IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

)
) Group Art Unit: Unassigned
) Examiner: Unassigned
8. 19. 101 of
#2))

CLAIM FOR CONVENTION PRIORITY

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

The benefit of the filing date of the following prior foreign applications in the following foreign country is hereby requested, and the right of priority provided in 35 U.S.C. § 119 is hereby claimed:

Japanese Patent Application Nos. 2000-036547 and 2000-266964

Filed: February 15, 2000 and September 4, 2000

In support of this claim, enclosed are certified copies of said prior foreign applications. Said prior foreign applications were referred to in the oath or declaration. Acknowledgment of receipt of the certified copies is requested.

Respectfully submitted,

JURNS, DOANE, SWECKER & MATHIS, L.L.P.

Platon N. Mandros

Registration No. 22,124

Date: February 12, 2001

P.O. Box 1404 Alexandria, Virginia 22313-1404 (703) 836-6620

日本国特許庁

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2000年 2月15日

#2

出 願 番 号 Application Number:

特願2000-036547

出 願 人 Applicant (s):

富士写真フイルム株式会社

2000年11月17日

特 許 庁 長 官 Commissioner, Patent Office 及川耕

【書類名】

特許願

【整理番号】

FSP-00054

【提出日】

平成12年 2月15日

【あて先】

特許庁長官殿

【国際特許分類】

C09D 11/00

【発明者】

【住所又は居所】

神奈川県南足柄市中沼210番地 富士写真フイルム株

式会社内

【氏名】

山之内 淳一

【発明者】

【住所又は居所】

神奈川県南足柄市中沼210番地 富士写真フイルム株

式会社内

【氏名】

木村 桂三

【発明者】

【住所又は居所】

神奈川県南足柄市中沼210番地 富士写真フイルム株

式会社内

【氏名】

石塚 孝宏

【特許出願人】

【識別番号】

000005201

【氏名又は名称】

富士写真フイルム株式会社

【代理人】

【識別番号】

100079049

【弁理士】

【氏名又は名称】

中島 淳

【電話番号】

03-3357-5171

【選任した代理人】

【識別番号】

100084995

【弁理士】

【氏名又は名称】 加藤 和詳

【電話番号】

03-3357-5171

【選任した代理人】

【識別番号】

100085279

【弁理士】

【氏名又は名称】 西元 勝一

【電話番号】

03-3357-5171

【選任した代理人】

【識別番号】

100099025

【弁理士】

【氏名又は名称】

福田 浩志

【電話番号】

03-3357-5171

【手数料の表示】

【予納台帳番号】

006839

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】

9800120

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 着色微粒子分散物、インクジェット記録用インクおよびイン クジェット記録方法

【特許請求の範囲】

【請求項1】 ポリウレタン、ポリエステル、ポリアミド、ポリウレア及びポリカーボネートから選ばれる少なくとも1種のポリマーと、一般式(I)で表される油溶性染料とを含有する着色微粒子を水系媒体に分散してなる着色微粒子分散物。

一般式(I)

【化1】

(一般式(I)中、R¹は、水素原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{11}$ 、 $-SR^{12}$ 、 $-CO_2R^{13}$ 、 $-OCOR^{14}$ 、 $-NR^{15}R^{16}$ 、 $-CONR^{17}R^{18}$ 、 $-SO_2R^{19}$ 、 $-SO_2NR^{20}R^{21}$ 、 $-NR^{22}CONR^{23}R^{24}$ 、 $-NR^{25}CO_2R^{26}$ 、 $-COR^{27}$ 、 $-NR^{28}COR^{29}$ 又は $-NR^{30}SO_2R^{31}$ を表し、R¹¹、R¹²、R¹³、R¹⁴、R¹⁵、R¹⁶、R¹⁷、R¹⁸、R¹⁹、R²⁰、R²¹、R²²、R²³、R²⁴、R²⁵、R²⁶、R²⁷、R²⁸、R²⁹、R³⁰及びR³¹は、それぞれ独立に水素原子、脂肪族基又は芳香族基を表す。Aは、 $-NR^4R^5$ 又はヒドロキシ基を表し、R⁴及びR⁵は、それぞれ独立に水素原子、脂肪族基、芳香族基又は複素環基を表す。B¹は、 $-C(R^6)$ -又は-N =を表す。R²、R³、R⁶及びR⁷は、それぞれ独立に水素原子、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{51}$ 、 $-SR^{52}$ 、 $-CO_2R^{53}$ 、 $-OCOR^{54}$ 、 $-NR^{55}R^{56}$ 、 $-CONR^{57}R^{58}$ 、 $-SO_2R^{59}$ 、 $-SO_2NR^{60}R^{61}$ 、 $-NR^{62}CONR^{63}R^{64}$ 、 $-NR^{65}CO_2R^{66}$ 、 $-COR^{67}$ 、 $-NR^{68}COR^{69}$ 又は $-NR^{70}SO_2R^{71}$ を表し、R⁵¹、R⁵²、R⁵³、R⁵⁴、R⁵⁵、

 R^{56} 、 R^{57} 、 R^{58} 、 R^{59} 、 R^{60} 、 R^{61} 、 R^{62} 、 R^{63} 、 R^{64} 、 R^{65} 、 R^{66} 、 R^{67} 、 R^{68} 、 R^{69} 、 R^{70} 及び R^{71} は、それぞれ独立に水素原子、脂肪族基又は芳香族基を表す。 R^2 と R^3 とは、 R^3 と R^4 とは、 R^4 と R^5 とは、 R^5 と R^6 とは、及び、 R^6 と R^7 とは、互いに結合して環を形成してもよい。Cは、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{81}$ 、 $-SR^{82}$ 、 $-CO_2R^{83}$ 、 $-OCOR^{84}$ 、-N $R^{85}R^{86}$ 、 $-CONR^{87}R^{88}$ 、 $-SO_2R^{89}$ 、 $-SO_2NR^{90}R^{91}$ 、 $-NR^{92}CONR^{93}R^{94}$ 、 $-NR^{95}CO_2R^{96}$ 、 $-COR^{97}$ 、 $-NR^{98}COR^{99}$ 及び $-NR^{100}SO_2R^{101}$ の少なくとも1つで置換されていてもよい5員又は6員の含窒素複素環を形成する原子群を表し、該含窒素複素環は、更に別の環と縮合環を形成してもよい。 R^{81} 、 R^{82} 、 R^{83} 、 R^{84} 、 R^{85} 、 R^{86} 、 R^{87} 、 R^{88} 、 R^{89} 、 R^{90} 、 R^{91} 、 R^{92} 、 R^{93} 、 R^{94} 、 R^{95} 、 R^{96} 、 R^{97} 、 R^{98} 、 R^{99} 、 R^{100} 及び R^{101} は、それぞれ独立に水素原子、脂肪族基又は芳香族基を表す。)

【請求項2】 油溶性染料が一般式 (II)で表されることを特徴とする請求項1に記載の着色微粒子分散物。

一般式(II)

【化2】

(一般式 (II) 中、R¹は、水素原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{11}$ 、 $-SR^{12}$ 、 $-CO_2R^{13}$ 、 $-OCOR^{14}$ 、 $-NR^{15}R^{16}$ 、 $-CONR^{17}R^{18}$ 、 $-SO_2R^{19}$ 、 $-SO_2NR^{20}R^{21}$ 、 $-NR^{22}CONR^{23}R^{24}$ 、 $-NR^{25}CO_2R^{26}$ 、 $-COR^{27}$ 、 $-NR^{28}COR^{29}$ 又は $-NR^{30}SO_2R^{31}$ を表し、R¹¹、R¹²、R¹³、R¹⁴、R¹⁵、R¹⁶、R¹⁷、R¹⁸、R¹⁹、R²⁰、R²¹、R²²、R²³、R²⁴、R²⁵、R²⁶、R²⁷、R²⁸、R²⁹、R³⁰及びR³¹は、それぞれ独立に水素原子、脂肪族基又は芳香族基を表す。R²、R³、R⁶及びR⁷は、それぞれ水素原子、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{51}$ 、

 $-SR^{52}$ 、 $-CO_2R^{53}$ 、 $-OCOR^{54}$ 、 $-NR^{55}R^{56}$ 、 $-CONR^{57}R^{58}$ 、 $-SO_2R^{59}$ 、 $-SO_2NR^{60}R^{61}$ 、 $-NR^{62}CONR^{63}R^{64}$ 、 $-NR^{65}CO_2R^{66}$ 、 $-COR^{67}$ 、 $-NR^{68}COR^{69}$ 又は $-NR^{70}SO_2R^{71}$ を表し、 R^{51} 、 R^{52} 、 R^{53} 、 R^{54} 、 R^{55} 、 R^{56} 、 R^{57} 、 R^{58} 、 R^{59} 、 R^{60} 、 R^{61} 、 R^{62} 、 R^{63} 、 R^{64} 、 R^{65} 、 R^{66} 、 R^{67} 、 R^{68} 、 R^{69} 、 R^{70} 及び R^{71} は、それぞれ独立に水素原子、脂肪族基又は芳香族基を表す。 R^{4} 及び R^{5} は、それぞれ独立に一て(R^{8})=又は-N=を表し、 R^{8} は、水素原子、脂肪族基又は芳香族基を表し、 X 及び Y の一方は必ず-N=を表し、 X 及び Y が同時に-N=を表すことはない。)

【請求項3】 油溶性染料が一般式(III)で表されることを特徴とする請求項1に記載の着色微粒子分散物。

一般式(III)

【化3】

(一般式 (III) 中、R¹は、水素原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{11}$ 、 $-SR^{12}$ 、 $-CO_2R^{13}$ 、 $-OCOR^{14}$ 、 $-NR^{15}R^{16}$ 、 $-CONR^{17}R^{18}$ 、 $-SO_2R^{19}$ 、 $-SO_2NR^{20}R^{21}$ 、 $-NR^{22}CONR^{23}R^{24}$ 、 $-NR^{25}CO_2R^{26}$ 、 $-COR^{27}$ 、 $-NR^{28}COR^{29}$ 又は $-NR^{30}SO_2R^{31}$ を表し、R¹¹、R¹²、R¹³、R¹⁴、R¹⁵、R¹⁶、R¹⁷、R¹⁸、R¹⁹、R²⁰、R²¹、R²²、R²³、R²⁴、R²⁵、R²⁶、R²⁷、R²⁸、R²⁹、R³⁰及びR³¹は、それぞれ独立に水素原子、脂肪族基又は芳香族基を表す。R²、R³、R⁶及びR⁷は、それぞれ独立に水素原子、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{51}$ 、 $-SR^{52}$ 、 $-CO_2R^{53}$ 、 $-OCOR^{54}$ 、 $-NR^{55}R^{56}$ 、 $-CONR^{57}R^{58}$ 、 $-SO_2R^{59}$ 、 $-SO_2NR^{60}R^{61}$ 、 $-NR^{62}CONR^{63}R^{64}$ 、 $-NR^{65}CO_2R^{59}$

 R^{66} 、 $-COR^{67}$ 、 $-NR^{68}COR^{69}$ 又は $-NR^{70}SO_2R^{71}$ を表し、 R^{51} 、 R^5 2、 R^{53} 、 R^{54} 、 R^{55} 、 R^{56} 、 R^{57} 、 R^{58} 、 R^{59} 、 R^{60} 、 R^{61} 、 R^{62} 、 R^{63} 、 R^6 4、 R^{65} 、 R^{66} 、 R^{67} 、 R^{68} 、 R^{69} 、 R^{70} 及び R^{71} は、それぞれ独立に水素原子、脂肪族基又は芳香族基を表す。 R^4 及び R^5 は、それぞれ独立に水素原子、脂肪族基、芳香族基又は複素環基を表し、 R^8 は、水素原子、脂肪族基又は芳香族基を表す。)

【請求項4】 ポリウレタン、ポリエステル、ポリアミド、ポリウレア及びポリカーボネートから選ばれる少なくとも1種のポリマーが、0.01mmo1/g以上3.0mmo1/g以下の解離性基を有することを特徴とする請求項1から3までのいずれか1項に記載の着色微粒子分散物。

【請求項5】 解離性基がカルボキシル基及びスルホン酸基の少なくとも一方であることを特徴とする請求項4に記載の着色微粒子分散物。

【請求項6】 着色微粒子が、ポリウレタン、ポリエステル、ポリアミド、ポリウレア及びポリカーボネートから選ばれる少なくとも1種のポリマーと油溶性染料とを含有する有機溶媒相に水を添加すること、及び、水中に該有機溶媒相を投入すること、のいずれかにより、該有機溶剤相を乳化させることにより得られたことを特徴とする請求項1から5までのいずれか1項に記載の着色微粒子分散物。

【請求項7】 波長510~560nmの範囲内に最大吸収波長(λ max (nm))があり、該最大吸収波長(λ max (nm))における吸光度を1とした時、波長(λ max + 75 (nm))における吸光度が0.2以下であり、かつ波長(λ max - 75 (nm))における吸光度が0.4以下であることを特徴とする請求項1から6までのいずれか1項に記載の着色微粒子分散物。

【請求項8】 油溶性染料と、カルボキシル基及びスルホン酸基の少なくとも一方を解離性基として有するポリウレタン、ポリエステル、ポリアミド、ポリウレア及びポリカーボネートから選ばれる少なくとも1種のポリマーとを含有する着色微粒子を水系媒体に分散してなり、波長510~560nmの範囲内に最大吸収波長(λ max(nm))があり、該最大吸収波長(λ max(nm))における吸光度を1とした時、波長(λ max+75(nm))における吸光度

が 0.2以下であり、かつ波長(λ m a x -75 (n m))における吸光度が 0.4以下であることを特徴とする着色微粒子分散物。

【請求項9】 請求項1から8までのいずれか1項に記載の着色微粒子分散物を含有してなることを特徴とするインクジェット記録用インク。

【請求項10】 請求項9に記載のインクジェット記録用インクにエネルギーを供与して、前記インクの液滴を受像材料へ吐出させ、受像材料上に画像を記録することを特徴とするインクジェット記録方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は着色微粒子分散物、及び該着色微粒子分散物を含有してなるインクジェット記録用インクならびにそれを用いたインクジェット記録方法に関し、さらに詳しくは、色再現性が良好であり、筆記用水性インク、水性印刷インク、情報記録用インク等に好適な着色微粒子分散物、及びサーマル、圧電、電界又は音響インクジェット方式に好適なインクジェット記録用インクならびにインクジェット記録方法に関する。

[0002]

【従来の技術】

近年、コンピューターの普及に伴い、インクジェットプリンターがオフィスだけでなく家庭で紙、フィルム、布等に印字するために広く利用されている。インクジェット記録用インクとしては油性、水性、固体状インクが知られているが、製造・取り扱い性・臭気・安全性等の点から水性インクが主流となっている。

[0003]

しかし、前記水性インクの多くは分子状態で溶解する水溶性染料を用いている ため、透明性、色濃度が高いという利点があるものの染料が水溶性であるため、 耐水性が悪く、いわゆる普通紙に印字すると滲み(ブリード)を生じて著しく印 字品質が低下したり、また耐光性が悪いという問題がある。

[0004]

そこで、上記問題を解決する目的で顔料や分散染料を用いた水性インクが、例

えば特開昭56-157468号、特開平4-18468号、同8-18392 0号、同10-110126号、同10-195355号等の公報において提案 されている。

ところが、これらの水性インクの場合、耐水性はある程度向上するものの十分とは言い難く、該水性インク中の顔料や分散染料の分散物の保存安定性に欠け、インク吐出口での目詰まりを起こしやすいなどの問題がある。また、これらの水性インクの場合、一般に色相が十分でなく、特にマゼンタ成分の色相が十分でないため、色調の不十分さに基づく色再現性に問題がある。

[0005]

一方、特開昭58-45272号、特開平6-340835号、同7-268254号、同7-268257号、同7-268260号の各公報には、ポリウレタンやポリエステル分散物粒子に染料を内包させる方法が提案されている。しかしながら、これらに記載の分散物では上記と同様に色調の不十分さに基づく色再現性の問題があるばかりでなく、所望の濃度に染料を内包した時の染料内包ポリマー分散物の分散安定性や、耐水性が必ずしも十分でないという問題がある。

[0006]

他方、特開平9-59552号、同9-111163号、同9-255887号、同10-36728号には、ピラゾロトリアゾールに芳香族ジアミンをカップリングさせた色素を使用することにより、色調を改良できることが開示されている。

しかしながら、これらの場合、受像紙の種類によって色調が変化してしまう、 また耐水性も十分でないという問題がある。

[0007]

【発明が解決しようとする課題】

本発明は、前記の従来における諸問題を解決し、以下の目的を達成することを 課題とする。即ち、本発明は着色微粒子の分散安定性に優れ、紙依存性がなく、 任意に選択した紙に印字した際の発色性・色調(特にマゼンタの色再現)に優れ るとともに耐水性、耐光性にも優れ、筆記用水性インク、水性印刷インク、情報 記録用インク等に好適な着色微粒子分散物を提供することを目的とする。また、 サーマル、圧電、電界又は音響インクジェット方式に好適であり、ノズル等を用いて印字等を行った際、該ノズル先端で目詰まりを起すことがなく、紙依存性がなく、任意に選択した紙に印字した際に、発色性・色調(特にマゼンタの色再現)に優れ、耐水性、耐光性にも優れた画像を形成し得るインクジェット記録用インクおよびインクジェット記録方法を提供することを目的とする。

[0008]

【課題を解決するための手段】

前記課題を解決するための手段は、以下の通りである。即ち、

<1> ポリウレタン、ポリエステル、ポリアミド、ポリウレア及びポリカーボネートから選ばれる少なくとも1種のポリマーと、一般式(I)で表される油溶性染料とを含む着色微粒子を含有する着色微粒子分散物である。

一般式(I)

[0009]

【化4】

[0010]

一般式(I)中、R¹は、水素原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{11}$ 、 $-SR^{12}$ 、 $-CO_2R^{13}$ 、 $-OCOR^{14}$ 、 $-NR^{15}R^{16}$ 、 $-CONR^{17}R^{18}$ 、 $-SO_2R^{19}$ 、 $-SO_2NR^{20}R^{21}$ 、 $-NR^{22}CONR^{23}R^{24}$ 、 $-NR^{25}CO_2R^{26}$ 、 $-COR^{27}$ 、 $-NR^{28}COR^{29}$ 又は $-NR^{30}SO_2R^{31}$ を表し、 R^{11} 、 R^{12} 、 R^{13} 、 R^{14} 、 R^{15} 、 R^{16} 、 R^{17} 、 R^{18} 、 R^{19} 、 R^{20} 、 R^{21} 、 R^{22} 、 R^{23} 、 R^{24} 、 R^{25} 、 R^{26} 、 R^{27} 、 R^{28} 、 R^{29} 、 R^{30} 及び R^{31} は、それぞれ独立に水素原子、脂肪族基又は芳香族基を表す。Aは、 $-NR^4R^5$ 又はヒドロキシ基を表し、 R^4 及び R^5 は、それぞれ独立に水素原子、脂肪族基、芳香族基又は複素環基を表す。 R^4 及び R^5 は、それぞれ独立に水素原子、脂肪族基、芳香族基又は複素環基を表す。 R^4

-N =を表す。 R^2 、 R^3 、 R^6 及び R^7 は、それぞれ独立に水素原子、ハロゲン原 子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{51}$ 、 $-SR^{52}$ 、 $-CO_2$ R^{53} , $-OCOR^{54}$, $-NR^{55}R^{56}$, $-CONR^{57}R^{58}$, $-SO_2R^{59}$, $-SO_2$ $NR^{60}R^{61}$, $-NR^{62}CONR^{63}R^{64}$, $-NR^{65}CO_2R^{66}$, $-COR^{67}$, -N $R^{68}COR^{69}$ 又は $-NR^{70}SO_{2}R^{71}$ を表し、 R^{51} 、 R^{52} 、 R^{53} 、 R^{54} 、 R^{55} 、 R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{68} 、 R^{69} 、 R^{70} 及び R^{71} は、それぞれ独立に水素原子、脂肪族基又は芳香族基 を表す。 R^2 と R^3 とは、 R^3 と R^4 とは、 R^4 と R^5 とは、 R^5 と R^6 とは、及び、 R^6 6 と R^{7} とは、互いに結合して環を形成してもよい。Cは、脂肪族基、芳香族基、 複素環基、シアノ基、 $-OR^{81}$ 、 $-SR^{82}$ 、 $-CO_2R^{83}$ 、 $-OCOR^{84}$ 、-N $R^{85}R^{86}$, $-CONR^{87}R^{88}$, $-SO_2R^{89}$, $-SO_2NR^{90}R^{91}$, $-NR^{92}CO$ $NR^{93}R^{94}$ 、 $-NR^{95}CO_2R^{96}$ 、 $-COR^{97}$ 、 $-NR^{98}COR^{99}$ 及び $-NR^{100}$ SO_9R^{101} の少なくとも1つで置換されていてもよい5員又は6員の含窒素複素 環を形成する原子群を表し、該含窒素複素環は、更に別の環と縮合環を形成して \$\$\text{\$\ext{\$\exitint{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\exitingtinut{\$\ext{\$\ext{\$\exitin{\ext{\$\ext{\$\ext{\$\exitingtinintet{\$\ext{\$\exitin{\ext{\$\exitin{\ext{\$\ext{\$\exitin{\ext{\$\exitin}}}\ext{\$\ext{\$\exitin{\ext{\$\exitin{\ext{\$\exitin{\ext{\$\exitin}}\ext{\$\ext{\$\exitin{\ext{\$\exitin{\ext{\$\exitin{\ext{\$\exitin{\exitin{\ext{\$\exitin{\exitin}}}}\exitinn{\exitin{\exitin{\exitin{\exitin{\exiti 、 R^{92} 、 R^{93} 、 R^{94} 、 R^{95} 、 R^{96} 、 R^{97} 、 R^{98} 、 R^{99} 、 R^{100} 及び R^{101} は、それ ぞれ独立に水素原子、脂肪族基又は芳香族基を表す。

[0011]

<2> 油溶性染料が一般式(II)で表されることを特徴とする<1>に記載の 着色微粒子分散物である。

一般式(II)

[0012]

【化5】

一般式(II)中、 R^1 は、水素原子、脂肪族基、芳香族基、複素環基、シアノ 基、 $-OR^{11}$ 、 $-SR^{12}$ 、 $-CO_2R^{13}$ 、 $-OCOR^{14}$ 、 $-NR^{15}R^{16}$ 、-CO $NR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}R^{24}$, -N $R^{25}CO_2R^{26}$ 、 $-COR^{27}$ 、 $-NR^{28}COR^{29}$ 又は $-NR^{30}SO_2R^{31}$ を表し、 R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹, R²², R^{23} 、 R^{24} 、 R^{25} 、 R^{26} 、 R^{27} 、 R^{28} 、 R^{29} 、 R^{30} 及び R^{31} は、それぞれ独立に 水素原子、脂肪族基又は芳香族基を表す。 R^2 、 R^3 、 R^6 及び R^7 は、それぞれ水 素原子、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{51}$ 、 $-SR^{52}$, $-CO_2R^{53}$, $-OCOR^{54}$, $-NR^{55}R^{56}$, $-CONR^{57}R^{58}$, - SO_2R^{59} , $-SO_2NR^{60}R^{61}$, $-NR^{62}CONR^{63}R^{64}$, $-NR^{65}CO_2R^{66}$ 、 $-\text{COR}^{67}$ 、 $-\text{NR}^{68}$ COR 69 又は $-\text{NR}^{70}$ SO₂R 71 を表し、R 51 、R 52 、 R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} 、 R^{66} 、 R^{67} 、 R^{68} 、 R^{69} 、 R^{70} 及び R^{71} は、それぞれ独立に水素原子、脂 肪族基又は芳香族基を表す。 R^4 及び R^5 は、それぞれ独立に水素原子、脂肪族基 、芳香族基又は複素環基を表し、X及びYは、それぞれ独立に-C(R8)=Yは-N=を表し、 R^8 は、水素原子、脂肪族基又は芳香族基を表し、X及びYの 一方は必ず-N=を表し、X及びYが同時に-N=を表すことはない。

[0014]

<3> 油溶性染料が一般式 (III) で表されることを特徴とする<1>に記載の着色微粒子分散物である。

一般式(III)

[0015]

【化6】

[0016]

一般式 (III) 中、R¹は、水素原子、脂肪族基、芳香族基、複素環基、シアノ 基、 $-OR^{11}$ 、 $-SR^{12}$ 、 $-CO_2R^{13}$ 、 $-OCOR^{14}$ 、 $-NR^{15}R^{16}$ 、-CO $NR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}R^{24}$, -N $R^{25}CO_2R^{26}$ 、 $-COR^{27}$ 、 $-NR^{28}COR^{29}$ 又は $-NR^{30}SO_2R^{31}$ を表し、 R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹, R²², R^{23} 、 R^{24} 、 R^{25} 、 R^{26} 、 R^{27} 、 R^{28} 、 R^{29} 、 R^{30} 及び R^{31} は、それぞれ独立に 水素原子、脂肪族基又は芳香族基を表す。 R^2 、 R^3 、 R^6 及び R^7 は、それぞれ独 立に水素原子、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、-O R^{51} , $-SR^{52}$, $-CO_2R^{53}$, $-OCOR^{54}$, $-NR^{55}R^{56}$, $-CONR^{57}R^5$ 8 , $-SO_{2}R^{59}$, $-SO_{2}NR^{60}R^{61}$, $-NR^{62}CONR^{63}R^{64}$, $-NR^{65}CO_{2}$ R^{66} 、 $-COR^{67}$ 、 $-NR^{68}COR^{69}$ 又は $-NR^{70}SO_2R^{71}$ を表し、 R^{51} 、 R^5 ², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶¹, R⁶², R⁶³, R⁶ 4 、 65 、 66 、 67 、 68 、 69 、 70 及び 71 は、それぞれ独立に水素原子 、脂肪族基又は芳香族基を表す。 R^4 及び R^5 は、それぞれ独立に水素原子、脂肪 族基、芳香族基又は複素環基を表し、R⁸は、水素原子、脂肪族基又は芳香族基 を表す。

[0017]

<4> ポリウレタン、ポリエステル、ポリアミド、ポリウレア、ポリカーボネートから選ばれる少なくとも1種のポリマーが、0.01mmo1/g以上3.0mmo1/g以下の解離性基を有することを特徴とする<1>から<3>までのいずれかに記載の着色微粒子分散物である。

[0018]

<5> 解離性基がカルボキシル基及びスルホン酸基の少なくとも一方であることを特徴とする<4>に記載の着色微粒子分散物である。

[0019]

<6> 着色微粒子が、ポリウレタン、ポリエステル、ポリアミド、ポリウレア 及びポリカーボネートから選ばれる少なくとも1種のポリマーと油溶性染料とを 含有する有機溶媒相に水を添加すること、及び、水中に該有機溶媒相を投入する こと、のいずれかにより、該有機溶剤相を乳化させることにより得られたことを 特徴とする<1>から<5>までのいずれかに記載の着色微粒子分散物である。

[0020]

<7> 波長510~560nmの範囲内に最大吸収波長(λ max(nm))
があり、該最大吸収波長(λ max(nm))における吸光度を1とした時、波長(λ max+75(nm))における吸光度が0.2以下であり、かつ波長(λ max-75(nm))における吸光度が0.4以下であることを特徴とする
<1>から<6>までのいずれかに記載の着色微粒子分散物である。

[0021]

< 8 > 油溶性染料と、カルボキシル基及びスルホン酸基の少なくとも一方を解離性基として有するポリウレタン、ポリエステル、ポリアミド、ポリウレア及びポリカーボネートから選ばれる少なくとも1種のポリマーとを含有する着色微粒子を水系媒体に分散してなり、波長510~560nmの範囲内に最大吸収波長(λ max(nm))があり、該最大吸収波長(λ max(nm))における吸光度を1とした時、波長(λ max+75(nm))における吸光度が0.2以下であり、かつ波長(λ max-75(nm))における吸光度が0.4以下であることを特徴とする着色微粒子分散物である。

[0022]

<9> <1>から<8>までのいずれかに記載の着色微粒子分散物を含有してなることを特徴とするインクジェット記録用インクである。

[0023]

<10> <9>に記載のインクジェット記録用インクにエネルギーを供与して、前記インクの液滴を受像材料へ吐出させ、受像材料上に画像を記録することを特徴とするインクジェット記録方法である。

[0024]

【発明の実施の形態】

以下、本発明の着色微粒子分散物及、インクジェット記録用インク及びインクジェット記録方法について説明する。

[0025]

(着色微粒子分散物)

本発明の着色微粒子分散物は、油溶性染料と、ポリウレタン、ポリエステル、ポリアミド、ポリウレア及びポリカーボネートから選ばれる少なくとも1種のポリマーとを含む着色微粒子を水系媒体に分散してなる。

[0026]

一油溶性染料一

前記油溶性染料としては、前記一般式(I)で表される染料が好ましい。

前記一般式(I)中、R¹は、水素原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{11}$ 、 $-SR^{12}$ 、 $-CO_2R^{13}$ 、 $-OCOR^{14}$ 、 $-NR^{15}R^{16}$ 、 $-CONR^{17}R^{18}$ 、 $-SO_2R^{19}$ 、 $-SO_2NR^{20}R^{21}$ 、 $-NR^{22}CONR^{23}R^{24}$ 、 $-NR^{25}CO_2R^{26}$ 、 $-COR^{27}$ 、 $-NR^{28}COR^{29}$ 又は $-NR^{30}SO_2R^{31}$ を表す。

 R^{11} 、 R^{12} 、 R^{13} 、 R^{14} 、 R^{15} 、 R^{16} 、 R^{17} 、 R^{18} 、 R^{19} 、 R^{20} 、 R^{21} 、 R^{22} 、 R^{23} 、 R^{24} 、 R^{25} 、 R^{26} 、 R^{27} 、 R^{28} 、 R^{29} 、 R^{30} 及び R^{31} は、それぞれ水素原子、脂肪族基又は芳香族基を表す。

[0027]

これらの中でも、 R^1 は、水素原子、脂肪族基、芳香族基、 $-OR^{11}$ 、 $-SR^1$ 2、 $-NR^{15}R^{16}$ 、 $-SO_2R^{19}$ 、 $-NR^{22}CONR^{23}R^{24}$ 、 $-NR^{25}CO_2R^{26}$ 、 $-NR^{28}COR^{29}$ 又は $-NR^{30}SO_2R^{31}$ であることが好ましく、水素原子、脂肪族基、芳香族基、 $-OR^{11}$ 又は $NR^{15}R^{16}$ であることがより好ましく、水素原子、アルキル基、置換アルキル基、アリール基、置換アリール基、アルコキシ基、置換アルコキシ基、フェノキシ基、置換フェノキシ基、ジアルキルアミノ基、又は置換ジアルキルアミノ基であることが更に好ましく、水素原子、炭素原子数 $1\sim 10$ のアルキル基、炭素原子数 $1\sim 10$ の置換アルキル基、炭素原子数 $6\sim 10$ のでリール基又は炭素原子数 $1\sim 10$ の置換アリール基であることが特に好ましく、水素原子、炭素原子数 $1\sim 10$ 0のアリール基又は炭素原子数 $1\sim 100$ 0の置換アリール基であることが特に好ましく、水素原子、炭素原子数 $1\sim 100$ 0の置換アリール基であることが特に好ましく、水素原子、炭素原子数 $1\sim 100$ 0の置換アリール基であることが最も好ましい。

[0028]

前記脂肪族基は、アルキル基、置換アルキル基、アルケニル基、置換アルケニ

ル基、アルキニル基、置換アルキニル基、アラルキル基及び置換アラルキル基を 意味する。

[0029]

前記アルキル基は、直鎖状であってもよいし、分岐状であってもよく、また環を形成していてもよい。前記アルキル基の炭素原子数としては、 $1\sim20$ が好ましく、 $1\sim18$ がより好ましい。

前記置換アルキル基のアルキル部分は、前記アルキル基と同様である。

前記アルケニル基は、直鎖状であってもよいし、分岐状であってもよく、また環を形成していてもよい。前記アルケニル基の炭素原子数としては、2~20が好ましく、2~18がより好ましい。

前記置換アルケニル基のアルケニル部分は、前記アルケニル基と同様である。

[0031]

前記アルキニル基は、直鎖状であってもよいし、分岐状であってもよく、また環を形成していてもよい。前記アルキニル基の炭素原子数としては、2~20が好ましく、2~18がより好ましい。

前記置換アルキニル基のアルキニル部分は、前記アルキニル基と同様である

[0032]

前記アラルキル基及び前記置換アラルキル基のアルキル部分としては、前記アルキル基と同様である。

前記アラルキル基及び前記置換アラルキル基のアリール部分としては、フェニル又はナフチルが好ましく、フェニルが特に好ましい。

[0033]

前記置換アルキル基、前記置換アルケニル基、前記置換アルキニル基及び前記置換アラルキル基のアルキル部分の置換基としては、例えば、ハロゲン原子、シアノ、ニトロ、複素環基、 $-OR^{111}$ 、 $-SR^{112}$ 、 $-CO_2R^{113}$ 、 $-NR^{114}R^{1}$ 15 、 $-CONR^{116}R^{117}$ 、 $-SO_2R^{118}$ 及び $SO_2NR^{119}R^{120}$ などが挙げられる。 R^{111} 、 R^{112} 、 R^{113} 、 R^{114} 、 R^{115} 、 R^{116} 、 R^{117} 、 R^{118} 、 R^{119} 及び R^{120} R^{119} R^{119}

前記置換アラルキル基のアリール部分の置換基としては、例えば、ハロゲン原子、シアノ、ニトロ、脂肪族基、複素環基、 $-OR^{121}$ 、 $-SR^{122}$ 、 $-CO_2R^1$ 23 、 $-NR^{124}R^{125}$ 、 $-CONR^{126}R^{127}$ 、 $-SO_2R^{128}$ 及び $SO_2NR^{129}R^{13}$ 0 などが挙げられる。 R^{121} 、 R^{122} 、 R^{123} 、 R^{124} 、 R^{125} 、 R^{126} 、 R^{127} 、 R^{12} 8 、 R^{129} 及び R^{130} は、それぞれ水素原子、脂肪族基又は芳香族基を表す。

[0034]

前記芳香族基は、アリール基及び置換アリール基を意味する。前記アリール基 としては、フェニル又はナフチルが好ましく、フェニルが特に好ましい。前記置 換アリール基のアリール部分は、前記アリール基と同様である。

[0035]

前記複素環基は、5員又は6員の飽和若しくは不飽和の複素環を含むことが好ましく、これらの複素環には、更に脂肪族環、芳香族環又は他の複素環が縮合していてもよい。

前記複素環におけるヘテロ原子の例としては、B、N、O、S、Se及びTe が挙げられる。該ヘテロ原子の中でも、N、O及びSが好ましい。

前記複素環の中でも、炭素原子が遊離の原子価(一価)を有する(複素環基は 炭素原子において結合する)ことが好ましい。

[0036]

前記飽和の複素環の例としては、ピロリジン環、モルホリン環、2-ボラー1 ,3-ジオキソラン環及び1,3-チアゾリジン環が挙げられる。

前記不飽和の複素環の例としては、イミダゾール環、チアゾール環、ベンゾチ アゾール環、ベンゾオキサゾール環、ベンゾトリアゾール環、ベンゾセレナゾー ル環、ピリジン環、ピリミジン環及びキノリン環が挙げられる。

[0037]

前記複素環基は、置換基を有していてもよく、該置換基の例としては、ハロゲン原子、シアノ基、二トロ基、脂肪族基、芳香族基、複素環基、 $-OR^{131}$ 、 $-SR^{132}$ 、 $-CO_2R^{133}$ 、 $-NR^{134}R^{135}$ 、 $-CONR^{136}R^{137}$ 、 $-SO_2R^{138}$ 及び $SO_2NR^{139}R^{140}$ が挙げられる。 R^{131} 、 R^{132} 、 R^{133} 、 R^{134} 、 R^{135} 、 R^{136} 、 R^{137} 、 R^{138} 、 R^{139} 及び R^{140} は、それぞれ水素原子、脂肪族基又は芳香

族基を表す。

[0038]

前記一般式(I)中、Aは、 $-NR^4R^5$ 又はヒドロキシ基を表し、 $-NR^4R^5$ であることが好ましい。

[0039]

前記一般式(I)中、R 4 及びR 5 は、それぞれ水素原子、脂肪族基、芳香族基 又は複素環基を表し、水素原子又は脂肪族基であることが好ましく、水素原子、 アルキル基又は置換アルキル基であることがより好ましく、水素原子、炭素原子 数が $1\sim1$ 8のアルキル基又は炭素原子数が $1\sim1$ 8の置換アルキル基であるこ とが特に好ましい。

[0040]

前記一般式(I)中、 B^1 は、 $=C(R^6)$ ー又は=Nーを表す。 B^2 は、 $=C(R^7)$ = 又は=N=を表す。これらの中でも、 B^1 及び $=D^2$ が同時に=D=とならない場合が好ましく、 $=D^1$ が $=C(R^6)$ ーを表し、 $=D^2$ が $=D^2$ でのは、 $=D^2$ が $=D^2$ でのは、 $=D^2$ が $=D^2$ でのは、 $=D^2$ が $=D^2$ でのは、 $=D^2$ が $=D^2$ でのは、 $=D^2$ が $=D^2$ でのは、 $=D^2$ が $=D^2$ でのは、 $=D^2$

[0041]

 R^2 、 R^3 、 R^6 及び R^7 は、それぞれ水素原子、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{51}$ 、 $-SR^{52}$ 、 $-CO_2R^{53}$ 、 $-OCOR^{54}$ 、 $-NR^{55}R^{56}$ 、 $-CONR^{57}R^{58}$ 、 $-SO_2R^{59}$ 、 $-SO_2NR^{60}R^{61}$ 、 $-NR^{62}CONR^{63}R^{64}$ 、 $-NR^{65}CO_2R^{66}$ 、 $-COR^{67}$ 、 $-NR^{68}COR^{69}$ 又は $-NR^{70}SO_2R^{71}$ を表す。 R^{51} 、 R^{52} 、 R^{53} 、 R^{54} 、 R^{55} 、 R^{56} 、 R^{57} 、 R^{58} 、 R^{59} 、 R^{60} 、 R^{61} 、 R^{62} 、 R^{63} 、 R^{64} 、 R^{65} 、 R^{66} 、 R^{67} 、 R^{68} 、 R^{69} 、 R^{70} 及び R^{71} は、それぞれ水素原子、脂肪族基又は芳香族基を表す。

[0042]

これらの中でも、 R^2 及び R^7 は、それぞれ水素原子、ハロゲン原子、脂肪族基、 $-OR^{51}$ 、 $-NR^{62}CONR^{63}R^{64}$ 、 $-NR^{65}CO_2R^{66}$ 、 $-NR^{68}COR^{69}$ 又は $-NR^{70}SO_2R^{71}$ であることが好ましく、水素原子、フッ素原子、塩素原子、アルキル基、置換アルキル基、 $-NR^{62}CONR^{63}R^{64}$ 又は $NR^{68}COR^{69}$ であることがより好ましく、水素原子、塩素原子、塩素原子、塩素原子、塩素原子のコンド

ル基又は炭素原子数 1~10の置換アルキル基であることが更に好ましく、水素原子、炭素原子数 1~4のアルキル基、炭素原子数 1~4の置換アルキル基であることが最も好ましい。

また、 R^3 及び R^6 は、それぞれ水素原子、ハロゲン原子又は脂肪族基であることが好ましく、水素原子、フッ素原子、塩素原子、アルキル基又は置換アルキル基であることがより好ましく、水素原子、塩素原子、炭素原子数 $1\sim10$ のアルキル基、炭素原子数 $1\sim10$ の置換アルキル基であることが更に好ましく、水素原子、炭素原子数 $1\sim4$ のアルキル基であることが最も好ましい。

[0043]

 R^2 と R^3 とは、 R^3 と R^4 とは、 R^4 と R^5 とは、 R^5 と R^6 とは、及び、 R^6 と R^7 とは、互いに結合して環を形成してもよい。

R²とR³とが、又は、R⁶とR⁷とが、互いに結合して形成する環としては、5 員環又は6員環であることが好ましく、該環は、芳香族環(例、ベンゼン環)又 は不飽和複素環(例、ピリジン環、イミダゾール環、チアゾール環、ピリミジン 環、ピロール環、フラン環)であることが好ましい。

 R^3 と R^4 とが、又は、 R^5 と R^6 とが、互いに結合して形成する環としては、5 員環又は6 員環であることが好ましく、該環には、テトラヒドロキノリン環及びジヒドロインドール環が含まれる。

R⁴とR⁵とが互いに結合して形成する環としては、5員環又は6員環であることが好ましく、該環には、ピロリジン環、ピペリジン環及びモルホリン環が含まれる。

[0044]

式(I)中、Cは、脂肪族基、芳香族基、複素環基、シアノ基、 $-OR^{81}$ 、 $-SR^{82}$ 、 $-CO_2R^{83}$ 、 $-OCOR^{84}$ 、 $-NR^{85}R^{86}$ 、 $-CONR^{87}R^{88}$ 、 $-SO_2R^{89}$ 、 $-SO_2NR^{90}R^{91}$ 、 $-NR^{92}CONR^{93}R^{94}$ 、 $-NR^{95}CO_2R^{96}$ 、 $-COR^{97}$ 、 $-NR^{98}COR^{99}$ 及びNR $^{100}SO_2R^{101}$ の少なくとも1つで置換されていてもよい5員又は6員の含窒素複素環を形成する原子群を表す。該含窒素複素環は、更に別の環と縮合環を形成してもよい。 R^{81} 、 R^{82} 、 R^{83} 、 R^{84} 、

 R^{85} 、 R^{86} 、 R^{87} 、 R^{88} 、 R^{89} 、 R^{90} 、 R^{91} 、 R^{92} 、 R^{93} 、 R^{94} 、 R^{95} 、 R^{96} 、 R^{97} 、 R^{98} 、 R^{99} 、 R^{100} 及び R^{101} は、それぞれ水素原子、脂肪族基又は芳香族基を表す。

これらの中でも、Cは、5員の含窒素複素環を形成するのが好ましく、該5員の含窒素複素環には、イミダゾール環、トリアゾール環、テロラゾール環が含まれる。

[0045]

本発明においては、前記一般式(I)で表される化合物の中でも、前記一般式(II)で表される化合物が特に好ましい。

[0046]

前記一般式 (II) 中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 及び R^7 は、前記式 (I) におけるのと同義である。

X及びYは、それぞれ-C(R⁸)=Yは-N=を表す。X及びYの一方は必ず-N=を表し、X及びYが同時に-N=を表すことはない。

 R^8 は、水素原子、脂肪族基又は芳香族基を表し、水素原子、アルキル基、置換アルキル基、アリール基又は置換アリール基であることが好ましく、水素原子、炭素数 $1 \sim 150$ の置換アルキル基、炭素数 $1 \sim 150$ の置換アリール基であることがより好ましく、炭素数 $1 \sim 100$ の置換アリール基であることが更に好ましい。 R^8 は、 Xと Y とが同時に -C (R^8) = を表すときは、互いに結合して環を形成してもよく、該環としては 6 員環であることが好ましく、芳香族環(例えばベンゼン環)がより好ましい。

[0047]

本発明においては、前記一般式(II)で表される化合物の中でも、Xが-N=を表し、かつYが-C(R⁸)=を表す場合、即ち、前記一般式(III)で表される化合物が特に好ましい。

[0048]

前記一般式 (III) 中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 及び R^8 は、前記式 (II) におけるのと同義である。

[0049]

以下、前記一般式(I)で表される化合物(アゾメチン色素)の具体例(I-1)~I-78))を列挙する。

[0050]

【化7】

I - 4)

$$C_2H_5$$
 N
 N
 N
 $C_{12}H_{25}(n)$
 $C_{12}H_{25}(n)$
 $C_{12}H_{25}(n)$
 $C_{12}H_{25}(n)$
 $C_{12}H_{25}(n)$

[0051]

【化8】

$$I - 6)$$

$$CF_3$$

$$N(C_4H_8OH)_2$$

$$OC_8H_{17}(n)$$

$$NHSO_2$$

$$NHSO_2$$

$$NHSO_2$$

$$NHSO_2$$

$$NHSO_2$$

[0052]

[0053]

【化10】

$$\begin{array}{c|c} I-1 \ 4 \) \\ \\ (n)C_8H_{17}S \\ \\ N \\ \\ N \\ \\ N \\ \\ N \\ \\ O(CH_2)_7CO_2H \\ \\ NHSO_2 \\ \end{array}$$

[0054]

【化11】

[0055]

【化12】

[0056]

【化13】

[0057]

【化14】

$$\begin{array}{c|c} I - 3 \ 0 \) \\ \hline N \\ N \\ N \\ N \\ \end{array} \begin{array}{c} N \\ N \\ N \\ \end{array} \begin{array}{c} N \\ N \\ N \\ \end{array} \begin{array}{c} CO_2 - C_{14} H_{29}(n) \\ \end{array}$$

[0058]

【化15】

[0059]

【化16】

[0060]

【化17】

[0061]

【化18】

【化19】

[0063]

【化20】

[0064]

【化21】

$$\begin{array}{c|c} & Cl \\ & CH_3 & N & -N(C_5H_{11}(n))_2 \\ & N & N & CH_3 & O(CH_2)_2O & -OCH_3 \\ & & NHSO_2 & NHSO_2 & -NHSO_2 & -NHSO$$

[0065]

【化22】

$$\begin{array}{c|c} I-6\ 3\) \\ \hline \\ -SO_2 \\ N \\ N \\ N \\ N \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 \\ CH_$$

[0066]

【化23】

$$I-65)$$

$$N+N$$

$$N+SO_{2}$$

$$CO_{2}H$$

$$I-66)$$

$$CH_{3}S$$

$$N+N$$

$$N+N$$

$$N+CCHO$$

$$N+CCHO$$

$$\begin{array}{c|c} I-67) \\ & & \\ &$$

【化24】

[0068]

【化25】

$$\begin{array}{c|c} I-76) & C_2H_5 \\ \hline \\ O & N \\ \hline \\ O & C_2H_5 \\ \hline \\ NHC-CHO \\ \hline \\ (CH_2)_2NHSO_2 \\ \hline \\ O & C_2H_5 \\ \hline \\ O & C_2H_5 \\ \hline \end{array}$$

[0069]

【化26】

$$I - 7 7)$$
 H_3C N N N N N N N N N

$$I - 78$$
) C_2H_5O $N - OC_{18}H_{37}(n)$

[0070]

前記式(I)で表される化合物(アゾメチン色素)は、例えば、特開平4-126772号、特公平7-94180号の各公報に記載された方法に従って合成することができる。

また、前記式(I)において、Xが-N=を表し、かつYが-C(R⁸)=を表す化合物、即ち前記式(III)で表される化合物は、例えば、特公平7-14941号、特公平7-100705号、特開平3-184980号の各公報に記載された方法に従って合成することができる。また、式(I)において、Xが-C(R⁸)=を表し、かつYが-N=を表す化合物は、例えば、特開平5-127328号、特開平3-15842号の各公報、米国特許第3,725,067号明細書に記載された方法に従って合成することができる。

[0071]

ーポリマーー

本発明においては、着色微粒子は、ポリウレタン、ポリエステル、ポリアミド、ポリウレア及びポリカーボネートから選ばれる少なくとも1つのポリマー(以下、「本発明のポリマー」という場合がある)を含有する。2以上のポリマーを用いてもよい。前記ポリマーとしては、従来公知のものが挙げられ、水不溶性型、水分散(自己乳化)型、水溶性型のいずれのものであってもよい。中でも、着色微粒子の製造容易性の点で水不溶性型および水分散型のポリマーが好ましく、

分散安定性の点で水分散型ポリマーが特に好ましい。

[0072]

前記水分散型のポリマーとしては、イオン解離型のポリマー、非イオン性分散 性基含有型のポリマー、あるいはこれらの混合型のポリマーのいずれであっても よい。

前記イオン解離型のポリマーとしては、三級アミノ基などのカチオン性の解離基を有するポリマーや、カルボン酸、スルホン酸などのアニオン性の解離基を含有するポリマーが挙げられる。

前記非イオン性分散性基含有型のポリマーとしては、ポリエチレンオキシ基などの非イオン性分散性基を含有するポリマーが挙げられる。

[0073]

これらの中でも、着色微粒子の分散安定性の点で、アニオン性の解離性基を含有するイオン解離型のポリマー、非イオン性分散性基含有型のポリマー、およびこれらの混合型のポリマーが好ましい。

[0074]

以下に本発明に使用可能な各ポリマーについて説明する。

ーーポリウレタンーー

前記ポリウレタンは基本的にジオール化合物とジイソシアネート化合物を原料 とした重付加反応により合成できる。

前記ジオール化合物の具体例としては、非解離性のジオールとしてエチレングリコール、1,2ープロパンジオール、1,3ープロパンジオール、1,2ープタンジオール、1,3ープタンジオール、2,2ージメチルー1,3ープロパンジオール、1,2ーペンタンジオール、1,4ーペンタンジオール、1,5ーペンタンジオール、2,4ーペンタンジオール、3,3ージメチルー1,2ープタンジオール、2ーエチルー2ーメチルー1,3ープロパンジオール、1,2ーヘキサンジオール、1,5ーヘキサンジオール、1,6ーヘキサンジオール、2,5ーヘキサンジオール、2ーメチルー2,4ーペンタンジオール、2,2ージエチルー1,3ープロパンジオール、2,4ージメチルー2,4ーペンタンジオール、1,7ーヘプタンジオール、2ーメチルー2ープ

ロピルー1,3ープロパンジオール、2,5ージメチルー2,5ーへキサンジオール、2ーエチルー1,3ーへキサンジオール、1,2ーオクタンジオール、1,8ーオクタンジオール、2,2,4ートリメチルー1,3ーペンタンジオール、1,4ーシクロヘキサンジメタノール、ハイドロキノン、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリエチレングリコール(平均分子量=200,300,400,600,1000,1500,4000)、ポリプロピレングリコール(平均分子量=200,400,1000)、ポリエステルポリオール、4,4'ージヒドロキシージフェニルー2,2ープロパン、4,4'ージヒドロキシフェニルスルホン等が挙げられる。

[0075]

前記ポリウレタンとしては、着色微粒子の製造性や分散安定性が向上できる点で、解離性基を有するポリウレタンが好ましい。前記解離性基としては、カルボキシル基、スルホン酸基、硫酸モノエステル基、一〇P〇(〇H)2、スルフィン酸基、またはこれらの塩(例えば、Na,K等のアルカリ金属塩、あるいはアンモニア、ジメチルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、トリメチルアミン等のアンモニウム塩)のようなアニオン性基、あるいは一級、二級、三級アミン、四級アンモニウム塩の如きカチオン性基がずられ、中でもアニオン性基が好ましく、特にカルボキシル基が好ましい。

[0076]

前記解離性基は、ポリウレタンの合成時に、解離性基を含有するジオールを使用することによって、ポリマー主鎖からの置換基としてポリウレタンに導入することができる。使用可能なアニオン性基を有するジオールとしては、2,2ービス(ヒドロキシメチル)プロピオン酸、2,2ービス(ヒドロキシメチル)ブタン酸、2,5,6ートリメトキシー3,4ージヒドロキシヘキサン酸、2,3ージヒドロキシー4,5ージメトキシペンタン酸、2,4ージ(2ーヒドロキシ)エチルオキシカルボニルベンゼンスルホン酸及びこれらの塩が挙げられるが、これらに限定されるものではない。

[0077]

前記ポリウレタンを構成するジイソシアネートとしては、メチレンジイソシアネート、エチレンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、1,4ーシクロヘキサンジイソシアネート、2,4ートルエンジイソシアネート、2,6ートルエンジイソシアネート、1,3ーキシリレンジイソシアネート、1,5ーナフタレンジイソシアネート,mーフェニレンジイソシアネート、pーフェニレンジイソシアネート、3,3'ージメチルー4,4'ージフェニルメタンジイソシアネート、3,3'ージメチルビフェニレンジイソシアネート、4,4'ービフェニレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、メチレンビス(4ーシクロヘキシルイソシアネート)等が好ましい。

[0078]

前記ポリウレタンの合成に使用可能なジオール化合物、ジイソシアネート化合物は、各々1種を単独で使用していもよいし、種々の目的(例えば、ポリマーのガラス転移温度(Tg)の調整や溶解性、染料との相溶性、分散物の安定性)に応じて、各々2種以上を任意の割合で使用することもできる。

[0079]

ーーポリエステルーー

本発明に使用可能なポリエステルは、基本的にジオール化合物とジカルボン酸化合物の脱水縮合によって合成できる。

[0080]

前記ジカルボン酸化合物は、ジオール化合物と重縮合反応を行う際には、ジカ

ルボン酸のアルキルエステル(例えば、ジメチルエステル)およびジカルボン酸の酸塩化物の形態で用いてもよいし、無水マレイン酸、無水コハク酸及び無水フタル酸のように酸無水物の形態で用いてもよい。

[0081]

また、本発明のポリエステルには、カルボン酸以外にスルホン酸基、硫酸モノエステル基、一〇P〇(〇H)2、スルフィン酸基、またはこれらの塩(例えば、Na,K等のアルカリ金属塩、あるいはアンモニア、ジメチルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、トリメチルアミン等のアンモニウム塩)のようなアニオン性基、あるいは一級、二級、三級アミン、四級アンモニウム塩の如きカチオン性基のような解離性基を有するジカルボン酸化合物を用いることができる。前記解離性基としてはアニオン性基が好ましく、特にスルホン酸基が好ましい。

[0082]

前記スルホン酸基を有するジカルボン酸、ジオール原料の好ましい例としては、スルホフタル酸類(3-スルホフタル酸、4-スルホフタル酸、4-スルホイソフタル酸、5-スルホイソフタル酸、2-スルホテレフタル酸)、スルホコハク酸、スルホナフタレンジカルボン酸類(4-スルホー1,8-ナフタレンジカルボン酸、7-スルホー1,5-ナフタレンジカルボン酸等)、2,4-ジ(2-ヒドロキシ)エチルオキシカルボニルベンゼンスルホン酸及びこれらの塩を挙げることができる。

[0083]

前記ジオール化合物としては、上記ポリウレタンにおいて例示したジオール類 と同様の化合物を用いることができる。

[0084]

ポリエステルの代表的な合成法は、前記ジオール化合物と前記ジカルボン酸もしくはその誘導体の縮合反応であるが、ヒドロキシカルボン酸(例えば、12-ヒドロキシステアリン酸)を縮合することによっても製造することができ、この方法により製造されたポリエステルを使用することもできる。さらに、環状エーテルとラクトン類の開環重合法(講座重合反応論6 開環重合(I)三枝武夫著

(化学同人、1971年)に詳しい)等の方法で得られるポリエステルも、本発明に用いることができる。

[0085]

前記ポリエステルの合成に使用されるジオール化合物、ジカルボン酸類、およびヒドロキシカルボン酸化合物は、各々1種を単独で用いてもよいし、種々の目的(例えば、ポリマーのガラス転移温度(Tg)の調整や溶解性、染料との相溶性、分散物の安定性)に応じて、各々2種以上を任意の割合で混合して用いることもできる。

[0086]

ーーポリアミドーー

本発明に使用可能なポリアミドは、ジアミン化合物とジカルボン酸化合物の重縮合、アミノカルボン酸化合物の重縮合、もしくはラクタム類の開環重合等によって得ることができる。

前記ジアミン化合物としては、エチレンジアミン、1,3ープロパンジアミン、1,2ープロパンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、οーフェニレンジアミン、mーフェニレンジアミン、pーフェニレンジアミン、ピペラジン、2,5ージメチルピペラジン、4,4'ージアミノジフェニルエーテル、3,3'ージアミノジフェニルスルホン、キシリレンジアミン等を挙げることができ、アミノカルボン酸としてはグリシン、アラニン、フェニルアラニン、ωーアミノヘキサン酸、ωーアミノデカン酸、ωーアミノウンデカン酸、アントラニル酸が挙げられる。また、開環重合に用い得る単量体としてはεーカプロラクタム、アゼチジノン、ピロリドン等を挙げることができる。

[0087]

前記ジカルボン酸化合物としては、前記ポリエステルにおいて例示したジカルボン酸類と同様の化合物を用いることができる。

[0088]

前記ポリアミドの合成に使用されるジアミン化合物、ジカルボン酸類、および アミノカルボン酸化合物は、各々1種を単独で用いてもよいし、種々の目的(例 えば、ポリマーのガラス転移温度(Tg)の調整や溶解性、染料との相溶性、分 散物の安定性)に応じて、各々2種以上を任意の割合で混合して用いることもできる。

[0089]

ーーポリウレアーー

本発明に使用可能なポリウレアは、基本的にジアミン化合物とジイソシアネート化合物の重付加、もしくはジアミン化合物と尿素の脱アンモニア反応によって得ることができる。前記ジアミン化合物としては、前記ポリアミドにおいて例示したジアミン類と同様の化合物を用いることができる。前記ジイソシアネート化合物としては、前記ポリウレタンにおいて例示したジイソシアネート類と同様の化合物を用いることができる。

[0090]

前記ポリウレアの合成に使用されるジアミン化合物、ジイソシアネート化合物等の原料は、各々1種を単独で用いてもよいし、種々の目的(例えば、ポリマーのガラス転移温度(Tg)の調整や溶解性、染料との相溶性、分散物の安定性)に応じて、各々2種以上を任意の割合で混合して用いることもできる。

[0091]

ーーポリカーボネートーー

本発明に使用可能なポリカーボネートは、基本的にジオール化合物とホスゲンもしくは炭酸エステル誘導体(例えば、ジフェニルカーボネート等の芳香族エステル)を反応させることにより得ることができる。前記ジオール化合物としては、前記ポリウレタンにおいて例示したジオール類と同様の化合物を用いることができる。

[0092]

前記ポリカーボネートの合成に使用されるジオール化合物等の原料は、各々1種を単独で用いてもよいし、種々の目的(例えば、ポリマーのガラス転移温度(Tg)の調整や溶解性、染料との相溶性、分散物の安定性)に応じて、各々2種以上を任意の割合で混合して用いることもできる。

[0093]

本発明においては、前記各ポリマーの中でも、解離性基を有する各ポリマーが

好ましく、前記解離性基として、カルボキシル基およびスルホン酸基の少なくと も一方を有する各ポリマーがより好ましく、前記解離性基として、カルボキシル 基を有する各ポリマーが特に好ましい。

[0094]

前記解離性基は、種々の方法で前記各ポリマーに導入することができる。例えば、前記油溶性ポリマーとしてポリウレタンを使用する場合、ポリウレタンの合成時に、解離性基を含有するジオールを使用して、ポリマー主鎖からの置換基として導入することができる。また、前記油溶性ポリマーとしてポリエステルを使用する場合、ポリエステルの末端にジカルボン酸の未反応末端として残存させることによって導入することができる。さらに、前記各ポリマーを重合により製造後に、末端に残存する一〇日基、アミノ基等の反応性基に対し、酸無水物(例えば無水マレイン酸)等の反応によって解離性基を導入することもできる。

[0095]

本発明のポリマーにおける解離性基の含有量は、0.1~3 mm o 1/g が好ましく、0.2~2 mm o 1/g がより好ましい。尚、前記解離性基の含量が少な過ぎると、ポリマーの自己乳化性が小さくなり、多過ぎると、水溶性が高くなり、染料の分散に適さなくなる傾向がある。

[0096]

前記本発明のポリマーの中でも、ポリマーと油溶性染料との相溶性やポリマーの分散安定性を向上させ得る解離性基を導入し易い等の点で、ポリウレタンおよびポリエステルが好ましい。即ち、本発明のポリマーとしては、解離性基を有するポリウレタンおよびポリエステルが好ましく、解離性基としてカルボキシル基およびスルホン酸基の少なくとも一方を有するポリウレタンおよびポリエステルが特に好ましい。

[0097]

本発明のポリマーの合成に関しては、「高分子実験学(第5巻)重縮合と重付加(神原周編集、共立出版(株)発行(1980))」、「ポリエステル樹脂ハンドブック(滝山栄一郎著、日刊工業新聞社発行(1988))」、「ポリウレタン樹脂ハンドブック(岩田敬治編、日刊工業新聞社発行(1987))」、「

高分子合成の実験法(大津隆行・木下雅悦 共著、化学同人発行(1972))」、特公昭33-1141号、同37-7641号、同39-5989号、同40-27349号、同42-5118号、同42-24194号、同45-10957号、同48-25435号、同49-36942号、同52-81344号、特開昭56-88454号、特開平6-340835号等の各公報に記載されている方法を用いることができる。

[0098]

本発明のポリマーの具体例(P-1~38)について原料モノマーの名称を用いて以下に例示する(但し、P-23およびP-34以降はポリマーの形で例示する)が、本発明に用いられるポリマーは、以下の具体例に限定されるものではない。尚、以下の各ポリマーにおける酸性基はすべて非解離型で表記する。またポリエステル、ポリアミド等縮合反応により生成するポリマーについては、構成成分は原料の如何に関わらず、すべてジカルボン酸、ジオール、ジアミン、ヒドロキシカルボン酸、アミノカルボン酸等で表記する。また、括弧内の比は、各成分のモル百分率比を意味する。

[0099]

- P-3) トルエンジイソシアネート/ヘキサメチレンジイソシアネート/エチレングリコール/ポリエチレングリコール (Mw=600) / 1, 4- ブタンジオール (40/10/20/10/20)
- P-4) 1,5-ナフチレンジイソシアネート/ヘキサメチレンジイソシアネート/ジエチレングリコール/1,6-ヘキサンジオール(25/25/35/15)

[0100]

P-5) 4, 4'-ジフェニルメタンジイソシアネート/ヘキサメチレンジイソシアネート/テトラエチレングリコール/エチレングリコール/2, 2-ビス

(ヒドロキシメチル) プロピオン酸(40/10/20/20/10)

- P-6) 4, 4'-ジフェニルメタンジイソシアネート/ヘキサメチレンジイソシアネート/ブタンジオール/ポリエチレングリコール(Mw=400)/2, 2-ビス(ヒドロキシメチル)プロピオン酸(40/10/20/10/20)
- P-7) 1,5-ナフチレンジイソシアネート/ブタンジオール/4,4'-ジヒドロキシージフェニルー2,2'ープロパン/ポリプロピレングリコール(Mw=400)/2,2-ビス(ヒドロキシメチル)プロピオン酸(50/20/5/10/15)
- P-8) 1,5-ナフチレンジイソシアネート/ヘキサメチレンジイソシアネート/2,2-ビス(ヒドロキシメチル)ブタン酸/ポリブチレンオキシド(Mw=500)(35/15/25/25)
- P-9) イソホロンジイソシアネート/ジエチレングリコール/ネオペンチルグリコール/2, 2-ビス(ヒドロキシメチル)プロピオン酸(50/20/20/10)
- P-10) トルエンジイソシアネート/2, 2-ビス(ヒドロキシメチル)ブタン酸/ポリエチレングリコール(Mw=1000)/シクロヘキサンジメタノール(50/10/10/30)
- P-11) ジフェニルメタンジイソシアネート/ヘキサメチレンジイソシアネート/テトラエチレングリコール/ブタンジオール/2,4-ジ(2-ヒドロキシ) エチルオキシカルボニルベンゼンスルホン酸(40/10/10/33/7)
- P-12) ジフェニルメタンジイソシアネート/ヘキサメチレンジイソシアネート/ブタンジオール/エチレングリコール/2,2-ビス(ヒドロキシメチル)ブタン酸/2,4-ジ(2-ヒドロキシ)エチルオキシカルボニルベンゼンスルホン酸(40/10/20/15/10/5)

[0101]

P-13) テレフタル酸/イソフタル酸/シクロヘキサンジメタノール/1, 4-ブタンジオール/エチレングリコール(25/25/25/15/10)

P-14) テレフタル酸/イソフタル酸/4, 4'-ジヒドロキシージフェニルー2, 2-プロパン/テトラエチレングリコール/エチレングリコール(30/20/20/15/15)

P-15) テレフタル酸/イソフタル酸/シクロヘキサンジメタノール/ネオペンチルグリコール/ジエチレングリコール (20/30/25/15/10) P-16) テレフタル酸/イソフタル酸/4,4'ーベンゼンジメタノール/ジエチレングリコール/ネオペンチルグリコール (25/25/25/15/10)

[0102]

P-17) テレフタル酸/イソフタル酸/5-スルホイソフタル酸/エチレン グリコール/ネオペンチルグリコール (24/24/2/25/25)

P-18) テレフタル酸/イソフタル酸/5-スルホイソフタル酸/シクロヘキサンジメタノール/1, 4-ブタンジオール/エチレングリコール(22/22) 2/6/25/15/10)

P-19) イソフタル酸/5-スルホイソフタル酸/シクロヘキサンジメタノ -ル/エチレングリコール (40/10/40/10)

P-20) シクロヘキサンジカルボン酸/イソフタル酸/2, 4-ジ(2-ヒドロキシ)エチルオキシカルボニルベンゼンスルホン酸/シクロヘキサンジメタノール/エチレングリコール(30/20/5/25/20)

[0103]

- P-21) 11-アミノウンデカン酸(100)
- P-22) 12-アミノドデカン酸(100)
- P-23) ポリ(12-アミノドデカン酸)と無水マレイン酸との反応物
- P-24) 11-アミノウンデカン酸/7-アミノヘプタン酸(50/50)
- P-25) ヘキサメチレンジアミン/アジピン酸(50/50)
- P-26) テトラメチレンジアミン/アジピン酸(50/50)
- P-27) ヘキサメチレンジアミン/セバシン酸(50/50)
- P-28) N, N'-ジメチルエチレンジアミン/アジピン酸/シクロヘキサンジカルボン酸(<math>50/20/30)

[0104]

P-29) トルエンジイソシアネート/4, 4'ージフェニルメタンジイソシアネート/ヘキサメチレンジアミン (30/20/50)

P-30) ノナメチレンジアミン/尿素

P-31) ヘキサメチレンジアミン/ノナメチレンジアミン/尿素(25/25/50)

P-32) トルエンジイソシアネート/ヘキサメチレンジアミン/2, 2-ビス(ヒドロキシメチル)プロピオン酸(50/40/10)

P-33) 11-アミノウンデカン酸/ヘキサメチレンジアミン/尿素(33/33/33)

[0105]

【化27】

$$P-3.6$$
 $\left\{O(CH_2)_{10}-OC\right\}_n$

[0106]

本発明のポリマーの分子量(Mw)は、通常、1000~20000であるのが好ましく、2000~50000であるのがより好ましい。分子量が1000未満であると、安定な着色微粒子分散物を得るのが難しくなる傾向にあり、20000より大きい場合、有機溶媒への溶解性が悪くなったり、有機溶媒溶液の粘度が増加して分散し難くなる傾向がある。

[0107]

一着色微粒子分散物の製造ー

本発明の着色微粒子分散物は、前記油溶性染料と本発明のポリマーとを、水系

媒体(少なくとも水を含有する液)中に着色微粒子の形で分散させることによって製造することができる。具体的には、例えば、予め前記ポリマーのラテックスを調製し、該ラテックスに前記油溶性染料を含浸させる方法、あるいは共乳化分散法等が挙げられる。

これらの中でも、前記共乳化分散法が好ましく、該共乳化分散法としては、本発明のポリマーと前記油溶性染料とを含有する有機溶媒相に水を添加すること、および水中に該有機溶媒相を添加すること、のいずれかにより、該有機溶媒を乳化させ微粒子化させる方法が好適に挙げられる。

[0108]

まず、予め前記ポリマーラテックスを作製し、これに前記油溶性染料を含浸する方法について説明する。尚、前記ラテックスとは、水に不溶なポリマーが微細な粒子として水系媒体中に分散したものを意味する。前記分散の状態としては、本発明のポリマーが前記水系媒体中に乳化されているもの、ミセル分散されたもの、あるいはポリマー分子中に部分的に親水的な構造を有し、分子鎖自身が分子状分散したもの等のいずれであってもよい。

[0109]

この方法の第一の例は、ポリマーラテックスを調製する第一の工程と、有機溶剤に前記油溶性染料を溶解した染料溶液を調製する第二の工程と、前記染料溶液と前記ポリマーラテックスを混合し、着色微粒子分散物を調製する第三工程とを含む。

この方法の第二の例は、ポリマーラテックスを調製する第一の工程と、有機溶剤に前記油溶性染料を溶解した染料溶液を調製し、この染料溶液と少なくとも水を含む液とを混合して染料微粒子分散液を調製する第二の工程と、前記ポリマーラテックスと前記染料微粒子分散液とを混合し、着色微粒子分散物を調製する第三工程とを含む。

この方法の第三の例としては、特開昭55-139471号公報に記載の方法が挙げられる。

[0110]

次に、前記共乳化分散法について説明する。

この方法の第一の例は、有機溶剤に前記油溶性染料と本発明のポリマーを溶解 した溶液を調製する第一の工程と、第一の工程で調製した溶液と少なくとも水を 含む液とを混合して着色微粒子分散物を調製する第二の工程とを含む。

この方法の第二の例は、有機溶剤に前記油溶性染料を溶解した染料溶液を調製する第一の工程と、有機溶剤に本発明のポリマーを溶解したポリマー溶液を調製する第二の工程と、前記染料溶液と前記ポリマー溶液とを少なくとも水を含む液とを混合して着色微粒子分散物を調製する第三の工程とを含む。

この方法の第三の例は、有機溶剤に前記油溶性染料を溶解した染料溶液を調製し、この染料溶液と少なくとも水を含む液とを混合して染料微粒子分散液を調製する第一の工程と、有機溶剤に本発明のポリマーを溶解したポリマー溶液を調製し、このポリマー溶液と少なくとも水を含む液とを混合してポリマー微粒子分散液を作製する第二の工程と、前記染料微粒子分散液と前記ポリマー微粒子分散液とを混合して着色微粒子分散物を調製する第三の工程とを含む。

[0111]

この方法の第四の例は、有機溶剤に前記油溶性染料を溶解した染料溶液を調製し、この染料と少なくとも水を含む液とを混合して染料微粒子分散液を調製する第一の工程と、有機溶剤に本発明のポリマーを溶解したポリマー溶液を調製する第二の工程と、前記染料微粒子分散液と前記ポリマー溶液とを混合して着色微粒子分散物を調製する第三の工程とを含む。

この方法の第五の例は、前記油溶性染料と本発明のポリマーに対し、少なくと も水を含む液とを混合して、直接、着色微粒子分散物を調製する工程である。

[0112]

前記着色微粒子分散物において、本発明のポリマーの使用量としては、前記油溶性染料100質量部に対して、10~1000質量部が好ましく、50~600質量部がより好ましい。前記ポリマーの使用割合が10質量部未満であると、微細で安定な微粒子の分散が困難になる傾向があり、1000質量部を超えると、着色微粒子分散液中の油溶性染料の割合が少なくなり、着色微粒子分散液を水系インクとして使用した場合に配合設計上の余裕がなくなる傾向がある。

[0113]

--有機溶剤--

前記着色微粒子分散物を製造する際に用いる有機溶剤としては、特に制限はなく、前記油溶性染料や本発明のポリマーの溶解性に基づいて適宜選択することができる。例えば、アセトン、メチルエチルケトン、ジエチルケトン等のケトン系溶剤、メタノール、エタノール、2ープロパノール、1ープロパノール、1ーブタノール、tertーブタノール等のアルコール系溶剤、クロロホルム、塩化メチレン等の塩素系溶剤、ベンゼン、トルエン等の芳香族系溶剤、酢酸エチル、酢酸ブチル、酢酸イソプロピルなどのエステル系溶剤、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル系溶剤、などが挙げられる。

尚、有機溶剤は1種類を単独で用いてもよいし、2種以上を併用してもよい。 また前記染料やポリマーの溶解性によっては、水との混合溶媒であってもよい。

[0114]

前記有機溶剤の使用量としては、本発明における効果を害しない範囲であれば特に制限はないが、本発明のポリマー100質量部に対し、10~2000質量部が好ましく、100~1000質量部がより好ましい。

前記有機溶剤の使用量が10質量部未満であると、有機溶媒相の高粘度化によって着色微粒子の微細で安定な分散が難しくなる傾向にあり、2000質量部を超えると、該有機溶剤を除去するための脱溶媒と濃縮の工程が必須かつ煩雑となり、かつ配合条件上の余裕がなくなる傾向がある。

[0115]

前記有機溶剤は、該有機溶剤の水に対する溶解度が10%以下である場合、あるいは該有機溶剤の蒸気圧が水より大きい場合には、着色微粒子分散液の安定性の点で除去されるのが好ましい。前記有機溶剤の除去は、常圧ないし減圧条件で10℃~100℃で行うことができ、常圧条件で40~100℃あるいは、減圧条件で10~50℃で行うのが好ましい。

[0116]

一添加剤一

前記着色微粒子分散物は、本発明の効果を害しない範囲内において、目的に応じて適宜選択した添加剤を含んでいてもよい。

前記添加剤としては、例えば中和剤、分散剤、分散安定剤などが挙げられる。

[0117]

前記中和剤は、本発明のポリマーが未中和の前記解離性基を有する場合に、該着色微粒子分散液のpH調節、自己乳化性調節、分散安定性付与などの点で好適に使用することができる。前記中和剤は、分散液を調製する前にポリマーとして取り出す時点で添加してもよいし、分散を行ういずれかの過程、もしくは分散終了後に加えてもよい。

前記中和剤としては、アニオン性解離基に対しては有機塩基、無機アルカリ等が、カチオン性解離基に対しては有機酸、無機酸等が挙げられる。

[0118]

アニオン性の解離性基に対する中和剤のうち、前記有機塩基としてはトリエタノールアミン、ジエタノールアミン、Nーメチルジエタノールアミン、ジメチルエタノールアミンなどが挙げられる。前記無機アルカリとしては、アルカリ金属の水酸化物(例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウムなど)、炭酸塩(例えば、炭酸ナトリウム、炭酸水素ナトリウムなど)、アンモニアなどが挙げられる。

カチオン性の解離性基に対する中和剤のうち、前記有機酸としては酢酸、プロピオン酸、トリフルオロ酢酸、アルキルスルホン酸などが挙げられる。前記無機酸としては、塩酸、硫酸、リン酸などが挙げられる。

前記中和剤は、着色微粒子分散物における分散安定性を向上させる観点からは、pH4.5~10.0となるように添加するのが好ましく、pH6~10.0となるよう添加するのがより好ましい。

[0119]

前記分散剤、分散安定剤は、ポリマーラテックス、ポリマー溶液、染料溶液、少なくとも水を含む溶液等のいずれかに添加してもよいが、前記ポリマー分散液及び/または前記着色微粒子分散液を調製する前工程の、ポリマー溶液、染料溶液、または水を含む溶液のいずれかに添加するのが好ましい。

[0120]

前記分散剤、分散安定剤としては、カチオン、アニオン、ノニオン系の各種界面活性剤、水溶性あるいは水分散性の低分子化合物、オリゴマー等が挙げられる。前記分散剤、分散安定剤の添加量としては、前記油溶性染料と本発明のポリマーとの合計量に対し、0~100質量%であり、0~20質量%が好ましい。

[0121]

前記着色微粒子分散物において、前記着色微粒子は1~45質量%含有されるのが好ましく、2~30質量%含有されるのがより好ましい。前記含有量は、希釈、蒸発、限外濾過等により、適宜調整することができる。

[0122]

前記着色微粒子の粒径としては、1~500nmが好ましく、3~300nmがより好ましく、3~200nmが特に好ましい。粒径分布に関しては特に制限はなく、広い粒径分布を持つものでも単分散の粒径分布を持つものでもよい。前記粒径、前記粒径分布は、遠心分離、濾過等の手段により、調整することもできる。

[0123]

本発明の着色微粒子分散物は、その最大吸収波長(λ max(nm))が、波長510~560nmであるのが好ましく、520~550nmであるのがより好ましく、530~550nmであるのが特に好ましい。前記最大吸収波長(λ max(nm))が、前記の好ましい数値範囲内にあると色再現性に優れ、前記のより好ましい数値範囲内、前記の特に好ましい数値範囲内にあると色再現性に顕著に優れる点で有利である。

[0124]

本発明の着色微粒子分散物は、前記最大吸収波長(λ max (nm))における吸光度を1としたとき、波長(λ max + 75 (nm))における吸光度が 0.2以下であることが好ましく、0.15~0.30がより好ましく、0.10~0.20が特に好ましく、かつ波長(λ max - 75 (nm))における吸光度が 0.4以下であることが好ましく、0.15~0.30がより好ましく、0.10~0.20が特に好ましい。前記波長(λ max + 75 (nm))におけ

る吸光度及び波長(λmax-75(nm))における吸光度が、前記の好ましい数値範囲内にあると色再現性に優れ、前記のより好ましい数値範囲内、前記の特に好ましい数値範囲内にあると色再現性に顕著に優れる点で有利である。

[0125]

-着色微粒子分散物の用途-

本発明の着色微粒子分散物は、各種分野において使用することができるが、筆 記用水性インク、水性印刷インク、情報記録インク等に好適であり、以下の本発 明のインクジェット記録用インクに特に好適に使用することができる。

[0126]

前記着色微粒子分散物を、筆記用水性インク、水性印刷インク、情報記録インク等のインクとして使用する場合、該インクの被記録材としては普通紙、樹脂コート紙、インクジェット専用紙、フィルム、電子写真共用紙、布帛、ガラス、金属、陶磁器等が挙げられる。

[0127]

(インクジェット記録用インク)

本発明のインクジェット記録用インクは、前記本発明の着色微粒子分散物を含有してなり、さらに必要に応じて適宜選択したその他の成分を含有してなる。

ーその他の成分ー

前記その他の成分は、本発明の効果を害しない範囲内において含有される。

前記その他の成分としては、例えば乾燥防止剤、浸透促進剤、紫外線吸収剤、酸化防止剤、粘度調整剤、表面張力調整剤、分散剤、分散安定剤、防黴剤、防錆剤、pH調整剤、消泡剤、キレート剤、等の公知の添加剤が挙げられる。

[0128]

前記乾燥防止剤は、インクジェット記録方式に用いるノズルのインク噴射口において該インクジェットインクが乾燥することによる目詰まりを防止する目的で好適に使用される。前記乾燥防止剤としては、水より蒸気圧の低い水溶性有機溶剤が好ましく、具体例として、エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、チオジグリコール、ジチオジグリコール、2ーメチルー1、3ープロパンジオール、1、2、6ーへキサントリ

オール、アセチレングリコール誘導体、グリセリン、トリメチロールプロパン等に代表される多価アルコール類、エチレングリコールモノメチル(又はエチル)エーテル、ジエチレングリコールモノメチル(又はエチル)エーテル、トリエチレングリコールモノエチル(又はブチル)エーテル等の多価アルコールの低級アルキルエーテル類、2ーピロリドン、Nーメチルー2ーピロリドン、1,3ージメチルー2ーイミダゾリジノン、Nーエチルモルホリン等の複素環類、スルホラン、ジメチルスルホキシド、3ースルホレン等の含硫黄化合物、ジアセトンアルコール、ジエタノールアミン等の多官能化合物、尿素誘導体が挙げられる。

これらの中でも、グリセリン、ジエチレングリコール等の多価アルコールがより好ましい。またこれらの乾燥防止剤は単独で用いてもよいし2種以上併用してもよい。

[0129]

前記乾燥防止剤の前記インクジェット記録用インク中の含有量としては、10~50質量%が好ましい。

[0130]

前記浸透促進剤は、インクジェット記録用インクを紙によりよく浸透させる目的で使用される。前記浸透促進剤としては、例えばエタノール、イソプロパノール、ブタノール,ジ(トリ)エチレングリコールモノブチルエーテル、1,2ーヘキサンジオール等のアルコール類やラウリル硫酸ナトリウム、オレイン酸ナトリウムやノニオン性界面活性剤等が挙げられる。

前記浸透促進剤は、印字の滲み、紙抜け(プリントスルー)等を生じない範囲 内で含有され、インクジェット記録用インク中に5~30質量%程度含有されれ ば通常十分な効果を発揮する。

[0131]

前記紫外線吸収剤は、画像の保存性を向上させる目的で使用される。

前記紫外線吸収剤としては、例えば特開昭58-185677号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34057号公報等に記載されたベンゾトリアゾール系化合物、特開昭46-2784号公報、特開平5-194483号公報、米国特許第321446

3号等に記載されたベンゾフェノン系化合物、特公昭48-30492号公報、同56-21141号公報、特開平10-88106号公報等に記載された桂皮酸系化合物、特開平4-298503号公報、同8-53427号公報、同8-239368号公報、同10-182621号公報、特表平8-501291号公報等に記載されたトリアジン系化合物、リサーチディスクロージャーNo.24239号に記載された化合物やスチルベン系、ベンズオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤、などが挙げられる。

[0132]

前記酸化防止剤は画像の保存性を向上させる目的で使用される。

前記酸化防止剤としては、例えば各種の有機系及び金属錯体系の褪色防止剤を使用することができる。

前記有機系の褪色防止剤としては、ハイドロキノン類、アルコキシフェノール類、ジアルコキシフェノール類、フェノール類、アニリン類、アミン類、インダン類、クロマン類、アルコキシアニリン類、ヘテロ環類などが挙げられる。

前記金属錯体の褪色防止剤としては、ニッケル錯体、亜鉛錯体などが挙げられ、具体的にはリサーチディスクロージャーNo. 17643の第VIIのIないし J項、同No. 15162、同No. 18716の650頁左欄、同No. 36544の527頁、同No. 307105の872頁、同No. 15162に引用された特許に記載された化合物や特開昭62-215272号公報の127頁~137頁に記載された代表的化合物の一般式及び化合物例に含まれる化合物を使用することができる。

[0133]

前記防黴剤としては、デヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムピリジンチオン-1-オキシド、p-ヒドロキシ安息香酸エチルエステル、1,2-ベンズイソチアゾリン-3-オンおよびその塩等が挙げられる。これらはインク中に0.02~1.00質量%使用するのが好ましい。

[0134]

前記表面張力調整剤としてはノニオン、カチオンあるいはアニオン界面活性剤

が挙げられる。

[0135]

本発明のインクジェット記録用インクの表面張力としては、25~70mPa・sが好ましく、25~60mPa・sがより好ましい。また、本発明のインクジェット記録用インクの粘度としては、30mPa・s以下が好ましく、20mPa・s以下がより好ましい。

[0136]

前記消泡剤としては、フッソ系、シリコーン系化合物やEDTAに代表される キレート剤等も必要に応じて使用することができる。

[0137]

本発明のインクジェット記録用インクは、公知の被記録材に好適に印字等行うことができる。前記記録剤としては特に制限はないが、インクジェット専用紙が好ましい。前記インクジェット専用紙としては、例えば特開平8-169172号公報、同8-27693号公報、同2-276670号公報、同7-276789号公報、同9-323475号公報、特開昭62-238783号公報、特開平10-153989号公報、同10-217473号公報、同10-235995号公報、同10-217597号公報、同10-337947号公報等に記載されているものが挙げられる。

[0138]

また本発明においては、前記被記録剤として、前記インクジェット専用紙のほか、以下の記録紙および記録フィルムが好適に使用される。

前記記録紙および記録フィルムは、支持体とインク受容層を積層してなり、必要に応じてバックコート層などのその他の層をも積層してなる。

尚、インク受容層をはじめとする各層は、それぞれ一層であってもよいし、二 層以上であってもよい。

[0139]

前記支持体としては、LBKP、NBKP等の化学パルプ、GP、PGW、RMP、TMP、CTMP、CMP、CGP等の機械パルプ、DIP等の古紙パルプ等からなるものが挙げられる。前記パルプには、必要に応じて従来の公知の顔

料、バインダー、サイズ剤、定着剤、カチオン剤、紙力増強剤等が添加混合されていてもよい。前記支持体は、長網抄紙機、円網抄紙機等の各種装置を用いて製造することができる。

前記支持体としては、さらに合成紙、プラスチックフィルムシート等であって もよい。

[0140]

前記支持体の厚みとしては、 $10\sim250\mu$ m程度であり、坪量は $10\sim25$ 0 g/m²が好ましい。

[0141]

前記支持体には、前記インク受容層を、更に必要に応じてバックコート層を直接設けてもよいし、デンプン、ポリビニルアルコール等でサイズプレスやアンカーコート層を設けた後、前記インク受容層及び前記バックコート層を設けてもよい。

また、支持体にはマシンカレンダー、TGカレンダー、ソフトカレンダー等のカレンダー装置により平坦化処理を行ってもよい。

[0142]

前記支持体の中でも、両面をポリオレフィン(例、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリブテンおよびそれらのコポリマー)でラミネートした紙およびプラスチックフイルムがより好ましく、前記ポリオレフィン中に、白色顔料(例、酸化チタン、酸化亜鉛)または色味付け染料(例、コバルトブルー、群青、酸化ネオジウム)が添加されているのがより好ましい。

[0143]

前記インク受容層は、顔料、水性バインダー、媒染剤、耐水化剤、耐光性向上 剤、界面活性剤、その他の添加剤を含有する。

[0144]

前記顔料としては、白色顔料が好ましい。

白色顔料としては、例えば炭酸カルシウム、カオリン、タルク、クレー、珪藻 土、合成非晶質シリカ、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム 、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、硫酸バリウム、硫酸 カルシウム、二酸化チタン、硫化亜鉛、炭酸亜鉛等の無機白色顔料、スチレン系 ピグメント、アクリル系ピグメント、尿素樹脂、メラミン樹脂等の有機顔料等が 挙げられる。

これらの中でも多孔性無機顔料が好ましく、細孔面積が大きい合成非晶質シリカ等が特に好ましい。

前記合成非晶質シリカは、乾式製造法によって得られる無水珪酸、湿式製造法によって得られる含水珪酸のいずれも使用可能であるが、含水珪酸が特に好ましい。

[0145]

前記水性バインダーとしては、例えばポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリアルキレンオキサイド、ポリアルキレンオキサイド誘導体等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。

これらは単独で使用してもよいし、2種以上を併用してもよい。

これらの中でも、前記顔料に対する付着性、インク受容層の耐剥離性の点で、 ポリビニルアルコール、シラノール変性ポリビニルアルコールが好ましい。

[0146]

前記媒染剤は不動化されていることが好ましく、そのためにはポリマー媒染剤 が好ましい。

前記ポリマー媒染剤としては、例えば特開昭48-28325号、同54-74430号、同54-124726号、同55-22766号、同55-14239号、同60-23850号、同60-23851号、同60-23852号、同60-23853号、同60-57836号、同60-60643号、同60-118834号、同60-122940号、同60-122941号、同60-122942号、同60-235134号、特開平1-161236号の各公報、米国特許2484430号、同2548564号、同3148061号、同3309690号、同4115124号、同4124386号、同4193

800号、同4273853号、同4282305号、同4450224号の各明細書に記載がある。このうち特開平1-161236号公報の212~215 頁に記載のポリマー媒染剤が好適なものとして挙げられる。同公報記載のポリマー媒染剤を用いると、優れた画質の画像が得られ、かつ画像の耐光性が改善される点で好ましい。

[0147]

前記耐水化剤は、画像を耐水化する目的で使用される。

前記耐水化剤としては、カチオン樹脂が好ましい。

前記カチオン樹脂としては、例えばポリアミドポリアミンエピクロルヒドリン、ポリエチレンイミン、ポリアミンスルホン、ジメチルジアリルアンモニウムクロライド重合物、カチオンポリアクリルアミド、コロイダルシリカ等が挙げられる。これらのカチオン樹脂の中でも、ポリアミドポリアミンエピクロルヒドリンが特に好ましい。

前記カチオン樹脂の含有量としては、前記インク受容層の全固形分に対して1 ~15質量%が好ましく、特に3~10質量%であることが好ましい。

[0148]

前記耐光性向上剤としては、例えば硫酸亜鉛、酸化亜鉛、ヒンダーアミン系酸 化防止剤、ベンゾフェノン系やベンゾトリアゾール系の紫外線吸収剤等が挙げら れる。これらの中でも、特に硫酸亜鉛が特に好ましい。

[0149]

前記界面活性剤は、塗布助剤、剥離性改良剤、スベリ性改良剤あるいは帯電防止剤として機能する。

前記界面活性剤としては、特開昭62-173463号、同62-18345 7号の各公報に記載されたものが挙げられる。

なお、界面活性剤の代わりに有機フルオロ化合物を用いてもよい。

前記有機フルオロ化合物としては、疎水性であることが好ましい。

前記有機フルオロ化合物としては、例えばフッ素系界面活性剤、オイル状フッ素系化合物(例、フッ素油)および固体状フッ素化合物樹脂(例、四フッ化エチレン樹脂)が含まれ、特公昭57-9053号(第8~17欄)、特開昭61-

20994号、同62-135826号の各公報に記載されたものが挙げられる

[0150]

前記その他の添加剤としては、例えば顔料分散剤、増粘剤、消泡剤、染料、蛍 光増白剤、防腐剤、 p H調整剤、マット剤、硬膜剤等が挙げられる。

[0151]

前記バックコート層は、白色顔料、水性結着剤、その他の成分を含有する。

[0152]

前記白色顔料としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、珪酸マグネシウム、合成非晶質シリカ、コロイダルシリカ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム等の白色無機顔料、スチレン系プラスチックピグメント、アクリル系プラスチックピグメント、ポリエチレン、マイクロカプセル、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。

[0153]

前記水性バインダーとしては、スチレン/マレイン酸塩共重合体、スチレン/アクリル酸塩共重合体、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。

[0154]

前記その他の成分としては、消泡剤、抑泡剤、染料、蛍光増白剤、防腐剤、耐水化剤等が挙げられる。

[0155]

尚、前記記録紙及び記録フィルムにおける各層には、ポリマーラテックスが添

加されてもよい。

前記ポリマーラテックスは、寸度安定化、カール防止、接着防止、膜のひび割れ防止のような膜物性改良の目的で使用される。

ポリマーラテックスとしては、特開昭62-245258号、同62-1316648号、同62-110066号の各公報に記載されたものが挙げられる。 ガラス転移温度が低い(40℃以下の)ポリマーラテックスを媒染剤を含む層に添加すると、該層のひび割れやカールを防止することができる。また、ガラス転移温度が高いポリマーラテックスをバック層に添加すると、カールを防止することができる。

[0156]

(インクジェット記録方法)

本発明のインクジェット記録方法は、本発明のインクジェット記録用インクにエネルギーを供与して、前記インクの液滴を受像材料へ吐出させ、受像材料上に画像を記録することを特徴とする。本発明のインクジェット記録方法には、いかなるインクジェット記録方式も適用することができ、例えば静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、及びインクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(バブルジェット)方式等を利用することができる。

[0157]

尚、前記インクジェット記録方式には、フォトインクと称する濃度の低いインクを小さい体積で多数射出する方式、実質的に同じ色相で濃度の異なる複数のインクを用いて画質を改良する方式や無色透明のインクを用いる方式が含まれる。

[0158]

【実施例】

以下、実施例を示し本発明を具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。以下において、「部」及び「%」は、特に断りがない限り、「質量部」及び「質量%」を表す。

[0159]

<合成例1(油溶性染料 I - 6の合成)>

下記反応式に基づき、化合物 (I-6)を合成した。

[0160]

【化28】

Br
$$H_2N$$
 $N(C_4H_8OH)_2$ CF_3 $OC_8H_{17}(n)$ $OC_8H_{17}(n)$ $OC_8H_{17}(n)$ $OC_8H_{17}(t)$

[0161]

こへ第二の化合物(前記反応式における矢印の上側化合物)を12.2g添加し、続けてNーブロモスクシンイミド 3.6gを添加した。5分間そのまま攪拌を続けた後、再びここへ前記第二の化合物を12.2g添加し、続けてNーブロモスクシンイミド 3.6gを添加した。この後、更に前記第二の化合物を12.2g添加し、続けてNーブロモスクシンイミド 3.6gを添加する操作を4回行い、添加終了後室温で1時間攪拌した。その後、ここへ水 700m1を加えて抽出し、得られた酢酸エチル層を、600m1の水と100m1の飽和食塩水とからなる混合溶液で5回洗浄した。こうして得られた酢酸エチル層を、無水硫酸ナトリウムで乾燥し、ロータリーエバポレーターにて濃縮し、得られた残留物をカラムクロマトグラフィーにて精製した後、酢酸エチルとnーへキサンとにて晶析を行って目的の例示化合物(I-6)108.7gを得た(収率88%)

尚、出発物質である前記第一の化合物は、特公平7-14941号公報に記載された方法を参照して合成した。また、前記第二の化合物は、特開平11-12 251号公報に記載された方法を参照して合成した。

[0162]

< 合成例2 (油溶性染料 I - 3 1 の合成) > 下記反応式に基づき、化合物 (I - 3 1) を合成した。

[0163]

【化29】

Br
$$C_2H_5$$
 CH_2 CH_2 CH_3 CH_2 CH_3 CH

[0164]

3ツロフラスコに第一の化合物(前記反応式における矢印の左側化合物)を99.8g、第二の化合物(前記反応式における矢印の上側化合物)52.4g、炭酸カリウム82.8g、酢酸エチル700m1、イソプロピルアルコール350m1、及び水580m1を入れ、室温にて攪拌しながら、ここへペルオキソニ硫酸アンモニウム27.4gを水250m1に溶解した水溶液を20分かけて滴下した。滴下終了後、室温で1時間攪拌した後、ここへ水400m1を加えて抽出し、得られた酢酸エチル層を、500m1の水と100m1の

飽和食塩水からなる混合溶液で5回洗浄した。こうして得られた酢酸エチル層を、無水硫酸ナトリウムで乾燥し、ロータリーエバポレーターにて濃縮し、得られた残留物にアセトニトリルを加えて晶析を行って、目的の例示化合物(I-31)113.9gを得た

(収率96%)。

[0165]

<合成例3 (油溶性染料 I-40の合成)>

下記反応式に基づき、化合物(I-40)を合成した。

[0166]

【化30】

OCH₃

$$ON \longrightarrow O$$

$$ON \longrightarrow OC_{12}OH$$

$$OC_{12}OH$$

[0167]

3ツロフラスコに第一の化合物(前記反応式における矢印の左側化合物)を109.5g、第二の化合物(前記反応式における矢印の上側化合物)を36.2g、及びエタノール 500mlを入れ、室温にて攪拌しながら、ここへ無水酢酸 15.9mlを10分間かけて滴下した。その後、室温で4時間攪拌し、ここへ酢酸エチル 1000ml、水 700mlを加えて抽出し、得られた酢酸エチル層を、600mlの水と100mlの飽和食塩水からなる混合溶液で5回洗浄した。こうして得られた酢酸エチル層を無水硫酸ナトリウムで乾燥し、ロータリーエバポレーターにて濃縮し、得られた残留物をカラムクロマトグラフィーにて精製して、目的の例示化合物(I-40)132.0gを得た(収率92%)。

尚、出発物質である前記第一の化合物は、特開平2-149582号公報に記載された方法を参照して合成した。また、前記第二の化合物は、特開平11-12251号公報に記載された方法を参照して合成した。

[0168]

<合成例4(油溶性染料I-42の合成)>

下記反応式に基づき、化合物(I-42)を合成した。

[0169]

68

【化31】

[0170]

3ツロフラスコに第一の化合物(前記反応式における矢印の左側化合物)を55.6g、第二の化合物(前記反応式における矢印の上側化合物)24.6g、炭酸カリウム 58.0g、酢酸エチル 500ml、イソプロピルアルコール 250ml、及び水 330mlを入れ、室温にて攪拌しながら、ここへペルオキソ二硫酸アンモニウム 19.2gを水 250mlに溶解した水溶液を10分かけて滴下した。滴下終了後、室温で2時間攪拌した後、ここへ水 200mlを加えて抽出し、得られた酢酸エチル層を、300mlの水と80mlの飽和食塩水からなる混合溶液で5回洗浄した。こうして得られた酢酸エチル層を、無水硫酸ナトリウムで乾燥し、ロータリーエバポレーターにて濃縮し、得られた残留物にアセトニトリルを加えて晶析を行って、目的の例示化合物(I-42)49.1gを得た(収率84%)。

尚、出発物質である前記第一の化合物は、特開平5-127328号公報に記

載された合成法の通り合成した。

[0171]

下記表1に、前記油溶性染料の例示化合物のいくつかについて、その酢酸エチル溶液の可視吸収の吸収極大(λmax)とモル吸光係数(ε)とを示した。

[0172]

【表1】

化合物No.	吸収極大 (λ max)	モル吸光係数 (ε)
I - 6	542.0nm	4.51 × 10 ⁴
1-7	570.3nm	4.41 × 10 ⁴
I-18	532.4nm	5.17×10 ⁴
1-27	534.6nm	4.89 × 10 ⁴
1-29	532.1nm	4.77×10 ⁴
1-30	533.5nm	5.48×10 ⁴
l-31	543.6nm	5.43 × 10 ⁴
I-36	538.6nm	5.35 × 10 ⁴
I-40	531.5nm	5.45 × 10 ⁴
1-41	527.8nm	5.15×10 ⁴
1-43	522.3nm	5.39 × 10 ⁴
1-46	522.3nm	5.39 × 10 ⁴

[0173]

<合成例5 (ポリマーP-5の合成)>

攪拌装置、還流冷却管を装着した500ミリリットルの3ツロフラスコに、4 , 4'ージフェニルメタンジイソシアネート 39.1 g、ヘキサメチレンジイソシアネート 6.6 g、テトラエチレングリコール 15.2 g、エチレングリコール 4.9 g、2,2ービス(ヒドロキシメチル)プロピオン酸 5.3 g、およびN,Nージメチルアセトアミド 150mlを入れ、攪拌下室温で溶解した。ジラウリン酸ジーnーブチルスズ 0.2 gを加え、混合液を90℃に昇温し、6時間加熱攪拌を続けた後、N,Nージメチルアセトアミド 50mlで希釈し、更に室温まで冷却した後、ナトリウムメトキシド 2.2 gをメタノール 100mlに溶かしたものを添加した。得られたポリマーを酢酸エチル/

ヘキサン(80/20体積比) 5リットル中に注ぎ、沈殿させ、濾過乾燥してポリマーP-5を69. 5g得た。

得られたポリマーは、その解離性基の含有量が 0.58 mm o 1/gであり、その重量平均分子量は 9,800であった。

[0174]

<合成例6 (ポリマーP-17の合成)>

攪拌装置、蒸留管を装着した300ミリリットルの3ツロフラスコにテレフタル酸ジメチル 46.5g、イソフタル酸ジメチル 46.5g、ソジウム 5 ースルホイソフタル酸ジメチル 6.0g、エチレングリコール 30g、ネオペンチルグリコール 26.0g、及び縮合触媒として酢酸カルシウム 0.05gと酸化アンチモン(III) 0.05gとを入れ、窒素気流下生成するメタノール、エチレングリコールを留去しつつ、150℃で30分間、さらに190℃で1時間加熱攪拌した。次に、温度を150℃程度に下げ、攪拌下、ポンプにより、反応系の減圧度を徐々に高め、10から40Paの範囲でさらにエチレングリコールを留去しつつ、昇温し、250℃でさらに2.5時間反応させた。反応物をそのまま取り出して冷却し、標記ポリマーP-17を120g得た。

得られたポリマーは、その解離性基の含有量が0.37mmo1/gであり、その重量平均分子量は5,600であった。

[0175]

<製造例1(着色微粒子分散物(A-1)の調製>

メチルエチルケトン 20部、イソプロピルアルコール 4部、ポリマー(P-5;ナトリウム塩) 4.8g、前記油溶性染料(I-18)1.2gの混合液を75℃まで昇温させた後、攪拌しながら、水60部を滴下した。この液を減圧下40℃で濃縮し、固形分20%の着色微粒子分散物を調製した。該着色微粒子分散物中の着色微粒子の粒径は、体積平均径で43nmであった。以下、これを着色微粒子分散物(A-1)と略記する。

[0176]

<製造例2(着色微粒子分散物(A-2)の調製>

メチルエチルケトン 10部、イソプロピルアルコール 5部、ポリマー (P

-5;ナトリウム塩) 3g、前記油溶性染料(I-40)1.2gの混合液を60℃まで昇温させた後、界面活性剤の25%水溶液(花王(株)製;エマール20C)1部、60℃の水50部を添加し、ホモジナイザーを用いて1分間500回転の速度で、3分間高速攪拌した。得られた液を減圧下40℃で濃縮し、固形分20%の着色微粒子分散物を調製した。該着色微粒子分散物中の着色微粒子の粒径は、体積平均径で48nmであった。以下、これを着色微粒子分散物(A-2)と略記する。

[0177]

< 製造例3 (着色微粒子分散物(A-4)の調製>

テトラヒドロフラン 6部、イソプロピルアルコール 14部、ポリマー(P-17;ナトリウム塩) 4.8g、前記油溶性染料(I-40)1.2gの混合液を65℃まで昇温させた後、攪拌しながら、水 60部を30分かけて滴下した。この液を減圧下40℃で濃縮し、固形分20%の着色微粒子分散物を調製した。該着色微粒子分散物中の着色微粒子の粒径は、体積平均径で28nmであった。以下、これを着色微粒子分散物(A-4)と略記する。

[0178]

<製造例4~8>

上記と同様の手段を用いて、下記表2に示す通りにポリマー、および油溶性染料の種類を変更し、着色微粒子分散物(A-3)、(A-5)~(A-8)を、調製した。

[0179]

< 製造例9 (比較用の着色微粒子分散物(B-1)の調製>

前記製造例3において、前記油溶性染料(I-31)を下記化合物(H-1)に代えた以外は、前記製造例3と同様にして、固形分20%の着色微粒子分散物を調製した。該着色微粒子分散物の粒径は体積平均径で45nmであった。

以下、これを着色微粒子分散物(B-1)と略記する。

[0.180]

【化32】

(化合物H-1)

[0181]

(実施例1)

前記製造例1で調製した着色微粒子分散物(A-1)62部に、ジエチレング リコール 10部、グリセリン 8部、トリエチレングリコールモノブチルエー テル 8部、界面活性剤の25%水溶液(花王(株)製;エマール20C)4部 、及びイオン交換水 8部を混合し、0.2μmのフイルターによって濾過し、 水性のインクジェット記録用インクを調製した。

[0182]

(実施例2~8)

前記実施例1において、着色微粒子分散物(A-1)に代えて、着色微粒子分散物(A-2)~(A-8)を油溶性染料量が一定量となるように添加し、ジエチレングリコール10部、グリセリン8部、トリエチレングリコールモノブチルエーテル8部、界面活性剤の25%水溶液(花王(株)製;エマール20C)4部(予め、塗料分散時に界面活性剤を用いた場合には、界面活性剤の総量が同量となる様に添加量を調整した)を加え、イオン交換水を総量が100部となるように添加した。さらに0. 2μ mのフイルターによって濾過し、水性のインクジェット記録用インクをそれぞれ調製した。

[0183]

(比較例1)

前記実施例1において、前記着色微粒子分散物(A-1)を、前記製造例9で

調製した着色微粒子分散物(B-1)に代えた以外は、前記実施例1と同様にインクジェットインクを調製した。

(比較例2)

下記比較色素(H-2)4部に、ジエチレングリコール10部、グリセリン8部、テトラエチレングリコールモノブチルエーテル10部、ジエタノールアミン1部、及びイオン交換水67部を混合し、0.2μmのフイルターによって濾過し、インクジェット記録用インクを調製した。

[0184]

【化33】

(化合物H-2)

[0185]

(画像記録及び評価)

以上の各実施例及び比較例のインクジェット記録用インクについて、下記評価 を行った。その結果を表2に示した。

尚、表2において、「水分散物の吸収」とは、インクジェット記録用インクの分光吸収特性の評価を意味する。また、「色調」、「紙依存性」、「耐水性」及び「耐光性」は、各インクジェット記録用インクを、インクジェットプリンター(EPSON(株)社製;PM-700C)でフォト光沢紙(富士写真フイルム(株)製;インクジェットペーパー、フォトグレード)に画像を記録した後で評価したものである。

[0186]

<分光吸収特性>

各インクジェット記録用インクを、吸光度が0.8~1.2になるようにイオ

ン交換水で希釈し、可視吸収スペクトルを測定し、該最大吸収波長(λ max (nm))における吸光度を1とした時、短波側(λ max -75 (nm))における吸光度と、長波側(λ max +75 (nm))における吸光度とを測定した

[0187]

| <色調>

前記記録した画像を目視にて、A(良好)、B(不良)の2段階で評価した。 <紙依存性>

前記フォト光沢紙に形成した画像と、別途PPC用普通紙に形成した画像との 色調を比較し、両画像間の差が小さい場合をA(良好)、両画像間の差が大きい 場合をB(不良)として、二段階で評価した。

<耐水性>

前記画像を形成したフォト光沢紙を、1時間室温乾燥した後、30秒間水に浸漬し、室温にて自然乾燥させ、滲みを観察した。滲みがないものをA、滲みがわずかに生じたものをB、滲みが多いものをCとして、三段階で評価した。

<耐光性>

前記画像を形成したフォト光沢紙に、ウェザーメーター(アトラスC. I65)を用いて、キセノン光(85000ルクス)を3日間照射し、キセノン照射前後の画像濃度を反射濃度計(X-Rite310TR)を用いて測定し、色素残存率として評価した。なお、前記反射濃度は、1,1.5及び2.0の3点で測定した。いずれの濃度でも色素残存率が70%以上の場合をA、1又は2点が70%未満をB、全ての濃度で70%未満の場合をCとして、三段階で評価した。

[0188]

【表2】

Z	被粒子	#15-	#	ポリマー 大学業	微粒子粒	水分散	水分散物の吸収	豆	存體	46.14.74	4	# 717 12
:	No.		¥	イネゼ質量比	径(nm)	у тах(пт)	Α_	+ V	S U	を表する	를 보 보	五元
実施例1	A-1	P-5	1–18	4/1	43	542	0.18	90'0	4	∢	4	∢
実施例2	A-2	P-5	i-40	5/5	48	544	0.19	20.0	∢	∢	4	4
実施例3	A-3	9-d	1-31	3/1	22	225	0.21	90.0	4	4	A	∢
実施例4	A-4	P-17	1-40	4/1	28	541	0.18	90'0	4	∢	∢	4
実施例5	A-5	P-19	9-1	4/1	36	920	0.19	90.0	4	∢	∢	∢
実施例6	A-6	P-27	1–36	4/1	<u> </u>	548	0.17	90.0	4	∢	∢	4
実施例7	A-7	P-32	1–27	4/1	33	544	0.18	90.0	4	4	∢	4
案施例8	A-8	P-34	1-31	4/1	110	223	0.19	0.07	٨	٧	4	4
比較例1	B-1	P-17	H1	4/1	45	534	0.33	0.24	В	8	٧	В
比較例2		1	H-2	ı	1	989	0.41	0.03	∢	60	O	8

A⁻: λ max-75nmの吸光度 A⁺: λ max+75nmの吸光度

[0189]

表2に示す評価結果から明らかなように、実施例1~8のインクジェット記録

用インクは、発色性・色調に優れ、紙依存性がなく、耐水性、耐光性に優れていた。

[0190]

【発明の効果】

本発明によると、前記従来における諸問題を解決することができ、着色微粒子の分散安定性に優れ、紙依存性がなく、任意に選択した紙に印字した際の発色性・色調(特にマゼンタの色再現)に優れ、かつ耐水性、耐光性にも優れ、筆記用水性インク、水性印刷インク、情報記録インク等に好適な着色微粒子分散物を提供することができる。また、サーマル、圧電、電界または音響インクジェット方式に好適であり、ノズル等を用いて印刷を行った際、該ノズル先端で目詰まりを起こすことがなく、紙依存性がなく、任意に選択した紙に印字した際の発色性・色調(特にマゼンタの色再現性)に優れ、かつ耐水性、耐光性にも優れた画像を形成し得るインクジェット記録用インクおよびインクジェット記録方法を提供することができる。

【書類名】 要約書

【要約】

【課題】 発色性・色調に優れるとともに耐水性・耐光性にも優れ、インクに好適に利用できる着色微粒子分散物を提供する。

【解決手段】 ポリウレタン、ポリエステル、ポリアミド、ポリウレア及びポリカーボネートから選ばれる少なくとも1種のポリマーと、一般式(I)で表される油溶性染料とを含む着色微粒子を分散してなる着色微粒子分散物である。好ましくは、前記油溶性染料が下記一般式(II)あるいは下記一般式(III)で表される着色微粒子分散物である。

一般式(I)

【化1】

一般式(II)

【化2】

【化3】

【選択図】 なし

出願人履歴情報

識別番号

[000005201]

1. 変更年月日

1990年 8月14日

[変更理由]

新規登録

住 所

神奈川県南足柄市中沼210番地

氏 名

富士写真フイルム株式会社