AR 프로그래밍

이준

수업의 목표

- AR의 개념 및 최신 트렌드 살펴보기!
 - 킬러 VR/AR 프로그램을 만들기 위한 기획 과 설계를 할 수 있음
- 유니티를 통한 AR 프로그래밍 익히기 (3일)
 - Vuforia를 사용한 AR 프로젝트 개발 1일
 - OpenCV 를 적용한 다양한 AI 알고리즘 적용해보기 2일,3일
 - EDITH 프로젝트
 - 얼굴인식
 - 제페토 메타버스
 - OpenPose 사용한 동작 인식 만들어 보기

시작전 준비 사항..

- 이론을 들으면서, 2019.4 (LTS) 설치해 주기 증강현실 라이브러리 버전 지원 문제
- 카메라가 부족한 경우에는 다음의 ivcam 설치 가이드라인대로 셋팅을 부탁 드립니다.
- https://m.blog.naver.com/erke2000/221887037094

증강현실이란 무엇인가?

• 사용자가 눈으로 보는 현실 세계에 3차원 가상의 세계를 겹쳐서 보여주는 기술, 혼합현실이라고도 불림

아이언맨2에서 토니스타크가 신 에너지 물질을 설계하는 모습

영화 킹스맨에서 원격에 있는 사용자들과 대화를 하는 모습

인식 대상에 따른 증강현실 기술 분류(1)

Tracking Target에 따른 분류

Sensor based AR의대표 서비스Layar, Wikitude, SekaiCam

Vision based AR의대표엔진 Vuforia, Metaio, Total Immersion ARToolKit

Hybrid AR 의대표연구 Outdoor AR, Hololens

인식 대상에 따른 증강현실 기술 분류(2)

Sensor based AR

- Gyro
- GPS
- Accelerometer

장점

- 개발이 쉬움

단점

- 실내 콘텐츠 개발이 어려움, 오 차율이 높음

Vision based AR

- Computer Vision
- OpenGL

장점

- 증강된 3D 가상 세계와 현실 세 계와 연동이 되어 몰입감이 높음

단점

- 자체 영상 인식 기술 개발의 어려움, 에러 발생 가능성 존재

Vision based AR

- Vision + Sensor

장점

- 두 가지 방법의 보완으로 가장 높은 정 확도를 보임

단점

- 개발 난이도가 높음, 콘텐츠의 부족

디스플레이에 따른 증강 현실 기술 분류

표준화에 따른 증강현실 분야

CP 서버 프로토콜

콘텐츠 파일 데이터 포맷

- 3D graphical assets
- Geographic Info
- Text
- Image
- Movies
- AR content container
- Point of Interest Information

콘텐츠

사용자 단말

응용프로그램/브라우저

인식

- Computer vision
 Markers & features
- Tracking sensors
- Camera API

가시화

- Computer graphics API
- Video composition
- ensors Depth composition

상호작용

- UI
- Gestures
- Voice
- Haptics

추적 및 정합

표현

상호작용

[1] 이건, ETRI, 증강현실기술의현재와미래, 핚국정보통싞기술협회

증강현실의 기술 구성 요소

- 증강현실에서 실세계를 빠르고 정확하게 인식할 수 있는 기술이 매우 중요
- -영상인식 기술을 바탕으로 콘텐츠 및 상호작용이 들어가게 됨

증강현실 Work Flow

증강현실 동향

- 전통적인 데스크탑 환경에서 모바일 기기 및 착용형 안경형 디스플레이를 통한 증강현실 기술로 흐름이 변경 중
 - 사용자가 장소에 제약 없이 콘텐츠를 사용할 수 있음
 - 위치기반 컴퓨팅 (location-aware computing)
 - o 맥락기반 컴퓨팅 (context-aware computing)
- 최근에는 증강현실과 IoT(Internet of Thing)과 맞물려 미래의 홀로그래픽 컴퓨팅을 이루고자 하는 사례들이 많이 시도 됨

최신 및 미래의 증강현실 예제 (1)

- 3D CAD를 증강현실에서 조작 가능
 - 아이언맨의 토니스타크 메타포 기반의 3D CAD를 조작하는 사례들이 나오고 있음
 - 자동차, 오토바이, 로봇등 실제의 개체들에 증강해서 완성품 이미지를 보고 조작을 하는 경우 아주 유용한 툴이 될 수 있음

-오토바이 프레임에 3D CAD 작업을 증강현실로 수행

-새로운 로봇 동력원 개발을 3D 홀로그래픽 CAD로 수행(아이언맨)

최신 및 미래의 증강현실 예제 (2)

- 사용자들과 커뮤니케이션에서의 증강현실
 - 사용자들에게 풍부한 추가 정보를 제공 혹은 텔레 프레젠스를 적용하여 원격 사용자가 현실 공간에 있는 것과 같은 기술을 만들어줌

-일상 생활에서 필요한 정보들의 제공 (사이트 영상)

-공존 현실 환경에서 공동 회의 (킹스맨)

최신 및 미래의 증강현실 예제 (3)

- 의료 및 군사 시뮬레이션에 활용
 - 실제 환경에 훈련을 위해 필요한 정보들을 증강 시켜줌으로써 훈련의 성과를 높일 수 있음
 - 가장 유망한 적용 분야 중의 하나

-미 육근 35공병여단의 시뮬레이션

예제 5. -가상 수술 훈련 및 실제 수술에서의 지원(프라운 호퍼 MEVIS)

증강현실에서 영상인식 기술 동향 소개

인공 마커기반 영상인식 기술

• 정의

○ 인공 마커즉 사각형들의 패턴으로 만들어진 2차원 마커를 등록 하고, 마커의 원래 크기와 인식된 크기 및 방향을 바탕으로 3차원 위치 정보를 추정하여 3차원 객체를 증강시키는 기술

• 장점

○ 속도가 빠름, 강건함

• 단점

- 부가적인 설치가 필요함
- 디자인이 제한적임

NaviCam

- 1995년 Jun Rekimoto와 Katashi Nagao가 개발
- 워크스테이션, 카메라가 장착된 모바일 디스플레이
- 사용자 위치 추정 카메라로 보이는 컬러 마커 인식
- 해당 마커위에 상황에 적합한 정보 제공

Touring Machine

- 1997년에 Steve Feiner와 동료가 개발한 실외 모바일 증강현실 시스템 -노트북
- 다양한 장치를 활용하여 사용자 위치와 방향 정보를 추정 디지털 나침반 (compass), 경사계 (inclinometer), 보정위성항법시스템 (differential GPS)
- 도심환경에 관한 정보 제공

ARToolKit

- 1999년 Hirokazu Kato가 미국 HITLab에서 ARToolKit 이라는 마커를 인식하고 이 기반 위에 3차원 증강현실 콘텐츠를 보이는 기술을 개발
- 기준 좌표 역할을 하는 사각형의 마커를 인식하고 그 마커를 기준점으로 하는 기술로 이후 마커 기반 추적 기술의 선구자적인 역할을 함
 - 2차원의 마커 형태를 인식하나, 마커의 패턴, 광원 및 반사 재질에 따른 인식율의 차이가 발생

Indoor AR Guidance System

- 2003년 Daniel Wagner와 Dieter Schmalstieg가 개발
- 최초로 PDA 환경에서 구현된 실내 공간 안내 시스템 환경의 3차원 정보 제공

Invisible Train

• 2004년 Daniel Wagner와 동료가 개발한 모바일 환경에서 구현된 최초의 실시간 다중 사용자 증강현실 게임

자연스러운 특징점 기반 영상인식 기술

• 정의

○ 인공 마커 대신, 일상 생활에서 쓸 수 있는 자연스러운 물체를 마커로 등록하고 이에 대한 특징점을 추출하여 인식을 하는 방법

• 장점

○ 인공마커가 가지는 디자인 문제점을 해결, 상용화 가능성을 열 수 있음

• 단점

- 인공 마커 기반 트래킹 보다 어려움
- 인공 마터 기반 트래킹 보다 속도가 느림

Arhrrr!

- 2009년 Kimberly Spreen과 동료가 소개함
 - 상업용 게임과 견줄 수 있는 모바일 증강현실 게임
- NVIDIA Tegra developer Kit, Concorde를 기반으로 구현함
 - 자연스런 feature 트래킹

파노라마 기반 트래킹 (1)

- 환경을 파노라마를 통해 획득함
 - 사전에 획득
 - 트래킹과 동시에 획득
- 장점
 - 주변 환경 정보를 손쉽게 획득함
- 단점
 - 파노라마가 획득된 위치 주변에서만 정확한 증강이 가능함

파노라마 기반 트래킹 (2)

Panoramic Mapping on a Mobile Phone GPU

Georg Reinisch, Clemens Arth, Dieter Schmalstieg

3D Tracking

- 정의
 - 강체 및 변형이 가능한 물체에 대한 탬플릿 매칭 기법을 기반으로 한 3차원 트랙킹 적용
- 장점
 - 3차원 객체의 정보를 Mesh로 실시간으로 얻을 수 있음, 물체, 얼굴, 손등 다양한 곳에 활용됨
- 단점
 - 객체의 초기화가 잘 되어야 함

센서기반 트래킹

- 스마트폰에 장착된 다양한 센서를 활용한
- 사용자 위치 및 방향 추정
 - o GPS: 위치
 - o Wi-Fi: 위치
 - o Cellular signal: 위치
 - o Accelerometer: 움직임과 위치
 - o Gyroscope: 방향
 - o Digital compass: 2D 방향

하이브리드 트래킹

- 다양한 센서를 통합하여 사용자의 위치와 방향 추적
 - 각각의 센서가 보내주는 정보를 통합하여 새로운 정보를 생성
 - 각각의 센서의 장점을 살리고 단점을 보완할 수 있는 방향으로 통합이 되어야 함
- 스마트폰 및 HMD에 다양한 센서가 부착되어 있어 하이브리드 트래킹 구현이 적합함
- · 여
 - o GPS와 digital compass (또는 gyroscope) 통합
 - o GPS, vision, gyroscope 통합

Microsoft OmniTouch

• 개요

- Depth Camera 와 Pico 프로젝터로 사용자는 자신의 소 및 노트등 다양한 곳에 정보를 데스플레이하고 손가락의 터리를 통해서 상호 작용 가능
- 어떤 표면 에서든지 레이저 기반 모바일 프로젝터를 투영하는 컨셉이 장점

Omni Touch

Wearable Multitouch Interaction Everywhere

Chris Harrison chris.harrison@cs.cmu.edu

Hrvoje Benko benko@microsoft.com

Andrew Wilson awilson@microsoft.com

Microsoft[®]

Microsoft illumiRoom

• 개요

- 프로젝션 증강현실 기술 및 이를 통한 3차원 실내 지형 인식을 통해 방 전체를 게임 몰입 공간으로 만듦
- o HoloLens 의 공간 인식 기술의 기반이 되는 것으로 추정
- 여러대의 Kinect를 사용하여 집안을 스캔하고, 집에 디스플레이를 수행함

Media Facade

• 개요

- 프로젝터를 통해 벽면에 투영하여, 새로운 정보를 표현하거나, 건물이 무너지는 등의 효과를 표현할 수 있음
- 1인칭이 아닌 다중 사용자들에게 동일한 경험을 제공

뷰포리아란?

Vuforia

○ 퀄컴에서 개발된 증강현실 인식과 애플리케이션을 생성할 수 있는 모바일 장치용 증강현실 소프트웨어 개발 키트

