Predictive Analytics using Simple Linear Regression to predict the price of a house if the square footage is 1800

```
Independent Variable (X) = Squarefeet
Dependent Variable (Y) = Price
```

Here,

Line of Regresssion is --> Y = mx + c

i.e., Price = m (Squarefeet) + c

where , m = Slope & c = Intercept

After using regression, we got ---

Now,

Putting all the values in Regression equation we get

Therefore,

Predicted Price for 1800 square footage is Rs. 145.3027

Insight

Since R Square is 0.49, it means that the model is 49% good. Good in the sense that we have less number of data, if we have a large number of data our model will be more good. This is about the accuracy of the model i.e., the prediction accuracy is 49% good.

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.701467

R Square 0.492056 49% good

Adjusted R 0.482649 Standard E 75.68874 Observatio 56

ANOVA

	df	SS	MS	F	ignificance F
Regression	1	299677.8	299677.8	52.31088	1.73E-09
Residual	54	309354.4	5728.786		
Total	55	609032.3			
	· · · · · · · · · · · · · · · · · · ·	·	·		

	Coefficients	andard Errc	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	lpper 95.0%
Intercept	-66.5448	25.40498	-2.61936	0.011412	-117.479	-15.6109	-117.479	-15.6109
X Variable	: 0.117693	0.016273	7.232626	1.73E-09	0.085069	0.150317	0.085069	0.150317