МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

исполнительного адреса

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем» Тема: Изучение режимов адресации и формирования

Студент гр. 1381	 Хомутинников Н. А.
Преподаватель	 Ефремов М. А.

Санкт-Петербург 2022

Цель работы.

Изучить режимы адресации и формирования исполнительного адреса.

Задание.

Лабораторная работа 2 предназначена для изучения режимовадресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции.

Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Порядок выполнения работы.

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.
- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.

- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны

преподавателем и представлены в отчете.

Выполнение работы.

Осуществлена попытка протранслировать программу lr2_comp.asm. В результате трансляции получены следующие ошибки и предупреждения:

Вариант № 6

vec1: 18,17,16,15,11,12,13,14

vec2: 30,40,-30,-40,10,20,-10,-20

matr: -4,-3,1,2,-2,-1,3,4,5,6,7,8,-8,-7,-6,-5

- 1. lr2_comp.asm(41): error A2052: Improper operand type. (mov mem3, [bx]) данные в память необходимо записывать через регистр. Напрямую из памяти этого делать нельзя.
- 2. $lr2_comp.asm(48)$: warning A4031: Operand types must match. (mov cx, vec2[di]). Размеры операндов несовместимы (cx 2 байта, vec2[di] 1 байт).
- 3. lr2_comp.asm(52): warning A4031: Operand types must match. (mov cx, matr[bx][di]). Та же ошибка, что и в строке 48

- 4. lr2_comp.asm(53): error A2055: Illegal register value. (mov ax, matr[bx*4][di]). Регистр dx нельзя маштабировать.
- 5. lr2_comp.asm(72): error A2046: Multiple base registers. (mov ax, matr[bp+bx]). Нельзя использовать несколько базовых регистров при обращении к операнду.
- 6. lr2_comp.asm(73): error A2047: Multiple index registers. (mov ax, matr[bp+di+si](. Нельзя использовать несколько индексных регистров при обращении к операнду.
- 7. lr2_comp.asm(80): error A2006: Phase error between passes. (Main ENDP). Ошибка возникает, когда при первом проходе (MASM двухпроходный ассемблер) адрес, присвоенный метке, оказывается неверным во время второго прохода.

Строки с неправильными командами закомментированы и программа протранслирована снова, затем скомпонована и запущена в отладчике. Результаты отладки программы представлены в табл. 1

Файлы листинга см. в приложении А.

Таблица 1 – Результаты отладки программы lr2_comp.asm

Адрес	Символический код	16-ричный	Содержимое регистров и ячеек памяти	
команды	команды	код команды	До выполнения	После выполнения
0000	PUSH DS	1E	IP = 0000	IP = 0001
			DS = 19F5	DS = 19F5
			SP = 0018	SP = 0016
			Stack	Stack
			+0 0000	+0 19F5
			+2 0000	+2 0000
			+4 0000	+4 0000
			+6 0000	+6 0000
0001	SUB AX, AX	2BC0	IP = 0001	IP = 0003
			AX = 0000	AX = 0000
0003	PUSH AX	50	IP = 0003	IP = 0004

			AX = 0000	AX = 0000
			SP = 0016	SP = 0014
			Stack	Stack
			+0 19F5	+0 0000
			+2 0000	+2 19F5
			+4 0000	+4 0000
			+6 0000	+6 0000
0004	MOV AX, 1A07	B8071A	IP = 0004	IP = 0007
			AX = 0000	AX = 1A07
0007	MOV DS, AX	8ED8	IP = 0007	IP = 0009
			DS = 19F5	DS = 1A07
			AX = 1A07	AX = 1A07
0009	MOV AX, 01F4	B8F401	IP = 0009	IP = 000C
			AX = 1A07	AX = 01F4
000C	MOV CX, AX	8BC8	IP = 000C	IP = 000E
			CX = 00B0	CX = 01F4
			AX = 01F4	AX = 01F4
000E	MOV BL, 24	B324	IP = 000E	IP = 0010
			BL = 00	BL = 24
0010	MOV BH, CE	В7СЕ	IP = 0010	IP = 0012
			BH = 00	BH = CE
0012	MOV [0002], FFCE	C70602000CE	IP = 0012	IP = 0018
		FF	DS:0002 = 00	DS:0002 = CE
			DS:0003 = 00	DS:0003 = FF
0018	MOV BX, 0006	BB0600	IP = 0018	IP = 001B
			BX = CE24	BX = 0006
001B	MOV [0000], AX	A30000	IP = 001B	IP = 001E
			AX = 01F4	AX = 01F4
001E	MOV AL, [BX]	8A07	IP = 001E	IP = 0020
			AL = F4	AL = 0B
			BX =	BX = 0006
			0006	

0020	MOV AL, [BX+03]	8A4703	IP = 0020	IP = 0023
			AL = 0B	AL = 0E
			BX =	BX = 0006
			0006	
0023	MOV CX, [BX+03]	8B4F03	IP = 0023	IP = 0026
			CX =	CX = 120E
			01F4BX =	BX = 0006
			0006	
0026	MOV DI, 0002	BF0200	IP= 0026	IP= 0029
			DI = 0000	DI = 0002
0029	MOV AL, [000E+DI]	8A850E00	IP=0029	IP = 002D
			AX = 0108	AX = 0114
			DI = 0002	DI = 0002
002D	MOV BX, 0003	BB0300	IP = 002D	IP = 0030
			BX = 0006	BX = 0003
0030	MOV AL,	8A811600	IP = 0030	IP = 0034
	[0016+BX+DI]		DS:001B = 04	DS:001B = 04
			BX = 0003	BX = 0003
			DI =	DI = 0002
			0002AX	AX = 0103
			=0114	
0034	MOV AX, 1A07	B8071A	IP = 0034	IP = 0037
			AX = 0103	AX = 1A07
0037	MOV ES, AX	8EC0	IP = 0037	IP = 0039
			AX =	AX=1A07
			1A07	ES = 1A07
			ES = 19F5	
0039	MOV AX, ES:[BX]	268B07	IP = 0039	IP = 003C
			AX =	AX = 00FF
			1A07ES =	ES = 1A07
			1A07 BX	BX = 0003
			= 0003	
003C	MOV AX, 0000	B80000	IP = 003C	IP = 003F
			AX = 00FF	AX = 0000

003F	MOV ES, AX	8EC0	IP = 003F	IP = 0041
			AX = 0000	AX = 0000
			ES = 1A07	ES = 0000
0041	PUSH DS	1E	IP = 0041	IP = 0042
			DS =	DS=1A07
			1A07SP =	SP = 0012
			0014	Stack
			Stack	+0 1A07
			+0 0000	+2 0000
			+2 19F5	+4 19F5
			+4 0000	+6 0000
			+6 0000	
0042	POP ES	07	IP = 0042	IP = 0043
			ES = 0000	ES = 1A07
			SP = 0012	SP = 0014
			Stack	Stack
			+0 1A07	+0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
			+6 0000	+6 0000
0043	MOV CX, ES : [BX-	268B4FFF	IP = 0043	IP = 0047
	01]		CX =	CX = FFCE
			120EES =	ES = 1A07
			1A07BX	BX = 0003
			= 0003	
0047	XCHG AX, CX	91	IP = 0047	IP = 0048
			AX = 0000	AX = FFCE
			CX =	CX = 0000
			FFCE	
0048	MOV DI, 0002	BF0200	IP = 0048	IP = 004B
			DI = 0002	DI = 0002

004B	MOV ES:[BX+DI],	268901	IP = 004B	IP = 004E
	AX		ES =	ES = 1A07
			1A07BX	BX = 0003
			= 0003	DI = 0002
			DI = 0002	AX = FFCE
			AX = FFCE	
004E	MOV BP, SP	8BEC	IP = 004E	IP = 0050
			BP = 0000	BP = 0014
			SP = 0014	SP = 0014
0050	PUSH [0000]	FF360000	IP = 0050	IP = 0054
			SP = 0014	SP = 0012
			Stack	Stack
			+0 0000	+0 01F4
			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0054	PUSH [0002]	FF360002	IP = 0054	IP = 0058
			SP = 0012	SP = 0010
			Stack	Stack
			+0 01F4	+0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000
			+6 0000	+6 19F5
0058	MOV BP, SP	8BEC	IP = 0058	IP = 005A
			BP = 0014	BP = 0010
			SP = 0010	SP = 0010
005A	MOV DX, [BP+02]	8B5602	IP = 005A	IP = 005D
			DX = 0000	DX = 01F4
			BP = 0010	BP = 0010

005D	RET Far 0002	CA0200	IP = 005D	IP = FFCE
			SP = 0010	CS = 01F4
			Stack	SP = 0016
			+0 FFCE	Stack
			+2 01F4	+0 19F5
			+4 0000	+2 0000
			+6 19F5	+4 0000
				+6 0000

Выводы.

Изучены различные режимы адресации, формирования исполнительного адреса.

ПРИЛОЖЕНИЕ А

Название файла: LR2.LST

```
Microsoft (R) Macro Assembler Version 5.10
                                                            11/15/22 01:53:4
                                                                      1 - 1
                                                             Page
 = 0024
                              EOL EOU '$'
 = 0002
                              ind EOU 2
                              n1 EQU 500
 = 01F4
 =-0032
                              n2 EQU -50
                        ; PЎC, PµPe PïCħPsPiCħP°PjPjC<
 0000
                        AStack SEGMENT STACK
 12000 00001
                               DW 12 DUP(?)
         ????
                   1
 0018
                        AStack ENDS
                        ; P"P°PSPSC<Pu PïCTPsPiCTP°PjPjC<
 0000
                        DATA SEGMENT
                        ; P"PëCħPuPeC, PëPIC< PsPïPëCÍP°PSPëCU PrP°PSPSC
                        < C...
                        mem1 DW 0
 0000 0000
 0002 0000
                        mem2 DW 0
      0000
                        mem3 DW 0
 0004
 0006 12 11 10 0F 0B 0C
                            vec1 DB 18,17,16,15,11,12,13,14
       OD OF
      1E 28 E2 D8 0A 14 vec2 DB 30,40,-30,-40,10,20,-10,-20
 000E
       F6 EC
 0016
      FC FD 01 02 FE FF
                         matr DB -4, -3, 1, 2, -2, -1, 3, 4, 5, 6, 7, 8, -8, -7, -6, -5
       03 04 05 06 07 08
       F8 F9 FA FB
 0026
                        DATA ENDS
                       ; PљPsPr PïCЂPsPiCЂP°PjPjC<
 0000
                        CODE SEGMENT
                        ASSUME CS:CODE, DS:DATA, SS:AStack
                        ; P"PsP»PsPIPSP°CŲ PïCTPsC†PuPrcŕCTP°
 0000
                       Main PROC FAR
 0000 1E
                        push DS
 0001 2B C0
                               sub AX, AX
 0003 50
                        push AX
 0004 B8 ---- R
                        mov AX, DATA
 0007 8E D8
                              mov DS, AX
                        ; РџР РћР'ЕРРљРђ Р Р•Р-Р□РњРћР' РђР"РЕСРђР
                        ¦P□P□ PŔPħ PJP PħP'PŔP• PЎPњP•P©P•PŔP□P™
                        ; P PµPiPëCĆC,CTPsPIP°CŲ P°PrCTPµCĆP°C†PëCŲ
 0009 B8 01F4
                               mov ax, n1
 000C 8B C8
                               mov cx, ax
 000E B3 24
                               mov bl, EOL
 0010 B7 CE
                               mov bh, n2
                        ; Puchcupjp°cu p°prchpucíp°c†pëcu
 0012 C7 06 0002 R FFCE
                               mov mem2, n2
 0018 BB 0006 R
                        mov bx, OFFSET vec1
 001B A3 0000 R
                        mov mem1,ax
                        ; PљPsCŕPIPµPSPSP°CŲ P°PrCЂPµCŕP°C†PëCŲ
 001E 8A 07
                               mov al, [bx]
                        ;mov mem3,[bx]
                       ; P'P°P·PëCTPsPIP°PSPSP°CU P°PrCTPuCTP°C†PëCU
 0020 8A 47 03
                              mov al, [bx]+3
 0023 8B 4F 03
                               mov cx, 3[bx]
                       ; P□PSPrPuPeCŕPSP°C∐ P°PrCЪPuCŕP°C†PëC∐
```

```
0026 BF 0002
                           mov di, ind
0029 8A 85 000E R
                           mov al, vec2[di]
                     ;mov cx,vec2[di]
                     ; PħPrcħPucíp°C†PëCU cí P±P°P·PëCħPsPIP°PSPëPuP
                     j Pë PëPSPrPμPεCΓ́PëCTPsPIP°PSPëPμPj
002D BB 0003
                           mov bx,3
0030 8A 81 0016 R
                           mov al, matr[bx][di]
                     ;mov cx,matr[bx][di]
                      ;mov ax,matr[bx*4][di]
                     ; РџР РћР'ЕРРљРђ Р Р•Р-Р□РњРћР' РђР"РЕСРђР
                     ¦Р□Р□ РЎ УЧЕСРћРњ СЕГМЕНРЎРћР′
                     ; PuPuChPuPsPiChPuPrPuP»PuPSPëPu CrPuPiPjPuPSC,
                     ; ----- PIP°CTPëP°PSC, 1
0034 B8 ---- R
                     mov ax, SEG vec2
0037 8E CO
                         mov es, ax
0039 26: 8B 07
                     mov ax, es:[bx]
003C B8 0000
                      mov ax, 0
                    ; ----- PIP°CЂPëP°PSC, 2
                        mov es, ax
003F 8E C0
    1E
0041
                     push ds
0042 07
                     pop es
0043 26: 8B 4F FF
0047 91
                      mov cx, es: [bx-1]
                     xchq cx,ax
                    ; ----- PIP°CЂPËP°PSC, 3
0048 BF 0002
                       mov di,ind
004B 26: 89 01
                     mov es:[bx+di],ax
                     ; ----- PIP°CTPEP°PSC, 4
004E 8B EC
                         mov bp,sp
                     ;mov ax,matr[bp+bx]
                     ;mov ax,matr[bp+di+si]
                     ; P□CΎPïPsP»CЊP·PsPIP°PSPëPμ CΎPμPiPjPμPSC, P° C
                     ΓC, ΡμΡεΡ°
0050 FF 36 0000 R
                           push mem1
0054 FF 36 0002 R
                           push mem2
0058 8B EC
005A 8B 56 02
                           mov bp,sp
                           mov dx, [bp] + 2
005D CA 0002
                           ret 2
0060
                    Main ENDP
0060
                     CODE ENDS
                     END Main
```

Segments and Groups:

N a m e	Length	Align	Combine Class
ASTACK	0018 PARA 0060 PARA 0026 PARA	STACK NONE NONE	
Symbols:			
N a m e	Type Value	e Attr	
EOL	NUMBER	0024	
IND	NUMBER	0002	
MAIN	F PROC L BYTE L WORD L WORD	0000 CODE 0016 DATA 0000 DATA 0002 DATA 0004 DATA	Length = 0060
N1	NUMBER NUMBER	01F4 -0032	
VEC1	L BYTE L BYTE	0006 DATA 000E DATA	
@CPU	TEXT 0101h TEXT 1r2 TEXT 510		

⁸² Source Lines

47842 + 459418 Bytes symbol space free

⁸² Total Lines

¹⁹ Symbols

⁰ Warning Errors

O Severe Errors

приложение в

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lr2_comp.asm

```
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EOU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 18,17,16,15,11,12,13,14
vec2 DB 30,40,-30,-40,10,20,-10,-20
matr DB -4, -3, 1, 2, -2, -1, 3, 4, 5, 6, 7, 8, -8, -7, -6, -5
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
push DS
sub AX, AX
push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
mov cx, ax
mov bl, EOL
mov bh, n2
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1, ax
; Косвенная адресация
mov al, [bx]
;mov mem3,[bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
;mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx, 3
 mov al, matr[bx][di]
```

```
;mov cx,matr[bx][di]
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx,ax
; ---- вариант 3
mov di, ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp, sp
; mov ax, matr[bp+bx]
; mov ax, matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp, sp
mov dx, [bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
```