Les grandeurs physiques et leurs unités. (à connaître par cœur)

Il ne faut pas confondre une **grandeur physique** et son **unité**. Une grandeur physique se mesure avec un **appareil de mesure** et elle s'exprime avec une **unité**.

Certaines grandeurs physiques peuvent se calculer en utilisant une expression littérale que l'on appelle formule.

Exemple: La masse d'un objet est une grandeur qui se mesure avec une balance et son unité est le kilogramme kg.

On exprime le résultat d'une mesure de façon symbolique. (Voir exemple ci-contre)

Grandeurs	Définition	Appareil de mesure ou formule.	Unité du système international ou couramment utilisée.	
Température (symbole T)		Thermomètre	Degré Celsius (symbole : °C)	
Longueur (symbole : L)	Taille. Largeur. Epaisseur. Distance etc	Une règle.	Le mètre (symbole : m)	
Masse (symbole : m)	Quantité de matière que renferme l'objet.	Balance.	Kilogramme (symbole : kg)	
Poids de l'objet sur Terre (symbole : P)	Force qui caractérise l'attraction de la Terre sur l'objet. (pesanteur)	Dynamomètre.	Newton (symbole : N)	
L'intensité de la pesanteur (symbole : g)	Coefficient de proportionnalité entre la masse et le Poids.	g=P/m	Newton par kilogramme (N/kg)	
Surface (symbole : S)	Mesure d'une étendue plane	S= Longueur×largeur	m ²	
Volume d'un solide, d'un liquide ou d'un gaz. (symbole : V)	La place qu'il occupe dans l'espace.	Éprouvette graduée pour un liquide.	Mètre cube (m³) ou le litre (l) Unités couramment utilisées en chimie : cm³ et ml	
La masse volumique d'un liquide ou d'un solide ou d'un gaz (symbole : ρ)	La masse en kilogramme pour 1mètre cube de matière. d	ρ= m/ v	kg/m³ g/c m³	
Le temps (symbole : t)	Un instant précis.	Un chronomètre.	La seconde (s)	
La durée (symbole : t ou Δt)	Le temps qui s'écoule entre deux instants t1 et t2	Δt= t2-t1	La seconde (s)	
La vitesse d'un objet (symbole : v)	La distance parcourue par l'objet en mètres en 1 seconde ou la distance parcourue par l'objet en km en 1 heure.	v=d/t d étant la distance	m/s Unité couramment utilisée : km/h	
L'intensité du courant électrique (symbole : I)	Le débit du courant dans un circuit électrique.	Ampèremètre (qui se branche en série dans le montage)	Ampère (symbole : A)	
La tension aux bornes d'un dipôle (symbole : U)	La « force » qui permet de mettre en mouvement les électrons libres.	Voltmètre (qui se branche en dérivation aux bornes du dipôle dans le montage)	Volt (symbole : V)	
La résistance d'un matériau (symbole : R)	La capacité du matériau à s'opposer au passage du courant.	Ohmètre (qui se branche aux bornes de la résistance en dehors du circuit)	Ohms (symbole : Ω)	
La puissance électrique d'un appareil (symbole : P)	C'est l'énergie consommée (récepteur) ou produite (générateur) par seconde.	P=U×I	Watts (symbole : W)	
1/4 (L'énergie produite ou consommée d'un	5 D. 4	Joules (symbole : J)	
L'énergie (symbole : E)	appareil pendant un certain temps.	E=P×t	kiloWattheure (symbole : kWh)	
La fréquence d'un phénomène périodique	Le nombre de fois que le phénomène se répète par seconde.	f=1/T T étant la période durée du phénomène en secondes		

Les conversions d'unités.

Il faut être capable de convertir n'importe quelle unité avec le célèbre tableau de conversion qui commence à être appris dès l'école primaire! ci-dessous le tableau avec quelques exemples (Les grammes, les mètres et les Watts mais il marche aussi pour les ampères, les Volts, etc...)

Giga	Méga	kilo	hecto	déca	unité	déci	centi	milli			micro		nano
10 ⁹	10 ⁶	10 ³	10 ²	10 ¹	1	10 ⁻¹	10 ⁻²	10 ⁻³			10 ⁻⁶		10 ⁻⁹
Gg	Mg « ton ne »	kg	hg	dag	gram me (g)	dg	cg	mg			μg		ng
Gm	Mm	km	hm	dam	mètre (m)	dm	cm	mm			μm		nm
GW	MW	kW	hW	daW	Watt (W)	dW	cW	mW			μW		nW
								2,	3	6			

Certains tableaux sont un peu spécifiques (voir ci-dessous :)

Le tableau de conversion des surfaces :

kn	n ²	hm ²		da	m^2	m	2	dr	n^2	cr	n ²	mı	m^2
	3,	4	2	1									

Le tableau de conversion des volumes : litre et m³

	km³		hm³			dam ³		m^3			dm³			cm ³		mm^3	
									kl	hl	dal	litre	dl	cl	ml		
			7	3,	6												

Exemples:

- 2,36mm= 0,00236m=2360µm = 0,00000236km=2360000nm=0,236cm=0,0236dm
- $2,\!36mg\!=\!0,\!00236g\!=\!2360~\mu g\!=\!0,\!00000236kg\!=\!2360000ng\!=\!0,\!236cg\!=\!0,\!0236dg$
- $3,421 \text{km}^2 = 3421000 \text{m}^2 = 3421000000000 \text{mm}^2$
- 73,6hm³=0,0736km³=73600dam³
- 1litre=1dm³= 1000cm³=1000ml=0,001m³=0,001kl

1l=1dm ³	
1ml=1cn	n^3

1heure= 60minutes 1minute =60secondes 1 heure = 60×60= 3600 secondes

Les expressions littérales « formules reliant différentes grandeurs physiques » (à connaître et à savoir utiliser)

L'emploi de ces formules doit être utilisé avec les bonnes unités (unités du système international) sinon les résultats seront faux...(Il faut donc savoir convertir)

P=mg _{6=3×2}	$m = \frac{P}{g}$ _{2=6/3}	$g = \frac{P}{m}$ 3=6/2	P poids d'un objet en Newton m masse de l'objet en kilogramme g intensité de pesanteur en Newton par kilogramme (coefficient de proportionnalité entre le poids et la masse)					
m= ρ V	$V = \frac{m}{\rho}$	$\rho = \frac{m}{V}$	m masse de l'objet (liquide, solide, gaz) en kilogramme V volume d'un objet (liquide, solide, gaz) en mètre cube \$\rho\$ masse volumique en kilogramme par mètre cube (coefficient de proportionnalité entre la masse et le volume)					
d = <i>v</i> × t	$t = \frac{d}{v}$	$v=\frac{d}{t}$	d distance parcourue en mètres Δt durée du parcourt en seconde ν vitesse moyenne de l'objet en mètre par seconde (coefficient de proportionnalité entre d et t)					
	$E_c = \frac{1}{2} m v^2$		Ec énergie cinétique en Joule m en kilogramme v vitesse moyenne de l'objet en mètre par seconde					
U=R×I	$I = \frac{U}{R}$	$R = \frac{U}{I}$	U tension en Volt I intensité en Ampère R résistance en Ω(ohm) (coefficient de propor	tionnalité entre la tension et l'intensité)	Attention cette formule n'est valable que pour un conducteur ohmique « résistance » C'est la loi d'ohm			
P=U×I	$I = \frac{P}{U}$	$U = \frac{P}{I}$	P puissance électrique en Watt U tension en Volt I intensité en Ampère					
E=Px t	$P = \frac{E}{t}$	t= E	E énergie totale en jouleCette formule peut être utilisée avec d'autres unités : E en kWh (kiloWattheure)P puissance en WattP en kW (kiloWatt) et Δt en heureΔt durée d'utilisation en seconde.Cette formule n'est pas seulement valable en électricité.					
	f= 1 T		f fréquence en Hertz T période (durée du phénomène en seconde .					