2013-2014 学年数学类实变函数期末考试

- $-.(15\ eta)$ 设 A 为非可数的实数集合,证明存在整数 n,使得 $A\bigcap[n,n+1]$ 为非可数集。
 - 二.(15 分) 设 $\{I_{\alpha}\}_{\alpha\in A}$ 为一族长度大于零的区间,证明: $E=\bigcup_{\alpha\in A}I_{\alpha}$ 可测。
- 三. $(15 \, f)$ 设 f 是可测集 E 上的可测函数,证明:对任意整数 f ,函数 $|f|^p$ 也是 E 上的可测函数。
 - 四. $(15\, \mathcal{G})$ 设 f(x) 是区间 (0,1) 上的 Lebesgue 可积函数,求极限 $\lim_{n\to\infty}\int_{(0,1)}\frac{1}{1+e^{nf(x)}}dm$.
- 五.(10 分) 设 f_n, f, g 为可测集 E 上的可测函数, 如果在 E 上 $f_n \xrightarrow{m} f$, 并且 $f_n \xrightarrow{m} g$, 证明: $f = g, a.e. \ x \in E$.
- 六.(10 分) 设 f 于 $(0,\infty)$ 连续且 Lebesgue 可积,证明广义 Riemann 积分 $\int_0^\infty f(x)dx$ 收敛。
- 七.(10 分) 设 f 于 [a,b] 可积且对任意区间 $I \subseteq [a,b]$ 有 $\int_I f dm \geq |I|$. 证明: $f(x) \geq 1, a.e. \ x \in [a,b]$.
 - 八.(10分)请举出一个在[0,1]上的有界变差但不是绝对连续的函数(不用证明)。