14. Let char(K) = p. Let L be a finite extension of K, and suppose [L : K] is prime to p. Show that L is separable over K.

Proof. Let E be an algebraic closure of K. Since L is finite, it is algebraic, and so $L = K[\alpha_1, \ldots, \alpha_n]$ for some $\alpha_1, \ldots, \alpha_n \in E$. We will know that L is separable if $K(\alpha_i)$ is separable for each i. Also, $[K(\alpha_i):K]$ divides [L:K] for each i, thus the degree of each α_i is also prime to p. So, it suffices to show that $K(\alpha)$ is separable over K for any algebraic $\alpha \in E$ of degree prime to p.

Suppose $\alpha \in E$ satisfies this, and let f(X) be the minimal polynomial of α over K. Assume for a contradiction that f(X) is inseparable. Then f(X) and its derivative f'(X) share a root. But f(X) is irreducible, and so it must divide f'(X) over K. However, f'(X) has degree strictly less than that of f(X), and so we must have f'(X) = 0.

Now, say $f(X) = X^m + a_{m-1}X^{m-1} + \cdots + a_1X + a_0$. We know m > 0 because f is irreducible and $p \nmid m$ because the degree of f is prime to p. Then $f'(X) = mX^{m-1} + (m-1)a_{m-1}X^{m-2} + \cdots + a_1 = 0$, and so p divides m, a contradiction.

15. Suppose char(K) = p. Let $a \in K$. If a has no p-th root in K, show that $X^{p^n} - a$ is irreducible in K[X] for all positive integers n.

Proof. Suppose a has no p-th root in K. Let E be an algebraic closure of K, and let α be a root of $f(X) = X^{p^n} - a = (X - \alpha)^{p^n}$ in E. Suppose f(X) = g(X)h(X) with $g(X), h(X) \in K[X]$. We may assume g(X) is monic, since otherwise we could multiply both factors by units to make it so. So $g(X) = (X - \alpha)^s$ for some $s \leq p^n$, and $h(X) = (X - \alpha)^{p^n - s}$.

If k is the highest power of p dividing s, then we may write $s = p^k t$ where $p \nmid t$ and $k \leq n$. Therefore,

$$g(X) = (X - \alpha)^{p^k t} = (X^{p^k} - \alpha^{p^k})^t = \sum_{m=0}^t {t \choose m} (\alpha^{p^k})^m X^{p^k m}$$

has coefficients in K. In particular, the coefficient of the term where m=1 is in K. This coefficient is $t\alpha^{p^k}$. Dividing by t gives us that $\alpha^{p^k} \in K$. If k < n, then $(\alpha^{p^k})^{p^{n-k-1}} = \alpha^{p^{n-1}} \in K$ is a pth root of a, a contradiction. So the only possibility is that n=k, and so h(X) must be a unit. So, by definition, f(X) is irreducible in K[X].

16. Let $\operatorname{char}(K) = p$. Let α be algebraic over K. Show that α is separable if and only if $K(\alpha) = K(\alpha^{p^n})$ for all positive integers n.

Proof. First, suppose α is separable, and consider $f(X) = X^{p^n} - \alpha^{p^n} \in K(\alpha^{p^n})[X]$. Since α is a root of this polynomial, the minimal polynomial g(X) of α over $K(\alpha^{p^n})$ divides f(X). If g(X) is linear, then it must be $X - \alpha$ and so $\alpha \in K(\alpha^{p^n})$, as desired. Otherwise, g(X) must contain multiple factors of $X - \alpha$. We know that g(X) divides the minimal polynomial of α over K, and so in this case we know that α is a multiple root of its minimal polynomial over K, and so cannot be separable over K, a contradiction. So it must be that $g(X) = X - \alpha$, meaning $K(\alpha^{p^n}) = K(\alpha)$.

For the converse, assume α is inseparable over K, so that its minimal polynomial f(X) over K has multiple roots. As discussed in the proof of exercise 14, we must have that the derivative f'(X) = 0, and so p divides the exponent of X in every term of f(X). Thus, f(X) is actually polynomial in $K[X^p]$. If α^p is also a multiple root of f(X), then by the same reasoning, f(X) is a polynomial in $K[X^p^2]$. This phenomenon can occur only finitely many times, since otherwise we would eventually end up at some $K[X^p^m]$ where p^m exceeds the degree of f(X), a contradiction. So suppose n is the largest integer such that $f(X) \in K[X^p^n]$. Then α^{p^n} is a root of f(X) (which is its minimal polynomial over K), but is separable over K. Therefore, $K(\alpha^{p^n})$ is separable, and so cannot equal the inseparable extension $K(\alpha)$.

- 17. Prove that the following two properties are equivalent:
 - (a) Every algebraic extension of K is separable.
 - (b) Either char(K) = 0, or char(K) = p and every element of K has a p-th root in K.

Proof. Suppose $\operatorname{char}(K) = 0$, and let f(X) be irreducible over K. Assume, for a contradiction, that f(X) is inseparable, so that f'(X) shares a root with f(X). Since f(X) divides f'(X), but $\deg f' < \deg f$, this means that f'(X) = 0. The only possibility is that $f(X) \in K$, and so is not irreducible in K[X] since it is a unit, a contradiction.

Now, suppose $\operatorname{char}(K) = p$ and every element of K has a p-th root in K. Assume, for a contradiction, that some element α is not separable over K, and let f(X) be its minimal polynomial. Then $f(X) = a_n X^n + \cdots + a_1 X + a_0$. Each a_i has a pth root b_i , and so

$$f(X) = a_n X^n + \dots + a_1 X + a_0 = (b_n X^n + \dots + b_1 X + b_0)^p$$

contradicting that f(X) was irreducible.

For the converse, suppose that every algebraic extension of K is separable but that $\operatorname{char}(K) \neq 0$, so that $\operatorname{char}(K) = p$. Let $a \in K$ and consider the polynomial $f(X) = X^p - a$. If α is a root of this in some algebraic closure, then the minimal polynomial of α over K divides $f(X) = (X - \alpha)^p$, hence is of the form $(X - \alpha)^q$ for some $q \leq p$. If q > 1 then α is not separable, a contradiction. So $X - \alpha \in K[X]$, meaning $\alpha \in K$. So every element of K has a pth root in K.

18. Show that every element of a finite field can be written as a sum of two squares in that field.

Proof. Let K be the finite field of order $q = p^n$. The multiplicative group of K is cyclic of order q - 1. If p = 2, then q - 1 is odd, and so every element of K^{\times} is a square. Since $0 = 0^2$, this means every element of K is a square. So assume $p \neq 2$.

In this case, q-1 is even. The map $x\mapsto x^2$ is an endomorphism of K^\times . Identifying K^\times with \mathbf{Z}_{q-1} , we see that the kernel is $\{0,\frac{q-1}{2}\}$ and so the image of this map has $\frac{\#\mathbf{Z}_{q-1}}{\#\mathrm{Ker}}=\frac{q-1}{2}$ elements. Since 0 is a square, there are exactly $\frac{q+1}{2}$ squares in K.

Let $x \in K$. There must be at least one element which is both a square and is also of the form $x-a^2$ for some $a \in K$, since there are more than $\frac{\#K}{2}$ squares and more than $\frac{\#K}{2}$ elements of the form $x-a^2$. Therefore, $x-a^2$ is a square for some $a \in K$, hence $a^2+b^2=x$ for some $b \in K$.

19. Let E be an algebraic extension of F. Show that every subring of E which contains F is actually a field. Is this necessarily true if E is not algebraic over F? Prove or give a counterexample.

Proof. Recall that if α is algebraic over F with minimal polynomial f(X), then $F[\alpha] = F/(f(X))$ is a field. Let $F \subseteq R \subseteq E$ for a subring R, and let $\alpha \in R$. α is algebraic, hence $\alpha^{-1} \in F[\alpha] \subseteq R$. So R is a field.

This is false if E is not algebraic. Take $F = \mathbf{Q}$ and $E = \mathbf{Q}(e)$. Since $\mathbf{Q}[e] \cong \mathbf{Q}[X]$, we know that $\mathbf{Q}(e) \cong \mathbf{Q}(X)$. Clearly, $\mathbf{Q}[X]$ is a subring of $\mathbf{Q}(X)$ that is not a field.