The ToothGrowth data Analysis

Kiattisak Chaisomboon

07/06/2020

Overview

We are going to analyze the ToothGrowth data in the R datasets package. We will study the change of the tooth growth in pigs depends on supplement type and dose quantity.

Exploratory Data Analysis

Loading the dataset and check its dimension

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
## The following objects are masked from 'package:base':
       intersect, setdiff, setequal, union
##
tg <- ToothGrowth
dim(tg)
## [1] 60 3
The dataset contains 60 observations and 3 variables are:
len = Tooth length
supp = Supplement type (VC or OJ)
dose = Dose in milligrams/day
```

Summarizing the basic information from the dataset.

summary(tg)

```
##
         len
                    supp
                                 dose
          : 4.20
  Min.
                    OJ:30
                            Min.
                                   :0.500
  1st Qu.:13.07
                    VC:30
                            1st Qu.:0.500
##
## Median :19.25
                            Median :1.000
  Mean
          :18.81
                            Mean
                                  :1.167
##
  3rd Qu.:25.27
                            3rd Qu.:2.000
## Max.
           :33.90
                            Max.
                                   :2.000
par(mfrow=c(1,2))
boxplot(len ~ supp, data=tg)
boxplot(len ~ dose, data=tg)
```


The results show that:

- Using the orange juice give a tooth growth rate higher than using the acid.
- Increasing dosage give a higher tooth growth rate.

We'll set the hypothesis testing related with this information.

The Change of Tooth Length based on the Type of Supplement

Create variables based on the type of supplement.

```
OJ <- subset(tg, supp == 'OJ')
VC <- subset(tg, supp == 'VC')</pre>
```

We hypothesize that the mean of tooth length when using an orange juice (OC) is higher than the mean of tooth length when using an ascorbic acid (VC), then we set:

```
H_0: \mu_{oc} = \mu_{vc}

H_\alpha: \mu_{oc} > \mu_{vc}

Set the confidence interval = 95% (\alpha = 0.05)
```

```
t.test(OJ$len, VC$len, alternative='greater', paired = FALSE, var.equal = FALSE)
```

The output reports that the p-value = 0.03032, is less than $\alpha = 0.05$ then we'll reject the null hypothesis. We are 95% confident that the mean of tooth length when using the orange juice is higher than the mean of tooth length when using the ascorbic acid.

The Change of Tooth Length based on Level of Dose

Create variables based on level of dose

```
half.dose <- subset(tg, dose == 0.5)
one.dose <- subset(tg, dose == 1)
two.dose <- subset(tg, dose == 2)</pre>
```

We hypothesize that the mean of tooth length when using an one dosage is higher than the mean of tooth length when using a half dosage, then we set:

```
H_0: \mu_{1.0D} = \mu_{0.5D}
H_{\alpha}: \mu_{1.0D} > \mu_{0.5D}
Set the confidence interval = 95\% (\alpha = 0.05)
t.test(one.dose$len, half.dose$len, alternative='greater', paired=FALSE, var.equal=FALSE)
##
##
    Welch Two Sample t-test
##
## data: one.dose$len and half.dose$len
## t = 6.4766, df = 37.986, p-value = 6.342e-08
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 6.753323
                   Inf
## sample estimates:
## mean of x mean of y
      19.735
                 10.605
```

The output reports that the p-value = 6.342e-08, is less than $\alpha = 0.05$ then we'll reject the null hypothesis. We are 95% confident that the mean of tooth length when using an one dosage is higher than the mean of tooth length when using a half dosage.

Next, we hypothesize that the mean of tooth length when using a double dosage is higher than the mean of tooth length when using an one dosage, then we set:

```
H_0: \mu_{2.0D} = \mu_{1.0D}
H_{\alpha}: \mu_{2.0D} > \mu_{1.0D}
Set the confidence interval = 95% (\alpha = 0.05)
t.test(two.dose$len, one.dose$len, alternative='greater', paired=FALSE, var.equal=FALSE)
##
##
   Welch Two Sample t-test
##
## data: two.dose$len and one.dose$len
## t = 4.9005, df = 37.101, p-value = 9.532e-06
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 4.17387
                 Inf
## sample estimates:
## mean of x mean of y
```

The output reports that the p-value = 9.532e-06, is less than $\alpha = 0.05$ then we'll reject the null hypothesis. We are 95% confident that the mean of tooth length when using a double dosage is higher than the mean of tooth length when using an one dosage.

26.100

19.735

##