Greither unit undex

Giacomo Borin

Università di Trento

13 aprile 2021

Introduzione

In questo lavoro ho rielaborato l'articolo:

Cornelius Greither. "Improving Ramachandra's and Levesque's unit index". English. In: *Number theory. Fifth conference of the Canadian Number Theory Association, Ottawa, Ontario, Canada, August 17–22, 1996.*Providence, RI: American Mathematical Society, 1999, pp. 111–120. ISBN: 0-8218-0964-4/pbk

Completando i prerequisiti richiesti per la comprensione e implementando alcuni calcoli in SIGNE

Introduzione

In questo lavoro ho rielaborato l'articolo:

Cornelius Greither. "Improving Ramachandra's and Levesque's unit index". English. In: Number theory. Fifth conference of the Canadian Number Theory Association, Ottawa, Ontario, Canada, August 17–22, 1996.

Providence, RI: American Mathematical Society, 1999, pp. 111–120. ISBN: 0-8218-0964-4/pbk

Completando i prerequisiti richiesti per la comprensione e implementando alcuni calcoli in Società del Società del Completando i prerequisiti richiesti per la comprensione e implementando alcuni calcoli in Società del Completando i prerequisiti richiesti per la comprensione e implementando alcuni calcoli in Società del Completando i prerequisiti richiesti per la comprensione e implementando alcuni calcoli in Società del Comprensione e implementante e implement

Introduzione

In questo lavoro ho rielaborato l'articolo:

Cornelius Greither. "Improving Ramachandra's and Levesque's unit index". English. In: Number theory. Fifth conference of the Canadian Number Theory Association, Ottawa, Ontario, Canada, August 17–22, 1996. Providence, RI: American Mathematical Society, 1999, pp. 111–120. ISBN: 0-8218-0964-4/pbk

Completando i prerequisiti richiesti per la comprensione e implementando alcuni calcoli in STOPE

Section 1

Prereqisiti

Primo oggetto di interesse: E_K

- ζ_n l'*n*-esima radice ciclotomica (con $n \not\equiv 2 \mod 4$)
- $K = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$
- $O_K = \mathbb{Z}[\zeta_n + \zeta_n^{-1}]$
- ullet $E_K=O_K^*$, cioè l'insieme degli elementi invertibil

Primo oggetto di interesse: E_K

- ζ_n l'*n*-esima radice ciclotomica (con $n \not\equiv 2 \mod 4$)
- $K = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$
- $O_K = \mathbb{Z}[\zeta_n + \zeta_n^{-1}]$
- ullet $E_K=O_K^*$, cioè l'insieme degli elementi invertibili

Primo oggetto di interesse: E_K

- ζ_n l'*n*-esima radice ciclotomica (con $n \not\equiv 2 \mod 4$)
- $K = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$
- $O_K = \mathbb{Z}[\zeta_n + \zeta_n^{-1}]$
- ullet $E_K=O_K^*$, cioè l'insieme degli elementi invertibil

Primo oggetto di interesse: E_K

- ζ_n l'*n*-esima radice ciclotomica (con $n \not\equiv 2 \mod 4$)
- $K = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$
- $O_K = \mathbb{Z}[\zeta_n + \zeta_n^{-1}]$
- ullet $E_K=O_K^*$, cioè l'insieme degli elementi invertibili

Primo oggetto di interesse: E_K

- ζ_n l'*n*-esima radice ciclotomica (con $n \not\equiv 2 \mod 4$)
- $K = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$
- $O_K = \mathbb{Z}[\zeta_n + \zeta_n^{-1}]$
- ullet $E_K=O_K^*$, cioè l'insieme degli elementi invertibili

Dimostrazione:

• $\zeta_n + \zeta_n^{-1}$ è reale:

$$\overline{\zeta_n + \zeta_n^{-1}} = \overline{\zeta_n} + \overline{\zeta_n}^{-1} = \zeta_n^{-1} + \zeta_n$$

• L'indice $[\mathbb{Q}(\zeta_n):K]$ vale 2, ed è quindi minimale. Il suo polinomic minimo è:

$$f(x) = (x - \zeta)(x - \zeta^{-1}) = x^2 - (\zeta + \zeta^{-1})x + 1$$

Dimostrazione:

• $\zeta_n + \zeta_n^{-1}$ è reale:

$$\overline{\zeta_n + \zeta_n^{-1}} = \overline{\zeta_n} + \overline{\zeta_n}^{-1} = \zeta_n^{-1} + \zeta_n$$

• L'indice $[\mathbb{Q}(\zeta_n) : K]$ vale 2, ed è quindi minimale. Il suo polinomio minimo è:

$$f(x) = (x - \zeta)(x - \zeta^{-1}) = x^2 - (\zeta + \zeta^{-1})x + 1$$

Dimostrazione:

• $\zeta_n + \zeta_n^{-1}$ è reale:

$$\overline{\zeta_n + \zeta_n^{-1}} = \overline{\zeta_n} + \overline{\zeta_n}^{-1} = \zeta_n^{-1} + \zeta_n$$

• L'indice $[\mathbb{Q}(\zeta_n) : K]$ vale 2, ed è quindi minimale. Il suo polinomio minimo è:

$$f(x) = (x - \zeta)(x - \zeta^{-1}) = x^2 - (\zeta + \zeta^{-1})x + 1$$

• Un sottocampo con queste caratteristiche è unico

• Un sottocampo con queste caratteristiche è unico

