

	F	'	BMD		
	Multiple Ch	oice C	uestions		
1.	Which structure will perform better during ea	arthqual	ke?		
	a. Statically determinate and indeterminate			agnitu	ide of earthquake
	c. Statically indeterminate d.	Static	cally determinate		
2.	Which of the following structural loads are no	ot applie	ed commonly to a b	ouildir	ng?
	a. Environmental load b. Live load	c.	Dead load	d.	Rain load
3.	The deformation per unit length is called				
	a. tensile stress	b.	compressive Stre	SS	
	c. shear stress	d.	strain		
4.	The property of a material by which it can be				
	a. Elasticity b. Plasticity	c.	Ductility	d.	Malleability
5.	The compression test is carried on ma	iterials.			
	a. ductile b. brittle	c.	malleable	d.	plastic
6.	The moment of inertia of a body is always mi	nimum			
	a. Base	b.			
	c. Vertical axis	d.	Horizontal axis		
7.	Moment of inertia is the				
	a. Second moment of area	b.	Second moment	of ma	SS
	c. Second moment of force	d.	All of these		
8.	Sagging, the bending moment occurs at the	of			
	a. At supports	b.	Mid span		
	c. Point of contra flexure	d.	Point of emergen	ice	
9.	Why is base plate provided in short roof truss				
	a. As provision for temperature related exp				
	b. For rigidity	c.	To transmit load	effect	tively
	d. For stability				
10.	Which law is also called as the elasticity law?		a		
	a. Bernoulli's law b. Hooke's law	c.	Stress law	d.	Poisson's law
11.	Whenever a material is loaded within elastic l	-			
	a. equal to	b.	directly Proportion		0
10	c. inversely Proportional to	d.	None of the above	re	
12.	The ratio of linear stress to the linear strain is		1 11 1 1	1	D : 1 .:
1.2	a. modulus of rigidity b. modulus of el		c. bulk modulus	d.	Poisson's ratio
13.	The unit of modulus of elasticity is same as the		, C 1	1	1 6 : : 1:
	a. stress, strain and pressure	b.	stress, force and		
1.4	c. strain, force and pressure	d.	stress, Pressure a	nd mo	odulus of rigidity
14.	When a change in length takes place, the strai			1	1
1.5	a. linear strain b. lateral strain	c.	volumetric strain		shear strain
15.	The change in length due to a tensile or comp	ressive		ody is	A 177
	a. $\frac{P.l.A}{E}$ b. $\frac{Pl}{AE}$	c.	$\frac{\mathrm{E}}{\mathrm{P.}l.\mathrm{A}}$	d.	AE DI
					Pl
	where, P = Tensile or compressive force actin			hode	and

l = Original length of the body, A = Cross-sectional area of the body, and E = Young's modulus for the material of the body.

16.	If w	e use link support in a	ı stru	ctural system, the	n how	many unknowns w	ould	we have?	
	a.	4	b.	2	c.	0	d.	1	
17.	You	ng's modulus may be	defii	ned as the ratio of	•				
	a.	linear stress to latera	ıl stra	in	b.	lateral strain to lin	ear st	rain	
	c.	linear stress to linear			d.	shear stress to shear	ar stra	ain	
18.	Mod	lulus of rigidity may l			of				
	a.	linear stress to latera			b.	lateral strain to lin			
	c.	linear stress to linear			d.	shear stress to shear	ar stra	ain	
19.		t will be the variation	ı in B	MD for the diagra	am?				10 kN
	[Ass	tume $l = 2m$].					3	1	↓
	a.	Rectangular	b.	Trapezoidal			Å	À	В
	c.	Triangular	d.	Square					
20.		bars of different mat							
		elongation in the ratio	-						vill be
0 1	a.	2:5	b.	5:2	c.	4:3	d.	3:4	
21.		n a bar of length <i>l</i> ar					ind h	anging freely	, then the
	totai	elongation produced						14	
	a.	$\frac{\mathbf{W}l}{2\mathbf{E}}$	b.	$\frac{\mathbf{w}l^3}{2\mathbf{E}}$	c.	$\frac{\mathbf{W}l}{2\mathbf{E}}$	d.	$\frac{\mathbf{w}l^4}{2E}$	
		ZE				2E		2E	
22	Tl. a	where $w = Weight p$				41		:C 41	. 1
22.		deformation of a ba					auon	, ii the same	e body is
		ected to a direct load equal to		half	_	double	d.	auadrunla	
23.	a. The	elongation of a conica	b.		C.			quadruple	a lanath
23.	a.	equal to	b.	half	c.	one-third	d.	two-third	e lengui.
24.		length of a conical ba							ived at its
∠ ¬.		er end and hanging fre							
	иррс								11 00
	a.	$\frac{\mathbf{w}l^2}{2E}$	b.	4E	c.	6E	d.	$\frac{wl^2}{8E}$	
25.	Strai	in rosetters are used to	0			-		-	
	a.	measure shear strain			b.	measure linear stra	in		
	c.	measure volumetric		1	d.	relieve strain			
26.	A ba	r of length L metres e	xtend	ls by / mm under a	tensi	le forc : of P. The st	rain p	roduced in th	e bar is
		<u>1</u>		1		$0.01 \frac{l}{L}$,	
	a.	L	D.	$0.1 \overline{L}$	C.	$0.01\overline{\mathrm{L}}$	a.	$0.001 \overline{L}$	
27.	The	extension of a circula	ar bar	tapering uniform	nly fro	om diameter d ₁ at o	ne en	d to diameter	d ₂ at the
	othe	r end, and subjected t	o an a	axial pull of P is g	given	by			
		$\delta l = \frac{4PE}{\pi l d^2}$	1.	$4\pi l d^2$		$\delta l = \frac{4 \text{ P}l}{\pi \text{E}d_1 d_2}$.1	<u> 4PIE</u>	
	a.	$ol = \frac{1}{\pi l d^2}$	D.	$o_l = {PE}$	C.	$ol = \frac{1}{\pi E d_1 d_2}$	a.	$o_l = \frac{1}{\pi d_1 d_2}$	
28.	The	extension of a circula	ar baı	tapering uniform	nly fro	om diameter d ₁ at or	ne en	d to diameter	d ₂ at the
		r end, and subjected							
	$\sqrt{d_1 d_2}$	$\frac{1}{d_2}$ subjected to the sai	ne lo	ad P.					
	a.	equal to	b.	less than	c.	greater than	d.	none of abo	ve
29.	The	tensile test is carried	on	materials					
	a.	ductile	b.	brittle	c.	malleable	d.	plastic	
30.	The	maximum stress prod	luced	in a bar of the tap	ering	section is at		•	
	a.	smaller end	b.	larger end	c.	middle	d.	anywhere	
31.	Mod	lular ratio of the two			•				
	a.	linear stress to linear			b.	shear stress to shear			
	c.	their modulus of ela			d.	their modulus of r	_		
32.	The	shear modulus of mo			ct to t		-		
	a.	equal to half	b.	less than half	c.	more than half	d.	none of thes	se

33.	A rod is enclosed centrally in a tube and the asse	mbly	is tightened by rig	id wa	shers. If the assembly
	is subjected to a compressive load, then	1.	4.1		
	•	b.	tube is under comp		
	c. both rod and tube are under compression				
34.	1 5	then	n are tightly fitted w	ith th	ie help of washers and
	nuts. If the nut is tightened, then				
		b.	bolt and tube are un	nder (compression
	c. bolt is under compression and tube is under				
	d. bolt is under tension and tube is under comp				
35.	When a bar is subjected to a change of temper	rature	e and its deformation	on is	prevented, the stress
	induced in the bar is				
	a. tensile stress b. compressive stress		shear stress	d.	thermal stress
36.			-		
		c.	tensile stress	d.	compressive stress
37.	When a bar is cooled to -5° C, it will develop.				
		c.	tensile stress	d.	compressive stress
38.		em, v	which is heated to a	i tem	perature of 40°C. The
	stress induced in the copper bar will be			_	
	•	C.	shear	d.	zero
39.	The thermal stress in a bar is proportion				
		c.	no change	d.	any of these
40.	The thermal stress upon the cross-section				•
4.1	a. depends b. does not depend		both	d.	can't say
41.	The relation between slope and maximum bendin				36 . 11 . 11
	a. Directly proportion b. Inversely proportion		Relative proportion	d.	Mutual incidence
42.	The thermal or temperature stress is a function of		11 01		
	1	b.	modulus of elastici	ty	
12	•	d.	all of these		11 1
43.	The ratio of the largest load in a test to the original c			-	
4.4		c.	ultimate stress	d.	breaking stress
44.	Which of the following statement is correct?				
	a. The stress is the pressure per unit area.				
	b. The strain is expressed in mm.				
	c. Hook's law holds good up to the breaking p		-4: - 1::4		
15	d. Stress is directly proportional to strain within				
45.	The deformation of the bar per unit length in the a. linear strain	direc b.	lateral strain	mowi	n as
		d.	shear strain		
16	Every direct stress is always accompanied by a			n on	d on annosita kind of
40.	strain in every direction, at right angles to it. Such			JII all	u an opposite kind of
		c.	volumetric strain		d. shear strain
47.	The ratio of the lateral strain to the linear strain is				d. Sileai strain
ч/.		b.	modulus of rigidity	7	
		d.	Poisson's ratio		
48.	The tensile test is carried on materials	u.	1 0133011 3 14110		
7 0.		c.	malleable	d.	plastic
49.	A steel bar 2 m long, 20 mm wide and 10 mm th				•
17.	subjected to a push of 2 kN, the Poission's ratio				
	for the bar in compression.	OI til	. Jan III telibioli Wil		1 0100011 0 14410
		c.	greater than	d.	any of these
50.	*The Poisson's ratio for steel varies from		<i>G</i>		<i>j</i>
		c.	0.31 to 0.34	d.	0.32 to 0.42

51.	The	Poisson's ratio for ca	st iro	n varies from				
	a.	0.23 to 0.27			c.	0.31 to 0.34	d.	0.32 to 0.42
52.	Whe	en a bar of length <i>l</i> , w	idth b	and thickness t is	s subj	ected to a pull o	f P, its	
	a.	length, width and the			b.	length, width a		ness decreases
	c.	length increases, width			d.	-		thickness increases
53.	The	ratio of change in vol			ume	-		
	a.	linear strain			c.		in d.	Poisson's ratio
54.	The	bending equation is						
			_	Τ τ Сθ		Μ σ Ε		Τ τ Cq
	a.	$\frac{M}{I} = \frac{\sigma}{v} = \frac{E}{R}$	b.	$\frac{1}{J} = \frac{1}{r} = \frac{1}{L}$	c.	${V} = {L} = {R}$	d.	$\frac{1}{r} = \frac{1}{J} = \frac{1}{L}$
55.	The	volumetric strain is tl	ne rat	io of the		Ž		
	a.	original thickness to t			b.	change in thick	ness to the	e original thickness
	c.	original volume to the						
56.								the axis of shaft (i.e
	_	us of shaft) is known						
	a.	bending moment			b.	twisting mome	nt	
	c.	torsional rigidity			d.	flexural rigidity		
57.		en a shaft is subjected	to a t	wisting moment, e		· ·		will be under
	a.	tensile stress						
58.	Whe							intensity, the ratio of
		ct stress to the corresp		• •	-		1	3,
	a.	Young's modulus		-			d.	Poisson's ratio
59.	The	relation between You						
		$K = \frac{3m - 2}{mE}$	1	" mE		3(m-2)		_{rr} mE
	a.	$K = \frac{mE}{mE}$	b.	$K = \frac{1}{3m-2}$	c.	$K = \frac{mE}{mE}$	a.	$K = \frac{1}{3(m-2)}$
60.	*Th	e ratio of bulk moduli	is to	Young's modulus	for a	Poisson's ratio	of 0.25 w	vill be
		4		•				2
	a.	$\overline{3}$	b.	$\frac{2}{3}$	c.	1	d.	$\overline{2}$
61.	Whe	en a cube is subjected	l to th	ree mutually per	endi	cular tensile stre	sses of e	equal intensity (σ) , the
		metric strain is		31 1				1 3 ()/
		$3\sigma(2)$		E (2)		$3\sigma(2)$		E (2
	a.	$\frac{3\sigma}{E}\left(1-\frac{2}{m}\right)$	b.	$\frac{1}{3\sigma} \left(1 - \frac{1}{m}\right)$	c.	$\frac{1}{E}(\overline{m}-1)$	d.	$\frac{1}{3\sigma}(\overline{m}-1)$
62	The	relation between mod	hilis	of elasticity (E) a	nd ma	odulus of rigidity	C is giv	ven by
02.	1110	m E	adid5	2(m+1)	14 111	2mE	, с 15 51 ,	m + 1
	a.	$C = \frac{m E}{2 (m+1)}$	b.	$C = \frac{mE}{mE}$	c.	$C = \frac{m+1}{m+1}$	d.	$C = \frac{dE}{2mE}$
63		maximum shear stres						
	a.	equal to	b.	$\frac{1}{3}$ times	c.	1.5 times	d.	twice
		relatic ' ween You		_				
04.								
	a.	$E = \frac{3K.C}{3K + C}$	b.	$E = \frac{GK \cdot C}{3K + C}$	c.	$E = \frac{3K + C}{3K + C}$	d.	$E = \frac{3K + C}{3K + C}$
65.		e ratio of shear modu						
05.								4.4
	a.	$\frac{5}{7}$	b.	$\frac{7}{5}$	c.	$\frac{5}{14}$	d.	··· 5
66.	Ifth	e modulus of elasticity f		3		1.		3
00.	11 111	inodulus of clasticity I	oragi	iven mauriai is twic	C 113 II	ir iius oi rigiulty	, uich oul	K Julius is Equal 10

b. 3C

b. 50GPa

of the material is

30GPa

67. The Young's modulus of a material is 125 GPa and Poissons ratio is 0.25. The modulus of rigidity

c.

80GPa

100GPa

68.	Which of the following statement is wrong?				
	a. The deformation of the bar per unit length in the	he dire	ection of the force is o	called	l linear strain.
	b. The Poisson's ratio is the ratio of lateral str	rain to	the linear strain.		
	c. The ratio of change in volume to the origin	al vol	lume is called volur	netri	e strain.
	d. The bulk modulus is the ratio of linear stream	ss to t	he linear strain.		
69.	A section of beam is said to be in pure bending,	if it is	s subjected to:		
	a. constant bending moment and constant She				
	b. constant shear force and zero bending mon				
	c. constant bending moment and zero shear for				
	d. none of the above				
70.	Within elastic limit, shear stress is she	ar str	ain.		
	a. equal to	b.	less than		
	c. directly proportional to	d.	inversely proportion	onal	to
71.	Shear modulus is the ratio of	٠	my crowny proporting	01141	
,	a. linear stress to linear strain	b.	linear stress to late	eral s	train
	c. volumetric strain to linear strain	d.	shear stress to she		
72.	A localized compressive stress at the area of con				
<i>,</i>	a. tensile stress b. bending stress	c.	crushing stress	d.	shear stress
	Note: If bearing stress is available in option, sele			ч.	Silvar Stress
73.	A beam which is fixed at one end and free at the				
,	a. simply supported beam	b.	fixed beam		
	c. overhanging beam	d.	cantilever beam		
74.	The maximum diameter of the hole that can be			max	imum shear stress 1/4 th
/ т.	of its maximum crushing stress of punch, is equa		nea from a place of	ших	illiulii silcui stiess 1/4
	a. t b. 2t	c.	4t	d.	8t
	where $t = Thickness$ of the plate.	С.	т,	u.	οι
75.	The rectangular beam 'A' has length <i>l</i> , width b	and a	denth d. Another be	am '	R' has the same width
15.	and depth but length is double that of 'A'. T				
	compared to beam A.	i iic Ci	ustic strength of o	Cuiii	D will be us
	a. same b. one-half	c.	one-fourth	d.	one-eighth
76.	The rectangular beam 'A' has length l , width b ar				.,
70.	width but depth is double that of 'A'. The elastic st				
	a. same b. double	C.	four times	d.	six times
77.	A fletched beam is used to	٥.	iour times	u.	SIX times
, , .	a. change the shape of the beam	b.	effect the saving o	n ma	nterial
	c. equalize the strength in tension and compression		increase the cross-		
78.	Whenever some external system of forces acts				
70.	body undergoes some deformation, it sets up so				
	unit area to deformation is called	1110 10	sistance to the delo	iiiuu	ion. This resistance per
	a. strain b. stress	c.	pressure	d.	modulus of elasticity
79	In a beam subjected to pure bending, the intens				
1).	fiber from the neutral axis.	sity O	i stress in any moer	15	the distance of the
	a. equal to b. less than	c.	more than	d a	directly proportional to
80.	The bending moment at the free end of a cantile			u. v	uncerry proportional to
80.	a. zero b. minimum	C.	maximum d.	Nec	gligible
81.	When a body is subjected to a direct tensile stre				
01.	at a section inclined at to the normal of t			xiiiiu	in normal suess occurs
	a. 0° b. 30°	C.	45°	d.	9°
82.	The external indeterminacy in a two hinged arch		73	u.	9
02.	a. 4 b. 3	C.	2	d.	1
83.	A body is subjected to a direct tensile stress in				maximum at a section
05.	inclined at to the normal of the section.	опс р	iane. The shear stre	JOS 15	maximum at a section
	a. 45° and 90° b. 45° and 135°	c.	60° and 150°	d.	30° and 135°
	a. 73 and 70 0. 43 and 133	C.	oo anu 130	u.	o and 100

84.		en a body is subjected imum normal stress.	d to d	irect tensile stres	s in o	ne plane, the maxin	num	shear stress is the
	a.	equal to	b.	one-half	c.	two-third	d.	twice
85.	Princ	cipal plane is a plane						
	a.	zero	b.			maximum	d.	Any of these
86.	For	a beam, as shown in	Figu	re below, when t	he loa	d W is applied in	the ce	enter of the beam, the
	max	imum deflection is		_				
	_	$\frac{Wl^3}{48 EI}$ $\frac{W l^3}{192 EI}$	1.	<u>5W l³</u>				W
	a.	48 EI	D.	384 EI				↓ EI
		$W l^3$		$W l^3$				EI S
	c.	192 EI	a.	384 EI				L
87.	A be	am of the triangular se	ection	is placed with its b	oase h	orizontal. The maxir	num s	shear stress occurs at
	a.							
	c.	apex of the triangle center of gravity of t	the tri	angle	d.	base of the triangle	e	
88.	*The	e neutral axis of the c	ross-s	section a beam is	that a	xis at which the ben	ding	stress is
	a.	zero	b.	minimum	c.	maximum	d.	infinity
89.							e acco	ompanied by a simple
	shea	r stress of 200.MPa.	The m		stress	will be		
	a.	-100 MPa	b.	250MPa	c.	300MPa	d.	400MPa
90.	The	section modulus (Z)						
	a.	<u>I</u>	h	Lv	C	<u>y</u> I	d	<u>M</u>
91.	cross	s-sectional area is		_		_		ular beam of the same
	a.	$\frac{2}{3}$	h	3	C	1	d	9
		-					u.	8
92.	The	bending stress in a be		ssection m				
	a.	directly proportional	l to		b.	inversely proporti	onal t	to
	C.	equal to			d.	square of		
93.	The	maximum shear stress						
	a.	equal to	b.	$\frac{4}{2}$ times	c.	1.5 times	d.	twice
0.4	A + +1			2				
94.	a.	ne neutral axis of a be		minimum	0	maximum	d	infinity
95.		zero						er tensile stress of 600
93.								ess of 400 MPa on the
		e planes. The maximu				subjected to a sile	ai sii c	255 OI 400 WII a OII the
	a.	400 MPa	b.	500MPa	c.	900MPa	d.	1400MPa
96		stress developed in th						1 1001111 4
		elastic limit						breaking stress
		nsile test is performed						
<i>,</i> , .	a.	remain same	. 011 0		b.	increase		
	c.	decrease			d.	depend upon rate of	of load	ding
98.			vo no	rmal stresses 20				(compressive) acting
		endicular to each other						(*****F*******)
	a.	$5kN/m^2$		$10kN/m^2$	c.	$15kN/m^2$	d.	20kN/m^2
99.	The	ratio of stiffness fac	tor of	a member when	the :		o the	stiffness factor of the
		e member when the fa				S		
		1				1		3
	a.	$\frac{1}{4}$	b.	3	c.	$\overline{2}$	d.	$\frac{1}{4}$
100.		nsile test is performed oximately same at fra					d that	t the diameter remains
	appl	unimatery same at He	wuit	. THE MAICHAI WII	ucı ic	oi was		
	a.	mild steel	b.	cast iron	c.	glass	d.	copper

101.								
		maximum shear stress i	s b.	the algebraic d one-fourth		nce of maximum and one-half		
102.					c. f leng		d. ily dis	twice stributed load of w per
		length is		-2		-2		-2
	0	$\frac{\mathrm{W}\ l^3}{3\mathrm{EI}}$	h	$\frac{\mathbf{W} \ l^3}{}$	0	$\frac{\mathbf{W} l^3}{\mathbf{l}^3}$	d	$\underline{\mathbf{W} l^3}$
	a.	3EI	υ.	8EI	C.	16 EI	u.	48 EI
		where, $W = wl$						
103	The	maximum deflection	of a c	eantilever beam of	fleno	th / with a point loa	d W	at the free end is
105.	1110	W^3	01 4 4	WI^3		W^{1^3}		Wl^3
	a.	$\frac{Wl^3}{3 EI}$	b.	OEI	c.	$\frac{\mathrm{W}\ l^3}{16\mathrm{EI}}$	d.	40 EI
101								
104.	A be	eam of T-section is sul	ojecte	d to a shear force				e will occur at the
	a.	top of the section			b.	bottom of the sect		
	c.	neutral axis of the se	ection	Į.	d.	junction of web ar	nd flai	nge
105.	For a	a given stress, the rat	io of	moment of resista	ance	of a beam of square	e cros	s-section when placed
		its two sides horizon						
		1						
	a.	$\frac{1}{2}$	b.	1	c.	$\frac{1}{\sqrt{2}}$	d.	$\sqrt{2}$
106		2						
106.								B' has the same width
	and	depth but length is	doub	le that of 'A'. T	he e	lastic strength of b	eam	'B' will beas
	com	pared to beam A.						
	a.	same	b.	one-half	c.	one-fourth	d.	one-eighth
107.	Moh	r's circle is used to d	eterm	ine the stresses or	n an c	oblique section of a	body	subjected to
	a.	direct tensile stress i					5	- · · · J · · · · · · ·
	b.	direct tensile stress i						
	c.	direct tensile stress in					iad by	o gimple chear atreca
	_		two	mutuany perpendic	Julai (anections accompan	icu by	a simple shear suess
	d.	all of the above						
100	*****	-1 C 41 C-11	4	4 : 9				
108.		ch of the following st			,			
108.	Whi	In the theory of sin	mple	bending, the ass	umpt	ion is that the plan	ne se	ctions before bending
108.	a.	In the theory of sin remains plane after l	mple pendi	bending, the assing.				
108.		In the theory of sir remains plane after l Ina beam subjected	mple pendi	bending, the assing.				ctions before bending
108.	a.	In the theory of sin remains plane after l Ina beam subjected the neutral axis.	mple pending to be	bending, the ass ng. nding moment, th	e stra	in is directly propo		
108.	a.	In the theory of sin remains plane after I Ina beam subjected the neutral axis. At the neutral axis o	mple bending to bear f a be	bending, the ass ng. nding moment, the eam, the bending s	e stra	in is directly propo	ortion	al to the distance from
	a.b.c.d.	In the theory of sir remains plane after I Ina beam subjected the neutral axis. At the neutral axis o The bending stress i	mple bending to bending f a bending n a bending	bending, the ass ng. nding moment, th eam, the bending s eam is inversely p	e stra stress ropor	in is directly proportion is maximum.	ortiona n mod	al to the distance from ulus.
	a.b.c.d.	In the theory of sir remains plane after I Ina beam subjected the neutral axis. At the neutral axis o The bending stress i	mple bending to bending f a bending n a bending	bending, the ass ng. nding moment, th eam, the bending s eam is inversely p	e stra stress ropor	in is directly proportion is maximum.	ortiona n mod	al to the distance from
	a.b.c.d.A so	In the theory of six remains plane after land beam subjected the neutral axis. At the neutral axis of The bending stress in quare beam and a ci	mple pending to be fabe a	bending, the ass ng. nding moment, the eam, the bending s eam is inversely p r beam have the	e stra stress ropor same	is maximum. tional to the section le length, same allo	ortiona n mod owable	al to the distance from ulus. e stress and the same
	a. b. c. d. A so	In the theory of six remains plane after land beam subjected the neutral axis. At the neutral axis of The bending stress in quare beam and a ciding moment. The rational areas of the stress in the st	mple bending to be far be far be reular io of s	bending, the assing. Inding moment, the team, the bending seam is inversely per beam have the weights of the squ	e stra stress ropor same	is maximum. tional to the section e length, same allo eam to the circular	ntiona mod wable beam	ulus. e stress and the same is
	a.b.c.d.A so	In the theory of six remains plane after land beam subjected the neutral axis. At the neutral axis of The bending stress in quare beam and a ciding moment. The rational areas of the stress in the st	mple bending to be far be far be reular io of s	bending, the assing. Inding moment, the team, the bending seam is inversely per beam have the weights of the squ	e stra stress ropor same	is maximum. tional to the section e length, same allo eam to the circular	ntiona mod wable beam	ulus. e stress and the same is
109.	a. b. c. d. A so bendera.	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress inquare beam and a ciding moment. The ration of the properties of the	mple pending to be faber a be reular to of the be.	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square.	e strastress ropor same are b	is maximum. tional to the section e length, same alloweam to the circular $\frac{1}{1.12}$	ntiona mod wable beam	ulus. e stress and the same is
109.	a. b. c. d. A so bendera. The	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress in the plane and a citing moment. The ration $\frac{1}{2}$ extremities of any discontinuous plane in the strength of th	mple pending to be faber a be reular to of the be.	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square.	e strastress ropor same b c.	is maximum. tional to the section e length, same alloweam to the circular $\frac{1}{1.12}$ resent	mod wable beam d.	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$
109.	a. b. c. d. A so bendera.	In the theory of six remains plane after land beam subjected the neutral axis. At the neutral axis of The bending stress in quare beam and a citing moment. The ration $\frac{1}{2}$ extremities of any diagram of the principal stresses	mple pending to be a be reular to of second b.	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square on Mohr's circle.	e strastress ropor same are b	is maximum. tional to the section to length, same alloweam to the circular $\frac{1}{1.12}$ resent normal stresses on	mod wable beam d.	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45°
109. 110.	a. b. c. d. A so bender a. The a. c.	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress in the plane and a ciding moment. The ration $\frac{1}{2}$ extremities of any diagram plane stresses shear stresses on plane.	mple pending to be a be reular to of b. amete nes a	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square on Mohr's circle at 45°	e strastress ropor same bare b	is maximum. tional to the section e length, same allo eam to the circular 1.12 resent normal stresses on normal and shear	mod wable beam d.	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane
109. 110.	a. b. c. d. A so bend a. The a. c. Two	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress is quare beam and a ciding moment. The rational extremities of any diaprincipal stresses shear stresses on plane beams, one of circu	mple pending to be a be reular to of the a be a meter a lar creation of the ameter a lar creation of th	bending, the ass ng. nding moment, the sam, the bending seam is inversely per beam have the weights of the square on Mohr's circle to 45° oss-section and the	e strastress ropor same bare b	is maximum. tional to the section e length, same allo eam to the circular 1 1.12 resent normal stresses or normal and shear allo ear of square cross-	mod wable beam d.	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45°
109. 110.	a. b. c. d. A so bend a. The a. c. Two	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress in the plane and a ciding moment. The ration $\frac{1}{2}$ extremities of any diagram plane stresses shear stresses on plane.	mple pending to be a be reular to of the a be a meter a lar creation of the ameter a lar creation of th	bending, the ass ng. nding moment, the sam, the bending seam is inversely per beam have the weights of the square on Mohr's circle to 45° oss-section and the	e strastress ropor same bare b	is maximum. tional to the section e length, same allo eam to the circular 1 1.12 resent normal stresses or normal and shear allo ear of square cross-	mod wable beam d.	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane
109. 110.	a. b. c. d. A so bend a. The a. c. Two	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress is quare beam and a ciding moment. The rational extremities of any diaprincipal stresses shear stresses on plane beams, one of circu	mple bending to be fare a be reulario of significant be a messalar cresses bear and the cresses bear and the cresses a bear and the cresses are a bear and the cresses a bear and the c	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square on Mohr's circle at 45° coss-section and thems are subjected	e strastress ropor same bare b	is maximum. tional to the section e length, same allo eam to the circular 1 1.12 resent normal stresses or normal and shear allo ear of square cross-	mod wable beam d. plan stress section	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of
109. 110.	a. b. c. d. A so bender a. The a. c. Two cross	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress is guare beam and a ciding moment. The rational stresses of any diaprincipal stresses shear stresses on play beams, one of circuits sections. When these both beams are equal	mple bending to be a be reula io of a be mes a lar cree beautily ecolory.	bending, the assing. Inding moment, the bending seam is inversely per beam have the weights of the square on Mohr's circle at 45° oss-section and the square are subjected conomical	e strastress ropor same lare b c. e reproduce other to be strastress to be	is maximum. tional to the section e length, same allo eam to the circular 1 1.12 resent normal stresses on normal and shear a ter of square cross- inding, square beam is mo	mod wable beam d. plan stress section	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of
109. 110. 111.	a. b. c. d. A sobenda a. The a. Two cross a. c.	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress is guare beam and a ciding moment. The rational stresses of any diaprincipal stresses shear stresses on plane beams, one of circuits-sections. When the both beams are equal circular beam is more	f a been a been a been a been a been a lar create beautily except a cre	bending, the assing. Inding moment, the sam, the bending sam is inversely per beam have the weights of the square on Mohr's circle at 45° The conservation and the same are subjected conomical conomical	e strastress ropor same lare b c. le reproduce other b. d. le other b. d. d.	is maximum. tional to the section e length, same allo eam to the circular 1 1.12 resent normal stresses on normal and shear are of square cross- inding, square beam is mo none of these	mod wable beam d. plan- stress section	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of
109. 110. 111.	a. b. c. d. A so benote a. The a. c. Two cross: a. c. The	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress is quare beam and a ciding moment. The rational stresses of any diagram of a stresses on plate beams, one of circuits sections. When the both beams are equal circular beam is more energy stored in a both stresses on plate of the stresses of th	f a been	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square of the squar	e strastress ropor same bare b. d. he oth to ber b. d. n elas	is maximum. tional to the section e length, same allo eam to the circular 1 1.12 resent normal stresses on normal and shear are of square cross- inding, square beam is mo none of these stic limit is known a	mod wable beam d. plan stress section	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of onomical
109. 110. 111.	a. b. c. d. A so bender a. The a. c. Two cross: a. c. The a.	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress is quare beam and a ciding moment. The ration $\frac{1}{2}$ extremities of any diaprincipal stresses shear stresses on plate beams, one of circuits-sections. When the both beams are equal circular beam is more energy stored in a boresilience	mple bending to be a be reula io of b. amete lar cruse beaulty ecre ecody will b.	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square	e strastress ropor same bare b. d. d. d. d. d. d. d. d. d. n. elas c.	is maximum. tional to the section e length, same allo eam to the circular 1 1.12 resent normal stresses on normal and shear are of square cross- inding, square beam is mo none of these	mod wable beam d. plan- stress section	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of
109. 110. 111.	a. b. c. d. A so bender a. The a. c. Two cross a. c. The a. The	In the theory of sir remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress in quare beam and a ciding moment. The rational stresses of any disprincipal stresses shear stresses on plate beams, one of circuits-sections. When these both beams are equal circular beam is more energy stored in a boresilience total strain energy stored.	f a bear cular io of b. amete lar crese bear ly ecody who be be conditioned by the condition of the conditi	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square	e strastress ropor same hare b. c. d. d. d. d. d. d. d. n elas c. l as	is maximum. tional to the section e length, same allo eam to the circular 1 1.12 resent normal stresses on normal and shear steer of square cross- ending, square beam is mo none of these stic limit is known a strain energy	n mod wable beam d. n plan- stress section ore ec	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of conomical impact energy
109. 110. 111. 112. 113.	a. b. c. d. A so benote a. The a. c. Two cross: a. c. The a. The	In the theory of sir remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress in quare beam and a ciding moment. The rational stresses of any diaprincipal stresses shear stresses on plate beams, one of circuits-sections. When these both beams are equal circular beam is more energy stored in a boresilience total strain energy storesilience	f a bear cular io of the bear and the control in the bear and the control in the bear and the be	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square	e strastress ropor same hare b. c. d. d. d. d. d. d. d. n elas c. l as	is maximum. tional to the section e length, same allo eam to the circular 1 1.12 resent normal stresses on normal and shear are of square cross- inding, square beam is mo none of these stic limit is known a	mod wable beam d. plan stress section	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of onomical
109. 110. 111. 112. 113.	a. b. c. d. A sobence a. The a. c. Two cross a. C. The a. At th	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress is quare beam and a citing moment. The rational stresses of any diaprincipal stresses shear stresses on plate beams, one of circuits essections. When the both beams are equal circular beam is more energy stored in a both resilience total strain energy stored in the property of the property	f a been a been a been a been a been a lar create a lar create a lar create b. b. a meter been a lar create been a lar	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square of the seam of the square of the seam of the square of	e strastress ropor same bare b. d. he oth to ber b. d. n elas c. l as c.	is maximum. tional to the section e length, same allo eam to the circular 1 1.12 resent normal stresses on normal and shear are of square cross- anding, square beam is mo none of these stic limit is known a strain energy	n mod wable beam d. n plan stress section ore ecus d.	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of onomical impact energy modulus of resilience
109. 110. 111. 112. 113.	a. b. c. d. A sobence a. The a. c. Two cross a. C. The a. At th a.	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress is quare beam and a citing moment. The rational stresses of any diaprincipal stresses shear stresses on plane beams, one of circuits sections. When the both beams are equal circular beam is more energy stored in a bore resilience total strain energy stored in the layers are subjected to the layers	mple bending to be a be a crular crustellar	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square of the square of the seam of the square	e strastress ropor same bare b. d.	is maximum. tional to the section e length, same allo eam to the circular 1.12 resent normal stresses on normal and shear are of square cross- anding, square beam is mo none of these stic limit is known a strain energy impact energy	n modewable beam d. n planestress section ore ecus d. d. d.	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of conomical impact energy modulus of resilience on minimum bending stress
109. 110. 111. 112. 113. 114.	a. b. c. d. A sobence a. The a. c. Two cross a. The a. At th a. c.	In the theory of sir remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress is quare beam and a citing moment. The rational stresses of any diaprincipal stresses shear stresses on plane beams, one of circuits sections. When the both beams are equal circular beam is more energy stored in a boresilience total strain energy stored the layers are subjected the layers are subjected to the strain energy stored in the layers are subjected the layers are subjected the layers are subjected the layers are subjected to th	f a been a been a been a been a been a lar created by the been a large a lar	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square of the squar	e strastress ropor same bare b. d.	is maximum. tional to the section e length, same allo eam to the circular 1.12 resent normal stresses on normal and shear are of square cross- anding, square beam is mo none of these stic limit is known a strain energy the layers are subjected the layers do not und	d. a mode wable beam d. a planestress section ore ecus d. d. d.	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of conomical impact energy modulus of resilience on minimum bending stress
109. 110. 111. 112. 113. 114.	a. b. c. d. A sobence a. The a. c. Two cross a. The a. At th a. c.	In the theory of six remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress is quare beam and a citing moment. The rational stresses of any diaprincipal stresses shear stresses on plane beams, one of circuits sections. When the both beams are equal circular beam is more energy stored in a bore resilience total strain energy stored in the layers are subjected to the layers	f a been a been a been a been a been a lar created by the been a large a lar	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square of the squar	e strastress ropor same bare b. d.	is maximum. tional to the section e length, same allo eam to the circular 1.12 resent normal stresses on normal and shear are of square cross- anding, square beam is mo none of these stic limit is known a strain energy the layers are subjected the layers do not und axis through its C.C.	d. a mode wable beam d. a planestress section ore ecus d. d. d.	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of conomical impact energy modulus of resilience on the same in the
109. 110. 111. 112. 113. 114.	a. b. c. d. A so bender a. The a. c. Two cross a. The a. At th a. c. The s	In the theory of sir remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress is quare beam and a ciding moment. The rational stresses of any diaprincipal stresses shear stresses on play beams, one of circular beam is more energy stored in a boresilience total strain energy stored in a boresilience ne neutral axis of a beam the layers are subjected to the layers are subjected	f a bear cular crustalar c	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square of the squar	e strastress ropor same bare b. d. d. d. e oth to ber b. d. d. as c. b. d. ut an	is maximum. tional to the section e length, same allo eam to the circular 1.12 resent normal stresses on normal and shear are of square cross- anding, square beam is mo none of these stic limit is known a strain energy the layers are subjected the layers do not und	d. planstress sections d. d. tomic descriptions d. d. d. d. d. d. d. d. d. d	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of conomical impact energy modulus of resilience on the same in the
109. 110. 111. 112. 113. 114.	a. b. c. d. A sobence a. The a. c. Two cross a. The a. At th a. c.	In the theory of sir remains plane after I Ina beam subjected the neutral axis. At the neutral axis of The bending stress is quare beam and a citing moment. The rational stresses of any diaprincipal stresses shear stresses on plane beams, one of circuits sections. When the both beams are equal circular beam is more energy stored in a boresilience total strain energy stored the layers are subjected the layers are subjected to the strain energy stored in the layers are subjected the layers are subjected the layers are subjected the layers are subjected to th	f a been a been a been a been a been a lar created by the been a large a lar	bending, the assing. Inding moment, the sam, the bending seam is inversely per beam have the weights of the square of the squar	e strastress ropor same bare b. d.	is maximum. tional to the section e length, same allo eam to the circular 1.12 resent normal stresses on normal and shear are of square cross- anding, square beam is mo none of these stic limit is known a strain energy the layers are subjected the layers do not und axis through its C.C.	d. a mode wable beam d. a planestress section ore ecus d. d. d.	al to the distance from ulus. e stress and the same is $\frac{1}{\sqrt{2}}$ es at 45° es on a plane on, have equal areas of conomical impact energy modulus of resilience on minimum bending stress

116.	Strain energy is the				
	a. energy stored in a body when strained with	nin ela	stic limits		
	b. energy stored in a body when strained up t			nen	
	c. maximum strain energy which can be store		body		
	d. proof resilience per unit volume of a mater			a .	
117.	The strain energy stored in a body, when sudd	lenly I	oaded, is the	Strai	n energy stored when
	same load is applied gradually.			1	C
110	a. equal to b. one-half	c.	twice	d.	four times
118.	Resilience is the a. energy stored in a body when strained with	in ala	etie limite		
	a. energy stored in a body when strained withb. energy stored in a body when strained upto			men	
	c. maximum strain energy which-can be store			111011	
	d. none of the above				
119.	When a beam is subjected to bending moment	the s	tress at any point i	s	the distance of the
	point from the neutral axis.	,	J 1		
	a. equal to	b.	directly proportion	al to	
	c. inversely proportional to	d.	independent of		
120.	In a beam where shear force changes sign, the b				
101	a. zero b. minimum	c.	maximum	d.	infinity
121.	The neutral axis of a transverse section of a beam				ity of the section and is
	a. in the vertical planec. in the same plane in which the beam bends	b.	in the horizontal pl at right angle to the pla		vhich the beam bands
122	*The stress induced in a body, when suddenly				
122.	load is applied gradually.	Toauc	u, is the stre	233 111	duced when the same
	a. equal to b. one-half	c.	twice	d.	four times
123.	The strain energy stored in a spring, when subjective	ected t		vithou	
	distortion, is known as				
	a. impact energy b. proof resilience		proof stress	d.	modulus of resilience
124.	The capacity of a strained body for doing work o				
105	a. strain energy b. resilience	c.	proof resilience	d.	impact energy
123.	Which of the following statement is correct? a. The energy stored in a body, when strained was a body.	within .	alactic limit ic known	na at	rain anaray
	a. The energy stored in a body, when strained vb. The maximum strain energy which can be st				
	c. The proof resilience per unit volume of a r				
	d. all of the above				
126.	*The strain energy stored in a body due to shear	stress	, is		
	a. $\frac{\tau}{2C} \times V$ b. $\frac{2C}{tV}$		$\frac{t^2}{2C} \times V$	d.	2C
	a. $\frac{\tau}{2C} \times V$ b. $\frac{2C}{tV}$	c.	$\overline{2C} \times V$	a.	$\overline{t^2v}$
	where τ = Shear stress,				
	C = Shear modulus, and				
	V = Volume of the body				
127.	A beam of uniform strength may be obtained by				
	a. keeping the width uniform and varying the				
	b. keeping the depth uniform and varying thec. varying the width and depth both	wiain			
	d. any one of the above				
128	* If the depth is kept constant for a beam of unifor	rm str	ength then its width	will	vary in proportional to
120.	a. M b. \sqrt{M}	C.	M^2	d.	M^3
	where M= Bending moment.	C.	1V1	u.	IVI
129.	A beam extending beyond the supports is called				
	a. simply supported beam	b.	fixed beam		
	c. overhanging beam	d.	cantilever beam		
130.	A beam encastered at both the ends is called				
	a. simply supported beam	b.	fixed beam		
	c. cantilever beam	d.	continuous beam		

132.	A ca	ntilever beam is one	which	ı is					
	a.	fixed at both ends			b.	fixed at one end an			
	c.	supported at its ends			d.	supported on more			
133.		naximum deflection			th <i>l</i> ca	rrying a central poi	nt loa	d W is	
	a.	$\frac{\mathrm{W}l^3}{8\mathrm{EI}}$	h	$\frac{\mathrm{W}l^3}{96\mathrm{EI}}$		$\frac{\mathrm{w}l^3}{192\mathrm{EI}}$	a	$\underline{\mathbf{w}l^3}$	
	a.	8EI	υ.	96EI	C.	192EI	u.	384EI	
134.	A be	am of uniform streng	gth ha	S					
	a.	same 'cross-section			b.	same bending stres	s at e	every section	
	c.	same bending mome	ent at	every section	d.	same shear stress a			
135.	Whe	n the shear force diag	gram i	is a parabolic curv	e bet	ween two points, it	indica	ates that there is a	
	a.	point load at the two	poin	ts	b.	no loading between	the	two points	
	c.	uniformly distribute			point			•	
	d.	uniformly varying lo							
136.	A co	ntinuous beam is one	e whic	h is					
	a.	fixed at both ends			b.	fixed at one end an	d free	e at the other end	
	c.	supported on more	than t	wo supports	d.	extending beyond t	he su	ipports	
137.	A co	ncentrated load is on				C 3		11	
	a.	acts at a point on a b							
	b.	spreads non-uniforn		er the whole leng	th of a	a beam			
	c.	spreads uniformly o	ver th	e whole length of	a bea	m			
	d.	varies uniformly over	er the	whole length of a	bean	1			
138.	The	bending moment in t	he cer	ntre of a simply si	uppor	ted beam carrying a	unif	ormly distributed lo	oac
	of w	per unit length is				, ,		•	
				wl^2		$\frac{\mathbf{w}l^2}{4}$	1	wl^2	
	a.	zero	b.	2	c.	4	a.	8	
139.	A si	mply supported bea	m is	loaded with w u	niforr	nly through out the	e len	gth of the beam T	The
		ing moment will be							
	a.	$\underline{\mathbf{w}}^{2}$	1.	$\underline{\mathbf{w}l^2}$		$\frac{\mathbf{w}l}{4}$.1	$\underline{\mathbf{w}l^2}$	
	a.	4	D.	2	C.	4	a.	8	
140.	The	bending moment dia	gram	for a simply supp	orted	beam carrying a ur	iforn	nly distributed load	of
		r unit length, will be	•					•	
	a.					an inclined line		a parabolic curve	
141.	In a s	imply supported beam			ributec	l load w per unit lengt	h, the	point of contraflexur	e
	a.	lies in the center of			b.	lies at the ends of t	he be	eam	
	c.	depends upon the le			d.	does not exist			
142.		mple supported beam							
	lengt	th of the beam is a th							is
		<u>a</u>	1.	<u>a</u>		$\frac{a}{\sqrt{3}}$.1	$a\sqrt{3}$	
	a.	$\overline{2}$	D.	$\overline{3}$	C.	$\sqrt{3}$	a.	2	
143.	The	bending moment on							
	a.	minimum				changing sign	d.	zero	
144.		n a cantilever beam i			the n	naximum compressi			t
	a.	bottom fiber	b.	top fiber	c.	neutral axis	d.	centre of gravity	
145.		n a load on the free e							
	a.	at the free end			b.	at the fixed e d			
			,			•	0	•	
	c.	in the middle of the	beam	1	d.	at a distance $\frac{2}{3}$ from	n fre	e end	
146.	A sii	mply supported bear	n carr	ies varving load	from	zero at one end and	l w a	t the other end. If	the
		th of the beam is a th							
	U	wa						wa^2	
	a.	27	b.	27	c.	$\frac{\mathrm{w}^2\mathrm{a}}{\sqrt{27}}$	d.	$\frac{\mathrm{wa}^2}{9\sqrt{3}}$	
		•		,		V ~ 1		112	
534	Λ	Quick Reference Boo	ık for	CIVII ENGINEEDIN	וני ו וני	ENGING EVARAINATI	UNI		
JJ4		QUICK NEIGIBIICE DUL	N IUI	CIVIL ENGINEERIN	ia Lib	LINGING EXAMINATION	UIV		

fixed beam

continuous beam

d.

131. A beam supported on more than two supports is called a. simply supported beam b.

overhanging beam

c.

147.		stress at which the ease in load, is called	exten	sion of the mate	erial t	akes place more q	uickl	y as compared to the
	a. Whe a. c.	elastic limit on a cantilever beam is horizontal straight lin inclined straight line	s load ne	led with concentra		ultimate point oads, the bending m vertical straight lin parabolic curve	nome	breaking point nt diagram will be a
	a.	point of contra flexur B.M. changes sign shape factor of standa	b.	B.M. is maximum		B.M. is minimum	d.	B.M. is zero
	a.		b.	1.2 to 1.25		1.3 to 1.45	d.	1.1 to 1.3
152.		th is at the free	ilever e end	beam of length <i>l</i>	carr	ying a uniformly di	stribu	ited load of w per unit
	a.	zero	b.	$\frac{\mathbf{w}l}{4}$	c.	$\frac{\mathbf{w}l}{2}$	d.	wl
153.		ratio of section modul	us of	a square section o	of side	b and that of a circu	ılar s	ection of diameter d is
	a.	$\frac{2\pi}{16}$	b.	$\frac{3\pi}{16}$	c.	$\frac{3\pi}{8}$	d.	$\frac{\pi}{16}$
154								mly distributed load of
134.		er unit length will be			_			illy distributed load of
	a.	aright angled triangle	e		b.	an isosceles triang a rectangle	le	
	c.	an equilateral triangl						
155.		ınit length is	. at th	e free end.			forml	y distributed load of w
	a.	zero	b.	$\frac{\mathbf{w}l}{4}$	c.	$\frac{\mathbf{w}l}{2}$	d.	wl
				7		2		
	a. c. The		e end oad ov cant	oment are zero at ver the whole length ilever beam of ler	the fi b. i d.	ree end of a cantiley point load at the m none of the above	iddle	
	a. c. The per u	point load at the free uniformly distributed le bending moment of a unit length is	e end oad ov cant at the	oment are zero at wer the whole length ilever beam of length if fixed end.	the fi b. n d. ngth <i>l</i>	ree end of a cantilev point load at the m none of the above and carrying a unif	orml	e of its length y distributed load of w
157.	a. c. The per u	point load at the free uniformly distributed lebending moment of a unit length is	e end oad over cant at the b.	oment are zero at ver the whole length ilever beam of length fixed end. $\frac{wl^2}{2}$	the fi b. o d. ngth l	ree end of a cantileve point load at the menone of the above and carrying a unif	orml d.	e of its length y distributed load of w $\frac{wl}{2}$
157.	a. c. The per u a. The	point load at the free uniformly distributed lebending moment of a unit length is	e end oad over cant at the b.	oment are zero at ver the whole length ilever beam of length fixed end. $\frac{wl^2}{2}$	the fi b. o d. ngth l	ree end of a cantileve point load at the menone of the above and carrying a unif	orml d.	e of its length y distributed load of w $\frac{wl}{2}$
157. 158.	a. c. The per u a. The	point load at the free uniformly distributed lebending moment of a unit length is	e end oad over cant at the b. a tria b.	oment are zero at ver the whole length ilever beam of length of fixed end. $\frac{wl^2}{2}$ ngular section (he $\frac{b^2h}{12}$	the find. b. d. nd. ngth l c. eight l	ree end of a cantilever point load at the mone of the above and carrying a unification wl , base b) about its bh^3	orml d. base i	e of its length y distributed load of w $\frac{wl}{2}$ s $\frac{b^3h}{12}$
157. 158.	a. c. The per u a. The a.	point load at the free uniformly distributed lebending moment of a unit length is	e end oad or cant at the b. a tria b.	oment are zero at ver the whole length ilever beam of length of fixed end. $\frac{wl^2}{2}$ Ingular section (he $\frac{b^2h}{12}$ cantilever beam of	the fi b. n d. ngth l c. eight l c.	ree end of a cantilever point load at the mone of the above and carrying a uniform wl and h , base b) about its h h h h and carrying a h	orml d. base i	e of its length y distributed load of w $\frac{wl}{2}$
157. 158.	a. c. The per u a. The a. The zero	point load at the free uniformly distributed lebending moment of a unit length is	e end oad over cant the b. a tria b. Cor a corunit	oment are zero at ver the whole length ilever beam of length of fixed end. $\frac{wl^2}{2}$ Ingular section (he $\frac{b^2h}{12}$ cantilever beam of	the find. n d. ngth l c. eight l c. f length end	ree end of a cantilever point load at the mone of the above and carrying a uniform wl a, base b) about its by $\frac{bh^3}{12}$ th l and carrying a gis a	d. base i d. gradu	e of its length y distributed load of w $\frac{wl}{2}$ s $\frac{b^3h}{12}$
157. 158.	a. c. The per u a. The a.	point load at the free uniformly distributed lebending moment of a unit length is	e end oad over cant the b. a tria b. Cor a corunit	oment are zero at ver the whole length ilever beam of length of fixed end. $\frac{wl^2}{2}$ Ingular section (he $\frac{b^2h}{12}$ cantilever beam of	the fi b. n d. ngth l c. eight l c.	ree end of a cantilever point load at the mone of the above and carrying a uniform where the second point load at the mone of the above and carrying a uniform where the second point load at the se	d. base i d. gradu	e of its length y distributed load of w $\frac{wl}{2}$ s $\frac{b^3h}{12}$
157. 158. 159.	a. c. The per u a. The a. The zero a. c. The s	point load at the free uniformly distributed lebending moment of a unit length is	e end oad oo cant at the b. a tria b. For a contine	oment are zero at ver the whole length ilever beam of length if the street of the str	the find. c. cight l c. f length end b. d.	ree end of a cantilever point load at the mone of the above and carrying a uniform where the same of the above and carrying a uniform where the same of the same o	d. case i d. gradu	e of its length y distributed load of w $\frac{wl}{2}$ s $\frac{b^3h}{12}$
157. 158. 159.	a. c. The per u a. The a. The zero a. c. The s	point load at the free uniformly distributed lebending moment of a unit length is	e end oad over cant the b. a tria b. Cor a continuit me tre of at the	oment are zero at ver the whole length ilever beam of length ilever beam of length of fixed end. $\frac{wl^2}{2}$ Ingular section (he bhan of length at the fixed end) a simply support centre, is	the find. c. cight l c. f length d d. d. d.	ree end of a cantilever point load at the mone of the above and carrying a uniform wl , base b) about its between $\frac{bh^3}{12}$ th l and carrying a gis a vertical straight limparabolic curver am with a gradually	d. pase i d. gradu ne	e of its length y distributed load of w $\frac{wl}{2}$ s $\frac{b^3h}{12}$ ally varying load from
157. 158. 159.	a. c. The per u a. The a. The zero a. c. The s both a.	point load at the free uniformly distributed lebending moment of a unit length is	e end oad over cant at the b. b. a tria b. or a crunit runit runit runit the b.	oment are zero at ver the whole length ilever beam of length of fixed end. $\frac{wl^2}{2}$ Ingular section (he beam of length at the fixed end) a simply support centre, is $\frac{wl}{4}$	the fib. n d. ngth l c. eight l c. f lengd end b. d. eed be	ree end of a cantilever point load at the mone of the above and carrying a uniform wl and carrying a bound $\frac{bh^3}{12}$ th l and carrying a second is a vertical straight limit parabolic curve the same with a gradually $\frac{wl}{2}$	d. d. d. d. d. d. yase i d. d. yasu	e of its length y distributed load of w $\frac{wl}{2}$ s $\frac{b^3h}{12}$ hally varying load from $\frac{wl^2}{2}$
157. 158. 159.	a. c. The per u a. The a. The zero a. c. The s both a. The	point load at the free uniformly distributed lebending moment of a unit length is	e end oad oo cant at the b. a tria b. cor a cor unit ne b. b. distributions	oment are zero at ver the whole length ilever beam of length of fixed end. $\frac{wl^2}{2}$ Ingular section (he bh 1/2) Ingular section (he length at the fixed end) a simply support centre, is $\frac{wl}{4}$ I beam of length at the fixed end, at th	the find. and. and. c. bight l c. f length d d. d. ded be c. d and d is	ree end of a cantilever point load at the mone of the above and carrying a uniform wl and a and a arrying a uniform a and a arrying a a and a arrying a a and a arrying a a arrying a a are vertical straight linear parabolic curve a arm with a gradually a arrying a a gradually a arrying a gradually a arrying a arrying a gradually a arrying	d. d. d. gradu d. d. d. y var	e of its length y distributed load of w $\frac{wl}{2}$ s $\frac{b^3h}{12}$ hally varying load from $\frac{wl^2}{2}$ ying load from zero at
157. 158. 159.	a. c. The per u a. The a. The zero a. c. The s both a. The	point load at the free uniformly distributed lebending moment of a unit length is	e end oad over cant at the b. b. a tria b. or unit tree of at the b. b. ilever	oment are zero at ver the whole length ilever beam of length of fixed end. $\frac{wl^2}{2}$ Ingular section (he bh 1/2) Ingular section (he length at the fixed end) a simply support centre, is $\frac{wl}{4}$ I beam of length at the fixed end, at th	the fib. n d. ngth l c. sight l c. f lengd end b. d. sed be c. l and	ree end of a cantilever point load at the mone of the above and carrying a uniform wl and a and a arrying a uniform a and a arrying a a and a arrying a a and a arrying a a arrying a a are vertical straight linear parabolic curve a arm with a gradually a arrying a a gradually a arrying a gradually a arrying a arrying a gradually a arrying	d. d. d. gradu d. d. d. y var	e of its length y distributed load of w $\frac{wl}{2}$ s $\frac{b^3h}{12}$ ally varying load from ying load from zero at $\frac{wl^2}{2}$ ying load from zero at i.
157. 158. 159. 160.	a. c. The per ta. The a. The zero a. c. The s both a. The fa. The fa.	point load at the free uniformly distributed lebending moment of a unit length is	e end oad oo a cant at the b. a tria b. or a crunit ne b. illever it length b. a cant at the b. a tria b. a tria b. a tria b. a cant at the b.	oment are zero at ver the whole length ilever beam of length if the street of the str	the fib. n d. ngth I c. eight I c. f lengd end b. d. eed be c. I and d is c. ength	ree end of a cantiley point load at the mone of the above and carrying a unification wl , base b) about its base b) are carrying a gradually wl and carrying a gradually wl arrying a gradually wl and carrying a gradually wl	d. d. d. gradu d. y var d. y var d end d.	e of its length y distributed load of w $\frac{wl}{2}$ s $\frac{b^3h}{12}$ ally varying load from ying load from zero at $\frac{wl^2}{2}$ ying load from zero at wl ally varying load from
157. 158. 159. 160.	a. c. The per ta. The a. The zero a. c. The s both a. The fa. The fa.	point load at the free uniformly distributed lebending moment of a unit length is	e end oad oo a cant at the b. a tria b. or a crunit ne b. illever it length b. a cant at the b. a tria b. a tria b. a tria b. a cant at the b.	oment are zero at ver the whole length ilever beam of length if the street of the str	the find. c. cight l c. f lengd end b. d. ed be c. and d is c. ength d end	ree end of a cantiley point load at the mone of the above and carrying a unification wl , base b) about its base b) are carrying a gradually wl and carrying a gradually wl arrying a gradually wl and carrying a gradually wl	d. d. gradu d. d. gradu d. d. tolerate denoted d. traduaxed e	e of its length y distributed load of w $\frac{wl}{2}$ s $\frac{b^3h}{12}$ ally varying load from ying load from zero at $\frac{wl^2}{2}$ ying load from zero at wl ally varying load from

163.		ratio of moments of llel to its base is	f inert	tia of a triangular	sect	ion about its base	and a	bout a centroidal axis
	-	1.0	b.	3.0	c.	1.5	d.	2.5
164.			nomei	nt of a simply sup	porte	d beam of span/and	d carr	ying a point load W a
		centre of beam, is		****				*****
	a.	$\frac{\mathbf{W}l}{4}$	b.	$\frac{Wl}{2}$	c.	Wl	d.	$\frac{Wl^2}{4}$
165		·		=				-
105.	a.	bending moment dia aright angled triang		ioi a simpiy supp	b.	an issoscles triang		E 18
	c.	an equilateral triang			d.	a rectangle	,ic	
166.				aterial is stressed		• *	he ter	nsile strain a
		pared to the stress.			5			
	a.	decreases slowly				increases slowly		
	c.	·				increases more qu		
167.		product of Young's i						
160	a.	modulus of rigidity	b.	bulk modulus	C.	flexural rigidity	d.	torsional rigidity vertical. The maximun
100.		r stress will develop			iai iis	one of its diamete	51 15 V	ertical. The maximum
						2		2/3
	a.	$\frac{2\sqrt{3}}{4}$	b.	$\frac{3\sqrt{2}}{4}$	c.	$\frac{2}{\sqrt{2}}$	d.	$\frac{\sqrt{3}}{4}$
160						Y		formly distributed load
109.		per unit length, is	iitei o	i a simply support	.cu be	ani can ying a rate	a uiiii	ioning distributed load
	01 11			wl^2		$\frac{\underline{\mathbf{w}}\underline{l}^2}{4}$		wl
	a.	zero	b.	2	c.	4	d.	8
170	The	ratio of the deflection	na of	the free and of a	aanti1	arran dua ta an isal	otod 1	and at $\frac{1}{2}$ rd and $\frac{2}{2}$ rd a
1/0.	The	ratio of the deflectio	ns oi	the free end of a	canui	ever due to an ison	ated 10	oad at $\frac{1}{3}$ rd and $\frac{2}{3}$ rd o
	the s	span is				_		
	a.	1 -	b.	$\frac{2}{5}$	C.	$\frac{3}{7}$	d.	$\frac{2}{5}$
171		,		,		,		
1/1.		anit length is	ius oi	a simply support	ea be	am carrying a unii	ormiy	distributed load of v
	a.	zero at its both ends	.		b.	wl at one end and	– wl a	at the other end
		zero at its both ends $\frac{wl}{2}$ at one end and -	wl		1	wl^2	, W	l^2
	c.	$\frac{1}{2}$ at one end and -	$-\frac{1}{2}$ a	t the other end	d.	$\frac{1}{2}$ at one end and	$d-\overline{2}$	at the other end
172.			for a	simply supported	beam	carrying a uniform	nly dis	stributed load of w pe
		length, consists of	,		1			
	a.	one right angled tria			b.	two right angled to		
173	C. The	one equilateral trian				two equilateral tri		s ntral load w and of a
1/3.		ilever of same length					tii CCi	ilitai load w alid of t
		1		4		1		1
	a.	8	b.	10	c.	12	d.	14
174.								entical beam B carrie
				istributed over the	e enti	re span. The ratio of	of the	maximum deflection
	of th	e beam A & B, will		0		2		5
	a.	$\frac{2}{3}$	b.	<u>8</u>	c.	$\frac{3}{2}$	d.	$\frac{3}{8}$
175	Ina	2		3		4		beam is isotropic. This
175.		mption means that th		e or the assumption	J113 13	that the material of	i tiic t	beam is isotropic. Time
	a.	normal stress remains		ant in all directions	b.	normal stress varies	linear	ly in the material
	c.	elastic constants are sa	ame in	all the directions	d.	elastic constants var	ies lin	early in the material
176.		e section modulus of						
	a.	not change	b.	increase	c.	decrease d.	Ren	nains constant
536		A Quick Reference Boo	nk for	CIVII FNGINFFRIN	ום ו וח	ENSING FXAMINAT	ION	

	'the a. c. A si Ano	percentage reduction in the material A is more the ductility of materia mply supported bean ther beam 'B' has the	n area ductil l A ar n 'A' e sam	of a specimen wite than material B and B is equal of length <i>l</i> , breate length and dept	th sam b. d. adth b	the material B is mo the material A is bri o, and depth d carr	of mare ductile and ries a	tensile test is 60% and terial 'B' is 40%, then tile than material A d material B is ductile central point load W. The deflection of beam
179.	a. A si bean	n 'B' of the same dim	b. n 'A' nensio	one-half of length <i>l</i> , breach ons carries a centr				four times ntral load W. Another ection of beam 'B' will
	a.	as that of bear one-fourth	n A b.		0	double	d.	four times
180								uniformly distributed
100.		the whole length is	or a	naca ocam or ici	iigiii i	carrying a total to	aa w	difformity distributed
	0,01	wl^3		wl^3		wl^3		wl^3
	a.	$\frac{\mathrm{w}l^3}{48\mathrm{EI}}$	b.	96EI	c.	192EI	d.	384EI
181.	The	maximum deflection	of a f	ixed beam carrying	ng a c	entral point load lie	es at	
		fixed ends		-		centre of beam		
	0	$\frac{l}{3}$ from fixed ends			d	none of these		
		2			u.	none of these		
182.		point of contra flexur		point where	_		_	
	a.	shear force changes				bending moment of		
102	C.	shear force is maxim		4 1 1	d.	bending moment i		
183.		en shear force at a poi						
19/	a.	zero uss containing j joints	b.			maximum	d.	infinity
104.	a.	m = 2j-3	h	i = 2m = 3	Simpi	m = 3i - 2	d	i = 3m - 2
185.								en any two points, it
		cates that there is a						, p,
	a.	point load at the two po			b.	no loading between	the tw	o points
	c.	uniformly distributed loa		veen the two points	d.	uniformly varying lo	oad bet	tween the two points
186.					simp	le trusses of a com	pound	I truss. The compound
		will be rigid and dete	ermir	ate if			1	
107	a.	$m = m_1 + m_2$ forces in the member					d.	$m = m_1 + m_2 + 3$
10/.	a.	graphical method	8 01 a h	method of joints	ay be	method of section	e d	All of above
188		section modulus of a	circu	lar section about a	o. an axi	s through its C.G.	s u. is	All of above
100.	1110	d ²	CIICU	d ²	all uzti	d^2	15	d^3
	a.	$\pi \frac{d^2}{4}$	b.	$\pi \frac{\pi}{16}$	c.	$\pi \frac{d^2}{16}$	d.	$\pi \frac{a}{32}$
189.	Whi	ch of the following st	atem	ent is correct?				
	a.	A continuous beam l			at the	ends.		
	b.	A uniformly distribu	ted lo	oad spreads unifor	mly o	over the whole leng	th of	a beam.
	c.	The bending momen						
	d.		ing r	noment of a simp	oly su	pported beam of le	ength	/ with a central point
100		load W is $Wl/8$.	.1		•			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
190.				1 l supported at	its tv	vo ends carries a	centra	al point load W. The
		imum deflection occu at the ends	ırs		b.	at <i>l</i> /3 from both er	da	
	a. c.	at the centre			d.	none of these	ius	
191			l to a	bending moment				. the distance from the
1/1.	neut	ral axis.	u	canama moment	,	u iuyoi 15	•••••	distance mom the
	a.	equal to			b.	directly proportion	nal to	
	c.	inversely proportion	al to		d.	independent of		

- 192. *The point of contra flexure occurs in
 - cantilever beams

simply supported beams

c. overhanging beams d. fixed beams

- 193. The bending moment at a section tends to bend or deflect the beam and the internal stresses resist its bending. The resistance offered by the internal stresses, to the bending, is called
 - compressive stress a.

shear stress b.

bending stress c.

d. elastic modulus

- 194. The assumption, generally, made in the theory of simple bending is that
 - the beam material is perfectly homogenous and isotropic
 - the beam material is stressed within its elastic limit b.
 - the plane sections before bending remain plane after bending c.
 - all of the above
- 195. If D and d are external and internal diameters of circular shaft respectively, its polar moment of

a.
$$\frac{\pi}{2} (D^4 - d^4)$$

b. $\frac{\pi}{4} (D^4 - d^4)$ c. $\frac{\pi}{64} (D^4 - d^4)$ d. $\frac{\pi}{32} (D^4 - d^4)$

- 196. In a simple bending of beams, the stress in the beam varies
 - linearly

parabolically

hyperbolically c.

- d. elliptically
- 197. In a simple bending theory, one of the assumptions is that the plane sections before bending remain plane after bending. This assumption means that
 - stress is uniform throughout the beam
 - b. strain is uniform throughout the beam
 - stress is proportional to the distance from the neutral axis c.
 - strain is proportional to the distance from the neutral axis
- 198. The greatest load which a spring can carry without getting permanently distorted is called
 - stiffness
- proof resilience c.
- proof stress

	Misweis													
1.c	2.d	3.d	4.d	5.b	6.b	7.d	8.b	9.a	10.b	11.b	12.b	13.d	14.a	15.b
16.d	17.c	18.d	19.c	20.b	21.c	22.b	23.c	24.c	25.b	26.d	27.c	28.a	29.a	30.a
31.c	32.b	33.c	34.d	35.d	36.a	37.c	38.b	39.a	40.b	41.b	42.d	43.c	44.d	45.a
46.b	47.d	48.a	49.a	50.b	51.a	52. c	53. c	54.a	55.d	56.b	57.c	58.c	59.d	60.b
61.a	62.a	63.b	64.c	65.c	66.c	67.b	68.d	69.c	70.c	71. d	72.c	73.d	74.c	75.b
76.c	77.c	78.b	79.d	80.a	81.a	82.d	83.b	84.b	85.a	86.a	87.b	88.a	89.d	90.a
91.d	92.b	93.c	94.c	95.d	96.a	97.c	98.c	99.b	100.b	101.c	102.b	103.a	104.c	105.d
106.b	107.d	108.c	109.c	110.b	111.b	112.c	113.a	114.d	115.d	116.a	117.d	118.d	119.b	120.c
121.d	122.c	123.b	124.b	125.d	126.c	127.d	128.a	129.c	130.b	131.d	132.b	133.c	134.b	135.d
136.c	137.a	138.d	139.d	140.d	141.d	142.c	143.c	144.a	145.b	146.d	147.b	148.c	149.d	150.a
151.a	152.a	153.b	154.a	155.a	156.c	157.a	158.c	159.d	160.a	161.c	162.d	163.b	164.a	165.b
166.d	167.c	168.b	169.a	170.b	171.c	172.b	173.a	174.b	175.c	176.c	177.a	178.b	179.c	180.d
181.b	182.b	183.c	184.a	185.a	186.d	187.d	188.d	189.b	190.c	191.b	192.c	193.c	194.d	195.d
196.a	197.d	198.d												