ER diagram fact table (central table)

receipts receipt_id $\mathcal{O}\left(\mathsf{PK}\right)$ varchar user_id (fk) varchar create_date **Timestamp** date_scanned timestamp finished_date timestamp timestamp points_awarded_date points_earned float purchase_date timestamp

purchased_item_count

rewards_receipt_status

total_spent

dimension

receipt_items	
receipt_id (XX	varchar
barcode	varchar
description	text
final_price	float
item_price	float
quantity_purchased	integer
points_earned	float
points_not_awarded_reason	text
rewards_group	text
rewards_product_partner_id	varchar

PK->Rimay key

FK-> foreign kay

- X Hone-7 Many relation

dimension table

users	
user_id O(PK)	varchar
active	bool
role	varchar
signup_source	varchar
state	varchar
created_date	timestamp
last_login	timestamp

dimensions table

integer

text

float

brands 🖸	
barcode	varchar
category	varchar
category_code	varchar
brand_name $\mathcal{O}(\mathbf{Pk})$	varchar
top_brand	bool
brand_id (PK)	varchar
cpg_id	varchar
cpgref	varchar
brand_code	varchar

The above ER diagram is the only possible relational model to have a clean & efficient model

-> Decisions made based on analysis & into given

1st: Converted Receipts (central table) into two normalized table to keep them clean

2nd: Avoided possible Star Schema to avoid having possible Null values

3rd: Added 100+ users into Users table to create relationship model

4th: - Brands table

Ly Inspected barcodes, brand names, brand-Id Columns

7 found 7 brands have too brand-Ids and bascodes

- -> After inspection found that they were wordy
 populated
- Tended up creating (brand-Zd., brand-name)
 as primary key
- Making & brand-Id, brand-name, bar-code &

 as primary key is passible, but It's

 possible that a brand has multiple barcodes
 - Made a question for business stake holders about barcodes Column

The validation made due to data provided