

The blue and green colors are actually the same

http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/

Compression

How is it that a 4MP image can be compressed to a few hundred KB without a noticeable change?

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Slides: Efros

Using DCT in JPEG

- The first coefficient B(0,0) is the DC component, the average intensity
- The top-left coeffs represent low frequencies,
 the bottom right high frequencies

Image compression using DCT

Quantize

- More coarsely for high frequencies (which also tend to have smaller values)
- Many quantized high frequency values will be zero

Encode

Can decode with inverse dct

Filter responses

$$G = \begin{bmatrix} -415.38 & -30.19 & -61.20 & 27.24 & 56.13 & -20.10 & -2.39 & 0.46 \\ 4.47 & -21.86 & -60.76 & 10.25 & 13.15 & -7.09 & -8.54 & 4.88 \\ -46.83 & 7.37 & 77.13 & -24.56 & -28.91 & 9.93 & 5.42 & -5.65 \\ -48.53 & 12.07 & 34.10 & -14.76 & -10.24 & 6.30 & 1.83 & 1.95 \\ 12.12 & -6.55 & -13.20 & -3.95 & -1.88 & 1.75 & -2.79 & 3.14 \\ -7.73 & 2.91 & 2.38 & -5.94 & -2.38 & 0.94 & 4.30 & 1.85 \\ -1.03 & 0.18 & 0.42 & -2.42 & -0.88 & -3.02 & 4.12 & -0.66 \\ -0.17 & 0.14 & -1.07 & -4.19 & -1.17 & -0.10 & 0.50 & 1.68 \end{bmatrix}$$

Quantized values

Quantization table

$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

JPEG Compression Summary

- 1. Convert image to YCrCb
- 2. Subsample color by factor of 2
 - People have bad resolution for color
- 3. Split into blocks (8x8, typically), subtract 128
- 4. For each block
 - a. Compute DCT coefficients
 - b. Coarsely quantize
 - Many high frequency components will become zero
 - c. Encode (with run length encoding and then Huffman coding for leftovers)

Why do we get different, distance-dependent interpretations of hybrid images?

Clues from Human Perception

- Early processing in humans filters for various orientations and scales of frequency
- Perceptual cues in the mid-high frequencies dominate perception
- When we see an image from far away, we are effectively subsampling it

Early Visual Processing: Multi-scale edge and blob filters

Campbell-Robson contrast sensitivity curve

Hybrid Image in FFT

Review: Image filtering

$$h[m,n] = \sum_{l=1}^{n} f[k,l] g[m+k,n+l]$$

Image filtering

$$h[m,n] = \sum_{k,l} f[k,l] g[m+k,n+l]$$

Image filtering

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[m,n] = \sum_{k,l} f[k,l] g[m+k,n+l]$$

Credit: S. Seitz

Filtering in spatial domain

1	0	-1
2	0	-2
1	0	-1

Filtering in frequency domain **FFT** FFT Inverse FFT

Review of Filtering

- Filtering in frequency domain
 - Can be faster than filtering in spatial domain (for large filters)
 - Can help understand effect of filter
 - Algorithm:
 - 1. Convert image and filter to fft (fft2 in matlab)
 - 2. Pointwise-multiply ffts
 - Convert result to spatial domain with ifft2

Review of Filtering

- Linear filters for basic processing
 - Edge filter (high-pass)
 - Gaussian filter (low-pass)

[-1 1] Gaussian FFT of Gradient Filter FFT of Gaussian

Things to Remember

- Sometimes it makes sense to think of images and filtering in the frequency domain
 - Fourier analysis
- Can be faster to filter using FFT for large images (N logN vs. N² for autocorrelation)
- Images are mostly smooth
 - Basis for compression
- Remember to low-pass before sampling

Previous Lectures

- We've now touched on the first three chapters of Szeliski.
 - 1. Introduction
 - 2. Image Formation
 - 3. Image Processing
- Now we're moving on to
 - 4. Feature Detection and Matching
 - Multiple views and motion (7, 8, 11)

Edge / Boundary Detection

Szeliski 4.2

Computer Vision

James Hays

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Why do we care about edges?

Extract information, recognize objects

 Recover geometry and viewpoint

Origin of Edges

Edges are caused by a variety of factors

Source: Steve Seitz

Characterizing edges

An edge is a place of rapid change in the image intensity function

Intensity profile

With a little Gaussian noise

Source: D. Hoiem

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution: smooth first

• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Source: S. Seitz

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

Source: S. Seitz

Derivative of Gaussian filter

Tradeoff between smoothing and localization

 Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Designing an edge detector

- Criteria for a good edge detector:
 - Good detection: the optimal detector should find all real edges, ignoring noise or other artifacts
 - Good localization
 - the edges detected must be as close as possible to the true edges
 - the detector must return one point only for each true edge point
- Cues of edge detection
 - Differences in color, intensity, or texture across the boundary
 - Continuity and closure
 - High-level knowledge

Canny edge detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

27,000 citations!

Example

original image (Lena)

Derivative of Gaussian filter

Compute Gradients (DoG)

X-Derivative of Gaussian

Y-Derivative of Gaussian

Gradient Magnitude

Get Orientation at Each Pixel

- Threshold at minimum level
- Get orientation

theta = atan2(gy, gx)

Non-maximum suppression for each orientation

At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

Source: D. Forsyth

Sidebar: Interpolation options

- imx2 = imresize(im, 2, interpolation_type)
- 'nearest'
 - Copy value from nearest known
 - Very fast but creates blocky edges
- 'bilinear'
 - Weighted average from four nearest known pixels
 - Fast and reasonable results
- 'bicubic' (default)
 - Non-linear smoothing over larger area (4x4)
 - Slower, visually appealing, may create negative pixel values

Before Non-max Suppression

After non-max suppression

Hysteresis thresholding

Threshold at low/high levels to get weak/strong edge pixels

Do connected components, starting from strong edge pixels

Hysteresis thresholding

- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.

Final Canny Edges

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

MATLAB: edge(image, 'canny')

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Source: S. Seitz