

groningen / am manar susans

Proxy Attention: Comparing and Combining Augmentation with Attention

Graduation Project Proposal (Computational Intelligence and Robotics)

Subhaditya Mukherjee (s4747925) Oct 25 2022

Internal Supervisor(s): S.H. Mohades Kasaei, PhD (Artificial Intelligence, University of Groningen)

Artificial Intelligence
University of Groningen, The Netherlands

CONTENTS

1	Introduction									
	1.1	Context	t and Novelty	6						
	1.2	Motivat	tion	6						
	1.3	Challen	nges	6						
	1.4	Problen	n Statement	6						
	1.5	Researc	ch Questions	6						
	1.6	Thesis	Outline	6						
2	Background 7									
	2.1	_	etability	7						
	2.2	•	nt Based Explanations	7						
	2.3		ntation	7						
	2.4	_	s	7						
3	State	State of the Art 8								
	3.1		nt Based Explanations	8						
	3.2		ntation	9						
	3.3	_	ectures	9						
	3.4		rry and Limitations	9						
4 Proposed A		oosed Ar	pproach	10						
-	4.1	-	Decisions	10						
	4.2	_	Parameters	10						
		4.2.1	Clear Every Step	10						
		4.2.2	Gradient Threshold Considered	10						
		4.2.3	Multiply Weight	10						
		4.2.4	Proxy Steps	10						
		4.2.5	Subset Of Wrongly Classified	10						
		4.2.6	Gradient Method	10						
		4.2.7	Architectures	10						
5	Imn	Implementation 11								
3	5.1	-								
	5.2		parameters	11 11						
	J.4	5.2.1	Clear Every Step	11						
		5.2.2	Gradient Method	11						
		5.2.3	Gradient Threshold Considered	11						
			Multiply Weight	11						
		1 / +	INTITUTE V VALUE III							

				3
		5.2.5	Proxy Steps	11
		5.2.6	Subset Of Wrongly Classified	11
	5.3	Data L	oading and Pre Processing	11
		5.3.1	Directory structure	11
		5.3.2	Label function	11
		5.3.3	Clearing proxy images	11
		5.3.4	Encode, Stratify, Kfold	11
		5.3.5	train and test, val separate	11
		5.3.6	Augmentations	11
	5.4	Trainin	g Details	12
	5.5	Grid Se	earch	12
	5.6	Optimi	zations	12
		5.6.1	Mixed Precision	12
		5.6.2	Gradient Scaling	12
		5.6.3	No grad	12
		5.6.4	Batched Proxy step	12
		5.6.5	Trial Resumption	12
		5.6.6	Models	12
	5.7	Gradie	nt Based Methods	12
	5.8	Proxy A	Attention	12
		5.8.1	Callback Mechanism	12
	5.9		board	12
			er learning	12
			zer	12
			eduler	12
			nnction	12
			sizer finder	12
			Aggregation	12
	5.16	Interen	ce	12
6	Eval	uation		13
U	6.1		Based Analysis	13
	6.2		Based Analysis	13
	6.3		ary	13
	0.5	Summe	u y	10
7	Cone	clusion		14
	7.1	Contrib	outions	14
	7.2	Lesson	s Learned	14
	7.3	Future	Work	14
0		1.		4-
8	App	endix		15

LIST OF FIGURES

LIST OF TABLES

INTRODUCTION

- 1.1 Context and Novelty
- 1.2 Motivation
- 1.3 Challenges
- 1.4 Problem Statement
- 1.5 Research Questions
- 1.6 Thesis Outline

BACKGROUND

2.1 Interpretability

• Need for Interpretability

2.2 Gradient Based Explanations

• Taxonomy

2.3 Augmentation

• Taxonomy

2.4 Datasets

CIFAR 100 IIT pets stanford dogs imagenette ASL

STATE OF THE ART

3.1 Gradient Based Explanations

Adaptive Whitening Saliency

Bayesian Rule List

Beware Of Inmates

Cam

Conductance

Deconvnet

Deep Fool

Deep Inside Conv Nets

Deep Lift

Deep Visual Explanations

Dynamic Visual Attention

Embedding Knowledge Into Deep Attention Map

Generalizing Adversarial Exp With Gradcam

Gradcam++

Graph Based Visual Saliency

Guided Backprop

Guided Gradcam

Influence Of Image Class Acc On Saliency Map Esti

Integrated Gradients

Interpretation Is Fragile

Lime

Lrp

Noise Tunnel

Rise

Salience Map

Sam Resnet

Sanity Checks

Scorecam

Shap

Smooth Grad

Smooth Grad Square

Sp Lime

Summit

The Unreliability Of Saliency Methods

There And Back Again

Var Grad

Visualizing Impact Of Feature Attribution Baselines

3.2 Augmentation

Attentive Cutmix

Attributemix

Augmentaiton with curriculum leanring

Augmix

Co mixup

Cut and mix

GridMask

Hide and Seek

Image Mixing and deletion

Intra class part swapping

Keep augment

Latent space interpo

Puzzle mix

Randaugment

Random Erasing

Random distortion

Remix

Resizemix

Ricap

Saliencymix

Sample pairing

Smooth mix

Smote

Snap mix

Spec augment

Visual context Augmentation

3.3 Architectures

Resnet 18, 50

VGG

Vision Transformer

3.4 Summary and Limitations

PROPOSED APPROACH

4.1 Design Decisions

Efficient Computation Updating Dataloaders Batched Implementation Callbacks Training Resumption Logging

- 4.2 Hyper Parameters
- 4.2.1 Clear Every Step
- 4.2.2 Gradient Threshold Considered
- 4.2.3 Multiply Weight
- 4.2.4 Proxy Steps
- 4.2.5 Subset Of Wrongly Classified
- 4.2.6 Gradient Method
- 4.2.7 Architectures

IMPLEMENTATION

5.1	Overview
5.2	Hyper parameters
5.2.1	Clear Every Step
5.2.2	Gradient Method
5.2.3	Gradient Threshold Considered
5.2.4	Multiply Weight
5.2.5	Proxy Steps
5.2.6	Subset Of Wrongly Classified
5.3	Data Loading and Pre Processing
5.3.1	Directory structure
5.3.2	Label function
5.3.3	Clearing proxy images
5.3.4	Encode, Stratify, Kfold
5.3.5	train and test, val separate

5.3.6 Augmentations

Imagenet Normalize Tensor Num workers

11

5.4 Training Details

- 5.5 Grid Search
- 5.6 Optimizations
- 5.6.1 Mixed Precision
- 5.6.2 Gradient Scaling
- **5.6.3** No grad
- 5.6.4 Batched Proxy step
- 5.6.5 Trial Resumption
- **5.6.6** Models

TIMM

- 5.7 Gradient Based Methods
- **5.8** Proxy Attention
- 5.8.1 Callback Mechanism
- 5.9 Tensorboard
- 5.10 Transfer learning
- 5.11 Optimizer
- 5.12 LR scheduler
- 5.13 Loss function
- 5.14 Batch sizer finder
- 5.15 Result Aggregation
- 5.16 Inference

EVALUATION

- **6.1** Metric Based Analysis
- **6.2** Visual Based Analysis
- 6.3 Summary

CONCLUSION

- 7.1 Contributions
- 7.2 Lessons Learned
- 7.3 Future Work

	,	
CHAPTER (•	
CHAFTEN O	<i>,</i>	

APPENDIX