CS2102

AY21/22 SEM 1 github/jovyntls

01. DBMS

• FROM o WHERE o GROUP BY o HAVING o SELECT \rightarrow ORDER BY \rightarrow LIMIT/OFFSET

Transactions

- transaction, $T \rightarrow$ a finite sequence of database operations
- 4 properties of a transaction: ACID properties

ACID properties

- 1. Atomicity \rightarrow either all effects of T are reflected in the database, or none
- 2. Consistency \rightarrow the execution of T guarantees to yield a correct state of the DB
- 3. **Isolation** → execution of T is *isolated* from the effects of concurrent transactions
- 4. **Durability** \rightarrow after the commit of T, its effects are permanent in case of failures

Serializability

- Requirement for Concurrent Execution: serializable transaction execution
- · concurrency: to optimise performance
- (concurrent execution of a set of transactions is) serializable → execution is equivalent to some serial execution of the same set of transactions
- · ensures integrity of data
- equivalent → they have the same effect on the data

01-1. RELATIONAL MODEL

- relation schema → defines a relation
- · specifies attributes and data constraints
- relational database schema → set of relation schemas + data constraints
- TableName(col 1, col 2, col 3) with dom(col 1) = {x, y, z}
- domain → a set of atomic values e.g. dom(course) = {cs2102, cs2030, cs2040}
- A_i , $dom(A_i)$ = set of possible values for A_i
- for all value v of attribute $A_i, v \in \{dom(A_i) \cup \{null\}\}$
- relation → a set of tuples
- $R(A_1, A_2, \dots, A_n)$: relation schema with name R and n attributes A_1, A_2, \ldots, A_n
- each instance of schema R is a relation which is a subset of $\{(a_1, a_2, \dots, a_n) \mid a_i \in dom(A_i) \cup \{null\}\}\$

Data Integrity

- integrity constraint → condition that restricts what constitutes valid data
- structural → (integrity) inherent to the data model

Key Constraints

- superkey → subset of attributes that uniquely identifies a tuple in a relation
- key → superkey that is also minimal no proper subset of the key is a superkey
- candidate keys \rightarrow set of all keys for a relation
- **primary key** \rightarrow selected candidate key for a relation
- cannot be null

Foreign Key Constraints

- foreign kev \rightarrow subset of attributes of relation A if it refers to the *primary* key in a relation B.
- Each foreign key in a relation must:
 - 1. appear as a **primary key** in the referenced relation, OR:
 - 2. be a null value

02. RELATIONAL ALGEBRA

02-1.1 UNARY OPERATORS

Selection, σ_c

- $\sigma_c(R) \rightarrow$ select all tuples from R satisfying condition c.
- \forall tuple $t \in R$, $t \in \sigma_c(R) \iff c$ evaluates true on t
- · input and output relation have the same schema
- selection condition →
- a boolean expression of one of the following forms:
- constant selection attribute op constant
- attribute selection attribute₁ **op** attribute₂
- $\exp_1 \wedge \exp_2$; $\exp_1 \vee \exp_2$; $\neg \exp_1$; (expr)
- with op $\in \{=, <>, <, <, >, >\}$
- operator precedence: (), op, ¬, ∧, ∨

Projection, π_{ℓ}

- $\pi_{\ell}(R) \to \text{projects}$ all attributes of a given **relation** specified in list /
- · duplicates removed from output relation!
- · order of attributes matters!

Renaming, ρ_{ℓ}

- $\rho_{\ell}(R) \to \text{renames the attributes of a relation } R$ (with schema $R(A_1, A_2, \ldots, A_n)$)
- 2 possible formats for ℓ
- ℓ is the new *schema* in terms of the new attribute names
- $\ell = (B_1, B_2, \ldots, B_n)$
- $B_i = A_i$ if attribute A_i does not get renamed
- ℓ is a list of attribute renamings of the form:
- $B_i \leftarrow A_i, \dots, B_k \leftarrow A_k$
- each $B_i \leftarrow A_i$ renames attribute A_i to attribute B_i
- · order of renaming doesn't matter

02-1.2 SET OPERATORS

- **union** $\rightarrow R \cup S$ returns a relation w/ all tuples in both R **or** S
- intersection $\rightarrow R \cap S$... all tuples in both R and S
- set difference $\rightarrow R S$... all the tuples in R but not in S! for all set operators: R and S must be **union-compatible**

Union Compatibility

- two relations R and S are union-compatible \rightarrow if
- R and S have the same number of attributes: and
- corresponding attributes have the same or compatible
- ullet note: R and S do not have to use the same attribute names

02-1.3 CROSS PRODUCT

- **cross product** \rightarrow given two relations R(A, B, C) and S(X,Y), $R \times S$ returns a relation with schema (A, B, C, X, Y) defined as $R \times S = \{(a, b, c, x, y) \mid (a, b, c) \in R, (x, y) \in S\}$
- size of cross product = |R| * |S|

02-2. JOIN OPERATORS

Inner Joins

- · eliminate all tuples that do not satisfy a matching criteria (i.e. attribute selection)
- θ -join \to (of two relations R and S) $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
- **Equi Join** \bowtie \rightarrow special case of θ -join defined over the equality operator (=) only
- Natural Join \bowtie \rightarrow performed over all attributes R and Shave in common
- the natural join (of two relations R and S) is defined as $R \bowtie S = \pi_{\ell}(R \bowtie_{c} \rho_{b_{i} \leftarrow a_{i},...,b_{k} \leftarrow a_{k}}(S))$
- $A = \{a_i, \dots, a_k\}$ = the set of attributes that R and Shave in common
- $c = ((a_i = b_i) \land \cdots \land (a_k = b_k))$
- ullet $\ell =$ list of all attributes of R + list of all attributes in S that
- ullet output relation contains the common attributes of R and Sonly once

Outer Joins

- dangling tuples \rightarrow tuples in R or S that do not match with tuples in the other relation
- $dangle(R \bowtie_{\theta} S) \rightarrow set$ of dangling tuples in R wrt to $R \bowtie_{\theta} S$ (missing attribute values are padded with null)
- dangle $(R \bowtie_{\theta} S) \subseteq R$
- · always removed by inner joins, kept by outer joins
- $null(R) \rightarrow n$ -component **tuple** of null values where n is the number of attributes of R

Definitions

- left outer join $\rightarrow R \bowtie_{\theta} S$ $= R \bowtie_{\theta} S \cup (dangle(R \bowtie_{\theta} S) \times \{null(S)\})$
- right outer join $\to R \bowtie_{\theta} S$
- $= R \bowtie_{\theta} S \cup (\{null(R)\} \times dangle(S \bowtie_{\theta} R))$
- full outer join $\to R \bowtie_{\theta} S$ $= R \bowtie_{\theta} S \cup (\mathsf{dangle}(R \bowtie_{\theta} S) \times \{\mathsf{null}(S)\})$

 $\cup (\{null(R)\} \times dangle(S \bowtie_{\theta} R))$

Natural Outer Joins

- natural left/right/full outer join: $R \bowtie S / R \bowtie S / R \bowtie S$
- · output relation contains the common attributes of R and S only once

Handling NULLs

- comparison operation with null ⇒ unknown
- arithmetic operation with null ⇒ null

x IS DISTINCT FROM y x IS NULL x<>y **FALSE FALSE FALSE FALSE** 2 **TRUE TRUE** null **TRUE** TRUE null -1 **FALSE** null null null

03-1. CONSTRAINTS

- Not-Null Constraints violation: $\exists t \in \text{Employees}$ where t.id IS NOT NULL evaluates to false
- Unique Constraints violation: For any 2 tuples $t_i, t_k \in R$, $(t_i \cdot A <> t_k \cdot A)$ or $(t_i \cdot B <> t_k \cdot B)$ evaluates to **false**
- ! null rows will NOT violate unique key constraints
- · Primary Key Constraints: prime attributes cannot be null • (entity integrity constraint)
- · Foreign Key Constraints: each FK in the referencing relation must:
- appear as a PK in the referenced relation, OR
- be a null value
- R.sid → S.id: R.sid is a FK referencing PK id in S

04. ENTITY RELATIONSHIP MODEL

- entity set → collection of entities of the same type
- attribute → specific information describing an entity
- key attribute → uniquely identifies each entity
- composite attribute → composed of multiple other
- multivalued attribute → may comprise more than one value for a given entity
- derived attribute → derived from other attributes

Relationship Sets

- degree → no. of entity roles participating in a relationship
- an n-ary relationship set involves n entity roles (where n is the degree of the relationship set)

Cardinality Constraints

Participation Constraints

- partial participation constraint → participation (of an entity in a relationship) is not mandatory (0 or more)
- total participation constraint → participation is mandatory (1 or more)

each instance of E participates each instance of E participates

in at most one instance of R in at least one instance of R

in **exactly one** instance of R identifying relationship set R.

Dependency Constraints

- weak entity sets
 → entity set that does not have its own key
- · can only be uniquely identified through the primary key of its owner entity
- partial key

 → set of attributes that uniquely identifies a weak entity for a given owner entity (identifies the exact instance of a weak entity)

- · requirements
 - 1. many-to-one relationship (identifying relationship) from weak entity set to owner entity set
 - 2. weak entity set must have total participation in identifying relationship

Alternative Representations

04. EXTENDED CONCEPTS

ISA Hierarchy Constraints

- overlap contraint → a superclass entity can belong to multiple subclasses
- covering constraint → a superclass entity has to belong to a subclass

Aggregation

- · abstraction that treats relationships as higher-level entities
- e.g. treating 2 entities + 1 relationship as an entity set

10. FUNCTIONAL DEPENDENCIES

- **normal form** \rightarrow a definition of minimum requirements in terms of redundancy
- · an attribute not in any RHS of any FD must be in every key
- prime attribute → appears in at least one key

Normalisation

Functional Dependencies

Let $A_1, A_2, \ldots, A_m, B_1, B_2, \ldots, B_n$ be some attributes

uniquely identifies →

 $\{A_1A_2\ldots A_m\} \to \{B_1B_2\ldots B_n\}$ whenever 2 tuples have the same values on $A_1 A_2 \dots A_m$, they always have the same values on $B_1B_2 \dots B_n$

- "A uniquely identifies B": if you know A, then you will know B (but not the other way round)
- $\{A\} \to \{B\}$: functional dependency A determines B

Armstrong's Axioms

- 1. axiom of **reflexivity**: set \rightarrow a subset of attributes $(\{A, B\} \rightarrow \{A\})$
- 2. axiom of augmentation:

if $\{A\} \to \{B\}$, then $\forall C, \{AC\} \to \{BC\}$

3. axiom of transitivity:

if
$$\{A\} \to \{B\}$$
 and $\{B\} \to \{C\}$, then $\{A\} \to \{C\}$

Extended Armstrong's Axioms

rule of decomposition:

if $\{A\} \rightarrow \{BC\}$ then $\{A\} \rightarrow \{B\} \land \{A\} \rightarrow \{C\}$

rule of union:

if $\{A\} \rightarrow \{B\} \land \{A\} \rightarrow \{C\}$, then $\{A\} \rightarrow \{BC\}$

• combined: $\{A\} \to \{BC\} \Leftrightarrow \{A\} \to \{B\} \land \{A\} \to \{C\}$

Closures

• $B_1B_2 \dots B_n$ is the closure of $A_1A_2 \dots A_m$ denoted $\{A_1 A_2 \dots A_m\}^+$

11. BOYCE-CODD NORMAL FORMS (BCNF)

- · stronger than 3NF has fewer redundancies
- · may not preserve all FDs
- · decomposed table may have no non-trivial & decomposed
- exists FD that cannot be derived from FDs on R1 and R2
- two attributes are functionally equivalent → if either one can determine the other

Non-Trivial and Decomposed FD

- non-trivial $\rightarrow \{A\} \rightarrow \{B\}$ where $\{A\} \not\subseteq \{B\}$
- **decomposed** $\rightarrow \{A\} \rightarrow \{B\}$ where B is a single attribute

BCNF

name

- table in ${f BCNF}
 ightarrow {f every } {\it non-trivial \& decomposed FD } {f has a }$ superkey as its LHS
- NOT in BCNF if ∃ non-trivial & decomposed FD s.t. its LHS is NOT a superkey
- ! a table with exactly one or two attributes is always in BCNF!
- ✓ no update/deletion/insertion anomalies
- ✓ small redundancies
- ✓ lossless join original table can always be reconstructed from decomposed tables (natural join). $\Rightarrow R = R1 \bowtie R2 = \pi_{R1}(R) \bowtie \pi_{R2}(R)$
- lossless decomposition $\rightarrow \{R_1, R_2\}$ is lossless if $R_1 \cap R_2$ is a superkey of R_1 or R_2
- $R_1 \cap R_2$ uniquely identifies all the attributes in R_1 or R_2
- closure of $R_1 \cap R_2 = R_1$ or R_2

Normalisation

- · normalisation algorithm:
- for a BCNF-violating FD $\{A\} \rightarrow \{A\}^+$, create tables
- $R1(\{A\}^+)$ containing the superkey, and
- $R2 (\{A\} \cup (R \{A\}^+))$
- · if table does not contain all attributes:
 - 1. compute closure of each subset of the table's attributes
 - 2. remove RHS attributes not in the table
- ! implicit functional dependencies should be checked too! (because explicit FDs may not apply to R2 when R2 is missing attributes)

3NF (THIRD NORMAL FORM)

- will preserve all FDs
- · relaxed form of BCNF
- satisfies BCNF ⇒ satisfies 3NF
- violates 3NF ⇒ violates BCNF

Functional Dependency Equivalence

let F1 and F2 be sets of FDs.

- equivalence \rightarrow F1 is equivalent to F2 ($F1 \equiv F2$) \Leftrightarrow
- $F2 \vdash F1$: every FD in F1 can be derived from F2
- $F1 \dashv F2$: every FD in F2 can be derived from F1

3NF

- a table is in 3NF → if every non-trivial & decomposed FD:
- · its LHS is a superkey, OR
- its RHS is a **prime attribute** (any attribute in any key)
- · if all attributes are prime attributes, the table is in 3NF

Minimal Basis

- minimal basis. F_h : **simplified** \rightarrow 4 conditions
 - 1. equivalence: $\overline{F} \equiv F_b$ (every FD in F_b can be derived from F and vice versa)
 - 2. every FD in F_b is non-trivial and decomposed
- 3. \forall FD in F_h , none of the LHS attributes are redundant
- 4. no FD in F_b is redundant
- $redundant \rightarrow$ can be removed without affecting the original FD (i.e. $F \equiv F_{b*}$ where F_{b*} is formed by removing the attribute)

to obtain a minimal basis

- ensure equivalence
- 2. transform FDs to non-trivial and decomposed
- 3. remove redundant attributes
 - 3.1. for an FD $\{A\} \rightarrow B$ for a **set** of attributes A, for an attribute C in A,
- 3.2. compute $\{A-C\}^+$ using F
- 3.3. if $B \in \{A C\}^+$, then we can remove C 4. remove redundant FDs
- 4.1. try removing and check for equivalence

- **3NF Synthesis**
- for table R and a set of FDs F,
- 1. derive minimal basis F_b of F
- 2. from the minimal basis, combine the FDs for which the LHS is the same
- 3. create a table for each FDs remained in the minimal basis after union
- 4. if none of the tables contain a key for the original table R, create a table containing a key of R