Research 1: Failure Cascade Prediction in Power Grids

Motivation

Large Blackout due to Failure Cascade

Q: Can we **predict** it in early stage?

Contributions

- 1) Influence model to capture failure cascade
- 2) 3-step learning framework to learn the influence model
- 3) Evaluation on real systems over: failure size, final state, failure time, time cost, etc.
- 4) Critical component identification

Influence Model

Pair-wise influence: $A_{14} = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$

Modeling failure cascade:

[Parameters: $\{A, D, \vec{\varepsilon}\}$]

$\tilde{s}_{j}[t +$	$[1] = \sum_{i=1}^{N} \mathbf{D}_{ij} (\mathbf{A}_{ij}^{(11)} s_i[t] + \mathbf{A}_{ij}^{(21)} (1 - s_i[t])$	t]))
	$\hat{s}_j[t+1] = 1\{\tilde{s}_j[t+1] \ge \frac{\varepsilon_j}{\varepsilon_j}\}$	

Influence Weight: D_{12} , D_{42}

Learning Framework

A: Monte-Carlo

 $D: Min. MSE ||s[t] - \tilde{s}[t]||^2$

 $\overrightarrow{\boldsymbol{\mathcal{E}}}$: Nearest Neighbor

Advantage:

- Fully parallelizable
- A and D interpretable

Experiments

Metric	Result
Failure Size	<3% error
Final State	<9% error
Failure Time	<1.5 units
Time Cost	1/872 of flow cal.

Connection to Industrial Research:

- 1) Framework extended to data flow network & power-comm network
- 2) ML experience in time series prediction over large datasets