Analytical derivation of principal component analysis

N. Fordui, O. Galganov

Problem description

Let $\{x_1,...,x_m\}$ be a set of m points in \mathbb{R}^n . Task is to find for given k < n a k-dimensional hyperplane, which is the closest to these points in the sense Euclidean distance: in other words, difference between points and their projections onto a plane must be the smallest possible.

This problem is called **principal component analysis** and is widely used in statistics and machine learning.

Problem statement

Let $\{x_1,...,x_m\}$ be m vectors in \mathbb{R}^n . It is known that k-dimensional hyperplane H_k in \mathbb{R}^n can be described by k orthogonal unit vectors that can be completed to the orthonormal basis of \mathbb{R}^n (ONB), and bias vector b $H_k = \{x = b + c_1u_1 + ... + c_ku_k : c_1,...,c_k \in \mathbb{R}\}.$

Let
$$\{u_i\}_{i=1}^n$$
 be some ONB in \mathbb{R}^n . Then $\forall i=1,...,n: x_i=b+\sum\limits_{j=1}^n c_{i,j}u_j$,

where $c_{i,j}=(x_i,u_j)$ (it is Fourier expansion in \mathbb{R}^n).

Firstly, we will show that we can set b=0 after applying some transformation to given vectors.

Auxiliary problem

For given m points $\{x_1,...,x_m\}$ in \mathbb{R}^n find the closest point to all of them in the sense of Euclidean distance.

Auxiliary problem solution

This problem can be formalized like $F(x) = \sum_{k=1}^{m} \|x - x_k\|^2 \to \min, x \in \mathbb{R}^n$.

$$F'_x(x^*)=2\sum\limits_{k=1}^m(x^*-x_k)=0 \Rightarrow x^*=rac{1}{m}\sum\limits_{k=1}^mx_k$$
 — is stationary point.

As F(x) is convex function, $x^* = \frac{1}{m} \sum_{k=1}^m x_k$ is solution of given minimization problem.

Problem statement

So, after replacing x_i with $y_i = x_i - \frac{1}{m} \sum_{i=1}^m x_i$, we can assume b = 0, because closest point in \mathbb{R}^n to all of them is 0, hence desired hyperplane must contain 0.

Thus, $\forall i=1,...,n: y_i=\sum\limits_{j=1}^n c_{i,j}u_j$, where $c_{i,j}=(y_i,u_j)$. Hyperplane

projections y_i are in form $\hat{y_i} = \sum\limits_{j=1}^k c_{i,j} u_j$, k < n. Let's define error vectors

 $\varepsilon_i = y_i - \hat{y_i} = \sum_{j=k+1}^n c_{i,j} u_j$ and put them in one matrix:

$$E = \left(\varepsilon_{1}, \varepsilon_{2}, ..., \varepsilon_{m}\right) = \left(u_{k+1}, u_{k+2}, ..., u_{n}\right) \cdot \begin{pmatrix} c_{1,k+1} & c_{2,k+1} & ... & c_{m,k+1} \\ c_{1,k+2} & c_{2,k+2} & ... & c_{m,k+2} \\ ... & ... & ... & ... \\ c_{1,n} & c_{2,n} & ... & c_{m,n} \end{pmatrix}$$

We will denote it E = UC. Note that $U^TU = I$ because of orthogonality and unit norm of u_i vectors, and $C = Y^TU$.

Problem

Find orthonormal vectors $\{u_i\}_{i=1}^n$ such that $\|E\|^2 \to min$, where $\|E\| = \sqrt{\sum_{i,j=1}^n e_{ij}^2}$ denotes Frobenius norm of error matrix E.

Let's denote
$$Y=(y_1,...,y_m)$$
, $F=YY^T$. $\|E\|^2=\operatorname{Tr}\left(E^TE\right)=\operatorname{Tr}\left(C^TU^TUC\right)=\operatorname{Tr}\left(C^TC\right)=\operatorname{Tr}\left(U^TYY^TU\right)=$ $=\operatorname{Tr}\left(U^TFU\right)$. As $U=\sum\limits_{j=k+1}^n\left(0,....0,u_j,0...,0\right)=\sum\limits_{j=k+1}^nU_j$, by linearity of Tr (trace of matrix, sum of diagonal elements) we have $\operatorname{Tr}\left(U^TFU\right)=\sum\limits_{j=k+1}^n\operatorname{Tr}\left(U_j^TFU_j\right)$. In each U_j matrix only one columns is non-zero, so $\sum\limits_{j=k+1}^n\operatorname{Tr}\left(U_j^TFU_j\right)=\sum\limits_{j=k+1}^n\left(Fu_j,u_j\right)$. So, we arrive to constrained optimization problem.

$$\begin{cases} F(u_{k+1},...,u_n) = \sum_{j=k+1}^{n} (Fu_j,u_j) \to \min \\ \|u_j\|^2 = 1, \ j = k+1,...,n \\ \{u_{k+1},...,u_n\} - \text{linearly independent} \end{cases}$$

This problem is regular because gradients of constrains are linearly independent. Let's write Lagrange function and it's derivatives:

$$\begin{split} &\mathcal{L}(u_{k+1},...,u_n,\lambda_{k+1},...,\lambda_n) = \sum_{j=k+1}^n \left((Fu_j,u_j) + \lambda_j \left(\|u_j\|^2 - 1 \right) \right) \\ &\begin{cases} \frac{\partial \mathcal{L}}{\partial u_j} = 2Fu_j + 2\lambda_j u_j = 0 \\ (j=k+1,...,n) \\ \|u_j\|^2 = 1, \ j=k+1,...,n \\ \{u_{k+1},...,u_n\} - \text{linearly independent} \end{cases} \end{split}$$

As $2Fu_j + 2\lambda_j u_j = 0 \Leftrightarrow Fu_j = -\lambda_j u_j$, solutions of this systems are u_j — eigenvectors of F with unit norm. Because we deal with minimization problem, $\{u_{k+1},...,u_n\}$ must correspond to smallest eigenvalues $\mu_j = -\lambda_j$.

$$F^T=(YY^T)^T=YY^T,\ F\geq 0,\ \text{because}\ \forall\ x\in\mathbb{R}^n:(Fx,x)=(YY^Tx,x)=(Y^Tx,Y^Tx)\geq 0.$$
 So, all $\mu_j=-\lambda_j\geq 0.$

Target function is bounded from below and increasing, so u_j are solutions to minimization problem. Moreover, vectors of ONB $\{u_i\}_{i=1}^n$ are eigenvectors of F, ordered by decreasing of their eigenvalues, and $u_1, ..., u_k$ correspond to k largest eigenvalues (recall that $\hat{y_i} = \sum_{i=1}^k c_{i,j} u_j$).

Also, recall that $y_i = x_i - \frac{1}{m} \sum_{i=1}^m x_i$. Let's denote $X = (x_1, ..., x_m)$, then

$$Y = X - \left(\frac{1}{m}\sum_{i=1}^{m}x_i\right) \cdot \underbrace{(1,1,...,1)}_{m}$$
. Now we will compute YY^T .

$$\begin{split} &\det \overline{x} = \frac{1}{m} \sum_{i=1}^m x_i. \\ &YY^T = (X - \overline{x} \cdot (1, 1, ..., 1)) \cdot \left(X^T - (1, 1, ..., 1)^T \cdot \overline{x}^T\right) = \\ &= XX^T - \overline{x} \cdot (1, 1, ..., 1) \cdot X^T - X \cdot (1, 1, ..., 1)^T \cdot \overline{x}^T + \overline{x} \cdot (1, 1, ..., 1) \cdot (1, 1, ..., 1)^T \cdot \overline{x}^T = XX^T - m \cdot \overline{x} \cdot \overline{x}^T - m \cdot \overline{x} \cdot \overline{x}^T = \\ &= XX^T - m \cdot \overline{x} \cdot \overline{x}^T = \\ &= XX^T - \frac{1}{m} \left(\sum_{i=1}^m x_i\right) \cdot \left(\sum_{i=1}^m x_i^T\right) \\ &\text{So, } u_i \text{ are eigenvectors of } XX^T - m \cdot \overline{x} \cdot \overline{x}^T. \end{split}$$

Solution

Desired k-dimensional hyperplane is $\overline{x} + L(u_1, ..., u_k)$.

Here $\overline{x}=\frac{1}{m}\sum_{i=1}^m x_i$ and $L(u_1,...,u_k)$ is linear span of eigenvectors of $XX^T-m\cdot\overline{x}\cdot\overline{x}^T$ ($X=(x_1,...,x_m)$), which correspond to k largest eigenvalues. Note that projection error (sum of squares of Euclidean norms of ε_i) is equal $\sum_{j=k+1}^n \mu_j$ — it is sum of n-k smallest eigenvalues of this matrix.

It's useful to note that projections $y_i=x_i-\overline{x}$ onto $L(u_1,...,u_k)$ can be calculated using this formula: $\operatorname{pr}(y_i)=(u_1,...,u_k)^T\cdot y_i$, or in matrix form: $\operatorname{pr}(Y)=(u_1,...,u_k)^T\cdot Y$

Appendix: derivative of quadratic form

We used derivative of quadratic form and squared norm in solution. Vector derivative of vector-argument and scalar-valued function is a vector of partial derivatives with respect to each vector coordinated. We provide a proof of used derivative formulas.

$$F(x) = (Ax, x), x \in \mathbb{R}^n, A$$
 — real symmetric $n \times n$ matrix.

$$F(x+h) - F(x) = (Ax + Ah, x+h) - (Ax, x) = (Ax, x) + (Ax, h) + (Ah, x) + (Ah, h) - (Ax, x) = [A = A^T] = (2Ax, h) + (Ah, h)$$

Linear part of increment is 2Ax, so F'(x) = 2Ax. In particular, derivative of square of norm $||x||^2$ is simply 2x.