# 1、实验名称及目的

基于最大模板的 GPS 模块故障注入的原理:基于最大模板进行 GPS 模块故障建模,将故障建模的模型导出为 DLL 文件,再通过 CopterSim 加载 DLL 文件,最后通过 udp 模式注入故障码进行故障注入仿真。

## 2、实验效果

CopterSim 导入 DLL 文件后,成功注入 GPS 故障并完成仿真。



## 3、文件目录

| 文件夹/文件名称                 | 说明                              |  |
|--------------------------|---------------------------------|--|
| MulticopterModel.slx     | 故障注入模块的最大模板模型文件。                |  |
| MulticopterModelHITL.bat | HTL.bat 硬件在环仿真批处理文件。            |  |
| MulticopterModelSITL.bat | ppterModelSITL.bat 软件在环仿真批处理文件。 |  |
| GenerateModelDLLFile.p   | DLL格式转化文件。                      |  |
| Init.m                   | 动力学模型相关参数。                      |  |
| MavLinkStruct.mat        | 初始化参数的工作区数据文件。                  |  |
| MulticopterModelLib.slx  | 故障模块模型库。                        |  |

注:本例程需要通过基础版中 RflySimAPIs\7.RflySimPHM\0.ApiExps\e4\_FaultInjectAPI Test\_py 文件进行故障注入。

### 4、运行环境

| 序号 | 软件要求               | 硬件要求                  |    |
|----|--------------------|-----------------------|----|
|    |                    | 名称                    | 数量 |
| 1  | Windows 10 及以上版本   | 笔记本/台式电脑 <sup>①</sup> | 1  |
| 2  | RflySim 平台免费版      |                       |    |
| 3  | MATLAB 2020A 及以上版本 |                       |    |

① : 推荐配置请见: <a href="https://doc.rflysim.com/1.1InstallMethod.html">https://doc.rflysim.com/1.1InstallMethod.html</a>

## 5、实验步骤

#### Step 1:

打开"Init.m" 文件并运行。



### Step 2:

打开"MulticopterModel.slx"Simulink 文件,点击 Build Model 按钮生成代码。



如果故障模块版本错误,无法编译,需要从故障模块库中选择对应的模块进行替换。

# Step 3:

代码生成完毕后,在 matlab 中右键"GenerateModelDLLFile.p"文件,点击运行,生成 DLL 文件。



### Step 4:

以管理员身份运行软件在环脚本。



## Step 5:

打开 Visual Studio Code, 选择打开文件夹, 打开文件夹 RflySimAPIs\7.RflySimPHM\0. ApiExps\e4\_FaultInjectAPITest\_py。



## Step 6:

对 FaultInjectAPITest.py 其中的故障注入代码按照 RflySimAPIs\7.RflySimPHM\0.ApiEx

ps\e4\_FaultInjectAPITest\_py 中的 FaultInjectAPITest\_py 中的故障注入代码更改为 GPS 故障,并对故障参数进行修改。(具体修改方法可以参考 e4\_FaultInjectAPITest\_py 文件夹中的 read me)

```
silInt=np.zeros(8).astype(int).tolist()
silFloat=np.zeros(20).astype(float).tolist()

silInt[0:2]=[123546,123546]
silFloat[0:4]=[0,0,0,0]

# silInt[0:1]=[123540]
# silFloat[0:2]=[15,20]
```

注:文件中的 silFloat 后的故障参数还需要自行更改。

#### **Step 7:**

对 FaultInjectAPITest.py 进行调试,即可在 RflySim3D 中观察到无人机起飞,并发生故障。



### 6、参考文献

| 故障 ID  | 故障类型     | 故障参数              |
|--------|----------|-------------------|
| 123450 | 电机执行效率故障 | #1~#x 号电机执行效率比(0~ |
|        |          | 1)                |
| 123451 | 螺旋桨故障    | #1~#x 号螺旋桨执行效率比(0 |
|        |          | ~1)               |
| 123452 | 电池失效故障   | 无                 |
| 123453 | 低电压故障    | 电压失效比(0~1)        |
| 123454 | 低电量故障    | 电量失效比(0~1)        |
| 123455 | 负载故障     | 重量泄露比(0~1)        |
| 123456 | 负载漂移故障   | 重量泄露比+x,y,z的泄露因子  |
|        |          | (0~1)             |
| 123457 | 负载泄露故障   | 重量泄露比+泄露因子(0~1)   |

| 123458 | 常风故障     | X,y,z 轴的风速    |
|--------|----------|---------------|
| 123459 | 阵风故障     | 阵风强度+风到达时间    |
| 123540 | 紊流风故障    | 紊流风强度         |
| 123541 | 切向风故障    | 切向风强度         |
| 123542 | 加速度计噪声干扰 | 噪声增益          |
| 123543 | 陀螺仪噪声干扰  | 噪声增益          |
| 123544 | 磁力计噪声干扰  | 噪声增益          |
| 123545 | 气压计噪声干扰  | 噪声增益          |
| 123546 | GPS 故障   | 噪声增益+3D 方式+星数 |