Examen de la Unidad III

I. Instrucciones. Encuentre la fórmula para el término enésimo de la siguiente sucesión.

1.
$$\frac{3}{5}$$
, $\frac{-4}{25}$, $\frac{5}{125}$, $\frac{-6}{625}$, $\frac{7}{3125}$, ...

a)
$$an = \frac{(-1)^{n+1}(2+n)}{5^n}$$
 b) $an = \frac{(2+n)}{5^n}$ c) $an = \frac{(-1)^{n+1}}{5^n}$

b)
$$an = \frac{(2+n)^n}{5^n}$$

c)
$$an = \frac{(-1)^{n+1}}{5^n}$$

2. Determina el tipo de serie

$$\sum_{n=1}^{\infty} \frac{n-1}{3n-1}$$

- a) Especial
- **b)** Términos positivos
- **c)** Alternante

La serie:

- a) Converge
- **b)** Diverge

3. Determina el tipo de serie

$$\sum_{n=1}^{\infty} \sqrt[n]{2} = \sum_{n=1}^{\infty} 2^{\frac{1}{n}}$$

- a) Especial
- **b)** Términos positivos
- c) Alternante

La serie:

- a) Converge
- **b)** Diverge

4. Determina el tipo de serie

$$\sum_{n=1}^{\infty} arc \tan n$$

- a) Especial
- **b)** Términos positivos
- c) Alternante

La serie:

- a) Converge
- **b)** Diverge

II. Instrucciones. Relaciona ambas columnas eligiendo la opción que corresponda.

a)	$\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$	() Serie geométrica que diverge.
<i>b</i>)	$\sum_{n=1}^{\infty} \frac{sen(2n)}{1+2^n}$	() Diverge por la prueba de la divergencia.
<i>c</i>)	$\sum_{n=1}^{\infty} \frac{2 * 4 * 6 (2n)}{n!}$	() Converge por el criterio de la razón.
<i>d</i>)	$\sum_{n=1}^{\infty} \frac{1}{n+3^n}$	() Divergente por la prueba de la divergencia.
e)	$\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$	() Convergente por el criterio de la razón.
f)	$\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$	() Converge por el criterio de la raíz.
<i>g</i>)	$\sum_{n=1}^{\infty} \frac{\ln n}{n}$	() Geométrica divergente.
h)	$\sum_{n=1}^{\infty} \frac{n!}{e^{n^2}}$	() Converge por el criterio básico de comparación.
i)	$\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1\right)^n$	() Converge por el criterio básico de comparación.

Dra. Elena Fabiola Ruiz Ledesma, M. en C. Karina Viveros Vela

j)
$$\sum_{n=1}^{\infty} \frac{1*3*5...(2n-1)}{2*5*8...(3n-1)}$$
 () Diverge por el criterio de la integral.