Практическое занятие №4 Методы внутренней сортировки. Логические выражения

Задание: обсудить 1) Методы выбора и «пузырька» 2) Правила написания логических выражений; 3) Контрольная работа №1 (1 ак.час)

4.1 Упорядочение одномерного массива методом выбора.

1. Задача *Sort*. ПЗ.

Задание: Упорядочить массив «на месте» (без использования дополнительного массива) в порядке и направлении перемещения, указанными в условии. Для наглядности выводить измененный массив после каждого шага сортировки (прохода по массиву).

Условие: Упорядочить в порядке убывания (максимум в начало) элементы одномерного массива

2. Уточненная ПЗ.

Задан вещественный одномерный массив a, состоящий из n элементов.

Упорядочить в порядке убывания (максимум в начало) элементы заданного массива а.

Замечание. Упорядочение делается принципиально в том же массиве (на месте), т.е. входной массив «портится». Чтобы не изменять исходные данные (это важное программистское правило, которое следует по возможности выполнять), можно использовать другой массив, например, b, который и будет выходным. Тогда первым шагом обработки будет перепись a в b (при совпадении типа по имени для статических массивов выполняется простым присваиванием), а вторым – упорядочение b.

3. Пример.

Пусть n=6.

a

В результате должен получиться массив

a

9	5	5	4	3	2
1	2	3	4	5	6

4. Таблица данных

Класс Имя		Описание (смысл), диапазон,	Тип	Структура	Формат	
		точность				
	а	заданный массив,	вещ	одномерный	+XX.X (:5:1)	
Входные		$ a_i $ <100, точн. 0.1		массив (10)		
данные	n	число элементов массива а,	цел	простая	XX (:2)	
		$0 < \mathbf{n} \le 10$		переменная		
Выходные	а	упорядоченный массив,	вещ	*	*	
данные		$ a_i $ <100, точн. 0.1				
Промежу-	i	индекс текущего элемента,	*	*		
точные		*				
	dat	входной файл	*	*		
		Sort_dat <notecta>.txt</notecta>				
	res	выходной файл	*	*		
		Sort_res<№Tecta>.txt				
ama.		значение максимального элемента,	*	*		
k		номер максимального элемента,	*	*		
z		шаг упорядочения, $1 \le z \le 9$	*	*		
		*	*			

^{*}Диапазоны, типы, точность и структуру для промежуточных параметров заполнить самим.

5. Форма ввода

Сами, по аналогии с предыдущими задачами, согласуясь с типом элементов заданного массива

6. Форма вывода

обр1	Вариант 32. Упорядочение массива в порядке убывания (максимум в начало)
обр2	\forall исло элементов = $\langle n \rangle$
обр3	Значения элементов:
	< a[1] > < a[2] > < a[n] >
обр4	По шагам:
обр5	<a[1]> <a[2]> <a[n]></a[n]></a[2]></a[1]>
обр6	Упорядоченный массив:
	< a[1] > < a[2] > < a[n] >

7. Аномалии не рассматриваем

8. Функциональные тесты составить самостоятельно.

Обязательны тесты, где:

- 1) частично неупорядоченный массив (см Пример);
- 2) массив, упорядоченный в обратном порядке;
- 3) массив, уже упорядоченный в требуемом порядке.

И заполните полностью таблицу, указав номера подходящих тестов в пустых ячейках:

Исходные данные									ультаты	Тест№
	аном	граница	сред		сред	граница	аном		макc = N-1	2
N	<1	1	(2	,	9)	10	>10	1	мин = 0	
Тест№				+	←			80K	$cpe \partial = (0,N-1)$	1
	аном	граница	сред	0	сред	граница	аном	перестановок	<i>не сущ</i> = при N =1	5
A[i]	<-99	-99	(-99,0)	0	(0,99)	99	>99	эес	$0 = c_{M.MUH}$	
Тест№								lau	Макс.вычисл. нагрузка = см. макс	2

No	Входные данные	Ожидаемый результат	Смысл теста		
1	n=6 A 4 3 5 9 5 2	Упорядоченный массив: 9 5 5 4 3 2	Частично упорядоченный массив из примера		
2	n=10 A -99 99 -7 50 -9 8 -8 6 -5 1	Пошагово (9 шагов): 99 -99 -7 50 -9 8 -8 6 -5 1 99 50 -7 -99 -9 8 -8 6 -5 1 99 50 8 -99 -9 -7 -8 6 -5 1 99 50 8 6 -9 -7 -8 -99 -5 1 99 50 8 6 1 -7 -8 -99 -5 -9 99 50 8 6 1 -5 -7 -99 -8 -9 99 50 8 6 1 -5 -7 -8 -99 -9 99 50 8 6 1 -5 -7 -8 -9 -9 Упорядоченный массив: 99 50 8 6 1 -5 -7 -8 -9 -9	Частично упорядоченный массив для пошагового просмотра Видно направление сортировки — максимум в начало — за первый же шаг максимум встал в начало, затем второй по величине элемент встал на вторую позицию и т.д. Максимальное число обменов		
3	n=10*	*	Массив, упорядоченный в обратном порядке		
4	*	*	Массив, уже упорядоченный в требуемом порядке		
5	<i>n</i> = 1* <i>A</i>	*	Особый случай		

^{*}Продолжить составление тестовых примеров самостоятельно

9. Метод сортировки – метод выбора (максимум в начало):

1 шаг (z=**1**). Ищем в массиве, начиная с *первого* элемента, значение максимального элемента *атах* и его номер k, затем меняем значениями первый и k-й элементы.

a

a

a

Первый элемент поставлен на место.

2-й шаг (z=2). Ищем в массиве, начиная со *второго* элемента, значение максимального элемент *атах* и его номер k. Меняем значениями **2-**й и k-й элементы.

Теперь и второй элемент поставлен на место.

z-ый шаг. Часть массива с первого по (z-1)-й элемент уже упорядочена.

Ищем в массиве, начиная с z-го элемента, значение максимального элемента amax и его номер k. Меняем значениями z-й и k-й элементы.

z-й элемент тоже поставлен на своё место.

Последний (z = n-1) шаг. Часть массива с первого по (n-2)-й элемент уже упорядочена.

Ищем в массиве, начиная с ($\mathbf{n-1}$)-го элемента (их осталось всего два: последний и предпоследний), значение максимального элемента *атах* и его номер k. Меняем значениями (n-1)-й и k-й элементы.

Теперь и последние два элемента тоже стоят в правильном порядке. Массив упорядочен.

<u>Замечание 1</u>. Обратите внимание, что в данном массиве элементы фактически оставались на своих местах уже с третьего шага, и далее все элементы менялись местами сами с собой. Внесем небольшую модификацию в алгоритм: будем проверять индексы z и k меняющихся значениями элементов.

Замечание 2. Для направления перемещения «максимум/минимум в конец» удобнее шаги отсчитывать в обратном порядке с (n-1) до 2, и, соответственно, использовать цикл for z:=n-1 downto 2 do вместо for z:=1 to n-1 do. Сам максимум/минимум тоже логичнее начинать искать c конца неупорядоченной части массива, либо искать nocnedний из элементов с максимальным/минимальным значением.

10. Алгоритм.

Подзадача А0.1.1 — модификация задачи *Extremum*: начальное значение индекса элемента, с которого начинается поиск, заменяется с 1 на z.

Подзадача A0.1.2 – обмен значениями *z*-го и k-го элементов (в *атах* лежит A[k]).

Пусть в общем случае необходимо обменять значениями переменные c и d.

Способ 1).

<u>Неверно</u>, т.к. после первого же присваивания теряется начальное значение переменной c:

Надо его сохранить...

В рассмотренном алгоритме сортировки роль переменной c играет A[z], роль переменной d играет A[k]. Другие способы обмена: 2) c := c + d; d := c - d; c := c + d; d := c

11. Программный код.

Написать самостоятельно, используя циклы for и ветвление if.

Подсказки в файлах Кодирование-алгоритмов.pdf и Базовые-алгоритмы.pdf, а также Пример-отчета-для-лабораторной-работы-2.doc

Далее будет рассмотрен еще один метод сортировки (пузырьком), и в итоге д**окументация по задачам сортировки** должна иметь вид:

- Пункты 1-8 общие, добавится одна логическая переменная;
- Основной алгоритм и программа с пустой заглушкой (пункты 10-11), куда можно будет вставить алгоритм упорядочения массива;
- Далее решение методом выбора (с новой страницы пункты 9-11: метод, алгоритм, фрагмент кода, вставляемый вместо заглушки);
- Далее решение методом пузырька (с новой страницы пункты 9-11: метод, алгоритм, фрагмент кода, вставляемый вместо заглушки).

Оба метода сортировки можно совместить в одной программе. При этом не забудьте заранее сделать копию исходного массива, чтобы не пытаться упорядочивать вторым методом уже упорядоченный первым методом массив.

4.2 Упорядочение одномерного массива методом "пузырька" (простым обменом)

- *1. Задача Bubble*. Упорядочить элементы одномерного массива A(n) в заданном порядке и направлении.
- 32 вариант: массив из вещественных чисел, по убыванию, максимум «всплывает пузырьком» в начало массива (значит, в этом варианте направление просмотра элементов с конца в начало массива).

6. Метод (сортировка «пузырьком»)

Сортировка «пузырьком» (обменом) (максимум в начало) — метод, при котором все соседние элементы массива попарно сравниваются друг с другом, начиная с конца, и меняются местами в том случае, если предшествующий элемент меньше последующего. В результате этого максимальный элемент постепенно смещается влево и за первый же проход по массиву занимает свое крайнее левое место в массиве, после чего он исключается из дальнейшей обработки. Затем процесс повторяется, и свое место занимает второй по величине элемент, который также исключается из дальнейшего рассмотрения. Для полной сортировки надо выполнить (n-1) проходов по массиву.

Сортировка пузырьком — один из самых простых, но медленных алгоритмов, имеющий много модификаций. Например, можно изменить его, добавив флажок, показывающий, были ли на данном проходе неупорядоченные *пары* элементов. Если таких пар не нашлось, закончить сортировку досрочно, а не за (n-1) шаг (проход).

Если последовательность сортируемых чисел расположить вертикально (первый элемент – вверху) и проследить за перемещениями элементов, то можно увидеть, что большие элементы, подобно пузырькам воздуха в воде, «всплывают» на соответствующую позицию. Поэтому упорядочение таким образом и называют еще сортировкой методом «пузырька», или пузырьковой сортировкой.

Добавим в таблицу данных две переменные:

Цел z — номер прохода. За один проход сравниваем пары cocedhux элементов $(A_i, A_{i+1})_{i=(n-1)...z}$, т.е. первая рассматриваемая пара (A_{n-1}, A_n) , последняя — (A_z, A_{z+1}) .

лог
$$y = \begin{cases} \text{истина, если массив упорядочен (неупорядоченных пар нет),} \\ \text{ложь, в противном случае (есть хотя бы одна пара неупорядоченных соседних элементов).} \end{cases}$$

Вначале каждого прохода следует положить y=истина (массив упорядочен), но если встретим хотя бы одну неупорядоченную пару элементов, поменяем значение переменной y на ложь.

Если в конце прохода значение переменной у осталось истинным, значит, массив упорядочен.

Получаем:

Начинам с первого прохода (z:=1)

Повторяем в цикле ДО следующие действия:

Положим, что массив упорядочен (y:=истина)
В цикле с yбывающим параметром i= (n-1); -1; zСравниваем пары соседних элементов:
Если пара не упорядочена (A_i < A_{i+1}), то
Меняем значение y на ложь, и выполняем обмен значениями A_i и A_{i+1} .
Увеличиваем номер прохода (z:=z+1), готовясь к следующему заходу

ДО тех пор, пока после очередного прохода y не останется истиной, либо не будет сделан (n-1) проход.

<u>Замечание</u>. Если у вас в задании *максимум* надо заставить всплывать не в начало, а *в конец* массива, то просмотр элементов надо начинать с начала массива, а скапливаться уже упорядоченные элементы будут в конце. При поиске *минимума* знак сравнения «<» смениться на «>».

Получаем:

Начинам с первого прохода (z:=1)

Повторяем в цикле ДО следующие действия:

Положим, что массив упорядочен (y:=**истина**)
В цикле с *возрастающим* параметром i=1; +1; (n-z)
Сравниваем пары соседних элементов:
Если пара не упорядочена (A_i > A_{i+1}), то
Меняем значение у на **ложь**, и выполняем обмен значениями A_i и A_{i+1} .
Увеличиваем номер прохода (z:=z+1), готовясь к следующему проходу

До тех пор, пока после очередного прохода y не останется истиной, либо не будет сделан (n-1) проход.

Пример

Пусть n=6,

A
4 3 5 9 5 2
1 2 3 4 5 6
цел

Упорядоченный массив:

Просматриваем массив *с конца до начала*, меняя значениями элементы неупорядоченных пар *соседних* элементов. За первый проход максимальный элемент всплывет в самое начало. Но не только он: если бы последние два элемента были не упорядочены, то 5 бы тоже продвинулась на шаг:

5 < 9, меняем местами и продолжаем обход

2-й проход (первый элемент встал на место, и его больше не сравниваем)

На данном шаге были обмены (неупорядоченные пары).

3-й проход (первые два элемента встали на место, и их больше не сравниваем)

На данном шаге были обмены (неупорядоченные пары).

4-й проход (первые три элемента встали на место, и их больше не сравниваем)

z=4	9	5	5	4	3	2
	1	2	3	4	5	<u></u>

На данном шаге обменов (неупорядоченных пар) **не было**. Массив упорядочен.

Выполнение Контрольной работы №1 (1 ак.час)