Main Components in a Gaussian Linear Response Model

- ► Gaussian linear response models have two main components:
 - \triangleright $E(Y_i)$ is a *linear* combination of observed covariates with unknown coefficients
 - The random variable Y_i , given any covariates x_i , has a Gaussian distribution with constant standard deviation σ
- This last assumption is the **homoscedasticity** assumption
- We can use graphical means to check our assumptions

When only one covariate x is involved, we can use a scatterplot

If we have more than one covariate, we can use residual plots

Residuals

Recall:

In simple linear regression, each Yi can be expressed as

Residuals should behave roughly like a random sample from a G(0,0) distribution

residuals

▶ It is common to use **standardized residuals**:

$$\hat{r}_i^* = \frac{\hat{r}_i}{s_e} = \frac{y_i - \mu(\hat{x}_i)}{s_e} = \frac{y_i - \hat{\alpha} - \hat{\beta}x_i}{s_e}$$

 \triangleright Since the \hat{r}_i 's behave as a random sample from a $G(0, \sigma)$ distribution, the \hat{r}_i^* 's behave as a random sample from a G(0,1) distribution

- ► There are three types of residual plots we can consider:
 - ► Scatterplot of the points (x_i, \hat{r}_i^*)
 - Scatterplot of the points $(\mu(\hat{x}_i), \hat{r}_i^*)$
 - ► Gaussian Qqplot of \hat{r}_i^* 's

Y-axis: standardized residuals

Note that standardized residuals should follow G(0,1).

- · We want an equal number of datapoints below and above the 0 line, and no discernible shapes
- Should be more or less bounded between -3 and 3 (3 standard deviations away)

X-axis — fitted values (either covariate, or linear combination of covariate)

Probably a likelihood ratio test question on the quiz