CSC 4792 - DATA MINING

PROGRAMMING EXERCISE 1//2019

Question One

Given the data matrix $\mathbf{X} \in \mathbb{R}^{M\mathbf{x}(d+1)}$ whose rows are the inputs \mathbf{x}_i as row vectors, and target vector $\mathbf{y} \in \mathbb{R}^{M\mathbf{x}1}$ a column vector whose components are the target values \mathbf{y}_i . In class we discussed that in order to derive the linear regression algorithm, we need to minimize the in-sample error function of \mathbf{w} and the data \mathbf{X} , \mathbf{y} given by $\mathbf{E}_{in}(\mathbf{w}) = \frac{1}{M} \sum_{i=1}^{M} (\mathbf{w}^T \mathbf{x}_i - \mathbf{y}_i)^2$, over all possible $\mathbf{w} \in \mathbb{R}^{d+1}$, the optimization problem formalized as $\mathbf{w} = argmin_{\mathbf{w} \in \mathbb{R}^{d+1}} \mathbf{E}_{in}(\mathbf{w})$. Show that besides gradient descent method, there is a closed-form solution to the problem given by $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$, assuming $\mathbf{X}^T \mathbf{X}$ is invertible.

Question Two

Consider the following data sampled from employees of a given organization about age against their income.

ID age income 21 24000 2 32 48000 3 62 83000 4 72 61000 84 52000

Tasks:

- i. Plot the datapoints (age against income) to visualize the distribution in 2D.
- ii. Using the closed-form solution in *question 1* or gradient descent, find the model that *suitably* predicts the income given the age of the employee in this organization.
- iii. Plot your model in Question 2(ii) to visualize how it fits the datapoints.
- iv. Using your model in Question (ii), what is the expected income if the employee is 50 year old?
- v. If your model does not fit the dataset properly, use Polynomial regression to find the best fit model.