Clear RF, LLC

ADDENDUM TO TEST REPORT 94772-7B

ClearRF 15db Dual-Band Direct Connect Cellular Amplifier Model: WRE2710

Tested To The Following Standards:

FCC Part 20, Section 20.21

Report No.: 94772-7C

Date of issue: May 19, 2014

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 20	7
FCC 20.21(e)(8)(i)(A) Noise Limit	7
FCC 20.21(e)(8)(i)(B) Bidirectional Capability Power Limit	16
FCC 20.21(e)(8)(i)(C) Booster Gain Limit	29
FCC 20.21(e)(8)(i)(E) Out of Band Emission Limit	34
FCC 20.21(e)(8)(i)(F) Intermodulation Limits	63
FCC 20.21(e)(8)(i)(I) Uplink Inactivity	68
FCC 20.21(e)(8)(ii)(A) Anti Oscillation	72

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Clear RF, LLC Joyce Walker

12825 E Mirabeau Pkwy, Ste. 104 CKC Laboratories, Inc.
Spokane Valley, WA 99216 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Pete Wilhite Project Number: 94772

DATE OF EQUIPMENT RECEIPT: September 30, 2013

DATE(S) OF TESTING: September 30 – December 9, 2013

March 18, 2014

Revision History

Original: Testing of ClearRF 15dB Dual-Band Direct Connect Cellular Amplifier, WRE2710 to FCC Part 20, Section 20.21

Addendum A: To replace data in section FCC Part 20.21(e)(8)(i)(B) / 7.2, Bidirectional Capability D Power Limit. Due to a gain change, the manufacturer has changed the EUT model name from ClearRF 25dB Dual-Band Direct Connect Cellular Amplifier, WRE2710 to ClearRF 15dB Dual-Band Direct Connect Cellular Amplifier, WRE2710.

Addendum B: Adding data to include coverage for both fixed and mobile operation. Data has been replaced in sections 20.21(e)(8)(i)(A) / 7.7, 20.21(e)(8)(i)(B) / 7.2 and 20.21(e)(8)(i)(C) / 7.9.

Addendum C: Made a modification to the test conditions in 20.21(e)(8)(i)(B) / 7.2.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Stew 7 B

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 78 Report No.: 94772-7C

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14
Immunity	5.00.07

Site Registration & Accreditation Information

Location	CB#	TAIWAN	CANADA	FCC	JAPAN
Brea A	US0060	SL2-IN-E-1146R	3082D-1	90473	A-0147
Brea D	US0060	SL2-IN-E-1146R	3082D-2	100638	A-0147

Page 4 of 78 Report No.: 94772-7C

SUMMARY OF RESULTS

Standard / Specification: FCC Part 20

Description	Test Procedure/Method	Results
Noise Limit - Transmit off	FCC Part 20.21(e)(8)(i)(A) / 7.7	Pass
Bidirectional Capability D Power Limit	FCC Part 20.21(e)(8)(i)(B) / 7.2	Pass
Booster Gain Limits	FCC Part 20.21(e)(8)(i)(C) / 7.9	Pass
Out of Band Emission Limits	FCC Part 20.21(e)(8)(i)(E) / 7.5	Pass
Intermodulation Limits	FCC 20.21(e)(8)(i)(F) / 7.4	Pass
Uplink Inactivity	FCC 20.21(e)(8)(i)(I) / 7.8	Pass
Anti-Oscillation	FCC 20.21(e)(8)(ii)(A) / 7.11	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of 0	Conditions	
None		

Page 5 of 78 Report No.: 94772-7C

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

ClearRF 15dB Dual-Band Direct Connect Cellular Amplifier

Manu: Clear RF, LLC Model: WRE2710 Serial: 001

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Power Supply Solid State Amplifier

Manu:DPXManu:CromlechModel:GFP101U-1210Model:AR178238-30Serial:NoneSerial:N1Q4800-1013

ESG Vector Signal Generator HF Pre Amplifier

 Manu:
 Agilent
 Manu:
 HP

 Model:
 E4433B
 Model:
 830174A

 Serial:
 US40052164
 Serial:
 3123A00281

ESG Vector Signal Generator RF Amplifier

Manu:AgilentManu:Amplifier ResearchModel:E4438CModel:AR25S1G4ASerial:MY42082260Serial:0325937

Page 6 of 78 Report No.: 94772-7C

FCC PART 20

This report contains EMC test results under United States Federal Communications Commission (FCC) Part 20 §20.21, requirements for Provider-Specific Consumer Signal Boosters.

FCC 20.21(e)(8)(i)(A) Noise Limit

Test Conditions / Setup

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Clear RF, LLC

Specification: 20.21(e)(8)(i)(A)(1) Noise Limit

20.21(e)(8)(i)(A)(2)(i) Maximum Noise Limit: Fixed 20.21(e)(8)(i)(A)(2)(ii) Maximum Noise Limit: Mobile

20.21(e)(8)(i)(H) Transmit Power Off Limit., Transmit Power Off timing.

 Work Order #:
 94772
 Date: 10/4/2013

 Test Type:
 Conducted Emissions
 Time: 14:40:48

Equipment: ClearRF 25db dual-band direct Sequence#: 1

connect cellular amplifier

Manufacturer: Clear RF, LLC Tested By: E. Wong Model: WRE2710 110V 60Hz

S/N: 001

Test Equipment:

	·r ······				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	2/6/2013	2/6/2015
T2	AN03430	Attenuator	75A-10-12	9/5/2013	9/5/2015
T3	AN02946	Cable	32022-2-2909K-	7/31/2013	7/31/2015
			36TC		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
ClearRF 25db dual-band	Clear RF, LLC	WRE2710	001	
direct connect cellular				
amplifier*				

Support Devices:

Function	Manufacturer	Model #	S/N	
Power Supply	DPX	GFP101U-1210	NA	
HF Pre Amplifier	HP	830174A	3123A00281	
Solid State Amplifier	Comtech	AR178238-30	N1Q4800-1013	
ESG Vector Signal Generator	Agilent	E4433B	US40052164	

Page 7 of 78 Report No.: 94772-7C

Test Conditions / Notes:

The EUT is placed on the test bench. The Donor port of the Machine to Machine booster is intended to be connected to an antenna and the server port is intended to be connected directly to the antenna port of a cellular modem or cellular handset.

CMRS band.

UL: 824-849MHz, 1850-1915MHz DL: 869-894MHz, 1930-1995MHz

Evaluation performed at the both Donor and Server antenna port.

The booster operates in the following frequency band.

UL: 824-849, 1850-1910 MHz DL: 869-894, 1930-1990 MHz

Evaluation performed in accordance with 7.7 of the FCC Document 935210 DO3 Wideband Consumer Signal Booster Measurement Guidance DR04-41516.

MSCL (in this case the insertion loss of the cable connecting the Server port to the Antenna port of modem/cellphone) as measured: 824-849MHz = 1.2dB, 1850-1910 = 2.5dB.

Due to the low gain nature of the design, the maximum noise power never exceeds the power off limit. The yellow trace is max hold. This number is recorded and plotted against the injected DL power (RSSI).At RSSI of -40 dBm, the device goes into by pass mode.

Since the noise power in the uplink and downlink path was below the noise limit of -70dBm/MHs, it is consider meeting the Variable uplink noise limit without further testing.

UL measurement, Firmware version: Original DL measurement, Firmware version: Original

Test environment conditions: 24°C, 30% Relative Humidity:100kPa

Page 8 of 78 Report No.: 94772-7C

Summary

Booster Noise limit:

As demonstrated in the Booster Noise limit plot, the measured noise power is under the Maximum noise power limit for Fixed and Mobile operation, hence meeting the requirement for both Fixed and Mobile.

Booster Noise Timing:

Freq	Fixed limit	Mobile limit	Measured Noise Timing	Result
824-849MHz	3 sec	1 sec	NA	Pass
1850-1915MHz	3 sec	1 sec	NA	Pass

Since the noise power in the uplink and downlink path was below the noise limit of -70dBm/MHs, it is consider meeting the Variable uplink noise limit without further testing.

Page 10 of 78 Report No.: 94772-7C

Test Data

Noise Power Off Limit 824 - 849MHz UL, in accordance with § 7.7

Noise Power Off Limit 1850 - 1910MHz UL, in accordance with § 7.7

Noise Power Off Limit 869 - 894MHz DL, in accordance with § 7.7

Noise Power Off Limit 1930 - 1995MHz DL, in accordance with § 7.7

Noise Limit Variable 824 - 849MHz RSSI, in accordance with § 7.7.8

Noise Limit Variable 869 - 894MHz RSSI, in accordance with § 7.7.8

Noise Limit Variable 1850 - 1910MHz RSSI, in accordance with § 7.7.8

Noise Limit Variable 1930 - 1990MHz RSSI, in accordance with § 7.7.8

Test Setup Photos

Test Setup, Noise Limit - UL

Test Setup, Noise Limit - DL

FCC 20.21(e)(8)(i)(B) Bidirectional Capability Power Limit

Test Conditions / Setup

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Clear RF, LLC

Specification: 20.21(e)(8)(i)(B) Bidirectional Capability.

20.21(e)(8)(i)(C)(2)

20.21(e)(8)(i)(D) Power Limit.

Work Order #: 94772 Date: 3/18/14
Test Type: Conducted Emissions Time: 20:06
Equipment: ClearRF 25db dual-band direct Sequence#: 2

connect cellular amplifier

Manufacturer: Clear RF, LLC Tested By: E. Wong Model: WRE2710 110V 60Hz

S/N: 001

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	2/6/2013	2/6/2015
T2	AN03430	Attenuator	75A-10-12	9/5/2013	9/5/2015
Т3	AN02946	Cable	32022-2-2909K-	7/31/2013	7/31/2015
			36TC		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
ClearRF 25db dual-band	Clear RF, LLC	WRE2710	001
direct connect cellular			
amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	DPX	GFP101U-1210	NA
High Power Amplifier	Ophir	5016	1043
ESG Vector Signal	Agilent	E4438C	MY42082260
Generator			

Page 16 of 78 Report No.: 94772-7C

Test Conditions / Notes:

The EUT is placed on the test bench. The Donor port of the Machine to Machine booster is intended to be connected to an antenna and the server port is intended to be connected directly to the antenna port of a cellular modem or cellular handset.

CMRS band.

UL: 824-849MHz, 1850-1915MHz DL: 869-894MHz, 1930-1995MHz

Evaluation performed at the both Donor and Server antenna port.

The booster operates in the following frequency band.

UL: 824-849, 1850-1910 MHz DL: 869-894, 1930-1990 MHz

Evaluation performed IAW 7.2, 7.3 of the FCC Document 935210 DO3 Signal Booster Measurement V02 date March 06, 2014.

Antenna Cable Loss is calculated from Insertion loss property of RG 58, with cable length of 3.5 meter. 1.47 dB, 2.44dB

TX freq and RF input power at the Donor and Server port.

Firmware version: v2.0.2. with the following modification

- 1. Downlink gain set to 15dB
- Uplink gain set to 12dB
- 3. Output power set back to original before all the OOBE test errors

Test environment conditions: 24°C, 30% relative humidity:100kPa

Page 17 of 78 Report No.: 94772-7C

Result

Pre AGC

	Pulse GSM				4	I.1 MHz AWGN	
Frequency	Input(dBm)	Output (dBm)	Gain (dB)		Input(dBm)	Output (dBm)	Gain(dB)
UL 1850-1910	-3.1	7.9	11.0		-12.2	-1.1	11.1
UL 824-849	-3.9	7.8	11.7		-11.3	0.4	11.7
DL 1930-1990	-45.9	-31.3	14.6		-54.0	-38.7	15.3
DL 869-894	-45.7	-30.3	15.4		-53.8	-40.1	13.7
	0					Limit	
UL gain vs DL gain 1850/1930 -3.6			-4.2				9.0
UL gain vs DL gain 824/894 -3.7					-2.0		9.0

Pulse GSM

Pulse GSM					
Frequency	Output Power	Ant Gain	Cable Loss	EIRP(dBm)	Limit(dBm)
UL 1850-1910	7.9	2.1	2.44	7.5	Max30
UL 824-849	7.8	2.1	1.47	8.4	Max30
DL 1930-1990	-31.3	2.1	2.44	-31.6	Max17
DL 869-894	-30.3	2.1	1.47	-29.7	Max17
4.1MHz AWGN					
Frequency	Output Power	Ant Gain	Cable Loss	EIRP(dBm)	Limit(dBm)
UL 1850-1910	-1.1	2.1	2.44	-1.4	Max30
UL 824-849	0.4	2.1	1.47	1.0	Max30
DL 1930-1990	-38.7	2.1	2.44	-39.0	Max17
DL 869-894	-40.1	2.1	1.47	-39.5	Max17

Page 18 of 78 Report No.: 94772-7C

Summary:

Power limits meets requirement, the measured Uplink Downlink Gain meets the gain limit 20.21(e)(8)(i)(C)(2) 64.9dB (824-849MHz), 72dB (1850-1910MHz), 15dB (Mobile Direct connect). Note in operation, the Downlink (Server port) is directly connected to the antenna port of user equipment and never to an antenna.

Above AGC (Max Transmitter input level section 5.5)

	Pulse GSM				4.1 MHz AWGN		
Frequency	Input(dBm)	Output (dBm)	Gain (dB)		Input(dBm)	Output (dBm)	Gain(dB)
UL 1850-1910	27.0	24.8	-2.2		27.0	25.9	-1.1
UL 824-849	27.0	26.5	-0.5		27.0	26.8	-0.2
DL 1930-1990	-20.0	-20.9	-0.9		-20.0	-22.9	-2.9
DL 869-894	-20.0	-20.3	-0.3		-20.0	-20.7	-0.7
						limit	
UL gain vs DL gain 1850/1930 -1.3 1.8					9.0		
UL gain vs DL ga	in 824/894	-0.2			0.5		9.0

Pulse GSM

	Output		Cable		
Frequency	Power	Ant Gain	Loss	EIRP(dBm)	Limit(dBm)
UL 1850-1910	24.8	2.1	2.44	24.5	Min17/Max30
					Min17/
UL 824-849	26.5	2.1	1.47	27.1	Max30
DL 1930-1990	-20.9	2.1	2.44	-21.2	Max17
DL 869-894	-20.3	2.1	1.47	-19.7	Max17
4.1MHz					
AWGN					
	Output		Cable		
Frequency	Power	Ant Gain	Loss	EIRP(dBm)	Limit(dBm)
UL 1850-1910	25.9	2.1	2.44	25.5	Min17/Max30
					Min17/
UL 824-849	26.8	2.1	1.47	27.4	Max30
DL 1930-1990	-22.9	2.1	2.44	-23.2	Max17
DL 869-894	-20.7	2.1	1.47	-20.1	Max17

7.2_Max power_UL_836MHz_AWGN

7.2_Max power_UL_836MHz_AWGN_RFin=27dBm

7.2_Max power_UL_836MHz_GSM

7.2_Max power_UL_836MHz_GSM_Rfin=27dBm

7.2_Max power_UL_1865MHz_AWGN

7.2_Max power_UL_1865MHz_AWGN_RFin=27dBm

7.2_Max power_UL_1865MHz_GSM

7.2_Max power_UL_1865MHz_GSM_RFin=27dBm

7.2_Max power_DL_877MHz_AWGN

7.2_Max power_DL_877MHz_AWGN_RFin=-20dBm

7.2_Max power_DL_877MHz_GSM

7.2_Max power_DL_877MHz_GSM_RFin=-20dBm

7.2_Max power_DL_1962MHz_AWGN

7.2_Max power_DL_1962MHz_AWGN_RFin=-20dBm

7.2_Max power_DL_1962MHz_GSM

7.2_Max power_DL_1962MHz_GSM_RFin=-20dBm

Test Setup Photos

FCC 20.21(e)(8)(i)(C) Booster Gain Limit

Test Data Sheets

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Clear RF, LLC

Specification: 20.21(e)(8)(i)(C)(2)(i) Booster Gain Limits: Fixed

20.21(e)(8)(i)(C)(2)(ii) Booster Gain Limits: Mobile, Direct connect.

20.21(e)(8)(i)(H) Transmit Power Off UL Gain Limit., Transmit Power Off UL Gain

timing.

 Work Order #:
 94772
 Date:
 10/4/2013

 Test Type:
 Conducted Emissions
 Time:
 14:40:48

Equipment: ClearRF 25db dual-band direct Sequence#: 1

connect cellular amplifier

Manufacturer: Clear RF, LLC Tested By: E. Wong Model: WRE2710 110V 60Hz

S/N: 001

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	2/6/2013	2/6/2015
T2	AN03430	Attenuator	75A-10-12	9/5/2013	9/5/2015
Т3	AN02946	Cable	32022-2-2909K-	7/31/2013	7/31/2015
			36TC		

Equipment Under Test (* = EUT):

Equipment Chaci Test (- LC 1).			
Function	Manufacturer	Model #	S/N	
ClearRF 25db dual-band	Clear RF, LLC	WRE2710	001	
direct connect cellular				
amplifier*				

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	DPX	GFP101U-1210	NA
HF Pre Amplifier	HP	830174A	3123A00281
Solid State Amplifier	Comtech	AR178238-30	N1Q4800-1013
ESG Vector Signal Generator	Agilent	E4438C	MY42082260
ESG Vector Signal Generator	Agilent	E4433B	US40052164

Page 29 of 78 Report No.: 94772-7C

Test Conditions / Notes:

The EUT is placed on the test bench. The Donor port of the Machine to Machine booster is intended to be connected to an antenna and the server port is intended to be connected directly to the antenna port of a cellular modem or cellular handset.

CMRS band.

UL: 824-849MHz, 1850-1915MHz DL: 869-894MHz, 1930-1995MHz

Evaluation performed at the both Donor and Server antenna port.

The booster operates in the following frequency band.

UL: 824-849, 1850-1910 MHz DL: 869-894, 1930-1990 MHz

Evaluation performed in accordance with 7.9 of the FCC Document 935210 DO3 Wideband Consumer Signal Booster Measurement Guidance DR04-41516.

Due to the low gain nature of the design, the maximum noise power never exceeds the power off limit. The yellow trace is max hold. This number is recorded and plotted against the injected DL power (RSSI).At RSSI of -40 dBm, the device shouts down and go into by pass mode.

UL measurement, Firmware version: Original

Test environment conditions: 24°C, 30% Relative Humidity:100kPa

Page 30 of 78 Report No.: 94772-7C

Summary: As presented in the Booster UL gain plot, the booster UL gain is under the limit for 20.21(e)(8)(i)(C)(2)(i) Booster Gain Limits: Fixed and 20.21(e)(8)(i)(C)(2)(ii) Booster Gain Limits: Mobile, Direct connect. Hence meeting the requirement for Fixed and mobile operation.

Booster Gain Timing, as presented in the timing plots.

Freq	Fixed limit	Mobile limit	Measured Gain Timing	Result
824-849MHz	3 sec	1 sec	0.733	Pass
1850-1915MHz	3 sec	1 sec	0.720	Pass

Page 31 of 78 Report No.: 94772-7C

Test Data

824 - 849MHz

1850 - 1910MHz

Test Setup Photos

FCC 20.21(e)(8)(i)(E) Out of Band Emission Limits

Test Conditions / Setup

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Clear RF, LLC

Specification: 20.21(e)(8)(i)(E) Out of Band Emission

Work Order #: 94772 Date: 12/02/2013
Test Type: Conducted Emissions Time: 14:40:48
Equipment: ClearRF 15dB Dual-Band Direct Sequence#: 1

Connect Cellular Amplifier

Manufacturer: Clear RF, LLC Tested By: Stu Yamamoto Model: WRE2710 110V 60Hz

S/N: 001

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	2/6/2013	2/6/2015
T2	AN03430	Attenuator	75A-10-12	9/5/2013	9/5/2015
Т3	AN02946	Cable	32022-2-2909K-	7/31/2013	7/31/2015
			36TC		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
ClearRF 15dB Dual-Band	Clear RF, LLC	WRE2710	001
Direct Connect Cellular			
Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	DPX	GFP101U-1210	NA
RF Amplifier	Amplifier Research	AR25S1G4A	0325937
ESG Vector Signal Generator	Agilent	E4433B	US40052164

Page 34 of 78 Report No.: 94772-7C

Test Conditions / Notes:

The EUT is placed on the test bench. The Donor port of the Machine to Machine booster is intended to be connected to an antenna and the server port is intended to be connected directly to the antenna port of a cellular modem or cellular handset.

CMRS band.

UL: 824-849MHz, 1850-1915MHz DL: 869-894MHz, 1930-1995MHz

Evaluation performed at the both Donor and Server antenna port.

The booster operates in the following frequency band.

UL: 824-849, 1850-1910 MHz DL: 869-894, 1930-1990 MHz

Evaluation performed in accordance with 7.5 of the FCC Document 935210 DO3 Wideband Consumer Signal Booster Measurement Guidance DR04-41516. Note that below 1 GHz the span was set wider than 100kHz, however this span is sufficient to demonstrate compliance within100kHz outside the band edges.

Note that the Device was not tested at -20dBm in the down link direction as the device would go into bypass mode at -64dBm of DL power. (10/5/13). Additional DL OBE plot was capture 1dB prior to Shut down.

UL measurement, Firmware version: 1.0.17 DL measurement, Firmware version: 1.0.17

Test environment conditions: 24°C, 30% Relative Humidity:100kPa

Page 35 of 78 Report No.: 94772-7C

Test Data

824 - 849MHz _ L _ UL GSM, +27dBm

824 - 849MHz _ H _ UL GSM, +27dBm

824 - 849MHz_ L _UL GSM, Prior to AGC

824 - 849MHz_ L _UL GSM, Prior to AGC

1850 - 1910MHz _ L _ UL GSM, +27dBm

1850 - 1910MHz _ H _ UL GSM, +27dBm

 $1850 - 1910 MHz _L _UL GSM$, Prior to AGC

1850 - 1910MHz _ H _ UL GSM, Prior to AGC

824 - 835MHz _ L _ UL CDMA, +27dBm

824 - 835MHz _ L _ UL CDMA, Prior to AGC

824 - 849MHz _ L _ UL CDMA, +27dBm

824 - 849MHz _ H _ UL CDMA, +27dBm

824 - 849 MHz _ L _ UL CDMA, Prior to AGC

824 - 849MHz _ H _ UL CDMA, Prior to AGC

835 - 845MHz _ L _ UL CDMA, +27dBm

835 - 845MHz _ L _ UL CDMA, Prior to AGC

845 - 846.5MHz _ L _ UL CDMA, +27dBm

845 - 846.5MHz _ L _ UL CDMA, Prior to AGC

846.5 - 849MHz _ L _ UL CDMA, +27dBm

846.5 - 849MHz _ L _ UL CDMA, Prior to AGC

 $1850 - 1910 MHz _L _UL CDMA, +27 dBm$

1850 - 1910MHz _ H _ UL CDMA, +27dBm

1850 - 1910 MHz _ L _ UL CDMA, Prior to AGC

1850 - 1910MHz _ H _ UL CDMA, Prior to AGC

869 - $880\mbox{MHz}$ _ L _ DL CDMA, Prior to AGC

869 - 880MHz _ L _ DL CDMA, Prior Shut Off

869 - $894\mbox{MHz}$ _ L _ DL CDMA, Prior to AGC

869 - 894MHz _ H _ DL CDMA, Prior to AGC

869 - 894 MHz _ L _ DL CDMA, Prior Shut Off

869 - 894MHz _ L _ DL CDMA, Prior Shut Off

880 - 890 MHz _ L _ DL CDMA, Prior to AGC

880 - 890MHz _ L _ DL CDMA, Prior Shut Off

890 - 891.5 MHz _ L _ DL CDMA, Prior to AGC

890 - 891.5MHz _ L _ DL CDMA, Prior Shut Off

891.5 - 894MHz _ H _ DL CDMA, Prior to AGC

 $891.5 - 894MHz _ H _ DL CDMA$, Prior Shut Off

1930 - 1990 MHz _ L _ DL CDMA, Prior to AGC

1930 - 1990MHz _ H _ DL CDMA, Prior to AGC

1930 - 1990 MHz $_$ L $_$ DL CDMA, Prior Shut Off

1930 - 1990MHz _ H _ DL CDMA, Prior Shut Off

1850 - 1910MHz _ L _ UL CDMA, +27dBm

1850 - 1910MHz _ H _ UL CDMA, +27dBm

1850 - 1910 MHz _ L _ UL CDMA, Prior to AGC

1850 - 1910MHz _ H _ UL CDMA, Prior to AGC

824 - 849MHz _ L _ LTE, +27dBm

824 - 849MHz _ H _ LTE, +27dBm

824 - 849 MHz _ L _ LTE, Prior to AGC

824 - 849MHz _ H _ LTE, Prior to AGC

1850 - 1910MHz _ L _ LTE, +27dBm

1850 - 1910MHz _ H _ LTE, +27dBm

1850 - 1910MHz _ L _ LTE, Prior to AGC

1850 - 1910MHz _ H _ LTE, Prior to AGC

FCC 20.21(e)(8)(i)(F) Intermodulation Limits

Test Conditions / Setup

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Clear RF, LLC

Specification: 20.21(e)(8)(i)(F) Intermodulation Limit.

Work Order #: 94772 Date: 10/4/2013
Test Type: Conducted Emissions Time: 14:40:48
Equipment: ClearRF 15dB Dual-Band Direct Sequence#: 1

Connect Cellular Amplifier

Manufacturer: Clear RF, LLC Tested By: E. Wong Model: WRE2710 110V 60Hz

S/N: 001

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	2/6/2013	2/6/2015
T2	AN03430	Attenuator	75A-10-12	9/5/2013	9/5/2015
Т3	AN02946	Cable	32022-2-2909K-	7/31/2013	7/31/2015
			36TC		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
ClearRF 15dB Dual-Band	Clear RF, LLC	WRE2710	001
Direct Connect Cellular			
Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	DPX	GFP101U-1210	NA
HF Pre Amplifier	HP	830174A	3123A00281
Solid State Amplifier	Cromlech	AR178238-30	N1Q4800-1013
ESG Vector Signal Generator	Agilent	E4438C	MY42082260
ESG Vector Signal Generator	Agilent	E4433B	US40052164

Page 63 of 78 Report No.: 94772-7C

Test Conditions / Notes:

The EUT is placed on the test bench. The Donor port of the Machine to Machine booster is intended to be connected to an antenna and the server port is intended to be connected directly to the antenna port of a cellular modem or cellular handset.

CMRS band.

UL: 824-849MHz, 1850-1915MHz DL: 869-894MHz, 1930-1995MHz

Evaluation performed at the both Donor and Server antenna port.

The booster operates in the following frequency band.

UL: 824-849, 1850-1910 MHz DL: 869-894, 1930-1990 MHz

Evaluation performed in accordance with 7.4 of the FCC Document 935210 DO3 Wideband Consumer Signal Booster Measurement Guidance DR04-41516

UL measurement, Firmware version: Original DL measurement, Firmware version: Original

TX freq and RF input power at the Donor and Server port.

Test environment conditions: 24°C, 30% Relative Humidity:100kPa

Page 64 of 78 Report No.: 94772-7C

Test Plots

824 - 849MHz, UL

1850 - 1910MHz, UL

869 - 894MHz, DL

1930 - 1990MHz, DL

FCC 20.21(e)(8)(i)(I) Uplink Inactivity

Test Conditions / Setup

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Clear RF, LLC

Specification: 20.21(e)(8)(i)(I) Uplink Inactivity

 Work Order #:
 94772
 Date: 10/4/2013

 Test Type:
 Conducted Emissions
 Time: 14:40:48

Equipment: ClearRF 15dB Dual-Band Direct Sequence#: 1

Connect Cellular Amplifier

Manufacturer: Clear RF, LLC Tested By: E. Wong Model: WRE2710 110V 60Hz

S/N: 001

Test Equipment:

		1				
	ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	T1	AN02869	Spectrum Analyzer	E4440A	2/6/2013	2/6/2015
Ī	T2	AN03430	Attenuator	75A-10-12	9/5/2013	9/5/2015
	Т3	AN02946	Cable	32022-2-2909K-	7/31/2013	7/31/2015
				36TC		

Equipment Under Test (* = EUT):

-1F	— /-		
Function	Manufacturer	Model #	S/N
ClearRF 15dB Dual-Band	Clear RF, LLC	WRE2710	001
Direct Connect Cellular			
Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	DPX	GFP101U-1210	NA
HF Pre Amplifier	HP	830174A	3123A00281
Solid State Amplifier	Comtech	AR178238-30	N1Q4800-1013
ESG Vector Signal Generator	Agilent	E4433B	US40052164

Page 68 of 78 Report No.: 94772-7C

Test Conditions / Notes:

The EUT is placed on the test bench. The Donor port of the Machine to Machine booster is intended to be connected to an antenna and the server port is intended to be connected directly to the antenna port of a cellular modem or cellular handset.

CMRS band.

UL: 824-849MHz, 1850-1915MHz DL: 869-894MHz, 1930-1995MHz

Evaluation performed at the both Donor and Server antenna port.

The booster operates in the following frequency band.

UL: 824-849, 1850-1910 MHz DL: 869-894, 1930-1990 MHz

Evaluation performed in accordance with 7.8 of the FCC Document 935210 DO3 Wideband Consumer Signal Booster Measurement Guidance DR04-41516.

UL measurement, Firmware version: Original

Test environment conditions: 24°C, 30% Relative Humidity:100kPa

Page 69 of 78 Report No.: 94772-7C

Test Data

824 - 849MHz, UL

1850 - 1910MHz, UL

Test Setup, 50ohm

FCC 20.21(e)(8)(ii)(A) Anti Oscillation

Test Conditions / Setup

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Clear RF, LLC

Specification: 20.21(e)(i)(I)(ii)(A) Anti Oscillation.

 Work Order #:
 94772
 Date:
 10/4/2013

 Test Type:
 Conducted Emissions
 Time:
 14:40:48

Equipment: ClearRF 15dB Dual-Band Direct Sequence#: 1

Connect Cellular Amplifier

Manufacturer: Clear RF, LLC Tested By: E. Wong Model: WRE2710 110V 60Hz

S/N: 001

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	2/6/2013	2/6/2015
T2	AN03430	Attenuator	75A-10-12	9/5/2013	9/5/2015
Т3	AN02946	Cable	32022-2-2909K-	7/31/2013	7/31/2015
			36TC		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
ClearRF 15dB Dual-Band	Clear RF, LLC	WRE2710	001
Direct Connect Cellular			
Amplifier*			

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	DPX	GFP101U-1210	NA
HF Pre Amplifier	HP	830174A	3123A00281
Solid State Amplifier	Comtech	AR178238-30	N1Q4800-1013
ESG Vector Signal Generator	Agilent	E4433B	US40052164

Page 72 of 78 Report No.: 94772-7C

Test Conditions / Notes:

The EUT is placed on the test bench. The Donor port of the Machine to Machine booster is intended to be connected to an antenna and the server port is intended to be connected directly to the antenna port of a cellular modem or cellular handset.

CMRS band.

UL: 824-849MHz, 1850-1915MHz DL: 869-894MHz, 1930-1995MHz

Evaluation performed at the both Donor and Server antenna port.

The booster operates in the following frequency band.

UL: 824-849, 1850-1910 MHz DL: 869-894, 1930-1990 MHz

Evaluation performed in accordance with 7.11 of the FCC Document 935210 DO3 Wideband Consumer Signal Booster Measurement Guidance DR04-41516. Actual test performed and presented data slightly deviates from the test procedure and expectation due to the nature of proprietary Anti Oscillation technique implemented.

UL measurement , Firmware version : 1.0.16 DL measurement , Firmware version : 1.0.16

Test environment conditions: 24°C, 30% Relative Humidity:100kPa

Two plots were captured for show compliance in each Operational band. The first plot capture the time from detection to shut down. The second plot captures the time interval before restarts. The product is design to enter permanent fault state required user intervention for restarts.

Page 73 of 78 Report No.: 94772-7C

Test Data

824 - 849MHz, UL

1850 - 1910MHz, UL

824 - 849MHz, UL - Reset Time

1850 - 1910MHz, UL - Reset Time

869 - 894MHz, DL

1930 - 1990MHz, DL

869 - 894MHz, DL - Reset Time

1930 - 1990MHz, DL - Rest Time

