Bachelor of Science (B.Sc.) (I.T.) Semester—IV Examination

NUMERICAL METHODS

Paper—VI

Time: Three Hours [Maximum Marks: 50

N.B.:—(1) **ALL** questions are compulsory and carry equal marks

(2) Assume the data wherever necessary.

EITHER

- 1. (a) Write notes on:
 - (i) Algebraic equation
 - (ii) Polynomial equation.

5

(b) Find the root of the equation $x^2 - 4x - 10 = 0$ using bisection method.

5

OR

- (c) Derive the false position formula for evaluating a root of a non-linear equation. 5
- (d) Use the Secant method to estimate the root of the equation $x^2 4x 10 = 0$ with the initial estimates of $x_1 = 4$ and $x_2 = 2$.

EITHER

- 2. (a) What are the possibilities of a solution of a system of linear equations? Explain each by giving an example.
 - (b) Solve the system:

$$2x_1 + 4x_2 - 6x_3 = -8$$

$$x_1 + 3x_2 + x_3 = 10$$

$$2x_1 - 4x_2 - 2x_3 = -12$$

using Gauss-Jordan method.

5

OR

(c) Solve the following system of equations using partial pivoting technique:

$$2x_1 + 2x_2 + x_3 = 6$$
$$4x_1 + 2x_2 + 3x_3 = 4$$

 $x_1 + x_2 + x_3 = 0.$

(d) Solve the following equations

$$2x_1 + x_2 = 25$$

$$2.001x_1 + x_2 = 25.01$$

and thereby discuss the effect of ill-conditioning.

5

EITHER

3. (a) Find the Lagrange's interpolation polynomial to fit the following data:

i	0	1	2	3
X _i	0	1	2	3
e^{x_i} – 1	0	1.7183	6.3891	19.0855

Use the polynomial to estimate the value of $e^{1.5}$.

5

(b) Derive normal equations for evaluating the parameters a and b to fit data to straight line 5 y = a + bx.

OR

(c) Given the data points:

	i	0	1	2
•	X _i	4	9	16
•	f	2	3	4

estimate the function value f at x = 7 using cubic splines.

5

(d) Given the table of data:

X	1	2	3	4
y	0	1	2	3
Z	12	18	24	30

obtain a regression plane to fit the data.

5

EITHER

(a) Discuss Trapezoidal rule and its error analysis in numerical integration. 4.

5

(b) Use Simpon's 3/8 rule to evaluate
$$\int_{1}^{2} (x^3 + 1) dx$$
 using $h = 0.25$.

OR

(c) Use the classical RK method to estimate y(0.4) when $y^1(x) = x^2 + y^2$ with y(0) = 0. Assume h = 0.2. 5

5 (d) Discuss accuracy of one-step method.

(a) Discuss stopping criteria for an iterative process. $2\frac{1}{2}$ 5.

(b) Explain Matrix Inversion method. 21/2

(c) State whether following polynomial is splines or not:

$$f(x) = \begin{cases} x^2 + 1 & 0 \le x \le 1 \\ 2x^2 & 1 \le x \le 2 \\ 5x - 2 & 2 \le x \le 3 \end{cases}$$
 2½

(d) Evaluate following integral using Simpson's 1/3 rule
$$\int_{-1}^{1} e^x dx$$
. $2\frac{1}{2}$