Branch: Logica-Discreta 2022-08-12 15:39:21+02:00

CONTINUOUS LOGIC FOR THE DISCRETE LOGICIAN

1. A CLASS OF STRUCTURES

- **1 Definition.** In this notes we deal with 3-sorted¹ structures of the form $\mathcal{M} = \langle \check{M}, M, \mathbb{R} \rangle$. The language and its interpretation are subject to the following conditions.
 - 1. The function may only have one of the following sorts (for any $m, n \in \omega$)
 - a. $\mathbb{R}^n \to \mathbb{R}$
 - b. $\check{M}^n \times M^m \to \text{any of } \check{M}, M, \text{ or } \mathbb{R}$
 - 2. The functions of sort $\mathbb{R}^n \to \mathbb{R}$ are uniformly continuous.
 - 3. The (functions that interpret the) terms of sort $\check{M}^n \to \mathbb{R}$ have *bounded* range.
 - 4. Every element of M is the image of some term of sort $\check{M}^n \to M$.
 - 5. The only relation symbol is the order relation \leq on \mathbb{R} .

We call \check{M} the unit ball of \mathfrak{M} . The terminology is inspired by the example below.

The language is denoted by \mathbb{L} . For simplicity we assume it contains *all* functions as in 2 above.

- **2 Definition.** We write $\mathbb{T}(A)$ for the set of terms of sort $\check{M}^n \times \mathbb{R}^m \to \mathbb{R}$ and parameters in some set $A \subseteq \check{M}$. We write $\mathbb{L}(A)$ for the set of formulas obtained inductively as follows
 - i. $\mathbb{L}(A)$ contains the atomic formula $t \leq s$ for every pair of terms $t, s \in \mathbb{T}(A)$.
 - ii. $\mathbb{L}(A)$ is closed under the Boolean connectives \land , \lor , and the quantifiers \forall , \exists of sort \check{M} .
 - iii. $\mathbb{L}(A)$ is closed under the quantifier \forall of sort \mathbb{R} possibly relativized to a definable subset of \mathbb{R} .

Note that iii asserts, in particular, that if $\varphi(x, \varepsilon) \in \mathbb{L}(A)$ then also $\forall \varepsilon > 0 \ \varphi(x, \varepsilon) \in \mathbb{L}(A)$.

3 Example (Banach spaces). Given a Banach space M we define a structure $\mathbb{M} = \langle \check{M}, M, \mathbb{R} \rangle$ as follows. Let $\check{M} = \{a \in M : \|a\| \le 1\}$ be the closed unit ball of M. Besides the symbols mentioned above, \mathbb{L} contains a function symbol for the natural embedding id : $\check{M} \to M$. It contains also a symbol for the norm $\|\cdot\| : M \to \mathbb{R}$. Finally, \mathbb{L} contains the usual symbols of the language of vector spaces. These have sort $M^n \to M$, for the appropriate $n \in \{0, 1, 2\}$.

Finally, note that condition 3 and 4 of Definition 1 are immediatly satisfied.

In some examples it may be more natural to use (n+n'+1)-sorted structures $\mathcal{M} = \langle \check{M}_1, \dots, \check{M}_n, M_1, \dots, M_{n'}, \mathbb{R} \rangle$. The generalization is straightforeward.

2. Ultraproducts

We recall some standard definitions about limits. Let I be a non-empty set. Let F be a filter on I. If $r: I \to \mathbb{R}$ and $\lambda \in \mathbb{R} \cup \{\pm \infty\}$ we write

$$\lim_{i \uparrow F} r(i) = \lambda$$

if $r^{-1}[A] \in F$ for every $A \subseteq \mathbb{R}$ that is a neighborhood of λ . When F is an ultrafilter, such a λ always exists.

Let I be an infinite set. Let $\langle \mathcal{M}_i : i \in I \rangle$ be a sequence of structures, say $\mathcal{M}_i = \langle \check{M}_i, M_i, \mathbb{R} \rangle$, that are uniformly bounded. That is, the bounds in 3 of Definition 1 are the same for all \mathcal{M}_i .

Let F be an ultrafilter on I.

- **4 Definition.** We define a structure $\mathbb{N} = \langle \check{N}, N, \mathbb{R} \rangle$ that we call the ultraproduct of the models $\langle \mathcal{M}_i : i \in I \rangle$.
 - 1. \check{N} comprise the sequences $\hat{a}: I \to \bigcup_{i \in I} \check{M}_i$ such that $\hat{a}i \in \check{M}_i$.
 - 2. N comprise the sequences $t^{\mathbb{N}}(\hat{a})$ of the form $t^{\mathbb{N}_i}(\hat{a}i)$, where t(x) is a term of sort $\check{M}^n \to M$.
 - 3. If f is a function of sort $\check{M}^n \times M^m \to \check{M}$ then $f^{\mathcal{N}}(\hat{a}, t^{\mathcal{N}}(\hat{c}))$ is the sequence $f^{\mathcal{M}_i}(\hat{a}i, t^{\mathcal{M}_i}(\hat{c}i))$.
 - 4. Similarly when f is of sort $\check{M}^n \times M^m \to M$.
 - 5. If f is a function of sort $\check{M}^n \times M^m \to \mathbb{R}$ then

$$f^{\mathcal{N}}(\hat{a}, t^{\mathcal{N}}(\hat{c})) = \lim_{i \uparrow F} f^{\mathcal{N}_i}(\hat{a}i, t^{\mathcal{N}_i}(\hat{c}i)).$$

As usual, if $\mathcal{M}_i = \mathcal{M}$ for all $i \in I$, we say that \mathcal{N} is an ultrapower of \mathcal{M} .

The limit in 5 of the definition above always exists because F is an ultrafilter. It is finite because all models \mathcal{M}_i have the same bounds.

5 Proposition (Łŏś Theorem). Let \mathbb{N} be as above and let $\varphi(x, y) \in \mathbb{L}(A)$. Then for every $\hat{a} \in \check{N}^{|x|}$ and $\lambda \in \mathbb{R}^{|y|}$

 $\mathcal{N} \models \varphi(\hat{a}, \lambda) \iff \left\{ i \in I : \mathcal{M}_i \models \exists \alpha \in A \ \varphi(\hat{a}i, \alpha) \right\} \in F \text{ for every neighborhood } A \ni \lambda.$