2022-2023 - סמסטר ב' תשפ"ג - 2022-2023 - תרגול פעיל 3

זכרו לכתוב את כל ההוכחות בצורה מלאה.

שאלה 1

. $lpha\in\mathbb{R}$ לא ריקות וחסומות ו־ $A,B\subseteq\mathbb{R}$

- . $\alpha = \inf(A)$ של כתבו את ההגדרה של
 - ב) הוכיחו או הפריכו:
- $\sup(A)$, $\sup(B)$, $\inf(A)$, $\inf(B)$ קיימים.
- . $A\subseteq B$ אזי , $\inf(B)\leqslant\inf(A)$ ר־ $\sup(A)\leqslant\sup(B)$ אם נתון ש־ (ii)

שאלה 2

יהיו אחת מהטענות הבאות: הוכיחו או ריקות. אריקות לא קבוצות $A,B\subseteq\mathbb{R}$

- אט אם A חסומה ו־ $B \leq A$ אז חסומה A אם א
- ב) אם B חסומה מלעיל ו־ A איננה חסומה מלעיל, אז $A \setminus B$ איננה חסומה מלעיל.
- . אם $A \neq B$ וגם $A \setminus B$ וה $A \setminus B$ חסומות, אז לפחות אחת מבין $A \setminus B$ וגם ג

שאלה 3

. יש מינימום. $U=\{\,M\in\mathbb{R}\mid A\leq M\,\}$ איש הפריכו: לקבוצה $U=\{\,M\in\mathbb{R}\mid A\leq M\,\}$ יש מינימום.

שאלה 4

. $U=\{M\in\mathbb{R}\mid A\leqslant M\}$ יש מינימום. הוכיחו או הפריכו : קיימת או הפריכו יש מינימום. $U\subseteq\mathbb{R}$ יש מינימום. הוכיחו או הפריכו

שאלה 5

. $\inf\left\{ \left. \frac{1}{a} \;\middle|\; a \in A \right. \right\} = 0$. איננה חסומה מלעיל, אז A הוכיחו . $\varnothing \neq A \subseteq \mathbb{R}^+ = \{\, x \in \mathbb{R} \;\mid\; 0 < x\,\}$ תהי

שאלות נוספות (אם נשאר זמן)

שאלה 6

 \mathbb{F} יהי \mathbb{F}

- . $(1_{\mathbb{F}})^n=1_{\mathbb{F}}$ מתקיים $n\in\mathbb{N}$ א) הוכיחו כי לכל
- . (*) $(xy)^n=x^ny^n$ מתקיים $n\in\mathbb{N}$ ולכל $x,y\in\mathbb{F}$ ב) בתרגיל הבית תוכיחו כי לכל בתרגיל הבית $(y^{-1})^n=(y^n)^{-1}$ אז $y\neq 0_\mathbb{F}$ שאם (*) שאם הסיקו מ־

שאלה 7

. $A+B=\{\,a+b\mid\,a\in A\;,\;b\in B\,\}$ נגדיר $arnothing \neq A,B\subseteq \mathbb{R}$ הגדרה בהינתן

האיבר 1 ב־ A+B מתקבל בשני אופנים שונים.

עבור הקבוצות את הוכיחו את הקבוצה $A,B\subseteq\mathbb{R}$ הבאות, מצאו את הקבוצות את הקבוצות את הבאות, מצאו את הקבוצות

$$A = \{1, 2\}$$
 , $A = \{x \in \mathbb{R} \mid 0 \le x \le 3\} = [0, 3]$ (8)

$$A = \{ -1, 1 \}$$
 , $A = \{ x \in \mathbb{R} \mid |x| > 1 \}$ (2)