Задача А. Предок

 Имя входного файла:
 ancestor.in

 Имя выходного файла:
 ancestor.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Напишите программу, которая для двух вершин дерева определяет, является ли одна из них предком другой.

Формат входных данных

Первая строка входного файла содержит натуральное число n ($1 \le n \le 100\,000$) — количество вершин в дереве. Во второй строке находятся n чисел, i-е из которых определяет номер непосредственного родителя вершины с номером i. Если это число равно нулю, то вершина является корнем дерева.

В третьей строке находится число m ($1 \le m \le 100\,000$) — количество запросов. Каждая из следующих m строк содержит два различных числа a и b ($1 \le a, b \le n$).

Формат выходных данных

Для каждого из m запросов выведите на отдельной строке число 1, если вершина a является одним из предков вершины b, и 0 в противном случае.

Примеры

ancestor.in	ancestor.out
6	0
0 1 1 2 3 3	1
5	1
4 1	0
1 4	0
3 6	
2 6	
6 5	

Задача В. Конденсация графа

 Имя входного файла:
 condense2.in

 Имя выходного файла:
 condense2.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Требуется найти количество рёбер в конденсации ориентированного графа. Примечание: конденсация графа не содержит кратных рёбер и петель.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и рёбер графа соответственно ($n \le 10\,000$, $m \le 100\,000$). Следующие m строк содержат описание рёбер, по одному на строке. Ребро номер i описывается двумя натуральными

числами b_i, e_i — началом и концом ребра соответственно $(1 \leqslant b_i, e_i \leqslant n)$. В графе могут присутствовать кратные рёбра и петли.

Формат выходных данных

Первая строка выходного файла должна содержать одно число — количество рёбер в конденсации графа.

Примеры

condense2.in	condense2.out
Condensez. III	condensez.out
4 4	2
2 1	
3 2	
2 3	
4 3	

Задача С. Мосты

 Имя входного файла:
 bridges.in

 Имя выходного файла:
 bridges.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Дан неориентированный граф. Требуется найти все мосты в нём.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и рёбер графа соответственно ($1 \le n \le 20\,000$, $1 \le m \le 200\,000$).

Следующие m строк содержат описание рёбер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \leq b_i, e_i \leq n)$.

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число b — количество мостов в заданном графе. На следующей строке выведите b целых чисел — номера рёбер, которые являются мостами, в возрастающем порядке. Рёбра нумеруются с единицы в том порядке, в котором они заданы во входном файле.

Примеры

bridges.in	bridges.out
6 7	1
1 2	3
2 3	
3 4	
1 3	
4 5	
4 6	
5 6	

Задача D. Точки сочленения

 Имя входного файла:
 points.in

 Имя выходного файла:
 points.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Дан неориентированный граф. Требуется найти все точки сочленения в нём.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и рёбер графа соответственно ($1 \le n \le 20\,000$, $1 \le m \le 200\,000$).

Следующие m строк содержат описание рёбер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \le b_i, e_i \le n)$.

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число b — количество точек сочленения в заданном графе. На следующей строке выведите b целых чисел — номера вершин, которые являются точками сочленения, в возрастающем порядке.

Примеры

·	·
points.in	points.out
6 7	2
1 2	2 3
2 3	
2 4	
2 5	
4 5	
1 3	
3 6	

Задача Е. Компоненты вершинной двусвязности

 Имя входного файла:
 biconv.in

 Имя выходного файла:
 biconv.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Компонентой вершинной двусвязности графа $\langle V, E \rangle$ называется максимальный по включению подграф (состоящий из вершин и ребер), такой что любые два ребра из него лежат на вершинно простом цикле.

Дан неориентированный граф без петель. Требуется выделить компоненты вершинной двусвязности в нем.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и ребер графа соответственно ($1 \le n \le 20\,000$, $1 \le m \le 200\,000$).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \le b_i, e_i \le n)$.

Формат выходных данных

В первой строке выходного файла выведите целое число k — количество компонент вершинной двусвязности графа. Во второй строке выведите m натуральных чисел a_1, a_2, \ldots, a_m , не превосходящих k, где a_i — номер компоненты вершинной двусвязности, которой принадлежит i-е ребро. Ребра нумеруются с единицы в том порядке, в котором они заданы во входном файле.

Примеры

biconv.in	biconv.out
5 6	2
1 2	1 1 1 2 2 2
2 3	
3 1	
1 4	
4 5	
5 1	

Задача F. Компоненты реберной двусвязности

 Имя входного файла:
 bicone.in

 Имя выходного файла:
 bicone.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Компонентой реберной двусвязности графа $\langle V, E \rangle$ называется подмножество вершин $S \subset V$, такое что для любых различных u и v из этого множества существует не менее двух реберно не пересекающихся путей из u в v.

Дан неориентированный граф. Требуется выделить компоненты реберной двусвязности в нем.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и ребер графа соответственно ($1 \le n \le 20\,000$, $1 \le m \le 200\,000$).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \le b_i, e_i \le n)$.

Формат выходных данных

В первой строке выходного файла выведите целое число k — количество компонент реберной двусвязности графа. Во второй строке выведите n натуральных чисел a_1, a_2, \ldots, a_n , не превосходящих k, где a_i — номер компоненты реберной двусвязности, которой принадлежит i-я вершина.

ЛКШ.2015.Август.В.День 02 Судиславль, «Берендеевы Поляны», 29 июля 2015

Примеры

	bicone.in	bicone.out
6	7	2
1	2	1 1 1 2 2 2
2	3	
3	1	
1	4	
4	5	
4	6	
5	6	