Contents

1	Spa	tial Derivatives	2
	1.1	Definition and elementary properties of spatial deriva-	
		tives	2
	1.2	Modular properties of spatial derivatives	14

Chapter 1

Spatial Derivatives

Spatial derivatives were introduced by A. Connes in [1]. In this chapter, we give an alternative definition (equivalent to that given in [1]) suggested to us by U. Haagerup, based on the notion of the extended positive part of a von Neumann algebra. This definition permits us to obtain very easily some elementary properties of spatial derivatives. After this, we recall their main modular properties and the characterization as (-1)-homogeneous operators.

1.1 Definition and elementary properties of spatial derivatives

Let M be a von Neumann algebra acting on a Hilbert space H, and let ψ be a normal faithful semifinite weight on the commutant M' of M.

We shall use the following standard notation: $n_{\psi} = \{y \in M' | \psi(y^*y) < \infty\}$, H_{ψ} the Hilbert space completion of n_{ψ} with respect to the inner product $(y_1, y_2) \mapsto \psi(y_2^*y_1)$, Λ_{ψ} the canonical injection of n_{ψ} into H_{ψ} , π_{ψ} the canonical representation of M' on H_{ψ} .

Definition 1. For each $\xi \in H$, we denote by $R^{\psi}(\xi)$ the (densely defined) operator from H_{ψ} to H defined by

$$R^{\psi}(\xi)\Lambda_{\psi}(y) = y\xi, y \in n_{\psi}. \tag{1}$$

Proposition 2. For all $\xi, \xi_1, \xi_2 \in H$, $x \in M$, and $y \in M'$ we have

(i)
$$R^{\psi}(\xi_1 + \xi_2) = R^{\psi}(\xi_1) + R^{\psi}(\xi_2)$$
,

(ii)
$$R^{\psi}(x\xi) = xR^{\psi}(\xi)$$
,

(iii)
$$yR^{\psi}(\xi) \subset R^{\psi}(\xi)\pi_{\psi}(y)$$
,

and

$$(i)^* R^{\psi}(\xi_1)^* + R^{\psi}(\xi_2)^* \subset R^{\psi}(\xi_1 + \xi_2)^*,$$

$$(ii)^* R^{\psi}(x\xi)^* = R^{\psi}(\xi)^* x^*,$$

$$(iii)^* \pi_{\psi}(y)R^{\psi}(\xi)^* \subset R^{\psi}(\xi)^*y.$$

Proof. (i) and (ii) are immediate from Definition 1. (iii): For all $z \in n_{\psi}$, we have $yR^{\psi}(\xi)\Lambda_{\psi}(z) = yz\xi = R^{\psi}(\xi)\Lambda_{\psi}(yz) = R^{\psi}(\xi)\pi_{\psi}(y)\Lambda_{\psi}(z)$.

(i)*, (ii)*, and (iii)* follow from (i), (ii), and (iii) using $R^{\psi}(\xi_1) + R^{\psi}(\xi_2) \subset (R^{\psi}(\xi_1) + R^{\psi}(\xi_2))^*$, $(xR^{\psi}(\xi))^* = R^{\psi}(\xi)^*x^*$, and $(y^*R^{\psi}(\xi))^* = R^{\psi}(\xi)^*y^*$.

Definition 3. A vector $\xi \in H$ is called ψ -bounded if the operator $R^{\psi}(\xi)$ is bounded. The set of ψ -bounded vectors is denoted $D(H, \psi)$.

Notation. If $\xi \in D(H, \psi)$, $R^{\psi}(\xi)$ extends to a bounded operator $H_{\psi} \to H$ which we shall also denote $R^{\psi}(\xi)$.

Proposition 4. The set $D(H, \psi)$ is an M-invariant dense subspace of H.

Proof. That $D(H, \psi)$ is an M-invariant subspace of H follows from Proposition 2, i) and (ii). Denote by e the projection onto $\overline{D(H, \psi)}$; then $e \in M'$. Suppose that $e \neq 1$. Then $\psi(1 - e) > 0$. We can write $\psi = \sum_{i \in I} \omega_{\zeta_i, \zeta_i}$ for certain $\zeta_i \in H$. Then for at least one ζ_i , we have $((1 - e)\zeta_i|\zeta_i) \neq 0$ so that $(1 - e)\zeta_i \neq 0$. On the other hand, we have

$$\forall y \in n_{\psi} : ||y\zeta_i||^2 \le \psi(y^*y) = ||\Lambda_{\psi}(y)||^2$$

so that $\zeta_i \in D(H, \psi)$ and hence $e\zeta_i = \zeta_i$. This is a contradiction. Hence we must have e = 1 and $D(H, \psi)$ is dense in H.

Let $\xi \in H$. By Proposition 2, (iii)*, $D(R^{\psi}(\xi)^*)$ is invariant under the action of M'. Hence the projection p onto $\overline{D(R^{\psi}(\xi)^*)}$ is in M. Considered as an operator from pH to H_{ψ} , $R^{\psi}(\xi)^*$ is closed and densely defined and hence $\left|R^{\psi}(\xi)^*\right|^2$ exists as a positive self-adjoint operator on pH which by Proposition 2, (iii)*, is affiliated with pMp. We denote by $\theta^{\psi}(\xi,\xi)$ the element of \widehat{M}_+ (the extended positive part of M) associated with the couple $(pH, \left|R^{\psi}(\xi)^*\right|^2)$ as in [7, Example 1.2 and Lemma 1.4], i.e.

Definition 5. For each $\xi \in H$, we denote by

$$\theta^{\psi}(\xi,\xi)$$

the element of \widehat{M}_+ characterized by

$$\forall \eta \in H : \langle \omega_{\eta,\eta}, \theta^{\psi}(\xi, \xi) \rangle = \begin{cases} \left\| R^{\psi}(\xi)^* \eta \right\|^2 & \text{if } \eta \in D(R^{\psi}(\xi)^*) \\ \infty & \text{otherwise} \end{cases}$$
(2)

Remark 6. If $\xi \in D(H, \psi)$, we simply have

$$\theta^{\psi}(\xi,\xi) = R^{\psi}(\xi)R^{\psi}(\xi)^*. \tag{3}$$

Proposition 7. For all $\xi \in H$ and $x \in M$, we have

$$\theta^{\psi}(x\xi, x\xi) = x \cdot \theta^{\psi}(\xi, \xi) \cdot x^*.$$

Proof. For all $\eta \in H$, we have, using Proposition 2, (ii)*, and Definition 5

$$\langle \omega_{\eta,\eta}, \theta^{\psi}(x\xi, x\xi) \rangle = \langle \omega_{x^*\eta, x^*\eta}, \theta^{\psi}(\xi, \xi) \rangle$$
$$= \langle x^* \cdot \omega_{\eta,\eta} \cdot x, \theta^{\psi}(\xi, \xi) \rangle$$
$$= \langle \omega_{\eta,\eta}, x \cdot \theta^{\psi}(\xi, \xi) \cdot x^* \rangle$$

where the last equality simply follows from the definition of the operation $m \mapsto x \cdot m \cdot x^*$ in \widehat{M}_+ .

Recall that by [7, Proposition 1.10], every normal weight φ has a unique extension, also denoted φ , to a normal weight on \widehat{M}_+ .

Definition 8. Let φ be a normal weight on M. We define

$$q_{\varphi}: H \to [0, \infty]$$

by

$$q_{\varphi}(\xi) = \langle \varphi, \theta^{\psi}(\xi, \xi) \rangle, \xi \in H. \tag{4}$$

Proposition 9. Let φ be a normal weight on M. Then q_{φ} is a l.s.c. quadratic form on M, i.e.

(i)
$$\forall \xi_1, \xi_2 \in H : q_{\varphi}(\xi_1 + \xi_2) + q_{\varphi}(\xi_1 - \xi_2) = 2q_{\varphi}(\xi_1) + 2q_{\varphi}(\xi_2),$$

(ii)
$$\forall \xi \in H \forall \lambda \in \mathbb{C} : q_{\varphi}(\lambda \xi) = |\lambda|^2 q_{\varphi}(\xi),$$

(iii) q_{φ} is lower semi-continuous.

Proof. (ii) is immediate. For the proof of (i) and (iii), first suppose that $\varphi = \omega_{\eta,\eta}$ for some $\eta \in H$. Then

$$q_{\varphi}(\xi) = \langle \omega_{\eta,\eta}, \theta^{\psi}(\xi, \xi) \rangle = \begin{cases} \left\| R^{\psi}(\xi)^* \eta \right\|^2 & \text{if } \eta \in D(R^{\psi}(\xi)^*) \\ \infty & \text{otherwise} \end{cases}$$
(5)

Let $\xi_1, \xi_2 \in H$. We shall prove that

$$q_{\varphi}(\xi_1 + \xi_2) + q_{\varphi}(\xi_1 - \xi_2) \le 2q_{\varphi}(\xi_1) + 2q_{\varphi}(\xi_2).$$
 (6)

If either $\eta \in D(R^{\psi}(\xi_1)^*)$ or $\eta \in D(R^{\psi}(\xi_2)^*)$, the right hand side of (6) is $+\infty$ and hence (6) holds. Now suppose that $\eta \in D(R^{\psi}(\xi_1)^*)$ and $\eta \in D(R^{\psi}(\xi_2)^*)$. Then by Proposition 2, (i)*, also $\eta \in D(R^{\psi}(\xi_1 + \xi_2)^*)$ and $\eta \in D(R^{\psi}(\xi_1 - \xi_2)^*)$. Furthermore,

$$\begin{aligned} & \left\| R^{\psi}(\xi_{1} + \xi_{2})^{*} \eta \right\|^{2} + \left\| R^{\psi}(\xi_{1} - \xi_{2})^{*} \eta \right\|^{2} \\ &= \left\| R^{\psi}(\xi_{1})^{*} \eta + R^{\psi}(\xi_{2})^{*} \eta \right\|^{2} + \left\| R^{\psi}(\xi_{1})^{*} \eta - R^{\psi}(\xi_{2})^{*} \eta \right\|^{2} \\ &= 2 \left\| R^{\psi}(\xi_{1})^{*} \eta \right\|^{2} + 2 \left\| R^{\psi}(\xi_{2})^{*} \eta \right\|^{2}. \end{aligned}$$

Thus we have proved (6) in all cases.

By (6) applied to $\xi_1 + \xi_2$ and $\xi_1 - \xi_2$ we get

$$4(q_{\varphi}(\xi_1) + q_{\varphi}(\xi_2)) = q_{\varphi}(2\xi_1) + q_{\varphi}(2\xi_2) \le 2q_{\varphi}(\xi_1 + \xi_2) + 2q_{\varphi}(\xi_1 - \xi_2).$$

In all, we have shown (i).

By (5), we have

$$\langle \omega_{\eta,\eta}, \theta^{\psi}(\xi, \xi) \rangle = \sup\{ \left| (R^{\psi}(\xi)^* \eta | \zeta) \right|^2 | \zeta \in D(R^{\psi}(\xi)), \|\zeta\| \le 1 \}$$

$$= \sup\{ \left| (\eta | R^{\psi}(\xi) \Lambda_{\psi}(y)) \right|^2 | y \in n_{\psi}, \|\Lambda_{\psi}(y)\| \le 1 \}$$

$$= \sup\{ |(\eta | y \xi)|^2 | y \in n_{\psi}, \|\Lambda_{\psi}(y)\| \le 1 \}$$

for all $\xi \in H$. Since each $\xi \mapsto |(\eta | y \xi)|^2$ is continuous, this implies (iii).

Now let φ be an arbitrary normal weight. Then we can write

$$\varphi = \sum_{i \in I} \omega_{\eta_i, \eta_i}$$

and thus (cf. the proof of [7, Proposition 1.10])

$$\forall \xi \in H : q_{\varphi}(\xi) = \langle \varphi, \theta^{\psi}(\xi, \xi) \rangle = \sum_{i=I} \langle \omega_{\eta_i, \eta_i}, \theta^{\psi}(\xi, \xi) \rangle.$$

Now (i) and (iii) follow by the first part of the proof. \Box

Remark 10. Let φ be a normal weight on M. Write

$$Dom(q_{\varphi}) = \{ \xi \in H | q_{\varphi}(\xi) < \infty \}. \tag{7}$$

Then for all $x \in n_{\varphi}$ and $\xi \in D(H, \psi)$, we have

$$x^*\xi \in \text{Dom}(q_{\varphi}). \tag{8}$$

Indeed,

$$\begin{aligned} q_{\varphi}(x^*\xi) = & \langle \varphi, \theta^{\psi}(x^*\xi, x^*\xi) \rangle \\ = & \langle \varphi, x^* \cdot \theta^{\psi}(\xi, \xi) \cdot x \rangle \\ \leq & \|\theta^{\psi}(\xi, \xi)\| \langle \varphi, x^*x \rangle < \infty. \end{aligned}$$

In particular, if φ is semifinite then $Dom(q_{\varphi})$ is dense in H (since n_{φ}^* is strongly dense in M).

Definition 11. For each normal weight φ on M, we define the spatial derivative $\frac{d\varphi}{d\psi}$ as the unique element of $\widehat{B(H)}_+$ such that

$$\forall \xi \in H : \langle \omega_{\xi,\xi}, \frac{\mathrm{d}\varphi}{\mathrm{d}\psi} \rangle = \langle \varphi, \theta^{\psi}(\xi, \xi) \rangle. \tag{9}$$

The existence of $\frac{d\varphi}{d\psi}$ follows from Proposition 9 and [7, proof of Lemma 1.4].

Remark 12. If φ is semifinite, $\frac{d\varphi}{d\psi}$ is simply a positive self-adjoint operator on H (since in this case, $\{\xi \in H | \langle \omega_{\xi,\xi}, \frac{d\varphi}{d\psi} \rangle < \infty\} = \text{Dom}(q_{\varphi})$ is dense in H). Note that

$$\forall \xi \in H : q_{\varphi}(\xi) = \begin{cases} \left\| \left(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi} \right)^{\frac{1}{2}} \xi \right\|^{2} & \text{if } \xi \in D\left(\left(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi} \right)^{\frac{1}{2}} \right) \\ \infty & \text{otherwise} \end{cases}$$
 (10)

We shall see below (Proposition 22 that the definition of $\frac{d\varphi}{d\psi}$ given here agrees with that given in [1]. (This is not quite obvious. Note that in [1, Lemma 6], the quadratic form q is only defined on the subspace $D(H, \psi)$, and then extended by [1, Lemma 5] to the whole of H.)

Lemma 13. Let $\varphi_1, \varphi_2, (\varphi_i)_{i \in I}$, and φ be normal weights on M and let $x \in M$. Then

(i)
$$\forall m \in \widehat{M}_+ : \langle \varphi_1 + \varphi_2, m \rangle = \langle \varphi_1, m \rangle + \langle \varphi_2, m \rangle$$
,

(ii)
$$\forall m \in \widehat{M}_+ : \langle x \cdot \varphi \cdot x^*, m \rangle = \langle \varphi, x^* \cdot m \cdot x \rangle$$
,

(iii) if
$$\varphi_i \nearrow \varphi$$
, then $\forall m \in \widehat{M}_+ : \langle \varphi_i, m \rangle \nearrow \langle \varphi, m \rangle$.

Proof. (i) and (ii) are immediate consequences of [7, Proposition 1.10] (or its proof). As for (iii), we have by the proof of [7, Proposition 1.10], using the notation from there,

Theorem 14. For all normal weights φ_1 , φ_2 , and φ on M and all $x \in M$ we have

$$(a) \frac{\mathrm{d}(\varphi_1 + \varphi_2)}{\mathrm{d}\psi} = \frac{\mathrm{d}\varphi_1}{\mathrm{d}\psi} + \frac{\mathrm{d}\varphi_2}{\mathrm{d}\psi},$$

(b)
$$\frac{\mathrm{d}(x\cdot\varphi\cdot x^*)}{\mathrm{d}\psi} = x\cdot\frac{\mathrm{d}\varphi}{\mathrm{d}\psi}\cdot x^*$$
.

Remark 15. The sums and products occurring at the right hand side of (a) and (b) are to be understood in the sense of the operations in $\widehat{B(H)}_+$. In particular, if φ_1 , φ_2 , $\varphi_1+\varphi_2$ are semifinite, $\frac{\mathrm{d}\varphi_1}{\mathrm{d}\psi}+\frac{\mathrm{d}\varphi_2}{\mathrm{d}\psi}$ is the form sum of the positive self-adjoint operators $\frac{\mathrm{d}\varphi_1}{\mathrm{d}\psi}$ and $\frac{\mathrm{d}\varphi_2}{\mathrm{d}\psi}$. Similarly, if $x \cdot \varphi \cdot x^*$ is semifinite, $x \cdot \frac{\mathrm{d}\varphi}{\mathrm{d}\psi} \cdot x^*$ is the form product.

Remark 16. In [1], the sum property is simply stated without proof. It seems to be difficult to give a proof using only the methods of [1] (one only gets " \geq "). - The product property is stated (and proved) only for invertible $x \in M$.

Proof of Theorem 14. Let $\xi \in H$. Then, using successively Definition 11, Lemma 13, Definition 11 again, and the definition of the sum in $\widehat{B(H)}_+$, we get

$$\langle \omega_{\xi,\xi}, \frac{\mathrm{d}(\varphi_1 + \varphi_2)}{\mathrm{d}\psi} \rangle = \langle \varphi_1 + \varphi_2, \theta^{\psi}(\xi, \xi) \rangle$$

$$= \langle \varphi_1, \theta^{\psi}(\xi, \xi) \rangle + \langle \varphi_2, \theta^{\psi}(\xi, \xi) \rangle$$

$$= \langle \omega_{\xi,\xi}, \frac{\mathrm{d}\varphi_1}{\mathrm{d}\psi} \rangle + \langle \omega_{\xi,\xi}, \frac{\mathrm{d}\varphi_2}{\mathrm{d}\psi} \rangle$$

$$= \langle \omega_{\xi,\xi}, \frac{\mathrm{d}\varphi_1}{\mathrm{d}\psi} + \frac{\mathrm{d}\varphi_2}{\mathrm{d}\psi} \rangle.$$

Similarly,

$$\langle \omega_{\xi,\xi}, \frac{\mathrm{d}(x \cdot \varphi \cdot x^*)}{\mathrm{d}\psi} \rangle = \langle x \cdot \varphi \cdot x^*, \theta^{\psi}(\xi, \xi) \rangle = \langle \varphi, x^* \cdot \theta^{\psi}(\xi, \xi) \cdot x \rangle$$
$$= \langle \varphi, \theta^{\psi}(x^*\xi, x^*\xi) \rangle = \langle \omega_{x^*\xi, x^*\xi}, \frac{\mathrm{d}\varphi}{\mathrm{d}\psi} \rangle$$
$$= \langle x^* \cdot \omega_{\xi,\xi} \cdot x, \frac{\mathrm{d}\varphi}{\mathrm{d}\psi} \rangle = \langle \omega_{\xi,\xi}, x \cdot \frac{\mathrm{d}\varphi_1}{\mathrm{d}\psi} \cdot x^* \rangle$$

where we have used Lemma 13 and Proposition 7.

Theorem 17. Let $(\varphi_i)_{i\in I}$ and φ be normal weights on M. Suppose that

$$\varphi_i \nearrow \varphi$$
.

Then

$$\frac{\mathrm{d}\varphi_i}{\mathrm{d}\psi} \nearrow \frac{\mathrm{d}\varphi}{\mathrm{d}\psi}.$$

Remark 18. In particular, if φ is semifinite, we have $\frac{d\varphi_i}{d\psi} \nearrow \frac{d\varphi}{d\psi}$ in the usual sense of positive self-adjoint operators.

Proof of Theorem 17. For all $\xi \in H$, we have by Lemma 13

Lemma 19. Let φ be a normal semifinite weight on M. Write $p = \sup \varphi$. Then for all $m \in \widehat{M}_+$, we have

$$\langle \varphi, m \rangle = 0 \Leftrightarrow p \cdot m \cdot p = 0.$$

Proof. Let $m = \int_0^\infty \lambda de_\lambda + \infty \cdot (1-r)$ be the spectral resolution of m. Put $x_n = \int_0^n \lambda de_\lambda$, $n \in \mathbb{N}$. Then

$$\langle \varphi, m \rangle = 0 \Leftrightarrow \forall n \in \mathbb{N} : \langle \varphi, x_n \rangle = 0 \text{ and } \langle \varphi, 1 - r \rangle = 0$$

$$\forall n \in \mathbb{N} : p \cdot x_n \cdot p = 0 \text{ and } p \cdot (1 - r) \cdot p = 0$$

$$\Leftrightarrow p \cdot m \cdot p = 0.$$

Theorem 20. Let φ be a normal semifinite weight on M. Then

$$\operatorname{supp}\left(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi}\right) = \operatorname{supp}(\varphi). \tag{11}$$

In particular, $\frac{d\varphi}{d\psi}$ is injective if and only if φ is faithful.

Proof. Put $p = \text{supp } \varphi \in M$. Now for all $\xi \in H$, we have, using Lemma 19 and Proposition 7:

$$\xi \in \ker(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi}) \Leftrightarrow \langle \omega_{\xi,\xi}, \frac{\mathrm{d}\varphi}{\mathrm{d}\psi} \rangle = 0$$
$$\Leftrightarrow \langle \varphi, \theta^{\psi}(\xi, \xi) \rangle = 0$$
$$\Leftrightarrow p \cdot \theta^{\psi}(\xi, \xi) \cdot p = 0$$
$$\Leftrightarrow \theta^{\psi}(p\xi, p\xi) = 0$$
$$\Leftrightarrow p\xi = 0$$
$$\Leftrightarrow \xi \in (1 - p)H.$$

Since
$$ker\left(\frac{d\varphi}{d\psi}\right) = \operatorname{supp}\left(\frac{d\varphi}{d\psi}\right)^{\perp}$$
, the result follows.

Proposition 21. Let $\xi \in H$. Then there exists a sequence $(\xi_n)_{n \in \mathbb{N}}$ in $D(H, \psi)$ satisfying

$$\xi_n \to \xi \ as \ n \to \infty$$

and such that

$$q_{\varphi}(\xi_n) \to q_{\varphi}(\xi) \text{ as } n \to \infty$$
 (12)

for all normal weights φ on M.

Proof. Let

$$\theta^{\psi}(\xi,\xi) = \int_0^\infty \lambda de_{\lambda} + \infty \cdot (1-p)$$

be the spectral resolution of $\theta^{\psi}(\xi, \xi)$. Then p is the projection onto $\overline{D(R^{\psi}(\xi)^*)}$. For each $n \in \mathbb{N}$, the operator $R^{\psi}(e_n \xi)^*$, being closed and everywhere defined (since $R^{\psi}(e_n \xi)^* = R^{\psi}(\xi)^* e_n$), must be bounded; hence $R^{\psi}(e_n \xi)$ is bounded and $e_n \xi \in D(H, \psi)$.

Take a sequence $(\zeta_n)_{n\in\mathbb{N}}$ in $D(H,\psi)$ such that $\zeta_n\to\xi$ (possible by Proposition 4). Then also $(1-p)\zeta_n\in D(H,\psi)$.

Now for each $n \in \mathbb{N}$, put

$$\xi_n = e_n \xi + (1 - p)\zeta_n \in D(H, \psi).$$

Then

$$\xi_n \to p\xi + (1-p)\xi = \xi \text{ as } n \to \infty.$$

We claim that $(\xi_n)_{n\in\mathbb{N}}$ (12).

Hence, let φ be a normal weight on M. We consider two cases. If $\langle \varphi, \theta^{\psi}(\xi, \xi) \rangle = \infty$, (12) is trivially true; indeed, by the lower semicontinuity of q_{φ} , we have

$$\infty = q_{\varphi}(\xi) \le \liminf_{n \to \infty} q_{\varphi}(\xi_n).$$

Now suppose that $\langle \varphi, \theta^{\psi}(\xi, \xi) \rangle < \infty$. We can write

$$\varphi = \sum_{i \in I} \omega_{\eta_i, \eta_i}$$

for certain $\eta_i \in H$. Then all

$$\langle \omega_{\eta_i,\eta_i}, \theta^{\psi}(\xi,\xi) \rangle < \infty$$

so that $\eta_i \in D(R^{\psi}(\xi)^*) \subset pH$, whence

$$\omega_{\eta_i,\eta_i} = p \cdot \omega_{\eta_i,\eta_i} \cdot p.$$

Hence

$$\varphi = p \cdot \varphi \cdot p.$$

Now using

$$p \cdot \theta^{\psi}(\xi_n, \xi_n) \cdot p = \theta^{\psi}(p\xi_n, p\xi_n)$$

$$= \theta^{\psi}(e_n\xi, e_n\xi)$$

$$= e_n \cdot \theta^{\psi}(\xi, \xi) \cdot e_n$$

$$\nearrow p \cdot \theta^{\psi}(\xi, \xi) \cdot p$$

it follows that

$$\langle \varphi, \theta^{\psi}(\xi_n, \xi_n) \rangle = \langle \varphi, p \cdot \theta^{\psi}(\xi_n, \xi_n) \cdot p \rangle$$

$$\nearrow \langle \varphi, p \cdot \theta^{\psi}(\xi, \xi) \cdot p \rangle$$

$$= \langle \varphi, \theta^{\psi}(\xi, \xi) \rangle.$$

Using Proposition 21, we can now prove that our definition of $\frac{d\varphi}{d\psi}$ agrees with Connes' [1]. Note that we also prove the existence of a biggest positive self-adjoint operator satisfying (13) below so that we do not need [1, Lemma 5].

Proposition 22. Let φ be a normal semifinite weight on M.

1) The operator $\frac{d\varphi}{d\psi}$ is the biggest positive self-adjoint operator d satisfying

$$\forall \xi \in D(H, \psi) : q_{\varphi}(\xi) = \begin{cases} \left\| d^{\frac{1}{2}} \xi \right\|^2 & \text{if } \xi \in D(d^{\frac{1}{2}}) \\ \infty & \text{otherwise} \end{cases}$$
 (13)

2) The operator $\frac{d\varphi}{d\psi}$ is the unique positive self-adjoint operator satisfying (13) and

$$d^{\frac{1}{2}} = \left[d^{\frac{1}{2}} \Big|_{D(H,\psi) \cap D(d^{\frac{1}{2}})} \right]. \tag{14}$$

Proof. 1) The operator $\frac{d\varphi}{d\psi}$ is characterized by (10). Hence, in particular, (13) holds.

Now let d be any positive self-adjoint operator satisfying (13).

We shall prove that $d \leq \frac{d\varphi}{d\psi}$. Let $\xi \in D\left(\left(\frac{d\varphi}{d\psi}\right)^{\frac{1}{2}}\right)$. By Proposition 21, there exist $\xi_n \in D(H, \psi)$ such that $\xi_n \to \xi$ and

$$q_{\varphi}(\xi_n) \to q_{\varphi}(\xi).$$

On the other hand, the mapping $p: H \to [0, \infty]$ defined by

$$p(\xi) = \begin{cases} \left\| d^{\frac{1}{2}} \xi \right\|^2 & \text{if } \xi \in D(d^{\frac{1}{2}}) \\ \infty & \text{otherwise} \end{cases}$$
 (15)

is lower semi-continuous (since $p(\xi) = \int_0^\infty \lambda \, \mathrm{d}(e_\lambda \xi | \xi) = \sup \int_0^n \lambda \, \mathrm{d}(e_\lambda \xi | \xi)$, where $d = \int_0^\infty \lambda \, \mathrm{d}e_\lambda$ is the spectral resolution of d), whence

$$p(\xi) \le \liminf_{n \to \infty} q_{\varphi}(\xi_n) = q_{\varphi}(\xi) = \left\| \left(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi} \right)^{\frac{1}{2}} \xi \right\|^2.$$

This shows that $d \leq \frac{d\varphi}{d\psi}$.

2) First, let us show that $d = \frac{d\varphi}{d\psi}$ satisfies (14). Let $\xi \in D(d^{\frac{1}{2}})$. Take a sequence $(\xi_n)_{n \in \mathbb{N}}$ in $D(H, \psi)$ as in Proposition

21. Since $q_{\varphi}(\xi_n) \to q_{\varphi}(\xi) = \left\| d^{\frac{1}{2}} \xi \right\|^2 < \infty$, we may assume that all $q_{\varphi}(\xi_n) < \infty$, i.e. all $\xi_n \in D(H, \psi) \cap D(d^{\frac{1}{2}})$. Now $\xi_n \to \xi$ and $\left\| d^{\frac{1}{2}} \xi_n \right\|^2 \to \left\| d^{\frac{1}{2}} \xi \right\|^2$. It follows that $d^{\frac{1}{2}} \xi_n \to d^{\frac{1}{2}} \xi$. Indeed,

$$0 \leq \limsup_{n \to \infty} \left\| d^{\frac{1}{2}} \xi - d^{\frac{1}{2}} \xi_n \right\|^2$$

$$= \limsup_{n \to \infty} (2 \left\| d^{\frac{1}{2}} \xi \right\|^2 + 2 \left\| d^{\frac{1}{2}} \xi_n \right\|^2 - \left\| d^{\frac{1}{2}} \xi + d^{\frac{1}{2}} \xi_n \right\|^2)$$

$$= 2 \left\| d^{\frac{1}{2}} \xi \right\|^2 + 2 \lim_{n \to \infty} \left\| d^{\frac{1}{2}} \xi_n \right\|^2 - \liminf_{n \to \infty} \left\| d^{\frac{1}{2}} \xi + d^{\frac{1}{2}} \xi_n \right\|^2 \leq 0.$$

Next, assume that d is a positive self-adjoint operator satisfying (13) and (14). We shall prove that then d is the maximal positive self-adjoint operator satisfying (13). Define $p: H \to [0, \infty]$ as above (15). Then

$$\forall \xi \in H : q_{\varphi}(\xi) \le p(\xi). \tag{16}$$

Indeed, if $\xi \in D(d^{\frac{1}{2}})$, this is trivially true; if $\xi \in D(d^{\frac{1}{2}})$, take, by (14), $\xi_n \in D(H, \psi) \cap D(d^{\frac{1}{2}})$ such that

$$\xi_n \to \xi$$
 and $d^{\frac{1}{2}}\xi_n \to d^{\frac{1}{2}}\xi$.

Then
$$q_{\varphi}(\xi_n) = \left\| d^{\frac{1}{2}}\xi_n \right\|^2 \to \left\| d^{\frac{1}{2}}\xi \right\|^2 = p(\xi)$$
 so that

$$q_{\varphi}(\xi) \le \liminf_{n \to \infty} q_{\varphi}(\xi_n) = p(\xi).$$

Finally, (16) implies that $\frac{d\varphi}{d\psi} \leq d$, whence $\frac{d\varphi}{d\psi} = d$ by 1).

We recall [1, proof of Theorem 9]:

Example 23. Let M be the left algebra associated with a left Hilbert algebra \mathfrak{A} in H. Let φ_0 , resp. ψ_0 , be the canonical weight on M, resp. M', associated with \mathfrak{A}'' , resp. \mathfrak{A}' . Then

$$\frac{\mathrm{d}\varphi_0}{\mathrm{d}\psi_0} = \Delta,$$

where Δ is the modular operator associated with φ_0 .

Spatial derivatives are preserved by spatial isomorphisms:

Proposition 24. Let M_1 be a von Neumann algebra acting on a Hilbert space H_1 . Suppose that

$$u: H \to H_1$$

is a unitary such that

$$uMu^* = M_1.$$

Then for all normal semifinite weights φ on M and all normal faithful semifinite weights ψ on M', $u \cdot \varphi \cdot u^*$ and $u \cdot \psi \cdot u^*$ are weights on M_1 and M'_1 respectively, and we have

$$\frac{\mathrm{d}(u \cdot \varphi \cdot u^*)}{\mathrm{d}(u \cdot \psi \cdot u^*)} = u \frac{\mathrm{d}\varphi}{\mathrm{d}\psi} u^*.$$

The proof is left to the reader.

1.2 Modular properties of spatial derivatives

Here, we first recall, without proof, some main results from [1] and then state some immediate corollaries. For the first theorems, recall that the spatial derivatives occurring in them are injective by Theorem 20.

Theorem 25. Let φ_1 and φ_2 be normal faithful semifinite weights on M, and let ψ be a normal faithful semifinite weight on M'. Then

$$\forall t \in \mathbb{R} : (D\varphi_1 : D\varphi_2)_t = \left(\frac{\mathrm{d}\varphi_1}{\mathrm{d}\psi}\right)^{it} \left(\frac{\mathrm{d}\varphi_2}{\mathrm{d}\psi}\right)^{-it}.$$

Theorem 26. Let φ and ψ be normal faithful semifinite weights on M and M', respectively. Then

(i)
$$\forall x \in M \forall t \in \mathbb{R} : \sigma_t^{\varphi}(x) = \left(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi}\right)^{it} x \left(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi}\right)^{-it}$$
,

(ii)
$$\forall y \in M' \forall t \in \mathbb{R} : \sigma_t^{\psi}(y) = \left(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi}\right)^{-it} y \left(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi}\right)^{it}.$$

Corollary 27. Let φ and ψ be normal faithful semifinite weights on M and M', respectively. Then

- (i) $\frac{d\varphi}{d\psi}\eta M'$ if and only if φ is a trace,
- (ii) $\frac{d\varphi}{d\psi}\eta M$ if and only if ψ is a trace,
- (iii) $\frac{d\varphi}{d\psi}\eta Z(M)$ if and only if both φ and ψ are traces.

Theorem 28. Let φ and ψ be normal faithful semifinite weights on M and M', respectively. Then

$$\left(\frac{\mathrm{d}\varphi}{\mathrm{d}\psi}\right)^{-1} = \frac{\mathrm{d}\psi}{\mathrm{d}\varphi}.$$

Property (ii) in Theorem 26 characterizes operators having the form $\frac{d\varphi}{d\psi}$:

Theorem 29. Let ψ be a normal faithful semifinite weight on M', and let a be a positive self-adjoint operator on H. Then the following are equivalent:

- (i) $a = \frac{d\varphi}{d\psi}$ for some (necessarily unique) normal semifinite weight φ on M,
- (ii) $\forall y \in M' \forall t \in \mathbb{R} : \sigma_{-t}^{\psi}(y) a^{it} = a^{it} y$

Note that $\varphi \mapsto \frac{d\varphi}{d\psi}$ is injective by (9) combined with [1, Proposition 3].

Corollary 30. There is a bijective correspondence, characterized by the equation

$$\frac{\mathrm{d}\tau}{\mathrm{d}\tau'} = 1,\tag{17}$$

between the sets of normal faithful semifinite traces τ and τ' on M and M', respectively. (In particular, M is semifinite if and only if M' is semifinite.)

Proof. Given τ , there exists by Theorem 26 and 29 a weight τ' on M' such that $\frac{d\tau}{d\tau'} = 1$. By Corollary 27, τ' is a trace. Conversely, given τ' , by the same arguments, we can define τ .

In case of algebras on standard form, this correspondence reduces to the usual correspondence given by J:

Corollary 31. Suppose that (M, H, J, P) is a standard form of M in the sense of [4, Definition 2.1]. Then for all normal faithful semifinite traces τ on M we have

$$\tau' = \tau(J \cdot J).$$

Proof. Let u be the (unique) unitary carrying (M, H, J, P) onto $(M, H_{\tau}, J_{\tau}, P_{\tau})$. In H_{τ} we have by Example 23

$$\frac{\mathrm{d}\tau}{\mathrm{d}\tau(J\cdot J)} = \Delta_{\tau} = 1.$$

Hence, by Proposition 24, also

$$\frac{\mathrm{d}\tau}{\mathrm{d}\tau(J\cdot J)} = 1.$$

in H, whence $\tau' = \tau(J \cdot J)$.

Corollary 32. Suppose that M is semifinite and that τ and τ' are normal faithful semifinite traces on M and M' related by (17). Then for all normal semifinite weights φ on M, we have

$$\forall t \in \mathbb{R} : \left(\frac{\mathrm{d}\varphi}{\mathrm{d}\tau'}\right)^{it} = (D\varphi : D\tau)_t.$$

Otherwise stated, for all positive self-adjoint operators $h\eta M$, we have

$$\frac{\mathrm{d}\tau(h\cdot)}{\mathrm{d}\tau'} = h.$$

Finally, we recall the notion of γ -homogeneity.

Definition 33. Let ψ be a normal faithful semifinite weight on M', and let $\gamma \in \mathbb{R}$. A closed densely defined operator a on H with polar decomposition a = u|a| is called γ -homogeneous with respect to ψ if

$$u \in M \text{ and } \forall y \in M' \forall t \in \mathbb{R} : \sigma_{\gamma t}^{\psi}(y) |a|^{it} = |a|^{it} y.$$
 (18)