Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks

SEN ZHANG, YONG YAO, JIE HU, YONG ZHAO, SHAOBO LI, JIANJUN HU (2019)

"La **predicción** de la **congestión** es fundamental para implementar sistemas de transporte inteligentes que mejoren la **eficiencia** y la **capacidad** de las **redes de transporte**"

Datos de congestión a gran escala

Datos de congestión a gran escala

Análisis de Imágenes

Datos de congestión a gran escala

Análisis de Imágenes

Predice congestión del tráfico

Presentación del Estudio

Abstract

Introducción

Trabajos Relacionados

Metodología

Experimentos y Análisis de Resultados

Discusión

Conclusiones

Beneficios

Cobertura

Condiciones en tiempo real

Accesibilidad

ARIMA (series te tiempo, flujos)
SARIMA
KARIMA
ARIMAX
CTM-SARIMA

Acercamientos Paramétricos

ARIMA (series te tiempo, flujos)
SARIMA
KARIMA
ARIMAX
CTM-SARIMA

Acercamientos Paramétricos

Sujetos a estructuras predeterminadas de modelos

SVM
Redes Neuronales Artificiales
KNN (velocidades y flujos)
SVM
SVR
Online-SVM

Acercamientos No Paramétricos

SVM
Redes Neuronales Artificiales
KNN (velocidades y flujos)
SVM
SVR
Online-SVM

Acercamientos No Paramétricos

Requieren un conocimiento de dominio previo significativo y un trabajo de preprocesamiento extenso

BIG DATA

RNN

LSTM (flujos, velocidades y

congestión)

CNN

DBN

SRCN

BIG DATA

RNN

LSTM (flujos, velocidades y

congestión)

CNN

DBN

SRCN

Aprender correlaciones profundas inherentes a los datos con poco o ningún conocimiento previo

"Sin embargo, se siguen enfocando en predicción de variables de tráfico en pequeñas redes"

1. Recopilación de imágenes

- 1. Recopilación de imágenes
- 2. Limpieza de las imágenes

- 1. Recopilación de imágenes
- 2. Limpiza de las imágenes
- 3. División de imágenes en celdas,
 - y a su vez, estas en grillas

- 1. Recopilación de imágenes
- 2. Limpiza de las imágenes
- 3. División de imágenes en celdas, y a su vez, estas en grillas
- 4. Cálculo del nivel de cogestión por grilla

$$\overline{c}_{i,j}^t = \frac{\sum_{k=1}^{64} c_{t,i,j}^k}{\sum_{k=1}^{64} [c_{t,i,j}^k > 0]}$$

- 1. Recopilación de imágenes
- 2. Limpiza de las imágenes
- 3. División de imágenes en celdas, y a su vez, estas en grillas
- 4. Cálculo del nivel de cogestión por grilla
- 5. Obtención de una matriz representativa

$$R_t = \begin{bmatrix} \overline{c}_{1,1}^t & \overline{c}_{1,2}^t & \dots & \overline{c}_{1,C}^t \\ \overline{c}_{2,1}^t & \overline{c}_{2,2}^t & \dots & \overline{c}_{2,C}^t \\ \vdots & \vdots & \dots & \vdots \\ \overline{c}_{R,1}^t & \overline{c}_{R,2}^t & \dots & \overline{c}_{R,C}^t \end{bmatrix}$$

Problema a Resolver

Series de Tiempo
$$R_{t} = \begin{bmatrix} \overline{c}_{1,1}^{t} & \overline{c}_{1,2}^{t} & \dots & \overline{c}_{1,C}^{t} \\ \overline{c}_{2,1}^{t} & \overline{c}_{2,2}^{t} & \dots & \overline{c}_{2,C}^{t} \\ \vdots & \vdots & \dots & \vdots \\ \overline{c}_{R,1}^{t} & \overline{c}_{R,2}^{t} & \dots & \overline{c}_{R,C}^{t} \end{bmatrix}$$

Problema a Resolver

Series de Tiempo
$$R_{t} = \begin{bmatrix} \overline{c}_{1,1}^{t} & \overline{c}_{1,2}^{t} & \dots & \overline{c}_{1,C}^{t} \\ \overline{c}_{2,1}^{t} & \overline{c}_{2,2}^{t} & \dots & \overline{c}_{2,C}^{t} \\ \vdots & \vdots & \dots & \vdots \\ \overline{c}_{R,1}^{t} & \overline{c}_{R,2}^{t} & \dots & \overline{c}_{R,C}^{t} \end{bmatrix}$$

Deep Congestion Prediction Network

- 1. Primera parte
 - a.Encoder -> Data histórica (4 capas)
 - b. Decoder -> Representación futura (4 capas)

- 1. Primera parte
 - a.Encoder -> Data histórica (4 capas)
 - b. Decoder -> Representación futura (4 capas)
- 2. Segunda Parte
 - a. 2 Capas densas -> Niveles de congestión para gillas

- 1. Primera parte
 - a.Encoder -> Data histórica (4 capas)
 - b. Decoder -> Representación futura (4 capas)
- 2. Segunda Parte
 - a. 2 Capas densas -> Niveles de congestión para gillas
- 3. Se añade una capa de dropout

- 1. Primera parte
 - a.Encoder -> Data histórica (4 capas)
 - b. Decoder -> Representación futura (4 capas)
- 2. Segunda Parte
 - a. 2 Capas densas -> Niveles de congestión para gillas
- 3. Se añade una capa de dropout
- 4. Capa de reorganización

• 07:00 a 10:00 am

- 07:00 a 10:00 am
- Días laborales

- 07:00 a 10:00 am
- Días laborales
- Seattle
- 1-Ene-2016 a 28-Feb-2017

- 07:00 a 10:00 am
- Días laborales
- Seattle
- 1-Ene-2016 a 28-Feb-2017
- 283 días (19 muestras cada uno)
- Intervalos de 10 minutos

- 07:00 a 10:00 am
- Días laborales
- Seattle
- 1-Ene-2016 a 28-Feb-2017
- 283 días (19 muestras cada uno)
- Intervalos de 10 minutos
- Datos de 2016 -> Set de entrenamiento
- Datos de 2017 -> Set de testeo via back-testing
- SATCS

- Cmparación con modelos:
 - SRCN (predicción de velocidades)
 - Uso de capas CNN y LSTM

- Cmparación con modelos:
 - SRCN (predicción de velocidades)
 - Uso de capas CNN y LSTM
 - ConvLSTM (predicción de tráfico)
 - Multiples capas ConvLSTM

- Horizontes Temporales: 10, 30, 60
- Métricas: Mean Absolute Error (MAE) yWeighted Mean Squared
 Error (wMSE)

- Horizontes Temporales: 10, 30, 60
- Métricas: Mean Absolute Error (MAE) yWeighted Mean Squared Error (wMSE)

$$MAE = \frac{1}{W \times H} \sum_{i=1}^{W} \sum_{j=1}^{H} |c_{ij}^{t} - \hat{c}_{ij}^{t}|$$

$$wMSE = \frac{1}{W \times H} \sum_{i=1}^{W} \sum_{j=1}^{H} w_{ij}^{t} \times (c_{ij}^{t} - \hat{c}_{ij}^{t})^{2}$$

Table 1. Comparison of prediction metrics by different configurations of DCPN. Minimum wMSE values marked in bold.

#	Prediction Horizon Averaged Metric Model Config	10 min wMSE	MAE	30 min wMSE	MAE	60 min wMSE	MAE
1st	512_384_256_128	0.058873	0.010635	0.054298	0.010028	0.045638	0.009572
2nd	640_512_384_256	0.058357	0.010737	0.054314	0.010125	0.045414	0.009245
3rd	768_640_512_384	0.061818	0.012796	0.058384	0.012838	0.049112	0.011893
4th	896_768_640_512	0.069279	0.016329	0.064761	0.016280	0.055138	0.016076
5th	1024_896_768_640	0.069227	0.016338	0.064663	0.016229	0.054909	0.015983

Table 1. Comparison of prediction metrics by different configurations of DCPN. Minimum wMSE values marked in bold.

#	Prediction Horizon Averaged Metric Model Config	10 min wMSE	MAE	30 min wMSE	MAE	60 min wMSE	MAE
1st	512_384_256_128	0.058873	0.010635	0.054298	0.010028	0.045638	0.009572
2nd	640_512_384_256	0.058357	0.010737	0.054314	0.010125	0.045414	0.009245
3rd	768_640_512_384	0.061818	0.012796	0.058384	0.012838	0.049112	0.011893
4th	896_768_640_512	0.069279	0.016329	0.064761	0.016280	0.055138	0.016076
5th	1024_896_768_640	0.069227	0.016338	0.064663	0.016229	0.054909	0.015983

Table 2. Significance of difference between the top 2 configurations of DCPN using Welch's t-test.

Prediction Horizon Averaged Metric Test Results	10 min wMSE	MAE	30 min wMSE	MAE	60 min wMSE	MAE
t stat p-value	0.073076 0.941928	-0.220181 0.826291	-0.002431 0.998067	-0.186772 0.852313	0.038266 0.969571	0.734073 0.465075

Table 3. Comparison of prediction metrics using time lags of 120 and 110 minutes. Minimum wMSE values marked in bold.

Prediction Horizon Averaged Metric Time Lag (minutes)	10 min wMSE	MAE	30 min wMSE	MAE	60 min wMSE	MAE
110	0.058730	0.010705	0.054224	0.010130	0.045305	0.009293
120	0.058873	0.010635	0.054298	0.010028	0.045638	0.009572

- Back-Testing para el testeo
 - Series de tiempo
- Error de predicción
 - 2-Ene a 8-Feb (2017)
- 10 minutos de predicción

- Back-Testing para el testeo
 - Series de tiempo
- Error de predicción
 - 2-Ene a 8-Feb (2017)
- 10 minutos de predicción
- DPCN
 - MAE mejor en 32 días
 - o wMSE mejor en 33 días

Figure 4. Daily total wMSE errors with a prediction horizon of 10 min on 42 days evaluated with back-testing.

Figure 5. Daily total MAE errors with a prediction horizon of 10 min on 42 days evaluated with back-testing.

Table 5. MAE and wMSE by day of the whole network at different prediction horizons of 10, 30, and 60 min through back-testing. Best performance values for each day are marked with a bold typeface.

			10 n	min					30 1	min					60	min		
		MAE			wMSE			MAE			wMSE			MAE			wMSE	
Day	SECN	ConvLSTM	DCPN	SRCN	ConvLSTM	DCPN	SRCN	ConvLSTM	DCPN	SRCN	ConvLSTM	DCPN	SECN	ConvLSTM	DCPN	SRCN	ConvLSTM	DCPN
2017-01-02	0.0097	0.0068	0.0035	0.0017	0.0016	0.0010	0.0083	0.0069	0.0034	0.0014	0.0016	0.0009	0.0104	0.0072	0.0067	0.0037	0.0023	0.0025
2017-01-03	0.0105	0.0125	0.0107	0.0660	0.0651	0.0576	0.0115	0.0124	0.0109	0.0550	0.0590	0.0543	0.0103	0.0120	0.0088	0.0490	0.0500	0.0483
2017-01-04	0.0104	0.0142	0.0115	0.0527	0.0613	0.0504	0.0103	0.0123	0.0104	0.0460	0.0640	0.0471	0.0093	0.0137	0.0088	0.0387	0.0476	0.0382
2017-01-05	0.0103	0.0128	0.0086	0.0422	0.0525	0.0404	0.0112	0.0127	0.0089	0.0388	0.0491	0.0381	0.0110	0.0149	0.0086	0.0329	0.0405	0.0315
2017-01-06	0.0100	0.0116	0.0068	0.0251	0.0341	0.0228	0.0103	0.0111	0.0071	0.0274	0.0385	0.0234	0.0111	0.0131	0.0077	0.0264	0.0258	0.0214
2017-01-09	0.0102	0.0137	0.0101	0.0571	0.0773	0.0557	0.0110	0.0122	0.0085	0.0577	0.0787	0.0531	0.0120	0.0128	0.0093	0.0516	0.0538	0.0447
2017-01-10	0.0110	0.0154	0.0124	0.0927	0.1307	0.0881	0.0158	0.0141	0.0118	0.1051	0.1302	0.0814	0.0127	0.0146	0.0115	0.0917	0.1057	0.0676
2017-01-11	0.0110	0.0143	0.0112	0.0593	0.0765	0.0582	0.0167	0.0121	0.0108	0.0704	0.0795	0.0506	0.0106	0.0138	0.0111	0.0468	0.0534	0.0395
2017-01-12	0.0119	0.0143	0.0127	0.0722	0.1010	0.0725	0.0130	0.0146	0.0124	0.0900	0.1122	0.0724	0.0115	0.0131	0.0117	0.0612	0.0879	0.0683
2017-01-13	0.0121	0.0107	0.0080	0.0337	0.0399	0.0277	0.0100	0.0113	0.0087	0.0364	0.0375	0.0259	0.0103	0.0140	0.0081	0.0385	0.0391	0.0285
2017-01-16	0.0133	0.0104	0.0049	0.0089	0.0075	0.0050	0.0107	0.0093	0.0058	0.0089	0.0064	0.0048	0.0097	0.0122	0.0044	0.0067	0.0087	0.0036
2017-01-17	0.0135	0.0135	0.0120	0.0981	0.1282	0.0951	0.0124	0.0132	0.0118	0.1118	0.1262	0.0912	0.0110	0.0128	0.0106	0.0907	0.0983	0.0752
2017-01-18	0.0127	0.0151	0.0126	0.1089	0.1495	0.1106	0.0132	0.0162	0.0122	0.1318	0.1621	0.1024	0.0134	0.0142	0.0107	0.1169	0.1243	0.0866
2017-01-19	0.0116	0.0127	0.0136	0.0750	0.0965	0.0738	0.0110	0.0132	0.0112	0.0807	0.0943	0.0665	0.0112	0.0124	0.0094	0.0679	0.0755	0.0533
2017-01-20	0.0119	0.0109	0.0088	0.0263	0.0346	0.0255	0.0079	0.0124	0.0083	0.0292	0.0306	0.0257	0.0072	0.0108	0.0085	0.0208	0.0242	0.0179
2017-01-23	0.0119	0.0114	0.0098	0.0391	0.0517	0.0396	0.0094	0.0120	0.0098	0.0455	0.0519	0.0373	0.0079	0.0108	0.0088	0.0314	0.0337	0.0264
2017-01-24	0.0131	0.0153	0.0122	0.1191	0.1780	0.1182	0.0131	0.0146	0.0136	0.1330	0.1735	0.1118	0.0114	0.0141	0.0117	0.1261	0.1262	0.0850
2017-01-25	0.0126	0.0121	0.0114	0.0568	0.0693	0.0563	0.0097	0.0124	0.0123	0.0614	0.0691	0.0546	0.0082	0.0115	0.0092	0.0480	0.0512	0.0397
2017-01-26	0.0124	0.0127	0.0113	0.0642	0.0851	0.0658	0.0100	0.0122	0.0108	0.0697	0.0884	0.0605	0.0093	0.0118	0.0090	0.0578	0.0595	0.0433
2017-01-27	0.0135	0.0100	0.0097	0.0255	0.0264	0.0240	0.0079	0.0099	0.0082	0.0243	0.0300	0.0219	0.0079	0.0105	0.0075	0.0242	0.0253	0.0187
2017-01-30	0.0133	0.0107	0.0099	0.0377	0.0445	0.0363	0.0085	0.0105	0.0094	0.0312	0.0399	0.0310	0.0079	0.0103	0.0073	0.0262	0.0281	0.0224
2017-01-31	0.0128	0.0122	0.0108	0.0560	0.0731	0.0565	0.0093	0.0111	0.0107	0.0598	0.0693	0.0493	0.0073	0.0097	0.0085	0.0450	0.0527	0.0403
2017-02-01	0.0122	0.0118	0.0107	0.0654	0.0838	0.0675	0.0105	0.0116	0.0105	0.0723	0.0901	0.0619	0.0086	0.0109	0.0099	0.0618	0.0685	0.0500
2017-02-02	0.0123	0.0112	0.0105	0.0547	0.0694	0.0564	0.0095	0.0112	0.0105	0.0582	0.0662	0.0518	0.0085	0.0113	0.0093	0.0484	0.0502	0.0408
2017-02-03	0.0116	0.0110	0.0100	0.0539	0.0645	0.0548	0.0095	0.0107	0.0100	0.0550	0.0618	0.0469	0.0084	0.0103	0.0079	0.0401	0.0408	0.0331
2017-02-06	0.0132	0.0093	0.0071	0.0340	0.0185	0.0217	0.0123	0.0095	0.0097	0.0212	0.0189	0.0108	0.0127	0.0134	0.0061	0.0225	0.0308	0.0208
2017-02-07	0.0115	0.0110	0.0105	0.0390	0.0424	0.0380	0.0096	0.0102	0.0079	0.0361	0.0391	0.0324	0.0096	0.0106	0.0074	0.0299	0.0307	0.0245
2017-02-08	0.0129	0.0137	0.0126	0.1159	0.1591	0.1064	0.0121	0.0142	0.0125	0.1313	0.1812	0.1046	0.0113	0.0133	0.0122	0.1333	0.1674	0.0943
2017-02-09	0.0139	0.0150	0.0144	0.1417	0.1955	0.1251	0.0136	0.0157	0.0133	0.1562	0.2183	0.1221	0.0130	0.0139	0.0123	0.1464	0.1698	0.1097
2017-02-10	0.0143	0.0116	0.0114	0.0538	0.0679	0.0522	0.0103	0.0120	0.0105	0.0576	0.0718	0.0488	0.0090	0.0111	0.0101	0.0472	0.0546	0.0411
2017-02-13	0.0142	0.0123	0.0130	0.0722	0.1023	0.0702	0.0110	0.0124	0.0122	0.0809	0.0949	0.0612	0.0095	0.0118	0.0117	0.0694	0.0795	0.0532
2017-02-14	0.0144	0.0126	0.0132	0.0901	0.1123	0.0873	0.0122	0.0133	0.0134	0.1054	0.1381	0.0891	0.0112	0.0120	0.0115	0.1011	0.1137	0.0815
2017-02-15	0.0145	0.0151	0.0130	0.1214	0.1660	0.1173	0.0142	0.0152	0.0124	0.1366	0.1676	0.1099	0.0125	0.0141	0.0120	0.1213	0.1428	0.0943
2017-02-16	0.0142	0.0135	0.0134	0.0817	0.1144	0.0802	0.0118	0.0135	0.0116	0.0888	0.1150	0.0733	0.0100	0.0124	0.0112	0.0783	0.0895	0.0643
2017-02-17	0.0140	0.0105	0.0090	0.0306	0.0360	0.0288	0.0074	0.0101	0.0083	0.0308	0.0340	0.0265	0.0072	0.0100	0.0089	0.0289	0.0301	0.0244
2017-02-20	0.0137	0.0092	0.0060	0.0074	0.0052	0.0034	0.0101	0.0091	0.0049	0.0065	0.0070	0.0041	0.0112	0.0116	0.0060	0.0083	0.0096	0.0048
2017-02-21	0.0123	0.0127	0.0129	0.0716	0.1065	0.0707	0.0101	0.0125	0.0111	0.0769	0.1067	0.0640	0.0090	0.0109	0.0108	0.0630	0.0785	0.0515
2017-02-22	0.0122	0.0115	0.0110	0.0410	0.0472	0.0396	0.0094	0.0113	0.0096	0.0435	0.0519	0.0341	0.0078	0.0107	0.0089	0.0307	0.0363	0.0274
2017-02-23	0.0124	0.0119	0.0105	0.0451	0.0558	0.0443	0.0097	0.0114	0.0094	0.0435	0.0513	0.0365	0.0075	0.0102	0.0082	0.0306	0.0348	0.0269
2017-02-24	0.0121	0.0100	0.0080	0.0274	0.0291	0.0236	0.0081	0.0097	0.0085	0.0249	0.0308	0.0218	0.0075	0.0096	0.0113	0.0195	0.0235	0.0206
2017-02-27	0.0132	0.0154	0.0128	0.1078	0.1547	0.1051	0.0127	0.0166	0.0120	0.1142	0.1672	0.0937	0.0110	0.0134	0.0119	0.0910	0.1231	0.0753
2017-02-28	0.0118	0.0125	0.0117	0.0586	0.0804	0.0576	0.0096	0.0120	0.0113	0.0606	0.0800	0.0522	0.0082	0.0111	0.0118	0.0485	0.0604	0.0427
								1 1 2000000										

MAE								
Tiempo	SRCN	DPCN						
30 minutos	22	20						
60 minutos	21	21						
	wMSE							
Tiempo	-	DPCN						
30 mintuos	-	41						
60 minutos	-	40						

 Promedios mas bajos para MAE y wMSE para 10, 30 y 60 minutos

Table 5. MAE and wMSE by day of the whole network at different prediction horizons of 10, 30, and 60 min through back-testing. Best performance values for each day are marked with a bold typeface.

	10 min 30 min								60	min								
		MAE			wMSE			MAE			wMSE			MAE			wMSE	
Day	SRCN	ConvLSTM	DCPN	SRCN	ConvLSTM	DCPN	SRCN	ConvLSTM	DCPN	SRCN	ConvLSTM	DCPN	SRCN	ConvLSTM	DCPN	SRCN	ConvLSTM	DCPN
2017-01-02	0.0097	0.0068	0.0035	0.0017	0.0016	0.0010	0.0083	0.0069	0.0034	0.0014	0.0016	0.0009	0.0104	0.0072	0.0067	0.0037	0.0023	0.0025
2017-01-03	0.0105	0.0125	0.0107	0.0660	0.0651	0.0576	0.0115	0.0124	0.0109	0.0550	0.0590	0.0543	0.0103	0.0120	0.0088	0.0490	0.0500	0.0483
2017-01-04	0.0104	0.0142	0.0115	0.0527	0.0613	0.0504	0.0103	0.0123	0.0104	0.0460	0.0640	0.0471	0.0093	0.0137	0.0088	0.0387	0.0476	0.0382
2017-01-05	0.0103	0.0128	0.0086	0.0422	0.0525	0.0404	0.0112	0.0127	0.0089	0.0388	0.0491	0.0381	0.0110	0.0149	0.0086	0.0329	0.0405	0.0315
2017-01-06	0.0100	0.0116	0.0068	0.0251	0.0341	0.0228	0.0103	0.0111	0.0071	0.0274	0.0385	0.0234	0.0111	0.0131	0.0077	0.0264	0.0258	0.0214
2017-01-09	0.0102	0.0137	0.0101	0.0571	0.0773	0.0557	0.0110	0.0122	0.0085	0.0577	0.0787	0.0531	0.0120	0.0128	0.0093	0.0516	0.0538	0.0447
2017-01-10	0.0110	0.0154	0.0124	0.0927	0.1307	0.0881	0.0158	0.0141	0.0118	0.1051	0.1302	0.0814	0.0127	0.0146	0.0115	0.0917	0.1057	0.0676
2017-01-11	0.0110	0.0143	0.0112	0.0593	0.0765	0.0582	0.0167	0.0121	0.0108	0.0704	0.0795	0.0508	0.0108	0.0138	0.0111	0.0468	0.0534	0.0395
2017-01-12	0.0119	0.0143	0.0127	0.0722	0.1010	0.0725	0.0130	0.0146	0.0124	0.0900	0.1122	0.0724	0.0115	0.0131	0.0117	0.0612	0.0879	0.0683
2017-01-13	0.0121	0.0107	0.0080	0.0337	0.0399	0.0277	0.0100	0.0113	0.0087	0.0364	0.0375	0.0259	0.0103	0.0140	0.0081	0.0385	0.0391	0.0285
2017-01-16	0.0133	0.0104	0.0049	0.0089	0.0075	0.0050	0.0107	0.0093	0.0058	0.0089	0.0064	0.0048	0.0097	0.0122	0.0044	0.0067	0.0087	0.0036
2017-01-17	0.0135	0.0135	0.0120	0.0981	0.1282	0.0951	0.0124	0.0132	0.0118	0.1118	0.1262	0.0912	0.0110	0.0128	0.0106	0.0907	0.0983	0.0752
2017-01-18	0.0127	0.0151	0.0126	0.1089	0.1495	0.1106	0.0132	0.0162	0.0122	0.1318	0.1621	0.1024	0.0134	0.0142	0.0107	0.1169	0.1243	0.0866
2017-01-19	0.0116	0.0127	0.0136	0.0750	0.0965	0.0738	0.0110	0.0132	0.0112	0.0807	0.0943	0.0665	0.0112	0.0124	0.0094	0.0679	0.0755	0.0533
2017-01-20	0.0119	0.0109	0.0088	0.0263	0.0346	0.0255	0.0079	0.0124	0.0083	0.0292	0.0306	0.0257	0.0072	0.0108	0.0085	0.0208	0.0242	0.0179
2017-01-23	0.0119	0.0114	0.0098	0.0391	0.0517	0.0396	0.0094	0.0120	0.0098	0.0455	0.0519	0.0373	0.0079	0.0108	0.0088	0.0314	0.0337	0.0264
2017-01-24	0.0131	0.0153	0.0122	0.1191	0.1780	0.1182	0.0131	0.0146	0.0136	0.1330	0.1735	0.1118	0.0114	0.0141	0.0117	0.1261	0.1262	0.0850
2017-01-25	0.0126	0.0121	0.0114	0.0568	0.0693	0.0563	0.0097	0.0124	0.0123	0.0614	0.0691	0.0546	0.0082	0.0115	0.0092	0.0480	0.0512	0.0397
2017-01-26	0.0124	0.0127	0.0113	0.0642	0.0851	0.0658	0.0100	0.0122	0.0108	0.0697	0.0884	0.0605	0.0093	0.0118	0.0090	0.0578	0.0595	0.0433
2017-01-27	0.0135	0.0100	0.0097	0.0255	0.0264	0.0240	0.0079	0.0099	0.0082	0.0243	0.0300	0.0219	0.0079	0.0105	0.0075	0.0242	0.0253	0.0183
2017-01-30	0.0133	0.0107	0.0099	0.0377	0.0445	0.0363	0.0085	0.0105	0.0094	0.0312	0.0399	0.0310	0.0079	0.0103	0.0073	0.0262	0.0281	0.0224
2017-01-31	0.0128	0.0122	0.0108	0.0560	0.0731	0.0565	0.0093	0.0111	0.0107	0.0598	0.0693	0.0493	0.0073	0.0097	0.0085	0.0450	0.0527	0.0403
2017-02-01	0.0122	0.0118	0.0107	0.0654	0.0838	0.0675	0.0105	0.0116	0.0105	0.0723	0.0901	0.0619	0.0086	0.0109	0.0099	0.0618	0.0685	0.0500
2017-02-02	0.0123	0.0112	0.0105	0.0547	0.0694	0.0564	0.0095	0.0112	0.0105	0.0582	0.0662	0.0518	0.0085	0.0113	0.0093	0.0484	0.0502	0.0406
2017-02-03	0.0116	0.0110	0.0100	0.0539	0.0645	0.0548	0.0095	0.0107	0.0100	0.0550	0.0618	0.0469	0.0084	0.0103	0.0079	0.0401	0.0408	0.0331
2017-02-06	0.0132	0.0093	0.0071	0.0340	0.0185	0.0217	0.0123	0.0095	0.0097	0.0212	0.0189	0.0108	0.0127	0.0134	0.0061	0.0225	0.0308	0.0208
2017-02-07	0.0115	0.0110	0.0105	0.0390	0.0424	0.0380	0.0096	0.0102	0.0079	0.0361	0.0391	0.0324	0.0096	0.0106	0.0074	0.0299	0.0307	0.0245
2017-02-08	0.0129	0.0137	0.0126	0.1159	0.1591	0.1064	0.0121	0.0142	0.0125	0.1313	0.1812	0.1046	0.0113	0.0133	0.0122	0.1333	0.1674	0.0943
2017-02-09	0.0139	0.0150	0.0144	0.1417	0.1955	0.1251	0.0136	0.0157	0.0133	0.1562	0.2183	0.1221	0.0130	0.0139	0.0123	0.1464	0.1698	0.1097
2017-02-10	0.0143	0.0116	0.0114	0.0538	0.0679	0.0522	0.0103	0.0120	0.0105	0.0576	0.0718	0.0488	0.0090	0.0111	0.0101	0.0472	0.0546	0.0411
2017-02-13	0.0142	0.0123	0.0130	0.0722	0.1023	0.0702	0.0110	0.0124	0.0122	0.0809	0.0949	0.0612	0.0095	0.0118	0.0117	0.0694	0.0795	0.0532
2017-02-14	0.0144	0.0126	0.0132	0.0901	0.1123	0.0873	0.0122	0.0133	0.0134	0.1054	0.1381	0.0891	0.0112	0.0120	0.0115	0.1011	0.1137	0.0815
2017-02-15	0.0145	0.0151	0.0130	0.1214	0.1660	0.1173	0.0142	0.0152	0.0124	0.1366	0.1676	0.1099	0.0125	0.0141	0.0120	0.1213	0.1428	0.0943
2017-02-16	0.0142	0.0135	0.0134	0.0817	0.1144	0.0802	0.0118	0.0135	0.0116	0.0888	0.1150	0.0733	0.0100	0.0124	0.0112	0.0783	0.0895	0.0643
2017-02-17	0.0140	0.0105	0.0090	0.0306	0.0360	0.0288	0.0074	0.0101	0.0083	0.0308	0.0340	0.0265	0.0072	0.0100	0.0089	0.0289	0.0301	0.024
2017-02-20	0.0137	0.0092	0.0060	0.0074	0.0052	0.0034	0.0101	0.0091	0.0049	0.0065	0.0070	0.0041	0.0112	0.0116	0.0060	0.0083	0.0096	0.0048
2017-02-21	0.0123	0.0127	0.0129	0.0716	0.1065	0.0707	0.0101	0.0125	0.0111	0.0769	0.1067	0.0640	0.0090	0.0109	0.0108	0.0630	0.0785	0.0515
2017-02-22	0.0122	0.0115	0.0110	0.0410	0.0472	0.0396	0.0094	0.0113	0.0096	0.0435	0.0519	0.0341	0.0078	0.0107	0.0089	0.0307	0.0363	0.0274
2017-02-23	0.0124	0.0119	0.0105	0.0451	0.0558	0.0443	0.0097	0.0114	0.0094	0.0435	0.0513	0.0365	0.0075	0.0102	0.0082	0.0306	0.0348	0.0269
2017-02-24	0.0121	0.0100	0.0080	0.0274	0.0291	0.0236	0.0081	0.0097	0.0085	0.0249	0.0308	0.0218	0.0075	0.0096	0.0113	0.0195	0.0235	0.0206
2017-02-27	0.0132	0.0154	0.0128	0.1078	0.1547	0.1051	0.0127	0.0166	0.0120	0.1142	0.1672	0.0937	0.0110	0.0134	0.0119	0.0910	0.1231	0.0753
2017-02-28	0.0118	0.0125	0.0117	0.0586	0.0804	0.0576	0.0096	0.0120	0.0113	0.0606	0.0800	0.0522	0.0082	0.0111	0.0118	0.0485	0.0604	0.0427

Resultados - Eficiencia

Table 6. Computing resources for training with prediction horizons of 10, 30, and 60 min.

10 min metric description	SRCN	ConvLSTM	DCPN
total number of epochs to converge total training time (s)	876 30,646.517	719 70,125.471	823 21,450.032
30 min metric description	SRCN	ConvLSTM	DCPN
total number of epochs to converge total training time (s)	757 26,572.629	631 61,677.397	845 22,235.832
60 min metric description	SRCN	ConvLSTM	DCPN
total number of epochs to converge total training time (s)	769 27,585.755	690 66,646.381	795 20,299.434

17 enero 2017 - Horizonte de predicción de 10 minutos

Figure 6. Ground truth congestion levels (first row) vs. predicted congestion levels (second row) on 17 January 2017 with a prediction horizon of 10 min.

- Herramienta de predicción de congestión a través de imágenes
 - Accesible

- Herramienta de predicción de congestión a través de imágenes
 - Accesible
- Construcción de modelo DPCN

- Herramienta de predicción de congestión a través de imágenes
 - Accesible
- Construcción de modelo DPCN
- DPCN es mas efectivo

- Herramienta de predicción de congestión a través de imágenes
 - Accesible
- Construcción de modelo DPCN
- DPCN es mas efectivo
- DPCN es mas eficiente

Incluir mas información

- Incluir mas información
- Utilizar imágenes de otros sistemas

- Incluir mas información
- Utilizar imágenes de otros sistemas
- Cuantificar cuanta información se pierde

- Incluir mas información
- Utilizar imágenes de otros sistemas
- Cuantificar cuanta información se pierde
- Mejorar la eficiencia dejando de considerar valores 0

• Valor de la herramienta

- Valor de la herramienta
- Dudas respecto a la bidireccionalidad

- Valor de la herramienta
- Dudas respecto a la bidireccionalidad
- Enfoque en transsporte urbano

- Valor de la herramienta
- Dudas respecto a la bidireccionalidad
- Enfoque en transsporte urbano
- Relación con investigación

Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks

SEN ZHANG, YONG YAO, JIE HU, YONG ZHAO, SHAOBO LI, JIANJUN HU (2019)

Anexos

Herramientas del estudio

Acercamiento al procesamiento de imagenes sobre niveles de congestion

Modelo eficiente de predicción de congestión de la red

Resultados eficientes y efectivos

Table 4. Configuration of parameters for DCPN.

Layer	Name	Channels	Shape
0	Inputs	1	(11, 149, 69)
1	Flattern	1	113,091
2	Dense (ReLU)	1	512
3	Dense (ReLU)	1	384
4	Dense (ReLU)	1	256
5	Dense (ReLU)	1	128
6	Dense (ReLU)	1	128
7	Dense (ReLU)	1	256
8	Dense (ReLU)	1	384
9	Dense (ReLU)	1	512
10	Dense (Sigmoid)	1	149×69
11	Dropout (0.1)		
12	Dense (Sigmoid)	1	149×69
13	Reshape	1	(149, 69)

Pasos realizados

- Limpieza de imágenes, a traves del procesamiento de imágenes
- Asignación de números por pixel usando HSL

