Electronics for a Robotic Quadrotor-Top Inverted Pendulum (Q-TIP)

25th of June, 2019

Jee Yong Park

Year 4, Electrical and Electronic Engineering (MEng)

Supervisor: Dr. Eric C. Kerrigan

Second Marker: Dr. Àdria Junyent-Ferré

1.1. QTIP: overview

- Inverted pendulum, actuated by quadrotors
 - Mounted on cart via ball joint
 - 3DOF (yaw, pitch, roll)
- Cart driven by DC motors
 - 3DOF (translation in x, y, and yaw rotation)
- Good platform to test/demonstrate controllers for nonlinear multivariable system
 - Students learning robust linear control
- "It's cool."

– Dr. E.C. Kerrigan

1.2. Preceding work

- Based on previous M.Sc. project by Bell
- Controlled by Arduino Mega
- Stable PID controller
- Cart driver (Bluetooth)
- Messy, dangerous, and difficult to fix!

2. Project objectives

- Address the problems that exist in the previous version of QTIP
 - Mechanical and electrical safety
 - Low hardware modularity difficult to repair / modify
 - Robustness to EM noise
 - Bugs in source code
 - Source code comprehensibility
- Derive system dynamics
- Design and implement effective linear controllers

3.1. Hardware improvements

Power supply adjustment

New MCU to control pendulum actuation separately

Custom PCB to mount MCU and MPU

3.1.1. Hardware: Power supply adjustments

- Added another PDB on pendulum
 - Less power cables running along pendulum
 - Shorter wires for power supply to upper components
- Higher gauge **power cables** between PDBs
- Clip connectors: easier fix/mod

3.1.2. Hardware: New MCU & mount PCB

- Arduino Pro Mini 328 5V/16MHz
 - Small and light
 - Enough PWM, digital, ADC, serial I/O
 - Same clock and VCC with Arduino Mega
- MCU & MPU mount PCB
 - Additional power management for MCU and MPU
 - Switch between power sources
 - Voltage regulator for MCU, MPU (5V), and IR sensors (3.3V)
 - Capacitive DC coupling: EM noise reduction
 - **Header pin** connections
 - Robust external connection
 - Easy rewiring or parts replacement
 - No more loose wires between MCU, MPU, ESCs

3.1.2. Hardware: MCU & MPU mount PCB

3.1.2. Hardware: MCU & MPU mount PCB

3.1.3. Hardware: Overall changes

- $21 \rightarrow 5$ wires along the pendulum arm
- Less likely to be electrocuted
- Less loose wires hanging around the top
- Can power up MCU and MPU only without powering ESCs

3.2. Software improvements

- Optimisation for Arduino Pro Mini
 - Remove unused variables and lines (memory/performance)
- Bug fixes
 - Incorrect DMP information fetch
 - Incorrect DMP offset calibration source code
- Consistent sampling time and control delay
 - Added while statement to wait until designated Ts has passed since last iteration
- Implement serial communications between two MCUs
 - Exchange 1-byte flags to communicate operation status
 - One USB connection to PC from Arduino Mega (1 less cable)
 - Send and receive 4B float and 2B short int data (roll, pitch, dt)
- Soft kill-switch for emergency
 - Mega can reset Pro Mini via digital pin connection to reset pin

4. Modelling and controller design

- State-space system dynamics
 - Derive
 - Linearise
 - Discretise
- Design effective linear feedback controllers
 - PID
 - LQR
 - H_∞ optimal
- Verify controller performance

4.1.1. Model derivation: Frame of reference

- Consider pendulum as sole 2DOF system
- Consider base of pendulum (ball joint) as O
- x-axis along M1 and M2
- y-axis along M3 and M4
- z-axis upwards along the pendulum
- Roll (φ) around y-axis
- Pitch (θ) around x-axis
- Total thrust $f_x = f_2 f_1$ along x-axis
- Total thrust $f_y = f_3 f_4$ along y-axis

4.1.2. Model derivation: System prameters

- Assumptions:
 - 1. No mechanical friction at ball joint
 - 2. Thrust ∝
 - a) PWM signal
 - b) Arduino Servo command given to ESC
 - 3. No drag from rotors of orthogonal directions

Parameters	Symbol	Value	Unit
Mass of pendulum	m	1.066	kg
Distance to centre of gravity	r	0.35	m
Length of pendulum	1	0.45	m
Thrust constant*	K	0.0074	N
Gravitational constant	g	9.81	m/s²

4.1.2. Model derivation: System parameters (individual rotor thrust)

- ESC control
 - not by PWM (analogueWrite)
 - by Arduino Servo angle commands (Servo.write)
- Measured force: effective force provided by individual rotor thrust at centre of gravity orthogonal to pendulum arm
- Trendlines

 - Blue: PWM duty cycle of 3phase power supply from ESC
 - Orange: Thrust

4.2.1. Controller design: Proportional-integral-derivative (PID)

- Apply linear gains to error, integral of error, and derivative of error
- Pros:
 - Thoroughly researched and widely implemented
 - Easy implementation
- Cons:
 - Need to balance all three gains
 - Need accurate model
 - Low robustness to uncertainties & disturbances
- Already there, but gains retuned experimentally

4.2.2. Controller design: Linear Quadratic Regulator (LQR)

• Find linear state feedback gain that minimises cost function:

$$J(u) = \int_0^\infty (z'Qz + u'Ru) dt$$

- Pros:
 - Automatically compute controller by choosing Q, R
 - Fast control input computation (single K_c)
 - Guaranteed stability
 - Guaranteed stability margins
 - Robustness against output uncertainty
- Cons:
 - Require all state variables or good estimation
 - Require good model
- MATLAB functions: dlqr

4.2.3. Controller design: H_{∞} optimal control

- Find output feedback that makes optimal trade-off between
 - Sensitivity
 - Good tracking performance
 - Complementary sensitivity
 - Noise attenuation
 - Robust (multiplicative uncertainty)
 - Control effort
 - Robust (additive uncertainty)
- Pros:
 - Automatically computed (optimisation problem)
 - Weights can be chosen to minimise effects of noise, disturbance, and plant-model mismatch
- Cons:
 - Require good model
 - Need to choose relevant cost function
- MATLAB functions: augw, hinfsyn

$$P(s) = \begin{bmatrix} W_1 & -W_1G \\ 0 & W_2 \\ 0 & W_3G \\ I & -G \end{bmatrix}$$

$$J := ||z||_2^2 - \gamma^2 ||w||_2^2 \le 0$$
, $\forall w \text{ such that } ||w||_2^2 < \infty$

5.1 Controller performance: Results

- PID
 - Steady-state
 - Slight oscillation towards the end
 - Offset (within ±1°)
 - External disturbance injection
 - Stable (within certain amount)
 - Stabilised from peak-to-peak 14° to 1° within 6 sec
- LQR
 - No stability
- H_∞
 - No stability

5.1. Controller performance: PID (in action)

5.2. Controller performance: Evaluation

- Plant-model mismatch
 - Too many assumptions
 - Friction and drag probably have significant effect
 - Inaccurate parameter measurement
- Factors unaccounted for
 - Rotor thrust as battery drains
 - Saturation for control inputs
 - Tension from cables
- Others
 - MPU calibration: sensor offset
 - No yaw: pendulum rotates (yaw) while stabilising itself

6.1. Project outcomes & remarks

- Hardware:
 - Safe, robust, easy to fix / modify
- Software:
 - Easy to read / debug / modify
 - Successfully untethered Arduino Pro Mini from PC
- Controller performance:
 - QTIP can be a reliable platform to test computationally simple controllers
 - Needs more accurate model of the system
- Importance of developing code in small steps + many debugging
- Real machines almost never behave as you expect

6.2. Future works

- Additional modification to QTIP
 - Mechanical safety: wire fence around the rotors
 - Electrical safety: relay switch circuit on main power supply for remote power-off
 - Enhanced pose estimation: incorporate IR distance sensors into sensor fusion algorithm
 - Totally untethered system: se HC-05 Bluetooth module to remotely give user inputs to Arduino Mega
- Derivation of accurate model
- Model QTIP as 6DOF system: embed cart actuation into the controller design
- Verification by implementing control designs based on the model

Thank you