Algorithms Algorithms: What and Why

Mostafa S. Ibrahim
Teaching, Training and Coaching for more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / Msc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

Little History: The **father** of Algorithm

- Muḥammad ibn Mūsā al-Khwārizmī was a Persian polymath
 - o produced vastly influential works in mathematics, astronomy, and geography
 - presented the first systematic solution of linear and quadratic equations (algorithms)
 - considered the founder of algebra
 - The term algebra itself comes from the title of his book
 - His name (Khwārizmī) gave rise to the terms algorithm

A simple calculator

- Do you remember your first calculator program?
- It was most likely a simple one
 - Read an expression of 2 numbers: e.g. 51.7+ 12
 - Possible operations: + */
 - Be careful about division by zero
 - Numbers might not be separated from the operator (see example)
- Many projects, such as that one, or similar ones like building a hospital system, involve a specific skill
 From code to requirements.
- The main art is your design and implementation skills
 - This could be very challenging!

An advanced Calculator

- Let's build a more complex calculator
 - The expression may have several numbers
 - Operators: + * / and also ^ (power)
 - o Parentheses: ()
- Now, how can you compute the answer?
 - \circ 2+1*5: mathematically, this is 7, NOT 3*5 = 15
 - What about: $2+7\times(1+2\times(3^2^4-3))$?
 - 3^2^4 = 3 ^ 16 NOT 9^4
 - () must be applied first
- Hmm: you can't just translate requirements!
 - There is a part involving unusual thinking style!
 - It involves more computations!

Algorithmic Thinking

- To correctly solve the expression: 2+7×(1+2×(3^2^4-3))
 - We need a careful step-by-step approach to evaluate correctly
 - Mathematically: consider the associativity (left to right?) and precedence (* vs +)
 - Overall: it takes good deal of **thinking** to get it right
- <u>Edsger Dijkstra</u> is a popular Dutch computer scientist.
 - He invented: the shunting-yard algorithm
 - a step by step procedure that can solve this challenge
 - First, he converted this expression (we call it infix) to another structure (we call it postfix)
 - Then, evaluating the new structure is an easy task
 - Both tasks also made use of the stack data structure

More Challenges!

- Given 1000 integers, find how many combinations of three numbers add up to make 400? E.g. 100+160+140
 - We can do 3 loops to try every set of 3 numbers!
 - Hmm..1000000000 operations! Far too many computations!
 - What if we have 10^6 numbers!
- Given 10⁶ integers, can you sort them from small to large?
 - Hmm...nothing direct in mind!
- Given airport locations and the cost of every direct flight:
 Can you find the cheapest route from, say, Cairo to New York?
 - O Hmm...how can we represent the relationship between different airports?
- Facebook has ~3 billion users. Suggest to Mostafa all new friends such that there are exactly 5+ common friends between Mostafa and each new friend?

Performance

- In real life applications, we care about many factors
 - E.g. Usability, Security, Maintainability, Reliability, Scalability, etc
- One of the major factors is the performance
 - Efficiency for time and space (memory) are desirable features in all applications
 - Imagine if Facebook was a slow application! How can it be that efficient with such a huge number of users?
- This is where the algorithms field play a crucial role!
 - But there are many other factors. Distributed systems are the major key.
 - Find an efficient computational solution. The criteria? Time and space constraints

High performance real life apps

Algorithms

- Algorithm: A sequence of steps that transforms some input to an output to solve a computational problem.
 - Such as Decision, Search, Counting and Optimization problems
 - Tip: Any procedure is an algorithm, but in CS we typically mean computational problems
- Nature of Computational problem
 - Includes many computations
 - A direct requirement translation is not usually possible/doable
 - Or doable, but the direct idea is too slow or takes too much memory

Algorithms: problem examples

- Given an array of numbers, sort it from small to large
 - o Input: [10, 1, 5, 2, 6, 0]
 - Output: [0, 1, 2, 5, 6, 10]
- Given a sorted array, return the index of a given number
 - Input: [10, 20, 70, 101], target = 70
 - Output: index = 2
 - We can make a simple loop to search for the number in the array
 - However, there is a faster way to search for a number in a sorted array
 - It is called binary search.
 - In a book of 2000 pages, do you search **page by page** to find page #705? No
- Print the first 1000 prime numbers
 - No input here. However, each algorithm must have some output!

Algorithms Fields

- Sort & Search algorithms
- Graph algorithms (E.g. shortest path problem)
- Dynamic Programming & Greedy algorithms
- String algorithms (E.g. used in search engines to do matching)
- Game theory & Numerical algorithms
- Number-theoretic algorithms
- Combinatorial algorithms
- Computational geometric algorithms
- Note: We can't solve every problem efficiently

Algorithms Analysis

- Given an algorithm, we need to:
 - 1) Prove its Correctness
 - 2) Measure time efficiency
 - o 3) **Measure space** (memory) efficiency
- Steps 2 and 3 allow us to **compare** algorithms
 - Fall in a complementary area: Computational Complexity
- An example of sorting algorithms: time perspective
 - Selection sort algorithm: orders N numbers using N*N operations
 - E.g. if N is 1000, it takes around ~10^6 operations
 - Quicksort algorithm: orders N numbers using N * log₂N operations
 - E.g. if N is 1000, it takes around ~10^4 operations
 - Then Quicksort is a faster algorithm

Other types of Algorithms

- Example: Machine Learning (ML) algorithms
 - Given an email, how can we know if it is a spam?
 - Writing a huge amount of if/else conditions? No. Use ML
 - Given an image, how can we identify the people inside it?
 - If we can prepare a large dataset with input (e.g. email) to output (is spam?),
 we can learn from the data.
- Example: Genetic Algorithms
 - o a heuristic search algorithm used to solve search and optimization problems
- In the industry, we should use the right tools for a problem. Without studying the different fields, you will be puzzled
 - Don't be an ignorant CS graduate!

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."