

Class 10th

Mathematics

Short Notes

Chapter 5- Arithmetic Progressions

1. Sequence:-

A sequence is an arrangement of number or objects in definite order.

2. Arithmetic Progression:-

- (i) An arithmetic progression is a list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term
- (ii) A sequence $a_1, a_2, a_3, \ldots, a_n$ is called an arithmetic progression, if there exists a constant 'd' such that $a_2-a_1=d$, $a_3-a_2=d$, $a_4-a_3=d$,...., $a_{n+1}-a_n=d$ and so on.

The constant 'd' is called the common difference.

(iii) If 'a' is the first term and 'd' the common difference of an AP, then the A.P. is $a, a + d, a + 2d, a + 3d, a + 4d, \dots$

3. General term of an A.P.:-

The n^{th} term ' a_n ' of an A.P. with first term 'a' and common difference 'd' is given by $a_n = a + (n-1) d$

4. nth Term of an A.P. from the end:-

(i)Let there be an A.P. with first term 'a' and common difference d. If there are m terms in the AP, then n^{th} term from the end = $(m-n+1)^{th}$ term from the beginning

$$= a + (m-n) d$$

Also,

(ii)

 $n^{\rm th}$ term from the end = Last term + (n-1) (-d)= l-(n-1) d, where l denotes the last term.

5. Selection of terms in an A.P.:-

Various terms is an A. P. can be chosen is the following manner:

Number of terms	Terms	Common
		difference
3	a-d, a, a, +d	d
4	a - 3d, a - d, a + d, a + 3d	2d
5	a-2d, $a-d$, a , $a+d$, $a+2d$	d
6	a - 5d, $a - 3d$, $a - d$, $a + d$, $a + 3d$, $a + 5d$	2d

6. Sum of first n terms of an A.P:-

The sum of n terms of an A.P with first term 'a' and common difference 'd' is given by

$$S_n = \frac{n}{2} \{ 2a + (n-1)d \}$$

Also, $S_n = \frac{n}{2} \{a + l\}$, where l = last term = a + (n - 1) d

7. Middle Term(s) of a finite A.P.:

Let there be a finite A.P. with first term a, common difference d and number of terms n.

Case1:If *n* is odd, then $\left(\frac{n+1}{2}\right)^{th}$ term is the middle term and given by $a + \left(\frac{n+1}{2} - 1\right)d$.

Case2: If *n* is even, then $\left(\frac{n}{2}\right)^{th}$ and $\left(\frac{n}{2}+1\right)^{th}$ are middle terms and given by $a+\left(\frac{n}{2}-1\right)d$ and $a+\left(\frac{n}{2}+1-1\right)d$ respectively.

11. Arithmetic mean (AM):-

If a, b, c are in A.P. Then,

$$\Rightarrow$$
 2b = $a + c$

$$\Rightarrow b = \frac{a+c}{2}$$

Thus, A.M. between a and c is $\frac{a+c}{2}$.

12. Relation between S_n and a_n :-

If the sum S_n of n terms of a sequence is given, then n^{th} term a_n of the sequence can be determined by using the following formula:

$$a_n = S_n - S_{n-1}$$

13. Sum of some special sequences: -

• Sum of first 'n' natural numbers

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

• Sum of squares of the first 'n' natural numbers

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^3 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

• Sum of cubes of first 'n' natural numbers

$$\sum_{k=1}^{n} k^{3} = 1^{3} + 2^{3} + 3^{3} + ... + n^{3} = \left(\frac{n^{2}(n+1)^{2}}{4}\right)$$

• Sum of first 'n' odd natural numbers

$$\sum_{k=1}^{n} (2k-1) = 1 + 3 + 5 + \dots + (2n-1) = n^{2}$$