

Overview

- Task: given an image, predict its cell and heading
- From 2019: Two CNNs
- Input: image + cell

Output: heading

- Input: image + heading
- Output: cell
- Both with >90% accuracy
- **Summer 2020:** networks where input is image only
- \circ CNNs: image \rightarrow cell, image \rightarrow heading
- o CNN-LSTM
- CNN-Regression

Dataset

- 95,000+ images, 2nd floor of Olin-Rice, taken by our robot
- For each image we know:
 - cell number (cell = 2m by 2m section)
 - (x, y) coordinates (in meters)
 - o heading (N, NE, E, SE, S, SW, W, NW)

cell=263, x=47.00, y=78.00, head=S

- Preprocessing of images:
- Selecting/creating duplicate images so each cell had 500 images
- Preparing for network:

What is a CNN?

- CNN = Convolutional Neural Network
- Machine learning, datasets of images or similar data
- Learns to detect useful features in data
- Learns to associate features with specific outputs
- Layers perform different tasks
- Convolutional: contains multiple "convolutional filters";
 each filter learns to detect a feature
- Max-pooling: reduces data size
- Flatten: converts data to 1-dimensional
- Dense: correlates patterns across data
- **Softmax:** produces output patterns as probabilities

Arif Zamil, Analeidi Barrera, and Susan Fox

Macalester College – St. Paul, MN

Localization with CNNs

- Although the previous CNN models had high accuracy in predicting cells and headings, we needed to simplify these models to work with an LSTM
 - New models take only image as input
 - CNN has reduced numbers of filters
- Dropout was unified across network
- Performance of new CNNs
 - <Add here> new training data, how much training versus testing
- <add> each network, report number of epochs and final accuracy

Data Arrangement

• Sample data:

- CNN
 - Data must be randomized
 - CNNs can "forget" data not seen for a while

- LSTM
 - LSTM needs time/space ordered sequences of images
 - All sequences the same length
 - Our dataset was not configured this way by default!
 - We reorganized the data for use with LSTM

1	1	2	2	2
2	2	3	4	4
3	4	4	5	6

- CNN-Regression
 - Randomized data like CNN
 - (x, y) coordinate data had to be cleaned!

Localization with LSTMs

- LSTM = Long Short-Term Memory
- A recurrent neural network architecture, it remembers previous images to help predict the current step
- CNN-LSTM starts with CNN, then has LSTM layers
- Results:
 - CNN-LSTM succeeded predicting headings
 - CNN-LSTM did poorly predicting cells
 - No real improvement over CNN alone
- Experimental architectures:
 - CNN+LSTM, which consumed too much memory

CNN + LSTM with both images and headings as input

Trained CNN model & weights + LSTM (Transfer Learning)

Localization with Regression

- Regression Neural Networks predict an output variable as a function of the inputs: they can produce real-valued outputs
- Input features (independent variables) may be any type
- Output must be numeric (integer or floating point)
- <why use>
- First experiment: modify old CNN with regression layer at output
 - Network was too small, could not learn
 - <add details? dataset, number epochs, ...>
- Second experiment: use a large existing regression network,
 GoogleNet and apply transfer learning
- Unable to get this network working
- Concerned about training/running time of network

Conclusions & Future Direction

- Basic CNNs work well for this task
 - We were able to simplify CNN and still get good performance
- Training CNN-LSTM is expensive and difficult
- Requires complete revision of dataset
- Benefits of time-sensitive learning were not obvious
- More testing to be done
- Training Regression CNN requires more network complexity
 - More need to examine this in the future
- Testing on actual robot needs to happen
- Augmenting of dataset would be helpful