# COVID-19 Detection from CT Scan Images Using Pre-Trained CNN Models

### Presented by

Monjure Mowla ID: 180104027

Kazi Fuad Bin Akter ID: 180104038

Nawrin Tabassum ID: 180104045

### Supervised by

Md. Tanvir Rouf Shawon

Lecturer, Department of CSE

Nibir Chandra Mandal

Lecturer, Department of CSE

# **Contents**

- Introduction
- Overview
- Literature Review
- Pretrained Models
- Dataset

- Methodology
- Proposed Model
- Results & Performance
- Performance Comparison
- Conclusion



## Introduction

- WHO declared COVID-19 as a global pandemic on March 11, 2020 [1]
- COVID-19 has infected 646.3 M people and taken 6.6 M lives [2]
- Patients with other diseases suffer more than those who are healthy
- RT-PCR test which is widely used for diagnosis is very time-consuming
- Chest CT scan screening requires the intervention of expert radiologists
- Deep learning can be used to build a fast and accurate detection system

# **Overview**

- We have used a lung CT Scan Image dataset for the recognition task
- We have utilized some pre-trained CNN models for COVID-19 detection
- We have evaluated the models with different performance metrics
- We have explored the performance of the models used in previous studies

# **Literature Review**

### Maghdid et al. [3]

- 526 samples
- AlexNet model
- 94.1% accuracy

### Shah et al. [5]

- 738 samples
- Ctnet-10 model
- 82.1% accuracy

### Showkat et al. [4]

- 5910 samples
- ResNet18 model
- 95% accuracy

### Panwar et al. [6]

- 284 samples
- nCOVnet model
- 88% accuracy



### Shalbaf et al. [7]

- 746 samples
- Ensemble technique
- 85% accuracy

# **Pre-Trained Models**

### ResNet50

- 50 layers
- 76.3% accuracy
- Fewer parameters

### **Xception**

- 71 layers
- Depthwise separable
- Fewer parameters

### DenseNet121

- Densely connected
- Remove vanishing gradient
- Reuse features

# **Pre-Trained Models**

### DenseNet201

- 201 layers
- Fewer parameters
- Reuse features

### **MobileNet**

- 28 layers
- 4.2 M parameters
- Smaller size

### **MobileNetV2**

- Inverted residual blocks
- Bottleneck residual blocks
- Fewer parameters

# **Dataset**

| Class     | No. of Samples |
|-----------|----------------|
| COVID     | 1252           |
| Non-COVID | 1230           |







Figure: COVID-positive samples







Figure: COVID-negative samples

# Methodology



# Methodology

| Model       | Dropout Rate | Learning Rate |
|-------------|--------------|---------------|
| ResNet50    | 0.2          | 0.001         |
| Xception    | 0.2          | 0.001         |
| DenseNet121 | 0.2          | 0.001         |
| DenseNet201 | 0.3          | 0.001         |
| MobileNet   | 0.5          | 0.001         |
| MobileNetV2 | 0.5          | 0.001         |

# **Proposed CNN**



# **Results & Performance**

| Model       | Accuracy | Precision | Recall | F1-Score |
|-------------|----------|-----------|--------|----------|
| ResNet50    | 95.97%   | 96.23%    | 94.44% | 95.33%   |
| Xception    | 88.10%   | 80.08%    | 96.76% | 87.63%   |
| DenseNet121 | 95.56%   | 93.69%    | 96.30% | 94.98%   |
| DenseNet201 | 95.77%   | 94.12%    | 96.30% | 95.20%   |
| MobileNet   | 93.15%   | 93.75%    | 90.28% | 91.98%   |
| MobileNetV2 | 92.74%   | 91.28%    | 92.13% | 91.70%   |

# **Performance Comparison**

| Methodology        | Accuracy |
|--------------------|----------|
| Shah et al. [5]    | 82.1%    |
| Panwar et al. [6]  | 88%      |
| Shalbaf et al. [7] | 85%      |
| Proposed Model     | 95.97%   |

# Conclusion

- RT-PCR test is not reliable due to the amount of time it takes
- Deep learning is widely used for medical image processing
- Pre-trained CNN models can accurately detect the presence of the virus
- ResNet50 performed the best with 95.97% accuracy
- The current method can be useful for other medical image classification

# References

- [1] "World health organization director-general's opening remarks at the media briefing on covid-19 11 March 2020," accessed:2022-12-15.
- [2] "World health organization coronavirus dashboard," accessed:2022-12-15.
- [3] H. S. Maghdid, A. T. Asaad, K. Z. Ghafoor, A. S. Sadiq, S. Mirjalili, and M. K. Khan, "Diagnosing covid-19 pneumonia from x-ray and ct images using deep learning and transfer learning algorithms," in *Multimodal Image Exploitation and Learning 2021*, vol. 11734. SPIE, 2021, pp. 99–110.
- [4] S. Showkat and S. Qureshi, "Efficacy of transfer learning-based resnet models in chest x-ray image classification for detecting covid-19 pneumonia," *Chemometrics and Intelligent Laboratory Systems*, vol. 224, p. 104534, 2022.
- [5] Shah, R. Keniya, A. Shridharani, M. Punjabi, J. Shah, and N. Mehendale, "Diagnosis of covid-19 using ct scan images and deep learning techniques," *Emergency Radiology*, vol. 28, no. 3, pp. 497–505, 2021.
- [6] H. Panwar, P. Gupta, M. K. Siddiqui, R. Morales-Menendez, and V. Singh, "Application of deep learning for fast detection of covid-19 in x-rays using ncovnet," *Chaos, Solitons & Fractals*, vol. 138, p. 109944, 2020.
- [7] A. Shalbaf, M. Vafaeezadeh et al., "Automated detection of covid19 using ensemble of transfer learning with deep convolutional neural network based on ct scans," *International Journal of Computer Assisted Radiology and Surgery*, vol. 16, no. 1, pp. 115–123, 2021.

# Thank You