Minimum Weight Spanning Trees in Weighted Graphs

A weighted graph G is one in which each edge e is associated a nonnegative real number w(e), called the weight of e. If H is a subgraph of G, then the weight of H is defined as:

$$\sum_{e \in E(H)} w(e).$$

Given a connected weighted graph G, how to find a connected subgraph with minimum weight? that is, how to find a spanning tree of G with minimum weight?

The following tree-search algorithm is due to Jarník (1930) and Prim (1957).

J-P Algorithm

- 1. Take any vertex, say v_1 , as the root, and set $T_1 = v_1$;
- 2. For $k \ge 1$, choose an edge xy with $x \in V(T_k)$ and $y \in V(G) \setminus V(T_k)$ such that w(xy) is minimum among all edges between $V(T_k)$ and $V(G) \setminus V(T_k)$; Set $T_{k+1} = T_k + xy$.

The above J-P Algorithm outputs a tree, called *J-P tree*.

The following theorem shows that the J-P algorithm runs correctly.

Theorem 11. Every J-P tree is an optimal tree.

Proof. Let T be a J-P tree with root r.

We will prove that T is an optimal tree by induction on v(G).

Assume that the first edge added to T is an edge e of least weight in the edges incident with r; in other words, $w(e) \le w(e')$ for all edges e' incident with r. To begin with, we show that some optimal tree includes this edge e.

Let T' be an optimal tree. We may assume that $e \notin E(T')$. Clearly, T' + e has a unique cycle C. Let e' be the other edge of C incident with r. Then $T'' = (T' + e) \setminus e'$ is a spanning tree of G. Moreover, because $w(e) \le w(e')$,

$$w(T'') = w(T') + w(e) - w(e') \le w(T')$$
.

Since T' is an optimal tree, so is T''. Moreover, T'' contains e.

Let $G^* = G/e$ and r^* the vertex resulting from the contraction of e.

It is not difficult to see there is a one-to-one correspondence between the set of spanning trees of G that contain e and the set of all spanning trees of G^* .

Let $T^* = T/e$. To show T is an optimal tree of G, it suffices to show T^* is an optimal tree of G^* with root r^* .

Note that $\partial(T_{i+1}) = \partial(T_i^*)$ for $1 \le i \le n-2$,

we can see that an edge of minimum weight in $\partial(T_{i+1})$ is also an edge of minimum weight in $\partial(T_i^*)$.

Because the final tree T is a J-P tree of G, we deduce that the final tree T^* is a J-P tree of G^* with root r^* .

As $v(G^*) < v(G)$, by induction hypothesis, T^* is an optimal tree of G^* .

Recall there is an optimal tree containing the edge e as shown before, we conclude that T is an optimal tree of G.

The Shortest Path in Weighted Graphs

For a connected weighted graph G, the *distance* between two given vertices u and v is the weight of (u, v)-path with minimum weight, write as d(u, v).

For
$$S \subset V(G)$$
, $d(u, S) = \min \{d(u, v) : v \in S\}$.

For two given vertices u_0 and v_0 , how to find a shortest (u_0, v_0) -path? Assume that $S \subset V(G)$, $u_0 \in S$ and $d(u_0, u)$ has been known for any $u \in S$. Set $V(G) \setminus S = S'$. If $P = u_0 \cdots u'v'$ is a shortest from u_0 to S', then $u' \in S$ and $P_1 = u_0 \cdots u'$ is a shortest (u_0, u') -path. Thus,

$$d(u_0, v') = d(u_0, u') + w(u'v'),$$

and

$$d(u_0, S') = \min_{u \in S, v \in S'} \left\{ d(u_0, u) + w(uv) \right\}.$$

Let $S_0 = \{u_0\}$. Choose $u_1 \in S'_0$ such that

$$d(u_0, u_1) = d(u_0, S_0'),$$

$$d(u_0, u_1) = d(u_0, S_0'),$$

$$d(u_0, S'_0) = \min_{u \in S_0, v \in S'_0} \left\{ d(u_0, u) + w(uv) \right\} = \min_{v \in S'_0} \left\{ w(u_0v) \right\}.$$

Set $S_1 = \{u_0, u_1\}$ and $P_1 = u_0 u_1$.

Assume that $S_k = \{u_0, u_1, \dots, u_k\}$ and the corresponding shortest paths are P_1, P_2, \dots, P_k . Then by

$$d(u_0, S'_k) = \min_{u \in S_k, v \in S'_k} \{d(u_0, u) + w(uv)\},\$$

we can choose $u_{k+1} \in S'_k$ such that

$$d(u_0, u_{k+1}) = d(u_0, S'_k)$$
.

Set $S_{k+1} = S_k \cup \{u_{k+1}\}.$

Assume that $d(u_0, u_{k+1}) = d(u_0, u_j) + w(u_j u_{k+1})$. Just let $P_{k+1} = u_0 P_j u_j u_{k+1}$.

Dijkstra Algorithm

- 1. Let $\ell(u_0) = 0$, $\ell(v) = \infty$ for any $v \neq u_0$. Set $S_0 = \{u_0\}$ and i = 0.
- 2. For any $v \in S'_i$, replace $\ell(v)$ with $\min_{u \in S_i} \{ \ell(v), \ell(u) + w(uv) \}$. Calculate

$$\min_{v \in S_i'} \left\{ \mathcal{C}(v) \right\}$$

and denote the vertex v reach the minimum as u_{i+1} . Set

$$S_{i+1} = S_i \cup \{u_{i+1}\}.$$

3. The algorithm stops when i = n - 1. If i < n - 1, then replace i with i + 1, go to Step 2.

Hamilton Problems

A path or cycle in a graph which contains every vertex of the graph is called a *Hamilton path* or *Hamilton cycle* of the graph.

Such paths and cycles are named after Sir William Rowan Hamilton, who described, in a letter to his friend Graves in 1856, a mathematical game on the dodecahedron in which one person sticks pins in any five consecutive vertices and the other is required to complete the path so formed to a spanning cycle.

Let G be a graph and $S \subset V(G)$.

We use $\omega(G-S)$ to denote the number of components of G-S.

Theorem 12. Let G be a graph with a Hamilton cycle. Then for any $S \subset V(G)$, $\omega(G - S) \leq |S|$.

Theorem 12 is a necessary condition for a graph to be hamiltonian.

Theorem 13(Dirac). Let G be a simple graph of order $n \ge 3$. If $\delta(G) \ge n/2$, then G is Hamiltonian.

Proof. It is not difficult to show that G is connected (in fact, 2-connected). Let $P = v_1 v_2 \cdots v_\ell$ be a longest path in G. For any $v \in V(P)$, let v^-, v^+ be the predecessor and successor of v, respectively.

$$v_1 \bullet \bullet \bullet v_\ell$$

Let

$$N_P^+(v_{\ell}) = \left\{ v^+ : v \in N_P(v_{\ell}) \right\}.$$

It is not difficult to see that $N_P^+(v_{\ell}) \subseteq V(P)$.

If $N_P(v_1) \cap N_P^+(v_\ell) \neq \emptyset$, say $v \in N_P(v_1) \cap N_P^+(v_\ell)$, then $C = v_1 \overrightarrow{P} v^- v_\ell \overleftarrow{P} v v_1$ must be a Hamiltonian cycle, for otherwise,

If $N_P(v_1) \cap N_P^+(v_\ell) = \emptyset$, then since $\delta(G) \ge n/2$, we have

$$|P| \ge |N_P(v_1)| + |N_P^+(v_\ell)| + 1 \ge n/2 + n/2 + 1 = n + 1,$$

which is impossible.

Exercise 3.

1. Use Dijkstra algorithm, compute the distance $d(v_5, v_i)$ for any other v_i .

