Friezes, triangulations, continued fractions, and binary numbers

Emily Gunawan University of Connecticut

Smith College Lunch Talk, Thursday, September 20, 2018

Slides available at https://egunawan.github.io/talks/smith18

Friezes

A *frieze* is an image that repeats itself along one direction. The name comes from architecture, where a frieze is a decoration running horizontally below a ceiling or roof.

Figure: M. Ascher, Ethnomathematics, p162.

Conway - Coxeter friezes

Definition

A (Conway – Coxeter) *frieze* is an array of positive integers such that:

- 1. it is bounded above and below by a row of 1s
- 2. every diamond

satisfies the rule ad - bc = 1.

Example																
		1		1		1		1		1		1		1		
Row 2	• • •		3		1		2		2		1		3		1	
		2		2		1		3		1		2		2		
			1		1		1		1		1		1		1	

Note: every frieze is completely determined by the 2nd row.

Glide symmetry

A glide symmetry is a combination of a translation and a reflection.

Children practicing arithmetic

Children practicing arithmetic: Answer Key

Table 1.

Table 2.

What do the numbers around each polygon count?

Figure 3: A triangulation of a heptagon.

Conway and Coxeter (1970s)

Theorem

A Conway - Coxeter frieze with n nontrivial rows \longleftrightarrow a triangulations of an (n+3)-gon

Note: Hence Conway - Coxeter friezes are Catalan objects.

Conway and Coxeter (1970s)

Theorem

A Conway - Coxeter frieze with n nontrivial rows \longleftrightarrow a triangulations of an (n+3)-gon

Figure 3: A triangulation of a heptagon.

Primary school algorithm

Table 1.

Broline, Crowe, and Isaacs (BCI, 1970s)

Theorem

Entries of a finite frieze \longleftrightarrow edges between two vertices.

Glide symmetry (again)

A *glide symmetry* is a combination of a translation and a reflection. If we forget the arrows' orientation, the diagonals have glide symmetry.

Binary number representations

A binary number representation is an expression of a nonzero integer in the base-2 numeral system, with digits consisting of 1s and 0s. For example,

- ▶ $1 = 1 * 2^0$ (in decimal) is written as 1 (in binary).
- $ightharpoonup 2 = 1 * 2^1$ (in decimal) is written as 10 (in binary).
- ▶ $4 = 1 * 2^2$ (in decimal) is written as 100 (in binary).
- ▶ $5 = 1 * 2^2 + 1 * 2^0$ (in decimal) is written as 101 (in binary).
- ▶ $29 = 16 + 8 + 4 + 1 = 1 * 2^4 + 1 * 2^3 + 1 * 2^2 + 1 * 2^0$ is written as 11101 (in binary).

Subwords of binary numbers (G.)

We can think of "11101" as a word in the alphabets $\{0,1\}$. All subwords of "11101" which start with "1":

- ▶ "11101" (itself)
- "11101"
- **"**11101"
- "11101"
- "11101"
- "11101"
- "11101"
-
- **"11101"**
- **"11101"**
- "11101"
- **"11101"**

Continued fractions (Çanakçı, Schiffler)

Broline, Crowe, and Isaacs (BCI, 1970s)

Definition (BCI tuple)

Let R_1 , R_2 , ..., R_r be the boundary vertices to the right of γ . A *BCI tuple* for γ is an r-tuple (t_1, \ldots, t_r) such that:

- (B1) the *i*-th entry t_i is a triangle of T having R_i as a vertex.
- (B2) the entries are pairwise distinct.

How many BCI tuples are there?

Cluster algebras (Fomin – Zelevinsky, 2000)

<u>Definition</u> A *cluster algebra* is a commutative ring with a distinguished set of generators, called *cluster variables*.

<u>Theorem</u> (Caldero – Chapoton (2006): The cluster variables of a cluster algebra from a triangulated polygon (type *A*) form a frieze.

► Remark: If the variables are specialized to 1, we recover the Conway – Coxeter integer frieze.

Example: a type A_3 frieze

Frieze over the positive integers

Specializing $x_1=x_2=x_3=1$ gives a Conway – Coxeter positive integer frieze

1 1 1

1 3 2 1

1 2 5 1

1 3 2 1

1 1 1 1

Thank you