Comment on "Influence of Pair Breaking and Phase Fluctuations on Disordered High T_c Cuprate Superconductors"

In a recent Letter [1], Rullier-Albenque et al. studied the T_c degradation under electron irradiation of Y-123 single crystals. They have measured the in-plane resistivity $\rho_{ab}(T)$ in a broad range of defect contents x_d , the value of x_d being proportional to $\Delta \rho_{ab}$, the increase in ρ_{ab} upon irradiation. It was found that T_c unexpectedly decreased quasilinearly with x_d in the whole range from T_{c0} down to $T_c = 0$. The authors of Ref. [1] arrived at a conclusion that experimental data are at variance with Abrikosov-Gor'kov (AG) pair breaking theory [2] and point to a significant role of phase fluctuations [3] of the order parameter $\Delta(\mathbf{p})$ in high- T_c cuprates. In this Comment, we show that the data reported in Ref. [1] are in fact not inconsistent with the pair-breaking theories if (i) the deviation from pure d-wave symmetry of $\Delta(\mathbf{p})$ and (ii) the existence of magnetic scatterers in irradiated samples are properly taken into account.

The authors of Ref. [1] made use of the AG formula [2] for d-wave superconductors, $\ln(T_{c0}/T_c) = \Psi(1/2 +$ $1/2\pi T_c \tau$) – $\Psi(1/2)$, where τ is the electron scattering time, $\tau^{-1} \propto x_d \propto \Delta \rho_{ab}$. This formula gives a downward curvature of $T_c(\Delta \rho_{ab})$ curve, contrary to experimental observations [1]. Note, however, that the symmetry of $\Delta(\mathbf{p})$ in high- T_c cuprates may be different from pure d-wave [4, 5]. Besides, irradiation may result in appearance of magnetic scatterers along with nonmagnetic ones since radiation defects disturb antiferromagnetic correlations between copper spins. The AG-like formula that accounts for both those effects [6] reads $\ln(T_{c0}/T_c) = (1 - \chi) \left[\Psi(1/2 + 1/2\pi T_c \tau_m) - \Psi(1/2) \right] +$ $\chi \left[\Psi(1/2 + 1/4\pi T_c \tau_n + 1/4\pi T_c \tau_m) - \Psi(1/2) \right], \text{ where } \tau_n$ and τ_m are scattering times due to nonmagnetic and magnetic defects, respectively, the coefficient $\chi = 1$ – $\langle \Delta(\mathbf{p}) \rangle_{FS}^2 / \langle \Delta^2(\mathbf{p}) \rangle_{FS}$ is a measure of $\Delta(\mathbf{p})$ anisotropy on the Fermi surface ($\chi = 1$ for d-wave, $0 < \chi < 1$ for mixed (d+s)-wave or anisotropic s-wave, $\chi=0$ for isotropic s-wave).

An account for combined effect of both nonmagnetic and magnetic scatterers on T_c and/or an assumption about a non-pure d-wave $\Delta(\mathbf{p})$ allows for a quantitative explanation of the experimental data within the AG-like pair breaking theory, without resorting to phase fluctuations effects. Fig. 1 shows the measured T_c/T_{c0} versus $\Delta\rho_{ab}$ taken from Ref. [1] along with the curves computed for $\chi=0.9$ and various values of the coefficient $\alpha=\tau_m^{-1}/(\tau_n^{-1}+\tau_m^{-1})$ that specifies the relative contribution to the total scattering rate from magnetic scatterers [6]. Here we make use of the relation [6] $\tau_n^{-1}+\tau_m^{-1}=(\omega_{pl}^2/4\pi)\Delta\rho_{ab}$, where ω_{pl} is a characteristic energy which should not necessarily coincide with the plasma frequency determined by, e. g., optical spectroscopy. The quasilinear dependence of T_c on $\Delta\rho_{ab}$ in YBa₂Cu₃O₇ is quantitatively reproduced at $\omega_{pl}=0.75$

eV and $\alpha=0\div0.01$. This value of ω_{pl} is a factor of 1.4 different from directly measured values of the plasma frequency in Y-123. Although our choice of ω_{pl} is, to some extent, arbitrary, the change in ω_{pl} will result just in the change of the best fitting values of χ and α , e. g., $\chi\approx0.8$ and 0.6, $\alpha=0.04\pm0.02$ and 0.04 ± 0.01 at $\omega_{pl}=0.8$ and 1 eV, respectively. The data for YBa₂Cu₃O_{6.6} can also be well fitted within this approach.

FIG. 1: T_c/T_{c0} versus $\Delta \rho_{ab}$ in electron irradiated YBa₂Cu₃O₇ crystals. Experiment [1] (triangles). Theory [6] for $\omega_{pl}=0.75$ eV, $\chi=0.9$ and $\alpha=0$ (dashed line), 0.01 (solid line), and 1 (dotted line).

Finally, the arguments presented in Ref. [1] concerning the upward curvature of $T_c(\Delta \rho_{ab})$ curve required to explain the maximum of the transition width δT_c as a function of $\Delta \rho_{ab}$ seem to be incompatible with experimental data since the curvature of the measured $T_c(\Delta \rho_{ab})$ dependence is close to zero in the whole range of $\Delta \rho_{ab}$.

I am grateful to A. V. Kuznetsov for assistance. The work was supported by the Russian Ministry of Industry, Science, and Technology, Grant No 40.012.1.1.1357.

L. A. Openov

Moscow Engineering Physics Institute, Moscow 115409, Russia.

PACS numbers: 74.62.Dh, 74.20.-z, 74.25.Fy, 74.72.Bk

F. Rullier-Albenque et al., Phys. Rev. Lett. 91, 047001 (2003).

^[2] A. A. Abrikosov and L. P. Gor'kov, Sov. Phys. JETP 12, 1243 (1961).

^[3] V. J. Emery and S. A. Kivelson, Nature **374**, 434 (1995).

^[4] B. H. Brandow, Phys. Rev. B 65, 054503 (2002).

^[5] G. M. Zhao, Phys. Rev. B 64, 024503 (2001); cond-mat/0305483.

^[6] L. A. Openov, Phys. Rev. B 58, 9468 (1998).