# Equivariant Networks

### Symmetries in ML



Permutation
Invariance in Node
Labels in a Graph

### Symmetries in ML



Translation Invariance in image labels

### Symmetries in ML







Rotation Equivariance in image features

### Symmetries of the Label function

$$g: \mathcal{X} \to \mathcal{Y}$$

Symmetry Transformation

$$L: \mathcal{X} \to \mathcal{Y}$$

Label Function

Transformation is a symmetry of *g* 

$$L \circ g = L$$



### Group Actions

- 1. We have a set  $\mathcal{X}$  and  $f \colon \mathcal{X} \to \mathbb{C}$
- 2. Group G acts on  $\mathscr X$

$$T_g: \mathcal{X} \to \mathcal{X} \quad \forall g \in G$$

$$\forall g1,g2 \in G, T_{g2g1} : T_{g2} \circ T_{g1}$$

If  $\mathcal{X}$  is a (finite) Vector Space then  $T_g \in GL(n)$ 

3. Extending the action to functions

$$\mathbb{T}_g: f \to f' \qquad f'(T_g(x)) = f(x)$$

#### Groups

- 1.  $e \in G$  Identity
- $2.(a \circ b) \circ c = a \circ (b \circ c)$ Associativity
- 3.  $\forall a \in G \ \exists b \in G$   $a \circ b = e$

Unique Inverses

# Induced Actions: Example on $\mathbb{Z}^2$

$$\mathcal{X} = \mathbb{Z}^2$$

$$G=\mathbb{Z}^2$$
 Group of integer translations, isomorphic to  $\mathbb{Z}^2$ 

$$T(t_1, t_2)(x_1, x_2) = (x_1 + t_1, x_2 + t_2), \quad (t_1, t_2) \in \mathbb{Z}^2$$

Induced action on functions

$$\mathbb{T}: f \to f' \quad f'(x_1, x_2) = f(x_1 - t_1, x_2 - t_2)$$

# Equivariance

**Definition:** Let G be a group and  $\mathcal{X}_1$  and  $\mathcal{X}_2$  be two sets with corresponding G-actions and induced actions  $\mathbb{T}$ ,  $\mathbb{T}'$  on the space of linear transformations on each respective set  $(-i.e.\ L_{(V_i)}(\mathcal{X}_i))$ . Then a map  $\phi: L_{(V_1)}(\mathcal{X}_1) \to L_{(V_2)}(\mathcal{X}_2)$  Is G-equivariant if:

$$\phi(\mathbb{T}_g(f)) = \mathbb{T}_g'(\phi(f)) \qquad \forall f \in L_{(V_1)}(\mathcal{X}_1)$$

## Equivariance

$$L_{(V_1)}(\mathcal{X}_1) \xrightarrow{\mathbb{T}_g} L_{(V_1)}(\mathcal{X}_1)$$

$$\phi \downarrow \qquad \qquad \downarrow \phi$$

$$L_{(V_2)}(\mathcal{X}_2) \xrightarrow{\mathbb{T}_g'} L_{(V_2)}(\mathcal{X}_2)$$

# Equivariance Networks Recipe



### Applying Equivariance: Equivariant Densities

Let p be an invariant density with representation  $T_{g}$ 

Fact 1:  $|\det(T_g)| = 1$ 

Proof:

# Applying Equivariance: Symmetric Densities

**Theorem 1:** Let p(x) be density resulting from applying an invertible map F to p(u). If T is G-equivariant and p(u) is G-invariant density then p(x) is also G-invariant.

### Applying Equivariance: Symmetric Densities

Proof:

### Planar Convolutions

Convolution of two function  $f, g : \mathbb{R} \to \mathbb{R}$ 

$$(f*g)(x) = \int f(x-y)g(y)dy$$

We will study this convolution and its generalizations for the rest of the talk!

### Group Convolutions

Convolution of two functions f, g on a compact group G

$$(f*g)(u) = \int f(uv^{-1})g(v)d\mu(v) \longrightarrow \text{Haar measure } \mu \text{ unique for compact groups}$$

x-y is replaced by the group operation  $uv^{-1}$ 

$$(x,y)\mapsto x+y, \qquad G=(\mathbb{R},+)$$

### Group Convolutions

If we model images and stacks of feature maps as  $f: \mathbb{Z}^2 \to \mathbb{R}^k$ . At each pixel location  $(p,q) \in \mathbb{Z}^2$  the feature map is a K-dimensional vector. Feature maps transform under group representations as follows:

$$[T_g f](x) = [f \circ g^{-1}](x) = f(g^{-1}x)$$
 — Group acts via what is known as the Regular Representation

Intermediate feature maps in a G-CNN are functions on G and **not**  $\mathbb{Z}^2$ . The first layer —i.e. input is a special case but every subsequent layer must have filters defined on the group

### Steerable CNN's

If we model images and stacks of feature maps as  $f: \mathbb{Z}^2 \to \mathbb{R}^k$ . At each pixel location  $(p,q) \in \mathbb{Z}^2$  the feature map is a K-dimensional vector. The set of signals forms a linear space  $\mathscr{F}$ . We can also decompose  $\mathscr{F}$  into *fibres*. The fiber  $F_x$  is attached to  $\mathbb{Z}^2$  at all points x



F as stack of maps

F as a bundle of fibres

### Steerable Representations

**Definition:** Let  $(\mathcal{F}, T)$  be a feature space with a group rep. and  $\Phi: \mathcal{F} \to \mathcal{F}'$ . Then  $\mathcal{F}'$  is said to be linearly steerable if:

$$\Phi T_g = T_g \Phi$$

That is  $T_g^\prime$  does not depend on any . Also  $T_g^\prime$  must be a group rep

### Equivariant Filter Banks

Filter bank (K',K,s,s) is an array with K',K input/output channels —i.e. a linear map  $\Psi:\mathcal{F}\to\mathbb{R}^{K'}$  which is applied to translated copies of  $f\in\mathcal{F}$  one fiber at a time. Let H< G and  $T_h$  and  $T_h'$  be representations of H



H-equivariant Condition:

$$T_h \Psi = \Psi T_h \quad \forall h \in H$$

### Equivariant Filter Banks

Space of maps satisfying the equivariance condition is a vector space:  $\operatorname{Hom}_H(T,T')$ . Given T,T' we can compute a basis by solving the linear system. With a basis  $\psi_1,\ldots \psi_n$  for  $\operatorname{Hom}_H(T,T')$  any Equivariant filter bank is a linear combination.



H-equivariant Condition:

Linear Constraint on Ψ

$$T_h \Psi = \Psi T_h \quad \forall h \in H$$

Fig credit: https://arxiv.org/pdf/1612.08498.pdf

Major complication in NN's is that  $\mathcal{X}_0, ..., \mathcal{X}_n$  are homogenous spaces of G rather than the group G itself.

We need a way to generalize convolutions from groups to their homogenous spaces!

General strategy: We will "lift" functions on homogenous spaces to groups when necessary and "project" back down after.

#### Homogenous Spaces

 $\mathcal{X}$  is a homogenous space for G if  $\forall x,y \in \mathcal{X}$  there exists  $g \in G$  such that  $g \circ x = y$ 

#### Stabilizer subgroup

$$H_{x} = \{g \in G \mid gx = x\}$$

We can fix an origin  $x_0 \in \mathcal{X}$  then by the definition of transitivity each  $x = g(x_0)$  —i.e. we can "index" elements of  $\mathcal{X}$  with elements of G

denoted as  $[g]_{\mathcal{X}} = g(x_0)$ 

Lifting: Given  $f\colon \mathcal{X} \to \mathbb{C}$  we can lift f to G

$$f \uparrow^G: G \to \mathbb{C}$$
  $f \uparrow^G(g) = f([g]_{\mathscr{X}})$ 





For a subgroup H < G the left coset is  $gH := \{gh \mid h \in H\}.$  The set of all cosets partitions G/H



SE(3)/SO(3)

SE(3)

 $SO(3)\backslash SE(3)/SO(3)$ 

Fig credit: https://arxiv.org/pdf/1811.02017.pdf

For each coset we can pick a coset representative  $g' \in gH$  and denote  $\bar{x}$  the representative of group elements that map  $x_0 \to x$ 

Projection: Given  $f: G \to \mathbb{C}$  we can project to  $\mathcal{X} = G/H$   $f \downarrow_{\mathcal{X}}: \mathcal{X} \to \mathbb{C} \quad f \downarrow_{\mathcal{X}} (x) = \frac{1}{|H|} \sum_{g \in \bar{x}H} f(g)$ 

$$(f*g)(u) = \int f(uv^{-1})g(v)d\mu(v)$$

Group Convolution





Generalized
Group Convolution

### Convolutions is all you need!

**Theorem 2:** Let G be a compact group and  $\mathscr{N}$  be a feed forward neural network in which all intermediate feature spaces are of the form  $\mathscr{X}_l = G/H_l$ . Then  $\mathscr{N}$  is Equivariant to the action of G iff it is a G-CNN where each linear map  $\phi_l$  is a generalized convolution.

### Convolutions is all you need!

Proof: (forward direction)

# Relationship to Fourier Analysis Teasor

$$\hat{f}(k) = \int f(x)e^{-ikk}dx$$

Convolution Theorem

$$\hat{f*g}(k) = \hat{f}(k)\hat{g}(k)$$

$$\hat{f}(\rho_i) = \int f(x)\rho_i(x)d\mu$$

$$\uparrow$$
Irreps. Of  $G$ 

Nasty Integral over G

$$f \hat{*} g(\rho_i) = \hat{f}(\rho_i) \hat{g}(\rho_i)$$

**Matrix Product** 

### Generalizing Convolutions to Feature Fields

Currently the generalized convolutions work with scalar fields but features can be vector fields or even tensor fields.



Vector Fields

Scalar fields

### Feature Fields: General Theory







Mobius Strip

$$S^1 \times [0,1]$$
 Locally

Sections s of a fiber bundle is an assignment to each  $x \in B$  of an element  $s(x) \in F_x$ 

#### Fiber-bundle

A fiber bundle  $(E, B, \pi)$  denoted  $E \stackrel{\pi}{\to} B$  with

 $\pi^{-1}(x)$  is isomorphic to a manifold F for every  $x \in B$ . The inverse map also locally trivializes the space over an open neighborhood  $U \subset B$ .  $\pi^{-1}(U_i) \to B \times F$ 

### Feature Fields: Principal Fiber Bundles

Group G and stabilizer subgroup H turns G into a "principal H-bundle"



#### Principal Fiber-bundle

A fiber bundle  $(E, B, \pi)$ :

- (i) G admits a right action on E.
- (ii) The Fiber F is home morphic to G
- (iii) E/G is diffeomorphic to B

Fig credit: https://arxiv.org/pdf/2004.05154.pdf

### Feature Fields: Associated Vector Bundles

Group G and stabilizer subgroup H turns G into a "principal H-bundle"



$$S^2 \simeq SO(3)/SO(2)$$



Attach a feature (vector) space  $V_{\scriptscriptstyle \mathcal{X}} \simeq V$  for each  $x \in B$ 

V has a representation T of H

### Feature Fields: Transformations



For scalar fields 
$$T_g = I_n$$

f(x)

Induced representation of T of SO(3) $\pi = \operatorname{Ind}_{SO(3)}^{SE(3)} T$ 

### **Equivariant Maps and Convolutions**

Each feature space in a G-CNN is defined as the space of sections of some associated vector bundle with B = G/H and representation T of H that describes how the fibres transform.

The space of Equivariant linear maps between induced representations  $\mathcal{H} = \operatorname{Hom}_G(\mathcal{I}^1, \mathcal{I}^2) = \{\Phi \in \operatorname{Hom}_G(\mathcal{I}^1, \mathcal{I}^2) | \Phi T_{g1} = T_{g2}\Phi, \forall g \in G\}$ 

### Convolution is all you need (revisited)

**Theorem 3:** An Equivariant map  $\Phi \in \mathcal{H}$  can always be written as a convolution-like integral with two-argument linear operator-valued kernel  $\kappa: G \times G \to \operatorname{Hom}(V_1, V_2)$ 

### Convolution is all you need (revisited)

Proof:

### A word on Non-Linearities

Any point-wise Non-linearity will be Equivariant

Other option is a tensor product non-linearity ....