

Chapitre XI - Échantillonnage et estimation

Bacomathiques -- https://bacomathiqu.es

Table des matières	
I - Définitions	1
II - Théorème de Moivre-Laplace	1
III - Intervalles de fluctuation	2
IV -Intervalles de confiance	3

I - Définitions

Lorsque l'on travaille sur une population de grande taille, il est rarement possible d'avoir accès à toutes les données de chacun des individus. C'est pourquoi on prélève un échantillon de cette population : c'est l'échantillonnage.

Un échantillon de taille n représente n individus choisis au hasard dans une population.

Il existe deux manières de réaliser un échantillonnage : sans remise (on prélève n individus différents) et avec remise (il est possible de prélever plusieurs fois le même individu).

II - Théorème de Moivre-Laplace

Soient $n \in \mathbb{N}$ et X_n une suite de variables aléatoires qui suivent la loi binomiale B(n;p) (voir chapitre précédent). On définit alors la variable aléatoire Z_n :

$$Z_n = \frac{X_n - np}{\sqrt{np(1-p)}}$$

Soient a et $b \in \mathbb{R}$ tels que a < b, on a :

$$\lim_{n \to +\infty} p(a \le Z_n \le b) = \frac{1}{\sqrt{2\pi}} \times \int_a^b e^{-\frac{t^2}{2}} dx$$

Cela signifie que si on est dans les bonnes conditions d'approximation ($n \ge 30$, $np \ge 5$ et $n(1-p) \ge 5$), alors on peut avoir une bonne approximation de la variable aléatoire X_n (i.e. la loi binomiale de paramètre n et p) avec la loi normale de paramètres (np; np(1-p)).

III - Intervalles de fluctuation

Soient Z une variable aléatoire suivant la loi normale centrée réduite, α un réel et u_{α} un réel positif vérifiant $p(-u_{\alpha} \leq Z \leq u_{\alpha}) = 1 - \alpha$. On se donne également une variable aléatoire X_n suivant une loi binomiale B(n;p) et on pose I_n l'intervalle de fluctuation asymptotique au seuil $1 - \alpha$:

$$I_n = \left[p - u_\alpha \frac{\sqrt{p(1-p)}}{\sqrt{n}}; p + u_\alpha \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right]$$

On donne les conditions suivantes qui doivent être satisfaites :

$$-n \ge 30$$

 $-np \ge 5$
 $-n(1-p) \ge 5$

En particulier, pour $\alpha=0,05$, un intervalle de fluctuation au seuil de 95% de la fréquence d'apparition d'un caractère dans un échantillon aléatoire de taille n est :

$$J_n = \left[p - 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}}; p + 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right]$$

Cet intervalle J_n sera celui qui sera privilégié en classe de Terminale.

Exemple: Dans un lac dans lequel ne sont présents que deux types de poisson (truites et saumon), un groupe de pêcheurs réussit à attraper 50 poissons dans une journée. On estime qu'il y a environ 40 truites et 10 saumons.

Ils prélèvent au hasard 30 poissons de leur prise totale. Quel est l'intervalle de fluctuation asymptotique au seuil de 95% de la fréquence de saumons?

Résolution : On a 50 poissons, la proportion de saumons est $p=\frac{10}{50}=0,2.$ La taille de l'échantillon est n=30.

On a bien
$$n = 30 \ge 30$$
, $n \times p = 30 \times 0$, $2 = 6 \ge 5$ et $n \times (1 - p) = 30 \times (1 - 0, 2) = 24 > 5$

Voici donc l'intervalle de fluctuation asymptotique au seuil de 95% :

$$I = \left[0, 2 - 1, 96 \frac{\sqrt{0,2 \times 0,8}}{\sqrt{30}}; 0, 2 + 1, 96 \frac{\sqrt{0,2 \times 0,8}}{\sqrt{30}}\right] \approx [0, 057; 0, 343]$$

Ainsi, cela signifie que la fréquence f a 95% de chances de se situer dans l'intervalle I.

Ce type d'intervalle peut servir à prendre des décisions. En effet, soit I un intervalle de fluctuation asymptotique au seuil de 95%. On souhaite avoir une certaine fréquence f d'un certain caractère. On peut dire qu'il est impossible d'avoir ce caractère si $f \notin I$ et qu'il possible d'avoir ce caractère si $f \in I$ avec toujours 5% de chances de se tromper.

IV - Intervalles de confiance

Soient une expérience de Bernoulli dont on veut estimer la probabilité de succès p et f_n la fréquence de succès après n répétitions indépendantes de l'épreuve. Alors p appartient a 95% de chances d'appartenir à l'intervalle I_C suivant :

$$I_C = \left[f_n - \frac{1}{\sqrt{n}}; f_n + \frac{1}{\sqrt{n}} \right]$$

On donne les conditions suivantes qui doivent être satisfaites :

$$-n \ge 30 -n f_n \ge 5 -n (1 - f_n) \ge 5$$

Exemple: On dispose d'un paquet de 52 cartes. On les prends une par une et on les retourne jusqu'à ce qu'il ne reste plus que 22 cartes dans le paquet (on a donc tiré 30 cartes en tout).

On obtient 18 cartes rouges et 12 cartes noires. Dans quel intervalle de confiance au seuil de 95% se situe la probabilité p de tirer une carte rouge?

Résolution: La taille de l'échantillon est n=30. On a 18 cartes rouges, la fréquence observée de cartes rouges est donc $f_n=\frac{18}{30}=0,6$.

On a bien
$$n=30 \geq 30$$
, $n \times f_n = 30 \times 0$, $6=18 \geq 5$ et $n \times (1-f_n) = 30 \times (1-0,6) = 12 \geq 5$.

La probabilité p de tirer une carte rouge se situe donc dans l'intervalle I_{C} avec une marge d'erreur de $\mathbf{5}$

$$I_C = \left[0, 6 - \frac{1}{\sqrt{30}}; 0, 6 + \frac{1}{\sqrt{30}}\right] \approx [0, 417; 0, 783]$$

Remarque : Dans un jeu de cartes classique, on a autant de chances de tirer une carte rouge que de tirer une carte noire. La "vraie" probabilité est donc de 0,5. Notre estimation est donc bonne car $0,5\in I_C$.