

TEXAS TECH UNIVERSITY

Kernel PCA

Definition:

Given a set of samples in the original space, we project each sample onto a new embedding of higher dimensionality. We perform PCA in this higher dimension. The result is a non-linear projection of samples in the dimension of required principal components.

Kernel PCA Basics

Computing the mean

- ☐ Original space:
- ☐ Embedded space:

$$\mu = \frac{1}{N} \sum_{k=1}^{N} x^k$$

 $\overline{\Phi} = \frac{1}{N} \sum_{k=1}^{N} \Phi(x^k)$

- ☐ Original space:
- ☐ Embedded space:

$$\Sigma(x^k-\mu)(x^k-\mu)^T$$

$$\Sigma_{\Phi} = (\Phi(x^k) - \overline{\Phi}) (\Phi(x^k) - \overline{\Phi})^T$$

Projection

- ☐ Original space:
- ☐ Embedded space:

$$y^k = \left(x^k - \mu\right)^T e$$

$$\Phi(y^k) = \left(\Phi(x^k) - \overline{\Phi}\right)^T e_{\Phi}$$

Kernel PCA Mathematical Foundation

The choice of embedding has significant impact on computational complexity.
 Example: polynomial embedding.

$$\Phi[x_1, x_2, ..., x_d] = [x_1^n, x_1^{n-1} x_2, ..., x_1^{n-1} x_d, ..., x_1^{n-2} x_2^2, ..., x_d^n]$$

- $\Phi[X]$ is an $[m \times n]$ matrix where m is the number of features/dimensions in the embedded space.
- Increasing the degree of the polynomial, n, increases m.

$$m = {}^{d+n-1}_{d}C$$

• If m is large the computation is impractical. Σ_{Φ} is an $[m \times m]$ matrix.

$$\Sigma_{\Phi} = \Phi \Phi^T$$

- How can we achieve efficient PCA in the embedded space?
- If we proceed and try to find the eigenvectors:

$$\Phi\Phi^T e = \lambda e$$

For all
$$\lambda > 0$$
: $\Phi \frac{(\Phi^T e)}{\lambda} = e$,

$$let \frac{(\Phi^T e)}{\lambda} = w$$

Kernel PCA Mathematical Foundation

- The result is $\Phi w = e$ this tells us that the eigenvectors we want, e, is always a linear combination of the columns of the embedded data matrix.
- Eigenvectors of Σ_{Φ} that correspond to $\lambda > 0$ are in the column span of Φ . $w = \lambda^{-1} \Phi^{T} e$
- w is the vector of coefficients.
- If we take the definition of w

$$\Phi^{T} \Phi w = \Phi^{T} \Phi (\lambda^{-1} \Phi^{T} e)$$
$$= \Phi^{T} e$$
$$\Phi^{T} \Phi w = \lambda w$$

- Initially $\Phi\Phi^T$ was too large $[m \times m]$ but now we have $\Phi^T\Phi$ which is $[n \times n]$, where $n \ll m$
- Instead of computing eigenvectors of Σ_{Φ} ; $\Phi\Phi^T e = \lambda e$, we can find eigenvectors w, since the eigenvalues λ are essentially the same where $\Phi^T \Phi w = \lambda w$

Note:
$$||w||^2 = w^T w = u^T \Phi \Phi^T u \left(\frac{1}{\lambda^2}\right) = u^T (\lambda u) \left(\frac{1}{\lambda^2}\right) = \frac{1}{\lambda}$$

Kernel PCA Mathematical Foundation

- Solving the eigen problem $\Phi^T \Phi w = \lambda w$, we get w and λ . This will yield $||w||^2 = 1$ since the norm of symmetric
- We then normalize w so that $||w||^2 = \frac{1}{\lambda}$ then e the eigenvector we want is equal to $\Phi w = e$.

$$\widetilde{w} = \frac{1}{\sqrt{\lambda}}$$

• If we define our $K = \Phi^T \Phi$ as our Kernel matrix, we can find the projection y of the original data x

$$y = e^{T} \Phi$$
$$y = w^{T} \Phi^{T} \Phi; \quad e = \Phi w$$
$$y = \widetilde{w}^{T} K$$

•

Kernel PCA Algorithm

- 1. Given samples $[x_1, x_2, ..., x_n]$, a Kernel function K(x, y), and number of principal components d.
- 2. Calculate $K_{ij} = K(x_i, x_j)$, $\widetilde{K} = JKJ^T$:
- 3. Perform an Eigen Decomposition of $\widetilde{K} \approx W\Lambda W^{-1}$ for the top d eigenvectors.
- 4. $Y = \widetilde{W}^T K$

Kernel PCA extensions

- Kernel recompositing of original samples
 - Unlike standard PCA, the transformed data in the higher-dimensional space cannot be directly mapped back to the original feature space.
- Kernelizing Out of sample data:
 - If we want to project a new data point, we can use the kernel trick to calculate the kernel between the new data point and all the samples:

$$y^* = w^T K_x$$

Where $K_x = [K(x, x_1), K(x, 2), ... K(x, n)]^T$

- Using Label-Based Weights
 - One way of improving the separation of data points belonging to different classes is to modify the kernel matrix by using the labels.
 - A weight, α_{ij} , proportional to the difference in label values, can be inserted into the kernel function.

$$K_{ij} = \exp(-\alpha_{ij}\gamma ||x_i - x_j||^2)$$

An embedding exist for any random Kernel.