NUCLEAR PHYSICS

Alpha particle: Helium nucleus

Rutherford's gold leaf experiment

2 X

proof that atoms aren't plums

most a particles didn't defled -> most of the atom is empty space some & particles were deflected - nucleus is tuely charged only a small number were - nucleus is a concentrated mass deflected greater than 90'

Another De Broglie Thing

e travelling very fast -> wave-like properties

$$\lambda = \frac{h}{mv}$$

(x≈gap size) $\lambda = \frac{h}{mv}$ for diffraction, λ has to be small v has to be large

circular

Circular diffraction pattern of e-

E=hf can be used on fast particles, not just photons.

Example

300 MeV e fired at thin foil 1st minimum of diffraction = 300

$$E=hf = \frac{hc}{\lambda}$$

$$\lambda = \frac{hc}{E} = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{300 \times 10^{6} \times 1.6 \times 10^{-19}} = 4.14 \times 10^{-15} \text{ m}$$

$$R = \frac{1.22 \lambda}{2 \sin 0} = \frac{1.22 \times 4.14 \times 10^{-15}}{2 \sin 30^{\circ}} = 5.06 \times 10^{-15} \text{ m}$$

Size of a nucleus: R= Ao A^{1/3} mass number radius of nucleus size of nucleon ≈ 1.4 fm

Radioactive Emissions

Some nudei are unstable

Reasons for instability:

- Too may / too few newsrows
- Too much energy in nucleus
- Abuse during childhood

Releasing stuff to become more stable (e.g. a or & particles)

10NISING RADIATION: radiation can know off e and ionise things L>: radioactive emissions are also known as ionising radiation

-Rate et decay decreases over time

-decay is random
and spoutaneous

4 types of Nucleo	r Radiation	charge	mass
Alpha d	2p and 2n (He nucley)	+ 2	4
Beta minus B	e electron	-1	regligible
Beta plus pt	et position	ψl	negligible
Gamma	λ√, f1, em wave	0	0
d strongly Bt weakly	speed penetration "D" slow absorbed by paper or air fast absorbed by ~3mm of aluminium	affecte	d by magnetic field Yes
β -	——— Annihilation by electron—		
Y very weak	ly c absorbed by many cm of lead or few metres of concrete	?	Nο

Alpha: if particles that emit it are ingested, they ionise the inside of you and causes damage inside

as a friend worse than eating

Beta: can fravel through motres of air and millinutres of skin and tissue causes burns (like severe sunburn)

Who will burn the guy more?

Gamma Rays: Penetrate through body, all tissues damaged

Gamma-inator

5000

Preventing radioactive accidents

Time: Utime, L'exposure

Distance: 1 distance, V exposure

Adistance

INVERSE SQUARE LAW (thing far, thing weak)

Gamma emits in all directions

Shieldin: 1 shielding, Lexposure

 $I = \frac{k}{X^2}$ I = intensity X = distance k = constant A and β follow this but only in a vacuum