CS 188: Artificial Intelligence Fall 2011

Advanced Applications: Robotics / Vision / Language

Dan Klein – UC Berkeley

Many slides from Sebastian Thrun, Pieter Abbeel, Jitendra

1

Announcements

- This week:
 - No sections this week
 - Office hours modified (moved earlier), see Piazza
 - Final contest cutoff is 8pm Wednesday
- Grades:
 - W1-3, P1-4, Midterm in glookup, please check
 - P5: full credit in grade computations

2

[DEMO: Race, Short]

Autonomous Vehicles

Autonomous vehicle slides adapted from Sebastian Thrun

Obstacle Detection

Trigger if $|Z^i-Z^j| > 15$ cm for nearby z^i, z^j

Raw Measurements: 12.6% false positives

Raw Measurements: 12.6% false positives

HMM Inference: 0.02% false positives

Object Recognition

Query

Vision slides adapted from Jitendra Malik

Match for Image Similarity

21

[DEMO: LIDAR 1] Vision for a Car

Robotic Control Tasks

- Perception / Tracking
 - Where exactly am I?
 - What's around me?
- Low-Level Control
 - How to move from position A to position B
 - Safety vs efficiency
- High-Level Control
 - What are my goals?
 - What are the optimal high-level actions?

Low-Level Planning

Low-level: move from configuration A to configuration B

A Simple Robot Arm

Configuration Space

- What are the natural coordinates for specifying the robot's configuration?
- These are the *configuration* space coordinates
- Can't necessarily control all degrees of freedom directly

Work Space

- What are the natural coordinates for specifying the effector tip's position?
- These are the work space coordinates

Coordinate Systems • Workspace: • The world's (x, y) system • Obstacles specified here • Configuration space • The robot's state • Planning happens here • Obstacles can be projected to here • α

Obstacles in C-Space What / where are the obstacles? Remaining space is free space

Probabilistic Roadmaps

- Idea: sample random points as nodes in a visibility graph
- This gives probabilistic roadmaps
 - Very successful in practice
 - Lets you add points where you need them
 - If insufficient points, incomplete or weird paths

High-Level Control

Demonstrate path across the "training terrain"

- lacktriangle Run apprenticeship learning to find a set of weights w
- Receive "testing terrain" (a height map)

• Find a policy for crossing the testing terrain.

