

DK1.2_RF_mmW

Comparison with DK1.1_RF_mmW model(s)

Please use the bookmark to navigate

General information on Poly resistors models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 0.4um to 100um.
 - ✓ Drawn transistor width varies from 0.15um to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

• Model(s): opppcres, opreres

✓ Rval : Resistance at Vres = 50e-3V

dormieub

opppcres Electrical characteristics scaling

dormieub

opppcres, Rval [Ohm] vs L [m]

Temp==25 and Vres==50e-3 and w==5e-6

opppcres, Rval*W/L [Ohm/sq] vs L [m]

Temp==25 and Vres==50e-3 and w==5e-6

opppcres, Rval [Ohm] vs L [m]

Temp==25 and Vres==50e-3 and w==0.3e-6

opppcres, Rval*W/L [Ohm/sq] vs L [m]

Temp==25 and Vres==50e-3 and w==0.3e-6

opppcres, Rval [Ohm] vs W [m]

Temp==25 and Vres==50e-3 and l==50e-6

opppcres, Rval*W/L [Ohm/sq] vs W [m]

Temp==25 and Vres==50e-3 and l==50e-6

opppcres, Rval [Ohm] vs W [m]

Temp==25 and Vres==50e-3 and l==0.4e-6

opppcres, Rval*W/L [Ohm/sq] vs W [m]

Temp==25 and Vres==50e-3 and l==0.4e-6

ST Confidential

opppcres, Rval [Ohm] vs Temp [C]

w==5e-6 and Vres==50e-3 and l==50e-6

opppcres, Rval*W/L [Ohm/sq] vs Temp [C]

w==5e-6 and Vres==50e-3 and l==50e-6

opppcres, Rval [Ohm] vs Temp [C]

w==0.15e-6 and Vres==50e-3 and l==50e-6

opppcres, Rval*W/L [Ohm/sq] vs Temp [C]

w==0.15e-6 and Vres==50e-3 and l==50e-6

opppcres, Rval [Ohm] vs Temp [C]

w==5e-6 and Vres==50e-3 and l==0.4e-6

opppcres, Rval*W/L [Ohm/sq] vs Temp [C]

w==5e-6 and Vres==50e-3 and l==0.4e-6

opppcres, Rval [Ohm] vs Temp [C]

w==0.15e-6 and Vres==50e-3 and l==0.4e-6

opppcres, Rval*W/L [Ohm/sq] vs Temp [C]

w==0.15e-6 and Vres==50e-3 and l==0.4e-6

opppcres, Rval [Ohm] vs Vres [V]

w==5e-6 and Temp==25 and l==50e-6

opppcres, Rval*W/L [Ohm/sq] vs Vres [V]

w==5e-6 and Temp==25 and l==50e-6

opppcres, Rval [Ohm] vs Vres [V]

w==0.15e-6 and Temp==25 and l==50e-6

opppcres, Rval*W/L [Ohm/sq] vs Vres [V]

w==0.15e-6 and Temp==25 and l==50e-6

opppcres, Rval [Ohm] vs Vres [V]

w==5e-6 and Temp==25 and l==0.4e-6

opppcres, Rval*W/L [Ohm/sq] vs Vres [V]

w==5e-6 and Temp==25 and l==0.4e-6

dormieub

opppcres, Rval [Ohm] vs Vres [V]

w==0.15e-6 and Temp==25 and l==0.4e-6

opppcres, Rval*W/L [Ohm/sq] vs Vres [V]

w==0.15e-6 and Temp==25 and l==0.4e-6

opreres Electrical characteristics scaling

dormieub

opreres, Rval [Ohm] vs L [m]

Temp==25 and Vres==50e-3 and w==5e-6

opreres, Rval*W/L [Ohm/sq] vs L [m]

Temp==25 and Vres==50e-3 and w==5e-6

opreres, Rval [Ohm] vs L [m]

Temp==25 and Vres==50e-3 and w==0.3e-6

opreres, Rval*W/L [Ohm/sq] vs L [m]

Temp==25 and Vres==50e-3 and w==0.3e-6

opreres, Rval [Ohm] vs W [m]

Temp==25 and Vres==50e-3 and l==50e-6

opreres, Rval*W/L [Ohm/sq] vs W [m]

Temp==25 and Vres==50e-3 and l==50e-6

opreres, Rval [Ohm] vs W [m]

Temp==25 and Vres==50e-3 and l==0.4e-6

Temp==25 and Vres==50e-3 and l==0.4e-6

dormieub

w==5e-6 and Vres==50e-3 and l==50e-6

w==5e-6 and Vres==50e-3 and l==50e-6

w==0.15e-6 and Vres==50e-3 and l==50e-6

w==0.15e-6 and Vres==50e-3 and l==50e-6

w==5e-6 and Vres==50e-3 and l==0.4e-6

w==5e-6 and Vres==50e-3 and l==0.4e-6

w==0.15e-6 and Vres==50e-3 and l==0.4e-6

w==0.15e-6 and Vres==50e-3 and l==0.4e-6

w==5e-6 and Temp==25 and l==50e-6

w==5e-6 and Temp==25 and l==50e-6

w==0.15e-6 and Temp==25 and l==50e-6

w==0.15e-6 and Temp==25 and l==50e-6

w==5e-6 and Temp==25 and l==0.4e-6

w==5e-6 and Temp==25 and l==0.4e-6

w==0.15e-6 and Temp==25 and l==0.4e-6

w==0.15e-6 and Temp==25 and l==0.4e-6

Annex

ST Confidential

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model opppcres (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times mc runs = 1000
 - \times vsub1 = 0
 - \times temp = 25 °C
 - \times vres = 50e-3 V
 - \times mc_sens = 0
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{X} ams release = 2018.3
 - **✗** model_version = 1.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vres = -3.0, -2.0, -1.0, -0.05, 0.05, 0.5, 1.0, 2.0, 3.0
 - \times temp = 25.0, -30.0, -10.0, 10.0, 60.0, 100.0, 150.0
 - ✓ Extra parameters
 - \times rpolyp_dev = 0

Sep 21, 2018

ST Confidential

- \times rpolyh_dev = 0
- Model opreres (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times vsub1 = 0
 - \times temp = 25 °C
 - \times vres = 50e-3 V
 - \mathbf{x} mc_sens = 0
 - **x** sbenchlsf_release = Alpha
 - \mathbf{x} ams_release = 2018.3
 - **✗** model_version = 1.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vres = -3.0, -2.0, -1.0, -0.05, 0.05, 0.5, 1.0, 2.0, 3.0
 - \times temp = 25.0, -30.0, -10.0, 10.0, 60.0, 100.0, 150.0
 - ✓ Extra parameters
 - \times rpolyp_dev = 0
 - \times rpolyh_dev = 0
- Model opppcres (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times vsub1 = 0
 - \times temp = 25 °C
 - \times vres = 50e-3 V
 - \times mc_sens = 0

- **x** sbenchlsf_release = Alpha
- \mathbf{x} ams_release = 2018.3
- **✗** model_version = 1.3
- **x** mc_nsigma = 3
- ✓ Sweep Parameters
 - \mathbf{x} vres = -3.0, -2.0, -1.0, -0.05, 0.05, 0.5, 1.0, 2.0, 3.0
 - **x** temp = 25.0, -30.0, -10.0, 10.0, 60.0, 100.0, 150.0
- ✓ Extra parameters
 - \times rpolyp_dev = 0
 - \times rpolyh_dev = 0
- Model opreres (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times vsub1 = 0
 - \times temp = 25 °C
 - \times vres = 50e-3 V
 - \times mc_sens = 0
 - **x** sbenchlsf_release = Alpha
 - \mathbf{x} ams_release = 2018.3
 - \times model version = 1.3
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vres = -3.0, -2.0, -1.0, -0.05, 0.05, 0.5, 1.0, 2.0, 3.0
 - **x** temp = 25.0, -30.0, -10.0, 10.0, 60.0, 100.0, 150.0
 - ✓ Extra parameters

- **x** rpolyp_dev = 0
- **x** rpolyh_dev = 0

