Data Integrated Stochastic Block Models for Gene Networks

Carter Allen

Mentor: Dr. Dongjun Chung

Introduction

- Characterization of **gene networks** is a fundamental objective in genomic studies.
 - 1. **Community detection** allows us to identify gene subnetworks.
 - 2. Detection of **hub genes** is important for targeted therapies.
- For complex diseases, weak and widespread signal presents challenges to these research goals.
- We propose to address this issue through data integration.

Biological Networks

Disease Gene Network (DGN)

Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., and Barabási, A.-L. (**2007**). The human disease network. *Proc. Natl Acad. Sci. U.S.A.* 104, 8685–8690. doi: 10.1073/pnas.0701361104

Motivation

- Systemic sclerosis (SSc) is an autoimmune disease involving multiple body systems.
- The genetic origins of SSc are weak and widespread
- Our work is motivated by data from the **only cohort of twins** with **SSc** to date (Feghali-Bostwick *et al.* 2003).
- Multiple experiments on the SSc twin cohort have generated several sources of data.

Ratsumoto TR, et al. 2011.
Annu. Rev. Pathol. Mech. Dis. 6:509–37

Background

- The **stochastic block model** (SBM) is a generative model for network data.
 - Naturally allows for inference about community structure of a graph.
 - Certain SBM variants allow for detection of hub nodes (genes).
- Bayesian SBMs allow for incorporation of prior information.

Network Data

Suppose the observed data takes the form of an $n \times n$ adjacency matrix **A**, where n is the number of nodes (genes).

For **simple graphs**, $A_{ij} = 1$ if an edge exists between nodes i and j and $A_{ij} = 0$ otherwise.

For symmetric graphs, $A_{ij} = A_{ji}$. Thus edges are undirected.

Network Data

Community detection involves assigning nodes (genes) to labels (colors).

Connectivity (placement of edges) is expected to be dense within communities and sparse between communities.

We would like a statistical model to infer the community labels of a given graph.

Bayesian SBM

The SBM assumes the probability of an edge between nodes i and j depends only on σ_i and σ_j . A simple model for A_{ij} is

$$A_{ij} | \boldsymbol{\sigma}, \boldsymbol{\theta} \sim \text{Bern}(\theta_{\sigma_i, \sigma_j}) \text{ for } i, j = 1, ..., n; i < j$$

$$\sigma_i \sim \text{Multinom}(1, \boldsymbol{\pi}) \text{ for } i = 1, ..., n,$$

where θ is a ragged array encoding the edge probability.

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_{\sigma_1,\sigma_1} & & & & & \\ \theta_{\sigma_2,\sigma_1} & \theta_{\sigma_2,\sigma_2} & & & \\ \vdots & \vdots & \ddots & & \\ \theta_{\sigma_n,\sigma_1} & \theta_{\sigma_n,\sigma_2} & \cdots & \theta_{\sigma_n,\sigma_n} \end{bmatrix}$$

A GLM Approach

The Bayesian SBM can be framed in terms of a **generalized linear model (GLM)**.

For **simple graphs** we adopt a logistic regression for A_{ij} .

$$A_{ij} | \boldsymbol{\sigma}, \boldsymbol{\gamma}, \boldsymbol{\eta} \sim \text{Bern}(\theta_{\sigma_i, \sigma_j}) \text{ for } i, j = 1, ..., n; i < j$$

$$logit(\theta_{\sigma_i,\sigma_j}) = \gamma_{\sigma_i,\sigma_j} + \eta_i + \eta_j$$

Here η_i and η_j are node-specific intercepts that measure the **expected degree** of nodes i and j, and

 $\gamma_{\sigma_1,\sigma_2}$ captures between and within **community association**.

Other Considerations

The Bayesian SBM as stated has a few important drawbacks:

- 1. The number of clusters *K* must be determined *a priori*.
 - In practice, we can fit models over a range of *K* and assess fit of each to choose *K*.
- 2. In MCMC estimation, the community labeling vector σ suffers by label switching.
 - This is addressed through a **canonical remapping** of posterior samples.

Weak and Widespread Signal

We have found through simulation studies that the Bayesian SBM suffers from poor performance when signal is **weak** and widespread.

Weak and widespread signal manifests in networks as

- 1. Sparse networks with strong community structure
- 2. Dense networks with weak community structure

These cases can be addressed through data integration.

Data Integration

Several experiments have been run on the SSc twin cohort, thus we have multiple data sources available such as

- RNA sequencing
- DNA methylation

In addition, we have recently developed GAIL, a novel research mining database containing associations between over 300 million pairs of genes.

Integrating these data sources into one network will allow us to study a complex disease like SSc more effectively.

Edge Union Integration

Preliminary simulation studies have shown promising performance of data integration for the Bayesian SBM.

One simple approach to integrating multiple networks is **edge union**.

- 1. Let G_1 and G_2 be two observed networks on the same set of nodes (genes).
- 2. Define \mathscr{E}_1 and \mathscr{E}_2 as the sets of edges in \mathbf{G}_1 and \mathbf{G}_2 , respectively.
- 3. Form **G**, the data-integrated network, by setting $\mathscr{E} = \mathscr{E}_1 \cup \mathscr{E}_2$, where \mathscr{E} is the set of edges in **G**.

Simulation Studies

In each simulation, we generate two random graphs G_1 and G_2 from an SBM with n = 100 nodes and K = 3 communities.

Simulation 1: The network is sparse but community structure is (relatively) strong.

Simulation 2: The network is dense but community structure is (relatively) weak.

In each case, we use edge union to integrate G_1 and G_2 into G, the data integrated network data.

We compare SBMs fit to G_1 , G_2 , and G.

Simulation 1

Sim. 1 Sparse networks with strong signal. Posterior estimates of each community label is given (color) along with true community (number)

Simulation 2

Sim. 2 Dense networks with weak signal. Posterior estimates of each community label is given (color) along with true community (number)

Future Work

- Continue to develop data integration methods for data that is not in network form
 - How to transform rectangular data to network data?
- Relax assumptions made by SBM (i.e., simple, undirected graphs.
- Apply to the twin SSc data to implement community detection and detect hub genes. □

Thank You!

Email: allen.2554@osu.edu