STATS300A - Lecture 11

Dominik Rothenhaeusler Scribed by Michael Howes

10/25/21

Contents

L	Announcement	1
2	Admissibility $(d=1)$	1
3	Inadmissibility $(d \ge 3)$	2

1 Announcement

Please arrive at least 5 minutes early to the exam on Wednesday.

2 Admissibility (d=1)

We have seen that unique Bayes estimators are admissible. We wish to boost this result to \bar{X}_n which a limit of Bayes estimators.

Example 1. Suppose $X_1,\ldots,X_n \overset{\text{iid}}{\sim} \mathcal{N}(\mu,\sigma^2)$ where σ^2 is unknown and we are using squared error loss. To show that \bar{X}_n is admissible we will use a limiting Bayes argument. Suppose without loss of generality that $\sigma^2=1$ and that \bar{X}_n is inadmissible. Note that the risk of \bar{X}_n is $\frac{1}{n}$ constantly. Thus if \bar{X}_n is inadmissible, then there exists an estimator δ such that $R(\theta,\delta)<1/n$ for some θ and $R(\theta,\delta)\leq 1/n$ for all θ .

One can use the dominated convergence theorem to show that $\theta \mapsto R(\theta, \delta)$ is continuous. Thus there exists an interval (θ_0, θ_1) such that $\theta_1 - \theta_0 > 0$ and $R(\theta, \delta') \le 1/n - \varepsilon$ for all $\theta \in (\theta_0, \theta_1)$.

Let r'_{τ} be the average risk of δ with respect to the prior $\theta \sim \mathcal{N}(0, \tau^2)$. Also let r_{τ} be the average risk of the Bayes estimator with respect to the prior $\theta \sim \mathcal{N}(0, \tau^2)$. We know that r_{τ} is the posterior variance of τ and thus

$$r_{\tau} = \frac{1}{n+1/\tau^2} = \frac{\tau^2}{n\tau^2 + 1}.$$

Thus r_{τ} approaches 1/n as $\tau \nearrow \infty$. We also know that $r'_{\tau} \le 1/n$ for all τ . We will now look at the

ratio $\frac{1/n-r'_{\tau}}{1/n-r_{\tau}}$. This is a sort of Taylor's expansion of r_{τ} and r'_{τ} about 1/n. Note that

$$\begin{split} \frac{1/n - r_{\tau}'}{1/n - r_{\tau}} &= \frac{\int_{\mathbb{R}} (1/n - R(\theta, \delta)) \frac{1}{\sqrt{2\pi\tau}} \exp(-1/2\theta^2) d\theta}{\frac{1}{n} - \frac{\tau^2}{n\tau^2 + 1}} \\ &= \frac{\int_{\mathbb{R}} (1/n - R(\theta, \delta)) \frac{1}{\sqrt{2\pi\tau}} \exp(-1/2\theta^2) d\theta}{\frac{n\tau^2 + 1}{n(n\tau^2 + 1)} - \frac{n\tau^2}{n(n\tau^2 + 1)}} \\ &= \frac{\int_{\mathbb{R}} (1/n - R(\theta, \delta)) \frac{1}{\sqrt{2\pi\tau}} \exp(-1/2\theta^2) d\theta}{\frac{1}{n(n\tau^2 + 1)}} \\ &= \frac{n(n\tau^2 + 1)}{\sqrt{2\pi\tau}} \cdot \int_{\mathbb{R}} (1/n - R(\theta, \delta)) \exp(-1/2\theta^2) d\theta \\ &\geq \frac{n(n\tau^2 + 1)}{\sqrt{2\pi\tau}} \cdot \int_{\theta_0}^{\theta_1} (1/n - R(\theta, \delta)) \exp(-1/2\theta^2) d\theta \\ &\geq \frac{n(n\tau^2 + 1)}{\sqrt{2\pi\tau}} \cdot \varepsilon \int_{\theta_0}^{\theta_1} \exp(-1/2\theta^2) d\theta. \end{split}$$

As $\tau \to \infty$, $\frac{n(n\tau^2+1)}{\sqrt{2\pi}\tau} \to \infty$ and by the dominanted convergence theorem $\int_{\theta_0}^{\theta_1} \exp(-1/2\theta^2)d\theta \to \int_{\theta_0}^{\theta_1} 1d\theta = \theta_1 - \theta_0 > 0$. Thus we have

$$\lim_{\tau \to \infty} \frac{1/n - r'_{\tau}}{1/n - r'_{\tau}} = \infty.$$

In particular there exists $\tau > 0$ such that $\frac{1/n - r'_{\tau}}{1/n - r_{\tau}} > 1$. This implies that $r'_{\tau} < r_{\tau}$ which is a contradiction.

3 Inadmissibility $(d \ge 3)$

We will now look at an example of simultaneous estimation and look at the James-Stein estimator. The take away will be that minimax estimators and UMRUES need not be admissible.

Suppose $X \in \mathbb{R}^p$ and $X \sim \mathcal{N}(\theta, I_p)$ for some $\theta \in \mathbb{R}^p$. Our goal is to estimate θ under the loss $L(\theta, d) = \sum_{j=1}^p (\theta_j - d_j)^2 = \|\theta - d\|_2^2$. The estimator $\delta(X) = X$ is

- A minimax estimator for θ .
- The UMRUES for θ .
- The MLE for θ , that is $X = \arg \max_{\theta} p(x; \theta)$.

From many perspectives X seems like the best estimator but X is admissible for $p \geq 3$. Recall the emperical Bayes estimator for θ

$$\left(1 - \frac{p}{\sum_{i} X_i^2}\right) X.$$

This came up in the setting $\theta_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \tau^2)$ and $X_i | \theta_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\theta_1, 1)$. We will see that a similar estimator will outperform $\delta(X) = X$ uniformly in θ in a frequentist setting.

For intuition one may ask what is the problem with $\delta(X) = X$? The problem is that $\|X\|_2^2$ is normally much larger $\|\theta\|_2^2$ since $\mathbb{E}[\|X\|_2^2] = \sum_{i=1}^P \left(\theta_i^2 + 1\right) = \|\theta\|_2^2 + p >> \|\theta\|_2^2$.

Theorem 1. [TPE 5.5.1] Define the estimator δ^0 by

$$\delta_j^0(X) = \left(1 - \frac{p-2}{\|X\|_2^2}\right) X_j.$$

The estimato δ^0 had strictly smaller risk than $\delta(X) = X$ for all θ . Thus $\delta(X) = X$ is inadmissible. We call δ^0 a James-Stein estimator.

Proof. We know that $R(\theta, \delta) = p$ when $\delta(X) = X$. Now note that

$$\begin{split} R(\theta, \delta^{0}) &= \mathbb{E}_{\theta} \left[\sum_{j} \left(\theta_{j} - \left(1 - \frac{p-2}{\|X\|_{2}^{2}} \right) X_{j} \right)^{2} \right] \\ &= \mathbb{E}_{\theta} \left[\sum_{j} \left(\theta_{j} - X_{j} + \frac{p-2}{\|X\|_{2}^{2}} X_{j} \right)^{2} \right] \\ &= \sum_{j} \mathbb{E}_{\theta} \left[(\theta_{j} - X_{j})^{2} \right] - 2 \sum_{j} \mathbb{E}_{\theta} \left[(X - \theta_{j}) \left(\frac{p-2}{\|X\|_{2}^{2}} X_{j} \right) \right] + \sum_{j} \mathbb{E}_{\theta} \left[\frac{(p-2)^{2} X_{j}^{2}}{\|X\|_{2}^{4}} \right] \\ &= p - 2 \sum_{j} \mathbb{E}_{\theta} \left[(X_{j} - \theta_{j}) \left(\frac{p-2}{\|X\|_{2}^{2}} X_{j} \right) \right] + \sum_{j} \mathbb{E}_{\theta} \left[\frac{(p-2)^{2} X_{j}^{2}}{\|X\|_{2}^{4}} \right]. \end{split}$$

Recall Stein's identity if $X \sim \mathcal{N}(\mu, \sigma^2)$ we have

$$\mathbb{E}[g(X)(X - \mu)] = \sigma^2 \mathbb{E}[g'(X)].$$

By conditioning this gives

$$\mathbb{E}_{\theta}\left[(X_j - \theta_j) \left(\frac{p-2}{\|X\|_2^2} X_j \right) \right] = \mathbb{E}_{\theta}\left[(p-2) \frac{\partial}{\partial X_j} \left(\frac{X_j}{\|X\|_2^2} \right) \right].$$

If we make this substitution we have

$$\begin{split} R(\theta, \delta^0) &= p - 2 \sum_{j} \mathbb{E}_{\theta} \left[(p - 2) \frac{\partial}{\partial X_{j}} \left(\frac{X_{j}}{\|X\|_{2}^{2}} \right) \right] + \sum_{j} \mathbb{E}_{\theta} \left[\frac{(p - 2)^{2} X_{j}^{2}}{\|X\|_{2}^{4}} \right] \\ &= p - 2 \sum_{j} \mathbb{E}_{\theta} \left[(p - 2) \frac{\|X\|_{2}^{2} - 2X_{j}^{2}}{\|X\|_{2}^{4}} \right] + \sum_{j} \mathbb{E}_{\theta} \left[\frac{(p - 2)^{2} X_{j}^{2}}{\|X\|_{2}^{4}} \right] \\ &= p - 2 (p - 2) \mathbb{E}_{\theta} \left[\sum_{j} \frac{\|X\|_{2}^{2} - 2X_{j}^{2}}{\|X\|_{2}^{4}} \right] + (p - 2)^{2} \mathbb{E}_{\theta} \left[\sum_{j} \frac{X_{j}^{2}}{\|X\|_{2}^{4}} \right] \\ &= p - 2 (p - 2) \mathbb{E}_{\theta} \left[\frac{p \|X\|_{2}^{2} - 2 \|X\|_{2}^{2}}{\|X\|_{2}^{4}} \right] + (p - 2)^{2} \mathbb{E}_{\theta} \left[\frac{\|X\|_{2}^{2}}{\|X\|_{2}^{4}} \right] \\ &= p - 2 (p - 2)^{2} \mathbb{E}_{\theta} \left[\frac{1}{\|X\|_{2}^{2}} \right] + (p - 2)^{2} \mathbb{E}_{\theta} \left[\frac{1}{\|X\|_{2}^{2}} \right] \\ &= p - (p - 2)^{2} \mathbb{E}_{\theta} \left[\frac{1}{\|X\|_{2}^{2}} \right] \\ &< p. \end{split}$$

Thus δ^0 uniformly outperforms δ .

- **Remark 1.** (a) Why only p > 2? The random variable $\frac{1}{\|X\|_2^2}$ is not integrable when p = 2. Thus the regularity conditions of Stein's identity are not met.
 - (b) The above theorem is surprising! We can improve the risk by sharing information across different dimensions. The components $X_{\setminus j}$ are used to estimate θ_j even though X_j are independent and θ_j do not have any restrictions.
 - (c) Define $\delta_j^v = \left(1 \frac{p-2}{\|X_v\|_2^2}\right)(X_j v_j)$ for $v \in \mathbb{R}^p$. Then the above proof shows that δ^v also out performs δ .
- (d) If $\sigma \neq 1$, then we can use $\widehat{\theta}_{JS} = \left(1 \frac{\sigma^2(p-2)}{\|X\|_2^2}\right) X$.
- (e) $\hat{\theta}_{JS}$ is inadmissible, we can improve by using

$$\delta'_j(X) = \left(1 - \frac{p-2}{\|X\|_2^2}\right)_+ X_j.$$

(f) A warning: For some j, $\mathbb{E}[(\delta_j^0(X) - \theta_j)^2]$ may be larger than $\mathbb{E}[(X_j - \theta_j)^2]$. An example is "Baseball batting averages - James-Stein estimator"