33.
$$\sum_{k=1}^{\infty} k(10x)^{k-1}$$
; $\left(-\frac{1}{10}, \frac{1}{10}\right)$ **35.** $1 + 3x + \frac{9x^2}{2!}$; $\sum_{k=0}^{\infty} \frac{(3x)^k}{k!}$

$$\frac{1}{\sqrt{37.}} - (x - \pi/2) + \frac{(x - \pi/2)^3}{3!} - \frac{(x - \pi/2)^5}{5!};$$

$$\sum_{k=0}^{\infty} (-1)^{k+1} \frac{(x - \pi/2)^{2k+1}}{(2k+1)!} \frac{(4x)^3}{(4x)^{2k+1}} \frac{(4x)^5}{(4x)^{2k+1}} = \frac{(4x)^3}{(4x)^5} \frac{(4x)^5}{(4x)^{2k+1}} = \frac{(4x)^3}{(4x)^5} \frac{(4x)^5}{(4x)^{2k+1}} = \frac{(4x)^5}{(4x)^5} = \frac{(4x$$

$$\sum_{k=0}^{\infty} (-1)^{k+1} \frac{(x-\pi/2)^{2k+1}}{(2k+1)!}$$

39.
$$4x - \frac{(4x)^3}{3} + \frac{(4x)^5}{5}$$
; $\sum_{k=0}^{\infty} \frac{(-1)^k (4x)^{2k+1}}{2k+1}$

41.
$$1 + 2(x-1)^2 + \frac{2}{3}(x-1)^4$$
; $\sum_{k=0}^{\infty} \frac{4^k(x-1)^{2k}}{(2k)!}$

43.
$$1 + \frac{x}{3} - \frac{x^2}{9} + \cdots$$
 45. $1 - \frac{3}{2}x + \frac{3}{2}x^2 - \cdots$

47.
$$R_n(x) = \frac{\left(\sinh c + \cosh c\right) x^{n+1}}{(n+1)!}$$
, where c is between 0 and x;

$$\lim_{n \to \infty} |R_n(x)| = |\sinh c + \cosh c| \lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} = 0 \text{ because}$$

 $|x|^{n+1} \ll (n+1)!$ for any fixed value of x.

49.
$$\frac{1}{24}$$
 51. $\frac{1}{8}$ **53.** $\frac{1}{6}$ **55.** Approx. 0.4615 **57.** Approx. 0.3819

49.
$$\frac{1}{24}$$
 51. $\frac{1}{8}$ **53.** $\frac{1}{6}$ **55.** Approx. 0.4615 **57.** Approx. 0.3819 **59.** $11 - \frac{1}{11} - \frac{1}{2 \cdot 11^3} - \frac{1}{2 \cdot 11^5}$ **61.** $-\frac{1}{3} + \frac{1}{3 \cdot 3^3} - \frac{1}{5 \cdot 3^5} + \frac{1}{7 \cdot 3^7}$

63.
$$y = 4 + 4x + \frac{4^2}{2!}x^2 + \frac{4^3}{3!}x^3 + \dots + \frac{4^n}{n!}x^n + \dots = 3 + e^{4x}$$

65. a.
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$$
 b. $\sum_{k=1}^{\infty} \frac{1}{k2^k}$ c. $2\sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1}$

d.
$$x = \frac{1}{3}$$
; $2\sum_{k=0}^{\infty} \frac{1}{3^{2k+1}(2k+1)}$ **e.** Series in part (d)

CHAPTER 12

Section 12.1 Exercises, pp. 763-767

1. Plotting $\{(f(t), g(t)): a \le t \le b\}$ generates a curve in the xy-plane. 3. $x = R \cos(\pi t/5), y = -R \sin(\pi t/5)$ 5. $x = t^2, y = t$

$$-\infty < t < \infty$$
 7. $-\frac{1}{2}$ 9. $x = t, y = t, 0 \le t \le 6; x = 2t, y = 2t, 0 \le t \le 3; x = 3t, y = 3t, 0 \le t \le 2$ (answers will vary)

0 - 1 - 2, 11 - 21, y - 21, 0 - 1 - 2 (and						
11. a.	t	-10	-4	0	4	10
	x	-20	-8	0	8	20
	v	-34	-16	-4	8	26

c.
$$y = \frac{3}{2}x - 4$$

d. A line segment rising to the right as t increases

c.
$$y = -3x + 15$$

d. A line segment rising to the left as t increases

15. a. y = -x + 4 **b.** A line segment starting at (3, 1) and ending at (4,0) 17. **a.** y = 3x - 12 **b.** A line segment starting at (4,0)and ending at (8, 12) **19. a.** $x^2 + y^2 = 9$ **b.** Lower half of a circle of radius 3 centered at (0,0); starts at (-3,0) and ends at (3,0)

21. a. $y = 1 - x^2, -1 \le x \le 1$ b. A parabola opening downward with a vertex at (0, 1) starting at (1, 0) and ending at (-1, 0)

23. a. $x^2 + (y - 1)^2 = 1$ **b.** A circle of radius 1 centered at (0, 1); generated counterclockwise, starting and ending at (1, 1)

25. a. $y = (x + 1)^3$ b. A cubic curve rising to the right as rincreases 27. a. $x^2 + y^2 = 49$ b. A circle of radius 7 centered at (0,0); generated counterclockwise, starting and ending at (-7,0)

29. a. $y = 1, -\infty < x < \infty$ **b.** A horizontal line with y-intercept 1, generated from left to right 31. $x^2 + y^2 = 4$ 33. $y = \sqrt{4 - x^2}$

35. $y = x^2$ **37.** $x = 4 \cos t, y = 4 \sin t, 0 \le t \le 2\pi$

39. $x = \cos t + 2, y = \sin t + 3, 0 \le t \le 2\pi$

41. $x = 2t, y = 8t; 0 \le t \le 1$ **43.** $x = t, y = 2t^2 - 4; -1 \le t \le 5$ **45.** $x = 2, y = t; 3 \le t \le 9$ **47.** $x = 4t - 2, y = -6t + 3; 0 \le t \le 1$ and

 $x = t + 1, y = 8t - 11; 1 \le t \le 2$

49. $x = 1 + 2t, y = 1 + 4t; -\infty < t < \infty$

51. $x = t^2, y = t; t \ge 0$

53. $x = 400 \cos\left(\frac{4\pi t}{3}\right), y = 400 \sin\left(\frac{4\pi t}{3}\right); 0 \le t \le 1.5$

55. $x = 50 \cos\left(\frac{\pi t}{12}\right), y(t) = 50 \sin\left(\frac{\pi t}{12}\right); 0 \le t \le 24$

63. Plot $x = 1 + \cos^2 t - \sin^2 t$, y = t.

65. Approx. 2857 m

- **69. a.** $\frac{dy}{dx} = -8 \cot t$; 0

71. a. $\frac{dy}{dx} = \frac{t^2 + 1}{t^2 - 1}, t \neq 0;$

- 73. $y = \frac{13}{4}x + \frac{1}{4}$ 75. $y = x \frac{\pi\sqrt{2}}{4}$ 77. $\left(-\frac{4}{\sqrt{5}}, \frac{8}{\sqrt{5}}\right)$ and $\left(\frac{4}{\sqrt{5}}, -\frac{8}{\sqrt{5}}\right)$ 79. There is no such point. 81. 10 83. $\pi\sqrt{2}$
- **85.** $\frac{1}{3}(5\sqrt{5}-8)$ **87.** $\frac{3}{2}$ **89.** a. False b. True c. False
- d. True e. True
- **91.** $0 \le t \le 2\pi$

- **93.** $x = 3\cos t, y = \frac{3}{2}\sin t,$
- $0 \le t \le 2\pi; \left(\frac{x}{3}\right)^2 + \left(\frac{2y}{3}\right)^2 = 1;$

- **95.** a. Lines intersect at (1,0). b. Lines are parallel. **c.** Lines intersect at (4, 6).
- 97.

99.

101.

- **a.** (0, 2) and (0, -2)
- **b.** $(1, \sqrt{2}), (1, -\sqrt{2}),$
- $(-1, \sqrt{2}), (-1, -\sqrt{2})$
- **103.** 27π **105.** $\frac{3\pi}{8}$ **107.** a. A circle of radius 3 centered at (0,4)
- **b.** A torus (doughnut); $48\pi^2$ **109.** $\frac{64\pi}{3}$
- **111.** $\int_0^1 2\pi (e^{3t} + 1) \sqrt{4e^{4t} + 9e^{6t}} \, dt \approx 1445.9$
- 113. a.

Section 12.2 Exercises, pp. 775-779

- $(-2, -5\pi/6), (2, 13\pi/6);$ $(3, \pi/2), (3, 5\pi/2)$

- $(-2, -3\pi/4), (2, 9\pi/4)$

 $(4, \pi/2), (4, 5\pi/2)$

- 3. $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$ 5. $r \cos \theta = 5$ or $r = 5 \sec \theta$ 7. x-axis symmetry occurs if (r, θ) on the graph implies $(r, -\theta)$ is on the graph. y-axis symmetry occurs if (r, θ) on the graph implies $(r, \pi - \theta) = (-r, -\theta)$ is on the graph. Symmetry about the origin occurs if (r, θ) on the graph implies $(-r, \theta) = (r, \theta + \pi)$ is on the graph.
 - 11.

- $(1, 2\pi/3), (1, 8\pi/3)$

17.

19.

21.

23.
$$\left(100, -\frac{\pi}{4}\right)$$

25.
$$(3\sqrt{2}/2, 3\sqrt{2}/2)$$

27.
$$(1/2, -\sqrt{3}/2)$$

29. $(2\sqrt{2}, -2\sqrt{2})$

29.
$$(2\sqrt{2}, -2\sqrt{2})$$

31.
$$(2\sqrt{2}, \pi/4), (-2\sqrt{2}, 5\pi/4)$$

33.
$$(2, \pi/3), (-2, 4\pi/3)$$

35.
$$(8, 2\pi/3), (-8, -\pi/3)$$

- 37. x = -4; vertical line passing through (-4, 0)
- **39.** $x^2 + y^2 = 4$; circle of radius 2 centered at (0, 0)

- **39.** $x^2 + y^2 = 4$; circle of radius 2 centered at (0, 0) **41.** $(x-1)^2 + (y-1)^2 = 2$; circle of radius $\sqrt{2}$ centered at (1, 1) **43.** $(x-3)^2 + (y-4)^2 = 25$; circle of radius 5 centered at (3, 4) **45.** $x^2 + (y-1)^2 = 1$; circle of radius 1 centered at (0, 1) and x = 0 **47.** $x^2 + (y-4)^2 = 16$; circle of radius 4 centered at (0, 4) **49.** $r = \tan \theta \sec \theta$ **51.** $r^2 = \sec \theta \csc \theta$ or $r^2 = 2 \csc 2\theta$

53.

55.

57.

59.

61.

63.

65.

67.

69. $[0, 8\pi]$

71. $[0, 2\pi]$

73. $[0, 5\pi]$

75. $[0, 2\pi]$

77. a. True b. True c. False d. True e. True

 \bullet $\left(2, \frac{\pi}{3}\right)$

•(2, 3)

85. a. 132.3 miles **b.** 264.6 mi/hr

87.

91. a. A b. C c. B d. D e. E f. F

93.

95.

97.

99.

103.

For a = -1, the spiral winds inward toward the origin.

33. 1

35. 16π

105. a.

107. a.

109. Symmetry about the *x*-axis **111.** $(x^2 + y^2)^2 = a^2(x^2 - y^2)$

Section 12.3 Exercises, pp. 786-788

1. $x = f(\theta)\cos\theta$, $y = f(\theta)\sin\theta$ **3.** The slope of the tangent line is the rate of change of the vertical coordinate with respect to the

horizontal coordinate. 5. $\sqrt{3}$ 7. $\frac{\pi^2}{4}$ 9. Both curves pass through

the origin, but for different values of θ . 11. 0 13. $-\sqrt{3}$

15. Undefined, undefined **17.** 0 at $(-4, \pi/2)$ and $(-4, 3\pi/2)$,

undefined at (4,0) and $(4,\pi)$ **19.** ± 1 **21.** $\theta = \frac{3\pi}{4}; m = -1$

b. $\theta = \frac{\pi}{4}, m = 1; \theta = \frac{7\pi}{12}, m \approx -3.73;$

25. Horizontal: $(2\sqrt{2}, \pi/4), (-2\sqrt{2}, 3\pi/4)$; vertical: $(0, \pi/2), (4, 0)$ **27.** Horizontal: (0, 0) (0.943, 0.955), (-0.943, 2.186), (0.943, 4.097), (-0.943, 5.328); vertical: (0, 0), (0.943, 0.615), (-0.943, 2.526), (0.943, 3.757), (-0.943, 5.668) **29.** (2, 0) and (0, 0)

31.
$$\left(1, \frac{\pi}{12}\right), \left(1, \frac{5\pi}{12}\right), \left(1, \frac{7\pi}{12}\right), \left(1, \frac{11\pi}{12}\right)$$

$$\left(1,\frac{13\pi}{12}\right),\left(1,\frac{17\pi}{12}\right),\left(1,\frac{19\pi}{12}\right), \text{ and } \left(1,\frac{23\pi}{12}\right)$$

41. a. $(0,0), \left(\frac{3}{\sqrt{2}}, \frac{\pi}{4}\right)$ b. $\frac{9}{8}(\pi-2)$

43. a. $\left(1+\frac{1}{\sqrt{2}},\frac{\pi}{4}\right), \left(1-\frac{1}{\sqrt{2}},\frac{5\pi}{4}\right), (0,0)$ b. $\frac{3\pi}{2}-2\sqrt{2}$

45. $\frac{1}{24}(3\sqrt{3}+2\pi)$ **47.** $\frac{1}{4}(2-\sqrt{3})+\frac{\pi}{12}$ **49.** $\pi/20$

51. $4(4\pi/3 - \sqrt{3})$ **53.** $2\pi/3 - \sqrt{3}/2$ **55.** $9\pi + 27\sqrt{3}$

57. 6 59. 18π 61. Intersection points: $\left(3, \pm \frac{\pi}{3}\right)$; area of

region $A = 6\sqrt{3} - 2\pi$; area of region $B = 5\pi - 6\sqrt{3}$; area of region C = $4\pi + 6\sqrt{3}$ 63. πa 65. $\frac{8}{3}((1 + \pi^2)^{3/2} - 1)$

67. 32 **69.** $63\sqrt{5}$ **71.** $\frac{2\pi - 3\sqrt{3}}{8}$ **73.** 26.73

75. a. False b. False c. True

77. Horizontal: (0, 0), (4.05, 2.03), (9.83, 4.91);

vertical: (1.72, 0.86), (6.85, 3.43), (12.87, 6.44) **79.** $\frac{\sqrt{1+a^2}}{a}$

81. a. $A_n = \frac{1}{4e^{(4n+2)\pi}} - \frac{1}{4e^{4n\pi}} - \frac{1}{4e^{(4n-2)\pi}} + \frac{1}{4e^{(4n-4)\pi}}$ **b.** 0 **c.** $e^{-4\pi}$ **85.** $(a^2 - 2)\theta^* + \pi - \sin 2\theta^*$, where $\theta^* = \cos^{-1}(a/2)$

87. $a^2(\pi/2 + a/3)$

Section 12.4 Exercises, pp. 797-800

1. A parabola is the set of all points in a plane equidistant from a fixed point and a fixed line. 3. A hyperbola is the set of all points in a plane whose distances from two fixed points have a constant difference.

5. Parabola:

Hyperbola:

Ellipse:

7.
$$\left(\frac{x}{a}\right)^2 + \frac{y^2}{a^2 - c^2} = 1$$
 9. $(\pm ae, 0)$ 11. $y = \pm \frac{b}{a}x$

13. Parabola

Vertices: $(\pm 2, 0)$; foci: $(\pm \sqrt{3}, 0)$; major axis has length 4; minor axis has length 2.

17. Parabola

19. Hyperbola

Vertices: $(\pm 2, 0)$;

foci: $(\pm \sqrt{5}, 0)$;

asymptotes: $y = \pm \frac{1}{2}x$

21. Hyperbola

23. Parabola

25. Ellipse

Vertices: $(0, \pm 4)$;

foci: $(0, \pm 2\sqrt{3})$; major axis has length 8; minor axis has length 4.

29. Hyperbola

Vertices: $(0, \pm \sqrt{7})$; foci: $(0, \pm \sqrt{2})$; major axis has length $2\sqrt{7}$; minor axis has length $2\sqrt{5}$.

31.
$$y^2 = 16x$$
 33. $y^2 = 12x$

35.
$$x^2 = -\frac{2}{3}y$$

37.
$$y^2 = 4(x + 1)$$

$$39. \ \frac{x^2}{16} + \frac{y^2}{9} = 1$$

41.
$$\frac{x^2}{16} - \frac{y^2}{20} = 1$$

43.
$$\frac{x^2}{25} + y^2 = 1$$
 45. $\frac{x^2}{4} - \frac{y^2}{9} = 1$ **47.** $\frac{x^2}{4} + \frac{y^2}{9} = 1$

49.
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$
 51. a. True **b.** True **c.** True **d.** True

53.
$$\frac{x^2}{81} + \frac{y^2}{72} = 1$$

Directrices: $x = \pm 27$

Vertex: (2, 0); focus: (0, 0); directrix: x = 4

55.
$$x^2 - \frac{y^2}{x^2} = 1$$

Vertices: $(1,0), (-\frac{1}{3},0);$ center: $(\frac{1}{3}, 0)$; foci: $(0, 0), (\frac{2}{3}, 0)$; directrices: $x = -1, x = \frac{5}{3}$

61.

Vertex: $(0, -\frac{1}{4})$; focus: (0, 0); directrix: $y = -\frac{1}{2}$

63.

The parabola starts at (1,0) and goes through quadrants I, II, and III for θ in $[0, 3\pi/2]$; then it approaches (1,0) by traveling through quadrant IV on $(3\pi/2, 2\pi)$.

65.

The parabola begins in the first quadrant and passes through the points $(0, 3), (-\frac{3}{2}, 0)$, and (0, -3) as θ ranges from 0 to 2π .

67. The parabolas open to the left due to the presence of a positive $\cos \theta$ term in the denominator. As d increases, the directrix x = dmoves to the right, resulting in wider parabolas.

69.
$$y = 2x + 6$$
 71. $y = -\frac{3}{40}x - \frac{4}{5}$ **73.** $\frac{dy}{dx} = -\frac{b^2x}{a^2y}$, so

 $\frac{y-y_0}{x-x_0} = -\frac{b^2x_0}{a^2y_0}$, which is equivalent to the given equation.

75.
$$r = \frac{4}{1 - 2\sin\theta}$$
 79. $\frac{4\pi b^2 a}{3}$; $\frac{4\pi a^2 b}{3}$; yes, if $a \neq b$

81. a.
$$\frac{\pi b^2}{3a^2}(a-c)^2(2a+c)$$
 b. $\frac{4\pi b^4}{3a}$ **91.** $2p$

97. a.
$$u(m) = \frac{2m^2 - \sqrt{3m^2 + 1}}{m^2 - 1}$$
; $v(m) = \frac{2m^2 + \sqrt{3m^2 + 1}}{m^2 - 1}$;

2 intersection points for |m| > 1 **b.** $\frac{5}{4}$, ∞ **c.** 2, 2

d. $2\sqrt{3} - \ln(\sqrt{3} + 2)$

Chapter 12 Review Exercises, pp. 800-803

1. a. False b. False c. True d. False e. True f. True

3.
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
; ellipse generated counterclockwise

5. Segment of the parabola $y = \sqrt{x}$ starting at (4, 2) and ending

7. **a.**
$$(x-1)^2 + (y-2)^2 = 64$$

9.
$$x = 5(t-1)(t-2)\sin t$$
,

b.
$$-\frac{1}{\sqrt{3}}$$

11. a. $x^2 + (y + 1)^2 = 9$ **b.** Lower half of a circle of radius 3 centered at (0, -1), starting at (3, -1) and ending at (-3, -1) c. 0

13. At
$$t = \pi/6$$
: $y = (2 + \sqrt{3})x + \left(2 - \frac{\pi}{3} - \frac{\pi\sqrt{3}}{6}\right)$; at

$$t = \frac{2\pi}{3}$$
: $y = \frac{x}{\sqrt{3}} + 2 - \frac{2\pi}{3\sqrt{3}}$ **15.** $x = -1 + 2t, y = t$,

for $0 \le t \le 1$; x = 1 - 2t, y = 1 - t, for $0 \le t \le 1$ 17. $x = 3 \sin t$, $y = 3 \cos t$, for $0 \le t \le 2\pi$

19.
$$\frac{4}{15}$$
 21. 9.1 **23.** $4 - 2\sqrt{2}$

25.

27.

29.

31.

33. Liz should choose

$$r = 1 - \sin \theta.$$

35. $(x-3)^2 + (y+1)^2 = 10;$ a circle of radius $\sqrt{10}$ centered at (3, -1)

37. $r = 1 + \cos \theta$; a cardioid

39. $r = 8 \cos \theta, 0 \le \theta \le \pi$

43.
$$\left(\frac{\pi}{12}, \frac{1}{2^{1/4}}\right), \left(\frac{3\pi}{4}, \frac{1}{2^{1/4}}\right), \left(\frac{17\pi}{12}, \frac{1}{2^{1/4}}\right), (0, 0)$$

45.
$$\pi - \frac{3\sqrt{3}}{2}$$
 47. $2\sqrt{3} - \frac{2\pi}{3}$ **49.** 4 **51.** 40.09

 $\overrightarrow{OP} = \langle 3, 2 \rangle = 3\mathbf{i} + 2\mathbf{j}$ $|\overrightarrow{OP}| = \sqrt{13}$

53. a. Hyperbola **b.** Foci $(\pm \sqrt{3}, 0)$, vertices $(\pm 1, 0)$, directrices $x = \pm \frac{1}{\sqrt{3}}$ **c.** $e = \sqrt{3}$

d. $y = -\sqrt{2}x$ $y = -\sqrt{2}x$

55. a. Hyperbola **b.** Foci $(0, \pm 2\sqrt{5})$, vertices $(0, \pm 4)$, directrices $y = \pm \frac{8}{\sqrt{5}}$ **c.** $e = \frac{\sqrt{5}}{2}$

y = -2x 6 y = 2x 4 x

57. a. Ellipse **b.** Foci $(\pm \sqrt{2}, 0)$, vertices $(\pm 2, 0)$, directrices $x = \pm 2\sqrt{2}$ **c.** $e = \frac{\sqrt{2}}{2}$

59. $y = \frac{3}{2}x - 2$

$$y = \frac{x}{2}$$

$$y = 10$$

$$y = 10$$

$$y = 10$$

$$(0, 4)$$

$$y = 10$$

$$(0, 4)$$

$$y = -1$$

$$y = -10$$

69. $e = 2/3, y = \pm 9, (\pm 2\sqrt{5}, 0)$ **71.** $m = \frac{b}{a}$

75. a. $x = \pm a \cos^{2/n} t$, $y = \pm b \sin^{2/n} t$ **c.** The curve becomes more rectangular as *n* increases. **CHAPTER 13**

Section 13.1 Exercises, pp. 813-816

3. There are infinitely many vectors with the same direction and length as **v**. **5.** $\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$ **7.** No **9.** $|\langle v_1, v_2 \rangle| = \sqrt{v_1^2 + v_2^2}$ **11.** If *P* has coordinates (x_1, y_1) and *Q* has coordinates (x_2, y_2) , then the magnitude of \overrightarrow{PQ} is given by $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$. **13.** a, c, e **15.** a. 3**v** b. 2**u** c. -3**u** d. -2**u** e. v **17.** a. 3**u** + 3**v** b. **u** + 2**v** c. 2**u** + 5**v** d. -2**u** + 3**v** e. 3**u** + 2**v** f. -3**u** - 2**v** g. -2**u** - 4**v** h. **u** - 4**v** i. -**u** - 6**v**

b. $\overrightarrow{QP} = \langle -1, 0 \rangle = -\mathbf{i}$ $|\overrightarrow{QP}| = 1$

