Two interpolation methods for vector fields that conseve flux and line integrals

Alexander Pletzer (NeSI/NIWA) and Wolfgang Hayek (NIWA/NeSI)
(alexander.pletzer@nesi.org.nz)

C3DIS, Canberra
7 May 2019

Motivation: want answers to

How to interpolate vector fields with staggered components?

- Arakawa C/D grids
- Components are on cell faces or edges
- Arises in computational fluid dynamics and electromagnetics

Currently used interpolation methods in earth sciences

Is there hope to unify these?

- Linear
- Conservative or area weighted, used in climate studies to enforce conservation of total mass, energy

Babylonian tablet (1700BC)

Bilinear

Conservative (used since the 1990s)

Earth science grids are curvilinear

How to handle non-orthogonal cells? Example: cubed-sphere grid

- Project grids on the surface of a cube onto a sphere
- Six logically rectangular grids (cannot be represented as a single structured grid)
- No pole-like singularity but some distortion where three tiles meet

Where interpolation is used

- computing fluxes across an area
- advecting fields
- visualising streamlines

Four types of fields - one derivative

Exterior calculus tells us:

- 0-form: just a function of space, one component
 - invariant under coordinate change
 - Example: temperature
- 1-form: vector field, 3 components in 3D
 - ullet Examples: electric field E, induction H and velocity
- 2-form: pseudo-vector field, 3 components in 3D
 - ullet Examples: magnetic field B, displacement field D and vorticity
- 3-form: pseudo-scalar, 1 component
 - Example: density

Discretized fields corresponding to the 1-3 forms

Association of form with cell elements

- 0-form: on nodes
 - $\int \alpha = \alpha$ (integral is a no op)
- 1-form: on edges
 - $\int \beta$ is a line integral
- 2-form: on faces
 - $\int \gamma$ is a surface integral
- 3-form: cell centred
 - $\int \omega$ is a volume integral

Differential forms like to be integrated

Generalizing "interpolation"

Making interpolation work for nodal, edge, face and cell fields

$$\int f = \sum_{i} f_{i} \int_{T} \phi_{i}$$

- ϕ_i is basis k-form, k = 0, 1, 2 or 3
- T is target (point, line, area or volume)
- f_i is field integral over cell element k (node, edge, face or cell)
- $\int_T \phi_i$ is the interpolation weight
- i index runs over all the degrees of freedom (points, edges, faces etc., as appropriate)

Basis functions satisfy orthogonality condition

$$\int_i \phi_j = \delta_{ij}$$

i is cell element (node, edge, face, cell), j is basis function index

Edge basis is perpendicular to neighbouring edges

Face basis is tangent to neighbouring faces

Result 1: divergence-free field $v = dz \wedge d\psi$

Flux integral depends only on distance of endpoints to nearest grid node

Result 2: vector field $v=\frac{xdx+ydy}{2\pi(x^2+y^2)}$ with singularity

Numerical loop integral A gives 0, B gives 1

11 / 14

Result 3: flux on the cubed sphere $v=d\psi\wedge dr$

Edge/face interpolation works for highly distorted cells

Integration path/surface

Error is $\sim 1/N^2$

Summary

Different types of field \leftrightarrow different staggerings

- use bilinear for nodal (scalar) field
- use edge for vector field
- use face for pseudo-vector field
- use cell for pseudo-scalar fields

Masking and partially valid cells?

Ok if taking account of partial cell, faces, edges when setting cell, face and edge integrals. Done!

Summary (2)

What about tetrahedra?

Similar approach except that the basis functions are Whitney's

Higher order basis functions?

Initial work indicates that higher order basis functions can be used. These also satisfy the orthogonality condition $\int_i \phi_j = \delta_{ij}$ on sub-cell edges, faces and cells. Quadratic elements effectively split each cell into 8 sub-cells, each face into 4 sub-faces and each edge into 2 sub-edges.

The time is ripe to treat interpolation with the same rigour as modelling

"Mimetic Interpolation of Vector Fields on Arakawa C/D Grids": https://journals.ametsoc.org/doi/10.1175/MWR-D-18-0146.1