

Using convolutional neural networks for vertebrae segmentation in spinal FUS treatment planning

By: Aidan Wang

Supervisor: David Martin

PI: Meaghan O'Reilly

RZE WE

Introduction

- Goal: FUS therapy in spinal canal
 - CT-derived treatment planning to focus through bone
- Require quick in vivo spine segmentations of individual vertebrae for simulations during pig experiments
 - Currently too slow
- My project: fully automated segmentation with CNNs (U-NET architecture)

Fig 2. Diagram of a U-NET (Cai et al., 2022)

Fig 1. Segmentation example on human CT (Payer et al., 2020)

Experimental Workflow

Fig 3. Flowchart showing the current workflow for porcine model spinal FUS experiments, with semi-automatic spine segmentation being the clear bottleneck for time.

Methods

- Implementation of Payer et al., 2020 (VerSe Challenge winner 2019-20)
- Three-step process
 - Spine localization
 - Vertebrae localization
 - 3. Vertebrae segmentation
- Trained on 107 human CTs, tested on 4 pig CTs

Fig 4. Visualizations of the inputs and outputs of the three implemented CNNs (Payer et al., 2020)

Results

- Inference process runs in ~5 minutes, accurate segmentation
- Issues in vertebrae localization (Step 2)
 - Cutting off lumbar vertebrae
 - Missing individual vertebrae
- Solution: manually input centroid positions between Steps 2-3

Fig 5. Sagittal views of vertebrae segmentation masks (with missing vertebrae) on slices from four pig CT images

Results (cont.)

- Manual input of centroids → full spine segmentation
- Additional 2-3 min per missing vertebrae

Fig 6. Volume rendering of segmented pig vertebrae

Fig 7. Sagittal views of vertebrae segmentation masks on slices from four pig CT images

Conclusion

- Successfully applied human CT-trained U-NET segmentation model to pig CTs
- Corrected missing vertebrae with minor manual input
- Accelerated segmentation method ready to be used in *in vivo* experiments

Acknowledgements

O'Reilly Lab

Dr. Meaghan O'Reilly

David Martin

Andrew Frizado

FUS High School Summer Research Program

Dr. Kullervo Hynynen

Dr. Romario Regeenes

Sophia Samuelsson

Open Source Code

Payer, C., Štern, D., Bischof, H., & Urschler, M. (2020). Coarse to Fine Vertebrae Localization and Segmentation with SpatialConfiguration-Net and U-Net. *Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, 5,* 124–133. doi:10.5220/0008975201240133

Image of U-NET

Cai, S., Wu, Y., & Chen, G. (2022). A Novel Elastomeric UNet for Medical Image Segmentation. *Frontiers in Aging Neuroscience*, *14*. doi:10.3389/fnagi.2022.841297

