CLAIMS

What	10	0	laım	ല	10
yy mai	13	v.	[41111	cu	10

	That is commed to
1	1. A method for manufacturing a light-emitting panel in a web configuration
2	comprising:
3	(a) providing a first substrate in a web form, the first substrate having a plurality
4	of first conductors formed thereon;
5	(b) disposing at least one micro-component of a plurality of micro-components at
6	each of a plurality of first locations on the first substrate corresponding to the plurality of
7	conductors, each micro-component adapted to emit radiation in response to electrical
8	excitation;
9	(c) depositing a liquid dielectric material onto the first substrate to electrically
10	isolate the plurality of micro-components from each other;
11	(d) curing the liquid dielectric material to form a dielectric layer;
12	(e) depositing a conductive liquid on top of the dielectric layer at a plurality of
13	second locations adapted to interact with the first conductors to excite one or more
14	selected micro-components;
15	(f) curing the conductive liquid to create a conductive film for providing second
16	conductors;
17	(g) applying a top layer over the dielectric layer and the second conductors.
1	2. The method of claim 1, wherein the micro-components are coated with a
2	phosphor material
1	3. The method of claim 2, wherein the phosphor material is applied to the
2	micro-components by immersing the micro-components in a slurry of phosphor particles
3	then curing a phosphor coating formed on the micro-components.
1	4. The method of claim 1, further comprising, prior to step (g), the steps of
2	depositing a liquid black mask layer onto the first substrate and the conductive layer; and
3	curing the liquid mask material to form a black mask layer.
1	5. The method of claim 1, further comprising:

photolithographically patterning the conductive film to form the second conductors.

The method of claim 5, wherein the step of photolithographically

- 6. The method of claim 5, wherein the step of photolithographically patterning comprises selectively exposing a photosensitive material by contacting the photosensitive material with a leaky optical waveguide.
- 7. The method of claim 1, wherein the first substrate has a plurality of dimples formed therein, wherein one dimple is formed at each of the plurality of first locations.
 - 8. The method of claim 7, wherein an adhesive material is applied within each of the plurality of dimples for securing the micro-component in the dimple.
 - 9. The method of claim 1, wherein the step of depositing a conductive liquid comprises printing an electrode pattern with a conductive ink.
 - 10. The method of claim 9, wherein the printing comprises inkjet printing.
 - 11. The method of claim 1, wherein the liquid dielectric material has a surface tension adapted to provide a uniform thickness across the first substrate.
- 12. The method of claim 1, wherein the liquid dielectric material includes a surfactant.
- 13. The method of claim 1, further comprising disposing an RF screen over the top layer.
- 14. The method of claim 1, further comprising, prior to step (g), repeating steps (c) through (f) at least one time to form additional conductors.
- 15. A method for forming a flexible light emitting panel comprising:
- (a) feeding a first dielectric substrate material from a payout reel in a web coating machine;
 - (b) printing a first plurality of electrodes on the first dielectric material;
- (c) before or after printing the first plurality of electrodes, forming a plurality of sockets at a plurality of location in the first dielectric material;
- (d) disposing at least one micro-component in each socket of the plurality of sockets, wherein the at least one micro-component is adapted to emit light in response to electrical excitation;

10	(e) applying a liquid dielectric material over the first dielectric material, the first					
11	plurality of electrodes, and at least a portion of each micro-component of the plurality of					
12	micro-components;					
13	(f) curing the liquid dielectric material to form a dielectric layer;					
14	(g) printing a second plurality of electrodes over the dielectric layer using a					
15	conductive ink;					
16	(h) curing the conductive ink;					
17	(i) applying a top layer over the dielectric layer, the second plurality of electrode					
18	and the micro-components.					
1	16. The method of claim 15, further comprising the step of applying an					
2	adhesive material within each of the plurality of sockets for securing the micro-					
3	component in the socket.					
1	17. The method of claim 15, wherein step (d) comprises using electrostatic					
2	sheet transfer to place each micro-component into an appropriate socket					
1	18. The method of claim 15, wherein step (g) comprises inkjet printing.					
1	19. The method of claim 15, wherein the liquid dielectric material has a					
2	surface tension adapted to provide a uniform thickness across the first substrate.					
1	20. The method of claim 15, wherein the liquid dielectric material includes a					
2	surfactant.					
1	21. The method of claim 15, further comprising disposing an RF screen over					
2	the top layer.					
1	22. The method of claim 15, further comprising, prior to step (i), repeating					
2	steps (e) through (h) at least one time to form at least one additional plurality of					
3	electrodes.					
1	23. The method of claim 15, wherein the micro-components are coated with					
2	phosphor material					
1	24. The method of claim 23, wherein the phosphor material is applied to the					
2	micro-components by immersing the micro-components in a slurry of phosphor					

particles, then curing a phosphor coating formed on the micro-components.

3

SAIC0029-CIP1 PATENT

1	25. The method of claim 15, further comprising, prior to step (i), the	steps of
2	depositing a liquid black mask layer onto the first substrate and the conduct	ve layer;
3	and	
4	curing the liquid mask material to form a black mask layer.	
1	26. A method for forming a flexible light emitting panel comprising	:
2	(a) feeding a first dielectric substrate material from a payout reel in a w	eb coating
3	machine;	
4	(b) printing a first plurality of electrodes on the first dielectric material;	
5	(c) before or after printing the first plurality of electrodes, forming a plurality of electrodes.	ırality of
6	sockets at a plurality of location in the first dielectric material;	
7	(d) disposing at least one micro-component in each socket of the plural	ity of
8	sockets, wherein the at least one micro-component is adapted to emit light in re	sponse to
9	electrical excitation;	
0	(e) aligning a second sheet material having dielectric properties over the	e first
1	dielectric substrate material and the first plurality of electrodes, wherein the sec	ond
12	dielectric sheet material has a plurality of openings therethrough corresponding	to the
13	plurality of locations, the plurality of openings having diameters larger than an	outer
14	diameter of the micro-component; so that a gap is created between an inner dia	meter of
15	each opening and the outer diameter of each micro-component;	
16	(f) applying a liquid dielectric material over at least a portion of the sec	ond sheet
17	material so that the gap corresponding to each micro-component is filled, the li	quid
18	dielectric material having dielectric properties adapted for control of electric fi	eld and
19	breakdown characteristics of the micro-component;	
20	(g) curing the liquid dielectric material;	
21	(h) printing a second plurality of electrodes over the second sheet mate	rial using
22	a conductive ink;	
23	(i) curing the conductive ink;	
24	(j) applying a top layer over the second sheet material, the second plur	ality of
2.5	electrodes and the micro-components.	

SAIC0029-CIP1 PATENT

1	27.	The method of claim 26, further comprising the step of applying an				
2	adhesive material within each of the plurality of sockets for securing the micro-					
3	component in the socket.					
1	28.	The method of claim 26, wherein step (d) comprises using electrostatic				
2	sheet transfer	to place each micro-component into an appropriate socket				
1	29.	The method of claim 26, wherein step (h) comprises inkjet printing.				
1	30.	The method of claim 26, wherein the liquid dielectric material includes a				
2	surfactant.					
1	31.	The method of claim 26, further comprising disposing an RF screen over				
2	the top layer.					
1	32.	The method of claim 26, further comprising, prior to step (j), repeating				
2	steps (e) through (i) at least one time to form at least one additional plurality of					
3	electrodes.					
1	33.	The method of claim 26, wherein the micro-components are coated with a				
2	phosphor	material				
1	34.	The method of claim 33, wherein the phosphor material is applied to the				
2	micro-cor	nponents by immersing the micro-components in a slurry of phosphor				
3	particles,	then curing a phosphor coating formed on the micro-components.				
1	35.	The method of claim 26, further comprising, prior to step (j), the steps of				
2	depositing	g a liquid black mask layer onto the first substrate and the conductive layer;				
3	and					
4	curing	g the liquid mask material to form a black mask layer.				