9th Meet

□ 오늘 공부할 것은

	01. 차원 축소(Dimension Reduction) 개요	399
06	VI. ALE MANDEMONING NEGOCIOTY PILE	355
00	02. PCA(Principal Component Analysis)	401
차원 축소	PCA 개요	401
	03. LDA(Linear Discriminant Analysis)	415
	LDA 개요	415
	04. SVD(Singular Value Decomposition)	418
	SVD 개요	418
	사이킷런 TruncatedSVD 클래스를 이용한 변환	424
	05. NMF(Non-Negative Matrix Factorization)	427
	NMF 개요	427
	06. 정리	429

Now, It's your turn !!!

40min ~ 50min

Chapter 06

차원 축소 (Dimension Reduction) [06-01] 차원 축소 (Dimension Reduction) 개요

▷ NMF (Non-Negative Matrix Factorization)

[06-02] PCA (Principal Component Analysis, 주성분 분석)

표준 편차 (Standard Deviation)

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{(n-1)}}$$

분산 (Variance)

$$s^{s} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{(n-1)}$$

공분산 (Covariance)

Measure of the spread of data in a data set with respect to each other

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{(n-1)}$$

Large Negative Covariance

Nearly Zero Covariance

Large Positive Covariance

고유 벡터 (Eigen Vector)

행렬 A의 선형 변환 결과가 자기 자신의 상수배가 되는 0이 아닌 벡터 (n imes n 행렬만)

v: Eigen Vector

 $Av = \lambda v$

λ: Eigen Value

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

Eigen Vector(v) : 데이터들의 방향

Eigen Value(λ) : 방향의 크기

☐ PCA (Principal Component Analysis)

① mean=0으로 만들어 줌 (Z-score는 optional)

② Covariance matrix 구성

$$\begin{pmatrix} cov(X_1, X_1) & \cdots & cov(X_1, X_n) \\ \vdots & \ddots & \vdots \\ cov(X_n, X_1) & \cdots & cov(X_n, X_n) \end{pmatrix}$$

③ Eigen Vector와 Eigen Value를 구함

④ ①에서 만든 matrix와 Eigen Vector의 행렬 곱(Eigen Value가 큰 순서대로...)

https://github.com/whatwant-school/python-ml/blob/main/09-week/09-week 01-PCA.ipynb

```
[6]: from sklearn.decomposition import PCA
     pca = PCA(n_components=2)
     pca.fit(scaled df)
     iris pca = pca.transform(scaled df)
     iris_pca.shape
[6]: (150, 2)
[7]: pca_columns=['pca_component_1','pca_component_2']
     df pca = pd.DataFrame(iris pca, columns=pca columns)
     df pca['target'] = iris.target
     df_pca.head(3)
[7]:
        pca_component_1 pca_component_2 target
     0
               -2.264703
                               0.480027
                                            0
               -2.080961
                               -0.674134
                                            0
     2
               -2.364229
                               -0.341908
                                            0
```

https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients

대만에서 고객의 채무 불이행 사례를 대상으로 하여, 채무 불이행 확률 예측

https://github.com/whatwant-school/python-ml/blob/main/09-week/09-week 02-Credit.ipynb

```
[11]: from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA

scaler = StandardScaler()
scaled_df = scaler.fit_transform(X_features)

pca = PCA(n_components=6)
df_pca = pca.fit_transform(scaled_df)

scores_pca = cross_val_score(rcf, df_pca, y_target, scoring='accuracy', cv=3)

print('CV=3 인 경우의 PCA 변환된 개별 Fold세트별 정확도:',scores_pca)
print('PCA 변환 데이터 셋 평균 정확도:{0:.4f}'.format(np.mean(scores_pca)))

CV=3 인 경우의 PCA 변환된 개별 Fold세트별 정확도: [0.7914 0.7975 0.8009]
PCA 변환 데이터 셋 평균 정확도:0.7966
```

[06-03] LDA (Linear Discriminant Analysis, 선형 판별 분석법)

데이터 분포를 학습해 결정 경계(Decision Boundary)를 만들어 분류하는 모델

☐ LDA (Linear Discriminant Analysis)

① 클래스 내부와 클래스 간 분산 행렬을 구한다. 개별 피처의 평균 벡터(mean vector) 기반으로 구한다.

② Eigen Vector(고유 벡터)로 분해

$$S_W^T S_B = \begin{bmatrix} e_1 \dots e_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} e_1^T \\ \vdots \\ e_n^T \end{bmatrix}$$

③ Eigen Value(고유 값)이 가장 큰 순으로 K개(LDA 변환 차수만큼) 추출

④ Eigen Value(고유 값)이 가장 큰 순으로 추출된 Eigen Vector(고유 벡터)를 이용해 새롭게 입력 데이터 변환

https://github.com/whatwant-school/python-ml/blob/main/09-week/09-week_03-LDA.ipynb

```
[4]: import pandas as pd
     import matplotlib.pyplot as plt
     lda columns=['lda component 1','lda component 2']
     lda df = pd.DataFrame(lda iris, columns=lda columns)
     lda df['target'] = iris.target
     markers=['^', 's', 'o']
     for i, marker in enumerate(markers):
         x axis data = lda df[lda_df['target']==i]['lda_component 1']
         y axis data = lda df[lda df['target']==i]['lda component 2']
         plt.scatter(x axis data, y axis data, marker=marker, label=iris.target names[i])
     plt.legend(loc='upper right')
     plt.xlabel('lda component 1')
     plt.ylabel('lda component 2')
     plt.show()
                                                                  setosa
                                                                  versicolor
          2
                                                                  virginica
      ida_component_2
         -2
          -10.0 -7.5
                         -5.0
                                 -2.5
                                         0.0
                                                 2.5
                                                         5.0
                                                                 7.5
                                                                        10.0
                                    lda component 1
```

[06-04] SVD (Singular Value Decomposition, 특잇값 분해) PCA: 정방행렬만 Eigen Vector로 분해 가능

VS.

SVD: 행과 열의 크기가 다른 행렬도 적용 가능

U: 특이 벡터 (Singular Vector)

V: 특이 벡터 (Singular Vector)

 $A = U \Sigma V^T$ Σ : 대각 행렬 (대각 값만 0이 아니고, 나머지는 모두 0)

 $(m \times n) = (m \times m)(m \times n)(n \times n)$ 특있값(Singular Value)

https://github.com/whatwant-school/python-ml/blob/main/09-week/09-week 04-SVD.ipynb

[06-05] NMF (Non-Negative Matrix Factorization, 비-음수 행렬 분해)

https://github.com/whatwant-school/python-ml/blob/main/09-week/09-week_05-NMF.ipynb

You've really worked hard today

Next Week ~?

XIV 목차

0.17	01. K-평균 알고리즘 이해	431
07	사이킷런 KMeans 클래스 소개	432
	K-명균을 이용한 붓꽃 데이터 세트 군집화	433
군집화	군집화 알고라즘 테스트를 위한 데이터 생성	43
	02. 군집 평가(Cluster Evaluation)	44
	실루엣 분석의 개요	44
	붓꽃 데이터 세트를 이용한 군집 평가	44
	군집병 평균 실루엣 계수의 시각화를 통한 군집 개수 최적화 방법	44
	03. 평균 이동	44
	평균 이동(Mean Shift)의 개요	44
	04. GMM(Gaussian Mixture Model)	45
	GMM(Gaussian Mixture Model) 소개	45
	GMM을 이용한 붓꽃 데이터 세트 군집화	45
	GMM과 K-평균의 비교	45
	05. DBSCAN	46
	DBSCAN 개요.	46
	DBSCAN 적용하기 - 붓꽃 데이터 세트	46
	DBSCAN 적용하기 - make_circles() 데이터 세트	47
	06. 군집화 실습 - 고객 세그먼테이션	47
	고객 세그먼테이션의 정의와 기법	47
	데이터 세트 로딤과 데이터 클렌징	47
	RFM 기반 데이터 가공	47
	RFM 기반 고객 세그먼테이션	48
	07. 정리	48

Who ~?

See you Next Weekend ~?