Spring 2015

信號與系統 Signals and Systems

Chapter SS-4 The Continuous-Time Fourier Transform

Feng-Li Lian NTU-EE Feb15 – Jun15

Figures and images used in these lecture notes are adopted from "Signals & Systems" by Alan V. Oppenheim and Alan S. Willsky, 1997

Outline

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-2

- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by
 Linear Constant-Coefficient Differential Equations

Fourier Series Representation of CT Periodic Signals

 $w_0 = \frac{2\pi}{T}$

Example 3.5: $a_k = \frac{1}{T} \int_T x(t) e^{-jkw_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < T/2 \end{cases}$$

$$k = 0$$
 $a_0 = \frac{1}{T} \int_{-T_1}^{T_1} dt = \frac{2T_1}{T}$

$$k \neq 0$$
 $a_k = \frac{1}{T} \int_{-T_1}^{T_1} e^{-jkw_0 t} dt = \frac{1}{T} \frac{1}{(-jkw_0)} e^{-jkw_0 t} \Big|_{-T_1}^{T_1}$

$$= \frac{1}{jkw_0 T} \left[e^{jkw_0 T_1} - e^{-jkw_0 T_1} \right] /$$

$$= \frac{2\sin(kw_0T_1)}{kw_0T} = \frac{\sin(kw_0T_1)}{k\pi} = \frac{\sin(k(2\pi/T)T_1)}{k\pi}, \quad k \neq 0$$

$$T = 8T_1$$
 $w_0 = \frac{2\pi}{8T_1} = \frac{\pi}{4T_1}$ $Ta_k = T \frac{\sin(k\frac{\pi}{4})}{k\pi}$

$$T = 16T_1 w_0 = \frac{2\pi}{16T_1} = \frac{\pi}{8T_1} Ta_k = T \frac{\sin(k\frac{\pi}{8})}{k\pi}$$

• Example 3.5:

$$Ta_k = T \frac{2\sin(kw_0T_1)}{kw_0T}$$
$$= T_1 \frac{2\sin(kw_0T_1)}{kw_0T_1}$$

Representation of Aperiodic Signals: CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-6

Page 193, Ex 3.5

CT Fourier Transform of an Aperiodic Signal

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < T/2 \end{cases}$$

$$a_k = \frac{2\sin(kw_0T_1)}{kw_0T}$$

Fourier series coefficients

$$Ta_k = \frac{2\sin(wT_1)}{w}\bigg|_{w=kw_0}$$

w as a continuous variable

an aperiodic signal

a periodic signal

$$\tilde{x}(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$a_{k} = \frac{1}{T} \int_{-T/2}^{T/2} \tilde{\mathbf{x}}(t) e^{-jkw_{0}t} dt$$

$$\Rightarrow a_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jkw_0 t} dt = \frac{1}{T} \int_{-\infty}^{+\infty} x(t) e^{-jkw_0 t} dt$$

Representation of Aperiodic Signals: CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-10

ullet Define the envelope X(jw) of Ta_k as

$$Ta_k = \frac{2\sin(wT_1)}{w}$$

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

• Then,

$$a_k = \frac{1}{T}X(jkw_0)$$

Hence,

$$\tilde{x}(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{T} X(jkw_0) e^{jkw_0t}$$

$$\frac{1}{T} = \frac{1}{2\pi} w_0$$

 $w_0 = \frac{2\pi}{T}$

$$= \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jkw_0) e^{jkw_0t} w_0$$

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-11

ullet As $T o\infty$, ilde x(t) o x(t)

also $w_0 \rightarrow 0$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

- inverse Fourier transform eqn
- synthesis eqn

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

- X(jw): Fourier Transform of x(t)spectrum
- analysis eqn

$$a_k = \frac{1}{T}X(jw)\Big|_{w=kw_0}$$

Representation of Aperiodic Signals: CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-12

Sufficient conditions for the convergence of FT

$$x(t) \xrightarrow{\mathcal{C}\mathcal{TFT}} X(jw)$$

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$\hat{x}(t) \leftarrow X(jw)$$

$$\widehat{x}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$

$$e(t) = \hat{x}(t) - x(t)$$

• If x(t) has finite energy

i.e., square integrable, $\int_{-\infty}^{+\infty} |x(t)|^2 dt < \infty$

 $\Rightarrow X(jw)$ is finite

$$\Rightarrow \int_{-\infty}^{+\infty} |e(t)|^2 dt = 0$$

$$\Rightarrow \int_{-\infty}^{+\infty} |e(t)|^2 dt = 0 \qquad \Rightarrow e(t) = \hat{x}(t) - x(t) \qquad = 0 \quad \text{almost } \forall t$$

- Sufficient conditions for the convergence of FT
 - Dirichlet conditions:
 - 1.x(t) be absolutely integrable; that is, $\int_{-\infty}^{+\infty} |x(t)| dt < \infty$

$$\int_{-\infty}^{+\infty} |x(t)| dt < \infty$$

- 2.x(t) have a finite number of maxima and minima within any finite interval
- 3.x(t) have a finite number of discontinuities within any finite interval Furthermore, each of these discontinuities must be finite

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-14

Example 4.1:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw \quad X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$$

$$x(t) = e^{-at} u(t), \quad a > 0$$

$$\Rightarrow X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$$

$$= \int_{-\infty}^{\infty} e^{-at} u(t) e^{-jwt} dt$$

$$= \int_0^\infty e^{-at} e^{-jwt} dt$$

$$= \int_0^\infty e^{-(a+jw)t} dt$$

$$= -\frac{1}{a+jw}e^{-(a+jw)t}\bigg|_{0}^{\infty}$$

$$= -\frac{1}{a+jw} \left(e^{-(a+jw)\infty} - e^{-(a+jw)0} \right)$$

$$= -\frac{1}{a+iw}(\mathbf{0}-\mathbf{1})$$

$$=\frac{1}{a+jw}, \quad a>0$$

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-15

Example 4.1:

$$\Rightarrow X(jw) = \frac{1}{a+jw}, \quad a > 0$$

$$\Rightarrow |X(jw)| = \frac{1}{\sqrt{a^2 + w^2}}$$

$$\Rightarrow \stackrel{\checkmark}{\swarrow} X(jw) = -\tan^{-1}\left(\frac{w}{a}\right)$$

$$\sigma + jw \Rightarrow \begin{cases} r = \sqrt{\sigma^2 + w^2} \\ \tan(\theta) = \frac{w}{\sigma} \\ \theta = \tan^{-1}(\frac{w}{\sigma}) \end{cases}$$

$$\frac{1}{\sigma + jw} = \frac{\sigma - jw}{\sigma^2 + w^2}$$

Representation of Aperiodic Signals: CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-16

 $x(t)e^{-jwt}dt$

Example 4.2:

$$x(t) = e^{-a|t|}, \quad a > 0$$

$$\Rightarrow X(jw) = \int_{-\infty}^{\infty} e^{-a|t|} e^{-jwt} dt$$

$$= \int_{-\infty}^{0} e^{at} e^{-jwt} dt + \int_{0}^{\infty} e^{-at} e^{-jwt} dt$$

$$=\frac{2a}{a^2+w^2}$$

X(jw) =

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-17

• Example 4.3:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$
$$X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$$

$$x(t) = \delta(t)$$
, i.e., unit impules

$$\Rightarrow X(jw) = \int_{-\infty}^{\infty} \delta(t) e^{-jwt} dt = 1$$

$$\Rightarrow x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{jwt} dw \qquad = \frac{1}{2\pi} \frac{1}{jt} e^{jwt} \Big|_{-\infty}^{\infty} \qquad = \frac{1}{2\pi jt} \left(e^{jt\infty} - e^{-jt\infty} \right) = \frac{1}{2\pi jt} \left(e^{jt\infty} - e^{jt\infty} \right) = \frac{1}{2\pi jt} \left(e^{jt\infty} - e^{-jt\infty} \right) = \frac{1}{2\pi j$$

Representation of Aperiodic Signals: CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-18

Example 4.4:

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T_1 \end{cases}$$

$$\Rightarrow X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt = \int_{-T_1}^{T_1} e^{-jwt}dt \qquad = \frac{1}{-jw} e^{-jwt} \Big|_{-T_1}^{T_1}$$

$$= \frac{1}{-jw} \left(e^{-jwT_1} - e^{jwT_1} \right) \qquad = \quad \frac{1}{jw} \quad \left(e^{jwT_1} - e^{-jwT_1} \right)$$

$$= 2 \frac{\sin(wT_1)}{w}$$

$$= 2 T_1 \frac{\sin(\pi wT_1/\pi)}{(\pi wT_1/\pi)}$$

$$= 2 T_1 \operatorname{sinc} \left(\frac{wT_1}{\pi}\right)$$

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-19

• Example 4.5:

$$X(jw) = \begin{cases} 1, & |w| < W \\ 0, & |w| > W \end{cases}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$
$$X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$$

$$\Rightarrow x(t) = \frac{1}{2\pi} \int_{-W}^{W} e^{jwt} dw = \frac{\sin(Wt)}{\pi t}$$

$$= \frac{W}{\pi} \frac{\sin(\pi W t/\pi)}{(\pi W t/\pi)}$$

$$= \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wt}{\pi}\right)$$

Representation of Aperiodic Signals: CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-20

sinc functions:

$$\operatorname{sinc}(\theta) = \frac{\sin(\pi \theta)}{\pi \theta}$$

$$\frac{\sin(wT_1)}{w} = T_1 \frac{\sin(\pi wT_1/\pi)}{(\pi wT_1/\pi)} = T_1 \operatorname{sinc}\left(\frac{wT_1}{\pi}\right)$$

$$\frac{\sin(Wt)}{\pi t} = \frac{W}{\pi} \frac{\sin(\pi Wt/\pi)}{(\pi Wt/\pi)} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wt}{\pi}\right)$$

- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

Fourier Transform for Periodic Signals

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-22

Fourier Transform from Fourier Series:

$$X(jw) = 2\pi \delta(w - w_0)$$

$$\frac{2\pi}{w_0}$$

$$\Rightarrow x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} 2\pi \delta(w - w_0) e^{jwt} dw$$

$$= e^{j w_0}$$

more generally,

$$X(jw) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(w - kw_0)$$

$$\Rightarrow x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

Fourier series represntation of a periodic signal

Fourier Transform for Periodic Signals

Feng-Li Lian © 2015

Example 4.6:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$a_k = \frac{1}{T} \int_{-T/2}^{+T/2} \tilde{x}(t) e^{-jkw_0 t} dt$$

$$X(jw) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(w - kw_0)$$

$$\Rightarrow a_k = \frac{\sin(kw_0T_1)}{\pi k}$$

$$\Rightarrow X(jw) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(w - kw_0) = \sum_{k=-\infty}^{+\infty} \frac{2\sin(kw_0 T_1)}{k} \delta(w - kw_0)$$

Fourier Transform for Periodic Signals

Feng-Li Lian © 2015

■ Example 4.7:
$$x(t) = \sin(w_0 t) = \frac{e^{jw_0 t} - e^{-jw_0 t}}{2j} = \frac{1}{2j} e^{jw_0 t} - \frac{1}{2j} e^{-jw_0 t}$$

$$\Rightarrow a_1 = \frac{1}{2j} \quad a_{-1} = -\frac{1}{2j} \quad a_k = 0, \quad k \neq 1, -1$$

$$x(t) = \cos(w_0 t) = \frac{e^{jw_0 t} + e^{-jw_0 t}}{2} = \frac{1}{2} e^{jw_0 t} + \frac{1}{2} e^{-jw_0 t}$$

$$\Rightarrow a_1 = \frac{1}{2} \qquad a_{-1} = \frac{1}{2} \qquad a_k = 0, \quad k \neq 1, -1$$

Example 4.8:

$$x(t) = \sum_{k=-\infty}^{+\infty} \delta(t - kT)$$

$$\Rightarrow a_k = \frac{1}{T} \int_{-T/2}^{+T/2} \delta(t) e^{-jkw_0 t} dt = \frac{1}{T}$$

$$\Rightarrow X(jw) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(w - \frac{2\pi}{T} k)$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$a_k = \frac{1}{T} \int_{-T/2}^{+T/2} \tilde{x}(t) e^{-jkw_0 t} dt$$

$$X(jw) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(w - kw_0)$$

$$w_0 = \frac{2\pi}{T}$$

Outline

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-26

- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

Outline

Section	Property	
4.3.1	Linearity	
4.3.2	Time Shifting	
4.3.6	Frequency Shifting	
4.3.3	Conjugation	
4.3.5	Time Reversal	
4.3.5	Time and Frequency Scaling	
4.4	Convolution	
4.5	Multiplication	
4.3.4	Differentiation in Time	
4.3.4	Integration	
4.3.6	Differentiation in Frequency	
4.3.3	Conjugate Symmetry for Real Signals	
4.3.3	Symmetry for Real and Even Signals	
4.3.3	Symmetry for Real and Odd Signals	
4.3.3	Even-Odd Decomposition for Real Signals	
4.3.7	Parseval's Relation for Aperiodic Signals	

Outline

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-28

Property	CTFS	DTFS	CTFT	DTFT	LT	zT
Linearity	3.5.1		4.3.1	5.3.2	9.5.1	10.5.1
Time Shifting	3.5.2		4.3.2	5.3.3	9.5.2	10.5.2
Frequency Shifting (in s, z)			4.3.6	5.3.3	9.5.3	10.5.3
Conjugation	3.5.6		4.3.3	5.3.4	9.5.5	10.5.6
Time Reversal	3.5.3		4.3.5	5.3.6		10.5.4
Time & Frequency Scaling	3.5.4		4.3.5	5.3.7	9.5.4	10.5.5
(Periodic) Convolution			4.4	5.4	9.5.6	10.5.7
Multiplication	3.5.5	3.7.2	4.5	5.5		
Differentiation/First Difference		3.7.2	4.3.4, 4.3.6	5.3.5, 5.3.8	9.5.7, 9.5.8	10.5.7, 10.5.8
Integration/Running Sum (Accumulation)			4.3.4	5.3.5	9.5.9	10.5.7
Conjugate Symmetry for Real Signals	3.5.6		4.3.3	5.3.4		
Symmetry for Real and Even Signals	3.5.6		4.3.3	5.3.4		
Symmetry for Real and Odd Signals	3.5.6		4.3.3	5.3.4		
Even-Odd Decomposition for Real Signals			4.3.3	5.3.4		
Parseval's Relation for (A)Periodic Signals	3.5.7	3.7.3	4.3.7	5.3.9		
Initial- and Final-Value Theorems					9.5.10	10.5.9

Fourier Transform Pair:

- Synthesis equation: $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$
- Analysis equation:

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

Notations:

$$X(jw) = \mathcal{F}\{x(t)\}\$$

$$\frac{1}{a+jw} = \mathcal{F}\{e^{-at}u(t)\}\$$

$$x(t) = \mathcal{F}^{-1}\{X(jw)\}\$$

$$e^{-at}u(t) = \mathcal{F}^{-1}\left\{\frac{1}{a+iw}\right\}$$

$$x(t) \stackrel{\mathcal{CTFT}}{\longleftrightarrow} X(jw)$$

$$e^{-at}u(t) \stackrel{\mathcal{CTFT}}{\longleftrightarrow} \frac{1}{a+jw}$$

Properties of CT Fourier Transform

Feng-Li Lian © 2015 $x(t) = rac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$

Linearity:

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$y(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(jw)$$

$$\Rightarrow a x(t) + b y(t)$$

$$\stackrel{\mathcal{F}}{\longleftrightarrow}$$

$$a X(jw) + b Y(jw)$$

$$=$$
 $\int_{-\infty}^{+\infty}$

$$e^{-jwt}dt$$

$$=$$
 $\frac{1}{2\pi}\int_{-\infty}^{+\infty} e^{jwt}dw$

$$e^{jwt}dw$$

$$+\int_{-\infty}^{+\infty} e^{-jwt}dt$$

$$e^{-jwt}dt$$

$$+ \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{jwt} dw$$

$$e^{jwt}dw$$

$$= \int_{-\infty}^{+\infty} e^{-jwt} dt + \int_{-\infty}^{+\infty} e^{-jwt} dt$$

$$e^{-jwt}dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{jwt} dw$$

$$e^{jwt}dw$$

$$+\int_{-\infty}^{+\infty}$$

$$e^{-jwt}dt$$

$$+ \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{jwt} dw$$

$$e^{jwt}dw$$

Time Shifting:

$$x(t) \longleftrightarrow X(jw)$$

$$\Rightarrow x(t-t_0) \longleftrightarrow e^{-jwt_0}X(jw)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$
$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$

$$Y(jw) = \int_{-\infty}^{+\infty} x(t - t_0) e^{-jwt} dt$$

$$x(t - t_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jw(t - t_0)} dw$$

$$= \int_{-\infty}^{+\infty} x(\tau) e^{-jw(\tau + t_0)} d\tau$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(e^{-jwt_0} X(jw) \right) e^{jwt} dw$$

Properties of CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-32

 $=e^{-jwt_0}\int_{-\infty}^{+\infty}x(\tau)e^{-jw\tau}d\tau$

Time Shift => Phase Shift:

$$\mathcal{F}{x(t)} = X(jw) = |X(jw)|e^{j \times X(jw)}$$

$$\mathcal{F}\{x(t-t_0)\} = e^{-jwt_0}X(jw) = |X(jw)|e^{j[X(jw)-wt_0]}$$

Properties of CT Fourier Transform

Example 4.9:

$$X(jw) = 2\frac{\sin(wT_1)}{w}$$

$$\underbrace{\mathsf{Ex}\; 4.4} \quad X(jw) = 2 \frac{\mathsf{sin}(wT_1)}{w} \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$x(t) = \frac{1}{2}x_1(t - 2.5) + x_2(t - 2.5)$$

$$x_1(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X_1(jw) = \frac{2\sin(w/2)}{w}$$

$$x_2(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X_2(jw) = \frac{2\sin(3w/2)}{w}$$

$$\Rightarrow X(jw) = e^{-j5w/2} \left\{ \frac{\sin(w/2) + 2\sin(3w/2)}{w} \right\}$$

Properties of CT Fourier Transform

Feng-Li Lian © 2015 $X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$

Conjugation & Conjugate Symmetry:

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$x^*(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X^*(-jw)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$

$$=\frac{1}{2\pi}\int_{-\infty}^{-\infty}X(-j\bar{w})e^{j\bar{w}t}d\bar{w}$$

$$=\frac{1}{2\pi}\int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$

$$=rac{1}{2\pi}\int^{+\infty}X(-jar{w})e^{jar{w}t}dar{w}$$

$$=\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(jw) e^{-jwt}dw$$

$$=\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\bar{w})e^{j\bar{w}t}d\bar{w}$$

Conjugation & Conjugate Symmetry:

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$x^*(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X^*(-jw)$$

• IF
$$x(t) = x^*(t)$$
 \Rightarrow $X(-jw) = X^*(jw)$

IF x(t) is real \Rightarrow X(jw) is conjugate symmetric

Properties of CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-36

Conjugation & Conjugate Symmetry:

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$x(t)^* \stackrel{\mathcal{F}}{\longleftrightarrow} X^*(-jw)$$

• IF
$$x(t) = x^*(t)$$
 & $x(-t) = x(t)$

$$\Rightarrow X(-jw) = X^*(jw) \qquad \& \qquad X(-jw) = X(jw)$$

$$\Rightarrow X^*(jw) = X(jw)$$

• IF
$$x(t)$$
 is real & even $\Rightarrow X(jw)$ are real & even

$$ullet$$
 IF $x(t)$ is real & odd $\Rightarrow X(jw)$ are purely imaginary & odd

• IF
$$x(t) = x^*(t)$$
 & $x(-t) = -x(t)$

$$\Rightarrow X(-jw) = X^*(jw) \quad \& \quad X(-jw) = -X(jw)$$

$$\Rightarrow X^*(jw) = -X(jw)$$

Conjugation & Conjugate Symmetry:

If x(t) is a real function

$$x(t) = \mathcal{E}v\{x(t)\} + \mathcal{O}d\{x(t)\} = x_e(t) + x_o(t)$$

$$\Rightarrow \mathcal{F}\{x(t)\} = \mathcal{F}\{x_e(t)\} + \mathcal{F}\{x_o(t)\}$$

 $\Rightarrow \mathcal{F}\{x_e(t)\}$: a real function

 $\Rightarrow \mathcal{F}\{x_o(t)\}$: a purely imaginary function

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$\operatorname{\mathcal{E}v}\{x(t)\} \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{\mathcal{R}e}\{X(jw)\}$$

$$\mathcal{O}d\{x(t)\} \stackrel{\mathcal{F}}{\longleftrightarrow} j \mathcal{I}m\{X(jw)\}$$

Properties of CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-38

• Example 4.10:

$$\underline{\text{Ex 4.1}} \ y(t) = e^{-at}u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a+jw}$$

$$\underbrace{\operatorname{Ex} 4.2} x(t) = e^{-a|t|} \overset{\mathcal{F}}{\longleftrightarrow} \frac{2a}{a^2 + w^2}$$

$$x(t) = e^{-a|t|} = e^{-at}u(t) + e^{at}u(-t)$$

$$= 2 \left[\frac{e^{-at}u(t) + e^{at}u(-t)}{2} \right]$$

$$= 2\mathcal{E}v\left\{e^{-at}u(t)\right\}$$

$$\mathcal{E}v\left\{x(t)\right\} = \frac{1}{2}\left[x(t) + x(-t)\right]$$

$$\mathcal{O}d\left\{x(t)\right\} = \frac{1}{2}\left[x(t) - x(-t)\right]$$

Properties of CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-39

• Example 4.10:

$$\operatorname{\mathcal{E}\!\mathit{v}}\left\{e^{-at}u(t)\right\} \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{\mathcal{R}\!\mathit{e}}\left\{\frac{1}{a+jw}\right\}$$

$$\mathcal{O}d\left\{e^{-at}u(t)\right\} \stackrel{\mathcal{F}}{\longleftrightarrow} j\,\mathcal{I}m\left\{\frac{1}{a+jw}\right\}$$

$$X(jw) = 2\Re \left\{\frac{1}{a+jw}\right\}$$
$$= 2\Re \left\{\frac{a-jw}{a^2+w^2}\right\}$$
$$= \frac{2a}{a^2+w^2}$$

$$\mathcal{E}v\left\{x(t)\right\} = \frac{1}{2}\left[x(t) + x(-t)\right]$$

$$\mathcal{O}d\left\{x(t)\right\} = \frac{1}{2}\left[x(t) - x(-t)\right]$$

Properties of CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-40

Differentiation & Integration:

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

$$\frac{d}{dt}x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} jwX(jw)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) \qquad e^{jwt} \ dw$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) \qquad e^{jwt} \ dw$$

$$\int_{-\infty}^{t} x(\tau)d\tau \iff \frac{1}{jw}X(jw) + \pi X(0)\delta(w)$$

dc or average value

Properties of CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-41

• FT of u(t) and 1(t):

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw \qquad X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$\int_{-\infty}^{+\infty} u(t)e^{-jwt}dt$$

$$= \int_{0}^{+\infty} e^{-jwt}dt$$

$$= \frac{1}{-jw}e^{-jwt}\Big|_{0}^{+\infty}$$

$$= \frac{1}{-jw}\left(e^{-jw\infty} - e^{-jw0}\right)$$

$$= \frac{1}{iw}\left(1 - e^{-jw\infty}\right)$$

 $= \frac{1}{iw} \left\{ 1 - \left[\cos(-w\infty) + j\sin(-w\infty) \right] \right\}$

$$\int_{-\infty}^{\infty} \frac{1(t)e^{-jwt}dt}{\int_{-\infty}^{\infty} \frac{1}{-jw}e^{-jwt}} dt$$

$$= \frac{1}{-jw} e^{-jwt} \Big|_{-\infty}^{+\infty}$$

$$= \frac{1}{-jw} \left(e^{-jw\infty} - e^{+jw\infty} \right)$$

$$= \frac{1}{jw} \left(e^{+jw\infty} - e^{-jw\infty} \right)$$

$$= \frac{1}{jw} \left\{ \left[\cos(w\infty) + j\sin(w\infty) \right] - \left[\cos(-w\infty) + j\sin(-w\infty) \right] \right\}$$

Example 4.11:

$$x(t) = u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw) = ?$$

$$g(t) = \delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} G(jw) = 1 \text{ or } 1(jw)$$

$$x(t) = \int_{-\infty}^{t} g(\tau)d\tau \qquad X(jw) = \frac{1}{jw}G(jw) + \pi G(0)\delta(w)$$
$$= \frac{1}{jw} + \pi \delta(w)$$

$$\delta(t) = \frac{d}{dt}u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} jw\left[\frac{1}{jw} + \pi\delta(w)\right] = 1$$

Properties of CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-44

Example 4.12:

$$G(jw) = \frac{2\sin(w)}{w} - e^{jw} - e^{-jw}$$

$$\Rightarrow X(jw) = \frac{G(jw)}{jw} + \pi G(0)\delta(w)$$
$$= \frac{2\sin(w)}{jw^2} - \frac{2\cos(w)}{jw}$$

Time & Frequency Scaling:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$
$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$x(at) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{|a|} X \left(\frac{jw}{a} \right)$$

$$\frac{1}{|b|}x\left(\frac{t}{b}\right) \stackrel{\mathcal{F}}{\longleftrightarrow} X\left(jbw\right)$$

$$x(-t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(-jw)$$

Properties of CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-46

Time & Frequency Scaling:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$
$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jw} t dw$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j - \bar{w}) e^{j \, \bar{w} \, t} \quad d\bar{u}$$

$$=rac{1}{2\pi}\int_{-\infty}^{+\infty} X(j-ar{w})e^{j\,ar{w}\,t}dar{w}$$

$$= \frac{1}{2\pi} \int_{+\infty}^{-\infty} X(j \quad \bar{w}) e^{j \, \bar{w} \, t} \quad d\bar{w}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j - \bar{w}) e^{j\bar{w}t} d\bar{w}$$

Duality:

$$\overline{x_1(t)} = \begin{cases}
1, & |t| < T_1 \\
0, & |t| > T_1
\end{cases}$$
 $\stackrel{\mathcal{F}}{\longleftrightarrow} X_1(jw) = \frac{2\sin(wT_1)}{w}$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

Example 4.4

$$x_2(t) = \frac{\sin(Wt)}{\pi t} \overset{\mathcal{F}}{\longleftrightarrow} X_2(jw) = \begin{cases} 1, & |w| < W \\ 0, & |w| > W \end{cases}$$

Properties of CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-48

Duality:

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$$

$$B(s) = \int_{-\infty}^{+\infty} A(\tau) e^{-js\tau} d\tau$$

$$B(-s) = \int_{-\infty}^{+\infty} A(\tau) e^{js\tau} d\tau$$

$$A(\tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} B(s)e^{js\tau}ds$$

$$A(s) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} B(\tau) e^{js\tau} d\tau$$

$$A(-s) = rac{1}{2\pi} \int_{-\infty}^{+\infty} B(au) e^{-js au} d au$$

Duality:

$$x(t - t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0} X(jw)$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw) \qquad \frac{d}{dt} x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} jw X(jw)$$

$$\int_{-\infty}^{t} x(\tau) d\tau \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{jw} X(jw) + \pi X(0) \delta(w)$$

$$-jtx(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{d}{dw} X(jw)$$

$$e^{jw_0 t} x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j(w - w_0))$$

$$-\frac{1}{jt} x(t) + \pi x(0) \delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \int_{-\infty}^{w} X(\eta) d\eta$$

Properties of CT Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-50

 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$

 $X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$

Parseval's relation:

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$\Rightarrow \int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(jw)|^2 dw$$

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} x(t) x^*(t) dt$$

$$= \int_{-\infty}^{+\infty} x(t) \left[\frac{1}{2\pi} \int_{-\infty}^{+\infty} X^*(jw) e^{-jwt} dw \right] dt$$
$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X^*(jw) \left[\int_{-\infty}^{+\infty} x(t) e^{-jwt} dt \right] dw$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(jw)|^2 dw$$

- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

Convolution Property & Multiplication Property

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-52

Convolution Property:

$$X(t)$$
 $X(jw)$
 $h(t)$
 $H(jw)$
 $Y(jw)$

$$y(t) = x(t) * h(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(jw) = X(jw)H(jw)$$

$$= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Multiplication Property:

$$\begin{array}{c}
p(t) \\
\hline
s(t) \\
\hline
\end{array}$$

$$r(t) = s(t)p(t) \stackrel{\mathcal{F}}{\longleftrightarrow} R(jw) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\theta)P(j(w-\theta))d\theta$$

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-53

■ From Superposition (or Linearity): $H(jkw_0) = \int_{-\infty}^{\infty} h(t)e^{-jkw_0t}dt$

$$e^{jkw_0t} \longrightarrow h(t) \longrightarrow H(jkw_0)e^{jkw_0t}$$

$$X(jkw_0)e^{jkw_0t}w_0 \longrightarrow X(jkw_0)H(jkw_0)e^{jkw_0t}w_0$$

$$\sum_{k=-\infty}^{+\infty} X(jkw_0)e^{jkw_0t}w_0 \longrightarrow \sum_{k=-\infty}^{+\infty} X(jkw_0)H(jkw_0)e^{jkw_0t}w_0$$

$$x(t) \longrightarrow y(t)$$

$$= \lim_{w_0 \to 0} \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jkw_0) e^{jkw_0 t} w_0 \qquad = \lim_{w_0 \to 0} \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(jkw_0) H(jkw_0) e^{jkw_0 t} w_0$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\mathbf{w}) e^{j\mathbf{w}t} d\mathbf{w} \qquad = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\mathbf{w}) H(j\mathbf{w}) e^{j\mathbf{w}t} d\mathbf{w}$$

Convolution Property

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-54

From Superposition (or Linearity):

$$\frac{1}{2\pi} \lim_{w_0 \to 0} \sum_{k=-\infty}^{+\infty} X(jkw_0) e^{jkw_0t} w_0 \ \longrightarrow \ \frac{1}{2\pi} \lim_{w_0 \to 0} \sum_{k=-\infty}^{+\infty} X(jkw_0) H(jkw_0) e^{jkw_0t} w_0$$

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\mathbf{w}) e^{j\mathbf{w}t} d\mathbf{w} \longrightarrow \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\mathbf{w}) H(j\mathbf{w}) e^{j\mathbf{w}t} d\mathbf{w}$$

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)H(jw)e^{jwt}dw$$

Since
$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} Y(jw)e^{jwt}dw$$

$$\Rightarrow Y(jw) = X(jw)H(jw)$$

$$y(t) = x(t) * h(t) \longleftrightarrow Y(jw) = X(jw)H(jw)$$

Feng-Li Lian © 2015

NTUEE-SS4-CTFT-56

 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw) e^{jwt} dw$

From Convolution Integral:

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$

$$x(t-t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0}X(jw)$$

$$\Rightarrow Y(jw) = \mathcal{F}\{y(t)\} = \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau\right] e^{-jwt}dt$$

$$= \int_{-\infty}^{+\infty} x(\tau) \left[\int_{-\infty}^{+\infty} h(t-\tau)e^{-jwt}dt\right] d\tau$$

$$= \int_{-\infty}^{+\infty} x(\tau) \left[e^{-jw\tau} \int_{-\infty}^{+\infty} h(\sigma)e^{-jw\sigma}d\sigma\right] d\tau$$

$$= \int_{-\infty}^{+\infty} x(\tau) \left[e^{-jw\tau} H(jw)\right] d\tau$$

$$= H(jw) \int_{-\infty}^{+\infty} x(\tau)e^{-jw\tau}d\tau$$

$$\Rightarrow Y(jw) = H(jw)X(jw)$$

 $x(t) \longrightarrow H_1(j\omega)$

Convolution Property

Equivalent LTI Systems:

$$X(t)$$
 $X(jw)$
 $h(t)$
 $Y(t)$
 $Y(jw)$

 $h(t) \stackrel{\mathcal{F}}{\longleftrightarrow} H(jw)$ impulse frequency response

response

$$y(t) = x(t) * h(t)$$
$$Y(jw) = X(jw)H(jw)$$

z(t) $h_1(t)$ x(t)Z(jw) $H_1(jw)$ X(jw)y(t) $h_2(t)$ z(t)Y(jw) $H_2(jw)$ Z(jw) $H_2(jw)$ $H_1(jw)$ X(jw)H₁(jω)H₂(jω) $X(t) \longrightarrow H_2(j\omega)$ **→** H₁(jω) $\Rightarrow Y(jw) = H_1(jw)H_2(jw)X(jw)$

$$(t) \longrightarrow H_{1}(j\omega)H_{2}(j\omega) \longrightarrow y(t)$$

$$(t) \longrightarrow H_{2}(j\omega) \longrightarrow H_{1}(j\omega) \longrightarrow y(t)$$

$$\Rightarrow Y(jw) = H_{1}(jw)H_{2}(jw)X(jw)$$

$$y(t) = h_{1}(t) * h_{2}(t) * x(t)$$

Convolution Property

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-57

Example 4.15: Time Shift

$$x(t)$$
 $X(jw)$
 $h(t)$
 $y(t)$
 $Y(jw)$

$$h(t) = \delta(t - t_0)$$
 $\Rightarrow H(jw) = e^{-jwt_0}$
 $Y(jw) = H(jw)X(jw)$
 $= e^{-jwt_0}X(jw)$

 $\Rightarrow y(t) = x(t-t_0)$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$
$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$x(t - t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0}X(jw)$$

$$\delta(t - t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jwt_0}$$

Convolution Property

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-58

Examples 4.16 & 17: Differentiator & Integrator

$$y(t) = \frac{d}{dt}x(t)$$
 $\Rightarrow Y(jw) = jwX(jw)$

$$x(t) \rightarrow \longrightarrow y(t) \Rightarrow H(jw) = jw$$

$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$
 $\Rightarrow h(t) = u(t)$ impulse response

$$x(t) \to y(t) \Rightarrow H(jw) = \frac{1}{jw} + \pi \delta(w)$$

$$\Rightarrow V(jw) = H(jw) Y(jw)$$

$$\Rightarrow Y(jw) = H(jw)X(jw)$$

$$= \frac{1}{jw}X(jw) + \pi\delta(w)X(jw)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$= \frac{1}{jw}X(jw) + \pi\delta(w)X(0)$$

Example 4.18: Ideal Lowpass Filter

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$
$$X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$x(t)$$

$$X(jw) = \int_{-\infty}^{\infty} h(t)$$

$$Y(jw)$$

$$Y(jw)$$

$$y(t) = h(t) * x(t)$$

$$y(t) = h(t) + x(t)$$
 $V(i\omega) = H(i\omega) V(i\omega)$

$$Y(jw) = H(jw)X(jw)$$

$$H(jw) = \begin{cases} 1, & |w| < w_c \\ 0, & |w| > w_c \end{cases}$$

$$\Rightarrow h(t) = \frac{1}{2\pi} \int_{-w_c}^{+w_c} e^{jwt} dw$$

$$=\frac{\sin(w_c t)}{\pi t}$$

Convolution Property

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-60

Filter Design:

$$H(jw) = \int_{-\infty}^{\infty} h(t)e^{-jwt}dt$$

$$\delta(t)$$

$$x(t)$$
Filter
$$TII \text{ System}$$

$$y(t) = h(t) * x(t)$$

$$= \int_{-\infty}^{\infty} h(t - \tau)x(\tau)d\tau$$

$$H(jw) = \int_{-\infty}^{\infty} h(t)e^{-jwt}dt$$

$$X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$$

$$\Rightarrow Y(jw) = H(jw)X(jw)$$

$$\Rightarrow y(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} Y(jw)e^{jwt}dw$$

Example 4.19:

$$x(t) \longrightarrow \begin{array}{c} \text{Filter} \\ \text{LTI System} \end{array} \longrightarrow y(t)$$

$$h(t) = e^{-at}u(t), \quad a > 0 \qquad \Rightarrow H(jw) = \frac{1}{a+jw}$$

$$x(t) = e^{-bt}u(t), \quad b > 0$$
 $\Rightarrow X(jw) = \frac{1}{b+jw}$

$$\Rightarrow Y(jw) = H(jw)X(jw) = \frac{1}{a+jw} \frac{1}{b+jw}$$

if
$$a \neq b$$

$$= \frac{1}{b-a} \left[\frac{1}{a+jw} - \frac{1}{b+jw} \right]$$

Convolution Property

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-64

Example 4.19:

if
$$a \neq b$$

$$Y(jw) = \frac{1}{b-a} \left[\frac{1}{a+jw} - \frac{1}{b+jw} \right]$$
$$\Rightarrow y(t) = \frac{1}{b-a} \left[e^{-at}u(t) - e^{-bt}u(t) \right]$$

if
$$a = b$$

$$Y(jw) = \frac{1}{(a+jw)^2}$$

since
$$e^{-at}u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a+iw}$$

$$-jtx(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{d}{dw}X(jw)$$

and
$$t e^{-at}u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} j \frac{d}{dw} \left[\frac{1}{a+jw} \right] = \frac{1}{(a+jw)^2}$$

$$\Rightarrow u(t) = te^{-at}u(t)$$

Example 4.20:
$$h(t) = \frac{\sin(w_c t)}{\pi t} \qquad H(jw) = \int_{-\infty}^{\infty} h(t) e^{-jwt} dt$$

$$H(jw) = \int_{-\infty}^{\infty} h(t)e^{-jwt}dt$$

$$x(t) = \frac{\sin(w_i t)}{\pi t} \quad \longrightarrow \quad$$

$$y(t) = ?$$

$$\Rightarrow Y(jw) = H(jw)X(jw)$$

$$\Rightarrow X(jw) = \begin{cases} 1, & |w| \le w_i \\ 0, & \text{otherwise} \end{cases}$$

$$\Rightarrow$$
 $H(jw) = \begin{cases} 1, & |w| \leq w_c \\ 0, & \text{otherwise} \end{cases}$

$$\Rightarrow Y(jw) = \begin{cases} 1, & |w| \le w_0 \\ 0, & \text{otherwise} \\ w_0 = \min(w_0) \end{cases}$$

$$\Rightarrow y(t) = \frac{\sin(w_o t)}{\pi t}$$

$$X(jw)$$
 $-w_i$
 w_i
 w_i

$$y(t) = rac{\left(egin{array}{c} 0, & ext{otherwise} \ w_0 & = & ext{min}(w_c, w_i) \ \Rightarrow & y(t) = rac{\sin(w_c t)}{\pi t}, & w_c \leq w_i \ rac{\sin(w_i t)}{\pi t}, & w_c \geq w_i \ \end{array}$$

Outline

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-66

- Representation of Aperiodic Signals: the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by **Linear Constant-Coefficient Differential Equations**

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-67

Convolution & Multiplication:

$$X(t)$$
 $X(jw)$
 $h(t)$
 $Y(t)$
 $Y(jw)$

$$y(t) = x(t) * h(t) \longleftrightarrow Y(jw) = X(jw)H(jw)$$
$$= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

$$r(t) = s(t)p(t) \stackrel{\mathcal{F}}{\longleftrightarrow} R(jw) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\theta)P(j(w-\theta))d\theta$$

- Multiplication of One Signal by Another:
 - Scale or modulate the amplitude of the other signal
 - Modulation

Multiplication Property

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-68

$$r(t) = s(t)p(t)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

$$X(jw) = \int_{-\infty}^{\infty} r(t)e^{-jwt}dt$$
 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$ $x(t) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$

$$= \int_{-\infty}^{\infty} s(t) p(t) e^{-jwt} dt$$

$$= \int_{-\infty}^{\infty} s(t) \left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} P(j\theta) e^{j\theta t} d\theta \right\} e^{-jwt} dt$$

$$=rac{1}{2\pi}\int_{-\infty}^{\infty}P(j heta)\left[\int_{-\infty}^{\infty}s(t)e^{-j(w- heta)t}dt
ight]d heta$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{P(j\theta)S(j(w-\theta))d\theta}{P(j(w-\theta))S(j\theta)d\theta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{P(j(w-\theta))S(j\theta)d\theta}{P(j(w-\theta))S(j\theta)d\theta}$$

• Example 4.21:

$$r(t) = s(t)p(t)$$

$$s(t) \stackrel{\mathcal{F}}{\longleftrightarrow} S(jw)$$

$$p(t) \stackrel{\mathcal{F}}{\longleftrightarrow} P(jw)$$

$$p(t) = \cos(w_0 t)$$

$$P(jw) = \pi \delta(w - w_0) + \pi \delta(w + w_0)$$

$$R(j\omega) = \frac{1}{2\pi} [S(j\omega) \cdot P(j\omega)]$$

$$A/2$$

$$(-\omega_0 - \omega_1) (-\omega_0 + \omega_1)$$

$$(\omega_0 - \omega_1) (\omega_0 + \omega_1)$$

$$R(jw) = \frac{1}{2\pi} \left[S(jw) * P(jw) \right]$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\theta) P(j(w - \theta)) d\theta$$

$$= \frac{1}{2} S\left(j(w - w_0) \right) + \frac{1}{2} S\left(j(w + w_0) \right)$$

Multiplication Property

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-70

Example 4.22:

$$g(t) = r(t)p(t)$$

$$r(t) \stackrel{\mathcal{F}}{\longleftrightarrow} R(jw)$$

$$p(t) \stackrel{\mathcal{F}}{\longleftrightarrow} P(jw)$$

$$p(t) = \cos(w_0 t)$$

$$G(jw) = \frac{1}{2\pi} \left[R(jw) * P(jw) \right]$$

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-71

Example 4.23:

Example 4.23:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(jw)e^{jwt}dw$$

$$X(jw) = \int_{-\infty}^{+\infty} x(t)\sin(t/2)$$

$$x(t) = \frac{\sin(t)\sin(t/2)}{\pi t^2}$$

$$X(jw) = \int_{-\infty}^{\infty} \frac{\sin(t)\sin(t/2)}{\pi t^2}e^{-jwt}dt$$

$$= \pi \left(\frac{\sin(t)}{\pi t}\right) \left(\frac{\sin(t/2)}{\pi t}\right)$$

$$X(jw) = \frac{1}{2} \mathcal{F} \left\{ \frac{\sin(t)}{\pi t} \right\} * \mathcal{F} \left\{ \frac{\sin(t/2)}{\pi t} \right\}$$

Multiplication Property

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-72

Bandpass Filter Using Amplitude Modulation:

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-73

H(jω)

Bandpass Filter Using Amplitude Modulation:

Bandpass Filter Using Amplitude Modulation:

On Page 349-350, Problem 4.46

 w_0

Section	Property	Aperiodic signal	Fourier transform	NTUEE-SS4-CTFT-75
		x(t) y(t)	$X(j\omega)$ $Y(j\omega)$	
4.3.1	Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$	
4.3.2	Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$	
4.3.6	Frequency Shifting	$e^{j\omega_0 t}x(t)$	$X(j(\omega-\omega_0))$	
4.3.3	Conjugation	$x^*(t)$	$X^*(-j\omega)$	
4.3.5	Time Reversal	x(-t)	$X(-j\omega)$	
4.3.5	Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$	
4.4	Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$	
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$	
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$[\omega X(j\omega)]$	
		$dt^{\Lambda(t)}$	jwx(jw)	
4.3.4	Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$	
4.3.6	Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$	
	riequency		$\int X(j\omega) = X^*(-j\omega)$	
			$\Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\}$	
422	G	(2 - 1		
4.3.3	Conjugate Symmetry	x(t) real	$\begin{cases} \mathfrak{I}m\{X(j\omega)\} = -\mathfrak{I}m\{X(-j\omega)\} \end{cases}$	
	for Real Signals		$ X(j\omega) = X(-j\omega) $	
			$\not \subset X(j\omega) = - \not \subset X(-j\omega)$	
4.3.3	Symmetry for Real and	x(t) real and even	$X(j\omega)$ real and even	
	Even Signals			
4.3.3	Symmetry for Real and	x(t) real and odd	$X(j\omega)$ purely imaginary and odd	
	Odd Signals		, , , , , , , , , , , , , , , , , , , ,	
122		$x_e(t) = \mathcal{E}v\{x(t)\}$ [x(t) real]	$\Re e\{X(j\omega)\}$	
4.3.3	Even-Odd Decompo-	$x_o(t) = \mathbb{O}d\{x(t)\}$ [x(t) real]	$j \mathcal{I}_{M}\{X(j\omega)\}$	
	sition for Real Sig-	$A_{\theta}(t) = Ou[A(t)] = [A(t)] Teal]$	Jonna (Jw)	
	nals			
4.3.7		on for Aperiodic Signals		
	$\int_{-\infty}^{+\infty} r(t) ^2 dt =$	$=\frac{1}{2\pi}\int_{-\infty}^{+\infty} X(j\omega) ^2d\omega$		
) [x(t)] at =	2π		

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-76

TABLE 4.2 BASIC FOU	RIER TRANSFORM PAIRS			
Signal	Fourier transform	Fourier series coefficients (if periodic)		
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k		
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise		
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise		
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$		
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$		
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$		
+∞	$2\pi \stackrel{+\infty}{\leq} (2\pi k)$	1		

and $x(t+T) = x(t)$	<i>k</i> = −∞ · · ·	, ,	
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k	
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_	
$\delta(t)$	1	_	
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	_	
$\delta(t-t_0)$	$e^{-j\omega t_0}$		
$e^{-at}u(t)$, $\Re e\{a\} > 0$	$\frac{1}{a+j\omega}$		
$te^{-at}u(t)$, $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	Manina	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$		

Outline

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-78

- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by
 Linear Constant-Coefficient Differential Equations

Systems Characterized by Linear Constant-Coefficient Differential Find Line 2015

A useful class of CT LTI systems:

$$a_{N} \frac{d^{N} y(t)}{dt^{N}} + a_{N-1} \frac{d^{N-1} y(t)}{dt^{N-1}} + \dots + a_{1} \frac{dy(t)}{dt} + a_{0} y(t)$$

$$= b_{M} \frac{d^{M} x(t)}{dt^{M}} + b_{M-1} \frac{d^{M-1} x(t)}{dt^{M-1}} + \dots + b_{1} \frac{dx(t)}{dt} + b_{0} x(t)$$

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

$$x(t) \longrightarrow \text{LTI System} \longrightarrow y(t)$$

$$Y(jw) = X(jw)H(jw)$$
 $H(jw) = \frac{Y(jw)}{X(jw)}$

Systems Characterized by Linear Constant-Coefficient Differential Figurations 2015

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k} \qquad \frac{\frac{d}{dt} x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} jw X(jw)}{\frac{d^k}{dt^k} x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} (jw)^k X(jw)}{\frac{d^k}{dt^k} x(t)}$$

$$\sum_{k=0}^{N} a_k \qquad \frac{d^k y(t)}{dt^k} \qquad = \qquad \sum_{k=0}^{M} b_k \qquad \frac{d^k x(t)}{dt^k}$$

$$\sum_{k=0}^{N} a_k (jw)^k Y(jw) = \sum_{k=0}^{M} b_k (jw)^k X(jw)$$

$$\frac{Y(jw)}{\sum_{k=0}^{N} a_k (jw)^k} = X(jw) \left[\sum_{k=0}^{M} b_k (jw)^k \right]$$

$$\Rightarrow H(jw) = \frac{Y(jw)}{X(jw)} = \frac{\sum_{k=0}^{M} b_k(jw)^k}{\sum_{k=0}^{N} a_k(jw)^k} = \frac{b_M(jw)^M + \dots + b_1(jw) + b_0}{a_N(jw)^N + \dots + a_1(jw) + a_0}$$

Systems Characterized by Linear Constant-Coefficient Differential Equation 881

Examples 4.24 & 4.25:

$$\frac{dy(t)}{dt} + ay(t) = x(t) \qquad \Rightarrow H(jw) = \frac{1}{jw+a}$$

 $H = \frac{Y}{V}$

$$(jw)Y(jw) + aY(jw) = X(jw)$$
 $\Rightarrow h(t) = e^{-at}u(t)$

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$$

$$\Rightarrow H(jw) = \frac{(jw) + 2}{(jw)^2 + 4(jw) + 3} = \frac{(jw + 2)}{(jw + 1)(jw + 3)}$$
$$= \frac{1}{2} \frac{1}{jw + 1} + \frac{1}{2} \frac{1}{jw + 3}$$

$$\Rightarrow h(t) = \frac{1}{2} e^{-t} u(t) + \frac{1}{2} e^{-3t} u(t)$$

Systems Characterized by Linear Constant-Coefficient Differential English Constant Coefficient Differential English Coef

Example 4.26:

$$x(t) = e^{-t}u(t)$$
 LTI System $y(t) = ???$

$$H(jw) = \frac{(jw+2)}{(jw+1)(jw+3)}$$

$$\Rightarrow Y(jw) = X(jw)H(jw)$$

$$= \left[\frac{1}{jw+1}\right] \left[\frac{jw+2}{(jw+1)(jw+3)}\right]$$
$$= \frac{jw+2}{(jw+1)^2(jw+3)}$$

$$= \frac{1}{4} \frac{1}{jw+1} + \frac{1}{2} \frac{1}{(jw+1)^2} - \frac{1}{4} \frac{1}{jw+3}$$

$$\Rightarrow y(t) = \left[\frac{1}{4}e^{-t} + \frac{1}{2}te^{-t} - \frac{1}{4}e^{-3t}\right]u(t)$$

$$a_k = \frac{1}{T}X(jw)\Big|_{w=kw_0}$$

$$X(jw) = \sum_{k=-\infty}^{+\infty} 2\pi \ a_k \ \delta(w - kw_0)$$

$$= \sum_{k=-\infty}^{+\infty} 2\pi \ \frac{1}{T}X(jkw_0) \ \delta(w - kw_0)$$

$$w = mw_0$$

$$X(jmw_0) = \sum_{k=-\infty}^{+\infty} 2\pi \ \frac{1}{T}X(jkw_0) \ \delta(mw_0 - kw_0)$$

$$= 2\pi \ \frac{1}{T} \ X(jmw_0)$$

$$\Rightarrow 2\pi = T$$

X(jw) of Aperiodic Signals and a_k of Periodic Signals $a_k = \frac{1}{T} X_a(jw) \Big|_{w=kw_0}$ $X_p(jw) = \sum_{k=-\infty}^{+\infty} 2\pi \ a_k \ \delta(w-kw_0)$ $= \sum_{k=-\infty}^{+\infty} 2\pi \ \frac{1}{T} X_a(jkw_0) \ \delta(w-kw_0)$ $w = mw_0$ $X_p(jmw_0) = \sum_{k=-\infty}^{+\infty} 2\pi \ \frac{1}{T} X_a(jkw_0) \ \delta(mw_0-kw_0)$ $= 2\pi \ \frac{1}{T} \ X_a(jmw_0)$

Chapter 4: The Continuous-Time Fourier Transform

Feng-Li Lian © 2015 NTUEE-SS4-CTFT-86

- Representation of Aperiodic Signals: the CT FT
- The FT for Periodic Signals
- Properties of the CT FT
 - Linearity
 Time Shifting
 - Conjugation

Time Reversal

Frequency Shifting
Time and Frequency Scaling

Differentiation in Frequency

Convolution

Multiplication

ation

- · Differentiation in Time
- Integration
- · Conjugate Symmetry for Real Signals
- Symmetry for Real and Even Signals & for Real and Odd Signals
- Even-Odd Decomposition for Real Signals
- · Parseval's Relation for Aperiodic Signals
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations

Questions for Chapter 4

- Why to study FT
 - · In order to analyze or represent aperiodic signals
- How to develop FT
 - From FS and let T -> infinity
- Do periodic signals have FT
 - Yes, their FT is function of isolated impulses
- Why to know the properties of FT
 - · Avoid using the fundamental formulas of FT to compute the FT
- What the duality of FT and why
 - FT and IFT have almost identical integration formulas
- Why to know the convolution property
 - · To analyze system response and/or design proper circuits
 - To simplify computation
- Why to know the multiplication property
 - For signal modulation with different-frequency carriers
 - To simplify computation

