## Алгоритмы и модели вычислений.

# Задание 2: Арифметические операции и линейные рекуррентные последовательности

Сергей Володин, 272 гр.

задано 2014.02.20

### Упражнение 3

Определим 
$$A_d \stackrel{\text{def}}{=} \left| \begin{array}{cccccc} c_1 & c_2 & \dots & c_{d-1} & c_d \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ & & & \dots & & \\ 0 & 0 & \dots & 1 & 0 \end{array} \right|$$

Докажем по индукции  $P(d) \stackrel{\text{def}}{=} \left[ \det(A_d - \lambda E) = (-1)^d (\lambda^d - c_1 \lambda^{d-1} - c_2 \lambda^{d-2} - \dots - c_{d-1} \lambda - c_d) \right]$ 

1. Basa. 
$$d = 3 \Rightarrow \det(A_3 - \lambda E) = \begin{vmatrix} (c_1 - \lambda) & c_2 & c_3 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda \end{vmatrix} = c_1 \lambda^2 - \lambda^3 + c_3 + c_2 \lambda = (-1)^3 (\lambda^3 - c_1 \lambda^2 - c_2 \lambda - c_3) \Rightarrow P(3) \blacksquare$$

2. Пусть 
$$\underline{P(d-1)}$$
. Рассмотрим  $\det(A_d - \lambda E) = \begin{vmatrix} (c_1 - \lambda) & c_2 & \dots & c_{d-1} & c_d \\ 1 & -\lambda & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ & & & \dots & & \\ 0 & 0 & \dots & 1 & -\lambda \end{vmatrix}$ 

$$= -\lambda \begin{vmatrix} (c_1 - \lambda) & c_2 & \dots & c_{d-1} \\ 1 & -\lambda & \dots & 0 \\ & & & \dots \\ 0 & 0 & \dots & -\lambda \end{vmatrix} + (-1)^{d+1} c_d \begin{vmatrix} 1 & -\lambda & 0 & \dots & 0 \\ 0 & 1 & -\lambda & \dots & 0 \\ 0 & 1 & -\lambda & \dots & 0 \\ & & & \dots & & \\ 0 & 0 & 0 & \dots & 1 \end{vmatrix} \underbrace{P(d-1)}_{\text{elsepki--Tipeyr.}}$$

$$P(d-1) = -\lambda(-1)^{d-1}(\lambda^{d-1} - c_1\lambda^{d-2} - \dots - c_{d-2}\lambda - c_{d-1}) - (-1)^dc_d = (-1)^d(\lambda^d - c_1\lambda^{d-1} - \dots - c_{d-1}\lambda - c_d).$$
 Получаем  $P(d)$ 

## (каноническое) Задача 6

 $T(n) = 7T(\frac{n}{2}) + f(n), f(n) = O(n^2)$ . Дерево рекурсии:



Высота дерева  $h=\log_2 n$ .  $T(n)=\sum\limits_{k=0}^{h-1}7^kf(\frac{n}{2^k})+7^hT(1)$  . Из определения O  $\exists C>0$   $\exists n_0\colon \forall n\geqslant n_0\hookrightarrow f(n)\leqslant Cn^2$ , откуда первая сумма  $\sum\limits_{k=0}^{h-1}7^kf(\frac{n^2}{2^{2k}})\leqslant Cn^2\sum\limits_{k=0}^{h-1}(\frac{7}{4})^k=Cn^2\frac{(7/4)^{h-1}-1}{7/4-1}=C_1n^2((7/4)^{\log_2 n}-C_2)=C_1n^2n^{\log_2\frac{7}{4}}-C_3n^2=C_1n^{\log_27}-C_3n^2$ . Второе слагаемое  $7^hT(1)=7^{\log_2 n}T(1)=Cn^{\log_27}$ 

Поэтому  $T(n) \leqslant n^{\log_2 7} - C_5 n^2$  Ответ:  $T(n) = O(n^{\log_2 7})$ 

#### (каноническое) Задача 7

Вход: точки  $\{x_i, y_i\}_{i=1}^n$ 

Алгоритм: считаем массив расстояний  $r_i \stackrel{\text{def}}{=} \sqrt{x_i^2 + y_i^2}$  (можено  $r_i^2$ ). Ищем медиану  $r_m$  в массиве за O(n)

Other:  $r_m (r_{m+1}?)$ .