Package 'tensorApp'

February 12, 2020

Description

High-order SVD approximation of a tensor Y by Tucker decomposition or CANDECOMP/PARAFAC (CP) decomposition and selection of ranks.

2 HOsvd

Details

High-order SVD approximation of a tensor Y by Tucker decomposition or CANDECOMP/PARAFAC (CP) decomposition and selection of ranks.

Author(s)

Xu Liu

Maintainer: Xu Liu <liu.xu@sufe.edu.cn>

HOsvd	High-order SVD approximation of a tensor Y by Tucker or CP decomposition

Description

High-order SVD approximation of a tensor Y by Tucker decomposition or CANDECOMP/PARAFAC (CP) decomposition with preset rank.

Usage

Arguments

Υ	An array with dimension dims, or a $n_{d0} \times N/n_{d0}$ numeric matrix of responses that is the mode d0-unfolding of tensor in $\mathbb{R}^{n_1 \times \cdots \times n_d}$, where $N = n_1 \times \cdots \times n_d$.
d0	$d0$ is the mode which unfoldings Y is. $d0$ can be NULL (the default) if Y is an array with dimension $\mbox{\tt dims}.$
dims	The size of tensor Y, which is a d -vector (n_1, \cdots, n_d) . dims can be NULL (the default) if Y is an array with dimension dims. If the length of dims is 2, it is the ordinary SVD decomposition of a matrix.
isCP	A logical value indicating whether CP decomposition will be used. Default is TRUE.
ranks	The user-specified ranks. It is a vector with length d . Default is $(2, \dots, 2)$.
dr	The user-specified rank for CP decomposition. It is useless if Tucker decomposition is used. Default is 20.
D0	A user-specified list of initial matrices of U_1,U_2,\cdots,U_d and core tensor S , D0=list $(U_1=U_1,\cdots,U_d=U_d,S=S)$. By default, initial matrices are provided by random.
eps	Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps. Default is 1e-6.
max_step	Maximum number of iterations. Default is 100.

Details

This function gives a $n_{d0} \times N/n_{d0}$ matrix, which is the mode-d0 unfolding, and approximates Y.

HOsvd_dr 3

Value

Tnew Approximation of Y. $\text{A list of estimated matrices of } U_1, U_2, \cdots, U_d \text{ and core tensor } S, \text{Tn=list}(U_1 = U_1, \cdots, U_d = U_d, S = S).$ Tanks The ranks of estimated tensor Tnew. It is a vector with the same length as dims if Tucker decomposition is used, or an integer if CP decomposition is used. }

See Also

HOsvd_dr

Examples

```
dims <-c(8,8,10,10,6)
N <- length(dims)
ranks <- rep(2,N)
S0 = matrix(runif(prod(ranks),3,7),ranks[N])
T1 <- matrix(rnorm(dims[1]*ranks[1]),nrow = dims[1])</pre>
tmp \leftarrow qr.Q(qr(T1))
for(k in 2:(N-1)){
  T1 <- matrix(rnorm(dims[k]*ranks[k]),nrow = dims[k])
  tmp <- kronecker(qr.Q(qr(T1)),tmp)</pre>
T1 <- matrix(rnorm(dims[N]*ranks[N]), nrow = dims[N])
U = qr.Q(qr(T1))
Y <- U%*%S0%*%t(tmp)
fit <- HOsvd(Y,N,dims,isCP=TRUE)</pre>
Tnew <- fit$Tnew</pre>
ranks1 <- fit$ranks</pre>
lambda <- fit$Tn[[N+1]]</pre>
U1 <- fit$Tn[[1]]
TNew1 <- TransUnfoldingsT(Tnew,N,1,dims)</pre>
```

H0svd_dr

High-order SVD approximation of a tensor Y by Tucker or CP decomposition and selection of ranks

Description

High-order SVD approximation of a tensor Y by Tucker decomposition or CANDECOMP/PARAFAC (CP) decomposition and selection of ranks.

Usage

```
HOsvd_dr(Y, d0=NULL, dims=NULL, isCP=TRUE, ranks=NULL, dr=100, D0=NULL, eps=1e-6, max_step=100, thresh=1e-6)
```

4 HOsvd_dr

Arguments

Υ	An array with dimension dims, or a $n_{d0} \times N/n_{d0}$ numeric matrix of responses that is the mode d0-unfolding of tensor in $\mathcal{R}^{n_1 \times \cdots \times n_d}$, where $N = n_1 \times \cdots \times n_d$.
d0	$\mbox{d0}$ is the mode which unfoldings Y is. $\mbox{d0}$ can be NULL (the default) if Y is an array with dimension dims.
dims	The size of tensor Y, which is a d -vector (n_1, \dots, n_d) . dims can be NULL (the default) if Y is an array with dimension dims. If the length of dims is 2, it is the ordinary SVD decomposition of a matrix.
isCP	A logical value indicating whether CP decomposition will be used. Default is TRUE.
ranks	The user-specified ranks. It is a vector with length d. Default is $(2, \cdots, 2)$.
dr	The user-specified rank for CP decomposition. It is useless if Tucker decomposition is used. Default is 100.
DO	A user-specified list of initial matrices of U_1,U_2,\cdots,U_d and core tensor S , D0=list $(U_1=U_1,\cdots,U_d=U_d,S=S)$. By default, initial matrices are provided by random.
eps	Convergence threshhold in the inner loop. The algorithm iterates until the relative change in any coefficient is less than eps. Default is 1e-6.
max_step	Maximum number of iterations. Default is 100.
thresh	Convergence threshhold in the outer loop. The algorithm iterates until the relative change in any coefficient is less than eps. Default is 1e-6.

Details

This function gives a $n_{d0} \times N/n_{d0}$ matrix, which is the mode-d0 unfolding, and approximates Y.

Value

Tnew	Approximation of Y.
Tn	A list of estimated matrices of U_1,U_2,\cdots,U_d and core tensor S , Tn=list $(U_1=U_1,\cdots,U_d=U_d,S=S)$.
ranks	The ranks of estimated tensor Tnew. It is a vector with the same length as dims if Tucker decomposition is used, or an integer if CP decomposition is used.

See Also

HOsvd

Examples

```
dims <- c(8,8,10,10,6)
N <- length(dims)
ranks <- rep(2,N)
S0 = matrix(runif(prod(ranks),3,7),ranks[N])
T1 <- matrix(rnorm(dims[1]*ranks[1]),nrow = dims[1])
tmp <- qr.Q(qr(T1))
for(k in 2:(N-1)){
   T1 <- matrix(rnorm(dims[k]*ranks[k]),nrow = dims[k])</pre>
```

TransUnfoldingsT 5

```
tmp <- kronecker(qr.Q(qr(T1)),tmp)
}
T1 <- matrix(rnorm(dims[N]*ranks[N]),nrow = dims[N])
U = qr.Q(qr(T1))
Y <- U%*%SO%*%t(tmp)

fit_dr <- HOsvd_dr(Y,N,dims,isCP=TRUE)
Tnew <- fit_dr$Tnew
ranks1 <- fit_dr$ranks
lambda <- fit_dr$Tn[[N+1]]
U1 <- fit_dr$Tn[[1]]
TNew1 <- TransUnfoldingsT(Tnew,N,1,dims)</pre>
```

TransUnfoldingsT

Transfer a tensor's modal unfoldings to another.

Description

Transfer a tensor's modal unfoldings to another.

Usage

```
TransUnfoldingsT(S, d1=NULL, d2=0 , dims=NULL)
```

Arguments

S	An array with dimension dims, or a mode-d1-unfolding of a tensor with size $n_1 \times \cdots \times n_d$.
d1	An integer, the mode of unfolding $S_{(d_1)}$. d1 can be NULL (the default) if S is an array with dimension dims.
d2	An integer, the mode of output unfolding $S_{(d_2)}$. It transfers S to an array with dimension dims if d2=0. The default is 0.
dims	The size of tensor S , which is a vector (n_1, \dots, n_d) . dims can be NULL (the default) if S is an array with dimension dims.

Details

This function transfers an input mode-d1-unfolding $S_{(d_1)}$ to mode-d2-unfolding $S_{(d_2)}$

Value

Td2 the output mode-d2-unfolding, $S_{(d_2)}$.

Examples

```
T1 <- matrix(1:24,nrow = 4) # A tensor unfolding with size 4*6
T2 <- TransUnfoldingsT(T1,1,2,c(4,3,2))

T0 <- TransUnfoldingsT(T2,2,dims=c(4,3,2))
```

Index

```
*Topic CP decomposition; HOSVD; Tucker decomposition.
    HOsvd, 2
*Topic CP decomposition; HOSVD;
        Tucker decomposition
    HOsvd_dr, 3
    tensorApp-package, 1
    TransUnfoldingsT, 5
HOsvd, 2
HOsvd-function (HOsvd), 2
HOsvd_dr, 3
HOsvd_dr-function (HOsvd_dr), 3
tensorApp(tensorApp-package), 1
tensorApp-package, 1
TransUnfoldingsT, 5
TransUnfoldingsT-function
        (TransUnfoldingsT), 5
```