1. Estadística Descriptiva Unidimensional

- 1. Sea X: no de cigarrillos consumidos diariamente:
 - a) Frecuencias relativas y acumuladas. Columnas 3-5 de la siguiente tabla.
 - b) Marcas de clase y amplitud de los intervalos. Columnas 6-7 de la siguiente tabla.

I_i	n_i	f_i	N_i	F_i	x_i	a_i
[1,4]	5	0.05	5	0.05	2.5	3
(4,6]	8	0.08	13	0.13	5	2
(6,10]	15	0.15	28	0.28	8	4
(10,15]	35	0.35	63	0.63	12.5	5
(15,20]	24	0.24	87	0.87	17.5	5
(20,40]	11	0.11	98	0.98	30	20
(40,80]	2	0.02	100	1	60	40

2. Sea X: no de alumnos que estuvieron ausentes:

Tabla de frecuencias:

x_i	n_i	f_i	N_i	F_i
0	6	0.15	6	0.15
1	14	0.35	20	0.50
2	9	0.225	29	0.725
3	6	0.15	35	0.875
4	3	0.075	38	0.95
5	1	0.025	39	0.975
6	1	0.025	40	1

3. Sea X: tiempo en horas que dedican los estudiantes de una universidad a actividades en horas libres: Tabla de frecuencias:

I_i	n_i	f_i	N_i	F_i	x_i	a_i
[8,12]	5	0.0625	5	0.0625	10	4
(12,16]	15	0.1875	20	0.25	14	4
(16,20]	23	0.2875	43	0.5375	18	4
(20,24]	20	0.25	63	0.7875	22	4
(24,28]	9	0.1125	72	0.9	26	4
(28,32]	6	0.075	78	0.975	30	4
(32,36]	1	0.0125	79	0.9875	34	4
(36,40]	1	0.0125	80	1	38	4

4. Sea X: n° de personas activas en un grupo de familias: Tabla de frecuencias:

x_i	n_i	f_i	N_i	F_i
1	16	0.32	16	0.32
2	21	0.42	37	0.74
3	8	0.16	45	0.9
4	5	0.1	50	1

- 5. Sea X: gasto semanal en ocio de un grupo de estudiantes universitarios:
 - a) Tabla de frecuencias:

I_i	n_i	f_i	N_i	F_i	x_i	a_i
[0,10]	4	0.0597	4	0.0597	5	10
(10,20]	11	0.1642	15	0.2239	15	10
(20,30]	16	0.2388	31	0.4627	25	10
(30,40]	22	0.3284	53	0.7911	35	10
(40,50]	8	0.1194	61	0.9105	45	10
(50,60]	6	0.0896	67	1	55	10

- b) Hay un 46.27% de individuos que gasta semanalmente 30 o menos euros en ocio. Hay un 56.72% de individuos que gasta semanalmente entre 20 y 40 euros en ocio. Hay un 47.17% de individuos que gasta semanalmente más de 32 euros en ocio.
- 6. Sea X: capacidad hotelera: Tabla de frecuencias:

I_i	n_i	f_i	N_i	F_i	x_i	a_i
[0,10]	25	0.1667	25	0.1667	5	10
(10,30]	50	0.3333	75	0.5	20	20
(30,60]	55	0.3667	130	0.8667	45	30
(60,100]	20	0.1333	150	1	80	40

- a) Hay un 70% de hoteles que disponen entre 10 y 60 plazas.
- b) Hay 75 hoteles que tienen 30 o menos plazas.
- c) Las marcas de clase están en la columna 6.
- d) $\frac{15}{20}$ 0,3333 + $\frac{20}{30}$ 0,3667 = 0,4944

Hay un $49.44\,\%$ de hoteles que tienen entre 15 y 50 plazas. Se consideran que dentro de los intervalos las observaciones se reparten linealmente.

- 7. Sea X: n° de empleados que hay en una serie de sucursales:
 - a) Tabla de frecuencias:

x_i	n_i	f_i	N_i	F_i
9	2	0.04	2	0.04
10	4	0.08	6	0.12
11	11	0.22	17	0.34
12	9	0.18	26	0.52
13	5	0.1	31	0.62
14	3	0.06	34	0.68
15	6	0.12	40	0.8
16	5	0.1	45	0.9
17	2	0.04	47	0.94
18	2	0.04	49	0.98
19	1	0.02	50	1

- b) Hay un $20\,\%$ de sucursales que tienen más de 15 empleados.
- 8. Completar la tabla

$I_i = (e_{i-1}, e_i]$	n_i	N_i	f_i	F_i	x_i	a_i	h_i
[120,300]	2	2	0.01	0.01	210	180	0.0111
(300,400]	6	8	0.03	0.04	350	100	0.06
(400,500]	16	24	0.08	0.12	450	100	0.16
(500,600]	26	50	0.13	0.25	550	100	0.26
(600,800]	44	94	0.22	0.47	700	200	0.22
(800,1050]	25	119	0.125	0.595	925	250	0.1
(1050,1300]	22	141	0.11	0.705	1175	250	0.088
(1300,1800]	30	171	0.15	0.855	1550	500	0.06
(1800,2300]	17	188	0.085	0.94	2050	500	0.034
(2300,5300]	12	200	0.06	1	3800	3000	0.004

9. Sea X:

x_i	n_i	f_i	F_i
2	8	0.1702	0.1702
3	7	0.1489	0.3191
4	9	0.1915	0.5106
5	8	0.1705	0.6811
6	7	0.1489	0.83
7	8	0.1705	1

- a) $\bar{x} = 4,4894$
- b) Mo = 4
- c) Me = 4
- d) $Q_1 = 3$, $Q_2 = 4$ y $Q_3 = 6$
- e) $D_1 = 2 \text{ y } D_8 = 6$
- $f) P_{11} = 2 y P_{81} = 6$

10. Sea X:

I_i	n_i	f_i	F_i	x_i	a_i
[0,6]	2	0.0909	0.0909	3	6
(6,16]	10	0.4545	0.5454	11	10
(16,18]	6	0.2727	0.8181	17	2
(18,22]	0	0	0.8181	20	4
(22,28]	4	0.1818	1	25	6

- a) Rango = 28
- b) $Q_1 \in (6, 16], Q_1 = 6 + \frac{0.25 0.0909}{0.4545} 10 = 9,5006$ $Q_3 \in (16, 18], Q_3 = 16 + \frac{0.75 0.5454}{0.2727} 2 = 17,5006$ RIQ = 17,5006 - 9,5006 = 8
- c) $\sigma^2 = 39,3388, \ \sigma = 6,2721, \ CV = \frac{6,2721}{14,4545} = 0,4339$

11. Sea X:

I_i	n_i	f_i	F_{i}	x_i	a_i
[3,5]	3	0.1034	0.1034	4	2
(5,7]	8	0.2759	0.3793	6	2
(7,9]	5	0.1724	0.5517	8	2
(9,11]	7	0.2414	0.7931	10	2
(11,13]	6	0.2069	1	12	2

- Media: $\bar{x} = 8,3448$
- Moda: $I_{Mo} = (5, 7], Mo = 5 + \frac{8-3}{(8-3)+(8-5)}2 = 6,25$
- \blacksquare Mediana: $I_{Me}=(7,9],\,Me=7+\frac{0,5-0,3793}{0,1724}2=8,4002$
- Primer cuartil: $Q_1 \in (5,7], Q_1 = 5 + \frac{0.25 0.1034}{0.2759} 2 = 6.0627$
- Tercer cuartil: $Q_3 \in (9,11], Q_3 = 9 + \frac{0.75 0.5517}{0.2414} = 10.6429$
- Decil segundo: $D_2 \in (5,7], D_2 = 5 + \frac{0.2 0.1034}{0.2759} 2 = 5,7003$
- \blacksquare Decil noveno: $D_9 \in (11,13], \, D_9 = 11 + \frac{0.9 0.7931}{0.2069} 2 = 12{,}0333$
- Percentil 32: $P_{32} \in (5,7]$, $P_{32} = 5 + \frac{0.32 0.1034}{0.2759} 2 = 6.5701$ Percentil 77: $P_{77} \in (9,11]$, $P_{77} = 9 + \frac{0.77 0.5517}{0.2414} 2 = 10.8086$

12. Sea X: alquiler mensual para una zona de Cádiz

I_i	f_i	F_i	x_i	a_i	h_i	$x_i f_i$
[120,180]	0.10	0.10	150	60	0.0017	15
(180,240]	0.15	0.25	210	60	0.0025	31.5
(240,360]	0.35	0.6	300	120	0.0029	105
(360,480]	0.10	0.7	420	120	0.0008	42
(480,720]	0.15	0.85	600	240	0.0006	90
(720,1200]	0.15	1	960	480	0.0003	144

a) • Mediana:
$$I_{Me} = (240, 360], Me = 240 + \frac{0.5 - 0.25}{0.35} 120 = 325,7143$$
 euros

- Percentil 20: $P_{20} \in (180, 240], P_{20} = 180 + \frac{0,2-0,10}{0.15}60 = 220$ euros
- Percentil 70: $P_{70} \in (360, 480], P_{70} = 480 \text{ euros}$
- b) Alquiler medio: $\bar{x} = 427.5$ euros
- c) Moda: $I_{Mo} = (240, 360], Mo = 240 + \frac{0.0029 0.0025}{(0.0029 0.0025) + (0.0029 0.0008)} 120 = 259.2$ euros
- 13. • Considerando intervalos de amplitud igual a 5.

I_i	n_i	x_i	f_i	F_{i}	a_i	h_i
[40,45]	8	42.5	0.2286	0.2286	5	1.6
(45,50]	3	47.5	0.0857	0.3143	5	0.6
(50,55]	8	52.5	0.2286	0.5429	5	1.6
(55,60]	4	57.5	0.1143	0.6572	5	0.8
(60,65]	7	62.5	0.2	0.8572	5	1.4
(65,70]	5	67.5	0.1429	1	5	1

- a) Media $\bar{x} = 54.5$
- b) Mediana: $I_{Me} = (50, 55], Me = 50 + \frac{0.5 0.3143}{0.2286}5 = 54,0617$ c) Moda: $I_{Mo} = (40, 45], Mo = 40 + \frac{1.6 0}{(1.6 0) + (1.6 0.6)}5 = 43,0769$ $I_{Mo} = (50, 55], Mo = 50 + \frac{1.6 0.6}{(1.6 0.6) + (1.6 0.8)}5 = 52,7778$
- Considerando intervalos de amplitud igual a 10.

I_i	n_i	x_i	f_i	F_{i}	a_i	h_i
[40,50]	11	45	0.3143	0.3143	10	1.1
(50,60]	12	55	0.3429	0.6572	10	1.2
(60,70]	12	65	0.3429	1	10	1.2

- a) Media $\bar{x} = 55,2857$
- b) Mediana: $I_{Me} = (50, 60], Me = 50 + \frac{0.5 0.3143}{0.3429} 10 = 55,4167$ c) Moda: $I_{Mo} = (50, 60], Mo = 50 + \frac{1.2 1.1}{(1.2 1.1) + (1.2 1.2)} 10 = 60$ $I_{Mo} = (60, 70], Mo = 60 + \frac{1.2 1.2}{(1.2 1.2) + (1.2 0)} 10 = 60$
- 14. Sea X: peso

I_i	n_i	f_{i}	F_{i}	a_i
[10,12]	4	0.1	0.1	2
(12,14]	7	0.175	0.275	2
(14,16]	13	0.325	0.6	2
(16,18]	10	0.25	0.85	2
(18,20]	6	0.15	1	2

- a) Media: $\bar{x} = 15.35$; desviación típica: $\sigma = 2.3617$
- b) Hay 40 observaciones, por lo que los 20 pesos centrales corresponderán con los cuartiles primero y tercero.

Primer cuartil:
$$Q_1 \in (12,14]$$
, $Q_1 = 12 + \frac{0.25 - 0.1}{0.175}2 = 13,7143$
Tercer cuartil: $Q_3 \in (16,18]$, $Q_3 = 16 + \frac{0.75 - 0.6}{0.25}2 = 17,2$

Tercer cuartil:
$$Q_3 \in (16, 18], Q_3 = 16 + \frac{0.75 - 0.6}{0.25} = 17.2$$

Los veinte pesos centrales se encuentran entre los valores (13.7143, 17.2)

15. Completar la tabla:

$I_i = (e_{i-1}, e_i]$	n_i	N_i	f_i	F_{i}	x_i	a_i	h_i
[20,50]	10	10	0.08	0.08	35	30	0.3333
(50,60]	4	14	0.032	0.112	55	10	0.4
(60,70]	16	30	0.128	0.24	65	10	1.6
(70,80]	26	56	0.208	0.448	75	10	2.6
(80,100]	44	100	0.352	0.8	90	20	2.2
(100,150]	25	125	0.2	1	125	50	0.5

$$\blacksquare$$
 Mediana: $I_{Me}=(80,100],\,Me=80+\frac{0.5-0.448}{0.352}20=82,9545$

■ Moda:
$$I_{Mo} = (70, 80], Mo = 70 + \frac{(2, 6-1, 6)}{(2, 6-1, 6) + (2, 6-2, 2)} 10 = 77,1429$$

16. a) Completar la tabla:

x_i	n_i	N_i	f_i
1	2	2	0.04
2	4	6	0.08
3	8	14	0.16
4	6	20	0.12
5	10	30	0.20
6	5	35	0.10
7	10	45	0.2
8	5	50	0.10

b) • Media:
$$\bar{x} = 4.96$$

■ Desviación típica:
$$\sigma = 1,9795$$

17. Sea X: coeficiente intelectual

I_i	n_i	f_i	F_i	a_i
[60,70]	2	0.0167	0.0167	10
(70,80]	3	0.025	0.0417	10
(80,90]	25	0.2083	0.25	10
(90,100]	46	0.3833	0.6333	10
(100,110]	35	0.2917	0.925	10
(110,120]	5	0.0417	0.9667	10
(120,130]	3	0.025	0.9917	10
(130,140]	1	0.0083	1	10

a) La puntuación máxima de un alumno no apto será el
$$P_5$$
 $P_5 \in (80,90], P_5 = 80 + \frac{0,05-0,0417}{,2083}10 = 80,3985$

$$b)$$
 El $50\,\%$ central de las notas estará entre los cuartiles primero y tercero.

Primer cuartil:
$$Q_1 = 90$$

Tercer cuartil:
$$Q_3 \in (100, 110], Q_3 = 100 + \frac{0.75 - 0.6333}{0.2917}10 = 104,0007$$

c)
$$0.025\frac{6}{10} + 0.0083 = 0.0233$$
, un 2.33% .

d)
$$0.3833\frac{8}{10} + 0.2917 + 0.0417\frac{4}{10} = 0.6150$$
. Un 61,5%.

[■] Moda: 5 y 7, porque los dos valores tienen igual frecuencia absoluta máxima igual a 10.

18. Sea X: no de cajas embaladas

I_i	n_i	f_i	F_i	a_i
[350,400]	18	0.24	0.24	50
(400,450]	15	0.2	0.44	50
(450,500]	23	0.3067	0.7467	50
(500,600]	10	0.1333	0.88	100
(600,700]	9	0.12	1	100

■ Los empleados que recibirán la bonificación de 90 euros, son los que se encuentran en el tercer cuartil.

Tercer cuartil: $Q_3 \in (500, 600], Q_3 = 500 + \frac{0.75 - 0.7467}{0.1333}100 = 502,4756$

Entonces, recibirán la bonificación los empleados que embalen al menos 503 cajas.

- Recibirán alguna bonificación la mitad de los empleados. Por tanto, calculamos la mediana. Mediana: $I_{Me}=(450,500],\ Me=450+\frac{0.5-0.44}{0.3067}50=459,7815.$ Todo empleado que embale más de 459 cajas recibirá una bonificación.
- 19. La media será más representativa en la ruta que tenga menor coeficiente de variación.
 - Por el centro: $CV_c = \frac{2}{11} = 0.1818$
 - Por la autopista: $CV_a = \frac{6}{11} = 0.5455$

Luego, la media es más representativa por el centro.

20. Sea X: edad de los enfermos.

$I_i = (e_{i-1}, e_i]$	n_i	f_i	F_i	x_i	a_i	h_i
[10,30]	15	0.1	0.1	20	20	0.75
(30,40]	22	0.1467	0.2467	35	10	2.2
(40,50]	48	0.32	0.5667	45	10	4.8
(50,60]	40	0.2667	0.8334	55	10	4
(60,90]	25	0.1667	1	75	30	0.8333

- a) Moda: $I_{Mo} = (40, 50], Mo = 40 + \frac{4,8-2,2}{(4,8-2,2)+(4,8-4)} 10 = 47,6471$
- b) El $30\,\%$ central de los individuos tendrán unas edades que estarán comprendidas entre el percentil 35 y 65.

Percentil 35: $P_{35} \in (40, 50], P_{35} = 40 + \frac{0.35 - 0.2467}{0.32}10 = 43,2281$

Percentil 65: $P_{65} \in (50, 60], P_{65} = 50 + \frac{0.65 - 0.5667}{0.2667} 10 = 53,1234$

- Primer cuartil: $Q_1 \in (40, 50]$, $Q_1 = 40 + \frac{0.25 0.2467}{0.32} 10 = 40,1031$ Tercer cuartil: $Q_3 \in (50, 60]$, $Q_3 = 50 + \frac{0.75 0.5667}{0.2667} 10 = 56,8729$
 - \blacksquare RIQ = 56.8729 40.1031 = 16.7698
 - Desviación típica: $\sigma = 15,4966$