Mean-field games between teams

Jayakumar Subramanian^a, Akshat Kumar^b, Aditya Mahajan^a

^a McGill University and GERAD, ^b Singapore Management University

11th Workshop on Dynamic Games in Management Science 25 Oct 2019

DARPA Spectrum Collaboration Challenge (SC2)

Multiple aggregators in energy markets

Salient Features

- Each "player" is a collection of multiple agents (i.e., a team).
- > All agents in a team are exchangeable.
- Agents within a team only care about the utility of the team and don't have an individual utility.
- ▶ Teams are competing with one another.
- ▶ Information is decentralized and asymmetric.

Salient Features

- Each "player" is a collection of multiple agents (i.e., a team).
- ▶ All agents in a team are exchangeable.
- Agents within a team only care about the utility of the team and don't have an individual utility.
- > Teams are competing with one another.
- ▶ Information is decentralized and asymmetric.

- ▶ What is the right solution concept for games between teams?
- ▶ How do find a solution in the dynamic case? Note that agents within a team as well as within the entire population have asymmetric information.

What are games between teams?

- N players.
- Uncertainty lies in a probability space (Ω, \mathcal{F}, P) .
- Player i receives a signal $t_i = t_i(\omega)$ and takes an action $a_i \in A_i$ using a STRATEGY $s_i : t_i \mapsto a_i$.
- $\blacktriangleright \ \ \text{Utility of player i is } u_i \text{:} A_1 \times \dots \times A_n \to \mathbb{R}.$

- N players.
- Uncertainty lies in a probability space (Ω, \mathcal{F}, P) .
- Player i receives a signal $t_i = t_i(\omega)$ and takes an action $a_i \in A_i$ using a STRATEGY $s_i : t_i \mapsto a_i$.
- $\blacktriangleright \ \ \text{Utility of player i is } u_i \text{:} A_1 \times \dots \times A_n \to \mathbb{R}.$

EX-ANTE UILITY

$$U_i(s_i,s_{-i}) = \sum_{\omega \in \Omega} P(\omega) u_i \big(s_i(t_i(\omega)), s_{-i}(t_{-i}(\omega) \big)$$

INTERIM UILITY

$$U_{\mathfrak{i}}(\mathfrak{a}_{\mathfrak{i}},s_{-\mathfrak{i}}\mid t_{\mathfrak{i}}) = \sum_{\omega\in\Omega} P(\omega\mid t_{\mathfrak{i}}) u_{\mathfrak{i}}\big(\mathfrak{a}_{\mathfrak{i}},s_{-\mathfrak{i}}(t_{-\mathfrak{i}}(\omega)\big)$$

- N players.
- Uncertainty lies in a probability space (Ω, \mathcal{F}, P) .
- Player i receives a signal $t_i = t_i(\omega)$ and takes an action $a_i \in A_i$ using a STRATEGY s_i : $t_i \mapsto a_i$.
- $\blacktriangleright \ \ \text{Utility of player i is } u_i \text{:} A_1 \times \dots \times A_n \to \mathbb{R}.$

EX-ANTE UILITY

$$U_i(s_i,s_{-i}) = \sum_{\omega \in \Omega} P(\omega) u_i \big(s_i(t_i(\omega)), s_{-i}(t_{-i}(\omega) \big)$$

INTERIM UILITY

$$U_{\mathfrak{i}}(\mathfrak{a}_{\mathfrak{i}},s_{-\mathfrak{i}}\mid t_{\mathfrak{i}}) = \sum_{\omega\in\Omega} P(\omega\mid t_{\mathfrak{i}}) u_{\mathfrak{i}}\big(\mathfrak{a}_{\mathfrak{i}},s_{-\mathfrak{i}}(t_{-\mathfrak{i}}(\omega)\big)$$

BAYESIAN NASH EQUILIBRIUM (EX-ANTE)

A strategy $s = (s_1, ..., s_n)$ is BNE if: $U_i(s_i, s_{-i}) \geqslant U_i(s_i', s_{-i}), \forall s_i', \forall i.$

- N players.
- Uncertainty lies in a probability space (Ω, \mathcal{F}, P) .
- Player i receives a signal $t_i = t_i(\omega)$ and takes an action $a_i \in A_i$ using a STRATEGY $s_i : t_i \mapsto a_i$.
- $\blacktriangleright \ \ \text{Utility of player i is } u_i \text{:} A_1 \times \dots \times A_n \to \mathbb{R}.$

EX-ANTE UILITY

$$U_{i}(s_{i}, s_{-i}) = \sum_{\omega \in \Omega} P(\omega) u_{i}(s_{i}(t_{i}(\omega)), s_{-i}(t_{-i}(\omega))$$

INTERIM UILITY

$$U_{i}(a_{i}, s_{-i} \mid t_{i}) = \sum_{\omega \in O} P(\omega \mid t_{i}) u_{i}(a_{i}, s_{-i}(t_{-i}(\omega))$$

BAYESIAN NASH EQUILIBRIUM (EX-ANTE)

A strategy $s = (s_1, ..., s_n)$ is BNE if: $U_i(s_i, s_{-i}) \ge U_i(s_i', s_{-i}), \forall s_i', \forall i.$

BAYESIAN NASH EQUILIBRIUM (INTERIM)

A strategy $s = (s_1, \ldots, s_n)$ is BNE if: $U_i(s_i(t_i), s_{-i} \mid t_i) \geqslant U_i(\alpha_i', s_{-i} \mid t_i), \quad \forall \alpha_i', \forall t_i, \forall i.$

- N agents.
- Uncertainty lies in a probability space (Ω, \mathcal{F}, P) .
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- ightharpoonup Utility of Team is $\mathfrak{u}: A_1 \times \cdots \times A_n \to \mathbb{R}$.

- N agents.
- Uncertainty lies in a probability space (Ω, \mathcal{F}, P) .
- Agent i receives a signal $t_i = t_i(\omega)$ and takes an action $a_i \in A_i$ using a STRATEGY $s_i : t_i \mapsto a_i$.
- $\blacktriangleright \ \ \, \text{Utility of team is } u\text{:}\, A_1\times\cdots\times A_n\to\mathbb{R}.$

EX-ANTE UILITY

$$U(s_i,s_{-i}) = \sum_{\omega \in \Omega} P(\omega) u(s_i(t_i(\omega)),s_{-i}(t_{-i}(\omega))$$

INTERIM UILITY (WRT AGENT i)

$$U_{\mathfrak{i}}(\mathfrak{a}_{\mathfrak{i}},s_{-\mathfrak{i}}\mid t_{\mathfrak{i}}) = \sum_{\omega\in\Omega} P(\omega\mid t_{\mathfrak{i}}) \mathfrak{u}\big(\mathfrak{a}_{\mathfrak{i}},s_{-\mathfrak{i}}(t_{-\mathfrak{i}}(\omega)\big)$$

- N agents.
- Uncertainty lies in a probability space (Ω, \mathcal{F}, P) .
- Agent i receives a signal $t_i = t_i(\omega)$ and takes an action $a_i \in A_i$ using a STRATEGY $s_i : t_i \mapsto a_i$.
- $\blacktriangleright \ \ \, \text{Utility of team is } u\text{:}\, A_1\times\cdots\times A_n\to\mathbb{R}.$

EX-ANTE UILITY

$$U(s_i,s_{-i}) = \sum_{\omega \in \Omega} P(\omega) u(s_i(t_i(\omega)),s_{-i}(t_{-i}(\omega))$$

INTERIM UILITY (WRT AGENT i)

$$U_{i}(\alpha_{i}, s_{-i} \mid t_{i}) = \sum_{\omega \in \Omega} P(\omega \mid t_{i}) u(\alpha_{i}, s_{-i}(t_{-i}(\omega))$$

GLOBALLY OPTIMAL STRATEGY

A strategy $s=(s_1,\ldots,s_n)$ is G0 if: $U(s)\geqslant U_{\mathfrak{i}}(s'),\quad \forall s'=(s'_1,\ldots,s'_n).$

- N agents.
- Uncertainty lies in a probability space (Ω, \mathcal{F}, P) .
- Agent i receives a signal $t_i = t_i(\omega)$ and takes an action $a_i \in A_i$ using a STRATEGY $s_i : t_i \mapsto a_i$.
- ▶ Utility of TEAM is $u: A_1 \times \cdots \times A_n \to \mathbb{R}$.

EX-ANTE UILITY

$$U(s_i,s_{-i}) = \sum_{\omega \in \Omega} P(\omega) u(s_i(t_i(\omega)),s_{-i}(t_{-i}(\omega))$$

INTERIM UILITY (WRT AGENT i)

PERSON BY PERSON OPTIMAL STRATEGY

$$U_{\mathfrak{i}}(\mathfrak{a}_{\mathfrak{i}},s_{-\mathfrak{i}}\mid t_{\mathfrak{i}}) = \sum_{\omega\in\Omega} P(\omega\mid t_{\mathfrak{i}}) \mathfrak{u}\big(\mathfrak{a}_{\mathfrak{i}},s_{-\mathfrak{i}}(t_{-\mathfrak{i}}(\omega)\big)$$

GLOBALLY OPTIMAL STRATEGY

A strategy $s = (s_1, ..., s_n)$ is GO if: $U(s) \geqslant U_i(s'), \quad \forall s' = (s'_1, ..., s'_n).$

A strategy $s = (s_1, ..., s_n)$ is PBPO if:

 $U_{i}(s_{i}(t_{i}), s_{-i} \mid t_{i}) \geqslant U_{i}(\alpha'_{i}, s_{-i} \mid t_{i}), \quad \forall \alpha'_{i}, \forall t_{i}, \forall i.$

- \triangleright K teams. Team k has $N^{(k)}$ agents.
- ightharpoonup Uncertainty lies in a probability space (Ω, \mathcal{F}, P) .
- Agent i receives a signal $t_i = t_i(\omega)$ and takes an action $a_i \in A_i$ using a STRATEGY $s_i: t_i \mapsto a_i$.
- \triangleright $s^{(k)} = (s_i)_{i \in N^{(k)}}$ is the strategy of team k.
- $ightharpoonup a^{(k)} = (a_i)_{i \in N^{(k)}}$ is the action profile of team k.
- ightharpoonup Utility of team k is $\mathfrak{u}^{(k)}:A^{(1)}\times\cdots\times A^{(k)}\to\mathbb{R}$.

- \triangleright K teams. Team k has $N^{(k)}$ agents.
- ightharpoonup Uncertainty lies in a probability space (Ω, \mathcal{F}, P) .
- Agent i receives a signal $t_i = t_i(\omega)$ and takes an action $a_i \in A_i$ using a STRATEGY $s_i: t_i \mapsto a_i$.
- $ightharpoonup s^{(k)} = (s_i)_{i \in N^{(k)}}$ is the strategy of team k.
- $ightharpoonup a^{(k)} = (a_i)_{i \in \mathbf{N}^{(k)}}$ is the action profile of team k.
- ▶ Utility of team k is $u^{(k)}$: $A^{(1)} \times \cdots \times A^{(k)} \to \mathbb{R}$.

EX-ANTE UILITY OF TEAM k

 $U^{(k)}(s^{(k)}, s^{(-k)}) =$

$$\sum_{\omega \in \Omega} P(\omega) u^{(k)} \left(s^{(k)}(t^{(k)}(\omega)), s^{(-k)}(t^{(-k)}(\omega)) \right)$$

Not possible to define interim utility wrt to team k, because the agents in a team receive different signals.

- \triangleright K teams. Team k has $N^{(k)}$ agents.
- Uncertainty lies in a probability space (Ω, \mathcal{F}, P) .
- Agent i receives a signal $t_i = t_i(\omega)$ and takes an action $a_i \in A_i$ using a STRATEGY $s_i: t_i \mapsto a_i$.
- $ightharpoonup s^{(k)} = (s_i)_{i \in N(k)}$ is the strategy of team k.
- ightharpoonup Utility of team k is $\mathfrak{u}^{(k)}:A^{(1)}\times\cdots\times A^{(k)}\to\mathbb{R}$.

EX-ANTE UILITY OF TEAM &

 $U^{(k)}(s^{(k)},s^{(-k)}) =$

 $\sum P(\omega)u^{(k)}\big(s^{(k)}(t^{(k)}(\omega)),s^{(-k)}(t^{(-k)}(\omega)\big)$

Not possible to define interim utility wrt to team k, because the agents in a team receive different signals.

TEAM GAME EQUILIBRIUM

A strategy $s = (s^{(1)}, \dots, s^{(n)})$ is TGE if:

 $U^{(k)}(s^{(k)}, s^{(-k)}) \geqslant U^{(k)}(s'^{(k)}, s^{-k}), \quad \forall s'^{(k)}, \forall k.$

- \triangleright K teams. Team k has $N^{(k)}$ agents.
- Uncertainty lies in a probability space (Ω, \mathcal{F}, P) .
- Agent i receives a signal $t_i = t_i(\omega)$ and takes an action $a_i \in A_i$ using a STRATEGY $s_i: t_i \mapsto a_i$.
- $ightharpoonup s^{(k)} = (s_i)_{i \in N^{(k)}}$ is the strategy of team k.
- $ightharpoonup a^{(k)} = (a_i)_{i \in N^{(k)}}$ is the action profile of team k.
- Utility of team k is $u^{(k)}$: $A^{(1)} \times \cdots \times A^{(k)} \to \mathbb{R}$.

EX-ANTE UILITY OF TEAM &

 $U^{(k)}(s^{(k)}, s^{(-k)}) =$

$$\sum_{\omega \in \Omega} P(\omega) u^{(k)} (s^{(k)}(t^{(k)}(\omega)), s^{(-k)}(t^{(-k)}(\omega))$$

Not possible to define interim utility wrt to team k, because the agents in a team receive different signals.

TEAM GAME EQUILIBRIUM

A strategy $s = (s^{(1)}, \dots, s^{(n)})$ is TGE if: $U^{(k)}(s^{(k)}, s^{(-k)}) \geqslant U^{(k)}(s'^{(k)}, s^{-k}), \forall s'^{(k)}, \forall k.$

- Note that in the definition of TGE, all agents in a team are allowed to deviate together!
- Therefore, game between teams are different than games in which subsets of agents have identical interests.

Mean-field games between teams-(Subramanian, Kumar, and Mahajan)

Exchangeable Markov processes and their mean-field projection

Given a finite set $\boldsymbol{\mathfrak{X}}$ and a positive integer $\boldsymbol{\mathfrak{n}},$ let

 Δ_n denote the set of probability distributions on $\mathfrak X$ with denominator $\mathfrak n.$

Note that $|\Delta_n| \leq (n+1)^{|\mathcal{X}|}$.

EXAMPLE: Let $\mathfrak{X} = \{0, 1\}$ and $\mathfrak{n} = 3$. Then

$$\overline{\Delta_n} = \left\{ \begin{bmatrix} 0 & 1 \end{bmatrix}, \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \end{bmatrix}, \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 1 & 0 \end{bmatrix} \right\}.$$

Given a finite set \mathcal{X} and a positive integer n, let Δ_n denote the set of probability distributions on \mathcal{X} with denominator n.

Note that $|\Delta_n| \leqslant (n+1)^{|\mathcal{X}|}$.

EXAMPLE: Let $\mathfrak{X} = \{0, 1\}$ and $\mathfrak{n} = 3$. Then

$$\Delta_{n} = \left\{ \begin{bmatrix} 0 & 1 \end{bmatrix}, \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \end{bmatrix}, \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 1 & 0 \end{bmatrix} \right\}.$$

For a sequence $x\in \mathcal{X}^n$, let $\xi(x)\in \Delta_n$ denote the empericial distribution of x. We call $\xi(x)$ as the (empirical) MEAN-FIELD of a sequence.

EXAMPLE: Let $\mathfrak{X}=\{0,1\}$, $\mathfrak{n}=3$, and $\mathfrak{x}=(0,0,1)$.

$$\xi(\mathbf{x}) = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

Then,

Given a finite set \mathcal{X} and a positive integer n, let Δ_n denote the set of probability distributions on \mathcal{X} with denominator n.

Note that $|\Delta_n| \leqslant (n+1)^{|\mathcal{X}|}$.

EXAMPLE: Let $\mathfrak{X} = \{0, 1\}$ and $\mathfrak{n} = 3$. Then

$$\Delta_{n} = \left\{ \begin{bmatrix} 0 & 1 \end{bmatrix}, \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \end{bmatrix}, \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 1 & 0 \end{bmatrix} \right\}.$$

For a sequence $x\in \mathcal{X}^n$, let $\xi(x)\in \Delta_n$ denote the empericial distribution of x. We call $\xi(x)$ as the (empirical) MEAN-FIELD of a sequence.

EXAMPLE: Let $\mathcal{X} = \{0, 1\}$, n = 3, and x = (0, 0, 1).

Then,
$$\xi(x) = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

For a distribution $z\in\Delta_n$, let $\Xi(z)\subset \mathfrak{X}^n$ denote all sequences with mean-field z. We refer to $\Xi(z)$ as the MEAN-FIELD CLASS of a distribution.

EXAMPLE: Let $\mathcal{X} = \{0, 1\}$, n = 3, and $z = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}$. Then, $\Xi(z) = \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$

Given a finite set $\mathcal X$ and a positive integer n, let Δ_n denote the set of probability distributions on $\mathcal X$ with denominator n.

Note that $|\Delta_n| \leqslant (n+1)^{|\mathcal{X}|}$.

EXAMPLE: Let $\mathfrak{X} = \{0, 1\}$ and $\mathfrak{n} = 3$. Then

$$\overline{\Delta_n} = \left\{ \begin{bmatrix} 0 & 1 \end{bmatrix}, \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \end{bmatrix}, \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 1 & 0 \end{bmatrix} \right\}.$$

For a sequence $x\in \mathcal{X}^n$, let $\xi(x)\in \Delta_n$ denote the empericial distribution of x. We call $\xi(x)$ as the (empirical) MEAN-FIELD of a sequence.

EXAMPLE: Let $\mathfrak{X}=\{0,1\}$, $\mathfrak{n}=3$, and $\mathfrak{x}=(0,0,1)$.

Then,
$$\xi(x) = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

For a distribution $z\in\Delta_n$, let $\Xi(z)\subset \mathcal{X}^n$ denote all sequences with mean-field z. We refer to $\Xi(z)$ as the MEAN-FIELD CLASS of a distribution.

EXAMPLE: Let $\mathfrak{X} = \{0, 1\}$, n = 3, and $z = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}$. Then, $\Xi(z) = \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$

Mean-field games between teams-(Subramanian, Kumar, and Mahajan)

Exchangeable random vector

Given a sequence x, let σx denote a permutation of x. Note that $\xi(\sigma x) = \xi(x)$.

Exchangeable random vector

Given a sequence x, let σx denote a permutation of x. Note that $\xi(\sigma x) = \xi(x)$.

A random vector $X \in \mathcal{X}^n$ is called exchangeable if for any permultation σ :

$$\mathbb{P}(X = \sigma x) = \mathbb{P}(X = x).$$

EXAMPLE: Let $\mathfrak{X}=\{0,1\}$, $\mathfrak{n}=3$, and \mathfrak{p}_{ijk} denotes

$$\mathbb{P}(X = (i, j, k))$$
. Then X is exchangeable if

$$p_{001} = p_{010} = p_{100}$$
 and $p_{110} = p_{101} = p_{011}$.

Exchangeable random vector

Given a sequence x, let σx denote a permutation of x. Note that $\xi(\sigma x) = \xi(x)$.

A random vector $X \in \mathcal{X}^n$ is called **exchangeable** if for any permultation σ :

$$\mathbb{P}(X = \sigma x) = \mathbb{P}(X = x).$$

EXAMPLE: Let $\mathcal{X} = \{0, 1\}$, n = 3, and p_{ijk} denotes

$$\mathbb{P}(X = (i, j, k))$$
. Then X is exchangeable if

 $p_{001} = p_{010} = p_{100}$ and $p_{110} = p_{101} = p_{011}$.

A Markov process $\{X_t\}_{t\geqslant 1}$, $X_t\in \mathcal{X}^n$ is called exchangeable if

- \triangleright The initial state X_1 is exchageable
- The transition matrix is invariant under permutations, i.e., for any permultation σ , $\mathbb{P}(X_{t+1} = \sigma y | X_t = \sigma x) = \mathbb{P}(X_{t+1} = y | X_t = x)$

Note that if $\{X_t\}_{t\geqslant 1}$ is an exchangeable Markov process, then X_t is an exchangeable random vector.

Mean-field projection of exchageable Markov processes

Let $\{X_t\}_{t\geqslant 1}$, $X_t\in \mathcal{X}^n$ be an exchangeable Markov process. Its mean-field projection is the process $\{Z_t\}_{t\geqslant 1}$, where $Z_t=\xi(X_t)$.

Mean-field projection of exchageable Markov processes

Let $\{X_t\}_{t\geqslant 1}$, $X_t\in \mathcal{X}^n$ be an exchangeable Markov process. Its mean-field projection is the process $\{Z_t\}_{t\geqslant 1}$, where $Z_t=\xi(X_t)$.

PROPOSITION:

The mean-field projection is a Markov process, i.e.,

$$\mathbb{P}(Z_{t+1} \mid Z_{1:t}) = \mathbb{P}(Z_{t+1} \mid Z_t)$$

The mean-field is a sufficient statistic for predicting mean-field projection, i.e.,

$$\mathbb{P}(Z_{t+1} \mid X_{1:t}) = \mathbb{P}(Z_{t+1} \mid Z_t = \xi(X_t)).$$

Mean-field projection of exchageable Markov processes

Let $\{X_t\}_{t\geqslant 1}$, $X_t\in \mathcal{X}^n$ be an exchangeable Markov process. Its mean-field projection is the process $\{Z_t\}_{t\geqslant 1}$, where $Z_t=\xi(X_t)$.

PROPOSITION:

- The mean-field projection is a Markov process, i.e., $\mathbb{P}(Z_{t+1} \mid Z_{1:t}) = \mathbb{P}(Z_{t+1} \mid Z_{t})$
- The mean-field is a sufficient statistic for predicting mean-field projection, i.e., $\mathbb{P}(Z_{t+1} \mid X_{1:t}) = \mathbb{P}(Z_{t+1} \mid Z_t = \xi(X_t)).$

THEOREM: Conditioned on the mean-field, all feasible realizations are equally likely, i.e.,

$$\begin{split} \mathbb{P}(X_t \mid Z_{1:t}) &= \mathbb{P}(X_t \mid Z_t) \\ &= \mathbb{P}(\sigma X_t \mid Z_t) \\ &= \frac{\mathbb{I}\{\xi(X_t) = Z_t\}}{|\Xi(Z_t)|}. \end{split}$$

Mean-field games between teams

K teams. Team k has $N^{(k)}$ exchangeable agents indexed by the set $\mathcal{N}^{(k)}$.

- > K teams. Team k has $N^{(k)}$ exchangeable agents indexed by the set $N^{(k)}$.
- $> \ X^i_t \in \mathfrak{X}^{(k)} \colon \text{State of agent i in team k}.$
- $\blacktriangleright \ \ U_t^i \in \mathcal{U}^{(k)} \text{: Action of agent i in team k.}$

- ightharpoonup K teams. Team k has $N^{(k)}$ exchangeable agents indexed by the set $\mathcal{N}^{(k)}$.
- $\qquad \qquad X_t^i \in \mathfrak{X}^{(k)} \colon \text{State of agent i in team k}.$
- $\blacktriangleright \ \ U_t^i \in \mathcal{U}^{(k)} \text{: Action of agent i in team k.}$
- $\triangleright X_t^{(k)} = (X_t^i)_{i \in \mathcal{N}^{(k)}}$ is the state profile of team k.
- $\blacktriangleright \ X_t = (X_t^{(k)})_{k \in \mathcal{K}}$ is the state profile of entire population.
- ightharpoonup Similar interpretation holds of $U_t^{(k)}$ and U_t .

- ightharpoonup K teams. Team k has $N^{(k)}$ exchangeable agents indexed by the set $\mathcal{N}^{(k)}$.
- $\qquad \qquad X_t^i \in \mathfrak{X}^{(k)} \colon \text{State of agent i in team k}.$
- $ightharpoonup U_t^i \in \mathcal{U}^{(k)}$: Action of agent i in team k.
- $\triangleright X_t^{(k)} = (X_t^i)_{i \in \mathcal{N}^{(k)}}$ is the state profile of team k.
- $X_t = (X_t^{(k)})_{k \in \mathcal{K}}$ is the state profile of entire population.
- \triangleright Similar interpretation holds of $U_t^{(k)}$ and U_t .
- $\blacktriangleright \ Z_t = (Z^{(k)})_{k \in \mathcal{K}}$ is the mean-field profile of all teams.

- \triangleright K teams. Team k has $N^{(k)}$ exchangeable agents indexed by the set $\mathcal{N}^{(k)}$.
- $\triangleright X_t^i \in \mathfrak{X}^{(k)}$: State of agent i in team k.
- \triangleright $U_t^i \in \mathcal{U}^{(k)}$: Action of agent i in team k.
- $X_t^{(k)} = (X_t^i)_{i \in \mathcal{N}^{(k)}}$ is the state profile of team k.
- $\triangleright X_t = (X_t^{(k)})_{k \in \mathcal{K}}$ is the state profile of entire population.
- \triangleright Similar interpretation holds of $U_t^{(k)}$ and U_t .
- $\triangleright Z_t^{(k)} = \xi(X_t^{(k)})$ is the (empirical) mean-field of team k.
- \triangleright $Z_t = (Z^{(k)})_{k \in \mathcal{K}}$ is the mean-field profile of all teams.

Initial states are independent across all agents

agents
$$\mathbb{P}(X_1=(x_1^i)_{i\in\mathcal{N}})=\prod_{k\in\mathcal{K}}\prod_{i\in\mathcal{N}^{(k)}}P_0^{(k)}(x_1^i)$$

- ightharpoonup K teams. Team k has $N^{(k)}$ exchangeable agents indexed by the set $\mathcal{N}^{(k)}$.
- $\blacktriangleright \ \ X_t^i \in \mathfrak{X}^{(k)} \colon \text{State of agent i in team k}.$
- $lackbrack U_t^i \in \mathcal{U}^{(k)}$: Action of agent i in team k.
- $begin{aligned} begin{aligned} X_t^{(k)} &= (X_t^i)_{i \in \mathcal{N}^{(k)}} \end{aligned}$ is the state profile of team k.
- $X_t = (X_t^{(k)})_{k \in \mathcal{K}}$ is the state profile of entire population.
- \triangleright Similar interpretation holds of $U_t^{(k)}$ and U_t .
- $\blacktriangleright \ Z_t = (Z^{(k)})_{k \in \mathcal{K}}$ is the mean-field profile of all teams.

Initial states are independent across all agents

agents
$$\mathbb{P}(X_1=(x_1^i)_{i\in\mathcal{N}})=\prod_{k\in\mathcal{K}}\prod_{i\in\mathcal{N}(k)}P_0^{(k)}(x_1^i)$$

- ► The population state evolves in a controlled Markov manner.
- Agents within a team are exchangeable and, therefore, are only coupled through the mean-field.

$$\mathbb{P}(X_{t+1} \mid X_{1:t}, U_{1:t}) = \prod_{k \in \mathcal{K}} \prod_{i \in \mathcal{N}^{(k)}} P^{(k)}(X_{t+1}^{i} \mid X_{t}^{i}, U_{t}^{i}, Z_{t})$$

Mean-field sharing information structure

$$I_t^i = \{X_t^i, Z_t\}.$$

Note that agents have asymmetric information (also called non-classical information structure in the team theory literature).

Mean-field sharing information structure

$$I_t^i = \{X_t^i, Z_t\}.$$

Note that agents have asymmetric information (also called non-classical information structure in the team theory literature).

Agents in a team are exchangeable. So, we assume that all agents in a team use identical control laws

$$\begin{aligned} & U_t^i \sim g_t^{(k)}(X_t^i, Z_t) \\ & \text{where } g^{(k)} = \left(g_1^{(k)}, \dots, g_T^{(k)}\right) \text{ is called the} \\ & \text{strategy of team } k. \end{aligned}$$

▶ Mean-field sharing information structure

$$I_t^i = \{X_t^i, Z_t\}.$$

Note that agents have asymmetric information (also called non-classical information structure in the team theory literature).

Agents in a team are exchangeable. So, we assume that all agents in a team use identical control laws

$$U_t^i \sim g_t^{(k)}(X_t^i, Z_t)$$

where $g^{(k)} = (g_1^{(k)}, ..., g_T^{(k)})$ is called the strategy of team k.

Average cost incurred by team k

$$C^{(k)} = \frac{1}{N^{(k)}} \sum_{i \in \mathcal{N}^{(k)}} c_t^{(k)}(X_t^i, U_t^i, Z_t).$$

Cost incurred by team k:

$$J^{(k)}(g^{(k)}, g^{(-k)}) = \mathbb{E}^{(g^{(k)}, g^{(-k)})} \left[\sum_{t=1}^{T} C_t^{(k)} \right]$$

▶ Mean-field sharing information structure

$$I_t^i = \{X_t^i, Z_t\}.$$

Note that agents have asymmetric information (also called non-classical information structure in the team theory literature).

Agents in a team are exchangeable. So, we assume that all agents in a team use identical control laws

$$\label{eq:utility} \begin{aligned} & U_t^i \sim g_t^{(k)}(X_t^i, Z_t) \\ & \text{where } g^{(k)} \ = \ \left(g_1^{(k)}, \dots, g_T^{(k)}\right) \text{ is called the} \\ & \text{strategy of team } k. \end{aligned}$$

Average cost incurred by team k

$$C^{(k)} = \frac{1}{N^{(k)}} \sum_{i \in \mathcal{N}^{(k)}} c_t^{(k)}(X_t^i, U_t^i, Z_t).$$

Cost incurred by team k:

$$J^{(k)}(g^{(k)}, g^{(-k)}) = \mathbb{E}^{(g^{(k)}, g^{(-k)})} \left[\sum_{t=1}^{T} C_t^{(k)} \right]$$

GAME 1: Identify a TGE $g = (g^{(k)})_{k \in \mathcal{K}}$ of the game between teams formulated above.

Such a (mixed-strategy) equilibrium always exists because each "player" has a finite number of strategies.

Conceptual difficulties

- The game formulated above is a dynamic game with asymmetric information. So, the TGE must satisfy sequential rationality and consistency. Such equilibrium are call Perfect Bayesian Equilibrium.
- ► However, there is no general methodology to identify PBE in dynamic games.

Conceptual difficulties

- The game formulated above is a dynamic game with asymmetric information. So, the TGE must satisfy sequential rationality and consistency. Such equilibrium are call Perfect Bayesian Equilibrium.
- ► However, there is no general methodology to identify PBE in dynamic games.

- In recent years, there are some results that propose a common information based refinement of Nash Equilibrium for dynamic games with asymmetric information.
- These may be viewed as the extension of the common information approach [Nayyar, Mahajan, Teneketzis 2013] for teams with non-classical information to games with asymmetric information.

Common information based refinements of Nash equilibrium

- ▶ [Nayyar, Gupta, Langbort, Başar 2014] propose a common information based refinement of Markov perfect equilibrium for a subclass of dynamic games with asymmetric information.
- The key assumption is that the common information based beliefs are strategy independent. This may be viewed as games where there is no signalling effect.
- ▶ The CIB-MPE can be computed using dynamic programming for a game with function valued actions.

Common information based refinements of Nash equilibrium

- ▶ [Nayyar, Gupta, Langbort, Başar 2014] propose a common information based refinement of Markov perfect equilibrium for a subclass of dynamic games with asymmetric information.
- ► The key assumption is that the common information based beliefs are strategy independent. This may be viewed as games where there is no signalling effect.
- ➤ The CIB-MPE can be computed using dynamic programming for a game with function valued actions.

- ▶ [Ouyang, Tavafoghi, Tenketzis, 2017] propose a common information based refined for Perfect Bayesian equilibrium for general dynamic games with asymmetric information (under some technical assumptions).
 - Works for games with signaling.
- The CIB-MPE can be computed using dynamic programming for a game with function valued actions. But the information state of the DP is more elaborate.

Common information based refinements of Nash equilibrium

- ▶ [Nayyar, Gupta, Langbort, Başar 2014] propose a common information based refinement of Markov perfect equilibrium for a subclass of dynamic games with asymmetric information.
- The key assumption is that the common information based beliefs are strategy independent. This may be viewed as games where there is no signalling effect.
- ► The CIB-MPE can be computed using dynamic programming for a game with function valued actions.

- ▶ [Ouyang, Tavafoghi, Tenketzis, 2017] propose a common information based refined for Perfect Bayesian equilibrium for general dynamic games with asymmetric information (under some technical assumptions).
- Works for games with signaling.
- The CIB-MPE can be computed using dynamic programming for a game with function valued actions. But the information state of the DP is more elaborate.
- ▶ We effectively show that mean-field games have no signalling effect.
- Following [NGLB 2014], we propose a common information based MPE for our model.

Preliminary results

For any strategy $g=(g^{(1)},\ldots,g^{(K)})$ and any realization $z_{1:T}$ of the mean-field $Z_{1:T}$, define the following partial functions, which we call prescriptions:

$$\gamma_t^{(k)} = g_t^{(k)}(\cdot, z_t), \quad \forall k \in \mathcal{K}.$$

- When the realization z_t of the mean-field is given, $\gamma_t^{(k)}$ is a function from $\mathfrak{X}^{(k)}$ to $\mathfrak{U}_t^{(k)}$.
- When the mean-field Z_t is a random variable, $\gamma_t^{(k)}$ is a random function from $\mathfrak{X}^{(k)}$ to $\mathfrak{U}^{(k)}$. We denote this by $\Gamma^{(k)}$.

Preliminary results

For any strategy $g=(g^{(1)},\ldots,g^{(K)})$ and any realization $z_{1:T}$ of the mean-field $Z_{1:T}$, define the following partial functions, which we call prescriptions:

$$\gamma_{\mathsf{t}}^{(k)} = \mathsf{g}_{\mathsf{t}}^{(k)}(\cdot, z_{\mathsf{t}}), \quad \forall \mathsf{k} \in \mathcal{K}.$$

- When the realization z_t of the mean-field is given, $\gamma_t^{(k)}$ is a function from $\mathfrak{X}^{(k)}$ to $\mathfrak{U}_t^{(k)}$.
- When the mean-field Z_t is a random variable, $\gamma_t^{(k)}$ is a random function from $\mathfrak{X}^{(k)}$ to $\mathfrak{U}^{(k)}$. We denote this by $\Gamma^{(k)}$.

LEMMA: The mean-field process $\{Z_t\}_{t\geqslant 1}$ is a controlled Markov process that evolves conditionally independently across teams:

$$\mathbb{P}(Z_{t+1} \mid Z_{1:t}, \Gamma_{1:t}) = \prod_{k \in \mathcal{K}} Q^{(k)}(Z_{t+1}^{(k)} \mid Z_t, \Gamma_t^{(k)})$$

where $Q^{(k)}(z_{t+1}^{(k)}\mid z_t,\gamma_t^{(k)})$ can be computed by picking any $x_{t+1}^{(k)}\in\Xi(z_{t+1}^{(k)})$ and $x_t\in\Xi(z_t)$ and setting

$$Q^{(k)}(z_{t+1}^{(k)} \mid z_t, \gamma_t^{(k)})$$

$$= \prod_{i \in \mathcal{N}^{(k)}} P^{(k)}(x_{t+1}^i \mid x_t^i, \gamma_t^{(k)}(x_t^i), z_t)$$

Preliminary results

For any strategy $g=(g^{(1)},\ldots,g^{(K)})$ and any realization $z_{1:T}$ of the mean-field $Z_{1:T}$, define the following partial functions, which we call prescriptions:

$$\gamma_{\mathsf{t}}^{(k)} = \mathsf{g}_{\mathsf{t}}^{(k)}(\cdot, z_{\mathsf{t}}), \quad \forall k \in \mathcal{K}.$$

- When the realization z_t of the mean-field is given, $\gamma_t^{(k)}$ is a function from $\mathfrak{X}^{(k)}$ to $\mathfrak{U}_t^{(k)}$.
- When the mean-field Z_t is a random variable, $\gamma_t^{(k)}$ is a random function from $\mathfrak{X}^{(k)}$ to $\mathfrak{U}^{(k)}$. We denote this by $\Gamma^{(k)}$.

LEMMA: The mean-field process $\{Z_t\}_{t\geqslant 1}$ is a controlled Markov process that evolves conditionally independently across teams:

$$\mathbb{P}(Z_{t+1} \mid Z_{1:t}, \Gamma_{1:t}) = \prod_{k \in \mathcal{K}} Q^{(k)}(Z_{t+1}^{(k)} \mid Z_t, \Gamma_t^{(k)})$$

where $Q^{(k)}(z_{t+1}^{(k)}\mid z_t,\gamma_t^{(k)})$ can be computed by picking any $x_{t+1}^{(k)}\in\Xi(z_{t+1}^{(k)})$ and $x_t\in\Xi(z_t)$ and setting

$$Q^{(k)}(z_{t+1}^{(k)} \mid z_t, \gamma_t^{(k)})$$

$$= \prod_{i \in \mathcal{N}^{(k)}} P^{(k)}(x_{t+1}^i \mid x_t^i, \gamma_t^{(k)}(x_t^i), z_t)$$

LEMMA: The mean-field is a sufficient statistic to predict the population state

$$\mathbb{P}(X_t \mid Z_{1:t}, \Gamma_{1:t}) = \prod_{k \in \mathcal{K}} \frac{\mathbb{1}\{\xi(X_t^{(k)}) = Z_t^{(k)}\}}{|\Xi^{(k)}(Z_t^{(k)})|}$$

Common information based Markov perfect equilibrium (CIB-MPE)

- Consider a virtual Markov game between K virtual players with symmetric information.
- ▶ The state is $Z_t = (Z_t^{(k)})_{k \in \mathcal{K}}$.
- Player k's action is a function $\gamma_t^{(k)}: \mathcal{X}^{(k)} \to U^{(k)}$. To avoid confusion, we call this a prescription.

- Consider a virtual Markov game between K virtual players with symmetric information.
- ▶ The state is $Z_t = (Z_t^{(k)})_{k \in \mathcal{K}}$.
- Player k's action is a function $\gamma_t^{(k)}: \mathcal{X}^{(k)} \to \mathcal{U}^{(k)}$. To avoid confusion, we call this a prescription.
- Distribution of initial state

$$\mathbb{P}(Z_1) = \prod_{k \in \mathcal{K}} \sum_{\mathbf{x}^{(k)}} \prod_{i \in \mathcal{N}^{(k)}} P^{(k)}(\mathbf{x}^i).$$

Dynamics of the state

$$\mathbb{P}(Z_{t+1} \mid Z_t, \gamma_t) = \prod \, Q^{(k)}(Z_{t+1}^{(k)} \mid Z_t, \gamma_t^{(k)})$$

- Consider a virtual Markov game between K virtual players with symmetric information.
- ▶ The state is $Z_t = (Z_t^{(k)})_{k \in \mathcal{K}}$.
- Player k's action is a function $\gamma_t^{(k)}: \mathcal{X}^{(k)} \to U^{(k)}$. To avoid confusion, we call this a prescription.
- Distribution of initial state

$$\mathbb{P}(\mathsf{Z}_1) = \prod_{k \in \mathcal{K}} \sum_{\mathsf{x}^{(k)}} \prod_{\mathsf{i} \in \mathcal{N}^{(k)}} \mathsf{P}^{(k)}(\mathsf{x}^{\mathsf{i}}).$$

Dynamics of the state

$$\mathbb{P}(Z_{t+1} \mid Z_t, \gamma_t) = \prod_{k \in \mathcal{K}} Q^{(k)}(Z_{t+1}^{(k)} \mid Z_t, \gamma_t^{(k)})$$

$$\begin{split} \textbf{Per-step cost function of player k is} \\ \ell^{(k)}(Z_t,\gamma_t^{(k)}) \\ &= \frac{1}{N^{(k)}} \sum_{i \in \mathcal{N}^{(k)}} \mathbb{E}[c^{(k)}(X_t^i,\gamma^{(k)}(X_t^i),Z_t) \mid Z_t] \end{split}$$

Note that the cost does not depend on the action of other players!

- Consider a virtual Markov game between K virtual players with symmetric information.
- ▶ The state is $Z_t = (Z_t^{(k)})_{k \in \mathcal{K}}$.
- Player k's action is a function $\gamma_t^{(k)}: \mathcal{X}^{(k)} \to \mathcal{U}^{(k)}$. To avoid confusion, we call this a prescription.
- Distribution of initial state

$$\mathbb{P}(Z_1) = \prod_{k \in \mathcal{K}} \sum_{\chi^{(k)}} \prod_{i \in \mathcal{N}^{(k)}} P^{(k)}(\chi^i).$$

Dynamics of the state

$$\mathbb{P}(Z_{t+1} \mid Z_t, \gamma_t) = \prod_{k \in \mathcal{K}} Q^{(k)}(Z_{t+1}^{(k)} \mid Z_t, \gamma_t^{(k)})$$

Per-step cost function of player k is
$$\begin{split} \ell^{(k)}(Z_t, \gamma_t^{(k)}) \\ &= \frac{1}{N^{(k)}} \sum_{i \in \mathcal{N}^{(k)}} \mathbb{E}[c^{(k)}(X_t^i, \gamma^{(k)}(X_t^i), Z_t) \mid Z_t] \end{split}$$

Note that the cost does not depend on the action of other players!

- ▶ All players observe the state Z_t.
- Player k uses a Markov strategy $\psi^{(k)}$: $v_{+}^{(k)} \sim \psi_{+}^{(k)}(Z_{+})$

- ▶ Consider a virtual Markov game between K virtual players with symmetric information.
- $\blacktriangleright \text{ The state is } Z_t = (Z_t^{(k)})_{k \in \mathcal{K}}.$
- Player k's action is a function $\gamma_t^{(k)}: \mathcal{X}^{(k)} \to \mathcal{U}^{(k)}$. To avoid confusion, we call this a prescription.
- Distribution of initial state

$$\mathbb{P}(Z_1) = \prod_{k \in \mathcal{K}} \sum_{\chi^{(k)}} \prod_{i \in \mathcal{N}^{(k)}} P^{(k)}(\chi^i).$$

Dynamics of the state

$$\mathbb{P}(Z_{t+1} \mid Z_t, \gamma_t) = \prod_{k \in \mathcal{K}} Q^{(k)}(Z_{t+1}^{(k)} \mid Z_t, \gamma_t^{(k)})$$

Per-step cost function of player k is
$$\begin{split} \ell^{(k)}(Z_t, \gamma_t^{(k)}) \\ &= \frac{1}{N^{(k)}} \sum_{i \in \mathcal{N}^{(k)}} \mathbb{E}[c^{(k)}(X_t^i, \gamma^{(k)}(X_t^i), Z_t) \mid Z_t] \end{split}$$

Note that the cost does not depend on the action of other players!

- ightharpoonup All players observe the state Z_t .
- Player k uses a Markov strategy $\psi^{(k)}$: $v_{+}^{(k)} \sim \psi_{+}^{(k)}(Z_{+})$

GAME 2: Identify a MPE $\psi = (\psi^{(k)})_{k \in \mathcal{K}}$ of the virtual game formulated above.

Such a MPE can be identified using dynamic programming.

Equivalence between Game 1 and Game 2

THEOREM (GAME 1 TO GAME 2)

Let $g=(g^{(k)})_{k\in\mathcal{K}}$ be a TGE of Game 1. Define a strategy $\psi=(\psi^{(k)})_{k\in\mathcal{K}}$ for Game 2 as follows:

$$\psi_{\mathsf{t}}^{(k)}(z) = g_{\mathsf{t}}^{(k)}(\cdot, z), \quad \forall z.$$

Then $\psi = (\psi^{(k)})_{k \in \mathcal{K}}$ is a MPE of Game 2.

Equivalence between Game 1 and Game 2

THEOREM (GAME 1 TO GAME 2)

Let $g=(g^{(k)})_{k\in\mathcal{K}}$ be a TGE of Game 1. Define a strategy $\psi=(\psi^{(k)})_{k\in\mathcal{K}}$ for Game 2 as follows:

$$\psi_{\mathsf{t}}^{(k)}(z) = g_{\mathsf{t}}^{(k)}(\cdot, z), \quad \forall z.$$

Then $\psi = (\psi^{(k)})_{k \in \mathcal{K}}$ is a MPE of Game 2.

THEOREM (GAME 2 TO GAME 1)

Let $\psi = (\psi^{(k)})_{k \in \mathcal{K}}$ be a MPE of Game 2. Define a strategy $g = (g^{(k)})_{k \in \mathcal{K}}$ for Game 1 as follows: $g_+^{(k)}(x,z) = \psi_+^{(k)}(z)(x), \quad \forall x \text{in} \mathcal{X}^{(k)}, \forall z.$

Then $q = (q^{(k)})_{k \in \mathcal{K}}$ is a TGE of Game 1.

We call this the **common information based MPE** of Game 1.

Conclusion

SOLUTION IDEA

- Formulate a Markov game between virtual players.
- ➤ The virtual players represent the entire team and decide the prescription for all members of the team.
- ▶ Find an MPE of the virtual game using DP
- Any MPE of the virtual game is a TGE of the game between teams (called CIB-MPE).
- ➤ Thus, we obtain a dynamic program to find a refinement of equilibrium for a dynamic game between teams

Conclusion

SOLUTION IDEA

- Formulate a Markov game between virtual players.
- ► The virtual players represent the entire team and decide the prescription for all members of the team.
- Find an MPE of the virtual game using DP
- ▶ Any MPE of the virtual game is a TGE of the game between teams (called CIB-MPE).
- Thus, we obtain a dynamic program to find a refinement of equilibrium for a dynamic game between teams

FUTURE WORK

- Zero-sum games
- > LQG models
- Mean-field limits for large populations in each team $(N^{(k)} \to \infty)$ and also for large number of teams $(K \to \infty)$.
- **>** ...

