AMENDMENTS TO THE CLAIMS

1. (currently amended) A process for producing a polymer of ethylene containing from 0.1 to 99 % by mol of at least one derived unit of alpha-olefins of formula CH₂=CHZ, wherein Z is a C₂-C₂₀ alkyl radical, and optionally from 0 to 5% by mol polyene, comprising contacting, under polymerization conditions, ethylene, said at least one alph-olefin and optionally said polyene, in the presence of a catalyst system obtained by contacting:

a) a metallocene compound of formula (IV) or (V):

$$R^3$$
 R^3
 R^2
 R^2
 R^3
 R^4
 R^3
 R^4

wherein

M is zirconium, hafnium or titanium;

X, equal to or different from each other, is a hydrogen atom, a halogen atom, an R, OR, OR'O, OSO_2CF_3 , OCOR, SR, NR_2 or PR_2 group, wherein R is a linear or branched, C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical,

optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements; and the R' substituent is a divalent group selected from C_1 - C_{40} -alkylidene, C_6 - C_{40} -arylidene, C_7 - C_{40} -alkylarylidene or C_7 - C_{40} -arylalkylidene radicals; two X can join to form a C_4 - C_{40} dienyl ligand;

 R^1 and R^6 are each independently a linear or branched, C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

 R^2 , and R^5 , equal to or different from each other, are hydrogen atoms, halogen atoms, or linear or branched, C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radicals, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

 R^3 and R^4 are each independently a hydrogen atom or a linear or branched, C_1 - C_{10} -alkyl radical, optionally containing at least one halogen atom, wherein when R^3 is a hydrogen atom, R^4 is a linear or branched, C_1 - C_{10} -alkyl radical, optionally containing at least one halogen atom, and when R^3 is a linear or branched, C_1 - C_{10} -alkyl radical optionally containing at least one halogen atom, R^4 is a hydrogen atom;

L is a divalent bridging group selected from C_1 - C_{20} alkylidene, C_3 - C_{20} cycloalkylidene, C_6 - C_{20} arylidene, C_7 - C_{20} alkylarylidene, or C_7 - C_{20} arylalkylidene radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, or a silylidene radical containing up to 5 silicon atoms; and

- b) an alumoxane or a compound that forms an alkyl metallocene cation.
- 2. (original) The process according to claim 1 wherein the catalyst system further comprises an organo aluminum compound.
- (currently amended) The process according to claim 1 wherein in the compound of formula (IV) or (V),
 X is a halogen atom, an R, OR'O or OR group; R¹ and R⁶ are each independently a linear or branched, C₁-C₂₀-alkyl radical; R² is a hydrogen atom; and L is Si(CH₃)₂, SiPh₂,
 - SiPhMe, SiMe(SiMe₃), CH₂, (CH₂)₂, (CH₂)₃, C(CH₃)₂, C(Ph)₂ or C(CH₃)(Ph).
- 4. (cancelled)
- 5. (previously presented) The process according to claim 1 wherein, in the compounds of formula (IV) and (V), when R^3 is a hydrogen atom, R^4 is $C(R^7)_3$, wherein R^7 , equal to or

different from each other, is a linear or branched, C_1 - C_8 -alkyl radical; and when R^4 is hydrogen, R^3 is $C(R^7)_3$.

- 6. (cancelled)
- 7. (cancelled)
- 8. (previously presented) The process according to claim 1 wherein the catalyst system is supported on an inert carrier.
- 9. (previously presented) The process according to claim 8 wherein the inert carrier is a polyolefin.
- 10. (previously presented) The process according to claim 1 wherein the process is carried out in gas phase.
- 11. (previously presented) The process according to claim 1 wherein the alpha-olefin is 1-pentene, 1-hexene or 1-octene.
- 12. (cancelled)
- 13. (cancelled)