Title of the these

Aghiles DJOUDI

PhD student LIGM/ESIEE Paris & ECE Research Lab Paris

February 14, 2020

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- Reconfiguration of LoRa
 Networks Parameters using Fuzzy
 C-Means Clustering
 - Testbed
 - Conclusior

- 1. IoT Devices
- 2. IoT Applications
- 3. IoT Wireless Communications

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- Reconfiguration of LoRa
 Networks Parameters using Fuzzy
 C-Means Clustering
 - Testbed
 - Conclusion

1. IoT Devices

- IoT Applications
- 3 IoT Wireless Communic

Massive IoT devices

IoT devices are useless without a good communication capability

Figure 1. loT devices perera mosden 2013.

1. Introduction | 1. IoT Devices 1/43

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - Testbed
 - Conclusior

- 1 InT Devices
- 2. IoT Applications
- 3. IoT Wireless Communicat

Applications diversification

Each application has its own communication requirements

Challenges/Applications	Grids	EHealth	Transport	Cities	Building
Resources constraints	X	/	X	-	X
Mobility	X	-	/	/	X
Heterogeneity	-	-	-	/	X
Scalability	√	-	/	/	-
QoS constraints	-	-	/	/	/
Data management	-	X	/	/	-
Lack of Standardization	-	-	-	-	/
Amount of attacks	X	X	/	✓	/
Safety	-	/	✓	-	/

Table 1. Main IoT challenges kouicem_internet_2018 [1]

Figure 2. IoT Applications.

IoT platforms

IoT platforms is a chain of communication process

Figure 3. IoT platform.

Figure 4. IoT challenges.

Applications diversification

Requirements

Use Case	Packet rate [pkt/day]	Min success rate [Ps,min]	Payload Size [Byte]
Wearables	10	90	
Smoke Detectors	2	90	
Smart Grid	10	90	10-20
White Goods	3	90	
Waste Management	24	90	
VIP/Pet Tracking	48	90	
Smart Bicycle	192	90	
Animal Tracking	100	90	
Environmental Monitoring	5	90	
Asset Tracking	100	90	50
Smart Parking	60	90	
Alarms/Actuators	5	90	
Home Automation	5	90	
Machinery Control	100	90	
Water/Gas Metering	8	90	
Environmental Data Collection	24	90	
Medical Assisted Living	8	90	
Micro-generation	2	90	
Safety Monitoring	2	90	100-200
Propane Tank Monitoring	2	90	
Stationary Monitoring	4	90	
Urban Lighting	5	90	
Vending Machines Payment	100	90	
Vending Machines General	1	90	1K

Table 2. Application requirements for the use cases of interest [2] [1] [3]

- 1. Introduction
- 2. Academic Survey
- 3. Industrial Survey
- Reconfiguration of LoRa
 Networks Parameters using Fuzzy
 C-Means Clustering
- IoT Devices
- 2. IoT Applications
- 3. IoT Wireless Communications
- 1. LoRa

- Jestbed
- Conclusion

IoT wireless communication

Wireless communication performance need to be evaluated to match applications requirements

Figure 5. Short range, Cellular and Long range networks.

- 1. Introduction
- 2. Academic Survey
- 3. Industrial Survey
- Reconfiguration of LoRa
 Networks Parameters using Fuzzy
 C-Means Clustering
- IoT Devices
- 2. IoT Applications
- 3. IoT Wireless Communications
- 1. LoRa

- Jestbed
- Conclusion

Wireless communication

Exp: LPWAN in a new technology that satisfy IoT applications requirements

Figure 6. LoRa and LoRaWan stack.

LoRa parameters selection

How to select the optimal configuration

- Parameters
 - → Bandwidth (BW)
 - → Spreading Factor (SF)
 - → Coding Rate (CR)
 - → Transmission Power (Ptx)
 - → Payload size (PS)
 - → Signal Noise Rate (SNR) [-7.5,-20dBm]

- Metrics
 - → Data Rate (DR)
 - → Air Time (AT)
 - → PS_{max}
 - → Received Signal Strength Indication (RSSI) [-30,-120dBm]

Setting	Values	Rewards	Costs
BW	7.8 → 500 <i>kHz</i>	DR	RSSI, Range
SF	2 ⁶ → 2 ¹²	RSSI, Range	DR, SNR, PS _{max} , P ^{tx}
CR	4/5 ➡ 4/8	SNR	PS_{max}, P^{tx}, AT
P ^{tx}	-4 ⇒ 20 <i>dBm</i>	SNR	P ^{tx}
PS	59 → 230 <i>B</i>	PS	P^{tx} , AT

Table 3. LoRa parameters selection [4]

Multi criteria decision making

Layer	Maximize (Reward)	Minimize (Cost)
Application	Sec security	Service Cost (SC)
Network	Range Packet delivery Ratio (PDR) PS DR	Jitter (Jit) Traffic congestion (TC) Round-Trip Delay (RTD) Packet Error Rate (PER) Time Complexity (O _{time})
Radio	Mobility (Mob) Symbol Rate (SR) Bit Rate (BR) Signal-to-Interference Ratio (SIR) RSSI Signal-to-interference & noise ratio (SINR) SNR	Space Complexity (O _{space}) Bit Error Rate (BER) Ptx Co-channel Interference (CCI) Duty cycle (DC) Time on Air (ToA) Path loss (PL)

Multi criteria decision making

$$\mathsf{ToA}_{LoRa} = \frac{2^{SF}}{BW} \left((NP+4.25) + \left(SW + \mathsf{max} \left(\left\lceil \frac{8PS - 4SF + 28 + 16CRC - 20IH}{4(SF - 2DE)} \right\rceil (CR+4), 0 \right) \right) \right)$$

$$\mathsf{ToA}_{\mathsf{GFSK}} = \frac{8}{DR}(NP + SW + PL + 2CRC) \tag{1}$$

 $RS_{IdBm1} = -174 + 10 \log_{10} BW + NF + SNR$

$$PL_{[B]} = |RSSI| + SNR + P_{TX} + G_{RX}$$
(3)

$$SNR_{[dB]} = 20.log(\frac{S}{N}) \tag{4}$$

$$RSSI_{[dBm]} = Tx_{power}. \frac{Rayleigh_{power}}{PL}$$

(5)

$$SINR_{[dBm]} = (6)$$

$$BR_{[bps]} = SF * \frac{4}{\frac{4+CR}{2SF}}$$
 (7)

BER_[bps] =
$$\frac{8}{15} \cdot \frac{1}{16} \cdot \sum_{k=1}^{\infty} k = 216 - 1^{k} \left(\frac{16}{k}\right) e^{20.SINR(\frac{1}{k}-1)}$$
(8)

$$PER_{[pps]} = 1 - (1 - BER)^{n_{bits}}$$
 (9)

(10)

Where:

- NP = 8. if LoRa . 5. if GFSK
- SW = 8. if LoRa . 3. if GFSK CRC = 0 if downlink packet. 1 if uplink packet
- → IH = 0 if header. 1 if no header present.
- DE = 1 if data rate optimization. 0 if not
- PS = PHY Payload bytes
- **SF** = 7, 8, 9, 10, 11, 12
- BW = bandwidth
- CR = Indicates the Coding Rate

LoRa Frame

Prear	mble	Sync msg	PHY Header	PHDR-CRC						
Modulation	length	Sync msg	PHY Header	PHDR-CRC		MAC Header				
Modulation	length	Sync msg	PHY Header	PHDR-CRC	МТуре	RFU	Major			
Modulation	length	Sync msg	PHY Header	PHDR-CRC	МТуре	RFU	Major	Dev Address		
Modulation	length	Sync msg	PHY Header	PHDR-CRC	МТуре	RFU	Major	NwkID	NwkAddr	ADR
0	1	2	3	4	5	6	7	8	9	10
PHY Payload							CRC			
MAC Payload						MIC	CRC Type	Polynomial		
Frame Header				FPort	Frame Payload	MIC	CRC Type	Polynomial		
FCtrl FCnt FOpts				FOpts	FPort	Frame Payload	MIC	CRC Type	Polynomial	
ADRACKReq	ACK	FPending /RFU	FOptsLen	FCnt	FOpts	FPort	Frame Payload	MIC	CRC Type	Polynomial
11	12	13	14	15	16	17	18	19	20	21

LoRa Frame

- → Modulation:
 - → Lora: 8 Symbols, 0x34 (Sync Word)
 - → FSK: 5 Bytes, 0xC194C1 (Sync Word)
- Length:
- Sync msg :
- PHY Header : It contains:
 - → The Payload length (Bytes)
 - → The Code rate
 - → Optional 16bit CRC for payload
- → Phy Header : CRC It contains CRC of Physical Layer Header
- MType: is the message type (uplink or a downlink)
 - → whether or not it is a confirmed message (regst ack)
 - → 000 Join Request
 - → 001 Join Accept
 - → 010 Unconfirmed Data Up
 - → 011 Unconfirmed Data Down
 - → 100 Confirmed Data Up
 - → 101 Confirmed Data Down
 - → 101 Confirmed Data Down
 - → 111 Proprietary
- → 111 Proprietary
- RFU : Reserved for Future Use
- Major: is the LoRaWAN version; currently, only a value of zero is valid
 - → 00 LoRaWAN R1
 - → 01-11 RFU
- NwkID: the short address of the device (Network ID): 31th to 25th
 NwkAddr: the short address of the device (Network Address): 24th to
- Oth
- ADR: Network server will change the data rate through appropriate MAC commands
 - → 1 To change the data rate
 - → 0 No change

- ADRACKReq: (Adaptive Data Rate ACK Request): if network doesn't respont in 'ADR-ACK-DELAY' time, end-device switch to next lower data rate.
 - → 1 if (ADR-ACK-CNT) >= (ADR-ACK-Limit)
 - → 0 otherwise
- ACK: (Message Acknowledgement): If end-device is the sender then gateway will send the ACK in next receive window else if gateway is the sender then end-device will send the ACK in next transmission.
 - 1 if confirmed data message
 - → 0 otherwise
 - FPending | /RFU ↑: (Only in downlink), if gateway has more data pending to be send then it asks end-device to open another receive window ASAP
 - → 1 to ask for more receive windows
 - → 0 otherwise
 - ▼ FOptsLen: is the length of the FOpts field in bytes ă 0000 to 1111
 - FCnt: 2 type of frame counters
 - FCntUp: counter for uplink data frame, MAX-FCNT-GAP
 FCntDown: counter for downlink data frame, MAX-FCNY-GAP
 - FCntDown: counter for downlink data frame, MAX-FCNY-GA
 FOpts: is used to piggyback MAC commands on a data message
 - → FPort : a multiplexing port field
 - → 0 the payload contains only MAC commands
 - → 1 to 223 Application Specific
 - → 224 & 225 RFU
 - FRMPayload: (Frame Payload) Encrypted (AES, 128 key length) Data
 - → MIC: is a cryptographic message integrity code
 → computed over the fields MHDB. FHDB. FPort and the
 - encrypted FRMPayload.
 - CRC: (only in uplink),
 - → CCITT $x^{16} + x^{12} + x^5 + 1$
 - \rightarrow IBM $x^{16} + x^{15} + x^5 + 1$

- 1. Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa
 Networks Parameters using Fuzzy
 C-Means Clustering
 - Testbed
 - 6. Conclusion

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa letworks Parameters using Fuzzy Means Clustering
 - 5. Testbed
 - 6. Conclusion

- 1. Introduction
- Academic Survey
- Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6. Conclusion

- 1. Problem statement
- 2. Background
- 3. Selection framework
- 4. Experimentation
- 5. Results
- 6. Discussion

- Introduction
- Academic Survey
- Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6. Conclusion

- 1. Problem statement
- 2. Background
- Selection framework
- 4. Experimentation
- 5. Results
- Discussion

A Relay and Mobility Scheme for QoS Improvement in IoT

- Only application requirements.
 - → Environment conditions, operator rules, User preferences.
- Only one (simple) normalization function for all parameters.
 - → Use Fuzzy logic with different rules for normalization.
- Only one objective function to fits all requirements.
 - → Use **Genetic algorithms** with 3 objective functions.
- Only one application.
 - Use 3 applications with different requirements

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6. Conclusion

- 1 Problem statement
- 2. Background
- Selection framework
- 4. Experimentation
- 5. Results
- 6. Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5. Marcov Chain
- 6. Best Response Dynamics
- 7. Fictitious Paly
- 8. Reinforcement Learning
- B. Reinforcement Learnii
- Joint Utility Strategy
 Trial and Error Learning
- 10.Irial and Error Learning
 11.Regret Matching Learning
- 12Jmitation Learning

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5 Testhed
 - 6. Conclusion

- 1 Problem statement
- 2. Background
- 3. Selection framework
- 4. Experimentation
- 5. Results
- 6 Discussion

- 1. Fuzzy C-Means Clustering
- Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learnin
- 5 Marcov Chair
- 5. Marcov Chain
- 6. Best Response L
- 7. Fictitious Paly
- 8. Reinforcement Learning
- . Joint Utility Strategy
- 0.Trial and Error Learning
- 12.Imitation Learning

Fuzzy C-Means Clustering

- 1) **Input:** $X = [x_{11}, ..., x_{np}]$, with $x_{ik} \in \mathbb{R}$, $1 \le k \le p$, $1 \le i \le n$
 - **X:** Set of received packets with their performance metrics.
 - n: received packets, p: performance metrics, c: applications.
- 2) Method:
 - Objective function:

$$\min_{(\mathbf{U}, \mathbf{V})} \left\{ M_m(\mathbf{U}, \mathbf{V}) = \sum_{j=1}^c \sum_{i=1}^n \mathbf{u}_{ij}^m d(\mathbf{x}_i, \mathbf{v}_j)^2 \right\}$$
* Constraint:
$$\sum_{j=1}^c \mathbf{u}_{ij} = 1, \forall i$$

- * Distance: $d(\mathbf{x}_i, \mathbf{v}_j) = \|\mathbf{x}_i \mathbf{v}_j\|$
- * Degree of fuzzification: $m \ge$

Fuzzy membership matrix: U

$$\mathbf{u}_{ij} = \left[\sum_{j'=1}^{c} \left(\frac{d(\mathbf{x}_i, \mathbf{v}_j)}{d(\mathbf{x}_i, \mathbf{v}_{j'})} \right)^{\frac{2}{m-1}} \right]^{-1}, \forall j, i \sim \mathbf{U}_t = F_{\partial}(\mathbf{V}_{t-1})$$

Clusterheads matrix: V

$$\rightarrow \mathbf{v}_{j} = \left(\sum_{i=1}^{n} \mathbf{u}_{ij}^{m} \mathbf{x}_{i} / \sum_{i=1}^{n} \mathbf{u}_{ij}^{m}\right), \forall j \sim \mathbf{V}_{t} = G_{\partial}\left(\mathbf{U}_{t-1}\right)$$

- 3) **Output:** $\mathbf{U} = [u_{11}, ..., u_{nc}], \ \mathbf{V} = [v_{11}, ..., v_{cp}], \ \text{with} \ u_{ij}, v_{jk} \in [0, 1], \ 1 \le j \le c, \ 1 \le i \le n, \ 1 \le k \le p$
 - **V:** Clusterheads matrix.
 - U: Fuzzy membership matrix.
- 4) Validation: (Performance Index)
 - $\Rightarrow \min_{(c)} \left\{ P(c) = \sum_{j=1}^{c} \sum_{i=1}^{n} \mathbf{u}_{ij}^{m} \left(d(\mathbf{x}_{i}, \mathbf{v}_{j})^{2} \|\mathbf{v}_{j} \overline{\mathbf{x}}\|^{2} \right) \right\}, \ \overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$

Fuzzy C-Means Clustering

Input:

$$\mathbf{X} = \begin{array}{c} metric_1 & \dots & metric_p \\ conf_1 & x_{11} & \dots & x_{1p} \\ \vdots & \ddots & \vdots \\ conf_n & x_{n1} & \dots & x_{np} \end{array}$$

Output:

$$\mathbf{U} = \begin{array}{cccc} & app_1 & \dots & app_c \\ conf_1 & u_{11} & \dots & u_{1c} \\ \vdots & \ddots & \vdots \\ conf_n & u_{n1} & \dots & u_{nc} \\ \end{array}$$

$$metric_1 & \dots & metric_p \\ app_1 & v_{11} & \dots & v_{1p} \\ \vdots & \ddots & \vdots \\ app_c & v_{c1} & \dots & v_{cp} \\ \end{array}$$

Input:

$$\mathbf{G} = \begin{array}{c} & app_1 & \dots & app_c \\ conf_1 & u_{11} & \dots & u_{1c} \\ \vdots & \ddots & \vdots \\ conf_n & u_{n1} & \dots & u_{nc} \end{array}$$

Output:

$$\mathbf{G} = \begin{array}{cccc} & app_1 & \dots & app_c \\ conf_1 & g_{11} & \dots & g_{1p} \\ \vdots & \ddots & \vdots \\ conf_n & g_{n1} & \dots & g_{np} \end{array}$$

Fuzzy C-Means Clustering

Initialization:

- Fuzzy C-Means Clustering
 - → c: number of applications
 - m: weighting exponent (Fuzziness degree)
- Iteration
 - → T: maximum number of iterations (Typ.: 100)
 - → e: termination threshold (Typ. 0.01)

Algorithm 1: FCM

```
Input: V_0 = [v_{11},...,v_{CP}]

Output: (\mathbf{U},\mathbf{V})

t = 0

while \|\mathbf{v}_j - \overline{\mathbf{x}}\| \ge \mathbf{e} \text{ or } t \le T \text{ do}

\|\mathbf{v}_t - \mathbf{v}_t\| \le \mathbf{e} \mathbf{o} \mathbf{v} \cdot \mathbf{v} \le T \mathbf{v}

\|\mathbf{v}_t - \mathbf{v}_t\| \le G_{\partial}(\mathbf{U}_{t-1})

\|\mathbf{v}_t - \mathbf{v}_t\| \le G_{\partial}(\mathbf{U}_{t-1})

\|\mathbf{v}_t - \mathbf{v}_t\| \le G_{\partial}(\mathbf{v}_t)
```

Genetic algorithm

- $G = [g_{11}, ..., g_{nc}], g_{ij} \in [0, 1], 1 \le i \le n, 1 \le j \le c.$
 - → n: received packets, c: applications.
- ⇒ $G_0 = [g_{11}, ..., g_{nc}], g_{ij} = q_{ij} / \sum_{l=1}^{c} q_{il}, \forall i,j.$ ⇒ $q_{ij} = random(\mathbb{R}), \forall i,j.$
- $G_t = [g_1, ..., g_n]$
 - → Selection (roulette wheel):
 - 1) $f(r_i) = \beta(1-\beta)^{r_i-1}$
 - * $\beta \in [0,1]$ biggest section probability allowed.
 - * $r_i \in [1, n]$ rank of q_i
 - 2) $\overline{g_x} = \{g_{x^1}, ..., g_{x^2}\}, F(r_{i-1}) \le h_{x^e} \le F(r_i), 1 \le e \le z \le n, \forall i$
 - * $h_{x^e} \in [0,1], h \sim Uniform$
 - * z: number of selected packets.
 - → Fitness/Crossover/Clustering:
 - * $\overline{g_x}$ =FCM(**X**)
 - → Mutation: v ~P
 - * b is the mutation threshold (0.001).

$$\overline{g_x} = \begin{cases} \overline{g_x} & v \ge b \\ \overline{q_{xj}} / \sum_{l=1}^{c} \overline{q_{xl}}, \text{ with } \overline{q_{xj}} = random(\mathbb{R}), \forall j. & otherwise \end{cases}$$

- 1) The Fuzzy C-Means Clustering algorithm takes in parameter a matrix of n packets received by the gateway by each end-devices with their p metrics (RSSI, ToA, BER, ...). 2) The algorithm builds two other matrices, U which contains the membership degree of each packet to the
- c applications, and V, which contains the optimal p metrics that best fit the c applications. 3) The genetic algorithm starts by randomly generating a matrix with the same dimensions as matrix U.
- 4) The algorithm selects z packets and applies the Fuzzy C-Means Clustering algorithm on these z packets.
- 5) β is a parameter that represents the biggest probability that a packet could have to be selected.
- 6) r is a parameter that defines its rank, a packet of rank 1 has the probability β to be selected, a packet of rank r has a probability f(r) to be selected.
- 7) F(r) is the cumulative function of f(r),
- 8) To select a set of packets to be sent to th FCM, a random variable between 0 and 1 is generated for each packet received. The probability to select packets decrease progressively until achieving all the packets.
- 9) Once the selected packets are chosen, we apply the FCM algorithm on the selected packets.

- 1. Introduction
- Academic Survey
- Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6 Conclusion

- Problem statement
- 2. Background
- 3. Selection framework
- 1 Evperimentation
- . 5. Results
- 6. Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- Multi-Arm Bandits
- 4. Q-Learning
- 5 Marcov Chair
- 6 Rest Response Dynamics
- 7. Fictitious Palv
- 8 Reinforcement Learning
- 8. Reinforcement Learnii
- 9. Joint Utility Strategy InTrial and Error Learni
- 10.Trial and Error Learning 11 Regret Matching Learning
- 12.Imitation Learning

Game theory

- $P = \{p_1, ..., p_n\}, p_i \in \mathbb{N}, 1 \le i \le n.$
- n: number of players.
- $S = \{s_1, ..., s_n\}, 1 \le i \le n$
 - \rightarrow s_i is the strategy set of the i^{th} player.
- $r_i(s_i, s_{-i}) = u_k : S \longrightarrow R_+$
 - $\Rightarrow s_{-i} = (s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_n) \in S_1 \times \dots \times S_{i-1} \times S_{i+1} \times \dots \times S_n$

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6. Conclusion

- 1 Problem statement
- 2. Background
- 3. Selection framework
- 1 Evperimentation
- 5. Results
- 6 Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5 Marcov Chair
- 6. Best Response Dynamics
- 7 Fictitious Palv
- 8 Reinforcement Learning
- 8. Reinforcement Learning
- Office Office Strategy
 Office Strategy
 Trial and Error Learning
 Pagret Matching Learning
- 11 Regret Matching Learn

Multi-Armed-Bandit Algorithm

```
For each step t = 1, ..., T
```

- → Arms: K = 1, ... , K
- \longrightarrow Reward: X_t^k with $\mu_t^k = \mathbf{E}[X_t^k]$
 - \rightarrow Bernoulli rewards: $x_{k_t} \sim B(\mu_{k_t,t})$
 - ightarrow Best reward: X_t^* with $\mu_t^* = \max_t \mu_t^k$, $\mathbf{k} \in \mathbf{K}$ ightarrow The reward k_t is revealed $x_{k_t} \in [0,1]$
- Minimize the pseudo regret:
 - $\rightarrow R(T) = \sum_{t=1}^{T} \mu_t^{\star} \mathbb{E}\left[\sum_{t=1}^{T} x_{k_t}\right]$
 - → where
 - $* \mu_t^* = \max_k \mu_{k,t}$

Bandit Algorithm

Growing number of Thompson Sampling fi,t:

i denotes the starting time

→ t the current time.
Let P(f i,t) be the probability at time t of the Thompson sampling starting at time i.

- Initialization: $\mathbb{P}(f_{1,1}) = 1, t = 1, 2$ $\forall k \in K\alpha_{k,f_{1,1}} \leftarrow \alpha_0, \beta_{k,f_{1,1}} \leftarrow \beta_0$
- Decision process: at each time t: $\forall i < t, \forall k : \theta_{k,f_{i,t}} \sim \text{Beta}\left(\alpha_{k,f_{i,t}}, \beta_{k,f_{i,t}}\right)$
 - → Play (Bayesian Aggregation):
 - * $k_t = \operatorname{arg\,max}_k \sum_{i < t} \mathbb{P}(f_{i,t}) \theta_{k,f_{i,t}}$
- Instantaneous gain update:

$$\forall i < t \mathbb{P}\left(x_{t} | f_{i,t}\right) = \begin{cases} \frac{\alpha_{k,f_{i,t}}}{\beta_{k,f_{i,t}} + \alpha_{k,f_{i,t}}} & \text{if } x_{k_{t}} = 1\\ \frac{\beta_{k,f_{i,t}} + \alpha_{k,f_{i,t}}}{\beta_{k,f_{i,t}} + \alpha_{k,f_{i,t}}} & \text{if } x_{k_{t}} = 0 \end{cases}$$

Arm hyper parameters update:

$$\forall i < t \begin{cases} \alpha_{k, f_{i,t}} = \alpha_{k, f_{i,t}} + 1 & \text{if } x_{k_t} = 1 \\ \beta_{k, f_{i,t}} = \beta_{k, f_{i,t}} + 1 & \text{if } x_{k_t} = 0 \end{cases}$$

Distribution of experts update:

$$\rightarrow \forall i < t, \mathbb{P}(f_{i,t}) \propto (1-\rho) \cdot \mathbb{P}(x_t | f_{i,t-1}) \cdot \mathbb{P}(f_{i,t-1})
\rightarrow f_{t,t} : \mathbb{P}(f_{t,t}) \propto \rho \sum_{i=1}^{t-1} \mathbb{P}(x_t | f_{i,t-1}) \cdot \mathbb{P}(f_{i,t-1})
\rightarrow \alpha_{k,f_t} = \alpha_0, \beta_{k,f_t} = \beta_0$$

(11)

(12)

Bandit Algorithm

THOMPSON SAMPLING (TS)

```
⇒ success counter: \alpha_k = \#(x_{k_l} = 1) + \alpha_0

⇒ failure counter: \beta_k = \#(x_{k_l} = 0) + \beta_0

⇒ At each t:

* \theta_k \sim \text{Beta}(\alpha_k, \beta_k)

* k_t = \text{arg max} \theta_k

* \begin{cases} \alpha_k = \alpha_k + 1 & \text{if } x_{k_l} = 1 \\ \beta_k = \beta_k + 1 & \text{if } x_{k_l} = 0 \end{cases}
```

SWITCHING ENVIRONMENT

$$\mu_{k,t} = \begin{cases} \mu_{k,t-1} & \text{probability } 1 - \rho \\ \mu_{new} \sim U(0,1) & \text{probability } \rho \end{cases}$$
 (13)

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5 Testhed
 - 6. Conclusion

- 1 Problem statement
- 2. Background
- Selection framework
- 1 Evperimentation
- 5 Regulte
- 6 Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5. Marcov Chair
- 6. Best Response Dynamics
- 7. Fictitious Palv
- 8 Reinforcement Learning
- 9. Joint Utility Strategy
- 10.Trial and Error Learning 11.Regret Matching Learning
- 12.Imitation Learning

Q Learning

$$Q(s_{t+1}, a_t) = Q(s_t, a_t) + \gamma (R(s_t, a_t) - Q(s_t, a_t))$$

- $Q(s_{t+1}, a_t) = \text{new Q-Value}$
- $Q(s_t, a_t) = \text{old Q-Value}$
- γ = learning constant
- \Rightarrow $R(s_t, a_t)$ = immediate reward received after executing action a in state s at time t

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6. Conclusion

- Problem statement
- 2. Background
- 3. Selection framework
- 4. Experimentation
- 5. Results
- 6. Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-
- 5. Marcov Chain
 - 6. Best Response Dynamics
- 7. Fictitious Palv
- 8. Reinforcement Learning
- 9. Joint Utility Strategy
- 0.Trial and Error Learning
 1.Regret Matching Learning
- 12Imitation Learning

Marcov chain

$$V(s,\pi) = \mathbb{E}_{s}^{\pi} \left(\sum_{k=0}^{\inf} \gamma^{k} \cdot r(s_{k}, a_{k}) \right), s \in \mathbb{S}$$

$$(14)$$

$$r(s_k, a_k) = G_k \cdot PRR(a_k) \tag{15}$$

$$\pi^* = \arg\max_{\pi} V(s, \pi) \tag{16}$$

Marcov chain

Learning iterative steps:

- **Choose** action $a_k(t) \sim \pi_k(t)$
- Observe game outcome
 - $\rightarrow a_{\underline{k}}(t)$ $\rightarrow u_k(a_k(t), a_k(t))$
- \implies Improve $\pi_k(t+1)$

Thus, we can expect that $\forall k \in K$

$$\pi_{k(t)} \xrightarrow{t \to \infty} \pi_k^* \tag{17}$$

$$U_k(\pi_k(t), \pi_{\underline{k}}(t)) \xrightarrow{t \to \infty} U_k(\pi_k^*, \pi_{\underline{k}}^*)$$
 (18)

Where:

$$\pi^* = (\pi_1^*, ..., \pi_k^*)$$
 is the NE strategy profile

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5 Testhed
 - 6. Conclusion

- Problem statement
- 2. Background
- 3. Selection framework
- 4. Experimentation
- 5. Results
- 6. Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5 Marcov Chair
- 6. Best Response Dynamics
- 7. Fictitious Paly
- 8. Reinforcement Learning
 - 9. Joint Utility Strategy
 - OTrial and Error Learni
 - 10.Trial and Error Learning 11Regret Matching Learnin
 - 12.Imitation Learning

- 1. Introduction
- Academic Survey
- Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6 Conclusion

- Problem statement
- 2. Background
- 3. Selection framework
- 4. Experimentation
- 5. Results
- 6. Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learnin
- 5 Marcov Chain
- 6. Best Response Dynamics
- 7. Fictitious Paly
- 8 Reinforcement Learning
- 8. Remorcement Learnin 9. Joint Hility Strategy
- 9. Joint Utility Strategy 10.Trial and Error Learnin
- 10.Irial and Error Learning 11.Regret Matching Learnin
- 12.Imitation Learning

- 1. Introduction
- Academic Survey
- Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6 Conclusion

- Problem statement
- 2. Background
- 3. Selection framework
- 4. Experimentation
- 5. Results
- 6. Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learnin
- 5 Marcov Chain
- 6. Best Response Dynamics
- 7 Fictitious Palv
- 8. Reinforcement Learning
 - 9. Joint Utility Strategy 10.Trial and Error Learning 11.Regret Matching Learning
- 12.Imitation Learning

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6 Conclusion

- Problem statement
- 2. Background
- 3. Selection framework
- 4. Experimentation
- 5. Results
- 6. Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learnin
- 5 Marcov Chair
- 6. Best Response Dynamics
- 7 Fictitious Palv
- 8. Reinforcement Learning
- 8. Reinforcement Learning
- Joint Utility Strategy
 Trial and Error Learning
 Regret Matching Learning
- 12.Imitation Learning

- 1. Introduction
- Academic Survey
- Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6 Conclusion

- Problem statement
- 2. Background
- 3. Selection framework
- 4. Experimentation
- 5. Results
- 6. Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learnin
- 5 Marcov Chair
- 6. Best Response Dynamics
- 7 Fictitious Palv
- 8. Reinforcement Learning
 - 9. Joint Utility Strategy
- 10.Trial and Error Learning 11.Regret Matching Learning
- 12.Imitation Learning

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5 Testhed
 - 6 Conclusion

- Problem statement
- 2. Background
- 3. Selection framework
- 4 Experimentation
- 5. Results
- 6. Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. O-Learnin
- 5 Marcov Chair
- 6 Rest Response Dynamics
- 7 Fictitious Palv
- 8. Reinforcement Learning
 - . Joint Utility Strategy
 - O.Trial and Error Learning
 - 11 Regret Matching Learning
 12 Imitation Learning

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6. Conclusion

- Problem statement
- 2. Background
- 3. Selection framework
- 4. Experimentation
- 5. Results
- 6. Discussion

- 1. Fuzzy C-Means Clustering
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5 Marcov Chair
- 6. Best Response Dynamics
- 7. Fictitious Palv
- 8. Reinforcement Learning
- 8. Remorcement Learnin 9. Joint Hility Strategy
- O.Trial and Error Learning
 Regret Matching Learning
- 12 Imitation Learning

- Introduction
- Academic Survey
- Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6. Conclusion

- Problem statement
- 2. Background
- 3. Selection framework
- Experimentation
- 5. Result
- Discussion

Selection framework

Methods

Figure 7. The proposed scheme for LoRa transmission parameters selection based on GA, FL and MCDM..

... (step 2)

Methods

... (step 3)
Methods

4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering | 3. Selection framework

... (step 4)

Methods

Results

Comparison

Table 5

- Introduction
- Academic Survey
- Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6. Conclusion

- 1. Problem statement
- 2. Background
 - ion framework
- 4. Experimentation
- Populto
- 5. Results
- Discussion

Experimentation

Experimentation

Figure 8. .

Experimentation

Experimentation

Inputs:

- → Data structure
 - * Voice, Images and Text transmission.
- → Environment conditions
 - * Rural/Urban
 - * Static/Mobile
 - * Temperature
 - * Interference/Noise
- → QoS metrics:
 - * User layer: Cost
 - * Network metrics: DR, Payload length.
 - * Radio metrics: Receiver sensitivity, SNR, DR, Air time,
- → MAC configuration (SF, CR, BW, Tx)
- Outputs:
 - \rightarrow (SF_i, CR_i, BW_k, Tx_l) optimal

- Introduction
- Academic Survey
- Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6. Conclusion

- 1. Problem statement
- 2. Background
- Selection framework
- 4. Experimentation
- 5. Results
- 6. Discussion

Results

Comparison

Figure 9. Impact of SF on ToA.

Figure 10. Impact of BW on ToA.

Figure 11. Impact of CR on ToA.

Figure 12. ToA distribution.

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6. Conclusion

- 1. Problem statement
- 2. Background
- Selection framework
- 4. Experimentation
- 5. Results
- 6. Discussion

Discussion

Figure 13. .

- 1. Introduction
- Academic Survey
- 3. Industrial Survey
- Reconfiguration of LoRa
 Networks Parameters using Fuzzy
 C-Means Clustering
 - 5. Testbed
 - Conclusion

- 1. Problem statement
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- 5. Discussion

- Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - Conclusion

1. Problem statement

- Contagion process
- 3. Experimentation
- 4. Results exploitation
- Discussion

Problem statement

Introduction

Figure 14. .

- Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - Conclusion

- 1. Problem statement
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- Discussion

... (step 1)
Methods

... (step 2)
Methods

... (step 3)
Methods

... (step 4)
Methods

⇒ E

....

Results

Comparison

Table 6

- - 5. Testbed

- 3. Experimentation

Experimentation

Experimentation

Figure 15. .

- Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzzy C-Means Clustering
 - 5. Testbed
 - 6. Conclusion

- 1. Problem statement
- 2. Contagion proces
- 3. Experimentation
- 4. Results exploitation
- Discussion

Results

Comparison

· a

Figure 16. .

- Introduction
- Academic Survey
- 3. Industrial Survey
- 4. Reconfiguration of LoRa Networks Parameters using Fuzz C-Means Clustering
 - 5. Testbed
 - 6. Conclusion

- 1. Problem statement
- 2. Contagion process
- Experimentation
- 4. Results exploitation
- 5. Discussion

Discussion

Figure 17. .

- Introduction
- Academic Survey
- Industrial Survey
- Reconfiguration of LoRa letworks Parameters using Fuzzy -Means Clustering
 - Testbed
 - 6. Conclusion

Conclusion

Contributions	Memory	Computation	Dynamic	Optimality	Costs
Contribution 1	1	X	Х	Х	✓
Contribution 1	Х	X	Х	✓	X
Contribution 1	1	X	✓	Х	X
Contribution 1	1		Х	Х	X
Contribution 1	✓	✓	✓	✓	✓

Table 7

6. Conclusion 43/43

7. Appendix

References

[1]

[4]

- V. P. Venkatesan, C. P. Devi, and M. Sivaranjani, Design of a Smart Gateway Solution Based on the Exploration of Specific Challenges in IoT, in 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, Tamilinadu, India: IEEE, Feb. 2017.
- [2] L. Feltrin, C. Buratti, E. Vinciarelli, R. De Bonis, and R. Verdone, LoRaWAN: Evaluation of Link- and System-Level Performance, IEEE Internet Things J., vol. 5, no. 3, Jun. 2018.
- [3] M. Rizzi, P. Ferrari, A. Flammini, and E. Sisinni, Evaluation of the IoT LoRaWAN Solution for Distributed Measurement Applications, IEEE Trans. Instrum. Meas., vol. 66, no. 12, Dec. 2017.
 - Marco Cattani, Carlo Boano, and Kay Rômer, An Experimental Evaluation of the Reliability of LoRa Long-Range Low-Power Wireless Communication, JSAN, vol. 6, no. 2, Jun. 15, 2017.