Tema 2: Álgebra de Boole y puertas lógicas

Álgebra booleana

- En 1938, Shannon propuso aplicar al diseño de circuitos digitales un método matemático para tratar funciones digitales.
- Dicho método había sido propuesto en el siglo XIX por George Boole para analizar proposiciones lógicas de tipo Verdadero/Falso: el álgebra de Boole.

Representación de funciones lógicas

- Este método se basa en el uso de variables de dos valores y tres operaciones entre ellas.
- Las relaciones se definen mediante tablas que contienen todos los valores posibles de las variables y de la función→Tablas de la verdad. AND

Or Or Or AND					OR	NOI		
Х	Υ	$Z = X \cdot Y$	Х	Υ	Z = X + Y	Х	$Z = \overline{X}$	
0	0	0	0	0	0	0	1	
0	1	0	0	1	1	1	0	
1	0	0	1	0	1			
1	1	1	1	1	1			

Postulados del álgebra de Boole

- Partimos de una serie de afirmaciones que no necesitan ser demostradas→ Postulados.
- Utilizando estas afirmaciones (que son la definición de los números y las operaciones de este álgebra), podemos crear nuevas proposiciones y relaciones.

$$X = 0$$
 si $X \neq 1$

$$0 + 0 = 0$$

$$1 + 1 = 1$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$X = 1$$
 si $X \neq 0$

$$1 \cdot 1 = 1$$

$$0 \cdot 0 = 0$$

$$1 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$\overline{X} = 0$$
 si $X = 1$

$$\overline{X} = 1$$
 si $X = 0$

Identidades básicas del álgebra de Boole

1.
$$X+0 = X$$

3.
$$X+1=1$$

$$5. \quad X + X = X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

$$2. X \cdot 1 = X$$

$$4. X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

10.
$$X + Y = Y + X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

$$14. X(Y+Z) = XY+XZ$$

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

13.
$$X(YZ) = (XY)Z$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$$

$$(X+Y)\cdot \left(X+\overline{Y}\right)=X$$
 Combinación $X\cdot Y+X\cdot \overline{Y}=X$

Comprobando que cumplen los postulados, sabemos que estas relaciones son correctas

Identidades básicas del álgebra de Boole

- Las identidades se pueden comprobar definiendo la tabla de la verdad de las funciones a ambos lados de la igualdad y comprobando que son iguales
- Aquí tenéis la prueba de la distributiva del producto respecto a la suma

X	Y	Z	Y+Z	X·(Y+Z)	X·Y	X·Z	$X \cdot Y + X \cdot Z$
0	0	0	0	0	0	0	O
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Identidades básicas del álgebra de Boole

 Aunque no forma parte de las operaciones básicas, existe otra operación que se define por su utilidad: la suma exclusiva (XOR).

X	Y	$X \oplus Y$
0	0	0
0	1	1
1	0	1
1	1	0

 El resultado es uno si los operandos son distintos.

Identidades básicas del álgebra de Boole

- •La suma exclusiva también tiene la propiedad asociativa.
- Por tanto, se puede definir como una función de tres o más variables que vale 1 si el número de 1s en la entrada es impar —>Función impar.

X	Y	Z	$Y \oplus Z$	$X \oplus (Y \oplus Z)$	$X \oplus Y$	$(X \oplus Y) \oplus Z$
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	0	1	1	1	1
0	1	1	0	0	1	0
1	0	0	0	1	1	1
1	0	1	1	0	1	0
1	1	0	1	0	0	0
1	1	1	0	1	0	1

- Mediante el álgebra booleana podemos crear funciones nuevas.
- De la tabla de la verdad de una función lógica, podemos obtener su expresión algebraica→Expresión canónica.
- La expresión canónica tiene todas las variables de la función en todos sus términos.
- Los términos de la expresión canónica pueden ser productos (mintérminos) o sumas (maxtérminos).

X	Υ	z	Término de producto	Símbolo	m _o	m₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	0	O	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m_2	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m_3	0	0	0	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4	0	0	0	O	1	0	0	0
1	0	1	$X\overline{Y}Z$	m ₅	0	0	0	O	0	1	0	0
1	1	0	$XY\overline{Z}$	m_6	0	0	0	O	0	0	1	0
1	1	1	XYZ	m_7	0	0	0	O	0	0	0	1

- Un mintérmino es un producto que vale 1 sólo para una combinación de valores de las variables y se anula para todas las demás.
- En la expresión del mintérmino, si la variable que no anula el producto vale 1, aparece sin negar, y si vale 0 aparece negada.

X	Υ	Z	Término de sumas	Símbolo	Μ _o	M ₁	M_2	M_3	M₄	M ₅	M ₆	M ₇
0	0	0	X+Y+Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X+Y+\overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M_7	1	1	1	1	1	1	1	0

- Un maxtérmino es una suma que vale 0 sólo para una combinación de valores de las variables.
- En la expresión del maxtérmino, si la variable que anula la suma vale 0, aparece sin negar, y si vale 1 aparece negada.
- Cada maxtérmino es la negación de su mintérmino correspondiente $\rightarrow M_i = m'_i$.

- La expresión canónica es la suma de todos los mintérminos correspondientes a las combinaciones de valores de variables que hacen 1 la función.
- También es expresión canónica el producto de los maxtérminos correspondientes a las combinaciones de valores de variables que hacen 0 la función.
- De este modo, cada función tiene asociadas dos expresiones canónicas→Suma de mintérminos/Producto de maxtérminos.
- De las expresiones canónicas se puede obtener cualquier función, cuya tabla de la verdad conozcamos (pero pueden ser muy largas...).

Х	Υ	Z	F	F	
0	0	0	1	0	
0	0	1	0	1	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	0	1	
1	1	1	1	0	

$$F = \overline{X} \overline{Y} \overline{Z} + \overline{X} Y \overline{Z} + X \overline{Y} Z + X Y Z$$

$$= m_0 + m_2 + m_5 + m_7$$

$$\overline{F} = \overline{X} \overline{Y} Z + \overline{X} Y Z + X \overline{Y} \overline{Z} + X Y \overline{Z}$$

$$= m_1 + m_3 + m_4 + m_6$$

$$F = \overline{m_1 + m_3 + m_4 + m_6} = \overline{m_1} \cdot \overline{m_3} \cdot \overline{m_4} \cdot \overline{m_6}$$

$$M_i = \overline{m_i}$$

$$F = M_1 \cdot M_3 \cdot M_4 \cdot M_6$$

A través de De Morgan se demuestra que las dos expresiones canónicas son idénticas.

Simplificación de funciones lógicas

- Las expresiones canónicas nos permiten expresar algebraicamente cualquier función lógica.
- Estas expresiones suelen ser largas.
- Mediante el álgebra booleana, es posible transformar una expresión en otra equivalente de menos términos, que sea más sencilla de implementar→ Simplificación.
- El método de los mapas de Karnaugh nos permite sistematizar la simplificación de funciones.

- El mapa de Karnaugh es una representación de la tabla de la verdad como tabla de doble entrada.
- Cada punto de intersección de fila y columna (casilla del mapa) es un valor de la función.
- Cada casilla se corresponde con un mintérmino, se escribe un uno en los mintérminos de la función.

m_0	m_1
m_2	m_3

- Según el número de variables de la función, los mapas de Karnaugh tienen 4 casillas (dos variables), 8 casillas (tres variables), 16 casillas (cuatro variables),...
- Los mintérminos correspondientes a casillas adyacentes en el mapa de Karnaugh se pueden agrupar en un sólo producto (combinación).
- En la expresión de ese término (implicante) sólo aparecen las variables de valores comunes a las dos casillas.

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

	. 1	?Z			,
	x	0.0	01	11	10
	0	x'y'z'	x'y'z	x'yz	x'yz'
x	$\begin{cases} 1 \end{cases}$	xy'z'	xy'z	xyz	xyz'

- m₁,m₃,m₅ y m₁ se agrupan en un implicante único: C.
- m_3 y m_2 se agrupan en $A' \cdot B$.
- La suma de estos dos implicantes contiene a todos los mintérminos de la función, luego es equivalente a su expresión canónica →F=C+A'·B.

- Llamaremos suma mínima de una función, a la suma de menor número de términos y con menor número de variables en cada término que incluya a todos los mintérminos de la función.
- Los implicantes que contengan el mayor número (siempre potencias de 2) de casillas, sin que ninguna no sea mintérmino de la función (casilla vacía), se llaman implicantes primos.

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	<i>m</i> 9	m_{11}	m_{10}

- Las celdas que sólo pertenecen a un implicante primo se llaman celdas distinguidas.
- Los implicante primos que contienen una celda distinguida se llaman implicantes primos esenciales.
- La suma mínima de una función es una suma de implicantes primos de esa función (puede que no todos), y siempre contiene a todos los implicantes primos esenciales.

Implicantes primos esenciales BD y B'D'

Implicantes primos esenciales CD, B'C, AD y AB'

Simplificación mediante mapas de Karnaugh: usando los ceros

- Las celdas vacías (ceros de la función) corresponden a los maxtérminos de la función.
- Se pueden agrupar (combinación) celdas de ceros adyacentes en un sólo implicante (suma) que contiene a los maxtérminos correspondientes.
- En su expresión sólo aparecen las variables de valor común en todas las casillas.
- El producto de los implicantes de ceros que contiene a todos los maxtérminos de la función, es equivalente a su expresión canónica.
- Llamaremos producto mínimo de una función al producto de menor número de términos y con menor número de variables en cada término que incluya a todos los maxtérminos de la función.

Simplificación mediante mapas de Karnaugh: usando los ceros

- M_4 , M_6 . M_{12} y M_{14} se agrupan en un sólo implicante primo: B'+D.
- Los otros dos son A'+B' y C'+D'.
- Puesto que todos los implicantes son esenciales, el producto mínimo es:

$$F=(B'+D)\cdot(A'+B')\cdot(C'+D')$$

Mapa para la función $F(A, B, C, D)=\Sigma (0, 1, 2, 5, 8, 9, 10)$

 La simplificación se consigue sustituyendo la expresión canónica por la expresión mínima (puede ser la suma o el producto, la más sencilla de las dos).

 Para número de variables de la función mayor que cuatro, no se suelen usar los mapas de Karnaugh, sino métodos iterativos por computador.

Simplificación de funciones de especificación incompleta

- Las funciones de especificación incompleta son aquéllas para las que no están asignados valores para todas las combinaciones de variables de entrada.
- En muchos casos, no todas las combinaciones de variables son posibles, por lo que no se define valor de la función para ellas, se indica con una X.
- El término asignado para estas combinaciones de variables se llama término "no importa", y se nombra con d y el subíndice correspondiente a la combinación de variables para la que no está definida la función.
- En estos casos, se puede escoger para la función el valor que suponga mayor simplificación: 0 ó 1.

Simplificación de funciones de especificación incompleta

$$F = \sum m(1, 3, 7, 11, 15) + \sum d(0, 2, 5)$$

a) $F=y\cdot z+w'\cdot x'$

- Si tomamos 0, 2 y 5 como ceros de la función, el implicante primo sólo contiene 1 y 3: w'·x'·z.
- Los términos 0 y 2 son tomados como 1 para formar el implicante primo: w'·x'.
- Dejando 5 como 0, la expresión a) es la suma mínima.

Simplificación de funciones de especificación incompleta

$$F = \sum m(1, 3, 7, 11, 15) + \sum d(0, 2, 5)$$

b) $F=y\cdot z+w'\cdot z$

- Si tomamos 0 y 2 como ceros y 5 como 1, el nuevo implicante primo es: w'·z.
- De este modo, la suma
 mínima es b).
 - Esta función es diferente a a), pero responde a la misma especificación incompleta de F.

- El álgebra booleana nos permite diseñar funciones lógicas.
- Para aprovechar estas funciones en el diseño digital, necesitamos circuitos digitales que implementen las operaciones booleanas.
- Estos circuitos se llaman puertas lógicas.

 Las puertas lógicas básicas se corresponden con las tres operaciones del álgebra booleana.

Función lógica Y (AND)

Función lógica O (OR)

Función lógica NO (NOT)

л	NΙ	1
_	w	

0	0
U	0
1	0
0	0
1	1
	0

OR

X	γ	Z = X + Y
0	0	0
0	1	1
1	0	1
1	1	1
1		1 *

NOT

Х	$Z = \overline{X}$
0	1
1	0

- Cada variable booleana es sustituída por una señal de tension.
- Al 0 le corresponde la tensión baja (L), y al 1 la tensión alta (H).

Señales de entrada y de salida de circuitos digitales representadas frente al tiempo (cronogramas).

Nombre	Símbolo	Expresión algebraica	Tabla de la verdad
AND	$x \longrightarrow F$	F = xy	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inversor	x— F	F = x'	$\begin{array}{c c} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Buffer	$x \longrightarrow F$	F = x	$ \begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array} $

Aunque el buffer no tiene función aparente, se usa para mantener los valores digitales de tensión e intensidad a través de sucesivas puertas lógicas.

Nombre	Símbolo	Expresión algebraica	Tabla de la verdad
	<i>x</i> —		$ \begin{array}{c ccc} x & y & F \\ \hline 0 & 0 & 1 \end{array} $
NAND	y	F=(xy)'	0 1 1
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			1 1 0
			$x y \mid F$
NOR	$x \longrightarrow $	E = (v + v)!	0 0 1
NOK	y — —	F = (x + y)'	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			$egin{array}{c ccc} 1 & 0 & 0 \ 1 & 1 & 0 \end{array}$
			1 1 0
			x y F
OR exclusivo	$x \longrightarrow$	F = xy' + x'y	0 0 0
(XOR)	$y \rightarrow 1$	$F = xy' + x'y \\ = x \oplus y$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			$egin{array}{c ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
			1 1 0
			$x y \mid F$
NOR exclusivo	+	F = xy + x'y'	0 0 1
(equivalencia)		$F = xy + x'y'$ $= (x \oplus y)'$	0 1 0
1	1		$\begin{array}{cccc} 1 & 0 & 0 \\ \end{array}$
			1 1 1

Por su utilidad, o por facilidad de fabricación, se han diseñado otras puertas lógicas que no son operadores básicos del álgebra booleana.

Síntesis de circuitos lógicos

- Cualquier expresión del álgebra de Boole se puede transformar en circuito mediante las puertas lógicas, sustituyendo cada operador de Boole por la puerta lógica correspondiente.
- Cuanto más sencilla sea la expresión, menor será el número de puertas y más sencillo, rápido y eficaz el circuito.

Circuitos de dos niveles

- Si la expresión algebraica es de suma de productos o de producto de sumas, sólo hay dos puertas entre entrada y salida del circuito.
- En ese caso se puede implementar todo el circuito sólo con puertas NAND:

Circuitos de dos niveles

- Esto se puede aplicar a un producto de sumas para obtener un circuito sólo de puertas NOR.
- NAND y NOR son capaces de implementar por separado todas las operaciones del álgebra de Boole.

Tiempo de retardo

- En los circuitos reales, los cambios en las variables tardan un tiempo en reflejarse en la función.
- Al tiempo que pasa desde que cambia una entrada hasta que cambia la salida del circuito, le llamamos tiempo de retardo t_p .

Tiempo de retardo: Riesgos

- Cuando la salida de un circuito es la entrada de otro, el tiempo de retardo se acumula.
- Debido a esto, algunos circuitos pueden producir valores erróneos de la función durante pequeños intervalos de tiempo.
- Estos valores transitorios se llaman riesgos y se producen cuando los trayectos desde las variables hasta la función tienen diferentes tiempos de retardo al recorrer diferente número de puertas lógicas.

Tiempo de retardo: Riesgos

- Cuando x₂ cambia de 1 a
 0, las dos entradas de la puerta OR tienen diferente retardo.
- Por ello hay un intervalo en el que ambas son 0 → Y vale 0.

$$Y = x_1 \cdot x_2 + x'_2 \cdot x_3$$

 $x_1 x_2 x_3 = 111 \Rightarrow Y = 1$
 $x_1 x_2 x_3 = 101 \Rightarrow Y = 1$ Y

Tiempo de retardo: Riesgos

- Este tipo de defectos en el diseño sólo se resuelven añadiendo términos a la suma.
- El término nuevo vale 1 mientras se produce el cambio de valor→Y sigue valiendo 1.

Lenguaje de descripción de hardware: VHDL

- Existe otro método para representar los circuitos digitales: el lenguaje de descripción de hardware.
- Se trata de un texto que describe una o varias funciones lógicas.
- El fichero de texto se usa para la programación o fabricación de un circuito integrado que cumple la función descrita.
- El lenguaje de descripción de hardware más utilizado actualmente es el VHDL.

Lenguaje de descripción de hardware: VHDL

- El texto VHDL se estructura en dos partes: entidad y arquitectura.
- La entidad sólo especifica cuáles son las variables, su tipo y si son de entrada o salida.
- La arquitectura define las funciones a realizar entre las variables definidas en la entidad.

