ГУАП

КАФЕДРА № 53

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ				
ПРЕПОДАВАТЕЛЬ				
старший преподаватель должность, уч. степень, звание	подпись, дата	Ушаков В.А. инициалы, фамилия		
ОТЧЕТ О Ј	ТАБОРАТОРНОЙ РАБО	OTE № 6		
Рекурсивный алгоритм				
	Вариант 11			
по курсу: ОСНС	ЭВЫ ПРОГРАММИР	ОВАНИЯ		
РАБОТУ ВЫПОЛНИЛ(А)				
СТУДЕНТ ГР. № 5138	подпись, дата	Воробьев В.А. инициалы, фамилия		

Задание: реализовать программную функцию на языке С/С++, выполняющую поставленную задачу. Написать код функции, принимающей в качестве аргументов и возвращающей все необходимые параметры, без использования глобальных переменных. Допустимо использование дополнительных функций. Из наименования функции и принимаемых аргументов должно быть ясно их назначение. В ходе тестирования функции при каждом вызове рекурсивной функции необходимо вывести отладочную информацию: порядковый номер вызова рекурсивной функции, значения изменяющегося аргумента и возвращаемого значения, если они присутствуют. Привести глубину рекурсии для каждого тестового примера.

11	Реализовать рекурсивную функцию	6, 2	30
	вычисления		
	$S(x,N) = \begin{cases} S(x,N-1) + 2, _npu _uemhix _N \\ S(x,N-1)*2, _npu _hevemhix _N \end{cases}$		
	S(x,0) = x		
	по заданным N, х.		

Рисунок 1 - вариант задания

Выполнение задания:

```
□#include <iostream>
 #include <vector>
 #include <string>
 #include <math.h>
 using namespace std;
⊟int S(int x, int n, int* memory, int depth = 0) {
     if (*memory < depth) *memory = depth;</pre>
     cout << "n: " << n << " ,depth: " << depth << " .\n";
     if (n == 0) {
          return x;
     else if (n % 2 == 0) {
         return S(x, n - 1, memory, depth + 1) + 2;
     else {
         return S(x, n - 1, memory, depth + 1) * 2;
□void main()
      int depth;
      int res = S(x, n, &depth);
      cout << res << "\ndepth: " << depth;</pre>
```

Рисунок 2 – код

Рисунок 3 - ввод и вывод

Рисунок 4 - Блок-схема рекурсивной функции

Рисунок 5 - Блок-схема основной программы

Вывод: в ходе выполнения работы научился создавать рекурсивные алгоритмы. Понял понятие "глубина рекурсии", а также её вычисление в самой рекурсии.