Divergence Te	est
Similar to What	- we did with integrals,
if liman #0,	then San is divergent.
However note th	at lim an=0 does not
guarantee con	vergence,
Example Sh =	= 1+2+3+4+5+6+5+8+

Series Let $S_n = \Omega_i = \alpha_i + \alpha_j + \dots + \alpha_n$ which is the nth partial sum. It $\lim_{n \to \infty} s_n = s$ exists, then we say that the series $\sup_{i=1}^{\infty} a_i is$ convergent and it's sum is s_i . If the limit does not exist or is not finite the the series & an diverges. Let a be a non-zero real number, and r be a real number, then Sar nol converges if IrICL and converges n=1 to a/cl-r).

Example: The series & 4 converges

to what?