

Palladio Componentmodel

Entwurfsbeschreibung

 $Marko\ Hoyer \\ Marko. Hoyer@informatik.uni-oldenburg.de$

9. Oktober 2005

Inhaltsverzeichnis

1	Architektur			2	
2				2	
3				4	
	3.1 Anforderungen an den Modellkern			4	
	3.2 Ideen zur Umsetzung		zur Umsetzung	5	
	3.3	Beschreibung der umgesetzten Variante		6	
		3.3.1	Realisierung interner Entitäten	7	
		3.3.2	Realisierung der externen Entitäten	7	
		3.3.3	Identifizierung von Entitäten	7	
		3.3.4	Speicherung der Beziehungen	7	
		3.3.5	Schnittstelle nach außen	8	
4	Inst	anzier	rung des Modells	8	
5	Aufbau eines neuen Modells			8	
6	Benachrichtigung bei Änderungen im Modell			8	
7	Suchanfragen an das Modell			8	
	7.1	Allger	neine Anfragen	8	
	7.2	Navig	ation im Modell	8	
	7.3	Vergle	eichbarkeit zwischen Bestandteilen des Modells	8	
8	Per	Persistente Speicherung des Modells			
9	Erweiterungsmöglichkeiten			8	
Li	terat	urverz	zeichnis	9	

2 ARCHITEKTUR 2

1 Einleitung

2 Architektur

In diesem Kapitel wird die derzeitige Architektur des Komponentenmodells vorgestellt. Sie setzt sich aus den in Abbildung 1 dargestellten und im Folgenden kurz erläuterten Bestandteilen zusammen. An der Umrandung der Blöcke ist abzulesen, ob diese bereits entworfen oder lediglich als Erweiterungen geplant sind. Details und Informationen zur Umsetzung der Bestandteile des Komponentenmodells sind Inhalt der folgenden Kapitel dieses Dokuments.

Abbildung 1: Architektur des Komponentenmodells

Zentrum der Architektur bildet die in der Abbildung mit data management bezeichnete Datenhaltung. Sie dient der lokalen Speicherung der Entitäten und Relationen des Modells zur Laufzeit der nutzenden Anwendung. Hierfür stellt sie Möglichkeiten zum Lesen und Schreiben der Daten zur Verfügung. Die Konsistenz der Daten ist in dieser Schicht lediglich in Bezug auf die verwendeten Datenstrukturen zu gewährleisten. Semantische Fehler im Sinne des theoretischen Komponentenmodells sind von der Datenhaltung zu

2 ARCHITEKTUR 3

tollerieren, um unabhängig von möglichen Änderungen dieser Semantik zu bleiben. Aufgrund dessen ist der das Modell nutzenden Anwendung keine Möglichkeit zu gewähren, direkt auf die Datenhaltung zuzugreifen, da sonst Korrektheit im Sinne des theoretischen Modells nicht mehr gewährleistet werden kann. Zugriff ist erst nach Überprüfung durch entsprechende Zwischenschichten zu gestatten.

Schreibende Änderungen der Anwendung am Modell sind hierbei durch den in der Architekur mit builder bezeichneten Block vorgesehen. Dieser stellt eine Infrastruktur bereit, welche Änderungen an verschiedenen Stellen des Modells zulässt und den korrekten Aufbau gemäß dem theoretischen Modell sicherstellt. Es können an dieser Stelle bereits durch geschickte Wahl der Zugriffsmethoden Fehler ausgeschlossen werden. Eine Möglichkeit der Umsetzung dieser Schicht unter Beachtung der Hierarchie des Komponentmodells wird in Kapitel 5 vorgestellt.

Der lesende Zugriff auf das Modell kann je nach Bedarf durch verschiedene Schichten erfolgen. Die in Abbildung 1 mit query bezeichnete Schicht dient der Abfrage von Attributen der Entitäten und der Beziehungen zwischen diesen. Eine direkte Abfragemöglichkeit der Datenhaltung ist prinzipiell möglich, jedoch aufgrund fehlenden Wissens über das theoretische Modell unpraktikabel. Abstraktionen in diesem Sinn sind also ebenfalls Aufgabe der Abfrageschicht.

Die persistente Speicherung des Modells ist Aufgabe der Serialisierungsschicht. Diese soll nach Möglichkeit unabhängig von der genauen Art der Speicherung bleiben. Sowohl der Ex- und Import von Xml-Dateien, wie auch die Speicherung in einer relationalen Datenbank sollen möglich sein. Ebenfalls ist die binäre Speicherung in einem eigenen Datenformat denkbar. Eine Entkopplung vom Kern des Komponentenmodells durch austauschbare Module bietet hierbei die größte Flexibelität. Der Zugriff der Serialisierungsschicht auf die lokal gehaltenen Daten kann auf zwei unterschiedliche Arten realisiert werden, direkter Zugriff auf den Kern oder indirekter Zugriff über die Abstraktionsschichten query und builder. Vorteil der ersten Variante ist die freie Wahl der Zugriffsmethoden auf die Daten. Je nach Art der Speicherung können Anfragen gezielt angepasst werden, um effizient schreiben oder lesen zu können. Nachteil hierbei ist jedoch die Prüfung der Konsistenz und Korrektheit des Modells. Diese müsste redundant zur builder-Schicht implementiert werden. Weiterhin wird eine Abhängigkeit zwischen Kern und Serialisierungsschicht geschaffen, die im Falle der zweiten Variante nicht besteht. Die Nutzung der beiden Abstraktionschichten im zweiten Fall bilden weiterhin eine gute Möglichkeit zur effizienten Qualitätssicherung. So schlagen Serialisierungstests fehl, wenn sich entweder Fehler in der Serialisierungsschicht selber oder in der Implementierung der Zugriffsmethoden befinden.

Der Benachrichtigung der nutzenden Software bei Änderungen des Modells dient die in der Abbildung mit *events* bezeichnete Schicht. Ziel hierbei ist die Bereitstellung vollständiger Überwachungsmöglichkeit des Modells ohne direkte Verbindung zu den

Quellen der Veränderung. So sollen sowohl die Änderungen des Modells durch die Builder als auch durch die Deserialisierung überwacht werden. Setzen sich zur Wahrung der Konsistenz und Korrektheit Aktionen transitiv fort, so sind auch diese Änderungen der Überwachung mitzuteilen.

Die in Abbildung 1 mit navigation und equals bezeichneten Module sind als Erweiterungen geplant. Zweck des ersten Moduls ist die Navigation durch das Komponentenmodell z.B. entlang des Kontrollflusses unter Verwendung verschiedenster Strategien. Das zweite Modul befasst sich mit der Äquivalenz von Bestandteilen eines Modells oder gar von gesamten Modellen. Die Möglichkeit der unterschiedlichen Definition von Äquivalenz anhand verschiedener Kriterien ist hierbei wichtigste Anforderung an dieses Modul.

Die Architektur kann je nach Bedarf beliebig um Module und Schichten erweitert werden. Diese können entweder direkt oder indirekt über Abstraktionsschichten auf den Kern zugreifen. Bei direkten schreibenden Zugriffen ist wie oben bereits erläutert zu beachten, dass die Konsistenz im Sinn des theoretischen Modells eingehalten werden muss. Keinesfalls dürfen Erweitungsmodule der nutzenden Anwendung den direkten Zugriff auf den Kern ermöglichen. Ist direkter Zugriff nicht zwingend erforderlich, so sind die durch die entsprechenden Abstraktionsschichten angebotenen Schnittstellen vorzuziehen.

In den folgenden Kapiteln werden die für die aktuelle Version des Komponentenmodells entworfenen Module und Schichten vorgestellt, Entwurfsentscheidungen begründet und bekannte Probleme erläutert.

3 Datenhaltung im Modellkern

Der Modellkern, dessen Hauptaufgabe die Verwaltung der Daten darstellt, bildet den wichtigsten Bestandteil des Komponentenmodells mit den im ersten Teil des Kapitels erläuterten Anforderungen. Es folgt die Präsentation von drei Ideen zu deren Umsetzung. Abschließend wird die in dieser Version des Komponentemodells implementierte Variante ausführlich erläutert.

3.1 Anforderungen an den Modellkern

Speicherung

Der Modellkern muss in der Lage sein, alle Daten zur Laufzeit des nutzenden Programms zu speichern. Zu den Daten gehören die Entitäten des Komponentenmodells mit ihren Attributen. Die Struktur der Attribute beschränkt sich hierbei nicht auschließlich auf Standartdatentypen. Es müssen beliebige z.T. zur Entwurfszeit unbekannte Datenstrukturen speicherbar sein. Weiterhin müssen die Beziehungen

zwischen den Entitäten (z.B. Komponente A enthält Komponente B) festgehalten werden.

• Konsistenzprüfung

Wie eingangs in der Architekturbescheibung erläutert besteht die Aufgabe des Modellkerns nicht in der Implementierung der Konsistenzprüfung des theoretischen Modells. Somit sollte im Idealfall prinzipiell erst einmal alles abspeicherbar sein. Da die Umsetzung dieser Anforderung viele ungenutzte und zu Lasten der Komplexität fallende Möglichkeiten bietet, ist die Nutzung von Wissen über das theoretische Modell bei der Konzeption der Datenhaltung sinnvoll einzubringen. Verstöße gegen die sich hierraus ergebenen Beschränkungen sind dann jedoch durch den Modellkern abzufangen und entsprechend zu behandeln. Soll beispielsweise entsprechend dem o.g. Beispiel die Komponente B der Komponente A hinzugefügt werden, so ist vom Modell diese Beziegung zu speichern. Setzt die gewählte Speicherstruktur hierbei das vorhandensein von Komponente A vorraus, so ist das durch den Modellkern sicherzustellen. Dieser kann dann entweder die Speicherung ablehnen oder selbständig eine Komponente A erzeugen.

• Zugriffsmethoden

Die dritte Anforderung an den Modellkern stellen die Zugriffsmethoden dar. Da in die Datenhaltung, wie oben erläuert, nicht das vollständige Wissen über das theoretische Modell zu implementieren ist, können keine hierauf zugeschnittenen Zugriffsmethoden zur Verfügung gestellt werden. Es ist also eine Schnittstelle zu schaffen, die flexiblen Zugriff auf alle gespeicherten Daten bereitstellt. Bestehen im Modell der Datenhaltung bereits Beziehungen zwischen den Daten, so bietet sich deren Nutzung beim Zugriff an. Weiterhin wichtig ist sowohl bei den Zugriffsmethoden als auch bei der Speicherung die Geschwindigkeit. Dieser Teil des Modells bildet, wie bereits erläutert, die Datenhaltung für die laufende Anwendung. Sorgt die Arbeit auf dem Modell für zu hohe Latenz, so leidet die Nutzbarkeit der Anwendung hierrunter stark.

Nachdem die grundlegenden Anforderungen an den Modellkern erarbeitet wurden, folgt die Vorstellung von Ideen zu deren Umsetzung.

3.2 Ideen zur Umsetzung

Zur Umsetzung des Modellkerns kommen eine Reihe von Strategien in Frage, von denen drei im Folgenden gegeneinander abgegrenzt werden.

Die erste Strategie bedient sich ausschließlich objektorientierter Konzepte. Hierbei werden die Entitäten durch Klasseninstanzen und Beziehungen zwischen diesen durch Referenzen auf andere Instanzen modelliert. Vorteile dieser Variante ergeben sich aus guter

Modellierbarkeit von Spezialisierung, problemloser Speicherung von Attributen unbekannten Typs und hoher Geschwindigkeit. Erfahrungen haben gezeigt, dass sich bei der Umsetzung dieses Konzeptes Probleme hinsichtlich Wartbarkeit und Erweiterbarkeit ergeben, die sich auf die starke Abhängigkeit der Klassen untereinander zurückführen lassen. Ebenfalls schwierig zu modellieren sind auf diese Art zirkuläre Abhänigkeiten.

Der zweite Ansatz bedient sich einer relationalen oder einer objektrelationalen Datenbank. Die Entitäten werden hierbei in entsprechenden Tabellen der Datenbank gespeichert. Die Beziehungen zwischen den Entitäten lassen sich in der Datenbank entsprechend als Beziehungen zwischen den Tabellen modellieren. Details zum Entwurf solcher Datenbankschemata und deren Nutzung sei an dieser Stelle auf entsprechende Literatur (z.b. [EN02]) verwiesen. Vorteil dieses Ansatzes liegt in der guten Infrastruktur zum Speichern, Laden und anfragen von Daten. Nachteilig ist jedoch das zur Entwurfszeit festgelegte Datenschema, welches den unbekannten Attributen nicht gerecht wird. Weiterhin bringt eine Datenbank viel Funktionalität mit, welche i.A. im Rahmen der Datenhaltung einer Anwendung (z.B. eines Editors für das Komponentenmodell) zuviel Aufwand bedeutet. Seitens der Geschwindigkeit kann die Datenbank mit dem ersten Ansatz in Hinblick auf den Anwendungsfall Komponentenmodell nicht mithalten.

Die dritte hier vorgestellte und gleichzeitig von uns verwendete Idee kombiniert die Vorteile der beiden vorherigen Varianten. Die durch ihre Attribute charakterisierten Entitäten werden gemäß dem ersten Ansatz in Form von Objektinstanzen gespeichert. Die Beziehungen zwischen diesen Entitäten hält eine Art Datenbank. Somit lassen sich problemlos alle Art von (auch unbekannten) Attributen speichern. Die verwendete Datenbank bietet performante und flexible Möglichkeiten, Beziehungen zwischen den Entitäten zu erfragen.

Es folgt die detailierte Beschreibung der von uns umgetzten Variante.

3.3 Beschreibung der umgesetzten Variante

Wie im vorherigen Abschnitt kurz erläutert handelt es sich bei den Entitäten um reine Datenkontainer. Es existieren im Komponentenmodell zwei Arten von Entitäten, interne und externe Enitäten. Alle internen Entitäten besitzen neben einer ID einen Namen und eine Liste von zur Laufzeit frei wählbaren Attributen. Je nach Typ der Entität existieren zusätzliche jedoch zur Entwurfszeit festgelegte Attribute (z.B. der Typ einer Komponente). Zu internen Entitäten gehören Komponenten, Schnittstellen, Verbindungen und Signaturen.

Externe Entitäten zeichnen sich durch ihre zur Entwurfszeit unbekannte Struktur aus. Ihnen ist ausschließlich eine ID und eine Typ-ID gemeinsam. Die ID sorgt für die Eindeutigkeit der Instanz in einem Modell, die Typ-ID dient der Identifikation der verwendeten Implementation der externen Entität. Im Komponentenmodell gehören Protokolle und

Service-Effekt-Spezifikationen (siehe [Reu01]) zu den externen Entitäten, da diese auf verschiedenste Weise (z.B. durch Finite State Machines) implementierbar sind.

Die Schnittstellen aller Entitäten sind in der derzeitigen Implementierung des Komponentenmodells im Namensraum Palladio.ComponentModel.ModelEntities zu finden. Es folgt eine genauere Beschreibung der Realisierung der internen und externen Entitäten.

3.3.1 Realisierung interner Entitäten

3.3.2 Realisierung der externen Entitäten

3.3.3 Identifizierung von Entitäten

Da die gewählte Datenbank (siehe Abschnitt 3.3.4) nur die Speicherung von Standartdatentypen zuläßt, muss eine zusätzliche Infrastruktur geschaffen werden, welche die Entitäten des Modells hält. Hierfür bot sich die Hashtable des .NET-Frameworks an, in der die Entitäten durch ihre ID referenzierbar sind.

3.3.4 Speicherung der Beziehungen

Abbildung 2: .NET Dataset des Modellkerns

- 3.3.5 Schnittstelle nach außen
- 4 Instanzierung des Modells
- 5 Aufbau eines neuen Modells
- 6 Benachrichtigung bei Änderungen im Modell
- 7 Suchanfragen an das Modell
- 7.1 Allgemeine Anfragen
- 7.2 Navigation im Modell
- 7.3 Vergleichbarkeit zwischen Bestandteilen des Modells
- 8 Persistente Speicherung des Modells
- 9 Erweiterungsmöglichkeiten

LITERATUR 9

Literatur

[EN02] ELMASRI, RAMEZ und SHAM NAVATHE: Grundlagen von Datenbanksystemen. Pearson Studium, 3., überarb. Aufl. Auflage, 2002.

[Reu01] REUSSNER, RALF H.: Parametrisierte Verträge zur Protokolladaption bei Software-Komponenten. Logos Verlag, Berlin, 2001.