Test Report of FCC CFR 47 Part 15 Subpart C

On Behalf of

GL Technologies (Hong Kong) Limited
Unit 210D, 2/F, Enterprise Place Hong Kong Science Park, Shatin, N.T.
Hong Kong, China

Product Name: GL-MIFI

Model/Type No.: GL-MIFI

FCC ID: 2AFIW-MIFIV1

Prepared By: Shenzhen Hongcai Testing Technology Co., Ltd.

1st-3rd Floor, Building C, Shuanghuan Xin Yi Dai Hi-Tech Industrial Park, No.8 Baoging Road, Baolong Industrial Zone, Longgang

District, Shenzhen, Guangdong, China

Tel: +86-755-86337020 Fax:+86-755-86337028

Report Number: HCT17FR143E-1

Tested Date: June 2~July 8, 2017

Issued Date: July 10, 2017

Tested By: Jerry Zhao/ Jerry Zhao

Reviewed By:

Owen.Yang

Approved By:

Tony Wu

EMC Technical Supervisor

EMC Technical Manager

TABLE OF CONTENTS

1.	GENERAL INFORMATION	
	1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
	1.2 TEST STANDARDS	
_		
2.	SYSTEM TEST CONFIGURATION	
	2.1 EUT CONFIGURATION	
	2.3 GENERAL TEST PROCEDURES	
	2.4 Measurement Uncertainty	
	2.5 MEASURE RESULTS EXPLANATION EXAMPLE	
	2.7 LIST OF MEASURING EQUIPMENTS USED	
3.	SUMMARY OF TEST RESULTS	
	TEST OF AC POWER LINE CONDUCTED EMISSION	
٦.	4.1 APPLICABLE STANDARD	
	4.2 TEST SETUP DIAGRAM	
	4.3 TEST RESULT	
5.	OUTPUT POWER MEASUREMENT	. 13
	5.1 APPLICABLE STANDARD	. 13
	5.2 EUT SETUP	
	5.3 TEST EQUIPMENT LIST AND DETAILS	
	5.4 TEST PROCEDURE	
6	TEST OF PEAK POWER SPECTRAL DENSITY	
٠.	6.1 APPLICABLE STANDARD	
	6.2 EUT SETUP	. 15
	6.3 TEST EQUIPMENT LIST AND DETAILS	
	6.4 TEST PROCEDURE	
7.	TEST OF 6DB BANDWIDTH	
	7.1 APPLICABLE STANDARD	
	7.3 TEST EQUIPMENT LIST AND DETAILS	
	7.4 TEST PROCEDURE	. 23
	7.5 TEST RESULT	. 23
8.	TEST OF CONDUCTED SPURIOUS EMISSION	-
	8.1 APPLICABLE STANDARD	
	8.2 EUT SETUP	
	8.4 TEST PROCEDURE	
	8.5 Test Result	. 31
9.	TEST OF RADIATED SPURIOUS EMISSION	. 38
	9.1 RADIATED SPURIOUS EMISSION	
	9.1.1 LIMITS	
	9.1.2 EUT SETUP	
	9.1.4 Test Result	
10). TEST OF BAND EDGES EMISSION	. 53
•	10.1 APPLICABLE STANDARD	
	10.2 EUT SETUP	

53
54
60
60

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant:	GL Technologies (Hong Kong) Limited
Address of Applicant:	Unit 210D, 2/F, Enterprise Place Hong Kong Science Park, Shatin, N.T. Hong Kong, China
Manufacturer:	GL Technologies (Hong Kong) Limited
Address of Manufacturer:	Unit 210D, 2/F, Enterprise Place Hong Kong Science Park, Shatin, N.T. Hong Kong, China

General Description of E.U.T

Items	Description			
EUT Description:	GL-MIFI			
Model No.:	GL-MIFI			
Trade Mark:	GL·ÎNet			
Frequency Band:	IEEE 802.11b : 2412MHz∼2462MHz;			
	IEEE 802.11g : 2412MHz∼2462MHz;			
	IEEE 802 11n HT20 : 2412MHz∼2462MHz;			
	IEEE 802 11n HT40 : 2422MHz∼2452MHz;			
Channel Spacing:	IEEE 802.11b : 5MHz			
	IEEE 802.11g : 5MHz			
	IEEE 802 11n HT20 : 5MHz			
	IEEE 802 11n HT40 : 5MHz			
Number of Channels:	IEEE 802.11b :11 Channels;			
	IEEE 802.11g :11 Channels;			
	IEEE 802 11n HT20 :11 Channels;			
	IEEE 802 11n HT40 :7 Channels;			
Transmit Data Rate:	maximum of 150Mbps			
Type of Modulation:	IEEE 802.11b: CCK			
	IEEE 802.11g: OFDM			
	IEEE 802 11n HT20: OFDM			
	IEEE 802 11n HT40: OFDM			
Antenna Type:	Printed PCB Antenna			
Antenna Gain:	2dBi			
Power Rating:	Input: DC 5V from adapter			

Remark: * The test data gathered are from the production sample provided by the manufacturer.

Report No.: HCT17FR143E-1 Page 4 of 60 FCC ID: 2AFIW-MIFIV1

1.2 Test standards

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

KDB558074 D01 V04: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under Section 15.247.

RSS-GEN Issue 4: General Requirements for Compliance of Radio Apparatus.

RSS 247 Issue 2: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices.

1.3 Test Facility

All measurement required was performed at laboratory of Shenzhen CTL Testing Technology Co., Ltd. Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

FCC - Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December, 2013.

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

Report No.: HCT17FR143E-1 Page 5 of 60 FCC ID: 2AFIW-MIFIV1

2. SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

2.3 General Test Procedures

Conducted Emissions: The EUT is placed on the table, which is 0.8 m above ground plane According to the requirements in ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode.

Radiated Emissions: The EUT is a placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in ANSI C63.10-2013.

2.4 Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty		
Transmitter power conducted	+/- 0.57 dB		
Transmitter power Radiated	+/- 2.20 dB		
Conducted spurious emission 9KHz-40 GHz	+/- 2.20 dB		
Occupied Bandwidth	+/- 0.01 dB		
Power Line Conducted Emission	+/- 3.20 dB		
Radiated Emission	+/- 4.32 dB		

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: HCT17FR143E-1 Page 6 of 60 FCC ID: 2AFIW-MIFIV1

2.5 Measure Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable less and attenuator factor. Offset= RF cable less+ attenuator factor.

Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

Equipment	Equipment Manufacturer		Frequency range(GHz)	Attenuation values(dBm)	
			1-12	0.09	
Line	Zhenjiang south electronic	RG317	<1G	0.04	
			>12G	1.01	
			1-12	0.01	
Connector	Zhenjiang south electronic	SMA-K/N-J	<1G	0.005	
			>12G	0.03	

Report No.: HCT17FR143E-1 Page 7 of 60 FCC ID: 2AFIW-MIFIV1

2.6. Block diagram of EUT configuration for test

The test software was used to control EUT work in Continuous Tx mode, and select test channel, wireless mode as below table.

Mode	Data rate (Mpbs) (see Note)	Channel	Frequency (MHz)
	1	CH1	2412
IEEE 802.11b	1	CH6	2437
	1	CH11	2462
	6	CH1	2412
IEEE 802.11g	6	CH6	2437
	6	CH11	2462
	6.5	CH1	2412
IEEE 802.11N HT20	6.5	CH6	2442
	6.5	CH11	2462
	13.5	CH3	2422
IEEE 802.11N HT40	13.5	CH6	2437
	13.5	CH9	2452

Note: According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test.

2.7 List of Measuring Equipments Used

Test equipments list of Shenzhen CTL Testing Technology Co., Ltd.

No.	o. Equipment Manufacturer		Model No.	S/N	Last Calculator	Due Calculator
1	EMI Test Receiver	R&S	ESCI	100687	2016-7-25	2017-7-24
2	EMI Test Receiver	R&S	ESPI	100097	2016-10-1	2017-10-31
3	Amplifier	HP	8447D	1937A02492	2016-7-25	2017-7-24
4	TRILOG Broadband Test- Antenna	SCHWARZBECK	VULB9163	9163-324	2016-7-25	2017-7-24
5	RF POWER AMPLIFIER	FRANKONIA	FLL-75	1020A1109	2016-7-25	2017-7-24
6	6DB Attenuator	FRANKONIA	N/A	1001698	2016-7-25	2017-7-24
7	7 10dB attenuator ELECTRO- METRICS		EM-7600	836	2016-7-25	2017-7-24
8	Spectrum Analyzer	R&S	FSP	100397	2016-10-1	2017-10-31
9	Broadband preamplifier	SCH WARZBECK	BBV9718	9718-182	2016-7-25	2017-7-24
10	Power Sensor	Anritsu	ML2438A	1241002	2016-7-25	2017-7-24
11	Power Sensor	Anritsu	MA2411B	1207366	2016-7-25	2017-7-24
12	Horn Antenna	SCHWARZBECK	BBHA 9120D	0437	2016-7-25	2017-7-24
13	Horn Antenna	SCHWARZBECK	BBHA9170	0483	2016-7-25	2017-7-24

3. SUMMARY OF Test RESULTS

FCC/IC Rules	Description of Test	Result	
FCC §15.207	AC Power Line Conducted Emission	Pass	
IC RSS-GEN Clause 8.8	AC Fower Line Conducted Emission	Fa55	
FCC §15.247(b)	Output Power Measurement	Pass	
IC RSS-247 Issue1 Clause 5.4 (4)	Output Power Measurement	Pa55	
FCC §15.247(e)	Dawar Chaetral Danaity	Door	
IC RSS-247 Issue1 Clause 5.2 (2)	Power Spectral Density	Pass	
FCC §15.247(a)	6dB Bandwidth	Pass	
IC RSS-247 Issue1 Clause 5.2 (1)			
IC RSS-GEN Clause 6.6	99%Occupied Bandwidth		
FCC §15.247 (d)	Conducted Spurious Emission	Pass	
IC RSS-247 Issue1 Clause 5.5	Conducted Spurious Emission	Pass	
FCC §15.205 and §15.209	Radiated Spurious Emission	Pass	
IC RSS-247 Issue1 Clause 5.5	Radiated Spurious Effission	F a 5 5	
FCC§15.247 (d) and §15.205 and §15.209	Unwanted Emissions	Pass	
IC RSS-247 Issue1 Clause 5.5	Onwanted Emissions	Pa55	
FCC §15.203/15.247(b)/(c)	Antonna Poquiroment	Door	
IC RSS-GEN Clause 8.3	Antenna Requirement	Pass	

4. Test OF AC POWER LINE CONDUCTED EMISSION

4.1 Applicable standard

Refer to FCC §15.207 and IC RSS-GEN Clause 8.8

For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Eroguanov, Banga (MUz)	Limits	(dBuV)
Frequency Range (MHz)	Quasi-Peak	Average
0.150~0.500	66~56	56∼46
0.500~5.000	56	46
5.000~30.00	60	50

4.2 Test Setup Diagram

Remark: The EUT was connected to a 120 VAC/ 60Hz power source.

4.3 Test Result

Temperature (°C) : 23~25	EUT: GL-MIFI
Humidity (%RH): 45~58	M/N: GL-MIFI
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuously Tx Mode

Test result: PASS

Conducted Emission Test Data

EUT: **GL-MIFI** M/N: **GL-MIFI Operating Condition:** Tx Mode

Test Site: Shielded Room

Operator: Li

Test Specification: AC 120V/60Hz

Comment: Live Line

Start of Test: Tem:25℃ Hum:50%

SCAN TABLE: "Voltage (150K-30M) FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "17FR-143E02 fin"

6/1/2017 8:34	PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBuV	dB	dBuV	dB			
0.505000	42.40	10.4	56	13.6	OP	L1	GND
0.605000	45.40	10.4	56	10.6	OP	L1	GND
1.905000	41.20	13.1	56	14.8	OP	Ll	GND
2.135000	36.70	13.1	56	19.3	OP	L1	GND
2.505000	35.50	12.7	56	20.5	OP.	L1	GND
4.095000	40.40	13.3	56	15.6	QP	L1	GND

MEASUREMENT RESULT: "17FR-143E02 fin2"

PM					- 1	
Level dBuV	Transd dB	dBuV	Margin dB	Detector	Line	PE
35.70	10.4	46	10.3	AV	L1	GND
38.10	10.4	4.6	7.9	AV	L1	GND
35.00	12.7	4.6	11.0	AV	L1	GND
33.50	12.3	4.6	12.5	AV	L1	GND
33.20	13.3	4.6	12.8	AV	L1	GND
31.00	13.5	46	15.0	AV	L1	GND
	Level dBuV 35.70 38.10 35.00 33.50 33.20	Level Transd dBuV dB 35.70 10.4 38.10 10.4 35.00 12.7 33.50 12.3 33.20 13.3	Level Transd Limit dBuV dB dBuV 35.70 10.4 46 38.10 10.4 46 35.00 12.7 46 33.50 12.3 46 33.20 13.3 46	Level Transd Limit Margin dBuV dB dBuV dB	Level Transd Limit Margin Detector dBuV dB dBuV dB 35.70 10.4 46 10.3 AV 38.10 10.4 46 7.9 AV 35.00 12.7 46 11.0 AV 33.50 12.3 46 12.5 AV 33.20 13.3 46 12.8 AV	Level Transd Limit Margin Detector Line dBuV dB dBuV dB 35.70 10.4 46 10.3 AV L1 38.10 10.4 46 7.9 AV L1 35.00 12.7 46 11.0 AV L1 33.50 12.3 46 12.5 AV L1 33.20 13.3 46 12.8 AV L1

Conducted Emission Test Data

EUT: **GL-MIFI GL-MIFI** M/N: **Operating Condition:** Tx Mode

Test Site: Shielded Room

Operator: Li

Test Specification: AC 120V/60Hz Comment: **Neutral Line**

Start of Test: Tem:25℃ Hum:50%

SCAN TABLE: "Voltage (150K-30M) FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "17FR143E01 fin"

6/1/2017 8:31	PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBuV	dB	dBuV	dB			
0.495000	34.90	10.4	56	21.2	QP	N	GND
0.580000	33.80	10.4	56	22.2	QP	N	GND
0.595000	36.80	10.4	56	19.2	QP	N	GND
15.560000	38.90	13.5	60	21.1	OP	N	GND
15.615000	39.40	13.5	60	20.6	QP	N	GND

MEASUREMENT RESULT: "17FR143E01_fin2"

6/1/2017 8	:31PM						
Frequenc MH		Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.60000	0 26.20	10.4	46	19.8	AV	N	GND
16.90000	0 27.50	13.3	50	22.5	AV	N	GND
18.24000	0 27.10	13.1	50	22.9	AV	N	GND
18.24500	0 28.30	13.1	50	21.7	AV	N	GND
19.04500	0 26.80	12.9	50	23.2	AV	N	GND
19.16000	0 27.70	12.9	50	22.3	AV	N	GND

5. Output Power Measurement

5.1 Applicable standard

Refer to FCC §15.247 (b) and IC RSS-247 Issue2 Clause 5.4 (4). KDB558074 D01 V04 Section 9.0

The maximum permissible conducted output power is 1Watt.

5.2 EUT Setup

5.3 Test Equipment List and Details

See section 2.7.

5.4 Test Procedure

For maximum peak conducted output power ,Section 9.1.3 PKPM1 Peak-reading power meter method is used.

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

5.5 Test Result

Temperature ($^{\circ}$) : 22~23	EUT: GL-MIFI
Humidity (%RH): 50~54	M/N: GL-MIFI
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuously Tx Mode

IEEE 802.11b

Modulation Type	Channel No.	Peak Output Power(dBm)	Limit (dBm)	Result
IEEE 802.11b	Low	16.94	30	Pass
IEEE 802.11b	Middle	17.39	30	Pass
IEEE 802.11b	High	16.36	30	Pass

Report No.: HCT17FR143E-1 Page 13 of 60 FCC ID: 2AFIW-MIFIV1

IEEE 802.11g

Modulation Type	Channel No.	Peak Output Power(dBm)	Limit (dBm)	Result
IEEE 802.11g	Low	15.4	30	Pass
IEEE 802.11g	Middle	16.00	30	Pass
IEEE 802.11g	High	14.9	30	Pass

IEEE 802.11N HT20

Modulation Type	Channel No.	Peak Output Power(dBm)	Limit (dBm)	Result
IEEE 802.11N HT20	Low	15.23	30	Pass
IEEE 802.11N HT20	Middle	15.11	30	Pass
IEEE 802.11N HT20	High	14.33	30	Pass

IEEE 802.11N HT40

Modulation Type	Channel No.	Peak Output Power(dBm)	Limit (dBm)	Result
IEEE 802.11N HT40	Low	11.45	30	Pass
IEEE 802.11N HT40	Middle	12.17	30	Pass
IEEE 802.11N HT40	High	12.19	30	Pass

6. Test of Peak Power Spectral Density

6.1 Applicable standard

Refer to FCC §15.247 (e) and IC RSS-247 Issue2 Clause 5.2 (2). KDB558074 D01 V04 Section 10.2 Method PKPSD

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.2 EUT Setup

Spectrum Analyzer

6.3 Test Equipment List and Details

See section 2.7.

6.4 Test Procedure

The transmitter output was connected to the spectrum analyzer and the parameter was set as below:

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.5 Test Result

Temperature (°C) : 22~23	EUT: GL-MIFI
Humidity (%RH): 50~54	M/N: GL-MIFI
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuously Tx Mode

Report No.: HCT17FR143E-1 Page 15 of 60 FCC ID: 2AFIW-MIFIV1

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	Power Level in 3KHz RBW (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Pass / Fail
Low	2412	-10.27	8	PASS
Middle	2437	-10.36	8	PASS
High	2462	-10.06	8	PASS

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	Power Level in 3KHz RBW (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Pass / Fail
Low	2412	-14.75	8	PASS
Middle	2437	-14.25	8	PASS
High	2462	-14.16	8	PASS

IEEE 802.11n HT20 mode

Channel	Channel Frequency (MHz)	Power Level in 3KHz RBW (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Pass / Fail
Low	2412	-17.35	8	PASS
Middle	2437	-16.35	8	PASS
High	2462	-17.57	8	PASS

IEEE 802.11n HT40 mode

Channel	Channel Frequency (MHz)	Power Level in 3KHz RBW (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Pass / Fail
Low	2422	-20.74	8	PASS
Middle	2437	-21.65	8	PASS
High	2452	-21.02	8	PASS

POWER SPECTRAL DENSITY (IEEE 802.11b MODE CH Low)

POWER SPECTRAL DENSITY (IEEE 802.11b MODE CH Mid)

POWER SPECTRAL DENSITY (IEEE 802.11b MODE CH High)

POWER SPECTRAL DENSITY (IEEE 802.11g MODE CH Low)

POWER SPECTRAL DENSITY (IEEE 802.11g MODE CH Mid)

POWER SPECTRAL DENSITY (IEEE 802.11g MODE CH High)

POWER SPECTRAL DENSITY (IEEE 802.11n HT20 MODE CH Low)

POWER SPECTRAL DENSITY (IEEE 802.11n HT20 MODE CH Mid)

POWER SPECTRAL DENSITY (IEEE 802.11n HT20 MODE CH High)

POWER SPECTRAL DENSITY (IEEE 802.11n HT40 MODE CH Low)

POWER SPECTRAL DENSITY (IEEE 802.11n HT40 MODE CH Mid)

POWER SPECTRAL DENSITY (IEEE 802.11n HT40 MODE CH High)

7. Test of 6dB Bandwidth

7.1 Applicable standard

Refer to FCC §15.247 (a) (2) and IC RSS-247 Issue2 Clause 5.2 (1), IC RSS-GEN Clause 6.6 KDB558074 D01 V04 Section 8.2 Option 2

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

7.2 EUT Setup

7.3 Test Equipment List and Details

See section 2.7.

7.4 Test Procedure

The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. The transmitter output was connected to a spectrum analyzer and the parameter was set as below:

- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.5 Test Result

Temperature ($^{\circ}$) : 22~23	EUT: GL-MIFI
Humidity (%RH): 50~54	M/N: GL-MIFI
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuously Tx Mode

Report No.: HCT17FR143E-1 Page 23 of 60 FCC ID: 2AFIW-MIFIV1

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	8.04	500	PASS
Middle	2437	8.12	500	PASS
High	2462	8.04	500	PASS

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	16.40	500	PASS
Middle	2437	16.40	500	PASS
High	2462	16.36	500	PASS

IEEE 802 11n HT20 mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	17.56	500	PASS
Middle	2437	17.64	500	PASS
High	2462	17.12	500	PASS

IEEE 802 11n HT40 mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2422	35.36	500	PASS
Middle	2437	35.20	500	PASS
High	2452	35.12	500	PASS

6dB BANDWIDTH (IEEE 802.11b MODE CH Low)

6dB BANDWIDTH (IEEE 802.11b MODE CH Mid)

6dB BANDWIDTH (IEEE 802.11b MODE CH High)

6dB BANDWIDTH (IEEE 802.11g MODE CH Low)

6dB BANDWIDTH (IEEE 802.11g MODE CH Mid)

6dB BANDWIDTH (IEEE 802.11g MODE CH High)

6dB BANDWIDTH (IEEE 802 11n HT20 MODE CH Low)

6dB BANDWIDTH (IEEE 802 11n HT20 MODE CH Mid)

6dB BANDWIDTH (IEEE 802.11n HT20 MODE CH High)

6dB BANDWIDTH (IEEE 802 11n HT40 MODE CH Low)

6dB BANDWIDTH (IEEE 802 11n HT40 MODE CH Mid)

6dB BANDWIDTH (IEEE 802.11 n HT40 MODE CH High)

8. Test of Conducted Spurious Emission

8.1 Applicable standard

Refer to FCC §15.247 (d) and IC RSS-247 Issue2 Clause 5.5 and KDB558074 D01 V04 Section 11.3

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

8.2 EUT Setup

8.3 Test Equipment List and Details

See section 2.7.

8.4 Test Procedure

- 1. Set start frequency to DTS channel edge frequency.
- 2. Set stop frequency so as to encompass the spectrum to be examined.
- 3. Set RBW = 100 kHz.
- 4. Set VBW \geq 300 kHz.
- 5. Detector = peak.
- 6. Trace Mode = max hold.
- 7. Sweep = auto couple.
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

8.5 Test Result

Temperature (°C) : 22~23	EUT: GL-MIFI
Humidity (%RH): 50~54	M/N: GL-MIFI
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuously Tx Mode

Test Result: PASS

IEEE 802.11b mode Channel Low

Channel Middle

Channel High

IEEE 802.11g mode Channel Low

Channel Middle

Channel High

IEEE 802 11n HT20 mode Channel Low

Channel Middle

Channel High

IEEE 802 11n HT40 mode Channel Low

Channel Middle

Channel High

9. Test of Radiated Spurious Emission

9.1 Radiated Spurious Emission

Refer to FCC §15.205 and §15.209, IC RSS-247 Clause 5.5 KDB558074 D01 V04 Section 12.1, 12.2.7

9.1.1 Limits

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

9.1.2 EUT Setup

For radiated emission below 30MHz

Report No.: HCT17FR143E-1 Page 38 of 60 FCC ID: 2AFIW-MIFIV1

For radiated emission from 30MHz to1GHz

For radiated emission from above1GHz

9.1.3 Test Procedure

KDB558074 D01 V04 Section 12.1, 12.2.7

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 120kHz(for emissions from 30MHz-1GHz)
- 3. Detector = Quasi-Peak
- 4. Trace Mode = max hold.
- 5. Sweep = auto couple.
- 6. Trace was allowed to stabilize

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 1MHz
- 3. Set VBW = 3MHz

Report No.: HCT17FR143E-1 Page 39 of 60 FCC ID: 2AFIW-MIFIV1

- 4. Detector = Peak
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 1MHz
- 3. Set VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points=1001 (>= 2 x span/RBW)
- 6. Sweep = auto couple.
- 7. Trace (RMS) averaging was performed over at least 100 traces

Note:

- 1. Configure the EUT according to ANSI C63.10-2013
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.

9.1.4 Test Result

Temperature (°C) : 22~23	EUT: GL-MIFI
Humidity (%RH): 50~54	M/N: GL-MIFI
Barometric Pressure (mbar): 950~1000	Operation Condition:
Balometric Pressure (Tribar). 950-7000	Charging, Normal operation ,Continuously Tx Mode

Note

- 1. Worst-case radiated emission below 30MHz is IEEE 802 11g Tx (CH Low) mode;
- 2. Worst-case radiated emission below 1GHz is IEEE 802.11g Tx (CH Low, Middle, High) mode.
- 3. Worst-case radiated emission above 1GHz is IEEE 802.11n HT20 Tx (CH Low, Middle, High) and IEEE 802.11n HT40 Tx (CH Low, Mid, High) mode.

RADIATED EMISSION BELOW 30 MHz

IEEE 802.11 g Tx (CH Low) operating Mode:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Emission Levels	Limits	Margin	Detector Mode
(MHz)	(dBµV)	(dB/M)	(dB)	(dBµV/M)	(dBµV/M)	(dB)	PK/QP
0.58	32.59	7.88	1.1	41.57	72.3	-30.73	QP
23.43	32.04	8.64	1.24	41.92	69.5	-27.58	QP
27.97	33.36	8.82	1.13	43.31	69.5	-26.19	QP
32.92	33.46	8	1.71	43.17	69.5	-26.33	QP

Spurious Emission Below 1GHz: IEEE 802.11g Tx (CH Low)

EUT: **GL-MIFI** M/N: **GL-MIFI** Operating Condition: Tx Mode

Test Site: 3m CHAMBER

Operator: Chen

Test Specification: AC 120V/60Hz

Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"
Short Description: Field Strength
Start Stop Detector Meas. IF Transducer Frequency Frequency 30.0 MHz 1.0 GHz Bandw. Time MaxPeak Coupled 100 kHz 9163-2015

MEASUREMENT RESULT: "17FR143E01 red"

6/1/2017 19:5	55							
Frequency	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
MHz	dBuV/m	dB	dBuV/m	dB		cm	deg	
47.460000	28.60	16.7	40.0	11.4		100.0	0.00	HORIZONTAL
59.100000	27.30	15.7	40.0	12.7		100.0	0.00	HORIZONTAL
165.800000	29.80	12.9	43.5	13.7		100.0	0.00	HORIZONTAL
208.480000	32.40	14.1	43.5	11.1		100.0	0.00	HORIZONTAL
532.460000	32.40	19.6	46.0	13.6		100.0	0.00	HORIZONTAL
951.500000	38.40	25.2	46.0	7.6		100.0	0.00	HORIZONTAL

Spurious Emission Below 1GHz: IEEE 802.11g Tx (CH Low)

EUT: **GL-MIFI** M/N: **GL-MIFI** Operating Condition: Tx Mode

Test Site: 3m CHAMBER

Operator: Chen

Test Specification: AC 120V/60Hz Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength.
Start Stop Detector Meas. IF
Time Bandw.

Transducer

Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015

MEASUREMENT RESULT: "17FR143E04 red"

6/1/2017 19:5	9							
Frequency	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
MHz	dBuV/m	dB	dBuV/m	dB		cm	deg	
35.820000	31.80	14.5	40.0	8.2		100.0	0.00	VERTICAL
59.100000	28.40	15.7	40.0	11.6		100.0	0.00	VERTICAL
158.040000	30.70	12.3	43.5	12.8		100.0	0.00	VERTICAL
183.260000	33.20	12.7	43.5	10.3		100.0	0.00	VERTICAL
516.940000	32.80	19.6	46.0	13.2		100.0	0.00	VERTICAL
959.260000	38.70	25.0	46.0	7.3		100.0	0.00	VERTICAL

Spurious Emission Below 1GHz: IEEE 802.11g Tx (CH Mid)

EUT: **GL-MIFI** M/N: **GL-MIFI** Operating Condition: Tx Mode

Test Site: 3m CHAMBER

Operator: Chen

Test Specification: AC 120V/60Hz

Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF
Frequency Frequency
30.0 MHz 1.0 GHz MaxPeak Coupled 100 Transducer Bandw. MaxPeak Coupled 100 kHz 9163-2015

MEASUREMENT RESULT: "17FR143E03_red"

6/1/2017 19:5	56							
Frequency	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
MHz	dBuV/m	dB	dBuV/m	dB		cm	deg	
40 40000		45.0	40.0	10.0		100 0	0.00	
49.400000	28.00	15.3	40.0	12.0		100.0	0.00	HORIZONTAL
59.100000	26.90	15.7	40.0	13.1		100.0	0.00	HORIZONTAL
146.400000	31.60	12.0	43.5	11.9		100.0	0.00	HORIZONTAL
237.580000	35.50	13.5	46.0	10.5		100.0	0.00	HORIZONTAL
526.640000	32.00	19.7	46.0	14.0		100.0	0.00	HORIZONTAL
953.440000	38.70	25.2	46.0	7.3		100.0	0.00	HORIZONTAL

Spurious Emission Below 1GHz: IEEE 802.11g Tx (CH Mid)

EUT: **GL-MIFI** M/N: **GL-MIFI** Operating Condition: Tx Mode

Test Site: 3m CHAMBER

Operator: Chen

Test Specification: AC 120V/60Hz Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength Start Stop Detector Meas. IF
Time Bandw.

Frequency Frequency 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015

Transducer

MEASUREMENT RESULT: "17FR143E05_red"

6/1/2017	20:00)							
Frequer	гсу	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
N	1Hz	dBuV/m	dB	dBuV/m	dB		cm	deg	
43.5800	000	31.80	15.8	40.0	8.2		100.0	0.00	VERTICAL
59.1000	000	28.70	15.7	40.0	11.3		100.0	0.00	VERTICAL
144.4600	000	30.60	12.2	43.5	12.9		100.0	0.00	VERTICAL
191.0200	000	32.70	13.6	43.5	10.8		100.0	0.00	VERTICAL
511.1200	000	33.20	19.6	46.0	12.8		100.0	0.00	VERTICAL
897.1800	000	39.00	25.7	46.0	7.0		100.0	0.00	VERTICAL

Spurious Emission Below 1GHz: IEEE 802.11g Tx (CH High)

EUT: **GL-MIFI** M/N: **GL-MIFI** Operating Condition: Tx Mode

Test Site: 3m CHAMBER

Operator: Chen

Test Specification: AC 120V/60Hz

Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"
Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Time Bandw.

2011 Page 100 kHz 9163-2015

MEASUREMENT RESULT: "17FR143E01 red"

6/1/2017 19:5 Frequency MHz		Transd dB	Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000	28.00	16.7	40.0	12.0		100.0	0.00	HORIZONTAL
59.100000	27.00	15.7	40.0	13.0		100.0	0.00	HORIZONTAL
167.740000	30.30	12.7	43.5	13.2		100.0	0.00	HORIZONTAL
237.580000	35.40	13.5	46.0	10.6		100.0	0.00	HORIZONTAL
553.800000	31.50	20.4	46.0	14.5		100.0	0.00	HORIZONTAL
920.460000	38.10	25.7	46.0	7.9		100.0	0.00	HORIZONTAL

Spurious Emission Below 1GHz: IEEE 802.11g Tx (CH High)

EUT: **GL-MIFI** M/N: **GL-MIFI** Operating Condition: Tx Mode

Test Site: 3m CHAMBER

Operator: Chen

Test Specification: AC 120V/60Hz Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF Transduce:
Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015 Transducer

MEASUREMENT RESULT: "17FR143E06 red"

6/1/2017 20:0	01							
Frequency	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
MHz	dBuV/m	dB	dBuV/m	dB		cm	deg	
49.400000	31.00	15.3	40.0	9.0		100.0	0.00	VERTICAL
55.220000	29.00	15.1	40.0	11.0		100.0	0.00	VERTICAL
169.680000	31.90	12.6	43.5	11.6		100.0	0.00	VERTICAL
191.020000	32.50	13.6	43.5	11.0		100.0	0.00	VERTICAL
437.400000	32.10	18.2	46.0	13.9		100.0	0.00	VERTICAL
881.660000	38.90	25.3	46.0	7.1		100.0	0.00	VERTICAL

RADIATED EMISSION ABOVE 1 GHz

IEEE 802.11n HT20 Tx (CH Low)

	Channel Low (2412MHz)												
Maximum Frequency		Pol	larity and Le	Limit	Margin								
(MHz)	Polarity	Height (m)	Reading dB _µ V	Transd	Result dBµV/m	(dBµV/m)	(dBµV/m)	Mark (P/Q/A)					
		1.5	57.21	-7.92	49.29	74	-24.71	Р					
1380.66	Н	1.5	44.45	-7.92	36.53	54	-17.47	Α					
		1.5	56.63	-7.92	48.71	74	-25.29	Р					
1380.22	V	1.5	44.06	-7.92	36.14	54	-17.86	Α					
		1.5	114.37	-6.42	107.95			Р					
2412	Н	1.5	103.76	-6.42	97.34			Α					
		1.5	116.36	-6.42	109.94			Р					
2412	V	1.5	105.56	-6.42	99.14			Α					
		1.5	51.83	0.57	52.4	74	-21.6	Р					
4824	Н	1.5	41.45	0.57	42.02	54	-11.98	Α					
		1.5	52.65	0.57	53.22	74	-20.78	Р					
4824	V	1.5	41.36	0.57	41.93	54	-12.07	Α					
		1.5	51.73	7.46	59.19	74	-14.81	Р					
7236	Н	1.5	41.82	7.46	49.28	54	-4.72	Α					
		1.5	52.52	7.46	59.98	74	-14.02	Р					
7236	V	1.5	41.93	7.46	49.39	54	-4.61	Α					
		1.5											
11145.34	Н	1.0											
16327.65													
25376.32													

Remark: 1.Transd=Antenna Factor + Cable Loss - Pre-amplifier

Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

- 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.
- 4. The test limit distance is 3m limit

IEEE 802.11 n HT20 Tx (CH Middle)

	Channel Middle (2437MHz)											
Maximum Frequency		Polarity and Level Limit Margin										
(MHz)	Polarity	Height (m)	Reading dBµV	Transd	Result dBµV/m	(dBµV/m)	(dBµV/m)	Mark (P/Q/A)				
			56.72	-8.91	47.81	74	-26.19	Р				
1326.33	Н	1.5	45.24	-8.5	36.74	54	-17.26	Α				
		1.5	58.15	-8.5	49.65	74	-24.35	Р				
1326.22	V	1.5	45.46	-8.5	36.96	54	-17.04	Α				
		1.5	114.12	-6.64	107.48			Р				
2437	Н	1.5	104.64	-6.64	98			Α				
		1.5	117.62	-6.64	110.98			Р				
2437	V	1.5	106.15	-6.64	99.51			Α				
		1.5	53.31	0.48	53.79	74	-20.21	Р				
4874	Н	1.5	42.62	0.48	43.1	54	-10.9	Α				
		1.5	53.44	0.48	53.92	74	-20.08	Р				
4874	V	1.5	42.64	0.48	43.12	54	-10.88	Α				
		1.5	52.51	7.21	59.72	74	-14.28	Р				
7311	Н	1.0	42.15	7.21	49.36	54	-4.64	Α				
		1.5	52.62	7.21	59.83	74	-14.17	Р				
7311	V	1.0	42.53	7.21	49.74	54	-4.26	Α				
		1.5										
11238.52	Н	1.0										
16327.71												
25376.58												

Remark: 1.Transd=Antenna Factor + Cable Loss - Pre-amplifier Margin = Level-Limit

- Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value 2. Data of measurement within this frequency range shown " -" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.
- 4. The test limit distance is 3m limit

IEEE 802.11 n HT20 Tx (CH High)

	Channel High (2462MHz)											
Maximum Frequency		Polarity and Level Limit Margin										
(MHz)		Height	Reading		Result	(dBµV/m)	(dBµV/m)	Mark				
	Polarity	(m)	dΒμV	Transd	dBμV/m			(P/Q/A)				
		1.5	57.73	-8.17	49.56	74	-24.44	Р				
1312.66	Н	1.5	45.95	-8.17	37.78	54	-16.22	Α				
		1.5	58.44	-8.17	50.27	74	-23.73	Р				
1311.67	V	1.5	46.53	-8.17	38.36	54	-15.64	Α				
		1.5	113.64	-6.22	107.42			Р				
2462	Н	1.5	103.75	-6.22	97.53			Α				
		1.5	116.64	-6.22	110.42			Р				
2462	V	1.5	104.68	-6.22	98.46			Α				
		1.5	52.67	1.03	53.7	74	-20.3	Р				
4924	Н	1.5	42.48	1.03	43.51	54	-10.49	Α				
		1.5	55.47	1.03	56.5	74	-17.5	Р				
4924	V	1.5	43.79	1.03	44.82	54	-9.18	Α				
		1.5	53.68	7.62	61.3	74	-12.7	Р				
7386	Н	1.5	42.75	7.62	50.37	54	-3.63	Α				
		1.5	52.53	7.62	60.15	74	-13.85	Р				
7386	V	1.5	42.48	7.62	50.1	54	-3.9	Α				
		1.5										
11243.58	Н	1.5										
16327.45												
25376.26												

Remark: 1.Transd=Antenna Factor + Cable Loss - Pre-amplifier Margin = Level-Limit

- Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.
- 4. The test limit distance is 3m limit

IEEE 802 11n HT40 Tx (CH Low)

Channel Low (2422MHz)								
Maximum Frequency		Po	larity and Le		Limit	Margin		
(MHz)		Height	Reading		Result	(dBµV/m)	(dBµV/m)	Mark
	Polarity	(m)	dΒμV	Transd	dBμV/m			(P/Q/A)
		1.5	57.36	-8.73	48.63	74	-25.37	Р
1382	Н	1.5	44.45	-8.73	35.72	54	-18.28	Α
		1.5	57.45	-8.73	48.72	74	-25.28	Р
1364	V	1.5	43.83	-8.73	35.1	54	-18.9	Α
		1.5	117.33	-7.23	110.1			Р
2412	Н	1.5	110.63	-7.23	103.4			Α
		1.5	121.33	-7.23	114.1			Р
2412	V	1.5	111.34	-7.23	104.11			Α
		1.5	41.36	-0.24	41.12	74	-32.88	Р
4824	Н	1.5	53.8	-0.24	53.56	54	-0.44	Α
		1.5	41.31	-0.24	41.07	74	-32.93	Р
4824	V	1.5	51.24	6.65	57.89	54	3.89	Α
		1.5	41.72	6.65	48.37	74	-25.63	Р
7236	Н	1.5	51.24	6.65	57.89	54	3.89	А
		1.5	41.55	6.65	48.2	74	-25.8	Р
7236	V	1.5	41.36	-0.24	41.12	54	-12.88	Α
		1.5						
11145.34	Н	1.5						
16327.65								
25376.32								

Remark: 1.Transd=Antenna Factor + Cable Loss - Pre-amplifier Margin = Level-Limit

- Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value 2. Data of measurement within this frequency range shown " -" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.
- 4. The test limit distance is 3m limit

IEEE 802 11n HT40 Tx (CH Middle)

Channel Middle (2437MHz)								
Maximum Frequency		Pol	larity and Le		Limit	Margin		
(MHz)		Height	Reading		Result	(dBµV/m)	(dBµV/m)	Mark
	Polarity	(m)	dΒμV	Transd	dBμV/m			(P/Q/A)
		1.5	58.98	-8.52	50.46	74	-23.54	Р
1310.26	Н	1.0	46.07	-8.52	37.55	54	-16.45	Α
		1.5	59.07	-8.52	50.55	74	-23.45	Р
1310.88	V	1.5	45.45	-8.52	36.93	54	-17.07	Α
		1.5	118.95	-7.02	111.93			Р
2437	Н	1.5	112.25	-7.02	105.23			Α
		1.5	122.95	-7.02	115.93			Р
2437	V	1.5	112.96	-7.02	105.94			Α
		1.5	54	-0.03	53.97	74	-20.03	Р
4874	Н	1.5	42.98	-0.03	42.95	54	-11.05	Α
		1.5	55.42	-0.03	55.39	74	-18.61	Р
4874	V	1.5	42.93	-0.03	42.9	54	-11.1	Α
		1.5	52.86	6.86	59.72	74	-14.28	Р
7311	Н	1.5	43.34	6.86	50.2	54	-3.8	Α
		1.5	52.86	6.86	59.72	74	-14.28	Р
7311	V	1.5	43.17	6.86	50.03	54	-3.97	Α
		1.5						
11238.52	Н	1.5						
16327.71								
25376.58								

Remark: 1.Transd=Antenna Factor + Cable Loss - Pre-amplifier
Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

- 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.
- 4. The test limit distance is 3m limit

IEEE 802 11n HT40 Tx (CH High)

Channel High(2452MHz)								
Maximum Frequency		Pol	larity and Le		Limit	Margin		
(MHz)	Polarity	Height (m)	Reading dB _µ V	Transd	Result dB _µ V/m	(dBµV/m)	(dBµV/m)	Mark (P/Q/A)
	i oland		58.54	-8.72	49.82	74	-24.18	P
1318.66	Н	1.5	46.44	-8.72	37.72	54	-16.28	Α
		4.5	59.04	-8.72	50.32	74	-23.68	Р
1318.66	V	1.5	46.55	-8.72	37.83	54	-16.17	Α
		1.5	121.51	-6.77	114.74			Р
2462	Н	1.5	108.51	-6.77	101.74			Α
		1.5	123.04	-6.77	116.27			Р
2462	V	1.5	112.25	-6.77	105.48			Α
		1.5	53.84	0.48	54.32	74	-19.68	Р
4924	Н	1.5	43.51	0.48	43.99	54	-10.01	Α
		1.5	57.36	0.48	57.84	74	-16.16	Р
4924	V	1.5	44.5	0.48	44.98	54	-9.02	Α
		1.5	53.25	7.07	60.32	74	-13.68	Р
7386	Н	1.5	43.01	7.07	50.08	54	-3.92	Α
		1.5	52.61	7.07	59.68	74	-14.32	Р
7386	V	1.5	42.52	7.07	49.59	54	-4.41	Α
		1.5						
11243.58	Н	1.0						
16327.45								
25376.26								

Remark: 1.Transd=Antenna Factor + Cable Loss - Pre-amplifier
Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

- 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.
- 4. The test limit distance is 3m limit

10. Test of Band Edges Emission

10.1 Applicable standard

Refer to FCC §15.247 (d), IC RSS-247 Issue2 Clause 5.5 KDB558074 D01 V04 Section 13.0

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

10.2 EUT Setup

Radiated Measurement Setup

Conducted Measurement Setup

Spectrum Analyzer

10.3 Test Equipment List and Details

See section 2.7.

10.4 Test Procedure

Conducted Measurement

KDB558074 D01 V04 Section 11.3

1.Set the center frequency and span to encompass frequency range to be measured.

Report No.: HCT17FR143E-1 Page 53 of 60 FCC ID: 2AFIW-MIFIV1

- 2.Set the RBW = 100 kHz.
- 3.Set the VBW \geq 3 x RBW.
- 4.Detector = peak.
- 5.Sweep time = auto couple.
- 6.Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8.Use the peak marker function to determine the maximum amplitude level.

Radiated Measurement

KDB558074 D01 V04 Section 12.1, 12.2.7

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 1MHz
- 3. Set VBW = 3MHz
- 4. Detector = Peak
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 1MHz
- 3. Set VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Sweep = auto couple.
- 6. Trace (RMS) averaging was performed over at least 100 traces

Note:

- 1. Configure the EUT according to ANSI C63.10-2013
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.

10.5 Test Result

Temperature (°C) : 22~23	EUT: GL-MIFI
Humidity (%RH): 50~54	M/N: GL-MIFI
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuously Tx Mode

Radiated Test Result

IEEE 802.11b mode

Channel	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dBuV/m)	Detector
	2400	50.62	74	-23.38	Peak
LOW	2400	38.43	54	-15.57	Average
	2483.5	49.66	74	-24.34	Peak
HIGH	2483.5	38.23	54	-15.77	Average

IEEE 802.11g mode

Channel	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dBuV/m)	Detector
	2400	49.6	74	-24.4	Peak
LOW	2400	37.45	54	-16.55	Average
	2483.5	50.46	74	-23.54	Peak
HIGH	2483.5	38.24	54	-15.76	Average

IEEE 802 11n HT20 mode

Channel	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dBuV/m)	Detector
	2400	46.19	74	-27.81	Peak
LOW	2400	35.22	54	-18.78	Average
	2483.5	48.23	74	-25.77	Peak
HIGH	2483.5	36.01	54	-17.99	Average

IEEE 802 11n HT40 mode

Channel	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dBuV/m)	Detector
	2400	46.19	74	-27.81	Peak
LOW	2400	35.22	54	-18.78	Average
	2483.5	48.23	74	-25.77	Peak
HIGH	2483.5	36.01	54	-17.99	Average

Test of Conducted band edges

CH Low (802.11b MODE)

CH High (802.11b MODE)

CH Low (802.11g MODE)

CH High (802.11g MODE)

CH Low (802.11n(HT20) MODE)

CH High (802.11n(HT20) MODE)

CH Low (802.11n(HT40) MODE)

CH High (802.11n(HT40) MODE)

11. ANTENNA REQUIREMENT

11.1 standard Applicable

Section 15.203 & IC RSS-GEN Clause 8.3

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c)

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

11.2 Antenna Connected Construction

There are no provisions for connections to an external antenna. The antenna is designed with PCB antenna and no consideration of replacement. The antenna used in this product is complied with standard. The maximum Gain of the antenna lower than 6.0dBi and have the definite antenna Specification.

···End of Report···

Report No.: HCT17FR143E-1 Page 60 of 60 FCC ID: 2AFIW-MIFIV1