Summer School in Quantitative Fisheries Stock Assessment

Day 4: An introduction to Statistical Catch-at-Age models

Cóilín Minto, Chato Osio, Alessandro Orio, Alessandro Ligas

July 20, 2017

Outline

Goal

Build a fully statistical model to estimate the parameters of the stock assessment

Cohort

Cohort progression

Cohort

Cohort progression

Cohort

Cohort progression

$$N_{a+1,t+1} = N_{a,t}e^{-(F_{a,t}+M_{a,t})}$$

Starting a cohort

But how do we start them?

	$Age\longrightarrow$					
$N_{a1,t1}$	$N_{a2,t1}$	$N_{a3,t1}$	$N_{a4,t1}$	$N_{a5,t1}$		
$N_{a1,t2}$	$N_{a2,t2}$	$N_{a3,t2}$	$N_{a4,t2}$	$N_{a5,t2}$		
$N_{a1,t3}$	$N_{a2,t3}$	$N_{a3,t3}$	$N_{a4,t3}$	$N_{a5,t3}$		
$N_{a1,t4}$	$N_{a2,t4}$	$N_{a3,t4}$	$N_{a4,t4}$	$N_{a5,t4}$		
$N_{a1,t5}$	$N_{a2,t5}$	$N_{a3,t5}$	$N_{a4,t5}$	$N_{a5,t5}$		
	$N_{a1,t2}$ $N_{a1,t3}$ $N_{a1,t4}$	N _{a1,t2} N _{a2,t2} N _{a1,t3} N _{a2,t3} N _{a1,t4} N _{a2,t4}	N _{a1,t1} N _{a2,t1} N _{a3,t1} N _{a1,t2} N _{a2,t2} N _{a3,t2} N _{a1,t3} N _{a2,t3} N _{a3,t3} N _{a1,t4} N _{a2,t4} N _{a3,t4}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Year one

We also need to start all ages in the first year

	$Age\longrightarrow$					
	$N_{a1,t1}$	$N_{a2,t1}$	$N_{a3,t1}$	$N_{a4,t1}$	$N_{a5,t1}$	
Time —→	$N_{a1,t2}$	$N_{a2,t2}$	$N_{a3,t2}$	$N_{a4,t2}$	$N_{a5,t2}$	
	$N_{a1,t3}$	$N_{a2,t3}$	$N_{a3,t3}$	$N_{a4,t3}$	$N_{a5,t3}$	
	$N_{a1,t4}$	$N_{a2,t4}$	$N_{a3,t4}$	$N_{a4,t4}$	$N_{a5,t4}$	
	$N_{a1,t5}$	$N_{a2,t5}$	$N_{a3,t5}$	$N_{a4,t5}$	$N_{a5,t5}$	

Year one

We also need to start all ages in the first year

	$Age \longrightarrow$						
4	$N_{a1,t1}$	N _{a2,t1}	$N_{a3,t1}$	$N_{a4,t1}$	$N_{a5,t1}$		
Time →	$N_{a1,t2}$	$N_{a2,t2}$	$N_{a3,t2}$	$N_{a4,t2}$	$N_{a5,t2}$		
	$N_{a1,t3}$	$N_{a2,t3}$	$N_{a3,t3}$	$N_{a4,t3}$	$N_{a5,t3}$		
	$N_{a1,t4}$	$N_{a2,t4}$	$N_{a3,t4}$	$N_{a4,t4}$	$N_{a5,t4}$		
	$N_{a1,t5}$	$N_{a2,t5}$	$N_{a3,t5}$	$N_{a4,t5}$	$N_{a5,t5}$		

That's a lot of parameters!

Need to conserve degrees of freedom in the model but also need the **F** matrix. One approach is a separable model

$$\mathbf{F} = \begin{pmatrix} s_{a1} & s_{a2} & s_{a3} & s_{a4} & s_{a5} \\ s_{a1} & s_{a2} & s_{a3} & s_{a4} & s_{a5} \\ s_{a1} & s_{a2} & s_{a3} & s_{a4} & s_{a5} \\ s_{a1} & s_{a2} & s_{a3} & s_{a4} & s_{a5} \\ s_{a1} & s_{a2} & s_{a3} & s_{a4} & s_{a5} \\ s_{a1} & s_{a2} & s_{a3} & s_{a4} & s_{a5} \end{pmatrix} \times \begin{pmatrix} f_{t1} & f_{t1} & f_{t1} & f_{t1} & f_{t1} \\ f_{t2} & f_{t2} & f_{t2} & f_{t2} & f_{t2} \\ f_{t3} & f_{t3} & f_{t3} & f_{t3} & f_{t3} \\ f_{t4} & f_{t4} & f_{t4} & f_{t4} & f_{t4} \\ f_{t5} & f_{t5} & f_{t5} & f_{t5} & f_{t5} \end{pmatrix}$$

Need to conserve degrees of freedom in the model but also need the **F** matrix. One approach is a separable model

$$\mathbf{F} = \begin{pmatrix} s_{a1}f_{t1} & s_{a2}f_{t1} & s_{a3}f_{t1} & s_{a4}f_{t1} & s_{a5}f_{t1} \\ s_{a1}f_{t2} & s_{a2}f_{t2} & s_{a3}f_{t2} & s_{a4}f_{t2} & s_{a5}f_{t2} \\ s_{a1}f_{t3} & s_{a2}f_{t3} & s_{a3}f_{t3} & s_{a4}f_{t3} & s_{a5}f_{t3} \\ s_{a1}f_{t4} & s_{a2}f_{t4} & s_{a3}f_{t4} & s_{a4}f_{t4} & s_{a5}f_{t4} \\ s_{a1}f_{t5} & s_{a2}f_{t5} & s_{a3}f_{t5} & s_{a4}f_{t5} & s_{a5}f_{t5} \end{pmatrix}$$

Separable model

So the parameters we have in the model are:

- $N_{1,t=1...T}$ number of recruits
- $N_{a=2...A,t=1}$ numbers in first year
- $s_{a=1...A}$ exploitation pattern (age effects)
- $f_{t=1...T}$ fishing mortality level (year effects)

Predictions

From this set of parameters we can predict $\boldsymbol{\hat{F}}$ and $\boldsymbol{\hat{N}}$ from which we can predict catch

$$\hat{C}_{a,t} = \frac{\hat{F}_{a,t}}{\hat{F}_{a,t} + M_{a,t}} \left(1 - e^{-(\hat{F}_{a,t} + M_{a,t})} \right) \hat{N}_{a,t}$$

Or, with the addition of catchability, predict a survey index

$$\hat{I}_{a,t} = q_{a,t} \hat{N}_{a,t}$$

Estimation

We observe $C_{a,t}$, $I_{a,t}$ so in principle we can estimate the parameters by maximising the likelihood of the parameters given the data

$$L(\mathbf{N}_{a=1}, \mathbf{N}_{t=1}, \mathbf{s}, \mathbf{f}, \mathbf{q}, \sigma | \mathbf{C}, \mathbf{I}) = \prod_{a=1}^{A} \prod_{t=1}^{I} (N(\ln(I_{a,t}) - \ln(\hat{I}_{a,t}), \sigma_i^2) \times N(\ln(C_{a,t}) - \ln(\hat{C}_{a,t}), \sigma_c^2))$$

We maximise the (log) likelihood to estimate the best fitting parameters of the model given the data!

