Devoir surveillé n°6 Version n°1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

On considère la suite $(u_n)_{n\geqslant 0}$ définie par : $u_0\in [-1,+\infty[$ et, pour tout $n\in\mathbb{N},$ $u_{n+1}=\sqrt{1+u_n}.$

- 1) Montrer que cette suite ne possède qu'une seule limite finie éventuelle α que l'on calculera.
- 2) Montrer que pour tout $n \ge 2$, $|u_{n+1} \alpha| \le \frac{1}{2\sqrt{2}}|u_n \alpha|$. En déduire la convergence de la suite (u_n) .

II. Un exercice sur les polynômes.

Soit le polynôme $P = X^6 - 5X^4 + 8X^3 - 9X^2 + aX + b$, où a et b sont, pour l'instant, deux réels indéterminés.

1) Déterminer a et b pour que 1 soit racine multiple de P.

Désormais a et b auront ces valeurs.

- 2) Quel est alors l'ordre de multiplicité k de 1 comme racine de P?
- 3) Vérifier ce résultat en effectuant la division euclidienne de P par $(X-1)^k$ pour les valeurs a et b trouvées. Préciser la valeur du quotient Q.
- **4)** En déduire les factorisations de Q puis de P en produit d'irréductibles sur $\mathbb{R}[X]$ puis sur $\mathbb{C}[X]$.
- 5) Montrer, successivement mais sans calcul, que $P^{(1)}$, $P^{(2)}$ et $P^{(3)}$ possède chacun au moins une racine réelle dans l'intervalle ouvert]-3,1[.

III. Qualité de l'interpolation de Lagrange.

Soit $a, b \in \mathbb{R}$ vérifiant a < b. Soit $f : [a, b] \to \mathbb{R}$ infiniment dérivable. On se donne n+1 points x_0, \ldots, x_n distincts deux à deux dans [a, b], et l'on considère le problème d'interpolation polynomial relatif aux points $(x_0, f(x_0)), \ldots, (x_n, f(x_n))$.

Dans la suite, on supposera que $x_0 < x_1 < \cdots < x_n$ et l'on notera $\sigma = \{x_0, x_1, \dots, x_n\}$.

On considère le polynôme

$$\pi_{\sigma} = \prod_{i=0}^{n} (X - x_i).$$

1) Question de cours : Montrer qu'il existe un unique polynôme $L_n(f)$ de degré au plus n vérifiant :

$$\forall i \in [0, n], \ L_n(f)(x_i) = f(x_i).$$

On donnera notamment l'expression explicite de $L_n(f)$.

On veut démontrer pour tout réel $x \in [a,b]$ la propriété suivante, notée \mathscr{P}_x :

$$\exists c_x \in]a, b[, f(x) - L_n(f)(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!} \pi_{\sigma}(x).$$

2) Résultat préliminaire : soit $p \in \mathbb{N}^*$. Démontrer que si $\varphi : [a, b] \to \mathbb{R}$ est une fonction p-fois dérivable qui s'annule au moins p+1 fois sur [a, b], alors il existe $c \in]a, b[$ tel que $\varphi^{(p)}(c) = 0$.

Indication: on pourra procéder par récurrence sur p.

3) Justifier que pour tout $x \in \sigma$, la propriété \mathscr{P}_x est vraie.

On fixe x un réel de [a,b] qui n'est pas dans σ . Soit λ un réel. On définit sur [a,b] une application F par :

$$F: t \mapsto f(t) - L_n(f)(t) - \lambda \pi_{\sigma}(t).$$

- 4) Déterminer un réel λ de sorte que F(x) = 0. On choisira alors λ de cette façon.
- 5) Démontrer que F s'annule n+2 fois et en déduire que \mathscr{P}_x est vraie.

On s'intéresse maintenant à la qualité de l'approximation de f par $L_n(f)$.

On note $M_n(f)$ le maximum de $|f^{(n)}|$ sur [a,b]:

$$M_n(f) = \max \{ |f^{(n)}(t)| ; t \in [a, b] \}.$$

- 6) Justifier que pour chaque $n \in \mathbb{N}$ la quantité $M_n(f)$ est bien définie.
- 7) Déduire des questions précédentes qu'il existe un réel positif K indépendant de n tel que pour tout $t \in [a,b]$:

$$|f(t) - L_n(f)(t)| \le \frac{K^{n+1}}{(n+1)!} M_{n+1}(f).$$

8) Exemple: on considère dans cette question que f est la fonction sinus et que $[a,b]=[0,2\pi]$. Expliciter les constantes $M_n(f)$ et en déduire dans ce cas que

$$\frac{K^{n+1}}{(n+1)!}M_{n+1}(f) \xrightarrow[n \to +\infty]{} 0.$$

9) Exemple: on considère dans cette question que [a, b] = [-1, 1] et que

$$f: x \mapsto \frac{1}{1+x^2}.$$

- a) Justifier que f est infiniment dérivable et déterminer f'.
- **b)** En observant que pour tout $x \in [-1, 1]$, $(1 + x^2)f(x) = 1$, montrer que pour tout $x \in [-1, 1]$ et tout $n \ge 2$:

$$(1+x^2)f^{(n)}(x) + 2nxf^{(n-1)}(x) + n(n-1)f^{(n-2)}(x) = 0.$$

c) En déduire une expression de $f^{(n)}(0)$ pour tout $n \in \mathbb{N}$ et justifier que

$$\forall n \in \mathbb{N}, \ M_{2n}(f) \geqslant (2n)!.$$

Remarque : cette dernière inégalité montre que la quantité $M_n(f)$ peut être grande et cela peut empêcher la convergence vers 0 de $M_0(f - L_n(f))$ (on parle de convergence de $(L_n(f))$ vers f au sens uniforme). Ceci est appelé phénomène de Runge.

— FIN —