

Flu Shot Learning: Predict H1N1 and Seasonal Flu Vaccines

Big Data Analytics A.A. 2020/21

MaLuCS

Luca Corbucci Cinzia Lestini Marco Giuseppe Marino Simone Rossi

INTRODUCTION

02

03

04

05

06

Why do we need an explanation?

FEATURE SELECTION

Selecting the most important features for our problem

GLOBAL EXPLANATIONSGlobal explanation of our dataset

·

LOCAL EXPLANATIONS

Local explanations of some instances

COMPARISONS

Comparison between explanation of similar instances

CONCLUSIONS

Malucs TEAM

Master Degree in Computer Science

Master Degree Data Science and Business Informatics

Master Degree in Computer Science

Master Degree in Computer Science

WHY IS IMPORTANT TO UNDERSTAND HOW OUR MODELS WORK?

- We can understand whether our models have bias (for example racial bias)
- We can explain to a possible customer why a certain model makes a prediction
- We can understand how each feature affect the final prediction of the model
- In this specific case we can understand why a person is more likely to receive the vaccine

FEATURES SELECTION: Seasonal flu XGBoost

FEATURES SELECTION: H1N1 Random Forest

FEATURES SELECTION: Seasonal flu and H1N1 Decision Tree

GLOBAL EXPLAINER

- Feature Importances
- Partial Dependence Plots
- Visualizing boundaries
- Surrogate Tree-based Models

Skater

Interpretation Techniques

Features Importance

H1N1 Vaccine

"doctor_rec_hln1"
"Opinion_hln1_risk"
"opinion_hln1_effective"

Seasonal Vaccine

"Opinion_seas_risk"

"opinion_seas_vacc_effective"

"age_grop"

Partial Dependence plot - Similarity

Effectiveness

Flu Risk

Age

Sick with vaccine

Partial Dependence plot – Others

2D Partial Dependence Plot

TEST

0.000025

Visualizing Boundaries

Visualizing boundaries we can see the border of the decision between class 0 and 1

X1= opinion_h1n1_vacc_effective and X2= opinion_h1n1_risk

Surrogate Tree Models

SHapley Additive exPlanations

SHAP GLOBAL

Interpretation Techniques

SHAP GLOBAL: Seasonal flu XGBoost

SHAP GLOBAL: H1N1 Random Forest

SHAP GLOBAL: Seasonal flu and H1N1 features influence

- \Box opinion_seas_risk: 3|4|5 -> 1 and 1|2 -> 0
 - opinion_seas_vacc_effective: $5 \rightarrow 1$ and $1|2|3|4 \rightarrow 0$
 - doctor_recc_seasonal: 0 -> 0 and 1 -> 1
- age_group: <= "45 54 Years" -> 0 and >= "55 64 Years" -> 1
- opinion_seas_sick_from_vacc: > 1 -> 0 and 1 -> 1
- health_worker: $0 \rightarrow 0$ and $1 \rightarrow 1$
- income_poverty: " > \$75000" -> 1 and <= "\$75000 Above Poverty" -> 0
- race: White -> 1 and Other/Multiple|Black|Hispanic -> 0

- doctor_recc_h1n1: $0 \rightarrow 0$ and $1 \rightarrow 1$
- \Box opinion_h1n1_risk: 3|4|5 -> 1 and 1|2 -> 0
- opinion_h1n1_vacc_effective: $5 \rightarrow 1$ and $1|2|3|4 \rightarrow 0$
- \Box health worker: 0 -> 0 and 1 -> 1
- \Box h1n1_knowledge: 0|1 -> 0 and 2 -> 1
- age_group: <="45 54 Years" -> 0 and >="55 64 Years" -> 1
- opinion_h1n1_sick_from_vacc: $2|3|5 \rightarrow 0$ and $1|4 \rightarrow 1$
- race: White -> 1 | Other/Multiple , Black|Hispanic -> 0
- income_poverty: " > \$75000" -> 1 and <= "\$75000 Above Poverty" -> 0
- hhs_geo_region, behavior and FamilySize not discriminant

opinion_*_vacc_effective=4	Seasonal	H1N1
Not Vaccinated	7538	9937
Vaccinated	4553	2137

LOCAL EXPLAINER

We used Lime to generate a visualization of the most important features for the classification

We used Shap to generate a visualization of the most important features for the classification

We used Lore to generate rules that can explain an instance.

LORE

LIME SHAP

SHAP

The local Shap plot shows how the expected probability of classification for a record shifts from its base value for the influence of different features.

Here we consider an instance with a good classification output (No Vaccine).

LIME

The LIME's output is a list of explanations, reflecting the contribution of each feature to the prediction of a data sample.

This provides local interpretability, and it also allows us to determine which feature changes will have the most impact on the prediction.

LORE

Lore gave us a set of rules and a set of counterfactuals that could lead the model to a different classification.

Here we consider a misclassified instance (Vaccine instead of No Vaccine)

```
Rules = {doctor_recc_seasonal <= 0.50, race != Black
age_group != 18 - 34 Years
opinion_seas_risk > 1.50
opinion_seas_sick_from_vacc <= 1.50
opinion_seas_vacc_effective > 3.50 }
--> { seasonal_vaccine: 1 }
```

EXPLANATION COMPARISON – SEASONAL DATASET

EXPLANATION COMPARISON – H1N1 DATASET

0.469

0.4939

PATH IN THE DECISION TREE

This is an example of the Decision Tree reasoning to classify a "vaccinated" person

TARGET INSTANCE VS MOST SIMILAR INSTANCE

TARGET INSTANCE

Explanation of the first record doctor_recc_seasonal=Yes 4.00 < opinion_seas_vacc_effective <= 5.00 age_group=65+ Years 2.00 < opinion_seas_risk <= 4.00 health_worker=No opinion_seas_sick_from_vacc <= 1.00 race=White income_poverty=<= \$75,000, Above Poverty

MOST SIMILAR INSTANCE

TARGET INSTANCE vs 2° MOST SIMILAR INSTANCE

TARGET INSTANCE

MOST SIMILAR INSTANCE

WHAT WE CAN LEARN FROM THIS MILESTONE?

From our research, young people are less inclined to vaccinate.

TARGET OF AN AWARENESS CAMPAIGN

We can consider these research to predict who is more likely to receive a vaccine.

PREDICTIONS FOR NEXT VACCINATION CAMPAIGNS

We can extract informations about the subset of populations that are more at risk of not receiving the vaccine

MOST AT RISK POPULATION GROUP

CONCLUSIONS

The third Milestone led us to an in depth knowledge of the models we used during the previous Milestone.

We were able to understand what features are more important for classification purposes.

Considering the importance of these features we were also able to understand whether our model had some bias or not.

THANKS!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

