Causal inference notes

note 1 divine form of causal inference

Haoyue

2024-03-21

The divine form of causal inference

The divine form of causal inference

The divine form of causal inference

- The comparison of the outcomes in two worlds
 - the real world
 - the counterfactual world
- $Y_{1i} Y_{0i}$

The differences of the experiments in natural and social sciences

The differences of the experiments in natural and social sciences

The differences of the experiments in natural and social sciences

- Natural science:
 - controlled experiment
 - output: experimental data(with the data in the two worlds)
- social science:
 - nearly no controlled experiment
 - output: observable data(with the data only in the one world, missing data problem)

The difficulty of experiments in social sciences

The difficulty of experiments in social sciences

The difficulty of experiments in social sciences

- How to do experiments with observable data
- Put it another way, it is a missing data problem

What can we do with an observable dataset?

What can we do with an observable dataset?

		nerence					
L,	What	can we	do	with	an	observable	dataset
	∟w⊦	nat we c	an	do ea	silv	,	

What we can do easily

What we can do easily

What we can do easily

- Calculate its mean value of a variable
- Calculate the difference of two groups:

$$E(Y|D=1) - E(Y|D=0)$$

- notation: Y is the actual observable outcome, Y_1 or Y_0 is the potential possibilities
- What is the problem of getting such a value with data only in one world?

What can we do with an observable dataset?

But it is not accurate to explore the causal effect relationship

But it is not accurate to explore the causal effect relationship

But it is not accurate to explore the causal effect relationship

- Make all other conditions the same, except for what you are exploring!
 - **a** actually, the (D = 1) and the (D = 0) groups are different other than the D condition!
 - think with examples

But it is not accurate to explore the causal effect relationship

	Lausai inference notes
Ţ,	lue What can we do with an observable datase
	How to solve this problem?

How to solve this problem?

How to solve this problem?

How to solve this problem?

- If we can do experiment, that is fantastic, just like what happens in natural sciences. . .
- Sometimes, we can do experiment, this is called RCT
 - it is intervened by us, so all other conditions are the same, except for D
 - in observable data, it is naturally formed, D's difference will bring more differences to the two groups