# STA257: Probability and Statistics 1

Instructor: Katherine Daignault

Department of Statistical Sciences University of Toronto

Week 5

#### Outline

- Functions of a Random Variable (Chapter 2.3)
  - Generalized Normal Distribution
    - Chi-Square Distribution
    - Monotone Transformation Method
    - Transformations with the Uniform Distribution

#### Outline

# Functions of a Random Variable (Chapter 2.3) Generalized Normal Distribution

Chi-Square Distribution
Monotone Transformation Method
Transformations with the Uniform Distribution

#### Calculus Refresher - Derivatives

- This week isn't too calculus heavy you will just need to remember derivatives.
- Notation: the first derivative of a function f(x) is denoted by  $f'(x) = \frac{d}{dx}f(x)$
- Some useful results:
  - if  $f(x) = x^r$  then  $f'(x) = rx^{r-1}$
  - $f(x) = e^x = f'(x)$  but if  $f(x) = a^x$  then  $f'(x) = a^x \ln(a)$
  - if f(x) = In(x) then f'(x) = 1/x
- Rules of derivatives:
  - ▶ Product rule: (fg)' = f'g + g'f
  - Quotient rule:  $\left(\frac{f}{g}\right)' = \frac{f'g g'f}{g^2}$
  - ▶ Chain rule: if f(x) = h(g(x)) then  $f'(x) = h'(g(x)) \times g'(x)$

### Normal Distribution Functions - Recap

Recall from last week: the PDF of a Normal random variable is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}, -\infty < x < \infty$$

- Behaviour is dictated by two parameters:
  - $\mu \in \mathbb{R}$ : mean, represents the centre of the distribution
  - $\sigma > 0$ : standard deviation, represents the spread/variability of the distribution
- A special case is the **Standard Normal** distribution, where  $\mu=0$  and  $\sigma=1$ , where we sometimes use  $Z\sim N(0,1)$  to distinguish from other Normals

### Normal Distribution Functions - Recap

- Recall also that the Normal distribution does not have a closed-form expression for the CDF.
- However, we may consider the CDF of the standard Normal distribution:

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

as an integral over the standard Normal PDF.

- Again this has no closed-form solution, but it has been evaluated using numerical techniques.
- ▶ Thus computing probabilities using the CDF  $\Phi(z)$  is done through tables of standard Normal values (see Appendix B of the textbook).

# Standard Normal CDF Table - Recap

TABLE 2 Cumulative Normal Distribution—Values of P Corresponding to  $z_p$  for the Normal Curve



z is the standard normal variable. The value of P for  $-z_p$  equals 1 minus the value of P for  $+z_p$ ; for example, the P for -1.62 equals 1-.9474=.0526.

| $z_p$ | .00            | .01            | .02            | .03            | .04            | .05            | .06            | .07            | .08            | .09            |
|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| .0    | .5000<br>.5398 | .5040<br>.5438 | .5080<br>.5478 | .5120<br>.5517 | .5160<br>.5557 | .5199<br>.5596 | .5239<br>.5636 | .5279<br>.5675 |                | .5359<br>.5753 |
| .2    | .5793<br>.6179 | .5832<br>.6217 | .5871<br>.6255 | .5910<br>.6293 | .5948          | .5987<br>.6368 | .6026<br>.6406 | .6064<br>.6443 | .6103<br>.6480 | .6141<br>.6517 |
| .4    | .6554          | .6591          | .6628          | .6664          | .6700          | .6736          | .6772          | .6808          | .6844          | .6879          |

- ▶ Thus, if there were a way to move from some  $N(\mu, \sigma^2)$  to the N(0,1), then we would be able to compute probabilities using the standard Normal table.
- Turns out we can!
- We need to be able to transform a Normal RV X to a standard Normal RV Z, by manipulating the CDF.
- ► This involves writing one RV as a function of another RV, and finding the new PDF or CDF.
- ▶ These functions can be anything, but let's start with a simple one: Y = aX + b, where a > 0.

- ▶ Suppose that  $X \sim N(\mu, \sigma^2)$ , and we are interested in the CDF for the transformed variable Y = aX + b, where a > 0.
- ▶ We can start by directly writing the definition of the CDF of Y:  $F_Y(y) = P(Y \le y)$
- Since we know the CDF of X, we just need to rewrite  $F_Y(y)$  in terms of X:

$$F_Y(y) = P(Y \le y) = P(aX + b \le y)$$
$$= P\left(X \le \frac{y - b}{a}\right)$$

▶ But I know what the CDF of X is:

$$F_{\mathbf{Y}}(y) = P\left(X \le \frac{y-b}{a}\right) = F_{\mathbf{X}}\left(\frac{y-b}{a}\right)$$

- ▶ This means I am able to write my CDF of Y as the CDF of X evaluated at a back-transformed value of Y.
  - ▶ this value is just some x that my original X can take, written as a function of y
- ► We sometimes call this the direct method of transforming variables, because we are just brute forcing it.
- ► The direct method will work for non-Normal random variables, as well as generally simple functions of *X*.
- So once I have my new CDF, how do I find the PDF?

- As with any generic CDF, to find the PDF you must take the derivative.
- ▶ Recall that we have the relationship:  $f(x) = \frac{d}{dx}F(x)$
- ▶ To find the PDF of Y, we will use the chain rule:

$$f_Y(y) = \frac{d}{dy} F_X\left(\frac{y-b}{a}\right) = \frac{1}{a} f_X\left(\frac{y-b}{a}\right)$$

➤ So we are able to get a Normal PDF back when we transform a Normal RV (and we haven't even used that X was Normal!):

$$f_Y(y) = \frac{1}{a\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{y - (b + a\mu)}{a\sigma}\right)^2\right]$$

#### Generalized Normal Distribution

▶ So we can see that the form of the PDF of *Y* is the same as the PDF of *X* but with a new mean and variance:

$$f_Y(y) = \frac{1}{a\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{y-(b+a\mu)}{a\sigma}\right)^2\right]$$

- We can show that we arrive at the same conclusion if a < 0.
- ► This motivates the notion of the generalized Normal Distribution:

#### Generalized Normal Distribution

If 
$$X \sim N(\mu, \sigma^2)$$
 and  $Y = aX + b$ , then  $Y \sim N(a\mu + b, a^2\sigma^2)$ 



# Finding Probabilities of a Normal Distribution

- ▶ The intuition of this is that if all we are doing to *X* is shifting where it is centred and scaling its variance, then we are just getting back a slightly different looking Normal.
- We may use this result now to find probabilities from any Normal distribution.
- ▶ Suppose we are interested in finding  $P(x_0 < X < x_1)$ , for some  $X \sim N(\mu, \sigma^2)$
- Since when we transform in this way, we are shifting the mean and scaling the variance, can we shift and scale X so that we end up with Z?

# Finding Probabilities of a Normal Distribution

Consider the random variable

$$Z = \frac{X - \mu}{\sigma} = \frac{X}{\sigma} - \frac{\mu}{\sigma}$$

- ▶ This is a transformation of the form aX + b where  $a = 1/\sigma$  and  $b = -\mu/\sigma$ .
- ▶ Therefore, by the previous result,

$$Z \sim N\left(rac{\mu}{\sigma} - rac{\mu}{\sigma}, rac{1}{\sigma^2}\sigma^2
ight) = N(0, 1)$$

and thus

$$F_X(x) = P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

# Finding Probabilities of a Normal Distribution

▶ Therefore, to solve our original probability,  $P(x_0 < X < x_1)$ , we can use the standard Normal CDF by

$$P(x_0 < X < x_1) = F_X(x_1) - F_X(x_0)$$
$$= \Phi\left(\frac{x_1 - \mu}{\sigma}\right) - \Phi\left(\frac{x_0 - \mu}{\sigma}\right)$$

which now just involves finding those values of  $\Phi(x)$  from the standard Normal table.

▶ Recall that for some z\* value, we locate this z\* by combining the margins of the table, and trace inwards to get  $P(Z \le z*)$ 

### Example: IQ Scores

IQ scores on a standardized test are approximately Normally distributed with mean  $\mu=100$  and standard deviation  $\sigma=15$ . An individual is selected at random. What is the probability that his/her score is between 120 and 130?

▶ In order to use the standard Normal table, we must transform each of these 2 IQ scores into z's by

$$z_1 = \frac{120 - 100}{15} = 1.33$$
 and  $z_2 = \frac{130 - 100}{15} = 2$ 

Now rather than finding the probability with the original IQ score distribution, we use the standard Norma:

$$P(120 < X < 130) = P(1.33 < Z < 2) = \Phi(2) - \Phi(1.33)$$

▶ We can now look these up in the table



# Example: IQ Scores (continued)

| $z_p$ | .00   | .01   | .02   | .03     | .04     | .05   | .06   | .07   | .08   | .09   |
|-------|-------|-------|-------|---------|---------|-------|-------|-------|-------|-------|
| .0    | .5000 | .5040 | .5080 | .5120   | .5160   | .5199 | .5239 | .5279 | .5319 | .5359 |
| .1    | .5398 | .5438 | .5478 | .5517   | .5557   | .5596 | .5636 | .5675 | .5714 | .5753 |
| .2    | .5793 | .5832 | .5871 | .5910   | .5948   | .5987 | .6026 | .6064 | .6103 | .6141 |
| .3    | .6179 | .6217 | .6255 | .6293   | .6331   | .6368 | .6406 | .6443 | .6480 | .6517 |
| .4    | .6554 | .6591 | .6628 | .6664   | .6700   | .6736 | .6772 | .6808 | .6844 | .6879 |
| .5    | .6915 | .6950 | .6985 | .7019   | .7054   | .7088 | .7123 | .7157 | .7190 | .7224 |
| .6    | .7257 | .7291 | .7324 | .7357   | .7389   | .7422 | .7454 | .7486 | .7517 | .7549 |
| .7    | .7580 | .7611 | .7642 | .7673   | .7704   | .7734 | .7764 | .7794 | .7823 | .7852 |
| .8    | .7881 | .7910 | .7939 | .7967   | .7995   | .8023 | .8051 | .8078 | .8106 | .8133 |
| .9    | .8159 | .8186 | .8212 | .8238   | .8264   | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0   | 0412  | 0420  | 0.461 | 0.40#   | 0.500   | 0521  | 0554  | 0577  | 0500  | 9631  |
| 1.0   | .8413 | .8438 | .8461 | .8485   | .8508   | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1   | .8643 | .8665 | .8686 | .8708   | .8729   | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2   | .8849 | .8869 | .8888 | .8907   | .8925   | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3   | .9032 | .9049 | .9066 | .9082   | .9099   | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4   | .9192 | .9207 | .9222 | .9236   | .9251   | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5   | .9332 | .9345 | .9357 | .9370   | .9382   | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6   | .9452 | .9463 | .9474 | .9484   | .9495   | .9505 | .9515 | .9525 | .9535 | .9545 |
|       |       |       |       | 15 10 1 | 15 15 0 |       |       |       |       |       |
| 1.7   | .9554 | .9564 | .9573 | .9582   | .9591   | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8   | .9641 | .9649 | .9656 | .9664   | .9671   | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9   | .9713 | .9719 | .9726 | .9732   | .9738   | .9744 | .9750 | .9756 | .9761 | .9767 |
| 2.0   | .9772 | .9778 | .9783 | .9788   | .9793   | .9798 | .9803 | .9808 | .9812 | .9817 |

### Exercise - Give it a try!

Let  $X \sim N(\mu, \sigma^2)$ . Find the probability that X is less than  $\sigma$  away from  $\mu$ ; that is, find  $P(|X - \mu| < \sigma)$ .

#### Direct Method of Transformation

- We can of course use the direct method to find the PDF of RVs that results from transformations other than those of the form aX + b.
- ▶ Let U be a uniform random variable on [0,1] and let  $V=1/\upsilon$ .
- We can find the CDF of V by

$$F_{V}(v) = P(V \le v) = P(1/v \le v)$$

$$= P(U \ge 1/v)$$

$$= 1 - P(U \le 1/v)$$

$$= 1 - 1/v$$

where we get the last line by using the CDF of the Uniform(0,1)

#### Direct Method of Transformation

- ▶ When you do a transformation of this kind (or any kind), it is important to adjust the range of values that *V* can take
  - ▶ U can take values from 0 to 1
  - In order for F<sub>V</sub>(v) to be a valid CDF, it cannot take negative values.
  - ▶ Therefore, V can only take on values larger than  $1 \ (v \ge 1)$
  - For v < 1,  $F_V(v) = 0$ .
- ▶ Finally to get the PDF, we take the derivative of  $F_V(v)$ :

$$f_V(v) = egin{cases} rac{1}{v^2}. & 1 \leq v < \infty \ 0, & ext{otherwise} \end{cases}$$

#### Outline

#### Functions of a Random Variable (Chapter 2.3)

Generalized Normal Distribution

Chi-Square Distribution

Monotone Transformation Method

Transformations with the Uniform Distribution

# Chi-Square Random Variable

- ▶ The Normal distribution plays a crucial role in statistics.
- ▶ In particular, a number of other distributions can be derived from a transformation of a standard Normal RV.
- ▶ One such distribution is the **Chi-Square** distribution.
- It is very important to remember how various distributions are related to each other.

# Chi-Square Distribution

- ▶ Suppose  $Z \sim N(0,1)$  and we apply the transformation  $X = Z^2$ .
- We can still use the direct method of transformations to find the CDF of X
- ▶ We get

$$F_X(x) = P(X \le x) = P(Z^2 \le x)$$

$$= P(-\sqrt{x} \le Z \le \sqrt{x})$$

$$= P(Z \le \sqrt{x}) - P(Z \le -\sqrt{x})$$

$$= \Phi(\sqrt{x}) - \Phi(-\sqrt{x})$$

### Chi-Square Distribution

- ▶ To get the PDF of X, we take the derivative because  $\Phi'(x) = \phi(x)$
- Again, we need to use the chain rule:

$$\Phi'(\sqrt{x}) = \phi(\sqrt{x}) \frac{d}{dx} \left(\sqrt{x}\right)$$

This will give us the PDF

$$f_X(x) = \frac{1}{2}x^{-1/2}\phi\left(\sqrt{x}\right) + \frac{1}{2}x^{-1/2}\phi\left(-\sqrt{x}\right)$$

▶ We can actually simplify this further when we realize that  $\phi(x)$  is a symmetric function, i.e.  $\phi(x) = \phi(-x)$  because Normals are symmetric:

$$f_X(x) = x^{-1/2}\phi(\sqrt{x})$$



# Chi-Square Distribution

From here we can replace  $\phi$  with the density of the standard Normal, replacing x with  $\sqrt{x}$ 

$$f_X(x) = \frac{x^{-1/2}}{\sqrt{2\pi}}e^{-x/2}, \ x \ge 0$$

- ► This is the PDF for a Chi-Square random variable.
- ▶ It is worth noting that the above density looks quite similar to

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$$

(Gamma PDF) if 
$$\alpha = \lambda = 1/2$$
, since  $\Gamma(1/2) = \sqrt{\pi}$ 

▶ So the Chi-Square here is the same as a Gamma(0.5, 0.5)

### Outline

### Functions of a Random Variable (Chapter 2.3)

Generalized Normal Distribution

Chi-Square Distribution

Monotone Transformation Method

Transformations with the Uniform Distribution

#### Transformations thus far

- ▶ Up until now, we have been using the same procedure to find the PDF of a transformed variable
  - Find the CDF of the transformed variable Y = g(X) by substituting  $X = g^{-1}(Y)$  into the CDF of X
  - Next differentiate the CDF to find the PDF of Y, which often involves also differentiating  $g^{-1}(X)$
- ► This procedure can be used to prove a more general method of transformation: the Monotone Transformation Method

#### Monotone Transformation Method

#### Monotone Transformation Method

Let X be a continuous random variable with density f(x) and let Y = g(X) where g is a differentiable, strictly monotonic function on some interval I. Suppose that f(x) = 0 is x is not in I. Then Y has the density function

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$

for y such that y = g(x) for some x, and  $f_Y(y) = 0$  if  $y \neq g(x)$  for any x in I. Here  $g^{-1}$  is the inverse function of g; that is,  $g^{-1}(y) = x$  if y = g(x).

- ► This is just a concise expression for the procedure we have been using up to now
- ▶ You may use whichever one is easier for you.

### Example: Sugar Production and Profit

Suppose X is a random variable representing the amount of refined sugar (in tonnes per day) produced in some process, with density function

$$f_X(x) = \begin{cases} 2x, & 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

Now consider Y = 3X - 1 representing the daily profit. Find the density function of Y.

- ▶ We have that our transformation function is y = g(x) = 3x 1.
- ► Thus the inverse of this function is  $x = g^{-1}(y) = \frac{y+1}{3}$
- ▶ To use the monotone transformation method, we also need to differentiate  $g^{-1}(y)$ :

$$\left| \frac{d}{dy} \left( \frac{y+1}{3} \right) \right| = \frac{1}{3}$$

# Example: Sugar Production and Profit (cont.)

We can now plug in everything to the monotone transformation expression:

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$
  
=  $2 \left( \frac{y+1}{3} \right) \times \frac{1}{3} = \frac{2(y+1)}{9}$ 

► Finally we need to specify for what values of *y* the function is defined over:

$$0 \le x \le 1 \Rightarrow 0 \le \frac{y+1}{3} \le 1 \Rightarrow -1 \le y \le 2$$

▶ Therefore the PDF of *Y* is

$$f_Y(y) = \begin{cases} \frac{2(y+1)}{9}, & -1 \le y \le 2\\ 0, & \text{otherwise} \end{cases}$$



### Exercise - Give it a try!

Let X have probability density function given by

$$f_X(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Find the density function of Y = -4X + 3.

#### Monotone Tranformations

- ► The key element of the Monotone Transformation Method is that it can only be used when your transformation is a monotone function
- ▶ However, since it only needs to be monotone in an interval I, you can still use this method for non-monotone functions
- Requires you to divide the domain of the function into intervals in which the function is monotone
- ► Then just apply the monotone transformation method to each sub-interval of the domain.

### Example: Non-monotonic transformation

For some X with continuous PDF, find the density function for the transformation  $Y = X^2$  for  $-\infty < x < \infty$ .

- Obviously this transformation is not monotone.
- Let's see how we would approach this using the direct method:

$$F_Y(y) = P(Y \le y) = P(-\sqrt{y} \le X \le \sqrt{y})$$
  
=  $F_X(\sqrt{y}) - F_X(-\sqrt{y})$ 

▶ To get the PDF, we would just differentiate both terms:

$$f_{Y}(y) = F_{X}'(\sqrt{y}) \left(\frac{1}{2\sqrt{y}}\right) - F_{X}'(-\sqrt{y}) \left(\frac{-1}{2\sqrt{y}}\right)$$
$$= \frac{1}{2\sqrt{y}} \left[ f_{X}(\sqrt{y}) + f_{X}(-\sqrt{y}) \right], \ y > 0$$

# Example: Non-monotonic transformation (cont.)

$$f_Y(y) = \frac{1}{2\sqrt{y}} \left[ f_X(\sqrt{y}) + f_X(-\sqrt{y}) \right], \ y > 0$$

- ▶ So now  $f_Y(y)$  is the sum of two pieces, where each piece is defined on a subinterval that makes g(X) a monotonic function on that interval.
  - $f_X(\sqrt{y})$  is defined for  $x \ge 0$
  - $f_X(-\sqrt{y})$  is defined on x < 0
- Even though we used the direct method to find the PDF of Y, we could have instead used the monotone transformation method two separate times:
  - once for  $x \ge 0$  resulting in  $\frac{1}{2\sqrt{y}}f_X(\sqrt{y})$
  - once on x < 0 resulting in  $\frac{1}{2\sqrt{y}}f_X(-\sqrt{y})$
  - then just add them together.

### Outline

### Functions of a Random Variable (Chapter 2.3)

Generalized Normal Distribution

Chi-Square Distribution

Monotone Transformation Method

Transformations with the Uniform Distribution

#### Transformations with the Uniform Distribution

- We now will present two results based off of transformations involving the Uniform distribution
- ► These are useful when attempting to generate pseudorandom numbers from a particular distribution
  - "pseudo" because not completely randomly generated
  - we use an algorithm or rule to generate them
- Recall: a Uniform random variable defined on an interval [a, b] has PDF

$$f(x) = \begin{cases} 1/(b-a), & a \le x \le b \\ 0, & x < a \text{ or } x > b \end{cases}$$

and CDF

$$F(x) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x \ge b \end{cases}$$

# Probability Integral Transformation

### Probability Integral Transformation

Let  $Z = F_X(X)$ , then Z has a Uniform distribution on [0,1].

▶ This means that the transformation we are making on *X* is to apply the function corresponding to the CDF of *X* on *X*.

#### Proof:

### Example: Transformation with Exponential CDF

Suppose  $X \sim Exp(\lambda)$  and we wish to find the distribution of  $Z = F_X(X)$ , i.e. my transformation function is  $g(X) = 1 - e^{-\lambda X}$ .

▶ We can show this in the same way as the proof, using the direct method:

### Inverse Integral Transformation

### Inverse Integral Transformation

Let U be uniform on [0,1], and let  $X = F^{-1}(U)$ . Then the CDF of X is F.

► This is essentially just the reverse of the probability integral transformation.

#### Proof:

### Example: Generating from Exponential Distribution

- Suppose I want to generate values from an Exponential distribution.
- ▶ I can do this if I first generate values from a Uniform[0,1] and then apply a transformation.
- To get an Exponential, my transformation must be the inverse of my Exponential CDF:

$$u = 1 - e^{-\lambda x} = F_X(x)$$

$$e^{-\lambda x} = 1 - u$$

$$-\lambda x = \log(1 - u)$$

$$x = -\log(1 - u)/\lambda = F^{-1}(u)$$

▶ So if *u* are values from a Uniform[0,1], then under this transformation, I can generate values from an Exponential

#### Remarks

- ➤ The probability integral transform and the inverse integral transform arise as direct results of the monotone transformation method/direct method
- In most cases, you will only need to concern yourself with the direct method and the monotone transformation method
- ► The two integral transformations are really only relevant when dealing with Uniform distributions, or specifically when the transformation function is a CDF.