Computational Social Science

Word embeddings I

Dr. Thomas Davidson

Rutgers University

March 4, 2024

Plan

- 1. Course updates
- 2. The vector-space model review
- 3. Latent semantic analysis
- 4. Language models

Course updates

- Project proposal assignment on Canvas, due Thursday at 5pm
 - A short description of the planned project
 - ▶ Details on data source and collection
 - Team information

Vector representations

- Last week we looked at how we can represent texts as numeric vectors
 - Documents as vectors of words
 - Words as vectors of documents
- ► A document-term matrix (*DTM*) is a matrix where documents are represented as rows and tokens as columns

Weighting schemes

- We can use different schemes to weight these vectors
 - \triangleright Binary (Does word w_i occur in document d_i ?)
 - ▶ Counts (How many times does word w_i occur in document d_j ?)
 - ▶ TF-IDF (How many times does word w_i occur in document d_j , accounting for how often w_i occurs across all documents $d \in D$?)
 - Recall Zipf's Law: a handful of words account for most words used; such words do little to help us to distinguish between documents

Cosine similarity

$$cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{\sum_{i} \vec{u_i} \vec{v_i}}{\sqrt{\sum_{i} \vec{u_i}^2} \sqrt{\sum_{i} \vec{v_i}^2}}$$

Limitations

- ► These methods produce *high-dimensinal*, *sparse* vector representations
 - Given a vocabulary of unique tokens N the length of each vector |V| = N.
 - Many values will be zero since most documents only contain a small subset of the vocabulary.

Limitations

Source: https://smltar.com/embeddings.html

Latent Semantic Analysis

- One approach to reduce dimensionality and better capture semantics is called Latent Semantic Analysis (LSA)
 - ▶ We can use a process called *singular value decomposition* to find a *low-rank approximation* of a DTM.
- ▶ This provides *low-dimensional*, *dense* vector representations
 - ightharpoonup Low-dimensional, since $|V| \ll N$
 - Dense, since vectors contain real values, with few zeros
- ▶ In short, we can "squash" a big matrix into a much smaller matrix while retaining important information.

$$DTM = U\Sigma V^T$$

Singular Value Decomposition

See the Wikipedia page for video of the latent dimensions in a sparse TDM.

Example: Sci-fi texts

X is a TF-IDF weighted Document-Term Matrix of sci-fi from Project Gutenberg.

```
X <- read.csv("../data/scifi_100.csv")
rownames(X) <- X[,1] # Setting rownames
X <- X[, -1] # Deleting rownames as a column
X <- as.matrix(X) # Transforming to matrix
X <- X[, which(colSums(X) != 0)] # Drop zero columns
dim(X)
## [1] 1129 5853</pre>
```

Creating a lookup dictionary

We can construct a list to allow us to easily find the index of a particular token.

```
lookup.index.from.token <- list()

for (i in 1:length(colnames(X))) {
   lookup.index.from.token[colnames(X)[i]] <- i
}</pre>
```

Using the lookup dictionary

This easily allows us to find the vector representation of a particular word. Note how most values are zero.

```
lookup.index.from.token["monster"]
## $monster
## [1] 3778
round(as.numeric(X[,unlist(lookup.index.from.token["monster"])]),5)[1:1
##
     [1] 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
##
    [10] 0.00000 0.00000 0.00000 0.00000 0.00041 0.00029 0.00000 0.0000
    [19] 0.00000 0.00107 0.00024 0.00000 0.00088 0.00000 0.00000 0.0020
##
##
    [28] 0.00000 0.00000 0.00000 0.00096 0.00000 0.00027 0.00000 0.0000
    [37] 0.00000 0.00000 0.00000 0.00000 0.00007 0.00000 0.00000 0.0005
##
##
    [46] 0.00000 0.00000 0.00265 0.00000 0.00000 0.00000 0.00000 0.0002
##
    [55] 0.00041 0.00000 0.00000 0.00000 0.00000 0.00015 0.00000 0.0000
    [64] 0.00000 0.00000 0.00000 0.00000 0.00032 0.00286 0.00000 0.0000
##
    [73] 0.00000 0.00000 0.00040 0.00159 0.00116 0.00000 0.00000 0.0000
##
    [82] 0.00000 0.00000 0.00000 0.00000 0.00000 0.00116 0.00000 0.0000
##
```

Calculating similarties

The following code normalizes each *column* (rather than row normalization seen last lecture) and constructs a word-word cosine-similarity matrix.

```
normalize <- function(X) {
  columnNorms <- sqrt(colSums(X^2))</pre>
  Xn <- X / matrix(columnNorms,</pre>
                    nrow = nrow(X),
                    ncol = ncol(X), byrow = TRUE)
  return(Xn)
X.n <- normalize(X)</pre>
sims <- crossprod(X.n) # Optimized routine for t(X.n) %*% X.n
dim(sims)
## [1] 5853 5853
```

Most similar function

For a given token, this function allows us to find the n most similar tokens in the similarity matrix, where n defaults to 10.

Finding similar words

```
get.top.n("fight", sims, n = 3)
## fight fighting battle
## 1.0000000 0.5201471 0.4623335
```

Finding similar words

Choose another word to inspect.

```
get.top.n("", sims, n = 3)
```

Singular value decomposition

The svd function allows us to decompose the DTM. We can then easily reconstruct it using the formula shown above.

```
# Computing the singular value decomposition
lsa <- svd(X)

# We can easily recover the original matrix from this representation
X.2 <- lsa$u %*% diag(lsa$d) %*% t(lsa$v) # X = U \Sigma V^T

# Verifying that values are the same, example of first column
sum(round(X-X.2,5))
## [1] 0</pre>
```

Singular value decomposition

Variance explained by singular values

Truncated singular value decomposition

In the example above retained the original matrix dimensions. The point of latent semantic analysis is to compute a truncated SVD such that we have a new matrix in a sub-space of X. In this case we only want to retain the first k dimensions of the matrix.

```
k <- 50 # Dimensions in truncated matrix

# We can take the SVD of X but only retain the first k singular values
lsa.2 <- svd(X, nu=k, nv=k)

# In this case we reconstruct X just using the first k singular values
X.trunc <- lsa.2$u %*% diag(lsa.2$d[1:k]) %*% t(lsa.2$v)

# But the values will be slightly different since it is an approximatio
# Some information is lost due to the compression
sum(round(X-X.trunc,2))
## [1] 138.3</pre>
```

Inspecting the LSA matrix

```
words.lsa <- t(lsa.2$v)
colnames(words.lsa) <- colnames(X)</pre>
round(as.numeric(words.lsa[,unlist(lookup.index.from.token["fight"])]),
##
   [1] -0.02 0.00 0.00 -0.01 0.00 0.00
                                     0.00 0.00 0.00
                                                    0.00
                                                         0.
##
  0.00
                                                         0.
  [25] 0.00 0.00 -0.01 -0.01 -0.02 -0.01 0.00 0.00 0.00 0.01
                                                         0.
  [37] -0.01 0.01 0.00 0.00 0.01 0.01 -0.01 -0.01
                                                    0.02
                                                         0.
## [49] -0.01
            0.01
```

Recalculating similarties using the LSA matrix

```
words.lsa.n <- normalize(words.lsa)
sims.lsa <- t(words.lsa.n) %*% words.lsa.n</pre>
```

```
get.top.n("fight",sims)
      fight fighting battle called
                                              left
##
                                                        half
                                                                  har
## 1.0000000 0.5201471 0.4623335 0.4493276 0.4476139 0.4327410 0.419437
##
       feet.
                 head
## 0.4161047 0.4103359
get.top.n("fight",sims.lsa)
##
      fight
            ropes laughed killed
                                              bars
                                                       hairy
                                                                 laug
## 1.0000000 0.7134000 0.7127284 0.7021199 0.6962668 0.6848260 0.680569
##
        red
               haired
## 0.6516037 0.6501807
bind_cols(names(get.top.n("fight",sims)), names(get.top.n("fight",sims.
## # A tibble: 10 x 2
##
     ...1 ...2
##
     <chr> <chr>
              fight
##
    1 fight
```

```
get.bottom.n <- function(token, sims, n=10) {</pre>
  bottom <- sort(sims[unlist(lookup.index.from.token[token]),],</pre>
                 decreasing=F)[1:n]
  return(bottom)
get.bottom.n("fight", sims)
##
        nest
                bending grant
                                         stark
                                                   ruler
                                                                soap
## 0.01316518 0.01362281 0.01446432 0.01460876 0.01470185 0.01567309 0.
##
         toe
                  apple trunks
## 0.01837433 0.01887232 0.02017182
```

```
bind_cols(names(get.top.n("ghost",sims, n = 5)), names(get.top.n("ghost
## # A tibble: 5 x 2
## ...1 ...2
## <chr> <chr>
## 1 ghost ghost
## 2 ghosts adventures
## 3 haunted tale
## 4 tale issue
## 5 boiling columns
```

```
get.top.n("love", sims, n = 5)
## love loved passion eyes life
## 1.0000000 0.4707218 0.4325244 0.4000985 0.3957413
get.top.n("love", sims.lsa, n = 5)
## love loved women childhood loving
## 1.0000000 0.8438132 0.8314148 0.7949752 0.7757434
```

```
get.top.n("run", sims)
               looked
                                    half
                                                                calle
##
                          time
                                              head
                                                        left.
        run
## 1.0000000 0.5605993 0.5584137 0.5491457 0.5407950 0.5395652 0.538103
##
    started found
## 0.5307708 0.5276992
get.top.n("run", sims.lsa)
##
              started
                         pulled
                                    hear
                                              stay
                                                        left
                                                                  har
        run
## 1.0000000 0.8536205 0.8104711 0.8015017 0.7845183 0.7824391 0.779399
##
        ten
               listen
## 0.7588223 0.7584098
```

Execise

Re-run the code above with a different value of k (try lower or higher). Compare some terms in the original similarity matrix and the new matrix. How does changing k affect the results?

```
get.top.n("", sims)
get.top.n("", sims.lsa)
```

Inspecting the latent dimensions

We can analyze the meaning of the latent dimensions by looking at the terms with the highest weights in each row. In this case I use the raw LSA matrix without normalizing it. What do you notice about the dimensions?

```
for (i in 1:dim(words.lsa)[1]) {
 top.words <- sort(words.lsa[i,], decreasing=T)[1:5]
 print(paste(c("Dimension: ",i), collapse=" "))
 print(round(top.words,3))
## [1] "Dimension: 1"
##
         xi note evidence willingly withstand
## -0.002 -0.002 -0.002 -0.003 -0.003
   [1] "Dimension: 2"
##
     joe george james
                         sam bill
   0.779 0.562 0.054 0.045 0.042
   [1] "Dimension: 3"
                            mike colonel
      ioe
              sam
                   james
```

Limitations of Latent Semantic Analysis

- Bag-of-words assumptions and document-level word associations
 - We still treat words as belonging to documents and lack finer context about their relationships
 - Although we could theoretically treat smaller units like sentences as documents
- Matrix computations become intractable with large corpora
- ▶ A neat linear algebra trick, but no underlying language model

Intuition

- ► A language model is a probabilistic model of language use
- Given some string of tokens, what is the most likely token?
 - Examples
 - Auto-complete
 - Google search completion

Bigram models

- ▶ $P(w_i|w_{i-1})$ = What is the probability of word w_i given the last word, w_{i-1} ?
 - ► P(Jersey|New)
 - ► P(Brunswick|New)
 - ► P(York|New)
 - ► P(Sociology | New)

Bigram models

- We use a corpus of text to calculate these probabilities from word co-occurrence.
 - ▶ $P(Jersey|New) = \frac{C(New\ Jersey)}{C(New)}$, e.g. proportion of times "New" is followed by "Jersey", where C() is the count operator.
- More frequently occurring pairs will have a higher probability.
 - We might expect that $P(York|New) \approx P(Jersey|New) > P(Brunswick|New) >> P(Sociology|New)$

Incorporating more information

- We can also model the probability of a word, given a sequence of words
- ▶ P(x|S) = What is the probability of some word x given a partial sentence S?
- ightharpoonup A = P(Jersey | Rutgers University is in New)
- $ightharpoonup B = P(Brunswick|Rutgers\ University\ is\ in\ New)$
- $ightharpoonup C = P(York|Rutgers\ University\ is\ in\ New)$
- ▶ In this case we have more information, so "York" is less likely to be the next word. Hence,
 - $ightharpoonup A \approx B > C.$

Estimation

We can compute the probability of an entire sequence of words by using considering the *joint conditional probabilities* of each pair of words in the sequence. For a sequence of n words, we want to know the joint probability of $P(w_1, w_2, w_3, ..., w_n)$. We can simplify this using the chain rule of probability:

$$P(w_{1:n}) = P(w_1)P(w_2|w_1)P(w_3|w_{1:2})...P(w_n|w_{1:n-1})$$

$$= \prod_{k=1}^{n} P(w_k|w_{1:k-1})$$

Estimation

The bigram model simplifies this by assuming it is a first-order Markov process, such that the probability w_k only depends on the previous word, w_{k-1} .

$$P(w_{1:n}) \approx \prod_{k=1}^{n} P(w_k|w_{k-1})$$

These probabilities can be estimated by using Maximum Likelihood Estimation on a corpus.

See https://web.stanford.edu/~iurafsky/slp3/3.pdf for an excellent review of language models

Empirical applications

- ▶ Danescu-Niculescu-Mizil et al. 2013 construct a bigram language model for each month on BeerAdvocate and RateBeer to capture the language of the community
 - For any given comment or user, they can then use a measure called *cross-entropy* to calculate how "surprising" the text is, given the assumptions about the language model
- ► The theory is that new users will take time to assimilate into the linguistic norms of the community

https://en.wikipedia.org/wiki/Cross_entropy

Empirical applications

Danescu-Niculescu-Mizil, Cristian, Robert West, Dan Jurafsky, Jure Leskovec, and Christopher Potts. 2013. "No Country for Old Members: User Lifecycle and Linguistic Change in Online Communities." In Proceedings of the 22nd International Conference on World Wide Web, 307–18. ACM. http://dl.acm.org/taliation.cfm?id=2488416.

Limitations of N-gram language models

- ► Language use is much more complex than N-gram language models
- Three limitations
 - 1. Insufficient data to sufficiently model language generation
 - 2. Complex models become intractable to compute
 - 3. Limited information on word order

Summary

- Limitations of sparse representations of text
 - ► LSA allows us to project sparse matrix into a dense, low-dimensional representation
- Probabilistic language models allow us to directly model language use

Next lecture

► How neural language models allow us to create more meaningful semantic representations of texts