

W83793G Winbond H/W Monitor

DATE: DECEMBER 11, 2006

REVISION: 1.0

W83793G DATA SHEET REVISION HISTORY

	PAGES	DATES	VERSION	WEB VERSION	MAIN CONTENTS	
1	n.a.		0.1	n.a.	Preliminary	
2	n.a.	06/06/05	0.2	n.a.	Modify pin type for VID pins. Sec4.1 and 5.2	
3	n.a.	08/01/05	0.3		Add Vtt and PECI pin.	
4	n.a.		0.32	n.a.	Modify chap4(block diagram) and chap5(pin configuration)	
5	n.a.	01/20/06	0.33	n.a.	Modify Register for B version.	
6	n.a.	01/06/06	0.34	n.a.	 Modify the formula to calculate the RPM Add information of "The Top Marking" Change the part name to W83793G 	
7	Page 9, 13, 14	02/27/06	0.35	n.a.	Add FANIN9~FANIN12 function description	
8		12/1/06	1.0		 Modify 8.8.2.3 register description. Update 8.9.2.1 Voltage reading formula Remove AMD SI description Update 8.3.2.2 Index 0Ch I2CADDR75E registers Update AC Characteristic on Chap 9.3 	

Table of Contents-

1.	GEN	ERAL DE	SCRIPTION	1
2.	FEA	ΓURES		2
	2.1	Monitor	ing Items	2
	2.2	Addres	s Resolution Protocol and Alert Standard Format	2
	2.3		Enabling	
	2.4		l	
	2.5		e	
3.		_	CATIONS	
4.			RAM	
5.			RATION	
6.			ΓΙΟΝ	
	6.1		e Description	
	6.2		scription List	
7.	FUN	CTIONAL	DESCRIPTION	11
8.	CON	FIGURAT	ION REGISTERS	12
	8.1	ID, Ban	k Select Registers	12
		8.1.1	ID, Bank Select Registers Map	12
		8.1.2	ID, Bank Select Register Details	12
	8.2	Watch	Dog Timer Registers	14
		8.2.1	Watch Dog Timer Registers Map	
		8.2.2	Watch Dog Timer Register Details	
	8.3	Configu	ration and Address Select Registers	
		8.3.1	Register Maps	
		8.3.2	Register Details	
	8.4		ntrol/Status Registers	
		8.4.1	VID Control/Status Registers Map	
		8.4.2	VID Register Details	
	8.5		II# Control/Status Registers	
		8.5.1 8.5.2	INT/SMI Control/Status Register Map INT/SMI Control/Status Register Details	
	0.6		•	
	8.6	8.6.1	EEP Control Register OVT/BEEP Control Registers Map	
		8.6.2	OVT/BEEP Control Registers Details	
	8.7		unction Pin Control Register	
	5.1	8.7.1	Multi-Function Pin Control Register Map	
		8.7.2	Multi-Function Pin Control Register Details	

W83793G

	8.8	Tempera	ature Sensors Control Register	40		
		8.8.1	Temperature Sensors Control Register Map	40		
		8.8.2	Temperature Sensors Control Register Details	40		
	8.9	Voltage	Channel Registers	44		
		8.9.1	Voltage Channel Registers Map	44		
		8.9.2	Voltage Channel Register Details	45		
	8.10	Tempera	ature Channel Registers	48		
		8.10.1	Temperature Channel Register Map	48		
		8.10.2	Temperature Channel Register Details	49		
	8.11	Fan Con	ntrol Registers	51		
		8.11.1	Fan Register Map	51		
		8.11.2	Fan Register Details	56		
	8.12	PECI Co	ontrol Registers	81		
		8.12.1	PECI Register Map	82		
		8.12.2	PECI Register Details	83		
	8.13	ASF Cor	ntrol Registers	89		
		8.13.1	ASF Register Map	89		
		8.13.2	ASF Register Details	95		
9.	ELEC	TRICAL C	HARACTERISTICS	112		
	9.1	Absolute	e Maximum Ratings	112		
	9.2	DC Chai	racteristics	112		
	9.3	AC Char	racteristics	114		
		9.3.1	Access Interface	114		
		9.3.2	Dynamic Vcore Limit Setting	115		
		9.3.3	Power On Reset	116		
10.	ORDE	R INFOR	MATION	116		
11.	APPE	NDIX		117		
	11.1	Register	Summary	117		
12.	THE 1	TOP MAR	KING	125		
13	PACK	PACKAGE DRAWING AND DIMENSIONS 126				

1. GENERAL DESCRIPTION

W83793G is an evolving version of the W83792D. Besides the conventional functions of W83792D, W83793G uniquely provides several innovative features such as ASF 2.0 specification compliant, SMBus 2.0 ARP command compatible, 8 sets of Smart fanTM. Conventionally, W83793G can be used to monitor several critical hardware parameters of the system, including power supply voltages, fan speeds, and temperatures, which are very important for a high-end computer system, such as server, workstation...etc, working very stably and efficiently.

A 10-bit analog-to-digital converter (ADC) is built inside W83793G. W83793G can simultaneously monitor 11 analog voltage inputs (including power VDD/5VSB/VBAT monitoring), 12 fan tachometer inputs, 6 remote temperatures, 4 of which support current mode (dual current source) temperature measurement method, and Watch Dog Timer function. The sense of remote temperature can be performed by thermistors, or directly from Intel® / AMDTM CPU with thermal diode output. W83793G provides 8 PWM (pulse width modulation) / DC fan output modes for smart fan control - "Thermal CruiseTM" mode and "Smart FanTM II" mode. Under "Thermal CruiseTM" mode, temperatures of CPU and the system can be maintained within specific programmable ranges under the hardware control. As Smart FanTM II, which provides 8 sets of temperatures point each could control fan's duty cycle, depends on this construction, fan could be operated at the lowest possible speed so that the acoustic noise could be avoided. As for warning mechanism, W83793G provides SMI#, OVT#, IRQ, BEEP signals for system protection events. W83793G also has 2 specific pins to provide selectable address setting for application of multiple devices (up to 4 devices) wired through I²C interface.

W83793G can uniquely serve as an ASF sensor to respond to ASF master's request for the implementation of network management in OS-absent status. Through W83793G's compliance with ASF2.0 sensor specification, network server is able to monitor the environmental status of each client in OS-absent state by PET (Platform Event Trap) frame values returned from W83793G, such as temperatures, voltages, fan speed and case open. Moreover, W83793G supports SMBus 2.0 ARP command to solve the problem of address conflicts by dynamically assigning a new unique address for W83793G ASF Function after W83793G's UDID is sent.

Through the application software or BIOS, the users can read all the monitored parameters of the system from time to time. A pop-up warning can also be activated when the monitored item is out of the proper/preset range. The application software could be Winbond's Hardware DoctorTM or other management application software. Besides, the users can set up the upper and lower limits (alarm thresholds) of these monitored parameters and activate corresponding maskable interrupts.

2. FEATURES

2.1 Monitoring Items

VOLTAGE

 Monitoring 11 voltages (3 power pins – VSB, VCC, VBAT, 8 external pins – Vcore x 4, +3V, +12V, Others x 2).

TEMPERATURE

- 4 thermal diode (D+, D-) inputs, supporting current mode (dual current source) temperature measurement method
- 2 thermistor inputs
- Support Intel® PECI

FAN

- 8 DC/PWM Fan outputs for fan speed control
- 8 Fan speed inputs for monitoring (up to 12 by register setups)
- Smart Fan[™] -- control the most fitting speed automatically by temperature.

CASEOPEN

• Case open detection input.

2.2 Address Resolution Protocol and Alert Standard Format

- Support System Management Bus (SMBus) version 2.0 specification
- Comply with hardware sensor slave ARP (Address Resolution Protocol)
- Response ASF 2.0 command --- Get Event Data, Get Event Status, Device Type Poll
- Comply with ASF 2.0 sensors (Monitoring fan speed, voltage, temperature, thermal trip and case open event/status)
- Support Remote Control subset: Remote Power-on/ Power-off/ Reset.

2.3 Actions Enabling

- Issue SMI#, OVT# signals to activate system protection
- Issue BEEP signal to activate system speaker or buzzer

2.4 General

- I²C serial bus interface
- Watch Dog Timer function with pin: WDTRST#, SYSRST_IN.
- 2 pins (A0, A1) to provide selectable address settings for application of multiple devices (up to 4 devices) wired together through I²C interface
- 5V operation

2.5 Package

• 56 Pin SSOP 300mil.

3. KEY SPECIFICATIONS

	Voltage monitoring accuracy	±1%
•	Temperature Sensor Accuracy	
	Remote Diode Sensor Accuracy	± 1°C
	Resolution	0.5 ℃
	Supply Voltage (Pin 7, 5VSB)	5±0.25V
•	Operating Supply Current	25 mA typ.
	Current without 48MHz input at Pin 1	8 mA typ.
•	ADC Resolution	10 Bits

4. BLOCK DIAGRAM

5. PIN CONFIGURATION

W83793G (56 SSOP)

```
CLK
                              56 VIDB7/FANCTL8
    OVT#/BEEP
               2
                              55 VIDB6/FANIN8
      IRQ/SMI#
                              54 VIDB5/FANCTL7
               3
                              53 VIDB4/FANIN7
          SCL
               4
                              52 VIDB3/FANCTL6
          SDA
     PWRBTN#
                              51 VIDB2/FANIN6
               6
                              50 VIDB1/FANCTL5
         5VSB
               7
   CASEOPEN#
                              49 VIDB0/FANCTL4
               8
         VBAT
                              48 FANIN5
  VIDA4/FANIN8
                              47 FANIN4
               10
VIDA5/FANCTL8
                              46 FANCTL3/VIDBSEL
               11
                              45 FANIN3
   VIDA6
               12
                              44 FANCTL2/ADDR1
   VIDA7
               13
     WDTRST#
                              43 FANIN2
               14
                              42 FANCTL1/ADDR0
    SYSRSTIN#
               15
         GND
                              41 FANIN
               16
         PECI
                              40 VIDA3/FANIN12
               17
          VTT
                              39 VIDA2/FANIN11
               18
        VSEN1
                              38 VIDA1/FANIN10
               19
                              37 VIDA0/FANIN9
        VSEN2
               20
        VSEN3
               21
                              36 4 D-
                              35 4_D+
        VSEN4
               22
                              34 3_D-
      VCOREA
               23
      VCOREB
               24
                              33 3_D+
                              32 2 D-
               25
         5VDD
         VREF
               26
                              31 2_D+
                              30 1_D-
         THR1
               27
         THR2
               28
                              29 1_D+
```


6. PIN DESCRIPTION

6.1 Pin Type Description

SYMBOL	DESCRIPTION
t	TTL level
v1	Vil/Vih=0.4/0.6 level
v2	Vil/Vih=0.8/1.4 level
v3	Vtt level
s	Schmitt trigger
12	12mA sink/source capability
OUT	Output pin
OD	Open-drain output pin
AOUT	Output pin (Analog)
IN	Input pin (digital)
AIN	Input pin(Analog)

6.2 Pin Description List

PIN NAME	PIN NO.	POWER PLANE	TYPE	DESCRIPTION
CLK	1	5VSB	IN _{ts}	48MHz System clock while VCC5V powered up. PECI and FAN will use this clock to drive logics.
OVT#				Over temperature alert. Low active.
BEEP	2	5VSB	OD ₁₂	BEEP output when abnormal event occurs. When this is no abnormal events, this pin asserts low.
IRQ	3	5VSB	OUT ₁₂	Interrupt request output when abnormal events occur.
SMI#			OD ₁₂	System Management Interrupt (open drain).
SCL	4	5VSB	IN _{ts}	Serial Bus Clock.
SDA	5	5VSB	IN/OD _{12ts}	Serial Bus bi-directional data.
PWRBTN#	6	5VSB	OD ₁₂	Power Button output for enable/disable power supply. This pin is related to ASF commands.
5VSB	7	-	POWER	This pin is power for W83793G. Bypass with the parallel combination of $10\mu F$ (electrolytic or tantalum) and $0.1\mu F$ (ceramic) bypass capacitors.
CASEOPEN#	8	VBAT	IN _{ts}	CASE OPEN detection. An active low input from an external device when case is Intruded. This signal will be latched even the case is closed.

PIN NAME	PIN NO.	POWER PLANE	TYPE	DESCRIPTION
VBAT	9		POWER	VBAT supplies power for CASEOPEN. Besides, it is also a voltage monitor channel.
VIDA4	10	5VSB	IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 4 from CPU A. (Default)
FANIN8			IN _{ts}	0V to +5V amplitude fan tachometer input
VIDA5			IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 5 from CPU A. (Default)
FANCTL8	11	5VSB	OUT / OD _{12a}	FAN control output. The 8 th fan control signal can be programmed to output through pin 56 or this pin. When this pin is programmed to be fan control signal, it only supports PWM mode.
FANIN12			IN _{ts}	0V to +5V amplitude fan tachometer input
VIDA6	12	5VSB	IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 6 from CPU A.
VIDA7	13	5VSB	IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 7 from CPU A. (Default)
WDTRST#	14	5VSB	OD ₁₂	Low active system reset. If triggered, this pin will send out 100ms low pulse for system reset.
SYSRSTIN#	15	5VSB	IN _{ts}	System reset input, used to control WDT.
GND	16		POWER	System Ground.
PECI	17	5VDD	IN/O _{V3}	Intel® CPU PECI interface
VTT	18		POWER	Intel® CPU Vtt power
VSEN1	19		AIN	Voltage sensor input. Detect range is 0~4.096V
VSEN2	20		AIN	Voltage sensor input. Detect range is 0~4.096V
+12VSEN	21	-	AIN	+12V voltage input for monitoring. This +12V input voltage needs external resistors to scale it down. The detect range is 0~2.048V.
+3VSEN	22		AIN	+3V voltage input for monitoring. The detect range is 0~4.096V.

PIN NAME	PIN NO.	POWER PLANE	TYPE	DESCRIPTION
VCOREA	23		AIN	CPU A core voltage input. Detect range is 0~2.048V
VCOREB	24		AIN	CPU B Core Voltage Input. Detect range is 0~2.048V.
5VDD	25	-	POWER	+5V VDD power. Bypass with the parallel combination of 10μ F (electrolytic or tantalum) and 0.1μ F (ceramic) bypass capacitors.
VREF	26		AOUT	Reference voltage output.
THR1	27		AIN	Thermistor 1 terminal input.
THR2	28		AIN	Thermistor 2 terminal input.
1_D+	29		AIN	Thermal diode 1 D+ .
1_D-	30		AIN	Thermal diode 1 D
2_D+	31		AIN	Thermal diode 2 D+ .
2_D-	32		AIN	Thermal diode 2 D
3_D+	33		AIN	Thermal diode 3 D+ .
3_D-	34		AIN	Thermal diode 3 D
4_D+	35		AIN	Thermal diode 4 D+ .
4_D-	36		AIN	Thermal diode 4 D
VIDA0	37	5VSB	IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 0 from CPU A. (Default)
FANIN9	31	3736	IN _{ts}	0V to +5V amplitude fan tachometer input
VIDA1	38	5VSB	IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 1 from CPU A. (Default)
FANIN10	30	J V OD	IN _{ts}	0V to +5V amplitude fan tachometer input

PIN NAME	PIN NO.	POWER PLANE	TYPE	DESCRIPTION
VIDA2	39	5VSB	IN _{v1s}	Voltage Supply readouts bit 2 from CPU A. (Default)
FANIN11	39	3736	IN_ts	0V to +5V amplitude fan tachometer input
VIDA3	40	5VSB	IN _{v1s}	Voltage Supply readouts bit 3 from CPU A. (Default)
FANIN12			IN _{ts}	0V to +5V amplitude fan tachometer input
FANIN1	41	5VSB	IN_ts	0V to +5V amplitude fan tachometer input
FANCTL1	42	5VSB	OUT / OD ₁₂ / AOUT	Fan speed control PWM/DC output. When the power of 5VDD is 0V, this pin will drive logic 0. The power of this pin is supplied by VSB 5V. As DC output, 64 steps output voltage scaled to 0~5VSB.
ADDR0			IN_ts	I ² C device address bit 0 trapping during 5VSB power on.
FANIN2	43	5VSB	IN_ts	0V to +5V amplitude fan tachometer input
FANCTL2	44	5VSB	OUT / OD ₁₂ / AOUT	Fan speed control PWM/DC output. When the power of 5VDD is 0V, this pin will drive logic 0. The power of this pin is supplied by VSB 5V. As DC output, 64 steps output voltage scaled to 0~5VSB.
ADDR1			IN _{ts}	I ² C device address bit 1 trapping during 5VSB power on.
FANIN3	45	5VSB	IN_ts	0V to +5V amplitude fan tachometer input
FANCTL3	46	5VSB	OUT / OD ₁₂ / AOUT	Fan speed control PWM/DC output. When the power of 5VDD is 0V, this pin will drive logic 0. The power of this pin is supplied by VSB 5V. As DC output, 64 steps output voltage scaled to 0~5VSB.
VIDBSEL			IN_ts	The pin straps Fan mode and VID mode during 5VSB power on. When the strap to high, it will select VID mode. When strapped to low, it will select Fan mode for pin49~56.

PIN NAME	PIN NO.	POWER PLANE	TYPE	DESCRIPTION
FANIN4	47	5VSB	IN _{ts}	0V to +5V amplitude fan tachometer input
FANIN5	48	5VSB	IN_ts	0V to +5V amplitude fan tachometer input
FANCTL4	49	5VSB	OUT / OD ₁₂ / AOUT	Fan speed control PWM/DC output. When the power of 5VDD is 0V, this pin will drive logic 0. The power of this pin is supplied by VSB 5V. As DC output, 64 steps output voltage scaled to 0~5VSB.
VIDB0			IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 0 from CPU B.
FANCTL5	50	5VSB	OUT / OD ₁₂ / AOUT	Fan speed control PWM/DC output. When the power of 5VDD is 0V, this pin will drive logic 0. The power of this pin is supplied by VSB 5V. As DC output, 64 steps output voltage scaled to 0~5VSB.
VIDB1			IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 1 from CPU B.
FANIN9			INts	0V to +5V amplitude fan tachometer input
FANIN6			INts	0V to +5V amplitude fan tachometer input
VIDB2	51	5VSB	IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 2 from CPU B.
FANCTL6	52	5VSB	OUT / OD ₁₂ / AOUT	Fan speed control PWM/DC output. When the power of 5VDD is 0V, this pin will drive logic 0. The power of this pin is supplied by VSB 5V. As DC output, 64 steps output voltage scaled to 0~5VSB.
FANIN10	32	3036	INts	0V to +5V amplitude fan tachometer input
VIDB3			IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 3 from CPU B.
FANIN7			INts	0V to +5V amplitude fan tachometer input
VIDB4	53	5VSB	IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 4 from CPU B.

PIN NAME	PIN NO.	POWER PLANE	TYPE	DESCRIPTION
FANCTL7	54	5VSB	OUT / OD ₁₂ / AOUT	Fan speed control PWM/DC output. When the power of 5VDD is 0V, this pin will drive logic 0. The power of this pin is supplied by VSB 5V. As DC output, 64 steps output voltage scaled to 0~5VSB.
FANIN11			INts	0V to +5V amplitude fan tachometer input
VIDB5			IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 5 from CPU B.
FANIN8	55	E) (OD	INts	0V to +5V amplitude fan tachometer input
VIDB6	55	5VSB	IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 6 from CPU B.
FANCTL8	56	5VSB	OUT / OD ₁₂ / AOUT	Fan speed control PWM/DC output. The 8 th fan control signal can be programmed to output through pin 11 or this pin. When the power of 5VDD is 0V, this pin will drive logic 0. The power of this pin is supplied by VSB 5V. As DC output, 64 steps output voltage scaled to 0~5VSB.
VIDB7			IN _{v1s} or IN _{v2s}	Voltage Supply readouts bit 7 from CPU B.

7. FUNCTIONAL DESCRIPTION

This section is blank now. Refer Chap 8 for function description.

8. CONFIGURATION REGISTERS

8.1 ID, Bank Select Registers

W83793G inside resides three banks of registers, customer must set bank correctly so that correct registers can be accessed. All the registers described here can be access in all banks.

8.1.1 ID, Bank Select Registers Map

Address 00_{HEX} , $0D_{HEX}$, $0E_{HEX}$, $0F_{HEX}$ in all three register banks are reserved as ID, Bank Select registers.

MNEMONIC	REGISTER NAME	TYPE
BankSel.	Bank Select	RW
VendorID.	Winbond Vendor ID	RO
ChipID.	Winbond Chip ID	RO
DeviceID.	Winbond Device Version ID	RO

8.1.2 ID, Bank Select Register Details

8.1.2.1 Bank Select Register (Bank Select)

Three banks of registers are inside W83793G. The register bank could be selected by programming Bank Select register. All Address 00_{HEX} in these there banks is defined as Bank Select register.

Location: Bank 0, 1, 2 Address 00_{HEX}

Type: Read / Write

Reset: VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set,

VDD5V (Pin 25) Rising @ RST_VDD_MD (CR40.Bit4) set, SYSRSTIN N (Pin 15) Falling @ SYSRST MD (CR40.Bit5) set.

BANKSELECT

BIT	7	6	5	4	3	2	1	0	
Name	HBACS		Reserve				BANK Select		
Reset	1	0 _{HEX}	HEX						

BIT	DESCRIPTION				
	HBACS (High Byte Access)				
7	0: Return the low byte while reading Winbond Vendor ID.				
	1: Return the high byte while reading Winbond Vendor ID.				
6-3	Reserved.				

Continued

BIT	DESCRIPTION
	BANK Select.
2-0	000թո: Bank 0 is selected to access.
2-0	001віn: Bank 1 is selected to access.
	010թո: Bank 2 is selected to access.

8.1.2.2 Winbond Vendor ID Register (Vender ID)

The Winbond Vendor ID contains two bytes data. By programming register **HBACS**, it can customer can select to access either high or low byte of Winbond Vendor ID.

Location: Bank 0, 1, 2 Address 0D_{HEX}

Type: Read Only Reset: No Reset

VENDORID (WINBOND VENDOR ID)

BIT	7	6	5	4	3	2	1	0
Name	VendorID							
Fixed	5C _{HEX} / A3 _{HEX}							

BIT	DESCRIPTION				
7-0	VendorID.				
7-0	Return $5C_{HEX}$ if HBACS = 1; return A3 _{HEX} if HBACS = 0.				

8.1.2.3 Winbond Chip ID Register (ChipID)

Location: Bank 0, 1, 2 Address 0E_{HEX}

Type: Read Only

Reset: No Reset

CHIPID (WINBOND CHIP ID)

BIT	7	6	5	4	3	2	1	0
Name	ChipID							
Reset	7B _{HEX}	7B _{HEX}						

BIT	DESCRIPTION			
7.0	ChipID.			
7-0	Chip ID of W83793G is 7B _{HEX}			

8.1.2.4 Winbond Version ID Register (Device ID)

Location: Bank 0, 1, 2 Address 0F_{HEX}

Type: Read Only

Reset: No Reset

VERSION ID

BIT	7	6	5	4	3	2	1	0
Name		DeviceID						
Fixed	11 _{HEX} /12 _{HEX}							

BIT	DESCRIPTION					
7-0	Version ID.					
7-0	Device ID of W83793G B Version is 11 _{HEX} , C Version is 12 _{HEX}					

8.2 Watch Dog Timer Registers

W83793G is built in with a Watch Dog Timer, which enable users to reset the system by Pin 14 while system becomes abnormal. Once Watch Dog is enabled, W83793G starts to count down, and host should set the timer for further count down or clear/disable the timer to prevent W83793G issue reset signal.

8.2.1 Watch Dog Timer Registers Map

Watch Dog Timer is consisted of four registers. WDTLock and ENABLE_WDT are used to activate Soft-WDT and Hard-WDT, respectively. WDT_STS and DownCounter can inform the host whether the system is time up or not.

MNEMONIC	REGISTER NAME	TYPE
WDTLock.	Lock Watch Dog	WO
EnableWDT.	Watch Dog Enable	RO
WDT_STS.	Watch Dog Status	R/W
DownCounter.	Watch Dog Timer	R/W

Two kinds of watchdog timer functions are supported by W83793G. One is so-called Soft Watch Dog Timer, and the other is Hard Watch Dog Timer.

Hard Watch Dog timer if enabled that will start a 4 minutes WDT after completion of system reset. (A Low to High transition on SYSRSTIN# pin). BIOS need to write a 00_{HEX} into Watch Dog Timer Register (04_{HEX}) to disable timer within 4 minutes, otherwise pin 14 WDTRST# will assert to reset system.

Soft Watch Dog Timer will start down counting whenever Timeout Time is set and Soft Watch Dog Timer is enabled. A WDTRST# will be issued while the timer timeouts.

Soft Watch Dog Timer will be disabled automatically after received a SYSRSTIN N low signal.

Bank0. CR40 [2]/ENWDT must set to 1 if there four Watch Dog Timer Registers want to be programming.

8.2.2 Watch Dog Timer Register Details

8.2.2.1 Lock Watch Dog Register (WDT Lock)

Writing this register enable the Soft Watch Dog Timer or Hard Watch Dog Timer. This register is written only and user can confirm the write success by reading ENABLE WDT.

Location: Bank 0 Address 01_{HEX}

Type: Write Only

Reset: VSB5V (Pin 7) Rising,

SYSRSTIN_N (Pin 15) Falling in Soft WDT mode.

WDTLOCK (WATCH DOG TIMER LOCK)

BIT	7	6	5	4	3	2	1	0
Name		UNLOCK CODE						

BIT	DESCRIPTION
	Unlock Code.
	Write 55 _{HEX} , Enable Soft Watch Dog Timer.
7-0	Write AA _{HEX} , Disable Soft Watch Dog Timer.
	Write 33 _{HEX} , Enable Hard Watch Dog Timer.
	Write CC _{HEX} , Disable Hard Watch Dog Timer.

8.2.2.2 Watch Dog Enable Register (Enable WDT)

Location: Bank 0 Address 02_{HEX}

Type: Read Only

Reset: VSB5V (Pin 7) Rising.

ENABLE WDT (WATCH DOG TIMER ENABLE STATUS)

BIT	7	6	5	4	3	2	1	0	
Name		Reserve							
Reset	0	0	0	0	0	0	0	0	

BIT	DESCRIPTION					
7-2	Reserved					
	HARD.					
1	1: indicates the Hard Watch Dog is enabled.					
	0: Hard Watch Dog is disabled.					
	SOFT.					
0	1: indicates the Soft Watch Dog is enabled.					
	0: Soft Watch Dog is disabled.					

8.2.2.3 Watch Dog Status Register

Location: Bank 0 Address 03_{HEX}

Type: Read / Write

Reset: VSB5V (Pin 7) Rising.

WDT_STS (WATCH DOG STATUS)

BIT	7	6	5	4	3	2	1	0
Name	Reserve	Reserve	Reserve	Reserve	WDT S	STAGE	HARD_TO	SOFT_TO
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION						
7-4	Reserved						
	WDT Stage.						
3-2	These 2 bits record last WDT stage for BIOS readout. The information is used to help BIOS to identify WDT timeout issue.						
1	HARD_TO.						
'	1: a hard timeout occurs. This bit will be cleared after reading.						
0	SOFT_TO.						
0	1: a soft timeout occurs. This bit will be cleared after reading.						

8.2.2.4 Watch Dog Timer Register (Down Counter)

Location: Bank 0 Address 04_{HEX}

Type: Read / Write

Reset: VSB5V (Pin 7) Rising.

DOWN COUNTER (WATCH DOG TIMER)

BIT	7	6	5	4	3	2	1	0
Name	Timeout Time							
Reset		00 _{HEX}						

BIT	DESCRIPTION
	Timeout Time.
7-0	To write 00_{HEX} can disable timer while in Hard Watch Dog Timer mode.
	To set Timeout Time for SOFT Watch Dog Timer, unit is min.

The Timeout Time is unit in minutes, and 0 represents the timer is timeout or cleared. 1 represents there still have 1 sec to 1 minute for this timer. In this fashion, 2 shows time to time up is 1 minute 1 sec to 2 minutes.

8.3 Configuration and Address Select Registers

8.3.1 Register Maps

8.3.1.1 I²C Address Registers Map

MNEMONIC	REGISTER NAME	TYPE
I2CADDR	<u>I²C Address</u>	R/W
TEMPD1/2ADDR	LM75 Temperature Sensor I ² C Address	R/W

There are four Addresses (58_{HEX} , $5A_{HEX}$, $5C_{HEX}$, $5E_{HEX}$) can be assigned for W83793G I²C interface. And it also provides four I²C Addresses for each LM75-like Temperature Sensor (90_{HEX} , 92_{HEX} , 94_{HEX} , 96_{HEX} for TD1 and 98_{HEX} , $9A_{HEX}$, $9C_{HEX}$, $9E_{HEX}$ for TD2). These three addresses can be set by trapping pin 42 & 44 input value at 100ms after power ready.

The registers for Temperature sensor D1 & D2 can also be accessed by respective addresses that set as I²C address of W83793G. The LM75-like functions default are enabled and can be disabled by setting bit 3 and bit 7 of TEMPD1/2ADDR to 1.

8.3.1.2 Configuration Register Maps

MNEMONIC	REGISTER NAME	TYPE	
CONFIG	Configuration Register	R/W	

Configuration Register controls the system reset source, stop, power down and warning output mode.

8.3.2 Register Details

8.3.2.1 I²C Address Register (I2CADDR)

Location: Bank 0 Address 0B_{HEX}

Type: Read / Write

Reset: 100ms after VSB5V (Pin 7) Rising.

I2CADDR

BIT	7	6	5	4	3	2	1	0
Name	SMBUSADDR							

BIT	DESCRIPTION							
		of SMBUS after VSB	SADDR is trapping power ready.	g pin voltage on PADDR0 (pin42) and PADDR1 (pin44)				
7-0	0	0	58 _{HEX}					
	0	1	5A _{HEX}					
	1	0	5C _{HEX}					
	1	1	5E _{HEX}					
				•				

8.3.2.2 LM75-like Temperature Sensor I²C Address Register

Location: Bank 0 Address 0C_{HEX}

Type: Read / Write

Reset: 100ms after VSB5V (Pin 7) Rising.

TEMPD1/2ADDR

BIT	7	6	5	4	3	2	1	0
Name	DIS_TD2	I2CADDR75B			DIS_TD1	I2CADDR75A		
Reset	0	Tı	rapped Val	ue	0	Tr	apped Val	ue

BIT	DESCRIPTION							
7	DIS_TD2. If set to 1, it cannot access registers for temperature sensor 2 by temperature sensor 2 I2C address.							
	I2CADDR75B. The value of I2CADDR75B is trapping PADDR0 (pin42) and PADDR1 (pin44) at 100ms after VSB power good issue.							
6-4	ADDR1	ADDR0	I2CADDR75B	Temperature sensor 2 I2C Address				
0-4	0	0	100	98 _{HEX}				
	0	1	101	9A _{HEX}				
	1	0	110	9C _{HEX}				
	1 1 111 9E _{HEX}							
	DIS TD1							
3	DIS_TD1. If set to 1, it cannot access registers for temperature sensor 1 by temperature sensor 1 I2C address.							

Continued.

BIT	DESCRIPTION							
	I2CADDR75A. The value of I2CADDR75B is trapping PADDR0 (pin42) and PADDR1 (pin44) at 100ms after VSB power good issue.							
2-0	ADDR1	ADDR0	I2CADDR75A	Temperature sensor 1 I2C Address				
	0	0	000	90 _{HEX}				
	0	1	001	92 _{HEX}				
	1	0	010	94 _{HEX}				
	1	1	011	96 _{HEX}				

8.3.2.3 Configuration Register

Location: Bank 0 Address 40_{HEX}

Type: Read / Write Reset: bit 0~3 & 7:

VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set,

VDD5V (Pin 25) Rising @ RST_VDD_MD (CR40.Bit4) set, SYSRSTIN_N (Pin 15) Falling @ SYSRST_MD (CR40.Bit5) set.

Bit 4 & 5:

VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set.

CONFIG

BIT	7	6	5	4	3	2	1	0
Name	INIT	Reserve	SYSRST_MD	RST_VDD_MD	EN_BAT_MNT	EN_WDT	INT_Clear	START
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
	INIT.
7	Set one restores power on default value to all registers except the Serial Bus Address register. This bit clears itself since the power on default is zero.
6	Reserved
	SYSRST_MD.
5	Write 1, whole chip will reset when SYSRSTIN# input. Write 0, no any operation when SYSRSTIN# input.
4	RST_VDD_MD.
4	Write 1, whole chip will reset when 5VDD up. Write 0, no any operation when 5VDD up.

Continued

BIT	DESCRIPTION
	EN_BAT_MNT.
3	Write 1, enable battery voltage monitor. Write 0, disable battery voltage monitor. If enable this bit, the monitor value is valid after one monitor cycle.
	EN_WDT.
2	Set this bit to 1 will enable the Watch Dog Timer function. Watch dog timer function will reset system (pin 47) while it timeouts.
	INT_Clear.
1	A one disables the SMI# and IRQ# outputs without affecting the contents of Interrupt Status Registers. The device will stop monitoring at last channel. It will resume upon clearing of this bit.
	START.
0	1 : enables startup of monitoring operations;
	0 : puts the analog part in Power-down mode.

8.4 VID Control/Status Registers

W83793G provides dual Vcore monitoring channels. Vcore Channels are automatically monitored once 5VSB applied onto W83793G, but W83793G will issue alert information only when their corresponding high/low limit is being violated. ASF is also based on these limit register to judge the current channel status and report to host.

Two methods are used to assign the Vcore Limits. Assigning it manually; or assigning it automatically by VID inputs. The following registers set can let users choose their preferred method.

8.4.1 VID Control/Status Registers Map

MNEMONIC	REGISTER NAME	TYPE
VIDIN_A	VIDA Input Value	RO
VIDIN_B	VIDB Input Value	RO
VIDA_Latch	VIDA Latch Value	RO
VIDB_Latch	VIDB Latch Value	RO
VID_Control	VID Control	R/W
VCORE_LIMHI	Vcore High Tolerance	R/W
VCORE_LIMLO	Vcore Low Tolerance	R/W

W83793G supplies two sets of VID input pin for VOCREA and VCOREB channels. If dynamic VID function is enabled, the high/low limit of VCOREA and VCOREB channel will auto-update while VID input value change.

Some VIDA and all VIDB input pins are multi function pin. It needs programming Bank0 CR58 Multi function Pin Control Registers adequately.

8.4.2 VID Register Details

8.4.2.1 VIDA Input Value Register (VIDIN_A)

Location: Bank 0 Address 05_{HEX}

Type: Read Only

VIDIN_A

BIT	7	6	5	4	3	2	1	0
Name	VIDAIN7	VIDAIN6	VIDAIN5	VIDAIN4	VIDAIN3	VIDAIN2	VIDAIN1	VIDAIN0

BIT	DESCRIPTION					
	INT_Clear.					
1	A one disables the SMI# and IRQ# outputs without affecting the contents of Interrupt Status Registers. The device will stop monitoring at last channel. It will resume upon clearing of this bit.					
7	VIDAIN7.					
7	Real time pin 13 input value. That is available for VRM11 only.					
6	VIDAIN6.					
O	Real time pin 12 input value. That is available for VRM10 and VRM11 only.					
	VIDAIN5.					
5	Real time pin 11 input value. That is available for VRM10, VRM11 and AMD OpteronTM 6-bit VID only.					
4	VIDAIN4.					
4	Real time pin 10 input value.					
3	VIDAIN3.					
3	Real time pin 40 input value.					
2	VIDAIN2.					
	Real time pin 39 input value.					
1	VIDAIN1.					
ı	Real time pin 38 input value.					
0	VIDAINO.					
0	Real time pin 37 input value.					

8.4.2.2 VIDB Input Value Register (VIDIN_B)

Location: Bank 0 Address 06_{HEX}

Type: Read Only

VIDIN_B

BIT	7	6	5	4	3	2	1	0
Name	VIDBIN7	VIDBIN6	VIDBIN5	VIDBIN4	VIDBIN3	VIDBIN2	VIDBIN1	VIDBIN0

BIT	DESCRIPTION
7	VIDBIN7.
′	Real time pin 56 input value. That is available for VRM11 only.
6	VIDBIN6.
Ů	Real time pin 55 input value. That is available for VRM10 and VRM11 only.
	VIDBIN5.
5	Real time pin 54 input value. That is available for VRM10, VRM11 and AMD Opteron [™] 6-bit VID only.
4	VIDBIN4.
4	Real time pin 53 input value.
3	VIDBIN3.
J	Real time pin 52 input value.
2	VIDBIN2.
	Real time pin 51 input value.
1	VIDBIN1.
<u>'</u>	Real time pin 50 input value.
0	VIDBINO.
	Real time pin 49 input value.

8.4.2.3 VIDA Latch Value Register (VIDA_Latch)

Previous <u>VIDIN A</u> and <u>VIDIN B</u> allows user to readout the current value on VID pins, but VIDA_Latch and VIDB_Latch can let users to keep the VID value at any time by assigning the <u>Latch VIDA/Latch VIDB</u> bits to 1.

Location: Bank 0 Address 07_{HEX}

Type: Read Only

VIDA_LATCH

BIT	7	6	5	4	3	2	1	0
Name	VIDA7	VIDA6	VIDA5	VIDA4	VIDA3	VIDA2	VIDA1	VIDAO

BIT	DESCRIPTION
	VIDA7.
7	To read this bit will return VIDA7 register value if <u>Latch_VIDA</u> is set to 1 else return the pin value of VIDAIN7.
	VIDA6.
6	To read this bit will return VIDA6 register value if <u>Latch_VIDA</u> is set to 1 else return the pin value of VIDAIN6.
	VIDA5.
5	To read this bit will return VIDA5 register value if <u>Latch_VIDA</u> is set to 1 else return the pin value of VIDAIN5.
	VIDA4.
4	To read this bit will return VIDA4 register value if <u>Latch_VIDA</u> is set to 1 else return the pin value of VIDAIN4.
	VIDA3.
3	To read this bit will return VIDA3 register value if <u>Latch_VIDA</u> is set to 1 else return the pin value of VIDAIN3.
	VIDA2.
2	To read this bit will return VIDA2 register value if <u>Latch_VIDA</u> is set to 1 else return the pin value of VIDAIN2.
	VIDA1.
1	To read this bit will return VIDA1 register value if <u>Latch_VIDA</u> is set to 1 else return the pin value of VIDAIN1.
	VIDA0.
0	To read this bit will return VIDA0 register value if <u>Latch_VIDA</u> is set to 1 else return the pin value of VIDAIN0.

8.4.2.4 VIDB Latch Value Register (VIDB_Latch)

Location: Bank 0 Address 08_{HEX}

Type: Read Only

VIDB_LATCH

BIT	7	6	5	4	3	2	1	0
Name	VIDB7	VIDB6	VIDB5	VIDB4	VIDB3	VIDB2	VIDB1	VIDB0

BIT	DESCRIPTION
7	VIDB7. To read this bit will return VIDB7 register value if Latch_VIDB is set to 1 else return the pin value of VIDBIN7.
6	VIDB6. To read this bit will return VIDB6 register value if <u>Latch_VIDB</u> is set to 1 else return the pin value of VIDBIN6.
5	VIDB5. To read this bit will return VIDB5 register value if Latch VIDB is set to 1 else return the pin value of VIDBIN5.
4	VIDB4. To read this bit will return VIDB4 register value if Latch VIDB is set to 1 else return the pin value of VIDBIN4.
3	VIDB3. To read this bit will return VIDB3 register value if <u>Latch_VIDB</u> is set to 1 else return the pin value of VIDBIN3.
2	VIDB2. To read this bit will return VIDB2 register value if Latch VIDB is set to 1 else return the pin value of VIDBIN2.
1	VIDB1. To read this bit will return VIDB1 register value if <u>Latch_VIDB</u> is set to 1 else return the pin value of VIDBIN1.
0	VIDB0. To read this bit will return VIDB0 register value if <u>Latch_VIDB</u> is set to 1 else return the pin value of VIDBIN0.

8.4.2.5 VID Control Register (VID_Control)

Location: Bank 0 Address 59_{HEX}

Type: Read / Write

Reset: VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set,

VDD5V (Pin 25) Rising @ RST_VDD_MD (CR40.Bit4) set, SYSRSTIN_N (Pin 15) Falling @ SYSRST_MD (CR40.Bit5) set.

VID_CONTROL

BIT	7	6	5	4	3	2	1	0
Name	Level	_Select	EN_DVID	Latch_VIDB	Latch_VIDA	VID_SEL		
Reset	00 _{BIN}		0	0	0		001 _{BIN}	

BIT	DESCRIPTION
	Level_Select.
	Set VID input pin V _{IH} /V _{IL} level
7-6	00 _{BIN} : 0.6V/0.4 for VRM10, 11
7-0	01 _{BIN} : 1.6V/0.8V for AMD VID
	10 _{BIN} : 2.0V/0.8V
	11 _{BIN} :.Reserved.
	EN_DVID.
5	Write 1, dynamic VID function is enabled. If VID changed, auto-updating high/low limit of corresponding Vcore sensing voltage.
	If programming High/Low limit of Vcore sensing voltage manually is required, this bit has to be cleared as 0.
4	Latch_VIDB.
4	Write 1, <u>CR08</u> latches current pin value of VIDB.
3	Latch_VIDA.
J	Write 1, <u>CR07</u> latches current pin value of VIDA.
	VID_SEL.
	Selectable VID tables:
	000 _{BIN} : Reserved
2-0	001 _{BIN} : VRM10 (default)
	010 _{BIN} : VRM11
	011 _{BIN} : AMD Opteron [™] 5 bit VID Codes
	100 _{BIN} : AMD Opteron [™] 6 bit VID Codes

8.4.2.6 Vcore High Tolerance Register (VCORE_LIMHI)

Location : Bank 0 Address 09_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

VCORE_LIMHI

BIT	7	6	5	4	3	2	1	0			
Name		Vcore High Tolerance									
Reset		64 _{HEX}									

BIT	DESCRIPTION
7-0	Vcore High Tolerance. While enable dynamic VID function (set Bank0 CR59 bit5 to 1), writing Tolerance register will force VCORE Limit updated with new voltage limit for VCORE. The unit is 2mV

8.4.2.7 Vcore Low Tolerance Register (VCORE_LIMLO)

Location: Bank 0 Address 0A_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

VCORE_LIMLO

BIT	7	6	5	4	3	2	1	0			
Name		Vcore Low Tolerance									
Reset				64 ₁	HEX						

BIT	DESCRIPTION
	Vcore Low Tolerance.
7-0	While enable dynamic VID function (set Bank0 CR59 bit5 to 1), writing Tolerance register will force VCORE Limit Generator generate new voltage limit for VCORE.
	The unit is 2mV

8.5 INT/SMI# Control/Status Registers

Several mechanisms are provided to alarm system when monitored channels are abnormal. At this paragraph, three kinds of control/status registers are introduced, 'real time status', shows currently status of each channel; 'Channel Mask', defines which channel need issue warning when abnormal, and when channel should not be cared due to floating or other circumstances. Final one, 'Interrupt Status', it gives host information of which channel is issuing alert, and host can base on this channel and do proper process to ensure system reliable.

8.5.1 INT/SMI Control/Status Register Map

MNEMONIC	REGISTER NAME	TYPE
INT_STS1	Interrupt Status 1	
		RO
INT_STS5	Interrupt Status 5	
MASK1	SMI/IRQ Mask 1	
		R/W
MASK5	SMI/IRQ Mask 5	
REAL_STS1	Real Time status 1	
		RO
REAL_STS5	Real Time status 5	
SMIINT_Ctrl	SMI/IRQ Control	R/W

Pin 3 of W83793G is a multi-function pin. It can be the IRQ output or the SMI# output signal. The function is selected by programming Bank0 CR50 SMI/IRQ Control register.

The interrupt mode for voltage and FANIN is only two-time interrupt mode.

For temperature, there are three modes to serve: <1> Comparator mode, <2>One-Time Interrupt mode, and <3> Two-Time Interrupt mode.

8.5.2 INT/SMI Control/Status Register Details

8.5.2.1 Interrupt Status Register (INT_STS)

A one represents corresponding channel have been exceed its limit. Read Interrupt Status will clear the interrupt flag.

VIDCHG will assert while VID are on the fly. It indicates VID have change in last 1ms.

TART will assert while target temperature cannot be achieved after 3 minutes full speed of corresponding FAN.

Location:

INT_STS1 - Bank 0 Address 41_{HEX}
INT_STS2 - Bank 0 Address 42_{HEX}
INT_STS3 - Bank 0 Address 43_{HEX}
INT_STS4 - Bank 0 Address 44_{HEX}
INT_STS5 - Bank 0 Address 45_{HEX}

Type: Read Only

Reset: VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set,

VDD5V (Pin 25) Rising @ RST_VDD_MD (CR40.Bit4) set, SYSRSTIN_N (Pin 15) Falling @ SYSRST_MD (CR40.Bit5) set.

INT_STS1

BIT	7	6	5	4	3	2	1	0
Name	12VSEN	3VSEN	VSEN2	VSEN1	Reserve	VTT	VCOREB	VCOREA
Reset	0	0	0	0	0	0	0	0

INT_STS2

BIT	7	6	5	4	3	2	1	0
Name	TD4	TD3	TD2	TD1	VIDCHG	VBAT	5VSB	5VDD
Reset	0	0	0	0	0	0	0	0

INT_STS3

BIT	7	6	5	4	3	2	1	0
Name	FANIN6	FANIN5	FANIN4	FANIN3	FANIN2	FANIN1	TR2	TR1
Reset	0	0	0	0	0	0	0	0

INT_STS4

BIT	7	6	5	4	3	2	1	0
Name	Reserve	Chassis	FANIN12	FANIN11	FANIN10	FANIN9	FANIN8	FANIN7
Reset	0	0	0	0	0	0	0	0

INT_STS5

BIT	7	6	5	4	3	2	1	0
Name	Reserve		TART6	TART5	TART4	TART3	TART2	TART1
Reset	0	0	0	0	0	0	0	0

8.5.2.2 SMI/IRM Mask Register (MASK)

Set to one will disable the corresponding interrupt sources. Clear to 0 will enable that interrupt source.

SMI Mask4 bit 7 is CLR_CHS (Clear Chassis), write this bit with an one will clear internal caseopen latch, and after latch is clear, CLR_CHS will be reset to 0 itself.

Location:

MASK1 - Bank 0 Address 46_{HEX}

MASK2 - Bank 0 Address 47_{HEX}

MASK3 - Bank 0 Address 48_{HEX}

MASK4 - Bank 0 Address 49_{HEX}

MASK5 - Bank 0 Address 4A_{HEX}

Type: Read / Write

Reset: VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set,

VDD5V (Pin 25) Rising @ RST_VDD_MD (CR40.Bit4) set, SYSRSTIN_N (Pin 15) Falling @ SYSRST_MD (CR40.Bit5) set.

MASK1

BIT	7	6	5	4	3	2	1	0
Name	12VSEN	3VSEN	VSEN2	VSEN1	Reserve	VTT	VCOREB	VCOREA
Reset	0	0	0	0	0	0	0	0

MASK2

BIT	7	6	5	4	3	2	1	0
Name	TD4	TD3	TD2	TD1	VIDCHG	VBAT	5VSB	5VDD
Reset	0	0	0	0	0	0	0	0

MASK3

BIT	7	6	5	4	3	2	1	0
Name	FANIN6	FANIN5	FANIN4	FANIN3	FANIN2	FANIN1	TR2	TR1
Reset	0	0	0	0	0	0	0	0

MASK4

BIT	7	6	5	4	3	2	1	0
Name	CLR_CHS	Chassis	FANIN12	FANIN11	FANIN10	FANIN9	FANIN8	FANIN7
Reset	0	0	0	0	0	0	0	0

MASK5

BIT	7	6	5	4	3	2	1	0
Name	Reserve		TART6	TART5	TART4	TART3	TART2	TART1
Reset	0	0	0	0	0	0	0	0

8.5.2.3 Real Time status Register (REAL_STS)

Real-time status registers show the related channel exceeding limit or not at the polling moment. Return 1 represents related channel has exceeded the limit defined in limit registers.

Location:

REAL_STS1 - Bank 0 Address 4B_{HEX}

REAL_STS2 - Bank 0 Address 4C_{HEX}

REAL_STS3 - Bank 0 Address 4D_{HEX}

REAL_STS4 - Bank 0 Address 4E_{HEX}

REAL_STS5 - Bank 0 Address 4F_{HEX}

Type: Read Only

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set,

SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

REAL_STS1

BIT	7	6	5	4	3	2	1	0
Name	12VSEN	3VSEN	VSEN2	VSEN1	Reserve	VTT	VCOREB	VCOREA
Reset	0	0	0	0	0	0	0	0

REAL_STS2

BIT	7	6	5	4	3	2	1	0
Name	TD4	TD3	TD2	TD1	VIDCHG	VBAT	5VSB	5VDD
Reset	0	0	0	0	0	0	0	0

REAL_STS3

BIT	7	6	5	4	3	2	1	0
Name	FANIN6	FANIN5	FANIN4	FANIN3	FANIN2	FANIN1	TR2	TR1
Reset	0	0	0	0	0	0	0	0

REAL_STS4

BIT	7	6	5	4	3	2	1	0
Name	Reserve	Chassis	FANIN12	FANIN11	FANIN10	FANIN9	FANIN8	FANIN7
Reset	0	0	0	0	0	0	0	0

REAL_STS5

BIT	7	6	5	4	3	2	1	0
Name	Reserve		TART6	TART5	TART4	TART3	TART2	TART1
Reset	0	0	0	0	0	0	0	0

8.5.2.4 SMI/IRQ Control Register (SMIINT_Ctrl)

Location: Bank 0 Address 50_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset (CR40.Bit7) is set,

VDD5V (Pin 25) Rising @ RST_VDD_MD (CR40.Bit4) set, SYSRSTIN_N (Pin 15) Falling @ SYSRST_MD (CR40.Bit5) set.

SMIINT_CTRL

BIT	7	6	5	4	3	2	1	0
Name	Rese	erve	IRQ_MD	IRQSEL	TEMP_S	SMI_MD	EN_IRQSMI	POL
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-6	Reserved.
5	IRQ_MD.
	Set 0, IRQ output level signal. Set 1, output 200 us pulse signal. Default is 0.
4	IRQ_SEL.
	Set Pin 3 to IRQ mode. While 1 and EN_IRQSMI set to 1, Pin 3 enabled with IRQ interrupt output.
3-2	TEMP_SMI_MD.
	Temperature SMI# Mode Select.
	00 _{BIN} : Comparator Interrupt Mode:(Default)
	Temperature TD1/TD2/TD3/TD4/TR1/TR2 exceeds $T_{\rm O}$ (Over-temperature) limit causes an interrupt and this interrupt will be reset by reading all the Interrupt Status.
	01 _{BIN} : Two Time Interrupt Mode:
	These bits use in temperature sensor TD1/TD2/TD3/TD4/TR1/TR2 interrupt mode with hysteresis type. Temperature exceeding T_{O} (Critical Temperature), causes an interrupt and then temperature going below T_{HYST} (Critical Temperature Hysteresis) will also cause an interrupt if the previous interrupt has been reset by reading all the interrupt Status Register. Once an interrupt event has occurred by exceeding T_{O} (Critical Temperature), then reset, if the temperature remains above the T_{HYST} (Critical Temperature Hysteresis).

Continued

BIT	DESCRIPTION
	10 _{BIN} : One Time Interrupt Mode:
	This bit use in temperature sensor TD1/TD2/TD3/TD4/TR1/TR2 interrupt mode with hysteresis type. Temperature exceeding $T_{\rm O}$ (Critical Temperature) causes an interrupt and then temperature going below $T_{\rm HYST}$ (Critical Temperature Hysteresis) will not cause an interrupt. Once an interrupt event has occurred by exceeding $T_{\rm O}$ (Critical Temperature), then going below $T_{\rm HYST}$ (Critical Temperature Hysteresis), and interrupt will not occur again until the temperature exceeding $T_{\rm O}$ (Critical Temperature).
	11 _{BIN} : Two Time Non-related Interrupt Mode:
	This bit use in temperature sensor TD1/TD2/TD3/TD4/TR1/TR2 interrupt mode with hysteresis type. Temperature exceeding $T_{\rm O}$, causes an interrupt and then temperature going below $T_{\rm HYST}$ will also cause an interrupt. Once an interrupt event has occurred by exceeding $T_{\rm O}$, then reset, if the temperature remains above the $T_{\rm HYST}$.
	If this mode is selected, for all monitor channels (it is not necessary to read the status for generating the next IRQ/SMI# pulse.
3-2	Twarning Twarning-hysteresis Two-Time Intrrupt Mode **: Interrupt Status is read Note: It can be programmed to be as not necessary to read the status for generating the next SMI# pulse by setting TEMP_SMI_MD = 2'b11.
1	EN_IRQSMI.
	A one enables the IRQ/SMI# Interrupt output.
0	POL. (polarity) When set to 1, IRQ/SMI# active high. Set to 0, IRQ/SMI# active low.

8.6 OVT/BEEP Control Register

Another solution to deal with abnormal situation is through OVT(Over Temperature) or Beep.

OVT, as it naming, represents for temperature abnormal is happening. In some applications, it can be combined with Fan control and used to throttle the Fan Speed.

Beep can directly use sound of two tones to inform user system abnormal. Unlike OVT, Beep can associate with any channel.

8.6.1 OVT/BEEP Control Registers Map

MNEMONIC	REGISTER NAME	TYPE
OVT_Ctrl	OVT Control	R/W
OVT_BeepEn	OVT/Beep Global Enable	R/W
BEEP_Ctrl1 BEEP_Ctrl5	BEEP Control 1 BEEP Control 5	R/W

Pin 2 of W83793G is also a multi-function pin. It can be OVT# output signal or BEEP output signal and be selected by programming Bank0 CR52 OVT/BEEP Control register.

8.6.2 OVT/BEEP Control Registers Details

8.6.2.1 OVT Control Register (OVT_Ctrl)

Location: Bank 0 Address 51_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising.

OVT_CTRL

BIT	7	6	5	4	3	2	1	0
Name	OVT_MD	EN_OVTR2	EN_OVTR1	EN_OVTD4	EN_OVTD3	EN_OVTD2	EN_OVTD1	OVTPOL
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
	OVT_MD.
	There are two OVT# signal output type.
	0 _{BIN} : Comparator Mode: (Default)
	Temperature exceeding Tcritical (Critical Temperature) causes the OVT# output activated until the temperature is less than T _{HYST} (Critical Temperature Hysteresis).
	1 _{BIN} : Interrupt Mode:
7	Setting temperature exceeding Tcritical (Critical Temperature) causes the OVT# output activated indefinitely until reset reading temperature sensor TD1/TD2/TD3/TD4/TR1/TR2 registers.
	Temperature exceeding Tcritical (Critical Temperature), then OVT# reset, and then temperature going below T_{HYST} (Critical Temperature Hysteresis) will also cause the OVT# activated indefinitely until reset by reading temperature sensor TD1/TD2/TD3/TD4/TR1/TR2(reading interrupt status). Once the OVT# will not be activated by exceeding Tcritical (Critical Temperature), then reset, if the temperature remains above T_{HYST} (Critical Temperature Hysteresis), the OVT# will not be activated again.
	EN_OVTR2.
6	Enable temperature sensor TR2 over-temperature (OVT) output if set to 1. Default 0; disable OVTR2 output through pin OVT#. The pin OVT# is wire OR with OVTD1, OVTD2, OVTD3, OVTD4 and OVTR1.
	EN_OVTR1.
5	Enable temperature sensor TR1 over-temperature (OVT) output if set to 1. Default 0; disable OVTR1 output through pin OVT#. The pin OVT# is wire OR with OVTD1, OVTD2, OVTD3, OVTD4 and OVTR2.
	EN_OVTD4.
4	Enable temperature sensor TD4 over-temperature (OVT) output if set to 1. Default 0; disable OVTD4 output through pin OVT#. The pin OVT# is wire OR with OVTD1, OVTD2, OVTD3, OVTR1 and OVTR2
	EN_OVTD3.
3	Enable temperature sensor TD3 over-temperature (OVT) output if set to 1. Default 0; disable OVTD3 output through pin OVT#. The pin OVT# is wire OR with OVTD1, OVTD2, OVTD4, OVTR1 and OVTR2
	EN_OVTD2.
2	Enable temperature sensor TD2 over-temperature (OVT) output if set to 1. Default 0; disable OVTD2 output through pin OVT#. The pin OVT# is wire OR with OVTD1, OVTD3, OVTD4, OVTR1 and OVTR2
	EN_OVTD1.
1	Enable temperature sensor TD1 over-temperature (OVT) output if set to 1. Default 0; disable OVTD1 output through pin OVT#. The pin OVT# is wire OR with OVTD2, OVTD3, OVTD4, OVTR1 and OVTR2
0	OVTPOL.
0	Write 1, OVT# active high. Write 0, OVT# active low.

OVT/Beep Global Enable Register (OVT_BeepEn)

Bank 0 Address 52_{HEX} Location:

Type: Read / Write

Reset: VSB5V(Pin 7) Rising.

OVT_BEEPEN

BIT	7	6	5	4	3	2	1	0
Name			Reserved	BEEPSEL	EN_BEEP	EN_OVT		
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-3	Reserved.
	BEEPSEL.
2	1 : Direct Beep signal to Pin 2.
	0 : Direct OVT signal to Pin 2.
	EN_BEEP. (Beep Output Global Enable)
1	1 : Beep is enabled, customer can select event trigger source from BEEP_Ctrl.
	0 : Beep is disabled.
	ENOVT. (OVT Output Global Enable)
0	1 : OVT is enabled, users can select OVT trigger source from OVT_Ctrl.
	0 : OVT is disable.

8.6.2.3 **BEEP Control Register (BEEP_Ctrl)**

Set to one will enable the corresponding BEEP output. Clear to 0 will disable that BEEP output. Location:

BEEP_Ctrl1 - Bank 0 Address 53_{HEX} BEEP_Ctrl2 - Bank 0 Address 54_{HEX} BEEP_Ctrl3 - Bank 0 Address 55_{HEX} BEEP_Ctrl4 - Bank 0 Address 56_{HEX} BEEP_Ctrl5 - Bank 0 Address 57_{HEX}

Type: Read / Write

Reset: VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set,

VDD5V (Pin 25) Rising @ RST_VDD_MD (CR40.Bit4) set, SYSRSTIN_N (Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

BEEP_CTRL1

BIT	7	6	5	4	3	2	1	0
Name	12VSEN	3VSEN	VSEN2	VSEN1	Reserve	VTT	VCOREB	VCOREA
Reset	0	0	0	0	0	0	0	0

BEEP_CTRL2

BIT	7	6	5	4	3	2	1	0
Name	TD4	TD3	TD2	TD1	RESERVE	VBAT	5VSB	5VDD
Reset	0	0	0	0	0	0	0	0

BEEP_CTRL3

BIT	7	6	5	4	3	2	1	0
Name	FANIN6	FANIN5	FANIN4	FANIN3	FANIN2	FANIN1	TR2	TR1
Reset	0	0	0	0	0	0	0	0

BEEP_CTRL4

BIT	7	6	5	4	3	2	1	0
Name	Reserve	Chassis	FANIN12	FANIN11	FANIN10	FANIN9	FANIN8	FANIN7
Reset	0	0	0	0	0	0	0	0

BEEP_CTRL5

BIT	7	6	5	4	3	2	1	0
Name	Reserve		TART6	TART5	TART4	TART3	TART2	TART1
Reset	0	0	0	0	0	0	0	0

8.7 Multi-Function Pin Control Register

Many functions exhibited in W83793G are not default function, and they might share pin out with other functions. Here lists three registers defines the function enable registers.

8.7.1 Multi-Function Pin Control Register Map

MNEMONIC	REGISTER NAME	TYPE
MFC	Multi-Function Pin Control	R/W
FANIN_Ctrl	FANIN Control	R/W
FAN_SEL	FANIN Input Pin Redirection	R/W

In W83793G Pin 10 \sim 13, Pin 37 \sim 40, Pin 49 \sim 56 are multi-function pin. All non-default functions are enabled by setting Bank0 CR58, CR5C and CR5D.

8.7.2 Multi-Function Pin Control Register Details

8.7.2.1 Multi-Function Pin Control Register (MFC)

Location: Bank 0 Address 58_{HEX}

Type: Read / Write Reset: bit 0~6:

VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set,

VDD5V (Pin 25) Rising @ RST_VDD_MD (CR40.Bit4) set,

SYSRSTIN_N (Pin 15) Falling @ SYSRST_MD (CR40.Bit5) set.

Bit7: Trapping at 100ms after VSB5V (Pin 7) Rising.

MFC

BIT	7	6	5	4	3	2	1	0
Name	VIDBSEL	SIB_SEL	SID_SEL		SIC_SEL		SIA_SEL	FAN8SEL
Reset	Trap	0	0	0	0	0	0	0

BIT	DESCRIPTION
	VIDBSEL.
	Pin 49~56 function select. Power On Trapping input value of Pin 46.
7	1 _{BIN} : Pin49∼56 are VIDB.
	0_{BIN} : Pin 49~54 are fan speed control output or fan tachometer input; function of Pin 55~56 is controlled by bit SIB_SEL.
	SIB_SEL.
	While VIDBSEL is 0, SIB_SEL set function of Pin55~56:
6	0 _{BIN:} Pin55∼56 are FANIN8/FANCTRL8.
	1 _{BIN} : Reserved.
	This bit must be set to 0.
	SID_SEL.
	Set function of Pin39~40:
5-4	0X _{BIN} : Pin 39~40 are VIDA2/VIDA3.
5-4	10 _{BIN} : Pin 39∼40 are FANIN1/FANIN12.
	11 _{BIN} :Reserved.
	These two bits should not be set to 11 _{BIN} .

BIT	DESCRIPTION					
	SIC_SEL.					
	Set function of Pin37~38:					
3-2	0x _{BIN} : Pin 37~38 are VIDA0/VIDA1.					
3-2	10 _{BIN} : Pin 37∼38 are FAIN9/FANI10.					
	11 _{BIN} :. Reserved.					
	These two bits should not be set to 11 _{BIN} .					
1	SIA_SEL. Set function of Pin12~13: 0 _{BIN} : Pin 12~13 are VIDA6/VIDA7. 1 _{BIN} :. Reserved. This bit must be set to 0.					
0	FAN8SEL. Set function of Pin10~11: 0 _{BIN} : Pin 10~11 are VIDA4/VIDA5. 1 _{BIN} : Pin 12~13 are FANIN8/FANCTRL8.					

8.7.2.2 FANIN Control Register (FANIN_Ctrl)

The register enables setup the functions of multi-function fan inputs, while reset it is cleared. $(00_{\mbox{\scriptsize HEX}})$

Location: Bank 0 Address 5C_{HEX}

Type: Read / Write

Reset: VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set,

VDD5V (Pin 25) Rising @ RST_VDD_MD (CR40.Bit4) set,

SYSRSTIN_N (Pin 15) Falling @ SYSRST_MD (CR40.Bit5) set.

FANIN_CTRL

BIT	7	6	5	4	3	2	1	0
Name	Reserve	EN_FANIN12	EN_FANIN11	EN_FANIN10	EN_FANIN9	EN_FANIN8	EN_FANIN7	EN_FANIN6
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION						
7	Reserved.						
	EN_FANIN12.(Fan In 12 Enable Bit)						
6	1 : If <u>SID_SEL</u> = 10 _{BIN} , enable FANIN12 monitor.						
	0 : Disable . Default is VID function.						

BIT	DESCRIPTION						
	EN_FANIN11.(Fan In 11 Enable Bit)						
5	If <u>SID_SEL</u> = 10, Setting to 1 will enable FANIN11 monitor.						
	If cleared, Pin39 can be selected as Processor A VID Bit 2(EN_D-VID).						
	EN_FANIN10.(Fan In 10 Enable Bit)						
4	If <u>SIC_SEL</u> = 10, Setting to 1 will enable FANIN10 monitor.						
	If cleared, Pin 38 can be selected as Processor A VID Bit 1.						
	EN_FANIN9.(Fan In 9 Enable Bit)						
3	If <u>SIC_SEL</u> = 10, Setting to 1 will enable FANIN9 monitor.						
	If cleared, Pin 37 can be selected as Processor A VID Bit 0(EN_D-VID).						
	EN_FANIN8.(Fan In 8 Enable Bit)						
	Setting to 1 enables FANIN8 monitor.						
2	If FANIN8 connect to Pin55 is desired, setting $\underline{\text{VIDBSEL}} = 0$, $\underline{\text{SIDB SEL}} = 0$ and $\underline{\text{FAN8SEL}} = 0$ are must.						
	If FANIN8 connect to Pin 10, Setting <u>FAN8SEL</u> = 1 is a must.						
	Setting to 0 enables Pin 10 with Processor A VID Bit 4(EN_D-VID)						
	EN_FANIN7.(Fan In 7 Enable Bit)						
1	If <u>VIDBSEL</u> = 0, Setting to 1 will enable FANIN7 monitor.						
	Setting to 0 enables Pin 53 with Processor B VID Bit 4(VIDBSEL = 1)						
	EN_FANIN6.(Fan In 6 Enable Bit)						
0	If <u>VIDBSEL</u> = 0, Setting to 1 will enable FANIN6 monitor.						
	Setting to 0 enables Pin 51 with Processor B VID Bit2(VIDBSEL = 1)						

8.7.2.3 FANIN Input Pin Redirection Register(FANIN_Sel)

Location: Bank 0 Address 5D_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

FANIN_SEL

BIT	7 6 5 4		3	2	1	0		
Name	Reserved				FANIN12Sel	FANIN11Sel	FANIN10Sel	FANIN9Sel
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
7-4	Reserve.
	FANIN12Sel.
3	If FANIN12Sel is set to 0, connecting FANIIN12 to Pin 40; else connect FANIN9 to Pin 11.
	While FANIIN12 connect to Pin 11, Bank0 CR58 bit0 FAN8SEL must set to 1.
	FANIN11Sel.
2	If FANIN11Sel is set to 0, connecting FANIIN11 to Pin 39; else connect FANIN11 to Pin 54.
	While FANIIN11 connect to Pin 54, Bank0 CR58 bit7 VIDBSEL must set to 0.
	FANIN10Sel.
1	If FANIN10Sel is set to 0, connecting FANIIN10 to Pin 38; else connect FANIN10 to Pin 52. While FANIIN10 connect to Pin 52, <u>VIDBSEL</u> must set to 0.
	FANIN9Sel.
0	If FANIN9Sel is set to 0, connecting FANIIN9 to Pin 37; else connect FANIN9 to Pin 50.
	While FANIIN9 connect to Pin 50, VIDBSEL must set to 0.

8.8 Temperature Sensors Control Register

W83793G provides two sets of LM75-like sensors, and they can be treated as two independent sensors through different l^2C address access(90_{HEX} ~ 9E_{HEX}). Two sensor can also be accessed and controlled from W83793G address(58_{HEX} ~ 5E_{HEX}). Here lists the control registers for the LM75-like sensors.

8.8.1 Temperature Sensors Control Register Map

MNEMONIC	REGISTER NAME	TYPE
TD1_Config.	Temperature Sensor TD1 Configuration (LM75A)	R/W
TD2_Config.	Temperature Sensor TD2 Configuration (LM75B)	R/W
TD_MD	Temperature Sensor mode Select 1	R/W
TR_MD	Temperature Sensor mode Select 2	R/W
TempOffeset	Temperature Channel Offset	R/W

8.8.2 Temperature Sensors Control Register Details

8.8.2.1 TD1 Configuration (LM75A) Register (TD1_Config)

Location: Bank 0 Address 5A_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

TD1_CONFIG

BIT	7	6	5	4	3	2	1	0
Name	Rese	erve	FaultQ1		Reserve			STOP1
Reset	0	0	00		0	0	0	0

BIT	DESCRIPTION
7-6	Reserved.
5-4	FaultQ1.
3-4	Number of faults to detect before setting OVT# output to avoid false tripping due to noise.
3-1	Reserved.
	STOP1.
0	If temperature sensor TD1 is set as internal temperature sensor (CR5D), set to 1 the temperature sensor will stop monitor.

8.8.2.2 TD2 Configuration (LM75B) Register (TD2_Config)

Location: Bank 0 Address 5B_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

TD2_CONFIG

BIT	7	6	5	4	3	2	1	0
Name	Reserve		Fau	ltQ2		Reserve		STOP2
Reset	0	0	00		0	0	0	0

BIT	DESCRIPTION
7-6	Reserved.
E 1	FaultQ2.
5-4	Number of faults to detect before setting OVT# output to avoid false tripping due to noise.
3-1	Reserved.
	STOP2.
0	If temperature sensor TD2 is set as internal temperature sensor (CR5D), set to 1 the temperature sensor will stop monitor.

8.8.2.3 TD Mode Select Register (TD_MD)

Before enable monitor, it needs to set function of pins (Bank0.CR58) and sensor select (Bank0.CR5E) to correct value.

Location : TD_MD - Bank 0 Address 5E_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

TD_MD

BIT	7	6	5	4	3	2	1	0
Name	TD4_MD		TD3_MD		TD2_MD		TD1_MD	
Reset	01		01		01		01	

BIT	DESCRIPTION
	TD4_MD.
	Temperature D4 mode
	00 _{BIN} : Temperature D4 stop monitor
7-6	01 _{BIN} : Temperature D4 start monitor using internal temperature sensor (default).
	10 _{BIN} : Reserved.
	$11_{\mbox{\footnotesize{BIN}}}$: Temperature D4 start monitor using temperature sensor in Intel CPU and get result by PECI.
	TD3_MD.
	Temperature D3 mode
	00 _{BIN} : Temperature D3 stop monitor
5-4	01 _{BIN} : Temperature D3 start monitor using internal temperature sensor (default).
	10 _{BIN} : Reserved.
	$11_{\mbox{\footnotesize{BIN}}}$: Temperature D3 start monitor using temperature sensor in Intel CPU and get result by PECI.
	TD2_MD.
	Temperature D2 mode
	00 _{BIN} : Temperature D2 stop monitor
3-2	01 _{BIN} : Temperature D2 start monitor using internal temperature sensor (default).
	10 _{BIN} :. Reserved.
	$11_{\mbox{\scriptsize BIN}}$: Temperature D2 start monitor using temperature sensor in Intel CPU and get result by PECI.

BIT	DESCRIPTION
	TD1_MD.
	Temperature D1 mode
	00 _{BIN} : Temperature D1 stop monitor
1-0	01 _{BIN} : Temperature D1 start monitor using internal temperature sensor (default).
	10 _{BIN} : Reserved.
	$11_{\mbox{\footnotesize{BIN}}}$: Temperature D1 start monitor using temperature sensor in Intel CPU and get result by PECI.

8.8.2.4 TR Mode Select Register (TR_MD)

Location: TR_MD - Bank 0 Address 5F_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

TR_MD

BIT	7	6	5	4	3	2	1	0
Name	Reserve							TR1_MD
Reset	0	0	0	0	0	0	1	1

BIT	DESCRIPTION
7-2	Reserve.
1	TR2_MD.
'	Setting to 1 will enable Temperature sensor TR2 monitor.
	TR1_MD.
0	Setting to 1 will enable Temperature sensor TR1 monitor.

8.8.2.5 Temperature Channel Offset Register (TempOffset)

Each temperature channel has a corresponding offset register, in some situation customer may want to shift the offset. Default is 00_{HEX} .

Location:

TD10ffset - Bank 0 Address A8_{HEX}
TD20ffset - Bank 0 Address A9_{HEX}
TD30ffset - Bank 0 Address AA_{HEX}

TD4Offset - Bank 0 Address AB_{HEX} **TR1Offset** - Bank 0 Address AC_{HEX} **TR2Offset** - Bank 0 Address AD_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising.

TD/TROFFSET

BIT	7	6	5	4	3	2	1	0		
Name	Sign		Offset value							
Reset	0	0	0	0	0	0	1	1		

BIT	DESCRIPTION
7-0	TD1~TR2 Offset Value.

8.9 Voltage Channel Registers

Here, both monitored value and their corresponding limitation settings are listed. W83793G provides more detailed resolution for VCoreA, VCoreB, and Vtt channels, besides 8-bit readout, they have lower-bit can be read.

8.9.1 Voltage Channel Registers Map

8.9.1.1 Voltage Channel Monitor Value Register Map

MNEMONIC	REGISTER NAME	TYPE
VcoreA.	VCOREA Readout	RO
VcoreB.	VCOREB Readout	RO
Vtt.	Vtt Readout	RO
VINLowB.	VIN Low bit Readout	RO
VSEN1.	VSEN1 Readout	RO
VSEN2.	VSEN2 Readout	RO
3VSEN.	3VSEN Readout	RO
12VSEN.	12VSEN Readout	RO
5VDD.	5VDD Readout	RO
5VSB.	5VSB Readout	RO
VBAT.	VBAT Readout	RO

8.9.1.2 Voltage Channel Limit Value Registers Map

MNEMONIC	REGISTER NAME	TYPE
VcoreA HL/LL.	VCOREA High/Low Limit	R/W
VcoreB HL/LL.	VCOREB High/Low Limit	R/W
Vtt HL/LL.	Vtt High/Low Limit	R/W
VINHLLowB.	VIN High Limit Low bit	R/W
VINLLLowB.	VIN Low Limit Low bit	R/W
VSEN1 HL/LL.	VSEN1 High/Low Limit	R/W
VSEN2 HL/LL.	VSEN2 High/Low Limit	R/W
3VSEN HL/LL.	3VSEN High/Low Limit	R/W
12VSEN HL/LL.	12VSEN High/Low Limit	R/W
5VDD HL/LL.	5VDD High/Low Limit	R/W
5VSB HL/LL.	5VSB High/Low Limit	R/W
VBAT HL/LL.	VBAT High/Low Limit	R/W

8.9.2 Voltage Channel Register Details

8.9.2.1 Voltage Channel Monitored Value

Location:

VCOREA Readout - Bank 0 Address 10_{HEX}

VCOREB Readout - Bank 0 Address 11_{HEX}

Vtt Readout - Bank 0 Address 12_{HEX}

VIN Low bit - Bank 0 Address 1B_{Hex}

VSEN1 Readout - Bank 0 Address 14_{HEX}

VSEN2 Readout - Bank 0 Address 15_{HEX}

3VSEN Readout - Bank 0 Address 16_{HEX}

12VSEN Readout - Bank 0 Address 17_{HEX}

5VDD Readout - Bank 0 Address 18_{HEX}

5VSB Readout - Bank 0 Address 19_{HEX}

VBAT Readout - Bank 0 Address 1A_{HEX}

Type: Read Only

Reset: No Reset

VOLTAGE READOUT

BIT	7	6	5	4	3	2	1	0
Name				Voltage	Voltage			

VIN LOW BIT READOUT

BIT	7	6	5	4	3	2	1	0
Name	Rese	erve	Vt	:tL	VCO	REBL	Vcoi	reAL

Channel VcoreA/B, and Vtt combined two registers for each channel to express their monitor result, and so it is 10-bit format data. For example, Monitored value of VCOREA can get from combination of VCOREA Readout and VIN Low bit Readout bit1~0. In order to read the correct monitor result, it needs to read high byte first than to read its corresponding low byte. The real voltage calculation of these three channels should follow the formula

Vcore AVoltage = (CR [10]*4 + CR [1B] &0x03) * 0.002;

Vcore BVoltage = (CR [11]*4 + (CR [1B] &0x0C)/4)*0.002;

Vtt Voltage = (CR [12]*4 + (CR [1B] &0x30)/16) * 0.002;

The rest of voltage channels only supply 8-bit output format. The real voltage calculation of these three channels should follow the formula

VSEN1 Voltage = CR [14] * (2 * 0.008);

VSEN2 Voltage = CR [15] * (2 * 0.008);

3VSEN Voltage = CR [16] * (2 * 0.008);

12VSEN Voltage = CR [17] * 0.008;

5VDD Voltage = CR [18] * (2 * 1.5 * 0.008)+0.15;

5VSB Voltage = CR [19] * (2 * 1.5 * 0.008)+0.15;

VBAT Voltage = CR [1A] * (2 * 0.008);

8.9.2.2 Voltage Channel Limitation Registers

Location:

VCOREA High Limit Bank 0 Address 60_{HEX}

VCOREA Low Limit Bank 0 Address 61_{HEX} **VCOREB High Limit** Bank 0 Address 62_{HEX} **VCOREB Low Limit** Bank 0 Address 63_{HEX} **Vtt High Limit** Bank 0 Address 64_{HEX} Bank 0 Address 65_{HEX} Vtt Low Limit Bank 0 Address 68_{HEX} **High Limit Low bit** Bank 0 Address 69_{HEX} **Low Limit Low bit VSEN1 High Limit** Bank 0 Address 6A_{HEX} **VSEN1 Low Limit** Bank 0 Address 6BHEY **VSEN2 High Limit** Bank 0 Address 6CHEX

VSEN2 Low Limi Bank 0 Address 6DHEX

3VSEN High Limit Bank 0 Address 6E_{HEX}

3VSEN Low Limit Bank 0 Address 6FHEX

12VSEN High Limit Bank 0 Address 70_{HEX}

12VSEN Low Limit Bank 0 Address 71_{HEX}

5VDD High Limit Bank 0 Address 72_{HEX}

5VDD Low Limit Bank 0 Address 73_{HEX}

5VSB High Limit Bank 0 Address 74_{HEX}

5VSB Low Limit Bank 0 Address 75_{HEX}

VBAT High Limit Bank 0 Address 76_{HEX}

VBAT Low Limit Bank 0 Address 77_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set.

Voltage High Limit

BIT	7	6	5	4	3	2	1	0		
Name		Voltage High Limit								
Reset				FF	HEX					

VOLTAGE LOW LIMIT

BIT	7	6	5	4	3	2	1	0			
Name		Voltage Low Limit									
Reset		00 _{HEX}									

VIN HIGH LIMIT LOW BIT

BIT	7	6	5	4	3	2	1	0
Name	Reserve		VTTHLL		VCOREBHLL		VcoreAHLL	
Reset	00)	11		11		11	

VIN LOW LIMIT LOW BIT

BIT	7	6	5	4	3	2	1	0
Name	Reserve		VTTLLL		VCOREBLLL		VcoreALLL	
Reset	00)	00		00		00	

The code calculation of high/low limit should follow the formula

VCoreA, VCoreB, Vtt Limit Setup

 $CR60\sim66$ = [Desired Voltage]/0.008;

CR68/69 = ([Desired Voltage]/0.002) - CR60~67 * 4;

VSEN1, VSEN2, 3VSEN Limit Setup

 $CR6A\sim6F = [Desired Voltage] / 0.016;$

12VSEN Limit Setup

CR70~71 = [Desired Voltage] / 0.08;

5VDD, 5VSB Limit Setup

 $CR72\sim75$ = [Desired Voltage] / 0.024;

VBAT Limit Setup

 $CR76\sim77$ = [Desired Voltage] / 0.016;

8.10 Temperature Channel Registers

8.10.1 Temperature Channel Register Map

8.10.1.1 Temperature Channel Monitored Value Register Map

MNEMONIC	REGISTER NAME	TYPE
TD1.	Temperature Sensor TD1 Readout	RO
TD2.	Temperature Sensor TD2 Readout	RO
TD3.	Temperature Sensor TD3 Readout	RO
TD4.	Temperature Sensor TD4 Readout	RO
TDLowB.	Temperature Sensor TD Low Bit Readout	RO
TR1.	Temperature Sensor TR1 Readout	RO
TR2.	Temperature Sensor TR2 Readout	RO

8.10.1.2 Temperature Channel Limitation Value Register Map

MNEMONIC	REGISTER NAME	TYPE
TD1 CT/CTH.	TD1 Critical Temperature / Critical Temperature Hysteresis	R/W
TD1 WT/WTH.	TD1 Warning Temperature / Warning Temperature Hysteresis	R/W
TD2 CT/CTH.	TD2 Critical Temperature / Critical Temperature Hysteresis	R/W
TD2 WT/WTH.	TD2 Warning Temperature / Warning Temperature Hysteresis	R/W
TD3 CT/CTH.	TD3 Critical Temperature / Critical Temperature Hysteresis	R/W
TD3 WT/WTH.	TD3 Warning Temperature / Warning Temperature Hysteresis	R/W
TD4 CT/CTH.	TD4 Critical Temperature / Critical Temperature Hysteresis	R/W
TD4 WT/WTH.	TD4 Warning Temperature / Warning Temperature Hysteresis	R/W
TR1 CT/CTH.	TR1 Critical Temperature / Critical Temperature Hysteresis	R/W

MNEMONIC	REGISTER NAME	TYPE
TR1 WT/WTH.	TR1 Warning Temperature / Warning Temperature Hysteresis	R/W
TR2 CT/CTH.	TR2 Critical Temperature / Critical Temperature Hysteresis	R/W
TR2 WT/WTH.	TR2 Warning Temperature / Warning Temperature Hysteresis	R/W

8.10.2 Temperature Channel Register Details

8.10.2.1 Temperature Channel Monitored Registers

Location:

 $\begin{array}{lll} \textbf{TD1 Readout} & - \ \, \text{Bank 0 Address 1C}_{\text{HEX}} \\ \textbf{TD2 Readout} & - \ \, \text{Bank 0 Address 1D}_{\text{HEX}} \\ \textbf{TD3 Readout} & - \ \, \text{Bank 0 Address 1E}_{\text{HEX}} \\ \textbf{TD4 Readout} & - \ \, \text{Bank 0 Address 1F}_{\text{HEX}} \\ \end{array}$

Type: Read Only

TEMP READOUT

BIT	7	6	5	4	3	2	1	0	
Name		Temperature							

TD LOW BIT READOUT

BIT	7	6	5	4	3	2	1	0	
Name	TD	TD4L		TD3L		TD2L		TD1L	

The format of Temperature channel readout is 2'complement. TD channel express temperature using 10-bit data including 1-bit sign bit, 7-bit integer, and 2 bits decimal. TR channel express temperature using 8-bit data including 1-bit sign bit, and 7-bit integer.

For TD channel temperature = $TDx + TDxL^* 0.25$

TR channel temperature = TRx

8.10.2.2 Temperature Channel Limitation Registers

Location:

TD1 Critical - Bank 0 Address 78_{HEX}

TD1 Critical Hystersis - Bank 0 Address 79_{HEX}

TD1 Warning - Bank 0 Address 7A_{HEX}

TD1 Warning Hystersis - Bank 0 Address 7B_{HEX}

TD2 Critical - Bank 0 Address 7C_{HEX}

TD2 Critical Hystersis - Bank 0 Address 7D_{HEX}

TD2 Warning - Bank 0 Address 7E_{HEX}

TD2 Warning Hystersis - Bank 0 Address 7F_{HEX}

TD3 Critical - Bank 0 Address 80_{HEX}

TD3 Critical Hystersis - Bank 0 Address 81_{HEX}

TD3 Warning - Bank 0 Address 82_{HEX}

TD3 Warning Hystersis - Bank 0 Address 83_{HEX}

TD4 Critical - Bank 0 Address 84_{HEX}

TD4 Critical Hystersis - Bank 0 Address 85_{HEX}

TD4 Warning - Bank 0 Address 86_{HEX}

TD4 Warning Hystersis - Bank 0 Address 87_{HEX}

TR1 Critical - Bank 0 Address 88_{HEX}

TR1 Critical Hystersis - Bank 0 Address 89_{HEX}

TR1 Warning - Bank 0 Address 8A_{HEX}

TR1 Warning Hystersis-Bank 0 Address 8B_{HEX}

TR2 Critical - Bank 0 Address 8C_{HEX}

TR2 Critical Hystersis - Bank 0 Address 8D_{HEX}

TR2 Warning - Bank 0 Address 8E_{HEX}

TR2 Warning Hystersis- Bank 0 Address 8F_{HEX}

Type: Read / Write

Reset: VSB5V (Pin 7) Rising.

SENSOR CRITICAL TEMPERATURE

BIT	7	6	5	4	3	2	1	0			
Name		Temp Critical Temperature									
Reset		64 _{HEX} (100 C)									

SENSOR CRITICAL TEMPERATURE HYSTERSIS

BIT	7	6	5	4	3	2	1	0			
Name		Sensor Critical Temperature Hysteresis									
Reset		5F _{HEX} (95 C)									

SENSOR CRITICAL TEMPERATURE

BIT	7	6	5	4	3	2	1	0		
Name	Sensor Warning Temperature									
Reset		55 _{HEX} (85 C)								

SENSOR WARNING TEMPERATURE HYSTERSIS

BIT	7	6	5	4	3	2	1	0			
Name		Sensor Warning Temperature Hysteresis									
Reset		50 _{HEX} (80 C)									

The format of Temperature channel limit is 2'complement, bit 7 is sign bit, range is -128~127.

8.11 Fan Control Registers

All Fan Control/Status register are allocated in Bank 0 and Bank 2. Bank 0 resides common-used control/status registers, and Bank 2 inside has Smart Fan Control setups.

8.11.1 Fan Register Map

8.11.1.1 Common Register Control/Status registers Block

All common Fan Control/Status registers are located in Bank 0.

MNEMONIC	REGISTER NAME	TYPE
Fan1CountH/L. Fan12CountH/L.	Fan tachometer readout high/low Byte	RO
Fan1LimitH/L. Fan12LimitH/L.	Fan Count Limit high/low Byte	RW
FanCtrl1. FanCtrl2.	Fan Output style Control	RW
DefaultSpeed.	Default Fan Speed at power-on	RW
Fan1Duty. Fan8Duty.	Current Fan output Duty Cycle	RW
PWM1Prescalar. PWM8Prescalar.	Fan PWM output frequency pre-scalar	RW

Here listed registers which can read out tachometer values, and their limit registers. All these registers are separated into 2 bytes. Reading tachometer count high byte will lock the corresponding low byte to ensure next reading on low byte will get consistent data with high byte.

Due to Fan input 6~12 are multifunction pins, **FanInControl** provides selection between FanIn functions or other functions.

Also here provides Fan Output style(DC/PWM), Duty cycle, and frequency controls.

8.11.1.2 Smart Fan Setup/Status registers

Registers of SmartFan setup resides in Bank 0 and Bank 2. Most used step timing control and critical temperature setup are located in Bank 0, all others located in Bank 2.

MNEMONIC	REGISTER NAME	TYPE
UpTime.	SmartFan Fan Step Up Time	RW
DownTime.	SmartFan Fan Step Down Time	RW
CriticalTemp.	All Fan full speed temperature	RW
TD1FanSelect. TR2FanSelect.	Temperature to Fan mapping relationships in SmartFan mode	RW
FanCtrlMode.	SmartFan Control Mode Select	RW
ToITD12. ToITR12.	Hysteresis tolerance of each temperature source	RW
Fan1Nonstop. □ Fan8Nonstop.	Fan Output Nonstop Duty cycle	RW
Fan1Start. □ Fan8Start.	Fan Output Start Duty Cycle	RW
Fan1StopTime. □ Fan8StopTime.	Fan Stop Time from nonstop level to turn off.	RW

Smart Fan Mode is activated on corresponding Fan once users define their relationship with temperature input in TempFanSelect. Under SmartFan Mode, user can select <u>Thermal Cruise</u> mode or Smart Fan II mode by assigning FanCtrlMode.

TempFanSelect enables users to arbitrarily define the Temperature-to-Fan relationship. For example, one can define Thermistor input 1 as chassis temperature sensor, and Temperature 1(Diode Input 1) as CPU sensor. User can do following manipulation to the Fan1(CPU Fan) and Fan2(System Fan). Assigning TD1FanSelect $03_{\rm HEX}$ and TR1FanSelect $02_{\rm HEX}$, W83793G will associate the system Fan with CPU sensor and Chassis sensor, but CPU Fan only affects by CPU sensor. More descriptions can be found at the register definition section for this issue.

Under SmartFan Mode, a specific temperature will be defined in **CriticalTemp**, when any temperature input detected temperature higher than this will cause all fan to full speed simultaneously. Beside this, in normal use several control parameters can be defined in following graph.

8.11.1.3 Thermal Cruise Mode Registers(Bank 2)

MNEMONIC	REGISTER NAME	TYPE
TD1Target.		
	Target Temperature of Temperature inputs	RW
TR2Target.		

Thermal Cruise mode is an algorithm to control Fan speed to keep the temperature source around the target temperature. If the temperature source detects temperatures higher or lower than target with **TolTemp** tolerance, Smart Fan Control will take actions to speed up or lower down the fan to keep the temperature within the tolerance range.

The concept is quite simple, when temperature is larger(not include equal) than **TargetTemp+TolTemp**, Fan will speed up; When temperature is less(not include equal) than **TargetTemp-TolTemp**, Fan will slow down; Otherwise, Fan keeps its current speed.

8.11.1.4 Smart Fan II Control registers(Bank 2)

MNEMONIC	REGISTER NAME	TYPE
TD1Level01.		
	Smart Fan II Fan Transition temperature levels	RW
TR2Level67.		
TD1FanLevel0.		
	Smart Fan II Fan Output Levels	RW
TR2FanLevel6.		

Smart Fan II algorithm provides user a mechanism to setup Fan speed via Temperature level relationship. Each temperature source has a corresponding table, and totally six tables are used to control Temperature 1(D1) to Temperature 6 (R2).

A table is consisted of 7 temperature levels and 7 fan levels as following.

While Fan speed jump from one level to another level, there is a hysterisis mechanism to prevent fan from throttling. When speed jump high to another level, temperature need to at specified temperature level, but instead when speed is slow down, it must wait until temperature is lower than specified temperature level minus tolerance.

8.11.2 Fan Register Details

8.11.2.1 Fan Tachometer Readout high/low Byte Register(FanCountH/L)

The FanCountH/L maintains current count value of corresponding Fan inputs. When VSB 5V power on, it is cleared(00_{HEX}). Effective width of FanCountH/L is 12-bits, FanCountH high nibble is not used. Location:

Fan1CountH - Bank 0 Address 23_{HEX}

Fan1CountL - Bank 0 Address 24_{HEX}

Fan2CountH - Bank 0 Address 25_{HEX}

Fan2CountL - Bank 0 Address 26_{HEX}

Fan3CountH - Bank 0 Address 27_{HEX}

Fan3CountL - Bank 0 Address 28_{HEX}

Fan4CountH - Bank 0 Address 29_{HEX}

Fan4CountL - Bank 0 Address 2A_{HEX}

Fan5CountH - Bank 0 Address 2B_{HEX}

 $\textbf{Fan5CountL} - \text{Bank 0 Address 2C}_{\text{HEX}}$

Fan6CountH - Bank 0 Address 2D_{HEX}

Fan6CountL - Bank 0 Address 2E_{HEX}

 $\textbf{Fan7CountH} - \texttt{Bank 0 Address 2F}_{\texttt{HEX}}$

 $\textbf{Fan7CountL} - \text{Bank 0 Address } 30_{\text{HEX}}$

Fan8CountH - Bank 0 Address 31_{HEX}

 $\textbf{Fan8CountL} - \text{Bank 0 Address } 32_{\text{HEX}}$

 $\textbf{Fan9CountH} - \text{Bank 0 Address } 33_{\text{HEX}}$

 $\textbf{Fan9CountL} - \text{Bank 0 Address 34}_{\text{HEX}}$

Fan10CountH - Bank 0 Address 35_{HEX}

Fan10CountL - Bank 0 Address 36_{HEX}

Fan11CountH - Bank 0 Address 37_{HEX}

Fan11CountL - Bank 0 Address 38_{HEX}

Fan12CountH - Bank 0 Address 39_{HEX}

Fan12CountL - Bank 0 Address 3A_{HEX}

Type: Read Only

Reset: VSB5V(Pin 7) Rising

FAN1COUNTH~FAN12COUNTH

BIT	7	6	5	4	3	2	1	0
Name		FanCountH						
Reset		00 _{HEX}						

BIT	DESCRIPTION
7-0	FanCountH (Fan tachometer readout high byte). The count value high byte of FanIn signal period with 45KHz clock.

FAN1COUNTL~FAN12COUNTL

BIT	7	6	5	4	3	2	1	0
Name		FanCountL						
Reset		00 _{HEX}						

BIT	DESCRIPTION
7-0	FanCountL (Fan tachometer readout low byte). The count value low byte of FanIn signal period with 45KHz clock.

FAN COUNT CALCULATION

Fan1CountL combined with Fan1CountH forms the 12-bit count value. If reading the Fan1CountH and Fan1CountL successively, W83793G will make these two count value consistent(i.e. The same counting). If user read them in reverse order or other read/write between them, it is possible that the high/low byte may come from different counting and leads to some abnormal reading. Same rules can be applied to other FanCounts.

Real RPM(Rotate Per Minute) calculations should follow the formula

$$FanSpeed(RPM) = \frac{1.35 \times 10^{6}}{(12 - bitCountValue) \times (FanPoles/4)}$$

In this formula, 12-bitCountValue represents the values stored in the FanCountH/L, and FanPoles stands for the number of NS poles pair inside the Fan, normally a N-S-N-S Fan(FanPoles = 4) will generate 2 pulses when complete one rotate.

Fan tachometer normal operating range is below 4.5KHz(if FanPoles=4, it means 135KRPM), nearly impossible but a Fan rotating faster than this will cause W83793G works abnormally.

8.11.2.2 Fan Count Limit High/Low Byte(FanLimitH/L)

The **FanLimitH/L** setups the Limit range for Fan in count values, if counter counts value larger than these register indicates, W83793G will show alert in real-time status and may take further actions based on user setups. While reset it is $set(FF_{HEX})$.

Location:

Fan1LimitH - Bank 0 Address 90_{HEX}

Fan1LimitL - Bank 0 Address 91_{HEX}

Fan2LimitH - Bank 0 Address 92_{HEX}

Fan2LimitL - Bank 0 Address 93_{HEX}

Fan3LimitH - Bank 0 Address 94_{HEX}

Fan3LimitL - Bank 0 Address 95_{HEX}

Fan4LimitH - Bank 0 Address 96_{HEX}

Fan4LimitL - Bank 0 Address 97_{HEX}

Fan5LimitH - Bank 0 Address 98_{HEX}

Fan5LimitL - Bank 0 Address 99_{HEX}

Fan6LimitH - Bank 0 Address 9A_{HEX}

Fan6LimitL - Bank 0 Address 9B_{HEX}

Fan7LimitH - Bank 0 Address 9C_{HEX}

Fan7LimitL - Bank 0 Address 9D_{HEX}

Fan8LimitH - Bank 0 Address 9E_{HEX}

Fan8LimitL - Bank 0 Address 9F_{HEX}

Fan9LimitH - Bank 0 Address A0_{HEX}

Fan9LimitL - Bank 0 Address A1_{HEX}

Fan10LimitH - Bank 0 Address A2_{HEX}

Fan10LimitL - Bank 0 Address A3_{HEX}

Fan11LimitH - Bank 0 Address A4_{HEX}

Fan11LimitL - Bank 0 Address A5_{HEX}

Fan12LimitH – Bank 0 Address A6_{HEX}

Fan12LimitL - Bank 0 Address A7_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising.

FAN1LIMITH ~ FAN12LIMITH

BIT	7	6	5	4	3	2	1	0
Name		FanLimitH						
Reset		FF _{HEX}						

BIT	DESCRIPTION
7-0	FanLimitH(Fan tachometer limit high byte). The limitation of count value high byte of FanIn.

FAN1LIMITL~FAN12LIMITL

BIT	7	6	5	4	3	2	1	0
Name		FanLimitL						
Reset		FF _{HEX}						

BIT	DESCRIPTION
7-0	FanLimitL(Fan tachometer readout limit low byte). The limitation count value low byte of FanIn.

8.11.2.3 Fan Output Style Control (FanCtrl)

The FanCtrl1/2 decides the Fan output style. There are several output styles available in W83793G, which are OD mode(Open-Drain), OB mode(Ouput-Buffer), and DC mode(DAC output). Default all fans outputs are set to OD mode.

Location:

FanCtrl1 - Bank 0 Address B0_{HEX} FanCtrl2 - Bank 0 Address B1_{HEX}

Type: Read / Write

Reset: . VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

FANCTRL1

BIT	7	6	5	4	3	2	1	0
Name	F8OB	F7OB	F6OB	F5OB	F4OB	F3OB	F2OB	F10B
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
	F80B(Fan output 8 Output Buffer Mode Control).
7	0: Depends on F8DC (CRB1.Bit7), if F8DC=1, Pin 11 output with DC mode. Otherwise output is configured with OD mode.
	1: Depends on F8DC (CRB1.Bit7), if F8DC=1, Pin 11 output with DC mode. Otherwise output is configured with OB mode
	F70B(Fan output 7 Output Buffer Mode Control).
6	0: Depends on F7DC (CRB1.Bit6), if F7DC=1, Pin 54 output with DC mode. Otherwise output is configured with OD mode.
	1: Depends on F7DC (CRB1.Bit6), if F7DC=1, Pin 54 output with DC mode. Otherwise output is configured with OB mode
	F60B(Fan output 6 Output Buffer Mode Control).
5	0: Depends on F6DC (CRB1.Bit5), if F6DC=1, Pin 52 output with DC mode. Otherwise output is configured with OD mode.
	1: Depends on F6DC (CRB1.Bit5), if F6DC=1, Pin 52 output with DC mode. Otherwise output is configured with OB mode

BIT	DESCRIPTION
	F50B(Fan output 5 Output Buffer Mode Control).
4	0: Depends on F5DC (CRB1.Bit4), if F5DC=1, Pin 50 output with DC mode. Otherwise output is configured with OD mode.
	1: Depends on F5DC (CRB1.Bit4), if F5DC=1, Pin 50 output with DC mode. Otherwise output is configured with OB mode
	F40B(Fan output 4 Output Buffer Mode Control).
3	0: Depends on F4DC (CRB1.Bit3), if F4DC=1, Pin 49 output with DC mode. Otherwise output is configured with OD mode.
	1: Depends on F4DC (CRB1.Bit3), if F4DC=1, Pin 49 output with DC mode. Otherwise output is configured with OB mode
	F30B(Fan output 3 Output Buffer Mode Control).
2	0: Depends on F3DC (CRB1.Bit2), if F3DC=1, Pin 46 output with DC mode. Otherwise output is configured with OD mode.
	1: Depends on F3DC (CRB1.Bit2), if F3DC=1, Pin 46 output with DC mode. Otherwise output is configured with OB mode
	F2OB(Fan output 2 Output Buffer Mode Control).
1	0: Depends on F2DC (CRB1.Bit1), if F2DC=1, Pin 44 output with DC mode. Otherwise output is configured with OD mode.
	1: Depends on F2DC (CRB1.Bit1), if F2DC=1, Pin 44 output with DC mode. Otherwise output is configured with OB mode
	F10B(Fan output 1 Output Buffer Mode Control).
0	0: Depends on F1DC (CRB1.Bit0), if F1DC=1, Pin 42 output with DC mode. Otherwise output is configured with OD mode.
	1: Depends on F1DC (CRB1.Bit0), if F1DC=1, Pin 42 output with DC mode. Otherwise output is configured with OB mode

FANCTRL2

BIT	7	6	5	4	3	2	1	0
Name	F8DC	F7DC	F6DC	F5DC	F4DC	F3DC	F2DC	F1DC
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
	F8DC(Fan output 8 Direct Current Mode Control).
7	0: OD or OB mode on Pin 11. Depend on F8OB (CRB0.Bit7)
	1: Pin 11 set as DC mode.

BIT	DESCRIPTION
	F7DC(Fan output 7 Direct Current Mode Control).
6	0: OD or OB mode on Pin 54. Depend on F7OB (CRB0.Bit6)
	1: Pin 54 set as DC mode.
	F6DC(Fan output 6 Direct Current Mode Control).
5	0: OD or OB mode on Pin 52. Depend on F6OB (CRB0.Bit5)
	1: Pin 52 set as DC mode.
	F5DC(Fan output 5 Direct Current Mode Control).
4	0: OD or OB mode on Pin 50. Depend on F50B (CRB0.Bit4)
	1: Pin 50 set as DC mode.
	F4DC(Fan output 4 Direct Current Mode Control).
3	0: OD or OB mode on Pin 49. Depend on F4OB (CRB0.Bit3)
	1: Pin 49 set as DC mode.
	F3DC(Fan output 3 Direct Current Mode Control).
2	0: OD or OB mode on Pin 46. Depend on F30B (CRB0.Bit2)
	1: Pin 46 set as DC mode.
	F2DC(Fan output 2 Direct Current Mode Control).
1	0: OD or OB mode on Pin 44. Depend on F2OB (CRB0.Bit1)
	1: Pin 44 set as DC mode.
	F1DC(Fan output 1 Direct Current Mode Control).
0	0: OD or OB mode on Pin 42. Depend on F10B (CRB0.Bit0)
	1: Pin 42 set as DC mode.

8.11.2.4 Default Fan Speed at Power-on (DefaultSpeed)

DefaultSpeed set the initial speed of every fan. When system is turned on, all Fans output will be set a default Duty as this register content. This register's reset is specially design to be reset by VSB only, so at second system power on, the system will use the lastest setup speed to turn on all Fans.

Location : **DefaultSpeed** - Bank 0 Address B2_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising.

DefaultSpeed

BIT	7	6	5	4	3	2	1	0	
Name	Reserved		DefaultSpeed						
Reset	0	0	30 _{HEX}						

BIT	DESCRIPTION
7-6	Reserved.
5-0	DefaultSpeed(Default Fan Speed at Power-on). Specifies The Fan Duty at next power on.

8.11.2.5 Current Fan Output Duty Cycle (FanDuty)

FanDuty reflects the current output duty cycle. In manual mode it also can be set user desired duty cycles. But in Smart Fan mode, it is read-only.

Location:

Fan1Duty - Bank 0 Address B3_{HEX}

Fan2Duty - Bank 0 Address B4_{HEX}

Fan3Duty - Bank 0 Address B5_{HEX}

Fan4Duty - Bank 0 Address B6_{HEX}

Fan5Duty - Bank 0 Address B7_{HEX}

Fan6Duty - Bank 0 Address B8_{HEX}

Fan7Duty - Bank 0 Address B9_{HEX}

Fan8Duty - Bank 0 Address BA_{HEX}

Type: Read / Write(Only in Manual Mode, make sure 5VDD and Pin 1 CLK is ready)

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set,

SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

FAN1DUTY ~ **FAN8DUTY**

BIT	7	6	5	4	3	2	1	0	
Name	Rese	rved	FanDuty						
Reset	0	0	Depend on DefaultSpeed.						

BIT	DESCRIPTION
7-6	Reserved.
5-0	FanDuty (Current Fan output Duty Cycle). Specifies the current Fan output duty cycle. While VDD5V is low, this register is forcing to be zero by hardware.

FanDuty also has a special characteristic; it's called sequential power-on. This function is used to avoid system current over-load while system power-on and all fans start to spin. W83793G will turn on each fan in sequence and it take 0.1sec to power on all fans.(12.5ms intervals for 8 Fans)

8.11.2.6 Fan PWM Output Frequency Prescalar (PWMPrescalar)

PWMPrescalar controls the output frequency in PWM mode. Here a large range of clock can be selected to fit customer needs. Default output frequency is 25KHz.

Location:

PWM1Prescalar - Bank 0 Address BB_{HEX}

PWM2Prescalar - Bank 0 Address BC_{HEX}

PWM3Prescalar - Bank 0 Address BDHEX

PWM4Prescalar - Bank 0 Address BE_{HEX}

PWM5Prescalar - Bank 0 Address BF_{HEX}

PWM6Prescalar - Bank 0 Address CO_{HEX}

PWM7Prescalar - Bank 0 Address C1_{HEX}

PWM8Prescalar - Bank 0 Address C2HEX

Type: Read / Write(Only in Manual Mode)

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set,

SYSRSTIN N(Pin 15) Falling @ SYSRST MD(CR40.Bit5) set.

PWM1PRESCALAR ~ PWM8PRESCALAR

BIT	7	6	5	4	3	2	1	0
Name	CKSEL		Divisor					
Reset	1		09 _{HEX}					

BIT	DESCRIPTION					
	CKSEL(clock source select).					
7	0: 512Hz.					
	1: 250KHz.					
6-0	Divisor(Clock Divisor). Clock frequency Divisor.					

The clock source selected by CKSEL will be divided by Divisor and used as a Fan PWM output frequency. There are 2 cases of Divisor depends on CKSEL.

If CKSEL equals 1, then output clock is simply equals to 250/(Divisor+1) KHz.

If CKSEL equals 0, output clock is 512Hz/MappedDivisor. MappedDivisor depends on Divisor[3:0] and looks like below table.

DIVISOR[3:0]	MAPPED DIVISOR	OUTPUT FREQUENCY	DIVISOR[3:0]	MAPPED DIVISOR	OUTPUT FREQUENCY
0000	1	512Hz	1000	12	43Hz
0001	2	256Hz	1001	16	32Hz
0010	3	171Hz	1010	32	16Hz
0011	4	128Hz	1011	64	8Hz
0100	5	102Hz	1100	128	4Hz
0101	6	85Hz	1101	256	2Hz
0110	7	73Hz	1110	512	1Hz
0111	8	64Hz	1111	1024	0.5Hz

8.11.2.7 SmartFan Output Step Up Time (UpTime)

UpTime regulates the time interval of fastest Fan speed up a unit. Default setting is 0.6sec.

Location: **UpTime** - Bank 0 Address C3_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

UPTIME

BIT	7	6	5	4	3	2	1	0
Name	UpTime							
Reset	06 _{HEX}							

BIT	DESCRIPTION
7-0	UpTime (SmartFan Step Up Time). Unit in 0.1sec. Programmed as the interval of continuous Fan ramping up.

SmartFan mostly control fans smoothly, which means it seldom suddenly add a large duty to fan or decrease a large duty. Instead, most often it increase/decrease duty by 1 LSB one time. The Up Time / Down Time register defines the time interval between successively increase/decrease duty. If this value set too small, Fan will have no time to reflect the speed after tuning the duty and sometimes may cause Fan speed unstable; on the other hand, if set Up Time / Down Time too large, Fan may not act fast enough to dissipate the heat. This register should never set to 0, otherwise will cause Fan Duty abnormal.

Only in these cases, fan will suddenly jump large duty.

→VDD Power - on/off

→ Critical Temperature reached

→Fan Turn off state to Start

→Fan at NonStop Level to turn off state

8.11.2.8 SmartFan Output Step Down Time (DownTime)

Down Time regulates the time interval of fastest Fan speed lowered a unit. Default setting is 0.6sec.

Location: **DownTime** - Bank 0 Address C4_{HE}XType: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

DOWNTIME

BIT	7	6	5	4	3	2	1	0
Name		DownTime						
Reset		06 _{HEX}						

BIT	DESCRIPTION
7-0	DownTime (SmartFan Step Down Time). Unit in 0.1sec. Programmed as the interval of continuous Fan ramping Down.

This register should never set to 0, otherwise will cause Fan Duty abnormal.

8.11.2.9 All Fan Full Speed Temperature (CriticalTemp)

CriticalTemp defines a system critical temperature while exceeding this temperature may lead to system damage or crash. When W83793G detects any temperature input exceeding **CriticalTemp**, it will speed all Fans and try to lowering the temperature.

Location:

CritcalTemp - Bank 0 Address C5_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

UPTIME

BIT	7	6	5	4	3	2	1	0
Name	Reserved		CriticalTemp					
Reset	0		50 _{HEX}					

Publication Release Date: Dec. 11, 2006

BIT	DESCRIPTION
7	Reserved.
6-0	CriticalTemp(All Fan Full Speed Temperature).

8.11.2.10 Temperature to Fan mapping relationships Register (TempFanSelect)

The **TempFanSelect** is responsible for dealing with the relationship between Fan and Temperature source. While reset it is cleared(00_{HEX}).

Location:

TD1FanSelect - Bank 2 Address 01_{HEX}
TD2FanSelect - Bank 2 Address 02_{HEX}
TD3FanSelect - Bank 2 Address 03_{HEX}
TD4FanSelect - Bank 2 Address 04_{HEX}
TR1FanSelect - Bank 2 Address 05_{HEX}
TR2FanSelect - Bank 2 Address 06_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

TD1FANSELECT ~ TR2FANSELECT

BIT	7	6	5	4	3	2	1	0
Name	Fan8	Fan7	Fan6	Fan5	Fan4	Fan3	Fan2	Fan1
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
	Fan8(Enable Fan8 Smart Fan).
7	0: Fan8 has no relation with this temperature source.
	1: Applies SmartFan control on Fan8 and this temperature.
	Fan7(Enable Fan7 Smart Fan).
6	0: Fan7 has no relation with this temperature source.
	1: Applies SmartFan control on Fan7 and this temperature.
	Fan6(Enable Fan6 Smart Fan).
5	0: Fan6 has no relation with this temperature source.
	1: Applies SmartFan control on Fan6 and this temperature.

BIT	DESCRIPTION
	Fan5(Enable Fan5 Smart Fan).
4	0: Fan5 has no relation with this temperature source.
	1: Applies SmartFan control on Fan5 and this temperature.
	Fan4(Enable Fan4 Smart Fan).
3	0: Fan4 has no relation with this temperature source.
	1: Applies SmartFan control on Fan4 and this temperature.
	Fan3(Enable Fan3 Smart Fan).
2	0: Fan3 has no relation with this temperature source.
	1: Applies SmartFan control on Fan3 and this temperature.
	Fan2(Enable Fan2 Smart Fan).
1	0: Fan2 has no relation with this temperature source.
	1: Applies SmartFan control on Fan2 and this temperature.
	Fan1(Enable Fan1 Smart Fan).
0	0: Fan1 has no relation with this temperature source.
	1: Applies SmartFan control on Fan1 and this temperature.

Here using an example to explain the concept of **TempFanSelect** Mapping. Considering this case, **TD1FanSelect** is set to 86_{HEX} , **TD2FanSelect** is set to 52_{HEX} , **TD3FanSelect** is set 20_{HEX} , and other 3 left unset.

We can spilt the six registers bit by bit as above figure, and give it a rotation, this help us to understand the relationship from the point of fan easier. For Fan1 and Fan4 row, all temperature is deasserted, that means Fan1/Fan4 does not have any relationship with temperature, thus they are in manual mode under this setting. For Fan2, it is clear that it has relation with temperature 1 and 2, so it will activate SmartFan control with temperature 1/2 as it input.

The right graph give a picture of how the mapping relationship is made by this setting.

In this example, Fan2 retrieves information from Temperature 1 and Temperature 2, and decide the next duty cycle applied to Fan2. But how did it decide to speed up/slow down fan? Basically, W83793G sorting the information comes from each temperature sensor and SmartFan Controls. After sorting the information, W83793G will get something like, TD1 need to speed up fan, and TD2 does not need so fast Fan speed; or TD1 would no more need fast fan, and TD2 hopes to keep current fan speed. And after that, the algorithm will make a decision to control fan by a very simple rule, which can expressed very simply in the following.

If TD1 say, "I need faster fan", and TD2 says, "No fast fan needed". W83793G will take request of TD1 and start to speed up Fan. In short, W83793G always prefers to pick the most critical request and applies it to the related Fan.

8.11.2.11 SmartFan Control Mode Select Register (FanCtrlMode)

There are two SmartFan modes supported with W83793G once SmartFan function enabled (Please refer <u>TempFanSelect</u> to enable SmartFan Function), they are Thermal Cruise mode and SmartFan II mode. While reset it is cleared (00_{HEX}) , SmartFan II mode.

Location: FanCtrlMode - Bank 2 Address 07_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

FANCTRLMODE

BIT	7	6	5	4	3	2	1	0
Name	Rese	rved	TR2_MD	TR1_MD	TD4_MD	TD3_MD	TD2_MD	TD1_MD
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION							
7-6	Reserved.							
	TR2_MD (Thermistor 2 SmartFan Control Mode)							
5	0: SmartFan II mode.							
	1: Thermal Cruise mode.							
	TR1_MD (Thermistor 1 SmartFan Control Mode)							
4	0: SmartFan II mode.							
	1: Thermal Cruise mode.							
	TD4_MD (Thermal Diode 4 SmartFan Control Mode)							
3	0: SmartFan II mode.							
	1: Thermal Cruise mode.							
	TD3_MD (Thermal Diode 3 SmartFan Control Mode)							
2	0: SmartFan II mode.							
	1: Thermal Cruise mode.							
	TD2_MD (Thermal Diode 2 SmartFan Control Mode)							
1	0: SmartFan II mode.							
	1: Thermal Cruise mode.							
	TD1_MD (Thermal Diode 1 SmartFan Control Mode)							
0	0: SmartFan II mode.							
	1: Thermal Cruise mode.							

8.11.2.12 Hysteresis Tolerance of Temperature Register(TolTemp)

In SmartFan mode, to avoid temperature unstable causing fan throttling, W83793G uses a hysteresis temperature to separate the speed up/slow down temperature point. While reset it is set to $2^{\circ}C(22_{HEX})$. Location :

ToITD12 - Bank 2 Address 08_{HEX} **ToITD34** - Bank 2 Address 09_{HEX} **ToITR12** - Bank 2 Address $0A_{HEX}$

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

TOLTD12

BIT	7	6	5	4	3	2	1	0	
Name		To	ITD2		ToITD1				
Reset		2	HEX		2 _{HEX}				

BIT	DESCRIPTION
7-4	ToITD2(TD 2 Tolerance Range). Unit in ℃.
3-0	ToITD1(TD 1 Tolerance Range). Unit in ℃.

TOLTD34

BIT	7	6	5	4	3	2	1	0	
Name		То	ITD4		ToITD3				
Reset		2	HEX		2 _{HEX}				

BIT	DESCRIPTION
7-4	ToITD4(TD 4 Tolerance Range). Unit in ℃.
3-0	ToITD3(TD 3 Tolerance Range). Unit in ℃.

TOLTR12

BIT	7	6	5	4	3	2	1	0	
Name		То	ITR2		TolTR1				
Reset		2	HEX		2 _{HEX}				

BIT	DESCRIPTION
7-4	ToITR2(TR2 Tolerance Range). Unit in ℃.
3-0	TolTR1(TR1 Tolerance Range). Unit in ℃.

8.11.2.13 Fan Output Nonstop Duty Cycle Register(FanNonStop)

Due to bring a fan from stop to work might take some time. The design of FanNonStop is hope to have a minimum duty cycle to keep the fan rotating when system does not require fan help getting ride of heat but still want to keep the fast response time to speed up fan. (Reference to <u>Graph</u>)

Location:

Fan1NonStop - Bank 2 Address 18_{HEX}

Fan2NonStop - Bank 2 Address 19_{HEX}

Fan3NonStop - Bank 2 Address 1AHEX

Fan4NonStop - Bank 2 Address 1BHEX

Fan5NonStop - Bank 2 Address 1CHEX

Fan6NonStop - Bank 2 Address 1DHEX

Fan7NonStop - Bank 2 Address 1EHEX

Fan8NonStop - Bank 2 Address 1FHEX

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set,

SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

FANNONSTOP

BIT	7	6	5	4	3	2	1	0		
Name	Rese	erved	FanNonStop							
Reset	(0		4 _{HEX}						

BIT	DESCRIPTION
7-6	Reserved.
5-0	FanNonStop(Fan Output NonStop Duty Cycle).

8.11.2.14 Fan Output Start Duty Cycle Register(FanStart)

From still to rotate, Fan usually needs a higher duty cycle to generate enough torque to conquer the restriction force. Thus W83793G include a FanStart to bring the Fan live with the duty specified. (Reference to <u>Graph</u>)

Location:

Fan1Start - Bank 2 Address 20_{HEX}

Fan2Start - Bank 2 Address 21_{HEX}

Fan3Start - Bank 2 Address 22_{HEX}

Fan4Start - Bank 2 Address 23_{HEX}

Fan5Start - Bank 2 Address 24_{HEX}
Fan6Start - Bank 2 Address 25_{HEX}
Fan7Start - Bank 2 Address 26_{HEX}
Fan8Start - Bank 2 Address 27_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

FANSTART

BIT	7	6	5	4	3	2	1	0		
Name	Reserved		FanStart							
Reset	0)	8 _{HEX}							

BIT	DESCRIPTION
7-6	Reserved.
5-0	FanStart(Fan Output Start Duty Cycle).

8.11.2.15 Fan Output Stop Time Register(FanStopTime)

A time interval is specified to tell W83793G when to turn off fan if SmartFan continuously request to slower down Fan, but fan already reached the **NonStop** Level. Default is 10 sec. (Reference to <u>Graph</u>)

Location:

Fan1StopTime - Bank 2 Address 28_{HEX}
Fan2StopTime - Bank 2 Address 29_{HEX}
Fan3StopTime - Bank 2 Address 2A_{HEX}
Fan4StopTime - Bank 2 Address 2B_{HEX}
Fan5StopTime - Bank 2 Address 2C_{HEX}
Fan6StopTime - Bank 2 Address 2D_{HEX}
Fan7StopTime - Bank 2 Address 2E_{HEX}
Fan8StopTime - Bank 2 Address 2E_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set, SYSRSTIN N(Pin 15) Falling @ SYSRST MD(CR40.Bit5) set.

FANSTOPTIME

BIT	7	6	5	4	3	2	1	0
Name	FanStopTime							
Reset	64 _{HEX}							

BIT	DESCRIPTION
	FanStopTime(Fan Stop time from Nonstop level to turn off).
7-0	Unit in 0.1sec. Ranged from 0.1sec to 25.5sec.
	If set to 0, Fan will never stop.

8.11.2.16 Target Temperature of Temperature Inputs Register(TempTarget)

In Thermal Cruise mode, a target temperature is needed to be defined for each temperature source. W83793G will try to tune fan speed to keep the temperature of target device around the target temperature. Default target temperature for diode sensors is 40° C, and 32° C for thermistor sensors.

Location:

TD1Target - Bank 2 Address 10_{HEX}

TD2Target - Bank 2 Address 11_{HEX}

TD3Target - Bank 2 Address 12_{HEX}

TD4Target - Bank 2 Address 13_{HEX}

TR1Target - Bank 2 Address 14_{HEX}

TR2Target - Bank 2 Address 15_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set,

SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

TD1TARGET ~ TD4TARGET

BIT	7	6	5	4	3	2	1	0	
Name	Reserved		TempTarget						
Reset	0		28 _{HEX}						

BIT	DESCRIPTION
7	Reserved.
6-0	TempTarget . (Diode Temperature sensor target temperature). Unit in °C

TR1TARGET ~ TR2TARGET

BIT	7	6	5	4	3	2	1	0	
Name	Reserved		TempTarget						
Reset	0		20 _{HEX}						

BIT	DESCRIPTION
7	Reserved.
6-0	TempTarget . (Thermistor Temperature sensor target temperature). Unit in $^{\circ}\!$

See also: TolTemp, FanCtrlMode, Thermal Cruise mode.

8.11.2.17 Smart Fan II Fan Transition Temperature Level Registers (TempLevel)

SmartFan II, an algorithm providing a table mapping mechanism to translate temperature information into output Fan duties. The mapping table need user to provide 2 domains for the translation, those are at certain temperature mapping to certain duty. **TempLevel**(Temperature) and **TempFanLevel**(Duty Cycle) are used to define the table. There totally are six tables reside in W83793G, one table per temperature channel; 7 entries per table. Therefore here **TempLevel** will have 42 registers, and another 42 registers for **TempFanLevel** in this and next section.

Location:

TD1Level12 - Bank 2 Address 30_{HEX}
TD1Level12 - Bank 2 Address 31_{HEX}
TD1Level23 - Bank 2 Address 32_{HEX}
TD1Level34 - Bank 2 Address 33_{HEX}
TD1Level45 - Bank 2 Address 34_{HEX}
TD1Level56 - Bank 2 Address 35_{HEX}
TD1Level67 - Bank 2 Address 36_{HEX}
TD2Level01 - Bank 2 Address 40_{HEX}
TD2Level12 - Bank 2 Address 41_{HEX}
TD2Level23 - Bank 2 Address 42_{HEX}
TD2Level34 - Bank 2 Address 43_{HEX}
TD2Level45 - Bank 2 Address 44_{HEX}

TD2Level56 - Bank 2 Address 45HEY TD2Level67 - Bank 2 Address 46_{HEX} TD3Level01 - Bank 2 Address 50_{HEX} TD3Level12 - Bank 2 Address 51_{HEX} TD3Level23 - Bank 2 Address 52_{HEX} TD3Level34 - Bank 2 Address 53_{HEX} TD3Level45 - Bank 2 Address 54_{HEX} TD3Level56 - Bank 2 Address 55_{HEX} TD3Level67 - Bank 2 Address 56HEX TD4Level01 - Bank 2 Address 60_{HEX} TD4Level12 - Bank 2 Address 61_{HEX} TD4Level23 - Bank 2 Address 62_{HEX} TD4Level34 - Bank 2 Address 63_{HEX} TD4Level45 - Bank 2 Address 64_{HEX} TD4Level56 - Bank 2 Address 65_{HEX} TD4Level67 - Bank 2 Address 66HEX TR1Level01 - Bank 2 Address 70_{HEX} TR1Level12 - Bank 2 Address 71_{HEX} TR1Level23 - Bank 2 Address 72_{HEX} TR1Level34 - Bank 2 Address 73_{HEX} TR1Level45 - Bank 2 Address 74_{HEX} TR1Level56 - Bank 2 Address 75_{HEX} TR1Level67 - Bank 2 Address 76HEY TR2Level01 - Bank 2 Address 80_{HEX} TR2Level12 - Bank 2 Address 81_{HEX} TR2Level23 - Bank 2 Address 82_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

TR2Level34 - Bank 2 Address 83_{HEX} TR2Level45 - Bank 2 Address 84_{HEX} TR2Level56 - Bank 2 Address 85HEX TR2Level67 - Bank 2 Address 86_{HEX}

VDD5V(Pin 25) Rising @ RST VDD MD(CR40.Bit4) set, SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

TD1LEVEL01 ~ TR2LEVEL01

BIT	7	6	5	4	3	2	1	0
Name	Reserved		TempLevel01					
Reset	0		1E _{HEX}					

BIT	DESCRIPTION
7	Reserved.
6-0	TempLevel01 . (Temperature Level between TempFanLevel0 and TempFanLevel1). Unit in °C

TD1LEVEL12 ~ TR2LEVEL12

BIT	7	6	5	4	3	2	1	0
Name	Reserved		TempLevel12					
Reset	0		23 _{HEX}					

BIT	DESCRIPTION
7	Reserved.
6-0	TempLevel12 . (Temperature Level between TempFanLevel1 and TempFanLevel2). Unit in $^{\circ}$

TD1LEVEL23 ~ TR2LEVEL23

BIT	7	6	5	4	3	2	1	0
Name	Reserved		TempLevel23					
Reset	0		28 _{HEX}					

BIT	DESCRIPTION
7	Reserved.
6-0	TempLevel23. (Temperature Level between TempFanLevel2 and TempFanLevel3). Unit in ℃

TD1LEVEL34 ~ TR2LEVEL34

BIT	7	6	5	4	3	2	1	0
Name	Reserved		TempLevel34					
Reset	0		2D _{HEX}					

BIT	DESCRIPTION
7	Reserved.
6-0	TempLevel34 . (Temperature Level between TempFanLevel3 and TempFanLevel4). Unit in $^{\circ}$

TD1LEVEL45 ~ TR2LEVEL45

BIT	7	6	5	4	3	2	1	0
Name	Reserved		TempLevel45					
Reset	0		32 _{HEX}					

BIT	DESCRIPTION
7	Reserved.
6-0	TempLevel45 . (Temperature Level between TempFanLevel4 and TempFanLevel5). Unit in $^{\circ}$

TD1LEVEL56 ~ TR2LEVEL56

BIT	7	6	5	4	3	2	1	0
Name	Reserved		TempLevel56					
Reset	0		37 _{HEX}					

BIT	DESCRIPTION
7	Reserved.
6-0	TempLevel56 . (Temperature Level between TempFanLevel5 and TempFanLevel6). Unit in ℃

TD1LEVEL67 ~ TR2LEVEL67

BIT	7	6	5	4	3	2	1	0
Name	Reserved		TempLevel67					
Reset	0		3C _{HEX}					

BIT	DESCRIPTION
7	Reserved.
6-0	TempLevel67 . (Temperature Level between TempFanLevel6 and TempFanLevel7). Unit in °C

See also: TolTemp, FanCtrlMode, Smart Fan II mode.

8.11.2.18 Smart Fan II Fan Output Levels Registers (TempFanLevel)

Previous section describes one temperature axis of Smart Fan II Table, here introduced Fan Duty axis for the table, **TempFanLevel** registers.

Location:

TD1FanLevel0 - Bank 2 Address 38_{HEX} TD1FanLevel1 - Bank 2 Address 39_{HEX} TD1FanLevel2 - Bank 2 Address 3A_{HEX} TD1FanLevel3 - Bank 2 Address 3BHEX TD1FanLevel4 - Bank 2 Address 3C_{HEX} TD1FanLevel5 - Bank 2 Address 3DHEX TD1FanLevel6 - Bank 2 Address 3EHEX TD2FanLevel0 - Bank 2 Address 48_{HEX} TD2FanLevel1 - Bank 2 Address 49_{HEX} TD2FanLevel2 - Bank 2 Address 4A_{HEX} TD2FanLevel3 - Bank 2 Address 4BHEX TD2FanLevel4 - Bank 2 Address 4CHEX TD2FanLevel5 - Bank 2 Address 4DHEX TD2FanLevel6 - Bank 2 Address 4E_{HEX} TD3FanLevel0 - Bank 2 Address 58_{HEX} TD3FanLevel1 - Bank 2 Address 59_{HEX} TD3FanLevel2 - Bank 2 Address 5A_{HEX} TD3FanLevel3 - Bank 2 Address 5BHEX TD3FanLevel4 - Bank 2 Address 5CHEX TD3FanLevel5 - Bank 2 Address 5DHEX TD3FanLevel6 - Bank 2 Address 5EHEX TD4FanLevel0 - Bank 2 Address 68_{HEX} TD4FanLevel1 - Bank 2 Address 69_{HEX} TD4FanLevel2 - Bank 2 Address 6A_{HEX} TD4FanLevel3 - Bank 2 Address 6BHEX

TD4FanLevel4 - Bank 2 Address 6CHEX

TD4FanLevel5 - Bank 2 Address 6DHEX

TD4FanLevel6 - Bank 2 Address 6EHEX

TR1FanLevel0 - Bank 2 Address 78_{HEX}

TR1FanLevel1 - Bank 2 Address 79_{HEX}

TR1FanLevel2 - Bank 2 Address 7A_{HEX}

TR1FanLevel3 - Bank 2 Address 7BHEX

TR1FanLevel4 - Bank 2 Address 7CHEX

TR1FanLevel5 - Bank 2 Address 7D_{HEX}

TR1FanLevel6 - Bank 2 Address 7EHEX

TR2FanLevel0 - Bank 2 Address 88_{HEX}

TR2FanLevel1 - Bank 2 Address 89_{HEX}

TR2FanLevel2 - Bank 2 Address 8A_{HEX}

TR2FanLevel3 - Bank 2 Address 8BHEX

TR2FanLevel4 - Bank 2 Address 8CHEX

TR2FanLevel5 - Bank 2 Address 8DHEX

TR2FanLevel6 - Bank 2 Address 8E_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

Init Reset(CR40.Bit7) is set,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set,

SYSRSTIN_N(Pin 15) Falling @ SYSRST_MD(CR40.Bit5) set.

TD1FANLEVEL0 ~ TR2FANLEVEL0

BIT	7	6	5	4	3	2	1	0	
Name	Reserve	ed	TempFanLevel0						
Reset	0		08 _{HEX}						

BIT	DESCRIPTION
7-6	Reserved.
5-0	TempFanLevel0. (Fan Output Level 0).

TD1FANLEVEL1 ~ TR2FANLEVEL1

BIT	7	6	5	4	3	2	1	0	
Name	Reserved		TempFanLevel1						
Reset	0		0C _{HEX}						

BIT	DESCRIPTION
7-6	Reserved.
5-0	TempFanLevel1. (Fan Output Level 1).

TD1FANLEVEL2 ~ TR2FANLEVEL2

BIT	7	6	5	4	3	2	1	0		
Name	Rese	rved	TempFanLevel2							
Reset	0		10 _{HEX}							

BIT	DESCRIPTION
7-6	Reserved.
5-0	TempFanLevel2. (Fan Output Level 2).

TD1FANLEVEL3 ~ TR2FANLEVEL3

BIT	7	6	5	4	3	2	1	0
Name	Reserve	ed	TempFanLevel3					
Reset	0)	18 _{HEX}					

BI		DESCRIPTION
7-6	Reserved.	
5-0	TempFanLevel3. (Fan Output	Level 3).

TD1FANLEVEL4 ~ TR2FANLEVEL4

BIT	7	6	5	4	3	2	1	0	
Name	Reserved		TempFanLevel4						
Reset	0		20 _{HEX}						

BIT	DESCRIPTION
7-6	Reserved.
5-0	TempFanLevel4. (Fan Output Level 4).

TD1FANLEVEL5 ~ TR2FANLEVEL5

BIT	7	6	5	4	3	2	1	0		
Name	Reserved		TempFanLevel5							
Reset	0				30 _H	IEX				

BIT	DESCRIPTION
7-6	Reserved.
5-0	TempFanLevel5. (Fan Output Level 5).

TD1FANLEVEL6 ~ TR2FANLEVEL6

BIT	7	6	5	4	3	2	1	0		
Name	Reserved		TempFanLevel6							
Reset	0		38 _{HEX}							

BIT	DESCRIPTION					
7-6	Reserved.					
5-0	TempFanLevel6. (Fan Output Level 6).					

See also: TolTemp, FanCtrlMode, Smart Fan II mode.

8.12 PECI Control Registers

Intel® new generation CPUs such as Presler begin to support new single wire digital temperature monitor interface which is called Platform Environment Control Interface or PECI. W83793G supports the PECI* version 1.0 for these new generation CPUs. All PECI control registers are allocated in Bank 0. Pin 1, PCLK, is the timing base of PECI control circuit, if PECI function is desired, Pin 1 is required to feed a 48MHz clock.

8.12.1 PECI Register Map

MNEMONIC	REGISTER NAME	TYPE	
AgtConfig	Agent Configuration Register	RW	
Agt1Tcontrol Agt4Tcontrol	Tcontrol Register	RW	
ReportStyle	PECI Report Temperature Style Register	RW	
PECIWarning	PECI Warning Flag Register	RO	
Agt1RelTempH/L Agt4RelTempH/L	Agent Relative Temperature Registers	RO	

Three control registers and 2 status registers are listed here. The detailed operation of PECI host can be referred to below figure.

Everytime W83793G PECI host detects user enable an agent by setting **AgtEn**, it start to Ping if the client really exist. If not true, it set **PECIAbsent** flag to inform host; otherwise it continue to issue GetTemp0 or GetTemp1 (when **DM1Exist** asserted). A three-level fault queue is made to ensure host can get correct temperature and return.

8.12.2 PECI Register Details

8.12.2.1 Agent Configuration Register (AgtConfig)

This register commands PECI host to proceed related agents and domains, only agent or domain specified in this register will proceed PECI transactions. It is reset as 00_{HEX} .

Location: AgtConfig - Bank 0 Address D0_{HEX}

Type: Read Write

Reset: VSB5V(Pin 7) Rising,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set.

AGTCONFIG

BIT	7	6	5	4	3	2	1	0
Name	Agt4EN	Agt3EN	Agt2EN	Agt1EN	Agt4D1	Agt3D1	Agt2D1	Agt1D1
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
	Agt4EN(Agent 4 Enable Bit).
7	0 _{BIN} : Agent 4 is disabled.
	1 _{BIN} : Agent 4 enabled.
	Agt3EN(Agent 3 Enable Bit).
6	0 _{BIN} : Agent 3 is disabled.
	1 _{BIN} : Agent 3 enabled.
	Agt2EN(Agent 2 Enable Bit).
5	0 _{BIN} : Agent 2 is disabled.
	1 _{BIN} : Agent 2 enabled.
	Agt1EN(Agent 1 Enable Bit).
4	0 _{BIN} : Agent 1 is disabled.
	1 _{BIN} : Agent 1 enabled.
	Agt4D1(Agent 4 Domain 1 Enable Bit).
3	0 _{віN} : Agent 4 does not have domain 1.
	1 _{BIN} : Agent 4 have domain 1.
	Agt3D1(Agent 3 Domain 1 Enable Bit).
2	0 _{віn} : Agent 3 does not have domain 1.
	1 _{BIN} : Agent 3 have domain 1.
	Agt2D1(Agent 2 Domain 1 Enable Bit).
1	0 _{BIN} : Agent 2 does not have domain 1.
	1 _{BIN} : Agent 2 have domain 1.
	Agt1D1(Agent 1 Domain 1 Enable Bit).
0	0 _{віn} : Agent 1 does not have domain 1.
	1 _{BIN} : Agent 1 have domain 1.

8.12.2.2 Agent TControl Register (AgtTcontrol)

Intel® CPU introduces a Tcontrol concept on temperature management. In Presler generation CPUs, Tcontrol can be read from CPU register by BIOS and refill to W83793G registers. Our default setup is 70°C , which is 10°C higher than <u>TempLevel67</u>. In later generation CPUs, CPU might only response the Tcontrol value as an offset temperature to PROCHOT# assertion. It is reset as 46_{HEX} .

Location:

Agt1TControl - Bank 0 Address D1_{HEX}
Agt2TControl - Bank 0 Address D2_{HEX}
Agt3TControl - Bank 0 Address D3_{HEX}
Agt4TControl - Bank 0 Address D4_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set.

AGT1TCONTROL~AGT4TCONTROL

BIT	7	6	5	4	3	2	1	0
Name	Reserved		TControl Temperature					
Reset	0	1	0	0	0	1	1	0

BIT	DESCRIPTION						
7	Reserved.						
	TControl (TControl Temperature Setting).						
6-0	TControl must always be a positive value, negative value will introduce abnormal temperature response.						

8.12.2.3 PECI Report Temperature Style Register (ReportStyle)

ReportStyle controls which value being loaded into Absolute Temp or Relative Temp.

If RtHigh, PECI host will automatically compares the highest temperature domain and load it into Abs/Rel-Temp. If **RtHigh** = 0, **RtDm** will return Domain 0 temperature if set 0, return Domain 1 temperature if set 1. It is reset as 00_{HEX} .

Location : **ReportStyle** - Bank 0 Address D5_{HEX}

Type: Read / Write

Reset: VSB5V(Pin 7) Rising,

VDD5V(Pin 25) Rising @ RST_VDD_MD(CR40.Bit4) set.

REPORTSTYLE

BIT	7	6	5	4	3	2	1	0
Name	Reserved			RtHigh	RTD4	RTD3	RTD2	RTD1
Reset	0 0 0		0	0	0	0	0	

BIT	DESCRIPTION
7-5	Reserved.
	RtHigh (Return High Temperature).
4	0 _{BIN} : Return domain by RTD selection (RTD1∼RTD4).
	1 _{BIN} : Return highest temperature in the same agent.
	RtD4 (Agent 4 Return Domain 1 Enable Bit). Only take effect when RtHigh deasserts.
3	0 _{BIN} : Agent 4 always return domain 0.
	1 _{BIN} : Agent 4 always return domain 1.
	RtD3 (Agent 3 Return Domain 1 Enable Bit). Only take effect when RtHigh deasserts.
2	0 _{BIN} : Agent 3 always return domain 0.
	1 _{BIN} : Agent 3 always return domain 1.
	RtD2 (Agent 2 Return Domain 1 Enable Bit). Only take effect when RtHigh deasserts.
1	0 _{BIN} : Agent 2 always return domain 0.
	1 _{BIN} : Agent 2 always return domain 1.
	RtD1 (Agent 1 Return Domain 1 Enable Bit). Only take effect when RtHigh deasserts.
0	0 _{BIN} : Agent 1 always return domain 0.
	1 _{BIN} : Agent 1 always return domain 1.

8.12.2.4 PECI Warning Flag Register (PECIWarning)

Few warnings may be generated while PECI protocol applies. First, PECI host may not able to detect a PECI Client (or say, client does not reponse to host Ping() command), in this case PECI issue a flag called Absent to inform users it cannot detect the client. Another case is about the PECI Client return bad FCS in successive 3 time polling, host will issue an Alert flag. It is reset as 00_{HEX} .

Location: **PECIWarning** - Bank 0 Address D6_{HEX}

Type: Read Only

Reset: VSB5V (Pin 7) Rising,

VDD5V (Pin 25) Rising @ RST_VDD_MD (CR40.Bit4) set.

PECIWARNING

BIT	7	6	5	4	3	2	1	0
Name	Absent4	Absent3	Absent2	Absent1	Alert4	Alert3	Alert2	Alert1
Reset	0	0	0	0	0	0	0	0

BIT	DESCRIPTION
	Absent4 (PECI Agent 4 Absent Bit).
7	0 _{BIN} : Agent 4 is detected.
	1 _{BIN} : Agent 4 cannot be detected.
	Absent3 (PECI Agent 3 Absent Bit).
6	0 _{BIN} : Agent 3 is detected.
	1 _{BIN} : Agent 3 cannot be detected.
	Absent2 (PECI Agent 2 Absent Bit).
5	0 _{BIN} : Agent 2 is detected.
	1 _{BIN} : Agent 2 cannot be detected.
	Absent1 (PECI Agent 1 Absent Bit).
4	0 _{BIN} : Agent 1 is detected.
	1 _{BIN} : Agent 1 cannot be detected.
	Alert4 (PECI Agent 4 Alert Bit).
3	0 _{BIN} : Agent 4 has good FCS.
	1 _{BIN} : Agent 4 has bad FCS in last 3 transactions.
	Alert3 (PECI Agent 3 Alert Bit).
2	0 _{BIN} : Agent 3 has good FCS.
	1 _{BIN} : Agent 3 has bad FCS in last 3 transactions.
	Alert2 (PECI Agent 2 Alert Bit).
1	0 _{BIN} : Agent 2 has good FCS.
	1 _{BIN} : Agent 2 has bad FCS in last 3 transactions.
	Alert1 (PECI Agent 1 Alert Bit).
0	0 _{BIN} : Agent 1 has good FCS.
	1 _{BIN} : Agent 1 has bad FCS in last 3 transactions.

While PECI is activated, Alert flag will be asserted when corresponding agent return successive 3 time bad FCS. In this case, W83793G will think this agent has some problem in interface, and for safty reason W83793G will turn on the related Fan to full speed in SmartFan mode. The Fan and PECI agent relationship is defined in TempFanSelect registers.

8.12.2.5 Agent Relative Temperature Register (AgtRelTemp)

These registers return the raw data retrieved from PECI interface. They may be the error code (range: 8000H~81FFH) or relative temperature to processor defined PROCHOT#. Error code will only update in **AgtRelTemp**, Absolute Temp will not be updated when error code received. If **ReturnHigh** mechanism is activated, normal temperature will always return first. In case both 2 domain returns error, return priority will be Overflow error > Underflow Error > Missing diode > General Error. Reset value is 8001_{HEX} due to PECI is default turned off, in PECI, 8001_{HEX} means diode missing.

Location:

Agt1RelTempH - Bank 0 Address D8_{HEX}
Agt1RelTempL - Bank 0 Address D9_{HEX}
Agt2RelTempH - Bank 0 Address DA_{HEX}
Agt2RelTempL - Bank 0 Address DB_{HEX}
Agt3RelTempH - Bank 0 Address DC_{HEX}
Agt3RelTempL - Bank 0 Address DD_{HEX}
Agt4RelTempH - Bank 0 Address DE_{HEX}
Agt4RelTempL - Bank 0 Address DF_{HEX}

Type: Read Only

Reset: VSB5V (Pin 7) Rising,

VDD5V (Pin 25) Rising @ RST_VDD_MD (CR40.Bit4) set.

AGT1RELTEMPH/L~AGT4RELTEMPH/L

BIT	7	6	5	4	3	2	1	0
Name	Sign	Temperature[8:2]						
Reset	1	0	0	0	0	0	0	0
Name	Temperat	ure[1:0]	TEMP_2	TEMP_4	TEMP_8	TEMP_16	TEMP_32	TEMP_64
Reset	0	0	0	0	0	0	0	1

BIT	DESCRIPTION
15	Sign Bit. In PECI Protocol, this bit should always be 1 to represent a negative temperature.
14-6	Temperature
14-0	The integer part of relative temperature.
5	TEMP_2 . 0.5℃ unit.
4	TEMP_4 . 0.25℃ unit.
3	TEMP_8 . 0.125℃ unit.
2	TEMP_16 . 0.0625°C unit.
1	TEMP_32 . 0.03125°C unit.
0	TEMP_64 . 0.015625°C unit.

In some occasion, the PECI interface will return the abnormal states of the PECI bus other than temperature, all these information will be recorded in AgtRelTemp, and in some cases W83793G will also do further processing for alert mechanism. The following describes these code and their effects to W83793G.

ERROR CODE	DESCRIPTION	W83793G HOST OPERATION	
8000 _{HEX}	General Sensor Error	No further processing.	
8001 _{HEX}	Sensing Device Missing	No further processing.	
8002 _{HEX}	Operational, but temperature is lower than sensor operation range.		
8003 _{HEX}	Operational, but temperature is higher than sensor operation range.	Force writing back temperature with 127°C in temperature readouts.(Bank 0 Index 1C _{HEX} ~ 1F _{HEX})	
8004 _{HEX}			
	Reserved.	No further operation.	
81FF _{HEX}			

Besides error conditions or bad FCS, normal temperature will be wrote back to <u>Temperature Readouts</u> with the sum of <u>AgtReITemp</u> and <u>Tcontrol</u>.

8.13 ASF Control Registers

ASF or <u>A</u>lert <u>S</u>tandard <u>F</u>ormat provides remote system abilities to monitor, discover and manage the local platform. All ASF control registers are allocated in Bank 1*.

*About the Bank Selection, please reference Bank Select register located at address 00_{Hex.}

8.13.1 ASF Register Map

8.13.1.1 SMBus ARP UDID Control Registers

MNEMONIC	REGISTER NAME	TYPE
UDIDDevCap.	UDID Device Capability Register	RO
UDIDVersion.	UDID Version Number Register	RO
UDIDVendorH. UDIDVendorL.	UDID Vendor ID High/Low Byte Register	RO
UDIDDevH. UDIDDevL.	UDID Device ID High/Low Byte Register	RW
UDIDIFH. UDIDIFL.	UDID Interface High/Low Byte Register	RW
UDIDSubVenH. UDIDSubVenL.	UDID Subsystem Vendor ID High/Low Byte Registers	RW
UDIDSubDevH. UDIDSubDevL.	UDID Subsystem Device ID High/Low Byte Registers	RW
UDIDSpelD1. □ UDIDSpelD4.	UDID Vendor Specific ID Byte 1~4	RW
RNG1. RNG4.	Random Number Generator Byte 1~4	RO
ASFAddr.	ASF Assigned Address Register	RO

Before activating ASF, user must go through the ARP (Address Resolution Protocol) to dynamically get a valid address to manipulate ASF commands. In ARP, a very important ID must be defined to distinguish different devices, called UDID (\underline{U} nique \underline{D} evice \underline{Id} entifier). Registers in this section are used to setup the UDID content.

For detailed operation of ARP and UDID, you can refer to SMBus Specification version 2.0 (http://www.smbus.org/specs/smbus20.pdf) section 5.6 page 34.

8.13.1.2 ASF Sensor Entity Definition Registers

In ASF Sensor, each sensor channel has 2 parameters to tell ASF host its related location information on the platform. They are entity Instance and entity ID. In case of user uses the temperature sensor in locations different with default specified, W83793G provides all channel parameter programmable to fit customers' application.

MNEMONIC	REGISTER NAME	TYPE
VCA_ENTY.	VCoreA Entity ID Register	RW
VCB_ENTY.	VCoreB Entity ID Register	RW
Vtt_ENTY.	Vtt Entity ID Register	RW
VDD_ENTY.	VDD Entity ID Register	RW
VSB_ENTY.	VSB Entity ID Register	RW
VBAT_ENTY.	VBAT Entity ID Register	RW
VSEN1_ENTY. 12VSEN_ENTY.	VSEN1~12VSEN Entity ID Register	RW
FAN1_ENTY. □ FAN12_ENTY.	FAN1~FAN12 Entity ID Register	RW
TD1_ENTY. TR2_ENTY.	TD1~TR2 Entity ID Register	RW
CHS_ENTY.	Chassis Entity Register	RW

For details of entity ID, you can refer to <u>Platform Event Trap Format Specification</u> Version 1.0 Table 6 page 13.

MNEMONIC	REGISTER NAME	TYPE
ENTINS1.	VCoreA/VCoreB Entity Instance Register	RW
ENTINS2.	VDD/Vtt Entity Instance Register	RW
ENTINS3.	VBAT/VSB Entity Instance Register	RW
ENTINS4.	VIN1/VIN2 Entity Instance Register	RW
ENTINS5.	VIN3/VIN4 Entity Instance Register	RW
ENTINS6.	FAN1/FAN2 Entity Instance Register	RW
ENTINS7.	FAN3/FAN4 Entity Instance Register	RW
ENTINS8.	FAN5/FAN6 Entity Instance Register	RW
ENTINS9.	FAN7/FAN8 Entity Instance Register	RW
ENTINS10.	FAN9/FAN10 Entity Instance Register	RW
ENTINS11.	FAN11/FAN12 Entity Instance Register	RW
ENTINS12.	TD1/TD2 Entity Instance Register	RW
ENTINS13.	TD3/TD4 Entity Instance Register	RW
ENTINS14.	TR1/TR2 Entity Instance Register	RW
ENTINS15.	Chassis Entity Instance Register	RW

Entity Instance is a sequential number which help identifies this sensor's location. Customer can set the sequence at any order they want.

A summary of the entity and entity instance is at following table.

SENSOR IN W83793G	EVENT STATUS INDEX	EVENT SENSOR TYPE	EVENT NUMBER	ENTITY ID (PROGRAMMABLE)	ENTITY INSTANCE (PROGRAMMABLE)
VCOREA	00h	02h	01h	03h	01h
VCOREB	01h	02h	02h	(Processor)	02h
Vtt	02h	02h	03h	(F10065501)	03h
TD1	03h	01h (Temperature)	04h		01h
TD2	04h	01h	05h		02h
TD3	05h	01h	06h		03h
TD4	06h	01h	07h		04h
TR1	07h	01h	08h		05h
TR2	08h	01h	09h		06h
5VDD	09h	02h	0Ah		01h
VSB	0Ah	02h	0Bh		02h
VBAT	0Bh	02h	0Ch	07h	03h
VSEN1	0Ch	02h (Voltage)	0Dh	(System Board)	04h
VSEN2	0Dh	02h	0Eh		05h
3VSEN	0Eh	02h	0Fh		06h
12VSEN	0Fh	02h	10h		07h
FAN1	10h	04h (Fan)	11h		01h
FAN2	11h	04h	12h		02h
FAN3	12h	04h	13h		03h
FAN4	13h	04h	14h		04h
FAN5	14h	04h	15h		05h
FAN6	15h	04h	16h		06h
FAN7	16h	04h	17h		07h
FAN8	17h	04h	18h		08h
FAN9	18h	04h	19h		09h
FAN10	19h	04h	1Ah		0Ah
FAN11	1Ah	04h	1Bh		0Bh
FAN12	1Bh	04h	1Ch		0Ch
Case OPEN / Intrusion	1Ch	05h(Physical Security)	1Dh	23h(System Chassis)	01h

Channels in light-green indicates them could be disabled by multi-function pin selection or control registers.

And according to each channel status, they are expressed in the following terms.

DESCRIPTION	STATUS	EVENT SENSOR TYPE	EVENT TYPE	EVENT OFFSET	EVENT SEVERITY
TEMPERATURE SENSORS					
Upper-Critical Going High Upper-Critical Going Low	3h			09h 08h	10h Critical
Upper-Non-critical Going High	Assert	01h	01h Threshold-	07h	08h Non-critical
Upper-Non-critical Going Low		Temperature	Based	06h	14011-Critical
Lower-Non-critical Going High	2h Deasser		Вазса	01h	01h Monitor
Lower-Non-critical Going Low	t			00h	IVIOTIILOI
VOLTAGE SENSORS					
Generic Over Voltage Problem	3h	02h	07h	02h	10h
Normal Voltage	2h	02h Voltage	Generic-	07h	01h
Generic Under Voltage Problem	<u>3h</u>	Voltage	Severity	<u>02h</u>	10h
FAN SENSORS					
Normal FAN Speed	2h	04h	07h	07h	01h
Generic FAN Failure	3h	Fan	0711	02h	10h
CASEOPEN/ CASE INTRUSIO	N				
Case Intruded	3h	05h Physical	6Fh Sensor	00h	10h
Case Normal	2h	Security	Specific	80h	01h

8.13.1.3 ASF Remote Control Definition Registers

ASF function in W83793G also supports the Remote Control. This function enables MIS to remotely power on, power down, or reset while he finds the client computer goes into abnormal.

MNEMONIC	REGISTER NAME	TYPE
PwrOnOption.	Power On Control Option Register	RW
PwrOnCmd.	Remote Control Power On Command Register	RW
PwrOffCmd.	Remote Control Power Down Command Register	RW
RstCmd.	Remote Control Reset Command Register	RW

Remote Control function in W83793G enables MIS to use side-band of Network Interface Controller to send ASF commands with SMBus, its format looks like

1	7	1	1	8	1	8	1	8	1	1
S	Slave Address	Wr	Α	Command	Α	Write Data	Α	PEC	Α	Р
	Control Device Address	0	0	Control Command	0	Control Data Value	0	CRC Checksum	0	

^{&#}x27;S' represents "Start" Cycle of SMBus transaction, 'Wr' means "Write" Flag, 'A' means "Acknowledge" from W83793G, and 'P' indicates a "Stop" Cycle. All letter in shadow means it is a response from W83793G; otherwise it is a host transmitted signal.

Last row above shows what is each data meaning, where Control Device Address is the address assigned in the ARP process, Control Command is specified in above registers, and Control Data option is not supported in W83793G, thus with any value in this field W83793G will perform the same action.

In <u>Alert Standard Format Specification v2.0</u>, there are two sections describe this. They are Section 5.4 at page 76, and Section 3.2.4.1 at page 33.

8.13.2 ASF Register Details

8.13.2.1 UDID Device Capability Register (UDIDDevCap)

SMBus Specification Working Group intends to use device capability to distinguish the arbitration priority of GeneralGetUDID() first. Thus the very first byte the UDID is device capability, because SMBus is a MSB first serial protocol and client sent low will win the arbitration. It is set as $C1_{HEX}$.

Location: **UDIDVersion** - Bank 1 Address 20_{HEX}

Type: Read Only Reset: No Reset.

UDIDDEVCAP

BIT	7	6	5	4	3	2	1	0
Name	Addre	ss Type			PEC			
Reset	1	1	0	0	0	0	0	1

BIT	DESCRIPTION
	Address Type.
	00 _{BIN} : Fixed address device. It's the highest priority device.
7-6	01 _{BIN} : Dynamic and persistent address device.
	10_{BIN} : Dynamic and volatile address device. If power-down, the address needs to reassign at next power on. W83793G ASF address will lost while VSB5V not exist.
	11 _{BIN} : Random number device.

Continued

BIT	DESCRIPTION						
5-1	Reserved.						
	PEC Suppot.						
0	0: Not known support PEC(Packet Error Code) on this device.						
	1: PEC is supported on this device.						

8.13.2.2 UDID Version Number Register (UDIDVersion)

This field defines the version of UDID and Silicon for W83793G. It is 08_{HEX} .

Location: UDIDVersion - Bank 1 Address 21_{HEX}

Type: Read Only Reset: No Reset

UDIDVERSION

BIT	7	6	5	4	3	2	1	0	
Name	Rese	erved	U	JDID Version		Silicon Version			
Fixed	0	0	0	0	1	0	0	0	

BIT	DESCRIPTION					
7-6	Reserved.					
	UDID Version.					
5-3	000 _{BIN} : Reserved.					
5-3	001 _{BIN} : UDID version 1.					
	010 _{BIN} -111 _{BIN} : Reserved for future use.					
2.0	Silicon Version.					
2-0	For W83793G silicon version identification use. 000 _{BIN} stands for Version A/B.					

8.13.2.3 UDID Vendor ID High/Low Byte Register (UDIDVendorH/L)

This field defines Winbond vendor ID. Default is $1050_{\text{HEX.}}$ Location: **UDIDVendorH** - Bank 1 Address 22_{HEX}

UDIDVendorL - Bank 1 Address 23_{HEX}

Type: Read Only

Reset: No Reset

UDIDVENDORH

BIT	7	6	5	4	3	2	1	0			
Name	Vendor ID High Byte										
Fixed	0	0	0	1	0	0	0	0			

UDIDVENDORL

BIT	7	6	5	4	3	2	1	0			
Name	Vendor ID Low Byte										
Fixed	0	1	0	1	0	0	0	0			

BIT	DESCRIPTION
15-0	Winbond Vendor ID.

8.13.2.4 UDID Device ID High/Low Byte Register (UDIDDevH/L)

This field defines Winbond device ID. Default is $0100_{\text{HEX}.}$

Location: **UDIDDevH** - Bank 1 Address 24_{HEX}

UDIDDevL - Bank 1 Address 25_{HEX}

Type: Read Write

Reset: VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set.

UDIDDEVH

BIT	7	6	5	4	3	2	1	0	
Name		Device ID High Byte							
Reset	0	0 0 0 0 0 0 1							

UDIDDEVL

BIT	7	6	5	4	3	2	1	0		
Name		Device ID Low Byte								
Reset	0	0 0 0 0 0 0 0								

BIT	DESCRIPTION
15-0	Winbond Device ID.

8.13.2.5 UDID Interface High/Low Byte Register (UDIDIFH/L)

This field defines SMBus version and supported protocol. It is reset to 0024_{HEX}.

Location:

UDIDIFH - Bank 1 Address 26_{HEX} **UDIDIFL** - Bank 1 Address 27_{HEX}

Type: Read Write

Reset: VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set.

UDIDIFH

BIT	7	6	5	4	3	2	1	0							
Name		Reserved													
Reset	0	0	0	0	0	0	0	0 0 0 0 0 0 0							

UDIDIFL

BIT	7	6	5	4	3	2	1	0
Name	Reserved	IPMI	ASF	OEM	SMBus Version			
Reset	0	0	1	0	0 1 0 0			

BIT	DESCRIPTION
15-7	Reserved.
	IPMI. This device supports additional interface access capability per IPMI specification.
6	0: not supported.
	1: supported.
	ASF. This device supports additional interface access capability per ASF specification.
5	0: not supported.
	1: supported.
	OEM . Device supports vendor specific access capability per <u>Subsystem Vendor ID</u> and <u>Subsystem Device ID</u> .
4	0: not supported.
	1: supported.
	SMBus Version
3-0	0 _{HEX} : SMBus 1.0, not ARPable.
3-0	1 _{HEX} : SMBus 1.1, not ARPable.
	4 _{HEX} : SMBus 2.0.

8.13.2.6 UDID Subsystem Vendor ID High/Low Byte Register (UDIDSubVenH/L)

This field defines UDID supporting for Subsystems. If no subsystem is supported, it must specify 0000_{HEX} . It is reset to 0000_{HEX} .

Location: UDIDSubVenH - Bank 1 Address 28_{HEX}

UDIDSubVenL - Bank 1 Address 29_{HEX}

Type: Read Write

Reset: VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set.

UDIDSUBVENH

BIT	7	6	5	4	3	2	1	0	
Name		UDID Subsystem Vendor ID High Byte							
Reset	0	0 0 0 0 0 0 0							

UDIDSUBVENL

BIT	7	6	5	4	3	2	1	0		
Name		UDID Subsystem Vendor ID Low Byte								
Reset	0	0 0 0 0 0 0 0								

BIT	DESCRIPTION
15-0	UDID subsystem Vendor.

8.13.2.7 UDID Subsystem Device ID High/Low Byte Register (UDIDSubDevH/L)

This field defines UDID supporting for Subsystems. If no subsystem is supported, it must specify 0000_{HEX} . It is reset to 0000_{HEX} .

Location: UDIDSubDevH - Bank 1 Address 2A_{HEX}

UDIDSubDevL - Bank 1 Address 2B_{HEX}

Type: Read Write

Reset: VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set.

UDIDSUBVENH

BIT	7	6	5	4	3	2	1	0	
Name		UDID Subsystem Device ID High Byte							
Reset	0	0 0 0 0 0 0 0							

UDIDSUBVENL

BIT	7	6	5	4	3	2	1	0		
Name		UDID Subsystem Device ID Low Byte								
Reset	0	0 0 0 0 0 0 0								

BIT	DESCRIPTION
15-0	UDID subsystem Device ID.

8.13.2.8 UDID Vendor-Specific ID Register (UDIDSpecID1/2/3/4)

This field defines unique Vendor-Specific ID for each W83793G. With this field different W83793G will identified on the same SMBus interface, and it is loaded with random number while reset signal received.

Location:

$$\label{eq:udidsection} \begin{split} \textbf{UDIDSpecID1} & - \text{Bank 1 Address } 2C_{\text{HEX}} \\ \textbf{UDIDSpecID2} & - \text{Bank 1 Address } 2D_{\text{HEX}} \\ \textbf{UDIDSpecID3} & - \text{Bank 1 Address } 2E_{\text{HEX}} \\ \textbf{UDIDSpecID4} & - \text{Bank 1 Address } 2F_{\text{HEX}} \end{split}$$

Type: Read Write

Reset: VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set, ARP ResetDevice Command.

UDIDSPECID1~UDIDSPECID4

BIT	7	6	5	4	3	2	1	0			
Name		UDID Specific Vendor ID									
Reset	0	0	0	0	0	0	0	0			

BIT	DESCRIPTION
31-0	UDID Vendor-Specific ID.

8.13.2.9 Random Number Generator Register (RNG1/2/3/4)

W83793G internally generates pseudo random number by using CRC generator and internal clock. Due to internal clock always having little different deviations, different IC and different power-on time will affect the result of random number. It is reset to $\mathsf{FFFF}_{\mathsf{HEX}}$.

Location:

RNG4 - Bank 1 Address 30_{HEX}

RNG3 - Bank 1 Address 31_{HEX}

RNG2 - Bank 1 Address 32_{HEX}

RNG1 - Bank 1 Address 33_{HEX}

Type: Read Only

Reset: None.

RNG1~RNG4

BIT	7	6	5	4	3	2	1	0				
Name		Random Number Code										
Reset	0	0	0	0	0	0	0	0				

BIT	DESCRIPTION
31-0	Random Number Code.

8.13.2.10 ASF Assigned Address Register (ASFAddr)

After ARP host get related device UDID, it will start to assign each device for later usage. W83793G will record this assigned address and set it as default address for ASF transactions. It is reset to 00_{HEX}.

Location: ASFAddr - Bank 1 Address 4F_{HEX}

Type: Read Only

Reset: VSB5V (Pin 7) Rising,

Init Reset (CR40.Bit7) is set,

ASFADDR

BIT	7	6	5	4	3	2	1	0				
Name		ASF Address										
Reset	0	0	0	0	0	0	0	0				

BIT	DESCRIPTION
31-0	ASF Address. This register will be assigned while ARP AssignAddress command issued.

8.13.2.11 ASF Entity/Instance Registers (ENITIY/ENTINS)

W83793G supports various channels which can be reported to host through ASF protocol. Each sensor channel is associated with an entity (or said location on motherboard) and entity instance. <u>Table</u> provides an overall look for these registers.

Location:

VCA_ENTY - Bank 1 Address 50_{HEX}
 VCB_ENTY - Bank 1 Address 51_{HEX}
 Vtt_ENTY - Bank 1 Address 52_{HEX}
 VDD_ENTY - Bank 1 Address 53_{HEX}


```
VBAT_ENTY - Bank 1 Address 55<sub>HEX</sub>
VSEN1_ENTY - Bank 1 Address 56<sub>HEX</sub>
VSEN2_ENTY - Bank 1 Address 57<sub>HEX</sub>
3VSEN_ENTY - Bank 1 Address 58<sub>HEX</sub>
12VSEN_ENTY- Bank 1 Address 59<sub>HEX</sub>
FAN1_ENTY - Bank 1 Address 5A<sub>HEX</sub>
FAN2_ENTY - Bank 1 Address 5B<sub>HEX</sub>
FAN3_ENTY - Bank 1 Address 5C<sub>HEX</sub>
FAN4 ENTY - Bank 1 Address 5D<sub>HEX</sub>
FAN5 ENTY - Bank 1 Address 5E<sub>HEX</sub>
FAN6_ENTY - Bank 1 Address 5F<sub>HEX</sub>
FAN7_ENTY - Bank 1 Address 60<sub>HEX</sub>
FAN8_ENTY - Bank 1 Address 61<sub>HEX</sub>
FAN9 ENTY - Bank 1 Address 62<sub>HEX</sub>
FAN10_ENTY - Bank 1 Address 63<sub>HEX</sub>
FAN11_ENTY - Bank 1 Address 64<sub>HEX</sub>
FAN12_ENTY - Bank 1 Address 65<sub>HEX</sub>
TD1_ENTY - Bank 1 Address 66<sub>HEX</sub>
TD2_ENTY - Bank 1 Address 67<sub>HEX</sub>
TD3_ENTY - Bank 1 Address 68<sub>HEX</sub>
TD4 ENTY - Bank 1 Address 69<sub>HEX</sub>
TR1 ENTY - Bank 1 Address 6A<sub>HEX</sub>
TR2 ENTY - Bank 1 Address 6B<sub>HEX</sub>
CHS ENTY - Bank 1 Address 6CHEX
ENTINS1 - Bank 1 Address 70<sub>HFX</sub>
ENTINS2 - Bank 1 Address 71<sub>HEX</sub>
ENTINS3 - Bank 1 Address 72<sub>HEX</sub>
ENTINS4 - Bank 1 Address 73<sub>HEX</sub>
ENTINS5 - Bank 1 Address 74<sub>HEX</sub>
ENTINS6 - Bank 1 Address 75<sub>HEX</sub>
ENTINS7 - Bank 1 Address 76<sub>HEX</sub>
ENTINS8 - Bank 1 Address 77<sub>HEX</sub>
ENTINS9 - Bank 1 Address 78<sub>HEX</sub>
ENTINS10 - Bank 1 Address 79<sub>HEX</sub>
ENTINS11 - Bank 1 Address 7A<sub>HEX</sub>
```

VSB ENTY - Bank 1 Address 54_{HEX}

ENTINS12 - Bank 1 Address 7B_{HEX} ENTINS13 - Bank 1 Address 7C_{HEX} ENTINS14 - Bank 1 Address 7D_{HEX} ENTINS15 - Bank 1 Address 7E_{HEX}

Read / Write Type:

veset. 3v	/SB (Pin 7)	rtising.	,	VCA_ENTITY							
BIT	7	6	5	4	3	2	1	0			
Name	VCore A Entity ID.										
Reset	03 _{HEX}										
			,	VCB_ENTITY							
BIT	7	6	5	4	3	2	1	0			
Name	1			VCore B En	itity ID.	•		•			
Reset				03 _{HEX}	(
				VTT_ENTITY							
BIT	7	6	5	4	3	2	1	0			
Name				Vtt Entit	y ID.						
Reset				03 _{HEX}	(
			,	VDD_ENTITY							
ВІТ	7	6	5	4	3	2	1	0			
Name				VDD Enti	ty ID.						
Reset				07 _{HEX}	(
			,	VSB_ENTITY							
ВІТ	7	6	5	4	3	2	1	0			
Name				VSB Entit	ty ID.						
Reset				07 _{HEX}	(
				BAT_ENTITY	′						
ВІТ	7	6	5	4	3	2	1	0			
Name	VBAT Entity ID.										
Reset				07 _{HEX}	(

			V	SEN1_ENTI	TY						
BIT	7	6	5	4	3	2	1	0			
Name	VSEN1 Entity ID.										
Reset	07 _{HEX}										
			V	SEN2_ENTI	TY						
BIT	7	6	5	4	3	2	1	0			
Name	VSEN2 Entity ID.										
Reset				07 _{HE}	ΞX						
			3	VSEN_ENTI	TY						
BIT	7	6	5	4	3	2	1	0			
Name				3VSEN Er	ntity ID.	•					
Reset				07 _{HE}	ΣX						
			12	2VSEN_ENT	ITY						
BIT	7	6	5	4	3	2	1	0			
Name				12VSEN E	ntity ID.						
Reset				07 _{HE}	ΣX						
			ı	FAN1_ENTIT	Υ						
BIT	7	6	5	4	3	2	1	0			
Name				FAN1 En	tity ID.						
Reset				07 _{HE}	ΕX						
			1	FAN2_ENTIT	Υ						
BIT	7	6	5	4	3	2	1	0			
Name				FAN2 En	tity ID.						
Reset				07 _{HE}	ΞX						
			-	FAN3_ENTIT	Υ						
BIT	7	6	5	4	3	2	1	0			
Name				FAN3 En	tity ID.						
Reset				07 _{HE}	ΣX						

			F	AN4_ENTIT	Y				
BIT	7	6	5	4	3	2	1	0	
Name				FAN4 Ent	ity ID.				
Reset		07 _{HEX}							
			F	AN5_ENTIT	Y				
BIT	7	6	5	4	3	2	1	0	
Name				FAN5 Ent	ity ID.				
Reset				07 _{HE}	X				
			F	AN6_ENTIT	Y				
BIT	7	6	5	4	3	2	1	0	
Name				FAN6 Ent	ity ID.				
Reset				07 _{HE}	X				
			F	AN7_ENTIT	Y				
BIT	7	6	5	4	3	2	1	0	
Name				FAN7 Ent	ity ID.				
Reset				07 _{HE}	×				
			F	AN8_ENTIT	Y				
BIT	7	6	5	4	3	2	1	0	
Name				FAN8 Ent	ity ID.				
Reset				07 _{HE}	X				
			F	AN9_ENTIT	Y				
BIT	7	6	5	4	3	2	1	0	
Name				FAN9 Ent	ity ID.				
Reset				07 _{HE}	×				
			F	AN10_ENTIT					
BIT	7	6	5	4	3	2	1	0	
Name				FAN10 En	tity ID.				
Reset				07 _{HE}	Χ				

			F	AN11_ENTI	ГΥ			
BIT	7	6	5	4	3	2	1	0
Name				FAN11 En	itity ID.			
Reset				07 _{HE}	X			
			F	AN12_ENTI	ГΥ			
BIT	7	6	5	4	3	2	1	0
Name				FAN12 En	itity ID.			
Reset				07 _{HE}	X			
				TD1_ENTITY	(
BIT	7	6	5	4	3	2	1	0
Name				TD1 Ent	ity ID.			
Reset				07 _{HE}	X			
				TD2_ENTITY	1			
BIT	7	6	5	4	3	2	1	0
Name				TD2 Ent	ity ID.			
Reset				07 _{HE}	X			
				TD3_ENTITY	(
BIT	7	6	5	4	3	2	1	0
Name				TD3 Ent	ity ID.			
Reset				07 _{HE}	X			
				TD4_ENTITY	(
BIT	7	6	5	4	3	2	1	0
Name				TD4 Ent	ity ID.			
Reset				07 _{HE}	x			
				TR1_ENTITY	′			
BIT	7	6	5	4	3	2	1	0
Name				TR1 Ent	ity ID.			
Reset				07 _{HE}	X			

Electro	onics Corp.							
				TR2_ENTITY				
BIT	7	6	5	4	3	2	1	0
Name				TR2 Enti	ty ID.			
Reset				07 _{HE}	<			
				CHS_ENTITY	,			
BIT	7	6	5	4	3	2	1	0
Name				Chassis En	tity ID.	-		
Reset				23 _{HE}	Κ			
				ENTINS1				
ВІТ	7	6	5	4	3	2	1	0
Name		VCoreB Ent	ity Instance	9		VCoreA Ent	ity Instanc	e
Reset	02 _{HEX} 01 _{HEX}							
				ENTINS2				
BIT	7	6	5	4	3	2	1	0
Name		VDD Entit	y Instance			Vtt Entity	/ Instance	
Reset		01 ₁	HEX			03 ₁	HEX	
				ENTINS3				
BIT	7	6	5	4	3	2	1	0
Name		VBAT Entit	ty Instance			VSB Entit	y Instance	
Reset		03 ₁	HEX			02 ₁	HEX	
				ENTINS4				
BIT	7	6	5	4	3	2	1	0
Name		VSEN2 Entity Instance VSEN1 Entity Instance						
Reset		05 _t	HEX			04 _H	HEX	
				ENTINS5				
BIT	7	6	5	4	3	2	1	0
Name		12VSEN Ent	ity Instance	2		3VSEN Enti	ity Instance	•
Reset		07 _H	HEX		06 _{HEX}			

				ENTINS6					
BIT	7	6	5	4	3	2	1	0	
Name		FAN2 Enti	ty Instance			FAN1 Entity Instance			
Reset		02	HEX			01 _H	IEX		
				ENTINS7					
BIT	7	6	5	4	3	2	1	0	
Name		FAN4 Entity Instance FAN3 Entity Instance							
Reset		04	HEX			03 _H	IEX		
				ENTINS8					
BIT	7	6	5	4	3	2	1	0	
Name		FAN6 Enti	ty Instance		FAN5 Entity Instance				
Reset		06	HEX		05 _{HEX}				
				ENTINS9					
BIT	7	6	5	4	3	2	1	0	
Name		FAN8 Enti	ty Instance			FAN7 Entit	y Instance		
Reset		08	HEX			07 _H	IEX		
				ENTINS10					
ВІТ	7	6	5	4	3	2	1	0	
Name		FAN10 Ent	ity Instance			FAN9 Entit	y Instance		
Reset		0A	HEX		09 _{HEX}				
·				ENTINS11					
ВІТ	7	6	5	4	3	2	1	0	
Name		FAN12 Ent	ity Instance			FAN11 Enti	ty Instance	•	
Reset	0C _{HEX}				0B _{HEX}				
				ENTINS12					
BIT	7	6	5	4	3	2	1	0	
Name		TD2 Entit	y Instance		TD1 Entity Instance				
Reset	02 _{HEX}				01 _{HEX}				

ENTINS13

BIT	7 6 5 4 3 2 1								
Name		TD4 Entit	y Instance		TD3 Entity Instance				
Reset		04 _{HEX} 03 _{HEX}							

ENTINS14

BIT	7	6	5	4	3	2	1	0	
Name		TR2 Entit	y Instance		TR1 Entity Instance				
Reset		06	HEX		05 _{HEX}				

ENTINS15

BIT	7	6	5	4	3	2	1	0	
Name		Res	erved		Chassis Entity Instance				
Reset		00	HEX		01⊦	IEX			

BIT	DESCRIPTION
	ENTITY. Entity of each sensor channel.
	03 _{HEX} : Processor
7-0	07 _{HEX} : System Board.
	23 _{HEX} : Chassis Back Panel Board.
	For other entity types, please refer to PET Spec. page 13.

8.13.2.12 Power On Control Option Register (PwrOnOption)

W83793G supports 2 kinds of power on. One is power on only one time, no matter VDD5V rised or not. The other is W83793G always issues power on cycles until it detects VDD is already power on.

Location: PwrOnOption - Bank 1 Address 7F_{HEX}

Type: Read Write

Reset: VSB5V (Pin 7) Rising.

PWRONOPTION

BIT	7	6	5	4	3	2	1	0
Name		Winbond Test Modes						
Reset	0	0	0	0	0	0	0	0

Publication Release Date: Dec. 11, 2006 Revision 1.0

BIT	DESCRIPTION
7-1	Winbond Test Mode . Test modes for production. Winbond strongly suggest customer do not use these registers in case of causing system malfunction.
	PWR1T (Power on One Time).
0	0: always issue power on cycles (PWRBTN_N assert 0.1sec every 1sec) until VDD power on.
	1: Only issue 1 time power on cycle.

8.13.2.13 Power On Command Register (PwrOnCmd)

ASF Remote Control Command supports Remote Power On features, here defines the Power on commands accepted by W83793G.

Location: PwrOnCmd - Bank 1 Address 80_{HEX}

Type: Read Write

Reset: VSB5V (Pin 7) Rising.

PWRONCMD

BIT	7	6	5	4	3	2	1	0
Name		Remote Power On Command						
Reset		11 _{HEX}						

BIT	DESCRIPTION
7-0	Remote Power On Command.

8.13.2.14 Power Down Command Register (PwrOffCmd)

ASF Remote Control Command supports Remote Power Down features, here defines the Power off commands accepted by W83793G.

Location: PwrOffCmd - Bank 1 Address 81_{HEX}

Type: Read Write

Reset: VSB5V (Pin 7) Rising.

PWROFFCMD

BIT	7	6	5	4	3	2	1	0
Name	Remote Power Off Command							
Reset		12 _{HEX}						

BIT	DESCRIPTION
7-0	Remote Power Off Command.

8.13.2.15 Reset Command Register (Rst Cmd)

ASF Remote Control Command supports Remote Reset features, here defines the Reset commands accepted by W83793G.

Location: RstCmd - Bank 1 Address 82_{HEX}

Type: Read Write

Reset: VSB5V (Pin 7) Rising.

RSTCMD

BIT	7	6	5	4	3	2	1	0
Name		Remote Reset Command						
Reset		10 _{HEX}						

BIT	DESCRIPTION
7-0	Remote Reset Command.

9. ELECTRICAL CHARACTERISTICS

9.1 Absolute Maximum Ratings

PARAMETER	RATING	UNIT
Power Supply Voltage	-0.5 to 7.0	V
Input Voltage	-0.5 to VDD+0.5	V
Operating Temperature	0 to +70	° C
Storage Temperature	-55 to +150	° C

9.2 DC Characteristics

(Ta = 0° C to 70° C, 5VDD= 5V \pm 10%, 5VSB =5V \pm 5%, Vss = 0V)

PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	CONDITIONS
OUT/OD ₁₂ – Output bu	ffer or Ope	n-drain outp	ut pin witl	n source-sink	capabi	lity of 12 mA
Output Low Voltage	V _{OL}			0.4	٧	I _{OL} = 12 mA
Output High Voltage	V _{OH}	2.4			V	I _{OH} = -12 mA, OB mode
IN/ODB _{12v1sB} - bi-direct	ional pin wi	th sink capa	bility of 1	2 mA and sc	hmitt-trio	gger level input
Input Low Voltage	V _{IL}			0.4	V	5VDD = 5 V
Input High Voltage	V _{IH}	0.6			٧	5VDD = 5 V
Hysteresis	V_{TH}	0.2			V	5VDD = 5 V
Output Low Voltage	V _{OL}			0.4	V	I _{OL} = 12 mA
Input High Leakage	I _{LIH}			+10	μА	V _{IN} = VDD
Input Low Leakage	I _{LIL}			-10	μА	V _{IN} = 0V
IN/ODB _{12tsB} - TTL level	bi-direction	nal pin with s	ink capa	bility of 12 m.	A and so	chmitt-trigger level input
Input Low Voltage	V _{IL}			0.8	V	5VDD = 5 V
Input High Voltage	V _{IH}	2.0			V	5VDD = 5 V
Hysteresis	V_{TH}	1.2			V	5VDD = 5 V
Output Low Voltage	V _{OL}			0.4	V	I _{OL} = 12 mA
Input High Leakage	I _{LIH}			+10	μА	V _{IN} = VDD
Input Low Leakage	I _{LIL}			-10	μА	V _{IN} = 0V
OUTB _{12B} - TTL level ou	OUTB _{12B} - TTL level output pin with source-sink capability of 12 mA					
Output Low Voltage	V _{OL}			0.4	V	I _{OL} = 12 mA
Output High Voltage	V _{OH}	2.4			V	I _{OH} = -12 mA

DC Characteristics, continued.

PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	CONDITIONS
ODB _{12B} - Open-drain o	output pin w	ith sink cap	ability of 1	12 mA	•	
Output Low Voltage	V _{OL}			0.4	V	I _{OL} = 12 mA
AOUT – Analog output	t					
		N.A.				
INB _{V1SB} - VID input pin					•	
for INTEL [™] VR	M10.0, and	I VRM11 de	sign			
Input Low Voltage	V _{IL}			0.4	V	
Input High Voltage	V _{IH}	0.6			V	
IN _{tV2SB} - VID input pin	•					
for AMD [™] VRM	1 design					
Input Low Voltage	V _{IL}			0.8	V	
Input High Voltage	V _{IH}	1.4			V	
IN/OB _{V3B} – Bi-direction	pin with so	ource capab	ility of 6 n	nA and sink	capability	y of 1 mA
for INTEL [™] PE	CI					
Input Low Voltage	V _{IL}	0.275V _{tt}		0.5V _{tt}	V	
Input High Voltage	V _{IH}	0.55V _{tt}		0.725V _{tt}	V	
Output Low Voltage	V _{OL}			0.25V _{tt}	V	
Output High Voltage	V _{OH}	0.75V _{tt}			V	
Hysterisis	V _{Hys}	0.1V _{tt}			V	
INB _{tsB} - TTL level S	chmitt-trigg	gered input p	oin			
Input Low Voltage	V _{IL}			0.8	V	5VDD = 5 V
Input High Voltage	V _{IH}	2.0			V	5VDD = 5 V
Hysteresis	V_{TH}	1.2			V	5VDD = 5 V
Input High Leakage	I _{LIH}			+10	μА	V _{IN} = VDD
Input Low Leakage	I _{LIL}			-10	μА	V _{IN} = 0 V

9.3 AC Characteristics

9.3.1 Access Interface

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
SCL clock period	t _{scl}	10		uS
Start condition hold time	t _{HD;SDA}	4.7		uS
Stop condition setup-up time	t _{su;sto}	4.7		uS
DATA to SCL setup time	t _{SU;DAT}	150		nS
DATA to SCL hold time	t _{HD;DAT}	270		nS
SCL and SDA rise time	t _R		1.0	uS
SCL and SDA fall time	t _F		300	nS

9.3.2 Dynamic Vcore Limit Setting

If dynamic VID function enable, Vcore channel high/low limit will change in accordance with VID table. When VIDIN value change, internal VIDCHG signal will set until VIDIN value has stabled more than 1ms. New Vcore high/low limit will set at falling edge of VIDCHG and Vcore channel will enable monitor at the same time.

9.3.3 Power On Reset

The power-on reset threshold is 4.3V (typical). When Vcc crosses this threshold, the internal reset signal will be asserted for 3uS. During this time period, W83793G is in the reset state. When the internal reset signal is de-asserted, W83793G is in the operating state.

In the operating state, if Vcc drops below 4.0V and then rises above 4.3V, the internal reset signal will be asserted immediately. Fig 1 illustrates the reset mechanism.

10. ORDER INFORMATION

PART NO.	PACKAGE	REMARKS
W83793G	SSOP56	Pb-free Package

11. APPENDIX

11.1 Register Summary

BANK 0

INDEX	REGISTER NAME	INDEX	REGISTER NAME
	BANK 0	ADDRESS 00-1F	
00 _{HEX}	Bank Selection	10 _{HEX}	VCore A Readout
01 _{HEX}	Watch Dog Lock	11 _{HEX}	VCore B Readout
02 _{HEX}	Watch Dog Enable	12 _{HEX}	Vtt Readout
03 _{HEX}	Watch Dog Status	13 _{HEX}	
04 _{HEX}	Watch Dog Timer	14 _{HEX}	VSEN1 Readout
05 _{HEX}	VIDA Input Value	15 _{HEX}	VSEN2 Readout
06 _{HEX}	VIDB Input Value	16 _{HEX}	3VSEN Readout
07 _{HEX}	VIDA Latch	17 _{HEX}	12VSEN Readout
08 _{HEX}	VIDB Latch	18 _{HEX}	5VDD Readout
09 _{HEX}	VCore High Tolerance	19 _{HEX}	5VSB Readout
0A _{HEX}	VCore Low Tolerance	1A _{HEX}	VBAT Readout
0B _{HEX}	<u>I²C Address</u>	1B _{HEX}	VIN Low Bit
0C _{HEX}	Sensor 1/2 Address	1C _{HEX}	TD1 Readout
0D _{HEX}	Winbond Vendor ID	1D _{HE} X	TD2 Readout
0E _{HEX}	Winbond Chip ID	1E _{HEX}	TD3 Readout
0F _{HEX}	Winbond Device ID	1F _{HEX}	TD4 Readout
	BANK 0	ADDRESS 20-3F	
20 _{HEX}	TR1 Readout	30 _{HEX}	Fan7 Count Low Byte
21 _{HEX}	TR2 Readout	31 _{HEX}	Fan8 Count High Byte
22 _{HEX}	Temp Low Bit Readout	32 _{HEX}	Fan8 Count Low Byte
23 _{HEX}	Fan1 Count High Byte	33 _{HEX}	Fan9 Count High Byte
24 _{HEX}	Fan1 Count Low Byte	34 _{HEX}	Fan9 Count Low Byte
25 _{HEX}	Fan2 Count High Byte	35 _{HEX}	Fan10 Count High Byte
26 _{HEX}	Fan2 Count Low Byte	36 _{HEX}	Fan10 Count Low Byte
27 _{HEX}	Fan3 Count High Byte	37 _{HEX}	Fan11 Count High Byte
2A _{HEX}	Fan4 Count Low Byte	3A _{HEX}	Fan12 Count Low Byte
2B _{HEX}	Fan5 Count High Byte	3B _{HEX}	
2C _{HEX}	Fan5 Count Low Byte	3C _{HEX}	

Register Summary, continued.

INDEX	REGISTER NAME	INDEX	REGISTER NAME
2D _{HEX}	Fan6 Count High Byte	3D _{HEX}	
2E _{HEX}	Fan6 Count Low Byte	3E _{HEX}	
2F _{HEX}	Fan7 Count High Byte	3F _{HEX}	
	BANK 0	ADDRESS 40-5F	
40 _{HEX}	Configuration	50 _{HEX}	SMI/IRQ Control
41 _{HEX}	Interrupt Status 1	51 _{HEX}	OVT Control
42 _{HEX}	Interrupt Status 2	52 _{HEX}	OVT/Beep Global Enable
43 _{HEX}	Interrupt Status 3	53 _{HEX}	Beep Control 1
44 _{HEX}	Interrupt Status 4	54 _{HEX}	Beep Control 2
45 _{HEX}	Interrupt Status 5	55 _{HEX}	Beep Control 3
46 _{HEX}	Interrupt Mask 1	56 _{HEX}	Beep Control 4
47 _{HEX}	Interrupt Mask 2	57 _{HEX}	Beep Control 5
48 _{HEX}	Interrupt Mask 3	58 _{HEX}	Multi-Function Pin Control
49 _{HEX}	Interrupt Mask 4	59 _{HEX}	VID Control
4A _{HEX}	Interrupt Mask 5	5A _{HEX}	TD1 Configuration
4B _{HEX}	Real Time Status 1	5B _{HEX}	TD2 Configuration
4C _{HEX}	Real Time Status 2	5C _{HEX}	FanIn Control
4D _{HEX}	Real Time Status 3	5D _{HEX}	FanIn Redirection
4E _{HEX}	Real Time Status 4	5E _{HEX}	TD Mode Select
4F _{HEX}	Real Time Status 5	5F _{HEX}	TR Mode Select
	BANK 0	ADDRESS 60-7F	
60 _{HEX}	VCoreA High Limit	70 _{HEX}	12VSEN High Limit
61 _{HEX}	VCoreA Low Limit	71 _{HEX}	12VSEN Low Limit
62 _{HEX}	VCoreB High Limit	72 _{HEX}	5VDD High Limit
63 _{HEX}	VCoreB Low Limit	73 _{HEX}	5VDD Low Limit
64 _{HEX}	Vtt High Limit	74 _{HEX}	5VSB High Limit
65 _{HEX}	Vtt Low Limit	75 _{HEX}	5VSB Low Limit
66 _{HEX}		76 _{HEX}	VBAT High Limit
67 _{HEX}		77 _{HEX}	VBAT Low Limit
68 _{HEX}	High Limit Low Bit	78 _{HEX}	TD1 Critical
69 _{HEX}	Low Limit Low Bit	79 _{HEX}	TD1 Critical Hysterisis
6A _{HEX}	VSEN1 High Limit	7A _{HEX}	TD1 Warning

Register Summary, continued.

INDEX	REGISTER NAME	INDEX	REGISTER NAME
6B _{HEX}	VSEN1 Low Limit	7B _{HEX}	TD1 Warning Hysterisis
6C _{HEX}	VSEN2 High Limit	7C _{HEX}	TD2 Critical
6D _{HEX}	VSEN2 Low Limit	7D _{HEX}	TD2 Critical Hysterisis
6E _{HEX}	3VSEN High Limit	7E _{HEX}	TD2 Warning
6F _{HEX}	3VSEN Low Limit	7F _{HEX}	TD2 Warning Hysterisis
	BANK 0	ADDRESS 80-9F	
80 _{HEX}	TD3 Critical	90 _{HEX}	Fan1 Limit High Byte
81 _{HEX}	TD3 Critical Hysterisis	91 _{HEX}	Fan1 Limit Low Byte
82 _{HEX}	TD3 Warning	92 _{HEX}	Fan2 Limit High Byte
83 _{HEX}	TD3 Warning Hysterisis	93 _{HEX}	Fan2 Limit Low Byte
84 _{HEX}	TD4 Critical	94 _{HEX}	Fan3 Limit High Byte
85 _{HEX}	TD4 Critical Hysterisis	95 _{HEX}	Fan3 Limit Low Byte
86 _{HEX}	TD4 Warning	96 _{HEX}	Fan4 Limit High Byte
87 _{HEX}	TD4 Warning Hysterisis	97 _{HEX}	Fan4 Limit Low Byte
88 _{HEX}	TR1 Critical	98 _{HE} X	Fan5 Limit High Byte
89 _{HEX}	TR1 Critical Hysterisis	99 _{HEX}	Fan5 Limit Low Byte
8A _{HEX}	TR1 Warning	9A _{HEX}	Fan6 Limit High Byte
8B _{HEX}	TR1 Warning Hysterisis	9B _{HEX}	Fan6 Limit Low Byte
8C _{HEX}	TR2 Critical	9C _{HEX}	Fan7 Limit High Byte
8D _{HEX}	TR2 Critical Hysterisis	9D _{HEX}	Fan7 Limit Low Byte
8E _{HEX}	TR2 Warning	9E _{HEX}	Fan8 Limit High Byte
8F _{HEX}	TR2 Warning Hysterisis	9F _{HEX}	Fan8 Limit Low Byte
	BANK 0	ADDRESS A0-BF	
A0 _{HEX}	Fan9 Limit High Byte	B0 _{HEX}	Fan Output Style 1
A1 _{HEX}	Fan9 Limit Low Byte	B1 _{HEX}	Fan Output Style 2
A2 _{HEX}	Fan10 Limit High Byte	B2 _{HEX}	Fan Default Speed
A3 _{HEX}	Fan10 Limit Low Byte	B3 _{HEX}	Fan1 Duty
A4 _{HEX}	Fan11 Limit High Byte	B4 _{HEX}	Fan2 Duty
A5 _{HEX}	Fan11 Limit Low Byte	B5 _{HEX}	Fan3 Duty
A6 _{HEX}	Fan12 Limit High Byte	B6 _{HEX}	Fan4 Duty
A7 _{HEX}	Fan12 Limit Low Byte	B7 _{HEX}	Fan5 Duty
A8 _{HEX}	TD1 Temperature Offset	B8 _{HEX}	Fan6 Duty

Register Summary, continued.

INDEX	REGISTER NAME	INDEX	REGISTER NAME
A9 _{HEX}	TD2 Temperature Offset	B9 _{HEX}	Fan7 Duty
AA _{HEX}	TD3 Temperature Offset	BA _{HEX}	Fan8 Duty
AB _{HEX}	TD4 Temperature Offset	BB _{HEX}	Fan1 Output Prescalar
AC _{HEX}	TR1 Temperature Offset	BC _{HEX}	Fan2 Output Prescalar
AD_{HEX}	TR2 Temperature Offset	BD _{HEX}	Fan3 Output Prescalar
AE _{HEX}		BE _{HEX}	Fan4 Output Prescalar
AF _{HEX}		BF _{HEX}	Fan5 Output Prescalar
	BANK 0 ADD	RESS C0-DF	
C0 _{HEX}	Fan6 Output Prescalar	D5 _{HEX}	PECI Return Domain
C1 _{HEX}	Fan7 Output Prescalar	D6 _{HEX}	PECI Warning Flags
C2 _{HEX}	Fan8 Output Prescalar	D7 _{HEX}	
C3 _{HEX}	Step Up Time	D8 _{HEX}	PECI Agent1 RelTempH
C4 _{HEX}	Step Down Time	D9 _{HEX}	PECI Agent1 RelTempL
C5 _{HEX}	<u>Critical Temperature</u>	DA _{HEX}	PECI Agent2 RelTempH
D0 _{HEX}	PECI Agent Configure	DB _{HEX}	PECI Agent2 RelTempL
D1 _{HEX}	PECI Agent1 Tcontrol	DC _{HEX}	PECI Agent3 RelTempH
D2 _{HEX}	PECI Agent2 Tcontrol	DD _{HEX}	PECI Agent3 RelTempL
D3 _{HEX}	PECI Agent3 Tcontrol	DE _{HEX}	PECI Agent4 RelTempH
D4 _{HEX}	PECI Agent4 Tcontrol	DF _{HEX}	PECI Agent4 RelTempL

BANK 1

INDEX	REGISTER NAME	INDEX	REGISTER NAME	
	BANK 1 ADDRESS 00-1F			
00 _{HEX}	Bank Select	0E _{HEX}	Winbond Chip ID	
0D _{HEX}	Winbond Vendor ID	0F _{HEX}	Winbond Device ID	
	BANK 1 ADDRESS 20-33			
20 _{HEX}	UDID Device Capability	2A _{HEX}	UDID SubDevice ID High	
21 _{HEX}	UDID Version Number	2B _{HEX}	UDID SubDevice ID Low	
22 _{HEX}	UDID Vendor ID High	2C _{HEX}	UDID Specific Vendor ID1	
23 _{HEX}	UDID Vendor ID Low	2D _{HEX}	UDID Specific Vendor ID2	
24 _{HEX}	UDID Device ID High	2E _{HEX}	UDID Specific Vendor ID3	
25 _{HEX}	UDID Device ID Low	2F _{HEX}	UDID Specific Vendor ID4	

Bank 1, continued.

INDEX	REGISTER NAME	INDEX	REGISTER NAME	
26 _{HEX}	UDID Interface High Byte	30 _{HEX}	Random Number 1	
27 _{HEX}	UDID Interface Low Byte	31 _{HEX}	Random Number 2	
28 _{HEX}	UDID SubVendor ID High	32 _{HEX}	Random Number 3	
29 _{HEX}	UDID SubVendor ID Low	33 _{HEX}	Random Number 4	
	BANK	1 ADDRESS 40		
40 _{HEX}	ARP Assigned Address			
	BANK 1	ADDRESS 50-6F		
50 _{HEX}	VCoreA Entity ID	60 _{HEX}	Fan7 Entity ID	
51 _{HEX}	VCoreB Entity ID	61 _{HEX}	Fan8 Entity ID	
52 _{HEX}	Vtt Entity ID	62 _{HEX}	Fan9 Entity ID	
53 _{HEX}	VDD Entity ID	63 _{HEX}	Fan10 Entity ID	
54 _{HEX}	VSB5V Entity ID	64 _{HEX}	Fan11 Entity ID	
55 _{HEX}	VBAT Entity ID	65 _{HEX}	Fan12 Entity ID	
56 _{HEX}	VSEN1 Entity ID	66 _{HEX}	TD1 Entity ID	
57 _{HEX}	VSEN2 Entity ID	67 _{HEX}	TD2 Entity ID	
58 _{HEX}	3VSEN Entity ID	68 _{HEX}	TD3 Entity ID	
59 _{HEX}	12VSEN Entity ID	69 _{HEX}	TD4 Entity ID	
5A _{HEX}	Fan1 Entity ID	6A _{HEX}	TR1 Entity ID	
5B _{HEX}	Fan2 Entity ID	6B _{HEX}	TR2 Entity ID	
5C _{HE} X	Fan3 Entity ID	6C _{HEX}	Chassis Entity ID	
5D _{HEX}	Fan4 Entity ID	6D _{HEX}		
5E _{HEX}	Fan5 Entity ID	6E _{HEX}		
5F _{HEX}	Fan6 Entity ID	6F _{HEX}		
BANK 1 ADDRESS 70-8F				
70 _{HEX}	VCoreA/VCoreB EntityID	80 _{HEX}	Remote PowerOn Command	
71 _{HEX}	VDD/Vtt EntityID	81 _{HEX}	Remote Power Off Command	
72 _{HEX}	VBAT/VSB EntityID	82 _{HEX}	Remote Reset Command	
73 _{HEX}	VCoreA/VCoreB EntityID	83 _{HEX}		
74 _{HEX}	VSEN1/VSEN2 EntityID	84 _{HEX}		
75 _{HEX}	12VSEN/3VSEN EntityID	85 _{HEX}		
76 _{HEX}	Fan1/2 EntityID	86 _{HEX}		
77 _{HEX}	Fan3/4 EntityID	87 _{HEX}		

Bank 1, continued.

INDEX	REGISTER NAME	INDEX	REGISTER NAME
78 _{HEX}	Fan5/6 EntityID	88 _{HEX}	
79 _{HEX}	Fan7/8 EntityID	89 _{HEX}	
7A _{HEX}	Fan9/10 EntityID	8A _{HEX}	
7B _{HEX}	Fan11/12 EntityID	8B _{HEX}	
7C _{HEX}	TD1/2 EntityID	8C _{HEX}	
7D _{HEX}	TD3/4 EntityID	8D _{HEX}	
7E _{HEX}	Chassis EntityID	8E _{HEX}	
7F _{HEX}	Power On Option	8F _{HEX}	

BANK 2

INDEX	REGISTER NAME	INDEX	REGISTER NAME	
BANK 2 ADDRESS 00-1F				
00 _{HEX}	Bank Select	10 _{HEX}	TD1 Target Temperature	
01 _{HEX}	TD1 Fan Mapping Select	11 _{HEX}	TD2 Target Temperature	
02 _{HEX}	TD2 Fan Mapping Select	12 _{HEX}	TD3 Target Temperature	
03 _{HEX}	TD3 Fan Mapping Select	13 _{HEX}	TD4 Target Temperature	
04 _{HEX}	TD4 Fan Mapping Select	14 _{HEX}	TR1 Target Temperature	
05 _{HEX}	TR1 Fan Mapping Select	15 _{HEX}	TR2 Target Temperature	
06 _{HEX}	TR2 Fan Mapping Select	16 _{HEX}		
07 _{HEX}	Fan Control Mode Select	17 _{HEX}		
08 _{HEX}	TD1/2 Temp Tolerance	18 _{HEX}	Fan1 Nonstop Duty Cycle	
09 _{HEX}	TD3/4 Temp Tolerance	19 _{HEX}	Fan2 Nonstop Duty Cycle	
0A _{HEX}	TR1/2 Temp Tolerance	1A _{HEX}	Fan3 Nonstop Duty Cycle	
0B _{HEX}		1B _{HEX}	Fan4 Nonstop Duty Cycle	
0C _{HEX}		1C _{HEX}	Fan5 Nonstop Duty Cycle	
0D _{HEX}	Winbond Vendor ID	1D _{HEX}	Fan6 Nonstop Duty Cycle	
0E _{HEX}	Winbond Chip ID	1E _{HEX}	Fan7 Nonstop Duty Cycle	
0F _{HEX}	Winbond Device ID	1F _{HEX}	Fan8 Nonstop Duty Cycle	
BANK 2 ADDRESS 20-3F				
20 _{HEX}	Fan1 Start Duty Cycle	30 _{HEX}	TD1 Temp Level01	
21 _{HEX}	Fan2 Start Duty Cycle	31 _{HEX}	TD1 Temp Level12	
22 _{HEX}	Fan3 Start Duty Cycle	32 _{HEX}	TD1 Temp Level23	
23 _{HEX}	Fan4 Start Duty Cycle	33 _{HEX}	TD1 Temp Level34	

Bank 2, continued.

INDEX	REGISTER NAME	INDEX	REGISTER NAME
24 _{HEX}	Fan5 Start Duty Cycle	34 _{HEX}	TD1 Temp Level45
25 _{HEX}	Fan6 Start Duty Cycle	35 _{HEX}	TD1 Temp Level56
26 _{HEX}	Fan7 Start Duty Cycle	36 _{HEX}	TD1 Temp Level67
27 _{HEX}	Fan8 Start Duty Cycle	37 _{HEX}	
28 _{HEX}	Fan1 Stop Time	38 _{HEX}	TD1 Fan Level0
29 _{HEX}	Fan2 Stop Time	39 _{HEX}	TD1 Fan Level1
2A _{HEX}	Fan3 Stop Time	3A _{HEX}	TD1 Fan Level2
2B _{HEX}	Fan4 Stop Time	3B _{HEX}	TD1 Fan Level3
2C _{HEX}	Fan5 Stop Time	3C _{HEX}	TD1 Fan Level4
2D _{HEX}	Fan6 Stop Time	3D _{HEX}	TD1 Fan Level5
2E _{HEX}	Fan7 Stop Time	3E _{HEX}	TD1 Fan Level6
2F _{HEX}	Fan8 Stop Time	3F _{HEX}	
	BANK 2 ADD	RESS 40-5F	
40 _{HEX}	TD2 Temp Level01	50 _{HEX}	TD3 Temp Level01
41 _{HEX}	TD2 Temp Level12	51 _{HEX}	TD3 Temp Level12
42 _{HEX}	TD2 Temp Level23	52 _{HEX}	TD3 Temp Level23
43 _{HEX}	TD2 Temp Level34	53 _{HEX}	TD3 Temp Level34
44 _{HEX}	TD2 Temp Level45	54 _{HEX}	TD3 Temp Level45
45 _{HEX}	TD2 Temp Level56	55 _{HEX}	TD3 Temp Level56
46 _{HEX}	TD2 Temp Level67	56 _{HEX}	TD3 Temp Level67
47 _{HEX}		57 _{HEX}	
48 _{HEX}	TD2 Fan Level0	58 _{HEX}	TD3 Fan Level0
49 _{HEX}	TD2 Fan Level1	59 _{HEX}	TD3 Fan Level1
4A _{HEX}	TD2 Fan Level2	5A _{HEX}	TD3 Fan Level2
4B _{HEX}	TD2 Fan Level3	5B _{HEX}	TD3 Fan Level3
4C _{HEX}	TD2 Fan Level4	5C _{HEX}	TD3 Fan Level4
4D _{HEX}	TD2 Fan Level5	5D _{HEX}	TD3 Fan Level5
4E _{HEX}	TD2 Fan Level6	5E _{HEX}	TD3 Fan Level6
4F _{HEX}		5F _{HEX}	
BANK 2 ADDRESS 60-7F			
60 _{HEX}	TD4 Temp Level01	70 _{HEX}	TR1 Temp Level01
61 _{HEX}	TD4 Temp Level12	71 _{HEX}	TR1 Temp Level12

Bank 1, continued.

INDEX	REGISTER NAME	INDEX	REGISTER NAME		
62 _{HEX}	TD4 Temp Level23	72 _{HEX}	TR1 Temp Level23		
63 _{HEX}	TD4 Temp Level34	73 _{HEX}	TR1 Temp Level34		
64 _{HEX}	TD4 Temp Level45	74 _{HEX}	TR1 Temp Level45		
65 _{HEX}	TD4 Temp Level56	75 _{HEX}	TR1 Temp Level56		
66 _{HEX}	TD4 Temp Level67	76 _{HEX}	TR1 Temp Level67		
67 _{HEX}		77 _{HEX}			
68 _{HEX}	TD4 Fan Level0	78 _{HEX}	TR1 Fan Level0		
69 _{HEX}	TD4 Fan Level1	79 _{HEX}	TR1 Fan Level1		
6A _{HEX}	TD4 Fan Level2	7A _{HEX}	TR1 Fan Level2		
6B _{HEX}	TD4 Fan Level3	7B _{HEX}	TR1 Fan Level3		
6C _{HEX}	TD4 Fan Level4	7C _{HEX}	TR1 Fan Level4		
6D _{HEX}	TD4 Fan Level5	7D _{HEX}	TR1 Fan Level5		
6E _{HEX}	TD4 Fan Level6	7E _{HEX}	TR1 Fan Level6		
6F _{HEX}		7F _{HEX}			
	BANK 2 ADDRESS 80-8F				
80 _{HEX}	TR2 Temp Level01	88 _{HEX}	TR2 Fan Level0		
81 _{HEX}	TR2 Temp Level12	89 _{HEX}	TR2 Fan Level1		
82 _{HEX}	TR2 Temp Level23	8A _{HEX}	TR2 Fan Level2		
83 _{HEX}	TR2 Temp Level34	8B _{HEX}	TR2 Fan Level3		
84 _{HEX}	TR2 Temp Level45	8C _{HEX}	TR2 Fan Level4		
85 _{HEX}	TR2 Temp Level56	8D _{HEX}	TR2 Fan Level5		
86 _{HEX}	TR2 Temp Level67	8E _{HEX}	TR2 Fan Level6		
87 _{HEX}		8F _{HEX}			

12. THE TOP MARKING

W83793R 28201234 606GCUB

Left Winbond Logo.

First Line IC part number: W83793R; R means SSOP, leaded package.

Second Line Serial number

Third Line Tracking Code: 6 06 G B UB for Package information

6 Package is made in 2006

06 Week: <u>06</u>

G Assembly house ID; G means Greatek; A means ASE; O means OSE

C IC version
UB Mask version

W83793G 28201234 606GCUB

Left Winbond Logo.

First Line IC part number: W83793G; G means Pb-free package.

Second Line Serial number

Third Line Tracking Code: 6 06 G B UB for Package information

6 Package is made in 2006

06 Week: 06

G Assembly house ID; G means Greatek; A means ASE; O means OSE

C IC versionUB Mask version

13. PACKAGE DRAWING AND DIMENSIONS

(56-pin SSOP 300mil)

Important Notice

Winbond products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Further more, Winbond products are not intended for applications wherein failure of Winbond products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur.

Winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Winbond for any damages resulting from such improper use or sales.

Headquarters

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5665577 http://www.winbond.com.tw/

Taipei Office

9F, No.480, Rueiguang Rd., Neihu District, Taipei, 114, Taiwan, R.O.C. TEL: 886-2-8177-7168 FAX: 886-2-8751-3579

Winbond Electronics Corporation America

2727 North First Street, San Jose, CA 95134, U.S.A.

TEL: 1-408-9436666

FAX: 1-408-5441798

Winbond Electronics Corporation Japan

7F Daini-ueno BLDG, 3-7-18 Shinvokohama Kohoku-ku. Yokohama, 222-0033 TEL: 81-45-4781881 FAX: 81-45-4781800

Winbond Electronics (Shanghai) Ltd. 27F, 2299 Yan An W. Rd. Shanghai,

200336 China TEL: 86-21-62365999 FAX: 86-21-62365998

Winbond Electronics (H.K.) Ltd. Unit 9-15, 22F, Millennium City, No. 378 Kwun Tong Rd.,

Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.

Publication Release Date: Dec. 11, 2006 Revision 1.0