Analiza Algoritmilor Test 1

- 1. (2p) Fie mulţimile $A, B, C \subseteq N$. Ştiind că:
 - i. $A \cap B = B \cap C = A \cap C = \emptyset$, şi
 - ii. $A \cup B \cup C = N$, şi
- iii. A, B, C sunt mulțimi recursiv enumerabile, demonstrați că A, B, C sunt recursive.

Rezolvare:

Din iii. => Exista P_A , P_B , P_C programele care decid multimile respective (intorc 1 daca elementul apartine multimii, altfel nu se termina)

Din B - R.E. si C - R.E. => $B \cup C$ - R.E. (justificare: se poate scrie un program $P_{B \cup C}(x)$ care sa ruleze in paralel $P_B(x)$ si $P_C(x)$, si care se termina cand unul dintre cele doua programe se termina).

Dar $B \cup C = N \setminus A$ pentru ca A, B, C sunt disjuncte intre ele (din i.) si reuninea lor este multimea numerelor naturale (din ii.).

Din A - R.E. si $N \setminus A$ - R.E. => A - R. (justificare: se poate construi programul $P'_A(x)$ care ruleaza in paralel $P_A(x)$ si $P_{N \setminus A}(x)$; daca $P_A(x)$ se termina primul, atunci x ϵA , deci programul P'_A intoarce 1; altfel, daca $P_{N \setminus A}(x)$ se termina primul, atunci x $\epsilon N \setminus A$, deci P'_A intoarce 0).

q.e.d.

Analog pentru multimile B si C, bazandu-ne pe proprietatile de asociativitate si comutativitate ale operatiei de reuniune.

2. (4p) Rezolvaţi recurenţa de complexitate folosind una dintre metodele studiate, exceptând metoda substituţiei, şi demonstraţi complexitatea găsita, prin metoda substituţiei:

$$T(n) = 18 T(\sqrt[18]{n}) + log_{11}^{2017}n$$

Obs: Este suficient să o încadrați într-o clasă de complexitate 'O' ('o' mare).

Rezolvare:

Partea I

Alegem, de exemplu, **metoda iterativa**. Dezvoltam termenii recurentei:

$$T(n) = 18 \ T(n^{\frac{1}{18}}) + log_{11}^{2017} n$$

$$18T(n^{\frac{1}{18}}) = 18^2T(n^{\frac{1}{18^2}}) + 18log_{11}^{2017}n^{\frac{1}{18}}$$

...

$$18^{k}T(n^{\frac{1}{18^{k}}}) = 18^{k+1}T(n^{\frac{1}{18^{k+1}}}) + 18^{k}log_{11}^{2017}n^{\frac{1}{18^{k}}}$$

. . .

$$18^{h}T(n^{\frac{1}{18^{h}}}) = 18^{h}log_{11}^{2017}n^{\frac{1}{18^{h}}}$$

 $T(n) = \log_{11}^{2017} n \left(1 + \frac{1}{18^{2016}} + \frac{1}{18^{2\cdot2016}} + \dots + \frac{1}{18^{h\cdot2016}} \right)$

Ecuatia din paranteza reprezinta suma termenilor unei progresii geometrice, cu ratia $\frac{1}{10000}$.

 \oplus

 $T(n) = log_{11}^{2017} n \left(\frac{1(1 - (\frac{1}{18^{2016}})^{h+1})}{1 - \frac{1}{18^{2016}}} \right)$; dar cand $n \to \infty$, $h \to \infty$, deci termenul din paranteza tinde la o constanta.

Deci
$$T(n) \in \Theta(\log_{11}^{2017} n)$$

Partea a II-a

Conform **Obs.**, este suficient sa demonstram, prin **metoda subtitutiei**:

$$P(n): T(n) \subseteq O(log_{11}^{2017}n)$$

C.B. P(1) - nu e un caz valid.

 $P(a): T(a) = log_{11}^{2017} a \in O(log_{11}^{2017} a)$, cu a = ct., adevarat. In particular, a poate fi 2, dar nu putem sti valoarea reala a cazului de baza, decat daca am avea acces la algoritmul reprezentat prin aceasta recurenta.

P.I.

I.I. Pp. adevarata
$$P(n^{\frac{1}{18}})$$
 : $T(n^{\frac{1}{18}}) \in O(log_{11}^{2017}n^{\frac{1}{18}})$

Dorim sa demonstram P(n): $T(n) \in O(log_{11}^{2017}n)$

Pornind de la $P(n^{\frac{1}{18}})$, conform definitiei clasei de complexitate O' putem scrie ca $\exists c \in \Re_+^*, \ n_0 \in \mathbb{K}$, a.i. $0 \le T(n^{\frac{1}{18}}) \le c \cdot log_{11}^{2017} n^{\frac{1}{18}}, \ \forall n \ge n_0$.

Prelucram inecuatia, inmultind cu 18, si apoi adunand $log_{11}^{2017}n$:

$$log_{11}^{2017}n \le 18 \cdot T(n^{\frac{1}{18}}) + log_{11}^{2017}n \le 18 \cdot c \cdot log_{11}^{2017}n^{\frac{1}{18}} + log_{11}^{2017}n$$

Dar $log_{11}^{2017} n \ge 0$, $\forall n$, termenul din mijloc e chiar T(n), iar:

$$18 \cdot c \cdot log_{11}^{2017} n^{\frac{1}{18}} + log_{11}^{2017} n \leq (c+1) \cdot log_{11}^{2017} n.$$

Este suficient sa aratam ca exista o constanta $c' \in \Re^*_+$, a.i.

 $0 \le T(n) \le c' \cdot log_{11}^{2017} n$, $\forall n \ge n_0$, pentru a demonstra P(n). Fie c' = c + 1; conform echivalentelor demonstrate mai sus, rezulta P(n) adevarata, $\forall n \ge n_0$.

3. (4.5p) Stabiliți valoarea de adevăr pentru propozițiile de mai jos și demonstrați.

a)
$$18^{n-11} \in \Omega(18^n)$$

Rezolvare:

<u>cu limita:</u>

$$\overline{\lim_{n \to \infty} \frac{18^{n-11}}{18^n}} = \frac{1}{18^{11}} = const. \implies 18^{n-11} \in \Omega(18^n)$$

cu definitii:

 \exists constanta $c \in R_+$, c > 0, $\sin n_0 \in N$ a.i. pentru $\forall n \ge n_0$ avem ca $0 \le c \cdot 18^n \le 18^{n-11}$ $\Rightarrow c \le \frac{1}{18^{11}}$, deci am gasit constanta c din definitie $\Rightarrow 18^{n-11} \in \Omega(18^n)$

b)
$$n^2 \log_2 \log_2 n \in O(11^{\log_2 \sqrt{n}})$$

Rezolvare:

<u>cu limita:</u>

$$\lim_{n \to \infty} \frac{n^2 \log_2 \log_2 n}{11^{\log_2 \sqrt{n}}} = \lim_{n \to \infty} \frac{n^2 \log_2 \log_2 n}{11^{\log_2 11 + \log_{11} \sqrt{n}}} = \lim_{n \to \infty} \frac{n^2 \log_2 \log_2 n}{\sqrt{n}^{\log_2 11}} = \lim_{n \to \infty} \frac{n^2 \log_2 \log_2 n}{n^{\frac{1}{2} \cdot \log_2 11}}$$

$$= \lim_{n \to \infty} n^{2 - \log_2 \sqrt{11}} \log_2 \log_2 n$$

Intrebarea la care trebuie sa raspundem acum devine: cum este exponentul lui n fata de zero?

$$\begin{split} \exp &= 2 - \log_2 \sqrt{11} = \log_2 4 - \log_2 \sqrt{11} = \log_2 \frac{4}{\sqrt{11}} = \log_2 \sqrt{\frac{16}{11}} = \frac{1}{2} \cdot \log_2 \frac{16}{11} \\ & \text{dar } \frac{16}{11} \ge 1 \Rightarrow \exp > 0 \\ \Rightarrow \lim_{n \to \infty} n^{\exp} \log_2 \log_2 n = +\infty \Rightarrow n^2 \log_2 \log_2 n \not \in \mathrm{O}(11^{\log_2 \sqrt{n}}) \end{split}$$

cu definitii:

 \exists constanta c \in R₊, c > 0, si n₀ \in N a.i. pentru \forall n \geq n₀ sa avem $0 \leq n^2 \log_2 \log_2 n \leq c \cdot 11^{\log_2 \sqrt{n}}$

$$\Rightarrow n^2 \log_2 \log_2 n \le c \cdot \sqrt{n^{\log_2 11}} \Rightarrow n^2 \log_2 \log_2 n \le c \cdot n^{\frac{1}{2} \cdot \log_2 11}$$

Comparam exponentii lui n:

$$2 \le \frac{1}{2} \cdot log_2 \ 11 \Rightarrow 2 - \frac{1}{2} \cdot log_2 \ 11 \le 0 \Rightarrow \frac{1}{2} \cdot log_2 \frac{16}{11} \le 0$$

dar $\frac{16}{11} \ge 1 \Rightarrow log_2 \frac{16}{11} > 0$

 \Rightarrow nu exista constanta c din definitie \Rightarrow $n^2 log_2 log_2 n \notin O(11^{log_2 \sqrt{n}})$

c) Daca
$$f(n) \in \omega(n^{11})$$
 și $g(n) \in \Theta(\log_2 n)$, atunci $f(g(n)) \in \Omega(\sqrt{n})$

Rezolvare:

prin contra-exemplu:

Putem alege
$$f(n) = n^{12} \in \omega(n^{11})$$
 $si\ g(n) = log_2\ n \in \Theta(log_2\ n)$

$$\Rightarrow f(g(n)) = g(n)^{12} = log_2^{12}n \notin \Omega(\sqrt{n}) \ pentru\ ca\ \lim_{n\to\infty} \frac{log_2^{12}n}{\sqrt{n}} = 0 \ (\not\in (0,\infty])$$

4. (3.5p) Fie problema BIN, care testează oprirea unui program pe inputuri binare astfel:

BIN: "Se oprește un program arbitrar P', pe un input arbitrar w' de forma {0,1}*?". Inputul w' e format numai din 1 si 0; e.g. 111, 10, 0, 0101 etc.

Demonstrați (ne)decidabilitatea problemei BIN, prin reducerea Turing a acesteia de la/la o problemă cunoscută.

Rezolvare:

Problema BIN seamana izbitor de mult cu problema opririi (PO). Prin urmare, dorim sa aratam ca BIN este nedecidabila, prin demonstrarea reducerii $PO \le_T BIN$.

Pasul 1: pentru o intrare oarecare (P, w) pentru PO, construim o intrare convenabila (P', w') a lui BIN, astfel incat $PO(P, w) = 1 \Leftrightarrow BIN(P', w') = 1$.

```
1: function P'(w')
2: P(w)
3: if w'∈{0,1}*
4: return 1
5: else
6: infinite-loop
7: end function
```

Pasul 2: $PO(P, w) = 1 \Rightarrow BIN(P', w') = 1$. Cand P se opreste pe w (PO(P, w) = 1), P' se va opri si el, pentru orice input w', care are proprietatea ceruta in enunt.

Pasul 3: $BIN(P', w') = 1 \Rightarrow PO(P, w) = 1$. Cand exist ainputuri pe care P' se opreste, inseamna ca acele inputuri sunt in format binar si, in plus, ca P(w) s-a oprit.

5. (4p) Studiați posibilitatea aplicării teoremei Master în urmatoarele situații și rezolvați recurența, acolo unde este cazul:

a)
$$T(n) = 2017 T(\frac{n}{2017}) + \frac{n}{\log_2 n}$$

b)
$$T(n) = 2016 T(\frac{n}{2017}) + n$$

Rezolvare:

a)
$$f(n) = \frac{n}{\log_2 n}$$
; $n^E = n^{\log_b a} = n$

Intuitiv, s-ar putea aplia primul caz al Teoremei Master (T.M.). Incercam sa demonstram ca $\exists \varepsilon > 0$ astfel incat $f(n) \in O(n^{E-\varepsilon})$:

$$L = \lim_{n \to \infty} \frac{f(n)}{n^{E-\varepsilon}} = \lim_{n \to \infty} \frac{n}{\log_2 n \cdot n^{E-\varepsilon}} = \lim_{n \to \infty} \frac{n^{\varepsilon}}{\log_2 n}$$

Dar $L = \infty$, $\forall \varepsilon > 0$, deci cazul I al T.M. nu poate fi aplicat.

Cazul al II-lea al T.M. functioneaza doar pentru $k \ge 0$ (vezi teoria documentatia .pdf aferenta seminarului). Aici, k=-1.

Cazul al III-lea nu functioneaza (dem. cu limita, de exemplu).

Rezulta ca nu se poate aplica Teorema Master, varianta clasica.

Exista o varianta extinsa (care nu intra in materia seminarului, dar a fost acceptata ca rezolvare):

Cf. cazului al II-lea extins, pt k=-1 avem:

$$f(n) \in \Theta(n^E(\log_b n)^{-1}) \Rightarrow T(n) = \Theta(n^E(\log_b \log_b n)) = \Theta(n \cdot \log_{2017} \log_{2017} n)$$

b)
$$f(n) = n$$
; $n^E = n^{\log_b a} = n^{\log_{2017} 2016}$, unde $\log_{2017} 2016$ este, evident, subunitar.

Intuitiv, s-ar putea aplia cazul al III-lea al Teoremei Master(T.M.). Incercam sa demonstram ca $\exists \varepsilon > 0$ astfel incat $f(n) \in \Omega(n^{E+\varepsilon})$ (*):

$$L = \lim_{n \to \infty} \frac{f(n)}{n^{E+\varepsilon}} = \lim_{n \to \infty} \frac{n}{n^{\log_{2017} 2016+\varepsilon}} = \lim_{n \to \infty} n^{1 - (\log_{2017} 2016 + \varepsilon)}$$

Pentru a valida conditia (*), trebuie ca $L \in (0, \infty]$. Pentru $\varepsilon = 1 - log_{2017} 2016 > 0$, exponentul lui n din limita devine 0, deci $L = 1 \in (0, \infty]$.

Totusi, mai avem de verificat o conditie pentru cazul al III-lea:

 $af(n/b) \le cf(n)$ pentru o constanta $c \in (0,1)$ si pentru un n sucient de mare.

 $2016f(n/2017) \le c \cdot n \Leftrightarrow \frac{2016}{2017}n \le c \cdot n$. Pentru $c = \frac{2016}{2017} \in (0,1)$ este respectata si aceasta conditie.

Asadar,
$$T(n) = \Theta(f(n)) = \Theta(n)$$
, cf. caz3 T.M.