Deadline: 2024/06/12, 22:00.

- 1. (Monotone Convergence Theorem for general functions) Let $\{f_k\}$ be a sequence of measurable functions on a measurable set E. Show that
 - (a) If $f_k \nearrow f$ a.e. on E and there exists $\phi \in L(E)$ such that $f_k \ge \phi$ a.e. on E for all k, then $\int_E f_k \to \int_E f$.
 - (b) If $f_k \searrow f$ a.e. on E and there exists $\phi \in L(E)$ such that $f_k \leq \phi$ a.e. on E for all k, then $\int_E f_k \to \int_E f$.
- 2. (Uniform Convergence Theorem for general functions) Let $f_k \in L(E)$ for $k \in \mathbb{N}$ and let $\{f_k\}$ converge uniformly to f on E with $|E| < +\infty$. Prove that $f \in L(E)$ and $\int_E f_k \to \int_E f$.
- 3. (Fatou's Lemma for general functions) Let $\{f_k\}$ be a sequence of measurable functions on a measurable set E. Prove that if there exists $\phi \in L(E)$ such that $f_k \geq \phi$ a.e. on E for all k, then

$$\int_{E} (\liminf_{k \to \infty} f_k) \le \liminf_{k \to \infty} \int_{E} f_k.$$

- 4. (Bounded Convergence Theorem for general functions) Let $\{f_k\}$ be a sequence of measurable functions on a measurable set E such that $f_k \to f$ a.e. in E. Prove that if $|E| < +\infty$ and there is a finite constant M such that $|f_k| \leq M$ a.e. in E, then $\int_E f_k \to \int_E f$.
- 5. (General Lebesgue's Dominated Convergence Theorem) Let $\{f_k\}$ be a sequence of measurable functions on a measurable set E such that $f_k \to f$ a.e. in E. Prove that if there exists $g_k \geq 0$, $g_k \in L(E)$ such that $|f_k| \leq g_k$ a.e. in E for all k and $g_k \to g$ a.e. for some $g \in L(E)$ with $\int_E g_k \to \int_E g$, then $\int_E f_k \to \int_E f$.

Hint: Consider $|f_k| \leq g_k \in L(E) \Rightarrow g_k + f_k \geq 0$ and $g_k - f_k \geq 0$, apply Fatou's Lemma.