

Diseño de un micro SFVI PnP de fácil instalación para su adopción masiva residencial en la ZMVM – Design Brief –

Luis López Martinelli Posgrado en Diseño Industrial, UNAM

¿Por qué estamos haciendo este proyecto?

Las emisiones de gases efecto invernadero deben cortarse a la mitad en esta década para evitar una crisis climática fuera de control.

- El 75% de la electricidad producida en el país proviene de fuentes fósiles.
- La matriz energética mexicana requiere duplicar la participación actual de las fuentes renovables para cumplir con el acuerdo de Paris al 2030.

A pesar de los avances en la tecnología fotovoltaica, persiste una muy baja adopción de los SFVI

- La energía fotovoltaica cuesta ahora 5 veces menos que hace 10 años.
- En la Zona Metropolitana del Valle de México (ZMVM), de más de 6 millones de usuarios de luz eléctrica, solo 11 mil tienen un Sistema Fotovoltaico Interconectado (SFVI).
 - Suelen concentrarse en tarifas eléctricas sin subsidio como la DAC

Los pequeños usuarios de luz eléctrica son un segmento actualmente desatendido

- Los pequeños usuarios han sido excluidos del grueso de la oferta comercial al ser costo-prohibitiva su atención a tan baja escala.
 - Mismo esfuerzo comercial por menos ganancia
- Tarifa subsidiada impide rentabilidad del SFVI
- El hilo conductor de la reducción de costos en este segmento es la gestión comercial, financiera y la instalación.

Un micro SFVI puede reemplazar el consumo excedente sin subsidio, haciendo viable y atractivo este segmento

Hay 1 millón de usuarios con consumo excedente suficiente (CES)

Solo 1 de cada 50 usuarios, en tarifa DAC, tiene opciones viables para adoptar un SFVI 1 de cada 6 viviendas consume más de \$500 al bimestre y acumula más de 60 kWh en tarifa excedente

Los usuarios con consumo excedente suficiente (CES) en la ZMVM

80% vive en casa propia

2 niveles o menos

65% tiene más de 20 años de construcción

Las viviendas cuentan con:

55%

76%

95%

98%

85%

97%

La secundaria es el nivel máximo de estudios de los jefes y jefas de familia en el 25% al 50% de las viviendas CES

- Entre el 26% (decil de gasto) y el ~50% (NSE) de los usuarios potenciales tienen un nivel máximo de estudio limitado
 - Dedican un porcentaje mayor de sus ingresos al pago de la luz; generando mayor inconformidad
 - Requerirían opciones de financiamiento para la adopción de SFVI

Porcentaje de viviendas de estrato medio bajo por nivel máximo de estudios de jef@ de familia

El 51% de los usuarios CES son mayores a 54 años de edad

- Es probable que conforme a mayor edad, mayor la reticencia al cambio y a las nuevas tecnologías
- La confianza y facilidad en el proceso de compra y uso es clave
 - Posible aprovechar redes de confianza existentes y puntos de contacto habituales
- Una cuarta parte de los usuarios CES son millenials o generación Z
 - Alta adopción y uso de nuevas tecnologías

Distribución de edad del jef@ de familia del usuario CES

La investigación de tecnología abierta propone diseñar un servicio y un SFVI PnP para atender este segmento

Especificaciones objetivo del SFVI PnP: 1/2

Costo de fabricación \$10,000

- 25% margen operativo integrador
- Precio objetivo al público \$15,000 con IVA

Producción de 80 a 100 kwh por mes

- Se puede lograr con dos paneles FV de ~400w
- Un micro-inversor de 700w

- 15 45 min para izado a azotea de dos niveles e instalación
 - Instalación sin uso de herramientas

Especificaciones objetivo del SFVI PnP: 2/2

25 – 50 años de vida útil en sus componentes

Resistencia a vientos de 110 a 180 kmh

Conexiones a prueba de error

20 – 25 kg de peso máximo a izar por persona

Otras características deseables

- Mecanismo para fácil deslizamiento sobre el suelo en una de las caras del SFVI
- Apoyo para visualizar la trayectoria solar en los equinoccios
- Mecanismo de desconexión remota o pago por uso
- Compatibilidad para aseguramiento físico antirrobo del SFVI
- Extensión de interconexión con clavija AC versátil para rango de longitud
- Alternativas de anclaje mecánico
- Insertable en el espacio muerto del embalaje de los paneles solares en pallet

Desglose de costos

Concepto	Unidades	Valor marginal
Costo máximo USD/w del MFV	USD/w	0.27
Costo máximo de los MFV	USD	208
Costo máximo microinversor de 700wp y sus conectores de línea	USD	180
Costo máximo del BOS	USD	25
Costo máximo de estructura	USD	62

El objetivo final es lograr la adopción masiva de SFVI

Tecnología abierta basada en la gestión estratégica de un diseño:

- →Tecnológicamente viable
 - →Industrialmente replicable
 - → Económicamente redituable
 - → Comercialmente deseable
 - → Escalable
 - →Adoptado por miles de personas

Preguntas de diseño a abordar en el taller participativo con expertos

- 1. ¿Cómo podríamos lograr una instalación rápida, fácil y segura que no requiera el uso de herramientas?
 - ¿Cómo podríamos lograr que el SFVI resista a las ráfagas del viento?
 - ¿Cómo podríamos lograr que la conexión del sistema sea a prueba de error?

- 2. ¿Cómo podríamos lograr que el mover, cargar y alzar el sistema sea práctico y seguro?
 - ¿Cómo podríamos lograr que el sistema sea fácil de subir a la azotea?

Muchas gracias