CIS 7414x Expert Systems

Lecture 3 & 4: Probability in AI and Bayesian Networks

Yuqing Tang

Doctoral Program in Computer Science The Graduate Center City University of New York ytang@cs.gc.cuny.edu

September 22nd, 2010

Outline

- Introduction
- Probability Calculus
- Bayesian Networks
- 4 Discussion and Summary

Topics

- Probability calculus
 - Kolmogorov's axioms
 - Joint probability
 - Conditionals
 - ► Independence
- Bayes' rules
- Bayesian networks at a glance

Outline

- Introduction
- Probability Calculus
- Bayesian Networks
- 4 Discussion and Summary

Probabilities and Bayesian network at a glance

Probability Calculus

- Classic approach to reasoning under uncertainty. (origin: Blaise Pascal and Fermat).
- Event space
 - ▶ Let *U* be the universe of all possible events
 - ▶ For any possible event X, $X \subseteq U$
- Kolmogorov's Axioms constraints on valid assignments of uncertainty measures on events
 - **1** P(U) = 1
 - ② For any $X \subseteq U$, $P(X) \ge 0$
 - **③** For any two events $X, Y \subseteq U$ if $X \cap Y = \emptyset$ then $P(X \cup Y) = P(X) + P(Y)$

Example

Example

Event space $U = \{(Pollution = Low), (pollution = high)\}$

- (*Pollution* = *Low*) all the possibilities that the level of pollution is low
- (Pollution = high) all the possibilities that the level of pollution is high
- $P(pollution = High) = 0.1 \ge 0$
- **③** P(pollution = Low) + P(pollution = High) = 1 as $(Pollution = Low) \cap (Pollution = High) = \emptyset$ $(Pollution = Low) \cup (Pollution = High) = U$

Random variables and event space I

- A set of random variables \mathcal{V} : e.g. $P \in \mathcal{V}$ for pollution, $S \in \mathcal{V}$ for smoking, $C \in \mathcal{V}$ for having cancer
- A set of values, denoted by $Domain(V_i)$, of variable V_i the domain of V_i : e.g. $Domain(P) = \{low, high\}$, $Domain(S) = \{T, F\}$, $Domain(C) = \{T, F\}$
- The joint universe event space $U = \prod_{V_i \in \mathcal{V}} Domain(V_i)$ is the set of all possible combinations of the values can be assigned to the variables: e.g. the joint universe of $\mathcal{V} = \{P, S, C\}$ is

```
\langle P, S, C \rangle
\langle low, T, T \rangle
\langle low, F, T \rangle
\langle high, T, T \rangle
\langle high, F, T \rangle
\langle low, T, F \rangle
\langle low, F, F \rangle
\langle high, T, F \rangle
\langle high, F, F \rangle
```

Random variables and event space II

• For a value $a \in Domain(V_i)$, the event $V_i = a$ corresponds to the cross product

$$\{V_i = a\} \times \Pi_{V_j \in \mathcal{V} \text{ and } j \neq i} Domain(V_j)$$

e.g. P = low corresponds to

$$\{ \langle P = low, S = T, C = T \rangle, \langle P = low, S = F, C = T \rangle, \\ \langle P = low, S = T, C = F \rangle, \langle P = low, S = F, C = F \rangle \}$$

S = T corresponds to

$$\{\langle P = low, S = T, C = T \rangle, \langle P = high, S = T, C = T \rangle, \\ \langle P = low, S = T, C = T \rangle, \langle P = high, S = T, C = T \rangle\}$$

Random variables and event space III

• For two variables V_i and V_j , the joint event of $V_i = a$ and $V_j = b$, denoted by

$$V_i = a, V_j = b$$

or

$$V_i = a \wedge V_j = b$$

or

$$(V_i=a)\cap (V_j=b)$$

in the event space:

e.g.

$$(P = low, S = T) = \{ \langle P = low, S = T, C = T \rangle, \langle P = low, S = T, C = T \rangle \}$$

Bayes' Theorem

Definition (Conditional Probability)

$$P(X|Y) = \frac{P(X \cap Y)}{P(Y)}$$

Bayes' Rule [Reverend Thomas Bayes (1764)]

$$P(h|e) = \frac{P(e|h) \cdot P(h)}{P(e)}$$

- Read P(e|h) as the likelihood of the event e given h
- Read P(h) as the prior of the hypothesis h
- Read P(e) as the prior of the evidence e
- Read P(h|e) as the posterior belief Bel(h|e) of h given evidence e

Conditionalization as posterior belief

Bayes rule:

$$P(h|e) = \frac{P(e|h) \cdot P(h)}{P(e)}$$

- If e is the only known evidence in the context
 - ▶ Read the likelihood of *e* given *h* simply as likelihood of *h*:

$$\lambda(h) = P(e|h)$$

Read the belief of h given e simply as belief:

$$Bel(h) = Bel(h|e) = P(h|e)$$

Bayes' rule can then be read as

$$Posterior = \frac{Likelihood \times Prior}{Prob \ of \ evidence}$$

A Bayes' rule example

Assume we know

$$P(C = T) = 0.0116$$

 $P(X = pos) = 0.20812$
 $P(X = pos|C = T) = 0.9$

With Bayes' rule, we can compute the following

$$P(C = T | X = pos) = \frac{P(X = pos | C = T) \times P(C = T)}{P(X = pos)}$$

$$= \frac{0.9 \times 0.0116}{0.2081}$$

$$= 0.050$$

A Bayes' rule example (cont.)

If we know P(X = pos | C = F) = 0.2, we don't need to know P(X = pos) = 0.20812. With the Bayes' rule, we can compute

$$P(C = T | X = pos) = \frac{P(X = pos | C = T) \times P(C = T)}{P(X = pos)}$$

$$= \frac{0.9 \times 0.0116}{P(X = pos)}$$

$$P(C = F | X = pos) = \frac{P(X = pos | C = F) \cdot P(C = F)}{P(X = pos)}$$

$$= \frac{0.2 \times 0.9884}{P(X = pos)}$$

By P(C = T|X = pos) + P(C = F|X = Pos) = 1, we can solve the above three equations and obtain P(X = pos) = 0.01044 + 0.19768 = 0.20812. Put it back to the first equation, we will have

$$P(C = T|X = pos) = \frac{0.01044}{0.20812} = 0.050$$

Independence and conditional independence

- Independence $X \perp Y$ iff P(X|Y) = P(X) iff $P(X \cap Y) = P(X) \cdot P(Y)$
 - ▶ Independence can be input knowledge $P(X \cap Y) = P(X) \cdot P(Y)$ is a constraint arising from the problem domain in hands
 - Independence can arise from the probability analysis of the joint probability
- Conditional independence $X \perp Y|Z$ iff P(X|Y,Z) = P(X|Z) iff $P(X \cap Y|Z) = P(X|Z) \cdot P(Y|Z)$

Marginalization

From Kolmogorov's second axiom: if $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$, we have

$$P(X = a) = \sum_{y_i \in Domain(Y)} P(X = a, Y = y_i)$$

- \bullet P(X, Y) is a joint distribution
- The summation is over all possible values of $Y = \{y_i\}$
- For any two values y_i and y_j $(i \neq j)$ of Y, the $(X = a, Y = y_i) \cap (X = a, Y = y_j) = \emptyset$
- X and Y can be generalized into vectors, i.e. multivariate variables.

	Р	S	P(P,S)
ĺ	Н	Т	0.03
	Н	F	0.07
	L	Т	0.27
	L	F	0.63

$$P(P = low)$$

$$= P(P = low, S = T)$$

$$+P(P = low, S = F)$$

$$= 0.9$$

Chain rule: From conditional probabilities to joint probability

 $P(X|Y) = \frac{P(X \cap Y)}{P(Y)}$ implies $P(X \cap Y) = P(X|Y)P(Y)$ We can generalize this into a chain rule:

$$P(x_1, x_2, ..., x_n) = P(x_1) \times P(x_2|x_1) \times P(x_3|x_1, x_2) \times ... \times P(x_n|x_1, ..., x_{n-1}) = \Pi_{i=1,...,n} P(x_i|x_1, x_2, ..., x_{i-1})$$

Example

$$P(A, B, C) = P(A) \times P(B|A) \times P(C|A, B)$$

Chain rule: From conditional probabilities to joint probability (cont.)

Example

If $C \perp A|B$, then P(C|A,B) = P(C|B), the chain can be simplified

$$P(A, B, C) = P(A) \times P(B|A) \times P(C|B)$$

Bayesian networks are about representing various kinds of independence between variables so that

- the joint probability can be compactly represented, and
- efficient algorithms can be devised to repeatedly apply the Bayes' rules on inferring about the posterior beliefs out of any new evidences.

Bayesian Decision Theory

Frank Ramsey (1926)
 Decision making under uncertainty: what action to take (plan to adopt) when future state of the world is not known.

Bayesian answer: Find utility of each possible outcome (action-state pair) and take the action that maximizes expected utility.

Example

action	Rain $(p = 0.4)$	Shine $(1 - p = 0.6)$
Take umbrella	30	10
Leave umbrella	-100	50

Expected utilities:

$$E(Take\ umbrella) = (30)(0.4) + (10)(0.6) = 18$$

 $E(Leave\ umbrella) = (-100)(0.4) + (50)(0.6) = -10$

Outline

- Introduction
- Probability Calculus
- Bayesian Networks
- 4 Discussion and Summary

Probabilities and Bayesian network at a glance

Bayesian Networks

- Data Structure which represents the dependence between variables.
- Gives concise specification of the joint probability distribution.
- A Bayesian Network is a graph in which the following holds:
 - A set of random variables makes up the nodes in the network.
 - ▶ A set of directed links or arrows connects pairs of nodes.
 - ▶ Each node has a conditional probability table that quantifies the effects the parents have on the node.
 - Directed, acyclic graph (DAG), i.e. no directed cycles.

Nodes and values

- Nodes can be discrete or continuous; will focus on discrete for now.
- Boolean nodes: represent propositions, taking binary values true (T) and false (F).
 - Example: Cancer node represents proposition "the patient has cancer".
- Ordered values.
 Example: Pollution node with values {low, medium, high}.
- Integral values. Example: Age node with possible values from 1 to 120.

Lung cancer example: nodes and values

Node name	Туре	Values
Pollution	Binary	{low, high}
Smoker	Boolean	$\{T,F\}$
Cancer	Boolean	$\{T,F\}$
Dyspnoea	Boolean	$\{T,F\}$
X-ray	Binary	$\{pos, neg\}$

Structure terminology and layout

- Family metaphor: Parent ⇒ Child
 Ancestor ⇒ . . . ⇒ Descendant
- Markov Blanket = parents + children + children's parents
- Tree analogy:
 - root node: no parents
 - leaf node: no children
 - ▶ intermediate node: non-leaf, non-root
- Layout convention: root notes at top, leaf nodes at bottom, arcs point down the page.

Conditional Probability Tables

Once specified topology, need to specify *conditional probability table (CPT)* for each node.

- Each row contains the conditional probability of each node value for a each possible combination of values of its parent nodes.
- Each row must sum to 1.
- A table for a Boolean var with n Boolean parents contain 2^{n+1} probabilities.
- A node with no parents has one row (the prior probabilities)

Lung cancer example: CPTs

The Markov Property

- Modeling with BNs requires the assumption of the Markov Property: there are no direct dependencies in the system being modeled which are not already explicitly shown via arcs.
- Example: there is no way for smoking to influence dyspnoea except by way of causing cancer.
- BNs which have the Markov propertly are called Independence-Maps (I-Maps).
- Note: existence of arc does not have to correspond to real dependency in the system being modeled — can be nullified in the CPT.

Reasoning with Bayesian Networks

- Basic task for any probabilistic inference system:
 Compute the posterior probability distribution for a set of query variables, given new information about some evidence variables.
- Also called conditioning or belief updating or inference. Bayesian

Types of reasoning

Types of evidence

 Specific evidence: a definite finding that a node X has a particular value, x.

Example: Smoker = T

- Negative evidence: a finding that node Y is not in state y_1 (but may take any other values).
- "Virtual" or "likelihood" evidence: source of information is not sure about it.

Example:

- e = Radiologist is 80% sure that Xray = pos
- ▶ Want e.g.:

$$P(Cancer|e) = P(Cancer|Xray, e) \cdot P(Xray|e) + P(Cancer|\neg Xray, e) \cdot P(\neg Xray|e)$$

▶ Jeffrey Conditionalization (will introduced later when it is encountered)

Reasoning with numbers

See a demo.

Understanding of Bayesian Networks (Semantics)

- A (more compact) representation of the joint probability distribution.
 - helpful in understanding how to construct network
- Encoding a collection of conditional independence statements.
 - helpful in understanding how to design inference procedures
 - via Markov property/l-map: Each conditional independence implied by the graph is present in the probability distribution

Bayesian Network (Conditional Independence), Chain Rule, and Joint Distribution I

- Write $P(X_1 = x_1, ..., X_n = x_n)$ as $P(x_1, ..., x_n)$.
- Factoraization (chain rule):

$$P(x_1,...,x_n) = P(x_1) \times ... \times P(x_n|x_1,...,x_{n-1})$$

= $\Pi_{i=1,...n}P(x_i|x_1,...,x_{i-1})$

 Bayesian Network implies that the value of particular node is only conditional dependence of its parent nodes

$$P(x_i|x_1,...,x_{i-1}) = P(x_i|Parents(X_i))$$

$$P(x_1,...,x_n) = \Pi_{i=1,...n}P(x_i|Parents(X_i))$$

• In the above, we need an ordering of variables: $Parents(X_i) \subseteq \{X_1, \dots, X_{n-1}\}$

Bayesian Network (Conditional Independence), Chain Rule, and Joint Distribution II

Bayesian Network (Conditional Independence), Chain Rule, and Joint Distribution III

Example

$$P(X = pos, D = T, C = T, P = low, S = F)$$

$$= P(X = pos|D = T, C = T, P = llow, S = F)$$

$$\times P(D = T|C = T, P = low, S = F)$$

$$\times P(C = T|P = low, S = F)$$

$$\times P(P = low|S = F)$$

$$\times P(S = F)$$

$$= P(X = pos|C = T) \times P(D = T|C = T)$$

$$\times P(C = T|P = low, S = F)$$

$$\times P(P = low) \times P(S = F)$$

Pearl's network construction algorithm

- **①** Choose the set of relevant variables $\{X_i\}$ that describe the domain.
- ② Choose an ordering for the variables, $\langle X_1, \dots, X_n \rangle$.
- While there are variables left:
 - **1** Add the next variable X_i to the network.
 - **2** Add arcs to the X_i nodes from some minimal set of nodes already in the net, $Parents(X_i)$, such that the following conditional independence property is satisfied:

$$P(X_i|X_1',\ldots,X_m') = P(X_i|Parents(X_i))$$

where X'_1, \ldots, X'_m are all the variables preceding X_i , including $Parents(X_i)$.

Oefine the CPT for X_i

Compactness and node ordering

- Compactness of BN depends upon sparseness of the systems
- The best order to add nodes is to add the "root causes" first, then the variable they influence, so on until "leaves" reached.
 - Causal structure

Different node ordering different compactness

- Variable order affect compactness
- Alternative structures using different orderings (a) $\langle D, X, CP, S \rangle$, (b) $\langle D, X, P, S, C \rangle$

- ▶ These BNs still represent the same joint distribution.
- ▶ Structure (b) requires many probabilities as the full joint distribution!

Condtional Independence in Causal Chains

Causual chians give rise to conditioanl independence: $A \perp C|B$

$$P(C|A,B) = P(C|B)$$

Example: "smoking causes cancer which causes dyspnoea".

Condtional Independence in Common Causes

Common causes (or ancestors) give rise to conditioanl independence:

Example: "Cancer is common cause of the two symptons, a positive XRay resutl and dyspnoea."

Condtional Dependence in Common Effects

Causual effects (or their descendants) give rise to conditioanl independence: $\neg(A \perp C|B)$

$$P(C|A,B) \neq P(C|B)$$

altough marginal dependence

$$P(A, C) = P(A) \cdot P(C)$$

Example: "Cancer is a common effect of pollution and smoking."

Given lung cancer, smoking "explains away" pollution.

Direction-dependent Speration: D-Speration

 Graphical criterion of conditional independence. X and Y are d-seperated by Z:

$$X \perp Y \mid Z$$

- We can determine whether a set of nodes X is independent of another set Y, given a set of evidence nodes E, via the Markov propoerty: $X \perp Y | E \rightarrow X \perp Y | E$.
- Example

Determine D-Seperation

How to determine $X \perp Y \mid E$:

- If every undirected path from a node in X to a node in Y is
 d-separated by E, then X and Y are conditionally independent given
 E.
- A set of nodes E d-separates two sets of nodes X and Y if every undirected path from a node in X to a node in Y is blocked given E.
- A path is blocked given a set of nodes E if there is a node Z on the path for which one of three conditions holds:
 - ① Z is in E and Z has one arrow on the path leading in and one arrow out (chain), or

 - 3 Neither Z nor any descendant of Z is in E, and both path arrows lead in to Z (common effect).

D-Seperation

Evidence nodes **E** shown shaded.

Causual Ordering

Why does variable order affect network density?

- Using the causal order allows direct representation of conditional independencies
- Violating causal order requires new arcs to re-establish conditional independencies

Causual Ordering (cont.)

Pollution and Smoking are marginally independent. Ordering: Cancer, Pollution, Smoking:

Marginal independence of Pollution and Smoking must be re-established by adding $Pllution \rightarrow Smoking$ or $Smoking \leftarrow Pollution$.

Summary of Bayesian Networks

- Bayes' rule allows unknown probabilities to be computed from known ones.
- Conditional independence (due to causal relationships) allows efficient updating
- BNs are a natural way to represent conditional independence info.
 - links between nodes: qualitative aspects;
 - conditional probability tables: quantitative aspects.
- Probabilistic inference: compute the probability distribution for query variables, given evidence variables
- BN Inference is very flexible: can enter evidence about any node and update beliefs in any other nodes.

Outline

- Introduction
- Probability Calculus
- Bayesian Networks
- 4 Discussion and Summary

Justifications of probability I

- The principle of indifference all elementary outcomes are equally likely
 - In the absence of any other information, there is no reason to consider one more likely than another
 - Application in handling statistical information: e.g. 40 percent of a doctor's are over 60, P(PatientAge > 60) = 0.4
 - Problem: Different choices of elementary outcomes lead to different probability assignments of the same situation
- Frequentism the probability numbers represent relative frequencies
 - e.g. a coin lands heads with 1/2 of the outcomes if it is tossed "sufficiently often"
 - ▶ Problem: How many times is "sufficiently often"? How about something can not be repeated? How about it is costly to repeat?
- Subjective view the probability numbers reflect subjective assessments of likelihood as long as the numbers satisfied the Kolmogorov's axioms; a famous argument is of Ramsey's:

Justifications of probability II

- ▶ Probability is justified in terms of bet, denoted by $\langle X, \alpha \rangle$ ($0 \le \alpha \le 1$): If event $X \subseteq U$ happens, the agent wins $100(1 \alpha)$ dollars otherwise it loses 100α ; the complementary bet is $\langle \neg X, 1 \alpha \rangle$
- ▶ If an agent bets according to a set of rational criteria, then the probability measure of the event X is α_X such that
 - \star $\langle X, \alpha \rangle$ is preferred to $\langle \neg X, 1 \alpha \rangle$ by the agent for all $\alpha < \alpha_X$, and
 - ★ $\langle \neg X, 1 \alpha \rangle$ is preferred to $\langle X, \alpha \rangle$ by the agent for all $\alpha > \alpha_X$

Taken from [Halpern, 2003]

A big picture

- Kolmogorov's axioms
- Conditional probability
- Belief as conditional probability
- Joint probability
- Marginal probability
- Belief update as posterior conditionalization via marginalization of joint probability and/or the application of Bayes' rules
- Joint probability computation and belief update can be simplified by employing the conditional independence
- Bayesian networks is the structural way to achieve this simplification
 - Graphical representation of independence and conditional independence
 - ► Factoring the computation of unknown conditional probabilities (the unknown post-evidence beliefs) into
 - ★ Traversing the nodes and edges in the network, and
 - Carrying out simpler computation steps associated with the nodes and edges

Acknowledgments

Lecture 3 is composed the instructor's own understanding of the subject, and materials from [Korb and Nicholson, 2003, Chapter 1, Chapter 2] with the instructor's own interpretations. The instructor takes full responsibility of any mistakes in the slides.

References I

MIT press, Cambridge, MA, 2003.

K. Korb and A. E. Nicholson. Bayesian Artificial Intelligence. Chapman & Hall /CRC, 2003.