Time: 25 minutes

Exam File Provided By The VofS IEEE Student Branch

ieee.usask.ca

University of Saskatcl Communication EE 352

Quiz #3 – Apr.4/200

Use the space below each question for your answer.

Illustrate non-return to zero (NRZ), bipolar return to zero (BPRZ) and Manchester (biphase-level) coding for the following binary sequence (2 pts)

- *2 A three-stage shift register is connected to produce a pseudorandom binary sequence (PRBS). This is also known as a maximal length (ML) or pseudonoise (PN) sequence. Assume that the resisters start in the all zero state (000) and that the output voltage levels are ± 2 volts. The clock frequency is 7 MHz (3 pts)
 - What is the length and bit pattern of the output sequence? How often does the sequence repeat?
 - ii) Sketch the two-sided spectrum (Fourier series) of the output. Calibrate the frequency and amplitude scales in your illustration and include units.
 - iii) Calculate the power in the time domain. Consider Parseval's Theorem and estimate the power in the frequency domain up to the first spectral null.

I a sion voice with ast Tuck 20

*3 a) Complete the table below for digital transmission signals used in North America. (1 pt)

					_
	DS1	DS1-C	DS3	STS-1	
Number of voice signals	241	48/	672	672	
Transmission bit rate (Mb/s)	1.544	3.152	44.736	51.84	
Number of bits per Multiframe (or STS-1 frame)	3316	1272	4760	6480	6
Duration of the Multiframe (us)	1500	403.61	106.4	125	
Nuumber of framing bits per Multiframe (or STS-1 frame)	12/	12	31	16	
Checksum (truncated)	3853	1738	5614	7344	

b) What is the probability that a given 16 bits of random data will resemble the STS-1 framing word? What is the probability that this pattern will occur at least once within the "random" data (or other overhead) portions of a 125 us STS-1 frame? (1 pt)

"random" data (or other overhead) portions of a 125 us STS-1 frame? (1 pt) $\mathcal{C}_{\beta} = \frac{1 - (1 - 2)^{16}}{3} = \frac{7.7 \times 5^{3}}{3}$ $\mathcal{C}_{\beta} = \frac{1}{3} = \frac{16}{3} = \frac{15.26 \times 5^{6}}{3}$

- *4 A transversal filter is constructed from a binary shift register with 16 taps. The transversal filter is arranged to generate an approximation to a single $\sin \pi f_b t/\pi f_b t$ pulse truncated at $t = 2/f_b$ where the bit rate $f_b = 100$ kb/s. The clock rate of the shift register is 4 times the bit rate thus each sidelobe of the time response has 4 samples and the main lobe has 8 samples. The peak voltage of the transmitted pulse is 4 volts. (3 pts)
 - i) On scales below, sketch the time response of the filter output (i.e. the approximation).
 - ii) On a two-sided calibrated frequency axis, sketch the spectrum of the transmitted signal if the $\sin \pi f_b t / \pi f_b t$ pulse were not truncated.
 - iii) Approximately sketch the spectrum of the truncated transmitted pulse. Note that the transmitted pulse can be modeled as the product of a single $\sin \pi f_b t/\pi f_b t$ pulse and a gating pulse and that the resulting spectrum is the convolution of the two spectra in the product.

