

CompSize: Automated Size Estimation of Embedded Software Components

Kenneth Lind
Saab Automobile AB/Chalmers University of Technology

Rogardt Heldal, Tony Heimdahl Chalmers University of Technology

Tigran Harutyunyan
University of Gothenburg

Motivation

No of computers in highend cars; Ebert, C, Jones, C, "Embedded Software: Facts, Figures, and Future", IEEE Computer, Apr. 2009, pp. 42-52

New car prices; US Bureau of Labor Statistics, Consumer Price Index (http://www.bls.gov/cpi/)

 Flexibility for future requirements obtained through spare resources like processor capacity and memory space.

Too much spare resources =>
Unnecessary piece cost

Too little spare resources => Premature redesign

Need for decision support!

- Memory size in ECU estimated based on requirement specifications and historical data.
- COSMIC Function Points measured from Component Diagrams and textual requirements.

- Categorization based on factors like (in our domain)
 - —Functionality type
 - —Quality constraints
 - -Methods & tools
- Memory size in ECU estimated within 15% accuracy before application software is available.

Publications

This presentation is based on two publications:

- Lind, K., Heldal, R., Harutyunyan, T., and Heimdahl, T.: CompSize: Automated Size Estimation of Embedded Software Components, Intl. Workshop on Software Measurement (IWSM), Japan, November 3-4, (2011)
- Lind, K., and Heldal, R.: A Model-Based and Automated Approach to Size Estimation of Embedded Software Components, ACM/IEEE 14th Intl. Conf. on Model Driven Engineering Languages and Systems (MoDELS), New Zealand, October 16-21, (2011)

Problem

Manual estimation approach

Requires 2,5 man years in effort for the complete application software in a car!

Problem

- RQ1: "How can UML support in modeling all information needed for automated estimation of Software Code Size?"
- RQ2: "How much manual effort can be saved by modeling all information needed for automated estimation of Software Code Size?"

Solution

Proposed estimation approach

Evaluation

RQ2: "How much manual effort can be saved by modeling all information needed for automated estimation of Software Code Size?"

Comparison of measurement result

Case study conducted by Master students

- Our manual estimations was replicated using the UML Profile
- 0,5 man years (instead of 2,5!) to estimate the size of the complete application software in a car

Results

- We have defined a UML Profile capturing the information needed for memory size estimation.
- We have developed a tool that can import the information captured in the UML Profile.
- Using the UML Profile requires 0,5 man years (instead of 2,5 man years!) to estimate the size of the complete application software in a car.

Backup

Textual Specification

The feature **Shall** be enabled when the calibration CARGO LAMP PRESENT is set true. <END>

If the vehicle power mode is "OFF", and the cargo lights are illuminated, the SYSTEM **Shall** keep the cargo lamps active as long as Inadvertent Load Control power is active. <END>

CUSTOMER "ACTION"	CUSTOMER PERCEIVABLE "OUTPUT"	MAXIMUM LATENCY "ACTION" to "OUTPUT"
INTERIOR ILLUMINATION Lamps Switch On and Vehicle Parked.	Cargo Lamp Illuminates	100 ms

Back to Manual Estimation approach

Component Diagram

Back to Manual Estimation approach

Functional Size Measurement

CompSize

