Ferienkurs Lineare Algebra

Wintersemester 2009/2010

Übungen

Lineare Abbildungen und Matrizen

Blatt 2

1 Linearität von Abbildungen

- 1. Welche dieser Abbildungen ist ein Gruppenhomomorphismus? Geben Sie eine kurze Begründung!
 - a) $f: (\mathbb{Z}, +) \to (\mathbb{Z}, +), f(n) := 5 \cdot n$
 - b) $f: (\mathbb{Z}, +) \to (\mathbb{R}, \cdot), f(n) := x^n \quad x \neq 0$
 - c) Sei (G, \cdot) eine Gruppen mit neutralem Element e und $a \in G$.

$$\tau_a:(G,\cdot)\to(G,\cdot),\ \tau_a(g):=a\cdot g$$

- d) $f: (\mathbb{C}^*, \cdot) \to (\mathbb{R}, \cdot), f(z) := |z|$
- 2. Welche dieser Abbildungen ist ein Vektorraumhomomorphismus? Geben Sie eine kurze Begründung!
 - a) $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) := xy$
 - b) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) := \begin{pmatrix} -x+y\\2x-3y \end{pmatrix}$
 - c) $f: \mathbb{R} \to \mathbb{R}^2$, $f(x) := \begin{pmatrix} 2x \\ x-2 \end{pmatrix}$
 - $\mathrm{d}) \ f: \mathbb{C} \to \mathbb{C}, \ f(z) := \langle a, z \rangle, \quad a \in \mathbb{C}$

(Es ist C-Linearität zu prüfen.)

e) $f: \mathbb{C} \to \mathbb{C}, \ f(z) := \langle z, a \rangle, \quad a \in \mathbb{C}$

(Es ist C-Linearität zu prüfen.)

2 Surjektiv, Injektiv, Bijektiv

1. Bestimmen Sie die Urbilder folgender Mengen unter den angegeben Funktionen.

a)

$$f: \mathbb{R} \to \mathbb{Z}, \ f(x) = [x] := \max_{k \in \mathbb{Z}, k \le x} (k)$$

$$U = \mathbb{N}_0, \ V = \{0, 2, 4\}$$

b)

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = |x|$$

 $U =]-\infty, 0[, \ V =]-\infty, 0], \ W = [1, 2]$

2. Bestimmen sie den Kern folgender Abbildungen. Was kann aus dem Ergebnis über die Injektivität ausgesagt werden?

a)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \sin(x)$$

b)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \cosh(x)$$

3. Sind folgende Funktionen injektiv oder surjektiv, bzw. sogar bijektiv? Begründen Sie!

a)

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = |x|$$

 $g: \mathbb{R} \to \mathbb{R}^+, \ g(x) = |x|$

b) Für $b \neq 0$ betrachte man:

$$f: [0, \infty[\to \mathbb{R}, \ f(x) = x^3 - b^2 x]$$

$$g: [\frac{b}{\sqrt{3}}, \infty[\to \mathbb{R}, \ f(x) = x^3 - b^2 x]$$

$$h:]-\infty, -b] \to]-\infty, 0], \ h(x) = x^3 - b^2 x$$

c)

$$f: \mathbb{N} \to \mathbb{Z}, \ f(n) = \begin{cases} \frac{n}{2}, & \text{für } n \text{ gerade} \\ -\frac{n+1}{2}, & \text{für } n \text{ ungerade} \end{cases}$$

4. Untersuchen sie die Abbildung

$$M_a: Abb(\mathbb{R}) \to Abb(\mathbb{R}), \ M_a(f) = af, \ a \in \mathbb{R}$$

auf Linearität, Surjektivität und Injektivität.

3 Lineare Abbildungen, Rang, ...

- 1. Zeigen Sie, dass für eine lineare Abbildung $\phi: X \to Y$ immer $\operatorname{Rang}(\phi) \leq \dim(X) = n$ gilt.
- 2. Zeigen Sie, dass für eine Familie linear-unabhängiger Vektoren $\{x_i\}_{i=1,...,n}$ und eine lineare, injektive Abbildung $f:X\to Y$ auch die Familie $\{f(x_i)\}_{i=1,...,n}$ linear-unabhängig ist.
- 3. Zeigen Sie, dass für eine lineare Abbildung ϕ

$$\dim(\ker(\phi)) = 0 \Rightarrow \ker \phi = \{0\}$$

gilt.

Hinweis: Nutzen Sie aus, dass $ker(\phi)$ ein Vektorraum ist.

4. Beweisen Sie Satz 1.5 aus der Vorlesung.

4 Matrizen als Darstellung linearer Abbildungen

1. Überprüfen Sie zunächst, ob es zu den angegebenen Bedingungen eine lineare Abbildung gibt und bestimmen Sie gegebenenfalls die Darstellungsmatrix bezüglich der Standardbasis des \mathbb{K}^n .

a)
$$f(\begin{pmatrix} 1 \\ 3 \end{pmatrix}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $f(\begin{pmatrix} 0 \\ 2 \end{pmatrix}) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$

b)
$$f\begin{pmatrix} 1\\0\\2 \end{pmatrix} = \begin{pmatrix} 2\\2\\3 \end{pmatrix}$$
 $f\begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$ $f\begin{pmatrix} 0\\-2\\4 \end{pmatrix} = \begin{pmatrix} 2\\2\\0 \end{pmatrix}$

c)
$$f\begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} 2\\1\\0 \end{pmatrix}$$
 $f\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$ $f\begin{pmatrix} -1\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$

- 2. Man betrachte folgenden Vektorraum $V = \text{span}(\{1,t,t^2\})$ und die darauf definierte Abbildung $\phi: V \to V, \ f \mapsto f f'.$
 - a) Ist ϕ linear?
 - b) Geben Sie die Darstellungsmatrix für ϕ in der Basis $\{e_1 = 1, e_2 = t, e_3 = t^2\}$ an.
 - c) Überprüfen sie Ergebnis mit Hilfe des Polynomes $P(t) = 5t^2 + 2t + 1$
 - d) Bestimmen sie den Rang von ϕ . Ist ϕ bijektiv?
- 3. Man betrachte folgenden Vektorraum $V = \text{span}(\{1, t, t^2, t^3\})$ und die darauf definierte Abbildung $\phi: V \to V, \ f \mapsto f'' f' + f$.
 - a) Bestimmen Sie die Darstellungsmatrix von ϕ in der Basis $\{e_1 = t^3 + t^2, e_2 = t^3 + t, e_3 = t^3 + 1, e_4 = 1\}$ an.
- 4. Seien X, Y Vektorräume mit $\dim(X) = 2, \dim(Y) = 3$ und $\phi: X \to Y$ eine lineare Abbildung. Sind dann folgende Aussagen wahr oder falsch? Begründen Sie!
 - a) Die Abbildung ist surjektiv.
 - b) Sei nun Rang $(\phi) = 1$, dann ist ϕ injektiv.
 - c) Es existiert eine Darstellungsmatrix aus $\mathrm{Mat}(2\times 2,\mathbb{K})$ für ϕ
- 5. Es sei die lineare Abbildung

$$\phi: X \to Y, \ \phi(x_1, x_2, x_3) = \begin{pmatrix} 2x_1 - x_2 \\ x_2 - 4x_3 \end{pmatrix}$$

in Standardbasis gegeben, sowie zwei Paare Basen für X und Y

$$(\alpha) \ \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \text{ für } X, \text{ und } \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \text{ für } Y$$

$$(\beta) \ \left\{ \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \right\} \text{ für } X, \text{ und } \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right\} \text{ für } Y$$

- a) Geben sie die Darstellungsmatrix für jeweils den Fall (α) und (β) an.
- b) Überprüfen Sie ihr Ergebnis mit Hilfe des Vektors in der Standardbasis

$$\begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix}$$

indem Sie diesen in den angegebenen Basen entwickeln und mit der Darstellungsmatrix multiplizieren.

- c) Bestimmen Sie den Rang der Darstellungsmatrizen.
- 6. Es seien der Vektrorraum $V = \text{span}(\{e_1 = 1, e_2 = t, e_3 = t^2\})$ und die Abbildung

$$\phi: V \to \mathbb{R}, \ f \mapsto \int_{-1}^{1} f(t)dt$$

gegeben.

- a) Ist die Abbildung linear? Begründen Sie!
- b) Bestimmen Sie die Darstellungmatrix, für die Abbildung in der angegebenen Basis.
- c) Bestimmen Sie den Rang der Abbildung.

5 Matrixmultiplikation

1. Bilden sie das Produkt aus folgenden Matrizen.

a)
$$\begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$

b)
$$\begin{pmatrix} 1 & 1 \\ 6 & 2 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$

c)
$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 3 \\ 4 & 2 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 3 & 1 & 2 \\ 1 & 0 & 0 \\ 3 & 2 & 9 \end{pmatrix}$

d)
$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 \\ 1 & 1 & 2 & 3 \\ 1 & 2 & 3 & 1 \end{pmatrix}, \quad \begin{pmatrix} 2 & 1 & 2 & 1 \\ 3 & 2 & 3 & 2 \\ 1 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 \end{pmatrix}$$

2. Lässt sich aus den angegebenen Matrizen das Produkt $A \cdot B$ bilden? Führen Sie gegebenenfalls die Multiplikation aus.

a)
$$A = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 \end{pmatrix}$

b)
$$A = \begin{pmatrix} 1 & 3 \\ 4 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 6 \end{pmatrix}$

c)
$$A = \begin{pmatrix} 2 & 6 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 \\ 4 & 1 \end{pmatrix}$

d)
$$A = \begin{pmatrix} \frac{7}{3} & \frac{3}{5} & \frac{20}{7} \end{pmatrix}, \quad B = \begin{pmatrix} \frac{3}{5} \\ \frac{2}{25} \end{pmatrix}$$

e)
$$A = \begin{pmatrix} 3 & 5 & 7 \\ 5 & 4 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 \\ 4 & 7 \end{pmatrix}$

f)
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 1 \\ 0 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 5 & 0 \\ 9 & 6 & 2 \end{pmatrix}$

3. Bilden Sie für folgende Matrizen die Potenzen A^n , $\forall n \in \mathbb{N}_0$.

a)
$$A = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$