GNU Radio Basics & Interfacing to Aselsan COMINT Receivers

Murat Sever

Outline

- GNU Radio 101
- GNU Radio Interface to Aselsan
 COMINT Receivers
- GNU Radio Live Demos
- Future Work

GNU Radio is...

- A signal processing library
- Designed for real-time

- The software part of an SDR
- Not a radio application
- The tool to build your own transceivers
- FOSS: Free and Open Source Software

Basic Concept: Flow Graph

- Transceivers are implemented as flow graphs
- Similar to Simulink / schematics
- Define structure and parameters of blocks

Basic Concept: Block

- Written in C++ or Python
- Implement one logical step
- Each block run in separate thread
- Can be encapsulated into hierarchical blocks

Data Streams

Samples are buffered

Data types are color-coded

GNU Radio Companion

GUI Output and Instrumentation

GQRX - a **GNU** Radio Application

Out Of Tree Modules

- GNU Radio can be extended with OOTs
- OOTs cover more specific functionality
- There is a large number available
- CGRAN is our central database

GNU Radio is used by

GNU Radio is an Ecosystem

- Active Open Source community since 2001
- PyBombs, OOTs
- GRCon since 2011
- GNU Radio Foundation
- FOSDEM SDR DevRoom

- GSoC, SoCIS, R&S Competition, SDR Academy
- GNU Radio Europe

Installing GNU Radio

- From source: GitHub
- Package manager
 - Some are pretty outdated
- macOS / homebrew
- PyBombs: integrated dependency management and 3rd party application installation

Learn // Discuss // Connect

- Website: www.gnuradio.org
- Development: github.com/gnuradio
- Mailing List: discuss-gnuradio@gnu.org
- Wiki: wiki.gnuradio.org
- Slack: slack.gnuradio.org
- Facebook: gnuradioproject
- Twitter: @gnuradio

It all began...

- New hardware access library written for HF-ED Project
- No working GUI available at that time
- Need to verify FFT and IQ data
- Make sure receiver is configured right
 - center frequency, bandwidth...
- Visualize data

GNU Radio Interface to Aselsan Comint Receivers

- Aselsan Comint Receivers
 - Two main data streams
 - FFT: Upon request
 - IQ: Continuous
 - They are both in
 - Complex
 - Int32
 - Big Endian
 - Split form (like IIII...IQQQ...Q)

GNU Radio Demo: FFT

- Receiver tuned to 10MHz center frequency, 25k bandwidth
- 440Hz AM modulated signal is supplied by signal generator
- We request 1024-pt FFT every second

GNU Radio FFT

GNU Radio Demo: IQ

- Receiver tuned to 10MHz center frequency, 25k bandwidth
- We receive continuous IQ data and <u>calculate and</u> <u>display real-time 1024-pt FFT</u>
- Records given to System Eng. for offline analysis

GNU Radio IQ

Later demod blocks have arrived...

- Later, demod blocks have been added to the Project
- Still need to verify they work as expected
- But again no GUI or player available to listen to the digital audio stream (DAUD)

GNU radio to the rescue <a>©

GNU Radio DAUD

Future Work

- Aselsan Source block need to be written
- Multi-channel data can be received
- Phase measurements can be made online
- Easy data recording
- All COMINT algorithms can be implemented and prototyped
- Digital demodulation blocks ready to use
- Key to other FOSS apps
 - Inspectrum, gr-inspector, ...

Thanks