

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) Offenlegungsschrift
(10) DE 198 21 954 A 1

(51) Int. Cl. 6:
C 07 D 493/04

(66) Innere Priorität:
197 20 250.0 15. 05. 97

(71) Anmelder:
Gesellschaft für Biotechnologische Forschung mbH
(GBF), 38124 Braunschweig, DE

(74) Vertreter:
Patentanwälte Dr. Boeters, Bauer, Dr. Forstmeyer,
81541 München

(72) Erfinder:
Erfinder wird später genannt werden

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Verfahren zur Herstellung eines Epothilon-Derivats
(57) Die Erfindung betrifft ein Verfahren zur Herstellung eines Epothilon-Derivats, wobei man von Epothilon A, B, C oder D ausgeht und den heterozyklischen Rest am C₁₇-Kohlenstoffatom in einen aliphatischen Rest, einen gegebenenfalls substituierten Phenylrest oder einen heterozyklischen Rest austauscht, insbesondere einen derartigen für pharmazeutische Wirkstoffe üblichen Rest.

DE 198 21 954 A 1

BEST AVAILABLE COPY

DE 198 21 954 A 1

Beschreibung

Epothilone A, B, C und D sind bekannt; vgl. beispielsweise PCT/EP 96/05 080. Diese Epothilone tragen am C₁₇-Kohlenstoffatom einen heterozyklischen Rest. Es ist nun erwünscht, diesen Rest durch einen anderen Rest zu ersetzen, der insbesondere für pharmazeutische Wirkstoffe üblich oder vorteilhaft ist.

Zur Lösung dieser Aufgabe wird erfahrungsgemäß ein Verfahren zur Herstellung eines Epothilon-Derivats vorgesehen, das dadurch gekennzeichnet ist, daß man

- (a) von einem Epothilon A, B, C oder D ausgeht,
 - wobei das C2- und das C3-Kohlenstoffatom durch die Gruppierung -CH₂CHOH- oder -CH=CH- miteinander verbunden sein können und
 - wobei man bei der Ausgangsverbindung in 3- und 7-Stellung eine OH-Gruppe oder eine geschützte OH-Gruppe vorsieht,
- (b) in 16-Stellung zu einer Keto-Gruppierung oxidiert,
- (c1) das Sauerstoffatom der Keto-Gruppierung mit Hilfe von C₆H₅-P=CH₂ gegen eine =CH₂-Gruppe austauscht und gegebenenfalls
- (d1) diese =CH₂-Gruppe mit Hilfe einer Verbindung der Formel R-CH=CH₂ katalytisch in eine =CH-R-Gruppe überführt, wobei R einen aliphatischen Rest, einen gegebenenfalls substituierten Phenylrest oder einen heterozyklischen Rest, insbesondere einen derartigen für pharmazeutische Wirkstoffe üblichen Rest darstellt; oder
- (c2) für die miteinander verbundenen Kohlenstoffatome C16 und C17 die Gruppierung -CH=CH₂ vorsieht und gegebenenfalls
- (d2) diese Gruppierung mit Hilfe einer Metathese in die Gruppierung -CH=CH-R überführt, wobei R die vorstehend angegebenen Bedeutungen besitzt.

Bei Stufe (b) kann man mit Ozon oxidieren.

Bei Stufe (c2) kann man mit NaBH₄ und danach mit Tosylchlorid/Base arbeiten oder man kann eine Bamford-Stevens-Reaktion gemäß Shapiro durchführen; vgl. Organic Reactions (1976) 23, 405.

Bei Stufe (d) kann man mit einem Metathese-Katalysator arbeiten, insbesondere einem derartigen Rhodium-, Ruthenium-, Wolfram- oder Molybdän-Katalysator, beispielsweise mit

- [RhCHPh]Cl₂·(PCy₃)₂ gemäß Grubbs et al. in JACS, 118 (1996) 100-110; oder
- RuCl₂ (=CHPh)(PCy₃)₂; oder
- RuCl₂ (=CHCH=CPh₂)(PCy₃)₂; oder
- W(OAr)ⁿOArⁿ=CHtBu)(OEt₂)Cl mit Ar¹ = 2,6-di-phenyl-C₆H₃ gemäß Basset et al. in Angew. Chem., Int. Ed., 32 (1993) 112; oder
- Mo(C₁₀H₁₂)(C₁₂H₁₇N)(OC₄H₉)₂, d. h. 2,6-Diisopropylphenylimidoneophyliden-molybdän-bis-(t-but-oxid); oder
- Mo(C₁₀H₁₂)(C₁₂H₁₇N)[OC(CH₃)(CF₃)₂]₂, d. h. 2,6-Diisopropylphenylimidoneophyliden-molybdän-bis-(hexafluoro-t butoxid); oder
- Mo(C₁₀H₁₂)(C₁₂H₁₇N)(OSO₂CF₃)₂(C₄H₁₀O₂), d. h. 2,6-Diisopropylphenylimidoneophyliden-molybdän-bis-(trifluormethansulfonat)-dimethoxyethan-Addukt.

Für die genannten Molybdän-Katalysatoren sei verwiesen auf US 4 681 956 und 4 727 215.

Patentansprüche

1. Verfahren zur Herstellung eines Epothilon-Derivats, dadurch gekennzeichnet, daß man

- (a) von Epothilon A, B, C oder D ausgeht,
 - wobei das C2- und das C3-Kohlenstoffatom durch die Gruppierung -CH₂CHOH- oder -CH=CH- miteinander verbunden sein können und
 - wobei man bei der Ausgangsverbindung in 3- und 7-Stellung eine OH-Gruppe oder eine geschützte OH-Gruppe vorsieht,
- (b) in 16-Stellung zu einer Keto-Gruppierung oxidiert,
- (c1) das Sauerstoffatom der Keto-Gruppierung mit Hilfe von C₆H₅-P=CH₂ gegen eine =CH₂-Gruppe austauscht und gegebenenfalls
- (d1) diese =CH₂-Gruppe mit Hilfe einer Verbindung der Formel R-CH=CH₂ katalytisch in eine =CH₂-R-Gruppe überführt, wobei R einen aliphatischen Rest, einen gegebenenfalls substituierten Phenylrest oder einen heterozyklischen Rest, insbesondere einen derartigen für pharmazeutische Wirkstoffe üblichen Rest darstellt; oder
- (c2) für die unmittelbar miteinander verbundenen Kohlenstoffatome C16 und C17 an an sich bekannter Weise die Gruppierung -CH=CH₂ vorsieht und gegebenenfalls
- (d2) diese Gruppierung mit Hilfe einer Metathese in die Gruppierung -CH=CH-R überführt, wobei R die vorstehend angegebenen Bedeutungen besitzt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man bei Stufe (b) mit Ozon oxidiert.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man bei Stufe (c2) mit NaBH₄ und danach mit Tosylchlorid/Base arbeitet oder eine Bamford-Stevens-Reaktion durchführt.

4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man bei Stufe (d) mit einem Metathese-Katalysator arbeitet, insbesondere einem derartigen Rhodium-, Ruthenium-, Wolfram- oder Molybdän-Katalysator.

BEST AVAILABLE COPY

Beschreibung

Epothilone A, B, C und D sind bekannt; vgl. beispielsweise PCT/EP 96/05 080. Diese Epothilone tragen am C₁₇-Kohlenstoffatom einen heterozyklischen Rest. Es ist nun erwünscht, diesen Rest durch einen anderen Rest zu ersetzen, der insbesondere für pharmazeutische Wirkstoffe üblich oder vorteilhaft ist.

Zur Lösung dieser Aufgabe wird erfahrungsgemäß ein Verfahren zur Herstellung eines Epothilon-Derivats vorsehen, das dadurch gekennzeichnet ist, daß man

- (a) von einem Epothilon A, B, C oder D ausgeht,
 - wobei das C2- und das C3-Kohlenstoffatom durch die Gruppierung -CH₂CHOH- oder -CH=CH- miteinander verbunden sein können und
 - wobei man bei der Ausgangsverbindung in 3- und 7-Stellung eine OH-Gruppe oder eine geschützte OH-Gruppe vorsieht,
- (b) in 16-Stellung zu einer Keto-Gruppierung oxidiert,
- (c1) das Sauerstoffatom der Keto-Gruppierung mit Hilfe von C₆H₅-P=CH₂ gegen eine =CH₂-Gruppe austauscht und gegebenenfalls
- (d1) diese =CH₂-Gruppe mit Hilfe einer Verbindung der Formel R-CH=CH₂ katalytisch in eine =CH-R-Gruppe überführt, wobei R einen aliphatischen Rest, einen gegebenenfalls substituierten Phenylrest oder einen heterozyklischen Rest, insbesondere einen derartigen für pharmazeutische Wirkstoffe üblichen Rest darstellt; oder
- (c2) für die miteinander verbundenen Kohlenstoffatome C16 und C17 die Gruppierung -CH=CH₂ vorsieht und gegebenenfalls
- (d2) diese Gruppierung mit Hilfe einer Metathese in die Gruppierung -CH=CH-R überführt, wobei R die vorstehend angegebenen Bedeutungen besitzt.

Bei Stufe (b) kann man mit Ozon oxidieren.

Bei Stufe (c2) kann man mit NaBH₄ und danach mit Tosylchlorid/Base arbeiten oder man kann eine Bamford-Stevens-Reaktion gemäß Shapiro durchführen; vgl. Organic Reactions (1976) 23, 405.

Bei Stufe (d) kann man mit einem Metathese-Katalysator arbeiten, insbesondere einem derartigen Rhodium-, Ruthenium-, Wolfram- oder Molybdän-Katalysator, beispielsweise mit

- [RhCHPh]Cl₂, (PCy₃)₂ gemäß Grubbs et al. in JACS, 118 (1996) 100-110; oder
- RuCl₂ (=CHPh)(PCy₃)₂; oder
- RuCl₂ (=CHCH=CPh₂)(PCy₃)₂; oder
- W(OAr¹)₂(=CHtBu)(OEt₂)Cl mit Ar¹ = 2,6-di-phenyl-C₆H₃ gemäß Basset et al. in Angew. Chem., Int. Ed., 32 (1993) 112; oder
- Mo(C₁₀H₁₂)(C₁₂H₁₇N)(OC₄H₉)₂, d. h. 2,6-Diisopropylphenylimidoneophyliden-molybdän-bis-(t-but-oxid); oder
- Mo(C₁₀H₁₂)(C₁₂H₁₇N)[OC(CH₃)(CF₃)₂]₂, d. h. 2,6-Diisopropylphenylimidoneophyliden-molybdän-bis(hexafluoro-t butoxid); oder
- Mo(C₁₀H₁₂)(C₁₂H₁₇N)(OSO₂CF₃)₂(C₄H₁₀O₂), d. h. 2,6-Diisopropylphenylimidoneophyliden-molybdän-bis-(trifluormethansulfonat)-dimethoxyethan-Addukt.

Für die genannten Molybdän-Katalysatoren sei verwiesen auf US 4 681 956 und 4 727 215.

Patentansprüche

1. Verfahren zur Herstellung eines Epothilon-Derivats, dadurch gekennzeichnet, daß man

- (a) von Epothilon A, B, C oder D ausgeht,
 - wobei das C2- und das C3-Kohlenstoffatom durch die Gruppierung -CH₂CHOH- oder -CH=CH- miteinander verbunden sein können und
 - wobei man bei der Ausgangsverbindung in 3- und 7-Stellung eine OH-Gruppe oder eine geschützte OH-Gruppe vorsieht,
- (b) in 16-Stellung zu einer Keto-Gruppierung oxidiert,
- (c1) das Sauerstoffatom der Keto-Gruppierung mit Hilfe von C₆H₅-P=CH₂ gegen eine =CH₂-Gruppe austauscht und gegebenenfalls
- (d1) diese =CH₂-Gruppe mit Hilfe einer Verbindung der Formel R-CH=CH₂ katalytisch in eine =CH₂-R-Gruppe überführt, wobei R einen aliphatischen Rest, einen gegebenenfalls substituierten Phenylrest oder einen heterozyklischen Rest, insbesondere einen derartigen für pharmazeutische Wirkstoffe üblichen Rest darstellt; oder
- (c2) für die unmittelbar miteinander verbundenen Kohlenstoffatome C16 und C17 an an sich bekannter Weise die Gruppierung -CH=CH₂ vorsieht und gegebenenfalls
- (d2) diese Gruppierung mit Hilfe einer Metathese in die Gruppierung -CH=CH-R überführt, wobei R die vorstehend angegebenen Bedeutungen besitzt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man bei Stufe (b) mit Ozon oxidiert.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man bei Stufe (c2) mit NaBH₄ und danach mit Tosylchlorid/Base arbeitet oder eine Bamford-Stevens-Reaktion durchführt.

4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man bei Stufe (d) mit einem Metathese-Katalysator arbeitet, insbesondere einem derartigen Rhodium-, Ruthenium-, Wolfram- oder Molybdän-Katalysator.