DES 구현

심민주

목차

O Git & Github 사용방법

O C언어 공부

O DES 구현

1) Git & GitHub 사용방법

0. Git이란?

컴퓨터 프로그램 소스를 공유하고 협업하여 개발할 수 있는 버전 **관리 시스템**

0. GitHub이란?

Git 에 프로젝트 관리 지원기능을 확장하여 제공하는 웹 호스팅 서비스

0. GitHub이란?

```
Showing 1 changed file with 4 additions and 2 deletions.
 6 README.md
           @@ -1,7 +1,9 @@
           - # hello-world
           + # Hello-world
             ### 만녕하세요
            저는 ForteDev 입니다.
             Github에서는 체계적으로 수정할 수 있고 많은 사람들과 효율적으로 통시에 작업할 수 있습니다.
          - 정말 멋지죠!
           + 바로 이렇게 수정된 모습을 하나하나 확인할 수 있죠!!
```

- 원본 프로젝트를 건드리지 않 고, 새 수정본을 만들어 수정가능
- 수정할 때마다 기록(commit) 이 남고, 원할 때 특정 변경 위치로 돌아갈 수 있음
- 어떤 팀원이 수정을 잘 했더라 도 팀원에게 승인을 받아야 원본 프로젝트 변경 가능

1단계

https://github.com

Built for developers

GitHub is a development platform inspired by the way you work. From **open source** to **business**, you can host and review code, manage projects, and build software alongside millions of other developers.

P	ick a username
Ema	ail
у	ou@example.com
Pas	sword
С	reate a password
	at least one letter, one numeral, and seven acters.
	Sign up for GitHub
1000	clicking "Sign up for GitHub", you agree to our terms o rvice and privacy policy. We'll occasionally send you account related emails.

3단계

완료

2. Git 다운

https://git-scm.com/downloads

2. 로컬 저장소 만들기 위한 준비

로컬 저장소 : 개인적인 공간에 있는 저장소이기 때문에 다른 사람이 접근 할 수 없음

2. 로컬 저장소 만들기 위한 준비

3. \$ git init : 깃 저장소 초기화

```
MINJOO@ MINGW64 ~/Desktop/DES (master)
$ git init
Reinitialized existing Git repository in C:/Users/MINJOO/Desktop/DES/.git/
```

```
MINGW64 ~/Desktop/DES (master)
$ git status
On branch master
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
        modified: HW/DES_HW_1.py
|Untracked files:
  (use "git add <file>..." to include in what will be committed)
       HW/DES_HW_2.py
no changes added to commit (use "git add" and/or "git commit -a")
```

```
MINGW64 ~/Desktop/DES (master)
$ git status
On branch master
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
       modified: HW/DES_HW_1.py
Untracked files:
  (use "git add <file>..." to include in what will be committed)
       HW/DES_HW_2.py
no changes added to commit (use "git add" and/or "git commit -a")
```

```
MINGW64 ~/Desktop/DES (master)
$ git status
On branch master
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
       modified: HW/DES_HW_1.py
Untracked files:
  (use "git add <file>..." to include in what will be committed)
       HW/DES_HW_2.py
no changes added to commit (use "git add" and/or "git commit -a")
```

```
MINGW64 ~/Desktop/DES (master)
$ git status
On branch master
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
       modified: HW/DES_HW_1.py
Untracked files:
  (use "git add <file>..." to include in what will be committed)
        HW/DES_HW_2.py
no changes added to commit (use "git add" and/or "git commit -a")
```

5. \$ git add 원하는 파일/폴더 이름

```
MINJOO@ MINGW64 ~/Desktop/DES (master)
$ git add HW
```

6. \$ git commit -m "원하는 내용"

- O Commit 하기
- 현재 상태를 스냅샷처럼 저장
- O Commit 명령어를 이용하여 원하는 메모와 함께 현재 상태 저장

```
MINJOO@ MINGW64 ~/Desktop/DES (master)
$ git commit -m "All of DES Source Code"
[master a35f00f] All of DES Source Code
2 files changed, 571 insertions(+), 1 deletion(-)
create mode 100644 HW/DES_HW_2.py
```

6. \$ git commit -m "원하는 내용"

- O Commit 하기
- 현재 상태를 스냅샷처럼 저장
- O Commit 명령어를 이용하여 원하는 메모와 함께 현재 상태 저장

```
MINJOO@ MINGW64 ~/Desktop/DES (master)
$ git commit -m "All of DES Source Code"
[master a35f00fl All of DES Source Code
2 files changed 571 insertions(+), 1 deletion(-)
create mode 100644 HW/DES_HW_2.py
```

6. \$ git commit -m "원하는 내용"

- O Commit 하기
- 현재 상태를 스냅샷처럼 저장
- O Commit 명령어를 이용하여 원하는 메모와 함께 현재 상태 저장

```
MINJOO@ MINGW64 ~/Desktop/DES (master)
$ git commit -m "All of DES Source Code"
[master a35f00f] All of DES Source Code
2 files changed, 571 insertions(+), 1 deletion(-)
create mode 100644 HW/DES_HW_2.py
```

7. 원격 저장소로 연결하기

```
MINJOO@ MINGW64 ~/Desktop/DES (master)
$ git remote add origin https://github.com/MinjooSim/DES_tutorial.git
fatal: remote origin already exists.
```

원격 저장소 : 온라인으로 접근해야 하는 데스크탑 외부의 저장소

7. 원격 저장소로 연결하기

원격 저장소 : 온라인으로 접근해야 하는 데스크탑 외부의 저장소

7. 원격 저장소로 연결하기

연동 확인하기

```
#INJOCE MING/64 ~/Desktop/DES (master)

$ git remote -v

origin https://github.com/MinjooSim/Des_tutorial (fetch)
origin https://github.com/MinjooSim/Des_tutorial (push)
```

8. Push 하여 원격장소로 commit 내용 올리기

```
MTN100@ MTNGW64 ~/Desktop/DES (master)
$ git push origin master
Enumerating objects: 0, done.
Counting objects: 100% (8/8), done.
Delta compression using up to 4 threads
Compressing objects: 100% (4/4), done.
Writing objects: 100% (5/5), 5.76 KiB | 1.15 MiB/s, done.
Total 5 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To https://github.com/MinjooSim/Des_tutorial
612afd0..a35f00f master -> master
```

9. git허브에서 확인하기

추가 전

추가 후

C언어 공부

○4장 ~ 9장 : ~ 1/9

4장 : 연산자

5장:선택문

6장 : 반복문

7장 : 함수

8장 : 배열

9장: 포인터

●10장 ~ 18장 : ~ 1/18

10장: 배열과 포인터

11장 : 문자

12장 : 문자열

13장 : 변수의 영역과 데이터 공유

16장 : 메모리 동적 할당

17장: 사용자 정의 자료형

MinjooSim tutorial	Late	est commit 5cc020a 25 days ago
10.1연습4	tutorial	25 days ago
10.2.연습2	tutorial	25 days ago
■ 10.2.연습4	tutorial	25 days ago
■ 10.2.연습5	tutorial	25 days ago
■ 10.도전1	tutorial	25 days ago
■ 10.도전2	tutorial	25 days ago
■ 10.도전3	tutorial	25 days ago
■ 11.1.연습5	tutorial	25 days ago
■ 11.2.연습3	tutorial	25 days ago
11.2.연습4	tutorial	25 days ago
■ 11.2.연습5	tutorial	25 days ago
■ 11.도전1.1	tutorial	25 days ago
■ 11.도전1	tutorial	25 days ago
■ 11.도전2	tutorial	25 days ago
■ 11.도전 3	tutorial	25 days ago
■ 12.도전1.1	tutorial	25 days ago
■ 12.도전1	tutorial	25 days ago

https://github.com/MinjooSim/C_tutorial

MinjooSim tutorial		est commit 5cc020a 25 days ago
■ .vs/10.도전3/v15	tutorial	25 days ago
■ Debug	tutorial	25 days ago
■ 10.3.c	tutorial	25 days ago
■ 10.도전3.sln	tutorial	25 days ago
■ 10.도전3.vcxproj	tutorial	25 days ago
■ 10.도전3.vcxproj.filters	tutorial	25 days ago

```
64 lines (57 sloc) 1.02 KB
                                                                                34
                                                                                     void print_nums(int *lotto_nums)//배열에 저장된 값을 출력하는 함수
       #include<stdio.h>
       void input_nums(int *lotto_nums)//배열메 로또 번호를 입력하는 함수
                                                                                             int i, j;
                                                                                             int num;
              int i, j;
              int str, n;
                                                                                             for (i = 0; i < 6; i++)
              printf("로또 번호를 입력하세요 : ");
              scanf("%d", &lotto_nums[0]);
                                                                                41
                                                                                                     for (j = i + 1; j < 6; j++)
                                                                                42
              i = 1;
  10
                                                                                43
              while (i != 6)
  11
                                                                                                            if (lotto nums[i] > lotto nums[j])
                                                                                44
                                                                                45
                     printf("로또 번호를 입력하세요 : ");
  13
                                                                                                                    num = lotto nums[j];
                                                                                46
                     scanf("%d", &n);
  14
  15
                                                                                                                    lotto nums[j] = lotto nums[i];
                                                                                47
                     str = 1;
                                                                                48
                                                                                                                    lotto nums[i] = num;
                     for (j = 0; j < 6; j++)
                                                                                                            }//오름차순 배열
                                                                                49
                            if (n == lotto_nums[j])
                                                                                51
  20
                                    printf("같은 번호가 있습니다.\n");
                                                                                             printf("입력된 로또번호 : ");
                                                                                52
                                    str = 0;
  22
                                                                                             for (i = 0; i < 6; i++)
  23
                                    break:
                                                                                                     printf("%3d\t", lotto_nums[i]);
                                                                                54
  24
                                                                                             printf("\n");
  25
                     if (str == 1)
                                                                                     int main(void)
  27
                            lotto_nums[i] = n;
                            i++;
  29
                                                                                             int lotto_nums[6] = {0}; //로또 번호를 저장할 배열
                                                                                             input_nums(lotto_nums);// 입력함수 호출
                                                                                61
                                                                                             print_nums(lotto_nums);//출력함수 호출
                                                                                62
  34
                                                                                             return 0;
      void print_nums(int *lotto_nums)//배열에 저장된 값을 출력하는 함수
                                                                                64
```

```
#include<stdio.h>
                                                                                                                      43
                                                                                                                                         break;
                                                                                                                      44
    struct money_box
                                                                                                                      46
            int w500;
                                                                                                                      48 }
            int w100;
            int w50;
                                                                                                                      50 int total(MoneyBox *pmoney)//저금통의 총 저축액 반환
            int w10;
                                                                                                                      51 {
9
    };
                                                                                                                                  int tot =0;
                                                                                                                                  tot = pmoney->w500 * 500 + pmoney->w100 * 100 + pmoney->w50 * 50 + pmoney->w10 * 10;
    typedef struct money_box MoneyBox;
                                                                                                                      54
                                                                                                                                  return tot;
                                                                                                                      55 }
    void init(MoneyBox *pmoney)//MoneyBox 변수 초기화 //매개변수는 구조체 포인터
14
                                                                                                                      57 int main(void)
            pmoney->w10 = 0;//pmoney = 구조체 포인터//->구조체 변수 간접참조() 대신 사용
            pmoney->w50 = 0;
                                                                                                                                  MoneyBox money;
            pmoney->w100 = 0;
                                                                                                                                  MoneyBox *pmoney = &money;
             pmoney->w500 = 0;
                                                                                                                                  int money_total = 0;
                                                                                                                                  int count = 0;
                                                                                                                      64
                                                                                                                                  int coin = 0;
    void save(MoneyBox *pmoney, int unit, int cnt)//unit 동전을 cnt개 저금
                                                                                                                                  init(pmoney);
            switch(unit)
24
                                                                                                                                  while (coin != -1)
            case 500:
                                                                                                                                  {
                                                                                                                                         printf("동전의 금액과 개수 : ");
27
                    pmoney->w500 = pmoney->w500 + cnt;
                                                                                                                                         scanf("%d", &coin);
                    break;
                                                                                                                                         if (coin == -1)
            case 100:
                                                                                                                                                break;
                    pmoney->w100 = pmoney->w100 + cnt;
                                                                                                                                         scanf("%d", &count);
                    break;
34
                                                                                                                                         save(pmoney,coin,count);
            case 50:
                                                                                                                                  money_total = total(pmoney);
                    pmoney->w50 = pmoney->w50 + cnt;
                    break;
                                                                                                                                  printf("총 저금액: %d원\n", money_total);
                                                                                                                     84
            case 10:
                                                                                                                                  return 0;
41
42
                    pmoney->w10 = pmoney->w10 + cnt;
```

DES구현

0. DES(Data Encryption Standard) 정의

미국 표준의 56bit 암호 키를 사용하는 대칭키 블록 암호화 알고리즘

**30년간 전세계적으로 널리 통용되어온 실질적인 블록 암호화 방식

0. DES의 한계점

○컴퓨터의 처리 속도가 급속도로 발전하면서 암호 키와 암호화 루틴을 해독하는 것이 쉬워짐.

- O보안을 위해 Triple DES(3DES)개발
- DES의 암호 키 2개 & 암호화 작업 3중으로 처리

**현재는 AES(Advanced Encryption Standard) 가 새로운 표준 (2000~)

OFeistel 암호 구조

- n-bit의 평문을 입력으로 했을 때, n-bit의 암호문이 나오게 되고, 각각의 평문 블록은 유일한 암호문 블록을 생성

1) 64bit 평문 초기 치환(IP)단계 통과

PERMUTED

INPUT

INITIAL PERMUTATION

INVERSE INITIAL PERM

OUTPUT

Lo

PREOUTPUT R16=L15 (+) f(R15, K16)

Ro

L16=R15

2) 초기 치환을 거친 평문을 총 16번의 라운드를 거쳐 암호화

3) 각 라운드는 32bit씩(L, R) 나누어 들어감

4) 오른쪽 32bit는 키 스케줄에 의해 만들어진 48bit의 키와 함께 f함수에 들어감

5) L1 = R0R1 = L0 XOR F(R0,K1)

O F 함수

5) 32bit의 평문을 48bit로 확장

**E구조

-32bit->4bit 씩 8세트

-앞뒤로 한 비트씩 붙여준다

6) 확장된 문장과 암호키를 XOR

XOR										
Ing	out	Output								
A	В	С								
0	0	0								
1	0	1								
0	1	1								
1	1	0								

7) 6bit씩 8개로 나눈 후, s-box를 사용하여 암호화 진행

-4bit 8개의 결과가 나옴

7) 6bit씩 8개로 나눈 후, s-box를 사용하여 암호화 진행

-4bit 8개의 결과가 나옴

	S1															
행 \ 열	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	3	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	13	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

**S-DOX

예제 3.2 S-Box 입력 $b=(100101)_2$ 는 행 $11_2=3$ (즉, 숫자가 00_2 로 시작하므로 4번째 행)과 열 $0010_2=2$ (즉, 3번째 열)를 의미한다. 입력 b가 S-box 1에 입력되면 결과는 $S_1(37=100101_2)=8=1000_2$ |다.

(32 bits)

								S1								
행 \ 열	0	1	2	3		5	c		8	9	10	11	12	13	14	15
0	14	4	13	1		15	11	8	3	10	6	12	5	9	0	7
1	0	15	7		14	2	13	1	10	6	12	11	9	5	3	8
2	4		14	8	13	6	2	11	15	12	9	7	13	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

**s-box

예제 3.2 S-Box 입력 $b=(100101)_2$ 는 행 $11_2=3$ (즉, 숫자가 00_2 로 시작하므로 4번째 행)과 열 $0010_2=2$ (즉, 3번째 열)를 의미한다. 입력 b가 S-box 1에 입력되면 결과는 $S_1(37=100101_2)=8=1000_2$ 다.

행 \ 열	0	1	2	3		5		7	8	9	10	11	12	13	14	15
0	14	4	13	1	2		11	8	3	10	6	12	5	9	0	7
1	0	15	7	3	1/	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	13	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

8) S-box를 거친 결과 값을 치환한 후 반환

- DES P(Permutation, 비트 치환) 구조

32 비트 길이의 데이터의 순서를 섞는다.

1->16으로 치환

			ı	P 29 12 28 17 5 18 31 10								
16	7	20	21	29	12	28	17					
	15	23	26	5	18	31	10					
2	8	24	14	32	27	3	9					
19	13	30	6	22	11	4	25					

8) S-box를 거친 결과 값을 치환한 후 반환

0 키 스케줄

9) key(64bit)

PC1치환

8bit 패리티 체크 비트 제거(56bit)

KEY

PERMUTED CHOICE 1

8bit 패리티체크 비트 제거(56bit)

9) key(64bit)

10) C0, D0 28bit 를 각각 왼쪽으로 비트이동 (1라운드-> 1번)

[[로테이션 시트]] :: 좌측으로 로테이션 반복 회차 비트 이동 횟수

11) PC2 치환후, K(48bit) 생성

- DES PC2(Permuted choice 2, 선택 치환 2)

	PC2														
14	17	11	24	1	5	3	28								
15	6	21	10	23	19	12	4								
26	8	16	7	27	20	13	2								
41	52	31	37	47	55	30	40								
51	45	33	48	44	49	39	56								
34	53	46	42	50	36	29	32								

2. DES 구현 (진행 중)

```
def swapper(leftBlock, rightBlock):
     ### Function swapper: switch leftBlock and rightBlock
     ### BEGIN - description of parameters
          leftBlock:
                                left sub-block as input
                                 but the contents would be that of rig
         rightBlock:
                                 right sub-block as input
                                 but the contents would be that of lef
     ### END - description of parameters
     assert(len(leftBlock) == 32)
assert(len(rightBlock) == 32)
     T = []
     ### BEGIN - TODO (insert code here)
     ### END - TODO
```

2. DES 구현

```
((round + 1), #
                   BinaryArrayToHexString(leftBlock, 8), #
                   BinaryArrayToHexString(rightBlock, 8), #
                   BinaryArrayToHexString(RoundKeys[round], 12)) )
         ### END - Uncomment when you test result for each round in the report
    combine(32, 64, leftBlock, rightBlock, outBlock)
    ### BEGIN - Uncomment when you test result for each round in the report
    #print ("-" * 60 + "\mathbf{m}After combination: %s" % \mathbf{#}
            BinaryArrayToHexString(outBlock, 16) )
    ### END - Uncomment when you test result for each round in the report
    permute(64, 64, outBlock, cipherBlock, FinalPermutationTable)
    ### BEGIN - Uncomment when you test result for each round in the report
    #print ("Ciphertext: %s\tag{fter final permutation}" % \tag{#}
            BinaryArrayToHexString(cipherBlock, 16))
    ### END - Uncomment when you test result for each round in the report
    assert(len(cipherBlock) == 64)
def Key_Generator(keyWithParities, RoundKeys, ShiftTable):
    ### Function Key_Generator: round key generation algorithm
    ### BEGIN - description of parameters
          keyWithParities:
                                   64-bit input key
                                  16 48-bit round keys to be generated from keyWithParities
          RoundKevs:
          ShiftTable:
                                  shift table indicating the amound of circular shift left
    assert(len(key\#ithParities) == 64)
    assert(len(ShiftTable) == 16)
    cipherKey = []
    leftKey = []
    rightKey = []
    ### BEGIN - TODO (insert code here)
    cipherKey = ParityDropTable
    preRoundKey = KeyCompressionTable
    assert(len(cipherKey) == 56)
    leftKey[:] = cipherKey[:28]
    rightKey[:] = cipherKey[28:]
```

감사합니다