تقويم تشخيصي في مادة الرياضيات

مسألة شاملة:

$$f(x) = \frac{\alpha x^2 + \beta x + 1}{1 - x}$$
 بـ $\mathbb{R} - \{1\}$ بـ الكن الدالة f المعرفة على f

حيث α و β عددان حقيقيان و (C_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(c_f; \vec{\imath}; \vec{\jmath})$.

- 1- عين α و β بحيث الدالة تقبل قيمة حدية محلية عند النقطة ذات الفاصلة α و α يشمل النقطة α . A(2; -3)
 - : eta=-1 و lpha=1 : نضع فيما يلي lpha=1
 - 1- احسب نهایات الدالة f عند أطراف مجموعة التعریف ثم فسر النتائج بیانیا .
 - $f(x)=ax+b+rac{c}{1-x}$: و $a=ax+b+rac{c}{1-x}$ عين الأعداد الحقيقية $a=ax+b+rac{c}{1-x}$
 - . استنتج أن (C_f) يقبل مستقيما مقاربا مائلا (Δ) يطلب تعيين معادلة له (C_f) برس الوضع النسبي بين (C_f) و (Δ) .
 - $f'(x) = \frac{x(2-x)}{(1-x)^2}$ فإن: $\mathbb{R} \{1\}$ من $\{1\}$ من اجل كل $\{1\}$ من اجل كل $\{1\}$ من الدالة ثم شكل جدول تغير اتجاه تغير الدالة ثم شكل جدول تغير اتها .
 - الذي المستقيم (Δ) مع المستقيم ω نقطة تقاطع المستقيم المستقيم المقارب العمودي الذي x=1
 - (C_f) هي مركز تناظر لـ (C_f) .
 - . ω النقطة النقطة (C_f) يشمل النقطة -7
 - 8- ارسم کل من(ع) و (Δ).
 - 9- ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد واشارة حلول المعادلتين :

$$f(x) + x = m \dots (1)$$
 $\frac{1}{1-x} = x - m \dots (2)$

- $g(x)=rac{x^2-x+1}{|1-x|}$ لتكن الدالة المعرفة بـ: $g(x)=rac{x^2-x+1}{|1-x|}$ و $g(x)=\frac{x^2-x+1}{|1-x|}$. $D_g=\mathbb{R}-\{1\}$. بين أن
 - . اكتب عبارة g(x) دون رمز القيمة المطلقة
 - . انظر کیف یمکن رسم (C_g) انظلاقا من (C_f) ثم انشنه -3