AKENTEN APPIAH-MENKA UNIVERSITY OF SKILLS TRAINING AND ENTREPRENEURIAL DEVELOMENT, KUMASI GHANA

FACULTY OF TECHNICAL EDUCATION

END OF SEMESTER EXAMINATION – FEBRUARY 2021

INDEX NUMBER		
PROGRAMME		
INDEX NUMBER	CLASS	
COURSE CODE	MAT 124	
COURSE TITLE	GEOMETRY II	
DURATION		
LECTURERS	DR. EBENEZER BONYAH	
INSTRUCTION(S)	ANSWER ALL QUESTIONS IN BOTH SECTIONS.	
	SECTION A	
	Write or type your answer(s) in the spaces provided	
1 When the intersecti	ion of a plane with a same is taken, the section as formed is called	
1. when the intersecti	ion of a plane with a cone is taken, the section so formed is called	
2. A parabola has an axis of symmetry which either parallel to x-axis and y-axis and has		
possible orientations		
possible orientations		
3. The ellipse $4x^2 + y^2 - 8x + 4y - 8 = 0$ has a centre and foci		
4. The equation of an ellipse having Vertices $(0,\pm 5)$: passes through the point $(4,2)$ is		
5. A hyperbola is the set of points in a plane the of whose distances from		
of whose distances from		
two fixed points, called foci, is constant.		
6. When the intersection of a plane and a cone happen at the vertex of the cone it is called		
o. when the intersecti	on of a plane and a cone happen at the vertex of the cone it is called	

7. The origin of a plane of a polar coordinate system is known as
8. The simplified equation of the parabola that has its vertex at $(1,2)$ and its focus at $(4,2)$ is
9. If the axis of symmetry of a parabola is parallel to the y-axis and the coefficient of y is negative, then the parabola opens
10. The curve of the equation $x = 2y - y^2 + 5$ opens
11. The equation of a conic with vertices $(\pm 6,0)$ and foci $(\pm 2,0)$ is given by
12. The parabola $x^2 + 2x + 4y - 3 = 0$ have and as its vertex and
foci respectively
13.A parabola which is symmetric about the y-axis, and passes through the point $(2,-3)$ has the
equation
14. The graph of the hyperbola $\frac{x^2}{9} - \frac{y^2}{16} = 1$ has a transverse axis parallel to the axis
15principle in optics implies that light reflects off of a surface at an angle
to its angle of incidence
16. The eccentricity of a hyperbola is always one.
17. A type of conic section is formed depending on the angle made by the intersection of a plane
with respect to theof a cone
18. The focus and the directrix of the parabola $x = \frac{-y^2}{4}$ are and
respectively.

19. The vertex and the focus of the parabola $y^2 - 4y - 8x - 12 = 0$ are and
respectively.
20. The point whose Cartesian coordinates is (3,4) has a polar coordinate
21. The Cartesian coordinates for the polar coordinate $\left(2, \frac{13\pi}{3}\right)$ is given by
22. A cardoid is a type of
23. The equation of the tangent to the parabola $x^2 = 4y$ at (2,1) is
24. The equation $3x^2 - xy + 12y^2 - 5x - 7y + 12 = 0$ can be classify as one of the conics, state
that
25. The line which is tangential to the ellipse $x^2 + 5y^2 = 36$ at $(-4, -2)$ has a gradient of
26. Which of the conic section's concept is applied in the development of the modern global
positioning system (GPS).
27. How many Petal does the graph of the rose curve $r = a \cos 2\theta$ has?
28. What is the cartesian form of the polar equation $r = 3\sin(\theta)$?
29. The standard equation of the hyperbola with foci $(0,\pm 13)$, the conjugate axis is of length
24 is

30. The equation of the hyperbola having vertices $(\pm 2,0)$ and focus $(\pm 3,0)$ in it simplified form is: **SECTION B** 30 marks All sketches must be done on this same sheet. 1. Classify the conic $2\sqrt{2}x^2 + 5\sqrt{2}xy + 2\sqrt{2}y^2 + 18x + 18y + 36\sqrt{2} = 0$ and sketch its graph [15 marks] showing all the necessary parts.

	•••••
	•••••
	•••••
2. Find the area of the region under the cardiod $r = 1 - \cos \theta$	[15 marks]