k-isomorphism classes of local field extensions

Duc Van Huynh¹, Kevin Keating

Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA

Abstract

Let K be a local field of characteristic p with perfect residue field k. In this paper we find a set of representatives for the k-isomorphism classes of totally ramified separable extensions L/K of degree p. This extends work of Klopsch, who found representatives for the k-isomorphism classes of totally ramified Galois extensions L/K of degree p.

1. Introduction and results

Let K be a local field with perfect residue field k and let K_s be a separable closure of K. The problem of enumerating finite subextensions L/K of K_s/K has a long history (see for instance [5]). Alternatively, one might wish to enumerate isomorphism classes of extensions. Say that the finite extensions L_1/K and L_2/K are K-isomorphic if there is a field isomorphism $\sigma: L_1 \to L_2$ which induces the identity map on K. In this case the extensions L_1/K and L_2/K share the same field-theoretic and arithmetic data; for instance their degrees, automorphism groups, and ramification data must be the same. In the case where K is a finite extension of the p-adic field \mathbb{Q}_p , Monge [6] computed the number of K-isomorphism classes of extensions L/K of degree n, for arbitrary $n \geq 1$.

One says that the finite extensions L_1/K and L_2/K are k-isomorphic if there is a field isomorphism $\sigma: L_1 \to L_2$ such that $\sigma(K) = K$ and σ induces the identity map on k. Such an isomorphism is automatically continuous (see Lemma 3.1). If the extensions L_1/K and L_2/K are k-isomorphic then they have the same field-theoretic and arithmetic properties. Let $\operatorname{Aut}_k(K)$ denote the group of field automorphisms of K which induce the identity map on k. Then $\operatorname{Aut}_k(K)$ is finite if $\operatorname{char}(K) = 0$, infinite if $\operatorname{char}(K) = p$. Since every k-isomorphism σ from L_1/K to L_2/K induces an element of $\operatorname{Aut}_k(K)$, this suggests that k-isomorphisms should be more plentiful when $\operatorname{char}(K) = p$. In

 $Email\ addresses:\ {\tt duc.huynh@armstrong.edu}\ ({\tt Duc\ Van\ Huynh}\),\ {\tt keating@ufl.edu}\ ({\tt Kevin\ Keating})$

¹Current address: Department of Mathematics, Armstrong State University, Savannah, CA 31419

this paper we consider the problem of classifying k-isomorphism classes of finite totally ramified extensions of a local field K of characteristic p.

As one might expect, the tame case is straightforward: It is easily seen that if $n \in \mathbb{N}$ is relatively prime to p then there is a unique k-isomorphism class of totally ramified extensions L/K of degree p. We will focus on ramified extensions of degree p, which are the simplest non-tame extensions. Since any two k-isomorphic extensions have the same ramification data, it makes sense to classify k-isomorphism classes of degree-p extensions with fixed ramification break b>0.

Let \mathcal{E}_b denote the set of all totally ramified subextensions of K_s/K of degree p with ramification break b, and let \mathcal{S}_b denote the set of k-isomorphism classes of elements of \mathcal{E}_b . Let \mathcal{S}_b^g denote the set of k-isomorphism classes of Galois extensions in \mathcal{E}_b , and let \mathcal{S}_b^{ng} denote the set of k-isomorphism classes of non-Galois extensions in \mathcal{E}_b . As we will see in Section 2, if b is the ramification break of an extension of degree p then $(p-1)b \in \mathbb{N} \setminus p\mathbb{N}$. Hence \mathcal{S}_b is empty if $b \notin \frac{1}{p-1} \cdot (\mathbb{N} \setminus p\mathbb{N})$.

Theorem 1.1. Let $b \in \frac{1}{p-1} \cdot (\mathbb{N} \setminus p\mathbb{N})$ and write $b = \frac{(m-1)p+\lambda}{p-1}$ with $1 \le \lambda \le p-1$. Let $R = \{\omega_i : i \in I\}$ be a set of coset representatives for $k^\times/(k^\times)^{(p-1)b}$. For each $\omega_i \in R$ let $\pi_i \in K_s$ be a root of the polynomial $X^p - \omega_i \pi_K^m X^\lambda - \pi_K$. Then the map which carries ω_i onto the k-isomorphism class of $K(\pi_i)/K$ gives a bijection from R to \mathcal{S}_b . Furthermore, $K(\pi_i)/K$ is Galois if and only if $b \in \mathbb{N} \setminus p\mathbb{N}$ and $\lambda \omega_i \in (k^\times)^{p-1}$.

Corollary 1.2. Let $b \in \frac{1}{p-1} \cdot (\mathbb{N} \setminus p\mathbb{N})$ and assume that $|k| = q < \infty$. Then $|\mathcal{S}_b| = \gcd(q-1, (p-1)b)$.

Furthermore, if $b \in \mathbb{N} \setminus p\mathbb{N}$ then

$$\begin{aligned} |\mathcal{S}_b^g| &= \gcd\left(\frac{q-1}{p-1}, b\right) \\ |\mathcal{S}_b^{ng}| &= (p-2) \cdot \gcd\left(\frac{q-1}{p-1}, b\right). \end{aligned}$$

Proof. This follows from Theorem 1.1 and the formulas

$$|k^{\times}/(k^{\times})^{(p-1)b}| = \gcd(q-1,(p-1)b),$$

 $|(k^{\times})^{p-1}/(k^{\times})^{(p-1)b}| = \gcd\left(\frac{q-1}{p-1},b\right) \quad \text{for } b \in \mathbb{N} \setminus p\mathbb{N}.$

The proof of Theorem 1.1 relies heavily on the work of Amano, who showed in [1] that every degree-p extension of a local field of characteristic 0 is generated by a root of an Eisenstein polynomial with a special form, which we call an $Amano\ polynomial$ (see Definition 2.4). In Section 2 we show how Amano's results can be adapted to the characteristic-p setting. In Section 3 we prove Theorem 1.1 by computing the orbits of the action of $Aut_k(K)$ on the set of Amano polynomials over K.

2. Amano polynomials in characteristic p

Let F be a finite extension of the p-adic field \mathbb{Q}_p and let E/F be a totally ramified extension of degree p. In [1], Amano constructs an Eisenstein polynomial g(X) over F with at most 3 terms such that E is generated over F by a root of g(X). In this section we reproduce a part of Amano's construction in characteristic p. We associate a family of 3-term Eisenstein polynomials to each ramified separable extension of E/K of degree E0, but we don't choose representatives for these families. Many of the proofs from [1] remain valid in this new setting.

Let K be a local field of characteristic p with perfect residue field k. Let K_s be a separable closure of K and let ν_K be the valuation of K_s normalized so that $\nu_K(K^\times) = \mathbb{Z}$. Fix a prime element π_K for K; since k is perfect we may identify K with $k((\pi_K))$. Let U_K denote the group of units of K, and let $U_{1,K}$ denote the subgroup of 1-units. If $u \in U_{1,K}$ and $\alpha \in \mathbb{Z}_p$ is a p-adic integer then u^α is defined as a limit of positive integer powers of u. This applies in particular when α is a rational number whose denominator is not divisible by p.

Let L/K be a finite totally ramified subextension of K_s/K and let ν_L be the valuation of K_s normalized so that $\nu_L(L^\times) = \mathbb{Z}$. Let π_L be a prime element for L and let $\sigma: L \to K_s$ be a K-embedding of L into K_s , such that $\sigma \neq \mathrm{id}_L$. We define the ramification number of σ to be $\nu_L(\sigma(\pi_L) - \pi_L) - 1$. It is easily seen that this definition does not depend on the choice of π_L . We say that b is a (lower) ramification break of the extension L/K if b is the ramification number of some nonidentity K-embedding of L into K_s .

Suppose L/K is a separable totally ramified extension of degree p. Then Lemma 1 of [1] shows that L/K has a unique ramification break. Every prime element π_L of L is a root of an Eisenstein polynomial

$$f(X) = X^p - \sum_{i=0}^{p-1} c_i X^i$$

over K, with $\nu_K(c_0) = 1$ and $\nu_K(c_i) \ge 1$ for $1 \le i \le p-1$. Let $\pi'_L \ne \pi_L$ be a conjugate of π_L in K_s . Then the ramification break of L/K is given by

$$b = \nu_L \left(\frac{\pi'_L}{\pi_L} - 1 \right).$$

Since L/K is separable, we have $c_i \neq 0$ for some i with $1 \leq i \leq p-1$. Therefore

$$m = \min\{\nu_K(c_1), \dots, \nu_K(c_{p-1})\}$$

is finite. Let λ be minimum such that $\nu_K(c_\lambda) = m$ and let $\omega \in k^\times$ satisfy $c_\lambda \equiv \omega \pi_K^m \pmod{\pi_K^{m+1}}$. We say that the Eisenstein polynomial f(X) is of type $\langle \lambda, m, \omega \rangle$. Note that while ω depends on the choice of π_K , the positive integers m and λ do not. If f(X) is of type $\langle \lambda, m, \omega \rangle$ then by Lemma 1 of [1] the ramification break b of L/K is given by

$$b = \frac{(m-1)p + \lambda}{p-1}. (2.1)$$

Conversely, given $b \in \frac{1}{p-1} \cdot (\mathbb{N} \setminus p\mathbb{N})$, equation (2.1) uniquely determines m and λ , and we can easily construct Eisenstein polynomials of type $\langle \lambda, m, \omega \rangle$ for every $\omega \in k^{\times}$.

For Eisenstein polynomials $f(X), g(X) \in K[X]$, write $f(X) \sim g(X)$ if there is a K-isomorphism

$$K[X]/(f(X)) \cong K[X]/(g(X)).$$

Then \sim is an equivalence relation on Eisenstein polynomials over K.

Theorem 2.1. Suppose $f(X), g(X) \in K[X]$ are Eisenstein polynomials of degree p such that $f(X) \sim g(X)$. Then f(X) and g(X) are of the same type.

Proof. The proof of Theorem 1 of [1] applies here, except that in characteristic p we don't have to consider polynomials of type $\langle 0 \rangle$.

Henceforth we say that an extension L/K has type $\langle \lambda, m, \omega \rangle$ if L/K is K-isomorphic to K[X]/(f(X)) for some Eisenstein polynomial f(X) of type $\langle \lambda, m, \omega \rangle$.

Theorem 2.2. Let L/K be an extension of type $\langle \lambda, m, \omega \rangle$. Then L/K is Galois if and only $b = \frac{(m-1)p+\lambda}{p-1}$ is an integer and $\lambda \omega \in (k^{\times})^{p-1}$.

Proof. The proof of Theorem 3(ii) of [1] applies without change. \Box

Theorem 2.3. Suppose L/K is an extension of type $\langle \lambda, m, \omega \rangle$. Then there exists a prime element $\pi_L \in L$ which is a root of a polynomial

$$A_{\omega,u}^b(X) = X^p - \omega \pi_K^m X^\lambda - u \pi_K$$

for some $u \in U_{1,K}$.

Proof. The proof of Theorem 4 of [1] applies here, except that we don't have to consider extensions of type $\langle 0 \rangle$. Briefly, one defines a function $\phi : L \to K$ by

$$\phi(\alpha) = \alpha^p - \omega \pi_K^m \alpha^n - N_{L/K}(\alpha),$$

where $N_{L/K}$ is the norm from L to K. Using an iterative procedure one gets a prime element π in L such that $\nu_L(\phi(\pi)) > p(\lambda+1)$ and $N_{L/K}(\pi) = u\pi_K$ for some $u \in U_{1,K}$. Let $\pi^{(1)}, \ldots, \pi^{(p)} \in K_s$ be the roots of $A_{\omega,n}^b(X)$. Then

$$\phi(\pi) = A_{\omega,u}^b(\pi) = \prod_{i=1}^p (\pi - \pi^{(i)}), \tag{2.2}$$

so we have

$$\sum_{i=1}^{p} \nu_L(\pi - \pi^{(i)}) = \nu_L(\phi(\pi)) > p(\lambda + 1).$$
 (2.3)

Hence $\nu_L(\pi - \pi^{(j)}) > \lambda + 1$ for some j, so we get $L \subset K(\pi^{(j)})$ by Krasner's Lemma. Since $[K(\pi^{(j)}) : K] = [L : K] = p$, it follows that $L = K(\pi^{(j)})$. Therefore $\pi_L = \pi^{(j)}$ satisfies the conditions of the theorem.

Definition 2.4. We say that $A_{\omega,u}^b(X)$ is an Amano polynomial over K with ramification break b.

Let $b=\frac{(m-1)p+\lambda}{p-1}$ with $1\leq \lambda\leq p-1$. We denote the set of Amano polynomials over K with ramification break b by

$$\mathscr{P}_b = \{ X^p - \omega \pi_K^m X^\lambda - u \pi_K : \omega \in k^\times, \ u \in U_{1,K} \}.$$

Let \mathscr{P}_b/\sim denote the set of equivalence classes of \mathscr{P}_b with respect to \sim . For $f(X) \in \mathscr{P}_b$, we denote the equivalence class of f(X) by [f(X)]. It follows from Theorem 2.3 that these equivalence classes are in one-to-one correspondence with the elements of \mathcal{E}_b .

3. The action of $Aut_k(K)$ on extensions

In this section we show how $\operatorname{Aut}_k(K)$ acts on the set of equivalence classes of Amano polynomials with ramification break b. We determine the orbits of this action, and give a representative for each orbit. This allows us to construct representatives for the elements of \mathcal{S}_b , and leads to the proof of Theorem 1.1.

The following lemma is certainly well-known (see, for instance, the answers to [3]), but we could find no reference for it.

Lemma 3.1. Let L_1 and L_2 be local fields. Assume that L_1 and L_2 have the same residue field k, and that k is a perfect field of characteristic p. Let $\sigma: L_1 \to L_2$ be a field isomorphism. Then $\nu_{L_2} \circ \sigma = \nu_{L_1}$.

Proof. The group U_{1,L_1} is n-divisible for all n prime to p, so we have $\sigma(U_{1,L_1}) \subset U_{L_2}$. For i=1,2 the group T_i of nonzero Teichmüller representatives of L_i is equal to $\bigcap_{i=1}^{\infty} (L_i^{\times})^{p^i}$, so we have $\sigma(T_1) = T_2$. Since $U_{L_i} = T_i \cdot U_{L_i,1}$ this implies $\sigma(U_{L_1}) \subset U_{L_2}$. The same reasoning shows that $\sigma^{-1}(U_{L_2}) \subset U_{L_1}$, so we get $\sigma(U_{L_1}) = U_{L_2}$. It follows that $\nu_{L_2} \circ \sigma$, like ν_{L_1} , induces an isomorphism of L_1^{\times}/U_{L_1} onto \mathbb{Z} . Let π_{L_1} be a prime element of L_1 . Then $1 + \pi_{L_1} \in U_{L_1,1}$, so $\nu_{L_2}(\sigma(1 + \pi_{L_1})) = 0$. Hence $\nu_{L_2}(\sigma(\pi_{L_1})) \geq 0$. Since $\nu_{L_2}(\sigma(\pi_{L_1}))$ generates \mathbb{Z} , it follows that $\nu_{L_2}(\sigma(\pi_{L_1})) = 1$. We conclude that $\nu_{L_2} \circ \sigma = \nu_{L_1}$.

For $f(X) \in K[X]$ and $\varphi \in \operatorname{Aut}_k(K)$ we let $f^{\varphi}(X)$ denote the polynomial obtained by applying φ to the coefficients of f(X). The following lemma is a straightforward "transport of structure" result:

Lemma 3.2. Let f(X) and g(X) be Eisenstein polynomials with coefficients in K such that $f(X) \sim g(X)$, and let $\varphi \in \operatorname{Aut}_k(K)$. Then $f^{\varphi}(X) \sim g^{\varphi}(X)$.

Let $\mathscr{A}=\operatorname{Aut}_k(K)$ denote the group of k-automorphisms of K. Since all k-automorphisms of $K=k((\pi_K))$ are continuous by Lemma 3.1, every $\varphi\in\mathscr{A}$ is determined by the value of $\varphi(\pi_K)$. Furthermore, \mathscr{A} acts transitively on the set of prime elements of K. It follows that the group consisting of the power series

$$\left\{ \sum_{i=1}^{\infty} a_i t^i : a_i \in k, \ a_1 \neq 0 \right\}$$

with the operation of substitution is isomorphic to the opposite group \mathscr{A}^{op} of \mathscr{A} . For every $\varphi \in \mathscr{A}$ there are $l_{\varphi} \in k^{\times}$ and $v_{\varphi} \in U_{1,K}$ such that $\varphi(\pi_K) = l_{\varphi} \cdot v_{\varphi} \cdot \pi_K$. Let

$$\mathcal{N} = \{ \sigma \in \mathcal{A} : \sigma(\pi_K) \in U_{1,K} \cdot \pi_K \}$$

be the group of wild automorphisms of K. Then \mathcal{N}^{op} is isomorphic to the Nottingham Group over k (see [4]). Furthermore, \mathcal{N} is normal in \mathcal{A} , and $\mathcal{A}/\mathcal{N} \cong k^{\times}$.

Let $\varphi \in \mathscr{A}$ and let $A^b_{\omega,u}(X) \in \mathscr{P}_b$. Then by Theorem 2.3 there exist $\omega' \in k^{\times}$ and $u' \in U_{1,K}$ such that

$$K[X]/((A_{\omega,u}^b)^{\varphi}(X)) = K[X]/(X^p - \varphi(\omega \pi_K^m) X^{\lambda} - \varphi(\pi_K u))$$

$$\cong K[X]/(A_{\omega',u'}^b(X)).$$

It follows from Lemma 3.2 that

$$\varphi \cdot [A^b_{\omega,u}(X)] = [A^b_{\omega',u'}(X)] \tag{3.1}$$

gives a well-defined action of \mathscr{A} on \mathscr{P}_b/\sim . The following theorem computes explicit values for ω' and u' in (3.1). Note that since k is perfect, l_{φ} has a unique pth root $l_{\varphi}^{\frac{1}{p}}$ in k.

Theorem 3.3. Let $\varphi \in \mathscr{A}$ and $A^b_{\omega,u}(X) \in \mathscr{P}_b$. Then $\varphi \cdot [A^b_{\omega,u}(X)] = [A^b_{\omega',u'}(X)]$, with $\omega' = \omega \cdot l_{\varphi}^{\frac{(p-1)b}{p}}$, $u' = \varphi(u) \cdot v_{\varphi}^h$, and $h = \frac{p-\lambda-pm}{p-\lambda}$.

Proof. By applying φ to the coefficients of $A^b_{\omega,u}(X)$ we get

$$(A^b_{\omega,u})^{\varphi}(X) = X^p - \omega l^m_{\varphi} v^m_{\varphi} \pi^m_K X^{\lambda} - \varphi(u) l_{\varphi} v_{\varphi} \pi_K.$$

Set $X = l_{\varphi}^{\frac{1}{p}} v_{\varphi}^{\frac{m}{p-\lambda}} Z$. Then

$$l_{\varphi}^{-1}v_{\varphi}^{\frac{-pm}{p-\lambda}}(A_{\omega,u}^{b})^{\varphi}(X) = Z^{p} - \omega l_{\varphi}^{\frac{(p-1)b}{p}} \pi_{K}^{m} Z^{\lambda} - \varphi(u)v_{\varphi}^{h} \pi_{K}$$
$$= Z^{p} - \omega' \pi_{K}^{m} Z^{\lambda} - u' \pi_{K}.$$

Since $l_{\varphi}^{\frac{1}{p}}v_{\varphi}^{\frac{m}{p-\lambda}}\in K$, it follows that

$$K[X]/(A^b_{\omega,u})^{\varphi}(X)) \cong K[X]/(A^b_{\omega',u'}(X)).$$

To determine the orbit of $[A^b_{\omega,u}(X)]$ under the action of $\mathscr A$ we need the following lemmas. Let $\mathbb Z_p^\times$ denote the unit group of the ring of p-adic integers.

Lemma 3.4. Let $u \in U_{1,K}$, and $h \in \mathbb{Z}_p^{\times}$. Then

$$U_{1,K} = \left\{ \sigma(u) \cdot \left(\frac{\sigma(\pi_K)}{\pi_K} \right)^h : \sigma \in \mathcal{N} \right\}.$$

Proof. Let $v = u^{\frac{1}{h}} \in U_{1,K}$. Then $\pi'_K = v\pi_K$ is a prime element of K. We have

$$\begin{split} U_{1,K} &= \left\{ \frac{v\sigma(\pi_K')}{\pi_K'} : \sigma \in \mathcal{N} \right\} \\ &= \left\{ \frac{\sigma(v\pi_K)}{\pi_K} : \sigma \in \mathcal{N} \right\} \\ &= \left\{ \sigma(u)^{\frac{1}{h}} \cdot \frac{\sigma(\pi_K)}{\pi_K} : \sigma \in \mathcal{N} \right\}. \end{split}$$

Since $h \in \mathbb{Z}_p^{\times}$, we have $U_{1,K}^h = U_{1,K}$. Hence by raising to the power h we obtain

$$U_{1,K} = \left\{ \sigma(u) \cdot \left(\frac{\sigma(\pi_K)}{\pi_K} \right)^h : \sigma \in \mathcal{N} \right\}.$$

Lemma 3.5. Let $c \in k^{\times}$ and define $\tau_c \in \mathscr{A}$ by $\tau_c(\pi_K) = c\pi_K$. Let $\mathscr{N}_c = \mathscr{N}\tau_c$ be the right coset of \mathscr{N} in \mathscr{A} represented by τ_c . Then for $u \in U_{1,K}$ and $h \in \mathbb{Z}_p^{\times}$ we have

$$U_{1,K} = \{ \varphi(u) \cdot v_{\varphi}^h : \varphi \in \mathscr{N}_c \}.$$

Proof. Let $u' = \tau_c(u) \in U_{1,K}$. Then

$$\{\varphi(u) \cdot v_{\varphi}^{h} : \varphi \in \mathcal{N}_{c}\} = \{\sigma\tau_{c}(u) \cdot v_{\sigma}^{h} : \sigma \in \mathcal{N}\}$$
$$= \{\sigma(u') \cdot v_{\sigma}^{h} : \sigma \in \mathcal{N}\}$$
$$= U_{1,K},$$

where the last equality follows from Lemma 3.4.

Theorem 3.6. The orbit of $[A^b_{\omega,u}(X)]$ under \mathscr{A} is

$$\mathscr{A} \cdot [A^b_{\omega,u}(X)] = \{ [A^b_{\omega\theta,v}(X)] : \theta \in (k^\times)^{(p-1)b}, \ v \in U_{1,K} \}.$$

Proof. Let $c \in k^{\times}$ and $\varphi \in \mathcal{N}_c$. Then $l_{\varphi} = c$, so by Theorem 3.3 we have

$$\varphi \cdot [A^b_{\omega,u}(X)] = [A_{\omega',u'}],$$

with $\omega' = \omega c^{\frac{(p-1)b}{p}}$, $u' = \varphi(u)v_{\varphi}^h$, and $h = \frac{p-\lambda-pm}{p-\lambda}$. Hence by Lemma 3.5 we have

$$\mathcal{N}_c \cdot [A^b_{\omega,u}(X)] = \{ [A_{\omega',v}] : \omega' = \omega c^{\frac{(p-1)b}{p}}, \ v \in U_{1,K} \}.$$

Since \mathscr{A} is the union of \mathscr{N}_c over all $c \in k^{\times}$, and k is perfect, the theorem follows.

We now give the proof of Theorem 1.1. Let $R = \{\omega_i : i \in I\}$ be a set of coset representatives for $k^{\times}/(k^{\times})^{(p-1)b}$. For each $\omega_i \in R$ let $\pi_i \in K_s$ be a root of the Amano polynomial

$$A^b_{\omega_i,1}(X) = X^p - \omega_i \pi_K^m X^\lambda - \pi_K.$$

It follows from Theorem 3.6 that for every equivalence class $C \in S_b$ there is $i \in I$ such that $K(\pi_i)/K \in C$. On the other hand, if $K(\pi_i)/K$ is k-isomorphic to $K(\pi_i)/K$ then by Theorem 3.3, for some $\varphi \in \mathscr{A}$ we have

$$[A^b_{\omega_i,1}(X)] = \varphi \cdot [A^b_{\omega_i,1}(X)] = [A^b_{\omega_i',v_a^h}(X)].$$

with $\omega_i' = \omega_i l_{\varphi}^{\frac{(p-1)b}{p}}$. It follows from Theorem 2.1 that $A_{\omega_j,1}^b(X)$ and $A_{\omega_i',v_{\varphi}^h}^b(X)$

have the same type, so we have $\omega_j = \omega_i l_{\varphi}^{\frac{(p-1)b}{p}}$. Since $l_{\varphi}^{\frac{1}{p}} \in k^{\times}$, this implies that $\omega_j \omega_i^{-1} \in (k^{\times})^{(p-1)b}$. Since ω_i and ω_j are coset representatives for $k^{\times}/(k^{\times})^{(p-1)b}$, we get $\omega_i = \omega_j$. This proves the first part of Theorem 1.1. The second part follows from Theorem 2.2.

Remark 3.7. In [4], Klopsch uses a different method to compute the cardinality of \mathcal{S}_b^g . Let $L = k((\pi_L))$ be a local function field with residue field k, and set $\mathscr{F} = \operatorname{Aut}_k(L)$. Then there is a one-to-one correspondence between cyclic subgroups $G \leq \mathscr{F}$ of order p and subfields $M = L^G$ of L such that L/M is a cyclic totally ramified extension of degree p. For i = 1, 2 let G_i be a cyclic subgroup of \mathscr{F} of order p and set $K_i = L^{G_i}$. Say the extensions L/K_1 and L/K_2 are k^* -isomorphic if there exists $\eta \in \mathscr{F} = \operatorname{Aut}_k(L)$ such that $\eta(K_1) = K_2$; this is equivalent to $\eta^{-1}G_1\eta = G_2$.

For i=1,2 let $\psi_i:K\to L$ be a k-linear field embedding such that $\psi_i(K)=K_i$. We can use ψ_i to identify K with K_i , which makes L an extension of K. We easily see that the extensions $\psi_1:K\hookrightarrow L$ and $\psi_2:K\hookrightarrow L$ are k-isomorphic if and only if L/K_1 and L/K_2 are k^* -isomorphic. Therefore classifying k-isomorphism classes of degree-p Galois extensions of K is equivalent to classifying conjugacy classes of subgroups of order p in \mathscr{F} .

For i = 1, 2 let $G_i = \langle \gamma_i \rangle$. If G_1 and G_2 have ramification break b then

$$\gamma_1(\pi_L) \equiv \pi_L + r_{b+1} \pi_L^{b+1} \pmod{\pi_L^{b+2}}$$

$$\gamma_2(\pi_L) \equiv \pi_L + s_{b+1} \pi_L^{b+1} \pmod{\pi_L^{b+2}}$$

for some $r_{b+1}, s_{b+1} \in k^{\times}$. Hence for $1 \leq j \leq p-1$, we have

$$\gamma_1^j(\pi_L) \equiv \pi_L + jr_{b+1}\pi_L^{b+1} \pmod{\pi_L^{b+2}}.$$

By Proposition 3.3 of [4], γ_1^j and γ_2 are conjugate in \mathscr{F} if and only if $s_{b+1} = jr_{b+1}t^b$, for some $t \in k^{\times}$. Therefore the subgroups G_1 and G_2 are conjugate in \mathscr{F} if and only if $s_{b+1} \in r_{b+1} \cdot \mathbb{F}_p^{\times} \cdot (k^{\times})^b$. It follows that the number of conjugacy classes of subgroups of order p with ramification break p is

$$|k^{\times}/(\mathbb{F}_p^{\times}\cdot (k^{\times})^b)| = |(k^{\times})^{p-1}/(k^{\times})^{(p-1)b}|.$$

In particular, if $|k|=q<\infty$ then there are $\gcd\left(\frac{q-1}{p-1},b\right)$ such conjugacy classes, in agreement with Corollary 1.2.

References

- [1] Shigeru Amano, Eisenstein equations of degree p in a p-adic field, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 1–21.
- [2] Ivan Fesenko and Sergei Vostokov, Local Fields and Their Extensions, Translation of Mathematical Monographs V. 121, (AMS, 2002).
- [3] Kevin Keating, Automorphisms of k((X)), http://mathoverflow.net/questions/193757 (2015).
- [4] Benjamin Klopsch, Automorphisms of the Nottingham Group, Journal of Algebra 223 (2000) 37–56.
- [5] Marc Krasner, Nombre des extensions d'un degré donné d'un corps p-adique. (French) 1966 Les Tendances Géom. en Algèbre et Théorie des Nombres pp. 143–169 Editions du Centre National de la Recherche Scientifique, Paris.
- [6] Maurizio Monge, Determination of the number of isomorphism classes of extensions of a p-adic field. J. Number Theory 131 (2011), no. 8, 1429–1434.