- 1. (a) Let V and W be vector spaces and V^{\perp} and W^{\perp} be the corresponding complementary orthogonal spaces. If V is orthogonal to W (if $v \in V$ and $w \in W$, $v^T w = 0$), is V^{\perp} orthogonal to W^{\perp} ?
 - (b) Given an $m \times n$ matrix A and $m \times 1$ vectors y and b, such that $A^Ty = 0$ and $y^Tb \neq 0$. Does the system of equations Ax = b have a solution?

2. Find the projection matrix P_1 that projects a matrix along the vector $a = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and the projection matrix P_2 that projects onto a line perpendicular to a. Compute $P_1 + P_2$ and P_1P_2 .

$$P_{1} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{pmatrix} R & 3 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix}$$

3. A 200 mg sample of radioactive polonium-210 is observed as it decays. The mass remaining at various times is as follows

Use an exponential model $m(t) = ce^{kt}$ and do a least square fit to find the half-life of polonium-210.

4. Find the best fit (least squares) cubic polynomial $(y = c_0 + c_1x + c_2x^2 + c_3x^3)$ for the following data.

$$(x,y) = [(-1,-2),(-\frac{1}{2},\frac{1}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{2},\frac{13}{4})]$$

$$(x,y) = [(-1,-2),(-\frac{1}{2},\frac{1}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4})]$$

$$(x,y) = [(-1,-2),(-\frac{1}{2},\frac{1}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4})]$$

$$(x,y) = [(-1,-2),(-\frac{1}{4},\frac{1}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4})]$$

$$(x,y) = [(-1,-2),(-\frac{1}{4},\frac{1}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4})]$$

$$(x,y) = [(-1,-2),(-\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4})]$$

$$(x,y) = [(-1,-2),(-\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4})]$$

$$(x,y) = [(-1,-2),(-\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4})]$$

$$(x,y) = [(-1,-2),(-\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4})]$$

$$(x,y) = [(-1,-2),(-\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4})]$$

$$(x,y) = [(-1,-2),(-\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4}),(\frac{1}{4},\frac{7}{4})]$$

$$(x,y) = [(-1,-2),(-\frac{1}{$$

6. If x^* is the minimum-norm solution to Ax = b, show that $x^{*^T}y = 0$ where $y \in Null(A)$.

X = A (A A) b () = -2(A M) -1 7. Let f(x) denote a scalar function and $\mathbf{f}(x)$ denote a system of m equations of a vector $x = [x_1, x_2, \dots x_n]^T$. Then ∇f and $\nabla \mathbf{f}$ are defined as follows

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}, \quad \nabla \mathbf{f} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \frac{\partial f_2}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Using these definitions, find the gradient of the following functions (a) $\mathbf{f} = Ax$ (b) $\mathbf{f} = x^T A$ (c) $f = x^T x$ (d) $f = x^T Ax$ and (e) $f = \lambda^T Ax$. In all cases, start with the definition and compute the gradient.

$$\nabla = \nabla \left\{ \begin{array}{c} \alpha_{11} \times_1 + \alpha_{12} \times_2 \\ - \end{array} \right\}$$

$$= \left\{ \begin{array}{c} \alpha_{11} \times_1 + \alpha_{12} \times_2 \\ - \end{array} \right\}$$

$$= \left\{ \begin{array}{c} \alpha_{11} \times_1 + \alpha_{12} \times_2 \\ - \end{array} \right\}$$

$$= \left\{ \begin{array}{c} \alpha_{11} \times_1 + \alpha_{12} \times_2 \\ - \end{array} \right\}$$

$$= \left[\begin{array}{c} \alpha_{11} \times_1 + \alpha_{12} \times_2 \\ - \end{array} \right]$$

$$= \left[\begin{array}{c} \alpha_{11} \times_1 + \alpha_{12} \times_2 \\ - \end{array} \right]$$

 $d \int \int - x^{7} A = \left(x \right) x_{2} - y_{3} \tilde{\alpha}_{11} \tilde{\alpha}_{12} - e_{1} \tilde{m}$

 $\alpha_{(($

X, G,(x, + X, 0, 2x2 + x0 / 49, 2x \times , α , α × n a ni X 1 + - a, x, ta, x, ta, x, ta, x, ta, x, x, ta, x, x, y $+\alpha_2, \chi_2 + \dots$ $A \times + \chi^{\tau} \times = (A + A^{\tau})_{\chi}$ (e) $f = \lambda^T A x$.

8. A is a $m \times n$ matrix, with m > n and rank n. C is a $p \times q$ matrix with p < q and rank p. $b \notin \operatorname{col}\{A\}$ is a $m \times 1$ vector. Use the method of Lagrange multipliers and find the equations that need to be solved in order to determine x in the following optimization problem.