Enhancing Genomic Foundation Model Robustness through Iterative Black-Box Adversarial Training

Adversarial Attacks on Genomic Foundation Models

Jeyashree Krishnan Ajay Mandyam Rangarajan

RWTH Aachen University

September 2025

Apart Research CBRN AI Risks Research Sprint

Outline

- 1. Genomic Foundation Models (GFMs)
- 2. DNABERT-2 Architecture
- 3. Adversarial Attack Types
- 4. Attack Methods
- 5. Genetic Algorithm Implementation
- 6. Biological Plausibility
- 7. Promoter Dataset
- 8. Iterative Training Process
- 9. Results
- 10. Conclusions and Next Steps

What are Genomic Foundation Models?

Definition: Large-scale neural networks pre-trained on massive genomic datasets to learn general representations of DNA sequences.

Key Characteristics:

- Pre-trained on millions of genomic sequences
- ► Learn general patterns in DNA structure and function
- ► Can be fine-tuned for specific tasks (classification, prediction)
- ► Transfer learning capabilities across different genomic tasks

Examples:

- ► DNABERT-2: BERT-based architecture for genomic sequences
- ► Nucleotide Transformer: Transformer-based model
- ► DNABERT: Original BERT adaptation for DNA

Why GFMs Matter

Applications:

- ► Promoter prediction
- ► Enhancer identification
- ► Splice site detection
- ► Transcription factor binding prediction
- ► Disease variant classification

Clinical Impact:

- ► Automated genomic analysis
- Personalized medicine
- Drug discovery
- ► Diagnostic tools

Critical Question

How robust are these models to adversarial attacks in clinical settings?

DNABERT-2: Tokenizer

BPE (Byte Pair Encoding) Tokenization:

- ► Breaks DNA sequences into meaningful sub-sequences
- ► Learns frequent k-mer patterns during pre-training
- ► Handles variable-length sequences efficiently
- ► Captures biological motifs and patterns

Example:

```
\mathtt{ATCGATCG} 	o [\mathtt{ATCG}] [ATCG] or [ATC] [GAT] [CG]
```

Advantages over character-level:

- ▶ Better representation of biological motifs
- ► Reduced sequence length
- ► Improved computational efficiency

DNABERT-2: Classification Head

Architecture:

- ▶ 12 transformer layers, 768 hidden dimensions
- ► 117M total parameters
- Frozen encoder (pre-trained representations)
- ► Trainable classification head (296K parameters)

Training Strategy:

- ► Pre-trained on large-scale genomic data
- ► Fine-tune only classification head for specific tasks
- Preserves learned genomic representations
- ► Efficient transfer learning approach

For Binary Classification:

 $[\mathtt{CLS}] \ \ \mathsf{token} \to \mathtt{Linear} \ \ \mathsf{layer} \to \mathtt{Sigmoid} \to \mathtt{Probability}$

Targeted vs Untargeted Attacks

Untargeted Attack:

- ► Goal: Change model prediction to any incorrect class
- ightharpoonup Example: Class A ightharpoonup Not Class A
- ► Easier to achieve, less specific

Targeted Attack:

- ► Goal: Change model prediction to a specific incorrect class
- ► Example: Class A → Specific Class B
- ► Harder to achieve, more specific

Binary Classification Special Case

For binary classification: **Targeted = Untargeted**

- ► Only two classes: Class A and Class B
- ► Changing from A to B is both targeted and untargeted
- ▶ No distinction between attack types

Universal Adversarial Attacks

Definition: Single perturbation that fools the model on multiple inputs

Example:

- ► Find nucleotide substitution pattern
- ► Apply same pattern to different sequences
- Model misclassifies multiple sequences

Threat Level:

- ► High: One attack affects many samples
- Practical for real-world deployment
- ► Difficult to defend against

Genomic Context:

- Motif-based universal attacks
- ► GC content manipulation
- ► Regulatory element disruption

Nucleotide Substitutions

Method: Replace individual nucleotides (A, T, C, G) in the sequence

Example:

Original: ATCGATCGATCG Adversarial: ATCGTTCGATCG

Change: Position 5: $A \rightarrow T$

Characteristics:

- ► Minimal changes (2-3 nucleotides)
- ► High attack success rate
- ► Biologically plausible
- ► Easy to implement

Our Results: 20-50% attack success with only 2 average nucleotide edits

Codon Replacements

Method: Replace entire codons (3-nucleotide sequences) while preserving amino acid meaning

Example:

Original: ATG (Methionine) Adversarial: ATA (Methionine)

Change: Synonymous codon substitution

Advantages:

- ► Preserves protein function
- ► More biologically realistic
- ► Harder to detect
- ► Maintains amino acid sequence

Challenge: Requires understanding of genetic code and codon usage

Other Attack Methods

Insertions/Deletions:

- ► Add or remove nucleotides
- Can cause frameshift mutations
- ▶ More dramatic changes

Inversions:

- ► Reverse sequence segments
- ► Maintain nucleotide composition
- ► Disrupt regulatory motifs

Duplications:

- ► Repeat sequence segments
- Common in genomic evolution
- ► Can affect gene expression

Our Focus: Nucleotide substitutions for simplicity and effectiveness

Genetic Algorithm for Adversarial Generation

Implementation: Using DEAP (Distributed Evolutionary Algorithms in Python)

Algorithm Components:

- ▶ Population size: 50-100 individuals per generation
- ► Mutation rate: 0.3 (30% of nucleotides can be mutated)
- ► Crossover rate: 0.9 (90% probability of genetic crossover)
- ► Max generations: 100-200 generations
- ► Convergence threshold: 20 generations without improvement

Fitness Function:

```
\label{eq:fitness} \textbf{Fitness} = \alpha \cdot \texttt{confidence\_drop} - \beta \cdot \texttt{num\_perturbations} - \gamma \cdot \\ \texttt{biological\_violations}
```

Selection Strategy:

- ► Tournament selection with size 3
- ► Elitism: Keep best individuals

Genetic Algorithm Process

Step 1: Initialization

- Create random population of sequences
- ► Apply small random mutations to original sequence

Step 2: Evaluation

- ► Test each sequence against target model
- Calculate fitness based on attack success and biological constraints

Step 3: Selection and Reproduction

- ► Select parents using tournament selection
- Create offspring through crossover and mutation
- Apply biological constraints during mutation

Step 4: Termination

- ► Stop when attack succeeds or max generations reached
- ► Return best adversarial example found

Why Biological Plausibility Matters

Clinical Relevance:

- ► Adversarial examples must be realistic threats
- ► Unrealistic attacks don't represent real-world risks
- ► Clinical applications require biologically valid sequences

Research Validity:

- ► Results must be interpretable by biologists
- ► Attack methods should reflect natural variation
- Findings should inform real-world security measures

Key Insight

Adversarial examples that violate biological constraints are not meaningful threats in genomic applications.

Biological Constraints

GC Content Preservation:

- ► Maintain original GC percentage (±5%)
- Affects DNA stability and structure
- ► Important for regulatory function

Transition Preferences:

- ightharpoonup Prefer A \leftrightarrow G, C \leftrightarrow T mutations
- ► More common in natural evolution
- ► Biologically realistic substitution patterns

Motif Preservation:

- ► Maintain known regulatory motifs
- Preserve transcription factor binding sites
- ► Keep functional sequence elements

Stop Codon Avoidance:

► Prevent premature stop codons

Promoter Dataset Overview

Dataset: Binary promoter classification task

Size:

- ► Training: 47,356 sequences
- ► Validation: 5,920 sequences
- ► Test: 5,920 sequences

Sequence Properties:

- ► Length: 300 base pairs
- ► Classes: Promoter vs Non-promoter
- ► Includes TATA and non-TATA promoters

Why This Dataset?

- ► Well-established benchmark
- Binary classification (simplifies attack analysis)
- ► Clinically relevant (gene regulation)
- ► Challenging task requiring sequence understanding

Promoter Dataset: Biological Context

Promoters:

- ► Regulatory DNA sequences
- Control gene expression
- ► Located upstream of genes
- ► Contain transcription factor binding sites

Classification Challenge:

- ► Distinguish functional promoters from random sequences
- ► Requires understanding of regulatory motifs
- ► Tests model's ability to recognize biological patterns

Clinical Relevance:

- Disease-associated promoter mutations
- ► Drug target identification
- Personalized medicine applications

Iterative Adversarial Training Algorithm

Algorithm 1 Iterative Adversarial Training

- 1: **Input:** Original dataset D_{orig} , number of iterations T
- 2: Train initial model M_0 on D_{orig}
- 3: **for** i = 1 to T **do**
- 4: Generate adversarial examples A_i against model M_{i-1}
- 5: Combine datasets: $D_i = D_{i-1} \cup A_i$
- 6: Train model M_i on D_i (full dataset + adversarial examples)
- 7: Save model M_i
- 8: end for
- 9: **Output:** Robust model M_T

Key Points:

- ► Train on full dataset + new adversarial examples
- ► Frozen encoder, trainable classification head
- ► Iterative improvement of robustness

Training Process Details

Stage 1: Initial Training

- ► Train on original 47K promoter sequences
- ► Achieve baseline performance (93.73% accuracy)
- Establish vulnerability baseline

Stage 2: Iterative Adversarial Training

- ► Generate 25-60 adversarial examples per iteration
- ► Add to full original dataset (0.13% of training data)
- ► Retrain classification head on combined dataset
- ► Repeat for 5 iterations

Expected Pattern:

- ► Iteration 1: Attack success increases (model learns adversarial patterns)
- ► Iteration 2+: Attack success decreases (model becomes robust)
- ► Clean accuracy maintained throughout

Comprehensive Results Overview

Biological Plausibility Results

Maintained Throughout Training:

- ► GC content preservation
- ► Regulatory motif conservation
- ► Transition preference patterns
- ► Biological sequence properties

Training Dynamics

Iteration 0 (Baseline):

- ▶ 93.73% test accuracy
- ► High vulnerability to attacks
- ► 2-3 nucleotide edits sufficient

Iteration 1 (First Adversarial Training):

- ► Attack success rate increases
- ► Model learns specific adversarial patterns
- ▶ 94.09% accuracy with 25 adversarial examples

Iteration 2+ (Robustness Improvement):

- Attack success rate decreases
- Model generalizes against adversarial patterns
- ► 94.04% accuracy maintained

Key Achievements

Attack Effectiveness:

- ▶ Minimal adversarial examples (0.13%) can threaten model
- ► Only 2 average nucleotide edits needed
- ► High attack success rates (20-50%)

Robustness Improvement:

- Iterative training increases attack difficulty
- ► Clean accuracy preserved at 94%

Biological Validity:

- All constraints maintained throughout training
- ► Realistic adversarial examples generated
- Clinically relevant attack scenarios

Key Contributions

First Iterative Black-Box Attack Framework:

- ► Novel approach for genomic foundation models
- ► Genetic algorithm-based adversarial generation
- ► Biological constraint integration

Significant Findings:

- DNABERT-2 highly vulnerable to minimal perturbations
- ► Iterative training improves robustness
- ► Biological plausibility essential for realistic threats

Clinical Implications:

- Highlights security risks in genomic AI
- Provides pathway for robustness improvement
- ► Informs safety evaluation protocols

Future Directions

Immediate Extensions:

- ► Multi-class classification tasks
- ► Additional genomic foundation models
- ► Diverse attack methods evaluation

Advanced Attacks:

- ► Universal adversarial examples
- ► Transfer attacks across models
- ► Real-time attack generation

Defense Mechanisms:

- ► Adversarial training improvements
- Detection methods for adversarial examples
- ► Robust architecture design

Clinical Applications:

► Safety evaluation protocols

Thank You!

Questions?

Robust Iterative Black-Box Attack on GFMs for Classification Problems

Jeyashree Krishnan - RWTH Aachen University Ajay Mandyam Rangarajan - RWTH Aachen University Code

available at:

https://github.com/krishnanj/adversarial_attack_gfm.git