

EINN: Epidemic Prediction using ML

Mert Saruhan, B.Sc.

November 29, 2023

hs-mittweida.de

Agenda

1 What is EINN?

2 Background

3 EINN Model

4 Results

What is EINN?

What is EINN?

Introduction

- EINN is a (Neural Network) machine learning model to predict epidemic dynamics [1]

What is EINN?

Introduction

- EINN is a (Neural Network) machine learning model to predict epidemic dynamics [1]
- EINN combines the knowledge of PINN, RNN, and ODE [1]

SIR epidemic models

- Statical way to predict epidemic dynamics
- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.
- Susceptible (S): $\frac{dS_t}{dt} = -\beta_t \frac{S_t I}{N}$
- Exposed (E): $\frac{dE_t}{dt} = \beta_t \frac{S_t I_t}{N} \alpha_t E_t$
- Infected (I): $\frac{dI_t}{dt} = \alpha_t E_t \gamma_t I_t \mu_t I$
- Recovered (R): $\frac{dR_t}{dt} = \gamma_t I_t$
- Mortality (M): $\frac{dM_t}{dt} = \mu_t I_t$

SIR epidemic models

- Statical way to predict epidemic dynamics
- Uses ODE to predict

SIR epidemic models

- Statical way to predict epidemic dynamics
- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.

SIR epidemic models

- Statical way to predict epidemic dynamics
- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.
- Susceptible (S): $\frac{dS_t}{dt} = -\beta_t \frac{S_t I_t}{N}$
- Exposed (E): $\frac{dE_t}{dt} = \beta_t \frac{S_t I_t}{N} \alpha_t E_t$
- Infected (I): $\frac{dI_t}{dt} = \alpha_t E_t \gamma_t I_t \mu_t I$
- Recovered (R): $\frac{dR_t}{dt} = \gamma_t I_t$
- Mortality (M): $\frac{dM_t}{dt} = \mu_t I_t$

SIR epidemic models

- Statical way to predict epidemic dynamics
- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.
- Susceptible (S): $\frac{dS_t}{dt} = -\beta_t \frac{S_t I_t}{N}$
- Exposed (E): $\frac{dE_t}{dt} = \beta_t \frac{S_t I_t}{NI} \alpha_t E_t$

SIR epidemic models

- Statical way to predict epidemic dynamics
- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.
- Susceptible (S): $\frac{dS_t}{dt} = -\beta_t \frac{S_t I_t}{N}$
- Exposed (E): $\frac{dE_t}{dt} = \beta_t \frac{S_t I_t}{N} \alpha_t E_t$
- Infected (I): $\frac{dI_t}{dt} = \alpha_t E_t \gamma_t I_t \mu_t I_t$

SIR epidemic models

- Statical way to predict epidemic dynamics
- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.
- Susceptible (S): $\frac{dS_t}{dt} = -\beta_t \frac{S_t I_t}{N}$
- Exposed (E): $\frac{dE_t}{dt} = \beta_t \frac{S_t I_t}{N} \alpha_t E_t$
- Infected (I): $\frac{dI_t}{dt} = \alpha_t E_t \gamma_t I_t \mu_t I_t$
- Recovered (R): $\frac{dR_t}{dt} = \gamma_t I_t$

SIR epidemic models

- Statical way to predict epidemic dynamics
- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.
- Susceptible (S): $\frac{dS_t}{dt} = -\beta_t \frac{S_t l_t}{N}$
- Exposed (E): $\frac{dE_t}{dt} = \beta_t \frac{S_t I_t}{N} \alpha_t E_t$
- Infected (I): $\frac{dI_t}{dt} = \alpha_t E_t \gamma_t I_t \mu_t I_t$
- Recovered (R): $\frac{dR_t}{dt} = \gamma_t I_t$
- Mortality (M): $\frac{dM_t}{dt} = \mu_t I_t$

RNN

- RNN is a neural network model
- Uses the previous state as an input to predict the next state
- Used in object detection and NLP

Figure: Example structure of RNN and NN [2]

RNN

- RNN is a neural network model
- Uses the previous state as an input to predict the next state
- Used in object detection and NLP

Figure: Example structure of RNN and NN [2]

RNN

- RNN is a neural network model
- Uses the previous state as an input to predict the next state
- Used in object detection and NLP

Figure: Example structure of RNN and NN [2]

PINN

- Uses physics laws to predict the next state
- Uses PDE (partial differential equation) and ODE (ordinary differential equation) as a loss estimator
- L_{data}: loss from data fitting
- L_{physics}: loss from physics laws

e.g.
$$\vec{a} = -\mu \|\vec{v}\| \vec{v} - \vec{g}$$
, $\vec{v} = \frac{df}{dt}$, $\vec{a} = \frac{d^2f}{dt^2}$

$$\mathsf{L}_{\mathsf{physics}} = \frac{1}{N} \sum_{i=0}^{N-1} \left(-\mu \| \frac{df_i}{dt_i} \| \frac{df_i}{dt_i} - \vec{g} - \left(\frac{d^2 f_i}{dt_i^2} \right) \right)^2$$

• $L_{total} = L_{data} + L_{physics}$

Note: \vec{a} is acceleration, \vec{v} is velocity, \vec{g} is gravity, μ is friction, f is position, t is time, and N is the number of data points.

PINN for Systems Biology

- Recent works with PINN for Systems Biology [3, 4] enables ODE for PINN
- Uses time t as input for Neural Network N(t) and rate of change in ODE systems $f_{\rm ODE}(t)$
- Uses $(\frac{dN(t)}{dt} f_{ODE}(t))$ as a loss

Model summary

Figure: EINN Model. (a) The training model. (b) Needed gradients to train the model using autograd. (c) ODE losses of feature module and time module. Taken from: [1]

Source model (Time module)

- Source model is a PINN model

- Model freezes when $e_t \approx e_t^F$

Source model (Time module)

- Source model is a PINN model
- Input: time

- Model freezes when $e_t \approx e_t^F$

Source model (Time module)

- Source model is a PINN model
- Input: time
- Output: embedding of the epidemic ODE states (e_t)
- Model freezes when $e_t \approx e_t^F$

Source model (Time module)

- Source model is a PINN model
- Input: time
- Output: embedding of the epidemic ODE states (e_t)
- Uses PINN for Systems Biology
- Model freezes when $e_t \approx e_t^F$

Time module losses

Figure: Cropped model summary showing the training summary. Cropped from: [1]

 ODE loss for time module (L^{ODE-T}) [1]:

$$\frac{1}{N+1}\sum_{t=t_0}^{t_N}\left[\frac{ds_t}{dt}-f_{\mathsf{ODE}}(\mathsf{s}_t,\Omega_t)\right]^2$$

Time module losses

- According to Wu et al. [5], in the ODE states, Mortality (M) is observed and other states are latent

Time module losses

Figure: Cropped model summary showing the training summary. Cropped from: [1]

 According to Wu et al. [5], in the ODE states, Mortality (M) is observed and other states are latent

•
$$L^{\text{Data-T}}$$
 [1]: $\frac{1}{N+1} \sum_{t=t_0}^{t_N} \left[\hat{M}_t - M_t \right]^2$

Time module losses

- Adding monoticity loss (loss from latent states) to make learning less challenging using domain knowledge

Time module losses

- Adding monoticity loss (loss from latent states) to make learning less challenging using domain knowledge
- $L^{\text{Mono}} = \frac{1}{N+1} \left(\sum_{t=t_0}^{t_N} \frac{dS_t}{dt} \text{ReLU} \left(\frac{dS_t}{dt} \right) + \right)$ $\sum_{t=t_0}^{t_N} -1 \frac{dR_t}{dt} \text{ReLU}(-\frac{dR_t}{dt})$

Time module losses

- Dealing time varying ODE model with parameter loss

Time module losses

- Dealing time varying ODE model with parameter loss
- $L^{Param} = \frac{1}{N+1} \sum_{t=t_0}^{t_N} \left[\Omega_{t+1} \Omega_t \right]^2$

Target model (Feature module)

- Target model is an RNN model

Target model (Feature module)

- Target model is an RNN model
- Input (x_t) : Features relevant to the problem

Target model (Feature module)

- Target model is an RNN model
- Input (x_t) : Features relevant to the problem
- Output: embedding of the epidemic ODE states (e_t^F)

Target model (Feature module)

- Target model is an RNN model
- Input (x_t) : Features relevant to the problem
- Output: embedding of the epidemic ODE states (e_t^F)
- Model freezes when $e_t \approx e_t^F$

Target model (Feature module)

- Target model is an RNN model
- Input (x_t) : Features relevant to the problem
- Output: embedding of the epidemic ODE states (e_t^F)
- Model freezes when $e_t \approx e_t^F$
- Loss (L^{Emb}): $\frac{1}{N+1} \sum_{t=t_0}^{t_N} [e_t e_t^F]^2$

Target module losses

Figure: Cropped model summary showing the training summary. Cropped from: [1]

• $e_t \approx e_t^F$ required for gradient trick for ODE loss from feature module

$$ullet$$
 $e_tpprox e_t^F \Rightarrow rac{ds_t^r}{dt} = rac{ds_t^r}{de_t^F}rac{de_t^r}{dt} pprox rac{ds_t^r}{de_t^F}rac{de_t}{dt}$

 Loss ODE from feature module (L^{ODE-F}) [1]:

$$\frac{1}{N+1} \sum_{t=t_0}^{t_N} \left[\frac{ds_t^F}{de_t^F} \frac{de_t}{dt} - f_{\text{ODE}}(s_t^F, \Omega_t) \right]^2$$

Target module losses

- $e_t \approx e_t^F$ required for gradient trick for ODE loss from feature module
- $e_t \approx e_t^F \Rightarrow \frac{ds_t^F}{dt} = \frac{ds_t^F}{de_t^F} \frac{de_t^F}{dt} \approx \frac{ds_t^F}{de_t^F} \frac{de_t}{dt}$
- Loss ODE from feature module (L^{ODE-F}) [1]:

$$\frac{1}{N+1}\sum_{t=t_0}^{t_N}\left[\frac{ds_t^F}{de_t^F}\frac{de_t}{dt}-f_{\mathsf{ODE}}(s_t^F,\Omega_t)\right]^{\frac{1}{N}}$$

Target module losses

- $e_t \approx e_t^F$ required for gradient trick for ODF loss from feature module
- $e_t \approx e_t^F \Rightarrow \frac{ds_t^F}{dt} = \frac{ds_t^F}{de_t^F} \frac{de_t^F}{dt} \approx \frac{ds_t^F}{de_t^F} \frac{de_t}{dt}$
- Loss ODE from feature module (L^{ODE-F}) [1]:

$$\frac{1}{N+1}\sum_{t=t_0}^{t_N}\left[\frac{ds_t^F}{de_t^F}\frac{de_t}{dt}-f_{\mathsf{ODE}}(s_t^F,\Omega_t)\right]^2$$

Target module losses

- \hat{M}_{t}^{F} : predicted mortality using feature module path

Target module losses

- \hat{M}_{t}^{F} : predicted mortality using feature module path
- Loss from data (L^{Data-F}):

$$\frac{1}{N+1}\sum_{t=t_0}^{t_N}\left[\hat{M}_t^F-M_t\right]^2$$

Target module losses

Figure: Cropped model summary showing the training summary. Cropped from: [1]

Alligning findings from both paths

•
$$L^{\text{Output}} = \frac{1}{N+1} \sum_{t=t_0}^{t_N} \left[s_t - s_t^F \right]^2$$

Target module losses

- Alligning findings from both paths
- $L^{\text{Output}} = \frac{1}{N+1} \sum_{t=t_0}^{t_N} \left[s_t s_t^F \right]^2$

Results

Results

Bibliography I

- A. Rodríguez, I. Cui, N. Ramakrishnan, B. Adhikari, and B. A. Prakash, *Einns: Epidemiologically-informed neural networks*, 2023. DOI: 10.48550/arXiv.2202.10446.arXiv: 2202.10446 [cs.LG].
- A guide to recurrent neural networks: Understanding rnn and lstm networks, https://builtin.com/data-science/recurrent-neural-networksand-lstm. Accessed: 2023-11-26.
- A. Yazdani and et al., Systems biology informed deep learning for inferring parameters and hidden dynamics. PLOS Comp. Bio., 2020.
- [4] G. Karniadakis and et al., Physics-informed machine learning, 2021.

Bibliography II

[5] I. T. Wu and et al., Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: A modelling study, 2020.

Thank You

- Mert Saruhan, B.Sc.

Mathematics for Network and Data Science (MA20w1-M)

Hochschule Mittweida University of Applied Sciences Technikumplatz 17 | 09648 Mittweida

hs-mittweida.de