MEDICAL IMAGE COMPRESSION AND WATERMARKING

Muhammad Zubair Hasan Shahir Abdullah

Objective:

- To implement lossless image compression and decompression using data compression algorithm
- ➤ Watermark the image for security and ownership purposes
- >Implement these feautures using java language

What are medical images?

Some examples

MRI / FMRI (Function Magnetic Resonance)

Why compress medical images?

- Growing need for storage
- Efficient data transmission
- Telemedicine
- Tele-radiology applications
- Real time Tele-consultation.
- PACS (Picture archiving and communication systems)

Techniques used

Compression techniques may be classified into:

- Lossy
- Lossless

Moreover, compression algorithms may be applied in the spatial domain or frequency domain

JPEG 2000 and JPEG-LS

- High compression efficiency
- Lossless color transformations
- Progressive by resolution and quality
- Multiple component images
- ROI coding (static and dynamic)
- Error resilience capabilities
- Object oriented functionalities (coding, information, embedding)

Implementation:

Baseline JPEG encoder

Watermarking:

Introduction

- Electronic trasnfer of sensitive data.
- Need for security.
- One of the option is Digital Watermarking.
- ❖ What is Digital Watermarking?
- A digital watermark is a digital signal or pattern inserted into a digital document such as text, graphics or multimedia, and carries information unique to the copyright owner, the creator of the document or the authorized consumer.

Digital Watermark Classification

- * Based on visibility of watermarks
- * Based on the content to be watermarked
- * Based on different image domains

Example: 1. Visible Watermark

2. Invisible Watermark

Figure 3.1: Original image

Figure 3.2: Watermarked image

Figure 3.3: Wetermark

ISSUES

- (i) Confidentiality Access only to the authorised user.
- (ii) Reliability which focuses on two main aspects:
 - a) Integrity untampered and true data.
- **b)** Authentication Recieved from an authenticated sender i.e. Unmodified image.

System Design:

- 1. Region Characterisation.
- 2. Watermarking method selection.
- 3. Watermark Embedding.
- 4. Watermark Extraction.

1. Region Charaterisation

- We divide the host image into blocks of size 8X8.
- SD is calculated for each block and are categorised into specific four region according to the following table:

Region	1	2	3	4
σ_{\min}	0	22	23	24
σ_{max}	2 ²	23	24	25

2. Watermarking method selection

According to the region categorisation done above, watermarking along with the payload capacity is selected from the following table:

Parameter	Current Implementation		
region - shape	square blocks		
- size	8x8 pixels		
region characterisation	σ _R - standard deviation		
watermark methods and payload capacities	DCT2 - DCT with 2 bits per block DCT1 - DCT with 1 bit per block LSB2 - LSB with 2 bits per block LSB1 - LSB with 1 bit per block		

3. Watermark Embedding

- Each block is watermarked with the selected watermarking method.
- The four watermarking methods are:
 - 1. DCT-1 bit.
 - 2. DCT-2 bit.
 - 3. LSB-1 bit.
 - 4. LSB-2 bit.

DCT

Figure 3. The embedded flow chart

DCT

Bringing an image into DCT domain

4. Watermark Extraction

❖ Same as above we use the selection table to categorise the blocks of watermarked image into the regions and the extraction is performed using the extraction algorithms for the above embedding methods.

Output:

