

Total Pages: 05

July-22-00275

B.Tech. EXAMINATION, 2022

Semester IV (CBCS) THEORY OF COMPUTATION CS-404

Time 3 Hours

Maximum Marks 60

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary/continuation sheet wil! be issued.

Note: Attempt Five questions in all, selecting one question from each Sections A, B, C and D. Q. No. 1 is compulsory.

(Compulsory Question)

(a) Represent the following set by a regular expression {1²ⁿ | n ≥ 0} and describe the following regular expression 0(0 + 1)*01 in a set representation format.

- (b) Find all strings of length 4 or less for the following regular expression a(a*b + b*a)*b and design a DFA for the regular expression (0 + 10)*.
- (c) Differentiate between DFA and NDFA.
- (d) Consider a grammar G whose productions are S → 0S/A, what will be the language of this grammar.
- (c) Define PDA and Context Free Grammar.
- (f) Differentiate between DPDA and NPDA
- (g) Show the left most derivation for the string
 a * a + a for the following grammar:
 E → E + E / E * E / (E) / a
- (h) Define TM and differentiate between PDA and TM.
 2
- (i) Define Non-deterministic TM.
- Differentiate between recursive and recursive enumerable languages. 2

Section A

- 2. (a) Prove that $L = \{ww^r \mid w \in (a+b)^*\}$ is not regular.
 - (b) Design a DFA for the following regular expression P = O(01)*1 + I(10)*0.

3. Minimize the following DFA M = $(\{q^0, q^1, q^2, q^1, q^4, q^5, q^6\}, \{a, b\}, \delta, q^6, \{q^6\} \text{ where } \delta \text{ is given as}$ $\delta(q^0, a) = q^0, \delta(q^0, b) = q^1, \delta(q^1, a) = q^2,$ $\delta(q^1, b) = q^5, \delta(q^2, a) = q^3, \delta(q^1, b) = q^4,$ $\delta(q^3, a) = q^0, \delta(q^3, b) = q^5, \delta(q^4, a) = q^0,$ $\delta(q^4, b) = q^6, \delta(q^5, a) = q^1, \delta(q^5, b) = q^4,$ $\delta(q^6, a) = q^1, \delta(q^6, b) = q^3.$

Section B

- Define Grammar and its types i.e. Regular, CFG,
 CSG and Phrase Structure Grammar.
 - (b) Find the regular expression for the Finite
 Automata given in the figure below using
 Arden's Theorem.

5. Write short notes on any two of the following: 10

3

- (a) Halting Problem of TM
- (b) Decidability and undecidability
- (c) PCP.

Section C

Design a TM for deciding the language $M = \{0^r \mid r \geq 1\}$.

Design a PDA which will recognize the elements of the following set $\{0^r \mid r \geq 0\}$ 5

7. (a) Convert the following NDFA into DFA. 5

State	Input		
	0	1	
q ⁰ (Starting State)	q^{1}, q^{2}	q^1	
q l	q^3	q^2	
q2 (Final State)	q^2	q^1	
q^3	q^2	q^4	
q^4	q^3	$-q^4$	

(b) Convert the following Melay Machine into
Moore machine 5

Present State	Next State				
	Input = 0		Input = 1		
	State	Output	State	Output	
51	S3	Ü	S2	0	
S2	S1	.1	S4	0	
53	.52	1	ST	1	
54	-54	1	-53	0	

Section D

- 8. (a) Convert the following CFG into CNF: 5 S \rightarrow aAD, A \rightarrow aB, A \rightarrow bBE, B \rightarrow b, D \rightarrow d, E \rightarrow e.
 - (b) Convert the following CFG into GNF: 5 $S \rightarrow AA$, $S \rightarrow a$, $A \rightarrow SS$, $A \rightarrow b$.
- 9. (a) Prove that the following grammar is ambiguous: 5 S \rightarrow aB, S \rightarrow ab, A \rightarrow a, A \rightarrow aAB, B \rightarrow b, B \rightarrow ABb
 - Consider the following production: $S \to aB$, $S \to bA$, $B \to bS$ $B \to aBB$, $B \to b$,

 $A \rightarrow aS, A \rightarrow a, B \rightarrow bAA$

5

For the string "aaabbabbba" find:

- Left most derivation
- (ii) Right most derivation.