Laboratorio di Elettronica Lezione 4: L'amplificatore operazionale

Valentino Liberali, Alberto Stabile

UNIVERSITÀ DEGLI STUDI DI MILANO

Dipartimento di Fisica "Aldo Pontremoli"

E-mail: valentino.liberali@unimi.it, alberto.stabile@unimi.it

Milano, 27-28 aprile 2022

- Generatori dipendenti
- 2 L'amplificatore operazionale
- 3 L'amplificatore operazionale ideale
- 4 La retroazione
- **5** Amplificatore invertente
- 6 Amplificatore non invertente

Generatori dipendenti

I generatori di tensione e di corrente visti in precedenza sono *generatori indipendenti*: generano grandezze elettriche (costanti o variabili), indipendentemente da qualsiasi altra grandezza presente nel circuito.

Un **generatore dipendente** (o **generatore controllato**) è un elemento che genera una grandezza elettrica (tensione o corrente) il cui valore è *funzione di un'altra grandezza elettrica* (tensione o corrente) presente nel circuito. Esistono **4 tipi di generatori dipendenti**:

- generatore di tensione controllato in tensione
- generatore di corrente controllato in corrente
- generatore di corrente controllato in tensione
- generatore di tensione controllato in corrente

I generatori dipendenti sono "doppi bipoli", cioè hanno una coppia di terminali di ingresso per la variabile di controllo e una coppia di terminali di uscita per la grandezza generata. Convenzionalmente, nelle figure i terminali di ingresso sono a sinistra e i terminali di uscita sono a destra.

Generatore di tensione controllato in tensione

Generatore di tensione controllato in tensione o **VCVS** (voltage-controlled voltage source)

All'ingresso non assorbe corrente (si comporta come un circuito aperto). Il parametro E è il **guadagno di tensione** (adimensionale):

$$E = V_{\rm o}/V_{\rm i}$$

L'amplificatore operazionale è un generatore di tensione controllato in tensione.

Generatore di corrente controllato in corrente

Generatore di corrente controllato in corrente o CCCS (current-controlled current source)

All'ingresso non c'è caduta di tensione (si comporta come un cortocircuito). Il parametro F è il **guadagno di corrente** (adimensionale):

$$F = I_o/I_i$$

Il transistore bipolare a giunzione in regione attiva è un generatore di corrente controllato in corrente.

Generatore di corrente controllato in tensione

Generatore di corrente controllato in tensione o VCCS (voltage-controlled current source)

All'ingresso non assorbe corrente (circuito aperto).

Il parametro G è la **transconduttanza** o *conduttanza di trasferimento* tra ingresso e uscita, che dimensionalmente è una conduttanza e si misura in siemens:

$$G = I_{o}/V_{i}$$

Il transistore MOS in regione attiva è un generatore di corrente controllato in tensione con una funzione non lineare: $i_{OUT} = g(v_{IN})$ dove g è un polinomio di secondo grado.

Generatore di tensione controllato in corrente

Generatore di tensione controllato in corrente o CCVS (current-controlled voltage source)

All'ingresso non c'è caduta di tensione (cortocircuito).

Il parametro H è la **transresistenza** o *resistenza di trasferimento* tra ingresso e uscita, che dimensionalmente è una resistenza e si misura in ohm:

$$H = V_{\rm o}/I_{\rm i}$$

In SPICE, un induttore è modellizzato come un generatore di tensione proporzionale alla derivata della corrente che scorre nel generatore stesso.

L'amplificatore operazionale

L'amplificatore operazionale è un elemento circuitale largamente utilizzato nei circuiti elettronici che elaborano grandezze analogiche.

In questa lezione viene illustrato il concetto di amplificatore operazionale ideale e vengono descritti alcuni circuiti che ne fanno uso.

Amplificatore operazionale integrato in package plastico DIL (dual-in-line)

L'amplificatore operazionale ideale

L'amplificatore operazionale è un **generatore di tensione controllato in tensione**, che presenta un guadagno di tensione infinito:

$$V_{
m out} = EV_{
m d} = E(V^+ - V^-) \quad {
m con} \quad E
ightarrow \infty$$

L'amplificatore operazionale amplifica la differenza di tensione tra i due segnali di ingresso V^+ e V^- .

Il terminale di ingresso con il segno "+" è detto *"ingresso non invertente*", mentre quello con il segno "-" è detto *"ingresso invertente*".

Terminali dell'amplificatore operazionale ideale

Terminali dell'amplificatore 741 in package plastico DIL a 8 pin

- Compensazione dell'offset di tensione (*)
- Ingresso invertente (–)
- Ingresso non invertente (+)
- Alimentazione negativa (**)
- Compensazione dell'offset di tensione (*)
- Uscita
- Alimentazione positiva (**)
- Non collegato
- (*) Per compensare l'offset di tensione usare il circuito riportato nel data sheet
- (**) I valori tipici delle alimentazioni sono ± 12 V; attenzione a non scambiarle!

Parametri dell'amplificatore operazionale ideale

Parametri dell'amplificatore operazionale ideale

Nome	Simbolo	Valore
Guadagno di tensione	$E = \frac{V_{\text{out}}}{V_{\text{d}}}$	∞
Resistenza di uscita	R_{out}	0
Resistenza di ingresso	R_{in}	∞
Banda passante	В	∞

Per i parametri di un amplificatore reale, vedere al link: https://www.ti.com/lit/ds/symlink/ua741.pdf

La retroazione

Di solito l'amplificatore operazionale è utilizzato in **configurazione retroazionata**: il segnale in uscita all'amplificatore è riportato all'ingresso mediante una **rete di retroazione** ("feedback") costituita da elementi passivi (ad esempio, da resistori).

- Quando il segnale di uscita è riportato all'ingresso invertente da una rete passiva abbiamo la retroazione negativa.
- Quando il segnale di uscita è riportato all'ingresso non invertente da una rete passiva abbiamo la retroazione positiva.

Retroazione negativa (1/2)

Amplificatore operazionale con retroazione negativa

Uno dei più semplici circuiti con retroazione negativa: il segnale di uscita è riportato all'ingresso invertente attraverso un partitore resistivo costituito dalle resistenze R_2 e R_1 .

Il circuito può essere descritto con il sistema di equazioni:

$$\begin{cases} V_{\text{in}} - V^{-} = R_{1}I_{1} \\ V^{-} - V_{\text{out}} = R_{2}I_{2} \\ I_{1} = I_{2} \\ V_{\text{out}} = EV_{\text{d}} = -EV^{-} \end{cases}$$

Retroazione negativa (2/2)

L'ultima equazione

$$V_{\text{out}} = EV_{\text{d}} = -EV^{-}$$

è risolvibile solo se $V_{\rm d}=V^+-V^-=0$: in questo caso, il prodotto $EV_{\rm d}$ assume la forma indeterminata $\infty\cdot 0$, che può avere un valore finito.

Se avessimo $V_d = V^+ - V^- = 0$, allora $V^- = 0$, e dalla KCL $I_1 = I_2$, otterremmo facilmente la soluzione:

$$V_{\text{out}} = -\frac{R_2}{R_1} V_{\text{in}}$$

che ci dice che nel circuito con amplificatore operazionale retroazionato il guadagno dipende solo dal rapporto tra le due resistenze.

V. Liberali, A. Stabile (UniMI) Laboratorio di Elettronica – Lezione 4 Milano, 27-28 aprile 2022

14 / 33

Retroazione positiva (1/2)

Amplificatore operazionale con retroazione positiva

Questo è il circuito che si ottiene **scambiando i terminali di ingresso** + e -. Anche in questo caso, possiamo scrivere il sistema di equazioni:

$$\begin{cases} V_{\text{in}} - V^{+} = R_{1}I_{1} \\ V^{+} - V_{\text{out}} = R_{2}I_{2} \\ I_{1} = I_{2} \\ V_{\text{out}} = EV_{d} = EV^{+} \end{cases}$$

Retroazione positiva (2/2)

Procedendo come nel caso precedente, se $V_d = V^+ - V^- = 0$, si ottiene:

$$V_{
m out} = -rac{R_2}{R_1}V_{
m in}$$

come per il circuito con retroazione negativa!

Ovviamente, i due ingressi + e - non sono intercambiabili, perché altrimenti non avrebbe senso distinguerli con un segno.

Almeno uno dei due risultati ottenuti deve essere sbagliato.

Quando si risolvono i circuiti con amplificatori operazionali retroazionati è importante riconoscere in quali casi V_d è nulla, e in quali casi non lo è.

Stabilità dei circuiti retroazionati

I due circuiti appena visti si comportano in modo diverso:

- il circuito con retroazione negativa ha guadagno $-R_2/R_1$;
- il circuito con retroazione positiva è instabile e la sua uscita si porta al massimo (oppure al minimo) valore possibile.

La differenza di comportamento *non si nota dalla soluzione matematica* e neppure dalla simulazione circuitale con SPICE. Occorre un nuovo concetto: la **stabilità**.

I circuiti retroazionati hanno un comportamento simile a quello di una pallina appoggiata su una superficie curva. Se la curvatura della superficie è opposta al verso della gravità, la posizione x=0 è un punto di equilibrio stabile; questa situazione è analoga alla retroazione negativa.

Se la curvatura della superficie è concorde con il verso della gravità, allora la posizione x=0 è un punto di equilibrio instabile: un piccolo spostamento provoca l'allontanamento dalla posizione di equilibrio, verso $x\to +\infty$ oppure verso $x\to -\infty$, e il segno dipende dallo spostamento iniziale; questa situazione è analoga alla retroazione positiva.

Studio della stabilità con i grafi

È possibile riconoscere se un circuito è retroazionato oppure no, e ricavare immediatamente il segno della retroazione, utilizzando il metodo dei diagrammi di flusso dei segnali (detti anche grafi di Mason). Occorre:

- individuare il numero minimo di variabili (dipendenti e indipendenti) del sistema; per questo esempio prendiamo: $V_{\rm in}$ (ingresso), V^+ , V^- , $V_{\rm d}$, e $V_{\rm out}$ (uscita). Le correnti I_1 e I_2 si ricavano usando la legge di Ohm;
- 2 individuare le grandezze di ingresso, quelle di uscita e quelle intermedie;
- scrivere un sistema di equazioni in cui tutte le grandezze di uscita e intermedie compaiono in forma esplicita in una (e una sola) equazione;
- ogni variabile corrisponde ad un nodo del grafo avente lo stesso nome;
- per ogni equazione, si disegna un ramo orientato che parte dal nodo che compare a destra del segno uguale e arriva nel nodo a sinistra del segno uguale, e si associa al ramo un peso pari al coefficiente moltiplicativo. Se a destra del segno uguale c'è la somma di più addendi, si disegna un ramo per ogni addendo.

Grafo di Mason per il circuito con retroazione negativa (1)

Scriviamo il sistema di equazioni (in forma esplicita):

$$\left\{ \begin{array}{l} V_{\text{out}} = EV_{\text{d}} \\ V_{\text{d}} = V^{+} - V^{-} \\ V^{-} = V_{\text{in}} \frac{R_{2}}{R_{1} + R_{2}} + V_{\text{out}} \frac{R_{1}}{R_{1} + R_{2}} \\ V^{+} = 0 \end{array} \right.$$

Grafo di Mason per il circuito con retroazione negativa (2)

$$\begin{cases} V_{\text{out}} = EV_{\text{d}} \\ V_{\text{d}} = V^{+} - V^{-} \\ V^{-} = V_{\text{in}} \frac{R_{2}}{R_{1} + R_{2}} + V_{\text{out}} \frac{R_{1}}{R_{1} + R_{2}} \\ V^{+} = 0 \end{cases}$$

Dal sistema, ricaviamo il grafo. Il ramo corrispondente all'ingresso + (in colore grigio) corrisponde alla tensione $V^+=0$ e può essere tralasciato perché non contribuisce al segnale di uscita.

Grafo di Mason per l'amplificatore con retroazione negativa

Grafo di Mason per il circuito con retroazione negativa (3)

Guadagno di andata

Nel grafo di Mason, tutti i rami sono *orientati* e possono essere percorsi solo in una direzione.

Il guadagno di andata A è dato dal prodotto di tutti i coefficienti lungo il percorso che va dall'ingresso all'uscita.

$$A = -E \frac{R_2}{R_1 + R_2}$$

Se ci sono più percorsi di andata, si fa la somma dei guadagni lungo ogni percorso.

Grafo di Mason per il circuito con retroazione negativa (4)

Guadagno dell'anello di retroazione

Bisogna individuare l'anello di retroazione, che è un percorso chiuso, e quindi calcolare il guadagno dell'anello di retroazione ("loop gain") G_L :

$$G_{\mathsf{L}} = -E \frac{R_1}{R_1 + R_2}$$

Il guadagno di anello negativo indica che la retroazione è negativa.

Grafo di Mason per il circuito con retroazione negativa (5)

Fattore di retroazione

Il fattore di retroazione B è dato dalla parte di anello non compresa nel guadagno di andata:

$$B = \frac{R_1}{R_1 + R_2}$$

Stabilità del circuito con retroazione negativa

Per analizzare la stabilità, usiamo i valori trovati con il grafo di Mason. Il circuito è stabile se in assenza di segnale di ingresso l'uscita non tende spontaneamente a infinito.

Poniamo $V_{\rm in}=0$ e verifichiamo se è possibile o no che $V_{\rm out}\to\infty$ (con segno + oppure –).

- Facciamo l'ipotesi che $V_{\text{out}} \to +\infty$.
- Il fattore di retroazione B che abbiamo calcolato è positivo e finito $(0 < B \le 1)$; quindi se $V_{\text{out}} \to +\infty$ anche $V^- \to +\infty$.
- ullet Procedendo lungo l'anello, ricaviamo $V_{
 m d}
 ightarrow -\infty.$
- Infine troviamo $V_{ ext{out}} o -\infty$, che contraddice l'ipotesi di partenza.

Abbiamo dimostrato che V_{out} non può tendere a $+\infty$.

In modo analogo, ipotizzando che $V_{\rm out} \to -\infty$, si arriva ad una contraddizione che dimostra $V_{\rm out}$ non può tendere a $-\infty$.

Quindi V_{out} deve avere un valore finito, e l'unica possibilità è sia il risultato di una forma indeterminata $V_{\text{out}} = \infty \cdot 0$; questo richiede che sia $V_{\text{d}} = 0$. Abbiamo dimostrato che il risultato ottenuto ponendo $V_{\text{d}} = 0$ era corretto per il circuito con retroazione negativa.

Grafo di Mason per il circuito con retroazione positiva (1)

Grafo di Mason per il circuito con retroazione positiva (2)

Guadagno dell'anello di retroazione per l'amplificatore con retroazione positiva

Procedendo come nel caso precedente, troviamo il **guadagno dell'anello di retroazione**:

$$G_{\mathsf{L}} = +E \frac{R_1}{R_1 + R_2}$$

Il guadagno di anello positivo dimostra che la retroazione è positiva.

Stabilità del circuito con retroazione positiva

Anche per questo circuito, verifichiamo se in assenza di segnale di ingresso l'uscita può tendere spontaneamente all'infinito.

- Se ipotizziamo $V_{\text{out}} \to +\infty$, procedendo lungo l'anello, ricaviamo $V^+ \to +\infty$, $V_{\text{d}} \to +\infty$ e infine $V_{\text{out}} \to +\infty$, che conferma l'ipotesi. Abbiamo così dimostrato che V_{out} può tendere a $+\infty$.
- In modo analogo, ipotizzando che $V_{
 m out} o -\infty$, si dimostra $V_{
 m out}$ può tendere a $-\infty$.

Quindi l'uscita può tendere spontaneamente ad un valore infinito, anche in assenza di segnale di ingresso. Il calcolo effettuato era sbagliato, perché per questo circuito non è vero che $V_{\rm d}=0$.

La soluzione che avevamo trovato è **instabile**: vale solo in un caso ideale, ma se il circuito si discosta anche di poco dal punto di lavoro ideale, il suo modo di funzionamento cambia.

Principio di terra virtuale

Per un amplificatore operazionale ideale con retroazione **negativa** abbiamo dimostrato che deve essere

$$V_{\rm d} = V^+ - V^- = 0$$

Questo è il **principio della terra virtuale**: i due terminali di ingresso dell'amplificatore operazionale ideale sono alla stessa tensione, benché la corrente di ingresso sia nulla.

Attenzione: bisogna ricordare che il principio di terra virtuale vale solo se l'amplificatore è retroazionato negativamente!

Esempi di circuiti con retroazione negativa

Per tutti i circuiti con amplificatori operazionali, occorre dapprima verificare il segno della retroazione.

In un circuito contenente un solo elemento attivo (amplificatore operazionale) e componenti passivi, il segno della retroazione è determinato dal segno del terminale a cui viene riportato il segnale di uscita.

Per circuiti con in solo anello di retroazione e più amplificatori, bisogna determinare i segni di ciascuno stadio di amplificazione lungo l'anello, e fare il prodotto dei segni.

Per circuiti con più anelli di retroazione, in generale bisogna usare il metodo dei grafi di Mason; solo in pochi casi è possibile determinare il segno della retroazione in modo immediato.

Una volta verificato che il circuito è retroazionato negativamente, si applica il principio di terra virtuale:

$$V^+ - V^- = 0$$

e si scrivono le KCL ai nodi + e -, ricordando che:

$$I^+ = I^- = 0$$

Questa relazione vale sempre, anche quando il principio di terra virtuale non vale.

Amplificatore invertente

Circuito con un solo amplificatore operazionale ideale, rete di retroazione passiva tra uscita e segnale applicato al ramo dell'ingresso invertente.

La retroazione è negativa, quindi possiamo applicare il principio di terra virtuale.

Scriviamo anzitutto le relazioni: $V^- = V^+ = 0$ e $I^- = I^+ = 0$.

Il circuito si risolve applicando la KCL all'ingresso invertente: $I_1 = I_2$

$$\frac{v_{\rm IN}}{R_1} = \frac{-v_{\rm OUT}}{R_2}$$

da cui di ricava:

$$v_{\text{OUT}} = -\frac{R_2}{R_1} v_{\text{IN}}$$

Amplificatore non invertente - primo esempio

La rete di retroazione è identica al caso dell'amplificatore invertente; la retroazione è negativa e possiamo applicare il principio di terra virtuale.

$$V^- = V^+ = v_{IN}$$
 e $I^- = I^+ = 0$

Procedendo come nel caso precedente, dalla KCL $I_1 = I_2$ si ricava:

$$\frac{-v_{\rm IN}}{R_1} = \frac{v_{\rm IN} - v_{\rm OUT}}{R_2}$$

e il risultato finale è:

$$v_{\mathsf{OUT}} = \left(1 + \frac{R_2}{R_1}\right) v_{\mathsf{IN}}$$

Amplificatore non invertente - secondo esempio (1/2)

La retroazione è negativa. Usiamo le relazioni: $V^- = V^+$ e $I^- = I^+ = 0$. Siccome in questo circuito nessuno dei due ingressi (+) e (-) dell'amplificatore è collegato alla tensione di ingresso o ad una tensione costante, bisogna calcolare la corrente nella maglia di ingresso, e quindi la tensione all'ingresso +:

$$V^+ = \frac{R_2}{R_1 + R_2} v_{\rm IN} = V^-$$

che è uguale alla tensione all'ingresso – per il principio di terra virtuale.

Amplificatore non invertente - secondo esempio (2/2)

Dalla KCL all'ingresso (–), si ricava:

$$\frac{1}{R_1} \cdot \frac{-v_{\text{IN}} R_2}{R_1 + R_2} = \frac{1}{R_2} \cdot \left(\frac{v_{\text{IN}} R_2}{R_1 + R_2} - v_{\text{OUT}} \right)$$

e si ottiene il risultato:

$$v_{\text{OUT}} = +\frac{R_2}{R_1}v_{\text{IN}}$$