নানা রকম আকৃতি মাপি

আমরা সমতল দ্বিমাত্রিক জ্যামিতিক আকৃতি সম্পর্কে জেনেছি। ত্রিভুজ, সামান্তরিক, আয়ত, বর্গ ও বৃত্ত ইত্যাদি আকৃতির পরিসীমা ও ক্ষেত্রফল নির্ণয় করা শিখেছি।

এবার চলো নিচের ছক - ১ পূরণ করিঃ

ছক _ ১

আকৃতি	নাম	পরিসীমা	ে ক্ষত্রফল
14 cm—1	সামান্তরিক		
14 cm			
9 CM 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
4 cm			
S of			

এবার মনে করো দৈর্ঘ্য ও প্রস্থের মান জানা নিই। তাহলে চলো দেখা যাক মান বসানোর পরিবর্তে দৈর্ঘ্য ও প্রস্থকে অজানা রাশি হিসাবে চলক দিয়ে প্রকাশ করে দেখি

ছক _ ২

আকৃতি	নাম	ক্ষেত্ৰফল	পরিসীমা/পরিধি
দৈর্ঘ্য (l) প্রস্থ (w)			
দৈৰ্ঘ্য (<i>l</i>)			
উচ্চ তা (h) ভূমি(b)			
্ট চ তা ভূমি(b)			
ব্যাসার্ধ (r)			

ট্রাপিজিয়াম আকৃতির ক্ষেত্রফল মাপি

সালাম স্যার গণিত বিষয় পড়ান। তিনি একদিন ক্লাসে এসে শিক্ষার্থীদের উদ্দেশ্যে বললেন, আমরা আয়তাকার, বর্গাকার, সামান্তরিক আকৃতির, ত্রিভুজাকৃতি এমনকি বৃত্তাকার আকৃতি সম্পর্কে জেনেছি। তাদের ক্ষেত্রফল নির্ণয় করা শিখেছি। আমরা অনেক জিনিস ব্যবহার করি বা আমাদের চারপাশে এমন জায়গা-জমি আছে, যাদের আকৃতি অনেকটা নিম্নরূপঃ

একটু ভালোভাবে লক্ষ করলে আমরা দেখতে পাবো উপরের ছবিগুলোর বিশেষ কোনো একটি অংশ একই ধরনের আকৃতি প্রদর্শন করে। পূর্বের শ্রেণিতে এই ধরনের আকৃতি সম্পর্কে জেনেছি। তোমরা কি বলতে পারবে এই ধরনের জ্যামিতিক আকৃতিকে আমরা কী বলে থাকি?

হ্যাঁ, এই ধরনের জ্যামিতিক আকৃতিকে আমরা ট্রাপিজিয়াম বলে থাকি।

আমাদের স্কুল যে জমিতে অবস্থিত অর্থাৎ আমাদের স্কুলের জমির সীমানার আকৃতির সাথে ট্রাপিজিয়াম আকৃতির কোনো মিল আছে কি?

চলো আজ আমারা আমাদের স্কুলের ট্রাপিজিয়াম আকৃতির জমি মেপে দেখি।

সালাম সাহেব দৈর্ঘ্য মাপার লম্বা ফিতা এবং শিক্ষার্থীদের নিয়ে স্কুল মাঠে গেলেন। শিক্ষার্থীরা তাঁর নির্দেশনা অনুসারে স্কুলের জমির সীমানা মেপে নিচের চিত্রটি অজ্জন করে। জমিটির শীর্ষবিন্দুতে A, B, D এবং E বিন্দু বসিয়ে ABDE চতুর্ভুজটি পেল। চিত্রে ABDE চতুর্ভুজটির দুইটি বিপরীত বাহু AE | BD এবং অপর বাহুদ্বয় অসমান্তরাল। সুতরাং ABDE চতুর্ভুজটি একটি ট্রাপিজিয়াম। শিক্ষার্থীরা ABDE ট্রাপিজিয়াম আকৃতিটিকে দুইটি অংশে বিভক্ত করে। প্রথম অংশ ABCE একটি আয়ত এবং দ্বিতীয় অংশ ECD একটি সমকোণী

ত্রিভুজ। যেহেতু শিক্ষার্থীরা আয়ত ও ত্রিভুজের ক্ষেত্রফল পরিমাপ করা জানে, সেহেতু তাদের স্কুলের জমির ক্ষেত্রফল নিম্নরপে হিসাব করে বের করে।

হিসাবঃ

- (ক) ABCE আয়তের ক্ষেত্রফল = দৈর্ঘ্য × প্রস্থ = AE × AB = □ × □বর্গ মিটার = □ বর্গমিটার।
- (খ) ECD ত্রিভুজের ক্ষেত্রফল = $\frac{1}{2}$ × ভূমি × উচ্চতা = $\frac{1}{2}$ × EC × CD বর্গমিটার = $\frac{1}{2}$ × \square × \square বর্গমিটার = \square বর্গমিটার।

সুতরাং ABDE ট্রাপিজিয়াম আকৃতির জমির ক্ষেত্রফল = ABCE আয়তের ক্ষেত্রফল + ECD ত্রিভুজের ক্ষেত্রফল

- = 🔲 বর্গমিটার + 🔲 বর্গমিটার
- = □ বর্গমিটার।

ট্রাপিজিয়ামের ক্ষেত্রফল নির্ণয়ের সূত্র খুঁজি

ABCD ট্রাপিজিয়াম আকৃতির জমির ক্ষেত্রফল = AEFD আয়তের ক্ষেত্রফল + ABE ত্রিভুজের ক্ষেত্রফল + DFC

গ্রিভুজের ক্ষেত্রফল
$$=(a.h+\frac{1}{2}.h.c+\frac{1}{2}.h.d)$$
 বর্গ একক
$$=\left(a+\frac{c}{2}+\frac{d}{2}\right)\times h=\left(\frac{2a+c+d}{2}\right)\times h=\left(\frac{a+a+c+d}{2}\right)\times h$$
 বর্গ একক
$$=\frac{1}{2}\{a+(a+c+d)\}\times h$$
 বর্গ একক
$$=\frac{1}{2}(a+b)\times h$$
 , যেহেতু $a+c+d=b$
$$=\frac{1}{2}(AD+BE)\times AB$$
 বর্গ একক
$$=\frac{1}{2}\times (\mathrm{YMI}_{\overline{\partial}}\mathrm{Sin}\mathrm{Fin$$

বিকল্প পদ্ধতিতে ট্রাপিজিয়ামের ক্ষেত্রফল নির্ণয়

১. কাগজে নিচের চিত্রের মতো ট্রাপিজিয়াম এঁকে ট্রাপিজিয়ামটি কেটে নাও।

- ২. সমান্তরাল বাহুদ্বয় এবং উচ্চতা মেপে খাতায় লিখে সংরক্ষন করো।
- এবার বৃহত্তর বাহু থেকে ক্ষুদ্রতর বাহুর সমান মাপ নিয়ে সামান্তরিক তৈরি করো।
- এখন ত্রিভুজ অংশটুকু কেটে আলাদা করে ফেল। ফলে ট্রাপিজিয়ামটি সামান্তরিক ও একটি ত্রিভুজে বিভক্ত হবে।
- ৫. তোমারতো সামান্তরিকের ক্ষেত্রফল ও ত্রিভুজের ক্ষেত্রফল নির্ণয়ের সূত্র জানা আছে। সুতরাং সামান্তরিক
 ও ত্রিভুজের ক্ষেত্রফলের সূত্র ব্যবহার করে সহজেই ট্রাপিজিয়ামের ক্ষেত্রফল নির্ণয় করতে পারবে আশা
 করি।

জোড়ায় কাজ:

কাগজ কেটে নিচের (ক), (খ) ও (গ) চিত্রের মতো মডেল তৈরি করো। তারপর বিকল্প একাধিক পদ্ধতিতে ক্ষেত্রফল নির্ণয় করো।

(ক)

একক কাজ:

- ১. গ্রাফ পেপারের উপর একটি ট্রাপিজিয়াম আঁক। প্রতিটি ক্ষুদ্রতম বর্গকে 1 বর্গ একক এবং আংশিক ক্ষুদ্রতম অংশকে 0.5 বর্গ একক ধরে ট্রাপিজিয়ামটির ক্ষেত্রফল নির্ণয় করো।
- ২. একটি ট্রাপিজিয়ামের সমান্তরাল বাহু দুইটির দৈর্ঘ্যের অন্তর ৪ সেন্টিমিটার এবং এদের লম্ব দূরত্ব 24 সেন্টিমিটার। যদি ট্রাপিজিয়ামটির ক্ষেত্রফল 312 বর্গ সেন্টিমিটার হয়, তবে এর সমান্তরাল বাহু দুইটির দৈর্ঘ্য নির্ণয় করো।

 ΔBCE এর ক্ষেত্রফল 100 বর্গ সেন্টিমিটার হলে, ABCD ট্রাপিজিয়ামটির ক্ষেত্রফল নির্ণয় করো।

8. নিচের ট্রাপিজিয়াম দুইটির ক্ষেত্রফল নির্ণয় করো:

৫. নিচের কোন কোন ট্রাপিজিয়ামের ক্ষেত্রফল সমান কিন্তু পরিসীমা ভিন্ন? হিসাব করে যাচাই করো।

রম্বসের (Rhombus) ক্ষেত্রফল নির্ণয়ের সূত্র খুঁজি

মনে করো, নিচের ABCD চিত্রটি একটি রম্বস, যার AC ও BD দুইটি কর্ণ। তুমিতো জানো, কোনো রম্বসের কর্ণদ্বয় পরস্পারকে সমকোণে সমদ্বিখন্ডিত করে। তাহলে, AC ও BD কর্ণদ্বয় O বিন্দুতে পরস্পারকে সমকোণে সমদ্বিখন্ডিত করেছে। আবার AC কর্ণ ABCD রম্বসকে দুইভাগে বিভক্ত করেছে।

সুতরাং আমরা বলতে পারি,

রম্বস
$$ABCD$$
 এর ক্ষেত্রফল = $\frac{\Delta ADC}{}$ এর ক্ষেত্রফল + $\frac{\Delta ABC}{}$ এর ক্ষেত্রফল = $\frac{1}{2} \times AC \times OD + \frac{1}{2} \times AC \times OB$ = $\frac{1}{2} \times AC(OD + OB)$

$$=rac{1}{2} imes AC imes BD$$
 $=rac{1}{2} imes d_1 imes d_2$; যেখানে $AC=d_1$ এবং $BD=d_2$
 $=rac{1}{2} imes$ কর্ণদ্বয়ের গুণফল
রম্বসের ক্ষেত্রফল $=$ কর্ণদ্বয়ের গুণফলের অর্থেক

একক কাজ:

নিচের ছকটি পূরণ করো।

আকৃতি	নাম	কৰ্ণ (d ₁)	কর্ণ (d ₁)	ক্ষেত্রফল
B H C		AC=d ₁ =8 সে.মি.	BD=d ₂ =12 সে.মি.	
P # S Q P R		PR=6 সে.মি.		42 বর্গ সে.মি.

ঘনবস্থু (Solids)

আমরা সবাই কমবেশি নিচের জিনিসগুলোর সাথে পরিচিত। তাই না? টুথপেন্ট, সাবান, বিস্কিট, ঔষধ আরো অনেক নিত্য প্রয়োজনীয় জিনিসপত্র আমরা ব্যবহার করে থাকি। পূর্বের শ্রেণিতে এরূপ মোরক বা বাক্সের আকৃতি সম্পর্কে আমরা জেনেছি। এবার নিচের দ্রব্যগুলো ভালোভাবে পর্যবেক্ষণ করে ছকের খালি ঘরগুলো পূরণ করো এবং তোমার চেনা-জানা আরো দু-তিনটি দ্রব্যের প্যাকেট সংগ্রহ করে তাদের ছবি আঁক, আকৃতির নাম, প্রতিটি পৃষ্ঠতলের আকার, পৃষ্ঠতলের সংখ্যা লিখ।

দ্রব্য	প্যাকেট অবস্থায় আকৃতির নাম	প্রতিটি পৃষ্ঠতলের আকার	পৃষ্ঠতলের সংখ্যা
SOAP			
TOOTHPASTE			
TOYS			
Biscuit			

উপরের ছকে বিভিন্ন বস্তুর মোরকের আকৃতি সম্পর্কে ভাবনা-চিন্তা করেছো। কিন্তু পড়া-লেখার জন্য তোমার বই, খাতা, পেন্সিল, কলমের মতো অতি প্রয়োজনীয় জিনিসগুলোর আকৃতি সম্পর্কে ধারণা থাকা দরকার। তোমার গণিত বইয়ের আকৃতি এবং পেন্সিলের আকৃতির মধ্যে কোনো পার্থক্য লক্ষ করেছো কি? আবার তুমি ও তোমার বন্ধুরা মাঝে মাঝেই রুবিক'স কিউব" নিয়ে প্রতিযোগীতায় মেতে ওঠো। এই রুবিক'স কিউব" এর আকৃতি অনেকটা মোটা ডিকশনারির মতো হলেও ভালোভাবে পর্যবেক্ষণ করলে এই দুইটি জিনিসের আকৃতির মধ্যকার পার্থক্য বুঝতে পারবে।

এবার চলো তোমার বই বা খাতা কীভাবে তৈরি হয় এবং তৈরিকৃত আকৃতিকে আমরা কী বলতে পারি তা জেনে নিই। সমান মাপের কতগুলো কাগজ নাও। A4 সাইজের প্রিণ্টের কাগজ হলে আরো ভালো হয়।

তুমিতো জানো, A4 সাইজের এক তা কাগজকে দ্বিমাত্রিক আয়ত বিবেচনা করা হয়ে থাকে। এবার টেবিলের উপর কাগজটি রেখে একের পর এক অনেকগুলো রাখলে নিচের চিত্রের মতো হবে।

ফলে সর্বশেষ যে আকৃতিটি পাবে তা হবে একটি আয়তাকার ঘনবস্তু। এক তা কাগজ দ্বিমাত্রিক (শুধু দৈর্ঘ্য ও প্রস্থ বিবেচনা করা হয়) হলেও অনেকগুলো কাগজ যখন পরপর রেখে স্থুপ করা হয় তখন আমরা আরেকটি মাত্রা উচ্চতা পেয়ে থাকি। তাহলে আমরা বলতে পারি, আয়তাকার ঘনবস্তুর দৈর্ঘ্য, প্রস্থ ও উচ্চতা আছে। অর্থাৎ আয়তাকার ঘনবস্তু তিন মাত্রিক।

নিচের ছবিটি লক্ষ করো। এটি একটি বাক্স। বাক্সটি আয়তাকার ঘনবস্তু আকৃতির। বাক্সটির তলগুলো সতর্কতার সাথে খুলে ফেললে আমরা ছয়টি পৃষ্ঠতল দেখতে পাবো।

একটি টিস্যু বক্স বা টুথপেস্টের মোরক সতর্কতার সাথে খুলে দেখতে পারো। দেখবে বাক্স বা মোরকটির ৬টি পৃষ্ঠতল, ১২টি ধার এবং ৮টি শীর্ষ রয়েছে। আবার বাক্সের তলগুলোকে নিচের মতো দেখলে বিপরীত তিন জোড়া অভিন্ন সমান্তরাল সমতল পৃষ্ঠ পাওয়া যাবে। বাক্সটির প্রতিটি আয়তাকার সমতল বা পৃষ্ঠ মেপে আমরা এর সমগ্রতলের ক্ষেত্রফল বের করতে পারব। যদিও পূর্বের শ্রেণিতে আমরা এই ধরনের বাক্সের সমগ্রতলের ক্ষেত্রফল মপে বের করা

শিখেছি, তারপরেও আবার একটু অনুশীলন করলে ভালো হয় তাই না?

দলগত কাজ:

কাগজের আয়তাকার ঘনবস্তু বানাই এবং সমগ্রতলের ক্ষেত্রফল ও আয়তন মাপি

সমগ্রতলের ক্ষেত্রফল মাপিঃ

- কাগজ কেটে নিচের ছবির মতো প্রথমে একটি আয়তাকার ঘনবস্তুর খাঠামো তৈরি করো।
- কাঠামের প্রতিটি তলের সমান মাপ অনুযায়ী কাগজ কেটে নাও।
- কাঠামোতে দাগাজ্ঞিত এককের সমান করে প্রতিটি তলের কাগজে ক্ষুদ্র বর্গ একক এঁকে নাও।

- কাঠামোটির ছয়টি তলে দাগাঙ্কিত কাগজগুলো আঁঠা দিয়ে লাগিয়ে নিলেই ঘনবস্তুটি তৈরি হয়ে যাবে।
- প্রতিটি পৃষ্ঠতলের ছোট ছোট 'খোপ' বা ঘরগুলোতে ক্রমানুসারে 1, 2, 3, সংখ্যাগুলো বসাও। এই ঘরগুলোর প্রত্যেকেই একেকটি বর্গ। কারণ, প্রত্যেকের বাহুর দৈর্ঘ্য সমান বা 1 একক। অর্থাৎ, এরা সবাই "একক বর্গক্ষেত্র"। তোমাদের নিশ্চয়ই জানা আছে "কোন ক্ষেত্রকে (যেমন: ত্রিভুজক্ষেত্র, বর্গক্ষেত্র, আয়তক্ষেত্র ইত্যাদি) যতগুলো একক বর্গক্ষেত্রে ভাগ করা যায়, ঐ ক্ষেত্রের ক্ষেত্রফলও তত বর্গ একক হয়"। তাহলে, এখানে প্রতিটি আয়তাকৃতি তলে যতগুলা ছোট ছোট 'খোপ' বা 'ঘর' রয়েছে, তাদের সমষ্টিই হবে এই আয়তাকার ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল। এবার পৃষ্ঠতলের খোপগুলো বা ঘরগুলোতে সবচেয়ে বড় সংখ্যাটিই হবে ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল।

ঘনবস্থুর সমগ্রতলের ক্ষেত্রফল নির্ণয়ের সূত্র খুঁজি আয়তাকার ঘনবস্থু (Cuboid)

একটি আয়তাকার ঘনবস্তুর প্রতিটি সমতল আয়তাকার এবং এর তলগুলোর দৈর্ঘ্য ও প্রস্থকে নিচের চিত্রের মতো অজানা প্রতীক দ্বারা চিহ্নিত করে চলো ঘনবস্থুটির সমগ্রতলের ক্ষেত্রফল বের করার একটা বীজগণিতীয় সুত্র তৈরি করার চেষ্টা করি।

মনেকরো, তোমার কাছে একটি আয়তাকার ঘনবস্তু আকৃতির বাক্স আছে। বাক্সটির মাত্রাগুলো অর্থাৎ দৈর্ঘ্য (l) প্রস্থ (b)এবং উচ্চতা (h) নিচের (ক) চিত্রের মতো

চিহ্নিত করতে পারো। এবার বাক্সটি ধীরে ধীরে খুলে ফেলো। দেখবে (খ) চিত্রের ন্যায় তিন গোড়া অভিন্ন পৃষ্ঠতল পাওয়া যাবে। পৃষ্ঠতলগুলোকে (খ) চিত্রের মতো চিহ্নিত করে নাও।

বাক্সটি খুলে ফেলায় তুমি যে ছয়টি পৃষ্ঠতল পেলে লক্ষ করলে দেখবে এর প্রতিটিই আয়তাকার। তুমিতো আয়তের ক্ষেত্রফল নির্ণয় করা জানো, তাই না? একটু চিন্তা করে দেখতো, বাক্সটির সমগ্রতলের ক্ষেত্রফল

নির্ণয় করা যাবে কিনা?

তুমি যদি বাক্সটির ছয়টি তলের ক্ষেত্রফল বের করে নাও তাহলে, বাক্সটির সমগ্রতলের ক্ষেত্রফল হবে তোমার আলাদা আলাদাভাবে বের করা ছয়টি তলের ক্ষেত্রফলের সমষ্টির সমান। অর্থাৎ

বাক্সটির সমগ্রতলের ক্ষেত্রফল

- = ক্ষেত্রফল -1 + ক্ষেত্রফল -2 + ক্ষেত্রফল -3 + ক্ষেত্রফল -4 + ক্ষেত্রফল -5 + ক্ষেত্রফল -6
- $=(h\times l)+(l\times b)+(b\times h)+(h\times l)+(b\times h)+(l\times b)$ বৰ্গ একক
- =(hl+lb+bh+hl+bh+lb) বর্গ একক
- =(2lb+2bh+2hl) বৰ্গ একক
- =2(lb+bh+hl) বৰ্গ একক।

সুতরাং আমরা বলতে পারি, আয়তাকার ঘনবস্তু দৈর্ঘ্য (l), প্রস্থ (b) এবং উচ্চতা (h) হলে, ঘনবস্তুর সমগ্রতলের ক্ষেত্রফল (A) = 2(lb+bh+hl) বর্গ একক।

একক কাজ:

নিচের (ক) এবং (খ) চিত্রের সমগ্রতলের ক্ষেত্রফল নির্ণয় করো।

দলগত কাজ:

শ্রেণিকক্ষের দৈর্ঘ্য, প্রস্থ ও উচ্চতা পরিমাপ করো। তারপর নিচের প্রশ্নগুলোর উত্তর দাওঃ

- ক. শ্রেণিকক্ষের সমগ্রতলের ক্ষেত্রফল (দরজা ও জানালা বাদে)
- খ. পার্শ্বতলগুলোর ক্ষেত্রফল
- গ. প্রমাণ করো যে, শ্রেণিকক্ষের সমগ্রতলের ক্ষেত্রফল = পার্শ্বতলগুলোর ক্ষেত্রফল + 2 × মেঝের ক্ষেত্রফল

ঘনক (Cube)

তুমি এমন একটি বাক্স নিলে যার মাত্রাগুলো সমান। অর্থাৎ বাক্সটির দৈর্ঘ্য = প্রস্থ = উচ্চতা। বাক্সটির দৈর্ঘ্য, প্রস্থ ও উচ্চতা সমান হলে এরূপ আকৃতিকে কী বলবে? বাক্সটির আকৃতি (ক) চিত্রের মতো হবে। তুমি যদি

বাক্সটির পৃষ্ঠতলগুলো খুলে ফেল, তবে এটি (খ) চিত্রের মতো হবে। মনে করো বাক্সটির ধার] একক।

- ক. বাক্সটির প্রত্যেকটি তলের আকৃতি কীরূপ হবে?
- খ. প্রত্যেকটি তলের ক্ষেত্রফল নির্ণয় করো। প্রতিটি তলের ক্ষেত্রফল কী সমান হবে?
- গ. বাক্সটির সমগ্রতলের ক্ষেত্রফল নির্ণয় করো।

তাহলে আমরা বলতে পারি, একটি ঘনকের ধার l একক হলে ঘনকটির সমগ্রতলের ক্ষেত্রফল $(A)=6l^2$ বর্গ একক।

একক কাজ:

- ১. মিনতি কাগজ দ্বারা পাশের ঘনবস্তু আকৃতির বাক্স দুইটি তৈরি করে। কোন বাক্সটি বানাতে মিনতির কম কাগজ লেগেছে?
- ২. রবিনের একটি কেবিনেট আছে যার দৈর্ঘ্য, প্রস্থ ও উচ্চতা যথাক্রমে 2 মিটার, 1 মিটার এবং 3 মিটার। কেবিনেটটির তলা বাদে বাইরের বাকী অংশ রং করাতে চায়। প্রতি বর্গ মিটার রং করাতে 150 টাকা লাগলে তার মোট কত টাকা খরচ হবে?

ঘনবস্তুর আয়তন নির্ণয়ের সূত্র খুঁজি

তোমরা ইতিমধ্যেই জেনেছো, কোনো বস্তুর আয়তন ত্রিমাত্রিক। অর্থাৎ বস্তুটির দৈর্ঘ্য, প্রস্থ ও উচ্চতা বিদ্যমান। আমরা যদি 1 একক দৈর্ঘ্য, 1 একক প্রস্থ ও 1 একক উচ্চতা বিশিষ্ট কতগুলো ছোট ছোট বাক্স বানাতে পারি এবং ঐ বাক্সগুলো দ্বারা আয়তাকার ঘনবস্তুটি সম্পূর্ণ পূর্ণ করি, তাহলেই ঘনবস্তুটির আয়তন পেয়ে যাব।

যেহেতু ছোট ছোট বাক্সগুলোর দৈর্ঘ্য = প্রস্থ = উচ্চতা। সুতরাং প্রতিটি বাক্স ঘনক আকৃতির হবে। একটি ঘনবস্তুর ভেতর কতগুলা "একক ঘনক" রয়েছে তা বের করতে পারলেই আয়তন বের করা হয়ে যাবে। এখানে, 'একক ঘনক' হচ্ছে সেই ঘনক, যার দৈর্ঘ্য = প্রস্থ = উচ্চতা = 1 একক।

এবার তাহলে একটা উদাহরণ দেয়া যাক।

আমরা প্রায় সবাই-ই "রুবিক'স কিউব"-এর সাথে পরিচিত। তোমরা হয়তো ভাবছো উদাহরণ হিসেবে "রুবিক'স কিউব"-কে কেন আবার আনা হলো। এটি আনার কারণ হলো- লক্ষ করলে দেখবে "রুবিক'স কিউব"- অনেকগুলো একক ঘনক এর সমন্বয়ে তৈরি। তাছাড়া এটা নিয়ে আমরা অনেকেই খেলা করি।

এখানে এমন একটি "রুবিক'স কিউব" দেখানো হয়েছে, যার দৈর্ঘ্য = প্রস্থ = উচ্চতা = 4 একক। চিত্রের ভেতরে অনেকগুলো 'ঘনক' দেখা যাচ্ছে। যারা প্রত্যেকেই 'একক ঘনক'। কারণ ভেতরের ছোট ছোট ঘনকের প্রত্যেকের বাহর দৈর্ঘ্য "1 একক". ফলে তারা সবাই "একক ঘনক"। এখন, ভেতরের সকল ছোট ছোট ঘনককে এক এক করে গুণতে হবে। যতটি ঘনক পাওয়া যাবে, "রুবিক'স কিউব"-এর আয়তন হবে তত। এবার তাহলে গণনা শুরু করা যাক। গণনার সুবিধার্থে আমরা "রুবিক'স কিউব"-কে কয়েকটা পৃথক পৃথক খঙে ভাগ করবো যাতে আমাদের গণনা করতে এবং বুঝতে সুবিধা হয়। নিচের চিত্রটি ভালোভাবে লক্ষ করো:

উপরের ছবিতে আমাদের নেয়া ঘনক-কে চারটি খণ্ডে বিভক্ত করা হয়েছে। এই চারটি খণ্ড মিলে উক্ত "রুবিক'স কিউব" টি গঠন করা যায়। ছবি হতে দেখা যায়ঃ

১ম খণ্ডে ঘনক সংখ্যাঃ 28টি, ২য় খণ্ডে 20টি, ৩য় খণ্ডে 12টি এবং ৪র্থ খণ্ডে 4টি

সুতরাং, মোট ঘনক সংখ্যা=28+20+12+4 = 64টি

অতএব, আমাদের নেয়া "রুবিক'স কিউব" এর আয়তন = 64 ঘন একক।।

উপরের আলোচনা থেকে আমরা সবাই ঘনবস্তুর আয়তন সম্পর্কে জানতে পারলাম। ধারণাটিকে আরও পাকাপোক্ত করার জন্য চলো কাগজ কেটে 1 একক দৈর্ঘ্য, প্রস্থ ও উচ্চতা বিশিষ্ট বাক্স বানাই। এর জন্য ধারাবাহিকভাবে নিচের কাজগুলো করতে হবেঃ

- প্রথমে এক তা কাগজ নাও।
- এবার আণের তৈরি করা ঘনবস্তুটির পৃষ্ঠতলের ছোট একটি ঘরের বাহুর সমান মাপ নিয়ে নিচের চিত্রের মতো কেটে নাও।

- তোমার কেটে নেওয়া কাগজটি দাগ বরাবর ভাঁজ করে আঠা বা য়ৢঢ়টেপ দ্বারা পৃষ্ঠতলগুলো লাগিয়ে
 নিলেই ঘনক আকৃতির বায়য়টি তৈরি হয়ে যাবে।
- এভাবে অনেকগুলো ছোট ছোট বাক্স বানাও। কারণ আয়তাকার ঘনবস্তুটি সম্পূর্ণ পূর্ণ করতে কয়টি ছোট ছোট বাক্স লাগবে তুমি আগে থেকে তা জানো না।
- এবার আয়তাকার ঘনবস্থুর কাঠামোর ভিতর নিচের চিত্রের মতো একটি একটি করে ছোট বাক্স সাজিয়ে

রাখতে থাকো।

আয়তাকার ঘনবস্তুর কাঠামোটি পরোপুরি
পূর্ণ হলে, ছোট বাক্সে সংখ্যা গুণে নাও।
কাঠামোটির ভিতরে যে কয়টি ছোট বাক্স
ধরবে, আয়তাকার ঘনবস্তুটির আয়তন
তত ঘন একক হবে।

তাহলে আমরা সিদ্ধান্ত নিতে পারি, একটি আয়তাকার ঘনবস্তুর মাত্রাগুলোর দখল করা জায়গার পরিমাণই ঘনবস্তুটির আয়তন।

আমাদের নেয়া "রুবিক'স কিউব" এর আয়তন ছিল 64 ঘন একক। আবার, এই 64 হচ্ছে তিনটি 4 এর গুণফল। মানে, $64 = 4 \times 4 \times 4 =$ দৈর্ঘ্য \times প্রস্থ \times উচ্চতা

ঘনকের ক্ষেত্রে দৈর্ঘ্য = প্রস্থ = উচ্চতা হওয়ায়, দৈর্ঘ্য, প্রস্থ এবং উচ্চতার প্রত্যেককে ঘনকের ধার বলে বিবেচনা করা যায়। ঘনকের ধার (1) একক হলে —

আয়তন $(V) = দৈর্ঘ্য <math>\times$ প্রস্থ \times উচ্চতা $= |x| \times |z|^3$ ঘন একক

আবার তুমি কাগজ কেটে যে আয়তাকার ঘনবস্তুটি বানালে তার দৈর্ঘ্য 4 একক, প্রস্থ 3 একক এবং উচ্চতা 2 একক ছিল। আর ঐ ঘনবস্তুর কাঠামোটি পরোপুরি পূর্ণ করতে মোট 24টি ছোট বাক্স প্রয়োজন হয়েছিল, তাই না? তাহলে, একটু চিন্তা করে দেখতো, তোমার বানানো ঘনবস্তুর দৈর্ঘ্য, প্রস্থ এবং উচ্চতার সাথে 24টি ছোট বাক্সের কোনো সম্পর্ক আছে কিনা?

অর্থাৎ আমরা বলতে পারি, আয়তাকার ঘনবস্তু আয়তন = দৈর্ঘ্য x প্রস্থ x উচ্চতা আয়তাকার ঘনবস্তু দৈর্ঘ্য (l), প্রস্থ (b) এবং উচ্চতা (h) হলে,

একক কাজ:

১. নিচের ছকটি পূরণ করো:

ক্রমিক নং	ঘনবস্তু	দৈর্ঘ্য (1)	প্রস্থ (b)	উচ্চতা (h)	সমগ্রতলের ক্ষেত্রফল	আয়তন
٥.	12 units 3 units	12	3	1		

- ২. গণিত বইয়ের দৈর্ঘ্য, প্রস্থ ও উচ্চতা মেপে এর সমগ্রতলের ক্ষেত্রফল এবং আয়তন নির্ণয় করো।
- ৩. তিনটি ধাতব ঘনকের ধার যথাক্রমে 3 সে.মি., 4 সে.মি. এবং 5 সে.মি.।। ঘনক তিনটিকে গলিয়ে একটি নতুন ঘনক বানানো হলো। নতুন ঘনকের সমগ্রতলের ক্ষেত্রফল ও আয়তন নির্ণয় করো।

বেলন (Cylinder)

বেলন, নামটি পড়েই ছবিতে থাকা নিচের উপকরণ দুইটির কথা প্রথমেই মনে পড়ছে তাই না? খুঁজলে আমাদের প্রত্যেকের ঘরেই এদের পাওয়া যাবে। বিশেষ করে সকালের নাস্তায় আমরা অনেকেই রুটি-পরোটা খেয়ে থাকি। আর তা বানাতে নিচের জিনিস দুইটি ব্যবহার করা হয়। বলতে পারবে জিনিস দুইটির কোনটিকে কি বলা হয়?

পাশের হাতলওয়ালা উপকরণটির নাম বেলন এবং নিচের বৃত্তাকার বস্তুটির নাম রুটি বানানোর পিঁড়ি। এখন তোমাকে একটি কাজ করতে হবে। রুটি বানানোর জন্য তোমার বাসায় যে পিঁড়িটি আছে, তার ব্যাসার্ধ, ব্যাস, পরিধি ও উপরের তলের ক্ষেত্রফল বের করতে হবে। তোমার জন্য তৈরি করা (কম পক্ষে তিনটি) রুটির ক্ষেত্রফল নির্ণয় করো। এবার রুটি ও পিঁড়ির মধ্যকার ক্ষেত্রফল সম্পর্কে মতামত নিচের ছকে লিখে ছকটি পূরণ করো।

উপকরণ	ব্যাসার্ধ	বাস	পরিধি	ক্ষেত্ৰফল
পিঁড়ি				
রুটি - ১				
রুটি - ২				
রুটি - ৩				
রুটি - ৪				
রুটি - ৫				
মতামত				

আমরা আমাদের দৈনন্দিন ব্যবহারিক জীবনে প্রত্যেকেই বেলন আকৃতির নানা ধরনের জিনিসপত্র দেখি বা ব্যবহার করে থাকি। তোমার স্কুলের বিজ্ঞানাগারে তুমি যখন ব্যবহারিক ক্লাস করো তখন টেস্টটিউব, বিকার এমনকি শ্রেণিকক্ষের টিউব লাইট দেখে থাকবে। ভেবে দেখতো এই জিনিসগুলোর আকৃতি একই রকম কিনা। আমাদের চারপাশে যে গাছপালা রয়েছে, তাদের অনেককেই দেখতে বেলন আকৃতির মনে হয়। যেমন: সুপারি গাছ, তাল গাছ ইত্যাদি। নিচের ছবিগুলো দেখলে এই ধরনের আকৃতির আরও অনেক বস্তুর কথাই আমাদের মনে আসবে।

দলগত কাজ:

"বেলন আকৃতির বস্তুর নাম লেখার প্রতিযোগিতা।" সময়ঃ ৫ মিনিট। দলের প্রত্যেকে নিজ নিজ খাতায় বেলন আকৃতির বস্তুর নাম লিখবে। যে দল সবচেয়ে বেশি নাম লিখতে পারবে, সে দল জয়লাভ করবে।

কাগজ কেটে বেলন বা সিলিন্ডার বানাই

আমরা এতক্ষণ বেলন বা সিলিন্ডার আকৃতির অনেক বস্তুর নাম ও তাদের ব্যবহার সম্পর্কে জেনেছি। এবার চলো কাগজ কেটে নমুনা সিলিন্ডার তৈরি করি।

- প্রথমে A4 সাইজের এক তা কাগজ নাও। A4 সাইজের কাগজ না পাওয়া গেলে অন্য যেকোনোরে
 আয়তাকার কাগজ হলেও চলবে।
- নিচের চিত্রের মতো কাগজটির দুই প্রান্ত ঘুরিয়ে কাগজটির দৈর্ঘ্য ও প্রস্থ বরাবর দুইটি সমবৃত্তভূমিক সিলিন্ডার বানানো যাবে।

আমরা জানি, একটি A4 সাইজের কাগজের দৈর্ঘ্য মোটামোটি 30 সেন্টিমিটার এবং প্রস্থ 21 সেন্টিমিটার। প্রথমে প্রস্থ বরাবর কাগজটিকে ঘুরিয়ে সিলিন্ডারটি বানিয়ে ফেলো।

এবার দৈর্ঘ্য বরাবর কাগজটিকে ঘুরিয়ে একইভাবে আরো একটি সিলিন্ডারটি বানাও।

 একই মাপের কাগজ থেকে প্রস্থ ও দৈর্ঘ্য বরাবর ঘুরিয়ে তুমিতো দুইটি সিলিন্ডার বানালে। এবার ভেবে বলতো সিলিন্ডার দুইটির মোড়ানো তল বা বক্রতলের ক্ষেত্রফল একই হবে, নাকি ভিন্ন হবে?

প্রশ্নের উত্তরটি জানার জন্য প্রথমে আমাদের সিলিন্ডার আকৃতির ঘনবস্তুর মোড়ানো বা বক্রতলের ক্ষেত্রফল সম্পর্কে জানতে হবে।

একটি সিলিন্ডার আকৃতির বস্তু নাও। এক টুকরা পাইপ বা একটি ব্যাটারি হলেও চলবে। নিচের চিত্রের মতো ব্যাটারিটি গ্রাফ পেপারে রেখে এমনভাবে কেটে নাও যেন গ্রাফ পেপারের প্রস্থ ব্যাটারির উচ্চতার সমান হয়। এবার দৈর্ঘ্য বরাবর গ্রাফ পেপারটিকে এমনভাবে কাটতে হবে যেন প্রাফ পেপারটি ব্যাটারির মোড়ক মনে হয়।

প্রাফ পেপারটিকে ব্যাটারি থেকে আলাদা করার পর (iv) কাগজটির আকৃতি কীরূপ পেয়েছো? অবশ্যই আয়তাকার, তাই না? তোমার নিশ্চয়ই জানা আছে, আয়তাকার কাগজটির ছোট ছোট 'খোপ' বা ঘরগুলোর প্রত্যেকেই একেকটি বর্গ। কারণ, প্রত্যেকের বাহুর দৈর্ঘ্য সমান বা 1 একক। অর্থাৎ, এরা সবাই "একক বর্গক্ষেত্র"। এবার ছোট ছোট 'খোপ' বা ঘরগুলো গুণে নাও। এই ঘরগুলোর সমষ্টিই হবে এই আয়তাকার কাগজটির ক্ষেত্রফল। অর্থাৎ ব্যাটারিটির বক্রতলের ক্ষেত্রফল।

সিলিন্ডারের বক্রতলের ক্ষেত্রফল নির্ণয়ের সূত্র খুঁজি

আয়তাকার কাগজটিকে মোড়িয়ে তোমার তৈরি করা সিলিন্ডারটিতে দুইটি অভিন্ন খোলা মুখ আছে। এই খোলা মুখ দুইটি আসলে অভিন্ন দুইটি বৃত্ত। আয়তাকার কাগজটিকে যদি দৈর্ঘ্য বরাবর মোড়ানো হয়, তবে কাগজটির দৈর্ঘ্য হবে বৃত্তটির পরিধির সমান। সেক্ষেত্রে কাগজটির প্রস্থ হবে সিলিন্ডারটির উচ্চতা।

তুমিতো ইতিমধ্যেই জেনেছো, বৃত্তের ব্যাসার্ধ r একক হলে এর পরিধি = $2\pi r$ একক। তাহলে, আয়তাকার কাগজটির দৈর্ঘ্য হবে $2\pi r$ একক। কাগজটির প্রস্থ = সিলিন্ডারটির উচ্চতা = h একক।

সুতরাং সিলিন্ডারটির বক্রতলের ক্ষেত্রফল = আয়তাকার কাগজটির ক্ষেত্রফল = দৈর্ঘ্য 🗙 প্রস্থ

$$=2\pi r \times h$$
 বুৰ্গ একক $=2\pi r h$ বুৰ্গ একক।

একক কাজ:

কোনো এক কোম্পানী তাদের তৈরি করা গুড়োদুধ সমবৃত্তভূমিক সিলিন্ডার আকৃতির টিনের পাত্রে বাজারজাত করতে চায়। টিনের পাত্রটির ব্যাস $16~\mathrm{cm}$ এবং উচ্চতা

 $24\ cm$ কোম্পানী টিনের পাত্রটির উপর ও নিচের দিকে $2\ cm$ ফাঁকা রেখে পাত্রটি সম্পূর্ণ ঘুরিয়ে একটি মোড়ক লাগানোর সিদ্ধান্ত নিয়েছে। মোড়কটির ক্ষেত্রফল নির্ণয় করো।

সিলিন্ডারের সমগ্রতলের ক্ষেত্রফল নির্ণয়ের সূত্র খুঁজি

আমরা জেনেছি, সমবৃত্তভূমিক সিলিন্ডারের দুই প্রান্ত অভিন্ন বৃত্তক্ষেত্র। আর বৃত্তের ব্যাসার্ধ r একক হলে, বৃত্তের ক্ষেত্রফল $=\pi r^2$ বর্গ একক। পূর্বেই জেনেছো, সিলিন্ডারের ব্যাসার্ধ r একক এবং উচ্চতা h একক হলে, বক্রতলের ক্ষেত্রফল $=2\pi rh$ বর্গ একক।

সুতরাং উপরের চিত্র থেকে আমরা লিখতে পারি,

সিলিন্ডারের সমগ্রতলের ক্ষেত্রফল = বক্রতলের ক্ষেত্রফল
$$+2 imes$$
 বৃত্তের ক্ষেত্রফল $=2\pi rh+2 imes\pi r^2$ বর্গ একক $=2\pi rh+2\pi r^2$ বর্গ একক $=2\pi r(h+r)$ বর্গ একক

একক কাজ:

১. নিচের (i) ও (ii) নং চিত্র দুইটি সমবৃত্তভূমিক সিলিন্ডার হলে এদের সমগ্রতলের ক্ষেত্রফল নির্ণয় করো।

২. নমিতার স্কুলে 24 টি গোলাকার পিলার আছে। প্রতিটি পিলারের ব্যাস 30 সেন্টিমিটার এবং উচ্চতা 4 মিটার। প্রতি বর্গ মিটার রং করতে 125 টাকা খরচ হলে সবগুলো পিলার রং করতে কত টাকা খরচ হবে?

সমবৃত্তভূমিক বেলন বা সিলিন্ডারের আয়তন

তুমিতো ইতিমধ্যে জেনেছো, একটি আয়তাকার ঘনবস্তুর আয়তন = ভূমির ক্ষেত্রফল × উচ্চতা।

তুমি কি একইভাবে সিলিন্ডারের আয়তন নির্ণয় করতে পারবে?

চলো কয়েকটি ঘটনা পর্যবেক্ষণ করে বিষয়টি বোঝার চেষ্টা করিঃ

(ক) আচ্ছা নিচের ছবিটি লক্ষ করো: দোকানে এভাবে একই মাপের এক ডজন বা তারও বেশি প্লেট সাজিয়ে রাখতে দেখেছো। একটি বৃত্তাকার প্লেটের উপর যখন অনেকগুলো একই মাপের প্লেট পরপর সাজিয়ে রাখা হয় তখন প্লেটগুলোর স্থুপের আকৃতি অনেকটা সিলিন্ডার আকৃতি হয়। তাই না?

একই মাপের একটি প্লেট এবং পাশের ছবিতে ঐ মাপের ১০/১৫টি প্লেটের স্তুপ

সবচেয়ে নিচের বৃত্তাকার প্লেটটির ক্ষেত্রফল বের করে প্লেটের সংখ্যা দ্বারা গুণ করলেই প্লেটের স্থুপের আয়তন পেয়ে যাবে।

(খ) একই কাজ আমরা একটি মোটা বৃত্তাকার কাগজ কেটেও করতে পারি।

পাশের চিত্র থেকে আমরা বলতে পারি, বৃত্তাকার কাগজের স্থুপের আয়তন = একটি বৃত্তাকার কাগজের ক্ষেত্রফল × স্থুপের উচ্চতা

(গ) চলো প্লাটিকের মাটি দিয়ে বেলন বা সিলিন্ডার বানাই

প্রয়োজনীয় উপকরণঃ প্লাটিকের মাটি, ছুরি এবং রুলার বা স্কেল পদ্ধতিঃ

ধাপ ১: প্লাস্টিকের মাটির তৈরি একটি সিলিন্ডার বানাও যার উচ্চতা h এবং বেস ব্যাসার্ধ r

ধাপ ২: একটি ধারালো ছুরি দিয়ে সিলিন্ডারটিকে চিত্রের মতো আটটি অংশে কেটে নাও।

ধাপ ৩: এবার চিত্রে দেখানো পদ্ধতিতে একটি আয়তাকার ঘনবস্তুর মতো শক্ত কাঠামো তৈরি করো। যেখানে আটটি অংশ একে অপরের সাথে সংযুক্ত অবস্থায় থাকবে।

পর্যবেক্ষণ এবং গণনাঃ

যেহেতু আটটি অংশ একত্র করে আয়তাকার ঘনবস্তুটি তৈরি করা হয়েছে, সেহেতু ঘনবস্তুটির দৈর্ঘ্য হবে πr একক, প্রস্থr একক এবং উচ্চতা h একক। তোমরা কিন্তু ইতিমধ্যেই ঘনবস্তুর আয়তন নির্ণয় করা শিখেছো, তাই না?

তাহলে, ঘনবস্তুটির আয়তন = দৈর্ঘ্য × প্রস্থ × উচ্চতা

$$=\pi r \times r \times h$$
 ঘন একক
= $\pi r^2 h$ ঘন একক।

অর্থাৎ সিলিন্ডারটির আয়তন = $\pi r^2 h$ ঘন একক।

$$=\pi r^2 \times h$$
 ঘন একক $=\pi r^2 h$ ঘন একক।

একক কাজ

- নিচের ছবিটি দেখো। এখানে সিলিন্ডারের মাত্রাগুলো ক্রমানুসারে (ব্যাসার্ধ ও উচ্চতা) দ্বিগুণ করা হয়েছে। ফলে আয়তনের কীরূপ পরিবর্তন ঘটবে? যুক্তিসহ মতামত ব্যক্ত করো।
- নিচের ছবিটি লক্ষ করো। এখানে প্রথম সিলিন্ডারটির ব্যাস দ্বিপুণ

h

 πr^2

এবং উচ্চতা অর্ধেক করে দ্বিতীয় সিলিন্ডারটি তৈরি করা হয়েছে। সিলিন্ডার দুইটির আয়তনের অনুপাত নির্ণয় করো।

একটি বিস্কুট কোম্পানী বিস্কুট প্যাকিং এর জন্য আয়তাকার ঘনবস্তু আকৃতির বাক্স তৈরি করবে।
 সেজন্য নিচের দুই ধরনের বাক্সের পরিকল্পনা করে।

কোন ধরনের বাক্সটি বানালে কোম্পানীর জন্য লাভজনক হবে? যুক্তিসহ ব্যাখ্যা করো। আয়তন ঠিক রেখে বাক্সের মাত্রাগুলো শুধু পরিবর্তন করলেও আয়তন ঠিক থাকবে এবং কোম্পানীর লাভবান হবে। এমন পরামর্শ তুমি কী দিতে পারবে?

8. একটি A4 আকৃতির কাগজকে প্রস্থ ও দৈর্ঘ্য বরাবর মোড়িয়ে নিচের চিত্রের মতো দুইটি বেলন বা সিলিন্ডার বানাও।

- ক. তোমার বানানো সিলিন্ডার দুইটির মধ্যে কোনটির আয়তন বেশি?
- খ. A4 আকৃতির কাগজ থেকে কোন আকৃতির অংশ কেটে নিলে উভয় সিলিন্ডারের আয়তন সমান

হবে? তোমার উত্তরের সপক্ষে যুক্তি দাও।

- ৫. স্কেল দিয়ে মেপে 21cm দৈর্ঘ্য ও 12cm প্রস্থ বিশিষ্ট দুইটি কাগজের টুকরা কেটে নাও। এবার কাগজের টুকরার একটিকে দৈর্ঘ্য বরাবর এবং অপরটিকে প্রস্থ বরাবর রোল বা গোল করে পাকিয়ে দুইটি সমবৃত্তভূমিক বেলন বা সিলিন্ডার তৈরি করো।
 - ক. উভয় সিলিন্ডারের বক্রতলের ক্ষেত্রফল ও আয়তন নির্ণয় করো।
 - খ. উভয় সিলিন্ডারের আয়তনের মধ্যে কোনো পার্থক্য থাকলে, কেন পার্থক্য হয়েছে তা যুক্তিসহ ব্যাখ্যা করো।
- ৬. ঢাকনাসহ একটি কাঠের বাক্সের বাইরের মাপ যথাক্রমে 10 সে.মি., 9 সে.মি. এবং 7 সে.মি.। বাক্সটির ভিতরের সমগ্রতলের ক্ষেত্রফল 262 বর্গ সে.মি.। বাক্সটির কাঠের পুরুত্ব সমান।
 - ক বাক্সটির আয়তন নির্ণয় করো।
 - খ. বাক্সটির দেওয়ালের পুরুত্ব নির্ণয় করো।
- ৭. একটি বেলনের আয়তন 150 ঘন সে.মি। বেলনটির ভূমির ব্যাসার্ধ ও উচ্চতা কি কি হওয়ার সম্ভাবনা আছে?

্র একটি ছক তৈরি করে ব্যাসার্ধ ও উচ্চতার মান ধরে চেষ্টা করো]