

如何計算模型參數量

黄志勝

義隆電子 人工智慧研發部 國立陽明交通大學 AI學院 合聘助理教授

Introduction

一般在學神經網路都只記模型結構,但從不去考慮為什麼模型參數會這麼多。

一般想法: 層數多、filter數多參數就越多,計算量 就越多。

深度學習發展層數越來越多,但參數越來越少,計算量越來越少。

此份講義只會說明如何計算參數量。

Top1 vs. operations, size & parameters

VGG

Layer (type)	Output	Shape		Param #
conv2d_1 (Conv2D)	(None,	224, 224,	64)	1792
conv2d_2 (Conv2D)	(None,	224, 224,	64)	36928
max_pooling2d_1 (MaxPooling2	(None,	112, 112,	64)	θ
conv2d_3 (Conv2D)	(None,	112, 112,	128)	73856
conv2d_4 (Conv2D)	(None,	112, 112,	128)	147584
max_pooling2d_2 (MaxPooling2	(None,	56, 56, 1	28)	θ

Parameter count

conv2d_5 ((None. 56. 56. 256) Layer (type)	Output	Shape	Param #
conv2d_7	conv2d_1 (Conv2D)	(None,	224, 224, 64)	1792
conv2d_8	conv2d_2 (Conv2D)	(None,	224, 224, 64)	36928
conv2d_9	max_pooling2d_1 (MaxPooling2	(None,	112, 112, 64)	0

Size:224	3x3 conv, 64
	+
	3x3 conv,64
	pool/2

_			
max_pooling2d_4 (MaxPooling2	(None,	14, 14, 512)	Θ
conv2d_11 (Conv2D)	(None,	14, 14, 512)	2359808
conv2d_12 (Conv2D)	(None,	14, 14, 512)	2359808
conv2d_13 (Conv2D)	(None,	14, 14, 512)	2359808
max_pooling2d_5 (MaxPooling2	(None,	7, 7, 512)	θ
flatten_1 (Flatten)	(None,	25088)	θ
dense_1 (Dense)	(None,	4096)	102764544
dropout_1 (Dropout)	(None,	4096)	θ
dense_2 (Dense)	(None,	4096)	16781312
dropout_2 (Dropout)	(None,	4096)	Θ
dense_3 (Dense)	(None,	2)	8194

Total params: 134,268,738 Trainable params: 134,268,738 Non-trainable params: 0

Parameter count

Parameter count

Layer (type)	Output	Shape	2		Param #
conv2d_1 (Conv2D)	(None,	224,	224,	64)	1792
conv2d_2 (Conv2D)	(None,	224,	224,	64)	36928
max_pooling2d_1 (MaxPooling2	(None,	112,	112,	64)	Θ

計算一下Trainable parameter

Batch Normalization

// scale and shift

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2$$
 // mini-batch variance

$$\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

2個參數 (γ,β)

所以filter 數量設定多少,參數就是filter數*2

Q & A

