

FREE QUASI-SYMMETRIC FUNCTIONS OF ARBITRARY LEVEL

JEAN-CHRISTOPHE NOVELLI AND JEAN-YVES THIBON

ABSTRACT. We introduce analogues of the Hopf algebra of Free quasi-symmetric functions with bases labelled by colored permutations. As applications, we recover in a simple way the descent algebras associated with wreath products $\Gamma \wr \mathfrak{S}_n$ and the corresponding generalizations of quasi-symmetric functions. Finally, we obtain Hopf algebras of colored parking functions, colored non-crossing partitions and parking functions of type B .

1. INTRODUCTION

The Hopf algebra of Free quasi-symmetric functions **FQSym** [3] is a certain algebra of noncommutative polynomials associated with the sequence $(\mathfrak{S}_n)_{n \geq 0}$ of all symmetric groups. It is connected by Hopf homomorphisms to several other important algebras associated with the same sequence of groups : Free symmetric functions (or coplactic algebra) **FSym** [19, 3], Non-commutative symmetric functions (or descent algebras) **Sym** [4], Quasi-Symmetric functions **QSym** [5], Symmetric functions **Sym**, and also, Planar binary trees **PBT** [11, 7], Matrix quasi-symmetric functions **MQSym** [3, 6], Parking functions **PQSym** [9, 16], and so on.

Among the many possible interpretations of **Sym**, we can mention the identification as the representation ring of the tower of algebras

$$(1) \quad \mathbb{C} \rightarrow \mathbb{C} \mathfrak{S}_1 \rightarrow \mathbb{C} \mathfrak{S}_2 \rightarrow \cdots \rightarrow \mathbb{C} \mathfrak{S}_n \rightarrow \cdots,$$

that is

$$(2) \quad \text{Sym} \simeq \bigoplus_{n \geq 0} R(\mathbb{C} \mathfrak{S}_n),$$

where $R(\mathbb{C} \mathfrak{S}_n)$ is the vector space spanned by isomorphism classes of irreducible representations of \mathfrak{S}_n , the ring operations being induced by direct sum and outer tensor product of representations [13].

Another important interpretation of **Sym** is as the support of Fock space representations of various infinite dimensional Lie algebras, in particular as the level 1 irreducible highest weight representations of $\widehat{\mathfrak{gl}}_\infty$ (the infinite rank Kac-Moody algebra of type A_∞ , with Dynkin diagram \mathbb{Z} , see [8]).

The analogous level l representations of this algebra can also be naturally realized with products of l copies of **Sym**, or as symmetric functions in l independent sets of variables

$$(3) \quad (\text{Sym})^{\otimes l} \simeq \text{Sym}(X_0; \dots; X_{l-1}) =: \text{Sym}^{(l)},$$

and these algebras are themselves the representation rings of wreath product towers $(\Gamma \wr \mathfrak{S}_n)_{n \geq 0}$, Γ being a group with l conjugacy classes [13] (see also [26, 25]).

We shall therefore call for short $Sym(X_0; \dots; X_{l-1})$ the algebra of symmetric functions of level l . Our aim is to associate with $Sym^{(l)}$ analogues of the various Hopf algebras mentioned at the beginning of this introduction.

We shall start with a level l analogue of **FQSym**, whose bases are labelled by l -colored permutations. Imitating the embedding of **Sym** in **FQSym**, we obtain a Hopf subalgebra of level l called **Sym**^{(l), which turns out to be dual to Poirier's quasi-symmetric functions, and whose homogenous components can be endowed with an internal product, providing an analogue of Solomon's descent algebras for wreath products.}

The Mantaci-Reutenauer descent algebra arises as a natural Hopf subalgebra of **Sym**^{(l) and its dual is computed in a straightforward way by means of an appropriate Cauchy formula.}

Finally, we introduce a Hopf algebra of colored parking functions, and use it to define Hopf algebras structures on parking functions and non-crossing partitions of type B .

Acknowledgements This research has been partially supported by EC's IHRP Programme, grant HPRN-CT-2001-00272, "Algebraic Combinatorics in Europe".

2. FREE QUASI-SYMMETRIC FUNCTIONS OF LEVEL l

2.1. l -colored standardization. We shall start with an l -colored alphabet

$$(4) \quad A = A^0 \sqcup A^1 \sqcup \cdots \sqcup A^{l-1},$$

such that all A^i are of the same cardinality N , which will be assumed to be infinite in the sequel. Let C be the alphabet $\{c_0, \dots, c_{l-1}\}$ and B be the auxiliary ordered alphabet $\{1, 2, \dots, N\}$ (the letter C stands for *colors* and B for *basic*) so that A can be identified to the cartesian product $B \times C$:

$$(5) \quad A \simeq B \times C = \{(b, c), b \in B, c \in C\}.$$

Let w be a word in A , represented as (v, u) with $v \in B^*$ and $u \in C^*$. Then the *colored standardized word* **Std**(w) of w is

$$(6) \quad \mathbf{Std}(w) := (\mathrm{Std}(v), u),$$

where $\mathrm{Std}(v)$ is the usual standardization on words.

Recall that the standardization process sends a word w of length n to a permutation $\mathrm{Std}(w) \in \mathfrak{S}_n$ called the *standardized* of w defined as the permutation obtained by iteratively scanning w from left to right, and labelling $1, 2, \dots$ the occurrences of its smallest letter, then numbering the occurrences of the next one, and so on. Alternatively, $\mathrm{Std}(w)$ is the permutation having the same inversions as w .

2.2. $\mathbf{FQSym}^{(l)}$ and $\mathbf{FQSym}^{(\Gamma)}$. A *colored permutation* is a pair (σ, u) , with $\sigma \in \mathfrak{S}_n$ and $u \in C^n$, the integer n being the *size* of this permutation.

Definition 2.1. *The dual free l -quasi-ribbon $\mathbf{G}_{\sigma, u}$ labelled by a colored permutation (σ, u) of size n is the noncommutative polynomial*

$$(7) \quad \mathbf{G}_{\sigma, u} := \sum_{w \in A^n, \mathbf{Std}(w) = (\sigma, u)} w \in \mathbb{Z}\langle A \rangle.$$

Recall that the *convolution* of two permutations σ and μ is the set $\sigma * \mu$ (identified with the formal sum of its elements) of permutations τ such that the standardized word of the $|\sigma|$ first letters of τ is σ and the standardized word of the remaining letters of τ is μ (see [21]).

Theorem 2.2. *Let (σ', u') and (σ'', u'') be colored permutations. Then*

$$(8) \quad \mathbf{G}_{\sigma', u'} \mathbf{G}_{\sigma'', u''} = \sum_{\sigma \in \sigma' * \sigma''} \mathbf{G}_{\sigma, u' \cdot u''},$$

where $w_1 \cdot w_2$ is the word obtained by concatenating w_1 and w_2 . Therefore, the dual free l -quasi-ribbons span a \mathbb{Z} -subalgebra of the free associative algebra.

Moreover, one defines a coproduct on the \mathbf{G} functions by

$$(9) \quad \Delta \mathbf{G}_{\sigma, u} := \sum_{i=0}^n \mathbf{G}_{(\sigma, u)_{[1, i]}} \otimes \mathbf{G}_{(\sigma, u)_{[i+1, n]}},$$

where n is the size of σ and $(\sigma, u)_{[a, b]}$ is the standardized colored permutation of the pair (σ', u') where σ' is the subword of σ containing the letters of the interval $[a, b]$, and u' the corresponding subword of u .

For example,

$$(10) \quad \begin{aligned} \Delta \mathbf{G}_{3142, 2412} &= 1 \otimes \mathbf{G}_{3142, 2412} + \mathbf{G}_{1, 4} \otimes \mathbf{G}_{231, 212} + \mathbf{G}_{12, 42} \otimes \mathbf{G}_{12, 21} \\ &\quad + \mathbf{G}_{312, 242} \otimes \mathbf{G}_{1, 1} + \mathbf{G}_{3142, 2412} \otimes 1. \end{aligned}$$

Theorem 2.3. *The coproduct is an algebra homomorphism, so that $\mathbf{FQSym}^{(l)}$ is a graded bialgebra. Moreover, it is a Hopf algebra.*

Definition 2.4. *The free l -quasi-ribbon $\mathbf{F}_{\sigma, u}$ labelled by a colored permutation (σ, u) is the noncommutative polynomial*

$$(11) \quad \mathbf{F}_{\sigma, u} := \mathbf{G}_{\sigma^{-1}, u \cdot \sigma^{-1}},$$

where the action of a permutation on the right of a word permutes the positions of the letters of the word.

For example,

$$(12) \quad \mathbf{F}_{3142, 2142} = \mathbf{G}_{2413, 1422}.$$

The product and coproduct of the $\mathbf{F}_{\sigma, u}$ can be easily described in terms of shifted shuffle and deconcatenation of colored permutations.

Let us define a scalar product on $\mathbf{FQSym}^{(l)}$ by

$$(13) \quad \langle \mathbf{F}_{\sigma, u}, \mathbf{G}_{\sigma', u'} \rangle := \delta_{\sigma, \sigma'} \delta_{u, u'},$$

where δ is the Kronecker symbol.

Theorem 2.5. *For any $U, V, W \in \mathbf{FQSym}^{(l)}$,*

$$(14) \quad \langle \Delta U, V \otimes W \rangle = \langle U, VW \rangle,$$

so that, $\mathbf{FQSym}^{(l)}$ is self-dual: the map $\mathbf{F}_{\sigma, u} \mapsto \mathbf{G}_{\sigma, u}^*$ is an isomorphism from $\mathbf{FQSym}^{(l)}$ to its graded dual.

Note 2.6. Let ϕ be any bijection from C to C , extended to words by concatenation. Then if one defines the free l -quasi-ribbon as

$$(15) \quad \mathbf{F}_{\sigma,u} := \mathbf{G}_{\sigma^{-1},\phi(u)\cdot\sigma^{-1}},$$

the previous theorems remain valid since one only permutes the labels of the basis $(\mathbf{F}_{\sigma,u})$.

Moreover, if C has a group structure, the colored permutations $(\sigma, u) \in \mathfrak{S}_n \times C^n$ can be interpreted as elements of the semi-direct product $H_n := \mathfrak{S}_n \ltimes C^n$ with multiplication rule

$$(16) \quad (\sigma; c_1, \dots, c_n) \cdot (\tau; d_1, \dots, d_n) := (\sigma\tau; c_{\tau(1)}d_1, \dots, c_{\tau(n)}d_n).$$

In this case, one can choose $\phi(\gamma) := \gamma^{-1}$ and define the scalar product as before, so that the adjoint basis of the (\mathbf{G}_h) becomes $\mathbf{F}_h := \mathbf{G}_{h^{-1}}$. In the sequel, we will be mainly interested in the case $C := \mathbb{Z}/l\mathbb{Z}$, and we will indeed make that choice for ϕ .

2.3. Algebraic structure. Recall that a permutation σ of size n is *connected* [15, 3] if, for any $i < n$, the set $\{\sigma(1), \dots, \sigma(i)\}$ is different from $\{1, \dots, i\}$.

We denote by \mathcal{C} the set of connected permutations, and by $c_n := |\mathcal{C}_n|$ the number of such permutations in \mathfrak{S}_n . For later reference, we recall that the generating series of c_n is

$$c(t) := \sum_{n \geq 1} c_n t^n = 1 - \left(\sum_{n \geq 0} n! t^n \right)^{-1} = t + t^2 + 3t^3 + 13t^4 + 71t^5 + 461t^6 + O(t^7).$$

Let the *connected colored permutations* be the (σ, u) with σ connected and u arbitrary. Their generating series is given by $c(lt)$.

It follows from [3] that $\mathbf{FQSym}^{(l)}$ is free over the set $\mathbf{G}_{\sigma,u}$ (or $\mathbf{F}_{\sigma,u}$), where (σ, u) is connected.

Since $\mathbf{FQSym}^{(l)}$ is self-dual, it is also cofree.

2.4. Primitive elements. Let $\mathcal{L}^{(l)}$ be the primitive Lie algebra of $\mathbf{FQSym}^{(l)}$. Since Δ is not cocommutative, $\mathbf{FQSym}^{(l)}$ cannot be the universal enveloping algebra of $\mathcal{L}^{(l)}$. But since it is cofree, it is, according to [12], the universal enveloping dipterous algebra of its primitive part $\mathcal{L}^{(l)}$. Let $d_n = \dim \mathcal{L}_n^{(l)}$.

Recall that the *shifted concatenation* $w \bullet w'$ of two elements w and w' of \mathbb{N}^* , is the word obtained by concatenating to w the word obtained by shifting all letters of w' by the length of w . We extend it to colored permutations by simply concatenating the colors and concatenating *with shift* the permutations. Let $\mathbf{G}^{\sigma,u}$ be the multiplicative basis defined by $\mathbf{G}^{\sigma,u} = \mathbf{G}_{\sigma_1,u_1} \cdots \mathbf{G}_{\sigma_r,u_r}$ where $(\sigma, u) = (\sigma_1, u_1) \bullet \cdots \bullet (\sigma_r, u_r)$ is the unique maximal factorization of $(\sigma, u) \in \mathfrak{S}_n \times C^n$ into connected colored permutations.

Proposition 2.7. *Let $\mathbf{V}_{\sigma,u}$ be the adjoint basis of $\mathbf{G}^{\sigma,u}$. Then, the family $(\mathbf{V}_{\alpha,u})_{\alpha \in \mathcal{C}}$ is a basis of $\mathcal{L}^{(l)}$. In particular, we have $d_n = l^n c_n$.*

As in [3], we conjecture that $\mathcal{L}^{(l)}$ is free.

3. NON-COMMUTATIVE SYMMETRIC FUNCTIONS OF LEVEL l

Following McMahon [14], we define an l -partite number \mathbf{n} as a column vector in \mathbb{N}^l , and a *vector composition* of \mathbf{n} of weight $|\mathbf{n}| := \sum_1^l n_i$ and length m as a $l \times m$ matrix \mathbf{I} of nonnegative integers, with row sums vector \mathbf{n} and no zero column.

For example,

$$(17) \quad \mathbf{I} = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 3 & 1 & 1 \\ 4 & 2 & 1 & 3 \end{pmatrix}$$

is a vector composition (or a 3-composition, for short) of the 3-partite number $\begin{pmatrix} 4 \\ 5 \\ 10 \end{pmatrix}$ of weight 19 and length 4.

For each $\mathbf{n} \in \mathbb{N}^l$ of weight $|\mathbf{n}| = n$, we define a level l *complete homogeneous symmetric function* as

$$(18) \quad S_{\mathbf{n}} := \sum_{u:|u|_i=n_i} \mathbf{G}_{1 \dots n, u}.$$

It is the sum of all possible colorings of the identity permutation with n_i occurrences of color i for each i .

Let $\mathbf{Sym}^{(l)}$ be the subalgebra of $\mathbf{FQSym}^{(l)}$ generated by the $S_{\mathbf{n}}$ (with the convention $S_{\mathbf{0}} = 1$). The Hilbert series of $\mathbf{Sym}^{(l)}$ is easily found to be

$$(19) \quad S_l(t) := \sum_n \dim \mathbf{Sym}_n^{(l)} t^n = \frac{(1-t)^l}{2(1-t)^l - 1}.$$

Theorem 3.1. $\mathbf{Sym}^{(l)}$ is free over the set $\{S_{\mathbf{n}}, |\mathbf{n}| > 0\}$. Moreover, $\mathbf{Sym}^{(l)}$ is a Hopf subalgebra of $\mathbf{FQSym}^{(l)}$.

The coproduct of the generators is given by

$$(20) \quad \Delta S_{\mathbf{n}} = \sum_{\mathbf{i}+\mathbf{j}=\mathbf{n}} S_{\mathbf{i}} \otimes S_{\mathbf{j}},$$

where the sum $\mathbf{i} + \mathbf{j}$ is taken in the space \mathbb{N}^l . In particular, $\mathbf{Sym}^{(l)}$ is cocommutative.

We can therefore introduce the basis of products of level l complete function, labelled by l -compositions

$$(21) \quad S^{\mathbf{I}} = S_{\mathbf{i}_1} \cdots S_{\mathbf{i}_m},$$

where $\mathbf{i}_1, \dots, \mathbf{i}_m$ are the columns of \mathbf{I} .

Theorem 3.2. If C has a group structure, $\mathbf{Sym}_n^{(l)}$ becomes a subalgebra of $\mathbb{C}[C \wr \mathfrak{S}_n]$ under the identification $\mathbf{G}_h \mapsto h$.

This provides an analogue of Solomon's descent algebra for the wreath product $C \wr \mathfrak{S}_n$. The proof amounts to check that the Patras descent algebra of a graded bialgebra [17] can be adapted to \mathbb{N}^l -graded bialgebras.

As in the case $l = 1$, we define the *internal product* $*$ as being opposite to the law induced by the group algebra. It can be computed by the following splitting formula, which is a straightforward generalization of the level 1 version.

Proposition 3.3. *Let $\mu_r : (\mathbf{Sym}^{(l)})^{\otimes r} \rightarrow \mathbf{Sym}^{(l)}$ be the product map. Let $\Delta^{(r)} : (\mathbf{Sym}^{(l)}) \rightarrow (\mathbf{Sym}^{(l)})^{\otimes r}$ be the r -fold coproduct, and $*_r$ be the extension of the internal product to $(\mathbf{Sym}^{(l)})^{\otimes r}$. Then, for F_1, \dots, F_r , and $G \in \mathbf{Sym}^{(l)}$,*

$$(22) \quad (F_1 \cdots F_r) * G = \mu_r[(F_1 \otimes \cdots \otimes F_r) *_r \Delta^{(r)} G].$$

The group law of C is needed only for the evaluation of the product of one-part complete functions $S_{\mathbf{m}} * S_{\mathbf{n}}$.

Example 3.4. *With $l = 2$ and $C = \mathbb{Z}/2\mathbb{Z}$,*

$$\begin{aligned} S \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} *_S S \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} &= \mu_2 \left[\left(S \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes S \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) *_2 \Delta S \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \right] \\ &= \left(S \begin{pmatrix} 1 \\ 1 \end{pmatrix} *_S S \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right) \left(S \begin{pmatrix} 0 \\ 1 \end{pmatrix} *_S S \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) + \left(S \begin{pmatrix} 1 \\ 1 \end{pmatrix} *_S S \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right) \left(S \begin{pmatrix} 0 \\ 1 \end{pmatrix} *_S S \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \\ &= S \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + S \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + S \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}. \end{aligned}$$

Recall that the underlying colored alphabet A can be seen as $A^0 \sqcup \cdots \sqcup A^{l-1}$, with $A^i = \{a_j^{(i)}, j \geq 1\}$. Let $\mathbf{x} = (x^{(0)}, \dots, x^{(l-1)})$, where the $x^{(i)}$ are l commuting variables. In terms of A , the generating function of the complete functions can be written as

$$(23) \quad \sigma_{\mathbf{x}}(A) = \prod_{i \geq 0}^{\rightarrow} \left(1 - \sum_{0 \leq j \leq l-1} x^{(j)} a_i^{(j)} \right)^{-1} = \sum_{\mathbf{n}} S_{\mathbf{n}}(A) \mathbf{x}^{\mathbf{n}},$$

where $\mathbf{x}^{\mathbf{n}} = (x^{(0)})^{n_0} \cdots (x^{(l-1)})^{n_{l-1}}$.

This realization gives rise to a Cauchy formula (see [10] for the $l = 1$ case), which in turn allows one to identify the dual of $\mathbf{Sym}^{(l)}$ with an algebra introduced by S. Poirier in [18].

4. QUASI-SYMMETRIC FUNCTIONS OF LEVEL l

4.1. Cauchy formula of level l . Let $X = X^0 \sqcup \cdots \sqcup X^{l-1}$, where $X^i = \{x_j^{(i)}, j \geq 1\}$ be an l -colored alphabet of commutative variables, also commuting with A . Imitating the level 1 case (see [3]), we define the Cauchy kernel

$$(24) \quad K(X, A) = \prod_{j \geq 1}^{\rightarrow} \sigma_{(x_j^{(0)}, \dots, x_j^{(l-1)})}(A).$$

Expanding on the basis $S^{\mathbf{I}}$ of $\text{Sym}^{(l)}$, we get as coefficients what can be called the *level l monomial quasi-symmetric functions* $M_{\mathbf{I}}(X)$

$$(25) \quad K(X, A) = \sum_{\mathbf{I}} M_{\mathbf{I}}(X) S^{\mathbf{I}}(A),$$

defined by

$$(26) \quad M_{\mathbf{I}}(X) = \sum_{j_1 < \dots < j_m} \mathbf{x}_{j_1}^{\mathbf{i}_1} \cdots \mathbf{x}_{j_m}^{\mathbf{i}_m},$$

with $\mathbf{I} = (\mathbf{i}_1, \dots, \mathbf{i}_m)$.

These last functions form a basis of a subalgebra $QSym^{(l)}$ of $\mathbb{C}[X]$, which we shall call the *algebra of quasi-symmetric functions of level l* .

4.2. Poirier's Quasi-symmetric functions. The functions $M_{\mathbf{I}}(X)$ can be recognized as a basis of one of the algebras introduced by Poirier: the $M_{\mathbf{I}}$ coincide with the $M_{(C,v)}$ defined in [18], p. 324, formula (1), up to indexation.

Following Poirier, we introduce the level l quasi-ribbon functions by summing over an order on l -compositions: an l -composition C is finer than C' , and we write $C \leq C'$, if C' can be obtained by repeatedly summing up two consecutive columns of C such that no non-zero element of the left one is strictly below a non-zero element of the right one.

This order can be described in a much easier and natural way if one recodes an l -composition \mathbf{I} as a pair of words, the first one $d(\mathbf{I})$ being the set of sums of the elements of the first k columns of \mathbf{I} , the second one $c(\mathbf{I})$ being obtained by concatenating the words $i_{i,j}^{\mathbf{I}}$ while reading of \mathbf{I} by columns, from top to bottom and from left to right. For example, the 3-composition of Equation (17) satisfies

$$(27) \quad d(\mathbf{I}) = \{5, 10, 14, 19\} \quad \text{and} \quad c(\mathbf{I}) = 13333 \ 22233 \ 1123 \ 12333.$$

Moreover, this recoding is a bijection if the two words $d(\mathbf{I})$ and $c(\mathbf{I})$ are such that the descent set of $c(\mathbf{I})$ is a subset of $d(\mathbf{I})$. The order previously defined on l -compositions is in this context the inclusion order on sets d : $(d', c) \leq (d, c)$ iff $d' \subseteq d$.

It allows us to define the *level l quasi-ribbon functions* $F_{\mathbf{I}}$ by

$$(28) \quad F_{\mathbf{I}} = \sum_{\mathbf{I}' \leq \mathbf{I}} M_{\mathbf{I}'}.$$

Notice that this last description of the order \leq is reminiscent of the order \leq' on descent sets used in the context of quasi-symmetric functions and non-commutative symmetric functions: more precisely, since it does not modify the word $c(\mathbf{I})$, the order \leq restricted to l -compositions of weight n amounts for l^n copies of the order \leq' . The computation of its Möbius function is therefore straightforward.

Moreover, one can directly obtain the $F_{\mathbf{I}}$ as the commutative image of certain $\mathbf{F}_{\sigma,u}$: any pair (σ, u) such that σ has descent set $d(\mathbf{I})$ and $u = c(\mathbf{I})$ will do.

5. THE MANTACI-REUTENAUER ALGEBRA

Let \mathbf{e}_i be the canonical basis of \mathbb{N}^l . For $n \geq 1$, let

$$(29) \quad S_n^{(i)} = S_{n \cdot \mathbf{e}_i} \in \mathbf{Sym}^{(l)},$$

be the *monochromatic complete symmetric functions*.

Proposition 5.1. *The $S_n^{(i)}$ generate a Hopf-subalgebra $\mathrm{MR}^{(l)}$ of $\mathbf{Sym}^{(l)}$, which is isomorphic to the Mantaci-Reutenauer descent algebra of the wreath products $\mathfrak{S}_n^{(l)} = (\mathbb{Z}/l\mathbb{Z}) \wr \mathfrak{S}_n$.*

It follows in particular that $\mathrm{MR}^{(l)}$ is stable under the composition product induced by the group structure of $\mathfrak{S}_n^{(l)}$. The bases of $\mathrm{MR}^{(l)}$ are labelled by colored compositions (see below).

The duality is easily worked out by means of the appropriate Cauchy kernel. The generating function of the complete functions is

$$(30) \quad \sigma_{\mathbf{x}}^{\mathrm{MR}}(A) := 1 + \sum_{j=0}^{l-1} \sum_{n \geq 1} S_n^{(j)}.(x^{(j)})^n,$$

and the Cauchy kernel is as usual

$$(31) \quad K^{\mathrm{MR}}(X, A) = \prod_{i \geq 1}^{\rightarrow} \sigma_{\mathbf{x}_i}^{\mathrm{MR}}(A) = \sum_{(I, u)} M_{(I, u)}(X) S^{(I, u)}(A),$$

where (I, u) runs over colored compositions $(I, u) = ((i_1, \dots, i_m), (u_1, \dots, u_m))$ that is, pairs formed with a composition and a color vector of the same length. The $M_{(I, u)}$ are called the *monochromatic monomial quasi-symmetric functions* and satisfy

$$(32) \quad M_{(I, u)}(X) = \sum_{j_1 < \dots < j_m} (x_{j_1}^{(u_1)})^{i_1} \cdots (x_{j_m}^{(u_m)})^{i_m}.$$

Proposition 5.2. *The $M_{(I, u)}$ span a subalgebra of $\mathbb{C}[X]$ which can be identified with the graded dual of $\mathrm{MR}^{(l)}$ through the pairing*

$$(33) \quad \langle M_{(I, u)}, S^{(J, v)} \rangle = \delta_{I, J} \delta_{u, v},$$

where δ is the Kronecker symbol.

Note that this algebra can also be obtained by assuming the relations

$$(34) \quad x_i^{(p)} x_i^{(q)} = 0, \text{ for } p \neq q$$

on the variables of $Q\mathrm{Sym}^{(l)}$.

Baumann and Hohlweg have another construction of the dual of $\mathrm{MR}^{(l)}$ [2] (implicitly defined in [18], Lemma 11).

6. LEVEL l PARKING QUASI-SYMMETRIC FUNCTIONS

6.1. Usual parking functions. Recall that a *parking function* on $[n] = \{1, 2, \dots, n\}$ is a word $\mathbf{a} = a_1 a_2 \cdots a_n$ of length n on $[n]$ whose nondecreasing rearrangement $\mathbf{a}^\uparrow = a'_1 a'_2 \cdots a'_n$ satisfies $a'_i \leq i$ for all i . Let PF_n be the set of such words. It is well-known that $|\text{PF}_n| = (n+1)^{n-1}$.

Gessel introduced in 1997 (see [24]) the notion of *prime parking function*. One says that \mathbf{a} has a *breakpoint* at b if $|\{\mathbf{a}_i \leq b\}| = b$. The set of all breakpoints of \mathbf{a} is denoted by $BP(\mathbf{a})$. Then, $\mathbf{a} \in \text{PF}_n$ is prime if $BP(\mathbf{a}) = \{n\}$.

Let $\text{PPF}_n \subset \text{PF}_n$ be the set of prime parking functions on $[n]$. It can easily be shown that $|\text{PPF}_n| = (n-1)^{n-1}$ (see [24]).

We will finally need one last notion: \mathbf{a} has a *match* at b if $|\{\mathbf{a}_i < b\}| = b-1$ and $|\{\mathbf{a}_i \leq b\}| \geq b$. The set of all matches of \mathbf{a} is denoted by $Ma(\mathbf{a})$.

We will now define generalizations of the usual parking functions to any level in such a way that they build up a Hopf algebra in the same way as in [16].

6.2. Colored parking functions. Let l be an integer, representing the number of allowed colors. A *colored parking function* of level l and size n is a pair composed of a parking function of length n and a word on $[l]$ of length n .

Since there is no restriction on the coloring, it is obvious that there are $l^n(n+1)^{n-1}$ colored parking functions of level l and size n .

It is known that the convolution of two parking functions contains only parking functions, so one easily builds as in [16] an algebra $\mathbf{PQSym}^{(l)}$ indexed by colored parking functions:

$$(35) \quad \mathbf{G}_{(\mathbf{a}', u')} \mathbf{G}_{(\mathbf{a}'', u'')} = \sum_{\mathbf{a} \in \mathbf{a}' * \mathbf{a}''} \mathbf{G}_{(\mathbf{a}, u' \cdot u'')}.$$

Moreover, one defines a coproduct on the \mathbf{G} functions by

$$(36) \quad \Delta \mathbf{G}_{(\mathbf{a}, u)} = \sum_{i \in BP(\mathbf{a})} \mathbf{G}_{(\mathbf{a}, u)_{[1, i]}} \otimes \mathbf{G}_{(\mathbf{a}, u)_{[i+1, n]}}$$

where n is the size of \mathbf{a} and $(\mathbf{a}, u)_{[a, b]}$ is the parkized colored parking function of the pair (\mathbf{a}', u') where \mathbf{a}' is the subword of \mathbf{a} containing the letters of the interval $[a, b]$, and u' the corresponding subword of u .

Theorem 6.1. *The coproduct is an algebra homomorphism, so that $\mathbf{PQSym}^{(l)}$ is a graded bialgebra. Moreover, it is a Hopf algebra.*

6.3. Parking functions of type B . In [20], Reiner defined non-crossing partitions of type B by analogy to the classical case. In our context, he defined the level 2 case. It allowed him to derive, by analogy with a simple representation theoretical result, a definition of parking functions of type B as the words on $[n]$ of size n .

We shall build another set of words, also enumerated by n^n that sheds light on the relation between type- A and type- B parking functions and provides a natural Hopf algebra structure on the latter.

First, fix two colors $0 < 1$. We say that a pair of words (\mathbf{a}, u) composed of a parking function and a binary colored word is a *level 2 parking function* if

- the only elements of \mathbf{a} that can have color 1 are the matches of \mathbf{a} .
- for all element of \mathbf{a} of color 1, all letters equal to it and to its left also have color 1,
- all elements of \mathbf{a} have at least once the color 0.

For example, there are 27 level 2 parking functions of size 3: there are the 16 usual ones all with full color 0, and the eleven new elements

$$(37) \quad \begin{aligned} & (111, 100), (111, 110), (112, 100), (121, 100), (211, 010), \\ & (113, 100), (131, 100), (311, 010), (122, 010), (212, 100), (221, 100). \end{aligned}$$

The first time the first rule applies is with $n = 4$, where one has to discard the words $(1122, 0010)$ and $(1122, 1010)$ since 2 is not a match of 1122. On the other hand, both words $(1133, 0010)$ and $(1133, 1010)$ are B_4 -parking functions since 1 and 3 are matches of 1133.

Theorem 6.2. *The restriction of $\mathbf{PQSym}^{(2)}$ to the \mathbf{G} elements indexed by level 2 parking functions is a Hopf subalgebra of $\mathbf{PQSym}^{(2)}$.*

6.4. Non-crossing partitions of type B . Remark that in the level 1 case, non-crossing partitions are in bijection with non-decreasing parking functions. To extend this correspondence to type B , let us start with a non-decreasing parking function \mathbf{b} (with no color). We factor it into the maximal shifted concatenation of prime non-decreasing parking functions, and we choose a color, here 0 or 1, for each factor. We obtain in this way $\binom{2n}{n}$ words π , which can be identified with *type B non-crossing partitions*.

Let

$$(38) \quad \mathbf{P}^\pi = \sum_{\mathbf{a} \sim \pi} \mathbf{F}_\mathbf{a}$$

where \sim denotes equality up to rearrangement of the letters. Then,

Theorem 6.3. *The \mathbf{P}^π , where π runs over the above set of non-decreasing signed parking functions, form the basis of a cocommutative Hopf subalgebra of $\mathbf{PQSym}^{(2)}$.*

All this can be extended to higher levels in a straightforward way: allow each prime non-decreasing parking function to choose any color among l and use the factorization as above. Since non-decreasing parking functions are in bijection with Dyck words, the choice can be described as: each block of a Dyck word with no return-to-zero, chooses one color among l . In this version, the generating series is obviously given by

$$(39) \quad \frac{1}{1 - l \frac{1 - \sqrt{1 - 4t}}{2}}.$$

For $l = 3$, we obtain the sequence A007854 of [22].

REFERENCES

- [1] P. BIANCE, *Parking functions of types A and B*, Electronic J. Combin. **9** (2002), # 7.
- [2] P. BAUMANN and C. HOHLWEG, *A Solomon-type epimorphism for Mantaci-Reutenauer's algebra of a wreath product $G \wr \mathfrak{S}_n$* , in preparation.
- [3] G. DUCHAMP, F. HIVERT, and J.-Y. THIBON, *Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras*, Internat. J. Alg. Comput. **12** (2002), 671–717.
- [4] I.M. GELFAND, D. KROB, A. LASCOUX, B. LECLERC, V. S. RETAKH, and J.-Y. THIBON, *Noncommutative symmetric functions*, Adv. in Math. **112** (1995), 218–348.
- [5] I. GESSEL, *Multipartite P-partitions and inner products of skew Schur functions*, [in “Combinatorics and algebra”, C. Greene, Ed.], Contemporary Mathematics, **34** (1984), 289–301.
- [6] F. HIVERT, *Combinatoire des fonctions quasi-symétriques*, Thèse de Doctorat, Marne-La-Vallée, 1999.
- [7] F. HIVERT, J.-C. NOVELLI, and J.-Y. THIBON, *Un analogue du monoïde plaxique pour les arbres binaires de recherche*, C. R. Acad. Sci. Paris Sér I Math. **332** (2002), 577–580.
- [8] V. G. KAC, *Infinite-dimensional Lie algebras*, Cambridge Univ. Press, 1991.
- [9] A. G. KONHEIM and B. WEISS, *An occupancy discipline and applications*, SIAM J. Applied Math. **14** (1966), 1266–1274.
- [10] D. KROB, B. LECLERC, and J.-Y. THIBON, *Noncommutative symmetric functions II: Transformations of alphabets*, Internal J. Alg. Comput. **7** (1997), 181–264.
- [11] J.-L. LODAY and M.O. RONCO, *Hopf algebra of the planar binary trees*, Adv. Math. **139** (1998) n. 2, 293–309.
- [12] J.-L. LODAY and M.O. RONCO, *Algèbres de Hopf libres*, C. R. Acad. Sci. Paris Sér I Math. **337** (2003), 153–158.
- [13] I.G. MACDONALD, *Symmetric functions and Hall polynomials*, 2nd ed., Oxford University Press, 1995.
- [14] P.A. MCMAHON, *Combinatory analysis*, Cambridge University Press, 1915, 1916; Chelsea reprint, 1960.
- [15] R. MALVENUTO and C. REUTENAUER, *A generalization of Solomon's descent algebra for hyperoctahedral groups and wreath products*, Comm. Algebra **23** (1995), 27–56.
- [16] J.-C. NOVELLI and J.-Y. THIBON, *A Hopf Algebra of Parking Functions* Proc. FPSAC'04 Conf., Vancouver.
- [17] F. PATRAS, *L'algèbre des descentes d'une bigèbre graduée*, J. Algebra **170** (1994), 547–566.
- [18] S. POIRIER, *Cycle type and descent set in wreath products*, Disc. Math., **180** (1998), 315–343.
- [19] S. POIRIER and C. REUTENAUER, *Algèbre de Hopf des tableaux*, Ann. Sci. Math. Québec **19** (1995), 79–90.
- [20] V. REINER, *Non-crossing partitions for classical reflection groups*, Preprint available at <ftp://s6.math.umn.edu/pub/papers/reiner/>
- [21] C. REUTENAUER, *Free Lie algebras*, Oxford University Press, 1993.
- [22] N.J.A. SLOANE, The On-Line Encyclopedia of Integer Sequences, <http://www.research.att.com/~njas/sequences/>
- [23] R. P. STANLEY, *Parking functions and noncrossing partitions*, Electronic J. Combin. **4** (1997), # 2.
- [24] R. P. STANLEY, *Enumerative combinatorics*, vol. 2, Cambridge University Press, 1999.
- [25] W. WANG, *Vertex algebras and the class algebras of wreath products*, Proc. London Math. Soc. **88** (2004), 381–404.
- [26] A. V. ZELEVINSKY, *Representations of finite classical groups. A Hopf algebra approach*, Springer LNM **869**, Springer-Verlag, Heidelberg, 1981.

INSTITUT GASPARD MONGE, UNIVERSITÉ DE MARNE-LA-VALLÉE, 5 BOULEVARD DESCARTES,
CHAMPS-SUR-MARNE, 77454 MARNE-LA-VALLÉE CEDEX 2, FRANCE

E-mail address, Jean-Christophe Novelli: novelli@univ-mlv.fr

E-mail address, Jean-Yves Thibon: jyt@univ-mlv.fr