```
-丝印规范
  大小
  注释
  元件编号
-规则设置
-布局规范
  3D封装
  按模块布局
  接口器件
  交互器件
  电气相关
-布线规范
  走线角度
  走线宽度
  走线间距
  其他
-过孔与铺铜规范
  过孔
  铺铜
-其他重要规范
  滴泪
  分割地
  板外形
  固定孔
》PCBlayout自检小细节《
    封装
    铺铜
    走线
    固定孔
```

-丝印规范

过孔 滴泪 地的分类 器件摆放

大小

◆ 丝印的高度: 可视情况而定。

◆ 丝印的字体:中、英文均使用TrueType。

◆ 推荐的丝印大小: (TrueType)

中文: 1.5mm英文: 1.2mm

注释

一切以方便使用为准

- ◆ 各类连接器的引脚必须要进行标注
 - 。 必须标注该接插件的VCC、GND位置;

。 必须清晰标注通讯接口 (如TX、RX) , 尤其是使用可分离的线 (如杜邦线) 进行连接时;

- 。 其他引脚可选择性标注。
- ◆ 功能性元件的标注
 - 按键、开关、LED必须表明其编号与控制对象 (如按键1、电机开关、5V电源灯);

开关尽量标注其开关方向;

。 电源接口等有正负之分的,必须使用清晰的丝印标记其正极/负极。

- 有极性元件的标注
 - 电解电容、钽电容、二极管等有极性元件,必须确保其丝印有方向的标记(在PCB库里修改);
- ◆ PCB的使用方法
 - 可标记电路板的工作电压、工作频率、工作环境、输入输出限制;
 - 。可注释一些注意事项。
- ◆ 制作信息:制作人、日期、PCB名称、版本等

元件编号

- 丝印大小的规定与上相同。
- 元件的编号必须清楚地标识,不要被焊盘、过孔打断。
- 编号阅读方向

- 各编号的阅读方向应尽量一致;
- 把芯片的1号引脚向上摆放,即为芯片的使用方向,芯片的编号之阅读方向,应与芯片的使用 方向相同,避免焊接时出错。

-规则设置

打开规则设置,进行以下设置:

◆ 间距: 最小6mil, 可视情况设定更大

◆ 线宽: 最小线宽6mil, 最大线宽与首选线宽视情况而定

• 过孔大小: 直径、孔径最小为1mil,最大视情况而定,优先大小可选经验值: (孔径/直径) 12/24mil、15/30mil、18/36mil等。

- ◆ 铺铜连接方式:选用高级约束
 - 过孔必须使用全连接/直接连接;
 - · 通孔、贴片焊盘的连接方式视情况而定,大电流时必须使用全连接/直接连接。

◆ 孔尺寸: 最小为4mil, 最大视情况而定

◆ 器件高度: 将最大值调大即可

• 其他

○ 器件距离:可调为0,但**注意看3D视图观察器件是否有实际空间冲突**

o 丝印间距:可选择全设为0,不然会有warning

-布局规范

3D封装

◆ 应尽量使用3D封装,并在布局时多留意3D视图,必须避免出现**高度**阻碍、**宽度**重叠、**边缘**阻挡等空间冲突。

按模块布局

◆ 打开交叉选择模式: 【工具-交叉选择模式】, 先将各模块分别放置在一起, 再进行总体布局

接口器件

接口器件包括接线端子、FPC排线座、牛角座等各类插座、接线座。

◆ 接口器件必须开口朝外,或者朝向方便插拔的位置(请预想使用情形);

◆ 接口器件四周必须留有足够的空间,防止被阻塞。例如XH接口的四周会有略微外展,以及各种线在插拔的时候,最好别被其他元件挡住手的操作。

交互器件

特指OLED、蓝牙、按键、拨码开关等常被使用的外设。

◆ 由于通常在插拔、使用交互器件时,手要触碰其四周以方便操作,所以必须考虑预留空间的问题,不要遮挡或被遮挡。

(下为OLED和蓝牙的预留空位,用丝印预留位置)

电气相关

◆ **去耦/滤波的电容**必须尽量靠近芯片的电源引脚,且电源应先经过电容再流入芯片;

(下图左: 未先经过电容; 下图右: 已先经过电容)

- ◆ 电源输入引脚若有不同容值的两个**去耦/滤波电容**,则小容值的需更靠近引脚;
- ◆ 采样电路、反馈支路尽量避开高频磁性元件;

-布线规范

◆ 不允许使用自动布线

走线角度

- ◆ 禁止出现锐角;
- 电源线可以走直角,信号线不能走直角,但尽量都不出现直角走线;
- ◆ 推荐钝角走线;
- ◆ 线与焊盘之间的角度规则同上,禁止锐角;

◆ 从焊盘中引出走线时不要马上就拐弯,应先引出一段距离 (不用太长)后再拐弯,否则效果等同直角。

尽量不要同一个焊盘两端走线宽度不一致

走线宽度

- ◆ 信号线大于10mil, 电源线大于20mil, 有特殊需求时可以设定更小;
- 电源线越宽越好,必要时用铺铜代替走线;
- ◆ 走线宽度与走线最大电流的关系可参考下表,主要考虑温升、板厚,注意留出裕量。

Temp Rise		10 C↔			20 ℃			30 C₽			
		1/2 oz.+	1 oz.€	2 oz.	1/2 oz.÷	1 oz.43	2 oz.43	1/2 oz.÷	1 oz.¢	2 oz.	
		43	₽.	e	ė.	42	4	P	e)	42	
Trace	Width			,	Vlavimu	m Cmr	ant Am	Ne.			
inch₽	inin ₊		Maximum Current Amps								
.010₽	0.254₽	5 0	1.0₽	1.4₽	0.60	1.20	1.6₽	.7₽	1.5₽	2.243	
.0150	0.381	.7₽	1.20	1.60	98.0	1.30	2.4₽	1.00	1.6₽	3.04	
.020₽	0.508	.7+3	1.3₽	2.1₽	1.0↔	1.70	3.0≠	1.20	2.4₽	3.6€	
.025₽	0.635₽	9₽	1.74	25€	1.20	2.2€	3.3₽	1.5₽	2.8₽	4.0↔	
.030₽	0.762₽	1.10	1.9₽	3.0₽	1.4∻	25₽	4.0₽	1.7∻	3.2₽	5.0₽	
.050₽	1.27₽	1.5₽	2.6₽	4.0₽	2.0₽	3.6₽	6.00	2.6₽	4.40	7.3₽	
.075₽	1.905₽	2.0∉	3.5₽	5.7₽	2.8₽	45₽	7.8₽	3.5₽	6.0₽	10.04	
.100₽	2.54₽	2.6₽	4.2₽	6.9₽	3.5₽	6.0.≎	9.94	4.3₽	7.5₽	125	
.200€	5.08₽	4.2€	7.0∻	11.5₽	6.0.∂	10.0↔	11.0₽	7.5₽	13.0	20.5	
.250₽	6.35₽	5.00	8.30	12.3₽	7.2₽	1230	20.0€	9.0↔	15.00	24.5	

走线间距

- ◆ 默认最小间距为6mil;
- ◆ 尽量符合3W原则:为了减少线间窜扰,应保证线间距足够大,当线中心距不少于3倍线宽时,则可保持70%的电场不互相干扰; (尤其是ADC、高速信号等敏感走线)

其他

◆ 连接芯片相邻管脚时不允许直接连接,如下图1是错误走线,图2是正确走线:

(直接连接会导致SMT加工时出现桥接现象)

◆ 晶振信号线需环地处理, 且相邻下一层的同一位置不要铺铜, 具体搜索"晶振包地"

- ◆ 电感的底下 (同一layout层) 不要走线、铺铜;
- ◆ 大电流走线除了增大线宽,还可以开窗,焊接时堆锡;

-过孔与铺铜规范

过孔

• 过孔必须盖油,减少短路的可能;

- ◆ 尽量不使用过孔进行走线;
- 高频时钟线不允许过过孔;
- ◆ 非必要时不要在焊盘上打孔,但可以在散热焊盘上打孔;
- ◆ 地过孔:
 - ◇ 应在铺地铜之后,放置地过孔(即过孔的net为GND),以增加散热、减小回流面积;
 - **注意地铜的面积**,对于小面积的地铜、电源电路附近的地铜,应多打地孔以增加载流能力;
- 大电流走线要过过孔时,应多打过孔;

铺铜

- 大电流建议铺铜,且也要注意宽度;
- ◆ 先连接完其余走线,再使用铺铜进行GND的连接;
- ◆ 相邻两层之间的铜皮属性最好一致,能减小电磁干扰;
- ◆ 与焊盘的连接:
 - 小电流支路可使用十字连接,减小焊接难度;
 - 大电流支路必须使用全连接/直接连接,提高过电流能力。
- ◆ 在画驱动板时,需要注意地回路也需要承载大电流,同时确保地回路的完整性。

-其他重要规范

滴泪

- ◆ 使用方法: 在铺地铜后, 选择【工具-滴泪】;
- ◆ 作用: 防止走线与焊盘的连接太细而容易断开;
- ▲ 备注:
 - 必须滴泪;
 - ◇ 滴泪后,一些细小焊盘可能出现异常滴泪,需要检查一遍;
 - ◇ 滴泪后,应再次选择"全部重新铺铜",更新铜皮与走线间距。

分割地

◆ 描述: 对于电路中的数字地、模拟地、功率地等,需要将其分割开,常用磁珠或0欧电阻;

- ◆ 备注:
 - 该电阻/磁珠的两端必须是全连接/直接连接。

板外形

- ◆ 板型线要画在Mechanical1或13,并且使用【设计-板子形状-根据板子外形生成线条】在keep-out layer生成外形。
 - ◇ (不同厂家会根据mechanical或keep-out layer来定义板子外形)
- ◆ 板子的周围必须使用圆角、或斜角,不要使用直角

(使用直角不美观、容易扎手)

固定孔

- ◆ 每个板子都需要考虑固定方式,常见的即为使用固定孔,安装时使用螺丝即可;
- ◆ 孔的放置:推荐在原理图中放置,也可直接在PCB中使用无属性通孔。
- 孔的大小: 常用3M螺丝螺母, 即内直径为3mm;
- 固定孔的外径应比内径大,以减少螺丝对PCB的摩擦、及加强固定效果;
- 固定孔的内壁需金属化,以加强固定效果

◆ 注意事项:

- 固定孔的周围避免布线,以免螺丝摩擦造成脱落;
- 。 固定孔的周围可预留空间,以使用垫片;
- ° 固定孔可连接GND,或不连接。

》PCBlayout自检小细节《

给别人检查、进行打板之前, 可以来看看

封装

- ◆ 在库里面检查引脚号是否正确
- ◆ 元件封装是否与已有、待购元件相同 (注意编号, 如3266W和3266Y)

铺铜

◆ 电源接口处、散热孔的GND建议全连接,其他地方的GND建议十字连接 (可设置规则:铺铜-约束-高级)

走线

- ◆ 必须无锐角,尽量避免直角
- ◆ 过孔处的走线不同层之间可以走锐角、反向,但电源线不建议如此(此条存疑)
- 考虑线宽与电流的关系
- ◆ 晶振底下无走线

固定孔

◆ 固定孔 (无属性焊盘) 建议加铜边

过孔

◆ 使用Gerber文件打板时,除固定孔外,过孔要盖油(properties - solder mask expansion - tented)

滴泪

◆ 有无滴泪

(建议规则检查前进行如下操作: TGA -> TE -> TGA)

地的分类

- 电池、电机处的地建议改为功率地
- ◆ 注意识别有无必要区分不同地
- ◆ 有无对不同的地进行单点连接

器件摆放

- ◆ 连接器件 (如接线端子) 的摆放方向
- ◆ 器件在插拔时是否会被周围器件阻挡

广工飞思卡尔智能车 2022作