

ANDES-FIRE

The Argentina All-sky Video System

Pete Gural

Sponsor: Diego Janches, NASA/GSFC

NASA/Goddard support: Juan Sebastian Bruzzone

Argentina on-site support: Jose Luis Hormaechea, Fernando Gini

Purpose & Phased Development since March 2018

Purpose:

 NASA/GSFC acquired 4 Fripon all-sky cameras for deployment around SAAMER in Argentina to obtain simultaneous radar/EO fireballs

Issue:

- Fripon's Freeture software was non-functional on deployed systems

Mitigation:

- Develop a processing pipeline based on CAMS
 - Phase 1 = Interface GigE via PYLON 5 SDK to a Windows capture app
 - Phase 2 = Integrate CAMS capture and detection modules
 - Phase 3 = Develop all-sky astrometry fitting capability
 - Phase 4 = Support Argentina software deployment, setup, monitoring
- Supported by the NASA Solar System Observations (SSO) Program

Argentina Radar / EO Deployment

FRIPON Cameras

Sensor: Basler GigE acA1300-30gm, 12 bits, 1296 x 966

Optics: Rainbow 1.25mm f/2 → 10 to 13 arcmin/pixel

Sterling, Virginia USA

Development test site

How Does ANDES-FIRE Fit into the CAMS Work Flow?

Phase 1: Basler PYLON 5.0 SDK

- Setup and live imaging with Pylon Configurator, Viewer
 - Compatible with GigE compliant sensors
- Quickly built settings control & capture interface module
 - Can adjust gain, fps, exposure, AOI, 8 or 12 bit depth
 - Operate and switch between day, night, & astrometry collect modes
- Issue with network card optimization
 - Required "jumbo" frames and inter-packet delay optimization
 - CAT 6 cabling and potential long distance limitations
 - Need C callable function to optimize packet size

First Light in Rio Grande

33 msec Exposure

Red circle defines mask

Phase 2: Capture and Detection Software

- Live video feed confirmed with no dropped frames
- Developed clutter (background) tracking filter
 - Mean and σ estimation based on 8 frames earlier in time
 - Threshold binary map of exceedance pixels → cluster module
- Integrated CAMS cluster and tracking modules
 - Tested detection on laser sweep across ceiling
 - Output to CAMS "Detectinfo" file format

1.	0	1	. 1	
3	1	3	0	• 1
1	2	1	0	• 1
2	5	1	1	0
1.	4	8,1	• 1	. 3
1	• 2	. 1	• 1	1

Archiving the Full Collection

Issue: What if one or two cameras missed the fireball?

- Needed a means to go back and review the collection
- Storing raw imagery would require 4.6 Tbytes / day / camera
- Fripon plans to trigger neighboring cameras in real-time

Current solution: Save 10 second H.264 video segments

- Uses FFMPEG to place into a MP4 file container
- Playable format on almost any PC
- H.264 does not handle 12 bit grayscale, so truncate to 8 bit
 - 8 bit gray → YUV420p → H.264
- 24 hours → 3 Gbytes
- FFMPEG longest pole in the processing tent Is there an alternative ?

ANDES-FIRE Image Processing Flow

Phase 3: Astrometry and its Collection Challenge

- Sum 30 fps imagery for N sec. <u>or</u> One long exposure ?
 - Can we avoid changing collection modes. Answer = NO

10 seconds = 300 frames @ 33 msec exposure

Read noise dominated

10 seconds = 1 frame @ 10 sec exposure

Manual and Semi-Auto Astrometry Apps

Astrometry Fitting Options

Borovicka 1992 and 1995, Bannister 2013, Howell 2018

The transformation of the plate coordinates x, y to the celestial coordinates a, z is done by means of five equations. The equation for r can be rewritten as

$$r = C \left[\sqrt{(x - x_0)^2 + (y - y_0)^2} + A(y - y_0) \cos(F - a_0) - A(x - x_0) \sin(F - a_0) \right],$$
(9)

where we introduced the global scale factor C (see below). The other four equations are

$$u = Vr + S(e^{Dr} - 1) + P(e^{Qr^2} - 1)$$
(6)

$$u = Vr + S(e^{Dr} - 1) + P(e^{Qr^2} - 1)$$

$$b = a_0 - E + \arctan\left(\frac{y - y_0}{x - x_0}\right)$$
(6)

$$\cos z = \cos u \, \cos \varepsilon - \sin u \, \sin \varepsilon \, \cos b \tag{1}$$

$$\sin(a - E) = \sin b \sin u / \sin z \tag{2}$$

The equations contain 13 (12 independent) reduction constants which must be determined or assumed for each

Astrometric Solution – Rio Grande

First Detections: Birds and Meteor

Current Status and Plans

- Running Rio Grande and Ushuaia daily with latest software release
 - i3 processor ~80% loaded at 25 fps (FFMPEG an issue in daylight)
 - -Tolhuin to be deployed shortly

Next steps

- Optimize detection parameters
- Monitor results daily weather and detection thumbnails
- Process a multi-station detection via CAMS Coincidence
- Photometric calibration
- Deploy 3 narrow FOV cameras for head echo studies with the radar
 - Watec 902H2 Ultimates with 17mm f/0.95 and CAMS capture → orbits software
 - First light expected December 2018
 - Supported by the NASA Engineering and Safety Center (NESC)

Code Module Availability – See also CAMS Poster

ANDES-FIRE Applications

- ANDESFIRE_LiveViewer (can also use Pylon Viewer)
- ANDESFIRE_Detection
- ANDESFIRE_CalibrationManual (all-sky)
- ANDESFIRE_CalibrationSemiAuto
- ANDESFIRE_Quicklook (TIF thumbnails)

"C" Function Module Files

- Particle Swarm Optimization (non-linear minimizer)
- Frame ingest for capture from Dongles, H.264 files, ZWO, GigE
- Astrometry solvers for moderate, very wide, and all-sky FOVs
- Trajectory and Orbit estimation
- Utilities: Coordinates, Time, VSOP87, System, Image processing, I/O, ...

Any Questions?

Fripon Tauxigny Astrometric Solution

