

Big Data

Tutorial #3

Isabelle Kuhlmann 2020-05-15

Outline

- 1) Lecture Recap
- 2) Exercise Discussion
- 3) OLAP in Spark
- 4) Homework Exercise

What previously happened...

Lecture Recap

Transactional Systems vs. Analytic Systems

Transactional	Analytic
 Many different actions by many actors in parallel Small-sized actions spanning small fraction of data Application-oriented Current data Primary data Fast response time required Frequent changes 	 Few different actions by few actors in parallel Large-sized actions spanning a lot of data Subject-oriented Historic data Aggregated data Response time: seconds, or even minutes, might be okay Supports strategic decision making

Data Warehousing

- Collection of data that is:
 - subject-oriented
 - integrated
 - time-variant
 - nonvolatile
- Today, we deal with more modular/agile approaches

Metadata

- Semantic metadata
- Administrative metadata
- Schematic metadata

Datacubes

- Multi-dimensional data representation
 - Hypercube
- Can be sparse (containing null values in facts) or dense (no null values in facts)
- Operations:
 - Slice
 - Dice
 - Roll-up
 - Drill-down
 - Pivot (rotate)

Relational Representation

- Star schema
- Snowflake schema
- Galaxy schema

Star Schema vs. Snowflake Schema

Normalization of a star schema yields a snowflake schema.

Star schema:

Snowflake schema:

Retail data

Exercise Discussion

Homework Assignment – Discussion

- Load the Retail dataset, it can be found under data/retail-data/all/online-retail-dataset.csv (Link). Answer the following questions/complete the following tasks using Spark:
 - Which item was bought most (total)? Which one was bought most in the USA?
 - Which was the lowest invoice (>0), which one the highest?
 - Add a column which displays whether an item was purchased in Germany.
 - Add a column which shows the total amount of the corresponding invoice.
 - How many German customers spent more than \$10?
 - Sort the German customers with respect to their total invoice in descending order.
- Demo

Datacubes: Slice, Dice, Rollup, and more

OLAP in Spark

Slice

- Select a slice of the datacube, i.e., create a datacube with one less dimension
- Example: Demo

Dice

- Select a subcube of your overall datacube
- Example: Demo

Pivot

- Rotation of an axis
- Essentially yields a change in perspective
- Example: Demo

Roll-up

- Aggregate or generalize one dimension
- In Spark, the roll-up operator basically follows a path in the lattice by always leaving out some columns
- Example: Demo

Drill-down

- Include more specific information
 - Inverse of roll-up
- Drill-down and roll-up are effectively often a simple switch of columns (when regarding a star schema)

Now it's your turn!

Homework Exercise

Exercise

- Consider the retail dataset again. Answer the following questions in two different ways: using SQL and using Spark code (DataFrame API).
 - How many orders did customers perform at which hour?
 - How frequently was each product bought in the different countries?

Thank you for your Attention!

