# SUPPORT SYSTEM (AR): TYPES OF SENSORS AND CHARACTERISTICS, ALTERNATIVE POWER, HUMAN MACHINE INTERFACE.

**MUHAMMAD FARID BIN JAFRI (2111633)** 

# SENSOR TYPES AND CHARACTERISTICS

| Sensor Type                     | Purpose                                    | Characteristics                                                                 |
|---------------------------------|--------------------------------------------|---------------------------------------------------------------------------------|
| IMU (Inertial Measurement Unit) | Measures acceleration and angular velocity | Combines accelerometers and gyroscopes; essential for stabilization and control |
| GPS / RTK GPS                   | Positioning and geolocation                | RTK provides centimeter-level accuracy using differential correction            |
| Barometer                       | Measures atmospheric pressure              | Infers altitude; lightweight, often fused with GPS                              |
| Magnetometer                    | Heading and orientation                    | Detects magnetic field; helps determine yaw                                     |
| LIDAR                           | Obstacle detection, 3D mapping             | Uses laser pulses to measure distance; high precision and resolution            |
| Cameras (RGB/IR)                | Visual navigation, object detection        | RGB for optical flow, IR for<br>thermal imaging; critical for<br>photogrammetry |
| Ultrasonic / ToF                | Proximity sensing and ground altitude      | Short-range but fast; used in low-altitude flight                               |



### ALTERNATIVE POWER SYSTEMS

| Power System         | Description                                         | Applications                                     |
|----------------------|-----------------------------------------------------|--------------------------------------------------|
| Li-Po Batteries      | High power density,<br>lightweight                  | Small to medium drones                           |
| Hydrogen Fuel Cells  | Higher energy density, zero-<br>emission            | Long-endurance and high-<br>altitude UAVs        |
| Hybrid Power Systems | Combines batteries with internal combustion engines | VTOL and heavy-lift UAVs                         |
| Solar Panels         | Harvests solar energy during flight                 | Fixed-wing UAVs with high-<br>altitude loitering |

# HUMAN-MACHINE INTERFACE (HMI)

The HMI connects human operators with the aerial robot's control and data systems. Depending on the autonomy level, interfaces vary in complexity.

| Interface Type               | Description                    | Characteristics                 |
|------------------------------|--------------------------------|---------------------------------|
| Ground Control Station (GCS) | Provides manual/automated      | Desktop, laptop, or tablet-     |
|                              | control, real-time telemetry   | based with mission planning UI  |
| Mobile App-Based Interface   | Simplified interface for       | Touchscreen with live camera    |
|                              | commercial drones              | feed                            |
| Voice/AR Interfaces          | Hands-free or immersive        | Used in research or battlefield |
|                              | control (experimental)         | scenarios                       |
| SATCOM-Enabled Cockpits      | Used in military-grade systems | Full cockpit-style control      |
|                              | for BVLOS ops                  | system                          |



### DJI MATRICE 300 RTK



#### **Sensors:**

- Dual IMU, dual barometer, and magnetometer for redundant state estimation
- RTK GPS for centimeter-level navigation
- Downward/forward/backward obstacle avoidance sensors (vision + ultrasonic)
- Compatible with LIDAR, thermal, and multispectral cameras

- Dual hot-swappable Li-Po batteries (TB60); capacity: 5935
  mAh each
- Smart battery management with pre-flight diagnostics and auto-discharge
- Max flight time: ~55 minutes (with standard payload)



## DJI MATRICE 300 RTK





- DJI Smart Controller Enterprise
  - HD live video transmission (OcuSync Enterprise)
  - Integrated flight planning via DJI Pilot 2 app
- Fully autonomous waypoint missions and AI-based object tracking
- USB-C and HDMI output for field operability





# MQ-9 REAPER





#### **Sensors:**

- EO/IR turret for day/night surveillance (MTS-B sensor suite)
- Synthetic Aperture Radar (SAR) for ground imaging through weather/clouds
- Laser designator and rangefinder for targeting
- Inertial navigation + GPS integration for highaccuracy flight

- Honeywell turboprop engine (950 hp) aviationgrade fuel
- Extremely long endurance: >27 hours
- Backup battery for avionics and failsafe operations



# MQ-9 REAPER





- Ground Control Station (GCS) with dual-console
  - One for the pilot, another for the sensor operator
- SATCOM and line-of-sight radio links
- Secure, encrypted communication channels with real-time battlefield integration



### PARROT ANAFI AI





#### **Sensors:**

- 48 MP HDR camera with 6x zoom and AI scene analysis
- Dual IMU, barometer, GPS + GLONASS
- Ultrasonic + time-of-flight for close-proximity sensing
- Built-in GNSS RTK module available for precision mapping

- Intelligent Li-Po battery with thermal regulation and safety cutoff
- Max flight time: ~32 minutes
- USB-C fast charging support



### PARROT ANAFI AI





- Parrot FreeFlight 7 app (4G LTE connectivity)
  - Real-time HD video streaming over 4G networks
  - Autonomous flight programming with terrain-follow mode
- Integration with Pix4Dcloud for photogrammetric analysis and 3D modeling





# ROBOBEE (HARVARD)





#### **Sensors:**

- Microfabricated IMU and optical flow sensors
- Experiments with light sensors for navigation cues
- Extremely size-constrained; limited onboard processing

- Laser-powered flight (wireless energy transmission) in lab setups
- Attempts were made with micro-battery and piezoelectric actuation
- Current models require tethering or an external energy supply



# ROBOBEE (HARVARD)





### • HMI:

- Controlled via lab-based interfaces with experimental GUI
- Research-focused control with scripted commands
- Long-term vision includes swarm control via wearable AR interfaces





### WINGCOPTER 198





#### **Sensors:**

- Multi-sensor fusion: GNSS, IMU, magnetometer, barometer
- Obstacle detection via stereo vision and optical sensors
- Diagnostics sensors for payload health and delivery verification

- Swappable Li-ion battery pack
- Flight time: ~45 minutes
- Optional hybrid configurations (R&D stage)
- Designed for rapid deployment in remote locations



## WINGCOPTER 198





- Tablet-based control system (Wingcopter Control Center)
  - Drag-and-drop waypoint assignment
  - Live telemetry + autonomous flight control
- Cloud-based data management and mission logging







### CONCLUSION

Support systems form the intelligent backbone of aerial robotics. From basic sensing and control in micro-drones to satellite-linked autonomy in military UAVs, the design and integration of sensors, power sources, and HMIs directly define the capability, safety, and mission applicability of aerial robots.

- The five analyzed examples demonstrate:
- A range of autonomy (manual to fully autonomous),
- Sensor diversity depending on task (thermal, LIDAR, SAR, micro-IMUs),
- And tailored HMIs to fit field use, lab testing, or secure military operations.



### REFERENCE



- 2. Valavanis, K. P., & Vachtsevanos, G. J. (2015). Handbook of Unmanned Aerial Vehicles. Springer.
- 3. Lin, P., Bekey, G., & Abney, K. (2014). Robot Ethics: The Ethical and Social Implications of Robotics. MIT Press.
- 4. Cai, G., Dias, J., & Seneviratne, L. (2014). A survey of small-scale unmanned aerial vehicles: Recent advances and future development trends. Unmanned Systems, 2(2), 175–199. https://doi.org/10.1142/S2301385014400045
- 5. Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712. https://doi.org/10.1007/s11119-012-9274-5













