LÓGICA EI Mestrado Integrado em Engenharia Informática Universidade do Minho

Departamento de Matemática

Definições:

- 1 Um *alfabeto* é um conjunto cujos elementos serão chamados *letras* (ou símbolos).
- 2 Chamaremos *palavra* (ou *string*) *sobre* um alfabeto *A* a uma sequência finita de letras de *A*.
 - A notação A* representará o conjunto de todas as palvras sobre A.
- 3 Dado n ∈ N e dadas n letras a₁, a₂, ..., a_n de um alfabeto A (possivelmente com repetições), utilizamos a notação a₁a₂...a_n para representar a palavra sobre A cuja i-ésima letra (para 1 ≤ i ≤ n) é a_i.
- 4 À sequência vazia de letras de A chamaremos *palavra vazia*, notando-a por ϵ .

Definições (cont.):

- O *comprimento* de uma palavra é o comprimento da respetiva sequência de letras.
 - (A única palavra de comprimento 0 é ϵ .)
- Duas palavras sobre um alfabeto dizem-se *iguais* quando têm o mesmo comprimento e coincidem letra a letra.
- Dadas duas palavras u, v sobre um alfabeto, utilizamos a notação uv para representar a concatenação de u com v (i.e., a concatenação das respetivas sequências de letras, colocando primeiro a sequência de letras relativa a u).
- Uma *linguagem* sobre um alfabeto *A* é um conjunto de palavras sobre *A* (i.e. um subconjunto de *A**).

Exemplo: Seja \mathcal{C} o menor¹ subconjunto de \mathbb{N}_0 que satisfaz as seguintes condições:

- 1 $0 \in C$;
- **2** para todo $n \in \mathbb{N}_0$, se $n \in C$, então $n + 2 \in C$.

Esta forma de definir o conjunto C é um caso particular das chamadas definições indutivas de conjuntos.

Habitualmente, chamaremos regras às condições utilizadas numa definição indutiva.

A condição 1 é um exemplo de um regra base e a condição 2 é um exempo de uma regra indutiva.

¹Dizemos que um conjunto $A \in B$ emenor que um conjunto B quando $A \subseteq B$

Exemplo (cont.):

Exemplos de elementos de C são: 0, 2, 4. De facto:

- (a) $0 \in C$, pela regra 1;
- (b) por (a) e pela regra 2, segue $0 + 2 = 2 \in C$;
- (c) por (b) e pela regra 2, segue $2 + 2 = 4 \in C$.

Adiante (e como é fácil de intuir), mostraremos que C é o conjunto dos números pares.

Exemplo: A definição indutiva do conjunto *C* admite um princípio de recursão estrutural, que permite a definição de funções por recursão estrutural.

Recursão estrutural

Por exemplo, existe uma e uma só função $f: C \longrightarrow \mathbb{N}_0$ que satisfaz as seguintes condições:

- 1 f(0) = 0;
- 2 para todo $n \in C$, f(n+2) = 1 + f(n).
- Por exemplo, f(4)=1+f(2)=1+1+f(0)=2+0=2.

Acerca desta função, pode provar-se, com recurso ao *Princípio de indução estrutural para C* (que veremos adiante), que, para todo $n \in C$, $f(n) = \frac{n}{2}$.

Observação: A cada definição indutiva de um conjunto está associado um princípio de indução estrutural, que permite provar proriedades sobre esse conjunto.

Por exemplo, o usual princípio de indução sobre os naturais é o princípio de indução estrutural associado à seguinte caracterização indutiva de \mathbb{N} :

 $\mathbb N$ é o menor subconjunto de $\mathbb N$ que satisfaz as seguintes condições:

- 1 $1 \in \mathbb{N}$;
- **2** para todo $n \in \mathbb{N}$, se $n \in \mathbb{N}$, então $n + 1 \in \mathbb{N}$.

Exemplo: O Princípio de indução estrutural para *C* (associado à definição indutiva do conjunto *C* no exemplo inicial) é o seguinte:

Seja P(n) uma condição sobre $n \in C$.

1 *P*(0);

Se:

- $\mathbf{1} P(\mathbf{0})$
- 2 se P(k), então P(k+2), para todo o $k \in C$; então P(n), para todo o $n \in C$.

Exemplo: Consideremos a condição P(n), sobre $n \in C$, dada por " $n \in par$ ".

Provemos que P(n) é verdadeira para todo $n \in C$.

Pelo Princípio de indução estrutural para C, basta mostrar:

- 1 *P*(0);
- **2** se P(k), então P(k+2), para todo o $k \in C$.

Provemos cada uma destas propriedades.

- 1 0 é par. Logo, P(0) é verdadeira.
- 2 Seja $k \in C$. Suponhamos que P(k) é verdadeira. Então, k é par. Logo, k+2 é também par e, portanto, P(k+2) é verdadeira.

Observação: A propriedade demonstrada no exemplo anterior permite concluir que *C* é subconjunto dos números pares.

Para mostar que *C* é efetivamente o conjunto dos números pares, falta mostrar que *C* contém o conjunto dos números pares.

Para tal, bastaria provar, por indução em \mathbb{N}_0 , que, para todo $n \in \mathbb{N}_0$, $2n \in C$. (Exercício.)