2023-January Session-01-30-2023-shift-1

AI24BTECH11006 - Bugada Roopansha

I. SECTION - A

- 16) If the solution of the equation $\log(\cos x) \cot x +$ $4 \log (\sin x) \tan x = 1, x \in \left[0, \frac{\pi}{2}\right] \text{ is } \sin^{-1}\left(\frac{\alpha + \beta}{2}\right),$ where α, β are integers, then $\alpha + \beta$ is equal to
 - a) 6
 - b) 5
 - c) 4
 - d) 3
- 17) A straight line cuts off the intercepts OA = aand OB = b on the positive direction of the x-axis and y-axis respectively. If the perpendicular from the origin O to this line makes an angle of $\frac{\pi}{6}$ with the positive direction of the y-axis and the area of $\triangle OAB$ is $\frac{98}{3\sqrt{3}}$, then $a^2 - b^2$ is equal to
 - a) 196
 - b) 196
 - c) $\frac{392}{2}$
 - d) 98
- 18) If $a_n = \frac{-2}{4n^2 16n + 5}$, then $a_1 + a_2 + \cdots + a_{25}$ is equal
- 19) Let the solution curve y = y(x) of the differential equation $\frac{dy}{dx} \frac{3x^5 \tan^{-1}(x^3)}{(1+x^6)^{\frac{3}{2}}}y = 2x \exp \frac{x^3 \tan^{-1}x^3}{\sqrt{1+x^6}}$ pass through the origin. Then y(1) is equal to
 - a) $\exp\left(\frac{1-\pi}{4\sqrt{2}}\right)$
 - b) $\exp\left(\frac{4-\pi}{4\sqrt{2}}\right)$
 - c) $\exp\left(\frac{4+\pi}{4}\right)$ d) $\exp\left(\frac{\pi-4}{2\sqrt{2}}\right)$
- 20) If unbiased die, marked with -2, -1, 0, 1, 2, 3 on its faces, is thrown five times, then the probability that the product of the outcomes is positive is:

d) $\frac{521}{2592}$

II. SECTION-B

- 21) Let S = [1, 2, 3, 4, 5, 6]. The number of one-toone functions $f: S \to P(S)$, such that $f(n) \subset$ f(m) where n < m, is equal to \cdots
- 22) The number of four-digit numbers (repetition of digits allowed) made using the digits 1, 2, 3, and 5 and divisible by 15, is
- 23) If $\lambda_1 < \lambda_2$ are two values of λ such that the angle between the planes $P_1: \bar{r}(3\hat{i}-5\hat{j}+\hat{k})=7$ and $P_2: \bar{r}(\lambda \hat{i} + \hat{j} - 3\hat{k}) = 9$ is $\sin^{-1}(\frac{2\sqrt{6}}{5})$, then the square of the length of the perpendicular from
- the point $(38\lambda_1, 10\lambda_2, 2)$ to the plane P_1 is ... 24) Let $\sum_{n=0}^{\infty} \frac{n^3((2n)!)+(2n-1)(n!)}{(n!)((2n)!)} = ae + \frac{b}{e} + c$, where $a, b, c \in \mathbb{Z}$ and $e = \sum_{n=0}^{\infty} \frac{1}{n!}$. Then $a^2 b + c$ is equal to · · ·
- 25) Let z = 1 + i and $z_1 = \frac{1 + i\bar{z}}{\bar{z}(1 z) + \frac{1}{z}}$. Then $\frac{12}{\pi} \arg(z_1)$ is equal to ···
- 26) Let $f^{1}(x) = \frac{3x+2}{2x+3}$, $x \in \mathbb{R} \{\frac{-3}{2}\}$. For $n \ge 2$, define $f^{n}(x) = f^{1}of^{n-1}(x)$. If $f^{5}(x) = \frac{ax+b}{bx+a}$, $gcd(a,b) = \frac{ax+b}{bx+a}$ 1, then a + b is equal to \cdots 27) $\lim_{x\to 0} \frac{48}{x^4} \int_0^x \frac{t^3}{t^6+1} dt$ is equal to \cdots
- 28) The mean and variance of 7 observations are 8 and 16respectively. If one observation 14 is omitted and a and b are respectively mean and variance of remaining 6 observation, then a +3b - 5 is equal to \cdots
- 29) If the equation of the plane passing through the point (1,1,2) and perpendicular to the line(x-3y+2z-1=0=4x-y+z) is Ax + By + Cz = 1, then 140(C - B + A) is equal to
- 30) Let α be the area of the larger region bounded by the curve $y^2 = 8x$, the line y = x, and x = 2, which lies in the first quadrant. Then the value of 3α is equal to \cdots