Глава 1

НАТУРАЛЬНЫЕ СПЛАЙНЫ И СПЛАЙНОВЫЕ АЛГОРИТМЫ

§ 1. Общая задача о натуральных сплайнах

В настоящее время распространен такой подход к сплайнам, при котором сплайнами называются решения вариационных задач специального вида. Общая теория таких задач разработана французскими математиками М. Аттиа, Ф. М. Анселоном, П.-Ж. Лораном в 1965—1968 гг. и изложена в монографиях П.-Ж. Лорана [20] и В. А. Василенко [3]. Рассмотрим элементы этой теории и укажем приложения к теории оптимальных алгоритмов.

1. Теорема характеризации. Даны линейное пространство ${\mathscr Z}$ и вещественное гильбертово пространство H. В пространстве ${\mathscr X}$ определены операция сложения элементов (векторов) и операция умножения элементов на вещественные числа. В пространстве Н кроме этого определены скалярное произведение элементов $\langle h_1, h_2 \rangle$ и норма $\|h\| = \sqrt{\langle h, h \rangle}$. Пусть даны линейный оператор $T: \mathcal{X} \to$ ightarrow Н и линейные функционалы L_i , $i \in 1:m$, заданные на \mathscr{Z} . Рассмотрим задачу минимизации

$$T/ \stackrel{\text{p}^2}{\longrightarrow} \min_{L_i(f) = z_i, i \in 1 \text{ sm}}$$
 (1.1)

где z_i — фиксированные числа и минимум берется по всем элементам $f \in \mathcal{B}$, таким, что L_i $(f) = z_i$, $i \in 1$: m. Решение σ задачи (1.1), если оно существует, называется натуральным сплайном или просто сплайном. Термин «натуральный» используется для того, чтобы подчеркнуть, что о является решением задачи (1.1). Все сплайны, рассматриваемые в дальнейшем, являются натуральными, т. е. являются решениями некоторых задач вида (1.1).

Введем m-мерный вектор $If = (L_1(f), L_2(f), ..., L_m(f))$. Он задает информацию об элементе f. Пусть множество

$$M = \{ f \in \mathcal{X} : L_i(f) = z_i, i \in 1 : m \}$$

непусто. Рассмотрим в & подпространство

$$N(I) = \{h \in \mathcal{X}: Ih = 0\}.$$

Равенство Ih = 0 означает, что $L_i(h) = 0$ для всех $i \in 1:m$. Возьмем фиксированный элемент $f_0 \in M$. Тогда

$$M = \{f = f_0 + h \mid h \in N(I)\}$$

и задача (1.1) переписывается в виде

$$||Tf_0 + Th||^2 \rightarrow \min_{h \in N(I)}$$
 (1.2)

Задачу (1.2) можно рассматривать как задачу нахождения расстояния от элемента Tf_0 до TN (I) — образа N (I) при отображении T. TN (I) является линейным множеством в H. Если это множество замкнуто в H, то хорошо известно [32, c. 60], что решение задачи (1.2) существует.

Установим теорему характеризации решения задачи (1.1).

Теорема 1.1. Пусть $\sigma \in M$. Для того чтобы элемент σ был решением задачи (1.1), необходимо и достаточно выполнение условия ортогональности

$$\langle T\sigma, Th \rangle = 0 \qquad \forall h \in N(l).$$
 (1.3)

Доказательство. Необходимость. Пусть σ — решение, $h \in N(I)$. Очевидно, $\sigma + \alpha h \in M$ для любого α , поэтому функция $\phi(\alpha) = \| T\sigma + \alpha Th \|^2$ достигает минимума при $\alpha = 0$. Отсюда

$$\varphi'(0) = 2 \langle T\sigma, Th \rangle = 0.$$

Достаточность. Возьмем произвольный элемент $f \in M$. Его можно представить в виде $f = \sigma + h$, где $h \in N$ (I). В силу (1.3)

$$||Tf||^2 = ||T\sigma + Th||^2 = ||T\sigma||^2 + ||Th||^2 \geqslant ||T\sigma||^2.$$

Отсюда следует, что о является решением задачи (1.1). Теорема доказана.

Положим $N(T) = \{h \in \mathcal{H} : Th = \hat{\mathbb{I}}\}.$

Следствие 1.1. Если

$$N(T)\cap N(I)=\{0\},$$

то решение задачи (1.1) единственно.

Доказательство. Пусть есть два решения, σ_1 и σ_2 . Тогда L_i (σ_1) = L_i (σ_2) = z_i , $i \in 1:m$, и $h:=\sigma_1-\sigma_2 \in N$ (I). В силу необходимого условия оптимальности (1.3)

$$\langle T\sigma_1, Th \rangle = 0, \qquad \langle T\sigma_2, Th \rangle = 0.$$

Вычитая из первого равенства второе, получаем $\langle Th, Th \rangle = 0$, откуда $h \in N$ (T). По условию h = 2, и единственность доказана. Утверждения о характеризации и единственности сплайна будут в дальнейшем неоднократно использоваться. В качестве первого применения покажем, что каждый сплайн является линейной комбинацией фундаментальных сплайнов $\sigma_1, \ldots, \sigma_m$. Сплайн σ_k определяется как решение задачи

$$\|Tf\|^2 \to \min_{L_i(f) = \delta_{ih}, \ i \in 1: m},$$

где $\delta_{ik}=0$ при $i\neq k$ и $\delta_{kk}=1$. По теореме 1.1,

$$\langle T\sigma_{h}, Th \rangle = 0 \quad \forall h \in N(I).$$

$$\sigma = \sum_{k=1}^{m} z_k \sigma_k$$

удовлетворяет че овию ортогональности (1.3) и ограничениям

$$L_{i}(\sigma) = \sum_{k=1}^{m} z_{k} \delta_{ik} = z_{i}, \quad i \in 1 : m.$$

Поэтому о является решением задачи (1.1).

2. Сплайны в выпуклом множестве. Предположим, что \mathscr{X} — вещественное гильбертово пространство со скалярным произведением (x_1, x_2) , а T — линейный непрерывный оператор из \mathscr{X} в гильбертово пространство H. Зафиксируем $y \in H$. Тогда $\langle Tx, y \rangle$ есть линейный непрерывный функционал от x. По теореме Рисса, существует единственный элемент $w \in \mathscr{X}$, такой, что

$$\langle Tx, y \rangle = (x, w) \quad \forall x \in \mathscr{X}_{\bullet}$$

Элемент w есть функция от $y: w = T^*y$. Оператор $T^*: H \to \mathscr{X}$ линеен, непрерывен и называется сопряженным к T_{\bullet}

Рассмотрим задачу

$$\Phi_{\bullet}^{\bullet}(x) := \frac{1}{2} \| Tx \|^2 \to \min_{x \in \Omega}, \qquad (1.4)$$

где Ω — выпуклое множество в \mathscr{X} .

Теорема 1.2. Для того чтобы элемент $\sigma \in \Omega$ был решением задачи (1.4), необходимо и достаточно, чтобы выполнялось условие

$$(T^*T\sigma, \sigma) = \min_{x \in \Omega} (T^*T\sigma, x)_{\bullet}$$
 (1.5)

Доказательство. Имеем:

$$\Phi(x+h) = \Phi(x) + (T^*Tx, h) + \frac{1}{2}(T^*Th, h).$$

Пусть $\sigma \in \Omega$ — решение (1.4), $v = T^*T\sigma$, $x \in \Omega$ — произвольный элемент, h = x — σ . Тогда

$$\Phi\left(\sigma+th\right)=\Phi\left(\sigma\right)+t\left(v,\ h\right)+\frac{t^{2}}{2}\left(T^{*}Th,\ h\right)\geqslant\Phi\left(\sigma\right)\quad\forall\ t\in\left[0,\ 1\right].$$

Отсюда $(v, h) \geqslant 0$, $(v, x) \geqslant (v, \sigma)$, т. е. выполнено (1.5). Если выполнено (1.5), то, рассуждая в обратном порядке, получим, что σ — решение (1.4). Теорема доказана.

Для дальнейшего потребуются некоторые сведения о выпуклых конусах \mathscr{X} . Множество $\Gamma \subset \mathscr{X}$ называется конусом, если вместе с вектором x оно содержит векторы λx , $\lambda \gg 0$. Введем понятие сопряженного конуса:

$$\Gamma^+ = \{ w \in \mathcal{X} \mid (w, x) \geqslant 0 \quad \forall x \in \Gamma \}.$$

Лемма 1.1. Если Γ — замкнутый выпуклый конус в гильбертовом пространстве \mathscr{U} , то

$$\Gamma^{++} = \Gamma_{\bullet} \tag{1.6}$$

Доказательство проводится так же, как и в [13, с. 309—314]. Рассмотрим конус Γ , заданный конечной системой линейных неравенств,

$$\Gamma = \{ h \in \mathcal{Z} \mid (l_i, h) \geqslant 0, \quad i \in 1 : m \},$$

где $l_i \in \mathscr{X}$.

 \mathcal{J} емма 1.2 (теорема Фаркаша). Сопряженный конус имеет вид

Доказательство. Обозначим W множество в правой части (1.7). Нетрудно показать, что

$$W^+ = \Gamma_{\bullet} \tag{1.8}$$

Множество W является замкнутым выпуклым конусом (доказательство проводится по той же схеме, что и в [13, с. 318—319]). По лемме 1.1, $W^{++} = W$. Из (1.8) получаем $\Gamma^+ = W^{++} = W$. Лемма доказана.

Рассмотрим теперь задачу (1.4) в случае, когда Ω задано конечным числом линейных неравенств:

$$\Omega = \{x \in \mathcal{Z} \mid (l_i, x) \geqslant b_i, \quad i \in 1 : m\}.$$

Теорема 1.3. Пусть $\sigma \in \Omega$. Для того чтобы элемент σ минимизировал функционал $||Tx||^2$ в Ω , необходимо и достаточно, чтобы нашлись числа $\lambda_i \gg 0$, такие, что

$$T^*T\sigma = \sum_{i=1}^m \lambda_i l_i, \tag{1.9}$$

$$\lambda_i [(l_i, \sigma) - b_i] = 0, \quad i \in 1 : m.$$
 (1.10)

Доказательство. Достаточность. Пусть выполнено (1.9)—(1.10). Для произвольных $x \in \Omega$, $v = T^*T\sigma$ имеем:

$$(v, x-\sigma) = \sum_{i=1}^{m} \lambda_i (l_i, x-\sigma) = \sum_{i=1}^{m} \lambda_i [(l_i, x) - b_i + b_i - (l_i, \sigma)] =$$

$$=\sum_{i=1}^m \lambda_i \left[(l_i, x) - b_i \right] \geqslant 0.$$

Значит, выполнено (1.5) и σ — точка минимума.

Необходимость. Пусть σ — сплайн в Ω . Тогда, по теореме 1.2, σ является решением задачи

$$(v, x) \to \min_{x \in \Omega} .$$

Рассмотрим множества

$$R\left(\sigma\right)=\left\{i\in\mathbb{I}:m\mid\left(l_{i},\ \sigma\right)=b_{i}\right\},\qquad\Gamma\left(\sigma\right)=\left\{h\in\mathscr{Z}\mid\left(l_{i},\ h\right)\geqslant0,\ i\in R\left(\sigma\right)\right\}.$$

Для любого $h \in \Gamma$ (σ) вектор $\sigma + th \in \Omega$ при малых t > 0. Отсюда $(v, \sigma + th) \gg (v, \sigma)$, т. е. $(v, h) \gg 0$ для любого $h \in \Gamma$ (σ). Значит, $v \in \Gamma^+$ (σ). По лемме 1.2,

$$v = \sum_{i \in R \ (\sigma)} \lambda_i l_i, \quad \lambda_i \geqslant 0, \quad i \in R \ (\sigma).$$

Положим $\lambda_i = 0$ для $i \notin R$ (σ). Тогда выполнено (1.9), (1.10). Теорема доказана.

В качестве следствия получим теорему характеризации в терминах множителей Лагранжа λ_i для задачи (1.1). Пусть L_i — линейные непрерывные функционалы на \mathscr{X} . По теореме Рисса, L_i (x) = (l_i, x) , где l_i — некоторый элемент из \mathscr{X} .

Следствие 1.2. Элемент о является решением задачи

$$\frac{1}{2} \|Tx\|^2 \to \min_{\substack{(l_i, x) = z_i, i \in 1 : m}}$$
 (1.11)

тогда и только тогда, когда найдутся $\lambda_i \in (-\infty, \infty)$, такие, что

$$T * T \sigma = \sum_{i=1}^{m} \lambda_i l_i. \tag{1.12}$$

Доказательство. Множество планов в задаче (1.11) можно записать в виде

$$\Omega = \{x \in \mathcal{Z} \mid (l_i, x) \geqslant z_i, (-l_i, x) \geqslant -z_i, i \in 1 : m\}.$$

По теореме 1.3, σ является решением тогда и только тогда, когда при некоторых $\lambda_i' \gg 0$, $\lambda_i'' \gg 0$ выполняется равенство

$$T^*T\sigma = \sum_{i=1}^m (\lambda_i' l_i - \lambda_i'' l_i).$$

Полагая $\lambda_i = \lambda_i' - \lambda_i''$, получим (1.12). Следствие доказано.

Окончание параграфа посвятим подробному рассмотрению задачи с двусторонними ограничениями:

$$\frac{1}{2} \| Tx \|^2 \to \min_{x \in \Omega}. \tag{1.13}$$

где

$$\Omega = \{ x \in \mathcal{Z} \mid (l_i, x) = b_i, i \in 1 : m; \alpha_i \leq (l_i, x) \leq \beta_i, i \in m+1 : N \}.$$
 (1.14)

Предполагается, что $\alpha_i < \beta_i$, но не исключается случай, когда некоторые $\alpha_i = -\infty$ или некоторые $\beta_i = +\infty$. Фактически это общая задача с конечным числом линейных ограничений, только ограничения-равенства выделены. Из теоремы 1.3 легко получить следующее утверждение.

T е о р е м a 1.4. Для того чтобы σ был сплайном в Ω , необходимо и достаточно, чтобы нашлись числа λ_i , $i \in 1:N$, такие, что

$$T^*T\sigma = \sum_{i=1}^N \lambda_i l_i,$$

причем для $\lambda_{m+1}, \ldots, \lambda_N$ выполнены следующие знаковые правила:

$$\lambda_i \geqslant 0$$
, ecau $(l_i, \sigma) = \alpha_i$, $\lambda_i = 0$, ecau $\alpha_i < (l_i, \sigma) < \beta_i$, $\lambda_i \leqslant 0$, ecau $(l_i, \sigma) = \beta_i$.

Рассуждая, как в [4, с. 61], покажем, что задача (1.13)— (1.14) сводится к конечномерной задаче квадратичного программирования. Предположим, что для любого набора чисел $z = (z_1, ..., z_N)$ множество

$$\Omega_z = \{x \in \mathcal{Z} \mid (l_i, x) = z_i, i \in 1: N\}$$

не пусто. В частности, не пусто подпространство Ω_0 . Предположим также, что множество $T\Omega_0$ замкнуто в H. Тогда, как установлено в п. 1, для любого z разрешима задача

Решение $\sigma = \sigma_z$ этой задачи в п. 1 было названо сплайном. Обозначим через $\sigma_1, \ldots, \sigma_N$ фундаментальные сплайны (сплайн σ_k удовлетворяет ограничениям $(l_i, \sigma_k) = \delta_{ik}$, $i \in 1:N$). Тогда решение задачи (1.15) запишется в виде

$$\sigma = \sum_{k=1}^{N} z_k \sigma_k. \tag{1.16}$$

Покажем, что решением задачи (1.13)—(1.14) является некоторый сплайн σ . Подставим (1.16) в (1.13)—(1.14) вместо x. Получим (с учетом равенства (l_i , σ) = z_i) следующую задачу:

$$F(z) = \left\| \sum_{k=1}^{N} z_k T \sigma_k \right\|^2 = \sum_{k, l=1}^{N} \langle T \sigma_k, T \sigma_j \rangle z_k z_j \rightarrow \min$$

при ограничениях

$$z_i = b_i$$
, $i \in 1: m$; $\alpha_i \leq z_i \leq \beta_i$, $i \in m+1: N$.

В результате имеем задачу квадратичного программирования с двусторонними ограничениями. Поскольку целевая функция F(z) ограничена снизу и множество планов непусто, то [9] существует решение $z^* = (z_1^*, \ldots, z_N^*)$.

Теорема 1.5. Сплайн

$$\sigma^{\bullet} = \sum_{k=1}^{N} z_{k}^{\bullet} \sigma_{k}$$

является решением задачи (1.13)—(1.14).

Доказательство. По следствию из теоремы 1.3 найдутся числа $\lambda_i \in (-\infty, \infty)$, такие, что

$$T^*T\sigma^* = \sum_{i=1}^N \lambda_i l_i. \tag{1.17}$$

Введем множества

$$M_{1} = \{i \mid \in [m+1: N], | z_{i}^{*} = \alpha_{i} \},$$

$$M_{2}^{*} = \{i \in [m+1: N \mid z_{i}^{*} = \beta_{i} \},$$

$$M_{3} = \{i \in [m+1: N \mid \alpha_{i}] < z_{i}^{*} \leq \underline{\beta}_{i} \}.$$

Воспользуемся теперь теоремой характеризации 1.4. По этой теореме σ^* будет решением (1.13)—(1.14), если удастся установить соотношения

$$\lambda_i \geqslant 0$$
, $i \in M_1$; $\lambda_i \leqslant 0$, $i \in M_2$; $\lambda_i = 0$, $i \in M_3$. (1.18)

Зафиксируем $i \in M_1$ и рассмотрим орт e_i . Вектор $z = z^* + te_i$ удовлетворяет ограничениям (1.14) при малых t > 0 (при $t < \beta_i - \alpha_t$). Поэтому

$$F(z^* + te_i) = ||T\sigma^* + tT\sigma_i||^2 = F|(z^*) + 2t(T^*T\sigma^*, \sigma_i) + t^2||T\sigma_i||^2. \quad (1.19)$$

В силу (1.17) и определения фундаментального сплайна от

$$(T^*T\sigma^*, \sigma_i) = \left(\sum_{k=1}^N \lambda_k l_k, \sigma_i\right) = \lambda_i.$$

Отсюда и из (1.19) получаем:

$$F(z^*) + 2t\lambda_i + t^2 || T\sigma_i ||^2 \gg F(z^*)$$
 (1.20)

при малых t > 0. Отсюда $\lambda_i \geqslant 0$.

При $i \in M_2$ неравенство (1.20) выполняется для малых t < 0, откуда $\lambda_i \leq 0$. Наконец, при $i \in M_3$ неравенство (1.20) выполняется для $t \in (-t_0, t_0)$, $t_0 > 0$, поэтому $\lambda_i = 0$. Условия (1.18) установлены и теорема доказана.

Теорема 1.5 является одновременно теоремой существования решения задачи (1.13)—(1.14). Решение существует, если для любого z множество Ω_z не пусто и множество $T\Omega_0$ замкнуто в H. В книге Лорана [20] доказано (неконструктивно) существование решения при других условиях: множество (1.14) не пусто и множество $T\mathscr{R}$ замкнуто в H.

§ 2. Задача оптимального восстановления функционала на классе элементов

Будем рассматривать задачи оптимального восстановления только линейных функционалов по «линейной» информации. Даны линейные функционалы $L, L_1, ..., L_m$ на линейном пространстве $\mathscr X$ и выпуклое центрально-симметричное множество $W \subset \mathscr X$. Напомним, что выпуклое центрально-симметричное множество W вместе с элементами $f, g \in W$ содержит элементы -f и $\alpha f + (1-\alpha)g$ при всех $\alpha \in [0,1]$.

Требуется восстановить L (f) по информации $If = (L_1 (f), ..., L_m (f))$. Методы восстановления будут определяться функциями m переменных Φ ($y_1, ..., y_m$) (считаем, что L (f) $\approx \Phi$ (L_1 (f), ..., $L_m(f)$) = Φ (If)). Следуя [31], функции Φ будем называть а л-

горитмами, ибо задание Φ определяет алгоритм восстановления L(f): по информации If вычисляем значение $\Phi(If)$ и считаем его приближенным значением для L(f).

Задача состоит в нахождении алгоритма, имеющего наименьшую погрешность R на классе W:

$$R = \inf_{\Phi} \sup_{f \in \mathbf{W}} |L(f) - \Phi(If)|.$$

Алгоритм Φ_0 , на котором достигается инфимум, называется оптимальным. Заранее мы никак не ограничиваем класс алгоритмов,

допуская, в частности, нелинейные функции Ф. Однако оказывается, что для линейных L, L_1 , ..., L_m обязательно найдется линейный оптимальный алгоритм. Это было установлено в диссертации С. А. Смоляка (1966 г.). Сформулируем и докажем лемму С. А. Смоляка.

Лемма 2.1. Существует оптимальный линейный алгоритм, т. е. найдутся коэффициенты a_1^* , a_2^* , ..., a_m^* , такие, что

Рис. 1. Множество D.

$$R = \sup_{f \in W} \left| L(f) - \sum_{i=1}^{m} a_i^* L_i(f) \right|.$$

При этом справедливо соотношение двойственности

$$R = \sup_{f \in W \cap N(I)} |L(f)|,$$

 $e\partial e\ N\ (I) = \{f \in \mathscr{X} : If = \emptyset\}.$

Доказательство. Рассмотрим множество \mathcal{D} в пространстве \mathbb{R}^{m+1} (см. рис. 1):

$$\mathcal{D} = \{Y = (y_0, y_1, \dots, y_m) : y_0 = L(f), y_i = L_i(f), i \in I : m, f \in W\}.$$

Очевидно, что Д выпукло и центрально-симметрично. Положим

$$y^* = \sup_{(y_0, 0, \dots, 0) \in \mathcal{D}} y_0.$$

Нетрудно понять, что

$$y^* = \sup_{(y_0, 0, \dots, 0) \in \mathcal{D}} |y_0| = \sup_{\substack{f \in W \\ L_i(f) = 0, i \in 1: m}} |L(f)|.$$

Для любого алгоритма $\Phi: \mathbb{R}^m \to \mathbb{R}$ имеем:

$$\sup_{f \in W} |L(f) - \Phi(L_1(f), \ldots, L_m(f))| \geqslant$$

$$\geqslant \sup_{(y_0, 0, \ldots, 0) \in \mathcal{D}} \max \{|y_0 - \Phi(0)|, |-y_0 - \Phi(0)|\} \geqslant$$

$$\geqslant \sup_{(y_0, 0, \ldots, 0) \in \mathcal{D}} |y_0| = y^*.$$

Отсюда $R \gg y^*$.

Отметим, что в случае $y^* = \infty$ для любого метода Φ будет $\sup_{f \in W} |L(f) - \Phi(L_1(f), \ldots, L_m(f))| = \infty$,

значит, любой метод является оптимальным, и формально лемма справедлива.

Пусть не все L_1 , ..., L_m тождественно равны нулю на W. Тогда из $\{L_1, \ldots, L_m\}$ можно выделить линейно независимую систему на W, скажем, $\{L_1, \ldots, L_k\}$, так, что L_{k+1}, \ldots, L_m линейно выражаются через L_1, \ldots, L_k .

Рассмотрим множество Ω в пространстве \mathbb{R}^{k+1} :

$$\Omega = \{Y = (y_0, \dots, y_k) : y_0 = L(f), y_i = L_i(f), i \in 1 : k, f \in W\}.$$

Нетрудно понять, что для ранее введенной величины y^* справедливо равенство

$$y^* = \sup_{(y_0, 0, \ldots, 0) \in \Omega} y_0.$$

Точка $Y^* = (y^*, 0, ..., 0)$ является граничной точкой Ω . Проведем через нее опорную гиперплоскость (см. рис. 1 для случая k = m, $\Omega = D$). Из геометрических соображений (по теореме отделимости) с учетом центральной симметрии Ω найдется ненулевой вектор $B = (b_0, b_1, ..., b_k)$, такой, что

$$|(B, Y)| \leq (B, Y^*) \quad \forall Y \in \Omega,$$

или, в равносильной форме,

$$\left|b_0L(f)+\sum_{i=1}^kb_iL_i(f)\right|\leqslant b_0y^* \quad \forall f\in W.$$

В силу линейной независимости $L_1, ..., L_k$ на W коэффициент b_0 отличен от нуля. Разделим неравенство на $|b_0|$. Получим

$$R \leqslant \sup_{f \in W} \left| L(f) - \sum_{i=1}^{n} a_i^* L_i(f) \right| \leqslant y^*,$$

где $a_i^* = -b_i/b_0$, $i \in 1:k$, $a_i^* = 0$, $i \in k+1:m$. Неравенство $R \geqslant y^*$ уже было доказано, значит, $R = y^*$, и лемма доказана.

§ 3. Сплайновые алгоритмы, их оптимальность и центральность

1. В этом параграфе рассматривается важный частный случай задачи § 2 об оптимальном восстановлении линейного функционала L(f) по значениям m линейных функционалов $L_i(f)$ на множестве $W \subset \mathscr{X}$. Предполагается, что множество W задано в виде

$$W = \{ f \in \mathcal{R} : ||Tf||^2 \leqslant M^2 \}, \tag{3.1}$$