Math~342W/642/742W

Recitation – Day #9 (3.4.25)

I. Geometric Proof for \mathbb{R}^2	
(i) Define the following terms:	
ullet SST $=$	
ullet SSE $=$	
ullet SSR $=$	
$ullet$ $R^2=$	
(ii) Define what $mean\text{-}centering$ is:	
(iii) Project the mean-centered vector onto the column space of X :	
(iv) Draw an illustration of this projection:	
(v) Using geometric principles, show that $R^2 \in [0, 1]$.	

IV. QR-Decomposition

- (i) What is the goal behind the QR-decomposition/factorization of a matrix? What is accomplished?
- (ii) What is the process that creates the QR-decomposition of a matrix called?
- (iii) How will we now define the orthogonal projection matrix H?

III. QR-Decomposition in Action

Let W be a subspace of \mathbb{R}^4 defined as $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\1\\1\end{bmatrix},\begin{bmatrix}0\\1\\1\\1\end{bmatrix},\begin{bmatrix}0\\0\\1\\1\end{bmatrix}\right\}\right)$. Let V be a 4×3 matrix whose columns are the vectors that span W.

(i) Construct an orthogonal basis for W.

(ii) Find the QR-decomposition(factorization) of V.