

VTON Egyptian Brands

By: Genyveyav Raafat, Hassnaa Hassan, Habiba Mohammed , Toqa Osama, Monica Adel, Maria George

Supervised by: Prof. Dr. Abeer Mahmoud, TA.Mohamed Essam Faculty of Computer and Information Sciences - Ain Shams University

Introduction

In Egypt's booming e-commerce market, online shoppers—especially veiled women—face challenges in visualizing how clothing fits and aligns with modesty standards. Traditional virtual try-on (VTON) systems often lack support for hijabs, layered garments, and regional fashion preferences, leading to higher return rates and reduced customer satisfaction.

TryFit bridges this gap by leveraging advanced AI (LaDI-VTON architecture with CLIP embeddings and latent diffusion models) to deliver realistic, modesty-aware virtual try-ons. Our solution features:

- Pose-aware garment warping and hijab-preserving synthesis for culturally respectful results.
- A curated dataset of Egyptian modest wear, including veiled and unveiled models.
- An user-friendly interface for Normal users and Providers.

By combining computer vision innovations with local fashion needs, TryFit empowers users to shop confidently while supporting Egyptian brands.

Presentation layer

logic layer

Data layer

Methods

final try-on image

API endpoint

Image reconstruction (decoder)

Diffusion

Warping module

Fetch data

A Culturally-Aware Virtual Try-On Pipeline

Figure 1: System Architecture

Clothes masks

As shown in Figure 1, TryFit's modular architecture automates realistic virtual try-ons through a three-layer workflow, optimized for modest fashion:

Inversion Adapter module

Clothes Dataset

1. Presentation Layer (Flutter UI)

VAE (encoder)

LDM module

- User Interaction:
 - Upload full-body photos via gallery/camera.
 - Browse categorized clothing (Upper/Lower/Full) with hijab-friendly filters.
- Output: Displays try-on results with download option.
- 2. Logic Layer (Flask API + AI Core)

Phase 1: Preprocessing

- Human Parsing: SCHP segments body regions (hijab, skin) for modesty preservation.
- Pose Estimation: OpenPose extracts 18 keypoints for anatomical alignment.
- Cloth Masking: Grounded-SAM generates precise binary masks for garment isolation.

Phase 2: Garment Alignment

- TPS Warping: Aligns clothing to user pose using keypoints and masks.
- EMASC Refinement: Mask-aware skip connections enhance edges (e.g., loose sleeves, hijab draping).

CLIP Embeddings: V* tokens encode garment semantics (texture, style).

Phase 3: Diffusion Synthesis

- LaDI-VTON: Latent Diffusion Model (LDM) synthesizes outputs conditioned on:
 - Warped garments + masks
 - Pose maps + CLIP embeddings
- VAE Decoder: Generates 1024×768px photorealistic images.
- 3. Data Layer (Firebase)
- Storage: Clothing categories (Upper, Lower, Full) and user try-on histories.
- Authentication: Secure login/profile management.

Results

Modest-First Virtual Try-On: Achieved hijab preservation accuracy during garment synthesis

Photorealistic Outputs: FID Score: 53.283 (vs. 61.87 for LaDI-VTON)

Local Impact: 60% Egyptian modest wear in dataset

Table I: Results of *TryFit*

Accuracy	LaDI-VTON model	Our model	Effective Parameter
FID↓	61.87	53.283	Fine-tuning with custom data
LPIPS ↓	0.183	0.140	
SSIM ↑	0.817	0.868	

Figures 2, 3: Sample of virtual try-on results

Conclusions

TryFit successfully bridges the gap in virtual try-on technology for modest fashion by supporting hijab and layered garment synthesis. Using Al-driven garment warping and cultural segmentation, it delivers realistic, pose-aligned try-on results. The system enhances user confidence, reduces return rates, and promotes local Egyptian fashion through an inclusive and user-friendly platform.

Bibliography

[1] D. Morelli, A. Baldrati, G. Cartella, M. Cornia, M. Bertini, and R. Cucchiara, "LaDI-VTON: Latent Diffusion Textual-Inversion Enhanced Virtual Try-On," Oct. 2023, doi: https://doi.org/10.1145/3581783.3612137.

[2] GoGoDuck912, "GitHub - GoGoDuck912/Self-Correction-Human-Parsing: An out-of-box human parsing representation extractor.," GitHub, 2019. https://github.com/GoGoDuck912/Self-Correction-Human-Parsing (accessed Feb. 15, 2025).

[3] Hzzone, "GitHub - Hzzone/pytorch-openpose: pytorch implementation of openpose including Hand and Body Pose Estimation.," GitHub, 2018. https://github.com/Hzzone/pytorch-openpose.git (accessed Feb. 21, 2025).