- Supongamos problema de tamaño N=5
- Ejemplo: Oficina con 5 habitaciones (H1, H2, ..., H5) y 5 oficinistas (O1, O2, ..., O5).
- Solución al problema (p): Asignar cada oficinista a una oficina de modo que se minimice el coste de asignar cada oficina i al oficinista p(i):

$$p^* = \min_{p \in H(p)} \{H(p)\} = \min_{p \in \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f_{p(i)p(j)} d_{ij}\}$$

- f es la matriz de flujos de interacción desde el oficinista p(i) al p(j).
- d es la matriz de distancias desde la oficina *i* a la oficina *j*.

• Matriz de distancias *d*:

Habitaciones	H1	H2	Н3	H4	Н5
H1	0	7	14	20	3
H2	4	0	10	17	49
Н3	51	1	0	43	71
H4	7	3	10	0	20
Н5	90	101	47	3	0

• Matriz de flujos *f*:

Oficinistas	01	O2	03	O4	05
01	0	4	7	4	1
O2	0	0	10	3	21
03	0	0	0	47	3
04	41	21	7	0	9
O5	21	43	32	0	27

QAP: ¿Cómo plantear la solución?

• Vector de distancias potencial dp entre habitaciones:

Habitaciones	H1	H2	Н3	H4	Н5
dp	44	80	166	40	241

$$dp(i) = \sum_{j=0}^{N-1} d_{ij}$$

- Cada componente dp(i) contiene la suma de las distancias desde la localización i al resto. Idem con las componentes fp(a) del flujo potencial:
- Vector de flujos potenciales fp(i):

Oficinistas	01	O2	О3	O4	O5
fp	16	34	50	78	123

$$fp(a) = \sum_{b=0}^{N-1} f_{ab}$$

QAP: ¿Cómo plantear la solución?

• Vector de distancias potencial dp entre habitaciones:

• La idea de la solución pasa por ir emparejando los oficinistas de mayor flujo potencial a habitaciones de menor distancia potencial, para intentar minimizar el coste de la solución:

Habitaciones	1	2	3	4	5
Oficinistas	4	3	2	5	1

QAP: Infraestructuras y recomendaciones

- Se recomienda reutilizar las clases Problema y Solución del problema del AGM resuelto en clase, realizando los cambios oportunos para adaptarlas al problema.
- Se recomienda crear un formato de fichero de texto para leer un problema. Ejemplo:

