

What to ask Questions about?

Sören Etler

Universität Potsdam etler@uni-potsdam.de

Motivation

Identifying question-worthy tokens

- Finding bias in the data set
- First step in a question generation pipeline
- Finding important information / concepts

Answer type	Percentage	Example
Date	8.9%	19 October 1512
Other Numeric	10.9%	12
Person	12.9%	Thomas Coke
Location	4.4%	Germany
Other Entity	15.3%	ABC Sports
Common Noun Phrase	31.8%	property damage
Adjective Phrase	3.9%	second-largest
Verb Phrase	5.5%	returned to Earth
Clause	3.7%	to avoid trivialization
Other	2.7%	quietly

Evaluation of QA models

- Identifying weaknesses of current QA models
- Compare the performance of three high ranking models
 - BERT (Google AI Language)
 - BiDAF + Self Attention + ELMo (Allen Institute for AI)
 - nlnet (Microsoft Research Asia)

Can tokens that are very likely to be the answer to a potential question be predicted (question-worthy tokens)? Does this have an impact on the performance of QA systems?

The Stanford Question Answering Dataset (SquAD 2.0)

- 150,000 questions about 19,000 paragraphs
- Created my Crowdworkers on Amazon Mechanical Turk
- **Question-worthy tokens:**
 - Answers sequences of answerable & plausible answer sequences of unanswerable questions
 - Tokens in a paragraph that humans find it interesting to ask questions about

Overview of the data set

	Training data	Test data
Texts / paragraphs	442 / 19,035	35 / 1,204
Question-worthy tokens (I)	351,862	35,214
Non-question-worthy tokens (0)	2,244,574	141,594
Mean paragraph length	136	147

Identifying question-worthy Tokens

Model

- Conditional Random Field (CRF)
 - implemented using sklearn_crfsuite
 - cross validation of hyperparameters on random subset
- **Features**
 - Lemma of the words
 - POS Tags
 - Named Entities
 - Dependencies (ClearNLP Dependency Labels)
 - Stopwords
 - Position in the Text

Evaluation of QA models

Correct prediction: the predicted answer is a substring of the correct

answer (or vice versa)

BERT (Google AI Language)

F1: 83.06		True condition	
		answerable	unanswerable
Predicted condition	answerable	4874	989
		179	
	unanswerable	826	4956

Comparison of the question worthy scores

BiDAF + Self Attention + ELMo (Allen Institute for AI)

		True condition		
F1: 66.25		answerable	unanswerable	
Predicted condition	answerable	4000	1785	
		243		
	unanswerable	1657	4160	

nlnet (Microsoft Research Asia)

F1: 90.13		True condition		
		answerable	unanswerable	
Predicted condition	answerable	4586	1069	
		260		
	unanswerable	1040	4876	
Correct prediction Wro			\/\/ror	

Correct prediction

Wrong prediction

Evaluation

- Evaluation metrics
 - Precision, Recall, F1-Score
 - ROC-Curve (AUC)
 - Log Loss

Examples

Formed in November 1990 by the equal merger of Sky Television and British Satellite Broadcasting, BSkyB became the UK 's largest digital subscription television company Following BSkyB 's 2014 acquisition of Sky Italia and a majority 90.04 % interest in Sky Deutschland in November 2014, its holding company British Sky Broadcasting Group plc changed its name to Sky plc. The United Kingdom operations also changed the company name from British Sky Broadcasting Limited to Sky UK Limited, still trading as Sky.

In England, the period of Norman architecture immediately succeeds that of the Anglo - Saxon and precedes the Early Gothic . In southern Italy, the Normans incorporated elements of Islamic, Lombard, and Byzantine building techniques into their own, initiating a unique style known as Norman - Arab architecture within the Kingdom of Sicily

	Weight?	Feature
	+0.351	0:word.ent_iob_:B
	+0.306	0:word.pos_:NUM
	+0.306	0:word.tag_:CD
	+0.285	0:word.like_num
	+0.217	0:word.is_digit()
	+0.205	0:word.dep_:pobj
	+0.195	0:word.dep_:nsubj
	+0.195	-1:word.tag_:``
	+0.167	-1:word.pos_:VERB
	+0.167	1:word.tag_:"
	+0.163	0:word.dep_:appos
	+0.156	-1:word.is_stop
	1264 more positive	
	61	15 more negative
	-0.155	1:word.dep_:compound
	-0.160	-1:word.like_num
	-0.180	0:word.dep_:punct
	-0.186	0:word.pos_:PUNCT
	-0.212	0:word.tag_:VBD
	-0.214	1 EOS
	-0.215	0:word.pos_:VERB
/	-0.299	0:word.tag_:.
	-0.302	-1:word.dep_:pobj
•	-0.340	0:word.lemma:.
	-0.342	0:word.dep_:ROOT
	-0.366	0:word.is_stop
	-0.449	1:word.ent_iob_:B

y=I top features

Results

- Especially Numbers and Named Entities have a very high propability to be asked about
- This can be caused by a bias in the data set:
 - people were getting paid for creating as many questions as possible
 - it is easier to ask about dates and names
- Modern / state-of-the-art Deep Learning approaches make only a few mistakes (mostly related to unanswerable questions)
 - The likelihood of the answer tokens does not play a major role