

Réseaux, systèmes, sécurité par la pratique L3 Informatique

Introduction au Cloud

Meriem Ghali

La virtualisation

De manière formelle, la virtualisation consiste en la séparation logique entre d'une part les ressources fournissant un service et d'autre part le service lui-même. Et il existe plusieurs types de virtualisation :

La virtualisation

De manière formelle, la virtualisation consiste en la séparation logique entre d'une part les ressources fournissant un service et d'autre part le service lui-même. Et il existe plusieurs types de virtualisation :

- Virtualisation des serveurs.
- Virtualisation des réseaux.
- Virtualisation des systèmes d'exploitation.

Virtualisation des architectures x86 :

- Consiste à séparer les ressources matérielles des services rendus par ces ressources.
- La virtualisation telle qu'on l'entend communément est la mutualisation des SE sur un seul serveur physique.
- Possibilité de créer plusieurs VM sur un seul serveur physique.
 - VirtualBox.
 - VMware
 - Virt-manager

CMD: egrep '(vmx|svm)' --color=always /proc/cpuinfo

Objectif et Avantage

- L'usage efficient de ressources de calcul partagées : mémoire, processeur, réseau, stockage.
- Avoir une meilleure modularité pour :
 - > La répartition des charges.
 - La reconfiguration des serveurs en cas d'évolution.
 - Défaillance momentanée.
 - La sécurisation et/ou isolation d'un réseau
- **t** Et donc il s'agit de **gains** :
 - D'énérgie.
 - Maintenance et gestion
 - Robustesse et d'évolutivité

Un peu d'histoire

- Centre scientifique de Cambridge d'IBM + MIT.
- **Entre 80 et 90 :**
 - ➤ Virtualiser les SE.
 - Pouvoir lancer d'autres SE sur les machines.
- **t** Entre 2012, 2014 :
 - > Le retour de la virtualisation dans le marché.

1. Isolation

- Permet d'isoler l'exécution des applications dans ce qui est appelé des contextes, ou bien zones d'exécution. En utilisant des : namespaces, Docker.
- Cette solution est très performante, du fait du peu d'overhead

2. Noyau en espace utilisateur

Le noyau user-space a donc son propre espace utilisateur dans lequel il contrôle ses applications.

3. Hyperviseur de type 2 :

- Un hyperviseur de type 2 est logiciel qui tourne sur l'OS hôte et permet de lancer plusieurs OS invités
- Isole bien les OS invités, mais coût en performance.
- Émuler des cartes réseaux virtuelles sur une seule carte réseau réelle.

4. Hyperviseur de type 1 :

- Un hyperviseur de type 1 est comme un noyau système très léger et optimisé.
- Meilleure gestion d'accès aux noyaux d'OS invités à l'architecture matérielle sous-jacente.

Cloud Computing

Le NIST donne sa définition du Cloud Computing en :

- 5 caractéristiques :
 - Un service en libre-service à la demande.
 - > Accessible sur l'ensemble du réseau.
 - Permet la mutualisation des ressources.
 - Rapidement élastique.
 - Mesurable : dashboard.

Cloud Computing

Le NIST donne sa définition du Cloud Computing en :

- 4 modèles de déploiement :
 - Le nuage privé (pour une même organisation).
 - Le nuage communautaire.
 - ➤ Le nuage public.
 - Le nuage hybride.

Cloud Computing

Le NIST donne sa définition du Cloud Computing en :

- Trois niveaux de service :
 - laas : Infrastructure as a Service.
 - Paas : Plateform as a Service.
 - > Saas : Software-as-a-Service.

Standard	laaS	PaaS	SaaS
Applications	Applications	Applications	Applications
Données	Données	Données	Données
Exécution	Exécution	Exécution	Exécution
Middleware	Middleware	Middleware	Middleware
OS	os	OS	OS
Virtualisation	Virtualisation	Virtualisation	Virtualisation
Serveurs	Serveurs	Serveurs	Serveurs
Stockage	Stockage	Stockage	Stockage
Réseau	Réseau	Réseau	Réseau

Projet OpenStack

OpenStack (parfois abrégé en O~S) est une plate-forme logicielle libre et open-source pour le cloud computing.

- Principalement déployée sous forme d'Infrastructure-as-a-Service (IaaS).
- OpenStack se compose de composants reliés les uns aux autres qui contrôlent divers ensembles matériels.
- Le modèle de déploiement est principalement dans les nuages privés, mais aussi dans des offres de nuage public.

Composants OpenStack

1. Le réseau : Neutron

- Le service permet de gérer et manipuler les réseaux et l'adressage IP au sein d'OpenStack.
- Créer leurs propres réseaux, contrôler le trafic et connecter leurs instances à un ou plusieurs réseaux.

2. Tableau de bord : Horizon

- Une application web qui permet de gérer leurs Clouds à travers une interface graphique.
- Une application libre écrite en Python.

