Examples 3 - Elementary Signals

Contents

- 3.1 Elementary Signals
- Example 3.2
- Example 3.3: Circuit Revisited
- Example 3.4: Simple Signal Operations
- Example 3.5
- 3.6: Synthesis of Signals from Unit Step
- Example 3.7: The Ramp Function
- Example 3.8: The Dirac Delta Function
- Example 3.9: Important properties of the delta function
- Example 3.10
- Lab Work
- Answers to in-class questions

Lecturer: Set up MATLAB

clear all
format compact

To accompany Unit 2.3: Elementary Signals.

Follow along at <u>cpjobling.github.io/eg-150-</u> <u>textbook/signals_and_systems/elementary_signals/examples3</u>

3.1 Elementary Signals

Consider the network shown in below where the switch is closed at time t=T and all components are ideal.

Express the output voltage $V_{
m out}$ as a function of the unit step function, and sketch the appropriate waveform.

a) What happens **before** t=T?

1. $v_{\text{out}} = \text{undefined}$

2. $v_{
m out}=0$

3. $v_{
m out}=V_s$

4. $v_{
m out}=V_s/2$

5. $v_{\mathrm{out}} = \infty$

-> Open Poll: 1.2.1

b) What happens after t=T?

1. $v_{\text{out}} = \text{undefined}$

2. $v_{
m out} = 0$

3. $v_{
m out}=V_s$

4. $v_{
m out}=V_s/2$

5. $v_{
m out}=\infty$

-> Open Poll: 1.2.2

c) What happens at t=T?

1. $v_{\text{out}} = \text{undefined}$

2. $v_{
m out} = 0$

3. $v_{
m out}=V_s$

4. $v_{
m out}=V_s/2$

5. $v_{
m out}=\infty$

-> Open Poll: 1.2.3

d) What does the response of $V_{
m out}$ look like?

Circle the picture you think is correct on your handout.

-> Open Poll: 1.2.4

Example 3.2

The Unit Step Function

$$u_0(t) = egin{cases} 0 & t < 0 \ 1 & t > 0 \end{cases}$$

In Matlab

In Matlab, we use the heaviside function (Named after Oliver Heaviside).

```
syms t
ezplot(heaviside(t),[-1,1])
heaviside(0)
```

See: show heaviside.m.

Note that, so it can be plotted, Matlab defines the *heaviside function* slightly differently from the mathematically ideal unit step:

$$ext{heaviside}(t) = egin{cases} 0 & t < 0 \ 1/2 & t = 0 \ 1 & t > 0 \end{cases}$$

Example 3.3: Circuit Revisited

Consider the network shown below, where the switch is closed at time t=T.

Express the output voltage $v_{
m out}$ as a function of the unit step function, and sketch the appropriate waveform.

Example 3.5

a) Which of these signals represents $-Au_0(t+T)$?

-> Open Poll: 1.2.5

b) What is represented by

- 1. $-Au_0(t+T)$
- 2. $-Au_0(-t+T)$
- $3. -Au_0(-t-T)$
- $4. -Au_0(t-T)$

-> Open Poll: 1.2.6

3.6: Synthesis of Signals from Unit Step

Unit step functions can be used to represent other time-varying functions such as rectangular pulses, square waves and triangular pulses.

a) Synthesize Rectangular Pulse

b) Synthesize Square Wave

c) Synthesize Symmetric Rectangular Pulse

d) Synthesize Symmetric Triangular Pulse

Example 3.7: The Ramp Function

In the circuit shown above i_s is a constant current source and the switch is closed at time $t=0. \ \,$

Show that the voltage across the capacitor can be represented as

$$v_C(t)=rac{i_s}{C}tu_0(t)$$

and sketch the wave form.

The unit ramp function is defined as

$$u_1(t) = \int_{-\infty}^t u_0(au) d au$$

SO

$$u_1(t) = egin{cases} 0 & t < 0 \ t & t \geq 0 \end{cases}$$

and

$$u_0(t)=rac{d}{dt}u_1(t)$$

Note

Higher order functions of t can be generated by the repeated integration of the unit step function.

For future reference, you should determine $u_2(t)$, $u_3(t)$ and $u_n(t)$ for yourself and make a note of the general rule:

$$u_{n-1} = \frac{1}{n} \frac{d}{dt} u_n(t)$$

Details are given in equations 1.26—1.29 in the textbook.

Example 3.8: The Dirac Delta Function

In the circuit shown above, the switch is closed at time t=0 and $i_L(t)=0$ for t<0. Express the inductor current $i_L(t)$ in terms of the unit step function and hence derive an expression for $v_L(t)$.

Notes

To solve this problem we need to invent a function that represents the derivative of the unit step function. This function is called $\delta(t)$ or the *dirac delta* function (named after <u>Paul Dirac</u>).

The delta function

The unit impulse or the delta function, denoted as $\delta(t)$, is the derivative of the unit step.

This function is tricky because $u_0(t)$ is discontinuous at t=0 but it must have the properties

$$\int_{-\infty}^t \delta(au) d au = u_0(t)$$

and

$$\delta(t)=0$$
 for all $t
eq 0$.

Sketch of the delta function

Example 3.9: Important properties of the delta function

See the accompanying notes.

Evaluate the following expressions

a)
$$3t^4\delta(t-1)$$

$$\int_{-\infty}^{\infty}t\delta(t-2)dt$$

$$t^2\delta'(t-3)$$

Example 3.10

a) Express the voltage waveform v(t) shown above as a sum of unit step functions for the time interval $-1 < t < 7\,\mathrm{s}$

b) Using the result of 3.10(a), compute the derivative of v(t) and sketch its waveform.

Lab Work

In the first lab, next Tuesday, we will solve further elemetary signals problems using MATLAB and Simulink following the procedure given between pages 1-17 and 1-22 of the Karris. We will also explore the heaviside and dirac functions.

Answers to in-class questions

Mathematically

3.1(a). $v_{
m out} = 0$ when $-\infty < t < 0$ (answer 2)

3.1(b). $v_{
m out} = V_s$ when $0 < t < \infty$ (answer 3)

3.1(c). $v_{
m out}={
m undefined}$ when t=0 (answer 1)

 $V_{
m out}$ jumps from 0 to V_s instantanously when the switch is closed. We call this a discontinuous signal!

3.1(d): The correct image is:

Example 3.5(a): Answer 3.

Example 3.5(b): Answer 2.

This page was created by <u>Dr Chris P. Jobling</u> for <u>Swansea University</u>.