1

GATE MA - 2009

EE24BTECH11061 - Rohith Sai

SINGLE CORRECT 2 MARKS EACH

1)	A simple pendulum, consisting of a bob of mass m connected with a string of length
	a, is oscillating in a vertical plane. If the string is making an angle θ with the vertical,
	then the expression for the Lagrangian is given as

a)	ma^2	$\left(\dot{\theta}^2 - \frac{2g}{a}\sin^2\frac{\theta}{2}\right)$	
1 \		· · 2 A	

c)
$$ma^2 \left(\frac{\dot{\theta}^2}{2} - \frac{2g}{a}\sin^2\frac{\theta}{2}\right)$$

d) $\frac{ma}{2}\left(\dot{\theta}^2 - \frac{2g}{a}\cos\theta\right)$

b) $2mga \sin^2 \frac{\theta}{2}$

2) The extremal of the functional
$$\int_0^1 \left(y + x^2 + \frac{y^2}{4} \right), dx$$
, $y(0) = 0$, $y(1) = 0$ is

a)
$$4(x^2 - x)$$

b) $3(x^2 - x)$

c)
$$2(x^2 - x)$$

d) $x^2 - x$

b)
$$3(x^2 - x)$$

d)
$$x^2 - x$$

COMMON DATA QUESTIONS

Common Data for Questions 51 & 52:

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

$$T(x_1, x_2, x_3) = (x_1 + 3x_2 + 2x_3, 3x_1 + 4x_2 + x_3, 2x_1 + x_2 - x_3)$$

3) The dimension of the range space of T^2 is

d) 3

4) The dimension of the null space of T^3 is

a) 0

c) 2

b) 1

d) 3

Common Data for Questions 53 & 54:

Let $y_1(x) = 1 + x$ and $y_2(x) = e^x$ be two solutions of y''(x) + P(x)y'(x) + Q(x)y(x) = 0

5)
$$P(x) =$$

a)
$$1 + x$$

b)
$$-1 - x$$

c)
$$\frac{1+x}{x}$$

d) $\frac{-1-x}{x}$

6) The set of initial conditions for which the above differential equation has NO solution is

a)
$$y(0) = 2, y'(0) = 1$$

c)
$$y(1) = 1, y'(1) = 0$$

b)
$$y(1) = 0, y'(1) = 1$$

d)
$$y(2) = 1, y'(2) = 2$$

Common Data for Questions 55 & 56:

Let X and Y be random variables having the joint probability density function

$$f(x,y) = \begin{cases} \frac{1}{\sqrt{2\pi y}} e^{\frac{-1}{2y}(x-y)^2}, & \text{if } -\infty < x < \infty, 0 < y < 1\\ 0, & \text{otherwise} \end{cases}$$

7) The variance of the random variable X is

a)
$$\frac{1}{1^2}$$
 b) $\frac{1}{4}$

c)
$$\frac{7}{12}$$
 d) $\frac{5}{12}$

8) The covariance between the random variables X adn Y is

a)
$$\frac{1}{3}$$
 b) $\frac{1}{4}$

c)
$$\frac{1}{6}$$
 d) $\frac{1}{12}$

LINKED ANSWER QUESTIONS

Statement for Linked Answer Questions 57 & 58:

Consider the function $f(z) = \frac{e^{iz}}{z(z^2+1)}$

9) The residue of f at the isolated singular point in the upper half plane $\{z = x + \iota y \in \mathbb{C} : y > 0\}$ is

a)
$$\frac{-1}{2e}$$

c)
$$\frac{e}{2}$$
 d) 1

b)
$$\frac{\frac{2e}{-1}}{e}$$

10) The Cauchy Principal Value of the integral $\int_{-\infty}^{\infty} \frac{\sin x_i dx}{x(x^2+1)}$ is

a)
$$-2\pi (1 + 2e^{-1})$$

c)
$$2\pi (1 + e)$$

b)
$$\pi (1 - e^{-1})$$

c)
$$2\pi (1 + e)$$

d) $-\pi (1 + e^{-1})$

Statement for Linked Answer Questions 59 & 60:

Let $f(x, y) = kxy - x^3y - xy^3$ for $(x, y) \in \mathbb{R}$, where k is a real constant. The directional derivative of f at the point (1,2) in the direction of the unit vector $u = \left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ is $\frac{\frac{15}{\sqrt{2}}}{\sqrt{2}}.$ 11) The value of k is

- a) 2
- b) 4

- c) 1
- d) -1
- 12) The value of f at a local minimum in the rectangular region $R=\left\{(x,y)\in\mathbb{R}^2\colon |x|<\frac{3}{2},|y|<\frac{3}{2}\right\}$ is
 - a) -2

c) $\frac{-7}{8}$ d) 0

b) -3