

Artificial Intelligence and Machine Learning

Neural Networks

Lecture Outline

LADY Margaret Hall
UNIVERSITY OF OXFORD

- Logistic Regression Review
- Neural Networks
 - Forward pass
 - Backward pass

Review: Logistic Regression

Introduction to Deep Learning

What is a Neural Network?

Housing Price Prediction

Introduction to Deep Learning

Supervised Learning with Neural Networks

Supervised Learning

Input(x)	Output (y)	Application
Home features	Price	Real Estate
Ad, user info	Click on ad? (0/1)	Online Advertising
Image	Object (1,,1000)	Photo tagging
Audio	Text transcript	Speech recognition
English	Chinese	Machine translation
Image, Radar info	Position of other cars	Autonomous driving

Standard NN

Convolutional NN

Recurrent NN

One hidden layer Neural Network

Neural Networks Overview

What is a Neural Network?

One hidden layer Neural Network

One hidden layer Neural Network

Computing a Neural Network's Output

$$z = w^T x + b$$
$$a = \sigma(z)$$

$$z_{1}^{[1]} = w_{1}^{[1]T} x + b_{1}^{[1]}, \ a_{1}^{[1]} = \sigma(z_{1}^{[1]})$$

$$z_{2}^{[1]} = w_{2}^{[1]T} x + b_{2}^{[1]}, \ a_{2}^{[1]} = \sigma(z_{2}^{[1]})$$

$$z_{3}^{[1]} = w_{3}^{[1]T} x + b_{3}^{[1]}, \ a_{3}^{[1]} = \sigma(z_{3}^{[1]})$$

$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

Neural Network Representation learning

Given input x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

One hidden layer Neural Network

Vectorizing across multiple examples

Vectorizing across multiple examples

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

Vectorizing across multiple examples


```
for i = 1 to m:
    z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}
    a^{[1](i)} = \sigma(z^{[1](i)})
    z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}
    a^{[2](i)} = \sigma(z^{[2](i)})
```


One hidden layer Neural Network

Explanation for vectorized implementation

Justification for vectorized implementation

Recap of vectorizing across multiple examples across multiple examples

$$X = \begin{bmatrix} & & & & & & \\ & & & & & \\ & \chi^{(1)} & \chi^{(2)} & \dots & \chi^{(m)} \\ & & & & & & \end{bmatrix}$$

$$A^{[1]} = \begin{vmatrix} a^{1} & a^{[1](2)} & a^{[1](m)} \\ a^{1} & a^{[1](2)} & a^{[1](m)} \end{vmatrix}$$

for i = 1 to m
$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = \sigma(Z^{[2]})$$

One hidden layer Neural Network

Activation functions

Activation functions

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

Pros and cons of activation functions

sigmoid:
$$a = \frac{1}{1 + e^{-z}}$$

One hidden layer Neural Network

Why do you need non-linear activation functions?

Activation function

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = g^{[1]}(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = g^{[2]}(z^{[2]})$$

One hidden layer Neural Network

Gradient descent for neural networks

One hidden layer Neural Network

Backpropagation intuition

Logistic regression

Neural network gradients $W^{[2]}$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]}) dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dZ^{[2]} = A^{[2]} - Y$$

$$dW^{[2]} = \frac{1}{m} dZ^{[2]} A^{[1]^T}$$

$$db^{[2]} = \frac{1}{m}np.sum(dZ^{[2]}, axis = 1, keepdims = True)$$

$$dZ^{[1]} = W^{[2]T}dZ^{[2]} * g^{[1]'}(Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} X^T$$

$$db^{[1]} = \frac{1}{m} np. sum(dZ^{[1]}, axis = 1, keepdims = True)$$

Introduction to Neural Networks

Why is Deep Learning taking off?

Scale drives deep learning progress

Scale drives deep learning progress

• Data

Computation

• Algorithms

One hidden layer Neural Network

Random Initialization

What happens if you initialize weight Margaret Hall zero?

Random initialization

Deep Neural Networks

Getting your matrix dimensions right

Parameters $W^{[l]}$ and $b^{[l]}$

Vectorized implementation

Deep Neural Networks

Why deep representations?

Intuition about deep representation

Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Deep Neural Networks

Building blocks of deep neural networks

Forward and backward functions

Forward and backward functions

Deep Neural Networks

Forward and backward propagation

Forward propagation for layer /

Input $a^{[l-1]}$

Output $a^{[l]}$, cache $(z^{[l]})$

Backward propagation for layer I

Input $da^{[l]}$

Output $da^{[l-1]}$, $dW^{[l]}$, $db^{[l]}$

Summary

