Day 7 - Looking Ahead

UMN CSS Workshop 2025

Instructor: Alvin Zhou

Group

- Group 1
 - Gretchen Corcoran
 - Jikai Sun
 - Shreepriya Dogra
 - Jialu Fan
- Group 2
 - Jiacheng Huang
 - Paulina Vergara Buitrago
 - Jong Won Lee
 - Eun Sun Kyoung

- Group 3
 - Sijin Chen
 - Michael Ofori
 - Jinny Zhang
 - Dongwook Kim
- Group 4
 - Raj Wahlquist
 - Nicole Marie Klevanskaya
 - Wenhui Cheng
 - Rita Rongwei Tang
- Mixed background and coding skills
- Group members who are confident in their coding skills, please help other members during the afternoon coding labs

Learning Goals

- Is CSS a paradigm? What does that mean?
- Watts (2017): Solution-Oriented Social Science
- Wallach (2018): CSS ≠ CS + Social Data
- Methodological Triangulation and Mixed Methods
- Social Good and the Politics of Knowledge
- What's Next? Large Language Models, Ethics, and Scale

What Is a Paradigm?

- Thomas Kuhn (1962): Paradigms are frameworks that guide scientific inquiry: what questions are asked, how they're answered, and what counts as "progress."
- CSS is more than a toolkit—it's a shift in:
 - Objects of study (e.g., behavior, interaction, policy outcomes)
 - Evidence (e.g., digital exhaust, embedded sensors)
 - Methods (e.g., machine learning, agent-based models)
 - Epistemology (e.g., hybrid of prediction and explanation)

Watts (2017): A Call for Reorientation

- "Should social science be more solution-oriented?"
- Traditional social science overemphasizes explanatory depth at the expense of solving real-world problems.
 - **Incentive distortion:** We value elegant theory more than actionable insight.
 - Model complexity ≠ accuracy: Simple models can work surprisingly well.
 - **"Explain first" bias:** We delay solving problems, waiting for perfect understanding.

CSS Potential:

- Combines prediction + experimentation + scalability
- Enables policy simulation, rapid prototyping of interventions
- Redefines "contribution" in terms of impact, not just theory

Wallach (2018): CSS ≠ CS + Social Data

- You can't just throw social data into computer science models and call it CSS.
- Key tensions:
 - **Epistemological mismatch:** CS prioritizes performance; social science prioritizes inference and interpretation.
 - **Context collapse:** Scraping social media strips away the social context embedded in communication.
 - Data ≠ Truth: What's observable online isn't the same as what's meaningful offline.
- CSS requires bridging—not blurring—disciplinary logics.

What do you think?

• Is computational social science changing the *how* and *why* we do social research—or just the *what* we research in social science?

Looking Ahead

- If the discussion of CSS philosophy is too high-level, what can we do in practice when conducting our studies?
- Some Directions I Think That Are Valuable
 - Computational Storytelling:
 - Molding data, questions, and methods simultaneously
 - · One Story, Deeply Told
 - DEMM Framework (Description → Experimentation → Mediator/Moderator identification)
 - Methodological Triangulation
 - Social Good and Ethical Imperatives

Molding data, questions, and methods

- Good CSS doesn't just apply a method to a dataset—it reshapes data, questions, and methods simultaneously.
- I will swiftly introduce three studies of mine to illustrate the point.

Study 1

• Zhou, A., Yang, T., & González-Bailón, S. (2025). The puzzle of misinformation: Exposure to unreliable content in the United States is higher among the better informed. *New Media & Society*, 27(3), 1526–1543. https://doi.org/10.1177/14614448231196863

RQs and Findings

- RQs
 - Citizens who maintain healthy news diets need to:
 - 1. Limit misinformation exposure
 - 2. Seek news from ideologically diverse sources
 - But what's the relationship between the two?
- Findings
 - Three things that we want:
 - · Read more news
 - · Read more diverse news
 - Don't read misinformation

RQs and Findings

- RQs
 - Citizens who maintain healthy news diets need to:
 - 1. Limit misinformation exposure
 - 2. Seek news from ideologically diverse sources
 - But what's the relationship between the two?
- Findings
 - Three things that we want:
 - ✓ Read more news
 - ✓ Read more diverse news
 - × Don't read misinformation
 - But we cannot get all three things together, at least now based on observed data

Web Browsing Tracking Panel Data

- N ~ 140,000 unique users in the US
- January to December of 2018
- Nielsen
- Representative of the US population with weights
- URL-level granularity
- What they visit, as well as how long (in seconds) they spent visiting those pages
- Demographic attributes: gender, age, education, race, ethnicity, and income
- Repeated observations for the same individuals

Measure 1: Misinfo Exposure

- Lists of misinformation website: Grinberg et al. (2019) and NewsGuard
 - Grinberg et al. (2019): N = 510 domains from journalistic outlets and prior research (Allcott & Gentzkow, 2017; Guess et al., 2018)
 - NewsGuard: Web domains trust score from 0-100; Lower than 60 means unreliable

Measure 2: (Reliable) News Exposure

- Lists of news website: five previous published studies (Bakshy et al., 2015; Budak et al., 2016; Grinberg et al., 2019; Peterson et al., 2021; Yang et al., 2020)
- N = 813 domains, but only N = 707 (87%) was visited at least once by our panelists

Measure 1: Misinfo Exposure

- Lists of misinformation website: Grinberg et al. (2019) and NewsGuard
 - Grinberg et al. (2019): N = 510 domains from journalistic outlets and prior research (Allcott & Gentzkow, 2017; Guess et al., 2018)
 - NewsGuard: Web domains trust score from 0-100; Lower than 60 means unreliable

Measure 2: (Reliable) News Exposure

- Lists of news website: five previous published studies (Bakshy et al., 2015; Budak et al., 2016; Grinberg et al., 2019; Peterson et al., 2021; Yang et al., 2020)
- N = 813 domains, but only N = 707 (87%) was visited at least once by our panelists

More reliable news -> More misinformation exposure

Measure 3: Ideological Scores of News Domains

- Ad Fontes (e.g., Aslett et al., 2022)
 - Samples articles on news domains' websites and employs an ideologically balanced panel of experts to rate news article's ideological slant
 - Ranges from -38.5 (most extreme liberal bias) to +38.5 (most extreme conservative bias)
- Audience-based measure of news domain bias (e.g., Tyler et al., 2021; Yang et al., 2020)

Ideological Scores of News Domains

Measure 4: Diversity of News Diets

- Pairwise ideological distance for news pages visited by the panelists by month
 - If panelist i accessed three pages in month m from the Activist Post, BuzzFeed, and the New York Times, we first calculate the ideological distance between each pair of these outlets, and then average the pairwise distances to a summary statistic for panelist i in month m
 - Smaller when accessing ideologically similar domains
 - Larger when accessing ideologically diverse domains

Diversity of News Diets (Ideological Distance)

Measure 5: Demographic Variables

- Gender, age, education, employment status, race, ethnicity, and income
- Panelists' partisan leaning:
 - Instead of self-disclosed party affiliation, we extrapolate the partisan leaning of our panelists by averaging ideological scores of the news pages they visited each month
- More flexible and granular:
 - It can change from month to month (if news diets change)
 - Differentiate individuals that would otherwise look identical in their party affiliation based on self-reports

So, what variables we have now?

Variable 1 (DV): Misinformation Exposure

- Number of unreliable pages accessed
- 2. Time spent on those pages

Variable 2 (IV): Number of news pages accessed

Variable 3 (IV): Ideological Distance (among visited pages)

Variables 4: Demographic Variables (including partisan leaning)

Linear mixed effects model, with panelist ID and month as random effects. All variables were scaled and log-transformed where appropriate.

More diverse news diets -> More misinformation exposure

How about within-person effects?

Table A2. Fixed-Effects Regression Models

	Dependent variable:					
	Number of Unreliable Pages			Time on	le Pages	
	(1)	(2)	(3)	(4)	(5)	(6)
News Pages	0.208***		0.120***	0.543***		0.386***
	(0.009)		(0.005)	(0.022)		(0.013)
Ideological Distance	0.108***	0.130***		0.433***	0.488***	
	(0.005)	(0.006)		(0.017)	(0.019)	
Observations	208,078	208,078	695,664	208,078	208,078	695,664
\mathbb{R}^2	0.781	0.768	0.750	0.697	0.686	0.665
Adjusted R ²	0.695	0.677	0.689	0.579	0.563	0.583
Note:			*	p<0.1; **	p<0.05; *	**p<0.01

Guess where we start from?

Guess where we start from?

- Starting from Data
- Harmony Labs is a nonprofit media research lab, that regularly posts CFPs for dataset access
- Access to their Nielsen Web panel data (~ 140,000 unique users in the United States; what they visit at the URL level for the year 2018 & their demographic and weight)
- From data to question (Tian and I): "the paradox between cross-cutting news consumption and misinformation exposure"
- From question to method (Sandra): average clustering coefficient Lydon-Staley et al. (2021) or pairwise ideological distance

Acknowledgments

We are grateful to Harmony Labs for facilitating access to the data and for crucial research support.

Study 2

• Zhou, A., Capizzo, L. W., Page, T. G., & Toth, E. L. (2023). Exploring public relations research topics and inter-cluster dynamics through computational modeling (2010-2020): A study based on two SSCI journals. *Journal of Public Relations Research*, 35(3), 135–161. https://doi.org/10.1080/1062726X.2023.2180373

Case: Zhou et al. (2023)

- Exploring PR research topics via topic modeling
- Use STM to identify topics and clusters
- Compare topic distributions across journals and time
- Network simulation to test inter-cluster dynamics

RQ & Findings

- What topics do public relations scholars study?
- What clusters/themes emerge?
- Do these clusters/themes intersect with each other?

RQ & Findings

- What topics do public relations scholars study?
- What clusters/themes emerge?
- Do these clusters/themes intersect with each other?
- Identify 65 topics
- These 65 topics cluster into 9 subfields
- These subfields do not talk to each other

- Web Scraping Data
 - Time: from 2010 to 2020
 - Journals:
 - Public Relations Review (PRR)
 - Journal of Public Relations Research (JPRR)
 - 1093 papers from PRR and 200 from JPRR
 - 7,400,685 words

- Method 1: Structural Topic Modeling
 - We identified 65 topics, such as
 - "Twitter" "Facebook"
 - "Relationship management" "Nonprofit Management"
 - "Image Repair" "Situational Crisis Communication Theory"

- Method 1: Structural Topic Modeling
 - We identified 65 topics, such as
 - "Twitter" "Facebook" --- "Digital Media"
 - "Relationship management" "Nonprofit Management" --- "Strategic Management"
 - "Image Repair" "Situational Crisis Communication Theory" --- "Crisis Comm"

- Method 1: Structural Topic Modeling
 - We identified 65 topics, such as
 - "Twitter" "Facebook" --- "Digital Media"
 - "Relationship management" "Nonprofit Management" --- "Strategic Management"
 - "Image Repair" "Situational Crisis Communication Theory" --- "Crisis Comm"
 - <Like, comment, and share on Facebook: How each behavior differs from the other> is detected to have:
 - Digital Media (73.7%)
 - Strategic Management (18.7%)
 - Public Relations Professionalism (0.1%), Crisis Communication (2.3%), Internal Communication (0.8%), Global Public Relations (0.0%), Rhetoric and Philosophy (0.1%), Media Relations (0.2%), Critical Studies (0.0%)

• Method 2: Inter-Cluster Network Analysis

	Cluster A	Cluster B	Cluster C	Cluster D
Article 1	0.1	0.2	0.3	0.4

Article 1's Contribution to the Tie Strength in the Inter-Cluster Network							
	Cluster A	Cluster B	Cluster C	Cluster D			
Cluster A	-	0.1*0.2	0.1*0.3	0.1*0.4			
Cluster B	-	-	0.2*0.3	0.2*0.4			
Cluster C	-	-		0.3*0.4			
Cluster D	-	-	-	2 - 2			

• Method 2: Inter-Cluster Network Analysis

• Method 3: Network Simulation

Article	Crisis	Digital	Global	***	Management	Critical	Media
1	0.000	0.003	0.001	•••	0.749	0.001	0.000
2	0.006	0.002	0.070	•••	0.420	0.005	0.003
3	0.204	0.010	0.004	•••	0.226	0.025	0.370
4	0.167	0.028	0.031		0.124	0.000	0.012
•••	•••	•••	• • •	•••	•••	•••	•••
1291	0.008	0.061	0.012		0.076	0.063	0.007
1292	0.786	0.001	0.002	***	0.102	0.001	0.001
1293	0.003	0.233	0.001	•••	0.142	0.082	0.006

- Method 3: Network Simulation
 - For each article, cluster proportions add up to 100%
 - For each cluster, its proportion across all articles remains the same

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	•••	Cluster 7	Cluster 8	Cluster 9
Paper 1								
Paper 2								
Paper 3								
Paper 1292								
Paper 1293								

- Method 3: Network Simulation
 - For each article, cluster proportions add up to 100%
 - For each cluster, its proportion across all articles remains the same

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	 Cluster 7	Cluster 8	Cluster 9
Paper 1							
Paper 2							
Paper 3							
Paper 1292							
Paper 1293							_

- Method 3: Network Simulation
 - For each article, cluster proportions add up to 100%
 - For each cluster, its proportion across all articles remains the same

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	•••	Cluster 7	Cluster 8	Cluster 9
Paper 1								
Paper 2								
Paper 3			[i ₁ , j ₁]			[i ₁ , j ₂]		
Paper 1292			[i ₂ , j ₁]			[i ₂ , j ₂]		
Paper 1293								

- Method 3: Network Simulation
 - For each article, cluster proportions add up to 100%
 - For each cluster, its proportion across all articles remains the same

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	•••	Cluster 7	Cluster 8	Cluster 9
Paper 1								
Paper 2								
Paper 3			[i ₁ , j ₁] - Δ			$[i_1, j_2] + \Delta$		
Paper 1292			$[i_2, j_1] + \Delta$			[i ₂ , j ₂] - Δ		
Paper 1293								

- Method 3: Network Simulation
 - For each article, cluster proportions add up to 100%
 - For each cluster, its proportion across all articles remains the same

- 1000 Simulated Networks / Alternative Universes/Timelines
- 95%/5% upper/lower bound as the confidence interval for tie strengths
- We simulated "what the field's interconnection could have been".

• Method 3: Network Simulation

	Public Relations	Digital	Crisis	Internal	Global	Rhetoric and	Media	Critical
	Professionalism	Media	Communication	Communication	Public Relations	Philosophy	Relations	Studies
Strategic	20.549	28.031	20.493	16.518	12.960	11.071	12.801	10.528
•	[26.535,	[25.162,	[23.409,	[18.079,	[14.895,	[14.593,	[14.059,	[13.308,
Management	26.615]	25.240]	23.483]	18.139]	14.946]	14.644]	14.110]	13.355]
Public Relations		8.494	4.114	8.630	7.934	6.890	3.735	7.889
Professionalism		[13.193,	[12.235,	[9.337,	[7.661,	[7.490,	[7.185,	[6.823,
Fiolessionalism		13.244]	12.286]	9.377]	7.696]	7.523]	7.218]	6.855]
Digital			7.872	6.484	4.181	5.363	5.337	2.900
_			[11.559,	[8.755,	[7.168,	[7.036,	[6.742,	[6.377,
Media			11.607]	8.793]	7.200]	7.068]	6.774]	6.406]
Crisis				4.440	3.236	3.048	7.374	1.411
				[8.144,	[6.648,	[6.521,	[6.293,	[5.910,
Communication				8.180]	6.680]	6.552]	6.323]	5.938]
Internal					4.044	3.107	2.110	3.210
Communication					[4.997,	[4.890,	[4.698,	[4.441,
Communication					5.022]	4.915]	4.723]	4.464]
Global						2.664	3.071	2.714
Public Relations						[3.981,	[3.832,	[3.612,
Public Relations						4.002]	3.853]	3.632]
Rhetoric and							1.579	5.239
							[3.751,	[3.558,
Philosophy							3.772]	3.579]
Media								1.035
								[3.402,
Relations								3.421]

- Starting from Question
- An interview study by Tyler G. Page (Connecticut) and Luke W. Capizzo (Michigan State)
- Interviewees lamented/suspected that many single-topic/cluster review studies omitted signals of inter-topic/cluster development, and there were silos within: PR scholars do not know / work with other PR scholars.
- Zoom call with me: "any way we can identify interactions of subfields?"

Public Relations Review
Volume 47, Issue 5, December 2021, 102115

Full Length Article

From "an open field" to established "waves": Public relations scholarship through the lens of *Public Relations Review*

- Starting from Question
- From question to method 1: "decompose articles into topics" -> STM
- From question to method 2: "intersecting topic/cluster" -> Network
- From question to method 3: "silos within" -> Simulation
- From method to data: web scraping (or contact journals) and CrossRef

Public Relations Review
Volume 47, Issue 5, December 2021, 102115

Full Length Article

From "an open field" to established "waves": Public relations scholarship through the lens of *Public Relations Review*

Study 3

Wang, S., Huang, S., Zhou, A., & Metaxa, D. (2024). Lower quantity, higher quality: Auditing news content and user perceptions on Twitter/X algorithmic versus chronological timelines. *Proceedings of the ACM on Human-Computer Interaction*, 8(CSCW2), 1–25. https://doi.org/10.1145/3687046

RQs and Findings

• RQs

- Two common rankings for social media feeds:
 - Algorithmic vs.
 - Chronological
- Algorithm Audit: How do they affect content?
- User Audit: How do they affect users?

Findings

- Tracking Twitter/X users' algorithmic vs chronological feeds
- Manipulating feed selection and fielding periodical surveys
- Algorithmic feed provides less, but better (lower congruence, lower extremity, higher reliability) news URLs.
- Changing feeds did not significantly impact user perceptions.

Intervenr Infrastructure

- Web App: Web interface for participant consent / onboarding / survey
- Chrome Browser Extension: Collect URLs/engagement and assign conditions
- Analysis Pipeline: AWS instance rehydrating t.co to original URLs daily

Participant UI

Experiment UI

Survey UI

Study Procedure

- Week 1: Survey 1 -> Observation
- Week 2: Survey 2 -> either "For You" or "Chronological" -> Survey
 3
- Week 3: either "Chronological" or "For You" -> Survey 4

Participant Management

- Prolific:
 - Live in the United States; At least 18 years old; Use Google Chrome as a main web browser; Use Twitter/X; Access Twitter/X from their main web browser at least a few times per week
 - 822 onboard with background survey
 - 243 completed at least two weeks
 - 218 completed the whole 3-week study
- \$0.25 for screening survey
- \$5 for each survey; \$20 maximum

Measurement System

- Onboarding Survey:
 - Ideology (-3~+3), Age, Education, etc.
- URL Annotation:
 - Media Bias: Ad Fontes (most liberal -42 to most conservative +42)
 - News Credibility: Ad Fontes (least credible 0 to most credible 64)
- Between-Week Survey:
 - Perceived echo chambers
 - Media satisfaction
 - Perceived news credibility and media trust
 - Perception of the platform

Dataset

- 846,494 Tweets
 - 313,517 during observation (first week)
 - 253,471 during first intervention (second week)
 - 279,506 during second intervention (third week)
- Users engaged (liked, commented, retweeted) 1.89% (16,014) of them
- 1.75% (14,817) tweets contained external news URLs
- All analyses are conducted at the user level with userID as random effects
- i.e., compare one participant's natural vs. chronological vs. algorithmic

Observation Week

News Density

- 1.6% of tweets in the algorithmic timeline contained a news URL
- 7.5% in the chronological timeline contained a news URL

In the chronological/algorithmic timeline

- Right-leaning users saw a moderate amount (13.5/11.8% of all news links) of news links from left-leaning news domains
- Left-leaning users saw very little (1.5/2.7% of all news links) news links from right-leaning news domains

Algorithm Audit

Ideological Congruence

- Weighted Congruence Score: (-3 user)*(-8.13 NYTimes) = 24.39
- More congruent in chronological > algorithmic (p = .031)

News Extremity

- Mean Absolute Bias: |-8.13 NYTimes| = 8.13
- More extreme in chronological > algorithmic (p = .003)

News Reliability

• ? More reliable in algorithmic > chronological (p > .05)

Algorithm Audit

User Audit

User Exposure

• More news URLs in chronological > algorithmic (p = .002)

User Engagement

- More tweets and engagement (p < .001) in algorithmic > chronological
- ? More engagement with tweets with news URLs (p > .05)

User Satisfaction

• Users hated us enforcing timeline sorting (from 3.38 to 3.23/3.21)

User Audit

User Audit

User Perceptions of Bias

- ullet Perceptions of bias associated with their actual news bias (p < 0.001)
- Their exposure to news bias did not change their perceptions of:
 - The average bias of all news links available on Twitter
 - Whether the Twitter/X algorithm favors conservatives or liberals

User Perception of Credibility

• Exposure to news of higher credibility leads to less perceived credibility (p = .012) and lower media trust (p = .002)

User Perception of Other Users

- "A typical Republican's timeline is less conservative than I thought."
- "A typical Democrat's timeline is more liberal than I thought."

- Starting from Method
- Danaë (HCI, Computer Science) developed the Intervenr infrastructure
- With their secondary appointment in communication, let's audit/intervenr news?
 - What platform to audit?
 - What changes to make for extension/Prolific/surveys?
 - What news consumption topics should we investigate?

Public Relations Review
Volume 47, Issue 5, December 2021, 102115

Full Length Article

From "an open field" to established "waves": Public relations scholarship through the lens of *Public Relations Review*

- Starting from Method
- From method to question: Algorithmic vs. Chronological
- From method to data: Participants' Twitter timelines across 3 weeks
- From method to data: Acquiring Ad Fonte, NewsGuard, and comScore

Public Relations Review
Volume 47, Issue 5, December 2021, 102115

Full Length Article

From "an open field" to established "waves": Public relations scholarship through the lens of *Public Relations Review*

Instead of blindly applying computational methods to social data, computational social scientists should forge synergy between question, data, and method — starting with an interesting research question, or some invaluable data, or an innovative methodological framework — to create a research design that tells a compelling social science story.

- Computational social science > computational methods / social media / big data
- Research design (i.e., the "so what") is more important than the data
- CSS studies tell stories, and ask yourself if your story is compelling
- If you are starting from scratch, (maybe) start from the question.

Looking Ahead

- If the discussion of CSS philosophy is too high-level, what can we do in practice when conducting our studies?
- Some Directions I Think That Are Valuable
 - Computational Storytelling:
 - Molding data, questions, and methods simultaneously
 - · One Story, Deeply Told
 - DEMM Framework (Description → Experimentation → Mediator/Moderator identification)
 - Methodological Triangulation
 - Social Good and Ethical Imperatives
- In the end, we will touch upon LLM

One Story, Deeply Told

- Barari, S. (2024). Political speech from corporate America: Sparse, mostly for Democrats, and somewhat representative. Journal of Quantitative Description: Digital Media, 4. https://doi.org/10.51685/jqd.2024.icwsm.5
- High-resolution coding of sparse, noisy behavior
- How careful annotation, domain understanding, and scale can come together
- In CSS, "big" doesn't have to mean "messy" or "shallow"
- Sometimes the best computational study is a narrow, well-told story.

DEMM Framework

- Description → Experimentation → Mediator/Moderator identification
- Describe the social phenomenon you are addressing
 - Collect observational data
 - Computational tools
 - Large-scale, multiple contexts
 - Simple descriptive analyses, visualizations, and correlations
- Experiment on the mechanism you are interested in
 - Field or digital interventions that test mechanism
- Mediator/Moderator
 - Unpack how and for whom effects operate
- CSS often begins with a description, but must not stop there.

Presentation: Lee (2021)

Methodological Triangulation

- Nelson, L. K. (2020). Computational grounded theory: A methodological framework. Sociological Methods & Research, 49(1), 3–42. https://doi.org/10.1177/0049124117729703
- Ophir, Y., Walter, D., & Marchant, E. R. (2020). A collaborative way of knowing: Bridging computational communication research and grounded theory ethnography. *Journal of Communication*, 70(3), 447–472. https://doi.org/10.1093/joc/jqaa013
- Than, N., Fan, L., Law, T., Nelson, L. K., & McCall, L. (2025). Updating "the future of coding": Qualitative coding with generative large language models. *Sociological Methods & Research*. https://doi.org/10.1177/00491241251339188

Social Good and Ethical Imperatives

Presentation: Yang et al. (2021)

Presentation: Wang et al. (2022)

Generative AI: A New Frontier

• LLM

- Text synthesis and augmentation
- Multilingual content coding
- Simulated social agents and interactions (e.g., Park et al. 2023: Generative Agents)

New dilemmas

- What counts as authorship?
- Can LLMs reinforce biases or ideologies?
- What LLM means for social theories?

Lab Preview

• LLM coding (Jiacheng Huang guest lecture)