DataTpl< _Scalar, _Options, JointCollectionTpl > Struct Template Reference

Inheritance diagram for DataTpl< _Scalar, _Options, JointCollectionTpl >:

Serializable< DataTpl < _Scalar, _Options, JointCollectionTpl > >

 $Collaboration\ diagram\ for\ DataTpl<\ _Scalar,\ _Options,\ JointCollectionTpl>:$

Public Types

enum	{ Options = _Options }
typedef Eigen::Matrix< Scalar, 6, 10, Options >	BodyRegressorType The type of the body regressor.
typedef VectorXs	ConfigVectorType Dense vectorized version of a joint configuration vector.
typedef ForceTpl< Scalar, Options >	Force
typedef FrameTpl< Scalar, Options >	Frame
typedef pinocchio::FrameIndex	FrameIndex
typedef pinocchio::GeomIndex	GeomIndex
typedef pinocchio::Index	Index

typedef std::vector< Index >	
typedef InertiaTpl< Scalar, Options >	
typedef JointCollectionTpl< Scalar, Options >	JointCollection
typedef JointDataTpl< Scalar, Options, JointCollectionTpl >	JointData
typedef pinocchio::JointIndex	JointIndex
typedef JointModelTpl< Scalar, Options, JointCollectionTpl >	JointModel
typedef Eigen::Matrix< Scalar, 3, Eigen::Dynamic, Options >	Matrix3x
	The 3d jacobian type (temporary)
typedef Eigen::Matrix< Scalar, 6, 6, Options >	Matrix6
typedef Eigen::Matrix< Scalar, 6, Eigen::Dynamic, Options >	Matrix6x
	The 6d jacobian type (temporary)
typedef Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic, Options >	MatrixXs
typedef ModelTpl< Scalar, Options, JointCollectionTpl >	Model
typedef MotionTpl< Scalar, Options >	Motion
typedef Eigen::Matrix< Scalar, 6, 6, Eigen::RowMajor Options >	RowMatrix6
typedef Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor Options >	RowMatrixXs
typedef Eigen::Matrix< Scalar, 1, Eigen::Dynamic, Options Eigen::RowMajor >	RowVectorXs
typedef_Scalar	Scalar
typedef SE3Tpl< Scalar, Options >	SE3
typedef VectorXs	TangentVectorType
	Dense vectorized version of a joint tangent vector (e.g. velocity, acceleration, etc). It also handles the notion of co-
	tangent vector (e.g. torque, etc).
typedef Tensor< Scalar, 3, Options >	Tensor3x
	More
typedef Eigen::Matrix< Scalar, 3, 1, Options >	Vector3
typedef Eigen::Matrix< Scalar, 6, 1, Options >	Vector6
typedef Eigen::Matrix< Scalar, 6, 1, Options >	Vector6c
typedef Eigen::Matrix< Scalar, 1, 6, Eigen::RowMajor Options >	Vector6r
typedef Eigen::Matrix< Scalar, Eigen::Dynamic, 1, Options >	VectorXs

[▶] Public Types inherited from NumericalBase< DataTpl< _Scalar, _Options, JointCollectionTpl > >

Public Member Functions

Table Wellbert and to the	
	DataTpl () Default constructor.
	DataTpl (const Model &model) Default constructor of pinocchio::Data from a pinocchio::Model. More
	PINOCCHIO_ALIGNED_STD_VECTOR (Force) f Vector of body forces expressed in the local frame of the joint. For each body, the force represents the sum of all external forces acting on the body.
	PINOCCHIO_ALIGNED_STD_VECTOR (Force) h Vector of spatial momenta expressed in the local frame of the joint.

	PINOCCHIO_ALIGNED_STD_VECTOR (Force) of Vector of body forces expressed at the origin of the world. For each body, the force represents the sum of all external forces acting on the body.
	PINOCCHIO_ALIGNED_STD_VECTOR (Force) of_augmented Vector of body forces expressed in the world frame. For each body, the force represents the sum of all external forces acting on the body. These forces are used in the context of augmented Lagrangian algorithms.
	PINOCCHIO_ALIGNED_STD_VECTOR (Force) oh Vector of spatial momenta expressed at the origin of the world.
	PINOCCHIO_ALIGNED_STD_VECTOR (Inertia) oinertias Rigid Body Inertia supported by the joint expressed in the world frame.
	PINOCCHIO_ALIGNED_STD_VECTOR (Inertia) oYcrb Composite Rigid Body Inertia expressed in the world frame.
	PINOCCHIO_ALIGNED_STD_VECTOR (Inertia) Yorb Vector of sub-tree composite rigid body inertias, i.e. the apparent inertia of the subtree supported by the joint and expressed in the local frame of the joint
	PINOCCHIO_ALIGNED_STD_VECTOR (int) const raint_ind
	PINOCCHIO_ALIGNED_STD_VECTOR (int) const raints_supported_dim
	PINOCCHIO_ALIGNED_STD_VECTOR (int) par_cons_ind
typedef	PINOCCHIO_ALIGNED_STD_VECTOR (JointData) JointDataVector
typedef	PINOCCHIO_ALIGNED_STD_VECTOR (JointModel) JointModelVector
	PINOCCHIO_ALIGNED_STD_VECTOR (Matrix6) B Combined variations of the inertia matrix $B_i=\frac{1}{2}[(v_i\times *)I_i+(I_iv_i)\times^*-I_i(v_i\times)]$ consistent with Christoffel symbols.
	PINOCCHIO_ALIGNED_STD_VECTOR (Matrix6) doYcrb Time variation of Composite Rigid Body Inertia expressed in the world frame.
	PINOCCHIO_ALIGNED_STD_VECTOR (Matrix6) extended_motion_propagator2
	PINOCCHIO_ALIGNED_STD_VECTOR (Matrix6) lvx Left variation of the inertia matrix.
	PINOCCHIO_ALIGNED_STD_VECTOR (Matrix6) oK Inverse articulated inertia.
	PINOCCHIO_ALIGNED_STD_VECTOR (Matrix6) oL Acceleration propagator.
	PINOCCHIO_ALIGNED_STD_VECTOR (Matrix6) oYaba Articulated Body Inertia matrix of the subtree expressed in the WORLD coordinate frame.
	PINOCCHIO_ALIGNED_STD_VECTOR (Matrix6) spatial_inv_inertia
	PINOCCHIO_ALIGNED_STD_VECTOR (Matrix6) vxI Right variation of the inertia matrix.
	PINOCCHIO_ALIGNED_STD_VECTOR (Matrix6) Yaba Articulated Body Inertia matrix of the subtree expressed in the LOCAL coordinate frame of the joint.

PINOCCHIO_ALIGNED_STD_VECTOR (Matrix6x) Fcrb
Spatial forces set, used in CRBA and CCRBA.
PINOCCHIO_ALIGNED_STD_VECTOR (Matrix6x) KA
PINOCCHIO_ALIGNED_STD_VECTOR (MatrixXs) KAS
PINOCCHIO_ALIGNED_STD_VECTOR (MatrixXs) LA
PINOCCHIO_ALIGNED_STD_VECTOR (Motion) a
Vector of joint accelerations expressed in the local frame of the joint.
PINOCCHIO_ALIGNED_STD_VECTOR (Motion) a_bias
PINOCCHIO_ALIGNED_STD_VECTOR (Motion) a_gf
Vector of joint accelerations due to the gravity field.
PINOCCHIO_ALIGNED_STD_VECTOR (Motion) oa
Vector of joint accelerations expressed at the origin of the world.
PINOCCHIO_ALIGNED_STD_VECTOR (Motion) oa_augmented
Vector of joint accelerations expressed at the origin of the world. These accelerations are used in the context of
augmented Lagrangian algorithms.
PINOCCHIO_ALIGNED_STD_VECTOR (Motion) oa_drift
Vector of joint accelerations expressed at the origin of the world. These accelerations are used in the context of
augmented Lagrangian algorithms.
PINOCCHIO_ALIGNED_STD_VECTOR (Motion) oa_qf
Vector of joint accelerations expressed at the origin of the world including the gravity contribution.
PINOCCHIO_ALIGNED_STD_VECTOR (Motion) ov
Vector of joint velocities expressed at the origin of the world.
· · · · · · · · · · · · · · · · · · ·
PINOCCHIO_ALIGNED_STD_VECTOR (Motion) v Vector of joint velocities expressed in the local frame of the joint.
PINOCCHIO_ALIGNED_STD_VECTOR (SE3) iMf
Vector of joint placements wrt to algorithm end effector.
PINOCCHIO_ALIGNED_STD_VECTOR (SE3) IiMi
Vector of relative joint placements (wrt the body parent).
PINOCCHIO_ALIGNED_STD_VECTOR (SE3) oMf
Vector of absolute operationnel frame placements (wrt the world).
PINOCCHIO_ALIGNED_STD_VECTOR (SE3) oMi
Vector of absolute joint placements (wrt the world).
PINOCCHIO_ALIGNED_STD_VECTOR (size_t) accumulation_ancestor
PINOCCHIO_ALIGNED_STD_VECTOR (size_t) accumulation_descendant
PINOCCHIO_ALIGNED_STD_VECTOR (size_t) accumulation_joints
PINOCCHIO_ALIGNED_STD_VECTOR (size_t) joints_supporting_constraints
PINOCCHIO_ALIGNED_STD_VECTOR (std::set< size_t >) const raints_supported
PINOCCHIO_ALIGNED_STD_VECTOR (std::vector< size_t >) const raints_on_joint
PINOCCHIO_ALIGNED_STD_VECTOR (Vector3) acom
Vector of subtree center of mass linear accelerations expressed in the root joint of the subtree. In other words,
$\operatorname{acom}[j]$ is the CoM linear acceleration of the subtree supported by joint j and expressed in the joint frame j . The

element acom[0] corresponds to the acceleration of the CoM of the whole model expressed in the global frame. PINOCCHIO_ALIGNED_STD_VECTOR (Vector3) com Vector of subtree center of mass positions expressed in the root joint of the subtree. In other words, $com[j]$ is the CoM position of the subtree supported by joint j and expressed in the joint frame j . The element $com[0]$ corresponds to the center of mass position of the whole model and expressed in the global frame.
PINOCCHIO_ALIGNED_STD_VECTOR (Vector3) vcom Vector of subtree center of mass linear velocities expressed in the root joint of the subtree. In other words, vcom[j] is the CoM linear velocity of the subtree supported by joint j and expressed in the joint frame j . The element vcom[0] corresponds to the velocity of the CoM of the whole model expressed in the global frame.
PINOCCHIO_ALIGNED_STD_VECTOR (VectorXs) IA PINOCCHIO_ALIGNED_STD_VECTOR (VectorXs) lambdaA

[▶] Public Member Functions inherited from Serializable< DataTpl< _Scalar, _Options, JointCollectionTpl > >

Public Attributes

Matrix6x	Ag Centroidal Momentum Matrix. More
BodyRegressorType	bodyRegressor Body regressor.
MatrixXs	C The Coriolis matrix (a square matrix of dim model.nv).
ContactCholeskyDecomposition	contact_chol Cholesky decomposition of the KKT contact matrix.
PINOCCHIO_COMPILER_DIAGNOSTIC_PUSH PINOCCHIO_COMPILER_DIAGNOSTIC_IGNORED_DEPRECECATED_DECLARATIONS typede: ContactCholeskyDecompositionTpl< Scalar, Options >	f .
VectorXs	Diagonal of the joint space intertia matrix obtained by a Cholesky Decomposition.
Tensor3x	d2tau_dadq SO Cross-Partial derivative of the joint torque vector with respect to the joint acceleration/configuration. This also equals to the first-order partial derivative of the Mass Matrix w.r.t joint configuration.
Tensor3x	d2tau_dqdq SO Partial derivative of the joint torque vector with respect to the joint configuration.
Tensor3x	d2tau_dqdv SO Cross-Partial derivative of the joint torque vector with respect to the joint configuration/velocity.
Tensor3x	d2tau_dvdv SO Partial derivative of the joint torque vector with respect to the joint velocity.
MatrixXs	dac_da
MatrixXs	dac_dq
MatrixXs	dac_dv
Matrix6x	dAdq Variation of the spatial acceleration set with respect to the joint configuration.

Matrix6x	dAdv Variation of the spatial acceleration set with respect to the joint velocity.
Matrix6x	dAg
Matrix6x	Centroidal Momentum Matrix Time Variation. More ddJ
	Second derivative of the Jacobian with respect to the time.
TangentVectorType	ddq The joint accelerations computed from ABA.
RowMatrixXs	ddq_dq Partial derivative of the joint acceleration vector with respect to the joint configuration.
RowMatrixXs	ddq_dtau Partial derivative of the joint acceleration vector with respect to the joint torques.
RowMatrixXs	ddq_dv Partial derivative of the joint acceleration vector with respect to the joint velocity.
Matrix6x	dFda Variation of the forceset with respect to the joint acceleration.
Matrix6x	dFdq Variation of the forceset with respect to the joint configuration.
Matrix6x	dFdv Variation of the forceset with respect to the joint velocity.
Matrix6x	dHdq Variation of the spatial momenta set with respect to the joint configuration.
Force	dhg Centroidal momentum time derivative. More
VectorXs	diff_lambda_c Difference between two consecutive iterations of the proxy algorithm.
VectorXs	Dinv Diagonal inverse of the joint space intertia matrix obtained by a Cholesky Decomposition.
Matrix6x	dJ Derivative of the Jacobian with respect to the time.
MatrixXs MatrixXs	dlambda_dq Partial derivatives of the constraints forces with respect to the joint configuration, velocity and torque;.
MatrixXs	dlambda_dtau
MatrixXs	dlambda_dv
	dlambda_dx_prox
TangentVectorType	dq_after Generalized velocity after impact.
MatrixXs	drhs_prox
RowMatrixXs	dtau_dq Partial derivative of the joint torque vector with respect to the joint configuration.

RowMatrixXs	dtau_dv Partial derivative of the joint torque vector with respect to the joint velocity.
MatrixXs	dvc_dq Stack of partial derivative of the contact frame acceleration with respect to the joint parameters.
Matrix6x	dVdq Variation of the spatial velocity set with respect to the joint configuration.
std::vector< int >	end_idx_v_fromRow End index of the Joint motion subspace.
	extended_motion_propagator
VectorXs	
Vestel/AC	Vector of generalized gravity (dim model.nv). More
Force	hg Centroidal momentum quantity. More
Inertia	lg Centroidal Composite Rigid Body Inertia. More
VectorXs	impulse_c Lagrange Multipliers corresponding to the contact impulses in pinocchio::impulseDynamics.
Matrix6x	Used in computeMinverse.
Matrix6	Itmp Temporary for derivative algorithms.
Matrix6x	J Jacobian of joint placements. More
Matrix3x	Jcom Jacobian of center of mass. More
MatrixXs	JMinvJt Inverse of the operational-space inertia matrix.
PINOCCHIO_COMPILER_DIAGNOSTIC_POP JointDataVector	joints Vector of pinocchio::JointData associated to the pinocchio::JointModel stored in model, encapsulated in JointDataAccessor.
MatrixXs	jointTorqueRegressor Matrix related to joint torque regressor.
Tensor3x	kinematic_hessians Tensor containing the kinematic Hessian of all the joints.
Scalar	kinetic_energy Kinetic energy of the system.
RowVectorXs	kineticEnergyRegressor Matrix related to kinetic energy regressor.
VectorXs	lambda_c Lagrange Multipliers corresponding to the contact forces in pinocchio::forwardDynamics.
VectorXs	lambda_c_prox

	Description I I among Markin line and in the appropriate of the Fernand Danseries appropriate
	Proximal Lagrange Multipliers used in the computation of the Forward Dynamics computations.
std::vector< int >	lastChild Index of the last child (for CRBA)
Eigen::LLT< MatrixXs >	$egin{align*} & ext{Ilt_JMinvJt} \ & ext{Cholesky decompostion of } JMinvJt. \ & ext{} \end{split}$
MatrixXs	M The joint space inertia matrix (a square matrix of dim model.nv).
Matrix6	M6tmp Temporary for derivative algorithms.
RowMatrix6	M6tmpR
RowMatrix6	M6tmpR2
std::vector< Scalar >	
	Vector of subtree mass. In other words, mass[j] is the mass of the subtree supported by joint j . The element mass[0] corresponds to the total mass of the model.
Scalar	mechanical_energy Mechanical energy of the system.
RowMatrixXs	Minv The inverse of the joint space inertia matrix (a square matrix of dim model.nv).
VectorXs	nle Vector of Non Linear Effects (dim model.nv). It corresponds to concatenation of the Coriolis, centrifugal and gravitational effects. More
std::vector< int >	nvSubtree Dimension of the subtree motion space (for CRBA)
std::vector< int >	nvSubtree_fromRow Subtree of the current row index (used in Cholesky Decomposition).
MatrixXs	osim Operational space inertia matrix;.
Eigen::LLT< MatrixXs >	osim_llt
	oYaba_contact Articulated Body Inertia matrix with contact apparent inertia, of a given the subtree and expressed in the WORLD coordinate frame.
std::vector< int >	parents_fromRow First previous non-zero row in M (used in Cholesky Decomposition).
Scalar	potential_energy Potential energy of the system.
RowVectorXs	potentialEnergyRegressor Matrix related to potential energy regressor.
VectorXs	primal_dual_contact_solution RHS vector when solving the contact dynamics KKT problem.
VectorXs	primal_rhs_contact Primal RHS in contact dynamic equations.

Matrix6x	
Matrix6x	psidd psiddot Second Derivative of Jacobian w.r.t to the parent body moving $a(p(j)) \times Sj + v(p(j)) \times psidj$

Matrix6x	Used in computeMinverse.
MatrixXs	sDUiJt Temporary corresponding to $\sqrt{D}U^{-1}J^{ op}$.
std::vector< int >	start_idx_v_fromRow
	Starting index of the Joint motion subspace.
Matrix3x	staticRegressor
	Matrix related to static regressor.
std::vector< std::vector< int > >	supports_fromRow
	Each element of this vector corresponds to the ordered list of indexes belonging to the supporting tree of the given
	index at the row level. It may be helpful to retrieve the sparsity pattern through it.
TangentVectorType	tau
	Vector of joint torques (dim model.nv).
VectorXs	tmp
	Temporary of size NV used in Cholesky Decomposition.
VectorXs	torque_residual
	Temporary corresponding to the residual torque $ au-b(q,\dot{q})$.
TangentVectorType	U CONTRACTOR OF THE CONTRACTOR
· · · · · · · · · · · · · · · · · · ·	Intermediate quantity corresponding to apparent torque [ABA].
MatrixXs	
Matrixys	Joint space intertia matrix square root (upper trianglular part) computed with a Cholesky Decomposition.
Matrix6x	
	Used in computeMinverse.

Detailed Description

template<typename _Scalar, int _Options, template< typename, int > class JointCollectionTpl> struct pinocchio::DataTpl< _Scalar, _Options, JointCollectionTpl >

Definition at line 40 of file data.hpp.

Member Typedef Documentation

typedef Tensor<Scalar, 3, Options> Tensor3x

The type of Tensor for Kinematics and Dynamics second order derivatives

Definition at line 105 of file data.hpp.

Constructor & Destructor Documentation

DataTpl()

DataTpl (const Model & model)

Default constructor of pinocchio::Data from a pinocchio::Model.

Parameters

[in] model The model structure of the rigid body system.

Member Data Documentation

Matrix6x Ag

Centroidal Momentum Matrix.

Note

 $hg=A_g\dot{q}$ maps the joint velocity set to the centroidal momentum.

Definition at line 284 of file data.hpp.

dAg

Matrix6x dAg

Centroidal Momentum Matrix Time Variation.

Note

 $\dot{h_g}=A_g\ddot{q}~+\dot{A_g}\dot{q}~$ maps the joint velocity and acceleration vectors to the time variation of the centroidal momentum.

Definition at line 290 of file data.hpp.

• dhg

Force dhg

Centroidal momentum time derivative.

Note

The centroidal momentum time derivative is expressed in the frame centered at the CoM and aligned with the inertial frame (i.e. the world frame).

 $\dot{h_g}=\left(m\ddot{c},\dot{L}_g
ight)$; $\dot{h_g}$ is the stack of the linear momentum variation and the angular momentum variation.

Definition at line 305 of file data.hpp.

• g

VectorXs g

Vector of generalized gravity (dim model.nv).

Note

In the multibody dynamics equation $M\ddot{q} + c(q,\dot{q}\,) + g(q) = au$, the gravity effect is associated to the g term.

Definition at line 184 of file data.hpp.

Force hg

Centroidal momentum quantity.

Note

The centroidal momentum is expressed in the frame centered at the CoM and aligned with the inertial frame (i.e. the world frame).

 $h_g = (m\dot{c}, L_g)$; h_g is the stack of the linear momentum and the angular momentum vectors.

Definition at line 297 of file data.hpp.

Inertia Ig

Centroidal Composite Rigid Body Inertia.

Note

 $hg = Igv_{
m mean}$ map a mean velocity to the current centroidal momentum quantity.

Definition at line 310 of file data.hpp.

Matrix6x J

Jacobian of joint placements.

Note

The columns of J corresponds to the basis of the spatial velocities of each joint and expressed at the origin of the inertial frame. In other words, if $v_{J_i} = S_i \dot{q}_i$ is the relative velocity of the joint i regarding to its parent, then $J = \begin{bmatrix} {}^0 X_1 S_1 & \cdots & {}^0 X_{nj} S_{nj} \end{bmatrix}$. This Jacobian has no special meaning. To get the jacobian of a precise joint, you need to call pinocchio::getJointJacobian

Definition at line 360 of file data.hpp.

Jcom

Matrix3x Jcom

Jacobian of center of mass.

Note

This Jacobian maps the joint velocity vector to the velocity of the center of mass, expressed in the inertial frame. In other words, $v_{
m CoM}=J_{
m CoM}\dot{q}$

Definition at line 450 of file data.hpp.

• nle

VectorXs nle

Vector of Non Linear Effects (dim model.nv). It corresponds to concatenation of the Coriolis, centrifugal and gravitational effects.

Note

In the multibody dynamics equation $M\ddot{q}^{\prime}+b(q,\dot{q}^{\prime})= au$, the non linear effects are associated to the term b.

Definition at line 179 of file data.hpp.

The documentation for this struct was generated from the following files:

- include/pinocchio/context/generic.hpp
- include/pinocchio/multibody/data.hpp