Play with TikZ

Just Us

December 28, 2018

1 Chap 4 Trigonometric Functions

exam 4-1-1

exam 4-1-1b

8/9 of a cake

 ${\it fig-4-1-angles} 320$

fig-4-1-angles40minutes

40 minutes

fig-4-1-angles-relative direction

fig-4-1-angles-difference-of-angles

exam 4-1-2a

a.

exam 4-1-2b

b.

exam 4-1-2aans

a.

exam 4-1-2bans

b.

exer 4-1-2a

a.

exer 4-1-2b

b.

 ${\it fig-4-1} stanpos$

exam 4-1-3a

a.

exam 4-1-3b

b.

exam4-1-4

3 + 0

exer4-1-4

 ${\it fig-4-1-refang}$

First-quadrant: $\tilde{\theta} = \theta$

Second-quadrant: $\tilde{\theta} = 180^{\circ} - 180^{\circ}$

 ${\it fig-4-1}{\it ref}$

Third-quadrant: $\tilde{\theta} = \theta - 180^{\circ}$

P(x,y)

Fourth-quadrant: $\tilde{\theta} = 360^{\circ} - \theta$

act4-1 grid

fig-4-1quads

exam 4-1-5

 $308.7^{\circ} \qquad 51.3^{\circ} \qquad x$

a.

exam 4-1-6a

exam 4-1-6b

 ${\it fig-4-1-coterm}$

 ${\it fig-4-1-coterm2}$

 ${\it fig-4-1-negang}$

fig-4-1-eqna

fig-4-1-eqnb

exam4-1-8

exam4-1-9

fig-4-1-specang

act4-2 grid

Use this grid for #6 and #7

Use this grid for #8 and #9

 ${\it fig-4-1-circle2}$

fig-4-1-unitcircle

exam 4-1-10

 $\operatorname{exer} 4\text{-}1\text{-}10$

fig-4-1-concept6 $\theta = 180^{\circ} + \tilde{\theta}$

hp4-1-7 an electrical meter dial

hp4-1-8 a speedometer

hp4-1-9

 ${\bf a} \ {\bf sundial}$

hp4-1-10 a revolving door

hp4-1-11 a swinging pendulum

hp4-1-12 a Ferris wheel

hp4-1-27ans

hp4-1-29ans

hp4-1-31ans

hp4-1-33ans

hp4-1-35ans

hp4-1-45

hp4-1-47ans

hp4-1-49ans

hp4-1-73

hp4-1-74

hp4-1-75

hp4-1-76

hp4-1-77

hp4-1-78

hp4-1-81

1.1 4.2 Graphs of trig functions

 ${\it fig-4-2-rcircle}$

2 Stuff for later

Section 4.2 Angle of inclination

Section 4.2 Angle of inclination

On a unit circle

 $\sin\! e \, \mathrm{graph}$

 $\operatorname{cosine}\operatorname{graph}$

tangent graph

part A: law of sines a circumscribing circle

part B: law of sines a circumscribing circle

Exercise not used?