

Open Distributed Edge Computing

Dr. Dirk Kutscher Huawei German Research Center

Computing at the Far Edge

- Mainstream edge computing: extending cloud computing to the edge
 - Virtualized platforms as execution environments
 - Extending orchestration to edge platforms
 - Communicating in virtual circuits (HTTP/TLS/TCP)
- Some edge computing use case have different requirements
- Industrial IoT
 - Ubiquituous data sharing and processing at the factory edge
- Car communication
 - Dynamic interaction with the smart city environment

Industrial IoT

- 1. Data generation in fieldbus networks
 - TSN/Profinet/CAN etc.
 - Edge gateways with application layer data sharing (OPC UA, DDS etc.)

2. Massive real-time data processing

- Video feeds
- Real-time analytics
- Real-time control loops

Chained machines in smart factories

www.trumpf.com

Smart City Vehicular Communications

- Electronic horizon use case: dynamic interactions in the smart city environment
 - Edge computing in the smart city infrastructure and on vehicles
 - Mobility, low-latency, security

Data Inversion & Silo Problem

- IoT data flows upstreams
 - Network infrastructure optimized for downstream consumption
- Cloud-based model not always optimal
 - Trust, latency, scale

Smart City IoT

Industrial IoT

Home IoT

Data-oriented Communication

- Several application-layer frameworks
- Data-oriented communication (accessing named data on a server, publishsubscribe etc.)
- Communication inside TLS-secured connections
 - Data sharing difficult
 - Limited scalability
 - Potentially very inefficient
- Not designed for enterprise access control & communication policing
 - NAT & firewall traversal

From Coarse-Grained Telco EC to Microservices

Open Distributed Edge Computing

- Efficient and secure data-oriented networking
 - Accesing named data directly not inside application layer silos
 - Securing data not connections
 - Optimizing availability through flexible forwarding and caching in the network
- Light-weight edge computing
 - Moving functions to data and vice versa
 - Microservice framework for secure distributed computation
 - Avoiding VM/container ossification
- Openness
 - Supporting multiple applications and tenants
- Decentralized operation
 - Avoid cloud dependency
 - Trust management, AAA, name resolution and similar functions in the local edge

Technical Challenges for Distributed Edge Computing

- Communication
 - Secure data sharing at the edge
 - What is the right layering?
 - What is the right security approach?
- Computation
 - What is the right computation abstraction?
 - Virtual machines vs. smaller units of computation
- Semantic Interoperability
 - How to learn about computation services?
 - How to combine edge computing function into a larger application context
- Security & Trust
 - How to manage access control, authorization?
 - How to trust compute functions, mobile code and their computation results?
- Fine-granular data access, authorization and computation
 - Database-like transaction in edge networks
 - Secure projection, filtering, joining of data sets from multiple sources

Data-oriented Communication Overlays and Application-Layer Silos

- Overlays
 - Connection-based security
 - Client-server / broker-based
- Limited scalability
 - Pub-sub distribution to many clients through single-server bottleneck
- Limited efficiency
 - Cannot share data directly
- Limited performance and robustness
 - Network cannot assist data dissemination

Accessing Named Data Objects

Ubiquitous Caching

Data-centric security approach

Per-Hop forwarding strategies

Automated access control for named data

Efficient multicast & pubsub supported by the network

/com/kuka/robot/123/arm/position

Controller 1

Controller 2

Named Function Networking

ICN: Accessing named data in the network

Securely

Both static and dynamic (e.g., live stream)

Challenge: How to achieve dynamic computation?

With similar security properties?

... And automatic function placement?

Think: edge computing, big data, stream processing, service chaining

Named Function Networking

/getAverage(/roomA/temp, /roomB/tmp)

Apps specify desired results

Networks finds data and functions – and execution locations

Results can be cached, just like in regular ICN

Security and Trust Management

- Security in a data-oriented framework has specific opportunities and requirements
 - Authenticating/encrypting data directly
 - Verifying data producer provenance
- Challenges
 - Establishing trust anchors in a distributed system.
 - Automating authentication & authorization for fine-granular data communication and edge computing

Decentralized Trust and Identity Management

- Why decentralized?
 - No trust in centralized functions
 - Avoid "rent-seeking" opportunities
 - Easier to operate!
 - Latency!
- Data sharing
 - Finding data resources
 - ... And storage
 - Micropayments for data and data services

- Reputation systems
 - Users of information can assess its quality
 - Make available signed, anonymous reputation systems
 - Authorization based on reputation
 - Local Processing
 - Find a local "data center" within 1 ms RTT
 - Obtain attestation of services
 - Authority-based or reputation-based
 - Help creating services with smart contracts

- Mobile code
 - Can't upgrade everything at the same time
 - Many functions can be solved in mobile code
 - Running in IoT devices (!)
 - Running in local data bus
 - Controlled resource usage

Internet Research Task Force (IRTF)

Information-Centric Networking

Thing-to-Thing

Decentralized Internet Infrastructure

Summary: Open Distributed Edge Computing

- Industrial IoT and dynamic smart city environments have specific edge computing requirements
 - Efficient and secure data-oriented communication
 - Dynamic computation at the edge
 - Decentralized, cloudless operation
 - Application independence and multi-tencancy
 - Open platforms and protocols
- On-going work in IRTF and IETF
- Intel/NSF-sponsored projects on Information-Centric Wireless Edge Networking