Intro To Artificial Intelligence - Exercise 2

Eran Ston and Oded Vaalany

June 8, 2024

1 CNF

1.
$$Q \Rightarrow P \equiv \neg Q \lor P$$

$$2. \ Q \iff P \equiv P \Rightarrow Q \land P \Leftarrow Q$$

3.
$$P \iff Q \equiv Q \Rightarrow P \land P \Rightarrow Q \equiv (\neg Q \lor P) \land (\neg P \lor Q)$$

4.
$$\neg \neg P \equiv P$$

convert each of the following formulas to CNF:

1.1 1.
$$(P \Rightarrow \neg Q) \iff R$$

$$Q \Rightarrow P \equiv \neg Q \lor P \tag{1}$$

1.2 2. $\neg (P \land \neg Q) \Rightarrow \neg R \lor \neg Q$

$$(P \Rightarrow \neg Q) \iff R \stackrel{\text{rule } (2)}{=} (P \Rightarrow \neg Q) \Rightarrow R \land (P \Rightarrow \neg Q) \Leftarrow R$$

$$\stackrel{\text{rule } (1)}{=} (\neg (P \Rightarrow \neg Q) \lor R) \land ((P \Rightarrow \neg Q) \lor \neg R)$$

$$\stackrel{\text{rule } (1)}{=} (\neg (\neg P \lor \neg Q) \lor R) \land ((\neg P \lor \neg Q) \lor \neg R)$$

$$\stackrel{\text{De Morgan}}{=} ((P \land Q) \lor R) \land (\neg P \lor \neg Q \lor \neg R)$$
Distribution
$$\stackrel{\text{Distribution}}{=} (P \lor R) \land (Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)$$

1.3 3. $\neg (P \land \neg Q) \Rightarrow (\neg R \lor \neg Q)$

$$\neg (P \land \neg Q) \Rightarrow \neg R \lor \neg Q \stackrel{\text{rule (1)}}{\equiv} (\neg (\neg (P \land \neg Q)) \lor (\neg R \lor \neg Q))$$

$$\stackrel{\text{rule (4)}}{\equiv} ((P \land \neg Q) \lor \neg R \lor \neg Q)$$

$$\stackrel{\text{Distribution}}{\equiv} (P \lor \neg R \lor \neg Q) \land (\neg Q \lor \neg R)$$

$$(3)$$

1.4 4. $\neg (P \iff \neg Q) \Rightarrow R$

$$\neg (P \iff \neg Q) \Rightarrow R \stackrel{\text{rule } (3)}{\equiv} \neg ((\neg P \lor \neg Q) \land (Q \lor P)) \Rightarrow R$$

$$\stackrel{\text{rule } (1)}{\equiv} \neg (\neg ((\neg P \lor \neg Q) \land (Q \lor P))) \lor R$$

$$\stackrel{\text{rule } (4)}{\equiv} ((\neg P \lor \neg Q) \land (Q \lor P)) \lor R$$

$$\stackrel{\text{Distribution}}{\equiv} ((\neg P \lor \neg Q) \lor R) \land ((Q \lor P) \lor R)$$

$$\stackrel{\text{Distribution}}{\equiv} (\neg P \lor \neg Q \lor R) \land (Q \lor P \lor R)$$

$$(4)$$

1.5 5. $\neg (P \Rightarrow (\neg R \lor \neg Q)) \Rightarrow \neg R$

$$\neg (P \Rightarrow (\neg R \lor \neg Q)) \Rightarrow \neg R \xrightarrow{\text{rule (1)}} \neg (\neg P \lor \neg R \lor \neg Q) \Rightarrow \neg R$$

$$\stackrel{\text{rule (1)}}{\equiv} \neg (\neg (\neg P \lor \neg R \lor \neg Q)) \lor \neg R$$

$$\stackrel{\text{rule (4)}}{\equiv} \neg P \lor \neg R \lor \neg Q \lor \neg R$$

$$\stackrel{\text{rule (4)}}{\equiv} \neg P \lor \neg R \lor \neg Q \lor \neg R$$

$$\stackrel{\text{rule (4)}}{\equiv} \neg P \lor \neg R \lor \neg Q \lor \neg R$$

$$\stackrel{\text{rule (4)}}{\equiv} \neg P \lor \neg R \lor \neg Q \lor \neg R$$

$$\stackrel{\text{rule (4)}}{\equiv} \neg P \lor \neg R \lor \neg Q \lor \neg R$$

$$\stackrel{\text{rule (4)}}{\equiv} \neg P \lor \neg R \lor \neg Q \lor \neg R$$

$$\stackrel{\text{rule (4)}}{\equiv} \neg P \lor \neg R \lor \neg Q \lor \neg R$$

2 Resolution

2.1 Given G = Nitay carries an umbrella

Let's define the following predicates:

- P = Nitay carries an umbrella
- R = If it rains
- W = Nitay dosen't get wet

So we can write the given statement as:

1.
$$R \Rightarrow P \equiv \neg R \lor P$$

2.
$$P \Rightarrow W \equiv \neg P \lor W$$

3.
$$\neg R \Rightarrow W \equiv R \lor W$$

- 4. W
- 5. G = P

Now we can start the algorithm, where KB= $(\neg R \lor P) \land (\neg P \lor W) \land (R \lor W) \land W$ and $\alpha = P$

- 1. we will define $C = KB \land \neg P \equiv \{(\overline{R} + P), (\overline{P} + W), (R + W), W, \overline{P}\}\$
- 2. we will define new = \emptyset
- 3. forall C_i, C_j in C: (we will write only paris that have a resolution)
 - (a) $(\overline{R} + P)(\overline{P} + W)$ Resolution: $\overline{R} + W$
 - (b) $(\overline{R} + P)(R + W)$ Resolution: $\overline{P} + W$
 - (c) $(\overline{R} + P)(\overline{P})$ Resolution: \overline{R}

- 4. new = $\{(\overline{P} + W), (\overline{R} + W), (\overline{R})\}$
- 5. new $\not\subset$ C
- 6. $C = C \cup \text{new} \equiv \{(\overline{R} + P), (R + W), W, (\overline{P} + W), (\overline{R} + W), (\overline{R}), \overline{P}\}\$
- 7. forall C_i, C_j in C:
 - (a) $(\overline{R} + P)(R + W)$ Resolution: P + W
 - (b) $(\overline{R} + P)(\overline{P} + W)$ Resolution: $\overline{R} + W$
 - (c) $(\overline{R} + P)(\overline{P})$ Resolution: \overline{R}
 - (d) $(R+W)(\overline{R}+W)$ Resolution: W
 - (e) $(R+W)(\overline{R})$ Resolution: W
- 8. new = $\{(P+W), (\overline{R}+W), \overline{R}, W\}$
- 9. new $\not\subset$ C
- 10. $C = C \cup \text{new} \equiv \{(P+W), (\overline{R}+P), (R+W), W, (\overline{P}+W), (\overline{R}+W), (\overline{R}), \overline{P}\}$
- 11. for all C_i, C_j in C:
 - (a) $(P+W)(\overline{P}+W)$ Resolution: W
 - (b) $(P+W)\overline{P}$ Resolution: W
 - (c) $(\overline{R} + P)(R + W)$ Resolution: P + W
 - (d) $(\overline{R} + P)(\overline{P} + W)$ Resolution: $\overline{R} + W$
 - (e) $(\overline{R} + P)(\overline{P})$ Resolution: \overline{R}
 - (f) $(R+W)(\overline{R}+W)$ Resolution: W
 - (g) $(R+W)(\overline{R})$ Resolution: W
- 12. new = $\{W, (P+W), (\overline{R}+W), \overline{R}\}$
- 13. since new \subset C we will return false

We dosn't recived a contradiction, so we can conclude that Nitay carries an umbrella.

2.2

First we will define the following predicates:

- Z: animals that make noise at night
- N: Its night
- D: Have dog
- \bullet C: Have cat
- M: Have mice
- P: Struggling to fall asleep
- *A*: Amit

So we can write the given statement as:

- 1. All hounds (dogs) bark at night $\equiv D \Rightarrow Z$
- 2. If you have a cat, you don't have mice $\equiv C \Rightarrow \neg M$
- 3. If you have problems falling a sleep you don't keep animals that make sound at night $\equiv P \Rightarrow \neg Z$
- 4. Amit has either a dog or a cat $A(C \vee D)$
- 5. G = If Amit have problems falling a sleep, then Amit has no mice $\equiv A \land P \Rightarrow \neg M \land A \equiv \neg A + \neg P + \neg M$

Now we can start the algorithm, where KB= $\{(\overline{D}+Z),(\overline{C}+\overline{M}),(\overline{P}+\overline{Z}),A,(C+D)\}$ and $\alpha=\neg M\vee \neg A\vee \neg P$

- 1. we will define $C = KB \land \neg \alpha \equiv \{(\overline{D} + Z), (\overline{C} + \overline{M}), (\overline{P} + \overline{Z}), A, (C + D), M, P\}$
- 2. new = \emptyset
- 3. forall C_i, C_j in C: (we will write only paris that have a resolution)
 - (a) $(\overline{D} + Z)(\overline{P} + \overline{Z})$ Resolution: $\overline{D} + \overline{P}$
 - (b) $(\overline{D} + Z)(C + D)$ Resolution: Z + C
 - (c) $(\overline{C} + \overline{M})(C + D)$ Resolution: $\overline{M} + P$
 - (d) $(\overline{C} + \overline{M})(M)$ Resolution: \overline{C}
 - (e) $(\overline{P} + \overline{Z})P$ Resolution: \overline{Z}
- 4. new = $\{\overline{D} + \overline{P}, Z + C, \overline{M} + P, \overline{C}, \overline{Z}\}$
- 5. new $\not\subset$ C
- 6. $C = C \cup \text{new} \equiv \{(\overline{D} + Z), (\overline{C} + \overline{M}), (\overline{P} + \overline{Z}), A, (C + D), M, P, (\overline{D} + \overline{P}), (Z + C), (\overline{M} + P), \overline{C}, \overline{Z}\}$
- 7. new = \emptyset
- 8. forall C_i, C_j in C: (we will write only paris that have a resolution)
 - (a) $(\overline{D} + Z)(\overline{Z})$ Resolution: \overline{D}
 - (b) $(\overline{C} + \overline{M})(Z + C)$ Resolution $\overline{M} + Z$
 - (c) $(\overline{P} + \overline{Z})(Z + C)$ Resolution: $\overline{P} + C$
 - (d) $(\overline{P} + \overline{Z})(\overline{M} + P)$ Resolution: $\overline{Z} + \overline{M}$
 - (e) $(C+D)(\overline{D}+\overline{P})$ Resolution: $C+\overline{P}$
 - (f) $(C+D)\overline{C}$ Resolution: D
 - (g) $(M)(\overline{M} + P)$ Resolution: P
 - (h) $P(\overline{D} + \overline{P})$ Resolution: \overline{D}
 - (i) $(\overline{D} + \overline{P})(\overline{M} + P)$ Resolution: $\overline{D} + \overline{M}$
 - (j) $(Z+C)\overline{Z}$ Resolution: C
 - (k) $(Z+C)\overline{C}$ Resolution: Z
- 9. new = $\{(\overline{M} + Z), (\overline{P} + C), (\overline{Z} + \overline{M}), (C + \overline{P}), D, P, \overline{D}, (\overline{D} + \overline{M}), C, Z\}$
- 10. new $\not\subset$ C
- 11. $C = C \cup new$
- 12. forall C_i, C_j in C: (we will write only paris that have a resolution)
 - (a) $\overline{D} \cdot D$ Resolution: \emptyset
 - (b) we will return True

We received a contradiction, so we can conclude that if Amit has problems to sleep at night so amit has no mice.

3 DPLL Algorithm

given the following CNF formula: $(\overline{A} + B)(\overline{C} + D)(\overline{E} + \overline{F})(F + \overline{E} + B)$

We can see that the algorithm is working correctly and we can conclude that the formula is satisfiable. One of the optional Models is: $B = Ture \land C = False \land A = False \land E = False \land F = True$

- If on the Third call we could define E as a pure symbol, we could have finished the algorithm in 3 steps.