Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

-1000.000 --1200.000 --1300.000 --1500.000 --1500.000 -

1000

1500

Tidspunkt for observasjon (timer)

2000

2500

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt
Luminositeten øker med en faktor 5.80e+09.

ò

500

-1600.000

-1700.000

-1800.000

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas luminositet er 3 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE B) det finnes karbon i et skall rundt kjernen

STJERNE C) kjernen består av helium og er degenerert

STJERNE D) massen til stjerna er 8 solmasser og den fusjonerer hydrogen i kjernen

STJERNE E) stjerna har en levetid på noen millioner år og fusjonerer hydrogen til helium i kjernen

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 9.176e+06 kg/m3̂ og temperatur 35 millioner K.

Kjernen i stjerne B har massetet
thet 7.034e+06 kg/m3 og temperatur 17 millioner K.

Kjernen i stjerne C har massetet
thet 2.255e+06 kg/m3̂ og temperatur 15 millioner K.

Kjernen i stjerne D har massetet
thet 2.504e+06 kg/m3̂ og temperatur 21 millioner K.

Kjernen i stjerne E har massetet
thet 1.041e+07 kg/m3̂ og temperatur 39 millioner K.

Filen 1K/1K.txt

Påstand 1: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig større enn den tilsynelatende størrelseklassen i rødt filter

Påstand 2: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 3: denne stjerna er nærmest oss

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig mindre enn den tilsynelatende størrelseklassen i blått filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 1.926e+05 kg/m3̂ og temperatur 35.73 millioner K.

Kjernen i stjerne B har massetet
thet 2.940e+05 kg/m3̂ og temperatur 17.04 millioner K.

Kjernen i stjerne C har massetet
thet $1.508\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 31.76

millioner K.

Kjernen i stjerne D har massetet
thet 3.980e+05 kg/m3̂ og temperatur 21.93 millioner K.

Kjernen i stjerne E har massetet
thet $2.144\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 25.67 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

0.93
0.88
0.88
0.73
0.68
0.2985 0.2995 0.3005 0.3015 0.3025 0.3035 0.3045 0.3055

Bølgelengde (nm) minus 656nm

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_Figur_3_png$

Observasjon er gjort 150.15 dager etter første observasjon.

0.93

0.88

0.88

0.73

0.68

0.2992
0.3002
0.3012
0.3022
0.3032
0.3042
0.3052
0.3062

Bølgelengde (nm) minus 656nm

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.44 buesekunder i løpet av et millisekund.

49.11

43.65

38.20

27.28

21.83

16.37

10.91

5.46

0.00

0.00

5.46

10.91

16.37

21.83

27.28

32.74

38.20

43.65

49.11

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tønsberg som ligger i en avstand av 150 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 98.35650 km/t.

Filen 3E.txt

Tog1 veier 45700.00000 kg og tog2 veier 53500.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 478 km/s.

Filen 4E.txt

Massen til gassklumpene er 11000000.00 kg.

Hastigheten til G1 i x-retning er 45000.00 km/s.

Hastigheten til G2 i x-retning er 48960.00 km/s.

Filen 4G.txt

Massen til stjerna er 59.75 solmasser og radien er 2.08 solradier.