# Theoretical Neuroscience II Exercise 1: Linear recurrent network

Jochen Braun & Ehsan Kakaei

Due date: 20 April 2018

#### A linear recurrent network

Investigate the response of a linear recurrent network with N=20 populations, indexed by  $k \in \{1, ..., N\}$ .

$$\frac{d\boldsymbol{v}}{dt} = -\boldsymbol{v} + \boldsymbol{h} + \boldsymbol{M} \cdot \boldsymbol{v}$$

to different input vectors  $\mathbf{h}_i$ . Generate input vectors by setting two adjacent elements to h and all other elements to zero (e.g.,  $\mathbf{h}_1 = (h, h, \dots, 0)$ ,  $\mathbf{h}_2 = (0, 0, h, h, \dots, 0)$ ,  $\mathbf{h}_3 = (0, 0, 0, 0, h, h, \dots, 0)$ , etc. Choose the value of h randomly from the interval  $h \in [1, 3]$ .

Obtain the  $N \times N$  connectivity matrix M from the Matlab function **ConnectionMatrix.m** provided. Note that this function also supplies two principal eigenvectors and eigenvalues.



### Task A

Compare two alternative ways of visualising population activity!

First, visualise the two principal eigenvectors  $e_{1,2}$  together with some input vectors  $h_i$  by plotting their respective elements as a function of population index k.

Second, plot the *projection* of these vectors into the plane of principal eigenvectors  $e_1$  and  $e_2$ . For each vector  $h_i$ , compute the length of the projections as dot products  $x_1 = e_1 \cdot h_i$  and  $x_2 = e_2 \cdot h_i$  and then represent  $h_i$  as a point  $(x_1, x_2)$  in the plane of  $e_1$  and  $e_2$ . Additionally, project the two eigenvectors into this plane! (Yes, you do have to project each eigenvector onto the other and onto itself!)

#### Task B

In the lecture, we derived the initial activity and steady-state activity as

$$oldsymbol{v}_0 = (oldsymbol{h} \cdot oldsymbol{e}_1) \,\, oldsymbol{e}_1 + (oldsymbol{h} \cdot oldsymbol{e}_2) \,\, oldsymbol{e}_2, \qquad \qquad oldsymbol{v}_{ss} = rac{oldsymbol{h} \cdot oldsymbol{e}_1}{1 - \lambda_1} \, oldsymbol{e}_1 + rac{oldsymbol{h} \cdot oldsymbol{e}_2}{1 - \lambda_2} \, oldsymbol{e}_2,$$

Compute and plot initial activity  $v_0$  and steady-state activity  $v_{ss}$  for several input vectors  $h_i$  in the  $e_1$  -  $e_2$  -plane!

Based on the formula above, explain how the *direction* of steady-state solutions are determined by eigenvectors, eigenvalues, and input!

Further, explain how the *amplitude* of steady-state solutions are determined by eigenvectors, eigenvalues, and input!

#### Task C

Simulate the time-evolution of the system for several input vectors  $h_i$  (one at a time)!

Set the initial activity vector to the input,  $\mathbf{v}_0 = \mathbf{h}$ , and iteratively compute subsequent activity vectors  $\mathbf{v}_i$ . To this end, proceed from time 0 to time 20 in steps of  $\Delta t = 0.05$ . For each step i, compute the current equilibrium vector (given the current activity, input, and connectivity)

$$oldsymbol{v}_i^{ss} = oldsymbol{M} \cdot oldsymbol{v}_i + oldsymbol{h}$$

and let the system to relax exponentially towards this equilibrium:

$$\boldsymbol{v}_{i+1} = \boldsymbol{v}_i^{ss} + (\boldsymbol{v}_i - \boldsymbol{v}_i^{ss}) \exp(-\Delta t)$$

Plot the initial states  $v_0 = h$ , the steady-states  $v_{ss}$  from Task B, and the simulated time-evolutions in the  $e_1$  -  $e_2$  -plane!

## Task D (optional)

For one input vector, plot the time-evolution of all N populations with a suitable 3D plotting command, such as **surface**, **pcolor**, or **contour**.