

dsPIC en Lenguaje C y sus Aplicaciones

Instructor: Godo Sánchez Heredia
Investigador y Desarrollador en el Área de Sistemas
Embebidos

Universidad Nacional de Ingeniería IEEE Student Branch

A Student Chapter of the IEEE Circuits and Systems Society

INTRODUCCIÓN AL CURSO

Universidad Nacional de Ingeniería IEEE Student Branch

- Presentación del Docente
- Presentación de los Alumnos
- Revision del Syllabus

INTRODUCCION A LA ARQUITECTURA DE 16 BITS DE MICROCHIP

Universidad Nacional de Ingeniería IEEE Student Branch

Introducción a Los Sistemas Embebidos

¿Qué es un sistemas Embebido?

Son sistemas electrónicos de propósito especifico diseñados

para una función especifica

- Funcionalidad
- Consumo
- Costo
- Confiabilidad

A Student Chapter of the IEEE Circuits and Systems Society

Evolucion

Portafolio Microcontroladores de Microchip

A Student Chapter of the IEEE Circuits and Systems Society

¿Qué es el DSPIC?

Es un procesador de señales digitales muy rápido y poderos, capaz de procesar audio y algunos hasta video en tiempo real. Por sus capacidades son perfectos para aplicaciones en las que no vamos a tolerar retrasos.

El dispositivo dsPIC se diseñó con el fin de integrar las características que debe tener un DSP y un Microcontrolador (MCU), de forma que las secciones de los dos trabajan de forma conjunta, compartiendo la carga de instrucciones y la lógica de decodificación.

El poder del dsPIC radica en su interactuación con el entorno mediante el software,

sensores, tarjetas de acondicionamiento, etc.

Arquitectura de 16 bits

Memoria de Programa

Memoria de Datos

A Student Chapter of the IEEE Circuits and Systems Society

Registros de Trabajo

A Student Chapter of the IEEE Circuits and Systems Society

PC, PSV, DO and REPEAT

A Student Chapter of the IEEE Circuits and Systems Society

Arquitectura de 16 bits

A Student Chapter of the IEEE Circuits and Systems Society

Motor DSP

Diez categorías de instrucción

	_	_	_	William Co.

- Matemáticas
- Lógica

1) Mover

- 4) Girar / Cambiar
- 5) Manipulación de bits
- 6) Comparar / Saltar
- 7) Programa / Flujo
- 8) Sombra / Pila
- 9) Control
- 10) DSP

Instruction	Algebraic Operation	ACC Write Back				
CLR	A = 0	Yes				
ED	$A = (x - y)^2$	No				
EDAC	$A = A + (x - y)^2$	No				
MAC	$A = A + (x \bullet y)$	Yes				
MAC	A = A + x2	No				
MOVSAC	No change in A	Yes				
MPY	$A = x \cdot y$	No				
MPY	A = x 2	No				
MPY.N	$A = -x \cdot y$	No				
MSC	$A = A - x \bullet y$	Yes				

$$y[n] = \sum_{k=0}^{N-1} h[k] * x[n-k]$$

- Adder
 - Output feeds accumulators
- Barrel Shifter
 - Operates solo or as part of data path
- Multiplier
 - Two 16-bit numbers from X and Y data buses or WREGS
- Formatting Logic
 - Sign Extension
 - Zero Backfill
 - Rounding
 - Saturation

A Student Chapter of the IEEE Circuits and Systems Society

Pipline

A Student Chapter of the IEEE Circuits and Systems Society

Familias del dsPIC

dsPIC33F Family

Speed (MIPs)	Flash (KB)	RAM (Bytes)	Pins				
16-50	6 - 256	512 16384	18 - 100				
Series:	dsPIC33F Features: DSP, ADC, Timers, UART, SPI, I ² C, PWM						
dsPIC33FJxx GP xxx -	General purpose, some devices with DMA, DAC, and QEI						
dsPIC33FJxx GS xxx -	Optimized for SMPS designs, some devices with QEI and CTMU						
dsPIC33FJxx MC xxx -	Motor control optimized, includes QEI and MCPWM						

sPIC33E Family

Speed (MIPs)	Flash (KB)	RAM (Bytes)	Pins					
70	32 - 512	4096 58304	28 - 144					
Series:	dsPIC33E Features: DSP, DMA, ADC, UART, I ² C, SPI, PWM, IC							
dsPIC33EPxx GP xxx -	General purpose, includes CTMU and CAN							
dsPIC33EPxx GM xxx -	Adds I ² S and a second CAN to the GP series							
dsPIC33EPxx MC xxx -	Motor control, includes	QEI and enhanced PWM						
dsPIC33EPxx GS xxx -	Optimized peripherals for SMPS applications							

dsPIC33CH DUAL-CORE Family

Speed (MIPs)	Flash (KB)	RAM (Bytes)	Pins
100	64 - 512	20K - 40K	28 - 80

dsPIC30F Family

Speed (MIPs)	Flash (KB)	RAM (Bytes)	Pins
30	6 - 144	256 8192	18 - 80
Series: dsPIC30F	Features: DSP, ADC, Time	rs, UART, SPI, I ² C, PWM	
dsPIC30Fxxxx -	EEPROM, CAN and QEI		

A Student Chapter of the IEEE Circuits and Systems Society

MPLAB X IDE

Entorno de desarrollo oficial para desarrollar aplicaciones con microconroladores de Microchip compatible con Windows, Linux y MAC.
Flexibildad de integracion con el Compilaodr de mcu de 16 bits

Función del Compilador XC16

Traducir el lenguaje de alto nivel(Lenguaje C,Basic ,Python etc). a lenguaje emsamblador

Compilador XC16

- Compilador ISO C90 (conocido como ANSI C)
- Soporta a todos los MCU de 16 Bits : PIC24 ,dsPIC33 Y dsPIC30
- Disponible para WIndows ,Linux, Mac OS

Oscilador del Sistema

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- Low-Power RC (LPRC) Oscillator
- FRC Oscillator with postscaler

A Student Chapter of the IEEE Circuits and Systems Society

Oscilador del Sistema

$$T_{osc} = \frac{1}{F_{osc}}$$

$$T_{OSC} = \frac{1}{10MHz} = 0.1 \mu S$$

$$T_{CY} = T_{OSC} x 2 = 0.2 \mu S$$

$$F_{osc} = \frac{F_{CY}}{2}$$

Fosc = Frecuencia del Sistema

Fcy= Frecuencia de ciclo de Instrucción

A Student Chapter of the IEEE Circuits and Systems Society

dsPIC33FJ32MC202

A Student Chapter of the IEEE Circuits and Systems Society

Registros

Registros de 16 bits

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WREG0	0000		Working Register 0														

SFR GPR

Registros de Funcion Especifica Registros de Proposito Generall

GPIO (GENERAL PURSPUSE INPUT OUTPUT)

Universidad Nacional de Ingeniería IEEE Student Branch

A Student Chapter of the IEEE Circuits and Systems Society

Registros Relacionados

TRISX

Define si el pin es E/S

PORTX

Registro de Lectura de un Pin

LATX

Registro de Escritura en un Pin

A Student Chapter of the IEEE Circuits and Systems Society

Registros Relacionados

El Registro de Opend Drain ayuda a tener salidas mayores a VDD

Este registro nos permite configurar los pines Analógicos como Digitales

Este registro nos permite configurar las resisstencias pull-up y activar las notificaciones por cambio de estado

Aplicamos lo Aprendido

IMUCHAS GRACIAS!

Telf: 943874659

Correo:

godo.electronica@gmail.com

