

ICPR Americas 2024

International Conference on Production Research

Intelligent Production and Industry 5.0 with Human touch, Resilience, and Circular Economy

Efficiency and Efficacy Comparison between NSGA-II and Differential Evolution in Multi-Objective Portfolio Optimization

Comparative Analysis of NSGA-II and DE in Portfolio Optimization

Rodrigo Hermont Ozon¹, Érick Oliveira Rodrigues², Gilberto Reynoso-Meza³

³Industrial and Systems Engineering Graduate Program, Pontifical Catholic University of Paraná (PPGEPS/PUCPR), g.reynosomeza@pucpr.br

¹Pontifical Catholic University of Paraná, rodrigo.hermont@pucpr.edu.br

²Federal University of Technology of Paraná, erickr@id.uff.br

Contents

Context

Intro context

Literature Review

Gaps in Portfolio Optimization research

Methodology

Proposed Methodology

Results and Discussions
Best findings and discussion

Acknowledgments

Questions, criticisms, and suggestions: My contacts

References

ICPR Americas 2024
International Conference on Production Research
Athens, OH, USA, July 21 - 25, 2024

Context of the Study

- Importance in improving economic decision-making for players and traders in the agricultural commodities market.
- Multi-objective, multi-period portfolio optimization.
- Comparison of NSGA-II and Differential Evolution (DE) algorithms to enhance decision-making.

Justification and Demand

- Need for robust optimization algorithms to manage portfolio risks and returns in dynamic markets.
- Importance of selecting appropriate algorithms based on market dynamics for effective portfolio management.
- Enhanced financial optimization techniques for better decision-making.
- ► Application of computational finance optimization to industrial engineering, especially in production planning and control.

Multi-Objective Portfolio Optim. Algos last findings and gaps

Algorithm	Key Findings
NSGA-II (Deb et al., 2002) [1]	Superior capabilities in portfolio management, especially in its optimized forms.
lorio and Li (2004, 2006) [2]	DE variants improve convergence speed and solution distribution compared to NSGA-II.
Babu et al. (2005) [4]	Highlighted the importance of selecting algorithms based on optimization challenge and goals.
Zhang and Sanderson (2008) [5]	Demonstrated computational efficiency and effectiveness of DE variants like JADE2 in achieving optimal solutions.
Krink and Paterlini (2011) [6]	Highlighted the effectiveness of DE in portfolio optimizations, delivering satisfying results within a reasonable runtime.
Mishra et al. (2011) [1]	Emphasized the superior capability of NSGA-II-based methods compared to other standard methods.
Eftekharian et al. (2017) [2]	Introduced 2-Phase NSGA-II, significantly outperforming the standard NSGA-II in portfolio optimization.
Zhao et al. (2018) [3]	Proposed an improved NSGA-II integrated with differential evolution to enhance diversity and convergence in Pareto solutions.
Ardia et al. (2010) [4]	Noteworthy evolution, particularly in its variants; enhances convergence speed and solution distribution.
Jevne et al. (2012) [5]	Provided insights into aligning algorithm selection with portfolio needs based on comparative analysis and efficiency.
Zheng and Zheng (2021) [6]	Demonstrated the competitiveness of a parallel NSGA-II approach in optimizing portfolios through multi-objective optimization combined with multi-attribute decision making.
Awad et al. (2022) [7]	Confirmed the effectiveness of NSGA-II in handling two-objective optimization problems.

Table: Summary of Literature Review on NSGA-II and Differential Evolution (DE) in Portfolio Optimization

Proposed Methodology

The multi-objective optimization problem in portfolio optimization builds on Markowitz's mean-variance framework, incorporating return, risk, and diversification:

maximize
$$E[R(x)]_t = \sum_{i=1}^n r_i x_i$$
minimize
$$\sigma(x)_t = \sqrt{\sum_{i=1}^n \sum_{j=1}^n x_i x_j \sigma_{ij}}$$

$$D(x)_t = -\sum_{i=1}^n x_i \ln(x_i)$$
subject to
$$\sum_i x_i \le 1, \ x_i \ge 0, \ i = 1, \dots, n.$$

Subject to constraints:

▶ Budget constraint: Total allocation ≤ 1

▶ Allocation constraints: $0 \le x_i \le 1$

We employ NSGA-II and DEOptim to balance seturn, risk, and diversification.

ICPR Americas 2024
International Conference on Production Research
Athens, OH, USA, July 21 - 25, 2024

Methodology

Time Frames for Analysis:

- 1. 2019-01-01 to 2020-12-31: Pre-pandemic market dynamics
- 2. 2021-01-01 to 2022-12-31: Pandemic and aftermath
- 3. 2023-01-01 to 2023-12-31: Current market trends

Performance Indicators:

- Return: Weighted sum of individual asset returns
- Risk: Std. dev. of portfolio returns
- ► Sharpe Ratio: Risk-adjusted return. It represents the additional return per unit of risk taken.
- Diversification: Shannon entropy measure (higher entropy values indicate a more diversified portfolio)

These indicators provide a comprehensive view of portfolio performance, encompassing return, risk, and diversification.

Data and Preparation

Portfolio Composition:

Asset	Ticker
Corn Futures	ZC=F
Wheat Futures	ZO=F
KC HRW Wheat Futures	KE=F
Rough Rice Futures	ZR=F
Feeder Cattle Futures	GF=F
SoyMeal Futures	ZS=F
Soybeans Futures	ZM=F
Soybean Oil Futures	ZL=F

Data Source:

Daily data from Yahoo! Finance API (Jeffrey and Ulrich, 2023 [7])

Study Period:

▶ January 1, 2019 - December 5, 2023

Return Calculation:

Natural logarithm of prices: $ln(p_t) = ln(p_t) - ln(p_{t-1})$

Data and Preparation

Figure: Commodities portfolio time series returns and their distributions

Results for Multiperiod Comparision

Our analysis contrasts the allocation strategies of NSGA-II and Differential Evolution across different periods, revealing their strategic adaptability to market conditions.

Time Period	Algo	ZC=F	ZO=F	KE=F	ZR=F	GF=F	ZS=F	ZM=F	ZL=F
Period 1	NSGA-II	1.83%	5.54%	2.66%	9.96%	27.99%	10.38%	24.93%	19.94%
Period 2	NSGA-II	4.83%	2.58%	4.83%	21.73%	28.08%	1.20%	7.01%	5.31%
Period 3	NSGA-II	3.66%	9.88%	3.24%	15.04%	28.79%	9.36%	9.00%	3.60%
Period 1	DEOptim	0.13%	0.05%	0.10%	99.47%	0.007%	0.09%	0.04%	0.08%
Period 2	DEOptim	0.00%	0.03%	0.06%	0.004%	0.04%	99.70%	0.007%	0.14%
Period 3	DEOptim	0.03%	0.20%	99.50%	0.02%	0.03%	0.02%	0.10%	0.06%

Table: Comparative Allocation of Weights in Different Time Periods

Algorithm	Period	Return	Risk	Sharpe	Diversification	Time (Seconds)
DifEvol	1	0.1190	0.3018	0.3904	0.8532	9.4518
DifEvol	2	0.0344	0.3933	0.0875	0.8532	9.4297
DifEvol	3	-0.3603	0.2825	-1.2753	0.8532	6.4744
NSGA-II	1	0.1183	0.1192	0.9928	1.7939	0.7025
NSGA-II	2	0.1488	0.1120	1.3292	1.6659	0.6507
NSGA-II	3	-0.0239	0.1270	-0.1884	1.8218	0.5115

Table: Performance Indicators of Differential Evolution and NSGA-II Algorithms

Final Considerations

Strategic Implications:

- Portfolio managers should consider both financial returns and broader implications on sustainability and market resilience.
- NSGA-II is more suitable for volatile markets due to its diversification and risk management capabilities.
- Differential Evolution is advantageous in stable conditions for maximizing returns.

Relevance to Industry 5.0:

- Integration of computational finance with sustainable economic models.
- Importance of adaptability and strategic selection in algorithmic choices.

Future Research Directions:

- Integrate dynamic programming and explore GARCH models with Markov regime shifts.
- ▶ Use hypervolume metrics to identify optimal multi-objective algorithms.
- Apply analysis to other asset classes and market conditions.

ICPR Americas 2024
International Conference on Production Reseathers, OH, USA, July 21 - 25, 2024

Thank You Q & A

Supported by

- ► To the guiding professor Gilberto Reynoso Meza 🎓, professor Érick Oliveira Rodrigues (UTFPR) and to all the participants present here ©
- ▶ To Graduate Program in Production and Systems Engineering − PPGEPS/PUCPR

▶ The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (Grants number: PQ2-310195/2022-5, UNIV-408164/2021-2) for financial support of this work.

Contact me

Check out my projects and tutorials on econometrics applications on my GitHub repository •

You can also access my CV and portfolio at:

https://rhozon.github.io/

- ► My repository on GitHub 🗘
- My profile on LinkedIn in
- ▶ My Resume on Lattes Platform or send me an email

Acts 8:31... Many thanks to all!

References

K. Deb, A. Pratap, S. Agarwal, T. Meyariyan, A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, in IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197. (2002). doi:10.1109/4235.996017

Iorio, A., & Li, X. Solving Rotated Multi-objective Optimization Problems Using Differential Evolution, In Proceedings of the 2004 Congress on Evolutionary Computation, (pp. 861-872) (2004) doi:10.1007/978-3-540-30549-1_74

lorio, A., & Li, X. Incorporating directional information within a differential evolution algorithm for multi-objective optimization. In Proceedings of the 2006 Genetic and Evolutionary Computation Conference (pp. 691-698) (2006). doi:10.1145/1143997.1144119

Babu, B., Chakole, P. G., & Mubeen, J. Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor. Chemical Engineering Science, 60(17), 4822-4837, (2005). doi:10.1016/J.CES.2005.02.073

Zhang, J., & Sanderson, A. Self-adaptive multi-objective differential evolution with direction information provided by archived inferior solutions. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) (pp. 2801-2810) (2008). doi:10.1109/CEC.2008.4631174

Krink, T., & Paterlini, S. Multiobiective optimization using differential evolution for real-world portfolio optimization. Computational Management Science, 8(1-2), 157-179 (2011). doi:10.1007/s10287-009-0107-6

Jeffrey A. R. & Ulrich, J. M. quantmod: Quantitative Financial Modelling Framework. R package version 0.4.25, (2023). Available at: https://CRAN.R-project.org/package=quantmod.

References

Mishra, S., Panda, G., Meher, S., Maihi, R., & Singh, M. (2011). Portfolio management assessment by four multiobjective optimization algorithms. In 2011 IEEE Recent Advances in Intelligent Computational Systems (pp. 326-331) (2011). doi:10.1109/RAICS.2011.6069328

Eftekharian, S. E., Shojafar, M., & Shamshirband, S. 2-Phase NSGA II: An Optimized Reward and Risk Measurements Algorithm in Portfolio Optimization, Algorithms, 10(4), 130 (2017). doi:10.3390/a10040130

Zhao, F., Huan, L., Zhang, Y., Ma, W., & Zhang, C. (2018). A Novel Multi-Objective Optimization Algorithm Based on Differential Evolution and NSGA-II, 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design (CSCWD), 570-575. doi:10.1109/CSCWD.2018.8465326

Ardia, D, Boudt, K., Carl, P., Mullen, K., Peterson, B. Differential Evolution with DEoptim: An Application to Non-Convex Portfolio Optimization. The R Journal. 3, (2010).

Jevne, H. K., Haddow, P., & Gaivoronski, A. Evolving constrained mean-VaR efficient frontiers. In 2012 IEEE Congress on Evolutionary Computation (pp. 1-8) (2012) doi:10.1109/CEC.2012.6252907

Zheng, Y., & Zheng, J. (2021). A novel portfolio optimization model via combining multi-objective optimization and multi-attribute decision making. Applied Intelligence, 52, 5684-5695. doi:10.1007/s10489-021-02747-v

Awad, M., Abouhawwash, M., & Agiza, H. N. (2022). On NSGA-II and NSGA-III in Portfolio Management, Intelligent Automation & Soft Computing, doi:10.32604/iasc.2022.023510

