Computer Structure

Multi-Processors

Lihu Rappoport and Adi Yoaz

Multi-Processor Memory

Centralized shared memory (SMP – Symmetric Multiprocessor)

- Uniform Memory Access (UMA)
 - > All processors access all memory locations at a similar latency
 - Data sharing through memory reads/writes
- Memory bandwidth becomes bottleneck: not scalable

Distributed Shared-Memory (DSM)

- Also called NUMA (non-uniform memory access)
- All processors can address all memory locations, like in SMP
- Variable latency: local access faster than remote access

Message-Passing (multi-computers / clusters)

- A computer cluster is a set of connected computers that work together
- A processor can directly address only its local memory
- Communicates with other processors by sending/receiving messages
 - Puts extra burden on SW for handing messages
- Scales to many processors

CMP – Chip Multi Core

Simple SMP on the same chip

 Resources can be shared between CPUs, e.g., shared L3 caches

Cheaper than multi-socket SMP

- Interface logic integrated on-chip
- Fewer total chips, single CPU socket
- Single interface to main memory

Less power than multi-socket SMP

 On-die communication is more powerefficient than chip-to-chip communication

Performance

- On-chip communication is faster
- Efficiency
- Potentially better use of hardware resources than improving performance of a single-threaded CPU

<u>Ring</u>

<u>Mesh</u>

Multi-Socket System

- Each socket (chip) includes multiple core (CMP)
- Each socket has Inter-Processor Link controllers
 - Sockets are fully connected using a high-speed point-to-point interconnect
 - Coherent interconnect, single shared memory address space
 - Directory-based home snoop coherency protocol

Server Systems

Server systems typically support SMP, CMP and SMT together

- Multiple sockets per motherboard (SMP)
- Multiple cores per die (CMP)
- Multiple thread per core (SMT)
- E.g., Intel® Xeon® E7-8890 V4
 - > SMP: Up to 8 processors per board
 - > CMP: 24 cores per processor
 - > SMT: 2 threads per core

Multiple blades per rack

Blades connect using a network, e.g., InfiniBand

Supercomputers

- Supercomputers or HPC (High Performance Computers) clusters
 - A group of servers connected with a dedicated high-speed network
 - Top500 ranks the 500 most powerful non-distributed computer systems
 - Based on HPL high-performance LINPACK benchmark (a software library for performing numerical linear algebra)
- Trinity system (Cray XC40) at Los Alamos National Laboratory

Cores:	979,968
Processor:	Intel Xeon Phi 7250 68C 1.4GHz
Linpack Performance	14,137 TFlop/s
Theoretical Peak	43,902 TFlop/s
Power:	3,843kW