Отчёт по лабораторной работе №1

Дисциплина: Операционные Системы

Зуева Дарья Тимуровна, НПМбв-01-20

Содержание

1	Цель	ь работы	5						
2	Зада	ние	6						
3									
	3.1	1. Настройка каталога для виртуальных машин	7						
	3.2	2. Смена Хост-комбинации в настройках VirtualBox	9						
	3.3	3. Создание ВМ	10						
	3.4	4. Установка операционной системы	12						
	3.5	5. Автоматическое обновление	15						
	3.6	6. Отключение SELinux	16						
	3.7	7. Установка драйверов для VirtualBox	16						
	3.8	8. Настройка раскладки клавиатуры	17						
	3.9	10. Подключение общей папки	18						
	3.10	11. Работа с языком разметки Markdown	19						
		12. Установка texlive	19						
		13. Домашнее задание	20						
		14. Контрольные вопросы	21						
		3.13.1 1. Какую информацию содержит учётная запись пользова-							
		теля?	21						
		3.13.2 2. Укажите команды терминала и приведите примеры:	22						
		3.13.3 3. Что такое файловая система? Приведите примеры с крат-							
		кой характеристикой.	23						
		3.13.4 5. Как удалить зависший процесс?	24						
4	Выв	ОД	25						

Список иллюстраций

3.1	Проверка поставленных настроек.										8
3.2	Вывод каталога по умолчанию									_	9

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Настройка каталога для виртуальных машин
- 2. Смена Хост-комбинации в настройках VirtualBox
- 3. Создание ВМ
- 4. Установка операционной системы
- 5. Автоматическое обновление
- 6. Отключение SELinux
- 7. Установка драйверов для VirtualBox
- 8. Настройка раскладки клавиатуры
- 9. Изменение имени хоста
- 10. Подключение общей папки
- 11. Работа с языком разметки Markdown
- 12. Установка texlive
- 13. Домашнее задание
- 14. Контрольные вопросы

3 Выполнение лабораторной работы

3.1 1. Настройка каталога для виртуальных машин

Для выполнения лабораторной работы №1 в качестве хостовой системы использовалась ОС Windows 10 и создание папок происходило при помощи графического интерфейса.

Для создания папки с учетной записью студента был использован внешний SSD диск, на котором будут располагаться файлы виртуальной машины:

Редактирование пути по умолчанию к папкам виртуальных машин Virtualbox:

Для проверки установленных устройств запустим через командную строку VboxManage и проверим какая папка по умолчанию стоит:

.\VBoxManage.exe list systemproperties | findstr "Default machine folder:"

```
C:\Program Files\Oracle\VirtualBox>.\VBoxManage.exe list systemproperties | findstr "Default machine folder:"

Default hard disk format: VI

Default frontend:

Default audio driver: Windows Audio Session

Default Guest Additions ISO: C:\Program Files\Oracle\VirtualBox/VBoxGuestAdditions.iso
```

Рис. 3.1: Проверка поставленных настроек

Смена пути произошла успешно, при помощи графического интерфейса. Выведем только каталог по умолчанию из настроек VirtualBox, при помощи команды:

vboxmanage list systemproperties | grep "Default machine folder:" | cut -d":" -f2

Команда написана под Linux, и из-под Windows выглядит следующим образом:

for /f "tokens=3 delims=:" %i in ('.\VboxManage list systemproperties ^| findstr

```
С:\Program Files\Oracle\VirtualBox>for /f "tokens=3 delims=:" %i in ('.\\chine folder:"') do @echo %i | powershell -Command "$input.trim()" \Oracle\zdtimurovna |

C:\Program Files\Oracle\VirtualBox>
```

Рис. 3.2: Вывод каталога по умолчанию

Перенесем установочный образ в папку. Перенесенный файл расположен в

папке с именем учетной записи студента:

3.2 2. Смена Хост-комбинации в настройках VirtualBox

Мною была выбрана удобная для меня комбинация Ctr+Alt. Смена происходи-

ла через графический интерфейс VirtualBox.

3.3 3. Создание ВМ

Для создания также использовался графический интерфейс Virtualbox. Зада-

дим основные настройки ВМ, такие, как название, образ ISO:

Далее нужно задать размер оперативной памяти, а также количество процес-

Также нужно поставить галочку напротив пункта "Включить UEFI":

Последним шагом будет выделение места на диске под виртуальную машину:

Так как при установке ВМ использовался графический интерфейс, автоматически добавился контроллер IDE и контроллер SATA(vdi-диск):

Включим 3D-ускорение и поставим использоваться VMSVGA графический

3.4 4. Установка операционной системы

После запуска ВМ появляется меню запуска. В нем выбираем полноценный

После загрузки появляется рабочий стол и инструкции по настройке системы. Установщик Anaconda открывается комбинацией клавиш Win + Enter и коман-

дой liveinst в открывшемся терминале:

При настраивании клавиатуры были выбраны языки английский и русский, а также сменила комбинацию клавиш смены языка на Ctrl + Shift.

Также был скорректирован часовой пояс, а дата и время оставлено на автома-

тическое получение через NTP:

Hастроим аккаунт администратора (root):

Настроим аккаунт пользователя:

Настроим сетевое имя ВМ:

Имя узла после нажатия кнопки "Применить" не поменялось. Оно будет изменено далее при помощи терминала.

После перезагрузки системы, в терминале получаем root права при помощи

3.5 5. Автоматическое обновление

Используя команду dnf install dnf-automatic, установим ПО для автомати-

```
отовка :
новка : dnf-automatic-4.19.2-1.fc40.noarch
ск скриптлета: dnf-automatic-4.19.2-1.fc40.noarch
тановлен:
dnf-automatic-4.19.2-1.fc40.noarch
```

ческого обновления пакетов системы:

Следующим шагом будет настройка конфигурационного файла /etc/dnf/automatic.conf.

```
download_updates = yes
# Whether upplates should be applied when they are available, by
# dnf-automatic.timer. notifyonly.timer, download.timer and
# install.timer override this setting.
apply_updates = yes
  When the system should reboot following upgrades:
never = don't reboot after upgrades
when-changed = reboot after any changes
when_needed = reboot when necessary to apply cl
# when-needed
reboot = never
# The command that is run to trigger a system reboot.
reboot_command = "s<mark>h</mark>utdown -r +5 'Rebooting after applying package upda
```

```
B нем меняем значение поля apply_update:

[root@zdtimurovna dnf]#
[root@zdtimurovna dnf]#
                                                                                                            [Toot@zdtimurovna dnf]#
[ropt@zdtimurovna dnf]#
[ropt@zdtimurovna dnf]#
[ropt@zdtimurovna dnf]#
[ropt@zdtimurovna dnf]# systemctl enable --now dnf-automatic.timer
Created symlink /etc/systemd/system/timers.target.wants/dnf-automatic.time
[root@zdtimurovna dnf]#
[root@zdtimurovna dnf]#
[root@zdtimurovna dnf]#
                                                                                                             [root@zdtimurovna dnf]#
[root@zdtimurovna dnf]#
                                                                                                             [root@zdtimurovna dnf]#
```

После чего включаем таймер: [root@zdtimurovna dnf]#

3.6 6. Отключение SELinux

Для отключения SELinux нужно зайти в конфигурационный файл /etc/selinux/config

3.7 7. Установка драйверов для VirtualBox

Для установки драйверов для VBox заходим в терминал под суперпользовате-

лем и применяем установочную команду dnf -y group install "Development

Tools":

Далее установим dkms при помощи dnf install dkms:

После чего монтируем диск командой mount /dev/sr0 /media и запускаем

```
Verifying archive integrity..
                                                                                      100%
                                                                                             MD5 checksums are OK. All good.
                                                    Uncompressing VirtualBox 7.0.18 Guest Additions for Linux 100%
                                                    VirtualBox Guest Additions installer
                                                     Copying additional installer modules
                                                    Installing additional modules .
                                                    VirtualBox Guest Additions: Starting.
                                                    VirtualBox Guest Additions: Setting up modules
                                                    VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
                                                     odules. This may take a while
                                                    VirtualBox Guest Additions: To build modules for other installed kernels, run
                                                    VirtualBox Guest Additions:
                                                                                   /sbin/rcvboxadd quicksetup <version>
                                                    VirtualBox Guest Additions: or
                                                    VirtualBox Guest Additions:
                                                                                   /sbin/rcvboxadd quicksetup all
                                                    VirtualBox Guest Additions: Kernel headers not found for target kernel
                                                      .8.5-301.fc40.x86_64. Please install them and execute
                                                      /sbin/rcvboxadd setup
                                                    VirtualBox Guest Additions: Running kernel modules will not be replaced until
the system is restarted or 'rcvboxadd reload' triggered
VirtualBox Guest Additions: reloading kernel modules and services
                                                     /irtualBox Guest Additions: kernel modules were not reloaded
                                                    VirtualBox Guest Additions: kernel modules and services were not reloaded
                                                     The log file /var/log/vboxadd-setup.log may contain further information.
файл VBoxLinuxAdditions.run:
```

3.8 8. Настройка раскладки клавиатуры

Далее создадим файл для конфигурации клавиатуры - touch ~/.config/sway/config.d/95 system-keyboard-config.conf.Изменим конфигурационный файл /etc/X11/xorg.conf.d/0

keyboard.conf:

После чего просто перезагружаем машину с помощью reboot. ## 9. Изменение

```
@zdtimurovna:~# nano /etc/X11/xorg.conf.d/00-keyboard.conf:
 oot@zdtimurovna:~# hostnamectl set-hostname zdtimurovna
 oot@zdtimurovna:~# hostnamectl
     Static hostname: zdtimurovna Icon name: computer-vm
           Chassis: vm 	➡

Machine ID: 187a5eea14864d95850af573bfec4c7c
Boot ID: 0083c4062a2a4ed8b78eda7de4d79a01
      Virtualization: oracle
    Operating System: Fedora Linux 40 (Forty)
         CPE OS Name: cpe:/o:fedoraproject:fedora:40
OS Support End: Tue 2025-05-13
OS Support Remaining: 10month 2w 6d
     Kernel: Linux 6.9.4-200.fc40.x86_64
Architecture: x86-64
Hardware Vendor: innotek GmbH
    Hardware Model: VirtualBox
Firmware Version: VirtualBox
        Firmware Date: Fri 2006-12-01
         Firmware Age: 17y 6month 2w 6d
```

имени хоста

3.9 10. Подключение общей папки

Для начала добавим своего пользователя в группу vboxsf через gpasswd -a

```
zdtimurovna
                        coot@zdtimurovna:~# gpasswd -a zdtimurovna vboxsf
                       Добавление пользователя zdtimurovna в группу vboxsf
zdtimurovna vboxsf: root@zdtimurovna:~# S
```

Далее в графическом интерфейсе добавим хостовую папку в общую с ВМ:

3.10 11. Работа с языком разметки Markdown

```
root@zdtimurovna:~# dnf -y install pandoc
Последняя проверка окончания срока действия метаданных: 0:26:32 назад, Пт 21 июн 2024 18:0
Вависимости разрешены.
                        Архитектура
                                         Версия
.-----
Установка:
                         x86_64
                                           3.1.3-29.fc40
                                                                      fedora
.
Истановка зависимостей:
                         noarch
                                           3.1.3-29.fc40
                                                                      fedora
Результат транзакции
/становка 2 Пакета
Объем загрузки: 26 М
Объем изменений: 192 М
Загрузка пакетов:
(1-2/2): pandoc-common-3.1.3-29. 41% [========
                                                              ] 2.3 MB/s | 11 MB
```

Установим pandoc:

3.11 12. Установка texlive

```
texlive-zootaxa-bst-11:svn5061
  texlive-zref-11:svn62977-71.fc
  texlive-zref-check-11:svn63845
  texlive-zref-clever-11:svn6602
  texlive-zref-vario-11:svn65453
  texlive-zwgetfdate-11:svn15878
  texlive-zwpagelayout-11:svn630
  texlive-zx-calculus-11:svn6083
  texlive-zxjafbfont-11:svn28539
  texlive-zxjafont-11:svn62864-7
  texlive-zxjatype-11:svn53500-7
  texlive-zztex-11:svn55862-71.f
  tk-1:8.6.13-3.fc40.x86_64
  tre-0.8.0-43.20140228gitc2f5d1
  tre-common-0.8.0-43.20140228gi
  tzdata-java-2024a-5.fc40.noarc
  urw-base35-fonts-legacy-202009
  woff2-1.0.2-19.fc40.x86_64
  xpdf-libs-1:4.04-11.fc40.x86_6
  zziplib-0.13.72-6.fc40.x86_64
Выполнено!
root@zdtimurovna:~#
```

coot@zdtimurovna:~#

Команда для установки dnf -y install texlive-scheme-full:

3.12 13. Домашнее задание

Версия ядра Linux:

Частота процессора:

Модель процессора:

```
0.000000] Linux version 6.9.4-200.fc40.x86_64 (mockbuild@d372fa1a67e347
                                         b7bd422ead09b96) (gcc (GCC) 14.1.1 20240607 (Red Hat 14.1.1-5), GNU ld vers
                                          2.41-37.fc40) #1 SMP PREEMPT_DYNAMIC Wed Jun 12 13:33:34 UTC 2024
                                            0.000000] Command line: BOOT_IMAGE=(hd0,gpt2)/vmlinuz-6.9.4-200.fc40.x86
                                           root=UUID=01749571-f962-4cb8-b1ae-2b9fc5f37682 ro rootflags=subvol=root r
                                            0.000000] BIOS-provided physical RAM map:
                                            0.000000] BIOS-e820: [mem 0x000000000009fc00-0x00000000009ffff] reserve
                                            0.000000] BIOS-e820: [mem 0x0000000000100000-0x00000000dffeffff] usable
                                            0.000000] BIOS-e820: [mem 0x00000000dfff0000-0x0000000dfffffff] ACPI da
                                            0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserve
                                            0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserve
                                            0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserve
                                            0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000011fffffff] usable
                                            0.000000] NX (Execute Disable) protection: active
                                            0.000000] APIC: Static calls initialized
                                            0.000000] SMBIOS 2.5 present.
                                            0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01
Вывод команды dmesq | less:
                                                na:~$ sudo dmesg | grep -i "Linux version
                                0.000000] Linux version 6.9.4-200.fc40.x86_64 (mockbuild@d372fa1a67e3471
                          78b7bd422ead09b96) (gcc (GCC) 14.1.1 20240607 (Red Hat 14.1.1-5), GNU ld vers
                           ion 2.41-37.fc40) #1 SMP PREEMPT_DYNAMIC Wed Jun 12 13:33:34 UTC 2024
                                  urovna@zdtimurovna:~$ sudo dmesg | grep -i "MHz'
0.000007] tsc: Detected 3302.398 MHz processor
                                  5.290662] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:28:3d:8d
                                 murovna@zdtimurovna:~$ sudo dmesg | grep -i "CPU0"
0.194985] smpboot: <mark>CPU0</mark>: 11th Gen Intel(R) Core(TM) i7-11375H @ 3.30GHz (family: 0x6, mo
                                 0x8c, stepping: 0x1)
```

```
urovna@zdtimurovna: $ sudo dmesg | grep -i "Memory
0.001457] ACPI: Reserving FACP table memory at [mer
                                                                            ry at [mem 0xdfff00f0-0xdfff01e3]
      0.001458] ACPI: Reserving DSDT table of 0.001458] ACPI: Reserving FACS table of 0.001459] ACPI: Reserving FACS table of 0.001459] ACPI: Reserving FACS table of 0.001459]
                                                                            ry at [mem 0xdfff0620-0xdfff2972]
ry at [mem 0xdfff0200-0xdfff023f]
                                                                            ry at [mem 0xdfff0200-0xdfff023f]
      0.001459] ACPI: Reserving APIC table
                                                                                     [mem 0xdfff0240-0xdfff02ab
      0.001460] ACPI: Reserving SSDT table
                                                                             y at [mem 0xdfff02b0-0xdfff061b]
      0.002419] Early memory node ranges
0.012225] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000fff]
0.012227] PM: hibernation: Registered nosave memory: [mem 0x0009f600-0x0009ffff]
       0.012228] PM: hibernation: Registered nosave me
                                                                                               [mem 0x000a0000-0x000effff
       0.012228] PM: hibernation: Registered nosave
                                                                                               [mem 0x000f0000-0x000fffff
       0.012229] PM: hibernation: Registered nosave
                                                                                                [mem 0xdfff0000-0xdfffffff
      0.012229] PM: hibernation: Registered nosave
                                                                                                [mem 0xe0000000-0xfebfffff
       0.012230] PM: hibernation: Registered nosave
                                                                                               [mem 0xfec00000-0xfec00fff
       0.012230] PM: hibernation: Registered nosave
                                                                                               [mem 0xfec01000-0xfedfffff
      0.012231] PM: hibernation: Registered nosave (0.012231) PM: hibernation: Registered nosave (1.012231) PM: hibernation: Registered nosave (1.012231)
                                                                                       ory: [mem 0xfee00000-0xfee00fff]
ory: [mem 0xfee01000-0xfffbffff]
       0.012231] PM: hibernation: Registered nosave
                                                                                               [mem 0xfffc0000-0xffffffff]
      0.039512] Memory: 3969448K/4193848K available (20480K kernel code, 4289K rwdata
codata, 4704K init, 5356K bss, 224140K reserved, 0K cma-reserved)

0.095673] Freeing SMP alternatives memory: 48K

0.205762] x86/mm: Memory block size: 128MB

0.551004] Freeing initrd memory: 24092K

0.581052] Non-volatile memory driver v1.3
         .006352] Freeing unused decrypted me
      1.006990] Freeing Unused kernel image (initmem) memory: 4704K
1.006990] Freeing unused kernel image (rodata/data gap) memory: 1288K
1.862060] vmwgfx 0000:00:02.0: [drm] Legacy memory limits: VRAM = 16384 kB, FIFO
     surface = 507904 kB
1.862064] vmwgfx 0000:00:02.0: [drm] Maximum display memory size is 16384 kiB
3.785536] systemd[1]: Listening on systemd-oomd.socket - Userspace Out-Of-Memo
```

Объём доступной оперативной памяти: iller socket

Тип обнаруженного гипервизора:

```
zdtimurovna@zdtimurovna:~$ sudo dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
```

Тип файловой системы корневого раздела и последовательность монтирова-

ния файловых систем:

3.13 14. Контрольные вопросы

3.13.1 1. Какую информацию содержит учётная запись пользователя?

Учётная запись пользователя содержит: 1. **Имя пользователя** (username): Уникальный идентификатор пользователя в системе. 2. **Пароль** (password): Пароль учётной записи пользователя. 3. **UID** (User ID): Уникальный числовой идентификатор пользователя. 4. **GID** (Group ID): Уникальный числовой идентификатор основной группы пользователя. 5. **Домашний каталог** (home directory): Каталог, где пользователь хранит свои файлы. 6. **Интерпретатор**

команд (shell): Программа, которая исполняет команды пользователя. 7. **До-полнительная информация**: Полное имя, контактная информация и другие персональные данные.

Эти данные обычно хранятся в /etc/passwd.

3.13.2 2. Укажите команды терминала и приведите примеры:

Для получения справки по команде:

```
man <команда> # Пример: man ls
<команда> --help # Пример: ls --help
```

Для перемещения по файловой системе:

```
cd <каталог>  # Пример: cd /home/user
cd ..  # Перемещение на уровень выше
cd  # Перемещение в домашний каталог пользователя
```

Для просмотра содержимого каталога:

```
ls  # Пример: ls /home/user

ls -l  # Детализированный список с правами, владельцем и размером файло
ls -a  # Показать все файлы, включая скрытые
```

Для определения объёма каталога:

```
du -sh <каталог> # Пример: du -sh /home/user
```

Для создания / удаления каталогов / файлов:

```
mkdir <каталог>  # Пример: mkdir new_directory
rmdir <каталог>  # Пример: rmdir old_directory
touch <файл>  # Пример: touch new_file.txt
rm <файл>  # Пример: rm old_file.txt
rm -r <каталог>  # Пример: rm -r old_directory
```

Для задания определённых прав на файл / каталог:

```
chmod <права> <файл/каталог> # Пример: chmod 755 script.sh
chown <владелец> <файл/каталог> # Пример: chown user:user file.txt
chgrp <rpyппа> <файл/каталог> # Пример: chgrp group file.txt
```

Для просмотра истории команд:

history

3.13.3 3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система — это метод и структура данных, используемые операционной системой для управления файлами на диске или разделе.

Примеры файловых систем: - ext4 (Fourth Extended Filesystem): Стандартная файловая система для многих дистрибутивов Linux, поддерживающая большие объёмы данных и журналы. - NTFS (New Technology File System): Основная файловая система Windows, поддерживающая большие файлы и различные функции безопасности. - FAT32 (File Allocation Table 32): Широко используемая файловая система для внешних и съёмных носителей, но ограничена максимальным размером файла 4 ГБ. - HFS+ (Hierarchical File System Plus): Файловая система, используемая в macOS до появления APFS, поддерживающая журналы и большие объёмы данных. - APFS (Apple File System): Новая файловая система для macOS, оптимизированная для SSD-дисков, с поддержкой шифрования и клонирования файлов. ### 4. Как посмотреть, какие файловые системы подмонтированы в ОС? Для этого используется команды:

df -h mount

3.13.4 5. Как удалить зависший процесс?

Для удаления зависшего процесса сначала нужно найти его PID (Process ID). Это можно сделать с помощью команды ps или top. Пример использования ps для поиска PID:

```
ps aux | grep <имя_процесса>
```

После нахождения PID, процесс можно завершить с помощью команды kill:

```
kill <PID>
```

Если процесс не завершился, можно использовать принудительное завершение:

```
kill -9 <PID> # Пример: kill -9 1234, где 1234 - это PID процесса.
```

4 Вывод

В ходе выполнения данной лабораторной работы были получены практические навыки в установке и настройки ОС Fedora. А также получены навыки работы с установочными пакетами и их настройками для дальнейшей работы с ними.