CSCI699: Theory of Machine Learning

Fall 2021

Lecture 7

Instructor: Vatsal Sharan

Scribes: Ali Omrani, Ta-Yang

# 1 Rademacher complexity

Let us recall the proof of the VC theorem. We wanted to bound

$$\mathbb{E}_{s} \sup_{h \in \mathcal{H}} |R(h) - \hat{R}_{S}(h)|.$$

This quantity is called an **empirical process**. Empirical process theory studies such quantities. Let us try and expand this further, using the symmetrization idea we've seen before.

$$\mathbb{E}_{s} \sup_{h \in \mathcal{H}} R(h) - \hat{R}_{S}(h) \leq \mathbb{E}_{S,S'} \sup_{h \in \mathcal{H}} \left( \hat{R}_{S'}(h) - \hat{R}_{S}(h) \right)$$

$$= \mathbb{E}_{S,S'} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left( 1\{h(x'_{i}) \neq y'_{i}\} - 1\{h(x_{i}) \neq y_{i}\} \right)$$

$$= \mathbb{E}_{\sigma_{1:n}} \mathbb{E}_{S,S'} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left( 1\{h(x'_{i}) \neq y'_{i}\} - 1\{h(x_{i}) \neq y_{i}\} \right)$$

$$\leq \mathbb{E}_{S} \mathbb{E}_{\sigma_{1:n}} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} 1\{h(x'_{i}) \neq y'_{i}\}$$

$$+ \mathbb{E}_{S} \mathbb{E}_{\sigma_{1:n}} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (-\sigma_{i}) 1\{h(x_{i}) \neq y_{i}\}$$

$$\implies \mathbb{E}_{S} \sup_{h \in \mathcal{H}} R(h) - \hat{R}_{S}(h) \leq 2\mathbb{E}_{S} \mathbb{E}_{\sigma_{1:n}} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} 1\{h(x_{i}) \neq y_{i}\}.$$

The quantity on the right hand side is what we will call the Rademacher complexity. We define this formally now. Let

- $\bullet$   $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$
- $\mathcal{F}$ : function class  $\mathcal{Z} \to \mathbb{R}$
- $\mathcal{D}$ : distribution over  $\mathcal{Z}$

**Definition** (Rademacher Complexity). Let  $\mathcal{F}$  be a family of real-valued functions  $f: \mathcal{Z} \to \mathbb{R}$  where  $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ . Then the Rademacher complexity  $R(\mathcal{F})$  is defined as

$$R(\mathcal{F}) = \frac{1}{n} \mathbb{E}_{\sigma \sim \{\pm 1\}^n} \left[ \sup_{f \in \mathcal{F}} \sum_{i=1}^n \sigma_i f(\mathcal{Z}_i) \right]$$

More generally, given a set of vectors  $A \subset \mathbb{R}^n$ , the Rademacher complexity R(A) is defined as

$$R(A) = \frac{1}{n} \mathbb{E}_{\sigma \sim \{\pm 1\}^n} \sup_{a \in A} \sum_{i=1}^n \sigma_i a_i.$$

### Intuition:

•  $R(\mathcal{F})$  captures how well can  $\mathcal{F}$  fit random noise  $\rightarrow$  if  $\mathcal{F}$  can fit random noise,  $\mathcal{F}$  will probably overfit.

### Geometric Picture



Figure 1: In expectation over  $\sigma \sim \{\pm 1\}^n$ , what is the max inner product we can get with  $\sigma$ ? For the figre on the left the set of vectors points in very different directions, so for every  $\sigma$  there is some vector  $v_i$  which has good inner product with  $\sigma$ . This is not the case in the figure on the right.

# 1.1 How do we use Rademacher complexity?

- $S = \{(x_i, y_i), i \in [n]\}$
- $\mathcal{H}$ : function from  $\mathcal{X} \to \mathcal{Y}$ .
- $\mathcal{H} \circ S = \{h(x_1), \dots, h(x_n) : h \in \mathcal{H}\}$
- $\ell(h(x),y)$  : instead of writing  $\ell(h(x),y)$  we can write  $\ell(h,z)=\ell(h(x),y)$  where z=(x,y)
- $\ell \circ \mathcal{H} \circ S = \{(\ell(h, z_i), i \in [n]) : h \in \mathcal{H}\}$ For example if  $\mathcal{H} = \{h_1, h_2, h_3\}$

$$\ell \circ \mathcal{H} \circ S = \{(\ell(h_1, z_1), \dots, \ell(h_1, z_n)), \ell(h_2, z_1), \dots, \ell(h_2, z_n)\}, (\ell(h_3, z_1), \dots, \ell(h_3, z_n))\}$$

Lemma 1 (Symmetrization with Rademacher).

$$\mathbb{E}_{S \sim \mathcal{D}^n} \sup_{h \in \mathcal{H}} (R(h) - \hat{R}_S(h)) \le 2\mathbb{E}_{S \sim \mathcal{D}^n} R(\ell \circ \mathcal{H} \circ S)$$

Proof.

$$\mathbb{E}_{S \sim \mathcal{D}^{n}} \sup_{h \in \mathcal{H}} (R(h) - \hat{R}_{S}(h)) \leq \mathbb{E}_{S,S'} \sup_{h \in \mathcal{H}} \frac{1}{n} \left( \sum_{i=1}^{n} (\ell(h, z_{i}) - \ell(h, z'_{i})) \right)$$

$$= \mathbb{E}_{S,S',\sigma_{1:n}} \sup_{h \in \mathcal{H}} \frac{1}{n} \left( \sum_{i=1}^{n} \sigma_{i} (\ell(h, z_{i}) - \ell(h, z'_{i})) \right)$$

$$\leq \mathbb{E}_{S} \mathbb{E}_{\sigma_{1:n}} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \ell(h, z_{i})$$

$$+ \mathbb{E}_{S'} \mathbb{E}_{\sigma_{1:n}} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (-\sigma_{i}) \ell(h, z'_{i}).$$

Therefore we get that,

$$\mathbb{E}_{S} \sup_{h \in \mathcal{H}} (R(h) - \hat{R}_{S}(h)) \leq 2\mathbb{E}_{S, \sigma_{1:n}} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \ell(h, z_{i}) = 2\mathbb{E}_{S \sim \mathcal{D}^{n}} R(\ell \circ \mathcal{H} \circ S).$$

**Theorem 2** (Excess risk bounds using Rademacher). Assume that for all z and  $h \in \mathcal{H}$  we have that  $|\ell(h,z)| \leq C$ . Then with probability at least  $(1-\delta)$  over  $S \sim \mathcal{D}^n$ ,

(1) 
$$\sup_{h \in \mathcal{H}} (R(h) - \hat{R}_S(h)) \le 2\mathbb{E}_{S'} R(\ell \circ \mathcal{H} \circ S') + c\sqrt{\frac{2\log(1/\delta)}{n}}$$

(2) 
$$\sup_{h \in \mathcal{H}} (R(h) - \hat{R}_S(h)) \le 2R(\ell \circ \mathcal{H} \circ S) + 3c\sqrt{\frac{2\log(2/\delta)}{n}}$$

(3) For any  $h^* \in \mathcal{H}$ ,

$$R(ERM_{\mathcal{H}}(S)) - R(h^*) \le 2R(\ell \circ \mathcal{H} \circ S) + 4c\sqrt{\frac{2\log(4/\delta)}{n}}.$$

(in particular, this holds for  $h^* = \arg\min_{h \in \mathcal{H}} R(h)$ )

*Proof.* We will keep using McDiarmid's inequality throughout the proof.

(1) Note that  $\sup_{h\in\mathcal{H}}(R(h)-\hat{R}_S(h))$  satisfies the bounded differences property with constant  $\frac{2c}{n}$ . (changing any  $(x_i,y_i)$  changes the loss by at most  $\frac{2c}{n}$ ).

∴ Using McDiarmid's

$$\sup_{h \in \mathcal{H}} (R(h) - \hat{R}_S(h)) \le \mathbb{E}(\sup_{h \in \mathcal{H}} (R(h) - \hat{R}_S(h))) + \epsilon$$

with probability

$$1 - \exp\left(\frac{-2\epsilon^2}{n(2c/n)^2}\right) = 1 - \underbrace{\exp\left(-\frac{n\epsilon^2}{2c^2}\right)}_{\xi}.$$

We choose  $\epsilon = c\sqrt{\frac{2\log(1/\delta)}{n}}$  to set the error probability to be  $\delta$ . Therefore we get that with probability  $1 - \delta$ ,

$$\sup_{h \in \mathcal{H}} (R(h) - \hat{R}_S(h)) \le \mathbb{E} \sup_{h \in \mathcal{H}} (R(h) - \hat{R}_S(h)) + c\sqrt{\frac{2\log(1/\delta)}{n}}.$$

Now use Lemma 1 (Symmetrization with Rademacher), and result follows.

# (2) Note that

$$R(\ell \circ \mathcal{H} \circ S) = \mathbb{E}_{\sigma_{1:n}} \left( \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \ell(h, z_{i}) \right)$$

also satisfies bounded differences with constant 2c/n (swapping  $\sigma_i$  by  $\sigma'_i$  changes the value by  $\leq 2c/n$ ). With probability  $1-\delta$ ,

$$R(\ell \circ \mathcal{H} \circ S) \ge \mathbb{E}_{S'}(R(\ell \circ \mathcal{H} \circ S')) - c\sqrt{\frac{2\log(1/\delta)}{n}}.$$

So

$$\mathbb{E}_{S'}(R(\ell \circ \mathcal{H} \circ S')) \le R(\ell \circ \mathcal{H} \circ S) + c\sqrt{\frac{2\log(1/\delta)}{n}}.$$

Now set  $\delta = \delta'/2$ , with probability  $1 - \frac{\delta'}{2}$ ,

$$\mathbb{E}_{S'}(R(\ell \circ \mathcal{H} \circ S')) \leq R(\ell \circ \mathcal{H} \circ S) + c\sqrt{\frac{2\log(2/\delta')}{n}},$$

$$\sup_{h \in \mathcal{H}} (R(h) - \hat{R}_S(h)) \leq \mathbb{E}_{S'}(R(\ell \circ \mathcal{H} \circ S')) + c\sqrt{\frac{2\log(2/\delta)}{n}} \text{ (from part (1))}.$$

The result now follows by doing a union bound and combining the above results. With probability  $1 - \delta$ ,

$$\sup_{h \in \mathcal{H}} (R(h) - \hat{R}_S(h)) \le 2R(\ell \circ \mathcal{H} \circ S) + 3c\sqrt{\frac{2\log(2/\delta)}{n}}.$$

(3) Let  $h_S = \text{ERM}_{\mathcal{H}}(S)$ .

$$R(h_S) - R(h^*) = \underbrace{R(h_S) - \hat{R}_S(h_S)}_{\text{bounded by part (2)}} + \underbrace{\hat{R}_S(h_S) - \hat{R}_S(h^*)}_{\leq 0} + \underbrace{\hat{R}_S(h^*) - R(h^*)}_{\text{Hoeffding's}}.$$

With probability  $1 - \delta/2$ ,

$$\hat{R}_S(h^*) - R(h^*) \le c\sqrt{\frac{2\log(2/\delta)}{n}}.$$

$$\therefore R(h_S) - R(h^*) \le 2R(\ell \circ \mathcal{H} \circ S) + 4c\sqrt{\frac{2\log(4/\delta)}{n}}.$$

#### **Takeaways**

- Could be much better than VC bound: Rademacher complexity takes the data distribution into account, and could give tighter bounds than worst case VC bounds.
- Data-dependent bound. (3) in our theorem is a data-dependent bound, we use a training set S both for learning a hypothesis from  $\mathcal{H}$ , and for estimating its generalization error (we can check if we are overfitting)

#### 1.2 Rademacher calculus

Claim 3 (Translation and Scaling). Let  $A' = \{\rho a + v, a \in A\}$ . Then  $R(A') = \rho R(A)$ .

Can also show that



Figure 2:  $R(\{\text{convex hull of A}\}) = R(A)$ .

**Lemma 4** (Massart Lemma). Let  $A = \{v_1, \ldots, v_m\}$  be a finite set of vectors in  $\mathbb{R}^n$ . Let  $\overline{v} = \frac{1}{m} \sum_{i=1}^m v_i$ . Then

$$R(A) \le \max_{i} \|v_i - \overline{v}\|_2 \frac{\sqrt{2\log m}}{n}$$

*Proof.* Exercise. Hint: First, by translation invariance, we can take  $\overline{v} = 0$  without loss of generality. Then use the max of sub-Gaussian result from last time.

Note: This gives a bound for finite hypothesis classes.

**Lemma 5** (Contraction lemma). For each  $i \in [m]$ , let  $\phi_i : \mathbb{R} \to \mathbb{R}$  be a  $\rho$ -Lipschitz function i.e.  $|\phi_i(x) - \phi_i(y)| \le \rho |x - y| \ \forall \ x, y \in \mathbb{R}$ . For any  $a \in \mathbb{R}^n$  define  $\phi(a) \in \mathbb{R}^n$  as

$$\phi(a) = (\phi_1((a)_1), \dots, \phi_n((a)_n)).$$

For a set A, let  $\phi \circ A = \{\phi(a) : a \in A\}$ . Then

$$R(\phi \circ A) \le \rho R(A).$$

*Proof.* Refer to book.

### 1.3 Rademacher complexity of linear classes

•  $\mathcal{H}_1 = \{h_w(x) = \langle w, x \rangle\} : ||w||_1 \le B_1\}$ 

• 
$$\mathcal{H}_2 = \{h_w(x) = \langle w, x \rangle : ||w||_2 \le B_2\}$$

**Lemma 6** ( $\ell_2$  bounded linear predictor). Let  $S = (x_1, \ldots, x_n)$ . Define

$$H_2 \circ S = \{(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle) : ||w||_2 \leq B_2\}$$

Then

$$R(\mathcal{H}_2 \circ S) \le \frac{B_2 \max_i ||x_i||_2}{\sqrt{n}}$$

*Proof.* By Cauchy-Schwartz:  $\langle w, v \rangle \leq ||w||_2 ||v||_2$ .

$$\therefore nR(H_2 \circ S) = \mathbb{E}_{\sigma} \left[ \sup_{\mathcal{H}_2 \circ S} \sum_{i=1}^n \sigma_i a_i \right] \\
= \mathbb{E}_{\sigma} \left[ \sup_{w: \|w\|_2 \le B_2}, \sum_{i=1}^n \sigma_i \langle w, x_i \rangle \right] \\
= \mathbb{E}_{\sigma} \left[ \sup_{w: \|w\|_2 \le B_2} \langle w, \sum_{i=1}^n \sigma_i x_i \rangle \right] \\
\le B_2 \cdot \mathbb{E}_{\sigma} \left[ \left\| \sum_{i=1}^n \sigma_i x_i \right\|_2 \right]. \tag{1}$$

Using Jensen's,

$$\mathbb{E}_{\sigma} \left[ \left\| \sum_{i=1}^{n} \sigma_{i} x_{i} \right\|_{2} \right] = \mathbb{E}_{\sigma} \left[ \left( \left\| \sum_{i=1}^{n} \sigma_{i} x_{i} \right\|_{2}^{2} \right)^{1/2} \right] \leq \left( \mathbb{E}_{\sigma} \left[ \left\| \sum_{i=1}^{n} \sigma_{i} x_{i} \right\|_{2}^{2} \right] \right)^{1/2}$$

$$(2)$$

$$\mathbb{E}_{\sigma} \left[ \left\| \sum_{i=1}^{n} \sigma_{i} x_{i} \right\|_{2}^{2} \right] = \mathbb{E}_{\sigma} \left[ \sum_{i,j} \sigma_{i} \sigma_{j} \left\langle x_{i}, x_{j} \right\rangle \right]$$

Since  $\sigma_i$  are independent,

$$\mathbb{E}_{\sigma}[\sigma_i, \sigma_j] = 0 \quad \forall i \neq j$$

$$\implies \mathbb{E}_{\sigma} \left[ \left\| \sum_{i=1}^{n} \sigma_{i} x_{i} \right\|_{2}^{2} \right] = \sum_{i=1}^{n} \|x_{i}\|_{2}^{2} \le n \max_{i} \|x_{i}\|_{2}^{2}.$$
 (3)

The proof follows by combining (1), (2) and (3).

**Lemma 7** ( $\ell_1$  bounded linear model). Let  $S = (x_1, \ldots, x_n)$  where  $x_i \in \mathbb{R}^d \ \forall i \in [n]$  Then

$$R(H_1 \circ S) \le B_1 \max_i ||x_i||_{\infty} \sqrt{\frac{2\log(2d)}{n}}$$

*Proof.* By Holder's inequality  $\langle w,v \rangle = \|w\|_1 \, \|v\|_\infty$ . Therefore,

$$nR(H_1 \circ S) = \mathbb{E}_{\sigma} \left[ \sup_{a \in H_1 \circ S} \sum_{i=1}^n \sigma_i a_i \right]$$

$$= \mathbb{E}_{\sigma} \left[ \sup_{w: \|w\|_1 \le B_1} \sum_{i=1}^n \sigma_i \langle w_i, x_i \rangle \right]$$

$$= \mathbb{E}_{\sigma} \left[ \sup_{w: \|w\|_1 \le B_1} \langle w, \sum_{i=1}^n \sigma_i x_i \rangle \right]$$

$$\le B_1 \cdot \mathbb{E}_{\sigma} \left[ \left\| \sum_{i=1}^n \sigma_i x_i \right\|_{\infty} \right]$$

$$= B_1 \mathbb{E}_{\sigma} \left[ \max_{j \in [d]} \left| \sum_{i=1}^n \sigma_i (x_i)_j \right| \right].$$

Note that each term  $\sigma_i(x_i)_j$  is  $|(x_i)_j|$  sub-Gaussian. Since  $|(x_i)_j| \leq \max_i ||x_i||_{\infty}$ , each term  $\sigma_i(x_i)_j$  is  $\max_i ||x_i||_{\infty}$  sub-Gaussian. The sum  $\sum_{i=1}^n \sigma_i(x_i)_j$  is sub-Gaussian with parameter

$$\left(\sum_{i=1}^n \left(\max_i \|x_i\|_{\infty}\right)^2\right)^{1/2} \le \sqrt{n} \cdot \max_i \|x_i\|_{\infty}.$$

By bound for max of sub-Gaussian, including negations to take care of the absolute value function we have

$$nR(H_1 \circ S) \le B_1 \sqrt{n} \max_i ||x_i||_{\infty} \sqrt{2 \log(2d)}.$$