Page 1 of 51

TEST REPORT

For Ubang Industry (HK) Limited

Bluetooth Speaker Model No.: YB-801, YB-802, YB-803 YB-804, YB-805, YB-806

Test Report Number: ESTSZ140801213F

Shenzhen Exact Standard Testing Technology Co., Ltd. No. 403, Building 7, Xinyuan Industrial Park, Xinguang Road, Xili, Nanshan District, Shenzhen 518055, China

Tel:+86-755-26648640 Fax:+86-755-26648637

TABLE OF CONTENTS

1 - GENERAL INFORMATION	4
1.1 Product Description for Equipment Under Test (EUT)	
1.2 Test Standards	
1.3 SUMMARY OF TEST RESULT	5
1.4 Test Methodology	6
1.5 Test Facility	
1.6 Test Equipment List and Details	7
2 TEST CONFIGURATION	8
2.1 JUSTIFICATION	8
2.2 EUT Exercise Software	8
2.3 Special Accessories	8
2.4 EQUIPMENT MODIFICATIONS	8
2.5 Basic Test Setup Block Diagram	8
2.6 Pre-Scanned RF Power	11
2.7 Test mode	11
3 - DISTURBANCE VOLTAGE AT THE MAINS TERMINALS	12
3.1 Measurement Uncertainty	12
3.2 LIMIT OF DISTURBANCE VOLTAGE AT THE MAINS TERMINALS (FCC PART 15.207)	
3.3 EUT Setup	
3.4 Instrument Setup	
3.5 Test Procedure	
3.6 Test Situation	
3.7 Test Result	13
4 RADIATED DISTURBANCES	16
4.1 MEASUREMENT UNCERTAINTY	
4.2 LIMIT OF RADIATED DISTURBANCES (FCC PART 15.209)	
4.3 EUT Setup	
4.4 Test Receiver Setup	
4.5 Test Procedure	
4.6 RADIATED EMISSIONS TEST RESULT	
4.7 Test Result	
5 - FCC PART 15.247 REQUIREMENTS	
5.1 Output Power Requirements	
5.2 6dB & 99% Bandwidth Requirements	
5.3 CONDUCTED BAND EDGES AND SPURIOUS EMISSION REQUIREMENTS	
5.4 PEAK POWER SPECTRAL DENSITY REQUIREMENTS	
5.5 RADIATED BAND EDGES AND SPURIOUS EMISSION REQUIREMENTS	
5.6 Antenna Requirements	
APPENDIX A - EUT PHOTOGRAPHS	
EUT - FRONT VIEW	
EUT - Back View	
EUT - Inside View	
EUT - Inside view	
EUT - Inside view	
EUT - Inside view	
EUT - Inside view	
EUT - INSIDE VIEW	
EUT - INSIDE VIEW	
EUT – Bluetooth Antenna View (in the red block)	
EUT – NFC Antenna View (Between two red block)	
APPENDIX B. TEST SETUP PHOTOGRAPHS	50

FCC ID: 2ADBS-YB801

CONDUCTED EMISSION	50
RADIATED EMISSION (BELOW 30MHz)	
RADIATED EMISSION (BETWEEN 30MHz to 1000MHz)	
RADIATED EMISSION (ABOVE 1GHz)	

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Ubang Industry (HK) Limited

Address of applicant: RM 20A KIU FU COMM BLDG 300 LOCKHART RD WAN CHAI,

HONGKONG

Manufacturer: Ubang Industry (HK) Limited

Address of manufacturer: RM 20A KIU FU COMM BLDG 300 LOCKHART RD WAN CHAI,

HONGKONG

General Description of E.U.T

EUT Description: Bluetooth Speaker Trade Name: Ubang Industry

Model No.: YB-801, YB-802, YB-803, YB-804, YB-805, YB-806

Test Model No.: YB-801

The models of EUT are identical except appearance of equipment. Unless otherwise specified, all tests were performed on model **YB-801** to represent the

other similar models.

Rating: DC 3.7V or DC 5V via Adapter Test Power Supply: DC 3.7V or AC 120V, 60Hz

Frequency: 2402~2480 MHz (40 channels, See the table 1)

1.2 Test Standards

The following Declaration of Conformity report of EUT is prepared in accordance with

FCC Rules and Regulations Part 15 Subpart C 15.207, 15.209 and 15.247: 2012

The objective of the manufacturer is to demonstrate compliance with the described above standards. Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of Shenzhen Exact Standard Testing Technology Co., Ltd.

Date of Test:	Sept. 18~30, 2014
Prepared by :	yoyo Deng
	(Engineer: Yoyo Deng)
Reviewer:	A A S S S S S S S S S S S S S S S S S S
	(Project Manager: Charles Liu)
Approved & Authorized Signer:	Ari hi
	(Manager: Ronnie Liu)

Table1

Channel List							
Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)		
00	2402	14	2430	28	2458		
01	2404	15	2432	29	2460		
02	2406	16	2434	30	2462		
03	2408	17	2436	31	2464		
04	2410	18	2438	32	2466		
05	2412	19	2440	33	2468		
06	2414	20	2442	34	2470		
07	2416	21	2444	35	2472		
08	2418	22	2446	36	2474		
09	2420	23	2448	37	2476		
10	2422	24	2450	38	2478		
11	2424	25	2452	39	2480		
12	2426	26	2454				
13	2428	27	2456				

1.3 Summary Of Test Result

FCC Part 15 Subpart C	RSS-GEN, RSS-210	Test Items	Result	
Section 15.207	RSS-210	Conduction Emission	Pass	
Section 15.207	GEN 7.2.2	Conduction Emission	1 033	
Spotion 15 247/b)(1)	RSS-210	Pook Output Power	Pass	
Section 15.247(b)(1)	A8.1 (b)	Peak Output Power	rass	
Section 15 247(a)(2)	RSS-210	6dB Bandwidth	Door	
Section 15.247(a)(2)	A8.2 (a)	odb Baridwidtri	Pass	
	RSS-GEN	99% Bandwidth	Pass	
	4.6.1	99% Bandwidth	rass	
Section 15 247(d)	RSS-210	Conducted Band Edges and Spurious Emission	Pass	
Section 15.247(d)	A8.5	Conducted Band Edges and Spurious Emission	Pass	
Section 15.247(e)	RSS-210	Peak Power Spectral Density	Page	
Section 15.247(e)	A8.2 (b)	reak rower Spectral Density	Pass	
Section 15.209	RSS-210	Padiated Band Edges and Spurious Emission	Pass	
Section 15.247(d)	A8.5	Radiated Band Edges and Spurious Emission	Fa55	
Section 15.203	RSS-210	Antonno roquiroment	Door	
Section 15.247(b)	A8.4	Antenna requirement	Pass	
Continu 1 1207	RSS-GEN	Maximum Darmissible Evaceure	Pass	
Section 1.1307	5.6	Maximum Permissible Exposure		

1.4 Test Methodology

The tests were performed according to following standards:

FCC Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.4-2009

ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices.

KDB Publication No. 558074 Guidance on Measurements for Digital Transmission Systems

IC RSS-GEN Issue 3 IC RSS-210 Issue 8

NOTICE 2012-DRS0126

The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

The maximum emission levels emanating from the device are compared to the FCC Part 15 Subpart C limits for radiation emissions and the measurement results contained in this test report show that EUT is to be technically compliant with FCC requirements.

Global United Technology Service Co., Ltd at 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

1.5 Test Facility

All measurement required was performed at laboratory of Global United Technology Service Co., Ltd at 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 600491

Global United Technology Service Co., Ltd has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 600491.

The 3m Semi-anechoic chamber of Global United Technology Service Co., Ltd EMC Laboratory has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A.

The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

1.6 Test Equipment List and Details

Equipment	Manufacturer	Model#	Serial #	Data of Cal.	Due Data
3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS201	Mar. 30 2014	Mar. 30 2015
Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS202	N/A	N/A
Spectrum Analyzer	Agilent	E4440A	GTS533	Dec. 06, 2013	Dec. 05, 2014
EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Mar. 30 2014	Mar. 30 2015
EMI Test Software	AUDIX	E3	N/A	N/A	N/A
Coaxial Cable	GTS	N/A	GTS400	Apr. 01 2014	Apr. 01 2015
Coaxial Cable	GTS	N/A	GTS401	Apr. 01 2014	Apr. 01 2015
Coaxial Cable	GTS	N/A	GTS402	Apr. 01 2014	Apr. 01 2015
Coaxial Cable	GTS	N/A	GTS407	Apr. 01 2014	Apr. 01 2015
Coaxial Cable	GTS	N/A	GTS408	Apr. 01 2014	Apr. 01 2015
BiConiLog Antenna (26- 3000MHz)	SCHWARZBECK MESS- ELEKTRONIK	VULB9163	GTS204	Feb. 26 2014	Feb. 26 2015
Pre-amplifier(0.1- 3000MHz)	HP	8347A	GTS210	Aug. 03 2014	Aug. 03 2015
Double-ridged horn (1-18GHz)	SCHWARZBECK MESS- ELEKTRONIK	9120D-829	GTS205	Feb. 26 2014	Feb. 26 2015
Pre-amplifier(1- 18GHz)	Rohde & Schwarz	8349B	GTS224	Mar. 30 2014	Mar. 30 2015
Humidity/ Temperature Indicator	Shanghai	ZJ1-2B	GTS250	Oct. 28 2013	Oct. 28 2014
Barometer	ChangChun	DYM3	GTS251	Feb. 26 2014	Feb. 26 2015
Shielding Room	ZhongYu Electron	7.0(L)*3.0(W)*3.0(H)	GTS206	Apr. 10 2014	Apr. 10 2015
EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS208	Sept. 14 2014	Sept. 14 2015
10dB Pulse Limiter	Rohde & Schwarz	N/A	GTS209	Sept. 14 2014	Sept. 14 2015
LISN SCHWARZBECK MESS- ELEKTRONIK		NSLK 8127	GTS207	Apr. 14 2014	Apr. 14 2015
Coaxial Cable	GTS	N/A	GTS406	Apr. 01 2014	Apr. 01 2015
Loop Antenna	ETS-Lindgren	6502 00082431		Apr. 14 2014	Apr. 14 2015
Double-ridged SCHWARZBECK MESS-26.5GHz) ELEKTRONIK		BBHA-9170	GTS211	Apr. 01 2014	Apr. 01 2015

2 TEST CONFIGURATION

2.1 Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

2.2 EUT Exercise Software

The EUT exercising program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software offered by manufacture, can let the EUT being normal operation.

2.3 Special Accessories

As shown in section 2.5, interface cable used for compliance testing is shielded as normally supplied by **Ubang Industry (HK) Limited** and its respective support equipment manufacturers.

2.4 Equipment Modifications

The EUT tested was not modified by EST.

2.5 Basic Test Setup Block Diagram

2.5.1 Setup on the tabletop

Adapter:	Model: NBT-0500500EU
1	Input: AC 100-240V, 50/60Hz

2.5.1.1 For Conducted

2.5.1.2 For Radiated

2.5.2 Conducted emission Setup

2.5.3 Radiated Emission Setup Frequency Below 30MHz

Frequency From 30MHz-1GHz

Frequency Above 1GHz

2.6 Pre-Scanned RF Power

Preliminary tests were performed in different data rate as following table and the highest power data rates were chosen for full test in the following tables.

		Bluetooth 4.0 – LE RF Output Power			
Channel	Frequency Data Rate / Modulation				
		1 Mbps / GFSK			
00	2402 MHz	-3.81 dBm			
20	2442 MHz	-2.45 dBm			
39	2480 MHz	-2.10 dBm			

Note: The EUT has been associated with peripherals pursuant to ANSI C63.4-2009 and ANSI C63.10-2009 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: Conduction (150 kHz to 30 MHz), Radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). X, Y, Z in three orthogonal panels to determine the final configuration (X plane as worst plane) from all possible combinations.

2.7 Test mode

Summary Table Of Test Cases				
T4 I4	Data Rate / Modulation			
Test Item	1 Mbps / GFSK			
AC Conducted Emission	Operating + Charging mode			
Radiated Emission	Tx mode (Low, Middle, High Channel)			
	Bluetooth Tx C00_2402MHz_1Mbps			
Conducted TCs	Bluetooth Tx C20_2442MHz_1Mbps			
	Bluetooth Tx C39_2480MHz_1Mbps			
	Bluetooth Tx C00_2402MHz_1Mbps			
Radiated TCs	Bluetooth Tx C20_2442MHz_1Mbps			
	Bluetooth Tx C39_2480MHz_1Mbps			

3 - DISTURBANCE VOLTAGE AT THE MAINS TERMINALS

3.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement is ±2.4 dB.

3.2 Limit of Disturbance Voltage at The Mains Terminals (FCC PART 15.207)

Frequency Range (MHz)	Limits (dBuV)			
Trequency range (wiriz)	Quasi-Peak	Average		
0.150~0.500	66~56	56~46		
0.500~5.000	56	46		
5.000~30.00	60	50		

Note: (1)The tighter limit shall apply at the edge between two frequency bands.

(2) Decreases with the logarithm of the frequency.

3.3 EUT Setup

The setup of EUT is according with ANSI C63.4-2009 measurement procedure. The specification used was the FCC Rules and Regulations Part 15.207 limits.

The EUT was placed center and the back edge of the test table.

The spacing between the peripherals was 10 cm.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

3.4 Instrument Setup

The test receiver was set with the following configurations:

Test Receiver Setting:

Detector......Peak & Quasi-Peak & Average

Sweep Speed.....Auto
IF Band Width......9 KHz

3.5 Test Procedure

During the conducted emission test, the EUT power cord was connected to the auxiliary outlet of the first Artificial Mains.

Maximizing procedure was performed on the highest emissions to ensure EUT compliance using all installation combination.

All data was recorded in the peak detection mode. Quasi-peak and Average readings were only performed when an emission was found to be marginal (within -10 dB μ V of specification limits). Quasi-peak readings are distinguished with a "**QP**". Average readings are distinguished with a "**AV**".

3.6 Test Situation

Temperature (°C)	22
Humidity (%RH)	58
Barometric Pressure (mbar)	1001
EUT	Bluetooth Speaker
M/N	YB-801
Operating Mode	Operating + Charging mode

Remark: (1) When PK reading is less than relevant limit 20dB, the QP reading and AV reading will not be recorded.

- (2) Where QP reading is less than relevant AV limit, the AV reading will not be measured (3) When AV reading is less than relevant limit 20dB, the AV reading will not be recorded.

3.7 Test Result

Pass

Details see the following pages.

Condition : FCC PART15 QP LISN-2013 LINE EUT : Bluetooth Speaker Model : YB-801 Test Mode : Operating + Charging mode Power Rating : AC 120V/60Hz Test Engineer: David

ıesı	Engineer.	Read	LISN	Cable		Limit	0	
	F						Over	Remark
	rreq	Level	ractor	Loss	Level	Line	Limit	Kemark
	MHz	-dBuV	<u>dB</u>	dB	dBuV	dBuV	dB	
	IIIIZ	abuv.	ш	CLD	abay	aba v	ш	
1	0.190	49.72	0.14	0.13	49.99	64.02	-14.03	QP
2	0.195	29.31	0.14	0.13	29.58	53.80	-24.22	Average
2 3	0.237	48.38	0.12	0.12	48.62	62.22	-13.60	QP
4	0.244	28.78	0.12	0.11	29.01	51.95	-22.94	Average
4 5	0.286	44.45	0.11	0.10	44.66	60.63	-15.97	QP -
6	0.291	25.81	0.11	0.10	26.02	50.50	-24.48	Average
7	0.336	24.86	0.11	0.10	25.07	49.31	-24.24	Average
8	1.426	19.44	0.12	0.13	19.69	46.00	-26.31	Average
9	1.503	34.73	0.12	0.14	34.99	56.00	-21.01	QP
10	2.622	42.55	0.14	0.15	42.84	56.00	-13.16	QP
11	2.650	26.07	0.14	0.15	26.36	46.00	-19.64	Average
12	3.565	34.49	0.19	0.15	34.83	56.00	-21.17	QP -

Condition : FCC PART15 QP LISN-2013 NEUTRAL EUT : Bluetooth Speaker Model : YB-801 Test Mode : Operating + Charging mode Power Rating : AC 120V/60Hz Test Engineer: David

ıesı	Engineer.	Read	LISN	Cable		Limit	0	
	F	Level				Line	Over	Remark
	rreq	Level	ractor	Loss	Level	Line	Limit	Kemark
	MHz	-dBuV	<u>dB</u>	dB	dBuV	dBuV	dB	
	IIIIZ	abuv.	ш	CLD	abay	aba v	ш	
1	0.183	47.97	0.07	0.13	48.17	64.33	-16.16	QP
2	0.189	26.40	0.07	0.13	26.60	54.06	-27.46	Average
2 3	0.227	25.35	0.06	0.12	25.53	52.57	-27.04	Average
4	0.229	45.00	0.06	0.12	45.18	62.48	-17.30	QP
4 5	0.274	42.90	0.06	0.10	43.06	60.98	-17.92	QP
6	0.274	21.90	0.06	0.10	22.06	50.98	-28.92	Average
7	1.503	11.70	0.09	0.14	11.93	46.00	-34.07	Average
8	1.535	31.29	0.09	0.14	31.52	56.00	-24.48	QP
9	2.201	17.10	0.09	0.15	17.34	46.00	-28.66	Average
10	2.309	35.36	0.10	0.15	35.61	56.00	-20.39	QP
11	2.622	39.89	0.10	0.15	40.14	56.00	-15.86	QP
12	2.692	20.86	0.10	0.15	21.11	46.00	-24.89	Average

4 RADIATED DISTURBANCES

4.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is +4.0 dB.

4.2 Limit of Radiated Disturbances (FCC Part 15.209)

Frequency (MHz)	Distance (Meters)	Field Strengths Limits (dBμV/m)
30 ~ 88	3	40
88 ~216	3	43.5
216 ~ 960	3	46
960~1000	3	54

Note: (1) The tighter limit shall apply at the edge between two frequency bands.

(2) Distance refers to the distance in meters between the test instrument antenna and the closest point of any part of the E.U.T.

4.3 EUT Setup

The radiated emission tests were performed in the in the 3-meter anechoic chamber, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC Part 15 limits.

The EUT was placed on the center of the test table.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

4.4 Test Receiver Setup

According to FCC Part 15 rule, the frequency was investigated from 30 to 1000 MHz. During the radiated emission test, the test receiver was set with the following configurations:

Test Receiver Setting:

Detector	Peak & Quasi-Peak
IF Band Width	120KHz
Frequency Range	30MHz to 1000MHz
Turntable Rotated	0 to 360 degrees

Antenna Position:

Height	
Polarity	Horizontal and Vertical

4.5 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within -10 dB $_{\mu}$ V of specification limits), and are distinguished with a "QP" in the data table.

4.6 Radiated Emissions Test Result

Temperature (°C)	26
Humidity (%RH)	56
Barometric Pressure (mbar)	1001.1
EUT	Bluetooth Speaker
M/N	YB-801
Operating Mode	Tx mode (Low, Middle, High Channel)

Test data see following pages.

Remark: (1) When PK reading is less than relevant limit 20dB, the QP reading and AV reading will not be recorded.

(2) Where QP reading is less than relevant AV limit, the AV reading will not be measured

4.7 Test Result

Pass.

Details see the following pages.

Site : 3m chamber
Condition : FCC PART15 3m VULB9163-2013M VERTICAL
EUT : Bluetooth Speaker
Model : YB-801
Test Mode : Low Channel
Power Rating : DC 3.7V
Test Engineer: David

1020	THETHOUT.	David							
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	B	₫B	dBuV/m	dBuV/m	₫B	
			-						
1	36.766	44.63	14.77	0.63	32.06	27.97	40.00	-12.03	QP
2	55.805	40.86	14.97	0.82	31.95	24.70	40.00	-15.30	QP
2 3	60.704	40.79	14.43	0.87	31.94	24.15	40.00	-15.85	QP
	68.872	43.92	11.06	0.93	31.89	24.02	40.00	-15.98	QP
4 5	96.099	35.92	14.90		31.75				
6	155.910	40.55							
-									4-

Site : 3m chamber
Condition : FCC PART15 3m VULB9163-2013M HORIZONTAL
EUT : Bluetooth Speaker
Model : YB-801
Test Mode : Low Channel
Power Rating : DC 3.7V
Test Engineer: David
Readlysterne Cable Preamp

	Freq				Preamp Factor				
	MHz	dBu∀	dB/m	₫B	₫B	$\overline{dBuV/m}$	dBuV/m	₫B	
1					31.94				
2	96.099	34.49	14.90	1.16	31.75	18.80	43.50	-24.70	QP
2	299.316	48.65	15.03	2.35	32.18	33.85	46.00	-12.15	QP
4 5	316.589	47.16	15.28	2.45	32.12	32.77	46.00	-13.23	QP
5	364.260	43.12	16.46	2.69	31.99	30.28	46.00	-15.72	QP
6	854.025	35.38	22.64	4.68	31.24	31.46	46.00	-14.54	QP

Site : 3m chamber
Condition : FCC PART15 3m VULB9163-2013M HORIZONTAL
EUT : Bluetooth Speaker
Model : YB-801
Test Mode : Mid Channel
Power Rating : DC 3.7V
Test Engineer: David
Readlysterne Cable Preamp

	Freq				Preamp Factor			Over Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2 3 4 5 6	99.878 307.831 364.260		15.17 16.46	0.86 1.19 2.40 2.69	31.99 31.94 31.76 32.15 31.99 31.19	24. 28 18. 81 25. 94 27. 88	40.00 43.50 46.00 46.00	-15.72 -24.69 -20.06 -18.12	QP QP QP QP

Site : 3m chamber
Condition : FCC PART15 3m VULB9163-2013M VERTICAL
EUT : Bluetooth Speaker
Model : YB-801
Test Mode : Mid Channel
Power Rating : DC 3.7V
Test Engineer: David

	Freq		intenna Factor					Over Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2 3 4 5 6	38.078 57.392 62.651 96.099 155.910 929.008	43.60 36.98 39.40	13.63 14.90 10.51	0.84 0.88 1.16 1.60	31.92 31.75	23.49 26.19 21.29 19.51	40.00 40.00 43.50 43.50	-16.51 -13.81 -22.21 -23.99	QP QP QP QP

Site : 3m chamber
Condition : FCC PART15 3m VULB9163-2013M VERTICAL
EUT : Bluetooth Speaker
Model : YB-801
Test Mode : High Channel
Power Rating : DC 3.7V
Test Engineer: David

	Freq					Level			Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	$\overline{dBuV/m}$	dB	
1 2 3 4 5	36.895 58.613 95.762 155.910 216.024 801.786	38.05 34.31 39.41 35.35	14.90 10.51 13.07	0.85 1.16 1.60 1.93	31.94 31.74 32.00 32.15	18.63 19.52	40.00 43.50 43.50 46.00	-18.26 -24.87 -23.98 -27.80	QP QP QP QP

Site : 3m chamber
Condition : FCC PART15 3m VULB9163-2013M HORIZONTAL
EUT : Bluetooth Speaker
Model : YB-801
Test Mode : High Chamnel
Power Rating : DC 3.7V
Test Engineer: David

.650	Fred	Read	Antenna Factor				Over Limit	Remark
	MHz	dBuV			 dBuV/m			
1 2 3 4 5 6	37.285 58.613 96.099 155.910 300.367 364.260	34.85 39.14 39.76		0.85 1.16 1.60 2.36	21.74 19.16 19.25 25.01	40.00 43.50 43.50 46.00	-18.26 -24.34 -24.25 -20.99	QP QP QP QP

5 - FCC Part 15.247 Requirements

Testing was performed in accordance with CFR 47 Part 15.247 and FCC KDB No. 558074 DTS D01 Meas. Guidance v03r01.

This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

5.1 Output Power Requirements

The maximum output power requirement is the maximum equivalent isotropic radiated power delivering at the transmitting antenna under specified conditions of measurements in the presence of modulation.

The maximum output power and harmonics shall not exceed CFR47 Part 15.247 (b1). The maximum transmitted power is + 21 dBm or 0.125 Watt.

5.1.1 Test Method

The conducted method was used to measure the channel power output according to ANSI C63.4:2009 and FCC KDB No. 558074 DTS D01 Meas. Guidance v03r01. The measurement was performed with modulation per CFR47 Part 15.247 (b1).

This test was conducted on 3 channels of Sample. The worst mode result indicated below.

Test Setup

5.1.2 Test Results

Please refer the following pages.

Barometric Pressure (mbar)	1000.8
Temperature	23° C
Relative Humidity	54 %
EUT	Bluetooth Speaker
M/N	YB-801
Operation Condition	GFSK_1Mbps Mode CH00 / CH20 / CH39
Testing Engineer	David

Output Power							
Operating Channel (MHz)	Limit (dBm)	Output Level (dBm)	Result				
2402	21	- 3.81	Pass				
2442	21	-2.45	Pass				
2480	21	-2.10	Pass				

Mode: CH20

5.2 6dB & 99% Bandwidth Requirements

The occupied bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.

The 99% bandwidth is the bandwidth in which 99% of the transmitted power occupied.

The 6 dB bandwidth is defined the bandwidth of 6 dBr from highest transmitted level of the fundamental frequency.

The bandwidth shall be at least 500 kHz via Section CFR47 15.247(a2).

5.2.1 Test Method

The conducted method was used to measure the channel power output according to ANSI C63.4:2009 and FCC KDB No. 558074 DTS D01 Meas. Guidance v03r01(Section 8.1, Option 1 method). The measurement was performed with modulation per CFR47 Part 15.247 (a2). This test was conducted on 3 channels of Sample. The worst mode result indicated below.

Test Setup

5.2.2 Test Results

Barometric Pressure (mbar)	1000.8
Temperature	23° C
Relative Humidity	54 %
EUT	Bluetooth Speaker
M/N	YB-801
Operation Condition	GFSK_1Mbps Mode CH00 / CH20 / CH39
Testing Engineer	David

6dB Bandwidth(MHz)							
Operating Channel (MHz)	Limit	Bandwidth (MHz)	Result				
2402	> 500kHz	0.667	PASS				
2442	> 500kHz	0.670	PASS				
2480	> 500kHz	0.668	PASS				

99% Bandwidth(MHz)							
Operating Channel (MHz)	Limit	Bandwidth (MHz)	Result				
2402	N/A	1.017	PASS				
2442	N/A	1.020	PASS				
2480	N/A	1.021	PASS				

Mode: CH20

5.3 Conducted Band Edges and Spurious Emission Requirements

The setup was identical to RF output power measurement. Intentional radiators operating under the alternative provisions to the general emission limits, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If the frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Any frequency outside the band of 2400 MHz to 2483.5 MHz, the power output level must be below 20 dB from the in-band transmitting signal: CFR 47 Part 15.215, 15.247(d).

5.3.1 Test Method

The conducted method was used to measure the channel power output according to ANSI C63.4:2009 and FCC KDB No. 558074 DTS D01 Meas. Guidance v03r01(Section 13.2, Marker-delta method). The measurement was performed with modulation per CFR47 Part 15.215, 15.247 (d). This test was conducted on 2 channels of Sample. The worst mode result indicated below. Test Setup

5.3.2 Test Results

Barometric Pressure (mbar)	1000.8
Temperature	23° C
Relative Humidity	54 %
EUT	Bluetooth Speaker
M/N	YB-801
Operation Condition	GFSK_1Mbps Mode CH00 / CH20 / CH39
Testing Engineer	David

Result: Pass

Please refer the following pages.

Band Edge: CH00

Spurious Emission: CH00

Spurious Emission: CH00

Spurious Emission: CH20

Spurious Emission: CH20

Spurious Emission: CH39

Spurious Emission: CH39

5.4 Peak Power Spectral Density Requirements

According to the CFR47 Part 15.247 (e), the spectral power density output of the antenna port shall be less than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.4.1 Test Method

The conducted method was used to measure the channel power output according to ANSI C63.4:2009 and FCC KDB No. 558074 DTS D01 Meas. Guidance v03r01(Section 10.2, PKPSD method). The measurement was performed with modulation per CFR47 Part 15.247 (e). This test was conducted on 3 channels of Sample. The worst mode result indicated below.

Test Setup

5.4.2 Test Results

Barometric Pressure (mbar)	1000.8
Temperature	23° C
Relative Humidity	54 %
EUT	Bluetooth Speaker
M/N	YB-801
Operation Condition	GFSK_1Mbps Mode CH00 / CH20 / CH39
Testing Engineer	David

Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = $10\log (3 \text{ kHz}/100 \text{ kHz} = -15.2 \text{ dB})$.

PSD(3kHz) = PSD(100kHz) + BWCF

PSD (dBm/3kHz)								
Operating Channel (MHz)	Limit (dBm)	PSD (dBm/100kHz)	PSD (dBm/3kHz)	Result				
2402	8	-4.74	-19.94	Pass				
2442	8	-3.41	-18.61	Pass				
2480	8	-3.04	-18.24	Pass				

Mode: CH20

5.5 Radiated Band Edges and Spurious Emission Requirements

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmit mode; per requirement of CFR47 15.205, 15.209, 15.247(d) and FCC KDB No. 558074 DTS D01 Meas. Guidance v03r01(Section 12.2.7).

5.5.1 Test Methodology

5.5.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's. Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

5.5.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m nonconductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

The final scans performed on the worst axis for three operating channels; 2402 MHz, 2442 MHz, and 2480 MHz for GFSK_1Mbps mode.

The worst axis for each antennas type was scanned.

5.5.2 Transmitter Spurious Emission Limit

The spurious emissions of the transmitter shall not exceed the values in CFR47 Part 15.205, 15.209:

Measurement Frequency (MHz)	Field strength (microvolts/meter)	distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

All harmonics and spurious emission which are outside of the restricted band shall be 20 dB below the in-band emission.

5.5.3 Test Results

The final measurement data was taken under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and 1.5.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Radiated Band Edge:

Mode: GFSK_1Mbps CH Low(2402MHz)

Frequency (MHz)	Read Read Peak AV	Total Factor	Level (dBuV/m)		Limit(dBuV/m)		Direction	Remark	
	(dBuV)	(dBuV)	(dB)	Peak	AV	Peak	AV	(H/V)	Keiliaik
2359.43	37.22	35.48	5.83	43.05	41.31	74	54	Н	PASS
2395.79	36.98	35.15	5.50	42.48	40.65	74	54	V	PASS

CH High(2480MHz)

Frequency			Total Factor	Level (d	(dBuV/m) Limi		Limit(dBuV/m)		Remark
(MHz)	(dBuV)	(dBuV)	(dB)	Peak	AV	Peak	AV	(H/V)	Kemark
2489.36	38.63	36.29	5.51	44.14	41.80	74	54	Н	PASS
2577.85	37.72	36.14	5.64	43.36	41.78	74	54	V	PASS

Radiated Spurious Emission Data (From 9KHz~30MHz):

Mode: GFSK 1Mbps CH 39

	equency MHz)	Read Level (dBuV)	Total Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Remark	Remark Over Limit (dB)		Result
2	25.94	49.76	-15.43	34.33	49.5	QP	-15.17	-	PASS

Radiated Spurious Emission Data (From 30MHz ~ 1GHz):

Mode: GFSK_1Mbps_CH39

Mouc. Gr.	wode. Grak_imbps_en 37									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Remark	Direction (H/V)	
46.50	37.78	15.46	0.74	31.99	21.99	40.00	-18.01	QP	Н	
66.03	40.10	12.30	0.91	31.90	21.41	40.00	-18.59	QP	Н	
968.93	38.09	23.55	5.11	31.22	35.53	54.00	-18.47	QP	Н	
34.64	41.76	14.30	0.61	32.06	24.61	40.00	-15.39	QP	V	
47.33	42.21	15.41	0.74	31.98	26.38	40.00	-13.62	QP	V	
64.66	43.83	12.84	0.90	31.91	25.66	40.00	-14.34	QP	V	
155.91	44.09	10.51	1.60	32.00	24.20	43.50	-19.30	QP	V	
796.18	37.97	22.01	4.45	31.31	33.12	46.00	-12.88	QP	V	

Note: Emissions attenuated more than 20 dB below the permissible value are not reported. Result: PASS.

Radiated Spurious Emission Data (Above 1GHz to the tenth Harmonic): Mode: GFSK_1Mbps

CH Low(2402MHz)

Frequency	Read Peak (dBuV)	Read AV (dBuV)	Total Factor (dB)	Level (dBuV/m)		Limit(dBuV/m)		Direction	Result
(MHz)				Peak	AV	Peak	AV	(H/V)	Result
4804	44.76	42.32	6.44	51.20	48.76	74	54	Н	PASS
7206	44.13	42.28	6.00	50.13	48.28	74	54	Н	PASS
9608	43.95	42.16	7.20	51.15	49.36	74	54	Н	PASS
4804	44.29	43.15	6.44	50.73	49.59	74	54	V	PASS
7206	43.70	41.57	6.00	49.70	47.57	74	54	V	PASS
9608	43.85	41.71	7.20	51.05	48.91	74	54	V	PASS

CH Middle(2442MHz)

Frequency	Read Peak (dBuV)	Read AV (dBuV)	Total Factor (dB)	Level (dBuV/m)		Limit(dBuV/m)		Direction	Result
(MHz)				Peak	AV	Peak	AV	(H/V)	Result
4884	44.23	42.25	6.49	50.72	48.74	74	54	Н	PASS
7326	43.48	41.76	5.90	49.38	47.66	74	54	Н	PASS
9768	43.55	41.38	7.80	51.35	49.18	74	54	Н	PASS
4884	44.26	42.27	6.49	50.75	48.76	74	54	V	PASS
7326	43.47	42.38	5.90	49.37	48.28	74	54	V	PASS
9768	44.21	42.74	7.80	52.01	50.54	74	54	V	PASS

CH High(2480MHz)

Frequency	Read Peak (dBuV)	Read AV (dBuV)	Total Factor (dB)	Level (dBuV/m)		Limit(dBuV/m)		Direction	Remark
(MHz)				Peak	AV	Peak	AV	(H/V)	Kemark
4960	43.47	41.26	6.59	50.06	47.85	74	54	Н	PASS
7440	42.73	41.01	5.92	48.65	46.93	74	54	Н	PASS
9920	42.82	40.84	7.99	50.81	48.83	74	54	Н	PASS
4960	44.09	42.56	6.59	50.68	49.15	74	54	V	PASS
7440	42.79	41.36	5.92	48.71	47.28	74	54	V	PASS
9920	42.82	41.54	7.99	50.81	49.53	74	54	V	PASS

Note: Emissions attenuated more than 20 dB below the permissible value are not reported. Result: PASS.

5.6 Antenna Requirements

FCC section 15.203 & 15.247(b), An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

5.6.1 Antenna Connected Construction

Antenna is on the PCB.

5.6.2 Antenna Gain

Antenna gain is 0dBi (<6dBi).

5.6.3 Result

The antenna is compliance with the FCC rules.

5.7 Maximum Permissible Exposure Requirements

5.7.1 Requirements:

According to FCC §1.1307(b)(1) and RSS-102 §2.5.1, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a portable device and for general use.

We test the max power output via conducted method. Please refer test data as below.

5.7.2 Test Data

Channel No.	Frequency	Max power	output to antenna
Charmer No.	(MHz)	(dBm)	(mW)
CH00	2402	-3.81	0.416
CH20	2442	-2.45	0.569
CH39	2480	-2.10	0.616

The EUT works on the 2.4G ISM band, according to KDB 447498 D01 General RF Exposure Guidance v05, the SAR Test Exclusion Power Thresholds is 10mW. According to RSS-102 §2.5.1, the SAR Test Exclusion Power Thresholds is 20mW.

The max power of this device is 0.616mW < 10mW, so the SAR evaluation is not required.