Successive Loop Closure for Yaw Control

Due May 10 by 11:59pm Points 100 Submitting a file upload File Types pdf

The objective of this assignment is to use successive loop closure to design a yaw control strategy for the airplane.

In a previous assignment, you should have designed the following PD (Proportional-Derivative) controller for the roll dynamics of the airplane:

This PD roll controller has an inner loop: the derivative feedback loop. It has an outer loop: the proportional feedback loop. In this assignment, another outer loop will be added for yaw control. The complete block diagram will appear as follows:

This block diagram consists of an innermost loop from u_1 to ω_x , a second inner loop from u_2 to ϕ_x , a third inner loop from u_3 to ϕ_x , and an outer loop from $\psi_{z,d}$ to ψ_z . In this assignment, we will assume constant values for a, b, and c as follows:

a = 9

b = 33

c = 0.5

In reality, **a**, **b**, and **c** are not constant, but depend on airspeed, elevator angle, and rudder angle.

Successive Loop Closure

Successive loop closure is a control design technique. It begins by choosing controller gains for the innermost loop. The chosen gains result in a time-constant au_1 for the innermost loop. If the time constant for the innermost loop is at least 5 to 10 times faster than the successive outer loops, $au_2 \geq 5 au_1$, the inner loop dynamics can be approximated by a constant static gain au_1 . This approximation simplifies the block diagram. For example, in the yaw controller, the innermost loop is

The controller gain to be determined is k_{d1} . The closed loop transfer function (assuming no saturation) for the loop is

$$rac{\omega_x}{u_1} = rac{b}{s+a+k_{d1}b}$$

The time-constant for this transfer function is

$$au_1 = rac{1}{a + k_{d1}b}$$

The steady-state gain is found by setting $oldsymbol{s}=0$ to be

$$\mathcal{G}_1 = rac{b}{a + k_{d1}b}$$

If the time-constant for the second loop is at least 5 to 10 times slower, i.e., $\tau_2 \geq 5\tau_1$, then the innermost loop can be replaced by the gain \mathcal{G}_1 , and the block diagram becomes

Now the innermost loop is from u_2 to ϕ_x :

The transfer function is

$$rac{\phi_x}{u_2} = rac{k_{p1}b}{s(a+k_{d1}b)+k_{p1}b}$$

Its time constant is

$$au_2=rac{a+k_{d1}b}{k_{p1}b}$$

Its steady-state gain is

$$\mathcal{G}_2=1$$

To guarantee that $au_2 \geq 5 au_1$ requires that

$$k_{p1}<rac{(a+k_{d1}b)^2}{5b}$$

If au_2 is fast enough, *i.e.*, $au_3 \geq 5 au_2$, then the transfer function $rac{\phi_x}{u_2}$ can be replaced by its gain $again g_2 = 1$, and the block diagram becomes

Now the innermost loop is

This loop is actually just a gain:

$$rac{\phi_x}{u_3}=rac{1}{1+k_{d2}}=\mathcal{G}_3$$

It does not have a time-constant, so the requirement becomes $au_4 \geq 5 au_2$ instead of $au_3 \geq 5 au_2$. Now the yaw control block diagram is

The transfer function is

$$rac{\psi_z}{\psi_{z,d}} = rac{k_{p2}c}{s(1+k_{d2})+k_{p2}c}$$

The time-constant is

$$au_4=rac{1+k_{d2}}{k_{p2}c}$$

To satisfy the requirement $au_4 \geq 5 au_2$, the requirement is that

$$rac{k_{p2}c}{1+k_{d2}}<rac{k_{p1}b}{5(a+k_{d1}b)}$$

Summary

The above analysis resulted in three different time constants, each corresponding to one of the four control loops:

$$au_1=rac{1}{a+k_{d1}b}$$

$$au_2=rac{a+k_{d1}b}{k_{p1}b}$$

$$au_4=rac{1+k_{d2}}{k_{p2}c}$$

Successive loop closure requires that

$$\tau_4 \geq 5\tau_2 \text{ and } \tau_2 \geq 5\tau_1$$

These time constants help determine the user-selected control gains k_{p1} , k_{d1} , k_{p2} , and k_{d2} . For example, if we want the time-constant for the airplane yaw dynamics to be $\tau_4=1$ s, then $\tau_4=5\tau_2=25\tau_1$ means that $\tau_2=0.2$ s and $\tau_1=0.04$ s. Using the equations for the time-constants above, the controller gains are

$$k_{d1} = \frac{\frac{1}{\tau_1} - a}{b} = \frac{\frac{1}{0.04} - 9}{33} = 0.4848$$

$$k_{p1} = \frac{a + k_{d1}b}{\tau_2 b} = \frac{9 + 0.4848(33)}{(0.2)(33)} = 3.7879$$

$$k_{d2} = 1$$

$$k_{p2}=rac{1+k_{d2}}{ au_4c}=rac{1+1}{(1)(0.5)}=4$$

Because τ_4 depended on two control gains k_{p2} and k_{d2} we could select one of them somewhat randomly as long as the other is used to satisfy the time-constant equation for τ_4 . Because of that, we chose $k_{d2}=1$, but k_{p2} depended on the value of k_{d2} .

Your Assignment

Set $\tau_4=2$ s and select the controller gains to require that $\tau_4=5\tau_2=25\tau_1$. Show using Simulink that the successive loop closure technique results in a similar response as the complete block diagram. In other words, show that the block diagrams

and

produce very similar results when the values of k_{p1} , k_{d1} , k_{p2} , and k_{d2} are selected using the successive loop closure technique. Set the limits of the saturation block to 1 and -1. Plot the results on a single scope.

What to Submit

Copy and paste a screenshot of the Simulink model into a word document. Copy and paste a screenshot of the scope plot showing the resulting signals on a single graph. Save the document as a pdf and submit it.

COPYRIGHT 2023 BRIGHAM YOUNG UNIVERSITY-IDAHO