category Theory	25. Constructions With Monoids
11. Categories	Monoids With Zero
12. Types of Morphisms in Categories	26. Monoids With Zero
13. Adjunctions and the Yoneda Lemma	27. Constructions With Monoids With Zero
14. Constructions With Categories	Groups

29. Constructions With Groups

Hyper Algebra

- 30. Hypermonoids
- 31. Hypergroups
- 32. Hypersemirings and Hyperrings
- 33. Quantales

Near-Rings

- 34. Near-Semirings
- 35. Near-Rings

Real Analysis

- 36. Real Analysis in One Variable
- 37. Real Analysis in Several Variables

Measure Theory

38. Measurable Spaces

39. Measures and Integration

Probability Theory

39. Probability Theory

Stochastic Analysis

- 40. Stochastic Processes, Martingales, and Brownian Motion
- 41. Itô Calculus
- 42. Stochastic Differential Equations

Differential Geometry

43. Topological and Smooth Manifolds

Schemes

44. Schemes