

Stick Insect Genomes Reveal Natural Selection's Role in Parallel Speciation (Soria-Carrasco *et al.*)

Om Vaknalli (18376)
2nd Year BS-MS Natural Sciences, IISER-Bhopal
17th June 2019, IISER-Bhopal

About the paper:

Authors: Víctor Soria-Carrasco, Zachariah Gompert, Aaron A. Comeault, Timothy E. Farkas, Thomas L. Parchman, J. Spencer Johnston, C. Alex Buerkle, Jeffrey L. Feder, Jens Bast, Tanja Schwander, Scott P. Egan, Bernard J. Crespi, Patrik Nosil.

Publication Details: Science (IF: 37. 205), 16 May 2014: Vol. 344, Issue 6185, pp. 738-742

274 Citations

Web-link: https://science.sciencemag.org/content/344/6185/738

Introduction:

Parallel Evolution

Parallel Speciation

Sources: BioLib.cz (top), arthropodafotos.de (Extreme left), Insektarium (left)

Introduction: The Main Question

What is the genomic basis of parallel speciation?

 What are the effects of adaptation on genomic divergence?

• Can the underlying genetic changes driving the divergence of populations into new species be predicted or repeated?

Population Pair	HVA × HVC	MR1A × MR1C	R12A × R12C	LA × PRC			
Population characteristics							
Geography	adjacent	adjacent	adjacent	separated			
Gene flow (N₀m)	28	37	93	11			
No. individuals sequenced (per individual population)	20, 20	20, 20	21, 21	19, 19			

Sources (for this slide and next slide): Science

 Does genomic divergence vary geographically between different ecotype pairs?

				1				
Population Pair	HVA × HVC	MR1A × MR1C	R12A × R12C	LA × PRC				
Population characteristics								
Geography	adjacent	adjacent	adjacent	separated				
Gene flow (N₀m)	28	37	93	11				
No. individuals sequenced (per individual population)	20, 20	20, 20	21, 21	19, 19				
Genome characteristics from all SNPs								
Mean MAF	17%	20%	19%	20%				
Mean F _{st}	0.013	0.015	0.015	0.031				
Median F _{\$™}	0.006	0.007	0.007	0.015				
Range of F _{ST}	0.000-0.358	0.000-0.461	0.000-0.398	0.000-0.8000				
90th quantile	0.035	0.041	0.041	0.083				
95th quantile	0.050	0.058	0.056	0.116				

Distribution of the size of HMM regions (colours are: blue = low differentiation regions, black = moderate differentiation regions, red/orange = high differentiation regions). Absolute frequencies across the four categories are shown.

Test for parallelism of highly divergent SNPs. Quantiles refer to the empirical F_{ST} distribution.

	Observed number of SNPs	Expected number of SNPs	p-value	Enrichment (observed / expected)
>90 th quantile in 2 population pairs	228,347	213,423	<0.001	1.07
>90 th quantile in 3 population pairs	22,366	15,809	<0.001	1.41
>90 th quantile in 4 population pairs	945	439	<0.001	2.15
>90 th quantile in 2 or more population pairs	251,658	229,671	<0.001	1.10
>99 th quantile in 2 population pairs	4757	2582	<0.001	1.84
>99 th quantile in 3 population pairs	94	17	<0.001	5.53
>99 th quantile in 4 population pairs	0	0	n/a	n/a
>99 th quantile in 2 or more population pairs	4851	2600	<0.001	1.87

B) maf distribution LA

 What other factors affect the parallel genetic divergence?

 What are the functions of genomic regions exhibiting parallel divergence?

Sources: BugGuide

Conclusion

- Early parallel speciation Non-parallel genetic divergence
- Some regions show parallel divergence
 - More coding genes than expected
- Divergent selection \implies Repeated genomic divergence
- "Though repeated evolutionary scenarios would likely result in idiosyncratic outcomes, there may be a repeatable component driven by selection that can be detected, even at the genome level and during the complex process of speciation", quoted from Soria-Carrasco et al., 2014

References

- 1. D. L. Stern, Nat. Rev. Genet. 14, 751–764 (2013).
- 2. R. D. H. Barrett, H. E. Hoekstra, Nat. Rev. Genet. 12, 767–780 (2011).
- 3. M. K. Burke, Proc. R. Soc. London Ser. B 279, 5029-5038 (2012).
- 4. D. M. Weinreich, N. F. Delaney, M. A. Depristo, D. L. Hartl, Science 312, 111–114 (2006).
- 5. J. R. Meyer et al., Science 335, 428-432 (2012).
- 6. J. B. Losos, Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles (Univ. California Press, Berkeley, CA, 2009).
- 7. F. C. Jones et al., Nature 484, 55-61 (2012).
- 8. G. L. Conte, M. E. Arnegard, C. L. Peichel, D. Schluter, Proc. R. Soc. London Ser. B 279, 5039–5047 (2012).
- 9. Heliconius Genome Consortium, Nature 487, 94–98 (2012).
- 10. D. Schluter, L. M. Nagel, Am. Nat. 146, 292–301 (1995).
- 11. J. L. Feder, S. P. Egan, P. Nosil, Trends Genet. 28, 342–350 (2012).
- 12. H. Ellegren et al., Nature 491, 756-760 (2012).
- 13. S. H. Martin et al., Genome Res. 23, 1817–1828 (2013).
- 14. H. Ellegren, Trends Ecol. Evol. 29, 51–63 (2014).
- 15. P. Nosil, Am. Nat. 169, 151–162 (2007).

References

- 16. P. Nosil et al., Proc. R. Soc. London Ser. B 279, 5058-5065 (2012).
- 17. P. Nosil, B. J. Crespi, C. P. Sandoval, Nature 417, 440–443 (2002).
- 18. Z. Gompert et al., Ecol. Lett. 17, 369-379 (2014).
- 19. H. D. Rundle et al., Science 287, 306-8. (2000)
- 20. P. Holter, The American Naturalist (2004)
- 20. Evolution by Mark Ridley, 3rd Edition

Any Questions/Suggestions?

Acknowledgements

- I would like to thank Prof. Nagarjun Vijay for giving me this opportunity to present.
- Special thanks to Mr. Aswin Soman for guiding me through the nittygritties of presentation.
- Lastly, I thank everyone here for taking the time out from your schedules to attend this presentation.

Thank-you!