Indexed Search Tree (Trie)

Nelson Padua-Perez Chau-Wen Tseng

Department of Computer Science University of Maryland, College Park

Indexed Search Tree (Trie)

- Special case of tree
- Applicable when
 - Key C can be decomposed into a sequence of subkeys C₁, C₂, ... C_n
 - Redundancy exists between subkeys
- Approach
 - Store subkey at each node
 - Path through trie yields full key
- Example
 - Huffman tree

Tries

- Useful for searching strings
 - String decomposes into sequence of letters
 - Example
 - "ART" ⇒ "A" "R" "T"
- Can be very fast
 - Less overhead than hashing
- May reduce memory
 - Exploiting redundancy
- May require more memory
 - Explicitly storing substrings

"ART"

Types of Tries

- Standard
 - Single character per node
- Compressed
 - Eliminating chains of nodes
- Compact
 - Stores indices into original string(s)
- Suffix
 - Stores all suffixes of string

Standard Tries

Approach

- Each node (except root) is labeled with a character
- Children of node are ordered (alphabetically)
- Paths from root to leaves yield all input strings

Standard Trie Example

For strings

■ { a, an, and, any, at }

Standard Trie Example

- For strings
 - { bear, bell, bid, bull, buy, sell, stock, stop }

Standard Tries

- Node structure
 - Value between 1...m
 - Reference to m children
 - Array or linked list
- Example

```
Class Node {
Letter value;  // Letter V = { V<sub>1</sub>, V<sub>2</sub>, ... V<sub>m</sub> }
Node child[ m ];
```


Standard Tries

Efficiency

- Uses O(n) space
- Supports search / insert / delete in O(d×m) time
- For
 - n total size of strings indexed by trie
 - d length of the parameter string
 - m size of the alphabet

Word Matching Trie

- Insert words into trie
- Each leaf stores occurrences of word in the text

Compressed Trie

Observation

Internal node v of T is redundant if v has one child and is not the root

Approach

- A chain of redundant nodes can be compressed
 - Replace chain with single node
 - Include concatenation of labels from chain

Result

- Internal nodes have at least 2 children
- Some nodes have multiple characters

Compressed Trie

Compact Tries

- Compact representation of a compressed trie
- Approach
 - For an array of strings S = S[0], ... S[s-1]
 - Store ranges of indices at each node
 - Instead of substring
 - Represent as a triplet of integers (i, j, k)
 - Such that X = s[i][j..k]
 - Example: S[0] = "abcd", (0,1,2) = "bc"
- Properties
 - Uses O(s) space, where s = # of strings in the array
 - Serves as an auxiliary index structure

Compact Representation

Example

Suffix Trie

Compressed trie of all suffixes of text

- Useful for finding pattern in any part of text
 - Occurrence ⇒ prefix of some suffix
 - Example: find PDP in IPDPS

Suffix Trie

- Properties
 - For
 - String X with length n
 - Alphabet of size m
 - Pattern P with length d
 - Uses O(n) space
 - Can be constructed in O(n) time
 - Find pattern P in X in O(d×m) time
 - **■** Proportional to length of pattern, not text

Suffix Trie Example

Tries and Web Search Engines

- Search engine index
 - Collection of all searchable words
 - Stored in compressed trie
- Each leaf of trie
 - Associated with a word
 - List of pages (URLs) containing that word
 - Called occurrence list
- Trie is kept in memory (fast)
- Occurrence lists kept in external memory
 - Ranked by relevance

Computational Biology

DNA

- Sequence of 4 different nucleotides (ATCG)
- Portions of DNA sequence produce proteins (genes)

Genome

- Master DNA sequence for organism
- For Human
 - 46 chromosomes
 - 3 billion nucleotides

DNA the molecule of life

Trillions of cells

Each cell:

46 human chromosomes

2 meters of DNA

3 billion DNA subunits (the bases: A, T, C, G)

Approximately 30,000 genes code for proteins that perform most life functions

Tries and Computational Biology

- ESTs
 - Fragments of expressed DNA
 - Indicator for genes (& location)
 - 5.5 million sequences at NIH
- ESTmapper
 - Build suffix trie of genome
 - 8 hours, 60 Gbytes
 - Search for ESTs in suffix trie
 - 11 hours w/ 8 processor Sun
- Search genome w/ BLAST
 - 5⁺ years (predicted)

