Eigenvalues and eigenvectors

Any $n \times n$ matrix \overrightarrow{A} defines a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n, \overrightarrow{x} \mapsto \overrightarrow{A}\overrightarrow{x}$. For a nonzero vector $\overrightarrow{x} \in \mathbb{R}^n$ we say \overrightarrow{x} is an **eigenvector** of \overrightarrow{A} if $\overrightarrow{A}\overrightarrow{x}$ is a scalar multiple of \overrightarrow{x} , i.e. there exists a scalar $\lambda \in \mathbb{R}$ such that $\overrightarrow{A}\overrightarrow{x} = \lambda \overrightarrow{x}$. Likewise, we say that $\lambda \in \mathbb{R}$ is an **eigenvalue** of \overrightarrow{A} if $\overrightarrow{A}\overrightarrow{x} = \lambda \overrightarrow{x}$ for some $\overrightarrow{x} \in \mathbb{R}^n$. Iff λ is an eigenvalue of \overrightarrow{A} , there exists a nonzero solution to $(\overrightarrow{A} - \lambda \overrightarrow{I})\overrightarrow{x}$, and therefore $(\overrightarrow{A} - \lambda \overrightarrow{I})$ is **not** invertible. Thus, all nonzero vectors $\overrightarrow{v} \in \ker(\overrightarrow{A} - \lambda \overrightarrow{I}) \subset \mathbb{R}^n$ are eigenvectors of \overrightarrow{A} , with eigenvalue λ .

For example, given

$$\vec{A} = \begin{bmatrix} -1 & 3\\ 3 & -1 \end{bmatrix}$$

we can see that an eigenvalue of \overrightarrow{A} is $\lambda = 2$, and so

$$\vec{A} - 2\vec{I} = \begin{bmatrix} -3 & 3\\ 3 & -3 \end{bmatrix}$$

is a singular matrix, and that the corresponding eigenvector is $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Another eigenvalue of \vec{A} is $\lambda = -4$, with eigenvector $\vec{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Note that the two eigenvectors are distinct, as they are linearly independent.

For $\vec{x} \in \mathbb{R}^2$, $\vec{x} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ for unique $c_1, c_2 \in \mathbb{R}$. Therefore,

$$\overrightarrow{a}\overrightarrow{x} = c_1\overrightarrow{A}\begin{bmatrix}1\\1\end{bmatrix} + c_2\overrightarrow{A}\begin{bmatrix}1\\-1\end{bmatrix} = c_1\lambda_1\begin{bmatrix}1\\1\end{bmatrix} + c_2\lambda_2\begin{bmatrix}1\\-1\end{bmatrix}$$

This gives us a very easy way to exponentiate \vec{A} :

$$\vec{A}^n \vec{x} = c_1 \lambda_1^n \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \lambda_2^n \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

As an aside, given $\overrightarrow{P} = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}$,

$$\vec{A} = \vec{P} \begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix} \vec{P}^{-1}$$

This means that \vec{A} is **diagonalisable**, and it is **similar** to $\begin{bmatrix} 2 & 0 \\ 0 & -4 \end{bmatrix}$.

Theorem: If \overrightarrow{A} is upper triangular, then its eigenvalues are its diagonal entries.

Proof. Given a matrix $\overrightarrow{A}_{n\times n}$ and an eigenvalue λ

$$\vec{A} - \lambda \vec{I} = \begin{bmatrix} a_{11} - \lambda & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & a_{nn} - \lambda \end{bmatrix}$$

and so $\det(\vec{A} - \lambda \vec{I}) = \prod_{i=1}^{n} (a_{ii} - \lambda)$. Therefore, $(\vec{A} - \lambda \vec{I})$ is not invertible iff $\lambda = a_{kk}$ for some $1 \le k \le n$.

Theorem: Suppose $\overrightarrow{v}_1, \overrightarrow{v}_2 \cdots \overrightarrow{v}_r$ are eigenvectors with corresponding eigenvalues $\lambda_1, \lambda_2 \cdots \lambda_r$. Assume these eigenvalues are distinct. Then, $\{\overrightarrow{v}_1, \overrightarrow{v}_2 \cdots \overrightarrow{v}_r\}$ are linearly independent.

Proof. Let $1 \leq j \leq r$ be the largest index for which $\{\vec{v}_1, \vec{v}_2 \cdots \vec{v}_r\}$ are linearly independent. If j = r, we are done. Otherwise, if j < r, then

$$\overrightarrow{v}_{j+1} = \sum_{i=1}^{j} c_i \overrightarrow{v}_i, c_i \in \mathbb{R} \ \forall \ 1 \le i \le j$$
 (1)

Multiplying (1) by \overrightarrow{A} we get

$$\vec{A} \vec{v}_{j+1} = \sum_{i=1}^{j} c_i \vec{A} \vec{v}_i$$
$$\lambda_{j+1} \vec{v}_{j+1} = \sum_{i=1}^{j} c_i \cdot \lambda_i \vec{v}_i$$

but, if we multiply (1) by λ_{j+1} instead of \overrightarrow{A} , we get

$$\lambda_{j+1} \vec{v}_{j+1} = \sum_{i=1}^{j} c_i \cdot \lambda_{j+1} \vec{v}_i$$

Subtracting the two equations, we get

$$0 = \sum_{i=1}^{j} c_i (\lambda_i - \lambda_{j+1}) \overrightarrow{v}_i$$

Since we know that $\{\vec{v}_1, \vec{v}_2 \cdots \vec{v}_j\}$ are linearly independent, $c_i(\lambda_i - \lambda_{j+1}) = 0 \ \forall \ 1 \le i \le j$. Per equation (1), we know that at least one coefficient $c_i \ne 0$, so for some $i, \ \lambda_i - \lambda_{j+1} = 0 \implies \lambda_i = \lambda_{j+1}$. This is a contradiction, as we assumed that all the eigenvalues are distinct. Therefore, j = r, and we are done.

Eigenspaces

Given a matrix $\overrightarrow{A}_{n \times n}$, the **eigenspace** of \overrightarrow{A} is the vector space containing the eigenvectors of \overrightarrow{A} for a certain eigenvalue λ , equivalent to

$$v_{\lambda} = \ker(\vec{A} - \lambda \vec{I})$$

We can say that λ is an eigenvalue iff $\ker(\vec{A} - \lambda \vec{I}) \neq \{\vec{0}\}$, that is, iff $(\vec{A} - \lambda \vec{I})$ is singular, which in turn is equivalent to

$$\det(\overrightarrow{A} - \lambda \overrightarrow{I}) \neq 0$$

From this we get the **characteristic polynomial** of \overrightarrow{A} with regards to λ :

$$P_A(\lambda) = \det(\vec{A} - \lambda \vec{I})$$

and we can define the eigenvalues of \overrightarrow{A} as the roots of $P_A(x) = 0$.

For example, for $\overrightarrow{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$:

$$P_A(\lambda) = \det(\overrightarrow{A} - \lambda \overrightarrow{I}) = \det\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - 2\overrightarrow{I} \end{pmatrix} = \det\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix}$$
$$= (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + ad - bc$$

In fact, the final constant of P_A will always be $\det(\overrightarrow{A})$. This can be seen by setting $\lambda = 0$ in the definition for the characteristic equation. The penultimate coefficient will be the **trace** of \overrightarrow{A} , which is the sum of its diagonal elements. In general, for an upper triangular matrix:

$$P_A(\lambda) = \prod_{i=1}^n (a_{ii} - \lambda) \tag{2}$$

Note that, if a root of $P_A(\lambda) = 0$ is multiple, the multiplicity of the root denotes the upper limit of the dimension of the corresponding eigenspace, that is, the size of the largest set of linearly independent vectors \vec{v} such that $\det(\vec{A} - \lambda \vec{I}) = 0$.

Similarity

As mentioned above, there is a concept of **similarity** between matrices. $\overrightarrow{A}_{n \times n}$ and $\overrightarrow{B}_{n \times n}$ are similar, that is, $\overrightarrow{A} \overrightarrow{B}$, iff there exists an invertible matrix $\overrightarrow{P}_{n \times n}$ such that $\overrightarrow{A} = \overrightarrow{P} \overrightarrow{B} \overrightarrow{P}^{-1}$. This is an **equivalence relation**, that is, for any $\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}$:

1. \overrightarrow{A} \overrightarrow{A} 2. \overrightarrow{A} \overrightarrow{B} \Longleftrightarrow \overrightarrow{B} \overrightarrow{A} 3. \overrightarrow{A} \overrightarrow{B} , \overrightarrow{B} \overrightarrow{C} \Longrightarrow \overrightarrow{A} \overrightarrow{C}

Theorem:
$$\overrightarrow{A} \overrightarrow{B} \implies P_A(\lambda) = P_B(\lambda)$$

Proof.
$$P_A = \det(\vec{A} - \lambda \vec{I}) = \det(\vec{P}\vec{B}\vec{P}^{-1} - \lambda \vec{P}\vec{I}\vec{P}^{-1}) = \det(\vec{P}^{-1}(\vec{B} - \lambda \vec{I})\vec{P}^{-1}) = \det(\vec{B} - \lambda \vec{I}) = P_B$$