MA 573 - Linear Algebra

Homework 7

Problem 1 [20 pts]

Orthogonally diagonalize the matrix A, i.e. $A = PDP^{T}$, where P is orthogonal.

$$A = \left[\begin{array}{rrr} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{array} \right]$$

Problem 2 [20 pts]

Consider the matrix $A=\left[\begin{array}{cc} 2 & \mathbf{b} \\ 1 & 0 \end{array}\right]$. Find a value of b that makes:

- $\bullet \ A = QDQ^T$ possible, i.e. orthogonal diagonalization possible.
- $A = SDS^{-1}$ impossible.
- A^{-1} impossible.

Problem 3 [20 pts] In the Cholesky factorization $A=C^TC$, with $C^T=L\sqrt{D}$. Find C upper triangular for

$$A = \left[\begin{array}{ccc} 9 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 8 \end{array} \right]$$

Problem 4 [20 pts]

If $A=\begin{bmatrix}1&0\\0&3\end{bmatrix}$ and $B=\begin{bmatrix}3&0\\0&1\end{bmatrix}$. Show that A,B are similar and find M such that $A=MBM^{-1}$.

Problem 5 [20 pts]

Find the Singular Value Decomposition (SVD) of the following rectangular matrix

$$A = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right].$$