Polygon Decomposition using Hertel Mehlhorn Algorithm

Hima Bindhu Busireddy – 110747994

Problem Statement:

To decompose a given polygon P into a small number of simple typically convex pieces.

Aim:

The purpose of this project is to implement Hertel-Mehlhorn heuristic for convex decomposition.

Algorithm:

Hertel-Mehlhorn heuristic is simple, efficient and always produces not more than four times the optimal number of convex pieces. It starts with a random triangulation of the polygon and then removes the diagonals that leaves only convex pieces. A vertex in a polygon is reflex if the angle made by it internally is greater than 180 degrees. All the diagonals that does not create a reflex vertex are said to be non-essential hence can be removed.

Data Structure:

Doubly Connected Edge List data structure is implemented to store the diagonals as half edges during triangulation and when Hertel-Mehlhorn heuristic is applied on this set of diagonals we obtain set of essential diagonals. This diagonals always results in convex pieces for the given polygon decomposition.

Platform:

Windows System, Java

User Interface:

Java Applet

Implementation Details:

Used java code provide by Joseph O'Rourke for Computational Geometry. Introduced a new option called polygon decomposition in the available operations and used existing ear clipping triangulation. Implemented DCEL and written a method for linear time hertel mehlhorn algorithm. Ear diagonals are stored in DCEL while performing triangulation then hertel mehlhorn algorithm is applied on the DCEL to remove non-essential diagonals. Essential diagonals are then printed on the polygon showing polygon decomposition.

Classes Introduced:

cDCEL.java cDCELHalfEdge.java cDCELVertex.java

Usage:

Open command prompt pointing to the source code file directory

Run the applet using command: appletviewer CompGeom.html

Polygon Decomposition using Hertel Mehlhorn Algorithm

Hima Bindhu Busireddy - 110747994

This shows up the applet as shown in the screenshot below:

Clicking 'Push to start the CompGeom' shows up the screen shown below

Draw the polygon using mouse actions and click finish polygon button as shown in the below screen

Polygon Decomposition using Hertel Mehlhorn Algorithm

Hima Bindhu Busireddy – 110747994

Click operations and choose operation 'Polygon Decomposition' last one in the list and the resultant screen is shown below

Test Cases:

Since polygon decomposition varies with different triangulations and various deletion order tested for a generic family of polygons and the result is near to optimal. One such example is shown in the below screen shot

Optimal convex pieces are 3 whereas this implementation resulted in 5 pieces.

Polygon Decomposition using Hertel Mehlhorn Algorithm

Hima Bindhu Busireddy – 110747994

References:

- http://cs.smith.edu/~orourke/books/ftp.html
- http://dyn4j.googlecode.com/svn/!svn/bc/159/trunk/src/org/dyn4j/geometry/decompose/DoublyConnectedEdgeList.java