SCRIBE

4

Instructors: Purushottam Kar Authors: Gurpreet Singh Date: January 17, 2018

PAC Learning and Agnostic Setting

1. PAC Learning

In the previous scribe, we have shown that for a finite hypothesis space, the ERM model for a sample with a sufficiently large size, independent of the distribution will be *probably approximately correct*. We can now formally define Probably Approximately Correct (PAC) model.

Definition 4.1 (PAC Learnability, [?]). A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}$: $(0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every prediction function $f: \mathcal{X} \to \{0,1\}$, if the realizable assumption holds with respect to \mathcal{H} , \mathcal{D} , f, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis \hat{f}_S for a training sample S and loss function I such that, with probability of at least $1 - \delta$ (over the choice of the examples), $L_{\mathcal{D},f}(\hat{f}) \leq \epsilon$.

In the above definition, ϵ is defined as the accuracy parameter, which allows a margin for error in prediction. This is attributed to the fact that S is a finite sample, and there is a chance that it does not very faithfully represent the real distribution. δ is known as the confidence parameter.

 $m_{\mathcal{H}}$ is the sampling complexity of the hypothesis class \mathcal{H} i.e. the number of minimum samples required to guarantee a probably approximately correct algorithm. From the previous scribe, we know that if

$$m \ge \frac{\log(|\mathcal{H}|/\delta)}{\epsilon} \tag{1}$$

then we can have a PAC solution for the \mathcal{H} . Therefore, the minimum sampling complexity must be less than this value. Hence, we can write

$$m_{\mathcal{H}} \le \left\lceil \frac{\log\left(\left|\mathcal{H}\right|/\delta\right)}{\epsilon} \right\rceil$$
 (2)

2. Agnostic Setting — Releasing the Realizability assumption

For now, we have assumed that the distribution \mathcal{D} is realizable *i.e.* $\exists f \in \mathcal{F}$ such that $\operatorname{er}_D^l[f] = 0$ for some loss function. However this is not a realistic setting, considering there can be noise in the observed data points \mathcal{X}, \mathcal{Y} . It might be unwise to assume that the labels are completely determined by the features.

For example, consider a binary classification problem, where for two feature vectors \mathbf{x}^1 and \mathbf{x}^2 have the same values of the features however $y^1 \neq y^2$. In this case, it is never possible to find a prediction function that gives zero error on the distribution.

Therefore, we must relax the realizability assumption. In this case, we redefine the distribution \mathcal{D} to be a joint probability distribution over the feature space and the output space.

Our goal is the same. We wish to find a prediction function f^* that minimizes the l-risk. It should be clear that since we generally do not know the distribution \mathcal{D} , we cannot find the optimal prediction function f^* , however we can only find a predictor that is probably approximately close to f^* . Hence, we define PAC learning, however, now for agnostic setting.

Definition 4.2 (Agnostic PAC Learnability, [?]). A hypothesis class \mathcal{H} is agnostic PAC learnable if there exist a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$ and for every distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, when running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} , the algorithm returns a hypothesis f_S for a training sample S and a loss function l such that, with probability of at least $1 - \delta$, (over the choice of the m training examples),

$$\operatorname{er}_{S}^{l}[f_{S}] \leq \min_{f' \in \mathcal{H}} \operatorname{er}_{D}^{l}[f'] + \epsilon$$

Note. The definition of Agnostic PAC Learnability boils down to the PAC Learning under Realizable Assumption if the Assumption indeed holds true, as $\min_{f \in \mathcal{H}} \operatorname{er}_D^l[f] = 0$

Remark. We assume the loss function to be measurable for all functions and at all points $i.e. \ \forall (x,y) \in \mathcal{X} \times \mathcal{Y}$, $\forall f \in \mathcal{H}, \ l(f(x),y)$ is measurable. Note that if the loss function is not measurable, then it cannot be a random variable.

References

[1] Shai Shalev-Shwartz, Shai Ben-David *Understanding Machine Learning from Theory to Algorithms*. http://www.cs.huji.ac.il/ shais/UnderstandingMachineLearning