Hoja 1: Fundamentos

1.- Indicar en la recta real todos los valores de x que satisfacen las siguientes condiciones:

(1)
$$|x+1| > 3$$
,

(6)
$$\frac{x^2}{x^2-4} < 0$$
,

(2)
$$|2x+1| < 1$$
,

$$(7)$$
 $\frac{x-1}{x+2} > 0$,

(3)
$$|x-1| \le |x+1|$$
,

(8)
$$|(x-2)(x-3)| < 1$$
,

(4)
$$x^2 - 4x + 6 < x$$
.

(9)
$$|x-1| + |x-2| > 1$$
,

(5)
$$|x^2 - 3| \le 1$$
,

$$(10) \quad \frac{|x+1|}{|x-1|} \ge 1.$$

2.- Demostrar por inducción:

(1)
$$1+2+\cdots+n=\frac{n(n+1)}{2}$$
.

$$(4) 1+3+\cdots+(2n-1)=n^2.$$

(2)
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
. (5) $\forall n \ge 10, 2^n \ge n^3$.

$$(5) \quad \forall \, n \ge 10, \, 2^n \ge n^3$$

(3)
$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$
. (6) $x^{2n} - y^{2n}$ es divisible por $x + y$.

(6)
$$x^{2n} - y^{2n}$$
 es divisible por $x + y$.

(7) El número de rectas determinado por $n \ge 2$ puntos, de los cuales ningún trío pertenece a la misma recta, es $\frac{1}{2}n(n-1)$.

(8)
$$4(1+5+5^2+\cdots+5^n)+1=5^{n+1}$$
.

(9)
$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n}$$

(10) Si n no es múltiplo de 4 la suma $1^n + 2^n + 3^n + 4^n$ es múltiplo de 10. (Comprobarlo para n=1,2,3y demostrar que si es cierto para n,lo es para n+4.)

(11)
$$n(n^2 + 5)$$
 es divisible por 6.

(12)
$$1+1\cdot 1!+2\cdot 2!+3\cdot 3!+\cdots+(n-1)(n-1)!=n!$$
 para $n\geq 2$.

3.- Sea $\mathcal{P}(n) = \{n^2 + 5n + 1 \text{ es un número par}\}.$

a) Demostrar que si $\mathcal{P}(n)$ es cierto, entonces $\mathcal{P}(n+1)$ también lo es.

b) Demostrar que $\mathcal{P}(n)$ es siempre falso.

4.- Demostrar que para todo número natural $n \ y \ a \ y \ b$ cualesquiera se cumple

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k},$$

donde

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}, \text{ y } 0! = 1.$$

1

Indicación. Demostrar primero que $\binom{i}{k-1} + \binom{i}{k} = \binom{i+1}{k}$.

5.- Demostrar por inducción sobre n que

$$1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}, \text{ si } r \neq 1.$$

6.- Demostrar la desigualdad de Bernoulli

$$(1+x)^n \ge 1 + nx$$
, para $x \ge -1$.

7.- Sean a, b dos números no negativos, con $a \le b$. Demostrar que

$$a \le \sqrt{ab} \le \frac{a+b}{2} \le b.$$

8.- Encontrar el supremo y el ínfimo de los siguientes conjuntos de números reales. ¿Son máximo o mínimo en algún caso?

(1)
$$A = \{x : x^2 < 4\},$$

(5)
$$E = \{\frac{1}{n} : n \in \mathbb{N}\},\$$

(2)
$$B = \{x : x^2 \ge 4\},\$$

(6)
$$F = E \cup \{0\},\$$

(3)
$$C = \{x : 2 < x^2 \le 4\},\$$

(7)
$$G = \{\frac{1}{n} - (-1)^n : n \in \mathbb{N}\},\$$

(4)
$$D = \{\frac{n-1}{n} : n = 1, 2, 3, \ldots\},\$$

(8)
$$H = \{x \in \mathbb{Q} : x > 0, \ x^2 \le 3\}.$$

9.- Si el conjunto A tiene supremo, ¿qué podemos decir sobre $-A = \{-x : x \in A\}$?

10.- Sean A y B dos subconjuntos no vacíos de números reales tales que a < b para todo $a \in A$ y $b \in B$. Demostrar que existen sup A, ínf B, y que además, sup $A \le$ ínf B. Dar un ejemplo donde estos dos valores coincidan.

11.- Sean A y B dos subconjuntos no vacíos de \mathbb{R} acotados superiormente, y sea $A+B=\{a+b:a\in A,b\in B\}$. Demostrar que $\sup(A+B)=\sup A+\sup B$.

Indicación. Para demostrar que sup $A + \sup B \le \sup(A + B)$ basta ver que sup $A + \sup B \le \sup(A + B) + \varepsilon$ para todo $\varepsilon > 0$. Elegir a en A y b en B tales que sup $A - a < \varepsilon/2$ y sup $B - b < \varepsilon/2$.

12.- Donde está el fallo en los siguientes razonamientos:

- (a) Sea x = y, entonces $x^2 = xy$ y $x^2 y^2 = xy y^2$. Así, (x + y)(x y) = y(x y), es decir, x + y = y. De aquí se sigue que 2y = y y por lo tanto 2 = 1. Contradicción!!!
- (b) Vamos a hallar los x que verifican

$$\frac{x+1}{x-1} \ge 1.$$

Esta desigualdad es equivalente a $x+1 \ge x-1$, o lo que es lo mismo $1 \ge -1$. Como esto es cierto para todo $x \in \mathbb{R}$, se sigue que el conjunto de valores que verifican la desigualdad anterior es \mathbb{R} . De esta forma, tomando en particular x=-1 obtenemos

$$0 = \frac{-1+1}{-1-1} \ge 1.$$
 Contradicción!!!

2