

Département d'électronique et des télécommunications

Module: TP Electronique 2

Niveau: 3 ème Année Licence AUTOMATIQUE

Module: TP Electronique 2

TP no 3: Circuits combinatoires, Additionneur binaire

Objectif:

1. Comprendre les caractéristiques d'un additionneur simple (demi-additionneur) et d'un additionneur complet.

Equipements requis:

- 1. KL 22001 Laboratoire de circuit de base Electrique/Electronique.
- 2. KL 26001 Module Expérimentale de circuit de Logique combinatoire.
- **3.** Multimètre.

Manipulations C.1. Demi - Additionneur (additionneur simple) A - Circuit additionneur (additionneur simple)

Fig.2.Circuit demi-additionneur.

- 1. Expliquer en détail le principe de fonctionnement d'un demi-additionneur.
- 2. Régler le module KL 26002 sur le module KL 22001 et localiser le bloc (a) sur le module KL 26005.
- 3. Compléter les connexions en se référant au schéma de câblage de la figure ci-dessus.
- 4. Connecter les entrées A et B aux commutateurs de données SW0 et SW1.
- 5. Connecter les sorties F1et F2 aux l'indicateurs logiques L1et L2.
- 6. Faites varier SW0(A) et SW1(B) et notez l'état de L1(F1) et L2(F2). Ensuite, Remplir le tableau ci-après.

Entrées		Sorties	
SW1(B)	SW0(A)	Report L1(F1)	Somme L2(F2)
0	0		
0	1		
1	0		
1	1		

C.2. Additionneur Complet

Fig.3. Circuit additionneur complet.

- 1. Expliquer en détail le principe de fonctionnement d'un additionner complet.
- 2. Réaliser un additionner complet uniquement avec les portes NOR.

Département d'électronique et des télécommunications **Module** : TP Electronique 2

Niveau: 3 ème Année Licence AUTOMATIQUE

- 3. Connecter les entrées A, B et C aux commutateurs de données SW1, SW2 et SW3.
- 4. Connecter les sorties F3et F5 aux l'indicateurs logiques L1et L2.
- 5. Suivre les séquences d'entrées dans le tableau ci-dessous et enregistrer les sorties.

Entrées			Sorties								
SW3(C)	SW2(B)	SW1(A)	Report L1(F3)	Somme L2(F5)							
0	0	0									
0	0	1									
0	1	0									
0	1	1									
1	0	0									
1	0	1									
1	1	0									
1	1	1									

C.3. Additionneur Complet sur 4 bits

- 1. Expliquer en détail le principe de fonctionnement d'un additionneur à 4 bits (table de vérité, expression booléenne, tableau de Karnaugh et le circuit logique en détail).
- 2. Réaliser le circuit d'un additionneur complet sur 4 bits uniquement avec les portes logiques NAND.
- 3. Régler le module KL 26002 sur le module KL 22001 et localiser le bloc (b) sur le module KL 26005.
- Connecter les entrées X0 à X3 aux commutateurs de données SW0 à SW3 et les entrées Y0 à Y3 aux commutateurs de données SW4 à SW7.
- 5. connecter l'entrée Y5 à la masse.
- 6. Connecter F1 aux l'indicateur logique L1.
- 7. Connecter $\sum 0$ à $\sum 3$ (F8 à F11) aux l'indicateurs logiques L2 à L5.
- 8. Appliquer +5 volts (DC) de l'alimentation fixe du module KL 22001 au bloc (b) du module KL 26002.
- 9. Suivre les séquences d'entrées dans le tableau ci-dessous et enregistrer les sorties F1 en binaire les sommes (F8 à F11) en hexadécimal.

Y (entrée 1)	0	0	0	0	0	1	1	1	3	4	4	8	9	A	C	F
X (entrée 2)	0	1	6	9	F	3	6	8	6	8	F	7	9	В	E	F
\sum (somme)																
F1 (report)																

Aide: la conversion (binaire – décimale – hexadécimale).

Décimale	numéro	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadécimale	numéro	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
Binaire sur 4	L2	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
bits (L2 à L5)	L3	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	L4	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	L5	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

- 10. Réaliser le circuit d'un additionneur à 8 bits.
- 11. Expliquer le principe fonctionnement d'un additionneur codé BCD (Binaire Codé Décimal).