

Artificial Intelligence & Machine Learning

Métricas de Machine Learning

Resultados publicados no mercado Brasile

» Finanças

Chatbot realiza 70% dos atendimentos do BB em rede social

A acurácia, ou seja, o percentual de respostas corretas às perguntas dos clientes, é de 77%. O mercado considera muito bom uma acurácia entre 70 e 80%. Quando é necessário algum tipo de interação humana, o atendimento é encaminhado para funcionários do BB que atuam no atendimento em redes sociais.

Vivi: bot da Vivo faz 600 mil atendimentos por mês com 94% de asssertividade

Bradesco passa a usar ferramenta de inteligência artificial para esclarecer dúvidas de clientes

Segundo **Marcelo Câmara**, gerente de inovação, até agora o BIA "aprendeu" a formular 4 mil respostas a 600 mil perguntas sobre 60 produtos, com 96% de assertividade. Em um projeto sobre plataforma Watson (o primeiro grande uso de nuvem pública do banco), o foco até agora são nos algoritmos de atendimento assistido por IA, sem grande carga de dados ou serviços transacionais.

Resultados publicados no mercado Brasile

» Finanças

Chatbot realiza 70% dos atendimentos do BB em rede social

A acurácia, ou seja, o percentual de respostas corretas às perguntas dos clientes, é de 77%. O mercado considera muito bom uma acurácia entre 70 e 80%. Quando é necessário algum tipo de interação humana, o atendimento é encaminhado para funcionários do BB que atuam no atendimento em redes sociais.

Vivi: bot da Vivo faz 600 mil atendimentos por mês com 94% de asssertividade

Bradesco passa a usar ferramenta de inteligência artificial para esclarecer dúvidas de clientes

Segundo Marcelo Câmara, gerente de inovação, até agora o BIA "aprendeu" a formular 4 mil respostas a 600 mil perguntas sobre 60 produtos, com 96% de assertividade. Em um projeto sobre plataforma Watson (o primeiro grande uso de nuvem pública do banco), o foco até agora são nos algoritmos de atendimento assistido por IA, sem grande carga de dados ou serviços transacionais.

O que isso significa?_

Esses resultados são confiáveis?

6

Cálculo de métricas

Acurácia ou precisão geral do modelo

$$\frac{Acertos(A)}{Acertos(A) + Erros(E)}$$

Média das acurácias encontradas para cada intenção

$$\frac{1}{n} \sum_{i=1}^{n} AGCl(i) = \frac{1}{n} \sum_{i=1}^{n} \frac{Acertos(Ai)}{Acertos(Ai) + Erros(Ei)}$$

Calculo de métricas

Imagine que tenhamos um classificador binário treinado para detectar spam e obtivemos os seguintes resultados:

	Classificado como Spam	Classificado como normal
Spam	100	150
Normal	50	1000

Acurácia = (100+1000)/1300 = 84.6%. O que representa um valor muito bom! **Mas e se trocássemos esse classificador por um classificador burro?** Que independente da entrada sempre retornaria como e-mail normal (sem spam):

	Classificado como Spam	Classificado como normal
Spam	0	0
Normal	150	1150

Nossa acurácia que antes era de quase 85% subiria para 88.5%! Ou seja, mesmo que o nosso classificador não esteja realizando nenhuma análise/previsão ele ainda é melhor que o anterior.

Calculo de métricas - Matriz de Confusã

São

A matriz de confusão nos permite realizar uma análise mais detalhada da situação do nosso classificador uma vez que ela distingue nossos resultados em quatro classes.

Usando o exemplo de um classificador binário (classificar se um e-mail é ou não spam):

- **Verdadeiros Positivos (VP):** casos em que retornamos a classe SPAM e o e-mail realmente era de spam.
- Falsos positivos (FP): casos em que retornamos a classe SPAM e na verdade eram emails comuns.
- Falsos Verdadeiros (FV): casos que retornamos que era e-mail comum (ausência de spam) e realmente eram.
- Falsos Negativos (FN): retornamos que não eram spam e na verdade eram spam.

9

Calculo de métricas - Matriz de Confusão

relevant elements

Calculo de métricas - Matriz de Confusão

Calculo de métricas - Matriz de Confusã

Vamos assumir que nosso ChatBot de uma pizzaria possui três classes (intenções): #realizarPedido, #obterStatus e #horarioAtendimento e nelas possuímos, respectivamente, dez, nove e doze exemplos de interações.

No caso do ChatBot em que temos múltiplas classes podemos calcular essas métricas da seguinte forma:

 Verdadeiros Positivos e Verdadeiros Negativos fazem compõem um mesmo conjunto (pintados de roxo na tabela abaixo)

 Falsos positivos ficarão na última linha da tabela enquanto os falsos negativos irão para a última coluna a direita, podemos ver que a soma destes conjuntos é a mesma.

		Previsto		FN	
		realizarPedido	obterStatus	horario Atendimento	FIN
	realizarPedido	6	4	0	4
Classe Real	obterStatus	3	4	2	5
1.00.	horarioAtendimento	0	1	11	1
FP		3	5	2	10

Cálculo de métricas

Precisão

$$Precisão = \frac{Verdadeiros \ Positivos \ (TP)}{Verdadeiros \ Positivos \ (TP) + Falsos Positivos \ (FP)}$$

Recall

$$Recall = \frac{Verdadeiros\ Positivos\ (TP)}{Verdadeiros\ Positivos\ (TP) + Falsos\ Negativos\ (FN)}$$

$$F1 = \frac{2 * precisão * recall}{precisão + recall}$$

Resultados do Estado da Arte

AAAI Conference on Artificial Intelligence Copyright c 2017

Multi-Task Deep Learning for User Intention Understanding in Speech Interaction Systems

Models	Intention Prominence			
Models	Precision	Recall	F1-measure	
SVM	0.627	0.618	0.621	
BN	0.797	0.789	0.791	
CRF	0.769	0.754	0.761	
LSTM	0.792	0.803	0.797	
LSTM+BN	0.868	0.865	0.866	

14

Outras Métricas

G-Measure

Curva ROC

Grid Search

KS (Kolmogorov-Smirnov)

Area Under Curve (AUC)

Gini

Formas de Validação

Leave one out

K Fold

• The dataset is partitioned into K equal sized samples 5-fold CV **DATASET** Estimation 1 Test **Train Train** Train Train Estimation 2 Train Test Train Train Train Train Train Test Train Estimation 3 Train Train Estimation 4 Train Train Test Train Train Train Train Train Test Estimation 5

Holdout

Questions and Feedback

Thank you!

Obrigado!

Vinicius Fernandes Caridá vfcarida@gmail.com

Copyright © 2018 Prof. Vinicius Fernandes Caridá Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).