I Fundamental groups of spheres.

Defn A path connected space X is called Simply connected if $\pi_1(X,p) = Si$ $Y p \in X$.

Today Examples.

Lenne T, (R", 0) = 813

Proof WTS every Loop f: [o,i] - R? based at 0 is millionstopic

$$f_t(s) = (1-t)f(s). + t \cdot 0$$

same argament work for any other basepoint.

Lemma (later) X path connected

$$\pi_{\cdot}(X, p) \cong \pi_{\cdot}(X, q)$$
 $\forall p, q \in X$.

Ruce Consequently often write x, (X) instead of x, (X, p)

$$T_{1}(X,P) \xrightarrow{\Phi} T_{1}(X,q)$$

[f] $\mapsto [x * f * 8]$

(later show $\Phi : G \cong I$)

Thus to show X is simply wanceted, Suffices to prove $\pi_1(X,p) = {17}$ for some $p \in X$. The Fix no 2. Then $\pi_1(S^n) = 113$ For concreteness towns on S^2 .

Idea: via stereographic projection $S^2 = \mathbb{R}^2 \cup \{ac\}$

WTS every f:[0,1] -> 52 broked and P

is nullhomotopic observation: if $\infty \notin f([0,1])$ then $f([0,1]) \subseteq \mathbb{R}^2$ and can use fact that Irops in 182 one nullhomotopic.

Problem 3 continuou surjections [0,1] -> 52]

"Space filling curre"

Claim 3 snijertion f: [0,1] - [0,1]².

idea: define fas a limit of sequence of fn: [o, i] -> [o, i]

By "analysis" (Arzeln-Ascoli) for converge in $C([0,1],[0,1]^2)$ (Space of continuous maps, topologized u/ metric) $|d(g_1,g_2)| = \sup_{t \in [0,1]} d_{(0,1]^2}(g_1(t),g_2(t))$

 $f: [0, \Pi \rightarrow [0, \Pi^2]$

Claim f is surjective: image of fit dense in [0,172]

and image is compact hence closed.

=) image = [0,172]

Proof of Them
$$\pi_1(S^2) = \S13$$
.

Strategy Show any loop $f: [0,1] \rightarrow S^2$ can

be homotoped to a map that's not surjective.

Step 1 We can decompose $[0,1] = U[a:,b:]$ so that

 $f([a:,b:]) \subset \text{hemisphere}$
 $[a:,b]$

Indeed: $\forall t \in [0,1]$

Chook open hemisphere $\exists f(t)$.

By continuity $\exists [a_t,b_t] \ni t$ st. $f([a_t,b_t]) \in H_t$

Then
$$[0,1] = \bigcup \left(\frac{a_{\xi}}{2}, \frac{b_{\xi}}{2}\right)$$
 is open conerties.

finite sub Lover

So image is a Step2 Homotope flai, bi]

R² = plane two-g² origin in R³) tela:,b:] great circle arc. Lie

$$=$$
 \mathbb{D}^2

$$f_{S}(t) = (1-5) f(t) + S \cdot \delta(t)$$

 $f_{S}(ai) = (1-5) f(ai) + S \cdot f(ai) = f(ai)$

(Important: image of airbi don't change)
under the homotopy.

Step3 After this homotopy f([0,1]) it union of

finitely many great circle aris

=> f not surjectine (exercise)

=> can homotefto constant in R2C S2.

Rule For N=1 ie S', argument shows any loop can be homotoped to a union of linear arcs. There can't conclude f not six: $\pi_1(S') \cong \mathbb{Z}$.

