Universidade Federal de Minas Gerais Educação a Distância 2013 **Fundamentos** $= (bp)(vd) \times (b0)$ $= (aq)(vd) \times bc$ $= (qv)(ad) \times bc$ de Análise II (1) 0 12,3,43 Paulo Cupertino de Lima

Paulo Cupertino de Lima

HOAN AND

Fundamentos de Análise II

Belo Horizonte CAED-UFMG 2013

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Profo Clélio Campolina Diniz

Reitor

Profa Rocksane de Carvalho Norton

Vice-Reitoria

Profa Antônia Vitória Soares Aranha

Pró Reitora de Graduação

Profo André Luiz dos Santos Cabral

Pró Reitor Adjunto de Graduação

CENTRO DE APOIO DE EDUCAÇÃO À DISTÂNCIA

Profº Fernando Selmar Rocha Fidalgo Diretor de Educação a Distância

Prof ° Wagner José Corradi Barbosa

Coordenador da UAB/UFMG

Profo Hormindo Pereira de Souza Junior

Coordenador Adjunto da UAB/UFMG

EDITORA CAED-UFMG

Profo Fernando Selmar Rocha Fidalgo

CONSELHO EDITORIAL

Profa. Ângela Imaculada Loureiro de Freitas Dalben

Prof^o. Dan Avritzer

Profa. Eliane Novato Silva

Profo. Hormindo Pereira de Souza

Profa. Paulina Maria Maia Barbosa

Profa. Simone de Fátima Barbosa Tófani

Prof^a. Vilma Lúcia Macagnan Carvalho

Profo. Vito Modesto de Bellis

Profº. Wagner José Corradi Barbosa

COLEÇÃO EAD - MATEMÁTICA

Coordenador: Dan Avritzer

LIVRO: Fundamentos de Análise II Autores: Paulo Cupertino de Lima Revisão: Jussara Maria Frizzera

Projeto Gráfico: Departamento de Design - CAED

Formatação: Sérgio Luz

Dados Internacionais de Catalogação na Publicação (CIP)

(Luciana de Oliveira M. Cunha, CRB-6/2725)

Lima, Paulo Cupertino de

L732f Fundamentos

Fundamentos de análise II / Paulo Cupertino de Lima. – Belo

Horizonte: CAED-UFMG, 2013.

105 p.: il. p&b.; 27 cm.

Inclui bibliografia.

ISBN 978-85-64724-27-3

1. Funções (Matemática). 2. Ensino a distância. I. Universidade Federal de Minas Gerais. II. Título.

CDD 515 CDU 517.5

SUMÁRIO

Apresentação	7
Nota do Editor	9
Aula 1 - Funções de variável real	11
1.1 A definição de função de uma variável real	11
1.2 Imagem e pré-imagem de uma função	13
1.3 Funções crescentes e funções decrescentes	14
1.4 A inversa de uma função	16
1.5 Exercícios	19
2 Limite de uma função real.	21
2.1 Definição de limite de uma função	21
2.2 Propriedades do limite	.27
2.3 O Teorema do Sanduiche	30
2.4 Limites laterais de uma função	
2.5 Limites infinitos.	35
2.6 Limites no infinito	38
2.7 Exercícios	41
3 Continuidade	43
3.1 Definição de continuidade	43
3.2 Propriedades da continuidade	44
3.3 O Teorema do Valor Extremo	49
3.4 O Teorema do Valor Intermediário	51
3.5 Exercícios	54
4 Diferenciabilidade	57
4.1 Definição da derivada	.57
4.2 Propriedades da derivada	59
4.3 A Regra da Cadeia	61
4.4 Máximos e mínimos	63
4.5 Pontos críticos	65
4.6 O Teorema do Valor Médio.	66
4.7 Every(cies	70

5 As funções exponenciais	. 73
5.1 Introdução.	. 73
5.2 Definição da função exponencial	. 73
5.3 Propriedades das funções exponenciais	. 78
5.4 As funções exponenciais são contínuas	. 81
5.5 A derivada de e ^x	. 82
6 As funções logarítmicas.	. 85
6.1 Definição das funções logaritmicas	
6.2 Derivadas de funções logaritmicas	. 85
6.3 Propriedades das funções logaritmicas	. 86
7 Noções de Topologia	. 93
7.1 Conjuntos abertos	. 93
7.2 Conjuntos fechados	. 95
7.3 Pontos de acumulação	97
7.4 Conjuntos compactos	. 99
7.5 O teorema de Heine-Borel	100
7.6 Exercícios	102
Referências	105

APRESENTAÇÃO

Este livro foi escrito para ser utilizado no curso de Licenciatura em Matemática à distância oferecido pela UFMG.

Tendo em vista que este livro é destinado a cursos à distância, o texto possui características específicas para assim ser utilizado.

Neste livro introduzimos os conceitos de funções crescentes e funções decrescentes e de inversa de uma função. Falamos sobre limite, continuidade e diferenciabilidade de funções de uma variável real. Definimos as funções exponenciais e logaritmicas e introduzimos algumas noções de topologia.

Na Aula 1 introduzimos o conceito inversa de uma função, mostramos que uma função é bijetiva se, e somente se, ela tiver inversa. Introduzimos os conceitos de funções crescente e decrescente e mostramos que estas são injetivas.

Na Aula 2 introduzimos o conceito de limite de uma função, mostramos as suas propriedades, provamos o Teorema do Sanduiche e damos várias aplicações do mesmo. Falamos sobre limites infinitos e de limites no infinito. A partir da definição calculamos os limites de algumas funções elementares, tais como polinômios, funções trigonométricas e a raiz quadrada.

Na Aula 3 introduzimos o conceito de continuidade e provamos as suas propriedades. Mostramos que algumas funções elementares, tais como polinômios, razão de polinômios, as funções trigonométricas e a raiz quadrada são contínuas. Mostramos que a composta de funções contínuas é uma função contínua. Provamos que funções contínuas em intervalos fechados e limitados são limitadas, provamos os Teoremas do Valor Intermediário e do Valor Extremo.

Na Aula 4 introduzimos o conceito de derivada e mostramos as suas propriedades. A partir da definição, calculamos as derivadas de várias funções. Provamos a Regra da Cadeia e demos vários exemplos de aplicações da mesma. Introduzimos os conceitos de máximo e mínimo locais e globais, bem como o conceito de pontos críticos. Provamos os Teoremas de Fermat, de Rolle e do Valor Médio. Descrevemos como calcular os valores máximo e mínimo globais de uma função contínua num intervalo fechado e limitado. Damos várias aplicações do Teorema do Valor Médio.

Na Aula 5 definimos as funções exponeciais a^x , onde a é um número real positivo e diferente de 1. Mais precisamente, mostramos que se (r_n) for uma sequência qualquer de números racionais convergindo para x, então a sequência (a^{r_n}) é convergente e o seu limite não depende de (r_n) , com isso definimos a^x como o limite da sequência (a^{r_n}) . Mostramos as propriedades da função a^x , que ela é contínua, injetiva e sobrejetiva, e calculamos a sua derivada.

Na Aula 6 definimos a inversa da função a^x , ou seja, a função $\log_a x$, e mostramos as propriedades desta função. Calculamos as derivadas das funções logaritmicas.

Na Aula 7 damos algumas noções de topologia, ou seja, os conceitos de conjuntos aberto, fechado e compacto e de pontos de acumulação. Mostramos que o supremo e o ínfimo de um conjunto compacto pertencem ao mesmo. Mostramos a generalização Teorema dos Intervalos Encaixantes para conjuntos compactos. Provamos o Teorema de Heine-Borel.

NOTA DO EDITOR

A Universidade Federal de Minas Gerais atua em diversos projetos de Educação a Distância, que incluem atividades de ensino, pesquisa e extensão. Dentre elas, destacam-se as ações vinculadas ao Centro de Apoio à Educação a Distância (CAED), que iniciou suas atividades em 2003, credenciando a UFMG junto ao Ministério da Educação para a oferta de cursos a distância.

O CAED-UFMG (Centro de Apoio à Educação a Distância da Universidade Federal de Minas Gerais), Unidade Administrativa da Pró-Reitoria de Graduação, tem por objetivo administrar, coordenar e assessorar o desenvolvimento de cursos de graduação, de pós-graduação e de extensão na modalidade a distância, desenvolver estudos e pesquisas sobre educação a distância, promover a articulação da UFMG com os polos de apoio presencial, como também produzir e editar livros acadêmicos e/ou didáticos, impressos e digitais, bem como a produção de outros materiais pedagógicos sobre EAD.

Em 2007, diante do objetivo de formação inicial de professores em serviço, foi criado o Programa Pró-Licenciatura com a criação dos cursos de graduação a distância e, em 2008, com a necessidade de expansão da educação superior pública, foi criado pelo Ministério da Educação o Sistema Universidade Aberta do Brasil – UAB. A UFMG integrou-se a esses programas, visando apoiar a formação de professores em Minas Gerais, além de desenvolver um ensino superior de qualidade em municípios brasileiros desprovidos de instituições de ensino superior.

Atualmente, a UFMG oferece, através do Pró-licenciatura e da UAB, cinco cursos de graduação, quatro cursos de pós-graduação *lato sensu*, sete cursos de aperfeiçoamento e um de atualização.

Como um passo importante e decisivo, o CAED-UFMG decidiu, no ano de 2011, criar a Editora CAED-UFMG como forma de potencializar a produção do material didático a ser disponibilizado para os cursos em funcionamento.

Fernando Selmar Rocha Fidalgo *Editor*

Funções de variável real

AULA1: FUNÇÕES DE VARIÁVEL REAL

OBJETIVOS

Ao final dessa aula, o aluno deverá ser capaz de:

- 1. Compreender os conceitos de função de uma variável real e de pré-imagem de uma função.
- 2. Compreender os conceitos de funções crescentes e decrescentes e de inversa de uma função.

1.1 A definição de função de uma variável real

No curso de Fundamentos de Análise I, vimos a definição de uma função $f:A\to B$, onde A e B eram conjuntos arbitrários, chamados de domínio e contradomínio de f, respectivamente. Neste curso estaremos interessados num caso particular em que A e B são subconjuntos de \mathbb{R} , portanto f assumirá valores reais, por isso dizemos que f é uma função real.

É importante ficar claro que para definirmos uma função precisamos especificar não só a regra que a define, mas também o seu domínio, pois para uma mesma regra, ao considerarmos diferentes domínios, teremos diferentes funções. Por exemplo, $f: \mathbb{R} \to \mathbb{R}$, dada por $f(x) = x^2$ e $g: (1,1) \to \mathbb{R}$, dada por $g(x) = x^2$, são funções diferentes, pois os seus domínios são diferentes. Há situações em que especificamos apenas a regra que define a função f; neste caso estará implícito que o seu domínio é o maior subconjunto de \mathbb{R} , para o qual a regra faça sentido, ou seja, f(x) é um número real. Por exemplo, para $f(x) = \sqrt{x}$, o maior subconjunto de \mathbb{R} , para o qual f está definida é $[0,\infty)$. Já a função f(x) = 1/x está definida para todo $x \neq 0$, enquanto a função $f(x) = \ln x$ está definida para todo x > 0.

Exemplo 1.1. A função $f: \mathbb{R} \to \mathbb{R}$, definida por f(x) = x, é bijetiva.

De fato, dados $x, y \in \mathbb{R}$, se $x \neq y$, temos

$$f(x) = x \neq y = f(y),$$

portanto $f(x) \neq f(y)$ e concluimos que f é injetiva. Por outro lado, dado $y \in \mathbb{R}$, se tomarmos x = y, teremos

$$f(x) = x = y,$$

o que mostra que para todo $y \in \mathbb{R}$ a equação f(x) = y, sempre tem solução, portanto, f é sobrejetiva. Como f é injetiva e sobrejetiva, ela é bijetiva.

Exemplo 1.2. A $f : \mathbb{R} \to \mathbb{R}$, definida por $f(x) = x^3$, é injetiva e sobrejetiva.

De fato, suponha que $x_1 \neq x_2$, digamos $x_1 < x_2$, mostraremos que $f(x_1) \neq f(x_2)$. Como

$$f(x_2) - f(x_1) = x_2^3 - x_1^3 = (x_2 - x_1)(x_2^2 + x_2x_1 + x_1^2),$$

e $x_1 \neq x_2$, segue-se que $f(x_1) = f(x_2)$ se, e somente se,

$$x_2^2 + x_2 x_1 + x_1^2 = 0.$$

Temos duas possibilidades: $x_1x_2 \ge 0$ ou $x_1x_2 < 0$, no primeiro caso, temos $x_2^2 + x_2x_1 + x_1^2 \ge x_1^2 + x_2^2 > 0$, no segundo caso temos $x_2^2 + x_2x_1 + x_1^2 = (x_2 - x_1)^2 - x_1x_2 \ge -x_1x_2 > 0$, portanto, em ambos os casos temos, $x_2^2 + x_2x_1 + x_1^2 > 0$, logo $f(x_2) - f(x_1) > 0$, com isso concluimos que f é injetiva.

Vimos na Aula 5 do curso de Fundamentos de Análise I que dado $y \ge 0$, que existe um (único) número real x, denotado por $\sqrt[3]{y}$, tal que $x^3 = y$. Por outro lado, se y < 0, tome $x = -\sqrt[3]{|y|}$, então $x^3 = -|y| = y$. Logo, para todo $y \in \mathbb{R}$, existe $x \in \mathbb{R}$, tal que $x^3 = y$, o que mostra que a imagem de f é igual ao seu contradomínio, portanto, f é sobrejetiva.

Lembramos que o gráfico de uma função $f: A \rightarrow B$ é o conjunto dos pontos

$$\{(x, f(x)) : x \in A\}. \tag{1.1}$$

Se A e B forem subconjuntos de \mathbb{R} , a representação dos pontos de (1.1) no plano é uma curva. Por exemplo, se $f: \mathbb{R} \to \mathbb{R}$, for definida por $f(x) = x^2$, o seu gráfico é o conjunto $\{(x, x^2) : x \in \mathbb{R}\}$, o qual está representado na Figura 1.1.

Figura 1.1: O gráfico de $f(x) = x^2$, $x \in \mathbb{R}$.

No caso em que A e B são subconjuntos de \mathbb{R} , podemos dar uma interpretação geométrica para os conceitos de injetividade, sobrejetividade e bijetividade. Uma função $f:A\to B$ é injetiva, se para todo $b\in B$, a reta y=b intersecta o gráfico de f no máximo em um ponto. Por outro lado, f será sobrejetiva, se para todo $b\in B$, a reta y=b intersecta o gráfico de f em pelo menos num ponto. Portanto, f será bijetiva se, e somente se, para todo $b\in B$, a reta g=b intersecta o gráfico de g0 em exatamente um ponto.

A função $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = x^2$, não é injetiva, pois para todo b > 0 a reta y = b intersecta o seu gráfico em dois pontos $(\pm b, b^2)$. Ela também não é sobrejetiva, pois se b < 0, a reta y = b não intersecta o gráfico de f, pois $f(x) \ge 0$, para todo x. Note que a função $g: [0, \infty) \to \mathbb{R}$, definida por $g(x) = x^2$, é injetiva mas não é sobrejetiva; por quê? Além disso, a função $h: [0, \infty) \to [0, \infty)$, definida por $h(x) = x^2$, é injetiva e sobrejetiva; por quê?

1.2 Imagem e pré-imagem de uma função

Definição 1.1. *Dada uma função* $f : A \rightarrow B$, se $M \subset A$, denotamos por

$$f(M) = \{f(a) : a \in M\},$$

chamado de imagem de M por f. Dado $N \subset B$, definimos

$$f^{-1}(N) = \{ x \in A : f(x) \in N \}.$$

O conjunto $f^{-1}(N)$ é chamado de pré-imagem ou imagem inversa de N pela função f.

Vale a pena ressaltar que na definição acima o símbolo f^{-1} não representa a inversa de f, a qual será definida na Definição 1.4.

Exemplo 1.3. *Seja* $f : \{a, b, c\} \rightarrow \{1, 2, 3, 4\}$, *definida por*

$$f(a) = 2$$
, $f(b) = 4$, $f(c) = 1$.

Então
$$f({a,b} = {2,4} e f^{-1}({1,2}) = {a,c} e f^{-1}({3}) = \emptyset.$$

Exemplo 1.4. *Seja* $f : \mathbb{R} \to \mathbb{R}$, *definida por* $f(x) = x^2$, *então* f([-1,3)) = [0,9) e $f^{-1}[1,4] = [-2,-1] \cup [1,2]$.

Nos dois teoremas seguintes, os conjuntos A e B são bem gerais, não precisando ser subconjuntos de \mathbb{R} .

Teorema 1.1. Dada uma função $f: A \rightarrow B$, sejam $M, N \subset B$. Então

$$f^{-1}(M \cap N) = f^{-1}(M) \cap f^{-1}(N).$$

Prova. Suponha que $x \in f^{-1}(M \cap N)$, então, $f(x) \in M \cap N$, ou seja, $f(x) \in M$ e $f(x) \in N$, portanto $x \in f^{-1}(M)$ e x pertence a $f^{-1}(N)$, logo, $x \in f^{-1}(M) \cap f^{-1}(N)$, o que mostra que

$$f^{-1}(M \cap N) \subset f^{-1}(M) \cap f^{-1}(N).$$
 (1.2)

Por outro lado, se $x \in f^{-1}(M) \cap f^{-1}(N)$, então $x \in f^{-1}(M)$ e $x \in f^{-1}(N)$, portanto $f(x) \in M$ e $f(x) \in N$, logo f(x) pertence a $M \cap N$, consequentemente $x \in f^{-1}(M \cap N)$. Disso concluimos que

$$f^{-1}(M) \cap f^{-1}(N) \subset f^{-1}(M \cap N).$$
 (1.3)

De (1.2) e (1.3), concluimos a demonstração do teorema.

Teorema 1.2. Dada uma função $f: A \rightarrow B$, sejam $M, N \subset A$. Então

$$f(M \cup N) = f(M) \cup f(N).$$

Prova. Suponha que $y \in f(M \cup N)$, então y = f(x), onde $x \in M \cup N$, portanto $x \in M$ ou $x \in N$, se $x \in M$, então $y \in f(M)$, se $x \in N$, então $y \in f(N)$, de qualquer forma $y \in f(M) \cup f(N)$, portanto

$$f(M \cup N) \subset f(M) \cup f(N). \tag{1.4}$$

Por outro lado, se $y \in f(M) \cup f(N)$, então $y \in f(M)$ ou y pertence a f(N). Se $y \in f(M)$, então existe $x \in M$, tal que y = f(x), se $y \in f(N)$, existe $x \in N$, tal que y = f(x). De qualquer forma, existe $x \in M \cup N$, tal que f(x) = y, ou seja, $y \in f(M \cup N)$, isto mostra que

$$f(M) \cup f(N) \subset f(M \cup N).$$
 (1.5)

De (1.4) e (1.5), concluimos a demonstração do teorema.

1.3 Funções crescentes e funções decrescentes

Definição 1.2. Seja I um intervalo da reta, podendo ele ser a reta toda, dizemos que uma função $f: I \to \mathbb{R}$ é crescente em I, se para todo $x_1, x_2 \in I$, com $x_1 < x_2$, tivermos $f(x_1) < f(x_2)$.

Teorema 1.3. Se f for crescente em I, então f é injetiva em I.

Prova. Suponha que f seja crescente em I e sejam $x_1, x_2 \in I$, com $x_1 \neq x_2$, afirmamos que $f(x_1) \neq f(x_2)$. Como x_1 e x_2 são diferentes, temos uma das seguintes possibilidades: (i) $x_1 < x_2$ ou (ii) $x_2 < x_1$. Como f é crescente em I, no caso (i) temos $f(x_1) < f(x_2)$ e no caso (ii) temos $f(x_2) < f(x_1)$, portanto $f(x_1) \neq f(x_2)$.

Por indução podemos mostrar que para quaisquer números reais a e b e inteiro positivo n, temos

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + b^{n-1}), \tag{1.6}$$

usaremos este resultado nos três exemplos seguintes.

Exemplo 1.5. *Seja n um inteiro positivo e f* : $[0, \infty) \to \mathbb{R}$, *definida por*

$$f(x) = x^n$$
.

Então f é crescente.

De fato, em virtude de (1.6), temos

$$f(x_2) - f(x_1) = x_2^n - x_1^n$$

= $(x_2 - x_1)(x_2^{n-1} + x_2^{n-2}x_1 + \dots + x_1^{n-1}).$

Portanto se $x_2 > x_1 \ge 0$, então $f(x_2) > f(x_1)$, o que mostra que f é crescente. \Box

Exemplo 1.6. *Seja n um inteiro positivo e g* : $[0, \infty) \rightarrow [0, \infty)$, *definida por*

$$g(x) = x^{1/n}.$$

Então g é crescente.

De fato, suponha que $x_2 > x_1$, então tendo em vista (1.6), podemos escrever

$$x_{2} - x_{1} = g(x_{2})^{n} - g(x_{1})^{n}$$

$$= (g(x_{2}) - g(x_{1})) \left(g(x_{2})^{n-1} + g(x_{2})^{n-2}g(x_{1}) + \dots + g(x_{1})^{n-1}\right).$$

$$(1.7)$$

Como $x_2 > x_1$, então $x_2 - x_1 > 0$. Como g(x) > 0 para x > 0 e g(0) = 0, segue $g(x_2) > 0$ e $g(x_1) \ge 0$, logo

$$g(x_2)^{n-1} + g(x_2)^{n-2}g(x_1) + \ldots + g(x_1)^{n-1} > 0.$$

Portanto de (1.7), concluimos que

$$g(x_2)-g(x_1)>0,$$

o que mostra que g é crescente.

Exemplo 1.7. *Sejam m, n inteiros positivos e h* : $[0, \infty) \to \mathbb{R}$ *definida por*

$$h(x) = x^{m/n} \ (\equiv (x^m)^{1/n}).$$

Então h é crescente.

De fato, note que

$$h(x) = g(f(x)).$$

Suponha que $x_2 > x_1 \ge 0$, como a função f é crescente, temos

$$f(x_1) < f(x_2)$$

e como g é crescente, temos

$$g(f(x_1)) < g(f(x_2)),$$

portanto $h(x_1) < h(x_2)$, o que mostra que h é crescente.

Definição 1.3. Seja $I \subset \mathbb{R}$, dizemos que uma função $f: I \to \mathbb{R}$ é decrescente em I, se para todos $x_1, x_2 \in I$ com $x_1 < x_2$ tivermos $f(x_1) > f(x_2)$.

Exercício 1.1. *Mostre que se f for decrescente em I, então f é injetiva em I.*

Na Aula 4 estudaremos a derivada de uma função e veremos que ela nos dá informações sobre os intervalos de crescimento e de decrescimento de uma função derivável.

1.4 A inversa de uma função

Definição 1.4. Dada uma função $f:A\to B$, dizemos que f tem inversa, se existir uma função $g:B\to A$, tal que

$$(f \circ g)(x) = x, \quad \forall x \in B$$

е

$$(g \circ f)(x) = x, \quad \forall x \in A.$$

Usamos a notação f^{-1} , para denotar a a inversa de f.

Exemplo 1.8. Seja $f : \mathbb{R} \to \mathbb{R}$, definida por f(x) = x + 1. Mostre que $g : \mathbb{R} \to \mathbb{R}$, definida por g(x) = x - 1 é a inversa de f.

Solução. Seja g(x) = x - 1, então para todo $x \in \mathbb{R}$, temos

$$f(g(x)) = f(x-1) = (x-1) + 1 = x$$

e

$$g(f(x)) = g(x+1) = (x+1) - 1 = x.$$

O aluno deve estar perguntando como foi encontrada a inversa de f no exemplo anterior. O que fizemos foi o seguinte: da equação y=x+1 podemos encontrar x em função de y e temos x=y-1; ou seja, a inversa de f é a função que $f^{-1}(y)=g(y)=y-1$. Como é comum usarmos x como a variável independente, substituimos x por y e y por x nesta equação e temos que $f^{-1}(x)=g(x)=x-1$. Em geral, se quisemos encontrar a inversa de y=f(x), consideramos a equação x=f(y) e desta tentamos encontrar y em função de x, a qual será $f^{-1}(x)$. Quase nunca é possível resolver a equação x=f(y), mesmo no caso mais simples que possamos imaginar em que f(y) é um polinômio.

Exercício 1.2. Encontre a fórmula para a função inversa das funções abaixo.

(i)
$$f(x) = x^3 + 1$$
.

(ii)
$$f : \mathbb{R} - \{-3/2\} \to \mathbb{R} - \{2\}$$
, definida por $f(x) = \frac{4x-1}{2x+3}$.

Teorema 1.4. Sejam S, T conjuntos e $f: S \to T$ uma função. Mostre que f é bijetiva se, e somente se, f tem inversa.

Prova. Suponha que f seja bijetiva, mostraremos que f tem inversa. De fato, dado qualquer $y \in T$, existe $x \in S$, tal que f(x) = y, pois f é sobrejetiva e este x é único, pois f é injetiva. Isto nos permite definir $g: T \to S$, por g(y) = x, onde x é o único elemento de S, tal que f(x) = y. Por construção $(f \circ g)(y) = f(g(y)) = f(x) = y$, para todo $y \in T$ e $(g \circ f)(x) = g(f(x)) = g(y) = x$, para todo $x \in S$. Ou seja, $g = f^{-1}$.

Reciprocamente, suponha que f tenha uma inversa, a qual denotaremos por g. Mostraremos que f é sobrejetiva e injetiva. De fato, dado $y \in T$, temos f(g(y)) = y, seja $x \in S$, definido por x = g(y), então f(x) = f(g(y)) = y, logo é f é sobrejetiva. Tome $x, x' \in S$, tal que $x \neq x'$, afirmamos que $f(x) \neq f(x')$, caso contrário, teríamos x = g(f(x)) = g(f(x')) = x', o que seria um absurdo, portanto f é injetiva.

Definição 1.5. Seja A um subconjunto de \mathbb{R} , tal que se $x \in A$, então $-x \in A$. Dizemos que $f: A \to \mathbb{R}$ é uma função par, se f(-x) = f(x), para todo $x \in A$. Se f(-x) = -f(x), para todo $x \in A$, dizemos que f é uma função ímpar.

Exemplo 1.9. As funções $\cos x e x^2$ são pares e as funções $\sin x e x^3$ são funções impares, quando definidas na reta toda ou num intervalo (-a, a), onde a > 0.

Exemplo 1.10. Se f for impar, então f(0) = 0.

De fato, como f é impar,

$$f(0) = f(-0) = -f(0),$$

logo
$$f(0) = -f(0)$$
, ou seja, $2f(0) = 0$, o que implica

$$f(0) = 0.$$

1.5 Exercícios

Exercício 1.3. Seja $f: A \to B$ uma função injetiva e seja C a imagem de f. Por que a função $g: A \to C$, definida por g(x) = f(x) para todo $x \in A$, é bijetiva?

Exercício 1.4. A função f(x) = |x+1|, $x \in \mathbb{R}$, é injetiva?

Exercício 1.5. Mostre que a função $f : \mathbb{R} - \{2\} \to \mathbb{R} - \{1\}$, definida por

$$f(x) = \frac{x}{x - 2'}$$

é bijetiva e encontre a sua inversa.

Exercício 1.6. Mostre que a função $f: \mathbb{R} \to [-1, \infty)$, definida por

$$f(x) = x^2 + 2x,$$

é sobrejetiva, mas não é injetiva.

Exercício 1.7. *Encontre as inversas das seguintes funções:*

$$(1) f(x) = \sqrt{10 - 3x}, \quad x \le 10/3,$$

$$(2) f(x) = 2x^3 + 3,$$

$$(3) f(x) = 2x + 3,$$

$$(3) f(x) = (2x + 8)^3.$$

Exercício 1.8. *Mostre que as funções abaixo são bijetivas e encontre as suas inversas.*

(1)
$$f: \mathbb{R} - \{2\} \to \mathbb{R} - \{5\}$$
, definida por $f(x) = \frac{5x+1}{x-2}$,

(2)
$$f: \mathbb{R} - \{-3/2\} \to \mathbb{R} - \{2\}$$
, definida por $f(x) = \frac{4x-1}{2x+3}$.

Exercício 1.9. (Revisão) Diga se as afirmações abaixo são verdadeiras ou falsas, justificando a sua opção.

- (1) Existe uma função bijetiva $f: \mathbb{N} \to \mathbb{Q}$,
- (2) Existe uma função bijetiva $f: \mathbb{N} \to \mathbb{R}$,
- (3) Existe uma função bijetiva $f: \{1, 2, ..., n\} \rightarrow \mathcal{P}(\{1, 2, ..., n\})$.

Limite de uma função real

AULA2: LIMITE DE UMA FUNÇÃO REAL

OBJETIVOS

Ao final dessa aula, o aluno deverá ser capaz de:

- 1. Compreender o conceito de limite de uma função, as suas propriedades e as suas implicações.
- 2. Calcular limites a partir da definição.
- 3. Aplicar o Teorema do Sanduiche.
- 4. Compreender os conceitos de limites infinitos e de limites no infinito, bem como calculá-los.

2.1 Definição de limite de uma função

Definição 2.1. Dado um número real x_o , dizemos que um conjunto V é uma vizinhança de x_o , se existir algum número real $\alpha > 0$, tal que $(x_o - \alpha, x_o + \alpha) \subset V$. Se de uma vizinhança de x_o retirarmos o ponto x_o , dizemos que o conjunto obtido é uma vizinhança deletada de x_o . Em particular o conjunto dos x, tais que $0 < |x - x_o| < \alpha$, o qual é precisamente $(x_o - \alpha, x_o) \cup (x_o, x_o + \alpha)$ é um exemplo de vizinhança deletada de x_o .

Na definição de limite, a qual será dada nesta aula, estaremos interessados em saber o que acontece com uma função f(x) para valores de x próximos de x_0 , mas $x \neq x_0$. Em outras palavras, a função precisa estar definida numa vizinhança delatada de x_0 . Por exemplo, embora a função $\frac{\text{sen }x}{x}$ não esteja definida para x=0, nada nos impede de perguntarmos o que acontece a ela, a medida em que tomamos x cada vez mais próximos de x0. Por exemplo, poderíamos perguntar se os valores desta função estão ficando cada vez mais próximos de um número real x0.

Consideraremos, por exemplo, a seguinte função:

$$f(x) = \frac{x^2 - 1}{x - 1}.$$

Embora x=1 não faça parte do seu domínio, ela está definida para todo $x \neq 1$, portanto podemos perguntar o que acontece com os valores de f(x), a medida em que x fica cada vez mais próximo de 1. É claro que para todo $x \neq 1$, podemos escrever

$$f(x) = \frac{(x-1)(x+1)}{x-1} = x+1,$$

o que é equivalente a

$$f(x) - 2 = x - 1.$$

Portanto, se tomarmos x cada vez mais próximos de 1, os valores de f(x) ficam cada vez mais próximos de 2. Em particular, se quisermos, por exemplo, que

 $|f(x)-2| < 10^{-15}$, basta que tomemos $0 < |x-1| < 10^{-15}$.

A fim de formalizarmos o que foi dito, acima temos duas noções de proximidade: a primeira é a proximidade de f(x) do valor 2, a qual é medida por |f(x)-2|. A segunda é a proximidade de x ao ponto x=1, a qual é medida por |x-1|. Por isso introduziremos dois números positivos ϵ e δ , o primeiro mede a proximidade de f(x) ao 2, e o segundo mede a proximidade de x a 1. No presente caso, dado $\epsilon > 0$, se tomarmos $\delta = \epsilon$, então sempre que $0 < |x-1| < \delta$, teremos

$$|f(x) - 2| = |x - 1| < \delta = \epsilon.$$

Resumindo o que foi dito acima, dado arbitrariamente $\epsilon > 0$, mostramos que existe um $\delta > 0$, tal que se $0 < |x-1| < \delta$, então $|f(x)-2| < \epsilon$. No presente caso, uma possível escolha é tomarmos $\delta = \epsilon$. Em virtude disso, dizemos que o limite de f(x) quando x tende a 1 é 2 e escrevemos

$$\lim_{x\to 1} f(x) = 2,$$

ou seja,

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2.$$

Definição 2.2. Seja f uma função definida numa vizinhança deletada do ponto x_0 . Se existir um número real L, de modo que para todo $\epsilon > 0$, exista um $\delta > 0$, tal que

$$|f(x) - L| < \epsilon$$

sempre que $0 < |x - x_o| < \delta$, dizemos que o limite de f(x) quando x tende a x_o é L e escrevemos

$$\lim_{x \to x_0} f(x) = L.$$

Embora no exemplo que consideramos acima tomamos $\delta=\epsilon$, em geral, a dependência de δ com ϵ pode ser complicada.

Teorema 2.1. (Unicidade do limite) Seja f definida numa vizinhança delatada de $x = x_0$. Se $\lim_{x \to x_0} f(x)$ existir ele é único.

Prova. Suponha que $\lim_{x\to x_0} f(x) = L$ e $\lim_{x\to x_0} f(x) = M$, mostraremos que L=M. Se tivéssemos $L\neq M$, digamos L< M, na definição de limite tomaríamos $\epsilon=\frac{M-L}{2}$. Para este ϵ , como $\lim_{x\to x_0} f(x) = L$, existiria $\delta_1>0$, tal que se $0<|x-x_0|<\delta_1$, então teríamos $|f(x)-L|<\epsilon$. Visto que $\lim_{x\to x_0} f(x)=M$, existiria $\delta_2>0$, tal que se $0<|x-x_0|<\delta_2$, então teríamos $|f(x)-M|<\epsilon$. Se tomarmos $\delta=\min\{\delta_1,\delta_2\}$, então para $0<|x-x_0|<\delta$, teríamos $|f(x)-L|<\epsilon$ e também $|f(x)-M|<\epsilon$, o que equivale dizer que $f(x)\in (L-\epsilon,L+\epsilon)$ e $f(x)\in (M-\epsilon,M+\epsilon)$, o que seria um absurdo, pois estes intervalos são disjuntos.

Exemplo 2.1. Suponha que $\lim_{x \to x_o} f(x)$ exista. Então para todo $\epsilon > 0$ e toda constante positiva k, existe $\delta > 0$, tal que se $0 < |x - x_o| < \delta$, então $|f(x) - L| < k\epsilon$.

De fato, dados arbitrariamente ϵ e k positivos, seja $\tilde{\epsilon} = k\epsilon$. Na definição de limite, para este valor de $\tilde{\epsilon}$, existe $\delta > 0$, tal que se $0 < |x - x_0| < \delta$, então $|f(x) - L| < \tilde{\epsilon}$, ou seja, $|f(x) - L| < k\epsilon$.

Em muitas situações aplicaremos o resultado do exemplo acima fazendo k=1/2 ou k=1/3; mas outras escolhas do valor de k também serão consideradas e, dependerá do problema.

Exercício 2.1. Seja f(x) = c, para todo x, onde c é uma constante. Usando ϵ e δ , mostre que para todo x_0 , temos

$$\lim_{x \to x_0} f(x) = c,$$

Exercício 2.2. Seja f(x) = x, para todo x. Usando ϵ e δ , mostre que para todo x_0 , temos

$$\lim_{x\to x_o} f(x) = x_o.$$

Exemplo 2.2. Seja f(x) = 2x + 3, mostraremos a partir da definição que

$$\lim_{x\to x_o} f(x) = 2x_o + 3,$$

para todo $x_o \in \mathbb{R}$.

De fato, dado $\epsilon > 0$, tome $\delta = \epsilon/2$, portanto, se $0 < |x - x_0| < \delta$, temos

$$|f(x) - (2x_o + 3)| = 2|x - x_o| < 2\delta = 2\frac{\epsilon}{2} = \epsilon,$$

o que mostra que $\lim_{x \to x_0} f(x) = 2x_0 + 3$.

Exercício 2.3. Demonstre cada afirmação usando ϵ e δ .

(a)
$$\lim_{x \to 3} x/5 = 3/5$$
.

(b)
$$\lim_{x \to -5} \left(4 - \frac{3x}{5} \right) = 7.$$

(c)
$$\lim_{x \to 3} \frac{x^2 + x - 12}{x - 3} = 7.$$

- $(d) \lim_{x \to 0} x^2 = 0.$
- (e) $\lim_{x \to 2} x^3 = 8$.

Exercício 2.4. Seja

$$f(x) = \begin{cases} 0, & \text{se } x \text{ for racional} \\ 1, & \text{se } x \text{ for irracional} \end{cases}.$$

Mostre que $\lim_{x\to 0} f(x)$ não existe.

Sugestão: Note que em qualquer vizinhança deletada de x=0 existem números racionais e números irracionais. Na definição de limite tome $\epsilon=1/2$.

Exercício 2.5. Encontre um número $\delta > 0$, tal que se $|x-2| < \delta$, então $|4x-8| < \epsilon$, onde $\epsilon = \frac{1}{10}$.

Exemplo 2.3. Suponha que $\lim_{x \to x_0} f(x)$ exista e seja c uma constante qualquer. Então

$$\lim_{x \to x_o} (cf(x)) = c \left(\lim_{x \to x_o} f(x) \right).$$

De fato, seja $L=\lim_{x\to x_o}f(x)$. Dado $\epsilon>0$, em virtude do Exercício 2.1, existe $\delta>0$, tal que $0<|x-x_o|<\delta$ implica $|f(x)-L|<\frac{\epsilon}{1+|c|}$, portanto

$$|cf(x) - cL| = |c||f(x) - L| < |c| \frac{\epsilon}{1 + |c|} < \epsilon,$$

o que mostra que $\lim_{x \to x_0} (cf(x)) = cL$.

Teorema 2.2. Suponha que $\lim_{x\to x_0} f(x)$ exista, então existem constantes positivas K e α , tais que se $0 < |x - x_0| < \alpha$, então

$$|f(x)| \leq K$$
.

Prova. Seja $L=\lim_{x\to x_o}f(x)$. Na definição de limite, tome $\epsilon=1$, então existe α positivo, tal que se $0<|x-x_o|<\alpha$, temos |f(x)-L|<1, isto juntamente com a desigualdade triangular implicam que

$$|f(x)| = |(f(x) - L) + L| \le |f(x) - L| + |L| < 1 + |L|.$$

Fazendo K = |L| + 1, concluimos a nossa demonstração.

O teorema acima diz que se $\lim_{x\to x_0} f(x)$ existir, então f tem que ser limitada numa vizinhança deletada de x_0 ; em particular, se uma função não for limitada numa vizinhança deletada de x_0 , então $\lim_{x\to x_0} f(x)$ não pode existir.

Exemplo 2.4. *Para todo* $x_o > 0$ *, temos*

$$\lim_{x \to x_o} \sqrt{x} = \sqrt{x_o}.$$

De fato, dado $\epsilon > 0$, tome

$$\delta = \min\left\{\frac{x_0}{2}, \sqrt{x_0} \ \epsilon\right\}.$$

Se tomarmos $0 < |x - x_0| < \delta$, então $x > x_0 - \delta$, como $\delta \le \frac{x_0}{2}$, temos $x > \frac{x_0}{2} > 0$, portanto x estará no domínio da função \sqrt{x} . Por outro lado,

$$\left| \sqrt{x} - \sqrt{x_o} \right| = \left| \frac{x - x_o}{\sqrt{x} + \sqrt{x_o}} \right| = \frac{|x - x_o|}{\sqrt{x} + \sqrt{x_o}}$$

$$< \frac{|x - x_o|}{\sqrt{x_o}} < \frac{\delta}{\sqrt{x_o}} \le \epsilon,$$

na última desigualdade usamos que $\delta \leq \sqrt{x_o} \ \epsilon$.

Exercício 2.6. Mostre que $\lim_{x\to x_0} f(x) = L$ se, e somente se,

$$\lim_{x \to x_0} |f(x) - L| = 0.$$

Exemplo 2.5. Se

$$\lim_{x \to x_0} g(x) = M,$$

então

$$\lim_{x \to x_0} |g(x)| = |M|.$$

De fato, o caso em que M=0 deixamos para o aluno no Exercício 2.6; portanto, a seguir vamos assumir que $M\neq 0$. Como $\lim_{x\to x_o}g(x)=M$, fazendo $\epsilon=\frac{|M|}{2}$, encontramos $\delta_1>0$, tal que se $0<|x-x_o|<\delta_1$, então

$$|g(x)-M|<\frac{|M|}{2},$$

ou seja,

$$M - \frac{|M|}{2} < g(x) < M + \frac{|M|}{2}.$$
 (2.1)

Da primeira desigualdade de (2.1) concluimos que se M>0, então $g(x)>\frac{M}{2}$. Por outro lado, da segunda desigualdade de (2.1) concluimos que se M<0, então $g(x)<\frac{M}{2}$. Portanto, g(x) e M têm o mesmo sinal se $0<|x-x_0|<\delta_1$, em particular nesta vizinhança deletada temos

$$|g(x) - M| = ||g(x)| - |M||, \tag{2.2}$$

Como $\lim_{x\to x_0} g(x)=M$, dado $\epsilon>0$, existe $\delta_2>0$, tal que se $0<|x-x_0|<\delta_2$, então

$$|g(x) - M| < \epsilon. \tag{2.3}$$

Seja $\delta = \{\delta_1, \delta_2\}$, em virtude de (2.2) e (2.3) , se $0 < |x - x_o| < \delta$ temos

$$||g(x)| - |M|| = |g(x) - M| < \epsilon.$$

Exemplo 2.6. Suponha que $\lim_{x\to x_0} g(x) = M$ e $M\neq 0$. Então existe $\alpha>0$, tal que se $0<|x-x_0|<\alpha$, temos

$$|g(x)| > \frac{|M|}{2}.$$

De fato, se fizermos $\alpha = \delta_1$, onde δ_1 foi encontrado no exercício anterior, para $0 < |x - x_0| < \alpha$, valem as seguintes afirmações:

(i) se
$$M > 0$$
, então $g(x) > \frac{M}{2} \Rightarrow |g(x)| > \frac{|M|}{2}$,

(ii) se
$$M < 0$$
, então $g(x) < \frac{M}{2} \Rightarrow |g(x)| > \frac{|M|}{2}$.

Teorema 2.3. Suponha que $\lim_{x \to x_0} g(x) \neq 0$. Mostre que

$$\lim_{x \to x_0} \frac{1}{g(x)} = \frac{1}{\lim_{x \to x_0} g(x)}.$$

Prova. Seja $\lim_{x \to x_0} g(x) = M$, onde $M \neq 0$. No Exemplo 2.6, vimos que existe $\alpha > 0$, tal que se $0 < |x - x_0| < \alpha$, então teremos $|g(x)| > \frac{|M|}{2}$, o que é equivalente a

$$\frac{1}{|M||g(x)|} < \frac{2}{|M|^2}. (2.4)$$

Dado $\epsilon > 0$, como $\lim_{x \to x_0} g(x) = M$, existe $\delta > 0$ (o qual tomaremos menor do que α), tal que se $0 < |x - x_0| < \delta$, então

$$|g(x) - M| < \frac{\epsilon M^2}{2}. (2.5)$$

Portanto, se $0 < |x - x_o| < \delta$, valem as relações (2.4) e (2.5), logo

$$\left| \frac{1}{g(x)} - \frac{1}{M} \right| = |g(x) - M| \frac{1}{|M| |g(x)|} < \frac{\epsilon |M|^2}{2} \frac{2}{|M|^2} = \epsilon.$$

2.2 Propriedades do limite

Em geral calcular os limites a partir da definição pode ser muito técnico; o que mostraremos a seguir são as propriedades dos limites, com as quais podemos calcular limites de funções mais complicadas, a partir do conhecimento de limites de funções mais simples.

Teorema 2.4. Sejam f e g funções definidas numa vizinhança deletada de $x = x_0$ e suponha que $\lim_{x \to x_0} f(x)$ e $\lim_{x \to x_0} g(x)$ existam. Então valem as propriedades abaixo.

(i) Para toda constante c, temos

$$\lim_{x \to x_o} (cf(x)) = c \left(\lim_{x \to x_o} f(x) \right).$$

$$(ii) \lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x).$$

$$(iii) \lim_{x \to x_o} (f(x)g(x)) = \left(\lim_{x \to x_o} f(x)\right) \left(\lim_{x \to x_o} g(x)\right).$$

(iv) Se $\lim_{x\to x_0} g(x) \neq 0$, então

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}.$$

Prova. Sejam $L = \lim_{x \to x_0} f(x)$ e $M = \lim_{x \to x_0} g(x)$.

A propriedade (i) já foi provada no Exemplo 2.3. A seguir provaremos a propriedade (ii). Como

$$\lim_{x \to x_0} f(x) = L \quad e \quad \lim_{x \to x_0} g(x) = M,$$

dado $\epsilon>0$, existe $\delta>0$, tal que se $0<|x-x_o|<\delta$, então $|f(x)-L|<\frac{\epsilon}{2}$ e $|g(x)-M|<\frac{\epsilon}{2}$, isto juntamente com a desigualdade triangular implicam que

$$|(f(x) + g(x)) - (L + M)| = |(f(x) - L) + (g(x) - M)|$$

$$\leq |f(x) - L| + |g(x) - M|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

o que mostra a propriedade (ii).

A seguir mostraremos a propriedade (iii). Seja dado $\epsilon > 0$. Como $\lim_{x \to x_0} g(x)$ existe, pelo Teorema 2.2 existem constantes positivas α e K, tais que $0 < |x - x_0| < \alpha$, implica que

$$|g(x)| \le K. \tag{2.6}$$

Como $\lim_{x\to x_o} f(x)=L$, existe $\delta_1>0$ (assumiremos $\delta_1<\alpha$), tal que se $0<|x-x_o|<\delta_1$, então

$$|f(x) - L| < \frac{\epsilon}{2K}. (2.7)$$

Da mesma forma, como $\lim_{x\to x_0} g(x) = M$, existe um $\delta > 0$ (assumiremos $\delta < \delta_1$), tal que se $0 < |x-x_0| < \delta$, então

$$|g(x) - M| < \frac{\epsilon}{2(|L| + 1)}. ag{2.8}$$

Portanto, se $0 < |x - x_o| < \delta$, então valem (2.6), (2.7) e (2.8); portanto, da desigualdade triangular, temos

$$\begin{aligned} |(f(x)g(x)) - (LM)| &= |(f(x) - L)g(x) + L(g(x) - M)| \\ &\leq |f(x) - L| |g(x)| + |L| |g(x) - M| \\ &< \frac{\epsilon}{2K} K + \frac{\epsilon}{2(|L| + 1)} |L| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \end{aligned}$$

o que mostra a propriedade (iii).

A propriedade (iv) é uma consequência do Teorema 2.3 e da propriedade (iii). $\ \square$

Exemplo 2.7. Combinando-se as propriedades (i) e (ii), segue por indução que se os limites $\lim_{x \to x_0} f_1(x), \ldots, \lim_{x \to x_0} f_n(x)$ existirem, então para quaisquer constantes c_1, \ldots, c_n , temos

$$\lim_{x \to x_0} \sum_{i=1}^n c_i f_i(x) = \sum_{i=1}^n c_i \lim_{x \to x_0} f_i(x).$$

Exemplo 2.8. Da propriedade (iii), segue por indução que se os limites $\lim_{x\to x_0} f_1(x), \ldots, \lim_{x\to x_0} f_n(x)$ existirem, então

$$\lim_{x \to x_o} (f_1(x) \dots f_n(x)) = \left(\lim_{x \to x_o} f_1(x)\right) \dots \left(\lim_{x \to x_o} f_n(x)\right).$$

Exemplo 2.9. Seja seja P(x) uma função polinomial. Usando o Exercício 2.2 e os Exemplos (2.7) - (2.8), concluimos que

$$\lim_{x \to x_o} P(x) = P(x_o).$$

Exemplo 2.10. *Sejam* P(x) *e* Q(x) *funções polinomiais, com*

$$Q(x_o) \neq 0.$$

Usando o Exercício (2.9) e a propriedade (iv), concluimos que

$$\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)}.$$

Exemplo 2.11. $\lim_{x \to -2} (x^2 + 2x + 1) = (-2)^2 + 2(-2) + 1 = 1.$

Exemplo 2.12.

$$\lim_{x \to -1} (x^2 + 1)(x^3 - 2x - 5) = \left(\lim_{x \to -1} (x^2 + 1)\right) \left(\lim_{x \to -1} (x^3 - 2x - 5)\right)$$
$$= ((-1)^2 + 1)((-1)^3 - 2(-1) - 5) = -8.$$

Exemplo 2.13.

$$\lim_{x \to 0} \frac{x^3 + 4x + 3}{x^2 - 1} = \frac{\lim_{x \to 0} (x^3 + 4x + 3)}{\lim_{x \to 0} (x^2 - 1)} = \frac{3}{-1} = -3.$$

2.3 O Teorema do Sanduiche

Teorema 2.5. (Teorema do Sanduiche) Sejam f, g e h funções definidas numa vizinhaça deletada de $x = x_0$, na qual

$$g(x) \le f(x) \le h(x)$$
.

 $Se \lim_{x \to x_0} g(x) = L = \lim_{x \to x_0} h(x)$, então

$$\lim_{x \to x_0} f(x) = L.$$

Prova. Como $\lim_{x \to x_o} g(x) = L = \lim_{x \to x_o} h(x)$, dado $\epsilon > 0$ existe $\delta > 0$ tal que se $0 < |x - x_o| < \delta$, temos $|g(x) - L| < \epsilon$ e $|h(x) - L| < \epsilon$. Destas desigualdades temos $L - \epsilon < g(x)$ e $h(x) < L + \epsilon$, respectivamente. Portanto

$$L - \epsilon < g(x) \le f(x) \le h(x) < L + \epsilon$$

ou seja, $L - \epsilon < f(x) < L + \epsilon$, logo $|f(x) - L| < \epsilon$. O que mostra que $\lim_{x \to x_0} f(x) = L$.

Exemplo 2.14. Do Teorema do Sanduiche, segue que

$$\lim_{x \to 0} \sqrt{x^3 + x^2} \operatorname{sen} \left(\frac{\pi}{x} \right) = 0.$$

De fato, para todo $x \neq 0$ temos $\left| \text{sen } \left(\frac{\pi}{x} \right) \right| \leq 1$, além disso, $\sqrt{x^3 + x^2} = |x| \sqrt{1 + x}$. Se nos restringirmos a x pequenos, digamos 0 < |x| < 1, então, 0 < x + 1 < 2, como a função \sqrt{x} é crescente, segue-se que $\sqrt{1 + x} < \sqrt{2}$, portanto, $\sqrt{x^3 + x^2} = |x| \sqrt{1 + x} \leq \sqrt{2} |x|$. Logo,

$$0 \le \left| \sqrt{x^3 + x^2} \operatorname{sen} \left(\frac{\pi}{x} \right) \right| \le \sqrt{2} |x|$$

como $\lim_{x\to 0} 0=0$ e $\lim_{x\to 0} \sqrt{2}\,|x|=0$, das desigualdades acima e do Teorema do Sanduiche concluímos que

$$\lim_{x \to 0} \left| \sqrt{x^3 + x^2} \operatorname{sen} \left(\frac{\pi}{x} \right) \right| = 0,$$

o que é equivalente a

$$\lim_{x \to 0} \sqrt{x^3 + x^2} \text{ sen } \left(\frac{\pi}{x}\right) = 0.$$

Teorema 2.6. Sejam f e g definidas numa vizinhança deletada de $x=x_0$ na qual $|g(x)| \leq K$, onde K é uma constante positiva. Mostre que se $\lim_{x \to x_0} f(x) = 0$, então $\lim_{x \to x_0} (f(x)g(x)) = 0$.

Prova. Como $|g(x)| \le K$, temos

$$0 \le |f(x)g(x)| \le K|f(x)|. \tag{2.9}$$

Como $\lim_{x\to x_0} K|f(x)|=0$ e $\lim_{x\to x_0} 0=0$, de (2.9) e do Teorema do Sanduiche, temos $\lim_{x\to x_0} |f(x)g(x)|=0$, o que é equivalente a $\lim_{x\to x_0} (f(x)g(x))=0$.

Exercício 2.7. *Usando as identidades trigonométricas:*

$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$

$$sen(a \pm b) = sen a cos b \pm sen b cos a$$

mostre que

$$\cos x - \cos x_o = -2\mathrm{sen} \left(\frac{x - x_o}{2}\right) \, \mathrm{sen} \left(\frac{x + x_o}{2}\right) \tag{2.10}$$

$$\operatorname{sen} x - \operatorname{sen} x_o = 2 \operatorname{sen} \left(\frac{x - x_o}{2} \right) \cos \left(\frac{x + x_o}{2} \right). \tag{2.11}$$

Figura 2.1: A área hachurada na figura corresponde à área de um setor circular que subentende um ângulo de x radianos, onde $0 < x < \pi/2$.

Da Figura 2.1 temos as seguintes desigualdades:

$$\acute{A}rea(\Delta OAP) \leq \acute{A}rea(setorOAP) \leq \acute{A}rea(\Delta OAB),$$

ou seja,

$$\frac{\operatorname{sen} x}{2} \le \frac{x}{2} \le \frac{\operatorname{tg} x}{2},$$

o que é equivalente a

$$\cos x \le \frac{\sin x}{x} \le 1,\tag{2.12}$$

para todo $0 < x < \pi/2$. Como as funções 1, $\cos x$ e $\frac{\sin x}{x}$ são pares, concluimos que as desigualdades em (2.12) valem para $0 < |x| < \pi/2$.

Teorema 2.7. *Temos os seguinte limites:*

$$\lim_{x \to x_0} \cos x = \cos x_0, \tag{2.13}$$

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1,\tag{2.14}$$

$$\lim_{x \to x_0} \operatorname{sen} x = \operatorname{sen} x_0. \tag{2.15}$$

Prova. Como a função seno é limitada por 1, então para todos x e x_0 reais, temos

$$\left| \operatorname{sen} \left(\frac{x + x_0}{2} \right) \right| \le 1$$

e de (2.10) temos

$$\left|\frac{\operatorname{sen}\left(\frac{x-x_0}{2}\right)}{\frac{x-x_0}{2}}\right| \leq 1,$$

para $0 < |x - x_0| < \pi$.

De (2.11), (2.12) e das duas desigualdades acima, temos

$$|\cos x - \cos x_{o}| = \left| -2\operatorname{sen}\left(\frac{x - x_{o}}{2}\right) \operatorname{sen}\left(\frac{x + x_{o}}{2}\right) \right|$$

$$= 2 \left| \frac{\operatorname{sen}\left(\frac{x - x_{o}}{2}\right)}{\frac{x - x_{o}}{2}} \right| \left| \frac{x - x_{o}}{2} \right| \left| \operatorname{sen}\left(\frac{x + x_{o}}{2}\right) \right|$$

$$\leq |x - x_{o}|,$$

para $0<|x-x_o|<\pi$. Da desigualdade acima e do Teorema do Sanduiche concluimos que

$$\lim_{x\to x_o}\cos x=\cos x_o,$$

com isso provamos (2.13).

De (2.13)

$$\lim_{x\to 0}\cos x=\cos 0=1,$$

isto juntamente com (2.12) e do Teorema do Sanduiche implicam (2.14).

Como a função cosseno é limitada por 1, segue de (2.10), (2.12) e de (2.11) que

$$|\operatorname{sen} x - \operatorname{sen} x_{o}| = \left| 2 \operatorname{sen} \left(\frac{x - x_{o}}{2} \right) \operatorname{cos} \left(\frac{x + x_{o}}{2} \right) \right|$$

$$= 2 \left| \frac{\operatorname{sen} \left(\frac{x - x_{o}}{2} \right)}{\frac{x - x_{o}}{2}} \right| \left| \frac{x - x_{o}}{2} \right| \left| \operatorname{cos} \left(\frac{x + x_{o}}{2} \right) \right|$$

$$\leq |x - x_{o}|,$$

para $0<|x-x_o|<\pi$. Da desigualdade acima e do Teorema do Sanduiche concluimos que

$$\lim_{x \to x_0} \operatorname{sen} x = \operatorname{sen} x_0,$$

com isso provamos (2.15).

Exercício 2.8. Sejam f(x) e g(x) duas funções definidas numa vizinhança de $x = x_0$, tais que f(x) = g(x), para todo $x \neq x_0$ e suponha que $\lim_{x \to x_0} f(x) = L$. O que podemos dizer de $\lim_{x \to x_0} g(x)$?

2.4 Limites laterais de uma função

Se uma função f(x) estiver definida para valores de x próximos porém maiores do que x_0 , podemos perguntar o que acontece com os valores de f(x) quando aproximamos de x_0 pela direita, ou seja, através de $x > x_0$. Isto nos leva à noção de limite lateral à direita. De maneira análoga, se uma função estiver definida para valores próximos porém menores do que x_0 , podemos perguntar o que acontece com f(x) quando nos aproximamos de x_0 por valores de $x < x_0$ e isto nos leva a noção de limite lateral à esquerda. Se uma função f estiver definida numa vizinhança deletada de um ponto x_0 , podemos considerar os limites laterais à direita e à esquerda e perguntarmos se eles existem e, em caso afirmativo, se eles são iguais.

Definição 2.3. Suponha que f esteja definida para valores de x próximos e maiores do que x_0 . Se para todo $\epsilon > 0$ existir um $\delta > 0$, tal que $|f(x) - L| < \epsilon$, sempre que $x \in (x_0, x_0 + \delta)$, dizemos que o limite lateral à direita de f quando x tende a x_0 ϵ L e escrevemos

$$\lim_{x \to x_o^+} f(x) = L.$$

Definição 2.4. Suponha que f esteja definida para valores de x próximos e menores do que x_0 . Se para todo $\epsilon > 0$ existir um $\delta > 0$, tal que $|f(x) - L| < \epsilon$, sempre que $x \in (x_0 - \delta, x_0)$, dizemos que o limite lateral à esquerda de f quando x tende a x_0 ϵ L e escrevemos

$$\lim_{x \to x_o^-} f(x) = L.$$

Teorema 2.8. Seja f uma função definida numa vizinhança deletada de $x=x_o$. Então

$$\lim_{x \to x_0} f(x) = L$$

se, e somente se,

$$\lim_{x \to x_0^+} f(x) = L = \lim_{x \to x_0^-} f(x).$$

Prova. Suponha que $\lim_{x\to x_0} f(x) = L$. Dado $\epsilon > 0$, então existe $\delta > 0$, tal que $|f(x)-L| < \epsilon$ sempre que $0 < |x-x_0| < \delta$, mas $0 < |x-x_0| < \delta$ é equivalente a $x \in (x_0-\delta,x_0) \cup (x_0,x_0+\delta)$, portanto temos o seguinte: (i) sempre que $x \in (x_0-\delta,x_0)$ teremos $|f(x)-L| < \epsilon$ e (ii) sempre que $x \in (x_0,x_0+\delta)$ teremos $|f(x)-L| < \epsilon$. De (i) temos que $\lim_{x\to x_0^{-1}} f(x) = L$ e de (ii) $\lim_{x\to x_0^{+1}} f(x) = L$.

Suponha que

$$\lim_{x \to x_o^+} f(x) = L = \lim_{x \to x_o^-} f(x).$$

Tome $\epsilon > 0$, como $\lim_{x \to x_0^+} f(x) = L$, existe $\delta_1 > 0$, tal que se $x \in (x_0, x_0 + \delta_1)$, temos $|f(x) - L| < \epsilon$. Da mesma forma, como $\lim_{x \to x_0^-} f(x) = L$, existe $\delta_2 > 0$, tal que se $x \in (x_0 - \delta_2, x_0)$, temos $|f(x) - L| < \epsilon$. Seja $\delta = \min\{\delta_1, \delta_2\}$, então sempre que tivermos $x \in (x_0, x_0 + \delta)$ ou $x \in (x_0 - \delta, x_0)$, teremos $|f(x) - L| < \epsilon$. Em outras palavras se $0 < |x - x_0| < \delta$, teremos $|f(x) - L| < \epsilon$.

O teorema acima diz que o limite de f(x) quando x tende a x_o existirá se, e somente se, os limites laterais existirem e tiverem o mesmo valor.

Exemplo 2.15. Seja $f(x) = \frac{|x|}{x}$, então

$$\lim_{x \to 0^+} f(x) = +1 \quad e \quad \lim_{x \to 0^-} f(x) = -1.$$

De fato

$$f(x) = \begin{cases} 1, & \text{se } x > 0 \\ -1, & \text{se } x < 0 \end{cases}.$$

Portanto

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} -1 = -1$$

e

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 1 = 1,$$

como $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$, concluímos que $\lim_{x\to 0} f(x)$ não existe.

Exercício 2.9. Suponha que $\lim_{x\to 0^+} g(x) = L$ e que exista $\delta > 0$ tal que $g(x) \ge 0$, para $x \in (0, \delta)$. Mostre que $L \ge 0$.

Exercício 2.10. Suponha que $\lim_{x\to 0^+} g(x) = L$ e que exista $\delta > 0$ tal que $g(x) \leq 0$, para $x \in (0, \delta)$. Mostre que $L \leq 0$.

Exercício 2.11. Suponha que $\lim_{x\to 0^-} g(x) = L$ e que exista $\delta > 0$ tal que $g(x) \ge 0$, para $x \in (-\delta, 0)$. Mostre que $L \ge 0$.

Exercício 2.12. Suponha que $\lim_{x\to 0^-} g(x) = L$ e que exista $\delta > 0$ tal que $g(x) \leq 0$, para $x \in (-\delta, 0)$. Mostre que $L \leq 0$.

2.5 Limites infinitos

Considere a função $f(x)=\frac{1}{|x|}$, cujo o gráfico se encontra na Figura 2.2. Dado um número M>0, não importa quão grande ele seja, podemos encontrar uma vizinhança deletada de x=0, na qual f(x)>M. De fato, se fizermos $\delta=\frac{1}{M}$, se $0<|x|<\delta$, teremos $f(x)=\frac{1}{|x|}>\frac{1}{\delta}=M$. Neste caso dizemos que o limite de f(x) quando x tende a zero é infinito e escrevemos

$$\lim_{x\to x_o} f(x) = +\infty.$$

Figura 2.2: O gráfico de $f(x) = \frac{1}{|x|}$.

Definição 2.5. Seja f definida numa vizinhança deletada de $x=x_o$. Se para todo M>0 existir um $\delta>0$, tal que f(x)>M, sempre que $0<|x-x_o|<\delta$, dizemos que o limite de f(x) quando x tende a x_o é infinito e escrevemos

$$\lim_{x\to x_o} f(x) = +\infty.$$

Exercício 2.13. Suponha que $\lim_{x \to x_0} f(x) = +\infty$ e $\lim_{x \to x_0} g(x) = c$, onde c é uma constante. Mostre que $\lim_{x \to x_0} (f(x) + g(x)) = +\infty$.

Exercício 2.14. Suponha que $\lim_{x\to x_o} f(x) = +\infty$ e $\lim_{x\to x_o} g(x) = c$, onde c é uma constante postiva. Mostre que $\lim_{x\to x_o} (f(x)g(x)) = +\infty$.

Definição 2.6. Seja f definida numa vizinhança deletada de $x=x_o$. Se para todo M<0 existir um $\delta>0$, tal que f(x)< M, sempre que $0<|x-x_o|<\delta$, dizemos que o limite de f(x) quando x tende a x_o é menos infinito e escrevemos

$$\lim_{x \to x_0} f(x) = -\infty.$$

Figura 2.3: O gráfico de $f(x) = \frac{1}{x}$.

Exercício 2.15. Seja $f(x) = -\frac{1}{|x|}$. Mostre que $\lim_{x \to x} f(x) = -\infty$.

Definição 2.7. Se para todo M>0 existir um $\delta>0$, tal que f(x)>M, sempre que $x\in (x_o,x_o+\delta)$, dizemos que o limite lateral à direita f(x) quando x tende a x_o é mais infinito e escrevemos

$$\lim_{x \to x_0^+} f(x) = +\infty.$$

Definição 2.8. Se para todo M>0 existir um $\delta>0$, tal que f(x)>M, sempre que $x\in (x_0-\delta,x_0)$, dizemos que o limite lateral à esquerda f(x) quando x tende a x_0 é infinito e escrevemos

$$\lim_{x \to x_o^-} f(x) = +\infty.$$

Exercício 2.16. Baseado nas duas definições anteriores, em termos de M e de δ , o que significaria dizer que $\lim_{x \to x_o^+} f(x) = -\infty$ e $\lim_{x \to x_o^-} f(x) = -\infty$?

2.6 Limites no infinito

Figura 2.4: O gráfico de $f(x) = \frac{x^2 - 1}{x^2 + 1}$.

Muitas vezes a função considerada está definida na reta toda ou numa semi-reta e queremos saber qual é o comportamento dela quando x fica muito grande, positiva e ou negativamente. Por exemplo, seja

$$f(x) = \frac{x^2 - 1}{x^2 + 1},$$

cujo gráfico é mostrado na Figura 2.4.

A seguir mostraremos que podemos fazer com que f(x) fique tão próximo de 1 quanto desejarmos, bastando que tomemos |x| grande. Note que

$$f(x) = \frac{x^2 - 1}{x^2 + 1} = \frac{(x^2 + 1) - 2}{x^2 + 1} = 1 - \frac{2}{x^2 + 1},$$

portanto

$$|f(x) - 1| = \frac{2}{x^2 + 1}.$$

Logo, dado $\epsilon > 0$, seja

$$x_o = \max\{1, 2/\epsilon\},\,$$

o que significa dizer que $x_o \ge 1$ e $x_o \ge \frac{2}{\epsilon}$.

Logo, se $|x|>x_o$, teremos $|x|>\frac{2}{\epsilon}$ e |x|>1. Como |x|>1, então $|x|^2>|x|>x_o\geq\frac{2}{\epsilon}$, portanto

$$x^2 + 1 > x^2 = |x|^2 > |x| > x_o \ge \frac{2}{\epsilon}$$

ou seja,

$$\frac{2}{x^2+1}<\epsilon.$$

Consequentemente,

$$|f(x) - 1| = \frac{2}{x^2 + 1} < \epsilon.$$

Resumindo, mostramos que dado $\epsilon > 0$, existe $x_0 > 0$, tal que se $|x| > x_0$, temos $|f(x) - 1| < \epsilon$.

Definição 2.9. Dizemos que o limite de f(x) quando x tende para mais infinito é L e escrevemos

$$\lim_{x \to +\infty} f(x) = L,$$

se para todo $\epsilon > 0$ existir $x_0 > 0$, tal que $x > x_0$ implica

$$|f(x) - L| < \epsilon$$
.

Exemplo 2.16. Pela discussão que fizemos no início desta seção concluímos que

$$\lim_{x \to +\infty} \frac{x^2 - 1}{x^2 + 1} = 1.$$

Exemplo 2.17.

$$\lim_{x\to +\infty}\frac{1}{x^n}=0,$$

onde n é um inteiro positivo.

De fato, dado $\epsilon > 0$, tome $x_0 = \sqrt[n]{\frac{1}{\epsilon}}$, como a função x^n é crescente, se $x > x_0$, temos $x^n > x_0^n$, portanto, $\frac{1}{x^n} < \frac{1}{x_0^n} = \epsilon$, $\log |f(x) - 0| = \frac{1}{x^n} < \epsilon$.

Definição 2.10. Dizemos que o limite de f(x) quando x tem para menos infinito é L e escrevemos

$$\lim_{x\to -\infty} f(x) = L,$$

se para todo $\epsilon > 0$ existir $x_o < 0$, tal que $x < x_o$ implica

$$|f(x) - L| < \epsilon$$
.

Exemplo 2.18. Pela discussão que fizemos no início desta seção concluímos que

$$\lim_{x \to -\infty} \frac{x^2 - 1}{x^2 + 1} = 1.$$

Exemplo 2.19. $\lim_{x \to +\infty} (\sqrt{x^2 - 1} - x) = 0$

De fato, para $x \ge 1$, temos

$$\left| \sqrt{x^2 - 1} - x \right| = \left| \frac{(\sqrt{x^2 - 1} - x)(\sqrt{x^2 - 1} + x)}{\sqrt{x^2 - 1} + x} \right|$$

$$= \left| \frac{-1}{\sqrt{x^2 - 1} + x} \right|$$

$$= \frac{1}{\sqrt{x^2 - 1} + x}$$

$$< \frac{1}{x}.$$

Portanto, dado $\epsilon > 0$, seja $x_o = \max\{1, \frac{1}{\epsilon}\}$, então se $x > x_o$,

$$\left|\sqrt{x^2 - 1} - x\right| < \frac{1}{x} < \frac{1}{x_0} = \epsilon.$$

Exercício 2.17. A partir da definição, mostre que

(a)
$$\lim_{x \to -\infty} \frac{4x^2 - 5x + 1}{2x^2 + 7x - 4} = 2,$$

(b)
$$\lim_{x \to +\infty} \frac{3x^2 - x + 1}{x^3 - 5x + 3} = 0,$$

(c)
$$\lim_{x \to -\infty} \frac{4x^3 + x + 5}{7x - 4} = +\infty$$
.

2.7 Exercícios

Exercício 2.18. Prove que se $\lim_{x\to a} f(x) = 3$ e $\lim_{x\to a} g(x) = 2$, então

(a)
$$\lim_{x \to a} (3f(x) + g(x)^2) = 13$$

(b)
$$\lim_{x \to a} (1/g(x)) = 1/2$$

(c)
$$\lim_{x \to a} \sqrt{3f(x) + 8g(x)} = 5$$
.

Exercício 2.19. Encontre os limites abaixo.

(a)
$$\lim_{x\to 2} (2x^3 - 3x + 4)$$
,

(b)
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
,

$$(c)\lim_{x\to 0}\left(\frac{1}{x}-\frac{1}{x^2+x}\right),$$

$$(d) \lim_{x\to 9} \frac{\sqrt{x}-3}{x-9},$$

$$(e) \lim_{x\to 0} \frac{\sqrt{x+4}-2}{x},$$

$$(f) \lim_{x \to +\infty} x \operatorname{sen}(1/x)$$
 (**Sugestão:** faça a mudança de variáveis $u = 1/x$),

$$(g) \lim_{x \to 0} \frac{\mathrm{sen}(2x)}{2x},$$

(h)
$$\lim_{x\to 2} \frac{x^3 - 3x^2 + 2x}{x - 2}$$
,

(i)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - x}$$
.

3

Continuidade

AULA3: CONTINUIDADE

OBJETIVOS

Ao final dessa aula, o aluno deverá ser capaz de:

- 1. Compreender o conceito de continuidade, as suas propriedades e as suas implicações.
- 2. Mostrar que uma função é contínua a partir da definição.
- 3. Compreender os Teoremas do Valor Intermediário e do Valor Extremo e saber aplicá-los.

3.1 Definição de continuidade

Definição 3.1. Seja f uma função definida numa vizinhança do ponto $x = x_o$, dizemos que f é contínua em x_o se, e somente se,

(i)
$$\lim_{x \to x_0} f(x)$$
 existir e

$$(ii) \lim_{x \to x_0} f(x) = f(x_0).$$

Na Figura 3.1 temos dois gráficos. No da esquerda mostramos uma função f(x) que não é contínua em x=0, pois $\lim_{x\to 0} f(x)$ não existe. No gráfico da direita f(x) não é contínua em x=0, pois embora $\lim_{x\to 0} f(x)$ exista, ele não é igual ao valor f(0).

Figura 3.1: Exemplos de funções descontínuas em x = 0.

Exemplo 3.1. Seja f(x) uma função polinômial de grau n, ou seja

$$f(x) = a_n x^n + \ldots + a_1 x + a_0,$$

onde a_1, \ldots, a_n são constantes e $a_n \neq 0$. Vimos no Exercício 2.9 que $\lim_{x \to x_0} f(x) = f(x_0)$, para todo x_0 , portanto funções polinômiais são contínuas em todos os pontos.

Exercício 3.1. Seja $f : \mathbb{R} \to \mathbb{R}$, tal que $f(\lambda x) = \lambda^n f(x)$, para todo λ e todo x reais, onde n é um inteiro positivo fixo. Mostre que f é contínua. **Sugestão.** Note que $f(x) = f(x.1) = x^n f(1)$.

3.2 Propriedades da continuidade

Teorema 3.1. Sejam f e g funções contínuas em $x = x_0$ e c uma constante, então as seguintes funções são contínuas em x_0 :

$$cf$$
, $f+g$, $f-g$, fg e $\frac{f}{g}$ $(se\ g(x_o)\neq 0)$.

O teorema acima é uma consequência imediata do Teorema 2.4; porquê?

Exemplo 3.2. Em virtude do Teorema acima e do Exemplo 3.1, concluimos que se P(x) e Q(x) são funções polinômiais e $Q(x_0) \neq 0$, então $\frac{P(x)}{Q(x)}$ também será contínua em x_0 ; porquê?

Exemplo 3.3. Pelo Teorema 2.7 temos

$$\lim_{x \to x_0} \operatorname{sen} x = \operatorname{sen} x_0 \quad e \quad \lim_{x \to x_0} \cos x = \cos x_0,$$

para todo x_0 . Portanto, as funções seno e cosseno são contínuas em todos os pontos. Logo, do Teorema 3.1, as funções tg $x=\frac{\operatorname{sen} x}{\cos x}$ e $\operatorname{sec} x=\frac{1}{\cos x}$ são contínuas em todos os pontos onde o cosseno não se anula, ou seja, $x_0\neq\frac{(2n+1)\pi}{2}$, onde n é inteiro. Da mesma forma, as funções $\cot x=\frac{\cos x}{\sin x}$ e $\csc x=\frac{1}{\sin x}$ são contínuas em todos os pontos onde o seno não se anula, ou seja, $x_0\neq n\pi$.

Exemplo 3.4. A função $g(x) = \frac{x \cos x - x^3 + 1}{x^2 + 3}$ é contínua para todo x.

De fato, as funções $\cos x$ e x contínuas para todo x, o mesmo acontece com o produto delas, ou seja, $x\cos x$. Sendo $x\cos x$ e $-x^3+1$ contínuas para todo x, o mesmo acontece com a soma destas duas funções, ou seja, $x\cos x - x^3 + 1$ é uma função contínua para todo x. A função x^2+3 é contínua em todos os pontos e não tem zeros em \mathbb{R} . Como g(x) é a razão de duas funções contínuas para todo x e o seu denominador nunca se anula, segue-se que g(x) é contínua para todo x. \square

Exercício 3.2. Para que valores de x a função $f(x) = \frac{x^3 - 5x + 1}{x \cos x}$ é contínua? Quanto vale $\lim_{x \to \pi} f(x)$?

Exercício 3.3. Mostre que a função f(x) = |x| é contínua em todos os pontos.

Exercício 3.4. Se f for contínua em $x=x_o$, mostre que existem constantes K e δ positivos, tais que $|f(x)| \leq K$, para todo x em $(x_o - \delta, x_o + \delta)$. **Sugestão:** Veja a demonstração do Teorema 2.2.

Exercício 3.5. Seja $f:(a,b)\to\mathbb{R}$ contínua em $x=x_0$ e (x_n) uma sequência tal que $x_n\in(a,b)$ para todo n e $\lim_{n\to\infty}x_n=x_0$. Mostre que $\lim_{n\to\infty}f(x_n)=f(x_0)$.

Exercício 3.6. Seja

$$f(x) = \begin{cases} x^2 + 1, & x \le 0 \\ x + b, & x > 0, \end{cases}$$

onde b é uma constante. É possível tomarmos b, tal que f seja contínua em todos os pontos? Em caso afirmativo, qual deve ser o valor de b?

Exercício 3.7. Seja

$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0\\ a, & x = 0, \end{cases}$$

onde a é uma constante. É possível tomarmos a, tal que f seja contínua em todos os pontos? Em caso afirmativo, qual deve ser o valor de a?

Exercício 3.8. Encontre valores de a e b, de modo que a função

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{se } x < 2\\ ax^2 - bx + 3, & \text{se } 2 \le x < 3\\ 2x - a + b, & \text{se } x \ge 3 \end{cases}$$

seja contínua em todos os pontos.

Exercício 3.9. Explique porque a função $f:[0,\infty)\to\mathbb{R}$, definida por

$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 1}, & \text{se } x \neq 1\\ 1, & \text{se } x = 1 \end{cases}$$

é descontinua em x = 1.

Exercício 3.10. Mostre que a função

$$f(x) = \begin{cases} x^4 \operatorname{sen}(1/x), & \text{se } x \neq 0 \\ 0, & \text{se } x = 0 \end{cases}$$

 \acute{e} contínua em x=0.

Definição 3.2. Seja f definida num conjunto contendo um intervalo da forma $[x_o, x_o + \alpha)$, onde $\alpha > 0$. Dizemos que f(x) é contínua à direita de x_o se

$$\lim_{x \to x_o^+} f(x) = f(x_o).$$

Definição 3.3. Seja f definida num conjunto contendo um intervalo da forma $(x_o - \alpha, x_o]$, onde $\alpha > 0$. Dizemos que f(x) é contínua à esquerda de x_o se

$$\lim_{x \to x_o^-} f(x) = f(x_o).$$

Dizemos que $f: A \to \mathbb{R}$ é contínua em A, se f for contínua em todos os pontos de A. Fica implícito que se x_o não for um ponto interior de A (veja Definição 7.1), a continuidade é à direita ou à esquerda de x_o , aquela que fizer sentido. Por exemplo, se A = [a, b], dizemos que f é contínua em A se f for contínua em (a, b), for contínua à direita em x = a e contínua à esquerda em x = b.

Exercício 3.11. Mostre que f é contínua em x_o se, e somente se, f for contínua à direita e à esquerda de x_o .

Exemplo 3.5. A função \sqrt{x} é contínua para todo $x \ge 0$.

De fato, no Exercício 2.4, vimos que

$$\lim_{x\to x_o}\sqrt{x}=\sqrt{x_o},$$

para todo $x_0 > 0$; portanto \sqrt{x} é contínua para x > 0. Por outro lado, dado $\epsilon > 0$, tome N, tal que $\frac{1}{\sqrt{N}} < \epsilon$, o que é possível, pois a sequência $(\frac{1}{\sqrt{n}})$ converge para zero. Suponha que $0 < x < \frac{1}{N}$, como a função \sqrt{x} é crescente, então

$$|\sqrt{x} - 0| = \sqrt{x} < \frac{1}{\sqrt{N}} < \epsilon,$$

logo $\lim_{x\to 0^+} \sqrt{x} = 0 = \sqrt{0}$, o que mostra que \sqrt{x} é contínua à direita em x=0. Portanto \sqrt{x} é contínua para todo $x\geq 0$.

Teorema 3.2. Seja f for contínua em $x = x_0$ e $f(x_0) \neq 0$, mostre que existe um $\delta > 0$, tal que o sinal de f(x) não muda no intervalo $(x_0 - \delta, x_0 + \delta)$.

Prova. Suponha que $f(x_o) > 0$. Na definição de continuidade, tome $\epsilon = \frac{f(x_o)}{2}$, então existe $\delta > 0$, tal que se $|x - x_o| < \delta$, implica $|f(x) - f(x_o)| \le \frac{f(x_o)}{2}$, ou seja,

$$\frac{1}{2}f(x_o) \le f(x) \le \frac{3}{2}f(x_o),\tag{3.1}$$

em particular $f(x) \ge \frac{f(x_0)}{2} > 0$.

Se $f(x_o) < 0$, faça

$$g(x) = -f(x),$$

então g é contínua em x_o e $g(x_o)>0$, logo valem as desigualdades de (3.1) para a função g, ou seja, dado $\epsilon>0$, existe $\delta>0$, tal que se $|x-x_o|<\delta$ implica

$$\frac{1}{2}g(x_o) \leq g(x) \leq \frac{3}{2}g(x_o),$$

multiplicando estas desigualdades por -1, encontramos

$$\frac{3}{2} f(x_o) \le f(x) \le \frac{1}{2} f(x_o),$$

em particular, $f(x) \leq \frac{f(x_0)}{2} < 0$.

No Teorema 3.2, se f for contínua em $x=x_0$ e se $f(x_0)>d$, então existe um $\delta>0$, tal que f(x)>d em $(x_0-\delta,x_0+\delta)$. Da mesma forma, se $f(x_0)<d$, então existe um $\delta>0$, tal que f(x)<d em $(x_0-\delta,x_0+\delta)$. Basta que consideremos a função g(x)=f(x)-d, a qual é contínua em x_0 e não se anula neste ponto.

Do Teorema 3.2 podemos encontrar um $\delta > 0$, para o qual podemos trocar o intervalo aberto $(x_o - \delta, x_o + \delta)$ pelo intervalo fechado $[x_o - \delta, x_o + \delta]$; por quê?

Exercício 3.12. Suponha que f seja contínua à direita em $x = x_o$ e que $f(x_o) \neq 0$, mostre que existe $\delta > 0$, tal que o sinal de f não muda para $x \in [x_o, x_o + \delta)$.

Exercício 3.13. Suponha que f seja contínua à esquerda em $x = x_o$ e que $f(x_o) \neq 0$, mostre existe $\delta > 0$, tal que o sinal de f não muda para $x \in (x_o - \delta, x_o]$.

Nos dois exercícios anteriores, se f for contínua à direita em x_o e se $f(x_o) > d$, então existe um $\delta > 0$, tal que f(x) > d em $[x_o, x_o + \delta]$. Da mesma forma, se $f(x_o) < d$, então existe um $\delta > 0$, tal que f(x) < d em $[x_o, x_o + \delta]$. Valem comentários similares se f for contínua à esquerda em x_o .

Teorema 3.3. Seja f contínua em x=a e $\lim_{x\to x_o} g(x)=a$, então

$$\lim_{x \to x_0} f(g(x)) = f(a),$$

ou seja,

$$\lim_{x \to x_0} f(g(x)) = f\left(\lim_{x \to x_0} g(x)\right).$$

Em particular, se g(x) for contínua em x_o , então a composta $f \circ g$ também será contínua em x_o .

Prova. Considere a composta y = f(u), onde u = g(x). Dado $\epsilon > 0$, como f(u) é contínua em u = a, existe $\alpha > 0$, tal que se $|u - a| < \alpha$, temos $|f(u) - f(a)| < \epsilon$. Como $\lim_{x \to x_0} g(x) = a$, existe $\delta > 0$, tal que se $0 < |x - x_0| < \delta$, temos $|g(x) - a| < \alpha$. Portanto, se $0 < |x - x_0| < \delta$, temos $|f(g(x)) - f(a)| < \epsilon$.

Exemplo 3.6.

$$\lim_{x \to 0} \sqrt{\frac{x \cos x - x^3 + 1}{x^2 + 3}} = \frac{\sqrt{3}}{3}.$$

De fato, podemos ver $\sqrt{\frac{x\cos x - x^3 + 1}{x^2 + 3}}$ como a composição de $y = f(u) = \sqrt{u}$, com $u = g(x) = \frac{x\cos x - x^3 + 1}{x^2 + 3}$. Vimos no Exemplo 3.4 que g(x) é contínua em todos os pontos, em particular, ela é contínua em x = 0, portanto

$$\lim_{x \to 0} \frac{x \cos x - x^3 + 1}{x^2 + 3} = g(0) = 1/3.$$

Como f é contínua em 1/3, pois \sqrt{u} é contínua para tudo u positivo, segue-se do Teorema 3.3 que

$$\lim_{x \to 0} \sqrt{\frac{x \cos x - x^3 + 1}{x^2 + 3}} = \sqrt{\lim_{x \to 0} \frac{x \cos x - x^3 + 1}{x^2 + 3}} = \sqrt{1/3} = \frac{\sqrt{3}}{3}.$$

Exercício 3.14. Calcule

$$\lim_{x\to 0}\cos\left(\frac{\operatorname{sen}x}{x}\right).$$

3.3 O Teorema do Valor Extremo

Definição 3.4. Dado $A \subset \mathbb{R}$, dizemos que a função $f: A \to \mathbb{R}$ é limitada superiormente se existir um número real M, tal que

$$f(x) \leq M$$
,

para todo $x \in A$.

Se f for limitada superiormente, a imagem de f, f(A) será um subconjunto de \mathbb{R} que é limitado superiomente, por conseguinte, ele possui supremo, o qual denotamos por sup f. Uma pergunta natural é a seguinte: existe algum $x_o \in A$, tal que $f(x_o) = \sup f$? Se existir tal x_o , dizemos que f assume valor máximo em A.

Exercício 3.15. Seja $f:[0,1) \to \mathbb{R}$, definida por f(x)=x. Podemos dizer que f tem máximo no seu domínio? Por quê?

Definição 3.5. Dado $A \subset \mathbb{R}$, dizemos que a função $f: A \to \mathbb{R}$ é limitada inferiormente se existir um número real M, tal que

$$f(x) \geq M$$
,

para todo $x \in A$.

Se f for limitada inferiormente, a sua imagem f(A) será um subconjunto de \mathbb{R} que é limitado inferiormente, portanto tem ínfimo, o qual denotamos por inf f. Uma pergunta natural é a seguinte: existe algum $x_o \in A$, tal que $f(x_o) = \inf f$? Se existir tal x_o , dizemos que f assume valor mínimo em A.

Exercício 3.16. Seja $f:[0,1) \to \mathbb{R}$, definida por f(x)=x. Podemos dizer que f tem mínimo no seu domínio? Por quê?

Dizemos que f é limitada, se ela for limitada superiormente e inferiormente.

Teorema 3.4. Seja $f : [a, b] \to \mathbb{R}$ contínua, então f é limitada.

Prova. Suponha por contradição que f não seja limitada, então dado $n \in \mathbb{N}$, existe $x_n \in [a,b]$, tal que $|f(x_n)| > n$. Como $x_n \in [a,b]$, para todo n, a sequência (x_n) é limitada e, pelo Teorema de Bolzano-Weierstrass, ela possui uma subsequência (x_{n_i}) convergente, seja

$$r=\lim_{j\to\infty}x_{n_j}.$$

Como $x_{n_j} \in [a, b]$, para todo j e o conjunto [a, b] é fechado (veja Exemplo 7.9), então o limite $r \in [a, b]$. Como f é contínua em r, do Exercício 3.5, segue-se que

$$\lim_{j\to\infty}f(x_{n_j})=f(r).$$

Como a subsequência $\{f(x_{n_j})\}$ é convergente, ela é limitada, contrariando o fato que $|f(x_{n_j})| > n_j$, para todo j.

Teorema 3.5. Seja $f:[a,b] \to \mathbb{R}$ contínua, então f assume máximo e mínimo em [a,b], ou seja, existem $x_{min}, x_{max} \in [a,b]$, tais que

$$f(x_{min}) \leq f(x) \leq f(x_{max}),$$

para todo $x \in [a, b]$.

Prova. Como f é contínua em [a,b], pelo Teorema 3.4 f é limitada, portanto f([a,b]) é limitado.

Mostraremos que existe $x_{max} \in [a, b]$, tal $f(x) \leq f(x_{max})$, para todo $x \in [a, b]$. Como o conjunto f([a, b]) é limitado superiormente, existe

$$M = \sup f([a, b]).$$

Da definição de supremo, para todo natural n existe algum $x_n \in [a, b]$, tal que

$$M - 1/n < f(x_n) \le M. \tag{3.2}$$

Com isto construimos uma sequência (x_n) que é limitada, pois os seus elementos pertencem a [a,b]. Pelo Teorema de Bolzano-Weierstrass, ela tem uma subsequência (x_{n_j}) que é convergente, seja x_{max} o seu limite, o qual pertence a [a,b], pois [a,b] é um conjunto fechado (veja Exemplo 7.9). Como f é contínua em x_{max} , segue-se do Exercício 3.5 que

$$\lim_{j\to\infty}f(x_{n_j})=f(x_{max}).$$

De (3.2) e do Teorema do Sanduiche, temos

$$\lim_{i\to\infty}f(x_{n_j})=M$$

e da unicidade do limite, concluimos que $f(x_{max}) = M$.

De maneira análoga, mostra-se que existe um $x_{min} \in [a, b]$, com as propriedades desejadas, deixamos para o aluno dar os detalhes que estão faltando.

3.4 O Teorema do Valor Intermediário

Teorema 3.6. (Teorema do Valor Intermediário) Seja f contínua no intervalo [a,b], $f(a) \neq f(b)$ e seja d um número qualquer entre f(a) e f(b), então existe algum c em (a,b), tal que f(c)=d.

Prova. Vamos supor que f(a) < f(b) e seja d um ponto no intervalo (f(a), f(b)). Mostraremos que existe $c \in (a, b)$, tal que f(c) = d. Seja

$$A = \{x \in [a, b] : f(x) \le d\},\$$

este conjunto é não-vazio, pois a pertence a ele e também é limitado superiormente por d, logo existe $c=\sup A$. Como $A\subset [a,b]$, então b é uma cota superior para A, portanto, sendo c a menor das cotas superiores de A, devemos ter $c\leq b$. Afirmamos que

De fato, como f é contínua à esquerda em b e f(b) > d, vimos no Exercício 3.13 que existe um $\delta > 0$, tal que f(x) > d, para todo $x \in (b-\delta,b]$, portanto para estes valores de x temos f(x) > d, portanto tais valores de x não estão em A, logo A é um subconjunto de $[a,b-\delta]$; consequentemente $b-\delta$ é uma cota superior para A, como c é a menor das cotas superiores de A, concluimos que $c \le b-\delta < b$. Mostraremos que não podemos ter nenhuma das possibilidades: (i) f(c) > d nem (ii) f(c) < d, portanto devemos ter f(c) = d. De fato, se f(c) > d, pelo Exercício 3.13, existiria um $\delta > 0$, tal que f(x) > d, para todo $x \in (c-\delta,c+\delta)$, em particular, f(x) > d, para todo x em $(c-\delta,c]$ e não teríamos nenhum elemento de A em $(c-\delta,c]$, o que contraria a hipótese de c = sup a. Por outro lado, se a0, a1, pelo Exercício 3.13, existiria um a2, tal que a2, que contraria do a3, que contraria que a4, que a5, que contraria que a6, que contraria que a6, que contraria que a7, que contraria que a8, que contraria que a9, que a9, que contraria que a9, que

Exercício 3.17. Seja f contínua no intervalo [a,b] e suponha que f(a) e f(b) tenham sinais diferentes. Mostre que existe algum c em (a,b), tal que f(c)=0.

Exercício 3.18. Mostre que existe uma raiz da equação

$$4x^3 - 6x^2 + 3x - 2 = 0$$

entre 1 e 2.

Exercício 3.19. Mostre que existe uma raiz da equação

$$\cos x = x$$

entre 0 e 1.

Exercício 3.20. Seja $f:[0,1] \to [0,1]$ contínua. Mostre que existe $x \in [0,1]$, tal que $f(x_o) = x_o$.

Exercício 3.21. Suponha que $f:[0,1] \to [0,1]$ contínua, que $f(x) \in \mathbb{Q}$ para todo x em [0,1] e que f(0)=1. Mostre que f(x)=1, para todo $x\in [0,1]$.

Para concluirmos esta nossa aula sobre continuidade, enunciaremos o teorema abaixo sem demonstrá-lo. O aluno interessado poderá ver a sua demonstração na referência [2].

Teorema 3.7. Seja $f:I \to \mathbb{R}$ uma função contínua e crescente num intervalo I. Então

- (i) f(I) é um intervalo e se c for um ponto interior de I, então f(c) pertence ao interior de f(I).
- (ii) a inversa $f^{-1}: f(I) \to \mathbb{R}$ também é contínua.

No teorema acima podemos substituir a hipótese de f ser crescente por decrescente e (i) e (ii) continuam verdadeiras.

3.5 Exercícios

Exercício 3.22. Seja

$$f(x) = \begin{cases} x+a, & para \ x \le 1 \\ x^2+4, & para \ x > 1. \end{cases}.$$

É possível escolhermos a de modo que f seja contínua em todos os pontos? Em caso afirmativo, qual deve ser o valor de a?

Exercício 3.23. A

$$f(x) = \begin{cases} \frac{x-6}{x-3}, & para \ x < 0 \\ 2, & para \ x = 0 \\ \sqrt{x^2 + 4}, & para \ x > 0. \end{cases}$$

é contínua em x = 0?

Exercício 3.24. Seja

$$f(x) = \begin{cases} \frac{1}{x}, & para \ x \neq 0 \\ a, & para \ x = 0. \end{cases}.$$

É possível escolhermos a de modo que f seja contínua em x = 0?

Exercício 3.25. Seja

$$f(x) = \begin{cases} 1, & \text{se } x \in \mathbb{Q} \\ -1, & \text{se } x \in \mathbb{R} - \mathbb{Q}. \end{cases}$$

Mostre que f é descontínua em todos os pontos de \mathbb{R} .

Exercício 3.26. Seja

$$f(x) = \begin{cases} & \operatorname{sen}(1/x), & \operatorname{se} x \neq 0 \\ & 0, & \operatorname{se} x = 0. \end{cases}.$$

Mostre que f é descontínua em x = 0.

Sugestão: Se $\lim_{x\to 0} f(x) = L$, então $\lim_{n\to\infty} f(x_n) = L$, para qualquer sequência (x_n) convergindo para 0. Considere as sequências $x_n = \frac{1}{n\pi} e x_n = \frac{2}{(2n+1)\pi}$)

Exercício 3.27. Seja f uma função contínua definida para todo x real, tal que

$$f(x+y) = f(x) + f(y),$$

para todos $x, y \in \mathbb{R}$.

(a) Mostre que f(0) = 0 e que f(-x) = -f(x), para todo $x \in \mathbb{R}$. **Sugestão:** em f(x+y) = f(x) + f(y) faça x = y = 0 e y = -x, respectivamente.

- (b) Seja k = f(1). Usando indução, mostre que f(n) = kn, para todo $n \in \mathbb{N}$.
- (c) Mostre que f(n) = kn, para todo $n \in \mathbb{Z}$.
- (d) Mostre que f(p/q) = kp/q, onde $p, q \in \mathbb{Z}$ e $q \neq 0$. **Sugestão:** $f(p) = f(q \cdot p/q) = qf(p/q)$ e lembre que f(p) = kp.
- (e) Use a continuidade de f para concluir que f(x) = kx.

Sugestão: De (d) já sabemos que f(x) = kx, para x racional, temos que mostrar que para x irracional também temos f(x) = kx. Dado um número racional x, tome uma sequência de números racionais (r_n) , convergindo para x e use a continuidade de f.

Exercício 3.28. Mostre que se f for contínua em [a,b] e f(x) > 0, para todo $x \in [a.b]$, então 1/f é limitada em [a,b].

Sugestão: Pelo Teorema do Valor Extremo f atinge o seu mínimo m em [a,b], portanto $f(x) \ge m > 0$, em [a,b].

Exercício 3.29. Seja

$$f(x) = \begin{cases} x^2, & \text{se } x \in \mathbb{Q} \\ x^3, & \text{se } x \in \mathbb{R} - \mathbb{Q} \end{cases}.$$

Mostre que f é contínua em x = 0 e em x = 1, mas é descontínua nos demais pontos.

Sugestão: Para mostrar que f é contínua em x=0, note que f(0)=0 e que $|f(x)| \le x^2$ se $|x| \le 1$, pois neste caso $|x|^3 \le x^2$. Para mostrar que f é contínua em x=1, note que f(1)=1 e que se $|x-1| \le 1$, ou seja, se 0 < x < 2, temos $|x^2-1|=|(x-1)|\,|x+1| \le 3|x-1|$ e $|x^3-1|=|(x-1)|\,|x^2+x+1| \le 7|x-1|$, portanto, $|f(x)-1| \le 7|x-1|$. Para provar que f é descontínua em $x_0 \ne 0,1$, tome sequências f(x)=10 de racionais e irracionais, respectivamente, ambas convergindo para f(x)=11 e f(x)=12 e f(x)=13 e f(x)=13 e note que eles são diferentes, pois f(x)=13.

Diferenciabilidade

AULA4: DIFERENCIABILIDADE

OBJETIVOS

Ao final dessa aula, o aluno deverá ser capaz de:

- 1. Compreender o conceito de derivada e as suas propriedades.
- 2. Calcular derivadas de funções simples a partir da definição.
- 3. Compreender a Regra da Cadeia e saber aplicá-la.
- 4. Compreender os conceitos de máximos e mínimos locais e globais e de pontos críticos, bem como encontrá-los.
- 5. Compreender o Teorema do Valor Médio e as suas aplicações.

4.1 Definição da derivada

Definição 4.1. Seja f definida numa vizinhança de $x = x_0$, dizemos que f é derivável (ou diferenciável) em x_0 , se

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},\tag{4.1}$$

existir, neste caso ele será chamado de derivada de f em x_0 e será denotado por $f'(x_0)$.

Geometricamente, $f'(x_0)$ é o coeficiente angular da reta tangente ao gráfico de y = f(x), no ponto $(x_0, f(x_0))$. O limite (4.1) é equivalente a

$$\lim_{x\to x_o}\frac{f(x)-f(x_o)}{x-x_o}.$$

Dizemos que f é derivável em [a,b] se ela for derivável em (a,b) e se

$$\lim_{h\to 0^+} \frac{f(a+h)-f(a)}{h}$$
 e $\lim_{h\to 0^-} \frac{f(b+h)-f(b)}{h}$

existirem, os quais são chamados de derivadas laterais à direira e à esquerda de f em x_o . Elas são denotadas por $f'_+(a)$ e $f'_-(b)$, respectivamente.

Em geral, dizemos que uma função f é diferenciável num conjunto se ela for diferenciável em todos os pontos do seu conjunto, ficando implícito que naqueles pontos que não são pontos interiores do conjunto (veja Definição 7.1), estamos nos referindo às derivadas laterais que fizerem sentido.

Exemplo 4.1. Seja f(x) = c, onde c é uma constante, então que $f'(x_0) = 0$.

De fato

$$\frac{f(x_o + h) - f(x_o)}{h} = \frac{c - c}{h} = \frac{0}{h} = 0,$$

portanto

$$\lim_{h \to 0} \frac{f(x_o + h) - f(x_o)}{h} = \lim_{h \to 0} 0 = 0.$$

Exercício 4.1. Seja f(x) = x. Mostre que f'(x) = 1, para todo x.

Exemplo 4.2. *Seja* $f(x) = x^2$, *então* $f'(x_0) = 2x_0$.

De fato

$$\frac{f(x_o+h)-f(x_o)}{h}=\frac{(x_o+h)^2-x_o^2}{h}=2x_o+h,$$

portanto

$$\lim_{h \to 0} \frac{f(x_o + h) - f(x_o)}{h} = \lim_{h \to 0} (2x_o + h) = 2x_o.$$

Exercício 4.2. Seja f(x) = |x|. Existe algum x para o qual f'(x) não existe; por quê?

Exercício 4.3. *Mostre que para todo x* > 0*, temos*

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}.$$

Exercício 4.4. *Mostre que para todo x, temos*

$$(\cos x)' = -\sin x \quad e \quad (\sin x)' = \cos x.$$

Note que dada uma função derivável f(x), a sua derivada f'(x) é uma função de x, a qual podemos perguntar se também é derivável, com isso temos o conceito de derivada segunda de f(x), ou seja, a derivada da derivada de f(x), a qual denotamos por f''(x). De maneira análoga, podemos considerar derivadas de

ordens superiores de f. Outras notações muito comuns para a derivada de y=f(x) são

$$\frac{dy}{dx}$$
 ou $\frac{df}{dx}$.

Poderíamos, a partir da definição, calcular derivadas, o que poderia ser uma tarefa muito tediosa. No entanto, a partir das propriedades da derivada que veremos a seguir, o conhecimento de derivadas de funções mais simples nos permitirá calcular derivadas de funções mais complicadas.

4.2 Propriedades da derivada

Teorema 4.1. (Propriedades da derivada) Sejam f e g deriváveis e c uma constante. Então

1.
$$(cf(x))' = cf'(x)$$
,

2.
$$(f(x) + g(x))' = f'(x) + g'(x)$$
,

3.
$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x) e^{-x}$$

4.
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$
 (se $g(x) \neq 0$).

As propriedades acima seguem imediatamente das propriedades do limite.

Seja f(x) = x, então do Exercício 4.1, temos f'(x) = 1, isto juntamente com a Propriedade 3 da derivada, implicam que

$$(x^2)' = (xx)' = x1 + 1x = 2x.$$

Usando esta mesma propriedade, mostramos por indução que $(x^n)' = nx^{n-1}$, onde n é um inteiro positivo qualquer. De fato, se assumirmos que $(x^n)' = nx^{n-1}$, então da Propriedade 3, temos

$$(x^{n+1})' = (xx^n)' = 1x^n + x nx^{n-1} = (n+1)x^n.$$

Deste fato e das Propriedades 1 e 2 da derivada, segue por indução que a derivada de $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ é $n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \ldots + a_1$.

Exercício 4.5. Calcule a derivada de $5x^5 - 3x^2 + x + 2$.

Exercício 4.6. Calcule a derivada de $\frac{\cos x + 3x^4}{1+x^2}$.

Exercício 4.7. Usando o Exercício 4.4 e as propriedades da derivada, calcule as derivadas das funções: tg x, sec x, cot x e cossec x.

Teorema 4.2. Seja f derivável em $x = x_0$, então f \acute{e} contínua em $x = x_0$.

Como f é derivável em $x=x_o$, por definição f está definida numa vizinhança deste ponto e

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existe. Portanto, para $x \neq x_o$, temos

$$f(x) = f(x_o) + \frac{f(x) - f(x_o)}{x - x_o} (x - x_o)$$

e das propriedades de limite, temos

$$\lim_{x \to x_{o}} f(x) = \lim_{x \to x_{o}} \left(f(x_{o}) + \frac{f(x) - f(x_{o})}{x - x_{o}} (x - x_{o}) \right)
= \lim_{x \to x_{o}} f(x_{o}) + \left(\lim_{x \to x_{o}} \frac{f(x) - f(x_{o})}{x - x_{o}} \right) \left(\lim_{x \to x_{o}} (x - x_{o}) \right)
= f(x_{o}) + f'(x_{o}).0
= f(x_{o}).$$

Em virtude do Teorema acima, se f não for contínua em x_o , então f não pode ser derivável em x_o .

Exercício 4.8. Seja

$$f(x) = \begin{cases} x^2, & \text{se } x \le 2\\ mx + b, & \text{se } x < 2. \end{cases}$$

Encontre os valores de m e b que tornem f derivável em todos os pontos.

4.3 A Regra da Cadeia

Teorema 4.3. (A Regra da Cadeia) Seja y = f(u) e u = g(x), onde f e g são deriváveis. Então a composta y = f(g(x)) é derivável e

$$(f(g(x))' = f'(g(x))g'(x).$$

Prova. Em virtude da diferenciabilidade de f podemos escrever

$$f(u + \Delta u) = f(u) + f'(u)\Delta u + \epsilon(\Delta u),$$

onde $\epsilon(\Delta u) = \frac{f(u+\Delta u)-f(u)}{\Delta u} - f'(u)$, tende a zero quando Δu tende a zero. Da mesma forma, como g(x) é diferenciável, podemos escrever

$$g(x + \Delta x) = g(x) + g'(x)\Delta x + \epsilon(\Delta x)\Delta x$$
,

onde $e(\Delta x) = \frac{g(x+\Delta x)-g(x)}{\Delta x} - g'(x)$, tende a zero quando Δx tende a zero. Logo, se para x fixo fizermos

$$u = g(x)$$
 e $\Delta u = g(x + \Delta x) - g(x)$,

teremos

$$\frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x} = \frac{f(u + \Delta u) - f(u)}{\Delta u} \frac{\Delta u}{\Delta x}$$
$$= (f'(u) + \epsilon(\Delta u))(g'(x) + \epsilon(\Delta x)),$$

que tende a f'(u)g'(x), quando x tende a zero, pois quando Δx tende a zero, o mesmo acontece com Δu , visto que g(u) é contínua, por ser diferenciável. Portanto

$$\lim_{\Delta x \to 0} \frac{f(g(x+\Delta x)) - f(g(x))}{\Delta x} = f'(u)g'(x) = f'(g(x)g'(x).$$

Exemplo 4.3. Seja u(x) diferenciável, então da Regra da Cadeia, temos

$$\frac{d}{dx}\cos u(x) = -\operatorname{sen}u(x) \ u'(x),$$

$$\frac{d}{dx}\operatorname{sen}u(x) = \cos u(x) \ u'(x),$$

$$\frac{d}{dx}\operatorname{tg}u(x) = \operatorname{sec}^{2}u(x) \ u'(x).$$

Exemplo 4.4. Da Regra da Cadeia, segue-se que se y = f(x) for uma função diferenciável de x, então

$$([f(x)]^n)' = nf'(x)f(x)^{n-1},$$

onde n é um inteiro positivo.

Exercício 4.9. Calcule a derivada de $(\cos x + 3x^4)^3$.

Exemplo 4.5. Seja $f(x) = x^{1/n}$ onde $n \in um$ inteiro positivo, então

$$f'(x) = \frac{1}{n} x^{\frac{1}{n}-1}.$$

De fato,

$$x = [f(x)]^n,$$

portanto, tomando-se a derivada desta equação em relação à x, temos

$$\frac{d}{dx} x = \frac{d}{dx} [f(x)]^n$$

e da Regra da Cadeia, concluímos que

$$1 = n[f(x)]^{n-1}f'(x),$$

logo

$$f'(x) = \frac{1}{n} [f(x)]^{1-n} = \frac{1}{n} x^{(1-n)/n} = \frac{1}{n} x^{\frac{1}{n}-1}.$$

Exemplo 4.6. Seja $f(x) = x^{p/q}$ onde p, q são inteiros positivos, então

$$f'(x) = \frac{p}{q} x^{p/q-1}.$$

De fato,

$$x = [f(x)]^{q/p} = ([f(x)]^{1/p})^q,$$

portanto, dos dois exemplos anteriores, temos

$$1 = \frac{d}{dx} ([f(x)]^{1/p})^q = q ([f(x)]^{1/p})^{q-1} \frac{d}{dx} [f(x)]^{1/p}$$

$$= \frac{q}{p} ([f(x)]^{1/p})^{q-1} [f(x)]^{1/p-1} f'(x)$$

$$= \frac{q}{p} [f(x)]^{q/p-1} f'(x)$$

$$= \frac{q}{p} x^{(q-p)/q} f'(x),$$

portanto $f'(x) = \frac{p}{q} x^{p/q-1}$.

Exemplo 4.7. *Seja* $f(x) = \operatorname{arctg} x$, *então*

$$f'(x) = \frac{1}{1+x^2}.$$

De fato,

$$x = \operatorname{tg}(f(x)),$$

derivando esta equação em relação à x, segue da Regra da Cadeia que

$$1 = \sec^2(f(x)) \ f'(x) = (1 + \operatorname{tg}^2(x)) f'(x) = (1 + x^2) f'(x),$$

logo,

$$f'(x) = \frac{1}{1+x^2}.$$

Exercício 4.10. Encontre as derivadas das seguintes funções inversas: $\arcsin x$, $\arccos x$, $\arccos x$, $\arccos x$, $\arccos x$ arc $\cos x$, $\arccos x$ e arc $\cos x$. Quais são os seus domínios?

4.4 Máximos e mínimos

Figura 4.1: A função $f(x) = 3x^4 - 16x^3 + 18x^2$ possui mínimos locais em x = 0 e x = 3 e um máximo local em x = 1.

Definição 4.2. Seja f uma função definida numa vinhança de $x=x_o$. Dizemos que f tem um máximo local em x_o , se existir um $\delta > 0$, tal que $f(x) \leq f(x_o)$, para todo $x \in (x_o - \delta, x_o + \delta)$.

Definição 4.3. Seja f definida numa vinhança de $x = x_o$. Dizemos que f tem um mínimo local em x_o , se existir um $\delta > 0$, tal que $f(x) \ge f(x_o)$, para todo $x \in (x_o - \delta, x_o + \delta)$.

Teorema 4.4. (Teorema de Fermat) Se f tiver um máximo ou um mínimo local em x_o e se $f'(x_o)$ existir, então $f'(x_o) = 0$.

Prova. Como $f'(x_o)$ existe, então

$$f'_{+}(x_{o}) = f'(x_{o}) = f'_{-}(x_{o}).$$

Suponha que f tenha um mínimo local em x_o , então por definição, para h pequeno e diferente de zero, temos

$$f(x_o + h) \ge f(x_o) \Leftrightarrow f(x_o + h) - f(x_o) \ge 0.$$

Portanto

$$\frac{f(x_o + h) - f(x_o)}{h} \le 0, \quad \text{para } h \text{ negativo e pequeno}$$
 (4.2)

e

$$\frac{f(x_o + h) - f(x_o)}{h} \ge 0, \quad \text{para } h \text{ positivo e pequeno.}$$
 (4.3)

De (4.2), (4.3) e dos Exercícios 2.12 e 2.9, concluimos que

$$f'_{-}(x_o) = \lim_{h \to 0^{-}} \frac{f(x_o + h) - f(x_o)}{h} \le 0$$

e

$$f'_{+}(x_o) = \lim_{h \to 0^{+}} \frac{f(x_o + h) - f(x_o)}{h} \ge 0.$$

Portanto $0 \le f'_+(x_o) = f'(x_o) = f'_-(x_o) \le 0$, logo $f'(x_o) = 0$.

Se f tiver máximo local em x_o , temos $f(x) \le f(x_o)$, para todo h pequeno e diferente de zero, portanto a função g(x) = -f(x) tem um mínimo local em x_o , e pelo que provamos acima, concluimos $0 = g'(x_o) = -f'(x_o)$, portanto, $f'(x_o) = 0$. \square

4.5 Pontos críticos

Definição 4.4. Seja f definida numa vizinhança de x_0 . Dizemos que x_0 é um ponto crítico de f, se $f'(x_0) = 0$ ou se $f'(x_0)$ não existir.

Observação 4.1. Se f tiver um máximo ou mínimo local em x_o , então x_o é um ponto crítico. De fato, temos uma das seguintes possibilidades: (i) $f'(x_o)$ não existe e neste caso, por definição, x_o é um ponto crítico, ou (ii) $f'(x_o)$ existe e neste caso como f tem um máximo ou mínimo local em x_o , pelo Teorema de Fermat devemos ter $f'(x_o) = 0$.

A Observação 4.1 nos dá um procedimento para encontrarmos os valores máximo e mínimo globais de uma função f contínua em [a,b]. Primeiramente, vale a pena lembrar que pelo Teorema 3.5, sendo f contínua e o seu domínio um intervalo fechado e limitado, os seus valores máximo e mínimo globais são atingidos, ou seja, existem x_{min} e x_{max} em [a,b], tais que

$$f(x_{min}) \le f(x) \le f(x_{max}),$$

para todo $x \in [a,b]$. Suponha que $f(x_0)$ seja um máximo ou mínimo global de f, então ou x_0 está na extremidade do intervalo [a,b], ou $x_0 \in (a,b)$, neste caso sendo $f(x_0)$ um máximo ou mínimo global e x_0 um ponto no interior do domínio de f; por definição ele é um máximo ou mínimo local, portanto da Observação 4.1, x_0 é um ponto crítico. Logo, o conjunto formado pelos pontos críticos de f, juntamente com os pontos a e b, contêm os pontos onde acontecem o máximo e o mínimo globais de f. Resumindo, para encontrar os valores máximo e mínimo globais de f em [a,b], faça o seguinte:

- 1. encontre os pontos críticos de f em (a,b) e calcule os valores de f nos mesmos e
- 2. calcule f(a) e f(b).
- 3. O maior e o menor dos valores encontrados nos itens (1) e (2) serão o valor máximo e o mínimo globais de f, respectivamente, em [a,b].

Exemplo 4.8. Seja $f(x) = x^3 - 3x^2 + 2$, onde $x \in [-1, 4]$. Então os valores máximo e mínimo globais de f são 18 e - 2, respectivamente.

De fato, como a função $f(x) = x^3 - 3x^2 + 2$ é um polinômio, ela é derivável em todos os pontos, logo os seus pontos críticos são os zeros de $f'(x) = 3x^2 - 6x = 3x(x-2)$, que estão em (-1,4), ou seja, x=0 e x=2. Devemos calcular o valor de f nestes dois pontos críticos e compará-los com f(-1) e f(4). Note que f(0) = 2, f(2) = -2, f(-1) = -2 e f(4) = 18. O maior e o menor destes valores são 18 e -2, os quais são o máximo e mínimo globais de f, respectivamente. \Box

4.6 O Teorema do Valor Médio

Teorema 4.5. (Teorema de Rolle) Suponha que f seja contínua em [a,b], diferenciável em (a,b) e que f(a) = f(b). Então existe x_0 em (a,b), tal que $f'(x_0) = 0$.

Prova. Como f é contínua em [a,b], pelo Teorema 3.5, ela assume os seus valores máximo e mínimo globais, ou seja, existem x_{min} e x_{max} em [a,b], tais que

$$f(x_{min}) \le f(x) \le f(x_{max}),$$

para todo $x \in [a, b]$.

Se f(x) for constante, então $f'(x_0) = 0$, para todo x_0 em (a,b) e teremos concluido a demonstração do teorema. Se f não for constante, os valores máximo e mínimo globais de f serão diferentes, portanto não podem acontecer simultaneamente nas extremidades do intervalo [a,b], ou seja, um dos dois tem que acontecer em algum ponto x_0 em (a,b). Por outro lado, sendo $f(x_0)$ um máximo ou mínimo global e x_0 um ponto no interior do domínio de f, devemos ter que $f(x_0)$ é um máximo ou mínimo local; portanto, em virtude da Observação 4.1, x_0 deve ser um ponto crítico de f, como f é derivável em (a,b), segue-se que f é derivável em x_0 e, pelo Teorema de Fermat, temos $f'(x_0) = 0$.

Exemplo 4.9. A equação $x^3 + x - 1 = 0$ tem exatamente uma raiz real.

De fato, para valores de x negativos e grandes, f(x) < 0 e para valores de x positivos e grandes, f(x) > 0. Como f muda de sinal e ela é contínua (por ser um polinômio), pelo Teorema do Valor Intermediário, ela tem que se anular em algum ponto. Se existissem dois pontos $x_1 < x_2$, tais que $f(x_1) = 0 = f(x_2)$, sendo f contínua em $[x_1, x_2]$ e derivável em (x_1, x_2) , pelo Teorema de Rolle, existiria algum x_0 em (x_1, x_2) no qual $f'(x_0) = 0$, mas $f'(x) = 3x^2 + 1 > 0$, para todo x real. Logo f(x) tem apenas uma raiz real.

Exercício 4.11. Mostre que a equação $2x - 1 - \sin x = 0$ tem exatamente um raiz real.

Exercício 4.12. Mostre que um polinômio do terceiro grau tem no máximo três raízes reais.

Teorema 4.6. (O Teorema do Valor Médio) Suponha que f seja contínua em [a,b] e diferenciável em (a,b). Então existe x_o em (a,b), tal que $f'(x_o) = \frac{f(b) - f(a)}{b-a}$.

Prova. Seja $g(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$, então a função h(x) = f(x) - g(x) é contínua em [a, b] e diferenciável em (a, b), pois h a diferença de duas funções que são contínuas em [a, b] e diferenciáveis em (a, b). Note que h(a) = 0 = h(b), portanto, pelo Teorema de Rolle, existe um x_0 em (a, b), tal que $h'(x_0) = 0$, mas $h'(x_0) = f'(x_0) - \frac{f(b) - f(a)}{b - a}$, portanto, $f'(x_0) = \frac{f(b) - f(a)}{b - a}$.

Note que se f(a)=f(b), o Teorema do Valor Médio reduz-se ao Teorema de Rolle.

Exercício 4.13. Suponha que $3 \le f'(x) \le 5$, para todo x. Mostre que

$$18 \le f(8) - f(2) \le 30.$$

Exercício 4.14. Existe uma função f tal que f(0)=-1, f(2)=4 e $f'(x)\leq 2$, para todo x?

Exercício 4.15. Sejam f e g contínuas em [a,b] e diferenciáveis em (a,b), tais que f(a) = g(a) e f'(x) < g'(x) em (a,b). Mostre que f(b) < g(b). **Sugestão:** aplique o Teorema do Valor Médio a f - g.

Exercício 4.16. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função impar e derivável em todos os pontos. Mostre que para todo b positivo existe c no intervalo (-b,b), tal que $f'(c) = \frac{f(b)}{b}$.

Exercício 4.17. Usando o Teorema do Valor Médio, mostre que

$$|\operatorname{sen} x - \operatorname{sen} x_o| \le |x - x_o|$$

е

$$|\cos x - \cos x_o| \le |x - x_o|,$$

para todo $x e x_0$ reais.

Definição 4.5. *Dizemos que f é não decrescente num intervalo I, se*

$$f(x_1) \le f(x_2),$$

para todo x_1 e x_2 em I, tais que $x_1 < x_2$. Se a desigualdade acima for estrita, dizemos que f é crescente em I. De maneira análoga, dizemos que f é não crescente num intervalo I, se

$$f(x_1) \ge f(x_2),$$

para todo x_1 e x_2 em I, tais que $x_1 < x_2$. Se a designaldade acima for estrita, dizemos que f é decrescente em I.

Exercício 4.18. Seja f contínua em [a,b] e diferenciável em (a,b).

- (i) Mostre que se $f'(x) \ge 0$, para todo x em (a,b), então f é não decrescente em [a,b].
- (ii) Mostre que se $f'(x) \leq 0$, para todo x em (a, b), então f é não crescente em [a, b].
- (iii) Mostre que se f'(x) > 0, para todo x em (a,b), então f é crescente em [a,b].
- (iv) Mostre que se f'(x) < 0, para todo x em (a,b), então f é decrescente em [a,b].

Sugestão. *Use o Teorema do Valor Médio.*

Teorema 4.7. Seja f derivável em (a,b) e x_0 um ponto crítico de f.

- 1. Se existir $\epsilon > 0$, tal que $f'(x) \ge 0$ para todo $x \in (x_o \epsilon, x_o)$ e $f'(x) \le 0$, para todo $x \in (x_o, x_o + \epsilon)$, então f tem um máximo local em x_o .
- 2. Se existir $\epsilon > 0$, tal que $f'(x) \leq 0$ para todo $x \in (x_o \epsilon, x_o)$ e $f'(x) \geq 0$, para todo $x \in (x_o, x_o + \epsilon)$, então f tem um mínimo local em x_o .

O teorema acima é uma consequência imediata das definições de máximo e mínimo locais e do Exercício 4.18; deixamos para o aluno escrever a sua demonstração.

Exercício 4.19. Seja $f(x) = 3x^4 - 16x^3 + 18x^2$. Encontre os intervalos onde f é crescente e os intervalos onde f é decrescente. Quais são os pontos críticos de f?

Exercício 4.20. Seja f e g funções contínuas em [a,b] e deriváveis em (a,b). Suponha que $g'(x) \neq 0$, para todo $x \in (a,b)$. Mostre que existe $x_0 \in (a,b)$, tal que

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(x_0)}{g'(x_0)}.$$

A relação acima é chamada de fórmula de Cauchy, ela é uma generalização do Teorema do Valor Médio, pois este é um caso particular da fórmula de Cauchy quando g(x) = x.

Sugestão: Aplique o Teorema de Rolle à função h(x) = f(x) - kg(x), onde

$$k = \frac{f(b) - f(a)}{g(b) - g(a)},$$

com esta escolha de k, teremos h(a) = h(b).

Teorema 4.8. Se f'(x) = 0, para todo x num intervalo aberto (a,b), então f(x) é constante em (a,b).

Prova. Dados $x_1, x_2 \in (a, b)$, digamos $x_1 < x_2$, como f é derivável em (a, b), então ela é derivável em (x_1, x_2) e contínua em $[x_1, x_2]$. Portanto, pelo Teorema do Valor Médio, existe algum $x_0 \in (x_1, x_2)$, tal que $f(x_2) - f(x_1) = f'(x_0)(x_2 - x_1)$, como $f'(x_0) = 0$, então $f(x_1) = f(x_2)$. Como x_1 e x_2 foram tomados arbitrariamente, concluimos que f é constante em (a, b).

Uma consequência do teorema acima é que se f'(x) = g'(x) num intervalo (a,b), então f e g diferem por uma constante em (a,b), ou seja, existe uma constante c, tal que g(x) = f(x) + c, para todo $x \in (a,b)$. De fato, se fizermos h(x) = g(x) - f(x), então teremos h'(x) = 0, para todo $x \in (a,b)$ e pelo teorema acima, devemos ter h(x) = c, para alguma constante c. Este resultado nos diz que se conhecermos uma função F(x) tal que F'(x) = f(x), então qualquer outra função cuja derivada é f(x) é da forma F(x) + c, para alguma constante c.

Exercício 4.21. Usando o Teorema 4.8, mostre a seguinte identidade:

$$\arcsin\left(\frac{x-1}{x+1}\right) = 2 \arctan\sqrt{x} - \frac{\pi}{2}.$$

4.7 Exercícios

Exercício 4.22. Suponha que f seja diferenciável com

$$|f(x) - f(y)| \le |x - y|^2,$$

para todo $x, y \in \mathbb{R}$. Mostre que f é constante.

Sugestão: Mostre que f'(x) = 0, para todo x, lembre que $|f'(x)| = \lim_{h \to 0} \left| \frac{f(x+h) - f(x)}{h} \right|$ e que por hipótese temos $\left| \frac{f(x+h) - f(x)}{h} \right| \le h$.

Exercício 4.23. Suponha que f seja diferenciável com

$$f'(x) = x^2 f(x)$$

para todo $x \in \mathbb{R}$ e f(0) = 1. Mostre que f(x)f(-x) = 1 e que f(x) > 0 todo $x \in \mathbb{R}$.

Sugestão: Mostre que (f(x)f(-x))' = 0, para todo x. Para mostrar que f(x) > 0, para todo x, suponha que exista x_0 , tal que $f(x_0) \le 0$, então $f(x_0) \le 0$ e f(0) > 0, use a continuidade de f para concluir que existe algum x^* , tal que $f(x^*) = 0$, lembre que $f(x^*)f(-x^*) = 1$.

Exercício 4.24. Seja

$$f(x) = \begin{cases} x^2 \operatorname{sen}(1/x), & \text{se } x \neq 0 \\ 0, & \text{se } x = 0 \end{cases}.$$

Mostre que f é diferenciável em x = 0.

Exercício 4.25. Seja $f: \mathbb{R} \to \mathbb{R}$, diferenciável e cuja derivada é limitada, ou seja, existe uma constante positiva K, tal que $|f(x)| \le K$, para todo x. Seja $g(x) = x + \epsilon f(x)$, onde $\epsilon > 0$. Mostre que se ϵ for suficientemente pequeno, a função f é injetiva.

Sugestão: Se g'(x) > 0, para todo x, então g(x) será crescente na reta toda.

Exercício 4.26. Suponha que $f'(x_o)$ e $g'(x_o)$ existam e $g'(x_o) \neq 0$, $f(x_o) = g(x_o) = 0$. Mostre que

$$\lim_{x \to x_o} \frac{f(x)}{g(x)} = \frac{f'(x_o)}{g'(x_o)}.$$

Sugestão: Note que

$$\frac{f(x)}{g(x)} = \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{g(x) - g(x_0)}{x - x_0}} \quad ; por \ quê?$$

Exercício 4.27. Seja $f:(-a,a)\to\mathbb{R}$, onde a>0, uma função derivável. Mostre que se f for par, então f' é impar e se f for ímpar, então f' é par.

Exercício 4.28. Diga se as afirmações abaixo são verdadeiras ou falsas, justificando a sua opção.

- (a) Se f for diferenciável em x = 0, então f é contínua em x = 0.
- (b) Se f for contínua em x = 1, então f diferenciável em x = 1.
- (c) Se $|f'(x)| \le L$, para todo $x \in [a, b]$, então

$$|f(x) - f(y)| \le L|x - y|,$$

para todo $x, y \in [a, b]$.

As funções exponenciais

AULA5: AS FUNÇÕES EXPONENCIAIS

OBJETIVOS

Ao final dessa aula, o aluno deverá ser capaz de:

- 1. Compreender a definição das funções exponenciais.
- 2. Compreender as propriedades das funções exponenciais.
- 3. Calcular derivadas de funções exponenciais, bem como limites envolvendo estas funções.

5.1 Introdução

Nos cursos de cálculo os alunos viram as funções exponenciais e as funções logaritmicas. Nesta aula voltaremos a estas funções, mas com mais cuidado, e provaremos aqueles resultados que foram assumidos como verdadeiros em cursos anteriores.

5.2 Definição da função exponencial

Nesta seção definiremos a função $f(x) = a^x$, onde a é um número real positivo diferente de um. No caso em $x = \frac{m}{n}$, onde m, n são inteiros e $m \neq 0$ (podemos sempre assumir que o denominador n é positivo), definimos

$$a^{m/n} = (a^m)^{1/n} = (a^{1/n})^m,$$

ou seja, o cálculo de exponenciais racionais, reduz-se a duas operações que estão bem definidas: a *m*-ésima potência e a *n*-ésima raiz de um número real positivo. Por exemplo, definimos

$$a^0 = 1$$
,

se m > 0, definimos a^m como a multiplicado por a m vezes; se m for negativo, definimos

$$a^m = \frac{1}{a^{-m}}.$$

Para *s* e *t* racionais, valem as seguinte propriedades:

$$a^{-s} = \frac{1}{a^s},\tag{5.1}$$

$$a^{s+t} = a^s a^t, (5.2)$$

$$(a^s)^t = a^{st}. (5.3)$$

Note que como a n-ésima potência de um número maior do que um é maior do que um e a raiz n-ésima de um número maior do que um também é maior do que um, então se a > 1 e m, n > 0, então

$$a^{m/n} > 1. (5.4)$$

Isto juntamente com a propriedade 5.2 implicam que se s e t são racionais com s < t, então

$$a^s < a^t. (5.5)$$

De (5.1) e (5.4), se a > 1 e $\frac{m}{n} < 0$, então

$$a^{m/n} < 1. (5.6)$$

Argumentos similares implicam que se 0 < a < 1 e m, n > 0, então

$$a^{m/n} < 1 \tag{5.7}$$

e se s e t são racionais com s < t, então

$$a^t < a^s. (5.8)$$

Mas e se x for irracional, o que significa a^x ?

Talvez antes de falarmos sobre o caso geral, valesse a pena darmos um exemplo numérico; por exemplo, o que significa $3^{\sqrt{2}}$?

Vimos no curso de Fundamentos de Análise I que não existe número racional cujo quadrado seja 2, portanto $\sqrt{2}$ é irracional e o seu valor numérico é

$$\sqrt{2} = 1,414213562373095048801688724209...$$

Considere a seguinte sequência de racionais:

$$r_1 = 1,4; r_2 = 1,41; r_3 = 1,414; 1,4142; \ldots; r_n; \ldots,$$

onde r_n é a aproximação de $\sqrt{2}$ na qual consideramos apenas os n primeiros dígitos depois da vírgula. Por construção a sequência (r_n) é não decrescente e converge para $\sqrt{2}$. Sendo (r_n) não decrescente, então a sequência (3^{r_n}) é não decrescente e como $r_n < 2$, então $3^{r_n} < 3^2 = 9$, para todo n. Sendo (3^{r_n}) uma sequência não decrescente e limitada superiormente de números reais, vimos no curso de Fundamentos de Análise I que ela converge para o supremo do conjunto

$$\{3^{r_1},3^{r_2},\ldots,3^{r_n}\ldots\}.$$

Seria natural definir este limite como $3^{\sqrt{2}}$, mas a sequência de racionais que consideramos é muito particular, com isso temos duas perguntas: se tivéssemos tomado outra sequência qualquer de racionais (r'_n) convergindo para $\sqrt{2}$, será que a sequência $(3^{r'_n})$ convergiria? Em caso afirmativo, o seu limite seria o mesmo que o limite da sequência (3^{r_n}) ?

A seguir responderemos as perguntas acima, mais precisamente: seja a é positivo e diferente de 1 e x é um número real qualquer, se $\{r_n\}$ for uma sequência qualquer de racionais convergindo para x, então mostraremos que a sequência (a^{r_n}) converge e que o seu limite não depende de $\{r_n\}$, o que nos permitirá definir

$$a^{x}=\lim_{n\to\infty}a^{r_n},$$

onde $\{r_n\}$ é uma sequência qualquer de racionais convergindo para x.

Teorema 5.1. Seja (r_n) uma sequência qualquer de racionais convergindo para zero e a um número real positivo e diferente de 1. Então a sequência (a^{r_n}) converge para 1.

Prova. Vamos provar o teorema para o caso em que a > 1. O caso em que 0 < a < 1 é tratado de maneira similar e será deixado para o aluno.

Como a sequência (r_n) é convergente, ela é limitada, ou seja, existe um número racional K > 0, tal que $|r_n| \le K$, para todo n.

Como a > 1 e $r_n \le K$, para todo n, de (5.5) concluimos que

$$a^{r_n} \le a^K, \tag{5.9}$$

para todo n.

De (5.6), se $r_n < 0$, então $a^{r_n} < 1$. Portanto, se $r_n < 0$, temos

$$|a^{r_n}-1|=1-a^{r_n}=a^{r_n}(a^{-r_n}-1)=a^{r_n}(a^{|r_n|}-1)\leq a^K(a^{|r_n|}-1),$$

na desigualdade acima usamos (5.9).

De (5.4), se $r_n > 0$, então $a^{r_n} > 1$. Portanto, se $r_n \ge 0$, temos $a^{r_n} \ge 1$, logo

$$|a^{r_n}-1|=a^{r_n}-1=a^{|r_n|}-1< a^K(a^{|r_n|}-1),$$

na última desigualdade usamos que $1 < a^K$, pois K > 0.

Resumindo, temos

$$|a^{r_n} - 1| \le a^K (a^{|r_n|} - 1), \tag{5.10}$$

para todo *n*.

Vimos no curso de Fundamentos de Análise I, que para todo a>0, a sequência $(a^{1/n})$ converge para 1, logo dado $\epsilon>0$, existe um inteiro positivo n_1 , tal que $n\geq n_1$ implica

$$a^{1/n} - 1 < \frac{\epsilon}{a^K} \ . \tag{5.11}$$

Como a sequência (r_n) converge para zero, existe um inteiro positivo n_2 , tal que $n \ge n_2$ implica

$$|r_n|<\frac{1}{n_1}.$$

Como a>1 e $0\leq |r_n|<\frac{1}{n_1}$, de (5.5) concluimos que para $n\geq n_2$ temos

$$1 < a^{|r_n|} < a^{1/n_1} . {(5.12)}$$

Subtraindo 1 das desigualdades acima concluimos que

$$0 < a^{|r_n|} - 1 < a^{1/n_1} - 1. (5.13)$$

Seja $n_0 = \max\{n_1, n_2\}$, então se $n > n_0$, temos

$$|a^{r_n}-1| \le a^K(a^{|r_n|}-1)$$
 (usamos (5.10))
 $< a^K(a^{1/n_1}-1)$ (usamos (5.13))
 $< a^K\frac{\epsilon}{a^K}$ (usamos (5.11))
 $= \epsilon$,

o que prova o teorema.

Teorema 5.2. Seja a um número real positivo e diferente de 1. Dado um número real s, seja (r_n) uma sequência qualquer de racionais convergindo para s. Então a sequência (a^{r_n}) converge e o seu limite não depende (r_n) .

Prova. Vamos provar o teorema para o caso em que a > 1. O caso em que 0 < a < 1 é tratado de maneira similar e será deixado para o aluno.

Como a sequência (r_n) é convergente, ela é limitada superiormente, portanto existe número racional K > 0, tal que $|r_n| \le K$, para todo n. Logo, como a > 1 e $r_n \le K$, segue de (5.5) que

$$a^{r_n} \leq a^K$$

para todo n.

Se $r_m < r_n$, segue de (5.5) que $a^{r_m} < a^{r_n}$, portanto

$$|a^{r_n} - a^{r_m}| = a^{r_n} - a^{r_m}$$

$$= a^{r_m} (a^{r_n - r_m} - 1)$$

$$= a^{r_m} (a^{|r_n - r_m|} - 1)$$

$$\leq a^K (a^{|r_n - r_m|} - 1).$$

Se $r_m \ge r_n$, segue de (5.5) que $a^{r_m} \ge a^{r_n}$, portanto

$$|a^{r_n} - a^{r_m}| = a^{r_m} - a^{r_n}$$

$$= a^{r_n} (a^{r_m - r_n} - 1)$$

$$= a^{r_n} (a^{|r_n - r_m|} - 1)$$

$$\leq a^K (a^{|r_n - r_m|} - 1).$$

Portanto, para todo *m* e *n*, temos

$$|a^{r_n} - a^{r_m}| \le a^K |a^{|r_n - r_m|} - 1|. \tag{5.14}$$

Dado $\epsilon > 0$, tome um inteiro positivo N, tal que

$$|a^{1/N} - 1| < \frac{\epsilon}{a^K},\tag{5.15}$$

o que é possível, pois a sequência $(a^{1/n})$ converge para 1. Como (r_n) é convergente, ela é de Cauchy, portanto existe um inteiro positivo n_o , tal que se $m, n \ge n_o$, temos

$$0 \leq |r_n - r_m| < 1/N.$$

Como $a>1,\,|r_n-r_m|$ e 1/N são racionais, segue da desigualdade acima e de (5.5) que

$$1 \le a^{|r_n - r_m|} \le a^{1/N}$$
.

para todos $m, n \ge n_o$. Subtraindo 1 das desigualdades acima, temos

$$0 < a^{|r_n - r_m|} - 1 < a^{1/N} - 1$$

ou seja, para todo $m, n \ge n_o$, temos

$$|a^{|r_n - r_m|} - 1| \le |a^{1/N} - 1|. \tag{5.16}$$

Logo, se $m, n \ge n_o$, temos

$$|a^{r_n} - a^{r_m}| < a^K |a^{|r_n - r_m|} - 1|$$
 (usamos (5.14))
 $< a^K |a^{1/N} - 1|$ (usamos (5.16))
 $< a^K \frac{\epsilon}{a^K}$ (usamos (5.15))
 $= \epsilon$.

o que mostra que a sequência (a^{r_n}) é de Cauchy, portanto convergente.

Seja s o limite da sequência (r_n) e suponha que (r'_n) seja outra sequência qualquer de racionais convergindo para s. Mostraremos que a sequência $(a^{r_n}-a^{r'_n})$ converge para zero e como as sequências (a^{r_n}) e $(a^{r'_n})$ são convergentes, isto implica que elas convergem para o mesmo limite.

De fato, como (r_n) e (r'_n) convergem para s, então a sequência $(r_n-r'_n)$ converge para zero e pelo Teorema 5.1 concluimos que a sequência $(a^{r'_n-r_n}-1)$ converge para zero. Como (r_n) é convergente, existe número racional K>0, tal que $|r_n| \leq K$, para todo n, como a>1, temos $a^{r_n} \leq a^K$, para todo n. Como a sequência (a^{r_n}) é limitada e $(a^{r'_n-r_n}-1)$ converge para zero, segue do Exemplo 7.16 do livro de Fundamentos de Análise I que a sequência $(a^{r_n} | a^{r'_n-r_n}-1|)$ converge para zero, mas $|a^{r_n}-a^{r'_n}|=a^{r_n}|a^{r'_n-r_n}-1|$, o que mostra que $(a^{r_n}-a^{r'_n})$ converge para zero, o que prova o teorema.

Definição 5.1. Seja a um número real positivo e diferente de 1. Dado um número real x, definimos

$$a^{x}=\lim_{n\to\infty}a^{r_n},$$

onde (a^{r_n}) é uma sequência qualquer de números racionais convergindo para x.

5.3 Propriedades das funções exponenciais

Teorema 5.3. Seja $a \neq 1$ um número real positivo. Então para todos $x, y \in \mathbb{R}$ temos

$$a^{x+y} = a^x a^y,$$

$$a^{-x} = \frac{1}{a^x},$$

$$(a^x)^y = a^{xy}.$$

Prova. Sejam (x_n) e (y_n) sequências de números racionais convergindo para x e y, respectivamente. Então a sequência $(x_n + y_n)$ é uma sequência de racionais que converge para x + y, portanto

$$a^{x+y} = \lim_{n \to \infty} a^{x_n + y_n}.$$

Como x_n e y_n são racioanais, então de (5.2), temos

$$a^{x_n+y_n}=a^{x_n}a^{y_n}$$
.

Logo

$$a^{x+y} = \lim_{n \to \infty} a^{x_n + y_n}$$

$$= \lim_{n \to \infty} a^{x_n} a^{y_n}$$

$$= \left(\lim_{n \to \infty} a^{x_n}\right) \left(\lim_{n \to \infty} a^{y_n}\right)$$

$$= a^x a^y,$$

com isso concluímos a demonstração da primeira propriedade.

A sequência de racionais (x_n) converge para x, então a sequência $(-x_n)$ converge para -x, além disso de (5.1)

$$a^{-x_n} = \frac{1}{a^{x_n}},$$

logo

$$a^{-x} = \lim_{n \to \infty} a^{-x_n} = \lim_{n \to \infty} \frac{1}{a^{x_n}} = \frac{1}{\lim_{n \to \infty} a^{x_n}} = \frac{1}{a^x},$$

com isso concluimos a demonstração da segunda propriedade.

A demonstração da terceira propriedade será dada depois que introduzirmos as funções logaritmicas; veja equação (6.16). □

Exemplo 5.1. Seja $f(x) = a^x$, onde a > 1. Se x < y, então f(x) < f(y), logo f(x) é crescente, portanto, injetiva.

De fato, sejam (r_n) e (q_n) sequências de racionais convergindo para x e y, respectivamente. Na definição de limite, se tomarmos $\epsilon = (y-x)/4$, encontraremos um inteiro positivo n_0 tal que $n \ge n_0$ implica

$$|x-r_n| < (y-x)/4$$
 e $|y-q_n| < (y-x)/4$.

Tomemos um racional r entre (y-x)/4 e (y-x)/2, então se $n \ge n_o$, temos $q_n - r_n > (y-x)/2 > r$, o que implica que $q_n = r_n + (q_n - r_n) > r_n + r$, portanto de (5.5) temos

$$a^{q_n} > a^{r_n+r}$$

para $n \ge n_o$. Como as sequências (q_n) e $(r_n + r)$ convergem para y e x + r, respectivamente, segue-se da desigualdade acima que

$$a^{y} = \lim_{n \to \infty} a^{q_{n}}$$

$$\geq \lim_{n \to \infty} a^{r_{n}+r}$$

$$\geq \lim_{n \to \infty} a^{r} a^{r_{n}}$$

$$= a^{r} \left(\lim_{n \to \infty} a^{r_{n}} \right)$$

$$= a^{x} a^{r}$$

$$> a^{x} \quad (a^{r} > 1, \text{ pois } a > 1 \text{ e } r > 0)$$

Exemplo 5.2. *Se a* > 1, *então*

$$\lim_{x\to+\infty}a^x=+\infty.$$

De fato, seja dado M>0. Vimos no curso de Fundamentos de Análise I que se a>1, então $\lim_{n\to\infty}a^n=\infty$, portanto existe n_o , tal que $a^{n_o}>M$. Como a função a^x é crescente para a>1, se $x\geq n_o$, temos $a^x\geq a^{n_o}>M$.

Exercício 5.1. *Mostre que se a* > 1, *então*

$$\lim_{x\to -\infty}a^x=0.$$

Exercício 5.2. Seja $f(x) = a^x$, onde 0 < a < 1. Mostre que se x < y, então f(x) > f(y), ou seja, f(x) é decrescente, portanto, injetiva.

Exercício 5.3. *Mostre que se* 0 < a < 1, *então*

$$\lim_{x\to\infty}a^x=0,$$

$$\lim_{x\to-\infty}a^x=\infty.$$

5.4 As funções exponenciais são contínuas

Exemplo 5.3. Seja a > 1, então $f(x) = a^x$ é contínua para todo x real.

De fato, seja x_0 um número real qualquer, mostraremos que f é contínua em x_0 . Note que para todo x real temos

$$|a^{x} - a^{x_{o}}| = \begin{cases} a^{x_{o}}(a^{|x - x_{o}|} - 1), & \text{se } x \ge x_{o} \\ a^{x}(a^{|x - x_{o}|} - 1), & \text{se } x < x_{o} \end{cases}$$

$$\leq \max\{a^{x_{o}}, a^{x}\} (a^{|x - x_{o}|} - 1). \tag{5.17}$$

Dado $\epsilon > 0$, seja N_o um inteiro positivo tal que

$$a^{\frac{1}{N_0}} - 1 < \frac{\epsilon}{a^{x_0 + 1}},\tag{5.18}$$

o que é possível, pois a sequência $(a^{1/n})$ converge para 1. Se tomarmos x tal que $|x-x_o|<\frac{1}{N_o}$, então como a^x é crescente, temos $a^{|x-x_o|}< a^{\frac{1}{N_o}}$, portanto,

$$a^{|x-x_0|} - 1 < a^{\frac{1}{N_0}} - 1, \tag{5.19}$$

como $|x-x_o|<\frac{1}{N_o}$, então

$$x = x_o + (x - x_o) \le x_o + |x - x_o| < x_o + \frac{1}{N_o} \le x_o + 1,$$

como a^x é crescente para a > 1, temos

$$a^x \leq a^{x_0+1}$$

como $a^{x_0} < a^{x_0+1}$, concluímos que

$$\max\{a^{x_0}, a^x\} < a^{x_0+1}. \tag{5.20}$$

Então

$$|a^{x} - a^{x_{o}}| \le \max\{a^{x_{o}}, a^{x}\}(a^{|x - x_{o}|} - 1)$$
 (usamos (5.17))
 $< \max\{a^{x_{o}}, a^{x}\}(a^{\frac{1}{N_{o}}} - 1)$ (usamos (5.19))
 $< a^{x_{o}+1}(a^{\frac{1}{N_{o}}} - 1)$ (usamos (5.20))
 $< a^{x_{o}+1}\frac{\epsilon}{a^{x_{o}+1}}$ (usamos (5.18))
 $= \epsilon,$

o que mostra que f é contínua em x_o , onde para o ϵ dado, o nosso δ foi $\frac{1}{N_o}$.

Exercício 5.4. Seja 0 < a < 1, mostre que $f(x) = a^x$ é contínua para todo x real.

Exemplo 5.4. Seja a > 1, então a imagem de $f(x) = a^x$, x real, $\acute{e}(0, \infty)$.

De fato, f(x) > 0, para todo x real, o que mostraremos é que todo número real positivo está na imagem de f. Como f(0) = 1, então y = 1 está na imagem de f. Vimos que se a > 1, então $\lim_{n \to \infty} a^n = +\infty$, portanto dado y > 1, existe n_0 , tal que $f(n_0) = a_0^n > y$, como $y \in [1, a^{n_0}]$ e f é contínua neste intervalo, pelo Teorema do Valor Intermediário, existe algum x em $(0, n_0)$, tal que f(x) = y. Por outro lado, se 0 < y < 1, como $a^{-n} = \frac{1}{a^n}$ tende a zero quando n tende a infinito, existe n_0 , tal que $f(-n_0) = a^{-n_0} < y$, como f(x) é contínua em $[a^{-n_0}, 1]$, pelo Teorema do Valor Intermediário existe algum x no intervalo $(-n_0, 0)$, tal que f(x) = y. \square

Exercício 5.5. Seja 0 < a < 1, mostre que a imagem de $f(x) = a^x$, x real, $\acute{e}(0, \infty)$.

5.5 A derivada de e^x

Seja $f(x) = a^x$, então

$$\frac{f(x+h)-f(x)}{h}=\frac{a^{x+h}-a^x}{h}=a^x\left(\frac{a^h-1}{h}\right),$$

portanto f'(x) existirá se, e somente se, o limite

$$\lim_{h \to 0} \frac{a^h - 1}{h} \tag{5.21}$$

existir, ou seja, se f'(0) existir. Portanto, se f'(0) existir, então $f'(x) = f'(0)a^x$, para todo x real.

Mostra-se que existe um único valor de a para o qual o limite (5.21) vale 1, ele é denotado por e. Este é o mesmo número e que no curso de Fundamentos de Análise I mostramos ser irracional, seu valor é

$$e = 2,718281828459...$$

Portanto, por definição, temos

$$\lim_{h\to 0}\frac{e^h-1}{h}=1,$$

$$(e^x)'=e^x$$

para todo *x* real.

Segue da Regra da Cadeia que se u(x) for derivável, então

$$(e^{u(x)})' = e^{u(x)}u'(x). (5.22)$$

Embora para cada valor de a, a função a^x seja uma exponencial, quando falarmos na função exponencial sem nenhum adjetivo, estaremos nos referindo à função e^x .

Na Aula 6 veremos como calcular a derivada da função a^x .

Figura 5.1: Nesta figura mostramos o gráfico de $y = e^x$.

Exercício 5.6. Encontre as derivadas das seguintes funções:

(a)
$$f(x) = \frac{1 + e^{2x}}{1 - e^{-2x}}$$

$$(b) f(x) = e^{x^2 + \cos x^2}$$

(c)
$$f(x) = (x^2 + \cos e^{2x^3})^3$$
.

Exercício 5.7. Seja

$$f(x) = xe^{-x^2},$$

x real. Encontre os valores máximo e mínimo globais de f.

As funções logarítmicas

AULA6: AS FUNÇÕES LOGARÍTMICAS

OBJETIVOS

Ao final dessa aula, o aluno deverá ser capaz de:

- 1. Compreender a definição das funções logaritmicas.
- 2. Compreender as propriedades das funções logaritmicas.
- 3. Calcular derivadas de funções logaritmicas, bem como limites envolvendo estas funções.

6.1 Definição das funções logaritmicas

Seja $f: \mathbb{R} \to (0, \infty)$, definida por

$$f(x) = a^x$$
,

onde a é positivo e diferente de 1. Vimos na Aula 5 que f é uma função injetiva e sobrejetiva, portanto bijetiva, então existe uma função $g:(0,\infty)\to\mathbb{R}$ que é a inversa de f. Esta função é denotada por $\log_a x$, leia logaritmo na base a de x. Portanto,

$$y = \log_a x \iff x = a^y$$
.

Como $a^0 = 1$, então

$$\log_a 1 = 0,$$

para todo a positivo e diferente de 1.

Como $a^1 = a$, segue que

$$\log_a a = 1.$$

É comum denotarmos a inversa de e^x por $\ln x$ ou $\log x$, chamada de logaritmo neperiano (ou natural) de x.

6.2 Derivadas de funções logaritmicas

Note que se $y = \ln x$, então

$$x = e^y$$
.

Derivando esta equação em relação à *x*, da Regra da Cadeia, veja equação (5.22), que

$$1=e^yy',$$

ou seja,

$$y' = \frac{1}{e^y} = \frac{1}{x}.$$

Portanto

$$(\ln x)' = \frac{1}{x} > 0 , (6.1)$$

para todo x > 0.

Se u(x) for uma função diferenciável de x, segue da Regra da Cadeia, que

$$(\ln u(x))' = \frac{u'(x)}{u(x)}.$$
 (6.2)

Exercício 6.1. *Mostre que a equação*

$$x - \ln x = 0$$

x > 0, não tem solução.

Sugestão. Mostre que a função $f(x) = x - \ln x$ tem um mínimo global em x = 1, portanto, $f(x) \ge f(1) = 1$, para todo x.

6.3 Propriedades das funções logaritmicas

Teorema 6.1. *Se a e b são reais positivos, então*

$$ln(ab) = ln a + ln b.$$
(6.3)

Prova. Seja

$$g(x) = \ln(ax), \tag{6.4}$$

a qual está definida para todo x positivo. Então de (6.2), temos

$$g'(x) = \frac{a}{ax} = \frac{1}{x} ,$$

logo

$$(g(x) - \ln x)' = 0,$$

para todo *x*, o que implica que

$$g(x) = \ln x + C,$$

onde C é uma constante. Fazendo x=1, temos $\ln a = \ln 1 + C$, tendo em vista que $\ln 1 = 0$, concluimos que $C = \ln a$, portanto

$$g(x) = \ln x + \ln a. \tag{6.5}$$

Fazendo x = b nas equações (6.4) e (6.5), temos

$$\ln(ab) = g(b) = \ln a + \ln b,$$

concluindo a demonstração do teorema.

Por indução temos a seguinte generalização do teorema acima: se a_1, \ldots, a_n são números reais positivos, então

$$\ln(a_1 \dots a_n) = \ln a_1 + \dots \ln a_n. \tag{6.6}$$

Se em (6.6) fizermos $a_1, \ldots, a_n = a$, concluiremos que

$$ln a^n = n ln a.$$
(6.7)

Se em (6.6) fizermos $a_1, \ldots, a_n = a^{\frac{1}{n}}$, concluiremos que

$$\ln a = n \ln a^{\frac{1}{n}} \Leftrightarrow \ln a^{\frac{1}{n}} = \frac{1}{n} \ln a. \tag{6.8}$$

Seja $r = \frac{m}{n}$, onde m, n são inteiros positivos, então em virtude de (6.8) e (6.9) temos

$$\ln a^{r} = \ln a^{\frac{m}{n}} = \ln (a^{\frac{1}{n}})^{m} = m \ln a^{\frac{1}{n}} = \frac{m}{n} \ln a$$

$$= r \ln a.$$
(6.9)

Seja *a* positivo, como $0 = \ln 1 = \ln(aa^{-1}) = \ln a + \ln a^{-1}$, concluimos que

$$\ln a^{-1} = -\ln a. (6.10)$$

De (6.3) e (6.10), temos

$$\ln \frac{a}{b} = \ln(ab^{-1}) = \ln a + \ln b^{-1} = \ln a - \ln b.$$
 (6.11)

Seja $r = \frac{m}{n}$, onde m, n são inteiros com n positivo e m negativo, então $r = -\frac{|m|}{n}$, portanto

$$\ln a^{r} = \ln a^{-\frac{|m|}{n}}$$

$$= \ln \left(a^{\frac{|m|}{n}}\right)^{-1} \quad \text{(usamos (5.3))}$$

$$= -\ln a^{\frac{|m|}{n}} \quad \text{(usamos (6.10))}$$

$$= -\frac{|m|}{n} \ln a \quad \text{(usamos (6.9))}$$

$$= r \ln a.$$

Portanto, para todo racional $r = \frac{m}{n}$, temos

$$\ln a^r = r \ln a.$$
(6.12)

Seja x um número real qualquer. Tome uma sequência de racionais (r_n) convergindo para x então, por definição,

$$a^{x} = \lim_{n \to \infty} a^{r_n},\tag{6.13}$$

como a função logaritmo é contínua (por ser a inversa de uma função contínua), temos

$$\lim_{n \to \infty} \ln a^{r_n} = \ln \left(\lim_{n \to \infty} a^{r_n} \right), \tag{6.14}$$

logo de (6.13), (6.14), (6.12) e da Propriedade (i) do limite, veja Teorema 2.4, temos

$$\ln a^{x} = \ln \left(\lim_{n \to \infty} a^{r_n} \right) = \lim_{n \to \infty} \ln a^{r_n} = \lim_{n \to \infty} \left(r_n \ln a \right) = x \ln a.$$

Portanto, para qualquer número real x, temos

$$\ln a^x = x \ln a.$$
(6.15)

Usando a propriedade acima duas vezes, temos

$$\log_a(a^x)^y = y \log_a a^x = xy \log_a a = xy.$$

Como

$$\log_a(a^x)^y = xy,$$

tomando-se a exponencial na base a desta equação, temos

$$(a^x)^y = a^{xy}. (6.16)$$

Se $y = \log_a x$, então $x = a^y = e^{\ln a^y} = e^{y \ln a}$, portanto

$$x = e^{y \ln a}$$

derivando esta equação em relação à x e usando a Regra da Cadeia, veja equação (5.22), temos

$$1 = e^{y \ln a} (y \ln a)' = a^y y' \ln a = x y' \ln a,$$

portanto

$$y' = \frac{1}{x \ln a}.$$

Logo, para todo x > 0, temos

$$(\log_a x)' = \frac{1}{r \ln a} \ . \tag{6.17}$$

De (6.17), para todo x > 0, temos

$$\left(\log_a x - \frac{\ln x}{\ln a}\right)' = 0,$$

logo $\log_a x = \frac{\ln x}{\ln a} + C$, fazendo x = 1, concluimos que C = 0, portanto

$$\log_a x = \frac{\ln x}{\ln a},\tag{6.18}$$

o que nos permite expressar o logaritmo numa base a qualquer em termos do logaritmo natural.

Se u(x) for diferenciável, então de (6.17) e da Regra da Cadeia, temos

$$(\log_a u(x))' = \frac{u'(x)}{u \ln a}.$$
(6.19)

Exemplo 6.1. Se (x_n) é uma sequência tal que $\lim_{n\to} x_n = +\infty$, então $\lim_{n\to} \ln x_n = +\infty$.

De fato

$$\lim_{n\to\infty}\ln 2^n=\lim_{n\to\infty}(n\ln 2)=+\infty,$$

pois $\ln 2 > 0$; portanto, dado M > 0, existe inteiro positivo N_o , tal que $\ln 2^{N_o} > M$, como $\lim_{n \to \infty} x_n = +\infty$, existe um n_o , tal que se $n \ge n_o$, temos $x_n > 2^{N_o}$; portanto, como a função logaritmo é crescente, temos

$$\ln x_n > \ln 2^{N_0} > M$$

para todo $n \ge n_0$, o que mostra que $\lim_{n \to} \ln x_n = +\infty$.

Note que se $y = a^x$, então podemos escrever

$$y = e^{\ln a^x} = e^{x \ln a},$$

portanto da Regra da Cadeia, veja

$$x = e^{y \ln a}$$

derivando esta equação em relação à x e usando a Regra da Cadeia, veja equação (5.22), temos

$$y' = e^{x \ln a} \ln a = a^x \ln a.$$

Portanto

$$(a^x)' = a^x \ln a. \tag{6.20}$$

Exercício 6.2. Expresse a quantidade dada como um único logaritmo:

(a)
$$\ln 5 + \ln 7$$
,

(b)
$$\ln(a+b) + \ln(a-b) - 3 \ln c$$
.

Exercício 6.3. Resolva as equações abaixo.

(a)
$$e^{5x+3} - 7 = 0$$
,

$$(b) \ln(\ln x) = 1,$$

(c)
$$\ln x + \ln(x+7) = \ln 4 + \ln 2$$
,

$$(d) \ln(x^2 + x - 1) = 0,$$

(e)
$$(0,1)^{x+2} = 100^{1/3}$$
,

$$(f) e^{2x} + 2e^x - 8 = 0.$$

Exercício 6.4. Calcule as derivadas das seguinte funções:

(a)
$$f(x) = \sqrt{1 - 2^{3x}}$$
,

(b)
$$f(x) = \cos(2^x + \log_2 x)$$
.

Exercício 6.5. Dado um número real $x \neq 0$, por que é possível encontrarmos um valor c entre 0 e x, tal que

$$\frac{e^x-1}{x}=e^c ?$$

Exercício 6.6. *Mostre que*

$$\lim_{x \to \infty} \frac{\ln x}{x} = 0.$$

Sugestão: Vimos no curso de Fundamentos de Análise I que

$$\lim_{n\to\infty}\sqrt[n]{n}=1,$$

como a função $\ln x$ é contínua em x=1, temos $\lim_{n\to\infty}\frac{\ln n}{n}=0$. Além disso, $f(x)=\frac{\ln x}{x}$ é contínua e decrescente (para x>e).

Exercício 6.7. *Mostre que se* p > 0*, então*

$$\lim_{x \to \infty} \frac{\ln x}{x^p} = 0.$$

Exercício 6.8. Mostre que

$$\lim_{x\to 0^+} x \ln x = 0.$$

Sugestão: No Exercício 6.6 vimos que $\lim_{u\to\infty}\frac{\ln u}{u}=0$. Para resolver os Exercícios 6.7 e 6.8, faça as mudanças de variáveis $u=x^p$ e $u=\frac{1}{x}$, respectivamente.

Exercício 6.9. Mostre que para todo p real, temos

$$\lim_{x \to \infty} x^{-p} e^x = \infty$$

Sugestão: Se $p \le 0$, então o resultado acima é óbvio, se p > 0, podemos escrever

$$x^{-p}e^x = e^{x(1-p\frac{\ln x}{x})}$$

e usamos o Exercício 6.6.

Noções de Topologia

AULA7: NOÇÕES DE TOPOLOGIA

OBJETIVOS

Ao final dessa aula, o aluno deverá ser capaz de:

- 1. Compreender os conceitos de conjuntos aberto e fechado, de pontos de acumulação de um conjunto, bem como as propriedades destes.
- 2. Compreender o conceito de conjunto compacto e a sua caracterização em termos de sequências.
- 3. Compreender a generalização do Teorema dos Intervalos Encaixados para conjuntos compactos.
- 4. Saber que o ínfimo e o supremo de um conjunto compacto pertencem ao mesmo.
- 5. Compreender a demonstração do Teorema de Heine-Borel.

7.1 Conjuntos abertos

Definição 7.1. *Dado um conjunto* $A \subset \mathbb{R}$ *, dizemos que* $a \in A$ *é um* ponto interior *de* A *, se existir um* $\delta > 0$ *, tal que*

$$(a - \delta, a + \delta) \in A$$
.

Denotamos por int A o conjunto de todos os pontos interiores de A. Dizemos que um conjunto é aberto se todos os seus pontos são interiores, ou seja, se A = int A.

Exercício 7.1. Seja A um subconjunto dos números reais contendo apenas um número finito de elementos. Mostre que A não é aberto.

Exemplo 7.1. Os seguintes conjuntos (a,b), (a,∞) , $(-\infty,a)$ e $(-\infty,\infty)$ são abertos; por quê?

Exemplo 7.2. Os seguintes conjuntos [a,b), (a,b] e [a,b] não são conjuntos abertos, porque int (a,b] = (a,b), int [a,b] = (a,b) e int [a,b] = (a,b).

Exemplo 7.3. O conjunto vazio é aberto.

De fato, note que um conjunto só pode falhar de ser aberto se ele tiver pelo menos um ponto que não é interior. Como o conjunto vazio não possui ponto, ele não possui ponto que não seja interior, portanto o conjunto vazio é aberto.

Exemplo 7.4. Q não é aberto.

De fato, vimos que números irracionais são densos em \mathbb{R} , em particular, dado qualquer número racional r, para todo $\delta > 0$, existe algum número irracional $x \in (r-\delta,r+\delta)$, portanto este intervalo não está contido em \mathbb{Q} , logo $r \notin int A$. Como r foi tomado arbitrariamente, concluimos que o conjunto dos números racionais não contém pontos interiores, ou seja,

int
$$\mathbb{Q} = \emptyset$$
,

logo Q não é aberto.

Teorema 7.1.

- (a) Se A_1 e A_2 são conjuntos abertos, então $A_1 \cap A_2$ é aberto.
- (b) Se $(A_{\lambda})_{\lambda \in L}$ é uma família qualquer de conjuntos abertos, então $\cup_{\lambda \in L} A_{\lambda}$ é um conjunto aberto.

Prova. Na demostração dos itens (a) e (b) vamos assumir que $A_1 \cap A_2$ e $\bigcup_{\lambda \in L} A_{\lambda}$ sejam não vazios, senão não teríamos nada a provar, pois conjuntos vazios são abertos.

- (a) Se $a \in A_1 \cap A_2$, então $a \in A_1$ e $a \in A_2$. Como A_1 e A_2 são abertos, existem $\delta_1 > 0$ e $\delta_2 > 0$, tais que $(a \delta_1, a + \delta_1) \subset A_1$ e $(a \delta_2, a + \delta_2) \subset A_2$. Tome $\delta = \min\{\delta_1, \delta_2\}$, então $(a \delta, a + \delta) \subset A_1$ e $(a \delta, a + \delta) \subset A_2$, portanto, $(a \delta, a + \delta) \subset A_1 \cap A_2$, logo a é um ponto interior de $A_1 \cap A_2$, o que mostra que todo ponto de $A_1 \cap A_2$ é interior, portanto, $A_1 \cap A_2$ é aberto.
- (b) Se $a \in \bigcup_{\lambda \in L} A_{\lambda}$, então $a \in A_{\lambda_o}$, para algum $\lambda_o \in L$. Como A_{λ_o} é aberto, existe $\delta > 0$, tal que $(a \delta, a + \delta) \subset A_{\lambda_o} \subset \bigcup_{\lambda \in L} A_{\lambda}$, portanto, $(a \delta, a + \delta) \subset \bigcup_{\lambda \in L} A_{\lambda}$, o que mostra que a é um ponto interior de $\bigcup_{\lambda \in L} A_{\lambda}$. Mostramos que todos os pontos de $\bigcup_{\lambda \in L} A_{\lambda}$ são interiores, logo $\bigcup_{\lambda \in L} A_{\lambda}$ é aberto.

Exemplo 7.5. Se A_1, A_2, \ldots, A_n são conjuntos abertos, então

$$\bigcap_{i=1}^{n} A_i$$

é aberto.

De fato, seja $A = \bigcap_{i=1}^n A_n$. Dado arbitrariamente $a \in A$, mostraremos que existe $\delta > 0$, tal que $(a - \delta, a + \delta) \subset A$, ou seja, a é um ponto interior de A e concluiremos que todos os pontos de A são interiores, portanto A é aberto.

Se $a \in A$, então $a \in A_i$, para todo i = 1, ..., n. Como A_i é aberto, existe $\delta_i > 0$, tal que $(a - \delta_i, a + \delta_i) \subset A_i$. Seja

$$\delta=\min\{\delta_1,\ldots,\delta_n\},\,$$

então para cada i = 1, ..., n, temos

$$(a - \delta, a + \delta) \subset (a - \delta_i, a + \delta_i) \subset A_i$$
.

Portanto

$$(a-\delta,a+\delta)\subset \bigcap_{i=1}^n A_i$$
.

Exemplo 7.6. A interseção de uma infinidade de conjuntos abertos não é necessariamente um conjunto aberto.

De fato, seja $A_n = (-1/n, 1/n)$, então para cada n o conjunto A_n é aberto. Mostraremos que

$$\bigcap_{i=1}^{\infty} A_n = \{0\},\,$$

que não é aberto.

Note que $0 \in (-1/n, 1/n)$ para todo n, logo $0 \in \bigcap_{i=1}^{\infty} A_n$. Por outro lado, se $a \neq 0$, afirmamos que $a \notin \bigcap_{i=1}^{\infty} A_n$. De fato, se $a \neq 0$, podemos tomar n_0 suficientemente grande tal que $|a| > 1/n_0$, portanto $a \notin (-1/n_0, 1/n_0)$, logo $a \notin \bigcap_{i=1}^{\infty} A_n$.

7.2 Conjuntos fechados

Definição 7.2. Dizemos que um conjunto $A \subset \mathbb{R}$ é fechado se o seu complementar $\mathbb{R} - A$ for um conjunto aberto.

Exemplo 7.7. O seguintes conjuntos são fechados: [a,b], \mathbb{R} , \emptyset e $A \subset \mathbb{R}$ finito; por quê?

Exemplo 7.8. *O conjunto* \mathbb{Q} *não é fechado.*

De fato, vimos que os números racionais são densos em \mathbb{R} , em particular, dado qualquer número irracional x, para todo $\delta > 0$ existe algum racional $r \in (x - \delta, x + \delta)$, portanto x não é um ponto interior de $\mathbb{R} - \mathbb{Q}$, ou seja,

$$int(\mathbb{R} - \mathbb{Q}) = \emptyset$$
,

logo $\mathbb{R} - \mathbb{Q}$ não é aberto, consequentemente, \mathbb{Q} não é fechado.

Exercício 7.2. Mostre que o conjunto \mathbb{Z} é fechado.

Sugestão: *Note que* $\mathbb{R} - \mathbb{Z} = \bigcup_{n \in \mathbb{Z}} (n, n + 1)$ *e use o Teorema* 7.1.

Teorema 7.2.

- (a) Se A_1 e A_2 são conjuntos fechados, então $A_1 \cup A_2$ é fechado.
- (b) Se $(A_{\lambda})_{\lambda \in L}$ é uma família qualquer de conjuntos fechados, então $\cap_{\lambda \in L} A_{\lambda}$ é um conjunto fechado.

Prova. Vimos que um conjunto é fechado se, e somente se, o seu complementar em relação a \mathbb{R} for aberto.

(a) Como A_1 e A_2 fechados, então $\mathbb{R} - A_1$ e $\mathbb{R} - A_2$ são abertos e, pelo item (a) do Teorema 7.1, $(\mathbb{R} - A_1) \cup (\mathbb{R} - A_2)$ é aberto, mas pela lei de De Morgan, temos

$$(\mathbb{R} - A_1) \cup (\mathbb{R} - A_2) = \mathbb{R} - (A_1 \cap A_2).$$

Portanto, $\mathbb{R} - (A_1 \cap A_2)$ é aberto, o que significa que $A_1 \cap A_2$ é fechado.

(b) Como A_{λ} é fechado para cada $\lambda \in L$, cada $\mathbb{R} - A_{\lambda}$ é aberto e, pelo item (b) do Teorema $7.1 \cup_{\lambda \in L} (\mathbb{R} - A_{\lambda})$ é aberto, mas pela lei de De Morgan

$$\cup_{\lambda \in L} (\mathbb{R} - A_{\lambda}) = \mathbb{R} - (\cap_{\lambda \in L} A_{\lambda}).$$

Portanto $\mathbb{R} - (\cap_{\lambda \in L} A_{\lambda})$ é aberto, logo $\cap_{\lambda \in L} A_{\lambda}$ é fechado.

Exemplo 7.9. Seja $A \subset \mathbb{R}$ fechado e (a_n) uma sequência de pontos de A. Se

$$a=\lim_{n\to\infty}a_n,$$

então $a \in A$.

De fato, suponha que $a \notin A$, mostraremos que isto nos levará a um absurdo. Se $a \notin A$, então $a \in \mathbb{R} - A$, mas $\mathbb{R} - A$ é aberto, pois A é fechado. Logo existiria $\delta > 0$ tal que $(a - \delta, a + \delta) \subset (\mathbb{R} - A)$, ou seja, $(a - \delta, a + \delta) \cap A = \emptyset$, o que é um absurdo, pois $a = \lim_{n \to \infty} a_n$, o que implica que existe inteiro positivo n_o tal que $a_n \in (a - \delta, a + \delta)$, para todo $n \geq n_o$.

Exemplo 7.10. Seja $A \subset \mathbb{R}$, tal que para toda sequência convergente (a_n) de pontos de A o seu limite esteja em A. Então A é fechado.

De fato, afirmamos que $\mathbb{R}-A$ é aberto; caso contrário, haveria algum ponto $b \in \mathbb{R}-A$ que não estaria no seu interior. Portanto, para todo $n \in \mathbb{N}$, o conjunto (b-1/n,b+1/n) não estaria contido em $\mathbb{R}-A$, então existiria $a_n \in (b-1/n,b+1/n)$ e $a_n \notin \mathbb{R}-A$, logo $a_n \in (b-1/n,b+1/n) \cap A$. Com isso teríamos contruido uma sequência (a_n) de elementos de A, tal que

$$|b-a_n|<1/n,$$

para todo n, ou seja, $\lim_{n\to\infty} a_n = b$. Como por hipótese toda sequência convergente de pontos de A deve convergir para um elemento de A, isto implicaria que para $b \in A$, o que é uma contradição.

Dos dois exercícios anteriores temos o teorema seguinte.

Teorema 7.3. $A \subset \mathbb{R}$ é fechado se, e somente se, para toda sequência convergente de pontos de A, o seu limite estiver em A.

7.3 Pontos de acumulação

Definição 7.3. Dizemos que um conjunto $V \subset \mathbb{R}$ é uma vizinhança do ponto a, se a pertencer ao interior de V.

Definição 7.4. *Dizemos que a* $\in \mathbb{R}$ *é um* ponto de acumulação *de um conjunto A* $\subset \mathbb{R}$, *se para todo \delta > 0, tivermos*

$$(a - \delta, a + \delta) \cap (A - \{a\}) \neq \emptyset$$
,

ou seja, toda vizinhança V de a contém algum ponto de A diferente do próprio a. Se $a \in A$ não for um ponto de acumulação de A, dizemos que a é um ponto isolado de A.

Exemplo 7.11. Vale a pena ressaltar que um ponto de acumulação de um conjunto não precisa pertencer ao próprio conjunto. Por exemplo, o 0 é um ponto de acumulação do conjunto

$$A = \{1, 1/2, 1/3, 1/4, \dots, 1/n, \dots\},\$$

 $mas 0 \notin A$.

Definição 7.5. *Se todos os pontos de um conjunto A forem isolados, dizemos que A é um* conjunto discreto.

Exercício 7.3. *Dê exemplos de conjuntos discretos.*

Exercício 7.4. O conjunto $A = \{1, 2, 3, 4, ...\}$ tem pontos de acumulação? Quais são os pontos isolados de A?

Exercício 7.5. Seja $A = \{1, 1/2, 1/3, 1/4, \ldots\}$. Mostre que 0 é o único ponto de acumulação de A.

Exercício 7.6. Quais são os pontos de acumulação dos seguintes intervalos: (-1,4), (-1,4], [-1,4) e [-1,4]? Estes conjuntos têm pontos isolados?

Teorema 7.4. Dados $A \subset \mathbb{R}$ e $a \in \mathbb{R}$, mostre que as seguintes afirmações são equivalentes:

- (1) a é ponto de acumulação de A;
- (2) a é limite de alguma sequência de pontos $a_n \in A \{a\}$;
- (3) Para todo $\epsilon > 0$ existem uma infinidade de pontos de A em $(a \epsilon, a + \epsilon)$.

Prova.

- $(1) \Rightarrow (2)$. Suponha que a seja um ponto de acumulação de A. Então para cada n, existe um ponto $a_n \in A$ no intervalo (a-1/n,a+1/n). Logo, a sequência a_n converge para a, o que prova (2).
- $(2) \Rightarrow (3)$. Suponha que $a = \lim_{n \to \infty} a_n$, onde $a_n \in A \{a\}$, então, dado $\epsilon > 0$ existe n_o , tal que $a_n \in (a \epsilon, a + \epsilon)$, para $n \geq n_o$. Afirmamos que o conjunto $\{a_n : n \geq n_o\}$ é infinito; caso contrário, a sequência a_n teria que ser constante para n suficientemente grande, ou seja, existiria $n_1 \geq n_o$, tal que $a_n = a_{n_1} \neq a$, para $n \geq n_1$, ou seja $a_{n_1} = \lim_{n \to \infty} a_n$, o que é impossível, pois $a_{n_1} \neq a$.
- $(3)\Rightarrow (1)$. Se para todo $\epsilon>0$ existem uma infinidade de pontos de A em $(a-\epsilon,a+\epsilon)$, então,

$$(a-\epsilon,a+\epsilon)\cap (A-\{a\})\neq\emptyset$$
,

ou seja, *a* é um ponto de acumulação de *A*.

Teorema 7.5. Todo conjunto infinito limitado de números reais tem pelo menos um ponto de acumulação.

Prova. Seja $A \subset \mathbb{R}$ um conjunto infinito limitado. Como A é infinito, ele possui um subconjunto enumerável

$$\{a_1,a_2,\ldots,a_n,\ldots\}.$$

Portanto, temos uma sequência limitada de números reais (a_n) , a qual, pelo Teorema de Bolzano-Weierstrass, possui uma subsequência (a_{n_i}) que é convergente. Seja $a = \lim_{i \to \infty} a_{n_i}$. Como os termos desta subsequência são distintos, existe no máximo um deles igual a a. Descartando-o, caso ele exista, obtemos uma nova

subsequência de pontos pertencentes a $A - \{a\}$, a qual converge para a, portanto a é ponto de acumulação de A.

7.4 Conjuntos compactos

Definição 7.6. *Um conjunto A* \subset \mathbb{R} *é chamado de* compacto, *se ele é limitado e fechado.*

Exemplo 7.12. O *intervalo* [a, b] \acute{e} *compacto.*

Exemplo 7.13. *Todo conjunto finito é compacto.*

Exemplo 7.14. Os intervalos (a,b), (a,b] e [a,b) não são compactos, pois embora sejam limitados não são fechados.

Exemplo 7.15. Embora o conjunto **Z** seja fechado, ele não é limitado, portanto não é compacto.

Teorema 7.6. *Um conjunto* $A \subset \mathbb{R}$ *é compacto se, e somente se, toda sequência de pontos de A possuir uma subsequência que converge para um ponto de A.*

Prova.

 (\Rightarrow) Suponha que A seja compacto e (a_n) sequência de pontos de A, então (a_n) é limitada e, pelo Teorema de Bolzano Weierstrass, possui uma subsequência (a_{n_i}) que é convergente. Seja $a=\lim_{i\to\infty}a_{n_i}$, então $a\in A$, pois A é fechado (veja Exemplo 7.9).

(⇐) Seja $A \subset \mathbb{R}$ tal que toda sequência de pontos de A tenha uma subsequência convergindo para um ponto de A. Afirmamos que A é limitado, caso contrário, para cada $n \in \mathbb{N}$ existiria algum $a_n \in A$, tal que $|a_n| > n$. Então a sequência (a_n) não possuiria subsequência limitada, portanto não teria subsequência convergente. Além disso, afirmamos que A é fechado; caso contrário, existiria uma sequência (a_n) de pontos de A, com $\lim_{n\to\infty} a_n = a$ e $a \notin A$, ou seja, teríamos uma sequência que não possuiria nenhuma subsequência convergindo para um ponto de A, pois qualquer subsequência de (a_n) convergiria para $a \in a \notin A$. \square

Exemplo 7.16. Seja $A \subset \mathbb{R}$ compacto, então inf A and $\sup A$ pertencem a A.

De fato, como $A \subset \mathbb{R}$ é compacto, então, A é limitado, portanto existem números reais a e b, tais que $a = \inf A$ e $b = \sup A$. Afirmamos que a e b pertecem a A.

Pela definição de ínfimo de um conjunto, para todo $n \in \mathbb{N}$, existe algum elemento

$$a_n \in [a, a+1/n),$$

com isso construimos uma sequência (a_n) de pontos de A, tal que $|a_n - a| < 1/n$, para todo n, logo $a = \lim_{n \to \infty} a_n$, como A é compacto, devemos ter $a \in A$.

De maneira análoga, pela definição de supremo de um conjunto, para todo $n \in \mathbb{N}$ existe algum elemento

$$b_n \in (b-1/n,b]$$
,

com isso construimos uma sequência (b_n) de pontos de A, tal que $|b_n - b| < 1/n$, para todo n, logo $b = \lim_{n \to \infty} b_n$, como A é compacto, devemos ter $b \in A$.

Teorema 7.7. Dada uma sequência descrescente

$$A_1 \supset A_2 \supset A_3 \supset \ldots \supset A_n \supset \ldots$$

de conjuntos compactos não-vazios, então

$$\bigcap_{n=1}^{\infty} A_n \neq \emptyset$$
.

Prova. Para cada $n \in \mathbb{N}$, tome $a_n \in A_n$. Como os conjuntos A_n 's são descrecentes, então $a_n \in A_1$, para todo n, como A_1 é compacto, (a_n) possui uma subsequência (a_{n_i}) , convergindo para um ponto $a \in A_1$. Afirmamos que $a \in A_n$ para todo $n \in \mathbb{N}$. De fato, dado $n \in \mathbb{N}$ fixo, tome $n_{i_0} \geq n$, então para todo $n_i \geq n_{i_0}$, temos $a_{n_i} \in A_{n_i} \subset A_{i_0} \subset A_n$, portanto, a subsequência $(a_{n_{i_0}}, a_{n_{i_1}}, \ldots)$ é formada de elementos de A_n e ela converge para a, por ser uma subsequência de (a_{n_i}) , como A_n é compacto, segue que $a \in A_n$.

Corolário 7.1. (Intervalos encaixantes) Seja $[a_n, b_n]$ uma família de intervalos fechados com a seguinte propriedade:

$$[a_{n+1},b_{n+1}]\subset [a_n,b_n],$$

então

$$\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset.$$

7.5 O teorema de Heine-Borel

Definição 7.7. Dado um conjunto A, dizemos que uma família C de conjuntos C_{λ} , $\lambda \in L$, é uma cobertura de A se $A \subset \bigcup_{\lambda \in L} C_{\lambda}$. Quando todos os conjuntos são abertos, dizemos que C é uma cobertura aberta. Se o conjunto de índices L for finito, dizemos que C é uma cobertura finita. Se $L' \subset L$ é tal que $A \subset \bigcup_{\lambda \in L'} C_{\lambda}$, dizemos que $C' = (C_{\lambda})_{\lambda \in L'}$ é uma subcobertura de A.

Teorema 7.8. (Heine-Borel) Toda cobertura aberta de um conjunto compacto possui uma subcobertura finita.

Prova. Vamos primeiro provar o teorema para o caso em que o conjunto compacto seja o intervalo fechado [a, b], depois consideraremos um compacto qualquer.

Seja $\mathcal{C} = \bigcup_{\lambda \in L} A_{\lambda}$ uma cobertura por abertos de [a,b], ou seja, cada A_{λ} é aberto e $[a,b] \subset \bigcup_{\lambda \in L} A_{\lambda}$. Vamos supor, por absurdo, que a cobertura \mathcal{C} não admita uma subcobertura finita. O ponto médio do intervalo [a,b] o decompõe em dois subintervalos de comprimentos (b-a)/2. Pelo menos um destes intervalos, o qual denotaremos por $[a_1,b_1]$, não pode ser coberto por um número finito de conjuntos A_{λ} 's; portanto, se dividirmos este intervalo ao meio, um dos subintervalos, que denotaremos por $[a_2,b_2]$, não pode ser coberto por um número finito de conjuntos A_{λ} 's. Repetindo este processo, construiremos uma sequência de intervalos $[a_n,b_n]$, com as seguintes propriedades:

- (i) $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$,
- (ii) o comprimento de $[a_n, b_n] = 2^{-n}$ e
- (iii) $[a_n, b_n]$ não pode ser coberto por um número finito de A_{λ} 's.

Pelo Corolário 7.1 a interseção dos intervalos $[a_n, b_n]$ é não vazia, ou seja, existe

$$c \in \bigcap_{n=1}^{\infty} [a_n, b_n] \subset [a, b].$$

Sendo \mathcal{C} uma cobertura de [a,b] e $c\in A$, devemos ter $c\in A_{\lambda_o}$, para algum $\lambda_o\in L$. Como A_{λ_o} é aberto, existe $\delta>0$, tal que $(c-\delta,c+\delta)\subset A_{\lambda_o}$. Como $c\in [a_n,b_n]$, para todo n, então

$$b_n = c + (b_n - c) < c + (b_n - a_n) = c + 2^{-n},$$

por outro lado,

$$a_n = c - (c - a_n) > c - (b_n - a_n) = c - 2^{-n},$$

portanto, se tomarmos n tal que $2^{-n} < \delta$, teremos que $a_n > c - \delta$ e $b_n < c + \delta$, ou seja, $[a_n, b_n] \subset (c - \delta, c + \delta) \subset A_{\lambda_0}$, ou seja, $[a_n, b_n]$ seria coberto por apenas um dos conjuntos A_{λ} , o que pelo item (iii) seria uma contradição.

Agora seja A um compacto qualquer. Tome um intervalo [a,b] qualquer contendo A, por exemplo, poderíamos tomar $a=\inf A$ e $b=\sup A$. Como por hipótese $\mathcal C$ cobre A, então, ao acrescentarmos a $\mathcal C$ o conjunto aberto $A_{\lambda_o}=\mathbb R-[a,b]$, a nova cobertura cobre [a,b]. Vimos que toda cobertura por abertos de [a,b] admite uma subcobertura finita, ou seja, $[a,b]\subset A_{\lambda_o}\cup A_{\lambda_1}\cup\ldots\cup A_{\lambda_n}$. Como nenhum ponto de A pertence a A_{λ_o} , segue que $[a,b]\subset A_{\lambda_1}\cup\ldots\cup A_{\lambda_n}$, com isso terminamos a demonstração.

7.6 Exercícios

Exercício 7.7. O conjunto \mathbb{N} é fechado? Justifique a sua resposta.

Exercício 7.8. O conjunto $\mathbb N$ é compacto? Justifique a sua resposta.

Exercício 7.9. Seja $A = \mathbb{Z} \cap [0, 10]$. O conjunto A é compacto? Justifique a sua resposta.

Sugestão. O conjunto A é finito e limitado, por quê?

Exercício 7.10. Dê um exemplo de dois conjuntos A e B que não são abertos, mas a $A \cup B$ é aberto.

Exercício 7.11. Sejam A e B subconjuntos não vazios e abertos de \mathbb{R} , tais que $A \cap B \neq \emptyset$. É possível que $A \cap B$ seja finito?

Sugestão. Se $A \cap B$ fosse finito, então $A \cap B$ seria fechado, portanto $\mathbb{R} - (A \cap B)$ seria aberto, use o Teorema 7.2 para chegar a uma contradição.

Exercício 7.12. *Seja A* = $\mathbb{Q} \cap [0,1]$. *O conjunto A é compacto?*

Sugestão. Tome uma sequência de números racionais convergindo para algum número irracional em [0,1].

Exercício 7.13. Seja A um conjunto compacto e B um subconjunto fechado de A. Então A é compacto.

Exercício 7.14. Considere o intervalo I = [0,1] e para todo $x \in I$, seja O_x o intervalo aberto (x-1/3,x+1/3). A família \mathcal{O} formada pela união dos conjuntos abertos O_x é uma cobertura para [0,1]? É possível tomarmos O_{x_1},\ldots,O_{x_n} , tais que $\bigcup_{i=1}^n O_{x_i}$ contenha [0,1]?

Exercício 7.15. Mostre que a união de dois conjuntos compactos é um conjunto compacto.

Sugestão. Sejam A e B dois conjuntos compactos. Considere uma cobertura qualquer de $A \cup B$ por abertos, digamos O. Então O é uma cobertura por conjuntos abertos para ambos os conjuntos A e B, por quê? Então um número finito destes conjuntos, digamos U_1, \ldots, U_m cobrirão A e um número finito destes conjuntos, digamos V_1, \ldots, V_n cobrirão $V_1,$

Exercício 7.16. Mostre que a interseção de qualquer coleção de conjuntos compactos é um conjunto compacto.

Sugestão. A interseção de qualquer coleção de conjuntos fechados é fechado e a interseção de qualquer coleção de conjuntos limitados é limitada.

Exercício 7.17. (Existência de um maior elemento) Mostre que todo conjunto $A \subset \mathbb{R}$ que é não vazio, fechado e limitado superiormente, possui um maior elemento, ou seja, existe $a \in A$, tal que x < a, para todo $x \in A$.

Sugestão. Seja $L = \sup A$, então existe uma sequência $a_n \in A$, tal que

$$\lim_{n\to\infty}a_n=L;$$

por quê? Use o Exemplo 7.9.

Exercício 7.18. (Existência de um menor elemento) Mostre que todo conjunto $A \subset \mathbb{R}$ que é não vazio, fechado e limitado inferiormente, possui um maior elemento, ou seja, existe $a \in A$, tal que $x \ge a$, para todo $x \in A$.

Sugestão. *Veja o exercício anterior.*

REFERÊNCIAS

- [1] Elon Lages Lima, *Análise Real*, volume 1, RJ, segunda edição, IMPA, CNPQ, 1993 (coleção Matemática Universitária).
- [2] Djairo Guedes Figueiredo, *Análise I*, segunda edição, Livros Técnicos e Científicos S.A, 1996.
- [3] Paulo C Lima, Fundamentos de Análise I, Editora UFMG, 2012.

Composto em caracteres Aller, Arial, Calibri, PT Sans e Times New Roman. Editorado pelo Centro de Apoio à Educação a Distância da UFMG (CAED-UFMG). Capa em Supremo, 250g, 4 X 0 cores - Miolo couchê fosco 90g, 2X2 cores. 2013

