AI발 전력수요 증가에 따른 에너지 및 소재 시장 동향 점검

장기윤 수석연구원 (serijky@posri.re.kr)

목차

- 1. 왜, AI는 '전기 먹는 하마'가 되었나?
- 2. AI발 전력수요 증가, 어떤 영향이 전망되나?
 - ① 에너지 시장: 재생에너지, 전력망
 - ② 소재 시장: 구리, 리튬, 니켈, 코발트
- 3. 시사점: AI발 변화에 어떻게 대응할 것인가?

ρosco 포스코경영연구원

Executive Summary

- '22년 하반기, Chat(챗)GPT가 최초로 출시되면서 전 세계 '생성형 Al' 열풍이 확산되고, Al용 데이터센터도 3년 내 현재 대비 2배로 증가할 전망임
- 이에 본 보고서는 AI발 전력수요 증가가 에너지 및 소재 시장에 어떤 영향을 미칠 지 분석하고 시사점을 모색함 (다음은 변화를 촉발한 내용임)
 - AI용 데이터센터 구축을 주도하는 빅테크 기업들이 넷제로 이행을 위한 **친환경 전력** 확보를 경쟁적으로 추진
 - AI용 데이터센터에 대용량 친환경 전력 공급을 위한 핵심 인프라 **전력망** 설치 급증
 - 재생에너지 발전 설비 및 전력망 확충에 따른 핵심광물의 동반 수요 증가

첫째, 에너지 시장 : 재생에너지 동향 및 전망

- 주요국의 재생에너지 투자가 지속되면서 총 발전량은 '26년까지 연10.7% 증가할 추세이며, AI용은 연26.0% 증가할 것으로 전망
- 재생에너지의 총 발전량 증가 중 AI 비중은 '26년까지 21.8% 증가세 전망

둘째, 에너지 시장 : 전력망 동향 및 전망

- 전력망 총수요는 도시화와 전기화에 따라 '26년까지 86백만Km로 연2.6% 증가하고, **Al용**은 2.4백만Km('23년)에서 3.6백만Km('26년)로 **연14.5%** 증가를 전망
- 전력망 총투자는 '23년 U\$344B에서 '26년 U\$420B로 연6.9% 증가, 이중 **AI용 투자는 25.6%**를 차지할 것으로 전망

셋째, 소재 시장 : 핵심광물 동향 및 전망

- 친환경 및 전기화(Electification) 등의 글로벌 패러다임 변화로 재생에너지, 전기 차 등 **핵심광물 집약형** 산업구조로 변환 가속 중
- 핵심광물은 넷제로 이행과정에서 수요가 집중될 전망이며, Al 및 전기차 확산으로 '
 30년까지 2.8~4.9배 높은 성장세가 전망
- AI발 전력수요 증가에 따른 에너지 및 소재 시장 동향 점검에서 다음과 같은 시 사점이 도출이 가능함
 - Al발 전력수요 증가는 에너지 및 소재 시장에 다각적인 영향을 주며, 재생에너지와 같은 친환경 에너지 수요는 물론 전력 공급의 핵심 인프라인 전력망 확충 필요성과 관련기술 및 설비 구현에 필수소재로 핵심광물의 역할이 증대될 전망
 - 이에 단기적으로는 AI발 재생에너지, 전력망, 필수소재로서 핵심광물수요 증가에 따른 안정적인 공급망 구축과 함께, 중장기적으로는 친환경 에너지 기술개발과 관련 제품의 표준화를 통한 선도적인 역할 모색이 필요할 것으로 보임

1. 왜, AI는 '전기 먹는 하마'가 되었나?

- □ '22.11월, Chat(챗) GPT가 최초로 출시되고 전 세계에 '생성형 Al' 열풍이 확산되면서, 빅테크(Big Tech)들은 앞다퉈 Al 출시를 서두르고 있음
- □ AI 열풍은 데이터센터 확대로 이어져, '26년까지 2배 가까이 증가할 것으로 전망됨 (IEA)

(개)	'23년	'24년	'25년	'26년
데이터센터	10,900	12,000	14,200	19,500

- □ Al용 데이터센터는 딥러닝을 반복 수행하여, 기존 연산 대비 많은 전력을 소비하는 것으로 알려짐¹(Google 검색당 0.3Wh 소비 vs. 챗GPT 2.9Wh 소비)
 - '26년 전 세계 전력 총수요 증가분 3,449TWh에서 Al용은 530TWh(15.4%) 를 차지할 것으로 전망됨

【세계 전력 수요 증가분 및 AI용 비중】

- □ AI발 전력수요 증가는 데이터센터 구축 및 다양한 경로에서 에너지 및 소재 시장에 영향을 미칠 것으로 보임
 - 첫째, AI용 데이터센터 전력 수요와 공급 최전선의 빅테크 기업들이 넷제로 이행을 위해 친환경 전력공급을 강력하게 요구

¹ 전 세계 '24~'26년 전력 수요 증가율 : 연3.4%, AI 전력수요 증가율: 연26.4% (IEA, 2024)

- 둘째, AI용 데이터센터에 대용량 친환경 전력을 안정적으로 공급하기 위한 핵 심 인프라로 전력망 설치가 급증
- 셋째, 재생에너지 발전 설비 및 전력망 확충에 따른 핵심광물의 동반 수요가 증가

2. AI발 전력수요 증가, 어떤 영향이 전망되나?: ①재생에너지

- □ 재생에너지는 넷제로를 이행할 현실적이며 경제적인 방안으로² 이 분야에 대한 투자는 '26년 U\$5.2조로 미국, EU 등 선진국은 물론 아시아를 포함 한 신흥국에서도 지속될 전망 ('23년 U\$2.8조)
 - 세계 각국 정부는 탄소중립 이행을 위한 에너지 전환을 진행 중이며, '30년까지 3배의 재생에너지 보급 확대를 추진하고 있음 ('23년 대비)
 - **재생에너지 총투자 규모는 '26년 U\$5.2조로, '23년(U\$2.8조) 대비 1.8배 증 가세가 전망됨** (넷제로 2050 시나리오 가정, IEA)
 - **재생에너지 발전량의 연간 증가는 10.7%, AI용은 25.9%로 예측됨**('23~'26년)
 - 재생에너지 총 발전량 증가분 1,462TWh에서 AI용은 262TWh(17.9%)³로 전망됨

² 넷제로의 현실적 대안중 하나인 원전의 준공연한(7~11년) 대비 재생에너지는 2-4년으로, 짧고 발 전원가도 지속적인 하락세를 보임

³ 한국은 제11차 전기본 실무안('24.5)에서 '30년까지 재생에너지 설비를 72GW로 확대하도록 추진함

- □ 한편, 빅테크 기업들은 친환경 전력을 확보하기 위해 직접투자를 하거나 제 3자의 친환경 전력을 구매하는 등 다양한 방식을 활용 중
 - 빅테크 기업은 데이터센터 운영에 많은 전력을 소비하는 업의 특성상 전력 공 급 안정화를 최우선 선결과제로 선정
 - 이들은 탄소중립에 앞장서며, 필요한 전력을 친환경으로 확보하고자 다양한 전략을 활용 중임

【 빅테크들의 친환경 전력 확보 사례 】

기업명	친환경 전력 확보 방안		
⑤ OpenAl (직접 투자)	- 태양광 (ExoWatt, U\$20M), 핵 융합 (Hellion, U\$370M) - SMR(투자회사 Oklo의 기업공개로 U\$360M 확보) → 상업화 '27년 목표 (美 에너지부 U\$2M, 정책자금 활용)		
Microsoft (직접 투자 + 제3자 구매)	- SMR(TerraPower, '08년 설립) → '30년 상업발전 목표) - 태양열(Heliogen), 핵융합(커먼웰스-퓨전시스템) 등		
amazon (직접 투자 + 제3자 구매)	 핵융합(General Fusion, U\$20M, OpenAl 및 MS 등 빅테크 참여) 태양광(SK E&S, 2GW, '25년 상업운전 목표) 		

자료: 각 사 홈페이지 (2024년)

2. AI발 전력수요 증가, 어떤 영향이 전망되나?: ②전력망

- □ 전력망은 전력을 소비자에게 연결하는 핵심 인프라로서, 최근 광섬유망, 초 고압 변압기 등 요구 변화에 기존 설비로 대체하기에는 한계가 있음⁴
 - 현재의 전력시스템이 채택된 20세기 초반부터 100년 간에 걸쳐 보급된 전력 망은 총 80백만Km에 도달함 ('23년 기준)
 - 도시화와 전기화 진전에 따른 세계 전력망의 총수요는 '26년까지 86백만Km 으로 연2.6% 증가가 전망됨 ('30년 98백만Km)

⁴ 미국 전력망 1/3은 30년이 넘은 구형이며, 유럽은 절반 이상이 구형으로 분류되고 있음

○ AI용은 2.4백만Km('23년)에서 3.6백만Km('26년)로 연14.5% 증가하며, 총 수요 증가분에서는 AI용은 12.5%('23년)에서 24%('26년)으로 증가세가 전망됨

【전력망 총수요 증가 및 AI용 수요 전망 ('30년)】

- □ 세계 전력망 수요는 선진국의 노후 대체수요와 신흥국의 신규수요로 구성되며, 총투자는 '26년까지 U\$4,200억으로 예상됨
 - 세계 전력망 투자는 '23년 U\$3,440억에서 '26년 U\$4200억으로 연6.9% 증가하고, 이중에서 AI용 투자는 25.6%를 차지할 전망임 ('26년 기준)
 - 지역별로는 아시아(U\$1,800억, '26년), 북미(1100억), 유럽(900억), 기타 (남미 220억, 아프리카 160억) 등으로 예측됨 ('26년 기준)⁵

【세계 전력망 투자 규모 ('30년)】

2. AI발 전력수요 증가, 어떤 영향이 전망되나?: ③소재

⁵ 투자재원 부담이 큰 신흥국은 WB, ADB 등 재정지원 활용이 가능함

2024 자료(IEA)

- □ 핵심광물(Critical Minerals)⁶은 성장하는 친환경 에너지 분야의 필수 요소로 빠르게 자리매김하며, 풍력 터빈, 태양광 패널의 전력망, 전기차에 이르기까지 다양한 분야에서 활용되고 있음
 - 친환경 및 전기화 등 글로벌 패러다임의 변화로 재생에너지, 전기차, 이차전지 등 핵심광물 집약형 산업구조로 변환이 가속 중임⁷
 - 특히, 주요국들의 에너지전환 이행에 따라 전 세계 핵심광물 수요는 '20~'22 년 대비 2.4배, 평균가격은 3배 인상을 보이면서 중요도가 높아짐⁸

【주요 핵심광물 가격변동 ('16.1월=100)】

2016

2018

□ 핵심광물은 넷제로 이행과정에서 수요가 집중되고, AI 및 친환경 에너지 기술 확산으로 '30년까지 2.8~4.9배 높은 성장세가 예상됨

2022

2020

- 특히, 핵심광물은 친환경 에너지용으로 재생에너지 설비, 전력망, 반도체 등에 서 필수소재로 사용 중임
- 총수요에서 친환경 수요 비중은 구리 (45%), 리튬 (87%), 니켈 (50%), 코 발트 (59%, '30년 기준) 등에 지속적인 증가세가 전망됨

【 친환경 에너지 분야에서 주요 핵심광물의 사용 비중】

⁶ 핵심광물(Critical Minerals): 각 국가의 경제와 산업에 필수적으로 사용되는 광물인 구리, 니켈, 리튬, 코발트, 흑연, 희토류 등이 포함됨

⁷ 전기차는 내연기관 대비 6배, 풍력은 화력 대비 9배 핵심광물을 사용하는 것으로 분석됨

⁸ 한편, 공급측면에서 핵심광물 매장 및 생산이 특정 국가에 집중되어, 대체재 확보가 어려움에 따라 공급망 구축이 중요 과제로 대두됨

3. 시사점

- □ '생성형 AI 확산 → 전력을 많이 소비하는 데이터센터 확충 → 에너지 및 소재 시장에 영향'을 주는 순으로 분석됨
- □ AI발 전력수요 증가의 최전선에 있는 빅테크 기업들은 넷제로에서 선도 입 장을 보이면서, 재생에너지 확대와 전력망의 수요를 촉발시킴
- □ 특히, 재생에너지 설비와 전력망 등 친환경 에너지 설비 및 기술에 핵심광 물(소재)이 필수 소재로 부각되면서 수요가 급증함
- □ 이에 단기적으로는 재생에너지, 전력망, 소재 수요 증가에 따른 안정적인 공급망 구축이 필요하며, 중장기적으로는 친환경 에너지 기술개발과 관련제 품의 표준화를 통한 선도적인 역할 모색이 필요함

이 자료에 나타난 내용은 포스코경영연구원의 공식 견해와는 다를 수 있습니다.

[참고자료]

[보고서/논문]

산업부(2024.5), 제11차 전력수급기본계획(실무안)

IEA(2024), Global Critical Minerals Outlook 2024

IEA(2024), Electricity 2024: Analysis and forecast to 2026

IEA(2024), Electricity Grids and Secure Energy Transitions

IEA(2023), Renewables 2023: Analysis and forecast to 2028

IEA(2023), Renewable Energy Market Update: Outlook for 2023 and 2024

IEA(2024), World Energy investment 2024

IEA, World Energy Outlook, 2023/2024

[웹사이트]

국제에너지기구(IEA, https://www.iea.org)

미국에너지정보청(EIA, https://www.eia.gov)

OpenAI(https://openai.com/)

마이크로소프트(MS, https://www.microsoft.com)

아마존(https://www.amazon.com)