

05 SATURDAY JANUARY 2019

Analog Assignment-6

i) We need Yorks)

Here, VG= Vin 1/89 = Vin 1+889

And Vs = No, Hence from the source termina

1 + 500 RL/(1+5G RL)

.

100

MONDAY JANUARY 2019

DB 3m	1 12-500	ToVo	solva!		
1		T ²	1620		1-1/0(4)
Y	RS & TC	~	7 Vas	Boles	1+5c281
	NO I		CE C	RS T	lec
	V			(2) 3	
Firstly Vol	(s) = - 3m R	- Vascs		-	a.,
<u></u>	(430)	RL ST		. 100) crist
Ve	(2) = 0	1- 1/4	120 21	4 4	
And apply	ing tick as	Y 15/			Ķ.
4 \	100/00 Vec	S) - Vince	0 + V	<u>د</u> (ع)	
3.	Vec(s)= Vec	Rs	1000	/sc	
***************************************	m Vs(s) = Vs				
⇒>	Vincs) = Va	(a) []	+30+3	Tm	
				<u> ۲</u> ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	
- >>	Vs(3) =				
		1+50	Ratamps	21.	Jedin,
Then, Vo	(S) = 18m1	<u> </u>	(5)		
		2 PL	^		
1 2	30 RL	Vin Ce	Rate R		
⇒	Vo(3) =	3mRL	-	- 147 1	
1	Vin(s)	Jm RL J+SCIRIX	1+5CR5+	SMRS)	

09 WEDNESDAY JANUARY 2019

SGRL-SMRL > Vo(3) 3CCy-C2)R1-1+52 (Cx-G)XCx+C)RRL Vin(S) - SCCI+CX)R-52GZRRL+SGJRR SCRL - JMRL -1 + 5 [(Cx-G)RL - (C)+Cx)R+Cx3mRR] +5° [ARL (CX-G) (Cx+Ci) - Gº PR] SCXRL-SmRL -1 + S[Cx(RL-R+gnRRL) -C1R-C2R) 4 52 [PALCX (G-6)-66 - 6300 SCXRL- Om RL -1+S[Cx CRL-R+SMRRL)-CR-CR - 52 [RRG (4-62)+962) = 3mR_-SGRL 1+5°[RR_Cx(C1-C3)+GC3]-S(G(R-R+5,100)

s) 1+5 [RR_Cx (C1-C3) + GC3] - S(G(RE-CX R)

21 MONDAY JANUARY 2019

30)	Vin + (-	- July	- Vo
			A(D= A0 (1+5/2)
******************************		11	(1+5)(HE)
		K	A) A

A0=104 P,=100 wd/s K=10

At gain cross or or freq, 7.M= 60°

$$\frac{\frac{\omega_u}{P_1} + \frac{\omega_u}{P_2}}{1 - \frac{\omega_u^2}{P_1 P_2}} = -\frac{1}{1 - \frac{\omega_u^2}{P_1 P_2}} = -\frac{1}{$$

By be some n, then

23 WEDNESDAY JANUARY 2019

arl - Gysod
91+ = 3×500 (50)
912 - (3 x500 on +1 =0 912-38-69119+1=0
\so\
$\sqrt{501}$ On solving, $n = 38.6652$ (8) 0.0258
⇒ P2-91 → P2 = P, 72² = 149500.055 (81) 0.06689
19 = 149500.055 (B) 0.06689
: / P2 = 149.5 K (51) 66.89 m) rad/c
Then damping tactor would be
1 - COL WOME BE
$\mathcal{E} = \frac{1}{2} \left(\frac{P_1}{P_2} + \frac{P_2}{P_3} \right) \sqrt{\frac{K}{A+K}} = \frac{1}{2} \left(\frac{91+1}{21} \right) \sqrt{\frac{10}{10^{4}+10}}$
= 1 × (3 × 500 × 10 = 250 × 3 2 √501 √10000 √501×1000
2 V501 V10016 V501K1001
= 0.61145
-> Underdamped System
(For both cases of P2)
For the found P2, the peaking happens as
ωρ: ωη/1-2ξ2 and ωη 2 [A] [00]
cop: wn/1-282 and con 2 Atk . IP,P2

24 THURSDAY JANUARY 20

Hence, to CLG, peaking i) P, = 100 P2 = 149.5	the $\xi = 0.61145$
$w_n = 122.33 \text{ K} \Rightarrow$ $ii) P_1 = 100 P_2 = 66.87$	m & = 61.442K)
And the Correspondi	wp=41.097) ne peaking,
CLGCO = K = 1+ 1+1/4600 1+	4/A(S) 1+ K(1+S/A)(1+S/A)
17 K (1+3+	5/8)(1+j12/13)
By finding the manit	tound, we get
T.Fl@ w= 61.44K = 2 P2 - 149.5K	
Similarly 102 1T.Flow=81.827 =	20.276 dB
B=66-89m	

25 FRIDAY JANUARY 2019

1. Dot	When	P2 = 149.	>K 1-0/ S	• • • • • • • • • • • • • • • • • • • •
1/4				
Sode		, A	7446)
GOLD			/	, CLG(S)
4013 2	·234B _			
2018				2= 100 50 100
Off	9=100		61.42	2=14 38 284
-201B				
-4088	17 24			
0			160)	
-160+				
100		A(s), LG(s)		
-1801			······································	
		34.5.65		

26 SATURDAY JANUARY

Bode Plot: When P2 = 66.89 m make

SUNDAY 27

18 FRIDAY JANUARY 2019

26 Phase	Margin when	
	A(S)= A0(1+51g)(1+年)(1+年)	
Sain	Gon over trequency	
	A02 = 1+ 62 >	ω= P, √A3-1
Phase	Margin: PM = 180 + 4	<u>G(3)</u> -(3)
	= 180° - t	n' (VA3-1)
		5' (V18-1)
manananananana	= 90.00=	~ 978
ii) Z = -P2 Gain Ga	$A(s) = A_0(1-s/s)$ $(1+s)(1+s)$ $P(s) = A_0(1-s/s)$	<u> </u>
	$\left(1+\frac{\omega^2}{R^2}\right)\left(-1+\frac{\omega^2}{R^2}\right) = \Lambda_0^2$	(1+232)

19 SATURDAY JANUARY 2019

11/4 1- 1- 1-6
$\omega_1 = \rho_1 \sqrt{A\delta^2 - 1}$
La de la companya de
Phase Margin: PM = 180+LG(S)
Phase Margin: PM = 180+LG(s) = 180 + -2tant = -410
= 180 - 2 tan P VA3-1 - tan (A3-1)
= 90 - 2 tan (6t) * B
Here those are two cases:
$P_2 = 66.89 \text{m} (\text{er}) 1249.505 \text{k}$
: PM, = 90-2 tam (100) = -89.99° 66.898) = -90°
$PM_2 = 90 - 2 + 4\pi^{2} \left(10^{4} \times 100 \right) = -72.99$ $149.505 \times 0^{4} \times -73^{4}$ SUNDAY 20

THURSDAY JANUARY 2019

NO(S) = A(S) (VINCE) - NO(S) \Rightarrow $y_0(s) = A(s) =$ $y_0(s) = A(s) =$ $y_0(s) = A(s) =$ 1+40 4 times A (3) = (A0) Vin(s) 1+ (1+5 the system, the denominator 1+400) must have no pole in PAHP. To find the maximum of such Ao, we consider a marginal Case where poles are on imaginary axis. Thin 14 A(S)=018=JW >) 1+ (A0) = 0 | S=jw => (1+jw) + A0 =0 > 1 + 412 - 602 - 41 W3 + WT + AO = 0

FRIDAY JANUARY 2019

$ \left(1+A\delta^{4}+\omega^{4}-6\omega^{2}\right)+J\left(4\omega-4\omega^{2}\right)=0 $ $ \omega=0, \omega=\pm P $
P4 P2) P2)
ω=0, ω=±P
1+ A,9+104-62=0
1+ And +104 -612 = 0
At w= +p, 1+40+1-6=0 => A0+=4
> [A= 12]
tence for the closed loop system to be
etable Ao >5 (For A = 5 mustern is
stable An > 12. (For An-12, system is moverinally stable, consider unstable to paractical purposes)
to Deachical Dwinoses
