

УДК 591.111.05 : 576 : 895.122 : 594.38

**ВЛИЯНИЕ ХЛОРИДА ЖЕЛЕЗА (III)
НА ГЕМАТОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ КАТУШКИ
PLANORBARIUS CORNEUS (MOLLUSCA: GASTROPODA: BULINIDAE)
В НОРМЕ И ПРИ ИНВАЗИИ ПАРТЕНИТАМИ ТРЕМАТОД**

© А. П. Стадниченко, Л. Д. Иваненко, Г. Е. Киричук, Л. Н. Янович

Исследовано воздействие трех концентраций (100, 200, 300 мг/л) хлорида железа на кислотно-щелочной баланс гемолимфы и содержание в ней гемоглобина у катушки роговой *Planorbarius corneus* в норме и при инвазии партенитами и личинками *Echinoparyphium aconiatum*.

В контрольной среде активная реакция гемолимфы катушек слабокислая ($\text{pH} = 5.5\text{--}5.8$) у всех животных, как свободных от инвазии, так и инвазированных партенитами trematod. Отсутствие отличий обусловлено невысокой интенсивностью инвазии.

При 100—300 мг/л токсиканта в среде у всех животных зарегистрировано подкисление гемолимфы, что свидетельствует о нарушении кислотно-щелочного баланса гемолимфы и развитии некомпенсированного ацидоза.

Статистически достоверные отличия в содержании гемоглобина в гемолимфе у незараженных и зараженных trematodами катушек в контрольной среде отсутствуют по причине невысокой интенсивности инвазии. В затравленной среде изменения в значениях обсуждаемого гематологического показателя не зарегистрированы, что показывает слабую токсичность иона железа для катушек и отсутствие у них защитно-компенсаторных механизмов.

На пороге третьего тысячелетия к наиболее распространенным поллютантам водной среды относятся ионы тяжелых металлов. Источником этого вида загрязнения являются как промышленные предприятия (шахтно-рудные, сталеплавильные и др.), так и автотранспорт. Ионы тяжелых металлов особенно опасны потому, что, во-первых, долго сохраняются в водной среде, во-вторых, накапливаются в организме гидробионтов и, в-третьих, оказывают разрушающее действие на организмы. Последнее обусловлено механизмом их действия на животных. В клетках тела последних ионы тяжелых металлов образуют комплексные соединения с ферментами, которые участвуют в реакциях окисления и восстановления (Бойченко, 1968), что определяет всю энергетику каждой особи. Ионы разных тяжелых металлов неодинаково токсичны для гидробионтов. Есть среди них высокотоксичные (Pb^{2+} , Cu^{2+} , Zn^{2+}) и менее токсичные. К последним относится железо. Содержание его соединений (ПДК) в природных водах (в перерасчете на Fe^{3+}) не должно превышать 0.5 мг/л. Пороговая концентрация их для рыб и других водных животных составляет 1—50 мг/л (Liebmamn, 1960). Как влияют разные концентрации Fe^{3+} на гематологические показатели катушки роговой в норме и при инвазии trematodами, ранее не изучалось.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Материал: 224 экз. катушек роговых *Planorbarius corneus* (Lamarck, 1758), собранных в июне 1999 г. в р. Тетерев (в пределах Житомира). Общие сведения о материале исследования приведены в табл. 1. С места сбора в лабораторию материал перевозили в полиэтиленовых пакетах (открытых и без воды).

Таблица 1
Общие сведения о материале исследования
Table 1. General data on material examined

Показатели	N	Инвазия	Lim	$\bar{x} \pm m_x$
Контроль				
Диаметр раковины, мм	39	Нет	19.6—31	25.6 ± 0.387
	11	Есть	24.3—30.9	26.5 ± 0.594
Общая масса тела, мг	39	Нет	1900—5740	3517 ± 81.4
	11	Есть	2800—5320	3753 ± 218.43
Масса мягкого тела, мг	39	Нет	680—2050	1276 ± 43.93
	11	Есть	1060—1720	1478 ± 100.04
Объем гемолимфы, мл	39	Нет	0.1—0.98	0.45 ± 0.036
	11	Есть	0.17—0.7	0.43 ± 0.051
100 мг/л				
Диаметр раковины, мм	35	Нет	22.2 ± 31.7	26.5 ± 0.4
	12	Есть	23.7 ± 29.7	26.9 ± 0.637
Общая масса тела, мг	35	Нет	2020—5830	3698 ± 160.74
	12	Есть	2720—5700	3773 ± 244.28
Масса мягкого тела, мг	35	Нет	750—1990	1282 ± 77.54
	12	Есть	1070—1870	1385 ± 80.38
Объем гемолимфы, мл	35	Нет	0.13—0.92	0.41 ± 0.033
	12	Есть	0.13—0.8	0.38 ± 0.06
200 мг/л				
Диаметр раковины, мм	49	Нет	22.6—31.8	27.8 ± 0.28
	14	Есть	23.6—31.2	27.8 ± 0.736
Общая масса тела, мг	49	Нет	2870—5790	3902 ± 95.11
	14	Есть	2950—4680	3940 ± 202.50
Масса мягкого тела, мг	49	Нет	950—2010	1387 ± 37.35
	14	Есть	800—1650	1297 ± 80.41
Объем гемолимфы, мл	49	Нет	0.19—1.02	0.45 ± 0.023
	14	Есть	0.24—0.74	0.47 ± 0.044
300 мг/л				
Диаметр раковины, мм	50	Нет	21.5—30.1	26.6 ± 0.269
	14	Есть	24.9—29.2	27.1 ± 0.174
Общая масса тела, мг	50	Нет	2000—4800	3680 ± 80.46
	14	Есть	3200—4750	3720 ± 135.62
Масса мягкого тела, мг	50	Нет	980—1950	1338 ± 39.87
	14	Есть	1100—1600	1390 ± 49.92
Объем гемолимфы, мл	50	Нет	0.15—1	0.50 ± 0.023
	14	Есть	0.36—0.82	0.55 ± 0.055

Токсикологические опыты (ориентировочный и основной) поставлены по методике Алексеева (1981). Ориентировочным опытом установлено значение основных токсикологических показателей: МПК (LC_0) = 100 и ЛК₁₀₀ (LC_{100}) = 10 000 мг/л. Значение ЛК₁₀₀ свидетельствует о том, что использованный нами токсикант ($FeCl_3$) для катушки роговой слабо токсичен. По Прозоровскому (Прозоровский, 1960) графическим способом определено значение ЛК₅₀ (LC_{50}) = 625 мг/л. В пределах МПК—ЛК₅₀ избраны три концентрации для основного опыта — 100, 200, 300 мг/л $FeCl_3$. Все токсические среды готовили на дехлорированной отстаиванием (1 сут) водопроводной воде. Продолжительность опыта 2 сут. Через каждые сутки использованные растворы заменяли свежеприготовленными.

Общую массу и массу мягкого тела определяли взвешиванием на технических весах, предварительно обсушив животных фильтровальной бумагой. Диаметр раковины измеряли штангенциркулем с точностью до 0.1 мм. Гемолимфу получали методом прямого обескровливания. Ее объем измеряли, используя диабетический шприц. Содержание гемоглобина в плазме гемолимфы устанавливали солянокисло-гематиновым методом по Сали в нашей модификации (Стадниченко и др., 1980). Сведения об обеспеченности им катушек находили расчетным методом.

Паразитологическое обследование моллюсков производили путем изготовления из тканей гепатопанкреаса временных гистологических препаратов, которые изучали на микроскопе МБИ-3 (увеличение 7×8). Определение trematod осуществляли на живом материале. Моллюски инвазированы партенитами и личинками *Echinoparyphium aconiatum* (Dietz).

Цифровые результаты опытов обработаны методами вариационной статистики по Лакину (1973).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Хлорид железа (III) в организм катушек поступает диффузно, через покровы тела. Для Fe^{3+} характерна материальная кумуляция. Это яд локального действия, патогенный эффект которого проявляется прежде всего в околошупальцевых участках и в легочной полости, в меньшей степени — в других участках тела. Под влиянием растворов концентрацией 200—300 мг/л у катушек наблюдается ослизжение тела. Белки слизи коагулируют, образуя густую массу альбуминатов, которая выстилает полость легких, препятствуя нормальному газообмену в них. В местах, где крупные комочки альбуминатов отделяются от кожи, покровный эпителий разрушается и образуются язвы, самые крупные из которых кровоточат. Эти местные проявления отравления сопровождаются развитием общего патологического процесса, который, однако, не отличается особенной яркостью при использовании вышеуказанного токсиканта, что иллюстрируют нижеприведенные сведения.

В контрольной среде активная реакция гемолимфы катушек была слабокислой ($\text{pH} = 5.5$ —5.8) у всех подопытных животных — как свободных от инвазии, так и инвазированных партенитами trematod. Отсутствие отличий между ними по этому показателю обусловлено, на наш взгляд, прежде всего невысокой интенсивностью инвазии животных этой группы. У них имело место незначительное поражение гепатопанкреаса trematodами (1—3 паразитарных очага площадью 0.5×1 —1.2 мм). При таком слабом поражении паразитами гостального биотопа существенные сдвиги биохимического и функционального плана у катушек отсутствуют.

При 100—300 мг/л токсиканта в среде у всех подопытных животных наблюдается подкисление гемолимфы, которое происходит в одинаковой степени как у незаряженных, так и у зараженных trematodами особей, достигая приблизительно одинаковых абсолютных значений (3.9—4 у первых из них, 3.9—4.1 — у вторых). Таким образом, под влиянием этого токсиканта происходит нарушение кислотно-щелочного баланса гемолимфы катушек, что сопровождается развитием у них некомпенсированного ацидоза. Нарушение кислотно-щелочного равновесия является последствием разбалансировки механизмов регуляции, что обусловлено блокированием ферментативной активности ионами Fe^{3+} . Накапливание в гемолимфе продуктов кислой природы обусловлено их избыточным образованием в организме моллюсков в ходе обменных процессов (Виноградов и др., 1979). Углекислый газ, который выделяется в результате метаболических реакций, поступает во внутреннюю среду их организма, в том числе и в гемолимфу, где под влиянием карбоангидразы превращается в карбоновую кислоту. Закисление внутренней среды приводит к избытку в ней кислых продуктов обмена веществ, и в первую очередь угольной кислоты. Ацидоз, как известно (Журавель и др., 1968), опасен тем, что при нем снижается нервно-мышечная возбудимость и нарушаются водно-солевой баланс (уменьшается содержание натрия, калия и кальция в организме).

Таблица 2

Влияние хлорида железа на физико-химические свойства гемолимфы *Planorbarius corneus*
в норме и при инвазии trematodами

Table 2. The influence of ferric chloride on physical and chemical properties of *Planorbarius corneus* haemolymph in normal conditions and under the trematode infection

Показатели	N	Инвазия	lim	$\bar{x} \pm m_x$	σ	V
Контроль						
pH гемолимфы	39	Нет	4—7	5.8 ± 0.113	0.71	12.24
	11	Есть	3.5—6.8	5.5 ± 0.248	0.821	14.93
Содержание гемоглобина, г%	39	Нет	0.56—2	1.23 ± 0.072	0.454	36.91
	11	Есть	0.80—1.7	1.17 ± 0.078	0.259	22.14
Обеспеченность гемоглобином общей массы тела, г/кг	39	Нет	1.67—7.51	3.6 ± 0.253	0.580	43.88
	11	Есть	1.94—4.66	3.2 ± 0.274	0.91	28.44
Обеспеченность гемоглобином мягкого тела, г/кг	39	Нет	1.07—18.11	9.2 ± 0.68	4.250	46.2
	11	Есть	5.6—12.31	8.3 ± 0.778	2.581	31.1
100 мг/л						
pH гемолимфы	35	Нет	3—5	3.9 ± 0.082	0.486	12.46
	12	Есть	2.5—5	4 ± 0.194	0.674	16.85
Содержание гемоглобина, г%	35	Нет	0.7—1.6	1.1 ± 0.038	0.227	20.64
	12	Есть	0.8—2	1.2 ± 0.122	0.423	35.25
Обеспеченность гемоглобином общей массы тела, г/кг	35	Нет	1.71—6.12	3.17 ± 0.17	1.02	32.18
	12	Есть	1.14—6.25	3.42 ± 0.424	1.47	42.98
Обеспеченность гемоглобином мягкого тела, г/кг	35	Нет	4.60—16	9.43 ± 0.584	3.45	36.59
	12	Есть	4.72—18.69	9.2 ± 1.169	4.046	43.98
200 мг/л						
pH гемолимфы	49	Нет	3.5—5	4.02 ± 0.056	0.39	9.7
	14	Есть	3.5—5	4.09 ± 0.132	0.437	10.68
Содержание гемоглобина, г%	49	Нет	0.7—2.4	1.27 ± 0.064	0.447	35.2
	14	Есть	1.1—2.8	1.12 ± 0.229	0.759	67.77
Обеспеченность гемоглобином общей массы тела, г/кг	49	Нет	1.46—7.03	3.93 ± 0.841	1.218	30.99
	14	Есть	2.5—12.14	4.58 ± 0.823	2.73	59.6
Обеспеченность гемоглобином мягкого тела, г/кг	49	Нет	4.56—20	9.41 ± 0.553	3.87	41.13
	14	Есть	6.86—10.33	8.8 ± 0.33	1.23	14.03
300 мг/л						
pH гемолимфы	50	Нет	2.5—5	4.02 ± 0.089	0.630	15.68
	14	Есть	2.5—5	3.86 ± 0.214	0.71	18.39
Содержание гемоглобина, г%	50	Нет	0.75—2.2	1.18 ± 0.064	0.43	36.44
	14	Есть	0.8—2	1.14 ± 0.126	0.378	33.16
Обеспеченность гемоглобином общей массы тела, г/кг	50	Нет	1.64—7.59	3.25 ± 0.198	1.33	40.92
	14	Есть	2.01—6.13	3.15 ± 0.421	1.262	40.06
Обеспеченность гемоглобином мягкого тела, г/кг	50	Нет	4.06—23.16	9.13 ± 0.608	4.08	44.69
	14	Есть	5.33—14.29	8.2 ± 0.927	2.782	33.93

В контрольной среде содержание гемоглобина в гемолимфе (табл. 2) незараженных и зараженных trematodами катушек почти одинаково (статистически достоверные различия отсутствуют) по причине невысокой интенсивности инвазии. В затравленной среде изменения в значениях обсуждаемого гематологического показателя не зарегистрированы. Отсутствуют они и по обеспеченности гемоглобином как общей массы, так и массы мягкого тела моллюсков. Это свидетельствует о слабой токсичности Fe^{3+} для катушек, которые, несмотря на подкисление гемолимфы, способны

при этой степени ацидоза поддерживать концентрацию гемоглобина в ней на уровне нормы.

Таким образом, при 100—300 мг/л токсиканта в растворах энергетика организма этих животных не подвергается существенным изменениям, что свидетельствует об отсутствии напряжения их защитно-компенсаторных механизмов, а также об одинаковой интенсивности у них окислительных процессов и об одинаковой потребности в кислороде.

Список литературы

Алексеев В. А. Основные принципы сравнительно-токсикологического эксперимента // Гидробиол. журн. 1981. Т. 17, № 3. С. 92—100.
Бойченко Е. А. Эволюция соединений металлов в клетках // Журн. эвол. биохим. и физiol. 1968. Т. 4, № 3. С. 205—210.
Виноградов Г. А., Градовский П. А., Матей В. Е. Закисление водоемов и его влияние на метаболизм у пресноводных животных // Физiol. и паразитол. пресноводн. животн. Л.: Наука, 1979. С. 3—16.
Журавель А. А., Кадыков Б. И., Матинин А. И., Косых В. П. Патологическая физиология сельскохозяйственных животных. М.: Колос, 1968. 482 с.
Лакин Г. Ф. Биометрия. М.: Вышш. шк., 1973. 343 с.
Прозоровский В. Б. О выборе метода построения кривой летальности и определения средней летальной дозы // Журн. общ. биол. 1960. Т. 21, № 3. С. 221—228.
Стадниченко А. П., Иваненко Л. Д., Бургомистренко Л. Г. Изменение физико-химических свойств гемолимфы *Planorbarius corneus* (Gastropoda, Pulmonata) при инвазии партенитами *Cotylurus cornutus* (Trematoda, Strigeidae) // Паразитология, 1980. Т. 14, вып. 1. С. 66—70.
Liebmann H. Handbuch der Frischwasser und Abwasser // Biologie. 1960. Bd 11, Н. 1. S. 15—23.

Житомирский государственный педагогический университет
имени Ивана Франко

Поступила 11.11.1999

THE INFLUENCE OF FERRIC CHLORIDE (III) ON HAEMATOLOGICAL INDICES OF THE PLANORBARIUS CORNEUS (MOLLUSCA: GASTROPODA: BULINIDAE) IN NORMAL SNAILS AND ONES INFECTED WITH TREMATODE PARTHENITES

A. P. Stadnichenko, L. D. Ivanenko, G. E. Kirichuk, L. M. Yanovich

Key words: Gastropoda, *Planorbarius corneus*, ferric chloride, haematology, trematode parthenite infection.

SUMMARY

The effect of three ferric chloride concentrations (100, 200, 300 mg/l) on the acid-alkaline balance of haemolymph and haemoglobin content in *Planorbarius corneus* under normal conditions and in the case of infection with parthenites and larvae of *Echinoparichium aconiatum* was examined.

In the medium with an effective concentration of ferric chloride, all snail specimens proved to have acidified haemolymph, by 40—50 % in infected samples and 80—85 % in uninfected ones.

Statistically reliable differences in the haemoglobin content in the haemolymph of infected and uninfected specimens between the control and test media were absent, that proves a weak toxic effect of ferric ions on *P. corneus*.