Derivata di un campo scalare lungo una curva

Teorema 1. Sia $f: A(aperto) \subset \mathbb{R}^n \to \mathbb{R}$ un campo scalare differenziabile in $\bar{x} \in A$. Sia $\gamma: I(intervallo\ aperto) \to \mathbb{R}^n$ una curva tale che $\gamma(I) \subset A$ (ovvero $\gamma: I \to A$). Supponiamo che esista un $\bar{t} \in I$ tale che γ è derivabile in \bar{t} e

$$\gamma(\bar{t}) = \bar{x}.$$

TESI: La funzione composta $\phi = f \circ \gamma : I \to \mathbb{R}$, $\phi(t) = f(\gamma(t))$, per $t \in I$, è differenziabile (o derivabile) in \bar{t} e vale

(1)
$$\phi'(\bar{t}) = \frac{d}{dt} [f(\gamma(t))]_{t=\bar{t}} = \langle \nabla f(\gamma(\bar{t})), \gamma'(\bar{t}) \rangle$$

(prodotto scalare tra il gradiente di f calcolato in $\gamma(\bar{t})$ e il vettore derivata $\gamma'(\bar{t})$).

Dimostrazione. Partiamo dall'identità che esprime la differenziabilità di f in \bar{x} :

$$f(x) - f(\bar{x}) = \langle \nabla f(\bar{x}), x - \bar{x} \rangle + o(\|x - \bar{x}\|),$$

dove $g(x) = o(||x - \bar{x}||)$ è un campo scalare tale che

(2)
$$\lim_{x \to \bar{x}} \frac{g(x)}{\|x - \bar{x}\|} = 0.$$

Ponendo $x = \gamma(t)$ e $\bar{x} = \gamma(\bar{t})$ e dividendo per la quantità $t - \bar{t}$, si trova:

(3)
$$\frac{f(\gamma(t)) - f(\gamma(\bar{t}))}{t - \bar{t}} = \langle \nabla f(\gamma(\bar{t})), \frac{\gamma(t) - \gamma(\bar{t})}{t - \bar{t}} \rangle + \frac{g(\gamma(t))}{t - \bar{t}}$$

 $(g(\gamma(t)) = o(||\gamma(t) - \gamma(\bar{t})||))$. Osserviamo che

$$\frac{g(\gamma(t))}{t - \bar{t}} = \frac{g(\gamma(t))}{\|\gamma(t) - \gamma(\bar{t})\|} \frac{\|\gamma(t) - \gamma(\bar{t})\|}{t - \bar{t}}$$

Per la proprietà (2) (usando anche il fatto che $\lim_{t\to \bar{t}} \|\gamma(t) - \gamma(\bar{t})\| = 0$) si ha

$$\lim_{t \to \bar{t}} \frac{g(\gamma(t))}{\|\gamma(t) - \gamma(\bar{t})\|} = 0.$$

D'altra parte

$$\frac{\|\gamma(t) - \gamma(\bar{t})\|}{t - \bar{t}} = \frac{\|\gamma(t) - \gamma(\bar{t})\|}{|t - \bar{t}|} \frac{|t - \bar{t}|}{t - \bar{t}} = \left\|\frac{\gamma(t) - \gamma(\bar{t})}{t - \bar{t}}\right\| \frac{|t - \bar{t}|}{t - \bar{t}}$$

è limitata per $t \to \bar{t}$ (si noti che $\lim_{t \to \bar{t}} \left\| \frac{\gamma(t) - \gamma(\bar{t})}{t - \bar{t}} \right\| = \|\gamma'(\bar{t})\|$). Quindi abbiamo che

(4)
$$\lim_{t \to \bar{t}} \frac{g(\gamma(t))}{t - \bar{t}} = 0.$$

Passando al limite per $t \to \bar{t}$ in (3) si trova

$$\lim_{t \to \bar{t}} \frac{f(\gamma(t)) - f(\gamma(\bar{t}))}{t - \bar{t}} = \langle \nabla f(\gamma(\bar{t})), \gamma'(\bar{t}) \rangle$$

che dà la (1). ¹

$$f(\gamma(t)) - f(\gamma(\bar{t})) = \langle \nabla f(\gamma(\bar{t})), \gamma'(\bar{t}) \rangle (t - \bar{t}) + \langle \nabla f(\gamma(\bar{t})), o(t - \bar{t}) \rangle + g(\gamma(t)).$$

Ora, usando anche (4), si prova che

$$\lim_{t \to \bar{t}} \frac{\langle \nabla f(\gamma(\bar{t})), o(t - \bar{t}) \rangle + g(\gamma(t))}{t - \bar{t}} = 0.$$

¹Una dimostrazione equivalente e' la seguente. Si usa che $\gamma(t) - \gamma(\bar{t}) = \gamma'(\bar{t})(t - \bar{t}) + o(t - \bar{t})$ (per $t \to \bar{t}$) e si ottiene

Esempio. Un'anatra si muove in un lago rappresentato da un aperto $A \subset \mathbb{R}^2$. Ad ogni punto $(x,y) \in A$ associamo la temperatura f(x,y) in quel punto del lago. Otteniamo il campo scalare temperatura $f: A \to \mathbb{R}$.

Se l'anatra percorre la curva derivabile γ , $\gamma(t)=(x(t),y(t))$, $t\in[1,10]$, si accorge che la temperatura varia nel tempo. La legge con cui varia la temperatura è descritta da

$$\phi(t) = f(x(t), y(t)) = f(\gamma(t)), \ t \in [1, 10].$$

La variazione istantanea di temperatura percepita dall'anatra all'istante $\bar{t}=2$ è

$$\phi'(2) = \partial_x f(x(2), y(2)) x'(2) + \partial_y f(x(2), y(2)) y'(2),$$

ovvero
$$\phi'(2) = \langle \nabla f(\gamma(2)), \gamma'(2) \rangle$$
.