

CS-3002 Information Security

Lecture # 2: Introduction to Cryptography and Classical Cryptography

Prof. Dr. Sufian Hameed
Department of Computer Science
FAST-NUCES

Cryptography

- » Cryptography (kryptos: secret; graphein: writing)
 - = art and science of keeping information secure
 - → protection of confidentiality and integrity
- » Cryptanalysis = study of attacks against cryptography
- » Cryptology = cryptography and cryptanalysis
- » Steganography (steganos: covered; graphein: writing)
 - = art and science of hiding information
 - → deniability and unobservability of communication

Examples

Cryptography

Message encrypted using the Enigma during WW2

Steganography

Message of 500 bytes hidden within image

Cryptosystem

» Cryptographic system for en/decrypting messages

- $M = \text{plaintext message} \quad C = \text{ciphertext message}$
- » K_E = encryption key K_D = decryption key

Attacks against Cryptosystems

- 1.) Cipher text-only: Attacker possesses a string y of the cipher text
- **2.) Known plaintext:** Attacker possesses a string x of the plaintext and the corresponding cipher text y. The problem now is to find out the key which produces y from x
- **3.) Chosen plaintext:** Attacker has access to the encryption machinery. Hence he can chose a plaintext string x and construct the corresponding cipher text string y.
- **4.) Chosen cipher text:** Attacker has access to the decryption machinery. Hence, he can chose a cipher text string y and construct the corresponding plaintext string x.

Security of Keys

» Kerckhoffs's Principle

- » Cryptosystem is known, security depends on key only
- » Contrasting concept: "security by obscurity"

» Keyspace defined over bits of key

- » n-bit key → size of keyspace 2ⁿ
- » Time of brute-force attacks grows exponentially in n

Bits of key	109 checks per second	Cluster of 100,000 nodes
16	0.07 milliseconds	0.000 milliseconds
32	4.29 seconds	0.004 milliseconds
64	585 years	5 hours
(128)	idered 10 ²² years	10 ¹⁶ years

Cryptography is everywhere

Secure communication:

- web traffic: HTTPS
- wireless traffic: 802.11i WPA2 (and WEP), GSM, Bluetooth

Encrypting files on disk:

- EFS (Encrypting File System)
- TrueCrypt (open-source disk encryption software)

Content protection

- DVD --- Content Scramble System (CSS) is a Digital Rights
 Management (DRM) and encryption system employed on almost all
 commercially produced DVD-Video
 - Easy to break
- Blu-Ray --- Advance Access Content System (AACS)

User authentication

... and much much more

Things to remember

Cryptography is:

- A tremendous tool
- The basis for many security mechanisms

Cryptography is not:

- The solution to all security problems
 - Software bugs
 - Social engineering attacks
- Reliable unless implemented and used properly
 - Wired Equivalent Privacy (WEP -- good example on how not to use cryptography)
- Something you should try to invent yourself
 - many examples of broken ad-hoc designs
 - •Propriety ciphers, once re-engineered are easily broken

History

David Kahn, "The code breakers" (1996)

Historical Cryptosystems

- Monoalphabetic cipher: Each alphabetic character is mapped onto a unique alphabetic character
 - Examples: Shift Cipher, Substitution Cipher, Affine Cipher
- Polyalphabetic cipher: Each alphabetic character is mapped onto various alphabetic characters
 - Examples: Vigenere Cipher, Hill Cipher, Permutation Cipher

Symmetric Cryptosystems

Formal Definition:

Cryptosystem is defined over (K,M,C) and a pair of "efficient" algorithms (E,D)s.t.

 \forall m \in M, k \in K and c \in C : $\boldsymbol{E}(k, m) = c$, $\boldsymbol{D}(k, \boldsymbol{E}(k, m)) = m$

Efficient means run in polynomial time

Shift Cipher

- Cipher in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet. Example includes Ceasar cipher, ROT13
- Ceasar Cipher
 - Each letter is replaced with a fixed shift of 3 letters

Example of Ceasar cipher using left rotation of 3 places

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

Source: wikipedia

Shift Cipher (ROT13)

- **ROT13**
 - Each letter is replaced with a fixed shift of 13 letters

The transformation can be done as follows

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher: NOPQRSTUVWXYZABCDEFGHIJKLM

Modular arithmetic representation:

• Encryption of a letter **x** by a shift **n** can be described mathematically as

$$E_n(x) = (x+n) \mod 26$$

• Decryption is performed in a similar manner

$$D_n(x) = (x-n) \bmod 26$$

Key space is ridiculously small, very easy to break

FAST-NUCES

Source: wikipedia

Substitution Cipher

Idea: use a permutation over the set of characters as key to get a more flexible scheme as in the shift cipher

- Keyspace significantly larger
- Character frequencies are preserved

:	• a	• b	• c	• d	• e	• f	• g	• h	• j	• j	• k	•	• m
	• F	G	• N	• E	• A	• T	• X	• Z	•	•	Q •	в •	• H
•		_											
	• n	• 0	• p	• q	• r	• s	• t	• u	• ٧	• W	• X	• y	• Z

computerscience → NYHWLJACPNOAKNA

What is the size of key space in the substitution cipher assuming 26 letters?

$$|\mathcal{K}| = 26$$

$$|\mathcal{K}| = 26! \qquad (2)$$

(26 factorial)

$$|\mathcal{K}| = 2^{26}$$

$$|\mathcal{K}| = 26^2$$

Breaking Monoalphabetic Ciphers

Monoalphabetic ciphers preserve the frequency of alphabetic characters, pairs, etc.

→ *Identify alphabetic characters due to their frequency*

Method to decipher natural languages:

- 1. Determine frequency of alphabetic characters of the cipher text
- 2. Identify alphabetic characters according to their frequency: *e*, *n*, *i*, *s*, *r*, *a*, *t* (in Germany: *e*, *n*, *r*, *i*, *s*, *t*, *u*, *d*, *a*, *g*, *l*, *o*, ...)
- 3. Determine frequency of pairs
- 4. Identify e.g. th he
- 5. Look at identified text, re-substitute, guess, ...

Breaking Monoalphabetic Ciphers

letter	probability
а	.082
b	.015
С	.028
d	.043
е	.127
f	.022
g	.020
h	.061
i	.070
j	.002
k	.008
I	.040
m	.024

letter	probability
n	.067
0	.075
р	.019
q	.001
r	.060
S	.063
t	.091
u	.028
V	.010
w	.023
х	.001
у	.020
Z	.001

Partition into five groups:

- E, having probability about 0.12
- T,A,O,I,N,S,H,R, each having probabilities between 0.06 and 0.09
- D,L, each having probabilities around 0.04
- C,U,M,W,F,G,Y,P,B, each having probabilities between 0.015 and 0.028
- V,K,J,X,Q,Z, each having probabilities less than 0.01

Digram frequencies

th	.0315
he	.0251
an	.0172

in	.0169
er	.0154
re	.0148

Vigenere Cipher

Popular polyalphabetic substitution cipher

- Known as "le chiffre indéchiffrable" ('the indecipherable cipher');-)
- Combination of simple substitution ciphers
- Rotations determined by a word (key)

ABCDEFGHIJK L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Breaking Vigenere Cipher

- Frequency analysis trivial if period can be guessed
- Kasiski test
 - Repeated words may, by chance, sometimes be encrypted using the same key letters, leading to repeated groups in the ciphertext

 - Repetitions of CSASTP is at a distance16
 - Assuming that the repeated segments represent the same plaintext segments, this implies that the key is 16, 8, 4, 2, or 1 characters long

Source: wikipedia

Rotor Machines (1870-1943)

- The Hebern Machine (single rotor)
 - Easily broken (CT only) using letter frequency, diagram frequency, trigram frequency

Rotor Machines (cont.)

Most famous: the Enigma (3-5 rotors)

With 4 rotors keys = $26^4 = 2^{18}$ (actually 2^{36} due to optional plugboard)

Turing Bombe

Must watch

"The Man Who Cracked Enigma"

Acknowledgements

Material in this lecture are taken from the slides prepared by:

- Prof. Dr. Konrad Rieck (Uni-Göttingen)
- Prof. Dan Boneh (Stanford)

