Technical University of Denmark

Technical University of Denma	rk
-------------------------------	----

Written examination, December 10, 2019

Page 1 of 10 pages

Course title: Mathematical Software Programming

Course number: 02635

Aids allowed: All aids allowed

Exam duration: 4 hours

Weighting: 80/100

Final exam Mathematical Software Programming

This exam contains a total of 16 questions: 12 multiple choice questions (questions 1–12) and 4 programming questions (questions 13–16). Your exam answers to the multiple choice questions must be submitted electronically as a PDF document, and you code must be attached (e.g., as a **ZIP file**).

- 1. (4 points) The unit round-off for double precision floating point numbers is $u = 2^{-53}$.
 - (a) The unit round-off u can be represented as a double precision floating point number.
 - A. True
 - B. False
 - (b) The number 1+u can be represented as a double precision floating point number.
 - A. True
 - B. False
- 2. (4 points) Consider the real-valued function $f(x) = ax^2 + bx + c$ where $a, b, c, x \in \mathbb{R}$.
 - (a) What is the relative condition number of f?

A.
$$c_f(x) = \frac{|ax^2 + bx + c|}{|2ax + b|}$$

B.
$$c_f(x) = \frac{|2ax+b|}{|ax^2+bx+c|}$$

C.
$$c_f(x) = \frac{|2ax^2 + bx|}{|ax^2 + bx + c|}$$

B.
$$c_f(x) = \frac{|2ax+b|}{|ax^2+bx+c|}$$

C. $c_f(x) = \frac{|2ax^2+b|}{|ax^2+bx+c|}$
D. $c_f(x) = \frac{|ax^2+bx+c|}{|2ax^2+bx|}$

- (b) Suppose a = 1, b = 4, and c = 4. For what values of x is the problem of evaluating f(x) ill-posed?
 - A. When x = 0.
 - B. When x = -1.
 - C. When x = -2.
 - D. When $x \in \{-2, 0\}$.

- 3. (6 points) Let $f(x) = \log(1+x)$ where x is a positive real number.
 - (a) The relative condition number of f is given by

A.
$$c_f(x) = \left| \frac{1}{x \log(1+x)} \right|$$

B. $c_f(x) = \left| \frac{1}{(1+x)\log(1+x)} \right|$
C. $c_f(x) = \left| \frac{1+x}{x \log(1+x)} \right|$
D. $c_f(x) = \left| \frac{x}{(1+x)\log(1+x)} \right|$

- (b) What can be said about the relative condition number of f when |x| is close to 0?
 - A. $c_f(x)$ is close to 0
 - B. $c_f(x)$ is close to 1
 - C. $c_f(x)$ is much larger than 1
- (c) Consider the following implementation of the function $f(x) = \log(1+x)$:

```
#include <math.h>
double fun(double x) {
   return log(1.0+x);
}
```

This implementation may result in a large relative error when |x| is close to 0. Why?

- A. The condition number of log(x) is large when x is close to 1.
- B. The sum 1 + x is prone to catastrophic cancellation when |x| is close to 0.
- C. The sum 1+x may underflow when |x| is close to 0.

4. (4 points) The Chebyshev polynomials of the first kind can be defined recursively as

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x), k = 2, 3, ...$

- (a) What kind of recursion is this?
 - A. single recursion
 - B. multiple recursion
- (b) What is the complexity associated with the following implementation?

```
double T(double x, unsigned int k) {
  if (k==0) return 1.0;
  if (k==1) return x;
  return 2*x*T(x,k-1)-T(x,k-2);
}
```

- A. O(k) space and O(k) time
- B. $O(2^k)$ space and O(k) time
- C. O(k) space and $O(2^k)$ time
- D. $O(2^k)$ space and $O(2^k)$ time
- 5. (4 points) Suppose the variable A represents a two-dimensional array of size $m \times n$. Consider the following code segment:

```
for (int i=0; i<m; i++) {
  for (int j=0;j<n; j++) {
    y[i] += A[i][j]*x[j];
  }
}</pre>
```

- (a) References to y[i] are temporally local.
 - A. True
 - B. False
- (b) References to the array represented by x are spacially local.
 - A. True
 - B. False

6. (6 points) The theoretical improvement in speed of execution of a task executed on p processors can be expressed as

$$S(p) = \frac{T(1)}{T(p)} = \frac{fT(1) + (1 - f)T(1)}{(f/p)T(1) + (1 - f)T(1)}$$

where T(p) is the execution time on p processors (real time) and f is the so-called parallel fraction of the task. For example, if 50% of a task can be parallelized, then f = 0.5.

Suppose that a specific task consists of two subtasks. The first subtask retrieves data from a file; it takes 20 seconds to execute on a given system, and it cannot be parallelized. The second subtask processes a large number of data records; it takes 60 seconds to execute sequentially. Each data record can be processed independently, so the second subtask is easily parallelized.

- (a) What is the parallel fraction of the task consisting of the two subtasks?
 - A. f = 1/4
 - B. f = 1/3
 - C. f = 3/4
 - D. f = 4/5
- (b) What is the theoretical speedup for p = 9 processors?
 - A. 3
 - B. 4
 - C. 6
 - D. 9
- 7. (2 points) Memory leaks are possible in C but not in C++.
 - A. True
 - B. False
- 8. (2 points) The operator :: in C++ (e.g. std::cout) is referred to as the
 - A. member access operator
 - B. scope resolution operator
 - C. namespace operator
 - D. function operator

9. (4 points) The following plot shows the CPU time required by some algorithm to solve a certain problem as a function of its dimension n.

What is the time complexity of the algorithm?

- A. O(n)
- B. $O(n^{3/2})$
- C. $O(n^2)$
- D. $O(2^n)$

10. (4 points) Consider the following function:

```
double * ones(size_t n) {
    double *arr = malloc(n*sizeof(*arr));
    if (arr != NULL) {
        for (size_t k=0; k<n; k++)
            arr[k] = 1.0;
    }
    return arr;
}</pre>
```

- (a) What kind of memory allocation is used to allocate what arr points to?
 - A. Automatic memory allocation
 - B. Dynamic memory allocation
- (b) What kind of memory allocation is used to allocate the pointer arr?
 - A. Automatic memory allocation
 - B. Dynamic memory allocation

11. (4 points) Suppose the matrix

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \end{bmatrix}$$

is stored as a one-dimensional, row-major double array of length 12.

The elements of an array of double-precision floating-point numbers can be scaled using the CBLAS routine cblas_dscal() which has the following prototype:

Now suppose pA is a pointer to A_{11} (i.e., pA is a double *).

- (a) Which of the following calls to cblas_dscal() scales the elements A_{22} , A_{23} , and A_{24} by -1?
 - A. $cblas_dscal(3,-1.0,pA+4,1)$
 - B. $cblas_dscal(3,-1.0,pA+4,3)$
 - C. cblas_dscal(3,-1.0,pA+4,4)
 - D. cblas_dscal(3,-1.0,pA+5,1)
 - E. cblas_dscal(3,-1.0,pA+5,3)
 - F. $cblas_dscal(3,-1.0,pA+5,4)$
- (b) Consider the following cblas_dscal() call:

```
cblas_dscal(4,2.0,pA+1,2);
```

Which elements of A are being scaled by a factor of 2?

- A. $A_{11}, A_{13}, A_{21}, A_{23}$
- B. $A_{12}, A_{14}, A_{22}, A_{24}$
- C. $A_{21}, A_{12}, A_{32}, A_{23}$
- D. $A_{11}, A_{31}, A_{22}, A_{13}$
- 12. (2 points) Cache memory is slower than main memory.
 - A. True
 - B. False

13. (8 points) Implement a function that performs the matrix-vector multiplication

$$y \leftarrow A^T x + y$$

where A is a sparse matrix of size $m \times n$ in triplet form, and $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$ are vectors.

Requirements

• Your function must have the following prototype:

```
void sparse_triplet_mv_trans(
    const struct sparse_triplet *A,
    const double *x,
    double *y);
```

You may assume that all inputs are valid.

• The sparse matrix A should be stored using the sparse triplet format represented by the following data structure:

The header file sparse_triplet.h in the ZIP file attached to the exam defines the sparse_triplet data structure. You do not need to include this header file when you submit your solution.

• Use the template sparse_triplet_mv_trans.c for your implementation. The template is included in the ZIP file attached to the exam.

14. (8 points) The Poisson distribution is a discrete probability distribution with probability mass function

$$f(k;\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}, \qquad k \in \mathbb{N}_0,$$

where the parameter $\lambda > 0$ is the so-called rate. Implement a function that evaluates $f(k; \lambda)$.

Requirements

• Your function must have the following prototype:

```
double poisson_pmf(unsigned long k, double lambda);
```

- The function should return NAN if λ is not positive.
- Use the template poisson_pmf.c for your implementation. The template is included in the ZIP file attached to the exam.
- 15. (8 points) The centering matrix of order n is given by

$$C = I - \frac{1}{n} \mathbf{1} \mathbf{1}^T$$

where I is the $n \times n$ identity matrix and $\mathbf{1}$ is the vector of length n whose entries are all equal to 1. For example, the centering matrix of order 3 is the matrix

$$C = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}.$$

Implement a function that computes $x \leftarrow Cx$, i.e., the function should overwrite a vector $x \in \mathbb{R}^n$ by the matrix-vector product Cx.

Requirements

• The function must have the following prototype:

```
int dcemv(int n, double * x);
```

The input n is the order of the matrix C, and x is a pointer to the first elements of an array of length n that represent the vector x.

- The function should return the value -1 in case of an error or invalid input, and otherwise it should return the value 0.
- Use the template dcemv.c for your implementation. The template is included in the ZIP file attached to the exam.

16. (10 points) Consider the system of equations

$$\begin{bmatrix} c & -s \\ s & c \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} r \\ 0 \end{bmatrix} \tag{1}$$

where $r \ge 0$, $c = \cos(\theta)$, and $s = \sin(\theta)$ for some $\theta \in [0, 2\pi]$. It is easy to check that a, b must satisfy

$$\begin{bmatrix} a \\ b \end{bmatrix} = r \begin{bmatrix} c \\ -s \end{bmatrix},$$

and hence $r = \sqrt{a^2 + b^2}$. It follows that if r > 0, then c = a/r and s = -b/r (the angle θ can be chosen arbitrarily when r = 0, e.g., c = 1 and s = 0).

(a) Implement a function that takes a and b as inputs and computes c and s such that a and b satisfies (1).

Requirements

• Your function must have the following prototype:

The inputs c and s point to the locations where c and s should be stored. You may assume that all inputs are valid.

- Use the template rotg.c for your implementation. The template is included in the ZIP file attached to the exam.
- (b) Implement a function that applies the transformation

$$\begin{bmatrix} x_i \\ y_i \end{bmatrix} \leftarrow \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix}, \qquad i = 1, \dots, n,$$

where $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ are vectors of length n, and $c = \cos(\theta)$ and $s = \sin(\theta)$ for some $\theta \in [0, 2\pi]$.

Requirements

• Your function must have the following prototype:

```
int rot(double c, double s, int n, double * x, double * y);
```

The input \mathbf{n} is the length of the vectors x and y. The inputs \mathbf{x} and \mathbf{y} are pointers to the first element of the arrays that represent x and y, respectively.

- The function should return the value -1 in case of an invalid input, and otherwise it should return the value 0.
- Use the template rot.c for your implementation. The template is included in the ZIP file attached to the exam.