

TRAINING PROGRAM

Data Manipulation

Larissa Leite Kodit.io

Outline

- When and why data is manipulated?
- Data cleaning
- Numerical data transformations
 - Feature scaling
 - Logarithmic and exponential
 - Discretization
- Categorical data transformations
 - Label and One-hot encoding
- Textual data transformations
- Feature selection
- Dimensionality reduction

When and why manipulate the data?

- When exploring the data
 - To understand it
 - Examples:
 - Fill-in missing values
 - Eliminate duplicates and wrong values
 - Change data types or data distribution
 - Reduce the number of dimensions

When and why manipulate the data?

- When preparing the data for a machine learning model
 - To make it compliant with the model's assumptions
 - Normality, linearity, homogeneity of variance
 - To make units of attributes comparable when measured on different scales
 - Elevation ranging from 100 to 2000 meters and slope from 0 to 30 degrees
 - To reduce the effect of total quantity (sample unit totals), focusing on relative quantities
 - To equalize (or otherwise alter) the relative importance of common and rare values
 - To improve a model's performance
- Most datasets will benefit of one or more data transformations.

Data types - recap.

- Numerical
 - Continuous
 - Discrete
- Categorical
 - Nominal
 - Ordinal
- Text
- Media

http://www.datasavvies.com/wp-content/uploads/2018/07/Basic-Statistics-Types-of-Data.png

Data cleaning

Big part of data science work

Data cleaning

- Big part of data science work
- Outliers detection & removal
 - Monthly income with negative values

Typos, incorrect or invalid data

Data cleaning

- Fill-in missing values
 - O How to choose what's appropriate?
 - It really depends on the problem!
 - Numerical: mean, median, 0, -1?
 - Categorical: unknown? Default field? Most common?
 - Develop a predictor to guess?
 - Postcode missing? What about the address?

nsert missing records			Replace with 0		Replace with last known value			ace near		Interpolate based on splines
	- 1		1					L		
		DATE	air_mv	air_mv_zero	air_inv_	previous	air_mv_	nean	air_expand	
- 1	1	JAN49	112	112	1	112		112	112	/
- 1	2	FEB49	118	118		118		118	118	/
- 1	3	MAR49	132	132		132		132	132	
- 8	4	APR49	129	129		129	V	129	1.19	
- 1	5	MAY49		0		129	284.543	885965	128.29783049	
	6	JUN49	135	135		135		135	135	
- 1	7	JUL49		0		135	284.543	885965	144.73734152	
- 1	8	AUG49	148	148		148		148	148	
	9	SEP49	136	136		136		136	136	
- 1	10	OCT49	119	119		119		119	119	
- 1	11	NOV49		0		119	284.543	885965	116.19900978	
- 1	12	DEC49	118	118		118		118	118	
	13	JAN50	115	115		115		115	115	
	14	FEB50	126	126		126		126	126	
	15	MAR50	141	141		141		141	141	

Numerical data

- Feature scaling (normalization)
 - Min-max (scaling)
 - Z-score (standardization)
- Logarithmic and exponential transformations
- Discretization

Feature scaling

Numerical data

- Min-Max (scaling):
 - Rescale continuous variables to a scale from 0 to 1

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

- Z-score (standardization):
 - Transform the data to have a mean of 0 and a standard deviation of 1

$$z=rac{x_i-\mu}{\sigma}$$

- When/why?
 - Some machine learning models are affected by the order of magnitude and/or the variance of the input variables, both in terms of results and convergence speed
 - SVM, Neural networks, KNN, K-Means, Logistic Regression
 - Distance-based calculations

Feature scaling

Numerical data

Age variable

No transformation

Scaling

Standardization

Logarithmic and Exponential transformations

Numerical data

- When/why?
 - Skewed data
- Logarithmic
 - Strong transformation that can be used to reduce right skewness
- Square root
 - Medium effect transformation to reduce left skewness
 - Applied to positive values only
- Cube root
 - Fairly strong transformation with a substantial effect on distribution shape
 - It can be applied to negative and zero values

Examples of normal and skewed distributions

≣kodit.io selko

Logarithmic and Exponential transformations

Numerical data

Original distribution

Logarithmic and Exponential transformations

Numerical data

Logarithmic

Square root

Cube root

Discretization (bucketing)

Numerical data

- Discretization consists of 2 steps:
 - Dividing a continuous variable into segments
 - Grouping the segments into bins/categories

Techniques

- Equal width (equally spaced boundaries)
- Equal frequency (median, quantile boundaries)

Discretization (bucketing)

Numerical data

- When/why (not)?
 - May reduce the noise, which can improve a model's accuracy
 - Variable has more information than the problem needs
 - Prone to information loss

- Typical cases
 - Age, height, income

break

Categorical data

- Text data often needs to be converted to some type of numerical representation
 - Encoder

Categorical data

- When/why
 - Many machine learning models do not accept categories as input
 - Attention: the model might interpret numerical values as weights

Categorical data

- Label encoding
 - Ordinal
 - With a column "First", "Third", and "Second" in it, the values can be directly mapped
- One-hot encoding
 - Binary columns from categories

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

Categorical #

Calories

231

50

Food Name

Apple Chicken

Broccoli

- Feature hashing
 - Hash function to map categories to a smaller set of category columns
 - Avoid curse of dimensionality

Textual data

- Character normalization
 - o In some languages, may need to convert all or some é è ë ê etc → e
 - □ In some others, may need to correct spelling Allén Allèn Allen → Allén
- Removing tags (HTML data)
 - If the data comes from a website, HTML tags can be eliminated (BeautifulSoup) leaving only the relevant content
- Bag-of-words representation
 - Ignore sentence structure and only consider documents
 - Document are word count vectors
 - For example, "This is a sentence with a sentence in it" → {"a": 2, "in": 1, "is": 1, "it": 1, "sentence": 2, "this": 1}
 - Term frequency—Inverse document frequency (TF-IDF)

Textual data

- Stemming and lemmatization
 - Word stems are usually the base form of possible words
 - Stemming: obtaining the base form of a word by removing prefix/suffix
 - WATCHES, WATCHING, and WATCHED = WATCH
 - Lemmatization: remove word affixes to get to the base form of a word, which is always a lexicographically correct word (root word)
 - Expanding contractions
 - wouldn't = would not; I'd = I would/had
- Removing stop-words
 - Words which have little or no significance in a text: a, the, and
 - Libraries provide standard stop-words lists for multiple languages

Feature selection and dimensionality reduction

When/why

- The higher the number of features, the harder it gets to visualize and explore the data
 - Select a subset of the original variables which captures as much information as the original set of variables
- Often many of the features are highly correlated
- It helps in data compression, reducing the memory and storage space needed
- It helps reducing computation time

Why not?

It may lead to some amount of data loss

Feature selection

- Feature selection techniques
 - Missing Value Ratio and Low Variance Filter
 - If a variable has too many missing values or always the same value, it will probably not have much added information
 - High Correlation Filter
 - Set a threshold (>= 0.5~0.6) to determine whether a highly correlated variable can be dropped
 - Feature importance
 - Some algorithms show the feature importance, and unimportant features can be discarded without impacting prediction capabilities
 - Backward/forward feature selection/elimination
 - All combinations from one to all variables vs model accuracy

Dimensionality reduction

- Dimensionality reduction algorithms
 - Single Value Decomposition (SVD)
 - SVD decomposes the original variables into three constituent matrices
 - S is the diagonal matrix of singular values, representing the importance values of different features in the matrix
 - Find the less significant features from the dataset that can be removed
 - Applications
 - Image Compression
 - Image Recovery
 - Spectral Clustering
 - Background Removal from Videos

Dimensionality reduction & feature selection

- Dimensionality reduction algorithms
 - Principal Component Analysis (PCA)
 - Extracts a new set of variables (principal components) from an existing large set of variables
 - A principal component is a linear combination of the original variables
 - Principal components are extracted in such a way that:
 - The first principal component explains maximum variance in the dataset
 - Second principal component tries to explain the remaining variance in the dataset and is uncorrelated to the first principal component
 - Third principal component tries to explain the variance which is not explained by the first two principal components and so on

Dimensionality reduction & feature selection

- Dimensionality reduction algorithms
 - Linear Discriminant Analysis (LDA)
 - Used when the data is labeled, unlike PCA and SVD
 - General approach is very similar to a PCA, but in addition to finding the component axes that maximize the variance of the data (PCA), LDA wants to maximize the separation between multiple classes
 - Dimensionality reduction does not only help reducing computational costs for a given classification task, but it can also be helpful to avoid overfitting by minimizing the error in parameter estimation ("curse of dimensionality")

