# Exercices de colle

# Léonard Blier et Jonathan Laurent

# 16 février 2016

# Table des matières

| 1        | Théorie des ensembles                      |                                                        |  |
|----------|--------------------------------------------|--------------------------------------------------------|--|
|          | 1.1                                        | Caractérisation fonctionnelle de l'injectivité         |  |
|          | 1.2                                        | Caractérisation fonctionnelle de la surjectivité       |  |
|          | 1.3                                        | Caractérisation fonctionnelle des ensembles infinis    |  |
|          | 1.4                                        | Une preuve du théorème de Cantor-Bernstein             |  |
| <b>2</b> | Relations d'ordre, relations d'équivalence |                                                        |  |
|          | 2.1                                        | Recouvrements d'ensemble                               |  |
|          | 2.2                                        | Ensembles totalement ordonnés dénombrables             |  |
|          | 2.3                                        | Relation d'équivalence sur les fonctions réelles       |  |
|          | 2.4                                        |                                                        |  |
|          | 2.5                                        | Fonction entre classes d'équivalence                   |  |
| 3        | Fonctions usuelles, convexité              |                                                        |  |
|          | 3.1                                        | Inégalité sur l'exponentielle                          |  |
|          | 3.2                                        | Tangente et polynomes                                  |  |
|          | 3.3                                        | Entropie et Divergence de Kullback-Leibler             |  |
| 4        | Equations différentielles                  |                                                        |  |
|          | 4.1                                        | Equation de Bernoulli                                  |  |
|          | 4.2                                        | Solutions des équations linéaires d'ordre quelconques. |  |
|          | 4.3                                        | Equations différentielles et involutions               |  |
|          | 4.4                                        | Résolution générale des équations linéaires d'ordre 1  |  |
| 5        | Suites réelles                             |                                                        |  |
|          | 5.1                                        | Suites entières                                        |  |
|          | 5.2                                        | limsup, liminf                                         |  |
|          | 5.3                                        | Une généralisation du théorème de Césaro               |  |
|          | 5.4                                        | Séries                                                 |  |

|    | 5.5  | Fonction contractante                                   |           |
|----|------|---------------------------------------------------------|-----------|
|    | 5.6  | Caractérisation des ensembles de valeurs d'adhérence    |           |
|    | 5.7  | Suite à variation décroissante                          |           |
| 6  | Fone | ctions continues                                        | 10        |
|    | 6.1  | Unique antécédent                                       |           |
|    | 6.2  | Involution dans $\mathbb{R}_+$                          |           |
|    | 6.3  | Continuité de fonction croissante                       |           |
|    | 6.4  | Borne supérieure glissante                              |           |
|    | 6.5  | Fonction réelle surjective                              |           |
|    | 6.6  | Continuité et convergence uniforme                      |           |
|    | 6.7  | Semi-Continuité                                         |           |
|    | 6.8  | Caractérisation par les ouverts                         |           |
| 7  | Dér  | ivabilité                                               | <b>12</b> |
|    | 7.1  | Croissante sur un voisinage?                            |           |
|    | 7.2  | Bornes d'une intégrale                                  |           |
|    | 7.3  | Surjectivité des tangentes                              |           |
|    | 7.4  | Minoration de la dérivée seconde                        |           |
| 8  | Dév  | eloppements limités et analyse asymptotique             | <b>12</b> |
|    | 8.1  | Questions courtes                                       |           |
|    | 8.2  | Convergence simple de la série de Taylor de sinus       |           |
|    | 8.3  | Racines imbriquées                                      |           |
|    | 8.4  | Développement asymptotique des solutions d'une equation |           |
|    | 8.5  | Un calcul de limite                                     |           |
|    | 8.6  | Arccosinus                                              |           |
| 9  |      | chmétique                                               | 13        |
|    | 9.1  | Questions courtes                                       |           |
|    | 9.2  | Critère d'Euler                                         |           |
|    | 9.3  | Somme de parties entières                               |           |
| 10 |      | upes                                                    | 14        |
|    |      | Formule de Legendre                                     |           |
|    |      | Sommes d'inverses                                       |           |
|    |      | PGCD et suite de Fibonacci                              |           |
|    |      | Parties stables de $\mathbb{N}$                         |           |
|    | 10.5 | Infinité des nombres premiers                           |           |
| 11 |      | upes, anneaux, corps                                    | 15        |
|    |      | Questions courtes                                       |           |
|    |      | Groupe dihedral                                         |           |
|    |      | Groupe des fonctions affines                            |           |
|    | 11.4 | Sous-groupes maximaux                                   |           |

| 12 | Poly  | nomes                                           | 16 |
|----|-------|-------------------------------------------------|----|
|    | 12.1  | Anneaux, quotients, polynomes,                  |    |
|    | 12.2  | Division de polynomes                           |    |
|    | 12.3  | Nombre de solutions d'une équation              |    |
|    | 12.4  | Minoration du module des racines                |    |
| 13 | Frac  | ctions rationnelles                             | 17 |
|    | 13.1  | (Quasi) surjectivité des fractions rationnelles |    |
|    | 13.2  | Fraction rationnelle et longueurs d'intervalles |    |
|    | 13.3  | Calcul de série                                 |    |
| 14 | Espa  | aces vectoriels                                 | 18 |
|    | 14.1  | Exemples                                        |    |
|    | 14.2  | Quelques supplémentaires                        |    |
|    | 14.3  | Intersections, unions, sommes                   |    |
|    | 14.4  | Equation de Cauchy                              |    |
|    | 14.5  | Endomorphismes nilpotents                       |    |
|    | 14.6  | Supplémentaire commun                           |    |
|    | 14.7  | Identité de Leibniz                             |    |
|    | 14.8  | Un peu de dénombrement                          |    |
|    | 14.9  | Pour ceux qui aiment l'algèbre                  |    |
|    | 14.10 | Petits exos faciles                             |    |
|    | 14.11 | 1 Contraintes indépendantes                     |    |
|    | 14.12 | 2Décomposition de l'unité                       |    |
|    | 14.13 | BDivision polynomiale et projecteurs            |    |
|    | 14.14 | 4Corps et sur-corps                             |    |

# 1 Théorie des ensembles

# 1.1 Caractérisation fonctionnelle de l'injectivité

1. Soient E et F des ensembles, et  $f: E \to F$  une fonction injective. Soit G un ensemble, et  $g: E \to G$  une fonction quelconque. Montrer qu'il existe une fonction  $h: F \to : G$  telle que  $g = h \circ f$ 



2. Réciproquement, supposons que f n'est pas injective. Construire un ensemble G et une fonction g telle qu'on ne puisse pas construire une telle fonction h

# 1.2 Caractérisation fonctionnelle de la surjectivité

1. Soient E et F des ensembles, et  $f: E \to F$  une fonction surjective. Soit G un ensemble, et  $g: F \to G$  une fonction quelconque. Montrer qu'il existe une fonction  $h: E \to : G$  telle que  $h = g \circ f$ 



2. Réciproquement, supposons que f n'est pas surjective. Construire un ensemble G et une fonction g telle qu'on ne puisse pas construire une telle fonction h

#### 1.3 Caractérisation fonctionnelle des ensembles infinis

Soit E un ensemble. Montrer que E est infini si et seulement si pour toute fonction  $f: E \to E$ , il existe  $A \subset E$  tel que A est stable par f.

#### 1.4 Une preuve du théorème de Cantor-Bernstein

On rappelle le théorème de Cantor-Bernstein :

**Théorème 1.** Soient E et F deux ensembles, et  $f: E \to F$  et  $g: F \to E$  deux injections. Alors il existe  $h: E \to F$  une bijection. Autrement dit, si E s'injecte dans F et F s'injecte dans E, alors ces deux ensembles sont equipotents.

Les définitions sont ici très formelles, car c'est la manière la plus rigoureuse de rédiger. On s'attachera à bien faire comprendre les définitions.

Soit  $x \in E$ . On définit  $(u_n(x))_n$  la suite (éventuellement finie) de  $E \bigcup F$  définie par :

$$u_0(x) = x$$
  
 $u_{2n+1} = g^{-1}(u_{2n})$  si cela a un sens  
 $u_{2n} = f^{-1}(u_{2n-1})$  si cela a un sens

On définit de même les suites  $(v_n(y))_n$  pour tout  $y \in F$ . On définit :

$$E_{\infty} := \{x \in E | (u_n(x)) \text{ est infinie} \}$$

$$E_E := \{x \in E | (u_n(x)) \text{ finit en } E \}$$

$$E_F := \{x \in E | (u_n(x)) \text{ finit en } F \}$$

On fait de même pour  $F_{\infty}, F_E, F_F$ .

- 1. Montrer que  $(F_{\infty}, F_E, F_F)$  est une partition de F, et que  $(E_{\infty}, E_E, E_F)$  est une partition de E (dont certaines des parties sont éventuellement vides).
- 2. Construire une bijection entre  $E_{\infty}$  et  $F_{\infty}$ .
- 3. Construire des bijections entre  $E_E$  et  $F_E$  d'une part, et  $E_F$  et  $F_F$  d'autre part.
- 4. En conclure le théorème de Cantor-Bernstein.

# 2 Relations d'ordre, relations d'équivalence

#### 2.1 Recouvrements d'ensemble

Soit E un ensemble. On dit que  $(U_i)_{i\in I}$  est un recouvrement de E si  $\forall i\in I, U_i\subset E$  et  $\bigcup_i U_i=E$ .

- 1. Une partition est-elle un recouvrement? Un recouvrement est-il une partition. Soit X un ensemble.  $\mathcal{P}(\mathcal{X})$  est-il un recouvrement de X?
- 2. Soient  $(U_i)_{i\in I}$  et  $(V_j)_{j\in J}$  deux recouvrements. On dit que  $(U_i)$  est plus fin que  $(V_j)$  si  $\forall i\in I, \exists j\in j\ U_i\subset V_j$ . Cette relation forme-t-elle une relation d'ordre? Montrer qu'il existe un recouvrement "maximal" qui soit plus fin que  $(U_i)$  et  $(V_j)$ . Maximal signifie que tout recouvrement vérifiant la propriété sera plus fin que celui-ci.
- 3. Soit X un ensemble, et soient  $f_i:U_i\to X$  des fonctions. Montrer l'équivalence suivante :

- (i)  $\forall i, j \in I, \forall x \in U_i \cap U_j, f_i(x) = f_j(x)$
- (ii) Il existe  $f: E \to X$  telle que  $\forall i \in I, \forall x \in U_i, f(x) = f_i(x)$

#### 2.2 Ensembles totalement ordonnés dénombrables

Montrer que tout ensemble dénombrable totalement ordonné est isomorphe (en tant que qu'ensemble ordonné) à un sous-ensemble de  $\mathbb{Q}$ .

#### 2.3 Relation d'équivalence sur les fonctions réelles

On considère l'ensemble des fonctions de  $\mathbb{R}$  dans  $\mathbb{R}$ . On dit que f et g sont équivalentes s'il existe c>0 tel que  $\forall x>c, f(x)=g(x)$ . Montrer que cette relation est bien une relation d'équivalence.

# 2.4 Treillis complet

Soit (E, <) un ensemble (partiellement) ordonné. On dit que E est un treillis complet si tout sous ensemble de E possède une borne supérieure.

- 1. Les ensembles suivants munis de leur relation d'ordre canonique sont-ils des treillis complet ?  $[0,1], [0,1], \mathbb{R}, \mathcal{P}(\mathcal{X})$  (où X est un ensemble quelconque).
- Soit (E, <) un treillis complet. Soit f une fonction croissante de E dans E.
   Montrer que f possède un point fixe.
   Indication: On introduira A = {x ∈ E | x ≤ f(x)}</li>
- 3. En déduire que toute application croissante de [0,1] dans lui-même possède un point fixe.
- 4. On se sert de ce résultat pour démontrer le théorème de Cantor Bernstein. Soient E et F deux ensembles, f et g des injections de E dans F et de F dans E. On définit

$$\begin{array}{cccc} \Phi: & \mathcal{P}(\mathcal{E}) & \longrightarrow & \mathcal{P}(\mathcal{E}) \\ & M & \longmapsto & (E \backslash g(F \backslash f(M))) \end{array}$$

Montrer que  $\Phi$  possède un point fixe M. Construire une bijection entre M et f(M) d'une part, et entre  $E\backslash M$  avec  $F\backslash f(M)$  d'autre part. En déduire le théorème de Cantor Bernstein.

#### 2.5 Fonction entre classes d'équivalence

Soient E et F des ensembles,  $\mathcal{R}$  une relation d'équivalence sur E et  $\mathcal{S}$  une relation d'équivalence sur F. Soit f une fonction de E dans F. Donner une condition

nécessaire et suffisante telle qu'il existe  $\hat{f}$  telle que ce diagramme commute

$$E \xrightarrow{f} F$$

$$\downarrow^{p} \qquad \downarrow^{q}$$

$$E/\mathcal{R} \xrightarrow{\hat{f}} F/\mathcal{S}$$

où p et q sont les projections canoniques.

# 3 Fonctions usuelles, convexité

# 3.1 Inégalité sur l'exponentielle

Montrer que pour tout  $n \in \mathbb{N}$  et  $x \geq 0$ , on a :

$$e^x \ge \sum_{i=0}^n \frac{x^k}{k!} \tag{3.1}$$

#### 3.2 Tangente et polynomes

Montrer que toutes les dérivées successives de  $x \to \tan(x)$  peuvent s'exprimer comme un polynome en  $\tan(x)$ .

# 3.3 Entropie et Divergence de Kullback-Leibler

Soit  $p = (p_1, ..., p_n)$  un n-uplet tel que  $\forall i, 0 \le p_i \le 1$  et  $\sum_{i=1}^n = 1$ .

Ce n-uplet s'interprète comme une distribution de probabilité sur un ensemble fini.

On définit l'entropie de cette distribution par :

$$H(p) = -\sum_{i=1}^{n} p_i \log(p_i)$$
 (3.2)

- Montrer que  $H(p) \ge 0$
- Énoncer l'inégalité de Jensen. En déduire une borne supérieure pour H(p), et déterminer une distribution où elle est atteinte

On a maintenant deux distributions de probabilité p et q. On définit la divergence de Kullback-Leibler par :

$$D(p,q) = -\sum_{i=1}^{n} p_i \log(q_i) - H(p)$$
(3.3)

- Montrer que D(p,q) est positive.
- Trouver une condition nécessaire et suffisante pour que D(p,q)=0

# 4 Equations différentielles

# 4.1 Equation de Bernoulli

On considère une modélisation de l'évolution d'une population. L'équation la définissant est :

$$N'(t) = aN(t)(1 - \frac{N}{N_{max}})$$

où  $a, N_{max} \in \mathbb{R}_+$ .

Trouver toutes les solutions de cette équation.

# 4.2 Solutions des équations linéaires d'ordre quelconques.

Soient  $a_0, ..., a_n \in \mathbb{C}$ . On considère l'équation différentielle suivante :

$$a_n y^{(n)} + \dots + a_1 y' + a_0 y = 0$$

On considère le polynome  $P(X) = a_n X^n + ... a_1 X + a_0$ , et  $\lambda_1, ..., \lambda_n$  ses racines (supposées distinctes). Montrer que pour tout n-uplet  $\mu_1, ..., \mu_n \in \mathbb{C}$ , la fonction  $t \to \sum_i \mu e^{\lambda_i}$  est solution de l'équation différentielle.

En déduire toutes les solutions complexes et réelles de l'équation :

$$y^{(3)} = y$$

# 4.3 Equations différentielles et involutions

Soit  $a \in \mathbb{R}$ . Trouver toutes les fonctions dérivables de  $\mathbb{R}$  dans  $\mathbb{R}$  telles que :

$$f'(x) = f(a - x)$$

# 4.4 Résolution générale des équations linéaires d'ordre 1

Le but de ce très court exercice est de voir que la résolution des équations linéaires d'ordre 1 se ramène toujours à un simple calcul de primitive.

On considère a,b,c trois fonctions continues de  $\mathbb R$  dans  $\mathbb R$ , qui ne s'annulent pas.

Exprimer en fonction de a, b, c les solutions de l'équation :

$$a(t)y' + b(t)y = c(t)$$

# 5 Suites réelles

#### 5.1 Suites entières

Soit  $(u_n)$  une suite à valeur dans  $\mathbb{N}$ .

- Montrer que si  $(u_n)$  converge, alors elle est constante à partir d'un certain rang.
- Montrer que si  $(u_n)$  est injective, alors elle tend vers  $+\infty$

# 5.2 limsup, liminf

Soit $(u_n)$  une suite réelle. On définit  $(v_n)$  et  $(w_n)$  à valeur dans  $\mathbb{R} \cup \{-\infty, +\infty\}$  par :

$$v_n = \sup_{k \ge n} \{u_k\}$$
$$w_n = \inf_{k \ge n} \{u_k\}$$

— Montrer que  $(v_n)$  et  $(w_n)$  convergent. On

On notera  $\limsup (u) = \lim_n v_n$  et  $\liminf (u) = \lim_n w_n$ .

- Montrer que si  $\limsup(u) = \liminf(u)$ , alors u converge.
- Montrer que si u converge,  $\limsup(u) = \liminf(u) = \lim \inf(u) = \lim n u_n$
- Montrer que  $\limsup(u)$  et  $\liminf(u)$  sont des valeurs d'adhérence de  $(u_n)$ .

# 5.3 Une généralisation du théorème de Césaro

Soient  $(a_n)$  et  $(b_n)$  deux suites réelles. On suppose que  $a_n \to a \in \mathbb{R}$  et  $b_n \to b \in \mathbb{R}$ . On pose :

$$C_n = \frac{1}{n+1} \sum_{k=0}^{n} a_k b_{n-k}$$

Montrer que  $C_n$  converge, et déterminer sa limite.

#### 5.4 Séries

Soit  $(u_n)$  une suite. On pose  $S_n = \sum_{k=0}^n u_k$ , et  $\tilde{S}_n \sum_{k=0}^n |u_k|$ .

Montrer que si  $\tilde{S}_n$  converge vers une limite finie, alors  $S_n$  également. On montrera pour cela que c'est une suite de Cauchy.

#### 5.5 Fonction contractante

Pour cet exercice, il faut d'abord traiter (ou admettre) l'exercice précédent. On dit que  $f: \mathbb{R} \to \mathbb{R}$  est contractante si il existe 0 < c < 1 tel que pour tout  $x, y \in \mathbb{R}$ , on a |f(x) - f(y)| < c|x - y|.

Soit  $x \in \mathbb{R}$ . On définit  $(u_n)$  par :

$$u_0 = x$$
$$u_{n+1} = f(u_n)$$

Montrer que  $(u_{n+1} - u_n)$  décroit "exponentiellement" vers 0. En déduire que  $u_n$  converge vers un point fixe de f.

Montrer que ce point fixe est unique.

#### 5.6 Caractérisation des ensembles de valeurs d'adhérence

Soit u une suite réelle. On note  $\Lambda(u)$  l'ensemble des valeurs d'adhérences de u, éventuellement dans  $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ . Le but de l'exercice est de caractériser les ensembles qui peuvent s'écrire comme  $\Lambda(u)$  pour une suite réelle donnée.

- Soient  $E = x_1, ..., x_n \in \mathbb{R}$ . Construire u telle que  $\Lambda(u) = E$
- Même question, mais en supposant cette fois  $x_1, ..., x_n \in \mathbb{R}$
- Soient  $a, b \in \mathbb{R}$ . Montrer qu'il existe u suite réelle telle que  $\Lambda(u) = [a, b]$ . Généraliser au cas où a et b sont éventuellement infinis.
- Soient  $\Lambda_1, ..., \Lambda_n$  des ensembles pouvant s'exprimer comme les ensembles de valeurs d'adhérences de suites réelles. Montrer qu'il existe u une suite réelle telle que  $\Lambda(u) = \bigcup_{1 \le i \le n} \Lambda_i$
- Soit  $(\Lambda_n)_{n\in\mathbb{N}}$  une suite d'ensemble, pouvant tous s'exprimer comme des ensembles de valeurs d'adhérences. Montrer qu'il existe u une suite réelle telle que  $\Lambda(u) = \bigcap_i \Lambda_i$

#### 5.7 Suite à variation décroissante

Soit u une suite réelle, telle que  $u_{n+1} - u_n \to 0$ . Montrer que l'ensemble des valeurs d'adhérences de u est  $[\liminf(u), \limsup(u)]$ .

#### 6 Fonctions continues

#### 6.1 Unique antécédent

Soit f une fonction continue de  $\mathbb R$  dans  $\mathbb R$ , telle que chaque y réel admet au plus deux antécédents.

Montrer qu'il existe un y réel qui possède un unique antécédent.

# 6.2 Involution dans $\mathbb{R}_+$

Soit  $f: \mathbb{R}_+ \to \mathbb{R}_+$  continue, telle que  $f \circ f = Id$ . Déterminer f.

#### 6.3 Continuité de fonction croissante

Soit f une fonction croissante de  $\mathbb{R}_+^* \to \mathbb{R}$  telle que  $\frac{f(x)}{x}$  est décroissante. Montrer que f est continue.

#### 6.4 Borne supérieure glissante

Soit f une fonction réelle continue. Soit g définie par :

$$g(x) = \sup_{t \in [x, x+1]} f(t)$$
 (6.1)

Montrer que g est continue.

#### 6.5 Fonction réelle surjective

Soit  $f: \mathbb{R}_+ \to \mathbb{R}$  une fonction continue surjective. Soit y un réel. Montrer que l'équation y = f(x) admet une infinité de solutions.

#### 6.6 Continuité et convergence uniforme

Soit  $(f_n)$  une suite de fonctions continues qui converge uniformément vers f. Montrer que f est continue.

#### 6.7 Semi-Continuité

- 1. Soit  $(f_i)_{i\in I}$  une famille de fonctions continues et bornées. La fonction  $\inf_i f_i$  est-elle continue?
- 2. On dit d'une fonction f qu'elle est semi-continue supérieurement si :

$$\forall a, \forall \epsilon > 0, \exists \eta, \ \forall x, |x - a| < \eta \implies f(x) \le f(a) + \epsilon$$

- (a) Donner un exemple de fonction non continue mais continue supérieurement.
- (b) Montrer que si  $(f_i)_{i\in I}$  est une famille de fonctions continues supérieurement et bornées, alors  $\inf_i f_i$  est continue supérieurement.

# 6.8 Caractérisation par les ouverts

Montrer qu'une fonction réelle est continue si et seulement si l'image réciproque de tout ouvert est un ouvert.

## 7 Dérivabilité

# 7.1 Croissante sur un voisinage?

Soit f une fonction  $C^1([0,1],\mathbb{R})$  telle que f'(0) > 0. Existe-t-il un voisinage I de 0 tel que f est strictement croissante sur I?

Le résultat est-il vrai si on suppose uniquement f dérivable?

# 7.2 Bornes d'une intégrale

Montrer qu'il existe  $\phi: \mathbb{R} \to \mathbb{R}$  une fonction telle que  $\forall x \in \mathbb{R}$ :

$$\int_{x}^{\phi(x)} e^{t^2} = 1$$

Montrer que  $\phi$  est  $C^1$ .

# 7.3 Surjectivité des tangentes

Soit  $f:[a,b]\to\mathbb{R}$  une fonction dérivable. Soit  $x\notin[a,b]$ . Montrer qu'il existe une tangente à f passant par x.

#### 7.4 Minoration de la dérivée seconde

Soit  $f:[0,1]\to\mathbb{R}$   $C^2$  telle que f(0)=f'(0)=f'(1)=0, et f(1)=1. Montrer qu'il existe c tel que  $|f''(c)|\geq 4$ .

# 8 Développements limités et analyse asymptotique

#### 8.1 Questions courtes

- Montrer que les coefficients pairs du  $DL_n(0)$  d'une fonction impaire sont nuls.
- Commenter le  $DL_2(0)$  d'une fonction  $C^2$  qui admet un minimum local strict en 0.

#### 8.2 Convergence simple de la série de Taylor de sinus

Notons  $T_n$  le développement limité de sinus en 0. Montrer que :

$$\forall x \in \mathbb{R}, \ \lim_{n \to \infty} T_n(x) = \sin(x)$$

# 8.3 Racines imbriquées

Trouver un équivallent de  $u_n = \sqrt{n + \sqrt{(n-1) + \dots + \sqrt{2 + \sqrt{1}}}}$ . On peut poser les questions intermédiaires suivantes :

- 1. Montrer que  $u_n \to_{n\to\infty} \infty$ .
- 2. Montrer que  $u_n \leq n$ .
- 3. Montrer que  $u_n = O(\sqrt{n})$ .
- 4. Montrer que  $u_n \sim \sqrt{n}$

# 8.4 Développement asymptotique des solutions d'une equation

Montrer que pour tout n entier naturel, il existe une unique solution à l'équation  $e^x + x = n$ .

On appelle cette solution  $x_n$ .

Déterminer la limite de  $x_n$ .

Déterminer son développement asymptotique à trois termes.

#### 8.5 Un calcul de limite

Soient  $x_1, ..., x_n > 0$ .

Calculer la limite quand  $\alpha \leftrightarrow 0$  de

$$\sqrt[\alpha]{\frac{x_1^\alpha + \dots + x_n^\alpha}{n}}$$

#### 8.6 Arccosinus

Déterminer le développement asymptotique de arccos en 1.

# 9 Arithmétique

# 9.1 Questions courtes

- Combien y a-t-il de zéro terminaux dans l'écriture en base 10 de 100!
- Montrer que la somme des cubes de trois entiers consécutifs est toujours divisible par 9
- Montrer que si  $2^{n-1}$  est premier alors n est premier

#### 9.2 Critère d'Euler

Soit p>2 un nombre premier et  $a\in (Z/pZ)^*$ . Montrer que a est un carré si et seulement si  $a^{\frac{p-1}{2}}=1$ .

#### 9.3 Somme de parties entières

Soient n et m deux entiers premiers entre eux. Montrer que :

$$\sum_{k=1}^{n-1} \left\lfloor \frac{km}{n} \right\rfloor = \frac{(m-1)(1-1)}{2}$$

# 10 Groupes

#### 10.1 Formule de Legendre

One note  $v_p(n)$  la valuation p-adique de n, soit la puissance maximale de p qui divise n.

Montrer la formule de Legendre :

$$v_p(n!) = \sum_{k \in \mathbb{N}^*} \left\lfloor \frac{n}{p^k} \right\rfloor \tag{10.1}$$

#### 10.2 Sommes d'inverses

On note  $S(m,n)=\sum_{i=m}^n\frac{1}{i}.$  Montrer que les seuls n,m tels que  $S(n,m)\in\mathbb{N}$  sont n=m=1

#### 10.3 PGCD et suite de Fibonacci

On définit la suite de Fibonacci par  $\phi_{n+2} = \phi_{n+1} + \phi_n$ ,  $\phi_0 = 0$  et  $\phi_1 = 1$ .

- Montrer que  $\phi_{n+1} \wedge \phi_n = 1$
- Montrer que  $\phi_{n+m} = \phi_m \phi_{n+1} + \phi_{m-1} \phi_n$
- En déduire que  $\phi_{kn+r} \wedge \phi_n == \phi_r \wedge \phi_n$
- En conclure que  $\phi_n \wedge \phi_m = \phi_{n \wedge m}$

#### 10.4 Parties stables de $\mathbb{N}$

On prend une partie P stable par addition. Montrer qu'il existe n,k tels que  $P\cap [n,\infty[=k\mathbb{N}\cap [n,\infty[$ .

#### 10.5 Infinité des nombres premiers

- Montrer que l'ensemble des nombres premiers est infini
- Montrer que l'ensemble des nombres premiers congrus à 3 modulo 4 est infini.

# 11 Groupes, anneaux, corps

#### 11.1 Questions courtes

- Montrer que le centre d'un groupe G est un sous-groupe de G.
- Montrer que les éléments d'ordre fini d'un groupe abélien en forment un sous-groupe.
- Montrer que la table de multiplication d'un groupe fini est un carré latin (chaque élément du groupe apparait exactement une fois sur chaque ligne et chaque colonne).
- Montrer qu'un groupe dont tous les éléments sont d'ordre au plus 2 est commutatif.
- Trouver le plus petit entier n tel qu'un groupe de cardinal n n'est pas nécessairement abelien (pour n = 4, utiliser le point précédent).

# 11.2 Groupe dihedral

Soit  $P = A_1 \cdots A_n$  un n-gone régulier. On note  $D_n$  l'ensemble des permutations  $\sigma \in S_n$  telles que  $A_i A_j$  est une arrête de P si et seulement si  $A_{\sigma(i)} A_{\sigma(j)}$  est une arrête de P.

- Quel est le cardinal de  $D_n$ ?
- Montrer que  $D_n$  admet une structure de groupe.
- Discuter l'ordre des éléments de  $D_n$ 
  - Montrer que  $D_n$  admet un sous-groupe cyclique d'ordre n.
  - Montrer que  $D_n$  admet n éléments au moins d'ordre 2.
- Donner la table de multiplication de  $D_n$
- $D_n$  peut-il être abélien, si oui pour quels valeurs de n?
- Combien de sous-groupes  $D_n$  admet-il exactement?

# 11.3 Groupe des fonctions affines

Soit k un corps commutatif. On considère  $E=k^*\times k$  muni de la loi :

$$(x,y) \star (x',y') = (xx',xy'+y)$$
 (11.1)

Montrer que  $(E, \star)$  est un groupe.

On considère  $F = \{f : z \to az + b, a \in k^*b \in k\}$ 

Montrer que  $(F, \circ)$  est un groupe. Montrer qu'il est isomorphe à  $(E, \star)$ .

#### 11.4 Sous-groupes maximaux

Déterminer tous les sous-groupes de  $(\mathbb{Z}, +)$ .

On dit qu'un sous-groupe H de G est maximal s'il n'est strictement inclus dans aucun sous-groupe strict de G.

Déterminer tous les sous-groupes maximaux de  $(\mathbb{Z}, +)$ .

Déterminer tous les sous-groupes maximaux de  $(\mathbb{Q}, +)$ .

# 12 Polynomes

# 12.1 Anneaux, quotients, polynomes, ...

Soit A un anneau, I un idéal de A.

On définit la relation  $a \sim b \Leftrightarrow a - b \in I$ 

- Montrer que  $\sim$  est une relation d'équivalence.
- Exemple :  $A = \mathbb{Z}$ ,  $I = n\mathbb{Z}$ . Quelles sont les classes d'équivalence?
- On définit :

$$\bar{a} + \bar{b} := \overline{a+b} \tag{12.1}$$

$$\bar{a} \times \bar{b} := \overline{a \times b} \tag{12.2}$$

Montrer que  $(A/\sim, \bar{+}, \bar{\times})$  est un anneau.

- Pour la suite, on prend k un corps et A=k[X]. On prend  $P\in A$  et I=Pk[X]. Quelles sont les classes d'équivalences? Quels sont les éléments inversibles?
- Montrer que si P est irréductible dans k, alors k[X]/P est un corps. On le notera k'.
- Montrer que k peut être vu comme un sous-corps de k'.
- Montrer que P en tant que polynome de k' possède une racine dans k'.
- Application : on prend  $k = \mathbb{R}$  et  $P = X^2 + 1$ . Montrer que  $\mathbb{R}[X]/P = \mathbb{C}$  en tant que corps.

# 12.2 Division de polynomes

Calculer la division euclidienne de  $(\cos \theta + X \sin \theta)^n$  par  $(X^2 + 1)$ .

#### 12.3 Nombre de solutions d'une équation

Soit P un polynome de  $\mathbb{C}[X]$  de degré d. On définit n(z) comme le nombre de solution à l'équation P(x)=z.

— Montrer que  $n(z) = d - deg((P - z) \wedge P')$  — Montrer que  $\sum_{z \in \mathbb{C}} d - n(z) = d - 1$ 

# Minoration du module des racines

Soit  $P \in \mathbb{C}[X]$ ,  $P = X^n + a_{n-1}X^{n-1} + \dots + a_0$ . Soit  $z_0$  une racine de P. Montrer que  $|z_0| \leq 1 + \max(|a_i|)$ .

#### 13 Fractions rationnelles

#### 13.1 (Quasi) surjectivité des fractions rationnelles

Montrer qu'une l'image d'une fraction rationnelle complexe est soit tout C, soit C privé d'un point.

# Fraction rationnelle et longueurs d'intervalles

Soient  $a_1,...,a_n > 0$ , et  $x_1,...,x_n \in \mathbb{R}$ . On pose

$$f(x) = \sum_{i} \frac{a_i}{x - x_i}$$

On définit

$$E(\lambda) = \{ x \in \mathbb{R} \mid f(x) > \lambda ) \}$$

— Montrer que  $E(\lambda)$  est une union finie d'intervalles.

— Montrer que la somme des longueurs de ces intervalles vaut

$$\frac{1}{\lambda} \sum_{i} a_{i}$$

#### Calcul de série 13.3

Calculer

$$\sum_{n\geq 1} \frac{1}{n(n+1)(n+2)} \tag{13.1}$$

Solution: 1/4

# 14 Espaces vectoriels

#### 14.1 Exemples

On se place dans l'espace des fonctions réelles. Dire si ces ensembles sont ou non des sous-espaces vectoriels :

- L'ensemble des fonctions croissantes
- L'ensemble des fonctions monotones
- L'ensemble des fonctions périodiques de période 1
- L'ensemble des fonctions pouvant s'écrire comme la somme d'une fonction croissante et d'une fonction décroissante.
- L'ensemble des fonctions qui ont une limite finie en  $\infty$  et  $-\infty$ .

# 14.2 Quelques supplémentaires

Dans chaque exemple, montrer que F est un sous espace vectoriel de E et trouver un supplémentaire de F dans E.

```
\begin{split} & - E = K(X), F = K[X] \\ & - E = \mathbb{R}^{\mathbb{R}}, \ F = \{f : f(0) + f(1) = 0\} \\ & - E = \mathbb{R}^{\mathbb{R}}, \ F = \{f : f \text{ paire}\} \\ & - E = \mathcal{C}^0([0, 1], \mathbb{R}), \ F = \{f : \int_0^1 f = 0\} \\ & - [*] \ E = \mathcal{C}^0(R, R), \ F = \{f : \forall k, \ f(x_k) = 0\} \end{split}
```

## 14.3 Intersections, unions, sommes

Soit E un espace vectoriel, A et B des parties de E

- Comparer  $Vect(A \cup B)$  et Vect(A) + Vect(B)
- Comparer  $Vect(A \cap B)$  et  $Vect(A) \cap Vect(B)$

## 14.4 Equation de Cauchy

On considère l'équation de Cauchy :

$$\forall x, y \in R, \ f(x+y) = f(x) + f(y)$$

- Montrer que la restriction de toute solution à l'équation de Cauchy à  $\mathbb Q$  est linéaire.
- Montrer que toute solution continue est linéaire.
- Montrer que  $\mathbb{R}$  est un  $\mathbb{Q}$ -ev de dimension infinie.
- En admettant l'existence d'un supplémentaire de  $\mathbb{Q}$  dans  $\mathbb{R}$ , construire une solution non linéaire à l'équation de Cauchy.

# 14.5 Endomorphismes nilpotents

Soit E un espace de dimension n.

- Soit u un endomorphisme nilpotent. Montrer que  $u^n = 0$ .
- Soient  $u_1, ..., u_n$  des endomorphismes nilpotents qui commutent. Montrer que  $u_1 \circ u_2 \circ ... \circ u_n = 0$ .

# 14.6 Supplémentaire commun

Soit E un espace vectoriel de dimension finie, F et G des sous-espaces de E de même dimension.

Montrer qu'ils admettent un supplémentaire commun.

#### 14.7 Identité de Leibniz

On veut montrer l'identité de Leibniz à partir de l'identité de Newton dans un anneau quelconque. Pour cela, on introduit  $E=\{f:\mathbb{N}^2\to\mathbb{R}:f\text{ est à support fini}\}$ . Pour f et g deux fonctions  $C^\infty$  et  $\phi\in E$ , on définit :

$$[\phi]_{f,g} = \sum_{i,j} \phi(i,j) f^{(i)} g^{(j)}$$

- Montrer que E peut être muni d'une structure d'EV.
- Trouver un opérateur  $\Delta: E \to E$  tel que :

$$\forall \phi, ([\phi]_{f,q})' = [\Delta \phi]_{f,q}$$

— En écrivant  $\Delta$  comme somme de deux endomorphismes de  $\mathcal{L}(E)$  qui commutent et en utilisant l'indentité de Newton sur l'anneau  $(\mathcal{L}(E), +, \circ)$ , montrer l'identité de Leibniz.

#### 14.8 Un peu de dénombrement

Soit E un EV de dimension n sur le corps  $\mathbb{F}_p$  et  $r \leq n$ .

- Combien y a-t-il de familles libres (ordonnées) de taille r sur E?
- Combien y a-t-il de sous-espaces de dimension r dans E

#### 14.9 Pour ceux qui aiment l'algèbre

Montrer que le cardinal de tout corps fini est une puissance d'un entier premier.

#### 14.10 Petits exos faciles

- Montrer que l'ensemble des suites de périodes T est un EV. Quelle est sa dimension?
- Soient  $x_1 < \cdots < x_n$ . Quelle est la dimension de l'espace des fonctions continues sur  $[x_1, x_n]$  affines sur chaque intervalle  $[x_i, x_{i+1}]$ ?
- Montrer que  $\operatorname{rg}(v \circ u) = \operatorname{rg}(u)$  si et seulement si  $\operatorname{Ker} v \cap \operatorname{Im} u = 0$
- Montrer que  $|\operatorname{rg}(u) \operatorname{rg}(v)| \le \operatorname{rg}(u+v) \le \operatorname{rg}(u) + \operatorname{rg}(v)$
- Montrer que dim  $\operatorname{Ker}(f \circ g) \leq \dim \operatorname{Ker}(f) + \dim \operatorname{Ker}(g) \ (f, g \in \mathcal{L}(E))$ . Cas d'égalité?  $(\operatorname{Ker}(f) \subseteq \operatorname{Im}(g))$

# 14.11 Contraintes indépendantes

Soit E e.v. de dimension n et  $\phi_1, \dots, \phi_p$  des formes linéaires indépendantes. Montrer que dim  $\bigcap_i \operatorname{Ker} \phi_i = n - p$ .

#### Indices:

— Montrer que si H est un ev strict de  $\mathbb{R}^p$ , alors il existe  $(a_i)_i$  telle que :

$$\forall x \in H, \ \sum_{i} a_i x_i = 0$$

— Etudier l'application  $x \mapsto (\phi_1(x), \dots, \phi_2(x))$ 

## 14.12 Décomposition de l'unité

Soit E un espace vectoriel,  $(f_i)$  une famille finie d'endomorphismes. On suppose que :

$$\begin{array}{ll} - & \sum rg(f_i) \leq n \\ - & \sum f_i = Id \end{array}$$

Montrer que les  $f_i$  sont des projecteurs.

Solution: Comme  $\sum f_i = Id$ , on a  $\bigoplus Im(f_i) = E$ . (Vérifier les intersections nulles)

Indice: Montrer que  $f_i f_j = 0$  si  $i \neq j$ .

#### 14.13 Division polynomiale et projecteurs

Soit  $E = \mathbb{R}[X]$ , et  $A \in E$ . Montrer que l'application qui à un polynome associe le reste de la division euclidienne par A est un projecteur. Déteriner son image et son noyau.

# 14.14 Corps et sur-corps