Stacking and balancing casual causality

Calvin Y.-R. Chen Imperial College London 17.11.2023 Kindai University

Stacking and balancing casual causality

based on 2112.05031 & 2309.04534 in collaboration with C. de Rham, A. Margalit, A. J. Tolley

Motivation: EFTs of Gravity

Effective field theory of gravity

The **UV completion** of GR is unknown (please let me know if you do!), but we can write down a **generic effective action**.

Einstein-Hilbert +

Full **effective action** (redundantly parameterised):

Question: Are all these terms physical?

RG flow

RG flow

UV imprints on IR

Causality

Example: Consistency and Causality

Illustrative example on flat space: Goldstone

$$\mathcal{L} = -\frac{1}{2}(\partial \phi)^2 + g(\partial \phi)^4 + \dots$$

In known UV completions, always find g > 0. Coincidence...?

...No! Propagation speed of perturbations about backgrounds $\ ar{\phi} = c_{lpha} x^{lpha}$

$$v^{2} = 1 - g \frac{4(c_{\alpha}p^{\alpha})^{2}/|\mathbf{p}|^{2}}{1 - 2gc_{\alpha}u^{\alpha}}$$

So g>0 directly linked to **subluminal** propagation speed of perturbations! [Adams et al. '06]

→ Consistent with **positivity bounds**. Caveat: More subtle with **dynamical gravity** – technical and conceptual challenges!

[Cheung and Remmen '17]
[Alberte, de Rham, Jaitly, and Tolley '20]
[Tokuda, Aoki, and Hirano '20]
etc.

Goal: Use causality to identify consistent gravitational EFTs

Causality and Curved Spacetime

Causality and Time Delays

In gravitational EFTs, field redefinitions can change light cone structure

so propagation speeds are not invariant: (Sub-)luminal propagation not meaningful criterion.

ightharpoonup Rephrase causality in terms of **time delay** ΔT : Assume spacetime is **asymptotically flat** and has causal **Killing vector** $k = \partial/\partial t$ associated with a conserved energy $E = -k \cdot u$

Eisenbud-Wigner Time Delay

Consider generic incoming wave packet and outgoing wave packet that differs by only by a **time delay**

$$|\text{in}, g\rangle = \int_0^\infty \frac{dE}{2\pi} g(E) \hat{a}_E^{\text{in}\dagger} |\text{vac}\rangle, \quad |\text{out}, g\rangle = e^{i\hat{P}_0 \Delta T} |\text{in}, g\rangle$$

Given that

$$\langle \operatorname{vac} | \hat{a}_{E'}^{\operatorname{in}} \hat{S} \hat{a}_{E}^{\operatorname{in}\dagger} | \operatorname{vac} \rangle = 2\pi \delta(E - E') e^{2i\delta(E)}$$

then

$$\langle g, \text{out} | \hat{S} | g, \text{in} \rangle = \int_0^\infty \frac{dE}{2\pi} |g(E)|^2 e^{2i\delta(E) - iE\Delta T}$$

Take the profile g(E) to be peaked around \bar{E} with some width $\Delta E \ll \bar{E}$, so the **stationary** phase approximation gives

$$\Delta T = \frac{2\partial \delta(E)}{\partial E} \bigg|_{E=\bar{E}} + \mathcal{O}(\Delta E^{-1})$$

→ Eisenbud-Wigner time delay, with intrinsic uncertainty!

Is causality just $\Delta T > 0$?

Subtlety 1: Uncertainty principle puts limit on "observations" via resolvability

 \rightarrow Waves with frequency ω cannot measure time delays ΔT with

$$|\Delta T| \lesssim \omega^{-1}$$

Subtlety 2: Need to distinguish effect of background geometry from EFT correction

Background effect due to GR should set reference

To determine **causality of EFT**, study EFT contribution.

Infrared Causality

Putting this together:

Infrared Causality <u>Violation</u>

$$\Delta T^{
m EFT} < 0$$
AND
 $\Delta T^{
m EFT} | \gtrsim \omega^{-1}$

$$\Delta T^{
m EFT} \lesssim -\omega^{-1}$$

Let's try this!

Example: QED on Curved Spacetime

QED on fixed curved background

$$S = \int d^4 x \sqrt{-g} \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i \gamma^\mu D_\mu - m_e) \psi \right] \qquad \text{for all } + 1 \text{ similar}$$

Integrating out the electron [Drummond and Hathrell '80]

$$W = \int d^4x \sqrt{-g} \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{320\pi} \frac{\alpha}{m_e^2} R_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} + \mathcal{O}\left(\frac{\alpha}{m_e^{2n}}\right) \right]$$

E.g. on Schwarzschild (with Schwarzschild radius r_q): Gravitational birefringence

$$c_s^2 - 1 \sim \pm \frac{1}{m_e^2} \frac{r_g}{r^3} \longrightarrow \Delta T^{\text{EFT}} \sim \pm \frac{2r_g}{b^2 m_e^2}$$

Signals causality violation, but resolved within (partial) UV completion itself!

[Hollowood and Shore '07]

→ Causality at low energies violated by integrating out electron...?

Example: QED on Curved Spacetime

Lesson 1: Naïve trustworthiness of truncation $\Lambda\stackrel{?}{=}m_e/\sqrt{\alpha}$ is not true (Lorentz invariant) EFT cut-off. Need to think of asymptotic expansion

$$\Lambda = \lim_{n \to \infty} \left(\frac{m_e^{2n}}{\alpha} \right)^{1/2n} = m_e$$

Lesson 2: IR causality can be diagnosed purely within EFT! Within regime of validity

$$\left|\Delta T^{
m EFT}
ight|\ll\omega^{-1}$$
 [de Rham and Tolley '20]

→ unresolvable!

EFTs on pp-waves

Testing Ground: Black Holes

Like to smash things into each other to study them: Scatter gravitons off black hole!

Technically challenging: Gauge invariant basis variables remain same, but master variables receive EFT corrections [Kodama & Ishibashi '03]

→ IR causality consistent with (gravitational) **positivity bounds** [CYRC, de Rham, Margalit, and Tolley '21]

Aichelburg-Sexl Boost: Shockwaves

Instead, take Aichelburg-Sexl boost to shockwave spacetime

Spoiler: Same conclusion for single shockwave and black hole, but more interesting configurations with shockwaves! [Camanho, Edelstein, Maldacena, and Zhiboedov '14]

Stacking and Balancing Causality

(More Precise) Goal: Constrain EFT operators using IR causality

Review: Pp-waves

In Brinkmann coordinates (u, v, x^i)

$$ds^2 = 2du dv + F(u, x^i)du^2 + \delta_{ij}dx^i dx^j$$

Only non-vanishing component of Riemann tensor

$$R_{uiuj} = -\frac{1}{2}\partial_i\partial_j F$$

Vacuum Einstein's equations impose

$$R_{\mu\nu} = 0 \longrightarrow \partial_i \partial^i F = 0$$

 \rightarrow Harmonic $F(u, x^i)$!

Within this class of solutions: **Rank-0 and -2 contractions** of Riemann tensors and covariant derivatives e.g.

$$R_{\mu\nu}, \quad (R^m)^{\lambda}_{\ \mu\lambda\nu}, \quad \nabla_{\alpha}\nabla_{\beta}(R^n)^{\alpha}_{\ \mu\nu}^{\ \beta}, \quad \dots$$

vanish.

Surfin' on pp-waves

Pp-waves satisfying vacuum Einstein equation are background solutions at all orders in EFT

Background eq.
$$\sim \left. \frac{\delta S_{EFT}}{\delta g^{\mu\nu}} \right|_{\text{pp-wave}}$$

= 0

However, equations for perturbations $\,h_{\mu\nu}$ on ppwave background

Perturbation eq.
$$\sim \left. \frac{\delta^2 S_{\text{EFT}}}{\delta g^{\mu\nu} \delta g^{\rho\sigma}} \right|_{\text{pp-wave}} h^{\rho\sigma} + \text{perm.}$$

$$\neq 0$$

→ EFT corrections non-zero!

Regime of Validity

EFT breaks down when probed...

- 1) at too small length scales or high energies \rightarrow background (trivial for pp-waves)
- 2) by particles with too high energies \rightarrow perturbations (non-trivial for pp-waves!)

Find parameter controlling asymptotic expansion using **Lorentz scalars** towards infinity (see QED). Crucially:

$$R_{\mu\nu\alpha\beta}\delta R^{\mu\nu\alpha\beta} \neq 0$$

Fourier transform perturbations $\nabla h o ikh$, then constraints take schematic form

$$\lim_{a,b,c\to\infty} \left(\frac{\nabla}{\Lambda}\right)^a \left(\frac{\text{Riemann}}{\Lambda^2}\right)^b \left(\frac{k}{\Lambda}\right)^{2c+b} \ll 1$$

→ EFT constraints:

$$\partial_r \ll \Lambda, \quad k^\mu \partial_\mu \ll \Lambda^2, \quad \frac{\partial_r F}{r} k_v^2 \ll \Lambda^4$$
 conserved quantity for $\partial/\partial v$

"Shockwaves are not solutions in the EFT of gravity"

Shockwaves are pp-waves with

$$F(u,r) = \frac{4\Gamma\left(\frac{D-4}{2}\right)}{\pi^{(D-4)/2}}\delta(u)\frac{G|P_u|}{r^{D-4}}$$

→ Solutions to Einstein's equations with ultra-relativistic (delta function) source

$$T_{uu} = -P_u \delta(u) \delta^{(D-2)}(\mathbf{x})$$

(also obtained via Aichelburg-Sexl boost from Schwarzschild black hole).

However:

$$\frac{\partial_r F}{r} k_v^2 = -\frac{4(D-4)\Gamma\left(\frac{D-4}{2}\right)}{\pi^{(D-4)/2}} \delta(u) \frac{G|P_u|k_v^2}{r^{D-6}} \to \infty \not< \Lambda^4$$

so shockwaves are outside EFT regime of validity \rightarrow need to **regulate** e.g. as Gaussian

$$\delta(u) \to \frac{1}{\sqrt{2\pi}L} e^{-u^2/2L^2}, \quad L \gg k_v/\Lambda^2$$

Leading-order EFT: Gauss-Bonnet Gravity

Leading-order EFT in $D \geq 5$

$$S_{\text{EFT}} = \int d^D x \sqrt{-g} M_{\text{Pl}}^{D-2} \left(\frac{1}{2} R + \frac{c_{\text{GB}}}{\Lambda^2} R_{\text{GB}}^2 + \mathcal{O} \left(\Lambda^{-4} \right) \right)$$
$$R_{\text{GB}}^2 = R_{\mu\nu\alpha\beta} R^{\mu\nu\alpha\beta} - 4R_{\mu\nu} R^{\mu\nu} + R^2$$

→ Einstein-Gauss-Bonnet gravity!

Equations for perturbations (in **light cone gauge** $h_{v\mu}=0$):

$$\bar{g}^{\mu\nu}\partial_{\mu}\partial_{\nu}h_{ij} - 8\frac{c_{\text{GB}}}{\Lambda^2}\partial_v^2 X_{ij} = 0, \quad X_{ij} = (\partial_m \partial_{(i}F)h_{j)}^m - \frac{\bar{g}_{ij}}{D-2}(\partial_m \partial_n F)h^{mn}$$

Decompose $x^i o (r, x^{\alpha})$ and assume **spherical symmetry** to decouple modes

$$\bar{g}^{\mu\nu}\partial_{\mu}\partial_{\nu}\Phi_{M} + a_{M}\frac{c_{GB}}{\Lambda^{2}}\frac{\partial_{r}F}{r}\partial_{v}^{2}\Phi_{M} = 0, \quad a_{M} = (8(D-4), 4(D-4), -8, -8)$$

$$\Phi_{M} = (h_{rr}, h_{r\alpha}, h_{\alpha\beta}, g^{33}h_{33} - g^{\alpha\alpha}h_{\alpha\alpha})$$

Stacking Causality

JWKB Approximation

Fourier transform of perturbation equations $\partial_v o ik_v$ is a **Schrödinger-like equation**

$$i\frac{\partial\Phi_{M}}{\partial u} = -\frac{1}{2k_{v}}\nabla^{2}\Phi_{M} + V\Phi_{M}, \quad u \to \text{"time"}, \quad k_{v} \to \text{"mass"}$$
$$V(u,r) = -\frac{k_{v}}{2}F(u,r) + a_{M}k_{v}\frac{c_{\text{GB}}}{\Lambda^{2}}\frac{\partial_{r}F(u,r)}{r}$$

Solve this using JWKB Ansatz and treat Laplacian perturbatively:

$$\Phi_M(u,r) = \Phi_0 \exp[i\delta_M(u,r)],$$

$$\delta_M(u,r) = \delta_M^{(0)}(u,r) + \delta_M^{(1)}(u,r) + \dots$$

The approximation **valid** as long as $|\delta^{(0)}(u,r)|\gg |\delta^{(1)}(u,r)|$, i.e. until $u=u_{\max}$ defined by

$$\left| \int_0^{u_{\text{max}}} du \nabla V(u, r) \right| \sim V(u_{\text{max}}, r)$$

→ Can't accumulate time delay indefinitely!

Eikonal Time Delay

Leading-order JWKB phase shift reproduces the **eikonal** phase shift. **Cumulative time delay** for particle localised at impact parameter r=b,

$$\Delta T(u) = 2 \left. \frac{\partial \delta_0(u, r)}{\partial k_v} \right|_{r=b} = \left(\int_0^u F(u, r) du' - 4a_M \frac{c_{\text{GB}}}{\Lambda^2} \int_0^u \frac{\partial_r F(u, r)}{r} \right) \right|_{r=b}$$

Therefore:

$$\Delta T^{\text{EFT}}(u) = -4a_M \frac{c_{\text{GB}}}{\Lambda^2} \int_0^u \frac{\partial_r F}{r} \bigg|_{r=b}, \quad a_M = (+8(D-4), +4(D-4), -8, -8)$$

 \rightarrow No definite sign! Causality violation for any non-zero $c_{\rm GB}$...?

Am I going too fast?

Localised Source

For sources with arbitrary profile f = f(u) in time **localised** at r = 0:

$$F(u,r) = \frac{f(u)}{r^{D-4}}$$

1) Validity of eikonal approximation imposes

$$\int_0^{u_{\text{max}}} du \frac{f(u)}{b^{D-2}} \sim \sqrt{\frac{f(u_{\text{max}})}{b^{D-2}}}$$

2) **EFT** regime of validity

$$\frac{f(u)}{b^{D-2}}k_v^2 \ll \Lambda^4$$

so time delay:

$$|\Delta T^{\mathrm{EFT}}| \sim \frac{|c_{\mathrm{GB}}|}{\Lambda^2} \int_0^{u_{\mathrm{max}}} du \frac{f(u)}{b^{D-2}} \sim \frac{|c_{\mathrm{GB}}|}{\Lambda^2} \sqrt{\frac{f(u_{\mathrm{max}})}{b^{D-2}}} \ll \frac{|c_{\mathrm{GB}}|}{k_v}$$

 \rightarrow Same as with spherical symmetry: **IR causality** does not require $c_{\rm GB}=0!$

Special Case: N Stacked Shockwaves

Stack N regulated shockwaves with width L and separated by Δu

$$f(u) = \frac{1}{\sqrt{2\pi}L} \frac{4\Gamma(\frac{D-4}{2})}{\pi^{(D-4)/2}} G|P_u| \sum_{n=1}^{N} e^{-(u-n\Delta u)^2/2L^2}$$

When shocks sufficiently separated:

$$\left|\Delta T_{(N)}^{\mathrm{EFT}}\right| \sim N \left|\Delta T_{(1)}^{\mathrm{EFT}}\right|$$

To **maximise** causality violation: Want $\,N$ as large as possible!

However validity of JWKB sets $\,u_{
m max}$ and validity of EFT bounds $\,\Delta u$ above

$$\Delta u \gg L \gg \Lambda^2/k_v$$

 \rightarrow Cannot make N arbitrarily large!

[Camanho, Edelstein,

Stacked Shockwaves: Classical Perspective

JWKB approximation at leading order

$$k_v \frac{d^2 \mathbf{x}}{du^2} = -\nabla V(u, \mathbf{x})$$

→ **Newton's equation!** Transverse displacement estimate:

$$\Delta r(u) \sim -\frac{1}{k_v} \int_0^u du' \int_0^{u'} du'' \partial_r V(u, r) \bigg|_{r=b} = -\int_0^u du' \int_0^{u'} du'' \partial_r F(u, r) \bigg|_{r=b}$$

Approximation only valid until this is small relative to impact parameter. This sets $\,u_{
m max}$

$$\Delta r(u_{\text{max}}) \sim b \longrightarrow \int_0^{u_{\text{max}}} du \int_0^u du' \frac{f(u')}{b^{D-2}} \sim 1$$

and the EFT contribution to the time delay is not resolvable:

$$|\Delta T_{\text{EFT}}(u_{\text{max}})| \ll \frac{|c_{\text{GB}}|}{k_v} \int_0^{u_{\text{max}}} du \int_0^u du' \frac{f(u')}{b^{D-2}} \sim \frac{|c_{\text{GB}}|}{k_v}$$

→ Validity of JWKB equivalent to **negligibility of scattering**

Stacked Shockwaves: Quantum Perspective

Can separate interaction picture time-evolution operator for N isolated scattering events,

$$\hat{U}(t_N, t_0) = \mathcal{T} \prod_{n=1}^{N} \hat{U}(t_n, t_{n-1})$$

For sufficiently long time intervals

$$\hat{S}_{\text{total}} \approx \mathcal{T} \prod_{n=1}^{N} \hat{S}_n \approx (\hat{S}_1)^N \to \Delta T_{\text{total}} = N \Delta T_1$$

→ Too quick!

Example: N identical impulses \hat{K}

$$\hat{H}_{\text{int}}(t) = \sum_{n=1}^{N} \delta[t - (t_{n-1} + a_n)]\hat{K}, \quad 0 < a_n < t_n - t_{n-1}$$

S-matrix for individual scattering events not identical (for generic interaction)

$$\hat{S}_n = e^{i\hat{H}_0(t_{n-1} + a_n)} e^{-i\hat{K}} e^{-i\hat{H}_0(t_n + a)}$$

 \rightarrow Effect of \hat{H}_0 is **diffusion**!

Balancing Causality

Scatter No More

Scattering in transverse direction crucial to see bound on time delay!

Propagate **between balancing** sources

$$F(u, \mathbf{x}) = f(u) \left(\frac{1}{|\mathbf{x} - \mathbf{b}|^{D-4}} + \frac{1}{|\mathbf{x} + \mathbf{b}|^{D-4}} \right)$$

By **symmetry**, no scattering in the transverse directions!

Accumulate time delay indefinitely to maximise causality violation...?

→ No, this is unstable!

Instability Timescale

Choose $\mathbf{b} = b\hat{\mathbf{z}}$. Classical equations of motion near origin

$$k_v \frac{d^2 z}{du^2} = -\frac{\partial V}{\partial z} \sim k_v \Omega^2 z, \quad \Omega^2 \sim \frac{1}{k_v} \frac{\partial^2 V}{\partial z^2} \bigg|_{\mathbf{x} = \mathbf{0}} < 0$$

JWKB Ansatz solution

$$z(u) \sim \frac{1}{\Omega(u)^{1/2}} \exp\left[\pm i \int_0^u du' \Omega(u')\right]$$

Instability becomes relevant at $u = u_{inst}$ defined by

$$\left| \int_0^{u_{\rm inst}} du \, \Omega(u) \right| \sim \int_0^{u_{\rm inst}} du \sqrt{\frac{f(u)}{b^{D-2}}} \sim 1$$

In fact, uncertainty of time delay operator in semiclassical approximation

$$\delta T \gtrsim 2^{-3/2} \left| \int^{u_{\text{inst}}} du [1 - 2u\Omega(u)] \Omega(u) \exp\left(2 \int_0^u du' \Omega(u')\right) \right|$$

→ To avoid scattering, need localised wavepackets: Far from S-matrix eigenstates!

Unbalanced Shockwaves

Either way, $u_{\rm inst}$ acts as $u_{\rm max}$, placing bound on time delay:

$$|k_v|\Delta T_{\rm EFT}(u_{\rm max})| \sim k_v \frac{|c_{\rm GB}|}{\Lambda^2} \int_0^{u_{\rm max}} du \frac{f(u)}{b^{D-2}} \ll |c_{\rm GB}| \int_0^{u_{\rm max}} du \sqrt{\frac{f(u)}{b^{D-2}}} \sim |c_{\rm GB}|$$

Once again: IR causality not sufficient to rule out GB operator (despite lack of scattering classically!)

Gravity is unstable, so this holds for **generic configurations**: Sum of squared "frequencies" is non-positive

$$\sum_{n=1}^{D-2} \omega_n^2 = (\Omega^2)^i_i = \left. \frac{1}{k_v} \frac{\partial^2 V}{\partial x^i \partial x_i} \right|_{\mathbf{x} = \mathbf{x}_0} = -\frac{1}{2} \partial_i \partial^i F(\mathbf{x} = \mathbf{x}_0) \le 0$$

so at least one unstable direction.

→ In **Born approximation** (cf. paper), can reproduce lack of scattering classical limit etc. **Perturbation theory** out of control when EFT contribution large!

Conclusion

IR Causality of Gauss-Bonnet Gravity

For scattering off single black hole and shockwave, multiple shock waves, and between shockwaves, always:

$$k_v \left| \Delta T^{\rm EFT} \right| \ll \left| c_{\rm GB} \right|$$

Perspective 1: IR causality imposes

$$|c_{\rm GB}| \lesssim 1$$

[Camanho, Edelstein, Maldacena, and Zhiboedov '14] [Reall, Tanahashi, and Way '14]

In contrast to earlier claims that causality requires $c_{\rm GB}=0$.

→ Consistent with bootstrap and **positivity bounds**!

Can understand mild violation of positivity bounds from resolvability criterion $\Delta T^{\rm EFT} \gtrsim -\omega^{-1}$

Perspective 2: For EFTs $|c_{\rm GB}| \lesssim 1$ natural

→ GB gravity does not violate IR causality

[Caron-Huot and Li '22]

Summary

Conclusion

- In curved spacetime, correct notion to learn about EFTs is IR causality
 - To make statements about EFTs, need to properly identify regime of validity of EFT and approximations used.
- EGB gravity not ruled out by IR causality
 - consistent with gravitational positivity bounds!
 - Resolvability gives complementary understanding of mild violation of positivity.

Outlook

- Use infrared causality on less symmetric backgrounds to get more bounds on different EFT operators? [Carrillo González, de Rham, Jaitly, Pozsgay, Tokareva, and Tolley '22 & '23]
- More physically: de Sitter? [Bittermann, McLoughlin, and Rosen '22]
 - IR causality is more local than asymptotic causality!
 - Extend using notion of de Sitter S-Matrix [Melville and Pimentel '23]

Thanks for your attention! Questions?

Bonus Slides

Time Delay in Field Theory

Given spectral decomposition of full S-matrix,

$$\hat{\mathbb{S}} = \sum_{I,J} \int_0^\infty dE |E,I\rangle \,\hat{\mathbb{S}}_{IJ} \,\langle E,J|$$

time delay operator on full Fock space is

$$\Delta \hat{\mathbb{T}} = -i \sum_{I} \int_{0}^{\infty} dE \frac{\partial}{\partial \epsilon} \left(\hat{\mathbb{S}}^{\dagger} \left| E - \frac{\epsilon}{2}, I \right\rangle \left\langle E + \frac{\epsilon}{2}, I \right| \hat{\mathbb{S}} \right) \bigg|_{\epsilon = 0}$$

Recover **Wigner-Smith** operator when projected onto single-particle S-matrix \hat{S} :

$$\Delta \hat{T} = -\frac{i}{2} S^{\dagger} \frac{\partial \hat{S}}{\partial E} + \frac{i}{2} \frac{\partial \hat{S}^{\dagger}}{\partial E} S$$

In elastic region, recover **Eisenbud-Wigner** time delay when evaluated on eigenstates of the S-matrix:

$$|\hat{S}|\delta\rangle = e^{2i\hat{\delta}}|\delta\rangle \rightarrow \langle\delta|\Delta\hat{T}|\delta\rangle = 2\frac{\partial\delta}{\partial E}$$

→ Key point: Known expressions use **various approximations!**

Infrared Causality and Front Velocities

Front velocity sets causality

$$v_{\mathrm{front}} = \lim_{\omega \to \infty} v_{\mathrm{phase}}(\omega)$$

precisely correspond to high-frequency modes.

Regime of Validity

To estimate regime of validity: Bound Lorentz scalars at asymptotic infinity. Schematically:

$$\left(\frac{\nabla}{\Lambda}\right)^a \left(\frac{A}{\Lambda^4}\right)^b \left(\frac{k}{\Lambda}\right)^c \ll 1, \quad A_{\mu\nu} = R_{\mu\alpha\nu\beta}k^{\alpha}k^{\beta}$$

For $a \to \infty$

$$\left(\frac{\square}{\Lambda^2}\right)^{a/2} \left(\frac{S}{\Lambda^{[S]}}\right)^p \ll 1 \longrightarrow \frac{|\nabla|}{\Lambda} \sim \frac{\partial_r}{\Lambda} \ll 1$$

For $b \to \infty$

$$\operatorname{Tr}(A^b) = \underbrace{A^{\alpha_b}_{\alpha_1} A^{\alpha_1}_{\alpha_2} \dots A^{\alpha_{b-1}}_{\alpha_b}}_{b \text{ times}} \ll \Lambda^{4b} \longrightarrow A \sim \frac{\partial_r F}{r} k_v^2 \ll \Lambda^4$$

For $p \to \infty, q \to \infty$ for p + q = a

$$[(k^{\mu}\nabla_{\mu})^{p}A_{\alpha\beta}][(k^{\nu}\nabla_{\nu})^{q}A^{\alpha\beta}] \ll \Lambda^{8+2a} \longrightarrow k^{\mu}\partial_{\mu} \ll \Lambda^{2}$$

Regime of Validity: Sanity Check

To check bounds on Lorentz scalars will be realised: Compute **higher-order EFT** correction due to

$$S_{\text{eff}} = \int d^D x \sqrt{-g} \, M_{\text{Pl}}^{D-2} \left(\frac{1}{2} R + \frac{c_{\text{GB}}}{\Lambda^2} R_{\text{GB}}^2 + \frac{c_{R^3}}{\Lambda^4} (R^3) + \frac{c_{R^4}}{\Lambda^6} (R^4) + \dots \right)$$

E.g. equations of motion for (transverse) tensor perturbations

$$\begin{split} & \Box \Phi_T - 8 \frac{c_{\text{GB}}}{\Lambda^2} \frac{\partial_r F}{r} \partial_v^2 \Phi_T \\ & + 24 \frac{c_{R^3}}{\Lambda^4} \left[\frac{\partial_u \partial_r F}{r} \partial_v^3 \Phi_T - (D-2) \frac{\partial_r F}{r^2} \partial_r \partial_v^2 \Phi_T - 4(D-2) \frac{\partial_r F}{r^3} \partial_v^2 \Phi_T \right] \\ & + 16 \frac{c_{R^4}}{\Lambda^6} \left(\frac{\partial_r F}{r} \right)^2 \partial_v^4 \Phi_T + 192 \frac{c_{\text{GB}} c_{R^3}}{\Lambda^6} \left(\frac{\partial_r F}{r} \right)^2 \partial_v^4 \Phi_T = 0 \end{split}$$

Leading-order theory not trustworthy when corrections dominate:

$$\partial_r \ll \Lambda, \quad k^{\mu} \partial_{\mu} \ll \Lambda^2, \quad \frac{\partial_r F}{r} k_v^2 \ll \Lambda^4$$

→ Reproduces EFT regime of validity.

Example: Consistency and Infrared Causality

Illustrative example on curved spacetime: Goldstone

$$S = \int d^{D}x \sqrt{-g} \left[-\frac{1}{2} \left(\nabla \phi \right)^{2} + \frac{g}{\Lambda^{D}} \left(\nabla \phi \right)^{4} + \dots \right]$$

With spherical symmetry for scalar

$$\bar{\phi}'(r) = \frac{\alpha}{r^{D-2}C(r)} + \mathcal{O}\left(\Lambda^{-D}\right)$$

Matter sources backreaction to geometry via Einstein's equation

$$\Box \left(h_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} h \right) = -\frac{2}{M_{\rm Pl}^{D-2}} T_{\mu\nu}$$

→ Total time delay:

$$\Delta T \sim \left[\left(\frac{r_g}{b} \right)^{D-3} + \frac{\alpha^2}{M_{\rm Pl}^{D-2} b^{2D-6}} \right] b + \frac{g}{\Lambda^D} \frac{\alpha^2}{b^{2D-3}}$$

Example: Consistency and Infrared Causality

On flat space (without dynamical gravity), causality and positivity bounds imposed

With gravity:

Asymptotic causality: Extremising for tightest bounds

$$\Delta T \gtrsim -\omega^{-1} \longrightarrow g \gtrsim -\left(\frac{\Lambda}{M_{\rm Pl}}\right)^{(D-2)/2}$$

→ Not natural (analytic), and weaker than gravitational positivity bounds!

Infrared causality:

$$\Delta T^{\mathrm{EFT}} \gtrsim -\omega^{-1} \longrightarrow g \gtrsim -\left(\frac{\Lambda}{M_{\mathrm{Pl}}}\right)^{D-2}$$

→ Agrees with gravitational positivity bounds!