

(3) Sea B un álgebra de Boole y \leq el orden asociado a B. Demuestre que											
(a) $(x^c)^c = x$; (b) $x \le y$ si y sólo si $y^c \le x^c$;											
(c) $y \wedge z = 0$ si y sólo si $y \leq z^c$; (¿cómo sería una propiedad similar con $y \vee z$?)											
(d) si $x \le y$ e $y \land z = 0$ entonces $z \le x^c$ (vea lo que hizo antes).											
(a) (x°) = Veamos que, en toda algebra de bool, debe estar definida la funcion de negacion, que da un complem						D		de Deel	D II-	4	
	mento.	o, anora	sabe	mos q	ue, si	Bes	algebra	de Bool	, B es dis	tributivo y	
acotado, por lo que la unicidad de los complementos esta presente, luego:											
*x = 4, for unicional de complementas, y es el unico elemento, t	4	XV	9 = 1	V	×Λ	= 0	. ૧	r tant	5, u	c = x	
Finalmente, $x^c = y = y^c = x$, $(x^c)^c = (y)^c = x$	+		1	7	1			1	, ,	î	
3 1 Wall vicinic , x - 7 = 9 = x , (x) = (9) - x											
(b) $X = y \longleftrightarrow y' = x'$ (+) $X \vee y = y // x \wedge y = x$											
. (=) Sup. X = Y, y probernos y ≤ x.						М					
. (=) Sup. X = y, y proberos y \(\perp \times\).						1					
		c	c	c		ς'	1,0	دداد	1		
*ZEB, ZZZVa, ta E B. Luego Z=Y, ZZZVX, luego) 1	y ≤	4 4	አ	, 4	4	(4)	ر پرد)(Vec	0	
		1			'						
$4 \leq (y \wedge x) = 4 \leq x$											
(=) Sup. y= x g probamos que X = y.											
		⇒)	Sup y	Λ Z =	0.						
, ^C						z^{c}) = (y A z)	V (y A Z ^c	$) = 0 \vee (y)$	$\wedge z^c$ = (y	Λ Z ^c
$y^{c} \leqslant \chi^{c} \implies y^{c} \land \chi \leq \chi^{c} \land \chi$			onces y								
		←)	Sup y:	≤ z ^c . To	omo A	z, me	e queda	: y∧z ≤ 2	$z^c \wedge z = 0$	⇒ y ∧ z =	0.
$-/$ $y^c \wedge x = 0$											
			cordem	nos mo	notoni	a:					
(C)		a≤									
		C ≤	d								
\Rightarrow) Sup y \wedge z = 0.		2.4		۸ ۵							
$y = y \wedge (1) = y \wedge (z \vee z^c) = (y \wedge z) \vee (y \wedge z^c) = 0 \vee (y \wedge z^c) = (y \wedge z^c) \Rightarrow y \leq z^c$			c ≤ b								
		y ≤	particul z ^c	ar,							
		y = Z≤:									
		уΛ	$Z \le Z^{c}$	ΛZ)							
		-									

(7) Considere todos diagramas, excepto L₁₁ y L₁₂, de la figura.

(c) Determine cuáles son álgebras de Boole.

(b) Dibuje en cada caso el diagrama de Hasse de $\mathcal{P}(At(L))$.

(a) Halle en cada caso At(L).

