AUTÓMATAS DE PILA

Los autómatas de pila, en forma similar a como se usan los autómatas finitos, también se pueden utilizar para aceptar cadenas de un lenguaje definido sobre un alfabeto A.

Los autómatas de pila pueden aceptar lenguajes que no pueden aceptar los autómatas finitos.

Un autómata de pila cuenta con una cinta de entrada y un mecanismo de control que puede encontrarse en uno de entre un número finito de estados. Uno de estos estados se designa como estado inicial, y además algunos estados se llaman de aceptación o finales. A diferencia de los autómatas finitos, los autómatas de pila cuentan con una memoria auxiliar llamada *pila*. Los símbolos (llamados símbolos de pila) pueden ser insertados o extraídos de la pila, de acuerdo con el manejo last-in-first-out (LIFO).

Las transiciones entre los estados que ejecutan los autómatas de pila dependen de los símbolos de entrada y de los símbolos de la pila. El autómata acepta una cadena x si la secuencia de transiciones, comenzando en estado inicial y con pila vacía, conduce a un estado final, después de leer toda la cadena x.

Autómata de pila reconocedor determinístico

APD= $\langle E, A, P, \delta, e_0, Z_0, F \rangle$

E: Conjunto finito de estados,

A: Alfabeto o conjunto finito de símbolos de la cinta de entrada,

P: *Alfabeto* o conjunto finito de símbolos de la Pila. $P \cap A = \emptyset$

δ: función de transición de estados

 e_0 : Estado inicial $e_0 \in E$.

 Z_0 : Símbolo distinguido $Z_0 \in P$

F: Conjunto de estados finales o estados de aceptación. $F \subseteq E$.

La función de transición definida como: $\delta: E \times (A \cup \{\epsilon\}) \times P \to E \times P^*$

1)
$$\delta(e_i, a, X) = (e_i, \alpha)$$

2)
$$\delta(e_i, \varepsilon, X) = (e_j, \alpha)$$
 donde $a \in A; X \in P; \alpha \in P^*; e_i, e_j \in E$.

Nota: Si existe transición de tipo (2), sólo se garantiza que AP es determinístico si \forall s \in A, δ (e_i , s, X) está indefinida.

Descripción instantánea

Una configuración de un AP es una tripla <e , σ , π > donde e: estado_actual; σ : cadena de entrada a ser leída; π : contenido de la pila.

Luego, se define una relación de transición |— en el espacio de posibles configuraciones del AP, tanto si:

$$<$$
 e_i , ω , $X\beta > | \stackrel{(2)}{---} < e_j$, ω , $\alpha\beta >$ Si existe la transición tipo (2), el AP pasa al estado e_i , **NO avanza** la cabeza lectora y reemplaza el tope X por α .

donde $a \in A$; $\omega \in A^*$; $X \in P$; $\alpha, \beta \in P^*$; $e_i, e_i \in E$

La función de transición de estados de un AP puede ser representada por un diagrama donde los nodos representan los estados y los arcos transiciones. Si existe transición tipo (1), el arco queda rotulado de la siguiente manera:

$$e_i$$
 $a, X/\alpha$ e_j

Si el estado actual es e_i y la cabeza lectora apunta un símbolo a, y el tope de la pila es X, entonces cambiar al nuevo estado e_j , avanzar la cabeza lectora, y sustituir el símbolo del tope X en la pila por la cadena α .

Por ejemplo:

Si $\alpha = ZYX$ deja X, apila Y, y apila Z (nuevo tope Z). donde X, Y, Z $\in P$

Si $\alpha = XX$ deja X y apila X (nuevo tope X).

Si $\alpha = X$ deja X como el mismo tope (no altera la pila)

Si $\alpha = \epsilon$ elimina X, y el nuevo tope es el símbolo por debajo (desapila)

Ejemplo 1

 $A = \{a,b,c\}$

 $L_1 = \{\omega c \omega^R / \omega \in \{a,b\}^*\}$

APD₁ es un autómata de pila que reconoce L1.

$$\begin{array}{lll} APD_1 \!\!=\!\!<\!\! \{e_0,\!e_1,\!e_2\}, \{a,\!b,\!c\}, \{X,\!Y,\,Z_0\},\,\delta,\,e_0,\,Z_0,\,\{e_2\} \!\!> \\ \delta \!\!: \end{array}$$

Ejemplos de cadenas aceptadas ó no aceptadas por AP₁

 $\begin{array}{lll} \delta^*(e_0, abcba) = & e_2 & abcba \in L_1 \\ \delta^*(e_0, c) = & e_2 & c \in L_1 \\ \delta^*(e_0, abcab) = & e_1 & abcab \not\in L_1 \\ \delta^*(e_0, a) = & e_0 & a \not\in L_1 \end{array}$

Ejemplo 2

$$\begin{split} &L_2 = \{a^i \ b \ c^k \ / \ i, k \geq 1 \ \ y \ i < k \} \\ &APD_2 = < \{e_0, e_1, e_2\}, \{a, b, c\}, \{A, \ Z_0\}, \ \delta_2 \ , e_0, \ Z_0, \ \{e_2\} > \\ &\delta_2 : \end{split}$$

Ejemplo 3

 $\begin{array}{l} \overline{L_3} = \{a^i \ b \ c^k \ / \ i, k \geq 1 \ y \ i \leq k \} \\ APD_3 = <\{e_0, e_1, e_2\}, \{a, b, c\}, \{A, Z_0\}, \ \delta_3 \ , e_0, \ Z_0, \ \{e_2\} > \\ \delta_3 : \end{array}$

Ejemplo 4

$$\begin{split} L_4 &= \{a^i \ b \ c^k \ / \ i, \ k \geq 1 \quad y \ i > k \} \\ APD_{41} &= < \{e_0, e_1, e_2, e_3\}, \{a, b, c\}, \{A, \ Z_0\}, \ \delta_{41}, e_0, \ Z_0, \ \{e_3\} > \\ \delta_{41} := < \{e_0, e_1, e_2, e_3\}, \{e_0, e_1, e_2, e_3\}, \{e_0, e_1, e_2, e_3\}, \{e_0, e_1, e_2, e_3\} > \\ \delta_{41} := < \{e_0, e_1, e_2, e_3\}, \{e_0, e_1, e_3\}, \{e_0, e_1, e_2, e_3\}, \{e_0, e_1, e_3\},$$

$$\begin{split} APD_{42}=<&\{e_0,\!e_1,\!e_2,\!e_3\},\{a,\!b,\!c\},\{A,\,Z_0\},\,\delta_{42}\,,\!e_0,\,Z_0,\,\{e_3\}>\\ \delta_{42}; \end{split}$$

Ejemplo 5

$$\begin{split} L_5 &= \{a^i \ b \ c^k \ / \ i, \ k \geq 1 \ \ y \ i \geq k \} \\ APD_5 &= <\{e_0, e_1, e_2\}, \{a, b, c\}, \{A, \ Z_0\}, \ \delta_5 \ , e_0, \ Z_0, \ \{e_2\} > \\ \delta_{5:} \end{split}$$

Ejemplo 6

$$\begin{array}{l} \overline{L_6 = \{0^i \, 1^{i+k} \, 2^k \, 3^{n+1} / \, i, \, k, \, n \geq 0 \, \}} \\ APD_6 = <\{e_o, e_1, e_2, \, e_3, e_4\}, \{0, 1, 2, 3\}, \{A, B, \, Z_0\}, \, \delta_6 \, , e_0, \, Z_0, \, \{e_4\} > \end{array}$$

 δ_6 :

Ejemplo 7

$L_7 = \{h^n g^j e^{2n} d^{3i}/i, j, n \ge 0\}$	
Casos	Cadenas de L ₇
si n, i, j >0	$h^n g^j e^{2n} d^{3i}$
si n=0 y i, $j > 0$	$g^j d^{3i}$
si i=0 y n, j >0	$h^n g^j e^{2n}$
si j=0 y n, i >0	$h^n e^{2n} d^{3i}$
si n, i=0 y j>0	$\mathbf{g}^{\mathbf{j}}$
si n, j=0 y i >0	d^{3i}
si i, j =0 y n >0	$h^n e^{2n}$
si n,i,j=0	ε

 $APD_7 = <\{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9\}, \{h, e, g, d\}, \{H, Z_0\}, \delta_7, e_0, Z_0, \{e_0, e_4, e_8, e_9\} > \delta_7:$

Autómata de pila no determinístico

APND= $\langle E, A, P, \delta, e_0, Z_0, F \rangle$, donde las componentes E, A, P, e_0, Z_0, F se definen como antes, y la función de transición se define como

2)
$$\delta(e_i, \varepsilon, X) = \{(e_j, \alpha_1), (e_k, \alpha_2),\}$$
 donde $a \in A, X \in P, \alpha_1, \alpha_2 \in P^*, e_i, e_j, e_k \in E$

Como ya se ha estudiado los autómatas finitos no determinísticos (AFND) reconocen los mismos lenguajes que los autómatas finitos determinísticos (AFD). Sin embargo no ocurre lo mismo con autómatas de pila no determinísticos (APND) y autómatas de pila determinísticos (APD). Algunos lenguajes sólo pueden ser reconocidos por un APND, pero no por un APD.

Ejemplo 8

$$\overline{L_8 = \{a^m \ b^p \ c^{p+m} \ / \ m, p \ge 1\}} \ \cup \ \{a^{2i} \ b^i \ / \ i \ge 1\}$$

L₈ sólo puede reconocerse con un APND.

$$\begin{split} APND_8 = <& \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}, \{a, b, c\}, \{A, B, Z_0\}, \, \delta_8 \;, e_0, \, Z_0, \; \{e_8\} > \\ \delta_8 : \end{split}$$

APND₈ es no determinístico ya que en el caso de:

$$\delta(e_0, a, Z_0) = \{(e_1, AZ_0), (e_6, AZ_0)\}$$

Ejemplo 9

$$L_9 = \{a^m b^p c^{p+m} / m, p \ge 1\} \cup \{a^i b^{2i} / i \ge 1\}$$

L₉ sólo puede reconocerse con un APND.

$$APND_9 = <\{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7\}, \{a,b,c\}, \{A,B,Z_0\}, \delta_9, e_0, Z_0, \{e_7\}>$$

 δ_9 :

Lenguajes aceptados por los Autómata de Pila

Una cadena $\omega \in A^*$ es aceptada por AP= $\langle E, A, P, \delta, e_0, Z_0, F \rangle$ si y solo si

< e_0 , ω , Z_0 $> + e_f$ < e_f ϵ , α $> + e_f$

El AP, comienza en el estado e_0 , con pila vacía, luego de leer toda la cadena ω , llega a un estado $e_f \in F$, y en la pila queda cualquier cadena $\alpha \in P^*$.

El lenguaje aceptado por AP, es el conjunto de todas las cadenas que son aceptadas por AP:

$$L(AP) = \{ \omega / < e_0, \omega, Z_0 > | * < e_f, \varepsilon, \alpha > y \ \omega \in A^* \ y \ e_f \in F \ y \ \alpha \in P^* \}$$

Los lenguajes aceptados por los Autómatas de Pila se denominan lenguaje libres del contexto.

Autómata de pila traductor

Autómata de pila traductor AP_T

Un AP_T es simplemente un AP que se define como una 9-upla

$$AP_T = \langle E, A, P, \delta, e_0, Z_0, F, \gamma, S \rangle$$

donde E, A, P, δ , e₀, Z₀, F se definen como antes y se agregan dos componentes:

S: Alfabeto o conjunto finito de símbolos de salida

 $\gamma \text{: función de traducción definida como } \gamma \text{:} E \ x \ (A \cup \{\epsilon\}) \ x \ P \to S^*$

La γ está definida siempre que δ está definida.

En el diagrama de transición de AP_T puede describirse como una extensión de la notación usada para AP. Si existe $\delta(e_i$, a, X) =(e_j , α) y además $\gamma(e_i$, a, X) = t; luego el arco queda rotulado de la siguiente manera:

$$e_i$$
 a, X/α , e_j

donde $e_i, e_j \in E$; $a \in A$; $X \in P$; $\alpha \in P^*$; $t \in S^*$

Función de traducción para cadenas

El autómata sólo define la traducción, si el autómata AP subyacente "acepta" la cadena. Es decir la traducción $T(\omega)$: $A^* \rightarrow S^*$ asociada a AP_T está definida como

$$T(\omega)$$
 es válida \Leftrightarrow $< e_0$, ω , $Z_0 > | \stackrel{*}{---} < e_f$, ϵ , $\alpha >$

$$\frac{Ejemplo\; 10}{L_6 \!\!=\!\! \{0^i\; 1^{i+k}\; 2^k\; 3^{n+1}/\; i,\, k,\, n \geq 0\;\}}$$

 $0^{i} 1^{i+k} 2^{k} 3^{n+1}$ como $a^{i+k} b^{2k} c^{3n}$ Traducir las cadenas de L₆

 $APD_{T6} = \langle \{e_0, e_1, e_2, e_3, e_4\}, \{0, 1, 2, 3\}, \{A, B, Z_0\}, \delta_6, e_0, Z_0, \{e_4\}, \gamma_6, \{a, b, c\} \rangle$

δ_6 y γ_6 :

Ejemplo 11:

$$L_7 = \{h^n g^j e^{2n} d^{3i}/i, j, n \ge 0\}$$

 $h^{n} g^{j} e^{2n} d^{3i} como 1^{2j} 0^{n} 2^{i}$ Traducir las cadenas de L₇

 $APD_{T7} = <\{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9\}, \{h, e, g, d\}, \{H, Z_0\}, \delta_7, e_0, Z_0, \{e_0, e_4, e_8, e_9\}, \gamma_7, \{0, 1, 2\} > 1$ δ_7 y γ_7 :

