1 Teoria dos Tipos Simples

Outro problema do Cálculo λ não-tipado é o fato de poder existir recursões infinitas através de termos como Ω e Δ . A tipagem dos termos faz com que esse tipo de fenômeno não ocorra. O que retira a Turing-completude, mas facilita outras coisas.

Para fazer essa descrição ser mais detalhada e evitar esse tipo de erro, Church introduziu tipos.

1.1 Cálculo λ simplesmente tipado (ST λ C)

1.1.1 Tipos simples

Uma forma simples de começar a tipagem dos λ -termos é considerando uma coleção de variáveis de tipos e uma forma de produzir mais tipos através dessa coleção, chamado de tipo funcional

Seja \mathbb{V} a coleção infinita de variáveis de tipos $\mathbb{V} = \{\alpha, \beta, \gamma, \dots\}$, então:

Definição 1.1 (A coleção de todos os tipos simples). A coleção dos tipos simples \mathbb{T} é definida por:

- 1. (Variável de tipos) Se $\alpha \in \mathbb{V}$, então $\alpha \in \mathbb{T}$
- 2. (Tipo funcional) Se $\sigma, \tau \in \mathbb{T}$, então $(\sigma \to \tau) \in \mathbb{T}$.

Na BNF, $\mathbb{T} = \mathbb{V}|\mathbb{T} \to \mathbb{T}$

Os parenteses no tipo funcional são associativos à direita, ou seja o tipo $\alpha_1 \to \alpha_2 \to \alpha_3 \to \alpha_4$ é $(\alpha_1 \to (\alpha_2 \to (\alpha_3 \to \alpha_4)))$

Tipos simples arbitrários serão escritos com letras gregas minúsculas (Com excessão do λ) como σ, τ, \ldots , mas também podem ser escrito como letras latinas maiúsculas A, B, \ldots na literatura.

As variáveis de tipos são representações abstratas de tipos básicos como os números naturais $\mathbb N$ ou a coleção de todas as listas $\mathbb L$. Esses tipos serão explorados mais à frente. Já os tipos funcionais representam funções na matemática como por exemplo $\mathbb N \to \mathbb N$, o conjunto de funções que leva dos naturais para os naturais, ou $(\mathbb N \to \mathbb Z) \to \mathbb Z \to \mathbb N$, o conjunto de funções que recebem como entrada uma função que leva dos naturais aos inteiros e um inteiro e retorna um natural.

A sentença "O termo M possui tipo σ " é escrita na forma $M:\sigma$. Todo termo possui um tipo único, logo se x é um termo e $x:\sigma$ e $x:\tau$, então $\sigma\equiv\tau$.

Como os tipos foram introduzidos para lidar com o cálculo λ , eles devem ter regras para lidar com as operações de aplicação e abstração.

- 1. (Aplicação): No cálculo λ , sejam M e N termos, podemos fazer uma aplicação entre eles no estilo MN. Para entender como entram os tipos, é possível recordar de onde surge a intuição para a aplicação. Seja $f: \mathbb{N} \to \mathbb{N}$ a função $f(x) = x^2$, então, a aplicação de 3 em f é $f(3) = 3^2$. Nesse exemplo, omite-se o fato que para aplicar 3 a f, 3 tem que estar no domínio de f, ou seja, $3 \in \mathbb{N}$. No caso do cálculo λ , para aplicar N em M, M deve ter um tipo funcional, na forma $M: \sigma \to \tau$, e N deve ter como tipo o primeiro tipo que aparece em M, ou seja $N: \sigma$.
- 2. (Abstração): No cálculo λ , seja M um termo, podemos escrever um termo $\lambda x.M$. A abstração "constroi" a função. Para a tipagem, seja $M:\tau$ e $x:\sigma$, então $\lambda x:\sigma M:\sigma \to \tau$. É possível omitir o tipo da variável, escrevendo no estilo: $\lambda x.M:\sigma \to \tau$.

Alguns exemplos:

- 1. Seja x do tipo σ , a função identidade é escrita na forma $\lambda x.x: \sigma \to \sigma$.
- 2. O combinador $\mathbf{B} \equiv \lambda xyz.x(yz)$ é tipado na forma $\mathbf{B}: (\sigma \to \tau) \to (\rho \to \sigma) \to \rho \to \tau$.
- 3. O combinador $\Delta \equiv \lambda x.xxx$ não possui tipagem. Isso ocorre pois, na aplicação xx, x precisa ter como tipo $\sigma \to \tau$ e σ , mas como x só pode ter um tipo, então $\sigma \to \tau \equiv \sigma$. O que não é possível em \mathbb{T} . Logo Δ (e Ω por motivos similares), não faz parte da teoria dos tipos simples.

O último exemplo mostra que o teorema do ponto fixo não ocorre para todos os termos na teoria dos tipos simples e que não existe recursão infinita, fazendo com que a teoria dos tipos simples deixe de ser turing-completa.

1.1.2 Abordagens para a tipagem

Existem duas formas de tipar um λ -termo:

- (Tipagem à la Church / Tipagem explícita / Tipagem extrínseca / Tipagem ontológica) Pode-se prescrever um tipo único à cada variável quando ela for introduzida. Nesse estilo de tipagem, só termos que podem ser bem formados são aceitos.
- 2. (*Tipagem à la Curry / Tipagem implícita / Tipagem intrínseca / Tipagem semântica*) Pode-se não definir o tipo do termo na sua introdução, mas deixá-lo aberto. Os tipos são buscados para o termo, por tentativa e erro.