Simulações com Agentes: Propagação de Doenças

Fernando dos Santos¹²

¹Univ. Federal do Rio Grande do Sul (UFRGS) ²Univ. do Estado de Santa Catarina (UDESC)

Minicurso Prático

Propagação de Doenças

Como uma doença se propaga em uma população?

Gripe Suina

Propagação de Doenças

Existem modelos analíticos para a propagação de doenças. Ex: $\frac{\partial S}{\partial t} = v - \beta S \frac{1}{N} - \mu S$ [Kermack and McKendrick, 1932]

Q. Por que então usar simulação com agentes?

R. Por permitir considerar interações espaciais

 Eisinger, D. and Thulke, H.-H. (2008), Spatial pattern formation facilitates eradication of infectious diseases. Journal of Applied Ecology.

Propagação de Doenças: Modelo Epidemiológico (1)

Compartimentaliza os indivíduos

Ideia: "estados" que um indivíduo pode assumir

Modelo clássico: SIR (Suscetível, Infectado, Recuperado)

- Todo indivíuo está Suscetível, por padrão
- Ao ser contaminado, passa a estar Infectado
- Ao se recuperar, passa a Recuperado e fica Imune

Propagação de Doenças: Modelo Epidemiológico (2) Dinâmica do Modelo SIR

Transmissão da doença

- Especifica como acontece a contaminação entre indivíduos
- Probabilidade de transmissão β

Ao haver interação entre um infectado e um susceptível:

- Indivíduo **susceptível** torna-se **infectado** de acordo com β
- Interação:
 - Contato: indivíduos situados na mesma posição
 - Proximidade: indivíduos situados a certa distância

Propagação de Doenças: Modelo Epidemiológico (3) Dinâmica do Modelo SIR

Duração (ou progressão) da doença

- Especifica quando um indivíduo infectado se recupera
- ullet Duração fixa au (ex., se recupera após 10 dias)
- Probabilidade de recuperação γ (ex., 25% de chance de cura)

A cada passo da simulação:

- Indivíduo infectado pode tornar-se recuperado
 - De acordo com au ou au

Propagação de Doenças: Modelo Epidemiológico (4) Dinâmica do Modelo SIR

Mortalidade

- Especifica se/quando a doença pode causar fatalidades
- Taxa de mortalidade μ
- Quando a mortalidade pode ocorrer:
 - A todo momento em que estiver infectado
 - Após transcorrido o período de infecção

A cada passo da simulação:

- Indivíduo infectado pode morrer
 - De acordo com μ e a especificação de **quando** é aplicado

Propagação de Doenças: Modelo Epidemiológico (5) Dinâmica do Modelo SIR

Introdução de indivíduos infectados: para iniciar propagação

- Quantos
 - Quantidade de indivíduos (ex.: 10)
- Quais
 - Arbitrários (quaisquer) ou Elegíveis (condição)
- Quando
 - Aperiódica: uma única vez (ex.: no setup da simulação)
 - Periódica: frequentemente (ex.: a cada 25 timesteps)

Propagação de Doenças: Modelo Epidemiológico (6)

SEIR:

Propagação de Doenças: Simulação com Agentes

Objetivo:

Desenvolver uma simulação com agentes para explorar o fenômeno da propagação de uma doença.

Verificar a propagação sob diferentes circunstâncias:

- Probabilidades de transmissão
- Duração
- Mortalidade
- Introdução
- Distância de movimentação dos agentes

Propagação de Doenças: Especificação Geral da Simulação

Ambiente

• Grid, de 50x50 unidades espaciais

Agentes

- Estão sujeitos a uma doença: Gripe
 - Adota modelo compartimental SIR
 - Cada agente deve gerenciar seu estado: (S,I,R)
- Se movem pelo ambiente.

Propagação de Doenças com NetLogo

Propagação de Doenças com NetLogo

Configurações do ambiente:

- Grid, 50x50 patches
- Origin: corner, bottom left
- Sem world wrap

Propagação de Doenças com NetLogo: o Agente

Especificação detalhada do agente:

- Se move pelo ambiente
 - para qualquer patch distante no máximo 5
- Deve gerenciar seu compartimento atual (S, I, R)
- Pode ser infectado e então se recuperar
 - Probabilidades de transmissão e duração são detalhadas mais a frente

Quantos atributos do agente são derivados a partir disto?

Propagação de Doenças com NetLogo: o Agente

Especificação detalhada do agente:

- Se move pelo ambiente
 - para qualquer *patch* distante no máximo 5
- Deve gerenciar seu compartimento atual (S, I, R)
- Pode ser infectado e então se recuperar
 - Probabilidades de transmissão e duração são detalhadas mais a frente

Quantos atributos do agente são derivados a partir disto?

- compartimentoGripe
 - Irá armazenar:
 - "S"
 - "["
 - "R"
- 🖾 Implementar

Propagação de Doenças com NetLogo: o Agente

Especificação detalhada do agente:

- Se move pelo ambiente
 - para qualquer patch distante no máximo 5
- Deve gerenciar seu compartimento atual (S, I, R)
- Pode ser infectado e então se recuperar
 - Probabilidades de transmissão e duração são detalhadas mais a frente

Quantos atributos do agente são derivados a partir disto?

- compartimentoGripe
 - Irá armazenar:
 - "S"
 - "["
 - "R"


```
extensions [gis nw osmnlogo]
breed [Humanos Humano]
Humanos-own [
compartimentoGripe
]
```

Propagação de Doenças com NetLogo: o Setup Criação dos Agentes

Criar 200 agentes Humanos em posições aleatórias

• Todos os agentes iniciam com compartimento "S"

🖾 Implementar o procedimento setup

Propagação de Doenças com NetLogo: o Setup Criação dos Agentes

Criar 200 agentes Humanos em posições aleatórias

Todos os agentes iniciam com compartimento "S"

🖾 Implementar o procedimento setup

```
to setup
clear-all
reset-ticks
ask n-of 200 patches [
sprout-Humanos 1 [
set compartimentoGripe "S"
]
end
```

Propagação de Doenças com NetLogo: os Comportamentos

- 🖊 Implementar o procedimento moverHumano
 - Move para um patch distante no máximo 5
 - Vários agentes podem ocupar o mesmo patch
- Implementar o procedimento go
- 🗷 Crie botões para ativar procedimentos setup e go

Propagação de Doenças com NetLogo: os Comportamentos

Solução: Movimentação do agente e Procedimento go

Movimentação:

to moverHumano ; identificar os patches com distância menor que 5 let patchesDistancia patches in-radius 5.5; para diagonal ; escolher aleatoriamente um destes patches e mover move-to one-of patchesDistancia end

Procedimento go:

```
to go
tick
ask Humanos [
moverHumano
]
end
```

Botões setup e go

Propagação de Doenças com NetLogo: o Setup c/ Arquivo

Uso de arquivo GIS¹ para criar agentes

- Dados de censo demográfico (população por patch)
 - Arquivo: population-300.asc

GIS ASCII FILE

CONTEÚDO

VISUALIZAÇÃO

¹Geographic Information System

Propagação de Doenças com NetLogo: o Setup c/ Arquivo Criar agentes usando dados GIS

1) Criar atributo nos patches para armazenar dados do arquivo GIS

```
patches-own [
populacaolnicial
]
```

2) Modificar o setup para obter dados do GIS e criar os agentes

```
to setup
  clear-all
  reset-ticks
  ; ler o arquivo para o atributo dos patches
  let dadosPopulação gis:load-dataset "lib/population-300.asc"
  gis:set-world-envelope-ds gis:envelope-of dadosPopulacao
  gis:apply-raster dadosPopulacao populacaoInicial
  ; criar os agentes conforme população inicial
  ask patches with [populacaolnicial > 0][
    sprout-Humanos populacaolnicial [
      set compartimentoGripe "S"
```

Propagação de Doenças com NetLogo: Compartimentos Dinâmica do Modelo Compartimental

Procedure para o comportamento de atualizar o compartimento

```
to atualizarCompartimentoHumano
; se infectado
; transmitir para suscetíveis que estão no mesmo patch
; recuperar após duração da doença
end
```

Ativar a atualização do modelo compartimental na procedure go

```
to go
tick;
ask Humanos [
moverHumano
atualizarCompartimentoHumano
]
end
```

Propagação de Doenças com NetLogo: Compartimentos Transmissão e Duração da Doença

Implementar o atualizarCompartimentoHumano:

- Probabilidade de transmissão β : 0.3
- Transmissão ocorre por contato (agentes no mesmo patch)
- Duração fixa τ : 10 timesteps
 - Permanece infectado por 10 timesteps, depois recuperado
 - Necessário atributo no agente (contador timesteps infectado)
 - duracaoInfectado

Propagação de Doenças com NetLogo: Compartimentos

Solução: Transmissão e Duração da Doença

Transmissão e Duração

```
to atualizarCompartimentoHumano
  : se infectado
  if compartimentoGripe = "I" [
    ; transmitir para suscetiveis no mesmo patch
    ask other Humanos here with [compartimentoGripe = "S"][
      ; contaminar de acordo com prob. de transmissão
      if random-float 1 < 0.3
         set compartimentoGripe "|"
         set duracaoInfectado 0
    ; recuperar apos duracao da doenca
    if-else duracaoInfectado = 20
      set compartimentoGripe "R"
      set duracaoInfectado duracaoInfectado + 1
  ; fim do if compartimentoGripe = "I"
end
```

Propagação de Doenças com NetLogo: Compartimentos Introdução de Infectados

Implemente a introdução de indivíduos infectados

- Quantos: 10
- Quais: arbitrários (agentes aleatórios)
- Quando: aperiódica (no setup da simulação)

Propagação de Doenças com NetLogo: Compartimentos Solução: Introdução de Infectados

Implemente a introdução de indivíduos infectados

- Quantos: 10
- Quais: arbitrários (agentes aleatórios)
- Quando: aperiódica (no setup da simulação)

```
to setup
; omitida a criação dos agentes...
; introduzir agentes infectados
ask n-of 10 Humanos [
set compartimentoGripe "|"
]
end
```

Propagação de Doenças com NetLogo: Visualização

Usar biblioteca externa para colorir os agentes: color-agent-by-compartment-netlogo.nls

Aviso: o método xxxInit requer parâmetros. Verifique.

Propagação de Doenças com NetLogo: Visualização

- Usar biblioteca externa para colorir os agentes: color-agent-by-compartment-netlogo.nls
 - Aviso: o método xxxInit requer parâmetros. Verifique.

```
to setup
  ; inicializar biblioteca 'color-agent-by-compartment-netlogo.nls'
  colorAgentByCompartmentInit Humanos ["compartimentoGripe"] [
end
to go
  tick
  ask Humanos [
    moverHumano
    atualizarCompartimentoHumano
    ; ativar a biblioteca 'color-agent-by-compartment-netlogo.nls'
    colorAgentByCompartment
end
```

Propagação de Doenças com NetLogo: as Saídas

- Criar Plot com quantidades de agentes por compartimento
 - suscetiveis: agentes com compartimentoGripe = "S"
 - infectados: agentes com compartimentoGripe = "I"
 - recuperados: agentes com compartimentoGripe = "R"

Propagação de Doenças com NetLogo: as Saídas

- Criar Plot com quantidades de agentes por compartimento
 - suscetiveis: agentes com compartimentoGripe = "S"
 - infectados: agentes com compartimentoGripe = "I"
 - recuperados: agentes com compartimentoGripe = "R"

Propagação de Doenças com NetLogo

Explorando a Simulação

- 🖾 Executar a simulação e observar as saídas
 - O que acontece com as quantidades de S, I, e R?
- 🖾 O que acontece ao modificar a transmissão e duração?

Prob. Transmissão	Duração
0.75	10
1.0	10
0.3	20
0.3	60

Discussão:

- Relação contágio vs. duração?
- Tamanho e movimentação da população afetam propagação?
- Qual seria o efeito do fim da imunidade?
- Qual seria o efeito da mortalidade?

Propagação de Doenças com MDD4ABMS

Propagação de Doenças com MDD4ABMS

Modelar a mesma simulação de propagação de doenças Ambiente

• Grid, de 50x50

Agentes

- Estão sujeitos a uma doença: Gripe
 - Adota modelo compartimental SIR
 - Cada agente deve gerenciar seu estado: (S,I,R)
- Se movem pelo ambiente.

Propagação de Doenças com MDD4ABMS: Overview (1)

Título e descrição do modelo

- Não usar acentuação/caracteres especiais
 - Problema de *encoding* neste ambiente do experimento

Propagação de Doenças com MDD4ABMS: o Ambiente

Spatial Abstraction:

- Grid, 50x50
- Occupation: Many entities

Gerar código e executar

Propagação de Doenças com MDD4ABMS: Overview (2)

O concern Gripe

Propagação de Doenças com MDD4ABMS: o Agente

O agente Humano

Propagação de Doenças com MDD4ABMS: Criação do Agente

Estratégia de criação: GIS File

• Quantidade e localização conforme GIS

Propagação de Doenças com MDD4ABMS: Criação do Agente

Agente Humano com estratégia GIS File

• Arquivo: population-300.asc

Propagação de Doenças com MDD4ABMS: a Movimentação

Mobilidade: Random Walk

• Limited. Upper = 5 (é a distância máxima nesta simulação)

Propagação de Doenças com MDD4ABMS: Doenças

Habilidades (comportamentos) para representar doenças

- Disease Model: incorpora modelo compartimental ao agente
- Subject Agent To: sujeita agente à doença existente

Abas para especificar detalhes do modelo compartimental:

• Transmissão, Progressão (duração), Mortalidade e Introdução

Propagação de Doenças com MDD4ABMS: Doenças Transmissão

Cada *Transmission* especifica uma interação de contaminação

- Susceptible Agent: qual agente será contaminado
- Infectious Element: agente ou entidade transmissor
 - Compartment: compartimento infectante
- Transmission Type: por contato ou proximidade
- Transm. Probability: a probabilidade de transmissão (entre 0.0 e 1.0)
- Contamination Condition: quando há restrição na contaminação

Propagação de Doenças com MDD4ABMS: Doenças Duração

Cada *Progression* especifica a duração de um compartimento

- Subject Agent: agente sujeito a esta duração
- Subject Compart.: compartimento sujeito a esta duração
- Next Compart.: o próximo compartimento após terminar a duração
- Duration Type: o tipo de duração
 - Deterministic: quando a duração é fixa (ex.: 10 timesteps)
 - **Probabilistic**: probabilidade de recuperação
 - Conditional: condição (ex.: recebeu tratamento)
 - Custom: combinação das anteriores

Propagação de Doenças com MDD4ABMS: Doenças Introdução

Cada Introduction especifica quantos, quais, e quando

- Subject Agent: agente sujeito a esta introdução
- Periodicity: quando ocorrerá introdução
- Quantity: quantos agentes serão infectados
- Selection: quais agentes serão infectados

Uma introdução é criada automáticamente para cada agente

Edite-a ou remova-a

Propagação de Doenças com MDD4ABMS: Doenças

🖾 Gerar código e executar

🖾 Monitoriar um agente: verificar contaminação e recuperação

Propagação de Doenças com MDD4ABMS: Visualização

Usar biblioteca externa para colorir os agentes:
color-agent-by-compartment-mdd4abms.nls

Propagação de Doenças com MDD4ABMS: as Saídas

Especificar um Output Dataset com os seguintes Outputs

Output name	Entity	Criterion	Periodicity	Туре
Suscetiveis	Humano	Eligible: compartment_Gripe = "S"	Periodic (1)	Aggregation: • count
Infectados	Humano	Eligible: compartment_Gripe = "l"	Periodic (1)	Aggregation: • count
Recuperados	Humano	Eligible: compartment _ Gripe = "R"	Periodic (1)	Aggregation: • count

Propagação de Doenças com MDD4ABMS

Explorando a Simulação

- 🖾 Executar a simulação e observar as saídas
 - O que acontece com as quantidades de S, I, e R?
- 🖾 O que acontece ao modificar a transmissão e duração?

Prob. Transmissão	Duração
0.75	10
1.0	10
0.3	20
0.3	60

Propagação de Doenças: Outros Elementos

Compartilhamento de Habilidades no MDD4ABMS

Algumas habilidades podem ser compartilhadas entre agentes

Mobility, Surviving, Disease Model

Objetivo: permitir **reuso** e aumentar eficiência/expressividade Especificar um agente **Pet**

Criação: 100 agentes em posições aleatórias

Habilidades Compartilhadas no MDD4ABMS: Mobilidade

Especificar compartilhamento via Endue w/ Mobility

🖾 Gerar código e executar

Habilidades Compartilhadas no MDD4ABMS: Doença

Especificar compartilhamento via Subject Agent To

Habilidades Compartilhadas no MDD4ABMS: Doença

Necessário especificar como a doença afeta o agente Pet

- Transmission
 - Infectious element: Humano
 - Type: proximity
 - distância: 3
 - Probability: **0.5**
- Progression (duração)
 - Compartment: I
 - deterministic (20)
 - Compartment: **R**
 - deterministic (52)

- Introduction: sem introduction
 - Pets se infectam apenas por transmissão
- Mortality
 - Compartment: I
 - Death Rate: 0.35
 - Type (quando): when leaving compartiment
 - Especifica que a mortalidade será aplicada após transcorrer a duração do compartimento

- 🖾 Gerar código e executar
- Criar outro Output Dataset com Outputs para Pets

NetLogo: Mobilidade e Doenças em Vários Agentes

Não é possível compartilhar facilmente os comportamentos Solução: criar procedimentos para cada agente

```
to moverHumano
; mover o Humano
end
to atualizarCompartimentoHumano
; atualização da doença no Humano
end
```

```
to moverPet
; mover o Pet
end

to atualizarCompartimentoPet
; atualização da doença no Humano
end
```

```
to go
tick
ask Humanos [
moverHumano
atualizarCompartimentoHumano
]
ask Pets [
moverPet
atualizarCompartimentoPet
]
end
```

NetLogo: Mortalidade no Modelo Compartimental

Como implementar a mortalidade?


```
to atualizarCompartimentoHumano
; se infectado ...
; modificar o condicional da recuperação apos duracao da doenca
if-else duracaoInfectado = 20 [
    if-else random-float 1 < taxaMortalidade [
        die
        | |
        set compartimentoGripe "R"
        | |
        | |
        set duracaoInfectado duracaoInfectado + 1
        | |
        end
```

Propagação de Doenças com MDD4ABMS: Sobrevivência dos Pets (1)

Pets envelhecem e morrem após 520 timesteps (equiv. 10 anos)

Especificar habilidade Surviving / Age

- Gerencia a idade do agente
- Morte por envelhecimento

Propagação de Doenças com MDD4ABMS: Sobrevivência dos Pets (2)

Pets envelhecem e morrem após 520 timesteps (equiv. 10 anos) Especificação do recurso **Age**

- Life Cond.: < 520
- Initial Value: random(520)

Propagação de Doenças com NetLogo: Sobrevivência dos Pets (1)

Pets envelhecem e morrem após 520 timesteps (equiv. 10 anos)

É preciso implementar atributos e procedimentos para que o agente envelheça e morra

```
Pets-own[
; outros atributos omitidos
age; <— idade
]

to setup
ask patches ... [
sprout-Pets <quantidade> [
; inicialização da idade
set age random 520
]
]
end
```

```
to go
  ask Pets [
    envelheciment oMortePet
end
to envelhecimentoMortePet
  if-else age < 520 [
    set age age + 1
    die
end
```

Referências Bibliográficas

Kermack, W. O. and McKendrick, A. G. (1932).

Contributions to the mathematical theory of epidemics. ii.—the problem of endemicity.

Proc. R. Soc. Lond. A, 138(834):55-83.