Esercizi su numerazione binaria, algebra booleana e circuiti combinatori

Corrado Santoro

Corso di Architettura degli Elaboratori 23 Marzo 2020

Risolvere i seguenti problemi, minimizzando, quando possibile, la funzione booleana ottenuta. Verificare il funzionamento del circuito attraverso un simulatore.

- 1. Progettare un circuito con porte logiche in grado di verificare se un numero binario a 4 bit sia divisibile per 3; il circuito in questione dovrà avere un'uscita che assume il valore 1 se il pattern di ingresso rappresenta un numero divisibile per 3, 0 in tutti gli altri casi.
- 2. Progettare un circuito con porte logiche in grado di convertire una cifra esadecimale (4 bit) in 5 bit utilizzando la codifica **BCD** (*Binary-Coded-Decimal*), quest'utlima è una codifica che tratta un numero decimale (base 10) considerando ogni cifra come un insieme di 4 bit a se stanti.
- 3. Progettare un circuito con porte logiche in grado di ricevere in input due numeri binari a 2 bit $A = a_1 a_0$ e $B = b_1 b_0$ e di fornire in uscita il valore 1 solo se A < B.
- 4. Implementare la funzione XOR (a due ingressi) usando solamente porte NAND.
- 5. Progettare un circuito con porte logiche in grado di ricevere in input due numeri binari a 2 bit $A = a_1 a_0$ e $B = b_1 b_0$ e di fornire in uscita un numero binario a 4 bit $P = p_3 p_2 p_1 p_0$ dove $P = A \cdot B$ è il prodotto (aritmetico) tra A e B.
- 6. Utilizzare i circuiti derivati negli esercizi 3 e 5, e progettare un'unità aritmetica in cui è presente un ulteriore ingresso OpType ed è in grado di comportarsi come segue:

a_1a_0	b_1b_0	OpType	$P = p_3 p_2 p_1 p_0$
A	B	0	$A \cdot B$
A	B	1	0001, se $A < B$
A	B	1	0000, se $A \ge B$