## Homework 02-2: due 2022/03/31 14:10 (70%)

- Tutorial : <a href="https://machinelearningmastery.com/pytorch-tutorial-develop-deep-learning-models/">https://machinelearningmastery.com/pytorch-tutorial-develop-deep-learning-models/</a>)
- After you go through the tutorials, you should be able to work on this assignment.
- Please answer the following questions and work directly on this jupyter notebook.
- Make sure the code can be run and show the result and figures properly.
- Please write down your observation with markdown in this notebook briefly.

You will train a regression model in this part. The data is Concrete Compressive Strength Dataset, you can find the details of each column at <a href="https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength">https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength</a>

https://archive.ics.uci.edu/mi/datasets/concrete+compressive+strength(https://archive.ics.uci.edu/mi/datasets/concrete+compressive+strength)

### In [32]:

```
# Import necessory modules
%matplotlib inline
import pandas as pd
import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader, random_split
import matplotlib.pyplot as plt
from tqdm.notebook import tqdm
from sklearn.preprocessing import MinMaxScaler
```

#### In [33]:

```
# For reproduce the result
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
```

- 1. Define the model and dataset (10%)
- 1.1 Please follow the tutorial to create a class ConcreteDataset, for loading the data you need and also do the *Min-Max scaling* to the *feature and label*. In this part, please predict the strength of concrete. (5%)

In [34]:

```
class ConcreteDataset():
    def __init__():
    def __len__():
    def __getitem__():
```

1.2 By following the tutorial, try to create a class MLP(Neural Network) with three hidden layers as your network architecture. (5%)

```
In [35]:
```

```
class MLP():
    def __init__():
    def forward():
```

## 2. Train the model (60%)

2.1 Please load the *train.csv/ validation.csv* in ./data, and turn them into dataloader with batch size 64 and determine whether shuffle or not. (5%)

```
In [ ]:
```

2.2 Create two MLP model from the table below and print the model (10%):

(Note. The output layer and activation function you should determine by the task and the dataset.)

|        | First Layer | Second Layer | Third Layer | Activation between each two layers | Output Activation |
|--------|-------------|--------------|-------------|------------------------------------|-------------------|
| Model1 | 256         | 64           | 8           | Tanh                               | Tanh              |
| Model1 | 64          | 16           | 8           | Sigmoid                            | Identity          |

```
In [ ]:
```

2.3 Train the above two models with same hyperpameter below and do the validation every epoch. Choose the appropriate type of loss according to the task. (25%)

(Note. You should record the training/validation loss every epoch)

2022/3/17 晚上8:00 HW2-2\_regression

|                | Learning rate | epochs | optimizer | momentum |
|----------------|---------------|--------|-----------|----------|
| Hyperparameter | 0.01          | 300    | SGD       | 0.9      |

| _          |    |
|------------|----|
| Tn         | ١. |
| <b>T11</b> |    |

# 2.4 Please draw the plot with training/validation loss with two models and write down the observation. (5%)

## Here is the example figure





| 2.5 From the observation of previous question, please determine a appropriate epoch and retrain tw | 10 |
|----------------------------------------------------------------------------------------------------|----|
| models to avoid overfitting. Also, draw the loss plot of two models and save the last model as     |    |
| model1.pth and model2.pth. (10%)                                                                   |    |

(Note. You should reload the models optimizer, otherwise, you will resume from the previous stop.)

In [ ]:

2.6 Please load the checkpoints saved from previous question and calculate the mean squared error on test dataset for two models respectively. Also, ake a dataframe with target and prediction like below and save it as *regression.csv* (5%)

| Target | Model1 | Model2 |
|--------|--------|--------|
| 24.05  | 26.35  | 27.04  |
| 21 67  | 32 78  | 21 95  |