Numerical Analysis - HW3

1. (a) Obtain a Gaussian quadrature rule for approximating $\int_{\Omega} f(x,y) dx dy$ where Ω is the square $[-1,1] \times [-1,1]$ using the 3-point Gaussian quadrature formula in each dimension. Verify what the highest degree of polynomial is that your rule integrates exactly. Use your rule to integrate

$$\int_0^{1/2} \int_{1/4}^{1/2} e^{xy} dx dy$$

- (b) Approximate the above integral using Monte Carlo method.
- 2. Write a code for the Romberg integration to approximate the following integral without using built in integrations.

$$\int_0^5 \frac{dx}{1 + (x - \pi)^2} dx = \tan^{-1}(5 - \pi) + \tan^{-1}(\pi)$$

Evaluate the approximation R(n, m) to fill in the table. Check the convergence rate and compare with the theory.

(n,m)		2				7	
	approx.	error	rate		approx.	error	rate
2							
:	:	:	:	:	:	:	÷
7							

3. Use Midpoint rule and Trapezoid rule as a pair to implement adaptive quadrature rule to approximate

$$\int_0^{\pi} e^x \cos(4x) \ dx$$

with the tolerance of $\epsilon = 10^{-6}$.

- Find the approximation of integral and the error.
- Display the partial sum of results over all subintervals completed as follows:

