Financial Engineering & Risk Management

The Multi-Period Binomial Model

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

A 3-period Binomial Model

Recall R = 1.01 and u = 1/d = 1.07.

Just a series of 1-period models spliced together!

- all the results from the 1-period model apply
- just need to multiply 1-period probabilities along branches to get probabilities in multi-period model.

Pricing a European Call Option

Assumptions: expiration at t=3, strike = \$100 and R=1.01.

Pricing a European Call Option

We can also calculate the price as

$$C_0 = \frac{1}{R^3} \mathsf{E}_0^{\mathbb{Q}} \left[\max(S_T - 100, \ 0) \right] \tag{1}$$

- this is risk-neutral pricing in the binomial model
- avoids having to calculate the price at every node.
- How would you find a replicating strategy?
 - to be defined and discussed in another module.

Financial Engineering & Risk Management What's Going On?

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

What's Going On?

Stock ABC

Stock XY7

Question: What is the price of a call option on ABC with strike K = \$100?

Question: What is the price of a call option on XYZ with strike K = \$100?

What's Going On?

• Saw earlier

$$C_{0} = \frac{1}{R} \left[\frac{R - d}{u - d} C_{u} + \frac{u - R}{u - d} C_{d} \right]$$
$$= \frac{1}{R} \left[q C_{u} + (1 - q) C_{d} \right]$$
$$= \frac{1}{R} \mathsf{E}_{0}^{\mathbb{Q}}[C_{1}]$$

- ullet So it appears that p doesn't matter!
- This is true ...
- ... but it only appears surprising because we are asking the wrong question!

Another Surprising Result?

112.36

106.00

R = 1.02Stock Price European Option Price: K = 95 119.10 24.10 112.36 106.00 19.22 11.00 100.00 106.00 94.34 14.76 7.08 0.00 94.34 83.96 4.56 100.00 89.00 11.04 0.00 0.00 t=0 t=1 t=2t=3t=0 t=1 t=2t=3 R = 1.04Stock Price European Option Price: K = 95 24.10 119.10

100.00 106.00 94.34 18.19 8.76 0.00 100.00 94.34 89.00 83.96 15.64 6.98 0.00 0.00 t=2 t=3 t=3 t=0 t=1 t=0 t=1 t=2

Question: So the option price increases when we increase ${\it R.}$ Is this surprising?

(See "Investment Science" (OUP) by D. G. Luenberger for additional examples on the binomial model.)

21.01

11.00

Existence of Risk-Neutral Probabilities ⇔ No-Arbitrage

Recall our analysis of the binomial model:

- no arbitrage $\Leftrightarrow d < R < u$
- ullet any derivative security with time T payoff, C_T , can be priced using

$$C_0 = \frac{1}{R^n} \mathsf{E}_0^{\mathbb{Q}}[C_T] \tag{2}$$

where q>0, 1-q>0 and n=# of periods. (If Δt is the length of a period, then $T=n\times \Delta t$.)

In fact for any model if there exists a risk-neutral distribution, \mathbb{Q} , such that (2) holds, then arbitrage cannot exist. Why?

Reverse is also true: if there is no arbitrage then a risk-neutral distribution exists.

Together, these last two statements are often called the first fundamental theorem of asset pricing.

Financial Engineering & Risk Management Pricing American Options

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

Pricing American Options

- Can also price American options in same way as European options
 - but now must also check if it's optimal to early exercise at each node.
- But recall never optimal to early exercise an American call option on non-dividend paying stock.
- **e.g.** Price American put option: expiration at t=3, K=\$100 and R=1.01.

Pricing American Options

• Price option by working backwards in binomial the lattice.

e.g.
$$\frac{12.66}{R} = \max \left[12.66, \frac{1}{R} \left(q \times 6.54 + (1-q) \times 18.37 \right) \right]$$

A Simple Die-Throwing Game

Consider the following game:

- 1. You can throw a fair 6-sided die up to a maximum of three times.
- 2. After any throw, you can choose to 'stop' and obtain an amount of money equal to the value you threw.
 - e.g. if 4 thrown on second throw and choose to 'stop', then obtain \$4.

Question: If you are risk-neutral, how much would you pay to play this game?

Solution: Work backwards, starting with last possible throw:

- 1. You have just 1 throw left so fair value is 3.5.
- 2. You have 2 throws left so must figure out a strategy determining what to do after $\mathbf{1}^{st}$ throw. We find

fair value =
$$\frac{1}{6} \times (4+5+6) + \frac{1}{2} \times 3.5 = 4.25$$
.

3. Suppose you are allowed 3 throws. Then ...

Question: What if you could throw the die 1000 times?

Financial Engineering & Risk Management

Replicating Strategies in the Binomial Model

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

Trading Strategies in the Binomial Model

- Let S_t denote the stock price at time t.
- Let B_t denote the value of the cash-account at time t
 - assume without any loss of generality that $B_0=1$ so that $B_t=R^t$
 - so now explicitly viewing the cash account as a security.
- Let x_t denote # of shares held between times t-1 and t for $t=1,\ldots,n$.
- Let y_t denote # of units of cash account held between times t-1 and t for $t=1,\ldots,n$.
- Then $\theta_t := (x_t, y_t)$ is the portfolio held:
 - (i) immediately after trading at time t-1 so it is known at time t-1
 - (ii) and immediately **before** trading at time t.
- θ_t is also a random process and in particular, a trading strategy.

Trading Strategies in the Binomial Model

Self-Financing Trading Strategies

Definition. The value process, $V_t(\theta)$, associated with a trading strategy, $\theta_t=(x_t,y_t)$, is defined by

$$V_{t} = \begin{cases} x_{1}S_{0} + y_{1}B_{0} & \text{for } t = 0\\ x_{t}S_{t} + y_{t}B_{t} & \text{for } t \geq 1. \end{cases}$$
 (3)

Definition. A self-financing trading strategy is a trading strategy, $\theta_t = (x_t, y_t)$, where changes in V_t are due entirely to trading gains or losses, rather than the addition or withdrawal of cash funds. In particular, a self-financing strategy satisfies

$$V_t = x_{t+1}S_t + y_{t+1}B_t, t = 1, ..., n-1.$$
 (4)

The definition states that the value of a self-financing portfolio just before trading is equal to the value of the portfolio just after trading

- so no funds have been deposited or withdrawn.

Self-Financing Trading Strategies

Proposition. If a trading strategy, θ_t , is self-financing then the corresponding value process, V_t , satisfies

$$V_{t+1} - V_t = x_{t+1} (S_{t+1} - S_t) + y_{t+1} (B_{t+1} - B_t)$$

so that changes in portfolio value can only be due to capital gains or losses and not the injection or withdrawal of funds.

Proof. For $t \geq 1$ we have

$$V_{t+1} - V_t = (x_{t+1}S_{t+1} + y_{t+1}B_{t+1}) - (x_{t+1}S_t + y_{t+1}B_t)$$

= $x_{t+1}(S_{t+1} - S_t) + y_{t+1}(B_{t+1} - B_t)$

and for t = 0 we have

$$V_1 - V_0 = (x_1 S_1 + y_1 B_1) - (x_1 S_0 + y_1 B_0)$$

= $x_1 (S_1 - S_0) + y_1 (B_1 - B_0).$

Risk-Neutral Price \equiv Price of Replicating Strategy

- We have seen how to price derivative securities in the binomial model.
- The key to this was the use of the 1-period risk neutral probabilities.
- \bullet But we first priced options in $1\mbox{-period}$ models using a replicating portfolio
 - and we did this without needing to define risk-neutral probabilities.
- In the multi-period model we can do the same, i.e., can construct a self-financing trading strategy that replicates the payoff of the option
 - this is called dynamic replication.
- The initial cost of this replicating strategy must equal the value of the option
 - otherwise there's an arbitrage opportunity.
- The dynamic replication price is of course equal to the price obtained from using the risk-neutral probabilities and working backwards in the lattice.
- And at any node, the value of the option is equal to the value of the replicating portfolio at that node.

The Replicating Strategy For Our European Option

The Replicating Strategy For Our European Option

e.g. $.802 \times 107 + (-74.84) \times 1.01 = 10.23$ at upper node at time t = 1

Financial Engineering & Risk Management Including Dividends

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

Including Dividends

- Consider again 1-period model and assume stock pays a proportional dividend of cS_0 at t=1.
- No-arbitrage conditions are now d + c < R < u + c.
- Can use same replicating portfolio argument to find price, C_0 , of any derivative security with payoff function, $C_1(S_1)$, at time t=1.
- Set up replicating portfolio as before:

$$uS_0x + cS_0x + Ry = C_u$$

$$dS_0x + cS_0x + Ry = C_d$$

Derivative Security Pricing with Dividends

- Solve for x and y as before and then must have $C_0 = xS_0 + y$.
- Obtain

$$C_{0} = \frac{1}{R} \left[\frac{R - d - c}{u - d} C_{u} + \frac{u + c - R}{u - d} C_{d} \right]$$

$$= \frac{1}{R} \left[q C_{u} + (1 - q) C_{d} \right]$$

$$= \frac{1}{R} \mathsf{E}_{0}^{\mathbb{Q}}[C_{1}].$$
(5)

- Again, can price any derivative security in this 1-period model.
- Multi-period binomial model assumes a proportional dividend in each period
 - so dividend of cS_i is paid at t = i + 1 for each i.
- Then each embedded 1-period model has identical risk-neutral probabilities
 - and derivative securities priced as before.
- In practice dividends are not paid in every period
 - and are therefore just a little more awkward to handle.

The Binomial Model with Dividends

Suppose the underlying security does not pay dividends. Then

$$S_0 = \mathsf{E}_0^{\mathbb{Q}} \left[\frac{S_n}{R^n} \right] \tag{6}$$

- this is just risk-neutral pricing of European call option with K=0.
- Suppose now underlying security pays dividends in each time period.
- Then can check (6) no longer holds.
- Instead have

$$S_0 = \mathsf{E}_0^{\mathbb{Q}} \left[\frac{S_n}{R^n} + \sum_{i=1}^n \frac{D_i}{R^i} \right] \tag{7}$$

- D_i is the dividend at time i
- and S_n is the ex-dividend security price at time n.
- Don't need any new theory to prove (7)
 - it follows from risk-neutral pricing and observing that dividends and S_n may be viewed as a portfolio of securities.

Viewing a Dividend-Paying Security as a Portfolio

ullet To see this, we can view the i^{th} dividend as a separate security with value

$$P_i \ = \ \mathsf{E}_0^{\mathbb{Q}} \left[\frac{D_i}{R^i} \right].$$

- Then owner of underlying security owns a "portfolio" of securities at time 0 value of this "portfolio" is $\sum_{i=1}^n P_i + \mathsf{E}_0^{\mathbb{Q}} \left[\frac{S_n}{R^n} \right]$.
- But value of underlying security is S_0 .
- Therefore must have

$$S_0 = \sum_{i=1}^n P_i + \mathsf{E}_0^{\mathbb{Q}} \left[\frac{S_n}{R^n} \right]$$

which is (7).

Financial Engineering & Risk Management

Pricing Forwards and Futures

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

Pricing Forwards in the Binomial Model

• Have an n-period binomial model with u = 1/d.

- \bullet Consider now a forward contract on the stock that expires after n periods.
- Let G_0 denote date t=0 "price" of the contract.
- Recall G_0 is chosen so that contract is initially worth zero.

Pricing Forwards in the Binomial Model

• Therefore obtain

$$0 = \mathsf{E}_0^{\mathbb{Q}} \left[\frac{S_n - G_0}{R^n} \right]$$

so that

$$G_0 = \mathsf{E}_0^{\mathbb{Q}} \left[S_n \right]. \tag{8}$$

• Again, (8) holds whether the underlying security pays dividends or not.

What is a Futures "Price"?

- Consider now a futures contract on the stock that expires after n periods.
- Let F_t be the date t "price" of the futures contract for $0 \le t \le n$.
- Then $F_n = S_n$. Why?
- A common misconception is that:
 - (i) F_t is how much you must pay at time t to buy one contract
 - (ii) or how much you receive if you sell one contract

This is false!

- A futures contract always costs nothing.
- ullet The "price", F_t is only used to determine the cash-flow associated with holding the contract
 - so that $\pm (F_t F_{t-1})$ is the payoff received at time t from a long or short position of one contract held between t-1 and t.
- In fact a futures contract can be characterized as a security that:
 - (i) is always worth zero
 - (ii) and that pays a dividend of $(F_t F_{t-1})$ at each time t.

Pricing Futures in the Binomial Model

ullet Can compute time t=n-1 futures price, F_{n-1} , by solving

$$0 = \mathsf{E}_{n-1}^{\mathbb{Q}} \left[\frac{F_n - F_{n-1}}{R} \right]$$

to obtain $F_{n-1} = \mathsf{E}_{n-1}^{\mathbb{Q}}[F_n]$.

• In general we have $F_t = \mathsf{E}_t^{\mathbb{Q}}[F_{t+1}]$ for $0 \le t < n$ so that

$$\begin{split} F_t &= \mathsf{E}_k^{\mathbb{Q}}[F_{t+1}] \\ &= \mathsf{E}_t^{\mathbb{Q}}[\mathsf{E}_{t+1}^{\mathbb{Q}}[F_{t+2}]] \\ &\vdots &\vdots \\ &= \mathsf{E}_t^{\mathbb{Q}}[\mathsf{E}_{t+1}^{\mathbb{Q}}[\,\cdots\,\mathsf{E}_{n-1}^{\mathbb{Q}}[F_n]]]. \end{split}$$

Pricing Futures in the Binomial Model

- Law of iterated expectations then implies $F_t = \mathsf{E}_t^{\mathbb{Q}}\left[F_n\right]$ so the futures price process is a \mathbb{Q} -martingale.
- Taking t=0 and using $F_n=S_n$ we also have

$$F_0 = \mathsf{E}_0^{\mathbb{Q}} \left[S_n \right]. \tag{9}$$

- Note that (9) holds whether the security pays dividends or not

 dividends only enter through O.
- Comparing (8) and (9) and we see that $F_0=G_0$ in the binomial model
 - not true in general.

Financial Engineering & Risk Management

The Black-Scholes Model

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

The Black-Scholes Model

Black and Scholes assumed:

- 1. A continuously-compounded interest rate of r.
- 2. Geometric Brownian motion dynamics for the stock price, S_t , so that

$$S_t = S_0 e^{(\mu - \sigma^2/2)t + \sigma W_t}$$

where W_t is a standard Brownian motion.

- 3. The stock pays a dividend yield of c.
- 4. Continuous trading with no transactions costs and short-selling allowed.

Sample Paths of Geometric Brownian Motion

The Black-Scholes Formula

The Black-Scholes formula for the price of a European call option with strike
 K and maturity T is given by

$$C_0 = S_0 e^{-cT} N(d_1) - K e^{-rT} N(d_2)$$

where

$$d_1 = \frac{\log(S_0/K) + (r - c + \sigma^2/2)T}{\sigma\sqrt{T}},$$

$$d_2 = d_1 - \sigma\sqrt{T}$$

and
$$N(d) = P(N(0,1) < d)$$
.

- ullet Note that μ does not appear in the Black-Scholes formula
 - just as p is not used in option pricing calculations for the binomial model.
- ullet European put option price, P_0 , can be calculated from put-call parity

$$P_0 + S_0 e^{-cT} = C_0 + K e^{-rT}.$$

The Black-Scholes Formula

- Black-Scholes obtained their formula using a similar replicating strategy argument to the one we used for the binomial model.
- In fact, can show that under the Black-Scholes GBM model

$$C_0 = \mathsf{E}_0^{\mathbb{Q}} \left[e^{-rT} \max(S_T - K, 0) \right]$$

where under $\mathbb O$

$$S_t = S_0 e^{(\mathbf{r} - \mathbf{c} - \sigma^2/2)t + \sigma W_t}.$$

Calibrating a Binomial Model

- Often specify a binomial model in terms of Black-Scholes parameters:
 - 1. r, the continuously compounded interest rate.
 - 2. σ , the annualized volatility.
- Can convert them into equivalent binomial model parameters:
 - 1. $R_n = \exp\left(r\frac{T}{n}\right)$, where n = number of periods in binomial model
 - 2. $R_n c_n = \exp\left((r-c)\frac{T}{r}\right) \approx 1 + r\frac{T}{r} c\frac{T}{r}$
 - 3. $u_n = \exp\left(\sigma\sqrt{\frac{T}{n}}\right)$
 - 4. $d_n = 1/u_n$

and now price European and American options, futures etc. as before.

• Then risk-neutral probabilities calculated as

$$q_n = \frac{e^{(r-c)\frac{T}{n}} - d_n}{u_n - d_n}.$$

- Spreadsheet calculates binomial parameters this way
 - binomial model prices converge to Black-Scholes prices as $n \to \infty$.

The Binomial Model as $\Delta t \rightarrow 0$

- \bullet Consider a binomial model with n periods
 - each period corresponds to time interval of $\Delta t := T/n$.
- ullet Recall that we can calculate European option price with strike K as

$$C_0 = \frac{1}{R^n} \mathsf{E}_0^{\mathbb{Q}} \left[\max(S_T - K, \ 0) \right] \tag{10}$$

• In the binomial model can write (10) as

$$C_{0} = \frac{1}{R_{n}^{n}} \sum_{j=0}^{n} {n \choose j} q_{n}^{j} (1 - q_{n})^{n-j} \max(S_{0} u_{n}^{j} d_{n}^{n-j} - K, 0)$$

$$= \frac{S_{0}}{R_{n}^{n}} \sum_{j=\eta}^{n} {n \choose j} q_{n}^{j} (1 - q_{n})^{n-j} u_{n}^{j} d_{n}^{n-j} - \frac{K}{R_{n}^{n}} \sum_{j=\eta}^{n} {n \choose j} q_{n}^{j} (1 - q_{n})^{n-j}$$

where $\eta := \min\{j : S_0 u_n^j d_n^{n-j} \ge K\}.$

ullet Can show that if $n o \infty$ then C_0 converges to the Black-Scholes formula.

Some History

- Bachelier (1900) perhaps first to model Brownian motion
 - modeled stock prices on the Paris Bourse
 - predated Einstein by 5 years.
- Samuelson (1965) rediscovered the work of Bachelier
 - proposed geometric Brownian motion as a model for security prices
 - succeeded in pricing some kinds of warrants
 - was Merton's doctoral adviser
- Itô (1950's) developed the Itô or stochastic calculus
 - the main mathematical tool in finance
 - Itô's Lemma used later by Black-Scholes-Merton
 - Doeblin (1940) recently credited with independently developing stochastic calculus
- Black-Scholes-Merton (early 1970's) published their papers
- Many other influential figures
 - Thorpe (card-counting and perhaps first to discover Black-Scholes formula?)
 - Cox and Ross
 - Harrison and Kreps

- . . .

Financial Engineering & Risk Management

An Example: Pricing a European Put on a Futures Contract

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research
Columbia University

Pricing a European Put on a Futures Contract

- We can also price an option on a futures contract.
- In fact many of the most liquid options are options on futures contracts e.g. S&P 500, Eurostoxx 50, FTSE 100 and Nikei 225.
 - in these cases the underlying security is not actually traded.
- Consider the following parameters:

$$S_0=100$$
, $n=10$ periods, $r=2\%$, $c=1\%$ and $\sigma=20\%$ futures expiration = option expiration = $T=.5$ years.

• Futures price lattice obtained using $S_n = F_n$ and then

$$F_t = \mathsf{E}_t[F_{t+1}] \quad \text{ for } 0 \le t < n.$$

• Obtain a put option value of 5.21.

Pricing a European Put on a Futures Contract

- In practice we don't need a model to price liquid options
 - market forces, i.e. supply and demand, determines the price
 - which in this case amounts to determining σ or the implied volatility.
- Models are required to hedge these options however
 - and price exotic or illiquid derivative securities.
- Will return to this near end of course.