CS6462 Probabilistic and Explainable AI

Lesson 19 Bayesian Neural Networks *

Bayesian Inference

Neural Networks

Definition:*

• A series of algorithms that endeavors to recognize underlying relationships in a set of data through a process that mimics the way the human brain operates. In this sense, neural networks refer to systems of neurons, either organic or artificial in nature.

Structure: multiple layers - tend to resemble the connections of neurons and synapses found in brain

- input layer accepts input signals
- hidden layer(s) hosts the algorithms
- output layer delivers the result

Machine Learning with Neural Nets:

- set of algorithms designed to recognize patterns
- computer learns to perform tasks by analyzing training examples
- examples are labeled (added information labels, used by ML)

Artificial Neurons

Specifics:

- the fundamental processing element of a neural network
- simulates the natural neuron
- inputs $X = \{x_1, x_2, ..., x_n\}$
- weight factors $W = \{w_1, w_2, ..., w_n\}$
- links connecting neurons have a weighting factor
- Summation and Transfer functions

Steps:

- every input is multiplied by its weighting factor
- modified inputs accepted by Summation function:
 - simplest form: sums up the input products
 - Activation function: enables Summation function to operate in a time-sensitive way
- the output of Summation function is sent to Transfer function:
 - turns the summation number into a real output via some algorithm
 - commonly supported: Sigmoid, Sine, Hyperbolic Tangent, Threshold, RelU

Description:

- real-life example of how traffic cameras identify license plates
- pictures are provided in dimension 28 x 28 pixels
- an image is fed as an input to identify the license plate

Neural network:

- each neuron has activation number represents the grayscale value of the corresponding pixel [0..1]
- arrays of pixels $(x_1 \text{ and } x_2)$ are fed into the input layer
- inputs are passed to the first hidden layer:
- links are assigned with weights at random
- weights are multiplied with the input signal + bias
- weighted sum of the inputs is fed to the Activation function of each neuron
 - decides which neuron to process the input
 - if the neuron has processed the input, it sends it to neurons of the next layer
- the model predicts the outcome, applying a suitable application function to the output layer

Function fitting:

- the process of training a neural network on a set of inputs (training dataset) to produce associated target outputs
- requires an optimization algorithm:
 - searches through a space of possible values for the neural network to model weights
 - finds a set of weights that results in good performance on the training dataset

Optimization process:

- a search through a landscape for a candidate solution that is sufficiently satisfactory
- a point on the landscape is a specific set of weights for the model:
 - the elevation of that point is an evaluation of the set of weights
 - valleys represent good models with small values of loss
- common conceptualization of optimization problems landscape is referred to as an error surface
- optimization algorithms:
 - iteratively walk through the landscape
 - update the weights and seek out good or low elevation areas

Specifics:

- able to quantify uncertainty in predictive output
- train the model weights as a distribution rather than searching for an optimal value
- generalize better with less overfitting

Probabilistic neural networks:

- provide outputs in the form of probability distributions
- standard Bayesian neural network outputs a single point estimate
 - if the network is run multiple times with the same inputs, this single point estimate will vary

Bayesian Deep Learning: Bayesian inference + neural networks

Posterior Bayesian inference

- $Posterior = \frac{Likelyhood * Prior}{Evidence}$
- estimates posterior probability of a hypothesis considering new evidence
- starts with a prior probability distribution (the belief before any evidence)
- uses the evidence to update this distribution
- Bayesian Neural Networks (BNN) neural networks that use Posterior Bayesian Inference to come up with probability distribution over the network weights, given the training data

Bayesian Learning of Network Weights

Posterior inference over the neural network's weights:

• BNN runs posterior inference to find a posterior distribution over weights

$$p(w|D) = \frac{p(D|w) * p(w)}{p(D)}$$

 $w = \{w_1, w_2, ..., w_n\}$ – weights of the neural network D – data, i.e., the result produced by the neural network

- Bayesian formalism of learning network weights:
 - changing our belief about the weights from the prior p(w), to the posterior p(w|D) as a consequence of considering the evidence p(D)

Bayesian Neural Networks – Pros and Cons

Advantages*:

- BNNs are more robust and able to generalize better than other neural networks
- BNNs can quantify the uncertainty in their predictive output
- BNNs can be used for many practical applications

Disadvantages*:

- BNNs can be more complicated to train than other neural networks
- BNNs require knowledge of the fields of probability and statistics
- BNNs can be slower to converge than other neural networks
- BNNs can require more training data

Bayesian Neural Networks with Python

Libraries:

- Keras a high-level neural networks library that provides a simplified interface for building neural networks; uses Tensorflow probability library and the Testsorflow Datasets library
- PyTorch-based:
 - PyTorch-BayesianCNN Bayesian Convolutional Neural Network with variational inference
 - *blitz-bayesian-deep-learning* an extensible library to create Bayesian Neural Network layers
 - bayesian-neural-network-pytorch a PyTorch implementation of Bayesian Neural Networks
 - bayesian-torch a library for Bayesian neural network layers and uncertainty estimation in Deep Learning extending the core of PyTorch

Summary

Bayesian Neural Networks – *Bayesian Inference*

Neural Networks

Artificial Neurons

Training Neural Networks

Bayesian Neural Networks

Optimization with Bayesian Neural Networks - Bayesian Learning of Network Weights

Pros and Cons of Bayesian Neural Networks

Python Libraries for Implementing Bayesian Neural Networks

Next Lesson:

• Bayesian Neural Networks - Bayesian Linear Regression

Thank You!

Questions?