Datamining - Zusammenfassung, Fragen und Notizen

Julius Hülsmann

11. Januar 2016

Inhaltsverzeichnis

1	Kapitel 1 - Einführung			2
2	Kapitel 2 - Nützliche Konzepte aus der Statistik		3	
	2.1	Detek	tion systematischer Abweichungen	3
	2.2	χ^2 -Ve	rteilung und Student-t-Verteilung	5
	2.3	Test auf unterschiedliche Verteilung		
			Der χ^2 -Test	5
			Der Kolmogorov-Smirnov-Test	5
	2.4	Detek	tion von Abhängigkeiten zwischen Zufallsvariablen	5
	2.5			5
		2.5.1		5
		2.5.2	Geometrische Interpretation als Optimierungsfehler	5
		2.5.3		5
	2.6			5
		2.6.1	Spearman's Rang-Korrelationskoeffizient	5
		2.6.2	Kendall's τ	5
	2.7	identifikation von Ausreißern		
			Ausreißererkennung	5
		2.7.2		5

Diese Zusammenfassung beruht auf der Vorlesung Datamining; Wintersemester 2015/16 gehalten von Thomas Hermann und nebensächlich auf Informationen des Bereiches Statistik am Psychologischen Institut der Universität Mainz und der Vorlesung Statistik der Universität Bielefeld, Wintersemester 15/16 gehalten von Frau Gentz.

1 Kapitel 1 - Einführung

2 Kapitel 2 - Nützliche Konzepte aus der Statistik

Wie wird Zufall von Muser unterschieden? Fragestellung: Gilt die Nullhypothese H_0 ?

- 1. Berechne Schätzer/Prüfgröße s
- 2. Berechne die Wahrscheinlichkeitsverteilung von s unter Annahme, dass die Nullhypothese H_0 zutrifft.
- 3. Berechne den Wert für s, der sich aus den Messdaten ergibt. $s < 0.05 \Rightarrow$ verwerfe H_0

2.1 Detektion systematischer Abweichungen

Beispiel 2.1 (Stichproben haben gleichen Erwartungswert). Gegeben seien

• zwei endliche Stichproben $\{x_i^A\}_{i=1}^{N_A}, \{x_i^B\}_{i=1}^{N_B}$.

zweier Wahrscheinlichkeitsmaße \mathbb{P}_A und \mathbb{P}_B auf den Ereignisräumen (Ω, \mathcal{F}) für Ω entweder abzählbar, dann $\mathcal{F} = P(\Omega)$ oder $\mathcal{F} = \mathcal{B}_{\Omega}$. Zugehörige Wahrscheinlichkeitsdichten P_A und P_B . Tatsächliche Verteilung ist unbekannt.

Frage: Sind die zugrundeliegenden Wahrscheinlichkeitsmaße Normalverteilt mit gleichem Erwartungswert?

Annahme: die Varianz beider Verteilungen ist gleich $\sigma^2(P_A) = \sigma^2(P_B)$. Diese Annahme ist zu verifizieren mithilfe des sogenannten F-Testes

Bezeichnungen:

empirischer Mittelwert (Erwartungswert der Stichprobe)

$$\hat{\mu}_A := \frac{1}{N_A} \sum_{i=1}^{N_A} x_i^A, \quad \hat{\mu}_B := \frac{1}{N_B} \sum_{i=1}^{N_B} x_i^B,$$

empirische Standardabwichungen

$$\sigma(\hat{\mu}^A) := \sqrt{\frac{1}{N_A} \sum_{i=1}^{N_A} (x_i^A - \mu^A)^2}, \quad \sigma(\hat{\mu}^B) := \sqrt{\frac{1}{N_B} \sum_{i=1}^{N_B} (x_i^B - \mu^B)^2}$$

tatsächlicher Erwartungswert

$$\mu_A$$
, μ_B , μ_{AB}

tatsächliche Standardabweichung

$$\sigma(P_A), \quad \sigma(P_B).$$

Schritt 0 Stelle Nullhypothese auf:

$$\mu_A = \mu_B$$
.

Schritt 1 Bestimme Prüfgröße. Folgende Eingenschaften sind relevant:

- Unabhängigkeit von der Varianz bzw. Standardabweichung,
- Unabhängigkeit von der Stichprobengröße.

$$t := \frac{|\hat{\mu}_A - \hat{\mu}_B|}{\hat{\sigma}_{err}} \tag{1}$$

$$\sigma_{err} \approx \sqrt{\frac{\sigma^2(\hat{\mu}_A - \hat{\mu}_B)}{N_A + N_B}},$$
 (2)

da Unabhänigkeit von der Varianz gewährleistet sein soll, die beim Stichprobenumfang von $N := N_A + N_B$ durch Division mit N gewichtet wird.

$$\sigma_{err}^2 \approx \frac{\sigma^2(\hat{\mu}_A - \hat{\mu}_B)}{N_A + N_B} \tag{3}$$

$$= \frac{1}{N_A + N_B} \left(\sigma^2(\hat{\mu}_A) + \sigma^2(\hat{\mu}_B) \right) \tag{4}$$

$$\approx \frac{1}{N_A + N_B} \left(\frac{\sigma^2(P_A)}{N_A} + \frac{\sigma^2(P_B)}{N_B} \right) \tag{5}$$

$$\approx \frac{1}{N_A + N_B} \left(\sigma_{AB}^2 * \left(\frac{1}{N_A} + \frac{1}{N_B} \right) \right) \tag{6}$$

$$= \frac{1}{N_A + N_B} \left(\frac{\sum_{i=1}^{N_A} (x_i^A - \hat{\mu}_A)^2 + \sum_{i=1}^{N_B} (x_i^B - \hat{\mu}_B)^2}{N_a + N_B - 2} \right)$$
(7)

Schritt 2 Bestimmung der Wahrscheinlichkeit

$$\mathbb{P}(t|H_0 \text{ trifft } zu),$$

also die Wahrscheinlichkeit, dass falls die H_0 -Hypothese zutrifft, die Prüfgröße t aus der Stichprobe erhalten wird.

- 2.2 χ^2 -Verteilung und Student-t-Verteilung
- 2.3 Test auf unterschiedliche Verteilung
- 2.3.1 Der χ^2 -Test
- 2.3.2 Der Kolmogorov-Smirnov-Test
- 2.4 Detektion von Abhängigkeiten zwischen Zufallsvariablen
- 2.5 Lineare Korellation
- 2.5.1 Geometrische Interpretation als Wikelmaß
- 2.5.2 Geometrische Interpretation als Optimierungsfehler
- 2.5.3 Statistische Interpretation von r
- 2.6 Nichtparametrische Korrelation
- 2.6.1 Spearman's Rang-Korrelationskoeffizient
- 2.6.2 Kendall's τ
- 2.7 identifikation von Ausreißern
- 2.7.1 Ausreißererkennung
- 2.7.2 Ausreißerbehandlung