2024 ANN Project 3차 수행일지

- MNIST extended dataset을 이용한 CNN 모델 최적화 및 분석 -

■ 회의 정보

팀 명	7조
수행 제목	LeNet-5 및 ResNet-50 수정, 다양한 CNN 모델 조사 및 기반 마련
날짜	2024.05.13.월
시간	21:30 - 22:30
수행자 이름	정하연, 양은주
참여 인원	정하연, 박태현, 송준규, 양은주

■ 수행 내용 및 결과

	1. LeNet-5		
수행 내용	- 수정 (old, new version)		
	- learning curve 확인.		
	2. ResNet-50		
	- 두 가지 버전 코딩 및 학습		
	- 필요한 resizing 함수 정의		
	3. 다양한 CNN 모델		
	- 구조 스터디		
	- 기반 코드 마련		
	- 규제, Data Augmentation 등 개선방안 고안하기		
결과	. LeNet-5 (old, new version)		
	- 수정: 지난 주에 구현한 LeNet-5 코드를 수정하여 모델을 저장하는 부분을		
	추가하였다.		
	- learning curve를 확인하고, relu와 softmax를 사용한 모델이 tanh와 rbf를		
	사용한 모델에 반해 과대적합 현상을 보이지 않음을 확인하였다.		

2. ResNet-50

- 두 가지 버전 코딩 및 학습: tensorflow에서 제공하는 resnet50과, 직접 레이어 모두 쌓은 ResNet-50을 구현하였다. 다만, 직접 레이어를 쌓는 과정에서 각 블록들의 input-output 사이즈를 정의하는 데 어려움이 있었고, 개선할 필요성이 있다.
- 필요한 resizing 함수 정의: tensorflow에서 제공하는 ResNet-50의 input size는 최소 32x32이다. EMNIST dataset의 사이즈는 28x28이기에, 보간법을 사용하여 resizing하는 함수를 정의했다. Resizing한 데이터셋을 다시 분산학습을 위한 처리한 후, tensorflow.resnet50.ResNet50에 EMNIST dataset이 잘 학습됨을 확인하였다.

3. 다양한 CNN 모델

- 구조 스터디: GoogLeNet, AlexNet, VGGNet, XCeption, SENet 모델의 특징과 장단점을 공부했다.
- 기반 코드 마련: ResNet에서 사용되는 resiual_block 등을 정의하고, 다른 모델에서도 사용될 수 있도록 기반을 구축하였다.
- 규제, Data Augmentation 등 개선방안 고안하기: 기존의 LeNet-5와
 ResNet-50에 Early Stopping을 적용하여 최대 성능을 확인하였다. 향후 Data
 Augmentation을 통해 성능을 개선하는 방안을 위해 역할 분담을 진행하였다.

■ 다음 수행 계획

다음 수행 계획	- GoogLeNet, AlexNet, VGGNet, Xception, SENet 구현 및 학습 (박태현,		
	정하연)		
	- Learning Curve, 분석 방안 계획(송준규, 양은주)		
프로젝트 수행일정	04.29(월)	프로젝트 개요 파악, 역할 분담, 수행계획서 작성	
	05.06(월)	EMNIST 분석, LeNet 5 및 ResNet 50 스터디 및 학습	
	05.13(월)	LeNet-5 및 ResNet-50 하이퍼파라미터 변경, 다양한 CNN 조사	
	05.20(월)	다양한 CNN 모델 학습, 중간발표 PPT 제작, 대본 작성, 리허설	

	05.22(수)	중간발표
	05.27(월)	CNN 모델 개발, 다양한 평가 metric 스터디, 실험 분석
	06.03(월)	최종발표 PPT 제작, 대본 작성, 리허설, 보고서 작성
	06.12(수)	최종발표