$\begin{array}{c} {\rm Table} \ 4.1 \\ {\rm A} \ {\rm Short} \ {\rm Table} \ {\rm of} \ {\rm Fourier} \ {\rm Transforms} \end{array}$

BESSESSE		f(t)	$F(\omega)$	
	1	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	a > 0
	2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	<i>a</i> > 0
	3	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	<i>a</i> > 0
	4	$te^{-at}u(t)$	$\frac{1}{(a+i\omega)^2}$	a > 0
	5	$t^n e^{-at} u(t)$	$\frac{n!}{(a+i\omega)^{n+1}}$	a > 0
	6	$\delta(t)$	1	
	7	1	$2\pi\delta(\omega)$	
	8	$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	
	9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
	10	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
	11	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	
	12	$\operatorname{sgn} t$	$\frac{2}{j\omega}$	
	13	$\cos \omega_0 t u(t)$	$\frac{\pi}{2}[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] + \frac{j\omega}{\omega_0^2 - \omega^2}$	
	14	$\sin \omega_0 t u(t)$	$\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$	
	15	$e^{-at}\sin \omega_0 t u(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	a > 0
	16	$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	a > 0
	17	$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$	
	18	$\frac{W}{\pi}\operatorname{sinc}(Wt)$	$\mathrm{rect}\left(rac{\omega}{2W} ight)$	
	19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2}$ sinc ² $\left(\frac{\omega\tau}{4}\right)$	
	20	$\frac{W}{2\pi}\operatorname{sinc}^2\left(\frac{Wt}{2}\right)$	$\Delta\left(\frac{\omega}{2W}\right)$	
	21	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$	$\omega_0 = \frac{2\pi}{T}$
		$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	