Precalculus Homework

Definition of the trigonometric functions and basic computations

1	Commont	factor	daamaaa	40	madiama
Ι.	Convert	пош	degrees	w	radians.

(a)	15° .		(h) 120°.	(n) 305°.	
<i>a</i> >	200	$888997132.0 pprox \frac{\pi}{\Omega 1}$:199388		answer: $\frac{\Delta \pi}{8}$	ŧ	nswer: $\frac{61\pi}{36} \approx 5.32325$
(b)	30°.		(i) 135°.	(o) 360°.	
(c)	36°.	$8178962353.0pproxrac{\pi}{8}$:19Weris		answer: $\frac{3\pi}{4}$		πS :iswei
(-)		answer: $rac{\pi}{5}pprox 0.628318531$	(j) 150° .	(p) 405°.	
(d)	45° .	_		answer: $\frac{5\pi}{6}$		$\frac{\pi e}{4}$: iswer:
	200	ϵ 81898587.0 $pprox \frac{\pi}{4}$ Tiowsins	(k) 180° .	(q) 1200°.	
(e)	60°.			π :i9wer: π		nswer: $\frac{20\pi}{3}$
(f)	75°.	1337917 ${1\over 8} \approx {\pi\over 8}$ (1978)	(1) 225° .	(r	e) -900° .	
` '		answer: $\frac{\pi \delta}{\Omega}$:308997		answet: $\frac{5\pi}{4}$		πā— :iswer:
(g)	90°.	2-3	(m) 270° .	(s	-2014° .	

2. Convert from radians to degrees. The answer key has not been proofread, use with caution.

Suswer: $\frac{2}{\pi}$

(a) 4π .		(d) $\frac{4}{3}\pi$.		(g) 5.	
(b) $-\frac{7}{6}\pi$.	answer: 720°	(e) $-\frac{3}{8}\pi$.	опѕист 240°	(h) −2014.	answer: $\left(\frac{900}{4000}\right)^{\circ} \approx 286^{\circ}$
(c) $\frac{7}{12}\pi$.	O 11C — TIOW PARENTE	(f) 2014π .	апѕмет: −67.5°		answer: -362520°
	answer: 105°		answet: 362520°		

answet: $\frac{3\pi}{2}$

3. Find the indicated circle arc-length. The answer key has not been proofread, use with caution.

(a) Circle of radius 3, arc of measure 36°.

 $859488.1 \approx \frac{\pi E}{3}$:13wers

 $189051.58 - \pi \frac{1001}{99} - 35.159931$

(b) Circle of radius $\frac{1}{2}$, arc of measure 100° .

answer: $\frac{5\pi}{18} \approx 0.872665$

(c) Circle of radius 1, arc of measure 3 (radians).

answer: 3

(d) Circle of radius 3, arc of measure 300°.

 $699707.81 \approx \pi \text{ d.::owers}$

4. Find the 6 trigonometric functions of the indicated angle in the indicated right triangle.

(a)

answer;
$$\sin\theta = \frac{3}{13}\sqrt{13},\cos\theta = \frac{2}{13}\sqrt{13},\tan\theta = \frac{2}{3},\cot\theta = \frac{2}{3},\sec\theta = \frac{2}{3},\sec\theta = \frac{\sqrt{13}}{2}$$

 $\sqrt{5}$

(b)

arswell
$$\sin \theta = \frac{\sqrt{5}}{5}$$
, $\cos \theta = \frac{2\sqrt{5}}{5}$, $\tan \theta = \frac{1}{2}$, $\cot \theta = 2$, $\sec \theta = \frac{\sqrt{5}}{2}$, $\csc \theta = \sqrt{5}$

(c) θ

(d)

answer
$$\sin \theta = \frac{5}{\sqrt{29}} = \frac{5\sqrt{99}}{2}$$
, $\cos \theta = \frac{2}{\sqrt{29}}$, $\tan \theta = \frac{2}{5}$, $\cot \theta = \frac{5}{2}$, $\sec \theta = \frac{\sqrt{29}}{5}$, $\csc \theta = \frac{\sqrt{29}}{2}$

$$\text{answell sin } \theta = \frac{\sqrt{11}}{6}, \cos \theta = \frac{5}{6}, \tan \theta = \frac{\sqrt{11}}{5}, \cos \theta = \frac{5}{\sqrt{11}}, \sec \theta = \frac{6}{5}, \csc \theta = \frac{6}{5}, \csc \theta = \frac{11}{1}$$

- 5. Find the exact value of the trigonometric function (using radicals).
 - (a) $\cos 135^{\circ}$.

(b) $\sin 225^{\circ}$.

...........

answer:

(c) $\cos 495^{\circ}$.

answer:

(d) $\sin 560^{\circ}$.

suswer:

(e)
$$\sin\left(\frac{3\pi}{2}\right)$$
.

suswer:

(f)
$$\cos\left(\frac{11\pi}{6}\right)$$
.

:Jəmsue

(g)
$$\sin\left(\frac{2015\pi}{3}\right)$$
.

(h)
$$\cos\left(\frac{17\pi}{3}\right)$$
.

6. Find all solutions of the equation in the interval $[0, 2\pi)$. The answer key has not been proofread, use with caution.

(a)
$$\sin x = -\frac{\sqrt{2}}{2}$$
.

answer:
$$x=\frac{\pi 7}{\hbar}$$
 , $\frac{\pi 5}{\hbar}=x$:Towers

(b)
$$\cos x = \frac{\sqrt{3}}{2}$$
.

answer:
$$x = \frac{\pi}{6}$$
, $\frac{\pi}{6}$ = x : Then $\frac{\pi}{6}$

(c)
$$\sin(3x) = \frac{1}{2}$$
.

$$\frac{\pi 81}{6}$$
 , $\frac{\pi 81}{81}$, $\frac{\pi 71}{81}$, $\frac{\pi 81}{81}$, $\frac{\pi 6}{81}$, $\frac{\pi}{81}$ = x Hawsing

(d)
$$\cos(7x) = 0$$
.

$$\frac{\pi^{7}}{1},\frac{\pi^{6}}{1},\frac{\pi^{6}}{1},\frac{\pi^{6}}{1},\frac{\pi^{6}}{2},\frac{\pi^{6}}{1},\frac{\pi^{6}}{1},\frac{\pi^{7}}{1},\frac{\pi^{7}}{1},\frac{\pi^{6}}{1},\frac{\pi^$$

(e)
$$\cos(3x + \frac{\pi}{2}) = 0$$
.

answer:
$$x=0$$
, $\frac{\pi E}{E}$, π , $\frac{\pi E}{E}$, $\frac{\pi E}{E}$, $0=x$: Then $\frac{\pi E}{E}$

(f)
$$\sin(5x - \frac{\pi}{3}) = 0$$
.

$$\frac{\pi S}{1}$$
, $\frac{\pi S}{1}$, $\frac{\pi$

Solution. 6.a

$$\sin x = -\frac{\sqrt{2}}{2}$$

Since $\sin x$ is negative it must be either in Quadrant III or IV. Therefore the angle x is coterminal either with $225^{\circ} = \frac{5\pi}{4}$ (Quadrant III) or $315^{\circ} = \frac{7\pi}{4}$ (Quadrant IV).

Case 1. x is coterminal with $225^{\circ} = \frac{5\pi}{4}$. We can compute

$$x = \frac{5\pi}{4} + 2k\pi \qquad k \text{ is any integer}$$

$$x = \frac{5\pi}{4} + \frac{8k\pi}{4}$$

$$x = \frac{5\pi + 8k\pi}{4}$$

$$x = \frac{\pi(5+8k)}{4}$$

We are looking for solutions in the interval $[0, 2\pi)$ and so we must discard those values of the integer k for which $\frac{\pi(7+8k)}{4}$ is negative or is greater than or equal to 2π . Therefore the only solution in this case is $x = \frac{5\pi}{4}$.

Case 2.

$$x = \frac{7\pi}{4} + 2k\pi$$

$$x = \frac{7\pi}{4} + \frac{8k\pi}{4}$$

$$x = \frac{7\pi + 8k\pi}{4}$$

$$x = \frac{\pi(7+8k)}{4}$$

We are looking for solutions in the interval $[0, 2\pi)$ and so we must discard those values of the integer k for which $\frac{\pi(7+8k)}{4}$ is negative or is greater than or equal to 2π . Therefore the only solution in this case is $x = \frac{7\pi}{4}$.

Solution. 6.f

$$\sin\left(5x - \frac{\pi}{3}\right) = 0$$

Since $\sin 0 = 0$ and $\sin 180^\circ = \sin \pi = 0$, the angle $5x - \frac{\pi}{3}$ must be coterminal with 0 or π .

Case 1. $5x - \frac{\pi}{3}$ is coterminal with 0. We compute

$$5x - \frac{\pi}{3} = 0 + 2k\pi$$

$$5x = \frac{\pi}{3} + 2k\pi$$

$$x = \frac{\frac{\pi}{3} + 2k\pi}{5}$$

$$x = \frac{\frac{\pi}{3} + \frac{6k\pi}{3}}{5}$$

$$x = \frac{\frac{\pi + 6k\pi}{35}}{5}$$

$$x = \frac{\pi + 6k\pi}{\frac{15}{5}}$$

$$x = \frac{\pi + 6k\pi}{15}$$

$$x = \frac{\pi (1 + 6k)}{15}$$

$$x = \frac{\pi (1 + 6k)}{15}$$

$$x = \frac{\pi [1 + 6(0)]}{15}, \frac{\pi [1 + 6(1)]}{15}, \frac{\pi [1 + 6(2)]}{15}, \frac{\pi [1 + 6(3)]}{15}, \frac{\pi [1 + 6(4)]}{15}, \checkmark$$
Discard other values of k as they yield angles outside of $[0, 2\pi)$

$$x = \frac{\pi}{15}, \frac{7\pi}{15}, \frac{13\pi}{15}, \frac{19\pi}{15}, \frac{25\pi}{15}.$$

Case 2.

$$5x - \frac{\pi}{3} = \pi + 2k\pi$$

$$5x = \pi + \frac{\pi}{3} + 2k\pi$$

$$5x = \frac{4\pi}{3} + 2k\pi$$

$$x = \frac{\frac{4\pi}{3} + 2k\pi}{\frac{5}{3}}$$

$$x = \frac{\frac{4\pi}{3} + \frac{6k\pi}{3}}{\frac{5}{3}}$$

$$x = \frac{\frac{4\pi + 6k\pi}{3}}{\frac{5}{3}}$$

$$x = \frac{4\pi + 6k\pi}{15}$$

$$x = \frac{2\pi(2 + 3k)}{15}$$

$$x = \frac{2\pi(2 + 3k)}{15}$$

$$x = \frac{2\pi[2 + 3(0)]}{15}, \frac{2\pi[2 + 3(1)]}{15}, \frac{2\pi[2 + 3(2)]}{15}, \frac{2\pi[2 + 3(3)]}{15}, \frac{2\pi[2 + 3(4)]}{15}, \dots$$
Discard other values of k as they yield angles outside of $[0, 2\pi)$

$$x = \frac{4\pi}{15}, \frac{10\pi}{15}, \frac{16\pi}{15}, \frac{22\pi}{15}, \frac{28\pi}{15}.$$

Our final answer (combined from the two cases) is $x = \frac{\pi}{15}, \frac{4\pi}{15}, \frac{7\pi}{15}, \frac{2\pi}{3}, \frac{13\pi}{15}, \frac{16\pi}{15}, \frac{19\pi}{15}, \frac{22\pi}{15}, \frac{5\pi}{3}$ or $\frac{28\pi}{15}$