Trabalho Prático 1

Objetivos

Representação da informação

Notação posicional

Conversão entre bases

Operações aritméticas básicas em várias bases

Representação de quantidades negativas

Introdução

A informação numérica pode assumir diversos formatos, desde a representação romana (e.g., XXVII) até à representação decimal (e.g., 27₁₀). A diferença entre estes dois formatos consiste no fato de no primeiro caso o peso de cada algarismo (X) não depender da posição que ocupa, ao passo que no sistema decimal cada algarismo tem um 'peso' associado à posição, ou seja, no caso anterior o algarismo '2' tem um peso de 10 (10¹) e o algarismo '7' tem um peso de 1 (10⁰), sendo 10 a base de representação. Os sistemas que iremos abordar são todos sistemas de representação posicional com base decimal, hexadecimal, octal e binária.

Nos sistemas posicionais o número N, na base r, é representado por $(d_{k-1} d_{k-2} \dots d_1 d_0)_r$ onde o dígito da esquerda tem um peso maior. O respetivo valor decimal de N é obtido através da ponderação dos dígitos, através da expressão seguinte:

(Valor de N)₁₀ =
$$d_{k-1} \times r^{k-1} + d_{k-2} \times r^{k-2} + ... + d_1 \times r + d_0$$

Guião

1. Representação e conversão entre bases (sem sinal)

1	.1	R	lepresente no	sistema o	lecimal	o va	lor da	is seguintes (auantida	des:
_	• -		- preserve	0100011100						

- a) 1010111001₂
- b) DF6₁₆

c) 10110111101₂

d) A7A2₁₆

- e) 1111111111₂
- f) 40F0₁₆

- g) 2022₈
- 1.2 Represente nos sistemas hexadecimal e binário o valor das seguintes quantidades:
 - a) 1025₁₀

b) 33427₁₀

c) 7543₁₀

- d) 110110111₂
- e) DAD0₁₆
- f) 7254₈

2. Aritmética binária, octal e hexadecimal (sem sinal)

- 2.1 Calcule o resultado da soma dos seguintes pares de valores:
 - a) $10101101_2 + 11100001_2$
- b) $1011011_2 + 111110_2$
- c) $125_{16} + 1A7_{16}$
- d) $111011_2 + 107_8$
- 2.2 Calcule o resultado da <u>subtração</u> dos seguintes pares de valores:
 - a) 11100001₂ 10101101₂
- b) 1011011₂ 1001001₂
- c) 30A₁₆ 2FF₁₆
- d) 135₁₆ 135₈
- 2.3 Calcule o resultado da <u>multiplicação</u> dos seguintes pares de valores:
 - a) 11100001₂ * 10001101₂
- b) 25₁₆ * 17₁₆
- c) $3CA_{16} * 202_{16}$
- d) 7778 * 101112

3. Inteiros com sinal (Complemento a 2)

Assumindo que as quantidades seguintes estão codificadas em complemento para 2, com 8 bits de representação, indique o seu equivalente decimal:

- a) 11111110₂
- b) 00000000₂
- c) 11111111₂

- d) 00110011₂
- e) 11001100₂
- f) 10001110₂

4. Complemento a 2 e número de bits de representação

- 4.1 Indique a representação (quando possível) das quantidades seguintes quando codificadas em complemento para 2 e armazenadas num registo de 12 bits:
 - a) -127_{10}

b) $+145_{10}$

c) -5F6₁₆

d) -01100₂

e) -2045_{10}

- $f) + ABC_{16}$
- 4.2 Assumindo que as quantidades seguintes estão codificadas em complemento para 2, com 8 bits de representação, determine, sempre que for possível, a representação das mesmas quantidades em complemento para 2 com 5 bits:
 - a) 11110101₂
- b) 00001010₂
- c) 11001100₂

- d) 11111110₂
- e) 10111111₂
- f) 11110000₂

5. Overflow nas operações aritméticas binárias de soma e subtração

Calcule o resultado das operações seguintes em complemento para 2, com 8 bits de representação. Comece por determinar a representação de cada um dos operandos. Identifique os casos em que ocorre *overflow*.

- a) $-1_{10} + 63_{10}$
- b) $123_{10} + 46_{10}$

c) $12_{10} + (-124_{10})$

- d) $-125_{10} + (-128_{10})$
- e) 111111100₂ 11100101₂
- f) $-10_{16} + (-01100_2)$

6. Operações lógicas binárias: OR, AND, XOR, NOR, NAND e XNOR

Determine o resultado das operações seguintes:

- a) 11110000 OR 10101011
- b) 11110000 AND 10101011
- c) 11110000 XOR 10101011
- d) 11110000 NAND 10101011
- e) 11110000 NOR 10101011
- f) 11110000 XNOR 10101011

7. Exercícios adicionais

- 7.1 Exprima nos sistemas decimal e binário o valor da maior quantidade inteira não negativa que pode representar num registo com capacidade de armazenamento de 4 símbolos hexadecimais.
- 7.2 Represente no sistema decimal, tendo o cuidado de manter aproximadamente a precisão da representação original, o valor das quantidades racionais não negativas seguintes:
 - a) 101110.1100101₂
- b) 2B4₁₆
- c) 111000.1010₂
- d) 2F.4₁₆
- 7.3 Represente nos sistemas hexadecimal e binário, tendo o cuidado manter aproximadamente a precisão da representação original, o valor das quantidades racionais não negativas seguintes:
 - a) 10.25₁₀

- b) 33.427₁₀
- c) 754.3₁₀