

CINVESTAV Unidad Guadalajara

MANUAL DE INSTALACIÓN

Proyecto:

Sistema Multiagentes: Coordinación de Robots Hexapodos.

Versión: 1.0

Alumnos:

Ricardo Talavera Sevilla
Emmanuel Castro Vargas
Diego Orozco Castillo
Heiler Duarte Moreno
Daniel Irineo Estrada Sánchez
Monica Fabiola Perales Tejeda
Victor Manuel Peláez Fernández

Materia:

Sistemas Distribuidos II

Profesor:

Dr. Félix Francisco Ramos Corchado

HOJA DE CONTROL

Organismo	CINVESTAV - Centro de Investigación y de Estudios Avanzados del	
	Instituto Politécnico Nacional Unidad Guadalajara.	
Proyecto	Sistema de control de movimiento de Robot Hexápodo.	
Entregable	Manual de Instalación	
Autor	Ricardo Talavera Sevilla	
	Monica Fabiola Perales Tejeda	
	Daniel Irineo Estrada Sánchez	
	Victor Manuel Peláez Fernández	
	Heiler Duarte Moreno	
	Emmanuel Castro Vargas	
	Diego Orozco Castillo	
Aprobado por	Dr. Félix Francisco Ramos Corchado	
Fecha Aprobación	agosto de 2024	

REGISTRO DE CAMBIOS

Versión	Causa	Responsable	Fecha
1.0	Versión inicial	Daniel Irineo Estrada Sanchez	2024-04-08
		Emmanuel Castro Vargas	
		Monica Fabiola Perales Tejeda	
		Victor Manuel Peláez Fernández	
		Diego Orozco Castillo	
		Daniel Irineo Estrada Sánchez	
		Heiler Duarte Moreno	

CONTROL DE DISTRIBUCIÓN

Elemento	Descripción
Responsabilidades de distribución	Administrador de sistemas
	Personal autorizado
Usuarios autorizados	Personal interno
	Clientes específicos
Procedimientos de distribución	Solicitar copias adicionales
	Políticas de actualización
Formato y medio de distribución	Electrónico (PDF)
	A través de correo electrónico

Índice general

I	Intr	oduccion	b
	1.1	Propósito	6
	1.2	Alcance	6
2	Des	cripción General	8
	2.1	Antecedentes y descripción funcional del sistema	8
	2.2	Componentes fundamentales	8
3	Rec	ursos de Hardware	9
	3.1	Servidor	9
	3.2	Cliente	9
	3.3	Restricciones	9
4	Rec	ursos de Software	11
	4.1	Matriz de certificación	11
	4.2	Restricciones técnicas del Sistema	11
5	Inst	alación y configuración del software base	12
	5.1	Python en Windows	12
	5.2	Python en Linux	14
	5.3	Visual Studio Code en linux	15
	5.4	Visual Studio Code en Windows	16
	5.5	Descargar el software	20
6	Con	npilación del Sistema	22
	6.1	Instalación de dependencias	22
		6.1.1 Windows	22
7	Veri	ificación del procesos de Instalación	23
	7.1	Verificación de instalación	23
8	Mar	rcha Atrás	24
	8.1	Software Base	24
	8.2	Software	24
9	Glos	sario	25

Índice de figuras

5.1	Microsoft Store
5.2	Busqueda python 3.12
5.3	Obtener Python
5.4	Instalando
5.5	Instalado
5.6	Comando de instalación
5.7	Confirmando la instalación
5.8	Página de descarga
5.9	Archivo descargado
5.10	Aceptar términos y condiciones
5.11	Selección carpeta destino
5.12	Selección carpeta menú inicio
5.13	Tareas adicionales
5.14	Listo para instalar
5.15	Barra de progreso de instalación
5.16	Instalación finalizada
5.17	Repositorio
5.18	Download ZIP
5.19	Código fuente descargado

Índice de cuadros

2.1	Descripción de los módulos del sistema
3.2	Especificaciones del Servidor
	Matriz de Certificación
9.1	

1 Introducción

El manual de instalación de Sistema Multiagentes: Coordinación de Robots Hexapodos, versión 1.0, es una guía detallada destinada a facilitar la correcta instalación del software en sistemas informáticos. Este manual está diseñado para proporcionar instrucciones claras y concisas sobre cómo implementar adecuadamente el software en el entorno de los usuarios. Al seguir las instrucciones proporcionadas en este manual, los usuarios podrán configurar el software de manera efectiva y garantizar su correcto funcionamiento en sus sistemas.

1.1. Propósito

El propósito principal de este manual de instalación es guiar a los usuarios a través del proceso de instalación de Sistema Multiagentes: Coordinación de Robots Hexapodos en sus sistemas. Este documento proporciona una visión general de los requisitos previos del sistema, los pasos de instalación y las configuraciones iniciales necesarias para poner en funcionamiento el software de manera óptima. Al completar la instalación, los usuarios podrán utilizar Sistema de control de movimiento de Robot Hexápodo para compartir archivos de manera eficiente y segura en sus entornos de red.

1.2. Alcance

El alcance de este manual de instalación abarca los siguientes aspectos relacionados con la instalación y configuración inicial del software Sistema de control de movimiento de Robot Hexápodo:

- 1. Requisitos del sistema: Se detallan los requisitos mínimos del sistema necesarios para instalar y ejecutar el software de manera adecuada. Esto incluye especificaciones de hardware, sistemas operativos compatibles y otros componentes necesarios.
- 2. Proceso de instalación: Se proporcionan instrucciones detalladas paso a paso sobre cómo instalar el software en el sistema del usuario. Esto incluye la descarga de los archivos de instalación, la ejecución del instalador y cualquier configuración necesaria durante el proceso.
- 3. Configuración inicial: Se describen los pasos necesarios para configurar el software después de la instalación inicial. Esto puede incluir la configuración de opciones de red, la autenticación de usuarios, la configuración de permisos de acceso, etc.
- 4. **Pruebas y verificación**: Se ofrecen pautas sobre cómo verificar que la instalación se haya realizado correctamente y que el software esté funcionando según lo esperado. Esto puede incluir la realización de pruebas de funcionalidad básicas y la solución de problemas comunes.

5. Limitaciones y exclusiones: Se destacan las limitaciones del manual y del software, así como las áreas que no están cubiertas en detalle en este documento. Esto puede incluir funcionalidades específicas que no están incluidas en la instalación estándar o casos de uso avanzados que requieran configuraciones adicionales.

Es importante tener en cuenta que este manual se centra específicamente en la instalación y configuración inicial del software Sistema Multiagentes: Coordinación de Robots Hexapodos.

2 Descripción General

2.1. Antecedentes y descripción funcional del sistema

Los antecedentes de este proyecto se originan en el estudio académico de los sistemas distribuidos, una disciplina que comprende la coordinación de procesos que no comparten memoria física y que interactúan a través de redes de comunicaciones. En el contexto de la materia de Sistemas Distribuidos II, los estudiantes han explorado teorías y prácticas relacionadas con la arquitectura de sistemas distribuidos, aprendiendo sobre diversos métodos de comunicación y coordinación como sockets y ahora, más específicamente, arquitecturas basadas en agentes.

El concepto de las arquitecturas de agentes se refieren a los marcos o estructuras de diseño que determinan cómo se construyen y organizan los agentes en sistemas informáticos. Un agente es un sistema autónomo que puede percibir su entorno, razonar y actuar para alcanzar ciertos objetivos. Las arquitecturas de agentes definen cómo estos componentes, como la percepción, el razonamiento, y la acción, están interrelacionados y cómo el agente toma decisiones.

Este proyecto surge como una aplicación práctica de los principios estudiados, enfocándose en la implementación de un sistema multiagentes para lograr la coordinación de 2 Robots Hexapodos al ejecutar una rutina de movimientos mediante el uso de una arquitectura BDI. A nivel funcional, el sistema permite a los usuarios poder modelar una interacción entre entes físicos mediante un modelado de agentes.

2.2. Componentes fundamentales

Cuadro 2.1: Descripción de los módulos del sistema

Módulo	Descripción	
BDI	Es el modelado del sistema mediante el uso de la arquitectura multi-	
	agentes para que el agente(robot) pueda modificar sus creencias y sus	
	deseas se vean afectador por el entorno o pro lo que puede percibir de el	
Comunicación	Este modulo es el media por le cual los agentes pueden comunicarse e	
	interactuar además que permite que el entorno pueda ser actualizado y	
	modificado.	
Bailes	Este modelo utiliza el software proporcionado por Freenove para el con-	
	trol de los servomotores del robot.	

3 Recursos de Hardware

3.1. Servidor

Cuadro 3.1: Especificaciones del Servidor

Dato	Valor mínimo	Valor recomendado
Procesador	9th Gen Intel(R) Core(TM)	11th Gen Intel(R) Core(TM)
	i3-09800H @ 2.30GHz	i7-11800H @ 2.30GHz
Memoria RAM	2 GB	4 GB
Almacenamiento	50 GB	100 GB

3.2. Cliente

Cuadro 3.2: Especificaciones del Cliente

Dato	Valor mínimo	Valor recomendado
Procesador	9th Gen Intel(R) Core(TM)	11th Gen Intel(R) Core(TM)
	i3-09800H @ 2.30GHz	i7-11800H @ 2.30GHz
Memoria RAM	2 GB	4 GB
Almacenamiento	50 GB	100 GB

3.3. Restricciones

Cuadro 3.3: Restricciones del Servidor y del Cliente

Restricción	Detalle	
Restricciones del Servidor		
Disponibilidad y Escalabilidad	El servidor debe estar disponible para atender las	
	solicitudes de los clientes en todo momento.	
	La capacidad del servidor para manejar múltiples	
	conexiones simultáneas y distribuir eficientemente	
	los recursos es crucial.	
Seguridad	El servidor debe implementar medidas de segu-	
	ridad adecuadas para protegerse contra posibles	
	amenazas.	
	La comunicación entre el servidor y los clientes de-	
	be estar cifrada para proteger la confidencialidad	
	de los datos.	
Rendimiento	El servidor debe ser capaz de manejar eficiente-	
	mente las solicitudes de los clientes y proporcionar	
	respuestas en un tiempo razonable.	
	La carga de trabajo del servidor debe ser monito-	
	reada y optimizada según sea necesario.	
Restr	ricciones del Cliente	
Conectividad y Latencia	El cliente debe estar conectado de manera estable	
	a la red para comunicarse con el servidor.	
	La latencia en la comunicación entre el cliente y el	
	servidor debe ser mínima.	
Requerimientos de Recursos	El cliente debe tener suficientes recursos disponi-	
	bles, como memoria y capacidad de procesamiento.	
	El cliente debe ser capaz de manejar múltiples so-	
	licitudes simultáneas de manera eficiente.	
Seguridad y Autenticación	El cliente debe implementar medidas de seguridad	
	adecuadas para protegerse contra posibles amena-	
	zas.	
	La autenticación del cliente con el servidor debe	
	ser sólida y confiable.	

4 Recursos de Software

4.1. Matriz de certificación

Cuadro 4.1: Matriz de Certificación

Elemento	Descripción
Sistema operativo	Windows 10 (64-bit)
	Ubuntu 20.04 LTS
Python	3.8

4.2. Restricciones técnicas del Sistema

Cuadro 4.2: Restricciones Técnicas del Sistema

Elemento	Descripción
Sistema operativo	El software es compatible con sistemas ope-
	rativos basados en Linux, como Ubuntu 20.04
	LTS y Windows 11.
Servidor de aplicaciones	Requiere un servidor de aplicaciones compa-
	tible con Python 8.
Compilador	El código fuente debe ser compilado con un
	compilador compatible con Python, como Py-
	charm o Visual Studio Code.

5 Instalación y configuración del software base

Este apartado detalla el procedimiento para instalar el software base necesario para el funcionamiento del sistema. Para cada componente de software utilizado, se proporciona los pasos, la ubicación para su obtención, instrucciones detalladas de instalación, así como los pasos para la configuración y los parámetros a ajustar.

5.1. Python en Windows

A continuación se describen los pasos para instalar Python en Windows. Se debe abrir Microsoft Store, que se encuentre en el menú inicio

Figura 5.1: Microsoft Store

Se escribe en el buscador del store, Python 3.12.

Figura 5.2: Busqueda python 3.12

Cuando se oprime el icono abre la ventana en la cual debemos oprimir el botón "Obtener".

Figura 5.3: Obtener Python

La store se encarga de la instalación y el círculo de progreso va cambiando hasta que termina.

Figura 5.4: Instalando

Al finalizar se muestra la que ya se puede acceder al programa en la lista de aplicaciones.

Figura 5.5: Instalado

5.2. Python en Linux

En una terminal se ingresa el siguiente comando sudo apt-get install python3.11 y al finalizar oprimir la tecla Enter

```
heiler@heiler-VirtualBox:~$ sudo apt-get install python3.ll
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
   libpython3.ll-minimal libpython3.ll-stdlib python3.ll-minimal
Suggested packages:
   python3.ll-venv python3.ll-doc binfmt-support
The following NEW packages will be installed:
   libpython3.ll-minimal libpython3.ll-stdlib python3.ll python3.ll-minimal
0 upgraded, 4 newly installed, 0 to remove and 0 not upgraded.
Need to get 50615 kB of archives.
After this operation, 21.5 MB of additional disk space will be used.
Do you want to continue? [Y/n]
```

Figura 5.6: Comando de instalación

Esto solicita una confirmación para continuar, para ello se oprime Y y luego Enter

```
Do you want to continue? [Y/n] Y

Set:1 http://mx.archive.ubuntu.com/ubuntu jammy-updates/universe amd64 libpython3.ll-minimal amd64 3.ll.0~rcl-1~2
2.04 [837 kB]

Set:2 http://mx.archive.ubuntu.com/ubuntu jammy-updates/universe amd64 python3.ll-minimal amd64 3.ll.0~rcl-1~22.04

$ [20370 kB]

Set:3 http://mx.archive.ubuntu.com/ubuntu jammy-updates/universe amd64 libpython3.ll-stdlib amd64 3.ll.0~rcl-1~22.04

$ [10859 kB]

Set:4 http://mx.archive.ubuntu.com/ubuntu jammy-updates/universe amd64 python3.ll amd64 3.ll.0~rcl-1~22.04 [550 kB]

Set:5 http://mx.archive.ubuntu.com/ubuntu jammy-updates/universe amd64 python3.ll amd64 3.ll.0~rcl-1~22.04 [550 kB]

Set:6 http://mx.archive.ubuntu.com/ubuntu jammy-updates/universe amd64 python3.ll amd64 3.ll.0~rcl-1~22.04 [550 kB]

Set:6 http://mx.archive.ubuntu.com/ubuntu jammy-updates/universe amd64 python3.ll amd64 3.ll.0~rcl-1~22.04 [550 kB]

Set:6 http://mx.archive.ubuntu.com/ubuntu jammy-updates/universe amd64 python3.ll amd64 3.ll.0~rcl-1~22.04 [550 kB]

Set:6 http://mx.archive.ubuntu.com/ubuntu jammy-updates/universe amd64 python3.ll amd64 3.ll.0~rcl-1~22.04 [550 kB]

Setecting previously unselected package libpython3.ll-minimal:amd64.

Preparing to unpack .../python3.ll-minimal 3.ll.0~rcl-1~22.04 amd64.deb ...

Jupacking python3.ll-minimal (3.ll.0~rcl-1~22.04) ...

Selecting previously unselected package libpython3.ll-stdlib:amd64.

Preparing to unpack .../python3.ll-stdlib:amd64 (3.ll.0~rcl-1~22.04) ...

Setting up python3.ll-minimal:amd64 (3.ll.0~rcl-1~22.04) ...

Processing triggers for man-db (2.ll.0-2-ll ...

Processing triggers for destr
```

Figura 5.7: Confirmando la instalación

5.3. Visual Studio Code en linux

Se debe ingresar los siguientes comandos en una terminal y después de cada uno ingresar la clave del sudo y luego la letra Y para confirmar la instalación:

- sudo apt install apt-transport-https
- sudo apt update
- sudo apt install code

5.4. Visual Studio Code en Windows

Para realizar la instalación se debe ingresr a la página https://code.visualstudio.com/download y dar clieck en la imagen que dice windows

Figura 5.8: Página de descarga

Esto descarga el instalador y se puede apreciar en la parte superior derecha de la pantalla y se debe dar click en el archivo .exe para empezar la instalción .

Figura 5.9: Archivo descargado

Se solicita aceptar términos y condiciones, se debe seleccionar *Acepto el acuerdo* y dar click en *Siguiente*.

Figura 5.10: Aceptar términos y condiciones

A continuación se muestra la carpeta destino donde se realizará la instalación, se debe dar click en el botón Siguiente.

Figura 5.11: Selección carpeta destino

Ahora se muestra la carpeta del menú inicio donde quedarán los accesos directos, se debe dar click en el botón Siguiente.

Figura 5.12: Selección carpeta menú inicio

La pantalla que se abre solicita que se maque las tareas adicionales que se espera realice el Visual Studio Code, se debe dar click en *Siguiente*.

Figura 5.13: Tareas adicionales

Habiendo seleccionado los pasos previos el instalador está en condiciones para realizar la instalación, se debe dar click en *Instalar*.

Figura 5.14: Listo para instalar

A medida que se va realizando la instalación el instalador muestra una barra de progreso mostrando el progreso en la instalación.

Figura 5.15: Barra de progreso de instalación

Al terminar de llenarse la barra de progreso aparece otra pantalla, la cual informa que se terminó la instalación satisfactoriamente, se debe dar click en *Finalizar*.

Figura 5.16: Instalación finalizada

5.5. Descargar el software

El código fuente del software Sistema de control de movimiento de Robot Hexápodo se encuentra alojado en un repositorio ubicado en Github, para descargarlo de la nube es necesario ingresar a la página https://github.com/laviserva/Hexapodo/tree/Experimental

Figura 5.17: Repositorio

Para se da click en el botón verde *Code*, esto despliega un menú y se da click en *Download ZIP*

Figura 5.18: Download ZIP

Esto descarga un archivo comprimido, se puede ver en la parte superior derecha del navegador

Figura 5.19: Código fuente descargado

Una vez descargado el archivo ZIP, se descomprime. Luego, se distribuye una copia del archivo ZIP a cada Raspberry para tener el sistema base de movimiento dado por Freenove y también los archivos que constituyen Sistema Multiagentes: Coordinación de Robots Hexapodos.

6 Compilación del Sistema

En este apartado se detallarán todos los requisitos y las tareas necesarias para llevar a cabo la correcta compilación del sistema. Se deben cumplir todas las indicaciones referentes a la construcción y compilación del software que estén establecidas en la normativa técnica.

6.1. Instalación de dependencias

Para instalar las dependencias, en la Raspberry primero se debe ejecutar los archivos .py que se encuentran en la siguiente dirección Hexapodo/Code/ se procede a activarlo con los comandos necesarios para realizar la instalación de las dependencias con el comando pip:

6.1.1. Windows

Instalar las dependencias utilizando pip
python setup.py

Estas instalaciones son necesarias para el control de los servomotores, se espera que el robot esta correctamente armado y calibrado ya que nuestro sistema esta desarrollado sobre el Kit Hexapodo de Freenove. Esto ya es solo una confirmación de que los módulos están instalados debido a que son necesarios para nuestro proyecto

7 Verificación del procesos de Instalación

7.1. Verificación de instalación

Para comprobar la correcta instalación de los modulos de setup.py se ejecuta el programa Servo.py que se encuentra en la siguiente dirección Hexapodo/Code/Servo, desde la consola lo que hará que todas las patas del Hexapodo se extiendan por completo.

Instalar las dependencias utilizando pip
python Servo.py

8 Marcha Atrás

8.1. Software Base

Para dar marcha atrás del software base se debe desinstalar:

- Visual Studio Code
- Python

8.2. Software

Para dar marcha atrás del Software Sistema de control de movimiento de Robot Hexápodo solo será necesario borrar las carpetas donde se encuentran los archivos.

9 Glosario

Cuadro 9.1:

Concepto	Definición
BDI	Es el modelado del sistema mediante el uso de la arquitectura multi- agentes para que el agente(robot) pueda modificar sus creencias y sus
	deseas se vean afectador por el entorno o pro lo que puede percibir de
	el entorno
Robot Hexapodo	Es un vehículo mecánico que camina sobre seis patas.
Agente	"Son entidades computacionales autónomas que perciben su entorno me-
	diante sensores y actúan sobre él a través de efectores."[1].

Bibliografía

[1] W. Van der Hoek and M. Wooldridge, "Multi-agent systems," Foundations of Artificial Intelligence, vol. 3, pp. 1–40, 2002.