	Roll no: 47 Sec: T
	Tutorial-01
1.	What do you understand by Asymptotic notations. Defin different Asymptotic notation with examples.
Ans	Asymptotic Notations are used to analyze an algorithm when input is large. The efficiency of an algorithm depends on the amount of time storage and other resources required to execute the algorithm. The efficiency is measured with the help of asymptotic notations.
	Different types of Asymptotic notations are:
0	Big-O Notation (0-notation): Big-O notation represents the upper bound of the running time of an algorithm. Thus it gives the worst-case complexity of an algorithm.
	$f(n) = O(g(n))$ $if o \leq f(n) \leq cg(n)$ $if n > no for some$ $constant c$
	on f(n)

0	Small-oh (0):
	f(n) = O(g(n)) if $f(n) < cg(n) $ $v $ $n > 100 $ $q $ $v $ v
	f(n) = O(g(n)) if f(n) < cg(n) \tau n > no f \tau c>0 This gives us upper bound
3	Big Omega (s):
	$f(n) = \Omega(g(n)) \text{if} f(n) \ge Cg(n) \ge 0$
	tn>no & some constant c>0
	g(n) is the tight lower bound of f(n)
	C 11 (.).
(4)	Small omega (w):
	$f(n) = \omega(g(n))$ if $f(n) > cg(n) \neq n > no f \neq c > 0$ $g(n)$ is lower bound on $f(n)$.
	g(n) is lower bound on tor
	TI -L- (M) 0
(5)	Theta (0): $P(n) = O(a(n))$ ist $C_1(a(n)) \leq P(n) \leq C_2(a(n)) \neq n \geq$
	$f(n) = O(g(n))$ iff $C_1(g(n)) \leq f(n) \leq C_2(g(n)) \neq n >$ $\max(n_1, n_2) \neq \text{ some constant } C_1 \neq C_2 \geq 0$
	Theta gives the tight upper and lower bound
	Loth Just
<u></u>	both.
Q.3	What should be time complexity of-
CX. A	for (i=1 ton)
	₹ 1=1 €2;
	3
	e=1, 2, 4, 3n
	$n = a_{9} k^{-1}$
	$n = 2^{\kappa-1}$
	logn = K-1
	K = 109, n + 1
UPCP	Teacher's Sign

Date :	Page :	
Topic :	Page :	
Topic:		

Signature

STUDENT STYLE

	Topic:	
Q.5	Time complexity of int i=1, s=1; while (s<=n) { i++; s=s+i; pointf("#"); 3	for $i=1$, $S=1$ $i=2$, $S=1+2$ $i=3$, $S=1+2+3$ Sum of n matural numbers so, $S=k(k+1)$ 2 $S < = h \Rightarrow k(k+1) < = h$
	$\Rightarrow k^2$	$+ k <= n \Rightarrow k^2 <= n \Rightarrow k <= \sqrt{n}$
	Time Complexity = 0 (In)	
Q°6	Time complexity roid function (int n) ? int i, count = 0; for (i=1; i*i <= n; i+t) Count++; 3	$i = 1, 2, 3, 4 n$ $i^2 = 1, 4, 9, 16 n$ $a_k = a + (k - 1)d$ $i^2 < - In$
		Time complexity = O(dn)
	void fun (int n) { int i, j, k, count = 0; for (i = n/2; i <=n; i++) for (j-1; j <=n; i++) for (k=1; k <=n; k= k* Count ++;	
S	ignature	STUDENT STYLE®

Date:

Page : .

	Date : Page :
	$n/2$ $\log_2 n$ $\log_2 n$
	n logen logen
	$\left(\frac{n}{2}+1\right)$ times
	$O(i*j*k) = O((n+1) \times logn \times logn) = O(n(logn)^2)$
0.8	Time annolavil.
Α,	Time complexity - $T(n) = T(n-3) + n^2$
	First if $(n==)$ return; $T(1)=1$
	for(i=1 to n)? $T(n-3)=T(n-6)+(n-3)$
	$for(j=1 to n) = T(n-6) = T(n-9) + (n-6)^2$
	point $f(1 * ");$ $T(n) = T(n-6) + (n-3)^2 + n^2$
	$T(n) = T(n-9) + (n-6)^{2} + (n-3)^{2} + n^{2}$
	$\frac{3}{7(n)} = \frac{7(n-3k) + (n-3(k-1))^2 + 1 + n^2}{1 + n^2}$
	$\lim(n-3); \qquad \text{let } n-3k=1$
	$\frac{3}{3} = k$
	$T(n) = T(1) + (n-3(n-1))^2 + \cdots + n^2$
	$T(n) = T(1) + [n - (n-1-3)]^{2} + n^{2}$
	$T(n) = 1 + (3+1)^2 + (4+1)^2 + 4n^2$
	$T(n) = 1 + 4^2 + 7^2 + - + n^2$
	T(n) = n(n+1)(2n+1)
	6
	$T(n) = O(n^3)$

Signature

STUDENT TYLE