Review and Preview

Daniela Pamplona

U2IS - ENSTA - IPParis

ecampus moodle: MI210 - Modèles neuro-computationnels de la vision (P4 - 2020-21)

daniela.pamplona@ensta.fr

Date	Туре	Topic	Level of description	Methods
23/03	M + TD written and code	Intro to neuro, neurons, BNN and ANN	Implementational + Computational	Dynamical systems, Neural Networks
30/03	M + TD written	Probabilistic interpretation of visual processing	Computational	Probabilistic/ Bayesian Approaches
06/04	3 M(remote)	Vision and efficient coding	Computational + Algorithmic	Statistics
13/04	3 M (remote)	Receptive Fields, Retina and V1	Computational + Algorithmic	Unsupervised M.L.
27/04	3 TD (remote)	Applications to artificial vision	Computational + Algorithmic	Statistics +Unsupervised M.L.
04/05	M+TD written	Eye movements	Computational + Algorithmic	Reinforcement Learning
11/05	oral	General vision and brain	All	All above

1st Class

1st Class

$$V(t) = \begin{cases} V_{rest} & \text{if } V(t) = v_{th} \\ V_{rest} - \tau \frac{dV}{dt} + RI(t) & \text{o.w.} \end{cases}$$

Date	Туре	Topic	Level of description	Methods
23/03	M + TD written and code	Intro to neuro, neurons, BNN and ANN	Implementational + Computational	Dynamical systems, Neural Networks
30/03	M + TD written	Probabilistic interpretation of visual processing	Computational	Probabilistic/ Bayesian Approaches
06/04	3 M(remote)	Vision and efficient coding	Computational + Algorithmic	Statistics
13/04	3 M (remote)	Receptive Fields, Retina and V1	Computational + Algorithmic	Unsupervised M.L.
27/04	3 TD (remote)	Applications to artificial vision	Computational + Algorithmic	Statistics +Unsupervised M.L.
04/05	M+TD written	Eye movements	Computational + Algorithmic	Reinforcement Learning
11/05	oral	General vision and brain	All	All above

Chapter 2

Chapter 2

- 1. The generative model
- 2. The inference process
- 3. The distribution of the MAP estimate

$$p(x \mid d_1 \cdots d_N) \propto p(x) \prod_{i=1}^N p(d_i \mid x)$$

The posterior at time N-1 is the prior at time N

$$= p(x)p(d_N|x)\prod_{i=1}^{N-1}p(d_i|x) \propto p(x|d_1\cdots d_{N-1})p(d_N|x)$$

Date	Type	Topic	Level of description	Methods
23/03	M + TD written and code	Intro to neuro, neurons, BNN and ANN	Implementational + Computational	Dynamical systems, Neural Networks
30/03	M + TD written	Probabilistic interpretation of visual processing	Computational	Probabilistic/ Bayesian Approaches
06/04	3 M (remote)	Vision and efficient coding	Computational + Algorithmic	Statistics
13/04	3 M (remote)	Receptive Fields, Retina and V1	Computational + Algorithmic	Unsupervised M.L.
27/04	3 TD (remote)	Applications to artificial vision	Computational + Algorithmic	Statistics +Unsupervised M.L.
04/05	M+TD written	Eye movements	Computational + Algorithmic	Reinforcement Learning
11/05	oral	General vision and brain	All	All above

Neural Recordings

3.5 Single cell recording

The primate looks alert in the picture, and indeed fully conscious animals are sometimes used (the brain has no pain receptors). However, the animal is usually anaesthetized to achieve complete immobilization. This helps control accurately where the eyes are looking.

Seeing: The computaional Approach to Biological Vision

What is the message? What are natural images?

Non Natural

Natural

Power Spectrum of Natural Images

Analysis of edges orientations

The distribution of oriented contoursin the real world, Coppola et al

Date	Type	Topic	Level of description	Methods
23/03	M + TD written and code	Intro to neuro, neurons, BNN and ANN	Implementational + Computational	Dynamical systems, Neural Networks
30/03	M + TD written	Probabilistic interpretation of visual processing	Computational	Probabilistic/ Bayesian Approaches
06/04	3 M(remote)	Vision and efficient coding	Computational + Algorithmic	Statistics
13/04	3 M (remote)	Receptive Fields, Retina and V1	Computational + Algorithmic	Unsupervised M.L.
27/04	3 TD (remote)	Applications to artificial vision	Computational + Algorithmic	Statistics +Unsupervised M.L.
04/05	M+TD written	Eye movements	Computational + Algorithmic	Reinforcement Learning
11/05	oral	General vision and brain	All	All above

Whitening filters of natural images

RGCs RFs have shape like whitening filters of natural images!

Sparse overcomplete code of natural images

The receptive fields of V1 simple cells have such shape that they represent efficiently the natural images!

Date	Type	Topic	Level of description	Methods
23/03	M + TD	Intro to neuro,	Implementational +	Dynamical systems,
	written and	neurons, BNN and	Computational	Neural Networks
	code	ANN		
30/03	M + TD	Probabilistic	Computational	Probabilistic/ Bayesian
	written	interpretation of		Approaches
		visual processing		
06/04	3 M(remote)	Vision and efficient	Computational +	Statistics
		coding	Algorithmic	
13/04	3 M (remote)	Receptive Fields,	Computational +	Unsupervised M.L.
		Retina and V1	Algorithmic	
27/04	3 TD	Applications to	Computational +	Statistics +Unsupervised
	(remote)	artificial vision	Algorithmic	M.L.
04/05	M+TD written	Eye movements	Computational +	Reinforcement Learning
			Algorithmic	
11/05	oral	General vision and	A11	All above
		brain		16

How is it going?

Questions?

Date	Type	Topic	Level of description	Methods
23/03	M + TD written and code	Intro to neuro, neurons, BNN and ANN	Implementational + Computational	Dynamical systems, Neural Networks
30/03	M + TD written	Probabilistic interpretation of visual processing	Computational	Probabilistic/ Bayesian Approaches
06/04	3 M (remote)	Vision and efficient coding	Computational + Algorithmic	Statistics
13/04	3 M (remote)	Receptive Fields, Retina and V1	Computational + Algorithmic	Unsupervised M.L.
27/04	3 TD (remote)	Applications to artificial vision	Computational + Algorithmic	Statistics +Unsupervised M.L.
04/05	M+TD written	Eye movements	Computational + Algorithmic	Reinforcement Learning
11/05	oral	General vision and brain	All	All above

Contents

- 1. Major types of eye movements
- 2. What triggers saccades?
- 3. Reinforcement learning
 - 1. Markov decision processes
 - 2. Q learning with Monte Carlo and SARSA
- 4. Eye movements to learn to solve visually guided multi-tasks