REG NO = 21BCE11631
HANISH THARWANI
1. What is image processing?
ANS. Image processing refers to the manipulation and analysis of digital
images using various algorithms and techniques. It involves the processing
of images to enhance their quality, extract meaningful information, and
perform tasks such as image restoration, recognition, segmentation, and
feature extraction.
Image processing can be divided into two main categories: analog
and digital image processing. Analog image processing involves
manipulating physical photographs or film negatives using techniques
like cropping, filtering, and retouching. Digital image processing, on
the other hand, deals with manipulating digital images using
computer algorithms.
In digital image processing, an image is represented as a two-
dimensional array of pixels, where each pixel contains information
about the color or intensity at a particular location. Image
processing techniques can be applied to individual pixels or groups of
pixels to achieve desired results.

2. Explain how the captured image stored in digital form?
ANS. When an image is captured and stored in digital form, it undergoes
a process called digitization. The following steps outline how this process
occurs:
Image Capture: The image is captured using a digital imaging device
such as a digital camera or a scanner. The device uses an image
sensor (e.g., a charge-coupled device or CMOS sensor) to convert the
incoming light into electrical signals.
Sampling: The captured image is divided into a grid of tiny picture
elements called pixels. Each pixel represents a small area of the
image and contains information about its color or intensity. The
image is sampled by measuring the light intensity at discrete points
within each pixel.
Quantization: The measured light intensities are then quantized,
which means they are assigned numerical values. The quantization
process determines the number of bits used to represent each pixel's
intensity. For example, grayscale images typically use 8 bits per pixel,
allowing for 256 different shades of gray.

Color Representation: If the image is a color image, it needs to
represent the color information for each pixel. This is commonly
done using the RGB color model, where each pixel is represented by a
combination of red, green, and blue color channels. Other color
models like CMYK or HSL may also be used depending on the
application.
Image File Format: The digitized image data is then typically
compressed and stored in a specific file format such as JPEG, PNG,
or TIFF. These file formats use various compression techniques to
reduce the file size while preserving the essential visual information.
Metadata: Along with the pixel data, additional information known
as metadata may also be stored. Metadata includes details about the
image such as the capture date, camera settings, GPS coordinates,
and any post-processing applied.
Once the image is stored digitally, it can be manipulated, processed,
and displayed on various devices such as computers, smartphones, or
digital screens. The digital representation allows for easy storage,
transmission, and manipulation of images compared to traditional

analog formats like prints or negatives.
3. In an image, if one pixel is present at the location P(x-1, y+1),
then what are the coordinates of its 8-connected neighborhoods?
ANS. In an image, if one pixel is present at the location $P(x-1, y+1)$, its 8-
connected neighborhoods are the pixels that are directly adjacent to it in
the horizontal, vertical, and diagonal directions. The coordinates of these
neighborhoods are as follows:
P(x, y+1): The pixel directly above P.
P(x+1, y+1): The pixel diagonally up and to the right of P .
P(x+1, y): The pixel to the right of P .
P(x+1, y-1): The pixel diagonally down and to the right of P .
P(x, y-1): The pixel directly below P.
P(x-1, y-1): The pixel diagonally down and to the left of P .
P(x-1, y): The pixel to the left of P .
P(x-1, y+1): The pixel diagonally up and to the left of P .
These eight pixels together form the 8-connected neighborhood of
the pixel at location $P(x-1, y+1)$.
4. Explain sampling and quantization with example.
ANS. Sampling and quantization are two fundamental processes in the

digitization of analog signals, including images. Here's an explanation of both processes with examples: Sampling: Sampling is the process of converting a continuous analog signal (such as an image) into a discrete digital representation by capturing and recording discrete samples of the signal at regular intervals. In the context of images, this means converting the continuous variations of light intensity into a grid of discrete pixels. Example: Let's consider a grayscale image. The original analog image consists of a smooth gradient from black to white. To sample this image, we divide it into a grid of pixels and capture the intensity value at each pixel. Suppose we have a 10x10 image. The sampling process involves measuring and recording the intensity value at specific points within each pixel, resulting in a discrete representation of the image. Quantization: Quantization is the process of assigning numerical values to the sampled analog signal. It involves mapping the continuous range of signal values to a finite set of discrete values. In the case of images, quantization is applied to represent the intensity values of pixels with a finite number of bits.

Example: Let's consider an 8-bit grayscale image. The quantization
process divides the range of intensity values, which typically spans
from 0 (black) to 255 (white), into a finite set of levels. In this
case, there are $2^8 = 256$ possible intensity levels. Each pixel in the
image is then assigned one of these levels based on its intensity
value. For example, an intensity value of 127 might be assigned to a
pixel, indicating a medium gray shade.
The combination of sampling and quantization allows the continuous
analog image to be converted into a digital representation that can
be stored, processed, and transmitted using discrete values. These
processes are essential in the field of digital image processing and
enable various image manipulation techniques and algorithms to be
applied to the digital image data.