UC Berkeley Department of Statistics Fall 2016

STAT 210A: THEORETICAL STATISTICS

Problem Set 1

Student: Ivana Malenica Due: Thursday, Sep. 8

Note: All measure-theoretic niceties about conditioning on measure-zero sets, almost-sure equality vs. actual equality, "all functions" vs. "all measurable functions," etc. are disregarded for the time being.

1. Risk of a shrinkage estimator

Let θ denote the proportion of people working in a company who are left-handed, and suppose we are in charge of ordering equipment and need to estimate θ . Let X denote the number of left-handers in a sample of size n from the company (for simplicity, assume we sample with replacement).

It is known that 10% of the U.S. population is left-handed. Instead of using the "obvious" estimator $\hat{\theta}_0(X) = X/n$, we could "shrink" the estimator toward 10% by using:

$$\hat{\theta}_1(X) = 0.2 \cdot 10\% + 0.8 \cdot \frac{X}{n},$$

Let $MSE_n(\theta, \hat{\theta})$ denote the mean squared error of an estimator $\hat{\theta}$, as a function of the sample size n and true parameter θ .

(a) Find $MSE_n(\theta, \hat{\theta}_i)$ for i = 0, 1.

Solution:

Note that $X \operatorname{Bin}(n,\theta)$. Then we have that:

$$MSE_n(\theta, \hat{\theta_0}) = E(\hat{\theta_0} - \theta)^2$$

$$= Var(\hat{\theta_0}) + Bias(\hat{\theta_0})^2$$

$$= \frac{1}{n^2} Var_{\theta}(X) + (\frac{1}{n} E_{\theta}(X) - \theta)^2$$

$$= \frac{1}{n} \theta (1 - \theta)$$

$$MSE_{n}(\theta, \hat{\theta_{1}}) = E(\hat{\theta_{1}} - \theta)^{2}$$

$$= Var(\hat{\theta_{1}}) + Bias(\hat{\theta_{1}})^{2}$$

$$= (\frac{0.8}{n})^{2}Var_{\theta}(X) + (0.02 + \frac{0.8}{n}E_{\theta}(X) - \theta)^{2}$$

$$= \frac{0.64}{n}\theta(1 - \theta) + (0.2(0.1 - \theta))^{2}$$

(b) For what values of θ is

$$\frac{\mathrm{MSE}_n(\theta, \hat{\theta}_1)}{\mathrm{MSE}_n(\theta, \hat{\theta}_0)} < 1?$$

Give the answer as a function of n. What happens as $n \to \infty$?

Solution:

We need $MSE_n(\theta, \hat{\theta}_1) < MSE_n(\theta, \hat{\theta}_0)$. This is possible for:

$$\frac{0.64}{n}\theta(1-\theta) + (0.2(0.1-\theta))^2 < \frac{1}{n}\theta(1-\theta) => (n+9)\theta^2 - (0.2n+9)\theta + 0.01n < 0$$
 which solves for:
$$\theta \in \frac{(0.2n+9)\pm\sqrt{(0.2n+9)^2-4(n+9)(0.01n)}}{2(n+9)} = \frac{n+45\pm9\sqrt{n+45}}{10n+90}$$

Note that $\lim_{n\to\infty} \frac{n+45\pm 9\sqrt{n+45}}{10n+90} \to \{0.1\}.$

2. Convexity of $A(\eta)$ and Ξ

Let $\mathcal{P} = \{p_{\eta}: \eta \in \Xi\}$ denote an s-parameter exponential family in canonical form

$$p_{\eta}(x) = e^{\eta' T(x) - A(\eta)} h(x), \qquad A(\eta) = \log \int_{\mathcal{X}} e^{\eta' T(x)} h(x) \, d\mu(x),$$

where $\Xi = \{ \eta : A(\eta) < \infty \}$ is the natural parameter space.

Recall Hölder's inequality: if $q_1, q_2 \ge 1$ with $q_1^{-1} + q_2^{-1} = 1$, and f_1 and f_2 are (μ -measurable) functions from \mathcal{X} to \mathbb{R} , then

$$||f_1 f_2||_{L^1(\mu)} \le ||f_1||_{L^{q_1}(\mu)} ||f_2||_{L^{q_2}(\mu)}, \quad \text{where } ||f||_{L^q(\mu)} = \left(\int_{\mathcal{X}} |f(x)|^q d\mu(x)\right)^{1/q}.$$

(Note that $q_1 = q_2 = 2$ reduces to Cauchy-Schwarz).

(a) Show that $A(\eta): \mathbb{R}^s \to [0, \infty]$ is a convex function: that is, for any $\eta_1, \eta_2 \in \mathbb{R}^s$ (not just in Ξ), and $c \in [0, 1]$ then

$$A(c\eta_1 + (1-c)\eta_2) < cA(\eta_1) + (1-c)A(\eta_2)$$

Solution:

Let $\eta = c\eta_1 + (1-c)\eta_2$ with $c \in [0,1]$ and $\eta_1, \eta_2 \in \mathbb{R}^s$. Then $\frac{1}{c} \geqslant 1$ and $\frac{1}{1-c} \geqslant 1$ and Hölder's inequality with $q_1 = \frac{1}{c}$ and $q_2 = \frac{1}{1-c}$ implies:

$$\begin{split} A(\eta) &= \log \int_{\mathcal{X}} e^{\eta' T(x)} h(x) \, d\mu(x) \\ &= \log [(\int_{\mathcal{X}} (e^{\eta_1' T(x)})^c h(x) \, d\mu(x)) (\int_{\mathcal{X}} (e^{\eta_2' T(x)})^{1-c} h(x) \, d\mu(x))] \\ &\leqslant \log [(\int_{\mathcal{X}} (e^{\eta_1' T(x)})^{\frac{c}{c}} h(x) \, d\mu(x))^c (\int_{\mathcal{X}} (e^{\eta_2' T(x)})^{\frac{1-c}{1-c}} h(x) \, d\mu(x))^{1-c}] \\ &= c \log (\int_{\mathcal{X}} e^{\eta_1' T(x)} h(x) \, d\mu(x)) + (1-c) \log (\int_{\mathcal{X}} e^{\eta_2' T(x)} h(x) \, d\mu(x)) \\ &= c A(\eta_1) + (1-c) A(\eta_2) \end{split}$$

(b) Conclude that $\Xi \subset \mathbb{R}^s$ is convex.

Solution:

Let η_1 and η_2 be in the natural parameter space and 0 < c < 1. Thus, $A(\eta_1)$ and $A(\eta_2)$ are finite. We need to show that $\eta = c\eta_1 + (1-c)\eta_2$ belongs to Ξ , so that $A(\eta) < \infty$. By part (a) we know that $A(\eta) < \infty$ since $A(\eta_1)$ and $A(\eta_2)$ are finite and 0 < c < 1. Therefore, $\eta \in \Xi$.

3. Expectation of an increasing function

(a) Assume $X \sim P$ is a real-valued random variable. Show that if f(x) and g(x) are non-decreasing functions of x, then

$$Cov(f(X), g(X)) \geqslant 0$$

Solution:

Let $X_1, X_2 \sim P$. Since X_1 and X_2 are iid, we have that:

$$cov(f(X_1), g(X_2)) = cov(f(X_2), g(X_1)) = 0$$

Note that for non-decreasing functions f and g and $X_1, X_2 \sim P$ we have that:

$$cov(f(X_1), g(X_1)) = cov(f(X_2), g(X_2))$$

Then, $cov(f(X_1), g(X_1)) + cov(f(X_2), g(X_2)) = 2cov(f(X_1), g(X_1))$ and by independence we have that $2cov(f(X_1), g(X_1)) = cov(f(X_1) - f(X_2), g(X_1) - g(X_2))$ equals:

$$\mathbb{E}(f(X_1)g(X_1)) - \mathbb{E}(f(X_1)g(X_2)) - \mathbb{E}(f(X_2)g(X_1)) + \mathbb{E}(f(X_2)g(X_2)) - \mathbb{E}(f(X_1))\mathbb{E}(g(X_1)) + \mathbb{E}(f(X_1))\mathbb{E}(g(X_2)) + \mathbb{E}(f(X_2))\mathbb{E}(g(X_1)) - \mathbb{E}(f(X_2))\mathbb{E}(g(X_2))$$

$$(1)$$

For non-decreasing functions f and g, $f(X_1) - f(X_2)$ and $g(X_1) - g(X_2)$ carry the same sign as $X_1 - X_2$ and $(f(X_1) - f(X_2))(g(X_1) - g(X_2)) \ge 0$. Therefore, $\operatorname{cov}(f(X_1) - f(X_2), g(X_1) - g(X_2))$ will be positive and hence $\operatorname{2cov}(f(X_1), g(X_1))$ as well.

(b) Let $p_{\eta}(x)$ be a one parameter canonical exponential family generated by T(x) = x and h(x), where $x \in \mathcal{X} \subset \mathbb{R}$, i.e.

$$p_n(x) = e^{\eta x - A(\eta)} h(x).$$

Let $\psi(x)$ be any non-decreasing function. Show that, if $\eta \in \Xi^{\circ}$, $E_{\eta}(\psi(X))$ is non-decreasing in η .

Solution:

Let $\eta \in \Xi^{\circ}$. We want to show $\frac{\delta}{\delta \eta} \mathbb{E}_{\eta}[\psi(x)] \geqslant 0$. If ψ and $\frac{\delta}{\delta \eta}$ are continuous, and using part (a) we have that:

$$\begin{split} \frac{\delta}{\delta\eta} \mathbb{E}_{\eta}[\psi(x)] &= \frac{\delta}{\delta\eta} \int_{\mathcal{X}} \psi(x) p_{\eta}(x) d\mu(x) \\ &= \int_{\mathcal{X}} \psi(x) \frac{\delta}{\delta\eta} e^{\eta x - A(\eta)} h(x) d\mu(x) \\ &= \int_{\mathcal{X}} \psi(x) x e^{\eta x - A(\eta)} h(x) d\mu(x) - \int_{\mathcal{X}} \psi(x) \mathbb{E}_{\eta}[x] e^{\eta x - A(\eta)} h(x) d\mu(x) \\ &= \mathbb{E}_{\eta}[x \psi(x)] - \mathbb{E}_{\eta}[x] \mathbb{E}_{\eta}[\psi(x)] \\ &\geqslant 0 \end{split}$$

4. Exponential families maximize entropy

The entropy (with respect to μ) of a random variable X with density p, is defined by

$$h(p) = \mathbb{E}_p(-\log p(X)) = -\int_{p(x)>0} \log(p(x))p(x) d\mu(x)$$

This quantity arises naturally in information theory as a minimal expected code length. Now consider the problem of maximizing h(p) subject to the constraints that p is a probability density with $\mathbb{E}_p[T(X)] = \alpha$, for some $\alpha \in \mathbb{R}^s$, $T: \mathcal{X} \to \mathbb{R}^s$. That is, p(x) > 0, $\int p(x)d\mu(x) = 1$, and $\int p(x)T_j(x) d\mu(x) = \alpha_j$, for $1 \le j \le s$

(a) Assume \mathcal{X} is a finite set and α is in the convex hull of $T(\mathcal{X}) = \{T(x) : x \in \mathcal{X}\}$. Show that the optimal p^* is in the s-parameter exponential family

$$p_{\eta}(x) = e^{\eta' T(x) - A(\eta)},$$

with parameter $\eta^* \in \mathbb{R}^s$ chosen so that p_{η^*} satisfies the constraints.

Solution:

We can set up the following maximization problem:

maximize
$$h(p) = \mathbb{E}_p(-\log p(X)) = -\int_{p(x)>0} \log(p(x))p(x) d\mu(x)$$

subject to $p(x) > 0$, $\int p(x)d\mu(x) = 1$, and $\int p(x)T_i(x) d\mu(x) = \alpha_i$, for $1 \le i \le s$

We introduce the following Lagrange multipliers:

 $\eta(x)$ for the constraint p(x) > 0

 η_0 for the constraint $\int p(x)d\mu(x) = 1$

 η_j for the constraint $\int p(x)T_j(x) d\mu(x) = \alpha_j$, for $1 \leq j \leq s$

Note that the Lagrangian is:

$$\varphi(p,\eta(x),\eta_0,\eta_j) = -\int_{\mathcal{X}} \log(p(x))p(x) d\mu(x)
+ \int_{\mathcal{X}} \eta(x)p(x) d\mu(x) + \eta_0(\int_{\mathcal{X}} p(x) d\mu(x) - 1)
+ \sum_j \eta_j(\int_{\mathcal{X}} T_j(x)p(x) d\mu(x) - \alpha_j)$$
(2)

Since \mathcal{X} is finite, we obtain the following:

$$0 = \frac{\delta\varphi(p, \eta(x), \eta_0, \eta_j)}{\delta p(x)}$$

$$= -\log p(x) - 1 + \eta(x) + \eta_0 + \sum_j T_j(x)\eta_j$$
(3)

Note that p(x) > 0 is an unnecessary constraint from this setup. Since the optimization is over a compact set which is nonempty as α is in the convex hull of $T(\mathcal{X})$, both η_0 and η_i can be picked such that the 2 constraints are satisfied. The optimal p is:

$$\log p(x) = \sum_{j} T_{j}(x)\eta_{j} + \eta_{0} - 1 \Rightarrow p(x) = e^{\sum_{j} T_{j}(x)\eta_{j} + \eta_{0} - 1}$$

With a bit of algebra manipulation, we have that for $\eta_0 = 1 - \log \int e^{\eta T(x)} h(x)$, $p(x) = e^{\langle \eta, T(x) \rangle - A(\eta)}$.

(b) Blithely applying the result of (a) to non-finite \mathcal{X} , find the distribution that maximizes the entropy (with respect to the Lebesgue measure), subject to the constraint that $\mathbb{E}(X) = \mu$, $\operatorname{Var}(X) = \sigma^2$.

Solution:

We can set up the following maximization problem: maximize $h(p) = \mathbb{E}_p(-\log p(X)) = -\int_{p(x)>0} \log(p(x))p(x) d\mu(x)$ subject to $E(X) = \mu$, $Var(X) = \sigma^2$, $\int p(x)d\mu(x) = 1$

We introduce the following Lagrange multipliers:

 λ_0 for the constraint $\int p(x)d\mu(x) = 1$ λ for the constraint $\int p(x)(x-\mu)^2 d\mu(x) = 1$

Note that the Lagrangian is:

$$\varphi(p,\lambda_0,\lambda) = -\int_{\mathcal{X}} \log(p(x))p(x) \, d\mu(x) + \lambda_0 \left(\int_{\mathcal{X}} p(x) \, d\mu(x) - 1 \right)$$

$$+ \lambda \left(\int_{\mathcal{X}} (x - \mu)^2 p(x) \, d\mu(x) - \sigma^2 \right)$$

$$(4)$$

Thus:

$$0 = \frac{\delta \varphi(p, \lambda_0, \lambda)}{\delta p(x)} = -\log p(x) - 1 + \lambda_0 + \lambda$$

The optimal p is:

$$\log p(x) = \lambda (x - \mu)^2 + \lambda_0 - 1 \Rightarrow p(x) = e^{\lambda (x - \mu)^2 + \lambda_0 - 1}$$

Using part (a), the distribution should be of the $e^{\lambda_1 x + \lambda_2 x^2 + A(\lambda)}$ form. We recognize this as the exponential family form of the normal distribution with parameters μ and σ^2

5. Minimal sufficiency of the likelihood ratio

Suppose that $\mathcal{P} = \{p_{\theta} : \theta \in \Theta\}$ is a family of densities defined with respect to a common measure μ on \mathcal{X} . Assume $\Theta = \{\theta_1, \dots, \theta_m\}$ is a finite set, and there exists some $\theta \in \Theta$ such that $p_{\theta}(x) > 0, \forall x \in \mathcal{X}$ (without loss of generality we can assume it is θ_1).

(a) Prove that the likelihood ratio, defined as

$$T(X) = \left(\frac{p_{\theta}(X)}{p_{\theta_1}(X)}\right)_{\theta \in \Theta}$$

is minimal sufficient. (Note: \mathcal{X} is not necessarily finite).

Solution:

Note that $\Theta = \{\theta_1, ... \theta_m\}$ is a finite set, thus we can represent T(x) as a vector of m-1 likelihood ratios:

$$T(x) = \left[\frac{p_{\theta_2}(x)}{p_{\theta_1}(x)} \dots \frac{p_{\theta_m}(x)}{p_{\theta_1}(x)}\right]$$

Define a unit vector e_i . Then, we have $p_{\theta}(x) = e^t T(x) p_{\theta_1}(x)$. By applying the factorization theorem with $g_{\theta}(T(x)) = e^t T(x)$ and $h(x) = p_{\theta_1}(x)$ we have that the likelihood ratio is sufficient.

If $p_{\theta}(x) \propto_{\theta} p_{\theta}(y)$, $\exists c(x,y)$ such that $\forall \theta \ p_{\theta}(x) = c(x,y)p_{\theta}(y)$. Thus,

$$\frac{p_{\theta}(x)}{p_{\theta_1}(x)} = \frac{p_{\theta}(y)}{p_{\theta_1}(y)}$$

and the likelihood ratio is minimal.

(b) Show by counterexample that the $\it likelihood\ function,$ defined as

$$T(X) = (p_{\theta}(X))_{\theta \in \Theta}$$

is not, in general, minimal sufficient.

Solution:

Let X_1 and X_2 be independent, with $X_1 \sim \text{Bern}(\theta)$ and $X_2 \sim \text{Bern}(\frac{2}{3})$. Then:

$$p_{\theta}(X_1, X_2) = \theta^{X_1} (1 - \theta)^{1 - X_1} \frac{2^{X_2}}{3}$$

By the factorization theorem, X_1 is clearly sufficient. However, $p_{\theta}(X_1, X_2)$ cannot be written as a function of X_1 only (notice that $p_{\theta}(X_1, 1) = 2p_{\theta}(X_1, 0)$).