Contents

1	Aufgabe 1	1
2	Aufgabe 2 2.1 a) zz: $g, h \in G$: $g \sim h \Leftrightarrow g = h \lor g = h^{-1}$, \sim Äquivalenzrelation 2.2 TODO b) zz.: $ G = 2n, n \in \mathbb{N} \Rightarrow \exists g \in G - \{e\} \text{ mit } g^2 = e$. 2.3 c) zz.: $g^2 = e \forall g \in G \Rightarrow G \text{ abelsch}$	2 2 2 2
3	Aufgabe 33.1 a) zz: $(K, +, \cdot)$ ist ein Körper3.1.1 TODO Assoziativgesetz3.1.2 Existenz des neutralen Elements $e = (e_1, e_2)$ 3.1.3 Existenz der Inversen	2 2 3 3 4
4	Aufgabe 4 4.1 a)	4 5 5
5	Aufgabe 5 5.1 $U_1 = \{ f \in Abb(\mathbb{N}, \mathbb{Q}) f(n) = f(n+2) \forall n \in \mathbb{N} \}$ 5.2 $U_2 = \{ f \in Abb(\mathbb{N}, \mathbb{Q}) f(n) \neq f(n+2) \forall n \in \mathbb{N} \}$ 5.3 $U_3 = \{ f \in Abb(\mathbb{N}, \mathbb{Q}) f(n) \leq f(n+1) \forall n \in \mathbb{N} \}$ 5.4 TODO $U_4 = \{ f \in Abb(\mathbb{N}, \mathbb{Q}) f(n) = 0 \text{ für unendlich viele } n \in \mathbb{N} \}$	6 6 6 6 7} 6
1	Aufgabe 1	
Sei G eine Gruppe und $g \in G$. Sei e das neutrale Element von G . zz.: $\forall m,n\in\mathbb{Z}:g^mg^n=g^{m+n}$ Beweis:		
ΙA	$g^0 = e, g^1 = g \Rightarrow g^0 g^1 = g^{0+1} = g^1$	
IV	$g^mg^n=g^{m+n}$ gelte für feste $m,n\in\mathbb{Z}$	
\mathbf{IS}	$zz.:g^{m+1}g^{n+1} = g^{m+1+n+1}$	

• Beweis:

 $g^{m+1}g^{n+1}=g^mgg^ng=g^mg^{n+1}g=g^mg^ng^2=g^{m+n}g^2=g^{m+n+2}=g^{m+1+n+1}$ Analog wird für m,n<0 verfahren.

2 Aufgabe 2

Sei G eine Gruppe mit neutralem Element e

2.1 a) zz: $g,h \in G: g \sim h \Leftrightarrow g = h \vee g = h^{-1}$, \sim Äquivalenzrelation

Beweis:

- ~ reflexiv $g \sim g \Leftrightarrow g = g \vee g = g^{-1}$ Immer wahr, da \((g=g \forall g \in G\) \(\Rightarrow \) reflexiv
- ~ symmetrisch zz.: $g \sim h \Leftrightarrow h \sim g$ Beweis:

$$g \sim h \Leftrightarrow g = h \vee g = h^{-1} \Leftrightarrow h = g \vee h = g^{-1} \Leftrightarrow h \sim g$$

~ transitiv zz.: $g, h, b \in G : g \sim h \land h \sim b \Rightarrow g \sim b$ Beweis:

$$\begin{split} g \sim h &\Leftrightarrow h \sim b \\ \Leftrightarrow (g = h \vee g = h^{-1}) \wedge (h = b \vee h = b^{-1}) \\ \Leftrightarrow (g = h \wedge h = b) \vee (g = h \wedge h = b^{-1}) \vee (g = h^{-1} \wedge h = b) \vee (g = h^{-1} \wedge h = b^{-1}) \\ \Leftrightarrow (g = b) \vee (g = b^{-1}) \vee (b = g^{-1}) \vee (g^{-1} = b^{-1}) \\ \Leftrightarrow g = b \vee g = b^{-1} \\ \Leftrightarrow g \sim b \end{split}$$

- **2.2** TODO b) zz.: $|G| = 2n, n \in \mathbb{N} \Rightarrow \exists g \in G \{e\} \text{ mit } g^2 = e$
- **2.3** c) zz.: $g^2 = e \forall g \in G \Rightarrow G$ abelsch

Beweis: Sei b ein beliebiges Element aus G mit $b \neq g$. $g^2 = e = ee = ggbb = (gb)^2 = (bg)^2 = bbgg$ und wenn $(bg)^2 = (gb)^2$, dann auch bgbg = bbgg. Also gilt Kommutativgesetz.

- 3 Aufgabe 3
- 3.1 a) zz: $(K, +, \cdot)$ ist ein Körper.

Lemma 1. (K, +) ist eine Abelsche Gruppe.

Proof. Da nach Vorlesung $(\mathbb{Q}, +)$ eine Abelsche Gruppe ist und die Elemente der Paare aus K einfach nur elementweise addiert werden, muss K auch eine Abelsche Gruppe sein.

Lemma 2. (K, \cdot) ist eine Abelsche Gruppe.

3.1.1 TODO Assoziativgesetz

3.1.2 Existenz des neutralen Elements $e = (e_1, e_2)$

$$(a,b)(e_1,e_2) = (a,b)$$

$$\Leftrightarrow (ae_1 - be_2, ae_2 + be_1) = (a,b)$$

$$\Leftrightarrow ae_1 - be_2 = a \land ae_2 + be_1 = b$$

$$\Leftrightarrow ae_1 - be_2 - a = 0 \land ae_2 + be_1 = b$$

$$\Leftrightarrow e_2 = \frac{e_1 - 1}{b} \cdot a \land ae_2 + be_1 = b$$

$$\Rightarrow a(\frac{e_1 - 1}{b} \cdot a) + be_1 = b$$

$$\Leftrightarrow b^2(e_1 - 1) = a^2(e_1 - 1)$$

$$\Leftrightarrow e_1(b^2 - a^2) = b^2 - a^2$$

$$\Leftrightarrow e_1 = 1$$

Dann ist $e_2 = \frac{(1-1)a}{b} = 0$ Also: e = (1,0)

3.1.3 Existenz der Inversen

zz.: Zu jedem $(a,b) \in K$ gibt es ein $(x,y) \in K$ mit (a,b)(x,y) = e.

$$(a,b)(x,y) = (1,0)$$

$$\Leftrightarrow ax - by = 1 \land ay + bx = 0$$

$$\Leftrightarrow x = \frac{1+by}{a} \land ay + bx = 0$$

$$\Rightarrow ay + b(\frac{1+by}{a}) = 0$$

$$\Leftrightarrow a^2y = -b - b^2y$$

$$\Leftrightarrow y(a^2 + b^2) = -b$$

$$\Leftrightarrow y = \frac{-b}{a^2 + b^2}$$

$$\Rightarrow x = \frac{1+b(\frac{-b}{a^2+b^2})}{a}$$

$$\Leftrightarrow \frac{a^2 + b^2 - b}{a^3 + b^2a}$$

Also $(a,b)^{-1} = (\frac{1+by}{a}, \frac{a^2+b^2-b}{a^3+b^2a})$ (Sieht komisch aus)

4 Aufgabe 4

 $U=(x,y)\in \mathbb{R}|3x+7y=0$ Unterraum von $\mathbb{R}^2.$

4.2 b) Finden Sie zwei verschiedene Unterräume $W_1,W_2\leq\mathbb{R}^2$ mit $U\oplus W_1=\mathbb{R}^2=U\oplus W_2$

Es gilt $\mathbb{R}^2 = W_1 \oplus U$ gdw. $\mathbb{R}^2 = W_1 + U \wedge U \cap W_1 = \{0\}.$

Vermutung So wie ich das interpretiere, ist die zweite Bedingung leicht zu erfüllen. Ich denke man muss nur sozusagen eine Gerade konstruieren, die 3x + 7y = 0 im Punkt (0,0) schneidet, also z.B. x-y = 0. Die Herausforderung ist jetzt (wahrscheinlich Intention des Dozenten), die so zu wählen, dass die Unterräume eben \mathbb{R}^2 bilden.

5 Aufgabe 5

5.1 $U_1 = \{ f \in Abb(\mathbb{N}, \mathbb{Q}) | f(n) = f(n+2) \forall n \in \mathbb{N} \}$

 U_1 ist kein Unterraum von $Abb(\mathbb{N},\mathbb{Q})$, da f(n)=f(n+2) keine Abbildung ist (einem Element aus N wird mehr als ein Element aus Q zugeordnet) und so $U_1=\emptyset$.

5.2 $U_2 = \{ f \in Abb(\mathbb{N}, \mathbb{Q}) | f(n) \neq f(n+2) \forall n \in \mathbb{N} \}$

Da $U_2 = \overline{U}_1$ ist nach analoger (s. U_1) Argumentation U_2 ein Unterraum von $Abb(\mathbb{N}, \mathbb{Q})$.

- **5.3** $U_3 = \{ f \in Abb(\mathbb{N}, \mathbb{Q}) | f(n) \le f(n+1) \forall n \in \mathbb{N} \}$
 - 1. $U_3 \neq \emptyset$ Es gibt Abbildungen, für die $f(n) \leq f(n+1) \forall n \in \mathbb{N}$ gilt (wachsende Funktionen).
 - 2. $f_1 + f_2 \in U_3 \forall f_1, f_2 \in U_3$ Wenn $f(n) \leq f(n+1) \forall n \in \mathbb{N}$ für zwei Abbildungen f_1, f_2 gilt, dann ist auch $f_1 + f_2$ wachsend und damit in U_3 .
 - 3. $k \cdot f \in U_3 \forall k \in \mathbb{N}, f \in U_3$ Analog zu 2. (Bemerke: Mit natürlichen Zahlen lassen sich auch keine Steigungen umdrehen)
- 5.4 TODO $U_4 = \{ f \in Abb(\mathbb{N}, \mathbb{Q}) | f(n) = 0 \text{ für unendlich viele n } \in \mathbb{N} \}$
- 5.5 $U_5 = \{ f \in Abb(\mathbb{N}, \mathbb{Q}) | f(n) = 0 \text{ für fast alle } \mathbf{n} \in \mathbb{N} \}$

"Für fast alle" bedeutet "für alle bis auf endlich viele". In diesem Zusammenhang bedeutet das, dass in U_5 alle Funktionen enthalten sind, die fast alle natürlichen Zahlen auf 0 abbilden. Man kann diese Abbildungen also interpretieren als die Abbildungen, die die ersten n natürlichen Zahlen auf 0 abbilden und die restlichen auf andere rationale Zahlen. Diese kann man aber beliebig addieren und multiplizieren, ohne dass das Ergebnis eine Funktion sein kann, die fast keine n mehr auf 0 abbildet oder alle auf 0 abbildet, da \mathbb{N} abzählbar unendlich ist. Also ist U_5 ein Unterraum von $Abb(\mathbb{N}, \mathbb{Q})$.