```
1. for (int i = 1; i < n^4; i *= n) {
         for (int j = 0; j < 4 * n; j += 2) {
                   for (int k = 1; k < n; k *= 3) {
                            Constant number of C of specified operations
                  }
         }
}
```

 $T(n) = 4 * 2n * log_3n = 8cnlog_3n.$

$T(n) \in O(nlogn)$.

Reference.

Textbook pg 19-20

2.
$$T_A(n) = cn^2$$
, for an array of n=100 objects $T_B(n) = cn\sqrt{n}$, for an array of n=100 objects

$$T_A(100) = 10000c$$

$$c = 0.0002$$

$$T_B(100) = 100c\sqrt{100}$$

$$c = 0.01$$

To process an array of n=1000000 objects,

$$T_A(1000000) = c * 1000000^2$$

= 0.0002 * 1000000^2
= 2.0 * 108

To process an array of n=1000000 objects,

$$T_B(1000000) = c * 1000000\sqrt{1000000}$$

= 0.01 * 1000000000
= 1.0 * 10⁷

Method A will process for 2.0 * 108 milliseconds.

Method B will process for 1.0 * 10⁷ milliseconds.

Reference.

Textbook Exercises 1.1.1 and 1.1.2

3.	m	Equations	
	1	T(n) = 5T (n/5) + 5	with base condition $T(1) = 0$.
		solve for $T(n/5) = 5T(n/25) + 5$	
	2	T(n) = 5 (5T (n/25) + 5) + 5 = 25T(n/25) + 30	
		solve for $T(n/25) = 5 T(n/125) + 5$	
	3	T(n) = 5 (5 (5T (n/125) + 1))	5) + 5) + 5 = 125T(n/25) + 155

There is a pattern in the equations and now you can create a generalised solution using the m iterations.

General solution:
$$T(m) = 5^m * T(n/5^m) + \sum_{i=1}^m 5^i$$

In this question, we're assuming $n = 5^m$ with the integer $m = log_5 n$, (let $log_5 n = logn$ for simplicity)

$$\begin{split} T(m) &= 5^m * T(n/5^m) + \sum_{i=1}^m 5^i \\ T(logn) &= n * T(n/n) + \sum_{i=1}^{log(n)} 5^i \\ &= n * T(1) + \sum_{i=1}^{log(n)} 5^i \quad \text{substitute } T(1) = 0, \\ &= \sum_{i=1}^{log(n)} 5^i \\ \therefore T(logn) &= \sum_{i=1}^{log(n)} 5^i \end{split}$$

Reference.

Textbook pg 31-35

https://www.youtube.com/watch?v=HzV6tY6OuBk

4. Prove that f(n) is $\Theta(g(n))$ iff both f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.

Because it is an 'iff', We must prove for both 'if f(n) is $\Theta(g(n))$ then f(n) is O(g(n)) and f(n) is $\Omega(g(n))$ ' and 'if f(n) is O(g(n)) and f(n) is O(g(n)) then f(n) is O(g(n)).

If f(n) is $\Theta(g(n))$ then f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.

Let f and g be functions, such that $f(n) = \Theta(g(n))$.

By definition of Θ , there exist two positive constants c_1 and c_2 such that $c_1g(n) \le f(n) \le c_2g(n)$.

We can separate this into two parts:

 $f(n) \le cg(n)$. Therefore f(n) = O(g(n)) by definition. $cg(n) \le f(n)$. Therefore $f(n) = \Omega(g(n))$ by definition.

If f(n) is O(g(n)) and f(n) is $\Omega(g(n))$ then f(n) is $\Theta(g(n))$.

Let f and g be functions, such that f(n) = O(g(n)).

By definition of O, there exists a positive real constant, c and a positive integer n_0 such that, $cg(n) \ge f(n)$ for all $n > n_0$.

Let f and g be functions, such that $f(n) = \Omega(g(n))$.

By definition of Ω , there exists a positive real constant, c and a positive integer n_0 such that, $cg(n) \le f(n)$ for all $n > n_0$.

We can combine these two and get:

 $c_1g(n) \le f(n) \le c_2g(n)$. Therefore $f(n) = \Theta(g(n))$ by definition.

Reference.

Textbook pg 21-23

Textbook Exercise 1.3.4

http://math.stackexchange.com/questions/301196/proving-big-theta-if-and-only-if-big-o-and-big-omega

5. Yes, it is correct.

As you can see in figure 1 below, there are three functions representing f(n)=n, $g(n)=n^2$ and $h(n)=n^3$. By definition of Θ , there exist two positive constants c_1 and c_2 (in this case they are both 1) such that $c_1f(n) \leq g(n) \leq c_2h(n)$.

Figure 1. A screenshot of a graph that shows f(x) = x, $f(x) = x^2$ and $f(x) = x^3$.

Reference.

Textbook pg 21-23
http://graphsketch.com/