1 PMOS

1.1 Part A

Using the circuit shown in figure 1 we measured I_{sd} as we varied the drain voltage from within the range of $0V \le V_{sd} \le 5V$. The value of the gate voltage was set to $V_{sg} = 2.5V$.

Figure 2 - Varying Vsd to Isd with different Vsg

Figure 1: The PMOS transistor circuit used for our measurements.

We can see from the I_{sd} vs V_{sd} curve in figure 2 that this PMOS transistor is in cutoff until $V_{sd}\approx 1.8V$.

Figure 2: The resulting I_{sd} vs V_{sd} graph for $V_{sg} = 2.5V$

To turn on this transistor the gate voltage must be greater than the source voltage by at least the absolute value of the threshold voltage. This means that at $V_{sd}=1.8V,\,V_{sg}\geq |V_{tp}|$.

To operate in triode mode the drain voltage must be greater than the gate voltage by at least the absolute value of the threshold voltage. The transistor enters triode mode at $V_{sd} \geq 1.8V$. Given that our data did not show signs of entering saturation mode, we were unable to find the saturation edge.

1.2 Part B

For part B we used the procedures from part A, but changed the gate voltage to $V_{sg} = 5V$.

Figure 3: The resulting I_{sd} vs V_{sd} graph for $V_{sg}=5V$

We see that the transistor operates in cutoff until $V_{sd}=3.05V$. It then operates in triode mode for the rest of the values we tested up to $V_{sd}=6V$. Given that our data did not show signs of entering saturation mode, we were unable to find the saturation edge.