IoT Engineering 5: Local Connectivity with Bluetooth LE

CC BY-SA, Thomas Amberg, FHNW (unless noted otherwise)

n u

Today

- 1/3 slides,
- ²/₃ hands-on.

Slides, code & hands-on: tmb.gr/iot-5

Prerequisites

Install the Arduino IDE and set up the nRF52840: Check the Wiki entry on Installing the Arduino IDE. Set up the Feather nRF52840 Express for Arduino. For testing a smartphone with BLE is required.

3

BLE connectivity Bluetooth Low Energy (BLE) Client Sensor or Actuator Device Device Sensor or Device

App + accessory

Local sensing/control, local connectivity.

Sensor \rightarrow Device \rightarrow Client app

E.g. blood sugar measurements.

Actuator \leftarrow Device \leftarrow Client app

E.g. insulin pump control data.

 $A \rightarrow B$: measurement or control data flow.

Bluetooth Low Energy (BLE)

BLE is a power-efficient Bluetooth variant (since 4.0). BLE is well suited for small, battery powered devices. BLE uses less energy than Wi-Fi, way less than 3/4G. Both, classic Bluetooth and BLE, use 2.4 GHz radio.

The standard is maintained by the Bluetooth SIG.

How BLE works

Peripherals advertise the data they have, over the air.

Centrals scan for nearby peripherals to discover them.

The central connects to a peripheral and uses its data.

Data is transmitted through services & characteristics.

Q

BLE protocol stack

Application — e.g. on smartphone or microcontroller BLE library — thin, language-specific wrapper library

GATT — services & characteristics | GAP — discovery ATT — attribute transport | SMP — security manager L2CAP — logical link control and adaptation protocol

Link layer — exposed via the host controller interface Physical layer — dealing with actual radio signals

Generic Access Profile (GAP)

GAP defines the following roles, communication types: Broadcaster and observer (connectionless, one-way). Peripheral and central (bidirectional connection). Each device supports one or more of these roles.

We start with peripheral and central roles.

10

Advertising

A peripheral *advertises* its services by broadcast, in a regular interval.

A central *scans* for all or a subset of services and gets device addresses and, if it's been sent, advertised data.

Attribute Transport (ATT)

ATT allows a *client* to access attributes on a *server*. An *attribute* has a UUID, a handle and permissions. A *UUID* is a 32/128-bit universally unique identifier. An *attribute handle* is a server-assigned, 16-bit ID.

See Bluetooth spec v5.1, Part F, p. 2288.

Generic Attribute Profile (GATT)

GATT is a simple application level protocol for BLE. It's connection-based, with a *client* and a *server* role. This enables a BLE device to provide a RESTful API. A "GATT API", or *profile*, is a collection of *services*.

Usually, the peripheral acts as a server.

Services

A GATT service is a collections of characteristics.

Services encapsulate the behavior of part of a device.

In addition, such a service can refer to other services.

There are standard and custom services and profiles.

E.g. the Battery Service or the Heart Rate Service.

1.4

Characteristics

A GATT characteristic has a value and descriptors.

A *value* encodes data "bits" that form a logical unit.

Descriptors are defined attributes of a characteristic.

Supported procedures: read, write and notifications.

E.g. a Battery Level or a Heart Rate Measurement.

Read and write

Connect = the central connects to a peripherals BLE address.

Read = value of a characteristic or its descriptors is returned.

Write = characteristic value, or characteristic descriptor value is set, with/without response.

Notifications

Notify = Client Characteristic Configuration descriptor of a characteristic, UUID 0x2902, is set to 0x0000 using Write.

Value = A *Handle Value Notification* is sent if value changes.

See Bluetooth spec v5.1, p. 2360 and p. 2389.

Peripheral Central

Connect

Notify

Value

Value

Value

BLE explorer apps

For debugging, use any generic BLE explorer app: Find BLE explorer apps on the Google Play Store.

Search for "BLE explorer" in the iOS App Store.

Smartphones can act as central or peripheral.

Exploring is a great way to learn about BLE.

nRF52840 HRM BLE Peripheral .ino hrmSvc = BLEService(0x180D); // See HRM spec hrmChr = BLECharacteristic(0x2A37); // See spec hrmSvc.begin(); // to add characteristics hrmChr.setProperties(CHR_PROPS_NOTIFY); ... hrmChr.begin(); // adds characteristic uint8_t hrmData[2] = { 0b00000110, value }; hrmChr.notify(hrmData, sizeof(hrmData));

Hands-on, 15': HRM BLE Peripheral

Build and run the previous nRF52840 BLE example. Use the *.ino* link on the page to find the source code. Explore the HRM example using a smartphone app. Draw the HRM profile as a tree, with services, etc.

21

Nordic UART Service

Nordic UART Service provides Serial UART via BLE: UUID: 6E400001-B5A3-F393-E0A9-E50E24DCCA9E 16-bit: 0x0001

Send data by writing to the service RX characteristic: RX Characteristic UID, 16-bit: 0×0002 [W] Receive data by enabling notifications on the TX ch.: TX Characteristic UID, 16-bit: 0×0003 [N]

22

nRF52840 Scanner BLE Central .ino Bluefruit.begin(0, 1); // Central Bluefruit.Scanner.setRxCallback(found); Bluefruit.Scanner.start(0); void found(ble_gap_evt_adv_report_t* report) { Serial.printBufferReverse(// little endian report->peer_addr.addr, 6, ':'); if (Bluefruit.Scanner.checkReportForUuid(...))... Bluefruit.Scanner.resume();

Hands-on, 15': Scanner BLE Central

Build and run the previous nRF52840 BLE example. Use the .ino link on the page to find the source code. Add a *checkReportForUuid()* for the Battery Service. Can you spot the UUID in the advertising data?

Consider working in teams => more nRF52840.

Beacons

Beacons, e.g. Apple iBeacon are *broadcaster* devices.

Any *observer* can read the data from they advertise.

Lookup of "what a beacon means" requires an app.

Except for Physical Web / Eddystone beacons.

These contain an URL to be used right away.

25

```
nRF52840 Beacon BLE Observable .ino

BLEBeacon beacon(
   beaconUuid, // AirLocate UUID
   beaconMajorVersion,
   beaconMinorVersion,
   rssiAtOneMeter);
beacon.setManufacturer(0x004C); // Apple
```

startAdvertising();

suspendLoop(); // save power

26

Hands-on, 15': Beacons

Build and run the previous nRF52840 BLE example. Use the *.ino* link on the page to find the source code. Test the beacon with a dedicated iOS/Android app. Which information is transferred by a beacon?

If you happen to be at Zürich HB, start a scan...

27

Security

BLE has security mechanisms for pairing and more. *Pairing*: exchanging identity and keys to set up trust. Device chooses *Just Works*, *Passkey Entry* or OOB. Or numeric comparison and ECDH for key exchange. Some apps add encryption* on the application layer.

*) See, e.g. HomeKit in iOS Security Guide (p. 29). 28

Hands-on, 5': HomeKit

HomeKit is a proprietary home-automation system.

Try File > Examples > Adafruit Bluefruit nRF52 > Projects > HomeKit > homekit_lightbulb

An iOS device is required to test the Peripheral.

Read the code, how is security implemented?

Device API vs. SDK

A *device API* specifies how to talk to the device, from any client (here via BLE).

A platform specific *device SDK* simplifies integration.

E.g. *iOS device SDK* to talk to a device API from iOS.

Battery Service
Battery Level [R]
vs.
p = ble.conn(addr);
b = sdk.getBatt(p);
x = b.getLevel();

BLE on Android

There is an official introduction to BLE on Android.

Building a robust BLE app on Android can be tricky.

Use the Nordic Semiconductor Android-BLE-Library.

As an example app, look at the nRF Toolbox project.

Writing a plugin for nRF Toolbox is quite easy.

BLE on iOS

On iOS the official BLE library is Core Bluetooth. Its documentation is a great introduction to BLE. In iOS there's no way to get a device BLE address. Instead, a UUID is assigned, as a handle, by iOS.

iOS devices change their Bluetooth MAC address.

00

BLE on Raspberry Pi

On Raspberry Pi Zero W there are many options, e.g. Node.js libraries: Noble (central), Bleno (peripheral)

Python library: PyBluez, BluePy

Linux C library: Bluez
CLI: bluetoothctl

33

31

Summary

We looked at BLE, Bluetooth for constrained devices.

We saw how centrals scan for advertising peripherals.

We used services to read/write characteristic values.

We met a custom Bluetooth profile for UART serial.

Next: Raspberry Pi as a Local Gateway.

0.4

Homework, max. 3h

Set up the Raspberry Pi Zero W via USB and Wi-Fi.

See Raspberry Pi Zero W Setup in the Wiki.

Make sure you've got SSH access.

Submit the MAC address.

Setup via USB can take a few tries, keep trying:)

Feedback?

Find me on https://fhnw-iot.slack.com/ Or email thomas.amberg@fhnw.ch

Slides, code & hands-on: tmb.gr/iot-5

