Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №6

По дисциплине

"Основы профессиональной деятельности"

Вариант: 3314

Выполнил: Рахматов Неъматджон

Группа: Р3133

Преподаватель: *Елена Блохина*

Оглавление

Задание	2
Код программы	
Описание программы:	
Расположение в памяти БЭВМ программы, подпрограммы, исходных данных и результатов	
Область допустимых значений (10)	
Проверка программы:	
Трассировка	
Вывод	6

Задание

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных ВУ (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на ВУ модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

Основная программа должна увеличивать на 3 содержимое X (ячейки памяти с адресом 032_{16}) в цикле.

Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=-7X+1 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового 'ИЛИ-НЕ' содержимого РД данного ВУ и X, результат записать в X.

Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать минимальное по ОДЗ число.

Код программы

ASL

```
ORG 0x0
V0: WORD $default, 0X180
V1: WORD $default, 0X180
V2: WORD $int2,
                 0X180
V3: WORD $int1,
                  0X180
V4: WORD $default, 0X180
V5: WORD $default, 0X180
V6: WORD $default, 0X180
V7: WORD $default, 0X180
ORG 0x032
X: WORD?
max: WORD 0x0012 ; 18, максимальное значение X
min: WORD 0xFFEE ; -18, минимальное значение X
default: IRET
               ; Обработка прерывания по умолчанию
START: DI
  CLA
  LD #0xB
              ; Загрузка в аккумулятор MR (1000|0001=1001)
  OUT 0x7
              ; Разрешение прерываний для 3 ВУ
  LD #0xA
              ; Загрузка в аккумулятор MR (1000|0010=1010)
              ; Разрешение прерываний для 2 ВУ
  OUT 0x5
  ΕI
main: DI
              ; Запрет прерываний чтобы обеспечить атом. операции
  LD X
  ADD #3
  CALL check
  ST X
  EI
  JUMP main
int1: DI
             ; Обработка прерывания на ВУ-3
             ; Загрузить Х в аккумулятор
  LD X
  CALL check
  LD X
  NEG
             ; Инвертировать знак Х
            ; Удвоить X (эквивалент умножению на 2)
  ASL
            ; Удвоить Х (эквивалент умножению на 4)
  ASL
            ; Удвоить Х (эквивалент умножению на 8) -8Х
```

```
ADD X
           :-7X
  INC
  OUT 0x6
               ; вывод результата на ВУ-3
  EI
  IRET
int2: DI
             ; Обработка прерывания на ВУ-2
                ; чтение содержимого РД ВУ-2
  IN 0x4
  OR X
             ; прибавление к нему Х
  NOT
  ST X
             ; сохранение результата в Х
  CALL check
  ΕI
  IRET
                 ; Проверка принадлежности Х к ОДЗ
check:
check min: CMP min
                       ; Если х > min переход на проверку верхней границы
      BPL check max
      JUMP ld min ; Иначе загрузка min в аккумулятор
                        ; Проверка пересечения верхней границы Х
check max: CMP max
      BMI return
                   ; Если х < тах переход
ld min:
        LD min
                     ; Загрузка минимального значения в Х
```

Описание программы:

return: RET

Основная программа в цикле увеличивает переменную X на 3 По готовности ВУ-3 выводится функция -7X+1 на данный ВУ, а по готовности ВУ-2 выполняеться операция побитового 'ИЛИ-НЕ' содержимого РД данного ВУ и X, и результат записывается в ячейку X Если в какой-то момент X выходит за рамки ОДЗ, то в X записывается минимальное по ОДЗ число

Расположение в памяти БЭВМ программы, подпрограммы, исходных данных и результатов

```
032 – исходные данные
033,034 - Данные для комплекса программ
035-049 – программа
04A-057 – подпрограмма1
057-05F — подпрограмма2
060-067 — подпрограмма для проверки
```

Область допустимых значений ($_{10}$)

$$-128 \le f(X) \le 127$$

$$-128 \le -7x + 1 \le 127$$

$$-18 \le x \le 18$$

Проверка программы:

- 1. Загрузить комплекс программ в память БЭВМ
- 2. Запустить программу
- 3. Установить готовность ВУ-3
- 4. Дождаться остановки программы
- 5. Записать текущее значение Х
- 6. Записать из вывода ВУ-3 получившееся число
- 7. Продолжить выполнение команды
- 8. В РД ВУ-2 вводим произвольное число
- 9. Установить готовность ВУ-2
- 10. Дождаться остановки программы
- 11. Записать текущее значение Х
- 12. Записать из аккумулятора получившееся число
- 13. Продолжить выполнение программы
- 14. Повторить пункты 3-14 еще два раза
- 15. Удостоверимся, что ожидаемые значения совпадают с получившимися

Х	-7X+1	-7x+1	ВУ-2	Х	ВУ-2 - Х	ВУ-2 - Х (получив.)	
	(ожидаемое)	(получив.)			(ожидаемое)		
3	-20	-20	09	-18	16	16	
-3	22	22	09	3	-116	-116	
-18	127	127	12	12	-115	-115	

	няемая анда	Содержание регистров в процессоре после выполнения команды								Ячейка, содержимое которой изменилось после выполнение команды	
Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знчн

<u>Вывод</u>

В ходе выполнения данной лабораторной работы была изучена процесса прерывания программы.