Advanced Engineering Mathematics Systems of Differential Equations by Dennis G. Zill Notes

Chris Doble

August 2023

Contents

10 Systems of Linear Differential Equations														1			
	10.1	Theory	of Linear Systems .														1
	10.2	Homog	eneous Linear Systems	S													4
		10.2.1	Distinct Real Eigenva	lues													4
		10.2.2	Repeated Eigenvalues														4
		10.2.3	Complex Eigenvalues														5
	10.3	Solutio	n by Diagonalization														6
	10.4	Nonho	nogeneous Linear Syst	ems													6
		10.4.1	Undetermined Coeffic	ients													6
		10.4.2	Variation of Paramete	ers .													7
		10.4.3	Diagonalization														8
	10.5	Matrix	Exponential														8

10 Systems of Linear Differential Equations

10.1 Theory of Linear Systems

• A system of the form

$$\frac{dx_1}{dt} = g_1(t, x_1, x_2, \dots, x_n)$$

$$\frac{dx_2}{dt} = g_2(t, x_1, x_2, \dots, x_n)$$

$$\vdots$$

$$\frac{dx_n}{dt} = g_n(t, x_1, x_2, \dots, x_n)$$

is called a first-order system.

• When each of the functions $g_n(t, x_1, x_2, ..., x_n)$ is linear in the dependent variables $x_1, x_2, ..., x_n$, we get the **normal form** of a first-order system of linear equations

$$\frac{dx_1}{dt} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + f_1(t)$$

$$\frac{dx_2}{dt} = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + f_2(t)$$

$$\vdots$$

$$\frac{dx_n}{dt} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + f_n(t).$$

Such a system is called a linear system.

- When $f_i(t) = 0$ for i = 1, 2, ..., n the linear system is said to be **homogeneous**, otherwise it's **nonhomogenous**.
- If \mathbf{X} , $\mathbf{A}(t)$, and $\mathbf{F}(t)$ denote the matrices

$$\mathbf{X} = \begin{pmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{pmatrix}$$

$$\mathbf{A}(t) = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \dots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \dots & a_{2n}(t) \\ \vdots & & & \vdots \\ a_{n1}(t) & a_{n2}(t) & \dots & a_{nn}(t) \end{pmatrix}$$

$$\mathbf{F}(t) = \begin{pmatrix} f_{1}(t) \\ f_{2}(t) \\ \vdots \\ f_{n}(t) \end{pmatrix}$$

then homogeneous linear systems can be written

$$X' = AX$$

and nonhomogeneous linear systems can be written

$$\mathbf{X}' = \mathbf{AX} + \mathbf{F}.$$

 \bullet A solution vector on an interval I is any column matrix

$$\mathbf{X} = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

whose entries are differentiable functions satisfying the linear system on the interval.

- The entries of a solution vector can be considered a set of parametric equations that define a curve in *n*-space. Such a curve is called a **trajectory**.
- The problem of solving

$$\mathbf{X}' = \mathbf{A}(t)\mathbf{X} + \mathbf{F}(t)$$

subject to

$$\mathbf{X}(t_0) = \mathbf{X}_0$$

is an **initial value problem** in matrix form.

• The superposition principle states that if $X_1, X_2, ..., X_n$ are solution vectors of a homogeneous linear system on an interval I, then

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \ldots + c_n \mathbf{X}_n$$

where c_n are arbitrary constants is also a solution.

• If $X_1, X_2, ..., X_n$ are a set of solution vectors of a homogeneous linear system on an interval I, the set is said to be **linearly dependent** if there exist constants $c_1, c_2, ..., c_n$ not all zero such that

$$c_1\mathbf{X}_1 + c_2\mathbf{X}_2 + \ldots + x_n\mathbf{X}_n = \mathbf{0}$$

for every t in the interval. Otherwise the set is said to be **linearly independent**.

• A set of solution vectors

$$\mathbf{X}_1 = \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix}, \quad \mathbf{X}_2 = \begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix}, \quad \dots, \quad \mathbf{X}_n = \begin{pmatrix} x_{1n} \\ x_{2n} \\ \vdots \\ x_{nn} \end{pmatrix}$$

is linearly independent on an interval I if the Wronskian

$$W(\mathbf{X}_{1}, \mathbf{X}_{2}, \dots, \mathbf{X}_{n}) = \begin{vmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{vmatrix} \neq 0$$

for every t in the interval.

• Any set of n linearly independent solution vectors of a homogeneous linear system on an interval I is said to be a **fundamental set of solutions** on that interval.

• If $X_1, X_2, ..., X_n$ are a fundamental set of solutions of a homogeneous linear system on an interval I, then the **general solution** of the system on that interval is

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \ldots + c_n \mathbf{X}_n$$

where c_i are arbitrary constants.

- For nonhomogenous systems, a **particular solution** \mathbf{X}_p on an interval I is any vector, free from arbitrary parameters, whose entries are functions that satisfy the system.
- For nonhomogeneous systems, the **general solution** of the system on the interval is

$$\mathbf{X} = \mathbf{X}_c + \mathbf{X}_n$$

where \mathbf{X}_c is the general solution of the associated homogeneous system (the **complementary function**) and \mathbf{X}_p is a particular solution of the nonhomogeneous system.

10.2 Homogeneous Linear Systems

10.2.1 Distinct Real Eigenvalues

• If $\mathbf{X}' = \mathbf{A}\mathbf{X}$ is a homogeneous linear system, $\lambda_1, \lambda_2, \dots, \lambda_n$ are n real, distinct eigenvalues of \mathbf{A} , and $\mathbf{K}_1, \mathbf{K}_2, \dots, \mathbf{K}_n$ are the corresponding eigenvectors of \mathbf{A} , then

$$\mathbf{X} = c_1 \mathbf{K}_1 e^{\lambda_1 t} + c_2 \mathbf{K}_2 e^{\lambda_2 t} + \ldots + c_n \mathbf{K}_n e^{\lambda_n t}$$

is the general solution of the system.

- If a system of linear equations consists of variables x and y, then the x-y plane is called the **phase plane**.
- Solution vectors of a linear system can be considered parametric equations and plotted on the phase plane. These are called trajectories.
- When multiple trajectories are plotted in the phase plane, it's called a **phase portrait**.

10.2.2 Repeated Eigenvalues

• If the coefficient matrix **A** of a linear system has an eigenvalue λ of multiplicity m, it may be possible to find m linearly independent eigenvectors

 $\mathbf{K}_1, \mathbf{K}_2, \dots, \mathbf{K}_m$ associated with the eigenvalue in which case the m solution vectors associated with the eigenvalue are

$$\mathbf{X}_1 = \mathbf{K}_1 e^{\lambda t}$$

$$\mathbf{X}_2 = \mathbf{K}_2 e^{\lambda t}$$

$$\vdots$$

$$\mathbf{X}_m = \mathbf{K}_m e^{\lambda t}.$$

• If the coefficient matrix \mathbf{A} of a linear system has an eigenvalue λ of multiplicity m and it's not possible to find m linearly independent eigenvectors associated with the eigenvalue, then the m solution vectors associated with the eigenvalue are

$$\mathbf{X}_{1} = \mathbf{K}_{1}e^{\lambda t}$$

$$\mathbf{X}_{2} = \mathbf{K}_{1}te^{\lambda t} + \mathbf{K}_{2}e^{\lambda t}$$

$$\vdots$$

$$\mathbf{X}_{m} = \mathbf{K}_{1}\frac{t^{m-1}}{(m-1)!}e^{\lambda t} + \mathbf{K}_{2}\frac{t^{m-2}}{(m-2)!}e^{\lambda t} + \ldots + \mathbf{K}_{m}e^{\lambda t}$$

where \mathbf{K}_i are the solutions to the equations

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{K}_1 = \mathbf{0}$$

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{K}_2 = \mathbf{K}_1$$

$$\vdots$$

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{K}_m = \mathbf{K}_{m-1}.$$

10.2.3 Complex Eigenvalues

• If **A** is the coefficient matrix of a homogeneous linear system and it has a complex eigenvalue $\lambda = \alpha + i\beta$ and associated eigenvector \mathbf{K}_1 , then

$$\mathbf{X}_1 = \mathbf{K}_1 e^{\lambda t}$$
 and $\mathbf{X}_2 = \overline{\mathbf{K}}_1 e^{\overline{\lambda} t}$

are solutions of the system.

• The solutions above can be made real by writing them as

$$\mathbf{X}_1 = [\mathbf{B}_1 \cos \beta t - \mathbf{B}_2 \sin \beta t] e^{\alpha t}$$
$$\mathbf{X}_2 = [\mathbf{B}_2 \cos \beta t + \mathbf{B}_1 \sin \beta t] e^{\alpha t}$$

where $\mathbf{B}_1 = \operatorname{Re}(\mathbf{K}_1)$ and $\mathbf{B}_2 = \operatorname{Im}(\mathbf{K}_1)$.

10.3 Solution by Diagonalization

- A homogeneous linear system $\mathbf{X}' = \mathbf{A}\mathbf{X}$ in which each x_i' is expressed as a linear combination of x_1, x_2, \ldots, x_n is said to be **coupled**. If each x_i' is expressed solely in terms of x_i the system is said to be **uncoupled**.
- Given a linear system X' = AX, if the coefficient matrix A is diagonalisable such that $P^{-1}AP = D$ then the system can be solved by:
 - 1. Substituting X = PY which gives PY' = APY or $Y' = P^{-1}APY = DY$
 - 2. Because **D** is a diagonal matrix with **A**'s eigenvalues along the diagonal, this means the solutions to $\mathbf{Y}' = \mathbf{D}\mathbf{Y}$ are

$$\mathbf{Y} = \begin{pmatrix} c_1 e^{\lambda_1 t} \\ c_2 e^{\lambda_2 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{pmatrix}$$

3. These solutions can then be substituted into X = PY to solve for X

10.4 Nonhomogeneous Linear Systems

10.4.1 Undetermined Coefficients

- The **method of undetermined coefficients** can be applied to a linear system $\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}(\mathbf{t})$ when the entries of \mathbf{A} are constants and the entries of $\mathbf{F}(t)$ are constants, polynomials, exponential functions, sines and cosines, or finite sums and products of these functions.
- To apply the method of undetermined coefficients:
 - 1. Solve the associated homogeneous linear system to find the complementary function \mathbf{X}_c .
 - 2. Assume the particular solution \mathbf{X}_p has the same form as $\mathbf{F}(t)$.
 - Substitute the trial solution into the system and solve for the unknowns.
 - 4. The general solution is $X = X_c + X_p$.
- If $\mathbf{F}(t)$ contains a term that's present in the complementary function, that term needs to be adjusted (similar to how you multiply by x^n in the method of undetermined coefficients for ODEs). The textbook doesn't cover the rules for this.

10.4.2 Variation of Parameters

• If $X_1, X_2, ..., X_n$ is a fundamental set of solutions of the homogeneous linear system X' = AX on an interval I, then the general solution is

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \ldots + c_n \mathbf{X}_n$$

which can also be written

$$\mathbf{X} = \mathbf{\Phi}(t)\mathbf{C} = (\mathbf{X}_1 \quad \mathbf{X}_2 \quad \dots \quad \mathbf{X}_n)\mathbf{C}$$

where $\Phi(t)$ is called a **fundamental matrix** and **C** is a column vector containing the arbitrary constants c_1, c_2, \ldots, c_n .

- A fundamental matrix:
 - always has an inverse, and
 - has the property that $\mathbf{\Phi}'(t) = \mathbf{A}\mathbf{\Phi}(t)$.
- The **method of variation of parameters** finds a particular solution to a nonhomogeneous linear system by replacing column vector of unknown constants **C** with a column vector of functions

$$\mathbf{U}(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_n(t) \end{pmatrix}$$

such that $\mathbf{X}_p = \mathbf{\Phi}(t)\mathbf{U}(t)$ is a particular solution to the system.

• $\mathbf{U}(t)$ can be calculated as

$$\mathbf{U}(t) = \int \mathbf{\Phi}^{-1}(t)\mathbf{F}(t) dt$$

so

$$\mathbf{X}_p = \mathbf{\Phi}(t) \int \mathbf{\Phi}^{-1}(t) \mathbf{F}(t) dt$$

and

$$\mathbf{X} = \mathbf{X}_c + \mathbf{X}_p = \mathbf{\Phi}(t)\mathbf{C} + \mathbf{\Phi}(t)\int \mathbf{\Phi}^{-1}(t)\mathbf{F}(t) dt.$$

• When solving initial value problems via the method of variation of parameters where you're given $\mathbf{X}(t_0) = \mathbf{X}_0$, the column vector of arbitrary constants \mathbf{C} can be calculated as

$$\mathbf{C} = \mathbf{\Phi}^{-1}(t_0)\mathbf{X}_0.$$

10.4.3 Diagonalization

- If the coefficient matrix **A** in a nonhomogeneous linear system $\mathbf{X}' = \mathbf{A}\mathbf{X} + \mathbf{F}(t)$ is diagonalizable, the system can be solved by:
 - 1. Substituting $\mathbf{X} = \mathbf{PY}$ which gives $\mathbf{PY'} = \mathbf{APY} + \mathbf{F}(t)$ or $\mathbf{Y'} = \mathbf{P^{-1}APY} + \mathbf{P^{-1}F}(t)$ or $\mathbf{Y'} = \mathbf{DY} + \mathbf{G}$
 - 2. Because **D** is a diagonal matrix with **A**'s eigenvalues along the diagonal and $\mathbf{G} = \mathbf{P}^{-1}\mathbf{F}(t)$ this means $\mathbf{Y}' = \mathbf{D}\mathbf{Y} + \mathbf{G}(\mathbf{t})$ is a set of n uncoupled equations of the form

$$\begin{pmatrix} y_1' \\ y_2' \\ \vdots \\ v_n' \end{pmatrix} = \begin{pmatrix} \lambda_1 y_1 + g_1(t) \\ \lambda_2 y_2 + g_2(t) \\ \vdots \\ \lambda_n y_n + g_n(t) \end{pmatrix}$$

3. These equations can be solved and substituted into $\mathbf{X} = \mathbf{P}\mathbf{Y}$ to solve for \mathbf{X} .

10.5 Matrix Exponential

- The linear first-order differential equation x' = ax has a general solution $x = ce^{at}$. Similarly, the system $\mathbf{X}' = \mathbf{A}\mathbf{X}$ has a general solution $\mathbf{X} = e^{\mathbf{A}t}\mathbf{C}$ where $e^{\mathbf{A}t}$ is an $n \times n$ matrix given by the **matrix exponential** and \mathbf{C} is a $n \times 1$ matrix of arbitrary constants.
- The matrix exponential is defined as

$$e^{\mathbf{A}t} = \sum_{k=0}^{\infty} \mathbf{A}^k \frac{t^k}{k!}.$$

• The exponential of a diagonal matrix

$$\mathbf{A} = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

is

$$e^{\mathbf{A}t} = \begin{pmatrix} e^{a_{11}t} & 0 & \dots & 0 \\ 0 & e^{a_{22}t} & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & e^{a_{nn}t} \end{pmatrix}.$$

• The nonhomogeneous system X' = AX + F has a general solution

$$\mathbf{X} = \mathbf{X_c} + \mathbf{X}_p = e^{\mathbf{A}t}\mathbf{C} + e^{\mathbf{A}t}\int e^{-\mathbf{A}t}\mathbf{F} dt$$

where

$$e^{-\mathbf{A}t} = (e^{\mathbf{A}t})^{-1}$$

is the inverse of $e^{\mathbf{A}t}$.

• A matrix exponential can be calculated with the inverse Laplace transform

$$e^{\mathbf{A}t} = \mathcal{L}^{-1}\{(s\mathbf{I} - \mathbf{A})^{-1}\}.$$

• A matrix exponential or that of one of its eigenvalues can be calculated as

$$e^{\mathbf{A}t} = \sum_{j=0}^{n-1} \mathbf{A}^{j} b_{j}(t) \text{ or } e^{\lambda t} = \sum_{j=0}^{n-1} \lambda^{j} b_{j}(t)$$

where $b_j(t)$ are the same for both expressions. This means that for an nxn matrix with n distinct eigenvalues the expressions for $e^{\lambda_1 t}, e^{\lambda_2 t}, \dots, e^{\lambda_n t}$ give n equations with n unknowns $(b_j(t))$. Solving for the $b_j(t)$ and substituting them into the expression for $e^{\mathbf{A}t}$ allows us to calculate the matrix exponential.