Week #11

- What does the regression line minimise? Draw a picture
- How many regression lines are possible for a given data set?
- \bullet Give an example of restriction of range
- Explain the difference between a univariate outlier and a regression outlier, and draw a picture
- Draw an example of how an influential outlier might affect the regression line

Regression

$$\begin{split} \bar{Y} &= \Sigma(Y_i)/n \\ df_1 &= 1 \\ df_2 &= n - df_1 - 1 \\ SP &= \Sigma[(X_i - \bar{X})(Y_i - \bar{Y})] \\ SS_X &= \Sigma[(X_i - \bar{X})^2] \\ SS_X &= \Sigma[(X_i - \bar{X})^2] \\ \beta_1 &= SP/SS_X \\ \beta_0 &= \bar{Y} - \beta_1 \times \bar{X} \end{split} \qquad \begin{aligned} \hat{Y}_i &= \beta_0 + X_i \times \beta_1 \\ SS_{\text{tot}} &= \Sigma[(Y_i - \bar{Y})^2] \\ SS_{\text{res}} &= \Sigma[(Y_i - \bar{Y})^2] \\ SS_{\text{res}} &= SS_{\text{tot}} - SS_{\text{reg}} \\ MS_{\text{reg}} &= SS_{\text{reg}}/df_1 \\ MS_{\text{res}} &= SS_{\text{reg}}/df_2 \\ F &= MS_{\text{reg}}/MS_{\text{res}} \end{aligned}$$

Critical F values

			df_1	
df_2	α	1	2	3
1	0.05	161.4	199.5	215.71
	0.01	4052	4999	5404
2	0.05	18.51	19	19.16
	0.01	98.94	99	99.17
3	0.05	7.71	6.94	6.59
	0.01	34.12	30.82	29.46
4	0.05	7.71	6.94	6.59
	0.01	21.2	18	16.69

Question #1

Test the model fit at an α of 0.05.

X_i	Y_i	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$	\hat{Y}_i	$(\hat{Y}_i - \bar{Y})$	$(\hat{Y}_i - \bar{Y})^2$
2	4	1	1	1	4.57	-0.43	0.18
1	7	4	4	-4	4.14	-0.86	0.73
6	8	9	9	9	6.29	1.29	1.65
3	1	0	16	0	5.00	0.00	0.00

$$\begin{array}{lll} SS_{X} = 14 & SS_{\mathrm{res}} = 30 - 2.57 = 27.43 \\ SP = 6 & df_{1} = 1 \\ \beta_{1} = 6/14 = 0.43 & df_{2} = 4 - 1 - 1 = 2 \\ \bar{Y} = 5 & MS_{\mathrm{reg}} = 2.57/1 = 2.57 \\ \bar{X} = 3 & MS_{\mathrm{res}} = 27.43/2 = 13.71 \\ \beta_{0} = 5 - (0.43 \times 3) = 3.71 & F = 2.57/13.71 = 0.19 \\ \hat{Y}_{i} = 3.71 + (0.43 \times X_{i}) & F_{\mathrm{crit}} = 18.51 \\ SS_{\mathrm{tot}} = 30 & SS_{\mathrm{reg}} = 2.57 \end{array}$$

Question #2

Test the model fit at an α of 0.01.

•	X_i	Y_i	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$	\hat{Y}_i	$(\hat{Y}_i - \bar{Y})$	$(\hat{Y}_i - \bar{Y})^2$
	4	5	1	0	0	5.07	0.07	0.01
	0	6	9	1	-3	4.79	-0.21	0.05
	5	7	4	4	4	5.14	0.14	0.02
_	3	2	0	9	0	5.00	0.00	0.00

$$\begin{split} SS_X &= 14 \\ SP &= 1 \\ \beta_1 &= 1/14 = 0.07 \\ \bar{Y} &= 5 \\ \bar{X} &= 3 \\ \beta_0 &= 5 - (0.07 \times 3) = 4.79 \\ \hat{Y}_i &= 4.79 + (0.07 \times X_i) \\ SS_{\rm tot} &= 14 \\ SS_{\rm reg} &= 0.07 \end{split}$$

$$SS_{\rm res} = 14 - 0.07 = 13.93$$

 $df_1 = 1$
 $df_2 = 4 - 1 - 1 = 2$
 $MS_{\rm reg} = 0.07/1 = 0.07$
 $MS_{\rm res} = 13.93/2 = 6.96$
 $F = 0.07/6.96 = 0.01$
 $F_{\rm crit} = 98.5$
Fail to reject because $0.01 < 98.5$

Question #3

Test the model fit at an α of 0.01.

_	X_i	Y_i	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$	\hat{Y}_i	$(\hat{Y}_i - \bar{Y})$	$(\hat{Y}_i - \bar{Y})^2$
	1	9	9	9	-9	9.90	3.90	15.21
	2	10	4	16	-8	8.60	2.60	6.76
	5	4	1	4	-2	4.70	-1.30	1.69
	8	1	16	25	-20	0.80	-5.20	27.04

$$\begin{split} SS_X &= 30 \\ SP &= -39 \\ \beta_1 &= -39/30 = -1.3 \\ \bar{Y} &= 6 \\ \bar{X} &= 4 \\ \beta_0 &= 6 - (-1.3 \times 4) = 11.2 \\ \hat{Y}_i &= 11.2 + (-1.3 \times X_i) \\ SS_{\text{tot}} &= 54 \\ SS_{\text{reg}} &= 50.7 \end{split}$$

$$SS_{\rm res} = 54 - 50.7 = 3.3$$

 $df_1 = 1$
 $df_2 = 4 - 1 - 1 = 2$
 $MS_{\rm reg} = 50.7/1 = 50.7$
 $MS_{\rm res} = 3.3/2 = 1.65$
 $F = 50.7/1.65 = 30.73$
 $F_{\rm crit} = 98.5$
Fail to reject because $30.73 < 98.5$

Question #4

Test the model fit at an α of 0.05.

X_i	Y_i	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$	\hat{Y}_i	$(\hat{Y}_i - \bar{Y})$	$(\hat{Y}_i - \bar{Y})^2$
2	7	9	0	0	7.75	0.75	0.56
6	10	1	9	3	6.75	-0.25	0.06
8	4	9	9	-9	6.25	-0.75	0.56
9	6	16	1	-4	6.00	-1.00	1.00
0	8	25	1	-5	8.25	1.25	1.56

$$\begin{split} SS_X &= 60 \\ SP &= -15 \\ \beta_1 &= -15/60 = -0.25 \\ \bar{Y} &= 7 \\ \bar{X} &= 5 \\ \beta_0 &= 7 - (-0.25 \times 5) = 8.25 \\ \hat{Y}_i &= 8.25 + (-0.25 \times X_i) \\ SS_{\rm tot} &= 20 \\ SS_{\rm reg} &= 3.75 \end{split}$$

$$SS_{\rm res} = 20 - 3.75 = 16.25$$

 $df_1 = 1$
 $df_2 = 5 - 1 - 1 = 3$
 $MS_{\rm reg} = 3.75/1 = 3.75$
 $MS_{\rm res} = 16.25/3 = 5.42$
 $F = 3.75/5.42 = 0.69$
 $F_{\rm crit} = 10.13$
Fail to reject because $0.69 < 10.13$

Question #5

Test the model fit at an α of 0.01.

 X_i	Y_i	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$	\hat{Y}_i	$(\hat{Y}_i - \bar{Y})$	$(\hat{Y}_i - \bar{Y})^2$
6	2	1	4	2	3.60	-0.40	0.16
8	10	1	36	6	4.40	0.40	0.16
9	1	4	9	-6	4.80	0.80	0.64
5	3	4	1	2	3.20	-0.80	0.64

$$SS_X = 10$$

 $SP = 4$
 $\beta_1 = 4/10 = 0.4$
 $\bar{Y} = 4$
 $\bar{X} = 7$
 $\beta_0 = 4 - (0.4 \times 7) = 1.2$
 $\hat{Y}_i = 1.2 + (0.4 \times X_i)$
 $SS_{\text{tot}} = 50$
 $SS_{\text{reg}} = 1.6$

$$SS_{\rm res} = 50 - 1.6 = 48.4$$
 $df_1 = 1$
 $df_2 = 4 - 1 - 1 = 2$
 $MS_{\rm reg} = 1.6/1 = 1.6$
 $MS_{\rm res} = 48.4/2 = 24.2$
 $F = 1.6/24.2 = 0.07$
 $F_{\rm crit} = 98.5$
Fail to reject because $0.07 < 98.5$

Question #6

Test the model fit at an α of 0.01.

\overline{X}	Y Y	\vec{i}	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$	\hat{Y}_i	$(\hat{Y}_i - \bar{Y})$	$(\hat{Y}_i - \bar{Y})^2$
	1 .	5	16	4	8	6.57	-0.43	0.19
	2	8	9	1	-3	6.67	-0.33	0.11
(3	9	1	4	2	7.11	0.11	0.01
;	9	7	16	0	0	7.43	0.43	0.19
1	7	6	4	1	-2	7.22	0.22	0.05

$$\begin{split} SS_X &= 46 \\ SP &= 5 \\ \beta_1 &= 5/46 = 0.11 \\ \bar{Y} &= 7 \\ \bar{X} &= 5 \\ \beta_0 &= 7 - (0.11 \times 5) = 6.46 \\ \hat{Y}_i &= 6.46 + (0.11 \times X_i) \\ SS_{\rm tot} &= 10 \end{split}$$

$$SS_{\rm res} = 10 - 0.54 = 9.46$$

 $df_1 = 1$
 $df_2 = 5 - 1 - 1 = 3$
 $MS_{\rm reg} = 0.54/1 = 0.54$
 $MS_{\rm res} = 9.46/3 = 3.15$
 $F = 0.54/3.15 = 0.17$
 $F_{\rm crit} = 34.12$
Fail to reject because $0.17 < 34.12$

Question #7

 $SS_{\text{reg}} = 0.54$

Test the model fit at an α of 0.05.

X_i	Y_i	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$	\hat{Y}_i	$(\hat{Y}_i - \bar{Y})$	$(\hat{Y}_i - \bar{Y})^2$
6	2	1	4	-2	4.15	0.15	0.02
$_4$	1	1	9	3	3.85	-0.15	0.02
8	3	9	1	-3	4.46	0.46	0.21
2	6	9	4	-6	3.54	-0.46	0.21
9	8	16	16	16	4.62	0.62	0.38
1	4	16	0	0	3.38	-0.62	0.38

$$\begin{split} SS_X &= 52 \\ SP &= 8 \\ \beta_1 &= 8/52 = 0.15 \\ \bar{Y} &= 4 \\ \bar{X} &= 5 \\ \beta_0 &= 4 - (0.15 \times 5) = 3.23 \\ \hat{Y}_i &= 3.23 + (0.15 \times X_i) \\ SS_{\text{tot}} &= 34 \\ SS_{\text{reg}} &= 1.23 \end{split}$$

$$SS_{\rm res} = 34 - 1.23 = 32.77$$
 $df_1 = 1$
 $df_2 = 6 - 1 - 1 = 4$
 $MS_{\rm reg} = 1.23/1 = 1.23$
 $MS_{\rm res} = 32.77/4 = 8.19$
 $F = 1.23/8.19 = 0.15$
 $F_{\rm crit} = 7.71$
Fail to reject because $0.15 < 7.71$

Question #8

Test the model fit at an α of 0.05.

X_i	Y_i	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$	\hat{Y}_i	$(\hat{Y}_i - \bar{Y})$	$(\hat{Y}_i - \bar{Y})^2$
10	6	25	4	10	5.72	1.72	2.97
7	2	4	4	-4	4.69	0.69	0.48
5	5	0	1	0	4.00	0.00	0.00
3	7	4	9	-6	3.31	-0.69	0.48
0	0	25	16	20	2.28	-1.72	2.97

$$\begin{split} SS_X &= 58 \\ SP &= 20 \\ \beta_1 &= 20/58 = 0.34 \\ \bar{Y} &= 4 \\ \bar{X} &= 5 \\ \beta_0 &= 4 - (0.34 \times 5) = 2.28 \\ \hat{Y}_i &= 2.28 + (0.34 \times X_i) \\ SS_{\rm tot} &= 34 \end{split}$$

$$\begin{split} SS_{\rm res} &= 34-6.9 = 27.1 \\ df_1 &= 1 \\ df_2 &= 5-1-1 = 3 \\ MS_{\rm reg} &= 6.9/1 = 6.9 \\ MS_{\rm res} &= 27.1/3 = 9.03 \\ F &= 6.9/9.03 = 0.76 \\ F_{\rm crit} &= 10.13 \\ \text{Fail to reject because } 0.76 < 10.13 \end{split}$$

Question #9

 $SS_{\text{reg}} = 6.9$

Test the model fit at an α of 0.05.

X_i	Y_i	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$	\hat{Y}_i	$(\hat{Y}_i - \bar{Y})$	$(\hat{Y}_i - \bar{Y})^2$
2	4	4	1	2	5.68	0.68	0.46
10	3	36	4	-12	2.96	-2.04	4.16
3	6	1	1	-1	5.34	0.34	0.12
1	7	9	4	-6	6.02	1.02	1.04

$$SS_X = 50$$

$$SP = -17$$

$$\beta_1 = -17/50 = -0.34$$

$$\bar{Y} = 5$$

$$\bar{X} = 4$$

$$\beta_0 = 5 - (-0.34 \times 4) = 6.36$$

$$\hat{Y}_i = 6.36 + (-0.34 \times X_i)$$

$$SS_{\text{tot}} = 10$$

$$SS_{\text{reg}} = 5.78$$

$$SS_{\rm res} = 10 - 5.78 = 4.22$$

 $df_1 = 1$
 $df_2 = 4 - 1 - 1 = 2$
 $MS_{\rm reg} = 5.78/1 = 5.78$
 $MS_{\rm res} = 4.22/2 = 2.11$
 $F = 5.78/2.11 = 2.74$
 $F_{\rm crit} = 18.51$
Fail to reject because $2.74 < 18.51$