Markov Decision Processes

CMPT 729 G100

Jason Peng

Overview

- Agent-Environment Interface
- Markov Decision Processes
- Partially Observable Markov Decision Processes

Environment Interaction

Pong [Atari]

Atlas [Boston Dynamics] [Smithsonian Magazine]

Agent-Environment Interface

Maze

State:

• position

Maze

State:

• position

Action:

• up / down / left / right / stop

Reward:

- 1 if goal reached
- 0 otherwise

Pong

State:

- position + velocity of paddles
- position + velocity of the ball
- scores

Action:

• up / down / stop

Reward:

- 1 if agent scores
- -1 if opponent scores

Pong [Atari]

Humanoid Walking

State:

position + velocity of body parts

Action:

motor forces

Reward:

• speed

Humanoid Walking

Humanoid Walking (State)

Humanoid Walking (Action)

Humanoid Walking (Reward)

reward
$$\left(\begin{array}{c} \\ \\ \end{array}\right) = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Humanoid Walking (Reward)

Agent-Environment Interface

Policy

$$\mathbf{a} = \underline{\pi}(\mathbf{s})$$

$$\mathbf{s} \Rightarrow \boxed{\pi} \Rightarrow \mathbf{a}$$

Policy

$$\mathbf{a} = \underline{\pi}(\mathbf{s})$$

Maze

Agent-Environment Interface

Markov Decision Process

$$\mathbf{s} \in \mathcal{S}$$
 — state space

$$\mathbf{a} \in \mathcal{A}$$
 — action space

$$p(\mathbf{s'}|\mathbf{s},\mathbf{a})$$
 — dynamics function

$$r(\mathbf{s}, \mathbf{a}, \mathbf{s'})$$
 — reward function

Markov property: $p(\mathbf{s'}|\mathbf{s},\mathbf{a})$

Trajectory

Episode: One trajectory/rollout.

Discount Factor

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau \mid \pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

Discount Factor

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau \mid \pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

Discount Factor

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau \mid \pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau \mid \pi)} \left[\sum_{t=0}^{T-1} \underline{\gamma^t r_t} \right]$$

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau \mid \pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

$$R = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots + \gamma^{T-1} r_{T-1}$$

 $\gamma = 1$: maximize rewards at all timesteps equally

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau \mid \pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

$$R = r_0 + r_1 + r_2 + \dots + r_{T-1}$$

 $\gamma = 1$: maximize rewards at all timesteps equally

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau \mid \pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

$$R = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots + \gamma^{T-1} r_{T-1}$$

 $\gamma = 0$: only maximize reward at first timestep

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau|\pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

$$R = r_0$$

 $\gamma = 0$: only maximize reward at first timestep

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau \mid \pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

$$R = r_0 + 0.5r_1 + 0.5^2r_2 + \dots + 0.5^{T-1}r_{T-1}$$

$$\gamma = 0.5$$

Inflation

Inflation

MILITALE LISTING SERVICE"

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau|\pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

$$R = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots + \gamma^{T-1} r_{T-1}$$

Large γ : maximize long term rewards (far-sighted)

Small γ : maximize short term rewards (short-sighted / greedy)

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau \mid \pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

$$R = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots + \gamma^{T-1} r_{T-1}$$

 $\gamma = 1$: maximize rewards at all timesteps equally

$$T \neq \infty$$

Expectation undefined if $T = \infty$

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau \mid \pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

$$R = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots + \gamma^{T-1} r_{T-1}$$

If
$$T=\infty$$
,

Then $\gamma < 1$ for expectation to be defined.

- Geometric series with ratio $\gamma < 1$
- $r \in [r_{\min}, r_{\max}], r \ge 0$

$$R = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots + \gamma^{T-1} r_{T-1}$$

- Geometric series with ratio $\gamma < 1$
- $r \in [r_{\min}, r_{\max}], r \ge 0$

- Geometric series with ratio $\gamma < 1$
- $r \in [r_{\min}, r_{\max}], r \ge 0$

$$R = \sum_{t=0}^{T-1} \gamma^t \, r_t$$

- Geometric series with ratio $\gamma < 1$
- $r \in [r_{\min}, r_{\max}], r \ge 0$

$$R = \sum_{t=0}^{T-1} \gamma^t \, r_t \le \sum_{t=0}^{T-1} \gamma^t \, r_{\text{max}}$$

- Geometric series with ratio $\gamma < 1$
- $r \in [r_{\min}, r_{\max}], r \ge 0$

$$R = \sum_{t=0}^{T-1} \gamma^t r_t \le \sum_{t=0}^{T-1} \gamma^t r_{\text{max}}$$
$$\le \sum_{t=0}^{\infty} \gamma^t r_{\text{max}}$$

- Geometric series with ratio $\gamma < 1$
- $r \in [r_{\min}, r_{\max}], r \ge 0$

$$R = \sum_{t=0}^{T-1} \gamma^t r_t \le \sum_{t=0}^{T-1} \gamma^t r_{\text{max}}$$
$$\le \sum_{t=0}^{\infty} \gamma^t r_{\text{max}} = r_{\text{max}} \sum_{t=0}^{\infty} \gamma^t$$

- Geometric series with ratio $\gamma < 1$
- $r \in [r_{\min}, r_{\max}], r \ge 0$

$$R = \sum_{t=0}^{T-1} \gamma^t r_t \le \sum_{t=0}^{T-1} \gamma^t r_{\text{max}}$$

$$\le \sum_{t=0}^{\infty} \gamma^t r_{\text{max}} = r_{\text{max}} \sum_{t=0}^{\infty} \gamma^t$$

$$\le r_{\text{max}} \frac{1}{1 - \gamma}$$

$$R_{\min} = \frac{1}{1 - \gamma} r_{\min}$$
 $R_{\max} = \frac{1}{1 - \gamma} r_{\max}$

 $R_{\min} \leq R \leq R_{\max}$

MDP

Discrete

$$\mathbf{s} \in \{\mathbf{s}^0, \mathbf{s}^1, \mathbf{s}^2, ..., \mathbf{s}^n\}$$

$$\mathbf{s} \in \mathbb{R}^n$$

Discrete

$$\mathbf{s} \in \{\mathbf{s}^0, \mathbf{s}^1, \mathbf{s}^2, ..., \mathbf{s}^n\}$$

$$\mathbf{s} \in \mathbb{R}^n$$

Discrete

$$\mathbf{s} \in \{\mathbf{s}^0, \mathbf{s}^1, \mathbf{s}^2, ..., \mathbf{s}^n\}$$

$$\mathbf{s} \in \mathbb{R}^n$$

Discrete

$$\mathbf{s} \in \{\mathbf{s}^0, \mathbf{s}^1, \mathbf{s}^2, ..., \mathbf{s}^n\}$$

$$\mathbf{s} \in \mathbb{R}^n$$

Discrete

$$\mathbf{s} \in \{\mathbf{s}^0, \mathbf{s}^1, \mathbf{s}^2, ..., \mathbf{s}^n\}$$

$$\mathbf{s} \in \mathbb{R}^n$$

Discrete

$$s \in \{s^0, s^1, s^2, ..., s^n\}$$

$$\mathbf{s} \in \mathbb{R}^n$$

Discrete

$$s \in \{s^0, s^1, s^2, ..., s^n\}$$

$$\mathbf{s} \in \mathbb{R}^n$$

Discrete

$$\mathbf{s} \in \{\mathbf{s}^0, \mathbf{s}^1, \mathbf{s}^2, ..., \mathbf{s}^n\}$$

$$\mathbf{s} \in \mathbb{R}^n$$

Discrete

$$s \in \{s^0, s^1, s^2, ..., s^n\}$$

$$\mathbf{s} \in \mathbb{R}^n$$

Discrete

$$s \in \{s^0, s^1, s^2, ..., s^n\}$$

$$\mathbf{s} \in \mathbb{R}^n$$

MDP

Action Spaces

Discrete

$$\mathbf{a} \in {\{\mathbf{a}^0, \mathbf{a}^1, \mathbf{a}^2, ..., \mathbf{a}^m\}}$$

$$\mathbf{a} \in \mathbb{R}^m$$

Action Spaces

Discrete

$$\mathbf{a} \in \{\mathbf{a}^0, \mathbf{a}^1, \mathbf{a}^2, ..., \mathbf{a}^m\}$$

$$\mathbf{a} \in \mathbb{R}^m$$

Action Spaces

Discrete

$$\mathbf{a} \in {\{\mathbf{a}^0, \mathbf{a}^1, \mathbf{a}^2, ..., \mathbf{a}^m\}}$$

$$\mathbf{a} \in \mathbb{R}^m$$

Policies

Deterministic

$$\mathbf{a} = \pi(\mathbf{s})$$

$$\mathbf{S} \Rightarrow \mathbf{\pi} \Rightarrow \mathbf{a}$$

Deterministic Policy

$$\pi^{\det}(\mathbf{s}) = \mathbf{a}^*$$

$$\pi(\mathbf{a}|\mathbf{s}) = \begin{cases} 1 & \text{if } \mathbf{a} = \pi^{\text{det}}(\mathbf{s}) \\ 0 & \text{otherwise} \end{cases}$$

Deterministic Policy

$$\pi(\mathbf{a}|\mathbf{s})$$

Deterministic Policy

$$\mathbf{a}^* = \underset{\mathbf{a}}{\text{arg max}} \pi(\mathbf{a}|\mathbf{s})$$
 $\pi^{\text{det}}(\mathbf{s}) = \mathbf{a}^*$

Agent-Environment Interface

Partially Observable Markov Decision Process

$$\mathbf{s} \in \mathcal{S}$$
 — state space

$$\mathbf{o} \in \mathcal{O}$$
 — observation space

$$\mathbf{a} \in \mathcal{A}$$
 — action space

$$p(\mathbf{o}|\mathbf{s})$$
 – observation function

$$p(\mathbf{s'}|\mathbf{s},\mathbf{a})$$
 — dynamics function

$$r(\mathbf{s}, \mathbf{a}, \mathbf{s'})$$
 — reward function

Observation Function

State:

Location of every item

Observation

• image of the desk

Pong

State:

- position + velocity of paddles
- position + velocity of the ball
- scores

Observation

• image of the game screen

Pong [Atari]

MDP

Summary

- Agent-Environment Interface
- Markov Decision Processes
- Partially Observable Markov Decision Processes