Bias-Variance Trade-off and Binary Classification

Shirong Xu

October 5, 2024

1 Basics

For a random variable X, the expectation and variance are given as

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x P(x) \, dx,$$

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \int_{-\infty}^{\infty} (x - \mathbb{E}[X])^2 P(x) dx,$$

where P(x) is the probability density function of X. Usually, if we use notation $\mathbb{E}_X(\cdot)$, it means our expectation is **taken with respect to** the randomness of X.

For a pair of random variable (X,Y), the conditional expectation $\mathbb{E}(Y|X)$ is given as

$$\mathbb{E}(Y|X) = \int_{-\infty}^{\infty} y P(y|X) \, dy,$$

where P(y|X) is the conditional probability density function of Y given X. It is worth noting that conditional expectation $\mathbb{E}(Y|X)$ is a random variable of X. This is because the randomness of Y is eliminated through the expectation.

2 Bias-Variance Tradeoff

Assume the response can be represented as:

$$Y = f^{\star}(X) + \epsilon$$

where ϵ is the noise term, and it satisfies $\mathbb{E}[\epsilon|X] = 0$.

The bias-variance tradeoff pattern appears when I analyze the **testing performance** of a general model f. Consider a prediction function f(X). We define the prediction error as:

True Performance of
$$f : \mathbb{E}[(Y - f(X))^2]$$
.

The true performance evaluates f via the squared-loss of over all possible pairs of (X, Y) (The expectation).

(Objective): We aim to minimize the expected prediction error:

$$\mathbb{E}_{X,Y}[(Y - f(X))^2]$$

We first consider the decomposition:

$$R(f) = \mathbb{E}_{X,Y}[(Y - f(X))^2] = \underbrace{\mathbb{E}_X[(f(X) - \mathbb{E}[Y|X])^2]}_{\text{Model Error}} + \underbrace{\mathbb{E}_{X,Y}[(Y - E[Y|X])^2]}_{\text{Noise}}$$

- (1) $f(X) \mathbb{E}[Y|X]$: the difference between the **prediction value** f(X) and the **expected** value $\mathbb{E}[Y|X]$ (or the optimal prediction value).
- (2) $Y \mathbb{E}[Y|X]$: By the assumption $Y = f^*(X) + \epsilon$, we have $Y \mathbb{E}[Y|X] = \epsilon$. This error is **irreducible**. Therefore, finding a f to minimize $\mathbb{E}_X[(f(X) \mathbb{E}[Y|X])^2]$.

Conclusion: If f(X) is closer to $\mathbb{E}[Y|X]$, then f(X) will have better testing performance.

In practice, the closeness between f(X) and $\mathbb{E}[Y|X]$ depends on **two factors** if f is obtained from a dataset $D = \{(x_i, y_i)\}_{i=1}^n$. We can consider a model specification $\mathcal{F} = \{f(x) = \beta x : \beta \in \mathbb{R}\}$. The following two are **equivalent**.

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} (y_i - f(x_i))^2 \Leftrightarrow \widehat{\beta} = \arg\min_{\beta \in \mathbb{R}} \sum_{i=1}^{n} (y_i - \beta x_i)^2$$

Then, these two factors are

- (1) The stability of $\widehat{\beta}$: This is because $\widehat{\beta}$ is estimated from a finite dataset. Consequently, the estimated $\widehat{\beta}$ may deviate significantly from the true value. This situation can be allieviated by a larger training dataset (More samples are used for estimation, our estimator $\widehat{\beta}$ is more accurate).
- (2) Whether \mathcal{F} correctly speifies $\mathbb{E}[Y|X]$: For example, if $\mathbb{E}[Y|X] = x + x^2$, then using $\mathcal{F} = \{f(x) = \beta x : \beta \in \mathbb{R}\}$ actually mis-specifies the groud truth model. Even if we can estimate β accurately, the estimated model $\widehat{f} = \widehat{\beta}x$ still deviates from $\mathbb{E}[Y|X] = x + x^2$ since x^2 term is missing.

Therefore, we can consider the following analysis:

Model Error at
$$x_0: \left(\widehat{f}(x_0) - \mathbb{E}[Y|X=x_0]\right)^2$$

Then we take the expectation with respect to the dataset $D = \{(x_i, y_i)\}_{i=1}^n$, we have

$$\mathbb{E}_{D}\left(\widehat{f}(x_{0}) - \mathbb{E}[Y|X=x_{0}]\right)^{2} = \mathbb{E}_{D}\left(\widehat{f}(x_{0}) - \mathbb{E}(\widehat{f}(x_{0})) + \mathbb{E}(\widehat{f}(x_{0})) - \mathbb{E}[Y|X=x_{0}]\right)^{2} \\
= \underbrace{\mathbb{E}_{D}\left(\widehat{f}(x_{0}) - \mathbb{E}(\widehat{f}(x_{0}))\right)^{2}}_{\text{Variance of }\widehat{f}(x_{0})} + \underbrace{\left(\mathbb{E}(\widehat{f}(x_{0})) - \mathbb{E}[Y|X=x_{0}]\right)^{2}}_{Bias^{2}}.$$
(1)

Here we can view $\widehat{f}(x_0)$ as a random variable. Because the training dataset consists of random samples and \widehat{f} is obtained from the dataset (can be understood as a kind of transformation). If we let $A = \widehat{f}(x_0)$, then the first term of (1) can be written as

$$\mathbb{E}_D\Big(\widehat{f}(x_0) - \mathbb{E}(\widehat{f}(x_0))\Big)^2 = \mathbb{E}_A\Big(A - \mathbb{E}(A)\Big)^2.$$

The general idea about bias and variance is that

- (1) In general, if \mathcal{F} has more parameters, the corresponding model complexity will increase. However, this is not always the case. For example, $f(x) = \beta_1 \times \beta_2 \times x$ and $g(x) = \beta_3 \times x$. Here f has two parameters and g has one parameter, but they have the same model complexity since they are both linear function of x.
- (2) If model complexity of \mathcal{F} increases, then bias will decrease. This is because a more complicated \mathcal{F} allows us find a function within \mathcal{F} to approximate $\mathbb{E}[Y|X=x_0]$ better.
- (3) If \mathcal{F} has more parameters, then \hat{f} will be more unstable (the variance of \hat{f} will increase).

From the above analysis, we know there exists a bias-variance tradeoff on the choice of \mathcal{F} . Therefore, a common practice is choosing a model with medium model complexity.

2.1 Why the cross-term is zero

Let us consider the cross term in the decomposition of R(f):

$$\mathbb{E}_{X,Y} \Big[\Big(f(X) - \mathbb{E}[Y|X] \Big) \cdot \Big(Y - \mathbb{E}[Y|X] \Big) \Big].$$

Since
$$Y = f^*(X) + \epsilon = \mathbb{E}[Y|X] + \epsilon$$
, we have
$$\mathbb{E}_{X,Y} \left[\left(f(X) - \mathbb{E}[Y|X] \right) \cdot \left(Y - \mathbb{E}[Y|X] \right) \right] = \mathbb{E}_{X,Y} \left[\underbrace{\left(f(X) - \mathbb{E}[Y|X] \right)}_{\text{Not related to } Y} \cdot \epsilon \right]$$
$$= \mathbb{E}_{X} \left[\left(f(X) - \mathbb{E}[Y|X] \right) \cdot \mathbb{E}_{Y}(\epsilon) \right] = \mathbb{E}_{X} \left[\left(f(X) - \mathbb{E}[Y|X] \right) \cdot \mathbb{E}_{\epsilon}(\epsilon) \right]$$
$$= \mathbb{E}_{X} \left[\left(f(X) - \mathbb{E}[Y|X] \right) \cdot 0 \right] = 0.$$

3 Binary Classification

Consider a binary classification problem where:

- X represents the GPA of an applicant.
- Y is a binary random variable indicating whether the applicant is accepted by UCLA (1 if accepted, -1 otherwise).

If X = 3.5, then the conditional probability is

$$\eta(X) = \eta(3.5) = \mathbb{P}(Y = 1 : \text{Being accepted by UCLA}|\text{GPA} = 3.5)$$

Then we assume that the acceptance probability $\eta(X)$ has the following form

$$\eta(X) = \frac{X}{4}.$$

This means that if GPA=4, then you will be 100% accepted by UCLA. If GPA=2, then the probability you will be accepted by UCLA is 2/4=0.5=50%.

Let us consider the Bayes classifier in this problem. The risk is given as

$$R(f) = \mathbb{E}(I(f(X) \neq Y)) = \int P(x) \Big[\eta(x) I(f(X) \neq 1) + (1 - \eta(x)) I(f(X) \neq -1) \Big] dx.$$

Suppose a student GPA is 3, then $\eta(3) = 3/4 = 0.75$ (the probability of being accepted is 75%). If the classifier predict **accepted** (f(3) = 1), the probability of wrong prediction is 0.25, that is

$$\eta(3)I(f(3) \neq 1) + (1 - \eta(3))I(f(3) \neq -1)$$

=\eta(3)I(1 \neq 1) + (1 - \eta(3))I(1 \neq -1) = 1 - \eta(3) = 0.25

If the classifier predict **rejecteded** (f(3) = -1), then the probability of wrong prediction is 0.25, that is

$$\eta(3)I(f(3) \neq 1) + (1 - \eta(3))I(f(3) \neq -1)$$

= $\eta(3)I(-1 \neq 1) + (1 - \eta(3))I(-1 \neq -1) = \eta(3) = 0.75$

Therefore, for achieving minimal prediction error (minimal R(f)), the optimal classifier will be based on $\eta(x) > 1/2$ or not, that is $f^*(x) = \text{sign}(\eta(X) - 1/2)$.