Статистические методы обработки экспериментальных данных

袋

Лекция №5

Санкт-Петербург 2022

Функциональная, статистическая и корреляционная зависимость

2

Рассмотрим систему двух случайных величин $\{X,Y\}$.

Эти случайные величины могут быть независимыми:

$$f(x,y) = f_1(x) \cdot f_2(y)$$
 (5.1)

В против случае между ними может быть:

функциональная зависимость:

$$y = g(x)$$

статистическая зависимость:

$$\varphi(x/y) = f(x,y) / f_2(y)
\varphi(y/x) = f(x,y) / f_1(x)$$
(5.2)

Одним из видов (частным случаем) статистической зависимости является **корреляционная зависимость.**

Корреляционная зависимость, корреляционный момент, коэффициент корреляции

Корреляционной называют статистическую зависимость двух случайных величин, при которой изменение значения одной из случайных величин приводит к изменению математического ожидания другой случайной величины.

$$M(X/y) = q_1(y)$$

 $M(Y/x) = q_2(x)$ (5.3)

Функции (5.3) называют функциями регрессии.

Корреляционный момент:

$$\mu_{xy} = M\left\{ \left[x - M(X) \right] \cdot \left[y - M(Y) \right] \right\} \tag{5.4}$$

Коэффициент корреляции: $r_{xy} = \frac{\mu_{xy}}{\sigma_x \sigma_y}$ $r_{xy} = \frac{\mu_{xy}}{\sigma_x \sigma_y}$ (5.5)

Корреляционная зависимость, коэффициент корреляции

Для коэффициента корреляции справедливо соотношение:

$$\left| r_{xy} \right| \le 1 \tag{5.6}$$

Случайные величины X и Y называют коррелированными, если их корреляционный момент или (что тоже самое) их коэффициент корреляции отличен от нуля. В противном случае эти величины некоррелированы.

Если случайные величины X и Y коррелированы, то они зависимы.

Обратное предположение в общем случае неверно. Тоесть, если случайные величины X и Y некорелированы, то они могут быть, как независимыми, так и зависимыми.

6

Корреляционная зависимость, коэффициент корреляции

X и Y коррелированы \Rightarrow СВ X и Y зависимы X и Y некоррелированы Если случайные величины X и Y коррелированны и обе функции регрессии Y на X и X на Y линейны, то говорят, что X и Y связаны линейной корреляционной зависимостью. В частности, это имеет место если двумерная случайная величина $\{X,Y\}$ распределена

Можно представить эти утверждения в наглядной форме:

нормально. Коэффициент корреляции, как известно, служит мерой тесноты линейной зависимости между случайными величинами X и Y. При $\left|r_{xy}\right|=1$ эта зависимость становится функциональной.

Корреляционная таблица

Пусть имеется выборка двумерной случайной величины $\{X,Y\}$. Ее значения удобно представлять в виде так называемой корреляционной таблицы. Например,

Y	X						
	10	20	30	40	n _y		
0,4 0,6 0,8	5 - 3		7 6 —	14 4 —	26 12 22		
n _x	8	21	13	18	n=60		

Статистическая оценка коэффициента корреляции

Значение \overline{r}_{xy} - статистической оценки r_{xy} - коэффициента корреляции можно вычислить по формуле:

$$\overline{r}_{xy} = \frac{\sum_{i=1}^{K_y} \sum_{j=1}^{K_x} [n_{ij} y_i x_j] - N \overline{x}_6 \overline{y}_6}{N S_x S_y}$$
(5.7)

При N>50 в случае нормального распределения системы случайных величин $\{X,Y\}$ для оценки значения r_{xy} можно использовать соотношение:

$$\overline{r}_{xy} - 3\frac{1 - \overline{r}_{xy}^2}{\sqrt{N}} \le r_{xy} \le \overline{r}_{xy} + 3\frac{1 + \overline{r}_{xy}^2}{\sqrt{N}}$$
 (5.8)

Вычисление выборочного коэффициента корреляции

При вычислении выборочного коэффициента корреляции необходимо вычислить $\sum_{i=1}^{K_y}\sum_{j=1}^{K_x}n_{ij}y_ix_j=\sum_{j=1}^{K_x}y_i\sum_{j=1}^{K_x}n_{ij}x_j=\sum_{j=1}^{K_x}x_j\sum_{i=1}^{K_y}n_{ij}y_i$ Это удобно производить в табличной форме:

		1 1			1.	1	1	£
			X				K_{x}	
Y							$X_i = \sum_{i=1}^{K_x} n_{ij} x_j$	$y_i X_i$
		3			7		$\overline{j=1}$	
			15			49		
1		5			7		64	64
	5			7				
			9			28		
5		3			4		37	185
	15			20				
•			12			14		
8		4			2		26	208
	32			16				
$Y_{j} = \sum_{i=1}^{K_{y}} n_{ij} y_{i}$		52			43			457
$x_j Y_j$		156			301		457	

Доверительный интервал для выборочного коэффициента корреляции

Распределение \overline{r}_{xy} при определенных условиях можно удовлетворительно аппроксимировать нормальным законом. Однако при увеличении интенсивности корреляционной связи распределение \overline{r}_{xy} становится все более ассиметричным.

С помощью преобразования Фишера перейдем к случайной величине z:

$$\overline{z} = 0.5 \ln \frac{1 + \overline{r}_{xy}}{1 - \overline{r}_{xy}} = 1.1513 \lg \frac{1 + \overline{r}_{xy}}{1 - \overline{r}_{xy}}$$
 (5.9)

Доверительный интервал для выборочного коэффициента корреляции

Распределение z при неограниченном возрастании объема выборки асимптотически нормальное со значением СКВО, равным:

$$\overline{\sigma}_z = \frac{1}{\sqrt{N-3}} \tag{5.10}$$

В результате доверительный интервал для r_{xy} генеральной совокупности с доверительной вероятностью γ определяют по следующей схеме:

- 1. По формуле (5.9) вычисляют выборочное значение \overline{z} ;
- 2. По формуле (5.10) вычисляют значение $\bar{\sigma}_z$;

12

Доверительный интервал для выборочного коэффициента корреляции

3. Доверительный интервал для генерального значения представляет в виде:

$$(\overline{z} - \lambda(\gamma)\overline{\sigma}_z, \overline{z} + \lambda(\gamma)\overline{\sigma}_z),$$
 (5.11)

где значение $\lambda(\gamma)$ должно удовлетворять условию:

$$\Phi[\lambda(\gamma)] = \frac{\gamma}{2} \tag{5.12}$$

4. Для пересчета интервала (5.11) в доверительный интервал для коэффициента корреляции с тем же значением γ необходимо воспользоваться обратным преобразованием Фишера:

$$r = th(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}} = \frac{e^{2z} - 1}{e^{2z} + 1}$$
 (5.13)

Проверка гипотезы о значимости выборочного коэффициента

корреляции Пусть имеется выборка объема N значений двумерной нормально распределенной случайной величины $\{X,Y\}$ и вычислено значение выборочного коэффициента корреляции $\overline{r}_{xy} \neq 0$. Поскольку \overline{r}_{xy} является случайной величиной, то это еще не значит что r_{xy} - коэффициент корреляции для генеральной совокупности тоже отличен от нуля.

Возникает необходимость проверить гипотезу $H_0: r_{xy} = 0$. Альтернативной будет гипотеза $H_1: r_{xy} \neq 0$.

Если основная гипотеза H_0 отвергается, то это означает, что выборочный коэффициент корреляции \overline{r}_{xv} значимо отличается от нуля (значим). В противном случае — \overline{r}_{xy} незначим.

Проверка гипотезы о значимости выборочного коэффициента корреляции

В качестве критерия проверки статистической гипотезы о значимости выборочного коэффициента корреляции можно принять случайную величину:

$$T = \frac{\overline{r}_{xy}\sqrt{N-2}}{\sqrt{1-\overline{r}_{xy}^2}} \tag{5.14}$$

При справедливости нулевой гипотезы H_0 случайная величина T распределена по закону Стьюдента с k=N-2 степенями свободы.

Критическая область для данного критерия двусторонняя.

Проверка гипотезы о значимости выборочного коэффициента корреляции

Проверка гипотезы осуществляется по стандартной схеме:

- 1. По формуле (5.14) вычисляется значение $T_{\text{набл}}$;
- 2. По заданному уровню значимости α и значению k из таблицы определяется значение $t_{\kappa pum}(\alpha,k)$;
- 3. Если $\left|T_{\text{набл}}\right| \leq t_{\kappa pum}(\alpha,k)$ нет оснований отвергать гипотезу H_0 .
- 4. Если $|T_{\text{набл}}| > t_{\kappa pum}(\alpha, k)$ основная гипотеза H_0 с выборочными данными и должна быть отвергнута.

Критические точки распределения Стьюдента

Число	Урове	Уровень значимость с (двусторонням критическая область)							
степеней свободы к	0,10	0,05	0.02	0,01	0,002	0,001			
1	6,31	12,7	31,82	63,7	318,3	637,0			
2	2,92	4,30	6,97	9,92	22,33	31,6			
2 3 4	2,35	3,18	4,54	5.84	10,22	12,9			
4	2,13	2,78	3,75	4,60	7,17	8,61			
5 6 7 8 9	2,01	2,57	3,37	4,03	5,89	6,86			
6	1,94	2,45	3,14	3,71	5,21	5,96			
7	1,89	2,36	3,00	3,50	4,79	5,40			
8	1,86	2,31	2,90	3,36	4,50	5,04			
	1,83	2,26	2,82	3,25	4,30	4,78			
10	1,81	2,23	2,76	3,17	4,14	4,59			
11	1,80	2,20	2,72	3,11	4,03	4,44			
12	1,78	2,18	2,68	3,05	3,93	4,32			
13	1,77	2,16	2,65	3,01	3,85	4,22			
14	1,76	2,14	2,62	2,98	3,79	4.14			
15 16	1.75	2,13	2,60	2,95	3,73	4,07			
17	1,75	2,12 2,11	2,58 2,57	2,92	3,69	4,01 3,96			
18	1.73	2,10	2,55	2,88	3,65	3,92			
19	1,73	2,09	2,54	2,86	3,58	3,88			
20	1,73	2,09	2,53	2,85	3,55	3,85			
21	1,72	2,08	2,52	2,83	3,53	3,82			
22	1,72	2,07	2,51	2,82	3,51	3,79			
23	1,71	2,07	2,50	2,81	3,49	3,77			
24	1,71	2,06	2,49	2,80	3,47	3,74			
25	1.71	2.06	2,49	2,79	3,45	3,72			
26	1,71	2,06	2,48	2,78	3,44	3,7			
27	1.71	2,05	2,47	2,77	3,42	3,69			
28	1,70	2,05	2,46	2,76	3,40	3,60			
29	1.70	2,05	2,46	2,76	3,40	3,66			
30	1,70	2,04	2,46	2,75	3,39	3,65			
40	1,68	2,02	2,42	2,70	3,31	3,5			
60	1,67	2,00	2,39	2,66	3,23	3,46			
120	1,66	1,98	2,36	2,62	3,17	3,37			
00	1,64	1,96	2,33	2,58	3,09	3,29			