

大岸大学 UF
Tianjin University UNIVERSITY of FLORIDA

PathFinder: Side Channel Protection through Automatic Leaky Paths Identification and Obfuscation

Haocheng Ma¹, Qizhi Zhang¹, Ya Gao¹, Jiaji He¹, Yiqiang Zhao¹ and Yier Jin²

¹Tianjin University, ²University of Florida,

Outline

- Motivation
- Framework
 - Path Identification
 - Path Obfuscation
- Case Studies
 - CPA Results
 - CEMA Results
- Conclusions

Motivation

- Side-channel attacks on cryptographic ICs
 - Timing, Power, Electromagnetic (EM), etc.
 - Break USIM Cards[1], Secure Cryptoprocessor[2], etc.

^[2] Vasselle A, et al. Breaking mobile firmware encryption through near-field side-channel analysis. 2019.

Motivation

- Countermeasures to defend SCA attacks
 - Underlying concepts include hiding and masking
 - Breach or isolate the correlation between sensitive variables and side
 - channel information
 - Different hardware hierarchies
 - whole design or submodules[1-3]
 - secure logic styles[4]
 - [1] noise injection
 - [2] randomize switching behaviors
 - [3] integrated voltage regulators
 - [4] wave dynamic differential logic

Motivation

- Main challenges of existing countermeasures
 - Significant power, area and speed overhead
 - Proper implementations require
 - non-traditional EDA toolchains
 - full-custom circuit design
 - manual optimizations
- Our contribution
 - PathFinder to support automated side-channel protection
 - Identify sources of leakage, e.g., leaky paths
 - Apply specific protections to obfuscate leaky paths

- Overall workflow of PathFinder
 - Dynamic correlation analysis, static security checking
 - Path obfuscation

DESIGN 59 AUTOMATION CONFERENCE

- Dynamic correlation analysis
 - Power simulation collects the dynamic power of each logic cell
 - function simulation to record switching activities
 - power analysis on post-layout netlist

Post-layout

- Dynamic correlation analysis
 - Leakage ranking quantifies the information leakage of each logic cell
 - maximum Pearson correlation serves as the leakage criterion
 - Ranks logic cells from highest leakage criterion to lowest
 - partial logic cells that exceed the predefined threshold

$$C = max(|\rho(P, L)|)$$

P: power traces

L: leakage model

- Static security checking
 - Topological analysis locates source cells in partial logic cells
 - CELL and NET describe the intrinsic connectivity
 - inference head of antecedent networks within the bound

- Static security checking
 - Attribute examination constructs consequent leaky paths
 - similar power profile as the known source cell or intermediate cell
 - check whether logic cells inherit leakage attributes

$$\forall (a_1, a_2, ... a_{n-1}), |O_c - O_p| = |v_c - v_p|$$

- spread state transitions of sensitive variables to its output net
- no matter how other input nets change

sensitive variable: $vc \rightarrow vp$, other input: a1, a2, ..., an-1 output state: $Oc \rightarrow Op$

Here we neglect the slight divergence between power profile of state transition $0 \to 1$ ($0 \to 0$) and $\Delta \to 0$ ($1 \to 1$)

- Path obfuscation
 - Logic transformation translates protections on post-synthesis netlist
 - Boolean masking and random precharge

- Path obfuscation
 - the control signal and delay cells have a strong impact on both security and performance

- random charges will deliver to the next level FFs, which results in wrong results (earlier)
- random charges do not take effect on partial leaky paths when the positive edge arrives later (later)
- sampling errors occur when transferring values of source cells (earlier)
- setup time violations due to extra delay (later)

- Path obfuscation
 - the control signal and delay cells have a strong impact on both security and performance
 - formulate the timing demand to the placement and routing stage

$$T_{clk-ct} + T_{comb} + T_{cd-s} > T_{clk-ck} + T_{c-q} + T_{hold}$$
 (3)

$$T_{clk-ct} + T_{cd-s} < T_{clk-ck} + T_{c-q} \tag{4}$$

$$T_{clk-ct} + T_{ct-cd} + T_{cd-s} > T_{clk-ck} + T_{c-q}$$
 (5)

$$T_{clk-ct} + T_{ct-cd} + T_{cd-s} + T_{comb} < T_{clk-ck} + T_{cycle} - T_{setup}$$
 (6)

 T_{cycle} , T_{setup} and T_{hold} denote the clock period, setup time and hold time Types of T_{a-b} denote the delay from signal a to signal b T_{comb} is the total delay of combinational logic behind FF1

- Benchmark
 - 128-bit AES design
 - RS-232 serial communication block
 - RTL-to-GDS flow for implementation
 - 180 nm CMOS technology
 - 10 modules
 - 10083 logic cells
 - supply voltage 1.8 V
 - clock frequency 25 MHz

Hardware architecture of the 128-bit AES design

- Experiment Configuration
 - PathFinder Parameters
 - 1000 input stimuli
 - leakage criterion > 0.95
 - 32 random masks and random charges
 - PathFinder Results
 - selects 1082 partial logic cells (18.54 min)
 - 2120 logic cells compose complete leaky paths (9.12 s)
 - increase 659 cells for protection (0.13 s)

CPA Attack

- Simulated power trace using the Primetime PX
- Total 100 K dynamic traces are collected
- 1190× security inprovements
- Overheads
 - 6.53 % area
 - 4.51 % power
 - 3.1 % performance

 ρ_{max} : maximum Pearson correlation coefficient MTD the minimum traces to disclosure the key

Comparison of CPA attack results between unprotected and protected designs

- CEMA Attack
 - Actual EM trace collected by EM probe
 - Total 100 K EM traces are collected
 - 1085× security inprovements

Measurement setup

Conclusion

- We propose PathFinder tool for automatic side-channel protection
- This tool identifies leaky paths by combining dynamic and static procedures
- Well-designed hardware solutions such as Boolean masking and random precharge are inserted to protect the design
- Enhance the side-channel resistance by at least 1000 ×
- Introduce slight impacts on the area, power and performance.

TABLE II: Comparison with existing work	TABLE II:	Comparison	with	existing	works
---	-----------	------------	------	----------	-------

Works	MTD Improv.		Overheads		
	Power	EM	Area	Power	Perf.
Moradi [2]	100×	<u></u> -	359 %	262 %	40^{a}
Moradi [10]	10000×	_	196 %	_	20^{a}
Yao [4]	$4 \times b$	_	10 %	_	_
SLPSK [11]	107×		0 %	0 %	0 %
KF [3]	16×	_	31.9 %	-	31.25 %
Singh [8]	4210×	136×	$96.7 \%^{c}$	32 %	10.4 %
Das [12]	-	167×	23 %	49 %	0 %
Das [9]	$125000 \times$	83333×	36.7 %	49.8 %	0 %
This Work	$1190 \times d$	$1085 \times d$	6.53~%	4.51 %	3.1 %

- Data has not been reported,
- a Increase clock cycles,
- b Decrease the maximum correlation,
- c Area overhead includes 1.9 nF load capacitor,
- d Only 100 K traces are collected limited by experiment

conditions.

Thank You! Any Questions?

