Interro19 - Thermodynamique

Nom: Note:

Prénom:

Exercice 1 – Résistance thermique (5 points)

Un échantillon de surface S et de température T est en contact avec un thermostat de température T_0 .

1. On note h le coefficient de transfert thermique. Exprimer le transfert thermique δQ reçu pendant $\mathrm{d}t$.

$$\delta Q = hS(T_0 - T)dt.$$

/2 **2.** Exprimer le transfert thermique δQ reçu par le système pendant une durée dt en fonction du flux thermique ϕ . Rappeler les unités.

$$\delta Q = \phi dt$$

où δQ est en joules, ϕ en watts et dt en secondes.

/2 3. En régime stationnaire, exprimer le flux thermique ϕ traversant un barreau de résistance thermique $R_{\rm th}$, dont les extrémités sont aux températures T_1 et T_2 .

$$(T_2 - T_1) = R_{\rm th}\phi.$$

Exercice 2 – Enthalpie (5 points)

On considère n moles d'un gaz parfait de coefficient isentropique $\gamma = C_{\rm p}/C_{\rm v}$, qui subit une transformation au cours de laquelle sa température varie de ΔT .

1. Exprimer son enthalpie H en fonction de son énergie interne U, sa pression P et son volume V.

$$H = U + PV$$
.

/2 **2.** Exprimer les variations ΔU et ΔH en fonction de ΔT .

$$\Delta U = C_{\rm v} \Delta T$$
 et $\Delta H = C_{\rm p} \Delta T$.

/1 3. Donner la relation entre C_p , C_v , n et R (relation de Mayer).

$$C_{\rm p} = C_{\rm v} + nR$$
.

/1 4. Exprimer C_p et C_v en fonction de n, R et γ .

$$C_{\rm v} = \frac{nR}{\gamma - 1} \text{ et } C_{\rm p} = \frac{\gamma nR}{\gamma - 1}.$$