$\mathbf{ULB} \\ \mathbf{2018/2019}$

MATHF3001 - Théorie de la mesure

Assistant : Robson Nascimento Titulaire : Céline Esser

LISTE 5 – ENSEMBLES PATHOLOGIQUES

Exercice 1. Le but de cet exercice est d'exhiber un sous-ensemble de \mathbb{R} non Lebesgue mesurable.

a) Montrer que la relation \sim définie sur [0,1] par

$$x \sim y$$
 si et seulement si $x - y \in \mathbb{Q}$

est une relation d'équivalence.

b) On note $\widehat{x} := \{y \in [0,1] : x \sim y\}$, i.e., la classe de x modulo \sim . Définissons F comme l'ensemble obtenu en choisissant exactement un élément dans chaque classe \widehat{x} (cela est possible grâce à l'axiome du choix!). Montrer que

$$[0,1] \subseteq \bigcup_{q \in \mathbb{Q} \cap [-1,1]} (F+q) \subseteq [-1,2].$$

- c) Montrer que si q_1 et q_2 sont deux éléments distincts de $\mathbb{Q} \cap [-1, 1]$, les ensembles $(F + q_1)$ et $(F + q_2)$ sont disjoints.
- d) En supposant que F soit Lebesgue mesurable, montrer qu'on aboutit à une contradiction.

Exercice 2 (Ensemble triadique de Cantor). Le but de cet exercice est d'exhiber un borélien de \mathbb{R} non dénombrable et de mesure de Lebesgue nulle. On considère la suite $(A_k)_{k\in\mathbb{N}}$ de parties de [0,1] définies par

$$A_0 = [0, 1]$$

$$A_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$$

$$A_2 = \left[0, \frac{1}{3^2}\right] \cup \left[\frac{2}{3^2}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{3^2}\right] \cup \left[\frac{8}{3^2}, 1\right],$$

et ainsi de suite. Plus précisement,

$$A_k := \bigcup_{a_1, \dots, a_k \in \{0, 2\}} \left[\sum_{i=1}^k \frac{a_i}{3^i}, \sum_{i=1}^k \frac{a_i}{3^i} + \frac{1}{3^k} \right].$$

On définit l'ensemble triadique de Cantor $\mathscr C$ alors par $\mathscr C:=\bigcap_{k\in\mathbb N}A_k.$

- a) Montrer que pour tout $k \in \mathbb{N}$, A_k est formé de 2^k intervalles fermés, deux à deux disjoints et que $m(A_k) = \left(\frac{2}{3}\right)^k$.
- b) Montrer que \mathscr{C} est un borélien non vide et de mesure de Lebesgue nulle.

c) On peut écrire chaque $x \in [0,1]$ comme le développement en base 3,

$$x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$$
, où $a_k = 0, 1$, ou 2.

Cette décomposition n'est pas unique! Montrer que $x \in \mathcal{C}$ si, et seulement si, son développement en base 3 ne comporte que les chiffres 0 et 2.

d) En déduire que $\mathscr C$ est en bijection avec [0,1] et est donc non dénombrable.

Exercice 3. Le but de cet exercice est d'exhiber un sous-ensemble de \mathbb{R} Lebesgue mesurable et non borélien. On définit une fonction f de [0,1] dans l'ensemble de Cantor \mathscr{C} , de la façon suivante : pour

$$x = \sum_{k=1}^{\infty} \frac{a_k}{2^k},$$

où $a_k \in \{0,1\}$ pour tout $k \in \mathbb{N}$, les a_k n'étant pas tous égaux à 1 à partir d'un certain rang, on pose

$$f(x) = \sum_{k=1}^{\infty} \frac{2a_k}{3^k}.$$

- a) Montrer que f est strictement croissante et non continue. Remarque : $f = F^{-1}$ où F est la bijection entre \mathscr{C} et [0,1] dans l'exercice précédent.
- b) Soit $E\subset [0,1]$ un ensemble non mesurable au sens de Lebesgue. Montrer que f(E) est Lebesgue mesurable mais non borélien.