ИІТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3.07 "Изучение свойств ферромагнетика"

Группа: 2.1.1

Студент: Денисова А.А., Пименова Е.А.,

Шнейдерис Г.Г.

Преподаватель: Хвастунов Н.Н.

К работе допущен: Работа выполнена: Отчет принят:

1 Цель работы

 Изучение свойств ферромагнетика в состоянии насыщения и измерение потерь энергии при перемагничивании

2 Задачи, решаемые при выполнении работы

- Измерение зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля B = B(H)
- Определение по предельной петле гистерезиса индукции насыщения, остаточной индукции и коэрцитивной силы
- Получение зависимости магнитной проницаемости от напряженности магнитного поля $\mu = \mu(H)$ и оценка максимального значения величины магнитной проницаемости
- Расчет мощности потерь энергии в ферромагнетике в процессе его перемагничивания

3 Метод экспериментального исследования

- С помощью осциллографа измерить координаты петли гистерезиса(вершины и точки пересечения с осями координат) для разных значений амплитуды напряжения на генераторе
- Также для каждой амплитуды по координатам и коэффициентам α, β вычисляем: коэрцитивную силу H_c , остаточную индукцию B_r , а также H_m и B_m вершины

4 Рабочие формулы и исходные данные

1) Данные об установке

$$R_1=68~{
m Om}\pm 10\%~~R_2=47~{
m kOm}\pm 10\%$$
 $N_1=1665~{
m BHT}~~N_2=970~{
m BHT}$ $l=7.8\pm 0.1~{
m cm}~~C_1=0.47~{
m mk}\Phi\pm 10\%~~S=0.64\pm 0.05~{
m cm}^2$

2) Коэффициенты α , β и χ

$$\alpha = \frac{N_1}{l \cdot R_1} \quad \beta = \frac{R_2 \cdot C_1}{N_2 \cdot S} \quad \chi = \frac{N_1 \cdot R_2 \cdot C_1}{N_2 \cdot R_1} \cdot f$$

3) Коэрцитивная сила

$$H = \frac{N_1}{l \cdot R_1} \cdot U$$

4) Остаточная индукция

$$B = \beta \cdot U$$

5 Измерительные приборы:

№	Наименование	Тип прибора	Используемый диапазон	
1	Цифровой осциллограф GDS-71102B	измерительный	1Γц - 1ΓΓц	
2	ИСХ1	цифровой	0B - 17B	

Таблица 1: Измерительные приборы

6 Схема установки:

7 Результаты прямых измерений и их обработки:

U, B	Х, дел	Кх, В/дел	Н, А/м	Ү, дел	Ку, В/дел	В, Тл	μ
20,00	2,20	0,10	69,06	2,00	0,05	0,04	410,02
19,00	2,08	0,10	$65,\!29$	1,92	0,05	0,03	416,32
18,00	1,72	0,10	53,99	1,64	0,05	0,03	430,04
17,00	1,64	0,10	51,48	1,60	0,05	0,03	440,02
16,00	$1,\!56$	0,10	48,97	1,56	0,05	0,03	451,02
15,00	1,44	0,10	$45,\!20$	1,44	0,05	0,03	451,02
14,00	1,32	0,10	41,44	1,40	0,05	0,02	478,35
13,00	1,16	0,10	36,41	1,20	0,05	0,02	466,57
12,00	1,08	0,10	33,90	1,20	0,05	0,02	501,13
11,00	1,04	0,10	$32,\!65$	1,04	0,02	0,01	180,41
10,00	0,96	0,10	30,14	1,00	0,02	0,01	187,92

7.0.1 Еще параметры:

 $B_R = 0.025~{
m Tr}$ — Остаточная индукция в состоянии насыщения

 $H_C = 7{,}66 \,\,{\rm A/m} - {\rm Koepqutubhas}$ сила в состоянии насыщения

 $\mu = 434$ — Магнитная проницаемость в состоянии насыщения

 $P_{\rm cp} = 713,7~{
m Br}$ — Мощность потерь на перемагничивание ферромагнетика

 $S = 6.4 \text{ дел}^2 - \Pi$ лощадь петли гистерезиса в условных единицах

7.0.2 Примеры расчетов:

Расчёт напряжённости магнитного поля H:

$$H = \alpha \cdot K_x \cdot X = 313,91 \cdot 0,10 \ \frac{\mathrm{B}}{\mathrm{дел}} \cdot 2,20 \ \mathrm{дел} = 69,06$$

Расчет индукции магнитного поля в образце B:

$$^{\circ}B = \beta \cdot K_y \cdot Y = 0.36 \cdot 0.05 \ \frac{\mathrm{B}}{\mathrm{дел}} \cdot 2.00 \ \mathrm{дел} = 0.04 \ \mathrm{Tr}$$

Расчет магнитной индукции μ :

$$\mu = \frac{B}{\mu_0 \cdot H} = \frac{0.04 \text{ Tm}}{\mu_0 \cdot 69.06 \text{A/m}} = 410.02$$

8 Расчёт результатов косвенных измерений

Расчет коэффициента α :

$$\alpha = \frac{N_1}{l \cdot R_1} = \frac{1665}{0.078 \cdot 68} = 313.91 \, \frac{1}{\text{M} \cdot \text{Om}}$$

Расчет коэффициента β :

$$\beta = \frac{R_2 \cdot C_2}{N_2 \cdot S_2} = 3{,}56 \ \frac{\mathrm{O_M} \cdot \Phi}{\mathrm{m}^2}$$

Таблина 1:

X_c , дел	Y_r , дел	H_c , A/M	B_r , Тл
1,2	1.4	37,669	0.024909

 Γ Расчет коэрцитивной силы H_c :

$$H_c = \alpha \cdot X_c \cdot K_x = 313.91 \cdot 1.2 \cdot 0.10 = 37.67 \text{ A/m}$$

Расчет остаточной индукции B_r :

$$B_r = \beta \cdot Y_r \cdot K_y = 3,56 \cdot 1,4 \cdot 0,05 = 0,02 \text{ Tm}$$

Таблица 2:

X_m , дел	Y_m , дел	H_m , A/m	B_m , Тл	μ_m
2,8	2,7	87,895	0,048037	434,90

Расчет магнитной проницаемости μ :

$$\mu = \frac{B_m}{\mu_o \cdot H_m} = 434,91$$

Площадь петли S:

$$S = 6.4 \, \text{дел}^2$$

Расчет коэффициента χ

$$\chi = K_x \cdot K_y \cdot \frac{N_1 \cdot R_2 \cdot C_1}{N_2 \cdot R_1} \cdot f = 100 \cdot 50 \cdot \frac{1665 \cdot 470000 \cdot 0,47 \cdot 10^{-6}}{970 \cdot 68} \cdot 40 = 111,52 \; Дж/с$$

Средняя мощность P, расходуемая на перемагничивание образца:

$$P = \chi \cdot S_{\text{пг}} = 111,52 \cdot 6,4 = 713,74$$
 Вт

9 Графики

10 Окончательные результаты:

```
H_c=37,67 {\rm A/m} B_r=0,02 {\rm Tr} \mu=410,02 P=713,74 {\rm Br} \mu_{max}=501,13 при H=33,9 {\rm A/m}
```

11 Выводы и анализ результатов работы

В результате выполнения лабораторной работы 3.07 были изучены свойства ферромагнетиков, измерены зависимости магнитной индукции от напряженности магнитного поля, изучено, что такое предельная петля гистерезиса, а также определены по ней значения индукции насыщения, остаточной индукции и коэрцитивной силы. В процессе обработки результатов измерений мы получили зависимость магнитной проницаемости от напряженности магнитного поля, нашли и оценили максимальное значение величины магнитной проницаемости. (Команда) Бригада «НЕЙРОТЕХ» очень старалась, разбираясь с незнакомыми словами в методичке и осваивая такие приборы для измерений, как сциллограф и генератор.