

Фундаментальные взаимодействия и частицы. Слабое взаимодействие

Кубышкин А.В. – осень 2020

Мультиплеты относительно стабильных частиц. Изотопический спин и симметрия унитарной группы SU(3)

Диаграммы Фейнмана как способ расчета вероятностей

Вершинам (узлам) – константы связи $\sqrt{\alpha_i}$

Виртуальным частицам – функции их распространения, пропагаторы (to propagate – распространяться)

Пропагатор $\sim \frac{1}{m_i^2 c^2 - q^2}$, где m_i - масса переносчика сил, а $q^2 = q_0^2 - \vec{q}^2$ - квадрат 4-импульса переносчика, $q_0 = E/c$.

Амплитуда вероятности двухузловой диаграммы:
$$A_2(i) \sim \sqrt{\alpha_i} \cdot \text{пропагатор} \cdot \sqrt{\alpha_i} = \alpha_i \frac{c^2}{m_i^2 c^4 - q^2 c^2}$$

Нарушения С-, Р- и Т-четностей в слабых взаимодействиях

 $L_e = +1$, Итак, получаем несуществующие объекты. Таким образом, в слабых взаимодействиях нарушаются одновременно P- и C-нвариантность. C-инвариантность имеет место в сильных и электромагнитных взаимодействиях (уравнения Максвелла не меняются при замене знаков зарядов).

В природе реализуются лишь варианты распада б и в

Нарушение CP-инвариантности в распадах K^0 Электрически нейтральный каон K^0 проявляет себя либо в виде «долгоживущей» частицы K^0_L (5,2·10⁻⁸ сек), либо в виде «короткоживущей» частицы K^0_S (0,9·10⁻¹⁰ сек). Кронин и Фитч в 1964 г. обнаружили, что K^0_L с вероятностью $\approx 10^{-3}$ испытывает CP-запрещённые распады:

$$K_L^0 o \pi^+\pi^- \ (\approx 2\cdot 10^{-3}), \ K_L^0 o \pi^0\pi^0 \ \ (\approx 9\cdot 10^{-4}).$$

Кроме того, обнаружено, что в СР-сопряжённых распадах

$$K_L^0 o \pi^- e^+
u_e$$
 \leftarrow CP -преобразование

первый несколько (на 0,3%) вероятнее. При CP-инвариантности они должны быть равновероятны. K_L^0 – истинно нейтральная частица и при CP-инвариантности должно быть:

$$\pi^+e^-\overline{
u}_e \overset{\mathit{вероятность}}{\longleftrightarrow} 50\% \atop K^0_L \overset{\mathit{вероятность}}{\longleftrightarrow} \pi^-e^+
u_e$$

Итак, небольшое нарушение CP-инвариантности в распадах нейтральных каонов свидетельствует о нарушении T-инвариантности в слабых процессах.

В 1964 г. было обнаружено нарушение CP -инвариантности в распадах нейтральных каонов (Кронин и Фитч — Принстон, США). В 2001-2004 гг. нарушение CP -инвариантности обнаружено и в процессах с участием B^0 и $\overline{\mathit{B}}^0$ -мезонов. В 1998 г. нарушение T -симметрии в процессах с нейтральными каонами было установлено в прямых экспериментах (не как неизбежное следствие нарушения CP -инвариантности).

Осцилляции нейтрино – выход за рамки Стандартной Модели?

Некоторые итоги и нерешенные проблемы

Характеристика	Взаимодействие		
	Сильное	Электромагнитное	Слабое
Аддитивные законы сохранения			
Электрический заряд, Q	+	+	+
Энергия, Е	+	+	+
Импульс, р	+	+	+
Момент количества движения, Ј	+	+	+
Барионный заряд, В	+	+	+
Лептонные заряды L _e , L _μ , L _τ	+	+	+
Странность, ѕ	+	+	_
Charm, c	+	+	-
Bottom, b	+	+	_
Top, t	+	+	_
Изоспин, I	+	_	_
Проекция изоспина, І₃	+	+	_
Мультипликативные законы сохранения			
Пространственная четность, Р	+	+	-
Зарядовая четность, С	+	+	22 - 23 22 - 23
Временная четность, Т	+	+	-
Комбинированная четность, СР	+	+	-
СРТ-четность	+	+	+

- 1. Почему существуют три поколения фундаментальных частиц, состоящих из пары кварков и лептонов?
- 2. Существуют ли четвертое, пятое, ... поколения фундаментальных частиц?
- 3. Почему существуют кварки и лептоны, и чем вызвано различие между ними?
- 4. Почему фундаментальными частицами вещества являются фермионы, в то время как фундаментальными переносчиками взаимодействия бозоны?
- 5. Почему разные фундаментальные частицы имеют разные массы?
- 6. Живем ли мы в четырехмерном пространстве-времени, или оно имеет большее число измерений?
- 7. Существуют ли кванты пространства и времени?

ТЕМНАЯ ЭНЕРГИЯ

ПОЛНАЯ ПЛОТНОСТЬ ВЕЩЕСТВА-ЭНЕРГИИ

(ВАКУУМ)

0.6-0.8

 1.02 ± 0.02