RNA Nearest Neighbor Energy Model

and

The Curse of Locality

Milad Miladi

Herzogenhorn, April 2016

Probability of an RNA structure in the ensemble

- BW:
 - Boltzmann Weight
 - Exponential function => exponential scale behaviors!
- Z:
 - Partition function
 - Sum of the Boltzmann weights for the entire ensemble

McCaskill, 1990,

- For a given sequence, efficient methods for:
- 1. partition function (Z)
 - Z(i,j)
 - For all sub-sequences
- 2. **probability of an individual base-pair** in ensemble
 - p(i,j)
 - For all possible pairs
- 3. Visualizing all base-pair probabilities as **dot plot**
 - Area(i,j) = p(i,j) . Unit-Area

Z(1,72)=-25.45 kcal/mol

p(3,68)=0.9

. Part 1: The problem

Target example

• A classic tRNA!

Test 1: Extension

- Di-Nucleotide shuffled genomic context
- tRNA position:
 - close to the center of the extension
 - $\circ\;$ according to a normal distribution
- Target: a base-pair from *the acceptor stem*

Probability of the selected base-pair (by global folding)

- Context-length:
 - Total length of the left and right extensions
- Each time the context is re-shuffled and re-sampled

Test 2: Split

Probability of the selected base-pair (by global folding)

• Each time the context is re-shuffled and re-sampled

Problems

- Locality problem: (extend test)
 - Desired base-pair probabilities easily distorted
 - Specially for the closing stems of multi-loops

- **Anti-locality** problem(?): *(split)*
 - No matter how long a sequence is ..
 - No matter what is inside ..
 - Few distant compatible base-pairs make an strong prediction!

Split example

Split example

12 / 39

(Slide from my talk last month)

What is missing?

Turner?

• Turner energy model should not be that much mad

McCaskill?

• McCaskill algorithm has no heuristics or simplification..

• Part 1: The problem

. Part 2: mmfold

Base pairing probability computation

Irreversibility hypothesis:

- 1. Markov chain of base-pair probabilities is not reversible
- 2. Computing the Markov chain with McCaskill's *outside* algorithm causes the locality problem (to some extend)

mmfold inside algorithm

- Calculating the base-pair probabilities with an inside algorithm
 - 1. Base case: P_Hairpin(a)
 - 2. Inner Loop: P(a | a is closing b)
 - 3. Multiloop: P(a | a is closing multiloop b1, b2, ...)

mmfold implementation

- Implemented in C with fun and pain! :D
- Directly inside cloned Vienna RNA package

- In my spare time (4 weekends + couple of afternoons)
- With a bunch of TODOS!

mmfold alpha: output

\$ mmfold -p -P src/misc/rna_turner2004.par < trna2.fa</pre>

18 / 39

mmfold alpha: output

\$ mmfold -p -P src/misc/rna_turner2004.par < trna2.fa</pre>

19 / 39

mmfold outcome

- My irreversibility hypothesis failed 👎
- Rolf and Martin were right ;-)
- But I also deep learned "Nearest Neighbor Energy Model"!

• Part 1: The problem

• Part 2: mmfold

. Part 3: Quake

Quake example

Quake example

Extend: Turner vs Quake

24/39

Extend: Turner vs Quake (Log scale)

25 / 39

What is Quake?

- RNAfold uses the famous Turner's energy parameters for free energy computations
- It is a new parameter set

RNAfold -p -P src/misc/quake.par

What is Quake?

- RNAfold uses the famous Turner's energy parameters for free energy computations
- It is a new parameter set

```
RNAfold -p -P src/misc/quake.par
```

- Not really!
- It is Turner's params except one param:
 - Unpaired nucleotide penalty of a multiloop region

Turner vs Quake

• Turner:

```
milad-Latitude:> ~/Downloads/ViennaRNA-2.2.4/misc
$ grep "ML" -A 3 rna turner*
rna_turner1999.par:# ML_params
rna turner1999.par-/* F = cu*n unpaired + cc + ci*loop degree (+TermAU) */
rna turner1999.par-/*
                     cu cu dH
                                      cc
                                              cc_dH
                                                          ci
                                                               ci_dH */
rna turner1999.par-
                            0
                                    0
                                          340
                                                   0
                                                          40
                                                                   0
rna turner2004.par:# ML params
rna turner2004.par-
                                0
                                      930
                                             3000
                                                     -90
                                                            -220
rna turner2004.par-
```

• Quake:

```
/* F = cu*n_unpaired + cc + ci*loop_degree (+TermAU) */
/* cu cu_dH cc cc_dH ci ci_dH */
50 0 930 3000 -190 -220
```

- Part 1: The problem
- Part 2: mmfold
- Part 3: Quake
- Part 4: Quake Evaluation

Localfold CisReg dataset, Context 0

Localfold CisReg dataset, Context 200

(Slide from my talk last month)

What is missing?

Turner?

• Turner energy model should not be that much mad

McCaskill?

• McCaskill algorithm has no heuristics or simplification..

Update:

- Well the Turner energy model is not mad but highly overfitted to positive set of RNA strands, with nice boundaries
- For multiloop parameters (at least)
- More precisely the dynamic programming variation of Turner model is overfitted

RNA Dotplots,

McCaskill

and the curse of Locality