Bjarne Steensgaard

Points-to Analysis in Almost Linear Time

Presented by Abdul Dakkak

Overview

- * Algorithm Overview
- * Language
- Algorithm Details
- * Results
- * Conclusion

X

Definitions

- * A variable p points-to a value v if p's value may contain the address of v
- * Two values p and q alias if they may point-to the same variable (if $pts(p) \cap pts(q) \neq \{\}$)
- * The *points-to set* for p contains the set of variables which p may point-to ($v \in pts(p)$ iff p may point-to v)

Definitions

- * An analysis is *flow sensitive* if it performs the analysis at each program point and follows the instruction flow (keeps track of branches, definition kills, ...)
- * An analysis is *context sensitive* if keeps flow along different call paths separate (considers calling context when performing the analysis)
- * An analysis if *field sensitive* if it distinguishes between elements in a field (**struct** in C)

Unification

- * A unification algorithm finds a set of replacement rules that make two terms equal
 - * e.x. if f(g) = f(a) then $g \rightarrow a$ is a substitution that makes the two terms equal
- * For Steensgard, unification means union

Pointer Analysis Uses

- * Pointer analysis facilitates compiler optimizations
- * Useful only when you know that two variables *must not* alias

Redundant Store Elimination: If *\$R0 and *\$R1 alias then we cannot remove the second store to the address stored in \$R0

```
sw 1, ($R0) //*$R0=1
sw 2, ($R1) //*$R1=2
sw 1, ($R0) //*$R0=1
```

Copy Propagation: If *R1 and *\$R2 aliases then we cannot propagate the value of *\$R1 via *\$R0

```
lw $R0, ($R1) //$R0=*$R1
sw 1, ($R2) //*$R2=1
lw $R3, ($R1) //$R3=*$R1
```

Steensgaard's Algorithm

- * Previous work, such as address taken, is too imprecise
- Previous work, such as Andersen's, is more precise, but has a large complexity to be used for real programs
- * Find a middle ground that is more precise than address taken while being faster than Andersen

- * Build a graph where each object is a node and an edge represents the points-to relation
 - * Add nodes *x* and *p*
 - * Create an edge $p \rightarrow x$

Points-to Graph

- * Build a graph where each object is a node and an edge represents the points-to relation
 - * Add nodes *y* and *q*
 - * Create an edge $q \rightarrow y$

- * Collapse the nodes pointed to by p and q
 - * Each nodes is now a collection of objects
 - * Each node my point-to at most one node

* Each nodes is now a collection of objects

Each node my point-to at most one node

 $S \longrightarrow p \longrightarrow x$ $Q \longrightarrow y$

Steensgaard's Algorithm

- * Flow insensitive, interprocedural, context insensitive, unification based pointer analysis
- Traverse the instructions from top to bottom in a single pass
- * Each object in the graph can point-to at most one other node
- Uses type equality (via unification) to get a near linear time performance

Steensgaard's Language

Steensgaard's Language

- * Represent C as a collection of objects and operations on addresses of these objects
- Function can have multiple return values
- * Distinction between function calls and function operations on addresses

```
S::= x = y

| x = &y

| x = *y

|*x = y

| x = op(y...)

| x = allocate(y)

| x = fun(a...) -> (r...) S*

| x... = p(a...)
```

Translating into Steensgaard's Language

Variables within a function scope have unique names

```
int addNumbers(int a, int b) {
   int res = a + b;
   return res;
}
```

```
addNumbers = fun(a0, b0) \rightarrow (res0)

res0 = a0 + b0
```

* A variable may reference either a function or a C object

13

* The return variable is explicit

Translating into Steensgaard's Language

Structures and their accessors are collapsed

```
struct Point_t {
    int x, y;
};
...
struct Point_t pt;
pt.x = 3;
pt.y = 4;
```

```
pt = 3
pt = 4
```

Translating into Steensgaard's Language

Pointer operations are normalized by introducing temporary variables

$$p0 = *a$$
 $p = *p0$
 $q = _add(p, 1)$

Provide some primitive object operations

15

Algorithm Details

Modeling of Value

- * A value may be (or include) a function signature or a pointer to a location
 - * Value: $\alpha = \tau \times \lambda$
 - * Pointer to location: $\tau = ref(\alpha) \mid \bot$
 - * Function Signature: $\lambda = lam(\alpha_1,...)(\alpha_k,...) \mid \bot$
- * Types represent the points-to graph
 - * Each node in the graph is a type
 - * An edge $t1 \rightarrow t0$ exists if $t1 = \mathbf{ref}(t1 \times \lambda)$
- * Space usage is O(n) using this representation

Partial Ordering

- * We define a partial Ordering operator ≤ such that
 - $\ \, \text{$^{\diamond}$ $(t_1 \mathrel{\unlhd} t_2) \Leftrightarrow (t_1 = \bot) \lor (t_1 = t_2)$} \\$
 - $(t_1 \times t_2) \preceq (t_3 \times t_4) \Leftrightarrow (t_1 \preceq t_3) \wedge (t_2 \preceq t_4)$
- * Type of each value is initially assumed to be $ref(\bot \times \bot)$

Program

p = &x q = &y p = q s = &p Points-to Graph

Type Rules

* Value types are initialized to $ref(\bot \times \bot)$

 $x : t0 = ref(\bot x \bot)$

$$\frac{A \vdash \mathsf{x} : \mathbf{ref}(\tau \times _)}{A \vdash \mathsf{y} : \tau}$$
$$A \vdash welltyped(\mathsf{x} = \& \mathsf{y})$$

$$x : t0 = ref(\bot x \bot)$$

p : t1 = ref(t0 x \boxdot)

$$\frac{A \vdash \mathsf{x} : \mathbf{ref}(\tau \times _)}{A \vdash \mathsf{y} : \tau}$$
$$A \vdash welltyped(\mathsf{x} = \& \mathsf{y})$$


```
x : t0 = ref(\bot x \bot)

p : t1 = ref(t0x \bot)

y : t2 = ref(\bot x \bot)

q : t3 = ref(t2x \bot)
```

$$A \vdash \mathsf{x} : \mathbf{ref}(\alpha_1)$$

$$A \vdash \mathsf{y} : \mathbf{ref}(\alpha_2)$$

$$\alpha_2 \leq \alpha_1$$

$$A \vdash welltyped(\mathsf{x} = \mathsf{y})$$

$$\frac{A \vdash \mathbf{x} : \mathbf{ref}(\tau \times \underline{\hspace{0.1cm}})}{A \vdash \mathbf{y} : \tau}$$
$$\frac{A \vdash welltyped(\mathbf{x} = \mathbf{\&y})}{}$$

```
x : t0 = ref(\pm x \pm)

p : t1 = ref(t0x \pm)

y : t0

q : t3 = ref(t0x \pm)

s : t4 = ref(t1x \pm)
```

Why Partial Ordering Matters

24

```
x = &a
y = 1
x = y
```

```
a : t0 = ref(\pm x \pm)

x : t1 = ref(t0x \pm)

y : t2 = ref(\pm x \pm)
```

```
x \xrightarrow{t1} a^{t0}
y \xrightarrow{t2}
```

 $A \vdash \mathsf{x} : \mathbf{ref}(\alpha)$ $A \vdash \mathsf{y} : \mathbf{ref}(\alpha)$ $A \vdash welltyped(\mathsf{x} = \mathsf{y})$

Would incorrectly alias x and y

```
p = &x
q = &y
id = fun(a) -> (r)
    r = a
id(p)
id(q)
```

```
x: t0 = ref(\perp x\perp)
y: t1 = ref(\perp x\perp)
p: t2 = ref(t0x\perp)
q: t3 = ref(t1x\perp)
a0:t4 = ref(\perp x\perp)
a1:t5 = ref(\perp x\perp)
id:t6 = ref(\perp x\perp)
a :t7 = ref(t4x\perp)
r :t8 = ref(t5x\perp)
```

```
A \vdash \mathbf{x} : \mathbf{ref}(\underline{\hspace{0.5cm}} \times \mathbf{lam}(\alpha_{1} \dots \alpha_{n})(\alpha_{n+1} \dots \alpha_{n+m}))
A \vdash \mathbf{f}_{i} : \mathbf{ref}(\alpha_{i})
A \vdash \mathbf{r}_{j} : \mathbf{ref}(\alpha_{n+j})
\forall s \in S^{*} : A \vdash welltyped(s)
A \vdash welltyped(\mathbf{x} = \mathbf{fun}(\mathbf{f}_{1} \dots \mathbf{f}_{n}) \rightarrow (\mathbf{r}_{1} \dots \mathbf{r}_{m}) S^{*})
```

25

```
p = &x
q = &y
id = fun(a) -> (r)
    r = a
id(p)
id(q)
```

```
x: t0 = ref(\perpxx\perp)
y: t1 = ref(\perpxx\perp)
p: t2 = ref(t0x\perp)
q: t3 = ref(t1x\perp)
a0:t4 = ref(\perpxx\perpx)
a1:t4
id:t6 = ref(\perpxx\perpx\perpx\perpx
id:t7 = ref(t4x\perpx)
r :t8 = ref(t4x\perpx)
```



```
p = &x
q = &y
id = fun(a) -> (r)
    r = a
id(p)
id(q)
```

```
x: t4
y: t1 = ref(\perp x\perp)
p: t2 = ref(t4x\perp)
q: t3 = ref(t1x\perp)
a0:t4 = ref(\perp x\perp)
a1:t4
id:t6 = ref(\perp x\perp \text{lam(t4)(t5))}
a :t7 = ref(t4x\perp)
r :t8 = ref(t4x\perp)
```

```
A \vdash \mathsf{x}_j : \mathbf{ref}(\alpha'_{n+j})
A \vdash \mathsf{p} : \mathbf{ref}(\_ \times \mathbf{lam}(\alpha_1 \dots \alpha_n)(\alpha_{n+1} \dots \alpha_{n+m}))
A \vdash \mathsf{y}_i : \mathbf{ref}(\alpha'_i)
\forall i \in [1 \dots n] : \alpha'_i \preceq \alpha_i
\forall j \in [1 \dots m] : \alpha_{n+j} \preceq \alpha'_{n+j}
A \vdash welltyped(\mathsf{x}_1 \dots \mathsf{x}_m = \mathsf{p}(\mathsf{y}_1 \dots \mathsf{y}_n))
```

27

```
p = &x
q = &y
id = fun(a) -> (r)
    r = a
id(p)
id(q)
```

```
x: t4
y: t4
p: t2 = ref(t4x1)
q: t3 = ref(t4x1)
a0:t4 = ref(1x1)
a1:t4
id:t6 = ref(1x1am(t4)(t5))
a :t7 = ref(t4x1)
r :t8 = ref(t4x1)
```

```
A \vdash \mathbf{x}_{j} : \mathbf{ref}(\alpha'_{n+j})
A \vdash \mathbf{p} : \mathbf{ref}(\_ \times \mathbf{lam}(\alpha_{1} \dots \alpha_{n})(\alpha_{n+1} \dots \alpha_{n+m}))
A \vdash \mathbf{y}_{i} : \mathbf{ref}(\alpha'_{i})
\forall i \in [1 \dots n] : \alpha'_{i} \preceq \alpha_{i}
\forall j \in [1 \dots m] : \alpha_{n+j} \preceq \alpha'_{n+j}
A \vdash welltyped(\mathbf{x}_{1} \dots \mathbf{x}_{m} = \mathbf{p}(\mathbf{y}_{1} \dots \mathbf{y}_{n}))
```

28

Steensgaard Unifies Function Arguments

- * If $t_1 \le C$ and $t_2 \le C$ then $t_1 = t_2$
 - * Recall $(t \le C) \Leftrightarrow (t = \bot) \lor (t = C)$
- memset(s, 0, sz);
 strcmp(p, q);
 free(s);
- * Function arguments are unified
- * Run on real programs, most pointers will alias

29

30

157 classes were empty: these correspond to user functions and variables allocated by the runtime.

Results

446 classes contained 1 variable

One equivalence class contained 120 variables

# of vars.	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
landi:allroots	18 67
landi:assembler	157 446 3 31 1
landi:loader	90 211 1 1 1 1
landi:compiler	116 166
landi:simulator	232 464 3 1 2 1 2 2 1 1 2
landi:lex315	52 91 1
landi:football	214 570 15 14 1 1 1
austin:anagram	54 65 1 1
austin:backprop	43 69
austin:bc	297 551 2 2 2
austin:ft	61 150
austin:ks	68 158 2 1
austin:yacr2	260 474 3 1
spec:compress	88 113 1
spec:eqntott	228 437 2 111
spec:espresso	1155 2556 14 3 2 1 2 1 1 1 1
spec:li	449 877 1 2 1 2
spec:sc	557 1000 26 4 3 1 2 1 1
spec:alvinn	43 73
spec:ear	192 532 3 2 1 1
LambdaMOO	1369 2580 9 2 3 1 2 1

83 113 120 / 285 613 6	24
	ヸ
1	╣
<u> </u>	╣
	⇥
1	╣
	┪
	ᅦ
	ᅦ
	╗
	\Box
	1
1 1	
	Щ
	Щ
1	

Results

- Most type
 variables describe
 only a single
 program variable
- * Type variables describing hundreds of program variables are due to global values being unified.

# of vars.	0	1	2	3 4	15	67	89	0 1	2 3	3 4 :	5 6	789	0
landi:allroots	18	67											Г
landi:assembler	157	446	3	3	3 1			1					Γ
landi:loader	90	211	1	1		1 1				1			Γ
landi:compiler	116	166											Γ
landi:simulator	232	464	3	1 2	2 1		2		2	1			Γ
landi:lex315	52	91											Γ
landi:football	214	570	15	14	1		1						Γ
austin:anagram	54	65				1	1						Γ
austin:backprop	43	69											Γ
austin:bc	297	551	2							ź	2	2	Γ
austin:ft	61	150	Г										Γ
austin:ks	68	158	2		1								Γ
austin:yacr2	260	474	3	1									Γ
spec:compress	88	113	1										Γ
spec:eqntott	228	437	2			1 1	1						Γ
spec:espresso	1155	2556	14	3 2	2 1	2 1					1 1		Γ
spec:li	449	877	1	2	1	2							Γ
spec:sc	557	1000	26	4 3	3	1	2			1			Γ
spec:alvinn	43	73											Γ
spec:ear	192	532	3	2	2	1							Γ
LambdaMOO	1369	2580	9	2 3	3	1 2	2						Γ

32

Pruned Results

Prune variables which are never pointed to in the program

# of vars.	0 1 23456789	0123456789	0123456	30 31 32 33	44 45 52	74 78	83 113	120 29	25 613
	I	0123430707	0123430	30 31 32 33	44 43 32	74 70	. 03 113 .	120 20	55 015
landi:allroots	0 1								
landi:assembler		1		1				1	
landi:loader	9 6 11 11	1							
landi:compiler	0 1		1		1				
landi:simulator	2 4 3121 2	2 1	1 2		2		1		
landi:lex315	2		1						
landi:football	5 11 1		1						
austin:anagram	3 3 1 1								
austin:backprop	1 9								
austin:bc	5 5 2	2 2				1			
austin:ft	4 2								
austin:ks	4 1 2 1								
austin:yacr2	29 1 31								
spec:compress	2 4 1								
spec:eqntott	5 8 2 111								
spec:espresso	14 19 12 2 2 1 2 1	11	1	1	1	1			
spec:li	2 4 121 2			1					
spec:sc	710 542 11	1	1				1	1	
spec:alvinn	1 9								
spec:ear	15 23 3 2 1		1						
LambdaMOO	815 823 12 1		1		1				1
	"			'					

Optimized Results

Eliminate all variables whose address is never taken

# of vars.	0 123456789	01234567890	1234569	30 31 32 33 44 45 52 74 78 83 113 120 285 613 .
landi:allroots				
landi:assembler	2			1 1
landi:loader	1	1		
landi:compiler			1	
landi:simulator	1 1		1	1
landi:lex315	1		1	
landi:football	3			
austin:anagram	2 1			
austin:backprop				
austin:bc	2			1
austin:ft	1 1			
austin:ks	1 1			
austin:yacr2	26			
spec:compress	1			
spec:eqntott	1 2 11			
spec:espresso	2 1 1	1 1	1 1	1
spec:li				
spec:sc	1 2			1
spec:alvinn	0.12		,	
spec:ear	8 12 1		1 1	1
LambdaMOO	5 11 2		I	1

Author's Conclusions

- * First algorithm to scale to 100kLOC (previous methods only scaled to 10kLOC)
- * Previous scalable methods were not precise
- * Previous precise methods were not scalable
- Uses little memory and performs the analysis in a reasonable amount of time on real programs
- * Analysis can be used to seed more precise analysis
- * Field insensitivity is a major contributor to imprecision

Conclusion

- Uses well studied technique (unification) and applies it to pointer analysis
- * There is no distinction between a = b and b = a, this makes it less precise than subset based points-to analysis
- Not used in practice in part due to unification of function arguments


```
A \vdash x : \mathbf{ref}(\alpha_1)
                                                                                                                                                                                  A \vdash x : \mathbf{ref}(\mathbf{ref}(\underline{\ \ }) \times \underline{\ \ \ })
                                                                                                                                                                      A \vdash welltyped(x = allocate(y))
                       A \vdash y : \mathbf{ref}(\alpha_2)
               \frac{\alpha_2 \triangleleft \alpha_1}{A \vdash welltyped(\mathsf{X} = \mathsf{y})}
                                                                                                                                                                                A \vdash x : \mathbf{ref}(\mathbf{ref}(\alpha_1) \times \underline{\hspace{1cm}})
                                                                                                                                                                                            A \vdash y : \mathbf{ref}(\alpha_2)
                    A \vdash x : \mathbf{ref}(\tau \times \underline{\hspace{1em}})
                                                                                                                                                                                \frac{\alpha_2 \le \alpha_1}{A \vdash welltyped(*x = y)}
            \frac{A \vdash y : \tau}{A \vdash welltyped(x = \&y)}
                                                                                                                                                   A \vdash \mathbf{x} : \mathbf{ref}(\underline{\phantom{a}} \times \mathbf{lam}(\alpha_1 \dots \alpha_n)(\alpha_{n+1} \dots \alpha_{n+m}))
                        A \vdash x : \mathbf{ref}(\alpha_1)
                                                                                                                                                                                           A \vdash f_i : \mathbf{ref}(\alpha_i)
             A \vdash y : \mathbf{ref}(\mathbf{ref}(\alpha_2) \times \underline{\hspace{0.1cm}})
                                                                                                                                                                                      A \vdash \mathsf{r}_j : \mathbf{ref}(\alpha_{n+j})
             \alpha_2 \leq \alpha_1
A \vdash welltyped(\mathbf{x} = *\mathbf{y})
                                                                                                                                                                              \forall s \in S^* : A \vdash welltyped(s)
                                                                                                                                                   A \vdash welltyped(x = fun(f_1...f_n) \rightarrow (r_1...r_m) S^*)
                        A \vdash x : ref(\alpha)
                                                                                                                                                                                      A \vdash \mathbf{x}_j : \mathbf{ref}(\alpha'_{n+j})
                       A \vdash \mathsf{y}_i : \mathbf{ref}(\alpha_i)
                                                                                                                                                   A \vdash p : \mathbf{ref}(\underline{\phantom{a}} \times \mathbf{lam}(\alpha_1 \dots \alpha_n)(\alpha_{n+1} \dots \alpha_{n+m}))
               \forall i \in [1 \dots n] : \alpha_i \leq \alpha
                                                                                                                                                                                           A \vdash \mathbf{y}_i : \mathbf{ref}(\alpha_i')
A \vdash well typed(x = op(y_1 \dots y_n))
                                                                                                                                                                        \forall i \in [1 \dots n] : \alpha'_i \leq \alpha_i 
\forall j \in [1 \dots m] : \alpha_{n+j} \leq \alpha'_{n+j}
                                                                                                                                                                A \vdash well typed(\mathsf{x}_1 \dots \mathsf{x}_m = \mathsf{p}(\mathsf{y}_1 \dots \mathsf{y}_n))
```

Type Rules

Implementation

```
 \begin{array}{l} \mathbf{x} = \mathbf{y}; \\ \text{let } \mathbf{ref}(\tau_1 \times \lambda_1) = \mathbf{type}(\mathbf{ecr}(\mathbf{x})) \\ \mathbf{ref}(\tau_2 \times \lambda_2) = \mathbf{type}(\mathbf{ecr}(\mathbf{y})) \text{ in } \\ \text{if } \tau_1 \neq \tau_2 \text{ then } \mathbf{cjoin}(\tau_1, \tau_2) \\ \text{if } \lambda_1 \neq \lambda_2 \text{ then } \mathbf{cjoin}(\lambda_1, \lambda_2) \end{array} 
                                                                                                                                                                                                                                                                             x = \text{fun}(f_1...f_n) \rightarrow (r_1...r_m) S^*:
                                                                                                                                                                                                                                                                                     let ref(\underline{\hspace{0.1cm}} \times \lambda) = type(ecr(x))
if type(\lambda) = \bot then
                                                                                                                                                                                                                                                                                                           settype(\lambda, lam(\alpha_1 \dots \alpha_n)(\alpha_{n+1} \dots \alpha_{n+m}))
                                                                                                                                                                                                                                                                                                                       \mathbf{ref}(\alpha_i) = \mathbf{type}(\mathbf{ecr}(\mathbf{f}_i)), \text{ for } i \leq n

\mathbf{ref}(\alpha_i) = \mathbf{type}(\mathbf{ecr}(\mathbf{f}_{i-n})), \text{ for } i > n
            let \operatorname{ref}(\tau_1 \times \underline{\hspace{0.1cm}}) = \operatorname{type}(\operatorname{ecr}(\mathsf{X}))

\tau_2 = \operatorname{ecr}(\mathsf{y}) in

if \tau_1 \neq \tau_2 then \operatorname{join}(\tau_1, \tau_2)
                                                                                                                                                                                                                                                                                                       the let \operatorname{lam}(\alpha_1 \dots \alpha_n)(\alpha_{n+1} \dots \alpha_{n+m}) = \operatorname{type}(\lambda) in for i \in [1 \dots n] do let \tau_1 \times \lambda_1 = \alpha_i ref(\tau_2 \times \lambda_2) = \operatorname{type}(\operatorname{ecr}(f_i)) in if \tau_1 \neq \tau_2 then \operatorname{join}(\tau_2, \tau_1)
  \begin{array}{l} \textbf{X} = *\textbf{y}: \\ \text{let } \textbf{ref}(\tau_1 \times \lambda_1) = \textbf{type}(\textbf{ecr}(\textbf{x})) \\ \textbf{ref}(\tau_2 \times \underline{\phantom{a}}) = \textbf{type}(\textbf{ecr}(\textbf{y})) \text{ in} \\ \text{if } \textbf{type}(\tau_2) = \underline{\phantom{a}} \text{then} \end{array} 
                                                                                                                                                                                                                                                                                                                                     if \lambda_1 \neq \lambda_2 then join(\lambda_2, \lambda_1)
                                 settype(\tau_2, ref(\tau_1 \times \lambda_1))
                                                                                                                                                                                                                                                                                                                 for i \in [1 \dots m] do
                                                                                                                                                                                                                                                                                                                          let \tau_1 \times \lambda_1 = \alpha_{n+i}

\operatorname{ref}(\tau_2 \times \lambda_2) = \operatorname{type}(\operatorname{ecr}(\mathbf{r}_i)) in
                              let \mathbf{ref}(\tau_3 \times \lambda_3) = \mathbf{type}(\tau_2) in

if \tau_1 \neq \tau_3 then \mathbf{cjoin}(\tau_1, \tau_3)

if \lambda_1 \neq \lambda_3 then \mathbf{cjoin}(\lambda_1, \lambda_3)
                                                                                                                                                                                                                                                                                                                                    if \tau_1 \neq \tau_2 then join(\tau_1, \tau_2)
if \lambda_1 \neq \lambda_2 then join(\lambda_1, \lambda_2)
 \begin{aligned} \mathbf{x} &= \mathbf{op}(\mathbf{y}_1 \dots \mathbf{y}_n); \\ \text{for } i \in [1 \dots n] \text{ do} \\ \text{let } \mathbf{ref}(\tau_1 \times \lambda_1) &= \mathbf{type}(\mathbf{ecr}(\mathbf{x})) \\ &\quad \mathbf{ref}(\tau_2 \times \lambda_2) &= \mathbf{type}(\mathbf{ecr}(\mathbf{y}_i)) \text{ in } \\ \text{if } \tau_1 \neq \tau_2 \text{ then } \mathbf{cjoin}(\tau_1, \tau_2) \\ \text{if } \lambda_1 \neq \lambda_2 \text{ then } \mathbf{cjoin}(\lambda_1, \lambda_2) \end{aligned} 
                                                                                                                                                                                                                                                                          x_1 \dots x_m = p(y_1 \dots y_n):
let ref(\_ \times \lambda) = type(ecr(p)) in
if type(\lambda) = \bot then
                                                                                                                                                                                                                                                                                                           settype(\lambda, lam(\alpha_1 \dots \alpha_n)(\alpha_{n+1} \dots \alpha_{n+m}))
                                                                                                                                                                                                                                                                                                                        \alpha_i = \tau_i \times \lambda_i

[\tau_i, \lambda_i] = \mathbf{MakeECR}(2)
    x = allocate(y):
            let \mathbf{ref}(\tau \times \underline{\hspace{0.5cm}}) = \mathbf{type}(\mathbf{ecr}(\mathsf{X})) in if \mathbf{type}(\tau) = \bot then let [e_1, e_2] = \mathbf{MakeECR}(2) in \mathbf{settype}(\tau, \mathbf{ref}(e_1 \times e_2))
                                                                                                                                                                                                                                                                                               let \operatorname{lam}(\alpha_1 \dots \alpha_n)(\alpha_{n+1} \dots \alpha_{n+m}) = \operatorname{type}(\lambda) in for i \in [1 \dots n] do
                                                                                                                                                                                                                                                                                                              |\text{tot}|_{1} = \lambda_{i}
|\text{ref}(\tau_{2} \times \lambda_{2}) = \text{type}(\text{ecr}(y_{i})) \text{ in }
|\text{if } \tau_{1} \neq \tau_{2} \text{ then } \text{cjoin}(\tau_{1}, \tau_{2})
|\text{if } \lambda_{1} \neq \lambda_{2} \text{ then } \text{cjoin}(\lambda_{1}, \lambda_{2})
           let \mathbf{ref}(\tau_1 \times \underline{\hspace{0.1cm}}) = \mathbf{type}(\mathbf{ecr}(\mathbf{x}))

\mathbf{ref}(\tau_2 \times \lambda_2) = \mathbf{type}(\mathbf{ecr}(\mathbf{y}))

if \mathbf{type}(\tau_1) = \bot then

\mathbf{settype}(\tau_1, \mathbf{ref}(\tau_2 \times \lambda_2))
                                                                                                                                                                                                                                                                                                           for i \in [1 \dots m] do
                                                                                                                                                                                                                                                                                                              let \tau_1 \times \lambda_1 = \alpha_{n+i}

\mathbf{ref}(\tau_2 \times \lambda_2) = \mathbf{type}(\mathbf{ecr}(\mathsf{X}_i)) in

if \tau_1 \neq \tau_2 then \mathbf{cjoin}(\tau_2, \tau_1)

if \lambda_1 \neq \lambda_2 then \mathbf{cjoin}(\lambda_2, \lambda_1)
                               let \mathbf{ref}(\tau_3 \times \lambda_3) = \mathbf{type}(\tau_1) in
if \tau_2 \neq \tau_3 then \mathbf{cjoin}(\tau_3, \tau_2)
if \lambda_2 \neq \lambda_3 then \mathbf{cjoin}(\lambda_3, \lambda_2)
                                                                            42
```

```
settype(e, t):
                                                                                                                               \mathbf{join}(e_1, e_2):
     type(e) \leftarrow t
                                                                                                                                   let t_1 = type(e_1)
     for x \in \mathbf{pending}(e) do \mathbf{join}(e, x)
                                                                                                                                         t_2 = \mathbf{type}(e_2)
                                                                                                                                         e = \operatorname{ecr-union}(e_1, e_2) in
                                                                                                                                       if t_1 = \bot then
 cjoin(e_1, e_2):
                                                                                                                                          type(e) \leftarrow t_2
    if type(e_2) = \bot then
                                                                                                                                          if t_2 = \bot then
        \mathbf{pending}(e_2) \leftarrow \{e_1\} \cup \mathbf{pending}(e_2)
                                                                                                                                              pending(e) \leftarrow pending(e_1) \cup
     else
                                                                                                                                                                          pending(e_2)
        join(e_1, e_2)
                                                                                                                                          else
                                                                                                                                              for x \in \mathbf{pending}(e_1) do \mathbf{join}(e, x)
 unify(\mathbf{ref}(\tau_1 \times \lambda_1), \mathbf{ref}(\tau_2 \times \lambda_2)):
                                                                                                                                       else
     if \tau_1 \neq \tau_2 then join(\tau_1, \tau_2)
                                                                                                                                          type(e) \leftarrow t_1
     if \lambda_1 \neq \lambda_2 then join(\lambda_1, \lambda_2)
                                                                                                                                          if t_2 = \bot then
\begin{array}{l} \mathbf{unify}(\mathbf{lam}(\alpha_1 \dots \alpha_n)(\alpha_{n+1} \dots \alpha_{n+m}),\\ \mathbf{lam}(\alpha_1' \dots \alpha_n')(\alpha_{n+1}' \dots \alpha_{n+m}'))\\ \text{for } i \in [1 \dots (n+m)] \text{ do} \end{array}
                                                                                                                                              for x \in \mathbf{pending}(e_2) do \mathbf{join}(e, x)
                                                                                                                                              \mathbf{unify}(t_1, t_2)
     let \tau_1 \times \lambda_1 = \alpha_i
          \tau_2 \times \lambda_2 = \alpha_i' in
        if \tau_1 \neq \tau_2 then join(\tau_1, \tau_2)
        if \lambda_1 \neq \lambda_2 then join(\lambda_1, \lambda_2)
```

Unification

Union Find Data Structure

Abdul Dakkak - PhD Qualifying Exam

Flow Sensitive vs Insensitive Analysis

Flow Sensitive: Pointer analysis follows the CFG. Computes the points-to set at all program points.

x = 1; y = 2; p = &x; p = &y;

Flow Insensitive: Pointer analysis ignores the order of statements in the program.

SSA Remedies Some Flow Insensitivity

Flow Sensitive: Pointer analysis follows the CFG. Computes the points-to set at all program points.

$$p1 \longrightarrow y$$
$$p0 \longrightarrow x$$

Flow Insensitive: Pointer analysis ignores the order of statements in the program.

$$p1 \longrightarrow y$$
$$p0 \longrightarrow x$$

Context Sensitive vs Insensitive Analysis

Context Sensitive: Considers calling context when performing *points-to* analysis.

$$pX \xrightarrow{p} a$$

$$pY \xrightarrow{y} y$$

Context Insensitive: Produces spurious aliases.

```
pX \xrightarrow{p} a
pY \xrightarrow{x} y
```

```
void * id(void * a) {
    return a;
}
void fa() {
    int x = 1;
    void * pX = &x;
    pX = id(pX);
}
void fb() {
    int y = 1;
    void * pY = &y;
    pY = id(pY);
}
```

Object Sensitive Analysis

Abdul Dakkak - PhD Qualifying Exam

Heap Modeling

Abdul Dakkak - PhD Qualifying Exam

Abdul Dakkak - PhD Qualifying Exam

Point-to Analysis using Andersen

Abdul Dakkak - PhD Qualifying Exam

Point-to Analysis using BDD

Abdul Dakkak - PhD Qualifying Exam

Point-to Analysis using CFL Reachability

Abdul Dakkak - PhD Qualifying Exam

Abdul Dakkak - PhD Qualifying Exam