Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

October 30, 2020

Continuoi Functions

Classification o discontinuities Properties

Uniformly continuous functions

- 1 Continuous Functions
 - Definition
 - Classification of discontinuities
 - Properties

2 Uniformly continuous functions

Content

- 1 Continuous Functions
 - Definition
 - Classification of discontinuities
 - Properties

2 Uniformly continuous functions

Continuou
Functions
Definition

Classification

Classification discontinuitie Properties

continuous functions

Definition

Let f(x) be defined on (a, b), $x_0 \in (a, b)$.

- f(x) is said to be continuous at x_0 if $\lim_{x \to x_0} f(x) = f(x_0)$.
- If f(x) is not continuous at x_0 , it is said to be discontinuous at x_0 .
- f(x) is continuous on (a, b) iff f(x) is continuous at $x \in (a, b)$.

Continuou
Functions

Definition

Classification of discontinuities

continuous functions

Definition

• f(x) is said to be continuous from the left at x_0 if

$$f(x_0^-) = \lim_{x \to x_0^-} f(x) = f(x_0).$$

• f(x) is said to be continuous from the right at x_0 if

$$f(x_0^+) = \lim_{x \to x_0^+} f(x) = f(x_0).$$

Note: f is continuous at $x_0 \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0)$.

ntinuous

Definition
Classification

Classification o discontinuities Properties

Uniformly continuous functions

Example

- **1** Elementary functions are continuous on their domains.
- 2 Determine whether the following function is continuous or not at x=1

$$g(x) = \begin{cases} e^x - 2 & \text{if } x \ge 1, \\ \cos \pi x & \text{if } x < 1. \end{cases}$$

3 Discontinuity from graph

Continuo: Functions

Definition

Classification discontinuities Properties

continuous functions

Definition

f(x) is continuous on [a, b] iff f(x) is continuous on (a, b), continuous from the right at a and continuous from the left at b.

Functions

Definition

Classification of discontinuities

Uniformly continuous functions

Definition

Let x_0 be a discontinuity of the function f(x). x_0 is called

- **a** a jump discontinuity if there exist finite limits $\lim_{x \to x_0^+} f(x)$ and $\lim_{x \to x_0^-} f(x)$.
- a removable discontinuity if $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) < \infty$.
- an infinite discontinuity otherwise.

-unctions

Definition

Classification of discontinuities

Properties

continuous functions

Example

- x = 0 is a removable discontinuity of $f(x) = \frac{\sin x}{x}$.
- x = 0 is an infinite disconitnuity of $f(x) = e^{\frac{1}{x}}$.
- Classify the discontinuities of the function $y = \frac{2}{1-2^{\frac{x-1}{x}}}$.

Continuo: Functions

Definition Classificatio

discontinuitie

Properties

Uniformly continuou functions

Theorem

If f(x) is continuous on [a, b], then the graph of f(x) has no break in it.

Continuou Functions

Definition
Classification or
discontinuities
Properties

Uniformly continuous functions

Theorem

Let f(x) and g(x) be continuous at $x_0 \in (a, b)$. Then $f(x) \pm g(x)$, f(x).g(x) are also continuous at x_0 . If $g(x_0) \neq 0$ then $\frac{f(x)}{g(x)}$ is also continuous at x_0 .

Theorem

Given f(x): $(a,b) \to (c,d)$, g(x): $(c,d) \to \mathbb{R}$. If f(x) is continuous at $x_0 \in (a,b)$, g(x) is continuous at $y_0 = f(x_0)$ then $g \circ f(x)$ is continuous at x_0 .

Functions

Classification discontinuities

continuou functions

Theorem (Weierstrass)

If f(x) is continuous on [a,b] then it is bounded, and attains its minimum and maximum on [a,b].

Theorem

Let f(x) be continuous on [a, b]. Then f(x) attains all intermediate values between f(a) and f(b).

Functions

Classification discontinuities

Properties

Uniformly continuous functions

Corollary (Intermediate Value Theorem)

Assume that f(x) is continuous on the closed interval [a, b] and f(a).f(b) < 0. Then the equation f(x) = 0 has at least one solution on (a, b).

Example

Let $f(x) \colon [0,1] \to [0,1]$ be a continuous function. Prove that the equation f(x) = x has at least one solution in [0,1].

Content

- 1 Continuous Functions
 - Definition
 - Classification of discontinuities
 - Properties

2 Uniformly continuous functions

Functions

Definition

Classification of discontinuities

Uniformly continuous functions

Recall:
$$f(x)$$
 is continuous at $x_0 \in X \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$, $\forall \varepsilon > 0, \exists \delta(\varepsilon, x_0) > 0 : \forall 0 < |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$.

Definition

A function f(x) is said to be uniformly continuous on X if

$$\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0 : \forall x_1, x_2 \in X, |x_1 - x_2| < \delta : |f(x_1) - f(x_2)| < \varepsilon.$$

Note: If f(x) is uniformly continuous on X, then it is also continuous on X.

Continuou Functions

Classification discontinuities

Uniformly continuous functions

Example

- $f(x) = \frac{1}{x}$ is uniformly continuous on [1, 2].
- $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1].

Continuous

unctions

Classification discontinuities
Properties

Uniformly continuous functions

Theorem (Cantor)

A function f(x) which is continuous on a closed interval [a,b] is also uniformly continuous on that set.