single symbol $\omega \in \Omega_{\vartheta}$, we write $\mathbb{E}[X] = \int_{\Omega_{\vartheta}} X(\omega) d\mathbb{P}(\omega)$. Recall that a measure μ on \mathbb{T} is called a stationary measure if

$$\int_{\Sigma_{\mathcal{A}}} \mu\left(\left(T_{\omega}\right)^{-1}(A)\right) d\mathbb{P}(\omega) = \mu(A),$$

for any (Borel) measurable set $A \subset \mathbb{T}$.

The skew product map $\Theta: \Sigma_{\vartheta} \times \mathbb{T} \to \Sigma_{\vartheta} \times \mathbb{T}$ is defined by

$$\Theta(\omega, x) := (\sigma \omega, T_{\omega_0}(x)).$$

Here σ is the left shift operator $\sigma\omega := (\omega_{i+1})_{i\in\mathbb{N}}$. With a slight abuse of notation we write

$$T_{\omega}^{n}(x) := T_{\omega_{n-1}} \circ \cdots \circ T_{\omega_0}(x)$$

for iterates.

We compares two different trajectories by studying the random dynamical system. For $\omega \in \Sigma_{\vartheta}$, the two-point map $(x, y) \mapsto T_{\omega}^{(2)}(x, y)$ on \mathbb{T}^2 is the product

$$(x,y) \mapsto (T_{\omega}(x), T_{\omega}(y)).$$

This yields the random dynamical system

$$(x_{n+1}, y_{n+1}) = T_{\omega_n}^{(2)}(x_n, y_n). \tag{2.3}$$

The two-point skew product map $\Theta^{(2)}: \Sigma_{\vartheta} \times \mathbb{T}^2 \to \Sigma_{\vartheta} \times \mathbb{T}^2$ is denoted by

$$\Theta^{(2)}(\omega, x, y) = (\sigma \omega, T_{\omega}^{(2)}(x, y)).$$

A measure $\mu^{(2)}$ on \mathbb{T}^2 is a stationary measure of the random dynamical system $T_{\omega}^{(2)}$ on \mathbb{T}^2 if

$$\int_{\Sigma_{\mathcal{A}}} \mu^{(2)} \left(\left(T_{\omega}^{(2)} \right)^{-1} (A) \right) d\mathbb{P}(\omega) = \mu^{(2)}(A),$$

for any (Borel) measurable set $A \subset \mathbb{T}^2$.

2.1. **Hypotheses.** We focus on random circle endomorphisms whose trajectories are not confined to subintervals of the circle but spread over the entire circle.

There is
$$k > 0$$
 so that for any $x, y \in \mathbb{T}$, there is $\omega \in \Sigma_{\vartheta}$ so that $T_{\omega}^{k}(x) = y$. (H2)

This hypothesis guarantees the existance of a unique absolutely continuous stationary measure of full support, but also has further applications that are used throughout the paper.

Proposition 2.1. Suppose the random dynamical system described by (2.2) with ω_n i.i.d. picked from a uniform distribution for $[-\vartheta,\vartheta]$, adheres to Hypotheses (H1), (H2).

Then the random dynamical system admits an absolutely continuous stationary measure μ with full support and smooth density.