Universidad del Valle de Guatemala

Departamento de Matemática

Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

E-mail: rom19857@uvg.edu.gt

Carné: 19857

 $\operatorname{MM2034}$ - Análisis de Variable Real 1 - Catedrático: Dorval Carías 31 de mayo de 2021

HT 5

Las siguientes definiciones/teoremas (demostrados) fueron vistos en clase:

Definición de funciones convexas

Sea $f: I \to \mathbb{R}$ se dice que f es convexa sobre I, si $\forall s, t \in I$ y $\lambda \in [0, 1]$, se tiene que:

$$f(\lambda s + (1 - \lambda)t) \le \lambda f(s) + (1 - \lambda)f(t).$$

1. f es función cóncava sobre I si -f es convexa sobre I.

Teorema (Desigualdad de Jensen)

Sea f una función convexa y w_1, w_2, \dots, w_n , tal que:

- 1. $w_j \geq 0$.
- 2. $\sum_{j=1}^{n} w_j = 1$.

Entonces para x_1, x_2, \dots, x_n , se cumple:

$$f(w_1x_1 + w_2x_2 + \dots + w_nx_n) \le w_1f(x_1) + \dots + w_nf(x_n).$$

Que es igual a

$$f\left(\sum_{j=1}^{n} w_j x_j\right) \le \sum_{j=1}^{n} w_j f(x_j).$$

Lema (De las tres cuerdas)

Sea $f: I \to \mathbb{R}$, entonces f es convexa si y solo si $\forall x_1, x_2, x_3 \in I, x_1 < x_2 < x_3$, se tiene que:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

1. Problema 1

Si I es un intervalo y $f: I \to \mathbb{R}$ es convexa, entonces f tiene derivadas laterales y por lo tanto es continua en todo punto $a \in I^{\circ}$ (int(I)).

De hecho:

$$f'(a^{-}) = \sup\{f_a(x) : x \in I, x < a\}$$
 y $f'(a^{+}) = \inf\{f_a(x) : x \in I, x > a\}$

-Notación-

Conjunto F, se define:

$$F := f_a(x) : x \in I, x < a$$

Lema 2.3.4 de Bartle and Sherbert (2000)

An upper bound u of a nonempty set S in \mathbb{R} is the supremum of S if and only if for every $\epsilon > 0$ there exists an $s_{\epsilon} \in S$ such that $u - \epsilon < s_{\epsilon}$.

Teorema 1.7 de Tiel (1984)

Theorem. Let $f: I \to \mathbb{R}$ be convex. Then

(a) On int (I), f'_{-} is left-continuous and f'_{+} is right-continuous.

Demostración.

$$\frac{f(y) - f(x)}{y - x} = \lim_{z \downarrow x} \frac{f(y) - f(z)}{y - z} \geqslant \lim_{z \downarrow x} f'_{+}(z)$$

whenever x < z < y. Passing to the limit as $y \downarrow x$, we obtain

$$f'_+(x) \geqslant \lim_{z \downarrow x} f'_+(z).$$

6 Since f'_{+} is non-decreasing (Theorem 1.6) we have

$$f'_+(x) \leqslant \lim_{z \downarrow x} f'_+(z).$$

We conclude that $f'_{+}(x) = \lim_{z \downarrow x} f'_{+}(z)$, which proves the right-continuity of f'_{+} . The left-continuity of f'_{-} can be proved in a similar way.

Aclaración

El teorema 1.6 que se menciona hace referencia al mismo teorema que se intentará demostrar. Sin embargo, en el libro citado, la demostración es una versión distinta y no utiliza supremo ni ínfimo.

Demostración. Por hipótesis, tenemos que $a \in I^{\circ}$. Además, sabemos por la **propiedad** 1 (al principio del problema 2) que $f_a(x) = \frac{f(x) - f(a)}{x - a}$ es creciente en I. Ahora bien, sea $z \in I$, tal que a < z. Por lo que se tiene que:

$$f_a(x) \le f_a(z), \quad x, z \in I, \quad x < a < z.$$

Entonces, ahora tenemos 2 casos (derivada por la izquierda y por la derecha):

1. Derivada por la izquierda. Sea $f'(a^-) = \sup\{F\}$. Dado $\varepsilon > 0$, por definición de supremo de Lema 2.3.4 de Bartle and Sherbert (2000) que existe un $x_{\varepsilon} \in I$ con $x_{\varepsilon} < a$ tal que sup $\{F\} - \varepsilon < f_a(x_{\varepsilon})$. Considérese: $\delta := a - x_{\varepsilon} > 0$, para $a - \delta < x < a$ por lo que se tiene:

$$\sup \{F\} - \varepsilon < f_a(x_{\varepsilon}) \le f_a(x) \le \sup \{F\},\,$$

en donde

$$|f_a(x) - \sup \{F\}| < \varepsilon.$$

Por lo tanto, $\lim_{x\to a^-} f_a(x) = \sup \{F\}.$

2. Derivada por la derecha. Sea $f'(a^+) = \inf \{F\}$. Usando la definición de supremo de Lema 2.3.4 de Bartle and Sherbert (2000) para ínfimo, tenemos que existe un $x_{\varepsilon} \in I$ con $x_{\varepsilon} > a$ tal que ínf $\{F\} - \varepsilon > f_a(x_{\varepsilon})$. Considérese: $\delta := a - x_{\varepsilon} > 0$, para $a - \delta > x > a$ por lo que se tiene:

$$\inf \{F\} - \varepsilon > f_a(x_{\varepsilon}) \ge f_a(x) \ge \inf \{F\},$$

en donde

$$|f_a(x) - \inf \{F\}| < \varepsilon.$$

Por lo tanto, $\lim_{x\to a^+} f_a(x) = \inf \{F\}.$

Finalmente, por el teorema 1.8 de Tiel (1984) las derivadas laterales de la función son continuas en I° .

2. Problema 2

Propiedad 1

Sea I un intervalo y $f:I\to\mathbb{R}$ una función convexa. Para cada $a\in I$. Considere $f_a:I-\{a\}\to\mathbb{R}$ \ni :

$$f_a(x) = \frac{f(x) - f(a)}{x - a}.$$

Entonces, $f_a(x)$ es creciente en I.

Sea I un intervalo y f una función con primera derivada continua en I, los enunciados siguientes son equivalentes.

$$(3) \Longrightarrow (1) \iff (2). \therefore (3) \Longrightarrow (2).$$

1. f es convexa.

Demostración. (1) \Longrightarrow (2). Por hipótesis sabemos que $f: I \to \mathbb{R}$ es convexa y es diferenciable. Por la **propiedad 1** (demostrada en clase), $\forall x_1, x_2, x_3, x_4 \in I$, $x_1 < x_2 < x_3 < x_4$, se tiene que:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2} \le \frac{f(x_4) - f(x_3)}{x_4 - x_3}.$$

Es decir

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_4) - f(x_3)}{x_4 - x_3}.$$

Ahora bien, como sabemos que f es diferenciable, consideremos la definición de derivada lateral \ni

$$\lim_{x_2 \to x_1^+} \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \lim_{x_3 \to x_4^-} \frac{f(x_4) - f(x_3)}{x_4 - x_3} \implies f'(x_1) \le f'(x_4).$$

 $\therefore f'$ es creciente.

2. f' es creciente.

Demostración. (2) \Longrightarrow (1). Por hipótesis sabemos que f' es creciente. Supóngase $\forall x_1, x_2, x_2 \in I, x_1 < x_2 < x_3$. Se tiene por el **teorema del valor medio** de Bartle and Sherbert (2000), $\exists u, v \ni u \in (x_1, x_2)$ y $v \in (x_2, x_3)$; entonces:

$$f'(u) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
 y $f'(v) = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$

Como sabíamos que f' es creciente, entonces:

$$f'(u) \le f'(v) \implies \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

 \therefore f es convexa por la **propiedad 1** (demostrada en clase).

3.
$$\forall a, x \in I$$
, se tiene $f(x) \ge f(a) + f'(a)(x - a)$.

Demostración. (3) \Longrightarrow (1). A probar que f es una función convexa. Se propone tratar el problema con dos casos distintos para x. Sean $s, t \in I$ y $\lambda \in [0, 1]$, además $a := \lambda y + (1 - \lambda)x$, es decir:

a) Caso 1.

$$f(s) \ge f(a) + f'(a)(s-a), \qquad a := \lambda s + (1-\lambda)t.$$

Entonces:

$$f(s) \ge f(a) + f'(a)(s - a)$$

$$\ge f(\lambda s + (1 - \lambda)t) + f'(\lambda s + (1 - \lambda)t)(s - (\lambda s + (1 - \lambda)t))$$

$$\ge f(\lambda s + (1 - \lambda)t) + f'(\lambda s + (1 - \lambda)t)(s - (\lambda s + t - \lambda t))$$

$$\ge f(\lambda s + (1 - \lambda)t) + f'(\lambda s + (1 - \lambda)t)(s - \lambda s - t + \lambda t)$$

$$\ge f(\lambda s + (1 - \lambda)t) + f'(\lambda s + (1 - \lambda)t)(s - t)(1 - \lambda)$$

$$\ge f(\lambda s + (1 - \lambda)t) - f'(\lambda s + (1 - \lambda)t)(t - s)(1 - \lambda)$$

Ahora, multiplicando por λ .

$$\lambda f(s) > \lambda \left[f(\lambda s + (1 - \lambda)t) - f'(\lambda s + (1 - \lambda)t)(t - s)(1 - \lambda) \right].$$

b) Caso 2.

$$f(t) \ge f(a) + f'(a)(t-a), \qquad a := \lambda s + (1-\lambda)t.$$

Entonces:

$$f(t) \ge f(a) + f'(a)(t - a)$$

$$\ge f(\lambda s + (1 - \lambda)t) + f'(\lambda s + (1 - \lambda)t)(t - (\lambda s + (1 - \lambda)t))$$

$$\ge f(\lambda s + (1 - \lambda)t) + f'(\lambda s + (1 - \lambda)t)(t - \lambda s - t + \lambda t)$$

$$\ge f(\lambda s + (1 - \lambda)t) + f'(\lambda s + (1 - \lambda)t)\lambda(t - s)$$

Ahora, multiplicando por $(1 - \lambda)$.

$$(1-\lambda)f(t) \ge (1-\lambda)\left[f(\lambda s + (1-\lambda)t) + f'(\lambda s + (1-\lambda)t)\lambda(t-s)\right].$$

Si sumamos las desigualdades de ambos casos, tenemos:

$$\lambda f(s) + (1 - \lambda)f(t) \ge f(\lambda s + (1 - \lambda)t).$$

Por lo tanto, f es convexa.

3. Problema 3

Teorema caracterización monótono (demostrado en clase)

Suponga que $f:(a,b)\to\mathbb{R}$ es diferenciable sobre (a,b). Entonces,

- (1) f es creciente ssi $f'(x) \ge 0$, $\forall x \in (a, b)$.
- (2) f es decreciente ssi $f'(x) \leq 0$, $\forall x \in (a,b)$

-Teorema importante

Para resolver los siguientes problemas que se presentan, primero se demostrará con un método alternativo el siguiente teorema de Bartle and Sherbert (2000).

Teorema 6.4.6

Let I be an open interval and let $f: I \to \mathbb{R}$ have a second derivative on I. Then f is a convex function on I if and only if $f''(x) \geq 0$ for all $x \in I$.

Demostración. Es un teorema de caracterización, por lo cual:

- 1. (\rightarrow) Trivial. Por el teorema resuelto en el **Problema 1**, sabemos que f' es creciente. Ahora bien, por el teorema de caracterización monótono (demostrado en clase) sabemos que $f''(x) \geq 0$.
- 2. (\leftarrow) Se tomará en cuenta la idea de Tiel (1984). Sea $x, y \in I, x < y$ y $\lambda \in (0, 1)$. Por **teorema del valor medio** de Bartle and Sherbert (2000), sabemos que existe

$$\xi_1, \xi_2, x < \xi_1 < \lambda x + (1 - \lambda)y < \xi_2 < y$$

У

$$\xi_3, \xi_1 < \xi_3 < \xi_2$$

tal que

$$f(\lambda x + (1 - \lambda)y) - \lambda f(x) - (1 - \lambda)f(y)$$

$$= \lambda [f(\lambda x + (1 - \lambda)y) - f(x)] + (1 - \lambda)[f(\lambda x + (1 - \lambda)y) - f(y)]$$

$$= \lambda (1 - \lambda)(y - x)f'(\xi_1) + (1 - \lambda)\lambda(x - y)f'(\xi_2)$$

$$= \lambda (1 - \lambda)(y - x)(\xi_1 - \xi_2)f''(\xi_3) \leq 0.$$

Por lo tanto f es convexo.

Compruebe que la función:

1. $f(x) = e^x$ es convexa.

Figura 1: $f(x) = e^x$

Demostración. Por el teorema importante, entonces se tiene:

$$\implies f(x) = e^x \implies f'(x) = e^x \implies f''(x) = e^x.$$

Entonces, $f''(x) \ge 0$. Por lo tanto, es una función convexa.

2. $f(x) = \ln x$ es cóncava.

Demostración. Por la definición de cóncavo, se probará: $f(x) = -\ln x$ es convexa. Por el **teorema importante**:

$$\implies f(x) = -\ln x \implies f'(x) = -\frac{1}{x} \implies f''(x) = \frac{1}{x^2}.$$

Entonces, $f''(x) \ge 0$. Por lo tanto, es una función convexa. Por la definición, entonces $f(x) = \ln x$ es cóncava.

Figura 2: $f(x) = \ln x$

3.
$$f(x) = x^{\alpha}$$
, es
$$\begin{cases} \text{Convexa, si} & \alpha \leq 0 \text{ o } \alpha \geq 1 \\ \text{Cóncava, si} & 0 \leq \alpha \leq 1 \end{cases}$$

Figura 3: $f(x) = x^{\alpha}$

Demostración. Comenzamos calculando la segunda derivada:

$$\implies f(x) = x^{\alpha} \implies f'(x) = \alpha x^{\alpha - 1} \implies f''(x) = \alpha(\alpha - 1)x^{\alpha - 2}.$$
 (1)

Análogamente:

$$\implies f(x) = -x^{\alpha} \implies f'(x) = -\alpha x^{\alpha - 1} \implies f''(x) = -\alpha(\alpha - 1)x^{\alpha - 2}.$$
 (2)

Nótese que tenemos dos casos:

a) $f(x) = x^{\alpha}$ es convexa, $\alpha \leq 0$ o $\alpha \geq 1$. Es decir, tenemos:

$$\alpha \in (-\infty, 0]$$
 o $\alpha \in [1, \infty)$.

Considérese la segunda derivada obtenida en (1), por el **teorema importante** la condición se cumple trivialmente para $\alpha \in (-\infty, 0] \cup [1, \infty)$; ya que $f''(x) \ge 0$ en todos los casos. Por lo tanto es convexa.

b) $f(x) = x^{\alpha}$ es cóncava, $0 \le \alpha \le 1$. Es decir, tenemos:

$$a \in [0, 1].$$

Por la definición de cóncavo, se probará x^{α} es convexa. Considérese la segunda derivada de $f(x) = -x^{\alpha}$ obtenida en (3), por el **teorema importante** la condición se cumple trivialmente para $\alpha \in [0,1]$; ya que $f''(x) \geq 0$ en todos los casos. Por lo tanto es convexa y por la definición de función cóncava, x^{α} es cóncava en $a \in [0,1]$.

Referencias

Bartle, R. G. and Sherbert, D. R. (2000). *Introduction to real analysis*. Wiley New York. Tiel, J. v. (1984). *Convex analysis*. Number BOOK. John Wiley.