

2.1 Anneaux

2.1.1 Définitions et règles de calcul

Définition 2.1 On appelle anneau tout triplet $(A, +, \cdot)$ constitué de :

- 1. un ensemble non vide A,
- 2. une loi de composition interne + de A, telle que (A,+) est un groupe commutatif,
- 3. une loi de composition interne \cdot , dite multiplication de A, associative, ayant un élément neutre (appelée élément unité) et distributive par rapport à l'addition.

De plus, un anneau $(A, +, \cdot)$ est dit commutatif si sa multiplication est commutative.

Soient + et · deux lois internes dans un ensemble A, on dit que · est distributive sur + si $\forall x, y, z \in A, \quad x \cdot (y+z) = x \cdot y + x \cdot z \quad \text{et} \quad (y+z) \cdot x = y \cdot x + z \cdot x.$

Exemple. L'ensemble $(\mathbb{Z}, +, \cdot)$ est un anneau commutatif.

Notation. Dans ce qui suit, $(A, +, \cdot)$ désigne un anneau et on adopte les notations suivantes :

- L'élément neutre pour l'addition est noté 0_A , et l'élément unité est noté 1_A .
- Le symétrique de a ∈ A pour l'addition (opposé de a) est noté −a, et le symétrique de a ∈ A pour la multiplication (inverse de a), s'il existe, est noté a^{-1} .
- Soient $a \in A$ et $n \in \mathbb{Z}$, on définit l'élément na ∈ A par :
 - $si \ n \ge 0$, na est la somme de n termes égaux à a, c'est-à-dire

$$0a = 0_A$$
, $1a = a$ et pour $n > 1$, $na = \underbrace{a + a + \cdots + a}_{n \text{ fois}}$.

- $si \ n < 0$, na = (-n)(-a) est la somme de -n termes égaux à l'opposé de a, c-à-dire

$$na = \underbrace{(-a) + (-a) + \dots + (-a)}_{(-n) \text{ fois}}.$$

- $si\ a \in A\ et\ n \in \mathbb{N}$, on définit l'élément $a^n \in A\ par$:

$$a^0 = 1$$
, $a^1 = a$ et pour $n > 1$, $a^n = a \cdot a^{n-1} = a^{n-1} \cdot a$.

Proposition 2.1 Pour tout $a \in A$, on a

$$0_A \cdot a = a \cdot 0_A = 0_A$$
.

Preuve La relation $a + 0_A = a$ implique $a \cdot (a + 0_A) = a^2$ et $(a + 0_A) \cdot a = a^2$, d'où

$$a^2 + a \cdot 0_A = a^2$$
 et $a^2 + 0_A \cdot a = a^2$.

Finalement, on obtient $a \cdot 0_A = 0_A$ et $0_A \cdot a = 0_A$.

Si $A = \{a\}$, il n'y a qu'une seule loi de composition interne, donnée par a*a = a. Le seul anneau ayant un seul élément est dit anneau nul. Dans le cas contraire, on a le résultat suivant :

Proposition 2.2 Si *A* est de cardinal Card(A) > 1, alors $0_A \neq 1_A$.

Preuve Si $0_A = 1_A$. Soit $a \in A$ quelconque, on $a : a \cdot 1_A = a \cdot 0_A$, d'où $a = 0_A$, absurde.

Proposition 2.3 Pour tout $(a,b) \in A^2$, on a $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$.

Preuve La relation $x + (-x) = 0_A$ implique successivement

$$a + (-a) = 0_A \implies (a + (-a)) \cdot b = 0_A \cdot b$$

$$\implies a \cdot b + (-a) \cdot b = 0_A$$

$$\implies (-a) \cdot b = -(a \cdot b),$$

$$b + (-b) = 0_A \implies a \cdot (b + (-b)) = a \cdot 0_A$$

$$\implies a \cdot b + a \cdot (-b) = 0_A$$

$$\implies a \cdot (-b) = -(a \cdot b)$$

Corollaire 2.1 Soient a, b et c dans A et $n \in \mathbb{Z}$, on a

$$(-1_A) \cdot a = -a \qquad (-a) \cdot (-b) = a \cdot b$$

$$a \cdot (b - c) = a \cdot b - a \cdot c \qquad (b - c) \cdot a = b \cdot a - c \cdot a$$

$$(na) \cdot b = a \cdot (nb) = n(a \cdot b) \qquad na = (n1_A) \cdot a$$

2.1 Anneaux 21

Exercice 2.1 *Soit* $(A, +, \cdot)$ *un anneau tel que*

$$\forall (x,y) \in A^2, (x \cdot y)^2 = x^2 \cdot y^2 \quad et \quad \forall x \in A : x + x = 0_A \Longrightarrow x = 0_A.$$

En utilisant $1_A + y$ et x, montrer que $x \cdot y \cdot x = x^2 \cdot y = y \cdot x^2$ et puis que l'anneau A est commutatif.

Exercice 2.2 Soit $(A, +, \cdot)$ un anneau et a un élément de A tel que $a^3 = 0_A$. Montrer que $1_A - a$ est inversible et son inverse est $1_A + a + a^2$.

Théorème 2.1 — Formule du binôme de Newton. Soient a et b deux éléments d'un anneau $(A, +, \cdot)$ tels que ab = ba et $n \in \mathbb{N}^*$. On a

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$$
 avec la convention $a^0 = b^0 = 1_A$. (2.1)

Preuve L'égalité (2.1) est vraie si n = 1. Supposons qu'elle est vraie au rang n - 1 où $n \ge 2$, alors

$$(a+b)^{n} = (a+b)(a+b)^{n-1}$$

$$= (a+b)\sum_{k=0}^{n-1} C_{n-1}^{k} a^{n-1-k} b^{k}$$

$$= \sum_{k=0}^{n-1} C_{n-1}^{k} a^{n-k} b^{k} + \sum_{k=0}^{n-1} C_{n-1}^{k} a^{n-1-k} b^{k+1}$$

$$= \sum_{k=0}^{n-1} C_{n-1}^{k} a^{n-k} b^{k} + \sum_{p=1}^{n} C_{n-1}^{p-1} a^{n-p} b^{p}$$

$$= a^{n} + \sum_{k=1}^{n-1} C_{n-1}^{k} a^{n-k} b^{k} + \sum_{k=1}^{n-1} C_{n-1}^{k-1} a^{n-k} b^{k} + b^{n}$$

$$= a^{n} + \sum_{k=1}^{n-1} (C_{n-1}^{k} + C_{n-1}^{k-1}) a^{n-k} b^{k} + b^{n}$$

$$= a^{n} + \sum_{k=1}^{n-1} C_{n}^{k} a^{n-k} b^{k} + b^{n} = \sum_{k=0}^{n} C_{n}^{k} a^{n-k} b^{k}.$$

On a donc montrer que si la propriété est vraie au rang n-1, alors elle l'est au rang n. Comme elle est aussi vérifié pour n=1, alors elle l'est pour tout $n \in \mathbb{N}^*$.

Corollaire 2.2

$$\sum_{k=0}^{n} C_n^k = 2^n \quad \text{et} \quad \sum_{k=0}^{n} (-1)^k C_n^k = 0.$$

Proposition 2.4 Pour x et y d'un anneau A tels que $x \cdot y = y \cdot x$ et $n \in \mathbb{N}^*$, on a

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} \cdot y^{k}.$$

Preuve On a

$$(x-y) \sum_{k=0}^{n-1} x^{n-1-k} \cdot y^k = x \sum_{k=0}^{n-1} x^{n-1-k} \cdot y^k - y \sum_{k=0}^{n-1} x^{n-1-k} \cdot y^k$$
$$= \sum_{k=0}^{n-1} x^{n-k} \cdot y^k - \sum_{k=0}^{n-1} y \cdot x^{n-1-k} \cdot y^k.$$

Comme y commute avec x, il vient

$$(x-y) \sum_{k=0}^{n-1} x^{n-1-k} \cdot y^k = \sum_{k=0}^{n-1} x^{n-k} \cdot y^k - \sum_{k=0}^{n-1} x^{n-1-k} \cdot y^{k+1}$$

$$= \sum_{k=0}^{n-1} x^{n-k} \cdot y^k - \sum_{k=1}^{n} x^{n-k} \cdot y^k$$

$$= x^n + \sum_{k=1}^{n-1} x^{n-k} \cdot y^k - \sum_{k=1}^{n-1} x^{n-k} \cdot y^k - y^n$$

$$= x^n - y^n.$$

Corollaire 2.3 Pour $x \in A$ et $n \in \mathbb{N}$, on a

$$x^{n} - 1_{A} = (x - 1_{A}) \cdot \sum_{k=0}^{n-1} x^{k} = \left(\sum_{k=0}^{n-1} x^{k}\right) \cdot (x - 1_{A}).$$

Si $x - 1_A$ est inversible d'inverse $(x - 1_A)^{-1}$, alors

$$\sum_{k=0}^{n-1} x^k = (x - 1_A)^{-1} \cdot (x^n - 1_A) = (x^n - 1_A) \cdot (x - 1_A)^{-1}.$$

Corollaire 2.4 Pour $x \in A$ et $n \in \mathbb{N}$, on a

$$x^{2n+1} + 1_A = (x+1_A) \cdot \sum_{k=0}^{2n} (-1)^k x^k = \left(\sum_{k=0}^{2n} (-1)^k x^k\right) \cdot (x+1_A).$$

Proposition 2.5 Pour x_1, \dots, x_n et y_1, \dots, y_p des éléments de A et $n, p \in \mathbb{N}^*$, on a

$$\sum_{i=0}^{n} \left(\sum_{j=0}^{p} x_i y_j \right) = \sum_{j=0}^{p} \left(\sum_{i=0}^{n} x_i y_j \right) = \left(\sum_{i=0}^{n} x_i \right) \left(\sum_{j=0}^{p} y_j \right).$$

2.1 Anneaux 23

Exercice 2.3 Soit a et b d'un anneau commutatif A tel que $b^2 = 0_A$, développer $(a+b)^5$.

2.1.2 Éléments particuliers

Proposition 2.6 L'ensemble U_A des éléments inversibles de l'anneau $(A, +, \cdot)$ est stable pour la multiplication de A. De plus, (U_A, \cdot) est un groupe, appelé groupe des inversibles de A.

Preuve Soient a et b deux éléments de U_A d'inverses a^{-1} et b^{-1} , on a

$$(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = a \cdot (b \cdot b^{-1}) \cdot a^{-1} = a \cdot 1_A \cdot a^{-1} = a \cdot a^{-1} = 1_A,$$

$$(b^{-1} \cdot a^{-1}) \cdot (a \cdot b) = b^{-1} \cdot (a^{-1} \cdot a) \cdot b = b^{-1} \cdot 1_A \cdot b = b^{-1} \cdot b = 1_A.$$

Par suite, il vient que $a \cdot b$ est inversible d'inverse $b^{-1} \cdot a^{-1}$, et alors

$$a \cdot b \in U_A$$
.

De plus, $U_A \neq \emptyset$ puisque $1_A \in U_A$, et avec l'associativité de la multiplication de A, la stabilité de U_A pour cette opération et le fait que tout $a \in U_A$ est l'inverse de a^{-1} , il vient que (U_A, \cdot) est un groupe.

Définition 2.2 Soit $(A, +, \cdot)$ un anneau non nul, on dit que $a \in A \setminus \{0_A\}$ est

- diviseur de 0_A à droite s'il existe $x \neq 0_A$ de A tel que : $x \cdot a = 0_A$,
- diviseur de 0_A à gauche si il existe $y \neq 0_A$ de A tel que : $a \cdot y = 0_A$,
- diviseur de 0_A si il est diviseur de 0_A à droite et à gauche.

Définition 2.3 Un anneau $(A, +, \cdot)$ est dit sans diviseurs de 0_A lorsque on a

$$\forall a, b \in A : a \cdot b = 0_A \implies [a = 0_A \text{ ou } b = 0_A].$$

Un anneau non nul $(A, +, \cdot)$ est dit intègre si il est commutatif et sans diviseurs de 0_A .

Remarque L'anneau $(\mathbb{Z}, +, \cdot)$ est un anneau intègre.

Exercice 2.4 Soient $(A, +, \cdot)$ un anneau non nul et $(a, b) \in A^2$. On suppose que ab est inversible et que ba n'est un diviseur de 0_A . Montrer que a et b sont inversibles (on peut utiliser l'inverse x de ab et développer $(ba)(bxa-1_A)$.

Définition 2.4 Un élément non nul $a \in A$ est dit nilpotent lorsqu'il existe $n \in \mathbb{N}$ tel que

$$a^n = 0_A$$
.

On remarque que si $a^n = 0_A$, alors $a^m = 0_A$ pour tout $m \ge n$.

Exercice 2.5 Soit a et b des éléments nilpotents d'un anneau commutatif A. Montrer que a+b est nilpotent.

Exercice 2.6 Soit a un élément nilpotent d'un anneau A. Montrer que $1_A - a$ est inversible et calculer son inverse.

Exercice 2.7 Soit A un anneau et $(a,b) \in A^2$ tel que ab est nilpotent. Montrer que ba l'est aussi.

2.2 Morphismes d'anneaux

Définition 2.5 On dit que φ est un morphisme d'anneaux, de $(A, +, \cdot)$ dans $(B, +, \cdot)$, lorsque :

 $-\varphi$ est un morphisme de groupes, de (A,+) dans (B,+), c-à-dire

$$\varphi(x+y) = \varphi(x) + \varphi(y),$$

- pour tout $x, y \in A$, on a : $\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$,
- $\varphi(1_A) = 1_B.$

Proposition 2.7 Soient $a \in A$ et $n \in \mathbb{Z}$, on a :

- $\varphi(0_A) = 0_B$, $\varphi(-a) = -\varphi(a)$ et $\varphi(na) = n\varphi(a)$.
- Si a est inversible dans A, alors $\varphi(a)$ est inversible dans B et on a

$$\varphi(a^{-1}) = (\varphi(a))^{-1}.$$

- si n ∈ \mathbb{N}^* , alors on a

$$\varphi(a^n) = (\varphi(a))^n$$
.

Preuve À vérifier en exercice.

Exercice 2.8 Soient $(A, +, \cdot)$ un anneau, on considère l'application $\varphi : A \to A$, $x \mapsto x^2$.

- 1. Montrer que si φ est un morphisme d'anneaux, alors $\forall x \in A, \ x^2 = -x^2$.
- 2. Montrer que si en plus φ est surjectif, alors

$$\forall a \in A, \ a = -a,$$

et puis l'anneau A est commutatif.

2.3 Sous-anneau

Définition 2.6 Une partie non vide B de A est sous-anneau de $(A, +, \cdot)$ lorsque :

-B est un sous-groupe de (A, +),

2.4 Idéaux 25

- B est stable pour la multiplication de A, c-à-dire : $\forall x, y \in B$, $x \cdot y \in B$,
- $-1_A \in B$.

Proposition 2.8 Une partie non vide B de A est un sous-anneau de $(A, +, \cdot)$ si et seulement si

- $\forall x, y \in B, \quad x y \in B,$
 $\forall x, y \in B, \quad x \cdot y \in B,$

Preuve À vérifier en exercice.

Une partie non vide B de A est un sous-anneau de $(A, +, \cdot)$ si et seulement si c'est une partie contenant 1_A , stable pour les opérations de A, et si, pour les restrictions de ces opérations, $(B, +, \cdot)$ est un anneau.

Proposition 2.9 Soit φ un morphisme d'anneaux de $(A, +, \cdot)$ dans $(B, +, \cdot)$, alors

- $-\sin A'$ est un sous-anneau de $(A,+,\cdot)$, alors $\varphi(A')$ est un sous-anneau de $(B,+,\cdot)$,
- $-\sin B'$ est un sous-anneau de $(B,+,\cdot)$, alors $\varphi^{-1}(B')$ est un sous-anneau de $(A,+,\cdot)$.

Preuve À vérifier en exercice.

1. Montrer que $A = \{x + y\sqrt{5} ; x, y \in \mathbb{Q}\}$ est un anneau pour l'addition et la multiplication usuelles.

2. *En est-il de même pour* $B = \{x + iy \; ; \; x, y \in \mathbb{Q}\}$ *et* $C = \{x + y\sqrt[3]{2} \; ; \; x, y \in \mathbb{Z}\}$? (on admet, pour cette question, que 2 n'est pas le cube d'un rationnel, ni d'un entier)

2.4 Idéaux

Définition 2.7 Une partie I d'un anneau $(A, +, \cdot)$ est un idéal à gauche (resp. à droite) de A si

- I est sous-groupe commutatif de (A, +),
- pour tout $x \in I$ et $a \in A$, on a : $a \cdot x \in I$ (resp. $x \cdot a \in I$) (stabilité externe).
- \mathbb{R} La partie I est dite idéal bilatère de A si elle est à la fois un idéal à droite et un idéal à gauche de A. En général, on utilise le mot idéal pour désigner un idéal bilatère. Si en particulier, l'anneau A est commutatif, il y'a équivalence entre idéal à gauche, idéal à droite et idéal bilatère de A.

Exemple. A et $\{0_A\}$ sont des idéaux de l'anneau A, et tout idéal différent de A, est appelé idéal propre (ou strict) de A.

Remarque Si I est un idéal à gauche (resp. à droite ou bilatère) d'un anneau A qui contient 1_A alors I = A. En effet, si l'idéal I de A contenant 1_A , alors pour tout $a \in A$, on a

$$a = a \cdot 1_A \in I$$
.

Par suite, il vient $A \subset I$ et alors A = I.

Exercice 2.10 Montrer que l'intersection d'une famille non vide d'idéaux d'un anneau A est un idéal de A.

Exercice 2.11 Soient I et J deux idéaux de l'anneau commutatif $(A, +, \cdot)$. On considère

$$I+J=\{x+y\;;\;x\in I,\,y\in J\}\;\;\textit{et}\;\;I\cdot J=\{\underbrace{x_1\cdot y_1+\cdots+x_n\cdot y_n}_{\textit{somme finie}}\;;\;n\in\mathbb{N}^*,\,x_i\in I,\,y_i\in J\}.$$

On dit que les deux idéaux I et J sont premiers entre eux si I+J=A.

- 1. Montrer que I + J et $I \cdot J$ sont des idéaux de A.
- 2. Montrer que $I \cdot J \subset I \cap J$.
- 3. Montrer que $(I+J) \cdot (I \cap J) \subset I \cdot J$.
- 4. Montrer que si I et J sont premiers entre eux, alors $I \cdot J = I \cap J$.

Exercice 2.12 Soient I et J deux idéaux de l'anneau commutatif A. On considère

$$(I:J) = \{a \in A ; aJ \subset I\}.$$

- 1. Montrer que (I:J) est un idéal de A contenant I.
- 2. Montrer que $(I:J)J \subset I$.
- 3. Montrer que si K est un idéal de A, alors

$$(I \cap J : K) = (I : K) \cap (J : K)$$
 et $(I : J + K) = (I : K) \cap (J : K)$.

Proposition 2.10 Soit $\varphi : A \to B$ un morphisme d'anneaux, alors on a

- le noyau de φ est un idéal bilatère de l'anneau A.
- si J est un idéal à gauche (resp. à droite, resp. bilatère) de l'anneau B, alors $I = \varphi^{-1}(J)$ est un idéal à gauche (resp. à droite, resp. bilatère) de l'anneau A.

Preuve À vérifier en exercice.

Définition 2.8 Soit *I* un idéal d'un anneau *A*. On dit que

2.5 Corps 27

- I est premier si et seulement si $I \neq A$ et si

$$\forall x, y \in A : x \cdot y \in I \Longrightarrow [x \in I \text{ ou } y \in I].$$

- *I* est principal si il existe *a* ∈ *A* tel que

$$I = \left\{ x \cdot a \; ; \; x \in A \right\},\,$$

autrement dit, I est engendré par un unique élément a de A, et dans ce cas, I est appelé l'idéal engendré par $a \in A$, noté (a).

− I est maximal si il est strict et si il n'est contenu dans aucun idéal autre que A, c-à-dire

Pour tout idéal
$$J$$
 de A : $I \subset J \Longrightarrow [I = J \text{ ou } J = A]$.

Définition 2.9 Un anneau est dit principal si il est intègre et que tous ses idéaux sont principaux.

Théorème 2.2 — de Krull. Soit I un idéal d'un anneau A, alors il existe un idéal maximal de A contenant I.

Preuve Soit \mathcal{I} l'ensemble des idéaux de A contenant I et non égaux à A. On a \mathcal{I} est non vide car il contient I, \mathcal{I} est un ensemble partiellement ordonné par l'inclusion, et \mathcal{I} est inductif puisque tout partie P non vide de \mathcal{I} totalement ordonnée pour l'inclusion possède un majorant $\bigcup_{I \in P} I$, qui est bien un idéal propre de \mathcal{I} car c'est la réunion d'une suite croissante d'idéaux propres de \mathcal{I} . En appliquant le lemme de Zorn, il vient que \mathcal{I} possède un élément maximal. Ce dernier est un idéal propre de A contenant I et qui n'est contenu dans aucun autres idéaux strict de A.

Exercice 2.13 *Soit A un anneau commutatif.*

- 1. Déterminer les idéaux premiers de \mathbb{Z} .
- 2. Soient I un idéal de A, $x \in A \setminus I$ et J l'idéal engendré par I et x. Montrer que

$$J = \{a \in A ; \exists i \in I, \exists k \in A, a = i + kx\}.$$

- 3. En déduire que tout idéal maximal, est premier.
- 4. Montrer que si l'anneau A est principal, alors tout idéal premier est maximal.

2.5 Corps

Définition 2.10 Un corps est un anneau commutatif $(K, +, \cdot)$ dont le groupe des inversibles est

$$K^* = K \setminus \{0_K\}.$$

Exemple. \mathbb{Q} , \mathbb{R} et \mathbb{C} ont des structures de corps pour leur addition et multiplication respectives.

Définition 2.11 Un sous-corps d'un corps $(K, +, \cdot)$ est un sous-anneau L qui, pour les lois induites sur L par celles de K, est un corps.

Définition 2.12 Un morphisme de corps est un morphisme des anneaux sous-adjacents.

Exercice 2.14 Soit $f: K \to L$ un morphisme de corps de K dans L. Montrer que f est injectif.

Proposition 2.11 Soit K un corps, alors $1_K \neq 0_K$ et K ne possède pas de diviseurs de 0 (et par conséquent, K est un anneau intègre).

Preuve Le premier point est évident puisque tout élément d'un corps, sauf 0_K , est inversible. Pour le second point, supposons qu'il existe x et y dans K tels que $x \cdot y = 0$. Si de plus $x \neq 0_K$, alors x est inversible et donc

$$x^{-1} \cdot x \cdot y = x^{-1} \cdot 0_K = 0_K.$$

Par conséquent, il vient $y = 0_K$ et donc x, y ne sont pas des diviseurs de 0.

Exercice 2.15 Montrer que tout anneau intègre fini est un corps.

Proposition 2.12 Les seuls idéaux d'un corps sont l'idéal nul et le corps tout entier. Inversement, si *A* est un anneau n'ayant comme seuls idéaux que l'idéal nul et lui même alors *A* est un corps.

Preuve (\Rightarrow): Supposons que K est un corps. Soient I un idéal non nul de l'anneau K et soit donc x un élément non nul de I. Par définition d'un corps, x est inversible dans K d'inverse noté x^{-1} . Puisque I est un idéal de K, on a $x^{-1} \cdot x \in I$. Mais $x^{-1} \cdot x = 1_K$, d'où $1_K \in I$ et donc

$$I = K$$
.

 (\Leftarrow) : Supposons maintenant que les seuls idéaux de l'anneau A sont l'idéal nul et A tout entier. Il suffit de montrer que tout les éléments non nuls de A sont inversibles. Soit $x \neq 0_A \in A$ et (x) l'idéal engendré par x. Comme x n'est pas nul, cet idéal n'est pas nul non plus. Il est alors égal à A tout entier. L'unité de A est donc élément de (x). Ceci signifie qu'il existe $y \in A$ tel que

$$x \cdot y = 1_A$$

Par suite, on obtient que x est inversible d'inverse y et c'est ceci qu'on cherche à prouver.

Théorème 2.3 — Corps des fractions d'un anneau intègre. Soit un anneau intègre $(A,+,\cdot)$, alors il existe un corps $(K,+,\cdot)$, unique à un isomorphisme près, tel que

- il existe un sous-anneau A' de $(K,+,\cdot)$ isomorphe à $(A,+,\cdot)$,
- tout sous-anneau de $(K,+,\cdot)$ contenant A' est K lui-même.

Preuve Admis.

- 1. Le corps K est appelé le corps des fractions de l'anneau intègre A, noté Frac(A).
- 2. L'isomorphisme φ de A dans A' permet d'identifier a et $\varphi(a)$ pour tout $a \in A$. En particulier, on note

$$\varphi(0_A) = 0_K \text{ et } \varphi(1_A) = 1_K.$$

2.5 Corps 29

- 3. Le corps des rationnels est le corps des fractions de l'anneau intègre $(\mathbb{Z},+,\cdot)$.
- 4. Une construction des corps de fractions consiste à examiner les couples (a,b) de $A \times A^*$ où $A^* = A \setminus \{0_A\}$, en convenant que deux couples (a,b) et (a',b') définissent le même élément du corps des fractions de A, noté $\frac{a}{b}$, lorsque on a

$$a \cdot b' = a' \cdot b$$
.

5. L'ensemble Frac(A) est muni d'une structure de corps pour les deux lois

$$\frac{a}{b} + \frac{a'}{b'} = \frac{a \cdot b' + a' \cdot b}{b \cdot b'} \quad \text{et} \quad \frac{a}{b} * \frac{a'}{b'} = \frac{a \cdot a'}{b \cdot b'}$$

Exercice 2.16 Soit I un idéal d'un anneau commutatif A. On considère l'ensemble quotient

$$A/I = {\bar{x}, x \in A}$$
 avec $\bar{x} = {y \in A, x - y \in I}$.

Cet ensemble est un anneau, dit anneau quotient, quand on le munit des lois qui font de la projection canonique $\pi: A \to A/I$, $x \mapsto \overline{x}$ un morphisme d'anneau, c'est-à-dire

$$\overline{x} + \overline{y} = \overline{x + y}$$
 et $\overline{x} \cdot \overline{y} = \overline{x \cdot y}$.

- 1. Montrer que I est premier si et seulement si A/I est un anneau intègre.
- 2. Montrer que I est maximal si et seulement si A/I est un corps.
- 3. En déduire une autre preuve de : I maximal implique que I est premier.