Feedback on Experimentation

Millian Poquet

millian.poquet@inria.fr

What is this session about?

Overview of technical choices to run an experiment.

Plan

- Short presentation
- Discussion

General workflow (courtesy of Arnaud Legrand)

Science

High Performance Computing

Sunway Taihulight

Tokamak plasmas (Gysela5D)

Weather prediction (GEOS)

Problem: Power consumption (naive) projection

Lever: Resources and Jobs Management System (RJMS)

Study: Node shutdown policies

General workflow

Protocol in a nutshell

Assess node shutdown policies in simulation.

- Batsim
- (energy, job QoS)
- Various policies combined with EASY
 - Various parameters for each policy
- Replay existing HPC traces

Tune parameters iteratively.

Obtaining raw data

Reproducible environment (Bulldozer approach)

Documentation: http://kameleon.imag.fr

platform

Batsim simulation overview

Real

RJMS (SLURM, OAR, PBS...)

Batsim simulation

decision maker (RJMS + adaptor)

platform

Required software to run 1 instance

Simulator: Batsim (version)

- SimGrid (version)
- ZMQ, RapidJSON, Boost... (+versions)

Algorithms: Batsched (version)

■ ZMQ, RapidJSON, Boost, Redis, GMP... (+versions)

Execution manager: Ad hoc Python script (version)

Python interpreter, standard lib, PyPI libs (+versions)

Execute1 Overview

Input:

- Batsim command (string)
- Scheduler command (string)
- Timeouts (float[])

Output:

- Batsim output (CSV files)
- Scheduler internal traces (CSV files)

Should prevent process side effect.

- Processes may crash
- A timeout may be reached (infinite loop, deadlock...)

Data analysis

Data analysis

Usual desires.

- Modifiability (easy to change/create a plot)
- Language-agnostic (R for plots, Python for algos...)

In our case.

■ Simulation output \simeq 320 Go \rightarrow (in situ) aggregation

NFS

local disk

Monolithic Approach

Monolithic Approach

One file to rule them all.

- Get / generate simulation inputs (platforms, workloads...)
- 2 Generate simulation instances (union of cartesian products)
- 3 Run instances + local computations
- 4 Gather all data
- 5 Analyze gathered data

Exec* scripts

Goal

- Batsim specific
- Genericity: Experiments and tests

Technology history

- 1: Execo (instance db, process management, remote exec...)
- 2: Execo (instance db) + instance db hacks + py3
- 3: 2 + coroutines

Current status

- Unmaintained.
- subset(exec1) → robin

Discussion

Conclusion

- Reproducible? OK.
- Convenient local/cluster run? OK.
- Caching system? Yes + manual.
- Easy to update params/scripts? Yes.
- Easy to update software env? =/
- Maintainable? =/

Alternatives?

- Nix/Guix (example)
- CWL, Swift