RS/Conference2019

San Francisco | March 4-8 | Moscone Center

SESSION ID: CRYP-F02

Revisiting the Secret Hiding Assumption Used in Verifiable (Outsourced) Computation

Liang Zhao

Assistant Professor Sichuan University, China

Agenda of My Presentation

- 1 Background Information
- 2 Attack Strategy
- 3 Analysis for the Decisional Secret Hiding Assumption
- 4 Privacy Analysis for Atallah-Frikken Protocols
- (5) Experimental Verification

- 1 Background Information
- 2 Attack Strategy
- (3) Analysis for the Decisional Secret Hiding Assumption
- 4 Privacy Analysis for Atallah-Frikken Protocols
- 5 Experimental Verification

#RSAC

• The general scenario about the reasonable outsourcing computation:

The considered Privacy-preserving Verifiable (outsourced) Computation (PVC): Interesting in the input of the computation? expensive and sensitive computation Resource-**Powerful Server** constrained Client returned result The result can be accepted?

 Atallah and Frikken proposed a new hardness assumption called the Secret Hiding assumption (SH) at ACM AsiaCCS 2010 [Atallah & Frikken'10]

- Two concrete versions:
 - ✓ Weak SH assumption (WSH)
 - ✓ Strong SH assumption (SSH)

What is the WSH/SSH assumption ?

What is the WSH/SSH distribution?

Row vectors d_1 , d_2 , ..., $d_{(\lambda+1)/(\lambda+e+1)}$

Uniformly random matrix $A \in \mathbb{Z}_p^{m \times \lambda}$

$$\begin{aligned} \mathbf{K} &\in Z_p^{\lambda \times (\lambda+1)/(\lambda+e+1)}, \\ \text{where } \mathbf{k}_r &= [k_r k_r^2 \dots k_r^{\lambda}]^T, \\ \text{where } k_r &\in Z_p^*, r \in [(\lambda+1)/(\lambda+e+1)] \end{aligned}$$

Choose some row vectors $u_1, u_2, \dots, u_{\lambda/(\lambda+e+1)}$ uniformly at random, where $u_r \in \mathbb{Z}_p^m$

R =

Combine $d_1, d_2, \dots, d_{(\lambda+1)/(\lambda+e+1)}$ with

 $u_1, u_2, \dots, u_{\lambda/(\lambda+e+1)}$ to generate an $n \times m$ matrix R, and permute the rows of R, where $n \in \{2\lambda+1, 2\lambda+2e+2\}$

Decision: Does R look random?

Search: given R, find $k_1, k_2, \dots, k_{(\lambda+1)/(\lambda+e+1)}$ or A

NOTE:

- The decisional-WSH is the same as the decisional-SSH
- ② The search-WSH is to find $k_1, k_2, ..., k_{(\lambda+1)}$ or A. The search-SSH is to find $k_1, k_2, ..., k_{(\lambda+e+1)}$ or A

WSH/SSH Assumption:

No polynomial-time adversary can solve the decisional and search WSH/SSH problem

- Atallah and Frikken proposed some WSH/SSH-based PVC protocols for matrix multiplication
- The idea of the PVC protocols:

Row vectors d_1 , d_2 , ..., $d_{(2\lambda+1)}$, where $d_r \in Z_p^{2v^2}$

matrix $A \in \mathbb{Z}_n^{2v^2 \times \lambda}$

 $K \in Z_p^{\lambda \times (2\lambda+1)}$, where $k_r =$ $[k_r k_r^2 ... k_r^{\lambda}]^T$, where $k_r \in Z_p^*, r \in [2\lambda + 1]$

For two $v \times v$ matrices M_1 and M_2 , use each vector d_r to mask them, and generate $2\lambda + 1$ matrix pairs $(C_1(k_1), C_2(k_1)), (C_1(k_2), C_2(k_2)), ... (C_1(k_{2\lambda+1}), C_2(k_{2\lambda+1}))$

 $C_1(k_r)||C_2(k_r)$

 d_r

 $M_1 || M_2$

The Two-Server Case: Choose $2\lambda \ v \times v$ uniformly random matrices $B_1, B_2, ..., B_{2\lambda}$ to create λ pairs $(B_1, B_2), ..., (B_{2\lambda-1}, B_{2\lambda})$. Send λ pairs $(C_1(k_1), C_2(k_1)), (C_1(k_2), C_2(k_2)), ..., (C_1(k_{\lambda}), C_2(k_{\lambda}))$ to the first server. Combine $(B_1, B_2), ..., (B_{2\lambda-1}, B_{2\lambda})$ with $(C_1(k_{\lambda+1}), C_2(k_{\lambda+1})), ..., (C_1(k_{2\lambda+1}), C_2(k_{2\lambda+1}))$ to generate $2\lambda + 1$ matrix pairs and permute these matrix pairs. Send the $2\lambda + 1$ permuted matrix pairs to the second server

The Single-Server Case: Choose $(4\lambda+2)$ $v\times v$ uniformly random matrices $B_1,B_2,...,B_{4\lambda+2}$ to create $2\lambda+1$ pairs $(B_1,B_2),...,(B_{4\lambda+1},B_{4\lambda+2})$. Combine $(B_1,B_2),...,(B_{4\lambda+1},B_{4\lambda+2})$ with $(C_1(k_1),C_2(k_1)),...,(C_1(k_{2\lambda+1}),C_2(k_{2\lambda+1}))$ o generate $4\lambda+2$ matrix pairs and permute these matrix pairs. Send the $4\lambda+2$ permuted matrix pairs to a server

The Two-Server Case: Send back the products of all matrix pairs computed by the two servers. Choose some products corresponding to M_1 and M_2 , and interpolate these products to find the real result of M_1M_2

The Single-Server Case: Send back the products of all matrix pairs computed by a server. Choose some products corresponding to M_1 and M_2 , and interpolate these products to find the real result of M_1M_2

Theorems:

The Two-Server Case: Assume that the two servers do not collude and the decisional-WSH assumption holds. Then, the PVC protocol for matrix multiplication is private
The Single-Server Case: Assume that the decisional-SSH assumption holds. Then, the PVC protocol for matrix multiplication is private

- 1 Background Information
- 2 Attack Strategy
- (3) Analysis for the Decisional Secret Hiding Assumption
- 4 Privacy Analysis for Atallah-Frikken Protocols
- 5 Experimental Verification

#RSAC

Attack Strategy

For a matrix X from either the WSH/SSH distribution or uniformly random, how to evaluate it using some special factor?

Strategy Overview:

- \bigcirc Compute the rank of X
- 2 Check whether the rank of X is below some value or not below this value

If the rank of X is below some value, X is sampled from the WSH/SSH distribution; otherwise, X is sampled from the uniform distribution

Attack Strategy

Why the rank-based analysis works?

- Fact 1: If some row vectors in X are linearly dependent, all the row vectors of X are linearly dependent
- ② Fact 2: For a matrix X sampled from the uniform distribution, with high probability, all the row vectors of X are linearly independent

- 1 Background Information
- 2 Attack Strategy
- 3 Analysis for the Decisional Secret Hiding Assumption
- 4 Privacy Analysis for Atallah-Frikken Protocols
- 5 Experimental Verification

#RSAC

Analysis for the Decisional Secret Hiding Assumption

• The used game: **Public** parameters **Adversary** Challenger Choose a bit $b \in_R \{0, 1\}$ If b = 1, a matrix X_b is sampled from the WSH/SSH distribution; Guess X_b using the If b = 0, a matrix X_h rank-based analysis is sampled from the uniform distribution X_b Output $b' \in \{0, 1\}$ $b' \stackrel{?}{=} b$ If b' = b, adversary wins; else, adversary loses

Analysis for the Decisional Secret Hiding Assumption

A significant motivation:

Analysis for the Decisional Secret Hiding Assumption

For the $n \times m$ matrix X_b :

- 1 Background Information
- 2 Attack Strategy
- (3) Analysis for the Decisional Secret Hiding Assumption
- 4 Privacy Analysis for Atallah-Frikken Protocols
- 5 Experimental Verification

#RSAC

Privacy Analysis for Atallah-Frikken Protocols

A significant motivation:

The rank $< \lambda + 1$

- ① $2v^2 \times (\lambda + 1)/(2\lambda + 1)$ matrix $S = [s_1, s_1, ... s_1]$, where $s_1 \leftarrow_R Z_p^{2v^2}$
- ② $2v^2 \times (\lambda + 1)/(2\lambda + 1)$ zero matrix $\frac{\mathbf{Z}}{\mathbf{Z}}$

Privacy Analysis for Atallah-Frikken Protocols

For a COA-adversary (COA: Ciphertext-Only Attack):

- \checkmark choose a matrix pair $(M_{1(0)}, M_{2(0)}) \leftarrow_R Z_p^{v \times v} \times Z_p^{v \times v}$ and a zero matrix pair $(M_{1(1)}, M_{2(1)})$
- use the rank-based analysis for the guess

- 1 Background Information
- 2 Attack Strategy
- 3 Analysis for the Decisional Secret Hiding Assumption
- 4 Privacy Analysis for Atallah-Frikken Protocols
- **(5)** Experimental Verification

#RSAC

Experimental Verification

- Hardware and Software:
 - ✓ Lenovo ThinkStation (Intel(R) Xeon(R) E5-2620, 24 hyperthreaded cores at 2.00GHz, 8GB RAM at 2.00GHz)
 - ✓ Windows (Windows 7, x64 64)
 - ✓ NTL library version 10.5.0
- Parameters Choice:
 - $\checkmark \lambda \in \{80, 128, 192, 256\}$
 - \checkmark *e* = *h* = λ, *n* ∈ {2λ + 1, 2λ + 2*e* + 2}, *m* ∈ {2λ + 1,3λ + 1,4λ + 2}, *p* > 4λ + 2
- Result:
 - ✓ Adversary's advantage
 - ✓ Cost

Experimental Verification

The experimental results confirm:

- ✓ Adversary can efficiently break the decisional WSH/SSH assumption with high advantage (i.e., adv.=0.5)
- ✓ COA-adversary can efficiently break the privacy of Atallah-Frikken PVC Protocols with high advantage (i.e., adv.=0.5)

Breaking the decisional WSH/SSH assumption

Our work

Our work

Our work

OF Atallah-Frikken

PVC Protocols

Breaking the search variant of the WSH/SSH assumption

Summary

Break the decisional WSH/SSH assumption

Break the privacy of Atallah-Frikken PVC Protocols for matrix multiplication

Give some experimental results to support the theoretical argument

Thank you!! Any question?

E-mail: zhaoliangjapan@scu.edu.cn

