Linear Algebra

Orthogonal Projections

In many applications it is necessary to "decompose" a vector **u** into a sum of two terms, one term being a scalar multiple of a specified nonzero vector **a** and the other term being orthogonal to **a**.

For example, if \mathbf{u} and \mathbf{a} are vectors in \mathbb{R}^2 that are positioned so their initial points coincide at a point Q, then we can create such a decomposition as follows

Figure 3.3.2 Three possible cases.

- Drop a perpendicular from the tip of u to the line through a.
- Construct the vector \mathbf{w}_1 from Q to the foot of the perpendicular.
- Construct the vector $\mathbf{w}_2 = \mathbf{u} \mathbf{w}_1$.

Since

$$\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{w}_1 + (\mathbf{u} - \mathbf{w}_1) = \mathbf{u}$$

we have decomposed **u** into a sum of two orthogonal vectors, the first term being a scalar multiple of **a** and the second being orthogonal to **a**.

The following theorem shows that the foregoing results, which we illustrated using vectors in \mathbb{R}^2 , apply as well in \mathbb{R}^n .

THEOREM 3.3.2 Projection Theorem

If **u** and **a** are vectors in \mathbb{R}^n , and if $\mathbf{a} \neq 0$, then **u** can be expressed in exactly one way in the form $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$, where \mathbf{w}_1 is a scalar multiple of **a** and \mathbf{w}_2 is orthogonal to **a**.

Our goal is to find a value of the scalar k and a vector \mathbf{w}_2 that is orthogonal to \mathbf{a} such that

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$$

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$$

$$\mathbf{u} = k\mathbf{a} + \mathbf{w}_2$$

$$= > \mathbf{u} \cdot \mathbf{a} = (k\mathbf{a} + \mathbf{w}_2) \cdot \mathbf{a}$$

$$\mathbf{u} \cdot \mathbf{a} = k\|\mathbf{a}\|^2 + (\mathbf{w}_2 \cdot \mathbf{a})$$

$$\mathbf{w}_1 = k\mathbf{a}$$

Since \mathbf{w}_2 is to be orthogonal to \mathbf{a} , $\mathbf{w}_2 \cdot \mathbf{a} = 0$

from which we obtain

$$k = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}$$

 $\mathbf{u} \cdot \mathbf{a} = k \|\mathbf{a}\|^2$

The proof can be completed by rewriting

$$\mathbf{w}_2 = \mathbf{u} - \mathbf{w}_1$$

$$= \mathbf{u} - k\mathbf{a}$$

$$\mathbf{w}_2 = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{\mathbf{a}} \mathbf{a}$$

and then confirming that \mathbf{w}_2 is orthogonal to \mathbf{a} by showing that $\mathbf{w}_2 \cdot \mathbf{a} = 0$

The vectors \mathbf{w}_1 and \mathbf{w}_2 in the Projection Theorem have associated names-

The vector w₁ is called the orthogonal projection of u on a or sometimes the vector u along a,

The vector \mathbf{w}_1 is commonly denoted by the symbol $\operatorname{proj}_{\mathbf{a}}\mathbf{u}$, in which case it follows from

that

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$$
$$\mathbf{w}_2 = \mathbf{u} - \operatorname{proj}_{\mathbf{a}} \mathbf{u}.$$

The vector \mathbf{w}_2 is called the vector *component of* \mathbf{u} *orthogonal to* \mathbf{a} .

In summary,

$$proj_a u = \frac{u \cdot a}{\|a\|^2} a \quad (\textit{vector component of } u \textit{ along } a)$$

$$u - \text{proj}_a u = u - \frac{u \cdot a}{\|a\|^2} a \quad \textit{(vector component of } u \textit{ orthogonal to } a)$$

EXAMPLE 5 Vector Component of u Along a

Let $\mathbf{u} = (2, -1, 3)$ and $\mathbf{a} = (4, -1, 2)$. Find the vector component of \mathbf{u} along \mathbf{a} and the vector component of \mathbf{u} orthogonal to \mathbf{a} .

Solution

$$\mathbf{u} \cdot \mathbf{a} = (2)(4) + (-1)(-1) + (3)(2) = 15$$

 $\|\mathbf{a}\|^2 = 4^2 + (-1)^2 + 2^2 = 21$

Thus the vector component of **u** along **a** is

$$\operatorname{proj}_{\mathbf{a}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} = \frac{15}{21} (4, -1, 2) = (\frac{20}{7}, -\frac{5}{7}, \frac{10}{7})$$

and the vector component of **u** orthogonal to **a** is

$$\mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u} = (2, -1, 3) - \left(\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right) = \left(-\frac{6}{7}, -\frac{2}{7}, \frac{11}{7}\right)$$

As a check, you may wish to verify that the vectors $\mathbf{u} - \operatorname{proj}_{\mathbf{a}} \mathbf{u}$ and \mathbf{a} are perpendicular by showing that their dot product is zero.

Orthogonal Projections

Projection Theorem (see Theorem 3.3.2) dealt with the problem of decomposing a vector \mathbf{u} in \mathbb{R}^n into a sum of two terms, \mathbf{w}_1 and \mathbf{w}_2 , in which \mathbf{w}_1 is the orthogonal projection of \mathbf{u} on some nonzero vector \mathbf{a} and \mathbf{w}_2 is orthogonal to \mathbf{w}_1 .

That result is a special case of the following more general theorem,

THEOREM 6.3.3 Projection Theorem

If W is a finite-dimensional subspace of an inner product space V, then every vector \mathbf{u} in V can be expressed in exactly one way as

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2 \tag{8}$$

where \mathbf{w}_1 is in W and \mathbf{w}_2 is in W^{\perp} .

The vectors \mathbf{w}_1 and \mathbf{w}_2 are commonly denoted by

$$\mathbf{w}_1 = \operatorname{proj}_W \mathbf{u}$$
 and $\mathbf{w}_2 = \operatorname{proj}_{W^{\perp}} \mathbf{u}$

These are called the *orthogonal projection of* \mathbf{u} *on* W and the *orthogonal projection of* \mathbf{u} *on* W^{\perp} , respectively.

The vector \mathbf{w}_2 is also called the *component of* \mathbf{u} *orthogonal to* W.

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$$

can be expressed as

$$\mathbf{u} = \operatorname{proj}_W \mathbf{u} + \operatorname{proj}_{W^{\perp}} \mathbf{u}$$

Moreover, since $\operatorname{proj}_{W^{\perp}}\mathbf{u} = \mathbf{u} - \operatorname{proj}_{W}\mathbf{u}$, we can also express

$$\mathbf{u} = \operatorname{proj}_W \mathbf{u} + (\mathbf{u} - \operatorname{proj}_W \mathbf{u})$$

The following theorem provides formulas for calculating orthogonal projections.

THEOREM 6.3.4 Let W be a finite-dimensional subspace of an inner product space V.

(a) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is an orthogonal basis for W, and **u** is any vector in V, then

$$\operatorname{proj}_{W} \mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} + \frac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2} + \dots + \frac{\langle \mathbf{u}, \mathbf{v}_{r} \rangle}{\|\mathbf{v}_{r}\|^{2}} \mathbf{v}_{r}$$
(12)

(b) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is an orthonormal basis for W, and **u** is any vector in V, then

$$\operatorname{proj}_{W} \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_{1} \rangle \mathbf{v}_{1} + \langle \mathbf{u}, \mathbf{v}_{2} \rangle \mathbf{v}_{2} + \dots + \langle \mathbf{u}, \mathbf{v}_{r} \rangle \mathbf{v}_{r}$$
 (13)

Proof (a)

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$$

where $\mathbf{w}_1 = \operatorname{proj}_W \mathbf{u}$ is in W and \mathbf{w}_2 is in W^{\perp} , as $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is an orthogonal basis for W, $\operatorname{proj}_W \mathbf{u} = \mathbf{w}_1$ can be expressed in terms of the basis vectors for W as

$$\operatorname{proj}_{W} \mathbf{u} = \mathbf{w}_{1} = \frac{\langle \mathbf{w}_{1}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} + \frac{\langle \mathbf{w}_{1}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2} + \dots + \frac{\langle \mathbf{w}_{1}, \mathbf{v}_{r} \rangle}{\|\mathbf{v}_{r}\|^{2}} \mathbf{v}_{r}$$

Since \mathbf{w}_2 is orthogonal to W, it follows that $\langle \mathbf{w}_2, \mathbf{v}_1 \rangle = \langle \mathbf{w}_2, \mathbf{v}_2 \rangle = \cdots = \langle \mathbf{w}_2, \mathbf{v}_r \rangle = 0$ so we can rewrite as

$$\operatorname{proj}_{W} \mathbf{u} = \mathbf{w}_{1} = \frac{\langle \mathbf{w}_{1} + \mathbf{w}_{2}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} + \frac{\langle \mathbf{w}_{1} + \mathbf{w}_{2}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2} + \dots + \frac{\langle \mathbf{w}_{1} + \mathbf{w}_{2}, \mathbf{v}_{r} \rangle}{\|\mathbf{v}_{r}\|^{2}} \mathbf{v}_{r}$$

or, equivalently, as

$$\operatorname{proj}_{W} \mathbf{u} = \mathbf{w}_{1} = \frac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} + \frac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2} + \dots + \frac{\langle \mathbf{u}, \mathbf{v}_{r} \rangle}{\|\mathbf{v}_{r}\|^{2}} \mathbf{v}_{r}$$

Proof (b)

In this case, $\|\mathbf{v}_1\| = \|\mathbf{v}_2\| = \cdots = \|\mathbf{v}_r\| = 1$, so we can obtain

$$\operatorname{proj}_{W} \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_{1} \rangle \mathbf{v}_{1} + \langle \mathbf{u}, \mathbf{v}_{2} \rangle \mathbf{v}_{2} + \cdots + \langle \mathbf{u}, \mathbf{v}_{r} \rangle \mathbf{v}_{r}$$

EXAMPLE 7 Calculating Projections

Let R^3 have the Euclidean inner product, and let W be the subspace spanned by the orthonormal vectors $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = \left(-\frac{4}{5}, 0, \frac{3}{5}\right)$.

- (a) Find the orthogonal projection of $\mathbf{u} = (1, 1, 1)$ onto the plane spanned by the vectors \mathbf{v}_1 and \mathbf{v}_2 .
- (b) Find the component of \mathbf{u} orthogonal to the plane spanned by the vectors \mathbf{v}_1 and \mathbf{v}_2 , and confirm that this component is orthogonal to the plane.

Solution

The orthogonal projection of $\mathbf{u} = (1, 1, 1)$ on W is

$$\operatorname{proj}_{W} \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_{1} \rangle \mathbf{v}_{1} + \langle \mathbf{u}, \mathbf{v}_{2} \rangle \mathbf{v}_{2}$$
$$= (1)(0, 1, 0) + \left(-\frac{1}{5}\right) \left(-\frac{4}{5}, 0, \frac{3}{5}\right)$$

$$\operatorname{proj}_{W} \mathbf{u} = \left(\frac{4}{25}, 1, -\frac{3}{25}\right)$$

The component of \mathbf{u} orthogonal to W is

$$\operatorname{proj}_{W^{\perp}} \mathbf{u} = \mathbf{u} - \operatorname{proj}_{W} \mathbf{u}$$
$$= (1, 1, 1) - \left(\frac{4}{25}, 1, -\frac{3}{25}\right)$$
$$\operatorname{proj}_{W^{\perp}} \mathbf{u} = \left(\frac{21}{25}, 0, \frac{28}{25}\right)$$

Observe that $\operatorname{proj}_{W^{\perp}} \mathbf{u}$ is orthogonal to both \mathbf{v}_1 and \mathbf{v}_2 , so this vector is orthogonal to each vector in the space W spanned by \mathbf{v}_1 and \mathbf{v}_2 , as it should be.

The Gram-Schmidt Process

THEOREM 6.3.5 Every nonzero finite-dimensional inner product space has an orthonormal basis.

Proof

- Let W be any nonzero finite-dimensional subspace of an inner product space, and suppose that $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r\}$ is any basis for W.
- It suffices to show that W has an orthogonal basis since the vectors in that basis can be normalized to obtain an orthonormal basis. $\mathbf{v}_2 = \mathbf{u}_2 \operatorname{proj}_{W_1} \mathbf{u}_2$

Step 1.

Let
$$\mathbf{v}_1 = \mathbf{u}_1$$
.

Step 2.

As illustrated in Figure 6.3.3, we can obtain a vector \mathbf{v}_2 that is orthogonal to \mathbf{v}_1 by computing the component of \mathbf{u}_2 that is orthogonal to the space W_1 spanned by \mathbf{v}_1 .

$$\mathbf{v}_2 = \mathbf{u}_2 - \operatorname{proj}_{W_1} \mathbf{u}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

Figure 6.3.3

Of course, if $\mathbf{v}_2 = \mathbf{0}$, then \mathbf{v}_2 is not a basis vector. But this cannot happen, since it would then follow from the preceding formula for \mathbf{v}_2 that

$$\mathbf{u}_2 = \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 = \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{u}_1\|^2} \mathbf{u}_1$$

which implies that \mathbf{u}_2 is a multiple of \mathbf{u}_1 , contradicting the linear independence of the basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r\}$.

Step 3.

To construct a vector \mathbf{v}_3 that is orthogonal to both \mathbf{v}_1 and \mathbf{v}_2 , we compute the component of \mathbf{u}_3 orthogonal to the space W_2 spanned by \mathbf{v}_1 and \mathbf{v}_2

$$\mathbf{v}_3 = \mathbf{u}_3 - \operatorname{proj}_{W_2} \mathbf{u}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

Figure 6.3.4

Step 4.

To determine a vector \mathbf{v}_4 that is orthogonal to \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , we compute the component of \mathbf{u}_4 orthogonal to the space W_3 spanned by \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .

$$\mathbf{v}_4 = \mathbf{u}_4 - \operatorname{proj}_{W_3} \mathbf{u}_4 = \mathbf{u}_4 - \frac{\langle \mathbf{u}_4, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_4, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 - \frac{\langle \mathbf{u}_4, \mathbf{v}_3 \rangle}{\|\mathbf{v}_3\|^2} \mathbf{v}_3$$

- Continuing in this way we will produce after r steps an orthogonal set of nonzero vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$.
- Since such sets are linearly independent, we will have produced an orthogonal basis for the r-dimensional space W.
- By normalizing these basis vectors we can obtain an orthonormal basis.

The Gram-Schmidt Process

To convert a basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r\}$ into an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$, perform the following computations:

Step 1.
$$v_1 = u_1$$

Step 2.
$$\mathbf{v}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

Step 3.
$$\mathbf{v}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

Step 4.
$$\mathbf{v}_4 = \mathbf{u}_4 - \frac{\langle \mathbf{u}_4, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_4, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 - \frac{\langle \mathbf{u}_4, \mathbf{v}_3 \rangle}{\|\mathbf{v}_3\|^2} \mathbf{v}_3$$

:

(continue for r steps)

Optional Step. To convert the orthogonal basis into an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_r\}$, normalize the orthogonal basis vectors.

EXAMPLE 8 Using the Gram-Schmidt Process

Assume that the vector space R^3 has the Euclidean inner product. Apply the Gram–Schmidt process to transform the basis vectors

$$\mathbf{u}_1 = (1, 1, 1), \quad \mathbf{u}_2 = (0, 1, 1), \quad \mathbf{u}_3 = (0, 0, 1)$$

into an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, and then normalize the orthogonal basis vectors to obtain an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$.

Solution

Step 1.
$$\mathbf{v}_1 = \mathbf{u}_1 = (1, 1, 1)$$

Step 2.

$$\mathbf{v}_{2} = \mathbf{u}_{2} - \operatorname{proj}_{W_{1}} \mathbf{u}_{2} = \mathbf{u}_{2} - \frac{\langle \mathbf{u}_{2}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1}$$

$$= (0, 1, 1) - \frac{2}{3} (1, 1, 1)$$

$$\mathbf{v}_2 = \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

$$\mathbf{v}_{3} = \mathbf{u}_{3} - \operatorname{proj}_{W_{2}} \mathbf{u}_{3} = \mathbf{u}_{3} - \frac{\langle \mathbf{u}_{3}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} - \frac{\langle \mathbf{u}_{3}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2}$$

$$= (0, 0, 1) - \frac{1}{3} (1, 1, 1) - \frac{1/3}{2/3} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3} \right)$$

$$\mathbf{v}_{3} = \left(0, -\frac{1}{2}, \frac{1}{2} \right)$$

Thus,

$$\mathbf{v}_1 = (1, 1, 1), \quad \mathbf{v}_2 = \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right), \quad \mathbf{v}_3 = \left(0, -\frac{1}{2}, \frac{1}{2}\right)$$

form an orthogonal basis for R^3 .

The norms of these vectors are

$$\|\mathbf{v}_1\| = \sqrt{3},$$

 $\|\mathbf{v}_2\| = \frac{\sqrt{6}}{3},$
 $\|\mathbf{v}_3\| = \frac{1}{\sqrt{2}}$

so an orthonormal basis for R^3 is

$$\mathbf{q}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),$$

$$\mathbf{q}_{2} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|} = \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right),$$

$$\mathbf{q}_{3} = \frac{\mathbf{v}_{3}}{\|\mathbf{v}_{3}\|} = \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

EXAMPLE 9 Legendre Polynomials

Let the vector space P_2 have the inner product

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} p(x) q(x) \, dx$$

Apply the Gram–Schmidt process to transform the standard basis $\{1, x, x^2\}$ for P_2 into an orthogonal basis $\{\phi_1(x), \phi_2(x), \phi_3(x)\}$.

Solution

Take
$$\mathbf{u}_1 = 1$$
, $\mathbf{u}_2 = x$, and $\mathbf{u}_3 = x^2$.

Step 1.

$$\mathbf{v}_1 = \mathbf{u}_1 = 1$$

 $\mathbf{v}_2 = x$

Step 2.

$$\mathbf{v}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

$$= \mathbf{u}_2$$

$$\langle \mathbf{u}_2, \mathbf{v}_1 \rangle = \int_{-1}^1 x \, dx = 0$$

$$\mathbf{v}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

$$\mathbf{v}_3 = x^2 - \frac{1}{3}$$

$$-\langle \mathbf{u}_3, \mathbf{v}_1 \rangle = \int_{-1}^1 x^2 \, dx = \frac{x^3}{3} \bigg]_{-1}^1 = \frac{2}{3}$$

$$\langle \mathbf{u}_3, \mathbf{v}_2 \rangle = \int_{-1}^1 x^3 \, dx = \frac{x^4}{4} \bigg]_{-1}^1 = 0$$

$$\|\mathbf{v}_1\|^2 = \langle \mathbf{v}_1, \mathbf{v}_1 \rangle = \int_{-1}^1 1 \, dx = x \bigg]_{-1}^1 = 2$$

Thus, we have obtained the orthogonal basis $\{\phi_1(x), \phi_2(x), \phi_3(x)\}\$ in which

$$\phi_1(x) = 1$$
, $\phi_2(x) = x$, $\phi_3(x) = x^2 - \frac{1}{3}$

