Topological Spaces

Arthur Ryman, arthur.ryman@gmail.com

August 26, 2018

Abstract

This article defines topological spaces and related concepts.

1 Topological Spaces

1.1 $t_1, t_2, \text{ and } t_3$

Let t_1 , t_2 , and t_3 denote arbitrary sets. These will be used throughout in the statement of theorems, remarks, and examples that are parameterized by arbitrary sets.

$$[t_1, t_2, t_3]$$

1.2 $\mathcal{F} \setminus \text{family}$

Let X be a set. A family of subsets of X is a set of subsets of X. Let $\mathcal{F}X$ denote the set of all families of subsets of X.

$$\mathcal{F}X == \mathbb{P}(\mathbb{P} X)$$

1.3 Topology

A topology τ on X is a family of subsets of X, referred to as the open subsets of X, that satisfy the following axioms.

$$Topology[X]$$

$$\tau : \mathcal{F}X$$

$$\varnothing \in \tau$$

$$X \in \tau$$

$$\forall F : \mathbb{F} \tau \bullet \bigcap F \in \tau$$

$$\forall F : \mathbb{P} \tau \bullet \bigcup F \in \tau$$

- The empty set is open.
- The whole set is open.
- The intersection of a finite family of open sets is open.
- The union of any family of open sets is open.

1.4 top and tops

Let top[X] denote the set of all topologies on X.

```
top : \mathbb{P}(\mathcal{F}X)
top = \{ Topology[X] \bullet \tau \}
```

Let tops[X] denote the set of all topologies on subsets $U \subseteq X$.

```
tops : \mathbb{P}(\mathcal{F}X)
tops = \bigcup \{ U : \mathbb{P} X \bullet top[U] \}
```

1.5 discrete and indiscrete

The discrete topology on X consists of all subsets of X. The indiscrete topology on X consists of just X and \emptyset . Let discrete[X] and indiscrete[X] denote the discrete and indiscrete topologies on X.

Example. Let t_1 be an arbitrary set. Then discrete $[t_1]$ and indiscrete $[t_1]$ are topologies on t_1 .

```
discrete[t_1] \in top[t_1]
indiscrete[t_1] \in top[t_1]
```

$1.6 \quad topGen$

Remark. The intersection of a set of topologies on X is also a topology on X.

Given a family B of subsets of X, the topology generated by B is the intersection of all topologies that contain B. The set B is referred to as a basis for the topology it generates. Let topGen[X]B denote the topology on X generated by the basis B.

```
[X] = topGen : \mathcal{F}X \longrightarrow top[X]
\forall B : \mathcal{F}X \bullet 
topGen B = \bigcap \{ \tau : top[X] \mid B \subseteq \tau \}
```

Example. Let t_1 be an arbitrary set.

```
topGen[t_1]\emptyset = indiscrete[t_1]

topGen[t_1]\{\emptyset\} = indiscrete[t_1]

topGen[t_1]\{t_1\} = indiscrete[t_1]
```

1.7 topSpace

Let X be a set. A topological space is a pair (X, τ) where τ is a topology on X. Let topSpace[X] denote the set of all topological spaces (X, τ) .

$$topSpace[X] == \{ \tau : top[X] \bullet (X, \tau) \}$$

Example. Let t_1 be an arbitrary set.

```
(t_1, indiscrete[t_1]) \in topSpace[t_1]
(t_1, discrete[t_1]) \in topSpace[t_1]
```

1.8 topSpaces

Let topSpaces[t] denote the set of all topological spaces (X,τ) where X is a subset of t.

Remark.

$$topSpace[t_1] \subseteq topSpaces[t_1]$$

2 Continuous Mappings

Let (X, τ) and (Y, σ) be topological spaces.

2.1 Continuous

A mapping $f \in X \longrightarrow Y$ is said to be *continuous* if the inverse image of every open set is open.

```
 \begin{array}{l} -Continuous[X, Y] \\ f: X \longrightarrow Y \\ \tau: top[X] \\ \sigma: top[Y] \\ \hline \\ \forall \, U: \sigma \bullet \\ f^{\sim} (\!\! \mid \! U \!\! ) \in \tau \end{array}
```

2.2 $C^0 \setminus CzeroTT$

Let A and B be topological spaces, and let $C^0(A, B)$ denote the set of continuous mappings from A to B.

2.3 The Identity Mapping

Remark. The identity mapping is continuous.

```
\forall \tau : top[t_1] \bullet
let A == (t_1, \tau) \bullet
id t_1 \in C^0(A, A)
```

2.4 const \const

Let X and Y be sets and let $c \in Y$ be some given point. The mapping that sends every point of X to c is called the *constant mapping* defined by c. Let const(c) denote the constant mapping.

Remark. The constant mapping is continuous.

```
\forall \tau : top[t_1]; \sigma : top[t_2]; c : t_2 \bullet
\mathbf{let} \ A == (t_1, \tau); B == (t_2, \sigma) \bullet
\mathbf{const}[t_1, t_2]c \in \mathbf{C}^0(A, B)
```

2.5 Composition of Continuous Mapping

Remark. Let t_1 , t_2 , and t_3 be arbitrary sets. The composition of continuous mappings is a continuous mapping.

```
\forall A: topSpace[t_1]; B: topSpace[t_2]; C: topSpace[t_3] \bullet \\ \forall f: C^0(A, B); g: C^0(B, C) \bullet \\ q \circ f \in C^0(A, C)
```

3 Induced Topology

Let $A = (X, \tau)$ be a topological space and let $U \subseteq X$ be a subset. The topology on X induces a topology on U. This topology is variously referred to as the induced, relative, or subspace topology on U.

3.1 | \inducedFam

Let ϕ be a family of subsets of X and let U be a subset of X. The family of subsets of U induced by ϕ is the set of intersections of the members of ϕ with U. Let $\phi \mid U$ denote the family on U induced by ϕ .

Remark. If τ is a topology on X then $\tau \mid U$ is a topology on U.

$$\forall \tau : top[t_1]; \ U : \mathbb{P} \ t_1 \bullet \\ \tau \mid U \in top[U]$$

3.2 $|_{top} \rightarrow and |_{top} \rightarrow and Constant Const$

Let $A = (X, \tau)$ be a topological space. Let $\tau \mid_{\mathsf{top}} U$ denote the topology on U induced by τ

Let $A \mid_{\mathsf{top}} U$ denote the corresponding induced topological space.

Remark. The induced topological space $A \mid_{\mathsf{top}} U$ is a topological space on U.

$$\forall \tau : top[t_1]; \ U : \mathbb{P} \ t_1 \bullet$$

$$\mathbf{let} \ A == (t_1, \tau) \bullet$$

$$A \mid_{\mathsf{top}} U \in topSpace[U]$$

4 Product Topology

Let X and Y be sets and let A and B be topological spaces on them. There is a natural topology on the product set $X \times Y$ generated by the products of the open sets on X and Y.

$4.1 imes \prodTop$

Let $A \times B$ denote the product topological space.