

Thesis Title

sub-title

MARCUS KLASSON

Doctoral Thesis Stockholm, Sweden, 2020

KTH Royal Institute of Technology
School of Electrical Engineering and Computer Science
Division of Fusion Plasma Physics
TRITA-EECS-AVL-2020:4
SE-10044 Stockholm
ISBN 100-Sweden

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av Teknologie doktorexamen i elektroteknik fredagen den 18 januari 2020 klockan 14.00 i Sal F3, Lindstedtsvägen 26, Kungliga Tekniska Högskolan, Stockholm.

© Marcus Klasson, date

Tryck: Universitetsservice US AB

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Keywords: Lorem, Ipsum, Dolor, Sit, Amet

Sammanfattning

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

hej

List of Papers

A A Hierarchical Grocery Store Image Dataset with Visual and Semantic Labels

Marcus Klasson, Cheng Zhang, Hedvig Kjellström In IEEE Winter Conference on Applications of Computer Vision (2019)

B Using Variational Multi-view Learning for Classification of Grocery Items

Marcus Klasson, Cheng Zhang, Hedvig Kjellström In *Patterns, Volume 1(8) (2020)*

- C Learn the Time to Learn: Replay Scheduling for Continual Learning Marcus Klasson, Hedvig Kjellström, Cheng Zhang Under submission
- D Meta Policy Learning for Replay Scheduling in Continual Learning Marcus Klasson, Hedvig Kjellström, Cheng Zhang Under preparation

Acknowledgements

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Acronyms

List of commonly used acronyms:

AE Acronym examples
CL Continual Learning

CNN Convolutional Neural Network

ML Machine Learning

RL Reinforcement LearningVAE Variational Autoencoder

Contents

Lis	st of	Papers	iii
Ac	knov	vledgements	\mathbf{v}
Ac	crony	vms	vii
Co	nter	uts	1
Ι	Ove	erview	3
1	Intr	oduction	5
	1.1	Vision Impairments	5
	1.2	Object Recognition for Assistive Vision	5
	1.3	Thesis Contributions	5
	1.4	Thesis Outline	5
2	Bac	kground	7
	2.1	Machine Learning	7
	2.2	Object Recognition Datasets	7
3	Sun	nmary of Included Papers	9
	A	A Hierarchical Grocery Store Image Dataset with Visual and Seman-	
		tic Labels	9
	В	Using Variational Multi-view Learning for Classification of Grocery	
		Items	10
	$^{\mathrm{C}}$	Learn the Time to Learn: Replay Scheduling for Continual Learning	10
	D	Meta Policy Learning for Replay Scheduling in Continual Learning .	10
4	Disc	cussion and Conclusions	11
	4.1	Conclusions	11
	4.2	Future Work	11
Re	efere	nces	13

II Included Papers	15

CONTENTS

17

2

5 Paper A

Part I Overview

Introduction

- 1.1 Vision Impairments
- 1.2 Object Recognition for Assistive Vision
- 1.3 Thesis Contributions
- 1.4 Thesis Outline

Background

2.1 Machine Learning

Deep Learning
Multi-view Learning
Continual Learning

2.2 Object Recognition Datasets

Summary of Included Papers

In this chapter, we provide a summaries of the included paper for this thesis. Paper A and B are connected through the Grocery Store dataset where we present the work and then perform an ablation study over which modalities in the dataset that are useful for training classifiers. In Paper C and D, we focus on continual learning (CL) and present a new setting that aims to fill the gap between CL research and real-world problems as well as a method for doing so.

A Hierarchical Grocery Store Image Dataset with Visual and Semantic Labels

Authors: Marcus Klasson, Cheng Zhang, Hedvig Kjellström.

Summary. We collect a dataset with natural images of raw and refrigerated grocery items taken in grocery stores in Stockholm, Sweden, for evaluating image classification models on a challenging real-world scenario. The data collection was performed by taking photos of groceries with a mobile phone to simulate a scenario of grocery shopping using an assistive vision app. Furthermore, we downloaded iconic images and text descriptions of each grocery item by web-scraping a grocery store website to enhance the dataset with information describing the semantics of each individual item. the items are grouped based on their type, e.g., apple, juice, etc., to provide the dataset with a hierarchical labeling structure.

We provide benchmark results evaluated using pre-trained and fine-tuned CNNs for image classification. Moreover, we take an initial step towards utilizing the rich product information in the dataset by training the classifiers with representations where both natural and iconic images have been combined through a multi-view VAE.

Author Contributions. CZ and HK presented the idea and the data collection procedure for the natural images and web-scraped information. MK performed

the data collection including visiting the grocery stores for taking the natural images and the web-scraping of the grocery store website for iconic images and text descriptions. MK performed all the experiments. All authors contributed to discussing the results and contributed to writing the manuscript.

B Using Variational Multi-view Learning for Classification of Grocery Items

Authors: Marcus Klasson, Cheng Zhang, Hedvig Kjellström.

C Learn the Time to Learn: Replay Scheduling for Continual Learning

Authors: Marcus Klasson, Hedvig Kjellström, Cheng Zhang.

D Meta Policy Learning for Replay Scheduling in Continual Learning

Authors: Marcus Klasson, Hedvig Kjellström, Cheng Zhang.

Summary.

Author Contributions. CZ presented the idea.

Discussion and Conclusions

4.1 Conclusions

4.2 Future Work

- Video data for object recognition instead of images for making systems easier to use
- Federated Learning for decentralizing model updates
- Uncertainty Quantification How to make the classifiers trustworthy?

References

- [1] BP Statistical Review of World Energy, ed. 68th, accessed 2019-09-26. BP, 2019.
- [2] F. Chen, Introduction to Plasma Physics and Controlled Fusion. Springer, Switzerland, third edition ed., 2016.

${f Part~II}$ Included Papers

Paper A

hej