The Riemann Hypothesis in Terms of the Hardy Z-Function

BY STEPHEN CROWLEY February 21, 2025

Abstract

This paper establishes the equivalence of the Riemann Hypothesis (RH) with the assertion that all zeros of the Hardy Z-function are real. The Riemann-Siegel theta function $\theta(t)$ is constructed to cancel the complex phase of $\zeta\left(\frac{1}{2}+i\,t\right)$, rendering Z(t) real-valued independent of the Riemann Hypothesis. Proofs of continuity for $\theta(t)$ and the phase cancellation are provided.

Table of contents

1	Foundational Definitions	1
	1.1 Riemann-Siegel Theta Function	
2	Phase Cancellation and Reality of $Z(t)$	7
	2.1 Functional Equation of $\zeta(s)$	
3	Main Theorem: RH Equivalence	67.
	Forward Direction (\Rightarrow)	
4	Continuity of $\theta(t)$	

1 Foundational Definitions

1.1 Riemann-Siegel Theta Function

The Riemann-Siegel theta function $\theta(t)$, critical to the Z-function, is defined as:

$$\theta(t) = \arg\Gamma\left(\frac{1}{4} + i\frac{t}{2}\right) - \frac{\log\pi}{2}t + \pi\left\lfloor\frac{t}{2} + \frac{1}{4}\right\rfloor \tag{1}$$

where $\Gamma(z)$ is the gamma function.

1.2 Hardy Z-Function

The Hardy Z-function is defined by:

$$Z(t) = e^{i\theta(t)} \zeta\left(\frac{1}{2} + it\right)$$
 (2)

2 Phase Cancellation and Reality of $\boldsymbol{Z}(t)$

2.1 Functional Equation of $\zeta(s)$

The functional equation for the Riemann zeta function is:

$$\zeta(s) = \chi(s) \zeta(1-s) \tag{3}$$

$$\chi(s) = \pi^{s - \frac{1}{2}} \frac{\Gamma\left(\frac{1 - s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} \tag{4}$$

2.2 Phase Analysis on the Critical Line

Lemma 1. (Phase Cancellation) For $s = \frac{1}{2} + it$, the theta function satisfies:

$$\theta(t) \equiv -\arg \zeta \left(\frac{1}{2} + it\right) \pmod{\pi} \tag{5}$$

 $rendering\ Z(t)\ real-valued.$

Proof. On the critical line, $\zeta(s) = \chi(s) \overline{\zeta(s)}$ via (3). Taking arguments:

$$\arg \zeta(s) \equiv \arg \chi(s) - \arg \zeta(s) \pmod{2\pi}$$
 (6)

Rearranging gives:

$$2\arg\zeta(s) \equiv \arg\chi(s) (\operatorname{mod} 2\pi) \tag{7}$$

so:

$$\arg \zeta(s) \equiv \frac{1}{2} \arg \chi(s) (\operatorname{mod} \pi) \tag{8}$$

Substituting $\chi(s)$ from (3):

$$\arg \chi(s) = -\frac{\log \pi}{2} t + \arg \Gamma\left(\frac{1}{4} - \frac{it}{2}\right) + \pi \left\lfloor \frac{t}{2} + \frac{1}{4} \right\rfloor \tag{9}$$

By definition (1), $\theta(t) \equiv \frac{1}{2} \arg \chi(s) \pmod{\pi}$, hence:

$$\arg \zeta \left(\frac{1}{2} + it\right) \equiv -\theta(t) (\operatorname{mod} \pi) \tag{10}$$

forcing
$$Z(t) = e^{i\theta(t)} \zeta\left(\frac{1}{2} + it\right)$$
 to be real.

3 Main Theorem: RH Equivalence

Theorem 2. (Equivalence) The Riemann Hypothesis holds if and only if all zeros of Z(t) are real.

Proof. Let $\rho = \sigma + it$ be a non-trivial zero of $\zeta(s)$.

Forward Direction (\Rightarrow) If RH holds, all ρ lie on $\sigma = \frac{1}{2}$. By Lemma 1, zeros of Z(t) correspond to $\zeta\left(\frac{1}{2} + it\right) = 0$, which are real.

Reverse Direction (\Leftarrow) Suppose all zeros of Z(t) are real. For any $\rho = \sigma + i t$, the functional equation implies an accompanying zero $\rho' = 1 - \sigma + i t$. If $\sigma \neq \frac{1}{2}$, then ρ and ρ' would produce two distinct zeros of Z(t) at t, violating reality. Hence, $\sigma = \frac{1}{2}$.

4 Continuity of $\theta(t)$

Theorem 3. (Continuity) $\theta(t)$, defined in (1), is continuous for all $t \in \mathbb{R}$.

Proof. Let $n \in \mathbb{Z}$ and $t_0 = 2n - \frac{1}{2}$. Near t_0 :

$$\lim_{\epsilon \to 0^{+}} \arg \Gamma\left(\frac{1}{4} + i \frac{t_0 + \epsilon}{2}\right) = \lim_{\epsilon \to 0^{-}} \arg \Gamma\left(\frac{1}{4} + i \frac{t_0 - \epsilon}{2}\right) + \pi \tag{11}$$

The floor term compensates:

$$\lim_{\epsilon \to 0^+} \pi \left| \frac{t_0 + \epsilon}{2} + \frac{1}{4} \right| = \pi n, \quad \lim_{\epsilon \to 0^-} \pi \left| \frac{t_0 - \epsilon}{2} + \frac{1}{4} \right| = \pi (n - 1)$$
 (12)

Thus:

$$\lim_{\epsilon \to 0^{+}} \theta (t_{0} + \epsilon) = \lim_{\epsilon \to 0^{-}} \theta (t_{0} - \epsilon)$$
(13)

and $\theta(t)$ is continuous everywhere.