FINAL EXAM

INTRODUCTION TO MANIFOLDS

The exam consists of five questions worth a total of 100 points. You may take up to three hours to complete the exam.

Problem 1 (20 pts). Let x, y, z be the standard coordinates on \mathbb{R}^3 . A plane in \mathbb{R}^3 is vertical if it is defined by ax + by = 0 for some $(a, b) \neq (0, 0)$. Prove that restricted to a vertical plane, $dx \wedge dy = 0$.

Problem 2 (20 pts). Determine whether each of the following statements is true or false. If false, provide a counterexample. If true, briefly justify your answer.

- (a) Let $F: N \to M$ be a one-to-one immersion, and let n and m denote the dimensions of N and M respectively. For any point $q \in F(N) \subset M$, there exists a coordinate neighborhood (U, x^1, \ldots, x^m) about q such that $F(N) \cap U$ is defined by the vanishing of x^1, \ldots, x^{m-n} .
- (b) Any alternating bilinear map $\omega \in A_2(\mathbb{R}^3)$ is decomposable, in the sense that $\omega = \alpha_1 \wedge \alpha_2$ for some covectors $\alpha_1, \alpha_2 \in V^*$.

Problem 3 (20 pts). Let M be a smooth manifold. Recall that the Lie bracket of two smooth vector fields is again a smooth vector field. Is the Lie bracket $C^{\infty}(M)$ -linear in both variables? Justify your answer.

Problem 4 (20 pts). Let M be a smooth manifold. Let $f: M \to \mathbb{R}$ be a smooth function, and suppose c is a regular value of f. Prove that $f^{-1}([c,\infty))$ is a smooth manifold with boundary.

Problem 5 (20 pts). Suppose p is a point in a compact oriented surface M without boundary, and that $i: C \to M \setminus \{p\}$ is the inclusion of a small circle around the puncture. Prove that the restriction map $i^*: H^1(M \setminus \{p\}) \to H^1(C)$ is the zero map. (Hint: You may need to use Stokes' Theorem).

Date: November 18, 2016.

1