Georg Wölflein

School of Computer Science, University of St Andrews

April 11, 2022

- 1 Time-to-event data
- Survival function
- 3 Kaplan-Meier estimator
- 4 Hazard function
- 5 Cox's proportional hazards model

We can measure **time** in:

years

Time-to-event data

- months
- seconds

We can measure **time** in:

years

Time-to-event data •0000

- months
- seconds

The **event** could be:

- death from disease
- product failure
- losing a customer

What is time-to-event (TTE) data?

We can measure **time** in:

- years
- months
- seconds

The **event** could be:

- death from disease
 - product failure
 - losing a customer

must be a binary variable

What is time-to-event (TTE) data?

We can measure time in:

- years
- months
- seconds

The **event** could be:

- death from disease
 product failure
 must be a binary variable
- losing a customer

yes/no

TTE data consists of (time, event) tuples.

Time-to-event (TTE) data

TTE analysis is also known as:

- survival analysis
- failure time analysis
- reliability theory (engineering)
- duration modelling (economics)
- event history analysis (sociology)

TTE analysis is also known as:

- survival analysis
- failure time analysis
- reliability theory (engineering)
- duration modelling (economics)
- event history analysis (sociology)

Use cases for TTE analysis:

- clinical research
- customer analytics (churn)
- hardware (equipment failure)

A randomised controlled trial (n = 4) was conducted to assess the efficacy of drug ABC in treating Covid-19. This is what happened to the patients:

A randomised controlled trial (n = 4) was conducted to assess the efficacy of drug ABC in treating Covid-19. This is what happened to the patients:

patient	received ABC?	outcome
1	yes	died from Covid-19 on day 15
2	no	dropped out of the study after day 3
3	yes	died by a lightning stroke on day 5
4	no	survived the study (30 days)

Example: Covid-19 treatment trial

Example: Covid-19 treatment trial

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

Example: Covid-19 treatment trial

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

	•		
Time-to-event data			
	patient	time	event
	1	15	yes
	2	?	?
	3	?	?
	4	?	no

Example: Covid-19 treatment trial

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

Time-to-event data				
	patient	time	event	
	1	15	yes	
	2	[0, 3]	no	
	3	[0, 5)	no	
	4	[0, 30]	no	

> **Censoring** occurs when we have some information about an individual's survival time, but don't know the exact time. Possible reasons include

- not experiencing the event before the study concludes;
- getting lost to follow-up during the study period;
- withdrawing from the study.

> **Censoring** occurs when we have some information about an individual's survival time, but don't know the exact time. Possible reasons include

- not experiencing the event before the study concludes;
- getting lost to follow-up during the study period;
- withdrawing from the study.

We just saw examples of right-censored data.

Let T be a continuous random variable representing survival time. The **survival function** S(t) is the probability that an individual will survive past time t.

Survival function

Let T be a continuous random variable representing survival time. The **survival function** S(t) is the probability that an individual will survive past time t.

Survival function

$$S(t) = \Pr(T > t)$$

Survival curve

The **Kaplan-Meier estimator** provides a non-parametric estimate of the survival function S(t) using the survival curve.

Modelling the survival function

The **Kaplan-Meier estimator** provides a non-parametric estimate of the survival function S(t) using the survival curve.

Kaplan-Meier estimator

Kaplan-Meier estimator

$$\hat{S}(t) = \prod_{i:t_i \le t} \left(1 - \frac{d_i}{n_i}\right)$$

where

- t_i is an event time
- di is the number of deaths at time ti
- n_i is the number of individuals known to have survived until t_i

Survival curve and Kaplan-Meier estimator

The **hazard function** expresses the *instantaneous rate of* occurence of the event.

The **hazard function** expresses the *instantaneous rate of* occurence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

The **hazard function** expresses the *instantaneous rate of* occurence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \frac{\Pr(|)$$

The **hazard function** expresses the *instantaneous rate of* occurrence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \frac{\Pr(\mathbf{t} \leq T \leq t + d\mathbf{t}|)}{|\mathbf{r}|}$$

The **hazard function** expresses the *instantaneous rate of* occurence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

Hazard function

$$\lambda(t) = \frac{\Pr(|T \ge t)}{}$$

St Andrews

The **hazard function** expresses the *instantaneous rate of* occurence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

The **hazard function** expresses the **instantaneous rate** of occurence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \lim_{\substack{dt \to 0}} \frac{\Pr(\qquad | \qquad)}{}$$

The **hazard function** expresses the *instantaneous rate of* occurence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \frac{\Pr(\ | \)}{= \lim_{dt \to 0} \frac{\Pr(t \le T \le t + dt)}{dt \cdot \Pr(T \ge t)}}$$

The **hazard function** expresses the *instantaneous rate of occurence* of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

What does survival depend on?

Recall the survival function S(t) = Pr(T > t) as the probability that an individual will survive past time t.

Recall the survival function $S(t) = \Pr(T > t)$ as the probability that an individual will survive past time t. Let's assume that S(t)depends on

- 1 the **baseline hazard function** (how risk of event occurence changes over time at baseline covariates); and
- 2 the effect parameters (how hazard varies due to the covariates), also known as the partial hazard.

Cox's proportional hazards model uses both factors to provide a semi-parametric estimate of the hazard function $\lambda(t)$ conditioned on the covariates \mathbf{x} .

Cox's proportional hazards model

$$\lambda(t|\mathbf{x}) = \overbrace{\lambda_0(t)}^{\text{baseline}} \underbrace{\exp\left(\sum_{i=1}^n \beta_i \mathbf{x}_i\right)}^{\text{partial hazard}}$$

Proportional hazards assumption

The model assumes fixed **proportional hazards**, i.e. the hazard for an individual i in proportion to the hazard of any other individual i is fixed over time.

Proportional hazards assumption

The model assumes fixed **proportional hazards**, i.e. the hazard for an individual i in proportion to the hazard of any other individual j is fixed over time. That is,

$$rac{\lambda_i(t|\mathbf{X}_i)}{\lambda_j(t|\mathbf{X}_j)} = \exp\left(\beta(\mathbf{X}_i - \mathbf{X}_j)\right).$$

The model assumes fixed **proportional hazards**, i.e. the hazard for an individual i in proportion to the hazard of any other individual j is fixed over time. That is.

$$rac{\lambda_i(t|\mathbf{X}_i)}{\lambda_j(t|\mathbf{X}_j)} = \exp\left(eta(\mathbf{X}_i - \mathbf{X}_j)\right).$$

Therefore,

- the baseline hazard $\lambda_0(t)$ is independent of the covariates, and
- the partial hazard is time-independent.

Partial likelihood

For each individual i. let

- T_i be a possibly censored survival time random variable, and
- X; denote the covariates.

Further, let the **risk set** $\mathcal{R}(t) = \{i : T_i \geq t\}$ be the set of individuals that are "at risk" at time t.

For each individual i. let

- T_i be a possibly censored survival time random variable, and
- X; denote the covariates.

Further, let the **risk set** $\mathcal{R}(t) = \{i : T_i \ge t\}$ be the set of individuals that are "at risk" at time t.

Cox proposed a **partial likelihood** for β without involving $\lambda_0(t)$.

Maximising this function allows us to estimate the parameters β .

For each individual i. let

- T_i be a possibly censored survival time random variable, and
- X; denote the covariates.

Further, let the **risk set** $\mathcal{R}(t) = \{i : T_i \geq t\}$ be the set of individuals that are "at risk" at time t.

Cox proposed a **partial likelihood** for β without involving $\lambda_0(t)$.

Maximising this function allows us to estimate the parameters β .

$$L(\beta) = \prod_{j=1}^{N} \Pr(\text{individual } j \text{ dies } | \text{ one death from } \mathcal{R}(T_j))$$

Partial likelihood formula

$$L(\beta) = \prod_{j=1}^{N} \Pr\left(\text{individual } j \text{ dies } | \text{ one death from } \mathcal{R}(T_j)\right)$$

$$= \dots$$

$$= \prod_{j=1}^{N} \frac{\lambda(T_j | \mathbf{X}_j)}{\sum_{k \in \mathcal{R}(T_j)} \lambda(T_j | \mathbf{X}_k)}$$

$$= \prod_{j=1}^{N} \frac{\lambda_0(T_j) \exp\left(\beta \mathbf{X}_j\right)}{\sum_{k \in \mathcal{R}(T_j)} \lambda_0(T_j) \exp\left(\beta \mathbf{X}_k\right)}$$

$$= \prod_{j=1}^{N} \frac{\exp\left(\beta \mathbf{X}_j\right)}{\sum_{k \in \mathcal{R}(T_j)} \exp\left(\beta \mathbf{X}_k\right)}$$

Parameter estimation

We can estimate the parameters β by minimizing the negative partial log-likelihood, i.e. $-\log L(\beta)$, by taking the partial derivatives with respect to the parameters $oldsymbol{eta}$ and solving for the minimum using e.g. the Newton-Raphson algorithm.

Hazard ratios

The fraction used to express the proportional hazards assumption is actually the **hazard ratio**, measuring the risk of individual i relative to individual *j*:

$$HR = rac{\lambda(t|\mathbf{X}_i)}{\lambda(t|\mathbf{X}_i)} = \exp\left(eta(\mathbf{X}_i - \mathbf{X}_j)
ight).$$

The fraction used to express the proportional hazards assumption is actually the **hazard ratio**, measuring the risk of individual i relative to individual *j*:

$$HR = rac{\lambda(t|\mathbf{X}_i)}{\lambda(t|\mathbf{X}_j)} = \exp\left(eta(\mathbf{X}_i - \mathbf{X}_j)\right).$$

We may be interested in the relative risk associated with a particular covariate c, specifically the risk of said covariate having value c_i compared to c_i . Consider two dummy individuals i and jdiffering only in the c^{th} covariate, i.e. $\mathbf{X}_{i,k} = \mathbf{X}_{i,k}$ for $k \neq c$. Then the relative risk associated with c_i compared to c_i is

$$HR = \exp(\beta_c(c_i - c_i))$$
.

- HR = 1: no effect.
- HR > 1: increase in hazard
- HR < 1: reduction in hazard

