STRATEGIA PIT STOP FORMULA 1

Analisi con la Teoria dei Giochi

Scenario

Safety Car

Attori

Strategie Pirelli

Undercut

01

Scenario

CASO **STUDIO**

Nata nel 1950, la Formula 1 continua a richiamare milioni di appassionati da tutto il mondo.

In ogni gara, curva dopo curva, team e piloti devono affinare le loro strategie con precisione, cercando di massimizzare le prestazioni e puntare al miglior risultato possibile.

Informazioni **GENERALI**

10 Team

308 Km

Silverstone 2016

52 Giri

Lunghezza pista: 5,8Km Distanza totale percorsa: 306Km

Meteo

Cielo nuvoloso con locali aperture Possibilità precipitazioni: 30% Temperature min-max: 14° C – 21° C

02

Attori

TEAM

Mercedes AMG Petronas

Lewis Hamilton

Red Bull Racing

Max Verstappen

03

Undercut

Scenario

Immaginiamo di essere a metà di una gara di Formula 1. I due team rivali devono decidere quale strategia applicare per massimizzare il loro vantaggio nella seconda parte della corsa.

Le Scelte dei Team:

- Strategia 1: Undercut, possibile vantaggio in termini di tempo
- Strategia 2: Pitstop Normale
- Strategia 3: Nessun Pitstop

Le decisioni dei team si influenzano a vicenda: la scelta di una strategia può rivelarsi vincente o perdente a seconda della strategia adottata dal team rivale.

Payoff **Strategie**

Strategia 1

Pit Stop per tentativo Undercut

Strategia 2

Pit Stop normale

Strategia 3

Nessun Pit Stop

Modello sequenziale Team A

Partiamo ad analizzare il gioco sequenziale, dove Mercedes sceglie la prima strategia da adottare.

Modello sequenziale **Team A**

Applicando la Rollback induction, l'equilibrio di Nash si trova quando il team Mercedes tenta l'Undercut e il team Redbull reagisce in ritardo con un Pit Stop.

Modello sequenziale **Team B**

Analizziamo, ora, il gioco facendo scegliere la strategia al team Redbull.

Modello sequenziale **Team B**

Applicando la Rollback induction, l'equilibrio di Nash è lo stesso dell'esempio precedente.

Conclusioni Modello sequenziale

Abbiamo analizzato la strategia di Pit Stop per undercut più opportuna.

- Gioco Sequenziale: I team possono adattare le proprie decisioni strategiche in risposta alle scelte dell'altro team
- **First-Mover Advantage:** team che agisce per primo ottiene un Rollback Equilibrium migliore, influenzando il risultato finale a proprio favore.

Undercut risulta la strategia ottimale, in quanto anticipare la mossa permette di guadagnare secondi.

04

Safety car

Scenario

A metà gara di Formula 1, la safety car è entrata in pista.

Le Scelte dei Team:

- Non Effettuare il Pit Stop
- Effettuare Pit Stop, mescola delle gomme Soft
- ♦ Effettuare Pit Stop, mescola delle gomme Medium
- Effettuare Pit Stop, mescola delle gomme Hard

Le decisioni devono essere prese senza sapere la strategia dell'altro team, creando un gioco strategico simultaneo.

Payoff **Strategie**

Soft

Payoff massimo, Strategia più veloce

Medium

Peggio rispetto ad S1, perché richiede 3 pit stop

Hard

Strategia intermedia

No Pit Stop

Strategia lenta

		Red Bull Team					
		Soft Medium Hard No					
	Soft	3, 3	3, 2	3,1	3, 0		
Merced	Medium	2,3	2, 2	2, 1	2,0		
es AMG	Hard	1, 3	1, 2	1,1	1,0		
	No Pit	0,3	0, 2	0,1	0,0		

Tabella **PAYOFF**

Tramite la Best Response Analysis, troviamo 1 Equilibrio di Nash puro		Red Bull Team				
		Soft	Medium	Hard	No Pit	
	Soft	3,3	3, 2	3, 1	3, 0	
Merced	Medium	2,3	2, 2	2,1	2,0	
es AMG	Hard	1, 3	1, 2	1,1	1,0	
	No Pit	0,3	0, 2	0,1	0,0	

		Red Bull Team					
		Soft	Medium	Hard	No Pit		
	Soft	0,0	3, 2	3,1	3, 0		
Merced	Medium	2,3	0,0	2,1	2,0		
es AMG	Hard	1,3	1, 2	0,0	1,0		
	No Pit	0,3	0, 2	0,1	0,0		

Tramite la Best Response Analysis, troviamo 2 Equilibri di Nash.		Red Bull Team				
		Soft	Medium	Hard	No Pit	
Merced es AMG	Soft	0,0	3, 2	3,1	3,0	
	Medium	2,3	0,0	2,1	2,0	
	Hard	1, 3	1, 2	0,0	1,0	
	No Pit	0,3	0,2	0,1	0,0	

		Red Bull Team					
		Soft	Medium	Hard	No Pit		
	Soft	0,0	3, 2	3,1	3, 0		
Merced	Medium	2,3	0,0	2,1	2,0		
es AMG	Hard	1,3	1, 2	0,0	1,0		
	No Pit	0,3	0, 2	0,1	0,0		

		Red Bull Team				
		Soft	Medium	Hard	No Pit	
	Soft	0,0	3, 2	3,1	3, 0	
Merced	Medium	2,3	0,0	2, 1	2,0	
es AMG	Hard	1, 3	1, 2	0,0	1,0	
	No Pit	0, 3	0, 2	0,1	0,0	

Probabilità Red Bull

- P₁: probabilità per il team Mercedes di attuare la strategia 1
- P₃: probabilità per il team Mercedes di attuare la strategia 2
- P₃: probabilità per il team Mercedes di attuare la strategia 3

$$\frac{0 \cdot P_1}{1} + 3 \cdot P_2 + 3 \cdot P_3$$

$$1 P_1 + 1 P_2 + 0 P_3$$

$$3P_2 + 3P_3 = 2(1 - P_2 - P_3) + 2P_3$$

$$3 P_2 + 3 P_3 = 1 (1 - P_2 - P_3) + P_2$$

$$P_2 = 5/11 = 0.45$$

$$P_3 = -1/11$$
, ELIMINATO

$$P_1 = 1 - 5/11 = 6/11 => 0.55$$

Probabilità Mercedes

- Q₁: probabilità per il team Red Bull di attuare la strategia 1
- Q₂: probabilità per il team Red Bull di attuare la strategia 2
- Q₃: probabilità per il team Red Bull di attuare la strategia 3

$$2 Q_1 + 0 Q_2 + 2 Q_3$$

$$1 Q_1 + 1 Q_2 + 0 Q_3$$

$$3 Q_2 + 3 Q_3 = 2 (1 - Q_2 - Q_3) + 2 Q_3$$

$$3 Q_2 + 3 Q_3 = 1 (1 - Q_2 - Q_3) + Q_2$$

$$Q_2 = 5/11 = 0.45$$

$$Q_3 = -1/11$$
, ELIMINATO

$$Q_1 = 1 - 5/11 = 6/11 => 0.55$$

		Red Bull Team					
		Soft	Medium	На	rd	No	Pit
	Soft	0,0	3, 2	3,	1	3,	0
Merced	Medium	2, 3	0,0	2,	1	2,	0
es AMG	Hard	1,3	1, 2	0,	0	1,	0
	No Pit	0, 3	0, 2	0,	1	0,	0

Calcolo Payoff

Payoff S1 =
$$0 Q_1 + 3 Q_2 \Rightarrow 3Q_2 \Rightarrow 3 (0.55) \Rightarrow \boxed{1.65}$$

Payoff S2 = $2 Q_1 + 0 Q_2 \Rightarrow 2Q_1 \Rightarrow 2 (0.45) \Rightarrow 0.9$

Payoff S1 =
$$0 P_1 + 3 P_2 \Rightarrow 3P_2 \Rightarrow 3 (0.55) \Rightarrow \boxed{1.65}$$

Payoff S2 = $2 P_1 + 0 P_2 \Rightarrow 2P_1 \Rightarrow 2 (0.45) \Rightarrow 0.9$

Conclusioni Modello simultaneo

Abbiamo analizzato la strategia di Pit Stop in presenza di una Safety Car.

- Primo Caso Studio: ad entrambi i team conviene scegliere la strategia Pit Stop con gomma Soft
- Secondo Caso Studio: risolvendo il gioco con mixed strategy, ad entrambi i Team conviene applicare la Strategia 1.

05

Strategie Pirelli

Strategie Pirelli

Soft

Medium

Hard

Durata **Pneumatici**

SOFT

Pirelli dichiara 15 giri

MEDIUM

Pirelli dichiara 28 giri

HARD

Pirelli dichiara 26 giri

Payoff **Strategie**

Strategia 1

Payoff massimo, Strategia più veloce

Strategia 2

Peggio rispetto ad S1, perché richiede 3 pit stop

Strategia 3

Strategia più lenta

		Re	ed Bull Te	eam
		S1	S2	S3
Merce des	S1	0,0	1, -1	3, -3
	S2	-1, 1	0,0	2, -2
AMG	S3	-3, 3	-2, 2	0,0

Tabella **PAYOFF**

M	Tramite il metodo <mark>Min</mark> Max, troviamo 1 Equilibrio di Nash puro		Re	ed Bull To	eam
	jumbrio ai was	sii pui o	S1	S2	S3
	Merce	S1	0,0	1, -1	3, -3
	des AMG	S2	-1, 1	0,0	2, -2
		S3	-3, 3	-2, 2	0,0

Payoff **Team Red Bull**

- **Ps1:** probabilità per il team Mercedes di attuare la strategia 1, **50%**
- Ps2: probabilità per il team Mercedes di attuare la strategia 2, 15%
- **Ps3:** probabilità per il team Mercedes di attuare la strategia 3, **35%**

Payoff S1 =
$$0 P_{s1} + 1P_{s2} + 3P_{s3} \Rightarrow 1P_{s2} + 3P_{s3} \Rightarrow 1 (0.15) + 3 (0.35) \Rightarrow 1.2$$

Payoff S2 = $-1 P_{s1} + 0P_{s2} + 2P_{s3} \Rightarrow -1 P_{s1} + 2P_{s3} \Rightarrow -1 (0.5) + 2 (0.35) \Rightarrow 0.2$
Payoff S3 = $-3 P_{s1} - 2P_{s2} + 0P_{s3} \Rightarrow -3 P_{s1} - 2P_{s2} \Rightarrow -3 (0.5) - 2 (0.15) \Rightarrow -1.8$

Date queste probabilità per il team Mercedes, al team Red Bull conviene attuare la **strategia 1**.

Payoff **Team Mercedes**

- **Qs1:** probabilità per il team Red Bull di attuare la strategia 1, **40%**
- Qs2: probabilità per il team Red Bull di attuare la strategia 2, 20%
- Qs3: probabilità per il team Red Bull di attuare la strategia 3, 40%

Payoff S1 =
$$0 Q_{s1} + 1Q_{s2} + 3Q_{s3} \Rightarrow 1Q_{s2} + 3Q_{s3} \Rightarrow 1 (0.2) + 3 (0.4) \Rightarrow 1.4$$

Payoff S2 = $-1 Q_{s1} + 0Q_{s2} + 2Q_{s3} \Rightarrow -1 Q_{s1} + 2Q_{s3} \Rightarrow -1 (0.4) + 2 (0.4) \Rightarrow 0.4$
Payoff S3 = $-3 Q_{s1} - 2Q_{s2} + 0Q_{s3} \Rightarrow -3 Q_{s1} - 2Q_{s2} \Rightarrow -3 (0.4) - 2 (0.2) \Rightarrow -1.6$

Date queste probabilità per il team Red Bull, al team Mercedes conviene attuare la **strategia 1**.

Conclusioni Mixed Strategy

Abbiamo condotto un'analisi delle strategie disponibili per entrambi i team.

Sulla base delle probabilità calcolate per ciascuna opzione, è emerso che la **strategia 1** offre il maggior vantaggio competitivo.

Risulta, quindi, la scelta ottimale per entrambi i team.

Grazie per l'attenzione

Andrea Grassi, mat. 196608

