TCP/IP

Subnetting

Direccionamiento IP

Clases de direcciones

Las direcciones IP tienen una **estructura jerárquica**. Una parte de la dirección corresponde a la **red** (netid), y la otra al **host** dentro de la red (hostid).

Dependiendo del número de bits que se utilizan para indicar la red o el host se definen varios tipos de direcciones de red.

Los diferentes tipos de direcciones IP dan una mayor flexibilidad y permiten definir direcciones IP para grandes, medianas y pequeñas redes, conocidas como redes de clase A, B y C, respectivamente.

Clase	Bits Reservados	Bits red	Bits host	Nº Redes	Nº Hosts	Rá	ango
А	0	7	24	2 ⁷ -2=126	2 ²⁴ -2=16777214	1 .0.0.0	127 . 255.255.255
В	10	14	16	214-2=16284	2 ¹⁶ -2=65334	128 .0.0.0	191 . 255.255.255
С	110	21	8	2 ²¹ -2=2097152	2 ⁸ -2=254	192 .0.0.0	223 . 255.255.255
D	1110					224 .0.0.0	239 .255.255.255
Е	1111					240 .0.0.0	255 .255.255.255

Direccionamiento IP

Direcciones específicas

La dirección broadcast 255.255.255.255 se utiliza para enviar un mensaje a la propia red, cualquiera que sea (y sea del tipo que sea).

La dirección con el **campo red todo a unos** se utiliza como la dirección **broadcast** de la red indicada. En el ejemplo anterior 255.255.255.0

La dirección con el **campo red todo a ceros** identifica a un **host en la propia red**, cualquiera que sea; por ejemplo, si enviamos un datagrama al primer host de una red clase B podemos utilizar la dirección 0.0.0.1

La dirección con el campo **host todo a ceros** se utiliza para indicar **la red** misma, y por tanto no se utiliza para ningún host, por ejemplo 192.168.3.0

La dirección 0.0.0.0 identifica al **host actual**, pero no es una IP válida para asignar a una interfaz de red, de hecho, ninguna dirección IP en la subnet 0.0.0.0/8 es una dirección válida (i.e. cualquier dirección que empiece por 0.0.0.x).

La dirección 127.0.0.1 se utiliza para pruebas **loopback**; todas las implementaciones de IP devuelven a la dirección de origen los datagramas enviados a esta dirección sin intentar enviarlos a ninguna parte.

Direccionamiento IP

Direcciones privadas

Están reservadas para redes privadas, las siguientes direcciones de red:

- Clase A → 10.0.0.0
- Clase B → 172.16.0.0 172.31.0.0
- Clase C → 192.168.0.0 192.168.255.0

Estas IPs no se asignan a ninguna dirección válida en Internet y por tanto pueden utilizarse para construir **redes privadas**. Por ejemplo, detrás de un firewall o cortafuegos, sin riesgo de entrar en conflicto de acceso a redes válidas de Internet.

Dirección Windows

El uso de 169.x.x.x direcciones se definen dentro de un estándar conocido coloquialmente como APIPA - Direccionamiento IP Privado Automático.

Si a un dispositivo de red no se le ha asignado una dirección fija (estática) y no puede obtener una por DHCP, el dispositivo se asigna a sí mismo una dirección APIPA, que comienzan en 169.254.0.1 hasta 169.254.255.254.

Máscaras de red

Una máscara de red ayuda a saber qué parte de la dirección identifica la red y qué parte de la dirección identifica el nodo o host. Las redes de la clase A, B, y C tienen máscaras predeterminadas, también conocidas como máscaras naturales, como se muestra aquí:

Class **A**: 255.0.0.0 Class **B**: 255.255.0.0 Class **C**: 255.255.255.0

Una dirección IP de una red de la Clase A que no se haya convertido en subred tendrá un par dirección/máscara similar a: 8.20.15.1/255.0.0.0 o 8.20.15.1/8

Para ver cómo la máscara ayuda a identificar las partes de red y host, convertimos el número de red y la máscara a binarios.

Cualquier bit de dirección que tenga el **bit de máscara** correspondiente establecido en **1** representa la identificación de **red**, si es **0** representa al host.

Para saber a qué red pertenece la IP 8.20.15.1/8, haremos un AND de la IP y la máscara.

```
8.20.15.1 = 00001000. 00010100. 00001111. 000000001

AND 255.0.0.0 = 11111111. 00000000. 0000000. 00000000

00001000. 0000000. 0000000. 00000000

Red 8 . 0 . 0 . 0
```


Subnetting

Pasos:

- 1. Calcular el número de bits que necesitamos pedir prestados a la parte de host
- 2. Calcular las direcciones de cada una de las subredes creadas
- 3. Calcular el rango de IPs que tendrá cada subred
- 4. Dirección de broadcast para las subredes
- 5. Máscara para la subred

Para desarrollar el ejemplo partiremos de una red de clase C, en la que queremos establecer **tres subredes**.

Red: 192.168.0.0/24

1.- Calcular el nº de bits que necesitamos pedir prestados a la parte de host

$$2^{n} >= 3 \rightarrow 2^{2} >= 3$$
 (4 >= 3)

Entonces, con 2 bits tenemos suficiente

Tomaremos prestados 2 bits de la parte de host

2.- Calcular las direcciones de cada una de las subredes creadas

192	168	0	1
	Red		Host
1100 0000	1010 1000	0000 0000	0000 0001
			Bits pre

2.- Calcular las direcciones de cada una de las subredes creadas.

Otra forma de obtener las diferentes subredes de una red, es la de restarle a **256** el número de la máscara de subred adaptada.

Máscara de nuestras subredes:

Binario

Para la red del ejemplo: 256 - 192 = 64

Entonces **64** va a ser el rango entre subredes.

$00\ 00\ 0000 = 0$	192.168.0. <mark>0/26</mark>
$01\ 00\ 0000\ = 64\ (2^6)$	192.168.0. <mark>64/26</mark>
$10\ 00\ 0000\ = 128\ (2^7)$	192.168.0.128/26
$11\ 00\ 0000\ = 192\ (2^7+2^6)$	192.168.0.192/26

Decimal

5.- Máscara para todas las subredes creadas.

Pondremos a unos (1) la parte de red-subred.

192	168	0		1
	Subred	Host		
1100 0000	1010 1000	0000 0000	00	00 0001
1111 1111	1111 1111	1111 1111	11	00 0000
255 255		255		192

255.255.255.192

4.- Dirección de broadcast para la primer subred → (192.168.0.0/26)

Pondremos a unos (1) la parte de host.

192	168	0		1
	Subred	Host		
1100 0000	1010 1000	0000 0000	00	00 0001
			00	11 1111
192	168	0		63

192.168.0.63

Broadcast, es una forma de transmisión de información donde un nodo emisor envía información a una multitud de nodos receptores de manera simultánea, sin necesidad de reproducir la misma transmisión nodo por nodo.

3.- Calcular el rango de IPs que tendrá cada subred

- 3.1.- ¿Cuántos **hosts** tendremos en cada subred? Siendo n el número de bits para la parte de host, y teniendo en cuenta que de cada subred debemos descontar dos,
 - 0 para la dirección de red

255 – para la dirección de broadcast

n= 6 bits para host

$$2^{n} - 2 = 2^{6} - 2 = 62$$
 hosts en cada subred

3.2.- ¿Qué IPs corresponden al primer host de cada subred?, ¿y al último?

$$00\ 0001 = 1\ (2^0)$$

 $00\ 0010 = 2\ (2^1)$
 $00\ 0011 = 3\ (2^1 + 2^0)$ [1, 62]
 $11\ 1110 = 62\ (2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0)$

*** Otra forma

Rango = $[n^{\circ} \text{ de red } + 1, n^{\circ} \text{ de red } + n^{\circ} \text{ de hosts}]$

Subred 192.168.0.0/26 = [0+1, 0+62] = [1, 62]

3.- Calcular el rango de IPs que tendrá cada subred

- La primer subred de cualquier red, siempre es la 0, para el ejemplo:192.168.0.0/26
- Intervalo entre subredes: (256 máscara de subred) → 256 192 = 64

- Calculamos todos los datos de la primer subred,
 - Primer host de la subred: 192.168.0.1/26
 - Último host de la subred: 11 1110 = **62** $(2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0)$ --> **192.168.0.62/26**
 - Broadcast para la primer subred: 0011 1111 = **63** --> **192.168.0.63**
 - Y ahora, para calcular el valor del resto de subredes, iremos sumando el intervalo secuencialmente.

Ejercicio TCP/IP

Para la siguiente dirección 172.30.1.33/16 indicar:

- 1.- Dirección de red 2.- Dirección de broadcast
- 3.- No de host por subred

Dirección de red

1.- Pasamos la IP a binario

30 1

33

1010 1100 0001 1110 0000 0001 0010 0001

- 2.- Como la IP comienza por 10, sabemos que es Clase B
- 3.- Pasamos la máscara de subred a binario y calculamos la dirección de red mediante una operación AND de ambas direcciones

```
1010 1100 0001 1110 0000 0001 0010 0001
1111 1111 1111 1111 0000 0000 0000 0000
1010 1100 0001 1110 0000 0000 0000 0000
  172
```

Dirección de broadcast

Es la dirección de red con los bits de host a 1

Número de host

$$2^{n^0 \text{ bits host}} - 2 = 2^{16} - 2 = 65.534$$

Ejercicio Subnetting Clase C

Dada una red clase C de 204.17.5.0/24, crear 6 subredes.

Número de bits prestados \rightarrow 2ⁿ >= 6 \rightarrow 2³ >= 6 \rightarrow n=3

204.17.5.0 $= \ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0. \quad 0\ 0\ 1\ 0\ 0\ 0\ 1. \quad 0\ 0\ 0\ 0\ 1\ 0\ 1. \quad 0\ 0\ 0\ 0\ 0\ 0\ 0$ net id subred host id

Número de host por subred \rightarrow 2^{n bit host} – 2 = 2⁵ – 2 = **30** hosts en cada subred

Máscara de subred →

 $11100000 \rightarrow 224 = 255.255.255.224 \rightarrow 27 \text{ bits}$

Dirección de broadcast 1º subred \rightarrow 0 0 0 1 1 1 1 1 \rightarrow 31 = 204.17.5.31

Intervalo de subredes \rightarrow 256 – 224 = **32**

	Nº subred	Dirección de subred	Primer ordenador	Último ordenador	Broadcast
0 0 0 0 0 0 0 0	0	204.17.5. 0	204.17.5. 1	204.17.5. 30	204.17.5. 31
0 0 1 0 0 0 0 0	32	204.17.5. 32	204.17.5. 33	204.17.5. 62	204.17.5. 63
0 100 0000	64	204.17.5. 64	204.17.5. 65	204.17.5. 94	204.17.5. 95
0 110 0000	96	204.17.5. 96	204.17.5. 97	204.17.5. 126	204.17.5. 127
1 0 0 0 0 0 0 0	128	204.17.5. 128	204.17.5. 129	204.17.5. 158	204.17.5. 159
1 0 1 0 0 0 0 0	160	204.17.5. 160	204.17.5. 161	204.17.5. 190	204.17.5. 191
1 100 0000	192	204.17.5. 192	204.17.5. 193	204.17.5. 222	204.17.5. 223
1 110 0000	224	204.17.5. 224	204.17.5. 225	204.17.5. 254	204.17.5. 255

Ejercicio subnetting Clase B

Crea 50 subredes y 1000 hosts por subred para la dirección 132.18.0.0/16

Número de bits prestados \rightarrow 2ⁿ >= 50 \rightarrow 2⁶ = 64 >= 50 \rightarrow n = 6

Número de host por subred \rightarrow 2^{n bit host} – 2 = 2¹⁰ – 2 = 1024 -2 = **1022 hosts en cada subred**

<u>Máscara de subred</u> \rightarrow 1 1 1 1 1 0 0 \rightarrow 252 = 255.255.252.0.0

<u>Dirección de broadcast</u>, para la 1^a subred $\rightarrow 0000011 \rightarrow 3 = 132.18.3.255$

Intervalo de subredes → 256 – 252 = 4

	Nº subred	Dirección de subred	Primer ordenador	Último ordenador	Broadcast
0 0 0 0 0 0 0 0	0	132.18. 0 .0	132.18. 0.1	132.18. 3.254	132.18. 3.255
0 0 0 0 0 1 0 0	4	132.18. 4 .0	132.18. 4 . 1	132.18. 7.254	132.18. 7.255
0 0 0 0 1 0 0 0	8	132.18. 8 .0	132.18. 8 . 1	132.18. 11.254	132.18. 11.255
0 0 0 0 1 1 0 0	12	132.18. 12 .0	132.18. 12 . 1	132.18. 15.254	132.18. 15.255
0 0 0 1 0 0 0 0	16	132.18. 16 .0	132.18. 16.1	132.18. 19.254	132.18. 19.255
1 1 1 1 1 0 0 0	248	132.18. 248 .0	132.18. 248.1	132.18. 251.254	132.18. 251.255
1 1 1 1 1 1 0 0	252	132.18. 252 .0	132.18. 252.1	132.18. 255.254	132.18. 255.255

Ejercicio subnetting Clase A

Crea 7 subredes para la dirección 10.0.0.0/8.

```
Red
         10.0.0.0/8
                   = 00001010.00000000.00000000.00000000
Máscara
         255.0.0.0
                   = 111111111.00000000.00000000.00000000
                       net id
                                              host id
```

Número de bits prestados $\rightarrow 2^n >= 7 \rightarrow 2^3 = 8 \rightarrow n=3$

```
= 00001010. \quad 00000000. \quad 0000000. \quad 00000000
10.0.0.0 /8
255.0.0.0
        net id
                                  host id
                   subred
```

Número de host por subred $\rightarrow 2^{\text{n bit host}} - 2 = 2^{21} - 2$ hosts en cada subred

<u>Máscara de subred</u> → $11100000 \rightarrow 224 = 255.224.0.0$

<u>Dirección de broadcast</u> 1º subred \rightarrow 0 0 0 1 1 1 1 1 \rightarrow 31 = 10.31.255.255

Intervalo de subredes \rightarrow 256 – 224 = **32**

	Nº subred	Dirección de subred	Primer ordenador	Último ordenador	Broadcast
0 0 0 0 0 0 0 0	0	10. 0 .0.0	10. 0.0 . 1	10. 31.255.254	10. 31.255.255
0 0 1 0 0 0 0 0	32	10. 32 .0.0	10. 32.0.1	10. 63.255.254	10. 63.255.255
0 100 0000	64	10. 64 .0.0	10. 64.0.1	10. 95.255.254	10. 95.255.255
0 1 1 0 0 0 0 0	96	10. 96 .0.0	10. 96.0.1	10. 127.255.254	10. 127.255.255
1 0 0 0 0 0 0 0	128	10. 128 .0.0	10. 128.0.1	10. 159.255.254	10. 159.255.255
1 0 1 0 0 0 0 0	160	10. 160 .0.0	10. 160.0.1	10. 191.255.254	10. 191.255.255
1 100 0000	192	10. 192 .0.0	10. 192. 0.1	10. 223.255.254	10. 223.255.255
1 1 1 0 0 0 0 0	224	10. 224 .0.0	10. 224.0.1	10. 255.255.254	10. 255.255.255