

Influence of the shape of the strut cross section on the hydrodynamics and heat transfer of laminar steady-state flow in Kelvin cells

Internship Presentation by Anish Pophale

Supervisors: M.Sc. Katharina Knapp and Prof. Dr.-Ing. Thomas Wetzel

28.09.2024

Introduction

Periodic Open Cellular Structures (POCS)

- Continuous solid and fluid phase
- Periodic arrangement of unit cells
- High variability of the unit cell geometry
- Low pressure drop with comparatively good heat transfer properties

Continuous solid structure

High heat transfer coefficients

Large specific surface area

Great design freedom

Geometry Specifications

- Kelvin unit cell with three different strut shapes: Circular, Square and Rotated Square (45°)
- Unit cells with porosities 0.6 to 0.9 with increments of 0.05 generated
- Cell size determined from geometric models [1], [2] to achieve the required porosity
- Inherent limitation in generating Kelvin cells: $d_{cell} > 2\sqrt{2} d_s$

Circular Struts

Strut Dimension = 0.64 mm

 $d_s = 0.64 \text{ mm}$ $d_s = 0.64 \text{ mm}$ $d_s = 0.64\sqrt{2} \text{ mm}$

Square Struts

Rotated Square Struts

[1] Kumar and Topin, Transport in Porous Media 105 (2014) [2] Ferroni et al, Industrial & Engineering Chemistry Research 60 (2021)

Numerical Setup

SolidWall

Hydrodynamically and thermally developed flow

- OpenFOAM 6
- Steady, Laminar Flow
- Water at 32 °C (Pr = 5.2)

Boundary conditions

SolidWall:
$$\frac{\partial p}{\partial n} = 0$$
; $\boldsymbol{u} = 0$; $T = 313.15$ K

Top and Bottom: Cyclic

Cyclic Right and Left:

 $p_{\text{In}} = p_{\text{Out}} + \Delta p [1];$ Inlet and Outlet

 $u_{\rm In} = u_{\rm Out}$

 $T_{\text{In}} = (T_{\text{Out}} - T_{\text{SW}}) \cdot C + T_{\text{SW}}$ [2]

^[1] Martinez et al., International Journal of Thermal Sciences 92 (2015)

^[2] Beale, Spalding, Transactions of the CSME 22 (1998)

Validation

MAPE = 5.97 %

MAPE = 12.12%

Hence, the solver is validated 💙

- [1] Ferroni et al., ACS Engineering Au 2 (2022)
- [2] Iasiello et al, International Journal of Thermal Sciences 111 (2017)

Pressure Drop

Pressure Drop Regimes

Two distinct regimes - Linear (Darcy) and Quadratic (Forchheimer)

1)
$$\frac{\Delta P}{L} = \mu \cdot \frac{v}{\kappa}$$

1)
$$\frac{\Delta P}{L} = \mu \cdot \frac{v}{\kappa}$$
 2) $\frac{\Delta P}{L} = \mu \cdot \frac{v}{\kappa} + \beta \cdot \rho \cdot v^2$

Comparison of Strut Shapes

- Pressure drop for Rotated Square > Circular > Square strut shape for all investigated porosities
- Same trend observed for all strut shapes

Convective Heat Transfer

Heat Transfer Regimes

- Three regimes observed: Constant HTC at low velocities, velocity dependent HTC with different slopes in Regime 2 and 3
- Significant change of slope in Regime 3 is a characteristic of the Kelvin cell, not observed in all unit cells

Comparison of Strut Shapes

- HTC for Rotated Square > Circular > Square strut shape for all investigated porosities
- Trend in Regime 1 and 2 is independent of strut shape but Regime 3 is heavily influenced by the strut geometry

Non Dimensional Analysis

Depending on the characteristic length scale, $Nu = \frac{h \cdot L_{char}}{\lambda}$

$$L_{char} = d_{s}$$

L_{char} = Strut semi perimeter

- Nu vs Re characteristics become strut shape independent in Regime 1 and 2
- The transition to regime 3 occurs at the same Re, but again strut shape has an influence on this regime

Superposition Approach [1]

Can the properties of the unit cell be described by a superposition of equivalent strut arrangements?

- Type (F, V, Y), number (N) and pitches (s_T, s_L) of struts need to be determined
- Pitch Definition

Equivalent strut arrangements for the Kelvin Cell

F1			F2			V		
N	S _{L,strut}	S _{T,strut}	Ν	S _{L,strut}	S _{T,strut}	Ν	S _{L,strut}	S _{T,strut}
8	S_L	$\sqrt{2} s_T/4$	20	$\sqrt{2} s_L/2$	s_T	20	$s_L/2$	$\sqrt{2} s_L/2$

[1] Dissertation K. Dubil (2023)

Superposition Approach: Hagen Number

Hagen number:

$$Hg = \frac{\frac{\Delta p}{L} \cdot L_{char}^3 \cdot \rho}{\mu^2}$$
, $L_{char} = \begin{cases} \pi d_s/2, \ Circular \\ 2d_s, \ Square \ and \ Rotated \ Square \end{cases}$ Flow Direction

Superposition:

$$Hg = \sum_{i=1}^{N} Hg_i \cdot \varphi_i$$
 , $\varphi_i = \frac{N_i}{N} \cdot \frac{S_V}{S_{V,i}}$

Inlet Porosity :
$$\psi_{\rm in} = 1 - \frac{\sqrt{2}}{s_T}$$
 for the Kelvin Cell

$$Hg_i = \begin{cases} & \text{B} \cdot \text{Re}_{in}, \ \text{Regime 1} \\ & \text{B} \cdot \text{Re}_{in}^m, \ \text{Regime 2 and 3} \end{cases}$$
 where $Re_{in} = \frac{\rho v_0 L_{char}}{\mu \psi_{in}}$

$$Re_{strut} = \frac{\rho v_0 L_{char}}{\mu \psi_r}$$

Using ψ_{in} instead of ψ_r for developing the correlations gives better results

$$\psi_{in} = 1 - \frac{1}{s_T}$$

 $\psi_r = 1 - \frac{\pi}{4s_T}$

Superposition Approach: Nusselt Number

Nusselt number:

$$Nu = \frac{h \cdot L_{char}}{\lambda}$$
, $L_{char} = \begin{cases} \pi d_s/2, & Circular \\ 2d_s, & Square \ and \ Rotated \ Square \end{cases}$

Superposition:

Nu =
$$\sum_{i=1}^{N} Nu_i \cdot \frac{A_i}{A}$$
, $A_i = N_i \cdot A_{strut} \cdot \phi_{node} \cdot \phi_{proj}$
 $\phi_{node} = 0.839 \cdot \psi - 0.07$: Reduced strut surface area Stagnation Zones
 $\phi_{proj} = 1$ for F and V struts, $\frac{2}{\pi}$ for Y struts

Strut Correlations:

$$Nu_i = \left\{ egin{array}{l} A, & Regime \ 1 \ A \cdot Re^n, & Regime \ 2 \ and \ 3 \end{array}
ight., ext{ where } Re = rac{
ho v_{L_{char}}}{\mu} \ Re_{strut} = rac{
ho v_0 L_{char}}{\mu \psi_r} \end{array}$$

Regime Boundaries:

$$Re_c = \begin{cases} 7 - 6.6 \cdot \psi, & Regime 1 - 2 \\ 24 - 22 \cdot \psi, & Regime 2 - 3 \end{cases}$$

Results: Hagen Number

Results using $Re_{in} = \frac{\rho v_0 L_{char}}{\mu \psi_{in}}$

Strut Shape	MAPE	APE < 40%
Circular	54.841	34.615
Square	40.53	54.167
Rotated Square	61.446	25

Results using $Re = \frac{\rho v_0 L_{char}}{\mu \psi}$

Strut Shape	MAPE	APE < 40 %
Circular	37.688	52.564
Square	32.531	63.542
Rotated Square	29.66	66.25

$$\psi_{in}=0.758$$

 $\psi_{in} = 0.658$

- Using Re_{in} in the correlations gives overpredictions
- Higher errors observed in Regime 1
- Errors increase with porosity of the unit cell

Inlet porosities for ψ = 0.8

12

Results: Nusselt Number

Strut Shape	MAPE Nu	APE % < 20
Circular	7.9632	85.897
Square	8.1762	86.456
Rotated Square	21.281	47.5

- Higher error at higher Re, in Regime 3
- ϕ_{node} can be modelled as a function of Re to improve predictions in this regime

Remarks

Modifications to the superposition approach specific to the Kelvin cell

Used in this study

Future work

Strut Porosity

- For Hg_i, using inlet porosity for struts as it is more relevant to the pressure drop
- For Nu_i, using the strut row porosity which is related to the strut surface area which directly affects the heat transfer

Inlet Reynolds Number

- Replacing Re_{in} by Re reduced the overprediction in results of the Hagen number
- At any cell porosity, the cell inlet porosity is lower which leads to a high inlet Reynolds number

Regime Boundaries

- The regime boundaries used are a good fit considering different unit cells, only for circular struts
- May not be appropriate for the Kelvin cell and can be dependent on the strut shape

Node Factor

- Nu underpredicted in Regime 3 because of low values of ϕ_{node}
- At higher velocities, the stagnation effect induced by the nodes decreases with velocity and hence ϕ_{node} should increase as a function of Re

THANK YOU

