In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

In [2]:

```
import io
%cd "C:\Users\deepe\OneDrive\Desktop\Python Datasets\Projects\Capstone"
```

C:\Users\deepe\OneDrive\Desktop\Python Datasets\Projects\Capstone

In [3]:

```
crop=pd.read_csv("Crop_recommendation.csv")
```

In [4]:

```
crop.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2200 entries, 0 to 2199
Data columns (total 8 columns):
```

#	Column	Non-Null Count	Dtype		
0	N	2200 non-null	int64		
1	Р	2200 non-null	int64		
2	K	2200 non-null	int64		
3	temperature	2200 non-null	float64		
4	humidity	2200 non-null	float64		
5	ph	2200 non-null	float64		
6	rainfall	2200 non-null	float64		
7	label	2200 non-null	object		
<pre>dtypes: float64(4), int64(3), object(1)</pre>					
memory usage: 137.6+ KB					

In [5]:

```
crop.tail()
```

Out[5]:

	N	Р	K	temperature	humidity	ph	rainfall	label
2195	107	34	32	26.774637	66.413269	6.780064	177.774507	coffee
2196	99	15	27	27.417112	56.636362	6.086922	127.924610	coffee
2197	118	33	30	24.131797	67.225123	6.362608	173.322839	coffee
2198	117	32	34	26.272418	52.127394	6.758793	127.175293	coffee
2199	104	18	30	23.603016	60.396475	6.779833	140.937041	coffee

In [6]:

```
crop.describe()
```

Out[6]:

	N	Р	K	temperature	humidity	ph	ı
count	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	2200.0
mean	50.551818	53.362727	48.149091	25.616244	71.481779	6.469480	103.∠
std	36.917334	32.985883	50.647931	5.063749	22.263812	0.773938	54.9
min	0.000000	5.000000	5.000000	8.825675	14.258040	3.504752	20.2
25%	21.000000	28.000000	20.000000	22.769375	60.261953	5.971693	64.5
50%	37.000000	51.000000	32.000000	25.598693	80.473146	6.425045	94.8
75%	84.250000	68.000000	49.000000	28.561654	89.948771	6.923643	124.2
max	140.000000	145.000000	205.000000	43.675493	99.981876	9.935091	298.
4							•

In [7]:

```
crop.label.describe()
```

Out[7]:

count 2200 unique 22 top rice freq 100

Name: label, dtype: object

In [8]:

```
crop.columns
```

Out[8]:

```
Index(['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall', 'labe
l'], dtype='object')
```

In [9]:

```
crop.shape
```

Out[9]:

(2200, 8)

In [10]:

```
crop.isnull().sum()
```

Out[10]:

Ν 0 Ρ 0 0 K temperature 0 0 humidity 0 rainfall 0 label 0 dtype: int64

In [11]:

print(crop.isnull().sum())

0 Ν Ρ 0 Κ 0 temperature 0 humidity 0 0 ph rainfall 0 label 0 dtype: int64

In [12]:

In [13]:

crop.apply(lambda x:len(x.unique()))

Out[13]:

N	137
Р	117
K	73
temperature	2200
humidity	2200
ph	2200
rainfall	2200
label	22

dtype: int64

```
In [14]:
```

```
crop['label'].value_counts(dropna=False)
Out[14]:
rice
               100
maize
               100
jute
               100
               100
cotton
coconut
               100
               100
papaya
orange
               100
apple
               100
muskmelon
               100
watermelon
               100
               100
grapes
mango
               100
               100
banana
pomegranate
               100
               100
lentil
blackgram
               100
mungbean
               100
mothbeans
               100
pigeonpeas
               100
kidneybeans
               100
chickpea
               100
               100
coffee
Name: label, dtype: int64
```

In [15]:

```
objcols=crop[['label']]
```

```
In [16]:
```

```
objcols.head(2205)
```

Out[16]:

	label
0	rice
1	rice
2	rice
3	rice
4	rice
2195	coffee
2196	coffee
2197	coffee
2198	coffee
2199	coffee

2200 rows × 1 columns

In [17]:

```
numcols=crop[['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall']]
```

In [18]:

```
numcols.isnull().sum().sort_values(ascending=False)/numcols.shape[0]
```

Out[18]:

In [19]:

```
for col in numcols.columns:
   numcols[col]=numcols[col].fillna(numcols[col].median())
```

C:\Users\deepe\AppData\Local\Temp\ipykernel_13088\1213558515.py:2: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

numcols[col]=numcols[col].fillna(numcols[col].median())

In [20]:

numcols.head()

Out[20]:

	N	Р	K	temperature	humidity	ph	rainfall
0	90	42	43	20.879744	82.002744	6.502985	202.935536
1	85	58	41	21.770462	80.319644	7.038096	226.655537
2	60	55	44	23.004459	82.320763	7.840207	263.964248
3	74	35	40	26.491096	80.158363	6.980401	242.864034
4	78	42	42	20.130175	81.604873	7.628473	262.717340

In [21]:

numcols.describe()

Out[21]:

	N	Р	K	temperature	humidity	ph	
count	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	2200.0
mean	50.551818	53.362727	48.149091	25.616244	71.481779	6.469480	103.4
std	36.917334	32.985883	50.647931	5.063749	22.263812	0.773938	54.9
min	0.000000	5.000000	5.000000	8.825675	14.258040	3.504752	20.2
25%	21.000000	28.000000	20.000000	22.769375	60.261953	5.971693	64.5
50%	37.000000	51.000000	32.000000	25.598693	80.473146	6.425045	94.8
75%	84.250000	68.000000	49.000000	28.561654	89.948771	6.923643	124.2
max	140.000000	145.000000	205.000000	43.675493	99.981876	9.935091	298.
4							•

In [22]:

```
crop.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2200 entries, 0 to 2199
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	N	2200 non-null	int64
1	Р	2200 non-null	int64
2	K	2200 non-null	int64
3	temperature	2200 non-null	float64
4	humidity	2200 non-null	float64
5	ph	2200 non-null	float64
6	rainfall	2200 non-null	float64
7	label	2200 non-null	object
dtyp	es: float64(4), int64(3), obj	ect(1)

memory usage: 137.6+ KB

In [23]:

```
crop.head()
```

Out[23]:

	N	Р	K	temperature	humidity	ph	rainfall	label
0	90	42	43	20.879744	82.002744	6.502985	202.935536	rice
1	85	58	41	21.770462	80.319644	7.038096	226.655537	rice
2	60	55	44	23.004459	82.320763	7.840207	263.964248	rice
3	74	35	40	26.491096	80.158363	6.980401	242.864034	rice
4	78	42	42	20.130175	81.604873	7.628473	262.717340	rice

EXPLORATORY DATA ANALYSIS - EDA

HISTOGRAM: THIS HIGHLIGHTS SKEWNESS, KURTOSIS AND OUTLIERS. BOX PLOT: THIS IS HIGHLIGHTS SKEWNESS AND OUTLIERS. DENSITY CURVE: THIS IS HIGHLIGHTS SKEWNESS AND KURTOSIS.

In [24]:

```
crop.plot(kind="hist",color="brown")
```

Out[24]:

<Axes: ylabel='Frequency'>

In [25]:

```
crop.rainfall.plot(kind="box", vert=False)
```

Out[25]:

In [26]:

```
crop.ph.plot(kind="box", vert=False)
```

Out[26]:

In [27]:

crop.humidity.plot(kind="box",vert=False)

Out[27]:

In [28]:

```
crop.temperature.plot(kind="box",vert=False)
```

Out[28]:

In [29]:

crop.N.plot(kind="box",vert=False)

Out[29]:

In [30]:

```
crop.P.plot(kind="box",vert=False)
```

Out[30]:

In [31]:

```
crop.K.plot(kind="box", vert=False)
```

Out[31]:

In [32]:

```
crop.N.plot(kind="density")
```

Out[32]:

In [33]:

```
crop.P.plot(kind="density")
```

Out[33]:

In [34]:

```
crop.K.plot(kind="density")
```

Out[34]:

In [35]:

```
crop.temperature.plot(kind="density")
```

Out[35]:

In [36]:

```
crop.humidity.plot(kind="density")
```

Out[36]:

In [37]:

```
crop.rainfall.plot(kind="density")
```

Out[37]:

In [38]:

```
crop.ph.plot(kind="density")
```

Out[38]:

<Axes: ylabel='Density'>

In [39]:

import seaborn as sns

In [40]:

```
f=plt.figure(figsize=(15,5))
ax=f.add_subplot(121)
sns.distplot(crop['N'],color='red',ax=ax)

ax=f.add_subplot(122)
sns.distplot(crop['P'],color='green',ax=ax)
plt.tight_layout()
```

C:\Users\deepe\AppData\Local\Temp\ipykernel_13088\890166929.py:3: UserWarn
ing:

`distplot` is a deprecated function and will be removed in seaborn v0.14. 0.

Please adapt your code to use either `displot` (a figure-level function wi th similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(crop['N'],color='red',ax=ax)
C:\Users\deepe\AppData\Local\Temp\ipykernel_13088\890166929.py:6: UserWarn
ing:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(crop['P'],color='green',ax=ax)

In [41]:

```
f=plt.figure(figsize=(15,5))
ax=f.add_subplot(121)
sns.distplot(crop['K'],color ='red',ax=ax)

ax=f.add_subplot(122)
sns.distplot(crop['temperature'],color='green',ax=ax)
plt.tight_layout()
```

C:\Users\deepe\AppData\Local\Temp\ipykernel_13088\2857048422.py:3: UserWar
ning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.
0.

Please adapt your code to use either `displot` (a figure-level function wi th similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(crop['K'],color ='red',ax=ax)
C:\Users\deepe\AppData\Local\Temp\ipykernel_13088\2857048422.py:6: UserWar
ning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(crop['temperature'],color='green',ax=ax)

In [42]:

```
f=plt.figure(figsize=(15,5))
ax=f.add_subplot(121)
sns.distplot(crop['humidity'],color='red',ax=ax)

ax=f.add_subplot(122)
sns.distplot(crop['ph'],color='green',ax=ax)
plt.tight_layout()
```

C:\Users\deepe\AppData\Local\Temp\ipykernel_13088\392488001.py:3: UserWarn
ing:

`distplot` is a deprecated function and will be removed in seaborn v0.14.
0.

Please adapt your code to use either `displot` (a figure-level function wi th similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(crop['humidity'],color='red',ax=ax)
C:\Users\deepe\AppData\Local\Temp\ipykernel_13088\392488001.py:6: UserWarn
ing:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(crop['ph'],color='green',ax=ax)

In [43]:

```
sns.distplot(crop['rainfall'],color ='red')
```

 $\label{local-temp-ipykernel_13088} $$2804088430.py:1: UserWarning:$

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(crop['rainfall'],color ='red')

Out[43]:

<Axes: xlabel='rainfall', ylabel='Density'>

In [44]:

```
f=plt.figure(figsize=(15,5))
sns.histplot(crop['label'],palette='Spectral')
plt.xticks(rotation=90)
plt.show()
```

C:\Users\deepe\AppData\Local\Temp\ipykernel_13088\805242828.py:2: UserWarn
ing: Ignoring `palette` because no `hue` variable has been assigned.
 sns.histplot(crop['label'],palette='Spectral')

In [45]:

```
crop.label.value_counts()
```

Out[45]:

rice	100	
maize	100	
jute	100	
cotton	100	
coconut	100	
papaya	100	
orange	100	
apple	100	
muskmelon	100	
watermelon	100	
grapes	100	
mango	100	
banana	100	
pomegranate	100	
lentil	100	
blackgram	100	
mungbean	100	
mothbeans	100	
pigeonpeas	100	
kidneybeans	100	
chickpea	100	
coffee	100	
Name: label,	dtype:	int64

GROUPBY() AND VISUALIZATION

In [46]:

crop.temperature.groupby(crop.label).mean()

Out[46]:

label	
apple	22.630942
banana	27.376798
blackgram	29.973340
chickpea	18.872847
coconut	27.409892
coffee	25.540477
cotton	23.988958
grapes	23.849575
jute	24.958376
kidneybeans	20.115085
lentil	24.509052
maize	22.389204
mango	31.208770
mothbeans	28.194920
mungbean	28.525775
muskmelon	28.663066
orange	22.765725
papaya	33.723859
pigeonpeas	27.741762
pomegranate	21.837842
rice	23.689332
watermelon	25.591767

Name: temperature, dtype: float64

In [47]:

ax=crop.temperature.groupby(crop.label).mean().plot(kind="barh",color=["cyan"],title="Av
for i in ax.containers:
 ax.bar_label(i,fontsize=7,label_type="center")

In [48]:

crop.rainfall.groupby(crop.label).mean()

Out[48]:

label apple 112.654779 banana 104.626980 blackgram 67.884151 chickpea 80.058977 coconut 175.686646 coffee 158.066295 cotton 80.398043 grapes 69.611829 174.792798 jute kidneybeans 105.919778 lentil 45.680454 maize 84.766988 94.704515 mango mothbeans 51.198487 mungbean 48.403601 muskmelon 24.689952 110.474969 orange 142.627839 papaya pigeonpeas 149.457564 107.528442 pomegranate rice 236.181114 50.786219 watermelon Name: rainfall, dtype: float64

In [49]:

```
ax=crop.rainfall.groupby(crop.label).mean().plot(kind="barh",color=["cyan"],title="Avera
for i in ax.containers:
    ax.bar_label(i,fontsize=7,label_type="center")
```


In [50]:

crop.ph.groupby(crop.label).mean()

Out[50]:

label apple 5.929663 banana 5.983893 blackgram 7.133952 7.336957 chickpea coconut 5.976562 coffee 6.790308 cotton 6.912675 grapes 6.025937 jute 6.732778 kidneybeans 5.749411 lentil 6.927932 maize 6.245190 5.766373 mango mothbeans 6.831174 mungbean 6.723957 muskmelon 6.358805 7.016957 orange 6.741442 papaya 5.794175 pigeonpeas pomegranate 6.429172 6.425471 rice watermelon 6.495778 Name: ph, dtype: float64

In [51]:

ax=crop.ph.groupby(crop.label).mean().plot(kind="barh",color=["cyan"],title="Average PH for i in ax.containers: ax.bar_label(i,fontsize=7,label_type="center")

In [52]:

crop.humidity.groupby(crop.label).mean()

Out[52]:

label 92.333383 apple 80.358123 banana blackgram 65.118426 chickpea 16.860439 coconut 94.844272 coffee 58.869846 79.843474 cotton grapes 81.875228 79.639864 jute kidneybeans 21.605357 lentil 64.804785 maize 65.092249 50.156573 mango mothbeans 53.160418 mungbean 85.499975 muskmelon 92.342802 92.170209 orange 92.403388 papaya 48.061633 pigeonpeas pomegranate 90.125504 rice 82.272822 watermelon 85.160375 Name: humidity, dtype: float64

In [53]:

ax=crop.humidity.groupby(crop.label).mean().plot(kind="barh",color=["cyan"],title="Avera
for i in ax.containers:
 ax.bar_label(i,fontsize=7,label_type="center")

In [54]:

crop.N.groupby(crop.label).mean()

Out[54]:

label apple 20.80 100.23 banana blackgram 40.02 40.09 chickpea coconut 21.98 coffee 101.20 117.77 cotton grapes 23.18 78.40 jute kidneybeans 20.75 lentil 18.77 maize 77.76 20.07 mango mothbeans 21.44 20.99 mungbean muskmelon 100.32 19.58 orange 49.88 papaya 20.73 pigeonpeas pomegranate 18.87 79.89 rice watermelon 99.42 Name: N, dtype: float64

In [55]:

ax=crop.N.groupby(crop.label).mean().plot(kind="barh",color=["cyan"],title="Average Humi
for i in ax.containers:
 ax.bar_label(i,fontsize=7,label_type="center")

In [56]:

crop.P.groupby(crop.label).mean()

Out[56]:

label	
apple	134.22
banana	82.01
blackgram	67.47
chickpea	67.79
coconut	16.93
coffee	28.74
cotton	46.24
grapes	132.53
jute	46.86
kidneybeans	67.54
lentil	68.36
maize	48.44
mango	27.18
mothbeans	48.01
mungbean	47.28
muskmelon	17.72
orange	16.55
papaya	59.05
pigeonpeas	67.73
pomegranate	18.75
rice	47.58
watermelon	17.00
Name: P, dtype:	float64

In [57]:

```
ax=crop.P.groupby(crop.label).mean().plot(kind="barh",color=["cyan"],title="Average Humi
for i in ax.containers:
    ax.bar_label(i,fontsize=7,label_type="center")
```


In [58]:

crop.K.groupby(crop.label).mean()

Out[58]:

label			
apple	199.89		
banana	50.05		
blackgram	19.24		
chickpea	79.92		
coconut	30.59		
coffee	29.94		
cotton	19.56		
grapes	200.11		
jute	39.99		
kidneybeans	20.05		
lentil	19.41		
maize	19.79		
mango	29.92		
mothbeans	20.23		
mungbean	19.87		
muskmelon	50.08		
orange	10.01		
papaya	50.04		
pigeonpeas	20.29		
pomegranate	40.21		
rice	39.87		
watermelon	50.22		
Name: K, dtype:	float64		

In [59]:

```
ax=crop.K.groupby(crop.label).mean().plot(kind="barh",color=["cyan"],title="Average Humi
for i in ax.containers:
    ax.bar_label(i,fontsize=7,label_type="center")
```


SPLITING TEST DATA AND TRAIN DATA

In [60]:

```
from sklearn.model_selection import train_test_split
train_set,test_set = train_test_split(crop,random_state=0)
```

In [61]:

```
X=train_set.iloc[:,0:7]
print(X.head(5))
print()
```

	N	Р	K	temperature	humidity	ph	rainfall
1975	134	56	18	23.808346	83.919026	6.691268	70.973583
1287	29	122	196	41.948657	81.155952	5.638328	73.068630
760	25	68	19	29.399827	64.255107	7.108450	67.476773
267	41	69	82	20.023815	16.632945	6.715587	68.978065
2007	70	43	40	24.355641	88.803910	6.176860	169.116803

In [62]:

```
y=train_set.iloc[:,7]
print(y.head(5))
print()
```

1975 cotton 1287 grapes 760 blackgram 267 chickpea 2007 jute

Name: label, dtype: object

In [63]:

```
X=test_set.iloc[:,0:7]
print(X.shape)
y=test_set.iloc[:,7]
y= np.array([y]).reshape(550,1)
```

(550, 7)

In [64]:

```
sns.heatmap(data=crop.corr(),annot=True,cmap="inferno",linecolor="black",linewidths=0.5)
```

C:\Users\deepe\AppData\Local\Temp\ipykernel_13088\3497978509.py:1: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecated.
In a future version, it will default to False. Select only valid columns o
r specify the value of numeric_only to silence this warning.
 sns.heatmap(data=crop.corr(),annot=True,cmap="inferno",linecolor="black",linewidths=0.5)

Out[64]:

<Axes: >

MODEL BUILDINGS

K Neighbours Classifier

In [65]:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
```

In [66]:

```
knn=KNeighborsClassifier(n_neighbors=10)
```

In [67]:

```
knn.fit(X,y)
```

C:\Users\deepe\anaconda3\lib\site-packages\sklearn\neighbors_classificati
on.py:215: DataConversionWarning: A column-vector y was passed when a 1d a
rray was expected. Please change the shape of y to (n_samples,), for examp
le using ravel().

return self._fit(X, y)

Out[67]:

```
KNeighborsClassifier
KNeighborsClassifier(n_neighbors=10)
```

In [68]:

from sklearn.metrics import classification_report

In [69]:

```
knn_predicted = knn.predict(X)
print(classification_report(y,knn_predicted))
```

	precision	recall	f1-score	support
annlo	1 00	1 00	1 00	24
apple	1.00	1.00	1.00	24
banana	1.00	1.00	1.00	24
blackgram	0.96	1.00	0.98	26
chickpea	1.00	1.00	1.00	28
coconut	1.00	1.00	1.00	19
coffee	1.00	1.00	1.00	24
cotton	0.88	1.00	0.93	21
grapes	1.00	1.00	1.00	24
jute	0.82	1.00	0.90	28
kidneybeans	0.85	1.00	0.92	23
lentil	0.94	0.94	0.94	17
maize	1.00	0.86	0.93	22
mango	1.00	1.00	1.00	24
mothbeans	0.96	0.93	0.95	29
mungbean	1.00	1.00	1.00	27
muskmelon	1.00	1.00	1.00	27
orange	1.00	1.00	1.00	27
papaya	1.00	0.89	0.94	28
pigeonpeas	1.00	0.85	0.92	27
pomegranate	1.00	1.00	1.00	28
rice	0.96	0.86	0.91	29
watermelon	1.00	1.00	1.00	24
accupacy			0.97	550
accuracy	0.07	0.07		
macro avg	0.97	0.97	0.97	550
weighted avg	0.97	0.97	0.97	550

```
In [71]:
np.mean([0.95454545, 0.94545455, 0.97272727, 0.94545455, 0.96363636])
```

Out[71]:

0.9563636360000001

Desicion Tree Classifier

```
In [72]:
```

```
from sklearn.tree import DecisionTreeClassifier
```

In [73]:

```
dtc=DecisionTreeClassifier()
```

In [74]:

```
dtcmodel=dtc.fit(X,y)
```

In [75]:

```
dtcmodel.score(X,y)
```

Out[75]:

1.0

LINEAR SUPPORT VECTOR CLASSIFICATION (SVC)

```
In [76]:
```

```
from sklearn.svm import LinearSVC
```

In [77]:

```
lsvc=LinearSVC()
```

In [78]:

```
lsvc=LinearSVC(C=5,random_state=67).fit(X,y)
```

```
C:\Users\deepe\anaconda3\lib\site-packages\sklearn\utils\validation.py:114
3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
```

```
y = column_or_1d(y, warn=True)
```

C:\Users\deepe\anaconda3\lib\site-packages\sklearn\svm_base.py:1244: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.

```
warnings.warn(
```

['coconut']

```
In [79]:
li_predicted=lsvc.predict(X)

In [80]:
lsvc.predict(X[200:201])

Out[80]:
array(['pigeonpeas'], dtype=object)

In [81]:
print(y[200])
```

localhost:8888/notebooks/Crop Prediction.ipynb

In [82]:

print(classification_report(y,li_predicted))

	precision	recall	f1-score	support
apple	0.00	0.00	0.00	24
banana	1.00	0.92	0.96	24
blackgram	1.00	0.19	0.32	26
chickpea	1.00	1.00	1.00	28
coconut	1.00	0.89	0.94	19
coffee	1.00	1.00	1.00	24
cotton	1.00	0.71	0.83	21
grapes	1.00	0.54	0.70	24
jute	0.00	0.00	0.00	28
kidneybeans	0.96	1.00	0.98	23
lentil	1.00	0.82	0.90	17
maize	0.42	1.00	0.59	22
mango	1.00	0.96	0.98	24
mothbeans	0.77	0.79	0.78	29
mungbean	0.96	1.00	0.98	27
muskmelon	1.00	1.00	1.00	27
orange	1.00	1.00	1.00	27
papaya	0.50	0.82	0.62	28
pigeonpeas	0.74	0.96	0.84	27
pomegranate	1.00	0.71	0.83	28
rice	0.19	0.28	0.22	29
watermelon	1.00	0.75	0.86	24
accuracy			0.74	550
macro avg	0.80	0.74	0.74	550
weighted avg	0.79	0.74	0.73	550

C:\Users\deepe\anaconda3\lib\site-packages\sklearn\metrics_classificatio n.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined a nd being set to 0.0 in labels with no predicted samples. Use `zero_divisio n` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\deepe\anaconda3\lib\site-packages\sklearn\metrics_classificatio n.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined a nd being set to 0.0 in labels with no predicted samples. Use `zero_divisio n` parameter to control this behavior.

warn prf(average, modifier, msg start, len(result))

C:\Users\deepe\anaconda3\lib\site-packages\sklearn\metrics_classificatio n.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined a nd being set to 0.0 in labels with no predicted samples. Use `zero_divisio n` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

In [83]:

from sklearn.model_selection import cross_val_score

```
In [84]:
from sklearn.svm import SVC
In [85]:
svc=SVC().fit(X,y)
C:\Users\deepe\anaconda3\lib\site-packages\sklearn\utils\validation.py:114
3: DataConversionWarning: A column-vector y was passed when a 1d array was
expected. Please change the shape of y to (n_samples, ), for example using
ravel().
 y = column_or_1d(y, warn=True)
In [86]:
svc.predict(X[233:243])
Out[86]:
array(['kidneybeans', 'pomegranate', 'coconut', 'mango', 'mungbean',
       'cotton', 'rice', 'chickpea', 'mungbean', 'apple'], dtype=object)
In [87]:
print(y[233:243])
[['kidneybeans']
['pomegranate']
 ['coconut']
 ['mango']
 ['mungbean']
 ['cotton']
 ['rice']
 ['chickpea']
 ['mungbean']
 ['apple']]
In [88]:
from sklearn.metrics import classification_report
In [89]:
```

svm_predicted=svc.predict(X)

In [90]:

print(classification_report(y,svm_predicted))

	precision	recall	f1-score	support
apple	1.00	1.00	1.00	24
banana	1.00	1.00	1.00	24
blackgram	0.93	0.96	0.94	26
chickpea	1.00	1.00	1.00	28
coconut	1.00	1.00	1.00	19
coffee	1.00	1.00	1.00	24
cotton	0.91	1.00	0.95	21
grapes	1.00	1.00	1.00	24
jute	0.90	1.00	0.95	28
kidneybeans	0.85	1.00	0.92	23
lentil	1.00	0.76	0.87	17
maize	1.00	0.91	0.95	22
mango	1.00	1.00	1.00	24
mothbeans	0.91	1.00	0.95	29
mungbean	1.00	1.00	1.00	27
muskmelon	1.00	1.00	1.00	27
orange	1.00	1.00	1.00	27
papaya	1.00	0.96	0.98	28
pigeonpeas	1.00	0.85	0.92	27
pomegranate	1.00	1.00	1.00	28
rice	0.96	0.90	0.93	29
watermelon	1.00	1.00	1.00	24
accuracy			0.97	550
macro avg	0.98	0.97	0.97	550
weighted avg	0.98	0.97	0.97	550

In [91]:

```
cross_val_score(svc,X,y)

C:\Users\deepe\anaconda3\lib\site-packages\sklearn\utils\validation.py:114
3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using
```

ravel().
y = column_or_1d(y, warn=True)

C:\Users\deepe\anaconda3\lib\site-packages\sklearn\utils\validation.py:114
3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Users\deepe\anaconda3\lib\site-packages\sklearn\utils\validation.py:114
3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Users\deepe\anaconda3\lib\site-packages\sklearn\utils\validation.py:114
3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Users\deepe\anaconda3\lib\site-packages\sklearn\utils\validation.py:114
3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

Out[91]:

array([0.95454545, 0.94545455, 0.97272727, 0.94545455, 0.96363636])

In [92]:

```
np.mean([0.95454545, 0.94545455, 0.97272727, 0.94545455, 0.96363636])
```

Out[92]:

0.9563636360000001