UNet Model

Core Concepts of the U-Net Model

- **Semantic Segmentation**: The model classifies each pixel in an image into one of several classes (6 classes for defects).
- **Encoder-Decoder Architecture**: Compresses and then reconstructs the image to perform dense prediction.
- **Skip Connections**: Help preserve spatial resolution by combining encoder feature maps with decoder feature maps.

Model Components and Architecture

- **DoubleConv:** This block performs two convolutional layers back-to-back, each followed by Batch Normalization and ReLU.
- Parameters: in_channels=1: Grayscale image input.
 out_channels=6: Output has 6 segmentation masks, one per defect class.
- Encoder (Downsampling Path):

Each level: Applies DoubleConv.

Saves the output (for skip connections).

Reduces spatial resolution using MaxPool2d.

- Bottleneck: This layer acts as the "bridge" between the encoder and decoder capturing the most abstracted features.
- **Decoder (Upsampling Path):** This helps restore spatial resolution while retaining detailed features from the encoder.

Each decoder step: Applies a ConvTranspose2d (upsampling by a factor of 2).

Concatenates with the corresponding encoder output

Applies DoubleConv.

Final Layer: Outputs a 6-channel image (one for each class).

Statistics and Model Size

Layer	Channels	Params (approx)
DoubleConv-1	1 → 64	~38K
DoubleConv-2	64 → 128	~221K
DoubleConv-3	128 → 256	~885K
DoubleConv-4	256 → 512	~3.5M
Bottleneck	512 → 1024	~14.2M
Decoder total	Multiple blocks	~18M
Final conv	64 → 6	~390
Total		~36M params