UFRJ / COPPE / PEE – Primeiro Período de 2011 CPE-723 – Otimização Natural (Parte II - Simulated Annealing)

Prova Parcial – 04 de maio de 2011

Todos os itens da prova têm o mesmo valor: 1.0 ponto cada (total de 10 pontos). Tempo de prova: 2 horas.

1. (Algoritmo de Metropolis) Considere a seguinte expressão:

$$\int_{|x_2|<1} \int_{|x_1|<1} (x_1^2 + x_2^2) e^{-(x_1^2 + x_2^2)} dx_1 dx_2$$

- a) Escreva, utilizando um pseudo-código, um programa para a geração de vetores aleatórios (x_1, x_2) que tenham uma densidade conveniente para uma avaliação eficiente desta expressão.
- b) Explique como os vetores gerados pelo programa do item (a) podem ser utilizados para a avaliação da integral.
- 2. (Simulated Annealing) Considere a função custo $J(x_1, x_2)$ definida pela tabela a seguir:

x_1	x_2	J(x)
0	0	0.2
0	1	0.3
1	0	0.3
1	1	0.1

- a) A aplicação do Algoritmo de Metropolis a um vetor inicial $\mathbf{x}(0)$ qualquer, alterando uma componente $(x_1$ ou $x_2)$ de cada vez, define um processo de Markov com duas matrizes de transição: \mathbf{M}_1 e \mathbf{M}_2 . Calcule estas matrizes de transição, considerando T=0.5. Note que o número de estados possíveis é 4.
- b) Calcule, para temperatura T=0.5, a distribuição de Boltzmann/Gibbs do vetor aleatório X. Verifique que esta distribuição de probabilidades define um vetor invariante para ambas as matrizes de transição calculadas no item (a).
- c) Utilizando um pseudo-código, descreva um algoritmo de Simulated Annealing para minimizar esta função $J(x_1, x_2)$. Defina e use quaisquer parâmetros (temperatura inicial, método de resfriamento etc.) que você julgar necessários.
- d) Começando de $\mathbf{x}(0) = (0,0)$, e usando quaisquer números aleatórios (escolha livremente), execute manualmente as três primeiras iterações do algoritmo do item (c).
- e) Quando um número suficientemente grande de iterações do algoritmo do item (c) tiver sido calculado à temperatura T = 0.1, com que probabilidade teremos a ocorrência do evento J = 0.3?
- 3. (Deterministic Annealing) Considere os números reais $x_1 = -1.0$ e $x_2 = 1.0$, que são resultados equiprováveis de um experimento aleatório. Estes dois números reais serão "agrupados" em duas classes com centróides y_1 e y_2 . A distância entre dois números é definida como $d(x,y) = (x-y)^2$. Considerando y_1 e y_2 fixos, a partição é probabilística, definida pela matriz de probabilidades condicionais p(y|x) que minimiza J = D TH(X,Y) para uma dada temperatura T.
 - a) Considerando $y_1(0) = -0.5$, $y_2(0) = 0.5$ e T = 1, calcule a matriz de probabilidades p(y|x).
 - b) A partir da matriz de probabilidades p(y|x) calculada no item (a), calcule as novas posições $y_1(1)$ e $y_2(1)$ que minimizam J.
 - c) Indique um valor de T para o qual se tem $\lim_{k\to\infty} y_1(k) = \lim_{k\to\infty} y_2(k) = 0$. E indique um valor de T para o qual se tem $\lim_{k\to\infty} y_1(k) = -1$ e $\lim_{k\to\infty} y_2(k) = 1$.