Master Practical Course Interactive Visual Data Analysis

Schedule

- Regular meetings:
 - Jan 8 (today) Ass. 10: Streak lines and tube rendering
 - Jan 15 Ass. 11: Paper: Smoke surfaces
 - Jan 22 Ass. 12: ???
 - Jan 29 Deadline Ass. 12, no new assignment
 - Feb 5 (last week of semester) Nothing

Feb 4, 4pm – Demo Day
 http://www.in.tum.de/demoday

This Week

- Assignment 10:
 - Streak lines
 - Stream-/Streak-line rendering with tubes

Characteristic Lines

- Types of characteristic lines in a vector field:
 - Path lines: trajectories of massless particles in the (unsteady)
 flow
 - Stream lines: trajectories of massless particles in a "frozen" (steady) vector field
 - Streak lines: trace of dye that is released into the (unsteady) flow at a fixed position

Streak Line Generation

- Repeatedly seed particles from a fixed position in space
- Render as connected line

Streak Line Seeding

- User defined, fixed seeding interval au
- Seeding strategy challenge: $\tau \neq elapsedTime$, i.e. regular seeding interval vs. irregular frame times
 - Streak line should always be "connected" to seed point
 - First point can be less than τ away from seed point
 - May have to seed != 1 new particles per frame!

Implementation

- Create buffer for n*m particles/vertices (n lines, m vertices each)
- Streak line lifetime $T = \tau \cdot (m-1)$
- Looped storage, separator index marks line begin/end
 - → Moved everytime a particle is reseeded

- Particle age $\in [-T; T]$
 - age < 0: stationary particle at seeding point
 - Only advect the "positive portion" of the timestep

Implementation

• Example: n=1 lines, m=4 vertices, au=3s, T=9s

Rule: Separator is always right of the "youngest particle"

Line Rendering: Tubes

- Rendering options?
 - Analytic Cylinders
 - Extrude in Geometry Shader

Analytic Tubes

- 1 cylinder per line segment
 - Proxy geometry: e.g. 3 front faces of oriented bounding box
- 1 sphere per vertex to close gaps
- Ray-cylinder intersection: Google ©

GS Tubes

- GS (per line primitive):
 - Per vertex: generate n (e.g. 8) points on a circle
 - Connect corresponding points using quads (2 triangles)
 - Align circles with per-vertex tangent to avoid gaps

GS Tubes: Orientation

- Orientation doesn't matter
- ... but needs to be consistent!

- Over the whole line, not only per segment!
- Track normal vector ("right" or "up")
 - Initialize arbitrarily (orthogonal to line direction)
 - Re-orthogonalize wrt. tangent after each step (2 cross products)

Optional: Adapt Tube Thickness

- Try to keep volume constant ("bubble gum")
 - Adapt radius at each vertex
 - Clamp max radius!

For analytic rendering: cylinders become cones!

Questions?