

Interuniversity Programme in Water Resources Engineering

Quantification of rainfall interception in the páramo

Ana Elizabeth Ochoa-Sánchez

Water Resources Doctoral Programme

Department of Water Resources and Environmental Sciences

INTRODUCTION

- Mountain regions produce more than a half of world fresh water
- The páramo ecosystem provides water for:
 - Highlands in Venezuela, Colombia, Ecuador
 - Nearby lowlands
 - Desert zones in Peru
- Impact on its hydrological services
 - Land use change
 - Climate change

Department of Water Resources and Environmental Science

Agroforestry and landscape management Centre

INTRODUCTION

Hydrology and Climate Centre

Environmental Sanitation Centre

Forest restoration Socioeconomics Catchments and landscape management

Hydrometeorology Aquatic ecology Hidrogeochemistry Climate and meteorology

Wastewater treatment Bioenergy Water Quality

Transversal groups: Hydroinformatics, Ecohydrology, Climate Change INTRODUCTION

- Difficulties to study hydrology in the paramo
- Lack of knowledge hinders management of the ecosystem services.
- Studies have been made:
 - Microcatchment scale
 - A single component of the hydrological cycle
 - Subcatchment studies at extreme events

Rainfall-runoff without quantifying the processes in between

Results

Quantifying ETa and partitioning

- ETa explains the interchange of water and energy between the soil and the atmosphere
- Evaporation from soil, plants, and transpiration separately to:
 - Process conceptualization
 - Interception is a large part of evaporation: rarely quantified in grasslands

Interception process (IL)

Ecohydrology

Explore this journal >

RESEARCH ARTICLE

INTRODUCTION

Quantification of rainfall interception in the high Andean tussock grasslands

A. Ochoa-Sánchez ☑, P. Crespo, R. Célleri

Accepted manuscript online: 12 February 2018 Full publication history

DOI: 10.1002/eco.1946 View/save citation

Cited by (CrossRef): 0 articles for updates Citation tools

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/eco.1946

Abstract

The paramo ecosystem provides most of the water for the tropical Andean highlands in South America. While the comprehension of this environment has increased lately, there remains an urgent

Accepted Articles

Browse Accepted Articles
Accepted, unedited articles
published online and
citable. The final edited
and typeset version of
record will appear in

Interception process (IL)

INTRODUCTION

- 1. How much of precipitation becomes effective rainfall (ER) and how much interception (IL)?
- 2. What is the impact on IL calculations of using a raingauge instead of a disdrometer?
- 3. Which meteorological variables are related to the IL process?
- 4. Is it possible to estimate IL from meteorological variables?

Zhurucay Ecohydrological Observatory

- 3 meteorological stations
- 12 raingauges, 2 disdrømeters
- 1 Eddy-covariance station
- ·/2 energy flux systems
- 1 experimental hillslope
- Tracers and ecological monitoring

Materials

- Disdrometer and rain gauge
- Meteorological station
- WCRs

4-year time series with a 5-min time resolution

- Precipitation
- Soil water content at 10 cm depth
- Meteorological variables (RH, Rn, Eto, Ws, WI, etc)

Methods: IL quantification per event

- 1. Event selection
- 2. Calculation of P, ER -> IL
- 3. Disdrometer vs. rain gauge

$$IL = P - ER$$
 [mm]

P = cumulative precipitation

ER = Δ soil moisture * 100

Introduction

Methods: IL related to meteo variables

- 1. Random forest
 - Which meteo variables are the most important to IL process?
 - Reduces number of variables
- 2. Regression trees
 - Tree includes variables related to IL
 - Threshold values for each variable

How much of precipitation becomes effective rainfall (ER)?

Max canopy storage S = 2 mm

Disdrometer or raingauge?

How much is IL?

Conclusions

Which variables are related to IL?

Is it possible to estimate IL?

Dependent variable	Model [®]	RSE (mm)	R ²
Interception loss (mm)	IL = 0.140 P '***' + 0.016 RH '**'	0.67	0.9

Introduction

Conclusions

- IL was quantified for the first time in the páramo
- Drizzle quantified with the disdrometer needs to be taken into account for more accurate calculations of IL
- Maximum water storage capacity of the tussock grassland is 2 mm

Introduction

Conclusions

- IL expressed as a percentage of cumulative precipitation goes from 100 to 10 %
- IL is mainly related to P
- IL can be estimated from P and RH with a multiple linear regression when
 1.7 < P < 8.5 mm

Future work

Interuniversity Programme in Water Resources Engineering

Thanks for your attention

Elizabeth Ochoa-Sánchez

Water Resources Doctoral Programme

Department of Water Resources and Environmental Sciences

Literature review

	Reference	IL/P (%)	S (mm)	P (mm)	RH (%)	D (h)	WS (m/s)	WI (mm/h)	Vegetation coverage (%)
	1. Ochoa-Sánchez et al., 2018	30-100	2	+	+	No cor	No cor	No cor	
/	2. Genxu et al., 2012	5-20		+		+		+	+
	3. Baloutsos et al., 2009	26-40		+		+	+	No cor	
	4. Domingo et al., 1998	20-40	0.25-0.75	+					
	5. Lockwood & Sellers,1982						No cor		+
	6. Campbell & Murray, 1990	10-100	0.6-0.7	+					
	7. Crouse et al., 1966	30	0.127	+					+
	8. Beard, 1956	10		+				-	