Math 297 Discussion 4*

Annie Xu

Feburary 5, 2019

Recall our definition of topological spaces.

1 Topological Properties

1) Hausdorff space

Let (X, \mathcal{T}) be a topological space, we say X is Hausdorff if $\forall x, y \in X$ with $x \neq y$, there are disjoint open sets $U_x, V_y \in T$ such that $x \in U_x$ and $y \in V_y$.

Note: A metric space is automatically Hausdorff. (Why?)

Theorem 1. X is Hausdorff if and only if $\Delta = \{(x, x) | x \in X\} \subset X \times X$ is closed in $X \times X$ in the product topology. (Proved later)

2) Continuity of functions in topological spaces

Definition 1.1. Let X and Y be topological spaces. A function $f: X \to Y$ is said to be **continuous** if for each open subset V of Y, the set $f^{-1}(V)$ is an open subset of X.

Note: What if we change 'open' to 'closed' in the definition?

If the topology of the range space Y is given by a basis \mathbb{B} , then to prove continuity of f it suffices to show that the inverse image of every basis element is open. Why?

If the topology on Y is given by a subbasis \mathbb{S} , to prove continuity of f it will even suffice to show that the inverse image of each *subbasis* element is open. Why?

3) Convergence of sequences

Definition 1.2. Let (X, \mathcal{T}) be a topological space and $x_n \in X$ a sequence. We say that the sequence x_n converges to $x_0 \in X$ if for every open set $U \subset X$ which contains x_0 there exists an $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$ the points x_n lie in U.

4) Subspace topology

Definition 1.3. Let X be a topological space with topology \mathcal{T} . If Y is a subset of X, the collection $\mathcal{T}_Y = \{Y \cap U | U \in \mathcal{T}\}$ is a topology on Y, called the **subspace topology**. With this topology, Y is called a **subspace** of X; its open sets consist of all intersections of open sets of X with Y.

^{*}Reference: James Munkres. Topology. Prentice Hall, NJ, 2000.