Exercici 7.

- (a) Provem que si mcd(a, b) = 1, llavors $mcd(a^n, b^n) = 1$, $\forall n \in \mathbb{N}$.
- (b) Provem que si mcd(a, b) = d, llavors $mcd(a^n, b^n) = d^n$, $\forall n \in \mathbb{N}$.

Solució 7.

(a) Provem que si mcd(a, b) = 1, llavors $mcd(a^n, b^n) = 1$, $\forall n \in \mathbb{N}$.

Sigui $a=p_1^{x_1}\times p_2^{x_2}\times \cdots p_k^{x_k}$ on $k\in\mathbb{N}$ la descomposició en factors primers d'a i $b=v_1^{y_1}\times v_2^{y_2}\times \cdots v_t^{y_t}\times$ on $t\in\mathbb{N}$ la descomposició en factors primers de b.

Com $mcd(a,b) = 1 \Rightarrow \forall p_i, 1 \leq i \leq k \text{ i } \forall v_i, 1 \leq i \leq t \text{ tenim què } p_i \neq v_i, \text{ és a dir, que no tenen factors primers comuns.}$

Per tant:

$$a^n = (p_1^{x_1} \times p_2^{x_2} \times \cdots \times p_k^{x_k})^n = p_1^{x_1 \times n} \times p_2^{x_2 \times n} \times \cdots \times p_k^{x_k \times n}$$

$$b^n = (v_1^{y_1} \times v_2^{y_2} \times \cdots \times v_t^{y_t})^n = v_1^{y_1 \times n} \times v_2^{y_2 \times n} \times \cdots \times v_t^{y_t \times n}$$

On aplicant l'afirmació anterior $\forall p_i, 1 \leq i \leq k$ i $\forall v_i, 1 \leq i \leq t$ tenim què $p_i \neq v_i$, podem deduir que no tenen factors primers comuns.

Per tant, $mcd(a^n, b^n) = 1$

(b) Provem que si mcd(a, b) = d, llavors $mcd(a^n, b^n) = d^n$, $\forall n \in \mathbb{N}$.

Sigui $a=p_1^{x_1}\times p_2^{x_2}\times \cdots p_k^{x_k}$ on $k\in\mathbb{N}$ la descomposició en factors primers d'a i $b=v_1^{y_1}\times v_2^{y_2}\times \cdots v_t^{y_t}\times$ on $t\in\mathbb{N}$ la descomposició en factors primers de b.

Com mcd(a, b) = d. Podem escriure a i b com:

 $a=p_1^{x_1}\times p_2^{x_2}\times\cdots p_z^{x_z}\times d$ on $z\in\mathbb{N}$ i $z\leq k$, els nombres x_i i $p_i,1\leq i\leq z$, podríen variar al extraure el factor comú.

 $b = v_1^{y_1} \times v_2^{y_2} \times \cdots v_s^{y_s} \times d$ on $s \in \mathbb{N}$ i $s \leq t$, els nombres y_i i $v_i, 1 \leq i \leq s$, podríen variar al extraure el factor comú.

Sabem què al extraure els factors comuns al menor índex (mcd) de a i b es cumpleix què $\forall p_i, 1 \leq i \leq z$ i $\forall v_i, 1 \leq i \leq s$ tenim què $p_i \neq v_i$

Per tant:

$$a^{n} = (p_{1}^{x_{1}} \times p_{2}^{x_{2}} \times \cdots \times p_{z}^{x_{z}} \times d)^{n} = p_{1}^{x_{1} \times n} \times p_{2}^{x_{2} \times n} \times \cdots \times p_{z}^{x_{z} \times n} \times d^{n}$$

$$b^{n} = (v_{1}^{y_{1}} \times v_{2}^{y_{2}} \times \cdots \times v_{s}^{y_{s}} \times d)^{n} = v_{1}^{y_{1} \times n} \times v_{2}^{y_{2} \times n} \times \cdots \times v_{s}^{y_{s} \times n} \times d^{n}$$

On aplicant l'afirmació anterior $\forall p_i, 1 \leq i \leq z$ i $\forall v_i, 1 \leq i \leq s$ tenim què $p_i \neq v_i$, podem deduir que el mcd dels dos nombres és d^n

Per tant, $mcd(a^n, b^n) = d^n$