Spatiotemporal modelling & automated in-situ sensors to monitor Harmful Algal Blooms(HABs)

Case Study-Lake Victoria

Presenter:

Name: OKELLO, JACOB OKOMO

Reg. No: ENC222-0149/2017

Final Presentation

GEGIS 29-Nov-21

Introduction

2

 HAB is a phenomena which turns water bodies dark blue-green due to eutrophication; potentially harming humans and animals e.g., massive fish deaths, etc.as lately observed in eutrophicated L. Victoria riparian.

(Hecky et al., 2010)

- Development, stability, and density of the phenomenon affect some environmental factors Lake Surface Air Temperature (LSAT), Sea Surface Temperature (SST) & Water surface spectral signatures (Tang et al, 2006)
- The status quo only provides for the higher authority to solely rely on calls/information from the locals after the condition is a total mess without relying on any near real-time space-based or in-situ monitoring system.
- Therefore, there's need to come up with a quick response methodological approach to use space-based techniques and in-situ sensors to detect and alert the near-real time occurrence of HABs
- Coupling wide spread spatiotemporal monitoring, and automated in-situ system will play a big deal in return. This would inform the Govt. and the general public the affected zones, calling for immediate remedy actions.

General and Specific objectives

- To detect, monitor and report the occurrence of Harmful Algal Blooms(HABs) in Lake Victoria, Kisumu basin from 2015 to 2020 and beyond.
 - To monitor chlorophyl-a (chl-a) concentration from L8 OLI.
 - To monitor Lake Surface Air Temperature(LSAT) from L8 TIRS images as another HAB indicator in L. Victoria.
 - To develop automated Internet of Things (IoT) in situ system, applicable in near real-time to monitor and report geo-tagged Water quality data.

Study Area: Lake Victoria Nyanza Gulf

Data and Materials

Data Type	Source			Role/Use		
Landsat 8 OLI (30m, 16 days)	USGS (2015-2021)		-	Spatiotemporal Monitoring		
Landsat 8 TIR (100m, 16 days)	USGS (2015-2021)		Ter	ake Surface Air emperature (LSAT) lonitoring.		
Field Data	Kenya Marine & Fisheries Research Institute-KMFRI (2015- 2020)		Previous HAB events			
In-Situ Data	In-situ System 2021 Onwards			ntinued nitoring	In-Situ	Algal
Tool/Material	Role		Availability			
Google Earth Engine (GEE)		Geocomputation & Processing		Freely Available		
ArcMap, R & Python		Further Analysis & Maps				
Microcontroller & Sensors		In-Situ data Monitoring		Local Purchase		

Overall methodology for IoT system

HAB reported dates, from 2015

Year	Date and Month	Reporting body
2015	12 th January, 22 nd February	Nasa Earth data, KMFRI
2016	23 rd Feb	KMFRI
2017	04 th September	Africa great Lakes
2018	27 th January	KMFRI, Nasa Earth Data
2019	18 th August	KMFRI
2020	29th August,	KMFRI
2021	No Data	None Reported

Table 3: HABs reported in Lake Victoria, (KMFRI, NASA Earth Data)

Results: Chl-a concentration maps

Random Points

KMFRI Sample Points

Random Points

Accuracy Assessment of Chl-a Estimates

	TECHNOLOGY FOR DEVELOPMENT
Year	Correlation Co-eff'
2015	0.836884
2016	0.883304
2017	0.891017
2018	0.843381
2019	0.899546
2020	0.900772

Results (b): High LSAT recorded during bloom Events

Accuracy Assessment of LSAT Estimates

Obtaining Information from Sensors: GPS Location, System Condition, Air Temperatures

Discussions

- The max. Chl-a values ranged from 31, 48, 57 and 50 Mg/ M³ which are significantly above the optimal (1 to 20Mg/ M³) in a non-turbid water body like Lake Victoria.
- Corresponding LSAT Maps were generated for the reported HAB dates and reported to have risen to ~35°C and ~36°C in HAB events unlike aprox. ~25°C for normal conditions.
- The chl-a and LSAT estimates were validated with well known products and found to correlate from 69% to 90%.

Conclusions and Recommendations

15

- Wide spread chl-a concentration maps were generated from the proposed methodology to monitor HABs.
- Corresponding LSAT maps were as well generated from the and reportedly, the LSAT rose on bloom events.
- Chl-a and LSAT estimates were validated
- Autonomous In-situ IoT system was developed and tested in local University water bodies and found capable of relaying near-real time geotagged data.

Recommendation

 Authorities like KMFRI to avail detailed HAB stats, availability of Salinity sensor

Thank you for your attention! Questions?

