DATA ANALYSIS- TAGS AND SEGMENTATION

KENDALL STARCEVICH, JACK UPTON DRAKE INSURANCE INNOVATION LAB

drake.edu/zimpleman

GOALS

- Third Party Data: Analyze customer data to identify patterns related to third party and publicly available data
- Purchase/Product: Explore customer segmentation based on purchasing behavior, state, product, and user demographic data (gender, age)
- Claims: Study insurance claims data to identify the type of claims and the time of claims (e.g. is there an increase during a specific time?)
- Proposed Tags/Segments: Develop data-driven tags and segments that allow personalized communication and provide recommendations.

STEPS

Build a KMEANS model in Snowflake using third party data. Review Third-Party Machine Learning Models. How and why was it different from our clustering and segmentation?

Use clustering method to explore key dimensions in Purchase, Product, Claims (Behavior. Geographic, Psychological)

INTRO TO KMEANS

The algorithm will categorize the items we choose into **k groups** or **clusters** of similarity. To calculate that similarity, we will use the Euclidean Distance as a measurement.

- 1. We randomly initialize k points, called centroids.
- 2. We categorize each item to its closest centroid, and we update the centroid coordinates, which are the **averages** of the items categorized in that cluster so far.
- 3. We repeat the process for a given number of iterations and at the end, we have our **clusters**.

KMEANS STEPS

IMPORT DATA

In a Snowflake worksheet, we imported a SQL table of our data and converted it to a Pandas data frame to write the algorithm in Python.

CLEAN/FILTER DATA

All datatypes need to be converted to numbers (int, float, etc.) for the algorithm.

Also, all NA's need to be dealt with (dropped, replaced with mean/mode).

ASSESS MODEL

Use a heatmap to show how correlated each pair of features is to eliminate unhelpful features. Use the elbow method to find optimal k value. Find silhouette score to assess the effectiveness of the clusters.

UN THE ALGORITHM

Use Principal
Component Analysis
(PCA) for a fast,
global overview of
the data or tDistributed
Stochastic Neighbor
Embedding (t-SNE)
to discover finer,
non-linear patterns
in the data.

SELECTED ATTRIBUTES

Binary Columns (Yes or No):

- 1. 'Do it yourself'
- 2. Avid reader
- 3. Internet Buyer
- 4. Interest in arts and craft
- 5. Interest in charity

- 6. Pet owner
- 7. Owns investments
- 8. Interest in sports
- 9. Interest in healthy living
- 10. Interest in outdoors

SELECTED ATTRIBUTES

Numerical:

- 13. Income
- 14. Years as policy holder
- 15. Number of persons in living unit
- 16. Number of children
- 17. Number of adults

Categorical:

- 18. Savvy Researchers
- 19. Deal Seekers
- 20. Mobile App Users
- 21. Family Position
- 22. Highest Education
- 23. Carrier Route

Correlation Heatmap of Numerical Features DS_DO_IT_YOURSELF -DS_INCOME - 0.1 DS_AVID_READER - 0.3 0.1 - 0.75 DS_INTERNET_BUYER - 0.3 0.1 0.3 DS_INTEREST_ARTS_CRAFTS - 0.4 0.1 0.5 0.3 - 0.50 DS_INTEREST_CHARITY - 0.3 0.1 0.3 0.1 0.3 - 0.25 DS_PET_OWNER - 0.3 0.1 0.2 0.2 0.3 0.5 YEARS_AS_POLICYHOLDER - 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 - 0.00 DS_OWNS_INVESTMENTS - 0.3 0.1 0.5 0.3 0.4 0.3 0.3 0.0 0.1 - -0.25 DS_INTEREST_SPORTS - 0.3 0.1 0.5 0.4 0.4 0.2 0.2 0.0 0.1 0.5 - -0.50 - -0.75 DS_INTEREST_HEALTHY_LIVING - 0.3 0.1 0.6 0.3 0.5 0.3 0.0 0.1 0.5 0.5 0.1 0.1 0.0 DS_INTEREST_OUTDOORS - 0.3 0.1

INITIAL FINDINGS

Silhouette score is only 0.2171, that is why there is overlap in the clusters – the model is not super strong

Cluster Feature Comparison

	DS_HOME_VALUE									
Cluster	mean	std	min	25%	50%	75%	max			
1	420,506.6224	326,923.9084	0	242,524	356,278	511,995	5,987,404			
2	375,263.9512	350,374.0747	0	181,791	322,982	487,371.5	5,557,751			

				1 1 1 1 1 1 1 1 1 1 1 1							
		DS_INCOME									
(Cluster	mean	std	min	25%	50%	75%	max			
	1	126,020.1435	62,129.2412	0	91,747	117,723	152,929	1,491,421			
	2	99,914.2247	62,990.2855	0	55,000	99,328	131,000	770,913			

Cluster 1

Cluster 2

- Family position is Grandmother
- Highest Education is College
- Population of 25,909 people

- Low DigitalDisplay Usage
- Low Deal Seekers
- Not mobile app users
- Rural Carrier Routes

- Medium Savvy Researchers
- Population of 8,383 people

SHIFTING RESEARCH EFFORTS

PHYSICAL WELLNESS

 Initial research focused on key customer dimensions and segments in relation to physical well-being

RESEARCH FINDINGS

 Recognized the significant impact of loneliness on senior mental health.

ADDRESSING LONELINESS

 Shifted focus to explore factors contributing to social connection and potential loneliness.

MEASURING SOCIAL INTERACTION

Dwelling Data Exploration

- Explored "dwelling types" as a proxy for living situation (alone vs. with family).
- Investigated pet ownership as a potential indicator of companionship.
- Examined hobbies that could include social interaction.

Questions and Challenges

- Accuracy and interpretability of "dwelling types" data:
 - Does "4+ people" indicate a senior living facility
 - o Frequency of social interaction within the dwelling
 - Proximity to family and existing family relationships?
- Difficulty quantifying social interaction based on available data.
- How can we effectively measure social connection and its impact?

NEXT STEPS

Now that we've developed clusters to analyze customer behavior, product usage, and claims data, we can expand our approach to uncover meaningful segments for personalized engagement.

- 1. Centroid Analysis and Refinement
- 2. Dwelling Type Analysis
- 3. DIIL vs Third Party Cluster Insights
- 4. Collaborate with KPI Group on Persistency and Claim Frequency

