Mathematics 3F03 Advanced Differential Equations

Instructor: David Earn

Lecture 9
Solution of X' = AX with Distinct Eigenvalues
23 September 2013

Announcements

- Solutions to Assignment 1 are now posted on the course wiki.
- Make sure to read over the solutions carefully.

$\mathsf{Theorem}$

Suppose a 2×2 real matrix A has distinct (real) eigenvalues, λ_1 and λ_2 , and associated eigenvectors, V_1 and V_2 . Consider the initial value problem

$$X' = AX, \qquad X(0) = X_0.$$
 (**)

Then there exist $lpha_1^0,lpha_2^0\in\mathbb{R}$ such that $X_0=lpha_1^0V_1+lpha_2^0V_2$ and

$$X(t) = \alpha_1^0 e^{\lambda_1 t} V_1 + \alpha_2^0 e^{\lambda_2 t} V_2$$

is the unique solution to (**).

Proof.

On the blackboard...

Proof Step 1: Eigenvectors V_1 and V_2 are linearly independent.

Suppose

$$\beta_1 V_1 + \beta_2 V_2 = 0. \tag{\heartsuit}$$

Apply A to both sides of (\heartsuit) to obtain:

$$0 = A0 = \beta_1 A V_1 + \beta_2 A V_2 = \beta_1 \lambda_1 V_1 + \beta_2 \lambda_2 V_2.$$
 (\$\infty\$)

Multiply (\heartsuit) by the scalar λ_1 to find:

$$0 = \lambda_1 0 = \beta_1 \lambda_1 V_1 + \beta_2 \lambda_1 V_2. \tag{\$}$$

Subtract (\clubsuit) from (\spadesuit) to get $\beta_2(\lambda_2 - \lambda_1)V_2 = 0$. But V_2 is an eigenvector, so $V_2 \neq (0,0)$, and $\lambda_1 \neq \lambda_2 \implies (\lambda_2 - \lambda_1) \neq 0$. Therefore $\beta_2 = 0$. Similarly, multiply (\heartsuit) by λ_2 to yield $\beta_1 = 0$. Therefore, V_1 and V_2 are linearly independent.

Proof Step 2:
$$\exists \alpha_1^0, \alpha_2^0 \in \mathbb{R}$$
 such that $X_0 = \alpha_1^0 V_1 + \alpha_2^0 V_2$.

 V_1 and V_2 linearly independent

$$\implies \{V_1, V_2\}$$
 is a basis of \mathbb{R}^2

$$\implies \exists \alpha_1^0, \alpha_2^0 \in \mathbb{R} \text{ such that } X_0 = \alpha_1^0 V_1 + \alpha_2^0 V_2.$$

Proof Step 3: Existence of solution.

Simply verify that

$$X(t) = \alpha_1^0 e^{\lambda_1 t} V_1 + \alpha_2^0 e^{\lambda_2 t} V_2$$

is a solution of the initial value problem (**).

- From lemma, we know that $e^{\lambda_1 t} V_1$ and $e^{\lambda_2 t} V_2$ are solutions of X' = AX
- X' = AX is a linear differential equation, so linear combinations of solutions are also solutions.
 ∴ X(t) = α₁⁰e^{λ₁t}V₁ + α₂⁰e^{λ₂t}V₂ is a solution of X' = AX.
- Moreover, $X(0) = X_0 \implies X(t)$ solves the IVP (**).

Proof Step 4: Uniqueness of solution.

Suppose Y(t) is another solution of the IVP (**). Since $\{V_1, V_2\}$ is a basis of \mathbb{R}^2 , for each time $t \in \mathbb{R}$, $\exists \alpha_1(t), \alpha_2(t) \in \mathbb{R}$ such that

$$Y(t) = \alpha_1(t)V_1 + \alpha_2(t)V_2.$$

N.B. The functions $\alpha_i(t)$ are differentiable because they are components (wrt the basis $\{V_1, V_2\}$) of the differentiable vector function Y(t). (A linear change of coordinates never changes the smoothness of a function.)

$$\therefore Y'(t) = \alpha_1'(t)V_1 + \alpha_2'(t)V_2.$$

But Y(t) is a solution of (**), i.e., Y'(t) = AY(t), hence...

Proof Step 4 (CONTINUED): Uniqueness of solution.

$$\alpha'_{1}(t)V_{1} + \alpha'_{2}(t)V_{2} = Y'(t) = AY(t) = A(\alpha_{1}(t)V_{1} + \alpha_{2}(t)V_{2})$$
$$= \alpha_{1}(t)AV_{1} + \alpha_{2}(t)AV_{2} = \alpha_{1}(t)\lambda_{1}V_{1} + \alpha_{2}(t)\lambda_{2}V_{2}$$

But $\{V_1, V_2\}$ linearly independent, hence $\alpha_1'(t) = \lambda_1 \alpha_1(t) \ \forall t$ and $\alpha_2'(t) = \lambda_2 \alpha_2(t) \ \forall t$. Also,

$$Y(0) = \alpha_1(0)V_1 + \alpha_2(0)V_2 = \alpha_1(0)^0 V_1 + \alpha_2^0 V_2 = X_0,$$

so we have $\alpha_i'(t) = \lambda_i \alpha_i(t)$, $\alpha_i(0) = \alpha_i^0$, i = 1, 2.

$$\therefore \alpha_i(t) = \alpha_i^0 e^{\lambda_i t}, i = 1, 2, i.e., Y(t) = X(t) \forall t.$$

- Theorem generalizes immediately to \mathbb{R}^n . (Proof is identical.)
- We assumed that *A* has *n* distinct real eigenvalues. Is this necessary?
 - No. The proof depends on existence of a basis of eigenvectors. If some of the eigenvectors are associated with the same eigenvalue, it doesn't matter.

Example

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} , \qquad \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 0 \end{pmatrix}$$

Solution:

- Characteristic equation: $p(\lambda) = (\lambda 3)(\lambda + 1) = 0$.
- Eigenvalues: $\lambda_1 = 3$, $\lambda_2 = -1$.
- Eigenvectors: $V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $V_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.
- Express initial condition in terms of eigenvectors:

$$X_0 = \frac{1}{4}V_1 - \frac{1}{4}V_2.$$

Infer solution to IVP:

$$X(t) = \frac{1}{4}e^{3t}V_1 - \frac{1}{4}e^{-t}V_2$$
, i.e., $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \frac{1}{4}\begin{pmatrix} e^{3t} + e^{-t} \\ e^{3t} - e^{-t} \end{pmatrix}$.

Example

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Phase portrait:

Drawing Phase Portraits for linear systems, X' = AX

Rather than drawing many exact solutions based on quantitative solution formula:

- Draw all equilibria, indicating their stability.
- Draw eigendirections, indicating direction of motion.
- Draw direction field.
- Fill in phase portrait based on solutions always being parallel to direction field (and never crossing).
- Approach also works for nonlinear systems, except eigendirections do not necessarily correspond to solutions.