Визуальная одометрия для широкоугольных камер

Михаил Андреевич Терехов

344 группа Лаборатория распознавания изображений СПбГУ

2018

Руководитель: Пименов А. А. Консультант: Корчемкин Д. А.

Визуальная одометрия

Direct Sparse Odometry

Визуальная одометрия — основанное на видеоинформации построение локальной карты окрестностей камеры одновременно с определением её текущего положения.

Применения

Системы помощи водителю (ADAS)

Обнаружение статических препятствий

Планирование траектории автомобиля при парковке

Цель и задачи

Цель

Разработка системы визуальной одометрии для широкоугольной камеры

Задачи

Разработка различных компонентов системы:

- Инициализация системы
- ▶ Оценка положения камеры в новом кадре
- Обновление и расширение облака точек
- Совместная оптимизация

Различные подходы

Ключевые точки vs непосредственная оптимизациия интенсивностей

Ключевые точки, отслеживаемые системой ORB-SLAM

Контрастные точки, отслеживаемые системой Direct Sparse Odometry

В последние годы в области визуальной одометрии получили развитие новые подходы, дающие возможность получать облако плотностью несколько тысяч точек на кадр.

Существующие решения

Обобщение Direct Sparse Odometry на случай одиночных fisheye-камер.

Одометрия для систем из нескольких широкоугольных камер, построенная на ключевых точках.

Прямой подход на примере отслеживания кадров

Ошибка репроекции

$$r\left(p_{i},d_{i}\right)=I_{1}\left[p_{i}\right]-I_{2}\left[\pi\left(\xi_{1\rightarrow2}\cdot\left(d_{i}*\pi^{-1}\left(p_{i}\right)\right)\right)\right]$$

где I_1 , I_2 — кадры, $\xi_{1\to 2}$ — движение между ними, π — отображение проекции, p_i — точка на I_1 , $I_1[p_i]$ — её интенсивность на I_1 , d_i — её глубина

Искомое движение

$$\xi_{1\rightarrow2} = \arg\min_{\xi} \sum_{p_i \in I_1} \rho\left(r\left(p_i, d_i\right)\right)$$

где ρ — функция остатков

Для нахождения arg min пользуемся методами нелинейной оптимизации.

Алгоритм одометрии

Текущие результаты

Пример кадра с размеченными глубинами точек

Оценённая траектория

Тестирование производится на синтетическом датасете MultiFoV. Эмулируется движение автомобиля по городу.

Текущие результаты

Часть полученного облака точек, вид сверху

Ground truth облако точек

Итоги

Реализована система визуальной одометрии для широкоугольной камеры

- ▶ Работатет не в реальном времени
- Тестировалась на синтетических данных

Репозиторий: https://bitbucket.org/slamgroup/dso/