

Rend. (%)

56

A mild catalyzed Imino-Diels Alder reaction. Synthesis of *N*-(2-(*o*-tolyl)-1,2,3,4-tetrahydroquinoline-4-il)formamide derivatives as antimicrobial agents

García Maza, L.¹; Orosco Flórez, D.¹; Mendoza Salgado, A.¹; Rosales Rada, W.²; Mendoza Torres, E.²; Meléndez Gómez, C.*¹

¹Grupo de Investigación en Química Orgánica y Biomédica, Universidad del Atlántico, Barranquilla, Atlántico.

²Grupo de Investigación Avanzada en Biomedicina, Universidad Libre, Barranquilla, Atlántico.

35º Congresso Latino-americano de Química e 61º Congresso Brasileiro de Química. 14-18 November 2022 in Centro de Convenções do Hotel Windsor Florida, Rio de Janeiro, BRASIL.

Introduction

Multidrug-resistant gram-negative pathogens have emerged as etiologic agents of infectious diseases such as *Escherichia coli* ¹, and the microbial resistance to existing drug therapies reveals the need for new and efficient therapeutic agents ². Consequently, tetrahydroquinoline (THQ) alkaloids have appeared with remarkable pharmacological properties to develop novel antibacterial agents. The synthesis of THQs is described extensively in the literature through imino-Diels Alder reaction due to its simple, efficient, and low-cost preparation process^{3,4}.

This study aims to explore the versatility of the iDA process with synthetic THQ derivatives as antibacterial agents against *E. coli*.

Results

N-(2-(*o*-tolyl)-1,2,3,4-tetrahydroquinoline-4-il)formamide synthesis through imino-Diels Alder (iDA) process.

$\underline{5a}$: R_1 = R_3 = H; R_2 = F. $\underline{5b}$: R_1 = R_2 = H; R_3 = C_3 H ₇ . $\underline{5c}$: R_1 = R_3 = H; R_2 = Me. $\underline{5d}$: R_1 = R_3 = H; R_2 = Cl. $\underline{5e}$: R_1 = R_2 = R_3 = H. $\underline{5f}$: R_1 = R_3 = H; R_2 = I.						
THQ	<u>5a</u>	<u>5b</u>	<u>5c</u>	<u>5d</u>	<u>5e</u>	<u>5f</u>

Coupling constants of ¹H-NMR. All compounds were supported by ¹H-NMR, ¹³C-NMR and two-dimensional NMR experiments.

¹³C NMR (101 MHz, CDCI₃): δ 161.13 (C=O), 143.24 (C4'), 140.90 (C1'), 135.18 (C2'), 130.81 (C6'), 129.30 (C5'), 127.74 (C4'), 127.53 (C3'), 127.39 (C8'), 126.55 (C5), 125.59 (C7), 120.73 (C6), 114.91 (C8), 51.89 (C4), 45.12 (C2), 37.18 (C3), 20.54 (6-Me), 19.16 (2'-Me) ppm. ¹³C DEPT-135: δ 161.13 (C=O), 130.79 (C6'), 129.30 (C5'), 127.74 (C4'), 127.49 (C3'), 126.55 (C5), 125.59 (C7), 114.91 (C8), 51.88 (C4), 45.12 (C2), **37.18 (C3)**, 20.54 (6-Me), 19.16 (2'-Me).

THQs inhibition percentage in *Escherichia coli* culture medium.

A series of 4-amide-THQ derivatives were obtained using an economical catalyst and under medium reaction conditions. In addition, compounds with electron-withdrawing groups could be considered growth inhibitors with MIC of 10 µg/mL, which deserves further investigation to explore the scope and limitation of their biological activities.

Conclusion

Bibliography:

56

42

- Dayal, N.; Opoku-Temeng, C.; Mohammad, H.; Abutaleb, N.S.; Hernandez, D.; Onyedibe, K.I.; Wang, M.; Zeller, M.; Seleem, M.N.; Sintim, H.O., ACS Infect. Dis., 2019, 5, 1820–1830.
- Rossolini, G.M.; Arena, F.; Pecile, P.; Pollini, S., Curr. Opin. Pharmacol., 2014, 18, 56–60.
- Meléndez Gómez, C.M.; Marsiglia, M.; Escarsena, R.; del Olmo, E.; Kouznetsov, V. V., *Tetrahedron Lett.*, **2018**, 59, 22–25. Salgado, A.R.M.; Galvis, C.E.P.; Kouznetsov, V. V.; Meléndez, C.M., *Curr. Org. Synth.*, **2021**, 18, 431–442.

Acknowledgements: L.J.G.M and *C.M.M.G. thank to MINISTERIO and "el fondo de Investigación en Salud" (FIS) (CTel;519-2021 from 874-2020) for

the financial support.