

Programação de Sistemas Paralelos e Distribuídos

(206610)

AULA 1

Conceitos Básicos 1

Professor: Luiz Augusto Laranjeira luiz.laranjeira@gmail.com

Material originalmente produzido pelo Prof. Jairo Panetta (ITA) e adaptado para a FGA pelo Prof. Laranjeira.

8/19/2020 Conceitos Básicos

Bibliografia

- Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar: Introduction to Parallel Computing, Addison Wesley, 2003
 - Princípios Gerais de Paralelismo; Visão Algoritmica.
- John L. Hennessy, David A. Patterson: Computer Architecture: A Quantitative Approach, 4th edition, Morgan Kaufmann, 2007.
 - Biblia de arquitetura de computadores
- Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, Andy White: Sourcebook of Parallel Computing, Morgan Kaufmann, 2003.
 - Um dos melhores livros em aplicações.
- David E. Culler, Jaswinder Pal Singh, Anoop Gupta: Parallel Computer Architecture, a Hardware/Software Approach, Morgan Kaufmann, 1999.
 - Ênfase em hardware e seus impactos em software.
- Michael Wolfe: High Performance Compilers for Parallel Computing, Addison-Wesley, 1996.
 - Técnicas de otimização e de compilação para paralelismo.
- Livros e padrões de OpenMP, MPI e CUDA (citados nas respectivas aulas)

Agenda

- Definição de Paralelismo
- Níveis de Paralelismo
- Métricas de Desempenho Paralelo
- Lei de Amdahl
- Necessidade e Utilidade de Paralelismo
- Lei de Moore
- Memory Wall, Power Wall
- Cray no IME

Processamento Paralelo é a realização simultânea de múltiplas partes de uma única computação para reduzir o tempo total de sua execução

8/19/2020 Conceitos Básicos 4

Exemplos de Process. Paralelo

- Copiar ("xerox") documento da ordem de 10.000 páginas utilizando
 - 1 copiadora
 - 2 copiadoras
 - ...
- Cavar uma vala horizontal de 10km de comprimento por 2m de diâmetro utilizando
 - 1 trabalhador
 - 2 trabalhadores
 - ...

- Escrever um arquivo em disco utilizando
- 1 servidor de arquivos
- 2 servidores de arquivos
- ...
- Executar um algoritmo numérico para previsão do tempo utilizando
 - 1 CPU
 - 2 CPUs
 - ...

Características Básicas do Processamento Paralelo

- Requer a replicação (total ou parcial) de entidades trabalhadoras
 - múltiplas copiadoras, múltiplos trabalhadores, múltiplos servidores de arquivos, múltiplas CPUs
- Requer alterar a forma de realizar a tarefa para usufruir da replicação
- Ao replicar n entidades deseja-se dividiro tempo de execução da tarefa por n
 - máximo teórico !!! (máximo possível???)

Copiar 10.240 páginas

Suponha:

- original entregue em ordem crescente das páginas numeradas;
- cópia deve ser entregue da mesma forma
- uma única pessoa divide o original em partes iguais a serem copiadas, entrega para os copiadores e recolhe as cópias
- cada copiadora copia uma única parte
- 1 segundo para copiar uma página
- 5 segundos para dividir o original em dois blocos
- 5 segundos para juntar dois blocos de páginas copiadas
- Estime o tempo para realizar a tarefa utilizando
 - 1, 2, 4, 8, 16, 32 e 64 copiadoras

Tempo com 1 copiadora

Tempo com 2 copiadoras

n=2

5 + 10240/2 + 5

Tempo com 3 copiadoras

n=3

5*2 + 10240/3 + 10

Tempo com n Copiadoras

Estimativa do Tempo de Execução

Hipótese: tempo total = tempo de entrega sequencial das partes + tempo de copiar uma parte + tempo de recolher duas últimas partes

Máquinas	Tempo (s)				Ganho
	dividir	copiar	juntar	total	
1	0	10240	0	10240	1,00
2	5	5120	5	5130	2,00
4	15	2560	10	2585	3,96
8	35	1280	10	1325	7,73
16	75	640	10	725	14,12
32	155	320	10	485	21,11
64	315	160	10	485	21,11

Para 64 máquinas $T_d > T_c$ (315 > 160) Não há ganho com respeito a 32 máquinas

Copiar 10.240 páginas

- Como utilizar eficientemente 1024 copiadoras?
 - Alterando os mecanismos de distribuição de dados e de coleta de resultados
- O procedimento (algoritmo) precisaria ser mudado de acordo com o volume de paralelismo para continuar a se ter um ganho crescente
 - Pois muda o gargalo da tarefa
- E se uma copiadora for 1% mais lenta que as outras?
 - Típico de grande número de máquinas iguais
- E se uma copiadora quebrar?
 - Tolerância a falhas é desejável; às vezes, imprescindível

Cavar Vala de 10km

- Exemplo atribuído ao Prof. Siang W. Song (IME/USP)
- Similar ao exemplo anterior. Assuma terreno demarcado, número crescente de trabalhadores equipados e um capataz.
 - Quais são os fatores que impedem redução "ótima" do tempo de execução com o aumento do número de trabalhadores?
- E se a vala for vertical?
- Pequenas variações do problema podem causar grandes variações no paralelismo
- Há problemas inerentemente sequenciais
 - alterar 1 bit na memória

Agenda

- Definição de Paralelismo
- Níveis de Paralelismo
- Métricas de Desempenho Paralelo
- Lei de Amdahl
- Necessidade e Utilidade de Paralelismo
- Lei de Moore
- Memory Wall, Power Wall
- Cray no IME

Níveis de Paralelismo

- Paralelismo ao nível debits
 - BLP: Bit Level Parallelism
 - Acelera a execução de uma instrução aumentando a largura do datapath (microprocessadores de 4, 8, 16, 32 e 6 4 bits)
 - Muito explorado até meados da década de 80; esgotado
- Paralelismo ao nível de instruções
 - ILP: Instruction Level Parallelism
 - Execução simultânea de múltiplas instruções ou trechos: RISC, VLIW, Superscalar
 - Muito explorado até meados da década de 90; praticamente esgotado
- Paralelismo ao nível detarefas
 - TLP: Thread Level Parallelism
 - Múltiplos fluxos de execução simultâneos: Multi-core chips, Multithreading, etc...
- Curso concentrado em TLP
 - Alguns casos de ILP

Culler, Cap. 1

Agenda

- Definição de Paralelismo
- Níveis de Paralelismo
- Métricas de Desempenho Paralelo
- Lei de Amdahl
- Necessidade e Utilidade de Paralelismo
- Lei de Moore
- Memory Wall, Power Wall
- Cray no IME

Speed-up

 Mede o ganho (no tempo de execução) em utilizar p processadores

$$S(p) = \frac{T(1)}{T(p)}$$

- Teoricamente, $S(p) \le p$, isto é, S(p) é, no máximo, igual a p.
- Na prática, características do processador eliminam este limite (speed-up superlinear)
 - Há casos em que $S(p) \ge p$

Eficiência

Mede a eficiência em utilizar p processadores

$$E(p) = \frac{T(1)}{p \times T(p)}$$

$$E(p) = \frac{S(p)}{p}$$

Agenda

- Definição de Paralelismo
- Níveis de Paralelismo
- Métricas de Desempenho Paralelo
- Lei de Amdahl
- Necessidade e Utilidade de Paralelismo
- Lei de Moore
- Memory Wall, Power Wall
- Cray no IME

Lei de Amdahl

Seja f a fração do tempo de execução sequencial de um programa ($0 < f \le 1$) que é mantida sequencial após a paralelização.

Então, o ganho (speed-up) máximo é

$$S(p) = \frac{1}{f}$$

para qualquer número de processadores.

Gene M. Amdahl, "Validity of the single processor approach to achieving large scale computing capabilities", AFIPS spring joint computer conference, 1967

Lei de Amdahl

f (%)	f	S(p) = 1/f
0	0	∞ (qdo $p \to \infty$)
0.1	0.001	1000
1	0.01	100
10	0.1	10
20	0.2	5
50	0.5	2
80	0.8	1.25

f é a fração da computação que não pode ser paralelizada

Lei de Amdahl em Detalhe

Sejam:

- T(1) o tempo de execução com 1 processador
- T(p) o tempo de execução com n processadores
- f a fração de T(1) que é mantida sequencial em T(p) $T_{seq} = fT(1)$
- S(p) o speed-up ao se usar p processadores

queremos demonstrar que

$$S(p) \le \frac{1}{f}$$

(para qualquer número de processadores)

Lei de Amdahl - Demonstração

$$T(1) = T_{iseq} + T_{ipar} = fT(1) + (1 - f)T(1)$$

$$T(p) = T_{seq} + T_{par} \quad (te\'orico), \qquad T_{seq} = fT(1), \qquad T_{par} = \frac{(1 - f)T(1)}{S(p)}, \qquad \min_{S(p)_{max} = p} T_{par} = \frac{(1 - f)T(1)}{p}$$

$$T(p) \ge fT(1) + \frac{(1 - f)T(1)}{p}$$

pois T_{par} não pode ser reduzido por fator superior a p. Assim,

$$\frac{T(p)}{T(1)} \ge f + \frac{(1-f)}{p} \qquad \Longrightarrow \qquad S(p) \le \frac{1}{f + \frac{(1-f)}{p}}$$

Como o lado direito é uniformemente crescente em p, o limite superior de S(p) ocorre quando p tende a infinito, ou seja,

$$S(p) \le \frac{1}{f}$$

Lei de Amdahl - Implicações

Unb Formas de Speed-up face a Amdahl

- Tipicamente, a fração do tempo sequencial mantida sequencial diminui ao aumentar o tamanho do problema
 - Técnica comum quando o speed-up não é bom: aumentar artificialmente o tamanho do problema⁽¹⁾
 - Mas há casos em que o aumento é necessário para observar resultados físicos invisíveis em problemas menores (2)

Strong speed-up

Mantém o tamanho do problema e escala o número de processadores

Weak speed-up

Escala o tamanho do problema com o mesmo número de processadores

⁽¹⁾ D. H. Bailey: Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers, Supercomputing Review, Aug. 1991

⁽²⁾ J. L. Gustafson: Reevaluating Amdahl's Law, CACM May 1988

Agenda

- Definição de Paralelismo
- Níveis de Paralelismo
- Métricas de Desempenho Paralelo
- Lei de Amdahl
- Necessidade e Utilidade de Paralelismo
- Lei de Moore
- Memory Wall, Power Wall
- Cray no IME

Porque Paralelismo? Há Motivos Perenes

Desde que Existem Computadores

- Aplicações (usuários) requerem computadores cada vez mais potentes
- Velocidade e poder computacional de CPUs crescem a velocidade assombrosa
 - Base: "Lei" de Moore (veremos em seguida)
- Requisitos das aplicações (usuários) crescem mais rapidamente do que a velocidade das CPUs
- Acoplar múltiplas CPUs é uma forma viável de reduzir a distância entre as necessidades dos usuários e a velocidade de uma única CPU

Requisitos dos Usuários

- Usuários estão insatisfeitos com os modelos matemáticos utilizados nas simulações computacionais (não representam aspectos críticos da realidade)
- Modelos matemáticos mais precisos requerem computadores ordens de magnitude mais velozes que os atualmente disponíveis (verdade "desde sempre")
- Exemplo: Modelo de Circulação Global da Atmosfera

Ex: Modelo Global do CPTEC

Centro de Previsão de Tempo e Estudos Climáticos - INPE

Resolução Horizontal (km)	Flops por Dia de Previsão (normalizado)	Dias de Previsão por Dia de CPU (1 dia de CPU NEC SX6)
210	1	995
105	6	100
63	52	16
40	219	7
20	727	1

Complexidade O(1/resolução4)

Aumentando a Resolução

Sumário: Porque Paralelismo?

- Usuários continuarão a demandar maior potência computacional, alcançável por paralelismo
 - Até quando paralelismo resolve?
 "I know how four oxen can push a wagon, but do not how 1024 chicken would do it"
- Entretanto, há motivos mais recentes para usar paralelismo
 - Motivos alheios à vontade dos usuários e dos fabricantes

Porque Paralelismo? Motivos Recentes:

- "Lei" de Moore
- Memory Wall
- Power Wall