

习题 1 Let n, r be positive integers and $n \ge r$. Give a combinatorial proof of

$$\binom{r}{r}+\binom{r+1}{r}+\ldots+\binom{n}{r}=\binom{n+1}{r+1}.$$

证明 考虑从 $[n+1] = \{1,2,\cdots,n+1\}$ 中选择 r+1 个元素,则 RHS 表示直接选,LHS 的组合意义 如下

接这 r+1 个元素中的最大元进行分类, 由于抽取了 r+1 个元素, 最大元可能为 $r+1, r+2, \cdots, n+1$, 对 $\forall r+1 \leq k \leq n+1$,我们去除最大元 k,接下来我们在 $[k-1]=\{1,2,\cdots,k\}$ 中选择 (r+1)-1=r个元素,即 $\binom{k-1}{r}$ 表示从 [n+1] 中选 r+1 个元素,其中最大元为 k 的种数,遍历 $r+1 \leq k \leq n+1$ 即为 LHS

习题 2 Let n be a positive integer. Prove that the identity

$$x^n = \sum_{k=1}^n S(n,k)(x)_k$$

holds for every real number x, where S(n,k) is the Strirling number of the second kind, and $(x)_k := x(x-1)...(x-k+1)$ denotes a polynomial of degree k with variable x.

Hint: first prove the case when x is a positive integer by double-counting certain mappings.

证明 当 $x \in \mathbb{N}$ 时,考虑集合 [n] 到集合 [x] 的映射数量,LHS 表示直接计算,共 x^n 种(每个 $1 \le i \le n$ 共有 x 种像),RHS 的组合意义如下

按像集大小分类,像集大小可能为 $1 \le i \le n$,当像集大小为 i 时,先将 [n] 中的 n 个数分成 i 组,共有 S(n,i) 种分法,然后再将 i 组分别打到 [x] 中的 i 个数,共 $\binom{x}{i} \cdot i! = (x)_i$,因此像集大小为 i 的种数一共有 $S(n,i)(x)_i$ 种,遍历 $1 \le i \le n$ 即为 RHS

当 $x \in \mathbb{R}$ 时,考虑多项式 $f(x) = x^n - \sum_{k=1}^n S(n,k)(x)_k$,对 $\forall m \in \mathbb{N}, f(m) = 0$,即 f 有无穷多零点,只能是 $f \equiv 0$,即 $x^n = \sum_{k=1}^n S(n,k)(x)_k$

习题 3 Let n, r be integers satisfying $0 \le r \le 2n$. Find the value of $\sum_{i=0}^{n} (-1)^{i} {n \choose i} {n \choose r-i}$.

解 考虑 $f(x) = (1-x)^n(1+x)^n = (1-x^2)^n$, 则对于 LHS 而言

$$[x^r]f = \sum_{i=0}^n \binom{n}{i} (-1)^i 1^{n-i} \times \binom{n}{r-i} 1^{r-i} 1^{n-(r-i)} = \sum_{i=0}^n (-1)^i \binom{n}{i} \binom{n}{r-i}$$

而对于 RHS 而言,展开后只有 x 的偶数次幂,因此若 r 为奇数,则原式为零;若 $r=2k, k=0,\cdots,n$ 为偶数,则

$$[x^{2k}](f) = \binom{n}{k} (-1)^k$$

所以

$$\sum_{i=0}^{n} (-1)^i \binom{n}{i} \binom{n}{r-i} = \begin{cases} 0, & r \text{ if } \frac{\pi}{2} \binom{n}{2}, \\ (-1)^{\frac{r}{2}} \binom{n}{2}, & r \text{ if } \frac{\pi}{2} \end{cases}$$

习题 4 For any integer $n \geq 2$, let $\pi(n)$ be the number of primes in $\{1, 2, ..., n\}$.

- (a) Prove that the product of all primes p satisfying $m is at most <math>\binom{2m}{m}$, where $m \ge 1$ is any integer.
- (b) Use (a) to prove that $\pi(n) \leq \frac{Cn}{\log n}$ for some absolute constant C. (Hint: by induction and use the estimation on $\binom{2m}{m}$)

证明 (a). 因为 m 中的素数一定在 <math>(2m)! 的素因子分解中出现至少一次,且由 p > m 知, $m! \nmid p$,所以

$$\prod_{\substack{m$$

(b). 对 $\forall m \geq 1$, 考虑集合 $\mathcal{P}(m) = \{p : m 素数<math>\}$, 则我们有

$$\prod_{\substack{m$$

断言: $\prod_{\substack{1 \le p \le 2n \\ p \text{ prime}}} p \le 4^{2n}$

当 n 较小时直接验证即可,假设命题对 $n \leq m-1$ 时均成立,下面证明 n=m 的情况,因为

$$\prod_{\substack{p \leq 2m \\ p \text{ prime}}} p = \prod_{\substack{1 \leq p \leq m \\ p \text{ prime}}} p \cdot \prod_{\substack{m$$

断言即证,再对两边取对数得

$$\sum_{\substack{p \le 2m \\ p \text{ prime}}} \log p \le 2m \log 4$$

考虑将 $\sqrt{2m} 的项放缩,即$

$$\sum_{\substack{1$$

将 LHS 的第一项直接放掉,则

$$[\pi(2m) - \pi(\sqrt{2m})] \log(\sqrt{2m}) \le 2m \log 4 \Longrightarrow \pi(2m) \le \frac{4m \log 4}{\log(2m)} + \pi(\sqrt{2m})$$

由 $\pi(n)$ 的定义知显然有 $\pi(n) \leq n$,故 $\pi(\sqrt{2m}) \leq \sqrt{2m}$,且 $\lim_{n \to \infty} \frac{\sqrt{n}}{\log n} = 0$,即存在常数 C_0 ,使得 $\sqrt{n} \leq C_0 \frac{n}{\log n}$,所以

$$\pi(2m) \le 2\log 4 \cdot \frac{2m}{\log(2m)} + C_0 \frac{2m}{\log 2m}$$

取 $C_1 = C_0 + 4 \log 2$ 即找到了常数 C_1

至此我们证明了 n 为偶数的情形, 当 n=2m-1 为奇数时, 因为

$$\pi(2m+1) \le \pi(2m) + 1 \le C_1 \frac{2m}{\log 2m}$$

我们可以取得
$$C_2$$
 满足 $C_1 \frac{2m}{\log 2m} + 1 \le C_2 \frac{2m+1}{\log (2m+1)}, \forall m \ge 0$,取 $C = \max\{C_1, C_2\}$ 即得证