	<u> TP4 Eycon - Vernhet Fabri</u>	Pt		АВ	C D	Note	
I. Signa	XUX						
	ner le nom de chacun des signaux.	0,5	Α			0,5	
	ner la transformée de Laplace s1(p) et s2(p) de chacun des signaux.	0,5	В			0,375	
	oser un enregistrement de la mesure x et la consigne w, qui fournisse une erreur conforme au signal 1. On n'agira						
· ·	sur la mesure x.	1	В			0,75	
II. Régu	lation proportionnelle						
	er le PID pour une régulation avec un gain A=1 et un décalage de bande Y0=0. On donnera le nom des paramètres ifiés ainsi que leur valeur respective.	0,5	А			0,5	
2 Releve	ver la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la ure x.	1	Α			1	
3 Expri	imer la réponse obtenue y1(t) en fonction de s1(t) et s2(t).	1	Α			1	
4 Justif	fier la réponse Y1(p) obtenue en utilisant la transformée de Laplace.	1				0	
5 Régle parai	er le PID pour une régulation avec un gain A=2 et un décalage de bande FF_PID=0. On donnera le nom des mètres modifiés ainsi que leur valeur respective.	0,5	Α			0,5	
6 Releve	ver la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la ure x.	1	А			1	
7 Expri	imer la réponse obtenue y2(t) en fonction de s1(t) et s2(t).	1	С			0,35	
8 Justif	fier la réponse Y2(p) obtenue en utilisant la transformée de Laplace.	1				0	
III. Régu	lation proportionnelle intégrale						
1 Régle	er le PID pour une régulation avec un gain A=1 et un temps intégral ti=10s.	0,5	Α			0,5	
2 Releve	ver la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la ure x.	1	Α			1	
3 Expri	imer la réponse obtenue y3(t) en fonction de s1(t) et s2(t).	1	С			0,35	
4 Justif	fier la réponse Y3(p) obtenue en utilisant la transformée de Laplace.	1				0	
5 Régle	er le PID pour une régulation avec un gain A=2 et un temps intégral ti=10s.	0,5	Α			0,5	
6 Releve	ver la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la ure x.	1	С			0,35	
7 Quel	le est la structure du régulateur PI ? Justifier votre réponse.	1	D			0,05	
8 Quel	le peut être la structure du régulateur PID ?	1	С			0,35	
9 Expri	imer la réponse obtenue y4(t) en fonction de s1(t) et s2(t).	1	D			0,05	
10 Justif	fier la réponse Y4(p) obtenue en utilisant la transformée de Laplace.	1				0	
IV. Régu	lation proportionnelle intégrale dérivée						
1 Régle	er le PID pour une régulation avec un gain A=2 et un temps intégral ti=10s et un temps dérivé td=10s.	0,5	Α			0,5	
	ver la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la ure x.	1	Α			1	
3 Justif Lapla	fier pourquoi la réponse Y4(p) obtenue n'est pas une composition de S1(p) et S2(p) en utilisant la transformée de ace.	1				0	
4 Dédu	uire de y4(t) la structure du régulateur. On fera apparaître toutes les constructions.	1				0	
			te : 1	0,62	/21,5	5	

TP4 Eycon Fabri Vernhet

I. Signaux

1: Le signale 1 est un Echelon $t \longrightarrow 1$ $p \longrightarrow 1/p$

le signale 2 est une Rampe t--->t $p--->1/p^2$

2: Transformé de laplace pour l'échelon : p->(1/P) Transformé de laplace pour la rampe : p->(1/P²) 3

II. Régulation proportionnelle

TimeBase	Secs	
XP	100.0	%
TI	0.00	
TD	0.00	
FF_PID	0.0	%
FB_OP	0.0	%

3: On constate que la réponse obtenue en y1(t) est similaire a s1(t) (donc l'échelon)

4:

TimeBase	Secs	
XP	50.0	%
TI	0.00	
TD	0.00	
Options	00101100	
SelMode	00000000	
ModeSel	00010001	
ModeAct	00010001	
FF_PID	0.0	96
FB_OP	0.0	98

50 45 40

35 30 25

20 15 10

-5

mesure

commande

04:38:50.000 04:38:55.000 04:39:00.000 04:39:05.000 04:39:10.000 04:39:15.000 04:39:20.000 04:39:25.000 04:39:30.000 04:39:35.000 04:39:40.000 04:39:45.000 Heure 7: on a y2(t) correspondant a s1(t)

III. Régulation proportionnelle intégrale

1:

TimeBase	Secs	
XP	100.0	%
TI	10.00	
TD	0.00	

4: 5:

TimeBase	Secs	
XP	50.0	%
TI	10.00	
TD	0.00	
	00101100	
Options	00101100	
SelMode	00000000	
ModeSel	00010001	
ModeAct	00010001	
FF_PID	0.0	%
FB_OP	0.0	%

7: Le régulateur PI est mixte car nous savons que tous les régulateur de la salle sont mixtes et que deltaP est égale à deltaI

8: la structure du régulateur est donc mixte

9:y4(t) correspond à $s_1(t)$ (échelon)

10:

IV. Régulation proportionnelle intégrale dérivée

1:

TimeBase	Secs	
XP	50.0	%
TI	10.00	
TD	10.00	
Options	00101100	
SelMode	00000000	
ModeSel	00010001	
ModeAct	00010001	
FF_PID	0.0	%
FB_OP	20.0	%

2:

