COMP9318: Data Warehousing

and Data Mining Assignment Project Exam Help

— L2: Data Warehousing and OLAP — https://powcoder.com

Why and What are Data Warehouses?

Assignment Project Exam Help

https://powcoder.com

Data Analysis Problems

- The same data found in many different systems
 - Example: customer data across different department Project Exam Help
 - The same concept is defined differently
- Heterogeneous sources
 Add WeChat powcoder
 Relational DBMS, OnLine Transaction Processing (OLTP)
 - Unstructured data in files (e.g., MS Excel) and documents (e.g., MS Word)

Data Analysis Problems (Cont'd)

- Data is suited for operational systems
 - Accounting, billing, etc.
 - Do not sepportent lysis across business functions
 https://powcoder.com
- Data quality is bad
 Add WeChat powcoder

 Missing data, imprecise data, different use of
 - Missing data, imprecise data, different use of systems
- Data are "volatile"
 - Data deleted in operational systems (6months)
 - Data change over time no historical information

Solution: Data Warehouse

- Defined in many different ways, but not rigorously.
 - A decision support database that is maintained separately from the organization's operational database Assignment Project Exam Help
 - Support information processing by providing a solid platform of https://powcoder.com consolidated, historical data for analysis.
- "A data warehouse Aschale Limethaten ped violed eated, time-variant, and nonvolatile collection of data in support of management's decision-making process."—W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales.
- Focusing on the modeling and analysis of data for decision makers, not on httips of perations decision processing.
- Provide a simple and woncise view around particular subject issues by excluding data that are not useful in the decision support process.

Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files on-line transaction records

 Project Exam Help
- Data cleaning and data integration dechniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems.
 - Operational identification
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element".

Data Warehouse—Non-Volatile

- A physically separate store of data transformed from the operational environment.
- 2. Operation Alsupplante of that a clote smooth of the data warehouse environment. The worder of the late of the l
 - Does not require transaction processing, recovery, Add WeChat powcoder and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data.

Data Warehouse Architecture

Extract data from operational data sources

clean, transform Monitoring & Admnistration Bulk load/refresh

Assignment Project

OLAP-server provides

multidimensional & W

Multidimensional-olap (Essbase, oracle express)

Relational-olap (Redbrick, Informix, Sybase, SQL server)

Data Warehouse Architecture

Why Separate Data Warehouse?

- High performance for both systems
 - DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery Assignment Project Exam Help
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensionattyew/porsolidation.com
- Different functions and different data:
 Add WeChat powcoder
 missing data: Decision support requires historical data which
 - missing data: Decision support requires historical data which operational DBs do not typically maintain
 - data consolidation: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - data quality: different sources typically use inconsistent data representations, codes and formats which have to be reconciled

Why OLAP Servers?

- Different workload:
 - OLTP (on-line transaction processing)
 - Major task of traditional relational DBMS
 - Day-to-days originations: put description of the properties of the prop
 - OLAP (on-line apalytical processing) r.com
 - Major task of data warehouse system
 - Data analysis and decision multipat powcoder
- Queries hard/infeasible for OLTP, e.g.,
 - Which week we have the largest sales?
 - Does the sales of dairy products increase over time?
 - Generate a spread sheet of total sales by state and by year.
- Difficult to represent these queries by using SQL Why?

OLTP vs. OLAP

	OLTP	OLAP
users	clerk, IT professional	knowledge worker
function	day to day operations	decision support
DB design A	application entempdoject	Expirately
data	current, up-to-date	historical,
	detailed flat relational isolated PS://POWcode	summarized, multidimensional integrated, consolidated
usage	repetitive	ad-hoc
access	read We Chat po	MCG Stark
	index/hash on prim. key	
unit of work	short, simple transaction	complex query
# records accessed	tens	millions
#users	thousands	hundreds
DB size	100MB-GB	100GB-TB
metric	transaction throughput	query throughput, response

Comparisons

Databases

Purpose	Many purposes; Flexible and general Assignment Project Exa	One purpose: Data analysis m Help
Conceptual Model	ER	Multidimensional
https://powcoder.com		
	/a.	/5 / / / / / / / / / / / / / / / / / /

Data Warehouses

queries)

Bitmap/Join indexes, Star join,

Materialized data cube

https://powcoder.com

Logical Model

(Normalized) Relational Model

Add WeChat powcoders cube/cuboids

Physical Model

Relational Tables

ROLAP: Relational tables

MOLAP: Multidimensional arrays

Query Language

SQL (hard for analytical

MDX (easier for analytical

Query Language

SQL (hard for analytical queries)

Query Processing

B+-tree/hash indexes, Multiple join optimization, Materialized

The Multidimensional Model

Assignment Project Exam Help

https://powcoder.com

The Multidimensional Model

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube, which is a multidimensional generalization of 2D spread sheet.
- Key conceptssignment Project Exam Help

 - Facts: the subject it models
 Typically transactions in this course; other types includes snapshots, etc. Add WeChat powcoder

 Measures: numbers that can be aggregated

 - Dimensions: context of the measure
 - Hierarchies:
 - Provide contexts of different granularities (aka. grains)
- Goals for dimensional modeling:
 - Surround facts with as much relevant context (dimensions) as possible Why?

Supermarket Example

- Subject: analyze total sales and profits
- Fact: Each Sales Transaction
 - Measure Pollars Sold Amount Sold Cost
 - Calculated Measure: Profit
- Dimensions: https://powcoder.com
 - Store Add WeChat powcoder
 - Product
 - Time

Visualizing the Cubes

A valid instance of the model is a data cube

product

Concepts: cell, fact (=non-empty cell), measure, dimensions

Q: How to generalize it to 3D?

3D Cube and Hierarchies

Concepts: hierarchy (a tree of dimension values), level

Hierarchies

Concepts: hierarchy (a tree of dimension values), level

The (city, moth) Cuboid

Sales of ALL_PROD in NY in Jan

Assume: no other non-ALL levels on all dimensions.

All the Cuboids

Assume: no other non-ALL levels on all dimensions.

All the Cuboids /2

Lattice of the cuboids

- n-dim cube can be Addres Wited ha (Protected), where D_i is the set of allowed values on the i-th dimension.
 - if D_i = L_i (a particular level), then Di = all descendant dimension values of L_i.
 - ALL can be omitted and hence reduces the effective dimensionality $\frac{d}{dt}$
- A complete cube of d-dimensions consists of $\lim_{i=1}^{n} \frac{1}{i} = 1$ cuboids, where n_i is the number of levels (excluding ALL) on i-th dimension.
 - They collectively form a lattice.

Properties of Operations

- All operations are closed under the multidimensional model
 - i.e., both signute and route put comand peration is a cube
- So that they can be composed
 Add WeChat powcoder

Q: What's the analogy in the Relational Model?

Common OLAP Operations

Roll-up: move up the hierarchy

Q: what should be its value?

Common OLAP Operations

Drill-down: move down
 the hierarchy
 more fine-grained

Project Exam Help

more fine-grained in Project Exam Help aggregation https://powcoder.com

Slice and Dice Queries

 Slice and Dice: select and project on one or more dimension values

The output cube has smaller dimensionality than the input cube

Pivoting

- Pivoting: aggregate on selected dimensions
 - usually 2 dims (crosstabulation)

 Tabulation
 Project Exam I

Book176

product

A Reflective Pause

Let's review the definition of data cubes again.

Assignment Project Exam Help

https://powcoder.com

- Key message:
 - Disentangle the "object" from its "representation" or "implementation"

Modeling Exercise 1: Monthly Phone Service Billing

Theme: analyze the income/revenue of Telstra

Solution

FACT

Assignment Project Exam Help

MEASURE https://powcoder.com

Add WeChat powcoder

DIMENSIONS

Assignment Project Exam Help

https://powcoder.com

The Logical Model

Assignment Project Exam Help

https://powcoder.com

Logical Models

- Two main approaches:
 - Using relational DB technology:
 - Star scheigan & Moderate Star Scheigen & Star Sch
 - Using multidimensional technology:
 - Just as multidimensional data cube Add WeChat powcoder

Universal Schema → Star Schema

- Many data warehouses adopt a star schema to represent the multidimensional model
- Each dimension is represented by a dimension-table
 - LOCATION (docation key, Ptorjectret addres) pity, state, country, region)
 - dimension tablestapes no provincialided.com
- Transactions are described through a fact-table
 each tuple consists of a pointer to each of the dimension-tables
 - each tuple consists of a pointer to each of the dimension-tables (foreign-key) and a list of measures (e.g. sales \$\$\$)

The universal schema for supermarket

Store	City	State	Prod	Brand	Category	\$Sold	#Sold	Cost
S136	Syd	NSW	76Ha	Nestle	Biscuit	40	10	18
S173	Melb	Vic	76Ha	Nestle	Biscuit	20	5	11

38

The Star Schema

PRODUCT

product key product name supplier_name

LOCATION

location key street address state country region

Think why:

- (1) Denormalized once from the universal schema
- (2) Controlled redundancy

Typical Models for Data Warehouses

- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimensignment Project Exam Help
 - Snowflake schema://poweinement.nf star schema
 where some dimensional hierarchy is normalized into a
 Add WeChat powcoder
 set of smaller dimension tables, forming a shape
 similar to snowflake
 - <u>Fact constellations</u>: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called <u>galaxy schema</u> or fact constellation

Example of Star Schema

Example of Snowflake Schema

Example of Fact Constellation

Advantages of Star Schema

- Facts and dimensions are clearly depicted
 - dimension tables are relatively static, data is loaded (append mestly) timeton fractetable(s)
 - easy to comprehend (and write queries)

```
"Find total sales per product-category in our stores in Europe"
Add We Chat powcoder
```

```
SELECT PRODUCT.category, SUM(SALES.amount)
```

```
FROM SALES, PRODUCT, LOCATION
```

WHERE SALES.product_key = PRODUCT.product_key

AND SALES.location_key = LOCATION.location_key

AND LOCATION.region="Europe"

GROUP BY PRODUCT.category

Operations: Slice (Loc.Region.Europe) + Pivot (Prod.category)

Query Language

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Query Language

LOCATION.region="Europe"

Two approaches:

LOCATION.location key

GROUP BY PRODUCT. category

AND

- Using relational DB technology: SQL (with extensions) such as CUBE/PIVOT/UNPIVOT)
 Assignment Project Exam Help
 Using multidimensional technology: MDX

```
https://powcoder.com
SELECT PRODUCT.category,
                                    SELECT
SUM(SALES.amount)
                   Add WeChat (PRODUCE:[category]) on ROWS,
       SALES, PRODUCT, LOCATION
                                    {[MEASURES].[amount]} on COLUMNS
WHERE SALES.product key =
                                           [SALES]
                                    FROM
PRODUCT.product key
                                    WHERE ([LOCATION].[region].[Europe])
AND
       SALES.location_key =
```

Operations: Slice (Loc.Region.Europe) + Pivot (Prod.category, Measures.amnt)

Physical Model + Query Processing Techniques

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Physical Model + Query Processing Techniques

- Two main approaches:
 - Using relational DB technology: ROLAP
 - Using matticiments on indetection by MOLAP
- Hybrid: HOLAPttps://powcoder.com
 - Base cuboid: RQLAP wechat powcoder
 - Other cuboids: MOLAP

Q1: Selection on low-cardinality attributes

Omitting the Product dimension

Indexing OLAP Data: Bitmap Index

(1) BI on dimension tables

- Index on an attribute (column) with low distinct values
- Each distinct values, v, is associated with a n-bit vector (n = #rows)
 Assignment Project From II-1
- Assignment Project Exam Help
 The +th bit is set if the +th row of the table has the value v for the indexed column wcoder.com
 Multiple BIs can be efficiently combined to enable optimized scan
- Multiple BIs can be efficiently combined to enable optimized scar of the table Add WeChat powcoder

Custom

Cust	Region	Type
C1	Asia	Retail
C2	Europe	Dealer
C3	Asia	Dealer
C4	America	Retail
C5	Europe	Dealer

BI on Customer.Region

V	bitmap
Asia	10100
Europe	0 1 0 0 1
America	00010

Indexing OLAP Data: Bitmap Index /2

- Bitmap join index (BI on Fact Table Joined with Dimension tables)
 - Conceptually, perform a join, map each dimension value to the Bitmap of Colfest Fording faut table rows.

https://powcoder.com

Add WeChat powcoder

```
-- ORACLE SYNTAX –

CREATE BITMAP INDEX sales_cust_region_bjix

ON sales(customer.cust_region)

FROM sales, customer

WHERE sales.cust_id = customers.cust_id;
```

Indexing OLAP Data: Bitmap Index /3

α	

time	customer	loc	Sale
101	C1	100	1
173	C1 A	ssign	ıment
208	C2	100	tng./3
863	C3	200	tps:// 5
991	C1	100	dd W
1001	C2	200	13
1966	C4	100	21
2017	C5	200	34

Customer

	Cust	Region	Type
			Retail
Project	E xai	fiul topp	Dealer
	C3	Asia	Dealer
powcode	CACO1	A merica	Retail
C1	C5	Europe	Dealer
eChat po	OWCO	der	

BI on Sales(Customer.Region)

v	bitmap
Asia	11011000
Europe	00100101
America	0000010

Q2: Selection on high-cardinality attributes

Indexing OLAP Data: Join Indices

- Join index relates the values of the <u>dimensions</u> of a star schema to <u>rows</u> in the fact table.
 - a join index on withent Projectly Example maintains for each distinct city = Coogee city a list of Rows of the tuples recording the sales in the city dd WeChat powcoder
- Join indices can span multiple dimensions OR
 - can be implemented as bitmapindexes (per dimension)
 - use bit-op for multiple-joins

Q3: Arbitrary selections on Dimensions

Chap 4.4 in [JPT10]

Star Query and Star Join (Cont.)

Q4: Coarse-grain Aggregations

- "Find total sales per customer type in our stores in Europe"
 - Join-index will prune ¾ of the data (uniform sales), but the remaining ¼ is still large (several millions transactions)
 - Index is undhates powcoder.com
- High-level aggregations are expensive!!!!!
 Add WeChat powcoder
 - ⇒Long Query Response Times
 - ⇒Pre-computation is necessary
 - ⇒Pre-computation is most beneficial

Cuboids = GROUP BYs

Multidimensional aggregation = selection on corresponding cuboid

```
GB_{(type, cft)} (sightment Riojee): Exam (Chtelp \triangleleft \sigma_3(Loc))
```


- σ₁ selects some Brands,
- σ₃ selegta a meChitie sow coder

```
GB_{(type, city)}(\sigma_{1'2'3'}(Cuboid(Year, Type, City)))
```

- Materialize some/all of the cuboids
 - A complex decision involving cuboid sizes, query workload, and physical organization

Two Issues

- How to store the materialized cuboids?
- How to compute the cuboids efficiently?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

CUBE BY in ROLAP

.1			Produ	ct		Store	Product_key	sum(amout)
ares	1	2	3	4	ALL	1	1 4	454 925
1	454	-	-	925	1379	2	1	468
2	468	800	-	_	1268	2 3	2 1	800 296
3	296	_	Assi	gnme	enti P r	oject Exam	Help	240
4	652	-	540	745	1937	4	4 3	625 240
ALL	1870	800	780	https	://pov	vcoder.com	4	745
	. 1	1			1	1 2	ALL	1379 1268
	•			Xedd 1 gueri	es!!!	hat3powcod	er ALL ALL	536 1937
store)				•		ALL ALL	1 2	1870 800
produ)	ict)			*		ALL ALL	3	780 1670 5120
	3 4 ALL Groustore,	1 1 454 2 468 3 296 4 652 ALL 1870	1 454 - 2 468 800 3 296 - 4 652 - ALL 1870 800 Group-bys here: store,product) store)	1 2 3 1 454 2 468 800 - 3 296 - A361 4 652 - 540 ALL 1870 800 780 Group-bys here: store,product) store)	1 2 3 4 1 454 925 2 468 800 3 296 - A361gnn 4 652 - 540 745 ALL 1870 800 780 https Group-bys here: store,product) store) product) Compu	1 2 3 4 ALL 1 454 - 925 1379 2 468 800 - 1268 3 296 - AssignmentsPr 4 652 - 540 745 1937 ALL 1870 800 780 https://pov Group-bys here: store,product) Store) • Neettoweter 4 queries!!! • Compute them	1 2 3 4 ALL 1 454 925 1379 2 2 468 800 1268 3 3 296 - Asci gnmens@roject Exam 4 652 - 540 745 1937 4 ALL 1870 800 780 https://povcoder.com Group-bys here: store, product) Store) product) - Compute them independently.	1 2 3 4 ALL 1 454 925 1379 2 1 2 468 800 1268 3 3 296 - 286 grinnem3 Project Exam Help 4 652 - 540 745 1937 4 3 ALL 1870 800 780 https://powcoder.com ALL ALL Store, product) Store) product) - Compute them independently ALL AL

SELECT LOCATION.store, SALES.product_key, SUM (amount)

FROM SALES, LOCATION

WHERE SALES.location_key=LOCATION.location_key

CUBE BY SALES.product_key, LOCATION.store

Top-down Approach

Model dependencies among the aggregates:

Bottom-Up Approach (BUC)

BUC (Beyer & Ramakrishnan, SIGMOD'99)

Ideas Assignment Project Exam He

 Compute the cube from bottom up https://powcoder.com

Divide-and-conquer
 Add WeChat powcoder
 A simpler recursive version:

BUC-SR

Α	В	
1	1	
1	3	
1	2	
1	1	
2		

5 ABCD

8 ACD

11 BC 13 BD 15 CD

Understanding Recursion /1

- Powerful computing/problem-solving techniques Assignment Project Exam Help
- Examples
 - Factorial: https://powcoder.com
 - f(n) = 1, iAdd WeChat powcoder
 - $f(n) = f(n-1) * n, if n \ge 1$
 - Quick sort:
 - Sort([x]) = [x]
 - Sort([x1, ..., pivot, ... xn]) = sort[ys] ++ sort[zs]), where

f(0) = 0! =

ys =
$$[x \mid x \text{ in } xi, x \leq pivot]$$

zs = $[x \mid x \leftarrow xi, x > pivot]$

List comprehension in Haskell or python

Understanding Recursion /2

 Let C(n, m) be the number of ways to select m balls from n numbered balls

Key Points

- Sub-problems need to be "smaller", so that a simple/trivial boundary case can be reached Assignment Project Exam Help
- Divide-and-conquer
 - There may be multiple ways the entire solution space can be divided into disjoint sub-spaces, each of which can be conquered recursively.

Geometric Intuition /1

Reduce Cube(in 2D) to Cube(in 1D)

Geometric Intuition /2

Geometric Intuition /3

Reduce Cube(in 3D) to Gubenin Project Exam Help

https://powcoder.com

Add WeChat powcoder

BUC-SR (Simple Recursion)*

- BUC-SR(data, dims)
 - If (dims is seigpty)nt Project Exam Helpoundary case:
 - Output (sum(data)) https://powcoder.com
 - Else
 - Dims = [dim1, rest of dims]
 - For each distinct value v of dim1
 - slice v = slice of data on "dim1 = v"
 - BUC-SR(slice_v, rest_of_dims)
 - data' = Project(data, rest_of_dims)
 - BUC-SR(data', rest of dims)

of measure values

General case:

1)Slice on dim1. Call **BUC-SR** recursively for each slice

2)Project out dim1, and call BUC-SR on it recursively

Try a 3D-Cube by Yourself

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

[{r1-r5}, ABC]

L				J
r1	A	В	С	M
r2	1	1	1	10
r3	1	1	2	20
r4	1	2	1	30
▗╴ ▗	1	3	1	40
5	2	1	1	50
6/3/	10			

71

MOLAP

- (Sparse) array-based multidimensional storage engine
- Pros: Assignment Project Exam Help
 - small size (esp. for dense cubes)
 - fast in indexing and query processing Add WeChat powcoder
- Cons:
 - scalability
 - conversion from relational data

Multidimensional Array

f(time, item) = 4*time + item

time	item	dollars_sold	
Q1	home entertainment	605	
Q2	home entertainment	680	
Q3	home entertainment	Assign	n
Q4	home entertainment	9 27111	n
Q1	computer	825	P
Q2	computer	952	1 -
Q3	computer	10 23 C	lC
Q4	computer	1038	
Q1	phone	14	
Q2	phone	31	
Q3	phone	30	
Q4	phone	38	
Q1	security	400	
Q2	security	512	
Q3	security	501	
Q4	security	580	

	Step 1		
16	Марріоз	pject I	
	Q1	∀alue 0	
S	1 1	code	•
	Q3	2	
1	WeCl	1at 13	V
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	rw P	•
	item	value	
	home entertain		·
	home	value 0 1	
	home entertain ment	0	

time	item	dollars_s old
0	0	605
1	0	680
xam²	Help	812
3	0	927
¢ om º	1	825
	1	952
code	1	1023
/code	r 1	1038
0	2	14
1	2	31
2	2	30
3	2	38
0	3	400
1	3	512
2	3	501
3	3	580

offset

Multidimensional Array

Step 3': If **sparse**

Step 3: If dense, only need to store sorted slots

dollars_sold
605
825
14
Acs
680
952
31
512
812
1023
30
501
927
1038
38
580

Think: how to decode a slot?

signmeltidimensional Taxamis Help typically sparse

https://sowereder.avoing., offset + value)

Add Woulding shunk toder further reduce the space

- Space usage:
 - (d+1)*n*4 vs 2*n*4
- HOLAP:
 - Store all non-base cuboid in MD array
 - Assign a value for ALL

Dense MD array	
	605
	825
	14
	400
	680
	952
	31
	512
	812
	1023
	30
	501
	927
	1038
	38
	580