No milk without meat: Dynamic implications of the biological link between milk and bovine meat production on nutrition guidelines

Supplementary material – technical documentation

<u>1</u>	MODEL STRUCTURE	2
<u>2</u>	MODEL EQUATIONS	<u>4</u>
2	PEEFRENCES	12

1 Model structure

Figure A-1: Structure of the model: Main herd structure with milk and bovine meat production

Figure A-2: Structure of the model: Meat demand

Figure A-3: Structure of the model: Milk demand

Figure A-4: Structure of the model: Emissions

Figure A-5: Structure of the model: Population

Figure A-6: Structure of the model: Initial values

2 Model equations

Table A.1 List of Model Equations – Stocks, Initial Values, and Sources

Where to find	Variable Name	Equation	Units	Interpretation	Initial
Herd structure	Calves	Calves(t) = Calves(t - dt) + (Calf_birth_rate - Calf_weaning_rate) * dt	animal	This is a stock variable that calculates the number of calves at each point in time based on the initial value of calves plus the integrated difference between calf birth rate and calf weaning rate over time.	INITIAL_CALVES
Herd structure	Calves in Gestation	Calves_in_Gestation(t) = Calves_in_Gestation(t - dt) + (Calf_breed- ing_rate - Calf_birth_rate) * dt	animal	This is a stock variable that calculates the calves in gestation at each point in time based on the initial value of calves in gestation plus the integrated difference between calf breeding rate and calf birth rate over time.	INIT Calves_in_Gestation = in- itial_calves_in_gestation
Herd structure	Feeder Cattle	Feeder_Cattle(t) = Feeder_Cattle(t - dt) + (calves_allo- cated_to_feeder_stock - slaughtering_rate) * dt	animal	The stock of cattle who are fattened and later slaughtered.	INIT Feeder_Cattle = INI- TIAL_FEEDER_CATTLE
Herd structure	Heifers milk pro- duction	Heifers_milk_produc- tion(t) = Heif- ers_milk_production(t - dt) + (Calves_allo- cated_to_breeder_stock - Parturition_rate) * dt	animal	This is a stock variable that calculates the number of heifers at each point in time based on the initial value of heifers plus the integrated difference between the calves allocated to the breeder stock and the parturition rate over time.	INIT Heifers_milk_production = INITIAL_HEIF- ERS_MILK_PRODUCTION
Herd structure	Milk cows	Milk_cows(t) = Milk_cows(t - dt) + (Parturition_rate - Slaughter- ing_rate_milk_cows) * dt	animal	This is a stock variable that calculates the number of dairy cows at each point in time based on the initial value of milk cows plus the integrated difference between the parturition rate and the slaughtering rate over time.	INIT Milk_cows = INI- TIAL_MILK_COWS
Herd structure	Weaned calves	Weaned_Calves(t) = Weaned_Calves(t - dt) + (Calf_weaning_rate - Calves_allo- cated_to_breeder_stock - calves_allo- cated_to_feeder_stock) * dt	animal	This is a stock variable that calculates the number of weaned calves at each point in time based on the initial value of weaned calves plus the integrated difference between calf weaning rate and calf maturation rate over time.	INIT Weaned_Calves = INI- TIAL_WEANED_CALVES

Table A.2 List of Model Equations - Flows

Where to find	Variable Name	Equation	Units	Interpretation
Herd structure	Calf birth rate	Calf_birth_rate = DELAY3(Calf_breed-ing_rate, PARTURITION_TIME)	animal/Year	The number of calves born each year after a delay equal to the average parturition time.
Herd structure	Calf weaning rate	Calf_weaning_rate = DE- LAY3(Calf_birth_rate, WEAN- ING_TIME)	animal/Year	The number of calves weaned each year after a delay equal to the average weaning time.
Herd structure	Calf breeding rate	Calf_breeding_rate = (Milk_cows+Heif- ers_milk_produc- tion)*Calves_per_cow_or_heifer_per_year	animal/Year	The number of calves that are born each year depends on the size of the stocks of cows and heifers and on the number of calves that each cow and heifer produce per year.
Herd structure	Calf birth rate	Calf_birth_rate = DELAY3(Calf_breeding_rate, PARTURITION_TIME)	animal/Year	The number of calves born each year after a delay equal to the average parturition time.

Herd structure	Calves allo- cated to feeder stock	calves_allocated_to_feeder_stock = calf_maturation_rate-Calves_allocated_to_breeder_stock	animal/Year	The number of matured calves each year that are allocated to the feeder stock. the number is calculated from the total number of weaned calves.
Herd structure	Slaughtering rate	slaughtering_rate = Feeder_Cattle/average_fattening_time_feeder_cattle	animal/Year	This is the outflow to the stock of feeder cattle. Feeder cattle are slaughtered when they reach the average fattening time. The average fattening time is not constant but depends on the profitability of meat. In this simplified model, we equate profitability with demand (desired meat consumption).
Herd structure	Calves allocated to breeder stock	Calves_allocated_to_breeder_stock = MIN(Desired_new_heifers_milk_production, Max_#_of_new_heifers_milk_cows)	animal/Year	The desired number of calves that are allocated to the breeding stock can be higher than the maximum possible number of new breeder calves given the existing herd structure. Under such extreme conditions, the minimum function makes sure that not more calves are allocated to the breeding stock than are physically available (the "maximum number of new heifers milk cows").
Herd structure	Parturition rate	Parturition_rate = Heifers_milk_production/PARTURITION_TIME	animal/Year	This flow describes the process of heifers becoming dairy cows after having their first calf.
Herd structure	Slaughtering rate milk cows	Slaughtering_rate_milk_cows = Milk_cows/AVERAGE_LIFE- TIME_MILK_COWS	animal/Year	This is the outflow from the stock of dairy cows. Dairy cows are slaughtered when they reach their average lifetime.
Herd structure	Calf matura- tion rate	calf_maturation_rate = Weaned_Calves/CALF_MATUR- ING_TIME	animal/Year	This is the outflow from the stock of weaned calves. Calves are weaned when they reach the average calf maturing time. The number of weaned calves each year is subsequently allocated to either the breeder or the feeder stock.
Herd structure	Calf weaning rate	Calf_weaning_rate = DE- LAY3(Calf_birth_rate, WEAN- ING_TIME)	animal/Year	The number of calves weaned each year after a delay equal to the average weaning time.
Herd structure	Calves allo- cated to breeder stock	Calves_allocated_to_breeder_stock = MIN(Desired_new_heifers_milk_production, Max_#_of_new_heifers_milk_cows)	animal/Year	The desired number of calves that are allocated to the breeding stock can be higher than the maximum possible number of new breeder calves given the existing herd structure. Under such extreme conditions, the minimum function makes sure that not more calves are allocated to the breeding stock than are physically available (the "maximum number of new heifers milk cows").
Herd structure	Calves allo- cated to feeder stock	calves_allocated_to_feeder_stock = calf_maturation_rate-Calves_allocated_to_breeder_stock	animal/Year	The number of matured calves each year that are allocated to the feeder stock. the number is calculated from the total number of weaned calves

Table A.3 List of Model Equations – Other Variables

Where to find	Variable Name	Equation	Units	Interpretation C.
Herd structure	Average fattening time feeder cattle	average_fattening_time_feeder_cattle = initial_fattening_time_feeder_cat- tle*change_in_bovine_meat_con- sumption	Year	The average fattening time of feeder cat- tle depends on the demand for bovine meat. if de-mand increases, cattle are fattened for longer than if demand de- creases
Herd structure	Bovine meat production	"Bovine_meat_production_(with- out_suckler_cows)" = slaughter- ing_rate*meat_per_slaugh- tered_feeder_cattle	ton/Year	Tons per year produced by the slaugh- tered feeder cattle withing the bovine livestock but excluding the suckler cow line
Herd structure	Change in bovine meat consumption	change_in_bovine_meat_consumption = cur-rent_pc_consumption_of_bovine_meat/reference_pc_consumption_of_bovine_meat	Dmnl	The change in demand, i.e., the current demand relative to the reference demand in this simplified model, we assume that a change in consumption will lead to the same change in production. the more advanced version of this model considers a series of additional factors such as price elasticity of demand and supply, fodder availability and environmental regulations.
Herd structure	Change in milk consumption	change_in_milk_consumption = current_pc_consumption_of_milk/reference_pc_consumption_of_milk	Dmnl	The change in demand, i.e., the current demand relative to the reference demand. in this simplified model, we assume that a change in consumption will lead to the same change in production. the more advanced version of this model considers a series of additional factors such as price elasticity of demand and supply, fodder availability and environmental regulations.
Emissions	CO2e emissions from bovine meat produc- tion	CO2e_emissions_from_bo- vine_meat_production = CO2_emis- sions_per_ton_of_bovine_meat*To- tal_bovine_meat_production	ton co2/Year	the total number of tons of CO ₂ equiva- lents per year resulting from bovine meat production
Emissions	CO2e emissions from milk pro- duction	CO2e_emissions_from_milk_production = CO2_emissions_per_ton_of_milk*Milk_production	ton co2/Year	the total number of tons of CO ₂ equiva- lents per year resulting from milk pro- duction
Meat demand	Current per capita con- sumption of bo- vine meat	current_pc_consumption_of_bo- vine_meat = (IF TIME < de- mand_change_start_year THEN base-line_pc_consumption_of_bo- vine_meat ELSE (1-switch_con- sumption_recommenda- tions_0_off_1_on)*baseline_pc_con- sumption_of_bovine_meat+recom- mended_pc_consumption_of_bo- vine_meat*switch_consumption_rec- ommendations_0_off_1_on_)	ton/(per- son*Year)	the per capita consumption of bovine meat per year in the activated scenario
Milk demand	Current per capita con- sumption of milk	current_pc_consumption_of_milk = (IF TIME < de- mand_change_start_year THEN base-line_pc_consumption_of_milk ELSE (1-switch_consumption_rec- ommendations_0_off_1_on)*base- line_pc_consumption_of_milk+rec- ommended_pc_consump- tion_of_milk*switch_consump- tion_recommendations_0_off_1_on)	ton/(per- son*Year)	the per capita consumption of milk per year in the activated scenario
Herd structure	Dairy cows meat produc- tion	Dairy_cows_meat_production = Meat_per_slaugh- tered_dairy_cow*Slaughter- ing_rate_milk_cows	ton/Year	Tons of bovine meat per year produced by the slaughtered dairy cows
Herd structure	Desired num- ber of milk cows	Desired_#_milk_cows = Milk_cows*change_in_milk_con- sumption	animal	The desired number of milk cows is cal- culated by adjusting the current number of milk cows upward if the demand for

				milk products increases and downward if the demand for milk products decreases. in this simplified model, we assume that a change in consumption will lead to the same change in production. the more ad- vanced version of this model considers a series of additional factors such as price elasticity of demand and supply, fodder availability and environmental regula- tions.
Herd structure	Desired adjust- ment milk cow stock	Desired_adjustment_milk_cow_stock = (Desired_#_milk_cows- Milk_cows)/Cattle_livestock_adjust- ment_time	animal/Year	The desired adjustment of the milk cow stock compares desired and available numbers of milk cows and adjusts this difference not immediately, but over the cattle livestock adjustment time.
Herd structure	De- sired_new_heif- ers milk pro- duction	Desired_new_heifers_milk_produc- tion = MAX(0, De-sired_adjust- ment_milk_cow_stock+Replace- ment_of_milk_cows)	animal/Year	The desired new heifers are the sum of the calves needed for replacing the cur- rent milk cow stuck plus the desired ad- justment of the milk cow stock
Meat demand	Indicated bovine meat production	indicated_bovine_meat_production = to-tal_domestic_bovine_meat_consump-tion*MEAT_LOSS_AND_WASTE_FACTOR	ton/Year	indicated bovine meat production represents demand. in this simplified model, price does not mitigate desired consumption. total demand is the domestic consumption, adjusted for the meat loss and waste along the entire value chains. net exports in the case of bovine meat are negligible, especially compared to net milk exports
Milk demand	Indicated milk production	Indicated_milk_production = (to-tal_domestic_milk_consumption+NET_MILK_EX-PORTS+milk_consumption_by_animals)*MILK_LOSS_AND_WASTE_FACTOR	ton/Year	indicated milk production represents de- mand. in this simplified model, price does not mitigate desired consumption. total demand is the sum of domestic con- sumption, consumption by animals and exports, adjusted for the milk loss and waste along the entire value chains
Initial values	Initial calves in gestation	initial_calves_in_gestation = Calf_birth_rate*PARTURI- TION_TIME	animal	The initial value of calves in gestation, calculated to initialize the model in equilibrium.
Herd structure	Maximum number of new heifers milk cows	Max #_of_new_heifers_milk_cows = calf_maturation_rate*FRAC- TION_FEMALE_CALVES	animal/Year	The maximum number of new heifers is the number of female weaned calves each year.
Herd structure	Meat per slaughtered feeder cattle	meat_per_slaughtered_feeder_cattle = LOOKUP(effect_of_fatten- ing_time_on_meat_yield, aver- age_fattening_time_feeder_cattle)	ton/animal	The meat per slaughtered feeder cattle depends on the age of the animal and the value of meat per animal is read from the table "effect of fattening time on meat yield".
Milk demand	Milk consump- tion by animals	milk_consumption_by_animals = (Calves+Weaned_Calves)*MILK_C ONSUMP- TION PER CALV PER YEAR	ton/Year	the amount of milk consumed by calves every year. in the more elaborate model, also pigs are fed with milk from dairy cows
Herd structure	Milk produc- tion	Milk_production = Milk_cows*MILK_PRODUC- TION_PER_COW_PER_YEAR	ton/Year	This variable calculates milk production per year as a function of both, the number of milk cows and the average milk production per cow per year.
Meat demand	Ratio between bovine meat production and consumption	Ratio_between_bovine_meat_production_and_consumption = To-tal_bovine_meat_production/indicated_bovine_meat_production	Dmnl	this ratio compares supply and demand. the total demand is adjusted for the bovine meat loss and waste along the entire value chains. net exports in the case of bovine meat are negligible, especially compared to net milk exports.
Milk demand	Ratio between milk produc- tion and con- sumption	Ratio_between_milk_production_and_consumption = Milk_production/Indicated_milk_production	Dmnl	this ratio compares supply and demand. the total demand is the sum of domestic consumption, consumption by animals and exports, adjusted for the milk loss and waste along the entire value chains.
Meat demand	Recommended per capita	recommended_pc_consumption of bovine meat = recommend-	ton/(Year*person)	the recommended per capita consumption of bovine meat for one of the two

	consumption of bovine meat	ed_pc_consumption_of_bo- vine_meat_SFP*(1- switch_0_sfp_1_phd)+switch_0_sfp_ 1_phd*recommended_pc_consump- tion_of_bovine_meat_phd		nutrition recommendation scenarios: Swiss Food Pyramid or Planetary Health Diet
Milk demand	Recommended per capita con- sumption of milk	recommended_pc_consumption_of_milk = recommended_pc_consumption_of_milk_SFP*(1-switch_0_sfp_1_phd)+recommmended_pc_consumption_of_milk_PHD*switch_0_sfp_1_phd	ton/(per- son*Year)	the recommended per capita consumption of milk for one of the two nutrition rec- ommendation scenarios: Swiss Food Pyr- amid or Planetary Health Diet
Meat demand	Reference per capita con- sumption of bo- vine meat	reference_pc_consumption_of_bo- vine_meat = SMTH3(cur- rent_pc_consumption_of_bo- vine_meat, TIME_TO_RE- ACT_TO_CONSUMP- TION_CHANGES_MEAT, base- line_pc_consumption_of_bo- vine_meat)	ton/(per- son*Year)	the reference demand represents the per capita demand of bovine meat in the re- cent past. the time horizon over which demand changes are taken into consider- ation for adjusting pro-duction is indi- cated by the parameter "time to react to consumption changes meat"
Milk demand	Reference per capita con- sumption of milk	reference_pc_consumption_of_milk = SMTH3(current_pc_consump- tion_of_milk, TIME_TO_RE- ACT_CONSUMP- TION_CHANGES_MILK, base- line_pc_consumption_of_milk)	ton/(per- son*Year)	the reference demand represents the per capita demand of milk in the recent past. the time horizon over which demand changes are taken into consideration for adjusting production is indicated by the parameter "time to react to consumption changes milk"
Herd structure	Replacement of milk cows	Replacement_of_milk_cows = Slaughtering_rate_milk_cows	animal/Year	This variable calculates the number of dairy cows needed to replace the dairy cows that are slaughtered.
Meat demand, Milk demand	Switch between Swiss Food Pyramid and Planetary Health Diet	switch_0_sfp_1_phd = 0	Dmnl	this is a scenario switch that allows alternating between the Swiss Food Pyramid recommendations (switch = 0) and the recommendations of the Planetary Health Diet (switch = 1)
Meat demand, Milk demand	Switch between consumption recommenda- tions	switch_consumption_recommenda- tions_0_off_1_on = 0	Dmnl	this is a switch that allows alternating be- tween current and recommended con- sumption pat-terns. 0 means current con- sumption patterns, 1 means recom- mended consumption patterns
Population	Switch between population growth and no growth	switch_popula- tion_growth_0_off_1_on = 0	Dmnl	this is a switch that allows alternating be- tween a constant population size and a time-dependent population size. 0 means constant population, 1 takes population from historical and projected data
Herd structure	Total bovine meat produc- tion	Total_bovine_meat_production = "Bo-vine_meat_production_(with- out_suck- ler_cows)"+Dairy_cows_meat_pro- duction	ton/Year	the total amount of bovine meat produced in one year. this variable only calculates bovine meat production from the dual- purpose meat/dairy stock but excludes bovine meat from the suckler cow line
Emissions	Total CO2e emissions	total_CO2e_emissions = CO2_emissions_from_bovine_meat_production+CO2_emissions from milk production	ton co2/Year	the total number of tons of CO ₂ equivalents per year resulting from milk and bovine meat pro-duction
Meat demand	Total domestic bovine meat consumption	total_domestic_bovine_meat_con- sumption = to-tal_population*cur- rent_pc_consumption_of_bo- vine_meat	ton/Year	the total amount of bovine meat consumed per year by the Swiss population
Milk demand	Total domestic milk consump- tion	total_domestic_milk_consumption = total_population*current_pc_consumption of milk	ton/Year	the total amount of milk consumed per year by the Swiss population
Population	Total popula- tion	total_population = (1-switch_popula- tion_growth_0_off_1_on)*popula- tion_2020+switch_popula- tion_growth_0_off_1_on*population_growth_0	person	the total population of Switzerland, used to calculate total milk and bovine meat consumption

Table A.4 List of Model Equations – Parameters and Sources

Where to find	Parameter name	Name in model	Value	Units	Interpretation	Source
Herd structure	Average life- time of milk cows	AVER- AGE_LIFE- TIME_MILK_C OWS	4	Year	The number of years, on average, that a milk cow is kept on lactation	Agridea/FiBL, 2019, section Tierhaltung
Meat de- mand	Baseline per capita con- sumption of bovine meat	BASE- LINE_PC_CON SUMP- TION_OF_BO- VINE_MEAT	0.01044	ton/(per- son*Year)	Per capita consumption under baseline conditions.	SBV, 2021
Milk de- mand	Baseline per capita con- sumption of milk	BASE- LINE_PC_CON SUMP- TION_OF_MIL K	0.3189	ton/(per- son*Year)	Per capita consumption under baseline conditions.	SBV, 2021
Herd structure	Calf maturing time	CALF_MATU- RING_TIME	0.56	Year	The time it takes for calves to fully mature. the constant assumes the value of the remaining 205 days until calves reach the age of 1 year, where the female animals destined for milk production get inseminated for the first time	SBV, 2021
Herd structure	Calves per cow or heifer per year	CALVES_PER _COW_OR_HE IFER_PER_YE AR	1.02	1/Year	The number of calves that, on average, each cow and heifer pro- duce per year.	Agridea/FiBL, 2019, section Tierhaltung
Herd structure	Cattle lifestock adjustment time	CAT- TLE_LIVE- STOCK_AD- JUST- MENT_TIME	10	Year	The long adjustment time is rooted in the long lifetime of cattle livestock buildings and related infrastructure, which limit the flexibility with which farmers enter and exit the cattle sector.	Kopainsky et al., 2020
Emissions	CO2e emissions per ton of bovine meat	CO2E_EMIS- SIONS_PER_T ON_OF_BO- VINE_MEAT	13	ton co2/ton	tons of CO2 equiva- lents produced per ton of bovine meat. data source: FAOSTAT	FAOSTAT, Climate Change, Emission Intensities: https://www.fao.org/fao-stat/en/#data/EI
Emissions	CO2e emissions per ton of milk	CO2E_EMIS- SIONS_PER_T ON OF MILK	1.6	ton co2/ton	tons of CO2 equiva- lents produced per ton of milk.	Bussa et al., 2020
Meat de- mand, Milk de- mand	Demand change start year	DE- MAND_CHAN GE_START_Y EAR	2022	Year	this is a scenario vari- able that allows defin- ing the year in which consumption changes start.	User choice
Herd structure	Fraction of fe- male calves	FRAC- TION_FE- MALE_CALVE S	0.5	Dmnl	The fraction, on average, of calves that are female.	Agridea/FiBL, 2019, section "Tierhaltung".
Initial val- ues	Initial number of calves	INI- TIAL_CALVES	304353	animal	The initial value of calves	calculated from calibration
Herd structure	Initial fatten- ing time feeder cattle	INITIAL_FAT- TEN- ING_TIME_FE EDER_CAT- TLE	0.43	Year	An average of the average fattening time for veal fattening and bull fattening, weighted by the livestock units of calves and bulls in the initial year of the simulation	Agridea/FiBL, 2019, section "Tierhaltung".

					and estimated to keep the model in equilib-	
Initial values	Initial feeder cattle	INI- TIAL_FEEDER CATTLE	240197	animal	The initial number of feeder cattle	SBV, 2021 Cattle aged 365-730 days
Initial values	Initial heifers milk produc- tion	INI- TIAL_HEIF- ERS_MILK_PR ODUCTION	135005	animal	The initial value of heifers.	milk production per dairy cow (7 ton/year; SBV, 2020) and livestock numbers (total of 677863 cows - of which 542857 must be dairy cows and the rest heifers for milk production; SBV, 2021)
Initial val- ues	Initial number of milk cows	INI- TIAL_MILK_C OWS	542857	animal	The initial value of milk cows	SBV, 2021
Initial val- ues	Initial number of weaned calves	INI- TIAL_WEANE D CALVES	391800	animal	The initial value of weaned calves	calculated from calibration
Meat de- mand	Meat loss and waste factor	MEAT_LOSS_ AND_WASTE_ FACTOR	1.1	Dmnl	calculated from SBV. (2021).	SBV, 2021 total production (incl. net exports) vs. total consumption 2020.
Herd structure	Meat per slaughtered dairy cow	MEAT_PER_S LAUGH- TERED_DAIR Y_COW	0.3	ton/animal	Meat yield is set at 38% of the live weight (700kg).	Agridea/FiBL, 2019, section "Tierhaltung".
Milk de- mand	Milk consump- tion per calf per year	MILK_CON- SUMP- TION_PER_CA LF_PER_YEA R	0.6	ton/(ani- mal*Year)	calculated from SBV (2021)	SBV, 2021 Kälber bis 160 Tage, Jungvieh 160- 365 Tage; total milk consumption by calves and weaned calves: 400'000 ton/year
Milk de- mand	Milk loss and waste factor	MILK_LOSS_ AND_WASTE_ FACTOR	1.13		calculated from SBV (2021)	SBV, 2021
Milk de- mand	Milk produc- tion per cow per year	MILK_PRO- DUC- TION_PER_CO W PER YEAR	7	ton/(ani- mal*Year)	The amount of milk produced, on average, per cow and year	SBV, 2020
Milk de- mand	Net milk exports	NET_MILK_E XPORTS	189000	ton/Year	the net amount of milk exported per year.	SBV, 2020
Herd structure	Parturition time	PARTURI- TION_TIME	1	Year	The parturition time is 9 months but heifers and cows only get inseminated once per year.	Agridea/FiBL, 2019
Popula- tion	Population	POPULA- TION_2020	8.67054 e+06	person	the population in Switzerland in 2020	BfS, 2021
Meat de- mand	Recommended per capita con- sumption of bovine meat (Planetary Health Diet)	RECOM- MENDED_PC_ CONSUMP- TION_OF_BO- VINE_MEAT_ PHD	0.00511	ton/(per- son*Year)	recommended per capita consumption of bovine meat accord- ing to the planetary health diet.	The data is from the integrated model developed in the NRP69 project, described in Kopainsky, et al., 2020
Meat de- mand	Recommended per capita con- sumption of bovine meat (Swiss Food Pyramid)	RECOM- MENDED_PC_ CONSUMP- TION_OF_BO- VINE_MEAT_ SFP	0.00544	ton/(per- son*Year)	per capita consump- tion in the Swiss Food Pyramid Scenario	The data is from the integrated model developed in the NRP69 project, described in Kopainsky, et al., 2020
Milk de- mand	Recommended per capita con- sumption of milk (Swiss Food Pyramid)	RECOM- MENDED_PC_ CONSUMP- TION_OF_MIL K_SFP	0.2788	ton/(per- son*Year)	per capita consumption in the Swiss Food Pyramid Scenario	The data is from the integrated model developed in the NRP69 project, described in Kopainsky, et al., 2020
Milk de- mand	Recommended per capita con- sumption of milk	RECOMMMEN DED_PC_CON	0.09125	ton/(per- son*Year)	recommended per capita consumption of milk according to the planetary health diet	The data is from the integrated model developed in the NRP69 project, described in Kopainsky, et al., 2020

	(Planetary Health Diet)	SUMP- TION_OF_MIL K_PHD				
Milk de- mand	Time to react to consumption change - milk	TIME_TO_RE- ACT_CON- SUMP- TION_CHANG ES_MILK	10	year	the time horizon over which demand changes are taken into consideration for adjusting pro-duction. The lower value for meat than for milk reflects the capital intensity of bovine meat production compared to milk production (stables and milking equipment)	Kopainsky, et al., 2020
Meat de- mand	Time to react to consumption change – meat	TIME_TO_RE- ACT_TO_CON SUMP- TION_CHANG ES_MEAT	5	Year	the time horizon over which demand changes are taken into consideration for ad- justing pro-duction.	Kopainsky, et al., 2020
Herd structure	Weaning time	WEAN- ING_TIME	0.44	Year	The time it takes to wean calves	SBV, 2021 Calves aged up to 160 days

Table A.5 List of Model Equations –Nonlinear Functions

Where to find	Parameter name	Name in model	Points	Units	Interpretation	Source
Herd structure	Effect of fattening time on meat yield	effect_of_fatten- ing_time_on_meat_ yield = GRAPH(0+0)	(0.3400, 0.0700), (0.4300, 0.1050), (1.2000, 0.1970)	ton/animal	Meat yield is set at 38% of the live weight of animals. The low value is for yeal fattening and the high value for bull fattening.	Agridea/FiBL, 2019, section "Tierhaltung"
Popula- tion	Population	population= GRAPH(TIME)	(2000.00, 7164440), (2001.00, 7197640), (2002.00, 7255650), (2003.00, 7313850), (2004.00, 7364150), (2005.00, 7415100), (2006.00, 7459130), (2007.00, 7508740), (2008.00, 7508740), (2009.00, 7701860), (2011.00, 7870130), (2012.00, 7954660), (2013.00, 8039060), (2014.00, 8139630), (2015.00, 8339510), (2020.00, 8757650), (2025.00, 9159870), (2030.00, 9541470), (2035.00, 9856970), (2040.00, 10044300), (2045.00, 10176100)	person	the total population in Switzerland	Historical data: BfS, 2021 Future projec- tions: BfS, 2015; Refer- enzsze-nario A- 00-2015

3 References

- Agridea/FiBL. (2019). Deckungsbeiträge. Ausgabe 2019. Lindau & Frick, Switzerland: Agridea and Forschunginstitut für biologischen Landbau FiBL.
- BfS. (2015). Szenarien zur Bevölkerungsentwicklung der Schweiz 2015-2045. Neuchâtel, Switzerland: Bundesamt für Statistik (BfS).
- BfS. (2021). Die Bevölkerung der Schweiz im Jahr 2020. In B. f. S. (BfS) (Ed.). Neuchâtel, Switzerland.
- Bussa, M., Eberhart, M., Jungbluth, N., & Meili, C. (2020). Ökobilanz von Kuhmilch und pflanzlichen Drinks: ESU-services GmbH.
- Kopainsky, B., Frehner, A., & Müller, A. (2020). Sustainable and healthy diets: Synergies and tradeoffs in Switzerland. *Systems Research and Behavioral Science*, *37*(6), 908-927. doi: https://doi.org/10.1002/sres.2761
- SBV. (2020). Milchstatistik der Schweiz, 2020. Brugg, Switzerland: Schweizerischer Bauernverband (SBV).
- SBV. (2021). Statistische Erhebungen und Schätzungen 2020 über Landwirtschaft und Ernährung. Brugg, Switzerland: Schweizerischer Bauernverband (SBV).