



# Embedded Systems Advanced Nano-Degree Embedded Software Design

# **Automotive Door Control System Design**

Dynamic Design

## **Ahmad Aladdin Tohamy**

tuhami.10.8@gmail.com July Cohort 2022

#### ECU 1

### State Machine for each component



### **State Machine for ECU operation**



### **ECU1 Sequence Diagram**

ECU1 : Sequence Diagram



#### **CPU Load**

Assuming that each task shall not consume more than 1ms of processor time Knowing that

| Task         | Deadline | Occurrence<br>During<br>Hyperperiod |
|--------------|----------|-------------------------------------|
| Door State   | 10 ms    | 2                                   |
| Light Switch | 20 ms    | 1                                   |
| Speed State  | 5 ms     | 4                                   |

Utilization = Total Execution Time During Hyperperiod / Hyperperiod

$$U = \frac{(1m^*2) + (1m^*1) + (1m^*4)}{20m} \times 100\% = 35\%$$

There for CPU load shall never exceed 35%

#### ECU 2

### State Machine for each component



# State Machine for ECU operation



### **ECU2 Sequence Diagram**

#### ECU2: Sequence Diagram



#### **CPU Load**

Assuming that each task shall not consume more than 1ms of processor time Knowing that

| Task         | Deadline | Occurrence<br>During<br>Hyperperiod |
|--------------|----------|-------------------------------------|
| Door State   | 10 ms    | 2                                   |
| Light Switch | 20 ms    | 1                                   |
| Speed State  | 5 ms     | 4                                   |

Utilization = Total Execution Time During Hyperperiod / Hyperperiod

$$U = \frac{(1m^*2) + (1m^*1) + (1m^*4)}{20m} \times 100\% = 35\%$$

There for CPU load shall never exceed 35%