

APLIKASI SIMULASI MONTE CARLO DALAM ESTIMASI BIAYA PROYEK

Adnan Fadjar*

Abstract

Monte Carlo simulation is a method for modeling and analyzing systems which involving risk and uncertainty. In the field of project management, Monte Carlo simulation can help in quantifying risk and uncertainty which is not uncommon in project schedules and budgets. This paper shows the application of Monte Carlo simulation in simulating a project budget with Microsoft Excel. The Monte Carlo simulation accuracy in this paper shown by an error of only 0,56%. This paper demonstrates that backed with knowledge in risk management, statistics, and Microsoft Excel project managers should be able to use Monte Carlo method to predict the total cost of a project based on the desired probability.

Key word: Monte Carlo simulation, project management, risk management

Abstrak

Simulasi Monte Carlo adalah metode yang digunakan dalam memodel dan menganalisa sistem yang mengandung resiko dan ketidak-pastian. Pada bidang manajemen proyek, simulasi Monte Carlo dapat mengkuantifikasi akibat-akibat dari resiko dan ketidak-pastian yang umum terjadi dalam jadwal dan biaya sebuah proyek. Tulisan ini mengaplikasikan metode Monte Carlo dalam mengsimulasikan pembiayaan sebuah proyek dengan menggunakan program Microsoft Excel. Akurasi hasil simulasi Monte Carlo pada tulisan ini ditunjukkan oleh tingkat kesalahan yang hanya sebesar 0,56%. Tulisan ini menunjukkan bahwa dengan berbekal pengetahuan di bidang manajemen resiko, statistik, dan Microsoft Excel manajer proyek dapat menggunakan metode Monte Carlo untuk memprediksi biaya total sebuah proyek berdasarkan probabilitas yang diinginkan.

Kata kunci: simulasi Monte Carlo, manajemen proyek, manajemen resiko

1. Pendahuluan

Manajemen resiko belakangan ini telah mualai mendapatkan perhatian di bidang manajemen proyek (Kwak & Stoddard, 2004). Metode yang kerap digunakan oleh manajer proyek dalam proses analisa resiko adalah simulasi Monte Carlo. Metode ini sudah lama digunakan dalam berbagai macam aplikasi matematika dan sains, dan juga disebutkan dalam A Guide to the Proiect Management Body Knowledge (Project Management Institute, 2004). Meskipun demikian, dalam praktiknya simulasi Monte Carlo ini belum umum digunakan oleh praktisi manajemen proyek dibandingkan metode-metode yang lain, seperti CPM dan PERT misalnya. Kondisi yang ada pada saat ini, simulasi Monte Carlo hanya sering digunakan dalam batas dunia akademik yang membahas aspek resiko dalam manajemen proyek.

Tulisan ini membahas aplikasi simulasi Monte Carlo dalam mengestimasi biaya sebuah proyek dengan menggunakan program Microsoft Excel dengan mengambil contoh sebuah proyek sederhana yang terdiri dari enam aktifitas. Meskipun jumlah aktifitas dari contoh proyek ini relatif kecil, prosedur simulasi Monte

^{*} Staf Pengajar Jurusan Teknik Sipil Fakultas Teknik Universitas Tadulako, Palu

Carlo yang ditunjukkan dalam tulisan ini dapat diterapkan untuk proyek yang melibatkan aktifitas yang lebih banyak.

2. Tinjauan Pustaka

Simulasi Monte Carlo didefinisikan sebagai semua teknik sampling statistik yang digunakan untuk memperkirakan terhadap masalah-masalah solusi kuantitatif (Monte Carlo Method, 2008). Dalam simulasi Monte Carlo sebuah model dibangun berdasarkan sistem yang sebenarnya. Setiap variabel dalam model tersebut memiliki nilai memiliki probabilitas yang yang ditunjukkan berbeda, yana oleh distribusi probabilitas atau biasa disebut dengan probability distribution function (pdf) dari setiap variabel. Metode Monte Carlo mengsimulasikan sistem tersebut berulang-ulang kali, ratusan bahkan sampai ribuan kali tergantung sistem yang ditinjau, dengan cara memilih sebuah nilai random untuk variabel dari distribusi setian probabilitasnya. Hasil yang didapatkan dari simulasi tersebut adalah sebuah distribusi probabilitas dari nilai sebuah sistem secara keseluruhan.

Sejak pertama kali digunakan untuk keperluan militer pada Manhattan Project (Eckhardt, 1987), simulasi Monte Carlo telah diaplikasikan pada berbagai bidang antara lain; manajemen proyek, transportasi, desain komputer, finansial, meteorologi, biologi dan biokimia (Kwak & Ingall, 2007).

Dalam bidana manaiemen proyek simulasi Monte Carlo digunakan untuk menghitung atau mengiterasi dan waktu biaya sebuah proyek dengan menggunakan nilai-nilai yang dipilih secara random dari distribusi probabilitas biaya dan waktu yang mungkin terjadi, dengan tujuan untuk menghitung distribusi kemungkinan biaya dan waktu total dari sebuah proyek (Project Management Institute, 2004).

Pada umumnya literatur-literatur manajemen proyek menempatkan simulasi Monte Carlo dibawah topik manajemen resiko, atau kadana berada pada topik manajemen waktu manajemen biava. Proiect Management Institute (2004)pendekatan menerapkan sebuah standar manajemen resiko yang meliputi enam proses; Perencanaan Manajemen Resiko, Identifikasi Resiko, Kualifikasi Resiko, Kuantifikasi Resiko, Perencanaan Respon Resiko, dan Pemantauan & Evaluasi Resiko, simulasi Monte Carlo ditempatkan sebagai bagian dari proses Kuantifikasi Resiko.

Meskipun simulasi Monte Carlo adalah sebuah metode yang sangat bermanfaat untuk diaplikasikan dalam bidang manajemen proyek, simulasi jadwal proyek (McCabe, 2003) dan simulasi perataan sumberdaya (Hanna & Ruwanpura, 2007) contohnya, dalam praktiknya metode ini belum banyak digunakan oleh para manajer proyek kecuali disyaratkan oleh organisasi atau perusahaannya. Kwak & Ingall (2007) berpendapat bahwa alasan utama simulasi Monte Carlo jarang digunakan oleh kebanyakan manaier provek adalah: kurangnya pemahaman terhadap metode Monte Carlo dan statistik; alih-alih sebagai manfaat, proyek manaier umumnva menganggap penggunaan metode ini lebih sebagai beban terhadap organisasi atau perusahaannya. Alasan lainnya adalah software khusus simulasi Monte Carlo pada proyek baru ada belakangan ini, @RISK for Project (www.palisade.com) adalah salah satunya, software ini tersedia dalam bentuk add-in pada program Microsoft Project. Meskipun demikian, Microsoft Excel sebenarnya dapat diaunakan untuk simulasi Monte Carlo dengan menggunakan fungsi RAND seperti yang ditunjukkan pada bagian berikut.

3. Metode

3.1 Desain simulasi

Yang akan disimulasikan adalah sebuah proyek yang terdiri dari enam aktifitas. Setiap aktifitas memiliki total biaya dalam batasan yang telah ditentukan seperti yang ditunjukkan pada Tabel 1. Setiap variabel tersebut dapat saja mempunyai distribusi tertentu yang unik, tetapi untuk proyek ini dapat diasumsikan bahwa setiap variabel memiliki distribusi seragam (uniform distribution) tanpa mengurangi validitas hasil simulasi.

Tabel 1. Aktifitas dan Estimasi Biaya (dalam ribuan rupiah)

	adiaitifibodiffopiaiti				
	Minimum	Maksimum			
Aktifitas					
Α	15.000	20.000			
В	15.000	17.500			
С	17.500	25.000			
D	5.700	6.800			
Е	19.000	26.000			
F	7.500	9.500			
Total	79.700	104.800			

Estimasi terhadap total biaya proyek adalah sebuah variabel tersebut random dengan nilai yang terletak antara nilai total biaya minimum dan maksimum. Karena nilai variabel ini adalah jumlah dari beberapa variabel random lainnya yaitu biaya dari setiap aktifitas. variabel ini akan memiliki menjelaskan distribusi normal. Ini distribusi menaapa penggunaan tertentu yang unik untuk setiap variabel dapat diabaikan.

3.2 Angka random

Karena alasan praktis, metode digunakan yang sering menghasilkan angka random antara 0 dan dalam simulasi adalah multiplicative congrueantal method (Taha, 1997). Angka yang dihasilkan oleh metode tersebut sebenarnya tidak dikatakan sebagai dapat anaka random vana sebenarnya menggunakan operasi aritmetika yang hasilnya dapat diketahui sehingga lebih tepat iika dikatakan sebagai angka random semu (pseudorandom numbers). Jika parameter u_0 , b, c dan m diberikan maka sebuah angka random semu R_n dapat dihasilkan dengan menggunakan rumus berikut.

$$u_n = (bu_{n-1} + c) \mod(m), \quad n = 1, 2, ...$$

$$R_n = \frac{u_n}{m}, \quad n = 1, 2, ...$$

Nilai awal u_0 biasanya disebut dengan seed

Dalam tulisan ini, angka random dihasilkan dengan menggunakan fungsi RAND yang ada pada Microsoft Excel. Sebagai contoh, biaya random untuk aktifitas A akan terlihat sebagai berikut: =RAND()*(20.000-15.000)+15.000, formula ini akan menghasilkan angka random yang nilainya terletak antara 15.000 dan 20.000. Jika biaya setiap aktifitas disimulasikan dengan formula tersebut, maka biaya total dari proyek adalah jumlah dari biaya semua aktifitas. Hasil dari 5 iterasi pertama dari simulasi tersebut dapat terlihat pada Gambar 1.

	А	В	С	D	Е	F	G	Н
1	Aktifitas	Α	В	С	D	E	F	Total
2	Minimum	15.000	15.000	17.500	5.700	19.000	7.500	79.700
3	Maksimum	20.000	17.500	25.000	6.800	26.000	9.500	104.800
4	Iterasi 1	18.037	16.826	24.375	6.488	24.718	9.281	99.725
5	Iterasi 2	16.631	=RAN	D()*(B3-B2)+	B2 .117	2 =SUN	Л(B4:G4)	95.096
6	Iterasi 3	17.736	16.137	17.813	6.606	23.827	8.571	90.689
7	Iterasi 4	15.585	16.707	19.777	6.166	24.101	8.736	91.073
8	Iterasi 5	18.210	15.134	21.059	5.975	23.579	7.798	91.755

Gambar 1. Hasil Simulasi @5 iterasi (dalam ribuan rupiah)

3.3. Penentuan nilai iterasi

Metode Monte Carlo dapat meprediksi kesalahan *(error)* dari simulasi, yang mana proporsional terhadap jumlah iterasinya.

Total error dihitung dengan formula: $\varepsilon = \frac{3\sigma}{\sqrt{N}}, \sigma \text{ adalah deviasi standar dari}$

variabel random dan N adalah jumlah iterasi. Deviasi standar σ dihitung berdasarkan seluruh populasi, yang dalam simulasi ini anggotanya hanya dua yaitu nilai minimum (79.700) dan maksimum (104.800), dengan menggunakan formula:

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{N}}$$
 didapatkan $\sigma = 12.250$

Jika diinginkan nilai *absolute error* yang kurang dari 2%, maka nilai tersebut didapatkan dengan menggunakan formula:

$$\varepsilon = \frac{\overline{x}}{\left(\frac{1}{0,02}\right)} \text{ didapatkan } \varepsilon = 1.845$$

Jadi jumlah iterasi yang dibutuhkan untuk mendapatkan hasil dengan *error* yang kurang dari 2% adalah:

$$N = \left(\frac{3 \times \sigma}{\varepsilon}\right)^2 = \left(\frac{3 \times 12.250}{1.845}\right)^2 = 416$$

Nilai rata-rata dari variabel random biaya proyek tersebut setelah 416 iterasi terlihat pada pada Tabel 2.

4. Hasil dan Pembahasan

Setelah dilakukan iterasi sebanyak 416 kali diperoleh parameter-parameter dari hasil simulasi Monte Carlo seperti yang terdapat pada Tabel 3. Setelah deviasi standar populasi dari hasil simulasi diketahui, error yang sebenarnya (true error) dihitung dengan menggunakan formula berikut.

$$\varepsilon = \frac{3\sigma}{\sqrt{N}} = \frac{3 \times 3.530.000}{\sqrt{416}} = 519.000$$

Karena random variabel dari biaya total terdistribusi secara normal, maka median seharusnya tidak jauh berbeda dengan rata-rata, hal ini terlihat pada Tabel 3 dimana selisih antara median dan rata-rata hanya 0,22%. Akurasi simulasi Monte Carlo ini cukup tinggi sebagaimana terlihat pada Tabel 3 dimana % errornya hanya 0,56%.

Gambar 2 menunjukkan probability distribution function (pdf) dan cumulative distribution function (cdf) dari hasil simulasi Monte Carlo setelah dilakukan iterasi sebanyak 416 kali.

Tabel 2 Hasil Simulasi Monte Carlo @416 iterasi (dalam ribuan rupiah)

Aktifitas	Α	В	С	D	E	F	Total
Minimum	15.000	15.000	17.500	5.700	19.000	7.500	79.700
Maksimum	20.000	17.500	25.000	6.800	26.000	9.500	
							104.800
Iterasi 1	18.037	16.826	24.375	6.488	24.718	9.281	99.725
Iterasi 2	16.631	16.946	24.889	6.117	21.059	9.454	95.096
Iterasi 3	17.736	16.137	17.813	6.606	23.827	8.571	90.689
÷	÷	:	÷	÷	÷	:	÷
Iterasi 416	16.796	16.453	18.912	6.759	23.846	7.804	90.570
	•		•	•		Rata-	92.530
						rata	

_	Tabel 3 F	'aramet	er-parame	ter Hasıl S	imulasi Mo	onte Carlo

Prediksi Biaya Total rata-rata	95.530.000
Median	92.733.000
Selisih median dan rata-rata	0,22%
Deviasi standar populasi	3.530.000
Error sebenarnya	519.000
% Error sebenarnya	0,56%
Kurtosis	-0,437
Skewness	-0,199

Gambar 2. pdf dan cdf dari hasil simulasi Monte Carlo (dalam ribuan rupiah)

Informasi penting lainnya yang didapatkan dari distribusi hasil simulasi adalah Kurtosis dan Skewness. Kurtosis ukuran relatif dari dibandingkan dengan bentuk kurva distribusi normal. Nilai Kurtosis distribusi normal adalah 0, sementara nilai Kurtosis hasil simulasi Monte Carlo adalah -0.437. Nilai Kurtosis negatif mengindikasikan bahwa bentuk kurva distribusi hasil simulasi Monte Carlo seperti yang terlihat pada Gambar 2 memiliki puncak yang lebih rata (platykurtic) dibanding distribusi normal. Skewness adalah ukuran simetri bentuk kurva, dimana pada distribusi normal nilainya adalah 0. Nilai Skewness negatif (-0,199) Tabel 2, mengindikasikan bahwa ekor dari kurva distribusi hasil simulasi Monte Carlo ini

lebih condong ke arah kiri sebagaimana yang terlihat pada Gambar 2.

Cumulative distribution function pada Gambar 2 digunakan untuk mengetahui probabilitas biaya total proyek tersebut. Sebagai contoh, jika aggaran yang tersedia untuk proyek tersebut adalah Rp. 90 juta maka probabilitas proyek tersebut dapat dilaksanakan dengan sukses adalah sekitar 25%. Jika pemilik bersikap moderat dengan menginginkan probabilitas 50%, maka anggaran yang harus disiapkan tidak kurang dari Rp. 93 juta. Jika pemilik proyek ingin lebih behati-hati maka dana yang harus disiapkan adalah sekitar Rp. 95 juta untuk mendapatkan probabilitas sebesar 75%.

5. Kesimpulan dan Saran

Sebagaimana metode-metode simulasi lainnya, akurasi dari hasil simulasi Monte Carlo ini sangat dipengaruhi oleh akurasi variabel-variabel inputnya yang dalam contoh kasus pada tulisan ini estimasi awal dari adalah minimum dan biaya maksimum setiap aktifitas. Juga perlu dicatat simulasi Monte Carlo bukanlah sebuah penyedia solusi, metode ini hanya membantu kita dalam memprediksi perilaku sebuah sistem dengan memperhitungkan unsurunsur yang mengandung resiko dan ketidak-pastian. Solusi sebenarnya tetap berada di tangan para manajer dengan mempertimbangkan berbagai aspek, termasuk aspek kualitatif yana ada dalam sebuah proyek.

Monte Simulasi Carlo menjadi alat yang handal bagi manajer proyek dalam menganalisa resiko dan ketidak-pastian yang umum terjadi dalam pembiayaan proyek. simulasi Monte Carlo dapat membantu manajer proyek dalam menentukan ekspektasi pembiayaan proyek yang lebih realistis. Dengan kemampuan komputer dan software yang semakin berkembang, simulasi Monte Carlo ini sudah selavaknva lebih banvak digunakan oleh para manajer proyek. Melalui edukasi dan pelatihan yang menjelaskan dan mendemonstrasikan kegunaan simulasi Monte Carlo, para manajer proyek akan menyadari bahwa tidak diperlukan pengetahuan statistik tingkat tinggi untuk dapat memahami implementasi dan interpretasi simulasi Monte Carlo. Sehingga secara perlahan metode Monte Carlo ini dapat diterima di kalanaan praktisi manaiemen provek dan tidak hanya sebatas digunakan dalam dunia akademik yana membahas aspek resiko dalam manajemen proyek.

6. Referensi

Eckhardt, R., 1987, Stan Ulam, John von Neumann, and the Monte Carlo Method. Los Alamos Science (Special Issue 15), 131-137.

- Hanna, M., & Ruwanpura, J. Y., 2007, Simulation Tool for Manpower Forecast Loading and Resource Leveling. Paper presented at the Proceedings of the 2007 Winter Simulation Conference
- Project Management Institute ,2004, A
 Guide to the Project
 Management Body of
 Knowledge: PMBOK Guide (3rd
 ed.). Newton Square,
 Pennsylvania: Project
 Management Institute.
- Kwak, Y. H., & Ingall, L. ,2007, Exploring Monte Carlo Simulation Applications For Project Management. Risk Management, 9, 44-57.
- Kwak, Y. H., & Stoddard, J., 2004, Project Risk Management: Lessons Learned from Software Development Environment. Technovation: An International Journal of Technical Innovation, Entrepreneurship and Technology Management, 24(11), 915-920.
- McCabe, B. .,2003, Monte Carlo Simulation For Schedule Risks. Paper presented at the Proceedings of the 2003 Winter Simulation Conference.
- Monte Carlo Method ,2008, Online. http://www.riskglossary.com/link/ monte_carlo_method.htm Diakses pada tanggal 16 Oktober 2008.
- Taha, H. A. ,1997, Operation Research An Introduction (6th ed.). Upper Saddle River, New Jersey: Prentice-Hall, Inc.