All gBlock data

copyright 2021 Mary Lesperance

2021-06-08

Contents

Instructions	1
Process/Summarize samples by Lab; Compute the Poisson estimates of SQ	2
Plot the Poisson estimates (and CI) of SQ for levels that had non-detects	9
Supplemental Material	19
Estimate Poisson models - no intercept model	19
Estimate predicted Sq given number detects and technical replicates - no intercept (not shown)	48
Estimate Poisson models - intercept model	49
Estimate predicted Sq given number detects and technical replicates - intercept model (not shown)	78
Determine Lc, Ld, Lq - no intercept model	7 9
Determine Lc, Ld, Lq - intercept model	7 9
Estimates, Lc, Ld, Lq for a given number of technical reps NN[NNi]	80
Tables and Graphs for the manuscript	82

Instructions

This file recreates the analyses in the publication, 'A Statistical Model for Calibration and Computation of Detection and Quantification Limits for Low Copy Number Environmental DNA samples' by Lesperance, Allison, Bergman, Hocking, Helbing, eDNA, 2021.

- Create a folder call Outputs in your working directory.
- Put files in working directory: PoissonCalib-Functions-7April2021.R, GEDWG_LOD_DATA3.csv
- Data set csv file requirements. Columns: Target, Lab, Cq, Sq
- DO NOT DUPLICATE Target names over different Labs!!
- Uses observations with nonempty data and where phat <1 (num detect=num technical replicates)
- Only the SQ's up to the first one with phat==1 are used.
- Allows for variable numbers of SQ levels per Target.
- Assumes SQs == NA are zero, i.e. are negative controls.

- Adds in Negative Control (ntc) zeroes (24/(48 for Monroe) technical replicates).
- The code uses the R function optim. A convergence code 0 indicates successful completion.
- Ignore warnings if results are sensible.

Process/Summarize samples by Lab; Compute the Poisson estimates of SQ

Hindson et al "High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number", Anal. Chem., 2011, 83 (22), pp 8604–8610 use a Poisson approximation for quantitation. Before that, Dube et al. 2008, "Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device", POIS One, Vol 3, Issue 8, e2876, model the number of molecules in each chamber as a Poisson process, giving the relationship between p and λ .

```
## [1] 300
## dim, before negative controls added
        Target
                          SQ
                                           detect
##
    Hno
                                  0
                                               : 0.00
                                                                : 1.00
##
            : 14
                   Min.
                                       Min.
                                                        Min.
##
    MYPI-6: 12
                   1st Qu.:
                                  2
                                       1st Qu.: 8.00
                                                        1st Qu.:24.00
    MYPI-6t: 12
                   Median:
                                 50
                                       Median :24.00
                                                        Median :24.00
##
    eASMO9 : 10
                               8414
                                       Mean
                                              :27.73
                                                        Mean
                                                                :36.58
##
                   Mean
                                       3rd Qu.:48.00
##
    eASTR4: 10
                   3rd Qu.:
                               1250
                                                        3rd Qu.:48.00
    eFISH1: 10
                           :1000000
                                              :96.00
                                                                :96.00
##
                   Max.
                                       Max.
                                                        Max.
##
    (Other):232
##
        Cqmean
                           Lab
##
    Min.
            :16.32
                     UVIC
                             :110
##
    1st Qu.:29.06
                     Monroe: 79
    Median :33.85
##
                     CERC
                             : 36
##
    Mean
            :33.02
                     UMESC
                             : 31
                            : 14
    3rd Qu.:37.70
                     Lance
##
                     Wilson: 14
##
    Max.
            :47.20
                      (Other): 16
##
    NA's
            :24
   [1] 325
##
            13
  dim, Added 24/48 negative controls for Targets with zero ntc
##
##
##
## Table: APHIS
##
                 SQ
## Target
                      detect
                                 n
                                       phat
## -----
             _____
                                     _____
                            0
## D-loop
                0.0
                                24
                                      0.000
                            7
## D-loop
                0.1
                                48
                                      0.146
## D-loop
                0.5
                           18
                                47
                                      0.383
                           33
## D-loop
                1.0
                                48
                                      0.688
## D-loop
               10.0
                           48
                                48
                                      1.000
              100.0
                           48
                                      1.000
## D-loop
                                48
##
##
   Table: CERC
##
##
##
        Target
                              SQ
                                    detect
                                                    phat
```

##							
##	7	AG4 GTD 4					0.000
##	7	AC1_CID_1		0.000	0	24	0.000
##	8	AC1_CID_1		1.000	3	22	0.136
##	9	AC1_CID_1		3.000	12	23	0.522
##	10	AC1_CID_1		9.200	19	24	0.792
##	11	AC1_CID_1		2.000	24	24	1.000
##	12	AC1_CID_1		0.000	24	24	1.000
##	13	AC1_CID_1		0.000	24	24	1.000
##	14	CID		0.000	0	24	0.000
##	15	CID		5.625	22	22	1.000
##	16	CID		1.250	24	24	1.000
##	17	CID		2.500	24	24	1.000
##	18	CID		5.000	24	24	1.000
##	19	CID		0.000	24	24	1.000
##	20	CID		0.000	24	24	1.000
	21	MYPI-6	(0.000	0	24	0.000
##	22	MYPI-6	().244	0	24	0.000
##	23	MYPI-6	(.489	0	24	0.000
##	24	MYPI-6	().978	0	24	0.000
##	25	MYPI-6	1	L.955	0	24	0.000
##	26	MYPI-6	3	3.906	0	24	0.000
##	27	MYPI-6	7	7.812	0	24	0.000
##	28	MYPI-6	15	5.625	3	24	0.125
##	29	MYPI-6	31	1.250	2	24	0.083
##	30	MYPI-6	62	2.500	10	24	0.417
##	31	MYPI-6	125	5.000	4	24	0.167
##	32	MYPI-6	250	0.000	23	24	0.958
##	33	MYPI-6	500	0.000	24	24	1.000
##	34	MYPI-6t	(0.000	0	24	0.000
##	35	MYPI-6t	(.244	3	24	0.125
##	36	MYPI-6t	(.488	4	24	0.167
##	37	MYPI-6t	(975	9	24	0.375
##	38	MYPI-6t	1	L.950	9	24	0.375
##	39	MYPI-6t	3	3.906	22	24	0.917
##	40	MYPI-6t	7	7.812	22	24	0.917
##	41	MYPI-6t	15	5.625	24	24	1.000
##	42	MYPI-6t	31	1.250	24	24	1.000
##	43	MYPI-6t	62	2.500	24	24	1.000
##	44	MYPI-6t	125	5.000	24	24	1.000
##	45	MYPI-6t	250	0.000	24	24	1.000
##	46	MYPI-6t	500	0.000	23	24	0.958
##							
##							
	Table	e: Goldberg					
##							
##		Target	SQ	detect	n	phat	
					- - 		
	47	NZMS	0	C) 1	0.000	
##		N7MC	5	13		0.000	

48 NZMS 5 0.650 20 13 NZMS 1.000 10 22 ## 49 22 ## 50 1.000 ${\tt NZMS}$ 50 20 20 ## 51 22 1.000 ${\tt NZMS}$ 100 22

1000

52

NZMS

2

2

1.000

3

##	53	NZMS	10000	2	2 1	.000
##	54	SAFO	0	0 2	4 0	.000
##	55	SAFO	5	14 1	9 0	.737
##	56	SAFO	10	20 2	0 1	.000
##	57	SAFO	50	20 2	0 1	.000
##						
##						
##	Table	e: Lance				
##						
##		Target	SQ	detect	n	phat
##						
##	58	Elod-2-NU	0	0	48	0.000
##	59	Elod-2-NU	2	22	48	0.458
	60	Elod-2-NU	10	47	47	1.000
	61	Elod-2-NU	50	48		1.000
	62	Elod-2-NU	250	48		1.000
	63	Elod-2-NU	1250	48	48	1.000
	64	Elod-2-NU	6250	48	48	1.000
	65	MYPI	0	0	48	0.000
	66	MYPI	2	31	48	0.646
	67	MYPI	10	48	48	1.000
	68	MYPI	50	48	48	1.000
	69	MYPI	250	48		1.000
	70	MYPI	1250	48	48	1.000
	71	MYPI	6250	48	48	1.000
##						
##	Tabl	e: Monroe				
##	Iabi	e. Monitoe				
##		Target	SQ	detect	n	phat
## ##		Target	SQ	detect	n 	phat
##	 72	Target AC1	SQ 	detect		phat
## ##	72				 48	
## ## ##	72	AC1	0.0	0	 48 48	0.000
## ## ##	72 73	AC1 AC1	0.0 0.4 2.0 10.0	 0 26	 48 48 48	0.000 0.542
## ## ## ## ##	72 73 74	AC1 AC1 AC1 AC1 AC1	0.0 0.4 2.0 10.0 50.0	 0 26 45	48 48 48 48 48	0.000 0.542 0.938 1.000
## ## ## ## ##	72 73 74 75 76 77	AC1 AC1 AC1 AC1 AC1 AC1	0.0 0.4 2.0 10.0 50.0 250.0	0 26 45 48 48	48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000
## ## ## ## ## ##	72 73 74 75 76 77 78	AC1 AC1 AC1 AC1 AC1 AC1 AC1	0.0 0.4 2.0 10.0 50.0 250.0	0 26 45 48 48 48	 48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000 1.000
## ## ## ## ## ##	72 73 74 75 76 77 78 79	AC1 AC1 AC1 AC1 AC1 AC1 AC1 AC1	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0	0 26 45 48 48 48 48	48 48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000 1.000 1.000
## ## ## ## ## ## ##	72 73 74 75 76 77 78 79	AC1	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0 31250.0	0 26 45 48 48 48 48	48 48 48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000 1.000 1.000
## ## ## ## ## ## ##	72 73 74 75 76 77 78 79 80 81	AC1	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0 31250.0	0 26 45 48 48 48 48 48	48 48 48 48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000 1.000 1.000 1.000 0.000
## ## ## ## ## ## ##	72 73 74 75 76 77 78 79 80 81 82	AC1	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0 31250.0 0.0	0 26 45 48 48 48 48 48 25	48 48 48 48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000 1.000 1.000 1.000 0.000 0.521
## ## ## ## ## ## ## ## ## ## ## ## ##	72 73 74 75 76 77 78 79 80 81 82 83	AC1	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0 31250.0 0.0 0.4 2.0	0 26 45 48 48 48 48 48 48 48	 48 48 48 48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000 1.000 1.000 1.000 0.000 0.521 0.938
## ## ## ## ## ## ## ## ## ## ## ## ##	72 73 74 75 76 77 78 79 80 81 82 83 84	AC1	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0 31250.0 0.0 0.4 2.0	0 26 45 48 48 48 48 48 48 48 48	48 48 48 48 48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000 1.000 1.000 0.000 0.521 0.938 1.000
## ## ## ## ## ## ## ## ## ## ## ## ##	72 73 74 75 76 77 78 79 80 81 82 83 84 85	AC1	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0 31250.0 0.0 0.4 2.0 10.0 50.0	0 26 45 48 48 48 48 48 48 48 48 48	48 48 48 48 48 48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000 1.000 1.000 0.000 0.521 0.938 1.000
## ## ## ## ## ## ## ## ## ## ## ## ##	72 73 74 75 76 77 78 79 80 81 82 83 84 85 86	AC1	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0 31250.0 0.4 2.0 10.0 50.0	0 26 45 48 48 48 48 48 48 48 48 48	 48 48 48 48 48 48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000 1.000 1.000 0.000 0.521 0.938 1.000 1.000
######################################	72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87	AC1	0.0 0.4 2.0 10.0 50.0 250.0 6250.0 31250.0 0.0 0.4 2.0 10.0 50.0 250.0	0 26 45 48 48 48 48 48 48 48 48 48	48 48 48 48 48 48 48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000 1.000 1.000 0.000 0.521 0.938 1.000 1.000 1.000
######################################	72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	AC1 AC1 AC1 AC1 AC1 AC1 AC1 AC1 AC1 AC3 AC3 AC3 AC3 AC3 AC3 AC3 AC3 AC3	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 31250.0 0.0 0.4 2.0 10.0 50.0 250.0 1250.0	0 26 45 48 48 48 48 48 48 48 48 48	48 48 48 48 48 48 48 48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000 1.000 1.000 0.000 0.521 0.938 1.000 1.000 1.000 1.000 1.000
#######################################	72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	AC1	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0 31250.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0	0 26 45 48 48 48 48 48 48 48 48 48 48	48 48 48 48 48 48 48 48 48 48 48 48 48 4	0.000 0.542 0.938 1.000 1.000 1.000 1.000 0.000 0.521 0.938 1.000 1.000 1.000 1.000 1.000
#######################	72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	AC1	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0 31250.0 0.0 250.0 1250.0 6250.0 31250.0	0 26 45 48 48 48 48 48 48 48 48 48 48 48	 48 48 48 48 48 48 48 48 48 48 48 48 48	0.000 0.542 0.938 1.000 1.000 1.000 1.000 0.000 0.521 0.938 1.000 1.000 1.000 1.000 1.000 1.000 1.000
#######################	72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	AC1	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0 31250.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0 31250.0	0 26 45 48 48 48 48 48 48 48 48 48 48 48 48	48 48 48 48 48 48 48 48 48 48 48 48 48 4	0.000 0.542 0.938 1.000 1.000 1.000 1.000 0.000 0.521 0.938 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
#########################	72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	AC1	0.0 0.4 2.0 10.0 50.0 250.0 1250.0 6250.0 31250.0 0.0 250.0 1250.0 6250.0 31250.0	0 26 45 48 48 48 48 48 48 48 48 48 48 48	48 48 48 48 48 48 48 48 48 48 48 48 48 4	0.000 0.542 0.938 1.000 1.000 1.000 1.000 0.000 0.521 0.938 1.000 1.000 1.000 1.000 1.000 1.000 1.000

##	QΛ	BH1	50.0	48	48	1.000
##	95	BH1	250.0	48	48	1.000
##	96	BH1	1250.0	48	48	1.000
##	97	BH1	6250.0	48	48	1.000
##	98		31250.0	48	48	1.000
		BH1		0		
##	99	BH2	0.0		48	0.000
##	100	BH2	0.4	20	48	0.417
##	101	BH2	2.0	34	48	0.708
##	102	BH2	10.0	47	48	0.979
##	103	BH2	50.0	48	48	1.000
##	104	BH2	250.0	48	48	1.000
##	105	BH2	1250.0	48	48	1.000
##	106	BH2	6250.0	48	48	1.000
##	107	BH2	31250.0	48	48	1.000
##	108	GCTM10	0.0	0	48	0.000
##	109	GCTM10	0.4	24	48	0.500
##	110	GCTM10	2.0	43	48	0.896
##	111	GCTM10	10.0	48	48	1.000
##	112	GCTM10	50.0	48	48	1.000
##	113	GCTM10	250.0	48	48	1.000
##	114	GCTM10	1250.0	48	48	1.000
##	115	GCTM10	6250.0	48	48	1.000
##	116	GCTM10	31300.0	48	48	1.000
##	117	GCTM22	0.0	0	48	0.000
##	118	GCTM22	0.4	22	48	0.458
##	119	GCTM22	2.0	44	48	0.917
##	120	GCTM22	10.0	48	48	1.000
##	121	GCTM22	50.0	48	48	1.000
##	122	GCTM22	250.0	48	48	1.000
##	123	GCTM22	1250.0	48	48	1.000
##	124	GCTM22	6250.0	48	48	1.000
##	125	GCTM22	31300.0	48	48	1.000
##	126	GCTM32	0.0	0	48	0.000
##	127	GCTM32	0.4	20	48	0.417
##	128	GCTM32	2.0	44	48	0.917
##	129	GCTM32	10.0	48	48	1.000
##	130	GCTM32	50.0	48	48	1.000
##	131	GCTM32	250.0	48	48	1.000
##	132	GCTM32	1250.0	48	48	1.000
##	133	GCTM32	6250.0	48	48	1.000
##	134	GCTM32	31300.0	48	48	1.000
##	135	Goby	0.0	0	6	0.000
##	136	Goby	1.0	26	46	0.565
##	137	Goby	10.0	46	46	1.000
##	138	Goby	100.0	46	46	1.000
##	139	Goby	1000.0	46	46	1.000
##	140	Goby	10000.0	46	46	1.000
##	141	Goby	100000.0	46	46	1.000
##	142	SC4	0.0	0	48	0.000
##	143	SC4	0.4	13	48	0.271
##	144	SC4	2.0	41	48	0.854
##	145	SC4	10.0	48	48	1.000
##	146	SC4	50.0	48	48	1.000

##	147	SC4	250.0)	48	48	1.000
##	148	SC4	1250.0)	48	48	1.000
##	149	SC4	6250.0)	48	48	1.000
##	150	SC4	31250.0)	48	48	1.000
##	151	SC5	0.0)	0	48	0.000
##	152	SC5	0.4	l.	14	48	0.292
##	153	SC5	2.0)	42	48	0.875
##	154	SC5	10.0)	48	48	1.000
##	155	SC5	50.0)	48	48	1.000
##	156	SC5	250.0)	48	48	1.000
##	157	SC5	1250.0)	48	48	1.000
##	158	SC5	6250.0)	48	48	1.000
##	159	SC5	31250.0)	48	48	1.000
##							
##							
##	Table	: UMESC					
##							
##		Target	SQ	${\tt detect}$	n]	phat
##							
##	160	BHC	0	0	96	0	.000
##	161	BHC	1	25	96	0	.260
##	162	BHC	5	59	96	0	.615
##	163	BHC	10	96	96	1	.000
##	164	BHC	100	96	96	1	.000
##	165	BHC	1000	96	96	1	.000
##	166	BHC	10000	96	96	1	.000
##	167	Dre16s	0	1	96	0	.010
##	168	Dre16s	1	9	96	0	.094
##	169	Dre16s	5	42	96	0	.438
##	170	Dre16s	10	68	96	0	.708
##	171	Dre16s	100	96	96	1	.000
##	172	Dre16s	1000	96	96		.000
##	173	Dre16s	10000	96	96	1	.000
##	174	SS	0	0	96	0	.000
##	175	SS	1	44	96	0	.458
##	176	SS	10	96	96		.000
##	177	SS	100	96	96		.000
##	178	SS	1000	96	96		.000
##	179	SVC	0	0	96		.000
##	180	SVC	1	25	96		.260
##	181	SVC	5	59	96		.615
##	182	SVC	10	96	96		.000
##	183	SVC	100	96	96		.000
##	184	SVC	1000	96	96		.000
##	185	SVC	10000	96	96		.000
##	186	YPC	0	0	96		.000
##	187	YPC	1	31	96		.323
##	188	YPC	10	94	96		.979
##	189	YPC	100	96	96		.000
##	190	YPC	1000	96	96	1	.000
##							
##							

Table: UVIC

##						
##		Target	SQ	detect	n	phat
##	191		0.00e+00			0.000
## ##	191	eASMO9 eASMO9	3.20e-02	0	24 24	0.000
##	193	eASMO9	1.60e-01	6	24 24	0.250
##	194	eASMO9	8.00e-01	11	24	0.458
##	195	eASMO9	4.00e+00	22	24	0.438
##	196	eASMO9	2.00e+01	24	24	1.000
##	197	eASMO9	1.00e+01	24	24	1.000
##	198	eASMO9	5.00e+02	8	8	1.000
##	199	eASMO9	2.50e+02	8	8	1.000
##	200	eASMO9	1.25e+04	8	8	1.000
	201	eASMO9	6.25e+04	8	8	1.000
##	201	eASTR4	0.23e+04 0.00e+00	0	24	0.000
##	202	eASTR4	3.20e-02	0	24	0.000
##	203	eASTR4	1.60e-01	4	24	0.167
	205	eASTR4	8.00e-01	9	24	0.107
##	206	eASTR4	4.00e+00	19	24	0.792
##	207	eASTR4	2.00e+01	24	24	1.000
##	208	eASTR4	1.00e+01	24	24	1.000
	209	eASTR4	5.00e+02	8	8	1.000
##	210	eASTR4	2.50e+03	8	8	1.000
##	211	eASTR4	1.25e+04	8	8	1.000
##	212	eASTR4	6.25e+04	8	8	1.000
	213	eFISH1	0.00e+00	0	24	0.000
##	214	eFISH1	3.20e-02	1	24	0.042
##	215	eFISH1	1.60e-01	0	24	0.000
##	216	eFISH1	8.00e-01	10	24	0.417
	217	eFISH1	4.00e+00	18	24	0.750
##	218	eFISH1	2.00e+01	24	24	1.000
##	219	eFISH1	1.00e+02	24	24	1.000
	220	eFISH1	5.00e+02	8	8	1.000
	221	eFISH1	2.50e+03	8	8	1.000
##	222	eFISH1	1.25e+04	8	8	1.000
##	223	eFISH1	6.25e+04	8	8	1.000
##	224	eLIPI1	0.00e+00	0	24	0.000
##	225	eLIPI1	3.20e-02	0	24	0.000
##	226	eLIPI1	1.60e-01	5	24	0.208
##	227	eLIPI1	8.00e-01	11	24	0.458
##	228	eLIPI1	4.00e+00	23	24	0.958
##	229	eLIPI1	2.00e+01	24	24	1.000
##	230	eLIPI1	1.00e+02	24	24	1.000
##	231	eLIPI1	5.00e+02	8	8	1.000
##	232	eLIPI1	2.50e+03	8	8	1.000
##	233	eLIPI1	1.25e+04	8	8	1.000
##	234	eLIPI1	6.25e+04	8	8	1.000
##	235	eMID01	0.00e+00	0	24	0.000
##	236	eMID01	3.20e-02	0	24	0.000
##	237	eMID01	1.60e-01	2	24	0.083
##	238	eMID01	8.00e-01	16	24	0.667
##	239	eMID01	4.00e+00	23	24	0.958
##	240	eMID01	2.00e+01	24	24	1.000

##	241	eMIDO1	1.00e+02	24	24	1.000
##	242	eMIDO1	5.00e+02	8	8	1.000
##	243	eMIDO1	2.50e+03	8	8	1.000
##	244	eMIDO1	1.25e+04	8	8	1.000
##	245	eMIDO1	6.25e+04	8	8	1.000
##	246	eMISA2	0.00e+00	0	24	0.000
##	247	eMISA2	3.20e-02	0	24	0.000
##	248	eMISA2	1.60e-01	3	24	0.125
##	249	eMISA2	8.00e-01	10	24	0.417
##	250	eMISA2	4.00e+00	21	24	0.875
##	251	eMISA2	2.00e+01	24	24	1.000
##	252	eMISA2	1.00e+02	24	24	1.000
##	253	eMISA2	5.00e+02	8	8	1.000
##	254	eMISA2	2.50e+03	8	8	1.000
##	255	eMISA2	1.25e+04	8	8	1.000
##	256	eMISA2	6.25e+04	8	8	1.000
##	257	eONKI4	0.00e+00	0	24	0.000
##	258	eONKI4	3.20e-02	3	24	0.125
##	259	eONKI4	1.60e-01	6	24	0.250
##	260	eONKI4	8.00e-01	14	24	0.583
##	261	eONKI4	4.00e+00	21	24	0.875
##	262	eONKI4	2.00e+01	24	24	1.000
##	263	eONKI4	1.00e+02	24	24	1.000
##	264	eONKI4	5.00e+02	8	8	1.000
##	265	eONKI4	2.50e+03	8	8	1.000
##	266	eONKI4	1.25e+04	8	8	1.000
##	267	eONKI4	6.25e+04	8	8	1.000
##	268	eRAAU1	0.00e+00	0	24	0.000
##	269	eRAAU1	3.20e-02	1	24	0.042
##	270	eRAAU1	1.60e-01	2	24	0.083
##	271	eRAAU1	8.00e-01	7	24	0.292
##	272	eRAAU1	4.00e+00	20	24	0.833
##	273	eRAAU1	2.00e+01	24	24	1.000
	274	eRAAU1	1.00e+02	24	24	1.000
	275	eRAAU1	5.00e+02	8	8	1.000
##	276	eRAAU1	2.50e+03	8	8	1.000
##	277	eRAAU1	1.25e+04	8	8	1.000
##	278	eRAAU1	6.25e+04	8	8	1.000
##	279	eRACA2	0.00e+00	0	24	0.000
##	280	eRACA2	3.20e-02	0	24	0.000
##	281	eRACA2	1.60e-01	0	24	0.000
	282	eRACA2	8.00e-01	11	24	0.458
##	283	eRACA2	4.00e+00	21	24	0.875
##	284	eRACA2	2.00e+01	24	24	1.000
	285	eRACA2	1.00e+02	24	24	1.000
##	286	eRACA2	5.00e+02	8	8	1.000
##	287	eRACA2	2.50e+03	8	8	1.000
##	288	eRACA2	1.25e+04	8	8	1.000
##	289	eRACA2	6.25e+04	8	8	1.000
##		eRALU2	0.00e+00	0	24	0.000
##	291	eRALU2	3.20e-02	1	24	0.042
##	292	eRALU2	1.60e-01	2	24	0.083
##	293	eRALU2	8.00e-01	5	24	0.208

##	294	eRALU2	4.00e+00	20	24	0.833
##	295	eRALU2	2.00e+01	24	24	1.000
##	296	eRALU2	1.00e+02	24	24	1.000
##	297	eRALU2	5.00e+02	8	8	1.000
##	298	eRALU2	2.50e+03	8	8	1.000
##	299	eRALU2	1.25e+04	8	8	1.000
##	300	eRALU2	6.25e+04	8	8	1.000
##	301	eRAPR2	0.00e+00	0	24	0.000
##	302	eRAPR2	3.20e-02	1	24	0.042
##	303	eRAPR2	1.60e-01	2	24	0.083
##	304	eRAPR2	8.00e-01	12	24	0.500
##	305	eRAPR2	4.00e+00	22	24	0.917
##	306	eRAPR2	2.00e+01	24	24	1.000
##	307	eRAPR2	1.00e+02	24	24	1.000
##	308	eRAPR2	5.00e+02	8	8	1.000
##	309	eRAPR2	2.50e+03	8	8	1.000
##	310	eRAPR2	1.25e+04	8	8	1.000
##	311	eRAPR2	6.25e+04	8	8	1.000
##						
##						
##	Table	: Wilson				
##						
##						
		Target	SQ	detect	n	phat
##		Target		detect	n 	
## ##	312	Target Hno	0.0	0	 48	0.000
	313		0.0	0 7	 48 24	0.000
##	313 314	Hno Hno Hno	0.0 0.2 1.0	0 7 37	 48 24 48	0.000 0.292 0.771
## ##	313 314 315	Hno Hno Hno Hno	0.0 0.2 1.0 5.0	0 7 37 24	 48 24 48 24	0.000 0.292 0.771 1.000
## ## ##	313 314 315 316	Hno Hno Hno Hno	0.0 0.2 1.0 5.0 10.0	0 7 37 24 24	48 24 48 24 24	0.000 0.292 0.771 1.000
## ## ## ##	313 314 315 316 317	Hno Hno Hno Hno Hno Hno	0.0 0.2 1.0 5.0 10.0 25.0	0 7 37 24 24 24	 48 24 48 24 24 24	0.000 0.292 0.771 1.000 1.000
## ## ## ## ##	313 314 315 316 317 318	Hno Hno Hno Hno Hno Hno Hno Hno	0.0 0.2 1.0 5.0 10.0 25.0 100.0	0 7 37 24 24 24 24	 48 24 48 24 24 24 24	0.000 0.292 0.771 1.000 1.000 1.000
## ## ## ## ##	313 314 315 316 317 318 319	Hno Hno Hno Hno Hno Hno Hno Hno Hno	0.0 0.2 1.0 5.0 10.0 25.0 100.0 125.0	0 7 37 24 24 24 24 24	 48 24 48 24 24 24 24 24	0.000 0.292 0.771 1.000 1.000 1.000
## ## ## ## ##	313 314 315 316 317 318	Hno Hno Hno Hno Hno Hno Hno Hno	0.0 0.2 1.0 5.0 10.0 25.0 100.0	0 7 37 24 24 24 24 24 24	 48 24 48 24 24 24 24	0.000 0.292 0.771 1.000 1.000 1.000
## ## ## ## ## ##	313 314 315 316 317 318 319 320 321	Hno	0.0 0.2 1.0 5.0 10.0 25.0 100.0 125.0 625.0 1000.0	0 7 37 24 24 24 24 24 24 24 24	 48 24 48 24 24 24 24 24 24	0.000 0.292 0.771 1.000 1.000 1.000 1.000 1.000
## ## ## ## ## ##	313 314 315 316 317 318 319 320 321 322	Hno	0.0 0.2 1.0 5.0 10.0 25.0 100.0 125.0 625.0 1000.0 3125.0	0 7 37 24 24 24 24 24 24 24 24	 48 24 48 24 24 24 24 24 24 24	0.000 0.292 0.771 1.000 1.000 1.000 1.000 1.000 1.000
## ## ## ## ## ##	313 314 315 316 317 318 319 320 321 322 323	Hno	0.0 0.2 1.0 5.0 10.0 25.0 100.0 125.0 625.0 1000.0 3125.0 10000.0	0 7 37 24 24 24 24 24 24 24 24 24	 48 24 48 24 24 24 24 24 24 24 24	0.000 0.292 0.771 1.000 1.000 1.000 1.000 1.000 1.000 1.000
## ## ## ## ## ## ## ## ## ## ## ## ##	313 314 315 316 317 318 319 320 321 322	Hno	0.0 0.2 1.0 5.0 10.0 25.0 100.0 125.0 625.0 1000.0 3125.0	0 7 37 24 24 24 24 24 24 24 24	 48 24 48 24 24 24 24 24 24 24	0.000 0.292 0.771 1.000 1.000 1.000 1.000 1.000 1.000

1000000.0

Plot the Poisson estimates (and CI) of SQ for levels that had non-detects

1.000

24

24

Only the first levels of SQ that had non-detects are analyzed. Blue line is least squares linear regression line. ML ??will error if all phats==1

##
##
Too few values for CID

Hno

325

Monroe, GCTM22

Monroe, GCTM32

Monroe, Goby

UVIC, eRALU2

UVIC, eRAPR2

Wilson, Hno

Supplemental Material

This file contains the outputs from all 29 data sets from Klymus et al. (2019) whose data are summarized in Table 4 of the manuscript. Results from both no intercept and intercept models are presented.

Estimate Poisson models - no intercept model


```
##
##
##
##
   D-loop
##
##
  Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
           1.126
                   0.153
                             7.37 1.8e-13 ***
##
  beta
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## LLR test stat= 1.17757 , df= 3 , p-value= 0.7583889
```



```
##
##
##
##
##
   AC1_CID_1
## Convergence= 0
       Estimate Std.Err Z value Pr(>z)
##
                           5.53 3.2e-08 ***
## beta
         0.0758 0.0137
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 2.543745 , df= 3 , p-value= 0.4674373
##
## Too few values for CID
```



```
##
##
##
##
##
##
##
## MYPI-6
## Convergence= 0
## Estimate Std.Err Z value Pr(>z)
## beta 0.005363 0.000847   6.33 2.4e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 26.74636 , df= 11 , p-value= 0.005018208
```



```
##
##
##
##
##
   MYPI-6t
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
                           7.29 3.1e-13 ***
## beta
          0.394
                  0.054
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 6.787625 , df= 6 , p-value= 0.340935
##
## Too few values for NZMS
## Too few values for
                      SAFO
## Too few values for
                      Elod-2-NU
## Too few values for MYPI
```



```
##
##
##
##
##
   AC1
## Convergence= 0
       Estimate Std.Err Z value Pr(>z)
##
                  0.244
                            6.7 2.1e-11 ***
## beta
           1.636
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 1.393097 , df= 2 , p-value= 0.4983022
```



```
##
##
##
##
##
    AC3
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
                            6.7 2.2e-11 ***
## beta
           1.587
                  0.237
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.9438297 , df= 2 , p-value= 0.6238066
```



```
##
##
##
##
##
   BH1
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
                  0.108
                           7.16 8e-13 ***
## beta
          0.775
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 9.602954 , df= 3 , p-value= 0.02226096
```



```
##
##
##
##
##
##
##
## BH2
## Convergence= 0
## Estimate Std.Err Z value Pr(>z)
## beta   0.6836   0.0953   7.17  7.5e-13 ***
## ---
## Signif. codes:   0 '***'  0.001 '**'  0.05 '.'  0.1 ' ' 1
## LLR test stat= 11.70607 , df= 3 , p-value= 0.008460941
```



```
##
##
##
##
##
   GCTM10
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
                  0.196
                            6.9 5.1e-12 ***
## beta
           1.350
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 2.23836 , df= 2 , p-value= 0.3265475
```



```
##
##
##
##
##
   GCTM22
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
            1.36
                   0.20
                           6.79 1.1e-11 ***
## beta
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.5143054 , df= 2 , p-value= 0.7732501
```



```
##
##
##
##
##
    GCTM32
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
            1.28
                           6.76 1.4e-11 ***
## beta
                   0.19
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.07393266 , df= 2 , p-value= 0.9637086
##
## Too few values for Goby
```



```
##
##
##
##
##
   SC4
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
          0.904
                  0.136
                           6.66 2.8e-11 ***
## beta
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.365632 , df= 2 , p-value= 0.8329214
```



```
##
##
##
##
##
   SC5
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
                           6.68 2.3e-11 ***
## beta
          0.977
                  0.146
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.3401212 , df= 2 , p-value= 0.8436137
```



```
##
##
##
##
##
##
##
##
## BHC
## Convergence= 0
## Estimate Std.Err Z value Pr(>z)
## beta  0.2156  0.0243  8.86 <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 3.368959 , df= 2 , p-value= 0.1855409</pre>
```



```
##
##
##
##
##
   Dre16s
## Convergence= 0
       Estimate Std.Err Z value Pr(>z)
##
                           10.5 <2e-16 ***
## beta
         0.1177 0.0112
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.450349 , df= 3 , p-value= 0.929656
##
## Too few values for SS
```



```
##
##
##
##
##
   eASMO9
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
                           5.22 1.8e-07 ***
## beta
          0.767
                  0.147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 5.106559 , df= 4 , p-value= 0.2765376
```



```
##
##
##
##
##
##
## eASTR4
## Convergence= 0
## Estimate Std.Err Z value Pr(>z)
## beta  0.4842  0.0933  5.19  2.1e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 4.017301 , df= 4 , p-value= 0.4036694
```



```
##
##
##
##
##
##
## eFISH1
## Convergence= 0
## Estimate Std.Err Z value Pr(>z)
## beta   0.4139  0.0823   5.03  4.9e-07 ***
## ---
## Signif. codes:   0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 6.63572 , df= 4 , p-value= 0.1564373
```



```
##
##
##
##
##
   eLIPI1
## Convergence= 0
       Estimate Std.Err Z value Pr(>z)
##
                  0.166
                           5.03 4.8e-07 ***
## beta
          0.836
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 2.691805 , df= 4 , p-value= 0.6106493
```



```
##
##
##
##
##
   eMID01
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
          0.973
                  0.196
                           4.96 7e-07 ***
## beta
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 4.310673 , df= 4 , p-value= 0.3655905
```



```
##
##
##
##
##
   eMISA2
## Convergence= 0
       Estimate Std.Err Z value Pr(>z)
##
                           5.14 2.8e-07 ***
## beta
          0.584
                  0.114
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 1.631095 , df= 4 , p-value= 0.8031928
```



```
##
##
##
##
##
   eONKI4
## Convergence= 0
       Estimate Std.Err Z value Pr(>z)
##
                           5.54 2.9e-08 ***
## beta
          0.872
                  0.157
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 11.91839 , df= 4 , p-value= 0.01796854
```



```
##
##
##
##
##
##
## eRAAU1
## Convergence= 0
## Estimate Std.Err Z value Pr(>z)
## beta   0.4616  0.0921   5.01  5.5e-07 ***
## ---
## Signif. codes:   0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.9086316 , df= 4 , p-value= 0.9233192
```



```
##
##
##
##
##
   eRACA2
## Convergence= 0
       Estimate Std.Err Z value Pr(>z)
##
                  0.108
                           5.02 5.1e-07 ***
## beta
          0.543
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 6.171783 , df= 4 , p-value= 0.1866815
```



```
##
##
##
##
##
   eRALU2
## Convergence= 0
       Estimate Std.Err Z value Pr(>z)
##
                           4.89 1e-06 ***
## beta
         0.4189 0.0858
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 1.866509 , df= 4 , p-value= 0.7602944
```

8

10


```
##
##
##
##
##
   eRAPR2
## Convergence= 0
       Estimate Std.Err Z value Pr(>z)
##
                  0.139
                           5.13 2.9e-07 ***
## beta
          0.714
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 1.148873 , df= 4 , p-value= 0.8864424
```



```
##
##
##
##
##
   Hno
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
                  0.247
                           6.13 8.6e-10 ***
## beta
           1.514
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.1354573 , df= 2 , p-value= 0.934514
```

Estimate predicted Sq given number detects and technical replicates - no intercept (not shown)

The estimated SQ is easily obtained for given new values of nn0=number of replicates, nd0=number detected and the estimated slope betaS as: Shat <- -(log((nn0 - nd0)/nn0)) / betaS[1] The standard errors are obtained from the Hessian matrix (or via the function CalibS0Or.ddLLik()) .

Estimate Poisson models - intercept model


```
##
##
##
##
   D-loop
##
## Convergence= 0
##
        Estimate Std.Err Z value Pr(>z)
## alpha 3.33e-09 5.31e-02
                             0.00
                                       1
## beta 1.15e+00 2.04e-01
                             5.61 2e-08 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 1.192445 , df= 2 , p-value= 0.5508887
```



```
##
##
##
##
##
   AC1_CID_1
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
                             0.00 1.0000
## alpha 1.96e-08 2.49e-01
## beta 8.23e-02 2.90e-02
                             2.84 0.0045 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 2.757685 , df= 2 , p-value= 0.2518699
##
## Too few values for CID
```



```
##
##
##
##
##
##
##
## MYPI-6
## Convergence= 0
## Estimate Std.Err Z value Pr(>z)
## alpha 2.78e-11 6.00e-02 0.00 1
## beta 6.07e-03 1.27e-03 4.78 1.7e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 27.35988 , df= 10 , p-value= 0.002283695
```



```
##
##
##
##
##
   MYPI-6t
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
## alpha 1.86e-08 5.46e-02
                             0.00
## beta 3.87e-01 6.69e-02
                             5.79 7.1e-09 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 6.803394 , df= 5 , p-value= 0.2356775
##
## Too few values for NZMS
## Too few values for
                      SAFO
## Too few values for
                      Elod-2-NU
## Too few values for MYPI
```



```
##
##
##
##
##
   AC1
## Convergence= 0
                 Std.Err Z value Pr(>z)
##
        Estimate
## alpha 5.57e-10 2.02e-01
                             0.00 1.00000
                             3.84 0.00012 ***
## beta 1.42e+00 3.69e-01
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 2.288843 , df= 1 , p-value= 0.1303071
```



```
##
##
##
##
##
   AC3
## Convergence= 0
        Estimate
                 Std.Err Z value Pr(>z)
##
## alpha 1.83e-08 2.00e-01
                             0.00 1.00000
                             3.88 0.00011 ***
## beta 1.39e+00 3.60e-01
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 1.685805 , df= 1 , p-value= 0.1941549
```



```
##
##
##
##
##
   GCTM10
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
                             0.00
## alpha 3.46e-09 1.65e-01
                                       1
## beta 1.18e+00 2.86e-01
                             4.11 4e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 3.116952 , df= 1 , p-value= 0.07748159
```



```
##
##
##
##
##
   GCTM22
## Convergence= 0
        Estimate
                 Std.Err Z value Pr(>z)
##
## alpha 1.38e-08 1.88e-01
                             0.00
                             3.99 6.7e-05 ***
## beta 1.29e+00 3.23e-01
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.6489803 , df= 1 , p-value= 0.4204775
```



```
##
##
##
##
##
   GCTM32
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
## alpha 1.91e-09 1.85e-01
                             0.00
## beta 1.24e+00 3.08e-01
                             4.04 5.3e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.1206682 , df= 1 , p-value= 0.7283109
##
## Too few values for Goby
```



```
##
##
##
##
##
   SC4
## Convergence= 0
        Estimate
                 Std.Err Z value Pr(>z)
##
## alpha 2.54e-10 1.64e-01
                             0.00
                             4.19 2.8e-05 ***
## beta 9.84e-01 2.35e-01
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.6901617 , df= 1 , p-value= 0.4061094
```



```
##
##
##
##
##
   SC5
## Convergence= 0
        Estimate
                 Std.Err Z value Pr(>z)
##
## alpha 1.46e-09 1.73e-01
                             0.00
                             4.15 3.3e-05 ***
## beta 1.06e+00 2.56e-01
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.6602861 , df= 1 , p-value= 0.416459
```



```
##
##
##
##
##
   Dre16s
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
## alpha 0.00880 0.00861
                                   0.31
                            1.02
         0.11590 0.01133
                           10.23 <2e-16 ***
## beta
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.7640605 , df= 2 , p-value= 0.6824744
##
## Too few values for SS
```



```
##
##
##
##
##
   SVC
## Convergence= 0
        Estimate
                 Std.Err Z value Pr(>z)
##
                             0.00
## alpha 6.31e-09 6.26e-02
## beta 2.07e-01 3.66e-02
                             5.64 1.7e-08 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 3.509393 , df= 1 , p-value= 0.06102183
```



```
##
##
##
##
##
   eFISH1
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
## alpha 0.00316 0.01669
                            0.19
                                    0.85
         0.40873 0.08563
## beta
                            4.77 1.8e-06 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 6.595206 , df= 3 , p-value= 0.08598249
```



```
##
##
##
##
##
   eONKI4
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
                  0.0486
                            1.54
                                    0.12
## alpha
          0.0749
## beta
          0.6939
                  0.1601
                            4.33 1.5e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 7.671079 , df= 3 , p-value= 0.05332185
```



```
##
##
##
##
##
   eRAAU1
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
## alpha 0.00722 0.02104
                            0.34
                                    0.73
         0.44846 0.09693
                            4.63 3.7e-06 ***
## beta
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.7629684 , df= 3 , p-value= 0.8583024
```



```
##
##
##
##
##
   eRALU2
## Convergence= 0
        Estimate Std.Err Z value Pr(>z)
##
## alpha 0.00771 0.02002
                            0.39
                                     0.7
         0.40536 0.08975
                            4.52 6.3e-06 ***
## beta
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 1.677365 , df= 3 , p-value= 0.6419778
```



```
##
##
##
##
##
   Hno
## Convergence= 0
        Estimate
                 Std.Err Z value Pr(>z)
##
## alpha 1.15e-09 1.55e-01
                              0.0
## beta 1.48e+00 3.61e-01
                              4.1 4.2e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 0.1539404 , df= 1 , p-value= 0.6947979
```

Estimate predicted Sq given number detects and technical replicates - intercept model (not shown)

Determine Lc, Ld, Lq - no intercept model

Follows Lavagnini and Magno 2007, Mass Spectrometry Reviews The notation in the paper was changed from the Lavagnini 2007 paper and is shown in brackets here.

- Lc (LOB Limit of blank) = critical level is the assay signal above which a response is reliably attributed to the presence of analyte
- Ld (Ld = expected number detects out of NN replicates at concentration LOD) = signal corresponding to an analyte concentration xd (= $LOD \ Limit \ of \ Detection$) level which may be a priori expected to be recognized
- Lq = quantification limit is a signal with a precision which satisfies an expected value $(=gamma_Q)$

Lc corresponds to a critical response level or a false positive rate, i.e. critical number of detects given NN replicates, above which we would reject the null hypothesis that the concentration/copy number is zero at alpha = alphaLc ($=gamma_{FP}$). It is the critical response level corresponding to the false positive rate of alphaLc. Essentially, the test is positive if the Y~Binomial(m, p) > Lc. The False Positive Rate is $P(Y > Lc \mid S=0)$.

Ld is computed to correspond to the false negative rate, beta = betaLd ($=gamma_{FN}$) here. It is computed so that the probability of observing a new (unknown concentration) response less than or equal to Lc is less than or equal to betaLd. The probability of observing Lc or less detects if the concentration is xd ($=LOD\ Limit\ of\ Detection$) or more is less than or equal to betaLd. The values of Lc depend on the number of replicates, NN, so xd does as well. Ld is the expected number of detects at values xd and NN replicates. False negative rate Ld computation: $P(Y \le Lc \mid p_xd) \le betaLd$, and solve for xd.

Lq is less well defined. The literature suggests using Lq = beta0 + 10 s.e.(beta0), but this uses the normality assumption. Other literature suggests using the "analyte concentration xq (= $LOQ\ Limit\ of\ Quantification$) for which the experimental relative standard deviation of the responses reaches a fixed level (= $gamma_Q$), for example, the level 0.1." Lavagnini and Magno 2007. I interpret the term "relative standard deviation" to mean the coefficient of variation, CV = sd/mean.

In the exercise below, we use the fits from the ML models to estimate the Lc, Ld and Lq, for various values of NN replicates for a new observation, i.e. a new (unknown concentration) response number of detects.

```
## Too few values for CID
## Too few values for NZMS
## Too few values for SAFO
## Too few values for Elod-2-NU
## Too few values for MYPI
## Too few values for Goby
## Too few values for SS
```

Determine Lc, Ld, Lq - intercept model

```
## Too few values for CID
## Too few values for NZMS
## Too few values for SAFO
## Too few values for Elod-2-NU
## Too few values for MYPI
## Too few values for Goby
## Too few values for SS
```

Estimates, Lc, Ld, Lq for a given number of technical reps NN[NNi]

Choose the model (intercept versus no intercept) with the best LLR test fit.

Limits for best choice model for $N=\ 8$

##		InterModel	alpha	aSE	beta	bSE	Lc	SdLow	Sd	SdUp	SqLow	Sq
##	D-loop	0	0.00	0.00	1.13	0.15	0	0.26	0.33	0.45	0.99	1.26
##	AC1_CID_1	0	0.00	0.00	0.08	0.01	0	3.65	4.94	7.65	13.80	18.69
##	MYPI-6	0	0.00	0.00	0.01	0.00	0	53.32	69.83	101.12	201.79	264.24
##	MYPI-6t	0	0.00	0.00	0.39	0.05	0	0.75	0.95	1.30	2.83	3.60
##	AC1	0	0.00	0.00	1.64	0.24	0	0.18	0.23	0.32	0.67	0.87
##	AC3	0	0.00	0.00	1.59	0.24	0	0.18	0.24	0.33	0.69	0.89
##	BH1	0	0.00	0.00	0.77	0.11	0	0.38	0.48	0.67	1.44	1.83
##	BH2	0	0.00	0.00	0.68	0.10	0	0.43	0.55	0.75	1.63	2.07
##	GCTM10	0	0.00	0.00	1.35	0.20	0	0.22	0.28	0.39	0.82	1.05
##	GCTM22	0	0.00	0.00	1.36	0.20	0	0.21	0.28	0.39	0.81	1.04
##	GCTM32	0	0.00	0.00	1.28	0.19	0	0.23	0.29	0.41	0.85	1.10
##	SC4	0	0.00	0.00	0.90	0.14	0	0.32	0.41	0.59	1.21	1.57
##	SC5	0	0.00	0.00	0.98	0.15	0	0.30	0.38	0.54	1.12	1.45
##	BHC	0	0.00	0.00	0.22	0.02	0	1.42	1.74	2.23	5.38	6.57
##	Dre16s	0	0.00	0.00	0.12	0.01	0	2.68	3.18	3.91	10.15	12.04
##	SVC	0	0.00	0.00	0.22	0.02	0	1.42	1.74	2.23	5.38	6.57
##	YPC	0		0.00			0	0.77	0.96	1.29	2.92	3.65
##	eASMO9	0		0.00			0	0.36	0.49	0.78	1.34	1.85
	eASTR4	0		0.00			0	0.56	0.77	1.24	2.12	2.93
##	eFISH1	0		0.00			0	0.65	0.90	1.48	2.46	3.42
	eLIPI1	0		0.00			0	0.32	0.45	0.73	1.22	1.70
##	eMID01	0		0.00			0	0.28	0.38	0.64	1.04	1.46
##	eMISA2	0		0.00			0	0.46	0.64	1.04	1.76	2.43
##	eONKI4	1		0.05			2	0.74	1.21	2.41	1.24	1.93
	eRAAU1	0		0.00			0	0.58	0.81	1.33	2.21	3.07
	eRACA2	0		0.00			0	0.50	0.69	1.13	1.88	2.61
##	eRALU2	0		0.00			0	0.64	0.89	1.49	2.41	3.38
##	eRAPR2	0		0.00			0	0.38	0.52	0.85	1.44	1.98
	Hno	0	0.00	0.00	1.51	0.25	0	0.19	0.25	0.36	0.71	0.94
##		SqUp										
	D-loop	1.71										
	AC1_CID_1											
	MYPI-6	382.66										
	MYPI-6t											
	AC1	1.22										
	AC3 BH1	1.26 2.52										
	BH2 GCTM10	2.85 1.47										
	GCTM10 GCTM22	1.47										
	GCTM22 GCTM32	1.55										
	SC4	2.22										
	SC5	2.22										
	BHC	2.05 8.44										
	Dre16s	14.80										
	SVC	8.44										
	YPC	4.87										
ππ	11 0	7.07										

##	eASMO9	2.96
##	eASTR4	4.70
##	eFISH1	5.61
##	eLIPI1	2.78
##	eMID01	2.41
##	eMISA2	3.92
##	eONKI4	3.73
##	eRAAU1	5.04
##	eRACA2	4.28
##	eRALU2	5.65
##	eRAPR2	3.21
##	Hno	1.38

Tables and Graphs for the manuscript

Include MYPI-6t and eASMO9, eFISH1, eONKI4 in paper. Index into uTargets (5, 25, 27, 31)

##													
##													!
##		alpha	aSE	beta	bSE	Lc	LODL	LOD	LODU	LOQL	LOQ	LOQU	K.LOD8
##	AC1	0.0		1.6	0.2	0	0.2	0.2	0.3	0.7	0.9	1.2	0.2
	AC1_CID_1	0.0	0	0.1	0.2	0	3.6	4.9	7.7	13.8	18.7	29.0	5.6
	ACI_CID_I AC3	0.0		1.6	0.0	0	0.2	0.2	0.3	0.7	0.9	29.0 1.3	0.2
		0.0	0	0.8	0.2	0		0.2	0.3				
	BH1 BH2	0.0	0	0.8	0.1	0	$0.4 \\ 0.4$	0.5	0.7	1.4 1.6	1.8 2.1	2.5 2.9	0.3
	BHC	0.0	0	0.7	0.1	0	1.4	1.7	2.2	1.6 5.4	6.6	2.9 8.4	1.9
	D-loop	0.0	0	1.1	0.0	0	0.3	0.3	0.5	1.0	1.3	8.4 1.7	0.3
	D-100p Dre16s	0.0	0	0.1	0.2	0	2.7	3.2	3.9	10.1	1.3	14.8	3.4
	eASMO9	0.0	0	0.1	0.0	0	0.4	3.2 0.5	0.8	10.1	12.0	3.0	0.3
	eASTR4	0.0	0	0.5	0.1	0	0.4	0.8	1.2	2.1	2.9	3.0 4.7	0.5
	eFISH1	0.0	0	0.5	0.1	0	0.8	0.8	1.5	2.1	3.4	4.7 5.6	0.6
	eLIPI1	0.0	0	0.4	0.1	0	0.7	0.9	0.7	1.2	1.7	2.8	0.8
	eMIDO1	0.0	0	1.0	0.2	0	0.3	0.4	0.6	1.0	1.7	2.4	0.3
	eMIDUI eMISA2	0.0	0	0.6	0.2	0	0.5	0.4	1.0	1.8	2.4	3.9	0.4
	eONKI4	0.0	0	0.0	0.1	2	0.5	1.2	2.4	1.2	1.9	3.9	0.3
	eRAAU1	0.0	0	0.7	0.2	0	0.7	0.8	1.3	2.2	3.1	5.0	0.8
	eRACA2	0.0	0	0.5	0.1	0	0.5	0.8	1.1	1.9	2.6	4.3	0.6
	eRALU2	0.0	0	0.4	0.1	0	0.6	0.9	1.5	2.4	3.4	5.6	0.7
	eRAPR2	0.0	0	0.4	0.1	0	0.4	0.5	0.8	1.4	2.0	3.2	0.7
	GCTM10	0.0	0	1.4	0.2	0	0.2	0.3	0.4	0.8	1.0	1.5	0.2
	GCTM22	0.0	0	1.4	0.2	0	0.2	0.3	0.4	0.8	1.0	1.5	0.2
	GCTM32	0.0	0	1.3	0.2	0	0.2	0.3	0.4	0.9	1.1	1.6	0.2
	Hno	0.0	0	1.5	0.2	0	0.2	0.2	0.4	0.7	0.9	1.4	0.3
	MYPI-6	0.0	0	0.0	0.0	0	53.3	69.8	101.1	201.8	264.2	382.7	78.0
	MYPI-6t	0.0	0	0.4	0.1	0	0.7	1.0	1.3	2.8	3.6	4.9	1.0
	SC4	0.0	0	0.9	0.1	0	0.3	0.4	0.6	1.2	1.6	2.2	0.4
	SC5	0.0	0	1.0	0.1	0	0.3	0.4	0.5	1.1	1.5	2.1	0.4
	SVC	0.0	0	0.2	0.0	0	1.4	1.7	2.2	5.4	6.6	8.4	1.9
	YPC	0.0	0	0.4	0.0	0	0.8	1.0	1.3	2.9	3.6	4.9	1.0

##

Table: MYPI-6t

##

##

##					
##	S	num.detect	n	p.tilde	lambda.tilde
##					
##	0.000	0	24	0.000	0.000
##	0.244	3	24	0.125	0.134
##	0.488	4	24	0.167	0.182
##	0.975	9	24	0.375	0.470
##	1.950	9	24	0.375	0.470
##	3.906	22	24	0.917	2.485
##	7.812	22	24	0.917	2.485
##					

```
## Table: eASMO9
##
   S num.detect n p.tilde lambda.tilde
##
## ----- -----
               0 24 0.000
0 24 0.000
## 0.000
                                       0.000
##
   0.032
                                      0.000
               6 24 0.250
11 24 0.458
22 24 0.917
## 0.160
                                      0.288
## 0.800
                                      0.613
                                 2.485
             22
  4.000
##
##
##
## Table: eFISH1
##
##
    S num.detect n p.tilde lambda.tilde
## ----- ------
                0 24 0.000
1 24 0.042
## 0.000
                                      0.000
## 0.032
                                      0.043
            0 24 0.000
10 24 0.417
18 24 0.750
## 0.160
                                      0.000
## 0.800
                                      0.539
                                 1.386
## 4.000
##
##
## Table: eONKI4
##
    S num.detect n p.tilde lambda.tilde
##
## ----- ------
                0 24 0.000
## 0.000
                                      0.000
             3 24 0.125
6 24 0.250
14 24 0.583
21 24 0.875
## 0.032
                                      0.134
## 0.160
                                      0.288
## 0.800
                                      0.875
                                      2.079
## 4.000
##
## MYPI-6t
## Convergence= 0
   Estimate Std.Err Z value Pr(>z)
##
## beta 0.394 0.054 7.29 3.1e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 6.787625 , df= 6 , p-value= 0.340935
##
##
## eASMO9
## Convergence= 0
##
  Estimate Std.Err Z value Pr(>z)
## beta 0.767 0.147 5.22 1.8e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 5.106559 , df= 4 , p-value= 0.2765376
##
##
## eFISH1
## Convergence= 0
```

```
Estimate Std.Err Z value Pr(>z)
##
            0.4139 0.0823
                                 5.03 4.9e-07 ***
## beta
##
## Signif. codes:
                      0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 6.63572 , df= 4 , p-value= 0.1564373
##
##
    eONKI4
##
## Convergence= 0
                                        Pr(>z)
##
          Estimate Std.Err Z value
## alpha
             0.0749
                      0.0486
                                  1.54
                                            0.12
                                  4.33 1.5e-05 ***
## beta
             0.6939
                      0.1601
##
## Signif. codes:
                      0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## LLR test stat= 7.671079 , df= 3 , p-value= 0.05332185
                      MYPI-6t
                                                                      MYPI-6t
      4
                                                     1.0
                 ML fit
                                                                  ML fit
Mean Copy Estimate
                                                     8.0
                                                 Proportion detect
      3
                                                     0.6
      2
                                                     0.4
      1
                                                     0.2
      0
                                                     0.0
          0
                  2
                          4
                                  6
                                          8
                                                           0
                                                                2
                                                                      4
                                                                           6
                                                                                8
                                                                                     10
                                                                                          12
                 Starting copy number
                                                                 Starting copy number
                     eASMO9
                                                                      eASMO9
      4
                                                     1.0
                 ML fit
                                                                  ML fit
Mean Copy Estimate
                                                     8.0
                                                 Proportion detect
      3
                                                     0.6
      2
                                                     0.4
      1
                                                     0.2
      0
                                                     0.0
                          2
                                 3
           0
                  1
                                         4
                                                                     2
                                                                          3
                                                                                     5
                                                           0
                                                                1
                                                                                4
                                                                                          6
                 Starting copy number
                                                                 Starting copy number
```


