Math 13 - Week 7: Number Theory

- 1. Prove that a number is a perfect square if and only if it has an odd number of divisors.
- 2. A set S and a relation \sim on S is given. For each example, check if \sim is reflexive, symmetric, and/or transitive. If the relation is an equivalence relation, describe the equivalence classes.
 - (a) $S = \mathbb{R}$ where $a \sim b$ if and only if $a \leq b$.
 - (b) $S = \mathbb{R}$ where $a \sim b$ if and only if |a| = |b|.
 - (c) $S = \mathbb{Z}$ where $a \sim b$ if and only if $a \mid b$.
 - (d) $S = 2^{\mathbb{N}}$ where $A \sim B$ if and only if $A \subseteq B$.
- 3. Is the operation $a \oplus b = a^b$ well-defined for $a, b \in \mathbb{Z}_n$?
- 4. Let $S = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if ad = bc.
 - (a) Is $(1,5) \sim (-3,-15)$?
 - (b) Is $(-1,1) \sim (2,3)$?
 - (c) Prove that \sim is an equivalence relation.