Introduzione

Capitolo 1

Il Modello Computazionale

1.1 L'avversario

Il tipico avversario con cui si ha a che fare quando si studiano cifrari o protocolli crittografici nel modello computazionale, è un avversario con risorse di calcolo limitate. Limitate nel senso che si sceglie di porre un limite alla potenza di calcolo dell'avversario. Questo significa che: non avremo a che fare con un avversario che ha una potenza computazionale infinita o un tempo illimitato a disposizione. Sebbene siano stati ideati cifrari sicuri anche rispetto ad avversari non limitati¹, questi hanno alcuni difetti: come per esempio il fatto che la chiave debba essere lunga quanto il messaggio o che questa sia utilizzabile una sola volta. Per rappresentare in modo formale un avversario con risorse di calcolo limitate, lo si può pensare come un algoritmo appartenente ad una particolare classe di complessità computazionale².

Da sempre si considerano efficienti gli algoritmi che terminano in un numero di passi polinomiale nella lunghezza dell'input, mentre si considerano inefficienti quelli che hanno una complessità computazionale maggiore. Può sembrare quindi naturale immaginare gli avversari come degli algoritmi che terminano in un numero polinomiale di passi rispetto alla lunghezza dell'input. Come si può notare non si fa nessuna assunzione sul comportamento dell'avversario. L'unica cosa che sappiamo è che questo avversario vuole essere efficiente, ovvero polinomiale. Non si fanno ipotesi sull'algoritmo che questo andrà ad eseguire. Per esempio dato un messaggio cifrato $c = E_k(m)$, non ci aspettiamo che l'avversario non decida di decifrarlo mediante una chiave diversa da quella utilizzata per cifrarlo. Ovvero sarebbe sbagliato supporre che l'avversario non cerchi di utilizzare la stringa c' tale che: $c' = D_{k'}(E_k(m))$

¹one-time pad ne è un esempio lampante.

²un avversario è alla fine dei conti una macchina di Turing che esegue un algoritmo.

con $k \neq k'$. Nel modello computazionale i messaggi sono stringhe di bit e l'avversario può effettuare qualsiasi operazione su queste. Questa visione è, a differenza di quella che si ha nel modello formale, sicuramente molto più realistica.

Non bisogna però dimenticare che un avversario può sempre indovinare il segreto che cerchiamo di nascondere, o che cifriamo. Per esempio: se il segreto che si cerca di nascondere ha una lunghezza di n bit, l'avversario può sempre lanciare una moneta n volte e associare, via via, la testa della moneta al valore 1 e la croce al valore 0. La probabilità che l'avversario ottenga una stringa uguale al segreto è ovviamente di $\frac{1}{2^n}$. Questa probabilità tende a 0 in modo esponenziale al crescere della lunghezza del segreto. Ma per valori finiti di n questa probabilità non sarà mai 0. È quindi più realistico cercare di rappresentare l'avversario come un'algoritmo che, oltre a terminare in tempo polinomiale, ha anche la possibilità di effettuare scelte random. La classe dei problemi risolti da questo tipo di algoritmi è indicata con la sigla BPP (i.e. $Bounded-Probability\ Polynomial\ Time$).

Un modo più formale di vedere questo tipo di algoritmi è il seguente: si suppone che la macchina di Turing che esegue l'algoritmo, oltre a ricevere l'input, diciamo x, riceve un input ausiliario r. Questo stringa di bit r, rappresenta una possibile sequenza di lanci di moneta. Quando la macchina dovrà effettuare una scelta random, non dovrà far altro che prendere il successivo bit dalla stringa r, e prendere una decisione in base ad esso (è, in effetti, come se avesse preso una decisione lanciando una moneta). Ecco quindi che il nostro tipico avversario si configura come un algoritmo polinomiale probabilistico. È inoltre giustificato cercare di rendere sicuri³ gli schemi crittografici rispetto, principalmente, a questo tipo di avversario. Con questa scelta si cerca di rispettare il più possibile un famoso principio di Kerckhoffs⁴ che afferma:

Un cifrario deve essere, se non matematicamente, almeno praticamente indecifrabile.

Non è quindi necessario dimostrare che un particolare schema crittografico sia inviolabile, ma basta dimostrare che:

- in tempi ragionevoli lo si può violare solo con scarsissima probabilità
- lo si può violare con alta probabilità ma solo in tempi non ragionevoli

³In qualsiasi modo si possa intendere il concetto di sicurezza. Vedremo che in seguito si daranno delle definizioni rigorose di questo concetto.

 $^{^4 \}mathrm{Auguste}$ Kerckhoffs (19 Gennaio 1835 – 9 Agosto 1903) fu un linguista Olandese e un famoso crittografo

Sappiamo che il concetto di tempo ragionevole è catturato dalla classe degli algoritmi polinomiali probabilistici. Vediamo ora di catturare il concetto di scarsa probabilità.

1.2 Funzioni trascurabili e non ...

In crittografia i concetti di *scarsa probabilità* e di evento *raro* vengono formalizzati attraverso la nozione di funzione trascurabile.

Definizione 1.1 Funzione Trascurabile (negligible). Sia $\mu : \mathbb{N} \to \mathbb{R}^+$ una funzione. Si dice che μ è trascurabile se e solo se per ogni polinomio p, esiste $C \in \mathbb{N}$ tale che $\forall n > C : \mu(n) < \frac{1}{p(n)}$.

Un'altra definizione utile è la seguente:

Definizione 1.2 Funzione Distinguibile (noticeable). Sia $\mu : \mathbb{N} \to \mathbb{R}^+$ una funzione. Si dice che μ è distinguibile se e solo se esiste un polinomio p, tale per cui esiste $C \in \mathbb{N}$ tale che $\forall n > C : \mu(n) > \frac{1}{p(n)}$.

Per esempio la funzione $n \to 2^{-\sqrt{n}}$ è una funzione trascurabile, mentre la funzione $n \to \frac{1}{n^2}$ non lo è. Ovviamente esistono anche funzioni che non sono né trascurabili né distinguibili. Per esempio, la seguente funzione definita

né trascurabili né distinguibili. Per esempio, la seguente funzione definita per casi:
$$f(n) = \begin{cases} 1, & \text{se } n \text{ è pari} \\ 0, & \text{se } n \text{ è dispari} \end{cases}$$

non è né trascurabile né distinguibile. Questo perchè le definizioni precedenti, pur essendo molto legate, non sono l'una la negazione dell'altra.

Se sappiamo che in un esperimento un evento avviene con una probabilità trascurabile, quest'evento si verificherà con una probabilità trascurabile anche se l'esperimento viene ripetututo molte volte (ma sempre in numero polinomiale), e quindi per la legge dei grandi numeri, con una frequenza altrettanto trascurabile ⁵. Le funzioni trascurabili infatti, godono di due particolari proprietà, enunciate nella seguente:

Proposizione 1.1 Siano μ_1, μ_2 due funzioni trascurabili e sia p un polinomio. Se $\mu_3 = \mu_1 + \mu_2$, e $\mu_4 = p \cdot \mu_1$, allora μ_3, μ_4 sono funzioni trascurabili.

Se quindi, in un esperimento, un evento avviene solo con probabilità trascurabile, ci aspettiamo che, anche se ripetiamo l'esperimento un numero polinomiale di volte, questa probabilità rimanga comunque trascurabile.

⁵In modo informale, la legge debole dei grandi numeri afferma che: per un numero grande di prove, la frequenza approssima la probabilità di un evento

Per esempio: supponiamo di avere un dado truccato in modo che la probabilità di ottenere 1 sia trascurabile. Allora se lanciamo il dado un numero polinomiale di volte, la probabilità che esca 1 rimane comunque trascurabile. È ora importantissimo notare che: gli eventi che avvengono con una probabilità trascurabile possono essere ignorati per fini pratici. In [KL07] infatti leggiamo:

Events that occur with negligible probability are so unlikely to occur that can be ignored for all practical purposes. Therefore, a break of a cryptographic scheme that occurs whit negligible probability is not significant.

Potrebbe sembrare pericoloso utilizzare degli schemi crittografici che ammettono di essere violati con probabilità trascurabile. Ma questa possiblità è così remota che se ci preoccupassimo, allora per amor di coerenza, dovremmo anche essere ragionevolmente sicuri di fare sei all'enalotto giocando una schedina semplice.

Finora abbiamo parlato sempre di funzioni che prendono in input un argomento non meglio specificato. Al crescere di questo parametro, le funzioni si comportano in modo diverso a seconda che siano trascurabili, oppure no. Ma cosa rappresenta nella realtà questo input? In genere questo valore rappresenta un generico parametro di sicurezza, indipendente dal segreto. Di solito lo si pensa come la lunghezza in bit delle chiavi.

1.3 Indistinguibilità Computazionale

Se due oggetti, sebbene profondamente diversi fra loro, non possono essere, allora sono da un certo punto di vista uguali.

1.4 Pseudocasualità

1.5 Dimostrazioni Basate su Games

Capitolo 2
CryptoVerif

Capitolo 3 Risultati Raggiunti

Bibliografia

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chapman & Hall/Crc Cryptography and Network Security Series). Chapman & Hall/CRC, 2007.