

Reply to Office Action Dated: February 6, 2003

AMENDMENTS TO THE CLAIMS:

Please amend Claims 1, 2, 4, 5, 7, 8, 9, 11 and 12 as follows:

1. (Amended) An active radio frequency cavity amplifier comprising:
a housing defining an input cavity, and an output cavity and at least one gap for
each of the input and output cavities;

Atty. Docket: 1095-02

a plurality of transistors mounted to said housing, each of said plurality of transistors having an <u>a respective</u> input lead and an <u>a respective</u> output lead;

a first RF power coupling mechanism disposed within the housing in proximity to the input cavity for coupling RF power from a source into the input cavity to generate an RF field;

a first conducting assembly having a plurality of conductors, each <u>conductor</u>
configured to contact a respective input lead of the plurality of transistors for coupling the
RF field in the input cavity to the input leads of the plurality of transistors <u>via the at least</u>
one gap of the input cavity;

a second conducting assembly having a plurality of conductors, each conductor configured to contact a respective output lead of the plurality of transistors for coupling inducing an RF field in the output cavity coupled to the output leads of the said plurality of transistors via the at least one gap of the output cavity to amplify the RF power from the source; and

a second RF power coupling mechanism disposed within the housing in proximity to the output cavity for coupling amplified RF power from the output cavity to a load.

2. (Amended) An active radio frequency cavity amplifier as in Claim 1, wherein said housing is cylindrically-shaped, wherein the at least one gap for the input cavity is and further defines an annular cavity encircling said input cavity and the at least one gap for the output cavity is an annular cavity encircling said output cavity.

- 3. (Original) An active radio frequency cavity amplifier as in claim 2, wherein said annular cavities are configured to act as RF chokes to prevent the amplified RF power from being short-circuited.
- 4. (Amended) An active radio frequency cavity amplifier as in Claim 1, wherein said housing is constructed from comprised of a conductive material.
- 5. (Amended) An active radio frequency cavity amplifier as in Claim 1, wherein each of said first and second RF power coupling mechanisms include a respective plunger assembly having a corresponding plunger configured to move within said housing.
- 6. (Original) An active radio frequency cavity amplifier as in Claim 5, wherein said plunger assembly of said first RF power coupling mechanism is configured for tuning a resonant frequency of said input cavity, and said plunger assembly of said second RF power coupling mechanism is configured for tuning a resonant frequency of said output cavity.

Application No.: 09/903,892

Reply to Office Action Dated: February 6, 2003

7. (Amended) An active radio frequency cavity amplifier as in Claim 5, wherein said <u>respective</u> plunger assembly includes:

a coupling capacitor including a conducting cylindrical plunger having a first end and a second end, at least one dielectric disc being coupled to said second end; and a coaxial section having a center conductor and a matching section disposed in a channel of said cylindrical plunger.

8. (Amended) A method for amplifying RF power comprising the steps of:

coupling RF power to an active radio frequency cavity amplifier comprising a housing defining an input cavity, and an output cavity and at least one gap for the input and output cavities to generate an RF field within the input cavity and a plurality of transistors mounted in proximity to said input and output cavities and each of said plurality of transistors having an a respective input lead and an a respective output lead;

tuning the resonant frequency of the input cavity and the resonant frequency of the output cavity;

coupling the RF field in the input cavity to the input leads of the plurality of transistors via the at least one gap of the input cavity;

eoupling inducing an amplified RF field in the output cavity coupled to the output leads of the plurality of transistors via the at least one gap of the output cavity to amplify the RF power from the source; and

coupling amplified RF power from the output cavity.

.

1 200

Atty. Docket: 1095-02

Application No.: 09/903,892

Reply to Office Action Dated: February 6, 2003

Atty. Docket: 1095-02

9. (Amended) An RF power amplifier comprising:

means for coupling RF power to an active radio frequency cavity amplifier comprising a housing defining an input cavity, and an output cavity and at least one gap for the input and output cavities;

said means for coupling generating an RF field within the input cavity, and wherein a plurality of transistors are mounted in proximity to said input and output cavities and each of said plurality of transistors having an a respective input lead and an a respective output lead; and

means for coupling the RF field in the input cavity to the input leads of the plurality of transistors via the at least one gap of the input cavity; and

means for eoupling inducing an RF field in the output cavity coupled to the output leads of the plurality of transistors via the at least one gap of the output cavity.

10. (Original) An RF power amplifier as in Claim 9, further comprising: means for tuning the resonant frequency of the input cavity and the resonant frequency of the output cavity; and

means for coupling amplified RF power from the output cavity.

11. (Amended) An RF power amplifier comprising:

means for coupling RF power to an active radio frequency cavity amplifier comprising a housing defining an input cavity, and an output cavity, and at least one gap for the input and output cavities;

Application No.: 09/903,892

Reply to Office Action Dated: February 6, 2003

Atty. Docket: 1095-02

said means for coupling generating an RF field within the input cavity, and wherein a plurality of transistors are mounted in proximity to said at least one gap for the input and output cavities and each of said plurality of transistors having an a respective input lead and an a respective output lead; and

means for tuning the resonant frequency of the input cavity and the resonant frequency of the output cavity.

means for coupling the RF field in the input cavity to the input leads of the plurality of transistors via the at least one gap of said input cavity and for coupling an RF field in the output cavity to the output leads of the plurality of transistors via the at least one gap of the output cavity; and

means for coupling inducing an amplified RF power from the output cavity.

Please add the following new claims:

13. (New) An active radio frequency cavity amplifier comprising:

a housing defining an input cavity, an output cavity, an annular cavity encircling

said input cavity, and an annular cavity encircling said output cavity;

a plurality of transistors mounted to said housing, each of said plurality of transistors having an a respective input lead and an a respective output lead;

Atty. Docket: 1095-02

a first RF power coupling mechanism disposed within the housing in proximity to the input cavity for coupling RF power from a source into the input cavity to generate an RF field;

a first conducting assembly having a plurality of conductors, each conductor

configured to contact a respective input lead of the plurality of transistors for coupling the

RF field in the input cavity to the input leads of the plurality of transistors;

a second conducting assembly having a plurality of conductors, each conductor

configured to contact a respective output lead of the plurality of transistors for inducing

an RF field in the output cavity coupled to the output leads of the said plurality of

transistors to amplify the RF power from the source; and

a second RF power coupling mechanism disposed within the housing in proximity

to the output cavity for coupling amplified RF power from the output cavity to a load.

14. (New) A method for producing amplified RF signals, comprising the steps of:

providing a source for generating an RF signal;

coupling the source for generating an RF signal to an input cavity having at least one gap in proximity thereto;

coupling the RF signal between said input cavity and each input lead of a plurality of transistors via the at least one gap;

Reply to Office Action Dated: February 6, 2003

Atty. Docket: 1095-02

neld O

coupling an amplified output RF signal, produced by said plurality of transistors,
between the output leads of said plurality of transistors and an output cavity via at least
one gap in proximity to the output cavity; and

coupling said amplified output RF signal within said output cavity to a load.