Determinação das propriedades magnéticas do núcleo do transformador monofásico. Determinação das características elétricas do transformador monofásico e análise do seu funcionamento em carga.

Objetivos do trabalho

I-Determinação do número de espiras do primário e do secundário do transformador.

II-Determinação das propriedades magnéticas do material do núcleo do transformador.

III-Determinação dos parâmetros do modelo de Steinmetz para o transformador.

IV-Análise do funcionamento do transformador a funcionar em carga, determinação das relações de transformação de tensões, de correntes e de impedâncias, determinação do rendimento do transformador e da queda de tensão interna no transformador.

Descrição do equipamento e métodos a utilizar

No estudo do transformador será utilizado um transformador comercial de alimentação de baixa potência (<500 VA).

Na determinação da característica magnética do núcleo é obtida a relação B(H) no núcleo do transformador. Será utilizada como fonte de tensão alternada um auto - transformador regulável e como equipamento de medida um osciloscópio e um sistema de aquisição de dados. O fluxo φ da indução magnética **B** no núcleo do transformador originado pela corrente que percorre o enrolamento primário será detetado através da força eletromotriz gerada no enrolamento secundário. A corrente no enrolamento primário é medida através da queda de tensão numa resistência R inserida no circuito do primário.

Na determinação dos parâmetros do modelo de Steinmetz do transformador, serão realizados ensaios em vazio e em curto-circuito dos enrolamentos secundário e primário que permitirão a determinação dos parâmetros do modelo.

Na análise do funcionamento do transformador a funcionar em carga, o secundário do transformador irá alimentar uma carga resistiva de valor R. Será aplicada ao primário uma tensão alternada de valor eficaz igual ao valor nominal da tensão do primário e serão medidas diretamente a tensão no secundário, a corrente no primário e a potência fornecida ao transformador. Serão depois determinadas a corrente no secundário e a potência fornecida à carga, permitindo obter as relações de transformação de tensões, correntes e impedâncias pretendidas, assim como o rendimento do transformador.

Execução

I- Determinação aproximada do número de espiras dos enrolamentos primário e secundário do transformador de alimentação.

Considere no transformador o enrolamento adicional com n_a=5 espiras e utilizando a montagem da figura 1 aplique sucessivamente valores de tensão eficaz Vp distintos ao circuito primário compreendidos entre 5V e 30V. A partir dos valores de tensão Va que se desenvolve nas 5 espiras e no secundário Vs determine o número de espiras do primário e do secundário utilizando as equações 1, que relacionam o quociente das tensões nos diferentes enrolamentos com o quociente do respetivo número de espiras, de forma exata para o transformador ideal.

$$\frac{n_p}{n_a} = \frac{V_p}{V_a}, \quad \frac{n_s}{n_a} = \frac{V_s}{V_a} \tag{1}$$

Estime os quocientes $\frac{n_p}{n_a}$ e $\frac{n_s}{n_a}$ a partir dos dados recolhidos, utilizando para o efeito uma regressão linear dos dados.

<u>Figura 1</u>. Circuito usado para determinação do número de espiras do primário np (n1) e do secundário ns (n2).

II- Determinação da característica magnética do núcleo do transformador.

Utilize a montagem da figura 2 para obter a curva de magnetização do núcleo do transformador. Coloque o osciloscópio no modo X-Y e varie a tensão do gerador até obter a curva de histerese correspondente ao ciclo de magnetização do núcleo. Como o transformador está em vazio a corrente no circuito primário (medida através da tensão registada pelo canal Y₂) corresponde á corrente de magnetização do núcleo e é proporcional ao campo magnético H criado pela corrente de magnetização. A tensão registada pelo canal Y₁ é proporcional à indução magnética B existente no núcleo do transformador.

Utilizando as equações 2, determine aproximadamente Bs (indução de saturação), Br (indução remanescente), Hc (campo coercivo) a partir dos valores de tensão recolhidos pelos canais do osciloscópio Y_1 e Y_2 , respetivamente V_1 e V_2 .

$$H = \frac{n_1}{R_1 \delta} V_2, B = \frac{R_2 C}{n_2 S} V_1 \tag{2}$$

 δ é o comprimento médio de uma linha de força de H no núcleo do transformador, S é a secção do núcleo do transformador e C a capacidade do condensador presente no circuito do secundário.

Figura 2. Circuito usado na determinação da característica magnética do núcleo do transformador.

III-Determinação dos parâmetros do esquema equivalente de Steinmetz do transformador

1-Ensaio do transformador com secundário em vazio :

A) Realize a montagem da figura 3 e imponha ao primário U_{1ef} =220V, determine; I_{1ef} , U_{2ef} , P_{10} =<u₁ $i_1>$ e P_{12} =<u₂ $i_1>$ em que u₁ e i_1 são respetivamente os valores instantâneos da tensão e da corrente aos terminais do primário do transformador e u₂ e i_2 se referem a valores instantâneos de tensão e corrente no secundário. Na determinação das potências P_{ij} será utilizado um sistema de recolha de dados através do osciloscópio digital.

B) Altere a montagem impondo agora ao secundário a tensão apropriada U_{2ef} de modo a ser atingido um estado de magnetização máxima semelhante ao do caso anterior, determine; I_{2ef} , U_{1ef} , P_{20} =< u_2 $i_2>$ e P_{21} =< u_1 $i_2>$.

A partir dos valores obtidos em A) calcule r_1 , λ_{11} , r_{fe} , $l_{11}*cos(\phi_{fe})$. A partir dos valores obtidos em B calcule r_2 , λ_{22} , r_{fe} , $l_{11}*cos(\phi_{fe})$. Comparando os valores obtidos para r_{fe} e

 $l_{11}*cos(\phi_{fe})$ nos dois casos, verifique se como se pretendia os estados de magnetização obtidos nos dois ensaios são semelhantes. Para efetuar os cálculos consulte a resolução do problema resolvido na aula teórica que analisa a situação experimental descrita.

Figura 3. Circuito usado na recolha de valores necessários à determinação dos parâmetros do esquema equivalente de Steinmetz com o secundário em vazio.

2- Ensaio do transformador com secundário em curto-circuito:

A) Utilizando a montagem da figura 4 e impondo I_{1ef} igual ao valor nominal da corrente do primário do transformador dado pela equação 3, determine U_{1ef} e P_{10} =< u_1 i_1 >, determine a partir destes valores r1+r2' e λ 11+ λ 22'.

Figura 4. Circuito usado nas medições a efetuar com o transformador com o secundário em curto-circuito.

IV Análise do funcionamento do transformador a funcionar em carga

1-Monte o circuito indicado na figura 5. Estime o valor mínimo da resistência R₂ que garante que o transformador não excede a potência nominal para que está dimensionado dado aproximadamente pela equação 3. Ajuste R₂ para um valor acima desse valor. Ajustando a amplitude no gerador aplique ao primário do transformador uma tensão eficaz U₁ de 220V. Registe com a ajuda do osciloscópio a tensão u1 e a corrente i1 no primário e a tensão u2 no secundário. Registe também os valores eficazes das tensões U₁ e U₂ medidas diretamente pelos voltímetros V1 e V2. Determine; U_{1ef} ,I_{1ef}, U_{2ef} ,P₁₀=<u₁ i₁> usando os valores medidos pelo osciloscópio. Compare quando possível com os valores lidos diretamente pelos voltímetros 1 e 2.

$$R_{2min} = (\frac{n_2}{n_1})^2 \frac{V_{1nominal}^2}{0.8 \, P_{nominal}} \tag{3}$$

Figura 5. Circuito usado nas medições a efetuar com o transformador em carga (com o secundário ligado a uma carga resistiva R2).

Análise dos resultados

- a) Compare a relação de transformação de tensões com o transformador em carga, com a relação de transformação para o transformador ideal e com a relação de transformação prevista pelo modelo de Steinmetz. Comente os resultados.
- b) Compare a relação de transformação de correntes com o transformador em carga com a relação de transformação para o transformador ideal e com a relação de transformação prevista pelo modelo de Steinmetz. Comente os resultados.
- c) Compare a relação de transformação de impedâncias com o transformador em carga com a relação de transformação para o transformador ideal e com a relação de transformação prevista pelo modelo de Steinmetz. Comente os resultados.

d)	Determine o rendimento energético do transformador e compare com a previsã teórica comentando os resultados.