Graduation Project

Computer Vision Verification of Sample Self-Acquisition for Self Diagnostics Using Deep Learning

Under Supervision of Prof. Dr. Mahmoud Ibrahim Khalil

Ву

Ahmed Sameh Shahin	16P6063
Karim Walid Abdelazim	16P3090
Moataz Khaled Zakaria	16P8244
Mohammed Ehab Elsaeed	16P8160

ւիիստիիստ տիրակին Արգարի սուրիստիի Մասիիստի

AGENDA

- 2. Problem in hand
- 3. Approach Used
- 4. Problems Faced and Solutions
- 5. Final Result and Demos
- 6. Future Enhancements

01. Introduction

CENTERS FOR DISEASE CONTROL AND PREVENTION

փիստիիստիիստիիս փիստիիս տիրս փիստիստինստինս Հայիս սահերանի

Xtrava's SPERA™

փիտակիտավորակիտ փիտակիտ ակիտ փիտակիտի ւ**իրագի**իսափիսակիսա Մինսիիս» սփիսն Միսակիս Միսակիս Միսակիս

 \triangle

02.

Problem in Hand

Scope

Benefits:

- Reduced costs
- Lower loads on hospitals and clinics
- Accuracy
- Ease-of-use
- Minimization of errors in sample collection and preparation.

Objectives:

- Detect users' movements.
- Detect test tools (swab)
- Monitor users' actions while performing the test.

Goals:

 Validate and verify that users follow the given steps during self-testing.

Problem Statement

An application to verify that a user followed the steps instructed through the application correctly.

More specifically, that the user inserted the provided swab in both the right and left nostrils without the need for a medical professional then used the provided solution with the acquired sample.

Functional Requirements

- Detect Aruco markers and their IDs.
- Detect and localize whether a swab is in the Left nostril or the right nostril or in neither.

Non-Functional Requirements

- Realtime, up to 1s delay in response.
- User-friendly interface.
- Reliable.
- Works on Android/iOS as a web/mobile App.

Assumptions and Dependencies

Assumptions/Constraints:

- User is not wearing any kind of eye-wear
- User is standing in front of a blank white(ish) background.
- User is wearing a black shirt
- User using only the provided tools, marked with the Aruco markers.

Dependencies:

- Low resolution or faulty camera
- Poor camera angles
- Poor lighting
- High exposure
- Markers are out of the camera's line of sight.

ւ<mark>կիսու</mark>կիսուկիսուկիսո Մինսիիսն սկիսն Իրասիրուկիսնիիսն սկիսն Խոլիս

 \triangle

03. Approach Used

Δ

 \triangle

Visual Marker

Detection

dhadhadhadhadhad dhadhad adhad ladhadhad

VISUAL MARKER DETECTION

OPEN CV

The OpenCV Library has built-in support for ArUco markers detection and generation.

Swab LOCATION CLASSIFIER

SWAB LOCATION CLASSIFIER

Softmax Layer with 3 classes Left - Right - False

Transfer Learning of a **RESNET 50 DNN** Pretrained on the Imagenet Dataset with its top replaced by a Flattening Layer Then a 3-Unit Softmax Layer

Why RESNET 50?

Pretrained Image Feature Extractor

 Solves the Vanishing Gradient Problem of Deep Neural Networks Using skip connections

An Imagenet pretrained version is available in Keras

լիիստ իիստ փիստ ինստ **իի**ստ իիստիիստ ստիա գույիստիին

04. Problems Faced and Solutions

Problem 1: High Variance & Low Bias (Overfitting)

Set	Average Accuracy
Training	99%
Validation	60%

ւիիստիիստ հինակին Մինակինանի Մինակին

Tried changing the softmax layer to be compatible with our desired outputs (3 classes)

Result

Model still overfitted.

Δ

 \triangle

Tried adding a dropout of value 0.7-0.9 before the softmax layer.

Result

Validation accuracy increased significantly (73%), but still unsatisfactory.

 \triangle

Removed dropout and added a fully connected layer with 500 units.

Result

Validation accuracy decreased (72%), and model started to overfit again.

 \triangle

Changed the fully connected layer from 500 units to 200 units.

Result

No significant change.

Δ

Feed the model more data

Add a 100-unit fully-connected (FC) layer before the SoftMax layer. The FC layer serves as a linear combinatoric function for the nonlinear activation maps produced in the last convolutional layer of the Resnet.

Result

Model performs much better on validation set but still not satisfactory, accuracy is now 85%.

ւիկներիկին հիկինի հիկին Միկինի Միկինի հիկին Միկինիկին

Problem 2: Model misclassifies side when face is not centered (L/R) But no False Positives

Failed Solution Trial

Tried increasing the dataset by appending augmentated training data (random x-axis translations)

Result

Δ

The problem persisted.

Successfull Solution Trial

Crop faces in dataset and before inference in runtime.

How To Crop Faces?

Option1: Use OpenCV's DNN Face Detector which uses

SSD and uses ResNet-10 as its Backbone.

Option2: Use Haar Cascade

Result

Option1: Successful, but many crops with no faces (False Positives) are detected.

Option2: Few number of faces are detected,

not robust to partial face occlusion.

մակին մակինակի Որասիին արինա մահանանի

DNN Problem: No-face crops (False Positives)

Upon Manual Analysis of crops, we found that y-coordinates of false bounding boxes started way too low in the picture (past 1/3 of image height).

How To Crop Faces Correctly?

Use OpenCV's DNN Face Detector which uses SSD and uses ResNet-10 as its Backbone. Remove all crops where starting y is more than third of image height.

Result

Very good results, nearly no false positives. Around 95% Accuracy obtained on validation set.

Training Data

ւիիսակիսն նվան գովվու մակիստիր Մինսնինն

Initial

Final

Δ

Δ

լինադինակինակինակին Որադիսանինակին Արտակիսանինակին Արտակիսանին

Final Result and Demos

Final Result

Set	Average Accuracy
Training	100%
Test	94.5%

ւիկարդիրու արդիու սոցիրարիի փիրակիրը տիիա

Tensorboard Log

Demo on Data From Different Distributions

արվվու սովիրուիի Միրոսիիուն Միրոսիիու

Demo 2 on Data From Different Distributions

լիստիիստիիստիիստ Մինսիիստ հփիստ Մոստիիստիիստի Մոստիիստիիստի

06. Future Enhancements

Non Maximum Suppression

To eliminate false positives in DNN face detector.

Web App

Hosting the application on Google Cloud Platform which has the needed resources.

 Δ

Android and iOS application

Mobile applications available in the play/app store for the users.

Thank You! Any Questions?

4

.