

Team Name: The Cooper Union

Project Proposal Presentation

Bring-Your-Own-District (BYOD) Division:

Lower East Side, Manhattan

Agenda

1. Meet the Team

2. District Use Case

- Manhattan's Lower East Side
- Climate Mobilization Act & LL97
- Project Goals and Constraints

3. System Design

- Project Snapshot
- Equipment Selection
- PV System Design and Storage

4. Distribution System Impact

5. Financial Analysis

- Financial Assumptions
- System Financial Summary

- Zoning and Local Compliance
- Permitting, Construction & Interconnection
- Distributional Energy Equity

Meet The Team

Undergraduate Students:

Aaryan Mahipal

Mechanical Engineering, Class of 2025

Gautaman Asirwatham

Mechanical Engineering, Class of 2025

Logan Po

Electrical Engineering, Class of 2025

Akil Foster

Mechanical Engineering, Class of 2025

Alek Turkmen

Mechanical Engineering, Class of 2025

Advisors:

Dr. Kamau Wright

Professor of Mechanical Engineering, The Cooper Union

Dr. Melody Baglione

Professor of Mechanical Engineering, The Cooper Union

Paul Garrin

Ecolibrium Program Director, Loisaida Inc.

District Use Case - Lower East Side

The Lower East Side is known for its dense mix of **prewar walkups** and **postwar towers**. Although older buildings pose unique **structural** and **space** challenges, adopting **rooftop solar** can be a practical and cost-effective solution to the **fast changing regulatory landscape** and the city's ambitious decarbonization goals.

Building Address	Square Footage	Annual Electric Load (kWh)
308 E 8th Street, New York, NY	97,000	25,070.74
722-740 E 9th Street, New York, NY	64,907	128,816.75
215-219 E 2nd Street, New York, NY	22,390	26,249.55
218 E 2nd Street, New York, NY (Parking Lot)	6,570	~0

Site Map

Meet the	District	System	Distribution	Financial	Development
Team	Use Case	Design	System Impact	Analysis	Planning

Climate Mobilization Act and LL97

NYC's Regulatory Landscape and Climate Mobilization Act

New York City's Climate Mobilization Act (CMA) is a pivotal step towards achieving the city's decarbonization goals. Local Law 97 (LL97), effective from 2024, mandates that buildings over 25,000 square feet reduce their carbon emissions or face significant fines.

Local Law 97 Penalties

Emission Reduction Targets

40%

80%

By 2030

By 2050

Undertaking their own micro-grid and virtual power plant feasibility studies for the Lower East Side

Meet the Team District Use Case System Design Distribution System Impact Financial Analysis

Project Goals and Constraints

Technical Constraints

1. NYC's Climate

Although NYC experiences a four-season climate with moderate winter sun, Manhattan's average GHI is 4 kWh/m²/day, sufficient for robust solar production

2. Compliance With Regulations Set by Various AHJ

Rooftop solar systems must comply with the regulations established in NYC Construction, Electrical and Conservation Codes, NYC Zoning Resolution, and NYC Fire Codes

3. Limited Rooftop Space and Urban Canyon Effect

4. Grid Hosting Capacity and Interconnection Infrastructure

Design Goals

1. Offset Carbon Emissions

The primary goal is to offset the building's carbon emissions to comply with LL97 and avoid subsequent fines

2. Peak Load Shifting

Incorporating a BESS where financially feasible to discharge during peak periods, allowing for a consumption shift from peak to off-peak hours

3. Time-Of-Use Optimization

Ensures that energy is used at the most cost-effective times by shifting consumption and storage based on electricity prices

4. Attractive Customer Savings and Investor's IRR

Meet the	District	System	Distribution
Team	Use Case	Design	System Impact

Project Snapshot

Location	Туре	System Sizing (kW-DC)	Solar Panels	Annual Energy Prod. (MWh)
308 E 8th Street, New York, NY	Rooftop Canopy	30.8	75	43.80
722-740 E 9th Street, New York, NY	Rooftop Canopy	9.8	24	14.59
215-219 E 2nd Street, New York, NY	Rooftop Canopy	11.5	28	16.10
218 E 2nd Street, New York, NY	Carport	32.8	80	45.67
Total		84.9	207	120.25

Design Decisions

- Maximize solar access and eliminate any row-to-row module shading
- Maximize energy generation, due to limite rooftop space, maximize panel count
- South-facing panel orientation at 24° to maximize solar irradiation hours and surface area exposed.
- Landscape orientation required less row spacing and allowed for more panels.

66.8% of the annual electricity consumption of the campus will now be solar!

Meet the	District	System	Distribution	Financial	Development
Team	Use Case	Design	System Impact	Analysis	Planning

Panel Selection

Panasonic EVPV410H

Specifications

Module Efficiency	22.2%
Cell Type	Monocrystalline
Output Warranty (25 years)	90-91%
Watts per Pound	9.5 - 9.8 W/lb
Watts per sq.ft.	20.6 W/sq.ft.
Cost per Watt	\$0.70-\$0.85/W

Design Choice

- This module was compared with four other modules, namely, Q Cells G10, Jinko Tiger Neo, Trina Vertex S, and REC Alpha Pure
- The Panasonic EVPV410H was on the costlier side per panel, but outperformed most other choices in terms of watts per pound, watts per square feet, and cost per watt
- The Panasonic panel provided the best compromise for a lightweight panel that has a high module rating and efficiency
- A lightweight panel and high watts per square feet was crucial due to the limited rooftop space and raised canopy design

Meet the
Team

Inverter Selection

Amnesolar N3H-X5-US

Specifications

Max. Input DC Power	7.5 kW
Output AC Voltage	120 V RMS (Split Phase) 208 V RMS (3 Phase)
Output Frequency	60 Hz
Max. Power into Grid	5.5 kVA
THD	< 2%

Design Choice

- The standard 120 V RMS AC output aligns with U.S. household voltage, *minimizing* **integration complexity**
- This inverter is optimized for urban installations with protections against over and under voltage, short circuits and battery reverse polarity
- The power rating is well matched to typical urban building loads, enabling efficient energy output management using just a few inverters

Meet the
Team

BESS Selection

●1.5

LG RESU10H Battery

Specifications

Usable Capacity	9.8 kWh
Cell Type	Lithium-Ion
Nominal Voltage	350 V
Round-Trip Efficiency	95%
Cycle Life (at 80% DOD)	6,000 cycles
Cost per kWh	\$130

Design Choice

- This was chosen because it strikes an excellent balance between capacity, efficiency, and longevity.
- Its robust cycle life ensures long-term performance, while the competitive cost per-kWh makes it a cost-effective investment.
- The lithium-ion technology provides reliable performance and safety.

Meet the	
Team	

System Design: 308 E 8th Street

PV System Layout Shading Irradiance Heatmap

Meet the	District	System	Distribution	Financial	Development
Team	Use Case	Design	System Impact	Analysis	Planning

Single-Line-Diagram for 308 E 8th Street

Visitule Specifications				
7.5x Parametr EVPV410H				
STO Paring 410 W				
Write	42.7 Y			
Imp 4.61 A				
Voc 40 Y				
10.25 A				

Invertor Specifications 3: American H3H→3-4.5 (1937)			
Nax Input Vallage	900 V		
Min AC Power Rolling	0 #/		
Min Input Vollage 120 Y			

Who Schedule		
Ther-	Langth	
String	10x 10 AVD	307A

Meet the Team District Use Case System Design Distribution System Impact Financial Analysis

BESS Sizing for 308 E 8th Street

Average Daily Load Profile

Site	Battery Case	NPV (\$)	LCOE (¢/kWh)	IRR (%)
308 E 8th St.	No Battery	4,674	15.02	7.02
	Small (10 kWh)	1,264	15.71	5.04
	Medium (25 kWh)	-1,518	16.27	3.63
	Large (50 kWh)	-6,467	17.21	1.51

- The SAM simulation indicates that, under current assumptions, battery integrations beyond a modest size tend to reduce project economic returns. Further optimization of battery usage (including dynamic dispatch strategies) might improve these outcomes.
- For 308 E 8th Street, the small (10 kWh) battery was selected because it had a positive NPV and improved load shifting without oversizing.

Meet the	District	System	Distribution	Financial	Development
Team	Use Case	Design	System Impact	Analysis	Planning

System Design: 722-740 E 9th Street

PV System Layout Shading Irradiance Heatmap

Meet the	District	System	Distribution	Financial	Development
Team	Use Case	Design	System Impact	Analysis	Planning

Single-Line-Diagram for 722-740 E 9th Street

Violule Specifications			
94% Poromoelic EVPY44CH			
STO Rafting 410 W			
Virip	42.7 V		
lmp	S.61 A		
Vise	40 Y		
lea .	10.36 A		

Inverter Specifications 2: Amenican H3H->3-US (1937)			
Nax Input Vallage	800 V		
Min AC Power Rolling	0 W		
din Input Vollage 120 Y			

Who Schedule				
T=-	When Langth			
String	4× 10 AW2	2268		

Meet the Team District Use Case System Design Distribution System Impact Financial Analysis

BESS Sizing for 722-740 E 9th Street

Average Daily Load Profile

Site	Battery Case	NPV (\$)	LCOE (¢/kWh)	IRR (%)
722–740 E 9th St.	No Battery	1,774	14.98	7.14
	Small (16 kWh)	-1,818	16.94	2.10
	Medium (40 kWh)	-6,874	19.46	-2.42
	Large (80 kWh)	-14,893	23.42	-6.92

- The SAM simulation indicates that, under current assumptions, battery integrations beyond a modest size tend to reduce project economic returns. Further optimization of battery usage (including dynamic dispatch strategies) might improve these outcomes.
- For 722-740 E 9th Street, even though a small battery has a positive NPV and IRR, it diminishes savings and returns from a PV-only system and the system is not generating enough to shift peak loads.

Meet the	District	System	Distribution	Financial	Development
Team	Use Case	Design	System Impact	Analysis	Planning

System Design: 215-219 E 2nd Street

Shading Heatmap

PV System Layout

Shading Irradiance Heatmap

Meet theDistrictSystemDistributionFinancialDevelopmentTeamUse CaseDesignSystem ImpactAnalysisPlanning

Single-Line-Diagram for 215-219 E 2nd Street

Module Specifications				
Stic Personalis EVP/ATION				
ETE Refly	440 V			
Verip	487 V			
lmp	Eet A			
Van 46 V				
les .	73.200 A			

b+	eter Specification		
2: Aren	ole: K34-X5-US (1907)		
Max AC Renar Rating 6.5 to			
Bec Irpet Vellege	emo ∨		
Ute AD Form Relies	a v		
We Input Voltage	190 V		

Vira Direction				
Ther	Vin	Length		
Diffy	4c 10 A/A	14ER		

Meet the Team District Use Case System Design Distribution System Impact Financial Analysis

System Design: 218 E 2nd Street

O Shading Heatmap

PV System Layout

Shading Irradiance Heatmap

Meet the
TeamDistrict
Use CaseSystem
DesignDistribution
System ImpactFinancial
AnalysisDevelopment
Planning

Single-Line-Diagram for 218 E 2nd Street

Module Specifications					
	BOX Parametric EVEYARISM				
EE Refly 440 V					
Vimp	487 V				
limp:	Rel A				
Vee	46 Y				
les	TAJE A				

h-	ris Spafferfirm	
2x Anem	der K3H-35-US (1927)	
Max AC Parest Rating	EE W	
Nex Impel Vellage	690 Y	
Ute AD Form Relies	a v	
We lepud Yorkage	120 V	

Vira Director				
Ther	Vin	Legth		
Distry	10x 10 AV9	EAST .		

Meet the Team District Use Case System Design Distribution System Impact Financial Analysis

BESS Sizing for 215-219 E 2nd Street

Average Daily Load Profile

Site	Battery Case	NPV (\$)	LCOE (¢/kWh)	IRR (%)
215-219 E 2nd St.	No Battery	6,538	15.02	10.52
	Small (16 kWh)	1,392	15.76	9.01
	Medium (40 kWh)	-3,357	16.44	3.21
	Large (80 kWh)	-11,289	17.50	0.90

- The SAM simulation indicates that, under current assumptions, battery integrations beyond a modest size tend to reduce project economic returns. Further optimization of battery usage (including dynamic dispatch strategies) might improve these outcomes.
- For 215-219 E 2th Street, the small (16 kWh) battery was selected because it had a positive NPV and improved load shifting without oversizing.

Meet the	District	System	Distribution	Financial	Development
Team	Use Case	Design	System Impact	Analysis	Planning

Interconnection and Grid Hosting Capacity

- If hosting capacity along the block is **good** (>100 kVA), interconnect at the point closest to the building.
- If If hosting capacity along the block is **poor** (<100 kVA), interconnect at the point closest to the building with good hosting capacity. This may mean longer interconnection distances and more infrastructure costs.

Site Location	Hosting Capacity (kVA)	Interconnection Point	
308 E 8th St.	100-200	Adjacent to building (sufficient)	
722740 E 9th St.	100-200	Adjacent to building (sufficient)	
$215219 \to 2\mathrm{nd}$ St.	Low (Insufficient)	Reconfigured to 2nd St./Ave. B	

Meet the	
Team	

Distribution System Impact

Harmonic distortion causes a PV system to generate a higher voltage amplitude than expected.

Harmonic Distribution. Image by Kresimir Fekete et al.

Meet the District
Team Use Case

Grid backfeed allows excess solar generation to be reflected back into the grid, potentially overloading transformers and protective equipment.

Grid Backfeed. Image via Microwaves 101 (website)

System

Design

Distribution System Impact Energy leakage is inherent to electrical components (e.g. slew rate in transistors, self-induced eddy currents in transformers) and can cause overheating.

Component Losses. Image by Tiger Transformer (website)

Financial Analysis

Financial Analysis: Inputs & Assumptions

PPA Price: \$0.16/kWh

System Size: 85,400 W

Aggregate Project Cost: \$133,761

•	For the purpose of this project,
	it is assumed that the roofs are
	in sufficient condition to
	support the PV installation and
	need not be replaced.

- The property tax is set at 0% and the project life is 30 years.
 - All other financial assumptions were assumed to be standard and the same as NREL's recommendations.
- System Costs were modeled considering NYC labor prices and installation costs for canopies, safety, and interconnection.

SYSTEM INPUTS				
	DC (W)	AC (W)		
Construction Cost/Watt	\$1.15	\$1.29		
Roof Upgrade & Warranty	\$0.00	\$0.00		
Interconnection Costs	\$0.07	\$0.07		
Total cost per watt	\$1.22	\$1.36		
Size of System in W	85,400	76,250		
Panel and Hard Eq. Cost per W	\$1.43	\$1.60		
Est. P50 Annual Production (kWh per kW D	OC)	1,389		
Annual Panel Degradation Rate		0.50%		
Est. Delta, P95/P50		93.50%		
Est. P50 kWh/year Production	118,621			
Est. P95 kWh/year Production		110,910		
AC to DC Conversion Factor		112%		

Meet the	District	System	Distribution	Financial	Development
Team	Use Case	Design	System Impact	Analysis	Planning

Financial Analysis: Customer-Owned vs Investor-Owned

Customer-Owned Scenario

The property owner or co-op board finances and owns the system outright, capturing tax credits, incentives, and net-metering benefits

Estimated Customer Savings	\$751,000
Customer After-Tax Internal Rate of Return (ATIRR)	13.04%
Investment Break-Even Year	9

Investor-Owned Scenario

A separate developer finances and owns the system, typically selling electricity back to the building via a Power Purchase Agreement (PPA)

Estimated Customer Savings	\$144,000
Customer After-Tax Internal Rate of Return (ATIRR)	-5.33%
Investment Break-Even Year	26

Meet the	
Team	

Is our PPA Price Competitive Enough?

Con Edison Delivery Rate Structures

Time-of-Use Periods	PEAK RATES 8 A.M. TO MIDNIGHT	OFF-PEAK RATES ALL OTHER HOURS OF THE WEEK	
JUNE 1 TO SEPT 30	35.23 cents/kWh	2.49 cents/kWh	
ALL OTHER MONTHS	13.05 cents/kWh	2.49 cents/kWh	
Standard Delivery Periods	RATES <250 KWH	RATES >250 KWH	
Standard Delivery Periods UNE 1 TO SEPT 30	rates <250 kwh 16.107 cents/kWh	RATES >250 KWH 18.518 cents/kWh	

- In a customer-owned scenario, over the project lifetime, our system is able to generate \$751,000 in customer savings while breaking-even in only 9 years.
- Depending on the building's rate structure, the savings can vary. If the building is on a time-of-use rate structure, our PV and storage system can potentially generate more savings through time-of-use optimization and peak load shifting.
- If the building is on a **standard delivery rate structure**, our PPA price of \$0.16/kWh still remains competitive.

Meet the	District	System	Distribution	Financial	Development
Team	Use Case	Design	System Impact	Analysis	Planning

Codes and Regulations

- <u>FC504.4:</u> This section (and its subsections) sets the minimum clearance and access requirements for building rooftops.
 - For each 12 linear feet of building perimeter accessible from the frontage space of the building, a minimum clearance of 6 feet in width and 6 feet in depth from any obstruction shall be provided.
 - Clear Path must be at least 6 feet wide and 9 feet tall
 - Distinct clear path every 100 linear feet with no more than 100 feet between distinct clear paths
- Wind Load Resistance: Rooftop-mounted PV systems and their supports must be designed and installed to resist wind loads as specified in Table R301.2(2) of the 2020 Residential Code of New York State (RCNYS). These loads should be adjusted for building height and exposure in accordance with Table R301.2(3).

Meet the Team District Use Case System Design Distribution System Impact Financial Analysis

Development Timeline and Energy Equity

Development Timeline

2-3 Months Phase 1 – Feasibility & Design 3-4 Months Phase 2 – Permitting & Procurement Phase 3 – Construction & Commissioning

Community Outreach and Risk Mitigation

- 1. Early and transparent communication to rent-stabilized tenants, co-op boards and low-income housing groups on construction schedules, rooftop access, safety and to address common concerns demystifying solar
- 2. For BESS, compliance with UL 9540, NEC Article 706, and FDNY's TM-5 ensures adequate firefighting access and hazard mitigation
- 3. By emphasizing local job creation and cost savings, the initiative gains stronger community buy-in and counters skepticism about potential rent hikes or gentrification pressures.

Meet the
Team

Appendix I: Load Profiles

Appendix II: NYC Climate Analysis

Sun Path

Global Horizontal & Diffuse Irradiance

