

溶液表面吸附的测定

刘松瑞 2100011819 组号: 24 组内编号: 5 化学与分子工程学院

实验日期: 2023年10月11日

温度: 21.2°C 大气压强: 101.49 kPa

关键词: 表面吸附 表面张力 正丁醇 最大气泡压力法 吊片法

摘要:

本次实验使用最大气泡压力法与吊片法,测量了纯水以及不同浓度的正丁醇溶液的表面张力大小并通过实验数据,求得两种方法的水的饱和吸附量,并对计算进行误差分析。再计算两种方法下吸附分子的横截面积,并对高浓度下考虑溶质分子的横截面积进行计算。

1 引言

1.1 实验目的、原理

实验目的、原理详见预习报告图 1。[1]

[实验的]
0掌握Cibbs 则附分计算溶液和吸附量与则附中每个分子.
的上去的石和的文法
一种日本中的工工、10月11日丰大水上4月
0 掌握最大气泡压力法与市片法则量未面张的方法
3 了解与泡庄力与学校及美面张力的方法
图 了解测量 浮液未面积为的不图方法
[实验]
0.溶液的未面则附
Jan 10 Maria 17
27.50 AT TIGO.
其中门为表面吸附量 mol m-2为其首似 入外表面张力
四2716个公司 出版图在在公内区域 在活头出版公文主通
0 X 11 C PAS PAS
机限吸附率 [00 则每个分子在表面上所访的面积为 9= 77 1/
老色到深底表面上原方的温度分子见有
A LANGE THE TANK TO J THE
9 = -100
C - [NA+100 x Cc/NA)2/3
回溶液表面张力测定
-9/5/10X/10X/10X/10X/10X/10X/10X/10X/10X/10X
10 数大河上方法
$\Delta D = D - P' = \frac{2d}{d}$
P 201/2 - 23/2k h' 8
PUAN = ZOOK Ah = Z
Ah
P_0 $Cg\Delta h = \frac{27}{2}$
11人 好人好人 南山 冠上片 治压 九名的压力计算形式
Ah的纯本体多产生最大气泡压力的压力计高度
2) 品海海动
2.0114141.40
107 18 14 1/2 11 - 7 - 1 in O de Mich 1/2 1/2 2/4 2 alv 1
当别是挂于纽力丝天子时,沿吊片周边作用的液体的表面张力
F=28(l+d) cos0
1-18 (MW) (MS)
ン- F 接触事件もの
2 cltd) cas 0

图 1: 实验的目的、原理

1.2 实验方法

用最大气泡压力法与吊片法测定表面张力。

2 实验部分

2.1 实验步骤

实验步骤详见预习报告图 2 与图 3。

图 2: 实验步骤

B.吊片岩测量溶液表面张力.
· · ·
0接触源推出的按册关,预划
1
② 预处理 白金拉
全和运物
10 per yes.
Acetone/20/ Hd path Apple 1957
M7)3/1/1/2
② 姓在福丽如外侍则液 若经敬称能浸入接种 按的时
图根据结测液粘度、通过「设定1」「设定2」设定修定值、 0MPa<br 依粘度:5.0 ,亮粘度:8.0
6月分和白金板挂上、侧导读数是6岁零 法侵、则 下去过
- Yal 202 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10
D关玻璃门,按「针加相
0 12 1 44 2 - 11 to a 11 1 20 22 23
D技物上微型开始表面张力测定并记录·
0.010-04 101 - 144 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
图测定室成 校局工, 清洗的全板及样品四.
- 芳重新测定先后下,待白金板较多被测四伤,先骑上两日

图 3: 实验步骤(续)

2.2 仪器与药品

1. 试剂

不同浓度的正丁醇溶液(0.0218 mol/L, 0.0547 mol/L, 0.111 mol/L, 0.220 mol/L, 0.329 mol/L, 0.439 mol/L, 0.550 mol/L, 0.740 mol/L)。

2. 仪器

最大气泡压力法表面张力测量装置,QBZY-2型表面张力仪。

3 实验现象与数据处理

3.1 最大气泡压力法

清洗毛细管和试管,装入去离子水。将装置与大气压联通,恒定装置温度为30 ℃,读取零点位置为

$$h_0 = 22.73cm$$

关闭阀门,调节活塞3的针阀位置至合适位置,读取气泡破裂前最大压力计高度三次。更换溶液重复上述操作,记录浓度与压力计高度读数平均值,并计算左右压力计高度差如下表 1。

$c/mol \cdot L^{-1}$	$\ln c$	h _{left} /cm	h _{right} /cm	Δh/cm	$\gamma/\text{mN}\cdot\text{m}^{-1}$
0.00	-	18.00	27.49	9.49	71.18
0.0218	-3.83	18.39	27.05	8.66	64.95
0.0547	-2.91	18.82	26.65	7.83	58.73
0.111	-2.20	19.23	26.19	6.96	52.20
0.220	-1.51	19.80	25.63	5.83	43.73
0.329	-1.11	20.17	25.28	5.11	38.33
0.439	-0.82	20.48	25.03	4.55	34.13
0.550	-0.60	20.60	24.85	4.25	31.88
0.740	-0.30	20.91	24.55	3.64	27.30

表 1: 最大气泡压力法的测量结果

由于在最大气泡压力法中

$$\Delta P = \rho g \Delta h = 2\gamma/r$$

因此,查表可知,纯水的表面张力为 $71.18 \, mN \cdot m^{-1}$ 。可以通过

$$\gamma = \gamma_{H_2O} \cdot \frac{\Delta h}{\Delta h_{H_2O}}$$

计算得到不同浓度下的表面张力。

3.2 吊片法

使用表面张力仪测量纯水和不同浓度正丁醇溶液的表面张力,如表2所示。

$c/mol \cdot L^{-1}$	ln c	$\gamma/\text{mN}\cdot\text{m}^{-1}$
0.00	_	71.00
0.0218	-3.83	30.43
0.0547	-2.91	34.12
0.111	-2.20	36.77
0.220	-1.51	40.56
0.329	-1.11	45.84
0.439	-0.82	53.94
0.550	-0.60	60.87
0.740	-0.30	66.50

表 2: 吊片法的测量结果

本次实验的吊片法为本组成员共同完成,每人负责测定 1-2 组数据。测量温度取 室温 $21^{\circ}\mathrm{C}$

3.3 水的饱和吸附量的计算

使用最大气泡压力法,用表 1 的数据将 γ 对 $\ln c$ 作图,如图 4,并对高浓度的线性 部分做线性回归回归结果为

$$\gamma = 23.424 \pm 0.341 + (-13.395 \pm 0.354) \cdot \ln c$$
 $R^2 = 0.9972$

由公式

$$\Gamma_{\infty} = -\frac{1}{RT} \frac{d\gamma}{d \ln c}$$

且.

$$\frac{d\gamma}{d\ln c} = -13.395$$

可得

$$\Gamma_{\infty} = -\frac{-13.395 \cdot 10^{-3}}{8.314 \cdot 303.15} \text{ mol} \cdot \text{m}^{-2} = 5.3 \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-2}$$

对其进行误差分析

图 4: 最大气泡压力法的 $\gamma - \ln c$ 图

$$\sigma_{T_{\infty}} = \sqrt{\left(\frac{1}{RT} \cdot \sigma_{T}\right)^{2} + \left(\frac{1}{RT} \cdot \sigma_{\frac{d\gamma}{d \ln c}}\right)^{2}}$$

$$= \sqrt{\left(\frac{1}{8.314 \cdot 303.15} \cdot \frac{0.01}{303.15}\right)^{2} + \left(\frac{1}{8.314 \cdot 303.15} \cdot 0.354 \cdot 10^{-3}\right)^{2}}$$

$$= 1.41 \cdot 10^{-7}$$

因此最大气泡压力法饱和吸附量为 $(5.3 \pm 0.1) \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-2}$ 。

使用同样的处理步骤对吊片法数据作 $\gamma - \ln c$ 图如图 5 所示。线性回归结果为

$$\gamma = 26.502 \pm 0.148 + (-12.698 \pm 0.154) \cdot \ln c$$
 $R^2 = 0.9996$

处理可得

$$\varGamma_{\infty} = -\frac{-12.698 \cdot 10^{-3}}{8.314 \cdot 294.15} \; mol \cdot m^{-2} = 5.19 \cdot 10^{-6} \; mol \cdot m^{-2}$$

对其进行误差分析

$$\sigma_{\Gamma_{\infty}} = \sqrt{\left(\frac{1}{RT} \cdot \sigma_{T}\right)^{2} + \left(\frac{1}{RT} \cdot \sigma_{\frac{d\gamma}{d \ln c}}\right)^{2}}$$

$$= \sqrt{\left(\frac{1}{8.314 \cdot 303.15} \cdot \frac{0.01}{303.15}\right)^{2} + \left(\frac{1}{8.314 \cdot 303.15} \cdot 0.154 \cdot 10^{-3}\right)^{2}}$$

$$= 6.25 \cdot 10^{-8}$$

因此吊片法饱和吸附量为 $(5.19 \pm 0.06) \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-2}$

图 5: 吊片法γ – ln c 图

可以看出使用最大气泡压力法的误差稍高于吊片法,最大气泡压力法可能带来误差的原因是压力计的读数存在误差,并且不同浓度溶液控制气泡冒出的时间有所不同,随着正丁醇浓度增大,其气泡越来越稳定,可能会不破裂并积蓄在液面上,也会对读数造成影响。此外,毛细管插入深度的差异也会对测量的压力带来误差。由于吊片法仪器给出的是一段表面张力的范围,吊片法的误差来源可能为不同人的读数选取存在差异,样品皿没有完全清洗干净等。

3.4 表面吸附分子的横截面积

使用最大气泡压力法,若不考虑表面原有的溶质分子,由公式可得表面吸附分子的 横截面积为

$$q = \frac{1}{N_A \Gamma_\infty} = \frac{1}{5.3 \cdot 10^{-6} \cdot 6.023 \cdot 10^{23}} = 3.1 \cdot 10^{-19} \text{ m}^2 = 0.31 \text{ nm}^2$$

其误差分析方法为

$$\sigma_{q} = \sqrt{(\frac{\sigma_{\Gamma_{\infty}}}{\Gamma_{\infty}^{2} N_{A}})^{2}} = \frac{1.41 \cdot 10^{-7}}{(5.3 \cdot 10^{-6})^{2} \cdot 6.023 \cdot 10^{23}} = 8.33 \cdot 10^{-21} \text{ m}^{2} = 0.00833 \text{ nm}^{2}$$

因此若不考虑表面溶质分子,最大气泡压力法表面吸附分子的横截面积为 $0.31 \pm 0.01 \text{ nm}^{-2}$ 。

当溶液浓度较高,表面会存在原有溶质分子,此时由如下公式溶液表面吸附分子的 横截面积

$$q_c = \frac{1}{N_A \Gamma + (cN_A)^{2/3}}$$

其误差分析公式为

$$\sigma_{q_c} = \sqrt{(\frac{\sigma_{\Gamma_{\infty}} N_A}{(\Gamma_{\infty} N_A + (c N_A)^{2/3})^2})^2 + (\frac{2}{3} \cdot \frac{c^{-1/3} N_A^{2/3} \sigma_c}{(\Gamma_{\infty} N_A + (c N_A)^{2/3})^2})^2}$$

对各组数据使用如上公式计算。结果如表3。

表 3: 最大气泡压力法高浓度下的饱和吸附分子横截面积

$c/mol \cdot L^{-1}$	q_c/nm^2	$\sigma_{q_c}/{ m nm}^2$
0.220	0.308	0.008
0.329	0.306	0.008
0.439	0.305	0.008
0.550	0.303	0.008
0.740	0.301	0.008

使用吊片法,使用同样的公式计算溶液表面吸附分子的横截面积

$$q = \frac{1}{N_4 \Gamma_{co}} = \frac{1}{5.19 \cdot 10^{-6} \cdot 6.023 \cdot 10^{23}} = 3.20 \cdot 10^{-19} \text{ m}^2 = 0.320 \text{ nm}^2$$

对其进行误差分析

$$\sigma_{q} = \sqrt{(\frac{\sigma_{\Gamma_{\infty}}}{\Gamma_{\infty}^{2}N_{\Delta}})^{2}} = \frac{1.41 \cdot 10^{-7}}{(5.3 \cdot 10^{-6})^{2} \cdot 6.023 \cdot 10^{23}} = 3.85 \cdot 10^{-21} \text{ m}^{2} = 0.00385 \text{ nm}^{2}$$

因此吊片法表面吸附分子的横截面积为 0.320 ± 0.004 nm²。

同样地,考虑溶质分子的影响,不同浓度下饱和吸附分子横截面积如下表4所示。

表 4: 吊片法高浓度下的饱和吸附分子横截面积

$c/mol \cdot L^{-1}$	q_c/nm^2	$\sigma_{q_c}/\mathrm{nm}^2$
0.220	0.314	0.004
0.329	0.313	0.004
0.439	0.311	0.004
0.550	0.310	0.004
0.740	0.308	0.004

对比忽略分子影响与考虑溶质分子的数据,可以发现在高浓度下,溶质分子的参与会对数据造成较大的偏离,因此在浓度较高时应当考虑溶质分子的影响。

4 实验结果与讨论

4.1 结论

本次实验使用最大气泡压力法与吊片法,测量了纯水以及不同浓度的正丁醇溶液的表面张力大小并通过实验数据,作 $\gamma - \ln c$ 图来计算 $d\gamma/d \ln c$,从而求得水的饱和吸附量,并对计算进行误差分析。得到最大气泡压力法饱和吸附量为 $(5.3 \pm 0.1) \cdot 10^{-6} \, \mathrm{mol} \cdot \mathrm{m}^{-2}$,吊片法饱和吸附量为 $(5.19 \pm 0.06) \cdot 10^{-6} \, \mathrm{mol} \cdot \mathrm{m}^{-2}$ 。最后,再计算两种方法下吸附分子的横截面积。其中最大气泡压力法表面吸附分子的横截面积为 $0.31 \pm 0.01 \, \mathrm{nm}^{-2}$,吊片法表面吸附分子的横截面积为 $0.320 \pm 0.004 \, \mathrm{nm}^2$,并计算了高浓度下考虑溶质分子的横截面积 q_c 。

参考文献

[1] 北京大学化学学院物理化学实验教学组. 物理化学实验[M]. 4 版. 北京: 北京大学出版社, 2002: 5.