ГУАП

КАФЕДРА № 42

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ							
ПРЕПОДАВАТЕЛЬ							
Профессор должность, уч. степень, звание	подпись, дата	Татарникова Т. М. инициалы, фамилия					
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №1							
Система массового обслуживания (СМО)							
Вариант 5							
по кур	су: Моделирование си	истем					

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГР. №	4128		Воробьев В. А.
		подпись, дата	инициалы, фамилия

СОДЕРЖАНИЕ

1	Пос	тановка задачи	3
	1.1	Задание	
	1.2	Вариант задания	
	1.3	Требование к отчету	3
2	Выг	полнение работы	4
	2.1	Интерпретация модели	4
	2.2	Математическая модель	4
	2.3	Расчет характеристик	4
3	Вын	вод	7

1 Постановка задачи

1.1 Задание

Интерпретировать задачу в терминах СМО и рассчитать требуемые характеристики.

1.2 Вариант задания

Вариант 5: СМО - билетная касса с одним окошком (N=1) и неограниченной очередью. Касса продаёт билеты в пункты A и B. Пассажиров, желающих купить билет в пункт A, проходит в среднем трое за 20 мин, пункт B - двое за 20 мин. Поток пассажиров можно считать простейшим. Кассир в среднем обслуживает трёх пассажиров за 10 мин. Время обслуживания - показательное. Определить: среднее число пассажиров в кассе, среднее число пассажиров в очереди, среднее время, которое проводят пассажиры в кассе, среднее время простаивания пассажиров в очереди. Проверьте эффективность предложения о том, чтобы продавать билеты в разные пункты соответственно в разных окнах.

1.3 Требование к отчету

- Описание задачи и ее интерпретация в модели СМО.
- Математическая модель СМО.
- Расчет характеристик СМО.
- Анализ результатов расчета СМО (предложения).

2 Выполнение работы

2.1 Интерпретация модели

Данная задача может быть интерпретирована в рамках СМО (системы массового обслуживания), где касса представляет собой узел обслуживания, а поток пассажиров образует входящий поток в систему. Также можем утверждать, что СМО имеет неограниченную очередь.

В данной формулировки задачи можем выявить следующие значения:

$$\lambda_A = \frac{3}{20} \cdot 60 = 9$$
 пассажиров в час $\lambda_A = \frac{2}{20} \cdot 60 = 6$ пассажиров в час $\mu = \frac{3}{10} \cdot 60 = 18$ пассажиров в час

Определить:

- 1. среднее число пассажиров в кассе;
- 2. среднее число пассажиров в очереди;
- 3. среднее время, которое проводят пассажиры в кассе;
- 4. среднее время простаивания пассажиров в очереди.

Проверить:

• эффективность предложения о том, чтобы продавать билеты в разные пункты соответственно в разных окнах. Или иначе найти среднюю характеристику для двух отдельных СМО.

2.2 Математическая модель

Для составление математической модели на основе нашей интерпретации воспользуемся формулами 1 - 7.

$$\rho = \frac{\lambda}{\mu},\tag{1}$$

где:

- ρ интенсивность трафика, то есть среднее число заявок в системе;
- λ интенсивность входного потока, то есть среднее число заявок, поступающих в систему за единицу времени;
- μ интенсивность обслуживания, то есть среднее число заявок, обслуживаемых системой за единицу времени.

$$L_{ou} = \frac{\rho^2}{1 - \rho},\tag{2}$$

где:

• L_{oq} - среднее число заявок в очереди;

$$T_{ou} = \frac{L_{ou}}{\lambda},\tag{3}$$

где:

• T_{oq} - среднее время пребывания заявки в очереди;

$$L_{o\delta} = \rho, \tag{4}$$

где:

• $L_{o \bar{o}}$ - среднее число заявок на обслуживании.

$$T_{o\delta} = \frac{\rho}{\lambda},\tag{5}$$

где:

• $T_{o ar{o}}$ - среднее время обслуживания заявки.

$$L_{cucm} = L_{o\delta} + L_{o4}, \tag{6}$$

где:

• $L_{\it cucm}$ - среднее число заявок в системе.

$$T_{cucm} = T_{o\delta} + T_{o\nu}, \tag{7}$$

где:

• T_{cucm} - среднее время пребывания заявки в системе.

2.3 Расчет характеристик

Для расчета характеристик был написан скрипт на Python, который изображен ниже. Выбор пал на Python ввиду его простоты, удобства и хорошей поддержке математических операций.

```
def print_map(map):
    for key in sorted(map):
        print(f"{key} = {round(map[key],2)}")

def calculate_system_metrics(lmbda, mu):
```

```
7
        rho = lmbda / mu
 8
        if(rho > 1):
9
             print ("Бесконечное число состояний")
10
             return
        L queue = rho * rho / (1 - rho)
11
12
        T queue = L queue / lmbda
13
14
        L_service = rho
15
        T service = rho / lmbda
16
17
        return {
18
             'rho': rho,
19
             'L queue ': L queue,
20
             'T queue ': T queue,
             'L service ': L service,
21
22
             'T_service': T_service,
23
             'L system': L queue + L service,
24
             'T system': T queue + T service,
25
        }
26
27
    ab = calculate system metrics (9+6, 18)
28
29
    a = calculate system metrics (9, 18)
30
    b = calculate system metrics (6, 18)
31
32
    print map(ab)
33
    print()
34
    sum_ab = \{key: (a[key] + b[key])/2 \text{ for key in } set(a) \& set(b)\}
35
    print_map(sum_ab)
```

В скрипте выводятся характеристики для очереди с одним окном ab и с раздельными окнами sum ab.

На основе вычислений была составлена таблица 1.

Таблица 1 - Значения СМО

	ρ	L_{oq}	T_{oy}	$L_{o\delta}$	$T_{o\tilde{o}}$	L_{cucm}	T_{cucm}
AB	0.82	4.17	0.28	0.83	0.06	5.0	0.33
A + B	0.42	0.33	0.04	0.42	0.06	0.75	0.1

3 Вывод

В результате выполнения работы мы провели анализ системы массового обслуживания (СМО), интерпретировав задачу в рамках данной модели. Мы использовали математические формулы для расчета основных характеристик СМО, таких как среднее число пассажиров в кассе, среднее число пассажиров в очереди, среднее время, которое проводят пассажиры в кассе, и среднее время простаивания пассажиров в очереди.

С помощью написанного нами скрипта на Python, мы провели расчеты и получили конкретные значения для каждой из характеристик. Эти данные позволили нам сделать вывод о том, что продажа билетов в разные пункты в разных окнах является **более эффективной** стратегией, поскольку среднее время пребывания пассажира в системе существенно сокращается.

Таким образом, на основе проведенного анализа и полученных результатов, мы можем рекомендовать внедрение предложенной стратегии для улучшения работы кассы и сокращения времени ожидания для пассажиров.