慶應義塾大学試験問題用紙(日吉)

			•			試験時間	90	分		分
平成 30	年 / 月 30 日(火) 5 時限施行		学部	学科	年	組	採	点欄	*	
担当者名	坂川 博宣 / 勝良 健史	学籍番号								
科目名	数学3B (- 有)	氏 名								

次の1から5に答えよ.途中の計算も適宜答案用紙に記入すること.

- 1. $\{a_n\}_{n\geq 1}$, $\{b_n\}_{n\geq 1}$ を数列で任意の $n\geq 1$ に対し $a_n>0$, $b_n\geq 0$ とする. $\lim_{n \to \infty} \frac{b_n}{a_n} = r \in [0,\infty)$ が成り立ち、かつ $\sum_{n=1}^\infty a_n$ が収束するならば $\sum_{n=1}^\infty b_n$ は収束することを証明せよ.
- 2. $a \ge 0$ とする. 級数 $\sum_{n=0}^{\infty} \frac{1}{1+a^n}$ の収束/発散を判定せよ.
- 3. 次のべき級数の収束半径 R を求めよ、また $0 < R < \infty$ の場合は |x| = R を満たす実数 x に対し、 15-45-4) - 157 級数が収束するかどうか判定せよ.

(a)
$$\sum_{n=2}^{\infty} \left(\frac{\cos n}{\log n}\right)^n x^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n^{\frac{3}{2}} \log(n+1)} x^n$$

4. fを ℝ² 上で定義された連続関数とする.次の累次積分の積分範囲を図示し、積分順序を交換せよ.

$$I = \int_{-1}^{2} \left(\int_{x^{2}}^{2x+3} f(x,y) dy \right) dx$$

5. 次の重積分の値を求めよ.

(b)
$$I = \iint_D (2x+y)e^{4x-3y}dxdy$$
, $D = \{(x,y) \in \mathbb{R}^2; \ 0 \le 2x+y \le 2, \ 0 \le x-2y \le 1\}$

$$I = \iint_{D} (2x+y)e^{4x-3y} dx dy, \quad D = \{(x,y) \in \mathbb{R}^{2}; \ 0 \le 2x+y \le 2, \ 0 \le x-2y \le 1\}$$

$$I = \iint_{D} \frac{1+y}{(x+y)e^{4x-3y}} dx dy, \quad D = \{(x,y) \in \mathbb{R}^{2}; \ 0 \le 2x+y \le 2, \ 0 \le x-2y \le 1\}$$

 $|x| = \frac{1}{4} \int_{0}^{2} \frac{1}{1+1} \int_{0}^{2}$ $+2\left(|-L^{2}\right)^{\frac{1}{2}}$ $+\frac{1}{2}\cdot 2\cdot 2r$ $\frac{1}{2}=\tan \theta$.