На рисунке 1 изображен исходный граф №3

Рис. 1. Исходный граф №3

На рисунке 2 выбрано произвольное остовное дерево графа №3.

Рис. 2. Произвольное остовное дерево графа №3

Система фундаментальных циклов

Теперь, для всех фундаментальных циклов, порождаемых данным деревом, найдём характеристические векторы.

Всего в графе существует 12 - 7+1=6 фундаментальных (базисных) циклов, т.к. мы имеем всего 12 дуг и 7 вершин в исходном графе.

Построим множество $\left\{\delta^k(\tau,\rho), (\tau,\rho)^k \in U^k \backslash U_T^k\right\}$ характеристических векторов относительно выбранного покрывающего дерева.

Соответствующая матрица базисных циклов будет иметь следующий вид:

Вышеуказанная таблица может быть использована для определения базисных векторов (т.е. характеристических векторов базисных циклов) графа №3.

Пусть $C = \{(1,7), (7,5), (5,3), (3,1)\}$ — некоторый цикл в нашем графе №3. Тогда он может быть представлен в виде линейной комбинации базисных векторов.

Таблица 1. Характеристические векторы базисных циклов относительно U_T и характеристический вектор цикла C

(i,j)	$\delta_{ij}(1,7)$	$\delta_{ij}(3,6)$	$\delta_{ij}(4,7)$	$\delta_{ij}(5,3)$	$\delta_{ij}(6,1)$	$\delta_{ij}(6,4)$	$\delta_{ij}(C)$
(1,7)	1	0	0	0	0	0	1
(2,3)	1	1	0	-1	-1	0	0
(2,6)	0	-1	0	0	1	1	0
(3,1)	1	0	0	0	-1	0	1
(3,6)	0	1	0	0	0	0	0
(4,2)	0	0	-1	0	0	1	0
(4,7)	0	0	1	0	0	0	0
(5,2)	1	0	1	-1	0	0	0
(5,3)	0	0	0	1	0	0	1
(6,1)	0	0	0	0	1	0	0
(6,4)	0	0	0	0	0	1	0
(7,5)	1	0	0	0	0	0	1

$$\delta(C) = \delta_{1,7}(C)\delta(1,7) + \delta_{3,6}(C)\delta(3,6) + \delta_{4,7}(C)\delta(4,7) + \delta_{5,3}(C)\delta(5,3) + \delta_{6,1}(C)\delta(6,1) + \delta_{6$$

$$+\delta_{6,4}(C)\delta(6,4) = \begin{pmatrix} 1\\1\\0\\1\\0\\0\\0\\0\\1 \end{pmatrix} + \begin{pmatrix} 0\\-1\\0\\0\\0\\-1\\0\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0\\0\\-1\\1\\0\\0\\0\\0\\1 \end{pmatrix}.$$

Фундаментальные или базисные разрезы

Построим характеристические векторы базисных разрезов. Характеристический вектор произвольного разреза CC(I') может быть представлен в виде линейной комбинации базисных разрезов, где $I' = \{1, 5, 6, 7\}$:

$$\begin{split} CC^+(I') &= \{(5,2), (5,3), (6,4)\}, \\ CC^-(I') &= \{(2,6), (3,1), (3,6), (4,7)\}, \\ CC(I') &= \{(5,2), (5,3), (6,4), -(2,6), -(3,1), -(3,6), -(4,7)\}. \end{split}$$

Таблица 2. Характеристические векторы относительно U_T

(i,j)	$\tilde{\delta}_{ij}(2,3)$	$\tilde{\delta}_{ij}(2,6)$	$\tilde{\delta}_{ij}(3,1)$	$\tilde{\delta}_{ij}(4,2)$	$\tilde{\delta}_{ij}(5,2)$	$\tilde{\delta}_{ij}(7,5)$	$\tilde{\delta}_{ij}(CC(I'))$
$\boxed{(1,7)}$	-1	0	-1	0	-1	-1	0
(2,3)	1	0	0	0	0	0	0
(2,6)	0	1	0	0	0	0	-1
(3,1)	0	0	1	0	0	0	-1
(3,6)	-1	1	0	0	0	0	-1
(4,2)	0	0	0	1	0	0	0
(4,7)	0	0	0	1	-1	-1	-1
(5,2)	0	0	0	0	1	0	1
(5,3)	1	0	0	0	1	0	1
$\boxed{(6,1)}$	1	-1	1	0	0	0	0
(6,4)	0	-1	0	-1	0	0	1
(7,5)	0	0	0	0	0	1	0

Тогда вектор разреза:

Поток в сети

В качестве источника возьмём вершину 1, а в качестве стока возьмём вершину 7. Тогда математическая модель потока будет иметь вид:

$$x_{1,7} - x_{3,1} - x_{6,1} = -1,$$

$$x_{2,3} + x_{2,6} - x_{4,2} - x_{5,2} = 2,$$

$$x_{3,1} + x_{3,6} - x_{2,3} - x_{5,3} = 3,$$

$$x_{4,2} + x_{4,7} - x_{6,4} = 4,$$

$$x_{5,2} + x_{5,3} - x_{7,5} = 5,$$

$$x_{6,1} + x_{6,4} - x_{2,6} - x_{3,6} = -6,$$

$$x_{7,5} - x_{1,7} - x_{4,7} = -7.$$

Корневое дерево

Алгоритм 1 Процедура нахождения узлов поддерева с корнем в узле i

```
k \leftarrow \operatorname{depth}[i]

j \leftarrow \operatorname{thread}[i]

while \operatorname{depth}[j] > k do

j \leftarrow \operatorname{thread}[j]

end while
```

На рисунке 3 изображено корневое дерево графа \mathbb{N}^2 3 с корнем в узле 1.

Рис. 3. Корневое дерево G_0 графа №3 с корнем в узле 1

Таблица 3. - списковые структуры для дерева G_0

Структура / Узел і	1	2	3	4	5	6	7
$pred = \{pred[i], i = \overline{1, V_0 } \}$	-1	3	1	2	2	2	5
$depth = \{depth[i], i = \overline{1, V_0 } \}$	0	2	1	3	3	3	4
$thread = \{thread[i], i = \overline{1, V_0 } \}$	3	4	2	5	7	1	6