1. Истинность, ложность и высказывания

A	B	не А	A и B	A или B	если A то B	A тогда и только тогда, когда B
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Связка	отрицание	конъюнкция	дизтюнкиця
В логике	не А	A и B	A или B
Символьно	$\neg A, \bar{A}$	$A \wedge B$, $A \& B$	$A \lor B$
В русском языке	неправда, что A ;	и A, и B; A, но B;	либо A , либо B ; A и/или B ;
	А неверно	A несмотря на B	A, B или и то, и то

Связка	импликация	эквивалентность
В логике	если A то B	A тогда и только тогда, когда B
Символьно	$A \rightarrow B, A \Rightarrow B$	$A \leftrightarrow B, A \Leftrightarrow B$
В русском языке	B если A ; B когда A ; A только когда B ;	A равнозначно B ;
	A только если B ; из A следует B ;	если A , то B , и наоборот;
	B при условии, что A ; в случае A , B ;	А необходимо и достаточно для В
	A достаточно для B ; B необходимо для A	

D/Д – предметная область предикатов

Конъюнкция и дизъюнкция имеют меньший *приоритет*, чем отрицание, но больший, чем импликация.

Высказывания F и G (логически) эквивалентны тогда (и только тогда), когда они оба истинны либо оба ложны, в зависимости от истинностных значений высказываний $A1,\ldots$, An.

Мы будем обозначать данное отношение как $F \equiv G$.

Высказывание F, состоящее из высказываний A1,..., An мы называем **тавтологией** если оно (всегда) истинно при любых значениях высказываний A1,..., An.

Чтобы доказать тавтологичность формулы, достаточно предположить, что она ложна и прийти к противоречию.

Рассуждение корректно тогда и только тогда, когда вывод истинен при истинности посылок.

2. Язык математики

Квантор	существования	всеобщности
В логике	существует некоторый x такой, что A	для любого x верно A
В символах	$\exists x A(x); \exists x A$	$\forall x A(x); \forall x A$
На русском	для некоторого x , $A(x)$;	для всех x , $A(x)$;
	для какого-то x , $A(x)$;	для любого x , $A(x)$;
	что-то A ; кто-то A ;	для произвольного x , $A(x)$;
	хотя бы один A ;	каким бы x ни был, $A(x)$;
	для хотя бы одного x , $A(x)$;	A(x) всегда верно;
	есть x такой, что $A(x)$	всё A ; все A

$$\neg \neg A \equiv A$$
 AVB \equiv BVA (аналог. с \land)

$$\neg (A \land B) \equiv \neg A \land \neg B \quad \neg (A \lor B) \equiv \neg A \lor \neg B$$

$$A \rightarrow B \equiv \neg A \lor B$$
 $\neg (A \rightarrow B) \equiv A \land \neg B$ $A \rightarrow B \equiv \neg B \rightarrow \neg A$

$$A \rightarrow (B \rightarrow C) \equiv (A \land B) \rightarrow C$$

$$\exists x \ A(x) \equiv \neg \forall x \ \neg A(x)$$
 $\forall x \ A(x) \equiv \neg \exists x \ \neg A(x)$

$$\neg \forall x (P1(x) \rightarrow P2(x)) \equiv \exists x (P1(x) \land \neg P2(x))$$

Связывание квантора сильнее (имеет <u>больший</u> приоритет), чем любая логическая связка, так что область действия квантора заканчивается на первой бинарной логической связке справа от него. Чтобы включить связку в область действия квантора, необходимы скобки: например, в \forall х ($A(x) \rightarrow B(x)$). С другой стороны, в формуле \forall х $A(x) \rightarrow B(x)$, никакое вхождение х в B(x) не связано первым квантором. То есть любое такое вхождение свободно для подстановки вместо него значения (если не связано каким-либо квантором внутри B(x)).

<u>Vacuous truth</u> (пустая истина). Пример: Сегодняшний король Франции лысый. $\forall x(K(x) \to B(x))$ – всегда истина, так как посылка всегда ложна.

Стандартный алгоритм доказательства утверждения «не существует такого x, что A(x)»: рассмотрим произвольный х такой, что A(x) истинно, и докажем, что какое-то известно ложное высказывание логически следует из A(x). Следовательно, если бы x с истинным A(x) существовал, то заведомо ложное высказывание было бы истинным, что невозможно. Таким образом, такого x не существует.

3. Строки/Списки

Правила образования списков под алфавитом А:

(П1) [] — строка над A; [] \in S(A);

(П2) если s' — строка над A, а x — символ из A, тогда x : s' — тоже строка над A, \forall s' \forall x ((s' \in S(A) \land x \in A) \rightarrow x : s' \in S(A))

(A1) [] \neq **x** : **s** для всех x и s.

(A2) $x: s = y: t \iff (x = y \land s = t)$ для всех $x, y \in A$ и s, $t \in S(A)$, т.е. две строки, составленные с помощью оператора

конкатенации : равны тогда и только тогда, когда соответствующие их головы и хвосты равны.

<u>Принцип индукции</u> (ПИ) для строк: Для любого унарного предиката P над S(A), если P([]) и \forall s \forall x (P(s) \rightarrow P(x : s)), то \forall s P(s).

Утверждение $P([\])$ называется <u>базой индукции</u>, $\forall s \forall x \ (P(s) \rightarrow P(x:s)) — <u>индукционным переходом</u>, а <math>P(s)$ — <u>предположением</u> индукции.

Рекурсивные функции для строк:

ln(s) – <u>длина строки</u>. Определим ln следующими двумя правилами:

ln([]) = 0; ln(x : s) = 1 + ln(s) для всех x и s.

app(s1, s2) – <u>конкатенация/склеивание</u>. Определение: $app([\], t) = t$ для любого $t; \ app(x:s,t) = x: app(s,t)$ для любых $x, s, u \ t.$

rev(s) - oбращение/инверсия строки. Определение: rev([]) = []; rev(x:s) = app(rev(s), [x]) для всех x и s. init(s) - y даление последнего символа строки. Определение: init([]) = []; init(x:[]) = [] для любого x из алфавита A $init(s \neq []) \rightarrow init(x:s) = x:init(s))$ для любого символа x из алфавита A и любой строки s, состоящей из символов

Леммы для строк:

1) Для любых $s \in S(A)$, app(s, []) = s.

алфавита А

2) Для любых s, t, $r \in S(A)$, app(s, app(t, r)) = app(app(s, t), r).

3) Для любых s, t, r \in S(A), если app(s, t) = app(s, r), то t = r.

4) Для любых $s, t \in S(A)$, если app(s, t) = [], то s = [] и t = [].

4. Индукция: ∀φ (φ в определениях фиксирован)

ПМИ: $\phi(0) \land \forall n \in N \ (\phi(n) \to \phi(n+1)) \to \forall n \in N \ \phi(n)$. (ф фиксирован)

Для произвольного предиката ϕ , если выполнено $\phi(0)$ и для каждого $n \in N$ $\phi(n)$ влечёт $\phi(n+1)$, то $\phi(n)$ выполнено для всех $n \in N$.

Утверждение $\varphi(0)$ называется <u>базой индукции</u>, \forall n \in N (φ (n) \rightarrow φ (n + 1)) - <u>шаг индукции</u>, а утверждение φ (n) для каждого n - *предположение индукции*.

ПСИ: $\forall n \ (\forall m \le n \ \phi(m) \to \phi(n)) \to \forall n \ \phi(n)$ или $Prog(\phi) \to \forall n \ \phi(n)$

Для произвольного предиката ϕ , если верно $\phi(0)$ и для каждого $n \in N$ $\phi(n+1)$ выполнено, когда выполнены $\phi(0), \phi(1), \dots, \phi(n)$, то $\phi(n)$ верно для любого $n \in N$.

Он позволяет нам использовать в качестве индукционного предположения не одно лишь $\phi(n)$, а все утверждения $\phi(0)$, $\phi(1), \ldots, \phi(n)$ вместе.

ПНЧ: $\exists n \ \phi(n) \rightarrow \exists n \ (\phi(n) \land \forall m \leq n \ \neg \phi(m)$

Если существует хотя бы одно натуральное число (n), для которого выполняется (ϕ (n)), то существует наименьшее такое число (n), для которого выполняется (ϕ (n)), и для всех чисел, меньших (n), утверждение (ϕ (m)) не выполняется.

5. Делимость и деление (подразумеваем *целые* числа) *Делимосты*: число <u>а делит число b</u>, если существует $k \in Z$ такое, что b = ak. В свою очередь, число <u>b делится на число (или числом) а</u>. Также мы называем а делителем числа b, а b — кратным числу а. Мы будем писать $a \mid b$, если а делит b. Пример: $1; -2 \mid 6$ т.к. $6 = (-2) \cdot (-3)$;

Леммы для делимости:

1) ± 1 | a (a= $\pm 1*a$) 2) 0 | a (0=a*0)

3) $a|1 => a=\pm 1$ $a|-1 => a=\pm 1$ 4) a|a;

5) если $a \mid b$ и $b \mid c$, то $a \mid c$; 6) если $a \mid b$ и $b \mid a$, то $a = \pm b$.

7) если а | b и а | c, то а | (b + c) и а | (b - c)

Следствие Л7: если а |(b+c) или а |(b-c) и а | b, то а | с. <u>Деление:</u> Для любых натуральных чисел а и b \neq 0, существует уникальная пара $(q,r) \in N^2$ такая, что a = bq + r и $0 \le r < b$. Такое число q называется <u>неполным частным</u>, а $r - \underline{ocmamkom}$ $\underline{om\ denehug}$ a на b.

Следствие. Для всех чисел а и b $\not=$ 0, существует уникальная пара

 $(q, r) \in Z \times N$ такая, что a = bq + r и $0 \le r < |b|$.

Модульная арифметика. Положим m - положительное число. Тогда

а сравнимо с b по модулю m, если m |(a - b). Мы записываем это как

 $a \equiv b \pmod{m}$ или $a \equiv b \pmod{m}$ и называем $m \pmod{modynem}$.

m > 1 (т.к. любое число делится на 1)

<u>Лемма</u>: Для любых a, b, m, верно, что $a \equiv b \pmod{m}$ тогда и только тогда, когда а и b дают одинаковый остаток при делении <u>на т</u>.

Следствия:

- 1) Никакие два числа из $0, 1, \ldots, m-1$ не сравнимы по
- 2) Предположим r остаток при делении а на m. Тогда а \equiv r(mod m).
- 3) Для любых а, b, m верно следующее:
 - $a \equiv a \pmod{m}$;
 - если $a \equiv b \pmod{m}$, то $b \equiv a \pmod{m}$;
 - если $a \equiv b \pmod{m}$ и $b \equiv c \pmod{m}$, то $a \equiv c \pmod{m}$.

Положим $a \equiv b \pmod{m}$ и $c \equiv d \pmod{m}$. Тогда верно следующее:

1. $a + c \equiv b + d \pmod{m}$;

2. $ac \equiv bd \pmod{m}$;

3. $a^n \equiv b^n \pmod{m}$ для всех $n \in \mathbb{N}$.

Простые числа и разложение на множители. Число р > 1 называется **простым**, если оно делится на ± 1 , на $\pm p$ и ни на что больше. В противном случае, число больше 1 зовется

Отрицательные числа, 0 и 1 не являются ни простыми, ни составными.

Представление вида $n=p_1^{a_1}p_2^{a_2}\dots p_s^{a_s}$ для числа n>1, где p_i — попарно отличные простые, а $a_i \in \mathbb{N}$, называется разложением числа n на (простые) множители. Естественным образом может возникнуть предположение, что в разложении числа n на множители участвует $\kappa a \varkappa c doe$ простое число p, но только конечное количество простых чисел имеют ненулевые степени a. Возможно также разложить на множители число 1, но в таком случае каждое простое число в разложении будет иметь степень 0. Два разложения на множители различны, если и только если хотя бы одно простое число в их разложениях имеет различные степени.

Основная теорема арифметики: Для любого числа n > 1 существует уникальное его разложение на простые

Теорема. Существует бесконечно много простых чисел.

Признак делимости.

Лемма 6.20 (Признак делимости). Для любых ненулевых а и b, а делит b тогда и только тогда, когда $\alpha_i \leq \beta_i$ для всех простых p_i , где α_i (или β_i) — степень простого p_i в разложении a (и, соответственно, b).

Формализуйте следующее рассуждение, и выясните, корректно ли оно: Существуют куздры. Следовательно, есть такая куздра, что если она глокая, то и все вообще куздры глокие.

пусть K это множество куздр,

 $x \in K-x$ это қуздра (можно так же использовать обозначение K(x))

G(x) - x глокая

Теперь формализуем рассуждение: $\exists x \in K \Rightarrow (\exists x \in K : G(x) \Rightarrow \forall y \in : G(y))$

Заметим, что это выражение может быть ложно, например: $K = \{a, b\}$, G(a), $\neg G(b)$

 $\exists x \in K$ – верно $\exists x \in K : G(x)$ – верно $\forall y \in K : G(y)$ – неверно

 $1 \to (1 \to 0) = 1 \to 0 = 0$

2. Докажите, что $n! > 2^n$ при всех натуральных n > 3

База: 4! > 2⁴ - верно

Пусть верию для n, рассмотрим это неравенство для n+1: $(n+1)!=(n+1)\cdot n!>2\cdot 2^n=2^{n+1}$, так как $n!>2^n$ по предволожению \Rightarrow по ПМИ неравенсто верио $\forall n\in\mathbb{N}$

3. Существует ли такая логическая формула X = X(A, B, C), что формулы F = (A $\vee \neg B) \to (C \vee X)$ и $G = (\neg X \wedge \neg A) \to (B \to C)$ логически эквивалентны G

Заметим, что если X - истина, то $F = (A \lor \neg B) \to (C \lor 1) = (A \lor \neg B) \to 1 \equiv 1$, а $G = (0 \land \neg A) \to$

 $(B\to C)=(0)\to (B\to C)\equiv 1$ Получим, что если взять X тавтологией (например, ¬A ∨ A ∨ C ∨ B), то F и G тоже будут

Задача: Найдите все натуральные n, при которых число $2n^3+3n+10^n$ ится на 11.

Решение: Нам нужно найти такие n, при которых:

 $2n^3 + 3n + 10^n \equiv 0 \pmod{11}$.

Рассмотрим выражение по модулю 11.

 Анализ степени 10ⁿ mod 11: Так как $10 \equiv -1 \pmod{11}$, то $10^n \equiv (-1)^n \pmod{11}$. Это дает нам:

 $10^n \equiv \begin{cases} 1 \pmod{11}, & \text{ если } n \text{ чётное}, \\ -1 \pmod{11}, & \text{ если } n \text{ нечётное}. \end{cases}$

2. Рассмотрим выражение $2n^3+3n+10^n$ по модулю 11: Подставим выражение $10^n\equiv (-1)^n$ в наше равенство:

 $2n^3 + 3n + (-1)^n \equiv 0 \pmod{11}$.

Теперь рассмотрим два случая: n чётное и n нечётное.

3. Случай 1: n чётное.

Если n чётное, то $(-1)^n \equiv 1 \pmod{11}$, и наше выражение принимает вид: $2n^3 + 3n + 1 \equiv 0 \pmod{11}$.

Проверим возможные чётные значения n:

 $2 \cdot 2^3 + 3 \cdot 2 + 1 = 2 \cdot 8 + 6 + 1 = 21 \equiv 10 \pmod{11}$. Не делится на 11.

 $2\cdot 4^3 + 3\cdot 4 + 1 = 2\cdot 64 + 12 + 1 = 141 \equiv 9 \pmod{11}.$

4. Обязательно ли следующее утверждение о натуральных числах верно? Если не все числа голубые, но число 0 голубое, то найдется такое голубое число, что следующее за ним число не голубое.

Решение: Да, это верно. Доказательство:

Утверждение является имликацией: (не все числа голубые, но число 0 голубое) → (найдется такое голубое число, что следующее за ним число не голубое)

Допустим, что не все числа голубые, но 0 — голубое. По ПМИ для свойства голубизны имеем \neg (голубое(0) $\land \forall$ x: (голубое(x) \rightarrow голубое(x + 1))) - ложная конъюнкция. голубое(0) = 1, значит, \forall x: $(\text{голубоe}(x) \rightarrow \text{голубоe}(x+1)) = 0 \iff \exists$ x: $(\text{голубоe}(x) \land \neg \text{голубоe}(x+1))$. Получим, что обязательно найдется такое голубое число, что следующее за ним число не голубое

натуральных n

Доказательство:

Докажем по индукции:

База: n = 0: 12008 = 19 * 632

Шаг: пусть a_k — число с k тройками — делится на 19. Тогда $a_{k+1} = (\frac{(a_k-8)}{10}+3)\cdot 100+8=$ наг. пусть $a_k =$ число с κ троиками = делится на 19. 10гда $a_{k+1} = (\frac{1}{10} + 3) \cdot 100 + 3 = 10 \cdot a_k + 228$. Так как 228 $= 19 \cdot 12$, в силу предположения индукции получаем, что a_{k+1} делится на 19, следовательно это верно $\forall n \in \mathbb{N}$

6. Докажите, что app(s,app(t,r)) = app(app(s,t),r) для всех $s,t,r \in S(A)$

Доказательство: по определению, $\forall s \forall t \forall a \ app(a:s,t) = a: app(s,t)$ и $\forall t \ app([],t) = t$

Проведем индукцию по в

База: $s=[]: \mathit{app}([], \mathit{app}(t,r)) = \mathit{app}(t,r) = \mathit{app}(\mathit{app}([],t),r)$

Шаг: пусть для s равенство верно, тогла для a: s имеем app(a:s,app(t,r)) = a:app(s,app(t,r)) =a:app(app(s,t),r) (по предположению индукции) = app(a:app(s,t),r)=app(app(a:s,t),r), чтд.

Задача 6. Простое число p поделили на n! (где $n \in \mathbb{N}$) и получили остаток r, причём оказалюсь, что $1 < r < n^2$. Докажите, что r — всегда

Решение:

Рассмотрим деление простого числа p на n!:

$$p = q \cdot n! + r,$$

где q — целое число, а r — остаток, такой что $0 \le r < n!$. По условию задачи, $1 < r < n^2$, значит $r \ne 0$ и $r \ne 1$. Предположим, что r ие является простым числом. Тогда r можно разложить на произведение $r = a \cdot b$, где 1 < a, b < r. Рассмотрим факториал n!. Он содержит в качестве множителей все цельяе числа от 1 до n, и следовательно n! делится на a и b для веех 1 < a, b < r.

целые числа от 1 до n, и следовательно n: делится на a и o для меса $1 < a, b \le n$.

Так как $1 < a, b < n^2$ и по условню $r < n^2$, то a и b меньше n. Следовательно, a и b делят n!. Таки мобразом, если r не является простым и делится на a и b, то r должно делить и p (так как $p = q \cdot n! + r$). Но p - простое число, и это возможно только если r рано n дой 0.1, либо самому p. Однамо, по условно $1 < r < n^2 < p$, следовательно, наше предположение o том, что r не является простым числом, неверно.

Таким образом, r должно быть простым числом. Ответ: Остаток r всегда является простым числом при $1 < r < n^2$.

1. Математическая индукция

- База индукции: Для n=1: $\frac{1(1+1)}{2}=1$ (истина).
- Шаг индукции: Пусть утверждение верно для n=k: $1+2+\ldots+k=\frac{k(k+1)}{2}$. Нужно доказать для n=k+1: $1+2+\ldots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2}$. Утверждение верно для n = k + 1. Индукция завершена.

Если существует некоторое не голубое число, то перед ним должно быть голубое.

Исключение: Если 0 – не голубое число, то перед ним нет голубых.

Так как 0 — наименьшее натуральное число. По условию, данное ис-ключение не исполняется — следовательно, любое число, не равное 0, не обладающее свойством голубизны, имеет голубое число перед ним.

По ПНЧ.

Докажите, что число 1203. . .308, содержащее ровно п троек, делится на 19 при всех

База: при n = 0 - докажем, что число 1203308 делится на 19. (63332) Шаг: при n = n + 1, умножим число на 10, прибавим 300 и отнимем 80 и прибавим 8.

Посчитаем разницу между шагом: при умножении на 10 не сменяется кол-во десятко следовательно свойство делимости сохраняется, а разница между шагом и исходным числам равна 300 – 80 + 8 = 228 : 19 = 12.

Следовательно, для любых натуральных п выполняется.

 $2 \cdot 6^3 + 3 \cdot 6 + 1 = 2 \cdot 216 + 18 + 1 = 451 \equiv 0 \pmod{11}$.

Таким образом, n=6 является решением в случае чётных n.

4. Случай 2: п нечётное

Если n нечётное, то $(-1)^n \equiv -1 \pmod{11}$, и наше выражение принимает вид:

 $2n^3 + 3n - 1 \equiv 0 \pmod{11}$.

Проверим возможные нечётные значения n

$$2 \cdot 1^3 + 3 \cdot 1 - 1 = 2 + 3 - 1 = 4 \not\equiv 0 \pmod{11}$$
.

Не делится на 11.

n = 3:

$$2\cdot 3^3 + 3\cdot 3 - 1 = 2\cdot 27 + 9 - 1 = 62 \equiv 7 \pmod{11}.$$

$$2 \cdot 5^3 + 3 \cdot 5 - 1 = 2 \cdot 125 + 15 - 1 = 264 \equiv 0 \pmod{11}.$$

Таким образом, n = 5 является решением в случае нечётных n. **Ответ:** Натуральные числа n, при которых $2n^3 + 3n + 10^n$ делится на