数字逻辑设计

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn

Unit 2 布尔代数

- 逻辑运算
- 布尔表达式和真值表
- 逻辑代数定理及规则
- 代数化简法

George Boole

各种逻辑运算

- ·基本逻辑运算(Basic Operations)
 - > 与 (AND)
 - ⇒ 或(OR)
 - ➤ 非(NOT)
- ·复合逻辑运算(Other Operations)

基本运算——AND

1. AND (逻辑"与")

F=A•B

① 也称为: 逻辑"乘"

真值表

AB	F
00	0
01	0
10	0
11	1

② AND gate (与门) 逻辑符号

③ Typical Chip: 74LS08

基本运算——OR

2. OR (逻辑"或")

F=A+B

①也称为:逻辑"加"

Truth Table

AB	F
00	0
01	1
10	1
11	1

② OR gate (或门) 逻辑符号

③ Typical Chip: 74LS32

基本运算——NOT

3. NOT (逻辑"非")

F=A

(or F=A')

①也称为: 反相器

True table

Α	F
0	1
1	0

② NOT gate (非门) 逻辑符号

③ Typical Chip: 74LS04

复合逻辑运算(Other Operations)

- ·基本逻辑运算(Basic Operations)
 - > 与 (AND)
 - ⇒ 或(OR)
 - ➤ 非 (NOT)
- ·复合逻辑运算(Other Operations)

复合逻辑运算——NAND

4. 与非门 (NAND gate)

$$F = \overline{AB}$$

■ Typical Chip: 74LS00

Truth Table

AB	F
00	1
01	1
10	1
11	0

复合逻辑运算——NOR

5. 或非门 (NOR gate)

$$F = \overline{A + B}$$

$$A \rightarrow F \rightarrow C$$

■ Typical Chip: 74LS02

Truth Table

AB	F
0 0	1
01	0
10	0
11	0

复合逻辑运算——NAND-OR-NOT

6. 与或非门 (AND-OR-NOT gate)

■ Typical Chip: 74LS51,74LS55

复合逻辑运算——Exclusive-OR

7. 异或门 (Exclusive-OR gate)

(1) $F = A \oplus B = \overline{A}B + A\overline{B}$

② 逻辑符号

Truth Table

AB	F
00	0
01	1
10	1
11	0

③ Typical Chip: 74LS86

- 4 应用
 - 全加器 (Full adder)
 - 半加器 (Half-adder)

异或门的应用

■ 半加器 (Half-adder)

半加器逻辑符号

■ 全加器 (Full adder)

输入		输出	
Α	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

输入			輸出	
Ci-1	Ai	Bi	Si	Ci
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

逻辑表达式: $S = A \oplus B$; $C = A \cdot B$ 。

半加器的逻辑实现

$$S = A \oplus B \oplus C_{in}$$
$$C_{out} = (A \cdot B) + (C_{in} \cdot (A \oplus B))$$

复合逻辑运算——Exclusive-OR

8. 同或门 (Equivalence operation)

$$F = A = B$$
 or

$$F = A \odot B = AB + AB$$

① 逻辑符号

Truth Table

AB	F
00	1
01	0
10	0
11	1

大家觉得课程节奏如何?

- A 太快了
- B 偏快
- **还可以**
- | 偏慢
- 大慢了 太慢了

复合逻辑运算——Exclusive-OR

2 Typical Chip: 74LS266

如何构造1位等值比较器??

- ③ Applications
 - 等值比较器

如何用同或门实现4位二进制的等值比较?

正常使用主观题需2.0以上版本雨课堂

复合逻辑运算——Exclusive-OR

4 性质

$$A \oplus 1 = \overline{A}$$
 $A \odot 1 = A$

$$A \oplus 0 = A$$
 $A \odot 0 = \overline{A}$

$$A \oplus A = 0$$
 $A \odot A = 1$

$$A \oplus \overline{A} = 1$$
 $A \odot \overline{A} = 0$

复合逻辑运算——Exclusive-OR

应用

Unit 2 Boolean Algebra

- ・逻辑运算
- 布尔表达式和真值表
- 逻辑代数定理及规则
- 代数化简法

布尔表达式和真值表

布尔表达式(Boolean Expressions)

$$F = AB + \overline{AB}$$

$$F = [A(C+D)]'+BE$$

Boolean expressions are formed by application of the basic operations (and, or, not) to one or more variables or constants.

布尔表达式和真值表

$$F = AB + \overline{AB}$$

逻辑图

真值表

AB	F
00	1
01	0
10	0
11	1

■ n 个输入变量有 2" 种取值组合

■ 如果两个逻辑表达式的真值表相等,则这两个逻辑表达式相等.

Example.
$$AB'+C = (A+C)(B'+C)$$

ABC	AB' + C	(A + C)(B' + C)	
0 0 0	0	0 j	
0 0 1	1		表达式简单,逻 ^最 变量较少
0 1 0	0	0	7
0 1 1	1	1	
1 0 0	1	1	
1 0 1	1	1	
1 1 0	0	0	
1 1 1	1	1	

一个逻辑运算的真值表是否是唯一的?对应的逻辑图是否是唯一的?

- (A) 否, 否
- B 是, 否
- 否,是
- D 是,是

Unit 2 Boolean Algebra

- 逻辑运算
- 布尔表达式和真值表
- 逻辑代数定理及规则
- 代数化简法

1. 公理(Axiom)

(A1)
$$0 \cdot 0 = 0$$

(A2)
$$0 \cdot 1 = 1 \cdot 0 = 0$$

$$(A3) 1 \cdot 1 = 1$$

$$(A4) \, \bar{0} = 1$$

$$(A5)$$
 If A \neq 0 then A=1

$$(A1D) 0+0 = 0$$

$$(A2D) 1+0 = 0+1=1$$

(A3D)
$$1+1=1$$

(A4D)
$$\bar{1} = 0$$

(A5D) If
$$A\neq 1$$
 then $A=0$

2. 基本定理(Basic Theorems)

single variable is involved

(T1)
$$A+0=A$$
 (T1D) $A \cdot 0=0$
(T2) $A+1=1$ (T2D) $A \cdot 1=A$

(T3)
$$\mathbf{A} + \overline{\mathbf{A}} = \mathbf{1}$$
 (T3D) $\mathbf{A} \cdot \overline{\mathbf{A}} = \mathbf{0}$ 互补律

$$(T4) A+A=A (T4D) A \cdot A=A 重叠律$$

$$(T5)$$
 $\overline{\overline{A}} = A$ 还原律

➤ 应用——

0-1律

重叠率

- ■与普通代数相似的定理
 - Two or three variables is involved 交換律

$$(T6) A+B=B+A$$

 $(T6D) \mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$

结合律

(T7)
$$(A+B)+C=A+(B+C)$$

(T7) (A+B)+C=A+(B+C) (T7D) $(A \cdot B) \cdot C=A \cdot (B \cdot C)$

分配律

第二分配律

(T8)
$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$$

(T8)
$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$$
 (T8D) $\mathbf{A} + \mathbf{B}\mathbf{C} = (\mathbf{A} + \mathbf{B}) \cdot (\mathbf{A} + \mathbf{C})$

(T9)
$$\mathbf{A} + \mathbf{A}\mathbf{B} = \mathbf{A}$$

(T10)
$$\mathbf{AB} + \mathbf{A}\mathbf{\bar{B}} = \mathbf{A}$$

$$(T11) \mathbf{A} + \overline{\mathbf{A}} \mathbf{B} = \mathbf{A} + \mathbf{B}$$

(T9D)
$$\mathbf{A}(\mathbf{A} + \mathbf{B}) = \mathbf{A}$$

$$\mathbf{S}(\mathbf{S}) = \mathbf{A}$$
 (吸收律)

(T10D)
$$(\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{\overline{B}}) = \mathbf{A}$$
 (合并律)

(消除律)

$$A+\overline{A}B$$
 分配律的对偶式

$$=(A+\overline{A})(A+B)$$

$$=A+B$$

$$A + \overline{A}B$$

$$=A+AB+AB$$

$$=A+B$$

$$(T9) \mathbf{A} + \mathbf{AB} = \mathbf{A}$$

$$(T9D) \mathbf{A}(\mathbf{A} + \mathbf{B}) = \mathbf{A}$$

(吸收律)

(T10)
$$\mathbf{AB} + \mathbf{A}\mathbf{\bar{B}} = \mathbf{A}$$

(T10D)
$$(\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{\overline{B}}) = \mathbf{A}$$
 (合并律)

$$(T11) \mathbf{A} + \overline{\mathbf{A}} \mathbf{B} = \mathbf{A} + \mathbf{B}$$

(消除律)

(T12)
$$AB+\overline{A}C+BC=AB+\overline{A}C$$

$$=AB+\overline{A}C+(A+\overline{A})BC$$

$$=AB+\overline{A}C+ABC+\overline{A}BC$$

$$= AB + \bar{A}C$$

$$(T9) \mathbf{A} + \mathbf{AB} = \mathbf{A}$$

(T9D)
$$\mathbf{A}(\mathbf{A} + \mathbf{B}) = \mathbf{A}$$

(吸收律)

(T10)
$$\mathbf{AB} + \mathbf{A}\mathbf{\bar{B}} = \mathbf{A}$$

(T10D)
$$(\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{\overline{B}}) = \mathbf{A}$$
 (合并律)

$$(T11) \mathbf{A} + \overline{\mathbf{A}} \mathbf{B} = \mathbf{A} + \mathbf{B}$$

(消除律)

(T12)
$$AB+\bar{A}C+BC=AB+\bar{A}C$$

(蕴含律)

(T12D)
$$AB+\overline{A}C+BCD = AB+\overline{A}C$$

$$(T12D)'(A+B)(B+C)(A'+C) = (A+B)(A'+C)$$

$$(T9) \mathbf{A} + \mathbf{AB} = \mathbf{A}$$

(T9D)
$$\mathbf{A}(\mathbf{A} + \mathbf{B}) = \mathbf{A}$$

(吸收律)

(T10)
$$\mathbf{AB} + \mathbf{A}\mathbf{\bar{B}} = \mathbf{A}$$

(T10D)
$$(\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{\overline{B}}) = \mathbf{A}$$
 (合并律)

$$(T11) \mathbf{A} + \overline{\mathbf{A}} \mathbf{B} = \mathbf{A} + \mathbf{B}$$

(消除律)

(T12)
$$AB+\bar{A}C+BC=AB+\bar{A}C$$

(T12D)
$$AB + \overline{A}C + BCD = AB + \overline{A}C$$

$$(T12D)'(A+B)(B+C)(A'+C') = (A+B') = AB + \bar{A}C + BC + BCD$$

From (T12):

律)

$$=AB+\overline{A}C+BC+BCD$$

$$=AB+\bar{A}C+BC$$

$$= AB + \bar{A}C$$

$$(T9) \mathbf{A} + \mathbf{AB} = \mathbf{A}$$

(T9D)
$$\mathbf{A}(\mathbf{A} + \mathbf{B}) = \mathbf{A}$$

(吸收律)

(T10)
$$\mathbf{AB} + \mathbf{A}\mathbf{\bar{B}} = \mathbf{A}$$

(T10D)
$$(\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{\overline{B}}) = \mathbf{A}$$
 (合并律)

$$(T11) \mathbf{A} + \overline{\mathbf{A}} \mathbf{B} = \mathbf{A} + \mathbf{B}$$

(消除律)

(T12)
$$AB+\overline{A}C+BC=AB+\overline{A}C$$

(蕴含律)

(T12D)
$$AB + \overline{A}C + BCD = AB + \overline{A}C$$

$$(T12D)'(A+B)(B+C)(A'+C) = (A+B)(A'+C)$$

(T13)
$$A\overline{B} + \overline{A}B = \overline{A}\overline{B} + AB$$

Two or three variables is involved

$$(T9) \mathbf{A} + \mathbf{AB} = \mathbf{A}$$

(T9D)
$$\mathbf{A}(\mathbf{A} + \mathbf{B}) = \mathbf{A}$$

(吸收律)

(T10)
$$\mathbf{AB} + \mathbf{A}\mathbf{\bar{B}} = \mathbf{A}$$

(T10D)
$$(\mathbf{A}+\mathbf{B})(\mathbf{A}+\overline{\mathbf{B}}) = \mathbf{A}$$
 (合并律)

$$(T11) \mathbf{A} + \overline{\mathbf{A}} \mathbf{B} = \mathbf{A} + \mathbf{B}$$

(消除律)

[含律]

(T12)
$$AB+\overline{A}C+BC=AB+\overline{A}C$$

(T12D)
$$AB+\overline{A}C+BCD = AB+\overline{A}C$$

$$(T12D)'(A+B)(B+C)(A'+C) = (A+B)$$

(T13)
$$A\overline{B} + \overline{A}B = \overline{A}\overline{B} + AB$$

$\overline{\mathbf{A}\overline{\mathbf{B}} + \overline{\mathbf{A}}\mathbf{B}}$

$$=\overline{A}\overline{\overline{B}} \cdot \overline{\overline{A}B}$$

$$=(\overline{A}+B)\cdot(A+\overline{B})$$

$$= \overline{A}\overline{B} + AB$$

N variables is involved

一德摩根定理(DeMorgan's Laws)

(13)
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
 (13) $\overline{A \cdot B} = \overline{A} + \overline{B}$

特殊定理

- 1. DeMorgan's Laws
 - ◆ Applications: 表达式化简

(1)
$$\overline{X_1 X_2 \dots X_n} = \overline{X}_1 + \overline{X}_2 + \dots + \overline{X}_n$$

(2)
$$\overline{X_1 + X_2 + ... + X_n} = \overline{X_1} \overline{X_2} ... \overline{X_n}$$

N variables is involved

(T14)
$$X + X + ... + X = X$$

(T14D)
$$X \cdot X \cdot ... \cdot X = X$$

(广义同一律)

(T15)
$$(X_1 \cdot X_2 \cdot \cdots \cdot X_n)' = X'_1 + X'_2 + \cdots + X'_n$$

(T15D)
$$(X_1 + X_2 + \dots + X_n)' = X_1' \cdot X_2' \cdot \dots \cdot X_n'$$

(德·摩根定理)

(T16)
$$[F(X_1, X_2, ..., X_n, +, \cdot)]' = F(X_1', X_2', ..., X_n', \cdot, +)$$
 (广义德·摩根定理)

(T17)
$$F(X_1, X_2, ..., X_n) = X_1 \cdot F(1, X_2, ..., X_n) + X_1' \cdot F(0, X_2, ..., X_n)$$

(T17D)
$$F(X_1, X_2, ..., X_n) = [X_1 + F(0, X_2, ..., X_n)] \cdot [X'_1 + F(1, X_2, ..., X_n)]$$

(香农展开定理)

根据德·摩根定理的等效电路

(T15)
$$(X_1 \cdot X_2 \cdot \cdots \cdot X_n)' = X_1' + X_2' + \cdots + X_n'$$

(a)
$$X = (X \cdot Y)'$$
 (c) $X = (X \cdot Y)'$

(c)
$$X \longrightarrow Z = (X \cdot Y)'$$

(b)
$$X \longrightarrow Z = X' + Y'$$
 (d) $X \longrightarrow Z = X' + Y'$

$$(d) \qquad X \longrightarrow Z = X' + Y$$

(T15D)
$$(X_1 + X_2 + \dots + X_n)' = X_1' \cdot X_2' \cdot \dots \cdot X_n'$$

(a)
$$X = X + Y$$
 $Z = (X + Y)'$ (c) $X = (X + Y)'$

(c)
$$X \longrightarrow Z = (X + Y)$$

(b)
$$X \longrightarrow Z = X' \cdot Y'$$
 (d) $X \longrightarrow Z = X' \cdot Y'$

$$(d) \qquad \begin{array}{c} X \longrightarrow C \\ Y \longrightarrow C \end{array} \longrightarrow Z = X' \cdot Y'$$

2、对偶规则

◆ Applications: Algebraic Simplification

特殊定理

——对偶规则

- ① F Dual Rule (F)D
- ② 两个逻辑表达式相等,它们的对偶也相等

$$A \cdot (B+C+D) = AB+AC+AD$$

对偶规则(Inference of Dual Rule)

Example

F=A•(B+C)
$$\xrightarrow{\text{对偶}}$$
 (F)D=A+B•C

F=A•B+AC $\xrightarrow{\text{对偶}}$ (F)D= (A+B)•(A+C)

F=Ā•B•C $\xrightarrow{\text{对偶}}$ (F)D= \overline{A} + \overline{B} + \overline{C}

Unit 2 Boolean Algebra

- 逻辑运算
- 布尔表达式和真值表
- 逻辑代数定理及规则
- 代数化简法

代数化简法

一个逻辑函数有多种不同的表达式

$$=\overline{\mathbf{AB}+\mathbf{AC}}$$

$$=\overline{AB} \cdot \overline{AC}$$
 $= # - = #$

$$=(\overline{A}+\overline{B})+(\overline{A}+C)$$
 或非-或

$$= \overline{(A+B) \cdot (A+\overline{C})}$$

$$=\overline{\overline{\mathbf{A}} \cdot \overline{\mathbf{B}} + \overline{\mathbf{A}} \cdot \mathbf{C}}$$
与-或非

同一类型的表达式也不是唯一的

$$F=AB+\overline{A}C$$
① F_1 = $AB+\overline{A}C+BC$ ② F_2 = $ABC+AB\overline{C}+\overline{A}BC+\overline{A}BC$ ③ F_3 ③ F_3 ③ F_4 ④ F_4 ④ F_5 ④ F_7 ④ F_7 ④ F_7 ④ F_8 ④ F_8 ④ F_8 ④ F_9 ④ F_9 ...

最简(Minimum Expressions)?

- ① 与项(和项)的个数最少
- ②每个与项(和项)中变量的个数最少

minimum cost

- 逻辑门的数量最少
- 逻辑门的输入个数最少

目的:

- •降低成本
- 提高可靠性

逻辑函数化简的意义:

逻辑表达式越简单,实现它的电路越简单,电路工作越稳定可靠。

Simplification Methods

代数化简法

Example.1

$$F = A + ABC + ACD + CE + DE$$

$$= A + ACD + CE + DE$$

$$= A + CD + CE + DE$$

$$= A + CD + E(C + D)$$

$$= A + CD + ECD$$

$$= A + CD + ECD$$

Example.2
$$F = AB + A\overline{C} + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D} + ADE(F+G)$$

 $= A(\overline{B}C) + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D} + ADE(F+G)$
 $= A + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D} + C\overline{D}$
 $= A + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D} + C\overline{D}$
 $= A + \overline{B}C + B\overline{C} + \overline{B}D + C\overline{D}$
 $= A + \overline{B}C + B\overline{C} + \overline{B}D + C\overline{D}$
 $= A + B\overline{C} + B\overline{C} + \overline{B}D + C\overline{D}$

Example.3
$$F = (\overline{B} + D)(\overline{B} + D + A + G)(C + E)(\overline{C} + G)(A + E + G)$$

Dual Rule: $J = \overline{B}D + \overline{B}DAG + CE + \overline{C}G + AEG$

$$= \overline{B}D + CE + \overline{C}G + AEG$$

$$= \overline{B}D + CE + \overline{C}G$$
Dual Rule: $F = (\overline{B} + D)(C + E)(\overline{C} + G)$

$$F = A + AB + \overline{A}C + BD + ACEF + \overline{B}E + DEF$$

$$=A+C+BD+\overline{B}E$$

正常使用主观题需2.0以上版本雨课堂

重要的三个规则

(T8D)
$$A+BC=(A+B) \cdot (A+C)$$

(T11)
$$\mathbf{A} + \overline{\mathbf{A}}\mathbf{B} = \mathbf{A} + \mathbf{B}$$

(T12D)
$$AB+\overline{A}C+BC = AB+\overline{A}C$$

哪些内容没有听懂,需要再讲一下?

- A 德摩根定理
- B对偶规则
- C 蕴含率
- D 其他
- E 无

代数化简法优缺点

• 优点——

- 不受变量数目的约束
- 对公理、定理和规则十分熟练时, 化简较方便

•缺点——

- 技巧性强
- 在很多情况下难以判断化简结果是否最简

小 结

- •各种逻辑运算
- •布尔表达式和真值表
- •逻辑代数定理及规则
- •代数化简法