We Claim:

	1. A method for making a laspartomycin core peptide, salt or hydrate thereof,
	comprising the steps of:
5	culturing the microorganism Streptomyces viridochromogenes, ssp.
	komabensis (ATCC 29814) in a culture medium;
	isolating laspartomycin from the culture medium; and

isolating laspartomycin from the culture medium; and cleaving a lipophilic fragment from laspartomycin, thereby yielding the laspartomycin core peptide.

10

15 20

- 2. The method of Claim 1 further including the step of isolating the laspartomycin core peptide.
- 3. The method of Claim 1 in which the culturing step is carried out at a temperature in the range of about 24°C to about 34°C.
- 4. The method of Claim 3 in which the temperature is in the range of about 27°C to about 29°C.
- 5. The method of Claim 1 in which the microorganism is removed from the culture medium prior to isolating laspartomycin.
- 6. The method of Claim 5 in which the culture medium is acidified prior to removing the microorganism.

25

7. The method of Claim 6 in which the culture medium is acidified to a pH in the range of about 2.0 to about 3.0.

30

8. The method of Claim 7 in which the microorganism is removed *via* centrifugation and suspended in water, thereby providing an aqueous suspension.

- 9. The method of Claim 8 in which the pH of the aqueous suspension is adjusted to a basic pH.
- 10. The method of Claim 8 in which a divalent cation concentration of the aqueous suspension is adjusted to between about 4mmol/l to about 10 mmol/l and the pH of the aqueous suspension is adjusted to a basic pH.
- 11. The method of Claim 9 or 10 in which the adjusted pH is in the range of about pH 8.0 to about pH 9.0.
- 12. The method of Claim 10 in which the divalent cation is selected from the group consisting of Ca^{2+} , Mg^{2+} and Zn^{+2} .
- 13. The method of either of Claim 9 or Claim 10, in which laspartomycin is extracted into organic solvent, thereby providing an organic solvent extract of laspartomycin.
 - 14. The method of Claim 13 further comprising:

 acidifying the organic solvent extract of laspartomycin;
 extracting laspartomycin into aqueous solution;
 extracting laspartomycin into organic solvent;
 extracting laspartomycin into aqueous solution; and
 concentrating the aqueous solution to provide a salt of laspartomycin.
 - 15. The method of Claim 14 in which the organic solvent is 1-butanol.
- 16. The method of Claim 14, wherein the salt of laspartomycin is extracted into aqueous solution by washing the organic solvent extract of laspartomycin with aqueous base solution.

30

5

10

- 17. The method of Claim 14, wherein laspartomycin is extracted into organic solvent by acidifying the aqueous solution of the salt of laspartomycin.
 - 18. The method of Claim 14, further comprising:
 dissolving the salt of laspartomycin in aqueous acid solution;
 extracting laspartomycin into organic solvent; and
 removing the organic solvent to provide laspartomycin.
- 19. The method of Claim 1 in which the lipophilic fragment is cleaved with an enzyme.
 - 20. The method of Claim 19 in which the enzyme is a deacylase.
- 21. The method of Claim 1 in which the cleavage step further comprises: culturing a microorganism capable of producing a deacylase in a culture medium; and contacting laspartomycin with the culture medium.
- 22. The method of Claim 21 in which the microorganism is *Actinoplanes utahensis* (NRRL 12052).
- 23. The method of Claim 22 in which laspartomycin is contacted with the culture medium for about 16 hours at about 29°C.
- 24. The method of Claim 22 in which laspartomycin is contacted with the culture medium for about 4 hours at about 29°C.
- 25. The method of Claim 23 in which the laspartomycin core peptide has the structure:

-84-

30

or a salt or hydrate thereof.

0

26. The method of Claim 24 in which the laspartomycin core peptide has the structure:

CO₂H

0

NH

ОН

NH

0/

CO₂H

or a salt or hydrate thereof.

- 27. The laspartomycin core peptide produced by the method of any one of Claims 1, 23 and 24.
 - 28. A laspartomycin core peptide derivative according to structural formula (I):

(I)
$$Y^1 - L - X^1 - N(R^1) - R$$

or a salt or hydrate thereof, wherein either:

- (i) Y^1 —L— X^1 taken together is hydrogen; or
- (ii) Y¹ is a linking group;

L is a linker;

 X^1 is selected from the group consisting of —CO—, —SO₂—,

N is nitrogen;

 R^1 is selected from the group consisting of hydrogen, (C_1-C_{10}) alkyl optionally substituted with one or more of the same or different R^2 groups, (C_1-C_{10}) heteroalkyl optionally substituted with one or more of the same or different R^2 groups, (C_5-C_{10}) aryl optionally substituted with one or more of the same or different R^2 groups, (C_5-C_{15}) arylaryl optionally substituted with one or more of the same or different R^2 groups, (C_5-C_{15}) biaryl optionally substituted with one or more of the same or different R^2 groups, five to ten membered heteroaryl optionally substituted with one or more of the same or different R^2 groups, (C_6-C_{16}) arylalkyl optionally substituted with one or more of the same or different R^2 groups and six to sixteen membered heteroarylalkyl optionally substituted with one or more of the same or different R^2 groups and six to sixteen membered heteroarylalkyl optionally substituted with one or more of the same or different R^2 groups and six to sixteen membered heteroarylalkyl optionally substituted with one or more of the same or different R^2 groups;

each R^2 is independently selected from the group consisting of —OR³, —SR³, —NR³R³, —CN, —NO₂, —N₃, —C(O)OR³, —C(O)NR³R³, —C(S)NR³R³, -C(NR³)NR³R³, —CHO, —R³CO, —SO₂R³, —SOR³, —PO(OR³)₂, —PO(OR³), —CO₂H, —SO₃H, —PO₃H, halogen and trihalomethyl;

each R^3 is independently selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_5-C_{10}) aryl, 5-10 membered heteroaryl, (C_6-C_{16}) arylalkyl and six to sixteen membered heteroarylalkyl; and

R is the core cyclic peptide of laspartomycin.

29. The laspartomycin core peptide derivative of Claim 28 wherein R has the structure:

15.

25

5

- 30. The laspartomycin core peptide derivative of Claim 29 in which Y^1 is selected from the group consisting of —NHR¹, —NH₂, —OH, —SH, —PH, halogen, —CHO, —R¹CO, —SO₂H, —PO₂H, —N₃, —CN, —CO₂H, —SO₃H, —PO₃H, —PO₂(OR¹)H, —CO₂R¹, —SO₃R¹, and —PO(OR¹)₂.
- 31. The laspartomycin core peptide derivative of Claim 30 in which R¹ is hydrogen.
- 32. The laspartomycin core peptide derivative of Claim 31 in which Y¹ is selected from the group consisting of —SH, H₂N—, —OH, —CO₂H and —CO₂R, X¹ is carbonyl and L is selected from the group consisting of:

15

in the first of th

$$\begin{array}{c|c} S^1 & \hline O & S^1 \\ \hline & N \\ S^1 & S^1 \\ & & n \end{array}$$

5 (L3)

$$\begin{array}{c|c}
S^1 & S^1 \\
\hline
K & S_1
\end{array}$$

$$K & N$$

$$S^1$$
 K
 S^1
 K
 S^1
 K

or a salt or hydrate thereof, wherein:

n is 0, 1, 2 or 3;

each S^1 is selected from the group consisting of hydrogen, (C_1-C_{10}) alkyl optionally substituted with one or more of the same or different R^4 groups, (C_1-C_{10}) heteroalkyl optionally substituted with one or more of the same or different R^4 groups, (C_5-C_{10}) aryl optionally substituted with one or more of the same or different R^4 groups, (C_5-C_{15}) arylaryl optionally substituted with one or more of the same or different R^4 groups, five to ten membered heteroaryl optionally substituted with one or more of the same or different R^4 groups, (C_6-C_{16}) arylalkyl optionally substituted with one or more of the same or different R^4 groups and six to sixteen membered heteroarylalkyl optionally substituted with one or more of the same or different R^4 groups and six to sixteen membered heteroarylalkyl optionally substituted with one or more of the same or different R^4 groups and six to sixteen membered heteroarylalkyl optionally substituted with one or more of the same or different R^4 groups;

each R⁴ is independently selected from the group consisting of —OR⁵,

—SR⁵, —NR⁵R⁵, —CN, —NO₂, —N₃, —C(O)OR⁵, —C(O)NR⁵R⁵, —C(S)NR⁵R⁵,

—C(NR⁵)NR⁵R⁵, —CHO, —R⁵CO, —SO₂R⁵, —SOR⁵, —PO(OR⁵)₂, —PO(OR⁵), —CO₂H,

—SO₃H, —PO₃H, halogen and trihalomethyl;

10

20

-88-

each R^5 is independently selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_5-C_{10}) aryl, 5-10 membered heteroaryl, (C_6-C_{16}) arylalkyl and six to sixteen membered heteroarylalkyl; and

each K is independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus.

- 33. The laspartomycin core peptide derivative of Claim 32 in which each S^1 is independently a side-chain of a genetically encoded α -amino acid.
- 34. The laspartomycin core peptide derivative of Claim 32 in which Y¹ is H₂N—and L is:

- 35. The laspartomycin core peptide derivative of Claim 34 in which each S^1 is independently a side-chain of a genetically encoded α -amino acid.
- 36. The laspartomycin core peptide derivative of Claim 35 in which n is 0 and S¹ is -CH₂C(O)OH or a salt or hydrate thereof.
- 37. The laspartomycin core peptide derivative of Claim 35 in which n is 1 and S^1 is $-CH_2CO_2H$ or a salt or hydrate thereof and S^2 is $-CH_2$ -indol-2-yl.
- 38. The laspartomycin core peptide derivative of Claim 28 in which Y^1 —L— X^1 taken together is hydrogen and R^1 is hydrogen.
- 39. A method for making a laspartomycin core peptide derivative comprising covalently attaching a linker moiety to a laspartomycin core peptide.

25

5

10

10

- 40. A method of making a antimicrobial laspartomycin derivative comprising:

 covalently attaching a linker moiety to a laspartomycin core peptide,
 thereby providing a laspartomycin core peptide derivative; and

 covalently attaching a lipophilic group to the laspartomycin core
 peptide derivative to yield a antimicrobial laspartomycin derivative.
- 41. The method of Claim 40 further including the step of isolating the antimicrobial laspartomycin derivative.
- 42. The method of Claim 40 in which the laspartomycin core peptide is provided by the method of any one of Claims 1, 23 and 24.
 - 43. The method of Claim 40 in which the laspartomycin core peptide is a compound according to any one of Claims 36 and 38.
 - 44. A method of making a antimicrobial laspartomycin derivative comprising: covalently attaching a lipophilic group to a linker, thereby providing a lipophilic-linker group; and

covalently attaching the lipophilic-linker group to the laspartomycin core peptide derivative thereby yielding a antimicrobial laspartomycin derivative.

- 45. The method of Claim 44 further including the step of isolating the antimicrobial laspartomycin derivative.
- 46. The method of Claim 44 in which the laspartomycin core peptide is provided by the method of any one of Claims 1, 23 and 24.
- 47. The method of Claim 44 in which the laspartomycin core peptide is a compound according to any one of Claims 36 and 38.

30

- 48. The laspartomycin derivative provided by the method of any one of Claims 40 and 44.
- 49. An isolated antimicrobial laspartomycin derivative according to structural formula (II):

(II)
$$Y^2 - (X^2 - X^3) - L - X^1 - N(R^1) - R$$

or an pharmaceutically acceptable salt or hydrate thereof, wherein:

 Y^2 is a lipophilic group;

 X^1 is selected from the group consisting of —CO—, —SO₂—,

X² is a linked group;

X³ is a linked group;

L is a linker;

N is nitrogen;

 R^1 is selected from the group consisting of hydrogen, (C_1-C_{10}) alkyl optionally substituted with one or more of the same or different R^2 groups, (C_1-C_{10}) heteroalkyl optionally substituted with one or more of the same or different R^2 groups, (C_5-C_{10}) aryl optionally substituted with one or more of the same or different R^2 groups, (C_5-C_{15}) arylaryl optionally substituted with one or more of the same or different R^2 groups, (C_5-C_{15}) biaryl optionally substituted with one or more of the same or different R^2 groups, five to ten membered heteroaryl optionally substituted with one or more of the same or different R^2 groups, (C_6-C_{16}) arylalkyl optionally substituted with one or more of the same or different R^2 groups and six to sixteen membered heteroarylalkyl optionally substituted with one or more of the same or different R^2 groups and six to sixteen membered heteroarylalkyl optionally substituted with one or more of the same or different R^2 groups and six to sixteen membered heteroarylalkyl optionally substituted with one or more of the same or different R^2 groups.

each R^2 is independently selected from the group consisting of $-OR^3$, $-SR^3$, $-NR^3R^3$, -CN, $-NO_2$, $-N_3$, $-C(O)OR^3$, $-C(O)NR^3R^3$, $-C(S)NR^3R^3$, $-C(NR^3)NR^3R^3$, -CHO, $-R^3CO$, $-SO_2R^3$, $-SOR^3$, $-PO(OR^3)_2$, $-PO(OR^3)$, $-CO_2H$, $-SO_3H$, $-PO_3H$, halogen and trihalomethyl:

25

30

each R^3 is independently selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_5-C_{10}) aryl, 5-10 membered heteroaryl, (C_6-C_{16}) arylalkyl and six to sixteen membered heteroarylalkyl; and

R is the core cyclic peptide of laspartomycin.

50. The laspartomycin derivative Claim 49 in which R has the structure:

51. The laspartomycin derivative of Claim 50 in which (X^2-X^3) taken together are selected from the group consisting of -C(O)O-, -O(O)C-, -CONH-, -NHCO-, $-CONR^1-$, $-NR^1CO-$, -C(O)S-, -S(O)C-, $-OSO_2-$, $-S(O_2)O-$, $-NHSO_2-$, $-NR^1SO_2$, $-S(O_2)NH-$, $-S(O_2)NR^1-$, C(S)NH-, -NHC(S)-, -NHP(O)-, -P(O)NH-, -OP(O)-, -P(O)O-, -SP(O)-, -P(O)S-, -OC(O)NH-, -NHC(O)O-, $-OC(O)NR^1-$, $-NR^1C(O)O-$, -OC(O)O-,

The laspartomycin derivative of Claim 51 in which R¹ is hydrogen.

- —NHC(O)NH—, —NHC(O)NR¹—, —NR¹C(O)NH— and NR¹C(O)NR¹.
- 53. The laspartomycin derivative of Claim 52 in which X¹ is —CO—or—SO₂—, and L is selected from the group consisting of:

25

52.

5

(L3)

$$\begin{array}{c|c}
S^1 & S^1 \\
\hline
K & S_1 \\
\hline
S_1 & S_1
\end{array}$$

(L4)

$$\begin{array}{c|c}
S^1 & S^1 \\
\hline
S^1 & S_1
\end{array}$$

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

n is 0, 1, 2 or 3;

15

each S^1 is selected from the group consisting of hydrogen, $(C_1\text{-}C_{10})$ alkyl optionally substituted with one or more of the same or different R^4 groups, $(C_1\text{-}C_{10})$ heteroalkyl optionally substituted with one or more of the same or different R^4 groups, $(C_5\text{-}C_{10})$ arylaryl optionally substituted with one or more of the same or different R^4 groups, $(C_5\text{-}C_{15})$ arylaryl optionally substituted with one or more of the same or different R^4 groups, five to ten membered heteroaryl optionally substituted with one or more of the same or different R^4 groups, $(C_6\text{-}C_{16})$ arylalkyl optionally substituted with one or more of the same or different R^4 groups and six to sixteen membered heteroarylalkyl optionally substituted with one or more of the same or different R^4 groups and six to sixteen membered heteroarylalkyl optionally substituted with one or more of the same or different R^4 groups and six to sixteen membered heteroarylalkyl optionally substituted with one or more of the same or different R^4 groups;

25

each R⁴ is independently selected from the group consisting of —OR⁵,

—SR⁵, —NR⁵R⁵, —CN, —NO₂, —N₃, —C(O)OR⁵, —C(O)NR⁵R⁵, —C(S)NR⁵R⁵,

—C(NR⁵)NR⁵R⁵, —CHO, —R⁵CO, —SO₂R⁵, —SOR⁵, —PO(OR⁵)₂, —PO(OR⁵), —CO₂H,

—SO₃H, —PO₃H, halogen and trihalomethyl;

each R^5 is independently selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_5-C_{10}) aryl, 5-10 membered heteroaryl, (C_6-C_{16}) arylalkyl and six to sixteen membered heteroarylalkyl; and

each K is independently selected from the group consisting of oxygen, nitrogen, sulfur and phosphorus.

- 54. The compound of Claim 53 in which each S^1 is independently a side-chain of a genetically encoded α -amino acid.
 - 55. The compound of Claim 53 in which L is:

- 56. The laspartomycin derivative of Claim 55 in which each S^1 is independently a side-chain of a genetically encoded α -amino acid.
 - 57. The laspartomycin derivative of Claim 55 in which n is 0.
- 58. The laspartomycin derivative of Claim 57 in which S¹ is -CH₂-CO₂H or a pharmaceutically acceptable salt or hydrate thereof.
 - 59. The laspartomycin derivative of Claim 58 in which (X²—X³) taken together are —CONH—.

25

5

$$S^2$$
 H N S^3

10

1

or a salt or hydrate thereof, wherein S^2 and S^3 are each independently a side chain of a genetically encoded $\alpha\text{-amino}$ acid.

62. The laspartomycin derivative of Claim 61 in which S² is -CH₂-indol-2-yl and S³ is -CH₂-CO₂H or a pharmaceutically acceptable salt or hydrate thereof.

63. The laspartomycin derivative of Claim 62 in which (X²—X³) taken together are —CONH—.

64. The laspartomycin derivative of Claim 63 in which Y² is nonan-1-yl.

65. The laspartomycin derivative of Claim 61 in which S² is hydrogen and S³ is -CH₂-CO₂H or a salt thereof.

66. The laspartomycin derivative of Claim 65 in which (X^2-X^3) taken together are $-SO_2NH$ —.

25

67. The laspartomycin derivative of Claim 66 in which Y^2 is decan-1-yl.

68. The laspartomycin derivative of Claim 55 in which L is:

$$\begin{array}{c|c}
S^2 & O & S^4 \\
\hline
O & NH & NH
\end{array}$$

or a salt or hydrate thereof, wherein S^2 , S^3 and S^4 are each independently a side chain of a genetically encoded α -amino acid.

- 69. The laspartomycin derivative of Claim 68 in which S² is -CH₂-indol-2-yl, S³ is -CH₂-CO₂H or a salt thereof and S⁴ is -CH₂-CO₂H or a salt thereof.
- 70. The laspartomycin derivative of Claim 69 in which (X²—X³) taken together are —CONH—.
 - 71. The laspartomycin derivative of Claim 70 in which Y^2 is nonan-1-yl.
- 72. A pharmaceutical composition comprising a compound according to Claim 48 and a pharmaceutically acceptable excipient, carrier or diluent.
- 73. A method for treating a microbial infection, said method comprising the step of administering to a subject an effective amount of a compound according to Claim 49.
- 74. A method for treating a microbial infection, said method comprising the step of administering to a subject an effective amount of a compound according to Claim 71.
- 75. A method of inhibiting microbial growth, said method comprising the step of administering to a microbe an effective amount of a compound according to Claim 48.
- 76. A pharmaceutical composition comprising a compound according to Claim 49 and a pharmaceutically acceptable excipient, carrier or diluent.

25

20

5

- 77. A method for treating a microbial infection, said method comprising the step of administering to a subject an effective amount of a compound according to Claim 49.
- 78. A method for treating a microbial infection, said method comprising the step of administering to a subject an effective amount of a compound according to Claim 75.
- 79. A method of inhibiting microbial growth, said method comprising the step of administering to a microbe an effective amount of a compound according to Claim 49.