Nome:	N° Mec.:
Declaro que desisto	

2 de setembro de 2020

Duração total: 2 horas

Informações

- 1. Esta prova é constituída por 4 questões.
- 2. Cada folha contém uma questão que deve ser respondida na própria folha (utilize, sempre que necessário, também o verso da folha).
- 3. Caso necessite de folhas de continuação, deve utilizar uma para cada questão e indicar na folha de continuação o número da questão no local indicado para o efeito.
- 4. Receberá também uma folha com o formulário que poderá utilizar durante a prova.
- 5. Caso pretenda desistir desta prova, <u>assinale-o no cabeçalho desta folha</u> assinando no local a isso destinado, entregue todas as folhas de prova que lhe foram distribuídas e coloque-as no local que lhe for indicado pelo professor vigilante da sala.
- 6. Caso não responda a uma das questões escreva isso na respetiva folha.
- 7. Quando terminar a sua prova organize-a de forma a juntar as folhas de continuação (caso as tenha utilizado) à folha da questão respetiva e coloque-as nos locais indicados pelo professor vigilante da sala. Não será necessário entregar esta folha de informações, exceto em caso de desistência.
- 8. <u>Justifique</u> todas as suas respostas das questões **1 a 3**, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.
- 9. Não pode ter consigo telemóvel nem qualquer dispositivo eletrónico (ainda que desligado).
- 10. Respeite todas as regras de segurança e mantenha o distanciamento social adequado.
- 11. Garanta que tem em cima da mesa de prova um documento que o identifique, com fotografia.
- 12. Só pode levar para a mesa onde vai realizar a prova, material de escrita. Não é permitida a utilização de qualquer tipo de calculadora.

Bom trabalho!

2 de setembro de 2020 Duração total: 2 horas

Nome:	N° Mec.:
Classificação Questão:	

Questão 1 (50pts)

Considere a função real de variável real definida por $f(x) = (1-x)e^{-x}$.

- 1. Determine a primitiva da função f cujo gráfico contém o ponto (0,1).
- 2. Considere a função G definida em \mathbb{R} por $G(x) = \int_0^x f(t) dt$. Estude a função G quanto a intervalos de monotonia e indique, caso existam, máximos e mínimos locais e absolutos de G.
- 3. Determine, justificando, a natureza do integral impróprio $\int_0^{+\infty} f(x) dx$.
- 4. Calcule a área da região do plano limitada pelo gráfico da função f e pela reta y=0 no intervalo [0,5].

2 de setembro de 2020 Duração total: 2 horas

Nome:	N° Mec.:
Classificação Questão:	

Questão 2 (50pts)

Considere a função definida em $D \subseteq \mathbb{R}$ por $h(x) = \ln(\arccos(x))$.

- 1. Determine o domínio D de h.
- 2. Determine a função inversa de h indicando o seu domínio.
- 3. Calcule a função derivada de h, indicando o seu domínio.
- 4. Calcule a família de primitivas $\int \frac{\ln(\arccos(x))}{\arccos(x)\sqrt{1-x^2}} dx.$

2 de setembro de 2020 Duração total: 2 horas

Nome:	N° Mec.:
Classificação Questão:	

Questão 3 (50pts)

- 1. Estude a natureza da série numérica $\sum_{n=1}^{\infty} (-1)^n \frac{2n}{2^{2n}+2n}$, indicando se é absolutamente convergente, simplesmente convergente ou divergente.
- 2. Considere a série $\sum_{n=1}^{+\infty} (\sqrt{n+1} \sqrt{n}).$
 - (a) Determine a expressão da sucessão das suas somas parciais.
 - (b) Estude a convergência da série e indique o valor da sua soma (não necessariamente finita).

2 de setembro de 2020 Duração total: 2 horas

Nome:	N° Mec.:
Classificação Questão:	
Qı	estão 4 (50pts)
ra cada uma das alíneas assinale a <u>ún</u> i	<u>ea</u> afirmação verdadeira.
1. O limite $\lim_{x\to 0} \frac{1-e^{2x}}{\sin x}$ é	
(B) -2 (C) 2	
2. Considere a função real de variável	eal definida por
f(x) = c	$\arctan \left(\frac{1}{x}\right)$ se $x \in \mathbb{R}^+$. $\frac{\pi}{2} + \ln (1 - x^2)$ se $x \notin \mathbb{R}^+$
(C) O domínio de $f \in \mathbb{R}$	domínio
(B) 0 (C) -2	
4. A série $\sum_{n=1}^{+\infty} (-1)^n \frac{n^2}{1+n^3}$	
(B) é divergente(C) é simplesmente convergente.	
5. O integral impróprio $\int_{-\infty}^{+\infty} \frac{6}{9+4x^2}$	
(B) divergente.	

Uma ajuda

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{sen} x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\operatorname{tg} x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	ND

$$\sec u = \frac{1}{\cos u}; \quad \csc u = \frac{1}{\sin u}; \quad \cot u = \frac{\cos u}{\sin u}$$

$$\cos^2 u = \frac{1 + \cos(2u)}{2}; \quad \sin^2 u = \frac{1 - \cos(2u)}{2};$$

 $1 + \operatorname{tg}^2 u = \sec^2 u; \quad 1 + \operatorname{\cotg}^2 u = \operatorname{\csc}^2 u$

$$sen (u + v) = sen u cos v + sen v cos u$$
$$cos (u + v) = cos u cos v - sen u sen v$$

$$\operatorname{sen} u \operatorname{sen} v = \frac{1}{2}(\cos(u-v) - \cos(u+v))$$
$$\cos u \cos v = \frac{1}{2}(\cos(u-v) + \cos(u+v))$$
$$\operatorname{sen} u \cos v = \frac{1}{2}(\operatorname{sen}(u-v) + \operatorname{sen}(u+v))$$

$(e^u)' = u' e^u$	$(\ln u)' = \frac{u'}{u}$	$(u^r)' = r u^{r-1} u'$
$(a^u)' = a^u \ln a u'(a > 0 e a \neq 1)$	$(\log_a u)' = \frac{u'}{u \ln a} \ (a > 0 \ e \ a \neq 1)$	$(\operatorname{sen} u)' = u' \cos u$
$(\cos u)' = -u' \sin u$	$(\operatorname{tg} u)' = u' \sec^2 u$	$(\cot g u)' = -u' \csc^2 u$
$(\sec u)' = \sec u \operatorname{tg} u u'$	$(\csc u)' = -\csc u \cot u u'$	$(\arcsin u)' = \frac{u'}{\sqrt{1 - u^2}}$
$(\arccos u)' = -\frac{u'}{\sqrt{1 - u^2}}$	$(\operatorname{arctg} u)' = \frac{u'}{1 + u^2}$	$(\operatorname{arccotg} u)' = -\frac{u'}{1+u^2}$

$$P(u' \sec u) = \ln|\sec u + \operatorname{tg} u| \quad P(u' \csc u) = -\ln|\csc u + \cot u|$$

$$P - \text{primitiva}$$