Report of Analysis

Huang LiChuang of Wie-Biotech

Contents

1	商安 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	2
	.1 fastp 质控	2
	.2 全外显子分析流程	2
	.3 结果可视化	2
2	开究设计流程图	3
3	材料和方法	3
4	分析结果	4
	.1 fastp 质控	4
	.2 WES 变异筛选	4
	4.2.1 ANNOVAR 注释	5
	4.2.2 maftools 可视化	5
	.3 下游分析	6
	4.3.1 获取 Genecards 与胆汁相关疾病的基因	6
	4.3.2 通路富集分析	7
5	古 论	11
6	其它	11
U	· 1 新生 儿心脏骤停	
	6.1.1 数据来源	
	.2 新生儿胎粪性腹膜炎差异基因	
	.3 胎儿宫内窘迫	
	.4 死胎	
	.5 新生儿呼吸窘迫综合征	
	·····································	10
Re	erence	13
Li	et of Figures	
	Summary of mutations in samples	5

2	Proportion of SNPs mutation	6
3	Intersect of variants with Genecards prediction	7
4	KEGG enrichment	8
5	Intersection of filtered variants with KEGG pathway	9
6	Intersects of the pathways related variants in all samples	10
\mathbf{List}	of Tables	
1	Genecards genes relative with bild acids	6
2	Bile acids related variants occurs in all ICP samples	10
	>	

1 摘要

根据客户提供的材料分析基因突变及信号通路,筛选出研究的对象基因。相关疾病是"高胆汁酸血症"或是"妊娠期肝内胆汁淤积症(Intrahepatic cholestasis of pregnancy, ICP)

1.1 fastp 质控

- 去低质量碱基
- 去接头
- 生成报告

1.2 全外显子分析流程

WES 一般分析流程为:

https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows:

- Preprocessing https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processingfor-variant-discovery
 - 比对到参考基因组
 - 标记重复
 - 基础校准 (Base (Quality Score) Recalibration)
- $\bullet \ \ Variant \ discovery \ https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-shortvariant-discovery-SNPs-Indels-shortvariant-discovery-SNPs-Indels-shortvariant-discovery-SNPs-Indels-shortvariant-discovery-short-discovery-short-dis$
 - 获取变异注释文件
 - 变异检测
 - 变异质控和过滤
 - 变异注释

1.3 结果可视化

使用 maftools 对变异注释结果可视化。

2 研究设计流程图

3 材料和方法

 $\bullet \ \ fastp \ (https://github.com/OpenGene/fastp)$

以下可以通过 https://gatk.broadinstitute.org/hc/en-us/articles/360041320571--How-to-Install-all-software-packages-required-to-follow-the-GATK-Best-Practices 获取安装。

- bwa
- ...

使用 elPrep¹ 替代 GATK4 做 WES 分析 (见 1.2)。

使用 bcftools² 过滤 vcf。

使用 ANNOVAR 变异注释。

使用 R maftools 可视化 ANNOVAR 注释结果。

使用 clusterProfiler 富集分析 (KEGG)。

参考基因组:

 $\bullet \ https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/latest/hg38.fa.gz$

SNPs 和 Indels:

(https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0)

- 1000G_phase1.snps.high_confidence.hg38.vcf
- Mills_and_1000G_gold_standard.indels.hg38.vcf

4 分析结果

4.1 fastp 质控

'Fastp report files' 数据已全部提供。

(对应文件为 ./fastp_report)

注: 文件夹./fastp_report 共包含 6 个文件。

- $1.\ V350065014_L01_93_.html$
- 2. V350065014_L01_94_.html
- 3. $V350065014_L02_94_.html$
- 4. V350065026 L03 86 .html
- 5. V350065026 L04 85 .html
- 6. ...

注:客户提供8个病人的数据,每个病人的目录下有2个子文件,因此共16个样本数据。硬盘中有个别fastq文件有损坏。损坏的文件未纳入分析流程中(没有报告生成的为损坏的文件)。

4.2 WES 变异筛选

以下流程相较于 GATK4 Best Practice (https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows) 有所变化。

• 使用 elPrep 5 完成检测流程 (流程类似于 GATK4, 但速度更快) 1。

得到变异信息文件 (vcf) 后, 使用 bcftools 过滤 (QUAL>10 && GQ>10 && FORMAT/DP>10 && INFO/DP>100)。

4.2.1 ANNOVAR 注释

使用 ANNOVAR (https://annovar.openbioinformatics.org/en/latest/) 注释后,滤除同义突变。

'Exonic annotation by ANNOVAR' 数据已全部提供。

(对应文件为 exonic-annotation-by-ANNOVAR)

注:文件夹 exonic-annotation-by-ANNOVAR 共包含 6 个文件。

- 1. 1 X220325 I26 V350065014 L1 22L01298712.93.csv
- $2.\ 10\ X220325\ M038\ V350065181\ L04\ 22L01298713.24.csv$
- $3.\ 11\ X220325\ M038\ V350065181\ L04\ 22L01298716.25.csv$
- $4.\ 12_X220325_M120_V350065026_L03_22L01298714.86.csv$
- $5.\ 13_X220325_M120_V350065026_L04_22L01298711.85.csv$
- 6. ...

4.2.2 maftools 可视化

参考 https://www.bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html#9 10_Mutational_Signatures

Figure 1为图 summary of mutations in samples 概览。

(对应文件为 Figure+Table/summary-of-mutations-in-samples.pdf)

Figure 1: Summary of mutations in samples

Figure 2为图 proportion of SNPs mutation 概览。

(对应文件为 Figure+Table/proportion-of-SNPs-mutation.pdf)

Figure 2: Proportion of SNPs mutation

4.3 下游分析

4.3.1 获取 Genecards 与胆汁相关疾病的基因

Table 1为表格 Genecards genes relative with bild acids 概览。

(对应文件为 Figure+Table/Genecards-genes-relative-with-bild-acids.xlsx)

注:表格共有 1494 行 7 列,以下预览的表格可能省略部分数据;表格含有 1494 个唯一'Symbol'。

Table 1: Genecards genes relative with bild acids

Symbol	Descr	Category	UniPr	GIFtS	GC_id	Score
BAAT	Bile	Prote	Q14032	47	GC09M	93.50
AKR1D1	Aldo	Prote	P51857	48	GC07P	88.14
ABCB11	ATP B	Prote	O95342	50	$\mathrm{GC02M}$	85.41
SLC10A1	Solut	Prote	Q14973	47	GC14M	83.40
NR1H4	Nucle	Prote	Q96RI1	52	GC12P	83.18
AMACR	Alpha	Prote	Q9UHK6	49	$\mathrm{GC05M}$	76.57

Symbol	Descr	Category	UniPr	GIFtS	GC_id	Score
HSD3B7	Hydro	Prote	Q9H2F3	45	GC16P	70.66
CYP7B1	Cytoc	Prote	O75881	50	GC08M	65.39
GPBAR1	G Pro	Prote	Q8TDU6	44	GC02P	63.83
CYP7A1	Cytoc	Prote	P22680	47	GC08M	60.99
ACOX2	Acyl	Prote	Q99424	47	GC03M	59.23
SLC51B	Solut	Prote	Q86UW2	38	GC15P	58.25
ABCB4	ATP B	Prote	P21439	51	GC07M	56.92
SLC27A5	Solut	Prote	Q9Y2P5	45	GC19M	55.16
ALB	Albumin	Prote	P02768	53	GC04P	51.11
•••	•••	•••	•••		•••	

4.3.2 通路富集分析

取 Tab. 1 的基因与?? 的所有基因的交集。

Figure 3为图 intersect of variants with Genecards prediction 概览。

(对应文件为 Figure+Table/intersect-of-variants-with-Genecards-prediction.pdf)

Figure 3: Intersect of variants with Genecards prediction

以交集基因通路富集。

Figure 4为图 KEGG enrichment 概览。

(对应文件为 Figure+Table/KEGG-enrichment.pdf)

Figure 4: KEGG enrichment

取 'Bile secretion' 和 'Cholesterol metabolism' 相关的基因。

Figure 5为图 Intersection of filtered variants with KEGG pathway 概览。

(对应文件为 Figure+Table/Intersection-of-filtered-variants-with-KEGG-pathway.pdf)

Figure 5: Intersection of filtered variants with KEGG pathway

取 Fig. 5 所示的两条通路的基因交集。

将这些交集基因回归到所有样本的变异数据中,取共同发生的突变结果。

Figure 6为图 intersects of the pathways related variants in all samples 概览。

(对应文件为 Figure+Table/intersects-of-the-pathways-related-variants-in-all-samples.pdf)

Figure 6: Intersects of the pathways related variants in all samples

有7个变异同时发生在所有样本中。

Table 2为表格 Bile acids related variants occurs in all ICP samples 概览。

(对应文件为 Figure+Table/Bile-acids-related-variants-occurs-in-all-ICP-samples.xlsx)

注: 表格共有 7 行 14 列,以下预览的表格可能省略部分数据;表格含有 7 个唯一'hgnc_symbol'。

Table 2: Bile acids related variants occurs in all ICP samples

hgnc	prote	Chr	Start	End	Ref	Alt	Func	Gene	GeneD	Exoni	AACha
LRP1	p.Q2900P	chr12	57196001	57196001	A	С	exonic	LRP1		nonsy	LRP1:
SLC10A1	p.S267F	chr14	69778476	69778476	G	A	exonic	SLC10A1		nonsy	SLC10

hgnc	prote	Chr	Start	End	Ref	Alt	Func	Gene	GeneD	Exoni	AACha
AQP9	p.T214A	chr15	58184082	58184082	A	G	exonic	AQP9		nonsy	AQP9:
APOH	$\mathrm{p.V266L}$	chr17	66214639	66214639	\mathbf{C}	A	exonic	APOH		nonsy	APOH:
ABCB11	p.V444A	chr2	16897	16897	A	G	exonic	ABCB11		nonsy	ABCB1
LRP2	$\mathrm{p.A2872T}$	chr2	16919	16919	\mathbf{C}	\mathbf{T}	exonic	LRP2		nonsy	LRP2:
TSPO	p.T147A	chr22	43162920	43162920	A	G	exonic	TSPO		nonsy	TSPO:

5 结论

见 Tab. 2。

ICP 相关对象基因:

 $LRP1,\, SLC10A1,\, AQP9,\, APOH,\, ABCB11,\, LRP2,\, TSPO\,.$

突变形式 (hgvs) 为:

 $p.Q2900P,\,p.S267F,\,p.T214A,\,p.V266L,\,p.V444A,\,p.A2872T,\,p.T147A.$

6 其它

6.1 新生儿心脏骤停

6.1.1 数据来源

检索: neonatal cardiac arrest

数据来源于³ (piglets mRNA-seq):

• PMID: 31005300

• GSE120863

data_processing:

RNA sequencing reads were aligned to the Pig genome (Sscrofa11.1) using Star.

$data_processing.1:$

featureCounts was used to map the reads to the exons of genes.

data_processing.2:

DESeq2 was used to normalize the data using regularized-logarithm.

data_processing.3:

Genome_build: Sscrofa11.1

data_processing.4:

 $Supplementary_files_format_and_content:~0618_striatum.feature_counts.all_samples.txtincludes~the~counts.$

data_processing.5:

 $Supplementary_files_format_and_content: sham_DHCA_striatum_mRNA_seq.txt includes the fold changes and statistics.$

6.2 新生儿胎粪性腹膜炎差异基因

检索: neonatal meconium peritonitis

无相关数据。

6.3 胎儿宫内窘迫

检索: fetal distress

无相关数据。

6.4 死胎

检索: stillbirth

无相关数据。

6.5 新生儿呼吸窘迫综合征

neonatal respiratory distress syndrome 无相关数据。

Reference

- 1. Multithreaded variant calling in elPrep 5. $PLOS\ ONE\ {f 16},\ 1\mbox{--}13\ (2021).$
- 2. Danecek, P. et al. Twelve years of samtools and beftools. GigaScience 10, (2021).
- 3. Tu, L. N. et al. Transcriptome profiling reveals activation of inflammation and apoptosis in the neonatal striatum after deep hypothermic circulatory arrest. The Journal of Thoracic and Cardiovascular Surgery 158, (2019).