

COMPUTER ARCHITECTURE

Project 2 Report

ABSTRACT

Comparison between different cache configurations for different CPUs for all 5 SPEC benchmarks. Cost function and Evaluation function was defined to calculate the optimum cache configuration for all 5 SPEC benchmarks over 3 different CPUs.

Anmol Gautam, Soumyadeep Choudhury

AXG190014 SXC180056

Marks Distribution: 100/100

Table of Contents

Intro	duction	Page 2-3
0	Gem5	
0	Cache	
0	Types of Caches	
0	Associativity in Caches	
0	Cycles Per Instruction (CPI)	
0	Cost Function (CF)	
Insta	lling gem5	Page 4
Chall	enge and Issues	Page 5-6
Modi	fications and Changes	Page 7-9
Confi	g.ini	Page 10
Gene	rated Stats File	Page 10-11
Cost	Function	Page 12
Evalu	ation Function	Page 13
Resu	lts	Page 14-32
Conc	lusion	Page 33
Refe	rences	Page 33
Appe	ndix	Page 34-40

Introduction

Gem5

Gem5 simulator is a platform for simulating computer system architecture. It incorporates system level architecture and processor microarchitecture.

Key Features:

- Gem5 gives four interpretation-based CPUs which shares a common high-level ISA architecture.
- A completely coordinated GPU mode.
- Integrated NoMali GPU model removes the need for software rendering.
- Implemented event-driven memory system captures the impact of current and emerging memories.
- A model that plays back elastic traces.
- Homogenous and Heterogeneous multicore model.
- Full system capacity for Alpha, ARM, SPARC and x86
- Various frameworks can be launched inside a solitary reenactment process.
- Gem5's items are masterminded in OS-obvious power and clock areas, empowering a scope of tests in power-and vitality proficiency.
- Gem5 can be effectively ran as a thread inside system event kernel, which synchronizes events and timeline.

Cache:

In processing, a cache is an equipment or programming segment that stores information with the goal that future solicitations for that information can be served quicker; the information put away in a cache may be the aftereffect of a prior calculation or a duplicate of information put away somewhere else. A cache hit happens when the mentioned information can be found in a cache, while a cache miss happens when it can't. Cache hits are served by perusing information from the store, which is quicker than recomputing an outcome or perusing from a more slow information store; consequently, the more demands that can be served from the cache, the quicker the framework performs.

To be practical and to empower proficient utilization of information, caches must be generally little. By and by, caches have substantiated themselves in numerous regions of figuring, in light of the fact that run of the mill PC applications gets to information with a high level of region of reference. Such access designs show worldly territory, where information is mentioned that has been as of late mentioned as of now,

and spatial locality, where information is mentioned that is put away physically near the information that has just been mentioned.

Types of Caches:

- Level 1 It is a kind of memory wherein information is put away and acknowledged that are quickly put away in CPU. Most normally utilized register is collector, program counter, an address register and so forth.
- **Level 2** It is the quickest memory which has quicker access time where information is incidentally put away for quicker access.
- **Level 3** It is a memory on which PC works as of now. It is little in the estimate and once control is off information never again remains in this memory.

Associativity in Caches:

- **Direct Mapped Cache** In a direct-mapped cache structure, the cache is composed into various sets with a solitary cache line for every set. In light of the location of the memory block, it can just involve a solitary cache line. The cache can be surrounded as a (n*1) segment network.
- Fully Associative Cache In a Fully associative cache, the store is composed of a solitary cache set with different store lines. A memory block can involve any of the cache lines. The store associate can be encircled as (1*m) push grid.
- Set Associative Cache The Set associative cache can be envisioned as a (n*m) grid. The cache is separated into 'n' sets and each set contains 'm' store lines. A memory block is first mapped onto a set and afterward set into any cache line of the set.

Cycles per Instruction (CPI):

In computer architecture, cycles per guidance (otherwise known as clock cycles per guidance, tickers per guidance, or CPI) is one part of a processor's presentation: the normal number of clock cycles per guidance for a program or program section. It is the multiplicative backward of directions per cycle.

Cost Function (CF):

A cost function is an element of information costs and yield amount whose worth is the expense of making that yield given those info costs, regularly applied using the cost bend by organizations to limit cost and expand creation productivity.

Installing Gem5

We opted to use our local machine for this project. Main reason being that we thought, that on a local machine each individual benchmark would take less time than on the server. We inferred that to be correct based on the run time of bzip2 and sjeng provided in the project description and the time we got on our local machine while testing our setup for the first time.

Our local machine specifications are as follow \rightarrow Core i5 (7th generation), overclockable up to 3.22 Ghz, 20 GB of DRAM.

Challenges and Issues

Mentioned below are the challenges and Issues faced during project 1. New challenges and New Issues describes the ones we faced during project 2. We are mentioning the old challenges as they were not specific to the project 1 but rather generic issues that can be faced on any system.

New Challenges:

- For each benchmark we experimented over a large range of cache configurations. Therefore, to
 expedite this process we dedicated all 8 cores of our machine to the experiments using the
 following command.
 - o taskset -cuda 0,1,2,3,4,5,6,7 --parallel -j9 ./final_run_gem5.sh

New Issues:

 DerivO3CPU and MinorCPU was not simulated in gem5 so while running the SPEC benchmarks we couldn't find the object files of these executable CPUs for our experiment.

- To fix the above issues we made changes in gem5 in the following files.
 - o gem5/build opts/X86

gem5/src/cpu/minor/SConscript

```
# Authors: Nathan Binkert
# Andrew Bardsley

Import('*')

if 'MinocCPU' in env['CPU MODELS']:
    SimObject('MinorCPU.py')

Source('activity.cc')
    Source('cpu.cc')
    Source('decode.cc')
```

gem5/src/cpu/o3/SConscript

```
# INEURY OF LIMBILITY, WHEIMER IN CUNINACI, SIRICI LIMBILITY, OK TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Authors: Nathan Binkert
import sys

Import('*')

if '03CPU' in env['CPU_MODELS']:
    Simobject('FUPool.py')
    Simobject('FUPool.py')
    Simobject('O3CPU.py')
    Source('base_dyn_inst.cc')
```

Old Challenges:

- To build on gem5, we had to install dependencies for which we referred to the official documentation of gem5 where required softwares and libraries are mentioned.
- Simply installing dependencies as mentioned in manual pages, on our local system, did not work
 - This happened because in our system we are using deep learning cuda network with python 3.6 libraries for Machine Learning.
 - We are using cuda10.1, Python 3.6, cudnn 2.1., cross compiler is upgraded to latest version and kernel version had been upgraded to > 4.3.3. Official manual page of gem5 suggests using kernel version between 3.1.3 to 4.1.1.
 - Ubuntu version is 18.04.5 LTS. Libraries suggested in gem5 manual page are not directly compatible for this Ubuntu version.
- To solve the above-mentioned issues, we created two instances of the kernel and installed the following files:
 - o Softwares: SCons1, zlib1, m41, protobuf1, pydot1
 - o Dependencies: libfdt1, dnet1, iostream3, libelf1, PLY1, x11ksyms1, fputils1
- Cross compiler issue was solved by aliasing UEFI mode in boot system so that simulator can run
 on CPU kernel instead of GPU (default for cuda network).

Old Issues:

- Faced an issue of <boost/bind.hpp> while building gem5. This was because of kernel version issue.
 This was solved by reducing kernel version.
- Issue faced of parsing Input arguments in benchmark files. These took string values for which appropriate changes were made in shell file.
- Last thread was implicitly exiting every time. The reason for this was that the number of channels and time steps (lbm) were not synchronized.
- Maximum number of threads that can run parallelly in gem5 was prespecified at a less value.
 Because of that gem5 was not able to execute all instructions if the total number of instructions were given a high value. Solved by increasing the maximum thread count.
- Panic condition fd<0 occurred which led the failure of opening the .src/benchmark file because DRAM memory capacity usage exceeded/did not match the address range that was assigned.
- CPU type in shell was given as Atomic but name convention of executable created by python libraries in gem5/build/86 is different.

Modifications and Changes

We made changes in shell as per the project guidelines to run all the benchmarks for their respective cache sizes and associativity and CPU type.

To automate the process we have written a shell code along with the changes as mentioned above to perform the said experiments over different combinations of cache sizes, associativity and CPU type.

All these changes are given below.

• 401.bzip2

```
1 H/bin/banh
4401.bzip2 shell

export GEMS DIR=/home/soumyadeep/gem5
export M5 DIR=/home/soumyadeep/gem5
export M6 DIR=/home/soumyadeep/gem5
export M6 DIR=/home/soumyadeep/gem5
export M6 DIR=/home/soumyadeep/ge
```

429.mcf

456.hmmer

```
#!/bin/bash
                 export GEM5_DIR=/home/soumyadeep/gem5
                 export M5 DTR=/home/sounyadeep/Project1_SPEC-master/456.hmmer/final_project/m5out
export BENCHMARK=./src/benchmark
11 for i in 64kB 128kB 256kB ################ L1 size (both data and instruction)
12 Edo
13
14
15
16 9
                                    for j in 256kB 512kB 1MB 2MB ############### L2 size
                                    do
                                                     for k in 32 64 ######## Cacheline size
                                                                     for m in 1 2 4 *######### L1 associativity
                                                                                       for n in 1 2 4 ########## L2 associativity
                                                                                                       for cpu in TimingSimpleCPU MinorCPU DerivO3CPU
                                                                                                                      time $GEM5_DIR/build/x86/gem5.opt -d $M5_DIR6SPACE$j$SPACE$j$SPACE$m$SPACE$n$SPACE$n$SPACE$cpu
$GEM5_DIR/configs/example/se.py -c $BENCHMARK -o "--fixed 0 --mean 325 --num 45000 --sd 200 --seed 0
./data/bombesin.hmm" -I 500000000 --cpu-type=$opu --caches --12cache --lid size=$i --lii size=$i --li size=$i --li assoc=$n --lid assoc=$n --lid assoc=$n --lid assoc=$n --lid size=$i -
                                                                                                        don
                                                                      done
                                                     done
                                   done
```

458.sjeng

```
1 #!/bin/bash
      #458 gieng shell
 export GEMS_DIR=/home/soumyadeep/gemS
export M5_DIR=/home/soumyadeep/Project1_SPEC-master/458.sjeng/final_project/m5out
export BENCHMARK=./src/benchmark
export ARGUMENT=./data/test.txt
10 SPACE=" "
12 for i in 64kB 128kB 256kB ############## L1 size (both data and instruction)
             for j in 256kB 512kB 1MB 2MB ############ L2 size
15 B
16
17 G
18
19 B
20
21 B
22
23 B
24
25
26
27 -
28 -
29
                   for k in 32 64 ######### Cacheline size
                          for m in 1 2 4 ########## L1 associativity
                               for n in 1 2 4 ########## L2 associativity
                                     for cpu in TimingSimpleCPU MinorCPU DerivO3CPU
                                            time &GEM5_DIR/build/X86/gem5.opt -d &M5_DIR$SPACE$1$SPACE$1$SPACE$k$SPACE$m$SPACE$n$SPACE$cpu
$GEM5_DIR/configs/example/se.py -c &BENCHMARK -o *$ARGUMENT -I 500000000 --cpu-type=$cpu --caches --l2cache
--lld_size=$1 --lli_size=$1 --l2_size=$j --ld_assoc=$m --l1i_assoc=$m --l2_assoc=$n --cacheline_size=$k
                               done
                         done
                   done
             done
```

• 470.lbm

Config.ini

Whenever a CPU is running for configuration of benchmarks, config.ini file reflects the name of the CPU used. Results of config.ini for MinorCPU is given below. The same changes shows on all config.ini files of all benchmarks.

```
init perf level=0
    voltage domain=system.voltage domair
51
52
53
   □[svstem.coul
54
    type=MinorCPU
55
    children=branchPred dcache dtb dtb v
    branchPred=system.cpu.branchPred
56
57
    checker=Null
58
    clk domain=system.cpu clk domain
59
    cpu id=0
```

Generated Stats File

Stats are generated for L1(Instruction), L1(Data) and L2 caches example of which is given below.

As we are using latest version of gem5, L1 data is produced in stat file as L1 data and instruction cache.

L1 Instruction Cache Parameters

```
system.cpu.icache.overall_hits::total
                                                                                                                          # number of overall hits
     system.cpu.icache.demand misses::.cpu.inst
                                                                                                                             # number of demand (read+write) misses
  system.cpu.icache.demand misses::total
system.cpu.icache.overall_misses::.cpu.inst
system.cpu.icache.overall_misses::total
                                                                                                                          # number of demand (read+write) misses
# number of overall misses
                                                                                1219
                                                                                                                          # number of overall misses
                                                                                       95400000
     system.cpu.icache.demand_miss_latency::.cpu.inst
                                                                                                                                       # number of demand (read+write) miss cycles
   system.cpu.icache.demand miss latency::total
                                                                                                                                  number of demand (read+write) miss cycles
   system.cpu.icache.overall miss_latency::.cpu.inst
system.cpu.icache.overall miss_latency::total
                                                                                        95400000
                                                                                                                                       # number of overall miss cycles
                                                                                  95400000
                                                                                                                                  # number of overall miss cycles
                                                                               134893910
                                                                                                                                   number of demand (read+write) accesses
      system.cpu.icache.demand_accesses::.cpu.inst
   system.cpu.icache.demand accesses::total 1
system.cpu.icache.overall_accesses::.cpu.inst
system.cpu.icache.overall_accesses::total
                                                                                                                             number of demand (read+write) accesses 
# number of overall (read+write) accesses
                                                                                134893910
                                                                                                                           # number of overall (read+write) accesses
772 system.cpu.icache.demand_miss_rate::.cpu.inst 0.000009
773 system.cpu.icache.demand_miss_rate::.total 0.000009
774 system.cpu.icache.overall_miss_rate::.cpu.inst 0.000009
775 system.cpu.icache.overall_miss_rate::total 0.000009
776 system.cpu.icache.demand_avg_miss_latency::.cpu.inst_78260.869565
                                                                                                                                 # miss rate for demand accesses
                                                                                                                            # miss rate for demand accesses
                                                                                                                             # miss rate for overall accesses
# average overall miss latency
```

• L1 Data Cache Parameters

775 system.cpu.dtb walker cache.tags.tag accesses 0	# Number of tag accesses
776 system.cpu.dtb walker cache.tags.data accesses 0	# Number of data accesses
777 system.cpu.dcache.pwrStateResidencyTicks::UNDEFINED 658297702000	# Cumulative time (in ticks) in various pow
778 system.cpu.dcache.demand hits::.cpu.data 315359211	# number of demand (read+write) hits
779 system.cpu.dcache.demand hits::total 315359211	# number of demand (read+write) hits
780 system.cpu.dcache.overall hits::.cpu.data 315359211	# number of overall hits
781 system.cpu.dcache.overall hits::total 315359211	# number of overall hits
782 system.cpu.dcache.demand misses::.cpu.data 2514867	# number of demand (read+write) misses
783 system.cpu.dcache.demand misses::total 2514867	# number of demand (read+write) misses
784 system.cpu.dcache.overall misses::.cpu.data 2531251	# number of overall misses
785 system.cpu.dcache.overall misses::total 2531251	# number of overall misses
786 system.cpu.dcache.demand miss latency::.cpu.data 150780766000	# number of demand (read+write) miss cycles
787 system.cpu.dcache.demand miss latency::total 150780766000	# number of demand (read+write) miss cycles
788 system.cpu.dcache.overall miss latency::.cpu.data 150780766000	# number of overall miss cycles
789 system.cpu.dcache.overall miss latency::total 150780766000	# number of overall miss cycles
790 system.cpu.dcache.demand accesses::.cpu.data 317874078	# number of demand (read+write) accesses
791 system.cpu.dcache.demand accesses::total 317874078	† number of demand (read+write) accesses
792 system.cpu.dcache.overall accesses::.cpu.data 317890462	<pre># number of overall (read+write) accesses</pre>
793 system.cpu.dcache.overall accesses::total 317890462	# number of overall (read+write) accesses
794 system.cpu.dcache.demand miss rate::.cpu.data 0.007912	# miss rate for demand accesses
95 system.cpu.dcache.demand miss rate::total 0.007912	# miss rate for demand accesses
796 system.cpu.dcache.overall miss rate::.cpu.data 0.007963	# miss rate for overall accesses

• L2 Cache Parameters

system.12.overall hits::.cpu.data 949282 # number of overall hits system.12.overall hits::.cpu.data 949282 # number of overall hits system.12.overall hits::.cpu.data 949309 # number of overall hits system.12.demand_misses::.cpu.data 1517488 # number of demand (read+write) misses system.12.demand_misses::.cpu.data 1517488 # number of demand (read+write) misses system.12.overall_misses::.cpu.data 1517488 # number of overall misses system.12.overall_misses::.cpu.data 1517488 # number of overall misses system.12.overall_misses::.cpu.data 1517488 # number of overall misses system.12.overall_misses::.cpu.data 1517488 # number of overall_misses system.12.overall_misses::.cpu.data 1517488 # number of overall_misses system.12.overall_misses::.cpu.data 1517488 # number of overall_misses system.12.demand_miss_latency::.cpu.inst 92068000 # number of demand (read+write) miss cycles system.12.demand_miss_latency::.cpu.data 132053320500 # number of demand (read+write) miss cycles system.12.overall_miss_latency::.cpu.data 132053320500 # number of overall_miss_cycles system.12.demand_accesses::.cpu.data 2466700 # number of overall_miss_cycles system.12.demand_accesses::.cpu.data 246670 # number of demand (read+write) accesses system.12.overall_accesses::.cpu.data 2466709 # number of demand (read+write) accesses system.12.overall_accesses::.cpu.data 246670 # number of demand (read+write) accesses system.12.demand_miss_rate::.cpu.data 246670 # number of demand (read+write) accesses system.12.demand_miss_rate::.cpu.data 246670 # number of overall_fread+write) accesses system.12.demand_miss_rate::.cpu.data 0.615172 # number of overall_fread+write) accesses system.12.demand_miss_rate::.cpu.data 0.615172 # miss_rate for demand accesses system.12.demand_miss_rate::.cpu.data 0.61	190 system.12.demand hits::total	949309	# number of demand (read+write) hits
system.12.overall hits::.cpu.data 949882		27	# number of overall hits
system. 2.overall hits::total 949309 f number of overall hits system. 2.demand_misses::cpu.data 1517488 f number of demand (read+write) misses system. 2.demand_misses::cpu.data 1518680 f number of demand (read+write) misses system. 2.demand_misses::cpu.data 1518680 f number of overall misses system. 2.overall_misses::cpu.data 1517488 f number of overall misses system. 2.overall_misses::cpu.data 1518680 f number of overall misses system. 2.overall_misses::cpu.data 1518680 f number of overall misses system. 2.overall_misses::cpu.data 1518680 f number of overall_misses system. 2.demand_miss_latency::.cpu.inst 92068000 f number of demand (read+write) miss cycles system. 2.demand_miss_latency::.cpu.data 132053320500 f number of demand (read+write) miss cycles system. 2.overall_miss_latency::.cpu.data 132053320500 f number of overall_miss_cycles system. 2.demand_accesses:cpu.data 2466770 f number of overall_miss_cycles system. 2.demand_accesses::.cpu.data 2466770 f number of overall_miss_cycles system. 2.overall_accesses::.cpu.data 2466770 f number of overall_(read+write) accesses system. 2.overall_accesses::.cpu.data 2466770 f number of overall_(read+write) accesses system. 2.overall_accesses::.cpu.data 2466770 f number of overall_(read+write) accesses system. 2.demand_miss_rate::.cpu.inst 0.977851 f miss_rate_for_demand_accesses system. 2.demand_miss_rate::.cpu.data 0.615351 f miss_rate_for_overall_accesses system. 2.overall_miss_rate::.cpu.data 0.615351 f miss_rate_for_overall_accesses system. 2.overall_miss_rate::.cpu.data 0		949282	# number of overall hits
system.12.demand_misses::.cpu.data 1517488		949309	# number of overall hits
197 system.12.demand misses::total 1518680 # number of demand (read+write) misses 198 system.12.overall misses::cpu.data 1517488 # number of overall misses 199 system.12.overall misses::total 1518680 # number of overall misses 199 system.12.overall misses::total 1518680 # number of overall misses 190 system.12.demand miss latency::cpu.inst 92068000 # number of demand (read+write) miss cycles 190 system.12.demand miss latency::cpu.data 132053320500 # number of demand (read+write) miss cycles 190 system.12.demand miss latency::cpu.data 132145388500 # number of overall miss cycles 190 system.12.overall miss latency::cpu.data 132145388500 # number of overall miss cycles 190 system.12.overall miss latency::cpu.data 132145388500 # number of overall miss cycles 190 system.12.overall miss latency::cpu.data 132145388500 # number of overall miss cycles 190 system.12.overall miss latency::cpu.data 132145388500 # number of overall miss cycles 190 system.12.demand accesses::cpu.inst 1219 # number of demand (read+write) accesses 190 system.12.demand accesses::cpu.data 2466700 # number of overall (read+write) accesses 190 system.12.overall accesses::cpu.data 246799 # number of overall (read+write) accesses 190 system.12.overall accesses::cpu.data 246799 # number of overall (read+write) accesses 190 system.12.demand miss rate::cpu.data 0.615172 # miss rate for demand accesses 190 system.12.demand miss rate::cpu.data 0.615351 # miss rate for demand accesses 190 system.12.demand miss rate::cpu.data 0.615351 # miss rate for overall accesses 190 system.12.overall miss rate::cpu.data 0.615351 # miss rate for overall accesses 190 system.12.overall miss rate::cpu.data 0.615351 # miss rate for overall miss latency 190 system.12.demand avg_miss_latency::cpu.data 0.615351 # miss rate for overall miss latency 190 system.12.dema	194 system.12.demand misses::.cpu.inst	1192	# number of demand (read+write) misses
# number of overall misses: cpu.inst 1192 # number of overall misses system.12.overall misses::cpu.data 1517488 # number of overall misses: 200 system.12.overall misses::cpu.inst 92068000 # number of demand (read+write) miss cycles system.12.demand miss latency::cpu.data 132053320500 # number of demand (read+write) miss cycles system.12.demand miss latency::cpu.data 132053320500 # number of demand (read+write) miss cycles system.12.overall miss latency::cpu.inst 92068000 # number of demand (read+write) miss cycles system.12.overall miss latency::cpu.inst 92068000 # number of overall miss cycles system.12.overall miss latency::cpu.data 132053320500 # number of overall miss cycles system.12.overall miss latency::cpu.data 132053320500 # number of overall miss cycles system.12.overall miss latency::cpu.data 132053320500 # number of overall miss cycles system.12.demand accesses::cpu.inst 1219 # number of demand (read+write) accesses system.12.demand accesses::cpu.data 2467700 # number of demand (read+write) accesses system.12.overall accesses::cpu.inst 1219 # number of overall (read+write) accesses system.12.overall accesses::cpu.data 2466770 # number of overall (read+write) accesses system.12.overall accesses::cpu.data 2466770 # number of overall (read+write) accesses system.12.overall accesses::cpu.data 2466770 # number of overall (read+write) accesses system.12.overall accesses::cpu.data 0.615172 # miss rate for demand accesses system.12.demand miss rate::cpu.inst 0.997851 # miss rate for demand accesses system.12.overall miss rate::cpu.inst 0.997851 # miss rate for overall accesses system.12.overall miss rate::cpu.inst 0.97851 # miss rate for overall accesses system.12.overall miss rate::cpu.inst 0.97851 # miss rate for overall accesses system.12.overall miss rate::cpu.inst 0.97851 # miss rate for overall accesses system.12.overall miss rate::cpu.inst 0.615351 # miss rate for overall accesses system.12.demand avg miss_latency::cpu.inst 77238.255034 # average overall miss latency	195 system.12.demand misses::.cpu.data	1517488	# number of demand (read+write) misses
system.12.overall misses::cpu.data 1517488	196 system.12.demand misses::total	1518680	# number of demand (read+write) misses
system.12.overall misses::total 1518680	197 system.12.overall_misses::.cpu.inst	1192	# number of overall misses
system.12.demand_miss_latency::.cpu.inst 92068000	198 system.12.overall misses::.cpu.data	1517488	# number of overall misses
system.12.demand_miss_latency::cpu.data 132053320500	199 system.12.overall misses::total	1518680	# number of overall misses
system.12.demand_miss_latency::cpu.inst 92068000 # number of overall miss cycles system.12.overall miss_latency::cpu.data 132145388500 # number of overall miss cycles system.12.overall miss_latency::cpu.data 132053320500 # number of overall miss cycles system.12.overall miss_latency::cpu.data 132145388500 # number of overall miss cycles system.12.demand_accesses::cpu.inst 1219 # number of demand (read+write) accesses system.12.demand_accesses::cpu.data 2466700 # number of demand (read+write) accesses system.12.overall_accesses::cpu.inst 1219 # number of overall (read+write) accesses system.12.overall_accesses::cpu.data 2466700 # number of overall (read+write) accesses system.12.overall_accesses::cpu.data 2466700 # number of overall (read+write) accesses system.12.overall_accesses::cpu.data 2466700 # number of overall (read+write) accesses system.12.overall_accesses::total 2467989 # number of overall (read+write) accesses system.12.demand_miss_rate::cpu.data 0.615172 # miss_rate for demand_accesses system.12.demand_miss_rate::cpu.data 0.615172 # miss_rate for demand_accesses system.12.overall_miss_rate::cpu.inst 0.977851 # miss_rate for overall_accesses system.12.overall_miss_rate::cpu.data 0.615172 # miss_rate for overall_accesses system.12.overall_miss_rate::cpu.data 0.615351 # miss_rate for overall_accesses system.12.demand_avg_miss_latency::cpu.inst 77238.255034 # average overall_miss_latency system.12.demand_avg_miss_latency::cpu.data 87020.998189 # average overall_miss_latency	200 system.12.demand_miss_latency::.cpu.inst	92068000	<pre># number of demand (read+write) miss cycles</pre>
system.12.overall miss latency::.cpu.inst 92068000 # number of overall miss cycles system.12.overall miss latency::.cpu.data 132053320500 # number of overall miss cycles system.12.demand accesses::.cpu.inst 1219 # number of demand (read+write) accesses system.12.demand accesses::.cpu.data 2466770 # number of demand (read+write) accesses system.12.demand accesses::.cpu.inst 1219 # number of demand (read+write) accesses system.12.demand accesses::.cpu.data 2466770 # number of overall read+write) accesses system.12.overall accesses::.cpu.data 2466770 # number of overall (read+write) accesses system.12.overall accesses::.cpu.data 2466770 # number of overall (read+write) accesses system.12.overall accesses::.cpu.data 2466770 # number of overall (read+write) accesses system.12.overall accesses::.cpu.data 2466789 # number of overall (read+write) accesses system.12.demand miss_rate::.cpu.inst 0.977851 # miss_rate_for demand accesses system.12.demand miss_rate::.cpu.data 0.615172 # miss_rate_for demand accesses system.12.overall_miss_rate::.cpu.inst 0.977851 # miss_rate_for overall accesses system.12.overall_miss_rate::.cpu.inst 0.977851 # miss_rate_for overall accesses system.12.overall_miss_rate::.cpu.data 0.615172 # miss_rate_for overall accesses system.12.overall_miss_rate::.cpu.data 0.615172 # miss_rate_for overall accesses system.12.overall_miss_rate::.cpu.data 0.615351 # miss_rate_for overall_miss_rate_indemand_system.12.demand_avg_miss_latency:.cpu.data 87020.998189 # average_overall_miss_latency	201 system.12.demand miss latency::.cpu.data	132053320500	<pre># number of demand (read+write) miss cycles</pre>
system.12.overall miss latency::cpu.data 132053320500 # number of overall miss cycles system.12.overall miss latency::total 132145385500 # number of overall miss cycles system.12.demand_accesses:.cpu.inst 1219 # number of demand (read+write) accesses system.12.demand_accesses::cpu.data 2466770 # number of demand (read+write) accesses system.12.demand_accesses::cpu.inst 1219 # number of overall (read+write) accesses system.12.overall_accesses::cpu.data 2466770 # number of overall (read+write) accesses system.12.overall_accesses::cpu.data 2466770 # number of overall (read+write) accesses system.12.overall_accesses::cpu.data 2466770 # number of overall (read+write) accesses system.12.overall_accesses::cpu.data 24667889 # number of overall (read+write) accesses system.12.demand_miss_rate::cpu.inst 0.977851 # miss_rate for demand_accesses system.12.demand_miss_rate::cpu.data 0.615172 # miss_rate for demand_accesses system.12.overall_miss_rate::cpu.inst 0.977851 # miss_rate for overall_accesses system.12.overall_miss_rate::cpu.data 0.615351 # miss_rate for overall_accesses system.12.overall_miss_rate::cpu.data 0.615172 # miss_rate for overall_accesses system.12.overall_miss_rate::cpu.data 0.615172 # miss_rate for overall_accesses system.12.overall_miss_rate::cpu.data 0.615172 # miss_rate for overall_accesses system.12.overall_miss_rate::cpu.data 0.615351 # miss_rate for overall_accesses system.12.demand_avg_miss_latency::cpu.inst_7238.255034 # average overall_miss_latency system.12.demand_avg_miss_latency::cpu.data 87020.998189 # average overall_miss_latency	202 system.12.demand miss latency::total	132145388500	<pre># number of demand (read+write) miss cycles</pre>
system.12.overall miss latency::total 132145388500 # number of overall miss cycles system.12.demand accesses::cpu.inst 1219 # number of demand (read+write) accesses system.12.demand accesses::cpu.data 2466770 # number of demand (read+write) accesses system.12.overall accesses::cpu.inst 1219 # number of overall (read+write) accesses system.12.overall accesses::cpu.data 2466770 # number of overall (read+write) accesses system.12.overall accesses::cpu.data 2466770 # number of overall (read+write) accesses system.12.overall accesses::cpu.data 2466770 # number of overall (read+write) accesses system.12.overall accesses::cpu.data 24667989 # number of overall (read+write) accesses system.12.demand miss_rate::cpu.inst 0.977851 # miss_rate for demand accesses system.12.demand_miss_rate::cpu.data 0.615172 # miss_rate for demand accesses system.12.overall_miss_rate::cpu.inst 0.977851 # miss_rate for overall accesses system.12.overall_miss_rate::cpu.data 0.615172 # miss_rate for overall accesses system.12.overall_miss_rate::cpu.data 0.615351 # miss_rate for overall accesses system.12.demand_avg_miss_latency::cpu.inst_77238.255034 # average overall_miss_latency			# number of overall miss cycles
system.12.demand_accesses:.cpu.data 2466770	204 system.12.overall miss latency::.cpu.data	132053320500	# number of overall miss cycles
system.12.demand_accesses::cpu.data 2466770		132145388500	# number of overall miss cycles
system.12.demand_accesses::total 2467989			# number of demand (read+write) accesses
system.12.overall_accesses:.cpu.inst 1219 # number of overall (read+write) accesses system.12.overall accesses:.cpu.data 2466770 # number of overall (read+write) accesses system.12.overall accesses:.cpu.data 2467989 # number of overall (read+write) accesses system.12.demand miss_rate::.cpu.inst 0.977851 # miss_rate for demand accesses system.12.demand miss_rate::.cpu.data 0.615172 # miss_rate for demand accesses system.12.demand miss_rate::.cpu.inst 0.977851 # miss_rate for demand accesses system.12.overall_miss_rate::.cpu.inst 0.977851 # miss_rate for overall accesses system.12.overall_miss_rate::.cpu.data 0.615172 # miss_rate for overall accesses system.12.overall_miss_rate::.cpu.data 0.615172 # miss_rate for overall accesses system.12.overall_miss_rate::.cpu.data 0.615172 # miss_rate for overall accesses system.12.overall_miss_rate::.cpu.data 0.615351 # miss_rate for overall accesses system.12.overall_miss_rate::.cpu.data 0.615351 # miss_rate for overall accesses system.12.demand_avg_miss_latency:cpu.inst 77238.255034 # average overall miss_latency system.12.demand_avg_miss_latency:cpu.data 87020.998189 # average overall miss_latency		2466770	# number of demand (read+write) accesses
system.12.overall_accesses::.cpu.data 2466770	208 system.12.demand_accesses::total	2467989	<pre># number of demand (read+write) accesses</pre>
system.12.overall_accesses::total 2467989	209 system.12.overall_accesses::.cpu.inst	1219	# number of overall (read+write) accesses
212 system.12.demand_miss_rate::.cpu.inst 0.977851 # miss_rate for demand accesses 213 system.12.demand_miss_rate::.cpu.data 0.615172 # miss_rate for demand accesses 214 system.12.demand_miss_rate::.cpu.data 0.615351 # miss_rate for demand accesses 215 system.12.overall_miss_rate::.cpu.inst 0.977851 # miss_rate for overall accesses 216 system.12.overall_miss_rate::.cpu.data 0.615172 # miss_rate for overall accesses 217 system.12.overall_miss_rate::.cpu.data 0.615351 # miss_rate for overall accesses 218 system.12.demand_avg_miss_latency::.cpu.inst 77238.255034 # average overall_miss_latency 219 system.12.demand_avg_miss_latency::.cpu.data 87020.998189 # average overall_miss_latency 3 4 average overall_miss_latency 4 average overall_miss_latency 5 average overall_miss_latency 6 average overall_miss_latency 7 average overall_miss_latency 7 average overall_miss_latency 7 average overall_miss_latency 7 average overall_miss_latency 8 average overall_miss_latency 9 average overall_miss_latency 9 average overall_miss_latency 9 average overall_miss_latency 1 average overall_miss_latency 2 average overall_miss_latency 3 average overall_miss_latency 3 average overall_miss_latency 4 average overall_miss_latency 3 average overall_miss_latency 4 average overall_miss_latency 4 average overall_miss_latency 5 average overall_miss_latency 5 average overall_miss_latency 5 average overall_miss_latency 6 average overall_miss_latency 6 average overall_miss_latency 6 average overall_miss_latency 6 average overall_miss_latency 7 average	210 system.12.overall accesses::.cpu.data	2466770	<pre># number of overall (read+write) accesses</pre>
system.12.demand miss_rate::.cpu.data 0.615172 # miss_rate for demand accesses system.12.demand_miss_rate::total 0.615351 # miss_rate for demand accesses system.12.overall_miss_rate::.cpu.inst 0.977851 # miss_rate for overall_accesses system.12.overall_miss_rate::.cpu.data 0.615172 # miss_rate for overall_accesses system.12.overall_miss_rate::total 0.615351 # miss_rate for overall_accesses system.12.overall_miss_rate::total 0.615351 # miss_rate for overall_accesses system.12.demand_avg_miss_latency::.cpu.inst 77238.255034 # average overall_miss_latency system.12.demand_avg_miss_latency::.cpu.data 87020.998189 # average overall_miss_latency	211 system.12.overall_accesses::total	2467989	<pre># number of overall (read+write) accesses</pre>
system.12.demand_miss_rate::total 0.615351			# miss rate for demand accesses
system.12.overall_miss_rate::.cpu.inst 0.977851	213 system.12.demand_miss_rate::.cpu.data	0.615172	# miss rate for demand accesses
216 system.12.overall_miss_rate::.cpu.data			<pre># miss rate for demand accesses</pre>
217 system.12.overall miss rate::total 0.615351 # miss rate for overall accesses 218 system.12.demand_avg_miss_latency::.cpu.inst 77238.255034 # average overall miss latency 219 system.12.demand_avg_miss_latency::.cpu.data 87020.998189 # average overall miss latency	<pre>215 system.12.overall_miss_rate::.cpu.inst</pre>	0.977851	# miss rate for overall accesses
system.12.demand_avg_miss_latency::.cpu.inst 77238.255034		0.615172	# miss rate for overall accesses
219 system.12.demand_avg_miss_latency:cpu.data 87020.998189 # average overall miss latency	217 system.12.overall miss rate::total	0.615351	# miss rate for overall accesses
220 system 12 demand avg miss latency::total 87013.319791 # average overall miss latency			
* *************************************	220 system.12.demand_avg_miss_latency::total	87013.319791	<pre># average overall miss latency</pre>

Cost Function

For our experiments, we defined a cost function depending on the size, associativity and performance of a particular cache configuration of a particular CPU type.

Assumptions:

- Base price of 1kB of L1 cache is equal to 16 times to that of L2 cache.
 - From the performed experiments we observed that with the increase in L1 cache size
 CPI is decreasing.
 - Area overhead of L1 is much lesser than L2 therefore it is much more expensive.
 - To build over this assumption we took references from [1] & [2] research articles.
- Base price of associativity of L1 cache is 4 times to that of L2 cache.
 - To increase associativity, we need extra hardware. Since L1 is much smaller in size, the hardware precision required for L1 will lead to more price of L1 than L2.
 - o To build over this assumption we took references from [3] & [4] research articles.
- To further ease our calculations for the experiments, we have assumed the following prices:
 - Base price of L2 (1kB) = \$1
 - Hence, Base price of L1 (1kB) = \$16
 - Base price of associativity of L2 = \$0.5
 - Hence, Base price of associativity of L1 = \$2
 - Base price of each cache-line block = \$0.25
 - Fixed Cost (Fabrication and other development) = \$20

These values are chosen hypothetically based on the assumptions for the ease of calculations. Real market values might differ.

Based on our assumptions mentioned above, we define our cost function as given below.

$$CF = FC + N_{MC} \{ [(BP_{L1} * L1_{size}) + (BP_{L1-Assoc} * L1_{Assoc})] + [(BP_{L2} * L2_{size}) + (BP_{L2-Assoc} * L2_{Assoc})] + [BP_{CL} * CL_{size}] \}$$

Where,

- CF > Cost Function
- FC -> Fixed Cost
- N_{MC} -> Number of Cores (default = 1)
- BP_{L1} -> Base Price of L1 Cache
- L1_{size}-> L1 Cache Size
- BP_{L1-Assoc} -> Base price of associativity of L1
- L1_{Assoc} -> L1 Cache Associativity
- BP_{L2} -> Base price of L2 Cache
- L2_{size} -> L2 Cache Size
- BP_{L2-Assoc} -> Base price of associativity of L1
- L2_{Assoc}-> L1 Cache Associativity
- BP_{CL} -> Base price of Cache-Line
- CL_{size} -> Cache-Line size

Evaluating Function

In this project, we define an Evaluate Function to determine the optimal cache configuration depending on the CPI and the above defined Cost Function.

We performed the evaluate functions on all the different CPU's and the benchmarks to show an optimal cache configuration choice for each case.

To define the Evaluation Function, we define the following methodology to generate the respective equation

- Calculate the sum of all the Cost Values for all the cache configurations
- Find the average Cost Value for all the Cost Values w.r.t. to total number of experiments
- Calculate the absolute mean difference for all the Cost Values for all cache configurations
- Use Local Minima to find the set of minimum Cost Values from the whole set
- Among the minimum Cost Values, Find the optimal cache configuration respective to the minimum CPI among them

From the above methodology, we represent the Evaluate Equation as follows -

$$\mathsf{EF} = \min_{\mathit{CPI}} \left\{ \lim_{\mathit{CF} \rightarrow \mathit{Local\ Minima}} [\mathsf{Abs}(\mathsf{Avg}(\Sigma \mathsf{CFi}) - \mathsf{CFi})] \right\}$$

Where.

- EF -> Evaluation Function
- CF -> Cost Function (Defined earlier)
- Lim_{CF->Local Minima} -> Minimum cost values from all the cache configurations
- Min_{CPI} -> Minimum CPI in the local minima
- Summation is done over total number of combinations

Extra Notes for Evaluation Function:

- We chose to define our Evaluation function in such a way that it finds the configurations with least price then the configuration having least CPI among the least expensive ones.
- The reason for the above is that we assumed that a customer might be more focused towards most effective ones with least price.
- Other evaluation could be for a customer who is more focused towards the most effective configuration overall or within a particular price range.

$$\mathsf{EF} = \min_{\mathit{CPI}} \{ \int_{P1}^{P2} [\mathsf{Abs}(\mathsf{Avg}(\Sigma\mathsf{CFi}) - \mathsf{CFi})] \}$$

Where, P1 & P2 are the price range.

Results

In this section we will describe all the experiments performed over various cache configurations and different CPU types for all the SPEC benchmarks using CPI, Cost Function and Evaluating Function. Moreover, we will explain the tradeoffs for various cache configurations.

Note: Total combinations that were taken for each SPEC benchmark and CPU can be found in the appendix. Due to large number of combinations our overall graph contains experiment number as varying cache sizes, as mentioned in appendix, as x-axis and CPI on the y-axis. Another graph shows the best choice for each CPU and Benchmark which has x-axis as experiment number and on y-axis the Cost. Also the data for the best configuration will be mentioned below. For all the other values kindly refer to data set calculated and provided alongside this report in a folder called 'dataset'. Name of each data set is provided along with the configuration below. As there are over 3000 total datasets, they are not put entirely in the report.

 In this section, we represent the experiments and tradeoff performed and analyzed over no cache, only L1 cache and both L1 & L2 cache. We observed that a CPI of a system increases exponentially without the use of cache memory due to the increase in more DRAM and Physical Memory Access and takes a lot of time to execute a set of instructions.

CPI _{CPU-TYPE}	No Cache	L1 Cache	L1 & L2 Caches
CPI _{DerivO3CPU}	16.9968	5.4422	1.2089
CPI _{TimingSimpleCPU}	14.697	5.3086	1.1375
CPI _{MinorCPU}	13.0724	5.2749	1.1264

2. In this section, we represent the experiments and tradeoff performed and analyzed over various associativity and direct-mapped cache. We observed that a direct mapped cache is too slow with LRU replacement policy (default config) as it takes more cycles to fetch data from the physical memory and execute a set of instructions. It increases the miss rate, latency and CPI of the system compared to the caches with better associativity. With increase in associativity, the miss rate decreases, and the CPI improves for the respective system.

Experiment Type (Average of L1&L2)	Direct Mapped	Fully Associative	2-way Associative	4-way Associative
CPI _{DerivO3CPU}	1.2641	1.2202	1.1829	1.0621
CPI _{TimingSimpleCPU}	1.2508	1.2113	1.1508	1.0478
CPI _{MinorCPU}	1.2455	1.2015	1.1471	1.03345
Missrate _{DerivO3CPU}	0.09778	0.0752	0.0546	0.04279
Missrate _{TimingSimpleCPU}	0.09715	0.0736	0.0522	0.04112
Missrate _{MinorCPU}	0.09645	0.072	0.0516	0.038

Miss Rate (DerivO3_CPU), Miss Rate (TimingSimple_CPU) and Miss Rate (Minor_CPU)

3. In this section, the graph shows the variation when L1 and L2 are varied and cache line size and associativity are fixed.

4. In this section, the graph describes the decrease in total miss rate with the increase in cache size and degree of associativity.

Total Miss Rate vs. Cache Size (kB)

5. In this section, the graph shows the change in cost function with the changes in cache configurations. With increase in cache sizes, cost values are increasing.

Cost Function (\$) vs. Experiment Number

6. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 401.zip2 and cpu-type – Minor. Highlighted part shows the best choice. For full data-set look at "401zip2_MinorCPU" in dataset folder.

Experiment	Cost	IL1	DL1	L2	Cacheline	L1	L2	CPI	Avg	Mean
Number	Function	Size	Size	Size	Size	Assoc	Assoc		Cost	diff
	•	•	•	•	1	•	1		•	•
54 53	2093	64	64	1024	64	4	2 1.09040	00788	3387,167	1294.167
55. 54	2094	64	64	1024	64	4	4 1.08914	7248	3387.167	1293.167
56 55	3102.5	64	64	2048	32	1	1 1.0895	5008	3387.167	284.667
57 56	3103	64	64	2048	32	1	2 1.08780	9692	3387.167	284.167
58 57	3104	64	64	2048	32	1	4 1.08647	4972	3387.167	283.167
59 58	3104.5	64	64	2048	32	2	1 1.08496	34556	3387.167	282.667
60 59	3105	64	64	2048	32	2	2 1,08326	0576	3387.167	282.167
61 60	3106	64	64	2048	32	2	4 1.0819	2282	3387.167	281.167
62 61	3108.5	64	64	2048	32	4	1 1.08360	7952	3387.167	278.667
63 62	3109	64	64	2048	32	4	2 1.08190	3816	3387.167	278.167
64 63	3110	64	64	2048	32	4	4 1.08056	66704	3387,167	277.167
55 64	3110.5	64	64	2048	64	1	1 1.0620	2096	3387.167	276.667
66 65	3111	64	64	2048	64	1	2 1.05995	55368	3387,167	276.167
67 68	3112	64	64	2048	64	1	4 1.05720	5796	3387.167	275.167
68 67	3112.5	64	64	2048	64	2	1 1.0577	102	3387.167	274.667
69 68	3113	64	64	2048	64	2	2 1.05564	4356	3387.167	274.167
70 69	3114	64	84	2048	64	2	4 1.05289	94832	3387.167	273.167
71 70	3116.5	64	64	2048	64	-4	1 1.0561	2924	3387.167	270.667
72 71	3117	64	64	2048	64	4	2 1.05404	6488	3387,167	270.167
73 72	3118	64	64	2048	64	4	4 1.05129	98064	3387,167	269.167
74 73	2334.5	128	128	256	32	1	1 1.23162	20494	3387,167	1052.667
75 74	2335	128	128	256	32	1	2 1.22749	00274	3387,167	1052.167

7. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 401.zip2 and cpu-type – TimingSimple. Highlighted part shows the best choice. For full data-set look at "401zip2_TimingSimpleCPU" in dataset folder.

IL1	DL1	L2	Cacheline	L1	L2	CPI	Cost	Avg	Mean
Size	Size	Size	Size	Assoc	Assoc		Function	Cost	diff

64	64	1024	64	4	4	1.087094812	2094	3387.167	1293.167
64	64	2048	32	1	1	1.087372199	3102.5	3387.167	284.667
64	64	2048	32	1	2	1.085702623	3103	3387.167	284.167
64	64	2048	32	1	4	1.084393091	3104	3387.167	283.167
64	64	2048	32	2	1	1.082952909	3104.5	3387.167	282.667
64	64	2048	32	2	2	1.081283499	3105	3387.167	282.167
64	64	2048	32	2	4	1.079973875	3106	3387.167	281.167
64	64	2048	32	4	1	1.081635351	3108.5	3387.167	278.667
64	64	2048	32	4	2	1.079966902	3109	3387.167	278.167
64	64	2048	32	4	4	1.078656087	3110	3387.167	277.167
64	64	2048	64	1	1	1.060456594	3110.5	3387.167	276.667
64	64	2048	64	1	2	1.058432481	3111	3387.167	276.167
64	64	2048	64	1	4	1.055739472	3112	3387.167	275.167
64	64	2048	64	2	1	1.056271103	3112.5	3387.167	274.667
64	64	2048	64	2	2	1.054246406	3113	3387.167	274.167
64	64	2048	64	2	4	1.051552347	3114	3387.167	273.167
64	64	2048	64	4	1	1.054720638	3116.5	3387.167	270.667
64	64	2048	64	4	2	1.0526963	3117	3387.167	270.167
64	64	2048	64	4	4	1.050001269	3118	3387.167	269.167
128	128	256	32	1	1	1.226724156	2334.5	3387.167	1052.667

CPI vs. Experiment Number

8. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 401.zip2 and cpu-type – DerivO3. Highlighted part shows the best choice. For full data-set look at "401zip2_DerivO3CPU" in dataset folder.

Experiment	IL1	DL1	L2	Cacheline	L1	L2	CPI	Cost	Avg	Mean
Number	Size	Size	Size	Size	Assoc	Assoc		Function	Cost	diff

109	108	128	128	512	64	4	4	1.13450898	2606	3387.167	781.167
110	109	128	128	1024	32	1	1	1.129031922	3102.5	3387.167	284.667
111	110	128	128	1024	32	1	2	1,125966026	3103	3387.167	284.167
112	111	128	128	1024	32	1	4	1.121529728	3104	3387.167	283.167
113	112	128	128	1024	32	2	1	1,125960084	3104.5	3387.167	282.667
114	113	128	128	1024	32	2	2	1.122895056	3105	3387.167	282.167
115	114	128	128	1024	32	2	4	1.118457634	3106	3387.167	281.167
116	115	128	128	1024	32	4	1	1.125044646	3108.5	3387.167	278.667
117	116	128	128	1024	32	4	2	1.12197922	3109	3387.167	278.167
118	117	128	128	1024	32	4	4	1.117541309	3110	3387.167	277.167
119	118	128	128	1024	64	1	1	1.089484463	3110.5	3387.167	276.667
120	119	128	128	1024	64	1	2	1.084329689	3111	3387.167	276.167
121	120	128	128	1024	64	1	4	1,083080486	3112	3387.167	275.167
122	121	128	128	1024	64	2	1	1.086575849	3112.5	3387.167	274.667
123	122	128	128	1024	64	2	2	1.081420182	3113	3387.167	274.167
124	123	128	128	1024	64	2	4	1.080171083	3114	3387.167	273.167
125	124	128	128	1024	64	4	1	1,085497753	3116.5	3387.167	270.667
126	125	128	128	1024	64	4	2	1.080341551	3117	3387.167	270 167
127	126	128	128	1024	64	4	4	1,079093196	3118	3387.167	269.167
128	127	128	128	2048	32	1	1	1.076588866	4126.5	3387.167	739.333
120	128	198	128	2048	39	4	2	1.074800056	4197	3397 167	730 833

CPI vs. Experiment Number

9. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 429.mcf and cpu-type – Minor. Highlighted part shows the best choice. For full data-set look at "429mcf_MinorCPU" in dataset folder.

Experi	ment	IL1	DL1	L2	Cach	neline	L1	L2	СРІ	Cost	Avg	Mean
Numb	er	Size	Size	Size	Size		Assoc	Assoc		Function	Cost	diff
				•			•					•
54	53	64	6	4	1024	64	4	2	1.767998024	2093	3387.167	1294.167
55	54	64	6	4	1024	64	4	4	1.756090852	2094	3387.167	1293.167
56	55	64	6	4	2048	32	1	1	1.73271642	3102.5	3387.167	284.667
57	56	64	6	4	2048	32	10	2	1.716534272	3103	3387.167	284.167
58	57	64	6	4	2048	32	1	4	1.703836602	3104	3387.167	283.167
59	58	64	6	4	2048	32	2	1	1.703137152	3104.5	3387.167	282.667
60	59	64	e	4	2048	32	2	2	1.686958192	3105	3387.167	282.167
61	60	64	e	4	2048	32	2	4	1.674261048	3106	3387,167	281.167
52	61	64	6	4	2048	32	4	1	1.694327354	3108.5	3387,167	278.667
53	62	64	6	4	2048	32	4	2	1.678135024	3109	3387,167	278.167
64	63	64	6	4	2048	32	4	4	1.665438382	3110	3387.167	277.167
65	64	64	6	4	2048	64	1	1	1.480659682	3110.5	3387.167	276.667
66	65	64	6	4	2048	64	1	2	1.461021252	3111	3387.167	276.167
67	66	64	e	4	2048	64	1	4	1.434912138	3112	3387,167	275.167
68	67	64	6	4	2048	64	2	1	1.452627974	3112.5	3387,167	274.667
6.9	68	64	e	14	2048	64	2	2	1.433012026	3113	3387,167	274.167
70	69	64	e	14	2048	64	2	4	1.406902868	3114	3387,167	273.167
71	70	64	E	14	2048	64	4	1	1.442257492	3116.5	3387.167	270.667
72	71	64	6	4	2048	64	4	2	1.422627592	3117	3387.167	270.167
73	72	64	6	i4	2048	64	4	4	1.396527468	3118	3387,167	269.167
74	73	128	- 1	28	256	32	1	1	3.112149902	2334.5	3387.167	1052.667
1961	7.4	120		20	250	22	4.	2	2.07200667	2225	2207 427	1052 107

CPI vs. Experiment Number

10. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 429.mcf and cpu-type – TimingSimple. Highlighted part shows the best choice. For full data-set look at "429mcf_TimingSimpleCPU" in dataset folder.

IL1	DL1	L2	Cac	heline	L1	L2	CPI	Cost	Avg	Mean
Size	Size	Size		9	Assoc	Asso	С	Function		diff
					•		•			l.
64	6	4	1024	64	2	4	1.749292865	2090	3387.167	1297.167
64	6	4	1024	64	4	1	1.799052214	2092.5	3387.167	1294.667
64	6	4	1024	64	4	2	1.750888874	2093	3387.167	1294.167
64	6	4	1024	64	4	4	1.739223444	2094	3387.167	1293.167
64	6	4	2048	32	1	1	1.715794207	3102.5	3387.167	284.667
64	6	4	2048	32	1	2	1.699928317	3103	3387.167	284,167
64	6	4	2048	32	1	4	1.687495004	3104	3387.167	283.167
64	6	4	2048	32	2	1	1.687079332	3104.5	3387.167	282.667
64	6	4	2048	32	2	2	1.671223485	3105	3387.167	282.167
64	6	4	2048	32	2	4	1.658780571	3106	3387.167	281.167
64	6	4	2048	32	4	1	1.678514941	3108.5	3387.167	278.667
64	6	4	2048	32	4	2	1.662652216	3109	3387.167	278.167
64	6	4	2048	32	4	4	1.65020806	3110	3387.167	277.167
64	6	4	2048	64	1	1	1.468954499	3110.5	3387.167	276.667
64	6	4	2048	64	1	2	1.449706212	3111	3387.167	276.167
64	6	4	2048	64	1	4	1.42413155	3112	3387.167	275.167
64	6	4	2048	64	2	- 1	1.441747098	3112.5	3387.167	274.667
64	6	4	2048	64	2	2	1.422510527	3113	3387.167	274.167
64	6	4	2048	64	2	4	1.396912719	3114	3387.167	273.167
64	6	4	2048	64	4	1	1.431666744	3116.5	3387.167	270.667
64	6	4	2048	64	4	2	1.412433709	3117	3387.167	270.167
64	6	4	2048	64	4	4	1.386843547	3118	3387.167	269,167
128	12	28	256	32	1	1	3.068199748	2334.5	3387.167	1052.667
128	12	28	256	32	1	2	3.02974441	2335	3387.167	1052.167

CPI vs. Experiment Number

11. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 429.mcf and cpu-type – DerivO3. Highlighted part shows the best choice. For full data-set look at "429mcf_DerivO3CPU" in dataset folder.

L1	DL1	L2	Cach	neline	L1	L2	CPI	Cost	Avg	Mean
Size	Size	Size	Size		Assoc	Asso	с	Function	Cost	diff
			•		•	•				
64		64	1024	64	2	2	1./555268/2	2089	3387.167	1298,167
64		64	1024	64	2	4	1.743665966	2090	3387.167	1297.167
64		64	1024	64	4	1	1.795169658	2092.5	3387.167	1294.667
64		64	1024	64	4	2	1.746192738	2093	3387.167	1294.167
64		64	1024	64	4	4	1.734323742	2094	3387.167	1293.167
64		64	2048	32	1	1	1.705463769	3102.5	3387.167	284.667
64		64	2048	32	1	2	1.689337801	3103	3387.167	284.167
64		64	2048	32	1	4	1.676691795	3104	3387.167	283.167
64		64	2048	32	2	1	1.678849655	3104.5	3387.167	282.667
64		64	2048	32	2	2	1.662727052	3105	3387.167	282.167
64		64	2048	32	2	4	1.650081101	3106	3387.167	281.167
64		64	2048	32	4	1	1.670912276	3108.5	3387.167	278.667
64		64	2048	32	4	2	1.654779236	3109	3387.167	278.167
64		64	2048	32	4	4	1.642138632	3110	3387.167	277.167
64		64	2048	64	.1	.1	1.456225307	3110.5	3387.167	276.667
64		64	2048	64	1	2	1.436673898	3111	3387.167	276.167
64		64	2048	64	1	4	1.410668662	3112	3387.167	275.167
64		64	2048	64	2	1	1.431011882	3112.5	3387.167	274.667
64		64	2048	64	2	2	1.411465479	3113	3387.167	274.167
64		64	2048	64	2	4	1.38546172	3114	3387.167	273.167
64		64	2048	64	4	1	1.421679788	3116.5	3387.167	270.667
64		64	2048	64	4	2	1.402113733	3117	3387.167	270,167

CPI vs. Experiment Number

12. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 456.hmmer and cpu-type – Minor. Highlighted part shows the best choice. For full data-set look at "456hmmer_MinorCPU" in dataset folder.

L1	DL1	L2	Cach	eline	L1	L2	CPI	Cost	Avg	Mean
Size	Size	Size	Size		Assoc	Assoc		Function	Cost	diff
			II.		1	u u	II.			
6-	4	64	1024	64	4	2	1.000081325	2093	3387.167	1294.167
6	4	64	1024	64	4	4	1.000079928	2094	3387.167	1293.167
6	4	64	2048	32	1	1	1.000087312	3102.5	3387.167	284.667
6-	4	64	2048	32	1	2	1.000085594	3103	3387.167	284.167
6	4	64	2048	32	1	4	1.00008431	3104	3387.167	283.167
6	4	64	2048	32	2	1	1.00008503	3104.5	3387.167	282.667
6	4	64	2048	32	2	2	1.000083525	3105	3387.167	282.167
6-	4	64	2048	32	2	4	1.000082279	3106	3387.167	281.167
6-	4	64	2048	32	4	1	1.000084259	3108.5	3387.167	278.667
6-	4	64	2048	32	4	2	1.000082552	3109	3387.167	278.167
6	1	64	2048	32	4	4	1.000081388	3110	3387.167	277.167
6-	4	64	2048	64	1	1	1.000051724	3110.5	3387.167	276.667
6-	4	64	2048	64	1	2	1.000049718	3111	3387.167	276.167
6	1	64	2048	64	1	4	1.000046959	3112	3387.167	275.167
6-	4	64	2048	64	2	1	1.00004911	3112.5	3387.167	274.667
6-	4	64	2048	64	2	2	1.000047259	3113	3387.167	274.167
6-	4	64	2048	64	2	4	1.000044524	3114	3387.167	273.167
6	4	64	2048	64	4	1	1.00004836	3116.5	3387.167	270.667
-6	1	R4	2048	64	4	2	1.000046387	3117	3387 167	270 167
6	4	64	2048	64	4	4	1.000043665	3118	3387.167	269.167
12	8	128	256	32		-	1.000223429	2334.5	3387.167	1052.667
12	8	128	256	32	1	2	1.000219524	2335	3387.167	1052,167
12	8	128	256	32	1	4	1.000218157	2336	3387.167	1051.167
12	8	128	256	32	2	1	1.000221702	2336.5	3387.167	1050.667

13. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 456.hmmer and cpu-type – TimingSimple. Highlighted part shows the best choice. For full data-set look at "456hmmer_TimingSimpleCPU" in dataset folder.

.1	DL1	L2	Ca	acheline	L1	L2		CPI	Cost	-	Avg	Mean
ize	Size	Size	Siz	ze	Assoc	Ass	soc		Fund	ction	Cost	diff
		•				•			•			
04	10,		04		4	540	103	1.0000		2093	3301.101	1234.107
64	10.		64	4	4	952	783	1.00007		2094	3387.167	1293.167
64			32	1	1	1827	1014	1.00008		3102.5	3387.167	284.667
64	20-		32	1	2	1832	1014	1.00007		3103	3387.167	284.167
64			32	1	4	1838	1014	1.00007		3104	3387.167	283,167
64	20-		32	2	1	1780	896	1.00007	7501000	3104.5	3387.167	282.667
64	20		32	2	2	1788	896	1.00007	77966	3105	3387.167	282.167
64	20-	18	32	2	4	1775	896	1.00007	76549	3106	3387.167	281.167
64	20-	48	32	4	1	1762	861	1.00007	78829	3108.5	3387.167	278.667
64	20-	18	32	4	2	1753	861	1.0000	77117	3109	3387.167	278.167
64	20-	18	32	4	4	1761	861	1.00007	75959	3110	3387.167	277.167
64	20-	48	64	1	1	1047	936	1.0000	4813	3110.5	3387.167	276.667
64	20-	48	64	1	2	1047	936	1.00004	46185	3111	3387.167	276.167
64	20-	48	64	1	4	1048	936	1.00004	43611	3112	3387.167	275.167
64	20-	18	64	2	1	988	824	1.00004	46082	3112.5	3387.167	274.667
64	20-	48	64	2	2	981	824	1.00004	44059	3113	3387.167	274.167
64	20-	48	64	2	4	991	824	1.00004	41593	3114	3387.167	273.167
64	20-	48	64	4	1	951	783	1.00004	45137	3116.5	3387.167	270.667
64	20-	48	64	4	2	961	783	1.00004	43323	3117	3387.167	270,167
64	20-	18	64	4	4	960	783	1.00004	40718	3118	3387.167	269.167
128	25	6	32	1	1	1376	760	1.0002	15901	2334.5	3387.167	1052.667
128			32	1	2	1375	760	1.0002		2335	3387,167	1052.167

14. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 456.hmmer and cpu-type – DerivO3. Highlighted part shows the best choice. For full data-set look at "456hmmer_DerivO3CPU" in dataset folder.

L1	DL1	L2	Cach	neline	L1	L2	CPI	Cost		Avg	Mean
ize	Size	Size	Size		Assoc	Ass	ос	Functi	on	Cost	diff
	II.		1		•	· ·	<u>'</u>	U .	- II		
64	64	2	048	32	1	1	1.000077847	3102.5	3387.16	7 28	34.667
64	64	2	048	32	1	2	1.000076269	3103	3387.16	7 28	34.167
64	64	2	048	32	1	4	1.000074966	3104	3387.16	7 28	33.167
64	64	2	048	32	2	1	1.000076058	3104.5	3387.16	7 28	32.667
64	64	2	048	32	2	2	1.00007448	3105	3387.16	7 28	32.167
64	64	2	048	32	2	4	1.000073228	3106	3387.16	7 28	31.167
64	64	2	048	32	4	1	1.000075373	3108.5	3387.16	7 27	8.667
64	64	2	048	32	4	2	1.000073778	3109	3387.16	7 27	8.167
64	64	2	048	32	4	4	1.000072534	3110	3387.16	7 27	7.167
64	64	2	048	64	1	1	1.000045776	3110.5	3387.16	7 27	6.667
64	64	2	048	64	(1)	2	1.000043867	3111	3387.16	7 27	6.167
64	64	2	048	64	1	4	1.000041204	3112	3387.16	7 27	5.167
64	64	2	048	64	2	1	1.000043838	3112.5	3387.16	7 27	4.667
64	64	2	048	64	2	2	1.00004192	3113	3387.16	7 27	4.167
64	64	2	048	64	2	4	1,0000392	3114	3387.16	7 27	3.167
64	64	2	048	64	4	1	1.000043167	3116.5	3387.16	7 27	0.667
64	64	2	048	64	4	2	1.000041193	3117	3387.16	7 27	0.167
64	64	2	048	64	4	4	1.000038513	3118	3387.16	7 26	9.167
128	128	NE I	:56	32	1	1	1.00021582	2334.5	3387.16	7 10	52.667
128	128		256	32	1	2	1.000211862	2335	3387.16	7 10	52.167
128	128	- 2	56	32	1	4	1.000210654	2336	3387.16	7 10	51.167
128	128	8 2	56	32	2	1	1.000214384	2336.5	3387.16	7 10	50.667

15. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 458.sjeng and cpu-type – Minor. Highlighted part shows the best choice. For full data-set look at "458sjeng_MinorCPU" in dataset folder.

L1	DL1	L2	Ca	cheline	L1	L2	СРІ	Cost	Avg	Mean
Size	Size	Size	Siz	e	Assoc	Assoc		Function	Cost	diff
		ı			•			•	L	
128	128		12	64	2	4	2.173969835	2602	3387.167	/85,16/
128	128	- 1	12	64	4	1	2.173352946	2604.5	3387.167	782.667
128	128		512	64	4	2	2.170969473	2605	3387.167	782.167
128	128		12	64	4	4	2.166776258	2606	3387.167	781.167
128	128	1	024	32	1	1	2.103005577	3102.5	3387.167	284.667
128	128	1	024	32	1	2	2.075295916	3103	3387.167	284.167
128	128	1	024	32	1	4	2.035213746	3104	3387.167	283,167
128	128	1	024	32	2	1	2.082519442	3104.5	3387.167	282.667
128	128	1	024	32	2	2	2.054821841	3105	3387.167	282.167
128	128	1	024	32	2	4	2.014746166	3106	3387.167	281.167
128	128	1	024	32	4	1	2.076422936	3108.5	3387.167	278.667
128	128	1	024	32	4	2	2.04872041	3109	3387.167	278.167
128	128	1	024	32	4	4	2.008644209	3110	3387.167	277.167
128	128	1	024	64	1	1	1.75057907	3110.5	3387,167	276.667
128	128	1	024	64	1	2	1.704009779	3111	3387.167	276.167
128	128	1	024	64	1	4	1.692735256	3112	3387.167	275.167
128	128	- 1	024	64	2	3.	1.731200543	3112.5	3387.167	274.667
128	128	1	024	64	2	2	1.684630173	3113	3387.167	274.167
128	128	1	024	64	2	4	1.673346066	3114	3387.167	273.167
128	128	1	024	64	4	1	1.724010436	3116.5	3387.167	270.667
128	128	- 1	024	64	4	2	1.677441779	3117	3387,167	270.167
128	128	1	024	64	4	4	1.666163807	3118	3387.167	269.167
128	128	2	048	32	1	1	1.629222357	4126.5	3387,167	739.333
128	128	2	048	32	1	2	1.613903572	4127	3387,167	739.833

CPI vs. Experiment Number

16. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 458.sjeng and cpu-type – TimingSimple. Highlighted part shows the best choice. For full data-set look at "458sjeng_TimingSimpleCPU" in dataset folder.

L1	DL1	L2	Cac	heline	L1	L2	CPI	Cost	Avg	Mean
ize	Size	Size	Size	9	Assoc	Asso	С	Functio	on Cos	t diff
			•		- 1	•	•	•	•	•
120	12		512	04		2	2.140340110	2000	3307.107	702.107
128	12		512	64	4	4	2.142228494	2606	3387.167	781,167
128	12		1024	32	1	1	2.079381575	3102.5	3387.167	284.667
128	12		1024	32	1	2	2.052220166	3103	3387.167	284.167
128	12		1024	32	1	4	2.012940535	3104	3387,167	283,167
128	12		1024	32	2	1	2.059482247	3104.5	3387.167	282.667
128	12		1024	32	2	2	2.032344117	3105	3387.167	282.167
128	12		1024	32	2	4	1.993057434	3106	3387,167	281.167
128	12		1024	32	4	1	2.053570163	3108.5	3387.167	278.667
128	12	8	1024	32	4	2	2.026423032	3109	3387.167	278.167
128	12	8	1024	32	4	4	1.987137742	3110	3387.167	277.167
128	12	8	1024	64	1	1	1.734135076	3110.5	3387.167	276.667
128	12	8	1024	64	1	2	1.688499134	3111	3387.167	276.167
128	12	8	1024	64	1	4	1.677434668	3112	3387.167	275.167
128	12	8	1024	64	2	1	1.715285741	3112.5	3387.167	274.667
128	12	8	1024	64	2	2	1.66965837	3113	3387.167	274.167
128	12	8	1024	64	2	4	1.658610656	3114	3387.167	273.167
128	12	8	1024	64	4	1	1.708317436	3116.5	3387.167	270.667
128	12	8	1024	64	4	2	1.662672917	3117	3387,167	270.167
128	12	8	1024	64	4	4	1.651636575	3118	3387.167	269.167
128	12	8	2048	32	1	-1	1.6150/3353	4126.5	3387.167	739.333
128	12		2048	32	1	2	1.600054334	4127	3387.167	739.833
400			0040				4.500000400	****	2227.427	740.000

CPI vs. Experiment Number

17. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 458.sjeng and cpu-type – DerivO3. Highlighted part shows the best choice. For full data-set look at "458sjeng_DerivO3CPU" in dataset folder.

.1	DL1	L2	Cac	heline	L1	L2	CPI	Cost	Av	g Mean
ize	Size	Size	Size	9	Assoc	Asso	ос	Functio	on Co	st diff
128	128		512	64	4	2	2.153474931	2605	3387.167	782.167
128	128	3	512	64	4	4	2.149313072	2606	3387.167	781.167
128	128	3	1024	32	1	1	2.081898045	3102.5	3387.167	284.667
128	128	3	1024	32	1	2	2.054302837	3103	3387.167	284.167
128	128	3	1024	32	1	4	2.014379369	3104	3387.167	283.167
128	128	3	1024	32	2	1	2.063468013	3104.5	3387.167	282.667
128	128	3	1024	32	2	2	2.035877674	3105	3387.167	282.167
128	128	3	1024	32	2	4	1.995941236	3106	3387.167	281.167
128	128	3	1024	32	4	1	2.057974811	3108.5	3387.167	278.667
128	128	3	1024	32	4	2	2.030377724	3109	3387.167	278.167
128	128	3	1024	32	4	4	1.990452154	3110	3387.167	277.167
128	128	3	1024	64	1	1	1.732119337	3110.5	3387.167	276.667
128	128	3	1024	64	1	2	1.685714805	3111	3387.167	276.167
128	128	3	1024	64	1	4	1.674487544	3112	3387.167	275.167
128	128	3	1024	64	2	1	1.714664403	3112.5	3387.167	274.667
128	128	3	1024	64	2	2	1.668263128	3113	3387.167	274.167
128	128	3	1024	64	2	4	1.657022723	3114	3387.167	273.167
128	128	3	1024	64	4	1	1.708191863	3116.5	3387.167	270.667
128	128	3	1024	64	4	2	1.661797373	3117	3387.167	270.167
128	128	3	1024	64	4	4	1.650561158	3118	3387.167	269.167
128	128	3	2048	32	1	1	1.609914746	4126.5	3387,167	739.333

CPI vs. Experiment Number

18. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 470.lbm and cpu-type – Minor. Highlighted part shows the best choice. For full data-set look at "470lbm_MinorCPU" in dataset folder.

1	DL1	L2	Cac	heline	L1	L2	CPI	Cost	Avg	Mean
ze	Size	Size	Size		Assoc	Asso	С	Functio	n Cost	diff
	•	•			•	•	•	•	•	•
64	64		024	64	4	4	1.000073902	2094	3387.167	1293,167
64	64		048	32		4	1.000073902	3102.5	3387.167	284.667
	64			32	1	1				
64			048			2	1.000078661	3103	3387.167	284.167
64	64		048	32	1	4	1.000077502	3104	3387.167	283.167
64	64		048	32	2	- 1	1.00007826	3104.5	3387.167	282.667
64	64		048	32	2	2	1.000076804	3105	3387.167	282.167
64	64		048	32	2	4	1.000075655	3106	3387.167	281.167
64	64		048	32	4	1	1.000077508	3108.5	3387.167	278.667
64	64	2	048	32	4	2	1.000075951	3109	3387.167	278.167
64	64	2	048	32	4	4	1.00007486	3110	3387.167	277.167
64	64	2	048	64	1	1	1.000047079	3110.5	3387.167	276.667
64	64	2	048	64	1	2	1.000045242	3111	3387.167	276.167
64	64	2	048	64	1	4	1.000042658	3112	3387.167	275.167
64	64	2	048	64	2	1	1.000044867	3112.5	3387.167	274.667
64	64	2	048	64	2	2	1.000043206	3113	3387.167	274.167
64	64	2	048	64	2	4	1.000040667	3114	3387.167	273.167
64	64	2	048	64	4	1	1.000044061	3116.5	3387.167	270.667
64	64	2	048	64	4	2	1.00004231	3117	3387.167	270.167
64	64	2	048	64	4	4	1.000039783	3118	3387.167	269.167
128	128		256	32	1	1	1.000208243	2334.5	3387.167	1052.667
128	128	8	256	32	1	2	1.000204448	2335	3387.167	1052.167
400	400		250	20	4	4	4.000000000	2222	2207 467	4054 407

19. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 470.lbm and cpu-type – TimingSimple. Highlighted part shows the best choice. For full data-set look at "470lbm_TimingSimpleCPU" in dataset folder.

IL1	DL1	L2	Cacheline	L1	L2	CPI	Cost	Avg	Mean
Size	Size	Size	Size	Assoc			Function	Cost	diff
64	64	1024	64	4	2	1.00007162	2093	3387.167	1294.167
64	64	1024	64	4	4	1.000070514	2094	3387.167	1293.167
64	64	2048	32	1	1	1.000074836	3102.5	3387.167	284.667
64	64	2048	32	1	2	1.00007348	3103	3387.167	284.167
64	64	2048	32	1	4	1.000072164	3104	3387.167	283.167
64	64	2048	32	2	1	1.000073165	3104.5	3387.167	282.667
64	64	2048	32	2	2	1.000071654	3105	3387.167	282.167
64	64	2048	32	2	4	1.000070557	3106	3387.167	281.167
64	64	2048	32	4	1	1.000072488	3108.5	3387.167	278.667
64	64	2048	32	4	2	1.00007106	3109	3387.167	278.167
64	64	2048	32	4	4	1.000069752	3110	3387.167	277.167
64	64	2048	64	1	1	1.000043972	3110.5	3387.167	276.667
64	64	2048	64	1	2	1.000042178	3111	3387.167	276.167
64	64	2048	64	1	4	1.000039672	3112	3387.167	275.167
64	64	2048	64	2	1	1.000041961	3112.5	3387.167	274.667
64	64	2048	64	2	2	1.000040296	3113	3387.167	274.167
64	64	2048	64	2	4	1.000037716	3114	3387.167	273.167
64	64	2048	64	4	1	1.000041359	3116.5	3387.167	270.667
64	64	2048	64	4	2	1.000039426	3117	3387.167	270.167
64	64	2048	64	4	4	1.000037132	3118	3387.167	269.167
128	128	256	32	1	1	1.000201297	2334.5	3387.167	1052.667
128	128	256	32	1	2	1.000197699	2335	3387.167	1052.167

20. In this section, we represent the experiments and tradeoff performed and analyzed over various cache configuration in benchmark – 470.lbm and cpu-type – DerivO3. Highlighted part shows the best choice. For full data-set look at "470lbm_DerivO3CPU" in dataset folder.

IL1	DL1	L2	Cacheline	L1	L2	CPI	Cost	Avg	Mean
Size	Size	Size	Size	Assoc	Asso	ос	Function	Cost	diff
04	04	1024	04	*		1.000073301	2052.5	3307.107	1294.007
64	64	1024	64	4	2	1.000070934	2093	3387,167	1294.167
64	64	1024	64	4	4	1.000069868	2094	3387.167	1293.167
64	64	2048	32	1	1	1.000073127	3102.5	3387.167	284.667
64	64	2048	32	1	2	1.000071648	3103	3387.167	284.167
64	64	2048	32	1	4	1.000070468	3104	3387.167	283.167
64	64	2048	32	2	1	1.00007155	3104,5	3387.167	282.667
64	64	2048	32	2	2	1.000070048	3105	3387.167	282.167
64	64	2048	32	2	4	1.000068775	3106	3387.167	281.167
64	64	2048	32	4	1	1.000070935	3108.5	3387.167	278.667
64	64	2048	32	4	2	1.000069482	3109	3387.167	278.167
64	64	2048	32	4	4	1.000068184	3110	3387.167	277.167
64	64	2048	64	1	1	1.000042716	3110.5	3387.167	276.667
64	64	2048	64	1	2	1.000040814	3111	3387.167	276,167
64	64	2048	64	1	4	1.000038392	3112	3387.167	275.167
64	64	2048	64	2	1	1.000040896	3112.5	3387.167	274.667
64	64	2048	64	2	2	1.000039052	3113	3387.167	274.167
64	64	2048	64	2	4	1.00003648	3114	3387.167	273.167
64	64	2048	64	4	1	1.000040239	3116.5	3387,167	270.667
64	64	2048	64	4	2	1.000038363	3117	3387.167	270.167
64	64	2048	64	4	4	1.000035822	3118	3387.167	269.167
128	128	256	32	1	1	1.000202409	2334.5	3387.167	1052.667
128	128	258	32	1	9	1 00019867	2225	3387 167	1052 187

Conclusion

With the increase in cache size CPI decreases along with the miss rate as more data can be store in the cache at a time. Also, if we increase the cache-line size the value of the CPI decreases. Although these things happen, with such changes cost of the CPU also increases.

Therefore, to determine the optimum cache configuration, we created a cost function and evaluation function which tells which configuration is cheapest and the best.

Overall for each benchmark, below is the best configuration of CPU and cache configuration.

- 401.bzip2 -> TimingSimpleCPU (L1 = 64kB, L2 = 2048kB, Cache-Line = 64, L1_{assoc} = 4, L2_{assoc} = 4)
- 429.mcf -> DerivO3CPU (L1 = 64kB, L2 = 2048kB, Cache-Line = 64, L1_{assoc} = 2, L2_{assoc} = 4)
- 456.hmmer -> DerivO3CPU (L1 = 64kB, L2 = 2048kB, Cache-Line = 64, L1_{assoc} = 4, L2_{assoc} = 4)
- 458.sjeng -> DerivO3CPU (L1 = 128kB, L2 = 1024kB, Cache-Line = 64, L1_{assoc} = 4, L2_{assoc} = 4)
- 470.lbm -> DerivO3CPU (L1 = 64kB, L2 = 2048kB, Cache-Line = 64, L1_{assoc} = 4, L2_{assoc} = 4)

References (Research Articles)

- 1) http://www.cs.ucr.edu/~gupta/hpca9/HPCA-PDFs/30-jeong.pdf
- 2) https://pdfs.semanticscholar.org/8b3c/ba0d289955488ddc022d14050a3786afb8ed.pdf
- 3) http://pages.cs.wisc.edu/~markhill/papers/toc89 cpu cache associativity.pdf
- 4) https://www.diva-portal.org/smash/get/diva2:116965/FULLTEXT01.pdf

Appendix

Experiment	IL1 Size (kB)	DL1 Size	L2 Size (kB)	Cache-line	L1	L2
Number		(kB)		Size	Associativit	Associativit
					У	У
1	64	64	256	32	1	1
2	64	64	256	32	1	2
3	64	64	256	32	1	4
4	64	64	256	32	2	1
5	64	64	256	32	2	2
6	64	64	256	32	2	4
7	64	64	256	32	4	1
8	64	64	256	32	4	2
9	64	64	256	32	4	4
10	64	64	256	64	1	1
11	64	64	256	64	1	2
12	64	64	256	64	1	4
13	64	64	256	64	2	1
14	64	64	256	64	2	2
15	64	64	256	64	2	4
16	64	64	256	64	4	1
17	64	64	256	64	4	2
18	64	64	256	64	4	4
19	64	64	512	32	1	1
20	64	64	512	32	1	2
21	64	64	512	32	1	4
22	64	64	512	32	2	1
23	64	64	512	32	2	2
24	64	64	512	32	2	4
25	64	64	512	32	4	1
26	64	64	512	32	4	2
27	64	64	512	32	4	4
28	64	64	512	64	1	1
29	64	64	512	64	1	2
30	64	64	512	64	1	4
31	64	64	512	64	2	1
32	64	64	512	64	2	2
33	64	64	512	64	2	4
34	64	64	512	64	4	1

35	64	64	512	64	4	2
36	64	64	512	64	4	4
37	64	64	1024	32	1	1
38	64	64	1024	32	1	2
39	64	64	1024	32	1	4
40	64	64	1024	32	2	1
41	64	64	1024	32	2	2
42	64	64	1024	32	2	4
43	64	64	1024	32	4	1
44	64	64	1024	32	4	2
45	64	64	1024	32	4	4
46	64	64	1024	64	1	1
47	64	64	1024	64	1	2
48	64	64	1024	64	1	4
49	64	64	1024	64	2	1
50	64	64	1024	64	2	2
51	64	64	1024	64	2	4
52	64	64	1024	64	4	1
53	64	64	1024	64	4	2
54	64	64	1024	64	4	4
55	64	64	2048	32	1	1
56	64	64	2048	32	1	2
57	64	64	2048	32	1	4
58	64	64	2048	32	2	1
59	64	64	2048	32	2	2
60	64	64	2048	32	2	4
61	64	64	2048	32	4	1
62	64	64	2048	32	4	2
63	64	64	2048	32	4	4
64	64	64	2048	64	1	1
65	64	64	2048	64	1	2
66	64	64	2048	64	1	4
67	64	64	2048	64	2	1
68	64	64	2048	64	2	2
69	64	64	2048	64	2	4
70	64	64	2048	64	4	1
71	64	64	2048	64	4	2
72	64	64	2048	64	4	4
73	128	128	256	32	1	1

74	128	128	256	32	1	2
75	128	128	256	32	1	4
76	128	128	256	32	2	1
77	128	128	256	32	2	2
78	128	128	256	32	2	4
79	128	128	256	32	4	1
80	128	128	256	32	4	2
81	128	128	256	32	4	4
82	128	128	256	64	1	1
83	128	128	256	64	1	2
84	128	128	256	64	1	4
85	128	128	256	64	2	1
86	128	128	256	64	2	2
87	128	128	256	64	2	4
88	128	128	256	64	4	1
89	128	128	256	64	4	2
90	128	128	256	64	4	4
91	128	128	512	32	1	1
92	128	128	512	32	1	2
93	128	128	512	32	1	4
94	128	128	512	32	2	1
95	128	128	512	32	2	2
96	128	128	512	32	2	4
97	128	128	512	32	4	1
98	128	128	512	32	4	2
99	128	128	512	32	4	4
100	128	128	512	64	1	1
101	128	128	512	64	1	2
102	128	128	512	64	1	4
103	128	128	512	64	2	1
104	128	128	512	64	2	2
105	128	128	512	64	2	4
106	128	128	512	64	4	1
107	128	128	512	64	4	2
108	128	128	512	64	4	4
109	128	128	1024	32	1	1
110	128	128	1024	32	1	2
	+	+	†	t		1
111	128	128	1024	32	1	4

113	128	128	1024	32	2	2
114	128	128	1024	32	2	4
115	128	128	1024	32	4	1
116	128	128	1024	32	4	2
117	128	128	1024	32	4	4
118	128	128	1024	64	1	1
119	128	128	1024	64	1	2
120	128	128	1024	64	1	4
121	128	128	1024	64	2	1
122	128	128	1024	64	2	2
123	128	128	1024	64	2	4
124	128	128	1024	64	4	1
125	128	128	1024	64	4	2
126	128	128	1024	64	4	4
127	128	128	2048	32	1	1
128	128	128	2048	32	1	2
129	128	128	2048	32	1	4
130	128	128	2048	32	2	1
131	128	128	2048	32	2	2
132	128	128	2048	32	2	4
133	128	128	2048	32	4	1
134	128	128	2048	32	4	2
135	128	128	2048	32	4	4
136	128	128	2048	64	1	1
137	128	128	2048	64	1	2
138	128	128	2048	64	1	4
139	128	128	2048	64	2	1
140	128	128	2048	64	2	2
141	128	128	2048	64	2	4
142	128	128	2048	64	4	1
143	128	128	2048	64	4	2
144	128	128	2048	64	4	4
145	256	256	256	32	1	1
146	256	256	256	32	1	2
147	256	256	256	32	1	4
148	256	256	256	32	2	1
149	256	256	256	32	2	2
150	256	256	256	32	2	4
151	256	256	256	32	4	1
	1	1	1	1	L	1

152	256	256	256	32	4	2
153	256	256	256	32	4	4
154	256	256	256	64	1	1
155	256	256	256	64	1	2
156	256	256	256	64	1	4
157	256	256	256	64	2	1
158	256	256	256	64	2	2
159	256	256	256	64	2	4
160	256	256	256	64	4	1
161	256	256	256	64	4	2
162	256	256	256	64	4	4
163	256	256	512	32	1	1
164	256	256	512	32	1	2
165	256	256	512	32	1	4
166	256	256	512	32	2	1
167	256	256	512	32	2	2
168	256	256	512	32	2	4
169	256	256	512	32	4	1
170	256	256	512	32	4	2
171	256	256	512	32	4	4
172	256	256	512	64	1	1
173	256	256	512	64	1	2
174	256	256	512	64	1	4
175	256	256	512	64	2	1
176	256	256	512	64	2	2
177	256	256	512	64	2	4
178	256	256	512	64	4	1
179	256	256	512	64	4	2
180	256	256	512	64	4	4
181	256	256	1024	32	1	1
182	256	256	1024	32	1	2
183	256	256	1024	32	1	4
184	256	256	1024	32	2	1
185	256	256	1024	32	2	2
186	256	256	1024	32	2	4
187	256	256	1024	32	4	1
188	256	256	1024	32	4	2
189	256	256	1024	32	4	4
190	256	256	1024	64	1	1

191	256	256	1024	64	1	2
192	256	256	1024	64	1	4
193	256	256	1024	64	2	1
194	256	256	1024	64	2	2
195	256	256	1024	64	2	4
196	256	256	1024	64	4	1
197	256	256	1024	64	4	2
198	256	256	1024	64	4	4
199	256	256	2048	32	1	1
200	256	256	2048	32	1	2
201	256	256	2048	32	1	4
202	256	256	2048	32	2	1
203	256	256	2048	32	2	2
204	256	256	2048	32	2	4
205	256	256	2048	32	4	1
206	256	256	2048	32	4	2
207	256	256	2048	32	4	4
208	256	256	2048	64	1	1
209	256	256	2048	64	1	2
210	256	256	2048	64	1	4
211	256	256	2048	64	2	1
212	256	256	2048	64	2	2
213	256	256	2048	64	2	4
214	256	256	2048	64	4	1
215	256	256	2048	64	4	2
216	256	256	2048	64	4	4