Test 3

Test date: Friday 5th of May **TERM 2, 2017**

WETHODS UNIT 3 YEAR 12 MATHEMATICS

STUDENT NAME:

APPLECROSS

геиюв ніен гсноог

Section 2 Section 1 Result Total

Working time: 20 minutes Total

required to receive full marks. more than 2 marks, valid working or Justification is any marks. For any question or part question worth without supporting reasoning cannot be allocated be awarded for reasoning, incorrect answers given λοπι αυεмειε το ρε checked readily and for marks to Your working should be in sufficient detail to allow All working must be shown in the space provided.

Section 1: Resource - Free

Question 1 [2, 2, 2, 1= 7 marks]

seconds and x is in metres. A particle moves in a straight line according to the function $x(t)=e^{\sin t}$, $t\geq 0$, where t is in

(a) Determine the velocity function for this particle.
$$V = \frac{dx}{dx} = \cos x + \cos x$$

(b) Determine the instantaneous rate of change of the velocity. \bigcirc

trought strong + tris stris - = The so

(c) Evaluate exactly $\int_{0}^{\frac{\pi}{2}} x'(t) dt$.

according to the function $x(t) = e^{sint}$, $t \ge 0$ seconds. (d) What does the answer to part (c) represent in terms of the context of the particle moving

the displacement has been as I all all

Page 1

Question 6 [2,2=4 marks]

such that Y = 2.5 X + 10. A discrete random variable X has E(X) = 100 and Var(X) = 100. Suppose that Y is a random variable

01=0

(b) $\sigma(Y)$

5.2 × 100 + 10 (a) E(Y)

572=

CIX S.Z

Determine

END OF TEST

Page 8

Question 2 [1, 2, 2, 3, = 8 marks]

Differentiate each of the following functions with respect to x. Do not simplify your answers.

(a)
$$y = e^{-3x^2}$$

$$\frac{dy}{dx} = -6xe^{-3x^2}$$

(b)
$$g(x) = -\cos\left(\frac{x}{2}\right)$$

 $g'(x) = +\sin\left(\frac{2C}{2}\right) \times \frac{1}{2}$

(c)
$$f(x) = x^2 e^{2x-1}$$

 $f'(x) = 2x e^{2x-1} + x^2 (2) e^{2x-1}$

(d)
$$y = \sin^2(4x)$$

Let $\sin 4x$ be $u = \frac{du}{dx} = 4\cos 4x$
 $\frac{dy}{du} = 2 \sin^2(4x)$
 $\frac{dy}{dx} = 2 \sin^2(4x)$

Page 2

Question 3 [3 marks]

Given
$$f'(g(x)) = e^{0.5x} \cos(2e^{0.5x})$$
 and $g(x) = e^{0.5x}$, determine $f(x)$.

$$f(g(x)) = \int e^{0.5x} \cos(2e^{0.5x}) \cdot \cos(2e^{0.5x})$$

$$= e^{0.5x} \sin(2e^{0.5x})$$

$$= \sin(2e^{0.5x})$$

$$g(x) = e^{0.5x}$$

$$= \sin(2e^{0.5x})$$

$$g(x) = e^{0.5x}$$

$$= \cos(2e^{0.5x})$$

$$= \cos(2e^{0.5x})$$

Question 4 [4 marks]

Show, by using the quotient rule, that
$$\frac{d}{dx}\tan(x) = 1 + \tan^2 x$$
.

$$\frac{d}{\cos^2 x} = \cos x (\cos x) - \sin(x) (-\sin x)$$

$$\frac{\cos^2 x}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x}$$

$$= 1 + \tan^2 x$$

Question 5 [3,2,1=6 marks]

Fermium-257 is a radioactive substance that decays continuously such that $\frac{dQ}{dt} = kQ$,

where Q is the mass in grams and t is measured in days and Q_0 = the original amount and

k is the rate of decay. The time taken to decay to half of the original amount is known as a substance's half-life. The half-life of Fermium-257 is 100.5 days.

(a) Determine the value of k to three significant figures.

(b) How many days will it take for 100 grams of the substance to first decay below five grams?

(c) Determine the rate of change of the amount of Fermium on the day found in part (b).

Page 7

Determine the following integrals (a)
$$\int \sin(2x+1) dx$$

$$7 + (1 + 27) \times 9 - 7$$

$$xx + (1 + 27) \times 19 = 7$$

766 -5x dol

$$= \begin{cases} \frac{2}{8} + \chi + \zeta \\ \frac{2}{8$$

 $xp(x soo)(x_{\varepsilon}uis)$ (q)

END OE SECLION
$$\vec{z}$$

Page 3

 $\underline{\mathbf{Question 3}} \quad [3, 1, 1, 2, 2 = 9 \text{ marks }]$

At the local school fete, Daniel plays a game where he gambles on the roll of two dice.

Each time the two dice are rolled, he places a bet. The sum of the uppermost faces are noted and the

prizes are awarded as follows:

- . \$1 if the sum is even √ si mus ədt ti 0\$ •
- \$6 if the sum is 9 or 11 44 if the sum is 3 or 5
- Let Y represent the value of the prizes offered.

b

(a) Represent the probability density function Y in a table below.

3	3.0	30	9E T	(F=/1)	
· Lyca	24	15	90	5	

Daniel bets \$1 for every roll of the two dice.

(b) What is the probability Daniel makes a loss?

(c) What is the probability Daniel breaks even?

Z = (1=h)d

(d) What is the probability that Daniel makes a profit given that he didn't make a loss?

Page 6

LUS = (4)3

YEAR 12 MATHEMATICS **METHODS UNIT 3**

TEST 3

TERM 2, 2017

Test date: Friday 5th of May

APPLECROSS SENIOR HIGH SCHOOL

			NAMES OF TAXABLE PARTY

All working must be shown in the space provided. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than 2 marks, valid working or justification is required to receive full marks.

STUDENT NAME:

Section 2: Resource - Rich Working time: 40 minutes

To be provided by the student: ClassPad and/or Scientific Calculators 1 sheet of A₄-sized paper of notes, double-sided

Question 1 [3, 3, 3 = 9 marks]

A carton contains 12 eggs, 5 of which are brown and 7 white. A chef selects 4 eggs at random, to use in an omelette.

(a) Determine the discrete probability distribution for X which represents the number of white eggs chosen, giving your answer in fraction form.

$$\rho(0) = \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} \times \frac{2}{9}$$

$$\rho(1) = \frac{7}{12} \times \frac{5}{11} \times \frac{4}{10} \times \frac{3}{9} \times 4$$

$$\rho(0) = \frac{7}{12} \times \frac{4}{11} \times \frac{3}{10} \times \frac{2}{9} \qquad \qquad \rho(2) = \frac{7}{12} \times \frac{5}{11} \times \frac{5}{10} \times \frac{4}{9} \times 6$$

$$\rho(1) = \frac{7}{12} \times \frac{5}{11} \times \frac{4}{10} \times \frac{3}{9} \times 4$$

$$\rho(3) = \frac{7}{12} \times \frac{6}{11} \times \frac{5}{10} \times \frac{5}{9} \times 4$$

$$\rho(4) = \frac{7}{12} \times \frac{6}{11} \times \frac{5}{10} \times \frac{4}{9}$$

х	0	1	2	3	4	
P(X = x)	99	14	33	35	7 99	
42						

(b) Determine:

$$\frac{(1) \quad P(X \ge 2)}{42 + 35 + 7} = 84$$

(c) Calculate the mean and standard deviation of the probability distribution.

Question 2 [1,3,4 = 8 marks]

A trough for holding water is to be formed by taking a length of metal sheet 70 cm wide and folding 15 cm on either end, up through an angle of θ .

The following diagram shows the cross-section of the trough with the cross-sectional area, A, shaded.

(a) Determine the shaded area A in terms of w and h.

(1 mark)

(b) Show that $A = 600 \sin \theta + 225 \sin \theta \cos \theta$.

(3 marks)

$$Sin0 = \frac{h}{15}$$
 $A = [40 + 2(15 cos 0)] 15 sin0$
 $h = 15 sin0$
 $= 40 \times 15 Sin0 + 189 \times 15 sin0 cos 0$
 $cos0 = \frac{cos0}{15}$
 $= 600 sin0 + 225 cos0$
 $cos0 = 15 cos0$

Use calculus to determine the maximum possible cross-sectional area.

(4 marks)

$$\frac{1}{100} = 600\cos 0 + 225\sin 0(-\sin 0) + 227\cos 0$$

$$0 = 600\cos 0 + 225\sin 0 + 225\cos 0$$

$$0 = 0 = 1.26$$

$$A = 6375cm^{2}$$