- 1 Two groups are equivalent if they are isomorphic. In the list below, find all the equivalence classes, with explanations as to why the equivalence classes are distinct:
 - a. $\mathbb{Z}/4\mathbb{Z}$
 - b. $\mathbb{Z}/24\mathbb{Z}$
 - c. $\mathbb{Z}/4Z \times \mathbb{Z}/6\mathbb{Z}$
 - d. $\mathbb{Z}/2Z \times \mathbb{Z}/4\mathbb{Z}$
 - e. $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$
 - f. $(\mathbb{Z}/10\mathbb{Z})^{\times}$
 - g. $(\mathbb{Z}/9\mathbb{Z})^{\times}$
 - h. $(\mathbb{Z}/5\mathbb{Z})^{\times} \times (\mathbb{Z}/3\mathbb{Z})^{\times}$
 - i. D_6
 - j. The subgroup of rotations in D_6

Solution We'll group the classes by cardinality, and then determine which groups are isomorphic to it.

$$|G| = 4$$
:

The groups here are (a) and (f).

We map the elements as follows: $\varphi(0) = 1$, $\varphi(1) = 7$, $\varphi(2) = 9$, and $\varphi(3) = 3$. Notice that both sets are abelian, so we only need to check the following:

$$\varphi(1+2) = 7 = 1 \times 7 = \varphi(0) \times \varphi(1)$$

$$\varphi(1+3) = 1 \equiv 7 \times 3 \mod 10 = \varphi(1) \times \varphi(3)$$

$$\varphi(2+3) = 7 \equiv 9 \times 3 \mod 10 = \varphi(2) \times \varphi(3),$$

so
$$\mathbb{Z}/4\mathbb{Z} \simeq (\mathbb{Z}/10\mathbb{Z})^{\times}$$
.

$$|G| = 6$$
:

The groups here are (g) and (j).

Notice that 2 has order 6, so (g) is cyclic. (j) is also cyclic, so we can simply take the map $2^n \mapsto r^n$, where r is a rotation by $\pi/6$, which is clearly an isomorphism. Hence, $(\mathbb{Z}/9\mathbb{Z})^{\times} \simeq \text{rotations in } D_6$.

$$|G| = 8$$
:

The groups here are (d) and (h).

Notice that $(\mathbb{Z}/5\mathbb{Z})^{\times} = \langle 2 \rangle$ and $(\mathbb{Z}/3\mathbb{Z})^{\times} = \langle 2 \rangle$, so they are cyclic, which means that they are isomorphic to $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z}$, respectively. Thus, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \simeq (\mathbb{Z}/5\mathbb{Z})^{\times} \times (\mathbb{Z}/3\mathbb{Z})^{\times}$.

$$|G| = 12$$
:

The only group here is (i), so there is nothing to be said.

$$|G| = 24$$
:

The groups here are (b), (c), and (e).

By the Chinese remainder theorem, $\mathbb{Z}/6\mathbb{Z} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, so $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

The order of elements in $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$ must lie in $\{1,2,4\}$ and $\{1,2,3,6\}$, respectively. Then the order of $\mathbb{Z}/4\mathbb{Z} \simeq \mathbb{Z}/6\mathbb{Z}$ is given by the largest least common multiple of any of these, which is 12.

Thus, $Z/24\mathbb{Z}$ and $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ cannot be isomorphic, since $Z/24\mathbb{Z}$ has an element of order 24, namely 1. Since $\mathbb{Z}/6\mathbb{Z} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, we know that $\mathbb{Z}/24\mathbb{Z}$ is not isomorphic to either of them.

- **2** Give examples of each of the following with justification:
 - a. A non-abelian group with a proper non-abelian subgroup.
 - b. A non-abelian group of order 10.
 - c. A group of order 8 so that every element has order 2 or 1.
 - d. A group so that the only element that commutes with every element of the group is the identity.
 - e. A homomorphism of groups which is surjective but not injective.
- **Solution** a. The symmetries of D_6 where we keep 1 fixed, which we'll call D_6^1 . D_6 is non-abelian, and D_6^1 is clearly a proper subset of D_6 . D_6^1 is also a group since composing these permutations and inverting permutations keep 1 fixed.
 - b. D_5 , the symmetries of a pentagon. We have 5 choices for $D_5(i)$, 2 choices for $D_5(i+1)$, and the rest of the map is fixed, so it has order 10. It is also abelian since a flip and a rotation don't commute in general.
 - c. $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and the proof is in problem (5).
 - d. $\{e\}$, the trivial group.
 - e. $\varphi \colon \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$, $[n]_4 \mapsto [n]_2$. This is clearly surjective, but not injective, since $\varphi([0]_4) = \varphi([2]_4) = [0]_2$.
 - 3^{**} Suppose G is a finite group and that H and H' are conjugate subgroups. Show that

$$|H| = |H'|,$$

where |H| is the number of elements in H.

Solution Since H and H' are conjugate, we know that there exists $g \in G$ such that $H' = gHg^{-1}$.

If g = e, then it follows that H = H', so they clearly have the same number of elements.

Otherwise, we can define a bijection as follows: $\varphi \colon H \to H'$, $\varphi(h) = ghg^{-1}$. It is one-to-one since

$$qhq^{-1} = qh'q^{-1} \implies h = q^{-1}qhq^{-1}q = h'.$$

Moreover, it is onto, since if $h' \in H'$, then by definition, there exists $h \in H$ such that $h' = ghg^{-1} = \varphi(h)$, so φ is a bijection. Hence, |H| = |H'|.

- 4 Suppose G is a finite group and $H \subseteq G$ is a subgroup of index 2. Show for any $g \in G$, that $gHg^{-1} = H$. Hint: Look at the left and right cosets of H.
- **Solution** Since H is a subgroup of index 2, it has one distinct left coset aH. Similarly, it has a distinct right coset Hb. Since H together with its cosets partition G, we must have that aH = Hb, i.e., the left coset and right coset of H are the same.

Let $g \in H$. Then gH = H and Hg = H, since H is a subgroup, so $gH = Hg \implies H = g^{-1}Hg$.

If $g \in G \setminus H$, then $gH \neq H$ and $Hg \neq H$, so $gH = Hg \implies H = g^{-1}Hg$.

5 Classify all groups of order 8 up to isomorphism. You should show that any group show that any group of order 8 is one of the groups you know and love. *Hint*: Look at Elman 8.5.3.

Solution Let G be a group with order 8.

Since G is a group, by Lagrange's theorem, the order of any element must be among $\{1, 2, 4, 8\}$.

 $\exists a \in G \text{ such that } \operatorname{ord}(a) = 8$:

In this case, $\langle a \rangle = G$, so G is cyclic. Thus, $G \simeq \mathbb{Z}/8\mathbb{Z}$.

 $\exists a \in G \text{ such that } \operatorname{ord}(a) = 4$:

 $\exists b \in G \setminus \langle a \rangle$ with ord(b) = 2:

In this case, $|\langle a \rangle| = 4$, and if $a^n \in \langle a \rangle$, then $ba^n \notin \langle a \rangle$. Indeed, if $ba^n = a^m$, then $b = a^m a^{-n} \in \langle a \rangle$.

Moreover, bab^{-1} is a permutation of $\langle a \rangle$. There are only two isomorphisms from $\langle a \rangle$ to itself: the identity permutation and the permutation $a \mapsto a^3$. $a \mapsto a^2$ doesn't work because a has order 4 whereas a has order 2.

 bab^{-1} is the identity permutation:

In this case, we see that $b^2a = ab^2 = bab = a$. Thus, the elements can be written in the form a^nb^m , with $n \in \{0, 1, 2, 3\}$ and $m \in \{0, 1\}$, so we see that $G \simeq \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

 bab^{-1} is the permutation $a \mapsto a^3$:

Then $bab^{-1} = a^3$, so we see that

$$G = \langle a, b \mid a^4 = 1, b^2 = 1, bab^{-1} = a^3 \rangle = D_4,$$

so in this case, $G \simeq D_4$.

 $\exists b \in G \setminus \langle a \rangle \text{ with } \operatorname{ord}(b) = 4$:

The same argument as above holds here, but with $b^4 = 1$. Hence, $G \simeq Q_8$.

All elements of G have order 2:

In this case, G is abelian, indeed, for all $a, b \in G$, we have abba = e = ab(ab), so we see ba = ab.

Pick $a \in G$. Then $|\langle a \rangle| = 2$.

Pick $b \in G \setminus \langle a \rangle$. Then $|\langle a, b \rangle| = 4$. Indeed, $\langle a, b \rangle = \{e, a, b, ab\}$ because G is abelian.

Pick $c \in G \setminus \langle a, b \rangle$. Then $|\langle a, b, c \rangle| = 8$ for the same reason above. Since G is abelian, given $a^{\ell}b^{m}c^{n}$ and $a^{x}b^{y}c^{z}$,

$$(a^{\ell}b^{m}c^{n})(a^{x}b^{y}c^{z}) = a^{\ell+x}b^{m+y}c^{n+z},$$

which is the same thing as addition in $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. The representation of an element in $\langle a, b, c \rangle$ gives a natural bijection to the group, so we get $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

6 In D_6 , let r be a rotation. Let H be the subgroup $\{e, r^2, r^4\}$. List all the left cosets in G/H.

Solution The left cosets are the following:

$$\begin{split} H &= \{e, r^2, r^4\} \\ rH &= \{r, r^3, r^5\} \\ fH &= \{f, fr^2, fr^4\} \\ rfH &= \{rf, rfr^2, rfr^4\}. \end{split}$$

We know that these are all the cosets since the left cosets of H partition D_6 , so since $|D_6| = 12$, H has $|D_6|/|H| = 4$ cosets.

10.16.2** Let G be a group of order p^n where p is a prime and $n \ge 1$. Prove that there exists an element of order p in G.

Solution We will prove this by strong induction.

Base step:

Let G be a group of order p. By a corollary of Lagrange's theorem, $g^{|G|} = g^p = e$ for any $g \in G$. Thus, given an element g, its order must divide p. Since p is prime, g has either 1 or p. Since g has more than one element, we pick an element that is not the identity, and that element has order p.

Inductive step:

Suppose that the conclusion is true for groups of order p, p^2, \ldots, p^n . We wish to show that these imply that it holds for groups of order p^{n+1} .

Let G be a group of order p^{n+1} . By a corollary of Lagrange's theorem, for all $g \in G$, $g^{p^{n+1}} = e$. Since p is prime, $\operatorname{ord}(g) \mid p^n \implies \operatorname{ord}(g) \in \{1, p, \dots, p^{n+1}\}$.

Pick any element g other than the identity element.

If ord(g) = p, then we're done.

If $\operatorname{ord}(g) = p^{n+1}$, then g^{p^n} has order p, indeed, $(g^{p^n})^p = g^{p^{n+1}} = e$. Its order cannot be less than p because otherwise, it would have order 1, which is a contradiction since we assumed $p \neq e$.

Otherwise, if $\operatorname{ord}(g) = p^{\ell}$ for some $2 \leq \ell \leq n$, consider $\langle g \rangle \subseteq G$, which has order p^{ℓ} , so it has an element g' of order p in $\langle g \rangle$, by the inductive hypothesis. This means that it has order p in G also, so the inductive step holds.

By induction, a group of order p^n has an element of order p.

10.16.4 Let H and K be subgroups of the group G.

Let $HK := \{hk \mid h \in H, k \in K\}$. Then (clearly) $H/(H \cap K)$ is a subset of $G/(H \cap K)$ and HK/K is a subset of G/K. Show that $f: H/(H \cap K) \to HK/K$ by $h(H \cap K) \mapsto hK$ is a well-defined bijection.

Solution Let $h, h' \in H$ so that hH = h'H. Then $h(H \cap K) \mapsto hK$ and $h'(H \cap K) \mapsto h'K$. We want to show that hK = h'K.

Since $h(H \cap K) = h'(H \cap K)$, there exists $g, g' \in H \cap K$ such that $hg = h'g' \implies h = h'g'g^{-1}$. Then if $k \in K$.

$$hK \ni hk = h'(q'q^{-1}k) \in h'K$$
,

since $q, q' \in K$. So, $hK \subseteq h'K$, and similarly, $h'K \subseteq hK$. Thus, hK = h'K, so the map is well-defined.

We'll now show injectivity:

Let $hK, h'K \in HK/K$ with hK = h'K. Since $H \cap K \subseteq K$, $h(H \cap K) = h'(H \cap K)$, so injectivity holds.

Surjectivity is clear: for every $hK \in HK/K$, $h(H \cap K) \mapsto hK$.

Thus, the map is a well-defined bijection.

10.16.6** Let H and K be subgroups of the group G.

If $K \subseteq H \subseteq G$, show that [G:K] = [G:H][H:K] (even if any are infinite if read correctly).

Solution Assume that G is finite.

By Lagrange's theorem, |G| = |K|[G:K] and |G| = |H|[G:H].

Similarly, $K \subseteq H$, so K is a subgroup of H. Hence, |K| = |H|[K:H]. Thus,

$$|H|[G:H] = |K|[G:K] = |H|[K:H][G:K] \implies [G:H] = [K:H][G:K],$$

by cancelling out |H|.

10.16.11 Prove that a group of order 30 can have at most 7 subgroups of order 5.

Solution We first prove the following fact: If K and H are subgroups of G with order 5, then $K \cap H = \{e\}$ or they are the same.

Suppose $K \neq H$, but $K \cap H$ contains an element $g \neq e$. Then g has either order 5 or order 1, by Lagrange's theorem. $g \neq e$, so g must have order 5, but this implies that $|\langle g \rangle| = |H| = |K| = 5$, which means that $\langle g \rangle = H = K$. This is a contradiction, as we assumed $H \neq K$, so their intersection must be $\{e\}$.

This fact tells us that a subgroup contains e and 4 other elements that are not in any other subgroup.

If the group G has 8 subgroups of order 5, then this implies that G has $1+8\cdot4>30$ elements, so 8 subgroups is not possible.

On the other hand, if G has 7 subgroups, then they make up $1 + 7 \cdot 4 = 29 < 30$ elements, which is possible. Any smaller number of subgroups is possible.