Tarea3

ocorrales

April 2023

 $\mathrm{Si}\theta:G\to H$ es un homomorfismo :

$$Kernel(\theta) = \{x \in G : \theta x = 1\}$$

$$Img(\theta) = \{y \in H : \theta x = y\}$$

1 Kernel(θ)

1.1 Cerrada

Sea a,b en Kernel(θ), es decir:

$$\theta(a) = \theta(b) = 1$$

Entonces $\theta(ab) = \theta(a)\theta(b) = 1 * 1 = 1$ por lo que ab también esta en Kernel (θ) , lo que quiere decir que Kernel (θ) es cerrado bajo la operación del grupo G.

1.2 Inversa

Si a esta en Kernel (θ) , entonces tTheta(a) = 1, por lo que, $\theta(a^{-1}) = (\theta(a))^{-1} = 1^{-1} = 1$. Esto quiere decir que el inverso de a también esta en Kernel (θ) , y Kernel (θ) es cerrado bajo inversos.

1.3 Elemento neutro

El elemento neutro del grupo G, denotado como 1G, está en Kernel(θ) porque $(\theta)(1G) = 1H$ (ya que es un homomorfismo), y por lo tanto kernel(θ) contiene el elemento neutro.

$2 \quad Img(\theta)$

2.1 Cerrada

Sea c,d en $\mathrm{Img}(\theta)$ es decir, existen a,b en G tales que $\theta(a)=c$ y $\theta(b)=d.$ Entonces :

 $\theta(ab^{-1}) = \theta(a)\theta(b^{-1}) = c\theta(b)^{-1} = cd^{-1}$. esto quiere decir que ab^{-1} también esta en G y $\theta(ab^{-1})$ está en Img (θ) , lo que implica que Img (θ) es cerrado bajo la operación del grupo H.

2.2 Inversa

Si c está en $\operatorname{Img}(\theta)$, entonces existe a en G tal que $\theta(a) = c$. Como θ es un homomorfismo, $\theta(a^{-1}) = (\theta(a))^{-1} = c^{-1}$. Por lo tanto el inverso de c también esta en $\operatorname{Img}(\theta)$.

2.3 Neutro

El elemento neutro del grupo H, denotado como 1H, esta en $\operatorname{Img}(\theta)$ porque $\theta(1G)=1H$ esto debido a que es un homomorfismo, y por lo tanto $\operatorname{Img}(\theta)$ contiene elemento neutro.

Entonces, $\mathrm{Img}(\theta)$ cumple todas las condiciones de un subgrupo y por lo tanto es un subgrupo de H.