Networking Concepts

OPEN SYSTEMS INTERCONNECTION

This model is comprised of 7 layers

7.	Application
6.	Presentation
5.	Session
4.	Transport
3.	Network
2.	Data link
1.	Physical

- **1. Physical:** Binary 0 and 1, transmitted either electronically, optically or wirelessly. [2.4Ghz 5/6Ghz]
- **2. Data Link:** Protocols enabling data transfer between nodes on the network. MAC address, ethernet transfer [six bytes].
- **3. Network:** Sending data between different networks via a router. Routing data to different networks.
- **4. Transport:** TCP [Transfer Control Protocol (Reliable)] UDP [User Datagram Protocol (Unreliable)].
- **5. Session:** Establishing, maintaining and synchronizing communication between applications running on different hosts. Network File System [NFS] or Remote Procedure Call [RPC].
- **6. Presentation:** Data delivered in a form that can be understood. Encoding, encryption, eg ASCII. Other examples could be JPEG, GIF, PNG.
- **7. Application:** HTTP/HTTPS request file, submit form or upload a file. Other examples could be, FTP, DNS, IMAP.

Layer Number	Layer Name	Main Function	Example Protocols and Standards
Layer 7	Application layer	Providing services and interfaces to applications	HTTP, FTP, DNS, POP3, SMTP, IMAP
Layer 6	Presentation layer	Data encoding, encryption, and compression	Unicode, MIME, JPEG, PNG, MPEG
Layer 5	Session layer	Establishing, maintaining, and synchronising sessions	NFS, RPC
Layer 4	Transport layer	End-to-end communication and data segmentation	UDP, TCP
Layer 3	Network layer	Logical addressing and routing between networks	IP, ICMP, IPSec
Layer 2	Data link layer	Reliable data transfer between adjacent nodes	Ethernet (802.3), WiFi (802.11)
Layer 1	Physical layer	Physical data transmission media	Electrical, optical, and wireless signals

TCP / IP MODEL

- Application Layer: The OSI model application, presentation and session layers, i.e., layers 5, 6, and 7, are grouped into the application layer in the TCP/IP model.
- Transport Layer: This is layer 4.
- Internet Layer: This is layer 3. The OSI model's network layer is called the Internet layer in the TCP/IP model.
- Link Layer: This is layer 2

The table below shows how the TCP/IP model layers map to the ISO/OSI model layers.

Layer Number	ISO OSI Model	TCP/IP Model (RFC 1122)	Protocols
	Application Layer	Application Layer	HTTP, HTTPS, FTP, POP3, SMTP, IMAP, Telnet, SSH,
	Presentation Layer		
	Session Layer		
	Transport Layer	Transport Layer	TCP, UDP
	Network Layer	Internet Layer	IP, ICMP, IPSec
2	Data Link Layer	Link Layer	Ethernet 802.3, WiFi 802.11
1	Physical Layer		

IP Address

Now an IP address consists of 4 Octets [32 bits] 1 octet = 8 bits.

ip a s

Allows us to see the format, comparing the network card IP address and how it is presented:

```
user@TryHackMe$ ip a s
[...]
4: wlo1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtm 1500 qdisc noqueue state UP group default qlen 1000
    link/ether cc:5e:f8:02:21:a7 brd ff:ff:ff:ff
    altname wlp3s0
    inet 192.168.66.89/24 brd 192.168.66.255 scope global dynamic noprefixroute wlo1
    valid_lft 36795sec preferred_lft 36795sec
    inet6 fe80::73e1:ca5e:3f93:b1b3/64 scope link noprefixroute
    valid_lft forever preferred_lft forever
```

TCP:

3 Way handshake, ensures reliability. Good when we want to ensure all data packets are sent and received. Such as email.

- 1. SYN PACKET: Client SYN Server.
- 2. SYN-ACK PACKET: Server SYN ACK Client.
- 3. ACK PACKET: Client ACK Server SYN ACK.

UDP:

Connectionless protocol, that exchanges reliability to constant data, great for streaming where the loss of some packets isn't a problem.

