

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Publications of IISER Mohali (/jspui/handle/123456789/4)
- / Research Articles (/jspui/handle/123456789/9)

Please use	this identifier to cite or link to this item: http://hdl.handle.net/123456789/3484
Title:	Nanoscale Ultrathin Glass Cantilevers for Quantum Sensing
Authors:	Sidhu, M.S. (/jspui/browse?type=author&value=Sidhu%2C+M.S.) Singh, K.P. (/jspui/browse?type=author&value=Singh%2C+K.P.)
Keywords:	Femtosecond Ultrathin Glass Quantum Sensing
Issue Date:	2020
Publisher:	The Optical Society of America
Citation:	Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2020
Abstract:	We fabricated ultra-thin glass cantilevers using femtosecond laser pulses while integrating nitrogen vacancy (NV) centers at its tip. The magneto-optical susceptibility of NV centers towards electron spin was exploited for quantum sensing applications.
URI:	https://www.osapublishing.org/abstract.cfm?uri=CLEO_AT-2020-AF3K.7 (https://www.osapublishing.org/abstract.cfm?uri=CLEO_AT-2020-AF3K.7) http://hdl.handle.net/123456789/3484 (http://hdl.handle.net/123456789/3484)
Appears in Collections:	Research Articles (/jspui/handle/123456789/9)

Files	in	This	Item:

File	Description	Size	Format	
Need to add pdf.odt (/jspui/bitstream/123456789/3484/1/Need%20to%20add%20pdf.odt)		8.63 kB	OpenDocument Text	View/Open (/jspui/bitstream/12345

Show full item record (/jspui/handle/123456789/3484?mode=full)

(/jspui/handle/123456789/3484/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.