Análise dinâmica estrutural de um projeto preliminar de asa para aeronave leve

Danielle Lima Bezerra – 16/0151589 Larissa Costa Ribeiro – 18/0034391 Rafael Sousa Marcelino – 18/0026810 Rodrigo Evangelista Aguiar de Souza – 18/0130366

Contextualização

Figura 1 – Vista isométrica do perfil

Tabela 1 – Dimensões estruturais atribuídas ao grupo

Grupo	L	$\mathbf{b_R}$	h_{R}	$\mathbf{b_{T}}$	$\mathbf{h_{T}}$
3	3500	900	100	700	100

Figura 2 – Vista explodida do perfil simplificado

0

Considerações iniciais composição estrutural

•Estrutura inteiramente projetada em AL2024-T3

Figura 3 – Distribuição de materiais em aeronaves Boeing

CENTRO AERODINÂMICO

•Centroide da longarina central coincidindo com o CA do perfil da asa

LONGARINA CENTRAL

 Principal elemento suportador de carregamentos externos

DEFINIÇÃO DE ESPESSURAS E GEOMETRIAS

- •Espessura das nervuras
- •Espessura e geometria das longarinas

ANÁLISE DA LONGARINA CENTRAL POR MEF

- •Elementos sólidos e elementos de viga
- •Obtenção das 20 primeiras frequências e modos
- •Análise de convergência dos modelos
- •Análises com modelo de massas concentradas

Cronologia das análises

MODELAGEM E ANÁLISE DA ASA UTILIZANDO MEF

- •6 Configurações de geometria
- •Análise de convergência do modelo completo
- •Extração dos 20 modos de vibração de cada configuração
- •Análise dos 2 primeiros modos de torção e 2 primeiros de flexão de cada configuração

ANÁLISE DE SUBSÍDIO AOS PROJETISTAS

- •Variação da espessura dos revestimentos
- •Variação da geometria das longarinas
- Variação da espessura das nervuras

Definição de espessuras e geometrias

Figura 4 – Estudo inicial acerca de possíveis formatos de longarina

Figura 5 – Propriedades das longarinas

Geometria das longarinas

Figura 6 – Seção transversal das longarinas escolhidas

Revestimentos: 2mm de espessura

Nervuras: 5 pares de nervuras com espessura de 2mm

Análise da longarina central utilizando MEF

ANSYS®

M.N.O.P.U.V.W.X

A.B

I Tetrahedral Option

M.N.O.P.U.V.W.X

Y B Z A

I L S R

Pyramid Option

X O.P.W

Y U N V A.B

I T R

Prism Option

Figura 8 -BEAM188.

Tabela 2 – Propriedades mecânicas do AL2024-T3

Propriedade	Valor
Densidade	2780kg/m3
Módulo elástico	73100MPa
Módulo de cisalhamento	28GPa
Coef. Poisson	0.33
Tensão de escoamento	385MPa
Limite de resistência a tração	483MPa
Limite de resistência a compressão	283MPa

Figura 7 – SOLID186.

Tabela 3 - Malhas adotadas no projeto

	SOLID186		BEAM188		
Malha	Número de nós	Número de elementos	Número de nós	Número de elementos	
Modelo 1	286	49	15	7	
Modelo 2	751	126	29	14	
Modelo 3	1822	315	71	35	
Modelo 4	1220	636	141	70	
Modelo 5	4597	770	281	140	
Modelo 6	11820	1680	1401	700	

Longarina central: análise de convergência

Figura 9 - Análise de convergência da longarina central modelada com SOLID186

Figura 10 – Análise de convergência da longarina central modelada com BEAM188

Convergência:
Modelo com 35 elementos □ 71
nós

Resultados dos modelos convergentes

Modo	f(Hz) SOLID186 315 elem.	f(HZ) BEAM188 35 elem.	Tipo de vibração
1	6.0565	6.1783	Flexão XZ
2	7.5664	7.3611	Flexão XY
3	37.8000	38.5490	Flexão XZ
4	47.1280	45.8490	Flexão XY
5	105.1600	107.1800	Flexão XZ
6	130.7000	127.1400	Flexão XY
7	204.1000	207.5400	Torsão
8	204.1800	207.9500	Flexão XZ
9	252.6400	245.7300	Flexão XY
10	333.6300	339.4400	Flexão XZ
11	366.6100	373.2600	Longitudinal
12	410.5900	399.2700	Flexão XY
13	491.5400	499.5100	Flexão XZ
14	601.2400	584.4900	Flexão XY
15	612.2500	622.8200	Torsão
16	675.8000	685.8300	Flexão XZ
17	821.1500	798.9800	Flexão XY
18	884.1700	895.9900	Flexão XZ
19	1020.3000	1036.3000	Torsão (SOLID186) Flexão XY (BEAM188)
20	1066.9000	1037.7000	Flexão XY (SOLID186) Torsão (BEAM188)

Modos de vibração dos modelos convergentes

Figura 11 - Modo 1 BEAM188

Figura 13 - Modo 2 BEAM188

Figura 12 - Modo 1 SOLID186

Figura 14 - Modo 2 SOLID186

Modos de vibração dos modelos convergentes

Figura 15 - Modo 3 BEAM188

Figura 17 - Primeiro modo de torsão BEAM188

Figura 16 - Modo 3 SOLID186

Figura 18 - Primeiro mo<mark>do de torsão SOLID186</mark>

1 2

Modelo com massa concentrada

Matriz de massa forçada, de maneira a otimizar o tempo de execução do algoritmo do Solver

Modelo SOLI186 315 elementos: 120 segundos

Modelo BEAM188 35 elementos: 44 segundos

Para massas concentradas

Modelo SOLI186 315 elementos: 89 segundos

Modelo BEAM188 35 elementos: 27 segundos

Resultados: a precisão se manteve alta, apresentando valores com diferença menor do que 10% para os dois modelos

Modelagem da asa utilizando MEF

Características: Tamanho do elemento - 12 mm; Elementos - 75691; Nós - 495940; Malha com as configurações padrões do ANSYS, tendo em vista que já foi gerada de forma estruturada e uniforme.

0 2

Modelagem da asa utilizando MEF

Malhas Testadas:

12 milímetros 14 milímetros 16 milímetros 18 milímetros 20 milímetros 22 milímetros

Modelagem da asa utilizando MEF

Análise de Convergência:

Optou-se por manter a malha com elementos de 12 mm, sendo a mais refinada entre as comparadas.

Para as simulações, foi utilizado uma máquina com 63.9Gb de RAM e um processador Xeon E5-2630 de 2.4Ghz com 16 Cores.

Simulações feitas no ANSYS 2022 R2.

Elemento sólido do tipo SOLID186 com 20 nós para um cubo.

Frequências e modos de vibração

Modo	f(Hz) Item 4.1	f(HZ) Item 4.2.	f(Hz) Item 4.3	f(Hz) Item 4.4	f(Hz) Item 4.5	f(Hz) Item 4.6
1	9.5708	9.5723	9.5636	9.023	9.0202	9.0082
2	24.041	24.165	37.733	38.882	44.341	47.342
3	24.125	24.231	38.314	54.43	54.524	54.526
4	27.167	28.945	39.937	59.349	59.324	59.163
5	27.197	28.97	40.995	65.217	109.56	122.66
6	30.114	31.903	41.949	92.705	110.12	123.31
7	30.31	32.801	43.768	110.11	111.31	123.33
8	32.442	35.525	43.904	111.31	111.32	123.34
9	32.884	35.946	45.976	111.32	113.54	124.83
10	33.428	36.626	46.328	111.36	116.01	124.98
11	35.628	37.079	48.632	118.32	118.36	125.8
12	36.241	37.136	51.606	119.83	119.84	125.81
13	39.007	41.904	52.635	119.84	119.84	131.99
14	39.332	42.673	53.753	120.15	124.32	136.16
15	43.232	48.653	63.056	126.85	127.00	138.1
16	43.394	49.144	71.006	127.5	127.69	138.13
17	48.424	50.581	75.88	127.51	127.69	144.18
18	48.52	51.069	77.303	128.07	131.85	154.31
19	54.558	61.329	79.913	134.92	136.36	156.23
20	54.568	62.498	80.906	134.97	136.62	156.48

Primeiro Modo de Flexão:

Item 4.1 - 9.5708 Hz(1)

Item 4.2 - 9.5723 Hz(1)

Item 4.3 - 9.5636 Hz(1)

Item 4.4 - 9.023 Hz(1)

Item 4.5 - 9.0202 Hz(1)

Item 4.6 - 9.0082 Hz(1)

Segundo Modo de Flexão:

Item 4.1 - 24.041 Hz(2)

Item 4.2 - 24.165 Hz(2)

Item 4.3 - 41.949 Hz(6)

Item 4.4 - 54.43 Hz(3)

Item 4.5 - 54.524 Hz(3)

Item 4.6 - 54.526 Hz(3)

Primeiro Modo de Torção:

Item 4.1 - 32.442 Hz(8)

Item 4.2 - 32.442 Hz(8)

Item 4.3 - 38.314 Hz(3)

Item 4.4 - 38.882 Hz(2)

Item 4.5 - 44.341 Hz(2)

Item 4.6 - 47.342 Hz(2)

Segundo Modo de Torção:

Item 4.1 - 62.186 Hz(23)

Item 4.2 - 61.656 Hz(21)

Item 4.3 - 80.906 Hz(20)

Item 4.4 - 92.705 Hz(6)

Item 4.5 - 109.56 Hz(5)

Item 4.6 - 131.99 Hz(13)

0 2

Análises de subsídios aos projetistas

Variação da espessura dos revestimentos: 2mm, 3mm, 4mm

Variação da geometria das longarinas:

- •I
- Retangular
- Cilíndrica

Variação da espessura das nervuras: 3mm, 4mm, 5mm

Modo	m =176.88kg (2mm)	m =192.45kg (3mm)	m =208.02kg (4mm)
1	9.0082	9.4064	9.7585
2	47.3420	53.3790	58.2180
3	54.5260	56.6400	58.4660
4	59.1630	60.8450	61.6160
5	122.6600	147.6000	154.8200
6	123.3100	148.04000	159.6100
7	123.3300	182.6000	238.6000
8	123.3400	182.6100	239.6800
9	124.8300	183.8200	241.0800
10	124.9800	184.1300	241.1000
11	125.8000	187.2600	242.7300
12	125.8100	187.4800	243.7900
13	131.9900	187.4900	246.8700
14	136.1600	189.0300	248.1400
15	138.1000	205.2300	248.1500
16	138.1300	205.2500	265.3800
17	144.1800	208.0900	271.2000
18	154.3100	214.1900	271.2400
19	156.2300	231.4600	279.8500
20	156.4800	231.5400	283.9300

Frequências em função da variação de espessura do revestimento

Malha: Tamanho do elemento - 12 mm; Elementos - 75691; Nós - 495940;

Variação da longarina central

Usando a modelagem de Euler-Bernoulli, aplicou-se a variação de EI/A provocada pela longarina central nos valores das frequências resultantes da asa

Modo	(I)	(Retangular)	(Cilíndrica)
1	10.9801	13.4371	30.6401
2	57.7052	70.6175	161.0272
3	66.4617	81.3335	185.4626
4	72.1138	88.2503	201.2347
5	149.5103	182.9654	417.2109
6	150.3026	183.9350	419.4218
7	150.3269	183.9648	419.4898
8	150.3391	183.9797	419.5238
9	152.1553	186.2023	424.5918
10	152.3381	186.4260	425.1020
11	153.3376	187.6492	427.8912
12	153.3498	187.6641	427.9252
13	160.8826	196.8825	448.9456
14	165.9654	203.1026	463.1293
15	168.3301	205.9964	469.7279
16	168.3667	206.0412	469.8299
17	175.5410	215.0656	490.4082
18	188.0885	230.1760	524.8639
19	190.4287	233.0400	531.3946
20	190.7335	233.4129	532.2449

Frequências em função da variação da longarina central

$$\omega_n = \beta_n^2 \sqrt{\frac{EI}{\rho A}}$$

Bibliografia

[1]ANSYS, Inc. Academic Research Mechanical. Release 18.1. Canonsburg, Pensilvânia.

[2]DURSUN,T. and SOUTIS, C. recent Developments in advanced aircraft aluminum alloys. v.56.

p.862-871. 2014

[3] EWINS, D. Basic and state of the art of modal testing. Sadhana. Springer. v.25. p.207-220.2000

[4]IDE, T. and LEIVA, J. and WATSON, B. C. Structural optimization and techniques to design light

and efficient automatic transmission of vehicles with low radiated noise. v.6. p.1137-1150

[5]INMAN, D. J. Vibrações Mecânicas: tradução da 4º edição. Elsevier Editora Ltda. 2018. ISBN:

9788535288902

[6]TAYLOR, J. W. R. Jane's pocket book light aircraft revised edition. Jane's Publishing Company Ltda.

ISBN: 0710601956. v.1. 1982.

[7] WILLIAM, T. Cessna Wings for the World. 1 ed. Maverick Publications. ISBN: 0892882212. 1991.

[8]UNLUSOY, L. Structural Design and Analysis of the Mission Adaptive Wings of an Unmanned Aerial

Vehicle. Dissertação de mestrado. Middle East Technical University, Oriente Médio. 2010.

Obrigado!