§11. Композиция отображений.

Обратные отображения. Критерий обратимости

Пусть $f: X \to Y$, $g: Y \to Z$.

Определение

Композицией отображений f и g называется отображение вида $(g\circ f):X\to Z$, где для каждого $x_0\in X$

$$(g \circ f)(x_0) = g(f(x_0)).$$

Важные свойства

Важным свойством композиции отображений является её ассоциативность.

Теорема 1

Пусть $f: X \to Y$, $g: Y \to Z$, $h: Z \to W$.

Тогда имеет место равенство

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

$$f: X \to Y, g: Y \to Z, h: Z \to W.$$

Тогда:

•
$$g \circ f : X \to Z$$

• $(h \circ g): Y \to W$

•
$$h \circ (g \circ f) : X \to W$$

•
$$(h \circ g) \circ f : X \to W$$

Таким образом, композиции $h \circ (g \circ f)$ и $(h \circ g) \circ f$ обе отображают множество X во множество W.

Для любого x₀ ∈ X:

$$(h \circ (g \circ f))(x_0) = h((g \circ f)(x_0)) = h(g(f(x_0)))$$

$$((h \circ g) \circ f)(x_0) = (h \circ g)(f(x_0)) = h(g(f(x_0)))$$

- Таким образом, для любого $x_0 \in X$ выполнено $(h \circ (g \circ f))(x_0) = ((h \circ g) \circ f)(x_0)$.
- А значит, по определению равенства отображений, $h \circ (g \circ f) = (h \circ g) \circ f$.
- Что и требовалось доказать.

Важные свойства

Пусть
$$f: X \to Y$$
, $g: Y \to Z$.

Композиция отображений в общем случае не коммутативна,

т. е. в общем случае $g\circ f
eq f\circ g$.

(Даже если
$$X = Y = Z$$
.)

Пример:

$$X = \{1, 2, 3\}$$

 $f: X \to X, g: X \to X.$

X	1	2	3
f(x)	3	2	1

X	1	2	3	
g(x)	3	1	2	•

Пример:

$$X = \{1, 2, 3\}$$

 $f: X \to X, g: X \to X.$

x	1	2	3	
f(x)	3	2	1	
$(g \circ f)(x)$	2	1	3	

X	1	2	3
g(x)	3	1	2
$(f \circ g)(x)$	1	3	2

Теорема 2

Пусть f:X o Y, g:Y o Z — два отображения. Тогда

- если f и g оба инъективны, то g o f инъективна;
- если f и g оба сюръективны, то g ∘ f сюръективна;
- если f и g оба биективны, то g ∘ f биективна.

проводится по определениям и не должно представлять для вас сложности.

Тождественное отображение

Пусть X — непустое множество. Отображение $e_X: X \to X$, такое что для каждого $x_0 \in X$ выполнено $e_X(x_0) = x_0$, называется тождественным отображением на множестве X.

Тождественные отображения являются нейтральными относительно композиции:

• $f = e_Y \circ f = f \circ e_X$ для любого $f: X \to Y$.

Определение

Отображение $f: X \to Y$ называется обратимым слева, если существует такое отображение $f_{\Pi}^{-1}: Y \to X$, что

$$f_{\Pi}^{-1}\circ f=e_{X}.$$

Определение

Отображение $f:X\to Y$ называется обратимым справа, если существует такое отображение $f_\Pi^{-1}:Y\to X$, что

$$f \circ f_{\Pi}^{-1} = e_Y$$
.

Определение

Отображение $f:X\to Y$ называется обратимым, если существует такое отображение $f^{-1}:Y\to X$, что

$$f^{-1} \circ f = e_X \quad \text{if} \quad f \circ f^{-1} = e_Y.$$

Теорема 3

Пусть $f: X \to Y$.

Тогда имеют место следующие утверждения:

- 1) f обратимо слева тогда и только тогда, когда f инъективно;
- 2) f обратимо справа тогда и только тогда, когда f сюръективно;
- f обратимо тогда и только тогда, когда f биективно.

Докажем утверждение 1.

Необходимость и достаточность покажем по отдельности.

Необходимость.

Имеем: f обратимо слева, т. е. существует $f_{\Pi}^{-1}:Y\to X$ такое, что $f_{\Pi}^{-1}\circ f=e_X.$

- Предположим, что f не инъективно. Это означает, что существуют $x_1, x_2 \in X$, $x_1 \neq x_2$, такие что $f(x_1) = f(x_2)$.
- Поскольку $f(x_1), f(x_2) \in Y$ и $f(x_1) = f(x_2)$, то $(f_{\Pi}^{-1} \circ f)(x_1) = (f_{\Pi}^{-1} \circ f)(x_2)$.
- Ho $(f_{\mathcal{I}}^{-1} \circ f)(x_1) = e_X(x_1) = x_1,$ a $(f_{\mathcal{I}}^{-1} \circ f)(x_2) = e_X(x_2) = x_2.$
- Таким образом, $x_1 = x_2$.
- Противоречие с $x_1 \neq x_2$.
- Следовательно, f инъективно.

Достаточность.

Имеем: f инъективно,

т. е. $f(x_1) \neq f(x_2)$ при $x_1 \neq x_2$.

Хотим доказать:

существует отображение g:Y o X, такое что $g\circ f=e_X.$

Идея доказательства: построим его!

Достаточность.

- Заметим, что в силу инъективности отображения f для каждого элемента $y_0 \in Y$ верно одно из двух следующих утверждений:
- 1) существует единственный $x_0 \in X$, такой что $f(x_0) = y_0$;
- 2) $y_0 \not\in f(X)$.
 - ullet Зафиксируем произвольный элемент $x_1 \in X$.
 - ullet Определим отображение g:Y o X следующим образом:

$$g(y_0) = egin{cases} x_0, & ext{если } f(x_0) = y_0 \ x_1, & ext{если } y_0
otin f(X). \end{cases}$$

Определим отображение g:Y o X следующим образом:

$$g(y_0) = egin{cases} x_0, & ext{если } f(x_0) = y_0 \ x_1, & ext{если } y_0
otin f(X). \end{cases}$$

• Тогда для каждого $x_0 \in X$:

$$ig(g\circ fig)(x_0)=gig(f(x_0)ig)=[$$
Пусть $f(x_0)=y_0]=g(y_0\,)=x_0,$

- T. e. $g \circ f = e_X$.
- ullet Таким образом, существует отображение g:Y o X такое, что $g\circ f=e_X$,
- а значит, функция f является обратимой слева.
- Утверждение 1 доказано.

Доказательство утверждения 2 проводится похожим образом и предлагается оставить для практических занятий или самостоятельного рассмотрения.

Докажем утверждение 3.

Необходимость и достаточность покажем по отдельности.

Необходимость.

Имеем: f обратимо,

т. е. существует отображение $f^{-1}:Y o X$ такое, что $f^{-1}\circ f=e_X$ и $f\circ f^{-1}=e_Y.$

- ullet Это означает, что f обратимо слева и справа.
- Согласно утверждениям 1 и 2 для этого необходимо, чтобы f было инъективным и сюръективным, т. е. биективным, отображением.

Достаточность.

Имеем: f биективно,

т. е. f инъективно и сюръективно.

Согласно утверждениям 1 и 2 это означает, что f обратимо слева и справа,

т. е. существуют $f_\Pi^{-1}:Y\to X$ и $f_\Pi^{-1}:Y\to X$ такие, что $f_\Pi^{-1}\circ f=e_X$ и $f\circ f_\Pi^{-1}=e_Y$.

• Рассмотрим композиции $f_\Pi^{-1}\circ (f\circ f_\Pi^{-1})$ и $(f_\Pi^{-1}\circ f)\circ f_\Pi^{-1}$.

Рассмотрим композиции $f_{\Pi}^{-1} \circ (f \circ f_{\Pi}^{-1})$ и $(f_{\Pi}^{-1} \circ f) \circ f_{\Pi}^{-1}$.

- Поскольку композиция отображений ассоциативна, $f_\Pi^{-1} \circ (f \circ f_\Pi^{-1}) = (f_\Pi^{-1} \circ f) \circ f_\Pi^{-1}$.
- Ho $f_{\Pi}^{-1} \circ (f \circ f_{\Pi}^{-1}) = f_{\Pi}^{-1} \circ e_{Y} = f_{\Pi}^{-1}$,
- a $(f_{\Pi}^{-1} \circ f) \circ f_{\Pi}^{-1} = e_X \circ f_{\Pi}^{-1} = f_{\Pi}^{-1}$.
- Таким образом, $f_{\Pi}^{-1} = f_{\Pi}^{-1} = g$.
- Поскольку g:Y o X, $g\circ f=e_X$ и $f\circ g=e_Y$, заключаем, что f обратима.
- Утверждение 3 доказано.

Следствие 1

Если $f: X \to Y$ — биекция, то

- 1) f^{-1} единственна;
- 2) $f^{-1}: Y \to X$ биекция.

Намёки на доказательство

- 1) От противного, рассмотрите композицию $f_1^{-1} \circ f \circ f_2^{-1}$.
- 2) Следует из построения обратной и п. 1). Или от противного.

Следствие 2

Если
$$f:X \to Y$$
 и $g:Y \to Z$ — биекции, то $(g\circ f)^{-1}=f^{-1}\circ g^{-1}.$

Намёки на доказательство

Следует из единственности обратной.