

GLAST Large Area Telescope Calorimeter Subsystem

6.2 Thermal Design and Analysis

Pierre Prat
L.L.R. Ecole Polytechnique
Calorimeter IN2P3 System Engineer

prat@poly.in2p3.fr
33-1-69-33-39-25

Thermal Design

□ CAL Thermal Design is Passive

- Primary Mode of Heat Transfer from the AFEE Card is Conduction Through the CAL Base Plate to the LAT Grid
- Secondary Mode of Heat Transfer from the AFEE Card is Radiation from the CAL Side Panels to the LAT Grid Walls
- No Dedicated Radiator
- No Survival Heaters

Thermal Design Drivers

□ Design Drivers -

- **A Total of 4 W Maximum is Dissipated from the CAL Electronics (1 W per AFEE Card) - Defined by AFEE Card Thermal Analysis**
- **Majority of TEM Power Dissipated to the X-LAT Plate by Thermal Straps.**
- **Survival Temperature Requirement Driven by Dual Pin Photodiodes**
- **Survival Limit Cannot be Exceeded in Test**

Thermal Analysis - Tasks

- **Detailed Model of CAL Module**
 - **Construction of the Detailed Model Reflecting Actual Design**
 - **The Detailed Model Parameters Will Be Updated According to the Thermal Balance Test Measurements on the Engineering Module (In Particular, Contact Thermal Resistances Will Be Refined)**
- **Detailed Model of AFEE Card - Presented in Section 7.0**
- **Simplified Model of CAL Module**
 - **Correlation of Results With Detailed Model**
 - **Delivered to SLAC**

Thermal Analysis - Methodology

□ Static Analysis

- **Adjustment of the Conductances of the Simplified Model to Correlate the Results with the Detailed Model for the Hot and Cold Environment Cases**

□ Transient Analysis

- **10°C Temperature Step Applied on the Grid: Verification of the Correlation Between the Simplified and the Detailed Model**

Thermal Analysis - Design Limit Loads

CASE	THERMAL LOADS	
	MIN (deg C)	MAX (deg C)
OPERATING TEMPERATURE	-15	+25
SURVIVAL TEMPERATURE	-30	+50
ACCEPTANCE TEMPERATURE	-20	+40
QUALIFICATION TEMPERATURE	-30	+50

Thermal Analysis - Assumptions

□ Thermal Environment Design Parameters

	Tracker	Grid	TEM
Temperature (°C)	18.5	18	34
Emissivity	0.04	0.75	0.04

Hot case

	Tracker	Grid	TEM
Temperature (°C)	-17	-15	-11
Emissivity	0.04	0.9	0.04

Cold case

Conductive coupling	Conductances (W/K)
Grid/base plate conductance (for each side: 4 sides)	2.67
TEM/base plate conductance (for each fixture: 4 fixtures)	0.03

□ Optical Properties

- **6 CAL Aluminum Faces:**
 - Alodine 1200 Emissivity = 0.1

Thermal Analysis - Assumptions

□ Material Properties

	Conductivity W/(m.K)	Specific heat J/(kg.K)	Density g/m ³
Composite (T300 1K PW/M76 ; 40% ; 124AW)	5	1.1	-
Aluminium 2618A	146	0.92	2.76
Aluminium 5754	132	0.945	2.67
CsI (Tl)	1.1	0.201	4.51
Polyimide	0.3	1	1.16
Copper	385	-	-
AFEE PCB (Polyimide + Copper)	8.72	1	1.16
Ti 6Al 4V	7	-	-

□ Contact conductivities

Materials	Contact conductivity W/(cm ² .K)
Aluminium/ Aluminium	0.1650
Aluminium/ Composite (T300 1K PW/M76 ; 40% ; 124AW)	0.0109
Aluminium/ Titanium (Ti 6Al 4V)	0.0151

Thermal Model Description

- No Geometric Model
- Math Model (Not SINDA): Electrical Analogical Model Using the Orcad Pspice Simulation Software:
 - Voltage (Volt) \Leftrightarrow Temperature T ($^{\circ}\text{C}$)
 - Current (Ampere) \Leftrightarrow Power P (W)
 - Electrical Resistance (Ohm) \Leftrightarrow Thermal Resistance ($^{\circ}\text{C}/\text{W}$)
 - Electrical Capacitance (μF) \Leftrightarrow Thermal Capacitance C_{th} ($\text{J}/^{\circ}\text{C}$)
 - Time (μs) \Leftrightarrow Time T (S)
- Simplified Thermal Model Simulation
 - Consists of 15 Nodes
 - Used for the Detailed LAT Thermal Model Simulation
- Detailed Thermal Model Simulation
 - Consists of 3150 Nodes
 - Objectives:
 - » Temperature Static Analysis in the Hot and Cold Cases
 - » Temperature Transient Analysis: Determination of the Built-up Time (CsI(Tl) Logs, Aluminum Plates, AFEE Boards)
 - » Determine the Parameters Which Was Used for the Simplified Thermal Model

Simplified Thermal Model

- **The Simplified Thermal Model Simulation Is Defined in the Document, LAT-TD-01163-03 ("CAL Simplified Simulation Thermal Model Definition")**
- **The CAL Consists of 15 Nodes As Follows:**
 - **5 Nodes on the Aluminum Base-Plate**
 - **1 Node on Each AFEE Board**
 - **1 Node on Each Aluminum Side-Panel/Close-Out Plate Assembly (Considered Each as a Single Plate)**
 - **1 Node on the Center of the Composite Structure**
 - **1 Node on the Top of the Composite Structure**
- **Parameters:**
 - **Thermal Conductances Between Nodes (26)**
 - **Thermal Capacitances at Each Nodes (15)**
 - **Power Sources at Each AFEE Nodes (4)**
 - **Thermal Radiation Parameters (Surface , Emissivity) on Each External Sides Nodes (6)**

Simplified Thermal Model

Detailed Thermal Model

- **The Complete Simulation Thermal Model is Defined in the Document, GLAST-LLR-TN-054 (“Detailed Simulation Thermal Model Definition of a CAL Module”)**
- **The CAL Model Consists of the Following Sub-Modules**
 - **Base Plate: Modeled by a Plate of 5 X 5 Nodes**
 - **4 Close-Out Plates/Side Panels: Modeled as a Plate of 7 X 6 Nodes**
 - **4 AFEE Boards: Modeled as a Plate of 7 X 6 Nodes**
 - **Top Frame: Modeled as a Frame of 16 Nodes**
 - **Composite Structure With CDEs : Modeled by a Network of 2770 nodes**
- **Radiative and Conductive Interfaces are Modeled with:**
 - **LAT Grid (Radiative/Conductive)**
 - **Tracker (Radiative)**
 - **TEM (Radiative/Conductive)**

Detailed Thermal Model

Composite CELL/CDE model diagram

AFEE board model
diagram

Base-plate model diagram

Thermal Analysis Results

- Static Results - Good Correlation
 - Hot Case

Location	N° Node	TEMP Ta (°C)	TEMP Tb (°C)	Ta - Tb (°C)
		Simplified model	Detailed model	
Base Plate - Center	1	18.74	18.64	0.1
Base plate - Face X + Side	2	18.542	18.55	-0.008
Base plate - Face X - Side	3	18.542	18.55	-0.008
Base plate - Face Y + Side	4	18.542	18.53	0.012
Base plate - Face Y - Side	5	18.542	18.53	0.012
Side panel - Center Face X +	6	19.64	19.4	0.24
Side panel - Center Face X -	7	19.64	19.4	0.24
Side panel - Center Face Y +	8	19.64	19.43	0.21
Side panel - Center Face Y -	9	19.64	19.43	0.21
Composite Structure - Top	10	19.188	19.02	0.168
Composite Structure - Center	11	19.171	19.01	0.161
AFEE board - face X +	12	22.515	22.52	-0.005
AFEE board - face X -	13	22.515	22.52	-0.005
AFEE board - face Y +	14	22.515	22.51	0.005
AFEE board - face Y -	15	22.515	22.51	0.005
Grid	grid	18	18	0
TEM	tem	34	34	0
Tracker	tracker	18.5	18.5	0

Thermal Analysis Results

- Static Results - Good Correlation
 - Cold Case

Location	N° Node	TEMP Ta (°C)	TEMP Tb (°C)	Ta - Tb (°C)
		Simplified model	Detailed model	
Base Plate - Center	1	-14.52	-14.57	0.05
Base plate - Face X+ Side	2	-14.588	-14.59	0.002
Base plate - Face X- Side	3	-14.588	-14.59	0.002
Base plate - Face Y + Side	4	-14.588	-14.61	0.022
Base plate - Face Y- Side	5	-14.588	-14.61	0.022
Side panel - Center Face X+	6	-13.483	-13.72	0.237
Side panel - Center Face X-	7	-13.483	-13.72	0.237
Side panel - Center Face Y +	8	-13.483	-13.69	0.207
Side panel - Center Face Y -	9	-13.483	-13.69	0.207
Composite Structure - Top	10	-14.024	-14.15	0.126
Composite Structure - Center	11	-14.041	-14.15	0.109
AFEE board - face X+	12	-10.608	-10.6	-0.008
AFEE board - face X-	13	-10.608	-10.6	-0.008
AFEE board - face Y +	14	-10.608	-10.4	-0.208
AFEE board - face Y -	15	-10.608	-10.4	-0.208
Grid	grid	-15	-15	0
TEM	tem	-11	-11	0
Tracker	tracker	-17	-17	0

Thermal Analysis Results

□ Transient Results - Good Correlation

- A 10°C Temperature Step was Applied on the Grid in Order to Verify the Correlation Between the Simplified and Detailed Models

Thermal Design Status

- **Detailed and Simplified Thermal Models Have Been Developed with Material and Thermal Contact Assumptions**
- **The Temperature Build-Up Time of the CDEs is Very Dependent on the Contact Resistances Between Parts (Aluminum-Composite, Titanium-Aluminum, CDE-Composite):**
 - **24:30 hr - 32:00 hr for the Qualification Thermal Cycle**
 - **A Step of Temperature Applied on the Grid: -30°C to $+50^{\circ}\text{C}$ With a Temperature Slope of $10^{\circ}\text{C} / \text{Hour}$**
 - **Time Determined at $+49^{\circ}\text{C}$**
 - **Min and Max Contact Thermal Resistances are in a Ratio 1:12**

Thermal Design Status - Continued

- The Detailed and Simplified Models Will Be Updated According to the Thermal Balance Test Results Achieved on the EM
 - Model Update Will Only Affect the Parameter Values
 - The Model of the Structure Will Not Change
- The Current Thermal Simulations Show That the Thermal Design Is Sound:
 - The Max Difference of Temperature Between CDEs is 0.7°C, Accounting for Max Values of Contact Thermal Resistances
- Independent Review of Analysis is Complete