

数据库系统概论

第3章 关系数据库标准语言SQL

第3章 关系数据库标准语言SQL

- ❖第一节 SQL概述
- ❖第二节 学生-课程数据库
- ❖第三节 数据定义
- ❖第四节 数据查询
- ❖第五节 数据更新
- ❖第六节 空值的处理
- ❖第七节 视图

教学目标

❖掌握

- CREATE DATABASE CREATE SCHEMA
- CREATE TABLE CREATE INDEX

❖了解

■ SQL语言的历史、特点

❖重点

■数据库、模式、表、索引的创建、删除

❖难点

■模式

第3章 关系数据库标准语言SQL

- ●第一节 SQL概述
- ❖第二节 学生-课程数据库
- ❖第三节 数据定义
- ❖第四节 数据查询
- ❖第五节 数据更新
- ❖第六节 空值的处理
- ❖第七节 视图

SQL概述

❖SQL

■ SQL语言原名SEQUEL(读作[si:kw∂1]),是一个通用的、 功能极强的关系数据库语言。同时也是一种介于关系代数 与关系演算之间的结构化查询语言(Structured Query Language),其功能包括**数据定义、数据查询、数据操纵 和数据控制**

◆ 为什么学习SQL

- SQL已经成为关系数据库的**查询标准**
- SQL也是现在和将来DBMS的标准
- SQL促进了分布式数据库和客户/服务器数据库的开发

SQL的产生与发展

- \clubsuit 最早的SQL原型由IBM的研究人员在20世纪70年代开发的
- ❖20世纪80年代早期SQL开始成为国际标准的数据库语言

标准	发布日期
SQL/86	1986.10
SQL/89(FIPS 127-1)	1989年
SQL/92	1992年
SQL99	1999年
SQL2003	

SQL的特点

❖SQL的特点

- ■综合统一
- ■高度非过程化
- ■面向集合的操作方式
- 两种使用方式,统一的语法结构
- 简洁易学

第3章 关系数据库标准语言SQL

- ❖第一节 SQL概述
- ●第二节 学生-课程数据库
- ❖第三节 数据定义
- ❖第四节 数据查询
- ❖第五节 数据更新
- ❖第六节 空值的处理
- ❖第七节 视图

学生-课程数据库

- ❖学生-课程模式 S-T
 - 学生表: Student(Sno, Sname, Ssex, Sage, Sdept)
 - 课程表: Course(Cno, Cname, Cpno, Ccredit)
 - 学生选课表: SC(Sno, Cno, Grade)

Student表

学 号 Sno	姓名 Sname	性 别 Ssex	年 龄 Sage	所在系 Sdept
201215121	李勇	男	20	cs
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

Course表

课程号	课程名	先修课	学分
Cno	Cname	Cpno	Ccredit
1	数据库 5		4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2
7	PASCAL语言	6	4

SC表

 学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

本章内容

- ❖第一节 SQL概述
- ❖第二节 学生-课程数据库
- ●第三节 数据定义
- ❖第四节 数据查询
- ❖第五节 数据更新
- ❖第六节 空值的处理
- ❖第七节 视图

数据定义

SQL的数据定义功能: 模式定义、表定义、视图和

索引的定义

表 3.2 SQL 的数据定义语句

操作对象		操作方式	
	创 建	删除	修改
数据库	CREATE	DROP	
	DATABASE	DATABASE	
模式	CREATE	DROP	
	SCHEMA	SCHEMA	
表	CREATE	DROP	ALTER
	TABLE	TABLE	TABLE
视图	CREATE	DROP	
	VIEW	VIEW	
索引	CREATE	DROP	
	INDEX	INDEX	

数据定义

数据库的创建和修改

模式的定义和删除

表的定义、修改和删除

索引的建立和删除

创建数据库

❖语法

CREATE DATABASE <database_name>

例: CREATE DATABASE student

◆使用数据库

use <database_name>

例: use student

❖删除数据库

drop database <database_name>

例: drop database student

不能删除当 前数据库、

模式的定义与删除

- ❖模式 (schema)
 - 模式是一个独立于数据库用户的非重复命名空间,在 这个空间中可以定义该模式包含的数据库对象,例如 基本表、视图、索引等。您可以将模式视为数据库对 象的容器
 - 一个数据库可以有多个模式,模式隶属于数据库

具 有 架 构 的 数 据 库 整 体 结 构

模式定义

❖模式定义

CREATE SCHEMA <模式名> AUTHORIZATION <用户

名> [<表定义>|<视图定义>|<授权定义>]

- 如果没有指定模式名,则模式名隐含为用户名
- 权限:使用该命令,用户必须具有DBA权限, 或获得了DBA授权CREATE SCHEMA 的权限
- ** 19 : CREATE SCHEMA Test AUTHORIZATION ZHANG CREATE TABLE student (Sno char(9) PRIMARY KEY, Sname char(20), Sage int)

删除模式

❖定义

DROP SCHEMA <模式名> <CASCADE | RESTRICT>

- CASCADE(级联)
 - 删除模式的同时把该模式中所有的数据库对象全部删除
- RESTRICT(限制)
 - 如果该模式中定义了下属的数据库对象(如表、视图等),则 拒绝该删除语句的执行
 - 当该模式中没有任何下属的对象时 才能执行

基本表的定义、删除与修改

- ❖创建表时, 需要搞清楚的问题
 - 表名是什么?
 - 此表包括那些列?
 - 各列名是什么?
 - 各列的长度和数据类型是什么?
 - 列是否允许取空值?
 - 列是否取唯一值?
 - 哪些列组成表的主键?
 - 外键及被参照的关系是什么?

数据类型

❖数据类型

- SQL中域的概念用数据类型来实现
- 定义列时需要指明其数据类型及长度
- 选用哪种数据类型
 - 取值范围
 - 要做哪些运算

基本数据类型

数据类型	含义
CHAR(n)	长度为n的定长字符串
VARCHAR(n)	最大长度为n的变长字符串
INT	长整数(也可以写作INTEGER)
SMALLINT	短整数
NUMERIC(p, d)	定点数,由p位数字(不包括符号、小数点)组成,小数后面有d位 数字
REAL	取决于机器精度的浮点数
Double Precision	取决于机器精度的双精度浮点数
FLOAT(n)	浮点数,精度至少为n位数字
DATE	日期,包含年、月、日,格式为YYYY-MM-DD
TIME	时间,包含一日的时、分、秒,格式为HH:MM:SS

定义基本表

❖定义基本表

CREATE TABLE〈表名〉

(〈列名〉〈数据类型〉[〈列级完整性约束条件〉]

- [,〈列名〉〈数据类型〉[〈列级完整性约束条件〉]] …
- [,〈表级完整性约束条件〉]);
- ■〈列级完整性约束条件〉: 涉及相应属性列的完整性约束条件
- 〈表级完整性约束条件〉: 涉及一个或多个属性列的完整性约束条件

学生表Student

❖[例1] 建立"学生"表Student, 学号是主码, 姓名取值唯一。

```
CREATE TABLE Student
   (Sno CHAR (9) PRIMARY KEY,
                            /*主键 列级完整性约束条件*/
   Sname VARCHAR(20) UNIQUE, /* Sname取唯一值*/
          CHAR(2),
   Ssex
   Sage SMALLINT,
   Sdept CHAR (20)
  );
```

课程表Course

❖[例2] 建立一个"课程"表Course。

```
CREATE TABLE Course

( Cno CHAR(4) PRIMARY KEY,
    Cname CHAR(40),
    Cpno CHAR(4), /*先修课*/
    Ccredit SMALLINT,
    FOREIGN KEY (Cpno) REFERENCES Course(Cno)
);
```

Cpno是外码,被参照表是Course ,被参照列是Cno

学生选课表SC

❖[例3] 建立一个"学生选课"表SC, 它由学号Sno、 课程号Cno, 修课成绩Grade组成, 其中(Sno, Cno) 为主码。

```
CREATE TABLE SC
  (Sno CHAR(9),
   Cno CHAR(4),
   Grade SMALLINT,
   PRIMARY KEY (Sno, Cno),
   FOREIGN KEY (Sno) REFERENCES Student(Sno),
   FOREIGN KEY (Cno) REFERENCES Course(Cno)
);
```

定义基本表 (续)

- ❖常用完整性约束
 - 主码约束: PRIMARY KEY
 - ■唯一性约束: UNIQUE
 - 非空值约束: NOT NULL
 - ■参照完整性约束: FOREIGN KEY

PRIMARY KEY与 UNIQUE的区别

练习

❖某工厂的仓库管理数据库的部分关系模式如下所示:

仓库(仓库号,面积,负责人,电话)

原材料(编号,名称,数量,储备量,仓库号)

要求一种原材料只能存放在同一仓库中。"仓库"和"原材料"的关系实例分别如表2-1和表2-2所示。

表 2-1 "仓库"关系

仓库号	面积	负责人	电话
01	500	李劲松	87654121
02	300	陈东明	87654122
03	300	郑爽	87654123
04	400	刘春来	87654125

表 2-2 "原材料"关系

编号	名称	数量	储备量	仓库号
1001	小麦	100	50	01
2001	玉米	50	30	01
1002	大豆	20	10	02
2002	花生	30	50	02
3001	菜油	60	20	03

❖ 根据上述说明,用SQL定义"原材料"和"仓库"的关系模式如下,请在空缺处填入正确的内容。(4分)

```
CREATE TABLE 仓库
(仓库号 CHAR (4),
 面积 INT,
 负责人 CHAR (8),
  电话 CHAR(8),
  _____(a)____);//主键定义
CREATE TABLE 原材料
(编号 CHAR (4) ____(b) ____, //主键定义
 名称 CHAR(16),
 数量 INT _____check(数量>0)_____, //数量
大干0
 储备量 INT,
 仓库号 (d)
```

修改基本表

「SQL中不加column

ALTER TABLE 〈表名〉

- [**ADD** [COLUMN]<新列名>〈数据类型> [完整性约束]]
- [**ADD** 〈表级完整性约束〉]
- [DROP [COLUMN]<列名>[CASCADE | RESTRICT]]
- [**DROP CONSTRAINT**〈完整性约束名[CASCADE | RESTRICT]]
- [**ALTER COLUMN** 〈列名〉 〈数据类型〉];
- <表名>: 要修改的基本表
- ADD子句:增加新列和新的完整性约束条件
- DROP子句: 删除指定的完整性约束条件
- ALTER COLUMN子句:用于修改列名和数据类型

- ❖[例4] 向Student表增加"入学时间"列,其数据类型 为日期型。
 - ALTER TABLE Student ADD S_entrance DATE;
 - 不论基本表中原来是否已有数据,新增加的列一律为空值。
- ❖[例5] 将年龄的数据类型由字符型(假设原来的数据 类型是字符型)改为整数。
 - ALTER TABLE Student ALTER COLUMN Sage INT;
- ❖[例6] 增加课程名称必须取唯一值的约束条件。
 - ALTER TABLE Course ADD UNIQUE(Cname);

删除基本表

- DROP TABLE <表名> [RESTRICT| CASCADE] ;
- ❖ RESTRICT: 删除表是有限制的
 - 欲删除的基本表不能被其他表的约束所引用
 - 如果存在依赖该表的对象,则此表不能被删除
- ❖CASCADE: 删除该表没有限制
 - 在删除基本表的同时,相关的依赖对象一起删除

删除基本表

[例7] 如果选择CASCADE时可以删除表,视图也自

动被删除

DROP TABLE Student CASCADE;

--NOTICE: drop cascades to view IS_Student

SELECT * FROM IS_Student;

--ERROR: relation "IS_Student" does not exist

索引的建立与删除

- ❖建立索引是加快查询速度的有效手段
- ☆建立索引
 - DBA或表的属主(即建立表的人)根据需要建立
 - 有些DBMS自动建立以下列上的索引
 - PRIMARY KEY
 - UNIQUE
- ❖维护索引
 - DBMS自动完成
- ❖使用索引
 - DBMS自动选择是否使用索引以及使用哪些索引

建立索引

❖语包格式

CREATE [UNIQUE] [CLUSTER] INDEX <索引名> ON <表名>(<列名>[<次序>][,<列名>[<次序>]],...);

- ■用<表名>指定要建索引的基本表名字
- 索引可以建立在该表的一列或多列上,各列名之间 用逗号分隔
- ■用<次序>指定索引值的排列次序,升序:ASC,降序:DESC。缺省值:ASC
- UNIQUE表明此索引的每一个索引值只对应唯一的数据记录
- CLUSTER表示要建立的索引是**聚簇索引**

❖[例8] 为学生-课程数据库中的Student, Course, SC三个表建立索引。其中Student表按学号升序建唯一索引, Course表按课程号升序建唯一索引, SC表按学号升序和课程号降序建唯一索引。

CREATE UNIQUE INDEX Stusno ON Student(Sno);

CREATE UNIQUE INDEX Coucno ON Course(Cno);

CREATE UNIQUE INDEX SCno ON SC(Sno ASC, Cno DESC);

建立索引

❖唯一值索引

- 对于已含重复值的属性列不能建UNIQUE索引
- 对某个列建立UNIQUE索引后,插入新记录时DBMS会自动检查新记录在该列上是否取了重复值。这相当于增加了一个UNIQUE约束

建立索引

❖聚蔟索引

建立聚簇索引后,基表中数据也需要按指定的聚簇属性值的升序或降序存放。也即聚簇索引的索引项顺序与表中记录的物理顺序一致

例:

CREATE CLUSTER INDEX Stusname ON Student(Sname); 在Student表的Sname(姓名)列上建立一个聚簇索引,而且Student表中的记录将按照Sname值的升序存放

- 在一个基本表上最多只能建立一个聚簇索引
- 聚簇索引的用途: 对于某些类型的查询,可以 提高查询效率
- ■聚簇索引的适用范围
 - 很少对基表进行增删操作
 - 很少对其中的变长列进行修改操作

删除索引

- ❖DROP INDEX <索引名>
 - 删除索引时,系统会从数据字典中删去有关该索引的 描述
- ❖[例9] 删除Student表的Stusname索引。
 - DROP INDEX Student.Stusname

小 结

- ❖常见的数据库对象有哪些?SCHEMA和数据库对象 之间关系是怎样的
- ◆一般来说,建立索引可以提高查询效率,那么,索引建得越多越好吗
- ❖那些情况不适合给表建立索引

小 结

- ❖SQL是一个非过程化语言, 使用者只需要说明 "做什么"而不需要说明"怎么做"
- ❖SQL是一个集定义、操作、查询和控制为一体的语言
- ❖如何使用Create Schema、Create Table语句和Create Index语句创建模式、基本表和索引

作业安排

- ❖理论题作业
 - ■第三章理论练习一
 - ■时间:
- ❖实践
 - ■实验三

