$\varphi(n) = \varphi^{+}(n) + \varphi^{-}(n)$: usual hernitian free field Under proper orthochronous borentz transf: $\mathcal{U}(\Lambda)^{-1} \varphi(n) \mathcal{U}(\Lambda) = \varphi(\Lambda^{-1}n)$ We have shown that $U(\Lambda)^{-1} a(\vec{k}) U(\Lambda) = a(\Lambda^{-1} \vec{k})$ $\mathcal{U}(\Lambda)^{-1} a^{\dagger}(\vec{k}) \mathcal{U}(\Lambda) = a^{\dagger}(\Lambda^{-1}\vec{k})$ $\therefore \mathcal{U}(\Lambda)^{-1} \varphi^{\pm}(n) \mathcal{U}(\Lambda) = \varphi^{\pm}(\Lambda^{-1}n)$: 4+ and 4 are loventz scalars. We will then have local, lorentz-inv interactions if we take the interaction lagrangian L, to be a hermitian function of 4+ and 4. Transition amplitude Tif from 1i> at t=-00 to 1f> at t=+00: $T_{if} = \langle f | T e^{-i \int_{-\infty}^{\infty} dt H_{I}(t)} | i \rangle$ H_I(t):= e H₁ e : perturbing hamiltonian in the interaction pic Hy: interaction ham; Itonian in Schrödinger pic T: time-ordening symbol Key point: For Tif to be benentz inv, time-ordering must be frome-interpendent. Time-ordering of two spacetime points nand n' is frame-independent if their separration is timelike, $(n-n')^2 < 0$ Spacetike-separated n and n' can have different frames : we require $[H_{\tau}(x), H_{\tau}(x')] = 0$ whenever $(x-x')^2 > 0$ Obviously, $[\varphi^+(n), \varphi^+(n')]_+ = 0 = [\varphi^-(n), \varphi^-(n')]_+$. However, $\left[\varphi^{+}(n), \varphi^{-}(n')\right]_{\pm} = \int \widetilde{dk} \, \widetilde{dk'} \, e^{ikn} \, e^{-ik'n'} \left[a(\vec{k}), a^{+}(\vec{k}')\right]_{\pm}$ $= \int \frac{d^3k}{(2\pi)^3 2\omega} \frac{d^3k'}{(2\pi)^3 2\omega'} e^{ikx-ik'n'} (2\pi)^3 2\omega \delta^3(\vec{k}-\vec{k}')$ $= \int \frac{d^3k}{(2\pi)^3 2\omega'} e^{i\vec{k}\cdot\vec{n} - i\vec{k}\cdot\vec{n}'} e^{-i\omega t + i\omega' t'} \int_{0}^{3} (\vec{k} - \vec{k}')$ $= \int \frac{d^3k}{(2\pi)^3 2\omega} e^{i\vec{k}\cdot(\vec{n}-\vec{k}')} = i\omega(t-t')$ Go to a frame $w \left(t - t' = 0 \right) s.t \left(x - x' \right)^2 = - \left(t - t' \right)^2 + \left(\vec{x} - \vec{n}' \right)^2 = r^2 > 0$. $\bigoplus \left(\frac{d^3k}{(2-1)^3 2!} e^{i\vec{k} \cdot \vec{r}} \right)$ $=\frac{1}{16\pi^{3}}\int_{0}^{\infty}dq q^{2}\int_{-1}^{1}d\Psi\int_{0}^{2\pi}d\Psi e^{iqr\Psi}\frac{1}{\sqrt{q^{2}+m^{2}}}$ $= \frac{1}{iqr} \left(e^{iqr} - e^{-iqr} \right) = \frac{1}{iqr} 2i \sin(qr) = \frac{2}{ar} \sin(qr)$ $= \frac{1}{16\pi^{3}} \int_{0}^{\infty} dq \ q^{2} \frac{2}{q^{r}} \sin(qr) \ 2\pi \frac{1}{\sqrt{q^{2} + m^{2}}}$ $=\frac{1}{L\pi^2r}\int_0^\infty dq \frac{q\sin(qr)}{\sqrt{m^2+m^2}}, \quad p:=\frac{q}{m}$ $= \frac{1}{4\pi^2 r} \int_0^{\infty} dp \ m \frac{mp \sin(pmr)}{\sqrt{m^2 p^2 + m^2}}$ $= \frac{m}{4\pi^2 r} \int_0^{\infty} dt \frac{t \sin(mrt)}{\sqrt{t^2+1}}, \quad t = \sinh(u), \quad dt = \cosh(u) du, \quad \int_0^{\infty} dt$ $= \frac{m}{4\pi^{2}r} \int_{0}^{\infty} \cosh(u) du \frac{\sinh(u) \sin(mr \sinh(u))}{\sqrt{\sinh(u)^{2} + 1}}$ $= \frac{m}{u\pi^2 r} \int_{0}^{\infty} du \sinh(u) \sin(mr \sinh(u))$ See functions. wolfram. com/ Bessel-Type Functions / Bessel K/07/01/01/0005: $K_{v}(n) = \csc\left(\frac{\pi v}{2}\right) \int_{-\infty}^{\infty} dt \sin(n \sinh(t)) \sinh(vt)$ $\therefore \int_{0}^{\infty} du \, \sinh(u) \, \sin(mr \sinh(u)) = \frac{K_{1}(mr)}{\omega \sec(\frac{\pi}{2})}$ $= K_1(mr)$ $\therefore \left[\varphi^{+}(n), \varphi^{-}(n') \right]_{+} = \frac{m}{(\pi^{2}r)} K_{1}(mr)$ =: C(r) Note that C(r) > 0 $\forall r > 0$. For small m, $K_1(mr) = \frac{1}{2mr} + O(mr)^n$, so even for m = 0, we have mr K1 (mr) = 1 and hence $\left[\varphi^{+}(x), \varphi^{-}(x') \right]_{\mp} = \frac{1}{4\pi^{2}r^{2}} \qquad (m=0)$ which is never 0: $H_{T}(n)$, involving both ψ^{+} and ψ^{-} , will not satisfy $[H_{+}(n), H_{-}(n')] = 0$ for $(n-n')^{2} > 0$ generically. To resolve the problem, try using a particular linear combo of Qt and Q-: $\varphi_{\lambda}(x) := \varphi^{+}(x) + \lambda \varphi^{-}(x)$ $\varphi_{\lambda}^{\dagger}(n) := \varphi^{-}(n) + \lambda^{*} \varphi^{+}(n)$ where $\lambda \in \mathbb{C}$. Then, $\left[\left(\varphi_{\lambda}(n),\varphi_{\lambda}^{\dagger}(n')\right)_{\pm}=\left[\left(\varphi^{\dagger}(n),\lambda\varphi^{-}(n),\varphi^{-}(n')+\lambda^{*}\varphi^{+}(n')\right]_{\mp}$ $= \left[\varphi^{+}(n), \varphi^{-}(n') \right]_{\pm} + \lambda^{*} \left[\varphi^{+}(n), \varphi^{+}(n') \right]_{\mp} + \lambda \left[\varphi^{-}(n), \varphi^{-}(n') \right]_{\pm} + \left[\lambda \right]^{2} \left[\varphi^{-}(n), \varphi^{+}(n') \right]_{\pm}$ = C(r) + | \lambda | 2 (\pi C(r)) = (17 12) C(r) $\left[\left(\varphi_{\lambda}(n), \varphi_{\lambda}(n') \right) \right]_{\pm} = \left[\left(\varphi^{+}(n) + \lambda \varphi^{-}(n), \varphi^{+}(n') + \lambda \varphi^{-}(n') \right) \right]_{\pm}$ $= \lambda \left[\varphi^{+}(n), \varphi^{-}(n') \right]_{+} + \lambda \left[\varphi^{-}(n), \varphi^{+}(n') \right]_{+}$ = \ (C(r) 7 C(r)] $=\lambda(1\mp1)C(r)$ If we want (), (n) to either commute or anticommute w/ both (), (n') and $Q_{\lambda}^{T}(n')$ at spacelike separations, then we must choose |A|=1and commutators. Only then, we can find a suitable H (n) by making it a hermitian function of $\varphi_{\lambda}(x)$. But this has simply returned us to the theory of a real scalar : for $\lambda = e^{i\alpha}$, $e^{-i\alpha/2} \varphi_{\lambda}(x)$ is hermitian. In fact, if we make the replacements $a(\vec{k}) \rightarrow e^{i\alpha/2} a(\vec{k})$ and $a^{\dagger}(\vec{k}) \rightarrow e^{-i\alpha/2} a^{\dagger}(\vec{k})$, then the commutation relations of a and at are unchanged, and e-id/24, (x) = $\varphi(x) = \varphi^{+}(x) + \varphi^{-}(x)$: our attempt to start w/ a and at as fundamental objects has simply led us back to the real, commuting, scalar field Q(n) as the fundamental object. Consider again 4(n) as fundamental, w/ a lagrangian given by some function of borentz scalars (12) and 2 My 2 my. Then, quantization will result in $[Q(n), Q(n)]_{\mp} = 0$ for t = t'. If we choose anticommutators, then $\psi^2 = 0 = (\partial_\mu \psi)^2$, resulting in a trivial L that is at most linear in φ and independent of $\dot{\varphi}$. This does not lead to the cornect physics.

The situation generalizes to fields of higher spin, in any number

of spacetime dimensions. One choice of quantization always leads to

to a trivial L, so this Choice is not allowed. The allowed choice

is always commutators for fields of integer spin and unticommutators

for fields of half-integer spin.

Spin-statistics theorem

 $\omega = \sqrt{\vec{k}^2 + m^2}$

 $\left(\alpha(\vec{k}), \alpha(\vec{k}')\right)_{\pm} = 0$

 $[a^{\dagger}(\vec{k}), a^{\dagger}(\vec{k}')]_{\pm} = 0$

lorentz - inv interactions. Let

Time-evolve w/ Ho:

 $\varphi^{+}(\vec{n},0) := \int dk e^{i\vec{k}\cdot\vec{n}} a(\vec{k})$

 $\varphi^{-}(\vec{n},0) := \int \vec{a} k e^{-i\vec{k}\cdot\vec{n}} a^{\dagger}(\vec{k})$

 $[a(\vec{k}), a^{\dagger}(\vec{k}')]_{\pm} = (2\pi)^3 2\omega \delta^3(\vec{k} - \vec{k}')$

Consider adding terms to the hamiltonian that will result in bound,

 $Q^{+}(\vec{x},t) = e^{iH_0t} \varphi^{+}(\vec{x},0)e^{-iH_0t} = (\vec{J}_{k} e^{ikn} a(\vec{k}))$

 $\Psi^{-}(\vec{n},t) = e^{iH_0t} \Psi^{-}(\vec{n},0) e^{-iH_0t} = \int d\vec{k} e^{-ikn} a^{\dagger}(\vec{k})$

Ho = (dk w a+(k) a(k)