THE PATCH FRAME AND ITS RELATIONS WITH SEPARATION IN POINT-FREE TOPOLOGY

ABSTRACT.

1. Introduction

Aquí va la introducción.

2. Preliminaries

3. HAUSDORFF PROPERTIES IMPLIES PATCH TRIVIALITY

Gadgets:

A the base frame

Its point space S = pt(A).

NA is the assembly of nucleus of A.

The compact saturated sets of S,

Q(S).

The preframe of open filters of A,

 A^{\wedge} .

The preframe of open filters of $\Omega(S)$.

$$\Omega(S)^{\wedge}$$
.

The set of compact quotients

$$KA = \{j \in NA \mid A_j \text{ is compact}\}.$$

First we recall that every open filter $F\in A^\wedge$ has three faces, that is, determines (and its determine) by :

- The compact saturated $Q \in \mathcal{Q}S$.
- $\nabla \in \Omega(S)^{\wedge}$.
- The compact quotient $A \to A_F$.
- The fitted nucleus v_F .

Hoffman-Mislove can be rephrase:

There is a bijection between compact quotients of A and compact saturated sets of S

4. COMPACT QUOTIENTS

Definition 4.1. A frame has KC if every compact quotient of A is a closed one. In other words every compact sublocale is closed.

Denote by $\mathcal H$ the subcategory of Frm of Hausdorff frames, that is, $A\in\mathcal H$ if and only if:

Definition 4.2. A frame is *efficient* if every fitted kq nucleus is closed equivalently the frame is tidy.

If $f^* \colon A \to B$ is a frame morphism and $F \subseteq A$, $G \subseteq B$ filters in A, B, respectively, we can produce new filters as follows

(1)
$$b \in f^*F \Leftrightarrow f_*(b) \in F$$
 and $a \in f_*G \Leftrightarrow f^*(a) \in G$

where $a \in A, b \in B$ and f_* is the right adjoint of f^* . Here $f^*F \subseteq B$ and $f_*G \subseteq A$ are filters on B and A, respectively.

Proposition 4.3. For $f = f^* \colon A \to B$ a frame morphism and $G \in B^{\wedge}$, then $f_*G \in A^{\wedge}$.

Proof. By (1), f_*G is a filter on A. We need f_*G to satisfy the open filter condition. Let $X \subseteq A$ be such that $\bigvee X \in f_*G$, with X directed. Then

$$Y = \{ f(x) \mid x \in X \}$$

is directed and $f(\bigvee X) = \bigvee f[X] = \bigvee Y \in G$. Since G is a open filter, exists $y = f(x) \in Y$ such that $y \in G$. Thus $x \in f_*G$, so that, $f_*G \in A^{\wedge}$.

In [Sex03], the autor says that $A \in \mathbf{Frm}$ is *tidy* if for all $F \in A^{\wedge}$

$$x \in F \Rightarrow u_d(x) = d \lor x = 1$$

where $d = d(\alpha) = f^{\alpha}(0)$, $f = \dot{\nabla}\{v_y \mid y \in F\}$, $v_y \in NA$ and $0 = 0_A$ (the reason for the last two clarifications will be understood later a que te refieres).

We want translate this same notion, but for A_j when $j \in NA$, so that, for all $F \in A_j^{\wedge}$, if $x \in F$ then $d \vee x = 1$, with d similar to before, because for this case we have that $v_y \in NA_j$ and $0_{A_j} = j(0)$.

In [Sim04, Lemma 8.9 and Corollary 8.10] the author shows, that the diagram

$$A \xrightarrow{f^{\infty}} A$$

$$U_A \downarrow \qquad \qquad \downarrow U_A$$

$$\mathcal{O}S \xrightarrow{F^{\infty}} \mathcal{O}S$$

commutes laxly, that is,

$$U_A \circ f^{\infty} < F^{\infty} \circ U_A$$
.

In this diagram U_A is the spatial reflection morphism, f^{∞} and F^{∞} represent the associated nuclei to the filters $F \in A^{\wedge}$ and $\nabla \in \mathcal{O}S^{\wedge}$. Also f^{∞} and F^{∞} are idempotent closeds associated to the prenuclei f and F respectively.

We prove something more general here, since we consider the diagram

$$\begin{array}{ccc} A & \xrightarrow{\hat{f}^{\infty}} & A \\ \downarrow \downarrow & & \downarrow j \\ A_j & \xrightarrow{f^{\infty}} & A_j \end{array}$$

where \hat{f}^{∞} is the nuclei associated to the filter $j_*F \in A^{\wedge}$ and $j \in NA$.

Lemma 4.4. For j, f and \hat{f} as above, it holds that $j \circ \hat{f} \leq f \circ j$.

Proof. By (1) is true that

$$\hat{f} = \bigvee^{\cdot} \{v_y \mid y \in j_*F\} \quad \text{ and } \quad f = \bigvee^{\cdot} \{v_{j(y)} \mid j(y) \in F\}.$$

then, for $a \in A$ it is hold

$$v_y(a) = (y \succ a) \le \hat{f}(a) \le j(\hat{f}(a)).$$

Also, for all $a, y \in A$, $(y \succ a) \land y = y \land a$ and

$$j((y \succ a) \land y) \le j(a) \Leftrightarrow j(y \succ a) \land j(y) \le j(a)$$
$$\Leftrightarrow j(y \succ a) \le (j(y) \succ j(a)).$$

Thus

$$v_y(a) \leq j(\hat{f}(a)) \leq (j(y) \succ j(a)) = v_{j(y)}(j(a)) \leq f(j(a)).$$

Therefore
$$j \circ \hat{f} \leq f \circ j$$
.

Now, we prove the above, but for all α -ordinals.

Corollary 4.5. For j, f and \hat{f} as before, it is hold that $j \circ \hat{f}^{\alpha} \leq f^{\alpha} \circ j$

Proof. For an ordinal α we will check that $j \circ \hat{f}^{\alpha} \leq f^{\alpha} \circ j$. We will do it by transfinite induction.

If $\alpha = 0$, it is trivial.

For the induction step, we assume that for α it holds. Then

$$j \circ \hat{f}^{\alpha+1} = j \circ \hat{f} \circ \hat{f}^{\alpha} \le f \circ j \circ \hat{f}^{\alpha} \le f \circ f^{\alpha} \circ j = f^{\alpha+1} \circ j,$$

where the first inequality is Lemma 4.4 and the second is true by the induction hypothesis.

If λ is a limit ordinal, then

$$\hat{f}^{\lambda} = \bigvee \{\hat{f}^{\alpha} \mid \alpha < \lambda\}, \quad f^{\lambda} = \bigvee \{f^{\alpha} \mid \alpha < \lambda\}$$

and

$$j\circ \hat{f}^\lambda=j\circ\bigvee_{\alpha<\lambda}\hat{f}^\alpha\leq\bigvee_{\alpha<\lambda}j\circ\hat{f}^\alpha.$$
 Thus, by the induction hypothesis, we have that

$$j \circ \hat{f}^{\alpha} \leq f^{\alpha} \circ j \Rightarrow \bigvee_{\alpha < \lambda} j \circ \hat{f}^{\alpha} \leq \bigvee_{\alpha < \lambda} f^{\alpha} \circ j.$$

Therefore $j \circ \hat{f}^{\lambda} \leq f^{\lambda} \circ i$.

By the Corollary 4.5, we have that $j \circ \hat{f}^{\infty} \leq f^{\infty} \circ j$ is true. Futhermore, by H-M Theorem(preliminares con la idea de la prueba nueva), $f^{\infty} = v_F$ and $\hat{f}^{\infty} = v_{i*F}$. With this in mind, we have the following diagram

$$\begin{array}{ccc}
A & \xrightarrow{(v_{j*F})^*} & A_{j*F} \\
\downarrow & & \downarrow & \downarrow \\
A_j & \xrightarrow{(v_F)_*} & A_F
\end{array}$$

ES este diagrama hay que poner punteada la flehca qu eiria en los cocientes Here, A_F and A_{j_*F} are the compact quotients produced by v_F and v_{j_*F} , respectively. The morfism $H: A \to A_F$ is defined by $H = v_F \circ j$. Futhermore, $(v_F)_*$ and $(v_{j*F})_*$ are inclusions.

Let $h: A_{j_*F} \to A_j$ be such that, for $x \in A_{j_*F}$, h(x) = H(x). Therefore, if $h = H_{|A_{j_*F}}$, then the above diagram commutes.

We need that h to be a frame morphism. First, by the difinition of h, this is \wedge -morphism. It remains to be seen that h is \vee -morphism.

The joins in A_{j_*F} and A_F are calculated differently. Thus, let \hat{V} be join in A_{j_*F} and let \bigvee be join in A_F . Therefore

$$\hat{\bigvee} = v_{j_*F} \circ \bigvee$$
 and $\tilde{\bigvee} = v_F \circ \bigvee$,

that is, for $X \subseteq A, Y \subseteq A_i$,

$$A, Y \subseteq A_j,$$

$$\hat{\bigvee} X = v_{j*F}(\bigvee X) \quad \text{ and } \quad \tilde{\bigvee} Y = v_F(\bigvee Y).$$

Since H is a frame morphism, then $H \circ \bigvee = \tilde{\bigvee} \circ H$. Let us get something similar to h.

Lemma 4.6. $h \circ \hat{V} = \tilde{V} \circ h$.

Proof. It is enough to check the comparison $h \circ \hat{V} \leq \tilde{V} \circ h$. Thus

$$h \circ \hat{\bigvee} = H \circ v_{j_*F} \circ \bigvee = v_F \circ j \circ v_{j_*F} \circ \bigvee \leq v_F \circ v_F \circ j \circ \bigvee$$

where the inequality is the Corollary 4.5. Futhermore, $v_F \circ v_F = v_F$, then

$$h\circ \mathring{\bigvee} \leq v_F\circ j\circ \bigvee = H\circ \bigvee = \mathring{\bigvee}\circ H = \mathring{\bigvee}\circ h.$$

Therefore $h \circ \hat{V} = \tilde{V} \circ h$.

With this we prove the following.

Proposition 4.7. The diagram

$$\begin{array}{ccc}
A & \xrightarrow{v_{j*F}} A_{j*F} \\
\downarrow \downarrow & & \downarrow h \\
A_j & \xrightarrow{v_F} A_F
\end{array}$$

is commutative.

HAY QUE PONER LA PRUEBA With the above diagram, we could analyze some compact quotients, for example, closed compact quotients.

Definition 4.8. Let A be a frame and $F \in A^{\wedge}$. The compact quotient A_F is closed if $A_F = A_{u_d}$ for some $d \in A$.

Proposition 4.9. If A is a tidy frame, then A_j is tidy.

Proof. It is easy to prove that $F \subseteq j_*F$. Since A is tidy and $F \in A^{\wedge}$, it is true that

$$x \in F \Rightarrow \hat{d} \lor x = 1,$$

where $\hat{d} = d(\alpha) = f^{\alpha}(0)$. If $\hat{d} \leq d$, then $d \vee x = 1$, for $d = d(\alpha) = f^{\alpha}(j(0))$.

Thus, for Corollary 4.5

$$\hat{d} = \hat{d}(\alpha) \le j(\hat{d}(\alpha)) = j(\hat{f}^{\alpha}(0)) \le f^{\alpha}(j(0)) = d(\alpha) = d.$$

Therefore if $x \in F$, then $d \vee x = 1$ and A_i is tidy.

Proposition 4.10. If A has KC, then A_j has KC for every $j \in N(A)$.

Proof. We consider $k \in NA_i$ such that $(A_i)_k$ is compact. Since any open filter is admissible, we have $\nabla(k) \in A_j^{\wedge}$ and by Proposition 4.3 $j_*\nabla(K) \in A^{\wedge}$.

Let $l = j_* \circ k \circ j^* \in NA$ be, then A_l is a compact quotient of A and exists $a \in A$ such that $l = u_a$. Thus, we have

$$A \xrightarrow{j^*} A_j \xrightarrow{k} (A_j)_k \xrightarrow{j_*} A_j \subseteq A$$

and $a \vee x = k(j(x))$. Therefore, if x = a, k(j(x)) = a.

We need that $k = u_b$ for some $b \in A_i$. For $x \in A_i$ and b = j(a)

$$u_b(x) = b \lor x = b \lor j(x) = j(j(a) \lor j(x))$$

$$= j(k(j(a)) \lor x)$$

$$= j(u_a(x))$$

$$= j(k(x))$$

$$= k(x).$$

Therefore $u_b = k$.

Proposition 4.11. If A is a KC frame, the A is a T_1 frame.

Proof. Let $p \in \operatorname{pt} A$ and $a \in A$ be such that $p \leq a \leq 1$. We consider

$$w_p(x) = \begin{cases} 1 & \text{si} \quad x \nleq p \\ p & \text{si} \quad x \le p \end{cases}$$

for $x \in A$. $P = \nabla(w_p) = \{x \in A \mid x \nleq p\}$ is a filter completely prime (in particular, $P \in A^{\wedge}$). Since A is KC, then A_{w_p} is a closed compact quotient. Thus $u_p = w_p$, futhermore

$$u_p(a) = a$$
 and $w_p(a) = 1$.

that is, a = 1. Therefore p is maximal.

Proposition 4.12. *The following holds:*

- (1) The class of tidy frames is closed under coproducts.
- (2) The class of KC frames is closed under coprodcuts.

 \square

5. Admissibility intervals

The block structure on a frame is an important problem and its related with some separation properties of frames.

Proposition 5.1. For $F \in A^{\wedge}$ and $Q \in \mathcal{Q}S$, if $j \in [v_Q, w_Q]$, then $U_*jU^* \in [v_F, w_F]$, where U^* is the morfism spatial reflection U_* is the right adjoint.

Proof. Since N is a functor, we have

$$\begin{array}{c|c}
A & NA \\
U & & \downarrow \\
OS & NOS
\end{array}$$

and $N(U)_*$ is the right adjoint of $N(U)^{\wedge}$. Note the following:

- (1) $N(U)(j) \le k \Leftrightarrow j \le N(U)_*k$.
- (2) If $k \in NOS$ then $N(U)(j) \le k \Leftrightarrow Uj \le kU$.
- (3) $N(U)_*k = U_*kU^*$ and $UN(U)_*k = k(U)$.

In 3), if
$$j=k,$$
 $N(U)_*(j)=U_*jU^*$ and $UN(U)_*j=jU.$ For $x\in F$

$$x \in A \xrightarrow{U^*} \mathcal{O}S \xrightarrow{j} \mathcal{O}S \xrightarrow{U_*} A$$

and $U_*(j(U(x))) = \bigwedge(S \setminus j(U(x)))$. Note that $U_*(j(U^*(x))) \subseteq \operatorname{pt} A$. Thus

$$x \in F \Leftrightarrow Q \subseteq U(x) \Leftrightarrow U(x) \in \nabla(j) = \nabla(Q) \Leftrightarrow S \setminus j(U(x)) = \emptyset$$
$$\Leftrightarrow \bigwedge (S \setminus j(U(x))) = 1 = (U_*jU^*)(x)$$
$$\Leftrightarrow x \in \nabla(U_*jU^*)$$

Therefor $F = \nabla (U_* j U^*)$.

In this way we have a function

$$\mho: [V_Q, W_Q] \to [V_F, W_F]$$

Theorem 5.2. Let $A \in \mathcal{H}rm$ then for every $F \in A^{\wedge}$ with corresponding \mathcal{Q} compact saturated we have

$$\mathcal{OQ} \cong \uparrow \mathcal{Q}'$$

, that is, the frame of opens of the point space of A_F is isomorphic to a compact closed quotient of a Hausdorff space.

Proof.
$$\Box$$

EJEMPLOS DE marcos pt que no sean KC

HAY que COMENTAR LAS COSAS QUE ESTAN MAL comentar me refiero a ponerlas entre

Trivially KC implies patch trivial (or equivalently tidy) we want some converse of this fact.

Following articulo de igor.,

Definition 5.3. A frame A has *fitted points* (p-fit for short) if for every point $p \in$ pt(A) the nucleus

$$\mathbf{w}_n$$
 is fitted

that is, to said for every point p the nucleus w_p is alone in its block.

In general for each $p \in pt(A)$, the nucleus w_p is the largest member of his block, that is,

$$[v_{\mathcal{P}}, \mathbf{w}_p]$$

the corresponding block, here $\mathcal{P} = \{x \in A \mid x \nleq p\}$ in this case we know how to calculate

$$v_{\mathcal{P}}$$
.

using the prenucleus $f_{\mathcal{P}}$ we know that

$$v_{\mathcal{P}} = f_{\mathcal{P}}^{\infty} = (\dot{\bigvee} \{ \mathbf{v}_x \mid x \in \mathcal{P} \})^{\infty}$$

moreover:

$$f_{\mathcal{P}}(x) = \begin{cases} 1 & \text{si} \quad x \nleq p \\ \\ \leq p & \text{si} \quad x \leq p \end{cases}$$

for $x \in A$.

and in fact $\mathbf{w_p} = u_p \lor v_{\mathcal{P}} = f_{\mathcal{P}} \circ u_p$. If $\mathbf{w_p}$ is fitted, that is,

$$w_{\rm p} = v_{\mathcal{P}}$$

then one need to have $u_p \leq v_{\mathcal{P}}$ then

$$p \le v_{\mathcal{P}}(0)$$

by the equation of $f_{\mathcal{P}}$ we have

$$0 \leq \cdots \leq f_{\mathcal{P}}^{\alpha}(0) \leq \cdots \leq$$

Proposition 5.4. Let A be a frame for each $p \in pt(A)$ the following are equivalent:

- (i) w_p is fitted.
- (ii) w_p is alone in its block.
- (iii) $u_p \leq v_{\mathcal{P}}$.
- (iv) $u_p \leq f_{\mathcal{P}}$.
- (v) $f_{\mathcal{P}} \circ u_p = v_{\mathcal{P}}$.
- (vi) aqui debe de ir una formula de primer de orden.

Proposition 5.5. In a p-fit frame for each $p \in pt(A)$ the nucleus w_p is a maximal element in pA.

Proof. First we dealing with the basics v_F for $F \in A^{\wedge}$ of the patch frame, given any w_p suppose that $w_p \leq v_F$ then by (propiedades generales de los w) $v_F = w_b$ where $b = v_F(0)$ thus

$$w_p \le w_b \Leftrightarrow w_p(b) = b$$

since w_p is two valuated we have b=1 or b=p if the first case occur then we are done, for the case b=p we have $v_f(p)=p$ that is, to say, $p \notin F$, then by the Birkhoff's separation lemma we can find a completely prime filter D such that

$$F \subseteq G \not\ni p$$

let q the corresponding point associated to G, then $p \leq q$ since A is p-fit $v_G = \mathbf{w}_q$ and thus $\mathbf{w}_p \leq \mathbf{w}_q$ wich is equivalent to $\mathbf{w}_p(q) = q$ again since we are dealing with points one necessary has p = q.

Now consider any closed \mathbf{u}_c such that, $\mathbf{w}_p \leq \mathbf{u}_c$ then $\mathbf{w}_p(c) = 1$ and thus 1 = c. Therefore in basics of the patch the nuclei \mathbf{w}_p are maximal, now consider any $k \in \mathbf{p}A$ such that $k \in \mathfrak{K}A$

Proposition 5.6. Let A be a frame then if

$$v_F \neq v_G$$

Definition 5.7. A frame A is *tame* if does not have wild points.

Proposition 5.8. In a tame p-fit frame the patch frame pA is T_1 .

Since every hausdorff frame is tame and p-fit we have:

Corollary 5.9. If $A \in \mathcal{H}rm$ then, the patch frame pA is T_1 .

Definition 5.10. Let A be a frame a nucleus k on A it said to be kq if A_i is a compact frame.

Denote by

$$\mathfrak{K}A = \{ j \in NA \mid j \text{ is } kq \}.$$

Definition 5.11. A frame A is compact closed Hausdorff (KCH for short) if every compact quotient of A is closed and Hausdorff.

Denote by
$$\mathfrak{f}A = \{kq \text{ fitted nuclei }\} = \{v_F \mid F \in A^{\wedge}\}$$
 denote by $\mathfrak{C}A = \{a \in A \mid u_a \in \mathfrak{K}A\}$

6. The pro-compact fit completion of a frame

Here we are going to construct the pro-compact fit completion of a frame A. This construction is similar to the pro-compact closed completion of a frame, but here we consider only compact fitted quotients.

Firs we consider the family

$$\{A \to A_F \mid v_F \in \mathfrak{f}A\}$$

of compact fitted quotients of A.

Denote by $F^*: A \to A_F$ the canonical morphism to the compact fitted quotient, that is,

$$F^*(a) = v_F(a) \ \forall a \in A$$

If $v_F \leq v_G$

where $(FG)(v_F(a)) = v_G(a)$ for all $a \in A$.

this cones have a limit in the category of frames, denote by \hat{A} this limit and by $\pi_F \colon \hat{A} \to A_F$ the canonical projection for each F.

thus in particular we have a unique morphism $\gamma \colon A \to \hat{A}$ such that the following diagram commutes

 $\pi_F \circ \gamma = v_F^*$ for all F.

The morphism $\gamma \colon A \to \hat{A}$ is given by

$$\gamma(a) \colon \mathfrak{f}A \to \bigcup_{F \in \mathfrak{f}A} A_F$$

therefore $\gamma(a)(F) = v_F(a)$

thus for $f \in \hat{A}$ and each F we have the set $\{x \in A \mid v_F(x) = f(F)\}$ the fiber of f in F.

Now for the left adjoint of γ is given by

$$\gamma_*(f) = \bigvee \{a \in A \mid \gamma(a) \le f\}$$

$$\gamma(a) \le f \Leftrightarrow a \le \gamma_*(f)$$

note that if $f \in \hat{A}$ then for a v_F we have $f(v_F) \in A_F$ thus $f(v_F) = v_F(x)$ for some $x \in A$, therefore

$$f(v_F)=v_F(x)=\gamma(x)(v_F)$$
 then $\{x\in A\mid v_F(x)=f(F)\}_F\subseteq \{x\in A\mid \gamma(x)\leq f\}$ for each F As shown in [Esc01]

REFERENCES

- [Esc01] Martin Hötzel Escardó, *The regular-locally compact coreflection of a stably locally compact locale*, Journal of Pure and Applied Algebra **157** (2001), no. 1, 41–55.
- [Sex03] Rosemary A Sexton, A point-free and point-sensitive analysis of the patch assembly, The University of Manchester (United Kingdom), 2003.
- [Sim04] Harold Simmons, *The vietoris modifications of a frame*, Unpublished manuscript, 79pp., available online at http://www.cs. man. ac. uk/hsimmons (2004).