1/19/1

```
010354638
             **Image uvsllable**
 WPI Add No: 1995-255952/1/9534
 Related WPI Acc No: 1293-101693
 MRAM Ato No: 095-1169.
   Ribozyme library in optimised expression cassette ~
   comprises central hammerhead region and variable flanking regions, allows
   selection of optimum ribozyme for specific applications
 Patient Assignee: MAX FLANCK GES FORFDERUNG WISSENSCHAFTEN (PLAC
 Inventor: LIEBER A; STEAUSS N
 Number of Countries: (11 Number of Pater.ts: 006
 Patent Family:
 Patent No
               Kind
                    Late
                              Applicat No
                                           Kind Date
                                                             Week
               C1 1995CTL7 EE 4424762
 DE 4424762
                                            А 1994,704 199534 В
              A2 19960118 WW 95DE603
 WD 9601314
                                            A 19051510 199019
 WD 9601314
              A3 19960119 WT 950E661
                                            A 1995-512 1996:0
 EP 176363
               Al 19970604 E: 95918831
                                            A 19951519 199727
                             W
                                950E561
                                            A 12951519
EP 776363
               B1 19991222
                             EP 95918531
                                            A
                                                 124481519
                                                            200004
                             W. 95FE661
                                            A 19951519
₩3 ₹13()92
               Д
                   20011111
                             UC 94314587
                                            A 1994,925
                                                           1200052
                              U2 94314568
                                            A 15947928
                              U3 96711803
                                            A 19960911
                             US 97881614
                                            A 19970763
Priority Applications (N: Type Date): DE 4424762 A 19940704; DE 4424761 A
  19940704
Cited Patents: 1.Jnl.Ref; FR 2687411
Patent Details:
Patent No Kind Lan Pg
                       Main IPC
                                     Filing Notes
DE 4424762
             01 10 011%-015/63
             A2 G 16 C12N-015 '11
WO 9601314
   Designated States (National): CA JP
   Designated States (Fegiinal): AT BE OH DE DE ES FR GE GR IE IT LU MC NL
   PT SE
WO 9601314
             AЗ
                       000111-015 63
EP 176363
             Al G
                       011N-018 11
                                     Based on patent WI 9601314
   Designated States (Fegional): BE CH DM FR GE IT UI DL SE
EP 776363 B1 G 311N-015/11
                                    Based on patent WI 9401314
   Designated States (Fegichal): BE CH DK FR GE IT LI ML SE
US 6130092 A 01211-015 09
                                     Cent of application US 34314587
                                     CIP of application US 94314588
                                     GIP of application UN 95712803
                                     DIP of patent US 1698992
Abstract (Basic): DE 4424762 C.
       Ribozyme library comprises an optimised expression cassette (EC)
   which contains a rimoryme genes consisting of a central nammerhead
   sequence, i.e. double stranged INA of formula CTGATGAGTGCGTGAGGAGGAAAC (HH) plus, on each side, flanking sequences of R-13 random nucleotides.
       The library is used to select optimum ribozymes for partic.
   applications, partic. switching of genes for therapeutic purposes (e.g.
   treatment of AIDS), but also in molecular biology and genetic
   engineering.
       Selected ribozymes can be expressed effectively and used in vivo.
       Dwd.3/5
```

and a transfer of the little screen statement for season. The course of the course statement of the course of the

Title Terms: LIBRARY; OPTIMUM; EXPRESS; CASSETTE; COMPRISE; CENTRAL; REGION; VARIABLE; FLANK; REGION; ALLOW; SELECT; OPTIMUM; SPECIFIC; APPLY Derwent Class: B04; D16
International Patent Class (Main): C12N-015/09; C12N-015/11; C12N-015/63
International Patent Class (Additional): C12N-009/00; C12N-015/86; C12P-019/34; C12Q-001/68
File Segment: CPI
Manual Codes (CPI/A-N): B04-E01; B14-A02B1; D05-H09; D05-H12D4; D05-H19
Chemical Fragment Codes (M1):
 01 M423 M781 M903 Q233 V753

Derwent WPI (Dialogik File 351) (c) 2002 Thomson Derwent All rights reserved

DEUTSCHES PATENTAMT Aktenzeichen:

P 44 24 762.1-41

Anmeldetag:

4. 7.94

Offenlegungstag:

Veröffentlichungstag

der Patenterteilung: 27. 7.95

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

73 Patentinhaber:

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 80539 München, DE

(72) Erfinder:

Lieber, Andre, Dr., 13189 Berlin, DE; Strauss, Michael, Dr., 13187 Berlin, DE

66) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

Nucleic Acids Research, No. 3, S. 293 - 300;

(54) Ribozym-Bibliothek, ihre Herstellung und ihre Verwendung

Die Erfindung hat das Ziel, die Bereitstellung optimaler Ribozyme für beliebige Zielsequenzen zu ermöglichen. Diese Ribozyme sollen effektiv exprimierbar und in vivo einsetzbar sein, vorzugsweise für die Identifizierung und zum Abschalten von Genen bei Erkrankungen.

Anwendungsgebiete der Erfindung sind die Molekularbiologie, die Gentechnik und die Medizin.

Erfindungsgemäß wird eine Ribozym-Bibliothek aufgebaut, die in einer optimierten Expressionskassette 109-1011 Ribozym-Gene enthält. Diese Ribozym-Gene bestehen aus einer zentralen Hammerhead-Struktur definierter Sequenz und flankierenden Sequenzen auf beiden Seiten der Hammerhe-

ad-Struktur von je 6-13 Nukleotiden. Die Verwendung dieser Ribozymbibliothek erfolgt durch Inkubation mit dem die gewünschte Zielsequenz enthaltenden Material, Identifizierung der erhaltenen Spaltprodukte und Isolierung der für die Spaltung verantwortlichen RibozyDie Erfindung betrifft die in den Ansprüchen angegebene Ribozym-Bibliothek, ihre Herstellung und Verwendung. Anwendungsgebiete der Erfindung sind die Molekularbiologie, die Gentechnik und die Medizin.

Die Inaktivierung von Genfunktionen durch reverses genetisches Material ist die wichtigste Methode, um besummte Gene abzuschalten. Das ist von großer Bedeutung zur Bekämpfung von infektiösen und anderen, 10 durch Störung der Genexpression bedingten Krankheiten (einschließlich AIDS). Eine Genfunktion kann in verschiedenen Ebenen außer Kraft gesetzt werden: durch homologe Rekombination auf der DNA-Ebene, durch Antisense-Nukleinsäuren oder Ribozyme auf der RNA- 15 Ebene oder durch Antikörper auf der Proteinebene. In der praktischen Umsetzung haben alle 4 Möglichkeiten Vor- und Nachteile. Für eine therapeutische Anwendung scheint nur die RNA-Inaktivierung durch Antisense-Moleküle oder durch Ribozyme durchführbar zu 20 sein. Beide Verbindungsklassen können durch chemische Synthese oder in Verbindung mit einem Promoter durch biologische Expression in vitro oder sogar in vivo hergestellt werden. Das Prinzip der katalytischen Selbstspaltung von RNA-Molekülen und der Spaltung 25 in trans hat sich in den letzten 10 Jahren gut etabliert. Innerhalb der RNA-Moleküle mit Ribozym-Aktivität sind die Hammerhead-Ribozyme am besten charakterisiert. Nachdem gezeigt worden ist, daß Hammerhead-Strukturen in heterologe RNA-Sequenzen integriert 30 werden und dadurch die Ribozym-Aktivität auf dieses Molekül übertragen können, scheint es naheliegend, daß katalytische Antisense-Sequenzen für fast jede Zielsequenz mit einem übereinstimmenden Spaltort vorgesehen werden können.

Das Grundprinzip der Ribozym-Ausstattung ist sehr einfach: Man wählt eine interessierende Region der RNA aus, die das Triplett GUC (bzw. CUC) enthält, nimmt 2 Oligonukleotid-Stränge mit je 6—8 Nukleotiden und fügt die katalytische Hammerhead-Sequenz dazwischen ein.

Moleküle dieser Art wurden für zahlreiche Zielsequenzen synthetisiert, sie zeigten katalytische Aktivität in vitro und in manchen Fällen auch in vivo. Die besten Ergebnisse wurden mit kurzen Ribozymen und Zielsequenzen erzielt. Eine aktuelle Herausforderung für die in vivo-Anwendung ist die Konstruktion von Ribozymgenen, die eine kontinuierliche Expression des Ribozyms in einer bestimmten Zelle erlauben (Bertrand, E. et al. [1994] Nucleic Acids Res. 22, 293—300).

Es gibt 5 potentielle Gründe, die eine befriedigende Funktion von exprimierten Ribozymen innerhalb des komplexen Zellmilieus behindern.

1. Innerhalb der Zelle existiert das mRNA-Substrat svermutlich in einer stark gefalteten Struktur, die außerdem noch durch an Teile der Struktur gebundene Proteine geschützt sein kann. Das Treffen von zugänglichen Orten innerhalb des Substrates zur Hybridisierung mit den komplementären flankierenden Regionen des Ribozyms ist eine Frage der aktuellen Wahrscheinlichkeit. Computergestützte Vorhersagen von möglichen thermodynamisch stabilen Sekundärstrukturen können für die Suche nach Loop-Regionen ohne Basenpaarung nützlich 65 sein, aber die physiologische Relevanz dieser Konformationsmodelle ist noch unsicher.

2. Da die Ziel-mRNA sofort aus dem Zellkern her-

austransportier, wird, muß das Ribozym muß auch in das Zytoplasma übergehen, bevorzugt auf dem selben Wege. Es ist jedoch schwierig, eine Kolokalisation von Ribozymen und ihrem Substrat zu erreichen.

3. Der Einsatz von Ribozymen in vivo erfordert die Einfügung von Ribozymgenen in geeignete Expressionskassetten. Die Transkription dieser Konstrukte kann mRNAs produzieren, in denen die zentrale katalytische Sekundärstruktur der Ribozyme durch andere, stabilere Basenpaarungen innerhalb der nichtkomplementären flankierenden Sequenzen verdrängt wird.

4. Ein Überschuß (100-1000fach) an Ribozym-Molekülen gegenüber der Zielsequenz ist notwendig, um ein registrierbares Ansteigen des RNA-Niveaus zu erreichen. Die Produktion von 105-106-Ribozym-Molekülen pro Zelle über eine lange Periode hinweg kann jedoch zytotoxische Wirkung haben. Im allgemeinen sind solche hohen Expressionsniveaus nicht stabil. Die Notwendigkeit des Überschusses an Ribozymen wird durch die ungenügende Stabilität der Ribozyme gegenüber Nukleasen, durch den uneffektiven Transport zum Zytoplasma und durch den nicht optimalen Umsatz-Faktor der Spaltungsreaktion hervorgerufen. 5. Die Kinetik der Spaltungsreaktion und die Fähigkeit der Ribozyme, Multi-Umsatz-Reaktionen durchzuführen, hängt von den Bindungsparametern und der Struktur der komplementären flankierenden Regionen der Ribozyme ab. Zelluläre Proteine können die Katalyse der Spaltungsreaktion beeinflussen, wahrscheinlich mit Hilfe der Dissoziation des Ribozyms vom Substrat der Spaltung, das die Vorstufe zur nächsten Spaltung darstellt. Bis heute ist es nicht möglich, die optimale Struktur der flankierenden Regionen für ein Ribozym vorherzusagen, um hohe Spezifität und einen hohen Umsatz zu garantieren.

Insgesamt kann man feststellen, daß trotz vieler Bemühungen zur Konstruktion spezifischer Ribozym-Gene nur Teilerfolge erzielt wurden, meist auf der Basis von "trial and error"-Experimenten.

Die Erfindung hat das Ziel, die Bereitstellung optimaler Ribozyme für beliebige Zielsequenzen zu ermöglichen. Diese Ribozyme sollen effektiv exprimierbar, stabil und in vivo einsetzbar sein, vorzugsweise für die Identifizierung und zum Abschalten von Genen bei Erkrankungen.

Der Grundgedanke der Erfindung besteht darin, das Verfahren so zu führen, daß eine gesuchte bzw. für das Abschalten vorgesehene Zielsequenz sich das passendste Ribozym aus einem Angebot von Ribozymen mit bekannter Stabilität und Struktur selbst heraussucht. Das wird erfindungsgemäß dadurch realisiert, daß eine Ribozym-Bibliothek angelegt wird, die aus einer optimierten Expressionskassette besteht, welche 109 bis 1011 Ribozymgene enthält. Diese Ribozyme setzen sich aus einer zentralen Hammerhead-Struktur definierter Sequenz und flankierenden Sequenzen auf beiden Seiten der Hammerhead-Struktur von 6-13 Nukleotiden zufälliger Basenfolge zusammen. Die Hammerhead-Struktur wird durch ein doppelsträngiges Gen kodiert, in welchem das Hammerhead auf beiden Seiten von flankierenden Sequenzen zufälliger Basenfolge eingeschlossen

Die doppelsträngige Hammerhead-Region hat fol-

gende Sequenz: CTGATGAGTCCGTGAGGACGAA-AC, die flankierenden Sequenzen haben eine Länge von 6-13 Nukleotiden

Der Aufbau der erfindungsgemäßen Ribozym-Bibliothek geht von synthetischen Oligonukleotiden mit einer Zufallssequenz von 6-13 Nukleotiden aus. Diese werden mit der Ribozymsequenz verbunden, in einen Doppelstrang umgewandelt und über flankierende Restriktionsorte in die entsprechende Insertionsstelle der Expressionskassette kloniert. In Abb. 1 ist der Aufbau 10 Gen stabil exprimiert (5000 RNA-Kopien/Zelle). der Ribozym-Bibliothek schematisch dargestellt.

Abb. 2 zeigt schematisch die Anwendung der Ribozym-Bibliothek; sie wird nachfolgend am Beispiel des Wachstumshormons erläutert. Wachstumshormon hat Basenfolgen GUC bzw. CUC). Nur einige Spaltstellen werden in vivo zugänglich sein. Diese und die dazu passenden effektivsten Ribozyme sollen isoliert werden.

Dazu wird zunächst ein Pool von Ribozym-Genen synthetisch hergestellt, wobei eine zentrale "hammerhe- 20 ad" Ribozymsequenz von je 13 Nukleotiden zufälliger Reihenfolge flankiert wird. Diese Gene werden in einen Expressionsvektor (GvaL) für Ribozyme kloniert, wobei sie auf beiden Seiten von einer identischen Sequenz von 21 Nukleotiden flankiert werden, die eine Sekundär- 25 strukturbildung verhindern sollen. Durch die Klonierung entsteht eine Bibliothek von ca. 109 Klonen. Zur Isolierung eines spezifischen Ribozyms wird das Zielgen in vitro von einem geeigneten Konstrukt transkribiert (mit T7-Polymerase oder RNA-Polymerase III) und die 30 erhaltene RNA mit der ebenfalls in vitro transkribierten Ribozym-Bibliothek inkubiert. Anschließend werden die Spaltprodukte elektrophoretisch getrennt. Deutlich erkennbare Fragmente werden aus dem Gel präpariert und sequenziert.

Die Sequenz an den Enden der Fragmente erlaubt die Festlegung der Spaltstelle und Identifizierung des für die Spaltstelle verantwortlichen Ribozyms. Das betreffende Ribozym wird unter Verwendung von zwei für seine flankierenden Sequenzen spezifischen Oligonu- 40 fäß durchgeführt. Folgende Ansätze wurden gewählt: kleotiden aus der Ribozym-Bibliothek amplifiziert und erneut in den Vektor GvaL kloniert (Beispiel 1).

Die Ribozymaktivität der Bibliothek wird durch Inkubation mit zellulärer RNA und deren Degradation nachgewiesen (Beispiel 2). Das Vorhandensein von Ribozy- 45 men gegen eine bestimmte Ziel-RNA, z. B. hGH, wird durch Inkubation mit einer in vitro transkribierten RNA nachgewiesen (Beispiel 3). Die Lokalisierung der Spaltstellen erfolgt durch Isolierung von Fragmenten der gespaltenen Ziel-RNA und deren Sequenzierung (Beispiel 50

Die Spezifität und Effektivität der aus der Bank isolierten und reklonierten Ribozyme wird durch deren Inkubation mit der Ziel-RNA bestimmt (Beispiel 5).

Die biologische Wirksamkeit, d. h. die Ausschaltung 55 der Funktion der Ziel-RNA in vivo, wird durch Transfektion des reklonierten Ribozyms mit dem Zielgen in geeignete Zellen (z. B. CHO) und nachfolgende Bestimmung der spezifischen Proteinsynthese (z. B. hGH-Sekretion) ermittelt (Beispiel 6).

Die Erfindung soll nachfolgend im einzelnen durch Ausführungsbeispiele näher erläutert werden.

Beispiel 1

Die Strategie ist schematisch in Abb. 3 dargestellt. Der mittlere Teil der Abbildung zeigt die Struktur des vorgesehenen Ribozympools, der obere die aktuellen

Sequenzen der zwei Oligonukleotide, die angelagert und zur Bildung von doppelsträngigen Ribozym-Genen aus der Bank verlängert werden. Das entstehende Fragmentgemisch wurde in die Gval-Kassette als Xhol-Nsil-5 Fragment einkloniert. Eine Bibliothek von 109 verschiedenen Varianten wurde geschaffen. Die Ribozyme wurden in vitro entweder durch T7-Polymerase oder pollII von einem HeLa-Extrakt synthetisiert. Als Zielsequenz wurde RNA von CHO-Zellen benutzt, welche das hGH-

Gereinigte RNA wurde mit der in vitro synthetisierten Ribozym-Bibliothek inkubiert. Nach der Reinigung der Spaltprodukte an einer oligo-dT-Säule wurde das 5'-Ende der stromabwarts-Spaltprodukte mittels RA-150 theoretische Spaltstellen (Ribozym-Bindungsorte, 15 CE-Technik wie folgt analysiert: Nach der reversen Transkription mit oligo-dT-Primern werden die cDNAs am 3'-Ende mit dG verbunden, mit einem oligodC amplifiziert und mit hGH-spezifischen Primern behandelt, in pGEMT (Promega) einkloniert und sequenziert. Die Sequenzen sollten unmittelbar stromabwärts von der NUH-Erkennungsseite (GUC, CUC) innerhalb der hGH-RNA starten. Das Gen für das Ribozym, das die Spaltung eines ausgewählten Ortes bewirkte, wurde durch PCR aus der Ribozym-Plasmid-Bibliothek amplifiziert, wobei spezifische degenerierte Primer für die flankierenden Regionen der Ribozym-Gene verwendet wurden. Nach Amplifikation wurde das entstandene Fragment zwischen die PstI- und SalI-Orte des Vektors Gval kloniert. Unter den sequenzierten 50 Klonen wurden für drei Ribozym-Spaltorte Ribozyme mit unterschiedlich langen Flanken (7-13 Nukleotide) gefunden (**Abb.** 3, unten).

Beispiel 2

Die Spaltung von zellulärer RNA wurde bei physiologischem pH (50 mM Tris-Cl, pH 7,5) bei 37°C innerhalb einer Stunde mit oder ohne vorhergehende Hitzedenaturierung (90 sec bei 95°C) in einem 15 µl Reaktionsge-

1/2. Gereinigte Total-RNA (1 µg/Probe) als Ziel. Ribozyme GvaLRz als T7-Transkript, in vitro-Transkript von GvaL diente als Kontrolle.

- 3. Zytoplasmatische RNA/Protein-Fraktion als Ziel. 10⁵ Zellen wurden im 50 mM Tris-HCL (pH 7,5) 10 min in Eis lysiert, in flüssigem Stickstoff eingefroren, aufgetaut bei 37°C, und die Kerne wurden durch Zentrifugationen entfernt. Als Ribozym wurde ein T7-Transkript von GvaLRz (10 μg) verwendet.
- 4. Zytoplasmatische RNA als Ziel. Das Ribozym wurde durch polIII-Transkription (2 μg/Probe) hergestellt.

Die deutlichsten Spaltungen werden mit T7-Transkripten und totaler bzw. auch zytoplasmatischer RNA erhalten.

Beispiel 3

Spezifische in vitro-Spaltung von hGH-mRNA durch Ribozym aus der Bibliothek

Totale oder zytoplasmatische RNA-Präparationen aus hGH-produzierenden Zellen werden mit Ribozymen aus der Bibliothek inkubiert, die entweder mit pol III oder T7-Polymerase transkribiert wurde. hGH-spe-

15

35

zifische 3'-Fragmente werden. Vers transkribiert und durch PCR amplifiziert. Die PCR-Bedingungen werden so gewählt, daß hauptsächlich Fragmente > 1000 bp entstehen. PCR-Produkte werden auf einem 6% PAA-Gel aufgetrennt, Marker für die Fragmentgröße werden auf der linken Bahn aufgetragen. Es wurden 6 spezifische Banden gefunden, deren korrespondierende Fragmentlänge mit einer in 4 Exonorten (E1-E4) und 2 Intronorten (11, 12) korrelieren. Es ist festzustellen, daß T7 pol Transkripte leichter nachzuweisen sind und daß es mehr Spaltstellen in Total-RNA gibt als in zytoplasmatischer RNA.

Beispiel 4

Lokalisierung von Ribozym-Spaltorten innerhalb von hGH mRNA

Die Fragmente E1-E4 und 11, 12 werden aus dem Gel geschnitten, gereinigt und in pGEMT einkloniert. 20 Von jedem Fragment werden 20 Klone sequenziert. Etwa 50% der Klone starten entweder an einem CUCoder einem GUC-Ort. Die anderen 50% repräsentieren wahrscheinlich Abbauprodukte.

Die Spaltorte gemäß den Fragmenten sind in der Sequenz von hGH enthalten. E1: 1017 (Exon IV), E2: CTC 1401 (Exon V), E3: CTC 1422 (Exon V), E4: CTC 1441 (Exon V), ES (stammt von einem gesonderten Experiment): GTC (Exon IV), 12: CTC 1099 (Intron IV), 11: GTC (Intron 1V) (Abb.4).

B. Mit dem Programm HUSAR, MFOLD, wurde eine graphische Darstellung mit PLOTFOLD erhalten (Abb. 5).

Beispiel 5

Spaltung in vitro von hGH-spezifischer RNA durch Ribozyme aus der Bibliothek

A. Spaltung mit 3 verschiedenen selektierten Ribozymen. Die Ribozyme werden mit T7-Polymerase von jeweils einem selektierten Klon umgeschrieben und mit in vitro transkribierter hGH RNA der gleichen Molarität (beide 100 nM) für 20 min bei 37°C ohne Hitzedenaturierung inkubiert. Proben werden auf ein denaturiertes 6% PAA-Gel aufgebracht. Die entstehenden Bruchstükke haben die erwartete Größe (E1: 1017, 646; I1: 1099, 564; E5: 952, 711).

B. Spaltung von hGH RNA durch E1-Ribozym mit verschiedener Länge der komplementären Regionen. Die Inkubation erfolgte wie in A. Die Fragmentabtrennung erfolgte auf einem 4% denaturiertem PAA-Gel. Die Länge der komplementären Region des E1-Ribozyms beträgt 26=13/13, 55 21=10/11 bzw. 15=8/7 (Abb. 3, unten). Es ist festzustellen, daß die 2 spezifischen Spaltprodukte nur nach Inkubation mit Ribozymen in der Gegenwart von Magnesium nachweisbar sind. Die effektivste Spaltung ist bei der kürzesten Komplementarität 60 zu finden (15=8/7).

Beispiel 6

Effekt der Ribozymexpression in vivo auf das Niveau der hGH-Sekretion

Die Transfektion von CHO-Zellen erfolgte gleichzei-

tig mit pCMVhc., kibozymen oder Kontrollkonstrukten und pSV2neo. Die Kurzzeit-Expression wurde nach 3 Tagen und die stabile Expression nach Selektion mit Geneticin nach 4 Wochen getestet. Das hGH-Niveau wurde mit ELISA (Nachweisgrenze 3 ng/ml) festgestellt. Das Niveau des erhaltenen hGH mit pCMVhGH + GvaL wurde als 100% angesetzt (Kurzzeit: 7 µg hGH/ml/24 hrs; stabile: 2 µg hGH/ml/24 hrs).

Die Resultate eines typischen Experiments sind in Tabelle 1 zusammengestellt.

Patentansprüche

- 1. Ribozym-Bibliothek, bestehend aus einer optimierten Expressionskassette, welche Ribozym-Gene enthält, die aus einer zentralen Hammerhead-Struktur, bestehend aus doppelsträngiger DNA der Sequenz CTGATGAGTCCGTGAGGACGAAAC und flankierenden Sequenzen auf beiden Seiten der Hammerhead-Struktur von je 6—13 Nukleotiden zufälliger Basenfolge bestehen.
- 2. Ribozym-Bibliothek nach Anspruch 1, dadurch gekennzeichnet, daß die optimierte Expressionskassette einen T7-Promoter, ein adenovirales va-RNA-Gen und eine stabile Loop-Region enthält.
- 3. Ribozym-Bibliothek nach Anspruch 1 und 2, dadurch gekennzeichnet, daß sie 10⁹-10¹¹ Ribozym-Gene enthält.
- 4. Verfahren zur Herstellung der Ribozym-Bibliothek gemäß Anspruch 1-3, dadurch gekennzeichnet, daß synthetische Oligonukleotide mit einer Zufallssequenz von 6-13 Nukleotiden und der Ribozymsequenz hergestellt, in einen Doppelstrang umgewandelt und über flankierende Restriktionsorte in die entsprechende Insertionsstelle der Expressionskassette kloniert werden.
- 5. Verwendung der Ribozym-Bibliothek gemäß 1-3, dadurch gekennzeichnet, daß man das die gewünschte Zielsequenz enthaltende Material mit der Ribozym-Bibliothek inkubiert, die erhaltenen Spaltprodukte identifiziert und die für die Spaltung verantwortlichen Ribozyme isoliert.
- 6. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß als Material
 - in vitro transkribierte RNS,
 - Total-RNS oder
 - zytoplasmatische RNS von Zellen

eingesetzt und die Inkubation in Anwesenheit von 100 m Mg-Salz durchgeführt wird.

- 7. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß die Identifizierung der Spaltprodukte durch die PCR-Reaktion mit genspezifischen Primern und nachfolgende Gelelektrophorese erfolgt.

 8. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß die für die Spaltung verantwortlichen Ribozyme durch Ausschneiden der Spaltprodukte aus dem Gel und nachfolgende Sequenzierung der Spaltstellen identifiziert werden.
- 9. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß das als wirksam erkannte Ribozym aus der Bibliothek durch Hybridisierung mit 2 für dieses Ribozym spezifischen Oligonukleotiden isoliert und als Expressionsklon verwendet wird.

Hierzu 6 Seite(n) Zeichnungen

durch T7Polymerase oder

Ribozym-Bibliothek

pol III

C 12 N 15/63 entlichungstag: 27. Juli 1995

Abb. 1 Aufbau der Ribozym-Bibliothek

Abb, 2 Anwendung der Ribozym-Bibliothek

DE 44 24 762 C1 C 12 N 15/63

Abb. 3

DE 44 24 762 C1 C 12 N 15/63

841 AGGCGGGGATGGGGGAGACCTGTAGTCAGAGCCCCGGGCAGCACAGCCAATGCCCGTCC E5 901 TTGCCCCTGCAGAACCTAGAGCTGCTCCGCATCTCCCTGC rdemedeme Εı 961 GAGCCCGTGCAGTTCCTCAGGAGTGTCTTCGCCAACAGCCTGGTGTACGGCGCC TCTGAC 1021 AGCAACGTCTATGACCTCCTAAAGGACCTAGAGGAAGGCATCCAAACGCTGATGGGGGTG 12 1081 AGGGTGGCGCCAGGGGTCCCCAATCCTGGAGCCCCACTGACTTTGAGAGACTGTGTTAGA [11 1141 GAAACACTGGCTGCCCTCTTTTTAGCAGTCAGGCCCTGACCCAAGAGAACTCACCTTATT 1201 CTTCATTTCCCCTCGTGAATCCTCCAGGCCTTTCTCTACACTGAAGGGGAGGAAAAA 1261 TGAATGAATGAGAAAGGGAGGGAACAGTACCCAAGCGCTTGGCCTCCTTCTCTTCCTT 1321 CACTTTGCAGAGGCTGGAAGATGGCAGCCCCGGACTGGGCAGATCTTCAAGCAGACCTA E3 E3 1381 CAGCAAGTTCGACACAAACTCACACAACGATGACGCACTACTCAAGAACTACGGGCTGCT ↓E4 1441 <u>CTACTGCTTCAGGAAGGACATGGACAAGGTCGAGACATTCCTGCGCATCGTGCAGTGCCG</u> 1501 CTCTGTGGAGGGAGCTGTGGCTTCTAGCTGCCCGGGTGGCATCCCTGTGACCCCTCCCC 1561 AGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTCCTAATAAA 1621 ATTAAGTTGCAT

Abb. 4

DE 44 24 762 C1 C 12 N 15/63 v6. Jifentlichungstag: 27. Juli 1995

Expression	pol III	pol III	T7 pol	T7 pol
System		1		
	kurzzeitig	stabil	kurzzeitig	stabil
	hGH (%)	v) hGH (%)	hGH (%)
GvaL	100	100	100	100
E1 (13/13)	36		78	2
E1 (10/11)	12	50	•	ı
E1 (8/7)	7	25	75	0,2
E1 (8/7)mut.	95	92	90	87
11 (8/8)	42	78		1
E5 (8/7)	32	50	•	ı

Tabelle 1