Building Recommendation Systems in Python

PyData Geneva

Vladimir Ilievski 5 April 2023

Outline

- RecSys Examples
- Intro to RecSys
- Collaborative Filtering
- Demo using RecBole

Intro to RecSys

Recommendations Everywhere

Recommendations Everywhere

Recommend Item I to the user U

The item could be anything:

- News
- Movies
- Videos
- Tweets
- Books
- ..

Let's see some examples

Recommendations **Everywhere**

Some Examples

In E-commerce

Recommendations Everywhere

Some Examples

Content Sharing

Recommendations Everywhere

Some Examples

Social Media

What is a Recommendation System?

- Recommend the best possible set of items to a given user
- Based on the history of **interactions** of the users with the items
- We have 3 main sets:
 - U: set of all **users** uniquely identified with and ID
 - I: set of all items uniquely identified with and ID
 - R = U x I: matrix of user-item interactions

Type of Recommendation Systems

In general there are 3 types:

- **Content-based**: based upon the user and item descriptions or features
- **Collaborative filtering**: based upon the interaction of the users with the items
- **Hybrid**: combination of both

Collaborative Filtering

Learn from users preferences

Interaction Matrix

- Users in rows
- Items in columns
- Matrix elements as interaction records
- e.g. users rating movies

How can we learn to make recommendations?

Matrix Factorization

- Decomposing the interaction matrix as a product of:
 - User embeddings
 - Item embedding
- We have to find i.e. to learn those embeddings
- The estimated ranking is then:

How to learn the embeddings?

- Predicting the "missing" values
- We are intentionally hiding some values from the interaction matrix
- Then the model should learn to predict those values

How to learn the embeddings?

The simplest way is to minimize the squared difference between the true ratings and the estimated tanking:

$$minimize \sum_{i,j} (r_{ij} - q_i p_j)^2$$

a.k.a. the Funk algorithm

Many other models

Based on the same principle

- Singular Value Decomposition
- Alternating Least Squares
- Bayesian Personalized Ranking (BPR)
- Neural Collaborative Filtering (NCF)
- Restricted Boltzmann Machines (RBMs)
- GRU4Rec
- Wide and Deep
- And many more ...

How to evaluate the recommendations?

Metrics

Scoring Metrics

- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- Area under the ROC curve (AUC)

Ranking Metrics

- Hit Rate
- Recall@K, Precision@k
- Mean Reciprocal Rank (MRR)
- Mean Average Precision (MAE)
- Discounted Cumulative Gain (DCG)

RecSys in Python

Numerous Open Source Libraries

- TorchRec
- RecPack
- RecBole
- <u>Implicit</u>
- Microsoft Recommenders
- Vowpal Wabbit Recommenders
- <u>Cornac</u>
- <u>Surprise</u>
- And many more ...

RecBole

Building Movie Recommender

- It implements around <u>100 recommendation</u> out-of-the-box models
- Divided in 4 categories:
 - General recommendation
 - Sequential recommendation
 - Context-aware recommendation
 - Knowledge-base recommendation
- It is very easy to use

Movie Recommender using RecBole

- Everything via the YAML configuration:
 - Select model
 - Select data
 - Select evaluation metrics and strategy

RecBole Architecture


```
## General
nproc: 1
## Model confia
embedding_size: 64
## Dataset config : General Recommendation
USER ID FIELD: user id
ITEM_ID_FIELD: item_id
load col:
    inter: [user_id, item_id]
epochs: 500
train batch size: 512
eval_batch_size: 512
## Evaluation
metrics: ['Recall', 'MRR', 'NDCG', 'Hit', 'Precision']
topk: 10
eval_step: 2
valid_metric: MRR@10
```

Movie Recommender using RecBole

- Train a simple RecSys using the <u>NeuMF</u> model
- Using the MovieLens 100K toy dataset
 - Useful list of RecSys Datasets
- Data format: three <u>Atomic Files</u> with the following extensions
 - .user: data about the users
 - o .item: data about the item
 - inter: interaction between users and items

Movie Recommender using RecBole

Integrated TensorBoard logs:

Thank You for your attention!

Contact

Vladimir Ilievski

E-Mail: ilievski.vladimir@live.com

LinkedIn: https://www.linkedin.com/in/vilievski/