

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«</u>	Информатика и систем	ы управления»	
КАФЕДРА «Пр	ограммное обеспечени	е ЭВМ и информ	ационные технологии»
	От	чёт	
	O1	461	
	по лабораторі	ной работе	№ 2
	no macoparopi	non paoore	
	_		
Название:	Программно-алгор	итмическая ре	еализация метода
Рунге-Кутта	4го порядка точнос	сти при решен	ии системы ОДУ
в задаче Коп	ІИ.		
	— : Моделирование	,	
			_
Студент	ИУ7-65Б		Д.В. Сусликов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			В.М. Градов
			- -

(Подпись, дата)

(И.О. Фамилия)

Введение

Цель работы: Получение навыков разработки алгоритмов решения задачи Коши при реализации моделей, построенных на системе ОДУ, с использованием метода Рунге-Кутта 4-го порядка точности.

Исходные данные: Задана система электротехнических уравнений, описывающих разрядный контур, включающий постоянное активное сопротивление R_k , нелинейное сопротивление $R_p(I)$, зависящее от тока I, индуктивность L_k и емкость C_k .

$$\begin{cases} \frac{dI}{dT} = \frac{U - (R_k + R_p(I))I}{L_k} \\ \frac{dU}{dt} = -\frac{I}{C_k} \end{cases}$$

Начальные условия: $t = 0, I = I_0, U = U_0$.

Здесь I,U - ток и напряжение на конденсаторе.

Сопротивление R_p рассчитать по формуле

$$R_p = \frac{l_p}{2\pi R^2 \int_0^1 \sigma(T(z)) z dz}$$

Для функции T(z) применить выражение $T(z) = T_0 + (T_w - T_0)z^m$.

Параметры T_0 , m находятся интерполяцией из табл.1 при известном токе I.

Коэффициент электропроводности $\sigma(T)$ зависит от T и рассчитывается интерполяцией из табл.2.

Таблица 1

I, A	T_0, K	m
0.5	6730	0.50
1	6790	0.55
5	7150	1.7
10	7270	3
50	8010	11
200	9185	32
400	10010	40
800	11140	41
1200	12010	39

Таблица 2

T, K	$\sigma, 1/Om\;cm$
4000	0.031
5000	0.27
6000	2.05
7000	6.06
8000	12.0
9000	19.9
10000	29.6
11000	41.1
12000	54.1
13000	67.7
14000	81.5

Параметры разрядного контура: $R=0.35~{\rm cm},$

$$L_e = 12 \text{ cm},$$

$$L_k = 187 * 10^{-6} \, \Gamma \text{H},$$

$$C_k = 268 * 10^{-6} \Phi,$$

$$R_k = 0.25 \, \text{Om},$$

$$U_c = 1400 \text{ B},$$

$$I_0 = 0..3 \text{ A},$$

$$T_w = 2000 \text{ K}$$

Теоритические сведения:

Метод Рунге-Кутты 4-го порядка точности.

$$y_{n+1} = y_n + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6},$$

$$z_{n+1} = z_n + \frac{q_1 + 2q_2 + 2q_3 + q_4}{6}$$

$$k_1 = h_n f(y_n, z_n), \quad q_1 = h_n \varphi(y_n)$$

$$k_2 = h_n f(y_n + \frac{k_1}{2}, z_n + \frac{q_1}{2}), \quad q_2 = h_n \varphi(y_n + \frac{k_1}{2})$$

$$k_3 = h_n f(y_n + \frac{k_2}{2}, z_n + \frac{q_2}{2}), \quad q_3 = h_n \varphi(y_n + \frac{k_2}{2})$$

$$k_4 = h_n f(y_n + k_3, z_n + q_3, q_4 = h_n \varphi(y_n + k_3)$$

Результат работы

1. Графики зависимости от времени импульса t: $I(t), U(t), R_p(t),$ произведения $I(t)R_p(t), T_0(t)$ при заданных выше параметрах. Указать шаг сетки.

Шаг - 10^{-6}

2. График зависимости I(t) при $R_k + R_p = 0$. Обратить внимание на то, что в этом случае колебания тока будут незатухающими.

3. График зависимости I(t) при $R_k + R_p = {\rm const} = 200$ Ом в интервале значений 0 - 20 мкс.

4. Результаты исследования влияния параметров контура C_k, L_k, R_k на длительность импульса $t_{\rm имп}$ апериодической формы. Длительность импульса определяется по кривой зависимости тока от времени на высоте $0.35I_{\rm max}, I_{\rm max}$ - значение тока в максимуме.

График при начальных значениях:

Длительность импульса чуть меньше 6 мкс.

График при увеличении C_k в 2 раза:

Длительность импульса около 9 мкс.

При увеличении C_k , $t_{\text{имп}}$ увеличивается.

График при уменьшении C_k в 2 раза:

Длительность импульса около 4 мкс.

При уменьшении C_k , $t_{\text{имп}}$ уменьшается.

Можно сделать вывод, что C_k , $t_{\text{имп}}$ пропорционально зависимы.

График при увеличении L_k в 2 раза:

Длительность импульса около 8 мкс.

При увеличении L_k , $t_{\text{имп}}$ увеличивается.

График при уменьшении L_k в 2 раза:

Длительность импульса около 4 мкс.

При уменьшении L_k , $t_{\text{имп}}$ уменьшается.

Можно сделать вывод, что L_k , $t_{\text{имп}}$ пропорционально зависимы.

График при увеличении R_k в 5 раза:

Длительность импульса чуть меньше 8 мкс. При увеличении R_k , $t_{\rm имп}$ увеличивается.

График при уменьшении R_k в 5 раза:

При уменьшении R_k , $t_{\text{имп}}$ уменьшается.

Можно сделать вывод, что R_k , $t_{\text{имп}}$ пропорционально зависимы.

Ответы на вопросы

1. Какие способы тестирования программы, кроме указанного в п.2, можете предложить ещё?

Можно изменять параметры I_0, U_{c0}, R_k при $R_p(I) = 0$. Если значение R_k будет велико, то будет наблюдаться апериодическое затухание, при малых значениях - затухающие колебания.

2. Получите систему разностных уравнений для решения сформулированной задачи неявным методом трапеций. Опишите алгоритм реализации полученных уравнений.

$$u_{n+1} = u_n + \int_{x_n}^{x_{n+1}} f(x, u(x)) dx$$

$$u_{n+1} = u_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, u_{n+1})] + O(h^2)$$

$$\begin{cases} \frac{dI}{dT} = \frac{U - (R_k + R_p(I))I}{L_k} \\ \frac{dU}{dT} = \frac{-I}{C_k} \end{cases}$$

$$\begin{split} I_{n+1} &= I_n + \frac{h}{2} \big[\frac{U_n - (R_k + R_p(I_n))I_n}{L_k} + \frac{U_{n+1} - (R_k + R_p(I_{n+1}))I_{n+1}}{L_k} \big] \\ U_{n+1} &= U_n + \frac{h}{2} \big[- \frac{I_n}{C_k} - \frac{I_{n+1}}{C_k} \big] = U_n - \frac{h}{2} \big[\frac{I_n + I_{n+1}}{C_k} \big] \end{split}$$

Подставляя U_{n+1} в выражение для I_{n+1}

$$I_{n+1} = I_n + \frac{h}{2L_k} \left[2U_n - \left(R_k + R_p(I_n) + \frac{h}{2C_k} \right) I_n - \left(R_k + R_p(I_{n+1}) + \frac{h}{2C_k} \right) I_{n+1} \right]$$

Получим уравнение вида

$$x = f(x)$$

Его можно решить методом простых итераций или методом Ньютона, после этого определить U_{n+1} .

3. Из каких соображений проводится выбор численного метода того или иного порядка точности, учитывая, что чем выше порядок точности метода, тем он более сложен и требует, как правило, больших ресурсов вычислительной системы?

Выбор порядка точности численного метода зависит от вида правой части дифференциального уравнения и требуемой точности вычислений. $\phi(x,u) \equiv \phi(x)$

Если правая часть непрерывна и ограничена, и её четвёртые производные тоже, то использование метода Рунге-Кутта четвёртого порядка имеет смысл. В противном случае предельный (четвертый) порядок схемы Рунге-Кутта не может быть достигнут, и стоит использовать более простые схемы.

Реализация

Листинг 1 – Интерполяция

```
def interpolate(value, table_v, table):
    end = 1
    start = 0
    i = 0

while ((i < (len(table_v))) and (value > table_v[i])):
    i += 1
    end = i

start = end - 1

return table[start] + (table[end] - table[start]) / (table_v[end] - table_v[start])
```

Листинг 2 – Интегрирование

```
def f integr(l, z):
        t0 = interpolate(I, table I, table T0)
        m = interpolate(|, table_|, table_m)
        t = t0 + (tw - t0) * (z ** m)
        sigma = interpolate(t, table_T, table_sigma)
        return sigma * z
      def i integr(l):
        a = 0
10
        b = 1
        n = 100
12
        h = (b - a) / n
13
        s = (f_integr(l, a) + f_integr(l, b)) / 2
14
        x = 0
15
16
        for _{-} in range (n-1):
17
```

```
x = x + h

s = s + f_{integr(I, x)}

s = s * h

return s
```

Листинг 3 – Вычисление сопротивления Rp

```
def Rp(le, R, I):
    return le / (2 * pi * R * R * i_integr(I))
```

Листинг 4 – Решение системы уравнений методом Рунге-Кутта

```
def f(I, U, Ie, R, Lk, Rk):
        global global rp
        global rp = Rp(le, R, fabs(I))
        return (U - (Rk + global rp) * I) / Lk
      def g(I, Ck):
        return - | / Ck
      def runge kutta I U(I, U, Ie, R, Lk, hn, Rk, Ck):
        k1 = f(I, U, Ie, R, Lk, Rk)
10
        q1 = g(I, Ck)
11
12
        k2 = f(I + hn * k1 / 2, U + hn * q1 / 2, le, R, Lk, Rk)
13
        q2 = g(l + hn * k1 / 2, Ck)
14
15
        k3 = f(I + hn * k2 / 2, U + hn * q2 / 2, Ie, R, Lk, Rk)
16
        q3 = g(1 + hn * k2 / 2, Ck)
17
18
        k4 = f(1 + hn * k3, U + hn * q3, le, R, Lk, Rk)
        q4 = g(1 + hn * k3, Ck)
20
        return 1 + hn * (k1 + 2 * k2 + 2 * k3 + k4) / 6, \
22
       U + hn * (q1 + 2 * q2 + 2 * q3 + q4) / 6
```