Home Credit Default Risk

Loan Process Mapped to Columns

Let's say you (the client) go to a shop and buy a washing machine on EMI.

Step-by-Step Flow:

Step	Real Life	Dataset Column
You apply for EMI	Client applies for POS loan	SK_ID_CURR (Client ID)
Loan is approved	Each loan has a unique ID	SK_ID_PREV (Loan ID)
Monthly tracking starts	Each month, the loan status is recorded	MONTHS_BALANCE (e.g., -1 = last month, 0 = now)
You had to pay 12 EMIs	Total planned payments	CNT_INSTALMENT
You've paid 6 so far	Remaining 6 EMIs left	CNT_INSTALMENT_FUTURE
Contract is still ongoing	Contract is active or closed	NAME_CONTRACT_STATUS (Active, Completed)
You delayed 2 payments	Days overdue for that month	SK_DPD (Days Past Due)

You had serious DPD but in default terms **SK_DPD_DEF** delays (default)

Example

SK_ID_CURR: 123456 SK_ID_PREV: 78910 MONTHS_BALANCE: -3 CNT_INSTALMENT: 12

CNT_INSTALMENT_FUTURE: 9
NAME_CONTRACT_STATUS: Active

SK_DPD: 15 SK_DPD_DEF: 0

It means:

- Client **123456** took a loan (**78910**) 3 months ago.
- It was a 12-month EMI plan; 9 months are still left.
- As of 3 months ago, they were **15 days late** in payment, but not yet in official default.

Datasets:-

1.POS_CASH_balance (df_pos_cash)

This dataset contains **monthly balance snapshots** for previous loans (both installment and revolving) from **POS** (Point of Sale) and cash loan channels. It **records a snapshot of every month** for each **previous loan** the client has taken.

Column Description

SK_ID_PREV ID of previous credit

(loan)

SK_ID_CURR ID of client

MONTHS_BALANCE Month relative to the loan balance snapshot (e.g., 0 is

current)

CNT_INSTALMENT Number of installment payments initially

agreed

CNT INSTALMENT Remaining installment payments at the snapshot time

FUTURE

NAME_CONTRACT_ Current status of the contract (e.g., Active,

STATUS Completed)

SK_DPD Days past due on the loan (at that

snapshot)

SK_DPD_DEF Days past due, considering

default logic

Key Terms:

POS (Point of Sale) :-

This refers to loans taken at the point of purchase — e.g., you buy a phone on EMI in a store or online and get instant credit.

Think of it like swiping your card or using EMI on Amazon — you get the product now and pay monthly.

Revolving Loan :-

This is a **flexible credit line** — you can borrow, repay, and borrow again within a credit limit (like a **credit card**).

Snapshot:-

A **monthly snapshot** is like a monthly report of the loan:

"What was the loan status this month? How many payments are left? Any delay?"

SK_ID_CURR vs SK_ID_PREV

- **SK_ID_CURR** → This is the Client ID ("client" here means customer like you or me)
- $\bullet \quad \textbf{SK_ID_PREV} \to \textbf{This is the Loan ID for a specific loan the client took}$

One client (SK_ID_CURR) can have many loans, and each loan has a different SK_ID_PREV

EMI (Equated Monthly Installment)

EMI is a **fixed monthly payment** that a borrower makes to repay a **loan** — like for a car, home, or credit card bill.

Each EMI includes:

- **Principal** (the original loan amount)
- **Interest** (the cost charged by the lender)

2.Application_train (df_application_train)

This table contains the main information about loan applications made by customers. It acts as the **fact table** is central to any analysis or modeling. Each row represents one loan application.

Column Name	Description
SK_ID_CURR	Unique customer ID for current loan application
TARGET	Target label: 1 = client defaulted on loan, 0 = repaid
NAME_CONTRACT_TYPE	Type of loan contract (e.g., Cash loans, Revolving loans)
CODE_GENDER	Gender of the applicant
FLAG_OWN_CAR	Flag: Does the applicant own a car (Y/N)
FLAG_OWN_REALTY	Flag: Does the applicant own a house/apartment (Y/N)
CNT_CHILDREN	Number of children the applicant has
AMT_INCOME_TOTAL	Annual income of the applicant
AMT_CREDIT	Loan amount applied for

AMT_ANNUITY Monthly installment amount to be paid

AMT_GOODS_PRICE Price of the goods the loan is meant to buy

NAME_TYPE_SUITE Who accompanied the client to the application (e.g.,

spouse, friend, etc.)

NAME_INCOME_TYPE Type of applicant's income (e.g., working, pensioner,

business)

NAME_EDUCATION_TYPE Education level of the applicant

NAME_FAMILY_STATUS Marital status

NAME_HOUSING_TYPE Applicant's housing situation (e.g., own apartment, rented,

etc.)

DAYS BIRTH Age of the applicant in days (negative number; convert to

positive years)

DAYS EMPLOYED Number of days employed (can have large positive value

for unemployed)

FLAG MOBIL Mobile phone provided flag

FLAG_WORK_PHONE Work phone provided flag

FLAG PHONE Home phone provided flag

FLAG EMAIL Email provided flag

CNT_FAM_MEMBERS Number of family members declared by the applicant

EXT_SOURCE_1/2/3 External risk scores from other sources (normalized values

between 0 and 1)

DAYS_REGISTRATION Days since registration with company

DAYS_ID_PUBLISH Days since ID was changed

Key concepts:-

In a data engineering or data warehouse context, a fact table is:A central table that contains measurable, quantitative data (facts) about business processes, and typically references dimension tables via foreign keys

application_train.csv is the fact table because:

Each row represents a loan application (a business event).

- It contains measurable values like:
 - AMT_CREDIT, AMT_INCOME_TOTAL, DAYS_BIRTH, etc.
- It can be **joined** with other tables like:
 - bureau.csv (past loans → dimension/fact)
 - previous_application.csv (previous apps → dimension/fact)
 - credit_card_balance.csv (monthly credit card behavior)

3.Bureau (df_bureau)

This table gives a comprehensive **credit history snapshot** for each client from external credit bureaus (like Experian, Equifax, etc.), at the time they applied for a loan with Home Credit.

This dataset includes **external credit history information** for each customer (SK_ID_CURR) from credit bureaus. It's used to understand the applicant's creditworthiness based on their **past and current loans** from other institutions.

Column Name	Description
SK_ID_CURR	ID of the current loan applicant (matches with application_train / application_test)
SK_BUREAU_ID	Unique ID for a reported credit line from the credit bureau
CREDIT_ACTIVE	Status of the credit line (Active / Closed / Sold)
CREDIT_CURRENCY	Currency used for the credit (mostly recoded)
DAYS_CREDIT	How many days before the loan application this credit was opened (e.g., -500 = 500 days ago)
CREDIT_DAY_OVERD UE	Number of days this credit was past due at time of application
DAYS_CREDIT_ENDD ATE	Remaining duration of the credit (in days) at the time of application
DAYS_ENDDATE_FAC T	Days since this credit actually ended at application time (only for closed credits)
AMT_CREDIT_MAX_O VERDUE	Max amount that was ever overdue on this credit
CNT_CREDIT_PROLO NG	Number of times the credit was extended or restructured

AMT_CREDIT_SUM Total amount of the credit

AMT_CREDIT_SUM_D Current unpaid debt for that credit line

EBT

AMT_CREDIT_SUM_L Credit limit, typically for credit card lines

IMIT

AMT_CREDIT_SUM_O Current overdue amount (if any)

VERDUE

CREDIT_TYPE Type of the credit product (e.g., Credit card, Consumer credit,

Mortgage)

DAYS_CREDIT_UPDA How many days before application the bureau last updated this

record

AMT ANNUITY Monthly payment obligation for this credit line (if known)

Conceptual Understanding

- A single SK_ID_CURR (customer) can have **multiple** SK_BUREAU_IDs, each representing a separate **external loan or credit**.
- This data gives **historical behavior**: Was the client usually on time? Did they miss payments? How much debt are they carrying?
- Fields like DAYS_CREDIT, DAYS_CREDIT_ENDDATE, and DAYS_ENDDATE_FACT are crucial to temporal analysis of credit activity.

How to Use It?

- Join bureau.csv with bureau balance.csv on SK BUREAU ID
- Then join with application train on SK ID CURR
- This gives you a **timeline and status** of each customer's credit activity **before** applying for the loan

4. Bureau_balance (df_bureau_balance)

Column Name Description

SK_BUREAU_ID A unique ID for each credit line reported by external credit bureaus.

Use this to join with the main bureau table (df_bureau).

MONTHS_BALA The month relative to the application when the snapshot was taken.

NCE For example, -1 means one month before the application, -6 means 6

months ago.

STATUS Status of the bureau loan during that month. Values:

"0" → No DPD (customer paid on time)

- "1" to "5" \rightarrow Indicates increasing ranges of Days Past Due (e.g. "1" = 1–30 DPD)
- "C" \rightarrow Closed
- "X" → Unknown status

Conceptual Notes for bureau_balance

- Think of **bureau_balance** as monthly **"status snapshots"** of each credit/loan the customer had *before* applying for the current loan.
- These loans are reported by **external credit bureaus**.
- You will get one row per loan per month. So it's a time-series-like table in long format..

Example Interpretation

Say a person had an external credit card with SK BUREAU ID = 100123:

- MONTHS_BALANCE = -1, STATUS = 0 → One month before loan application, payment was on time.
- MONTHS_BALANCE = -2, STATUS = 2 → Two months ago, they were 31–60 days late.
- MONTHS_BALANCE = -5, STATUS = C → The loan got closed 5 months before application.

Joining Logic

To analyze customer behavior:

- Join bureau_balance to bureau on SK_BUREAU_ID
- Then join bureau to application_train or application_test on SK_ID_CURR

5. credit_card_balance (df_credit_card_balance)

This dataset provides <u>month-wise details of a customer's credit card usage</u>, <u>payments</u>, <u>and outstanding amounts for their previous loans</u>.

It shows the monthly usage and repayment behavior of credit cards related to previous loans taken by customer

Column	Meaning	Real-world Example
MONTHS_BALANCE	Month number relative to current application1 = most recent month.	-3 means 3 months before applying for the new loan
AMT_BALANCE	Credit card balance for the month	₹20,000 remaining to pay
AMT_CREDIT_LIMIT_AC TUAL	Credit card limit	₹1,00,000 limit set by bank
AMT_DRAWINGS_ATM_CU RRENT	Amount withdrawn via ATM this month	Withdrew ₹5,000 cash
AMT_DRAWINGS_POS_CU RRENT	Purchases via swipe/card at stores (Point of Sale)	Bought groceries worth ₹2,000
AMT_DRAWINGS_CURREN	Total of all drawings (ATM + POS + others)	₹5,000 + ₹2,000 = ₹7,000

AMT_INST_MIN_REGULA RITY	Minimum payment due this month	₹3,000 minimum due
AMT_PAYMENT_CURRENT	Actual payment made	Paid ₹5,000 this month
AMT_TOTAL_RECEIVABL E	Total remaining amount expected from customer	₹18,000 left to pay
CNT_DRAWINGS_*	How many times the card was used	2 ATM withdrawals, 5 store purchases
CNT_INSTALMENT_MATU RE_CUM	How many installments have been paid till now	10 EMI payments made
NAME_CONTRACT_STATU S	Status of the credit	'Active' = credit card still running
SK_DPD	Days payment was delayed that month	5 = 5 days late
SK_DPD_DEF	Days late, but ignores low-amount delays	Same as SK_DPD if serious enough

Loan & Credit Card Process (Simplified)

- 1. The customer applies for a loan or credit card.
- 2. If approved, a **credit limit** is set (AMT_CREDIT_LIMIT_ACTUAL).
- 3. Customers make **drawings (spending)** via POS (Point of Sale), ATM, or others.
- 4. Monthly, a **minimum installment** is due (AMT_INST_MIN_REGULARITY).
- 5. Customers make **payments** (AMT_PAYMENT_CURRENT, etc.).
- 6. Remaining balance becomes **receivable** (AMT_TOTAL_RECEIVABLE).
- 7. Any delays show up in **Days Past Due (SK_DPD)**.

AMT_BALANCE	Principal amount the customer currently owes. This is the actual unpaid amount (think: total debt remaining).
AMT_TOTAL_RECEIV ABLE	Total amount to be received , including interest , fees , and other charges (e.g. late payment penalties). This is what the lender <i>expects to collect</i> .

You borrowed ₹10,000 and missed some payments. Now:

- You still owe ₹10,000 in principal → AMT_BALANCE = 10,000
- But you've accumulated ₹1,000 in interest and fees → AMT_TOTAL_RECEIVABLE = 11,000

6. installments_payments (df_installments_payments)

When someone takes out a loan (like for a house, car, or mobile phone), they agree to repay the amount (plus interest) in installments (monthly payments). Here's how this is reflected in the data:

Column	Description	Real-world Example
SK_ID_CURR	ID of the loan in the current dataset.(Client ID or Current Loan ID)	Suppose this is your main loan being analyzed (e.g., home loan).
SK_ID_PREV	A loan ID for a previous credit linked to the current customer.	You may have taken a mobile EMI earlier; this tracks history.
NUM_INSTALMENT_VE RSION	Tracks changes to the installment	You agreed to pay ₹5000/month, but later renegotiated to ₹4000 -

	credit card).	version.
NUM_INSTALMENT_NU MBER	Number of the installment (1st, 2nd, 3rd)	First EMI = 1, Second EMI = 2, etc.
DAYS_INSTALMENT	Scheduled date of installment (days before application).	If it's -120, the installment was due 120 days before the main loan application.
DAYS_ENTRY_PAYMEN T	Actual payment date (in days before application).	If -125, the person paid early. If -90, it's late.

plan version (θ = this change creates a new

AMT_PAYMENT

AMT_INSTALMENT

Actual amount paid

by customer

(installment)

amount

Could be ₹5000 (on-time),

₹0 (missed), ₹3000

(partial).

Expected payment For example, ₹5000.

What we Can Derive

- Consistency in payments = financially responsible customer.
- Early or over-payments = low risk.
- Missed or partial payments = red flags.
- Visualize delays (DAYS_INSTALMENT DAYS_ENTRY_PAYMENT).

How This Links to the Loan Process

Let's say a customer took a personal loan a year ago and is now applying for a new home loan.

- 1. SK_ID_PREV tracks their previous loans.
- 2. NUM_INSTALMENT_NUMBER, DAYS_INSTALMENT, and AMT_INSTALMENT record what they were supposed to pay and when.
- 3. DAYS_ENTRY_PAYMENT and AMT_PAYMENT show if they paid on time, early, late, or missed.
- 4. Late or missed payments (or overpaid ones) give insights into their creditworthiness.

7. previous_application (df_previous_application)

In the real world, when a client (customer) applies for a loan, that application—even if rejected—is recorded. This dataset tracks all past applications before the current loan under analysis.

The dataset contains information about **past loan applications** made by each customer (SK_ID_CURR) to Home Credit. Each row corresponds to a **past application** (approved, refused, canceled, etc.), and is uniquely identified by SK_ID_PREV

Column	Description	Why Important
SK_ID_CURR	ID of client in current loan	Used to join with main dataset
SK_ID_PREV	ID of previous loan	Key to track multiple applications
NAME_CONTRACT_TYP E	Type of loan (Cash, Consumer, Revolving)	Helps analyze behavior by product
AMT_APPLICATION	Loan amount applied for	Key financial info
AMT_CREDIT	Credit approved by HC	Compare application vs. granted
AMT_DOWN_PAYMENT	Down payment made	Affects risk analysis
AMT_ANNUITY	Installment amount	Ties to repayment capacity

NAME_CASH_LOAN_PU RPOSE	Purpose of loan (repairs, education)	Useful for grouping behavior
NAME_CLIENT_TYPE	First-time or returning client	Risk profiling
NAME_CONTRACT_STA TUS	Final status (Approved, Refused)	Helps model behavior of successful/failed applicants
DAYS_DECISION	Days relative to current application when this was decided	Time-lag to current application
CNT_PAYMENT	Number of payment installments planned	Duration of past loan

Use:-

- 1. **Join** <u>previous_application</u> to main application data via SK_ID_CURR.
- 2. **Aggregate** useful metrics (e.g., average past credit amount, number of refused loans, etc.) for each customer.
- 3. **Drop** redundant/sparse columns post aggregation.

Timeline Flow for a Previous Application

- 1. You apply for ₹500,000 (AMT_APPLICATION) on a Tuesday morning (WEEKDAY APPR PROCESS START, HOUR APPR PROCESS START).
- 2. The bank approves ₹450,000 (AMT_CREDIT) with 10% down (RATE_DOWN_PAYMENT), to buy a laptop (NAME_GOODS_CATEGORY).
- 3. You select 12-month EMI (CNT_PAYMENT) with a ₹5,000 EMI (AMT_ANNUITY).
- 4. The first EMI was due 30 days later (**DAYS_FIRST_DUE**), and the loan ended a year later (**DAYS_TERMINATION**).
- 5. This application may have been **approved** or **refused** (NAME_CONTRACT_STATUS).