Assignment 2

This set consists of 4 questions worth a total of 60 marks

1 El Gamal Encryption

(15 Marks)

Consider the following variant of El Gamal encryption. Let p = 2q + 1 with p, q prime. Let G be the group of squares modulo p (so G is a subgroup of \mathbb{Z}_p^* of order q), and let g be a generator of G. The private key is (G, g, q, x) and the public key is (G, g, q, h), where

$$h = g^x$$
 and $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$.

To encrypt a message $m \in \mathbb{Z}_q$ choose a uniform $r \in \mathbb{Z}_q$, compute

$$c_1 := g^r \bmod p, \qquad c_2 := h^r + m \bmod p,$$

and output the ciphertext $\langle c_1, c_2 \rangle$.

Problem. Is this scheme CPA-secure? Prove your answer.

Answer.

A G group of squares modulo p means $\{x^2 \mod (p) : x \in \mathbb{Z}_p\}$. So $g \in G$ is an element of \mathbb{Z}_p^* of order q. This also means h, h^r, g, g^r are also in \mathbb{Z}_p^* of order q.

So now for ciphertexts pairs c_1, c_2 we will try to show the probability that a bit/message is altered with non-negligible probability knowing that the h, g are squares modulo p.

Since p,q are coprime, then there are q in G values of that are squares modulo p and are generators of G. Rearrange p = 2q + 1 so that it is: $q = \frac{p-1}{2}$

Using c_2 we predict the next bit $b \in 0, 1$ by attacking by making a function f(a) from Euler's criterion:

$$f(a) = a^q = a^{\frac{p-1}{2}} \equiv \begin{cases} 1 \pmod{p}, & \text{if } a \text{ is a quadratic residue mod } p, \\ -1 \pmod{p}, & \text{if } a \text{ is a quadratic non-residue mod } p. \end{cases}$$

For some message $m \in \mathbb{Z}_q$ with the next bit b. For $f(h^r + m) \implies f(h^r + b)$ Cases:

If b = 0, then $f(h^r + b) = f(h^r + 0) = f(h^r)$ and immediately the probability is that it is quadratic residue is $|G|/|Z *_p| = q/(p-1)$

If b = 1 then $f(h^r + b) = f(h^r + 1)$ and $h^r + 1$ cannot be a square and is not a quadratic residue of $mod\ p$. Therefore, the probability is that it is a quadratic residue is impossible, so Probability Quadratic residue mod p = 0. So we know it is not a quadratic residue

Thus, the probability of predicting the next bit

$$P(B = b) = \begin{cases} \text{if } b = 1, & \text{then } P(B = 1) = 1, \\ \text{if } b = 0, & \text{then } P(B = 0) = q/(p - 1). \end{cases}$$

Therfeore, by the definition of IND-CPA for all efficient Adversary:

Advantage =
$$|\Pr(B=1) - \Pr(B=0)| = |\frac{q - (p-1)}{(p-1)}|$$

So (q - (p - 1))/(p - 1) > negligble and the attacker can determine the next bit with a high degree of certainty!!

Ergo, This scheme is not CPA-Secure.

2 RSA Encryption

(14 Marks: 5 + 4 + 5)

Three users have RSA public keys $\langle N_1, 3 \rangle$, $\langle N_2, 3 \rangle$, and $\langle N_3, 3 \rangle$ (so each uses e = 3) with $N_1 < N_2 < N_3$. To send the same message $m \in \{0, 1\}^{\ell}$ to each party:

1. Choose uniform $r \overset{\$}{\leftarrow} \mathbb{Z}_{N_1}^*$ and compute

$$(r^3 \mod N_1, r^3 \mod N_2, r^3 \mod N_3, H(r) \oplus m)$$

where $H: \mathbb{Z}_{N_1}^* \to \{0,1\}^{\ell}$ and $\ell \gg n$ (the security parameter).

- a Show that this scheme is not CPA—secure; an adversary can recover m from the ciphertext even when H is modeled as a random oracle.
- b Propose a simple fix that yields CPA-security with ciphertext length $3\ell + O(n)$.
- c Further improve your design so that the scheme remains CPA–secure but the ciphertext length is reduced to $\ell + O(n)$.

(Hint: the Chinese Remainder Theorem)

Answer.

Part a) The cipher text according to the algorithm is: $c = H(r) \oplus m$. Note, the Hash H modelled as a random oracle must be public to all users. According to the algorithm, all three users use the same remainder r to encrypt the plain text because it's given by the above algo

$$r^3 \bmod N_1 \implies r^3 \equiv a_1 \bmod N_1 \tag{1}$$

$$r^3 \bmod N_2 \implies r^3 \equiv a_2 \bmod N_2$$
 (2)

$$r^3 \bmod N_3 \implies r^3 \equiv a_3 \bmod N_3$$
 (3)

Where a_1, a_2, a_3 are some \mathbb{Z} . As a consequence of the same r^3 , by the chinese remainder theorem, if N_1, N_2, N_3 are all pairwise coprime, this means when we find r by solving the above equations, we can decrypt the ciphertext by doing

$$H(r) \oplus c = H(r) \oplus (H(r) \oplus m) = m$$

Thus we have recovered m from the One Time Pad, and the algorithm is not CPA-secure! Part b) Now we make all the remainders r in the algorithm different:

$$r_1^3 \equiv a_1 \bmod N_1 \tag{4}$$

$$r_2^3 \equiv a_2 \bmod N_2 \tag{5}$$

$$r_3^3 \equiv a_3 \bmod N_3 \tag{6}$$

Then a simple fix with ciphertext length 3l + O(n) complexity is broadcasting each user:

$$(H(r_1) \oplus m, H(r_2) \oplus m, H(r_2) \oplus m) = (c_1, c_2, c_3)$$

because they will know their respective secret r_n to decrypt some $c_n = H(r_n) \oplus m$.

This is CPA-secure because the remainders r_n are not dependent on each other like in part a)

Part c) To improve the ciphertext complexity we need to broadcast the shared secret s to all the users in the system.

- 1. We first choose uniform $r \stackrel{R}{\leftarrow} \mathbb{Z}_{N_1}^*$. We also make sure that user's do not use the the same remainder r.
- 2. Encrypt With each *i*th user's public key PK_i using the given $(N_i, 3)$ the shared secret s with the public key meaning: $PK_i(s)$. This can only be decrypted with the *i*th user's RSA secret key. This takes O(n) time
- 3. We send $PK_i(s)$ to the *i*th user, as they can only decrypt it with the *i*th user's RSA secret key SK_i . So all three users now have the shared secret key s.
- 4. To broadcast an encrypted message now, we use $c = H(s) \oplus m$ and we send c to all three users. The cipher text is now l length.

Thus the total complexity is l + O(n) time. Since we have a secret session key in the One Time Pad, that does not have any relationship to the other public values this is CPA-secure.

3 An Insecure Signature with Message Recovery (15 Marks: 7 + 8)

Let $T = (\mathcal{G}, F, I)$ be a one-way trapdoor permutation defined over $X := \{0, 1\}^n$. Let H be a hash function from domain \mathcal{M}_0 to codomain X. Consider the signature scheme $\mathcal{S} = (\mathcal{G}, \mathcal{S}, \mathcal{V})$ defined on $(\mathcal{M}_0 \times X, X)$ by

$$S(\mathsf{sk}; (m_0, m_1)) := \sigma \leftarrow I(\mathsf{sk}, H(m_0) \oplus m_1), \qquad \text{return } \sigma,$$

$$\mathcal{V}(\mathsf{pk}, (m_0, m_1), \sigma) := y \leftarrow F(\mathsf{pk}, \sigma), \qquad \text{accept iff } y = H(m_0) \oplus m_1.$$

- 1. Show that given (m_0, σ) , where σ is a valid signature on (m_0, m_1) , one can recover m_1 .
- 2. Prove that the scheme is insecure, even when T is one—way and H is modeled as a random oracle.

Answer

Part a

Things public to us: Verifier (V), public key (PK), Hash function (H) and F and these ingredients are required by digital signatures.

Therefore, Given (σ, m_0) is a valid signatue, calculate $H(m_0)$

Then $y = F(PK, \sigma)$ this means for another message m_1

$$y = H(m_0) \oplus m_1$$

Therefore, we need to cancel out $H(m_0)$.

So
$$m_1 = y \oplus H(m_0) = (H(m_0) \oplus m_1) \oplus H(m_0)$$

And we have recovered m_1 .

QED

Part_b

Things public to us: Verifier (V), public key (PK), Hash function (H) and F

Things Given to us:

TODO: We need to produce a valid (message(m_i), signature(σ_i)) pair, without knowing the secret key (SK).

Again calculate $H(m_0)$. Let's generate random signature $\sigma = 0, 1^n$. This will be our fake signature σ_i

Nice, let's get the corresponding y value. We do $y = F(PK, \sigma_i)$

Let's now generate the ith message: $m_i = y \oplus H(m_0)$

So now we have a fake (m_i, σ_i) pair.

So when we send (m_i, σ_i) to their other receiver, they will perform

$$F(pk, \sigma_i) = y$$

Then, when they match y it will be the same as $m_i \oplus H(m_0)$ and the receiver will find the signature to be valid!

Therefore the scheme is insecure even when T is one way and H is a random oracle.

4 DSA

(15 Marks: 3 + 3 + 3 + 2 + 4)

To create parameters for the Digital Signature Algorithm (DSA) we first find primes p and q with $q \mid (p-1)$. Next we must find $g \in \mathbb{Z}_p^*$ of order q. Consider the algorithms below.

Algorithm 1

- 1. repeat
 - a. choose $g \leftarrow \mathbb{Z}_p^*$;
 - b. $h \leftarrow g^q \bmod p$;
- 2. **until** $(h = 1 \land g \neq 1);$
- 3. $\mathbf{return} \ g$.

Algorithm 2

- 1. repeat
 - a. choose $h \leftarrow \mathbb{Z}_p^*$;
 - b. $g \leftarrow h^{(p-1)/q} \mod p$;
- 2. **until** $(g \neq 1)$;
- 3. $\mathbf{return} \ g$.

Answer the following questions.

- 1. What happens in Algorithm 1 if g is chosen such that ord(g) = q? Explain.
- 2. What happens in Algorithm 2 if h is chosen such that $\operatorname{ord}(g) = q$? (Recall that $g = h^{(p-1)/q} \mod p$.)
- 3. Suppose p = 64891 and q = 103. How many loop iterations do you expect Algorithm 1 to execute before it finds a generator?
- 4. If p is 512 bits and q

Answer

Suppose:

$$p = 7$$

$$q = 2$$

Therefore for example

$$\mathbb{Z}^* = 7 = \{1, 2, 3, 4, 5, 6\}$$

a)

We go through each element $x \in \mathbb{Z}^*$, So $x^2 \mod 7$.

Algo 1:

- $2^2 \bmod 7 = 4$
- $3^2 \bmod 7 = 2$
- $4^2 \bmod 7 = 2$
- $5^2 \bmod 7 = 3$
- $6^2 \bmod 7 = 1$

The algorithm goes through the elements in the \mathbb{Z}_p^* multiplicative group of integers modulo p randomly.

Then it raises that particular elemnent $g \in \mathbb{Z}_p^* : g^q$.

and calculates $h = g^q \mod (p)$.

It stops when h == 1 and g is not 1. Meaning not the trivial $1 = 1^q \mod (p)$.

b)

$$(p-1)/q = 3$$

So we go through elements $x \in \mathbb{Z}^*$, So $x^2 \mod 7$.

Algo 2:

- $2^3 \bmod 7 = 1$
- $3^3 \bmod 7 = 6$
- $4^3 \mod 7 = 1$
- $5^3 \bmod 7 = 6$
- $6^3 \mod 7 = 6$

The algorithm goes through the elements h in the \mathbb{Z}_p^* . Which is the multiplicative group of integers modulo p randomly.

Then it raises that particular elemnent $h \in \mathbb{Z}_p^* : h^{(p-1)/q}$.

and calculates $g = h^{(p-1)/q} \mod (p)$.

It stops when g == 1.

c)

For p = 64891, q = 103 I expect algorithm 1 to run at the worst case scenario. This means for p - 1 elements in \mathbb{Z}_p^* , we will hit.

The generators (g) of order $q \mod (p)$ means $g^q \mod (p) = 1$.

So every solution g, to the equation $g^q \mod (p) = 1$ must have order = q.

This is because q|(p-1) and both q and p are prime, then the number of generators of g that exist must be q-1 to satisfy $g^q \mod (p) = 1$. (Excluding the trivial element g=1)

Small example:

if
$$p = 23$$
 and $q = 11$.

Then $G_{11} = \{1, 2, 4, 6, 8, 12, 13, 18, 22, 3, 11\}, |G_{11}| = 11$, and excluding the trivial element 1, there are $|G_{11}| - 1 = 10$ $(g) \in G_{11}$ elements that satisfy the equation $g^q \mod (p) = 1$ $g^{11} \mod (23) = 1$

So checking $2^{11} \mod (23) = 1$. Indeed is true!.

Therefore, we would expect the probability to hit one of these generators to be (q-1)/(p-1). REMEMBER TO EXLCUDE 1.

Thefore on average, the number of times we expect g to go through in algorithm 1 before hitting an number with order g is (p-1)/(g-1) = 636.176.

So we expect algorithm 1 to run approx. 636 times!

 \mathbf{d}

If p = 512 bits and q = 128bit number then algorithm 1 will take $(2^{512} - 1)/(2^{128} - 1) \approx 2^{512}/2^{128} \approx 2^{384}$ times.

And the probability is $1/2^{284}$

Therefore it is not good to follow algorithm 1 in this case

For algorithm 2, we need to find the expected number of loops required to find g = 1 for algorithm 2. Since q|(p-1) then the size of the generator of subgroup of order q (G_q) is actually q.

Therefore the probability that we have to loop again is q/(p-1)

So probability that we find g = 1, is 1 - q/(p-1) = (p-1-q)/(p-1) Therefore the probability to find a generator is very very close to 1!

e)

Therefore using the given hint for algorithm 2: p = 64891 and q = 103 The probability that algorithm 2 computes a generator (q = 1) in it's very first loop is

$$(p-1-q)/(p-1) = (64891-1-103)/(64891-1) \approx 0.9984!$$