Claims

1. A compound of formula (I):

wherein

5

 M^1 is -CH₂- or -NR²¹-;

 M^2 is $-CR^{22}R^{23}$ or $-NR^{24}$; provided that if M^1 is $-NR^{21}$, M^2 is $-CR^{22}R^{23}$;

One of \mathbb{R}^1 and \mathbb{R}^2 are selected from hydrogen, $C_{1\text{-}6}$ alkyl or $C_{2\text{-}6}$ alkenyl and the other is selected from $C_{1\text{-}6}$ alkyl or $C_{2\text{-}6}$ alkenyl;

R³ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl,

15 N-(C₁₋₆alkyl)sulphamoyl and N,N-(C₁₋₆alkyl)₂sulphamoyl;

v is 0-5;

one of \mathbb{R}^5 and \mathbb{R}^6 is a group of formula (IA):

20 R⁴ and R⁷ and the other of R⁵ and R⁶ are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl,

SUBSTITUTE SHEET (RULE 26)

10

- 58 -

 $N,N-(C_{1-4}alkyl)_2$ carbamoyl, $C_{1-4}alkylS(O)_a$ wherein a is 0 to 2, $C_{1-4}alkoxycarbonyl$, $N-(C_{1-4}alkyl)_2$ sulphamoyl; wherein R^4 and R^7 and the other of R^5 and R^6 may be optionally substituted on carbon by one or more R^{25} ;

 ${\bf Z}$ is -O-, -N(R^a)-, -S(O)_b- or -CH(R^a)-; wherein R^a is hydrogen or C₁₋₆alkyl and b is 0-5 2;

R⁸ is hydrogen, C₁₋₄alkyl, carbocyclyl or heterocyclyl; wherein R⁸ may be optionally substituted on carbon by one or more substituents selected from R²⁶; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R²⁷;

 \mathbb{R}^9 is hydrogen or \mathbb{C}_{1-4} alkyl;

R¹⁰ and R¹¹ are independently selected from hydrogen, C₁₋₄alkyl, carbocyclyl or heterocyclyl; or R¹⁰ and R¹¹ together form C₂₋₆alkylene; wherein R¹⁰ and R¹¹ or R¹⁰ and R¹¹ together may be independently optionally substituted on carbon by one or more substituents selected from R²⁸; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by one or more R²⁹:

 \mathbf{R}^{12} is hydrogen, $C_{1\text{-4}}$ alkyl, carbocyclyl or heterocyclyl; wherein \mathbf{R}^{12} may be optionally substituted on carbon by one or more substituents selected from \mathbf{R}^{30} ; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by one or more \mathbf{R}^{31} ;

R¹³ is hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkoxy, C₁₋₁₀alkoxy, C₁₋₁₀alkoxycarbonyl, C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, N-(C₁₋₁₀alkyl)amino, N,N-(C₁₋₁₀alkyl)₂amino, N,N-(C₁₋₁₀alkyl)₃ammonio, C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, N-(C₁₋₁₀alkyl)carbamoyl, N,N-(C₁₋₁₀alkyl)₂carbamoyl, N-(C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)sulphamoylamino, N,N-(C₁₋₁₀alkyl)₂sulphamoylamino, C₁₋₁₀alkoxycarbonylamino, carbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclic group, heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)_e-R³²-(C₁₋₁₀alkylene)_f- or heterocyclyl-(C₁₋₁₀alkylene)_e-R³³-(C₁₋₁₀alkylene)_h-; wherein R¹³ may be optionally substituted on carbon by one or more substituents selected from R³⁶; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R³⁷; or R¹³ is a group of formula (IB):

$$\begin{array}{c|c}
R^{16} & R^{15} & Q \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I & I \\
R & I & I & I \\
R$$

(IB)

wherein:

X is $-N(R^{38})$ -, $-N(R^{38})C(O)$ -, -O-, and $-S(O)_a$ -; wherein a is 0-2 and R^{38} is hydrogen or 5 C_{1-4} alkyl;

R¹⁴ is hydrogen or C₁₋₄alkyl;

 ${f R}^{15}$ and ${f R}^{16}$ are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkynyl, C_{1-6} alkyl)amino, $N,N-(C_{1-6}$ alkyl)2amino,

10 C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, carbocyclyl or heterocyclic group; wherein R¹⁵ and R¹⁶ may be independently optionally substituted on carbon by one or more substituents selected from R⁴¹; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group
15 selected from R⁴²:

R¹⁷ is selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkoxy, C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, N-(C₁₋₁₀alkyl)amino, N,N-(C₁₋₁₀alkyl)₂amino, C₁₋₁₀alkanoylamino, N-(C₁₋₁₀alkyl)carbamoyl, C₁₋₁₀alkoxycarbonyl,

N,N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)sulphamoylamino, N,N-(C₁₋₁₀alkyl)₂sulphamoylamino, carbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclic group, heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)_e-R⁴³-(C₁₋₁₀alkylene)_f- or heterocyclyl-(C₁₋₁₀alkylene)_g-R⁴⁴-(C₁₋₁₀alkylene)_h-; wherein R¹⁷ may be optionally substituted on carbon by one or more substituents selected from R⁴⁷; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R⁴⁸; or R¹⁷ is a group of formula (IC):

wherein:

30

R¹⁸ is selected from hydrogen or C₁₋₄alkyl;

R¹⁹ is selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, carbocyclyl or heterocyclic group; where R¹⁹ may be independently optionally substituted on carbon by one or more substituents selected from R⁵¹; and wherein if said heterocyclyl contains an -NH-group, that nitrogen may be optionally substituted by a group selected from R⁵²;

 \mathbb{R}^{20} is selected from halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{1-10} alkoxy,

- 15 C₁₋₁₀alkoxycarbonyl, C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, N-(C₁₋₁₀alkyl)amino, N,N-(C₁₋₁₀alkyl)₂amino, N,N,N-(C₁₋₁₀alkyl)₃ammonio, C₁₋₁₀alkanoylamino, N-(C₁₋₁₀alkyl)carbamoyl, N,N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)sulphamoylamino, N,N-(C₁₋₁₀alkyl)₂sulphamoylamino, C₁₋₁₀alkoxycarbonylamino, carbocyclyl,
- 20 carbocyclylC₁₋₁₀alkyl, heterocyclic group, heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)_e-R⁵³-(C₁₋₁₀alkylene)_f- or heterocyclyl-(C₁₋₁₀alkylene)_g-R⁵⁴-(C₁₋₁₀alkylene)_h-; wherein R²⁰ may be independently optionally substituted on carbon by one or more R⁵⁷; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R⁵⁸;
- p is 1-3; wherein the values of R¹⁵ may be the same or different;
 q is 0-1;

r is 0-3; wherein the values of R^{16} may be the same or different;

m is 0-2; wherein the values of R¹² may be the same or different;

n is 1-2; wherein the values of R^{g} may be the same or different;

z is 0-3; wherein the values of R¹⁹ may be the same or different;

5

- 61 -

 \mathbb{R}^{21} is selected from hydrogen or C_{1-6} alkyl;

 \mathbf{R}^{22} and \mathbf{R}^{23} are independently selected from hydrogen, hydroxy, amino, mercapto, C₁₋₆alkyl, C₁₋₆alkoxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkylS(O)_a wherein a is 0 to 2;

 \mathbf{R}^{24} is selected from hydrogen, hydroxy, C_{1-6} alkyl, C_{1-4} alkoxy and C_{1-6} alkanoyloxy; \mathbf{R}^{25} is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, $N, N-(C_{1-4}alkyl)_2$ carbamoyl, $C_{1-4}alkylS(O)_a$ wherein a is 0 to 2, $C_{1-4}alkoxycarbonyl$. 10 N-(C₁₋₄alkyl)sulphamoyl and N,N-(C₁₋₄alkyl)sulphamoyl; wherein R²⁵, may be independently

optionally substituted on carbon by one or more R⁶⁷;

R²⁶, R²⁸, R³⁰, R³⁶, R⁴¹, R⁴⁷, R⁵¹ and R⁵⁷ are independently selected from halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{1-10} alkoxy, C_{1-10} alkanoyl, C_{1-10} alkanoyloxy, C_{1-10} alkoxycarbonyl,

- 15 $N-(C_{1-10}alkyl)$ amino, $N,N-(C_{1-10}alkyl)$ 2amino, $N,N,N-(C_{1-10}alkyl)$ 3ammonio. C₁₋₁₀alkanoylamino, N-(C₁₋₁₀alkyl)carbamoyl, N,N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, $N-(C_{1-10}alkyl)$ sulphamoylamino, $N,N-(C_{1-10}alkyl)$ sulphamoylamino, C₁₋₁₀alkoxycarbonylamino, carbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclic group,
- 20 heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)_e-R⁵⁹-(C₁₋₁₀alkylene)_f- or heterocyclyl-(C₁₋₁₀alkylene)_g-R⁶⁰-(C₁₋₁₀alkylene)_h-; wherein R²⁶, R²⁸, R³⁰, R³⁶, R⁴¹, R⁴⁷, R⁵¹ and R⁵⁷ may be independently optionally substituted on carbon by one or more R⁶³; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R⁶⁴:
- R²⁷, R²⁹, R³¹, R³⁷, R⁴², R⁴⁸, R⁵², R⁵⁸ and R⁶⁴ are independently selected from 25 C_{1-6} alkyl, C_{1-6} alkylsulphonyl, sulphamoyl, $N-(C_{1-6}$ alkyl)sulphamoyl, $N, N-(C_{1-6}alkyl)_2$ sulphamoyl, $C_{1-6}alkoxycarbonyl$, carbamoyl, $N-(C_{1-6}alkyl)_2$ sulphamoyl, $N,N-(C_{1-6}alkyl)_2$ carbamoyl, benzyl, phenethyl, benzoyl, phenylsulphonyl and phenyl:

R³², R³³, R⁴³, R⁴⁴, R⁵³, R⁵⁴, R⁵⁹ and R⁶⁰ are independently selected from -O-, -NR⁶⁵-, 30 $-S(O)_{x}$, $-NR^{65}C(O)NR^{66}$, $-NR^{65}C(S)NR^{66}$, -OC(O)N=C, $-NR^{65}C(O)$ - or $-C(O)NR^{65}$ -: wherein R^{65} and R^{66} are independently selected from hydrogen or C_{1-6} alkyl, and x is 0-2;

- 5 N,N-dimethylcarbamoyl, methylthio, methylsulphinyl, mesyl, N-methylsulphamoyl and N,N-dimethylsulphamoyl; and
 - e, f, g and h are independently selected from 0-2; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 10 2. A compound of formula (I) according to claim 1 wherein M¹ is -CH₂- and M² is -CR²²R²³-; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 3. A compound of formula (I) according to claim 1 wherein M¹ is -CH₂- and M² is -NR²⁴-; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- A compound of formula (I) according to claim 1 or 2 wherein R²² and R²³ are independently selected from hydrogen and hydroxy; or a pharmaceutically acceptable salt,
 solvate, solvate of such a salt or a prodrug thereof.
 - 5. A compound of formula (I) according to claim 1 or 3 wherein R²⁴ is hydrogen; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 25 6. A compound of formula (I) according to any one of claims 1-5 wherein R¹ and R² are C₁₋₄alkyl; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 7. A compound of formula (I) according to any one of claims 1-6 wherein v is 0; or a 30 pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.

REPLACED BY ART 34 AMDT

- 63 -

- 8. A compound of formula (I) according to any one of claims 1-7 wherein R⁴ and R⁷ are hydrogen; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof:
- A compound of formula (I) according to any one of claims 1-8 wherein the R⁵ or R⁶ not selected from a group of formula (IA) is hydrogen or methylthio; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 10. A compound of formula (I) according to any one of claims 1-9 wherein one of R⁵ and 10 R⁶ is a group of formula (IA) (as depicted above); wherein:

Z is -O- or -S(O)_b-; wherein b is 0;

R⁸ is hydrogen;

R⁹ is hydrogen;

R¹⁰ and R¹¹ are independently selected from hydrogen or carbocyclyl; wherein R¹⁰ and 15 R¹¹ may be independently optionally substituted on carbon by one or more substituents selected from R²⁸;

R¹³ is a group of formula (IB) (as depicted above);

R¹⁴ is hydrogen;

R¹⁵ is hydrogen;

 R^{17} is C_{1-10} alkyl; wherein R^{17} may be optionally substituted on carbon by one or more substituents selected from R^{47} ; or R^{17} is a group of formula (IC) (as depicted above) wherein:

R¹⁸ is selected from hydrogen;

R¹⁹ is selected from hydrogen;

R²⁰ is C₁₋₁₀alkyl; wherein R²⁰ may be independently optionally substituted on carbon

25 by one or more R⁵⁷;

p is 1;

q is 0;

r is 0;

m is 0;

30 n is 1;

z is 1; and

R²⁸, R⁴⁷ and R⁵⁷ are independently selected from halo and hydroxy

or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.

11. A compound of formula (I) wherein:

 M^1 is -CH₂-;

5 M^2 is $-CR^{22}R^{23}$ and $-NR^{24}$;

R²² and R²³ are independently selected from hydrogen and hydroxy;

One of R¹ and R² is ethyl and the other is butyl;

v is 0;

R⁴ and R⁷ are hydrogen;

One of R⁵ or R⁶ is selected from a group of formula (IA) (as depicted above) and the other is hydrogen or methylthio;

Z is -O- or -S(O)_b-; wherein b is 0;

R⁸ is hydrogen;

R⁹ is hydrogen;

15 R¹⁰ and R¹¹ are independently selected from hydrogen, 2-fluorophenyl or carbocyclyl;

R¹³ is a group of formula (IB) (as depicted above);

R¹⁴ is hydrogen;

R¹⁵ is hydrogen;

R¹⁷ is pentyl substituted by 5 hydroxy; or R¹⁷ is a group of formula (IC) (as depicted

20 above) wherein:

R¹⁸ is selected from hydrogen;

R¹⁹ is selected from hydrogen;

R²⁰ is pentyl substituted by 5 hydroxy;

p is 1;

25 q is 0;

r is 0;

m is 0;

n is 1; and

z is 1;

- 30 or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
 - 12. A compound of formula (I) selected from:

- 65 -

- (+/-)-trans-1,1-dioxo-3-ethyl-3-butyl-5-phenyl-7-methylthio-8-(N-{(R)- α -[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4-benzothiazepine;
- (+/-)-trans-1,1-dioxo-3-ethyl-3-butyl-5-phenyl-7-methylthio-8- $(N-\{(R)-\alpha-[N'-(2-(S)-3-(R)-4-(R)-\alpha-[N'-(2-(S)-3-(R)-4-(R)-\alpha-$
- 5 (R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4-benzothiazepine;
 - 1,1-dioxo-3-ethyl-3-butyl-4-hydroxy-5-phenyl-7- $(N-\{\alpha-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl\}$ carbamoyl]-2-fluorobenzyl $\{\alpha-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl\}$ carbamoyl $\{\alpha-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5-pentahydroxyhexyl\}$ carbamoyl $\{\alpha-[N-(2-(S)-3-(R)-4-(R)-5-(R)-5-$
- 10 1,1-dioxo-3-butyl-3-ethyl-4-hydroxy-5-phenyl-7-(N-{1-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]-1-(cyclohexyl)methyl}carbamoylmethylthio)-2,3,4,5-tetrahydrobenzothiepine;
 - or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 15 13. A process for preparing a compound of formula (I) or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in anyone of claims 1-12, which process (wherein variable groups are, unless otherwise specified, as defined in claim 1) comprises of:

Process 1): for compounds of formula (I) wherein Z is -O-,-NR^a or -S-; reacting a compound 20 of formula (IIa) or (IIb):

$$R^{6}$$
 R^{7}
 N^{2}
 N^{2}
 N^{2}
 N^{2}
 N^{3}
 N^{3

with a compound of formula (III):

- 66 -

PCT/GB2004/000695

$$R \stackrel{13}{\longleftarrow} R \stackrel{12}{\longleftarrow} R \stackrel{11}{\longleftarrow} \stackrel{R^9}{\longrightarrow} R^8$$

$$R \stackrel{13}{\longleftarrow} \stackrel{N}{\longrightarrow} \stackrel{N}{\longrightarrow}$$

wherein L is a displaceable group;

Process 2): reacting an acid of formula (IVa) or (IVb):

HO
$$R^{8}$$
 R^{7}
 R^{7}
 R^{1}
 R^{5}
 R^{4}
 R^{2}
 R^{4}
 R^{3}
 R^{3}
 R^{4}
 R^{5}
 R

or an activated derivative thereof; with an amine of formula (V):

10 Process 3): for compounds of formula (I) wherein R¹³ is a group of formula (IB); reacting an acid of formula (VIa):

(VIa)

or (VIb):

5

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/000695

(VIb)

with an amine of formula:

(VI)

Process 4): for compounds of formula (I) wherein R¹³ is a group of formula (IB) and R¹⁷ is a group of formula (IC); reacting an acid of formula (VIIIa):

(VIIIa)

10 or (VIIIb)

5

- 68 -

PCT/GB2004/000695

HO
$$(R^{16} \times R^{15})_r \times (R^{12} \times R^{11})_r \times (R^{10} \times R^{10})_r \times (R^{3})_v \times (R^{3})_v$$

(VIIIb)

or an activated derivative thereof; with an amine of formula (IX):

(IX)

Process 5) for compounds of formula (I) wherein one of R^5 and R^6 are independently selected from C_{1-6} alkylthio optionally substituted on carbon by one or more R^{25} ; reacting a compound of formula (Xa) or (Xb):

10

5

wherein L is a displaceable group; with a thiol of formula (XI):

(XI)

wherein R^m is C_{1-6} alkylthio optionally substituted on carbon by one or more R^{25} ;

- 15 and thereafter if necessary or desirable:
 - i) converting a compound of the formula (I) into another compound of the formula (I);

SUBSTITUTE SHEET (RULE 26)

- ii) removing any protecting groups;
- iii) forming a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug.
- 14. A compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate 5 of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12 for use as a medicament.
- 15. A compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12 for use in a method of 10 prophylactic or therapeutic treatment of a warm-blooded animal, such as man.
- 16. The use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12 in the manufacture of a medicament for use in the production of an IBAT inhibitory effect in a 15 warm-blooded animal, such as man.
- 17. A method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate 20 of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12.
- 18. A pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12, in association with a pharmaceutically-acceptable 25 diluent or carrier.
- A combination comprising a compound of formula (I), or a pharmaceutically 19. acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, 30 solvate, solvate of such a salt or a prodrug thereof.

REPLACED BY ART 34 AMDT

- 70 -

- 20. A combination comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12, and a bile acid binder.
- 5 21. A combination comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder.
- 10 22. A combination according to claim 19 or claim 21 wherein the HMG Co-A reductase inhibitor is atorvastatin, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 23. A combination according to claim 19 or claim 21 wherein the HMG Co-A reductase inhibitor is rosuvastatin, or a pharmaceutically acceptable salt thereof.
- 24. A combination comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 12 and a PPAR alpha and/or gamma agonist, or a pharmaceutically acceptable salt thereof.
 - 25. A composition according to claim 24 wherein the PPAR alpha and/or gamma agonist is (S)-2-ethoxy-3-[4-(2-{4-methanesulphonyloxyphenyl}ethoxy)phenyl]propanoic acid or a pharmaceutically acceptable salt thereof.