

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γραφοθεωρία Ομάδα Ασκήσεων Νο. 2

Ομάδα 7 Αξιώτης Κυριάχος Αρσένης Γεράσιμος 1. Σε ένα G(n,p) η πιθανότητα μιας χορυφής να έχει βαθμό k είναι $\binom{n-1}{k}p^k(1-p)^{n-1-k}$. Δείξτε ότι ο μέσος βαθμός είναι (n-1)p με απευθείας υπολογισμό, δηλαδή χωρίς να χρησιμοποιήσετε τη γραμμικότητα της μέσης τιμής.

Απόδειξη. Θα χρειαστούμε τα εξής λήμματα:

Λήμμα 1. Έστω δύο τ.μ. που ακολουθούν κατανομή Bernoulli με παραμέτρους n, p και m, p αντίστοιχα, δηλαδή $X \sim B(n, p), Y \sim B(m, p)$. Τότε για το άθροισμά τους ισχύει $X + Y \sim B(n + m, p)$.

 $A\pi \delta\delta\varepsilon\iota\xi\eta.$

$$\begin{split} \mathbb{P}[X+Y=k] &= \mathbb{P}[(X=0 \land Y=k) \lor (X=1 \land Y=k-1) \lor \ldots \lor (X=k \land Y=0)] \\ &= \sum_{i=0}^{k} \mathbb{P}[X=i \land Y=k-i] \\ &= \sum_{i=0}^{k} \mathbb{P}[X=i] \cdot \mathbb{P}[Y=k-i] \\ &= \sum_{i=0}^{k} \binom{n}{i} p^{i} (1-p)^{n-i} \binom{m}{k-i} p^{k-i} (1-p)^{m-(k-i)} \\ &= p^{k} (1-p)^{n+m-k} \sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} \\ &= \binom{n+m}{k} p^{k} (1-p)^{n+m-k} \end{split}$$

Λήμμα 2. Έστω $\{X_i\}_{i=1...k}$ μια οικογένεια τ.μ. για τις οποίες ισχύει $X_i \sim B(n_i,p)$. Τότε $\sum_{i=1}^k X_i \sim B\left(\sum_{i=1}^k n_i,p\right)$.

Aπόδειξη. Χρησιμοποιώντας το Λήμμα 1 και επαγωγή στο k προκύπτει το ζητούμενο. \Box

Λήμμα 3. $A \nu X \sim B(n, p)$ τότε $\mathbb{E}[X] = np$.

Απόδειξη.

$$\mathbb{E}[X] = \sum_{i=0}^{n} i \cdot \mathbb{P}[X = i]$$

$$= \sum_{i=0}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i}$$

$$= \sum_{i=1}^{n} np \binom{n-1}{i-1} p^{i-1} (1-p)^{(n-1)-(i-1)}$$

$$= np \sum_{i=0}^{n-1} \binom{n-1}{i} p^{i} (1-p)^{(n-1)-i}$$

$$= np \cdot (p + (1-p))^{n-1} = np$$

Για το γράφημα G(n,p) έχουμε ότι ο βαθμός μιας κορυφής v_i είναι μια τυχαία μεταβλητή d_i που ακολουθεί την κατανομή Bernoulli με παραμέτρους n-1,p, δηλαδή $d_i\sim B(n-1,p).$

Για τον μέσο βαθμό χορυφής ισχύει:

$$d(G) = \frac{\sum_{i=1}^{n} d_i}{n}$$

όπου $X = \sum_{i=1}^{n} d_i$.

Σύμφωνα με το Λήμμα 2 έχουμε ότι $X \sim B(\sum_{i=1}^{n} (n-1), p) = B(n(n-1), p).$

Από το Λήμμα 3, $\mathbb{E}[X] = n(n-1)p$. Άρα έχουμε ότι:

$$\mathbb{E}[d(G)] = \frac{1}{n}\mathbb{E}[X] = (n-1)p$$

2. Δείξτε ότι το τυχαίο γράφημα G(n,p) με $p=n^{-0.7}$ δεν έχει σχεδόν σίγουρα 4-κλίκα για αρκετά μεγάλα n.

Aπόδειξη.

- 3. (*) Θεωρήστε το παραχάτω τυχαίο χατευθονόμενο γράφημα. Για χάθε χορυφή v επιλέγουμε ομοιόμορφα τυχαία μια χορυφή u χαι τοποθετούμε την αχμή $v \to u$. Κάθε χορυφή έχει μόνο μια εξερχόμενη αχμή χαι μπορεί να υπάρχουν θηλιές. Έστω r(v) ο αριθμός των χορυφών στις οποίες μπορούμε να φτάσουμε από την v.
 - Για k = 1, ..., n ποιά η πιθανότητα r(v) = k. Η πιθανότητα θα έχει μορφή γινομένου.
 - Δείξτε ότι για μία χορυφή v, $\mathbb{P}[r(v) \leq \sqrt{n}/10] \leq 1/3$ και $\mathbb{P}[r(v) \geq 10\sqrt{n}] \leq 1/3$.

Απόδειξη. Έστω $v=u_1,u_2,\ldots,u_k$ οι κορυφές που είναι προσβάσιμες από την v σε αύξουσα σειρά απόστασης. Δηλαδή υπάρχει ακμή μεταξύ $u_i \to u_{i+1}$ για $i=1,\ldots k-1$.

Προχειμένου να είναι όλες οι παραπάνω χορυφές διαφορετικές μεταξύ τους θα πρέπει κάθε χορυφή u_i να διαλέγει να συνδεθεί με κάποια χορυφή u_{i+1} διαφορετική από όλες τις προηγούμενες u_1,\ldots,u_{i-1} ώστε να μην δημιουργηθεί κύχλος σε εκείνο το σημείο.

Επιπλέον, η τελευταία κορυφή u_k θα πρέπει να συνδέεται με κάποια από τις προηγούμενες ώστε το μονοπάτι να "τελειώνει" εκεί και να μην υπάρχουν άλλες προσβάσιμες κορυφές.

Η πιθανότητα να συμβαίνουν τα παραπάνω είναι:

$$\mathbb{P}[r(v) = k] = \frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \dots \cdot \frac{n-(k-1)}{n} \cdot \frac{k}{n} = \frac{k}{n} \prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right).$$

Έχουμε λοιπόν¹:

$$\begin{split} \mathbb{P}[r(v) \leq \sqrt{n}/10] &= \sum_{k=1}^{\sqrt{n}/10} \frac{k}{n} \prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right) \leq \sum_{k=1}^{\sqrt{n}/10} \frac{k}{n} \prod_{i=1}^{k-1} e^{-i/n} \\ &= \sum_{k=1}^{\sqrt{n}/10} \frac{k}{n} e^{-\sum_{i=1}^{k-1} \frac{i}{n}} = \sum_{k=1}^{\sqrt{n}/10} \frac{k}{n} e^{-\frac{H_{k-1}}{n}} \\ &< \sum_{k=1}^{\sqrt{n}/10} \frac{k}{n} e^{-\frac{\ln(k-1)}{n}} = \sum_{k=1}^{\sqrt{n}/10} \frac{k}{n} (k-1)^{-\frac{1}{n}} \\ &< \sum_{k=1}^{\sqrt{n}/10} \frac{\sqrt{n}}{10} \frac{1}{n} (2-1)^{-\frac{1}{n}} \\ &= \frac{\sqrt{n}}{10} \cdot \frac{\sqrt{n}}{10} \cdot \frac{1}{n} \cdot 1 = \frac{1}{100} < \frac{1}{3} \end{split}$$

$$\mathbb{P}[r(v) < 10\sqrt{n}] = \sum_{k=1}^{10\sqrt{n}} \frac{k}{n} \prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right) \ge \sum_{k=1}^{10\sqrt{n}} \frac{k}{n} \prod_{i=1}^{n/2} \left(1 - \frac{i}{n}\right)$$

$$\ge \sum_{k=1}^{10\sqrt{n}} \frac{k}{n} \left(1 - \sum_{i=1}^{n/2} \frac{i}{n}\right) = \frac{1}{n} \sum_{k=1}^{10\sqrt{n}} k \left(1 - \frac{H_{n/2}}{n}\right)$$

$$= \frac{1}{n} \left(1 - \frac{H_{n/2}}{n}\right) H_{10\sqrt{n}} > \frac{1}{n} \left(1 - \frac{\ln(n/2) + 1}{n}\right) \ln(10\sqrt{n})$$

$$> \frac{1}{1} \left(1 - \frac{\ln(1/2) + 1}{1}\right) \ln(10\sqrt{1})$$

$$= \ln(2) \cdot \ln(10) > \frac{2}{3}$$

 $^{^1\}Sigma$ τα παραχάτω, όπου εμφανίζονται αρμονιχές σειρές χρησιμοποιούμε τα φράγματα $\ln n < H_n < \ln n + 1$

Η πρώτη ανισότητα που χρησιμοποιήθηκε στο $\mathbb{P}[r(v)<10\sqrt{n}]$ ισχύει μόνο για αρκετά μεγάλα n τέτοια ώστε $n/2\geq 10\sqrt{n}-1$.

TODO: Να το αποδείξουμε και για μικρά n.

Συνεπώς:

$$\mathbb{P}[r(v) \ge 10\sqrt{n}] = 1 - \mathbb{P}[r(v) < 10\sqrt{n}] < 1 - \frac{2}{3} = \frac{1}{3}$$

4. (*) Θεωρήστε το τυχαίο γράφημα G(n,p) με p=6.6/n. Δείξτε ότι το γράφημα είναι σχεδόν σίγουρα μή 3-χρωματίσιμο για αρχετά μεγάλα n.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

5. (*) Θεωρήστε το παρακάτω τυχαίο γράφημα με n κορυφές. Κάθε κορυφή διαλέγει ομοιόμορφα τυχαία 2 κορυφές και τοποθετούμε μη-κατευθυνόμενες ακμές προς αυτές. Η τυχαία επιλογή γίνεται με επανάληψη και μπορεί μια κορυφή v να επιλέξει και τον εαυτό της στην οποία περίπτωση παραλείπουμε αυτή τη θηλιά. Παρατηρούμε ότι οι ακμές θα είναι περίπου 2n αλλά μπορεί κάποιες κορυφές να έχουν βαθμό μικρότερο από 2 αν επέλεξαν τον εαυτό τους ή την ίδια κορυφή δύο φορές. Μπορεί επίσης κάποιες κορυφές να έχουν βαθμό αρκετά μεγαλύτερο από 4 αν άλλες κορυφές έτυχε να τις επιλέξουν.

 Δ είξτε ότι το γράφημα είναι σχεδόν σίγουρα συνεκτικό για αρκετά μεγάλα n.

 $A\pi\delta\delta lpha \xi \eta$.