Санкт-Петербургский Политехнический Университет Петра Великого

Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии

Отчет по лабораторной работе №6

Цифровая модуляция

Работу выполнил: Вашуров А., гр 33501.4 Преподаватель: Богач Н.В.

Содержание

1. Цель работы	3
2. Постановка задачи	3
3. Теоретический раздел	
4. Ход работы	
5. Вывод	14
 6. Приложение	

1 Цель

Изучение методов модуляции цифровых сигналов

2 Постановка задачи

- 1) Получить сигналы BPSK, PSK, OQPSK, genQAM, MSK, M-FSK модуляторов
- 2) Построить их сигнальные созвездия
- 3) Провести сравнение изученных методов модуляции цифровых сигналов

3 Теоретический раздел

3.1. Типы цифровой модуляции

Цифровая модуляция и демодуляция включают в себя две стадии. При модуляции цифровое сообщение сначала преобразуется в аналоговый модулирующий сигнал, а затем осуществляется аналоговая модуляция. При демодуляции сначала получается аналоговый демодулированный сигнал, а затем он преобразуется в цифровое сообщение.

Аналоговый несущий сигнал модулируется цифровым битовым потоком. Существуют четыре типа цифровой модуляции:

- 1) ASK Amplitude shift keying (Амплитудная двоичная модуляция).
- 2) FSK Frequency shift keying (Частотная двоичная модуляция).
- 3) PSK Phase shift keying (Фазовая двоичная модуляция).
- 4) ASK/PSK.

Одна из частных реализаций схемы ASK/PSK - QAM - Quadrature Amplitude Modulation (квадратурная амплитудная модуляция). Это метод объединения двух АМ-сигналов в одном канале. Он позволяет удвоить эффективную пропускную способность. В QAM используется две несущих с одинаковой частотой, но с разницей в фазе на четверть периода.

Частотная модуляция представляет логическую единицу интервалом с большей частотой, чем ноль. Фазовый сдвиг представляет "0" как сигнал без сдвига, а "1" как сигнал со сдвигом. BPSK использует единственный сдвиг фазы между "0" и "1" — 180 градусов, половина периода. QPSK использует 4 различных сдвига фазы (по четверти периода) и может кодировать 2 бита в символе (01, 11, 00, 10).

3.1.1. BPSK, PSK

BPSK и PSK - модуляция со сдвигом фазы сигнала без изменения амплитуды. В PSK их может быть множество, в BPSK - один (на π).

Изображения сигнального созвездия BPSK приведено на следующих рисунках.

Рисунок 3.1.1 Схема устройства модулятора BPSK

Рисунок 3.1.2 Сигнальное созвездие BPSK

BPSK

3.1.2. genQAM, OQPSK

При квадратурной амплитудной модуляции изменяется как фаза, так и амплитуда несущего сигнала. Это позволяет увеличить количество кодируемых в единицу времени бит и при этом повысить помехоустойчивость их передачи по каналу связи. Квадратурное представление сигнала заключается в выражении колебания линейной комбинацией двух ортогональных составляющих — квадратурной и синфазной:

$$S(t) = x(t)\sin(\omega t + \varphi)\cos(\omega t + \varphi) (1)$$

где x(t) и y(t) — биполярные дискретные сигналы. Модуляция со сдвигом (OQPSK — Offset QPSK) позволяет избежать скачков фазы на 180^0 и, следовательно, глубокой модуляции огибающей. Формирование сигнала в модуляторе OQPSK происходит так же, как и в модуляторе ФМ-4, за исключением того, что манипуляционные элементы информационных последовательностей x(t) и y(t) смещены во времени на длительность одного элемента , (рис.3.1.2). Изменение фазы при таком смещении модулирующих потоков определяется лишь одним элементом последовательности, а не двумя, как при ФМ 4. В результате скачки фазы на 180^0 отсутствуют, так как каждый элемент последовательности, поступающий на вход модулятора синфазного или квадратурного канала, может вызвать изменение фазы на 0, $+90^\circ$ или -90° .

Рисунок 3.1.3 Формирование манипулирующих сигналов

Преобразованные таким образом сигналы передаются в одном канале. Поскольку один и тот же физический канал используется для передачи двух сигналов, то скорость передачи КАМ-сигнала в отличие от АМ-сигнала в два

раза выше.

3.1.3. MSK

Частотная манипуляция с минимальным сдвигом (англ. Minimal Shift Keying (MSK)) представляет собой способ модуляции, при котором не происходит скачков фазы и изменение частоты происходит в моменты пересечения несущей нулевого уровня. МSK характеризуется тем, что значение частот соответствующих логическим "0" и "1" отличаются на величину равную половине скорости передачи данных. Другими словами, индекс модуляции равен 0.5.

Рисунок 3.1.4 Сигнальное созвездие MSK

3.1.4. MFSK

Можно построить и модулятор многопозиционной частотной модуляции. В этом случае будет использовано большее количество

синусоидальных генераторов, а для управления коммутатором потребуется многоразрядное двоичное число.

Сигналы в многопозиционной частотной модуляции могут быть описаны в соответствии со следующим выражением:

$$s_1(t) = \cos(\omega_1 t); \ s_2(t) = \cos(\omega_2 t); ...; \ s_N(t) = \cos(\omega_N t); \ (2)$$

формула сигнала 1 многопозиционной частотной модуляции, формула сигнала 2 многопозиционной частотной модуляции, . . . , формула сигнала N многопозиционной частотной модуляции (3) где s_1 используется для передачи первого состояния символа; s_2 — для передачи второго состояния символа; s_N — для передачи N-го состояния символа.

Использование многопозиционной частотной модуляции позволяет реализовать высокочастотный сигнал с постоянной амплитудой. Такой сигнал позволяет строить радиопередатчики с максимальным КПД, так как при применении сигнала с постоянной амплитудой, усилитель мощности радиопередатчика работает в оптимальном режиме.

4 Ход работы

Листинг программы представлен в Приложении

4.1 BPSK-модуляция

Рисунок 4.1.1 Исходный и демодулированный сигналы

Рисунок 4.1.2 Сигнальное созвездие

4.2. PSK-модуляция

Рисунок 4.2.1. Исходный и демодулированный сигналы

Рисунок 4.2.2 Сигнальное созвездие

4.3. OQPSK-модуляция

Рисунок 4.3.1 Исходный и демодулированный сигналы

Из рисунка видно, что демодулированный сигнал практически совпал с исходным

Рисунок 4.3.2 Сигнальное созвездие

4.4. genQAM-модуляция

Рисунок 4.4.1 Исходный и демодулированный сигналы Из рисунка видно, что демодулированный сигнал совпал с исходным

Рисунок 4.4.2 Сигнальное созвездие

4.5. MSK-модуляция

Рисунок 4.5.1 Исходный и демодулированный сигналы Из рисунка видно, что при использовании МSК выходной сигнал имеет задержку при демодуляции.

Рисунок 4.5.2 Сигнальное созвездие

4.6. MFSK-модуляция

В Simulink была построена модель MFSK-модулятора, результаты работы совпали с ожидаемыми, входная последовательность совпала с выходной.

Рисунок 4.6.1 Simulink-модель MFSK

Рисунок 4.6.2 Графики входного сигнала, задержанного сигнала, модулированного сигнала, сигнала ошибки с задержанным сигналом, выходного сигнала MFSK

5 Вывод

В ходе работы были изучены различные методы модуляции цифровых сигналов.

Квадратурная амплитудная манипуляция (QAM) — манипуляция, при которой изменяется как фаза, так и амплитуда сигнала, что позволяет увеличить количество информации, передаваемой одним состоянием сигнала.

Фазовая манипуляция (PSK) — модуляция, при которой фаза несущего колебания меняется скачкообразно, в зависимости от информационного сообщения.

При квадратурной фазовой манипуляции (QPSK) используется созвездие из четырёх точек, размещённых на равных расстояниях на окружности. Имеется 4 фазовых смещения, при этом в QPSK на символ приходится два бита.

Частотная манипуляция с минимальным сдвигом (MSK) представляет собой способ модуляции, при котором не происходит скачков фазы и изменение частоты происходит в моменты пересечения несущей нулевого уровня. Принцип MSK таков, что значение частот соответствующих логическим "0" и "1" отличаются на величину равную половине скорости передачи данных.

Уровень модуляции определяет количество состояний несущей, используемых для передачи информации. Чем выше этот уровень, тем большими скоростными возможностями и меньшей помехоустойчивостью обладает модуляция. Число бит, передаваемых одним состоянием, определяется как log(N), где N — уровень модуляции.

На основе полученных результатов можно сказать, что Наиболее помехоустойчивы те модуляторы, у которых наименьшее число уровней модуляции (MSK и BPSK модуляторы).

6 Приложение

```
function
Lab6()
           clc
           close all
           %BPSK
           h = modem.pskmod('M', 2);
           g = modem.pskdemod('M', 2);
           msg = randi([0,1], 10, 1);
           modSignal = modulate(h,msg);
           errSignal = (randerr(1,10, 3) ./ 30)';
           modSignal = modSignal + errSignal;
           demodSignal = demodulate(g,modSignal);
           plot signal(msg,modSignal, demodSignal, 'BPSK');
           %PSK
           h = modem.pskmod('M', 8);
           g = modem.pskdemod('M', 8);
           msg = randi([0, 7], 10, 1);
           modSignal = modulate(h,msg);
           errSignal = (randerr(1,10, 3) ./ 30)';
           modSignal = modSignal + errSignal;
           demodSignal = demodulate(g,modSignal);
           plot_signal(msg, modSignal, demodSignal, 'PSK');
           %OQPSK
           h = modem.oqpskmod;
           g = modem.oqpskdemod;
           msg = randi([0, 3], 100, 1);
           modSignal = modulate(h,msg);
           errSignal = (randerr(1,200, 100) ./ 30)';
           modSignal = modSignal + errSignal;
           demodSignal = demodulate(g,modSignal);
           plot_signal(msg, modSignal, demodSignal, 'OQPSK');
           %genQAM
           M = 11;
           h = modem.genqammod('Constellation', exp(1i*2*pi*(0:M-1)/M));
           g = modem.genqamdemod('Constellation', exp(1i*2*pi*(0:M-1)/M));
           msg = randi([0, 7], 11, 1);
           modSignal = modulate(h,msg);
           errSignal = (randerr(1,11, 3) ./ 30)';
           modSignal = modSignal + errSignal;
```

```
demodSignal = demodulate(g,modSignal);
plot_signal(msg, modSignal, demodSignal, 'gen QAM');
%MSK
h = modem.mskmod('SamplesPerSymbol', 11);
g = modem.mskdemod('SamplesPerSymbol', 11);
msg = randi([0, 1], 11, 1);
modSignal = modulate(h, msg);
errSignal = (randerr(1,121, 3) ./ 15)';
modSignal = modSignal + errSignal;
demodSignal = demodulate(g, modSignal);
plot_signal(msg, modSignal, demodSignal, 'MSK');
  function plot_signal(input,modulated, output, name)
    t = 1:length(input);
    ff = figure();
    scatter(t, input,'s','filled','SizeData', 120)
    hold on
    scatter(t, output, 'o', 'filled', 'SizeData', 50);
    hold off
    legend('source signal','demodulated')
    title(name)
    sp = scatterplot(modulated);
    title(name)
    saveas(ff, strcat('../fig/signal_',name),'png');
    saveas(sp, strcat('../fig/scatter_',name),'png');
  end
close all
```

end