

WM_W600_Arduino 开发板_使用指导

V1.0

北京联盛德微电子有限责任公司 (winner micro)

地址:北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

公司网址: www.winnermicro.com

文档历史

版本	完成日期	修订记录	作者	审核	批准
V1.0	2018-10-17	创建			
					<u> </u>
					7
			X	XXX	

目录

1	概述			1
2	接口描	述		1
3	应用场	景		3
	3.1	作为主设备使用		3
	3.2	作为 wifi 模块与 arduino 接口主板对接		3
4	功能与	使用描述		
	4.1	开发板功能与使用简介		
	4.2	接口复用表格	Z-1V	5
	4.3	Arduino 开发板各接口定义		6
5	PWM :	控制 RGB 三色灯应用示例		8
6	附录.	原理 图设计	A (1)	9

1 概述

文档详细说明了 Arduino 开发板的做为主设备和从设备使用时的接口定义、功能描述以及接口复用关系,文档最后给出了开发板的布局图。

2 接口描述

下图是 arduino 接口开发板布局示意图:

图 1 开发板布局示意图

图 2 开发板实物图

各接口功能描述(接口顺序详见 4.3 节的接口定义)

- UART0:: 用于供电和设备调试信息交互
- UART1:: 用于供电和设备控制信息交互
- CN1~CN4: arduino 标准接口
- CN5: UART1接口, wakeup 引脚, reset 引脚
- CN6: I2S master 接口, I2C 接口
- CN7: PWM 接口
- CN8: I2S slave 接口
- CN9: SW 调试下载接口
- CN11: UART1 收发接口
- CN12: 3.3V GND 及 SIM 接口
- 拨码开关: 当使用 PWM 功能控制板载三色 LED 灯时, 需将其拨至 ON 的位置

● 开发板按键功能

● RST: 复位芯片

● USER:可控制 PB_7 引脚的外部电平高低

● BOOT: 可控制 PA_0 引脚的外部电平高低。另外当设备启动时,若此脚为低电平,则可使其进入 ROM 烧录固件模式

3 应用场景

3.1 作为主设备使用

Arduino 开发板作为主设备提供了如下接口:

- I2C&I2S 接口
- Uart0&SWD 调试接口
- SPI&Uart1&Uart2 通信接口
- PWM 接口
- SIM 接口
- GPIO
- Micro USB 接口

开发板做为主设备使用时,用户可以通过 Micro USB 接口对开发板进行调试和通信。通过 开发板上提供的接口与外设进行调试开发。开发板兼容标准的 Arduino 接口,用户可以将 Arduino 接口的从设备直接对接使用。

3.2 作为 wifi 模块与 arduino 接口主板对接

Arduino 开发板做为从设备提供了如下接口:

- Arduino 接口
- Uart0 & SWD 调试接口
- HSPI & Uart1 通信接口
- Micro USB 接口

开发板做为从设备使用可以与 STM32 nucleo 等 Arduino 接口主板对接提供 wifi 通信功能, 如下图所示。

图 3 与 STM32 Nucleo 板对接

4 功能与使用描述

4.1 开发板功能与使用简介

- 开发板提供了如下完备的接口功能,部分接口有复用关系,详见 4.2 接口复用表。
 - I2C&I2S 接口
 - Uart0&SWD 调试接口
 - SPI&Uart1&Uart2 通信接口
 - PWM 接口
 - SIM 接口
 - GPIO
 - Micro USB 接口
- Arduino 开发板电源供电
 - Arduino 开发板可以通过板上 Uart0 或 Uart1 或 CN1 的+5V pin 脚输入+5V 电压, 之后通过 LDO 将+5V 转换成+3.3V 供给板上各部分电路。板上各 GPIO 输出高电 平均为+3.3V。
- 开发板指示功能
 - 电源上电指示: +3.3V 有输出后 POWER ON LED 灯亮;
 - RGB LED 显示: 板上提供 RGB 三色 LED 灯,可以通过调整相应的 GPIO 占空比来实现调色的功能,注意由于 GPIO 有复用关系,所以使用该 LED 需将拨码开关拨到 ON 档位。
- Wifi 通信功能

- 支持 GB15629.11-2006、IEEE802.11 b/g/e/i/d/k/r/s/w/n 无线标准
- 支持频率范围: 2.4~2.4835 GHz
- 支持 Wi-Fi WMM/WMM-PS/WPA/WPA2/WPS
- 支持 Wi-Fi Direct
- 支持 EDCA 信道接入方式
- 支持 20/40M 帯宽工作模式
- 支持 STBC、GreenField、Short-GI、支持反向传输
- 支持 RIFS 帧间隔
- 支持 AMPDU、AMSDU
- 支持 IEEE802.11n MCS 0~7、MCS32 物理层传输速率档位,传输速率最高到 150Mbps
- 2/5.5/11 Mbps 速率发送时支持 Short Preamble
- 支持 HT-immediate Compressed Block Ack、Normal Ack、No Ack 应答方式
- 支持 CTS to self
- 支持 STA/AP/AP+STA 功能
- 在 BSS 网络中,支持多个组播网络,并且支持各个组播网络加密方式不同,最多可以支持总和为 32 个的组播网络和入网 STA 加密
- BSS 网络支持作为 AP 使用时,支持站点与组的总和为 32 个, IBSS 网络中支持 16 个站点

4.2 接口复用表格

表 1 本开发板上 W600 芯片接口复用关系

W600	I2C	I2S_M	I2S_	SPI	HSPI	PWM	UART	UART	SWD	SIM	GPIO	其他
PB_6			, 12						DAT	CLK	GPIO	
PB_7			Ž						CK		GPIO	User key
PB_8	-	SLC	7								GPIO	
PB_9		SDA						CTS			GPIO	
PB_10		SRL						RTS			GPIO	
PB_11	SCL							RX			GPIO	
PB_12	SDA							TX			GPIO	
PB_13	SCL											
PB_14	SDA		SDA		INT	PWM5						
PB_15			SCL	CS	CS	PWM4						

PB_16		SRL	CK	СК	PWM3					LED RED
PB_17			DI	DI	PWM2		RX			LED GREEN
PB_18			DO	DO	PWM1		TX			LED BLUE
PA_0										BOOT KEY
PA_1								DAT	GPIO	
PA_4						TX		RST	GPIO	
PA_5	EXTCL					RX			GPIO	

4.3 Arduino 开发板各接口定义

表 2 Arduino 开发板上 Arduino 接口

接口名称	接口序号	接口定义	接口名称	接口序号	接口定义
	1	NC		1	I2C_SCL
	2	+3.3V	_	2	I2C_SDA
	3	RESET		3	NC
CN1	4	+3.3V		4	GND
CIVI	5	+5V	CN3	5	SPI_CK
	6	GND	CN3	6	SPI_DI
	7	GND		7	SPI_DO
	8	VIN		8	SPI_CS
	1	PB_8		9	NC
	2	PB_9		10	NC
CN2	3	PB_10		1	NC
OIVZ	4	PB_11		2	NC
	5	5 PB_12		3	PA_5
	6	RESET	CN4	4	PA_4
			ONT	5	PA_1
				6	NC
				7	PB_7
				8	PB_6

表 3 其余接口定义

化 5					
接口名 称	接口序 号	接口定义	接口名 称	接口序 号	接口定义
	1	UART1_CTS		1	I2S_S_SDA
	2	UART1_RTS	CN8	2	I2S_S_SCL
CN5	3	UART1_RX		3	I2S_S_SRL
CNO	4	UART1_TX	CN9	1	SWDAT
	5	WAKEUP	CN9	2	SWCK
	6	RESET	CN11	1	UART1_RX
	1	I2S_M_EXTCLK	CNTT	2	UART1+TX
	2	I2S_M_SCL		1	+3.3V
CN6	3	I2S_M_SDA		2	GND
CIVO	4	I2S_M_SRL	CN12	3	SIM_RST
	5	I2C_SCL_1		4	SIM_DATA
	6	I2C_SDA_1		5	SIM_CLK
	1	PWM_1			>, //
	2	PWM_2			
CN7	3	PWM_3		XX	
	4	PWM_4	7		
	5	PWM_5			

5 PWM 控制 RGB 三色灯应用示例

使用步骤:

- 1, 打开示例工程目录 WM_SDK_RGB_Control_Sample 文件夹下的 Tools 里面相应的工程文件:
- 2, 编译相应工程, 生成目标文件。生成的目标文件在工程根目录下的 Bin 里;
- 3,使用串口工具或者编程工具将生成的目标文件烧写进开发板(具体固件烧录步骤可以参见 WM_SDK_Arduino/Doc/WM_W600_使用串口工具烧录固件.pdf);
- 4, 芯片以新的固件启动后,可以看到开发板上的混色 LED 每隔 0.5 秒的时间都会变换一种颜色:
- 5,程序入口函数,UserMain(),UserMain 函数里面创建了一个任务 pwm_task,用于显示 LED 灯(相应的示例代码放在 APP/main.c 文件中)

6, pwm_task 里面实现了每 0.5 秒显示一种随机混色的功能,


```
static void pwm task(void *sdata)
   unsigned char duty[3] = {0};
   while (1)
      //获取三个随机数据,用于三路PWM的占空比
      random get bytes(duty, 3);
      //channel 0 输出pwm波,频率100Hz 占空比duty[0] 独立输出模式,自动装载
      pwm_work(0, 100, duty[0], 4, 0); //blue led
      //channel 1 输出pwm波,频率100Hz 占空比duty[1] 独立输出模式,自动装载
      pwm_work(1, 100, duty[1], 4, 0); //green led
      //channel 2 输出pwm波,频率100Hz 占空比duty[2] 独立输出模式,自动装载
      pwm work(2, 100, duty[2], 4, 0); //red led
      //0.5秒延时
      tls_os_time_delay(HZ/2);
附录: 原理图设计
```