Introduction to quantum mechanics I

Tristan Villain – Pierre-François Cohadon – Qinhan Wang Séance de tutorat du 9 octobre 2024

TD de tutorat 3 : rotations et molécule triatomique

1 Rotations

On note les matrices de Pauli $\hat{\sigma}_x$, $\hat{\sigma}_y$, $\hat{\sigma}_z$.

- 1. Rappeler l'expression des matrices de Pauli. Rappeler les relations de commutation des matrices de Pauli. En déduire les relations de commutation des opérateurs de spin \hat{S}_x , \hat{S}_y , \hat{S}_z . En déduire si, pour un spin 1/2, on peut mesurer à la fois les composantes du spin selon x, y et z.
- 2. On rappelle que $\hat{\vec{S}} = \hat{S}_x \overrightarrow{e}_x + \hat{S}_y \overrightarrow{e}_y + \hat{S}_z \overrightarrow{e}_z$ dans la base des vecteurs propres de \hat{S}_z . Calculer $[\hat{S}^2, \hat{S}_z]$, avec $\hat{S}^2 = \hat{\vec{S}} \cdot \hat{\vec{S}}$. Peut-on mesurer à la fois \hat{S}^2 et \hat{S}_z ?

On note $\hat{U}(\alpha, j) = e^{-i\alpha\sigma_j/2}$ l'opérateur de rotation d'un état de spin 1/2 d'un angle α autour de l'axe j = x, y, z.

3. Montrer que $\hat{U}(\frac{\pi}{2},x)\hat{U}(\alpha,y)\hat{U}(-\frac{\pi}{2},x) = \hat{U}(\alpha,z)$ et que $\hat{U}(\frac{\pi}{2},z)\hat{U}(\alpha,x)\hat{U}(-\frac{\pi}{2},z) = \hat{U}(\alpha,y)$. Représenter ces rotations sur la sphère de Bloch.

2 Molécule triatomique linéaire

On considère les états d'un électron localisé sur un des trois atomes G, C, D d'une molécule triatomique linéaire. Les distances GC et CD sont égales et sont notées d. On note $|\psi_G\rangle$, $|\psi_C\rangle$ et $|\psi_D\rangle$ les états propres de l'observable \hat{B} , correspondants à l'électron localisé au voisinage des atomes G, C et D. On a donc :

$$\hat{B}|\psi_G\rangle = -d|\psi_G\rangle
\hat{B}|\psi_C\rangle = 0
\hat{B}|\psi_D\rangle = d|\psi_D\rangle$$

L'hamiltonien de ce système est représenté dans la base $\{|\psi_G\rangle, |\psi_C\rangle, |\psi_D\rangle\}$ par :

$$\left(\begin{array}{ccc}
E_0 & -a & 0 \\
-a & E_0 & -a \\
0 & -a & E_0
\end{array}\right)$$

1. Calculer les énergies et les états propres de \hat{H}

- 2. Dans l'état fondamental, quelles sont les probabilités d'avoir l'électron en G,C ou D?
- 3. On considère un électron dans l'état $|\psi_G\rangle$, et on mesure son énergie. Que peut-on trouver, et avec quelle probabilité? En déduire $\langle E \rangle$ et ΔE .

3 Violet cristallisé et vert malachite

Le principe actif du colorant 42555 ("violet cristallisé") est le cation organique monovalent $C[C_6H_4N(CH_3)_2]_3^+$. Le squelette de cet ion est constitué de trois branches identiques (figure 1), le déficit électronique responsable de la charge + pouvant être prélevé sur l'une quelconque de ces trois branches. On peut traiter l'état électronique de cet ion comme un système à trois états. L'hamiltonien \hat{H} n'est pas diagonal dans la base $\{|1\rangle, |2\rangle, |3\rangle\}$ (supposée orthonormée) en raison du passage par effet tunnel de l'une à l'autre de ces configurations classiques.

FIGURE 1 – Les trois configurations possibles d'une molécule de colorant (figure tirée de "Mécanique Quantique", par J.L. Basdevant et J. Dalibard)

- 1. On choisit l'origine des énergies telle que l'on ait $\hat{H}|1\rangle = \hat{H}|2\rangle = \hat{H}|3\rangle = 0$. On pose $\langle 1|\hat{H}|2\rangle = \langle 2|\hat{H}|3\rangle = \langle 3|\hat{H}|1\rangle = -A$, où A>0. Ecrire la matrice \hat{H} dans cette base.
- 2. On considère les états $|\phi_1\rangle = (|1\rangle + |2\rangle + |3\rangle)/\sqrt{3}$ et $|\phi_2\rangle = (|2\rangle |3\rangle)/\sqrt{2}$. Pour chaque état, donner $\langle E \rangle$ et ΔE . Interpréter.
- 3. Donner les énergies propres et une base propre. Cette base est-elle unique?
- 4. On donne $A \simeq 0.75$ eV. Pourquoi cet ion est-il de couleur violette?
- 5. On remplace le groupement $N(CH_3)_2$ de la branche supérieure par un hydrogène. On suppose que le seul effet de cette substitution est d'élever $\langle 1|\hat{H}|1\rangle$ d'une quantité $\Delta > 0$, en laissant les autres éléments de matrice de \hat{H} inchangés.
 - Montrer que A est toujours énergie propre. Que deviennent les autres niveaux d'énergie?
 - Que deviennent-ils dans les limites $\Delta \ll A$ et $\Delta \gg A$?
- 6. Cet ion modifié (colorant 42000 "vert malachite") absorbe la lumière à deux longueurs d'onde : 620 et 450 nm. Calculer Δ et commenter l'accord théorie-expérience.