More on Memory Hierarchy

Professor Hugh C. Lauer CS-2011, Machine Organization and Assembly Language

(Slides include copyright materials from *Computer Systems: A Programmer's Perspective*, by Bryant and O'Hallaron, and from *The C Programming Language*, by Kernighan and Ritchie)

Today

Reading Assignment: §6.1 – §6.5

- Storage technologies and trends
- Locality of reference ← First
- Caching in the memory hierarchy ← Preparation for Cachelab

Random-Access Memory (RAM)

Key features

- RAM is traditionally packaged as a chip.
- Basic storage unit is normally a cell (one bit per cell).
- Multiple RAM chips form a memory.

Static RAM (SRAM)

- Each cell stores a bit with a four or six-transistor circuit.
- Retains value indefinitely, as long as it is kept powered.
- Relatively insensitive to electrical noise (EMI), radiation, etc.
- Faster and more expensive than DRAM.

Dynamic RAM (DRAM)

- Each cell stores bit with a capacitor. One transistor is used for access
- Value must be refreshed every 10-100 ms.
- More sensitive to disturbances (EMI, radiation,...) than SRAM.
- Slower and cheaper than SRAM.

SRAM vs DRAM Summary

			Needs refresh		Cost	Applications
SRAM	4 or 6	1X	No	Maybe	100x	Cache memories
DRAM	1	10X	Yes	Yes	1X	Main memories, frame buffers

EDC = Error Detection and Correction

Conventional DRAM Organization

d x w DRAM:

d*w total bits organized as d supercells of size w bits

CS-2011, B-Term 2017

Reading DRAM Supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

Reading DRAM Supercell (2,1)

Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to the CPU.

Memory Modules

Enhanced DRAMs

- Basic DRAM cell has not changed since invention in 1966.
 - Commercialized by Intel in 1970
 - (except for tinier cells, more bits per sq millimeter)
- DRAM cores with better interface logic and faster I/O :
 - Synchronous DRAM (SDRAM)
 - Uses a conventional clock signal instead of asynchronous control
 - Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)
 - Double data-rate synchronous DRAM (DDR SDRAM)
 - Double edge clocking sends two bits per cycle per pin
 - Different types distinguished by size of small prefetch buffer:
 - DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits)
 - By 2010, standard for most server and desktop systems
 - Intel Core i7 supports only DDR3 SDRAM

Nonvolatile Memories

DRAM and SRAM are volatile memories

Lose information if powered off.

Nonvolatile memories retain value even if powered off

- Read-only memory (ROM): programmed during production
- Programmable ROM (PROM): can be programmed once
- Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
- Electrically eraseable PROM (EEPROM): electronic erase capability
- Flash memory: EEPROMs with partial (sector) erase capability
 - Wears out after about 100,000 erasings.

Uses for Nonvolatile Memories

- Firmware programs stored in a ROM (BIOS, controllers for disks, network cards, graphics accelerators, security subsystems,...)
- Solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players, tablets, laptops,...)
- Disk caches

Traditional Bus Structure Connecting CPU and Memory

- A bus is a collection of parallel wires that carry address, data, and control signals.
- Buses are typically shared by multiple devices.

Hardware Organization — 2005 era Pentium

Memory Read Transaction (1)

CPU places address A on the memory bus.

Memory Read Transaction (2)

Main memory reads A from the memory bus, retrieves word x, and places it on the bus.

Memory Read Transaction (3)

CPU read word x from the bus and copies it into register %rax.

Memory Write Transaction (1)

CPU places address A on bus. Main memory reads it and waits for the corresponding data word to arrive.

Memory Write Transaction (2)

CPU places data word y on the bus.

Memory Write Transaction (3)

Main memory reads data word y from the bus and stores it at address A.

CS-2011, B-Term 2017 More on Memory Hierarchy 18

Questions?

What's Inside A Disk Drive?

Image courtesy of Seagate Technology

20

21

Disk Geometry

- Disks consist of platters, each with two surfaces.
- Each surface consists of concentric rings called tracks.
- Each track consists of sectors separated by gaps.

CS-2011, B-Term 2017

Disk Geometry (Multiple-Platter View)

Aligned tracks form a cylinder.

Disk Capacity

- Capacity: maximum number of bits that can be stored.
 - Vendors express capacity in units of gigabytes (GB), where
 1 GB = 10⁹ Bytes (Lawsuit pending! Claims deceptive advertising).
- Capacity is determined by these technology factors:
 - Recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track.
 - Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment.
 - Areal density (bits/in²): product of recording and track density.
- Modern disks partition tracks into disjoint subsets called recording zones
 - Each track in a zone has the same number of sectors, determined by the circumference of innermost track.
 - Each zone has a different number of sectors/track

Recording zones

- Modern disks partition tracks into disjoint subsets called recording zones
 - Each track in a zone has the same number of sectors, determined by the circumference of innermost track.
 - Each zone has a different number of sectors/track, outer zones have more sectors/track than inner zones.
 - So we use average number of sectors/track when computing capacity.

Computing Disk Capacity

```
Capacity = (# bytes/sector) x (avg. # sectors/track) x (# tracks/surface) x (# surfaces/platter) x (# platters/disk)
```

Example:

- 512 bytes/sector
- 300 sectors/track (on average)
- 20,000 tracks/surface
- 2 surfaces/platter
- 5 platters/disk

```
Capacity = 512 x 300 x 20000 x 2 x 5
= 30,720,000,000
= 30.72 GB
```

Disk Operation (Single-Platter View)

Disk Operation (Multi-Platter View)

Disk Structure - top view of single platter

Surface organized into tracks

Tracks divided into sectors

Disk Access

Head in position above a track

Disk Access

Rotation is counter-clockwise

About to read blue sector

After reading blue sector

Red request scheduled next

Disk Access – Seek

Seek to red's track

Disk Access – Rotational Latency

Wait for red sector to rotate around

Complete read of red

Disk Access – Service Time Components

Disk Access Time

Average time to access some target sector approximated by :

- Taccess = T_{avg} seek + T_{avg} rotation + T_{avg} transfer
- Seek time (T_{avg} seek)
 - Time to position heads over cylinder containing target sector.
 - Typical T_{avg} seek is 3—9 ms
- Rotational latency (T_{avg} rotation)
 - Time waiting for first bit of target sector to pass under r/w head.
 - T_{avg} rotation = $1/2 \times 1/RPMs \times 60 \sec/1 \min$
 - Typical T_{avg} rotation = 7200 RPMs
- Transfer time (T_{avg} transfer)
 - Time to read the bits in the target sector.
 - T_{avg} transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Disk Access Time Example

Given:

- Rotational rate = 7,200 RPM
- Average seek time = 9 ms.
- Avg # sectors/track = 400.

Derived:

- T_{avg} rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
- T_{avg} transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
- $T_{access} = 9 \text{ ms} + 4 \text{ ms} + 0.02 \text{ ms}$

Important points:

- Access time dominated by seek time and rotational latency.
- First bit in a sector is the most expensive, the rest are free.
- SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
 - Disk is about 40,000 times slower than SRAM,
 - 2,500 times slower then DRAM.

Logical Disk Blocks

- Modern disks present a simpler abstract view of the complex sector geometry:
 - The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)
- Mapping between logical blocks and actual (physical) sectors
 - Maintained by hardware/firmware device called disk controller
 - Converts requests for logical blocks into (surface,track,sector) triples
- Allows controller to set aside spare cylinders for each zone.
 - Accounts for the difference in "formatted capacity" and "maximum capacity"

I/O Bus

42

Reading a Disk Sector (1)

Reading a Disk Sector (2)

Reading a Disk Sector (3)

Questions?