Priority Queues

A priority queue

- is a collection of records with keys
- allows the operations:

Insert: a record is added to the collection

FindMax: a record with maximum key is returned

DeleteMax: a record with maximum key is deleted

If implemented by unsorted array:

- ▶ Insert $\in \Theta(1)$
- ► Find/DeleteMax $\in \Theta(n)$

If implemented by sorted array:

- ▶ Find/DeleteMax $\in \Theta(1)$
- ▶ Insert $\in \Theta(n)$ (as need to push)

We shall aim at all operations sublinear

The Heap Property

A heap is a rooted tree (for now of arbitrary shape) that satisfies the heap property:

if q is a child of p then $key(p) \ge key(q)$

Thus parents have keys at least as great as their children.

sometimes we instead want the dual property

Heap property may be violated if the key of a node n

decreases: then we have to "sift down" n:

while n has child with greater key
swap n with the child with greatest key

▶ increases: then we have to "percolate" n:

while *n* has parent with smaller key swap *n* and its parent

Worst case running time: in $\Theta(h)$ with h the tree height.

Representation of Heaps

We use rooted trees that are binary and

complete: balanced, except that some rightmost leaves may be missing

We can use an array A to represent a complete binary tree, with

- ightharpoonup root = A[1]
- ▶ parent(A[i]) = $A[\lfloor i/2 \rfloor]$ (if i > 1)
- ▶ $left_child(A[i]) = A[2i]$ (if exists)
- right_child(A[i]) = A[2i + 1] (if exists)

The size n and its height h are related:

- $ightharpoonup n \le 2^{h+1} 1$, and thus
- ▶ $h = \lfloor \lg(n) \rfloor$

Priority Queues by Heaps

With heap implementation:

- FindMax: just take the root; this is in $\Theta(1)$.
- ► Insert:
 - 1. insert the new node as the first free array position
 - 2. percolate that leaf up

This is in
$$\Theta(h) = \Theta(\lg n)$$
.

- ► DeleteMax:
 - 1. move the rightmost bottom leaf to the root
 - 2. sift down the root

This is in
$$\Theta(h) = \Theta(\lg n)$$
.

Converting Tree Into Heap

Given a complete binary tree, we want to

- convert it into a heap
- by node swapping only

Tentative approach: grow heap incrementally

- for each element, percolate it up to proper spot
- running time: $\sum_{i=1}^{n} \lg(i)$ in $\Theta(n \lg(n))$

Better approach (top-down): for each node,

- 1. recursively convert its child(ren) into heaps
- 2. then sift down the node.

Iterative implementation:

for
$$i \leftarrow \lfloor n/2 \rfloor$$
 downto 1 SIFTDOWN(i)

Running time recurrence: $T(n) = 2T(n/2) + \lg(n)$ (at least when n is power of 2) and thus $T(n) \in \Theta(n)$

Heap Sort

Given array A[1.n] to be sorted, we

- 1. convert it into heap
- 2. incrementally extract solution from heap.

For part 2, we keep decrementing i while maintaining the invariant that

- 1. A[i+1..n] consists of the n-i largest elements, in non-decreasing order;
- 2. A[1..i] has the heap property

which is

- established with i = n: (1) vacuously; (2) by Phase 1
- \triangleright sufficient for correctness when i=1

To maintain invariant:

- 1. Exchange A[1] and A[i]
- 2. Sift down A[1] in tree A[1..i-1]

Complexity of Heap Sort

Recall that to sort an array of n elements, we

- 1. convert it into a heap, in time $\Theta(n)$
- 2. for *i* from *n* down to 2:
 - 2.1 Exchange A[1] and A[i], in time $\Theta(1)$
 - 2.2 Sift down A[1] in heap A[1..i], in time $\Theta(\lg(i))$.

This contributes

$$\sum_{i=1}^{n} \lg(i)$$

which we know is in $\Theta(n \lg(n))$.

Thus heap sort has

- ► Time Complexity in $\Theta(n \lg(n))$ which improves insertion sort
- ► Space Complexity is in-place which improves merge-sort