Problem 1 (Ternary expansion). To formulate this problem, we first assume some basic knowledge in mathematical analysis:

- (Convergence of geometric series) If $q \in (0,1)$, then geometric series $\sum_{n=0}^{\infty} q^n$ converges to $\frac{1}{1-q}$.
- (Comparison principle) Let $a_n \ge 0$ and $b_n \ge 0$ satisfy $b_n \ge a_n$ for any $n \in \mathbb{N}$. If $\sum_{n=1}^{\infty} b_n$ converges to $B \in \mathbb{R}$, then $\sum_{n=1}^{\infty} a_n$ converges to some real number A. Moreover, $A \le B$.

Let us formulate the ternary expansions for all real numbers in [0,1] as follows: for any $x \in [0,1]$, we write

$$[x]_3 = 0.d_1d_2d_3... \equiv \sum_{n=1}^{\infty} \frac{d_n}{3^n}, \quad d_n \in \{0, 1, 2\}.$$

For example, $\frac{1}{3}$ has two different ternary expansions:

$$\left[\frac{1}{3}\right]_3 = 0.100000... = 0.0222222....$$

Now prove the following property. If $x \in [0,1]$ has two distinct ternary expansions

$$[x]_3 = 0.d_1d_2...d_n... = 0.e_1e_2...e_n...,$$

then the following holds. Let $n \equiv \min\{k \in \mathbb{Z}_+ : d_k \neq e_k\}$. Then $e_n = d_n + 1$ and

$$d_k = 2$$
, $e_k = 0$, $\forall k \geqslant n+1$.

pf. W.L.O.G
$$e_n$$
- $d_n \in \{1, 2\}$ where $n = \min\{k \in \mathbb{Z}_+ \mid d_k \neq e_k\}$

if e_n - $d_n = 2$

$$\sum_{k=1}^{\infty} \frac{d_k}{3^k} - \sum_{k=1}^{\infty} \frac{e_k}{3^k} = \frac{2}{3^n} + \sum_{k=n+1}^{\infty} \frac{d_k}{3^k} - \sum_{k=n+1}^{\infty} \frac{e_k}{3^k}$$

Since $0 \le \frac{d_k}{3^k} \cdot \frac{e_k}{3^k} \le \frac{2}{3^k} \cdot \sum_{k=n+1}^{\infty} \frac{2}{3^k} = \frac{1}{3^n} < \infty$ for a given $n \in \mathbb{Z}$.

Pry companison principle, we have $\sum_{k=n+1}^{\infty} \frac{d_k}{3^k} < \infty$, $\sum_{k=n+1}^{\infty} \frac{e_k}{3^k} < \infty$.

So
$$(I) = \frac{2}{3^n} + \sum_{k=n+1}^{\infty} \frac{d_k - e_k}{3^k} > \frac{2}{3^n} - \sum_{k=n+1}^{\infty} \frac{2}{3^k} = \frac{1}{3^n} > 0$$

contradiction

$$\frac{\sum_{k=1}^{\infty} \frac{e_k}{3^k} - \sum_{k=1}^{\infty} \frac{d_k}{3^k} = \left(\sum_{k=n+1}^{\infty} \frac{e_k - d_k}{3^k}\right) + \frac{1}{3^n} = \sum_{k=n+1}^{\infty} \frac{e_k - d_{k+2}}{3^k} = 0$$

But ex-dx+2 > 0

the only possibility is that
$$d_k-e_k=2$$
. ($\forall k\ge n+1$)
so $e_n=d_n+1$. $\forall k\ge n+1$. $e_k=0$. $d_k=2$.

Problem 2. Let us construct an infinite subset $C \subset [0,1]$ in the following inductive process.

$$F_{0} = [0,1], \qquad = 0.011$$

$$F_{1} = \left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right], \qquad \frac{\psi}{2\pi} = 0 \cdot \frac{1}{3} + \left(\frac{1}{9} + \frac{1}{2\pi}\right)$$

$$F_{2} = \left[0,\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{1}{3}\right] \cup \left[\frac{2}{3},\frac{7}{9}\right] \cup \left[\frac{8}{9},1\right], \qquad g_{2}(\psi) = 2$$

$$\vdots \qquad d_{1} = g_{2}(\psi) = g_{2}(\psi) = 0$$

$$\vdots \qquad d_{1} = g_{1}(\frac{1}{9} - \frac{1}{9}) = g_{2}(\frac{1}{9}) = 0$$

$$F = \bigcap_{n=0}^{\infty} F_{n}. \quad \left[0,\frac{1}{27}\right] \left[\frac{2}{27},\frac{3}{27}\right]$$

П

That is, in the *n*th step, there are 2^n -intervals $I_k^{(n)}$ and $J_k^{(n)}$ in the set F_n . The union $I_k \cup I_k$ comes from deleting an open interval that contributes the central 1/3 in its predecessor. We will prove that F is uncountable by achieve the following steps.

(1) For any $n \in \mathbb{Z}_+$, F_n is identical to the following set F'_n of ternary decimals

$$\{0.d_1d_2d_3d_4\dots|d_j\in\{0,2\}\ \forall 1\leqslant j\leqslant n\}.$$

Also prove that any element $x \in F$ has a unique ternary expansion in $\bigcap_{n=1}^{\infty} F'_n$.

(2) We take a countable subset $G = \{x^1, x^2, x^3 \dots\} \subseteq F$ and write them in the ternary expansion as described above,

$$x^{1} = 0.d_{1}^{1}d_{2}^{1}d_{3}^{1}d_{4}^{1} \dots$$

$$x^{2} = 0.d_{1}^{2}d_{2}^{2}d_{3}^{2}d_{4}^{2} \dots$$

$$x^{3} = 0.d_{1}^{3}d_{2}^{3}d_{3}^{3}d_{4}^{3} \dots$$

$$x^{4} = 0.d_{1}^{4}d_{2}^{4}d_{3}^{4}d_{4}^{4} \dots$$

:

where $d_i^j \in \{0, 2\}$ for any $i, j \in \mathbb{Z}_+$. We define an element $p \in F$ with a ternary expansion $[p]_3 = 0.p_1p_2p_3p_4...$ such that

$$p_j = \begin{cases} 0 & \text{if } d_j^j = 2, \\ 2 & \text{if } d_j^j = 0. \end{cases}$$

Prove that $p \notin G$.

(3) Based on the previous steps, prove that the set F is uncountable.

(1) Pf. The correspondence between Fr and Fr' can be clarified as follows.

For convenience, define function

$$t: [0,1] \to \mathbb{Z} \qquad t\cdot (m) = \begin{cases} 0 & 0 \le m \le \frac{1}{3} \\ 1 & \frac{1}{3} \le m \le \frac{2}{3} \end{cases}$$

denote $f: F_n \rightarrow F_n'$

m → 0.dido ··· di

where $d_i = t(m)$

$$d\hat{i}_{H} = t \left(3 \cdot \left(m - \frac{d\hat{i}}{3^{\hat{i}}} \right) \right) / \leq \hat{t} \leq n - 1. \tag{I}$$

Inversely, given 0. didz...dn. for $1 \le k \le n$ pick I_k at step k if $d_k = 0$ pick J_k at step k if $d_k = 2$.

So Fr and Fr' are corresponding.

Using function f. $\forall x \in F$, f(x) is the unique ternary expansion of x.

fix) is unique because by the recurrence relation

if di is unique. then di+1 is unique. Inductively fix) is unique

(2). Pf. If
$$P \in G$$

 $\exists j \in \mathbb{Z}_{+}$ s.t. $0.d_{1}^{j}d_{2}^{j}...d_{j}^{j}...=P$
but by definition $P_{j} \neq d_{j}^{j}$.
Contradiction.
So $P \notin G$.

(3). Suppose F is countable

then F is a commtable subset of itself.

by (2) FPEF s.t. P&G=F contradiction

obviously F is infinite.

so F is uncountable.

Problem 3. This problem is to prove **Cantor's Theorem**: Given any set A, denote by $\mathscr{P}(A)$ the power set of A. Then there does not exist a surjective function $f: A \to \mathscr{P}(A)$.

(1) First, consider a simpler case of Cantor's Theorem. Let $D = \{1, 2, 3, 4\}$. Then construct an injective function $f: D \to \mathcal{P}(D)$. For the function f you just constructed, write down all the elements of the set

$$B \equiv \{x \in D | x \notin f(x)\}.$$

- (2) Show that there exists no surjective function $f: D \to \mathcal{P}(D)$ for any finite set.
- (3) Using the constructive strategy in (1), prove Cantor's Theorem in full generality.

(1). Pf. let
$$f: D \to P(D)$$
 f is obviously injective.
 $x \mapsto \{x\}$
 $B := \{x \in D \mid x \notin \{x\}\} = \phi$.

(2). Pf. if f is surjective.

 $\forall y_0 \in P(D)$. $\exists x_0 \in D$. $f(x_0) = y_0$.

So $|D| \gg |P(D)|$ by definition. When $|D| < \infty$ but this implies $|D| \gg 2^{|D|}$ Which is false for all $|D| \in \mathbb{Z}_{>0}$.

contradiction.

(3) If there's a surjection $f: D \rightarrow P(D)$.

Let $B:= \{x \in D \mid x \notin f(x)\} \in P(D)$ Since f is a surjection. $\exists x_0 \in D: f(x_0) = B$ if $x_0 \in B$ then $x_0 \notin f(x_0) = B$ if $x_0 \notin B$ then $x_0 \in f(x_0) = B$ contradiction.

So there is no such surjection.