

Theoretische Informatik

Prof. Dr. Juraj Hromkovič Dr. Hans-Joachim Böckenhauer https://courses.ite.inf.ethz.ch/theoInf20

Exercises – Sheet 11

Zürich, November 27, 2020

Exercise 29

The rook in chess can move any number of squares horizontally along a row (rank) or vertically along a column (file). We say that a rook attacks a piece if the rook can get at the square of the piece in a single move.

Describe a CNF formula whose truth assignments represent all possible placings of up to n^2 rooks on an $(n \times n)$ chess board and which is satisfied if and only if exactly n rooks are placed that do not attack each other.

10 points

Exercise 30

- (a) Let THREEFOLD-SAT be the set of all CNF formulas that have at least three satisfying truth assignments. Prove that $SAT \leq_p THREEFOLD-SAT$.
- (b) Let E3SAT be the set of all satisfiable CNF formulas that have exactly three literals of pairwise distinct variables per clause. Prove that $3SAT \leq_p E3SAT$.

10 points

Exercise 31

We seek to prove that the vertex cover problem is NP-hard even on graphs with maximum vertex degree 3. To this end, let

VC-deg-3 = $\{(G, k) \mid G \text{ is an undirected graph with maximum vertex degree 3}$ that contains a vertex cover of size at most $k\}$.

We seek to show E3SAT \leq_p VC-deg-3. To this end, for every E3-CNF formula ϕ , we construct a graph G_{ϕ} with maximum vertex degree 3 and a number k_{ϕ} , such that ϕ is satisfiable if and only if G_{ϕ} contains a vertex cover of size at most k_{ϕ} .

Let $\phi = C_1 \wedge \ldots \wedge C_q$ be a E3-CNF formula over the variables x_1, \ldots, x_n , such that $C_j = (l_{j,1} \vee l_{j,2} \vee l_{j,3})$ for $1 \leq j \leq q$. For every variable x_i , we enumerate its occurrences in the clauses (as a positive or negative literal) arbitrarily as $x_{i,1}, \ldots, x_{i,m(i)}$.

Then we define the graph G_{ϕ} as follows: For every variable x_i , G_{ϕ} contains a cycle of length $2 \cdot m(i)$, consisting of the vertices

$$T_{i,1}, F_{i,1}, T_{i,2}, F_{i,2}, \dots, T_{i,m(i)}, F_{i,m(i)}$$

in this order. For every clause C_j , G_{ϕ} contains a triangle consisting of the vertices $V_{j,1}$, $V_{j,2}$, $V_{j,3}$. These subgraphs are connected via the following two sets of edges:

$$E_1 = \{\{T_{i,j}, V_{s,t}\} \mid \text{the } j\text{-th occurrence } x_{i,j} \text{ of the variable } x_i$$
 is the positive literal $l_{s,t}$ in the clause $C_s\}$ and
$$E_2 = \{\{F_{i,j}, V_{s,t}\} \mid \text{the } j\text{-th occurrence } x_{i,j} \text{ of the variable } x_i$$
 is the negative literal $l_{s,t}$ in the clause $C_s\}$.

Prove that G_{ϕ} contains a vertex cover of size at most $k_{\phi} = 5q$ if and only if ϕ is satisfiable. 10 points

Submission: Friday, December 4, by 11:15 at the latest, as a clearly legible PDF via e-mail directly to the respective teaching assistant.