CLAIMS

5

10

15

20

- 1. A method for compressing video information in a video sequence (I_t, I_{t+1}) comprising the steps of :
 - . considering in said sequence a first video frame (Bt) containing image data;
 - . segmenting said first video frame (B_t) into segments $(S_{t,i})$;
 - . for each segment $(S_{t,i})$ of the first video frame (B_t) :
- searching, in a second video frame (I_{t+1}) following the first video frame (B_t) in the video sequence, a corresponding predicted segment $(S_{t+1,i}^{p,forward})$ which matches with the segment $(S_{t,i})$ of the first video frame (B_t) according to a predetermined similarity measure;
- calculating a raw set of motion parameters ($M_{t,i}^p$) describing the motion between the segment ($S_{t,i}$) of the first video frame (B_t) and the corresponding predicted segment ($S_{t+1,i}^{p,forward}$) of said second video frame (I_{t+1}); and
- . for each corresponding predicted segment (Sp,forward) of the second video frame (It+1):
- searching, in the first video frame (B_t) , a corresponding segment $(S_{t,i}^{p,backward})$ that matches with the predicted segment $(S_{t+1,i}^{p,forward})$ of the second video frame (I_{t+1}) according to a predetermined similarity measure;
- calculating a best set of motion parameters $(M_{t,i}^p + \Delta M_{t,i}^p)$ describing the motion between the corresponding segment $(S_{t,i}^{p,backward})$ of the first video frame (B_t) and the predicted segment $(S_{t+1,i}^{p,forward})$ of the second video frame (I_{t+1}) , said best set of motion parameters consisting in the raw set of motion parameters $(M_{t,i}^p)$ corrected by a motion parameters correction $(\Delta M_{t,i}^p)$.
- 2. A method according to claim 1, characterized in that it includes a step of calculating a residual frame (R_{t+1}) for the second video frame (I_{t+1}) describing the structural differences between the first video frame (B_t) and the second video frame (I_{t+1}) .
- 3. A method according to any one of claims 1 and 2, characterized in that it includes a step of calculating a set of overlapping parameters for each predicted segment ($S_{t+1,i}^{p, \text{ forward}}$) resolving the intersections between said predicted segment ($S_{t+1,i}^{p, \text{ forward}}$) and adjacent other predicted segments of the second video frame (I_{t+1}).

WO 2005/079074 PCT/IB2005/000049

13

4. A method according to any one of claims 1 and 2, characterized in that it includes a step of calculating, for each video frame (B_{t+1}) , a set of overlapping parameters resolving the intersections between the predicted segments of the second video frame (I_{t+1}) .

5. A method according to any one of claims 1 and 2, characterized in that the first video frame (B_t) is a decompressed video frame corresponding to a frame (I_t) of the video sequence processed by said compression method and the corresponding decompression method.

5

10

15

20

- 6. A method according to any one of the preceding claims, characterized in that the best set of motion parameters $(M_{t,i}^p + \Delta M_{t,i}^p)$ is defined according to a multi-layer motion description in which a first layer contains the raw set of motion parameters $(M_{t,i}^p)$ and a second layer contains the motion parameters correction $(\Delta M_{t,i}^p)$, the information of the first and second layers being distinguished.
 - 7. A method according to claim 6, characterized in that it includes a step of setting a flag to a first or a second predetermined value indicating whether the motion parameters correction ($\Delta M_{t,i}^p$) has to be used for the video information decompression.
 - 8. A method according to any one of the preceding claims, characterized in that it includes a step of determining a set of segmentation parameters defining the segmentation process implemented for segmenting the first video frame (B_t) into segments ($S_{t,i}$).
- 9. A method for decompressing video information in a video sequence (I_t , I_{t+1}) comprising:
 - . considering a first video frame (B_t) containing image data;
 - . segmenting said first video frame (B_t) into segments (S_{t,i});
- . for each segment $(S_{t,i})$ of the first video frame (B_t) , defining a projected segment $(S_{t+1,i}^p)$ by applying to the segment $(S_{t,i})$ of the first video frame (B_t) , a raw set of motion parameters $(M_{t,i}^p)$ describing the motion between the segment $(S_{t,i})$ of the first video frame (B_t) and the corresponding projected segment $(S_{t+1,i}^p)$ and
 - . for each corresponding projected segment ($S_{t+1,i}^p$):
- finding in the first video frame (B_t) a corresponding improved segment (S^b_{t,i}) using both the raw set of motion parameters (M^p_{t,i}) and a motion parameters correction
 (ΔM^p_{t,i}), the corresponding improved segment (S^b_{t,i}) being the segment of the first video

14

frame (B_t) that would be projected on the corresponding projected segment ($S_{t+1,i}^p$) by applying to it the raw set of motion parameters ($M_{t,i}^p$) corrected by the motion parameters correction ($\Delta M_{t,i}^p$); and

- defining a corrected projected segment (S_{t+1,i}^p) by applying the raw set of
 motion parameters (M_{t,i}^p) corrected by the motion parameters correction (ΔM_{t,i}^p) to the
 corresponding improved segment (S_{t,i}^b).
 - 10. A method according to claim 9, characterized in that it includes the steps of:
 - considering a flag in the video information; and

15

- calculating a corrected projected segment $(S_{t+1,i}^{p,o,c})$ by applying the raw set of motion parameters $(M_{t,i}^p)$ corrected by the motion parameters correction $(\Delta M_{t,i}^p)$ to the corresponding improved segment $(S_{t,i}^b)$ if said flag has a first predetermined value and not calculating a corrected projected segment $(S_{t+1,i}^{p,o,c})$ if said flag has a second predetermined value.
 - 11. A method according to claim 9 or 10, characterized in that it includes a step of applying a set of overlapping parameters to the projected segments $(S_{i+1,i}^p)$ resolving the intersections between the adjacent projected segments $(S_{i+1,i}^p)$.
 - 12. A method according to any one of claims 9 to 11, characterized in that the step of segmentation of said first video frame (B_t) into segments ($S_{t,i}$) includes a step of applying a set of segmentation parameters contained in the video information and defining the segmentation process implemented for segmenting the first video frame into segments ($S_{t,i}$) during the compressing stage.
 - 13. A computer program product for a data processing unit, comprising a set of instructions, which, when loaded into said data processing unit, causes the data processing unit to carry out the method claimed in any one of the preceding claims.
- 25 14. A device for compressing video information in a video sequence (I_t, I_{t+1}) comprising:
 - means for segmenting the first video frame (B_t) containing image data into segments $(S_{t,i})$;
- means for searching, in a second video frame (I_{t+1}) following the first video frame

 (B_t) in the video sequence, a corresponding predicted segment (S^{p,forward}_{t+1,i}) which matches with

WO 2005/079074 PCT/IB2005/000049

15

the segment $(S_{t,i})$ of the first video frame (B_t) according to a predetermined similarity measure, for each segment $(S_{t,i})$ of the first video frame (B_t) ;

5

10

15

- means for calculating a raw set of motion parameters ($M_{t,i}^p$) describing the motion between the segment ($S_{t,i}$) of the first video frame (B_t) and the corresponding predicted segment ($S_{t+1,i}^{p,forward}$) of the second video frame (I_{t+1}), for each segment ($S_{t,i}^p$) of the first video frame (I_{t+1}),
- means for searching, in the first video frame (B_t), a corresponding segment ($S_{t,i}^{p,backward}$) that matches with the predicted segment ($S_{t+1,i}^{p,forward}$) of the second video frame (I_{t+1}) according to a predetermined similarity measure, for each corresponding predicted segment ($S_{t+1,i}^{p,forward}$) of the second video frame (I_{t+1});
- means for calculating a best set of motion parameters $(M_{t,i}^p + \Delta M_{t,i}^p)$ describing the motion between the corresponding segment $(S_{t,i}^{p,backward})$ of the first video frame (B_t) and the predicted segment $(S_{t+1,i}^{p,forward})$ of the second video frame (I_{t+1}) , said best set of motion parameters consisting in the raw set of motion parameters $(M_{t,i}^p)$ corrected by a motion parameter correction $(\Delta M_{t,i}^p)$, for each corresponding predicted segment $(S_{t+1,i}^{p,forward})$ of the second video frame (I_{t+1}) .
- 15. A device for decompressing video information in a video sequence (I_t , I_{t+1}) comprising:
- means for segmenting said first video frame (B_t) containing image data into segments ($S_{t,i}$);
 - means for defining a projected segment $(S_{t,i}^p)$ for each segment $(S_{t,i})$ of the first video frame (B_t) , by applying to the segment $(S_{t,i})$ of the first video frame (B_t) , a raw set of motion parameters $(M_{t,i}^p)$ describing the motion between the segment $(S_{t,i})$ of the first video frame (B_t) and the corresponding projected segment $(S_{t+1,i}^p)$;
- means for finding, in the first video frame (B_t), a corresponding improved segment ($S_{t,i}^b$) using both the raw set of motion parameters ($M_{t,i}^p$) and a motion parameters correction ($\Delta M_{t,i}^p$), the corresponding improved segment ($S_{t,i}^b$) being the segment of B_t that would be projected on the corresponding projected segment ($S_{t+1,i}^p$) by applying to it the raw set of

WO 2005/079074 PCT/IB2005/000049

16

motion parameters ($M_{t,i}^p$) corrected by the motion parameters correction ($\Delta M_{t,i}^p$), for each corresponding projected segment ($S_{t+1,i}^p$); and

- means for defining a corrected projected segment $(S_{t+1,i}^{p,o,c})$ by applying the raw set of motion parameters $(M_{t,i}^p)$ corrected by the motion parameters correction $(\Delta M_{t,i}^p)$ to the corresponding improved segment $(S_{t,i}^b)$, for each corresponding projected segment $(S_{t+1,i}^p)$.

5

16. Compressed data corresponding to a video sequence, characterized in that it has been obtained by a compression method according to any one of claims 1 to 8 and applied on said video sequence.