

Evolução de Recursos Computacionais

Introdução

- A simulação numérica de escoamentos turbulentos tem sido motivada por diversos aspectos:
 - Aumento dos recursos computacionais, a custos cada vez menores;
 - Desenvolvimento de algoritmos numéricos avançados;
 - Possibilidade de redução de testes experimentais em protótipos.

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

2

Métodos de Simulação da Turbulência

 Simulação Numérica Direta (DNS – Direct Numerical Simulation)
 Resolve todas as escalas relevantes.

Simulação de Grandes Escalas (LES – Large Eddy Simulation) Resolve as escalas de energia e modela escalas de sub-malha.

 Modelos Média de Reynolds (RANS - Reynolds averaged Navier-Stokes)

Avalia quantidades médias do escoamento via modelação do efeito de todas as escalas.

Fonte: Center for Turbulence Research - Stanford.

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

4

- A solução das equações de Navier-Stokes é a forma mais direta para a simulação de escoamentos turbulentos.
- Assim, para escoamentos incompressíveis de fluidos Newtonianos, o seguinte sistema de equações deve ser resolvido:

$$\begin{split} \frac{\partial U_{i}}{\partial t} + U_{j} \frac{\partial U_{i}}{\partial x_{j}} &= -\frac{1}{\rho} \frac{\partial P}{\partial x_{i}} + \nu \frac{\partial^{2} U_{i}}{\partial x_{j} \partial x_{j}} \\ \frac{\partial U_{i}}{\partial x_{i}} &= 0 \end{split}$$

- A simulação da turbulência requer recursos computacionais extremamente elevados, pois a malha computacional deve ser suficientemente refinada para resolver as menores escalas de movimento, cujas dimensões diminuem com o aumento do número de Reynolds.
- No entanto, se as discretizações espacial e temporal forem suficientemente refinadas, todas as escalas do movimento turbulento e suas interações não lineares serão resolvidas diretamente, sem necessidade de modelação.
- Esse tipo de simulação é conhecido como Simulação Numérica Direta (DNS Direct Numerical Simulation) da turbulência;

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Simulação Numérica Direta

Lorenz (1963) estudou um sistema dependente do tempo, caracterizado por três variáveis [x(t), y(t) e z(t)], governadas pelas seguintes equações diferenciais ordinárias:

$$\dot{x} = \sigma(y-x);$$
 $\dot{y} = \rho x - y - xz;$ $\dot{z} = -\beta z + xy$

- Os valores dos coeficientes nas equações acima são: σ = 10; β = 8/3; ρ = 28.
- O gráfico abaixo mostra a variação de x(t), considerando as condições iniciais [x(0); y(0), z(0)] = [0,1; 0,1; 0,1].

Simulação Numérica Direta

- O campo de velocidade de um escoamento turbulento é randômico. Em outras palavras, mesmo que um experimento seja preparado da mesma forma, é impossível repetir os valores das medições.
- ☐ A pergunta que se coloca é: Se as equações de Navier-Stokes são determinísticas, como então suas soluções podem ser randômicas?
- ☐ A resposta para essa questão reside em duas observações:
 - Em qualquer escoamento turbulento existem sempre perturbações nas condições iniciais, nas condições de contorno e nas propriedades físicas do fluido.
 - Ao contrário do escoamento laminar, o escoamento turbulento é extremamente sensível a essas perturbações.
- ☐ A sensibilidade a perturbações é muito explorada no estudo de sistemas dinâmicos, e aparece em diversos textos sobre a teoria do caos.

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Simulação Numérica Direta

Quando as condições iniciais são alteradas de forma sutil para [x(0); y(0), z(0)] = [0,100001; 0,1; 0,1], a nova solução $\hat{x}(t)$ fica virtualmente a mesma até t = 30, mas assume então um comportamento distinto; gráfico (c).

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

- O exemplo anterior demonstra que se a condição inicial não for conhecida com uma precisão de aproximadamente 10-6, nenhuma previsão consistente pode ser feita sobre x(t).
 - Assim, um sistema de equações determinísticas muito mais simples do que as equações de Navier-Stokes pode exibir uma sensibilidade extrema a condições iniciais, apresentando uma característica de imprevisibilidade.
- \square As equações de Lorenz dependem dos valores dos coeficientes σ , β e ρ . Em particular, para valores fixos de σ = 10 e β = 8/3 pode-se afirmar:
 - Se ρ é menor do que um valor crítico (ρ* = 24,74), a solução do sistema tende de forma assintótica para valores fixos de x, y e z, independente da condição inicial.
 - No entanto, para $\rho > \rho^*$, como no exemplo anterior, o comportamento caótico prevalece.
 - Novamente, existe similaridade com as equações de Navier-Stokes, a qual apresenta uma solução definida para baixos números de Reynolds.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

10

Simulação Numérica Direta

- Para um avião com asa de comprimento de corda de 5 m e fuselagem de 50 m, voando a 250 m/s em uma altitude de 10 km, são necessários aproximadamente 10¹⁶ pontos para resolver a turbulência próxima à superfície.
 - Um computador com 1 Tflops de velocidade de processamento levaria milhares de anos para resolver o escoamento ao longo de um segundo de voo.

Simulação Numérica Direta

- Por questões de capacidade computacional, DNS só pode ser aplicada em escoamentos com números de Reynolds baixos.
 - Isso decorre do fato que cada grau de liberdade corresponde a uma equação linear discretizada e o número total de graus de liberdade, N_{nl}, é de ordem:

$$N_{gl} = (L/\eta)^3 = Re_L^{9/4}$$

- Assim, para um escoamento a Re_i = $4.000 \rightarrow N_{dl} = 1.3 \times 10^8$.
- Ou seja, a solução deste problema através de DNS exigiria a solução de aproximadamente 130 milhões de equações.
- A solução direta de um problema como esse está ao alcance dos recursos computacionais atuais.
- No entanto, esse número de Reynolds é pequeno diante dos valores que caracterizam a grande maioria dos problemas de engenharia.

Simulação Numérica Direta

- Apesar de limitada a números de Reynolds baixos, DNS é muito útil na geração de dados para a validação e desenvolvimento de modelos de turbulência, bem como na análise física do fenômeno da turbulência.
 - Por exemplo, pode-se avaliar várias quantidades, algumas impossíveis de serem medidas, e analisar relações temporais e espaciais entre variáveis, permitindo uma compreensão física da cinemática e da dinâmica da escalas turbulentas.

- = Spatially evolving b.l. with $Re_{\chi^*} = 500$ (at inlet)
- Incompressible Navier-Stokes equations
- Inflow and outflow boundary conditions
- Grid : 512 x 192 x 128

Contours of skin friction coefficient at the wall (Detachment & Reattachment)

Contours of pressure fluctuations in the (x-z) plane

Fonte: Center for Turbulence Research - Stanford

 Decaimento de turbulência isotrópica - Contornos de vorticidade (Heinz Pitsch, Stanford)

 Escoamento em torno de uma barra de seção quadrada, Re=22.000 (Arthur Veldman, Universidade de Groningen, Holanda).

20.26

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

13

Simulação Numérica Direta

Simulação Numérica Direta

Visualização do escoamento em torno de uma bola de golfe para Re = 110.000. Simulação em malha com 1,2 bilhão de pontos com o emprego de 500 processadores. Fonte: http://hdl.handle.net/1813/11586.

Modelagem de Escoam

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

1.

Simulação Numérica Direta

- Uma vez que DNS não necessita de modelos de turbulência, as únicas fontes de erro introduzidas são as aproximações numéricas.
 - Assim, esquemas de ordem elevada tornam-se essenciais para minimizar erros de truncamento.
 - Esquemas desse tipo, tais como métodos espectrais, possuem pouca flexibilidade para aplicação em geometrias complexas e condições de contorno gerais.
 - Por esta razão, DNS tem sido aplicada em situações simplificadas como, por exemplo, escoamento sobre placa plana e escoamento homogêneo, considerando números de Reynolds baixos.
 - Além de métodos espectrais, vários outros podem ser aplicados para a solução direta de escoamentos turbulentos, tais como diferenças finitas e elementos finitos.

- Prescrição de condições de contorno.
 - A especificação da condição de entrada deve considerar a variação temporal das variáveis sendo prescritas. Para a velocidade uma opção é especificar um perfil médio com variações aleatórias sobrepostas, de tal forma a produzir a intensidade turbulenta
 - Para a condição de saída, geralmente adota-se uma condição de escoamento parabólico.
 - Para a avaliação precisa da difusão molecular junto à superfícies sólidas, necessita-se que a subcamada limite viscosa seja resolvida, implicando que o primeiro ponto da malha computacional deve estar situado em $y_+ < 1$.
 - Quanto maior o número de Reynolds, mais fina a subcamada e maior o número de pontos para uma discretização adequada.

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Simulação Numérica Direta

Para escoamentos estatisticamente estacionários, as condições iniciais do escoamento

Para escoamentos cujos transientes são importantes como, por exemplo, o decaimento

Uma alternativa é a prescrição de ruído aleatório com um espectro definido, de tal forma

da turbulência homogênea isotrópica, a condição inicial deve ser considerada com

Dessa forma, pode-se prescrever um campo de valores médios sobrepostos por perturbações de grande amplitude, deixando o escoamento se desenvolver até que

Prescrição do campo inicial do escoamento

não são importantes.

médias possam ser avaliadas.

que as interações não lineares tornem-se realísticas.

Simulação de Grandes Escalas

- ☐ Smagorinsky (1963) propôs uma nova filosofia de modelagem, a partir das ideias de Reynolds (1894), para a decomposição das escalas turbulentas.
 - No entanto, ao invés de decompor o escoamento em um campo médio somado a flutuações, Smagorinsky optou em separar as escalas de frequências altas daquelas de frequências baixas, através de um processo de filtragem.

Simulação de Grandes Escalas

- ☐ A Simulação de Grandes Escalas (LES Large Eddy Simulation) é um método intermediário entre DNS e a simulação via média de Reynolds.
 - As escalas turbulentas transportadoras de energia e quantidade de movimento são diretamente resolvidas das equações filtradas, enquanto que apenas as menores escalas são modeladas.

Grandes Escalas (escalas de transporte)	Pequenas escalas (escalas dissipativas)
Produzidas pelo escoamento médio	Produzidas pelas grandes escalas
Dependem das fronteiras	Universais
Ordenadas (estrutura coerente)	Randômicas (caóticas)
Requer descrição determinística	Podem ser modeladas estatisticamente
Heterogênea	Homogênea
Anisotrópica	Isotrópica
Vida longa (cascata de energia)	Vida curta (dissipação)
Difusiva	Dissipativa
Difícil de modelar (LES)	Mais fácil de modelar

Simulação de Grandes Escalas

- DNS e LES são semelhantes no sentido de que permitem a obtenção de resultados tridimensionais e transientes;
 - No entanto, a discretização para LES não necessita ser tão refinada, tornando possível a solução de escoamentos com números de Reynolds elevados;
 - No entanto, LES é ainda impraticável em muitas situações de interesse tecnológico.

Large eddy simulation of contaminant release near Rockefeller Center, NYC. (Atmospheric Environment, 39, 1049-1068, 2005

Large eddy simulation of jet flow (CERFACS, France).

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Processos de Separação de Escalas e de

☐ A parte de grandes escalas (também denotada por filtrada) é dada por

$$\overline{F}(\vec{x},t) = \int_D G(\vec{r},\vec{x})F(\vec{x}-\vec{r},t) d\vec{r}$$

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Filtragem das Equações

Simulação de Grandes Escalas

A função G(r) pode ser definida em termos de um filtro de caixa (filtro de Deardorff), o qual pode ser entendido como uma média volumétrica:

$$G(\vec{r}) = \begin{cases} 1/\Delta^3 & \text{se} \quad |\vec{r}| \le \Delta/2 \\ 0 & \text{se} \quad |\vec{r}| > \Delta/2 \end{cases}$$

em que Δ é o tamanho que caracteriza a frequência de corte do filtro ($\kappa_c = \pi/\Delta$).

- Se ∆ for tomado como o tamanho da malha, o processo de filtragem se confunde com a filtragem imposta pela discretização, uma vez que no interior de um volume de discretização todas as variáveis são consideradas constantes.
- A maioria das metodologias de simulação numérica baseadas em volumes finitos e diferenças finitas adotam o filtro de Deardorff.

Equações Governantes

 As equações de transporte para escoamentos incompressíveis de fluidos Newtonianos são:

$$\frac{\partial U_i}{\partial x_i} = 0$$

$$\frac{\partial U_i}{\partial t} + \frac{\partial U_i U_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\nu \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \right]$$

$$\frac{\partial T}{\partial t} + \frac{\partial U_{j}T}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\alpha \frac{\partial T}{\partial x_{j}} \right)$$

A filtragem consiste em decompor as variáveis nas equações em duas parcelas: uma dita de grandes escalas, $\overline{F}(\overline{x},t)$, e outra dita de sub-malha, $f(\overline{x},t)$:

$$F(\vec{x},t) = \overline{F}(\vec{x},t) + f(\vec{x},t)$$

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Processos de Separação de Escalas e de Filtragem das Equações

Em função deste processo de filtragem, as propriedades clássicas da decomposição não são mais verificadas ($\overline{U}_i \neq \overline{U}_i$, $\overline{u}_i \neq 0$, $\overline{U}_i u_i \neq 0$).

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Processos de Separação de Escalas e de Filtragem das Equações

Os últimos termos destas equações ainda dependem de dois produtos filtrados. O procedimento adotado é expressar estes termos através de um tensor e de um fluxo turbulento:

$$L_{ij} = \overline{\overline{U}_i \overline{U}_j} - \overline{U}_i \overline{U}_j \qquad \qquad L_{\theta \, j} = \overline{U_j \overline{\Theta}} - \overline{U}_j \overline{\Theta}$$

$$L_{\theta j} = \overline{U_j \overline{\Theta}} - \overline{U}_j \overline{\Theta}$$

Assim,

$$\begin{split} \overline{\overline{U_i U}}_j &= \overline{U}_i \overline{\overline{U}}_j + \overline{u_i} \overline{\overline{U}}_j + \overline{\overline{U}_i u}_j + \overline{u_i u}_j + L_{ij} \\ \overline{\overline{U_j \Theta}} &= \overline{\overline{U}}_j \overline{\Theta} + \overline{u_j} \overline{\overline{\Theta}} + \overline{\overline{\overline{U}}_j \theta} + \overline{u_j \theta} + L_{\theta_i} \end{split}$$

onde

Tensor de Reynolds e Fluxo turbulento sub-malha

$$C_{ij} = \overline{u_i \overline{U}_i} + \overline{\overline{U}_i u_j}$$
 $C_{\theta j} = \overline{\overline{U}_i \theta} + \overline{u_j \overline{\Theta}}$

Tensor e Fluxo turbulento cruzado

$$L_{ij} = \overline{\overline{U}_i \overline{U}_j} - \overline{U}_i \overline{U}_j \qquad L_{\theta \, j} = \overline{\overline{U}_j \overline{\Theta}} - \overline{U}_j \overline{\Theta}$$

Tensor e Fluxo turbulento de Leonard

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Processos de Separação de Escalas e de Filtragem das Equações

Aplicando-se o processo de filtragem às equações governantes apresentadas obtém-se as seguintes equações:

$$\frac{\partial \overline{U}_i}{\partial x_i} = 0$$

$$\frac{\partial \overline{U}_{i}}{\partial t} + \frac{\partial \overline{U_{i}U}_{j}}{\partial x_{j}} = -\frac{1}{\rho} \frac{\partial \overline{P}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \nu \ \overline{S}_{ij}$$

$$\frac{\partial \overline{\Theta}}{\partial t} + \frac{\partial \overline{U_j \Theta}}{\partial x_j} = \frac{\partial}{\partial x_j} \alpha \frac{\partial \overline{\Theta}}{\partial x_j}$$

Os termos não lineares se apresentam na forma de dois produtos filtrados e assim é necessário um processo de decomposição de variáveis:

$$\overline{U_i U}_j = \overline{(\overline{U}_i + u_i)(\overline{U}_j + u_j)} = \overline{\overline{U}_i \overline{U}_j} + \overline{u_i \overline{U}_j} + \overline{\overline{U}_i u_j} + \overline{u_i u_j}$$

$$\overline{U_{\underline{i}}\Theta} = \overline{(\overline{U} + u_{\underline{i}})(\overline{\Theta} + \theta)} = \overline{\overline{U}_{\underline{i}}\overline{\Theta}} + \overline{u_{\underline{i}}\overline{\Theta}} + \overline{\overline{U}_{\underline{i}}\theta} + \overline{u_{\underline{i}}\theta}$$

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Equações Governantes Filtradas

 As equações governantes filtradas podem ser obtidas agora pela substituição dessas relações nas equações anteriores:

$$\frac{\partial \overline{\mathbf{U}}_{i}}{\partial \mathbf{x}} = 0$$

$$\frac{\partial \overline{U}_{i}}{\partial t} + \frac{\partial \overline{U}_{i}\overline{U}_{j}}{\partial x_{i}} = -\frac{1}{\rho} \frac{\partial \overline{P}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[2\nu \ \overline{S}_{ij} - (\overline{u_{i}u}_{j} + C_{ij} + L_{ij}) \right]$$

$$\frac{\partial \overline{\Theta}}{\partial t} + \frac{\partial \overline{U}_{j} \overline{\Theta}}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \left[\alpha \frac{\partial \overline{\Theta}}{\partial x_{j}} - (\overline{u_{j}\theta} + C_{\theta j} + L_{\theta j}) \right]$$

Este sistema de cinco equações possui onze incógnitas (U, V, W, P, $\overline{\Theta}$, $\overline{u_iu_i}$, C_{ii} , L_{ii} , $u_i\overline{\Theta}$, C_{ni} e L_{ni}), recaindo em um problema de fechamento;

Modelagem Sub-Malha da Turbulência

 Os tensores cruzado e de Leonard podem ser modelados com base na ideia de Clark et al. (1979):

$$L_{ij} + C_{ij} \cong \frac{\Delta}{12} \frac{\partial \overline{U}_i}{\partial x_k} \frac{\partial \overline{U}_j}{\partial x_k}$$

- No entanto, os tensores acima somente são importantes quando esquemas de interpolação de ordem superior a 3 são utilizados para a avaliação do transporte advectivo.
- Comparação dos efeitos de i) difusão molecular, ii) difusão de Leonard e cruzado e iii) difusão de Reynolds sub-malha (Silveira-Neto et al., 1993).

$$D_M = \left| \overline{\vec{\nabla} \bullet \left(2 \nu \, \overline{S}_{ij} \right)} \right|$$

$$D_{L} = ||\vec{\nabla} \cdot (L_{ij} + C_{ij})||$$

$$\mathbf{D}_{R} = \overline{\left| \overrightarrow{\nabla} \bullet (\overline{\mathbf{u}_{i} \mathbf{u}}_{j}) \right|}$$

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

Modelagem Sub-Malha da Turbulência

- ☐ A turbulência de sub-malha apresenta algumas características importantes:
 - Aproximadamente homogênea e isotrópica;
 - Contém somente uma pequena porção da energia cinética turbulenta e tensões turbulentas;
 - Até mesmo um modelo de turbulência simplificado pode ser suficiente para representá-la.
 - Não altera o campo de velocidade das grandes escalas de forma significativa.

$$\overline{\mathbf{U}_i\mathbf{U}}_j = \overline{\mathbf{U}}_i\overline{\mathbf{U}}_j + \overline{\mathbf{u}_i\mathbf{u}}_j$$
Escalas resolvidas Escalas sub-malha (80-95%) (5-20%)

- LES é similar à DNS mas com aproximações para a turbulência de sub-malha.
- LES pode ser adotada para escoamentos com número de Reynolds elevado, uma vez que as interações para a turbulência das pequenas escalas são avaliadas por um modelo de turbulência de sub-malha.

Modelagem Sub-Malha da Turbulência

- A interação entre as pequenas e grandes escalas devem ser avaliadas através de um modelo.

 - De fato, as equações para o escoamento filtrado são idênticas às equações de Reynolds, embora com diferentes interpretações físicas.
 - A maior parte das escalas de energia (80%-95%) s\u00e3o resolvidas diretamente, enquanto que somente o efeito das pequenas escalas (detentoras de 5% a 20% da energia cin\u00e9tica turbulenta) deve ainda ser modelada.
 - Como a maior parte das escalas detentoras de energia é calculada diretamente, os resultados de LES deveriam ser relativamente insensíveis à modelação das escalas de submalha (SGS).

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

3

Modelagem Sub-Malha da Turbulência

O tensor de Reynolds sub-malha pode ser aproximado em função da taxa de deformação, associada ao campo de velocidade filtrado, e da energia cinética turbulenta, conforme a ideia original de Boussinesq:

$$T_{ij} = -2\nu_t(\vec{x},t)\overline{S}_{ij} + \frac{2}{3}k\delta_{ij}$$

em que

$$T_{ij} = \overline{u_i u}_j + C_{ij} + L_{ij}$$

$$k = \overline{u_i u_i} + C_{ii} + L_{ii}$$

- A viscosidade turbulenta, v_t, deve ser calculada através de algum modelo.
- A energia cinética turbulenta sub-malha k pode ser incorporada à pressão estática.

2025

Modelagem Sub-Malha de Smagorinsky

Smagorinsky (1963) propôs um modelo simples para avaliar a viscosidade turbulenta, baseado na hipótese do comprimento de mistura de Prandtl:

$$v_t = \ell_s^2 \sqrt{2\overline{S}_{ij}\overline{S}_{ij}} = (C_S \Delta)^2 \sqrt{2\overline{S}_{ij}\overline{S}_{ij}}$$

onde $\ell_{\rm s}$ é a escala de comprimento de Smagorinsky, a qual é escrita proporcional à dimensão do filtro Δ através da constante de Smagorinsky $C_{\rm s}$.

De acordo com o modelo de viscosidade turbulenta, a taxa de transferência de energia para a turbulência de sub-malha é

$$\wp = -\overline{u_i u_j} \ \overline{S}_{ij} = 2 v_t \ \overline{S}_{ij} \ \overline{S}_{ij}$$

- Assim, para o modelo de Smagorinsky (ou qualquer outro modelo com v_t > 0), a transferência de energia ocorre do escoamento filtrado para o escoamento de submalha. Ou seja, não pode haver o fenômeno de "backscatter".
- A constante de Smagorinsky C_S = 0,18 foi determinada analiticamente por Lilly (1967) para o caso de turbulência homogênea e isotrópica, mas o seu valor é geralmente variado de acordo com o escoamento analisado. A maioria das simulações adota C_S = 0,1.
- Outros modelos de sub-malha foram propostos para evitar o uso da constante C_s.

2025

Modelagem de Escoamentos Turbulentos - C.J. Deschamps - UFSC

33

