

Prim's Algorithm

We now present a second MST algorithm: **Prim's algorithm**. Like Kruskal's algorithm, Prim's algorithm depends on a method of determining which greedy choices are safe. The method is to continually enlarge a single connected component by adjoining edges emanating from isolated vertices.¹

Algorithm: PRIM-MST(V, E, w)

1 Choose an arbitrary start vertex s2 $C \leftarrow \{s\}$ 3 $T \leftarrow ;$ 4 while C is not the only connected component of T do

5 Select a light edge (u, v) connecting C to an isolated vertex v6 $T \leftarrow T \cup \{(u, v)\} \ 7 \ C \leftarrow C \cup \{v\}$

Proof of correctness for Prim's algorithm. Again, we use a loop invariant:

Prior to each iteration, *T* is a subset of an MST.

- *Initialization.* Thus no edges, so trivially it is a subset of an MST.
- *Maintenance*. Suppose $T \subseteq T_*$ where T_* is an MST, and suppose the edge (u, v) gets added to T, where $u \in C$ and v is an isolated vertex. Since (u, v) is a light edge for the cut $(C, V \setminus C)$ which is respected by T, it follows by Proposition 4.1 that (u, v) is a safe edge for T. Thus $T \cup \{(u, v)\}$ is a subset of an MST.
- *Termination*. At termination, C is the only connected component of T, so by Proposition 3.1(v), T has at least |V|-1 edges. Since T is also a subset of an MST, it follows that T has exactly |V|-1 edges and is an MST.

The tricky part of Kruskal's algorithm was keeping track of the connected components of T. In Prim's algorithm this is easy: except for the special component C, all components are isolated vertices. The tricky part of Prim's algorithm is efficiently keeping track of which edge is lightest among those which join C to a new isolated vertex. This task is typically accomplished with a data structure called a min-priority queue.

4.2.1 Min-Priority Queue

A **min-priority queue** is a data structure representing a collection of elements which supports the following operations:

INSERT(Q, x) – Inserts element x into the set of elements QMINIMUM(Q) – Returns the element of Q with the smallest key

¹ An **isolated** vertex is a vertex which is not connected to any other vertices. Thus, an isolated vertex is the only vertex in its connected component.

EXTRACT-MIN(Q) – Removes and returns the element with the smallest key DECREASE-KEY(Q, x,k) – Decreases the value of x's key to new value k.

With this data structure, Prim's algorithm could be implemented as follows:

Algorithm: $PRIM-MST(G,s)$	
1	$T \leftarrow$;
2	for each $u \in G.V$ do
3	u.key ←∞ B initialize all edges to "very heavy"
4	B The component C will be a tree rooted at s . Once a vertex u gets added to C , $u.\pi$ will be a pointer to its parent in the tree.
5	$u.^{\pi} \leftarrow \text{Nil}$
6	$s.key \leftarrow 0$ B this ensures that s will be the first vertex we pick
7	Let $Q \leftarrow G.V$ be a min-priority queue
8	while $Q 6=$; do
9	$u \leftarrow \text{Extract-Min}(Q)$
10	if $u.\pi 6$ = NIL then
11	$T \leftarrow T \cup \{(u, u.\pi)\}$
12	B We assume that G is presented in the adjacency-list format st
13	for each $v \in G.adj[u]$ do
14	if $v \in Q$ and $w(u, v) < v.key$ then
15	$v.^{\pi} \leftarrow u$
16	$v.key \leftarrow w(u,v)$ B using Decrease-Key
17	$\mathbf{return}\ T$
*For more information about ways to represent graphs on computers, see §22.1 of CLRS.	

4.2.2 Running Time of Prim's Algorithm

Lines 1 through 6 clearly take O(V) time. Line 7 takes $T_{\text{BUILD-QUEUE}}(V)$, where $T_{\text{BUILD-QUEUE}}(n)$ is the amount of time required to build a min-priority queue from an array of n elements. Within the "while" loop of line 8, EXTRACT-MIN gets called |V| times, and the instructions in lines 14–16 are run a total of O(E) times. Thus the running time of Prim's algorithm is

O(V) + TBUILD-QUEUE(V) + V TEXTRACT-MIN + O(E) TDECREASE-KEY.