Problem Statement

This dataset contains around 770 samples of data containing information about people's health parameters, e.g. Glucose level, Blood-Pressure, Age, BMI index, Skin thickness, no of pregnancies etc.. Our aim is to build a model that accurately classifies individuals with diabetes based on the given health parameters.

Reading the data and checking statistical parameters.

In [3]: import numpy as np
import pandas as pd

In [4]: df=pd.read_csv('/content/diabetes.csv')
df

Out[4]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabe
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows \times 9 columns

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

 ${\tt dtypes:} \ {\tt float64(2),\ int64(7)}$

memory usage: 54.1 KB

The given dataset does not contain any null values.

In [6]: # Checking statistical measures[Average, Standard Deviation, Quartiles] of eac
df.describe()

Out[6]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	
	count	768.000000	768.000000	768.000000	768.000000	768.000000	76
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	3
	std	3.369578	31.972618	19.355807	15.952218	115.244002	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	2
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	3
	75 %	6.000000	140.250000	80.000000	32.000000	127.250000	3
	max	17.000000	199.000000	122.000000	99.000000	846.000000	6

Data visualization

- 1. Plotting Histograms of each numerical features wrt the target variable, i.e. 'Outcome'.
- 2. Plotting Boxplot for observing outliers in numerical variables.
- 3. Generating a pair plot to investigate how features influence each other.
- 4. Finally a Correlation table to numerically visualize it.

```
In [7]: import matplotlib.pyplot as plt
import seaborn as sns
import plotly as pt
```

1. Histogram

```
In [8]: fig,axes=plt.subplots(3,3,figsize=(18,20))
for i,ax in enumerate(axes.flatten()):
    if i>=len(df.columns)-1:
        break
    sns.histplot(data=df,x=df[df.columns[i]],hue=df.Outcome,bins=70,ax=ax,kc
    ax.set(xlabel=df.columns[i])
    ax.set_title(f'Histogram of {df.columns[i]} wrt Outcome')
    ax.grid(True)
```


2. Boxplot

```
In [9]: fig,axes=plt.subplots(3,3,figsize=(18,20))
for i,ax in enumerate(axes.flatten()):
    if i>=len(df.columns)-1:
        break
```

```
sns.boxplot(data=df,x=df[df.columns[i]], ax=ax,)
ax.set_title(f'Box Plot of {df.columns[i]}',color='red',fontsize=13,)
ax.grid(True)
```


In [10]: df.columns

3. PairPlot

In [11]: sns.pairplot(df.loc[:,['Glucose','BloodPressure','SkinThickness','Insulin','

Out[11]: <seaborn.axisgrid.PairGrid at 0x7eb163bc7510>

4. Correlation Table

In [12]: Correlation=df.loc[:,['Glucose','BloodPressure','SkinThickness','Insulin','E
 Cm=sns.light_palette('Green',as_cmap=True)
 Correlation.style.background_gradient(cmap=Cm)

Out[12]:		Glucose	BloodPressure	SkinThickness	Insulin
	Glucose	1.000000	0.152590	0.057328	0.331357
	BloodPressure	0.152590	1.000000	0.207371	0.088933
	SkinThickness	0.057328	0.207371	1.000000	0.436783
	Insulin	0.331357	0.088933	0.436783	1.000000
	ВМІ	0.221071	0.281805	0.392573	0.197859
	DiabetesPedigreeFunction	0.137337	0.041265	0.183928	0.185071
	Age	0.263514	0.239528	-0.113970	-0.042163

Feature importence

This analysis aims to identify which features have the most predictive power or strongest relationship with the target variable in a model.

```
In [13]: X = df.loc[:,df.columns!='Outcome']
Y = df.Outcome

In [14]: from sklearn.ensemble import ExtraTreesClassifier
ETC=ExtraTreesClassifier()
ETC.fit(X,Y)
df_new=pd.Series(ETC.feature_importances_,index=X.columns)
plt.figure(figsize=(8,6))
df_new.sort_values().plot(kind='bar')
Out[14]: <Axes: >
```


Cleaning the most importent features[Glucose, BMI, DiabetesPedigreeFunction] using IQR analysis

```
In [15]: Q1=df['Glucose'].quantile(.25)
    Q3=df['Glucose'].quantile(.75)
    IQR=Q3-Q1
    lower_b=Q1-1.5*IQR
    upper_b=Q3+1.5*IQR
    Df=df[df['Glucose'].between(lower_b,upper_b,inclusive='neither')]
    Df
```

Out[15]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabe
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

763 rows \times 9 columns

```
In [16]: Q1=Df['BMI'].quantile(0.25)
    Q3=Df['BMI'].quantile(0.75)
    IQR = Q3 - Q1
    lower = Q1 - 1.5*IQR
    upper = Q3 + 1.5*Q3
    Df=Df[Df['BMI'].between(lower,upper,inclusive='neither')]
    Df
```

Out[16]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	Diabe
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••							
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

752 rows \times 9 columns

```
In [17]: Q1 = Df['DiabetesPedigreeFunction'].quantile(0.25)
    Q3 = Df['DiabetesPedigreeFunction'].quantile(0.75)
    IQR = Q3 - Q1
    lower = Q1 - 1.5*IQR
    upper = Q3 + 1.5*IQR
    Df = Df[Df['DiabetesPedigreeFunction'].between(lower,upper,inclusive='neithe Df
```

Out[17]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabe
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	5	5	116	74	0	0	25.6	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

724 rows \times 9 columns

Splitting the dataset into Dependent and Independent variable.

```
<class 'pandas.core.frame.DataFrame'>
       Index: 724 entries, 0 to 767
       Data columns (total 9 columns):
           Column
                                    Non-Null Count Dtype
       --- -----
                                    -----
        0
            Pregnancies
                                    724 non-null
                                                   int64
        1
            Glucose
                                    724 non-null
                                                  int64
        2
            BloodPressure
                                    724 non-null int64
        3
            SkinThickness
                                   724 non-null int64
        4
           Insulin
                                    724 non-null
                                                  int64
        5
                                    724 non-null float64
        6
            DiabetesPedigreeFunction 724 non-null float64
                                    724 non-null int64
        7
            Aae
        8
            Outcome
                                    724 non-null int64
       dtypes: float64(2), int64(7)
       memory usage: 56.6 KB
        Here one feature named 'Pregnancies' have int64 format which is
        irrelevant, hence it is converted into 'object' type.
In [21]: Df.Pregnancies = Df.Pregnancies.astype('object')
        Df.info()
       <class 'pandas.core.frame.DataFrame'>
       Index: 724 entries, 0 to 767
       Data columns (total 9 columns):
        # Column
                                    Non-Null Count Dtype
       --- -----
                                    _____
        0
            Pregnancies
                                    724 non-null object
            Glucose
                                   724 non-null int64
        1
            BloodPressure
                                    724 non-null int64
        3
                                   724 non-null int64
           SkinThickness
        4
           Insulin
                                    724 non-null
                                                  int64
        5
                                    724 non-null float64
            DiabetesPedigreeFunction 724 non-null float64
        6
        7
                                    724 non-null
                                                   int64
            Aae
            Outcome
                                    724 non-null
                                                   int64
       dtypes: float64(2), int64(6), object(1)
       memory usage: 56.6+ KB
       <ipython-input-21-65439048d904>:1: SettingWithCopyWarning:
       A value is trying to be set on a copy of a slice from a DataFrame.
       Try using .loc[row indexer,col indexer] = value instead
       See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
       stable/user guide/indexing.html#returning-a-view-versus-a-copy
         Df.Pregnancies = Df.Pregnancies.astype('object')
        Importing libraries for model building
```

```
In [22]: #pip install optree

In [23]: from sklearn.preprocessing import StandardScaler,LabelEncoder,OrdinalEncoder
    from sklearn.model_selection import train_test_split,RandomizedSearchCV, Gri
    from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
```

```
from sklearn.ensemble import RandomForestClassifier,ExtraTreesClassifier, Ba
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.naive bayes import GaussianNB
         from sklearn.svm import SVC
         from sklearn.metrics import accuracy score, classification report, confusion m
         from sklearn.compose import ColumnTransformer,make column transformer
         from sklearn.pipeline import Pipeline,FeatureUnion
         from sklearn.pipeline import make pipeline
         from sklearn import set config
         import tensorflow
         from tensorflow.keras.layers import Input,Dense,Dropout
         from tensorflow.keras.models import Sequential
In [24]: X.Pregnancies = X.Pregnancies.astype('object')
         X.info()
        <class 'pandas.core.frame.DataFrame'>
        Index: 724 entries, 0 to 767
        Data columns (total 8 columns):
         # Column
                                      Non-Null Count Dtype
                                    724 non-null object
724 non-null int64
724 non-null int64
         0 Pregnancies
         1 Glucose
           BloodPressure
                                     724 non-null
         3 SkinThickness
                                                     int64
           Insulin
                                      724 non-null int64
                                      724 non-null float64
         5
           BMT
            DiabetesPedigreeFunction 724 non-null float64
         7
                                      724 non-null int64
        dtypes: float64(2), int64(5), object(1)
        memory usage: 50.9+ KB
        <ipython-input-24-faddb72c3ae5>:1: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row indexer,col indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
        stable/user guide/indexing.html#returning-a-view-versus-a-copy
          X.Pregnancies = X.Pregnancies.astype('object')
```

Building a Pipeline for custom data handling.

- 1. Numeric features are handled using Min-Max-Scaling and Standard-Scaling.
- 2. Categorical feature is handled by OrdinalEncoder.

Splitting the data into Training and Testing sets for model traing and evaluation.

```
In [27]: Xtrain,Xtest,ytrain,ytest = train test split(X,y,test size=.20,random state=
         print(Xtrain.shape)
         print(Xtest.shape)
         print(ytrain.shape)
         print(ytest.shape)
        (579, 8)
        (145, 8)
        (579,)
        (145,)
In [28]: X.info()
        <class 'pandas.core.frame.DataFrame'>
        Index: 724 entries, 0 to 767
        Data columns (total 8 columns):
            Column
                                       Non-Null Count
                                                       Dtype
             -----
             Pregnancies
                                       724 non-null
                                                       object
         1
            Glucose
                                       724 non-null
                                                       int64
            BloodPressure
                                       724 non-null
                                                       int64
            SkinThickness
                                       724 non-null
                                                       int64
         4
            Insulin
                                       724 non-null
                                                       int64
         5
                                       724 non-null
                                                       float64
             BMT
             DiabetesPedigreeFunction 724 non-null
                                                       float64
         7
                                       724 non-null
                                                       int64
        dtypes: float64(2), int64(5), object(1)
        memory usage: 50.9+ KB
In [29]: y.info()
        <class 'pandas.core.series.Series'>
        Index: 724 entries, 0 to 767
        Series name: Outcome
        Non-Null Count Dtype
        -----
        724 non-null
                        int64
        dtypes: int64(1)
        memory usage: 11.3 KB
```

Hyperparameter ranges.

Setting different models to the predefined Pipeline to for training.

```
In [31]: models= {'Logistic Regression':Pipeline([('transformer',CT),('model',Logisti
                   'Decision Tree Classifier':Pipeline([('transformer',CT),('model',De
                   'KNN Classifier':Pipeline([('transformer',CT),('model',KNeighborsCl
                   'RandomForest Classifier':Pipeline([('transformer',CT),('model',Rar
                   'ExtraTree Classifier':Pipeline([('transformer',CT),('model',ExtraT
                   'Naive Bayes':Pipeline([('transformer',CT),('model',GaussianNB())])
                   'DecisionTreeClassifier RSCV':RandomizedSearchCV(estimator=Pipeline
                                                                    param distributions
                                                                    cv=7,
                                                                    random state=13,
                                                                    n iter=11),
                   'DecisionTreeClassifier GSDT':GridSearchCV(estimator=Pipeline([('tr
                                                              param grid=param rs gs dt
                                                              cv=7,),
                   'KNNClassifier RSCV':RandomizedSearchCV(estimator=Pipeline([('trans
                                                           param distributions=param rs
                                                           random state=13,),
                   'KNNClassifier GSCV':GridSearchCV(estimator=Pipeline([('transformer
                                                     param grid=param rs gs knn,
                                                     cv = 7,),
                   'SVM':Pipeline([('transformer',CT),('model',SVC(kernel='poly',degre
         models.items()
```

```
Out[31]: dict items([('Logistic Regression', Pipeline(steps=[('transformer',
                           ColumnTransformer(transformers=[('minmax', MinMaxScaler(),
                                                              ['DiabetesPedigreeFunctio
          n',
                                                               'Age']),
                                                             ('standard', StandardScale
          r(),
                                                              ['Glucose', 'BloodPressur
          e',
                                                               'SkinThickness', 'Insuli
          n',
                                                               'BMI']),
                                                             ('ordinal',
                                                              OrdinalEncoder(handle unk
          nown='use_encoded_value',
                                                                             unknown va
          lue=-1),
                                                              ['Pregnancies'])])),
                          ('model', LogisticRegression())])), ('Decision Tree Classif
          ier', Pipeline(steps=[('transformer',
                           ColumnTransformer(transformers=[('minmax', MinMaxScaler(),
                                                              ['DiabetesPedigreeFunctio
          n',
                                                               'Age']),
                                                             ('standard', StandardScale
          r(),
                                                              ['Glucose', 'BloodPressur
          e',
                                                               'SkinThickness', 'Insuli
          n',
                                                               'BMI']),
                                                             ('ordinal',
                                                              OrdinalEncoder(handle unk
          nown='use encoded value',
                                                                             unknown va
          lue=-1),
                                                              ['Pregnancies'])])),
                          ('model', DecisionTreeClassifier(criterion='entropy'))])),
          ('KNN Classifier', Pipeline(steps=[('transformer',
                           ColumnTransformer(transformers=[('minmax', MinMaxScaler(),
                                                              ['DiabetesPedigreeFunctio
          n',
                                                               'Age']),
                                                             ('standard', StandardScale
          r(),
                                                              ['Glucose', 'BloodPressur
          e',
                                                               'SkinThickness', 'Insuli
          n',
                                                               'BMI']),
                                                             ('ordinal',
                                                              OrdinalEncoder(handle unk
          nown='use encoded value',
                                                                             unknown va
          lue=-1),
                                                              ['Pregnancies'])])),
```

```
('model', KNeighborsClassifier(n neighbors=13))])), ('Rando
mForest Classifier', Pipeline(steps=[('transformer',
                 ColumnTransformer(transformers=[('minmax', MinMaxScaler(),
                                                    ['DiabetesPedigreeFunctio
n',
                                                     'Age']),
                                                   ('standard', StandardScale
r(),
                                                    ['Glucose', 'BloodPressur
e',
                                                     'SkinThickness', 'Insuli
n',
                                                     'BMI']),
                                                   ('ordinal',
                                                   OrdinalEncoder(handle unk
nown='use encoded value',
                                                                   unknown va
lue=-1),
                                                    ['Pregnancies'])])),
                ('model',
                 RandomForestClassifier(criterion='entropy',
                                         n estimators=121))])), ('ExtraTree
Classifier', Pipeline(steps=[('transformer',
                 ColumnTransformer(transformers=[('minmax', MinMaxScaler(),
                                                    ['DiabetesPedigreeFunctio
n',
                                                     'Age']),
                                                   ('standard', StandardScale
r(),
                                                    ['Glucose', 'BloodPressur
e',
                                                     'SkinThickness', 'Insuli
n',
                                                     'BMI']),
                                                   ('ordinal',
                                                   OrdinalEncoder(handle_unk
nown='use encoded value',
                                                                   unknown va
lue=-1),
                                                    ['Pregnancies'])])),
                ('model',
                 ExtraTreesClassifier(criterion='entropy', n estimators=12
1,
                                       random state=13))])), ('Naive Bayes',
Pipeline(steps=[('transformer',
                 ColumnTransformer(transformers=[('minmax', MinMaxScaler(),
                                                    ['DiabetesPedigreeFunctio
n',
                                                     'Age']),
                                                   ('standard', StandardScale
r(),
                                                    ['Glucose', 'BloodPressur
e',
                                                     'SkinThickness', 'Insuli
n',
                                                     'BMI']),
```

```
('ordinal',
                                                   OrdinalEncoder(handle unk
nown='use encoded value',
                                                                   unknown va
lue=-1),
                                                   ['Pregnancies'])])),
                ('model', GaussianNB())])), ('DecisionTreeClassifier_RSCV',
RandomizedSearchCV(cv=7,
                   estimator=Pipeline(steps=[('transformer',
                                               ColumnTransformer(transformer
s=[('minmax',
MinMaxScaler(),
['DiabetesPedigreeFunction',
'Age']),
('standard',
StandardScaler(),
['Glucose',
'BloodPressure',
'SkinThickness',
'Insulin',
'BMI']),
('ordinal',
OrdinalEncoder(handle unknown='use encoded value',
unknown value=-1),
['Pregnancies'])])),
                                              ('model',
                                               DecisionTreeClassifier())]),
                   n iter=11,
                   param distributions={'model__criterion': ['entropy', 'gi
ni'],
                                         'model max depth': range(4, 12),
                                         'model splitter': ['best', 'rando
m']},
                   random_state=13)), ('DecisionTreeClassifier_GSDT', GridS
earchCV(cv=7,
             estimator=Pipeline(steps=[('transformer',
                                         ColumnTransformer(transformers=[('m
inmax',
                                                                           Μi
nMaxScaler(),
['DiabetesPedigreeFunction',
```

```
'Age']),
                                                                           ( 's
tandard',
                                                                           St
andardScaler(),
['Glucose',
'BloodPressure',
'SkinThickness',
'Insulin',
'BMI']),
                                                                           ('0
rdinal',
                                                                           0r
dinalEncoder(handle unknown='use encoded value',
unknown value=-1),
['Pregnancies'])])),
                                        ('model', DecisionTreeClassifier
())]),
             param_grid={'model__criterion': ['entropy', 'gini'],
                          'model max depth': range(4, 12),
                          'model__splitter': ['best', 'random']})), ('KNNCla
ssifier_RSCV', RandomizedSearchCV(estimator=Pipeline(steps=[('transformer',
                                               ColumnTransformer(transformer
s=[('minmax',
MinMaxScaler(),
['DiabetesPedigreeFunction',
'Age']),
('standard',
StandardScaler(),
['Glucose',
'BloodPressure',
'SkinThickness',
'Insulin',
'BMI']),
('ordinal',
OrdinalEncoder(handle unknown='use encoded value',
```

```
unknown value=-1),
['Pregnancies'])])),
                                              ('model',
                                               KNeighborsClassifier())]),
                   param distributions={'model metric': ['euclidean',
                                                            'manhattan',
                                                            'minkowski'],
                                         'model__n_neighbors': [3, 5, 7, 9,
11,
                                         'model weights': ['uniform',
                                                             'distance']},
                   random state=13)), ('KNNClassifier GSCV', GridSearchCV(c
v=7,
             estimator=Pipeline(steps=[('transformer',
                                         ColumnTransformer(transformers=[('m
inmax',
                                                                           Μi
nMaxScaler(),
['DiabetesPedigreeFunction',
'Age']),
                                                                          ('s
tandard',
                                                                           St
andardScaler(),
['Glucose',
'BloodPressure',
'SkinThickness',
'Insulin',
'BMI']),
                                                                          ('0
rdinal'.
                                                                           0r
dinalEncoder(handle unknown='use encoded value',
unknown value=-1),
['Pregnancies'])])),
                                        ('model', KNeighborsClassifier())]),
             param_grid={'model__metric': ['euclidean', 'manhattan',
                                            'minkowski'],
                          'model n neighbors': [3, 5, 7, 9, 11, 13],
                          'model weights': ['uniform', 'distance']})), ('SV
M', Pipeline(steps=[('transformer',
                 ColumnTransformer(transformers=[('minmax', MinMaxScaler(),
                                                   ['DiabetesPedigreeFunctio
n',
```

```
'Age']),
('standard', StandardScale
r(),

e',

'SkinThickness', 'Insuli
n',

'BMI']),
('ordinal',
OrdinalEncoder(handle_unk
nown='use_encoded_value',

unknown_va
lue=-1),

['Pregnancies'])]),
('model', SVC(kernel='poly', probability=True))]))])
```

Model training and comparing the performance of these Classification Models by ROC Curve AUC analysis.

```
In [32]: plt.figure(figsize=(10,9))
         for model name, model in models.items():
             print(f"Fitting model: {model name}")
             if isinstance(model,(GridSearchCV,RandomizedSearchCV)):
                 model.fit(Xtrain,ytrain)
                 best model = model.best estimator
                 print(f"Best parameters for {model name}: {model.best params }")
             else:
                 best model = model
                 best model.fit(Xtrain,ytrain)
             y pred = best model.predict(Xtest)
             y pred proba = best model.predict proba(Xtest)[:,1]
             fpr,tpr, = roc curve(ytest,y pred proba)
             roc auc = auc(fpr,tpr)
             plt.plot(fpr,tpr,label= f'{model_name} AUC:{roc_auc:.2f}')
             print(f'Model Name:: {model name}')
             print(f'Accuracy Score of {model name} is {accuracy score(ytest,y pred)}
             print(classification report(ytest,y pred))
             print('*****'*27)
             print('*****'*27)
         plt.plot([0,1],[0,1],label='Random Guessing')
         plt.xlim([0.0,1.0])
         plt.ylim([0.0,1.05])
         plt.xlabel('<-----False Positive Rate----->',fontsize=12)
         plt.ylabel('<-----True Positive Rate---->',fontsize=12)
         plt.title('Receiver Operating Characteristic (ROC) Curves',fontsize=16,color
         plt.legend(loc='best')
```

plt.grid(True)
plt.show()

Fitting model: Logistic Regression

0.58

1

0.66

0.62

38

Nouet Name	oii Logic	tic Regre	ccion			
Accuracy 9	-	-		is 0 70	31034482758621	
Accuracy .		-	recall f1		support	
	pree	131011	recate 11	50010	σαρρότις	
	0	0.87	0.84	0.86	107	
	1	0.60	0.66	0.62	38	
accur	асу			0.79	145	
macro a	avg	0.73	0.75	0.74	145	
weighted a	avg	0.80	0.79	0.80	145	
******	******	******	*******	*****	************	******
******	******	******	********	*****	*****	
					********	******

_			e Classifi	er		
			Classifier		0 410-001004400	
Accuracy :					0.7724137931034483	
	prec	1510N	recall f1	-score	support	
	0	0.06	0.02	0.04	107	
	0 1	0.86 0.56	0.83 0.61	0.84 0.58	107	
	1	0.50	0.01	0.56	38	
accur	acv			0.77	145	
accura macro	-	0.71	0.72	0.77	145	
weighted	-	0.71	0.72	0.71	145	
weighted	avg	0.70	0.77	0.70	143	
******	******	*****	*******	*****	*******	******
******	******	******	******	******	++++++++++	
******					****	
	******	******	******		*******	*****
******				******		*****
********	******	******	*******	******	*******	******
	******** odel: KNN	******** Classifi	********* .er	******	*******	******
Fitting model Name	******** odel: KNN e:: KNN C	******** Classifi lassifier	********* .er	******* *****	************ ********	*****
Fitting model Name	******** odel: KNN e:: KNN C Score of	******** Classifi lassifier KNN Class	******** .er	******* *******	*********** **************************	*****
Fitting model Name	******** odel: KNN e:: KNN C Score of	******** Classifi lassifier KNN Class ision	******** er ifier is 0 recall f1	****** ******* .7517241: -score	**************************************	*****
Fitting model Name	******** odel: KNN e:: KNN C Score of prec 0	******** Classifi lassifier KNN Class ision 0.84	********* er difier is 0 recall f1	******** .7517241: -score 0.83	**************************************	*****
Fitting model Name	******** odel: KNN e:: KNN C Score of prec	******** Classifi lassifier KNN Class ision	******** er ifier is 0 recall f1	****** ******* .7517241: -score	**************************************	*****
Fitting model Name Accuracy	******** odel: KNN e:: KNN C Score of prec 0 1	******** Classifi lassifier KNN Class ision 0.84	********* er difier is 0 recall f1	******** .7517241: -score 0.83 0.54	**************************************	*****
Fitting model Name Accuracy S	******** odel: KNN e:: KNN C Score of prec 0 1 acy	******** Classifier KNN Class ision 0.84 0.53	*********** ifier is 0 recall f1 0.82 0.55	**************************************	**************************************	*****
Fitting model Name Accuracy states accurate macro states accurate	******** odel: KNN e:: KNN C Score of prec 0 1 acy avg	******** Classifi lassifier KNN Class ision 0.84 0.53	************ er ifier is 0 recall f1 0.82 0.55	**************************************	**************************************	*****
Fitting model Name Accuracy S	******** odel: KNN e:: KNN C Score of prec 0 1 acy avg	******** Classifier KNN Class ision 0.84 0.53	*********** ifier is 0 recall f1 0.82 0.55	**************************************	**************************************	*****
Accuracy s accura macro weighted	******** odel: KNN e:: KNN C Score of prec 0 1 acy avg avg	******** Classifier KNN Class ision 0.84 0.53 0.68 0.76	************ ifier is 0 recall f1 0.82 0.55 0.69 0.75	**************************************	**************************************	
accuracy sweighted a	******** odel: KNN e:: KNN C Score of prec 0 1 acy avg avg ********	******** Classification Classification 0.84 0.53 0.68 0.76 ********	**************************************	**************************************	**************************************	
accuracy sweighted arms arms arms arms arms arms arms arms	******** odel: KNN e:: KNN C Score of prec 0 1 acy avg avg avg ********	******** Classification Classification 0.84 0.53 0.68 0.76 ********	************ er ifier is 0 recall f1 0.82 0.55 0.69 0.75 ***********************************	**************************************	**************************************	*****
accuracy series accuracy series weighted accuracy series accurately series accuratel	******** odel: KNN e:: KNN C Score of prec 0 1 acy avg avg ******** ********	******* Classifier KNN Class ision 0.84 0.53 0.68 0.76 ******* ********	********** er ifier is 0 recall f1 0.82 0.55 0.69 0.75 ***********************************	**************************************	**************************************	*****
accuracy services accuracy services weighted accuracy services acc	******** odel: KNN e:: KNN C Score of	******* Classifier KNN Class ision 0.84 0.53 0.68 0.76 ******* ******** ******************	********** er ifier is 0 recall f1 0.82 0.55 0.69 0.75 ********** ************************	**************************************	**************************************	*****
accuracy services accuracy services weighted at the services accuracy services accur	******** odel: KNN e:: KNN C Score of	******* Classifier KNN Class ision 0.84 0.53 0.68 0.76 ******* ****** domForest	********** er ifier is 0 recall f1 0.82 0.55 0.69 0.75 ********* ********* *********** ******	**************************************	**************************************	*****
accuracy services accuracy services weighted accuracy services weighted accuracy services accurate macro accurate weighted accurate services accurate servic	******** odel: KNN e:: KNN C Score of prec 0 1 acy avg avg ******* ******* ******* odel: Ran e:: Rando	******* Classification Classification 0.84 0.53 0.68 0.76 ******* ******* domForest mForest Classification 0.84 0.53	************ er ifier is 0 recall f1 0.82 0.55 0.69 0.75 ********* ******** ********* ********	******** .7517241: -score 0.83 0.54 0.75 0.68 0.75 ******** *************************	**************************************	*****
accuracy services accuracy services weighted accuracy services weighted accuracy services accurate macro accurate weighted accurate services accurate servic	******** odel: KNN e:: KNN C Score of	******* Classification Classifier KNN Classision 0.84 0.53 0.68 0.76 ******** ******* domForest RandomForest RandomForest	********** er ifier is 0 recall f1 0.82 0.55 0.69 0.75 ******** ******** Classifier est Classifier	******** .7517241 -score 0.83 0.54 0.75 0.68 0.75 ******* ******** r fier is	**************************************	*****
accuracy services accuracy services weighted accuracy services weighted accuracy services accurate macro accurate weighted accurate services accurate servic	******** odel: KNN e:: KNN C Score of	******* Classification Classifier KNN Classision 0.84 0.53 0.68 0.76 ******** ******* domForest RandomForest RandomForest	************ er ifier is 0 recall f1 0.82 0.55 0.69 0.75 ********* ******** ********* ********	******** .7517241 -score 0.83 0.54 0.75 0.68 0.75 ******* ******** r fier is	**************************************	*****
accuracy services accuracy services weighted accuracy services weighted accuracy services accurate macro accurate weighted accurate services accurate servic	******** odel: KNN e:: KNN C Score of	******* Classification Classifier KNN Classision 0.84 0.53 0.68 0.76 ******** ******* domForest RandomForest RandomForest	********** er ifier is 0 recall f1 0.82 0.55 0.69 0.75 ******** ******** Classifier est Classifier	******** .7517241 -score 0.83 0.54 0.75 0.68 0.75 ******* ******** r fier is	**************************************	*****

			0.70		
accuracy	0.70	0 74	0.79	145	
macro avg	0.73	0.74	0.73	145	
weighted avg	0.80	0.79	0.79	145	
****	****	****	*****	************	++++++
				********	****
				*************	++++++
				********	****

-	: ExtraTree (Γ		
Model Name::			f: : - 0 7	VEOC20000EE1724	
Accuracy Scor				7586206896551724	
	precision	recatt	ii-score	support	
0	0.05	0 01	0.02	107	
0	0.85	0.81	0.83	107	
1	0.53	0.61	0.57	38	
			0.76	1.45	
accuracy	0.60	0.71	0.76	145	
macro avg	0.69	0.71	0.70	145	
weighted avg	0.77	0.76	0.76	145	
****************	**************************************	· ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	************	*****************	*********

				******	la de de de de de de de
				*********	****
			*****	*******	
-	: Naive Bayes	;			
Model Name::	-				
Accuracy Scor					
	precision	recall	f1-score	support	
_					
0	0.85	0.75	0.80	107	
1	0.47	0.63	0.54	38	
accuracy			0.72	145	
macro avg	0.66	0.69	0.67	145	
weighted avg	0.75	0.72	0.73	145	
******	******	******	******	*****************	*****
******	******	*****	*******	*******	
******	*****	******	*******	*****************	*****

Fitting model			_		
Best paramete	rs for Decisi	onTreeCl	assifier_RS	<pre>SCV: {'modelsplitter':</pre>	' rando
m', 'modelm	ax_depth': 7,	'model_	_criterion'	: 'entropy'}	
Model Name::	DecisionTree(Classifie	r_RSCV		
Accuracy Scor	e of Decision	TreeClas	sifier_RSCV	is 0.7448275862068966	
	precision	recall	f1-score	support	
0	0.90	0.74	0.81	107	
1	0.51	0.76	0.61	38	
accuracy			0.74	145	
macro avg	0.70	0.75	0.71	145	
weighted avg	0.80	0.74	0.76	145	
******	******	*****	*******	**********	*****

```
Fitting model: DecisionTreeClassifier GSDT
Best parameters for DecisionTreeClassifier GSDT: {'model criterion': 'gin
i', 'model max depth': 5, 'model splitter': 'best'}
Model Name:: DecisionTreeClassifier GSDT
Accuracy Score of DecisionTreeClassifier GSDT is 0.7862068965517242
          precision
                    recall f1-score
                                   support
        0
              0.87
                      0.83
                             0.85
                                      107
        1
              0.58
                      0.66
                             0.62
                                       38
                             0.79
                                      145
   accuracy
              0.73
                      0.74
                             0.73
                                      145
  macro avq
                      0.79
                             0.79
                                      145
weighted avg
              0.80
***********************************
*********************
************************************
*********************
Fitting model: KNNClassifier RSCV
Best parameters for KNNClassifier RSCV: {'model weights': 'distance', 'mode
l n neighbors': 11, 'model metric': 'manhattan'}
Model Name:: KNNClassifier RSCV
Accuracy Score of KNNClassifier RSCV is 0.7517241379310344
                  recall f1-score
          precision
                                   support
        0
              0.82
                      0.85
                             0.83
                                      107
        1
              0.53
                      0.47
                             0.50
                                      38
                             0.75
                                      145
   accuracy
                             0.67
                                      145
  macro avq
              0.67
                      0.66
weighted avg
              0.74
                      0.75
                             0.75
                                      145
***********************************
*********************
************************************
*********************
Fitting model: KNNClassifier GSCV
Best parameters for KNNClassifier GSCV: {'model metric': 'manhattan', 'mode
l n neighbors': 11, 'model weights': 'uniform'}
Model Name:: KNNClassifier GSCV
Accuracy Score of KNNClassifier GSCV is 0.7448275862068966
          precision
                    recall f1-score
                                   support
              0.82
                      0.84
                             0.83
                                      107
        0
        1
              0.51
                      0.47
                             0.49
                                       38
                             0.74
                                      145
   accuracy
                             0.66
                                      145
  macro avq
              0.67
                      0.66
weighted avg
              0.74
                      0.74
                             0.74
                                      145
***********************************
*********************
************************************
```

Fitting model: SVM Model Name:: SVM

Accuracy Score of SVM is 0.7655172413793103

,	precision	recall	f1-score	support
0	0.78	0.95	0.86	107
1	0.64	0.24	0.35	38
accuracy			0.77	145
macro avg	0.71	0.60	0.60	145
weighted avg	0.74	0.77	0.72	145

RandomForest Classifier performed the best with the AUC score of 0.84

Using Neural Network

```
In [33]: transformed = CT.fit_transform(Df)
    X= transformed
    y=Df.Outcome
    Xtrain,Xtest,ytrain,ytest=train_test_split(X,y,test_size=.21,random_state=42
    print(Xtrain.shape)
    print(Xtest.shape)
    print(ytrain.shape)
    print(ytest.shape)

(571, 8)
    (153, 8)
    (571,)
    (153,)
In [34]: import tensorflow as tf
```

ANN model building

Model: "sequential"

Layer (type)	Output Shape	Par
dense (Dense)	(None, 50)	
dropout (Dropout)	(None, 50)	
dense_1 (Dense)	(None, 100)	5
dropout_1 (Dropout)	(None, 100)	
dense_2 (Dense)	(None, 1)	

Total params: 5,651 (22.07 KB)

Trainable params: 5,651 (22.07 KB)

Non-trainable params: 0 (0.00 B)

ANN model training

```
Epoch 1/20
           2s 11ms/step - accuracy: 0.5517 - loss: 0.7681 -
39/39 ———
val accuracy: 0.7255 - val loss: 0.6532
al accuracy: 0.7451 - val loss: 0.5891
Epoch 3/20
39/39 — 0s 4ms/step - accuracy: 0.7209 - loss: 0.6237 - v
al accuracy: 0.8039 - val loss: 0.5587
Epoch 4/20
             Os 5ms/step - accuracy: 0.7353 - loss: 0.5965 - v
al accuracy: 0.7908 - val loss: 0.5386
Epoch 5/20
                 Os 5ms/step - accuracy: 0.7431 - loss: 0.5794 - v
39/39 —
al accuracy: 0.7974 - val loss: 0.5285
Epoch 6/20
               Os 5ms/step - accuracy: 0.7420 - loss: 0.5513 - v
39/39 ———
al accuracy: 0.7516 - val loss: 0.5428
al accuracy: 0.7908 - val loss: 0.5226
Epoch 8/20
39/39 — 0s 5ms/step - accuracy: 0.7529 - loss: 0.5596 - v
al accuracy: 0.7843 - val loss: 0.5194
Epoch 9/20
39/39 — 0s 4ms/step - accuracy: 0.8079 - loss: 0.4852 - v
al_accuracy: 0.7908 - val loss: 0.5274
Epoch 10/20
              Os 5ms/step - accuracy: 0.7971 - loss: 0.4935 - v
al_accuracy: 0.7712 - val_loss: 0.5300
Epoch 11/20
               Os 4ms/step - accuracy: 0.7737 - loss: 0.4933 - v
39/39 —
al accuracy: 0.7908 - val loss: 0.5175
Epoch 12/20
           Os 4ms/step - accuracy: 0.7660 - loss: 0.5136 - v
39/39 ———
al accuracy: 0.7386 - val loss: 0.5482
Epoch 13/20

39/39 — 0s 4ms/step - accuracy: 0.7482 - loss: 0.5455 - v
al accuracy: 0.7843 - val loss: 0.5126
Epoch 14/20
39/39 Os 5ms/step - accuracy: 0.7526 - loss: 0.5153 - v
al accuracy: 0.7843 - val loss: 0.5168
Epoch 15/20
39/39 — 0s 4ms/step - accuracy: 0.7572 - loss: 0.5074 - v
al accuracy: 0.8105 - val loss: 0.5027
Epoch 16/20
39/39 —
               Os 4ms/step - accuracy: 0.7641 - loss: 0.5078 - v
al_accuracy: 0.7974 - val loss: 0.5046
Epoch 17/20
                 ---- 0s 4ms/step - accuracy: 0.7544 - loss: 0.5278 - v
39/39 ———
al_accuracy: 0.7582 - val loss: 0.5235
Epoch 18/20
39/39 ———
              Os 5ms/step - accuracy: 0.8141 - loss: 0.4646 - v
al accuracy: 0.7908 - val loss: 0.5107
Epoch 19/20
39/39 ———
              ----- 0s 4ms/step - accuracy: 0.7492 - loss: 0.5387 - v
```

Neural Network model performance

- 1. Loss Curve. Training vs Validation/testing Loss.
- 2. Accuracy Curve. Training vs Validation/training Accuracy.
- 3. ROC curve.

1. Loss Curve

```
In [38]: plt.plot(M.history['loss'], label='loss')
    plt.plot(M.history['val_loss'], label='val_loss')
    plt.legend()
    plt.grid(True)
    plt.show()
```


2. Accuracy Curve

```
In [39]: plt.plot(M.history['accuracy'], label='Training-accuracy')
    plt.plot(M.history['val_accuracy'], label='Val_accu')
    plt.legend()
    plt.grid(True)
    plt.show()
```


3. ROC Curve

```
In [40]: y_pred_proba = model.predict(Xtest).ravel()

fpr, tpr, thresholds = roc_curve(ytest, y_pred_proba)
    roc_auc = auc(fpr, tpr)

# Plotting
    plt.figure(figsize=(10,6))
    plt.plot(fpr, tpr, color='green', lw=2, label=f'Neural Network AUC = {roc_auplt.plot([0, 1], [0, 1], color='black', linestyle='-', label='Random Guessir plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('<---- False Positive Rate ---->', fontsize=12)
    plt.ylabel('<---- True Positive Rate ---->', fontsize=12)
    plt.title('ROC Curve for Neural Network Model', fontsize=14, color='darkred' plt.legend(loc='lower right')
    plt.grid(True)
    plt.show()
```


Prediction using ANN model.

```
In [41]:
         new data = pd.DataFrame([{
              'Pregnancies': '2',
             'Glucose': 120,
              'BloodPressure': 70,
              'SkinThickness': 20,
              'Insulin': 85,
              'BMI': 28.0,
              'DiabetesPedigreeFunction': 0.45,
              'Age': 30
         }])
         # Transforming the input using the already-fitted ColumnTransformer
         transformed input = CT.transform(new data)
         # Predicting the probability and class
         predicted proba = model.predict(transformed input)[0][0]
         predicted class = int(predicted proba >= 0.5)
         print(f"Predicted Probability of Diabetes: {predicted proba:.2f}")
         print(f"Predicted Class (0 = No Diabetes, 1 = Diabetes): {predicted_class}")
        1/1 -
                                - 0s 36ms/step
        Predicted Probability of Diabetes: 0.05
        Predicted Class (0 = No Diabetes, 1 = Diabetes): 0
```

Conclusion

The accuracy of ANN model is 0.79 with ROC score of 0.84 same as RandomForest Classifier. These two are the best performing model in this dataset. Neural Network models often outperform traditional machine learning models when trained on large volumes of data. However, in our case, where the dataset is limited, the ANN model still achieves approximately the same efficiency as the RandomForest model in predicting the target class.

This notebook was converted with convert.ploomber.io