NSR Search Results Page 1 of 3

Visit the **Isotope Explorer** home page!

18 reference(s) found:

Keynumber: <u>1999MO22</u>

Reference: Phys.Rev. C60, 017603 (1999)

Authors: P.Mohr, H.Beer, H.Oberhummer, W.Rochow, P.V.Sedyshev, S.Volz, A.Zilges **Title:** Neutron Capture of 26 Mg at kT = 52 keV and the Resonance at E_n = 68.7 keV

Keyword abstract: NUCLEAR REACTIONS 26 Mg(n, γ),E=spectrum; measured activation σ ; deduced

resonance strength, Maxwellian averaged capture σ.

Kevnumber: 1998MO17

Reference: Phys.Rev. C58, 932 (1998)

Authors: P.Mohr, H.Beer, H.Oberhummer, G.Staudt

Title: Neutron Capture of ²⁶Mg at Thermonuclear Energies

Keyword abstract: NUCLEAR REACTIONS 26 Mg(n, γ),E=25-208 keV spectra; measured σ ; deduced

resonance features, astrophysical reaction rates. Fast cyclic activation technique.

Keynumber: 1997MOZZ

Reference: Proc.9th Intern.Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996, G.L.Molnar, T.Belgya, Zs.Revay, Eds., Vol.1, p.428 (1997)

Authors: P.Mohr, H.Oberhummer, H.Beer

Title: Analysis of Direct Neutron Capture on Neutron-Rich Light Nuclei using the Fast Cyclic

Activation Technique

Keyword abstract: NUCLEAR REACTIONS 19 F, 26 Mg(n, γ),E=25=218 keV; measured σ . Neutrons

from ⁷Li(p,n) reaction.

Keynumber: <u>1992WA06</u>

Reference: Phys.Rev. C45, 1597 (1992)

Authors: T.A.Walkiewicz, S.Raman, E.T.Jurney, J.W.Starner, J.E.Lynn

Title: Thermal-Neutron Capture by Magnesium Isotopes

Keyword abstract: NUCLEAR REACTIONS 24 , 25 , 26 Mg(n, γ),E=thermal; measured E γ ,I γ ; deduced capture σ . 26 , 27 , 25 Mg deduced levels,neutron separation energies, γ -multipolarity. Direct capture

theory.

Keynumber: 1988RA10

Reference: J.Phys.(London) G14, Supplement S223 (1988)

Authors: S.Raman, S.Kahane, J.E.Lynn **Title:** Direct Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹², ¹³C, ²⁴, ²⁵, ²⁶Mg, ³², ³⁴, ³³S, ⁴⁰, ⁴⁴Ca

 (n,γ) , E=slow; calculated capture σ .

Keynumber: 1986HI05

Reference: J.Radioanal.Nucl.Chem. 105, 351 (1986) **Authors:** P.Z.Hien, T.K.Mai, T.X.Quang, T.N.Thuy

Title: Determination of k₀-Factors by Thermal Neutron Activation Technique

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ²⁶Mg, ⁵¹V, ⁵⁵Mn, ⁵⁶Fe, ⁶⁴Ni, ⁵⁹Co, ⁶³Cu, ¹⁰⁹Ag,

196, ²⁰²Hg(n,γ),E=thermal; measured composite nuclear constant. Activation technique.

NSR Search Results Page 2 of 3

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1982HU02

Reference: Nucl.Instrum.Methods 192, 609 (1982)

Authors: P.Hungerford, H.H.Schmidt

Title: Neutron Binding and Excitation Energies of Some Magnesium Isotopes

Keyword abstract: NUCLEAR REACTIONS ²⁴, ²⁵, ²⁶Mg(n,γ),E=thermal; measured Eγ. ²⁵, ²⁶, ²⁷Mg

deduced levels, neutron binding energy.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1973SCYA

Coden: REPT INDC(SEC)-36/L P8

Keyword abstract: NUCLEAR REACTIONS ²⁶Mg, ³⁷Cl, ⁴¹K, ⁵⁵Mn, ⁷¹Ga, ⁸¹Br, ⁸⁷Rb, ¹⁰⁰Mo, ¹¹⁵In, ¹²⁷I, ¹³³Cs, ¹³⁸Ba, ¹³⁹La, ¹⁴²Ce, ¹⁸¹Ta, ¹⁹⁸Pt(n,γ); measured σ.

Kevnumber: 1971RYZZ

Reference: Proc.Int.Conf.Chemical Nuclear Data, Measurements and Applications, Canterbury,

England, M.L.Hurrell, Ed., Institution of Civil Engineers, London, p.139 (1971)

Authors: T.B.Ryves

Title: Thermal Neutron Capture Cross Section Measurements at the NPL

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁹, ⁷¹Ga, ⁷⁵As, ⁷⁹, ⁸¹Br, ⁸⁹Y, ¹⁰⁷, ¹⁰⁹Ag, ¹¹⁵In, ¹²¹, ¹²³Sb, ¹²⁷I, ¹³⁹La, ¹⁵¹Eu, ¹⁹⁶, ¹⁹⁸Pt (n,γ), E=thermal: measured σ.

(--, •, , , = -----

Keynumber: 1971RYZX

Coden: CONF Canterbury(Chem Nucl Data),P139,12/10/72

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁹, ⁷¹Ga, ⁷⁵As, ⁷⁹Br, ⁸¹Br, ⁸⁹Y, ¹⁰⁷, ¹⁰⁹Ag, ¹¹⁵In, ¹²¹, ¹²³Sb, ¹²⁷I, ¹³⁹La, ¹⁵¹Eu, ¹⁹⁶, ¹⁹⁸Pt (n,γ),E=thermal; measured σ; deduced resonance integrals.

NSR Search Results Page 3 of 3

Keynumber: 1970STZZ

Reference: Thesis, Virginia Poly. (1970); Diss. Abst. Int. 31B, 3638 (1970)

Authors: E.P.Stergakos

Title: Studies of Resonances in ²³Na, ²⁶Mg, ⁴¹K, ⁵⁵Mn and ⁵⁹Co

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ⁴¹K, ⁵⁵Mn, ⁵⁹Co(n,γ),E=thermal;measured

Eγ,Ιγ. ²⁴Na, ²⁷Mg, ⁴²K, ⁵⁶Mn, ⁶⁰Co deduced resonances, level-width.

Keynumber: 1970SE07

Reference: Nucl.Phys. A150, 305 (1970)

Authors: E.Selin, E.Wallander

Title: Thermal Neutron Capture Gamma Rays from the ${}^{26}{\rm Mg}({\rm n},\gamma){}^{27}{\rm Mg}$ Reaction

Keyword abstract: NUCLEAR REACTIONS 26 Mg(n,γ), E=thermal; measured Eγ, Iγ; deduced Q. 27 Mg deduced levels, γ-branchings. Mg(n,γ), E=thermal; measured Iγ; deduced absolute σ for 24 , 25 Mg (n,γ). Enriched, natural targets.

Keynumber: 1968KA33

Reference: Osterr.Akad.Wiss., Math.-Naturw.Kl., Anz. No.10, 1 (1968)

Authors: B.Karlik

Title: Messungeiniger Einfangsquerschnitte fur schnelle Nautronen

Keyword abstract: NUCLEAR REACTIONS ²⁶Mg, ²⁷Al, ³⁷Cl, ⁵¹V, ⁵⁵Mn, ⁶⁵Cu, ⁶⁸Zn, ⁷⁵As, ¹¹⁵In,

¹²⁷I, ¹³⁸Ba(n,γ),E=2.9 MeV; measured σ.

Keynumber: 1968COZW

Coden: REPT UCRL-tr-10603,J Colditz,1/3/73

Keyword abstract: NUCLEAR REACTIONS ²⁶Mg, ²⁷Al, ³⁷Cl, ⁵¹V, ⁵⁵Mn, ⁶⁵Cu, ⁶⁶Zn, ⁷⁵As, ¹¹⁵In,

 127 I, 138 Ba(n, γ),E=2.9 MeV; measured σ .

Keynumber: 1967SP05

Reference: Nucl.Phys. A102, 209 (1967)

Authors: P.Spilling, H.Gruppelaar, A.M.F.Op Den Kamp

Title: Thermal-Neutron Capture Gamma Rays from Natural Magnesium and Enriched ²⁵Mg **Keyword abstract:** NUCLEAR REACTIONS ²⁴, ²⁵, ²⁶Mg, ⁵⁶Fe, ⁶³Cu, ²⁰⁷Pb(n,γ), E=thermal; measured σ(Εγ); deduced Q. ²⁵, ²⁶, ²⁷Mg deduced levels, branching. Enriched ²⁵Mg target, Ge(Li)

detector.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS 6 Li, 7 Li, 9 Be, 10 B, 12 C, 14 N, 19 F, 23 Na, 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si, 31 P, 32 S, 35 Cl, 40 Ca, 45 Sc, 48 Ti, 51 V, 55 Mn, 54 Fe, 56 Fe, 59 Co, 58 Ni, 60 Ni, 63 Cu, 65 Cu, 66 Zn, 67 Zn, 73 Ge, 76 Se, 85 Rb, 87 Rb, 89 Y, 93 Nb, 103 Rh, 113 Cd, 123 Te, 133 Cs, 139 La, 141 Pr, 149 Sm, 153 Eu, 157 Gd, 159 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n,γ), E = thermal;

measured Eγ; deduced Q. Natural targets.
