Automatic Selection of Discriminative Features for Dementia

Detection in Cantonese-Speaking People

Xiaoquan Ke¹, Man-Wai Mak¹, and Helen M. Meng²
The Hong Kong Polytechnic University¹, The Chinese University of Hong Kong²

Introduction

Dementia is a severe cognitive impairment that may seriously affect the health and daily lives of the old adults [1]. The most common form of dementia is Alzheimer's Disease (AD). Fortunately, with effective detection of early dementia, disease-modifying medications and interventions are possible.

Dementia can be diagnosed through several means, including neuropsychological assessments, brain scans, blood tests, etc. These methods are generally **intrusive** and **costly**.

Dementia also manifests itself as spoken language deficits:

- ◆Dementia-induced language impairment could be found in patients years before the disease was diagnosed.
- ◆Individuals with progressive cognitive decline exhibit subtle linguistic impairment even in the pre-stages of the disease.

Dementia can be detected using spoken language processing (SLP) techniques.

Variable Selection in Neural Networks

A 2-layer neural network

Given a d-dimensional input vector x, the output of the hidden layer is:

$$oldsymbol{o}^{(1)} \!=\! gig(oldsymbol{(W}^{(1)}ig)^{\mathrm{T}}oldsymbol{x}ig) \!\in\! \mathbb{R}^{l_1}.$$

The feature important vector for the two-layer neural network:

$$g(oldsymbol{W}^{(1)})oldsymbol{w}^{(2)}$$

The feature important vector for a *L*-layer neural network:

$$oldsymbol{c} = gig(gig(oldsymbol{g}^{(1)}ig)oldsymbol{W}^{(2)}ig)\cdotsoldsymbol{W}^{(L-1)}ig)oldsymbol{w}^{(L)}$$

Feature Selection

Operator's objective: $\mathcal{L}_O(\mathcal{M}, \mathcal{Z}; \psi) = \frac{1}{|\mathcal{Z}| |\mathcal{M}|} \sum_{\boldsymbol{z} \in \mathcal{Z}} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{M}} l(\boldsymbol{x} \odot \boldsymbol{z}, \boldsymbol{y}; \psi)$

Selector's objective: $\mathcal{L}_{S}(\mathcal{Z}; \varphi) = \frac{1}{|\mathcal{Z}|} \sum_{\boldsymbol{z} \in \mathcal{Z}} \left\{ \left| f_{S}(\boldsymbol{z}; \varphi) - \frac{1}{|\mathcal{M}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{M}} l(\boldsymbol{x} \odot \boldsymbol{z}, \boldsymbol{y}; \psi) \right| \right\}$

The operator is trained on the features obtained from the selector to reduce classification loss.

The selector learns to predict the operator's learning performance using the selected features

Experiments and Results

JCCOCC-MoCA						
Language	Cantonese					
Task	fluency tests (animals, fruits, and vegetables),					
Number of subjects	43 (healthy subjects) vs. 43 (Possible NCD)					
Number of samples	129 samples for the healthy subjects, and 129 samples for the possible NCD					
Classification	2 classes					
Manual transcripts	Yes					

Classification performance of different feature types on the JCCOCC-MoCA dataset.

Feature set	5 repet ACC	itions of PRE	leave-n-s REC	subject-out CV F1
Lexical (113)	0.541	0.555	0.556	0.532
ELECTRA (768)	0.572	0.576	0.577	0.557
Pause (30)	0.550	0.557	0.560	0.539
Acoustic (30)	0.481	0.486	0.488	0.463
COVAREP (518)	0.389	0.409	0.419	0.376
IS10 (1582)	0.519	0.535	0.539	0.508
Emobase (988)	0.531	0.544	0.551	0.518
eGeMAPS (88)	0.533	0.545	0.548	0.522
All features (4117)	0.584	0.590	0.591	0.566

References

[1] https://www.who.int/news-room/fact-sheets/detail/dementia