



# datasheet

PRODUCT SPECIFICATION

1/4" color CMOS 8 megapixel (3264 x 2448) PureCel® image sensor

## Copyright @2017 OmniVision Technologies, Inc. All rights reserved.

This document is provided "as is" with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification, or sample.

OmniVision Technologies, Inc. and all its affiliates disclaim all liability, including liability for infringement of any proprietary rights, relating to the use of information in this document. No license, expressed or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

The information contained in this document is considered proprietary to OmniVision Technologies, Inc. and all its affiliates. This information may be distributed to individuals or organizations authorized by OmniVision Technologies, Inc. to receive said information. Individuals and/or organizations are not allowed to re-distribute said information.

#### Trademark Information

PureCel, VarioPixel, OmniVision and the OmniVision logo are registered trademarks of OmniVision Technologies, Inc. ViV is a trademark of OmniVision Technologies, Inc.

All other trademarks used herein are the property of their respective owners.

#### color CMOS 8 megapixel (3264 x 2448) PureCel® image sensor

datasheet (COB)
PRODUCT SPECIFICATION

version 2.01 january 2017

To learn more about OmniVision Technologies, visit www.ovt.com.

## applications

- cellular phones
- PC multimedia
- tablets

## ordering information

 OV08856-GA4A (color, chip probing, 200 µm backgrinding, reconstructed wafer with good die)

#### features

- 1.12 μm x 1.12 μm pixel
- optical size of 1/4"
- 32.9° CRA for < 5mm Z-height
- programmable controls for frame rate, mirror and flip, cropping, and windowing
- supports images sizes: 8MP (4:3, 3264x2448), 8MP (16:9, 3264x1836), EIS 1080p (2112x1188), 1080p (1920x1080), EIS 720p (1408x792), and more
- 8MP at 30 fps (720Mbps/4-lane or 1.44Gbps/2-lane)

- two on-chip phase lock loops (PLLs)
- two-wire serial bus control (SCCB)
- 8k bits of embedded one-time programmable (OTP) memory
- image quality control: defect pixel correction, automatic black level calibration, lens shading correction and alternate row HDR
- suitable for module size of 8.5mm x 8.5mm x ~4mm



**note** The OV8856 supports LVDS interface. Contact your local FAE for details.

## key specifications (typical)

active array size: 3264 x 2448

power supply:

analog:  $2.6 \sim 3.0 \text{V}$  (2.8V nominal) core:  $1.14 \sim 1.26 \text{V}$  (1.2V nominal) I/O:  $1.7 \sim 1.9 \text{V}$  (1.8V)

power requirements:

active: 150 mW standby: 0.8 μW XSHUTDN: 1 μW

temperature range:

operating: -30°C to +85°C junction temperature (see table 7-2) stable image: 0°C to +60°C junction temperature (see table 7-2)

- output interfaces: up to 4-lane MIPI serial output
- output formats: 10-bit RGB RAW
- lens chief ray angle: 32.9° non-linear (see figure 9-2)

- lens size: 1/4"
- input clock frequency: 6~27 MHz

■ max S/N ratio: 36.5 dB

dynamic range: 70 dB @ 8x gain

maximum image transfer rate:

3264x2448: 30 fps (see table 2-1) 3264x1836: 30 fps (see table 2-1) 2112x1188: 60 fps (see table 2-1) 1920x1080: 60 fps (see table 2-1) 1408x792: 90 fps (see table 2-1)

- sensitivity: 480 mV/Lux-sec
- scan mode: progressive
- **pixel size:** 1.12 μm x 1.12 μm
- dark current: 12e<sup>-</sup>/sec @ 60°C junction temperature
- **image area:** 3678.336 μm x 2767.68 μm
- die dimensions: 4806 μm x 3969 μm (COB),
   4856 μm x 4019 μm (RW) (see section 8 for details)



**note** higher junction temperature degrades image quality



**note** COB refers to whole wafers with known good die and RW refers to singulated good die on a reconstructed wafer. Die size differs between COB and RW.







## table of contents

| 1 signal descriptions                           | 1-1          |
|-------------------------------------------------|--------------|
| 2 system level description                      | 2-1          |
| 2.1 overview                                    | 2-1          |
| 2.1.1 identifying the sensor's revision ID      | 2-1          |
| 2.2 architecture                                | 2-2          |
| 2.3 format and frame                            | 2-4          |
| 2.4 I/O control                                 | 2-5          |
| 2.5 MIPI interface                              | 2-5          |
| 2.6 power management                            | 2-6          |
| 2.6.1 power up sequence                         | 2-6          |
| 2.6.2 power down sequence                       | 2-8          |
| 2.7 reset                                       | 2-11         |
| 2.7.1 power ON reset                            | 2-11         |
| 2.7.2 software reset                            | 2-11         |
| 2.8 hardware and software standby               | 2-11         |
| 2.8.1 hardware standby                          | 2-11         |
| 2.8.2 software standby                          | 2-11         |
| 2.9 system clock control                        | 2-12         |
| 2.9.1 PLL1                                      | 2-12         |
| 2.9.2 PLL2                                      | 2-12         |
| 2.10 serial camera control bus (SCCB) interface | 2-14         |
| 2.10.1 data transfer protocol                   | 2-14         |
| 2.10.2 message format                           | 2-14         |
| 2.10.3 read/write operation                     | 2-15         |
| 2.10.4 SCCB timing                              | 2-18         |
| 2.11 group write                                | 2-19         |
| 2.11.1 hold 2.11.2 launch                       | 2-20<br>2-20 |
|                                                 |              |
| 2.12 register re-mapping                        | 2-22         |
| 3 block level description                       | 3-1          |
| 3.1 pixel array structure                       | 3-1          |
| 3.2 subsampling                                 | 3-2          |
| 3.3 alternate row HDR                           | 3-3          |



|   | 3.4   | analog amplifier                                                   | 3-5  |
|---|-------|--------------------------------------------------------------------|------|
|   | 3.5   | 10-bit A/D converters                                              | 3-5  |
| 4 | imag  | ge sensor core digital functions                                   | 4-1  |
|   | 4.1   | mirror and flip                                                    | 4-1  |
|   | 4.2   | image windowing                                                    | 4-2  |
|   | 4.3   | test pattern                                                       | 4-4  |
|   |       | 4.3.1 color bar                                                    | 4-4  |
|   |       | 4.3.2 square                                                       | 4-5  |
|   |       | 4.3.3 random data                                                  | 4-5  |
|   |       | 4.3.4 transparent effect                                           | 4-5  |
|   |       | 4.3.5 rolling bar effect                                           | 4-6  |
|   | 4.4   | black level calibration (BLC)                                      | 4-7  |
|   | 4.5   | one time programmable (OTP) memory                                 | 4-11 |
|   |       | 4.5.1 OTP other functions                                          | 4-11 |
| 5 | imag  | ge sensor processor digital functions                              | 5-1  |
|   | 5.1   | ISP top                                                            | 5-1  |
|   | 5.2   | pre_DSP                                                            | 5-4  |
|   | 5.3   | defective pixel cancellation (DPC)                                 | 5-5  |
|   | 5.4   | window cut (WINC)                                                  | 5-5  |
|   | 5.5   | lens correction (LENC)                                             | 5-6  |
|   | 5.6   | manual exposure compensation/ manual gain compensation (MEC/MGC)   | 5-11 |
| 6 | regis | ster tables                                                        | 6-1  |
|   | 6.1   | PLL control [0x0300 - 0x0312, 0x031B - 0x031C, 0x031E]             | 6-1  |
|   | 6.2   | system control [0x3000 - 0x3024, 0x302A, 0x3030 - 0x3040, 0x3043]  | 6-2  |
|   | 6.3   | SCCB control [0x3100 - 0x3107]                                     | 6-9  |
|   | 6.4   | group hold control [0x3200 - 0x320F]                               | 6-10 |
|   | 6.5   | MEC/MGC control [0x3500 - 0x3503, 0x3505, 0x3507 - 0x3518]         | 6-11 |
|   | 6.6   | analog control [0x3600 - 0x36FF]                                   | 6-14 |
|   | 6.7   | array control [0x3700 - 0x37FF]                                    | 6-14 |
|   | 6.8   | timing control [0x3800 - 0x3848, 0x3861 - 0x3863, 0x3870 - 0x3872] | 6-14 |
|   | 6.9   | LPM control [0x3C80 - 0x3C87]                                      | 6-19 |
|   | 6.10  | 0 power control [0x3CC0 ~ 0x3CC8]                                  | 6-19 |
|   | 6.11  | 1 OTP_SC control [0x3D80 - 0x3D91]                                 | 6-20 |
|   | 6.12  | 2 PSRAM control [0x3F00 - 0x3F0F]                                  | 6-22 |
|   | 6.13  | BLC control [0x4000 - 0x4027, 0x4030 - 0x4050, 0x4060 - 0x4067]    | 6-22 |



|    | 6.14   | FC control [0x4200 - 0x4203]                                     | 6-27 |
|----|--------|------------------------------------------------------------------|------|
|    | 6.15   | format control [0x4300 - 0x4317, 0x4320 - 0x4329]                | 6-27 |
|    | 6.16   | CADC sync control [0x4500 - 0x4505]                              | 6-30 |
|    | 6.17   | VFIFO control [0x4600 - 0x4604]                                  | 6-30 |
|    | 6.18   | MIPI control [0x4800 - 0x4833, 0x4836 - 0x483D, 0x484A - 0x4853] | 6-31 |
|    | 6.19   | ISPFC control [0x4900 - 0x4903]                                  | 6-41 |
|    | 6.20   | ISP control [0x5000 - 0x5009, 0x500E - 0x5026, 0x502D - 0x5030]  | 6-42 |
|    | 6.21   | DPC long exposure control [0x5780 - 0x57B2]                      | 6-45 |
|    | 6.22   | DPC short exposure control [0x5800 - 0x5815, 0x582C - 0x5832]    | 6-48 |
|    | 6.23   | LENC control [0x5900 - 0x59FF]                                   | 6-50 |
|    | 6.24   | WINC control [0x5A00 - 0x5A0C]                                   | 6-54 |
|    | 6.25   | OTP control [0x5B00 - 0x5B0D, 0x5B10 - 0x5B23]                   | 6-55 |
|    | 6.26   | pre_DSP control [0x5E00 - 0x5E2E]                                | 6-58 |
| 7  | opera  | ting specifications                                              | 7-1  |
|    | 7.1 a  | absolute maximum ratings                                         | 7-1  |
|    | 7.2 f  | functional temperature                                           | 7-1  |
|    | 7.3 [  | OC characteristics                                               | 7-2  |
|    | 7.4 t  | iming characteristics                                            | 7-3  |
| 8  | mecha  | anical specifications                                            | 8-1  |
|    | 8.1 (  | COB physical specifications                                      | 8-1  |
|    | 8.2 r  | reconstructed wafer (RW) physical specifications                 | 8-4  |
| 9  | optica | al specifications                                                | 9-1  |
|    | 9.1    | sensor array center                                              | 9-1  |
|    | 9.2 l  | ens chief ray angle (CRA)                                        | 9-2  |
| ap | pendi  | A handling of RW devices                                         | A-1  |
|    | A.1 I  | ESD /EOS prevention                                              | A-1  |
|    | A.2    | particles and cleanliness of environment                         | A-1  |
|    | A.3 (  | other requirements                                               | A-1  |







# list of figures

| figure 1-1  | pad diagram                                    | 1-3  |
|-------------|------------------------------------------------|------|
| figure 2-1  | OV8856 block diagram                           | 2-2  |
| figure 2-2  | OV8856 reference schematic                     | 2-3  |
| figure 2-3  | power up sequence                              | 2-7  |
| figure 2-4  | software standby sequence                      | 2-9  |
| figure 2-5  | power down sequence                            | 2-10 |
| figure 2-6  | clock scheme                                   | 2-12 |
| figure 2-7  | message type                                   | 2-14 |
| figure 2-8  | SCCB single read from random location          | 2-15 |
| figure 2-9  | SCCB single read from current location         | 2-15 |
| figure 2-10 | SCCB sequential read from random location      | 2-16 |
| figure 2-11 | SCCB sequential read from current location     | 2-16 |
| figure 2-12 | SCCB single write to random location           | 2-17 |
| figure 2-13 | SCCB sequential write to random location       | 2-17 |
| figure 2-14 | SCCB interface timing                          | 2-18 |
| figure 3-1  | sensor array region color filter layout        | 3-1  |
| figure 3-2  | example of 2x2 binning                         | 3-2  |
| figure 3-3  | alternate row HDR                              | 3-3  |
| figure 3-4  | HDR output timing                              | 3-3  |
| figure 4-1  | mirror and flip samples                        | 4-1  |
| figure 4-2  | image windowing                                | 4-2  |
| figure 4-3  | color bar types                                | 4-4  |
| figure 4-4  | color, black and white square bars             | 4-5  |
| figure 4-5  | transparent effect                             | 4-5  |
| figure 4-6  | rolling bar effect                             | 4-6  |
| figure 5-1  | control points of luminance and color channels | 5-6  |
| figure 5-2  | luminance compensation level calculation       | 5-7  |
| figure 8-1  | COB die specifications                         | 8-1  |
| figure 8-2  | OV8856 RW physical diagram                     | 8-5  |
| figure 9-1  | sensor array center                            | 9-1  |
| figure 9-2  | chief ray angle (CRA)                          | 9-2  |







## list of tables

| table 1-1  | signal descriptions                    | 1-1  |
|------------|----------------------------------------|------|
| table 1-2  | configuration under various conditions | 1-2  |
| table 1-3  | pad symbol and equivalent circuit      | 1-4  |
| table 2-1  | format and frame rate                  | 2-4  |
| table 2-2  | I/O control registers                  | 2-5  |
| table 2-3  | power up sequence                      | 2-6  |
| table 2-4  | power up sequence timing constraints   | 2-6  |
| table 2-5  | power down sequence                    | 2-8  |
| table 2-6  | power down sequence timing constraints | 2-8  |
| table 2-7  | hardware and standby description       | 2-11 |
| table 2-8  | PLL registers                          | 2-12 |
| table 2-9  | sample PLL configuration               | 2-13 |
| table 2-10 | SCCB interface timing specifications   | 2-18 |
| table 2-11 | context switching control              | 2-19 |
| table 2-12 | register re-mapping                    | 2-22 |
| table 3-1  | binning-related registers              | 3-2  |
| table 3-2  | HDR control registers                  | 3-3  |
| table 4-1  | mirror and flip registers              | 4-1  |
| table 4-2  | image windowing control functions      | 4-3  |
| table 4-3  | test pattern registers                 | 4-6  |
| table 4-4  | BLC control registers                  | 4-7  |
| table 4-5  | OTP control registers                  | 4-12 |
| table 5-1  | ISP top registers                      | 5-1  |
| table 5-2  | pre_DSP registers                      | 5-4  |
| table 5-3  | DPC control registers                  | 5-5  |
| table 5-4  | WINC control registers                 | 5-5  |
| table 5-5  | LENC control registers                 | 5-7  |
| table 5-6  | MEC/MGC control registers              | 5-11 |
| table 6-1  | PLL control registers                  | 6-1  |
| table 6-2  | system control registers               | 6-2  |
| table 6-3  | SCCB control registers                 | 6-9  |
| table 6-4  | group hold control registers           | 6-10 |



| 4-61-C F   | NATO INCO analysis stars               | C 11 |
|------------|----------------------------------------|------|
|            | MEC/MGC control registers              | 6-11 |
| table 6-6  | analog control registers               | 6-14 |
| table 6-7  | array control registers                | 6-14 |
| table 6-8  | timing control registers               | 6-14 |
| table 6-9  | power saving mode control registers    | 6-19 |
| table 6-10 | power control registers                | 6-19 |
| table 6-11 | OTP_SC control registers               | 6-20 |
| table 6-12 | PSRAM control registers                | 6-22 |
| table 6-13 | BLC control registers                  | 6-22 |
| table 6-14 | FC control registers                   | 6-27 |
| table 6-15 | format control registers               | 6-27 |
| table 6-16 | CADC sync control registers            | 6-30 |
| table 6-17 | VFIFO control registers                | 6-30 |
| table 6-18 | MIPI control registers                 | 6-31 |
| table 6-19 | ISPFC control registers                | 6-41 |
| table 6-20 | ISP control registers                  | 6-42 |
| table 6-21 | DPC long exposure control registers    | 6-45 |
| table 6-22 | DPC short exposure control registers   | 6-48 |
| table 6-23 | LENC control registers                 | 6-50 |
| table 6-24 | WINC control registers                 | 6-54 |
| table 6-25 | OTP control registers                  | 6-55 |
| table 6-26 | pre_DSP control registers              | 6-58 |
| table 7-1  | absolute maximum ratings               | 7-1  |
| table 7-2  | functional temperature                 | 7-1  |
| table 7-3  | DC characteristics (-30°C < TJ < 85°C) | 7-2  |
| table 7-4  | timing characteristics                 | 7-3  |
| table 8-1  | pad location coordinates               | 8-2  |
| table 8-2  | RW physical dimensions                 | 8-4  |
| table 9-1  | CRA versus image height plot           | 9-2  |



# 1 signal descriptions

**table 1-1** lists the signal descriptions and their corresponding pad numbers for the OV8856 image sensor. The die information is shown in **section 8**.

table 1-1 signal descriptions (sheet 1 of 2)

|               | 3.8         |             | 3(13)                                                                        |  |
|---------------|-------------|-------------|------------------------------------------------------------------------------|--|
| pad<br>number | signal name | pad<br>type | description                                                                  |  |
| 01            | DOGND       | ground      | I/O ground                                                                   |  |
| 02            | DVDD        | power       | digital circuit power                                                        |  |
| 03            | AGND        | ground      | analog ground                                                                |  |
| 04            | AVDD        | power       | analog power                                                                 |  |
| 05            | SID         | input       | SCCB last bit ID input  0: SCCB ID address = 0x6C  1: SCCB ID address = 0x20 |  |
| 06            | SCL         | input       | SCCB interface input clock                                                   |  |
| 07            | SDA         | I/O         | SCCB interface data pin                                                      |  |
| 08            | FSIN/VSYNC  | I/O         | frame sync / video output vertical signal                                    |  |
| 09            | DOVDD       | power       | I/O power                                                                    |  |
| 10            | XSHUTDN     | input       | reset and power down (active low with pull down resistor)                    |  |
| 11            | ТМ          | input       | test mode (active high with pull down resistor)                              |  |
| 12            | DVDD        | power       | digital circuit power                                                        |  |
| 13            | DOGND       | ground      | I/O ground                                                                   |  |
| 14            | AVDD        | power       | analog power                                                                 |  |
| 15            | AGND        | ground      | analog ground                                                                |  |
| 16            | AGND        | ground      | analog ground                                                                |  |
| 17            | AVDD        | power       | analog power                                                                 |  |
| 18            | VH          | power       | internal voltage reference                                                   |  |
| 19            | VN          | power       | internal voltage reference                                                   |  |
| 20            | DOGND       | ground      | I/O ground                                                                   |  |
| 21            | MDP2        | output      | MIPI data positive output                                                    |  |
| 22            | MDN2        | output      | MIPI data negative output                                                    |  |
| 23            | MDP0        | output      | MIPI data positive output                                                    |  |
| 24            | MDN0        | output      | MIPI data negative output                                                    |  |
|               |             |             |                                                                              |  |



table 1-1 signal descriptions (sheet 2 of 2)

| pad<br>number | signal name | pad<br>type | description                |
|---------------|-------------|-------------|----------------------------|
| 25            | EGND        | ground      | ground for MIPI circuit    |
| 26            | PVDD        | power       | PLL analog power           |
| 27            | EVDD        | power       | power for MIPI circuit     |
| 28            | MCP         | output      | MIPI clock positive output |
| 29            | MCN         | output      | MIPI clock negative output |
| 30            | EGND        | ground      | ground for MIPI circuit    |
| 31            | MDP1        | output      | MIPI data positive output  |
| 32            | MDN1        | output      | MIPI data negative output  |
| 33            | EVDD        | power       | power for MIPI circuit     |
| 34            | MDP3        | output      | MIPI data positive output  |
| 35            | MDN3        | output      | MIPI data negative output  |
| 36            | DOVDD       | power       | I/O power                  |
| 37            | XVCLK       | input       | system clock input         |
| 38            | DVDD        | power       | digital circuit power      |
| 39            | DOGND       | ground      | I/O ground                 |

table 1-2 configuration under various conditions (sheet 1 of 2)

| pad | signal name | RESET      | after RESET release <sup>b</sup> | software standby <sup>c</sup>    |
|-----|-------------|------------|----------------------------------|----------------------------------|
| 05  | SID         | input      | input                            | input                            |
| 06  | SCL         | high-z     | input                            | input                            |
| 07  | SDA         | open drain | I/O                              | I/O                              |
| 08  | VSYNC       | high-z     | high-z                           | high-z by default (configurable) |
| 08  | FSIN        | high-z     | input                            | input (configurable)             |
| 10  | XSHUTDN     | input      | input                            | input                            |
| 11  | TM          | input      | input                            | input                            |
| 21  | MDP2        | high-z     | high                             | high by default (configurable)   |
| 22  | MDN2        | high-z     | high                             | high by default (configurable)   |
| 23  | MDP0        | high-z     | high                             | high by default (configurable)   |
| 24  | MDN0        | high-z     | high                             | high by default (configurable)   |



table 1-2 configuration under various conditions (sheet 2 of 2)

| pad | signal name | RESET <sup>a</sup> | after RESET release <sup>b</sup> | software standby <sup>c</sup>  |
|-----|-------------|--------------------|----------------------------------|--------------------------------|
| 28  | MCP         | high-z             | high                             | high by default (configurable) |
| 29  | MCN         | high-z             | high                             | high by default (configurable) |
| 31  | MDP1        | high-z             | high                             | high by default (configurable) |
| 32  | MDN1        | high-z             | high                             | high by default (configurable) |
| 34  | MDP3        | high-z             | high                             | high by default (configurable) |
| 35  | MDN3        | high-z             | high                             | high by default (configurable) |
| 37  | XVCLK       | high-z             | input                            | input                          |

a. XSHUTDN = 0

figure 1-1 pad diagram





b. XSHUTDN from 0 to 1

c. sensor set to sleep from streaming mode

table 1-3 pad symbol and equivalent circuit

| symbol                                                                                | equivalent circuit               |
|---------------------------------------------------------------------------------------|----------------------------------|
| XVCLK, SID                                                                            | PAD DOGND EN EN                  |
| SDA                                                                                   | PAD from core PD1 pD1 poen-drain |
| SCL                                                                                   | PAD PD1 PD1 DOGND                |
| FSIN/VSYNC                                                                            | DOUT PAD PAD DIN PD2             |
| VN                                                                                    | PAD DOGND                        |
| MDP3, MDP2, MDP1, MDP0,<br>MDN3, VH, MDN2, MDN1, MDN0,<br>MCP, MCN, EGND, AGND, DOGND | DOGND DOGND                      |
| AVDD, EVDD, DVDD, DOVDD,<br>PVDD                                                      | DOGND DOGND                      |
| XSHUTDN, TM                                                                           | PAD DOGND DOGND DOGND            |



## 2 system level description

#### 2.1 overview

The OV8856 RAW RGB PureCel<sup>®</sup> image sensor is a high performance, 1/4-inch 8 megapixel CMOS image sensor that delivers 3264x2448 at 30 fps. It provides full-frame, sub-sampled, and windowed 10-bit MIPI images in various formats via the control of the Serial Camera Control Bus (SCCB) interface.

The OV8856 has an 8 megapixel image array capable of operating at up to 30 frames per second (fps) in 10-bit resolution with complete user control over image quality, formatting and output data transfer. Some image processing functions, such as defective pixel canceling, lens correction (LENC), etc., are programmable through the SCCB interface.

In addition, OmniVision image sensors use proprietary sensor technology to improve image quality by reducing or eliminating common lighting/electrical sources of image contamination, such as fixed pattern noise, smearing, etc., to produce a clean, fully stable, color image.

For customized information purposes, the OV8856 includes 8k bits of one-time programmable (OTP) memory. The OV8856 has a MIPI interface of up to four lanes.

#### 2.1.1 identifying the sensor's revision ID

For the OV8856, the sensor's revision ID can be read out from the first byte in Bank 0 of one-time program (OTP) memory. To read out data from OTP, perform the following steps:

6c 0100 01 6c 3d84 00 6c 3d81 01

Then, verify that register 0x7000 = 0x00, 0x7001 = 0x88, and 0x7002 = 0x56.



#### 2.2 architecture

The OV8856 sensor core generates streaming pixel data at a constant frame rate. **figure 2-1** shows the functional block diagram of the OV8856 image sensor.

The timing generator outputs clocks to access the rows of the imaging array, pre-charging and sampling the rows of the array sequentially. In the time between pre-charging and sampling a row, the charge in the pixels decreases with exposure to incident light. This is the exposure time in rolling shutter architecture.

The exposure time is controlled by adjusting the time interval between pre-charging and sampling. After the data of the pixels in the row has been sampled, it is processed through analog circuitry to correct the offset and multiply the data with corresponding gain. Following analog processing is the ADC which outputs up to 10-bit data for each pixel in the array.

figure 2-1 OV8856 block diagram





DOVDD AGND AF\_AGND AF\_VCC SIOD AVDD SIOC XSHUTDN MDP2 MDN2 SID × × × × MDP1 PI Panasonic AXE640124 MDN1 DGND MCP MCN DGND MDP0 U1 **OV8856 COB** MDNO DGND × FSIN XCLK MDP3 DVDD MDN3 DOVDD DGND DGND DVDD DOVDD U2 BU64297GWZ U3 GT24C32A-2C4LI-TR DOVDD VCM vcc SCL SIOD SDA //7note 1 XSHUTDOWN(XSHUTDN) is recommended to control at system level. EEPROM is needed for PDAF module and is not required for non-PDAF module note 2 for FSIN, if unused, can be left floating.  $\textbf{note 3} \ \, \mathsf{AVDD} \, \mathsf{is} \, \mathsf{2.8V} \, \mathsf{of} \, \mathsf{sensor} \, \mathsf{analog} \, \mathsf{power} \, \mathsf{(clean)}.$  $\textbf{note 4} \ \, \text{DOVDD} \, \text{is} \, 1.8/2.8 \text{V} \, \text{of sensor digital IO power (clean)}. \, 1.8 \text{V} \, \text{is} \, \text{recommended}.$ DVDD DOVDD note 5 DVDD is 1.2V of sensor digital power. note 6 sensor AGND and DGND should be separated and connected to a single point outside PCB (do not connect inside module). **note 7** capacitors should be close to their related sensor pins.

MCP and MCN are MIPI clock lane positive and negative output.

MDPx and MDNx are MIPI data lane positive and negative output. **note 8** traces of MCP, MCN, MDPx, and MDNx should have the same or similar length.
differential impedance of the clock pair and data pair transmission lines should be controlled at 100 Ohm. note 9 SID pin should be pulled low for device address 0x6C and pulled high for device address 0x20.

**figure 2-2** OV8856 reference schematic



8856\_COB\_DS\_2\_2

 $\begin{tabular}{ll} \textbf{note 10} & AF\_VCC \ and \ AF\_AGND \ is the power supply for auto focus related circuitry. \\ although \ AF\_VCC \ is \ 2.8-3.3V, it is recommended to use 3.3V for better auto focus performance. \\ \end{tabular}$ 

**note 11** EEPROM slave ID is 0xA4 for write and 0xA5 for read based on current configuration

#### 2.3 format and frame

The OV8856 supports RAW RGB output with one/two/four lane MIPI interface.

table 2-1 format and frame rate

| format     | resolution  | max frame rate | methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-bit output MIPI data rate |
|------------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 8 MP       | 3264 x 2448 | 30 fps         | full resolution (4:3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-lane @ 720 Mbps/lane       |
| O IVIF     | 3204 X 2440 | 30 lps         | ruii resolution (4.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-lane @ 1.272 Gbps/lane     |
| 6 MP HD    | 3264 x1836  | 30 fps         | full resolution (16:9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-lane @ 720 Mbps/lane       |
| O IVIP FID | 3204 x 1630 | 30 lps         | ruii resolution (16.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-lane @ 1.272 Gbps/lane     |
| FIC 10905  | 2112 x 1188 | 60 fps         | cropping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-lane @ 720 Mbps/lane       |
| EIS 1080p  | 2112 X 1100 | ou ips         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-lane @ 1.272 Gbps/lane     |
| 1080p      | 1920 x 1080 | 60 fps         | aranning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-lane @ 720 Mbps/lane       |
| 1000р      | 1920 X 1000 | ou ips         | cropping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-lane @ 1.272 Gbps/lane     |
| FIC 720°   | 1408 x 792  | 00 for         | and the second s | 4-lane @ 360 Mbps/lane       |
| EIS 720p   | 1400 X 792  | 90 fps         | cropping + 2x binning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-lane @ 720 Mbps/lane       |
| 720n       | 1280 x 720  | 90 fps         | cropping + 2x binning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-lane @ 360 Mbps/lane       |
| 720p       | 1200 X 720  | 90 lps         | cropping + 2x binining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-lane @ 720 Mbps/lane       |
| VGA        | 640 x 480   | 120 fps        | cropping + 4x binning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-lane @ 180 Mbps/lane       |
| VGA        | 040 X 460   | 120 lps        | cropping + 4x birining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-lane @ 360 Mbps/lane       |
|            |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |



## 2.4 I/O control

The OV8856 can configure its I/O pads as an input or output. For the output signal, it follows one of two paths: either from the data path or from register control.

table 2-2 I/O control registers

| function                        | register | description                                                    |
|---------------------------------|----------|----------------------------------------------------------------|
| output drive capability control | 0x3011   | Bit[6:5]: I/O pad drive capability 00: 1x 01: 2x 10: 3x 11: 4x |
| VSYNC I/O control               | 0x3000   | Bit[5]: VSYNC output enable 0: input 1: output                 |
| VSYNC output select             | 0x300E   | Bit[5]: enable VSYNC as GPIO controlled by register            |
| VSYNC output value              | 0x3003   | Bit[3]: register control VSYNC output                          |

#### 2.5 MIPI interface

The OV8856 supports a MIPI interface of up to 4-lanes. The MIPI interface can be configured for 1, 2, or 4 lanes and each lane is capable of a data transfer rate of up to 720 Mbps for 4-lane MIPI or 1.44 Gbps for 2-lane MIPI.



## 2.6 power management

Based on the system power configuration (XSHUTDN), the power up sequence will be different. OmniVision recommends cutting off all power supplies, including the external DVDD, when the sensor is not in use.

#### 2.6.1 power up sequence

To avoid any glitch from a strong external noise source, OmniVision recommends controlling XSHUTDN.

Whether or not XSHUTDN is controlled by GPIO, the XSHUTDN rising cannot occur before AVDD and DOVDD.

table 2-3 power up sequence

| XSHUTDN | power up sequence requirement                                                                                                           |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| GPIO    | Refer to figure 2-3  1. DOVDD, AVDD, and DVDD can rise in any order  2. XSHUTDN rising must occur after AVDD, DOVDD and DVDD are stable |  |

### table 2-4 power up sequence timing constraints

| constraint                                                         | label           | min  | max | unit         |
|--------------------------------------------------------------------|-----------------|------|-----|--------------|
| AVDD rising – DOVDD rising                                         | t0 <sup>a</sup> | 0    | 80  | ns           |
| DOVDD rising – AVDD rising                                         | t1 <sup>a</sup> | · ·  | ~   | ns           |
| XSHUTDN rising – first SCCB transaction                            | t2              | 8192 |     | XVCLK cycles |
| minimum number of XVCLK cycles prior to the first SCCB transaction | t3              | 8192 |     | XVCLK cycles |
| PLL lock period                                                    | t4              | 0.2  |     | ms           |
| AVDD or DOVDD, whichever is last – DVDD                            | t5 <sup>a</sup> | 0    | ∞   | ns           |
| DVDD – XSHUTDN rising                                              | t6              | 0    | 00  | ns           |

a. only for OV8856, t0, t1, and t5 may rise in any order before XSHUTDN is pulled high



figure 2-3 power up sequence



note 1 DOVDD, AVDD and DVDD may rise in any order

8855\_8856\_DS\_2\_3

#### 2.6.2 power down sequence

The digital and analog supply voltages can be powered down in any order (e.g., DOVDD, then AVDD or AVDD, then DOVDD). Similar to the power up sequence, the XVCLK input clock may be either gated or continuous. To avoid bad frames from the MIPI, OmniVision recommends to using group hold to send SCCB sleep command.

table 2-5 power down sequence

| XSHUTDN | power down sequence requirement                                                                                                                                 |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| GPIO    | Refer to figure 2-5  1. software standby recommended  2. pull XSHUTDN low for minimum power consumption  3. cut off DVDD, pull AVDD, and DOVDD low in any order |  |  |  |

#### table 2-6 power down sequence timing constraints

| constraint                                                                 | label           | min                                                                                                                         | max                                             | unit         |
|----------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------|
| enter software standby SCCB command device in software standby mode        | tO              | when a frame of M<br>output, wait for the<br>before entering the<br>standby; otherwise<br>software standby r<br>immediately | MIPI end code<br>e software for<br>e, enter the |              |
| minimum of XVCLK cycles after the last SCCB transaction or MIPI frame end  | t1              | 512                                                                                                                         |                                                 | XVCLK cycles |
| last SCCB transaction or MIPI frame end, XSHUTDN falling                   | t2              | 512                                                                                                                         |                                                 | XVCLK cycles |
| XSHUTDN falling – AVDD falling or DVDD or DOVDD falling whichever is first | t3 <sup>a</sup> | 0.0                                                                                                                         |                                                 | ns           |

a. only for OV8856, DVDD, DOVDD, and AVDD may fall in any order after XSHUTDN is pulled low



**figure 2-4** software standby sequence





figure 2-5 power down sequence





#### 2.7 reset

The whole chip will be reset during power up. Manually applying a hardware reset (XSHUTDN=0) upon power up is recommended even though the on-chip power up reset is included. The hardware reset is active low with an asynchronized design. The reset pulse width should be greater than or equal to 2 ms.

#### 2.7.1 power ON reset

The power on reset can be controlled from an external pin. Additionally, in this sensor, a power on reset is generated after the core power becomes stable.

#### 2.7.2 software reset

When register 0x0103[0] is configured as 1, all registers are reset to their default values.

## 2.8 hardware and software standby

Two suspend modes are available for the OV8856:

- hardware standby
- software standby

#### 2.8.1 hardware standby

To initiate hardware standby mode, the XSHUTDN must be tied to low. When this occurs, the OV8856 internal device clock is halted even when the external clock source is still clocking and all internal counters are reset.

#### 2.8.2 software standby

Executing a software power down (0x0100[0]) through the SCCB interface suspends internal circuit activity, but does not halt the device clock. All register content is maintained in standby mode. During the resume state, all the registers are restored to their original values.

table 2-7 hardware and standby description

| mode                          | description                            |                                |    |
|-------------------------------|----------------------------------------|--------------------------------|----|
| hardware standby with XSHUTDN | •                                      | cks<br>reset to default values |    |
|                               | no SCCB commun     minimum power co    |                                |    |
|                               | <ol> <li>default mode after</li> </ol> | power on reset                 |    |
|                               | <ol><li>power down all blo</li></ol>   | cks except SCCB                |    |
| software standby              | <ol><li>register values are</li></ol>  | maintained                     |    |
| Software Startuby             | <ol><li>SCCB communica</li></ol>       | tion is available              |    |
|                               | <ol><li>low power consum</li></ol>     | ption                          |    |
|                               | 6. GPIO can be confi                   | gured as high/low/tri-stat     | te |



## 2.9 system clock control

PLL settings can only be changed during sensor standby mode (0x0100 = 0).

#### 2.9.1 PLL1

The PLL1 generates a default 90 MHz pixel clock and 720 MHz MIPI serial clock from a 6~27 MHz input clock. The VCO range is from 500 MHz to 960 MHz. A programmable clock is provided to generate different frequencies.

#### 2.9.2 PLL2

The PLL2 generates a default 144 MHz system clock from a 6~27 MHz input clock. The VCO range is from 500 MHz to 960 MHz. A programmable clock divider is provided to generate different frequencies.

figure 2-6 clock scheme



table 2-8 PLL registers (sheet 1 of 2)

| address | register name | default<br>value | R/W | description                    |
|---------|---------------|------------------|-----|--------------------------------|
| 0x0300  | PLL_CTRL_0    | 0x00             | RW  | Bit[2:0]: pll1_pre_div         |
| 0x0301  | PLL_CTRL_1    | 0x00             | RW  | Bit[1:0]: pll1_multiplier[9:8] |
| 0x0302  | PLL_CTRL_2    | 0x19             | RW  | Bit[7:0]: pll1_multiplier[7:0] |
| 0x0303  | PLL_CTRL_3    | 0x00             | RW  | Bit[3:0]: pll1_divm            |
| 0x0304  | PLL_CTRL_4    | 0x03             | RW  | Bit[1:0]: pll1_div_mipi        |
| 0x0305  | PLL_CTRL_5    | 0x01             | RW  | Bit[1:0]: pll1_div_sp          |
| 0x0306  | PLL_CTRL_6    | 0x01             | RW  | Bit[0]: pll1_div_s             |
| 0x0308  | PLL_CTRL_8    | 0x00             | RW  | Bit[0]: pll1_bypass            |
| 0x0309  | PLL_CTRL_9    | 0x01             | RW  | Bit[2:0]: pll1_cp              |
| 0x030A  | PLL_CTRL_A    | 0x00             | RW  | Bit[0]: pll1_predivp           |
| 0x030B  | PLL_CTRL_B    | 0x00             | RW  | Bit[2:0]: pll2_pre_div         |
| 0x030C  | PLL_CTRL_C    | 0x00             | RW  | Bit[1:0]: pll2_r_divp[9:8]     |



table 2-8 PLL registers (sheet 2 of 2)

| address | register name | default<br>value | R/W | description                                      |
|---------|---------------|------------------|-----|--------------------------------------------------|
| 0x030D  | PLL_CTRL_D    | 0x1E             | RW  | Bit[7:0]: pll2_r_divp[7:0]                       |
| 0x030E  | PLL_CTRL_E    | 0x02             | RW  | Bit[2:0]: pll2_r_divs                            |
| 0x030F  | PLL_CTRL_F    | 0x02             | RW  | Bit[3:0]: pll2_r_divsp                           |
| 0x0310  | PLL_CTRL_10   | 0x01             | RW  | Bit[2:0]: pll2_r_cp                              |
| 0x0311  | PLL_CTRL_11   | 0x00             | RW  | Bit[0]: pll2_bypass                              |
| 0x0312  | PLL_CTRL_12   | 0x01             | RW  | Bit[4]: pll2_pre_div0<br>Bit[3:0]: pll2_r_divdac |

sample PLL configuration table 2-9

|                 |                            | input  | clock (XVCLK) |
|-----------------|----------------------------|--------|---------------|
| control name    | address                    | 24 MHz | 6 MHz         |
| PLL1_PREDIVP    | 0x030A[0]                  | 0x0    | 0x0           |
| PLL1_PREDIV     | 0x0300[2:0]                | 0x0    | 0x0           |
| PLL1_MULTIPLIER | {0x0301[1:0], 0x0302[7:0]} | 0x1E   | 0x64          |
| PLL1_DIV_MIPI   | 0x0304[1:0]                | 0x3    | 0x3           |
| PLL1_DIVM       | 0x0303[3:0]                | 0x0    | 0x0           |
| PLL1_DIVSP      | 0x0305[1:0]                | 0x1    | 0x1           |
| PLL1_DIVS       | 0x0306[0]                  | 0x1    | 0x1           |
| PLL2_PREDIVP    | 0x3012[0]                  | 0x0    | 0x0           |
| PLL2_PREDIV     | 0x030B[2:0]                | 0x0    | 0x0           |
| PLL2_MULTIPLIER | {0x030C[1:0], 0x030D[7:0]} | 0x1E   | 0x78          |
| PLL2_DIVSP      | 0x030F[3:0]                | 0x4    | 0x2           |
| PLL2_DIVS       | 0x030E[2:0]                | 0x0    | 0x2           |
| SCLK            |                            | 144MHz | 120MHz        |
| PHY_SCLK        | -                          | 720MHz | 600MHz        |
| MIPI_PCLK       | _                          | 90MHz  | 75MHz         |



### 2.10 serial camera control bus (SCCB) interface

The Serial Camera Control Bus (SCCB) interface controls the image sensor operation. Refer to the *OmniVision Technologies Serial Camera Control Bus (SCCB) Specification* for detailed usage of the serial control port.

In the OV8856, the SCCB ID is controlled by the SID pin. If SID is low, the sensor's SCCB ID is 0x6C for write (0x6D for read). If SID is high, the sensor's SCCB ID is 0x20 for write (0x21 for read). The SCCB ID can also be programmed by registers. When 0x303F[0] is 1, the ID comes from register 0x3004 when SID=0 and register 0x3012 when SID=1.

#### 2.10.1 data transfer protocol

The data transfer of the OV8856 follows the SCCB protocol.

#### 2.10.2 message format

The OV8856 supports the message format shown in figure 2-7. The repeated START (Sr) condition is not shown in figure 2-8, but is shown in figure 2-9 and figure 2-10.

### figure 2-7 message type

message type: 16-bit sub-address, 8-bit data, and 7-bit slave address



 $\textbf{note 1} \ \text{slave address must be } 0 \times 36 \ \text{for SCCB write address to be } 0 \times 6C \ \text{and for SCCB read address to be } 0 \times 6D \ \text{or SCCB read address}$ 

8855\_8856\_DS\_2\_7



#### 2.10.3 read / write operation

The OV8856 supports four different read operations and two different write operations:

- · a single read from random locations
- · a sequential read from random locations
- · a single read from current location
- · a sequential read from current location
- · single write to random locations
- · sequential write starting from random location

The sub-address in the sensor automatically increases by one after each read/write operation.

In a single read from random locations, the master does a dummy write operation to desired sub-address, issues a repeated start condition and then addresses the camera again with a read operation. After acknowledging its slave address, the camera starts to output data onto the SDA line as shown in **figure 2-8**. The master terminates the read operation by setting a negative acknowledge and stop condition.

**figure 2-8** SCCB single read from random location



If the host addresses the camera with read operation directly without the dummy write operation, the camera responds by setting the data from last used sub-address to the SDA line as shown in **figure 2-9**. The master terminates the read operation by setting a negative acknowledge and stop condition.

**figure 2-9** SCCB single read from current location





The sequential read from a random location is illustrated in figure 2-10. The master does a dummy write to the desired sub-address, issues a repeated start condition after acknowledge from slave and addresses the slave again with read operation. If a master issues an acknowledge after receiving data, it acts as a signal to the slave that the read operation shall continue from the next sub-address. When master has read the last data byte, it issues a negative acknowledge and stop condition.

figure 2-10 SCCB sequential read from random location



The sequential read from current location is similar to a sequential read from a random location. The only exception is that there is no dummy write operation, as shown in **figure 2-11**. The master terminates the read operation by setting a negative acknowledge and stop condition.

figure 2-11 SCCB sequential read from current location





The write operation to a random location is illustrated in **figure 2-12**. The master issues a write operation to the slave, sets the sub-address and data correspondingly after the slave has acknowledged. The write operation is terminated with a stop condition from the master.

**figure 2-12** SCCB single write to random location



The sequential write is illustrated in **figure 2-13**. The slave automatically increments the sub-address after each data byte. The sequential write operation is terminated with stop condition from the master.

**figure 2-13** SCCB sequential write to random location



#### 2.10.4 SCCB timing

figure 2-14 SCCB interface timing



table 2-10 SCCB interface timing specifications ab

| symbol                          | parameter                      | min      | typ | max | unit |
|---------------------------------|--------------------------------|----------|-----|-----|------|
| f <sub>SCL</sub>                | clock frequency                | 7        |     | 400 | kHz  |
| $t_{LOW}$                       | clock low period               | 1.3      |     |     | μs   |
| t <sub>HIGH</sub>               | clock high period              | 0.6      |     |     | μs   |
| t <sub>AA</sub>                 | SCL low to data out valid      | 0.1      |     | 0.9 | μs   |
| t <sub>BUF</sub>                | bus free time before new start | 1.3      |     |     | μs   |
| t <sub>HD:STA</sub>             | start condition hold time      | 0.6      |     |     | μs   |
| t <sub>SU:STA</sub>             | start condition setup time     | 0.6      |     |     | μs   |
| t <sub>HD:DAT</sub>             | data in hold time              | 0        |     |     | μs   |
| t <sub>SU:DAT</sub>             | data in setup time             | 0.1      |     |     | μs   |
| t <sub>SU:STO</sub>             | stop condition setup time      | 0.6      |     |     | μs   |
| t <sub>R</sub> , t <sub>F</sub> | SCCB rise/fall times           | <u>-</u> | ·   | 0.3 | μs   |
| t <sub>DH</sub>                 | data out hold time             | 0.05     |     |     | μs   |

a. SCCB timing is based on 400kHz mode



b. timing measurement shown at the beginning of the rising edge and/or of the falling edge signifies 30%, timing measurement shown in the middle of the rising/falling edge signifies 50%, timing measurement shown at the beginning of the rising edge and/or of the falling edge signifies 70%

## 2.11 group write

Group write is supported in order to update a group of registers (except 0x31xx) in the same frame. These registers are guaranteed to be written prior to the internal latch at the frame boundary. If more than one group is going to be launched, the second group cannot be recorded or launched before the first group has effectively been launched.

The OV8856 supports up to four groups. These groups share 1024 bytes of memory and the size of each group is programmable by adjusting the start address.

table 2-11 context switching control

| address | register name  | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|----------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3208  | GROUP ACCESS   |                  | w   | Group Access Bit[7:4]: group_ctrl 0000: Group hold start 0001: Group hold end 1010: Group delay launch 1110: Group quick launch Others: Reserved Bit[3:0]: Group ID 0000: Group bank 0, default start from address 0x00 0001: Group bank 1, default start from address 0x40 0010: Group bank 2, default start from address 0x80 0011: Group bank 3, default start from address 0xB0 Others: Reserved |
| 0x3209  | GRP0_PERIOD    | 0x00             | RW  | Frames For Staying in First Group<br>(must be Group 0) 0 Means Always Stay in Group 0                                                                                                                                                                                                                                                                                                                |
| 0x320A  | GRP1_PERIOD    | 0x00             | RW  | Frames For Staying in Second Group (can be Group 1-3) 0 Means Always Stay in Group 1                                                                                                                                                                                                                                                                                                                 |
| 0x320B  | GRP_SWCTRL     | 0x01             | RW  | Bit[7]: Auto switch Bit[3]: group_switch_repeat_en                                                                                                                                                                                                                                                                                                                                                   |
| 0x320D  | GRP_ACT        | _                | R   | Indicates Which Group is Active                                                                                                                                                                                                                                                                                                                                                                      |
| 0x320E  | FRAME_CNT_GRP0 | _                | R   | frame_cnt_grp0                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x320F  | FRAME_CNT_GRP1 | -                | R   | frame_cnt_grp1                                                                                                                                                                                                                                                                                                                                                                                       |



#### 2.11.1 hold

After the groups are configured, users can perform a hold operation to store register settings into the SRAM of each group. The hold of each group starts and ends with the control register 0x3208. The lower 4 bits of register 0x3208 control which group to access, and the upper 4 bits control the start (0x0: hold start) and end (0x1: hold end) of the hold operation.

The example setting below shows the sequence to hold group 0:

```
6C 3208 00 group 0 hold start
6C 3800 11 first register into group 0
6C 3911 22 second register into group 0
6C 3208 10 group 0 hold end
```

#### 2.11.2 launch

After the contents of each group are defined in the hold operation, all registers belonging to each group are stored in SRAM, and ready to be written into target registers (i.e., the launch of that group).

There are five launch modes as described in sections section 2.11.2.1 to section 2.11.2.5.

#### 2.11.2.1 launch mode 1 - quick manual launch

Manual launch is enabled by setting the register 0x320B to 0.

Quick manual launch is achieved by writing to control register 0x3208. The value written into this register is 0xEX, the upper 4 bits (0xE) are the quick launch command and the lower 4 bits (0xX) are the group number. For example, if users want to launch group 0, they just write the value 0xE0 to 0x3208, then the contents of group 0 will be written to the target registers immediately after the sensor gets this command through the SCCB. Below is a setting example.

```
6C 320B 00 manual launch on
6C 3208 E0 quick launch group 0
```

#### 2.11.2.2 launch mode 2 - delay manual launch

Delay manual launch is achieved by writing to the register 0x3208. The value written into this register is 0xAX, where the upper 4 bits (0xA) are the delay launch command and the lower 4 bits (0xX) are the group number. For example, if users want to launch group 1, they just write the value 0xA1 to 0x3208, then the contents of group 1 will be written to the target registers. The difference with mode 1 is that the writing will wait for some internally defined time spot in vertical blanking, thus delayed. Below is a setting example.

```
6C 320B 00 manual launch on
6C 3208 A1 delay launch group 1
```

#### 2.11.2.3 launch mode 3 - quick auto launch

Quick auto launch works like the mode 1, the difference is it will return to a specified group automatically. This is controlled by the register 0x3209, where bit[6:5] controls which group to return and bit[4:0] controls how many frames to stay before returning. The auto launch enable bit is the 0x320B[7].



The operation can be better understood with a setting example:

```
6C 3208 44 Bit[6:5]: 2, return to group 2, Bit[4:0]: 4: stay 4 frames
6C 320B 80 auto launch on
6C 3208 E0 quick launch group 0
```

In this example, sensor will quick launch group 0, stay at group 0 for 4 frames, then return to group 2 after that.

#### 2.11.2.4 launch mode 4: delay auto launch

Delay auto launch works like mode 2 in the delay launch part and like the mode 3 in the return part.

The operation can be better understood with a setting example:

```
6C 3209 44 Bit[6:5]: 2, return to group 2, Bit[4:0]: 4: stay 4 frames
6C 320B 80 auto launch on
6C 3208 A0 delay launch group 0
```

In this example, sensor will delay launch group 0, stay at group 0 for 4 frames, then return to group 2 after that.

#### 2.11.2.5 launch mode 5: repeat launch

Repeat launch is controlled by registers 0x3209, 0x320A, and 0x320B. In this mode, the launch is repeated automatically between the first group (must be group 0) and the second group (can be either one of groups 1-3, which is specified by register 0x320B[1:0]). The register 0x3209 defines how many frames remain at group 0, and register 0x320A defines how many frames remain at the second group.

The operation can be better understood with a setting example:

```
6C 3209 02 Bit[7:0]: 2, stay 2 frames in group 0
6C 320A 03 Bit[7]: 3, stay 3 frames in the second group
6C 320B 0E Bit[3:2]: 3, repeat launch on, Bit[1:0]: 2, second group select: group 2
6C 3208 A0 always use a0 for repeat launch
```

In this example, sensor will delay launch group 0, stay at group 0 for 2 frames, then switch to group 2 for 3 frames, then back to group 0 for 2 frames, group 2 for 3 frames and so on.

Below is another example to apply launch mode 2 (delay manual launch) first, sensor stays at group 2 for an indefinite number of frames, then apply launch mode 5 (repeat launch). The sensor will switch to group 0 for 2 frames, then group 2 for 3 frames, and so on.

```
6C 3208 A2 delay launch on

6C 3208 A2 delay launch group 2 stay at group 2 for indefinite frames

6C 3209 02 Bit[7:0]: 2, stay 2 frames in group 0

6C 320A 03 Bit[7:0]: 3, stay 3 frames in the second group

6C 320B 0E Bit[3:2]: 3, repeat launch on, Bit[1:0]: 2, second group select: group 2

6C 3208 A0 always use A0 for repeat launch
```

Switch to group 0 for 2 frames, then group 2 for 3 frames, and so on.



### 2.12 register re-mapping

The OV8856 supports register re-mapping function to re-map a source address to a continuous destination one. One use is to make some discontinuous address to a consecutive address, so the user can use sequential write through SCCB to access these registers. This will speed up the SCCB access. The OV8856 supports up to 32 registers which can be re-mapped to a continuous address.

```
6C 3101 32 ; Bit[5] enable re-mapping function
6C 3108 90 ; Destination start address
6C 3109 00
6C 3110 35 ; source address0
6C 3111 00 ;
6C 3112 35 ; source address1
6C 3113 01 ;
6C 3114 35 ; source address2
6C 3115 02 ;
6C 3116 35 ; source address3
6C 3117 08 ;
6C 3118 35 ; source address4
6C 3119 09 ;
```

Then, if the user wants to write 0x3500~0x3503 and 0x3508-0x3509:

```
6C 9000 AA; will write 0x3500 to 0xAA
6C 9001 BB; will write 0x3501 to 0xBB
6C 9002 CC; will write 0x3502 to 0xCC
6C 9003 DD; will write 0x3508 to 0xDD
6C 9004 EE; will write 0x3509 to 0xEE
```

### table 2-12 register re-mapping

| address | register name | default<br>value | R/W | description                                    |
|---------|---------------|------------------|-----|------------------------------------------------|
| 0x314E  | SRC ADDR1F H  | 0x00             | RW  | High Byte of Number 1F Source Register Address |
| 0x314F  | SRC ADDR1F L  | 0x00             | RW  | Low Byte of Number 1F Source Register Address  |



## 3 block level description

### 3.1 pixel array structure

The OV8856 sensor has an image array of 3296 columns by 2512 rows (8,279,552 pixels including 32 black lines). figure 3-1 shows a cross-section of the image sensor array.

The color filters are arranged in a Bayer pattern. The primary color BG/GR array is arranged in line-alternating fashion. Of the 8,279,552 pixels, 7,990,272 (3264x2448) are active pixels and can be output. The other pixels are used for black level calibration and interpolation. The center 3264x2448 pixels is suggested to be output from the whole active pixel array. The backend processor can use the boundary pixels for additional processing.

The sensor array design is based on a field integration readout system with line-by-line transfer and an electronic shutter with a synchronous pixel readout scheme.

figure 3-1 sensor array region color filter layout





### 3.2 subsampling

The OV8856 supports a binning mode to provide a lower resolution output while maintaining the field of view. With binning mode ON, the voltage levels of adjacent pixels (of the same color) are averaged before being sent to the ADC. The OV8856 supports 2x2 binning, which is illustrated in **figure 3-2**, where the voltage levels of two horizontal (2x1) adjacent same-color pixels are averaged.

**figure 3-2** example of 2x2 binning



table 3-1 binning-related registers

| address | register name  | default<br>value | R/W | description                                                                                          |
|---------|----------------|------------------|-----|------------------------------------------------------------------------------------------------------|
| 0x3821  | TIMING_FORMAT2 | 0x08             | RW  | Bit[7]: Vertical sum Bit[5]: Vertical binning Bit[4]: Horizontal binning Bit[3]: ISP horizontal VAR2 |
| 0x3814  | X_ODD_INC      | 0x01             | RW  | Bit[3:0]: Horizontal increase number at odd pixel                                                    |
| 0x3815  | X_EVEN_INC     | 0x01             | RW  | Bit[3:0]: Horizontal increase number at even pixel                                                   |
| 0x382A  | Y_ODD_INC      | 0x01             | RW  | Bit[3:0]: Vertical increase number at odd row                                                        |
| 0x382B  | Y_EVEN_INC     | 0x01             | RW  | Bit[3:0]: Vertical increase number at even row                                                       |



#### 3.3 alternate row HDR

In HDR mode, the exposure is still controlled by a rolling shutter. However, the frame data is separated into "long exposure" and "short exposure" in every two rows, as shown in **figure 3-3**. Long exposure time is controlled by registers 0x3500, 0x3501, and 0x3502. Short exposure time is controlled by registers 0x3510, 0x3511, and 0x3512. The sequence of MIPI output in HDR mode is similar to normal mode. The output timing of long and short exposure lines is shown in **figure 3-4** 

figure 3-3 alternate row HDR



figure 3-4 HDR output timing



table 3-2 HDR control registers (sheet 1 of 3)

| address | register name | default<br>value | R/W | description                                                             |
|---------|---------------|------------------|-----|-------------------------------------------------------------------------|
| 0x3820  | TIMING_FORMAT | 0x80             | RW  | Bit[0]: hdr_en<br>HDR enable<br>0: Disable<br>1: Enable                 |
| 0x3500  | MEC LONG EXPO | 0x00             | RW  | Long Exposure<br>Bit[3:0]: Long exposure[19:16]                         |
| 0x3501  | MEC LONG EXPO | 0x02             | RW  | Long Exposure<br>Bit[7:0]: Long exposure[15:8]                          |
| 0x3502  | MEC LONG EXPO | 0x00             | RW  | Long Exposure Bit[7:0]: Long exposure[7:0] Low 4 bits are fraction bits |



table 3-2 HDR control registers (sheet 2 of 3)

| ay option<br>ame<br>on                                               |
|----------------------------------------------------------------------|
| ime                                                                  |
| ime                                                                  |
| ime                                                                  |
| gain<br>gain format                                                  |
| sor gain format<br>(must be 0)                                       |
| option (must                                                         |
|                                                                      |
| al gain format, al_gain =  00 is 2x gain. ensor gain  80 is 2x gain, |
|                                                                      |
| change<br>ame rule as                                                |
|                                                                      |
| al a                             |



table 3-2 HDR control registers (sheet 3 of 3)

| address | register name  | default<br>value | R/W | description                                                               |  |
|---------|----------------|------------------|-----|---------------------------------------------------------------------------|--|
| 0x3511  | MEC SHORT EXPO | 0x02             | RW  | Short Exposure<br>Bit[7:0]: Short exposure[15:8]                          |  |
| 0x3512  | MEC SHORT EXPO | 0x00             | RW  | Short Exposure Bit[7:0]: Short exposure[7:0] Low 4 bits are fraction bits |  |

## 3.4 analog amplifier

When the column sample/hold circuit has sampled one row of pixels, the pixel data will shift out one-by-one into an analog amplifier.

### 3.5 10-bit A/D converters

The balanced signal is then digitized by the on-chip 10-bit ADC.







# 4 image sensor core digital functions

## 4.1 mirror and flip

The OV8856 provides mirror and flip readout modes, which respectively reverse the sensor data readout order horizontally and vertically (see **figure 4-1**).

figure 4-1 mirror and flip samples



table 4-1 mirror and flip registers

| address | register name | default<br>value | R/W | description                                                                                                                                                                   |
|---------|---------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3820  | FORMAT1       | 0x00             | RW  | Timing Control Register Bit[2]: Digital vertical flip enable 0: Normal 1: Vertical flip Bit[1]: Array vertical flip enable 0: Normal 1: Vertical flip                         |
| 0x3821  | FORMAT2       | 0x00             | RW  | Timing Control Register Bit[2]: Digital horizontal mirror control 0: Mirrored image 1: Normal image Bit[1]: Array horizontal mirror control 0: Mirrored image 1: Normal image |



## 4.2 image windowing

An image windowing area is defined by four parameters, horizontal start (HS), horizontal end (HE), vertical start (VS), and vertical end (VE). By properly setting the parameters, any portion within the sensor array size can output as a visible area. Windowing is achieved by masking off the pixels outside of the window; thus, the original timing is not affected.

Horizontal crop start {0x3800, 0x3801} and crop end (0x3804, 0x3805 + 1) shall be a multiple of 16. Change VFIFO {0x4600, 0x4601} start size to be h\_output\_size/8-1 or less, where h\_output\_size is {0x3808, 0x3809} values. This is needed if output h\_output\_size is reduced from the default output size.

figure 4-2 image windowing





image windowing control functions table 4-2

| address | register name | default<br>value | R/W | description                                          |
|---------|---------------|------------------|-----|------------------------------------------------------|
| 0x3800  | H_CROP_START  | 0x00             | RW  | Bit[3:0]: Manual horizontal crop start address[11:8] |
| 0x3801  | H_CROP_START  | 0x00             | RW  | Bit[7:0]: Manual horizontal crop start address[7:0]  |
| 0x3802  | V_CROP_START  | 0x00             | RW  | Bit[3:0]: Manual vertical crop start address[11:8]   |
| 0x3803  | V_CROP_START  | 0x0C             | RW  | Bit[7:0]: Manual vertical crop start address[7:0]    |
| 0x3804  | H_CROP_END    | 0x0C             | RW  | Bit[3:0]: Manual horizontal crop end address[11:8]   |
| 0x3805  | H_CROP_END    | 0xDF             | RW  | Bit[7:0]: Manual horizontal crop end address[7:0]    |
| 0x3806  | V_CROP_END    | 0x09             | RW  | Bit[3:0]: Manual vertical crop end address[11:8]     |
| 0x3807  | V_CROP_END    | 0xA3             | RW  | Bit[7:0]: Manual vertical crop end address[7:0]      |
| 0x3808  | H_OURPUT_SIZE | 0x0C             | RW  | Bit[3:0]: Horizontal output size[11:8]               |
| 0x3809  | H_OUTPUT_SIZE | 0xC0             | RW  | Bit[7:0]: Horizontal output size[7:0]                |
| 0x380A  | V_OUTPUT_SIZE | 0x09             | RW  | Bit[3:0]: Vertical output size[11:8]                 |
| 0x380B  | V_OUTPUT_SIZE | 0x90             | RW  | Bit[7:0]: Vertical output size[7:0]                  |
| 0x380C  | TIMING_HTS    | 0x07             | RW  | Bit[7:0]: Horizontal total size[15:8]                |
| 0x380D  | TIMING_HTS    | 0x90             | RW  | Bit[7:0]: Horizontal total size[7:0]                 |
| 0x380E  | TIMING_VTS    | 0x09             | RW  | Bit[7:0]: Vertical total size[15:8]                  |
| 0x380F  | TIMING_VTS    | 0xB0             | RW  | Bit[7:0]: Vertical total size[7:0]                   |
| 0x3810  | H_WIN_OFF     | 0x00             | RW  | Bit[3:0]: Manual horizontal windowing offset[11:8]   |
| 0x3811  | H_WIN_OFF     | 0x04             | RW  | Bit[7:0]: Manual horizontal windowing offset[7:0]    |
| 0x3812  | V_WIN_OFF     | 0x00             | RW  | Bit[3:0]: Manual vertical windowing offset[11:8]     |
| 0x3813  | V_WIN_OFF     | 0x02             | RW  | Bit[7:0]: Manual vertical windowing offset[7:0]      |
| 0x3814  | H_INC_ODD     | 0x01             | RW  | Bit[3:0]: Horizontal sub-sample odd increase number  |
| 0x3815  | H_INC_EVEN    | 0x01             | RW  | Bit[3:0]: Horizontal sub-sample even increase number |
| 0x382A  | V_INC_ODD     | 0x01             | RW  | Bit[3:0]: Vertical sub-sample odd increase number    |
| 0x382B  | V_INC_EVEN    | 0x01             | RW  | Bit[3:0]: Vertical sub-sample even increase number   |



### 4.3 test pattern

For testing purposes, the OV8856 offers three types of test patterns: color bar, square and random data. The OV8856 also offers two digital effects: transparent effect and rolling bar effect. The output type of digital test pattern is controlled by the test\_pattern\_type register (0x5E00[3:2]). The digital test pattern function is controlled by register 0x5E00[7].

#### 4.3.1 color bar

There are four types of color bars which are switched by bar-style in register 0x5E00[3:2] (see figure 4-3).

figure 4-3 color bar types





#### 4.3.2 square

There are two types of squares: color square and black-white square. The squ\_bw register (0x5E00[4]) decides which type of square will be output.

figure 4-4 color, black and white square bars





black-white square 8855\_8856\_DS\_4\_4

#### 4.3.3 random data

There are two types of random data test patterns: frame-changing and frame-fixed random data.

#### 4.3.4 transparent effect

The transparent effect is enabled by transparent\_en register (0x5E00[5]). If this register is set, the transparent test pattern will be displayed. The following image is an example showing a transparent color bar image (see figure 4-5).

figure 4-5 transparent effect





#### 4.3.5 rolling bar effect

The rolling bar is set by rolling\_bar\_en register (0x5E00[6]). If it is set, an inverted-color rolling bar will roll from up to down. The following image is an example showing a rolling bar on color bar image (see **figure 4-6**).

figure 4-6 rolling bar effect



table 4-3 test pattern registers

| address   | register name | default<br>value | R/W | description                                                                                                                                                             |
|-----------|---------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |               |                  |     | Bit[7]: Test pattern enable Bit[6]: Rolling bar function enable Bit[5]: Transparent enable 0: Disable transparent effect function 1: Enable transparent effect function |
|           |               |                  |     | Bit[4]: Square mode 0: Color square 1: Black-white square                                                                                                               |
| 0x5E00 PF | PRE CTRL00    | 0x00             | RW  | Bit[3:2]: Color bar style 00: Standard color bar 01: Top-bottom darker color bar 10: Right-left darker color bar                                                        |
|           |               |                  |     | 11: Bottom-top darker color bar Bit[1:0]: Test pattern mode 00: Color bar 01: Random data 10: Square pattern 11: Black image                                            |
|           |               |                  |     | Bit[6]: Window cut enable 0: Do not cut the redundant pixels                                                                                                            |
|           |               |                  |     | 1: Cut the redundant pixels  Bit[5]: two_lsb_0_en  When set, two LSBs of output data are 0                                                                              |
| 0x5E01    | PRE CTRL01    | 0x41             | RW  | Bit[4]: Same seed enable When set, the seed used to generate the random data are same which is set in seed register                                                     |
|           |               |                  |     | Bit[3:0]: Random seed Seed used in generating random data                                                                                                               |



## 4.4 black level calibration (BLC)

The pixel array contains several optically shielded (black) lines and optically shielded (black) pixels on the right side. These lines and columns are used as reference for black level calibration. The main function of the BLC is to adjust all normal pixel values based on the values of the black levels. Register 0x4020~0x4027 are defined reference windows for black level calibration, these registers can be adjusted manually through an output window.

Black level adjustments can be made with registers 0x4000, 0x4004, and 0x4005.

table 4-4 BLC control registers (sheet 1 of 4)

| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                 |
|---------|---------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4000  | BLC CTRL 00   | 0x03             | RW  | Bit[7:5]: r_num_add_o Bit[4]: r_black_line_sel_o Bit[3]: Target adjust disable Use offset to adjust target 0: Enable 1: Disable Bit[2]: Compensation enable Adjust on offset due to gain change 0: Disable 1: Enable Bit[1]: Dither_en 1 bit dithering 0: Disable 1: Enable Bit[0]: Median_en Median filter function enable |
| 0x4001  | BLC CTRL 01   | 0xE0             | RW  | Bit[7]: r_gain_trig_beh_o Bit[6]: r_format_trig_beh_o Bit[5]: Kocef manual enable Bit[4]: Zero line out enable Bit[3]: Black line out enable Bit[1:0]: Bypass mode                                                                                                                                                          |
| 0x4002  | BLC CTRL 02   | 0x00             | RW  | Bit[1:0]: Blacklevel target[9:8]<br>High 2 bits                                                                                                                                                                                                                                                                             |
| 0x4003  | BLC CTRL 03   | 0x10             | RW  | Bit[7:0]: Blacklevel target[7:0]<br>Low 8 bits                                                                                                                                                                                                                                                                              |
| 0x4004  | BLC CTRL 04   | 0x00             | RW  | Bit[3:0]: Horizontal win start[11:8]<br>Horizontal win start high 4 bits                                                                                                                                                                                                                                                    |
| 0x4005  | BLC CTRL 05   | 0x02             | RW  | Bit[7:0]: Horizontal win start[7:0]<br>Horizontal win start low 8 bits                                                                                                                                                                                                                                                      |
| 0x4006  | BLC CTRL 06   | 0x00             | RW  | Bit[3:0]: Horizontal win pad[11:8]<br>Horizontal win pad high 4 bits                                                                                                                                                                                                                                                        |



table 4-4 BLC control registers (sheet 2 of 4)

|         | _             |                  |     |                                                                                                                                                                                                                                                                                                               |
|---------|---------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                   |
| 0x4007  | BLC CTRL 07   | 0x02             | RW  | Bit[7:0]: Horizontal win pad[7:0]<br>Horizontal win pad low 8 bits                                                                                                                                                                                                                                            |
| 0x4008  | BLC CTRL 08   | 0x02             | RW  | Bit[7:0]: Black line start line                                                                                                                                                                                                                                                                               |
| 0x4009  | BLC CTRL 09   | 0x05             | RW  | Bit[7:0]: Black line end line                                                                                                                                                                                                                                                                                 |
| 0x400A  | BLC CTRL 0A   | 0x02             | RW  | Bit[7:0]: Offset trigger threshold[15:8] Offset limit threshold high 8 bits                                                                                                                                                                                                                                   |
| 0x400B  | BLC CTRL 0B   | 0x00             | RW  | Bit[7:0]: Offset trigger threshold[7:0] Offset limit threshold low 8 bits                                                                                                                                                                                                                                     |
| 0x400C  | BLC CTRL 0C   | 0x00             | RW  | Bit[7:0]: CVDN black lines start                                                                                                                                                                                                                                                                              |
| 0x400D  | BLC CTRL 0D   | 0x00             | RW  | Bit[7:0]: CVDN black lines end                                                                                                                                                                                                                                                                                |
| 0x400E  | BLC CTRL 0E   | 0x00             | RW  | Bit[7]: r_zero_ln_sel<br>Bit[6:0]: r_mf_th_o                                                                                                                                                                                                                                                                  |
| 0x400F  | BLC CTRL 0F   | 0x80             | RW  | Bit[7]: r_exp_chg_trig_en_o Bit[6]: r_set_zb_o Bit[5:4]: r_manu_cvdn_out_en Bit[3]: r_v15_one-channel_en Bit[2]: r_en_adp_k_o Bit[1]: r_dc_offset_mode_o Bit[0]: r_compute_offset_v15_o                                                                                                                       |
| 0x4010  | BLC CTRL 10   | 0xF0             | RW  | Bit[7]: Offset trigger enable Bit[6]: Gain change trigger enable Bit[5]: Format change trigger enable Bit[4]: Reset trigger enable Bit[3]: Manual average enable Bit[2]: Manual trigger Bit[1]: Freeze enable Bit[0]: Offset always update                                                                    |
| 0x4011  | BLC CTRL 11   | 0xFF             | RW  | Bit[7]: offset_cmp_man_en Bit[6]: Offset trigger multiframe enable Bit[5]: Format trigger multiframe enable Bit[4]: Gain trigger multiframe enable Bit[3]: Reset trigger multiframe enable Bit[2]: Offset trigger multiframe mode Bit[1]: Format trigger multiframe mode Bit[0]: Gain trigger multiframe mode |
| 0x4012  | BLC CTRL 12   | 0x08             | RW  | Bit[5:0]: Reset trigger frame number                                                                                                                                                                                                                                                                          |
| 0x4013  | BLC CTRL 13   | 0x02             | RW  | Bit[5:0]: Format trigger frame number                                                                                                                                                                                                                                                                         |
| 0x4014  | BLC CTRL 14   | 0x02             | RW  | Bit[5:0]: Gain trigger frame number                                                                                                                                                                                                                                                                           |
| 0x4015  | BLC CTRL 15   | 0x02             | RW  | Bit[5:0]: Offset trigger frame number                                                                                                                                                                                                                                                                         |
| -       |               |                  |     |                                                                                                                                                                                                                                                                                                               |



table 4-4 BLC control registers (sheet 3 of 4)

| table + + | DEC control regis | sters (siree     | (7017) |                                                                              |
|-----------|-------------------|------------------|--------|------------------------------------------------------------------------------|
| address   | register name     | default<br>value | R/W    | description                                                                  |
| 0x4016    | BLC CTRL 16       | 0x00             | RW     | Bit[1:0]: Offset trigger threshold[9:8] Offset trigger threshold high 2 bits |
| 0x4017    | BLC CTRL 17       | 0x04             | RW     | Bit[7:0]: Offset trigger threshold[7:0] Offset trigger threshold low 8 bits  |
| 0x4020    | BLC CTRL 20       | 0x00             | RW     | Bit[5:0]: Offset compensation k000                                           |
| 0x4021    | BLC CTRL 21       | 0x00             | RW     | Bit[5:0]: Offset compensation k001                                           |
| 0x4022    | BLC CTRL 22       | 0x00             | RW     | Bit[5:0]: Offset compensation k010                                           |
| 0x4023    | BLC CTRL 23       | 0x00             | RW     | Bit[5:0]: Offset compensation k011                                           |
| 0x4024    | BLC CTRL 24       | 0x00             | RW     | Bit[5:0]: Offset compensation th000                                          |
| 0x4025    | BLC CTRL 25       | 0x00             | RW     | Bit[5:0]: Offset compensation th001                                          |
| 0x4026    | BLC CTRL 26       | 0x00             | RW     | Bit[5:0]: Offset compensation th010                                          |
| 0x4027    | BLC CTRL 27       | 0x00             | RW     | Bit[5:0]: Offset compensation th011                                          |
| 0x4030    | BLC CTRL 30       | 0x00             | RW     | Bit[1:0]: Offset man 000[9:8]                                                |
| 0x4031    | BLC CTRL 31       | 0x00             | RW     | Bit[7:0]: Offset man 000[7:0]                                                |
| 0x4032    | BLC CTRL 32       | 0x00             | RW     | Bit[1:0]: Offset man 001[9:8]                                                |
| 0x4033    | BLC CTRL 33       | 0x00             | RW     | Bit[7:0]: Offset man 001[7:0]                                                |
| 0x4034    | BLC CTRL 34       | 0x00             | RW     | Bit[1:0]: Offset man 010[9:8]                                                |
| 0x4035    | BLC CTRL 35       | 0x00             | RW     | Bit[7:0]: Offset man 010[7:0]                                                |
| 0x4036    | BLC CTRL 36       | 0x00             | RW     | Bit[1:0]: Offset man 011[9:8]                                                |
| 0x4037    | BLC CTRL 37       | 0x00             | RW     | Bit[7:0]: Offset man 011[7:0]                                                |
| 0x4038    | BLC CTRL 38       | 0x00             | RW     | Bit[1:0]: Offset man 100[9:8]                                                |
| 0x4039    | BLC CTRL 39       | 0x00             | RW     | Bit[7:0]: Offset man 100[7:0]                                                |
| 0x403A    | BLC CTRL 3A       | 0x00             | RW     | Bit[1:0]: Offset man 101[9:8]                                                |
| 0x403B    | BLC CTRL 3B       | 0x00             | RW     | Bit[7:0]: Offset man 101[7:0]                                                |
| 0x403C    | BLC CTRL 3C       | 0x00             | RW     | Bit[1:0]: Offset man 110[9:8]                                                |
| 0x403D    | BLC CTRL 3D       | 0x00             | RW     | Bit[7:0]: Offset man 110[7:0]                                                |
| 0x403E    | BLC CTRL 3E       | 0x00             | RW     | Bit[1:0]: Offset man 111[9:8]                                                |
| 0x403F    | BLC CTRL 3F       | 0x00             | RW     | Bit[7:0]: Offset man 111[7:0]                                                |
| 0x4040    | BLC CTRL 40       | 0x00             | RW     | Bit[7:0]: Zline start                                                        |
| 0x4041    | BLC CTRL 41       | 0x01             | RW     | Bit[7:0]: Zline end                                                          |
| 0x4042    | BLC CTRL 42       | 0x00             | RW     | Bit[1:0]: kcoef_b_man[9:8]                                                   |
|           |                   |                  |        |                                                                              |



table 4-4 BLC control registers (sheet 4 of 4)

|         |               | •                | ·   |                      |                             |
|---------|---------------|------------------|-----|----------------------|-----------------------------|
| address | register name | default<br>value | R/W | description          | n                           |
| 0x4043  | BLC CTRL 43   | 0x80             | RW  | Bit[7:0]:            | kcoef_b_man[7:0]            |
| 0x4044  | BLC CTRL 44   | 0x00             | RW  | Bit[1:0]:            | kcoef_gb_man[9:8]           |
| 0x4045  | BLC CTRL 45   | 0x80             | RW  | Bit[7:0]:            | kcoef_gb_man[7:0]           |
| 0x4046  | BLC CTRL 46   | 0x00             | RW  | Bit[1:0]:            | kcoef_gr_man[9:8]           |
| 0x4047  | BLC CTRL 47   | 0x80             | RW  | Bit[7:0]:            | kcoef_gr_man[7:0]           |
| 0x4048  | BLC CTRL 48   | 0x00             | RW  | Bit[1:0]:            | kcoef_r_man[9:8]            |
| 0x4049  | BLC CTRL 49   | 0x80             | RW  | Bit[7:0]:            | kcoef_r_man[7:0]            |
| 0x404A  | BLC CTRL 4A   | 0x30             | RW  | Bit[7:0]:            | dc_th_1                     |
| 0x404B  | BLC CTRL 4B   | 0x18             | RW  | Bit[7:0]:            | dc_th_1                     |
| 0x404C  | BLC CTRL 4C   | 0x60             | RW  | Bit[6]:<br>Bit[5:0]: | rst_trig_opt Average weight |
| 0x404D  | BLC CTRL 4D   | 0x00             | RW  | Bit[1:0]:            | rnd_gain_th[9:8]            |
| 0x404E  | BLC CTRL 4E   | 0x00             | RW  | Bit[7:0]:            | rnf_gain_th[7:0]            |
| 0x404F  | BLC CTRL 4F   | 0x00             | RW  | Bit[7:0]:            | dc_th_1_s                   |
| 0x4050  | BLC CTRL 50   | 0x00             | RW  | Bit[7:0]:            | dc_th_2_s                   |
| 0x4060  | BLC CTRL 60   | _                | R   | Bit[1:0]:            | BLC_offset000[9:8]          |
| 0x4061  | BLC CTRL 61   | _                | R   | Bit[7:0]:            | BLC_offset000[7:0]          |
| 0x4062  | BLC CTRL 62   | 7                | R   | Bit[1:0]:            | BLC_offset001[9:8]          |
| 0x4063  | BLC CTRL 63   | 10/              | R   | Bit[7:0]:            | BLC_offset001[7:0]          |
| 0x4064  | BLC CTRL 64   | -                | R   | Bit[1:0]:            | BLC_offset010[9:8]          |
| 0x4065  | BLC CTRL 65   | _                | R   | Bit[7:0]:            | BLC_offset010[7:0]          |
| 0x4066  | BLC CTRL 66   | -                | R   | Bit[1:0]:            | BLC_offset011[9:8]          |
| 0x4067  | BLC CTRL 67   | _                | R   | Bit[7:0]:            | BLC_offset011[7:0]          |
| -       | ·             |                  |     | -                    |                             |



### 4.5 one time programmable (OTP) memory

The OV8856 supports a maximum of 1024 bytes of one-time programmable (OTP) memory to store chip identification and manufacturing information, which can be used to update the sensor's default setting and can be controlled through the SCCB (see table 4-5). Out of 8k bits (1024 bytes), 4k bits are reserved for OmniVision and 4k bits are reserved for customers.

#### 4.5.1 OTP other functions

OTP loading data can be triggered when power up or writing 0x01 to register 0x3D81. Power up loading data is enabled by register 0x3D85[2], by default it is off. Auto mode and manual mode can be chosen by setting register 0x3D84[6] to 0 and 1, respectively, and by default, it is in auto mode. In auto mode, all data in the OTP will be loaded to the OTP buffer; while in manual mode, part of the data which is defined by the start address ({0x3D88,0x3D89}) and the end address ({0x3D8A,0x3D8B}) of the OTP will be loaded to the OTP buffer.

The OV8856 supports loading setting. When 0xDD as a head byte is read out from the start address, which is set by {0x3D8C, 0x3D8D}, setting is recognized. While the setting is being read out from the OTP, it is being written to the OTP buffer, and at the same time, interpreting to the register write command. Loading setting is controlled by registers 0x3D85[1] and 0x3D85[0], which enable power up loading setting and writing register loading setting, respectively. When accessing OTP content (i.e., programming or loading OTP), OTP option must be disabled by setting register bit 0x5001[3] = 0.

OTP data can be loaded from 0x7000 to 0x73FF through SCCB interface using a total of 1k bytes.  $0x7000 \sim 0x700F$  and  $0x7210 \sim 0x73FF$  are reserved for OmniVision, while  $0x7010 \sim 0x720F$  (512 bytes) are reserved for customer use.

#### To program the OTP:

```
6C 5001 00; [3] OTP option disable
6C 3D84 40; [6] manual mode enable
6C 3D85 00
6C 3D88 71; manual OTP start address for access
6C 3D89 00
6C 3D8A 71; manual OTP end address for access
6C 3D8B 0C
6C 0100 01; stream mode enable
;delay 20ms
6C 7100 DD
6C 7101 A3
6C 7102 30
6C 7103 00
6C 7104 11
6C 7105 22
6C 7106 33
6C 7107 44
6C 7108 53
6C 7109 55
```



```
6C 710A 66
6C 710B 77
6C 710C 88
6C 3D80 01;[0] program enable
;delay 200ms
6C 3D80 00
Setting for loading:
6C 5001 00; [3] OTP option disable
6C 3D88 71; manual OTP start address for access
6C 3D89 00
6C 3D8A 71; manual OTP end address for access
6C 3D8B 0C
6C 3D85 06; [2] OTP load data enable
; [1] OTP load setting enable
6C 3D8C 01; Start address OTP setting table, the first byte of OTP setting table should
be 0xDD
6C 3D8D 00;
6C 0100 01; stream mode enable, after streaming of the first power up, OV8856 will load
setting from OTP if 3D85[2:1] = 2'b11
```

The OV8856 supports OTP BIST. When register 0x3D85[4] is set to 1, the BIST function is enabled. When OTP loading data, the data which is read out from the OTP can be compared with zero or the data with the same address in the register, which can be controlled by setting register 0x3D85[5] to 1 or 0, respectively. After the BIST done, the BIST done flag can be read out from register 0x3D81[4], the BIST error flag can be read out from 0x3D81[5], and the address of the first error can be read out from {0x3D8E, 0x3D8F}.

table 4-5 OTP control registers (sheet 1 of 2)

| address           | register name    | default<br>value | R/W | description                                                                                                                                   |
|-------------------|------------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 0x7000~<br>0x75FF | OTP_SRAM         | 0x00             | RW  | Bit[7:0]: OTP buffer                                                                                                                          |
| 0x3D80            | OTP_PROGRAM_CTRL | _                | RW  | Bit[7]: OTP_wr_busy (read only) Bit[0]: OTP_program_enable (write only)                                                                       |
| 0x3D81            | OTP_LOAD_CTRL    | -                | RW  | Bit[7]: OTP_rd_busy (read only) Bit[5]: OTP_bist_error (read only) Bit[4]: OTP_bist_done (read only) Bit[0]: OTP_load_enable (read and write) |



table 4-5 OTP control registers (sheet 2 of 2)

| address | register name           | default<br>value | R/W | description                                                                                                                                                                                                             |
|---------|-------------------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3D84  | OTP_MODE_CTRL           | 0x00             | RW  | Bit[7]: Program disable 1: Disable Bit[6]: Mode select 0: Auto mode 1: Manual mode                                                                                                                                      |
| 0x3D85  | OTP_REG85               | 0x13             | RW  | Bit[5]: OTP_bist_select 0: Compare with SRAM 1: Compare with zero Bit[4]: OTP_bist_enable Bit[2]: OTP power up load data enable Bit[1]: OTP power up load setting enable Bit[0]: OTP write register load setting enable |
| 0x3D88  | OTP_START_ADDRESS       | 0x00             | RW  | OTP Start High Address for Manual Mode                                                                                                                                                                                  |
| 0x3D89  | OTP_START_ADDRESS       | 0x00             | RW  | OTP Start Low Address for Manual Mode                                                                                                                                                                                   |
| 0x3D8A  | OTP_END_ADDRESS         | 0x00             | RW  | OTP End High Address For Manual Mode                                                                                                                                                                                    |
| 0x3D8B  | OTP_END_ADDRESS         | 0x00             | RW  | OTP End Low Address For Manual Mode                                                                                                                                                                                     |
| 0x3D8C  | OTP_SETTING_STT_ADDRESS | 0x00             | RW  | OTP Start High Address For Load Setting                                                                                                                                                                                 |
| 0x3D8D  | OTP_SETTING_STT_ADDRESS | 0x00             | RW  | OTP Start Low Address For Load Setting                                                                                                                                                                                  |
| 0x3D8E  | OTP_BIST_ERR_ADDRESS    | _                | R   | OTP Check Error Address High                                                                                                                                                                                            |
| 0x3D8F  | OTP_BIST_ERR_ADDRESS    | _                | R   | OTP Check Error Address Low                                                                                                                                                                                             |
|         |                         |                  |     | 1/2 6/2                                                                                                                                                                                                                 |







# 5 image sensor processor digital functions

## 5.1 ISP top

The main purpose of the ISP top includes:

- integrate all sub-modules
- · create necessary control signals

table 5-1 ISP top registers (sheet 1 of 3)

|         | 1 0           | •                | •   |                                                                                                                                                                             |
|---------|---------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name | default<br>value | R/W | description                                                                                                                                                                 |
| 0x5000  | ISP CTRL00    | 0x77             | RW  | Bit[7]: blc_hdr_en Bit[6]: dcblc_en Bit[5]: lenc_en Bit[4]: awb_gain_en Bit[3]: r_long_short_rvs Bit[2]: bc_en Bit[1]: wc_en Bit[0]: blc_en                                 |
| 0x5001  | ISP CTRL01    | 0x0A             | RW  | Bit[7]: blc_vsync_sel Bit[6]: pre_vsync_sel Bit[5]: r_rlong_sel Bit[4]: lenc_real_gain_rvs Bit[3]: otp_option_en Bit[2]: rblue_in_rvs Bit[1]: awbm_bias_on Bit[0]: latch_en |
| 0x5002  | ISP CTRL02    | 0x20             | RW  | Bit[7:6]: dig_gain_blc Bit[5]: bufctrl_en Bit[4:2]: ln_delay Bit[1]: man_noswap_en Bit[0]: blc_hdr_ls_rvs                                                                   |
| 0x5003  | ISP CTRL03    | 0xC8             | RW  | Bit[7]: lenc_bias_on Bit[6:5]: lenc_px_order_man Bit[4]: lenc_px_order_man_en Bit[3]: insize_auto Bit[2]: dpc_hdr_ls_rvs Bit[1]: gfirst_rvs Bit[0]: rblue_rvs               |
| 0x5004  | ISP CTRL04    | 0x00             | RW  | Bit[4]: r_dig_sel_from_reg Bit[2]: blc_mirror_opt Bit[1]: dig_gain_en Bit[0]: lenc_decomp_en                                                                                |
| 0x5005  | ISP CTRL05    | 0x00             | RW  | Bit[7]: isp_bypass_mode Bit[5]: bypass_isp                                                                                                                                  |



table 5-1 ISP top registers (sheet 2 of 3)

| address | register name | default<br>value | R/W | description                                                                               |
|---------|---------------|------------------|-----|-------------------------------------------------------------------------------------------|
| 0x5006  | ISP CTRL06    | 0x00             | RW  | Bit[3:0]: hsize_in_r[11:8]                                                                |
| 0x5007  | ISP CTRL07    | 0x00             | RW  | Bit[7:0]: hsize_in_r[7:0]                                                                 |
| 0x5008  | ISP CTRL08    | 0x00             | RW  | Bit[3:0]: vsize_in_r[11:8]                                                                |
| 0x5009  | ISP CTRL09    | 0x00             | RW  | Bit[7:0]: vsize_in_r[7:0]                                                                 |
| 0x500E  | ISP CTRL0E    | 0x00             | RW  | Bit[3:0]: dpc_hsize_in[11:8]                                                              |
| 0x500F  | ISP CTRL0F    | 0x00             | RW  | Bit[7:0]: dpc_hsize_in[7:0]                                                               |
| 0x5010  | ISP CTRL10    | 0x00             | RW  | Bit[3:0]: dpc_vsize_in[11:8]                                                              |
| 0x5011  | ISP CTRL11    | 0x00             | RW  | Bit[7:0]: dpc_vsize_in[7:0]                                                               |
| 0x5012  | ISP CTRL12    | 0x00             | RW  | Bit[3:0]: dig_gain_l[11:8]                                                                |
| 0x5013  | ISP CTRL13    | 0x00             | RW  | Bit[7:0]: dig_gain_l[7:0]                                                                 |
| 0x5014  | ISP CTRL14    | 0x00             | RW  | Bit[3:0]: dig_gain_s[11:8]                                                                |
| 0x5015  | ISP CTRL15    | 0x00             | RW  | Bit[7:0]: dig_gain_s[7:0]                                                                 |
| 0x5016  | ISP CTRL16    | 0x00             | RW  | Bit[7]: r_cen_sel Bit[6]: r_cen Bit[1]: dpc_size_man                                      |
| 0x5017  | ISP CTRL17    | 0x00             | RW  | Bit[5]: sram_test_dpc2 Bit[4]: sram_test_dpc1 Bit[1]: sram_rme_dpc2 Bit[0]: sram_rme_dpc1 |
| 0x5018  | ISP CTRL18    | 0x00             | RW  | Bit[7:4]: sram_rm_dpc2<br>Bit[3:0]: sram_rm_dpc1                                          |
| 0x5019  | ISP CTRL19    | 0x04             | RW  | Bit[3:0]: mwb_r_gain_man_l[11:8]                                                          |
| 0x501A  | ISP CTRL1A    | 0x00             | RW  | Bit[7:0]: mwb_r_gain_man_l[7:0]                                                           |
| 0x501B  | ISP CTRL1B    | 0x04             | RW  | Bit[3:0]: mwb_g_gain_man_l[11:8]                                                          |
| 0x501C  | ISP CTRL1C    | 0x00             | RW  | Bit[7:0]: mwb_g_gain_man_l[7:0]                                                           |
| 0x501D  | ISP CTRL1D    | 0x04             | RW  | Bit[3:0]: mwb_b_gain_man_l[11:8]                                                          |
| 0x501E  | ISP CTRL1E    | 0x00             | RW  | Bit[7:0]: mwb_b_gain_man_l[7:0]                                                           |
| 0x501F  | ISP CTRL1F    | 0x04             | RW  | Bit[3:0]: mwb_r_gain_man_s[11:8]                                                          |
| 0x5020  | ISP CTRL20    | 0x00             | RW  | Bit[7:0]: mwb_r_gain_man_s[7:0]                                                           |
| 0x5021  | ISP CTRL21    | 0x04             | RW  | Bit[3:0]: mwb_g_gain_man_s[11:8]                                                          |
| 0x5022  | ISP CTRL22    | 0x00             | RW  | Bit[7:0]: mwb_g_gain_man_s[7:0]                                                           |
| 0x5023  | ISP CTRL23    | 0x04             | RW  | Bit[3:0]: mwb_b_gain_man_s[11:8]                                                          |
|         |               |                  |     |                                                                                           |



table 5-1 ISP top registers (sheet 3 of 3)

| address | register name | default<br>value | R/W | description                                                                                                                                                              |
|---------|---------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5024  | ISP CTRL24    | 0x00             | RW  | Bit[7:0]: mwb_b_gain_man_s[7:0]                                                                                                                                          |
| 0x5025  | ISP CTRL25    | 0x18             | RW  | Bit[5]: r_embed_line_en Bit[3]: r_isp_raw_en Bit[2:0]: r_win_y_offset_adjust                                                                                             |
| 0x5026  | ISP CTRL26    | 0x2A             | RW  | Bit[5]: r_dmy_auto_en Bit[4]: r_bias_man_en Bit[3]: vsync_puls Bit[1:0]: px_order_man                                                                                    |
| 0x502D  | ISP CTRL2D    | 0x00             | RW  | Bit[7:0]: snr_bias_man                                                                                                                                                   |
| 0x502E  | ISP CTRL2e    | 0x00             | RW  | Bit[7]: blc_px_man_en Bit[6:5]: blc_px_man Bit[4]: r_blc_rblue_man_en Bit[3]: r_blc_rblue_man Bit[2]: pre_px_man_en Bit[1]: r_zero_rblue_man_en Bit[0]: r_zero_rblue_man |
| 0x502F  | ISP CTRL2F    | 0x00             | RW  | Bit[7]: dpc_data_switch Bit[6]: dpc_px_man_en Bit[5:4]: dpc_px_man Bit[2]: r_awb_px_man_en Bit[1:0]: r_awb_px_man                                                        |
| 0x5030  | ISP CTRL30    | 0x41             | RW  | Bit[7:6]: isp_sof_sel<br>Bit[1:0]: isp_eof_sel                                                                                                                           |



## 5.2 pre\_DSP

The main purposes of the pre\_DSP module include:

- adjust RBlue signals and data
- · create color bar image
- determine the sizes of input image by removing redundant data
- · create control signals

### table 5-2 pre\_DSP registers

| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                        |
|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5E00  | PRE CTRL00    | 0x00             | RW  | Bit[7]: Test pattern enable Bit[6]: Rolling bar function enable Bit[5]: Transparent enable 0: Disable transparent effect function 1: Enable transparent effect function Bit[4]: Square mode 0: Color square 1: Black-white square Bit[3:2]: Color bar style 00: Standard color bar |
|         |               |                  |     | 01: Top-bottom darker color bar 10: Right-left darker color bar 11: Bottom-top darker color bar 12: Bettern mode 00: Color bar 01: Random data 10: Square pattern 11: Black image                                                                                                  |
| 0x5E01  | PRE CTRL01    | 0x41             | RW  | Bit[6]: Window cut enable two_lsb_0_en Set lowest two bits to 0  Bit[4]: Same seed enable Reset seed to 0x5E01[3:0] each frame  Bit[3:0]: Random seed Seed used in generating random data                                                                                          |



## 5.3 defective pixel cancellation (DPC)

The DPC uses a one line buffer and removes defect pixels. It also supports black/white mode.

table 5-3 DPC control registers

| address | register name | default<br>value | R/W | description                 |
|---------|---------------|------------------|-----|-----------------------------|
| 0x5000  | ISP CTRL00    | 0x77             | RW  | Bit[6]: DPC function enable |

## 5.4 window cut (WINC)

The main purpose of the WINC module is to make the image size to be real size by removing offset.

table 5-4 WINC control registers

| address                    | register name                                                                                                                                                                                          | default<br>value | R/W | description                                                                                                                                                                                                    |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5A00                     | WINC CTRL00                                                                                                                                                                                            | 0x00             | RW  | Bit[3:0]: x_start_offset[11:8] Start address in horizontal                                                                                                                                                     |
| 0x5A01                     | WINC CTRL01                                                                                                                                                                                            | 0x00             | RW  | Bit[7:0]: x_start_offset[7:0]                                                                                                                                                                                  |
| 0x5A02                     | WINC CTRL02                                                                                                                                                                                            | 0x00             | RW  | Bit[3:0]: y_start_offset[11:8] Start address in vertical                                                                                                                                                       |
| 0x5A03                     | WINC CTRL03                                                                                                                                                                                            | 0x00             | RW  | Bit[7:0]: y_start_offset[7:0]                                                                                                                                                                                  |
| 0x5A04                     | WINC CTRL04                                                                                                                                                                                            | 0x0C             | RW  | Bit[3:0]: window_width[11:8] Select whole zone width                                                                                                                                                           |
| 0x5A05                     | WINC CTRL05                                                                                                                                                                                            | 0xE0             | RW  | Bit[7:0]: window_width[7:0] Select whole zone width                                                                                                                                                            |
| 0x5A06                     | WINC CTRL06                                                                                                                                                                                            | 0x09             | RW  | Bit[3:0]: window_height[11:8] Select whole zone height                                                                                                                                                         |
| 0x5A07                     | WINC CTRL07                                                                                                                                                                                            | 0xB0             | RW  | Bit[7:0]: window_height[7:0] Select whole zone height                                                                                                                                                          |
| 0x5A08                     | WINC CTRL08                                                                                                                                                                                            | 0x06             | RW  | Bit[3]: Window valid select option (for debug) 0: Select new valid_1d 1: Select original valid_1d Bit[2]: Select embedded line flag 0: Select first line as embedded flag 1: Select last line as embedded flag |
| 0x5A08 WINC CTRL08 0x06 RW | Bit[1]: Window enable option  0: Disable window after last valid line  1: Get enable from register  Bit[0]: Manual window enable  0: Window size from window top  1: Window size from 0x5A00 to 0x5A07 |                  |     |                                                                                                                                                                                                                |



### 5.5 lens correction (LENC)

The LENC algorithm compensates for the illumination drop off in the corners due to the lens. Based on the radius of each pixel to the lens, the algorithm calculates a gain for each pixel and then corrects each pixel with the calculated gain to compensate for the light distribution due to the lens curvature. Additionally, the LENC supports subsampling in both the horizontal and vertical directions. LENC is performed in the RGB domain.

Both luminance channel and color channel consist of 80 (10x8) control points. **figure 5-1** displays the control points of B,G, and R channels.

figure 5-1 control points of luminance and color channels





There is a

lens calibration tool that can be used for calibrating these settings required for a specific module.
Contact your local OmniVision FAE for generating these settings.



**figure 5-2** luminance compensation level calculation

table 5-5 LENC control registers (sheet 1 of 4)

| address | register name | default<br>value | R/W | description | 9/                                         |
|---------|---------------|------------------|-----|-------------|--------------------------------------------|
| 0x5900  | LENC G00      | 0x00             | RW  |             | ontrol point G00 for luminance impensation |
| 0x5901  | LENC G01      | 0x00             | RW  |             | ontrol point G01 for luminance ompensation |
| 0x5902  | LENC G02      | 0x00             | RW  |             | ontrol point G02 for luminance ompensation |
| 0x5903  | LENC G03      | 0x00             | RW  |             | ontrol point G03 for luminance ompensation |
| 0x5904  | LENC G04      | 0x00             | RW  |             | ontrol point G04 for luminance ompensation |
| 0x5905  | LENC G05      | 0x00             | RW  |             | ontrol point G05 for luminance ompensation |
| 0x5906  | LENC G10      | 0x00             | RW  |             | ontrol point G10 for luminance ompensation |



table 5-5 LENC control registers (sheet 2 of 4)

| address           | register name     | default<br>value | R/W | descriptio | n                                                   |
|-------------------|-------------------|------------------|-----|------------|-----------------------------------------------------|
| 0x5907            | LENC G11          | 0x00             | RW  | Bit[5:0]:  |                                                     |
| 0x5908            | LENC G12          | 0x00             | RW  | Bit[5:0]:  | Control point G12 for luminance compensation        |
| 0x5909~<br>0x594E | LENC G13~LENC G96 | 0x00             | RW  | Bit[5:0]:  | Control point G13~G54 for luminance compensation    |
| 0x594F            | LENC G97          | 0x00             | RW  | Bit[5:0]:  | Control point G55 for luminance compensation        |
| 0x5950            | LENC B00          | 0x80             | RW  | Bit[4:0]:  | Control point B00 for blue channel compensation     |
| 0x5951            | LENC B01          | 0x80             | RW  | Bit[4:0]:  | Control point B01 for blue channel compensation     |
| 0x5952            | LENC B02          | 0x80             | RW  | Bit[4:0]:  | Control point B02 for blue channel compensation     |
| 0x5953            | LENC B03          | 0x80             | RW  | Bit[4:0]:  | Control point B03 for blue channel compensation     |
| 0x5954            | LENC B04          | 0x80             | RW  | Bit[4:0]:  | Control point B04 for blue channel compensation     |
| 0x5955            | LENC B05          | 0x80             | RW  | Bit[4:0]:  | Control point B05 for blue channel compensation     |
| 0x5956            | LENC B10          | 0x80             | RW  | Bit[4:0]:  | Control point B10 for blue channel compensation     |
| 0x5957            | LENC B11          | 0x80             | RW  | Bit[4:0]:  | Control point B11 for blue channel compensation     |
| 0x5958            | LENC B12          | 0x80             | RW  | Bit[4:0]:  | Control point B12 for blue channel compensation     |
| 0x5959~<br>0x599E | LENC B13~LENC B96 | 0x80             | RW  | Bit[4:0]:  | Control point B13~B54 for blue channel compensation |
| 0x599F            | LENC B97          | 0x80             | RW  | Bit[4:0]:  | Control point B55 for blue channel compensation     |
| 0x59A0            | LENC R00          | 0x80             | RW  | Bit[4:0]:  | Control point R00 for red channel compensation      |
| 0x59A1            | LENC R01          | 0x80             | RW  | Bit[4:0]:  | Control point R01 for red channel compensation      |
| 0x59A2            | LENC R02          | 0x80             | RW  | Bit[4:0]:  | Control point R02 for red channel compensation      |
| 0x59A3            | LENC R03          | 0x80             | RW  | Bit[4:0]:  | Control point R03 for red channel compensation      |



table 5-5 LENC control registers (sheet 3 of 4)

| address           | register name     | default<br>value | R/W | description | n                                                                                                                                                                                                                                           |
|-------------------|-------------------|------------------|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x59A4            | LENC R04          | 0x80             | RW  | Bit[4:0]:   | Control point R04 for red channel compensation                                                                                                                                                                                              |
| 0x59A5            | LENC R05          | 0x80             | RW  | Bit[4:0]:   | Control point R05 for red channel compensation                                                                                                                                                                                              |
| 0x59A6            | LENC R10          | 0x80             | RW  | Bit[4:0]:   | Control point R10 for red channel compensation                                                                                                                                                                                              |
| 0x59A7            | LENC R11          | 0x80             | RW  | Bit[4:0]:   | Control point R11 for red channel compensation                                                                                                                                                                                              |
| 0x59A8            | LENC R12          | 0x80             | RW  | Bit[4:0]:   | Control point R12 for red channel compensation                                                                                                                                                                                              |
| 0x59A9~<br>0x59EE | LENC R13~LENC R96 | 0x80             | RW  | Bit[4:0]:   | Control point R13~R54 for red channel compensation                                                                                                                                                                                          |
| 0x59EF            | LENC R97          | 0x80             | RW  | Bit[4:0]:   | Control point R55 for red channel compensation                                                                                                                                                                                              |
| 0x59F0            | LENC MAXGAIN      | 0x60             | RW  | Bit[7:0]:   | If AutoLensSwitchEnable is true<br>and sensor gain is larger than this<br>threshold, luminance<br>compensation amplitude will be the<br>minimum value (min LENC gain).<br>Register value is 16 times sensor<br>gain                         |
| 0x59F1            | LENC MINGAIN      | 0x40             | RW  | Bit[7:0]:   | If AutoLensSwitchEnable is true<br>and sensor gain is larger than this<br>threshold, luminance<br>compensation amplitude will start<br>to decrease; otherwise, the<br>amplitude will not change. Register<br>value is 16 times sensor gain. |
| 0x59F2            | LENC MAXQ         | 0x40             | RW  | Bit[6:0]:   | This value indicates the minimum amplitude which luminance channel compensates when AutoLensSwitchEnable is true. Value should be in the range [0~64]                                                                                       |
| 0x59F3            | LENC MINQ         | 0x18             | RW  | Bit[6:0]:   | Minq                                                                                                                                                                                                                                        |



table 5-5 LENC control registers (sheet 4 of 4)

|         | <u> </u>            | •                | ,   |                                                                                                                                                                                                          |
|---------|---------------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name       | default<br>value | R/W | description                                                                                                                                                                                              |
| 0x59F4  | LENC CTRL           | 0x36             | RW  | Bit[5]: Add BLC target after applying compensation  Bit[4]: Enable BLC target for LENC 0: Disable BLC target 1: Enable BLC target Bit[3]: Br2xmode Bit[2]: autoq_en Bit[1]: dither_en Bit[0]: g2xgain_en |
| 0x59F5  | LENC HSCALE         | 0x02             | RW  | Bit[4:0]: HScale[12:8] For horizontal gain calculation, this value indicates the step between two connected horizontal pixels, where HScale = 4 × 2^18 / image width                                     |
| 0x59F6  | LENC HSCALE         | 0x7C             | RW  | Bit[7:0]: HScale[7:0]                                                                                                                                                                                    |
| 0x59F7  | LENC VSCALE         | 0x01             | RW  | Bit[4:0]: VScale[12:8] For vertical gain calculation, this value indicates the step between two connected vertical pixels, where VScale = 4 × 2^17 / image height                                        |
| 0x59F8  | LENC VSCALE         | 0x40             | RW  | Bit[7:0]: VScale[7:0]                                                                                                                                                                                    |
| 0x59F9  | LENC DECOMP<br>ADDR | 0x00             | RW  | Bit[7:0]: LENC decompression start address[15:8]                                                                                                                                                         |
| 0x59FA  | LENC DECOMP<br>ADDR | 0x00             | RW  | Bit[7:0]: LENC decompression start address[7:0]                                                                                                                                                          |
| 0x59FB  | RO_INFO_SEL         | 0x00             | RW  | Bit[7:0]: ro_info sel                                                                                                                                                                                    |
| 0x59FC  | LENC YOFFSET        | -                | R   | Bit[7:0]: Input sensor vertical offset[7:0]                                                                                                                                                              |
| 0x59FD  | LENC INPUT          | -                | R   | Bit[5]: Input sensor flip Bit[4]: Input sensor mirror Bit[3:2]: Input sensor Y skip Bit[1:0]: Input sensor X skip                                                                                        |
| 0x59FE  | LENC OVERFLOW       | -                | R   | Bit[1]: Vertical overflow for debug Bit[0]: Horizontal overflow for debug                                                                                                                                |
| 0x59FF  | LENC QVALUE         | _                | R   | Bit[6:0]: Real amplitude Q value                                                                                                                                                                         |
|         |                     |                  |     |                                                                                                                                                                                                          |



## 5.6 manual exposure compensation/manual gain compensation (MEC/MGC)

Manual exposure provides exposure time settings and sensor gain. The exposure value in register 0x3500~0x3502 and 0x3510~0x3512 are in units of 1/16 line. The minimum exposure of the sensor is 6 lines and maximum exposure is VTS {0x380E, 0x380F} - 6.

Manual gain provides analog gain settings. The OV8856 has a maximum 16x analog gain.

table 5-6 MEC/MGC control registers (sheet 1 of 2)

|         | ,             | O                | `   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0x3500  | LONG EXPO     | 0x00             | RW  | Bit[3:0]: Long exposure[19:16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x3501  | LONG EXPO     | 0x02             | RW  | Bit[7:0]: Long exposure[15:8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0x3502  | LONG EXPO     | 0x00             | RW  | Bit[7:0]: Long exposure[7:0]<br>Low 4 bits are fraction bits. Shall always be<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0x3503  | AEC MANUAL    | 0x00             | RW  | Bit[7]: priority_6 Bit[6]: Digital fraction gain delay option 0: Delay 1 frame 1: Do not delay 1 frame Bit[5]: Gain change delay option 0: Delay 1 frame 1: Do not delay 1 frame Bit[4]: Gain delay option 0: Delay 1 frame 1: Do not delay 1 frame Bit[3]: gain_prec16_en Bit[2]: Gain manual as sensor gain 0: Input gain as real gain format 1: Input gain as sensor gain format Bit[1]: Exposure delay option (must be 0) 0: Delay 1 frame Bit[0]: Exposure change delay option (must be 0) 0: Delay 1 frame |
| 0x3505  | GCVT OPTION   | 0x80             | RW  | Gain Conversation Option Bit[7]: DAC fixed gain bit Bit[6]: switch_snr_gain_en Bit[5:4]: Sensor gain fixed bit Bit[3:2]: Sensor gain pregain option (debug only, always set it to 0) Bit[1:0]: Sensor gain option for transferring real gain to sensor gain format                                                                                                                                                                                                                                               |
|         |               |                  |     | Bit[1:0]: Gain shift option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



**note**For optimal
performance, minimum
exposure of sensor is
6 lines and maximum

exposure is VTS {0x380E, 0x380F} - 6.

0x3507

**GAIN SHIFT** 

0x00

RW

00: No shift

01: Left shift 1 bit10: Left shift 2 bits11: Left shift 3 bits

table 5-6 MEC/MGC control registers (sheet 2 of 2)

|         | •                   | 0                | •   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|---------------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name       | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0x3508  | LONG GAIN           | 0x00             | RW  | Bit[4:0]: Long gain[12:8]                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x3509  | LONG GAIN           | 0x80             | RW  | Bit[7:0]: Long gain[7:0] If 0x3503[2]=0, gain[12:0] is real gain format, where low 7 bits are fraction bits, real_gain = gain[12:0]/128, for example: 0x080 is 1x gain, 0x100 is 2x gain If 0x3503[2]=1, gain[12:0] is sensor gain format, gain[12:8] is coarse gain, 00000: 1x, 00001: 2x, 00011: 4x, 00111: 8x, gain[7] is 1, gain[6:3] is fine gain, gain[2:0] is always 0. For example: 0x080 is 1x gain, 0x180 is 2x gain, 0x380 is 4x gain |
| 0x350A  | LONG<br>DIGIGAIN    | 0x04             | RW  | Bit[3:0]: Long digital gain[11:8]                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0x350B  | LONG<br>DIGIGAIN    | 0x00             | RW  | Bit[7:0]: Long digital gain[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0x350C  | SHORT GAIN          | 0x00             | RW  | Bit[4:0]: Short gain[12:8]                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x350D  | SHORT GAIN          | 0x80             | RW  | Bit[7:0]: Short gain[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x350E  | SHORT<br>DIGIGAIN   | 0x04             | RW  | Bit[7:0]: Short digital gain[11:4]                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0x350F  | SHORT<br>DIGIGAIN   | 0x00             | RW  | Bit[5:2]: Short digital gain Low 10 bits are fraction bits                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x3510  | SHORT EXPO          | 0x00             | RW  | Bit[3:0]: Short exposure[19:16]                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0x3511  | SHORT EXPO          | 0x02             | RW  | Bit[7:0]: Short exposure[15:8]                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x3512  | SHORT EXPO          | 0x00             | RW  | Bit[7:0]: Short exposure[7:0]  Low 4 bits are fraction bits                                                                                                                                                                                                                                                                                                                                                                                      |
| 0x3513  | SNR_GAIN_L          | -                | R   | Bit[5:0]: Long sensor gain[13:8]                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0x3514  | SNR_GAIN_L          | _                | R   | Bit[7:0]: Long sensor gain[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0x3515  | FINE_SNR_<br>GAIN_L | -                | R   | Bit[5:0]: Long fine sensor gain                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0x3516  | SNR_GAIN_S          | -                | R   | Bit[5:0]: Short sensor gain[13:8]                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0x3517  | SNR_GAIN_S          | _                | R   | Bit[7:0]: Short sensor gain[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0x3518  | FINE_SNR_<br>GAIN_S | _                | R   | Bit[5:0]: Short fine sensor gain                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                     |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



# 6 register tables

The following tables provide descriptions of the device control registers contained in the OV8856. For all register enable/disable bits, ENABLE = 1 and DISABLE = 0. The device slave addresses are 0x6C for write and 0x6D for read (when SID=1, 0x20 for write and 0x21 for read).

## 6.1 PLL control [0x0300 - 0x0312, 0x031B - 0x031C, 0x031E]

table 6-1 PLL control registers (sheet 1 of 2)

| address | register name | default<br>value | R/W | description                                                    |
|---------|---------------|------------------|-----|----------------------------------------------------------------|
| 0x0300  | PLL_CTRL_0    | 0x04             | RW  | Bit[7:3]: Not used<br>Bit[2:0]: pll1_pre_div                   |
| 0x0301  | PLL_CTRL_1    | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: pll1_multiplier[9:8]           |
| 0x0302  | PLL_CTRL_2    | 0x7D             | RW  | Bit[7:0]: pll1_multiplier[7:0]                                 |
| 0x0303  | PLL_CTRL_3    | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: pll1_divm                      |
| 0x0304  | PLL_CTRL_4    | 0x03             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: pll1_div_mipi                  |
| 0x0305  | PLL_CTRL_5    | 0x01             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: pll1_div_sp                    |
| 0x0306  | PLL_CTRL_6    | 0x01             | RW  | Bit[7:1]: Not used<br>Bit[0]: pll1_div_s                       |
| 0x0307  | NOT USED      | -                | _   | Not Used                                                       |
| 0x0308  | PLL_CTRL_8    | 0x00             | RW  | Bit[7:1]: Not used Bit[0]: pll1_bypass                         |
| 0x0309  | PLL_CTRL_9    | 0x01             | RW  | Bit[7:3]: Not used<br>Bit[2:0]: pll1_cp                        |
| 0x030A  | PLL_CTRL_A    | 0x00             | RW  | Bit[7:4]: Not used Bit[3:1]: pll1_reserve Bit[0]: pll1_predivp |
| 0x030B  | PLL_CTRL_B    | 0x00             | RW  | Bit[7:3]: Not used<br>Bit[2:0]: pll2_pre_div                   |
| 0x030C  | PLL_CTRL_C    | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: pll2_r_divp[9:8]               |
| 0x030D  | PLL_CTRL_D    | 0x1E             | RW  | Bit[7:0]: pll2_r_divp[7:0]                                     |
| 0x030E  | PLL_CTRL_E    | 0x00             | RW  | Bit[7:3]: Not used<br>Bit[2:0]: pll2_r_divs                    |



table 6-1 PLL control registers (sheet 2 of 2)

| address | register name | default<br>value | R/W | description                                                                                |
|---------|---------------|------------------|-----|--------------------------------------------------------------------------------------------|
| 0x030F  | PLL_CTRL_F    | 0x06             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: pll2_r_divsp                                               |
| 0x0310  | PLL_CTRL_10   | 0x01             | RW  | Bit[7:3]: Not used<br>Bit[2:0]: pll2_r_cp                                                  |
| 0x0311  | PLL_CTRL_11   | 0x00             | RW  | Bit[7:1]: Not used<br>Bit[0]: pll2_bypass                                                  |
| 0x0312  | PLL_CTRL_12   | 0x01             | RW  | Bit[7:6]: pll2_reserve Bit[5]: pll2_sync_rst Bit[4]: pll2_pre_div0 Bit[3:0]: pll2_r_divdac |
| 0x031B  | PLL_CTRL_1B   | 0x00             | RW  | Bit[7:1]: Not used<br>Bit[0]: pll1_rst                                                     |
| 0x031C  | PLL_CTRL_1C   | 0x00             | RW  | Bit[7:1]: Not used<br>Bit[0]: pll2_rst                                                     |
| 0x031E  | PLL_CTRL_1E   | 0x04             | RW  | Bit[7:4]: Not used Bit[3]: pll1_no_lat Bit[2]: Not used Bit[1:0]: mipi_bitsel_man          |

## 6.2 system control [0x3000 - 0x3024, 0x302A, 0x3030 - 0x3040, 0x3043]

table 6-2 system control registers (sheet 1 of 7)

| address | register name | default<br>value | R/W | description                                                                                               |
|---------|---------------|------------------|-----|-----------------------------------------------------------------------------------------------------------|
| 0x3000  | PAD OEN0      | 0x00             | RW  | Bit[7:6]: Not used Bit[5]: io_fsin_oen Bit[4:0]: Not used                                                 |
| 0x3001  | NOT USED      | _                | -   | Not Used                                                                                                  |
| 0x3002  | PAD OEN2      | 0x21             | RW  | Bit[7]: Reserved Bit[6]: io_ulpm_oen Bit[5:0]: Not used                                                   |
| 0x3003  | GPIO IN       | -                | R   | Bit[7]: Not used Bit[6]: p_sid_i Bit[5]: p_ulpm_i Bit[4]: p_strobe_i Bit[3]: io_fsin_i Bit[2:0]: Reserved |



table 6-2 system control registers (sheet 2 of 7)

|                   | ,               | · ·              |     | ,                                                                                                                                                                                                                    |
|-------------------|-----------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address           | register name   | default<br>value | R/W | description                                                                                                                                                                                                          |
| 0x3004            | SCCB ID         | 0x6C             | RW  | Bit[7:0]: sccb_id<br>SCCB programed ID                                                                                                                                                                               |
| 0x3005            | CLKRST5         | 0xF0             | RW  | Bit[7:6]: Not used Bit[5]: sclk_src Bit[4]: sclk_syncfifo Bit[3]: Not used Bit[2]: rst_dpcm Bit[1]: rst_src Bit[0]: rst_syncfifo                                                                                     |
| 0x3006            | SCCB ID2        | 0x42             | RW  | Bit[7:0]: sccb_id2<br>SCCB ID2                                                                                                                                                                                       |
| 0x3007            | R ISPOUT BITSEL | 0x20             | RW  | Bit[7]: pll12_daclk_sel Bit[6]: r_pump_clk_sel Bit[5]: r_rgbc Bit[4]: r_ilpwm_out_sel Bit[3]: r_rst_pll_sleep_dis Bit[2]: r_db_out_en Bit[1:0]: r_vsync_sel 00: mipi_vsync 01: lvds_vsync 10: fmt_vsync 11: tc_vsync |
| 0x3008~<br>0x3009 | NOT USED        | -                |     | Not Used                                                                                                                                                                                                             |
| 0x300A            | CHIP ID         | 0x00             | R   | Bit[7:0]: chip_id[23:16]                                                                                                                                                                                             |
| 0x300B            | CHIP ID         | 0x88             | R   | Bit[7:0]: chip_id[15:8]                                                                                                                                                                                              |
| 0x300C            | CHIP ID         | 0x5A             | R   | Bit[7:0]: chip_id[7:0]  For PID, read OTP register 0x7000 = 0x00, register 0x7001 = 0x88, and register 0x7002 = 0x56section 2.1.1)                                                                                   |
| 0x300D            | PAD OUT2        | 0x00             | RW  | Bit[7:4]: Not used Bit[3]: io_strobe_o Bit[2]: io_sda_o Bit[1:0]: Reserved                                                                                                                                           |
| 0x300E            | PAD OUT3        | 0x00             | RW  | Bit[7:6]: Not used Bit[5]: io_fsin_sel Bit[4:0]: Not used                                                                                                                                                            |
| 0x300F            | NOT USED        | _                | -   | Not Used                                                                                                                                                                                                             |
|                   |                 |                  |     |                                                                                                                                                                                                                      |



table 6-2 system control registers (sheet 3 of 7)

| address           | register name | default<br>value | R/W | description                                                                                                                                                                                                                                   |
|-------------------|---------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3010            | PAD SEL2      | 0x00             | RW  | Bit[7:4]: Not used Bit[3]: io_strobe_sel Bit[2]: io_sda_sel Bit[1:0]: Reserved                                                                                                                                                                |
| 0x3011            | PAD           | 0x00             | RW  | Bit[7]: a_pad_o Bit[6:5]: drive_strength                                                                                                                                                                                                      |
| 0x3012            | SCCB R12      | 0x20             | RW  | Bit[7:0]: sccb_id_r12                                                                                                                                                                                                                         |
| 0x3013~<br>0x3014 | NOT USED      | 2                | -   | Not Used                                                                                                                                                                                                                                      |
| 0x3015            | PUMP CLK DIV  | 0x00             | RW  | Bit[7:4]: Npump clock div<br>$/1 \sim /15$<br>Bit[3:0]: Ppump clock div<br>$/1 \sim /15$                                                                                                                                                      |
| 0x3016~<br>0x3017 | NOT USED      | 5                | -(, | Not Used                                                                                                                                                                                                                                      |
| 0x3018            | MIPI SC CTRL  | 0x32             | RW  | Bit[7:5]: mipi_lane_mode N+1 lane Bit[4]: mipi_en 0: LVDS enable 1: MIPI enable Bit[3:2]: r_phy_pd_mipi Bit[1]: phy_rst option 1: Reset PHY when rst_sync Bit[0]: lane_dis option 1: Disable lanes when pd_mipi                               |
| 0x3019            | MIPI SC CTRL  | 0x00             | RW  | Bit[7:0]: MIPI lane disable                                                                                                                                                                                                                   |
| 0x301A            | CLKRST0       | 0xF0             | RW  | Bit[7]:       sclk_gt         Bit[6]:       sclk_stb         Bit[5]:       sclk_ac         Bit[4]:       sclk_tc         Bit[3]:       mipi_phy_rst_o         Bit[2]:       rst_stb         Bit[1]:       rst_ac         Bit[0]:       rst_tc |



table 6-2 system control registers (sheet 4 of 7)

|         |                | _                |     |                                                                                                                                                                                                                                                           |
|---------|----------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name  | default<br>value | R/W | description                                                                                                                                                                                                                                               |
| 0x301B  | CLKRST1        | 0xF0             | RW  | Bit[7]:       sclk_blc         Bit[6]:       sclk_isp         Bit[5]:       sclk_testmode         Bit[4]:       sclk_vfifo         Bit[3]:       rst_blc         Bit[2]:       rst_isp         Bit[1]:       rst_testmode         Bit[0]:       rst_vfifo |
| 0x301C  | CLKRST2        | 0xF0             | RW  | Bit[7]: Not used Bit[6]: sclk_mipi Bit[5]: sclk_dpcm Bit[4]: sclk_otp Bit[3]: Not used Bit[2]: rst_mipi Bit[1]: rst_dpcm Bit[0]: rst_otp                                                                                                                  |
| 0x301D  | CLKRST3        | 0xF0             | ŔW  | Bit[7]: sclk_asram_tst Bit[6]: sclk_grp Bit[5]: sclk_bist Bit[4]: sclk_aec Bit[3]: rst_asram_tst Bit[2]: rst_grp Bit[1]: rst_bist Bit[0]: rst_aec                                                                                                         |
| 0x301E  | CLKRST4        | 0xF0             | RW  | Bit[7]: sclk_ilpwm Bit[6]: pclk_lvds Bit[5]: pclk_vfifo Bit[4]: pclk_mipi Bit[3]: rst_ilpwm Bit[2]: rst_lvds Bit[1]: Not used Bit[0]: rst_dpcm                                                                                                            |
| 0x301F  | FREX RST MASK0 | 0x00             | RW  | Bit[7]: frex_mask_aec Bit[6]: frex_mask_blc Bit[5]: frex_mask_isp Bit[4]: Not used Bit[3]: frex_mask_mipi Bit[2]: frex_mask_vfifo Bit[1]: frex_mask_testmode Bit[0]: frex_mask_mipi_phy                                                                   |



table 6-2 system control registers (sheet 5 of 7)

|         |               |                  |     | ,                                                                                                                                                                                                                                                                                                                                        |
|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                              |
| 0x3020  | CLOCK SEL     | 0x93             | RW  | Bit[7]: CLK switch output Bit[6]: pclk_ratio_exp 1: Exponential pclk_ratio_i to 2^n Bit[5]: yuv_out_en 0: SOC sensor, output RAW data, or RAW sensor 1: SOC sensor, output YUV dat Bit[4]: dvp_sclk_en 1: use pll_sclk_i instead pll_pclk_i for DVP Bit[3]: pclk_sel Bit[2:1]: Not used Bit[0]: sclk2x_sel                               |
| 0x3021  | MISC CTRL     | 0x03             | RW  | Bit[7]: Not used Bit[6]: Sleep no latch option 1: No latch Bit[5]: Not used Bit[4]: mipi_ctr_en 0: Disable the function 1: Enable MIPI remote reset and suspend control sc Bit[3]: mipi_rst_sel 0: MIPI remote reset all registers 1: MIPI remote reset all digital module Bit[2]: gpio_pclk_en Bit[1]: frex_ef_sel Bit[0]: cen_global_o |
| 0x3022  | MIPI SC CTRL  | 0x01             | RW  | Bit[7:4]: Not used Bit[3]: Ivds_mode_o Bit[2]: Clock lane 1 disable Bit[1]: Clock lane 0 disable Bit[0]: pd_mipi enable when rst_sync                                                                                                                                                                                                    |
| 0x3023  | MIPI LPTX SEL | 0x00             | RW  | Bit[7:0]: mipi_lptx_sel[7:0]                                                                                                                                                                                                                                                                                                             |
| 0x3024  | REG24         | 0x00             | RW  | Bit[7:5]: Not used Bit[4]: mipi_lptx_sel_opt Bit[3]: Not used Bit[2]: rst_ana Bit[1:0]: mipi_lptx_cksel                                                                                                                                                                                                                                  |
| 0x302A  | SUB ID        | -                | R   | Bit[7:4]: Process<br>Bit[3:0]: Version                                                                                                                                                                                                                                                                                                   |
| 0x3030  | REG30         | 0x00             | RW  | Bit[7:6]: Not used Bit[5]: Sclk inv Bit[4]: Pclk inv Bit[3:0]: Not used                                                                                                                                                                                                                                                                  |



table 6-2 system control registers (sheet 6 of 7)

| address | register name | default<br>value | R/W | description                                                                                                                                                                             |
|---------|---------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3031  | REG31         | 0x0A             | RW  | Bit[7:5]: Not used Bit[4:0]: mipi_bit_sel 0x8: 8-bit mode 0xA: 10-bit mode 0xC: 12-bit mode Others: Not used                                                                            |
| 0x3032  | REG32         | 0x80             | RW  | Bit[7]: pll2_sysclk_sel Bit[6]: asram_clk_sel Bit[5]: array_hskip_man_en Bit[4]: r_rst_otp_sleep_dis Bit[3]: r_rst_ana_sleep_dis Bit[2:0]: array_hskip_man[3:1]                         |
| 0x3033  | REG33         | 0x24             | RW  | Bit[7]: array_hskip_man Bit[6]: emb_ana_gain_sel Bit[5]: r_fmt_eof_sel Bit[4]: sync_point_sel Bit[3]: rip_sof_en Bit[2]: r_vln_en_stop Bit[1]: pll_sysclk_sel Bit[0]: mipi_sel_aslp_dis |
| 0x3034  | REG34         | 0x00             | RW  | Bit[7]: r_bit_shift_clip_en Bit[6:4]: r_bit_shift_mode Bit[3:2]: Not used Bit[1]: bp_half Bit[0]: Not used                                                                              |
| 0x3035  | REG35         | 0x18             | RW  | Bit[7:0]: Reserved                                                                                                                                                                      |
| 0x3036  | REG36         | 0x01             | RW  | Bit[7:0]: Reserved                                                                                                                                                                      |
| 0x3037  | REG37         | 0x00             | RW  | Bit[7:1]: Reserved<br>Bit[0]: r_sid                                                                                                                                                     |
| 0x3038  | REG38         | 0x60             | RW  | Bit[7:0]: Reserved                                                                                                                                                                      |
| 0x3039  | PD_CTRL0      | 0xF0             | RW  | Bit[7:6]: Reserved Bit[5]: pd_ana_vbk_src Bit[4]: pd_ana_vbk_syncfifo Bit[3:0]: Reserved                                                                                                |
| 0x303A  | PD_CTRL1      | 0xF0             | RW  | Bit[7]: pd_ana_vbk_gt Bit[6]: pd_ana_vbk_stb Bit[5]: pd_ana_vbk_ac Bit[4]: pd_ana_vbk_tc Bit[3:0]: Reserved                                                                             |



table 6-2 system control registers (sheet 7 of 7)

|         | <u> </u>       |                  |     |                                                                                                                                                                                                                    |
|---------|----------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name  | default<br>value | R/W | description                                                                                                                                                                                                        |
| 0x303B  | PD_CTRL2       | 0xF0             | RW  | Bit[7]: pd_ana_vbk_blc Bit[6]: pd_ana_vbk_isp Bit[5]: pd_ana_vbk_tst Bit[4]: pd_ana_vbk_vfifo Bit[3:0]: Reserved                                                                                                   |
| 0x303C  | PD_CTRL3       | 0xFF             | RW  | Bit[7]: pd_ana_vbk_dvp Bit[6]: pd_ana_vbk_mipi Bit[5]: pd_ana_vbk_cif Bit[4]: pd_ana_vbk_otp Bit[3]: pd_ana_vbk_sclk_core Bit[2]: sclk_core enable Bit[1]: pd_ana_vbk_sclk2x_core Bit[0]: sclk2x_core enable       |
| 0x303D  | PD_CTRL4       | 0xF0             | RW  | Bit[7]: pd_ana_vbk_s2p Bit[6]: pd_ana_vbk_grp Bit[5]: pd_ana_vbk_bist Bit[4]: pd_ana_vbk_aec Bit[3]: rst_pwr_sw Bit[2:0]: Reserved                                                                                 |
| 0x303E  | PD_CTRL5       | 0xFF             | RW  | Bit[7]: pd_ana_vbk_ilpwm Bit[6]: pd_ana_vbk_mipisc Bit[5]: pd_ana_vbk_pvfifo Bit[4]: pd_ana_vbk_mipi Bit[3]: pd_sys_vbk_npump_clk Bit[2]: npump clk enable Bit[1]: pd_sys_vbk_ppump_clk Bit[0]: Ppump clock enable |
| 0x303F  | CTRL3F         | 0x00             | RW  | Bit[7:2]: Not used Bit[1]: sccb_id2_nack Bit[0]: sccb_pgm_id_en                                                                                                                                                    |
| 0x3040  | CTRL00         | 0xF0             | RW  | Bit[7]: sclk_isp_fc_en                                                                                                                                                                                             |
| 0x3043  | FREX RST MASK1 | 0xF0             | RW  | Bit[7]: frex_mask_isp_fc Bit[6]: frex_mask_fc Bit[5]: frex_mask_tpm Bit[4]: frex_mask_fmt Bit[3:0]: Not used                                                                                                       |



## 6.3 SCCB control [0x3100 - 0x3107]

SCCB control registers (sheet 1 of 2) table 6-3

| address | register name         | default<br>value | R/W | description                                                                                                                                                                                                                                                                                     |
|---------|-----------------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3100  | SCCB CTRL             | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3]: r_sda_dly_en<br>Bit[2:0]: r_sda_dly                                                                                                                                                                                                                               |
| 0x3101  | SCCB OPT              | 0x32             | RW  | Bit[7:6]: Not used Bit[5]: Enable register address translating table Bit[4]: en_ss_addr_inc Bit[3]: r_sda_byp_sync 0: Two clock stage sync for sda_i 1: No sync for sda_i Bit[2]: r_scl_byp_sync 0: Two clock stage sync for scl_i 1: No sync for scl_i Bit[1]: r_msk_glitch Bit[0]: r_msk_stop |
| 0x3102  | SCCB FILTER           | 0x00             | RW  | Bit[7:4]: r_sda_num<br>Bit[3:0]: r_scl_num                                                                                                                                                                                                                                                      |
| 0x3103  | SCCB SYSREG           | 0x00             | RW  | Bit[7]: Not used Bit[6]: ctrl_rst_mipisc Bit[5]: ctrl_rst_srb Bit[4]: ctrl_rst_sccb_s Bit[3]: ctrl_rst_pon_sccb_s Bit[2]: ctrl_rst_clkmod Bit[1]: ctrl_mipi_phy_rst_o Bit[0]: ctrl_pll_rst_o                                                                                                    |
| 0x3104  | PWUP DIS              | 0x01             | RW  | Bit[7:5]: Not used Bit[4]: r_srb_clk_syn_en Bit[3]: pwup_dis2 Bit[2]: pwup_dis1 Bit[1]: pll_clk_sel Bit[0]: pwup_dis0                                                                                                                                                                           |
| 0x3105  | PADCLK DIV            | 0x11             | RW  | Bit[7:6]: Not used<br>Bit[5:0]: padclk_div                                                                                                                                                                                                                                                      |
| 0x3106  | SRB HOST INPUT<br>DIS | 0x11             | RW  | Bit[7:4]: sclk_div Bit[3]: ctrl_aec_done Bit[2]: ctrl_mipi_host Bit[1]: ctrl_mc_host Bit[0]: ctrl_bist_host                                                                                                                                                                                     |



table 6-3 SCCB control registers (sheet 2 of 2)

| address | register name | default<br>value | R/W | description                                                                                                                                                                           |
|---------|---------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3107  | SC_CTRL       | 0x01             | RW  | Bit[7]: Reserved Bit[6]: npump_clk_sw Bit[5]: auto_sleep_en Bit[4]: pd_mipi_dis_aslp Bit[3]: pumpclk_cutoff_byp Bit[2]: pclk_cutoff_byp Bit[1]: clk_cutoff_byp Bit[0]: pd_ana_vbk_arb |

## 6.4 group hold control [0x3200 - 0x320F]

table 6-4 group hold control registers (sheet 1 of 2)

| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                  |
|---------|---------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3200  | GROUP ADR0    | 0x00             | RW  | Group0 Start Address in SRAM<br>Actual Address is {0x3200[5:0], 4'h0}                                                                                                                                                                        |
| 0x3201  | GROUP ADR1    | 0x08             | RW  | Group1 Start Address in SRAM<br>Actual Address is {0x3201[5:0], 4'h0}                                                                                                                                                                        |
| 0x3202  | GROUP ADR2    | 0x10             | RW  | Group2 Start Address in SRAM<br>Actual Address is {0x3202[5:0], 4'h0}                                                                                                                                                                        |
| 0x3203  | GROUP ADR3    | 0x18             | RW  | Group3 Start Address in SRAM<br>Actual Address is {0x3203[5:0], 4'h0}                                                                                                                                                                        |
| 0x3204  | GROUP LEN0    | -                | R   | Length of Group0                                                                                                                                                                                                                             |
| 0x3205  | GROUP LEN1    | -                | R   | Length of Group1                                                                                                                                                                                                                             |
| 0x3206  | GROUP LEN2    | -                | R   | Length of Group2                                                                                                                                                                                                                             |
| 0x3207  | GROUP LEN3    | _                | R   | Length of Group3                                                                                                                                                                                                                             |
| 0x3208  | GROUP ACCESS  | -                | W   | Bit[7:4]: group_ctrl 0000: Group hold start 0001: Group hold end 1010: Group launch 1110: Fast group launch Others: Reserved Bit[3:0]: Group ID 0000: Group bank 0 0001: Group bank 1 0010: Group bank 2 0011: Group bank 3 Others: Reserved |



group hold control registers (sheet 2 of 2) table 6-4

| address | register name | default<br>value | R/W | description                                                                                                                            |
|---------|---------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| 0x3209  | GROUP0 PERIOD | 0x00             | RW  | Bit[7]: Not used Bit[6:5]: Switch back group Bit[4:0]: Number of frames to stay in group 0                                             |
| 0x320A  | GROUP1 PERIOD | 0x00             | RW  | Number of Frames to Stay in Group 1                                                                                                    |
| 0x320B  | GRP_SW_CTRL   | 0x11             | RW  | Bit[7]: auto_sw Bit[6:5]: Not used Bit[4]: frame_cnt_trig Bit[3]: group_switch_repeat Bit[2]: context_en Bit[1:0]: Second group select |
| 0x320C  | SRAM TEST     | 0x02             | RW  | Bit[7:5]: Not used Bit[4]: Group hold SRAM test enable bit Bit[3:0]: Group hold SRAM RM[3:0]                                           |
| 0x320D  | GRP_ACT       | _                | R   | Active Group Indicator                                                                                                                 |
| 0x320E  | FM_CNT_GRP0   | - /              | R   | Group 0 Frame Count                                                                                                                    |
| 0x320F  | FM_CNT_GRP1   | -                | R   | Group 1 Frame Count                                                                                                                    |

# 6.5 MEC/MGC control [0x3500 - 0x3503, 0x3505, 0x3507 - 0x3518]

MEC/MGC control registers (sheet 1 of 3) table 6-5

| address | register name | default<br>value | R/W | description                                                                    |
|---------|---------------|------------------|-----|--------------------------------------------------------------------------------|
| 0x3500  | LONG EXPO     | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: Long exposure[19:16]                           |
| 0x3501  | LONG EXPO     | 0x02             | RW  | Bit[7:0]: Long exposure[15:8]                                                  |
| 0x3502  | LONG EXPO     | 0x00             | RW  | Bit[7:0]: Long exposure[7:0]  Low 4 bits are fraction bits. Shall always be 0. |



table 6-5 MEC/MGC control registers (sheet 2 of 3)

|         |               | _                |     |                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |
|---------|---------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name | default<br>value | R/W | description                                                                                                                                                                                                     |                                                                                                                                                                                                                     |
| 0x3503  | AEC MANUAL    | 0x00             | RW  | 0: Delay 1 1: Do not Bit[5]: Gain change 0: Delay 1 1: Do not Bit[4]: Gain delay 0 0: Delay 1 1: Do not Bit[3]: gain_prec16 Bit[2]: Gain manual 0: Input g 1: Input g Bit[1]: Exposure de 0: Delay 1 1: Not use | delay 1 frame delay option frame delay 1 frame ption frame delay 1 frame delay 1 frame _en as sensor gain ain as real gain format ain as sensor gain format lay option (must be 0) frame ed ange delay option (must |
| 0x3505  | GCVT OPTION   | 0x80             | RW  | only, always<br>Bit[1:0]: Sensor gain                                                                                                                                                                           | ain bit<br>gain_en<br>fixed bit<br>pregain option (debug                                                                                                                                                            |
| 0x3507  | GAIN SHIFT    | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: Gain shift op 00: No shif 01: Left shi 10: Left shi 11: Left shi                                                                                                                   | t<br>ft 1 bit<br>ft 2 bits                                                                                                                                                                                          |
| 0x3508  | LONG GAIN     | 0x00             | RW  | Bit[7:5]: Not used<br>Bit[4:0]: Long gain[12                                                                                                                                                                    | 2:8]                                                                                                                                                                                                                |



table 6-5 MEC/MGC control registers (sheet 3 of 3)

|         | •               | 0                | •   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|-----------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name   | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x3509  | LONG GAIN       | 0x80             | RW  | Bit[7:0]: Long gain[7:0]  If 0x3503[2]=0, gain[12:0] is real gain format, where low 7 bits are fraction bits, real_gain = gain[12:0]/128, for example: 0x080 is 1x gain, 0x100 is 2x gain  If 0x3503[2]=1, gain[12:0] is sensor gain format, gain[12:8] is coarse gain, 00000: 1x, 00001: 2x, 00011: 4x, 00111: 8x, gain[7] is 1, gain[6:3] is fine gain, gain[2:0] is always 0. For example: 0x080 is 1x gain, 0x180 is 2x gain, 0x380 is 4x gain |
| 0x350A  | LONG DIGIGAIN   | 0x04             | RW  | Bit[3:0]: Long digital gain[11:8]                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0x350B  | LONG DIGIGAIN   | 0x00             | RW  | Bit[7:0]: Long digital gain[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x350C  | SHORT GAIN      | 0x00             | RW  | Bit[7:5]: Not used<br>Bit[4:0]: Short gain[12:8]                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x350D  | SHORT GAIN      | 0x80             | RW  | Bit[7:0]: Short gain[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0x350E  | SHORT DIGIGAIN  | 0x04             | RW  | Bit[7:0]: Short digital gain[11:4]                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0x350F  | SHORT DIGIGAIN  | 0x00             | RW  | Bit[7:6]: Not used Bit[5:2]: Short digital gain Low 10 bits are fraction bits Bit[1:0]: Reserved                                                                                                                                                                                                                                                                                                                                                   |
| 0x3510  | SHORT EXPO      | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: Short exposure[19:16]                                                                                                                                                                                                                                                                                                                                                                                              |
| 0x3511  | SHORT EXPO      | 0x02             | RW  | Bit[7:0]: Short exposure[15:8]                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0x3512  | SHORT EXPO      | 0x00             | RW  | Bit[7:0]: Short exposure[7:0]<br>Low 4 bits are fraction bits                                                                                                                                                                                                                                                                                                                                                                                      |
| 0x3513  | SNR_GAIN_L      | -                | R   | Bit[7:6]: Not used<br>Bit[5:0]: Long sensor gain[13:8]                                                                                                                                                                                                                                                                                                                                                                                             |
| 0x3514  | SNR_GAIN_L      |                  | R   | Bit[7:0]: Long sensor gain[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0x3515  | FINE_SNR_GAIN_L | _                | R   | Bit[7:6]: Not used<br>Bit[5:0]: Long fine sensor gain                                                                                                                                                                                                                                                                                                                                                                                              |
| 0x3516  | SNR_GAIN_S      | _                | R   | Bit[7:6]: Not used<br>Bit[5:0]: Short sensor gain[13:8]                                                                                                                                                                                                                                                                                                                                                                                            |
| 0x3517  | SNR_GAIN_S      | _                | R   | Bit[7:0]: Short sensor gain[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x3518  | FINE_SNR_GAIN_S | -                | R   | Bit[7:6]: Not used<br>Bit[5:0]: Short fine sensor gain                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                 |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



#### 6.6 analog control [0x3600 - 0x36FF]

table 6-6 analog control registers

| address           | register name  | default<br>value | R/W | description              |
|-------------------|----------------|------------------|-----|--------------------------|
| 0x3600~<br>0x36FF | ANALOG CONTROL | _                | -   | Analog Control Registers |

#### 6.7 array control [0x3700 - 0x37FF]

table 6-7 array control registers

| address           | register name | default<br>value | R/W | description             |
|-------------------|---------------|------------------|-----|-------------------------|
| 0x3700~<br>0x37FF | ARRAY CONTROL | <b>3</b> /       | _   | Array Control Registers |

### 6.8 timing control [0x3800 - 0x3848, 0x3861 - 0x3863, 0x3870 - 0x3872]

table 6-8 timing control registers (sheet 1 of 5)

| address | register name | default<br>value | R/W | description                                                          |
|---------|---------------|------------------|-----|----------------------------------------------------------------------|
| 0x3800  | X ADDR START  | 0x00             | RW  | Bit[7:0]: x_addr_start[15:8] Array horizontal start point high byte  |
| 0x3801  | X ADDR START  | 0x00             | RW  | Bit[7:0]: x_addr_start[7:0]<br>Array horizontal start point low byte |
| 0x3802  | Y ADDR START  | 0x00             | RW  | Bit[7:0]: y_addr_start[15:8] Array vertical start point high byte    |
| 0x3803  | Y ADDR START  | 0x0C             | RW  | Bit[7:0]: y_addr_start[7:0] Array vertical start point low byte      |
| 0x3804  | X ADDR END    | 0x0C             | RW  | Bit[7:0]: x_addr_end[15:8] Array horizontal end point high byte      |
| 0x3805  | X ADDR END    | 0xDF             | RW  | Bit[7:0]: x_addr_end[7:0] Array horizontal end point low byte        |
| 0x3806  | Y ADDR END    | 0x09             | RW  | Bit[7:0]: y_addr_end[11:8]  Array vertical end point high byte       |



timing control registers (sheet 2 of 5) table 6-8

|         |               |                  |     | 1                      |                                                               |
|---------|---------------|------------------|-----|------------------------|---------------------------------------------------------------|
| address | register name | default<br>value | R/W | description            |                                                               |
| 0x3807  | Y ADDR END    | 0xA3             | RW  |                        | y_addr_end[7:0]<br>Array vertical end point low byte          |
| 0x3808  | X OUTPUT SIZE | 0x0C             | RW  |                        | x_output_size[15:8]<br>ISP horizontal output width high byte  |
| 0x3809  | X OUTPUT SIZE | 0xC0             | RW  |                        | x_output_size[7:0]<br>ISP horizontal output width low byte    |
| 0x380A  | Y OUTPUT SIZE | 0x09             | RW  |                        | y_output_size[15:8]<br>ISP vertical output height high byte   |
| 0x380B  | Y OUTPUT SIZE | 0x90             | RW  |                        | y_output_size[7:0]<br>ISP vertical output height low byte     |
| 0x380C  | HTS           | 0x07             | RW  |                        | HTS[15:8]<br>Total horizontal timing size high byte           |
| 0x380D  | HTS           | 0x90             | RW  |                        | HTS[7:0]<br>Total horizontal timing size low byte             |
| 0x380E  | VTS           | 0x09             | RW  |                        | VTS[15:8]<br>Total vertical timing size high byte             |
| 0x380F  | VTS           | 0xB0             | RW  |                        | VTS[7:0]<br>Total vertical timing size low byte               |
| 0x3810  | ISP X WIN     | 0x00             | RW  |                        | isp_x_win[15:8] ISP horizontal windowing offset high byte     |
| 0x3811  | ISP X WIN     | 0x04             | RW  |                        | isp_x_win[7:0]<br>ISP horizontal windowing offset low<br>byte |
| 0x3812  | ISP Y WIN     | 0x00             | RW  |                        | isp_y_win[11:8]<br>ISP vertical windowing offset high<br>byte |
| 0x3813  | ISP Y WIN     | 0x02             | RW  |                        | isp_y_win[7:0]<br>ISP vertical windowing offset low byte      |
| 0x3814  | X INC ODD     | 0x01             | RW  |                        | Not used x_odd_inc                                            |
| 0x3815  | X INC EVEN    | 0x01             | RW  | Bit[7:4]:<br>Bit[3:0]: | Not used<br>x_even_inc                                        |
| 0x3816  | VSYNC START   | 0x00             | RW  |                        | vsync_start[15:8]<br>VSYNC start point high byte              |
| 0x3817  | VSYNC START   | 0x00             | RW  |                        | vsync_start[7:0]<br>VSYNC start point low byte                |
|         |               |                  |     | ·                      |                                                               |



table 6-8 timing control registers (sheet 3 of 5)

|                   | 0 0           | •                |     | •                                                         |                                                                                                                                                                                                                  |
|-------------------|---------------|------------------|-----|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address           | register name | default<br>value | R/W | description                                               | n                                                                                                                                                                                                                |
| 0x3818            | VSYNC END     | 0x00             | RW  | Bit[7:0]:                                                 | vsync_end[15:8]<br>VSYNC end point high byte                                                                                                                                                                     |
| 0x3819            | VSYNC END     | 0x00             | RW  | Bit[7:0]:                                                 | vsync_end[7:0]<br>VSYNC end point low byte                                                                                                                                                                       |
| 0x381A            | HSYNC FIRST H | 0x04             | RW  | Bit[7:0]:                                                 | hsync_first[15:8]<br>HSYNC first active row start position<br>high byte                                                                                                                                          |
| 0x381B            | HSYNC FIRST L | 0x00             | RW  | Bit[7:0]:                                                 | hsync_first[7:0]<br>HSYNC first active row start position<br>low byte                                                                                                                                            |
| 0x381C~<br>0x381F | NOT USED      | -                | -   | Not Used                                                  |                                                                                                                                                                                                                  |
| 0x3820            | FORMAT1       | 0x80             | RW  | Bit[7]: Bit[6]: Bit[5:4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]: | vsub48_blc vflip_blc Not used byp_isp_o vflip_dig vflip_arr hdr_en                                                                                                                                               |
| 0x3821            | FORMAT2       | 0x40             | RW  | Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]:   | dig_hbin4 hsync_en_o fst_vbin fst_hbin isp_hvar2 Digital horizontal mirror control 0: Mirrored image 1: Normal image Array horizontal mirror control 0: Mirrored image 1: Normal image 1: Normal image dig_hbin2 |
| 0x3822            | REG22         | 0x8C             | RW  | Bit[7:5]:<br>Bit[4:0]:                                    | addr0_num<br>ablc_num                                                                                                                                                                                            |
| 0x3823            | REG23         | 0x08             | RW  | Bit[7]:<br>Bit[6]:<br>Bit[5]:<br>Bit[4]:<br>Bit[3:0]:     | ext_vs_re ext_vs_en vts_no_latch init_man Not used                                                                                                                                                               |
| 0x3824            | CS RST FSIN   | 0x00             | RW  | Bit[7:0]:                                                 | cs_rst_fsin[15:8]<br>CS reset value high byte at vs_ext                                                                                                                                                          |
| 0x3825            | CS RST FSIN   | 0x20             | RW  | Bit[7:0]:                                                 | cs_rst_fsin[7:0]<br>CS reset value low byte at vs_ext                                                                                                                                                            |
|                   |               |                  |     |                                                           |                                                                                                                                                                                                                  |



timing control registers (sheet 4 of 5) table 6-8

| address | register name   | default<br>value | R/W | descriptio                                                 | n                                                                                                                      |
|---------|-----------------|------------------|-----|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 0x3826  | R RST FSIN      | 0x00             | RW  | Bit[7:0]:                                                  | r_rst_fsin[15:8]<br>R reset value high byte at vs_ext                                                                  |
| 0x3827  | R RST FSIN      | 0x08             | RW  | Bit[7:0]:                                                  | r_rst_fsin[7:0]<br>R reset value low byte at vs_ext                                                                    |
| 0x3828  | REG28           | 0x00             | RW  | Bit[7]: Bit[6]: Bit[5]:  Bit[4]: Bit[3]: Bit[2]: Bit[1:0]: | ext_hs_re ext_hs_en asp_start_sel 0: Use sync output 1: Use sensor output hts_inc_en r_gate_vs_b VSYNC polarity href_w |
| 0x3829  | NOT USED        | _                | -   | Not Used                                                   |                                                                                                                        |
| 0x382A  | Y INC ODD       | 0x01             | RW  | Bit[7:4]:<br>Bit[3:0]:                                     |                                                                                                                        |
| 0x382B  | Y INC EVEN      | 0x01             | RW  |                                                            | Not used y_even_inc                                                                                                    |
| 0x382C  | BLC COL ST L    | 0x01             | RW  | Bit[7:0]:                                                  | blc_col_st_[[7:0]<br>Left black column start address                                                                   |
| 0x382D  | BLC COL END L   | 0x00             | RW  | Bit[7:0]:                                                  | blc_col_end_l[7:0]<br>Left black column end address                                                                    |
| 0x382E  | BLC COL ST R    | 0x00             | RW  | Bit[7]:<br>Bit[6:0]:                                       | Not used blc_col_st_r[6:0] Right black column start address                                                            |
| 0x382F  | BLC COL END R   | 0x00             | RW  | Bit[7]:<br>Bit[6:0]:                                       | Not used blc_col_end_r[6:0] Right black column end address                                                             |
| 0x3830  | BLC NUM OPTION  | 0x04             | RW  | Bit[7:5]:<br>Bit[4:0]:                                     | ablc_adj<br>ablc_use_num                                                                                               |
| 0x3831  | BLC NUM MAN     | 0x00             | RW  | Bit[7:6]:<br>Bit[5]:<br>Bit[4:0]:                          | Not used<br>man_blc_num_sel<br>man_blc_num                                                                             |
| 0x3832  | FRACTION HTS    | 0x00             | RW  | Bit[7:0]:                                                  | fraction_hts[15:8]                                                                                                     |
| 0x3833  | FRACTION HTS    | 0x00             | RW  | Bit[7:0]:                                                  | fraction_hts[7:0]                                                                                                      |
| 0x3834  | EXT DIV FACTORS | 0x01             | RW  | Bit[7:4]:<br>Bit[3:0]:                                     | ext_vs_div<br>ext_hs_div                                                                                               |



table 6-8 timing control registers (sheet 5 of 5)

|                   | 9                                     | •                |     | ,                                                         |                                                                                                  |
|-------------------|---------------------------------------|------------------|-----|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| address           | register name                         | default<br>value | R/W | descriptio                                                | n                                                                                                |
| 0x3835            | GROUP WRITE<br>OPTION                 | 0x01             | RW  | Bit[7]:<br>Bit[6:5]:<br>Bit[4]:<br>Bit[3:0]:              | Not used ext_vsync_sel r_grp_wr_pt_sel 0: Gain trigger 1: End of frame Group write adjust number |
| 0x3836            | ZLINE NUM OPTION                      | 0x02             | RW  | Bit[7:5]:<br>Bit[4:0]:                                    | Not used zline_use_num                                                                           |
| 0x3837            | REG37                                 | 0x00             | RW  | Bit[7:5]:<br>Bit[4]:<br>Bit[3:0]:                         | Not used<br>vts_add_dis<br>cexp_gt_vts offs                                                      |
| 0x3838            | RGBC                                  | 0x10             | RW  | Bit[7]: Bit[6:5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]: | Not used rgbc_hbin_opt bypass_hsub rgb_only w_only rgbc_hbin rgbc_hsub                           |
| 0x3839~<br>0x383F | NOT USED                              | -(0)             | _   | Not Used                                                  |                                                                                                  |
| 0x3840            | GRP WR MAN                            | -                | RW  | Bit[7:0]:                                                 | grp_wr_man<br>Manual group command                                                               |
| 0x3841~<br>0x3847 | NOT USED                              | _                | -   | Not Used                                                  |                                                                                                  |
| 0x3848            | OTP_DPC_RST                           | 0x01             | RW  | Bit[7]:<br>Bit[6:5]:<br>Bit[4:0]:                         |                                                                                                  |
| 0x3861            | PD1                                   | 0x80             | RW  | Bit[4:2]:                                                 | r_zline_row_rst[2:0]<br>r_grp_adj[10:8]<br>r_zline_num[9:8]                                      |
| 0x3862            | PD2                                   | 0x00             | RW  | Bit[7:0]:                                                 | r_zline_num[7:0]                                                                                 |
| 0x3863            | PD3                                   | 0x02             | RW  | Bit[7:0]:                                                 | r_grp_adj[7:0]                                                                                   |
| 0x3870            | ROW COUNTER<br>LATCH                  | -                | R   | Bit[7:0]:                                                 | row_counter_latch<br>Read this register will trigger a latch<br>of row counter                   |
| 0x3871            | ROW COUNTER H                         | _                | R   | Bit[7:0]:                                                 | row_counter[15:8]                                                                                |
| 0x3872            | ROW COUNTER L                         | _                | R   | Bit[7:0]:                                                 | row_counter[7:0]                                                                                 |
|                   | · · · · · · · · · · · · · · · · · · · |                  |     |                                                           |                                                                                                  |



### 6.9 LPM control [0x3C80 - 0x3C87]

table 6-9 power saving mode control registers

|         | 1 0           |                  | O   |                                                                                                                                                                                                                                                                                                                      |
|---------|---------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                          |
| 0x3C80  | LPM REG0      | 0x00             | RW  | Bit[7:4]: Reserved Bit[3]: psv_auto_on_dis 0: PSV mode auto enable if VTS > threshold 1: Disable PSV auto-on mode, only depending on 0x3C80[2] Bit[2]: psv_mode_en Bit[1]: Reserved Bit[0]: psv_mode 0: Keep sclk on, frame timing based on sclk 1: Shut off sclk at blanking, frame timing switch to pad_clk domain |
| 0x3C81  | LPM REG1      | 0x00             | RW  | Bit[7:4]: Reserved Bit[3]: tc_sof_sync_en Bit[2]: vblkp_sync_dis Bit[1:0]: blank_retime_opt                                                                                                                                                                                                                          |
| 0x3C82  | LPM REG2      | 0x00             | RW  | Bit[7:0]: hts_pad_clk[15:8]                                                                                                                                                                                                                                                                                          |
| 0x3C83  | LPM REG3      | 0xB1             | RW  | Bit[7:0]: hts_pad_clk[7:0]                                                                                                                                                                                                                                                                                           |
| 0x3C84  | LPM REG4      | 0x00             | RW  | Bit[7:0]: cs_cnt_initial[15:8]                                                                                                                                                                                                                                                                                       |
| 0x3C85  | LPM REG5      | 0x0F             | RW  | Bit[7:0]: cs_cnt_initial[7:0]                                                                                                                                                                                                                                                                                        |
| 0x3C86  | LPM REG6      | 80x0             | RW  | Bit[7:0]: stream_st_offset                                                                                                                                                                                                                                                                                           |
| 0x3C87  | LPM REG7      | 0x08             | RW  | Bit[7:0]: pchg_st_offset                                                                                                                                                                                                                                                                                             |
|         |               |                  |     |                                                                                                                                                                                                                                                                                                                      |

### 6.10 power control [0x3CC0 ~ 0x3CC8]

power control registers (sheet 1 of 2) table 6-10

| address | register name | default<br>value | R/W | description                                                                                             |
|---------|---------------|------------------|-----|---------------------------------------------------------------------------------------------------------|
| 0x3CC0  | PSRR_SW0      | 0x13             | RW  | Bit[7:6]: Not used Bit[5]: psrr_on_man Bit[4]: psrr_on_man_en Bit[3]: psrr_dis Bit[2:0]: detect_wid_opt |



table 6-10 power control registers (sheet 2 of 2)

| address | register name | default<br>value | R/W | description                                                               |
|---------|---------------|------------------|-----|---------------------------------------------------------------------------|
| 0x3CC1  | PSRR_SW1      | 0x10             | RW  | Bit[7:0]: threshold_gap                                                   |
| 0x3CC2  | PSRR_SW2      | 0x00             | RW  | Bit[7:0]: pwr_detect[15:8]                                                |
| 0x3CC3  | PSRR_SW3      | 0x00             | RW  | Bit[7:0]: pwr_detect[7:0]                                                 |
| 0x3CC4  | PSRR_SW4      | 0x07             | RW  | Bit[7:0]: psrr_sw_threshold[15:8]                                         |
| 0x3CC5  | PSRR_SW5      | 0xF0             | RW  | Bit[7:0]: psrr_sw_threshold[7:0]                                          |
| 0x3CC6  | PSRR_SW6      | -                | R   | Bit[7]: psrr_on Bit[6]: pwr_detect_en Bit[5]: vblank_i Bit[4:0]: Not used |
| 0x3CC7  | PSRR_SW7      | _                | R   | Bit[7:0]: Noise_cnt[15:8]                                                 |
| 0x3CC8  | PSRR_SW8      | -                | R   | Bit[7:0]: Noise_cnt[7:0]                                                  |

## 6.11 OTP\_SC control [0x3D80 - 0x3D91]

 $\textbf{table 6-11} \qquad \textbf{OTP\_SC control registers (sheet 1 of 2)}$ 

| address | register name        | default<br>value | R/W | description                                                                                                                                                                   |
|---------|----------------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3D80  | OTP_PROGRAM_<br>CTRL | 0,               | RW  | Bit[7]: OTP_wr_busy (read only) Bit[6:1]: Not used Bit[0]: OTP_program_enable (write only)                                                                                    |
| 0x3D81  | OTP_LOA_CTRL         | -                | RW  | Bit[7]: OTP_rd_busy (read only) Bit[6]: Not used Bit[5]: OTP_bist_error (read only) Bit[4]: OTP_bist_done (read only) Bit[3:1]: Not used Bit[0]: OTP_load_enable (read/write) |
| 0x3D82  | OTP_PGM_PULSE        | 0x55             | RW  | Program Strobe Pulse Width<br>Unit: 8 × system clock period                                                                                                                   |
| 0x3D83  | OTP_LOAD_PULSE       | 0x08             | RW  | Load Strobe Pulse Width<br>Unit: system clock period                                                                                                                          |
| 0x3D84  | OTP_MODE_CTRL        | 0x00             | RW  | Bit[7]: Program disable 1: Disable Bit[6]: Mode select 0: Auto mode 1: Manual mode Bit[5:0]: Debug mode                                                                       |



table 6-11 OTP\_SC control registers (sheet 2 of 2)

| address | register name               | default<br>value | R/W | description                                                                                                                                                                                                                                                     |
|---------|-----------------------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3D85  | OTP_REG85                   | 0x13             | RW  | Bit[7:6]: Debug mode Bit[5]: OTP_bist_select 0: Compare with SRAM 1: Compare with zero Bit[4]: OTP_bist_enable Bit[3]: Debug mode Bit[2]: OTP power up load data enable Bit[1]: OTP power up load setting enable Bit[0]: OTP write register load setting enable |
| 0x3D86  | SRAM_TEST_<br>SIGNALS       | 0x02             | RW  | Bit[7:3]: Debug mode Bit[2]: r_test Bit[1:0]: r_rm                                                                                                                                                                                                              |
| 0x3D87  | OTP_PS2CS                   | 0x0A             | RW  | OTP PS to CSB Delay<br>Unit: System Clock Period                                                                                                                                                                                                                |
| 0x3D88  | OTP_START_<br>ADDRESS       | 0x00             | RW  | OTP Start High Address for Manual Mode                                                                                                                                                                                                                          |
| 0x3D89  | OTP_START_<br>ADDRESS       | 0x00             | RW  | OTP Start Low Address for Manual Mode                                                                                                                                                                                                                           |
| 0x3D8A  | OTP_EN_ADDRESS              | 0x00             | RW  | OTP End High Address for Manual Mode                                                                                                                                                                                                                            |
| 0x3D8B  | OTP_END_<br>ADDRESS         | 0x00             | RW  | OTP End Low Address for Manual Mode                                                                                                                                                                                                                             |
| 0x3D8C  | OTP_SETTING_STT<br>_ADDRESS | 0x00             | RW  | OTP Start High Address for Load Setting                                                                                                                                                                                                                         |
| 0x3D8D  | OTP_SETTING_STT<br>_ADDRESS | 0x00             | RW  | OTP Start Low Address for Load Setting                                                                                                                                                                                                                          |
| 0x3D8E  | OTP_BIST_ERR_<br>ADDRESS    | -                | R   | OTP Check Error Address High                                                                                                                                                                                                                                    |
| 0x3D8F  | OTP_BIT_ERR_<br>ADDRESS     |                  | R   | OTP Check Error Address Low                                                                                                                                                                                                                                     |
| 0x3D90  | OTP_CTRL                    | 0x14             | RW  | Bit[7:0]: Gap between strobe pulse when programming                                                                                                                                                                                                             |
| 0x3D91  | OTP_CTRL                    | 0x06             | RW  | Bit[7:0]: Gap between strobe pulse when loading                                                                                                                                                                                                                 |



#### 6.12 PSRAM control [0x3F00 - 0x3F0F]

table 6-12 PSRAM control registers

| address           | register name | default<br>value | R/W | description             |
|-------------------|---------------|------------------|-----|-------------------------|
| 0x3F00~<br>0x3F0F | PSRAM CONTROL | -                | -   | PSRAM Control Registers |

#### 6.13 BLC control [0x4000 - 0x4027, 0x4030 - 0x4050, 0x4060 - 0x4067]

table 6-13 BLC control registers (sheet 1 of 5)

| address | register name           | default<br>value | R/W                                                                                                                    | description                                                                                                                                                                         |
|---------|-------------------------|------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                         |                  |                                                                                                                        | Bit[7:5]: r_num_add_o Bit[4]: r_black_line_sel_o Bit[3]: Target adjust disable Use offset to adjust target 0: Enable 1: Disable                                                     |
| 0x4000  | 0x4000 BLC CTRL 00 0x03 | RW               | Bit[2]: Compensation enable Adjust on offset due to gain change 0: Disable 1: Enable Bit[1]: Dither_en 1 bit dithering |                                                                                                                                                                                     |
|         |                         |                  |                                                                                                                        | 0: Disable 1: Enable Bit[0]: Median_en Median filter function enable                                                                                                                |
| 0x4001  | BLC CTRL 01             | 0xE0             | RW                                                                                                                     | Bit[7]: r_gain_trig_beh_o Bit[6]: r_format_trig_beh_o Bit[5]: Kocef manual enable Bit[4]: Zero line out enable Bit[3]: Black line out enable Bit[2]: Not used Bit[1:0]: Bypass mode |
| 0x4002  | BLC CTRL 02             | 0x00             | RW                                                                                                                     | Bit[7:2]: Not used Bit[1:0]: Blacklevel target[9:8] High 2 bits                                                                                                                     |
| 0x4003  | BLC CTRL 03             | 0x10             | RW                                                                                                                     | Bit[7:0]: Blacklevel target[7:0]<br>Low 8 bits                                                                                                                                      |



table 6-13 BLC control registers (sheet 2 of 5)

| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                |
|---------|---------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4004  | BLC CTRL 04   | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: Horizontal win start[11:8] Horizontal win start high 4 bits                                                                                                                                                   |
| 0x4005  | BLC CTRL 05   | 0x02             | RW  | Bit[7:0]: Horizontal win start[7:0]<br>Horizontal win start low 8 bits                                                                                                                                                                     |
| 0x4006  | BLC CTRL 06   | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: Horizontal win pad[11:8] Horizontal win pad high 4 bits                                                                                                                                                       |
| 0x4007  | BLC CTRL 07   | 0x02             | RW  | Bit[7:0]: Horizontal win pad[7:0] Horizontal win pad low 8 bits                                                                                                                                                                            |
| 0x4008  | BLC CTRL 08   | 0x02             | RW  | Bit[7:0]: Black line start line                                                                                                                                                                                                            |
| 0x4009  | BLC CTRL 09   | 0x05             | RW  | Bit[7:0]: Black line end line                                                                                                                                                                                                              |
| 0x400A  | BLC CTRL 0A   | 0x02             | RW  | Bit[7:0]: Offset trigger threshold[15:8] Offset limit threshold high 8 bits                                                                                                                                                                |
| 0x400B  | BLC CTRL 0B   | 0x00             | RW  | Bit[7:0]: Offset trigger threshold[7:0] Offset limit threshold low 8 bits                                                                                                                                                                  |
| 0x400C  | BLC CTRL 0C   | 0x00             | RW  | Bit[7:0]: CVDN black lines start                                                                                                                                                                                                           |
| 0x400D  | BLC CTRL 0D   | 0x00             | RW  | Bit[7:0]: CVDN black lines end                                                                                                                                                                                                             |
| 0x400E  | BLC CTRL 0E   | 0x00             | RW  | Bit[7]: r_zero_ln_sel<br>Bit[6:0]: r_mf_th_o                                                                                                                                                                                               |
| 0x400F  | BLC CTRL 0F   | 0x80             | RW  | Bit[7]: r_exp_chg_trig_en_o Bit[6]: r_set_zb_o Bit[5:4]: r_manu_cvdn_out_en Bit[3]: r_v15_one-channel_en Bit[2]: r_en_adp_k_o Bit[1]: r_dc_offset_mode_o Bit[0]: r_compute_offset_v15_o                                                    |
| 0x4010  | BLC CTRL 10   | 0xF0             | RW  | Bit[7]: Offset trigger enable Bit[6]: Gain change trigger enable Bit[5]: Format change trigger enable Bit[4]: Reset trigger enable Bit[3]: Manual average enable Bit[2]: Manual trigger Bit[1]: Freeze enable Bit[0]: Offset always update |



table 6-13 BLC control registers (sheet 3 of 5)

| address           | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                   |
|-------------------|---------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4011            | BLC CTRL 11   | 0xFF             | RW  | Bit[7]: offset_cmp_man_en Bit[6]: Offset trigger multiframe enable Bit[5]: Format trigger multiframe enable Bit[4]: Gain trigger multiframe enable Bit[3]: Reset trigger multiframe enable Bit[2]: Offset trigger multiframe mode Bit[1]: Format trigger multiframe mode Bit[0]: Gain trigger multiframe mode |
| 0x4012            | BLC CTRL 12   | 0x08             | RW  | Bit[7:6]: Not used Bit[5:0]: Reset trigger frame num                                                                                                                                                                                                                                                          |
| 0x4013            | BLC CTRL 13   | 0x02             | RW  | Bit[7:6]: Not used Bit[5:0]: Format trigger frame num                                                                                                                                                                                                                                                         |
| 0x4014            | BLC CTRL 14   | 0x02             | RW  | Bit[7:6]: Not used Bit[5:0]: Gain trigger frame num                                                                                                                                                                                                                                                           |
| 0x4015            | BLC CTRL 15   | 0x02             | RW  | Bit[7:6]: Not used Bit[5:0]: Offset trigger frame num                                                                                                                                                                                                                                                         |
| 0x4016            | BLC CTRL 16   | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: Offset trigger threshold[9:8] Offset trigger threshold high 2 bits                                                                                                                                                                                                               |
| 0x4017            | BLC CTRL 17   | 0x04             | RW  | Bit[7:0]: Offset trigger threshold[7:0] Offset trigger threshold low 8 bits                                                                                                                                                                                                                                   |
| 0x4018~<br>0x401F | NOT USED      | _                | -   | Not Used                                                                                                                                                                                                                                                                                                      |
| 0x4020            | BLC CTRL 20   | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Offset compensation k000                                                                                                                                                                                                                                                         |
| 0x4021            | BLC CTRL 21   | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Offset compensation k001                                                                                                                                                                                                                                                         |
| 0x4022            | BLC CTRL 22   | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Offset compensation k010                                                                                                                                                                                                                                                         |
| 0x4023            | BLC CTRL 23   | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Offset compensation k011                                                                                                                                                                                                                                                         |
| 0x4024            | BLC CTRL 24   | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Offset compensation th000                                                                                                                                                                                                                                                        |
| 0x4025            | BLC CTRL 25   | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Offset compensation th001                                                                                                                                                                                                                                                        |
| 0x4026            | BLC CTRL 26   | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Offset compensation th010                                                                                                                                                                                                                                                        |
| 0x4027            | BLC CTRL 27   | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Offset compensation th011                                                                                                                                                                                                                                                        |



table 6-13 BLC control registers (sheet 4 of 5)

| 14510 0 15 | DEC controllegis | (3               |     |                                                     |
|------------|------------------|------------------|-----|-----------------------------------------------------|
| address    | register name    | default<br>value | R/W | description                                         |
| 0x4030     | BLC CTRL 30      | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: Offset man 000[9:8] |
| 0x4031     | BLC CTRL 31      | 0x00             | RW  | Bit[7:0]: Offset man 000[7:0]                       |
| 0x4032     | BLC CTRL 32      | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: Offset man 001[9:8] |
| 0x4033     | BLC CTRL 33      | 0x00             | RW  | Bit[7:0]: Offset man 001[7:0]                       |
| 0x4034     | BLC CTRL 34      | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: Offset man 010[9:8] |
| 0x4035     | BLC CTRL 35      | 0x00             | RW  | Bit[7:0]: Offset man 010[7:0]                       |
| 0x4036     | BLC CTRL 36      | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: Offset man 011[9:8] |
| 0x4037     | BLC CTRL 37      | 0x00             | RW  | Bit[7:0]: Offset man 011[7:0]                       |
| 0x4038     | BLC CTRL 38      | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: Offset man 100[9:8] |
| 0x4039     | BLC CTRL 39      | 0x00             | RW  | Bit[7:0]: Offset man 100[7:0]                       |
| 0x403A     | BLC CTRL 3A      | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: Offset man 101[9:8] |
| 0x403B     | BLC CTRL 3B      | 0x00             | RW  | Bit[7:0]: Offset man 101[7:0]                       |
| 0x403C     | BLC CTRL 3C      | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: Offset man 110[9:8]    |
| 0x403D     | BLC CTRL 3D      | 0x00             | RW  | Bit[7:0]: Offset man 110[7:0]                       |
| 0x403E     | BLC CTRL 3E      | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: Offset man 111[9:8] |
| 0x403F     | BLC CTRL 3F      | 0x00             | RW  | Bit[7:0]: Offset man 111[7:0]                       |
| 0x4040     | BLC CTRL 40      | 0x00             | RW  | Bit[7:0]: Zline start                               |
| 0x4041     | BLC CTRL 41      | 0x01             | RW  | Bit[7:0]: Zline end                                 |
| 0x4042     | BLC CTRL 42      | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: kcoef_b_man[9:8]       |
| 0x4043     | BLC CTRL 43      | 0x80             | RW  | Bit[7:0]: kcoef_b_man[7:0]                          |
| 0x4044     | BLC CTRL 44      | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: kcoef_gb_man[9:8]      |
| 0x4045     | BLC CTRL 45      | 0x80             | RW  | Bit[7:0]: kcoef_gb_man[7:0]                         |
| 0x4046     | BLC CTRL 46      | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: kcoef_gr_man[9:8]      |



table 6-13 BLC control registers (sheet 5 of 5)

|         |               | ·                |     |                                                                |
|---------|---------------|------------------|-----|----------------------------------------------------------------|
| address | register name | default<br>value | R/W | description                                                    |
| 0x4047  | BLC CTRL 47   | 0x80             | RW  | Bit[7:0]: kcoef_gr_man[7:0]                                    |
| 0x4048  | BLC CTRL 48   | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: kcoef_r_man[9:8]               |
| 0x4049  | BLC CTRL 49   | 0x80             | RW  | Bit[7:0]: kcoef_r_man[7:0]                                     |
| 0x404A  | BLC CTRL 4A   | 0x30             | RW  | Bit[7:0]: dc_th_1                                              |
| 0x404B  | BLC CTRL 4B   | 0x18             | RW  | Bit[7:0]: dc_th_1                                              |
| 0x404C  | BLC CTRL 4C   | 0x60             | RW  | Bit[7]: Not used Bit[6]: rst_trig_opt Bit[5:0]: Average weight |
| 0x404D  | BLC CTRL 4D   | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: rnd_gain_th[9:8]               |
| 0x404E  | BLC CTRL 4E   | 0x00             | RW  | Bit[7:0]: rnf_gain_th[7:0]                                     |
| 0x404F  | BLC CTRL 4F   | 0x00             | RW  | Bit[7:0]: dc_th_1_s                                            |
| 0x4050  | BLC CTRL 50   | 0x00             | RW  | Bit[7:0]: dc_th_2_s                                            |
| 0x4060  | BLC CTRL 60   | -(3)             | R   | Bit[7:2]: Not used<br>Bit[1:0]: BLC_offset000[9:8]             |
| 0x4061  | BLC CTRL 61   | -                | R   | Bit[7:0]: BLC_offset000[7:0]                                   |
| 0x4062  | BLC CTRL 62   | )-               | R   | Bit[7:2]: Not used<br>Bit[1:0]: BLC_offset001[9:8]             |
| 0x4063  | BLC CTRL 63   | -                | R   | Bit[7:0]: BLC_offset001[7:0]                                   |
| 0x4064  | BLC CTRL 64   |                  | R   | Bit[7:2]: Not used<br>Bit[1:0]: BLC_offset010[9:8]             |
| 0x4065  | BLC CTRL 65   | _                | R   | Bit[7:0]: BLC_offset010[7:0]                                   |
| 0x4066  | BLC CTRL 66   | _                | R   | Bit[7:2]: Not used<br>Bit[1:0]: BLC_offset011[9:8]             |
| 0x4067  | BLC CTRL 67   | -                | R   | Bit[7:0]: BLC_offset011[7:0]                                   |
|         |               |                  |     |                                                                |



### 6.14 FC control [0x4200 - 0x4203]

table 6-14 FC control registers

| address | register name | default<br>value | R/W | description                                                                                                                                                                        |
|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4200  | R0            | 0x08             | RW  | Bit[7:4]: Not used Bit[3]: sof_after_line0 Bit[2]: fcnt_eof_sel Bit[1]: fcnt_mask_dis Bit[0]: fcnt_reset                                                                           |
| 0x4201  | R1            | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: frame_on_number                                                                                                                                    |
| 0x4202  | R2            | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: frame_off_number                                                                                                                                   |
| 0x4203  | R3            | 0x80             | RW  | Bit[7]: zero_line_mask_dis Bit[6]: blue_mask_dis Bit[5]: data_mask_dis Bit[4]: valid_mask_dis Bit[3]: href_mask_dis Bit[2]: eof_mask_dis Bit[1]: sof_mask_dis Bit[0]: all_mask_dis |

# 6.15 format control [0x4300 - 0x4317, 0x4320 - 0x4329]

format control registers (sheet 1 of 3) table 6-15

| address | register name | default<br>value | R/W | description                                                                                                                                          |
|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4300  | CLIP MAX HI   | 0xFF             | RW  | Bit[7:0]: clip_max_hi                                                                                                                                |
| 0x4301  | CLIP MIN HI   | 0x00             | RW  | Bit[7:0]: clip_min_hi                                                                                                                                |
| 0x4302  | CLIP LO       | 0x0F             | RW  | Bit[7:4]: clip_min_lo<br>Bit[3:0]: clip_max_lo                                                                                                       |
| 0x4303  | FORMAT CTRL3  | 0x00             | RW  | Bit[7]: r_inc_en Bit[6]: r_pat_inv Bit[5]: r_pad_lsb Bit[4]: r_bar_mux Bit[3]: r_bar_en Bit[2]: r_bit_tst_en Bit[1]: r_tst_bit8 Bit[0]: r_bit_tst_md |



table 6-15 format control registers (sheet 2 of 3)

| address | register name    | default<br>value | R/W | description                                                                                               |
|---------|------------------|------------------|-----|-----------------------------------------------------------------------------------------------------------|
| 0x4304  | FORMAT CTRL4     | 0x08             | RW  | Bit[7]: Not used Bit[6:4]: data_bit_swap Bit[3]: tst_full_win Bit[2:0]: bar_pad                           |
| 0x4305  | PAD LOW1         | 0x40             | RW  | Bit[7:6]: Pad99<br>Bit[5:4]: Pad66<br>Bit[3:2]: Pad33<br>Bit[1:0]: Pad00                                  |
| 0x4306  | PAD LOW2         | 0x0E             | RW  | Bit[7:4]: Not used<br>Bit[3:2]: Padff<br>Bit[1:0]: Padcc                                                  |
| 0x4307  | EMBED CTRL       | 0x30             | RW  | Bit[7:2]: Not used Bit[1]: dpc_threshold_opt 0: For black pixel 1: For white pixel Bit[0]: embedded_en    |
| 0x4308  | TST X START HIGH | 0x00             | RW  | Bit[7:5]: Not used<br>Bit[4:0]: tst_x_start[12:8]                                                         |
| 0x4309  | TST X START LOW  | 0x00             | RW  | Bit[7:1]: tst_x_start[7:1] Bit[0]: Not used                                                               |
| 0x430A  | TST Y START HIGH | 0x00             | RW  | Bit[7:5]: Not used Bit[4:0]: tst_y_start[12:8]                                                            |
| 0x430B  | TST Y START LOW  | 0x00             | RW  | Bit[7:1]: tst_y_start[7:1] Bit[0]: Not used                                                               |
| 0x430C  | TST WIDTH HIGH   | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: tst_width[11:8]                                                           |
| 0x430D  | TST WIDTH LOW    | 0x00             | RW  | Bit[7:0]: tst_width[7:0]                                                                                  |
| 0x430E  | TST HIGHT HIGH   | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: tst_hight[11:8]                                                           |
| 0x430F  | TST HIGHT LOW    | 0x00             | RW  | Bit[7:0]: tst_hight[7:0]                                                                                  |
| 0x4311  | CTRL11           | 0x04             | RW  | Bit[7:0]: r_hsyvsy_neg_width[15:8]                                                                        |
| 0x4312  | CTRL12           | 0x00             | RW  | Bit[7:0]: r_hsyvsy_neg_width[7:0]                                                                         |
| 0x4313  | CTRL13           | 0x00             | RW  | Bit[7:5]: Not used Bit[4]: r_vsync_pol Bit[3:2]: r_vsyncout_sel Bit[1]: r_vsync3_mod Bit[0]: r_vsync2_mod |
| 0x4314  | CTRL14           | 0x00             | RW  | Bit[7:0]: r_seof_vsync_delay[23:16]                                                                       |
| 0x4315  | CTRL15           | 0x00             | RW  | Bit[7:0]: r_seof_vsync_delay[15:8]                                                                        |



format control registers (sheet 3 of 3) table 6-15

| address | register name        | default<br>value | R/W | description                                                                                                                            |
|---------|----------------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| 0x4316  | CTRL16               | 0x00             | RW  | Bit[7:1]: r_seof_vsync_delay[7:1] Bit[0]: r_dpcm_en                                                                                    |
| 0x4317  | CTRL17               | 0x00             | RW  | Bit[7:1]: Not used Bit[0]: r_dpcm_en                                                                                                   |
| 0x4320  | TEST PATTERN<br>CTRL | 0x80             | RW  | Bit[7:6]: pixel_order                                                                                                                  |
| 0x4321  | PN31 CTRL            | 0x00             | RW  | Bit[7:4]: Not used Bit[3]: PN31 LSB first enable Bit[2]: PN31 reset by SOF enable Bit[1]: PN31 reset by HREF enable Bit[0]: PN9 enable |
| 0x4322  | SOLID COLOR B        | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: solid_color_b[9:8]                                                                                     |
| 0x4323  | SOLID COLOR B        | 0x00             | RW  | Bit[7:0]: solid_color_b[7:0]                                                                                                           |
| 0x4324  | SOLID COLOR GB       | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: solid_color_gb[9:8]                                                                                    |
| 0x4325  | SOLID COLOR GB       | 0x00             | RW  | Bit[7:0]: solid_color_gb[7:0]                                                                                                          |
| 0x4326  | SOLID COLOR R        | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: solid_color_r[9:8]                                                                                     |
| 0x4327  | SOLID COLOR R        | 0x00             | RW  | Bit[7:0]: solid_color_r[7:0]                                                                                                           |
| 0x4328  | SOLID COLOR GR       | 0x00             | RW  | Bit[7:2]: Not used<br>Bit[1:0]: solid_color_gr[9:8]                                                                                    |
| 0x4329  | SOLID COLOR GR       | 0x00             | RW  | Bit[7:0]: solid_color_gr[7:0]                                                                                                          |



### 6.16 CADC sync control [0x4500 - 0x4505]

table 6-16 CADC sync control registers

|         |               | O                |     |                                                                                                                                                                 |
|---------|---------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name | default<br>value | R/W | description                                                                                                                                                     |
| 0x4500  | CTRL          | 0x68             | RW  | Bit[7:3]: FIFO read delay Bit[2]: Rblue rev Bit[1]: Not used Bit[0]: srclk_inv                                                                                  |
| 0x4501  | R1            | 0xC4             | RW  | Bit[7:2]: Not used Bit[1]: Mirror manual enable Bit[0]: Mirror manual                                                                                           |
| 0x4502  | R2            | 0x40             | RW  | Bit[7]: r_weight_fix Bit[6:5]: r_weight Bit[4]: r_hskip Bit[3:2]: r_hbin_opt Bit[1]: r_skip_opt Bit[0]: Swap SRAM input data from D0~D3 to D3~D0                |
| 0x4503  | R3            | 0x00             | RW  | Bit[7:0]: r_data_offs                                                                                                                                           |
| 0x4504  | R4            | 0x04             | RW  | Bit[7]: r_sync_mirror_re Bit[6]: r_sync_flip_re Bit[5]: r_sync_mirror_opt Bit[4]: r_sync_flip_opt Bit[3]: r_sync_data_sw Bit[2]: r_byp_rblue Bit[1:0]: Not used |
| 0x4505  | R5            | 0x8F             | RW  | Bit[7]: r_sync_avg Bit[6]: r_sync_byp Bit[5]: r_sync_sram_test Bit[4]: Not used Bit[3:0]: r_sync_sram_RM                                                        |

### 6.17 VFIFO control [0x4600 - 0x4604]

table 6-17 VFIFO control registers (sheet 1 of 2)

| address | register name         | default<br>value | R/W | description                                                  |
|---------|-----------------------|------------------|-----|--------------------------------------------------------------|
| 0x4600  | R VFIFO READ<br>START | 0x00             | RW  | Bit[7:0]: r_vfifo_read_start[15:8] read_start size high byte |



table 6-17 VFIFO control registers (sheet 2 of 2)

| address | register name         | default<br>value | R/W | description                                                                                          |
|---------|-----------------------|------------------|-----|------------------------------------------------------------------------------------------------------|
| 0x4601  | R VFIFO READ<br>START | 0x10             | RW  | Bit[7:0]: r_vfifo_read_start[7:0] read_start size low byte                                           |
| 0x4602  | R2                    | 0x02             | RW  | Bit[7:4]: r_rm Bit[3]: r_test1 Bit[2]: Not used Bit[1]: Frame reset enable Bit[0]: RAM bypass enable |
| 0x4603  | R3                    | 9                | R   | Bit[7:4]: Not used Bit[3]: ram_full Bit[2]: ram_empty Bit[1]: fo_full Bit[0]: fo_empty               |
| 0x4604  | R4                    | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: SRAM sclk select option                                                 |

## 6.18 MIPI control [0x4800 - 0x4833, 0x4836 - 0x483D, 0x484A - 0x4853]

MIPI control registers (sheet  $1\ {
m of}\ 11$ ) table 6-18

| address | register name | default<br>value | R/W | description                                                                                                                                                                                    |
|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |               |                  |     | Bit[7]: Not used Bit[6]: gate_sc_vblk_en 1: Enable gate clock lane only when vblanking Bit[5]: gate_sc_en 0: Clock lane is free running 1: Gate clock lane when there is no packet to transmit |
| 0x4800  | MIPI CTRL00   | 0x4C             | RW  | Bit[4]: line_sync_en 0: Do not send line short packet for each line 1: Send line short packet for each line                                                                                    |
|         |               |                  |     | Bit[3]: fst_stby_ctr 0: Software standby enter at v_blk 1: Software standby enter at l_blk Bit[2:0]: Not used                                                                                  |



table 6-18 MIPI control registers (sheet 2 of 11)

|         |               | (                |     | <i>'</i>                                  |                                                                                                                                                                                                                                               |
|---------|---------------|------------------|-----|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name | default<br>value | R/W | description                               | n                                                                                                                                                                                                                                             |
| 0x4801  | MIPI CTRL01   | 0x00             | RW  | Bit[7]: Bit[6]: Bit[5]: Bit[4:2]: Bit[1]: | Not used spkt_dt_sel  1: Use dt_spkt as short packet data first_bit Change clk_lane first bit 0: Output 0x05  1: Output 0xAA Not used LPX_select for pclk domain 0: Auto calculate t_lpx_p, unit pclk2x cycle  1: Use lpx_p_min[7:0] Not used |
|         | <b>9</b>      |                  |     | Bit[7]:                                   | hs_prepare_sel 0: Auto calculate T hs prepare,                                                                                                                                                                                                |
|         |               |                  | RW  | Bit[6]:<br>Bit[5]:                        | unit pclk2x  1: Use hs_prepare_min_o[7:0] clk_prepare_sel  0: Auto calculate T_clk_prepare, unit pclk2x  1: Use clk_prepare_min_o[7:0] clk_post_sel  0: Auto calculate T_clk_post, unit                                                       |
|         |               | 0x00             |     | Bit[4]:                                   | pclk2x  1: Use clk_post_min_o[7:0] clk_trail_sel  0: Auto calculate T_clk_trail, unit pclk2x                                                                                                                                                  |
| 0x4802  | MIPI CTRL02   |                  |     | Bit[3]:                                   | Use clk_trail_min_o[7:0]     hs_exit_sel     Auto calculate T_hs_exit, unit                                                                                                                                                                   |
|         |               |                  |     | Bit[2]:                                   | Description:  Auto calculate T_ns_exit, unit pclk2x  1: Use hs_exit_min_o[7:0] hs_zero_sel  O: Auto calculate T_hs_zero, unit pclk2x                                                                                                          |
|         |               |                  |     | Bit[1]:                                   | 1: Use hs_zero_min_o[7:0] hs_trail_sel 0: Auto calculate T_hs_trail, unit                                                                                                                                                                     |
|         |               |                  |     | Bit[0]:                                   | pclk2x 1: Use hs_trail_min_o[7:0] clk_zero_sel 0: Auto calculate T_clk_zero, unit pclk2x                                                                                                                                                      |
|         |               |                  |     |                                           | 1: Use clk_zero_min_o[7:0]                                                                                                                                                                                                                    |



table 6-18 MIPI control registers (sheet 3 of 11)

|                   |               | •                |     | <u> </u>                                                                                                                                                                                                                                                                                        |
|-------------------|---------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address           | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                     |
| 0x4803            | MIPI CTRL03   | 0x00             | RW  | Bit[7:4]: Not used Bit[3]: manu_ofset_o                                                                                                                                                                                                                                                         |
| 0x4804            | MIPI CTRL04   | 0x04             | RW  | Bit[7:4]: man_lane_num Bit[3]: lane_num_manual_enable Bit[2]: lane4_6b_en                                                                                                                                                                                                                       |
| 0x4805            | MIPI CTRL05   | 0x00             | RW  | Bit[7:4]: Not used Bit[3]: lpda_retim_manu_o Bit[2]: lpda_retim_sel_o                                                                                                                                                                                                                           |
| 0x4806            | MIPI CTRL06   | 0x10             | RW  | Bit[7]: Not used Bit[6]: Suspend latch at horizontal blanking Bit[5]: Suspend latch at vertical blanking Bit[4]: pu_mark_en_o Power up mark1 enable Bit[3]: mipi_remot_rst Bit[2]: mipi_susp Bit[1]: smia_lane_ch_en Bit[0]: tx_lsb_first 0: High bit first 1: Low power transmit low bit first |
| 0x4807            | MIPI CTRL07   | 0x03             | RW  | Bit[7:4]: Not used Bit[3:0]: sw_t_lpx ul_tx T_lpx                                                                                                                                                                                                                                               |
| 0x4808            | MIPI CTRL08   | 0x0A             | RW  | Bit[7:0]: wkup_dly<br>Mark1 wakeup delay/2^10                                                                                                                                                                                                                                                   |
| 0x4809~<br>0x480F | NOT USED      | _                | _   | Not Used                                                                                                                                                                                                                                                                                        |
| 0x4810            | FCNT MAX      | 0xFF             | RW  | Bit[7:0]: fcnt_max[15:8]  High byte of max frame counter of frame sync short packet                                                                                                                                                                                                             |



table 6-18 MIPI control registers (sheet 4 of 11)

| address | register name | default<br>value | R/W | description                                                                                                                                                                                                              |
|---------|---------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4811  | FCNT MAX      | 0xFF             | RW  | Bit[7:0]: fcnt_max[7:0]  Low byte of max frame counter of frame sync short packet                                                                                                                                        |
| 0x4812  | NOT USED      | _                | _   | Not Used                                                                                                                                                                                                                 |
| 0x4813  | MIPI CTRL13   | 0x00             | RW  | Bit[7:3]: Not used<br>Bit[2]: vc_sel<br>Bit[1:0]: VC ID                                                                                                                                                                  |
| 0x4814  | MIPI CTRL14   | 0x2A             | RW  | Bit[7]: Not used Bit[6]: lpkt_dt_sel 0: Use mipi_dt 1: Use dt_man_o as long packet data Bit[5:0]: dt_man Manual data type                                                                                                |
| 0x4815  | MIPI CTRL15   | 0x00             | RW  | Bit[7]: Not used Bit[6]: pclk_inv 0: Using falling edge of mipi_pclk_o to generate MIPI bus to PHY 1: Using rising edge of mipi_pclk_o to generate MIPI bus to PHY  Bit[5:0]: manu_dt_short Manual type for short packet |
| 0x4816  | EMB DT        | 0x53             | RW  | Bit[7:6]: Not used Bit[5:0]: emb_dt Manual set embedded data type                                                                                                                                                        |
| 0x4817  | YUV420 FUN    | 0x00             | RW  | Bit[7:2]: Not used Bit[1]: yuv420_2x YUV420 2x in odd line, lcnt[0]=1 Bit[0]: yuv420_en                                                                                                                                  |
| 0x4818  | HS ZERO MIN   | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: hs_zero_min[9:8] High byte of minimum value of hs_zero, unit ns                                                                                                                             |
| 0x4819  | HS ZERO MIN   | 0x70             | RW  | Bit[7:0]: hs_zero_min[7:0]  Low byte of minimum value of hs_zero hs_zero_real = hs_zero_min_o + Tui*ui_hs_zero_min_o                                                                                                     |
| 0x481A  | HS TRAIL MIN  | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: hs_trail_min[9:8] High byte of minimum value of hs_trail, unit ns                                                                                                                           |



table 6-18 MIPI control registers (sheet 5 of 11)

| 100100  | i iii i conti oti egis | 710.5 (500       |     | -,                                                                                                                                     |
|---------|------------------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| address | register name          | default<br>value | R/W | description                                                                                                                            |
| 0x481B  | HS TRAIL MIN           | 0x3C             | RW  | Bit[7:0]: hs_trail_min[7:0]  Low byte of minimum value of hs_trail  hs_trail_real = hs_trail_min_o +  Tui*ui_hs_trail_min_o            |
| 0x481C  | CLK ZERO MIN           | 0x01             | RW  | Bit[7:2]: Not used Bit[1:0]: clk_zero_min[9:8] High byte of minimum value of clk_zero, unit ns                                         |
| 0x481D  | CLK ZERO MIN           | 0x2C             | RW  | Bit[7:0]: clk_zero_min[7:0] Low byte of minimum value of clk_zero clk_zero_real = clk_zero_min_o + Tui*ui_clk_zero_min_o               |
| 0x481E  | CLK PREPARE MAX        | 0x5F             | RW  | Bit[7:0]: clk_prepare_max[7:0]  Maximum value of clk_prepare, unit ns                                                                  |
| 0x481F  | CLK PREPARE MIN        | 0x26             | RW  | Bit[7:0]: clk_prepare_min[7:0] Minimum value of clk_prepare clk_prepare_real = clk_prepare_min_o + Tui*ui_clk_prepare_min_o            |
| 0x4820  | CLK POST MIN           | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: clk_post_min[9:8] High byte of minimum value of clk_post, unit ns                                         |
| 0x4821  | CLK POST MIN           | 0x3C             | RW  | Bit[7:0]: clk_post_min[7:0] Low byte of minimum value of clk_post clk_post_real = clk_post_min_o + Tui*ui_clk_post_min_o               |
| 0x4822  | CLK TRAIL MIN          | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: clk_trail_min[9:8] High byte of minimum value of clk_trail, unit ns                                       |
| 0x4823  | CLK TRAIL MIN          | 0x3C             | RW  | Bit[7:0]: clk_trail_min[7:0]<br>Low byte of minimum value of clk_trail<br>clk_trail_real = clk_trail_min_o +<br>Tui*ui_clk_trail_min_o |
| 0x4824  | LPX P MIN              | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: lpx_p_min[9:8] High byte of minimum value of lpx_p, unit ns                                               |



table 6-18 MIPI control registers (sheet 6 of 11)

| address | register name    | default<br>value | R/W | description                                                                                                                                 |
|---------|------------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4825  | LPX P MIN        | 0x32             | RW  | Bit[7:0]: lpx_p_min[7:0]  Low byte of minimum value of lpx_p lpx_p_real = lpx_p_min_o + Tui*ui_lpx_p_min_o                                  |
| 0x4826  | HS PREPARE MIN   | 0x32             | RW  | Bit[7:0]: hs_prepare_min[7:0]  Minimum value of hs_prepare, unit ns                                                                         |
| 0x4827  | HS PREPARE MAX   | 0x55             | RW  | Bit[7:0]: hs_prepare_max[7:0]  Maximum value of hs_prepare hs_prepare_real = hs_prepare_max_o + Tui*ui_hs_prepare_max_o                     |
| 0x4828  | HS EXIT MIN      | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: hs_exit_min[9:8] High byte of minimum value of hs_exit, unit ns                                                |
| 0x4829  | HS EXIT MIN      | 0x64             | RW  | Bit[7:0]: hs_exit_min[7:0]  Low byte of minimum value of hs_exit hs_exit_real = hs_exit_min_o + Tui*ui_hs_exit_min_o                        |
| 0x482A  | UI HS ZERO MIN   | 0x06             | RW  | Bit[7:6]: Not used Bit[5:0]: ui_hs_zero_min[5:0] Minimum UI value of hs_zero, unit UI                                                       |
| 0x482B  | UI HS TRAIL MIN  | 0x04             | RW  | Bit[7:6]: Not used Bit[5:0]: ui_hs_trail_min[5:0] Minimum UI value of hs_trail, unit UI                                                     |
| 0x482C  | UI CLK ZERO MIN  | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: ui_clk_zero_min[5:0] Minimum UI value of clk_zero, unit UI                                                     |
| 0x482D  | UI CLK PREPARE   | 0x00             | RW  | Bit[7:4]: ui_clk_prepare_max Maximum UI value of clk_prepare, unit UI Bit[3:0]: ui_clk_prepare_min Minimum UI value of clk_prepare, unit UI |
| 0x482E  | UI CLK POST MIN  | 0x34             | RW  | Bit[7:6]: Not used Bit[5:0]: ui_clk_post_min[5:0] Minimum UI value of clk_post, unit UI                                                     |
| 0x482F  | UI CLK TRAIL MIN | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: ui_clk_trail_min[5:0] Minimum UI value of clk_trail, unit UI                                                   |



table 6-18 MIPI control registers (sheet 7 of 11)

| address | register name         | default<br>value | R/W | description                                                                                                                             |
|---------|-----------------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 0x4830  | UI LPX P MIN          | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: ui_lpx_p_min[5:0]     Minimum UI value of lpx_p (pclk2x domain), unit UI                                   |
| 0x4831  | UI HS PREPARE         | 0x64             | RW  | Bit[7:4]: ui_hs_prepare_max Maximum UI value of hs_prepare, unit UI Bit[3:0]: ui_hs_prepare_min Minimum UI value of hs_prepare, unit UI |
| 0x4832  | UI HS EXIT MIN        | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: ui_hs_exit_min[5:0] Minimum UI value of hs_exit, unit UI                                                   |
| 0x4833  | MIPI PKT STAR<br>SIZE | 0x08             | RW  | Bit[7:6]: Not used Bit[5:0]: r_rdy_mark                                                                                                 |
| 0x4836  | GLB MODE SEL          | 0x00             | RW  | Bit[7:1]: Not used Bit[0]: smia_cal_en 0: Use period to calculate 1: Use SMIA bitrate to calculate                                      |
| 0x4837  | PCLK PERIOD           | 0x16             | RW  | Bit[7:0]: pclk_period[7:0] Period of pclk2x, pclk_div=1, and 1 bit decimal                                                              |
| 0x4838  | MIPI LP GPIO0         | 0x00             | RW  | Bit[7]:                                                                                                                                 |



table 6-18 MIPI control registers (sheet 8 of 11)

|         |                  | -                |     |                                                                                         |
|---------|------------------|------------------|-----|-----------------------------------------------------------------------------------------|
| address | register name    | default<br>value | R/W | description                                                                             |
|         |                  |                  |     | Bit[7]: lp_sel2 0: Auto generate mipi_lp_dir2_o 1: Use lp_dir_man2 to be mipi_lp_dir2_o |
|         |                  |                  |     | Bit[6]: lp_dir_man2<br>0: Input<br>1: Output                                            |
|         |                  |                  |     | Bit[5]: lp_p2_o<br>Bit[4]: lp_n2_o                                                      |
| 0x4839  | MIPI LP GPIO1    | 0x00             | RW  | Bit[3]: lp_sel3                                                                         |
|         |                  |                  |     | 1: Use Ip_dir_man3 to be                                                                |
|         |                  |                  |     | mipi_lp_dir3_o Bit[2]: lp_dir_man3                                                      |
|         |                  |                  |     | 0: Input<br>1: Output                                                                   |
|         |                  |                  |     | Bit[1]: lp_p3_o<br>Bit[0]: lp_n3_o                                                      |
|         |                  |                  |     | Bit[7]: lp_sel4 0: Auto generate mipi_lp_dir4_o                                         |
|         | MIPI LP GPIO2 0x | 0x00             | RW  | 1: Use lp_dir_man4 to be<br>mipi_lp_dir4_o                                              |
|         |                  |                  |     | Bit[6]: lp_dir_man4<br>0: Input                                                         |
|         |                  |                  |     | 1: Output Bit[5]: lp_p4_o                                                               |
| 0x483A  |                  |                  |     | Bit[4]: lp_n4_o<br>Bit[3]: lp_sel5                                                      |
|         |                  |                  |     | 0: Auto generate mipi_lp_dir5_o 1: Use lp_dir_man5 to be                                |
|         |                  |                  |     | mipi_lp_dir5_o<br>Bit[2]: lp_dir_man5                                                   |
|         |                  |                  |     | 0: Input<br>1: Output                                                                   |
|         |                  |                  |     | Bit[1]: lp_p5_o                                                                         |
|         |                  |                  |     | ·                                                                                       |



table 6-18 MIPI control registers (sheet 9 of 11)

| address | register name | default<br>value | R/W | description                                              |
|---------|---------------|------------------|-----|----------------------------------------------------------|
| 0x483B  | MIPI LP GPIO3 | 0x00             | RW  | Bit[7]:                                                  |
| 0x483C  | MIPI CTRL3C   | 0x02             | RW  | Bit[7:4]: Not used Bit[3:0]: t_clk_pre Unit pclk2x cycle |
| 0x483D  | MIPI LP GPIO4 | 0x00             | RW  | Bit[7]:                                                  |



table 6-18 MIPI control registers (sheet 10 of 11)

| address | register name          | default<br>value | R/W | description                                                                                                                                                                                                                                          |
|---------|------------------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x484A  | SEL MIPI CTRL4A        | 0x27             | RW  | Bit[7:6]: Not used Bit[5]: slp_lp_pon_man_o                                                                                                                                                                                                          |
| 0x484B  | SMIA OPTION            | 0x07             | RW  | Bit[7:3]: Not used Bit[2]: line_st_sel_0 0: Line starts after HREF 1: Line starts after fifo_st Bit[1]: clk_start_sel_0 0: Clock starts after SOF 1: Clock starts after reset Bit[0]: sof_sel_0 0: Frame starts after HREF 1: Frame starts after SOF |
| 0x484C  | SEL MIPI CTRL4C        | 0x03             | RW  | Bit[7:3]: Not used Bit[6]: smia_fcnt_i select Bit[5]: prbs_enable Bit[4]: hs_test_only MIPI high speed only test mode enable Bit[3]: set_frame_cnt_0 Set frame count to inactive mode (keep 0) Bit[2:0]: Not used                                    |
| 0x484D  | TEST PATTEN DATA       | 0xB6             | RW  | Bit[7:0]: test_patten_data[7:0] Data lane test pattern register                                                                                                                                                                                      |
| 0x484E  | FE DLY                 | 0x10             | RW  | Bit[7:0]: r_fe_dly_o<br>Last packet to frame end delay / 2                                                                                                                                                                                           |
| 0x484F  | TEST PATTEN CK<br>DATA | 0x55             | RW  | Bit[7:2]: Not used Bit[1:0]: clk_test_patten_reg                                                                                                                                                                                                     |
| 0x4850  | LANE SEL01             | 0x12             | RW  | Bit[7]: Not used Bit[6:4]: lane1_sel Bit[3]: Not used Bit[2:0]: lane0_sel                                                                                                                                                                            |
| 0x4851  | LANE SEL23             | 0x03             | RW  | Bit[7]: Not used Bit[6:4]: lane3_sel Bit[3]: Not used Bit[2:0]: lane2_sel                                                                                                                                                                            |



MIPI control registers (sheet 11 of 11) table 6-18

| address | register name | default<br>value | R/W | description                                                               |
|---------|---------------|------------------|-----|---------------------------------------------------------------------------|
| 0x4852  | LANE SEL45    | 0x54             | RW  | Bit[7]: Not used Bit[6:4]: lane5_sel Bit[3]: Not used Bit[2:0]: lane4_sel |
| 0x4853  | LANE SEL67    | 0x76             | RW  | Bit[7]: Not used Bit[6:4]: lane7_sel Bit[3]: Not used Bit[2:0]: lane6_sel |

# 6.19 ISPFC control [0x4900 - 0x4903]

ISPFC control registers table 6-19

| address | register name | default<br>value | R/W | description                                                                                                                                                                        |
|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4900  | R0            | 0x00             | RW  | Bit[7:4]: Not used Bit[3]: sof_after_line0 Bit[2]: fcnt_eof_sel Bit[1]: fcnt_mask_dis Bit[0]: fcnt_reset                                                                           |
| 0x4901  | R1            | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: frame_on_number                                                                                                                                    |
| 0x4902  | R2            | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: frame_off_number                                                                                                                                      |
| 0x4903  | R3            | 0x00             | RW  | Bit[7]: zero_line_mask_dis Bit[6]: blue_mask_dis Bit[5]: data_mask_dis Bit[4]: valid_mask_dis Bit[3]: href_mask_dis Bit[2]: eof_mask_dis Bit[1]: sof_mask_dis Bit[0]: all_mask_dis |



# 6.20 ISP control [0x5000 - 0x5009, 0x500E - 0x5026, 0x502D - 0x5030]

table 6-20 ISP control registers (sheet 1 of 3)

| address | register name | default<br>value | R/W | description                                                                                                                                                             |
|---------|---------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5000  | ISP CTRL00    | 0x77             | RW  | Bit[7]: blc_hdr_en Bit[6]: dcblc_en Bit[5]: lenc_en Bit[4]: awb_gain_en Bit[3]: r_long_short_rvs Bit[2]: bc_en Bit[1]: wc_en Bit[0]: blc_en                             |
| 0x5001  | ISP CTRL01    | 0x0A             | RW  | Bit[7]: blc_vsync_sel Bit[6]: pre_vsync_sel Bit[5]: r_rlong_sel Bit[4]: lenc_real_gain_rvs Bit[3]: otp_option_en Bit[2]: Not used Bit[1]: awbm_bias_on Bit[0]: latch_en |
| 0x5002  | ISP CTRL02    | 0x20             | RW  | Bit[7:6]: dig_gain_blc Bit[5]: bufctrl_en Bit[4:2]: ln_delay Bit[1]: man_noswap_en Bit[0]: blc_hdr_ls_rvs                                                               |
| 0x5003  | ISP CTRL03    | 0xC8             | RW  | Bit[7]: lenc_bias_on Bit[6:5]: lenc_px_order_man Bit[4]: lenc_px_order_man_en Bit[3]: insize_auto Bit[2]: dpc_hdr_ls_rvs Bit[1]: gfirst_rvs Bit[0]: rblue_rvs           |
| 0x5004  | ISP CTRL04    | 0x00             | RW  | Bit[7:5]: Not used Bit[4]: r_dig_sel_from_reg Bit[3]: Not used Bit[2]: blc_mirror_opt Bit[1]: dig_gain_en Bit[0]: lenc_decomp_en                                        |
| 0x5005  | ISP CTRL05    | 0x00             | RW  | Bit[7]: isp_bypass_mode Bit[6]: Not used Bit[5]: bypass_isp Bit[4:0]: Not used                                                                                          |
| 0x5006  | ISP CTRL06    | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: hsize_in_r[11:8]                                                                                                                        |
| 0x5007  | ISP CTRL07    | 0x00             | RW  | Bit[7:0]: hsize_in_r[7:0]                                                                                                                                               |



table 6-20 ISP control registers (sheet 2 of 3)

| address | register name | default<br>value | R/W | description                                                                                                                   |
|---------|---------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 0x5008  | ISP CTRL08    | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: vsize_in_r[11:8]                                                                              |
| 0x5009  | ISP CTRL09    | 0x00             | RW  | Bit[7:0]: vsize_in_r[7:0]                                                                                                     |
| 0x500E  | ISP CTRL0E    | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: dpc_hsize_in[11:8]                                                                            |
| 0x500F  | ISP CTRL0F    | 0x00             | RW  | Bit[7:0]: dpc_hsize_in[7:0]                                                                                                   |
| 0x5010  | ISP CTRL10    | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: dpc_vsize_in[11:8]                                                                               |
| 0x5011  | ISP CTRL11    | 0x00             | RW  | Bit[7:0]: dpc_vsize_in[7:0]                                                                                                   |
| 0x5012  | ISP CTRL12    | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: dig_gain_l[11:8]                                                                              |
| 0x5013  | ISP CTRL13    | 0x00             | RW  | Bit[7:0]: dig_gain_l[7:0]                                                                                                     |
| 0x5014  | ISP CTRL14    | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: dig_gain_s[11:8]                                                                              |
| 0x5015  | ISP CTRL15    | 0x00             | RW  | Bit[7:0]: dig_gain_s[7:0]                                                                                                     |
| 0x5016  | ISP CTRL16    | 0x00             | RW  | Bit[7]: r_cen_sel Bit[6]: r_cen Bit[5:2]: Not used Bit[1]: dpc_size_man                                                       |
| 0x5017  | ISP CTRL17    | 0x00             | RW  | Bit[7:6]: Not used Bit[5]: sram_test_dpc2 Bit[4]: sram_test_dpc1 Bit[3]: Not used Bit[1]: sram_rme_dpc2 Bit[0]: sram_rme_dpc1 |
| 0x5018  | ISP CTRL18    | 0x00             | RW  | Bit[7:4]: sram_rm_dpc2<br>Bit[3:0]: sram_rm_dpc1                                                                              |
| 0x5019  | ISP CTRL19    | 0x04             | RW  | Bit[7:4]: Not used Bit[3:0]: mwb_r_gain_man_l[11:8]                                                                           |
| 0x501A  | ISP CTRL1A    | 0x00             | RW  | Bit[7:0]: mwb_r_gain_man_l[7:0]                                                                                               |
| 0x501B  | ISP CTRL1B    | 0x04             | RW  | Bit[7:4]: Not used Bit[3:0]: mwb_g_gain_man_I[11:8]                                                                           |
| 0x501C  | ISP CTRL1C    | 0x00             | RW  | Bit[7:0]: mwb_g_gain_man_l[7:0]                                                                                               |
| 0x501D  | ISP CTRL1D    | 0x04             | RW  | Bit[7:4]: Not used Bit[3:0]: mwb_b_gain_man_l[11:8]                                                                           |
| 0x501E  | ISP CTRL1E    | 0x00             | RW  | Bit[7:0]: mwb_b_gain_man_l[7:0]                                                                                               |



table 6-20 ISP control registers (sheet 3 of 3)

| address | register name | default<br>value | R/W | description                                                                                                                                                              |
|---------|---------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x501F  | ISP CTRL1F    | 0x04             | RW  | Bit[7:4]: Not used Bit[3:0]: mwb_r_gain_man_s[11:8]                                                                                                                      |
| 0x5020  | ISP CTRL20    | 0x00             | RW  | Bit[7:0]: mwb_r_gain_man_s[7:0]                                                                                                                                          |
| 0x5021  | ISP CTRL21    | 0x04             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: mwb_g_gain_man_s[11:8]                                                                                                                   |
| 0x5022  | ISP CTRL22    | 0x00             | RW  | Bit[7:0]: mwb_g_gain_man_s[7:0]                                                                                                                                          |
| 0x5023  | ISP CTRL23    | 0x04             | RW  | Bit[7:4]: Not used Bit[3:0]: mwb_b_gain_man_s[11:8]                                                                                                                      |
| 0x5024  | ISP CTRL24    | 0x00             | RW  | Bit[7:0]: mwb_b_gain_man_s[7:0]                                                                                                                                          |
| 0x5025  | ISP CTRL25    | 0x18             | RW  | Bit[7:6]: Not used Bit[5]: r_embed_line_en Bit[4]: Not used Bit[3]: r_isp_raw_en Bit[2:0]: r_win_y_offset_adjust                                                         |
| 0x5026  | ISP CTRL26    | 0x2A             | RW  | Bit[7:6]: Not used Bit[5]: r_dmy_auto_en Bit[4]: r_bias_man_en Bit[3]: vsync_puls Bit[2]: Not used Bit[1:0]: px_order_man                                                |
| 0x502D  | ISP CTRL2D    | 0x00             | RW  | Bit[7:0]: snr_bias_man                                                                                                                                                   |
| 0x502E  | ISP CTRL2E    | 0x00             | RW  | Bit[7]: blc_px_man_en Bit[6:5]: blc_px_man Bit[4]: r_blc_rblue_man_en Bit[3]: r_blc_rblue_man Bit[2]: pre_px_man_en Bit[1]: r_zero_rblue_man_en Bit[0]: r_zero_rblue_man |
| 0x502F  | ISP CTRL2F    | 0x00             | RW  | Bit[7]: dpc_data_switch Bit[6]: dpc_px_man_en Bit[5:4]: dpc_px_man Bit[3]: Not used Bit[2]: r_awb_px_man_en Bit[1:0]: r_awb_px_man                                       |
| 0x5030  | ISP CTRL30    | 0x41             | RW  | Bit[7:6]: isp_sof_sel<br>Bit[1:0]: isp_eof_sel                                                                                                                           |



# 6.21 DPC long exposure control [0x5780 - 0x57B2]

DPC long exposure control registers (sheet 1 of 3) table 6-21

|         |               |                  | _   |                                                                                                                                                                                                                                          |
|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                              |
| 0x5780  | DPC_CTRL0     | 0x14             | RW  | Bit[7:6]: Not used Bit[5]: Tail enable Bit[4]: Saturate cross-cluster enable Bit[3]: 3x3 cluster enable Bit[2]: Cross-cluster enable Bit[1]: General tail enable Bit[0]: Manual mode enable                                              |
| 0x5781  | DPC_CTRL1     | 0x0F             | RW  | Bit[7:4]: Saturate Bit[3]: Different channel white pixel connection enable Bit[2]: Different channel black pixel connection enable Bit[1]: Same channel white pixel connection enable Bit[0]: Same channel black pixel connection enable |
| 0x5782  | DPC_CTRL2     | 0x44             | RW  | Bit[7:4]: Status threshold step Bit[3:0]: White threshold list0                                                                                                                                                                          |
| 0x5783  | DPC_CTRL3     | 0x02             | RW  | Bit[7:4]: Not used Bit[3:0]: White threshold list1                                                                                                                                                                                       |
| 0x5784  | DPC_CTRL4     | 0x01             | RW  | Bit[7:4]: Not used Bit[3:0]: White threshold list2                                                                                                                                                                                       |
| 0x5785  | DPC_CTRL5     | 0x01             | RW  | Bit[7:4]: Not used Bit[3:0]: White threshold list3                                                                                                                                                                                       |
| 0x5786  | DPC_CTRL6     | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: Adaptive pattern thresholds                                                                                                                                                                                 |
| 0x5787  | DPC_CTRL7     | 0x04             | RW  | Bit[7:4]: Not used Bit[3:0]: Adaptive pattern step                                                                                                                                                                                       |
| 0x5788  | DPC_CTRL8     | 0x08             | RW  | Bit[7:4]: Not used Bit[3:0]: More connection case thresholds                                                                                                                                                                             |
| 0x5789  | DPC_CTRL9     | 0x0F             | RW  | Bit[7:0]: DPC level list0                                                                                                                                                                                                                |
| 0x578A  | DPC_CTRL10    | 0xFD             | RW  | Bit[7:0]: DPC level list1                                                                                                                                                                                                                |
| 0x578B  | DPC_CTRL11    | 0xF5             | RW  | Bit[7:0]: DPC level list2                                                                                                                                                                                                                |
| 0x578C  | DPC_CTRL12    | 0xF5             | RW  | Bit[7:0]: DPC level list3                                                                                                                                                                                                                |
| 0x578D  | DPC_CTRL13    | 0x03             | RW  | Bit[7]: Not used<br>Bit[6:0]: Gain list0                                                                                                                                                                                                 |



table 6-21 DPC long exposure control registers (sheet 2 of 3)

| address         register name         default value         R/W         description           0x578E         DPC_CTRL14         0x0F         RW         Bit[7]: Not used Bit[6:0]: Gain list1           0x578F         DPC_CTRL15         0x3F         RW         Bit[7]: Not used Bit[6:0]: Gain list2           0x5790         DPC_CTRL16         0x08         RW         Bit[7:4]: Not used Bit[3:0]: Matching thresh |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 0x578E         DPC_CTRL14         0x0F         RW         Bit[6:0]: Gain list1           0x578F         DPC_CTRL15         0x3F         RW         Bit[7]: Not used Bit[6:0]: Gain list2           0x5790         DPC_CTRL16         0x08         RW         Bit[7:4]: Not used                                                                                                                                          |          |
| 0x578F DPC_CTRL15 0x3F RW Bit[6:0]: Gain list2                                                                                                                                                                                                                                                                                                                                                                           |          |
| 095790 DPC CIRI16 0908 RW 5 3                                                                                                                                                                                                                                                                                                                                                                                            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                          | olds     |
| 0x5791 DPC_CTRL17 0x04 RW Bit[7:4]: Not used Bit[3:0]: Status threshold                                                                                                                                                                                                                                                                                                                                                  | ls       |
| 0x5792 DPC_CTRL18 0x04 RW Bit[7:4]: Not used Bit[3:0]: Threshold ratio                                                                                                                                                                                                                                                                                                                                                   |          |
| Bit[7:6]: vnum_list1<br>  Bit[5:4]: vnum_list0<br>  0x5793   DPC_CTRL19   0x52   RW   Bit[3:2]: Not used<br>  Bit[1]: v153_en<br>  Bit[0]: Clip interpolate 0                                                                                                                                                                                                                                                            | G enable |
| 0x5794         DPC_CTRL20         0xA3         RW         Bit[7:6]: vnum_list3           Bit[3:4]: vnum_list2         Bit[3:2]: Not used           Bit[1:0]: Edge option                                                                                                                                                                                                                                                 |          |
| Bit[7:6]: Not used   Bit[5]: pd_man_inc_en   Bit[4]: pd_pixel_en_l   Bit[3:0]: pd_y                                                                                                                                                                                                                                                                                                                                      |          |
| 0x5796 DPC_CTRL22 0x20 RW Bit[7:6]: Not used Bit[5:0]: pd_cycle_x                                                                                                                                                                                                                                                                                                                                                        |          |
| 0x5797 DPC_CTRL23 0x20 RW Bit[7:6]: Not used Bit[5:0]: pd_cycle_y                                                                                                                                                                                                                                                                                                                                                        |          |
| 0x5798 DPC_CTRL24 0x2A RW Bit[7:4]: pd_x1 Bit[3:0]: pd_x2                                                                                                                                                                                                                                                                                                                                                                |          |
| 0x5799 DPC_CTRL25 0x6E RW Bit[7:4]: pd_x3 Bit[3:0]: pd_x4                                                                                                                                                                                                                                                                                                                                                                |          |
| 0x579A DPC_CTRL26 0x00 RW Bit[7:2]: Not used Bit[1:0]: win_start_x[9:8]                                                                                                                                                                                                                                                                                                                                                  |          |
| 0x579B DPC_CTRL27 0x40 RW Bit[7:0]: win_start_x[7:0]                                                                                                                                                                                                                                                                                                                                                                     |          |
| 0x579C DPC_CTRL28 0x00 RW Bit[7:2]: Not used Bit[1:0]: win_start_y[9:8]                                                                                                                                                                                                                                                                                                                                                  |          |
| 0x579D DPC_CTRL29 0x40 RW Bit[7:0]: win_start_y[7:0]                                                                                                                                                                                                                                                                                                                                                                     |          |
| 0x579E         DPC_CTRL30         0x0C         RW         Bit[7:2]: Not used Bit[3:0]: win_width[11:8]                                                                                                                                                                                                                                                                                                                   |          |



table 6-21 DPC long exposure control registers (sheet 3 of 3)

| address | register name       | default<br>value | R/W | description                                      |
|---------|---------------------|------------------|-----|--------------------------------------------------|
| 0x579F  | DPC_CTRL31          | 0x80             | RW  | Bit[7:0]: win_width[7:0]                         |
| 0x57A0  | DPC_CTRL32          | 0x0B             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: win_hight[11:8]  |
| 0x57A1  | DPC_CTRL33          | 0x40             | RW  | Bit[7:0]: win_hight[7:0]                         |
| 0x57A2  | DPC_CTRL34          | 0x00             | RW  | Bit[7:0]: x_offset[15:8]                         |
| 0x57A3  | DPC_CTRL35          | 0x20             | RW  | Bit[7:0]: x_offset[7:0]                          |
| 0x57A4  | DPC_CTRL36          | 0x00             | RW  | Bit[7:0]: y_offset[15:8]                         |
| 0x57A5  | DPC_CTRL37          | 0x20             | RW  | Bit[7:0]: y_offset[7:0]                          |
| 0x57A6  | DPC_CTRL38          | 0x03             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: x_odd_inc        |
| 0x57A7  | DPC_CTRL39          | 0x01             | RW  | Bit[7:4]: Not used Bit[3:0]: x_even_inc          |
| 0x57A8  | DPC_CTRL40          | 0x03             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: y_odd_inc        |
| 0x57A9  | DPC_CTRL41          | 0x01             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: y_even_inc       |
| 0x57AC  | BLACK<br>THRESHOLDS | _                | R   | Bit[7]: Not used Bit[6:0]: Black thresholds      |
| 0x57AD  | WHITE<br>THRESHOLDS | -                | R   | Bit[7:5]: Not used<br>Bit[4:0]: White thresholds |
| 0x57AE  | THRESHOLD 1         | -                | R   | Bit[7:5]: Not used<br>Bit[4:0]: Threshold 1      |
| 0x57AF  | THRESHOLD 2         | -                | R   | Bit[7:6]: Not used<br>Bit[5:0]: Threshold 2      |
| 0x57B0  | THRESHOLD 3         | _                | R   | Bit[7]: Not used<br>Bit[6:0]: Threshold 3        |
| 0x57B1  | THRESHOLD 4         | -                | R   | Bit[7:5]: Not used<br>Bit[4:0]: Threshold 4      |
| 0x57B2  | LEVEL               | -                | R   | Bit[7:4]: Not used<br>Bit[3:0]: Level            |



# 6.22 DPC short exposure control [0x5800 - 0x5815, 0x582C - 0x5832]

table 6-22 DPC short exposure control registers (sheet 1 of 2)

| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                              |
|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5800  | DPC_CTRL0     | 0x14             | RW  | Bit[7:6]: Not used Bit[5]: Tail enable Bit[4]: Saturate cross-cluster enable Bit[3]: 3x3 cluster enable Bit[2]: Cross-cluster enable Bit[1]: General tail enable Bit[0]: Manual mode enable                                              |
| 0x5801  | DPC_CTRL1     | 0x0F             | RW  | Bit[7:4]: Saturate Bit[3]: Different channel white pixel connection enable Bit[2]: Different channel black pixel connection enable Bit[1]: Same channel white pixel connection enable Bit[0]: Same channel black pixel connection enable |
| 0x5802  | DPC_CTRL2     | 0x44             | RW  | Bit[7:4]: Status threshold step Bit[3:0]: White threshold list0                                                                                                                                                                          |
| 0x5803  | DPC_CTRL3     | 0x02             | RW  | Bit[7:4]: Not used Bit[3:0]: White threshold list1                                                                                                                                                                                       |
| 0x5804  | DPC_CTRL4     | 0x01             | RW  | Bit[7:4]: Not used Bit[3:0]: White threshold list2                                                                                                                                                                                       |
| 0x5805  | DPC_CTRL5     | 0x01             | RW  | Bit[7:4]: Not used Bit[3:0]: White threshold list3                                                                                                                                                                                       |
| 0x5806  | DPC_CTRL6     | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: Adaptive pattern thresholds                                                                                                                                                                                 |
| 0x5807  | DPC_CTRL7     | 0x04             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: Adaptive pattern step                                                                                                                                                                                    |
| 0x5808  | DPC_CTRL8     | 0x08             | RW  | Bit[7:4]: Not used Bit[3:0]: More connection case thresholds                                                                                                                                                                             |
| 0x5809  | DPC_CTRL9     | 0x0F             | RW  | Bit[7:0]: DPC level list0                                                                                                                                                                                                                |
| 0x580A  | DPC_CTRL10    | 0xFD             | RW  | Bit[7:0]: DPC level list1                                                                                                                                                                                                                |
| 0x580B  | DPC_CTRL11    | 0xF5             | RW  | Bit[7:0]: DPC level list2                                                                                                                                                                                                                |
| 0x580C  | DPC_CTRL12    | 0xF5             | RW  | Bit[7:0]: DPC level list3                                                                                                                                                                                                                |
| 0x580D  | DPC_CTRL13    | 0x03             | RW  | Bit[7]: Not used<br>Bit[6:0]: Gain list0                                                                                                                                                                                                 |



table 6-22 DPC short exposure control registers (sheet 2 of 2)

| address | register name | default<br>value | R/W | description                                                                                                    |
|---------|---------------|------------------|-----|----------------------------------------------------------------------------------------------------------------|
| 0x580E  | DPC_CTRL14    | 0x0F             | RW  | Bit[7]: Not used<br>Bit[6:0]: Gain list1                                                                       |
| 0x580F  | DPC_CTRL15    | 0x3F             | RW  | Bit[7]: Not used<br>Bit[6:0]: Gain list2                                                                       |
| 0x5810  | DPC_CTRL16    | 0x08             | RW  | Bit[7:4]: Not used Bit[3:0]: Matching thresholds                                                               |
| 0x5811  | DPC_CTRL17    | 0x04             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: Status thresholds                                                              |
| 0x5812  | DPC_CTRL18    | 0x04             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: Threshold ratio                                                                |
| 0x5813  | DPC_CTRL19    | 0x52             | RW  | Bit[7:6]: vnum_list1 Bit[5:4]: vnum_list0 Bit[3:2]: Not used Bit[1]: v153_en Bit[0]: Clip interpolate G enable |
| 0x5814  | DPC_CTRL20    | 0xA3             | RW  | Bit[7:6]: vnum_list3 Bit[5:4]: vnum_list2 Bit[3:2]: Not used Bit[1:0]: edge option                             |
| 0x5815  | DPC_CTRL21    | 0x12             | RW  | Bit[7:5]: Not used Bit[4]: pd_pixel_en Bit[3:0]: Not used                                                      |
| 0x582C  | DPC_CTRL23    | _                | R   | Bit[7]: Not used<br>Bit[6:0]: Black thresholds                                                                 |
| 0x582D  | DPC_CTRL24    | _                | R   | Bit[7:5]: Not used<br>Bit[4:0]: White thresholds                                                               |
| 0x582E  | DPC_CTRL25    | -                | R   | Bit[7:5]: Not used<br>Bit[4:0]: Threshold 1                                                                    |
| 0x582F  | DPC_CTRL26    | _                | R   | Bit[7:6]: Not used<br>Bit[5:0]: Threshold 2                                                                    |
| 0x5830  | DPC_CTRL27    | _                | R   | Bit[7]: Not used<br>Bit[6:0]: Threshold 3                                                                      |
| 0x5831  | DPC_CTRL28    | _                | R   | Bit[7:5]: Not used<br>Bit[4:0]: threshold 4                                                                    |
| 0x5832  | DPC_CTRL29    | -                | R   | Bit[7:4]: Not used<br>Bit[3:0]: Level                                                                          |
|         |               |                  |     |                                                                                                                |



# 6.23 LENC control [0x5900 - 0x59FF]

table 6-23 LENC control registers (sheet 1 of 4)

| address           | register name         | default<br>value | R/W | description                                                                   |
|-------------------|-----------------------|------------------|-----|-------------------------------------------------------------------------------|
| 0x5900            | LENC G00              | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Control point G00 for luminance compensation     |
| 0x5901            | LENC G01              | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Control point G01 for luminance compensation     |
| 0x5902            | LENC G02              | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Control point G02 for luminance compensation     |
| 0x5903            | LENC G03              | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Control point G03 for luminance compensation     |
| 0x5904            | LENC G04              | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Control point G04 for luminance compensation     |
| 0x5905            | LENC G05              | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Control point G05 for luminance compensation     |
| 0x5906            | LENC G10              | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Control point G10 for luminance compensation     |
| 0x5907            | LENC G11              | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Control point G11 for luminance compensation     |
| 0x5908            | LENC G12              | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Control point G12 for luminance compensation     |
| 0x5909~<br>0x594E | LENC G13~<br>LENC G96 | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Control point G13~G54 for luminance compensation |
| 0x594F            | LENC G97              | 0x00             | RW  | Bit[7:6]: Not used Bit[5:0]: Control point G55 for luminance compensation     |
| 0x5950            | LENC B00              | 0x80             | RW  | Bit[7:5]: Not used Bit[4:0]: Control point B00 for blue channel compensation  |
|                   |                       |                  |     |                                                                               |



table 6-23 LENC control registers (sheet 2 of 4)

|                   | Ezire control regi   | (                | /   |                        |                                                                    |
|-------------------|----------------------|------------------|-----|------------------------|--------------------------------------------------------------------|
| address           | register name        | default<br>value | R/W | description            | 1                                                                  |
| 0x5951            | LENC B01             | 0x80             | RW  |                        | Not used<br>Control point B01 for blue channel<br>compensation     |
| 0x5952            | LENC B02             | 0x80             | RW  |                        | Not used<br>Control point B02 for blue channel<br>compensation     |
| 0x5953            | LENC B03             | 0x80             | RW  |                        | Not used<br>Control point B03 for blue channel<br>compensation     |
| 0x5954            | LENC B04             | 0x80             | RW  | Bit[7:5]:<br>Bit[4:0]: | Not used<br>Control point B04 for blue channel<br>compensation     |
| 0x5955            | LENC B05             | 0x80             | RW  |                        | Not used<br>Control point B05 for blue channel<br>compensation     |
| 0x5956            | LENC B10             | 0x80             | RW  | Bit[7:5]:<br>Bit[4:0]: | Not used<br>Control point B10 for blue channel<br>compensation     |
| 0x5957            | LENC B11             | 0x80             | RW  |                        | Not used<br>Control point B11 for blue channel<br>compensation     |
| 0x5958            | LENC B12             | 0x80             | RW  | Bit[7:5]:<br>Bit[4:0]: | Not used<br>Control point B12 for blue channel<br>compensation     |
| 0x5959~<br>0x599E | LENC B13~LENC<br>B96 | 0x80             | RW  | Bit[7:5]:<br>Bit[4:0]: | Not used<br>Control point B13~B54 for blue<br>channel compensation |
| 0x599F            | LENC B97             | 0x80             | RW  |                        | Not used<br>Control point B55 for blue channel<br>compensation     |
| 0x59A0            | LENC R00             | 0x80             | RW  | Bit[7:5]:<br>Bit[4:0]: | Not used<br>Control point R00 for red channel<br>compensation      |
| 0x59A1            | LENC R01             | 0x80             | RW  |                        | Not used<br>Control point R01 for red channel<br>compensation      |
| 0x59A2            | LENC R02             | 0x80             | RW  | Bit[7:5]:<br>Bit[4:0]: | Not used<br>Control point R02 for red channel<br>compensation      |



table 6-23 LENC control registers (sheet 3 of 4)

| address           | register name        | default<br>value | R/W | description                                                                                                                                                                                                                         |
|-------------------|----------------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x59A3            | LENC R03             | 0x80             | RW  | Bit[7:5]: Not used Bit[4:0]: Control point R03 for red channel compensation                                                                                                                                                         |
| 0x59A4            | LENC R04             | 0x80             | RW  | Bit[7:5]: Not used Bit[4:0]: Control point R04 for red channel compensation                                                                                                                                                         |
| 0x59A5            | LENC R05             | 0x80             | RW  | Bit[7:5]: Not used Bit[4:0]: Control point R05 for red channel compensation                                                                                                                                                         |
| 0x59A6            | LENC R10             | 0x80             | RW  | Bit[7:5]: Not used Bit[4:0]: Control point R10 for red channel compensation                                                                                                                                                         |
| 0x59A7            | LENC R11             | 0x80             | RW  | Bit[7:5]: Not used Bit[4:0]: Control point R11 for red channel compensation                                                                                                                                                         |
| 0x59A8            | LENC R12             | 0x80             | RW  | Bit[7:5]: Not used Bit[4:0]: Control point R12 for red channel compensation                                                                                                                                                         |
| 0x59A9~<br>0x59EE | LENC R13~LENC<br>R96 | 0x80             | RW  | Bit[7:5]: Not used Bit[4:0]: Control point R13~R54 for red channel compensation                                                                                                                                                     |
| 0x59EF            | LENC R97             | 0x80             | RW  | Bit[7:5]: Not used Bit[4:0]: Control point R55 for red channel compensation                                                                                                                                                         |
| 0x59F0            | LENC MAXGAIN         | 0x60             | RW  | Bit[7:0]: If AutoLensSwitchEnable is true and sensor gain is larger than this threshold, luminance compensation amplitude will be the minimum value (min LENC gain). Register value is 16 times sensor gain                         |
| 0x59F1            | LENC MINGAIN         | 0x40             | RW  | Bit[7:0]: If AutoLensSwitchEnable is true and sensor gain is larger than this threshold, luminance compensation amplitude will start to decrease; otherwise, the amplitude will not change. Register value is 16 times sensor gain. |
| 0x59F2            | LENC MAXQ            | 0x40             | RW  | Bit[7]: Not used Bit[6:0]: This value indicates the minimum amplitude which luminance channel compensates when AutoLensSwitchEnable is true. Value should be in the range [0~64]                                                    |



table 6-23 LENC control registers (sheet 4 of 4)

|                                           | ELIVE CONTROLLEGE                                                                                     | 310.3 (3             |              | ,                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address                                   | register name                                                                                         | default<br>value     | R/W          | descriptio                                                                                                                                       | n                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x59F3                                    | LENC MINQ                                                                                             | 0x18                 | RW           | Bit[7]:<br>Bit[6:0]:                                                                                                                             | Not used<br>Minq                                                                                                                                                                                                                                                                                                                                                                         |
| 0x59F4                                    | LENC CTRL                                                                                             | 0x36                 | RW           | Bit[7:6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]:                                                                                        | Not used Add BLC target after applying compensation Enable BLC target for LENC 0: Disable BLC target 1: Enable BLC target Br2xmode autoq_en dither_en g2xgain_en                                                                                                                                                                                                                         |
| 0x59F5                                    | LENC HSCALE                                                                                           | 0x02                 | RW           | Bit[7:5]:<br>Bit[4:0]:                                                                                                                           | Not used<br>HScale[12:8]<br>For horizontal gain calculation, this<br>value indicates the step between two<br>connected horizontal pixels, where<br>HScale = 4*2^18 / image width                                                                                                                                                                                                         |
| 0x59F6                                    | LENC HSCALE                                                                                           | 0x7C                 | RW           | Bit[7:0]:                                                                                                                                        | HScale[7:0]                                                                                                                                                                                                                                                                                                                                                                              |
| 0x59F7                                    | LENC VSCALE                                                                                           | 0x01                 | RW           | Bit[7:5]:<br>Bit[4:0]:                                                                                                                           | Not used VScale[12:8] For vertical gain calculation, this value indicates the step between two connected vertical pixels, where VScale = 4*2^17 / image height                                                                                                                                                                                                                           |
| 0x59F8                                    | LENC VSCALE                                                                                           | 0x40                 | RW           | Bit[7:0]:                                                                                                                                        | VScale[7:0]                                                                                                                                                                                                                                                                                                                                                                              |
| 0x59F9                                    | LENC DECOMP<br>ADDR                                                                                   | 0x00                 | RW           | Bit[7:0]:                                                                                                                                        | LENC decompression start address[15:8]                                                                                                                                                                                                                                                                                                                                                   |
| 0x59FA                                    | LENC DECOMP<br>ADDR                                                                                   | 0x00                 | RW           | Bit[7:0]:                                                                                                                                        | LENC decompression start address[7:0]                                                                                                                                                                                                                                                                                                                                                    |
| 0x59FB                                    | RO_INFO_SEL                                                                                           | 0x00                 | RW           | Bit[7:0]:                                                                                                                                        | ro_info select                                                                                                                                                                                                                                                                                                                                                                           |
| 0x59FC                                    | LENC YOFFSET                                                                                          | _                    | R            | Bit[7:0]:                                                                                                                                        | Input sensor vertical offset[7:0]                                                                                                                                                                                                                                                                                                                                                        |
| 0x59FD                                    | LENC INPUT                                                                                            | _                    | R            | Bit[7:6]:<br>Bit[5]:<br>Bit[4]:<br>Bit[3:2]:<br>Bit[1:0]:                                                                                        | Not used<br>Input sensor flip<br>Input sensor mirror<br>Input sensor Y skip<br>Input sensor X skip                                                                                                                                                                                                                                                                                       |
| 0x59FE                                    | LENC OVERFLOW                                                                                         | _                    | R            | Bit[7:2]:<br>Bit[1]:<br>Bit[0]:                                                                                                                  | Not used<br>Vertical overflow for debug<br>Horizontal overflow for debug                                                                                                                                                                                                                                                                                                                 |
| 0x59FF                                    | LENC QVALUE                                                                                           | _                    | R            | Bit[7]:<br>Bit[6:0]:                                                                                                                             | Not used<br>Real amplitude Q value                                                                                                                                                                                                                                                                                                                                                       |
| 0x59F8 0x59F9 0x59FA 0x59FB 0x59FC 0x59FD | LENC VSCALE  LENC DECOMP ADDR  LENC DECOMP ADDR  RO_INFO_SEL  LENC YOFFSET  LENC INPUT  LENC OVERFLOW | 0x40<br>0x00<br>0x00 | RW RW RW R R | Bit[7:0]:  Bit[7:0]:  Bit[7:0]:  Bit[7:0]:  Bit[7:6]:  Bit[5]:  Bit[4]:  Bit[3:2]:  Bit[1:0]:  Bit[7:2]:  Bit[7:2]:  Bit[7:2]:  Bit[7]:  Bit[7]: | indicates the step between to connected vertical pixels, wtw. VScale = 4*2^17 / image hetw. VScale[7:0]  LENC decompression start address[15:8]  LENC decompression start address[7:0]  ro_info select  Input sensor vertical offset[7]  Not used Input sensor flip Input sensor Y skip Input sensor X skip  Not used Vertical overflow for debug Horizontal overflow for debug Not used |



# 6.24 WINC control [0x5A00 - 0x5A0C]

table 6-24 WINC control registers (sheet 1 of 2)

| table 0 24 | Wine controllegis | 3 (3) (3)        | =(1012) | 1                               |                                                                                                                                                                                                    |
|------------|-------------------|------------------|---------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address    | register name     | default<br>value | R/W     | description                     | n                                                                                                                                                                                                  |
| 0x5A00     | WINC CTRL00       | 0x00             | RW      |                                 | Not used<br>x_start_offset[11:8]<br>Start address in horizontal                                                                                                                                    |
| 0x5A01     | WINC CTRL01       | 0x00             | RW      | Bit[7:0]:                       | x_start_offset[7:0]                                                                                                                                                                                |
| 0x5A02     | WINC CTRL02       | 0x00             | RW      | Bit[7:4]:<br>Bit[3:0]:          | Not used<br>y_start_offset[11:8]<br>Start address in vertical                                                                                                                                      |
| 0x5A03     | WINC CTRL03       | 0x00             | RW      | Bit[7:0]:                       | y_start_offset[7:0]                                                                                                                                                                                |
| 0x5A04     | WINC CTRL04       | 0x0C             | RW      |                                 | Not used<br>window_width[11:8]<br>Select whole zone width                                                                                                                                          |
| 0x5A05     | WINC CTRL05       | 0xE0             | RW      | Bit[7:0]:                       | window_width[7:0]<br>Select whole zone width                                                                                                                                                       |
| 0x5A06     | WINC CTRL06       | 0x09             | RW      | Bit[7:4]:<br>Bit[3:0]:          | Not used<br>window_height[11:8]<br>Select whole zone height                                                                                                                                        |
| 0x5A07     | WINC CTRL07       | 0xB0             | RW      | Bit[7:0]:                       | window_height[7:0]<br>Select whole zone height                                                                                                                                                     |
|            |                   | 0,               |         | Bit[7:4]:<br>Bit[3]:<br>Bit[2]: | Reserved Window valid select option (for debug) 0: Select new valid_1d 1: Select original valid_1d Select embedded line flag 0: Select first line as embedded flag 1: Select last line as embedded |
| 0x5A08     | WINC CTRL08       | 0x06             | RW      | Bit[1]:                         | flag Window enable option 0: Disable window after last valid line 1: Get enable from register                                                                                                      |
|            |                   |                  |         | Bit[0]:                         | Manual window enable 0: Window size from window top 1: Window size from 0x5A00 to 0x5A07                                                                                                           |
| 0x5A09     | WINC RO09         | _                | R       | Bit[7:4]:<br>Bit[3:0]:          | Not used<br>Pixel count[11:8] for debug                                                                                                                                                            |
| 0x5A0A     | WINC RO0A         | -                | R       | Bit[7:0]:                       | Pixel count[7:0] for debug                                                                                                                                                                         |
|            |                   |                  |         |                                 |                                                                                                                                                                                                    |



table 6-24 WINC control registers (sheet 2 of 2)

| address | register name | default<br>value | R/W | description                                             |
|---------|---------------|------------------|-----|---------------------------------------------------------|
| 0x5A0B  | WINC ROOB     | -                | R   | Bit[7:4]: Not used Bit[3:0]: Line count[11:8] for debug |
| 0x5A0C  | WINC ROOC     | -                | R   | Bit[7:0]: Line count[7:0] for debug                     |

# 6.25 OTP control [0x5B00 ~ 0x5B0D, 0x5B10 ~ 0x5B23]

OTP control registers (sheet 1 of 3) table 6-25

| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|---------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5B00  | OTP CTRL00    | 0x00             | RW  | Bit[7:2]: Not used Bit[1:0]: Memory start address[9:8]                                                                                                                                                                                                                                                                                                                                                                                    |
| 0x5B01  | OTP CTRL01    | 0x00             | RW  | Bit[7:0]: Memory start address[7:0]                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0x5B02  | OTP CTRL02    | 0x01             | RW  | Bit[7:2]: Not used Bit[1:0]: Memory end address[9:8]                                                                                                                                                                                                                                                                                                                                                                                      |
| 0x5B03  | OTP CTRL03    | 0xFF             | RW  | Bit[7:0]: Memory end address[7:0]                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0x5B04  | OTP CTRL04    | 0x42             | RW  | Bit[7]: Select xy_end signal for debug  0: xy_end keep 0  1: xy_end keep 1 after last cluster is read out  Bit[6]: VSYNC reset enable  0: Do not use VSYNC to reset 3 enable signals  1: Use VSYNC to reset 3 enable signals to fix a bug  Bit[5]: Threshold function enable  0: Disable recover threshold in register 0x5B09 (can recover black cluster)  1: Enable recover threshold in register 0x5B09 (can not recover black cluster) |
|         |               |                  |     | Bit[4]: Manual increase step enable Bit[3]: Disable mirror and flip Bit[2]: Disable OTP offset Bit[1]: Mirror option enable Bit[0]: Disable binning mode                                                                                                                                                                                                                                                                                  |



table 6-25 OTP control registers (sheet 2 of 3)

| address | register name | default<br>value | R/W | description                                                                     |                                                                                                                     |
|---------|---------------|------------------|-----|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 0x5B05  | OTP CTRL05    | 0x6C             | RW  | Bit[6:5]: Re 000 01 10 11: Bit[4]: Us Bit[3]: Fix 0: 1: Bit[2]: Flij Bit[1]: Se | left 2 neighbor pixels and minimum of right 2 neighbor pixels see fixed pattern to recover cluster ked pattern mode |
| 0x5B06  | OTP CTRL06    | 0x00             | RW  | Bit[6:5]: Co                                                                    | ot used<br>onstrain exposure threshold[9:8]<br>ot used                                                              |
| 0x5B07  | OTP CTRL07    | 0x00             | RW  | Dis<br>ex                                                                       | onstrain exposure threshold[7:0] sable OTP function when sensor posure is smaller than constrain posure threshold   |
| 0x5B08  | OTP CTRL08    | 0x07             | RW  | Bit[5:0]: Co<br>Dis<br>ga                                                       | of used constrain gain threshold sable OTP function when sensor in is smaller than constrain gain reshold           |
| 0x5B09  | OTP CTRL09    | 0x08             | RW  | Re<br>red                                                                       | ot used ecover threshold ecover when high 8-bits of covered data is bigger than original e by this threshold        |
| 0x5B0A  | OTP CTRL0A    | 0x01             | RW  | Bit[7:5]: No<br>Bit[4:0]: Ma                                                    | ot used<br>anual horizontal even increase step                                                                      |
| 0x5B0B  | OTP CTRL0B    | 0x01             | RW  |                                                                                 | ot used<br>anual horizontal odd increase step                                                                       |
| 0x5B0C  | OTP CTRL0C    | 0x01             | RW  |                                                                                 | ot used<br>anual vertical even increase step                                                                        |
| 0x5B0D  | OTP CTRL0D    | 0x01             | RW  |                                                                                 | ot used<br>anual vertical odd increase step                                                                         |



table 6-25 OTP control registers (sheet 3 of 3)

| address           | register name | default<br>value | R/W | description                                                   |
|-------------------|---------------|------------------|-----|---------------------------------------------------------------|
| 0x5B10            | OTP RO10      | -                | R   | Bit[7:4]: Not used<br>Bit[3:0]: Horizontal offset[11:8]       |
| 0x5B11            | OTP RO11      | _                | R   | Bit[7:0]: Horizontal offset[7:0]                              |
| 0x5B12            | OTP RO12      | -                | R   | Bit[7:4]: Not used<br>Bit[3:0]: Vertical offset[11:8]         |
| 0x5B13            | OTP RO13      | _                | R   | Bit[7:0]: Vertical offset[7:0]                                |
| 0x5B14            | OTP RO14      |                  | R   | Bit[7:5]: Not used<br>Bit[4:0]: Horizontal even increase step |
| 0x5B15            | OTP RO15      |                  | R   | Bit[7:5]: Not used Bit[4:0]: Horizontal odd increase step     |
| 0x5B16            | OTP RO16      | -                | R   | Bit[7:5]: Not used Bit[4:0]: Vertical even increase step      |
| 0x5B17            | OTP RO17      | -                | R   | Bit[7:5]: Not used Bit[4:0]: Vertical odd increase step       |
| 0x5B18~<br>0x5B1F | NOT USED      | -                | _   | Not Used                                                      |
| 0x5B20            | OTP CTRL20    | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: Manual X offset[11:8]         |
| 0x5B21            | OTP CTRL21    | 0x00             | RW  | Bit[7:0]: Manual X offset[7:0]                                |
| 0x5B22            | OTP CTRL22    | 0x00             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: Manual Y offset[11:8]         |
| 0x5B23            | OTP CTRL23    | 0x00             | RW  | Bit[7:0]: Manual Y offset[7:0]                                |



# $6.26 \text{ pre}_DSP \text{ control} [0x5E00 - 0x5E2E]$

table 6-26 pre\_DSP control registers (sheet 1 of 3)

| address           | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|---------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5E00            | PRE CTRL00    | 0x00             | RW  | Bit[7]: Test pattern enable Bit[6]: Rolling bar function enable Bit[5]: Transparent enable Bit[4]: Square mode 0: Color square 1: Black-white square Bit[3:2]: Color bar style 00: Standard color bar 01: Top-bottom darker color bar 10: Right-left darker color bar 11: Bottom-top darker color bar Bit[1:0]: Test pattern mode 00: Color bar 01: Random data 10: Square 11: Black image |
| 0x5E01            | PRE CTRL01    | 0x41             | RW  | Bit[7]: Reserved Bit[6]: Window cut enable Bit[5]: two_lsb_0_en Set lowest two bits to 0 Bit[4]: Same seed enable Reset seed to 0x5E01[3:0] each frame Bit[3:0]: Random seed Seed used in generating random data                                                                                                                                                                           |
| 0x5E02            | PRE CTRL02    | 0x00             | RW  | Bit[7:4]: Reserved Bit[3:0]: Line number interrupt[11:8]                                                                                                                                                                                                                                                                                                                                   |
| 0x5E03            | PRE CTRL03    | 0x01             | RW  | Bit[7:0]: Line number interrupt[7:0]                                                                                                                                                                                                                                                                                                                                                       |
| 0x5E04~<br>0x5E07 | RSVD          | -                |     | Reserved                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x5E08            | PRE CTRL08    | 0x00             | RW  | Bit[7:4]: Reserved Bit[3:0]: Horizontal manual offset[11:8]                                                                                                                                                                                                                                                                                                                                |
| 0x5E09            | PRE CTRL09    | 0x00             | RW  | Bit[7:0]: Horizontal manual offset[7:0]                                                                                                                                                                                                                                                                                                                                                    |
| 0x5E0A            | PRE CTRL0A    | 0x00             | RW  | Bit[7:4]: Reserved Bit[3:0]: Vertical manual offset[11:8]                                                                                                                                                                                                                                                                                                                                  |
| 0x5E0B            | PRE CTRL0B    | 0x00             | RW  | Bit[7:0]: Vertical manual offset[7:0]                                                                                                                                                                                                                                                                                                                                                      |
| 0x5E0C            | PRE ROOC      | -                | R   | Bit[7:4]: Reserved Bit[3:0]: Input image pixel number[11:8]                                                                                                                                                                                                                                                                                                                                |
| 0x5E0D            | PRE ROOD      | _                | R   | Bit[7:0]: Input image pixel number[7:0]                                                                                                                                                                                                                                                                                                                                                    |



table 6-26 pre\_DSP control registers (sheet 2 of 3)

| address                               | register name | default<br>value | R/W                                   | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------|---------------|------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5E0E                                | PRE RO0E      | -                | R                                     | Bit[7:4]: Reserved Bit[3:0]: Input image line number[11:8]                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0x5E0F                                | PRE RO0F      | _                | R                                     | Bit[7:0]: Input image line number[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0x5E10                                | PRE CTRL10    | 0x3C             | RW                                    | Bit[7]: Window X offset option Bit[6]: Window Y offset option Bit[5]: Take first pixel in same position with no mirror image enable Bit[4]: Take first pixel in same position with no flip image enable Bit[3]: Mirror option from window 0: First pixel is Gb or R with window output 1: First pixel is B or Gr with window output Bit[2]: Flip option from window 0: First line is GR with window output 1: First line is BG with window output Bit[1]: Offset manual enable |
| 0x5E11                                | PRE CTRL11    | 0x00             | RW                                    | Bit[0]: Reserved  Bit[7]: Manual clock/valid ratio enable Bit[6:4]: Manual dummy line number Bit[3]: Reduce HREF low length by half Bit[2:0]: Manual clock/valid ratio for dummy line                                                                                                                                                                                                                                                                                          |
| 0x5E12                                | PRE RO12      | _                | R                                     | Bit[7:0]: HREF blank length for dummy line[15:8]                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0x5E13                                | PRE RO13      | _                | R                                     | Bit[7:0]: HREF blank length for dummy line[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0x5E14                                | PRE RO14      | _                | R                                     | Bit[7:0]: HREF length for dummy line[15:8]                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0x5E15                                | PRE RO15      | _                | R                                     | Bit[7:0]: HREF length for dummy line[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0x5E16                                | PRE RO16      | -                | R                                     | Bit[7:5]: Reserved Bit[4]: Dummy error indicating signal Bit[3]: Reserved Bit[2:0]: Dummy line clock ratio output                                                                                                                                                                                                                                                                                                                                                              |
| 0x5E17                                | PRE RO17      | -                | R                                     | Bit[7:4]: Horizontal odd increase step Bit[3:0]: Vertical odd increase step                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0x5E18                                | PRE RO18      | -                | R                                     | Bit[7:4]: Reserved Bit[3:0]: Horizontal sensor offset[11:8]                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0x5E19                                | PRE RO19      | -                | R                                     | Bit[7:0]: Horizontal sensor offset[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x5E1A                                | PRE RO1A      | -                | R                                     | Bit[7:4]: Reserved Bit[3:0]: Vertical sensor offset[11:8]                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0x5E1B                                | PRE RO1B      | _                | R                                     | Bit[7:0]: Vertical sensor offset[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · · · · · · · · · · · · · · · · · · · |               |                  | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



table 6-26 pre\_DSP control registers (sheet 3 of 3)

| address | register name | default<br>value | R/W | description                                                                             |
|---------|---------------|------------------|-----|-----------------------------------------------------------------------------------------|
| 0x5E1C  | PRE RO1C      | -                | R   | Bit[7:4]: Reserved Bit[3:0]: Horizontal window offset[11:8]                             |
| 0x5E1D  | PRE RO1D      | _                | R   | Bit[7:0]: Horizontal window offset[7:0]                                                 |
| 0x5E1E  | PRE RO1E      | -                | R   | Bit[7:4]: Reserved Bit[3:0]: Vertical window offset[11:8]                               |
| 0x5E1F  | PRE RO1F      | _                | R   | Bit[7:0]: Vertical window offset[7:0]                                                   |
| 0x5E20  | PRE RO20      | -                | R   | Bit[7:5]: Reserved Bit[4:0]: Horizontal window output size[12:8]                        |
| 0x5E21  | PRE RO21      | -                | R   | Bit[7:0]: Horizontal window output size[7:0]                                            |
| 0x5E22  | PRE RO22      | -                | R   | Bit[7:4]: Reserved Bit[3:0]: Vertical window output size[11:8]                          |
| 0x5E23  | PRE RO23      | <b>F</b> .       | R   | Bit[7:0]: Vertical window output size[7:0]                                              |
| 0x5E24  | PRE RO24      | 9/               | R   | Bit[7:6]: Reserved Bit[5:4]: Horizontal skip Bit[3:2]: Reserved Bit[1:0]: Vertical skip |
| 0x5E25  | PRE RO25      | -                | R   | Bit[7:4]: Horizontal even increase step Bit[3:0]: Vertical even increase step           |
| 0x5E26  | NOT USED      |                  | -   | Not Used                                                                                |
| 0x5E27  | PRE RO27      | $\hat{G}_{A}$    | R   | Bit[7:4]: Reserved Bit[3:0]: Cut top offset for bi-linear BLC[11:8]                     |
| 0x5E28  | PRE RO28      | -                | R   | Bit[7:0]: Cut top offset for bi-linear BLC[7:0]                                         |
| 0x5E29  | PRE RO29      | _                | R   | Bit[7:4]: Reserved Bit[3:0]: Cut bottom offset for bi-linear BLC[11:8]                  |
| 0x5E2A  | PRE RO2A      | -                | R   | Bit[7:0]: Cut bottom offset for bi-linear BLC[7:0]                                      |
| 0x5E2B  | PRE CTRL2B    | 0x09             | RW  | Bit[7:4]: Reserved Bit[3:0]: Array height for bi-linear BLC[11:8]                       |
| 0x5E2C  | PRE CTRL2C    | 0xB0             | RW  | Bit[7:0]: Array height for bi-linear BLC[7:0]                                           |
| 0x5E2D  | PRE CTRL2D    | 0x00             | RW  | Bit[7:6]: Reserved Bit[5]: Manual horizontal skip enable Bit[4:0]: Reserved             |
| 0x5E2E  | PRE CTRL2E    | 0x00             | RW  | Bit[7:6]: Reserved Bit[5]: Manual vertical skip enable Bit[4:0]: Reserved               |
|         |               |                  |     |                                                                                         |



# 7 operating specifications

### 7.1 absolute maximum ratings

table 7-1 absolute maximum ratings

| parameter                                          |                      | absolute maximum rating <sup>a</sup> |
|----------------------------------------------------|----------------------|--------------------------------------|
| ambient storage temperature                        |                      | -40°C to +125°C                      |
|                                                    | V <sub>DD-A</sub>    | 4.5V                                 |
| supply voltage (with respect to ground)            | $V_{DD-D}$           | 3V                                   |
|                                                    | $V_{\mathrm{DD-IO}}$ | 4.5V                                 |
| electro etatio discharge (ESD)                     | human body model     | 2000V                                |
| electro-static discharge (ESD)                     | machine model        | 200V                                 |
| all input/output voltages (with respect to ground) |                      | -0.3V to V <sub>DD-IO</sub> + 1V     |
| I/O current on any input or output pin             |                      | ± 200 mA                             |

exceeding the absolute maximum ratings shown above invalidates all AC and DC electrical specifications and may
result in permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods
may affect device reliability.

# 7.2 functional temperature

table 7-2 functional temperature

| parameter                                                          | range                               |
|--------------------------------------------------------------------|-------------------------------------|
| operating temperature (for applications up to 90 fps) <sup>a</sup> | -30°C to +85°C junction temperature |
| stable image temperature <sup>b</sup>                              | 0°C to +60°C junction temperature   |

a. sensor functions but image quality may be noticeably different at temperatures outside of stable image range



b. image quality remains stable throughout this temperature range

### 7.3 DC characteristics

table 7-3 DC characteristics (-30°C < T<sub>J</sub> < 85°C) (sheet 1 of 2)

| symbol                   | parameter                                                          | min        | typ       | max <sup>a</sup> | unit |
|--------------------------|--------------------------------------------------------------------|------------|-----------|------------------|------|
| supply                   |                                                                    |            |           |                  |      |
| $V_{\text{DD-A}}$        | supply voltage (analog)                                            | 2.6        | 2.8       | 3.0              | V    |
| $V_{DD-D}$               | supply voltage (digital core for 4-lane MIPI up to 1000 Mbps/lane) | 1.14       | 1.2       | 1.26             | V    |
| V <sub>DD-IO</sub>       | supply voltage (digital I/O)                                       | 1.7        | 1.8       | 1.9              | V    |
| I <sub>DD-A</sub>        |                                                                    |            | 22.5      | 28               | mA   |
| I <sub>DD-IO</sub>       | active (operating) current <sup>b,c</sup> (full 8MP @ 30 fps)      |            | 1.1       | 2.7              | mA   |
| I <sub>DD-D</sub>        |                                                                    |            | 69.2      | 95               | mA   |
| I <sub>DD-A</sub>        |                                                                    |            | 22.5      | 28               | mA   |
| I <sub>DD-IO</sub>       | active (operating) current <sup>b,c</sup> (1080p @ 60 fps)         |            | 1.1       | 2.7              | mA   |
| I <sub>DD-D</sub>        | (Todop & do ips)                                                   |            |           | 65               | mA   |
| I <sub>DD-A</sub>        |                                                                    |            | 18        | 24               | mA   |
| I <sub>DD-IO</sub>       | active (operating) current <sup>b,c</sup><br>(1632x1224 @ 60 fps)  |            | 1.1       | 2.7              | mA   |
| I <sub>DD-D</sub>        |                                                                    |            | 38.6      | 52               | mA   |
| I <sub>DD-A</sub>        |                                                                    |            | 22        | 28               | mA   |
| I <sub>DD-IO</sub>       | active (operating) current <sup>b,c</sup><br>(720p @ 60 fps)       |            | 1.1       | 2.7              | mA   |
| I <sub>DD-D</sub>        |                                                                    |            | 39.2      | 53               | mA   |
| I <sub>DD-A</sub>        |                                                                    |            | 22        | 28               | mA   |
| $I_{\text{DD-IO}}$       | active (operating) current <sup>b,c</sup> (800x600 @ 90 fps)       |            | 1.1       | 2.7              | mA   |
| I <sub>DD-D</sub>        |                                                                    |            | 36.2      | 52               | mA   |
| I <sub>DDS-SCCB</sub>    | standby current <sup>b,d</sup>                                     |            | 800       | 3000             | μΑ   |
| I <sub>DDS-XSHUTDN</sub> | standby current <sup>b, q</sup>                                    |            |           | 5                | μΑ   |
| digital inputs (ty       | pical conditions: AVDD = 2.8V, DVDD = 1                            | 1.2V, DOVD | D = 1.8V) |                  |      |
| V <sub>IL</sub>          | input voltage LOW                                                  |            |           | 0.54             | V    |
| V <sub>IH</sub>          | input voltage HIGH                                                 | 1.26       |           |                  | V    |
| C <sub>IN</sub>          | input capacitor                                                    |            |           | 10               | pF   |



table 7-3 DC characteristics  $(-30^{\circ}\text{C} < \text{T}_{J} < 85^{\circ}\text{C})$  (sheet 2 of 2)

| symbol              | parameter              | min  | typ | max <sup>a</sup> | unit |
|---------------------|------------------------|------|-----|------------------|------|
| digital outputs (s  | tandard loading 25 pF) |      |     |                  |      |
| V <sub>OH</sub>     | output voltage HIGH    | 1.62 |     |                  | V    |
| V <sub>OL</sub>     | output voltage LOW     |      |     | 0.18             | V    |
| serial interface in | nputs                  |      |     |                  |      |
| V <sub>IL</sub> e   | SCL and SDA            | -0.5 | 0   | 0.54             | V    |
| V <sub>IH</sub>     | SCL and SDA            | 1.28 | 1.8 | 3.0              | V    |

a. maximum active current is measured under typical supply voltage

### 7.4 timing characteristics

table 7-4 timing characteristics

| symbol           | parameter                  | min | typ | max                  | unit |
|------------------|----------------------------|-----|-----|----------------------|------|
| oscillator a     | and clock input            |     |     |                      |      |
| f <sub>OSC</sub> | frequency (XVCLK)          | 6   | 24  | 27                   | MHz  |
| $t_r$ , $t_f$    | clock input rise/fall time | *   |     | 5 (10 <sup>a</sup> ) | ns   |
|                  | clock input duty cycle     | 45  | 50  | 55                   | %    |

a. if using internal PLL



b. power data is based on typical samples and may need adjustments after corner samples test

c. DVDD is provided by external regulator for lower power consumption. DVDD and EVDD are tied together. DOVDD = 1.8V

d. standby current is measured at room temperature with external clock off

e. based on DOVDD = 1.8V





# 8 mechanical specifications

# 8.1 COB physical specifications

figure 8-1 COB die specifications



 $\textbf{note 1} \quad \text{all dimensions and coordinates are in } \mu \text{m unless otherwise specified}.$ 

**note 2** bond pitch between pads is 150.3µm except between pads 10 and 11 where bond pitch is 134.1µm 8856\_COB\_DS\_8\_1



**table 8-1** pad location coordinates (sheet 1 of 2)

| pad number | pad name   | x coordinate | y coordinate | bonding area size |
|------------|------------|--------------|--------------|-------------------|
| 1          | DOGND      | 2218.5       | 1912.5       | 70x80             |
| 2          | DVDD       | 2068.2       | 1912.5       | 70x80             |
| 3          | AGND       | 1917.9       | 1912.5       | 70x80             |
| 4          | AVDD       | 1767.6       | 1912.5       | 70x80             |
| 5          | SID        | 1617.3       | 1912.5       | 70x80             |
| 6          | SCL        | 1467.0       | 1912.5       | 70x80             |
| 7          | SDA        | 1316.7       | 1912.5       | 70x80             |
| 8          | FSIN/VSYNC | 1166.4       | 1912.5       | 70x80             |
| 9          | DOVDD      | 1016.1       | 1912.5       | 70x80             |
| 10         | XSHUTDN    | 865.8        | 1912.5       | 70x80             |
| 11         | TM         | 731.7        | 1912.5       | 70x80             |
| 12         | DVDD       | -1689.3      | 1912.5       | 70x80             |
| 13         | DOGND      | -1839.6      | 1912.5       | 70x80             |
| 14         | AVDD       | -1989.9      | 1912.5       | 70x80             |
| 15         | AGND       | -2140.2      | 1912.5       | 70x80             |
| 16         | AGND       | -2140.2      | -1912.5      | 70x80             |
| 17         | AVDD       | -1989.9      | -1912.5      | 70x80             |
| 18         | VH         | -1839.6      | -1912.5      | 70x80             |
| 19         | VN         | -1689.3      | -1912.5      | 70x80             |
| 20         | DOGND      | -1088.1      | -1912.5      | 70x80             |
| 21         | MDP2       | -937.8       | -1912.5      | 70x80             |
| 22         | MDN2       | -787.5       | -1912.5      | 70x80             |
| 23         | MDP0       | -637.2       | -1912.5      | 70x80             |
| 24         | MDN0       | -486.9       | -1912.5      | 70x80             |
| 25         | EGND       | -336.6       | -1912.5      | 70x80             |
| 26         | PVDD       | -186.3       | -1912.5      | 70x80             |
| 27         | EVDD       | -36.0        | -1912.5      | 70x80             |
| 28         | MCP        | 565.2        | -1912.5      | 70x80             |
| 29         | MCN        | 715.5        | -1912.5      | 70x80             |
| 30         | EGND       | 865.8        | -1912.5      | 70x80             |
|            |            |              |              |                   |



pad location coordinates (sheet 2 of 2) table 8-1

| pad number | pad name | x coordinate | y coordinate | bonding area size |
|------------|----------|--------------|--------------|-------------------|
| 31         | MDP1     | 1016.1       | -1912.5      | 70x80             |
| 32         | MDN1     | 1166.4       | -1912.5      | 70x80             |
| 33         | EVDD     | 1316.7       | -1912.5      | 70x80             |
| 34         | MDP3     | 1467.0       | -1912.5      | 70x80             |
| 35         | MDN3     | 1617.3       | -1912.5      | 70x80             |
| 36         | DOVDD    | 1767.6       | -1912.5      | 70x80             |
| 37         | XVCLK    | 1917.9       | -1912.5      | 70x80             |
| 38         | DVDD     | 2068.2       | -1912.5      | 70x80             |
| 39         | DOGND    | 2218.5       | -1912.5      | 70x80             |



### 8.2 reconstructed wafer (RW) physical specifications

• maximum total die count: 1279

film frame: Compact Disco stainless SUS420

• carrier tape: UV tape

#### table 8-2 RW physical dimensions

| feature                                     | dimensions                                              |
|---------------------------------------------|---------------------------------------------------------|
| RW physical dimensions                      | 8" RW on 12" frame                                      |
| wafer thickness (OVXXXXX-ABCD)              |                                                         |
| C=4                                         | 200 $\mu$ m $\pm$ 10 $\mu$ m (7.9 mil $\pm$ 0.4 mil)    |
| reconstructed wafer street width            | 300 μm ± 50 μm (11.8 mil ± 2 mil)                       |
| placement accuracy x, y, theta              | ± 50 μm (± 2 mil), <1.0 degree                          |
| singulated die size                         |                                                         |
| width                                       | 4856 $\mu$ m $\pm$ 20 $\mu$ m (191.2 mil $\pm$ 0.8 mil) |
| length                                      | 4019 $\mu$ m $\pm$ 20 $\mu$ m (158.2 mil $\pm$ 0.8 mil) |
| bond pad size                               | 88 μm × 80 μm (3.5 mil × 3.1 mil)                       |
| minimum bond pad pitch                      | 134.1 µm (5.3 mil)                                      |
| bonding area size                           | 70 μm × 80 μm (2.8 mil × 3.1 mil)                       |
| optical array                               | /_                                                      |
| die center                                  | (0, 0)                                                  |
| optical center from die center <sup>a</sup> | -95.4 μm, -135 μm (-3.8 mil, -5.3 mil)                  |

a. based on die orientation on frame with notch facing down position



#### note

Actual die count varies and the absent die may be less than 10% of the maximum total die count (excluding the last frame of the wafer lot).





**figure 8-2** OV8856 RW physical diagram

**note 1** bonding outside the defined bonding area is prohibited, it may potentially induce reliablity issues or functionality failure

**note 2** keep-out-of-contact areas are highlighted in red color for related process fixtures/tools (e.g., nozzle, collets, etc).

8856\_COB\_DS\_8\_2





# 9 optical specifications

# 9.1 sensor array center

figure 9-1 sensor array center



**note 1** this drawing is not to scale and is for reference only.

**note 2** as most optical assemblies invert and mirror the image, the chip is typically mounted with pad 1 oriented down on the PCB.

8856\_COB\_DS\_9\_1



# 9.2 lens chief ray angle (CRA)

figure 9-2 chief ray angle (CRA)



table 9-1 CRA versus image height plot

| field (%) | image height (mm) | CRA (degrees) |
|-----------|-------------------|---------------|
| 0.00      | 0.000             | 0.00          |
| 0.10      | 0.229             | 6.35          |
| 0.20      | 0.457             | 12.55         |
| 0.30      | 0.686             | 18.30         |
| 0.40      | 0.914             | 23.29         |
| 0.50      | 1.143             | 27.26         |
| 0.60      | 1.371             | 30.07         |
| 0.70      | 1.600             | 31.80         |
| 0.80      | 1.828             | 32.63         |
| 0.90      | 2.057             | 32.86         |
| 1.00      | 2.285             | 32.78         |



# appendix A handling of RW devices

### A.1 ESD/EOS prevention

- 1. Ensure that there is 500V ESD control in all work areas.
- 2. Use ESD safety shoes, ground strap, and static control smocks in test areas.
- 3. Use grounded work carts and tables in inspection areas.
- 4. OmniVision recommends the use of ionized air in all work areas.

### A.2 particles and cleanliness of environment

- 1. All production, inspection and packaging areas should meet Class10 environment requirements.
- 2. Use optical microscopes with 50X and 100X magnifications for particle inspection.
- 3. Ensure that there is good cassette sealing for particle protection during storage.
- 4. OmniVision recommends water cleaning to remove removable particles.
- RW die should be stored in nitrogen gas purged cabinets with temperature less than 30°C and relative humidity of 60% before assembly.

### A.3 other requirements

- Reliability assurance of RW or COB bare die is certified by product reliability of the bare die in a CLCC, CSP or QFP package form factor. Precautions should be taken if the packaging form factor of the bare die is other than these specified.
- Avoid exposure to strong sunlight for extended periods of time as the color filter of the image sensor may become discolored.
- Avoid direct exposure of the sensor bare die to high temperature and/or humidity environment as sensor characteristics will be affected. Extra precautions should be exercised if the bare die experiences temperatures exceeding 260°C for more than 75 seconds.







# revision history

#### version 1.0 05.20.2015

initial release

#### version 1.01 09.04.2015

- in chapter 2, added section 2.1.1
- in table 5-6, changed description of register 0x350A to Bit[3:0]: Long digital gain[11:8] and description of register 0x350B to Bit[7:0]: Long digital gain[7:0]
- in table 6-2, changed default value for register 0x300B to 0x88 and default value for register 0x300C to 0x5A
- in table 6-2, added "For PID, read OTP register 0x7000 = 0x00, register 0x7001 = 0x88, and register 0x7002 = 0x56 (see section 2.1.1)
- in table 6-5, changed description of register 0x350A to Bit[3:0]: Long digital gain[11:8] and description of register 0x350B to Bit[7:0]: Long digital gain[7:0]

#### version 1.02 09.15.2015

· in figure 2-1, removed temperature sensor

#### version 1.1 10.29.2015

- in table 2-1, changed 10-bit output MIPI data rate for 8 MP, 6 MP HD, EIS1080p, and 1080p to "2-lane @ 1.272 Gbps/lane"
- in section 4.5.1, changed last sentence of second paragraph to "...register bit 0x5001[3] = 0" and changed 5002 to 5001 in first line to program OTP and in first line in setting for loading
- in table 6-2, changed description of register bit 0x3021[5] to Not used
- in table 6-18, changed description of register bit 0x4800[3] to "Bit[3]: fst\_stby\_ctr; 0: Software standby enter at v\_blk; 1: Software standby enter at l\_blk"
- in chapter 8, updated figure 8-1 and figure 8-2
- in table 8-1, changed x-coordinate of TM pad (pad 11) from 715.5µm to 731.7µm
- in table 8-2, updated minimum bond pad pitch and bonding area size

#### version 1.11 12.17.2015

- in key specifications, changed active power requirements to 150 mW, standby power requirements to 0.8 mW, XSHUTDN power requirements to 1 μW, max S/N ratio to 36.5 dB, dynamic range to 70 dB @ 8x gain, sensitivity to 480 mV/Lux-sec, and dark current to 12e<sup>-</sup>/s @ 60°C junction temperature
- in chapter 3, added section 3.3
- in section 4.2, added second paragraph



- in section 5.6, added "The minimum exposure of the sensor is 6 lines and maximum exposure is VTS {0x380E, 0x380F} - 6." at end of first paragraph and changed sidebar note to "For optimal performance, minimum exposure of sensor is 6 lines and maximum exposure is VTS {0x380E, 0x380F} - 6."
- in table 7-3, replaced all TBDs with real values and added table footnote b, "power data is based on typical samples and may need adjustments after corner samples test"

#### version 1.12 01.14.2016

in table 3-2, removed note at end of description of register 0x3509

#### version 1.13 01.27.2016

- in table 4-1, changed description of register bit 0x3821[2] to Bit[2]: Digital horizontal mirror control, 0: Mirrored image, 1: Normal image and changed description of register bit 0x3821[1] to Bit[1]: Array horizontal mirror control, 0: Mirrored image, 1: Normal image
- in table 6-8, changed description of register bit 0x3821[2] to Bit[2]: Digital horizontal mirror control,
   0: Mirrored image, 1: Normal image and changed description of register bit 0x3821[1] to
   Bit[1]: Array horizontal mirror control, 0: Mirrored image, 1: Normal image

#### version 1.14 03.14.2016

• in section 5.5, removed paragraph under figure 5-1

#### version 2.0 05.16.2016

changed datasheet from Preliminary Specification to Product Specification

#### version 2.01 01.20.2017

• in table 4-2, changed bit description for register 0x380E[6:0] from "Bit[6:0]..." to "Bit[7:0]..."



# defining the future of digital imaging $^{\text{\tiny M}}$

# OmniVision Technologies, Inc.

#### **UNITED STATES**

4275 Burton Drive Santa Clara, CA 95054

tel: +1 408 567 3000 fax: +1 408 567 3001 email: sales@ovt.com

#### **UNITED KINGDOM**

Hook, Hampshire +44 1256 744 610

#### **GERMANY**

Munich +49 89 63 81 99 88

#### **INDIA**

Bangalore +91 80 4112 8966

#### **CHINA**

Beijing + 86 10 6580 1690 Shanghai + 86 21 6175 9888 +86 21 5774 9288

**Shenzhen** + 86 755 8384 9733

#### JAPAN

Yokohama +81 45 478 7977 Kyoto +81 75 708 5352

#### **KOREA**

**Seoul** + 82 2 3472 3769

**SINGAPORE** +65 6933 1933

#### TAIWAN

**Taipei** +886 2 2657 9800 Hsin-chu +886 3 5656688