1.4 Kernell	en de la companya de La companya de la co
	enough meaning le: x x x -> R for which there
elected peaker map $\phi: X \to \mathcal{H}$	while meaning $k: X \times X \longrightarrow \mathbb{R}$ for which there where X is a real much product space) with
$k(x,x') = \angle \phi(x), \phi(x')$	
head then an work product spore	If we a real vector space endowed with a
map 2., . 7: 21 × 21 -> R tha	t slugs
of symphy (u, v) = (v, u)	$\langle v \rangle = a \langle u \rangle + b \langle w \rangle$
\vec{u}) lumberely for $a,b \in \mathbb{R}$ ($au+b$ \vec{u}) powher deferting $(u,u) \ge 0$	in. We graphly off $u = 0$
Per A positive defante hered Co	eagly beaut) le is a symathic map le: XXX => R
for wheh Yn EN X1,, ×n E	x, the maker KEK
$K_{ij} = h(x_i, x_j)$ is party	re remi-défibrable (aTKXZO).
Potts hard a four of the Carday - School	work inequality:
$k(x,x')^2 \leq k(x,x) k(x',x')$)
Proof: The matrix $(k(x,x))$ ($k(x,x')$)	(x, x')) us pos. semi-def, so who det must be usu-negative.
Roger defined by dela le (x, x') = (d(x) d	(x1)) I a livered where $\phi: x \to X$ and X is
Praof: Let $x_1,, x_n \in X$, and	(x')) is a livered, where $\phi: x \to x$ and x' on management space. $\in \mathbb{R}^N$ and consider
Σαι b(xi,xj)αj = Zαζφί	x0), φ(x;)>xj = < Σα; φ(xi), Σα; φ(xj)> ≥0
Example Proph Part Suppose le, lez, one hund	4 .
(i) If x, , x2 20 ther de Daz	x, le, + x2 lez is a bunnel
$ \text{ff lim } \lim_{x_1 \times 1} x_1 \times 1 = x_1 \times 1 . $	exerts $\forall x, x' \in X$, then by abund.
() the norther to product h = h	, be $(h(x, x') = h, (x, x') h_2(x, x'))$, y abund
Proof: Example what I I	,

Linear branch b(x, x1) = xTx1 Polynomial burnel le(x,x') = (1+xTx') d dEN Malund. Note that 1 + xTx1 is a limited arily to the fact that I is a best of and bring (v) of prop 4. Then (ii) of prop 4 and unduction should that (1+ x x') is a busual back. Convine head! $k(x, x') = exp(-\frac{1/x - x' ||_{2}^{2}}{2\sigma_{x}^{2}})$ To then this is a bunual 1/x-x'1/2 = 1/x1/2 + 1/x'1/2 - 2x x' $L_1\left(x,x^{\dagger}\right) = \exp\left(-\frac{||x||_{\varepsilon}^{2}}{2\sigma^{2}}\right) \exp\left(-\frac{||x^{\prime}||_{\varepsilon}^{2}}{2\sigma^{2}}\right)$ then m orbital by prop 3. Next $\mu_2(x,x') = \exp\left(\frac{x^Tx'}{2\sigma^2}\right) = \sum_{r=0}^{\infty} \frac{(x^Tx')^r}{(2\sigma)^r r!} \quad \text{if alund by prop 4}.$ that le=le, lez on ahund by prop 4 (ii). Sobolar burnel Take X=[0, 1]. le(x, x') = min (x, x') they of abunual much be in the covariance fundion of Brown on motion. Jaccard nimilarity (remblance) let X be the not of all mobile of $\{1, ..., p\}$.

For $x, x' \in X$ define $h(x, x') = \{\frac{|x \cap x'|}{|x \cup x'|} | \text{if } x \cup x' \neq \emptyset \}$