Quiz #3: Asymmetric Encryption and Message Deduction

Consider the following equational theory for RSA. Let $N = p \cdot q$ with p and q large primes, consider the following two symbols: $\mathsf{pair}(x,y), \mathsf{fst}(x), \mathsf{snd}(x)$ represent message concatenation and first/second projection, $\mathsf{inv}(x)$ represents the inverse of x modulo $\phi(N)$, and $\mathsf{exp}(x,y)$ represents modular exponentiation of x with y (modulo N). Let E_{RSA} be defined by the following equations:

$$\begin{split} \exp(\exp(x,y), \mathsf{inv}(y)) &= x & \exp(\exp(x,y), z) = \exp(\exp(x,z), y) \\ \mathsf{fst}(\mathsf{pair}(x,y)) &= x & \mathsf{snd}(\mathsf{pair}(x,y)) &= y \end{split}$$

Question 1. Is this a subterm convergent equational theory? Argue why either way. Quoting the book:

"A convergent theory is an equational theory induced by a convergent rewriting system. The theory is *subterm convergent* if there is a corresponding (convergent) rewriting system such that any rewrite rule $l \to r$ is such that r is a subterm of l or a constant."

Question 2. Define a message deduction problem $S \vdash_{E_{RSA}} y$ that resembles the RSA experiment in page 312 of the "Introduction to Modern Cryptography" book:

The RSA experiment RSA-inv_{A,GenRSA(n):}

- 1. Run GenRSA (1^n) to obtain (N, e, d).
- 2. Choose a uniform $y \in \mathbb{Z}_N^*$.
- 3. A is given N, e, y, and outputs $x \in \mathbb{Z}_N^*$.
- 4. The output of the experiment is defined to be 1 if $x^e = y \mod N$, and 0 otherwise.

DEFINITION 8.46 The RSA problem is hard relative to GenRSA if for all probabilistic polynomial-time algorithms \mathcal{A} there exists a negligible function negl such that $\Pr[\mathsf{RSA-inv}_{\mathcal{A},\mathsf{GenRSA}}(n)=1] \leq \mathsf{negl}(n)$.

That is, choose the right set of messages S to give to the attacker in such a way that it cannot deduce the secret x. In particular, choose appropriate terms to represent the public and private key pair (e,d), and the encrypted message y in such a way that the attacker cannot deduce x, but such that anyone in possession of the private key can deduce x.

Question 3. Consider the following two frames:

$$\varphi_1 = \nu n, k\{\operatorname{inv}(k)/x, \exp(\operatorname{pair}(n, s), k)/y\}$$
 $\varphi_2 = \nu n, k\{\operatorname{inv}(k)/x, \exp(n, k)/y\}$

These two frames are not statically equivalent under the equational theory E_{RSA} . Show how to construct two terms M, N such that $(M =_{E_{RSA}} N)_{\varphi_1}$ but $(M \neq_{E_{RSA}} N)_{\varphi_2}$, or viceversa.