B.Sc. Semester – III

Subject: STATISTICS
Discipline Specific Course (DSC)

The course STATISTICS in III semester has two papers (Theory Paper –I for 04 credits & Practical Paper -II for 2 credits) for 06 credits: Both the papers are compulsory. Details of the courses are as under.

Course No.-3 (Theory): 21BSC3C3STS1L

Year	Ш	Course Code: 21BSC3C3STS1L		Credits	04
Sem.	III	Course Title: Calculus	Hours	56	
Course Pre-requisites, if any			NA		
Formative Assessment Marks: 40		sessment Marks: 40	Summative Assessment Marks: 60	Duration of ESA:.02 hrs.	

Course Outcome (CO):

After completion of course (Theory), students will be able to:

- CO 1 Judge continuity of a function, find integrations and solve problems of differentiability.
- CO 2 Solve problems of various analytical environments using different distributions and their properties.
- CO 3 Find sampling distributions of functions of random variables and explore their applications.

Syllabus- Course 3 (Theory): 21BSC3C3STS1L : Title- Calculus and Probability	Total Hrs: 56
Distributions	
Unit-I: Calculus of one and more variables	15 hrs
Review of calculus of one variable: continuity, differentiability, mean value theorem	
and Taylor series expansion. Functions of several variables: Continuity, directional	
derivatives, differentials of functions of several variables, the gradient vector. The mean	
value theorem, a sufficient condition for the existence of the differential, partial	
derivatives of higher order and Taylor's formula. Applications of partial differentiation,	
Jacobians. Riemann integrals, integration by parts, mean value theorem. Multiple	
integrals and evaluation of multiple integrals by repeated integration, Mean-value	
theorem for multiple integrals. Sequences and Series of real numbers. convergence of	
sequences and series, tests for convergence of series. (Only results and applications)	
Unit-II Distribution of Random Variables (Two-dimensional)	12 hrs
Two dimensional random variables: Joint distribution, Marginal distribution and	
Conditional distributions of random variables, conditional expectation, covariance,	

correlation and moments.	
Distribution of functions of random variables using m.g.f. and distribution function.	
Transformation of variable technique (one and two variables).	
Chebyshev's inequality- proof and its use in approximating probabilities; Statements of	
Weak Law of Large Numbers; Convergence in law and Central Limit theorems – De-	
Moivre. (Some simple examples)	
Unit-III Probability Distributions-II	16 hrs
Discrete distributions: Rectangular, Geometric, Negative Binomial, Hypergeometric,	
Multinomial- definition through probability mass function, mean, variance, moments,	
p.g.f., m.g.f., other properties and applications.	
Continuous distributions: Uniform, Gamma, Exponential, Beta (type 1 and type 2),	
Cauchy, Weibull– definition through probability density function, mean, variance,	
moments, m.g.f., other properties and applications.	
Bivariate normal distribution- definition through probability density function, marginal	
and conditional distribution.	
Unit-IV Sampling Distributions and Simulation	13 hrs
Definitions of random sample, parameter and statistic, sampling distribution of sample	
mean, standard error of sample mean, sampling distribution of sample variance, standard	
error of sample variance.	
Exact sampling distributions: Chi square distribution- mean, variance, moments, mode,	
additive property. Student's and Fisher's t-distribution- mean, variance, moments and	
limiting form of t distribution. Snedecor's F-distribution: mean, variance and mode.	
Distribution of 1/F. Relationship between t, F and χ2 distributions. Introduction to simulation. Generation of random observations from Uniform,	
Exponential, Normal, Binomial, Poisson distributions using inverse-method and R-	
codes.	
D. I.	

Books recommended.

- 1. Andre I Khuri (2003). Advanced Calculus with Applications in Statistics, Second Edition, John Wiley & Sons.
- 2. Ghorpade, S. R. and Limaye, B. V. (2006). A Course in Calculus and Real Analysis, Springer
- 3. Gupta S.C. and V.K. Kapoor (2020), Fundamental of Mathematical Statistics, Sultan Chand and Co. 12th Edition.
- 4. Hogg, R. V. McKean J. W. and Craig, A. T. (2012), Introduction to Mathematical Statistics, Pearson 7th Edition.
- 5. Hogg, R.V., Tanis, E.A. and Rao J.M. (2009), Probability and Statistical Inference,10th Edition, Pearson Education, New Delhi.
- 6. Jay Kerns, G. (2010). Introduction to Probability and Statistics using R. 1st Edition, Springer.
- 7. Rohatgi, V.K. and A.K. Md. Ehsanes Saleh. (2002). An Introduction to Probability Theory and Mathematical Statistics, New York, John Wiley.
- 8. Ross, S. M. (2014). Introduction to Probability Models. 11th Edition, Elsevier science.

- 9. Ross, S. M. (2012). Simulation. Academic Press.
- 10. Shanthi Narayana (2000), Integral Calculus, S. Chand & Co. Ltd.
- 11. Shanti Narayana (2000). Differential Calculus, S. Chand & Co. Ltd.
- 12. Verzani, J. (2002). Simple R Using R for Introductory Statistics.

Course No.-03 (Practical): 21BSC3C3STS1P

Year	Ш	Course Code: 21BSC3C3STS1P		Credits	02
Sem.	III	Course Title: Practical		Hours	52
Course Pre-requisites, if any		equisites, if any	NA		
Formative Assessment Marks: 25		sessment Marks: 25	Summative Assessment Marks: 25	Duration of E	SA:.03 hrs.

Course Outcome (CO):

After completion of course (Practical), students will be able to gain:

- CO 1 Practical knowledge of handling various types of R-functions for calculus and probability distributions.
- CO 2 Practical knowledge of carrying out numerical analysis.
- CO 3 The knowledge of simulating random observations from various probability distributions using R.

List of the Experiments for 52 hrs / Semesters

Note: The first practical assignment is on R-programming. Practical assignments 2 to 10 have to be first solved manually (using scientific calculators) and executed using R-programming.

- 1. Demonstration of R functions for calculus, distribution of random variables, probability distributions, sampling distributions, simulation.
- 2. Numerical differentiation and integration.
- 3. Bivariate Probability Distributions Marginal and Conditional distributions,
- 4. Bivariate Probability Distributions Conditional Mean, Conditional Variance, Correlation.
- 5. Applications of Chebyshev's inequality (For standard distributions such as Normal, Exponential, Gamma).
- 6. Applications of discrete probability distributions Negative Binomial, Geometric, Hyper geometric and discrete uniform, multinomial distributions.
- 7. Applications of continuous probability distributions Exponential, Gamma, Cauchy, Weibull distributions.
- 8. Fitting of discrete and continuous distributions.

- 9. Generating random sample from discrete distributions.
- 10. Generating random sample from continuous distributions.

General instructions:

Computation of all the practicals manually and using Excel

Scheme of Practical Examination (distribution of marks): 25 marks for Semester end examination

Students have to attempt 3 practical questions out of four practical questions given, each carrying 7 marks.

- 1. 7 Marks
- 2. 7 Marks
- 3. 7 Marks
- 4. Viva 2 Marks
- 5. Journal 2 Marks

Total 25 marks

Note: Same Scheme may be used for IA(Formative Assessment) examination

Books recommended.

- 1. Andre I Khuri (2003). Advanced Calculus with Applications in Statistics, Second Edition, John Wiley & Sons.
- 2. Ghorpade, S. R. and Limaye, B. V. (2006). A Course in Calculus and Real Analysis, Springer
- 3. Gupta S.C. and V.K. Kapoor (2020), Fundamental of Mathematical Statistics, Sultan Chand and Co. 12th Edition.
- 4. Hogg, R. V. McKean J. W. and Craig, A. T. (2012), Introduction to Mathematical Statistics, Pearson 7th Edition.
- 5. Hogg, R.V., Tanis, E.A. and Rao J.M. (2009), Probability and Statistical Inference, 10th Edition, Pearson Education, New Delhi.
- 6. Jay Kerns, G. (2010). Introduction to Probability and Statistics using R. 1st Edition, Springer.
- 7. Rohatgi, V.K. and A.K. Md. Ehsanes Saleh. (2002). An Introduction to Probability Theory and Mathematical Statistics, New York, John Wiley.
- 8. Ross, S. M. (2012). Simulation. Academic Press.
- 9. Verzani, J. (2002). Simple R Using R for Introductory Statistics.

B.Sc. Semester – III (OEC)

Subject: POPULATION STUDIES

(OEC for other students)

Year	II	Course Code: 21BSC303STS3 Course Title: POPULATION STUDIES		Credits	03
Sem.	III			Hours	42
Course Pre-requisites, if any			NA		
Formative Assessment Marks: 40		sessment Marks: 40	Summative Assessment Marks: 60	Duration of ESA:.02 hrs.	

After completion of course, students will be able to:

- **CO 1 :** Study the concepts of Vital Statistics, sources of data, different measures of Fertility, Mortality and migration.
- CO 2: Understand the Growth rates- GRR and NRR and their interpretations.

Syllabus- OEC: 21BSC303STS3: Title- POPULATION STUDIES	Total Hrs: 42
Unit-I Introduction and Sources of Population Data	14 hrs
History, definition, nature and scope of population Studies. Sources of population data –	
salient features of Census, Civil Registration System, National Sample Surveys,	
Demographic Surveys, relative merits and demerits of these sources. Coverage and	
content errors. Use of balancing equations, Chandrasekar-Deming formula to check	
completeness of vital registration data, use of Whipple's, Myer's and UN indices.	
Unit-II Fertility, Mortality	14 hrs
Basic concepts and terms used in the study of fertility. Measures of fertility- Crude	
Birth Rate (CBR), General Fertility Rate (GFR), Age Specific Fertility Rate (ASFR),	
Total Fertility Rate (TFR), Birth order statistics, Child Women ratio. Measures of	
reproduction- Gross Reproduction Rate (GRR)and Net Reproduction rate(NRR).	
Measurement of population growth rate- simple growth rate and compound growth.	
Basic concepts and terms used in the study of mortality. Measures of mortality- Crude	
Death Rate (CDR), Age Specific Death Rate (ASDR), Direct and Indirect Standardized	
Death rates, Infant Mortality Rate (IMR), Under-five mortality Rate, Neo-natal	
mortality rate, Post-natal mortality rate; Maternal Mortality Rate (MMR).	
Unit-III Life tables and Population change	14 hrs
Life tables: Components of a life table, force of mortality and expectation of life table,	
types of life tables. Construction of life tables using Reed-Merrell's method, Greville's	
method. Uses of life tables.	

Basic concepts and definition of population change, migration. Types of migration-internal and international, factors affecting migration. Rates and ratios of Migration-Indirect measures of net-internal migration, national growth rate method, residual method, push-pull factors Population estimates and projections.

Books recommended.

- 1. Barclay, G, W(1968). Techniques of Population Analysis, John Wiley and Sons, Incs. New York/London.
- 2. Keyfitz, H (1968). Introduction to the Mathematics of Population. Addison-Wesley Publishing Co.
- 3. Pathak, K.B and Ram, F (1991). Techniques of Demographic Analysis, Himalaya Publishing House.
- 4. Ramakumar. R (1986). Technical Demography, Wiley Eastern Ltd.
- 5. Srinivasan. K (1998). Basic Demographic Techniques and Applications, Sage Publication, New Delhi.
- 6. Wunsch G.J. & M.G. Tarmota(1978). Introduction to Demographic Analysis, Plenum Press, N.Y.

Details of Formative assessment (IA) for DSCC theory/OEC: 40% weight age for total marks

Type of Assessment	Weight age	Duration	Commencement
Written test-1	10%	1 hr	8 th Week
Written test-2	10%	1 hr	12 th Week
Seminar	10%	10 minutes	
Case study / Assignment	10%		
/ Field work / Project			
work/ Activity			
Total	40% of the maximum marks allotted for the paper		