CS 6322: Information Retrieval Ashika Prakash Acharya axa190084

HomeWork-3

Program Description

The program implements a simple statistical relevance model based on the vector relevance model, using the term-based index that was built in the last assignment. The vector representations of queries and documents are used to determine scores that inform the ranking of documents against the queries. The scores are obtained by computing the cosine similarity for every query-document vector pair.

FOR each query:

1. Turn in the vector representation of the query (10 points per weighting scheme), and the top 5 documents ranked for the query under both weighting schemes. You are also required to present the vector representations for each of the first 5 ranked documents.

The output is available in the text files

output_w1.txt
output_w2.txt

2. Indicate the rank, score, document identifier, and headline, for each of the top 5 documents for each query.

The output is available in the text files

output_w1.txt
output w2.txt

3. Identify which documents you think are relevant and non-relevant for each query by inspecting the documents.

Query	Top 5 Documents using w1 function	Relevant	Non relevant	Top 5 Documents using w2 function	Relevant	Non relevant
Q1: what similarity laws	0486	0486	0013	0486	0486	0665
must be obeyed when constructing aeroelastic	0013	0012	0665	0665	0013	0573
	0012		0014	0013	0012	
models of heated high	0665			0012		
speed aircraft	0014			0573		
Q2: what are the	0012	0012	0014	0012	0012	0014
structural and aeroelastic problems associated with flight of high speed aircraft.	0014	0746	0781	0051	0051	0875
	0746	0051		0014	0746	
	0051			0746		
	0781			0875		

		1	1	1		
Q3: what problems of	0485	0144	0485	0485	0005	0485
heat conduction in	0144	0005	0091	0005	0144	0399
composite slabs have	0005	0090		0399	0090	
been solved so far	0090			0144		
	0091			0090		
Q4: can a criterion be	1061	1061	0185	0166	0166	0185
developed to show	0166	0166		0488	0488	
empirically the validity	0488	0488		1061	1061	
of flow solutions for	1189	1189		1189	1189	
chemically reacting gas	0185	1103		0185	1109	
mixtures based on the	0183			0185		
simplifying assumption						
of instantaneous local						
chemical equilibrium						
Q5: what chemical kinetic	0103	1032	0103	0103	1032	0103
system is applicable to	1032		0625	0943		0943
hypersonic aerodynamic	0625		1296	1032		0625
problems	1296		0943	0625		1296
	0943			1296		
Q6: what theoretical and	0491	0491		0491	0491	
experimental guides do	0798	0798		0798	0798	
we have as to turbulent	0315	0315		0315	0315	
couette flow behavior	0257	0257		0257	0257	
	0160	0160		0160	0160	
Q7: is it possible to relate	0492	0492	0124	0492	0492	0124
the available pressure	0124	0057	1040	0124	0056	0057
distributions for an ogive	1040	0434	1010	0057	0232	0037
forebody at zero angle	0057	0434		0056	0232	
of attack to the lower	0434			0232		
surface pressures of an	0434			0232		
equivalent ogive						
forebody at angle of						
attack						
08: what methods -dash	0688	0688	0443	0019	0668	0019
					0008	
exact or approximate - dash are presently	0443	0711	0556	0556		0556
available	0556		0476	0688		0753
for predicting body	0476			0753		0433
pressures at angle of	0711			0433		
attack						
Q9: papers on internal	0021	0021	1215	0021	0021	1215
/slip flow/ heat transfer	0022	0022		0306	0306	0045
studies	1215	0306		1215	0022	
	0306	0571		0045		
	0571			0022		
Q10: are real-gas	0493	0493	1009	0493	0493	1143
transport properties for	0302	0302	1143	0302	0302	1264
air available over a wide	0949	0949		1143		0436
range of	1009			1264		
enthalpies and densities	1143			0436		
Odd, is it possible to final		0405	0054		0405	0054
Q11: is it possible to find	0495	0495	0654	0495	0495	0654
an analytical, similar solution of the strong	0025	0025	0556	0025	0025	0472
blast wave problem in	0654	1327		0654	1327	
piast wave problem in	L	1	l	l	L	

	т	1	•	,	•	•
the Newtonian	1327			1327		
approximation	0556			0472		
Q12: how can the	0624	0624	0650	0624	0624	0650
aerodynamic	0966	0966	0941	0966	0966	0506
performance of channel	0650	0704		0650		1232
flow ground effect	0704			1232		
machines be calculated	0941			0506		
013: what is the basic	0496	0496	0903	0496	0496	0903
mechanism of the	0903		0520	0903		0520
transonic aileron buzz	0520		0643	0520		0643
	0643		0199	0643		0199
	0199		0133	0199		0133
Q14: papers on shock-	0798	0798	0345	0170	0170	0256
sound wave interaction	0170	0170	0256	0798	0798	0230
Sound wave interaction	0345	0439	0236	0439	0/98	
		0439				
	0439			0256	1364	
	0256	0.460	4025	1364	0.463	4025
Q15: material properties	0462	0462	1025	0462	0462	1025
of photoelastic materials	1025	0463	0082	0463	0463	1099
	0463		1043	1025		1340
	0082			1099		
	1043			1340		
Q16: can the transverse	0498	0498	0869	0498	0498	0869
potential flow about a	0869	0106	0093	0869		0093
body of revolution be	0093		1280	0093		1286
calculated efficiently by	0106			1286		1280
an electronic computer	1280			1280		
Q17: can the three-	1108	1108	1281	0106	0106	1281
dimensional problem of	0106	0106	0498	1108	1108	0498
a transverse potential	1281	0916		0916	0916	
flow about	0916			1281		
a body of revolution be	0498			0498		
reduced to a two-	0.50			0.50		
dimensional problem						
Q18: are experimental	0248	0197	0248	0197	0197	0498
pressure distributions on	0197	0124	0234	0498	0124	0248
bodies of revolution at	0234		0498	0124		0234
angle of attack available	0498			0248		
	0124			0234		
Q19: does there exist a	0082	0082	0706	0082	0082	0706
good basic treatment of	0706	0713	1279	0706		1279
the dynamics of re-entry	0237		0237	0237		0237
combining consideration	1279			1279		0831
of realistic effects with	0713			0831		
relative simplicity of						
results	0500	0500	0270	0500	0500	0270
Q20: has anyone formally determined the	0500 0270	0500	0270	0500	0500	0270
influence of joule			0450	0270		0458
heating, produced by	0450		0087	0458		0087
the induced current, in	0087		0458	0087		0450
magnetohydrodynamic	0458			0450		
free convection flows						
under general conditions	l	I	1	1		1

4. Describe why the top-ranked non-relevant document for each query did not get a lower score.

The non-relevant documents got a high score because they contained few terms of the query which had relatively more weight. And as these terms had minor importance in the relevance of the matching but due to their high frequency in document, the document got higher score. This is the reason why they received higher weight and they were irrelevant.

5. Briefly discuss the different affects you notice with the two weighting schemes, either on a query-byquery basis or overall, whichever is most illuminating. For example, you can point out that the weighting scheme seems to be working for this query as well as a list of other queries, but not for some other queries you have noticed. Try to explain why it works and why it does not work.

As per the problem statement, the two weighting schemes differ in a way that W1(MAX_TF) uses Maximum Term Frequency and W2(Okapi) weighing scheme uses average document Length and Document Length.

<u>W1 weighting scheme</u>: This is based on the term frequency. So, the weights and score are dependent on the frequency of occurrence of the term. The schema will ensure that if a document contains the tokens of the query, it is given a higher score. The problem with this is that it doesn't see the actual meaning or semantic meaning of the word in document or in query. So, if the word matches it gives in the result even though it is irrelevant.

<u>W2 weighting scheme</u>: This is based on the length of a document. The term frequency is normalized by the document length. As a result of this, long documents which do match the query term can often be scored unfairly. Similar to W1, this schema also doesn't take into account the actual or semantic meaning of the word in query or document

6. Describe the design decisions you made in building your ranking system.

Design and Algorithm

The code is in written in Python and does the following task in the mentioned order.

- The code reads the Index file that was created in Homework2 'Index_Version1_uncompress.txt' and stores them in memory as {lemma_index}.
- hw3.queries file is read and stored in memory as [queries].
- The code repeats the following section twice for each weight computation formula.
 - o Each query is parsed into tokens and then lemmatized.
 - get_document_rankings() uses the vector representation of the queries and documents to determine scores that inform the ranking of documents against the queries. The scores are obtained by computing the cosine similarity for every query-document vector pair.

```
CosineScore(q)

1 float Scores[N] = 0

2 Initialize Length[N]

3 for each query term t

4 do calculate w<sub>t,q</sub> and fetch postings list for t

5 for each pair(d, tf<sub>t,d</sub>) in postings list

6 do Scores[d] += wf<sub>t,d</sub> × w<sub>t,q</sub>

7 Read the array Length[d]

8 for each d

9 do Scores[d] = Scores[d]/Length[d]

10 return Top K components of Scores[]
```

 get_top5() sorts the {scores} in descending order of the ranking and returns top 5 documents for the query.

The figure above shows the algorithm for computing cosine score for query-document pair.