Package 'qtl2ggplot'

March 15, 2024

Version 1.2.4

```
Date 2024-03-15
Title Data Visualization for QTL Experiments
Description Functions to plot QTL (quantitative trait loci) analysis
     results and related diagnostics.
     Part of 'qtl2', an upgrade of the 'qtl'
     package to better handle high-dimensional data and complex cross
     designs.
Depends R (>= 3.1.0)
Imports Rcpp (>= 0.12.7), assertthat, dplyr, ggplot2, purrr, stringr,
     tidyr, rlang, graphics, RColorBrewer, grid, qtl2, ggrepel
Suggests devtools, testthat, roxygen2, knitr, rmarkdown
VignetteBuilder knitr
License GPL-3
URL https://github.com/byandell/qtl2ggplot, https://kbroman.org/qtl2/
BugReports https://github.com/byandell/qtl2ggplot/issues
Encoding UTF-8
ByteCompile true
LinkingTo Rcpp
RoxygenNote 7.3.1
NeedsCompilation yes
Author Brian S Yandell [aut, cre],
     Karl W Broman [aut]
Maintainer Brian S Yandell <bri>hrian.yandell@wisc.edu>
Repository CRAN
Date/Publication 2024-03-15 16:10:02 UTC
```

2 color_patterns_get

R topics documented:

	color_patterns_get	2
	color_patterns_pheno	
	color_patterns_set	3
	ggplot_coef	4
	ggplot_genes	6
	ggplot_genes_internal	7
	ggplot_listof_scan1coef	8
	ggplot_onegeno	9
	ggplot_peaks	10
	ggplot_pxg	12
	ggplot_scan1	14
	ggplot_snpasso	16
	listof_scan1coef	19
	sdp_to_pattern	21
	summary_scan1	22
Index		24

color_patterns_get

Set up col, pattern and group for plotting.

Description

Set up col, pattern and group for plotting.

Usage

```
color_patterns_get(scan1ggdata, col, palette = NULL)
```

Arguments

scan1ggdata data frame to be used for plotting

col Color for color column in scan1ggdata

palette for colors (default NULL uses "Dark2" from RColorBrewer package)

Value

list of colors and shapes.

color_patterns_pheno 3

color_patterns_pheno Set up col, pattern, shape and group for plotting.

Description

Set up col, pattern, shape and group for plotting.

Usage

```
color_patterns_pheno(
    scan1ggdata,
    lod,
    pattern,
    col,
    shape,
    patterns,
    facet = NULL
)
```

Arguments

scan1ggdata data frame to be used for plotting

lod matrix of LOD scores by position and pheno

pattern allele pattern of form AB: CDEFGH

col Color for color column in scan1ggdata
shape Shape for shape column in scan1ggdata

patterns Connect SDP patterns: one of c("none", "all", "hilit")

facet use facet_wrap if not NULL

Value

data frame scan1ggdata with additional objects.

color_patterns_set Set up colors for patterns or points

Description

Set up colors for patterns or points

4 ggplot_coef

Usage

```
color_patterns_set(
    scan1output,
    snpinfo,
    patterns,
    col,
    pattern,
    show_all_snps,
    col_hilit,
    drop_hilit,
    maxlod
)
```

Arguments

scan1output of linear mixed model for phename (see scan1)

snpinfo Data frame with snp information

patterns Connect SDP patterns: one of c("none", "all", "hilit").

col Color of other points, or colors for patterns

pattern allele pattern as of form AB: CDEFGH

show_all_snps show all SNPs if TRUE

col_hilit Color of highlighted points

drop_hilit SNPs with LOD score within this amount of the maximum SNP association will

be highlighted.

maxlod Maximum LOD for drop of drop_hilit

Value

list of col and pattern.

ggplot_coef

Plot QTL effects along chromosome

Description

Plot estimated QTL effects along a chromosomes.

```
ggplot_coef(
  object,
  map,
  columns = NULL,
  col = NULL,
```

ggplot_coef 5

```
scan1_output = NULL,
gap = 25,
ylim = NULL,
bgcolor = "gray90",
altbgcolor = "gray85",
ylab = "QTL effects",
xlim = NULL,
...
)

ggplot_coefCC(object, map, colors = qt12::CCcolors, ...)

## S3 method for class 'scan1coef'
autoplot(object, ...)
```

Arguments

object Estimated QTL effects ("coefficients") as obtained from scan1coef.

map A list of vectors of marker positions, as produced by insert_pseudomarkers.

columns Vector of columns to plot

col Vector of colors, same length as columns. If NULL, some default choices are

made.

scan1_output If provided, we make a two-panel plot with coefficients on top and LOD scores

below. Should have just one LOD score column; if multiple, only the first is

used.

gap Gap between chromosomes.

ylim y-axis limits. If NULL, we use the range of the plotted coefficients.

bgcolor Background color for the plot.

altbgcolor Background color for alternate chromosomes.

ylab y-axis label

xlim x-axis limits. If NULL, we use the range of the plotted coefficients.

... Additional graphics parameters.

colors Colors to use for plotting.

Details

ggplot_coefCC() is the same as ggplot_coef(), but forcing columns=1:8 and using the Collaborative Cross colors, CCcolors.

Value

object of class ggplot.

See Also

```
ggplot_scan1, ggplot_snpasso
```

ggplot_genes

Examples

```
# read data
iron <- qtl2::read_cross2(system.file("extdata", "iron.zip", package="qtl2"))
# insert pseudomarkers into map
map <- qtl2::insert_pseudomarkers(iron$gmap, step=1)
# calculate genotype probabilities
probs <- qtl2::calc_genoprob(iron, map, error_prob=0.002)
# grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno[,1]
covar <- match(iron$covar$sex, c("f", "m")) # make numeric
names(covar) <- rownames(iron$covar)
# calculate coefficients for chromosome 7
coef <- qtl2::scan1coef(probs[,7], pheno, addcovar=covar)
# plot QTL effects
ggplot2::autoplot(coef, map[7], columns=1:3)</pre>
```

ggplot_genes

Plot gene locations for a genomic interval

Description

Plot gene locations for a genomic interval, as rectangles with gene symbol (and arrow indicating strand/direction) below.

Usage

```
ggplot_genes(
  object,
  xlim = NULL,
  minrow = 4,
  padding = 0.2,
  colors = c("black", "red3", "green4", "blue3", "orange"),
  ...
)

## S3 method for class 'genes'
autoplot(object, ...)
```

Arguments

```
object Object of class object xlim x-axis limits (in Mbp)
```

ggplot_genes_internal 7

minrow	Minimum number of rows of object
padding	Proportion to pad with white space around the object
colors	Vectors of colors, used sequentially and then re-used.
	Optional arguments passed to plot.

Value

None.

Examples

ggplot_genes_internal GGPlot internal routine for ggplot_genes

Description

Plot genes at positions

```
ggplot_genes_internal(
    start,
    end,
    strand,
    rect_top,
    rect_bottom,
    colors,
    space,
    y,
    dir_symbol,
    name,
    xlim,
    xlab = "Position (Mbp)",
    ylab = "",
    bgcolor = "gray92",
    xat = NULL,
```

```
legend.position = "none",
vlines = NULL,
...
)
```

Arguments

```
start, end, strand, rect_top, rect_bottom, colors, space, y, dir_symbol, name, xlim usual parameters
legend.position, vlines, xlab, ylab, bgcolor, xat hidden parameters
... Additional graphics parameters.
```

Value

object of class ggplot.

```
ggplot_listof_scan1coef
```

Plot of object of class listof_scan1coeff

Description

Plot object of class listof_scan1coeff, which is a list of objects of class scan1coef.

Usage

```
ggplot_listof_scan1coef(
  object,
  map,
  columns = NULL,
  col = NULL,
  scan1_output = NULL,
  facet = "pattern",
  ...
)

## S3 method for class 'listof_scan1coef'
autoplot(object, ...)
```

Arguments

object of class listof_scan1coeff

map A list of vectors of marker positions, as produced by insert_pseudomarkers.

columns Vector of columns to plot

ggplot_onegeno 9

col	Vector of colors, same length as columns. If NULL, some default choices are made.
scan1_output	If provided, we make a two-panel plot with coefficients on top and LOD scores below. Should have just one LOD score column; if multiple, only the first is used.
facet	Plot facets if multiple phenotypes and group provided (default = "pattern").
	arguments for ggplot_coef
pattern	Use phenotype names as pattern.

Value

object of class ggplot

Author(s)

Brian S Yandell, <bri> yandell@wisc.edu>

ggplot_onegeno Plot one individual's genome-wide genotypes

Description

Plot one individual's genome-wide genotypes

Usage

```
ggplot_onegeno(
  geno,
  map,
  ind = 1,
  chr = NULL,
  col = NULL,
  shift = FALSE,
  chrwidth = 0.5,
  ...
)
```

Arguments

geno	Imputed phase-known genotypes, as a list of matrices (as produced by maxmarg) or a list of three-dimensional arrays (as produced by guess_phase).
map	Marker map (a list of vectors of marker positions).
ind	Individual to plot, either a numeric index or an ID (can be a vector).
chr	Selected chromosomes to plot; a vector of character strings.
col	Vector of colors for the different genotypes.

10 ggplot_peaks

shift If TRUE, shift the chromosomes so they all start at 0.
 chrwidth Total width of rectangles for each chromosome, as a fraction of the distance between them.
 ... Additional graphics parameters

Value

object of class ggplot.

Examples

```
# load qtl2 package for data and genoprob calculation
library(qtl2)

# read data
iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2"))

# insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)

# calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)

# inferred genotypes
geno <- maxmarg(probs)

# plot the inferred genotypes for the first individual
ggplot_onegeno(geno, map, shift = TRUE)

# plot the inferred genotypes for the first four individuals
ggplot_onegeno(geno, map, ind=1:4)</pre>
```

ggplot_peaks

Plot QTL peak locations

Description

Plot QTL peak locations (possibly with intervals) for multiple traits.

```
ggplot_peaks(
  peaks,
  map,
  chr = NULL,
  tick_height = 0.3,
  gap = 25,
  bgcolor = "gray90",
```

ggplot_peaks 11

```
altbgcolor = "gray85",
    ...
)
```

Arguments

peaks Data frame such as that produced by find_peaks) containing columns chr,

pos, lodindex, and lodcolumn. May also contain columns ci_lo and ci_hi,

in which case intervals will be plotted.

map Marker map, used to get chromosome lengths (and start and end positions).

chr Selected chromosomes to plot; a vector of character strings.
tick_height Height of tick marks at the peaks (a number between 0 and 1).

gap Gap between chromosomes. bgcolor Background color for the plot.

altbgcolor Background color for alternate chromosomes.

... Additional graphics parameters

Value

None.

See Also

find_peaks

```
# load qtl2 package for data and genoprob calculation
library(qtl2)
# read data
iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2"))</pre>
# insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)</pre>
# calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)</pre>
# grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno</pre>
covar <- match(iron$covar$sex, c("f", "m")) # make numeric</pre>
names(covar) <- rownames(iron$covar)</pre>
Xcovar <- get_x_covar(iron)</pre>
# perform genome scan
out <- scan1(probs, pheno, addcovar=covar, Xcovar=Xcovar)</pre>
# find peaks above lod=3.5 (and calculate 1.5-LOD support intervals)
```

12 ggplot_pxg

```
peaks <- find_peaks(out, map, threshold=3.5, drop=1.5)</pre>
# color peaks above 6 red; only show chromosomes with peaks
plot_peaks(peaks, map)
peaks$col <- (peaks$lod > 6)
ggplot_peaks(peaks, map[names(map) %in% peaks$chr], col = c("blue","red"),
           legend.title = "LOD > 6")
```

ggplot_pxg

Plot phenotype vs genotype

Description

Plot phenotype vs genotype for a single putative QTL and a single phenotype.

Usage

```
ggplot_pxg(
  geno,
  pheno,
  sort = TRUE,
  SEmult = NULL,
  pooledSD = TRUE,
  jitter = 0.2,
  bgcolor = "gray90",
  seg_width = 0.4,
  seg_lwd = 2,
  seg_col = "black",
  hlines = NULL,
  hlines_col = "white",
  hlines_lty = 1,
  hlines_lwd = 1,
  vlines_col = "gray80",
  vlines_lty = 1,
  vlines_lwd = 3,
  force_labels = TRUE,
  alternate_labels = FALSE,
  omit_points = FALSE,
)
mean_pxg(geno, pheno, dataframe = NULL)
```

Arguments

Vector of genotypes, as produced by maxmarg with specific chr and pos. geno

Vector of phenotypes. pheno

ggplot_pxg 13

If TRUE, sort genotypes from largest to smallest. sort SEmult If specified, interval estimates of the within-group averages will be displayed, as mean +/- SE * SEmult. If TRUE and SEmult is specified, calculated a pooled within-group SD. OtherpooledSD wise, get separate estimates of the within-group SD for each group. jitter Amount to jitter the points horizontally, if a vector of length > 0, it is taken to be the actual jitter amounts (with values between -0.5 and 0.5). bgcolor Background color for the plot. seg_width Width of segments at the estimated within-group averages seg_lwd Line width used to plot estimated within-group averages seg_col Line color used to plot estimated within-group averages hlines Locations of horizontal grid lines. hlines_col Color of horizontal grid lines hlines_lty Line type of horizontal grid lines hlines_lwd Line width of horizontal grid lines vlines_col Color of vertical grid lines vlines_lty Line type of vertical grid lines vlines_lwd Line width of vertical grid lines force_labels If TRUE, force all genotype labels to be shown. alternate_labels If TRUE, place genotype labels in two rows omit_points If TRUE, omit the points, just plotting the averages (and, potentially, the +/- SE intervals).

Value

object of class ggplot.

See Also

```
plot_coef
```

dataframe

Examples

```
# load qtl2 package for data and genoprob calculation
library(qtl2)

# read data
iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2"))

# insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)</pre>
```

Additional graphics parameters, passed to plot.

Supplied data frame, or constructed from geno and pheno if NULL.

14 ggplot_scan1

ggplot_scan1

Plot a genome scan

Description

Plot LOD curves for a genome scan Plot LOD curves for a genome scan

```
ggplot_scan1(
  object,
  map,
  lodcolumn = 1,
  chr = NULL,
  gap = 25,
  bgcolor = "gray90",
  altbgcolor = "gray85",
  ...
)

## S3 method for class 'scan1'
autoplot(object, ...)

ggplot_scan1_internal(
  map,
```

ggplot_scan1 15

```
lod,
gap = 25,
col = NULL,
shape = NULL,
pattern = NULL,
facet = NULL,
patterns = c("none", "all", "hilit"),
chrName = "Chr",
...
)
```

Arguments

object Output of scan1.

map Map of pseudomarker locations.

lodcolumn LOD score column to plot (a numeric index, or a character string for a column

name). One or more value(s) allowed.

chr Selected chromosomes to plot; a vector of character strings.

gap Gap between chromosomes. bgcolor Background color for the plot.

altbgcolor Background color for alternate chromosomes.

... Additional graphics parameters.lod Matrix of lod (or other) values.

col Colors for points or lines, with labels.

shape Shapes for points.

pattern Use to group values for plotting (default = NULL); typically provided by plot_snpasso

internal routine.

facet Plot facets if multiple phenotypes and group provided (default = NULL).

patterns Connect SDP patterns: one of c("none", "all", "hilit").

chrName Add prefix chromosome name (default "Chr").

Value

None.

See Also

```
ggplot_coef, ggplot_snpasso
```

```
# load qt12 package for data and genoprob calculation
library(qt12)
# read data
```

16 ggplot_snpasso

```
iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2"))</pre>
# insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)</pre>
# calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)</pre>
# grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno</pre>
covar <- match(iron$covar$sex, c("f", "m")) # make numeric</pre>
names(covar) <- rownames(iron$covar)</pre>
Xcovar <- get_x_covar(iron)</pre>
# perform genome scan
out <- scan1(probs, pheno, addcovar=covar, Xcovar=Xcovar)</pre>
# plot the results for selected chromosomes
chr <- c(2,7,8,9,15,16)
ggplot_scan1(out, map, lodcolumn=1:2, chr=chr, col=c("darkslateblue","violetred"),
     legend.position=c(0.1,0.9))
# plot just one chromosome
ggplot_scan1(out, map, chr=8, lodcolumn=1:2, col=c("darkblue","violetred"))
# can also use autoplot from ggplot2
# lodcolumn can also be a column name
library(ggplot2)
autoplot(out, map, chr=8, lodcolumn=c("liver","spleen"), col=c("darkblue","violetred"))
```

ggplot_snpasso

Plot SNP associations

Description

Plot SNP associations, with possible expansion from distinct snps to all snps.

```
ggplot_snpasso(
    scan1output,
    snpinfo,
    genes = NULL,
    lodcolumn = 1,
    show_all_snps = TRUE,
    drop_hilit = NA,
    col_hilit = "violetred",
    col = "darkslateblue",
    ylim = NULL,
```

ggplot_snpasso 17

```
gap = 25,
minlod = 0,
bgcolor = "gray90",
altbgcolor = "gray85",
...
)
```

Arguments

scan1output

Output of scan1. Should contain an attribute, "snpinfo", as when scan1 are run with SNP probabilities produced by genoprob_to_snpprob.

snpinfo

Data frame with SNP information with the following columns (the last three are generally derived from with index_snps):

- chr Character string or factor with chromosome
- pos Position (in same units as in the "map" attribute in genoprobs.
- sdp Strain distribution pattern: an integer, between 1 and 2^n-2 where n is the number of strains, whose binary encoding indicates the founder genotypes
- snp Character string with SNP identifier (if missing, the rownames are used).
- index Indices that indicate equivalent groups of SNPs.
- intervals Indexes that indicate which marker intervals the SNPs reside.
- on_map Indicate whether SNP coincides with a marker in the genoprobs

genes

Optional data frame containing gene information for the region, with columns 'start' and 'stop' in Mbp, 'strand' (as '"-"', '"+"', or 'NA'), and 'Name'. If included, a two-panel plot is produced, with SNP associations above and gene locations below.

lodcolumn

LOD score column to plot (a numeric index, or a character string for a column name). One or more value(s) allowed.

show_all_snps

If TRUE, expand to show all SNPs.

drop_hilit

SNPs with LOD score within this amount of the maximum SNP association will be highlighted.

col_hilit

Color of highlighted points

col

Color of other points

ylim

y-axis limits

gap

Gap between chromosomes.

minlod

Minimum LOD to display. (Mostly for GWAS, in which case using 'minlod=1' will greatly increase the plotting speed, since the vast majority of points would

be omitted.

bgcolor

Background color for the plot.

altbgcolor

Background color for alternate chromosomes.

. . .

Additional graphics parameters.

18 ggplot_snpasso

Value

object of class ggplot.

Hidden graphics parameters

A number of graphics parameters can be passed via '...'. For example, 'bgcolor' to control the background color and 'altbgcolor' to control the background color on alternate chromosomes. 'cex' for character expansion for the points (default 0.5), 'pch' for the plotting character for the points (default 16), and 'ylim' for y-axis limits.

See Also

```
ggplot_scan1, ggplot_coef
```

```
dirpath <- "https://raw.githubusercontent.com/rqtl/qtl2data/master/D0ex"</pre>
# Read DOex example cross from 'qtl2data'
D0ex <- subset(qtl2::read_cross2(file.path(dirpath, "D0ex.zip")), chr = "2")</pre>
# Download genotype probabilities
tmpfile <- tempfile()</pre>
download.file(file.path(dirpath, "DOex_genoprobs_2.rds"), tmpfile, quiet=TRUE)
pr <- readRDS(tmpfile)</pre>
unlink(tmpfile)
# Download SNP info for DOex from web and read as RDS.
tmpfile <- tempfile()</pre>
download.file(file.path(dirpath, "c2_snpinfo.rds"), tmpfile, quiet=TRUE)
snpinfo <- readRDS(tmpfile)</pre>
unlink(tmpfile)
snpinfo <- dplyr::rename(snpinfo, pos = pos_Mbp)</pre>
# Convert to SNP probabilities
snpinfo <- qtl2::index_snps(D0ex$pmap, snpinfo)</pre>
snppr <- qtl2::genoprob_to_snpprob(pr, snpinfo)</pre>
# Scan SNPs.
scan_snppr <- qtl2::scan1(snppr, D0ex$pheno)</pre>
# plot results
ggplot_snpasso(scan_snppr, snpinfo, show_all_snps=FALSE, patterns="all", drop_hilit=1.5)
# can also just type autoplot() if ggplot2 attached
library(ggplot2)
# plot just subset of distinct SNPs
autoplot(scan_snppr, snpinfo, show_all_snps=FALSE, drop_hilit=1.5)
# highlight SDP patterns in SNPs; connect with lines.
```

listof_scan1coef 19

```
autoplot(scan_snppr, snpinfo, patterns="all",drop_hilit=4)

# query function for finding genes in region
gene_dbfile <- system.file("extdata", "mouse_genes_small.sqlite", package="qtl2")
query_genes <- qtl2::create_gene_query_func(gene_dbfile)
genes <- query_genes(2, 97, 98)

# plot SNP association results with gene locations
autoplot(scan_snppr, snpinfo, patterns="hilit", drop_hilit=1.5, genes=genes)</pre>
```

listof_scan1coef

List of scan1coef objects

Description

Create a list of scan1coef objects using scan1coef.

Summary of object of class listof_scan1coef, which is a list of objects of class scan1coef.

Summary of object of class listof_scan1coef, which is a list of objects of class scan1coef.

Subset of object of class listof_scan1coef, which is a list of objects of class scan1coef.

```
listof_scan1coef(
  probs,
 phe,
 K = NULL
  covar = NULL,
 blups = FALSE,
  center = FALSE,
)
summary_listof_scan1coef(
 object,
  scan1_object,
 coef_names = dimnames(object[[1]])[[2]],
  center = TRUE,
)
## S3 method for class 'listof_scan1coef'
summary(object, ...)
summary_scan1coef(object, scan1_object, map, ...)
```

20 listof_scan1coef

```
## S3 method for class 'scan1coef'
summary(object, ...)
subset_listof_scan1coef(x, elements, ...)
## S3 method for class 'listof_scan1coef'
subset(x, ...)
## S3 method for class 'listof_scan1coef'
x[...]
```

Arguments

probs genotype probabilities object for one chromosome from calc_genoprob

phe data frame of phenotypes

K list of length 1 with kinship matrix

covar matrix of covariates

blups Create BLUPs if TRUE

center center coefficients if TRUE

... ignored

object of class listof_scan1coef

scan1_object object from scan1

map A list of vectors of marker positions, as produced by insert_pseudomarkers.

coef_names names of effect coefficients (default is all coefficient names)

x object of class listof_scan1coef
elements indexes or names of list elements in x

Value

```
object of class listof_scan1coef
```

Author(s)

```
# read data
iron <- qtl2::read_cross2(system.file("extdata", "iron.zip", package="qtl2"))
# insert pseudomarkers into map
map <- qtl2::insert_pseudomarkers(iron$gmap, step=1)
# calculate genotype probabilities
probs <- qtl2::calc_genoprob(iron, map, error_prob=0.002)</pre>
```

sdp_to_pattern 21

```
# Ensure that covariates have names attribute
covar <- match(iron$covar$sex, c("f", "m")) # make numeric
names(covar) <- rownames(iron$covar)

# Calculate scan1coef on all phenotypes,
# returning a list of \code{\link{scan1coef}} objects
out <- listof_scan1coef(probs[,7], iron$pheno, addcovar = covar, center = TRUE)

# Plot coefficients for all phenotypes
ggplot2::autoplot(out, map[7], columns = 1:3)

# Summary of coefficients at scan peak
scan_pr <- qtl2::scan1(probs[,7], iron$pheno)
summary(out, scan_pr, map[7])</pre>
```

sdp_to_pattern

Convert sdp to pattern

Description

Convert strain distribution pattern (sdp) to letter pattern. Taken from package 'qtl2pattern' for internal use here.

Usage

```
sdp_to_pattern(sdp, haplos, symmetric = TRUE)
```

Arguments

sdp vector of sdp values

haplos letter codes for haplotypes (required)
symmetric make patterns symmetric if TRUE

Value

vector of letter patterns

Author(s)

22 summary_scan1

summary_scan1

Summary of scan1 object

Description

Summary of scan1 object

Usage

```
summary_scan1(
  object,
  map,
  snpinfo = NULL,
  lodcolumn = seq_len(ncol(object)),
  chr = names(map),
  sum_type = c("common", "best"),
  drop = 1.5,
  show_all_snps = TRUE,
  ...
)

## $3 method for class 'scan1'
summary(object, ...)
```

Arguments

object object from scan1

map snpinfo A list of vectors of marker positions, as produced by insert_pseudomarkers. Data frame with SNP information with the following columns (the last three are generally derived from with index_snps):

- chr Character string or factor with chromosome
- pos Position (in same units as in the "map" attribute in genoprobs.
- sdp Strain distribution pattern: an integer, between 1 and $2^n 2$ where n is the number of strains, whose binary encoding indicates the founder genotypes
- snp Character string with SNP identifier (if missing, the rownames are used).
- index Indices that indicate equivalent groups of SNPs.
- intervals Indexes that indicate which marker intervals the SNPs reside.
- on_map Indicate whether SNP coincides with a marker in the genoprobs

lodcolumn one or more lod columns
chr one or more chromosome IDs
sum_type type of summary
drop LOD drop from maximum
show_all_snps show all SNPs if TRUE

other arguments not used

summary_scan1 23

Value

tbl summary

Author(s)

```
# read data
iron <- qtl2::read_cross2(system.file("extdata", "iron.zip", package="qtl2"))
# insert pseudomarkers into map
map <- qtl2::insert_pseudomarkers(iron$gmap, step=1)

# calculate genotype probabilities
probs <- qtl2::calc_genoprob(iron, map, error_prob=0.002)

# grab phenotypes and covariates; ensure that covariates have names attribute
pheno <- iron$pheno
covar <- match(iron$covar$sex, c("f", "m")) # make numeric
names(covar) <- rownames(iron$covar)
Xcovar <- qtl2::get_x_covar(iron)

# perform genome scan
out <- qtl2::scan1(probs, pheno, addcovar=covar, Xcovar=Xcovar)

# summary
summary(out, map)</pre>
```

Index

```
* hgraphics
                                                 index_snps, 17, 22
    ggplot_genes, 6
                                                 insert_pseudomarkers, 5, 8, 20, 22
* hplot
                                                 listof_scan1coef, 19, 19
    ggplot_listof_scan1coef, 8
* utilities
                                                 maxmarg, 9, 12
    listof_scan1coef, 19
                                                 mean_pxg (ggplot_pxg), 12
    sdp_to_pattern, 21
    summary_scan1, 22
                                                 plot, 7, 13
[.listof_scan1coef(listof_scan1coef),
                                                 plot_coef, 13
        19
                                                 plot_snpasso, 15
autoplot.genes (ggplot_genes), 6
                                                 scan1, 4, 15, 17, 22
autoplot.listof_scan1coef
                                                 scan1coef, 5, 19
        (ggplot_listof_scan1coef), 8
                                                 sdp_to_pattern, 21
autoplot.scan1 (ggplot_scan1), 14
                                                 subset.listof_scan1coef
autoplot.scan1coef (ggplot_coef), 4
                                                         (listof_scan1coef), 19
                                                 subset_listof_scan1coef
calc_genoprob, 20
                                                         (listof_scan1coef), 19
CCcolors, 5
                                                 summary.listof_scan1coef
color_patterns_get, 2
                                                         (listof_scan1coef), 19
color_patterns_pheno, 3
                                                 summary.scan1 (summary_scan1), 22
color_patterns_set, 3
                                                 summary.scan1coef(listof_scan1coef), 19
                                                 summary_listof_scan1coef
facet_wrap, 3
                                                         (listof_scan1coef), 19
find_peaks, 11
                                                 summary_scan1, 22
                                                 summary_scan1coef (listof_scan1coef), 19
genoprob_to_snpprob, 17
ggplot, 5, 8–10, 13, 18
ggplot_coef, 4, 9, 15, 18
ggplot_coefCC (ggplot_coef), 4
ggplot_genes, 6
ggplot_genes_internal, 7
ggplot_listof_scan1coef, 8
ggplot_onegeno, 9
ggplot_peaks, 10
ggplot_pxg, 12
ggplot_scan1, 5, 14, 18
ggplot_scan1_internal (ggplot_scan1), 14
ggplot_snpasso, 5, 15, 16
guess_phase, 9
```