Introduction to Bottom-Up Parsing

Outline

- · Review LL parsing
- Shift-reduce parsing
- The LR parsing algorithm
- Using LR parsing tables

- Top-down parsing expands a parse tree from the start symbol to the leaves.
 - Always expand the leftmost non-terminal.


```
int * int + int
```

- Top-down parsing expands a parse tree from the start symbol to the leaves.
 - Always expand the leftmost non-terminal.

- The leaves at any point form a string $\beta A \gamma$, where
 - β contains only terminals.
 - The input string is $\beta b \delta$.
 - The prefix β matches.
 - The next token is b.

```
int * int + int
```

- Top-down parsing expands a parse tree from the start symbol to the leaves.
 - Always expand the leftmost non-terminal.

int * int + int

- The leaves at any point form a string $\beta A\gamma$, where
 - β contains only terminals.
 - The input string is $\beta b \delta$.
 - The prefix β matches.
 - The next token is b.

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$, where
 - β contains only terminals.
 - The input string is $\beta b \delta$.
 - The prefix β matches.
 - The next token is b.

$$E \rightarrow T + E \mid T$$

 $T \rightarrow (E) \mid int \mid int * T$

Predictive Parsing: Review

- · A predictive parser is described by a table.
 - For each non-terminal A and for each token b we specify a production A $\rightarrow \alpha$.
 - When trying to expand A we use $A \rightarrow \alpha$ if b is the token that follows next.
- · Once we have the table:
 - The parsing algorithm is simple and fast.
 - No backtracking is necessary.

Constructing Predictive Parsing Tables

Consider the state $S \rightarrow^* \beta A \gamma$

- With b the next token
- Trying to match $\beta b \delta$

There are two possibilities:

- 1. Token b belongs to an expansion of A
 - Any $A \rightarrow \alpha$ can be used if b can start a string derived from α
 - We say that $b \in First(\alpha)$

Or...

Constructing Predictive Parsing Tables (Cont.)

2. Token b does not belong to an expansion of A

- The expansion of \boldsymbol{A} is empty and \boldsymbol{b} belongs to an expansion of γ
- Means that b can appear after A in a derivation of the form $S \rightarrow^* \beta Ab\omega$
- We say that $b \in Follow(A)$ in this case
- What productions can we use in this case?
 - Any $A \rightarrow \alpha$ can be used if α can expand to ϵ
 - We say that $\varepsilon \in First(A)$ in this case

Computing First Sets

Definition

First(X) = { b |
$$X \rightarrow^* b\alpha$$
 } \cup { $\varepsilon \mid X \rightarrow^* \varepsilon$ }

Algorithm sketch

- 1. First(b) = { b }
- 2. $\varepsilon \in \text{First}(X)$ if $X \to \varepsilon$ is a production
- 3. $\varepsilon \in \text{First}(X)$ if $X \to A_1 \dots A_n$ and $\varepsilon \in \text{First}(A_i)$ for $1 \le i \le n$
- 4. First(α) \subseteq First(X) if X \rightarrow $A_1 ... A_n <math>\alpha$ and $\epsilon \in$ First(A_i) for $1 \le i \le n$

First Sets: Example

Recall the grammar

```
E \rightarrow TX

T \rightarrow (E) \mid int Y
```

 $X \rightarrow + E \mid \varepsilon$ $Y \rightarrow * T \mid \varepsilon$

First sets

```
First(() = {()
First()) = {)}
First(int) = {int}
First(+) = {+}
First(*) = {*}
```

```
First( T ) = { int, ( }

First( E ) = { int, ( }

First( X ) = { +, \epsilon }

First( Y ) = { *, \epsilon }
```

Computing Follow Sets

· Definition

Follow(X) = { b |
$$S \rightarrow^* \beta X b \delta$$
 }

Intuition

- If $X \to A$ B then $First(B) \subseteq Follow(A)$ and $Follow(X) \subseteq Follow(B)$
- Also if $B \to^* \varepsilon$ then $Follow(X) \subseteq Follow(A)$
- If S is the start symbol then \$ ∈ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch

- 1. $\$ \in Follow(S)$
- 2. First(β) { ϵ } \subseteq Follow(X)
 - For each production $A \rightarrow \alpha \times \beta$
- 3. $Follow(A) \subseteq Follow(X)$
 - For each production $A \rightarrow \alpha \times \beta$ where $\epsilon \in \text{First}(\beta)$

Follow Sets: Example

First(T) = { int, (} First(E) = { int, (} First(X) = { +, \(\epsilon\)} First(Y) = { *, \(\epsilon\)}

Recall the grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$ $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

Follow sets

```
Follow(+) = { int, (} Follow(*) = { int, (} Follow(()) = { int, (} Follow(()) = { int, (} Follow(()) = { ), $ } Follow(()) = { +, ), $ } Follow(()) = { +, ), $ } Follow(()) = { +, ), $ } Follow(()) = { *, +, ), $ }
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G.
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in First(\alpha)$ do $T[A, b] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$, for each $b \in \text{Follow}(A)$ do $T[A, b] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$ and $\$ \in \text{Follow}(A)$ do $T[A, \$] = \alpha$

Constructing LL(1) Tables: Example

Recall the grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

- Where in the line of Y do we put $Y \rightarrow^* T$?
 - In the lines of First(*T) = { * }
- Where in the line of Y do we put $Y \rightarrow \epsilon$?
 - In the lines of Follow(Y) = { \$, +,) }

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1). This happens:
 - if G is ambiguous;
 - if G is left recursive:
 - if G is not left-factored;
 - and in other cases as well.
- For some grammars there is a simple parsing strategy: Predictive parsing.
- Most programming language grammars are not LL(1).
- Thus, we need more powerful parsing strategies.

Bottom Up Parsing

Bottom-Up Parsing

- Bottom-up parsing is more general than top-down parsing - and just as efficient.
 - Builds on ideas in top-down parsing.
 - Preferred method in practice.
- Also called LR parsing
 - L means that tokens are read left-to-right.
 - R means that it constructs a rightmost derivation.

An Introductory Example

- LR parsers don't need left-factored grammars and can also handle left-recursive grammars.
- Consider the following grammar:

$$E \rightarrow E + (E) \mid int$$

- Why is this not LL(1)?
- Consider the string: int + (int) + (int)

The Idea

 LR parsing reduces a string to the start symbol by inverting productions.

```
str w input string of terminals repeat
```

- Identify β in str such that $A \rightarrow \beta$ is a production (i.e., str = $\alpha \beta \gamma$)
- Replace β by A in str (i.e., str w = α A γ)

```
until str = 5 (the start symbol)
OR all possibilities are exhausted
```

A Bottom-up Parse in Detail (1)

$$int + (int) + (int)$$

A Bottom-up Parse in Detail (2)

```
int + (int) + (int)
E + (int) + (int)
```

```
E
|
int + ( int ) + ( int )
```

A Bottom-up Parse in Detail (3)

A Bottom-up Parse in Detail (4)

```
int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int)
```


A Bottom-up Parse in Detail (5)

```
int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int)
E + (E)
```


A Bottom-up Parse in Detail (6)

```
int + (int) + (int)

E + (int) + (int)

E + (E) + (int)

E + (int)

E + (E)

E
```

A rightmost derivation in reverse

Important Fact #1 about Bottom-up Parsing

An LR parser traces a rightmost derivation in reverse.

Where Do Reductions Happen

Fact #1 has an interesting consequence:

- Let $\alpha\beta\gamma$ be a string of non-terminals and terminals of a bottom-up parse.
- Assume the next reduction is by using $A \rightarrow \beta$.
- Then γ is a string of terminals.

Why?

Because $\alpha A \gamma \rightarrow \alpha \beta \gamma$ is a step in a right-most derivation.

Notation

- Idea: Split string into two substrings:
 - Right substring is as yet unexamined by parsing (a string of terminals).
 - Left substring has terminals and non-terminals.
- The dividing point is marked by a I
 - The I is not part of the string.
- Initially, all input is unexamined: $1x_1x_2 ... x_n$

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

Shift

Shift: Move I one place to the right.

- Shifts a terminal to the left string.

$$E + (I int) \Rightarrow E + (int I)$$

In general:

$$ABCIxyz \Rightarrow ABCxIyz$$

Reduce

Reduce: Apply an inverse production at the right end of the left string.

```
If E \rightarrow E + (E) is a production, then:

E + (\underline{E} + (\underline{E})) \Rightarrow E + (\underline{E})
```

In general, given $A \rightarrow xy$, then: $Cbxy ijk \Rightarrow CbA ijk$

Shift-Reduce Example

```
int + ( int ) + ( int )
```

Shift-Reduce Example

```
E \rightarrow E + (E) \mid int
```

```
I int + (int) + (int)$ shift
int I + (int) + (int)$ reduce E \rightarrow int
```

Shift-Reduce Example

```
E \rightarrow E + (E) \mid int
```

```
I int + (int) + (int)$ shift
int I + (int) + (int)$ reduce E \rightarrow int
E I + (int) + (int)$ shift 3 times
```

```
E \rightarrow E + (E) \mid int
```

```
I int + (int) + (int)$ shift int I + (int) + (int)$ reduce E \rightarrow int E I + (int) + (int)$ shift 3 times E + (int I) + (int)$ reduce E \rightarrow int
```

```
E
/
int + ( int ) + ( int )
```

```
I int + (int) + (int) \$ shift

int I + (int) + (int) \$ reduce E \rightarrow int

E \mid + (int) + (int) \$ shift 3 \text{ times}

E \mid + (int \mid) + (int) \$ reduce E \rightarrow int

E \mid + (E \mid) + (int) \$ shift
```

```
I int + (int) + (int)$ shift int I + (int) + (int)$ reduce <math>E \rightarrow int E I + (int) + (int)$ shift 3 times \\ E + (int I) + (int)$ reduce <math>E \rightarrow int E + (E I) + (int)$ shift \\ E + (E) I + (int)$ reduce <math>E \rightarrow E + (E)
```

```
I int + (int) + (int)$
                           shift
                           reduce E \rightarrow int
int I + (int) + (int)$
EI+(int)+(int)$
                          shift 3 times
E + (int I) + (int)$
                           reduce E \rightarrow int
E + (E I) + (int)$
                           shift
                           reduce E \rightarrow E + (E)
E + (E) I + (int)$
                           shift 3 times
EI+(int)$
                                                       ( int ) + (
```

```
I int + (int) + (int)$
                           shift
int I + (int) + (int)$
                           reduce E \rightarrow int
EI+(int)+(int)$
                           shift 3 times
E + (int I) + (int)$
                           reduce E \rightarrow int
E + (E | ) + (int)$
                           shift
                           reduce E \rightarrow E + (E)
E + (E) I + (int)$
EI+(int)$
                           shift 3 times
E + (int | )$
                           reduce E \rightarrow int
                                                        (int) + (
```

```
E \rightarrow E + (E) \mid int
I int + (int) + (int)$
                            shift
int I + (int) + (int)$
                            reduce E \rightarrow int
EI+(int)+(int)$
                            shift 3 times
E + (int I) + (int)$
                            reduce E \rightarrow int
E + (E | ) + (int)$
                            shift
E + (E) I + (int)$
                            reduce E \rightarrow E + (E)
EI+(int)$
                            shift 3 times
E + (int | )$
                            reduce E \rightarrow int
E + (E | )$
                            shift
                                                             int ) + (
```

```
E \rightarrow E + (E) \mid int
I int + (int) + (int)$
                             shift
int I + (int) + (int)$
                             reduce E \rightarrow int
EI+(int)+(int)$
                            shift 3 times
E + (int I) + (int)$
                            reduce E \rightarrow int
E + (E | ) + (int)$
                            shift
E + (E) I + (int)$
                             reduce E \rightarrow E + (E)
EI+(int)$
                            shift 3 times
E + (int I)$
                             reduce E \rightarrow int
E + (E | )$
                             shift
                        reduce E \rightarrow E + (E)
E + (E) | $
                                                           ( int ) + (
```

```
I int + (int) + (int)$
                            shift
int | + (int) + (int)$
                            reduce E \rightarrow int
E_{1} + (int) + (int)$
                           shift 3 times
E + (int I) + (int)$
                           reduce E \rightarrow int
E + (E | ) + (int)$
                            shift
E + (E) I + (int)$
                            reduce E \rightarrow E + (E)
EI+(int)$
                            shift 3 times
E + (int | )$
                            reduce E \rightarrow int
E + (E | )$
                            shift
                        reduce E \rightarrow E + (E)
E + (E) | $
EI$
                            accept
                                                           int ) +
                                              int
```

The Stack

- Left string can be implemented by a stack.
 - Top of the stack is the
- Shift pushes a terminal on the stack.
- Reduce pops 0 or more symbols off of the stack (production RHS) and pushes a nonterminal on the stack (production LHS).

Key Question: To Shift or to Reduce?

<u>Idea</u>: use a finite automaton (DFA) to decide when to shift or reduce.

- The input is the stack.
- The language consists of terminals and non-terminals.
- We run the DFA on the stack and examine the resulting state X and the token tok after I
 - If X has a transition labeled tok then shift
 - If X is labeled with " $A \rightarrow \beta$ on tok" then <u>reduce</u>

LR(1) Parsing: An Example

Representing the DFA

- Parsers represent the DFA as a 2D table.
 (Recall table-driven lexical analysis)
- Lines correspond to DFA states.
- Columns correspond to terminals and nonterminals.
- Typically columns are split into:
 - Those for terminals: action table.
 - · action = shift or reduce
 - Those for non-terminals: goto table.

Representing the DFA: Example

The table for a fragment of our DFA:

	int	+	()	\$	E
•••						
3			s 4			
4	<i>s</i> 5					<i>g</i> 6
5		$\mathbf{r}_{E} o int$		${\sf r}_{{\sf E}^{ ightarrow{\sf int}}}$		
6		58		s7		
7		r _{E→E+(E)}			$r_{\text{E}} \rightarrow \text{E+(E)}$	
•••						

The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack.
 - This is wasteful, since most of the work is repeated.
- Remember for each stack element on which state it brings the DFA.
- LR parser maintains a stack

```
\langle \text{ sym}_1, \text{ state}_1 \rangle \dots \langle \text{ sym}_n, \text{ state}_n \rangle \\ \text{ state}_k \text{ is the final state of the DFA on } \text{sym}_1 \dots \text{sym}_k .
```

The LR Parsing Algorithm

```
let I = w$ be initial input
let i = 0
let DFA state 0 be the start state
let stack = \( dummy, 0 \)
  repeat
    case action[top_state(stack), I[j]] of
      shift k: push ( I[j++], k )
      reduce X \rightarrow A:
         pop | A | pairs,
         push (X, Goto[top_state(stack),X])
      accept: halt normally
      error: halt and report error
```

LR Parsers

- · Can be used to parse more grammars than LL.
- Most programming languages grammars are LR.
- · LR parsers can be described as a simple table.
- · There are tools for building the table.

Next Lecture: How is the DFA constructed?