IOT MINI PROJECT

SANCHIT SUGGALA	RA1910043010050	
TANYA SHARMA	RA1910043010062	
PRIYANKA R	RA1910043010087	

CO2 LEVEL MONITOR

1.1 Introduction:

The IOT(internet of things) is a system which is equipped for interfacing everything to the web through remote sensor networks.CO2 is very harmful in large amounts and is also responsible for climate change and many other environmental issues. Leaving this aside, controlling and monitoring indoor levels of carbon dioxide inside buildings is important for everyone to be safe, healthy and even maintain energy efficiency. High amounts of CO2 inhalation often leads to a silent death. 1.6 million deaths occur every year due to CO2 leakages indoors.

1.2 Hardware/software requirement:

S.NO	DESCRIPTION	QTY
1.	CO2 detector	1
2.	Server	1
3.	Old car	1

4.	Garage door	1
5.	Window	1
6.	Switch	1
7.	PC	1

1.3 Background:

Theory

A carbon dioxide sensor or ${\rm CO_2}$ sensor is an instrument for the measurement of carbon dioxide gas. The most common principles for ${\rm CO_2}$ sensors are infrared gas sensors (NDIR) and chemical gas sensors. Measuring carbon dioxide is important in monitoring indoor air quality.

Although CO2 is produced both naturally and through human activities, it is not classified as an air pollutant. However, it is treated as a pollutant because the amount of oxygen required for breathing becomes insufficient at high concentrations of CO2 in an indoor space. CO2 is a representative greenhouse gas that causes global warming. Thus, the CO2 gas sensor module CM1103 is installed to detect and monitor CO2 concentrations. The sensor uses nondispersive infrared technology (NDIR) that has advantages of high precision, fast response, and factory calibration. Also, it features excellent long-term stability with low power consumption

4.3 Components description:

4.3.1

Old Car

A car having lots of problems.

Features:

- Off
- On
- Increases Carbon Dioxide
- Increases Carbon Monoxide
- Increases Smoke

Usage:

• N/A

Direct Control:

• ALT-click to interact

Local Control:

• N/A

Remote Control:

• N/A

Data Specifications:

• N/A

Example:

 Place a CO detector and a CO2 detector within the same container as the car. Turn on the car and notice the alarm indicators go off on the detectors.

4.3.2

Garage Door

A garage door opener.

Features:

- Registration Server Compatible
- Ability to vent Carbon Dioxide and Carbon Monoxide

Usage:

• N/A

Direct Control:

• ALT-click to interact

Local Control:

• Connect device to MCU/SBC/Thing. Use the customWrite API per Data Specifications

Remote Control:

• Connect device to Registration Server using Config Tab

Data Specifications:

• Input Slot: D0

• Message Format: [state]

• state: 0 = closed, 1 = open

Example:

• Look for an IoT sample file named garage door.pkt.

4.3.3

Window

A window that can open or close

Features:

- Registration Server Compatible
- Ability to vent Carbon Dioxide and Carbon Monoxide

Usage:

• Windows works with Environment objects. It reads CARBON_DIOXIDE and CARBON_MONOXIDE variables set in the Environment object and change these variables when users activate window opening/closing

Direct Control:

• ALT-click to open and close

Local Control:

• Connect device to MCU/SBC/Thing. Use the "customWrite" API per data Specifications

Remote Control:

• Connect device to Registration Server using Config Tab

Data Specifications:

- Message Format: [state]
- state: 0 = closed, 1 = open

Example:

• N/A

4.3.4

Carbon Dioxide Detector

Detects the level of the carbon dioxide

Features:

- Registration Server Compatible
- Alarm will go off when it detects a Carbon Dioxide level of 60%
- Usage:
- Use an Old Car to change the Carbon Dioxide level

Direct Control:

• N/A

Local Control:

• N/A

Remote Control:

• N/A

Data Specifications:

Message Format: [state],[level]state: 0 = alarm off, 1 = alarm on

• level: a positive number

Example:

• Start an Old Car to increase the Carbon Dioxide level, alarm will turn on when the level > 60%

4.3.5 Desktop computer

4.3.6 Switch

Port	Link	VLAN	IP Address	MAC Address
FastEthernet0/1	Down	1		0002.4A1B.E201
FastEthernet0/2	Down	1		0002.4A1B.E202
FastEthernet0/3	Down	1		0002.4A1B.E203
FastEthernet0/4	Down	1		0002.4A1B.E204
FastEthernet0/5	Down	1		0002.4A1B.E205
FastEthernet0/6	Down	1		0002.4A1B.E206
FastEthernet0/7	Down	1		0002.4A1B.E207
FastEthernet0/8	Down	1		0002.4A1B.E208
FastEthernet0/9	Down	1		0002.4A1B.E209
FastEthernet0/10	Down	1		0002.4A1B.E20A
FastEthernet0/11	Down	1		0002.4A1B.E20B
FastEthernet0/12	Down	1		0002.4A1B.E20C
FastEthernet0/13	Down	1		0002.4A1B.E20D
FastEthernet0/14	Down	1		0002.4A1B.E20E
FastEthernet0/15	Down	1		0002.4A1B.E20F
FastEthernet0/16	Down	1		0002.4A1B.E210
FastEthernet0/17	Down	1		0002.4A1B.E211
FastEthernet0/18	Down	1		0002.4A1B.E212
FastEthernet0/19	Down	1		0002.4A1B.E213
FastEthernet0/20	Down	1		0002.4A1B.E214
FastEthernet0/21	Down	1		0002.4A1B.E215
FastEthernet0/22	Down	1		0002.4A1B.E216
FastEthernet0/23	Down	1		0002.4A1B.E217
FastEthernet0/24	Down	1		0002.4A1B.E218
GigabitEthernet0/1	Down	1		0002.4A1B.E219
GigabitEthernet0/2	Down	1		0002.4A1B.E21A
Vlan1	Down	1	<not set=""></not>	00E0.8F05.60A3
Hostname: Switch				
Physical Location:	Intercit	ty, Home	City, Corporate	Office, Main Wiring Closet

4.3.7

<u>Server</u>

4.4 Procedure:

- a. Launch cisco packet tracer in desktop.
- b. From the file menu select New File.
- c. Work in the logical window.

- d. Add the required devices from the network components space, and select the components for building the logical network.
- e. Connect all the network components using Copper Straight- Through cable.
- f. Configure the Server-PT, using the tab Settings and Fast Ethernet
- q. Configure the PC-PT, using the tab Settings and Fast Ethernet
- h. Configure the CO2 detector, using the tab Settings and Fast Ethernet
- i. Configure the Garage door, using the tab Settings and Fast Ethernet
- j. Configure the Window, using the tab Settings and Fast Ethernet
- k. Configure the server using DHCP IP address

4.5 Observations:

<u>Server</u>

Port ID	FastEthernet0
Link (UP/DOWN)	UP
IPv4 Address	1.1.1.1
IPv4 Subnet Mask Address	255.0.0.0
IPv6 Address	<not set=""></not>
MAC Address	0004.9A8E.85AC

<u>PC</u>

Port ID	FastEthernet0
MAC Address	0001.9672.15AA
IPv4 Address	1.1.1.2
IPv4 Subnet Mask Address	255.0.0.0

Switch

Port ID	FastEthernet 0/0
MAC Address	NA
IPv4 Address	NA
Ipv4 Subnet mask address	NA
VLAN	1

Link (UP/DOWN)	UP
----------------	----

Garage door

Port ID	FastEthernet0
MAC Address	00D0.BA43.4D02
IPv4 Address	1.1.1.4
IPv4 Subnet Mask Address	255.0.0.0
Link (UP/DOWN)	<u>UP</u>

<u>Window</u>

Port ID	FastEthernet0
MAC Address	00E0.8FB5.4482
IPv4 Address	1.1.1.3
IPv4 Subnet Mask Address	255.0.0.0
Link (UP/DOWN)	<u>UP</u>

Co2 Detector

Port ID	FastEthernet0
MAC Address	0005.5EA0.3401
IPv4 Address	1.1.1.5
IPv4 Subnet Mask Address	255.0.0.0
Link (UP/DOWN)	UP

4.6 Result:

Window and garage door have been activated successfully whenever the Co2 level goes above 20% and closes when the Co2 level goes

below 5% which is the percentage at which it is breathable. The experiment has successfully been conducted using Cisco Packet Tracer.