		,		
Test	e 1:Dado o seguinte conjunto de dados, 12 – 15 – 9	- 12 - 18 - 10	0-11-15-25, assinale a alte	rnativa correta:
A	Sua média é 15,55.		D Seu desvio-padrão é 3,76.	
В	Seu primeiro quartil é 18,00.			
С	Sua mediana é 15,00.		Sua variância é 24,61.	
	e 2:Uma empresa de crédito deseja identificar quais ciar, etc.). Para tanto, decidiu recorrer a uma amostra			
	Estratificada.		D Aleatória.	
В	Intencional.			
\mathbb{C}	Sistemática.		E Por agrupamentos (ou con	glomerados).
conté	e 3:A média aritmética de medidas independentes n n erros sistemáticos, porém foram observados erros cido de 100 unidades. Deseja-se que o erro seja de no	aleatórios dis	stribuídos seguindo uma distrib	ouição normal, com desvio padrão
1.	Para uma confiança de 90%, deve-se ter uma amost	ra de 121 obje	etos.	
2.	Ao se aumentar a confiança de 90% para 98%, deve	-se praticame	nte dobrar o tamanho da amost	ra de objetos.
3.	Se for aceito o dobro de erro, ou seja, 30 unidades, (assumindo sempre a confiança em 90%).	pode-se redu	zir a amostra para aproximada:	mente um quarto do valor original
4.	Pode se obter o erro igual a 25 com o tamanho da a	mostra em ap	proximadamente 44 (assumindo	sempre a confiança em 90%).
Assin	ale a alternativa correta:			
A	Somente 1, 3 e 4 estão corretas.		D Somente 2 e 3 estão corret	as.
	1, 2, 3 e 4 estão corretas.			
С	4 não pode ser calculada.		E 2 está correta e 3 está erra	ada.
	e 4:A estimativa da velocidade de um avião é obtida indo um grau de confiança de 95%, e o desvio padrã			
1.	O IC da média para dada confiança será: (857,88; 8	82,72).		
2.	${\cal O}$ IC da média para dada confiança será: (861,53; 8	79,07).		
3.	${\cal O}$ IC da média para dada confiança será: (860,77; 8	79,83).		
Assin	ale a alternativa correta:			
A	Somente alternativa 3 está correta.		D Alternativa 3 estaria corre	ta se considerada amostra grande.
В	O aumento da confiança levaria a análise a um erro	menor.		
	Somente alternativa 1 está correta.		E Somente alternativa 2 está	correta.
Test	e 5: Dado o seguinte conjunto de dados, $12 - 15 - 9$	9 - 12 - 18 - 1	10 - 11 - 15 - 25, pode-se consi	derar que:
A	Os dados possuem uma distribuição multimodal.		guda).	
В	Os dados possuem uma distribuição truncada.		Os dados possuem uma di	stribuição assimétrica à direita.
\mathbb{C}	Os dados possuem uma distribuição leptocúrtica	(pontia-	E Os dados possuem uma di	stribuição assimétrica à esquerda.
do Es	e 6:Um deputado estadual deseja pesquisar se os restado para pagar salários. Qual o tamanho da amostude (distância entre limites do intervalo) de no máx	tra necessária		
A	271. B 68.	C 587.	385.	E 97.

Teste 7: Apenas uma única observação X é coletada de uma variável aleatória com função de probabilidade $P(X \mid \theta)$, onde $\theta \in \{1; 2; 3\}$. São dadas as seguintes informações:

X	$P(X \mid \theta = 1)$	$P(X \mid \theta = 2)$	$P(X \mid \theta = 3)$
0	1/3	1/4	0
1	1/3	1/4	0
2	0	1/4	1/4
3	1/3 1/3 0 1/6 1/6	1/4	1/2
4	1/6	0	1/4

Assinale a alternativa correta:

B Se X=3, então a estimativa de máxima verossimilhança de θ é igual a 2.

 $oxed{\mathbb{C}}$ Se X=0, então a estimativa de máxima verossimilhança de

 θ é igual a 3.

 $\boxed{\mathbb{D}}$ Se X=4, então a estimativa de máxima verossimilhança de θ é igual a 2.

Teste 8:O fabricante certifica que a especificação de uma máquina é verdadeira com o desvio padrão de 10 cm em sua produção. Ao se retirar uma amostra de 20 peças obteve-se a média de 42 cm. Considere as seguintes afirmações:

- 1. Em 95% dos casos a média estará entre 37,62 e 46,38.
- 2. Em 90% dos casos a média estará entre 38,32 e 45,68.
- 3. Em 95% dos casos a média estará entre 39,13 e 44,86.

Assinale a alternativa correta:

Somente 3 está errada.

B Somente 3 está correta.

oxedcircle 2 apresenta maior erro que 1, embora a menor confiança.

D Se buscasse 99% dos casos, a média estaria entre 39,16 e 44,84.

E 2 apresenta maior confiança que 1, consequentemente menor erro.

Teste 9:O departamento de trânsito do Estado de SP quer estimar a proporção de veículos fabricados nos últimos 10 anos (que estejam cadastrados) que estejam emitindo o monóxido de carbono acima dos níveis permitidos. Um funcionário resolveu empregar uma amostra aleatória de 1850 carros e observou 296 casos. Sabe-se que a proporção de carros que emitem acima dos níveis permitidos deve ser no máximo de 30%. Considere as seguintes afirmativas:

- 1.~O tamanho de amostra para estimar a proporção de carros com emissão superior aos níveis permitidos com erro máximo de 0.02 com 95% de confiança deveria ser de 2017 carros.
- 2. Um intervalo de confiança para a proporção de carros com emissão superior aos níveis permitidos a 95% é dado por [0,139; 0,181].
- 3. O tamanho de amostra para estimar a proporção de carros com emissão superior aos níveis permitidos com erro máximo de 0.02 com 95% de confiança deveria ser de 2400 carros.
- 4. Um intervalo de confiança para a proporção de carros com emissão superior aos níveis permitidos a 95% é dado por [0,143; 0,177].
- 5. Um intervalo de confiança para a proporção de carros com emissão superior aos níveis permitidos a 95% é dado por [0,135; 0,185].

Assinale a alternativa correta:

A As afirmações 3 e 4 estão corretas.

As afirmações 1 e 2 estão corretas.

C As afirmações 3 e 5 estão corretas.

D As afirmações 1 e 5 estão corretas.

E As afirmações 1 e 4 estão corretas.

Teste 10:Construindo-se um boxplot com os dados, 11 - 25 - 40 - 18 - 58 - 23 - 17 - 43 - 9 - 21 - 30, percebe-se que:

A O boxplot é simétrico.

B Os dados seguem uma distribuição anormal.

C O dado "58" é um dado suspeito (outlier).

D O dado "9" é um dado suspeito (outlier).

O boxplot é assimétrico.

0.010	2.453	2.449	445	441	2.438	2.434	2.431	429	2.426	2.423	2.421	2.418	2.416	414	2.412	2.410	2.408	2.407	405	2.403	2.390	2.381	374	2.368	2.364	2.345	339	336	2.334	330
0.025 0.			2.035 2.	2.032 2.	2.030 2.	2.028 2.	2.026 2.	2.024 2.	2.023 2.	2.021 2.		2.018 2.	2.017 2.	2.015 2.	2.014 2.	2.013 2.			2.010 2.	2.009 2.	2.000 2.	1.994 2.			1.984 2.		1.968 2.	1.966 2.	1.965 2.	
0.050	-	1.694	1.692	1.691	1.690	1.688	1.687		1.685	1.684	1.683	1.682	1.681	1.680	1.679	1.679	1.678	1.677	1.677	1.676	1.671			1.662				1.649	1.648	1.646
0.100	1.309	1.309	1.308	1.307	1.306	1.306	1.305	1.304	1.304	1.303	1.303	1.302	1.302	1.301	1.301	1.300	1.300	1.299	1.299	1.299	1.296	1.294	1.292	1.291	1.290	1.286	1.284	1.284	1.283	1.282
d	L	35	33						33			45	ľ	4		46		48	_	20			8						200	1000
0.010	31.82	6.965			3.365	3.143	2.998	2.896	2.821	2.764	2.718	2.681	2.650	2.624	2.602	2.583					2.518			2.492			2.473	2.467	2.462	7
0.025					2.571		2.365	2.306	2.262	2.228	2.201			2.145	2.131	2.120			2.093	2.086		2.074		2.064			2.052	2.048	2.045	2.042
0.050		2.920		2.132	2.015	1.943	1.895					1.782	_					1.734	1.729	1.725			1.714	`	1.708	•	1.703	1.701	1.699	1.697
0.100	3.078	1.886	1.638	1.533	1.476	1.440	1.415	1.397	1.383	1.372	1.363	1.356	1.350	1.345	1.341	1.337	1.333	1.330	1.328	1.325	1.323	1.321	1.319	1.318	1.316	1.315	1.314	1.313	1.311	1.310
d	-	7	ო	4	2	9	^	œ	6	9	7	15	13	4	15	16	17	18	19	20	7	52	23	24	52	56	27	78	53	8
2		0	4	9	2	2	ω	2	6	0					<i>p.i</i>							9	0	6	7			7	6	2 2
0 0.005	Н	_		_	9 16.75		8 20.2	9 21.9	7 23.5	1 25.1	3 26.7	2 28.3	9 29.8	4 31.3	8 32.80	0 34.2	1 35.7	1 37.1	9 38.5		9 42.8			8 50.99	9 23.6	4 60.2	66.7	6 73.1	5 79.49	9 85.75 8 91.95
5 0.010			_			5 16.81									930.58							5 42.98				57.34				8 82.29 0 88.38
0 0.025	5.02		-	_	7 12.83	9 14.45			2 19.02	1 20.48	8 21.92	3 23.34	3 24.7	8 26.12	0 27.49	0 28.8	9 30.18	7 31.5				2 39.36	9 41.92				5 59.34	5 65.41		1 77.38 8 83.30
0.050	⊢	5.99	7.81	9.49	11.07	12.59			3 16.92						1 25.00			3 28.87	30.14	31.41	33.92	36.42	38.89	2 41.34	3 43.7	3 49.80	1 55.76	1 61.66		73.31
0.100		1 4.61	6.25	7.78	9.24	10.64	Н		14.68						22.31				5 27.20	1 28.4		33.20	35.56	37.92	40.26	90.94	51.8	5 57.5		68.80
006.0	4 0.016		2 0.584		1.61	2.20	H	_	4.17	_	-	-	_	_	8.55	_	_	10.86	-	5 12.44	14.04	15.66	3 17.29	3 18.94	9 20.6	7 24.80	1 29.0			3 42.06 9 46.46
5 0.950	-			4 0.711	1.15	1.64	⊢		3.33			5.23	_		7.26	_		9.39	10.12	10.85			4 15.38			7 22.47		7 30.61		38.96
0 0.975	_	_			4 0.831	1.24	\vdash	2.18				4.40			6.26			-	_				13.84							7 36.40 8 40.48
5 0.990		0 0.020			2 0.554	6 0.872	⊢	_	_	_	_	_	4.11	_	5.23	-	-	_	\vdash	-		_	6 12.20							3 33.57 3 37.48
0.995 d		0.010	0.07	0.20	0.412	0.676	0.989	1.34	1.73	2.16	2.60	3.07	3.57	4.07	4.60	5.14	5.70	6.26	6.84	7.43	8.64	9.89	11.16	12.46	13.7	17.1	20.7	24.3	27.9	31.73
_	-	7	က	4	2	9	_	ω	6	9	_											54	56	28		32	4	45	20	55
	ro	10		01	m	01	lıo	10	~	0					p.i			~	_	_		(0	0	2	₩.	10	(0	_	m	
0.09	2 0.036	_	0.114		0.188	9 0.222	2 0.25	0.28	0.313	3 0.339		0.383	0.401						0.47	3 0.477				_	-		3 0.496			0.499
0.08	3 0.032				0.184	3 0.219	9 0.252	9 0.282	3 0.311	0.336		9 0.381	3 0.40€	5 0.416	9 0.431	0.44	3 0.454			3 0.476								7 0.497		0.499
0.07	-		_	0.144	7 0.181	0.216	5 0.249		5 0.308					3 0.415	3 0.429				9 0.469						-		3 0.496	7 0.497	3 0.498	0.499
90.0		0.064		0.141	0.177	0.212	0.245		0.305	0.331	0.355	0.377	0.396	0.413	0.428	0.441	0.452		0.469	0.475			0.488				0.496	0.497	0.498	0.498
0.05	0.020	0.060	660.0	0.137	0.174		0.242	0.270 0.273	0.300 0.302	0.326 0.329	0.351 0.353	0.375	0.394	0.411	0.425 0.426	0.439	0.451	0.460	0.468	0.474 0.474	0.479 0.480	0.484	0.488	0.491	0.493	0.495	0.496	0.497	0.498	0.498
0.04	_	0.056		0.133	0.170	0.205				0.326	0.351	0.373	0.393	0.410	0.425	0.438	0.449	0.459	-		0.479	0.484			0.493				0.498	
0.03					0.166				0.297	0.324	0.348	0.371	0.391	0.408	0.424	0.437	0.448		0.466	0.473	0.479	0.483		0.490				0.497	0.498	0.498
٠.	0.008	0.048	0.087	0.126	0.163	0.198		0.264	0.291 0.294	0.321	0.346	0.369	0.389	0.407	0.422	0.436	0.447	0.457	0.466	0.473	0.478 0.478		0.487					0.497	0.498	0.498
0.02					_	10	ത	_	$\overline{}$	6	4	7	3	5	7	¥.	9	99	35	72	82	83	98	90	92	94	95	97	8	8 6
0.01 0.02	0.004		0.083	0.122	0.159	0.195	0.229		0.288 0.29	0.316 0.319	0.341 0.344	0.364 0.367	0.385 0.387	0.403 0.40	0.419 0.421			0.455 0.456	0.465	0.472		0.482 0.4	0.486 0.486		0.492 0.492		0.495 0.495	0.497 0.497	0.498	0.498 0.498 0.499

3 4	5404 5624	99.00 99.16 99.25 99.30	29.46 28.71	16.69	12.06 11.39	9.78 9.15	8.45 7.85	7.59 7.01	8.02 6.99 6.42 6.06	6.55 5.99	6.22 5.67	5.95 5.41	5.74 5.21	5.56 5.04	5.42 4.89		5.19 4.67	5.09 4.58	5.01 4.50	4.94 4.43	4.87 4.37	4.82 4.31	5.66 4.76 4.26 3.94	4.72 4.22	4.68 4.18	4.64 4.14	4.60 4.11 3.78	4.57 4.07	4.54 4.04	4.51 4.02	3.97	4.31 3.83 3.51	4.13	770 070 077
9	5859	0 99.33 99.36	27.91	15.21	10.67	8.47	7.19	6.37	5 5.80 5.61	5.39	20.9	4.82	_	4.46	4.32	4.20	4 4.10 3.93	4.01	3.94	3.87	3.81	3.76	_	3.67	3.63	3.59	3 3.56 3.39	3.53	3.50	3.47	3.43	1 3.29 3.12	3.12	0000
_	_	86 99.38	_	14.80	10.29	8.10	⊢		1 5.47			4 4.50		_			3 3.79	-							_		9 3.26				H	2 2.99	5 2.82	000
_	_	99.39 99.40			10.16 10.05	_	⊢		5.35 5.26		_	_					3.68 3.59	_					3.30 3.21		-		3.15 3.06				H	2.89 2.80	2.72 2.63	0 0 0 0 0
_	_					7.72	⊢		5.11			4.16	_				3.46	-	-	3.23			3.07	_	-	_	2.93		_		H	2.66	2.50	,
_	_	99.43 99.45			9.72 9.55	-	6.31 6.1		4.96 4.81			-					3.31 3.16	_	_				2.93 2.7		\vdash		2.78 2.6			2.70 2.55	2.65 2.5		2.35 2.2	0,00
_	_	15 99.47		13.84		-	⊢		1 4.65		_	-	-				3.00	-	_				8 2.62	_	-	_			_		0 2.34			000
_	_	99.47 99.50				_	H		4.63 4.31			_						-	-						_					2.36 2.01	2.32 1.96	_	2.01 1.60	

	30	250.1 250.4	19.46 19.46	8.62 8.61	5.80 5.75 5.74 5.63	4.50 4.49	3.81 3.80	3.38	3.08 3.07	2.85	2.77 2.70 2.69 2.54	2.57 2.56	_	2.38 2.37	2.31 2.30	2.25 2.24	2.19 2.18	2.14	2.19 2.11 2.10 1.92	2.07 2.06	2.04 2.03	2.01 2.00	1.98 1.97	1.96	1.94 1.93	1.92 1.91	1.90 1.89 1	1.88 1.87	1.87 1.86 1	1.85 1.84 1	1.84 1.83 1	.91 1.82 1.80 1.59	1.74 1.73 1	1.65	100
(11)	15	245.9	19.41 19.43 19	8.70	5.86	4.62	3.94	3.51	3.22	3.01	2.85	2.72	2.69 2.62 2	2.53	2.53 2.46 2	2.40	2.35	2.38 2.31 2	2.27	2.23	2.20	2.18	2.15	2.13	2.11	2.09	2.07		2.04	2.03	2.09 2.01 1	1.99	1.92	1.84	
graus de liberdade do numerador (v1)	9 10	241.9	19.38 19.40		96.9 00.8		4.10 4.06	_			3.02 2.98		2.80 2.75	-			2.54 2.49	2.49 2.45		2.42 2.38				Ŋ		-		2.25 2.20		2	2.21 2.16	2.19 2.14	2.12 2.08	_	700
liberdade de	8	238.9	19.37	8.85	6.04	4.82	4.15	3.73	3.44	3.23	3.07	2.95	-	2.77	2.70	5.64	2.59	2.55	2.51	2.48	2.45	2.42	2.40	2.37	2.36	2.34	2.32	_	2.29	2.28	-	11 2.24	5 2.18	_	000
graus de	2 9	234.0 2	19.33				-	_	3.58 3.50		3.22 3.14		-							H		2.57 2.49		_		H	2.47 2.39	2.46 2.37			2.42 2.33	_	2.34 2.25	Ø	
	4 5	.,	_	_	6.39 6.26	_	4.53 4.39	_	3.84 3.69	_	_		3.26 3.11	_	_	_	_	2.96 2.81		⊢	_	_	_	_	_	2.76 2.60	_	_	_	_	2.69 2.53	H	_	2.53 2.37	
	3	215.7	÷	_	6.59	5.41	-	_	4.07	3.86	3.71	3.59	-	3.41	3.34	3.29	3.24	3.20	3.16	3.13	3.10	3.07	3.05	3.03	3.01	2.99	2.98	2.96	2.95		-	-	3 2.84	-	
	1 2	<u>`</u>	·		7.71 6.94		-	5.59 4.74		_	_	4.84 3.98	-	_	4.60 3.74	_	_	4.45 3.59		4.38 3.52		4.32 3.47	4.30 3.44	4.28 3.42		⊢	_	_	_	_	4.17 3.32	_	4.08 3.23	4.00 3.15	000
	G.L.	-	7	က	4	2	9	7		6	9	=	12	13	4	15	16	17	18	19	20	7	75	23	54	52		27	78	53	30	32	4	9	9

${ m PRO3200-Estatística}$	Turma:	Prof:	P1 - 2019
Nome (completo e legível):			

Leia atentamente as instruções a seguir:

- 1) Utilize caneta azul ou preta para marcar as caixas e preencha a caixa totalmente para correta leitura e pontuação. Exemplo: \blacksquare . Não use \boxtimes .
- 2) A duração da avaliação é de 100 minutos (não haverá tempo adicional).
- 3) A saída somente é permitida depois de transcorridos 30 minutos do início da avaliação.
- 4) É permitido ao aluno sair da sala apenas após entregar sua prova.
- 5) Após a entrega da prova por um aluno, nenhum outro aluno poderá entrar na sala.
- 6) O aluno deve ter sobre a mesa apenas: documento de identificação com foto (cartão USP), caneta esferográfica azul/preta, lápis/lapiseira, borracha, calculadora e uma folha de rascunho/formulário.
- 7) O rascunho/formulário deve estar elaborado (à mão ou digitado) em 1 folha (própria, com nome e número USP do aluno) de papel A4 (frente e verso, se necessário).
- 8) Os aparelhos celulares, tablets e computadores devem permanecer desligados durante a avaliação.
- 9) O valor total da avaliação é de 10 pontos (caso haja questões anuladas, o valor total das questões não anuladas integralizará 10 pontos).
- 10) É proibido retirar o grampo da prova.
- 11) É proibido o empréstimo de qualquer tipo de material durante a avaliação.
- 12) A interpretação é parte integrante da avaliação.
- 13) A avaliação é individual e pauta-se pela integridade acadêmica.
- 14) O professor aplicador tem total autoridade e autonomia para atribuir ao aluno nota 0 quando constatar ou suspeitar de conduta inadequada durante a avaliação.

Insira seu número USP nas caixas a seguir:

Caso seu número USP tenha apenas 7 dígitos, a coluna mais à esquerda deve ter o 0 preenchido.

0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9

Insira as respostas dos testes nas caixas a seguir:

As respostas devem ser assinaladas exclusivamente nesta página.

Teste 1: A B C D	Teste 4: A B D E
Teste 2: B C D E	Teste 5: A B C E
Teste 3: A C D E	Teste 6: A B C E

Teste 7: B C D E

Teste 8: B C D E

Teste 9: A C D E

Teste 10: A B C D