A reminder on statistical modelling: Poisson log-normal and stochastic block models

S. Robin

NGB, Feb. 2019

.. the art of translating a scientific question into mathematical equations.

Typical experiment.

S. Robin Statistical modelling NGB, Feb. 2019

.. the art of translating a scientific question into mathematical equations.

Typical experiment.

A question

An experimental design

Data

Analysis (model)

.. the art of translating a scientific question into mathematical equations.

Typical experiment.

A question

An experimental design

Data

X, Y

Analysis (model)

.. the art of translating a scientific question into mathematical equations.

Typical experiment.

A question

An experimental design

Data

$$Y = f(x, \theta)$$

S. Robin Statistical modelling NGB, Feb. 2019

.. the art of translating a scientific question into mathematical equations.

Typical experiment.

A question $\theta = ?$

An experimental design

Data x, Y

Analysis (model) $Y = f(x, \theta)$

.. the art of translating a scientific question into mathematical equations.

Typical experiment.

A question $\theta = ?$

An experimental design x = ?

Data x, Y

Analysis (model) $Y = f(x, \theta)$

- ightharpoonup Y = response, variable of interest
- \triangleright x = covariates, environmental conditions, treatments, ...
- θ = unknown parameters: $\theta = (\alpha, \beta, \gamma, \mu, \pi, \sigma^2, ...)$

Outline

Generalized linear model (GLM)

Poisson log-normal model (PLN)

Stochastic blockmodel (SBM)

NGB, Feb. 2019

Outline

Generalized linear model (GLM)

Poisson log-normal model (PLN)

Stochastic blockmodel (SBM)

A first example

Question. Does the depth affect the abundance of the deepwater redfish (*Sebastes mentella*)?

Experiment. Sampling in n = 89 stations

Data.

- ightharpoonup x = depth,
- Y = abundance

```
## Depth Abundance
## 1 349 7
## 2 382 93
## 3 294 37
## 4 304 0
## 5 384 958
## 6 344 101
```

5/35

S. Robin Statistical modelling NGB, Feb. 2019

A first model: Poisson regression

Model. The stations $i = 1 \dots n$ are independent and $(\mathcal{P} = \text{Poisson})$

$$Y_i \sim \mathcal{P}(e^{\beta_0 + \beta_1 x_i})$$

```
\theta = (\beta_0, \beta_1): \beta_0 = \text{intercept}, \beta_1 = \text{effect of the depth.}
```

```
GLM1 = \( \mathrm{qlm} \) (Abundance \( \sigma \) Depth, data=data.glm1, family='poisson')
```

Results.

```
summary (GLM1) $coef
                Estimate Std. Error z value Pr(>|z|)
  (Intercept) -0.75795114 0.0586298812 -12.92773 3.139613e-38
## Depth
        0.01559353 0.0001458807 106.89234 0.000000e+00
```

- Significant effect of the depth: ' $\beta_1 = 0$ ' rejected
- Mean abundance multiplied by $e^{\hat{\beta}_1 = 100}$ every 100m:

```
exp (GLM1$coef[2] *100)
      Depth
## 4.755745
```

S. Robin Statistical modelling NGB, Feb. 2019

Overdispersion?

S. Robin Statistical modelling NGB, Feb. 2019

More than one covariate (1/2)

Question. Effect of depth and temperature on deepwater redfish

Data. Same stations

- $ightharpoonup x_1 = depth$
- $ightharpoonup x_2 = temperature$
- Y = abundance

##		Depth	Temperature	Abundance	
##	1	349	3.95	7	
##	2	382	3.75	93	
##	3	294	3.45	37	
##	4	304	3.65	0	
##	5	384	3.35	958	
##	6	344	3.65	101	

8/35

Model. Independent stations and

$$Y_i \sim \mathcal{P}(e^{\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}})$$

 \rightarrow Multiplicative effect of the temperature ($\times e^{\beta_2}$ every ${}^{\circ}C$)

S. Robin Statistical modelling NGB, Feb. 2019

More than one covariate (2/2)

Vector form (compact).

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} = x_i^\mathsf{T} \beta, \quad \text{where} \quad x_i = \begin{bmatrix} 1 \\ x_{i1} \\ x_{i2} \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

 \triangleright x_i = vector of covariates:

$$Y_i \sim \mathcal{P}(e^{x_i^{\mathsf{T}}\beta})$$

▶ parameter: $\theta = \beta = (\beta_0, \beta_1, \beta_2)$

Results.

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.20356570 0.0767733013 -28.70224 3.577417e-181
## Depth 0.01695337 0.0001595502 106.25727 0.000000e+00
## Temperature 0.45769759 0.0118927306 38.48549 0.000000e+00
```

Interpretation?

S. Robin Statistical modelling NGB, Feb. 2019

Offset, overdispersion

Sampling effort. 2h sampling in station 1, 5h sampling in station 2:

- ▶ under fixed conditions: $\mathbb{E} Y_2 = 2.5 \times \mathbb{E} Y_1$
- define offsets: $o_1 = \log(2)$, $o_2 = \log(5)$, $o_3 = ...$

$$Y_i \sim \mathcal{P}(e^{o_i + x_i^\mathsf{T}\beta})$$

Overdispersion. Typical in count data

- ▶ good fit for the mean $\mathbb{E}(Y_i)$, bad fit for the variance ($\mathbb{V}(Y_i)$ too small)
- add a random term:

$$Y_i \sim \mathcal{P}(e^{x_i^\intercal eta + Z_i}) \qquad ext{where} \quad \left\{ egin{array}{ll} Z_i & \sim & \mathcal{N}(0, \sigma^2) \ \log Z_i & \sim & \mathcal{G} ext{am}(a, a) \end{array}
ight.$$

 \rightarrow generalized linear mixed model: $\theta = (\beta, \sigma^2)$ or $\theta = (\beta, a)$

S. Robin Statistical modelling NGB, Feb. 2019

Generalized linear models

General form. Modelling the mean response:

$$g\left(\mathbb{E}(Y_i)\right) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots = X_i^{\mathsf{T}} \beta$$

g = link function (identity, log, logit, ...)

Estimation.

Most popular method: maximum likelihood (ML)

$$\max_{\theta} p_{\theta}(\lbrace Y_i \rbrace; \lbrace x_i \rbrace) = \max_{\theta} \prod_{i=1}^{n} p_{\theta}(Y_i; x_i)$$

- ► Easy if the likelihood $p_{\theta}(\{Y_i\}; \{x_i\})$ is nice (depends on g)
- ▶ Estimates and tests for combination of parameters: e.g. $\beta_1 \beta_2$
- \blacktriangleright More difficult for mixed models, because the Z_i are not observed

S. Robin Statistical modelling NGB, Feb. 2019

Outline

Generalized linear model (GLM)

Poisson log-normal model (PLN)

Stochastic blockmodel (SBM)

Joint modelling of species abundance

Questions.

- ▶ Which environmental conditions do affect the abundance of p species?
- Do the respective species abundances vary independantly from each other?

Data.

- n sites or samples, p species
- Y_{ii} = abundance of species j in site i
- \triangleright x_i = vector of d covariates for site i

Barents data

- \triangleright n = 89 stations from the Barents sea
- p = 30 fish species
- ightharpoonup d = 4 covariates (latitude, longitude, depth, temperature)
- same sampling effort for all species in all stations

$X: n \times d$ matrix

##		Latitude	Longitude	Depth
##	[1,]	71.10	22.43	349
##	[2,]	71.32	23.68	382
##	[3,]	71.60	24.90	294
##	[4,]	71.27	25.88	304
##	[5,]	71.52	28.12	384
##	[6,]	71.48	29.10	344

$Y: n \times p$ matrix

##		Re_hi	An_de	An_mi	Hi_pl
##	[1,]	0	0	0	31
##	[2,]	0	0	0	4
##	[3,]	0	0	0	27
##	[4,]	0	0	1	13
##	[5,]	0	0	0	23
##	[6,]	1	0	0	20

No offset

S. Robin Statistical modelling NGB, Feb. 2019 14/35

Joint modelling of species abundances

Modelling. Need to account for

- the nature of abundance data (counts + overdispersion)
- ▶ the effect of each covariate on each species
- the 'correlation' between each pair of species
- ▶ the specificities of the experimental design (e.g. unbalanced sampling efforts)

S. Robin Statistical modelling NGB, Feb. 2019

Poisson log-normal model (PLN)

Model.

for each site i, draw a random (independent, latent) vector

$$Z_i \sim \mathcal{N}_p(0,\Sigma)$$

▶ for each site i and each species, draw the (independent) abundance

$$Y_{ij} \sim \mathcal{P}(e^{o_{ij} + x_{ij}^{\mathsf{T}} \beta + Z_{ij}})$$

Model parameters. $\theta = (\beta, \Sigma)$

- \triangleright β_{hi} = effect of covariate h on species j
- $\beta = [\beta_{hj}] : d \times p$ matrix of regression coefficients
- σ_j^2 = additional variability of species j
- $ightharpoonup \sigma_{jk} =$ 'covariance' between species j and k
- $ightharpoonup \Sigma = [\sigma_{jk}] : p \times p$ covariance matrix

S. Robin Statistical modelling NGB, Feb. 2019

Example: 3 species, 2 covariates


```
## Re_hi Se_me Se_ma
## (Intercept) -3.150 -5.590 1.292
## Depth 0.015 0.023 -0.018
## Temperature -0.864 0.536 0.748
```

$\widehat{\Sigma}$

```
## Re_hi Se_me Se_ma
## Re_hi 0.750 0.334 -0.393
## Se_me 0.334 3.260 -0.640
## Se_ma -0.393 -0.640 3.351
```

Overdispersion $\widehat{\sigma}_i$

```
## Re_hi Se_me Se_ma
## 0.866 1.806 1.831
```

Correlations $\widehat{\rho}_{ik}$

```
## Re_hi Se_me Se_ma
## Re_hi 1.000 0.213 -0.248
## Se_me 0.213 1.000 -0.194
## Se_ma -0.248 -0.194 1.000
```

Barents: no covariate

Model:

$$Z_i \sim \mathcal{N}(0, \Sigma)$$

$$egin{aligned} Z_i &\sim \mathcal{N}(0, \Sigma) \ Y_{ij} &\sim \mathcal{P}(oldsymbol{e}^{eta_{0j} + Z_{ij}}) \end{aligned}$$

Interpretation:

- ▶ β_{0j}:
- $\triangleright \Sigma_{jk}$:

S. Robin Statistical modelling NGB, Feb. 2019 18/35

Barents: all covariates

Model:

$$Z_i \sim \mathcal{N}(0, \Sigma)$$

$$egin{aligned} Z_i &\sim \mathcal{N}(0, \Sigma) \ Y_{ij} &\sim \mathcal{P}(e^{x_i^\mathsf{T} eta_j + Z_{ij}}) \end{aligned}$$

Interpretation:

- \triangleright β_{hj} :
- $\triangleright \Sigma_{jk}$:

S. Robin Statistical modelling NGB, Feb. 2019 19/35

Comparing samples: Linear discriminant analysis (LDA)

Question. Does the treatment affect the species abundance distribution?

Data. Collect samples under different treatment levels (covariates + abundances): $(X^A, Y^A), (X^B, Y^B), (X^C, Y^C), ...$

A possible model. For species *j* in sample *i* collected under treatment *t*:

$$\begin{aligned} Z_i^t &\sim \mathcal{N}_{p}(0, \Sigma) \\ Y_{ij}^t &\sim \mathcal{P}(\exp(o_{ij}^t + \beta_{0j}^t + \beta_{1j} X_{1i}^t + Z_{ij}^t)) \end{aligned}$$

PLN syntax:

 ${\tt PLNLDA\,(abundance} \sim {\tt covariates} \; + \; {\tt offset\,(o)} \, , \; \; {\tt grouping=treatment)}$

Model assumptions.

- ▶ Different mean species abundance under each treatment: β_{0j}^t
- ▶ Same effect of the covariates under all treatments: β_{1j}
- ightharpoonup Same species dependency under all treatments: Σ

S. Robin Statistical modelling NGB. Feb. 2019

Dimension reduction: Principle component analysis (PCA)

Questions.

- ► Can we visualize the data in few (2, 3) dimensions?
- ► Can we determine main trends in the species covariations?

'Probabilistic' PCA. The Z_i actually lay in $q \ll p$ dimensions

$$\Sigma = BB^{\mathsf{T}}, \quad B: p \times q$$

i.e. draw $W_i \sim \mathcal{N}_q(0, I)$, then $Z_i = BW_i$

PLN-PCA. PLN model, where Σ is forced to have rank q

S. Robin Statistical modelling NGB, Feb. 2019 21/35

Modelling the dependencies: Network inference

Question. Which species are in direct interaction?

Gaussian property: Suppose
$$Z \sim \mathcal{N}_{\rho}(0, \Sigma)$$
 and denote $\Omega = \Sigma^{-1}$:
$$\{\Omega_{jk} = 0\}$$
 $\Leftrightarrow \{(Z_j, Z_k) \text{ independent conditionally on all other coordinates}\}$

PLN-network. PLN model, where Ω is forced to be 'sparse'

S. Robin Statistical modelling NGB, Feb. 2019

About estimation

Fitting PLN is not easy mostly because the latent Z_i 's are not observed.

EM-like strategy: iteratively

- E-step: 'retrieve' Z
- M-step: update the parameter estimates $\widehat{\theta}$

Specificity of PLN. Intractable E-step (big nasty integral)

- Resort to a so-called variational approximation
- Price to pay:
 - only approximate standard deviations of the estimates
 - → no formal test
- Ongoing works

S. Robin Statistical modelling NGB, Feb. 2019

Outline

Generalized linear model (GLM)

Poisson log-normal model (PLN)

Stochastic blockmodel (SBM)

S. Robin Statistical modelling NGB, Feb. 2019 24/35

Interaction data

Questions.

- Do individuals interact 'uniformly' (or 'randomly') with each other?
- Do some individuals play similar role in the interaction network?
- ▶ Do covariates (partially) explain the organization of the network?

Data.

- p individuals
- Y_{ij} = interaction between individuals i and j
- $ightharpoonup x_{ij} = \text{vector of } d \text{ covariates for the individuals pair } (i, j)$

S. Robin Statistical modelling NGB, Feb. 2019

Zebra network

- ▶ p = 26 zebras
- $ightharpoonup Y_{ij} = 1$ if *i* and *j* socially interact

$Y = n \times n$ adjacency matrix

##		[,1]	[,2]	[,3]	[,4]	[,5]
##	[1,]	0	1	0	1	0
##	[2,]	1	0	1	0	0
##	[3,]	0	1	0	0	0
##	[4,]	1	0	0	0	0
##	[5,]	0	0	0	0	0
##	[6,]	0	1	1	0	0

Network

S. Robin Statistical modelling NGB, Feb. 2019 26/35

Stochastic blockmodel (SBM)

Rational.

- ► Individuals are spread into *K* groups
- Interactions between individuals are ruled by their respective group membership

Model.

▶ for each individuals *i*, draw a random (independent, latent) group

$$P(Z_i = k) = \pi_k$$

 \blacktriangleright for each pair of individuals (i, j), draw the (independent) interaction

if
$$Z_i = k, Z_j = \ell$$
: $P(Y_{ij} = 1) = \alpha_{k\ell}$

Model parameters. $\theta = (\pi, \alpha)$

- $\blacktriangleright \pi = [\pi_k]$: group proportions
- $ightharpoonup \alpha = [\alpha_{k\ell}]$: interaction probability between groups

S. Robin Statistical modelling NGB. Feb. 2019

Zebra (binary) network

 $\widehat{\pi}$

[1] 0.465 0.535

 $\widehat{\alpha}$

[,1] [,2] ## [1,] 0.229 0.025 ## [2,] 0.025 0.975

Mean degree

[1] 3.23 14.40

$$d_k = (p-1) \sum_\ell \pi_\ell \alpha_{k\ell}$$

Model selection

Node clustering

Zebra dataset

Data. Actually:

- ▶ p = 26 zebras
- $ightharpoonup Y_{ii} = \text{number of interactions btw } i \text{ and } j$
- ightharpoonup d = 2 node covariates (sex, age)

A model?

for each individuals i, draw a random (independent, latent) group

$$P(Z_i = k) = \pi_k$$

for each pair of individuals (i, j), draw the (independent) interaction

if
$$Z_i = k, Z_j = \ell$$
: $Y_{ij} \sim \mathcal{P}(e^{\alpha_{kl} + X_{ij}^\mathsf{T}\beta})$

 x_{ii} = vector of *edge* covariate

S. Robin NGB, Feb. 2019 Statistical modelling

Valued SBM

Encoding edge covariates. A possibility:

- $x_{1,ij} = 1$ if i and j have same sex, 0 otherwise
- $ightharpoonup x_{2,ij} = 1$ if *i* and *j* have same age, 0 otherwise
- \triangleright $x_{3,ij} = 1$ if i and j have both same sex and same age, 0 otherwise

Model parameters. $\theta = (\pi, \alpha, \beta)$

- \blacktriangleright π_k : proportion of group k
- $ightharpoonup \alpha_{k\ell}$: interaction between groups k and ℓ
- $\beta_1, \beta_2, \beta_3$: effect of the sex, age, both

 $+Z_i$: group of node i

S. Robin Statistical modelling NGB, Feb. 2019

Valued zebra network

 $\widehat{\pi}$

```
## [1] 0.426 0.074 0.250 0.250
```

 $\widehat{\beta}$

```
## [1] 0.881 -0.058 0.082
```

 $\widehat{\alpha}$

```
## [,1] [,2] [,3] [,4]
## [1,] -1.649 -1.925 -3.411 -3.694
## [2,] -1.925 1.807 -0.558 -0.975
## [3,] -3.411 -0.558 1.255 1.183
## [4,] -3.694 -0.975 1.183 1.925
```

Prediction. i in group 1, j in group 2, (i,j) same sex but not same age. Expected number contacts Y_{ij} :

```
exp(alpha[1, 2] + beta[1])
## [1] 0.3520556
```

Model selection

Node clustering

31/35

S. Robin Statistical modelling NGB, Feb. 2019

Valued zebra data: no cluster (K = 1)

$$\widehat{m{lpha}}$$
 ## [1] -0.47 ## [1] 1.948 -0.274 -0.042

Prediction. i and j have same sex but not same age, expected number contacts Y_{ij} :

```
## [1] 4.385
```

A simple equivalent model?

Poisson regression (GLM)

```
## (Intercept) X.mat1 X.mat2 X.mat3
## -0.470 1.948 -0.274 -0.041
```

S. Robin Statistical modelling NGB, Feb. 2019

Latent blockmodel (LBM) Question.

- Effect of the plant genotype on the microbial diversity of its rhizosphere.
- Preferential relations between groups of genotype and microbes (OTUs)

Data.

- ightharpoonup n OTUs (i = 1..n), m genotypes (j = 1..m)
- $ightharpoonup Y_{ii} = abundance of OTU i for genotype j$
- \triangleright o_i = sampling effort for genotype i

A model.

$$Z_i^O= ext{ cluster of OTU }i: \qquad \qquad P(Z_i^O=k)=\pi_k^O \ Z_j^G= ext{ cluster of genotype }j: \qquad \qquad P(Z_j^G=\ell)=\pi_\ell^G \ ext{if }Z_i^O=k ext{ and }Z_j^G=g: \qquad \qquad Y_{ij}\sim \mathcal{P}(e^{o_{ij}+lpha_{k\ell}})$$

$$\theta = (\pi^O, \pi^G, \alpha)$$

S. Robin NGB, Feb. 2019 Statistical modelling

Other extensions

Multiplex networks.

Different types of interactions

Multilayer networks.

Different types of nodes

Dynamic networks.

► Interactions occurring along time

S. Robin Statistical modelling NGB, Feb. 2019 34/35

About estimation

Fitting SBM is not easy mostly because the latent Z_i 's are not observed.

EM-like strategy: iteratively

E-step: 'retrieve' Z

M-step: update the parameter estimates $\widehat{\theta}$

Specificity of SBM. Intractable E-step (too many ways to assign nodes to groups: big nasty sum)

- ... same story as PLN
- ... ongoing works

S. Robin NGB, Feb. 2019 Statistical modelling