

Mandatory Group Project 2018

©Anne Haxthausen

Contents

- Practical information (on groups, hand-in and evaluation).
- The project tasks and requirements.

Practical Information

Mandatory

- It is mandatory to hand in a mandatory group project and get it approved in order to participate in the final written examination!
- The final mark for this course is the mark from the written examination.

Groups

- Project groups <u>must</u> consist of 3-4 participants!
- **Group must have been registered** during the exercises on the **8. and 15. March!**
- Unregistered students have been allocated a project group by me!
- The groups and their numbers can be found in a file in the Project folder in the course File Sharing on DTU Inside.

Hand-In: What, Where and When

- Upload the following files to the Course Assignments folder on DTU Inside, not later than Wednesday April 18th:
 - 1. The group project report in a .pdf file. It must have the sections explained on later pages.
 - - (1) the statements used to create the database, its tables and views (in section 5 of the report)
 - (2) the statements used to populate the tables (in section 6)
 - (3) the queries made (in section 7)
 - (4) the insert/delete/update statements used to change the tables (in section 8), and
 - (5) the statements used to create and apply functions, procedures, triggers, and events (in section 9)

It is a requirement that there are no errors when running the script.

The Results of the Group Project Evaluation

Will be communicated via DTU Inside.

Task, Objectives, and Scope

Task:

 is to develop and document a database system of your own choice.

Objective:

• is to get practical experience with data modelling and database design.

Scope:

 Only SQL programming of the database is requested, no application logic and no user interface. MySQL must be used for the implementation.

Examples of Database Systems

- For inspiration, examples of systems developed by past 02170 students:
 - Boy Scout Administration System
 - Hospital Doctor & Patient Relations Administration
 - Blood Bank Operation System
 - Pigs Transport System
 - Personal Movie Rating System
 - Software Development Management System
 - Airport Control Database
 - Grandma's Bakery
 - Hero Corporation Skills Management
 - Web Banking System
 - Retail Shop Database
 - SuperMarket Inventory System
 - Superliga Soccer Matches & Results Database
 - Project Management System
 - Laundry Card Administration System

Mandatory Report Requirements

Mandatory Sections	Tasks and Contents of Mandatory Sections
Title Page	Course Name & No, Group No, Project Title, Student Names and IDs, Date.
1. Statement of Requirements	Describe in plain words the part of the real world being modelled.
2. Conceptual Design	Show an Entity-Relationship Diagram for the domain of your database using the Textbook Adapted UML Notation. Explain. Discuss choices made.
3. Logical Design	Convert your conceptual design into a logical design (relation schemas) and discuss any choices made. Show a database schema diagram in the Textbook notation.
4. Normalization	For each relation schema in your logical design, state its normal form and explain why it is in the given normal form. Ensure that all become in at least 3NF.
5. Implementation	Create a MySQL database with tables and views implementing the logical design.
6. Database Instance	Populate the tables with data and list data for all tables and views.
7. SQL Data Queries	Give examples of typical select SQL statements with order by, group by and joins etc. For each query explain informally what it asks about.
8. SQL Table Modifications	Give examples of typical SQL table insert, update and delete statements.
9. SQL Programming	Give examples of functions, procedures, transactions, triggers, and events, and explain what they do. Give at least one example of each.
0 10 Mandatam Craus Drainat	

Title Page and Report Format

Title Page

- Make the Title Page inviting and interesting
 - It gives the reader a first good impression
- Include
 - Course name & number
 - Project title
 - Group number (as found in the Project folder of the file sharing on DTU Inside)
 - Student names, IDs, and pictures (the last is optional)
 - Date

Report Format

- Include page numbers.
- Include a table of contents.
- Include pictures and drawings to clarify text.
- Use readable fonts for various text elements and picture captions.
- Include an appendix for additional material, if needed.
- Include a bibliography, if needed.

1. Statement of Requirements

- Describe in plain words the part of the real world being modelled.
 - Example from a slide :

However, make the text in readable and complete paragraphs and sentences!

2. Conceptual Design

- Show an Entity-Relationship Diagram for the domain of your database using the Textbook Adapted UML Notation.
 - Use the Textbook Adapted UML Notation and follow the strict rules to show (1) strong & weak entity sets with their names, attributes and primary keys, and (2) relationship sets with their names, attributes, primary keys, cardinalities, and total/partial participation.
 - Example:

- Explain. Explain the meaning of entities, relationships, and their attributes.
- Discuss any choices made. E.g. why the cardinalities and participation constraints are chosen as they are etc.

3. Logical Design

- Convert your conceptual design into a logical design (relation schemas inclusive specification of foreign keys) and discuss any choices made. You must follow the method described in the book (Chapter 7).
 - Example: Conversion of the diagram shown on previous slides gives
 Instructor(<u>InstID</u>, InstName, DeptName, Salary) foreign key (DeptName) references Department(DeptName)
 Department(<u>DeptName</u>, Building, Budget)
- Show a database schema diagram for the relation schemas of the logical design in the Textbook notation. Example of a database schema diagram for the University DB:

Textbook notation: student takes ID course id dept_name sec id tot_cred semester year grade section course advisor devartment course id sec id dept_name s_id dept_name i_id building time_slot credits building budget time slot id room no time slot id start time end time prerea instructor classroom course id building prereq id name room no dept_name teaches capacity course id sec id semester

4. Normalization

- For each relation schema in your logical design, state its normal form and explain why it is in the given normal form.
- Ensure that all become in at least 3NF. If some tables are not in 3NF: Then check whether this is due to some problems in your conceptual model or its conversion to a logical design. If so fix the problems, otherwise normalize the tables directly to 3NF.
 - Example:

5. Implementation

- Create a MySQL database with tables and views implementing the logical design (as achieved after possible revisions in step 4):
 - Use MySQL statements CREATE DATABASE, CREATE TABLE and CREATE VIEW.

6. Database Instance

- Populate the tables with data and list data for all tables and views.
 - 1. Use MySQL **INSERT** to populate the tables.
 - Use MySQL SELECT * FROM table to list instances of all tables and views.
 - Show the result of step 2 in the report.
- Example from one of the course slides

7. SQL Data Queries

- Give examples of typical select SQL statements with order by, group by and joins etc. For each query explain informally what it asks about.
 - Example illustrating group by:

8. SQL Table Modifications

- Give examples of typical SQL table insert, update and delete statements.
 - Show with illustrative examples how you do table modifications using the SQL commands INSERT, UPDATE and DELETE.
- Example:

Example of UPDATE Statement

 The following statement increases salaries of instructors whose salary is over 80000 by 3%, and all others with a 5% raise.

```
UPDATE Instructor SET Salary =
CASE
WHEN Salary<=80000
THEN Salary*1.05
ELSE Salary*1.03
END;
```

Also show the contents of the table after the insert/update/delete.

9. SQL Programming

- Give examples of functions, procedures, transactions, triggers, and events, and explain what they do. Give at least one example of each.
 - Remember also to give illustrative examples of how they work.
- Example:

