

Негладкие задачи

Задача наименьших квадратов с ℓ_1 - регуляризацией

ℓ_1 induces sparsity

@fminxyz

Нормы не являются гладкими

$$\min_{x \in \mathbb{R}^n} f(x),$$

Рассмотрим классическую выпуклую задачу оптимизации. Мы предполагаем, что f(x) является выпуклой функцией, но теперь мы не требуем гладкости.

Рис. 1: Нормы конусов для разных p — нормы не являются гладкими

Пример Вульфа

Wolfe's example

Рис. 2: Пример Вульфа. **Ф**Открыть в Colab

Вычисление субградиента

Важное свойство непрерывной выпуклой функции f(x) заключается в том, что для любой выбранной точки x_0 для всех $x \in \mathsf{dom}\ f$ выполняется неравенство:

$$f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$$

Рис. 3: Линейная аппроксимация Тейлора служит глобальной нижней оценкой для выпуклой функции

Важное свойство непрерывной выпуклой функции f(x) заключается в том, что для любой выбранной точки x_0 для всех $x\in {\sf dom}\ f$ выполняется неравенство:

$$f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$$

для некоторого вектора g, т.е. касательная к графику функции является *глобальной* нижней оценкой для функции.

• Если f(x) дифференцируема, то $g = \nabla f(x_0)$.

Рис. 3: Линейная аппроксимация Тейлора служит глобальной нижней оценкой для выпуклой функции

⊕ ∩ **ø**

Важное свойство непрерывной выпуклой функции f(x) заключается в том, что для любой выбранной точки x_0 для всех $x \in \mathsf{dom}\ f$ выполняется неравенство:

$$f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$$

для некоторого вектора g, т.е. касательная к графику функции является глобальной нижней оценкой для функции.

- Если f(x) дифференцируема, то $q = \nabla f(x_0)$.
- Не все непрерывные выпуклые функции дифференцируемы.

Рис. 3: Линейная аппроксимация Тейлора служит глобальной нижней оценкой для выпуклой функции

Важное свойство непрерывной выпуклой функции f(x) заключается в том, что для любой выбранной точки x_0 для всех $x \in \mathsf{dom}\ f$ выполняется неравенство:

$$f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$$

для некоторого вектора g, т.е. касательная к графику функции является глобальной нижней оценкой для функции.

- Если f(x) дифференцируема, то $q = \nabla f(x_0)$.
- Не все непрерывные выпуклые функции дифференцируемы.

Рис. 3: Линейная аппроксимация Тейлора служит глобальной нижней оценкой для выпуклой функции

Важное свойство непрерывной выпуклой функции f(x) заключается в том, что для любой выбранной точки x_0 для всех $x \in \mathsf{dom}\ f$ выполняется неравенство:

$$f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$$

для некоторого вектора g, т.е. касательная к графику функции является глобальной нижней оценкой для функции.

- Если f(x) дифференцируема, то $q = \nabla f(x_0)$.
- Не все непрерывные выпуклые функции дифференцируемы.

Мы не хотим потерять такое удобное свойство.

Рис. 3: Линейная аппроксимация Тейлора служит глобальной нижней оценкой для выпуклой функции

Вектор g называется **субградиентом** функции $f(x):S \to \mathbb{R}$ в точке x_0 , если $\forall x \in S$:

$$f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$$

♥ C 0

Вектор g называется **субградиентом** функции $f(x):S\to\mathbb{R}$ в точке x_0 , если $\forall x\in S$:

$$f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$$

Множество всех субградиентов функции f(x) в точке x_0 называется **субдифференциалом** функции f в точке x_0 и обозначается $\partial f(x_0)$.

Вектор g называется **субградиентом** функции $f(x):S\to\mathbb{R}$ в точке x_0 , если $\forall x\in S$:

$$f(x) \geq f(x_0) + \langle g, x - x_0 \rangle$$

Множество всех субградиентов функции f(x) в точке x_0 называется субдифференциалом функции f в точке x_0 и обозначается $\partial f(x_0)$.

Найдите $\partial f(x)$, если f(x) = |x|

 $f \to \min_{x,y,z}$ Вычисление субградиента

Найдите $\partial f(x)$, если f(x) = |x|

ullet Если $x_0 \in \mathbf{ri}(S)$, то $\partial f(x_0)$ является выпуклым компактным множеством.

- ullet Если $x_0 \in \mathbf{ri}(S)$, то $\partial f(x_0)$ является выпуклым компактным множеством.
- Выпуклая функция f(x) дифференцируема в точке $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$

- ullet Если $x_0 \in \mathbf{ri}(S)$, то $\partial f(x_0)$ является выпуклым компактным множеством.
- Выпуклая функция f(x) дифференцируема в точке $x_0\Rightarrow \partial f(x_0)=\{\nabla f(x_0)\}.$
- ullet Если $\partial f(x_0)
 eq \emptyset \quad orall x_0 \in S$, то f(x) выпукла на S.

- ullet Если $x_0\in {f ri}(S)$, то $\partial f(x_0)$ является выпуклым компактным множеством.
- Выпуклая функция f(x) дифференцируема в точке $x_0\Rightarrow \partial f(x_0)=\{\nabla f(x_0)\}.$
- ullet Если $\partial f(x_0)
 eq \emptyset \quad orall x_0 \in S$, то f(x) выпукла на S.

- Если $x_0 \in \mathbf{ri}(S)$, то $\partial f(x_0)$ является выпуклым компактным множеством.
- ullet Выпуклая функция f(x) дифференцируема в точке $x_0\Rightarrow \partial f(x_0)=\{\nabla f(x_0)\}.$
- ullet Если $\partial f(x_0)
 eq \emptyset \quad orall x_0 \in S$, то f(x) выпукла на S.

1 Субдифференциал дифференцируемой функции

Пусть $f:S o\mathbb{R}$ — функция, определенная

на множестве S в евклидовом пространстве \mathbb{R}^n . Если $x_0 \in \mathbf{ri}(S)$ и f дифференцируема в точке x_0 , то либо $\partial f(x_0) = \emptyset$ либо $\partial f(x_0) = \{\nabla f(x_0)\}$. Более того, если функция f выпукла, то первая ситуация невозможна.

- Если $x_0 \in \mathbf{ri}(S)$, то $\partial f(x_0)$ является выпуклым компактным множеством
- Выпуклая функция f(x) дифференцируема в точке $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- ullet Если $\partial f(x_0)
 eq \emptyset \quad orall x_0 \in S$, то f(x) выпукла на S.

i Субдифференциал д

дифференцируемой

Пусть $f:S \to \mathbb{R}$ — функция, определенная на множестве S в евклидовом пространстве \mathbb{R}^n . Если $x_0 \in \mathbf{ri}(S)$ и f дифференцируема в точке x_0 , то либо $\partial f(x_0) = \emptyset$ либо $\partial f(x_0) = \{\nabla f(x_0)\}$. Более того, если функция f выпукла, то первая ситуация невозможна.

Доказательство

1. Пусть $s \in \partial f(x_0)$ для некоторого $s \in \mathbb{R}^n$ отличного от $\nabla f(x_0)$. Пусть $v \in \mathbb{R}^n$ — единичный вектор. Поскольку x_0 является внутренней точкой множества S, существует $\delta>0$ такое, что $x_0+tv \in S$ для всех $0< t<\delta$. По определению субградиента:

$$f(x_0+tv) \geq f(x_0) + t\langle s,v \rangle$$

- Если $x_0 \in \mathbf{ri}(S)$, то $\partial f(x_0)$ является выпуклым компактным множеством
- Выпуклая функция f(x) дифференцируема в точке $x_0 \Rightarrow \partial f(x_0) = \{ \nabla f(x_0) \}.$
- ullet Если $\partial f(x_0)
 eq \emptyset \quad orall x_0 \in S$, то f(x) выпукла на S.

i Субдифференциал дифференцируемой функции

Пусть $f:S\to\mathbb{R}$ — функция, определенная на множестве S в евклидовом пространстве \mathbb{R}^n . Если $x_0\in \mathbf{ri}(S)$ и f дифференцируема в точке x_0 , то либо $\partial f(x_0)=\emptyset$ либо $\partial f(x_0)=\{\nabla f(x_0)\}$. Более того, если функция f выпукла, то первая ситуация невозможна.

Доказательство

1. Пусть $s \in \partial f(x_0)$ для некоторого $s \in \mathbb{R}^n$ отличного от $\nabla f(x_0)$. Пусть $v \in \mathbb{R}^n$ — единичный вектор. Поскольку x_0 является внутренней точкой множества S, существует $\delta>0$ такое, что $x_0+tv \in S$ для всех $0< t<\delta$. По определению субградиента:

$$f(x_0+tv) \geq f(x_0) + t\langle s,v \rangle$$

• Если $x_0 \in \mathbf{ri}(S)$, то $\partial f(x_0)$ является выпуклым компактным множеством

• Выпуклая функция f(x) дифференцируема в точке $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$

• Если $\partial f(x_0) \neq \emptyset$ $\forall x_0 \in S$, то f(x) выпукла на S. і Субдифференциал дифференцируемой функции

 Π усть $f:S o \mathbb{R}$ — функция, определенная на множестве S в евклидовом пространстве \mathbb{R}^n . Если $x_0 \in \mathbf{ri}(S)$ и f дифференцируема в точке x_0 , то либо $\partial f(x_0) = \emptyset$ либо $\partial f(x_0) = {\nabla f(x_0)}.$

Более того, если функция f выпукла, то первая ситуация невозможна.

Доказательство

1. Пусть $s \in \partial f(x_0)$ для некоторого $s \in \mathbb{R}^n$ отличного от $\nabla f(x_0)$. Пусть $v \in \mathbb{R}^n$ — единичный вектор. Поскольку x_0 является внутренней точкой множества S, существует $\delta > 0$ такое, что $x_0 + tv \in S$ для всех $0 < t < \delta$. По определению субградиента:

 $f(x_0 + tv) \ge f(x_0) + t\langle s, v \rangle$

что влечёт:

$$\frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

для всех $0 < t < \delta$. Переходя к пределу при $t \to 0$ и используя определение градиента, получаем:

$$\langle \nabla f(x_0), v \rangle = \lim_{t \to 0; 0 < t < \delta} \frac{f(x_0 + tv) - f(x_0)}{t} \geq \langle s, v \rangle$$

2. Отсюда $\langle s - \nabla f(x_0), v \rangle \geq 0$. В силу произвольности v можно выбрать

$$v = -\frac{s - \nabla f(x_0)}{\|s - \nabla f(x_0)\|},$$

которое приводит к $s = \nabla f(x_0)$.

2. Отсюда $\langle s - \nabla f(x_0), v \rangle \geq 0$. В силу произвольности v можно выбрать

$$v = -\frac{s - \nabla f(x_0)}{\|s - \nabla f(x_0)\|},$$

которое приводит к $s = \nabla f(x_0)$.

3. Более того, если функция f выпукла, то согласно дифференциальному условию выпуклости $f(x) \geq f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle$ для всех $x \in S$. Но по определению это означает, что $\nabla f(x_0) \in \partial f(x_0)$.

i Question

Верно ли, что если функция имеет субдифференциал в некоторой точке, то функция выпукла?

i Question

Верно ли, что если функция имеет субдифференциал в некоторой точке, то функция выпукла?

Найдите $\partial f(x)$, если $f(x)=\sin x, x\in [\pi/2;2\pi]$

Верно ли, что если функция выпукла, то она имеет субградиент в любой точке?

i Question

Верно ли, что если функция выпукла, то она имеет субградиент в любой точке?

Выпуклость следует из субдифференцируемости в любой точке. Естественный вопрос заключается в том. верно ли обратное: является ли всякая выпуклая функция субдифференцируемой? Оказывается, в общем случае ответ на этот вопрос отрицателен.

Пусть $f:[0,\infty)\to\mathbb{R}$ определена как $f(x):=-\sqrt{x}$. Тогда. $\partial f(0)=\emptyset$.

Предположим, что $s\in\partial f(0)$ для некоторого $s\in\mathbb{R}.$ Тогда, по определению, мы должны иметь $sx<-\sqrt{x}$ для всех x > 0. Из этого мы можем вывести $s < -\sqrt{1}$ для всех x > 0. Переходя к пределу при x стремящемся к 0справа, мы получаем $s < -\infty$, что невозможно.

Моро Теорема Роккафеллара (субдифференциал линейной комбинации)

Пусть $f_i(x)$ — выпуклые функции на выпуклых множествах $S_i,\; i=\overline{1,n}.$ Тогда если $\bigcap_{i=1}^n \mathbf{ri}(S_i)
eq$

$$\emptyset$$
, то функция $f(x)=\sum\limits_{i=1}^n a_i f_i(x), \quad a_i>0$ имеет субдифференциал $\partial_S f(x)$ на множестве

$$S=\bigcap\limits_{i=1}^{n}S_{i}$$
 и

$$\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x).$$

Моро 1 Теорема Роккафеллара (субдифференциал линейной комбинации)

Пусть $f_i(x)$ — выпуклые функции на выпуклых множествах $S_i,\; i=\overline{1,n}.$ Тогда если $\bigcap_{i=1}^n \mathbf{ri}(S_i)
eq$

 \emptyset , то функция $f(x) = \sum\limits_{i=1}^n a_i f_i(x), \quad a_i > 0$ имеет субдифференциал $\partial_S f(x)$ на множестве

$$S = \bigcap_{i=1}^n S_i$$
 и

$$\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x).$$

і Теорема Дубовицкого Милютина (субдифференциал поточечного максимума)

Пусть $f_i(x)$ — выпуклые функции на открытом выпуклом множестве $S\subseteq\mathbb{R}^n,\ x_0\in S$, и поточечный максимум определяется как f(x) = $\max f_i(x)$. Тогда:

$$\partial_S f(x_0) = \mathbf{conv} \left\{ \bigcup_{i \in I(x_0)} \partial_S f_i(x_0) \right\},$$

$$I(x) = \{i \in [1:m] : f_i(x) = f(x)\}\$$

 $f \to \min_{x,y,z}$ Вычисление субградиента

•
$$\partial(\alpha f)(x)=\alpha\partial f(x)$$
, для $\alpha\geq 0$

•
$$\partial(\alpha f)(x) = \alpha \partial f(x)$$
, для $\alpha \geq 0$

•
$$\partial(\sum f_i)(x) = \sum \partial f_i(x)$$
, f_i — выпуклые функции

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, для $\alpha \geq 0$
- $\partial(\sum f_i)(x) = \sum \partial f_i(x), f_i$ выпуклые функции
- $\partial (\overline{f}(Ax+b))(\overline{x}) = A^T \partial f(Ax+b)$, f выпуклая функция

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, для $\alpha \geq 0$
- $\partial(\sum f_i)(x) = \sum \partial f_i(x), f_i$ выпуклые функции
- $\partial (\overline{f}(Ax+b))(\overline{x}) = A^T \partial f(Ax+b), f$ выпуклая функция
- $z \in \partial f(x)$ тогда и только тогда, когда $x \in \partial f^*(z)$.

Для выпуклого множества $S \subseteq \mathbb{R}^n$, рассмотрим индикаторную функцию $I_S: \mathbb{R}^n \to \mathbb{R}$,

$$I_S(x) = I\{x \in S\} = \begin{cases} 0 & \text{if } x \in S \\ \infty & \text{if } x \notin S \end{cases}$$

Для выпуклого множества $S \subseteq \mathbb{R}^n$, рассмотрим индикаторную функцию $I_S: \mathbb{R}^n \to \mathbb{R}$,

$$I_S(x) = I\{x \in S\} = \begin{cases} 0 & \text{if } x \in S \\ \infty & \text{if } x \notin S \end{cases}$$

Для $x \in S$, $\partial I_S(x) = \mathcal{N}_S(x)$, нормальный конус для S в x:

$$\mathcal{N}_S(x) = \{g \in \mathbb{R}^n : g^Tx \geq g^Ty \text{ for any } y \in S\}$$

Для выпуклого множества $S\subseteq\mathbb{R}^n$, рассмотрим индикаторную функцию $I_S:\mathbb{R}^n\to\mathbb{R}$,

$$I_S(x) = I\{x \in S\} = \begin{cases} 0 & \text{if } x \in S \\ \infty & \text{if } x \notin S \end{cases}$$

Для $x \in S$, $\partial I_S(x) = \mathcal{N}_S(x)$, нормальный конус для S в x:

$$\mathcal{N}_S(x) = \{g \in \mathbb{R}^n : g^Tx \geq g^Ty \text{ for any } y \in S\}$$

Почему? По определнию субградиента g,

$$I_S(y) \geq I_S(x) + g^T(y-x) \quad \text{for all } y$$

• При $y \notin S$, $I_S(y) = \infty$

େଡେନ୍ଦ

Для выпуклого множества $S\subseteq\mathbb{R}^n$, рассмотрим индикаторную функцию $I_S:\mathbb{R}^n \to \mathbb{R}$,

$$I_S(x) = I\{x \in S\} = \begin{cases} 0 & \text{if } x \in S \\ \infty & \text{if } x \notin S \end{cases}$$

Для $x \in S$, $\partial I_S(x) = \mathcal{N}_S(x)$, нормальный конус для S в x:

$$\mathcal{N}_S(x) = \{g \in \mathbb{R}^n : g^Tx \geq g^Ty \text{ for any } y \in S\}$$

Почему? По определнию субградиента g,

$$I_S(y) \geq I_S(x) + g^T(y-x) \quad \text{for all } y$$

- При $y \notin S$, $I_S(y) = \infty$
- ullet При $y \in S$, this means $0 \geq g^T(y-x)$

େ ଚେଚ

Условия Оптимальности

Для любой f (выпуклой или нет).

$$f(x^*) = \min_{x} f(x) \iff 0 \in \partial f(x^*)$$

To есть, x^{\star} является точкой минимума тогда и только тогда, когда 0 является субградиентом функции f в точке x^* . Это утверждение называется субградиентное условие оптимальности

Почему? Легко: если q=0 является субградиентом, это значит что для всех y

$$f(y) \ge f(x^*) + 0^T (y - x^*) = f(x^*)$$

Отметим, что для выпуклой и дифференцируемой функций f верно

$$\partial f(x) = \{\nabla f(x)\}$$

Попробуем записать общее условие оптимальности первого порядка. Вспомним, что решением задачи

$$\min_x f(x) \text{ subject to } x \in S$$

является точка x, для выпуклой и дифференцируемой f, в том и только в том случае, если

$$\nabla f(x)^T(y-x) \geq 0 \quad \text{for all } y \in S$$

Интуитивно: написанное выше означает, что функция увеличивается по мере движения от точки x. Как это доказать? Во-первых, перепишем задачу в следующем виде:

$$\min_{x} f(x) + I_S(x)$$

Теперь воспользуемся условием оптимальности в субградиентной форме:

$$0 \in \partial (f(x) + I_S(x))$$

$$f(x)=x_1+x_2 o \min_{x_1,x_2\in \mathbb{R}^2}$$

$$0\in\partial(f(x)+I_S(x))$$

$$0\in\partial(f(x)+I_S(x))$$

$$\Leftrightarrow 0 \in \{\nabla f(x)\} + \mathcal{N}_S(x)$$

$$0 \in \partial (f(x) + I_S(x))$$

$$\Leftrightarrow 0 \in \{\nabla f(x)\} + \mathcal{N}_S(x)$$

$$\Leftrightarrow -\nabla f(x) \in \mathcal{N}_S(x)$$

$$0\in\partial(f(x)+I_S(x))$$

$$\Leftrightarrow 0 \in \{\nabla f(x)\} + \mathcal{N}_S(x)$$

$$\Leftrightarrow -\nabla f(x) \in \mathcal{N}_S(x)$$

$$\Leftrightarrow -\nabla f(x)^T x \geq -\nabla f(x)^T y \text{ for all } y \in S$$

Заметим, что

$$0 \in \partial(f(x) + I_S(x))$$

$$\Leftrightarrow 0 \in \{\nabla f(x)\} + \mathcal{N}_S(x)$$

$$\Leftrightarrow -\nabla f(x) \in \mathcal{N}_S(x)$$

$$\Leftrightarrow -\nabla f(x)^T x \ge -\nabla f(x)^T y \text{ for all } y \in S$$

$$\Leftrightarrow \nabla f(x)^T (y-x) \ge 0 \text{ for all } y \in S$$
 ребовалось.
ние: условие $0 \in \partial f(x) + \mathcal{N}_S(x)$ является условием оптимальности для выпуклых задач.

что и требовалось. Замечание: условие $0\in\partial f(x)+\mathcal{N}_S(x)$ является **общим условием** оптимальности для выпуклых задач. Однако с ним не всегда удобно работать (ККТ удобнее, про них позже).

Вычисление субградиента

i Example

Найти $\partial f(x)$, if f(x) = |x-1| + |x+1|

i Example

Найти $\partial f(x)$, if f(x) = |x-1| + |x+1|

$$\partial f_1(x) = \begin{cases} -1, & x < 1 \\ [-1;1], & x = 1 \\ 1, & x > 1 \end{cases} \qquad \partial f_2(x) = \begin{cases} -1, & x < -1 \\ [-1;1], & x = -1 \\ 1, & x > -1 \end{cases}$$

i Example

Найти $\partial f(x)$, if f(x) = |x-1| + |x+1|

$$\partial f_1(x) = \begin{cases} -1, & x < 1 \\ [-1;1], & x = 1 \\ 1, & x > 1 \end{cases} \qquad \partial f_2(x) = \begin{cases} -1, & x < -1 \\ [-1;1], & x = -1 \\ 1, & x > -1 \end{cases}$$

Итак.

$$\partial f(x) = \begin{cases} -2, & x < -1 \\ [-2; 0], & x = -1 \\ 0, & -1 < x < 1 \\ [0; 2], & x = 1 \\ 2, & x > 1 \end{cases}$$

Найти $\partial f(x)$ if $f(x) = \left[\max(0, f_0(x))\right]^q$. Здесь $f_0(x)$ - выпуклая функция на открытом множестве S, и $q \geq 1$.

Найти $\partial f(x)$ if $f(x) = \left[\max(0, f_0(x))\right]^q$. Здесь $f_0(x)$ - выпуклая функция на открытом множестве S, и $q \ge 1$.

Согласно теореме о производной композиции функций (функция $\varphi(x) = x^q$ дифференцируема) и обозначая $g(x) = \max(0, f_0(x)), \text{ имеем:}$

$$\partial f(x) = q(g(x))^{q-1} \partial g(x)$$

Найти $\partial f(x)$ if $f(x) = \left[\max(0, f_0(x))\right]^q$. Здесь $f_0(x)$ - выпуклая функция на открытом множестве S, и $q \ge 1$.

Согласно теореме о производной композиции функций (функция $\varphi(x)=x^q$ дифференцируема) и обозначая $g(x) = \max(0, f_0(x))$, имеем:

$$\partial f(x) = q(g(x))^{q-1} \partial g(x)$$

По теореме о субдифференциале поточечного максимума

$$\partial g(x) = \begin{cases} \partial f_0(x), & f_0(x) > 0, \\ \{0\}, & f_0(x) < 0, \\ \{a \mid a = \lambda a', \ 0 \leq \lambda \leq 1, \ a' \in \partial f_0(x)\}, & f_0(x) = 0 \end{cases}$$

Пусть V - конечномерное евклидово пространство, и $x_0 \in V$. Пусть $\|\cdot\|$ - произвольная норма в пространстве V, и пусть $\|\cdot\|_*$ - соответствующая сопряженная норма. Тогда,

$$\partial\|\cdot\|(x_0) = \begin{cases} B_{\|\cdot\|_*}(0,1), & \text{если } x_0 = 0, \\ \{s \in V: \|s\|_* \leq 1; \langle s, x_0 \rangle = \|x_0\|\} = \{s \in V: \|s\|_* = 1; \langle s, x_0 \rangle = \|x_0\|\}, & \text{иначе}. \end{cases}$$

Где $B_{\|.\|.}(0,1)$ есть замкнутый единичный относительно сопряженной нормы шар с центром в нуле. Другими словами, вектор $s \in V$ с $\|s\|_* = 1$ является субградиентом нормы $\|\cdot\|$ в точке $x_0 \neq 0$ тогда и только тогда, когда неравенство Гёльдера $\langle s, x_0 \rangle \leq \|x_0\|$ переходит в равенство.

Пусть V - конечномерное евклидово пространство, и $x_0 \in V$. Пусть $\|\cdot\|$ - произвольная норма в пространстве V, и пусть $\|\cdot\|_*$ - соответствующая сопряженная норма. Тогда,

$$\partial\|\cdot\|(x_0) = \begin{cases} B_{\|\cdot\|_*}(0,1), & \text{если } x_0 = 0, \\ \{s \in V: \|s\|_* \leq 1; \langle s, x_0 \rangle = \|x_0\|\} = \{s \in V: \|s\|_* = 1; \langle s, x_0 \rangle = \|x_0\|\}, & \text{иначе}. \end{cases}$$

Где $B_{\|\cdot\|_*}(0,1)$ есть замкнутый единичный относительно сопряженной нормы шар с центром в нуле. Другими словами, вектор $s\in V$ с $\|s\|_*=1$ является субградиентом нормы $\|\cdot\|$ в точке $x_0\neq 0$ тогда и только тогда, когда неравенство Гёльдера $\langle s,x_0\rangle\leq \|x_0\|$ переходит в равенство. Пусть $s\in V$. По определению $s\in \partial\|\cdot\|(x_0)$ если и

только если $\langle s,x\rangle - \|x\| < \langle s,x_0\rangle - \|x_0\|, \text{ for all } x\in V,$

$$\langle s, x \rangle = \|x\| \le \langle s, x_0 \rangle = \|x_0\|, \text{ for all } x \in V$$

что равносильно

$$\sup_{x \in V} \{\langle s, x \rangle - \|x\|\} \leq \langle s, x_0 \rangle - \|x_0\|.$$

По определению супремума, последнее равносильно

$$\sup_{x,y,z} \{\langle s,x \rangle - \|x\|\} = \langle s,x_0 \rangle - \|x_0\|.$$

Пусть V - конечномерное евклидово пространство, и $x_0 \in V$. Пусть $\|\cdot\|$ - произвольная норма в пространстве V, и пусть $\|\cdot\|_{*}$ - соответствующая сопряженная норма. Тогда,

$$\partial\|\cdot\|(x_0) = \begin{cases} B_{\|\cdot\|_*}(0,1), & \text{если } x_0 = 0, \\ \{s \in V: \|s\|_* \leq 1; \langle s, x_0 \rangle = \|x_0\|\} = \{s \in V: \|s\|_* = 1; \langle s, x_0 \rangle = \|x_0\|\}, & \text{иначе}. \end{cases}$$

Где $B_{\|.\|.}(0,1)$ есть замкнутый единичный относительно сопряженной нормы шар с центром в нуле. Другими словами, вектор $s \in V$ с $\|s\|_* = 1$ является субградиентом нормы $\|\cdot\|$ в точке $x_0 \neq 0$ тогда и только тогда, когда неравенство Гёльдера $\langle s, x_0 \rangle \leq \|x_0\|$ переходит в равенство.

Пусть $s \in V$. По определению $s \in \partial \|\cdot\|(x_0)$ если и только если

$$\langle s,x\rangle - \|x\| \leq \langle s,x_0\rangle - \|x_0\|, \text{ for all } x \in V,$$

 $\sup_{x \in V} \{\langle s, x \rangle - \|x\|\} \leq \langle s, x_0 \rangle - \|x_0\|.$

что равносильно

 $\sup_{f \to \min \atop s,y,s} \sup \{\langle s,x \rangle - \|x\|\} = \langle s,x_0 \rangle - \|x_0\|.$

 $\sup_{x \in V} \{ \langle s, x \rangle - \|x\| \} = \begin{cases} 0, & \text{if } \|s\|_* \le 1, \\ +\infty, & \text{otherwise.} \end{cases}$

Таким образом, выражение равносильно $\|s\|_* \le 1$ и $\langle s, x_0 \rangle = \|x_0\|.$

Следовательно, остаётся заметить, что для $x_0 \neq 0$ неравенство $\|s\|_* \leq 1$ должно переходить в равенство, поскольку при $||s||_* < 1$ неравенство Гёльдера влечёт $\langle s, x_0 \rangle < ||s||_* ||x_0|| < ||x_0||$.

Сопряженная норма в примере выше появилась не случайно. Оказывается, что совершенно аналогичным образом для произвольной функции f (не только для нормы) её субдифференциал может быть описан в терминах двойственного объекта - сопряженной по Фенхелю функции.

