CSE 102

Spring 2024

Midterm Exam 2

Solutions

1. (25 Points) The recursive algorithm below determines whether an array is sorted. Variables B_1 , B_2 and B_3 are Boolean, and Λ represents the Logical And operator.

Sorted(A, p, r) precondition: $r \ge p$ 1. if r = p2. return TRUE 3. else 4. $q = \lfloor (p+r)/2 \rfloor$ 5. $B_1 = \text{Sorted}(A, p, q)$

- 6. $B_2 = \text{Sorted}(A, q + 1, r)$
- 7. $B_3 = (A[q] \le A[q+1])$
- 8. return $(B_1 \wedge B_2 \wedge B_3)$
- a. (15 Points) Use induction on $m = \text{length}(A[p \cdots r])$ to prove the correctness of the above algorithm, i.e. prove that Sorted(A, p, r) returns TRUE if and only if $A[p \cdots r]$ is sorted in increasing order.

Proof:

- I. Let m=1. Then length $(A[p\cdots r])=r-p+1=1 \Rightarrow r=p$, and TRUE is returned on line 2 of the algorithm. Indeed, an array of length 1 is always sorted, so the algorithm returns a correct value. The base case is therefore established.
- II. Let m > 1 and assume Sorted() returns a correct value on all sub-arrays of length less than m. We must show that Sorted() returns a correct value when run on any sub-array of length m. Since m > 1, we have $m = r p + 1 > 1 \Rightarrow r > p$, so line 2 is skipped and lines 4-8 are executed.

Also

$$p < r \Rightarrow p + r < 2r \Rightarrow \lfloor (p+r)/2 \rfloor < r \Rightarrow q < r$$

 $\Rightarrow q - p + 1 < r - p + 1$
 $\Rightarrow \operatorname{length}(A[p \cdots q]) < m$

and

$$\begin{aligned} p < r \Rightarrow 2p < p + r \Rightarrow p < \frac{p + r}{2} &\Rightarrow p \le \lfloor (p + r)/2 \rfloor \\ &\Rightarrow p < \lfloor (p + r)/2 \rfloor + 1 \Rightarrow p < q + 1 \\ &\Rightarrow r - q < r - p + 1 \\ &\Rightarrow \operatorname{length}(A[q + 1 \cdots r]) < m \end{aligned}$$

The induction hypothesis guarantees that lines (5) and (6) return correct values for sub-arrays $A[p\cdots q]$ and $A[q+1\cdots r]$. Observe $A[p\cdots r]$ is sorted in increasing order if and only if: $A[p\cdots q]$ is sorted, $A[q+1\cdots r]$ is sorted and $A[q] \leq A[q+1]$. Thus $A[p\cdots r]$ is sorted if and only if the value of the Boolean expression $B_1 \wedge B_2 \wedge B_3$ returned on line (8) is TRUE. Therefore, Sorted(A, p, r) returns TRUE if and only if $A[p\cdots r]$ is sorted in increasing order, as required.

b. (10 Points) Let T(n) denote the number of array comparisons performed by Sorted() on an array of length n. Write a recurrence relation for T(n). Determine a tight asymptotic bound for T(n).

Solution:

If p=1, r=n, and $q=\lfloor (n+1)/2\rfloor$ then length $(A[1\cdots q])=q=\lfloor (n+1)/2\rfloor=\lceil n/2\rceil$, and length $(A[q+1\cdots n])=n-q=n-\lceil n/2\rceil=\lfloor n/2\rfloor$. Therefore T(n) must satisfy the recurrence

$$T(n) = \begin{cases} 0 & n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 & n \ge 2 \end{cases}$$

First first simplify the recurrence to T(n) = 2T(n/2) + 1. We compare $1 = n^0$ to $n^{\log_2(2)} = n^1$. Let $\epsilon = 1 - 0 = 1$. Then $\epsilon > 0$ and $1 = O(n^0) = O(n^{\log_2(2) - \epsilon})$, and by case (1) we have $T(n) = \Theta(n)$.

Alternative Solution:

One can show directly that T(n) = n - 1 is an exact solution to this recurrence. First note that when n = 1, T(1) = 0. If $n \ge 1$ then

RHS =
$$T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

= $(\lfloor n/2 \rfloor - 1) + (\lceil n/2 \rceil - 1) + 1$
= $(\lfloor n/2 \rfloor + \lceil n/2 \rceil) - 1$
= $n - 1$
= $T(n)$
= LHS

so T(n) = n - 1 solves the recurrence, and $T(n) = \Theta(n)$.

- 2. (25 Points) Suppose we are given an unlimited number of coins in each of the denominations d = (1, 2, 5, 7, 9). We wish to pay N = 14 monetary units using the least number of coins. Let C[i, j] denote the minimum number of coins needed to pay j units using only coins in the denominations $(d_1, ..., d_i)$, where $1 \le i \le 5$ and $0 \le j \le 14$.
 - a. (5 Points) Write a recursive formula for C[i,j]. Carefully define boundary values and out-of-bounds values in such a way that C[i,j] is defined for all i and j.

Solution:

$$C[i,j] = \begin{cases} 0 & i \ge 1 \text{ and } j = 0\\ \min(C[i-1,j], 1 + C[i,j-d_i]) & i \ge 1 \text{ and } j > 0\\ \infty & i \le 0 \text{ or } j < 0 \end{cases}$$

b. (10 Points) Fill in the following table containing the values of C[i, j].

									j							
i	d	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	2	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
3	5	0	1	1	2	2	1	2	2	3	3	2	3	3	4	4
4	7	0	1	1	2	2	1	2	1	2	2	2	3	2	3	2
5	9	0	1	1	2	2	1	2	1	2	1	2	2	2	3	2

c. (10 Points) Use this table to determine *two* optimal solutions to this problem, i.e. two different ways to pay 14 monetary units using the least possible number coins. Express your solutions by giving a vector $x = (x_1, x_2, x_3, x_4, x_5)$ for which $\sum_{i=1}^{5} x_i d_i = 14$. (It is not necessary to show your work on this problem.)

Optimal Solution 1: x = (0, 0, 1, 0, 1), one 5 unit coin, and one 9 unit coin.

Optimal Solution 2: x = (0, 0, 0, 2, 0), two 7 unit coins.

3. (25 Points) A thief wishes to steal objects $\{1, 2, 3, 4, 5, 6\}$, having values $v[1 \cdots 6] = (5, 5, 9, 4, 4, 12)$ and weights $w[1 \cdots 6] = (1, 4, 3, 4, 1, 6)$, where it is permissible to steal a fraction of an object. His goal is to maximize the total value of the goods stolen $\sum_{i=1}^{6} x_i v_i$, where x_i denotes the fraction of object i to be stolen $(0 \le x_i \le 1 \text{ for } 1 \le i \le 6)$. The total weight of the stolen goods $\sum_{i=1}^{6} x_i w_i$ must not exceed the capacity of his knapsack: W = 9. Determine an optimal solution to this problem using a greedy strategy, with selection function $f(i) = v_i/w_i$, i.e. order the objects by decreasing value-to-weight ratios, then steal as much of each object as is possible, in that order, never exceeding the capacity of the knapsack. Express your solution as the vector $x = (x_1, x_2, x_3, x_4, x_5, x_6)$, and give the value of this optimal solution.

Solution:

The value to weight ratios are: (5, 1.25, 3, 1, 4, 2). Thus the thief should steal, in order

- All of object 1 (value 5 and weight 1)
- All of object 5 (value 4 and weight 1)
- All of object 3 (value 9 and weight 3)
- 2/3 of object 6 (value 8 and weight 4)

The solution vector is therefore x = (1, 0, 1, 0, 1, 2/3), with total weight 9 and total value 26.

4. (25 Points) Consider the coin changing problem again, where we have an unlimited number of coins in each of the denominations d = (1, 5, 10), and we apply the *greedy strategy* to pay N monetary units using the fewest number of coins. In other words, start with sum = 0. Then, from amongst all coins whose addition to sum would not cause sum to exceed N, choose the largest, and add it to sum. Stop when sum = N. Thus we choose as many dimes (10 units) as possible, then choose as many nickles (5 units) as possible, then choose as many pennies (1 unit) as necessary to achieve a sum of N units. Prove that this strategy yields an optimal solution (i.e. fewest number of coins) for any $N \ge 0$. (Hint: let $x = (x_1, x_2, x_3)$ be an optimal solution, and let $g = (g_1, g_2, g_3)$ be the solution produced by the greedy strategy, then prove x = g, whence g is optimal.)

Proof:

Let $N \ge 0$, let $x = (x_1, x_2, x_3)$ be an optimal solution, and let $g = (g_1, g_2, g_3)$ be the solution produced by the greedy strategy. It is sufficient to show that g = x, for then g is optimal. Since both solutions pay N units, we have

(1)
$$x_1 + 5x_2 + 10x_3 = N = g_1 + 5g_2 + 10g_3$$

Reduce equation (1) modulo 5 to obtain the congruence $x_1 \equiv g_1 \pmod{5}$. Observe that

- $0 \le x_1 < 5$, since if $x_1 \ge 5$, we could trade 5 pennies for one nickel. This is impossible since x is optimal.
- $0 \le g_1 < 5$, since the greedy strategy chooses the maximum possible number of nickles before any pennies are chosen.

These facts, together with $x_1 \equiv g_1 \pmod{5}$, imply that $x_1 = g_1$. Cancel this common value from both sides of (1) to obtain $5x_2 + 10x_3 = 5g_2 + 10g_3$, then divide through by 5 to get

$$(2) x_2 + 2x_3 = g_2 + 2g_3$$

Reduce equation (2) modulo 2 to obtain the congruence $x_2 \equiv g_2 \pmod{2}$. Now observe

- $0 \le x_2 < 2$, since if $x_2 \ge 2$, we could trade 2 nickles for one dime, again impossible since x is optimal.
- $0 \le g_2 < 2$, since the greedy strategy chooses the maximum number of dimes before any nickles are chosen.

These facts, together with $x_2 \equiv g_2 \pmod{2}$, imply that $x_2 = g_2$. Cancel this value from both sides of (2) to obtain $2x_3 = 2g_3$, and hence $x_3 = g_3$. Therefore g = x, and g is optimal as claimed.

Remark: This proof actually shows a little more, namely that in this problem an optimal solution is unique.