МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

МЕТОД СЕТОК РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

Учебное пособие

Воронеж Издательский дом ВГУ 2019 УДК 517.9 ББК 22.193 М545

Авторы:

А. В. Костин, Д. В. Костин, И. В. Колесникова, М. Н. Силаева

Рецензенты:

доктор физико-математических наук, доцент кафедры математического анализа $\Phi \Gamma E O V B O$ «Воронежский государственный университет» C. A. Шабров, кандидат физико-математических наук, доцент кафедры прикладной математики и механики $\Phi \Gamma E O V B O$ «Воронежский государственный технический университет» I. B. Cmehoxuh

Костин А. В.

М545 Метод сеток решения краевых задач для дифференциальных уравнений с частными производными : учебное пособие / А.В. Костин, Д. В. Костин, И. В. Колесникова, М. Н. Силаева ; Воронежский государственный университет. — Воронеж : Издательский дом ВГУ, 2019. — 43 с.

ISBN 978-5-9273-2760-7

Настоящее учебное пособие посвящено рассмотрению простейших разностных схем для уравнения теплопроводности и для уравнения Лапласа.

Для бакалавров 3 и 4 курсов очной формы обучения математических факультетов вузов.

УДК 517.9 ББК 22.193

© Костин А. В., Костин Д. В., Колесникова И. В., Силаева М. Н., 2019

© Воронежский государственный университет, 2019

© Оформление, оригинал-макет. Издательский дом ВГУ, 2019

ISBN 978-5-9273-2760-7

Оглавление

Простейшие разностные схемы для уравнения теплопроводности	4
Постановка задачи	4
Разностная схема	4
Аппроксимация и устойчивость разностной схемы	8
Разностная схема для эллиптического уравнения	20
Постановка задачи	20
Разностная схема	21
Аппроксимация и устойчивость разностной схемы	24
Итерационный метод решения разностной схемы	31
Залания для практической работы	33

Простейшие разностные схемы для уравнения теплопроводности

1. Постановка задачи

Рассмотрим смешанную краевую задачу для уравнения теплопроводности

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + f(t; x), \qquad 0 \le x \le 1, \qquad 0 \le t \le T, \tag{1}$$

с начальным и краевыми условиями

$$\begin{cases} u(0;x) = \varphi(x), & 0 \le x \le 1, \\ u(t;0) = \psi_0(t), & 0 \le t \le T, \\ u(t;1) = \psi_1(t). & \end{cases}$$
 (2)

Будем считать, что правая часть дифференциального уравнения f(t;x) и функции $\varphi(x)$, $\psi_0(t)$, $\psi_1(t)$ удовлетворяет условиям, обеспечивающим существование и единственность гладкого решения $\hat{u}(t;x)$ задачи (1) - (2).

2. Разностная схема

Построим разностную схему - разностный (сеточный) аналог дифференциальной задачи (1) - (2).

Выполним следующие шаги:

1) Область непрерывного изменения аргументов $D = \left\{ \begin{array}{llll} (t;x) \in R^2: & 0 \leq t \leq T, & 0 \leq x \leq 1 \end{array} \right\}$ заменим дискретным множеством точек — сеткой $D_h = \left\{ \begin{array}{llll} (t_i;x_j) \in R^2: & 0 \leq i \leq M, & 0 \leq j \leq N. \end{array} \right\},$ $t_i = i\tau, \ \tau = \frac{T}{M}, \quad i = 0, \ldots, M, \quad x_j = jh, \ h = \frac{1}{N}, \quad j = 0, \ldots, N.$ Точки $(i\tau;jh), \quad i = 0, \ldots, M, \quad j = 0, \ldots, N$ называются узлами сетки $D_h, \quad \tau$ и h называются шагами сетки по оси Ot и Ox, соответственно. Узел $(i\tau;jh)$ сетки D_h будем обозначать (i;j).

Сетку D_h можно представить в виде

$$D_h = \omega_h \times \omega_{\tau}$$

где

$$\omega_h = \{0 = x_0 < x_1 < \dots < x_N = 1\},$$

$$\omega_\tau = \{0 = \tau_0 < \tau_1 < \dots < \tau_M = T\}.$$

Замечание. При реализации метода сеток шаги au и h обычно выбирают согласованно. Поэтому сетка и обозначена через D_h .

2) Все функции в исходной дифференциальной задаче (1) — (2) заменим сеточными функциями - функциями, определенными в узлах сетки D_h . Сеточную функцию обозначим через $u_h = \left\{u_j^i\right\}, \ i = 0, \dots, M, \quad j = 0, \dots, N.$ Проекцию функции u(t;x) на сетку D_h обозначим через $\left[u\right]_h = \left\{u(i\,\tau;jh), \ i = 0, \dots, M, \quad j = 0, \dots, N.$

3) Производные в исходной дифференциальной задаче (1) – (2) заменим разностными отношениями – сходящимися формулами численного дифференцирования:

$$\frac{\partial u(\tau;h)}{\partial t} \approx \frac{u(t+\Delta t;x)-u(t;x)}{\Delta t},$$

$$\frac{\partial^2 u(\tau;h)}{\partial x^2} \approx \frac{u(t;x-\Delta h) - 2u(x;y) + u(t;x+\Delta h)}{\left(\Delta h\right)^2}.$$

В результате получим систему линейных алгебраических уравнений:

$$\begin{cases} \frac{u_{j}^{i+1} - u_{j}^{i}}{\tau} = \sigma \frac{u_{j-1}^{i+1} - 2u_{j}^{i+1} + u_{j+1}^{i+1}}{h^{2}} + (1 - \sigma) \frac{u_{j-1}^{i} - 2u_{j}^{i} + u_{j+1}^{i}}{h^{2}} + f_{j}^{i}, \\ i = 0,1,...,M-1, \quad j = 1,...,N-1; \\ u_{j}^{0} = \varphi_{j}^{0}, \qquad j = 0,...,N; \end{cases}$$

$$(3)$$

$$u_{j}^{0} = \varphi_{j}^{0}, \qquad j = 0,...,N;$$

$$u_{0}^{i} = \psi_{0}^{i}, \qquad u_{N}^{i} = \psi_{N}^{i}, \quad i = 0,...,M.$$

Здесь σ - числовой параметр $(0 \le \sigma \le 1)$, f_j^i - сеточная аппроксимация правой части дифференциального уравнения f(t;x), φ_j^0 - сеточная аппроксимация начального условия $\varphi(x)$, ψ_0^i и ψ_N^i - сеточные аппроксимации краевых условий $\psi_0(\tau)$ и $\psi_1(\tau)$, соответственно.

Система (3) называется разностной схемой - разностным (дискретным) аналогом дифференциальной задачи (1) – (2).

Для построения разностной схемы (3) при $0 < \sigma < 1$ используется шесть точек — шеститочечный шаблон:

В этом случае разностную схему (3) принято называть **схемой с** весами.

Замечание. При $\sigma = 0$ разностная схема (3) называется **явной**. Шаблон имеет вид:

При $\sigma=1$ разностная схема (3) называется целиком **неявной**. Шаблон имеет вид:

При $\sigma = \frac{1}{2}$ разностная схема (3) называется схемой **Кранка- Николсона**.

Разностная схема (3) имеет послойную структуру. Зная решение на i - ом слое ($t = i \tau$) мы можем найти решение на (i+1) - ом слое.

3. Аппроксимация и устойчивость разностной схемы

Введем пространства E - функций u(t;x) непрерывных на D и имеющих, непрерывные частные производные $\frac{\partial u(t;x)}{\partial t}$, $\frac{\partial^2 u(t;x)}{\partial x^2}$, и пространство $F = C(D) \times C(0;1) \times C(0;T) \times C(0;T)$.

Теперь дифференциальную задачу (1)-(2) можно записать в виде операторного уравнения:

$$Lu=g$$
,

 $_{\Gamma Д e} L: E \rightarrow F, u \in E, g \in F,$

$$Eu = \begin{cases} \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2}, \\ 0 < t < T, \quad 0 < x < 1; \end{cases}$$

$$u(0; x), \quad 0 \le x \le 1;$$

$$u(t; 0), \quad u(t; 1), \quad 0 \le t \le T;$$

$$g = \begin{cases} f(t; x), & 0 < t < t, \quad 0 < x < 1; \\ \varphi(x), & 0 \le x \le 1; \end{cases}$$

$$\psi_0(t), \quad \psi_1(t), \quad 0 \le t \le T.$$

Введем пространства сеточных функций $E_{\scriptscriptstyle h}$ и $F_{\scriptscriptstyle h}$.

$$\begin{split} E_h: \ u_h \in E_h, \ \|u_h\|_{E_h} &= \max_{i,j} \left| u_j^i \right|, \\ F_h: \ g_h \in F_h, \ \|g_h\|_{F_h} &= \max \left\{ \ \gamma, \quad a, \quad b, \ c \right\}, \\ \text{еде} \ \gamma &= \max_{i,j} \left| f_j^i \right|, \\ a &= \max_{i} \left| \varphi(jh) \right|, \ b = \max_{i} \left| \psi_0(i\tau) \right|, \ c &= \max_{i} \left| \psi_1(i\tau) \right|. \end{split}$$

Теперь разностную схему (3) можно записать в виде операторного уравнения

$$L_h u_h = g_h, (4)$$

где $L_h: E_h \to F_h, u_h \in E_h, g_h \in F_h,$

$$L_{h}u_{h} = \begin{cases} \frac{u_{j}^{i+1} - u_{j}^{i}}{\tau} - \sigma \frac{u_{j-1}^{i+1} - 2u_{j}^{i+1} + u_{j+1}^{i+1}}{h^{2}} - (1 - \sigma) \frac{u_{j-1}^{i} - 2u_{j}^{i} + u_{j+1}^{i}}{h^{2}}, \\ i = 0, 1, \dots, M - 1, \quad j = 1, \dots, N - 1; \end{cases}$$

$$u_{0}^{0}, \quad j = 0, \dots, N;$$

$$u_{0}^{i}, \quad u_{N}^{i}, \quad i = 0, \dots, M;$$

$$g_h = \begin{cases} f_j^i, & i = 0, 1, \dots, M - 1, \quad j = 1, \dots, N - 1; \\ \varphi_j^0, & i = 0, \dots, N; \end{cases}$$

$$\psi_0^i, \quad i = 0, \dots, M, \quad j = 0, \quad \psi_N^i, \quad i = 0, \dots, M, \quad j = N.$$

Замечание. Операторы $L\colon E o F$ и $L_h\colon E_h o F_h$ линейные и ограниченные.

По определению разностная схема (4) аппроксимирует исходную дифференциальную задачу (1) - (2) на ее решении $\hat{u}(t;x)$ если

$$\|L_h[\hat{u}]_h - g_h\|_{F_h} \to 0$$
 при $h \to 0 (\tau, h \to 0)$.

При этом, если существует константа C > 0 не зависящая от h, и

$$||L_h[\hat{u}]_h - g_h||_{F_h} \le Ch^k |_{\Pi p_H} h \to 0 (\tau, h \to 0),$$

то будем говорить, что разностная схема (4) аппроксимирует задачу (1)-(2) с порядком h^k .

 $P_{\rm B3HOCTL} \; L_h [\hat{u}]_h - g_h = \delta g_h \; {
m Ha3hBaetcg} \; {
m Hebg3koй}.$

Пусть $0 < \sigma < 1$. Введем в рассмотрение промежуточный слой по t:

$$\widetilde{t} = i\tau + \frac{\tau}{2}.$$

Тогда

a)
$$\frac{\hat{u}((i+1)\tau;jh) - \hat{u}(i\tau;jh)}{\tau} = \frac{u((i+1)\tau;jh) - u(i\tau;jh)}{2\frac{\tau}{2}} = \frac{\partial \hat{u}(\tilde{t};jh)}{\partial t} + O(\tau^2);$$

$$\sigma \hat{u} \left(\tilde{t} + \frac{\tau}{2}; jh \right) + (1 - \sigma) \hat{u} \left(\tilde{t} - \frac{\tau}{2}; jh \right) =$$

$$\sigma \left\{ \hat{u} \left(\tilde{t}; jh \right) + \frac{\tau}{2} \frac{\partial \hat{u} \left(\tilde{t}; jh \right)}{\partial t} + \frac{1}{2!} \left(\frac{\tau}{2} \right)^{2} \frac{\partial^{2} \hat{u} \left(\tilde{t}; jh \right)}{\partial t^{2}} + O(\tau^{3}) \right\} +$$

$$(1 - \sigma) \left\{ \hat{u} \left(\tilde{t}; jh \right) - \frac{\tau}{2} \frac{\partial \hat{u} \left(\tilde{t}; jh \right)}{\partial t} + \frac{1}{2!} \frac{\partial^{2} \hat{u} \left(\tilde{t}; jh \right)}{\partial t^{2}} + O(\tau^{3}) \right\} =$$

$$\hat{u} \left(\tilde{t}; jh \right) + \left(\sigma - \frac{1}{2} \right) \frac{\partial \hat{u} \left(\tilde{t}; jh \right)}{\partial t} + O(\tau^{2}).$$

Следовательно,

$$\sigma \frac{\hat{u}\left(\tilde{t} + \frac{\tau}{2}; (j-1)h\right) - 2\hat{u}\left(\tilde{t} + \frac{\tau}{2}; jh\right) + \hat{u}\left(\tilde{t} + \frac{\tau}{2}; (j+1)h\right)}{h^{2}} + \left(1 - \sigma\right) \frac{\hat{u}\left(\tilde{t} - \frac{\tau}{2}; (j-1)h\right) - 2\hat{u}\left(\tilde{t} - \frac{\tau}{2}; jh\right) + \hat{u}\left(\tilde{t} - \frac{\tau}{2}; (j-1)h\right)}{h^{2}} = \frac{\partial^{2}\hat{u}\left(\tilde{t}; jh\right)}{\partial x^{2}} + \left(\sigma - \frac{1}{2}\right)\tau \frac{\partial^{3}\hat{u}\left(\tilde{t}; jh\right)}{\partial t\partial x^{2}} + O\left(\tau^{2} + h^{2}\right)$$

Так как для краевых условий на промежуточном слое

$$L_{h}[\hat{u}]_{h} = \begin{cases} \frac{\hat{u}((i+1)\tau; jh) - \hat{u}(i\tau; jh)}{\tau} - \\ -\sigma \frac{\hat{u}((i+1)\tau; (j-1)h) - 2\hat{u}((i+1)\tau; jh) + \hat{u}((i+1)\tau; (j+1)h)}{h^{2}} - \\ -(1-\sigma) \frac{\hat{u}(i\tau; (j-1)h) - 2\hat{u}(i\tau; jh) + \hat{u}(i\tau; (j+1)h)}{h^{2}}, \\ i = 1, \dots, M-1, \quad j = 1, \dots, N-1; \\ \hat{u}(0; jh), \quad i = 0, \quad j = 0, \dots, N; \\ \hat{u}(\tilde{t}; 0), \quad i = 0, \dots, M, \quad j = 0; \quad \hat{u}(\tilde{t}; 1), \quad i = 0, \dots, M, \quad j = N; \end{cases}$$

То полагая

$$\begin{split} f_{j}^{i} &= f\left(\tilde{t}\,; jh\right) = f\bigg(i\tau + \frac{\tau}{2}\,; jh\bigg), \varphi_{j}^{0} &= \varphi(jh), \psi_{0}^{i} = \psi_{0}\Big(\tilde{t}\,\Big) = \psi_{0}\bigg(i\tau + \frac{\tau}{2}\bigg), \\ \psi_{N}^{i} &= \psi_{1}\Big(\tilde{t}\,\Big) = \psi_{1}\bigg(i\tau + \frac{\tau}{2}\bigg), \text{ имеем при } \sigma \neq \frac{1}{2} \end{split}$$

$$\delta g_{h} &= \begin{cases} O(\tau) + O(h^{2}), & i = 1, \dots, M-1, \ j = 1, \dots, N-1; \\ 0, & i = 0, \dots, N; \\ 0, & i = 0, \dots, M, & j = 0, \dots, N; \end{cases}$$

 $_{\text{и при}} \sigma = \frac{1}{2}$

$$\delta g_h = \begin{cases} O(\tau^2) + O(h^2), & i = 1, ..., M - 1, \quad j = 1, ..., N - 1; \\ 0, & i = 0, ..., N; \end{cases}$$

$$0, \quad i = 0, ..., M, \quad j = 0, ..., N;$$

используя промежуточный слой $\widetilde{t} = i\, au + rac{ au}{2}$ и соответствующую аппроксимацию входных данных задачи (1)-(2): $f_{j}^{i}=f\left(\widetilde{t}\,;jh
ight)=f\left(i\, au+rac{ au}{2}\,;jh
ight),\quad arphi_{j}^{0}=arphi(jh),\quad arphi_{0}^{i}=arphi_{0}\left(\widetilde{t}\,
ight)=arphi_{0}\left(i\, au+rac{ au}{2}
ight),$ $arphi_{N}^{i}=arphi_{1}\left(\widetilde{t}\,
ight)=arphi_{1}\left(i\, au+rac{ au}{2}
ight)$ получаем, что разностная схема с весами обладает свойством аппроксимации и

1)
$$\|\delta g_h\|_{F_h} = O(\tau) + O(h^2)$$
, при $0 < \sigma < 1$, $\sigma \neq \frac{1}{2}$,

2)
$$\|\delta g_h\|_{F_h} = O(\tau^2) + O(h^2)$$
, $\Pi p_H \sigma = \frac{1}{2}$.

Аналогично проверяем, что явная и целиком неявная разностные схемы обладают свойством аппроксимации и $\|\delta g_h\|_{F_h} = O(\tau) + O(h^2)$.

Для явной разностной схемы

$$\begin{cases}
\frac{u_{j}^{i+1} - u_{j}^{i}}{\tau} - \frac{u_{j-1}^{i} - 2u_{j}^{i} + u_{j+1}^{i}}{h^{2}} = f(i\tau; jh), \\
i = 0, ..., M - 1, \quad j = 1, ..., N - 1; \\
u_{j}^{0} = \varphi(jh), \quad j = 0, ..., N; \\
u_{0}^{i} = \psi_{0}(i\tau), \quad u_{N}^{i} = \psi_{1}(i\tau), \quad i = 0, ..., M;
\end{cases} (5)$$

мы полагаем $f_j^i = f(i\tau; jh), \quad \varphi_j^0 = \varphi(jh), \quad \psi_0^i = \psi_0(i\tau), \quad \psi_N^i = \psi_1(i\tau)$ проверяем аппроксимацию на слое $t = i\tau$.

Для целиком неявной разностной схемы

$$\begin{cases}
\frac{u_{j}^{i+1} - u_{j}^{i}}{\tau} - \frac{u_{j-1}^{i+1} - 2u_{j}^{i+1} + u_{j+1}^{i+1}}{h^{2}} = f((i+1)\tau; jh), \\
i = 0, ..., M - 1, \quad j = 1, ..., N - 1; \\
u_{j}^{0} = \varphi(jh), \quad j = 0, ..., N; \\
u_{0}^{i} = \psi_{0}(i\tau), \quad u_{N}^{i} = \psi_{1}(i\tau), \quad i = 0, ..., M;
\end{cases}$$
(6)

мы полагаем $f_j^i = f((i+1)\tau; jh), \ \varphi_j^0 = \varphi(jh), \ \psi_0^i = \psi_0(i\tau), \ \psi_N^i = \psi_1(i\tau)$ и проверяем аппроксимацию на слое $t = (i+1)\tau$.

Разностная схема (4) называется устойчивой, если для достаточно малых шагов сетки τ и h выполнены условия:

- 1) Для любой сеточной функции $g_h \in F_h$, уравнение $L_h u_h = g_h$ имеет единственное решение $\hat{u}_h \in E_h$ (существует обратный оператор $L_h^{-1} \colon F_h \to E_h$).
- 2) Существует константа A>0, независящая от h (τ и h), такая, что для решения \hat{u}_h уравнения L_h $u_h=g_h$ имеет место неравенство

$$\|\hat{u}_h\|_{E_h} \le A \|g_h\|_{F_h}$$
 (7)

(норма обратного оператора равномерно по h ограничена константой $A>0\colon \left\|L_h^{-1}\right\|\leq A$).

Замечание. Условие 2) определения устойчивости разностной схемы принято называть условием устойчивости разностной схемы.

Имеет место

Предложение. Если решение $\{\hat{u}_{j}^{i}\}, i=0,...,M, j=0,...,N$ разностной схемы (4) для любого i=0,...,M-1 удовлетворяет условию

$$\max_{j} \left| \hat{u}_{j}^{i+1} \right| \leq \max_{j} \left| \hat{u}_{j}^{i} \right| + \tau \max_{i,j} \left| f_{j}^{i} \right|, \tag{8}$$

то схема (4) устойчивая.

Неравенство (6) называется принципом максимума.

Действительно, рассмотрим две разностные схемы

$$L_h v_h = g_h^0 \quad L_h w_h = g_h^1,$$

где сеточные функции g_h^0 и g_h^0 определены выражениями:

$$g_{h}^{0} = \begin{cases} 0, & i = 1, ..., M - 1, \quad j = 1, ..., N - 1; \\ \varphi_{j}^{0}, & i = 0, \quad j = 0, ..., N; \\ \psi_{0}^{i}, & i = 0, ..., M, \quad j = 0; \quad \psi_{N}^{0}, \quad i = 0, ..., M, \quad j = N; \end{cases}$$

(однородное уравнение, неоднородные начальное и краевые условия) и

$$g_h^0 = \begin{cases} f_j^i, & i = 1, ..., M - 1, \quad j = 1, ..., N - 1; \\ 0, & i = 0, ..., N; \\ 0, & i = 0, ..., M, \quad j = 0, ..., j = N; \end{cases}$$

(неоднородное уравнение, однородные начальное и краевые условия).

Очевидно, если существуют решения первой и второй задач \hat{v}_h и \hat{w}_h , то существует и решение $\hat{u}_h = \hat{v}_h + \hat{w}_h$ разностной схемы (4).

Применим принцип максимума (6) к решению \hat{v}_h первой задачи:

$$\max_{j} \left| \hat{v}_{j}^{i+1} \right| \leq \max_{j} \left| \hat{v}_{j}^{i} \right| \leq \ldots \leq \max_{j} \left| \hat{v}_{j}^{0} \right| =$$

$$= \max \left(\max_{j} \left| \varphi(jh) \right|, \ \max_{i} \left| \psi_{0}(i\tau) \right|, \ \max_{i} \left| \psi_{1}(i\tau) \right| \right).$$

Применим принцип максимума (6) к решению \hat{w}_h второй задачи:

$$\begin{aligned} \max_{j} \left| \hat{w}_{j}^{i+1} \right| &\leq \max_{j} \left| \hat{w}_{j}^{i} \right| + \tau \max_{i,j} \left| f_{j}^{i} \right| \leq \\ &\leq \max_{j} \left| \hat{w}_{j}^{i-1} \right| + 2\tau \max_{i,j} \left| f_{j}^{i} \right| \leq \dots \leq \\ &\leq \max_{j} \left| w_{j}^{0} \right| + (i+1)\tau \max_{i,j} \left| f_{j}^{i} \right| \leq T \max_{i,j} \left| f_{j}^{i} \right|. \end{aligned}$$

Таким образом, для решения $\hat{u}_h = \hat{v}_h + \hat{w}_h$ разностной схемы (4) справедливо неравенство

$$\begin{split} \max_{j} \left| \hat{u}_{j}^{i+1} \right| &\leq \max_{j} \left| \hat{v}_{j}^{i+1} \right| + \max_{j} \left| \hat{w}_{j}^{i+1} \right| \leq \\ &= \max \left(\max_{j} \left| \varphi(jh) \right|, \ \max_{i} \left| \psi_{0}(i\tau) \right|, \ \max_{i} \left| \psi_{1}(i\tau) \right| \right) + T \max_{i,j} \left| f_{j}^{i} \right|. \end{split}$$

Отсюда получаем, что

$$\left\|\hat{u}_h\right\|_{E_h} \leq (1+T) \left\|g_h\right\|_{F_h},$$

условие устойчивости (7) выполнено с константой A = 1 + T.

Предложение доказано.

Ограничимся исследованием устойчивости разностной схемы (4) в двух крайних случаях: целиком неявной схемы ($\sigma=1$) и явной схемы ($\sigma=0$).

Устойчивость целиком неявной схемы $(\sigma = 1)$.

Обозначим
$$\lambda = \frac{\tau}{h^2}$$
. Получим из (6) для каждого $i = 0, ..., M-1$
$$\lambda u_{j-1}^{i+1} - (1+2\lambda)u_j^{i+1} + \lambda u_{j-1}^{i+1} = -u_j^i - \tau f((i+1)\tau; jh), \qquad (9)$$
 $j = 1, ..., N-1$.

Система (9) однозначно разрешима (см. условие устойчивости метода прогонки решения системы линейных уравнений с трехдиагональной матрицей).

Пусть \hat{u}_j^{i+1} , j=0,...,N - решение (9) и $\max_j \left|\hat{u}_j^{i+1}\right| = \hat{u}_k^{i+1}$, где k наименьший из всех индексов, для которых $\left|\hat{u}_{k-1}^{i+1}\right| < \hat{u}_k^{i+1}$. Если k=0 или k=N, то неравенство (8) выполнено. Пусть $k\neq 0,N$.

Уравнение системы (9) при j = k запишем в виде

$$\lambda \left(\hat{u}_{k-1}^{i+1} - \hat{u}_{k}^{i+1} \right) + \lambda \left(\hat{u}_{k+1}^{i+1} - \hat{u}_{k}^{i+1} \right) - u_{k}^{i+1} = -u_{k}^{i} - \tau f((i+1)\tau; jh).$$

Так как сумма скобок в левой части равенства строго меньше нуля, имеем

$$\max_{j} |\hat{u}_{j}^{i+1}| = \hat{u}_{k}^{i+1} \le \max_{j} |\hat{u}_{j}^{i}| + \tau \max_{i,j} |f_{j}^{i}|.$$

Следовательно, для целиком неявной разностной схемы имеет место неравенство (8). Это означает, что целиком неявная разностная схема устойчива при любом соотношении шагов τ и h.

Устойчивость явной схемы $(\sigma = 0)$

Обозначив $\lambda=\frac{\tau}{h^2}$, из (5) для каждого i=0,...,M-1 решение $\{\hat{u}_j^{i+1}\}$, j=0,...,N разностной схемы находится по формуле:

$$\hat{u}_{j}^{i+1} = \lambda \left(\hat{u}_{j-1}^{i} + \hat{u}_{j+1}^{i} \right) + (1 - 2\lambda)\hat{u}_{j}^{i} + \mathcal{T}_{j}^{i}, \qquad j = 1, \dots, N - 1.$$
 (10)

Очевидно, если $1-2\lambda \ge 0$, то

$$\left| \hat{u}_{j}^{i+1} \right| \leq \left| \hat{u}_{j}^{i} \right| + \tau \max_{i,j} \left| f_{j}^{i} \right|$$

и неравенство (8) выполнено. Следовательно, явная разностная схема $\text{устойчива при условии } \lambda = \frac{\tau}{h^2} \leq \frac{1}{2}.$

Установим, что при $\lambda = \frac{\tau}{h^2} > \frac{1}{2}$ явная разностная схема является неустойчивой. Для этого достаточно показать, что, однажды возникнув, ошибка в решении будет при дальнейших вычислениях неограниченно возрастать.

Рассмотрим однородную задачу ($f_j^i = f(i\tau;jh) \equiv 0$). При этом схема примет вид

$$\hat{u}_{j}^{i+1} = \lambda \left(\hat{u}_{j-1}^{i} + \hat{u}_{j+1}^{i} \right) + (1 - 2\lambda) \hat{u}_{j}^{i}.$$

Пусть на k -ом слое возникла ошибки δ_j^k , $j=1,\dots,N-1$. Тогда для вычисления ошибки на следующем слое получим формулу:

$$\delta_j^{k+1} = \lambda \left(\delta_{j-1}^k + \delta_{j+1}^k \right) + (1 - 2\lambda) \delta_j^k.$$

Предположим, что $\delta_j^k = (-1)^m \varepsilon$, $\varepsilon > 0$, где ε - некоторое достаточно малое число. Тогда

$$\delta_{j}^{k+1} = \lambda \Big((-1)^{m-1} + (-1)^{m+1} \Big) \varepsilon + (1 - 2\lambda)(-1)^{m} \varepsilon = (-1)^{m} (1 - 4\lambda) \varepsilon$$

или

$$\delta_i^{k+1} = (-1)^{m+1} (4\lambda - 1)\varepsilon,$$

так как $4\lambda - 1 > 0$ при $\lambda > \frac{1}{2}$.

Следовательно, на слое $t = (k+l)\tau$ получим:

$$\left| \delta_{j}^{k+l} \right| = (4\lambda - 1)^{l} \varepsilon \to \infty, \text{ при } l \to \infty.$$

Замечание. При значительном уменьшении шага τ (при фиксированном T) растет число шагов и, следовательно, растет суммарная ошибка вычислений.

Окончательно получаем, что явная разностная схема устойчива

при
$$\tau \le \frac{h^2}{2}$$
 и неустойчива при $\tau > \frac{h^2}{2}$.

Замечание. Разностная схема (3) с весами устойчива:

1) при любом соотношении шагов, если $\sigma \ge \frac{1}{2}$;

2) при
$$\tau \le \frac{h^2}{4\left(\frac{1}{2} - \sigma\right)}$$
, если $\sigma < \frac{1}{2}$.

Имеет место

Теорема Филиппова. Если разностная схема (4) (то же (3)) аппроксимирует исходную дифференциальную задачу (1)-(2) на ее решении $\hat{u}_h \in E_h \text{ и устойчива, то она сходящаяся:}$

$$\|\hat{u}_h - [\hat{u}]_h\|_{E_h} \to 0$$
 при $h \to 0$ $(\tau, h \to 0)$.

Действительно, имеем

$$L_h \hat{u}_h = g_h \, \mathrm{M} \, L_h \left[\hat{u} \right]_h = g_h + \delta g_h,$$

здесь \hat{u}_h - решение разностной схемы (3) (или что тоже (4)), \hat{u} - точное решение исходной дифференциальной задачи (1) – (2).

Отсюда получаем

$$L_h\left(\left[\hat{u}\right]_h - u_h\right) = \delta g_h.$$

Пусть разностная схема аппроксимирует исходную задачу с порядком h^k . Тогда из условий аппроксимации и устойчивости немедленно следует, что

$$\left\| \left[\hat{u} \right]_h - \hat{u}_h \right\|_{E_h} \le c \left\| \delta g_h \right\|_{F_h} \le c \cdot Ah^k.$$

Следовательно, разностная схема является сходящейся с порядком h^k .

Окончательно получаем:

Разностная схема (3) с весами сходящаяся:

1) при любом соотношении шагов с порядком $O(\tau) + O(h^2)$, если $\sigma > \frac{1}{2}$;

2) при любом соотношении шагов с порядком
$$O\!\left(\tau^2\right)\!\!+\!O\!\left(h^2\right)$$
, если $\sigma=\frac{1}{2}$;

$$\sigma = \frac{1}{2}$$
;
3) при $\tau \le \frac{h^2}{4\left(\frac{1}{2} - \sigma\right)}$ с порядком $O(\tau) + O(h^2)$, если $\sigma < \frac{1}{2}$.

Разностная схема для эллиптического уравнения

1. Постановка задачи

Рассмотрим задачу Дирихле для уравнения

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = f(x; y), \qquad 0 \le x \le 1, \qquad 0 \le y \le 1, \tag{1}$$

с краевыми условиями

$$\begin{cases} u(0; y) = \varphi_1(y), \\ u(1; y) = \varphi_2(y), \\ u(x; 0) = \varphi_3(x), \\ u(x; 1) = \varphi_4(x), \end{cases} \quad 0 \le x \le 1.$$
 (2)

Будем считать, что правая часть дифференциального уравнения f(x;y) и функции $\varphi_1(y), \varphi_2(y), \varphi_3(x), \varphi_4(x)$ удовлетворяет условиям, обеспечивающим существование и единственность гладкого решения $\hat{u}(x;y)$ задачи (1) - (2).

2. Разностная схема

Построим разностную схему - разностный аналог дифференциальной задачи (1) - (2).

Выполним следующие шаги:

1) Область непрерывного аргументов изменения $D = \{ (x; y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le 1. \}$ заменим дискретным множеством сеткой $D_h = \{ (x_i; y_j) \in \mathbb{R}^2 : 0 \le i \le M, 0 \le j \le N. \},$ $x_i = ih, \ h = \frac{1}{N}, \ i = 0,...,M, \ y_j = j\hbar, \ \hbar = \frac{1}{N}, \ j = 0,...,N.$ Точки $(ih;j\hbar)$, $i=0,\ldots,M$, $j=0,\ldots,N$ называются узлами сетки D_h , h и \hbar называются шагами сетки по оси Ox и Oy, соответственно. Узел (i au;jh) сетки D_h будем обозначать (i;j). Обозначим множество внутренних узлов сетки через $\Omega_h = \left\{ (x_i; y_i) \in \mathbb{R}^2 : 0 < i < M, 0 < j < N. \right\} \quad \text{Hepes} \quad \Gamma_h = D_h \setminus \Omega_h \quad \text{-}$ множество граничных узлов.

Сетку $\Omega_{\scriptscriptstyle h}$ можно представить в виде

$$\Omega_h = \omega_h \times \omega_h,$$

$$\omega_h = \big\{0 = x_0 < x_1 < \ldots < x_M = 1\big\},$$

$$\omega_h = \big\{0 = y_0 < y_1 < \ldots < y_N = 1\big\}.$$

Замечание. При реализации метода сеток шаги обычно выбирают согласованно. Поэтому сетка и обозначена через $D_{\scriptscriptstyle h}$.

- 2) Все функции в исходной дифференциальной задаче (1) (2) заменим сеточными функциями функциями, определенными в узлах сетки D_h . Сеточную функцию обозначим через $u_h = \left\{u_{ij}\right\}, \ i = 0, \dots, M, \quad j = 0, \dots, N.$ Проекцию функции u(x;y) на сетку D_h обозначим через $\left[u\right]_h = \left\{u(ih;j\hbar), \ i = 0, \dots, M, \quad j = 0, \dots, N.$
- 3) Производные в исходной дифференциальной задаче (1) (2) заменим разностными отношениями сходящимися формулами численного дифференцирования:

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u(x - \Delta x; y) - 2u(x; y) + u(x + \Delta x; y)}{(\Delta x)^2},$$

$$\frac{\partial^2 u}{\partial y^2} \approx \frac{u(x; y - \Delta y) - 2u(x; y) + u(x; y + \Delta y)}{(\Delta y)^2}.$$

В результате получим систему линейных алгебраических уравнений:

$$\begin{cases} \frac{u_{i-1j} - 2u_{ij} + u_{i+1j}}{h^2} + \frac{u_{ij-1} - 2u_{ij} + u_{ij+1}}{\hbar^2} = f(ih; j\hbar), \\ i = 1, \dots, M - 1, \quad j = 1, \dots, N - 1; \end{cases}$$

$$\begin{cases} u_{0j} = \varphi_1(j\hbar), \quad u_{Mj} = \varphi_2(j\hbar), \quad j = 0, \dots, N; \\ u_{i0} = \varphi_3(ih), \quad u_{iN} = \varphi_4(ih), \quad i = 0, \dots, M. \end{cases}$$
(3)

Система (3) называется разностной схемой - разностным (дискретным) аналогом дифференциальной задачи (1) – (2).

Для построения разностной схемы (3) используется пять точек – пятиточечный шаблон:

$$(i; j+1)$$
 $(i-1; j)$
 $(i; j-1)$
 $(i; j-1)$

Введем пространства сеточных функций $E_{\scriptscriptstyle h}$ и $F_{\scriptscriptstyle h}$.

$$\begin{split} E_h: \ u_h \in E_h, \ \|u_h\|_{E_h} &= \max_{i,j} \left|u_{ij}\right|, \\ F_h: \ g_h \in F_h, \ \|g_h\|_{E_h} &= \max\left\{ \ \gamma, \quad a, \quad b, \ c, \quad d \ \right\}, \\ \text{ the } \gamma &= \max_{i,j} \left|f(ih; j\hbar)\right|, \\ a &= \max_{j} \left|\varphi_1(j\hbar)\right|, \qquad b &= \max_{j} \left|\varphi_2(j\hbar)\right|, \qquad c &= \max_{i} \left|\varphi_3(ih)\right|, \\ d &= \max_{i} \left|\varphi_4(ih)\right|. \end{split}$$

Теперь разностную схему (3) можно записать в виде операторного уравнения

$$L_h \ u_h = g_h, \tag{4}$$

$$\Gamma_{\text{TAP}} \ L_h: \ E_h \to \ F_h, \ u_h \in E_h, \ g_h \in F_h, \tag{4}$$

$$g_{h} = \begin{cases} \frac{u_{i-1j} - 2u_{ij} + u_{i+1j}}{h^{2}} + \frac{u_{ij-1} - 2u_{ij} + u_{ij+1}}{\hbar^{2}}, \\ i = 1, \dots, M - 1, & j = 1, \dots, N - 1; \end{cases}$$

$$u_{0j}, \quad u_{Mj}, \quad j = 0, \dots, N;$$

$$u_{i0}, \quad u_{iN}, \quad i = 0, \dots, M;$$

$$g_{h} = \begin{cases} f(ih; j\hbar), & i = 1, \dots, M - 1, \quad j = 1, \dots, N - 1; \\ \varphi_{1}(j\hbar), & \varphi_{2}(j\hbar), \quad j = 0, \dots, N; \\ \varphi_{3}(ih), & \varphi_{4}(ih), \quad i = 0, \dots, M. \end{cases}$$

3. Аппроксимация и устойчивость разностной схемы

Разностная схема (4) аппроксимирует исходную дифференциальную задачу (1) - (2) на ее решении $\hat{u}(x,y)$ если

$$\|L_h[\hat{u}]_h - g_h\|_{F_h} o 0$$
 при $h o 0$ $(h, \hbar o 0)$.

Разность $L_h[\hat{u}]_h - g_h = \delta g_h$ называется невязкой.

Покажем, что невязка $\delta g_h \to 0$ при $h \to 0$.

Так как

$$L_{h}[\hat{u}]_{h} = \begin{cases} \frac{\hat{u}((i-1)h; j\hbar) - 2\hat{u}(ih; j\hbar) + \hat{u}((i+1)h; j\hbar)}{h^{2}} + \\ \frac{\hat{u}((ih; (j-1)\hbar) - 2\hat{u}(ih; j\hbar) + \hat{u}(ih; (j+1)\hbar)}{\hbar^{2}}, \\ i = 1, \dots, M-1; \quad j = 1, \dots, N-1; \\ \hat{u}(0; j\hbar), \quad \hat{u}(1; j\hbar), \quad j = 0, \dots, N; \\ \hat{u}(ih; 0), \quad \hat{u}(ih; 1), \quad i = 0, \dots, M; \end{cases}$$

то, заменяя здесь $\hat{u}(i\pm 1)h; j\hbar)$ и $\hat{u}(ih;(j\pm 1)\hbar)$ соответствующими разложениями решения $\hat{u}(x;y)$ по формуле Тейлора в точке $(ih;j\hbar)$: $\hat{u}((i\pm 1)h; j\hbar) =$

$$= \hat{u}(ih; j\hbar) \pm h \frac{\partial \hat{u}(ih; j\hbar)}{\partial x} + \frac{h^2}{2!} \frac{\partial^2 \hat{u}(ih; j\hbar)}{\partial x^2} \pm \frac{h^3}{3!} \frac{\partial^3 \hat{u}(ih; j\hbar)}{\partial x^3} + O(h^4),$$

$$\hat{u}(ih; (j\pm 1)\hbar) =$$

$$= \hat{u}(ih; j\hbar) \pm \hbar \frac{\partial \hat{u}(ih; j\hbar)}{\partial y} + \frac{\hbar^2}{2!} \frac{\partial^2 \hat{u}(ih; j\hbar)}{\partial y^2} \pm \frac{\hbar^3}{3!} \frac{\partial^3 \hat{u}(ih; j\hbar)}{\partial y^3} + O(\hbar^4),$$

получаем

$$\delta g_h = \begin{cases} O(h^2) + O(\hbar^2), & i = 1, ..., M - 1, \quad j = 1, ..., N - 1; \\ 0, & i = 0, \quad i = M, \quad j = 0, ..., N; \\ 0, & j = 0, \quad j = N, \quad i = 0, ..., M. \end{cases}$$

Следовательно, $\| \delta g_h \|_{F_h} = O(h^2) + O(\hbar^2)$ и разностная схема (4) обладает свойством аппроксимации.

Разностная схема (4) называется устойчивой, если для достаточно малых шагов сетки h и \hbar выполнены условия:

- 1) Для любой сеточной функции $g_h \in F_h$, уравнение $L_h u_h = g_h$ имеет единственное решение $\hat{u}_h \in E_h$ (существует обратный оператор $L_h^{-1} \colon F_h \to E_h$).
- 2) Существует константа A>0, независящая от h (h и \hbar), такая, что для решения \hat{u}_h уравнения L_h $u_h=g_h$ имеет место неравенство

$$\left\|\hat{u}_h\right\|_{E_h} \le \mathbf{A} \left\|g_h\right\|_{F_h}$$

(норма обратного оператора равномерно по h ограничена константой A>0 : $\left\|L_{h}^{-1}\right\|\leq A$).

Замечание. Условие 2) определения устойчивости разностной схемы принято называть условием устойчивости.

Проверку устойчивости разностной схемы (4) разобьем на несколько этапов.

Предложение 1. Пусть сеточная функция $v_h = \{v_{ij}\}$ определена на всей сетке D_h и отлична от константы (не все координаты вектора $v_h = \{v_{ij}\}$ равны одному и тому же числу). Пусть на множестве внутренних узлов сетки Ω_h имеет место неравенство

$$\frac{v_{i-1j} - 2v_{ij} + v_{i+1j}}{h^2} + \frac{v_{ij-1} - 2v_{ij} - v_{ij+1}}{\hbar^2} \ge 0,$$

 $i = 1, ..., M - 1, \quad j = 1, ..., N - 1.$

Тогда сеточная функция $v_h = \{v_{ij}\}$ принимает свое наибольшее значение в одном из граничных узлов сетки

$$v_{km} \ge v_{ij}$$
 $(kh, m\hbar) \in \Gamma_h$, $i = 0, ..., M$, $j = 0, ..., N$.

Предложение 2. Пусть сеточная функция $w_h = \{w_{ij}\}$ определена на всей сетке D_h и отлична от константы. Пусть на множестве внутренних узлов сетки Ω_h имеет место неравенство

$$\frac{w_{i-1j} - 2w_{ij} + w_{i+1j}}{h^2} + \frac{w_{ij-1} - 2w_{ij} - w_{ij+1}}{\hbar^2} \le 0,$$

 $i = 1, ..., M - 1, \quad j = 1, ..., N - 1.$

Тогда сеточная функция $w_h = \{w_{ij}\}$ принимает свое наименьшее значение в одном из граничных узлов сетки

$$w_{rs} \le w_{ij}$$
 $(rh; s\hbar) \in \Gamma_h$, $i = 0, ..., M$, $j = 0, ..., N$.

Из Предложений 1 и 2 немедленно следует

Предложение 3. Если существует сеточная функция $z_h = \{z_{ij}\}$, определенная на всей сетке D_h , такая, что на множестве внутренних узлов сетки Ω_h имеет место равенство

$$\frac{z_{i-1j} - 2z_{ij} + z_{i+1j}}{h^2} + \frac{z_{ij-1} - 2z_{ij} - z_{ij+1}}{h^2} = 0,$$

 $i = 1, ..., M - 1, \quad j = 1, ..., N - 1,$

то она достигает своего наибольшего и наименьшего значений на множестве граничных узлов $\Gamma_h = D_h \setminus \Omega_h$.

Отсюда немедленно получаем выполнение условия 1) определения устойчивости разностной схемы. Действительно из предложения 3 следует, что однородная разностная схема L_h $u_h = \theta_h = \left\{\theta_{ij}\right\}$, $\left(\theta_{ij} = 0\right)_{\text{для всех}}$ $i = 0, \ldots, M$, $j = 0, \ldots, N$ имеет только нулевое решение $\hat{u}_h = \left\{\hat{u}_{ij}\right\}$, $\hat{u}_{ij} = 0$ для всех $i = 0, \ldots, M$, $j = 0, \ldots, N$. Таким образом, неоднородное уравнение L_h $u_h = g_h$ имеет единственное решение $\hat{u}_h \in E_h$ для любой сеточной функции $g_h \in F_h$.

Перейдем к доказательству условия устойчивости.

Заметим, что для любого многочлена второй степени

$$P(x, y) = Ax^{2} + Bxy + Cy^{2} + \alpha x + \beta y + \sigma$$

имеет место равенство

$$\frac{P((i-1)h; j\hbar) - 2P(ih; j\hbar) + P((i+1)i; j\hbar)}{h^{2}} + \frac{P(ih; (j-1)\hbar) - 2P(ih; j\hbar) + P(ih; (j+1)\hbar)}{\hbar^{2}} = \frac{\partial^{2}P(ih; j\hbar)}{\partial x^{2}} + \frac{\partial^{2}P(ih; j\hbar)}{\partial y^{2}},$$

$$i = 1, ..., M-1, \quad j = 1, ..., N-1.$$

Положим

$$P(x,y) = \frac{1}{4} (R^2 - (x^2 + y^2)) \gamma + \max(a, b, c, d),$$

где
$$R > \sqrt{2}$$
, $\gamma = \max_{i,j} |f(ih; j\hbar)|$,

$$a = \max_{j} |\varphi_1(j\hbar)|, \ b = \max_{j} |\varphi_2(j\hbar)|, \ c = \max_{i} |\varphi_3(i\hbar)|, \ d = \max_{i} |\varphi_4(i\hbar)|.$$

Введем оператор Δ_h :

$$\Delta_h z_h = \left\{ \begin{array}{l} \frac{z_{i-1j} - 2z_{ij} + z_{i+1j}}{h^2} + \frac{z_{ij-1} - 2z_{ij} - z_{ij+1}}{\hbar^2} \\ i = 1, \dots, M - 1, \quad j = 1, \dots, N - 1. \end{array} \right\},\,$$

Имеем

$$\Delta_{h}[P]_{h} = \begin{cases} P((i-1)h; j\hbar) - 2P(ih; j\hbar) + P((i+1)h; \hbar) \\ h^{2} \end{cases} +$$

$$\frac{P(ih;(j-1)\hbar)-2P(ih;j\hbar)+P(ih;(j+1)\hbar)}{\hbar^2}=-\gamma$$

i = 1, ..., M-1, j = 1, ..., N-1.

 $\text{Рассмотрим} \qquad \text{разность} \qquad \hat{u}_h - \big[P\big]_h = \Big\{ \ \hat{u}_{ij} - P(ih;j\hbar) \ \Big\}, \qquad \text{где}$ $\hat{u}_h \in E_h \text{ - решение разностной схемы}.$

Очевидно, что

$$\Delta_h(\hat{u}_h - [P]_h) = \{ f(ih; j\hbar) + \gamma \}, i = 1,...,M-1, j = 1,...,N-1.$$

 $\text{Так как} \quad f\left(ih;j\hbar\right)+\gamma\geq 0 \quad \text{для} \quad i=1,\dots,M-1, \quad j=1,\dots,N-1, \quad \text{то}$ из Предложения 1 следует, что сеточная функция $\hat{u}_h-\left[P\right]_h=\left\{ \begin{array}{ll} \hat{u}_{ij}-P(ih;j\hbar) \end{array} \right\} \qquad (i=0,\dots,M, \quad j=0,\dots,N) \text{ достигает}$

своего наибольшего значения в одном из граничных узлов и, следовательно, $\hat{u}_{ij} - P(ih;j\hbar) \leq 0_{\text{ ИЛИ}} \ \hat{u}_{ij} \leq P(ih;j\hbar)_{\text{ ВО ВСЕХ УЗЛАХ СЕТКИ }} D_{_h} \, .$

Теперь рассмотрим сеточную функцию $\hat{u}_h + \big[P\big]_h = \left\{ \begin{array}{l} \hat{u}_{ij} + P(ih;j\hbar) \end{array} \right\}. \ \ _{\text{Применив}} \ _{\text{к}} \ _{\text{Этой}} \ \ _{\text{функции}} \ \ _{\text{оператор}}$ $\Delta_h \ , \ _{\text{получим}}$

$$\Delta_h(\hat{u}_h + [P]_h) = \{ f(ih; j\hbar) - \gamma \}, i = 1, \dots, M-1, \quad j = 1, \dots, N-1.$$

Так как $f(ih;j\hbar)-\gamma\leq 0$ для $i=1,...,M-1,\ j=1,...,N-1,$ то из Предложения 2 следует, что сеточная функция $\hat{u}_h+[P]_h=\left\{\hat{u}_{ij}+P(ih;j\hbar)\right\}$ $(i=0,...,M,\ j=0,...,N)$ достигает своего наименьшего значения в одном из граничных узлов и, следовательно, $\hat{u}_{ij}+P(ih;j\hbar)\geq 0$ или $\hat{u}_{ij}\geq -P(ih;j\hbar)$ во всех узлах сетки D_h .

Таким образом,

$$-P(ih;j\hbar) \le \hat{u}_{ij} \le P(ih;j\hbar)$$

во всех узлах сетки D_h . Следовательно,

$$\|\hat{u}_h\|_{E_h} = \max_{ij} |\hat{u}_{ij}| \le \max_{ij} |P(ih; j\hbar)| \le \left(\frac{1}{4}R^2 + 1\right) \|g_h\|_{F_h}$$

и условие устойчивости для разностной схемы (4) выполняется с $\text{константой } A = \frac{1}{4}R^2 + 1 \, .$

По теореме Филиппова из аппроксимации и устойчивости разностной схемы получаем ее сходимость:

$$\|\hat{u}_h - [\hat{u}]_h\|_{E_h} \to 0$$
 при $h \to 0$ $(h, \hbar \to 0)$.

здесь \hat{u}_h - решение разностной схемы (3) (или что тоже самое (4)), \hat{u} - точное решение исходной дифференциальной задачи (1) – (2).

4. Итерационный метод решения разностной схемы

Пусть $h = \hbar$. Тогда из (3) имеем

$$u_{ij} = \frac{1}{4} \left(u_{i-1j} + u_{i+1j} + u_{ij-1} + u_{ij+1} \right) - \frac{h^2}{4} f(ih; j\hbar),$$

$$i = 1, \dots, M - 1, \quad j = 1, \dots, N - 1.$$

Определим алгоритм итерационного метода формулой

$$u_{ij}^{(n+1)} = \frac{1}{4} \left(u_{i-1j}^{(n)} + u_{i+1j}^{(n)} + u_{ij-1}^{(n)} + u_{ij+1}^{(n)} \right) - \frac{h^2}{4} f(ih; j\hbar),$$

$$i = 1, \dots, M-1, \quad j = 1, \dots, N-1.$$

Для любого n остальные значения $u_{ij}^{(n)}$ в граничных узлах сетки определяются граничными условиями:

$$u_{0j}^{(n+1)} = \varphi_1(j\hbar), \quad u_{Mj}^{(n+1)} = \varphi_2(j\hbar), \qquad j = 0,...,N,$$

$$u_{i0}^{(n+1)} = \varphi_3(i\hbar), \quad u_{iN}^{(n+1)} = \varphi_4(i\hbar), \qquad i = 0,...,M.$$

В качестве начального приближения выберем сеточную функцию $u_h^{(0)}$:

$$u_{0j}^{(0)} = \varphi_1(j\hbar), \quad u_{Mj}^{(0)} = \varphi_2(j\hbar), \qquad j = 0,...,N,$$

$$u_{i0}^{(0)} = \varphi_3(i\hbar), \quad u_{iN}^{(0)} = \varphi_4(i\hbar), \qquad i = 0,...,M,$$

$$u_{ij}^{(0)} = 1, \quad i = 1,...,M-1, \quad j = 1,...,N-1.$$

Покажем, что $u_h^{(n)} \to \hat{u}_h$ при $n \to \infty$.

Обозначим, через $v_h^{(n)} = \hat{u}_h - u_h^{(n)}$ ошибку n-ого приближения. Тогда

$$v_{ij}^{(n)}=0,\;_{\mathrm{если}}\;(ih;j\hbar)\in\Gamma_h\,,$$
 $v_{ij}^{(n)}=rac{v_{i+1\,j}^{(n-1)}+v_{ij+1}^{(n-1)}+v_{i-1\,j}^{(n-1)}+v_{ij-1}^{(n+1)}}{4},$ если

 $(ih; j\hbar) \in \Omega_h$

 $\prod_{\text{Положим}} \max_{ij} \left| v_{ij}^{(n)} \right| = \mathbf{A}_n.$ Нужно доказать, что $\mathbf{A}_n \to 0$ при $n \to \infty$.

Имеет место неравенство

$$\left|v_{ij}^{(n+1)}\right| \leq \frac{3}{4} \, \mathbf{A}_n = \left(1 - \frac{1}{4}\right) \mathbf{A}_n$$
 для $(ih; j\hbar) \in \Omega_h^{(1)}$,

где $\Omega_h^{(1)}$ - множество внутренних узлов сетки, находящихся на расстоянии равном h от множества граничных узлов Γ_h , так как, по крайней мере, одно из слагаемых формулы (5) равно нулю. Далее получаем, что

$$\left|v_{ij}^{(n+1)}\right| \leq \left(1 - \frac{1}{4^2}\right) A_n$$
 для $(ih; j\hbar) \in \Omega_h^{(2)}$,

где $\Omega_h^{(2)}$ - множество внутренних узлов сетки, находящихся на расстоянии равном 2h от множества граничных узлов Γ_h , так как, по крайней мере, одно из слагаемых формулы (5) удовлетворяет предыдущему неравенству. Таким образом,

$$\left|v_{ij}^{(n+1)}\right| \le \left(1 - \frac{1}{4^k}\right) A_n$$
 для $(ih; j\hbar) \in \Omega_h^{(k)}$,

где $\Omega_h^{(k)}$ - множество внутренних узлов сетки, находящихся на расстоянии равном khот множества граничных узлов Γ_h , для любого k, $1 \le k \le L$, здесь L - наибольшее расстояние от внутреннего узла сетки до множества ее граничных узлов.

$$_{ ext{Отсюда}}$$
 получаем, что $\mathbf{A}_{n+1} \leq \left(1 - \frac{1}{4^L}\right) \mathbf{A}_n$ и, следовательно, $\lim_{n \to \infty} \mathbf{A}_n = 0$. Сходимость алгоритма доказана.

Задания для практической работы

1. Решить смешанную задачу для уравнения теплопроводности $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ с начальным условием $\mathbf{u}(\mathbf{x},0) = \mathbf{f}(\mathbf{x}), \ 0 \le x \le 1, \ 0 \le t \le 0,1$.

Номер варианта	Функция f(x)		
1	x(x-1)		
2	1+x*x		
3	x*x(1-x)		
4	ln(1+x)		
5	exp(-x)		
6	(x*x+x+1)		
7	cos x		
8	xsin(x-1)		

9	$x\sin(2\pi x)$
10	1/(1+x*x)
11	xexp(-x)
12	arctg x
13	1-x*x
14	1/(1+x)
15	$(x*x+0,5)\cos(\pi x)$

2. Найти решение задачи Дирихле в квадрате со стороной 1 для уравнения Лапласа с краевыми условиями вида u(0,y)=f1(y), u(1,y)=f2(y), u(x,0)=f3(x), u(x,1)=f4(x), $(0 \le y \le 1, 0 \le x \le 1)$.

Номер	f1(y)	f2(y)	f3(y)	f4(y)
варианта				
1	у*у	cos y+(2-cos 1)y	x*x*x	x+1
2	exp(y)-	У	-x*x*x+1	x*x
	exp(1)y*y			
3	-y*y+1	у	sinx+1-	X
			$x*x*x(1+\sin 1)$	
4	0	У	sin x-x*x*xsin 1	X
5	$\exp(y)+y*y(1-$	У	0	X
	exp(1))-1			
6	у*у	cos y+y(3-cos 1)	x*x*x	2x+1
7	0	у	sin x-x*x*xsin 1	x*x
8	1	y+1	1	x+1
9	3-7y	7-6y	4x+3	5x-4
10	5-8y	11-7y	6x+5	7x-3

11	у	y+exp(1)	exp(x)	$\exp(x)+1$
12	0	tg y	0	tg x
13	0	sin y	0	sin x
14	1	1+cos y	X	x+cos x

```
program msetellip;
                    Лабораторная работа N 9
              Метод сеток для уравнения Лапласа
              Выполнила студентка 4 курса группы
                                                       }
const nm=101;
type
       matr=array[0..nm, 0..nm] of real;
var
        g1
                                    :text;
        name
                                    :string;
        i, j, k, nx, ny
                                    :word;
                                   :integer;
        m,sx,sy
        a,am,r,t,hx,hy,eps,x,y
                                  :real;
        u
                                    :matr;
function f1(y:real):real;
begin
      f1:=y*y
end;
function f2(y:real):real;
begin
      f2 := Cos(y) + (2 - Cos(1)) *y
```

```
end;
function f3(x:real):real;
begin
      f3:=x*x*x
end;
function f4(x:real):real;
begin
      f4:=x+1
end;
begin
        write('Введите имя выходного файла ');
readln(name);
        assign(g1,name); rewrite(g1);
        writeln(q1,'
                            Лабораторная работа N 9');
        writeln(g1,' Метод сеток для уравнения
Лапласа');
        writeln(q1, 'Выполнил студент 4 курса группы
');
        writeln(g1);
        write('Введите число шагов по оси x ');
read(nx);
        write('Введите число шагов по оси у ');
read(ny);
        write('Введите условие останова eps ');
read(eps);
        writeln(g1, 'Условие останова eps = ',eps);
        write('Введите максимально допустимое число
итераций т ');
```

```
read(m);
        write('Введите шаги печати по оси х и по оси у
'); readln(sx,sy);
        hx:=1.0/nx; writeln(g1,'Шаг по оси х ',hx);
        hy:=1.0/ny; writeln(g1,'Шаг по оси у ',hy);
        t:=sqr(hx/hy);
        for j:=0 to ny do
        begin y:=j*hy; u[0,j]:=f1(y); u[ny,j]:=f2(y)
end;
        for i:=0 to nx do
        begin x:=i*hx; u[i,0]:=f3(x); u[i,nx]:=f4(x)
end;
        for i:=1 to nx-1 do
        for j:=1 to ny-1 do u[i,j]:=1.0;
        k := 1;
repeat
        am:=0;
        for i:=1 to nx-1 do
        for j:=1 to ny-1 do
      begin
        a:=0.5*(u[i-1,j]+u[i+1,j]+u[i,j-
1] *t+u[i,j+1] *t) / (1+t);
        if abs(a-u[i,j]) >= am then am:=abs(a-u[i,j]);
        u[i,j] := a;
      end;
        r:=am; k:=k+1; if k>m then
begin
        Writeln(g1, 'Число итераций превышает m= ', m);
close(q1);
```

```
exit;
       end;
      until r<=eps;
        writeln(q1,'
                                        Решение
задачи');
Writeln(q1,'*******************************
write(g1, ' y= ');
for j:=0 to ny div sy do begin y:=j*sy*hy;
write(g1,y:4:2,' ') end;
writeln(g1);
Writeln(g1, 'x=');
Writeln(q1,'*******************************
for i:=0 to nx div sx do
      begin x:=i*sx*hx; write(g1,' ',x:4:2,'* ');
       for j:=0 to ny div sy do
write(q1,u[i*sx,j*sy]:7:4,' ');
      writeln(q1)
       end;
Writeln(g1);
Writeln(q1,'*******************************
**********************************
writeln(g1,'Число итераций k= ', k);
  close(q1)
end.
```

```
program msetpar;
                    Лабораторная работа N 9
{
        Метод сеток для уравнения теплопроводности
        Выполнил студент 4 курса группы
                                                        }
const nm=200;
type
        vec=array[1..nm] of real;
var
        g1
                           :text;
                           :string;
        name
        i,j,nx,nt,n,m
                           :word;
        sx, sx0, st
                           :integer;
        t,t1,ht,hx
                           :real;
                           :vec;
        z,u
function f(x:real):real;
begin
        if (x-0.5) \le 0 then f:=10-20*x else f:=40*x-20
end;
procedure spar(hx,ht:real; n:word; var u:vec);
var
        i
                       :word;
        al,a1,b1
                       :real;
                       :vec;
        p,q
begin
        al:=ht/(hx*hx); b1:=-al; a1:=1+2*al;
        p[1] := -b1/a1; q[1] := (u[2] -b1*u[1])/a1;
        for i:=2 to n-1 do
            begin
```

```
p[i] := -b1/(b1*p[i-1]+a1);
               q[i] := (u[i+1]-b1*q[i-1]) / (b1*p[i-1]+a1)
            end:
        u[n] := (u[n]-b1*u[n+1]-b1*q[n-1]) / (b1*p[n-1])
1|+a1);
        for i:=1 to n-2 do u[n-i]:=q[n-i-1]+p[n-i-1]
1 \times u[n-i+1]
end;
begin
        write('Введите имя выходного файла ');
readln(name);
        assign(g1,name); rewrite(g1);
        writeln(q1,'
                             Лабораторная работа N 9');
        writeln(g1,' Метод сеток для уравнения
теплопроводности');
        writeln(g1, 'Выполнил студент 4 курса группы
');
        writeln(q1);
        write('Введите шаг по оси t '); read(ht);
        write('Введите число шагов по оси х ');
read(nx);
        write('Введите число шагов по оси t ');
read(nt);
        write('Введите шаги печати по оси х и по оси t
'); readln(sx,st);
        hx:=1.0/nx; n:=nx div sx+1; sx:=sx-1;
        writeln(q1,'Шаг по оси х ',hx);
        writeln(g1,'Шаг по оси t ',ht);
                            40
```

```
u[1] := f(0); u[nx+1] := f(1);
       z[1] := 0; z[nx+1] := 1;
       for i:=2 to nx do begin z[i]:=(i-1)*hx;
u[i] := f((i-1) * hx) end;
       writeln(q1);
       writeln(g1,'
                                         Решение
задачи');
Writeln(q1,'*******************************
write(a1, '
                 *x= ');
for i:=1 to n do write(g1, z[i+(i-1)*sx]:4:2,'
                                                ');
writeln(g1);
Writeln(q1,'*******************************
t:=0; t1:=(st-1)*ht;
       writeln(q1);
       write(g1,'t=',t:4:2,'*');
       for i:=1 to n do write(q1,u[i+(i-1)*sx]:9:4,'
');
       writeln(g1);
       for i:=1 to nt do
begin
       spar(hx, ht, nx, u); t:=t+ht; if(t-0.00001)>=t1
then
       begin t1:=t1+st*ht; write(g1,'t= ',t:4:2,'*');
             for j:=1 to n do write(g1,u[j+(j-
1)*sx]:9:4,' '); writeln(g1)
       end
end;
```

Учебное издание

Костин Алексей Владимирович Костин Дмитрий Владимирович Колесникова Инна Викторовна Силаева Марина Николаевна

МЕТОД СЕТОК РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

Учебное пособие

Издано в авторской редакции

Подписано в печать 28.01.2019. Формат 60×84/16. Усл. п. л. 2,5. Тираж 40. Заказ 153

Издательский дом ВГУ 394018 Воронеж, пл. Ленина, 10 Отпечатано с готового оригинала-макета в типографии Издательского дома ВГУ 394018 Воронеж, ул. Пушкинская, 3