

ervice Manual

12 V ⊝-|

Documentation Technique Service Dokumentation Documentazione di Servizio Huolte-Ohje Manual de Servicio Manual de Servicio

SCHALTUNGS BESCHREIBUNG

Wenn das Autoradio oder der Cassettenspieler eingeschaltet wird, erfolgt die Aktivierung des Verstärkers wie folgt:

Das Nf-Signal im rechten Kanal steuert den Vorverstärker 7001 auf (dieser Vorverstärker ist deshalb notwendig, weil der Verstärker auch bei einem kleinen Nf-Signal ansprechen muss).

Der Transistor 7002 wird leitend und 2004 lädt sich über den Gleichrichter 7010 auf. Sobald dieser Elektrolyt aufgeladen ist, wird 7004 leitend, der selbst wieder 7008 aufsteuert, wodurch die ICs 7011 und 7012 mit Spannung versorgt werden.

Die Dioden 7009 und 7030 müssen verhindern, dass die Transistoren 7001 und 7002 beschädigt werden durch die zu grossen negativen Spannungsspitzen an ihren Basen. Diese negative Spannung gelangt über die Dioden nach Masse.

Da die zwei Verstärker völlig identisch sind, wird lediglich der Vorgang im linken Kanal beschrieben. Das Nf-Signal erreicht den Stift 2 und den Stift 12 von 7011. An den Ausgängen 6, 7 und 8, 9 steht jetzt das verstärkte Signal zur Verfügung, wobei das Signal an den Stiften 8 und 9 um 180° in der Phase in bezug auf das Signal an den Stiften 6 und 7 verschoben ist. Die in der Phase gedrehten Signale werden nunmehr vom Endverstärker verstärkt und anschliessend auf addiert, wonach das Gesamtsignal vom Lautsprecher wiedergegeben wird.

Zwischen den Stiften 6 und 7 von 7011 befinden sich in der IC 3-BU-Ubergänge. Auswendig mit der IC nur die 2-BE-Ubergänge von 7017 und 7019. Um eine optimale Anpassung zwischen den Transistoren und der IC zu erreichen, ist ein Trimmpotentiometer verwendet. Es folgt daraus, dass bei jeder Auswechslung der IC oder eines Endtransistors das Trimmpotentiometer erneut abzugleichen ist.

Weil das Nf-Signal beim Lautsprecher addiert wird, darf der Lautsprecher nicht mit Masse verbunden werden. Bildet dagegen durch eine oder die andere Ursache einer der Anschlüsse des Lautsprechers einen Kurzschluss mit Masse oder wird der Lautsprecher kurzgeschlossen, spricht eine Sicherung an, die den Endverstärker abschaltet. In diesem Fall können keine Komponenten beschädigt werden. Diese Sicherung arbeitet wie folgt: Bei einem Kurzschluss des Lautsprechers (beispielsweise des linken Kanals) durchfliesst den Widerstand 3052 ein grosser Strom (\geqslant 5 A). So erhält der Transistor 7007 eine Spannung $V_{be} = I \times R_{3052} = 5 \times 0,12 \Omega = 0,6 \ N$, so dass 7007 leitet.

Dieser Transistor steuert selbst den 7003 auf und dadurch sinkt die Basisspannung des 7004 auf nahezu 0 Volt. Der Transistor 7004 sperrt, wodurch auch 7008 gesperrt ist und die beiden ICs erhalten keine weitere Speisespannung. Das Nf-Signal erreicht jetzt nicht mehr die Ausgänge 6, 7 und 8, 9 der ICs so dass die Ausgangstransistoren sperren. 3052 durchfliesst jetzt kein Strom mehr, der 7007 sperrt und die Anlage wird wieder angesprochen. Der Kurzschluss ist jedoch noch nicht beseitigt und die Anlage schaltet wieder ab.

Um ein wiederholtes Ansprechen und Abschalten der Anlage zu vermeiden (siehe die Kennlinie nach Abb. 1), ist eine Zeitschaltung eingebaut worden.

Diese Zeitschaltung sorgt jetzt dafür, dass die Ausgangsverstärker eine vorgegebene Zeit abgeschaltet bleiben. Die Schaltung lässt sich wie folgt erläutern.

Wenn 7008 sperrt, wird die +3 0 Volt und der Elektrolyt 2005 lädt sich über 3003 und 3011 auf. Demzufolge wird 7005 aufgesteuert, der dafür sorgt, dass 7003 nach

wie vor leitet. Der Transistor 7005 leitet jedoch nur für die Dauer des Aufladens von 2005.

Die Aufladezeit des Elektrolytkondensators beträgt:

$$I = (R_{3003} + R_{3011}) \times C =$$

(27 k
$$\Omega$$
 + 270 k Ω) x 10 μ \approx 3 s

Also wird 7005 nach 3 s gesperrt und die Anlage wird wiederum angesprochen. Der Elektrolytkondensator entlädt sich dabei sehr schnell über die Diode 7029. Die Anlage schaltet gemäss der Beschreibung wieder ab. Jetzt wird eine Abschaltkennlinie nach Abb. 2 erhalten. Ist der Kurzschluss beseitigt, spricht die Schaltung wieder an, so dass 2005 vollständig geladen ist. Tritt der Kurzschluss im rechten Kanal auf, wird 7006 leitend. Dieser Transistor steuert 7003 auf usw. usw.

Beide Verstärker werden also abgeschaltet, unabhängig davon, in welchem Kanal der Kurzschluss auftritt. Wenn das Radio oder der Cassettenspieler abgeschaltet wird (es wird also kein Nf-Signal mehr zugeführt), schaltet sich der Booster-Verstärker nach etwa 1 Minute ab. Dies bewirkt die Entladezeit des Elektrolytkondensators 2004, so dass 7004 und 7008 noch einige Zeit leiten.

Anmerkung

Dieser Booster-Verstärker hat eine variable Eingangsimpedanz. Wenn die Brückendrähte bei 3020 und 3021 entfernt werden, kommt Z_i auf ≈ 1000 Ohm, mit den Brückendrähten beträgt $Z_i \approx 15$ Ohm. Dies wurde deshalb gemacht, um eine möglichst gute Anpassung mit dem benutzten Autoradio-Verstärker zu erhalten. Ist es ein Transistorverstärker, soll $Z_i \approx 15$ Ohm betragen und bei einem IC-Verstärker (TDA1010, TBA810SH) gibt ein Zi-Wert von 1000 Ohm das beste Ergebnis. Wird ein Apparat mit einem IC-Ausgangsverstärker an einen Booster-Verstärker mit niedriger Eingangsimpedanz angeschlossen, treten im Nf-Signal grössere Verzerrugen. als bei einem an einen Booster-Verstärker mit hoher Eingangsimpedanz angeschlossenen Apparat. Wird dagegen ein Apparat mit einem Transistor-Ausgangsverstärker an einen Booster-Verstärker mit hoher Eingangsimpedanz angeschlossen, tritt Leistungsverlust auf, weil der Booster-Verstärker nicht vollständig ausgesteuert wird.

Abb. 1

Abb. 2

MISC	702	2a,b,7024a,b,7018,7014,7009,7020,7016,7001,7012,7005,70	29,7008,7006.7	031.7002÷	7004.7007.7011.70	10.7030.7013.7015.7017.7019.7021a.b	.7023a.b
2000)÷2014	2006 2014.2010.2000.2001.20	008.2012.2005.3	2003, 2011.2	2009.2002.2007.2	013,2004	
2015	÷2032	2028.2026.2024.2022.2030.2016. 2020.	2018	2017.20	019. 2015.	2021.2025.2027.2023.2029	
R 3000	÷3014	3014 3009.3011.3010.3003.3001	3005.3012	.3002.300	0.3004,3013.300	5÷3008	
3015	÷3025	3021,3025,3023	3020.3022				
R 302	5÷3039	3035.3039.3033.3037.	3031, 3029, 3021	5÷3028	3030.3036.3032		
_		2017	1	OFF	20112016	20/0 20/2 20/9 2062 2060	

7001	BC548B	4822 130 40937	3020,3021	15 Ω ± 5 % - 2.5 W	4822 116 51093
7002÷7004	BC548	4822 130 40938	3036÷3039	1 k Ω trimpot.	4822 100 10021
7005÷7008	BC558	4822 130 40941	3040÷3043	$15 \text{ k}\Omega \pm 10 \% \text{ NTC}$	5322 116 34025
7013,7014	BC558B	4822 130 44197	3052,3053	0.12 Ω ± 10 % - 2 W	5322 113 60098
7015÷7018	BC548B	4822 130 40937			
7019,7020	BC558B	4822 130 44 197			
7021÷7024	Pair BD433/BD434	4822 130 41076			
			8000	62 A (T)	4822 253 30031
	Little IC Triting			6.3 A (T)	4622 253 30031
7011,7012	SFB4	4822 209 80286			
	→				
7009,7010	BA216	4822 130 30702			
7029	BA318	4822 130 30852			
7030	BA216	4822 130 30702			
7031	BYX72/150	5322 130 34262			

GB		NL)			
Mounting material for power transistor	s 4822 255 40115	Montage materiaal voor transistoren 4822 255 40115			
LS plug	4822 267 40235	LS plug	4822 267 40235		
Supply cable	4822 321 20375	Voedingskabel	4822 321 20375		
Socket supply/LS	4822 267 50256	Voedings -/LS steker	4822 267 50256		
Fuse box	4822 423 90087	Zekeringhouder	4822 423 90087		
Matériel de montage pour transistors Prise BT Câble alimentation Fiche BT/alimentation Porte-fusible	4822 255 40115 4822 267 40325 4822 321 20375 4822 267 50256 4822 423 9008	Montagematerial für Transistoren LS-Stecker Speisekabel Speise-/LS-Buchse Sicherungshalter	4822 255 40115 4822 267 40235 4822 321 20375 4822 267 50256 4822 423 90087		

Materiale di montaggio per transistori 4822 255 40115
Presa BT 4822 267 40235
Cavo alimentazione 4822 321 20375
Spina BT/alimentazione 4822 267 50256
Porta-fusibile 4822 423 90087