Optimization Hw9 Queenie Lin 9/299

Q1 max $4x_1+3x_2$ $5.t \quad x_1+4x_2 \leq 140$ $6x_1+3x_2 \leq 180$ $x_2 \leq 30$ $x_1 \cdot x_2 > 0$

(a) min 140 y1 + 180 y2 + 30 y3 y, + by2 > 4 4y1 + 3y2 + y3 > 3 y1, y2, y3 > 10

min $\S140,303=30$ X_2 $-\frac{2}{5}u_2=2-120$

 $\frac{\chi_{2}}{2} = \frac{3W2}{100} = \frac{100}{100}$ $\frac{7}{2} \chi_{2} + |w| + \frac{1}{6} w^{2} = 110$ $\chi_{1} + \frac{1}{2} \chi_{2} + \frac{1}{6} w^{2} = \frac{2}{90}$ $\chi_{1} = \frac{2}{90}, w_{1} = 110, w_{3} = \frac{2}{90}$ $\chi_{1} = \frac{2}{90}, w_{1} = \frac{1}{90}, w_{3} = \frac{2}{90}$ $\chi_{2} = \frac{2}{90}$ $\chi_{1} = \frac{2}{90}, w_{1} = \frac{2}{90}$ $\chi_{2} = \frac{2}{90}$

min { 200, 60, 30} = 30

 $\frac{7}{-\frac{2}{5}w2-w3} = \frac{2}{2-150}$ $|w| - \frac{1}{5}w2 - \frac{1}{2}w3 = 5$ $+ \frac{1}{5}w2 - \frac{1}{2}w3 = 15$ $+ \frac{1}{5}w2 - \frac{1}{2}w3 = 15$

(c) Optimal Gol to the dual is $Z_1 = Z_2 = 0$, $Y_1 = 0$, $Y_2 = \frac{2}{3}$, $Y_3 = 1$

1d) from part (C)

$$Z_1 = Z_2 = 0$$
, $y_1 = 0$, $y_2 = \frac{2}{5}$, $y_3 = 1$

Check with part (a)

 $y_1 + by_2 = 4 > 4 > 4$
 $4y_1 + 3y_2 + y_3 = 3 > 3 > 4$
 $y_1 = 0 > 0 > 0 > 4$
 $y_2 = \frac{2}{5} > 0 > 4$
 $y_3 = 1 > 0 > 4$

obj 140 y1+ 180 y2 +30 y3 = 150
which is the same as the obj value in part (b)
. The solution in part (c) is indeed the optimal solution to the dual.

10) $6x_1 + 3x_2 = 180 + 6$ 140 $y_1 + 180 y_2 + 30 y_3 = 140 y_1 + (180 + 6) y_2 + 30 y_3$ 2. The obj value will increase by $y_2 \cdot 6 = \frac{3}{3} \in$

If) when changed the second constraint by E $\Rightarrow bx_1 + 3x_2 \le 180 + E$ $\Rightarrow -\frac{2}{5}w_2 - w_3 = 2 - 150$

 $y_{1} - \frac{1}{5}w_{2} - \frac{7}{5}w_{3} = 5 - \frac{1}{5}e$ $y_{1} + \frac{1}{5}w_{2} - \frac{7}{5}w_{3} = 15 + \frac{1}{5}e$

: When \$67,5, the solution is not feasible
: G = 30

(g) G=b

 $\max_{x_1 + 3x_2} 4x_1 + 3x_2 \le 140$

6×1 + 3×2 < 186

X2 € 30

X, , x5 > 0

(h) G=3b

max 4x1 + 3x2

5.7 K1 + 4X2 = 140

6×1+3×2 € ≥16

42 E30

K1, K27,0

(g)
The new optimal solution is 154 which matches my answer to part e.

variables	x1	x2	
	16	30	
obj	154		
constraint	136	<=	140
	186	<=	186
	30	<=	30

(h)The new optimal solution is 173.71429, which increased by 23.71429. This results from the ∈ is no longer smaller than what part f stated, which is 30.

variables	x1	x2		
	21.142857	29.714286		
obj	173.71429			
constraint	140	<=	140	
	216	<=	216	
	29.714286	<=	30	

(i)
$$X_1 = 15$$
, $X_2 = 30$, $w_1 = 5$, $w_2 = w_3 = 0$, $Z = 150$
by complimentary slockness
 $X_1 \cdot Z_1 = 0 \Rightarrow Z_1 = 0$
 $X_2 \cdot Z_2 = 0 \Rightarrow Z_2 = 0$
 $w_1 \cdot y_1 = 0 \Rightarrow y_1 = 0$

$$0. \ by_2 = 4 \Rightarrow y_2 = 3$$

$$2+y_3 = 3 \Rightarrow y_3 = 1$$

$$2+y_3 = 3 \Rightarrow y_3 = 1$$