

Facultad de Ingeniería y Ciencias Agropecuarias Ingeniería en Sonido y Acústica IES500-1 / Acústica Arquitectónica

Período 2017-1

1. Identificación

Número de sesiones: 64

Número total de horas de aprendizaje: 160= 64 presenciales +96 trabajo autónomo

Créditos - malla actual: 6

Profesor: María Bertomeu Rodríguez

Correo electrónico del docente (Udlanet): m.bertomeu@udlanet.ec

Coordinador: Christiam Santiago Garzón Pico

Campus: Granados

Pre-requisito: IES400 Co-requisito:

Paralelo: 1

Tipo de asignatura:

Optativa	
Obligatoria	Χ
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	Χ
Unidad 3: Titulación	

Campo de formación:

	Campo de formación					
Fundamentos teóricos	Fundamentos Praxis Epistemología y Integración de Comunicación y					
			Х			

2. Descripción del curso

La Acústica Arquitectónica estudia la influencia de los diferentes elementos arquitectónicos sobre la transmisión del sonido. Abarca tres grandes temas: Aislamiento Acústico, Acondicionamiento Acústico y Acústica urbanística. Así pues se plantean en esta materia las bases de los métodos utilizados para su estudio.

3. Objetivo del curso

Reconocer y aplicar los métodos utilizados para el estudio de recintos y todos sus parámetros. También discriminar los conceptos fundamentales de acondicionamiento y aislamiento acústico. Y por último sentar las bases para las asignaturas futuras.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
Identifica los tipos de transmisión y los parámetros de medida para el aislamiento acústico.	RDA3:Diseña con criterio soluciones de acondicionamiento y aislamiento acústico para todo tipo de espacios arquitectónicos.	Inicial (X) 1,2 Medio (X) 3,4 Final ()
2. Reconoce los parámetros de calidad acústica de salas, comprendiendo su sentido físico en la evaluación de las condiciones de los recintos.		
3. Interpreta el significado físico de los coeficientes de absorción y aplicarlos para adecuar el tiempo de reverberación de un local a un determinado uso.		
4. Analiza las teorías de estudio de los recintos, saber aplicar las expresiones y conocer sus limitaciones para mejorar las condiciones acústicas de un espacio cerrado.		

5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Reporte de progreso 1 Sub componentes	35%
Reporte de progreso 2 Sub componentes	35%
Evaluación final Sub componentes (si los hubiese)	30%

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las

sesiones <u>programadas</u> de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

Las metodologías y mecanismos de evaluación deben explicarse en los siguientes escenarios de aprendizaje:

6.1. Escenario de aprendizaje presencial.

El escenario presencial contará con clases magistrales, en las clases también se realizarán ejercicios prácticos y debates sobre casos reales. Cuando sea pertinente se harán lecturas técnicas y visionado de imágenes y vídeos relacionados con el tema.

Además se hará hincapié en trabajo en equipo con exposiciones para reforzar la expresión oral específica.

Cuando el tema lo amerite, se realizarán prácticas relacionadas en los laboratorios o salidas de campo.

6.2 Escenario de aprendizaje virtual.

El trabajo virtual consistirá en un complemento al trabajo autónomo, donde el docente ayudará con lecturas y vídeos relacionados con la materia. También será la plataforma para entrega de tareas, siempre con la rúbrica disponible.

6.3 Escenario de aprendizaje autónomo.

El trabajo autónomo está orientado al desarrollo de las capacidades profesionales y académicas del estudiante. En el cual se espera dedicación y pensamiento crítico siguiendo las directrices de la rúbrica. Serán trabajos individuales y/o en grupo que conlleven investigación y/o diseños propios.

	Porcentaje (%)	Puntuación
Trabajos	15	4.3
Examen	20	5.7
PROGRESO 1	35	10

	Porcentaje (%)	Puntuación
Trabajos	5	1.5
Proyecto integrador	10	2.8
Examen	20	5.7
PROGRESO 2	35	10

	Porcentaje (%)	Puntuación
Trabajos	10	3.4
Examen	20	6.6
EVALUACIÓN FINAL	30	10

*Si el grupo realiza una actividad de Vinculación con la comunidad en cualquiera de los tres progresos, se tomará un porcentaje correspondiente a 1 punto sobre 10 perteneciente al apartado trabajos para asignase a esta actividad.

*El proyecto integrador es susceptible a cambio de progreso según convenga al seguimiento de la clase.

7. Temas y subtemas del curso

RdA	Temas	Subtemas
4. Analiza las teorías de estudio de los recintos, saber aplicar las expresiones y conocer sus limitaciones para mejorar las condiciones acústicas de un espacio cerrado.	1. Introducción a la Acústica Arquitectónica	1.1 Definiciones básicas y ámbitos de la acústica arquitectónica. 1.2 La cadena de comunicación. 1.3 Teorías para el estudio del campo sonoro en el interior de recintos. 1.4 Clasificación general de los recintos.
4. Analiza las teorías de estudio de los recintos, saber aplicar las expresiones y conocer sus limitaciones para mejorar las condiciones acústicas de un espacio cerrado.	2. Teoría estadística	2.1 Introducción 2.2 Modelo de campo difuso. 2.3 Tiempo de reverberación. Fórmula Sabine. 2.4 Locales más absorbentes. Fórmula de Eyring. 2.5 Medida del coeficiente de absorción cámara reverberante. 2.6 Efecto de la absorción del aire. 2.7 Consideraciones sobre el concepto del tiempo de reverberación. 2.8 Campo acústico estacionario en un recinto cerrado. Campo directo y reverberado. Radio crítico.
4. Analiza las teorías de estudio de los recintos, saber aplicar las expresiones y conocer sus limitaciones para mejorar las condiciones acústicas de un espacio cerrado. 4. Analiza las teorías de	3. Teoría geométrica 4.Teoría ondulatoria	3.1 Fundamentos y limitaciones 3.2 Focalizaciones. 3.3 Estudio del eco. 3.4 Diseño para un buen sonido directo. 3.5 Diseño para aprovechar el sonido reflejado. 3.6 Teoría geométrica y teoría estadística. Ámbitos de aplicación. 4.1 Introducción

astudio de los recintos		4.2 El campo canara an un
estudio de los recintos,		4.2 El campo sonoro en un
saber aplicar las expresiones		tubo.
y conocer sus limitaciones		4.3 El campo sonoro en el
para mejorar las condiciones		interior de un
acústicas de un espacio		paralelepípedo
cerrado.		4.4 Densidad de modos
		propios en un recinto
		paralelepípedo.
		4.5 Conclusiones de diseño.
		Diagrama de Bolt.
		4.6 Ámbitos de aplicación
		de las tres teorías.
3. Interpreta el significado físico de los	5.La absorción para el control de	5.1 Introducción y
coeficientes de absorción y aplicarlos	la reverberación	planteamiento del
para adecuar el tiempo de reverberación	la reverberación	problema
de un local a un determinado uso.		5.2 Principio de
de un local a un determinado uso.		funcionamiento de los
		principales materiales y
		dispositivos absorbentes.
		5.3 Coeficiente de absorción
		y su medida.
		5.4 Pasos a seguir en la
		intervención acústica
2. Reconoce los parámetros de calidad	6. Parámetros de la calidad	6.1 Introducción
acústica de salas, comprendiendo su	acústica de salas	6.2 Introducción a la
sentido físico en la evaluación de las		arqueoacústica.
condiciones de los recintos.		6.3 Revisión histórica del
		diseño de salas de audición.
		6.4 Juicios subjetivos y
		criterios objetivos en
		acústica de salas.
		6.5 Repercusiones en el
		diseño de salas de audición.
		6.6 Consideraciones del
4 11 100 1 11 11 11 11		diseño.
1. Identifica los tipos de transmisión y	7. Introducción al aislamiento	7.1 Introducción.
los parámetros de medida para el	acústico	Definiciones básicas.
aislamiento acústico.		7.2 Planteamiento general.
		La cadena de comunicación.
		Tipos de transmisiones.
		7.3 Conceptos sobre índices
		de molestia.
		7.4 Conceptos sobre
		aislamiento de ruido aéreo.
		7.5 Conceptos sobre
		aislamiento de ruidos de
		impacto y vibraciones.
		7.6 Normativa ISO.
		7.0 NOTHIALIVA ISO.

8. Planificación secuencial del curso

	Semana 1				
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
#4	1. Introducción a la Acústica Arquitectónica	1.1 Definiciones básicas y ámbitos de la acústica arquitectónica. 1.2 La cadena de comunicación. 1.3 Teorías para el estudio del campo sonoro en el interior de recintos. 1.4 Clasificación general de los recintos.	(1) Dinámica de presentación. (1) Clases magistrales con soporte audiovisual. (1) Debate sobre la comunicación.	Lecturas Capítulo 5 Libro: Acústica arquitectónica y urbanística (J. Llinares)	

	Semana 2-4				
# RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
1	2. Teoría estadística	2.1 Introducción 2.2 Modelo de campo difuso. 2.3 Tiempo de reverberación. Fórmula Sabine. 2.4 Locales más absorbentes. Fórmula de Eyring. 2.5 Medida del coeficiente de absorción cámara reverberante. 2.6 Efecto de la absorción del aire. 2.7 Consideraciones sobre el	(1) Clases magistrales (1)Resolución ejercicios (1)Exposición trabajo (2)Lecturas (1) Práctica medición tiempo de reverberación.	(3)Lectura normativa UNE-EN ISO 3382 (3)Otras fórmulas de tiempo de reverberación- comparativa	Informe de ensayo in situ. Otras fórmulas de tiempo de reverberación.

concepto del	
tiempo de	
reverberación.	
2.8 Campo	
acústico	
estacionario en	
un recinto	
cerrado. Campo	
directo y	
reverberado.	
Radio crítico.	
Radio Critico.	

	Semana 5-6					
# RdA	Tema	Sub tema	Actividad/ metodología/clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega	
1	3. Teoría geométrica	3.1 Fundamentos y limitaciones 3.2 Focalizaciones. 3.3 Estudio del eco. 3.4 Diseño para un buen sonido directo. 3.5 Diseño para aprovechar el sonido reflejado. 3.6 Teoría geométrica y teoría estadística. Ámbitos de aplicación.	(1)Clases magistrales (1)Resolución ejercicios (1) Ejemplos experimentales	(3)Boletín ejercicios	Ejercicio de diseño.	

	Semana 7-8				
# RdA	Tema	Sub tema	Actividad/ metodología/clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
1	4.Teoría ondulatoria	4.1 Introducción 4.2 El campo sonoro en un tubo. 4.3 El campo sonoro en el interior de un paralelepípedo 4.4 Densidad de modos propios en un recinto paralelepípedo. 4.5	(1) Clases magistrales(1) Resolución ejercicios(1) Experimento l'm sitting in a room.	Informe experimento + cálculo matemático	Informe experimento.

Conclusiones		
de diseño.		
Diagrama de		
Bolt.		
4.6 Ámbitos de		
aplicación de		
las tres teorías		

	Semana 9-11							
# RdA	Tema	Sub tema	Actividad/ metodología/clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega			
2	5.La absorción para el control de la reverberación	5.1 Introducción y planteamiento del problema 5.2 Principio de funcionamiento de los principales materiales y dispositivos absorbentes. 5.3 Coeficiente de absorción y su medida. 5.4 Pasos a seguir en la intervención acústica	(1)Clases magistrales (1)Resolución ejercicios (1)Exposición (1) Práctica tubo de kundnt	(3)Investigación materiales acústicos.	Exposición/ Trabajo investigación de materiales Proyecto integrador/Resonador Helmholtz			

	Semana 12-14.					
# RdA	Tema	Sub tema	Actividad/ metodología/clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega	
3	6. Parámetros de la calidad acústica de salas	6.1 Introducción 6.2 Introducción a la arqueoacústica. 6.3 Revisión histórica del diseño de salas de audición. 6.4 Juicios subjetivos y criterios objetivos en acústica de salas. 6.5 Repercusiones en el diseño de salas de	(1)Clases magistrales (1)Resolución ejercicios (1)Exposición papers (1)Salida de campo	(3)Lectura crítica de un paper relacionado con el tema y presentación de informe.	Presentación informe	

audic	ón.		
6.6			
Consi	deraciones		
del di	seño.		

	Semana 15-16.	mana 15-16.				
# RdA	Tema	Sub tema	Actividad/ metodología/clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega	
4	7. Introducción al aislamiento acústico	7.1 Introducción. Definiciones básicas. 7.2 Planteamiento general. La cadena de comunicación. Tipos de transmisiones. 7.3 Conceptos sobre índices de molestia. 7.4 Conceptos sobre aislamiento de ruido aéreo. 7.5 Conceptos sobre aislamiento de ruidos de impacto y vibraciones. 7.6 Normativa ISO.	(1)Clases magistrales (1)Resolución ejercicios	(3)Lectura UNE-EN ISO 140-4 y 7	Práctica PC/Creación hoja de Excel para el cálculo automático de los índices de aislamiento acústico	

9. Normas y procedimientos para el aula

- Se tomará lista a los 10 minutos de que inicia la clase, y no se permitirá el ingreso a estudiantes que lleguen más tarde.
- Para utilizar los servicios básicos o tener la necesidad de salir un momento de clase no es necesario pedir permiso.
- El docente no tiene la potestad de justificar ninguna falta de alumnos. La universidad permite tener un cierto número de faltas por parte del estudiante que deberán ser usadas para emergencias (enfermedades, calamidad domésticas) y salidas de campo.

10. Referencias bibliográficas

10.1. Principales.

- Llinares, J., Llopis, A., Sancho, J. (1990) Acústica arquitectónica y urbanística.
- Möser, M. y Barros, J. (2009) Ingeniería Acústica: Teoría y aplicaciones. Berlin, Alemania: Springer-Verlag.
- Arau, H. (1999) ABC de la acústica arquitectónica. Barcelona, España: Grupo Editorial Ceac, S.A.

UODO

Sílabo pregrado 2017-1

10.2. Referencias complementarias.

- Asociación Española de Normalización y Acreditación. (2008) UNE-EN ISO3382-2 Medición de parámetros acústicos en recintos; Parte 2: Tiempo de reverberación en recintos ordinarios. Madrid, España: AENOR
- 2. Sabine, W. (2013). Collected papers on acoustics, New York, Estados Unidos. New York, Estados Unidos: Hardpress Publishing
- 3. Beranek, Leo (1996) Acoustics
- 4. Everest, A. (2009) Master Handbook of Acoustics. New York, Estados Unidos: McGraw Hill
- 5. Miyara, F. (2003) Acústica y sistemas de sonido.
- 6. Áura ingeniería acústica. Aplicaciones.. Recuperado 20 de Septiembre de 2014. http://aurea-acustica.com/bib03_cast.htm
- 7. Harris, C. (1998) Handbook of acoustical measurements and noise control

11. Perfil del docente

Nombre de docente: María Bertomeu Rodríguez

Maestría en Gestión y Evaluación de la Contaminación Acústica (Universidad de Cádiz) Ingeniería técnica de telecomunicaciones, especialidad en Imagen y Sonido, intensificación

Acústica (Universidad Politécnica de Valencia)

Contacto: m.bertomeu@udlanet.ec
Teléfono: +593 (2) 398 1000 Ext: 2016