	Utech
Name:	
Roll No.:	To Descript Sample for Sand Sandard
Invigilator's Signature :	

ENVIRONMENTAL ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) The average daily water consumption of a city is 30000 cu.m. The maximum daily demand in such a case will be
 - a) 48000 cu.m
- b) 36000 cu.m
- c) 30000 cu.m
- d) none of these.
- ii) The ratio of maximum daily demand to average daily demand is
 - a) 1.8

b) 1.6

c) 1.48

d) 2.7.

5212 (O) Turn over

CS/B

3.Te	ch(CI	E-Old)/SEM-5/CE-503/	2012	2-13	_ @) © ©	
iii)	Water supply projects under normal circumstances are						
	desi	designed for a design period of					
	a)	25 years	b)	35 ye	ears		
	c)	30 years	d)	20 ye	ears.		
iv)	Whi	Which of the following is not a sub-surface source?					
	a)	Storage reservoirs					
	b)	Springs					
	c)	Infiltration galleries					
	d)	Tube wells.					
v)	Disc	Discharge per unit draw dwon in case of an aquifer is					
	known as						
	a)	specific yield					
	b)	specific capacity					
	c)	field capacity					
	d)	none of these.					

a) 2.5%

vi)

b) 2%

c) 3.2%

- d) 1.5%.
- vii) If present in water, chlorination of water does not reduce the
 - a) ammonia content
 - b) organic matter content
 - c) B.O.D.
 - d) dissolved oxygen content.
- viii) The efficiency of sedimentation tank does not depend upon
 - a) detention time
 - b) depth of the tank
 - c) length of the tank
 - d) horizontal velocity of water.

- c) any colour d) any test.
- x) Temporary hardness in water is caused by
 - a) bi-carbonates of Ca $^{++}$ and Mg $^{++}$
 - b) sulphates of Ca $^{++}$ and Mg $^{++}$
 - c) chlorides of Ca $^{++}$ and Mg $^{++}$
 - d) nitrates of Ca $^{++}$ and Mg $^{++}$.
- xi) If total hardness of water is greater than its total alkalinity the carbonate hardness will be equal to
 - a) total alkalinity
 - b) total hardness
 - c) total alkanity total hardness
 - d) non-carbonate hardness.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- 2. What is per capital demand? Explain the factors on which per capital demand depends.
- 3. What do you mean by a confined and an unconfined aquifer?
- 4. Explain the Arithmetic Increase Method, Geometric Increase Method and Incremental Increase Method.
- 5. Explain briefly:
 - i) break point chlorination
 - ii) super chlorination
 - iii) post and prechlorination.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 6. a) Derive the Dupuit's expression for yield of an confined aquifer, clearly stating the assumptions and the terms used in deriving the formula.
 - b) A 50 cm diameter well is being pumped at a rate of 1460 l/min. Measurements in a nearly test well were made at the same time as follows. At a distance of 8 m from the well being pumped, the drawdown was 6 m and at 15 m, the drawdown was 1.5 m. The bottom of the well is 90 m below the ground water table.
 - i) Find the coefficient of permeability

- ii) If all observed points were on the Dupuit curve, what was the drawdown in the well during pumping?
- iii) What is the specific capacity of the well?
- iv) What is the maximum rate at which water can be drawn from this well?
- 7. a) In two periods of each of 20 years, a city has grown from 50,000 to 4,70,000 and then to 8,00,000.

Determine:

- i) the saturation population
- ii) the equation of the logistic curve
- iii) the expected population after the next 20 years. 5
- b) With the help of the following data; estimate the population of the city the years 2020, 2030 and 2040 using (i) Geometric Increase Method (ii) Incremental Increase Method: Comment on the two methods on the basis of the values obtained:

Year	Population				
1930	25000				
1940	27500				
1950	34100				
1960	41500				
1970	47050				
1980	54500				
1990	61000				

- 8. a) The design annual rainfall for the catchment of a proposed reservoir has been computed to be 99 cm. The catchment area has been estimated to have the mean annual temperature of 20°C. The catchment area contributing to the proposed reservoir is 1000 sq.km. Calculate the annual design yield for this reservoir (Use Khosla's formula)
 - b) Explain the comparative graphical method in connection to population forecasting.7
- 9. Write short notes on the following :

 3×5

- a) Total solids
- b) Water softening
- c) Logistic curve method.