E-learning week self-study materials

Please go through these materials on your own during the e-learning/recess week
You may post questions on the edventure discussion board or email Dr Chan if you have questions regarding these contents

- IEEE logic symbols
- CMOS transmission gate
- CMOS 2-input multiplexer

IEEE/ANSI Standard Logic Symbols

- use rectangular symbols
- bubbles replaced by small triangles or wedges (think 0)
- Students are required to recognise these symbols but not required to draw these symbols

Fig. 3-41: Traditional and IEEE logic symbols (Tocci 10th ed)

Output is 0 when "the single input" is 1

Output is 1 when "the single input" is 1

Output is 1 when "all the inputs" are 1

Output is 0 when "all the inputs" are 1

Output is 1 when "at least one input is" 1

Output is 0 when "at least one input" is 1

Output is 1 when "exactly one input" is 1

Output is 0 when "exactly one input" is 1

IEEE/ANSI Standard Logic Symbols

How to interprete

- The symbol inside the rectangle specifies the requirement on the inputs
- &: "all the inputs"
- 1: "the single input" only true for a buffer or an inverter
- ≥ 1 : "at least one input"
- =1: "exactly one input" e.g. on a 2-input
 XOR gate

Example 1: CMOS transmission gate

- Section 3.7.1 of textbook by Wakerly
- 1 PMOS and 1 NMOS transistors can be connected in parallel to form a logiccontrolled switch.
- When S=0 (S'=1), both transistors are off.
 Output f is effectively disconnected from input X. f is at high impedance.
- When S=1 (S'=0), both transistors are on.
 Output f is effectively connected to input X.

Fig. 3-45: CMOS transmission gate

Example 2: Two-input multiplexer using CMOS transmission gates

Logic symbol

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Circuit analysis: when S=0

When S=0

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Circuit analysis: when S=0, only upper transmission gate conducts.

- When S=0,
- Output Z=X

Circuit analysis: when S=1

When S=1

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Circuit analysis: when S=1, only lower transmission gate conducts.

- When S=1,
- Output Z=Y

Two-input multiplexer using CMOS transmission gates: truth table

Input S	Ouput Z
0	X
1	Y

Logic symbol

Truth Table