

Syllabus Honours Programme in AI, Computer Vision and Robotics

Department of Electronics Engineering

From Academic Year 2021-22 Revision 1

(Approved in Academic Council meeting dated)

K J Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Honour Programme in AI, Computer Vision and Robotics

Offered by Department of Electronics Engineering

Introduction

Artificial Intelligence (AI), Computer vision and Robotics honour program gives a broad perspective of modern technologies and applications in real life. AI, when combined with robotics, allows users to build smart robots that can work independently as per inputs from robotic sensors. Artificial Intelligence and Robotics allows theory, algorithms, and systems for making intelligent decisions in complex and uncertain environments. The course covers most aspects of artificial intelligence and robotics including perception and interpretation of sensor data, learning about environments, learning to make decisions, automated planning and reasoning, and interaction of AI robotic systems with each other and with humans. The computer vision when added to smart robotics gives true problem-solving solutions in industrial environments. Computer vision with artificial intelligence trains computers to interpret and understand the visual world. Machines can accurately identify and locate objects then react to what they "see" using digital images from cameras, videos, and deep learning models. After completing this Honours degree students will be equipped with knowledge from all the three domains and will be industry ready in true sense.

Objective: The program aims to

- 1. Apply intelligent process automation with the help of Robotic Process Automation, Artificial Intelligence and Machine learning technologies.
- 2. Assist the students to understand computer vision including the interfacing of camera and image processing to enhance detection and object recognition.
- 3. Understand the interfacing of the robotic systems to AI and complete the task using kinematics, path planning, and tool movements with minimum time and in an efficient way.

Learning Outcomes: At the successful completion of this Honours Degree Programme, students will able to

LO1: Apply core concepts of AI, computer vision and robotics to real world problems.

LO2: Explore advanced computer vision and machine learning approaches for industrial applications.

List of Courses:

- 1. Modern Artificial Intelligence
- 2. Advanced Computer Vision
- 3. Applied Robotics
- 4. Intelligent systems
- 5. Project on AI, Robotics, and computer vision/ Internship * (* Internship of 4 weeks or more approved by the department)

Eligibility Criteria:

Students who have passed the First Year of Engineering in Electronics Engineering successfully.

Assessment Methods: Laboratory performance evaluation, Mini Projects, Viva-voce, Online Quiz, Continuous Assessment through internal assessments and unit tests, End Semester Examination.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH – P – TUT	Total (Hrs.)	Credits Assigned TH – P – TUT	Total Credits	Semester of Major Degree
116h59C401	Modern Artificial Intelligence	3 -0-0	03	3-0-0	03	IV
116h59L401	Modern Artificial Intelligence Laboratory	0-2-0	02	0-1-0	01	IV
116h59C501	Advanced Computer Vision	3-0-0	03	3-0-0	03	V
116h59L501	Advanced Computer Vision Laboratory	0-2-0	02	0-1-0	01	V
116h59C601	Applied Robotics	3-0-0	03	3-0-0	03	VI
116h59L601	Applied Robotics Laboratory	0-2-0	02	0-1-0	01	VI
116h59C701	Intelligent systems	3-0-0	03	3-0-0	03	VII
116h59L701	Intelligent systems Laboratory	0-2-0	02	0-1-0	01	VII
116h59P801	Project on AI, Robotics, and computer vision / Internship*	0-8-0	08	0-4-0	04	VII/VIII
	Total	12—16 0	28	12 - 8 - 0	20	

^{(*} Internship of 4 weeks or more approved by the department)

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Examination Scheme

		Examination Scheme								
Course	a	Marks								
Code	Course Name	C	A	ESE	TW	•	P	P&O	Total	
		ISE	IA	Lon	1 **	U	_	140	Total	
116h59C401	Modern Artificial Intelligence	30	20	50		-	-	-	100	
116h59L401	Modern Artificial Intelligence Laboratory	-		-	50	-	-	-	50	
116h59C501	Advanced Computer Vision	30	20	50		-	-	-	100	
116h59L501	Advanced Computer Vision Laboratory	-	i		50	ı	-	_	50	
116h59C601	Applied Robotics	30	20	50					100	
116h59L601	Applied Robotics Laboratory				50				50	
116h59C701	Intelligent systems	30	20	50					100	
116h59L701	Intelligent systems Laboratory				50				50	
116h59P801	Project on AI, Robotics, and computer vision/ Internship *				50	25	-	-	50	
	120	80	200	250	25			675		

^{(*} Internship of 4 weeks or more approved by the department)

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116h59C401	Modern Artificial Intelligence							
	1	TH		P	P		TUT	Total
Teaching Scheme(Hrs.)	3			0	0		0	3
Credits Assigned		3		0		0		3
	Marks							
Examination	CA		ECE	/DXX/				TD . 4 . 1
Scheme	ISE	IA	ESE	TW	O	P	P&O	Total
	30	20	50	-				100

Course prerequisites: Linear algebra, Vector Calculus, Basic probability theory, Basic Programming Skills

Course Objectives: The course aims to learn the fundamentals of Artificial Intelligence (AI), and apply them. Design intelligent agents to solve real-world problems, Focuses on methods for deciding actions to be taken, representation of knowledge about the intelligent agents' environment with reasoning and decision making in the presence of uncertainty in the environment. It also discusses expert system solving problems efficiently and effectively based on knowledge of human experts.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Understand the idea of intelligent agents

CO2: Apply the search methods.

CO3: Construct plans and methods for generating knowledge

CO4: Understand the reasoning and decision making in an uncertain world.

CO5: Understand the concepts of expert systems.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intelli	gent Agents	10	CO1
	1.1	Introduction to AI, Risks and Benefits of AI, Agents and		
		Environments, Performance measures, Rationality,		
		Omniscience, learning, and autonomy		
	1.2	Task Environments, Structure of Agents		
2	Search	n Techniques	9	CO2
	2.1	Search problems and solutions, Formulating problems,		
		Example Problems, Search Algorithms: Best-first search,		

Somaiya Vidyavihar University
K. J. Somaiya College of Engineering, Mumbai -77
(A Constituent College of Somaiya Vidyavihar University)

	1			
		Search data structures, Redundant paths, Measuring		
		problem-solving performance		
	2.2	Uninformed Search Strategies, Breadth-first search,		
		Dijkstra's algorithm or uniform-cost search, Depth-first		
		search and the problem of memory		
	2.3	Informed (Heuristic) Search Strategies: Greedy best-first		
		search, A* search, Search contours		
3	Know	ledge, Reasoning, and Planning	9	CO3
	3.1	Logical Agents, First-Order Logic, Propositional vs. First-		
		Order Inference, Unification and First-Order Inference		
	3.2	Categories and Objects of Knowledge Representation,		
		Events, Reasoning Systems for Categories, Reasoning with		
		Default Information		
	3.3	Automated Planning, Algorithms for Classical Planning,		
		Heuristics for Planning, Hierarchical Planning		
4	Uncer	tain Knowledge and Reasoning	9	CO4
	4.1	Uncertainty, Representing Knowledge in an Uncertain		
		Domain, The Semantics of Bayesian Networks, Probabilistic		
		Reasoning over Time, Time and Uncertainty.		
	4.2	Combining Beliefs and Desires under Uncertainty, The Basis		
		of Utility Theory and Functions, Decision Networks		
5	Expe	rt Systems	8	CO5
	5.1	Expert System definition, Features of an expert system,		
		Organization, Characteristics, Prospector		
	5.2	Knowledge Representation in expert systems		
	5.3	Expert system tools: MYCIN, EMYCIN		
		Total	45	

Sr. No.	Name/s of Author/s	Title of Book	Name of	Edition and
			Publisher with	Year of
			country	Publication
1	Stuart Russel and Peter	Artificial	Pearson	Fourth Edition,
	Norvig	Intelligence: A	Education, PHI	2020
		Modern		
		Approach		
2	Donald A.Waterman	A Guide to	Addison-Wesley	2008
		Expert Systems		
3	George F.Luger,	Artificial	Pearson	Fourth Edition,
		Intelligence –	Education	2002
		Structures and		
		Strategies for		
		Complex		
		Problem Solving		
4	W. Patterson	Introduction to	Prentice Hall of	Second Edition,
		Artificial	India	2003
		Intelligence and		
		Expert Systems		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116h59L401	Modern Artificial Intelligence Laboratory							
	ŗ	ГН		F	•	,	TUT	Total
Teaching Scheme(Hrs.)	-			2		0		2
Credits Assigned		-		1		0		1
	Marks							
Examination	CA		ECE	(DXX)				TD . 4 . 1
Scheme	ISE	IA	ESE	TW	О	P	P&O	Total
	-	-		50				50

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course '116h59C401'. Students will be graded based on continuous assessment of their term work.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116h59C501	Advanced Computer Vision							
	7	ГН		P	•	r	TUT	Total
Teaching Scheme(Hrs.)	3			0		0		3
Credits Assigned		3		0			0	3
	Marks							
Examination	CA		ESE	TW 7		P	200	T
Scheme	ISE	IA	ESE	TW	0		P&O	Total
	30	20	50					100

Course Prerequisites:

Programming Skills, Linear Algebra, Vector Calculus

Course Objectives: Computer Vision is a growing and fast evolving field. This course serves the purpose of informing students of the state-of-art approaches in computer vision, and providing them a platform to read and critique current trends in this field.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO1. To implement fundamental image processing techniques required for computer vision
- CO2. Understand Image formation process
- CO3. To perform shape analysis
- CO4. Extract features from Images and do analysis of Images
- CO5. Understand 3D models from images, and video processing, motion computation and 3D vision and geometry.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introd	luction to Computer Vision	6	CO1
	1.1	Overview of Computer Vision, Document Image,		
		Biometrics, Object Recognition, Tracking, Medical		
		Image Analysis, Content-Based Image Retrieval, Video		
		Data Processing		
2	Image	Formation Models	9	CO2
	2.1	Orthographic & Perspective Projection, Camera model		
		and Camera calibration, Binocular imaging systems,		
		Multiple views geometry		
	2.2	Structure determination, shape from shading ,		
		Photometric Stereo, Depth from Defocus, Construction		
		of 3D model from images		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

3	2.3 Motio 3.1	Feature Extraction, Image preprocessing, Image representations (continuous and discrete), Edge detection n Estimation Regularization theory, Optical computation, Stereo Vision, Motion estimation, Structure from motion, Kalman Filter, SURF, SIFT	12	CO3
	3.2	Contour based representation, Region based representation, Deformable curves and surfaces, Snakes and active contours, Level set representations, Fourier and wavelet descriptors, Multiresolution analysis		
4		t recognition and Image Understanding	10	CO4
	4.1	Hough transforms and other simple object recognition methods, Shape correspondence and shape matching, Principal component analysis, Shape priors for recognition, Pattern recognition methods, HMM, GMM and EM		
5	Applie	cations	8	CO5
	5.1	Surveillance – foreground-background separation – particle filters – Chamfer matching, tracking, and occlusion – combining views from multiple cameras		
	5.2	Photo album – Face detection – Face recognition – Eigen faces – Active appearance and 3D shape models of faces Application.		
	5.3	Human gait analysis Application: In-vehicle vision system: locating roadway – road markings – identifying road signs – locating pedestrians		
	_	Total	45	

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	D. Forsyth and J. Ponce	Computer Vision - A modern approach	Prentice Hall Robot Vision, by B. K. P. Horn, McGraw-Hill.	1992
2.	E. Trucco and A. Verri,	Introductory Techniques for 3D Computer Vision	Publisher: Prentice Hall.	1993
3.	R. C. Gonzalez, R. E. Woods.	Digital Image Processing	Addison Wesley Longman, Inc., 1992.	1992

Somaiya Vidyavihar University
K. J. Somaiya College of Engineering, Mumbai -77
(A Constituent College of Somaiya Vidyavihar University)

4.	D. H. Ballard, C. M. Brown.	Computer Vision.	Prentice-Hall, Englewood Cliffs, 1982	1982
5.	Richard Szeliski,	Computer Vision: Algorithms and Applications (CVAA).	Springer, 2010	2010
6.	Sonka, Hlavac, and Boyle. Thomson.	Image Processing, Analysis, and Machine Vision.		2008
7.	E. R. Davies	Computer Vision: Models, Learning, and Inference	Cambridge University Press, 2012	2009
8.	Mark Nixon and Alberto S. Aquado,	Feature Extraction & Image Processing for Computer Vision,	Third Edition, Academic Press, 2012.	2012

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title									
116h59L501	Ad	Advanced Computer Vision Laboratory								
	ТН			P	P		ГUТ	Total		
Teaching Scheme(Hrs.)	0			2		0		2		
Credits Assigned		0		1		0		1		
		Marks								
Examination	CA		D 0 E	TW		P	P&O	T-4-1		
Scheme	ISE	IA	ESE		O			Total		
	-	_		50				50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course '116h59C501'. Students will be graded based on continuous assessment of their term work.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title								
116h59C601			Applic	ed Rol	otics	8				
	ТН			P		ГUТ	Total			
Teaching Scheme(Hrs.)			0		0		3			
Credits Assigned		3		0		0		3		
	Marks									
Examination	CA		707			_	200	T-4-1		
Scheme	ISE	IA	ESE	TW	0	P	P&O	Total		
	30	20	50	-				100		

Course prerequisites: Matrix Algebra, Applied Mechanics, Control Systems

Course Objectives: The course aims in discussing the requirements, kinematics and dynamics involved in designing an industrial robot. Various control perspectives are also discussed. It helps in making an appropriate choice of the robotic system for a particular application.

Course Outcomes:

At the end of successful completion of the course, the student will be able to

CO1: Understand basic principles of robot specifications, technology, configurations and control.

CO2: Apply the theory of robotic arm kinematics in the robotic design applications.

CO3: Analyse the workspace and perform the trajectory planning.

CO4: Describe the dynamics of robots.

CO5: Apply techniques to solve problems in robot control.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Funda	mentals of Robotics	5	CO1
	1.1	Automation and Robots, Classification, Actuator, Sensors and Controllers, Application, Specifications		
2	Robot	Kinematics	10	CO2
	2.1	Direct Kinematics: Rotation Matrix, Homogenous Coordinates, Link Coordinates, Denavit-Hartenberg Representation, Arm Equation for Four axis SCARA Robot.		
	2.2	Inverse Kinematics: General Properties of Solutions, Tool Configuration, Solutions for Four-Axis SCARA Robot.		
3	Work	space Analysis and Trajectory Planning	8	CO3
	3.1	Workspace Analysis of four axis SCARA robot, Workspace Fixtures		
	3.2	Basics of Trajectory planning, Joint-space trajectory planning, Cartesian-space trajectories, Pick-and-Place		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

		Operation, Continuous-Path Motion, Interpolated Motion, Straight-Line Motion		
4	Robot	Dynamics	12	CO4
	4.1	Differential motions and velocities: Differential relationships, Jacobian, Differential motion of a frame and robot, Tool configuration Jacobian Matrix, Tool Jacobian Matrix of a 4 axis SCARA Robot, The Manipulator Jacobian, Manipulator Jacobian of a 4 axis SCARA Robot, Singularities		
	4.2	Dynamic Analysis and Forces: Lagrangian mechanics, Newton Euler formulation, Dynamic model of a SCARA Robot		
5	Robot	10	CO5	
	5.1	The control problem, State equations, State space model of a SCARA robot, Linear feedback systems, Single axis PID control, PD gravity control, Variable structure control, Impedance control		
		Total	45	

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of Publication
1	Robert Shilling	Fundamentals of Robotics - Analysis and control	Prentice Hall of India	First edition, 2009
2	Saeed Benjamin Niku	Introduction to Robotics – Analysis, Control, Applications	Wiley India Pvt. Ltd.	Third Edition, 2019
3	John J. Craig	Introduction to Robotics –Mechanics & Control	Pearson Education, India	Fourth Edition, 2017
4	Mikell P. Groover et.al.	Industrial Robots- Technology, Programming & applications	McGraw Hill, New York	First edition, 2008
5	Mark W. Spong, Seth Hutchinson, M. Vidyasagar	Robot Modeling & Control	Wiley India Pvt. Ltd.	First edition, 2006

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title								
116h59L601		Applied Robotics Laboratory							
	ТН			P	P T		TUT	Total	
Teaching Scheme(Hrs.)			2		0		2		
Credits Assigned		0		1		0		1	
	Marks								
Examination	CA	CA			0	_	Da o	Total	
Scheme	ISE	IA	ESE	TW		P	P&O	1 Otal	
	-	-	-	50				50	

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course '116h59C601'. Students will be graded based on continuous assessment of their term work.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title								
116h59C701		Intelligent System								
		F	P		TUT	Total				
Teaching Scheme(Hrs.)			0				03			
Credits Assigned		03		0				03		
	Marks									
Examination	CA		ECE		0		De o	Total		
Scheme	ISE	IA	ESE	TW		P	P&O	10141		
	30	20	50					100		

Course prerequisites:

Computer vision, Artificial Intelligence, Robotics

Course Objectives:

The course aims at developing students to make intelligent systems. Having gained knowledge in the areas of Artificial Intelligence, Robotics, and Computer vision this course gives combined exposure of all three on the application level.

Course Outcomes:

At the end of successful completion of the course, the student will be able to

CO1: Understand the latest techniques in parallel computing for Computer Vision.

CO2: Implement object detection and recognition using hardware

CO3: Integrate AI with Robotics

CO4: Make an intelligent robot with computer vision integrated with it

CO5: Apply concepts of deep learning to real-time images and videos

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Accele	rated Computer Vision	9	CO1
	1.1	Basics of parallel computing for accelerated computer vision, Introduction to Compute Unified Device Architecture (CUDA), Working with videos in OpenCV.		
2	Object	Detection and Recognition	9	CO2
	2.1	Introduction to object detection and object tracking, Color, and shape-based object detection using GPU hardware.		
	2.2	Key point detection and extraction. Robust feature extraction, Hardware used in object detection and recognition		
3	AI for	Robotics	9	CO3
	3.1	Practical AI robot designing process, Introduction to AI hardware processors, Advanced robotics applications with		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

		AI (Autopilot planes, Autonomous vehicles)		
	3.2	Foundation of AI robotics, Software for AI robotics (ROS, Linux), Reactive robotics		
4	Intellig	gent Robotics with Applications of CV	9	CO4
	4.1	Distributed mobile robot systems, Advanced vision in detection analysis		
	4.2	Fractional order edge detection, High-speed detection, and object sorting		
5	Comp	uter Vision Applications with Deep Learning	9	CO5
	5.1	Recognition with artificial neural networks (ANN) using featured engineering		
	5.2	Tensor flow recognition, Cross-platform data science, Deploying pre-trained models, Filters, Wrapper, Recognition of Images with deep learning		
		Total	45	

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1	Bhaumik Vaidya	Hands-On GPU- Accelerated Computer Vision with OpenCV and CUDA	Packt Publishing Ltd, USA	1st Edition, Year 2018
2	Francis X. Govers	Artificial Intelligence for Robotics	Packt Publishing Ltd, USA	1 st Edition, Year 2018
3	Robin Murphy	Introduction to AI Robotics	MIT Press, USA	1st Edition, Year 2000
4	Dominik Sankowski, Jacek Nowakowski	Computer Vision In Robotics And Industrial Applications	World Scientific, USA	1 st Edition, Year 2014
5	Ahmed Fawzy Gad	Practical Computer Vision Applications Using Deep Learning with CNNs	Apress publication USA	1 st Edition, Year 2018

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title									
116h59L701		Intelligent System Laboratory								
	7	P		,	TUT	Total				
Teaching Scheme(Hrs.)	0			02				02		
Credits Assigned		0		01				01		
	Marks									
Examination	CA		ECE	TW	0		P&O	Total		
Scheme	ISE	IA	ESE			P		10141		
	-	-	-	50				50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course '116h59C701'. Students will be graded based on continuous assessment of their term work

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title									
116h59P801	Projec	Project on AI, Robotics, and computer vision/ Internship*								
	TH				•	TUT		Total		
Teaching Scheme(Hrs.)	0			08				08		
Credits Assigned		0		04				04		
		Marks								
Examination	CA		EGE	TW			P&O	Total		
Scheme	ISE	IA	ESE		0	P		Total		
	-	-	-	50	25			75		

Course Objectives:

Applications of Artificial Intelligence, Computer Vision and Robotics in real world can be designed using various platforms and concepts studied in different courses. The student can design and develop the project individually or in a pair based on scope of the work approved by faculty mentor.

Course Outcomes:

At the successful completion of this honor program an engineering graduates will be able to **CO1:** Develop small Artificial Intelligence, Computer Vision and Robotics based application.

CO2: Communicate the project work in the form of report, presentation/demonstration.

^{*}An industrial application can also be developed during internship of minimum 4 weeks approved by faculty mentor.