Coursework 1

Ivan Kirev

Problem 1.

(a) Is \implies associative? In other words, if P, Q and R are propositions, is $(P \implies Q) \implies R$ always logically equivalent to $P \implies (Q \implies R)$? Give a proof or a counterexample.

(b) Is \iff associative? In other words, is $(P \iff Q) \iff R$ always logically equivalent to $P \iff (Q \iff R)$? Give a proof or a counterexample.

(a) No, $(P \Longrightarrow Q) \Longrightarrow R$ is not always logically equivalent to $P \Longrightarrow (Q \Longrightarrow R)$. To show this, lets consider the counterexample when all P,Q, and R are false. Then $P \Longrightarrow Q$ would be true and $Q \Longrightarrow R$ would also be true. However, $(P \Longrightarrow Q) \Longrightarrow R$ is then false, while $P \Longrightarrow (Q \Longrightarrow R)$ is true. Therefore, the two propositions are not always logically equivalent.

(b) Yes. To prove that $(P \iff Q) \iff R$ is always logically equivalent to $P \iff (Q \iff R)$, lets try all the possibilities:

P	Q	R	$P \iff Q$	$Q \iff R$	$(P \iff Q) \iff R$	$P \iff (Q \iff R)$
Т	Т	Т	Τ	Т	Τ	Т
Т	Т	F	Τ	F	F	F
Т	F	Т	F	F	F	F
Τ	F	F	F	Τ	T	T
F	Т	Т	F	Т	F	F
F	Т	F	F	F	T	T
F	F	Т	Τ	F	Т	Т
F	F	F	Τ	Τ	F	F

Since the last two columns are the same, it is true that

$$((P \iff Q) \iff R) \iff (P \iff (Q \iff R)).$$