Sufficient adjustment sets in DAGs

INFO/STSCI/ILRST 3900: Causal Inference

19 Sep 2023

Learning goals for today

At the end of class, you will be able to:

- 1. Identify a sufficient adjustment set for the backdoor criterion
- 2. Assess whether selection bias may hold in a gathered sample

Logistics

- ► Ch 7.1 7.4 in Hernan and Robins
- ► Homework posted today, due Sep 28

How to check if a path is open or blocked:

- 1. Traverse the path node by node
- 2. If any node is blocked, the entire path is blocked
- 3. If all nodes are open, then entire path is open

How to check if a path is open or blocked:

- 1. Traverse the path node by node
- 2. If any node is blocked, the entire path is blocked
- 3. If all nodes are open, then entire path is open

How to check if a node is open or blocked:

- ► If non-collider:
 - ► Open if it is not in the conditioning set
 - Blocked if it is in the conditioning set

How to check if a path is open or blocked:

- 1. Traverse the path node by node
- 2. If any node is blocked, the entire path is blocked
- 3. If all nodes are open, then entire path is open

How to check if a node is open or blocked:

- ► If non-collider:
 - Open if it is not in the conditioning set
 - Blocked if it is in the conditioning set
- ► If collider:
 - ▶ Open if it or any of its descendants are in the conditioning set
 - Otherwise it is blocked

How to check if a path is open or blocked:

- 1. Traverse the path node by node
- 2. If any node is blocked, the entire path is blocked
- 3. If all nodes are open, then entire path is open

How to check if a node is open or blocked:

- ► If non-collider:
 - Open if it is not in the conditioning set
 - Blocked if it is in the conditioning set
- ► If collider:
 - ▶ Open if it or any of its descendants are in the conditioning set
 - Otherwise it is blocked

Exchangeability and DAGs

► In a **causal path**, all edges point from the treatment and toward the outcome

Exchangeability and DAGs

- ► In a **causal path**, all edges point from the treatment and toward the outcome
- ► Conditional Exchangeability holds if **all** unblocked paths (given *L*) from *A* to *Y* are causal paths

Exchangeability and DAGs

- ► In a **causal path**, all edges point from the treatment and toward the outcome
- ► Conditional Exchangeability holds if **all** unblocked paths (given *L*) from *A* to *Y* are causal paths
- ► The only association we observe between *A* and *Y* is due to causation

- ► Find a set of variables *L* that blocks all non-causal paths from *A* and *Y*
- ► L is called **sufficient adjustment set**

- ► Find a set of variables *L* that blocks all non-causal paths from *A* and *Y*
- ► L is called **sufficient adjustment set**
- ▶ If the DAG is true, this means $Y^a \perp A \mid L$

- ► Find a set of variables *L* that blocks all non-causal paths from *A* and *Y*
- ► L is called **sufficient adjustment set**
- ▶ If the DAG is true, this means $Y^a \perp A \mid L$
- ► Use standardization (Lecture 2-3) or inverse probability weighting (Lecture 2-4) to estimate average causal effect

- ► Find a set of variables *L* that blocks all non-causal paths from *A* and *Y*
- ► L is called **sufficient adjustment set**

- ► Find a set of variables *L* that blocks all non-causal paths from *A* and *Y*
- ► L is called **sufficient adjustment set**
- ▶ If the DAG is true, this means $Y^a \perp A \mid L$

- ► Find a set of variables *L* that blocks all non-causal paths from *A* and *Y*
- ► L is called **sufficient adjustment set**
- ▶ If the DAG is true, this means $Y^a \perp A \mid L$
- ► Use standardization (Lecture 2-3) or inverse probability weighting (Lecture 2-4) to estimate average causal effect

Backdoor path starts with an edge pointing in to A and ends at Y

Backdoor path starts with an edge pointing in to A and ends at Y

A set of variables satisfies the backdoor criterion if

- 1. Blocks all backdoor paths
- 2. Does not contain any descendant of A

Backdoor path starts with an edge pointing in to A and ends at Y

A set of variables satisfies the backdoor criterion if

- 1. Blocks all backdoor paths
- 2. Does not contain any descendant of A

Sets that satisfy the backdoor criterion are sufficient adjustment sets!

Exercise

Researchers may be interested in the effect of fluoroquinolones, a class of antibiotics, on epilepsy¹

▶ Does a sufficient adjustment set exist? If so, what is it?

¹Example from "Using Causal Diagrams to Improve the Design and Interpretation of Medical Research" (Etminan et. al. 2020, Chest)

Exercise

Researchers may be interested in the effect of fluoroquinolones, a class of antibiotics, on epilepsy²

▶ Does a sufficient adjustment set exist? If so, what is it?

²Example from "Using Causal Diagrams to Improve the Design and Interpretation of Medical Research" (Etminan et. al. 2020, Chest)

Exercise

Researchers may be interested in the effect of diabetes on cardiac Ischemia³

▶ Does a sufficient adjustment set exist? If so, what is it?

³Example from "Using Causal Diagrams for Biomedical Research" (Kyriacou et. al. 2023, Annals of Emergency Medicine)

► Sufficient adjustment set to close backdoor paths

- ► Sufficient adjustment set to close backdoor paths
- ► Does not always mean conditioning on more things

In some settings, certain variables may already be "conditioned on"

⁴Example from "Using Causal Diagrams to Improve the Design and Interpretation of Medical Research" (Etminan et. al. 2020, Chest)

In some settings, certain variables may already be "conditioned on"

Researchers may be interested in the effect of fluoroquinolones, a class of antibiotics, on epilepsy⁴

⁴Example from "Using Causal Diagrams to Improve the Design and Interpretation of Medical Research" (Etminan et. al. 2020, Chest)

In some settings, certain variables may already be "conditioned on"

Researchers may be interested in the effect of fluoroquinolones, a class of antibiotics, on epilepsy⁴

⁴Example from "Using Causal Diagrams to Improve the Design and Interpretation of Medical Research" (Etminan et. al. 2020, Chest)

 $A \perp Y^a \mid College$

► Gathered data is typically restricted to some group

- ► Gathered data is typically restricted to some group
- ► This may implicitly condition on a variable

- ► Gathered data is typically restricted to some group
- ► This may implicitly condition on a variable
- ► May open non-causal paths

Takeaways

► Drawing the DAG makes your causal assumptions clear to yourself and others

Takeaways

- ▶ Drawing the DAG makes your causal assumptions clear to yourself and others
- ► Clear rules for what to adjust for **if the DAG** is true
 - ► Sufficient adjustment set blocks all non-causal paths
 - ► If it exists, use standardization or IPW to estimate causal effect
 - ► If it does not exist, consider gathering more variables
- Carefully consider the data gathering process

Takeaways

- ► Drawing the DAG makes your causal assumptions clear to yourself and others
- ► Clear rules for what to adjust for **if the DAG** is true
 - ► Sufficient adjustment set blocks all non-causal paths
 - ► If it exists, use standardization or IPW to estimate causal effect
 - ► If it does not exist, consider gathering more variables
- ► Carefully consider the data gathering process
- ► Causal claims come from assumptions + data

Learning goals for today

At the end of class, you will be able to:

- 1. Identify a sufficient adjustment set for the backdoor criterion
- 2. Assess whether selection bias may hold in a gathered sample