Model Evaluation Metrics: Scoring (Regression) Methods

Nagiza F. Samatova, <u>samatova@csc.ncsu.edu</u>

Professor, Department of Computer Science North Carolina State University

Senior Scientist, Computer Science & Mathematics Division Oak Ridge National Laboratory

Classification vs. Scoring Methods

Things to Watch for (Packages: car and gylma)

- Independence: The observations (rows) must be independent of each other
- Linearity: Relationship between the Response (Y) and the predictors (X's) must be linear in terms of the model parameters (β 's):
 - Use **crPlots()** in the car pkg for systematic departures from linear model
 - Think how to transform X's to achieve this
- **Normality**: The Response (Y) in a linear regression model must be from the normal (Gaussian distribution):
 - Test for normality using qqPlot() in the car pkg
 - Check gvlma package for global test for linear model assumptions
- **Error/Noise**: The Residuals (predicted actual) must come from the normal distribution $\mathcal{N}(0,1)$ and should not be autocorrelated (**durbinWatsonTest()**)
- Homoscedasticity: The errors (residuals) must be structured:
 - The **car** package provides **ncvTest()** to the hypothesis of constant error variance against the alternative that the error variance changes with the level of fitted values: significant result suggest heteroscedasticity
- Multicollinearity: Test for absence of multicollinearity (vif() in the car pkg)
- Sensitivity to outliers: Sensitivity to outliers may affect model performance:
 - Use outlierTest() in the car pkg to identify high-leverage observations and influential observations
- Model complexity: Feature selection (forward, backward, stepwise regression)
 and significant coefficient may guide towards models with reduced complexity

Linear vs. Nonlinear Model

Response = Linear Combination of Explanatory Variables

Function of the Response = Linear Combination of Explanatory Variables

linear model

in terms of $\beta's$, unknown parameters **glm()**

$$\mu_{Y} = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + ... + \beta_{q}X_{q}$$

$$\mu_{Y} = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{1}^{2} + \beta_{3}X_{1}^{3}$$

$$g(\mu_{Y}) = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{1}X_{2} \text{ coupled predictors polynomial predictors}$$

$$g(\mu_{Y}) = \beta_{0} + \beta_{1}X_{1} + \beta_{2}\exp^{X_{1}} \text{ transformed predictors}$$

$$g(\mu_{Y}) = \beta_{0} + \beta_{1}\log X_{1} + \beta_{2}\sin(X_{2})$$

 $\underline{\mathbf{Known}}: X_1, X_2, \dots,$

 $\underline{\text{Unknown}}$: β_0, β_1, \dots

The equation is linear in the parameters $(\beta_0, \beta_1, ..., \beta_q)$

non-linear model

in terms of $\beta's$, unknown parameters (**nls()**)

$$\mu_{Y} = \beta_{0} + \beta_{1} exp^{\frac{X}{\beta_{2}}}$$

Regression: Linear Relationship between Predictors and Response

Hats: Estimates

$$\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_1} * predictor + error$$

line in 2-dimensions

Q1: Do both figures depict linear regression model fitting?

Q2: How many predictors does model (B) depend on?

Q3: Is relationship between the response and the predictor in (B) linear? Why or why not?

Q4: What type of transformation one would apply to the predictor in (B) to get linear relation between the transformed feature and the predictor?

Q5: Does the regression model/method discover itself the type of transformation(s) needed for the predictors to get the linear fitting?

Residuals for Scoring Models

Residual = Difference between
Actual Value of Response Variable and
Predicted Value by the Scoring Model

Performance Measure = Function (Residuals)

Performance Measures: Scoring Methods

Term	Definition	NOTES
Root Mean Square Error (RMSE)	The square root of the average square of the difference between model prediction and actual value of the response.	 The SAME UNITS as response values, y Ex: y is in \$ -> RMSE is in \$ MINIMIZE A measure of the width of data cloud around the perfect prediction line
R-squared (R ²) or Multiple R- squared	The fraction of the y variation explained by the model. Defined as 1.0 minus how much unexplained variance your model leaves (relative to null model or the average as the prediction)	 BEST: R²=1 WORST: R²~0 or negative NO UNITS (dimensionless) The same as Multiple R-squared reported in summary(model)
Correlation	Helpful if variables are potentially useful in a model (Pearson: linear relationship; Spearman: ordered relationship)	 DO NOT USE to measure model quality Ignores shifts & scaling factors

Heteroscedasticity: Systematic Errors

d <- data.frame(
$$y=(1:10) \land 2$$
, $x=1:10$)
lmodel <- lm ($y\sim x$, data=d)

Ex. 1 in modelEvaluation.Part2.R

Fitting **linear model into non-linear data** results in over-predicting for some
ranges of x and under-predicting for
other ranges of x: **heteroscedastic**, or
structured errors

Ex. 2 in modelEvaluation.Part2.R

But performance metrics are looking good despite heteroscedasticity!

Errors must be uncorrelated with the response, i.e. homoscedastic, or unstructured.

Correction for Model Complexity: Adjusted R-squared

R-squared is HIGHER for models with MORE explanatory variables added to the model!

$$Adjusted - R^2 = R^2 - (1 - R^2) \frac{m}{n - m - 1}$$

m: the total number of regressors

n: the sample size

The adjusted R^2 can be negative, and its value will always be less than or equal to that of R^2 .

Performance: Scoring Methods Revisited

Term	Definition	NOTES
Degrees of freedom (df)	The number of data samples (rows) minus the number of coefficients fit	 MAXIMIZE df > 4 * m, m: # of regressors
Residual Standard Error (RSE)	The sum of the square of residuals divided by the degrees of freedom.	 RMSE adjusted to the # of rows to be degrees of freedom Attempts to adjust for model complexity
Adjusted R-squared (Adjusted R ²)	Multiple R^2 penalized by the ratio of the degrees of freedom to the number of training samples	 Attempts to correct the fact that more complex models tend to look better on training data due to overfitting
F-statistic	Measure whether linear regression model predicts outcome better than the constant model (the mean of y)	 Checks if the variance of the residuals from constant model and from linear model are statistically significant Want p-value < 0.05

The F statistic is testing the hypothesis that all of the slopes $(\widehat{\beta}_i)$ are equal to 0.

Ex. 3: Correction for Model Complexity

```
Q1: Multiple R-squared: How much
72 states <- as.data.frame(
     state.x77[,c("Murder", "Population",
                                                      (%) unexplained variance the model
73
                 "Illiteracy", "Income", "Frost")])
74
                                                      leaves relative to the null/average model?
> summary (murderModel)
                                                                   Q2: Which predictors are
call:
                                                                   statistically significant?
lm(formula = Murder ~ Population + Illiteracy + Income + Frost,
    data = dtrain)
                                        Q3: Impact: Holding all the other predictors constant,
                                        how much the increase in 1% of Illiteracy contributes to
Residuals:
                                    Max the increase/decrease in the Murder rate (%-wise)? Is it
             10 Median
    Min
                             3Q
                                 3.6822 additive or multiplicative contribution? Why?
-4.6803 -1.9564 0.8795
                         2.0245
Coefficients:
                                                             Q4: DF: How many degrees of
              Estimate Std. Error t value Pr(>|t|)
                                                             freedom does the model have?
(Intercept) -0.5562389
                        5.3083560
                                   -0.105
                                           0.91759
Population
             0.0003505
                        0.0001413
                                    2.481
                                           0.02209 *
                                                       Q5: Model complexity: How adjusted
Illiteracy
             5.1626172
                        1.4240915
                                    3.625
                                           0.00169 **
                        0.0008357
                                   -0.130
            -0.0001088
                                           0.89774
Income
                                                       R-squared different from RSE or
             0.0129793
                        0.0168122
                                    0.772
                                           0.44913
Frost
                                                       Multiple R-squared?
                  '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
Residual standard error: 2.619 on 20 degrees of freedom
                                                            Q6: Baseline: What does F-
Multiple R-squared: 0.6088, Adjusted R-squared: 0.5305
F-statistic: 7.78 on 4 and 20 DF, p-value: 0.0005955
                                                            statistic tell you?
```

Ex. 4: When vs. Where **Scoring Model Over-/Under-predicts**

12

prediction

Murder = prediction average relation between prediction and actual

Q1: On average, are the predictions correct? *Q2:* Is smoothing line along the line of perfect fit?

prediction

Ex. 4: When vs. Where Scoring Model Over-/Under-predicts

Q1: When the model is over- or under- predicting based on the model's output? Q2: Where the model is over- or under- predicting based on the actual outcome?

Training vs. Test Performance

```
77 dtrain <- states[1:25,]
78 dtest <- states[26:50,]
```

```
> rmse(dtrain$Murder,dtrain$prediction)
[1] 2.342566
> rmse(dtest$Murder,dtest$prediction)
[1] 2.71301
> rsq(dtrain$Murder,dtrain$prediction)
[1] 0.6087654
> rsq(dtest$Murder,dtest$prediction)
[1] 0.35418
```

Q1: What is the difference between the RMSE and R-squared metrics for training and test data?

Q2: How much (%) predictor variables account for the variance in murder rates for the TEST data? How does it compare with the TRAINING data?

Q3: Why such a difference? What is wrong with how the training and test data are constructed?

Reduced Model w/ Significant Predictors

```
> summary(murderModelReduced)
call:
lm(formula = Murder ~ Population + Illiteracy, data = dtrain)
                                               Q: How performance measures for the
Residuals:
                                               reduced model change compared to the
   Min
            1Q Median
                             3Q
                                    Max
-4.6108 -2.1009 0.7153 1.6668 3.4725
                                               original model? Does it make sense to
                                               use reduced model? Why?
coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.3811538 1.3005460 1.062 0.2998
Population 0.0002965 0.0001183 2.507 0.0201 *
Illiteracy 4.3687909 0.8129197 5.374 2.14e-05 ***
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 2.535 on 22 degrees of freedom
Multiple R-squared: 0.597, Adjusted R-squared: 0.5603
F-statistic: 16.29 on 2 and 22 DF, p-value: 4.559e-05
          > dtrain$prediction <- predict(murderModelReduced,newdata=dtrain)</p>
          > dtest$prediction <- predict(murderModelReduced,newdata=dtest)</pre>
          > rsq(dtrain$Murder,dtrain$prediction)
          [1] 0.5969553
          > rsq(dtest$Murder,dtest$prediction)
          [1] 0.431016
```

Ex. 5: Inflated Correlation / R-squared

Perfect prediction of a few OUTLIERS produces INFLATED Correlation/R-squared!

```
> y <- c(1,2,3,4,5,9,10)
> ypred <- c(0.5, 0.5, 0.5, 0.5, 0.5, 9, 10)
> cor(y,ypred)
[1] 0.9264604
```

Multicollinearity

Example:

Predictors = (Date_of_birth, Age) Response = Grip_strength When you regress grip strength on Predictors, F-test is significant but coefficients are not, i.e. no evidence that either are related to response.

Reasons for such misleading results:

- Highly correlated predictors influence the assessment of how an individual predictor impacts the response, holding all the other predictors constant:
 - e.g. relationship between grip strength and age, holding DOB constant

Side effects of multicollinearity:

- The problem of **multicollinearity** leads to large confidence intervals for the model parameters and makes interpretation of individual coefficients difficult
- It can also inflate the performance of the model

Ex. 6: Inflation due to Multi-collinearity

Multi-collinearity can inflate performance metrics!

```
> fit <- lm(mpg ~ hp + wt, data=mtcars)</pre>
> mpgpred <- predict(fit, newdata=mtcars)</pre>
                                                  191 data(mtcars)
> rmse(mtcars$mpg, mpgpred)
[1] 2.468854
> rsq(mtcars$mpg, mpgpred)
Γ17 0.8267855
                               > fit <- lm(mpg ~ hp + wt + hp:wt, data=mtcars)</pre>
> vifstats <- vif (fit)</pre>
                               > mpgpred <- predict(fit, newdata=mtcars)</pre>
> sqrt(vifstats) > 2.0
                               > rmse(mtcars$mpg, mpgpred)
   hp
       wt
                               [1] 2.013715
FALSE FALSE
                               > rsq(mtcars$mpg, mpgpred)
                               [1] 0.8847637
                               > vifstats <- vif (fit)</pre>
                               > sqrt(vifstats) > 2.0
                                        wt hp:wt
                                  hp
                                TRUE TRUE TRUE
```

Detect if multicollinearity is present in the data:

- Test Variance Inflation Factor (vif) statistics
- If sqrt() if vif results > 2.0, then multicollinearity is present in the data

Outliers: High-leverage and Influential

A data point can also be unusual if its x-value is far from the mean of the x-values. Such points are said to have high *leverage*.

What do you do about outliers?

This outlier is *influential*—it changes the regression line if you omit it.

Things to Watch for (Packages: car and gylma)

- Independence: The observations (rows) must be independent of each other
- Linearity: Relationship between the Response (Y) and the predictors (X's) must be linear in terms of the model parameters (β 's):
 - Use **crPlots()** in the car pkg for systematic departures from linear model
 - Think how to transform X's to achieve this
- **Normality**: The Response (Y) in a linear regression model must be from the normal (Gaussian distribution):
 - Test for normality using qqPlot() in the car pkg
 - Check gvlma package for global test for linear model assumptions
- **Error/Noise**: The Residuals (predicted actual) must come from the normal distribution $\mathcal{N}(0,1)$ and should not be autocorrelated (**durbinWatsonTest()**)
- Homoscedasticity: The errors (residuals) must be structured:
 - The **car** package provides **ncvTest()** to the hypothesis of constant error variance against the alternative that the error variance changes with the level of fitted values: significant result suggest heteroscedasticity
- Multicollinearity: Test for absence of multicollinearity (vif() in the car pkg)
- Sensitivity to outliers: Sensitivity to outliers may affect model performance:
 - Use outlierTest() in the car pkg to identify high-leverage observations and influential observations
- Model complexity: Feature selection (forward, backward, stepwise regression)
 and significant coefficient may guide towards models with reduced complexity