

Python for Astronomy

Hugo Pfister - pfisterastro@gmail.com

Hong Kong - Sept. 21 2021

Outline

- l. Density profile
- II. Numerical fitting

Density profile

By definition, $\Sigma = \frac{\mathrm{d}M}{\mathrm{d}S}$, where $\mathrm{d}M$ is the mass in the elementary surface $\mathrm{d}S$

- In a computer, we have to use finite numbers, so we will use small squares between
 [x; x + dx] and [y; x + dy] with surface dS = dxdy
- We initiate the 2D matrix dM to 0
- We loop on all particles i. We find the associated square, and we update $dM \leftarrow dM + m_i$
- The built-in numpy function for this loop is **np.histogram2d** on the x_i and y_i , weighted by m_i

Density profile

By definition, $\Sigma = \frac{\mathrm{d}M}{\mathrm{d}S}$, where $\mathrm{d}M$ is the mass in the elementary surface $\mathrm{d}S$

- We now use small shells at [r; r + dr] with surface $dS = 2\pi r dr = d(\pi r^2)$
- We initiate the **1D vector** $\mathrm{d}M$ to 0
- We loop on all particles i. We find the associated shell, and we update $dM \leftarrow dM + m_i$
- The built-in numpy function for this loop is **np.histogram** on the r_i , weighted by m_i

Outline

- I. Density profile
- II. Numerical fitting
 - 1. Basics
 - 2. The logarithmic issue

Basics

We have a dataset (x_i, y_i) . We think that a function $f_{\lambda}(x)$, which takes x as input and depends on a set of parameters λ , could model well the data. Our goal is to find the best λ so that the data are well reproduced, that is $f_{\lambda}(x_i) \sim y_i$.

$$f_{(\alpha,\beta)} = \alpha \exp\left(-\frac{x}{\beta}\right)$$

This functional is a choice, someone else may have chosen a power law...

Which is the best model?

minimizes

$$\chi^2 = \sum \left(f_{\lambda}(x_i) - y_i \right)^2$$

Outline

- I. Density profile
- II. Numerical fitting
 - 1. Basics
 - 2. The logarithmic issue

• Data: [(1,10),(2,1)]

• Model 1: $[(1,9), (2,10^{-10})]$

• Model 2: $[(1,5), (2,10^{-1})]$

Which model is best?

It depends!

... but what about our mathematical definition of best?

Model 1:

$$\chi^2 = (9 - 10)^2 + (10^{-10} - 1)^2 \sim 2$$

Model 2:

$$\chi^2 = (5-10)^2 + (0.1-1)^2 \sim 26$$

Model 1:

$$\chi^2 = (\log 9 - \log 10)^2 + (\log 10^{-10} - \log 1)^2 \sim 100$$

Model 2:

$$\chi^2 = (\log 5 - \log 10)^2 + (\log 0.1 - \log 1)^2 \sim 1$$

Your eyes are doing the fit in log... so you have to do the fit in log mathematically too!