Measuring Segments

Objectives

1 Find the distance between two points on a number line.

Work with congruent segments

Use the Segment Addition Postulate

4 Use the midpoint of a segment.

Measuring Segments

To find the distance between two points A and B on a number line, subtract their coordinates and take the absolute value.

$$|A - B|$$

Given the number line below, find each distance.

(a) *AC*

Given the number line below, find each distance.

(a) AC 8

- (a) AC 8
- (b) *BE*

- (a) AC 8
- (b) BE 8

- (a) AC 8
- (b) BE 8
- (c) *CF*

- (a) AC 8
- (b) BE 8
- (c) CF 9

Objectives

1) Find the distance between two points on a number line.

2 Work with congruent segments

3 Use the Segment Addition Postulate

4 Use the midpoint of a segment.

In the previous example, both \overline{AC} and \overline{BE} had lengths of 8.

In the previous example, both \overline{AC} and \overline{BE} had lengths of 8.

We would say that \overline{AB} is congruent to \overline{BE} .

In the previous example, both \overline{AC} and \overline{BE} had lengths of 8.

We would say that \overline{AB} is congruent to \overline{BE} .

Congruent Segments

Two segments are **congruent** if they have the same length.

In the previous example, both \overline{AC} and \overline{BE} had lengths of 8.

We would say that \overline{AB} is congruent to \overline{BE} .

Congruent Segments

Two segments are **congruent** if they have the same length.

The symbol for congruent is \cong $\overline{AB} \cong \overline{BE}$

In the previous example, both \overline{AC} and \overline{BE} had lengths of 8.

We would say that \overline{AB} is congruent to \overline{BE} .

Congruent Segments

Two segments are **congruent** if they have the same length.

The symbol for congruent is $\cong \overline{AB} \cong \overline{BE}$

We mark congruent segments using tick marks.

$$7x - 3 = 2x + 12$$

$$7x - 3 = 2x + 12$$

$$5x - 3 = 12$$

$$7x - 3 = 2x + 12$$
$$5x - 3 = 12$$
$$5x = 15$$

$$7x-3 = 2x + 12$$
$$5x-3 = 12$$
$$5x = 15$$
$$x = 3$$

(a) Find the value of x if $\overline{AB} \cong \overline{CD}$.

$$7x-3 = 2x + 12$$
$$5x-3 = 12$$
$$5x = 15$$
$$x = 3$$

Check:

(a) Find the value of x if $\overline{AB} \cong \overline{CD}$.

$$7x - 3 = 2x + 12$$
$$5x - 3 = 12$$
$$5x = 15$$
$$x = 3$$

Check:

$$7(3) - 3 = 2(3) + 12$$
?

(a) Find the value of x if $\overline{AB} \cong \overline{CD}$.

$$7x-3 = 2x + 12$$
$$5x-3 = 12$$
$$5x = 15$$
$$x = 3$$

Check:

$$7(3) - 3 = 2(3) + 12?$$

 $18 = 18$

(b) Find the values of x and y

(b) Find the values of x and y

$$x + 15 = 11$$

$$y - 8 = 20$$

(b) Find the values of x and y

$$x + 15 = 11$$
 $y - 8 = 20$
 $x = -4$ $y = 28$

Objectives

1 Find the distance between two points on a number line.

Work with congruent segments

3 Use the Segment Addition Postulate

4 Use the midpoint of a segment.

Segment Addition Postulate

If 3 points A, B, and C are collinear and B is between A and C, then

$$AB + BC = AC$$

$$EF + FG = EG$$

$$EF + FG = EG$$

 $8x - 14 + 4x + 1 = 59$

$$E = \begin{cases} 8x - 14 & 4x + 1 \\ F & G \end{cases}$$

$$EF + FG = EG$$

 $8x - 14 + 4x + 1 = 59$
 $12x - 13 = 59$

$$EF + FG = EG$$

 $8x - 14 + 4x + 1 = 59$
 $12x - 13 = 59$
 $12x = 72$

$$EF + FG = EG$$

$$8x - 14 + 4x + 1 = 59$$

$$12x - 13 = 59$$

$$12x = 72$$

$$x = 6$$

$$EF + FG = EG$$

$$8x - 14 + 4x + 1 = 59$$

$$12x - 13 = 59$$

$$12x = 72$$

$$x = 6$$

$$EF = 8(6) - 14$$
 $FG = 4(6) + 1$

$$E 8x - 14 4x + 1$$

$$EF + FG = EG$$

$$8x - 14 + 4x + 1 = 59$$

$$12x - 13 = 59$$

$$12x = 72$$

$$x = 6$$

$$EF = 8(6) - 14$$
 $FG = 4(6) + 1$
 $EF = 34$ $FG = 25$

$$JK + KL = JL$$

$$JK + KL = JL$$

 $4x + 6 + 7x + 4 = 120$

$$J = 4x + 6$$
 $7x + 4$

$$JK + KL = JL$$

 $4x + 6 + 7x + 4 = 120$
 $11x + 10 = 120$

$$J = 4x + 6$$
 $7x + 4$

$$JK + KL = JL$$

 $4x + 6 + 7x + 4 = 120$
 $11x + 10 = 120$
 $11x = 110$

$$J = 4x + 6$$
 $7x + 4$

$$JK + KL = JL$$

$$4x + 6 + 7x + 4 = 120$$

$$11x + 10 = 120$$

$$11x = 110$$

$$x = 10$$

$$J \qquad X+6 \qquad 7x+4$$

$$JK + KL = JL$$

$$4x + 6 + 7x + 4 = 120$$

$$11x + 10 = 120$$

$$11x = 110$$

$$x = 10$$

$$JK = 4(10) + 6$$
 $KL = 7(10) + 4$

$$J = 4x + 6$$
 $7x + 4$

$$JK + KL = JL$$

$$4x + 6 + 7x + 4 = 120$$

$$11x + 10 = 120$$

$$11x = 110$$

$$x = 10$$

$$JK = 4(10) + 6$$
 $KL = 7(10) + 4$
 $JK = 46$ $KL = 74$

Objectives

1 Find the distance between two points on a number line.

2 Work with congruent segments

3 Use the Segment Addition Postulate

4 Use the midpoint of a segment.

Midpoint

Midpoint

A **midpoint** divides a segment into 2 congruent segments.

Midpoint

Midpoint

A **midpoint** divides a segment into 2 congruent segments.

In the picture below, B is the midpoint of \overline{AC} .

$$8x + 11 = 12x - 1$$

$$\stackrel{8x+11}{\stackrel{}{P}} \stackrel{12x-1}{\stackrel{}{Q}} \stackrel{}{\stackrel{}{R}}$$

$$8x + 11 = 12x - 1$$
$$11 = 4x - 1$$

$$\stackrel{8x+11}{P} \quad \stackrel{12x-1}{Q} \quad \stackrel{\circ}{R}$$

$$8x + 11 = 12x - 1$$
$$11 = 4x - 1$$
$$12 = 4x$$

$$\stackrel{8x+11}{P} \quad \stackrel{12x-1}{Q} \quad \stackrel{\circ}{R}$$

$$8x + 11 = 12x - 1$$
$$11 = 4x - 1$$
$$12 = 4x$$
$$x = 3$$

$$\stackrel{8x+11}{P} \quad \stackrel{12x-1}{Q} \quad \stackrel{R}{R}$$

$$8x + 11 = 12x - 1$$
$$11 = 4x - 1$$
$$12 = 4x$$
$$x = 3$$

$$PQ = 8(3) + 11$$
 $QR = 12(3) - 1$ $PR = PQ + QR$

$$\begin{array}{c|cccc}
8x+11 & 12x-1 \\
P & Q & R
\end{array}$$

$$8x + 11 = 12x - 1$$
$$11 = 4x - 1$$
$$12 = 4x$$
$$x = 3$$

$$PQ = 8(3) + 11$$
 $QR = 12(3) - 1$ $PR = PQ + QR$
 $PQ = 35$ $QR = 35$ $PR = 35 + 35 = 70$

$$6x - 7 = 5x + 1$$

$$6x - 7 = 5x + 1$$
$$x - 7 = 1$$

$$6x - 7 = 5x + 1$$
$$x - 7 = 1$$
$$x = 8$$

$$\begin{array}{cccc}
6x - 7 & 5x + 1 \\
 & U & V
\end{array}$$

$$6x - 7 = 5x + 1$$
$$x - 7 = 1$$
$$x = 8$$

$$TU = 6(8) - 7$$
 $UV = 5(8) + 1$ $TV = TU + UV$

$$\begin{array}{cccc}
6x - 7 & 5x + 1 \\
 & U & V
\end{array}$$

$$6x - 7 = 5x + 1$$
$$x - 7 = 1$$
$$x = 8$$

$$TU = 6(8) - 7$$
 $UV = 5(8) + 1$ $TV = TU + UV$
 $TU = 41$ $UV = 41$ $PR = 41 + 41 = 82$