Fixed Point Iteration

Fixed Point Iteration

Fixed Point

Definition 1 (Fixed Point)

The real number r is a **fixed point** of the function q if q(r) = r.

The real number r is a fixed point of the function g if g(r) = r

intersections of y=x and y=gow.

• The rootfinding problem f(x) = 0 can always be written as a fixed point problem g(x) = x by, e.g., setting¹

$$g(x) = x - f(x).$$

• The fixed point problem is true at, and only at, a root of f.

(fixed point of g) = (not of f) "

$$g(r) = r - f(r) = r$$

$$\Rightarrow \not \sim -f(r) = \not \sim \Rightarrow f(r) = 0.$$

¹This is not the only way to transform the rootfinding problem. More on this later.

Fixed Point Iteration

A fixed point problem q(x) = x naturally provides an iteration scheme:

$$\begin{cases} x_0 = \text{initial guess} \\ x_{k+1} = g(x_k), \quad k = 0, 1, 2, \dots \end{cases}$$

(fixed point iteration)

$$4x = 0$$

• The sequence $\{x_k\}$ may or may not converge as $k \to \infty$.

 \blacktriangleleft If q is continuous and $\{x_k\}$ converges to a number r, then r is a fixed point

 $g(r) = g\left(\lim_{k \to \infty} x_k\right) = \lim_{k \to \infty} g(x_k) = \lim_{k \to \infty} x_{k+1} = r.$

because q is continuous

n1 = g(16)

72 = g (24)

1/3 = g (x/2)

Fixed Point Iteration Algorithm

```
function x = fpi(q, x0, n)
% FPI x = fpi(q, x0, n)
% Computes approximate solution of q(x) = x
% Input:
  g function handle
 x0 initial guess
  n number of iteration steps
   x = x0;
   for k = 1:n
       x = g(x); repeated overwrite.
   end
end
```

Examples

initial iterate do.

• To find a fixed point of $g(x) = 0.3\cos(2x)$ near 0.5 using fpi:

```
g = 0(x) 0.3*cos(2*x);

xc = fpi(g, 0.5, 20)
```

$$xc = 0.260266319627758$$

Not All Fixed Point Problems Are The Same

$$g(x) = x - f(x) = x$$

The rootfinding problem $f(x) = x^3 + x - 1 = 0$ can be transformed to various fixed point problems:

- $g_2(x) = \sqrt[3]{1-x}$
- $g_3(x) = \frac{1+2x^3}{1+3x^2}$
- $g_1(x) = x f(x) = 1 x^3$ $g_2(x) = x$ $g_1(x) = x f(x) = 1 x^3$

$$\frac{g_3(x) = x}{1 - x} = x$$

$$\frac{1 - x}{1 - x} = x$$

$$\frac{1 + 2x^3}{1 + 3x^2} = x$$

$$1 + 2x^3 = x(1 + 3x^2)$$

$$= x + 3x^3$$

Note that all $g_i(x) = x$ are equivalent to f(x) = 0. However, not all these find $0 = x^3 + x = 1$ a fixed point of q, that is, a root of f on the computer.

Exercise. Run fpi with q_i and $x_0 = 0.5$. Which fixed point iterations converge?

Geometry of Fixed Point Iteration

The following script² finds a root of $f(x) = x^2 - 4x + 3.5$ via FPI.

Note the line segments spiral in towards the fixed point.

²Modified from FNC.

Geometry of Fixed Point Iteration (cont')

However, with a different starting point, the process does not converge.

```
clf
fplot(g, [1 2], 'r');
hold on
plot([1 2], [1 2], 'k--'),
ylim([1 2])
x = 1.3; y = g(x);
for k = 1:5
    arrow([x y], [y y], 'b');
    x = y; y = g(x);
    arrow([x x], [x y], 'b');
end
```


Confext of the initial iter. I have 1 + r = r = r fixed point of g. Series Analysis (Taylor series)

Let
$$\epsilon_k = x_k - r$$
 be the sequence of errors.

 $\mathcal{L}_k = \Gamma + \mathcal{C}_k$
 $\mathcal{L}_k = \mathcal{C}_k + \mathcal{C}_k$

$$\epsilon_{k+1}+ = g(\epsilon_k+r)$$

$$= g(r)+g'(r)\epsilon_k+\frac{1}{2}g''(r)\epsilon_k^2+\cdots, \qquad \text{(Taylor series)}$$
 implying

 $\epsilon_{k+1} = q'(r)\epsilon_k + O(\epsilon_k^2)$ assuming sufficient regularity of a.

• Neglecting the second-order term, we have
$$\epsilon_{k+1} \approx g'(r)\epsilon_k$$
, which is satisfied if $\epsilon_k \approx C \left[g'(r)\right]^k$ for sufficiently large k .

 $\epsilon_k \approx C \left[g'(r) \right]^k$ for sufficiently large k. • Therefore, the iteration converges if |g'(r)|<1 and diverges if |g'(r)|>1.

check:
$$\epsilon_{k+1} \approx C[g'(r)]^{k+1} = g'(r) C[g'(r)]^{k} \approx g'(r) \epsilon_{k}$$

Upshot If the fixed point iterates Eth) of g converges to r, $\epsilon_{k+1} \approx g'(r) \epsilon_k$ with |g'(r)| < 1. Ektl ~ g'(r)

Note: Rate of Convergence

Definition 2 (Linear Convergnece)

Suppose $\lim_{k\to\infty} x_k = r$ and let $\epsilon_k = x_k - r$, the error at step k of an iteration method. If

$$\lim_{k\to\infty}\frac{|\epsilon_{k+1}|}{|\epsilon_k|}=\sigma<1,$$

the method is said to obey **linear convergence** with rate σ .

Note. In general, say

$$\lim_{k \to \infty} \frac{|\epsilon_{k+1}|}{|\epsilon_k|^p} = \sigma$$

for some $p \ge 1$ and $\sigma > 0$.

• If
$$p=1$$
 and

• $\sigma = 1$, the convergence is *sublinear*;

• $\sigma=0$, the convergence is superlinear. faster

• If p = 2, the convergence is *quadratic*;

• If p = 3, the convergence is *cubic*, ...

Theorem 3 (Convergence of FPI)

Assume that g is continuously differentiable, that g(r) = r, and that $\sigma = |g'(r)| < 1$. Then the fixed point iterates x_k generated by

$$x_{k+1} = g(x_k), \quad k = 1, 2, \dots,$$

converge linearly with rate σ to the fixed point r for x_0 sufficiently close to r.

In the previous example with $g(x) = x - f(x) = -x^2 + 5x - 3.5$:

- For the first fixed point, near 2.71, we get $g'(r) \approx -0.42$ (convergence);
- For the second fixed point, near 1.29, we get $g'(r) \approx 2.42$ (divergence).

Note. An iterative method is called locally convergent to r if the method converges to r for initial guess sufficiently close to r.

Contraction Maps

Lipschitz Condition

A function g is said to satisfy a **Lipschitz condition** with constant L on the interval $S \subset \mathbb{R}$ if

$$|g(s) - g(t)| \le L|s - t|$$
 for all $s, t \in S$.

- A function satisfying the Lipschitz condition is continuous on *S*.
- If L < 1, g is called a **contraction map**.

When Does FPI Succeed?

Contraction Mapping Theorem

Suppose that g satisfies Lipschitz condition on S with L < 1, i.e., g is a contraction map on S. Then S contains exactly one fixed point r of g. If x_1, x_2, \ldots are generated by the fixed point iteration $x_{k+1} = g(x_k)$, and x_1, x_2, \ldots all lie in S, then

$$|x_k - r| \le L^{k-1} |x_1 - r|, \quad k > 1.$$