Delta Modulation (DM)

Dr. B. Sainath
EEE Dept., BITS PILANI

Sep., 2017

Preliminaries

- Sampling rate higher than Nyquist rate leads to significant correlation between successive samples
- When those correlated samples are encoded like in PCM system, resulting signal contains redundant information
- BW in PCM \propto bit rate \uparrow with sampling rate

Preliminaries

- Sampling rate higher than Nyquist rate leads to significant correlation between successive samples
- When those correlated samples are encoded like in PCM system, resulting signal contains redundant information
- BW in PCM \propto bit rate \uparrow with sampling rate
- Differential pulse code modulation (PCM): a variation of PCM
 - Difference between actual samples $x(nT_s)$ and an estimate of it, \hat{x}_{nT_s} , is quantized, encoded and then transmitted
 - \hat{x}_{nT_s} obtained from past samples

Preliminaries

- Sampling rate higher than Nyquist rate leads to significant correlation between successive samples
- When those correlated samples are encoded like in PCM system, resulting signal contains redundant information
- BW in PCM \propto bit rate \uparrow with sampling rate
- Differential pulse code modulation (PCM): a variation of PCM
 - Difference between actual samples $x(nT_s)$ and an estimate of it, \hat{x}_{nT_s} , is quantized, encoded and then transmitted
 - \hat{x}_{nT_s} obtained from past samples
- Application of DPCM
 - JPEG (Joint Photographic Experts Group)- an image compression standard
 - Adaptive DPCM

2 / 11

Delta Modulation (DM)

- Simplified variant of DPCM which uses 1-bit (2-level) quantizer
- Developed for voice telephony application
- Principle of DM:

Delta Modulation (DM)

Slope Overload Distortion & Granular Noise

Slope Overload Distortion and Granular Noise

Figure: Very small step size causes slope overload distortion. Very large step size causes granular noise.

Important Instructions

- Try to complete all tasks within 2 hours. After 2 hrs, evaluation starts.
- For each subtask, create mfiles (eg. CT_HT.m) and save them with suitable name.
- Prepare a word document naming your name and ID. In it, save all results including plots.
- In all plots, put x-label, y-label, legend, font 'Arial' (Size = 10), and, Width '2'.

Task 1: Designing of Δ

- Let m(t) continuous-time (CT) message signal
- Slope of the signal $S = \frac{dm(t)}{dt}$
- Single tone modulation: $m(t) = A_m \cos \left(2\pi f_m t \frac{\pi}{2}\right)$
- Question (1). (a): Find Δ such that $\frac{\Delta}{T_s} = \max S$, where T_s is sampling duration
- Question (1). (b): Let $m(t) = \cos(t \frac{\pi}{2})$.
 - Find Δ such that $\frac{\Delta}{T_s} = \max S$

Task 2: Delta Modulation & Demodulation

- Make use of the following
 - Message signal's peak amplitude $A_m = 1$ volt;
 - Sample duration $T_s = 0.045$ sec.
 - Time vector $t = 0 : T_s : 9$;
 - Message signal $m(t) = A_m \sin t$;
 - Choose $\Delta = T_s$;
 - Initialize $m_q = 0$;
 - Modulation: For each sample, do the following:
 - Compare message sample and m_a
 - If message amplitude is higher than m_q , bit b=1 and $m_q \to m_q + \Delta$. Otherwise, bit = 0 and $m_q \to m_q \Delta$
 - Demodulation: For each bit, use similar logic to generate demodulated signal

Task 2: Delta Modulation & Demodulation

- Question 2. (a): Write a program to plot the following
 - Original message signal m(t)
 - ② Delta modulated signal (Hint: use 'stairs' command).
 - Demodulated signal
 - O Difference signal $d = |m m_q|$
 - Show all in single plot. In the plot, provide x-label, y-label, title, and legend.
- Question 2. (b):
 - Using MATLAB, compute sum of squared error between message and staircase approximation
- Question 2. (c):
 - What is the bit duration?
 - What is the bit rate?

Explore More..

- Explore on DM of triangular pulse?
 - Design of Δ
 - Modulation & demodulation
- Explore on DM for double-tone signal?
 - Design of Δ
 - Modulation & demodulation

