Toplotna prevodnost

Fizikalni praktikum III.

Matevž Demšar

25. november 2024

Uvod. Pri vaji smo merili toplotno prevodnost kovinske palice s pomočjo termočlena. Vaja ima dva dela: v prvem delu termočlen umerimo, v drugem pa ga uporabimo, da izmerimo temperaturno razliko med točkama na merjencu.

Toplotni tok v snovi izrazimo s sledečo enačbo.

$$\vec{j} = \lambda \nabla T \tag{1}$$

V njej \vec{j} predstavlja gostoto toplotnega toka, ∇T gradient temperature, λ pa koeficient toplotne prevodnosti, ki je odvisen od snovi. Ker obravnavamo toplotni tok med točkama vzdolž kovinske palice, lahko enačbo obravnavamo le v eni dimenziji, in sicer:

$$j = -\lambda \frac{\Delta T}{\Delta x} \tag{2}$$

Hkrati vemo, da lahko toplotni tok zapišemo tudi kot

$$j = \frac{P}{S} \tag{3}$$

Če torej na en konec palice pritrdimo grelnik z močjo P, na drugem koncu pa ohranjamo stalno temperaturo, lahko koeficient toplotne prevodnosti kovinske palice določimo na podlagi meritev temperaturne razlike med točkama na palici (ki sta med sabo oddaljeni Δx) in dimenzij palice:

$$\lambda = -\frac{P\Delta x}{S\Delta T} \tag{4}$$

Umerjanje termočlena. Zanima nas zveza med temperaturno razliko in napetostjo na termočlenu. Izmerimo jo tako, da en spoj potopimo v hladno vodo, enega pa v vročo. Vročo vodo postopoma hladimo z dolivanjem hladne vode, pri tem pa merimo napetost na termočlenu z mikrovoltmetrom. Za večjo zanesljivost poskus ponovimo trikrat, rezultate pa pišemo v Tabelo (1). Meritve vrišemo v graf $U(\Delta T)$ in jim priredimo premico. Smerni koeficient te premice je iskani koeficient termonapetosti kondenzatorja. Z grafa na Sliki 1 razberemo:

$$\alpha = 40 \,\mu V/K \pm 3 \,\mu V/K$$

T_1 [°C]	T_2 [°C]	$U\left[\mathrm{mV}\right]$
0.0	90	3.65
0.0	84	3.47
0.0	75	3.07
0.0	69	2.82
0.0	63	2.56
0.0	56	2.27
0.0	81	3.03
0.0	71	2.72
0.0	66	2.52
0.0	58	2.22
0.0	53	2.04
0.0	50	1.92
0.0	91	3.52
0.0	79	3.17
0.0	72	2.91
0.0	66	2.70
0.0	58	2.32
0.0	51	2.03

Tabela 1: Termočlen umerimo na podlagi meritev napetosti na termočlenu pri različnih temperaturnih razlikah T_2-T_1 .

Slika 1: Videti je, da je napetost na termočlenu linearno odvisna od temperaturne razlike med spojema, zato jim s funkcijo scipy.optimize.curve_fit priredimo premico. Njen smerni koeficient je $\alpha=41.1~\mu\,V/K$. Napako na podlagi napak meritev T in U ocenimo na 4,7%.

Toplotna prevodnost kovine. Koeficient toplotne prevodnosti kovinske palice izmerimo tako, da jo na enem koncu segrevamo s konstantno močjo P, drugi konec pa hladimo z vodo, da obdržimo konstantno temperaturo. Na dve mesti vzdolž palice pritrdimo spoja termočlena in na mikrovoltmetru odčitamo napetost U. V Tabelo 2 vpišemo meritve P in U. Pričakujemo, da sta ti dve količini med sabo odvisni po zvezi, izpeljani iz enačbe (4):

$$U = \frac{\alpha \Delta x}{\lambda S} P \tag{5}$$

Koeficient α predstavlja koeficient termonapetosti termočlena, ki smo ga izmerili v prvem delu vaje, Δx razdaljo med spojema vzdolž palice, S presek palice, λ pa iskani koeficient toplotne prevodnosti palice. Iskano vrednost λ izrazimo tako, da narišemo graf U(P) in meritvam priredimo premico s koeficientom k. Koeficient toplotne prevodnosti lahko tedaj izrazimo kot

$$\lambda = \frac{\alpha \Delta x}{kS} \tag{6}$$

(Opomba: Opazimo, da ima k enoto [V/W], α pa [V/K]. To pomeni, da ima λ enoto [W/mK], kar se sklada s teorijo.)

$$\Delta x = 54 \cdot 10^{-3} \cdot 10^{-3} \, m \pm 1 \cdot 10^{-3} \, m$$

$$S = 1560 \cdot 10^{-6} \, m^2 \pm 13 \cdot 10^{-6} \, m^2$$

$$\alpha = 41 \cdot 10^{-6} \, V/K \pm 2 \cdot 10 - 6 \, V/K$$

$P\left[\mathbf{W}\right]$	$U[\mu V]$
30.2	258
39.2	328
47.9	389
57.8	460
51.7	404
43.1	361
34.9	298

Tabela 2: V tabelo vpišemo meritve P in U. P označuje moč grelnika, U pa napetost na termočlenu, ki je linearno odvisna od temperaturne razlike med spojema: $U = \alpha \Delta T$

Slika 2: Meritvam na grafu U(P) priredimo premico. Njen smerni koeficient bomo uporabili pri nadaljnjem računanju. Modul scipy optimize koeficient ocenjuje na $k=7.0\pm0.5\,\mu\text{V/W}$.

Iz grafa na Sliki 2 dobimo smerni koeficient $k=7.0\,\mu\mathrm{V/W}$, kar pomeni, da lahko izračunamo toplotno prevodnost kovine:

$$\lambda = \frac{\alpha \Delta x}{kS}$$
$$\lambda = (195 \pm 30) \, W/mK$$

Dobljena vrednost λ se približno ujema z znano vrednostjo za aluminij: $\lambda_{Al}=209$ W/mK. Na podlagi te informacije lahko izračunamo še karakteristični čas $t_D,$ v katerem temperaturna motnja prepotuje razdaljo $\Delta x.$ Uporabimo formulo:

$$t_D = (\Delta x)^2 / 2D \tag{7}$$

D predstavlja difuzijsko konstanto, ki ima za aluminij teoretično vrednost $D_{Al}=8.418\cdot 10^{-5}~{\rm m}^2/{\rm s}.$ Dobimo:

$$t_D = 17.3 \text{ s}$$

Komentar. Dobljena vrednost λ se je razlikovala od teoretične, vendar je odstopanje v okviru merske napake. Lepo pa bi bilo, če bi znal bolje uporabljati funkcijo $scipy.optimize.curve_fit$, še posebej pri računanju napak.