```
In [1]:
               import numpy as np
               import pandas as pd
               from matplotlib import pyplot as plt
               import seaborn as sns
In [2]:
               # initial dataset provided by malwaredatascience.com
               df = pd.read csv('malware_data.csv')
    Out[2]:
                  positives
                                size
                                            type
                                                          fs_bucket
                0
                        45
                             251592
                                           trojan
                                                 2017-01-05 00:00:00
                1
                        32
                             227048
                                           trojan
                                                 2016-06-30 00:00:00
                2
                        53
                             682593
                                                 2016-07-30 00:00:00
                                           worm
                3
                        39
                             774568
                                                 2016-06-29 00:00:00
                                           trojan
                4
                        29
                             571904
                                                 2016-12-24 00:00:00
                                           trojan
                5
                        31
                             582352
                                                 2016-09-23 00:00:00
                                           trojan
                6
                        50
                            2031661
                                           worm
                                                 2017-01-04 00:00:00
                7
                        40
                            2113536 ransomware
                                                 2016-09-02 00:00:00
                8
                                                 2016-10-04 00:00:00
                        20
                             968216
                                           trojan
                9
                        40
                            5260000
                                           trojan
                                                 2016-12-29 00:00:00
In [3]:
    Out[3]:
                          positives
                                            size
                      37511.000000
                                   3.751100e+04
                count
                          39.446536
                                   1.300639e+06
                mean
                  std
                          15.039759
                                    3.006031e+06
                 min
                          3.000000
                                    3.370000e+02
                 25%
                         32.000000
                                    1.653960e+05
                 50%
                         45.000000
                                    4.828160e+05
                 75%
                         51.000000
                                   1.290056e+06
                         57.000000 1.294244e+08
                 max
In [4]:
            M
```

1 of 8

Out[4]: Index(['positives', 'size', 'type', 'fs bucket'], dtype='object')

ransomware

type

trojan

worm

bitcoin

keylogger

```
In [7]: | fig, ax = plt.subplots(figsize=(8,8))
sns.boxplot(x='type', y='positives', data=df, palette="vlag")
Out[7]: [Text(0, 0.5, 'Positive ID Rate'), Text(0.5, 0, 'Malware Type')]
```


In [8]: # Positive Rates by Size According to Malware Type

Out[8]: <seaborn.axisgrid.PairGrid at 0x27fec183c50>

In [9]: # Detection Distribution each of 57 AV's tested

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x27fec4c2438>

In [13]: df2 = pd.pivot_table(df, values='positives', index=['fs_bucket'], coludf2 = df2.dropna()

Out[13]:

type	bitcoin	keylogger	ransomware	trojan	worm	All
fs_bucket						
2016-06-13 00:00:00	37.000000	51.000000	40.361702	36.258427	50.598726	44.545455
2016-08-18 00:00:00	9.000000	36.000000	38.200000	33.640000	48.885246	40.081081
2016-08-23 00:00:00	28.000000	29.000000	39.400000	32.654545	48.055556	38.519231
2016-09-03 00:00:00	29.000000	55.000000	40.200000	32.386667	51.039604	42.854922
2016-10-04 00:00:00	45.000000	29.000000	41.875000	36.661017	49.183673	42.220339
2016-10-11 00:00:00	36.000000	25.000000	39.333333	27.523077	49.553191	36.968992
2016-10-14 00:00:00	46.000000	21.000000	39.888889	31.879518	50.784810	40.923497
2016-10-16 00:00:00	51.000000	29.000000	42.041667	37.853333	50.250000	43.768362
2016-11-16 00:00:00	47.000000	38.000000	41.600000	26.733333	51.484848	35.960000
2016-11-18 00:00:00	38.000000	38.000000	42.285714	31.900000	47.774194	37.466667
2016-11-30 00:00:00	46.000000	16.000000	43.214286	35.634921	48.939394	42.358621
2016-12-22 00:00:00	42.000000	53.000000	32.142857	27.971154	48.489362	34.425000
2017-01-06 00:00:00	49.000000	51.000000	43.684211	36.788235	51.555556	43.224852
All	35.857143	32.791209	40.708333	33.438225	49.908579	40.699866

In [14]: N

```
In [16]: # new column to parse values from range buckests
    df['fs_date'] = [dateutil.parser.parse(x) for x in df['fs_bucket']]

# isolate types
    trojans = df[df['type'] == 'trojan']
    worms = df[df['type'] == 'worm']
```

6 of 8

```
In [20]: | fig, ax = plt.subplots(figsize=(8,8))

plt.plot(trojans['fs_date'], trojans['positives'], 'bo', label='Trojan

plt.plot(worms['fs_date'], worms['positives'], 'go', label='Worms', ma

plt.plot(ransomware['fs_date'], ransomware['positives'], 'r*', label='

plt.legend()

plt.xlabel('Date')

plt.ylabel('Number of Detections')

plt.ylim([0,57])

plt.title('Trojan and Worm Vendor Detections over a ix month period')

plt.tight_layout()
```



```
In [ ]: •
```

7 of 8

8 of 8