Analysis

Jonathan Mayer 12.01.2023

1 Begriffe

Symbol	Bedeutung		
R	Relation		
∈ / ∉	Element / kein Element von		
∀/∄	für alle / für kein		
3	Existenzquantor, mindestens ein		
∃!	Anzahlquantor, genau ein		
$A \subset B$	echte Teilmenge, $a \in A \land a, b \in B : \exists b \notin A$		
$A \subseteq B$	Teilmenge $a \in A \land a, b \in B$		
]1,3[, (1,3)	1 < x < 3		
[1, 3]	$1 \le x \le 3$		
\Rightarrow	genau dann wenn		
\Leftrightarrow	aus Aussage A folg B und umgekehrt Abbildungsvorschrift für Mengen		
\rightarrow			
\mapsto	Abbildungsvorschrift für Elemente		
0	Komposition / Verkettung von Funktione		
^ / V	und / oder		
Lemma	Hilfssatz		
\overline{z}, z^*	konjungiert komplexe Zahl		
\preccurlyeq	beliebiges Symbol		
?=	zu zeigen		
<u>!</u>	soll erfüllt sein um zu zeigen		
:=,≡	definiere		
$\cup,\cap,/$	Vereinigung, Durchschnitt, Subtrahiert		
disjunkt	$A \cap B = \{\}$		
infimum			
supremum			
notwendiges Kriterium	muss immer erfüllt sein, reicht aber nicht wenn erfüllt dann		
hinreichendes Kriterium			
Nullfolge	$(a_k)_k$ ist eine Nullfolge wenn $\lim_{k\to\infty} a_k =$		
surjektiv	$\forall y \in Y : \exists \ x \in X : f(x) = y \ 2.1.1$		
injektiv	$\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \ 2.1$		
bijektiv	$\forall y \in Y : \exists ! \ x \in X : f(x) = y2.1.3$		
beschränkte Folge	$\exists b, c : \forall n : b < a_n < c$		
nach oben beschränkte Folge	$\exists b : \forall n : a_n < b$		
nach unten beschränkte Folge	$\exists b : \forall n : b < a_n$		

2 Relationen und Funktionen

2.1 Funktionen

2.1.1 surjektivität:

wenn es für jedes y aus Y **mindestens** ein $x \in X$ mit f(x) = y gibt.

wenn es auf jeder gedachten Horizontalen in der Zielmenge **mindestens** einen Schnittpunkt mit der Funktion gibt.

$$\forall y \in Y : \exists \ x \in X : f(x) = y$$

2.1.2 injektivität

wenn es für jedes $y \in \text{vom Wertebereich } Y$ höchstens ein $x \in \text{der Definitionsmenge } X$ gibt. Für jede gedachte Horizontale gibt es höchstens einen Schnittpunkt mit der Funktion.

$$\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

 $\forall b \in B : \exists \text{ h\"ochstens ein } a \in A : f(a) = b$

2.1.3 bijektivität

Injektiv und surjektiv

wenn es für jedes $y \in Y$ genau ein $x \in X$ gibt.

wenn es auf jeder gedachten Horizontalen in der Zielmenge **genau einen Schnittpunkt** mit der Funktion gibt.

$$\forall y \in Y : \exists ! \ x \in X : f(x) = y$$

Bei stetigen Funktionen darf der Grenzwert und die Funktion vertauscht werten $(\lim_{x\to 0} e^{x\cdot \ln(x)} = e^{\lim_{x\to 0} x\cdot \ln(x)})$.

3 Folgen

beschränkte Folge: $(a_n)_n$ ist beschränkt wenn $\exists b, c : \forall n : b < a_n < c$.

nach oben beschränkte Folge: $(a_n)_n$ ist nach oben beschränkt wenn $\exists b : \forall n : a_n < b$. nach unten beschränkte Folge: $(a_n)_n$ ist nach unten beschränkt wenn $\exists b : \forall n : b < a_n$.

4 Reihen

Definition: Eine Reihe ist eine Partialsumme einer Folge

$$(p_n)_n = \left(\sum_{i=0}^n a_i\right)_n, p_n...$$
 Reihe, $a_i...$ Folge

geometrische Reihe:
$$\sum_{i=0}^{\infty} q^i$$
 mit $|q| < 1$ konvergent, $\sum_{i=0}^{\infty} q^i = \frac{1}{1-q}$

harmonische Reihe: $\sum_{k=1}^{\infty} \frac{1}{k}$ ist divergent

... Reihe $\sum\limits_{k=1}^{\infty} \frac{1}{k^r}$ konvergiert für $r \geq 2$

Rechenregeln für konvergente Reihen:

$$\sum_{i=0}^{\infty} (a_i + b_i) = \sum_{i=0}^{\infty} a_i + \sum_{i=0}^{\infty} b_i$$
$$\sum_{i=0}^{\infty} \gamma a_i = \gamma \sum_{i=0}^{\infty} a_i$$

4.1 Konvergenzkriterien für Reihen

absolute Konvergenz: Eine Reihe $\sum_{i=0}^{\infty} a_i$ in \mathbb{R} oder \mathbb{C} heißt absolut konvergent, falls $\sum_{i=0}^{\infty} |a_i|$ konvergiert. i=0 |ai| konvergiert. Es gilt: $|\sum_{i=0}^{\infty} a_i| \leq \sum_{i=0}^{\infty} |a_i|$.

Eine Komplexe Reihe $\sum_{i=0}^{\infty} a_i$ konvergiert/konvergiert absolut wenn $\sum_{i=0}^{\infty} \Re(a_i)$ und $\sum_{i=0}^{\infty} \Im(a_i)$ konvergieren/absolut konvergieren.

konvergiert die Reihe $\sum_{i=0}^{\infty} a_i$ muss $(\lim_{i\to\infty} a_i = 0)$ sein (notwendiges aber nicht hinreichendes Kriterium).

 $\sum_{k=0}^{\infty}a_k$ konvergiert genau dann, wenn die Folge von Partialsummen beschränkt ist.

4.1.1 Leibnitz Kriterium

Sei $(a_k)_k$ eine monoton fallende Nullfolge positiver reeller Zahlen dann konvergiert

$$\sum_{k=0}^{\infty} (-1)^k a_k$$

zeigt Konvergenz aber **nicht** absolute Konvergenz.

4.1.2 Minoranten- Majoranten Kriterium

falls $\forall n: 0 \leq a_n \leq b_n \wedge \sum_{i=0}^{\infty} b_i$ konvergent, dann konvergiert auch $\sum_{i=0}^{\infty} a_i$

falls $\forall n: 0 \leq a_n \leq b_n \wedge \sum_{i=0}^{\infty} a_i$ divergent, dann divergiert auch $\sum_{i=0}^{\infty} b_i$

4.1.3 Quotientenkriterium

Sei $(a_n)_n$ eine Folge in $\mathbb R$ oder $\mathbb C$ und $\forall n: a_n \neq 0$ dann ist $\sum_{i=0}^\infty a_i$ absolut konvergent wenn:

$$\lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right| < 1$$

divergent wenn obiges > 1 ist.

4.1.4 Wurzelkriterium

Sei $(a_n)_n$ eine beschränkte Folge in \mathbb{R} oder \mathbb{C} dann ist $\sum_{i=0}^{\infty} a_i$ absolut konvergent wenn:

$$\lim_{n \to \infty} \sup \sqrt[n]{|a_n|} < 1$$

divergent wenn obiges > 1.

5 Stetigkeit

Definition Stetigkeit:

 $\forall \epsilon > 0 : \exists \delta > 0 : |x - a| < \delta : |f(x) - f(a)| < \epsilon$

 $\forall \epsilon > 0 : \exists \delta > 0 : f(U_{\delta}(a) \subseteq U_{\epsilon}(f(a)))$

 $\forall \epsilon > 0 \; \exists \delta > 0 : \text{sodass aus } |x - a| < \delta \text{ stets } |f(x) - f(a)| < \epsilon \text{ folgt}$

Definition Unstetigkeit: $\exists \epsilon > 0 \forall \ \delta > 0 : \exists x \in D : |x - x_0| < \delta \land |f(x) - f(x_0)| > \epsilon$

5.1 links-rechtsseitiger Grenzwetz:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$$

 x_0 wird von rechts und links angenähert. Sind beide Grenzwerte gleich, ist die Funktion stetig.

5.2 $\epsilon - \delta$ Kriterium

Abbildung 5.1: Stetigkeit einer Funktion $f: \mathbb{R} \to \mathbb{R}$ an der Stelle a: Zu jeder (noch so kleinen) ε -Umgebung von f(a) gibt es eine δ -Umgebung von a, dessen Bild vollständig in ersterer liegt.

Stetigkeit zeigen:

- $|f(x) f(a)| < \epsilon$ aufstellen
- alle x rausbringen $(x a = \delta, \text{ manchmal einfügen einer geschickten Null } (+a a))$
- Formel auf $\delta = \text{umformen}$
- ullet das berechnete δ in d
ne Beweis einsetzen
- Wahre Aussage

6 l'Hospital

	Funktion $\varphi(x)$	$\lim_{x \to x_0} \varphi\left(x\right)$	Umformung
(A)	$u\left(x\right)\cdot v\left(x\right)$	$0\cdot\infty$	$\frac{u(x)}{1/v(x)} \text{ oder } \frac{v(x)}{1/u(x)}$
(B)	$u\left(x\right)-v\left(x\right)$	$\infty - \infty$	$\frac{1/v(x) - 1/u(x)}{1/(u(x) \cdot v(x))}$
(C)	$u\left(x\right)^{v\left(x\right)}$	$0^0, \infty^0, 1^\infty$	$\exp(v(x)\ln(u(x)))$

Abbildung 1: Umformung für l'Hospital