# **Effects and Coeffects in Call-By-Push-Value**

Cassia Torczon, <u>Emmanuel Suárez Acevedo</u>, Shubh Agrawal, Joey Velez-Ginorio, Stephanie Weirich







```
1 | let x = "hello" in 2 | print "world"
```

```
1 | let x = "hello" in 2 | print "world"
```

can the first line be removed?

```
1 | let x = print "hello" in 2 | print "world"
```

is the code bound to x pure?

is the code bound to x pure?

is x unused in the code that follows?

x: string, y: nat  $\vdash$  print x: unit

 $x : string, y : nat \vdash print x : unit$ 

$$\Gamma \vdash e : \overset{\phi}{\tau}$$

IO effects

$$\Gamma \vdash e : \overset{\phi}{\tau}$$

IO effects

Running time

$$\Gamma \vdash e : \overset{\phi}{\tau}$$

IO effects

Running time

$$\Gamma \vdash e : \overset{\phi}{\tau}$$

Exceptions

x: string, y: nat  $\vdash$  print x: unit

x: string, y: nat  $\vdash$  print x: unit

$$x_1 : {}^{q_1}\tau_1, x_2 : {}^{q_2}\tau_2 \vdash e : \tau$$

$$\gamma \cdot \Gamma \vdash e : \tau$$

Relevance

$$\gamma \cdot \Gamma \vdash e : \tau$$

Relevance

Resources

$$\gamma \cdot \Gamma \vdash e : \tau$$

Relevance

$$\gamma \cdot \Gamma \vdash e : \tau$$

Differential privacy

Relevance

$$\gamma \cdot \Gamma \vdash e : \tau$$

Differential privacy

Information flow

#### Effects and Coeffects

Effect: is the code bound to x pure?

Coeffect: is x unused in the code that follows?

```
1 | let x = print "hello" in 2 | x; x
```

```
1 | let x = print "hello" in 2 | x; x
```

$$\rightarrow$$
 1 | let  $x = print$  "hello" in 2 |  $x; x$ 

$$\rightarrow 1 \mid let x = () in$$

$$2 \mid x; x$$

Expected effect?

hello

$$x \mapsto ()$$
  
 $1 \mid \text{let } x = \text{print "hello" in}$   
 $\rightarrow 2 \mid x; x$ 

Expected effect?

hello

$$x \mapsto ()$$

$$1 \mid \text{let } x = \text{print "hello" in}$$

$$2 \mid (); ()$$

Expected effect?

hello

```
1 | let x = print "hello" in 2 | x; x
```

 $\rightarrow$  1 | let x = print "hello" in 2 | x; x

 $x \mapsto \text{print "hello"}$   $1 \mid \text{let } x = \text{print "hello" in}$  $\rightarrow 2 \mid x; x$ 

```
x \mapsto \text{print "hello"}

1 \mid \text{let } x = \text{print "hello" in}

\rightarrow 2 \mid \text{print "hello"; print "hello"}
```

```
x \mapsto \text{print "hello"}

1 \mid \text{let } x = \text{print "hello" in}

\rightarrow 2 \mid (); ()
```

Expected effect?

hello hello

# Intermediate representation

# Intermediate representation

# Explicit evaluation order

A subsuming paradigm

A subsuming paradigm

```
1 | let x = print "hello" in 2 | x;x
```

A subsuming paradigm

```
1 | let x = print "hello" in 2 | x;x
```



A subsuming paradigm

1 | let 
$$x = print$$
 "hello" in 2 |  $x;x$ 







hello hello

# ... in Call-By-Push-Value (CBPV) A subsuming paradigm

# Expression

A subsuming paradigm

Value

Computation

A subsuming paradigm

### Value

"is"

# Computation

A subsuming paradigm

### Value

"is"

A string is a value

# Computation

A subsuming paradigm

### Value

"is"

A string is a value

# Computation

"does"

A subsuming paradigm

### Value

"is"

A string is a value

### Computation

"does"

Printing a string is a computation

 $\begin{vmatrix} 1 & \text{let } x = \text{print "hello" in } \\ 2 & x; x \end{vmatrix}$  Compilation 1

1 | let x = print "hello" in Compilation 1 2 | x; x | hello

 $1 \mid x \leftarrow \text{print "hello"}$ 

 $1 \mid x \leftarrow \text{print "hello"}$ 

 $\frac{1}{2} | \text{let } x = \text{print "hello" in } \text{Compilation 1}$   $\frac{1}{2} | x; x$ 

 $1 \mid x \leftarrow \text{print "hello"}$ 

Hprint "hello": F unit

 $1 \mid x \leftarrow \text{print "hello"}$ Hello": Funit "hello":

 $1 \mid x \leftarrow \text{print "hello"}$ 

x: unit

Hprint "hello": Funit

 $1 \mid x \leftarrow \text{print "hello"}$ 

 $x: unit \vdash N: B$ hprint "hello": Funit

 $\vdash x \leftarrow \text{print "hello"}; N:B$ 

 $1 \mid x \leftarrow \text{print "hello"}$ 

Hprint "hello": Funit

x: unit H N: B

 $\vdash x \leftarrow \text{print "hello"}(N)B$ 

 $1 \mid x \leftarrow \text{print "hello"}$ 

 $\begin{vmatrix} 1 & \text{let } x = \text{print "hello" in } \\ 2 & \text{kello} \end{vmatrix}$  Compilation 1

 $\begin{vmatrix} 1 \mid \text{let } x = \text{print "hello" in Compilation 1} \\ 2 \mid x; x \end{vmatrix}$  Compilation 1

 $\begin{vmatrix} 1 & \text{let } x = \text{print "hello" in } \\ 2 & \text{kello} \end{vmatrix}$  Compilation 1

x: unit

 $\begin{vmatrix} 1 & \text{let } x = \text{print "hello" in } \\ 2 & \text{kello} \end{vmatrix}$  Compilation 1

```
1 \mid x \leftarrow print "hello"
2 \mid \underline{\quad} \leftarrow \text{return } x
3 | return x
                   x: unit
```

 $\begin{vmatrix} 1 & \text{let } x = \text{print "hello" in } \\ 2 & x; x \end{vmatrix}$  Compilation 1

```
1 \mid x \leftarrow print "hello"
2 \mid \underline{\quad} \leftarrow \text{return } x
31 return x
```

 $\vdash x$ : unit

Heturn x: Funit

```
1 | let x = print "hello" in Compilation 1 2 | x; x
```

```
1 \mid x \leftarrow print "hello"
2 \mid \underline{\quad} \leftarrow \text{return } x
31 return x
```

```
1 | let x = print "hello" in Compilation 1 2 | x; x
```

```
1 \mid x \leftarrow print "hello"
  2 \mid \underline{\quad} \leftarrow \text{return } x
  3 return x
```

```
let x = print "hello" in Compilation 1 x; x
```

```
1 \mid x \leftarrow return()
  2 \mid \underline{\quad} \leftarrow \text{return } x
  31 return x
```

```
1 | let x = print "hello" in Compilation 1
```

```
\chi \mapsto ()
   1 \mid x \leftarrow \text{print "hello"}
\rightarrow 2 \__ \tag{return } x
   31 return x
```

```
\chi \mapsto ()
   1 \mid x \leftarrow \text{print "hello"}
→ 2 | __ ← return ()
   3 return x
```

```
1 | let x = print "hello" in Compilation 1 2 | x; x
```

```
\chi \mapsto ()
      1 \mid x \leftarrow \text{print "hello"}
      2 \mid \underline{\quad} \leftarrow \text{return } x
\rightarrow 3 return x
```

```
1 | let x = print "hello" in Compilation 1 2 | x; x
```

```
\chi \mapsto ()
         1 \mid x \leftarrow \text{print "hello"}
         2 \mid \underline{\quad} \leftarrow \text{return } x
--- 31 return ()
```

```
1 | let x = print "hello" in Compilation 1 2 | x; x
```

```
1 \mid x \leftarrow \text{print "hello"}
2 \mid \underline{\quad} \leftarrow \text{return } x
3 return x
```

 $\begin{vmatrix} 1 & \text{let } x = \text{print "hello" in Compilation 2} \\ 2 & x; x \end{vmatrix}$ 

```
1 let x = print "hello" in Compilation 2 hello hello
```

 $1 \mid x \leftarrow \text{print "hello"}$ 

```
1 \mid x \leftarrow \{print "hello"\}
```

```
1 \mid x \leftarrow \{\text{print "hello"}\}
```

1 | let x = print "hello" in Compilation 2 hello hello

```
1 \mid x \leftarrow \{ print "hello" \}
```

Hprint "hello": F unit

1 | let x = print "hello" in Compilation 2 hello hello

```
1 \mid x \leftarrow \{print "hello"\}
```

Hprint "hello": Funit

 $\vdash$  {print "hello"} : U(F)

1 | let x = print "hello" in Compilation 2 hello hello

```
1 \mid x \leftarrow \{print "hello"\}
```

 $\vdash$  {print "hello"} :  $\mathbf{U}$  ( $\mathbf{F}$  unit)

```
1 \mid x \leftarrow return \{print "hello"\}
```

```
1 \mid x \leftarrow return \{print "hello"\}
```

```
1| x \leftarrow \text{return {print "hello"}}
2| x \leftarrow x
3| x \leftarrow x
```

```
1| x \leftarrow \text{return {print "hello"}}
2| x \leftarrow x
3| x \leftarrow x
                 x: U (F unit)
```

 $\begin{vmatrix} 1 & \text{let } x = \text{print "hello" in } \begin{vmatrix} \text{Compilation 2} \\ 2 & x; x \end{vmatrix}$ 

```
1 | x \leftarrow \text{return {print "hello"}}
2 | x \leftarrow x
3 | x \leftarrow x
```

 $x: \mathbf{U}$  ( $\mathbf{F}$  unit)

x: U (F unit)

x: U (F unit)

```
1| x \leftarrow \text{return {print "hello"}}
2| x \leftarrow x!
3| x!
```

-x: U (F unit)

-x!: Funit

```
1| x \leftarrow \text{return {print "hello"}}
2| x \leftarrow x!
3| x!
```

```
1 | let x = print "hello" in Compilation 2 | x; x
```

```
1 | let x = print "hello" in Compilation 2 | x; x
```

```
x \mapsto \{ print "hello" \}
      1 \mid x \leftarrow \text{return } \{\text{print "hello"}\}
\sim 2
      3 | x
```

```
1 | let x = print "hello" in Compilation 2 hello hello
```

```
x \mapsto \{\text{print "hello"}\}
1 \mid x \leftarrow \text{return } \{\text{print "hello"}\}\}
2 \mid \underline{\quad} \leftarrow \{\text{print "hello"}\}\}
3 \mid \underline{\quad} x \mid
```

```
1 | let x = print "hello" in Compilation 2 | hello hello
```

```
x \mapsto \{\text{print "hello"}\}
1 \mid x \leftarrow \text{return } \{\text{print "hello"}\}
2 \mid \underline{\quad} \leftarrow \text{print "hello"}
3 \mid x \mid
```

```
1 | let x = print "hello" in Compilation 2 | hello
```

```
x \mapsto \{ print "hello" \}
       1 \mid x \leftarrow \text{return } \{\text{print "hello"}\}
\rightarrow 2 \leftarrow return ()
       3 | x
```

```
1 | let x = print "hello" in Compilation 2 | x; x
```

```
x \mapsto \{ print "hello" \}
1 \mid x \leftarrow \text{return } \{\text{print "hello"}\}
2 \leftarrow x
```

```
1 | let x = print "hello" in Compilation 2 | x; x
```

```
x \mapsto \{ print "hello" \}
     1 \mid x \leftarrow \text{return } \{\text{print "hello"}\}
```

```
1 | let x = print "hello" in Compilation 2 | x; x
```

```
x \mapsto \{ print "hello" \}
      1 \mid x \leftarrow \text{return } \{\text{print "hello"}\}
```

```
1 | let x = print "hello" in Compilation 2 | hello
```

```
x \mapsto \{ print "hello" \}
      1 \mid x \leftarrow \text{return } \{\text{print "hello"}\}
      --- 3 return ()
```

hello hello

```
1 | let x = print "hello" in Compilation 2 | x; x
```

```
1 \mid x \leftarrow \text{return } \{\text{print "hello"}\}
2 \leftarrow x
3 \mid x!
```

hello hello

#### Dead code elimination

#### Dead code elimination



## ... in Call-By-Push-Value

## ... in Call-By-Push-Value

$$\Gamma \vdash M : FA$$

$$\Gamma, x: A \vdash N: B$$

# Effects ... in Call-By-Push-Value

$$\Gamma \vdash M : {}^{\varepsilon} F A$$

 $\Gamma, x: A \vdash N: B$ 

Effect: is the code bound to x (i.e. M) pure?

## Effects ... in Call-By-Push-Value

$$\Gamma \vdash M : {}^{\varepsilon} F A$$

 $\Gamma, x: A \vdash N: B$ 

Effect: is the code bound to x (i.e. M) pure?

## Effects and Coeffects in Call-By-Push-Value

$$\gamma_1 \cdot \Gamma \vdash M : ^{\varepsilon} F A$$

$$\gamma_2 \cdot \Gamma, x : A \vdash N : B$$

Effect: is the code bound to x (i.e. M) pure?

Coeffect: is *x* unused in *N*?

# Effects and Coeffects in Call-By-Push-Value

$$\gamma_1 \cdot \Gamma \vdash M : F A$$

$$\gamma_2 \cdot \Gamma, x : ^0A \vdash N : ^\phi B$$

Effect: is the code bound to x (i.e. M) pure?

Coeffect: is *x* unused in *N*?

## Effects and Coeffects in Call-By-Push-Value

$$\gamma_1 \cdot \Gamma \vdash M : {}^{\varepsilon} F A$$

$$\gamma_2 \cdot \Gamma, x : A \vdash N : B$$

$$\gamma_1 \cdot \Gamma \vdash M : {}^{\varepsilon} F A$$

$$\gamma_2 \cdot \Gamma, x : A \vdash N : B$$

$$\gamma_1 \cdot \Gamma \vdash M : {}^{\varepsilon} \mathbf{F} A$$
  $\gamma_2 \cdot \Gamma, x : {}^{\circ} A \vdash N : {}^{\phi} B$ 

$$\gamma_2 \cdot \Gamma \vdash x \leftarrow_{\varepsilon}^{\mathbf{0}} M ; N :^{\phi} B$$

$$\gamma_1 \cdot \Gamma \vdash M : {}^{\varepsilon} F A$$

$$\gamma_2 \cdot \Gamma, x : A \vdash N : B$$

$$\gamma_2 \cdot \Gamma \vdash x \leftarrow_{\varepsilon}^{0} M ; N :^{\varphi} B$$



$$X \leftarrow_{\varepsilon}^{0} M \equiv N$$

$$X \leftarrow_{\varepsilon}^{0} M \equiv N$$

$$\frac{x}{N} \leftarrow_{\varepsilon}^{0} M = N$$



$$\rho \vdash M \Downarrow T$$

 $\rho \vdash M \Downarrow T$ 

**Semantics** 

$$_{environment} \vdash M \Downarrow T^{kerminal}$$

**Effect-tracking semantics** 

$$\rho \vdash M \Downarrow T \# \phi$$

**Effect-tracking semantics** 

$$\rho \vdash M \Downarrow T \# \phi$$

resulting

Effect-tracking and coeffect-tracking semantics

$$\gamma \cdot \rho \vdash M \Downarrow T \# \phi$$

resulting

Effect-tracking and coeffect-tracking semantics

$$\gamma \cdot \rho \vdash M \Downarrow T \# \phi$$



Effect-tracking and coeffect-tracking semantics

$$\gamma \cdot \rho \vdash M \Downarrow T \# \phi$$

$$\Gamma \vdash M: B$$

$$\gamma \cdot \rho \vdash M \Downarrow T \# \phi$$

$$\Gamma \vdash M : B$$

$$\gamma \cdot \rho \vdash M \Downarrow T \# \phi$$

Type-and-effect soundness

$$\Gamma \vdash M : B$$

$$\phi \leq \phi'$$

$$\gamma \cdot \rho \vdash M \Downarrow T \# \phi$$

Type-and-effect soundness

$$\gamma' \cdot \Gamma \vdash M : ^{\phi'}B$$

$$\phi \leq \phi'$$

$$\gamma \cdot \rho \vdash M \Downarrow T \# \phi$$

Type-and-effect-and-coeffect soundness

$$\gamma \leq \gamma'$$

$$\gamma \leq \gamma'$$
  $\gamma' \cdot \Gamma \vdash M : B$ 

$$\phi \leq \phi'$$

$$\gamma \cdot \rho \vdash M \Downarrow T \# \phi$$

Type-and-effect-and-coeffect soundness

mechanized in

$$\gamma' \cdot \Gamma \vdash M : B$$

$$\phi \leq \phi'$$

$$\gamma \cdot \rho \vdash M \Downarrow T \# \phi$$

 $\Gamma \vdash M : B$ 

 $\Gamma \vdash \{M\} : UB$ 

 $\Gamma \vdash V : A$ 

 $\Gamma$ Hreturn  $V: \mathbf{F} A$ 

 $\Gamma \vdash M : B$ 

 $\Gamma \vdash \{M\} : U_{\phi}B$ 

 $\Gamma \vdash V : A$ 

 $\Gamma$ Hreturn  $V:\mathbf{F}A$ 

 $\Gamma \vdash M : B$ 

 $\Gamma \vdash \{M\} : U_{\phi}B$ 

suspended

 $\Gamma \vdash V : A$ 

 $\Gamma$ Hreturn  $V:\mathbf{F}A$ 

$$\gamma \cdot \Gamma \vdash M : B$$

$$\gamma \cdot \Gamma \vdash \{M\} : \mathbf{U}_{\phi}B$$
suspended
effect

$$\gamma \cdot \Gamma \vdash V : A$$

 $(q \cdot \gamma) \cdot \Gamma \vdash \text{return}_q V : \mathbf{F}_q A$ 

$$\gamma \cdot \Gamma \vdash M : B$$

$$\gamma \cdot \Gamma \vdash \{M\} : \mathbf{U}_{\phi}B$$
suspended
effect

$$\gamma \cdot \Gamma \vdash V : A$$
 $(q \cdot \gamma) \cdot \Gamma \vdash \operatorname{return}_q V : \mathbf{F}_q A$ 

coeffect





Call-By-Push-Value





Call-By-Push-Value







Call-By-Push-Value

preserve coeffects preserve





Call-By-Push-Value

preserve coeffects preserve



$$\gamma \cdot \Gamma \vdash M : B$$

### Thank you!

$$\gamma \cdot \rho \vdash M \Downarrow T \# \phi$$

$$x \leftarrow_{\varepsilon}^{o} M; N \equiv N$$



mechanized in

