PC1. FOUNDATIONS OF MACHINE LEARNING. (MDC_51006_EP - 2025-2026)

EXERCISE 1 (BAYES CLASSIFIER) Prove that the optimal binary Bayes Classifier for the 0-1 loss is given by

$$f^{\star}(X) = \begin{cases} 1 & \text{if } \mathbb{P}(Y = 1|X) \geq \mathbb{P}(Y = -1|X) \\ -1 & \text{otherwise} \end{cases}$$

Solution.

$$\begin{split} \mathbb{E}\left[\ell^{0-1}(Y, f(X))\right] &= \mathbb{E}\left[\ell^{0-1}(Y, f(X)) | Y = 1, X\right] \mathbb{P}(Y = 1 | X) + \mathbb{E}\left[\ell^{0-1}(Y, f(X)) | Y = -1, X\right] \mathbb{P}(Y = -1 | X) \\ &= \mathbf{1}_{f(X) = -1} \mathbb{P}(Y = 1 | X) + \mathbf{1}_{f(X) = 1} \mathbb{P}(Y = -1 | X) \end{split}$$

which is indeed minimized by f^{\star} .

EXERCISE 2 (TRAINING ERROR OPTIMISM) Assume that $((x_i, y_i))_i$ is a sequence of i.i.d. random vectors. Consider a parametric model f_β fit by least squares to a set of training data $(x_1, y_1), \ldots, (x_N, y_N)$ drawn at random from a population. Let $\hat{\beta} \in \mathbf{R}^d$ be the least squares estimate, i.e.

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y_i - f_{\beta}(x_i))^2$$

Suppose we have some test data $(\widetilde{x}_1,\widetilde{y}_1),\ldots,(\widetilde{x}_M,\widetilde{y}_M)$ drawn at random from the same population $((x_i,y_i))_i$ as the training data.

1. If we define

$$R_{train}(\beta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f_{\beta}(x_i))^2$$

and

$$R_{test}(\beta) = \frac{1}{M} \sum_{i=1}^{M} (\widetilde{y}_i - f_{\beta}(\widetilde{x}_i))^2$$

Prove that

$$\mathbb{E}[R_{train}(\hat{\beta})] \leq \mathbb{E}[R_{test}(\hat{\beta})]$$

where the expectations are over all that is random in each expression.

Solution.

Let $\beta^* = \operatorname{argmin}_{\beta \in \mathbb{R}^d} \mathbb{E}[R_{train}(\beta)] = \operatorname{argmin}_{\beta \in \mathbb{R}^d} \mathbb{E}\Big[\big(y_0 - f_\beta(x_0)\big)^2\Big]$. Note that β^* is a vector of \mathbb{R}^d that is not random.

By construction, $R_{train}(\widehat{\beta}) \leq R_{train}(\beta^*)$ and thus

$$\mathbb{E}\left[R_{train}(\widehat{\beta})\right] \leq \mathbb{E}[R_{train}(\beta^*)]. \tag{1}$$

Note that there is no contradiction with $\beta^{\star} = \operatorname{argmin}_{\beta \in \mathbb{R}^d} \mathbb{E}[R_{train}(\beta)]$ because $\widehat{\beta}$ is a random vector that depends on and could be different for each $(x_1, y_1), \ldots, (x_N, y_N)$.

Denote $g(\beta) = \mathbb{E}[R_{test}(\beta)]$ for $\beta \in \mathbb{R}^d$. Since we also have $\mathbb{E}[R_{test}(\beta)] = \mathbb{E}\left[\left(y_0 - f_{\beta}(x_0)\right)^2\right] = \mathbb{E}[R_{train}(\beta)]$ for any $\beta \in \mathbb{R}^d$, we deduce that $\beta^* = \operatorname{argmin}_{\beta \in \mathbb{R}^d} \mathbb{E}[R_{test}(\beta)] = \operatorname{argmin}_{\beta \in \mathbb{R}^d} g(\beta)$. But $\widehat{\beta} \in \sigma((x_1, y_1), \dots, (x_N, y_N))$ and is independent from $(\widetilde{x}_1, \widetilde{y}_1), \dots, (\widetilde{x}_M, \widetilde{y}_M)$.

and is independant from $(\widetilde{x}_1,\widetilde{y}_1),\ldots,(\widetilde{x}_M,\widetilde{y}_M)$. Therefore, for any $\beta\in\mathbb{R}$, we also have $g(\beta)=\mathbb{E}\left[R_{test}(\beta)\mid\sigma\big((x_1,y_1),\ldots,(x_N,y_N)\big)\right]$. Hence $g(\beta^\star)\leq\mathbb{E}\left[R_{test}(\beta)\mid\sigma\big((x_1,y_1),\ldots,(x_N,y_N)\big)\right]$ for any $\beta\in\mathbb{R}^d$.

Since $g(\widehat{\beta}) = \mathbb{E}\left[R_{test}(\widehat{\beta}) \mid \sigma\left((x_1,y_1),\ldots,(x_N,y_N)\right)\right]$, we have $g(\beta^\star) \leq g(\widehat{\beta})$. Finally this induces $g(\beta^\star) = \mathbb{E}\left[g(\beta^\star)\right] \leq \mathbb{E}\left[g(\widehat{\beta})\right]$ and this leads to

$$\mathbb{E}[R_{train}(\beta^{\star})] = g(\beta^{\star}) = \mathbb{E}[R_{test}(\beta^{\star})] \le \mathbb{E}\left[R_{test}(\widehat{\beta})\right] = \mathbb{E}\left[g(\widehat{\beta})\right]. \tag{2}$$

As a consequence, we obtain

$$\mathbb{E}\left[R_{train}(\widehat{\beta})\right] \leq \mathbb{E}[R_{train}(\beta^{\star})] = \mathbb{E}[R_{test}(\beta^{*})] \leq \mathbb{E}\left[R_{test}(\widehat{\beta})\right].$$

2. Can we replace $R_{test}(\beta)$ by the risk $R(\beta) = \mathbb{E}\left[(\widetilde{y} - f_{\beta}(\widetilde{x}))^2\right]$ where $(\widetilde{x}, \widetilde{y})$ follows the population law? Solution.

From the assumption, we establish for any
$$\beta \in \mathbb{R}^d$$
, $g(\beta) = R(\beta) = \mathbb{E}[R_{test}(\beta)] = \mathbb{E}\left[(\widetilde{y} - f_{\beta}(\widetilde{x}))^2\right] = \mathbb{E}\left[\left(y_1 - f_{\beta}(x_1)\right)^2\right] = \mathbb{E}[R_{train}(\beta)].$

3. Let β^* be the minimizer of the risk $R(\beta)$, prove that

$$\mathbb{E}\left[R_{train}(\hat{\beta})\right] \le R(\beta^{\star}) \le \mathbb{E}\left[R(\hat{\beta})\right]$$

Solution.

From (2),
$$g(\beta^*) = R(\beta^*) \leq \mathbb{E}\left[g(\widehat{\beta})\right]$$
 and (1), $\mathbb{E}\left[R_{train}(\widehat{\beta})\right] \leq R(\beta^*) = g(\beta^*)$, and this achieves the proof.

EXERCISE 3 (TESTING ERROR) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Assume that (X, Y) is a couple of random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and taking values in $\mathcal{X} \times \{-1, 1\}$ where \mathcal{X} is a given state space. One aim of supervised classification is to define a function $h: \mathcal{X} \to \{-1, 1\}$, called *classifier*, such that h(X) is the best prediction of Y in a given context. For instance, the probability of misclassification of h is

$$L_{\text{miss}}(h) = \mathbb{P}(Y \neq h(X))$$
.

Note that $\mathbb{E}[Y|X]$ is a random variable measurable with respect to the σ -algebra $\sigma(X)$. Therefore, there exists a function $\eta: \mathcal{X} \to [-1,1]$ so that $\mathbb{E}[Y|X] = \eta(X)$ almost surely.

In Exercise 1, we have shown that h_{\star} , defined for all $x \in \mathcal{X}$, by

$$h_{\star}(x) = \left\{ \begin{array}{ll} 1 & \text{if} \;\; \eta(x) > 0 \;, \\ -1 & \text{otherwise} \;, \end{array} \right.$$

is such that

$$h_{\star} = \underset{h:\mathcal{X} \to \{-1,1\}}{\operatorname{argmin}} L_{\operatorname{miss}}(h) .$$

1. In practice, the minimization of $L_{\rm miss}$ holds on a specific set ${\cal H}$ of classifiers (often called the *dictionary*), which may possibly not contain the Bayes classifier. Moreover, since in most cases, the classification risk $L_{\rm miss}$ cannot be computed nor minimized, it is instead estimated by the empirical classification risk defined as

$$\widehat{L}_{\text{miss}}^n(h) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{Y_i \neq h(X_i)} ,$$

where $(X_i, Y_i)_{1 \le i \le n}$ are independent observations with the same distribution as (X, Y). The classification problem then boils down to solving

$$\widehat{h}_{\mathcal{H}}^n \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} \widehat{L}_{\operatorname{miss}}^n(h)$$
.

Prove that for all set ${\mathcal H}$ of classifiers and all $n\geqslant 1$,

$$L_{\text{miss}}(\widehat{h}_{\mathcal{H}}^n) - \inf_{h \in \mathcal{H}} L_{\text{miss}}(h) \leqslant 2 \sup_{h \in \mathcal{H}} \left| \widehat{L}_{\text{miss}}^n(h) - L_{\text{miss}}(h) \right|.$$

Solution.

By definition of $\widehat{h}_{\mathcal{H}}^n$, for any $h \in \mathcal{H}$,

$$\begin{split} L_{\mathrm{miss}}(\widehat{h}_{\mathcal{H}}^{n}) - \inf_{h \in \mathcal{H}} L_{\mathrm{miss}}\left(h\right) &= L_{\mathrm{miss}}(\widehat{h}_{\mathcal{H}}^{n}) - \widehat{L}_{\mathrm{miss}}^{n}(\widehat{h}_{\mathcal{H}}^{n}) + \widehat{L}_{\mathrm{miss}}^{n}(\widehat{h}_{\mathcal{H}}^{n}) - \inf_{h \in \mathcal{H}} L_{\mathrm{miss}}\left(h\right) \;, \\ &\leqslant L_{\mathrm{miss}}(\widehat{h}_{\mathcal{H}}^{n}) - \widehat{L}_{\mathrm{miss}}^{n}(\widehat{h}_{\mathcal{H}}^{n}) + \widehat{L}_{\mathrm{miss}}^{n}(h) - \inf_{h \in \mathcal{H}} L_{\mathrm{miss}}\left(h\right) \;. \end{split}$$

For all $\varepsilon>0$ there exists $h_{\varepsilon}\in\mathcal{H}$ such that $L_{\mathrm{miss}}(h_{\varepsilon})<\inf_{h\in\mathcal{H}}\ L_{\mathrm{miss}}\left(h\right)+\varepsilon$ so that

$$L_{\text{miss}}(\widehat{h}_{\mathcal{H}}^{n}) - \inf_{h \in \mathcal{H}} L_{\text{miss}}(h) \leqslant L_{\text{miss}}(\widehat{h}_{\mathcal{H}}^{n}) - \widehat{L}_{\text{miss}}^{n}(\widehat{h}_{\mathcal{H}}^{n}) + \widehat{L}_{\text{miss}}^{n}(h_{\varepsilon}) - L_{\text{miss}}(h_{\varepsilon}) + \varepsilon ,$$

$$\leqslant 2 \sup_{h \in \mathcal{H}} \left| \widehat{L}_{\text{miss}}^{n}(h) - L_{\text{miss}}(h) \right| + \varepsilon ,$$

which concludes the proof.

2. Using Hoeffding's inequality, stating that if $X_i \in [a_i, b_i]$ then for all t > 0,

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} \mathbb{E}[X_{i}]\right| > t\right) \leqslant 2\exp\left(\frac{-2t^{2}}{\sum_{i=1}^{n} (b_{i} - a_{i})^{2}}\right) , \tag{3}$$

prove that when $\mathcal{H}=\{h_1,\ldots,h_M\}$ for a given $M\geqslant 1$, then, for all $\delta>0$,

$$\mathbb{P}\left(L_{\text{miss}}(\widehat{h}_{\mathcal{H}}^{n}) \leqslant \min_{1 \leqslant j \leqslant M} L_{\text{miss}}(h_{j}) + \sqrt{\frac{2}{n} \log\left(\frac{2M}{\delta}\right)}\right) \geqslant 1 - \delta.$$

Solution.

By the previous question, for all u>0,

$$\mathbb{P}\left(L_{\text{miss}}(\widehat{h}_{\mathcal{H}}^{n}) > \min_{1 \leq j \leq M} L_{\text{miss}}(h_{j}) + u\right) \leq \mathbb{P}\left(\sup_{h \in \mathcal{H}} \left| \widehat{L}_{\text{miss}}^{n}(h) - L_{\text{miss}}(h) \right| > \frac{u}{2} \right) \leq \sum_{j=1}^{M} \mathbb{P}\left(\left| \widehat{L}_{\text{miss}}^{n}(h_{j}) - L_{\text{miss}}(h_{j}) \right| > \frac{u}{2} \right).$$

By Hoeffding's inequality,

$$\mathbb{P}\left(L_{\text{miss}}(\widehat{h}_{\mathcal{H}}^{n}) > \min_{1 \leq j \leq M} L_{\text{miss}}(h_{j}) + u\right) \leq 2M e^{-nu^{2}/2},$$

which concludes the proof by choosing

$$u = \sqrt{\frac{2}{n} \log \left(\frac{2M}{\delta}\right)} \ .$$