(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002年7月11日 (11.07.2002)

PCT

(10) 国際公開番号 WO 02/053543 A1

C07D 213/82, 215/54, 221/04, (51) 国際特許分類?: 401/04, 401/12, 405/04, 409/04, 413/06, 413/12, 413/14, 417/12, 455/02, 455/06, 471/04, 491/052, A61K 31/4439. 31/4709, 31/473, 31/465, 31/4375, 31/435, 31/4545, 31/5377, 31/4725, 31/506, 31/496, 31/4433, 31/4436, A61P 43/00, 25/00, 25/04, 37/00, 29/00

(21) 国際出願番号:

PCT/JP01/11427

(22) 国際出願日:

2001年12月26日(26.12.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2000-400768

2000年12月28日(28.12.2000)

(71) 出願人 (米国を除く全ての指定国について): 塩野 義製薬株式会社 (SHIONOGI & CO., LTD.) [JP/JP]; 〒 541-0045 大阪府 大阪市中央区 道修町 3 丁目 1 番 8 号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 多田 幸男 (TADA, Yukio) [JP/JP]; 〒553-0002 大阪府 大阪市福 島区 鷺洲 5 丁目 1 2 番 4 号 塩野義製薬株式会社 内 Osaka (JP). 井宗 康悦 (ISO, Yasuyoshi) [JP/JP]; 〒 553-0002 大阪府 大阪市福島区 鷺洲 5 丁目 1 2 番

4号 塩野義製薬株式会社内 Osaka (JP). 花崎 浩二 (HANASAKI,Kohji) [JP/JP]; 〒553-0002 大阪府 大阪 市福島区 鷺洲 5 丁目 1 2 番 4 号 塩野義製薬株式会 社内 Osaka (JP).

(74) 代理人: 山内 秀晃,外(YAMAUCHI, Hideaki et al.); 〒553-0002 大阪府 大阪市福島区 鷺洲5丁目12番 4号 塩野義製薬株式会社 知的財産部 Osaka (JP).

(81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特 許(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2 文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: PYRIDONE DERIVATIVE HAVING AFFINITY FOR CANNABINOID 2-TYPE RECEPTOR

(54) 発明の名称: カンナビノイド2型受容体親和作用を有するピリドン誘導体

(57) Abstract: A compound having an affinity for a cannabinoid 2-type receptor. It is represented by the formula (I): (I) wherein R1 represents a group represented by the formula -Y1-Y2-Y3-Ra (wherein Y1 is a single bond, etc.; Y2 is -C(=O)-NH-, etc.; and Y3 is optionally substituted aryl, etc.), etc.; R2 represents hydrogen, etc.; R3 represents alkyl, etc.; R4 represents alkyl, etc.; and R5 represents optionally substituted alkyl, etc.; provided that R3 and R4 may in combination represent a ring in cooperation with the adjacent atoms, etc.

(57) 要約:

カンナビノイド2型受容体親和性化合物として、式(I):

(式中、 R^1 は式: $-Y^1-Y^2-Y^3-Ra$ (式中、 Y^1 は単結合等; Y^2 は-C(=O) -NH -等; Y^3 は置換されていてもよいアリール等)で示される基等; R^2 は水素等; R^3 はアルキル等; R^4 はアルキル等; R^5 は置換されていてもよいアルキル等;YはY0はY1、一緒になって、隣接する原子と共に環等)で示される化合物を見出した。

明細書

カンナビノイド2型受容体親和作用を有するピリドン誘導体

5 技術分野

本発明は、ビリドン誘導体に関する。より詳しくは、カンナビノイド2型受容体親和性である医薬組成物(カンナビノイド2型受容体に対するアンタゴニスト作用又はアゴニスト作用を有するビリドン誘導体を含有する医薬組成物)に関する。

10

20

25

背景技術

カンナビノイドは、1960年にマリファナの活性物質の本体として発見され、 その作用は、中枢神経系作用(幻覚、多幸感、時間空間感覚の混乱)、及び末梢 細胞系作用(免疫抑制、抗炎症、鎮痛作用)であることが見出された。

15 その後、内在性カンナビノイド受容体アゴニストとして、アラキドン酸含有リン脂質から産生されるアナンダミドや2-アラキドノイルグリセロールが発見された。これら内在性アゴニストは、中枢神経系作用及び末梢細胞系作用を発現することが知られているが、さらに、Hypertension (1997) 29, 1204-1210 には、アナンダミドの心血管への作用も報告されている。

カンナビノイド受容体としては、1990年にカンナビノイド1型受容体が発見され、脳などの中枢神経系に分布することがわかり、そのアゴニストは神経伝達物質の放出を抑制し、鎮痛作用や幻覚などの中枢作用を示すことがわかった。また、1993年にはカンナビノイド2型受容体が発見され、脾臓などの免疫系組織に分布することがわかり、そのアゴニストは免疫系細胞や炎症系細胞の活性化を抑制し、免疫抑制作用、抗炎症作用、鎮痛作用を示すことがわかった(Nature, 1993, 365, 61-65)。

従って、カンナビノイド2型受容体に対するアンタゴニスト又はアゴニストは、

免疫抑制剤、抗炎症剤、鎮痛剤として期待されている(Nature, 1998, 349, 277-281)。

カンナビノイド2型受容体アンタゴニスト作用又はアゴニスト作用を有する化合物としては、WO99/02499及びWO00/40562にキノロン誘導体が記載されている。該キノロン誘導体は、以下に示すように、ベンゼン環部分がジアルコキシで置換されており、キノロンの窒素原子が水素又はメチルで置換された化合物である。

一方、ビリドン誘導体としては、EP0481802及び J. Med. Chem. 1998,1036.953-066記載の抗HIV活性を有する化合物が挙げられる。

また以下の(A)に示すキノロン誘導体が、医薬の中間体として特開昭 5 8 - 4 6 0 6 8 に記載されている。また、以下の(B)に示すピリドン誘導体が、J. Chem. Soc. Perkin. Trans. I (1984) p1173-1182 に記載されている。

15

5

発明の開示

カンナビノイド2型受容体に対するアンタゴニスト作用又はアゴニスト作用を有する新規な化合物として、以下に説明するピリドン誘導体を見出した。

すなわち、本発明は、

20 (1) 式(I):

(式中、 R^1 は水素、ハロゲン、シアノ、ホルミル、アシル、カルボキシ、アルコ 、キシカルボニル、置換されていてもよいカルバモイル、イソチオシアナト、置換 されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニル オキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニト ロ又は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 はそれぞれ独立して単結 合又は置換されていてもよいアルキレンであり;Y²は単結合、-O-、-O-C (=0) -, -0-C (=0) -0-, -0-C (=0) -NR^b-, -0-SO $_{2}$ - $_{1}$ - $_{2}$ - $_{3}$ - $_{2}$ - $_{1}$ - $_{2}$ - $_{3}$ - $_{2}$ - $_{3}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{2}$ - $_{3}$ - $_{3}$ - $_{2}$ - $_{3}$ - $_$ NH) - NR^{b} - C (=0) - O - NR^{b} - C (=0) - NR^{b} - NR^{b} 10 $R^{b}-C$ (=0) $-NR^{b}-SO_{2}-$, $-NR^{b}-C$ (=S) -, $-NR^{b}-C$ (= S) $-NR^{b}-$, $-NR^{b}-SO_{2}-NR^{b}-$, $-NR^{b}-C$ (= NH) $-NR^{b}-$, -S-, -SO₂-O-, -SO₂-NR^b-, -SO₂-NR^b-C (=O)-N $R^{b}-$, -C (=0) -O-, -C (=0) $-NR^{b}-$, -C (=0) $-NR^{b} C (= 0) - C (= 0) - N R^{b} - C (= S) - C (= S) - N R^{b} - C$ 15 $-C (=S) - NR^{b} - C (=O) - - - C (=NH) - NR^{b} - - - C (=O)$ -, -C (=0) -NR b -C (=NR b) -X t C (=0) -NR b -NR b ーであり;Raは置換されていてもよいアルキル、置換されていてもよいアルケニ ル、置換されていてもよいアルキニル、置換されていてもよい炭素環式基、置換 されていてもよい複素環式基又はアシルであり; R b はそれぞれ独立して水素、置 20 換されていてもよいアルキル、置換されていてもよいアルケニル、置換されてい てもよいアルキニル、置換されていてもよい炭素環式基、置換されていてもよい 複素環式基、アシル、ヒドロキシ又はアルコキシである) で示される基であり; R²は水素、置換されていてもよいアルキル、置換されていてもよいアルケニル、

置換されていてもよいアルキニル、ハロゲン、シアノ、ホルミル、アシル、カル ボキシ、アルコキシカルボニル、置換されていてもよいカルバモイル、イソチオ シアナト、置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチ オ、アルケニルオキシ、アルキニルオキシ、アルキルスルフィニル、アルキルス ルホニル、ニトロ又は式:-Y4-Rc (式中、Y4は単結合、-O-、-S-、 $-SO-, -SO_2-, -NH-, -C (=O)-, -CH_2-, -C (=O)-$ NH-又は-NH-C(=O)-であり; R は置換されていてもよい炭素環式基 又は置換されていてもよい複素環式基である)で示される基であり;

R³及びR⁴はそれぞれ独立して、水素、置換されていてもよいアルキル、置換さ れていてもよいアルケニル、置換されていてもよいアルキニル、ハロゲン、シア 10 ノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていても よいカルバモイル、イソチオシアナト、置換されていてもよいアミノ、ヒドロキ シ、アルコキシ、アルキルチオ、アルケニルオキシ、アルキニルオキシ、アルキ ルスルフィニル、アルキルスルホニル、ニトロ又は式:-Y⁵-R^d(式中、Y⁵ は単結合、置換されていてもよいアルキレン、アルケニレン、アルキニレン、ー 15 $O - - S - - S O - - S O_2 - - N H - - C (= O) - - C H_2 - C$ -C (=O) -NH-E-又は-NH-C (=O) -であり; Eは単結合又は置 換されていてもよいアルキレンであり; Rdは置換されていてもよい炭素環式基又 は置換されていてもよい複素環式基である)で示される基であり;

R5は水素、ヘテロ原子及び/又は不飽和結合が介在していてもよい置換されてい 20 てもよいアルキル又は式:-Y⁶-R^e(式中、Y⁶は単結合、置換されていても よいアルキレン、アルケニレン、アルキニレン、-〇-、-S-、-S〇-、- $SO_2 - \sqrt{-NH} - \sqrt{-C}$ (=0) $-\sqrt{-C}$ (=0) -NH - E - Zk - NH - C(=O) -であり;Eは単結合又は置換されていてもよいアルキレンであり;R $^{\circ}$ は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基であ

る)で示される基であり;

又は、R²及びR³の組合わせ、R³及びR⁴の組合わせ、R⁴及びR⁵の組合わせ

のいずれか一つの組合わせが一緒になって、隣接する原子と共にヘテロ原子及び /又は不飽和結合が介在していてもよい置換されていてもよい環を形成していて もよく;

XはS又はOである;

25

- 5 但し、R³及びR⁴が一緒になって、隣接する原子と共にアルコキシでジ置換されたベンゼン環を形成し、かつR⁵が水素又はメチルである場合を除く。)で示される化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物を有効成分として含有するカンナビノイド2型受容体親和性医薬組成物、
- (2) R^5 がヘテロ原子及び/又は不飽和結合が介在していてもよい置換されて 10 いてもよい炭素数 2以上のアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 及び R^e は上記 (1)と同意義である)で示される基である上記 (1)記載のカンナビノイド 2型受容体親和性医薬組成物、
- (3) R⁵がヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数 3 以上のアルキル又は式:-Y⁶-R^e(式中、Y⁶は置換されていてもよいアルキレンであり; R^eは置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロサイクルである)で示される基である上記(2)記載のカンナビノイド 2 型 受容体親和性医薬組成物、
- (4) R¹が式:-Y¹-Y²-Y³-Rª(式中、Y¹、Y²、Y³、Rª及びR¹
 20 は上記(1)と同意義である)で示される基である上記(1)~(3)のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物、
 - (5) R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 、 Y^3 及び R^a は上記(1) と同意義であり; Y^2 は-O-、 $-NR^b-C$ (=O) -又は-C(=O) $-NR^b-C$ (=O) $-NR^b$ (=O
 - (6) R^3 及び R^4 が一緒になっていない上記(1) \sim (5) のいずれかに記載のカンナビノイド 2型受容体親和性医薬組成物、

10

- (7) R^3 が水素、置換されていてもよいアルキル、ハロゲン又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合、置換されていてもよいアルキレン、アルケニレン、アルキニレンであり; R^d は置換されていてもよいアリール又は置換されていてもよいヘテロアリールである)で示される基であり; R^d が水素又は置換されていてもよいアルキルである(但し、 R^3 及び R^d が同時に水素である場合を除く。)上記(6)記載のカンナビノイド2型受容体親和性医薬組成物、
- (8) R^3 及び R^4 が一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい環(但し、置換されていてもよいベンゼン環でない)を形成する上記(1)~(5)のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物、
- (9) R¹が水素、シアノ、ホルミル、カルボキシ、イソチオシアナト、アミノ、 ヒドロキシ、カルバモイル又は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 はそれぞれ独立して単結合又は置換されていてもよいアルキレン(置換基として は、ハロゲン、アルケニレン、ヒドロキシ、アジド、アミノ、アシルアミノ、ア ルキルスルホニルアミノ、アルケニルオキシカルボニルアミノ、アルコキシカル 15 ボニルアミノ、アルケニルアミノ、アリールカルボニルアミノ、ヘテロアリール カルボニルアミノ、シアノ、アルコキシ、アルキルスルホニルオキシ、トリアル キルシリルオキシ、オキソ、メチレン、ハロゲン化アルコキシカルボニルオキシ、 ホルミルオキシ及び/又はアシルチオ)であり;Y²は単結合、-O-、-O-C (=0) - (-0) - (=0) - 0 - (=0) - NH - (-NH - (=0) - NH - (=0) - N20 $-NR^{b}-C (= 0) - -NH-C (= 0) - 0 - -NH-C (= 0) - NH$ -, -NH-C (=S) -NH-, -S-, -SO₂-O-, -SO₂-NH-, $-SO_{2}-NH-C$ (=0) -NH-, -C (=0) -O-, -C (=0) -NRb-, -C (=S) -NH-, -C (=O) -NH-C (=O) -, -C (=O) $-NH-C (=S) - - C (=O) - - C (=O) - NR^b - C (=NR^b)$ 25 -又は-C(=O)-NH-NR b -であり; R^{a} が置換されていてもよいアルキ

ル(置換基としては、ヒドロキシ及び/又はアラルキル)、アルケニル、置換さ

れていてもよいアリール(置換基としては、カルボキシ、置換されていてもよいアミノ、アルコキシ、アルキルチオ、アルキレンジオキシ、ハロゲン、アルキル、ヒドロキシ、ハロゲン化アルキル及び/又はハロゲン化アルコキシ)、置換されていてもよいシクロアルキル(置換基としては、アリール及び/又はヒドロキシ)、

5 置換されていてもよいシクロアルケニル(置換基としては、アルケニレン、ヒドロキシ、アルキルスルホニルオキシ、アジド、アミノ及び/又はアシルアミノ)、置換されていてもよいヘテロアリール(置換基としては、オキソ、ヘテロアリール、ハロゲン、アリール及び/又はアルキル)又は置換されていてもよいヘテロサイクル(置換基としては、ハロゲンで置換されていてもよいアリール、アラルキル、アシル、アリールカルボニル、シクロアルキルカルボニル、アルキルスルホニル、アリールスルホニル、アルキル及び/又はハロゲン化アルキルカルボニ

ある)で示される基であり; R^2 が水素、アルキル、アルケニル又は式: $-Y^4-R^c$ (式中、 Y^4 が-O-cあ

り; R°がヘテロアリールである) で示される基であり;

及び/又はハロゲン化アルキル)である)で示される基であり;

15

20

ル)であり;Rゥが水素、アルキル、アシル、ヒドロキシ及び/又はアルコキシで

 R^3 が水素、アルキル、ハロゲン又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合、アルキニレン又は-C(=O) -NH-アルキレン-であり; R^d は置換されていてもよいアリール(置換基としては、ハロゲン、アルキル、アルコキシ、アルキレンジオキシ及び/又はハロゲン化アルキル)又は置換されていてもよいヘテロアリール(置換基としては、ハロゲン、アルキル、アルコキシ、アルキレンジオキシ

 R^4 が水素、アルキル又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合であり; R^d はアリールである) で示される基であり;

R5が水素、ヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数3以上のアルキル(置換基としては、ハロゲン、ヒドロキシ、アジド、アミノ、アルコキシ、アルケニルオキシ、アルキルスルホニルオキシ、アシルチオ、アシルアミノ、アリールカルボニルアミノ、シクロアルキルカルボニ

ルアミノ、ハロゲン化アルキルカルボニルアミノ、アルキルスルホニルアミノ、アリールスルホニルアミノ、ホルミル、オキソ及び/又はシアノ)又は式: $-Y^6$ -R°(式中、 Y^6 はアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロサイクルである)で示される基であり;

又は、R²及びR³が一緒になって、隣接する原子と共に置換されていてもよい炭素環(置換基としては、オキソ及び/又はヒドロキシ)を形成するか、R³及びR⁴が一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい環(置換基としては、アシル、アラルキル、

アルケニレン及び/又はアルキレン)を形成するか、又はR⁴及びR⁵が一緒になって、隣接する原子と共に不飽和結合が介在していてもよい置換されていてもよい炭素環(置換基としては、アルケニレン)を形成する上記(1)記載のカンナビノイド2型受容体親和性医薬組成物、

(10) 抗炎症剤である上記(1)~(9)のいずれかに記載のカンナビノイ 15 ド2型受容体親和性医薬組成物、

(11) 免疫抑制剤である上記(1)~(9)のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物、

(12) 腎炎治療剤である上記(1)~(9)のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物、

20 (13) 鎮痛剤である上記(1)~(9)のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物、

(14) 式(I):

10

(式中、R¹は式:-Y¹-Y²-Y³-R^a(式中、Y¹、Y²、Y³及びR^bは上

記(1)と同意義であり; Raは置換されていてもよい炭素環式基、置換されていてもよい複素環式基又はアシルである)で示される基であり;

R²は水素又は置換されていてもよいアルキルであり;

 R^3 は置換されていてもよいアルキル、ハロゲン又は式: $-Y^5-R^4$ (式中、 Y^5)は単結合又はアルキニレンであり; R^4 は上記(1)と同意義である)で示される基であり;

R⁴は水素又は置換されていてもよいアルキルであり;

 R^5 はヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数 3以上のアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 及び R^e は上記(1)と同意義である)で示される基であり;

又は、R³及びR⁴は一緒になって、隣接する原子と共にヘテロ原子及び/又は不 飽和結合が介在していてもよい環を形成していてもよく;

Xは上記(1)と同意義である;

10

但し、 R^3 及び R^4 が一緒になって、隣接する原子と共に置換されていてもよいべ 2^4 ンゼン環を形成する場合は、 2^4 が式: 2^4 $2^$

なお、R³及びR⁴が一緒になって、隣接する原子と共に非置換炭素環(但し、R³が置換している炭素原子とR⁴が置換している炭素原子間の結合のみが二重結合であり、他の炭素原子間の結合は単結合である)を形成し、かつR¹が式:-Y¹-Y²-Y³-R^a(式中、Y¹及びY³が単結合であり;Y²が-O-であり;R^aフェニルである)で示される基である場合及びR³及びR⁴が一緒になって、隣接する原子と共にベンゼン環を形成し、かつR¹が式:-Y¹-Y²-Y³-R^a(式中、Y¹が単結合であり、Y³がエチレンであり、Y²が一C(=O)-NR^b-であり、かつR^aがスルファモイルで置換されたフェニルである)で示される基であ

る場合を除く。) で示される化合物、そのプロドラッグ、その製薬上許容される 塩又はその溶媒和物、

- (15) R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 、 Y^3 及び R^a は上記(14)と同意義であり; Y^2 は-O-、 $-NR^b-C$ (=O) -又は-C(=O) -N R^b- であり; R^b は水素又は置換されていてもよいアルキルである)で示される基である上記(14)記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物、
- (16) R^3 及び R^4 が一緒になっていない上記(14)又は(15)記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物、
- 10 (17) R 3 及びR 4 が一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽和結合が介在していてもよい環を形成する上記(14)又は(15)記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物、
- (18) R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^3 は置換されていてもよいアルキレンであり; Y^2 は-O-、-NH-C(=O) Y^3 又は-C(=O) -NH-であり; Y^3 化置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり; Y^3 化量になった。 Y^3 がアルキル、ハロゲン又は式: $-Y^5-R^4$ (式中、 Y^5 は単結合であり; Y^4 化置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり; Y^4 が水素又はアルキルであり; Y^5 が置換されていてもよい炭素数 Y^5 以上のアルキル又は式: Y^5-R^5 (式中、 Y^5 は置換されていてもよいアルキレンであり; Y^5 には置換されていてもよいアリール、置換されていてもよいアルキレンであり; Y^5 には置換されていてもよいアリール、置換されていてもよいシクロアルキル又は置換されていてもよいヘテロアリールである)で示
- 又はR³及びR⁴は一緒になって、隣接する原子と共にヘテロ原子が介在していて 25 もよい環を形成していてもよい上記(14)記載の化合物、そのプロドラッグ、 その製薬上許容される塩又はその溶媒和物、

(19) 式(I):

される基であり;

10

15

20

$$R^1$$
 R^2
 R^3
 R^4
 R^5

(式中、 R^1 は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^3 は単結合又は置換されていてもよいアルキレンであり; Y^2 は-C(=O) $-NR^b-$ であり; R^a は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基であり; R^b は水素である)で示される基であり; R^b は水素であり; R^a 及び R^a は一緒になって、隣接する原子と共に炭素環(但し、 R^b が置換している炭素原子と R^b が置換している炭素原子間の結合のみが二重結合であり、他の炭素原子間の結合は単結合である)を形成し; R^b は炭素数 3以上のアルキル又は式: Y^b-R^b (式中、 Y^b は置換されていてもよいアルキレンであり; Y^b 0 Y^b 1 Y^b 2 Y^b 3 Y^b 4 Y^b 6 Y^b 6 Y^b 8 Y^b 9 Y^b

(20) 上記(19)記載の化合物(但し、 R^3 及び R^4 が一緒になって、隣接する原子と共に6員の炭素環(但し、 R^3 が置換している炭素原子と R^4 が置換している炭素原子間の結合のみが二重結合であり、他の炭素原子間の結合は単結合である)を形成し、かつ R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 が単結合であり; Y^2 が-0-であり; R^a フェニルである)で示される基である場合を除く。)、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物、(21) 式(I):

(式中、 R^1 は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^2 は一

C (=0) $-NR^5-$ であり; Y^3 は単結合又は置換されていてもよいアルキレンであり; R^a は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基であり; R^5 は水素である)で示される基であり; R^2 は水素であり; R^3 は式: $-Y^5-R^d$ (式中、 Y^5 は単結合、 R^d は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり; R^4 は水素又はアルキルであり; R^5 は炭素数 3以上のアルキル又は式: $-Y^6-R^6$ (式中、 Y^6 は置換されていてもよいアルキレンであり; R^6 は置換されていてもよいアリール、置換されていてもよいシクロアルキル又は置換されていてもよいヘテロアリールである)で示される基であり;XはS又はOである。)で示される化合物のライブラリー、

(22) 上記(21)記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物、

(23) 式(I):

10

15 (式中、R 1 は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 は単結合であり; Y^2 は $-NR^b-C$ (=O) -であり; R^a は置換されていてもよい炭素環式基であり; R^b は水素である)で示される基であり; R^2 は水素であり; R^3 及び R^4 はそれぞれ独立してアルキルであり; R^5 は炭素数 3以上のアルキルで示される基であり; XはOである。)で示される化合物のライブラリー、

20 (24) 上記(23)記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物、

(25) 式:

(式中、Yは単結合、-NH-、-O-又は $-(CH_2)_{1-5}$ -であり、 Y^2 は一C(=O) -NH-又は-NH-C(=O) -であり、 Y^3 は単結合又は置換されていてもよいアルキレンであり、 R^a は置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよいシクロアルケニル、置換されていてもよいへテロアリール又は置換されていてもよいへテロサイクルであり、 R^5 は置換されていてもよい炭素数 3以上のアルキル又は式: $-Y^6-R^a$ (式中、 Y^6 はアルキレンであり; R^a は置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロアリール又は置換されていてもよいヘテロアリール又は置換されていてもよいヘテロナイクルである)で示される基である化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物、

(26) Yが-(CH $_2$) $_3$ -である上記(25)記載の化合物、そのプロドラック、その製薬上許容される塩又はその溶媒和物、

(27) 式:

10

15

20

$$\begin{array}{c|c}
R^{a} & Y^{2} & R^{3} \\
O & N & R^{4} \\
\hline
R^{5} & R^{5}
\end{array}$$

(式中、 R^3 及び R^4 はそれぞれ独立してアルキルであり、 Y^2 は一C(=O) -NH-又は-NH-C(=O) -であり、 Y^3 は単結合又は置換されていてもよいアルキレンであり、 R^a は置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよいシクロアルケニル、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロサイクルであり、 R^5 は置換されていてもよい炭素数 3以上のアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 はアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいシク

ロアルキル、置換されていてもよいヘテロアリール又は置換されていてもよいへ

テロサイクルである)で示される基である化合物、そのプロドラッグ、その製薬 上許容される塩又はその溶媒和物、

- (28) Y³が置換されていてもよいアルキレンである上記(25)~(27) のいずれかに記載の化合物、そのプロドラッグ、その製薬上許容される塩又はそ の溶媒和物、
- (29) 上記(14)~(18)、(20)、(22)、(24)~(28) のいずれかに記載の化合物を有効成分として含有する医薬組成物、
- (30) カンナビノイド2型受容体親和性である上記(29)記載の医薬組成物、
- 10 (31) 抗炎症剤である上記(29)記載の医薬組成物、
 - (32) 免疫抑制剤である上記(29)記載の医薬組成物、
 - (33) 腎炎治療剤である上記(29)記載の医薬組成物、
 - (34) 鎮痛剤である上記(29)記載の医薬組成物、
- (35) 上記 (1) ~ (13) のいずれかに記載の化合物を投与することを特 15 徴とするカンナビノイド 2 型受容体に関連する疾患の治療方法、
 - (36) カンナビノイド 2 型受容体に関連する疾患の治療剤を製造するための上記 (1) \sim (13) のいずれかに記載の化合物の使用、に関する。
- 20 また、本発明には、以下の発明も包含される。

[1] 式(I):

(式中、R¹は水素、ハロゲン、シアノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていてもよいカルバモイル、イソチオシアナト、置換

されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニル オキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニト ロ又は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 はそれぞれ独立して単結 合又は置換されていてもよいアルキレンであり;Y²は単結合、-O-、-O-C (=0) -, -0 - (=0) - 0 -, -0 - 0 (=0) - NR^{b} -, -0 - 0 $_{2}$ - $_{1}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{5}$ - $_{2}$ - $_{5}$ - $_$ NH) - NR^{b} - C (=0) - O - NR^{b} - C (=0) - NR^{b} - N $R^{b}-C$ (=0) $-NR^{b}-SO_{2}-$, $-NR^{b}-C$ (=S) -, $-NR^{b}-C$ (= S) $-NR^{b}-$, $-NR^{b}-SO_{2}-NR^{b}-$, $-NR^{b}-C$ (= NH) $-NR^{b}-$, -S-, -SO₂-O-, -SO₂-NR^b-, -SO₂-NR^b-C (=0) -N10 $R^{b} - \sqrt{-C}$ (=0) $-O - \sqrt{-C}$ (=0) $-NR^{b} - \sqrt{-C}$ (=0) $-NR^{b} - \sqrt{-C}$ $C (= 0) - C (= 0) - NR^{b} - C (= S) - C (= S) - NR^{b} - C$ $-C (=S) - NR^b - C (=O) - Z t - C (=NH) - NR^b - c b ; R^a$ は置換されていてもよいアルキル、置換されていてもよいアルケニル、置換され ていてもよいアルキニル、置換されていてもよい炭素環式基、置換されていても 15 よい複素環式基又はアシルであり;Rbはそれぞれ独立して水素、置換されていて もよいアルキル、置換されていてもよいアルケニル、置換されていてもよいアル キニル、置換されていてもよい炭素環式基、置換されていてもよい複素環式基又 はアシルである)で示される基であり;

又は置換されていてもよい複素環式基である)で示される基であり;

 R^3 は水素、置換されていてもよいアルキル、置換されていてもよいアルケニル、置換されていてもよいアルキニル、ハロゲン、シアノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていてもよいカルバモイル、イソチオシ、アルコキシ、アルコキシ、アルキルチオ、アルケニルオキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニトロ又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合、置換されていてもよいアルキレン、アルケニレン、アルキニレン、-O-、 $-SO_2-$ 、-NH-、-C(=O) -、 $-CH_2-$ 、-C(=O) -NH-、-N10 H-C(=O) -又は-C(=O) -NH-置換されていてもよいアルキレンーであり; R^d は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり;

R 4 は水素、置換されていてもよいアルキル、置換されていてもよいアルケニル、 置換されていてもよいアルキニル、ハロゲン、シアノ、ホルミル、アシル、カル ボキシ、アルコキシカルボニル、置換されていてもよいカルバモイル、イソチオ シアナト、置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチ オ、アルケニルオキシ、アルキニルオキシ又はニトロであり;

 R^5 は水素、ヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよいアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 は単結合、置換されていても 20 よいアルキレン、アルケニレン、アルキニレン、-O-、-S-、-SO-、 $-SO_2-$ 、-NH-、-C(=O)-、-C(=O)-NH-、-NH-C(=O)- 又は-C(=O)-NH- 置換されていてもよいアルキレンーであり; R^e は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり;

25 又は、 R^2 及び R^3 の組合わせ、 R^3 及び R^4 の組合わせ、 R^4 及び R^5 の組合わせ のいずれか一つの組合わせが一緒になってヘテロ原子及び/又は不飽和結合が介 在していてもよい置換されていてもよいアルキレンであり; XはS又はOである;

10

15

但し、R²、R³、R⁴及びR⁵のすべてが同時に水素である場合、及びR³及びR
4が一緒になってアルコキシでジ置換されたブタジエニレンであり、かつR⁵が水 素又はメチルである場合を除く。)で示される化合物、そのプロドラッグ、その 製薬上許容される塩又はその溶媒和物を有効成分として含有するカンナビノイド 2型受容体親和性医薬組成物、

- [2] R^5 がヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数 2以上のアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 及び R^e は上記[1]と同意義である)で示される基である上記[1]記載のカンナビノイド 2型受容体親和性医薬組成物、
- [3] R^5 がヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数 3以上のアルキル又は式: $-Y^6-R^6$ (式中、 Y^6 は置換されていてもよいアルキレンであり; R^6 は置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロサイクルである)で示される基である上記[2]記載のカンナビノイド 2型受容体親和性医薬組成物、
- [4] R¹が式:-Y¹-Y²-Y³-R^a (式中、Y¹、Y²、Y³、R^a及びR^bは上記[1]と同意義である)で示される基である上記[1]~[3]のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物、
- [5] R¹が式:-Y¹-Y²-Y³-Rª(式中、Y¹、Y³及びRªは上記[1] と同意義であり; Y²は-O-、-NRb-C(=O)-又は-C(=O)-NR b-であり; Rbは水素又は置換されていてもよいアルキルである)で示される基 である上記[4]記載のカンナビノイド2型受容体親和性医薬組成物、
- [6] R³及びR⁴が一緒になっていない上記[1]~[5]のいずれかに記載のカ 25 ンナビノイド2型受容体親和性医薬組成物、
 - [7] R^3 が水素、置換されていてもよいアルキル、ハロゲン又は式: $-Y^5$ $-R^d$ (式中、 Y^5 は単結合、置換されていてもよいアルキレン、アルケニレン、

. 5

アルキニレンであり; R^d は置換されていてもよいアリール又は置換されていてもよいヘテロアリールである) で示される基であり; R^4 が水素又は置換されていてもよいアルキルである(但し、 R^3 及び R^4 が同時に水素である場合を除く。)上記[6]記載のカンナビノイド2型受容体親和性医薬組成物、

- [8] R³及びR⁴が一緒になってヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよいアルキレン(但し、置換されていてもよいブタジエニレンでない)である上記[1]~[5]のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物、
- [9] R1が水素、シアノ、ホルミル、カルボキシ、イソチオシアナト、アミ ノ、ヒドロキシ又は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 はそれぞれ 10 独立して単結合又は置換されていてもよいアルキレン(置換基としては、ハロゲ ン、アルケニレン、ヒドロキシ又はアジド)であり; Y^2 は単結合、-O-、-O-C = 0 (-C) = 0-, $-NR^{b}-C$ (=0) -, -NH-C (=0) -0-, -NH-C (=0) - $NH - - NH - C (= S) - NH - - - S - - - SO_2 - O - - - SO_2 - NH$ 15 -, -SO₂-NH-C(=0)-NH-, -C(=0)-O-, -C(=0)- $NR^{b}-又は-C(=S)-NH-であり; R^{a}$ が置換されていてもよいアルキル (置換基としては、ヒドロキシ)、アルケニル、置換されていてもよいアリール (置換基としては、カルボキシ、置換されていてもよいアミノ、アルコキシ、ア ルキルチオ、アルキレンジオキシ、ハロゲン、アルキル又はヒドロキシ)、置換 20 されていてもよいシクロアルキル(置換基としては、アリール)、置換されてい てもよいシクロアルケニル(置換基としては、アルケニレン)又は置換されてい てもよいヘテロアリール (置換基としては、オキソ) であり; $R^{\, b}$ が水素、アルキ ル又はアシルである)で示される基であり;
- R^2 が水素、アルキル、アルケニル又は式: $-Y^4-R^c$ (式中、 Y^4 が-O-cあり; R^c がヘテロアリールである)で示される基であり; R^3 が水素、アルキル、ハロゲン又は式: $-Y^5-R^c$ (式中、 Y^5 は単結合、アル

キニレン又は-C(=O) $-NH-アルキレン-であり;<math>R^d$ はハロゲンで置換されていてもよいアリール(置換基としては、ハロゲン、アルキル、アルコキシ、アルキレンジオキシ、ハロアルキル)又は置換されていてもよいヘテロアリール(置換基としては、ハロゲン、アルキル、アルコキシ、アルキレンジオキシ又はハロアルキル)である)で示される基であり;

R⁴が水素又はアルキルであり;

10

15

 R^{5} が水素、ヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数 3 以上のアルキル(置換基としては、ハロゲン、ヒドロキシ又はアジド)又は式: $-Y^{6}-R^{e}$ (式中、 Y^{6} はアルキレンであり; R^{e} は置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロサイクルである)で示される基であり;

又は、 R^2 及び R^3 が一緒になって置換されていてもよいアルキレン(置換基としては、オキソ又はヒドロキシ)であるか、 R^3 及び R^4 が一緒になってヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよいアルキレン(置換基としては、アシル、アラルキル又はアルケニレン)であるか、又は R^4 及び R^5 が一緒になって不飽和結合が介在していてもよい置換されていてもよいアルキレン(置換基としては、アルケニレン)である上記[1]記載のカンナビノイド2型受容体親和性医薬組成物、

- 20 [10] 抗炎症剤である上記[1]~[9]のいずれかに記載のカンナビノイド2 型受容体親和性医薬組成物、
 - [11] 免疫抑制剤である上記[1]~[9]のいずれかに記載のカンナビノイド 2型受容体親和性医薬組成物、
- [12] 腎炎治療剤である上記[1]~[9]のいずれかに記載のカンナビノイド 25 2型受容体親和性医薬組成物、
 - [13] 鎮痛剤である上記[1]~[9]のいずれかに記載のカンナビノイド2型 受容体親和性医薬組成物、

[14] 式(I):

(式中、 R^1 は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 、 Y^2 、 Y^3 及び R^b は上記[1]と同意義であり; R^a は置換されていてもよい炭素環式基、置換されていてもよい複素環式基又はアシルである)で示される基であり;

R²は水素又は置換されていてもよいアルキルであり;

 R^3 は置換されていてもよいアルキル、ハロゲン又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合又はアルキニレンであり; R^d は上記[1]と同意義である)で示される基であり;

10 R⁴は水素又は置換されていてもよいアルキルであり;

 R^5 はヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数 3以上のアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 及び R^e は上記[1]と同意義である)で示される基であり;

又は、R³及びR⁴は一緒になってヘテロ原子及び/又は不飽和結合が介在してい 15 てもよいアルキレンであり;

Xは上記[1]と同意義である;

20

但し、 R^3 及び R^4 が一緒になって置換されていてもよいブタジエニレンである場合は、 R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 が単結合であり; Y^3 が置換されていてもよいアルキレンであり; Y^2 は $-NR^b-C$ (=O)-、-C(=O) $-NR^b$ -であり; R^a は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基であり; R^b は水素又は置換されていてもよいアルキルである。)で示される基である;

なお、 R^3 及び R^4 が一緒になってテトラメチレンであり、かつ R^1 が式: $-Y^1$ $-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 が単結合であり; Y^2 が-O-であり; R^a

フェニルである)で示される基である場合及び R^3 及び R^4 が一緒になってブタジェニレンであり、かつ R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 が単結合であり、 Y^3 がエチレンであり、 Y^2 が-C(=0) $-NR^b$ -であり、かつ R^a がスルファモイルで置換されたフェニルである)で示される基である場合を除く。)で示される化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物、

[15] R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 、 Y^3 及び R^a は上記[14]と同意義であり; Y^2 は-O-、 $-NR^b-C$ (=O) -又は-C (=O) -N R^b-c あり; R^b は水素又は置換されていてもよいアルキルである)で示される基である上記[14]記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物、

10

15

20

25

[16] R³及びR⁴が一緒になっていない上記[14]又は[15]記載の化合物、 そのプロドラッグ、その製薬上許容される塩又はその溶媒和物、

[17] R³及びR⁴が一緒になってヘテロ原子及び/又は不飽和結合が介在 していてもよいアルキレンである上記[14]又は[15]記載の化合物、そのプロド ラッグ、その製薬上許容される塩又はその溶媒和物、

[18] R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^3 は置換されていてもよいアルキレンであり; Y^2 は-O-、-NH-C(=O) - 又は-C(=O)-NH-であり; R^a は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり; R^2 が水素であり; R^3 がアルキル、ハロゲン又は式: $-Y^5-R^4$ (式中、 Y^5 は単結合であり; R^4 は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり; R^4 が水素又はアルキルであり; R^5 が置換されていてもよい炭素数 3以上のアルキル又は式: $-Y^6-R^6$ (式中、 Y^6 は置換されていてもよいアルキレンであり; R^6 は置換されていてもよいアリール、置換されていてもよいアルキレンであり; R^6 は置換されていてもよいアリール、置換されていてもよいシクロアルキル又は置換されていてもよいヘテロアリールである)で示される基であり;

又は R^3 及び R^4 は一緒になってヘテロ原子が介在していてもよいアルキレンである上記 $[1\ 4]$ 記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物、

[19] 式(I):

5

10

(式中、 R^1 は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^3 は単結合又は置換されていてもよいアルキレンであり; Y^2 は-C(=O) $-NR^b-$ であり; R^a は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基であり; R^b は水素である)で示される基であり; R^a は水素であり; R^a 及び R^a は一緒になってアルキレンであり; R^b は炭素数 3以上のアルキル又は式: $-Y^6-R^a$ (式中、 Y^6 は置換されていてもよいアルキレンであり; R^a は置換されていてもよいアリール、置換されていてもよいシクロアルキル又は置換されていてもよいヘテロアリールである)で示される基であり;XはS又はOである。)で示される化合物のライブラリー、

15

[20] 上記[19]記載の化合物(但し、 R^3 及び R^4 が一緒になってテトラメチレンであり、かつ R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 が単結合であり; Y^2 が-O-であり; R^a フェニルである)で示される基である場合を除く。)、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物、

[21] 式(I):

$$R^1$$
 R^2
 R^3
 R^4
 R^5
 R^5

20

(式中、R¹は式:-Y¹-Y²-Y³-R^a(式中、Y¹は単結合であり;Y²は-

- [22] 上記[21]記載の化合物、そのプロドラッグ、その製薬上許容される 塩又はその溶媒和物、
- [23] 上記[14]~[18]、[20]又は[22]のいずれかに記載の化合物を有 効成分として含有する医薬組成物、
 - [24] カンナビノイド2型受容体親和性である上記[23]記載の医薬組成物、
 - [25] 抗炎症剤である上記[23]記載の医薬組成物、

10

15

- [26] 免疫抑制剤である上記[23]記載の医薬組成物、
- [27] 腎炎治療剤である上記[23]記載の医薬組成物、
- [28] 鎮痛剤である上記[23]記載の医薬組成物。
- 20 (なお、「一緒になってヘテロ原子及び/又は不飽和結合が介在していてもよい 置換されていてもよいアルキレンである」とは、一緒になって、隣接する原子と 共にヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよ い環を形成する場合を意味する。)
- 25 本発明には、本発明化合物を投与することを特徴とする炎症又は腎炎の治療方法、本発明化合物を投与することを特徴とする免疫の抑制方法、本発明化合物を投与することを特徴とする鎮痛方法、抗炎症剤、免疫抑制剤、腎炎治療剤又は鎮

痛剤を製造するための本発明化合物の使用も包含される。

また、本発明には、本発明化合物を有効成分として含有するカンナビノイド2型受容体が関与する疾患の治療剤、本発明化合物を投与することを特徴とするカンナビノイド2型受容体が関与する疾患の治療方法、カンナビノイド2型受容体が関与する疾患の治療剤を製造するための本発明化合物の使用も包含される。

本発明化合物は以下に示す式(I)で示されるピリドン誘導体である。ピリドン誘導体の位置番号を以下に示す。

5

10 (式中、R¹は水素、ハロゲン、シアノ、ホルミル、アシル、カルボキシ、アルコ キシカルボニル、置換されていてもよいカルバモイル、イソチオシアナト、置換 されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニル オキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニト ロ又は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 はそれぞれ独立して単結 合又は置換されていてもよいアルキレンであり;Y²は単結合、-O-、-O-C 15 (=0) -, -0 - (=0) - 0 -, -0 - (=0) - NR^b -, -0 - SO $_{2}$ - $_{1}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{5}$ - $_$ $NH) - - NR^{b} - C (= 0) - 0 - - NR^{b} - C (= 0) - NR^{b} - - N$ $R^{b}-C = 0 - NR^{b}-SO_{2} - NR^{b}-C = S - NR^{b}-C =$ S) $-NR^{b}-$, $-NR^{b}-SO_{2}-NR^{b}-$, $-NR^{b}-C$ (= NH) $-NR^{b}-$, 20 $-S - (-S O_2 - O - (-S O_2 - N R^b - (-S O_2 - N R^b - C (= O) - N)$ $R^{b} - - C = O - O - C = O - N R^{b} - C = O$ $C (= O) - C (= O) - NR^{b} - C (= S) - C (= S) - NR^{b} - C$ $-C (=S) - NR^{b} - C (=O) - C (=NH) - NR^{b} - C (=O)$

-であり;Raは置換されていてもよいアルキル、置換されていてもよいアルケニ ル、置換されていてもよいアルキニル、置換されていてもよい炭素環式基、置換 されていてもよい複素環式基又はアシルであり; Rbはそれぞれ独立して水素、置 換されていてもよいアルキル、置換されていてもよいアルケニル、置換されてい てもよいアルキニル、置換されていてもよい炭素環式基、置換されていてもよい 複素環式基、アシル、ヒドロキシ又はアルコキシである)で示される基であり; R²は水素、置換されていてもよいアルキル、置換されていてもよいアルケニル、 置換されていてもよいアルキニル、ハロゲン、シアノ、ホルミル、アシル、カル ボキシ、アルコキシカルボニル、置換されていてもよいカルバモイル、イソチオ 10 シアナト、置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチ オ、アルケニルオキシ、アルキニルオキシ、アルキルスルフィニル、アルキルス ルホニル、ニトロ又は式:-Y⁴-R°(式中、Y⁴は単結合、-O-、-S-、 $-SO-, -SO_2-, -NH-, -C (=O) -, -CH_2-, -C (=O) -$ NH-又は-NH-C (=0) -であり; R°は置換されていてもよい炭素環式基 15 又は置換されていてもよい複素環式基である)で示される基であり; R³及びR⁴はそれぞれ独立して、水素、置換されていてもよいアルキル、置換さ れていてもよいアルケニル、置換されていてもよいアルキニル、ハロゲン、シア ノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていても よいカルバモイル、イソチオシアナト、置換されていてもよいアミノ、ヒドロキ 20 シ、アルコキシ、アルキルチオ、アルケニルオキシ、アルキニルオキシ、アルキ ルスルフィニル、アルキルスルホニル、ニトロ又は式:-Y⁵-R^d(式中、Y⁵ は単結合、置換されていてもよいアルキレン、アルケニレン、アルキニレン、ー $O - \langle -S - \langle -SO - \langle -SO_2 - \langle -NH - \rangle - C (= O) - \langle -CH_2 - \langle -CH_2 - \langle -CH_2 - \rangle - \langle -CH_2 - \rangle - \langle -CH_2 - \rangle - \langle -CH_2 - \langle -CH_2 - \rangle - \langle -CH_2 - \langle -CH_2 - \rangle - \langle -CH_2 - \rangle - \langle -CH_2 - \rangle - \langle -CH_2 - \langle -CH_2 - \rangle - \langle -CH_2 - \langle -CH_2 - \rangle - \langle -CH_2 - \rangle - \langle -CH_2 - \langle -CH_2 - \rangle - \langle -CH_2 - \rangle - \langle -CH_2 - \langle -CH_2 - \rangle - \langle -CH_2 - \rangle - \langle -CH_2 - \langle -CH_2 - \rangle - \langle -CH_2 - \rangle - \langle -CH_2 - \langle -CH_2 - \rangle - \langle -CH_2 - \rangle - \langle -CH_2 - \rangle - \langle -CH_2 - \langle -CH_2 - \rangle - \langle -CH_2$ -C (=O) -NH-E-又は-NH-C (=O) -であり; E は単結合又は置 25 換されていてもよいアルキレンであり; Rdは置換されていてもよい炭素環式基又 は置換されていてもよい複素環式基である)で示される基であり;

 R^5 は水素、ヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよいアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 は単結合、置換されていてもよいアルキレン、アルケニレン、アルキニレン、-O-、-S-、-SO-、 $-SO_2-$ 、-NH-、-C(=O) -、-C(=O) -NH-E-又は-NH-C(=O) -であり;Eは単結合又は置換されていてもよいアルキレンであり; R^e は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり;

又は、R²及びR³の組合わせ、R³及びR⁴の組合わせ、R⁴及びR⁵の組合わせ のいずれか一つの組合わせが一緒になって、隣接する原子と共にヘテロ原子及び /又は不飽和結合が介在していてもよい置換されていてもよい環を形成していて もよく;

XはS又はOである;

但し、 R^3 及び R^4 が一緒になって、隣接する原子と共にアルコキシでジ置換されたベンゼン環を形成し、かつ R^5 が水素又はメチルである場合を除く。)

15

10

本発明化合物はビリドン骨格を有することを特徴とし、特に、少なくとも R^2 、 R^3 、 R^4 Q \overline{U} R^5 のいずれか一つが置換されていることが挙げられる。

本発明化合物の好ましい態様としては、以下のものが挙げられる。

R 1 について

- 20 1) R¹が式: -Y¹-Y²-Y³-Rª(式中、Y¹、Y²、Y³、Rª及びRbは上記(1)と同意義である)で示される基である場合、
 - 2) R^1 が水素、シアノ、ホルミル、カルボキシ、イソチオシアナト、アミノ、ヒドロキシ、カルバモイル又は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 は それぞれ独立して単結合又は置換されていてもよいアルキレン(置換基としては、
- 25 ハロゲン、アルケニレン、ヒドロキシ、アジド、アミノ、アシルアミノ、アルキルスルホニルアミノ、アルケニルオキシカルボニルアミノ、アルコキシカルボニルアミノ、マルケニルアミノ、アリールカルボニルアミノ、ヘテロアリールカル

ボニルアミノ、シアノ、アルコキシ、アルキルスルホニルオキシ、トリアルキル シリルオキシ、オキソ、メチレン、ハロゲン化アルコキシカルボニルオキシ、ホ ルミルオキシ及び/又はアシルチオ)であり;Y²は単結合、-〇-、-〇-C(= $R^{b}-C (= 0) - NH-C (= 0) - O - NH-C (= 0) - NH-$ -NH-C (=S) -NH-, -S-, -SO₂-O-, -SO₂-NH-, -S $O_2 - NH - C (= 0) - NH - C (= 0) - O - C (= 0) - NR^b - C$ -C (=S) - NH - -C (=O) - NH - C (=O) - -C (=O) - N $H-C (=S) - C (=O) - C (=O) - NR^b - C (=NR^b) - Z$ $d-C(=O)-NH-NR^b-$ であり; R^a が置換されていてもよいアルキル(置 10 換基としては、ヒドロキシ及び/又はアラルキル)、アルケニル、置換されてい てもよいアリール (置換基としては、カルボキシ、置換されていてもよいアミノ、 アルコキシ、アルキルチオ、アルキレンジオキシ、ハロゲン、アルキル、ヒドロ キシ、ハロゲン化アルキル及び/又はハロゲン化アルコキシ)、置換されていて もよいシクロアルキル (置換基としては、アリール及び/又はヒドロキシ)、置 15 換されていてもよいシクロアルケニル(置換基としては、アルケニレン、ヒドロ キシ、アルキルスルホニルオキシ、アジド、アミノ及び/又はアシルアミノ)、 置換されていてもよいヘテロアリール(置換基としては、オキソ、ヘテロアリー ル、ハロゲン、アリール及び/又はアルキル)又は置換されていてもよいヘテロ サイクル(置換基としては、ハロゲンで置換されていてもよいアリール、アラル 20 キル、アシル、アリールカルボニル、シクロアルキルカルボニル、アルキルスル ホニル、アリールスルホニル、アルキル及び/又はハロゲン化アルキルカルボニ ル)であり;Rbが水素、アルキル、アシル、ヒドロキシ及び/又はアルコキシで ある)で示される基である場合、

25 3) R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 、 Y^3 及び R^a は上記 (1) と 同意義であり; Y^2 は-O-、 $-NR^b-C$ (=O) -又は-C (=O) $-NR^b$ -であり; R^b は水素又は置換されていてもよいアルキルである) で示される基で

ある場合、

4) R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 、 Y^2 、 Y^3 及び R^b は上記(1)と同意義であり; R^a は置換されていてもよい炭素環式基、置換されていてもよい複素環式基又はアシルである)で示される基である場合、

- 5 8 1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^3 は置換されていてもよいアルキレンであり; Y^2 は-O-、-NH-C(=O)-又は-C(=O)-NH-であり; R^a は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基である場合、
- 6) R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^3 は単結合 10 又は置換されていてもよいアルキレンであり; Y^2 は-C(=O) $-NR^b$ -であり; R^a は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基であり; R^b は水素である)で示される基である場合、
 - 7) R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^3 は置換されていてもよいアルキレンであり; Y^2 は-C (=0) $-NR^b-$ 又は $-NR^b-$
- 15 C(=0) であり; R^a は置換されていてもよいアリール又は置換されていてもよいへテロアリールであり; R^b は水素である) で示される基である場合、
 - 8) R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^3 は置換されていてもよい分枝状のアルキレンであり; Y^2 は-O-、-NH-C(=O) 又は-C(=O) -NH-であり; R^a は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基である場合、

R2について

20

- 1) R^2 が水素、アルキル、アルケニル又は式: $-Y^4-R^c$ (式中、 Y^4 が-O-c であり; R^c がヘテロアリールである) で示される基である場合、
- 25 2) R²が水素又は置換されていてもよいアルキルである場合、
 - 3) R²が水素である場合、

 R^3 ついて

10

15

- 1) R^3 が式: $-Y^5 R^d$ (式中、 Y^5 は単結合、 R^d は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基である場合、
- 2) R^3 が水素、置換されていてもよいアルキル、ハロゲン又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合、置換されていてもよいアルキレン、アルケニレン、アルキニレンであり; R^d は置換されていてもよいアリール又は置換されていてもよいへテロアリールである) で示される基である場合、
- 3) R^3 がアルキル、ハロゲン又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合であり; R^d は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基である場合、
- 4) R^3 が水素、アルキル、ハロゲン又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合、アルキニレン又は-C(=O) -NH-アルキレンーであり; R^d は置換されていてもよいアリール(置換基としては、ハロゲン、アルキル、アルコキシ、アルキレンジオキシ及び/又はハロゲン化アルキル)又は置換されていてもよいヘテロアリール(置換基としては、ハロゲン、アルキル、アルコキシ、アルキレンジオキシ及び/又はハロゲン化アルキル)である)で示される基である場合、
 - 5) R^3 が置換されていてもよいアルキル、ハロゲン又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合又はアルキニレンであり; R^d は上記(1)と同意義である)で示される基である場合、
- 20 6) R^3 が水素、アルキル又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合又はアルキニレンであり; R^d は置換されていてもよいアリール又は置換されていてもよいヘテロアリールである)で示される基である場合、
 - 7) R³がアルキルである場合、

25 R 4 について

- 1) R4が水素又は置換されていてもよいアルキルである場合、
- 2) R⁴が水素、アルキル又は式:-Y⁵-R^α(式中、Y⁵は単結合であり;R^α

はアリールである)で示される基である場合、

- 3) R⁴が水素である場合、
- 4) R⁴がアルキルである場合、

5 R⁵について

15

- 1) R^5 がヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数 2 以上のアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 及び R^e は上記(1)と同意義である)で示される基である場合、
- 2) R^5 が炭素数 3以上のアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 は置換されて 10 いてもよいアルキレンであり; R^e は置換されていてもよいアリール、置換されて いてもよいシクロアルキル又は置換されていてもよいヘテロアリールである)で 示される基である場合、
 - 3) R^5 が置換されていてもよい炭素数 3 以上のアルキル又は式: $-Y^6 R^e$ (式中、 Y^6 は置換されていてもよいアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいシクロアルキル又は置換されていてもよいヘテロアリールである) で示される基であり;
- 4) R 5 がヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数 3 以上のアルキル又は式:-Y 6-R 9 (式中、Y 6 は置換されていてもよいアルキレンであり; R 9 は置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロサイクルである)で示される基である場合、
 - 5) R 5 が水素、ヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数 3 以上のアルキル(置換基としては、ハロゲン、ヒドロキシ、アジド、アミノ、アルコキシ、アルケニルオキシ、アルキルスルホニルオキシ、
- 25 アシルチオ、アシルアミノ、アリールカルボニルアミノ、シクロアルキルカルボニルアミノ、ハロゲン化アルキルカルボニルアミノ、アルキルスルホニルアミノ、アリールスルホニルアミノ、ホルミル、オキソ及び/又はシアノ)又は式:-Y⁶

-R°(式中、Y°はアルキレンであり;R°は置換されていてもよいアリール、 置換されていてもよいシクロアルキル、置換されていてもよいヘテロアリール又 は置換されていてもよいヘテロサイクルである)で示される基である場合、

- 6) R 5 がヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数 3 以上のアルキル又は式: Y 6 R e (式中、Y 6 及び R e は上記(1)と同意義である)で示される基である場合、
 - 7) R^5 が炭素数 3 以上のアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 はアルキレンであり; R^e は置換されていてもよいアリールである)で示される基である場合、
 - 8) R⁵が炭素数3以上のアルキルである場合、
- 10 9) R^5 が式: $-Y^6-R^e$ (式中、 Y^6 はアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいシクロアルキル又は置換されていてもよいへテロアリールである)で示される基である場合、

R³及びR⁴について

- 15 1) R³及びR⁴が一緒になっている場合、
 - 2) R³及びR⁴が一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽 和結合が介在していてもよい置換されていてもよい環(但し、置換されていても よいベンゼン環でない)を形成する場合、
- 3) R³及びR⁴が一緒になって、隣接する原子と共に炭素環(但し、R³が置換 20 している炭素原子とR⁴が置換している炭素原子間の結合のみが二重結合であり、 他の炭素原子間の結合は単結合である)を形成する場合、
 - 4) R³及びR⁴が一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽 和結合が介在していてもよい置換されていてもよい環(置換基としては、アシル、 アラルキル、アルケニレン及び/又はアルキレン)を形成する場合、
- 25 5) R³及びR⁴が一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽 和結合が介在していてもよい環を形成する場合、
 - 6) R³及びR⁴が一緒になって、隣接する原子と共にヘテロ原子が介在していて

もよい環(但し、 R^3 が置換している炭素原子と R^4 が置換している炭素原子間の結合のみが二重結合であり、他の原子間の結合は単結合である)を形成する場合、7) R^3 及び R^4 が一緒になって、隣接する原子と共に非置換炭素環(但し、 R^3 が置換している炭素原子と R^4 が置換している炭素原子間の結合のみが二重結合であり、他の炭素原子間の結合は単結合である)を形成する場合、

R²及びR³について

1) $R^2 D U R^3 M$ 一緒になって、隣接する原子と共に置換されていてもよい炭素 環 (置換基としては、オキソ及U / V はヒドロキシ)を形成する場合、

10

R⁴及びR⁵について

1) R⁴及びR⁵が一緒になって、隣接する原子と共に不飽和結合が介在していて もよい置換されていてもよい環(置換基としては、アルケニレン)を形成する場 合、

15

Xについて

- 1) Xが酸素原子である場合、
- 2) Xが硫黄原子である場合。
- 20 また、本発明化合物において、特に上記(25)~(28)の態様が好ましい。

本明細書で使用する用語を以下に説明する。本明細書中では特に断りのない限り、各用語は単独で又は他の用語と一緒になって、同じ意味を有する。

25 「ハロゲン」とは、フッ素、塩素、臭素、沃素を意味する。
「ヘテロ原子」とは、窒素原子、酸素原子又は硫黄原子を意味する。
「ヘテロ原子が介在していてもよい環(又はアルキル)」とは、その環(又は

アルキル)の一部に-NR-、-N=、=N-、-O-、-S-(Rは水素又は有機残基(例えばアルキル等))が $1\sim$ 数個介在していてもよい環を意味する。

「不飽和結合」とは、二重結合、三重結合を意味する。

15

20

「不飽和結合が介在していてもよい環(又はアルキル)」とは、その環(又はアルキル)の一部に-CR=CR-、-C=N-、 $-C\equiv C-$ (Rはそれぞれ独立して有機残基(例えばアルキル等))が1~数個介在していてもよい環を意味する。

「アルキル」とは、炭素数 $1 \sim 1$ 2 の直鎖状又は分枝状のアルキルを意味し、 10 例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソプチル、 sec-ブチル、tert-ブチル、n-ベンチル、イソベンチル、neo-ベンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシルなどが挙げられる。

 R^a 、 R^b 、 R^2 、 R^3 、 R^4 のアルキルとしては、特に、炭素数 $1\sim 4$ の直鎖状 又は分枝状のアルキルが好ましく、具体的には、メチル、エチル、n-プロビル、 イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチルが好ましい。

R5の「ヘテロ原子及び/又は不飽和結合が介在していてもよいアルキル」とは、ヘテロ原子及び/又は不飽和結合が介在していてもよい上記「アルキル」を意味し、特に炭素数 2 以上のアルキルが好ましく、さらには、炭素数 3 以上のアルキルが好ましい。炭素数 3 以上のアルキルとしては、例えば、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチル、n-ヘキシル、n-ヘブチル、n-オクチル、n-ノニル、デシル、ウンデシル、ドデシル等が挙げられる。

25 「ヘテロ原子が介在した上記アルキル」としては、 $1 \sim 3$ 個のヘテロ原子が介在した炭素数 $3 \sim 1$ 2 の直鎖状又は分枝状のアルキルが好ましい。特に 1 個のヘテロ原子が介在した炭素数 $3 \sim 8$ のアルキルが好ましく、このようなアルキルと

しては、「アルコキシアルキル」、「アルキルチオアルキル」、「アルキルアミ ノアルキル」等が挙げられる。

「アルコキシ」とは、酸素原子に上記「アルキル」が置換した基を意味し、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソプトキシ、sec-ブトキシ、tert-ブトキシ、n-ペンチルオキシ、n-ヘキシルオキシ、n-ヘプチルオキシ、n-オクチルオキシなどが挙げられる。特に、炭素数 1 ~ 4 の直鎖又は分枝状のアルコキシが好ましく、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソプトキシ、sec-ブトキシ、tert-ブトキシが好ましい。

10 「アルキルチオ」とは、硫黄原子に上記「アルキル」が置換した基を意味し、例えば、メチルチオ、エチルチオ、n-プロピルチオ、イソプロピルチオ、n-ブチルチオ、イソブチルチオ、sec-ブチルチオ、tert-ブチルチオ、n-ペンチルチオ、n-ペンチルチオ、n-ペンチルチオ、n-ペンチルチオ、n-ペンチルチオ、n-ペンチルチオ、n-マシルチオ等が挙げれれる。特に、炭素数 1 ~ 4 の直鎖又は分枝状のアルキルチオが好ましく、メチルチオ、エチルチオ、n-プロピルチオ、イソプロピルチオ、n-ブチルチオ、イソブチルチオ、sec-ブチルチオ、tert-ブチルチオが好ましい。

「アルキルアミノ」とは、アミノ基に上記「アルキル」が置換した基を意味し、例えば、メチルアミノ、エチルアミノ、n-プロピルアミノ、イソプロピルアミノ、n-ブチルアミノ、イソブチルアミノ、sec-ブチルアミノ、tert-ブチルアミノ、n-ベンチルアミノ、n-ヘキシルアミノ等が挙げれれる。特に、炭素数1~4の直鎖又は分枝状のアルキルアミノが好ましく、メチルアミノ、エチルアミノ、n-プロピルアミノ、イソプロピルアミノ、n-ブチルアミノ、イソプチルアミノ、sec-ブチルアミノ、tert-ブチルアミノが好ましい。

20

25

「アルコキシアルキル」とは、上記「アルキル」に上記「アルコキシ」が置換した基を意味し、例えば、メトキシメチル、エトキシメチル、n-プロポキシメチル、1-メトキシエチル、2-エトキシエチル、1-n-プロポキシエチル、2-エトキシエチル、1-エトキシーn-プロピル、2-メトキシ-n-プロピル、3-メトキシ-n-プロピル、1-エトキシ-n-プロピル、2-エトキシー

n-プロピル、3-エトキシ-n-プロピル、1-n-プロポキシ-n-プロピル、2-n-プロポキシ-n-プロピル、3-n-プロポキシ-n-プロピル等が挙げられる。

「アルキルチオアルキル」とは、上記「アルキル」に上記「アルキルチオ」が 置換した基を意味し、例えば、メチルチオメチル、エチルチオメチル、n-プロピ ルチオメチル、1-メチルチオエチル、2-メチルチオエチル、1-エチルチオエチル、 2-エチルチオエチル、1-n-プロピルチオエチル、2-n-プロピルチオエチル、3-n-プロピルチオエチル、1-メチルチオ-n-プロピル、2-メチルチオ-n-プロピル、3-メチルチオ-n-プロピル、1-エチルチオ-n-プロピル、2-エチルチオ-n-プロピル、3-エチルチオ-n-プロピル、1-n-プロピルチオ-n-プロピル、2-n-プロピル、3-エチルチオ-n-プロピル、1-n-プロピル等が挙げられる。

「アルキルアミノアルキル」とは、上記「アルキル」に上記「アルキルアミノ」 が置換した基を意味し、例えば、メチルアミノメチル、エチルアミノメチル、n-プロピルアミノメチル、1-メチルアミノエチル、2-メチルアミノエチル、1-エチルアミノエチル、2-エチルアミノエチル、1-n-プロピルアミノエチル、2-n-プロピルアミノエチル、3-n-プロピルアミノエチル、1-メチルアミノ-n-プロピル、2-メチルアミノ-n-プロピル、3-メチルアミノ-n-プロピル、1-エチルアミノ-n-プロピル、2-エチルアミノ-n-プロピル、3-エチルアミノ-n-プロピル、1-n-プロピルでミノ-n-プロピル、2-n-プロピルでミノ-n-プロピル、3-エチルアミノ-n-プロピルでミノ-n-プロピルをが挙げられる。

20

25

10

15

「不飽和結合が介在した上記アルキル」としては、1又は2個の不飽和結合が介在した炭素数3~12の直鎖状又は分枝状のアルキルが好ましい。特に1個の不飽和結合が介在した炭素数3~8のアルキルが好ましく、このようなアルキルとしては、「アルケニル」、「アルキニル」等が挙げられる。

「アルケニル」は、上記「アルキル」に 1 個またはそれ以上の二重結合を有する 炭素数 $2 \sim 1$ 2 個の直鎖状または分枝状のアルケニル基を意味し、例えば、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1, 3-

ブタジェニル、3-メチル-2-ブテニル等が挙げられる。

「アルキニル」とは、上記「アルキル」に 1 個またはそれ以上の三重結合を有する炭素数 $2 \sim 1$ 2 個のアルキニルを意味し、例えば、エチニル、1-プロピニル、2-プロピニル、3-ブチニル等が挙げられる。

5

「ハロゲン化アルキル」とは、上記「アルキル」に1以上のハロゲンが置換した基を意味し、例えば、クロロメチル、ジクロロメチル、ジフルオロメチル、トリフルオロメチル、クロロエチル(例えば、1-クロロエチル、2-クロロエチル等)、ジクロロエチル(例えば、1,1-ジクロロエチル、1,2-ジクロロエチル、2,2-ジクロロエチル等)等が挙げられる。

「ハロゲン化アルコキシ」とは、上記「アルコキシ」に1以上のハロゲンが置換した基を意味し、例えば、ジクロロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、トリフルオロエトキシ(2,2,2-トリフルオロエトキシ等)等が挙げられる。

15

20

25

10

「アルキレン」は、炭素数 1 ~ 1 2 個の直鎖状または分枝状のアルキレン基を 意味し、例えば、メチレン、エチレン、トリメチレン、テトラメチレン、ペンタ メチレン、ヘキサメチレン、ヘブタメチレン、1-メチルエチレン、1-エチルエチレ ン、1,1-ジメチルエチレン、1,2-ジメチルエチレン、1,1-ジエチルエチレン、1,2-ジエチルエチレン、1-エチル-2-メチルエチレン、1-メチルトリメチレン、2-メチ ルトリメチレン、1,1-ジメチルトリメチレン、1,2-ジメチルトリメチレン、2,2-ジ メチルトリメチレン、1-エチルトリメチレン、2-エチルトリメチレン、1,1-ジエチ ルトリメチレン、1,2-ジエチルトリメチレン、2,2-ジエチルトリメチレン、2-エチ ルトリメチレン、1,2-ジエチルトリメチレン、2,2-ジエチルトリメチレン、1,1-ジメチルトリメチレン、1,1-ジメチルテトラメチレン、1,1-ジメチルテトラメチレン、2,2-ジメチルテトラ

 Y^{1} , Y^{3} , Y^{5} , Y^{6} , -C (=0) -NH-PN+VV-O TPN+VV

メチレン、2,2-ジ-n-プロピルトリメチレン等が挙げられる。

PCT/JP01/11427 WO 02/053543

しては、炭素数1~10の直鎖状のアルキレン、特に、炭素数1~4個の直鎖状 のアルキレン基(例えば、メチレン、エチレン、トリメチレン、テトラメチレン)、 さらには炭素数1又は2の直鎖状のアルキレン(例えばメチレン、エチレン)が 好ましい。

R²及びR³の組合わせ、R³及びR⁴の組合わせ、R⁴及びR⁵の組合わせのい ずれか一つの組合わせが一緒になって、隣接する原子と共にヘテロ原子及び/又 は不飽和結合が介在していてもよい置換されていてもよい環を形成する場合の 「環」は、ヘテロ原子及び/又は不飽和結合が介在していてもよい上記「アルキ レン」を意味する。特に、炭素数2以上のアルキレンが好ましく、さらには炭素 数3以上のアルキレンが好ましい。特に炭素数3~6の直鎖状のアルキレンが好 10 ましい。

5

20

25

なお、「ヘテロ原子が介在する」「不飽和結合が介在する」の意味は、上記と 同様である。

「アルケニレン」は、上記「アルキレン」に1個またはそれ以上の二重結合を 15 有する炭素数2~12個の直鎖状または分枝状のアルケニレン基を意味し、例え ば、ビニレン、プロペニレンまたはプテニレンが挙げられる。好ましくは、炭素 数2~6個の直鎖状のアルケニレン基であり、ビニレン、プロペニレン、プテニ レン、ペンテニレン、ヘキセニレン、ブタジエニレン等である。

「アルキニレン」とは、上記「アルキレン」に1個またはそれ以上の二重結合 を有する炭素数2~12個の直鎖状または分枝状のアルケニレン基を意味する。

「アシル」とは、水素以外の基が置換したカルボニル基を意味し、例えば、ア ルキルカルボニル(例えば、アセチル、プロピオニル、ブチリル、イソブチリル、 バレリル、イソバレリル、ピバロイル、ヘキサノイル、オクタノイル、ラウロイ ル等)、アルケニルカルボニル(例えば、アクリロイル、メタアクリロイル)、 シクロアルキルカルボニル(例えば、シクロプロパンカルボニル、シクロブタン

カルボニル、シクロペンタンカルボニル、シクロヘキサンカルボニル等)、アリールカルボニル(ベンゾイル、ナフトイル等)、ヘテロアリールカルボニル(ビリジルカルボニル等)が挙げられる。これらの基はさらにアルキル、ハロゲン等の置換基で置換されていてもよい。例えば、アルキルが置換したアリールカルボニルとしてはトルオイル基、ハロゲンが置換したアルキルカルボニル基としてはトリフルオロアセチル基等が挙げられる。

「アルケニルオキシ」とは、酸素原子に上記「アルケニル」が置換した基を意味し、例えば、ビニルオキシ、1-プロベニルオキシ、2-プロベニルオキシ、1-ブ
10 テニルオキシ、2-ブテニルオキシ、3-ブテニルオキシ、1,3-ブタジェニルオキシ、
3-メチル-2-ブテニルオキシ等が挙げられる。

「アルキニルオキシ」とは、酸素原子に上記「アルケニル」が置換した基を意味し、例えば、エチニルオキシ、1-プロピニルオキシ、2-プロピニルオキシ、1-プチニルオキシ、3-ブチニルオキシ等が挙げられる。

15

20

「アルコキシカルボニル」とは、カルボニルに上記「アルコキシ」が置換した基を意味し、例えば、メトキシカルボニル、エトキシカルボニル、n-プロポキシカルボニル、i-プロポキシカルボニル、i-プトキシカルボニル、i-プトキシカルボニル、sec-ブトキシカルボニル、tert-ブトキシカルボニル、n-ペンチルオキシカルボニル、n-ペキシルオキシカルボニル、n-ペプチルオキシカルボニル、n-ペナシカルボニル、n-オクチルオキシカルボニル等が挙げられる。特に、メトキシカルボニル、エトキシカルボニル等が好ましい。

「アルキルスルフィニル」とは、スルフィニルに上記「アルキル」が置換した 基を意味し、特に、メタンスルフィニル、エタンスルフィニル等が好ましい。

25 「アルキルスルホニル」とは、スルホニルに上記「アルキル」基が置換した基 を意味し、特に、メタンスルホニル、エタンスルホニル等が好ましい。

「アシルアミノ」のアシル部分は、上記「アシル」と同意義であり、「アシルアミノ」としては、特に、アセチルアミノ、プロピオニルアミノ、ペンゾイルアミノが好ましい。

「アルキルスルホニルアミノ」のアルキルスルホニル部分は、上記「アルキル スルホニル」と同意義であり、「アルキルスルホニルアミノ」としては、特に、 メタンスルホニルアミノ、エタンスルホニルアミノが好ましい。

「アルケニルオキシカルボニルアミノ」のアルケニルオキシ部分は、上記「アルケニルオキシ」と同意義であり、「アルケニルオキシカルボニルアミノ」としては、特に、ビニルオキシカルボニルアミノ、アリルオキシカルボニルアミノが好ましい。

10

20

「アルコキシカルボニルアミノ」のアルコキシカルボニル部分は、上記「アルコキシカルボニル」と同意義であり、「アルコキシカルボニルアミノ」としては、特に、メトキシカルボニルアミノ、エトキシカルボニルアミノ、tert-ブトキシカルボニルアミノが好ましい。

15 「アルケニルアミノ」のアルケニル部分は、上記「アルケニル」と同意義であり、「アルケニルアミノ」としては、特に、ビニルアミノ、アリルアミノが好ましい。

「アリールカルボニルアミノ」のアリール部分は、上記「アリール」と同意義であり、「アリールカルボニルアミノ」としては、特に、ベンゾイルアミノ、ナフトイルアミノが好ましい。

「ヘテロアリールカルボニルアミノ」のヘテロアリール部分は、上記「ヘテロアリール」と同意義であり、「ヘテロアリールカルボニルアミノ」としては、特に、ビリジンカルボニルアミノが好ましい。

「アルキルスルホニルオキシ」のアルキルスルホニル部分は、上記「アルキル 25 スルホニル」と同意義であり、「アルキルスルホニルオキシ」としては、特に、 メタンスルホニルオキシ、エタンスルホニルオキシが好ましい。

「トリアルキルシリルオキシ」としては、tert-ブチルジメチルシリルオキシが

好ましい。

15

「ハロゲン化アルコキシカルボニルオキシ」のハロゲン化アルコキシ部分は、 上記「ハロゲン化アルコキシ」と同意義であり、「ハロゲン化アルコキシカルボニルオキシ」としては、特に、トリフルオロメトキシカルボニルオキシ、トリクロロメトキシカルボニルオキシが好ましい。

「アシルチオ」のアシル部分は、上記「アシル」と同意義であり、「アシルチオ」としては、特に、アセチルチオが好ましい。

「アリールカルボニル」のアリール部分は、上記「アリール」と同意義であり、「アリールカルボニル」としては、特に、ベンゾイル、ナフトイルが好ましい。

「シクロアルキルカルボニル」のシクロアルキル部分は、上記「シクロアルキル」と同意義であり、「シクロアルキルカルボニル」としては、特に、シクロプロピルカルボニル、シクロブチルカルボニル、シクロヘキシルカルボニルが好ましい。

「アリールスルホニル」のアリール部分は、上記「アリール」と同意義であり、 「アリールスルホニル」としては、特に、ベンゼンスルホニルが好ましい。

「ハロゲン化アルキルカルボニル」のハロゲン化アルキル部分は、上記「ハロゲン化アルキル」と同意義であり、「ハロゲン化アルキルカルボニル」としては、特に、トリフルオロメチルカルボニルが好ましい。

「アルキレンジオキシ」のアルキレン部分は、上記「アルキレン」と同意義で
20 あり、「アルキレンジオキシ」としては、メチレンジオキシ、エチレンジオキシ、
トリメチレンジオキシ、テトラメチレンジオキシが好ましい。

「アラルキル」は、上記「アリール」が置換した上記「アルキル」を意味し、例えば、ベンジル、フェネチル、フェニルプロピル、ナフチルメチル、ナフチルエチル等が挙げられる。

25 「シクロアルキルカルボニルアミノ」のシクロアルキル部分は、上記「シクロアルキル」と同意義であり、「シクロアルキルカルボニルアミノ」としては、特に、シクロプロピルカルボニルアミノ、シクロブチルカルボニルアミノ、シクロ

ヘキシルカルボニルアミノが好ましい。

「ハロゲン化アルキルカルボニルアミノ」のハロゲン化アルキル部分は、上記「ハロゲン化アルキル」と同意義であり、「ハロゲン化アルキルカルボニルアミノ」としては、特に、トリフルオロメチルカルボニルアミノが好ましい。

5 「アリールスルホニルアミノ」のアリール部分は、上記「アリール」と同意義 であり、「アリールスルホニルアミノ」としては、特に、ベンゼンスルホニルア ミノが好ましい。

「置換されていてもよいアミノ」の置換基としては、アルキル(例えば、メチ 10 ル、エチル、ロープロピル、iープロピル等)、アシル(例えば、ホルミル、ア セチル、プロピオニル、ベンゾイル等)、アラルキル(例えば、ベンジル、フェニルエチル、フェニルプロピルアミノ、ナフチルメチルアミノ等)等が挙げられる。アミノ基の窒素原子が、これらの置換基でモノ置換またはジ置換されていて もよい。

「置換されていてもよいアミノ」としては、非置換アミノ、アルキルアミノ(例 15 えば、メチルアミノ、エチルアミノ、n-プロピルアミノ、i-プロピルアミノ、 ジメチルアミノ、ジエチルアミノ、エチルメチルアミノ、プロピルメチルアミノ)、 アシルアミノ (例えば、アセチルアミノ、ホルミルアミノ、プロピオニルアミノ、 ベンゾイルアミノ)、アシルアルキルアミノ (例えば、N-アセチルメチルアミ ノ)、アラルキルアミノ(例えば、ベンジルアミノ、1-フェニルエチルアミノ、 20 2-フェニルエチルアミノ、1-フェニルプロピルアミノ、2-フェニルプロピ ルアミノ、3-フェニルプロピルアミノ、1-ナフチルメチルアミノ、2-ナフ チルメチルアミノ、ジベンジルアミノ等)、アルキルスルホニルアミノ(例えば、 メタンスルホニルアミノ、エタンスルホニルアミノ等)、アルケニルオキシカル ボニルアミノ(例えば、ビニルオキシカルボニルアミノ、アリルオキシカルボニ 25 ルアミノ等)、アルコキシカルボニルアミノ(例えば、メトキシカルボニルアミ ノ、エトキシカルボニルアミノ、tert-ブトキシカルボニルアミノ等)、アルケニ

ルアミノ (例えば、ビニルアミノ、アリルアミノ等)、アリールカルボニルアミノ (例えば、ベンゾイルアミノ等)、ヘテロアリールカルボニルアミノ (例えば、ビリジンカルボニルアミノ等)が挙げられる。

5 「置換されていてもよいカルバモイル」の置換基としては、アルキル(例えば、メチル、エチル、nープロピル、iープロピル等)、アシル(例えば、ホルミル、アセチル、プロピオニル、ベンゾイル等)等が挙げられる。カルバモイル基の窒素原子が、これらの置換基でモノ置換またはジ置換されていてもよい。

「置換されていてもよいカルバモイル」としては、カルバモイル、N-メチル 10 カルバモイル、N-エチルカルバモイル等が好ましい。

「炭素環式基」とは、炭素原子及び水素原子で構成される環状の置換基を意味 し、環状部分は飽和環であっても不飽和環であってもよい。例えば、アリール、 シクロアルキル、シクロアルケニル等が挙げられる。なお、炭素数3~14の環 から誘導される基が好ましい。

「アリール」とは、炭素数6~14の芳香族炭素環式基を意味し、例えば、フェニル、ナフチル、アントリル、フェナントリル等が挙げられる。

15

20

25

「シクロアルキル」とは、炭素数3~7のシクロアルキルを意味し、例えば、 シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等が挙げられ る。

「シクロアルケニル」とは、上記「シクロアルキル」に 1 個またはそれ以上の二重結合を有する炭素数 $3 \sim 1$ 2 個のアルケニル基を意味し、例えば、シクロプロペニル(例えば、1-シクロプロペニル)、シクロプテニル(例えば、1-シクロプテニル(例えば、1-シクロペンテンー)、シクロペンテンー・イル、1-シクロペンテンー・イル、1-シクロペンテンー・イル、1-シクロペンテンー・イル、1-シクロペンテンー・イル、1-シクロペンテンー・イル、1-シクロペンテンー・イル、1-シクロペンテンー・イル、1-シクロペキセンー・イル)、シクロペナセンー・イル)、シクロペプテニル(例えば、1-シクロペプテニル(例えば、1-シクロペプテニル(例えば、1-シクロペプテニル(例えば、1-シクロペプテニル(例えば、1-シクロペプテニル(例えば、1-シクロペプテニル)、シクロオクテニル(例えば、1-

シクロオクテニル)等が挙げられる。特に、1-シクロヘキセン-1-イル、2-シクロ ヘキセン-1-イル、3-シクロヘキセン-1-イルが好ましい。

「複素環式基」とは、上記「炭素環式基」の環状部分の炭素原子及び水素原子 (例えば、-CH=、 $-CH_2-$)が $1\sim5$ 個のヘテロ原子で置換された環から誘導される基を意味し、環を構成する部分は飽和環であっても不飽和環であってもよい。例えば、ヘテロアリール、ヘテロサイクル等が挙げられる。

5

10

15

20

25

「ヘテロアリール」とは、窒素原子、酸素原子、および/又は硫黄原子を1~ 4個含む炭素数1~9のヘテロアリールを意味し、例えば、フリル(例えば、2-フリル、3-フリル)、チエニル(例えば、2-チエニル、3-チエニル)、ピロリル(例 えば、1-ピロリル、2-ピロリル、3-ピロリル)、イミダゾリル(例えば、1-イミダ ゾリル、2-イミダゾリル、4-イミダゾリル)、ピラゾリル(例えば、1-ピラゾリル、 3-ピラゾリル、4-ピラゾリル)、トリアゾリル(例えば、1,2,4-トリアゾール-1-イル、1, 2, 4-トリアゾリール-3-イル、1, 2, 4-トリアゾール-4-イル)、テト ラゾリル (例えば、1-テトラゾリル、2-テトラゾリル、5-テトラゾリル)、オキサ ゾリル (例えば、2-オキサゾリル、4-オキサゾリル、5-オキサゾリル)、イソキサ ゾリル (例えば、3-イソキサゾリル、4-イソキサゾリル、5-イソキサゾリル)、チ アゾリル (例えば、2-チアゾリル、4-チアゾリル、5-チアゾリル)、チアジアゾリ ル、イソチアゾリル (例えば、3-イソチアゾリル、4-イソチアゾリル、5-イソチア ゾリル)、ヒリジル(例えば、2-ヒリジル、3-ピリジル、4-ピリジル)、ピリダジ ニル (例えば、3-ピリダジニル、4-ピリダジニル)、ピリミジニル (例えば、2-ビリミジニル、4-ピリミジニル、5-ピリミジニル)、フラザニル(例えば、3-フラ ザニル)、ピラジニル(例えば、2-ピラジニル)、オキサジアゾリル(例えば、1, 3, 4-オキサジアゾール-2-イル)、ベンゾフリル(例えば、2-ベンゾ[b]フリル、3-ベンゾ[b]フリル、4-ベンゾ[b]フリル、5-ベンゾ[b]フリル、6-ベンゾ[b]フリル、7-ベンゾ[b]フリル)、ベンゾチエニル(例えば、2-ペンゾ[b]チエニル、3-ベンゾ[b] チエニル、4·ベンゾ[b]チエニル、5·ベンゾ[b]チエニル、6·ベンゾ[b]チエニル、7-

ベンゾ[b]チエニル)、ベンズイミダゾリル(例えば、1-ベンゾイミダゾリル、2-ベンゾイミダゾリル、4-ベンゾイミダゾリル、5-ベンゾイミダゾリル)、ジベンゾ フリル、ベンゾオキサゾリル(例えば、2-ベンゾオキサゾリル、4-ベンゾオキサゾ リル、5-ベンゾオキサゾリル、6-ベンゾオキサゾリル、7-ベンゾオキサゾリル、8-ベンゾオキサゾリル)、キノキサリル(例えば、2-キノキサリニル、5-キノキサリ ニル、6-キノキサリニル)、シンノリニル(例えば、3-シンノリニル、4-シンノリ ニル、5-シンノリニル、6-シンノリニル、7-シンノリニル、8-シンノリニル)、キ ナゾリル(例えば、2-キナゾリニル、4-キナゾリニル、5-キナゾリニル、6-キナゾ リニル、7-キナゾリニル、8-キナゾリニル)、キノリル(例えば、2-キノリル、3-キノリル、4-キノリル、5-キノリル、6-キノリル、7-キノリル、8-キノリル)、フ 10 タラジニル (例えば、1-フタラジニル、5-フタラジニル、6-フタラジニル)、イソ キノリル (例えば、1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキ ノリル、6-イソキノリル、7-イソキノリル、8-イソキノリル)、プリル、プテリジ ニル (例えば、2-プテリジニル、4-プテリジニル、6-プテリジニル、7-プテリジニ ル)、カルバゾリル、フェナントリジニル、アクリジニル(例えば、1-アクリジ 15 ニル、2-アクリジニル、3-アクリジニル、4-アクリジニル、9-アクリジニル)、イ ンドリル(例えば、1-インドリル、2-インドリル、3-インドリル、4-インドリル、 5-インドリル、6-インドリル、7-インドリル)、イソインドリル、ファナジニル(例 えば、1-フェナジニル、2-フェナジニル)またはフェノチアジニル(例えば、1-フェノチアジニル、2-フェノチアジニル、3-フェノチアジニル、4-フェノチアジニ 20 ル)等が挙げられる。

25

ゾリジニル、3-ピラゾリジニル、4-ピラゾリジニル、ピペリジノ、2-ピペリジル、3-ピペリジル、4-ピペリジル、ピペラジノ、2-ピペラジニル、2-モルホリニル、3-モルホリニル、モルホリニル、モルホリン、ピロリジノ、ピペリジノ、ピペラジノが好ましい。

5

10

「置換されていてもよいアルキレン」「置換されていてもよいアルキル」、「置換されていてもよいアルケニル」、「置換されていてもよいアルキニル」、「置換されていてもよい複素環式基」、「へテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよいアルキル」、「ヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい環」が置換基を有する場合、それぞれ同一または異なる1~4個の置換基で任意の位置が置換されていてもよい。

置換基としては、例えば、ヒドロキシ、カルボキシ、ハロゲン(フッ素、塩素、 臭素、よう素)、ハロゲン化アルキル(例えば、 $\mathrm{CF_3}$ 、 $\mathrm{CH_2CF_3}$ 、 $\mathrm{CH_2CCl_3}$ 等)、ア 15 ルキル (例えば、メチル、エチル、イソプロピル、tert-ブチル等)、アルケニル (例えば、ビニル)、ホルミル、アシル(例えば、アセチル、プロピオニル、ブ チリル、ビバロイル、ベンゾイル、ピリジンカルボニル、シクロベンタンカルボ ニル、シクロヘキサンカルボニル等)、アルキニル(例えば、エチニル)、シク ロアルキル(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロ 20 ヘキシル等)、シクロアルケニル(例えば、シクロプロペニル等)、アルコキシ (例えば、メトキシ、エトキシ、プロポキシ、ブトキシ等)、アルコキシカルボ ニル (例えば、メトキシカルボニル、エトキシカルボニル、tert-プトキシカルボ ニル等)、ニトロ、ニトロソ、オキソ、置換されていてもよいアミノ(例えば、 アミノ、アルキルアミノ(例えば、メチルアミノ、エチルアミノ、ジメチルアミ 25 ノ等)、ホルミルアミノ、アシルアミノ(例えば、アセチルアミノ、ベンゾイル アミノ等)、アラルキルアミノ(例えば、ベンジルアミノ、トリチルアミノ)、

ヒドロキシアミノ、アルキルスルホニルアミノ、アルケニルオキシカルボニルア ミノ、アルコキシカルボニルアミノ、アルケニルアミノ、アリールカルボニルア ミノ、ヘテロアリールカルボニルアミノ等)、アジド、アリール(例えば、フェ ニル等)、アリールオキシ(例えば、フェノキシ)、アラルキル(例えば、ベン ジル、フェネチル、フェニルプロピル等)、アルキレンジオキシ(例えば、メチ 5 レンジオキシ)、アルキレン(例えば、メチレン、エチレン、トリメチレン、テ トラメチレン、ペンタメチレン等)、アルケニレン(例えば、プロペニレン、ブ テニレン、ブタジエニレン等)、シアノ、イソシアノ、イソシアナト、チオシア ナト、イソチオシアナト、メルカプト、アルキルチオ (例えば、メチルチオ、エ 10 チルチオ等)、アルキルスルホニル(例えば、メタンスルホニル、エタンスルホ ニル)、アリールスルホニル(例えば、ベンゼンスルホニル等)、置換されてい てもよいカルバモイル、スルファモイル、ホルミルオキシ、ハロホルミル、オキ ザロ、メルカプト、チオホルミル、チオカルボキシ、ジチオカルボキシ、チオカ ルバモイル、スルフィノ、スルフォ、スルホアミノ、ヒドラジノ、ウレイド、ア 15 ミジノ、グアニジノ、アルキルスルホニルオキシ、トリアルキルシリルオキシ、 ハロゲン化アルコキシカルボニルオキシ、ホルミルオキシ、アシルチオ、チオキ ソ等が挙げられる。

なお、置換基がアルキレン、アルケニレン又はアルキレンジオキシ等の2価の 基である場合は、同一の原子にアルキレン等が置換している場合はいわゆるスピ 口化合物を形成し、異なる原子にアルキレンが置換している場合は縮合環を形成 する。

20

25

Y¹及びY³の「置換されていてもよいアルキレン」の置換基としては、例えば、 ハロゲン、アルケニレン、ヒドロキシ、アジド、置換されていてもよいアミノ(例 えば、アミノ、アシルアミノ、アルキルスルホニルアミノ、アルケニルオキシカ ルボニルアミノ、アルコキシカルボニルアミノ、アルケニルアミノ、アリールカ ルボニルアミノ、ヘテロアリールカルボニルアミノ)、シアノ、アルコキシ、ア

ルキルスルホニルオキシ、トリアルキルシリルオキシ、オキソ、メチレン、ハロゲン化アルコキシカルボニルオキシ、ホルミルオキシ又はアシルチオが好ましい。

R^a及びR^bの「置換されていもてよいアルキル」、「置換されていもてよいア ルケニル」「置換されていもてよいアルキニル」の置換基としては、例えば、ヒドロキシ又はアラルキルが好ましい。

「置換されていてもよい炭素環式基」「置換されていてもよい複素環式基」の好ましい置換基としては、カルボキシ、置換されていてもよいアミノ(例えば、10 アミノ、アルキルアミノ(例えば、メチルアミノ、エチルアミノ、ジメチルアミノ等)、アシルアミノ(例えば、アセチルアミノ、ベンゾイルアミノ等)、アラルキルアミノ(例えば、ベンジルアミノ、トリチルアミノ)、ヒドロキシアミノ等)、アルコキシ(例えば、メトキシ、エトキシ、プロボキシ、ブトキシ等)、アルキルチオ(例えば、メチルチオ、エチルチオ等)、アルキレン(例えば、メチルチオ、エチルチオ等)、アルキレンジオキシ(例えば、メチレン、テトラメチレン等)、アルキレンジオキシ(例えば、メチレンジオキシ等)、ハロゲン(フッ素、塩素、臭素、よう素)、アルキル(例えば、メチル、エチル、イソプロビル、tert-ブチル等)、ヒドロキシ、オキソ、チオキソ等が挙げられる。

Rªの「置換されていてもよい炭素環式基」としては、置換されていてもよいアリール (置換基としては、カルボキシ、置換されていてもよいアミノ、アルコキシ、アルキルチオ、アルキレンジオキシ、ハロゲン、アルキル、ヒドロキシ、ハロゲン化アルキル及び/又はハロゲン化アルコキシ)、置換されていてもよいシクロアルキル (置換基としては、アリール及び/又はヒドロキシ)、置換されていてもよいシクロアルケニル (置換基としては、アルケニレン、ヒドロキシ、アルキルスルホニルオキシ、アジド、アミノ及び/又はアシルアミノ)が好ましい。

Raの「置換されていてもよい複素環式基」としては、置換されていてもよいへテロアリール(置換基としては、オキソ、ヘテロアリール、ハロゲン、アリール及び/又はアルキル)又は置換されていてもよいヘテロサイクル(置換基としては、ハロゲンで置換されていてもよいアリール、アラルキル、アシル、アリールカルボニル、シクロアルキルカルボニル、アルキルスルホニル、アリールスルホニル、アルキル及び/又はハロゲン化アルキルカルボニル)が好ましい。

「ヘテロ原子及び/又は不飽和結合が介在していてもよい環」上の好ましい置換基としては、オキソ、ヒドロキシ、アルケニレン(例えば、プロペニレン、ブテニレン、ブタジエニレン)、アシル(例えば、アセチル、プロピオニル、ブチリル、ピバロイル、ベンゾイル、ピリジンカルボニル、シクロペンタンカルボニル、シクロヘキサンカルボニル等)、アラルキル(例えば、ベンジル等)、アルキレン(例えば、メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン等)等が挙げられる。

15

20

25

10

R5の「ヘテロ原子及び/又は不飽和結合が介在していてもよいアルキル」の置換基としては、ハロゲン、ヒドロキシ、アジド、アミノ、アルコキシ、アルケニルオキシ、アルキルスルホニルオキシ、アシルチオ、アシルアミノ、アリールカルボニルアミノ、シクロアルキルカルボニルアミノ、ハロゲン化アルキルカルボニルアミノ、アルキルスルホニルアミノ、アリールスルホニルアミノ、ホルミル、オキソ又はシアノが好ましい。

「R²及びR³の組合わせ、R³及びR⁴の組合わせ、R⁴及びR⁵の組合わせのいずれか一つの組合わせが一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい環を形成する」とは、具体的には以下に示す構造を意味する。

(式中、 R^1 、 R^2 、 R^3 、 R^4 及び R^5 は前記と同意義であり; $-R^2$ ^a-A $-R^3$ a-、 $-R^3$ ^a-A $-R^4$ ^a-A $-R^5$ ^a-はそれぞれ独立してヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよいアルキレンである。)

特に、ビリドン環と結合している原子が炭素である場合、すなわち R^{2a} 、 R^{3a} 、 R^{4a} 、 R^{5a} が炭素原子である場合が好ましい。なお、この炭素原子にも上述の置換基(例えば、アルキル、アルコキシ、ヒドロキシ、オキソ、ハロゲン、アミノ等)が結合していてもよい。

10 「環」は、4~12員の環を意味し、特に5~10員の環、さらには5~8員の環が好ましい。環を構成する原子としては、炭素原子、ヘテロ原子(窒素原子、硫黄原子、酸素原子)、水素原子等が挙げられる。

R²及びR³が一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽和 15 結合が介在していてもよい置換されていてもよい環を形成する場合、例えば、以 下の化合物が挙げられる。

特に好ましいのは下記の化合物である。

(R¹、R⁴、R⁵及びXは前記と同意義; Yは酸素原子、硫黄原子又は-NR-;
 5 R、R, 及びR, は水素、アルキル、アラルキル等)

R³及びR⁴が一緒になって、隣接する原子と共にヘテロ原子(特に、酸素原子、 窒素原子)及び/又は不飽和結合(特に、二重結合)が介在していてもよい置換 されていてもよい環を形成する場合、特に以下の化合物が好ましい。

- 10 1) 該環が非置換炭素環である場合、
 - 2) 該環の異なる位置がアルケニレンで置換されている場合、
 - 3) 該環が酸素原子又は窒素原子が介在した環である場合、
 - 4) 該環が窒素原子が介在した環であり、該窒素原子が置換基(特にアルキル、アシル、アラルキル等)で置換されている場合、
- 15 5) 該環が非置換炭素環(但し、R³が置換している炭素原子とR⁴が置換している炭素原子間の結合のみが二重結合であり、他の炭素原子間の結合は単結合である) である場合、

6) 該環がヘテロ原子が介在した非置換の環(但し、 R^3 が置換している炭素原子と R^4 が置換している炭素原子間の結合のみが二重結合であり、他の原子間の結合は単結合である)である場合。

例えば、以下の化合物が挙げられる。

特に好ましいのは下記の構造である。

5

 $(R^1, R^2, R^5, X$ は前記と同意義; Yは酸素原子又は硫黄原子; R、Ra及びRbはアシル、アラルキル、アルキル、アルコキシ、オキソ等; nは $0\sim 5$ の整数)

5

なお、本発明には R^3 及び R^4 が一緒になって、隣接する原子と共に不飽和結合が介在した炭素環を形成する場合も包含される。この場合、不飽和結合としては二重結合が好ましく、 R^3 が置換している炭素原子と R^4 が置換している炭素原子間の二重結合以外に、さらに一つの二重結合を有する場合が好ましい。

10 R³及びR⁴が一緒になって、隣接する原子と共にベンゼン環を形成する場合も本発明に包含される。但しこの場合、該ベンゼン環がジアルコキシで置換されていて、かつR⁵が水素又はメチルである化合物は除く。

R ⁴ 及び R ⁵ が一緒になって、隣接する原子と共にヘテロ原子(特に、酸素原子、 15 窒素原子)及び/又は不飽和結合(特に、二重結合)が介在していてもよい置換 されていてもよい環を形成する場合、特に以下の化合物が好ましい。

- 1) 該環が不飽和結合(特に、二重結合)が介在していてもよい置換されていてもよい炭素環である場合、
- 2) 該環が非置換の場合、
- 20 3) 該環の異なる位置が置換基(特に、アルケニレン等) で置換されている場合 が好ましい。例えば、以下の化合物が挙げられる。

10

15

20

$$R^1$$
 R^2
 R^3
 R^3
 R^3

なお、 R^2 及び R^3 の組合わせ、 R^3 及び R^4 の組合わせ、 R^4 及び R^5 の組合わせのうち、 R^3 及び R^4 の組合わせがヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい環である場合が好ましい。

「R³及びR⁴が一緒になっていない」とは、一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい環を形成していないことを意味し、R³及びR⁴はそれぞれ独立して、水素、置換されていてもよいアルキル、置換されていてもよいアルケニル、置換されていてもよいアルケニル、置換されていてもよいアルケニル、かりが、シアノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていてもよいカルバモイル、イソチオシアナト、置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニルオキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニトロ又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合、置換されていてもよいアルキレン、アルケニレン、アルキニレン、アルキニレン、 $-SO_2-$ 、-NH-、アルケニレン、アルキニレン、-O-、 $-SO_2-$ 、-NH-、-C(=O)-、 $-CH_2-$ 、-C(=O)-NH-E-

ーであり; E は単結合又は置換されていてもよいアルキレンであり; R d は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である) で示される基である場合を意味する。

5 発明を実施するための最良の形態

以下に一般的製法を記載する。

(式中、R¹、R³、R⁴、R⁵及びXは前記と同意義; R×はアルキル等; Hal はハロゲン)

10 工程A-1

式 (A-1) で示される化合物と式: R⁵NH₂ (式中、R⁵は前記と同意義)で示される化合物を反応させ、式 (A-2) で示される化合物を製造する工程である。式 (A-1) で示される化合物の例としては、エチル アセトアセテート、エチル 2-メチルアセトアセテート、エチル 2-エチルアセトアセテート等が挙げられる。式: R⁵NH₂で示される化合物の例としては、アルキルアミン (例えば、メチルアミン、エチルアミンン、n-プロピルアミン、n-ブチルアミン等)、アラルキルアミン (例えば、ベンジルアミン、フェネチルアミン等)等が挙げられる。反応溶媒としては、ベンゼン、トルエン、キシレン等が挙げられ、特にトルエン、キシレンが好ましい。反応温度は、室温~200℃、特に好ましくは80~180℃

である。本工程は共沸脱水することにより行うことができ、生成物である式 (A-2)で示される化合物は減圧又は常圧下で蒸留等することにより精製することができる。

工程A-2

式(A-2)で示される化合物と式(A-3)で示される化合物を塩基の存在下で反応させ、式(A-4)で示される化合物を製造する工程である。塩基としては、ピリジン、ジメチルアミノピリジン、トリエチルアミン等が挙げられ、特にピリジンが好ましい。反応溶媒としては、ジエチルエーテル、テトラヒドロフラン、塩化メチレン、トルエン等が挙げられ、特にジエチルエーテルが好ましい。反応温度は、0~200℃、特に好ましくは室温~100℃である。

工程A-3

15

式 (A-4) で示される化合物を塩基の存在下閉環させ、式 (A-5) で示される化合物を製造する工程である。塩基としては、金属ナトリウム、金属アルコキシド (例えば、ソジウムメトキサイド等) が使用される。反応溶媒としては、アルコール (例えば、メタノール、エタノール) とベンゼン又はトルエン等との混合溶媒が好ましい。反応温度は、 $0\sim2$ 00°C、特に好ましくは室温 \sim 100°Cである。

20 (式中、 R^1 、 R^2 、 R^3 及び R^4 は前記と同意義; R^X はアルキル等を意味する) 工程B-1

式 (B-1) で示される化合物にハロゲン化試薬を反応させ、式 (B-2) で示され

る化合物を製造する工程である。ハロゲン化試薬としては、塩素(ガス)、臭素、 沃素等が挙げられるが、特に沃素が好ましい。本工程は、酸の存在下で行うのが 好ましい。酸としては、塩酸(濃塩酸、希塩酸)、臭酸、硫酸等が挙げられる。 また、塩基の存在下で行うこともできる。塩基としては、炭酸カリウム、炭酸ナ トリウム等を使用することができる。また本工程は、各ハロゲンのカリウム塩の 存在下で行うことができる。例えばハロゲン化試薬として沃素を使用した場合は、 沃化カリウムの存在下で行うのが好ましい。反応溶媒としては、塩化メチレン、 クロロホルム、四塩化炭素等が挙げられる。反応温度は、-10~150℃、特 に室温~100℃が好ましい。

5

工程B-3

25

- 10 なお、ハロゲン化試薬としては、N-ハロゲノサクシンイミドを使用することもできる。N-クロロサクシンイミド、N-ブロモサクシンイミド等が挙げられ、特にN-ブロモサクシンイミドが好ましい。反応溶媒としては、ベンゼン、トルエン、キシレン、塩化メチレン、クロロホルム、四塩化炭素等が挙げられる。 工程 B-2
- 式(B-2)で示される化合物にナトリウムアルコラートを反応させて、式(B-3)で示される化合物を製造する工程である。ナトリウムアルコラートとしては、ナトリウムメトキサイド、ナトリウムエトキサイド等が挙げられ、特にナトリウムメトキサイドが好ましい。反応溶媒としては、アルコール(例えば、メタノール、エタノール等)が好ましい。反応温度は、0~200℃、特に室温~170℃が20 好ましい。本工程は、封管中で加温して行うのが好ましい。

式 (B-3) で示される化合物をピリジニウムクロライドの存在下で加熱して、式 (B-4) で示される化合物を製造する工程である。反応溶媒はなくてもよく、ピリジニウムクロライドを反応溶媒として使用してもよい。反応温度としては、80 ~ 250 $^{\circ}$ $^{\circ}$ 、特に 100 $^{\circ}$ $^{\circ}$

(式中、R¹、R²、R³、R⁴及びR⁵は前記と同意義であり; Halはハロゲンを意味する)

5 工程 C-1

10 工程 C-2

15

式 (C-2) で示される化合物から式 (C-2) で示される化合物を製造する工程である。XがSである化合物を製造するときは、1,3-ジフェニルチオ尿素を反応させればよい。反応溶媒としては、Yセトニトリル、トルエン、塩化メチレン等を使用することができる。反応温度は、室温~100 $\mathbb C$ 、特に加熱還流下で行うのが好ましい。塩基の存在下で行うのが好ましく、塩基としては、トリエチルアミン等を使用することができる。

(式中、R²、R³、R⁴及びR⁵は前記と同意義である)

工程D-1

式(D-1)で示される化合物から式(D-2)で示される化合物を製造する工程である。通常の水素添加反応(接触還元)を行えばよい。触媒としては、パラジウム炭素、酸化白金、二酸化パラジウム等を使用することができる。反応溶媒としては、アルコール(メタノール、エタノール)を使用することができる。反応温度としては、室温が好ましい。なお、本還元は、常圧でも中圧でも行うことができる。

10 工程 D-2

5

15

式(D-2)で示される化合物のジアゾ化を行い、次いでチオカルボニル化することにより、式(D-3)で示される化合物を製造する工程である。ジアゾ化は-40 ~ 20 $^{\circ}$ $^{\circ}$ (好ましくは0 $^{\circ}$ $^{\circ}$ $^{\circ}$) で行えばよく、酸性条件下で行うことにより、ジアゾニウム塩を得ることができる。なお、反応溶媒としては水、アルコール(メタノール等)が好ましい。得られたジアゾニウム塩のチオカルボニル化は、エチル キサントゲン酸カリウムを反応させて行えばよく、反応は水中で行うことが好ましい。なお、反応温度は、室温 ~ 80 $^{\circ}$ 、特に40 $^{\circ}$ が好ましい。

工程 D - 3

式 (D-3) で示される化合物を塩基の存在下で反応させ、次にジメチルスルホキ

シドで酸化することにより、式 (D-4) で示される化合物を製造する工程である。 塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられ、特に水酸化ナトリウムが好ましい。反応溶媒としては、アルコール(例えば、エタノール、プロパノール、ブタノール等)、テトラヒドロフラン等が挙げられ、特にエタノールが好ましい。反応温度は、 $0\sim60$ ℃、特に室温が好ましい。 工程D-4

式 (D-4) で示される化合物をピリジニウムクロライドの存在下で加熱して、式 (D-5) で示される化合物を製造する工程である。本工程は、工程B-3と同様に 行うことができる。

10 工程 D-5

15

20

式 (D-5) で示される化合物に式:R 5 H a 1 (式中、R 5 は前記と同意義;H a 1 はハロゲン) で示される化合物を塩基存在下で反応させて、式 (D-6) で示される化合物を製造する工程である。塩基として、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、DB U等を使用した場合は、反応溶媒として、ジメチルホルムアミド、テトラヒドロフラン、アルコール(例えば、メタノール、エタノール、n-ブタノール)等を使用することができる。また、塩基として、水素化ナトリウム、水素化リチウム等(好ましくは、水素化ナトリウム)を使用した場合は、反応溶媒として、ジメチルホルムアミド、テトラヒドロフラン等を使用することができる。式:R 5 H a 1 で示される化合物としては、ハロゲン化アルキル(例えば、沃化メチル、沃化エチル、沃化プロビル、沃化ブチル等)、ハロゲン化アラルキル等(例えば、ベンジルプロマイド、フェネチルプロマイド等)等を使用することができる。反応温度は、0~200℃、好ましくは室温~150℃である。

工程D-6

25 式 (D-6) で示される化合物を還元して、式 (D-7) で示される化合物を製造する工程である。本工程はトリアルキルホスフィン (例えば、トリ n-ブチルフォスフィン) 又はトリフェニルホスフィン等の存在下で行えばよい。反応溶媒として

は、含水の有機溶媒(アセトン、テトラヒドロフラン、トルエン、塩化メチレン等)を使用することができる。反応温度は、 $0\sim150\,^{\circ}$ 、特に室温 $\sim100\,^{\circ}$ が好ましい。

(式中、 R^1 、 R^4 及び R^5 は前記と同意義であり;nは1以上であり;Halは ハロゲンを意味する)

工程 E 一 1

5

式(E-1)で示される化合物にメタンスルホニルハライド(例えば、メタンスル 10 ホニルクロライド)を反応させ、式(E-2)で示される化合物を製造する工程である。反応溶媒としては、塩化メチレン、トルエン、テトラヒドロフランが挙げられ、特に塩化メチレンが好ましい。反応温度は、 $0 \sim 150 \, ^{\circ}$ 、特に室温から $100 \, ^{\circ}$ が好ましい。

工程 E - 2

式(E-2)で示される化合物にベンジルトリアルキルアンモニウム ハライドをボロントリフルオライドエーテル錯体(BF₃・Et₂O)存在下で反応させ、式(E-3)で示される化合物を製造する工程である。ベンジルトリアルキルアンモニウム ハライドとしては、ベンジルトリエチルアンモニウム クロライド、ベンジルトリ ブチルアンモニウム クロライド等が挙げられ、特にベンジルトリエチルアンモニ ウム クロライドが好ましい。反応温度は、0~80℃、特に室温が好ましい。反応溶媒としては、塩化メチレン、トルエン等を使用することができる。ボロント

WO 02/053543 PCT/JP01/11427-

リフルオライドエーテル錯体 $(BF_3 \cdot Et_2O)$ の変わりに、TMSトリフレート等を使用することもできる。

工程E-3

式 (E-3) で示される化合物に式: R^1 C H_2 C (=O) N H_2 を塩基存在下で反応させ、式 (E-4) で示される化合物を製造する工程である。塩基としては、水素化リチウム、水素化ナトリウム等が挙げられ、特に水素化ナトリウムが好ましい。反応溶媒としては、ジメチルホルムアミド、テトラヒドロフラン、トルエン、ジグライム等が挙げられ、特にジグライムが好ましい。反応温度は、 $0\sim150$ $^{\circ}$ $^{\circ$

10 工程 E-4

15

式 (E-4) で示される化合物に式: CR^4 $(OR)_2N$ $(CH_3)_2$ $(式中、R^4)$ は、前記と同意義であり;R はアルキル等を意味する)で示される化合物を反応させ、式 (E-5) で示される化合物を製造する工程である。式: CR^4 $(OR)_2N$ $(CH_3)_2$ で示される化合物としては、N,N-ジメチルホルムアミド ジメチル アセタール、N,N-ジメチルホルムアミド ジエチル アセタール、N,N-ジメチルホルムアミド ジブロビル アセタール、N,N-ジメチルアセトアミド ジブチル アセタール等が挙げられる。反応溶媒としては、ジメチルホルムアミド、テトラヒドロフランを使用することができる。反応温度は、 $0\sim150$ \mathbb{C} 、好ましくは室温~100 \mathbb{C} である。

20 工程 E - 5

式 (E-5) で示される化合物に式: R^5 Hal (式中、 R^5 は前記と同意義; Hal (式中、 R^5 は前記と同意義; Hal (1 はハロゲン) で示される化合物を塩基の存在下で反応させて、式 (2 で示される化合物を製造する工程である。本工程は工程D-5 と同様に行うことができる。

25 工程 E - 6

式 (E-6) で示される化合物に還元剤を反応させ、式 (E-7) で示される化合物 を製造する工程である。反応溶媒としては、ジエチルエーテル、テトラヒドロフ

ラン、塩化メチレン等が挙げられる。還元剤としてシアノ水素化ほう素ナトリウム、トリアルキルシランを使用した場合は、式(E-7)(式中、Rxは水素)で示される化合物を製造することができる。この場合、三ふっ化ほう素-ジエチルエーテル錯体の存在下で行ってもよい。還元剤として水素化ほう素ナトリウムを使用した場合は、式(E-7)(式中、Rxはヒドロキシ)で示される化合物を製造することができる。

(式中、 R^1 、 R^2 及び R^5 は前記と同意義であり; nは1以上である)

10 工程 F-1

5

式(F-1)で示される化合物に式: $MeOCR^2=C$ (COOMe) R^1 で示される化合物を反応させ、式 (F-2)で示される化合物を得る工程である。式: $MeOCR^2=C$ (COOMe) R^1 で示される化合物としては、メトキシメチレンマロン酸ジメチル、メトキシメチレンマロン酸ジエチル等があげられる。反応溶媒としては、ジグライム、トルエン等が挙げられる。反応温度は、室温 ~200 $^{\circ}$ C、好ましくは 100 $^{\circ}$ C ~150 $^{\circ}$ C $^{\circ}$ C である。

工程 F - 2

15

式 (F-2) で示される化合物を加温して、式 (F-3) で示される化合物を製造する工程である。本工程は、反応溶媒としてジグライム又はトルエンを使用し、室 20 温 ~ 200 $^{\circ}$ 、特に 100 $^{\circ}$ ~ 150 $^{\circ}$ でで行うのが好ましい。なお、工程 F-1 と工程 F-2 は連続して、即ち式 (F-2) で示される化合物を単離せずに行ってもよい。

(式中、R¹、R³及びXは前記と同意義である)

工程 G-1

式(G-1)で示される化合物に式:E t O C H = C(C O O E t) R^1 で示される化合物を反応させ、式(G-2)で示される化合物を製造する工程である。式:E t O C H = C(C O O E t) R^1 で示される化合物としては、エトキシメチレンマロン酸ジエチル等が挙げられる。反応溶媒としては、テトラヒドロフラン、ジエチルエーテルが好ましい。反応温度は、 $-100 {\mathbb C} {\sim} 2$ 室温、特に $-78 {\mathbb C} {\sim} 0 {\mathbb C} {\sim} 2$ が好ましい。塩基としては、L D A、ブチルリチウムを使用することができる。なお、反応を処理するために、反応終了後、酢酸等で中和してもよい。

(式中、 R^1 、 R^2 、 R^3 及びXは前記と同意義であり;nは1以上の整数であり;H a 1はハロゲンを意味する)

15 工程 H-1

式 (H-1)で示される化合物に o-ハロゲノアラルキルハライドを反応させて、式 (H-2)で示される化合物を製造する工程である。o-ハロゲノアラルキルハライド としては、o-ブロモベンジルブロマイド、o-ブロモフェネチルブロマイド、o-ブロモフェニルプロピルブロマイド等が挙げられる。反応溶媒としては、テトラヒド

ロフラン、ジメチルホルムアミド等が挙げられ、特にジメチルホルムアミドが好ましい。塩基としては、水素化ナトリウム、炭酸カリウム等を使用することができる。なお、反応温度は、0~200℃、特に室温~100℃が好ましい。

式 (H-2)で示される化合物をパラジウム触媒、トリフェニルホスフィン、塩基、四級アンモニウム塩の存在下で反応させ、式 (H-3)で示される化合物を得る工程である。パラジウム触媒としては、パラジウムジベンジリデンアセトン (あるいはそのクロロホルム錯体)、テトラキストリフェニルホスフィンパラジウムを使用することができる。塩基としては、炭酸カリウム、炭酸ナトリウム、トリエチルアミン等が挙げられ、特に炭酸カリウムが好ましい。特に四級アンモニウムクロリドの存在下で行うのが好ましく、例えば、テトラエチルアンモニウム クロライド、テトラブチルアンモニウム クロライド、テトラブチルアンモニウム クロライド等が挙げられる。また、その変わりに、リチウムクロライドを使用してもよい。反応溶媒としては、ジメチルホルムアミド、ジメトキシエタン、テトラヒドロフラン等を使用することができる。なお、反応温度としては、0~150℃、特に80℃~130℃が好ましい。

このようにして得られた本発明化合物を以下に示すように官能基変換し、様々な本発明化合物を製造することができる。

工程 J - 1

20

工程 H - 2

式 (J-1) で示される化合物と式: R $^{\circ}$ H a 1 (式中、R $^{\circ}$ は前記と同意義、H a 1 はハロゲン) で示される化合物を塩基の存在下で反応させ、式 (J-2) で示され

る化合物を製造する工程である。式:R°Halで示される化合物の例としては、アルキルハライド (例えば、沃化メチル、沃化エチル)、酸クロライド (例えば、アセチルクロライド、プロピオニルクロライド)、アリールハライド (例えば、プロモベンゼン)、ヘテロアリールハライド (例えば、2-クロロベンゾキサゾール等)、アラルキルハライド (例えば、ベンジルブロマイド、フェネチルブロマイド等)、ヘテロアラルキルハライド (例えば、2-ピコリルクロライド、3-ピコリルクロライド等)、アリールスルホニルハライド (例えば、ベンゼンスルホニルクロライド等)等が挙げられる。塩基としては、水素化リチウム、水素化ナトリウム等が挙げられ、特に水素化ナトリウムが好ましい。反応溶媒としては、テトラヒドロフラン、ジメチルホルムアミド等が挙げられ、特にジメチルホルムアミドが好ましい。

工程 K - 1

10

15

20

式 (K-1) で示される化合物とクロロ-1-フェニル-1H-テトラゾールを塩基の存在下で反応させ、式 (K-2) で示される化合物を製造する工程である。塩基としては、炭酸カリウム、炭酸ナトリウム、水酸化ナトリウム等が挙げられ、特に炭酸カリウムが好ましい。反応溶媒としては、ジメチルホルムアミド、テトラヒドロフラン等が挙げられ、特にジメチルホルムアミドが好ましい。反応温度としては、 $0\sim100$ $^{\circ}$ 、特に室温が好ましい。

工程 K - 2

式 (K-2) で示される化合物を触媒存在下で接触還元し、式 (K-3) で示される 化合物を得る工程である。触媒としては、パラジウム炭素、酸化白金等が挙げら

れ、特に10%パラジウム炭素が好ましい。反応溶媒としては、アルコール(例えば、エタノール)、ジメチルホルムアミド、それらの水との混合溶媒が挙げられ、特にジメチルホルムアミドと水との混合溶媒が好ましい。反応は、常圧で行ってもよく、中圧(例えば、 $5kg/cm^2$)で行ってもよい。特に、中圧(例えば、 $5kg/cm^2$)で行うのが好ましい。

$$R^{1}$$
 R^{3}
 R^{5}
 R^{1}
 R^{3}
 R^{5}
 R^{1}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

(式中、R¹、R²、R³、R⁴及びR⁵は前記と同意義; Halはハロゲン) 工程L-1

10 式 (L-1) で示される化合物に式: R^5 Hal(式中、 R^5 は前記と同意義;Halはハロゲン)で示される化合物を塩基の存在下で反応させて、式 (L-2) で示される化合物を製造する工程である。本工程は工程D-5 と同様に行うことができる。

$$R^{3}$$
 R^{4}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{6}
 R^{6}

(式中、R²、R³、R⁴、R⁵及びXは前記と同意義; R^xはアルキル等)

工程M-1

15

5

式 (M-1) で示される化合物をピリジニウムクロライドの存在下で加熱して、式 (M-2) で示される化合物を製造する工程である。工程 B-3と同様に行うことが 20 できる。

工程 N-1

5

10

15

式 (N-1) で示される化合物に各種試薬を反応させて式 (N-2) で示される化合物を製造する工程である。本工程においては、式 (N-1) で示される化合物のフェノール性の水酸基に反応する試薬であれば、いかなる試薬であっても使用することができる。また、必要に応じて塩基、縮合剤、触媒等を使用することができる。反応温度は、反応の種類、使用する試薬、塩基、縮合剤、触媒等によって選択すればよい。

(式中、R¹、R²、R⁴及びR⁵は前記と同意義)

工程 0-1

式 (O-1) で示される化合物に N,N,N',N'-テトラメチルジアミノメタンを反応させ、式 <math>(O-2) で示される化合物を製造する工程である。反応溶媒としては、トルエン、エタノール、含水エタノールが挙げられ、特に含水エタノールが好ましい。反応温度、室温~100 ℃、特に60 ℃~80 ℃が好ましい。なお、加熱還流下で行うのが好ましい。

工程 0-2

式 (O-2) で示される化合物にハロゲン化アルキルを反応させ、次いでトリフェ 20 ニルホフィンを反応させ、最後に水酸化ナトリウムで処理することにより、式

(O-3) で示される化合物を製造する工程である。ハロゲン化アルキルとしては、 エチルブロマイド、ヨードメタン等を使用することができる。反応溶媒としては、 塩化メチレン、アルコール、トルエンが好ましく、反応温度は室温が好ましい。

トリフェニルホフィンを反応させホスホニウム塩に置換する工程は、反応溶媒 としてアルコール(エタノール)、テトラヒドロフランを使用し、反応温度を 5 $0 \sim 1 \ 0 \ 0 \ {\rm C}$ 、特に $7 \ 0 \ {\rm C}$ で行うのが好ましい。

このようにして得られたホスホニウム塩を塩基処理して、メチル体へと誘導できる。塩基としては、水酸化ナトリウム、水酸化カリウムを使用することができる。

10

15

5

(式中、R¹、R³、R⁴及びR⁵は前記と同意義)

式 (P-1) で示される化合物に工程O-1 と同様に N,N,N',N'-テトラメチルジアミノメタンを反応させ、次いでヨードメタンを反応させることにより、式 (P-2)で示される化合物を得る。さらに工程O-2 と同様にトリフェニルホスフィン、次いで塩基で処理することにより、式 (P-3) で示される化合物を製造することができる。

20 (式中、R¹、R²、R³、R⁴及びR⁵は前記と同意義)
工程Q-1

式 (Q-1) で示される化合物に Lawesson 試薬を反応させ、式 (Q-2) で示される化合物を製造する工程である。反応溶媒としては、ベンゼン、トルエン、キシレン等が挙げられ、特にトルエンが好ましい。反応温度は、 $80\sim250$ ℃、特にトルエン中加熱還流下で反応を行うのが好ましい。

5

10

(式中、R²、R³、R⁴、R⁵、X、R^a、Y³及びY²は前記と同意義)

工程R-1

式 (R-1)で示される化合物に水素化ジイソブチルアルミニウムを反応させて、式 (R-2)で示される化合物を製造する工程である。反応溶媒としては、トルエン、テトラヒドロフラン等を使用することができる。反応は、氷冷下で行うことが好ましい。

工程R-2

式(R-2)で示される化合物に水素化ほう素化ナトリウムを反応させて、式(R-3) で示される化合物を製造する工程である。反応溶媒としては、アルコール(例えば、エタノール、メタノール等)を使用することができる。反応は室温で行えばよい。

工程R-3

式 (R-3) で示される化合物に各種試薬を反応させて式 (R-4) で示される化合 20 物を製造する工程である。本工程においては、式 (R-3) で示される化合物のアル

コール性の水酸基に反応する試薬であれば、いかなる試薬であっても使用することができる。また、必要に応じて塩基、縮合剤、触媒等を使用することができる。 反応温度は、反応の種類、使用する試薬、塩基、縮合剤、触媒等によって選択すればよい。

5

HS
$$\mathbb{R}^2$$
 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^5 (S-1) \mathbb{R}^3 (S-2)

(式中、R²、R³、R⁴、R⁵、R^a、X、Y²及びY³は前記と同意義)

工程 S-1

式(S-1)で示される化合物に各種試薬を反応させて式(S-2)で示される化合 物を製造する工程である。本工程においては、式(S-1)で示される化合物のメルカプト基に反応する試薬であれば、いかなる試薬であっても使用することができる。また、必要に応じて塩基、縮合剤、触媒等を使用することができる。反応温度は、反応の種類、使用する試薬、塩基、縮合剤、触媒等によって選択すればよい。

15

(式中、R²、R³、R⁴、R⁵、R^a、X、Y²及びY³は前記と同意義)

工程 T-1

式 (T-1) で示される化合物を加水分解し、式 (T-2) で示される化合物を製造 20 する工程である。本工程の加水分解には、塩基又は酸を使用することができる。 塩基としては、水酸化ナトリウム、水酸化カリウムを使用することができる。酸

としては、濃塩酸、濃硫酸を使用することができる。反応溶媒としては、エタノ ール、水、またはそれらの混合溶媒を使用することができる。反応温度は、80 ~150℃、特に100℃が好ましい。

工程 T - 2

5

15

20

式 (T-2) で示される化合物に各種試薬を反応させて式 (T-3) で示される化合 物を製造する工程である。本工程においては、式 (T-2) で示される化合物のカル ボキシル基に反応する試薬であれば、いかなる試薬であっても使用することがで きる。また、必要に応じて塩基、縮合剤、触媒等を使用することができる。反応 温度は、反応の種類、使用する試薬、塩基、縮合剤、触媒等によって選択すれば よい。 10

例として Y^2 が-C (=O) -NH-であり、 Y^3 がアルキレンであり、 R^a が アリール、ヘテロアリールである場合を以下に説明する。

式 (T-2) で示される化合物にメタンスルホニルクロライドを塩基存在下で反応 させ、次いで式:R a Y 3 N H 2 で示される化合物を反応させ、式 (T-3) で示され る化合物を製造することができる。塩基としては、トリアルキルアミン(例えば、 トリエチルアミン)、ピリジン等が挙げられ、特にトリエチルアミンが好ましい。 反応溶媒としては、ジメチルホルムアミド等が挙げられる。反応温度は、0℃~ 150℃、特に室温~100℃が好ましい。

(式中、R²、R³、R⁴、R⁵及びXは前記と同意義; R^xはメチル、メシル、ト リメチルシリル等)

工程 U-1

5

10

20

式 (U-1) で示される化合物のエステル化を行い、式 (U-2) で示される化合物 を製造する工程である。エステルとしては、メチルエステル、メシルエステル、トリアルキルシリルエステル (例えば、トリメチルシリルエステル等) が好ましい。通常のエステル化の条件で行うことができる。

例えば、トリアルキルシリルエステルを製造する場合は、式 (U-1)で示される 化合物にトリアルキルシリルハライドを反応させ、式 (U-2)で示される化合物を 製造すればよい。トリアルキルシリルハライドとしては、トリメチルシリルクロ ライド等が挙げられる。本工程は、ヘキサメチルジシラザンの存在下で行うこと が好ましい。反応溶媒としては、ベンゼン、トルエン、キシレン等が挙げられ、 特にトルエンが好ましい。反応温度は、室温~200℃、特にトルエン中加熱還 流下で反応を行うのが好ましい。

工程 U-2

式 (U-2) で示される化合物に還元剤を反応させ、式 (U-3) で示される化合物を製造する工程である。還元剤としては、水素化リチウムアルミニウム、水素化 ほう素リチウム、DIBAL等が挙げられる。本工程は、塩化セリウムの存在下で行うことができる。反応溶媒としては、アルコール(メタノール、エタノール)、テトラヒドロフラン、ジエチルエーテルを使用することができる。反応温度は、室温が好ましい。

(式中、R²、R³、R⁴、R⁵、X、R^a、Y²及びY³は前記と同意義; R^xはアルキル等)

工程 V - 1

式 (V-1) で示される化合物に各種試薬を反応させて式 (V-2) で示される化合

物を製造する工程である。本工程においては、式 (V-2) で示される化合物の式: $-C(=0)-OR^x$ で示される基に反応する試薬であれば、いかなる試薬であっても使用することができる。また、必要に応じて塩基、縮合剤、触媒等を使用することができる。反応温度は、反応の種類、使用する試薬、塩基、縮合剤、触媒等によって選択すればよい。

(式中、R²、R³、R⁴、R⁵、X、R^a及びY³は前記と同意義)

工程W-1

5

式 (W-1) で示される化合物に式:R°Y³NH₂で示される化合物を反応させ、式 (W-2) で示される化合物を製造する工程である。式:R°Y³NH₂で示される化合物としては、置換されていてもよいアラルキルアミン (例えば、ベンジルアミン、フェネチルアミン、p-アミノフェネチルアミン等)、置換されていてもよいヘテロアラルキルアミン (例えば、2-(ピリジン-4-イル)エチルアミン等)等が挙げられる。反応溶媒としては、キシレン、ジグライム等が挙げられ、特にジグライムが好ましい。反応温度としては、100~250℃、特に150~200℃が好ましい。

20 (式中、R²、R³、R⁴、R⁵、R^a、Y²は前記と同意義;Halはハロゲン) 工程X-1

式(X-1)で示される化合物にハロゲン化チオニルを反応させ、式(X-2)で示される化合物を製造する工程である。ハロゲン化チオニルとしては、臭化チェニル、塩化チオニル等が挙げられる。反応溶媒としては、塩化メチレン、クロロホルム、四塩化炭素等が挙げられ、特に塩化メチレンが好ましい。反応温度は、0~100 \mathbb{C} 、特に10 \mathbb{C} ~室温が好ましい。

別の方法としては、式 (X-1) で示される化合物に N-ハロゲノサクシンイミドをトリフェニルフォスフィンの存在下で反応させ、式 (X-2) で示される化合物を製造することもできる。N-ハロゲノサクシンイミドとしては、N-クロロサクシンイミド、N-プロモサクシンイミド等が挙げられ、特に N-プロモサクシンイミドが好ましい。反応溶媒としては、ベンゼン、トルエン、キシレン、塩化メチレン、クロロホルム、四塩化炭素等が挙げられる。

工程 X - 2

10

15

25

式(X-2)で示される化合物に各種試薬を反応させ式(X-3)で示される化合物を製造する工程である。本工程においては、式(X-2)で示される化合物のハロゲノメチル基に反応する試薬であれば、いかなる試薬であっても使用することができる。また、必要に応じて塩基、縮合剤、触媒等を使用することができる。反応温度は、反応の種類、使用する試薬、塩基、縮合剤、触媒等によって判断すればよい。

例として、 Y^2 が-S-であり、 Y^3 が単結合であり、 R^a がアリール、ヘテロ 20 アリールである場合を以下に説明する。

(式中、R²、R³、R⁴、R⁵、Xは前記と同意義)

工程 Y - 1

式 (Y-1) で示される化合物にジメチルスルホキシド及びオキザリルハライドを 反応させ、スワン酸化を行い、式 (Y-2) で示される化合物を製造する工程である。 オキザリルハライドとしては、オキザリルクロライド等が挙げられる。反応溶媒 としては、塩化メチレン等が挙げられる。反応温度は、 $-7.8 \sim 0.0$ 、特に $-6.0 \sim -4.0$ \circ が好ましい。

工程 Y - 2

10 式 (Y-2) で示される化合物に酸化剤を反応させ、式 (Y-3) で示される化合物 を製造する工程である。酸化剤としては、メタクロロ過安息香酸等を使用することができる。なお、本工程においては、リン酸水素ナトリウムを添加してもよい。 反応溶媒としては、塩化メチレン、テトラヒドロフラン等を使用することができる。なお、反応は室温で行えばよい。

15

(式中、R²、R³、R⁴、X、R^a、Y²及びY³は前記と同意義)

工程 Z - 1

式(Z-1)で示される化合物から式(Z-2)で示される化合物を製造する工程である。通常のニトロ化反応を行えばよい。例えば、混酸(硫酸及び硝酸)を使用してニトロ化を行えばよい。反応温度、反応溶媒等も通常のニトロ化と同様に選択すればよい。

工程 Z - 2

式 (Z-2) で示される化合物を還元して式 (Z-3) で示される化合物を製造する工程である。本工程は工程D-1 と同様に行うことができる。

工程 Z - 3

- 10 式(Z-3)で示される化合物に各種試薬を反応させ式(Z-4)で示される化合物を製造する工程である。本工程においては、式(Z-3)で示される化合物のアミノ基に反応する試薬であれば、いかなる試薬であっても使用することができる。また、必要に応じて塩基、縮合剤、触媒等を使用することができる。反応温度は、反応の種類、使用する試薬、塩基、縮合剤、触媒等によって判断すればよい。
- 15 例として、Y²が-NH-C(=O)-であり、Y³が単結合であり、R°がアルキル、アリールである場合を以下に説明する。式(Z-3)で示される化合物にアシル化剤(例えば、アセチルクロライド、ベンゾイルクロライド等)を反応させ、式(Z-4)で示される化合物を製造することができる。本工程は、塩基存在下で行うのが好ましく、例えば、ビリジン等が使用できる。反応溶媒としては、ジメチルホルムアミド等が挙げられる。反応温度は、0℃~150℃、特に室温~100℃が好ましい。

$$R^{1}$$
 R^{2} R^{4} R^{4} R^{2} R^{4} R^{3} R^{2} R^{4} R^{3} R^{4} R^{3} R^{4} R^{5} R^{5}

(式中、R¹、R²、R³、R⁴、R⁵及びXは前記と同意義;Halはハロゲン) 工程Z-4

式 (Z-5) で示される化合物に N-ハロゲノサクシンイミドを反応させ、式 (Z-6) で示される化合物を製造する工程である。本工程は、工程B-1と同様に行うことができる。

工程 Z - 5

5

10

15

式(Z-6)で示される化合物に式: R^3-B (OH) $_2$ で示される化合物をパラジウム触媒の存在下で反応させ、式(Z-7)で示される化合物を製造する工程である。式: R^3-B (OH) $_2$ で示される化合物の R^3 としては、置換されていてもよいアルケニル、置換されていてもよいアルキニル、置換されていてもよいアリールアルケニル、置換されていてもよいアリールアルケニル、置換されていてもよいアリールアルキニル、置換されていてもよいアリールのアリール等が挙げられる。パラジウム触媒としては、 $Pd(PPh_3)_4$ 、 $PdCl_2(PPh_3)_2$ 等が挙げられる。本工程は、塩基の存在下で行うのが好ましく、塩基としては、 $Pd(PPh_3)_4$ 、 $PdCl_2(PPh_3)_4$ 、 $PdCl_2(PPh_3)_4$ 、 $PdCl_2(PPh_3)_4$ 、 $PdCl_2(PPh_3)_4$ 、 $PdCl_2(PPh_3)_4$ をが挙げられる。本工程は、塩基の存在下で行うのが好ましく、塩基としては、 $PdCl_2(PPh_3)_3$ をが挙げられる。反応溶媒としては、 $PdCl_3(PPh_3)_4$ をが挙げられる。反応溶媒としては、 $PdCl_3(PPh_3)_4$ をが多り等が挙げられる。反応溶媒としては、 $PdCl_3(PPh_3)_4$ をが好ましい。反応温度としては、 $PdCl_3(PPh_3)_4$ をが好ましい。反応温度としては、 $PdCl_3(PPh_3)_4$ をが好ましい。反応温度としては、 $PdCl_3(PPh_3)_4$ をが好ましい。

20 工程 Z - 6

式 (Z-6) で示される化合物に式: $R^3 C \equiv CH$ で示される化合物をパラジウム

触媒の存在下で反応させ、式 (Z-8) で示される化合物を製造する工程である。式: $R^3 C \equiv C H$ で示される化合物の $R^3 E$ しては、置換されていてもよいアルケニル、置換されていてもよいアルキニル、置換されていてもよいアリールアルケニル、 置換されていてもよいアリールアルケニル、置換されていてもよいアリールアルキニル、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいできる。なお、本工程はよう化銅等の存在下で行ってもよい。

本発明化合物を製造するに際し、下記の固相合成を行うことができる。

10 (式中、R²、R³、R⁴、R⁵及びR^aは前記と同意義である。)

レジン A-02 の合成

5

レジンにカルボン酸を結合させる工程である。レジンとしては、4-スルファミルブチリル AM レジン等を使用することができる。カルボン酸としては、A-01で 示される化合物を使用することができる。この場合、 R^2 、 R^4 、 R^5 及びXを選択し、使用するカルボン酸を選択することができる。例えば、4-n-ブチル-5-=ド-2-オキソ-1,2-ジヒドロビリジン-3-カルボン酸(R^2 及び R^4 が水素、 R^5 がn-ブチル、Xが酸素である X-1で示されるカルボン酸)を使用することができる。

反応溶媒としては、塩化メチレン等を使用することができる。反応温度は、室温が好ましい。本工程は、N,N-ジイソプロピルエチルアミン及び PyBOP の存在下で行うのが好ましい。反応時間としては、数時間~数十時間、特に十数時間が好ましい。反応終了後、レジンを濾取し、洗浄溶媒(例えば、水、THF、塩化メチレン、エーテル等)で順次洗浄し、レジン(A-02)を製造することができる。

レジン(A-03)の合成

10

15

20

25

上記で得られたレジン A-02 からレジン A-03 を製造する工程である。レジン A-02 に式:R 3 - B (O H) $_2$ で示される化合物をバラジウム触媒及び塩基の存在 下で反応させ、レジン A-03 を得る工程である。反応溶媒としては、D M E 等が挙 げられる。バラジウム触媒としては、PdCl $_2$ (dppf)等を使用することができる。式: R 3 - B (O H) $_2$ で示される化合物は固相粒子に対して約5 当量使用することが 望ましい。式:R 3 - B (O H) $_2$ で示される化合物としては、R 3 が置換されて いもてよいアリール基又は置換されていもてよいアリール基である化合物を使用 することができる。この場合、置換基は広く選択することができる。塩基として は、炭酸カリウム等を使用することができる。反応温度としては、約80℃が好ましい。反応時間としては、数時間~数十時間、特に十数時間が好ましい。反応終了後、レジンを濾取し,洗浄溶媒(例えば、水、THF、N-メチルビロリドン、塩化メチレン、エーテル)で順次洗浄し、レジン(A-03)を製造することができる。 レジン A-04 の合成

レジン A-03 にヨードアセトニトリルを塩基の存在下で反応させ、レジン A-04 を製造する工程である。反応溶媒としては、N-メチルピロリドン等を使用することができる。塩基としては、N,N-ジイソプロピルエチルアミン等を使用することができる。反応温度は室温が好ましい。反応時間としては、数時間~数十時間、特に十数時間が好ましい。反応終了後、レジンを濾取し、洗浄溶媒(例えば、N-メチルピロリドン、塩化メチレン、エーテル)で順次洗浄し、レジン(A-03)を製造することができる。

本発明化合物(A-5)の合成

レジン A-04 にアミンを反応させ、反応終了後固相粒子から化合物を切り出し、本発明化合物(A-5)を製造する工程である。反応溶媒としては、THF等を使用することができる。本工程においては、各種のアミンを使用することができる。これにより効率よく各種のRaを有する本発明化合物を合成することができる。反応は約24時間行い、反応終了後、高分子固定化イソシアネート樹脂を加え,数時間振とうし、過剰のアミンを除去した後、固相粒子から化合物(A-05)を切り出すことができる。すなわち、レジンを濾別し、溶出溶媒(例えば、塩化メチレン)で溶出し、滤液を減圧下で留去することにより化合物(A-05)を製造することができる。

10

20

5

上記とは別の固相合成として、下記の固相合成を行い、本発明化合物を合成することができる。

$$HO_2C$$
 P^2
 $P^$

(式中、R²、R⁵、R^aは前記と同意義;nは1以上の整数。)

15 化合物(B-02)の合成

化合物(B-01)に塩化チオニルを反応させて、化合物(B-02)を製造する工程である。 化合物(B-01)としては、例えば、1-ブチル-2-オキソ-1,2,5,6,7,8,9,10-オクタヒドロ-シクロオクタ[b]ピリジン-3-カルボン酸(R^2 が水素、 R^5 が n-ブチル)等を使用することがきできる。反応溶媒としては、トルエン等を使用することができる。 反応温度としては、約65°Cが好ましい。反応は比較的短時間で進行し、約20分で反応が終了する。この反応液を減圧濃縮することにより、化合物(B-02)を製造することができる。

化合物(B-03)の合成

高分子固定化 N-メチルモルホリン樹脂(1.93 mmol/g)存在下、アミン(Ra-NH2)

及び化合物(B-02)を反応させることにより、本発明化合物(B-03)を製造する工程である。反応溶媒としては、塩化メチレン等を使用することができる。本工程においては、各種のアミンを使用することができる。これにより効率よく各種のRaを有する本発明化合物を合成することができる。反応は約24時間行い、反応終了後、高分子固定化イソシアネート樹脂を加え,数時間振とうし、過剰のアミンを除去した後、化合物(B-03)を得ることができる。すなわち、レジンを濾別し,溶出溶媒(例えば、塩化メチレン)で溶出し、濾液を減圧下で留去することにより化合物(B-03)を製造することができる。

なお、上記においては、R 3 及びR 4 が一緒になって、隣接する原子と共に環を 10 形成する場合を例示しているが、R 3 及びR 4 が一緒になっていない場合であって も本固相合成を行うことができる。

上記とは別の固相合成として、下記の固相合成を行い、本発明化合物を合成することができる。

15

20

(式中、R²、R³、R⁴、R⁵、R^aは前記と同意義; nは1以上の整数。) 化合物(C-02)の合成

高分子固定化 N-メチルモルホリン樹脂(1.93 mmol/g)存在下、酸クロリド(\mathbb{R}^a -COCI)及び化合物(\mathbb{C} -01)を反応させることにより、本発明化合物(\mathbb{C} -02)を製造する工程である。反応溶媒としては、塩化メチレン等を使用することができる。本工程においては、各種の酸クロリドを使用することができる。これにより効率よく各種の \mathbb{R}^a を有する本発明化合物を合成することができる。反応は約 24 時間行い、

反応終了後、高分子固定化カーボナート樹脂(MP-Carbonate)を加え,数時間振とうし、過剰のアミンを除去した後、化合物(C-02)を得ることができる。すなわち、レジンを濾別し,溶出溶媒(例えば、塩化メチレン)で溶出し、濾液を減圧下で留去することにより化合物(C-02)を製造することができる。また、これらの生成物を全自動の精製装置等に付すことにより、さらに純度の高い化合物を得ることができる。なお、上記においては、 R^3 及び R^4 が一緒になって、隣接する原子と共に環を形成する場合を例示しているが、 R^3 及び R^4 が一緒になっていない場合であっても本固相合成を行うことができる。

10 なお、これらの固相合成で使用される式: R^3-B (OH) $_2$ で示される化合物、式: R^a NH $_2$ で示される化合物は、市販の化合物を使用してもよいし、別途合成してもよい。

本製法は、固相合成であるため、精製作業としては固相粒子の洗浄を行えばよく、実験操作としてもほとんどルーチンで行うことができ、短期間に各種の置換基を有する多数の化合物を製造することができ、有用である。すなわち、固相合成の利点を生かして、化合物の骨格等を固定し、様々な種類の式: R^3-B (OH) $_2$ で示される化合物及び式: R^a NH $_2$ で示される化合物を反応させ、数十~数万の化合物の中から最適な置換基を有する化合物を選択することができ、高活性な本発明化合物を見出すことができる。

20

25

15

また、本製法により得られた化合物の2以上の集合により、本発明化合物のライブラリーを製造することができる。この際、上記のようにスプリット合成を利用してもよいし、上記とは別にバラレル合成で行ってもよい。また、通常の有機合成 (例えば、液相合成)で製造された化合物であってもよい。ここで化合物のライブラリーとは、共通の部分構造を有する2以上の化合物の集合を意味する。

例えば、本発明化合物の共通の部分構造としては、ピリドン骨格を有する点を 挙げることができる。また、さらに好ましい態様として、ピリドン骨格の窒素が 炭素数 2 以上のアルキル基等で置換されている点が挙げられる。また、さらに好ましい態様として、ビリドン骨格の 3 位にアミド結合(- C(= O)- N H - Z は- N H - C(= O)-)を有する点が挙げられる。

このような共通の部分構造を有する化合物は、カンナビノイド2型受容体親和 作用を有しており、それらの化合物の集合であるライブラリーは、抗炎症剤、鎮 痛剤、腎炎治療剤等を探索する上で有用である。

また、本化合物のライブラリーは、高活性のカンナビノイド2型受容体親和作用を有する化合物(特に、カンナビノイド2型受容体拮抗作用を有する化合物)の探索のみならず、他の医薬用途の探索を目的としたスクリーニングにも使用することができる。特に有用な構造活性相関(SAR)を得るためには、少なとも10以上の化合物の集合であることが好ましく、さらには50個以上の化合物の集合であることが好ましい。

なお、本発明化合物を少なくとも一つ含むライブラリーであれば、本発明の化 合物ライブラリーに含まれる。

15

20

25

10

5

カンナビノイド2型受容体親和性作用とは、カンナビノイド2型受容体に結合し、カンナビノイド2型受容体作動性またはカンナビノイド2型受容体拮抗性作用を示すことを意味する。カンナビノイド2型受容体作動性とは、カンナビノイド2型受容体に対してアゴニスト作用を示すことを意味する。カンナビノイド2型受容体拮抗性とは、カンナビノイド2型受容体に対してアンタゴニスト作用を示すことを意味する。

プロドラッグは、生理学的条件下でインビボにおいて薬学的に活性な本発明化合物となる化合物である。適当なプロドラッグ誘導体を選択する方法および製造する方法は、例えば Design of Prodrugs, Elsevier, Amsterdam 1985 に記載されている。

本発明に係る化合物のプロドラッグは、脱離基を導入することが可能なA環上

の置換基(例えば、アミノ、ヒドロキシ等)に、脱離基を導入して製造することができる。アミノ基のプロドラッグとしては、カルバメート体(例えば、メチルカルバメート、シクロプロピルメチルカルバメート、tert-ブチルカルバメート、ベンジルカルバメート等)、アミド体(例えば、ホルムアミド、アセタミド等)、Nーアルキル体(例えば、N-アリルアミン、N-メトキシメチルアミン等)等が挙げられる。ヒドロキシ基のプロドラッグとしては、エーテル体(メトキシメチルエーテル、メトキシエトキシメチルエーテル等)、エステル体(例えば、アセテート、ピバロエート、ベンゾエート等)等が挙げられる。

5

製薬上許容される塩としては、塩基性塩として、例えば、ナトリウム塩、カリ 10 ウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等のアルカリ土類金 属塩;アンモニウム塩;トリメチルアミン塩、トリエチルアミン塩、ジシクロヘ キシルアミン塩、エタノールアミン塩、ジエタノールアミン塩、トリエタノール アミン塩、ブロカイン塩等の脂肪族アミン塩; N.N-ジベンジルエチレンジアミン 等のアラルキルアミン塩;ピリジン塩、ピコリン塩、キノリン塩、イソキノリン 15 塩等のヘテロ環芳香族アミン塩;テトラメチルアンモニウム塩、テトラエチルア モニウム塩、ベンジルトリメチルアンモニウム塩、ベンジルトリエチルアンモニ ウム塩、ベンジルトリプチルアンモニウム塩、メチルトリオクチルアンモニウム 塩、テトラブチルアンモニウム塩等の第4級アンモニウム塩;アルギニン塩、リ ジン塩等の塩基性アミノ酸塩等が挙げられる。酸性塩としては、例えば、塩酸塩、 20 硫酸塩、硝酸塩、リン酸塩、炭酸塩、炭酸水素塩、過塩素酸塩等の無機酸塩;酢 酸塩、プロピオン酸塩、乳酸塩、マレイン酸塩、フマール酸塩、酒石酸塩、リン ゴ酸塩、クエン酸塩、アスコルビン酸塩等の有機酸塩;メタンスルホン酸塩、イ セチオン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等のスルホン酸 塩;アスパラギン酸塩、グルタミン酸塩等の酸性アミノ酸等が挙げられる。 25

溶媒和物としては、本発明化合物、そのプロドラッグ、又はその製薬上許容さ

れる塩の溶媒和物を意味し、例えば、一溶媒和物、二溶媒和物、一水和物、二水 和物等が挙げられる。

本発明化合物は、カンナビノイド2型受容体親和性であり、カンナビノイド2型受容体に結合し、カンナビノイド2型受容体アンタゴニスト作用またはカンナビノイド2型受容体アゴニスト作用を示す。特に、カンナビノイド2型受容体アゴニスト作用を示す。

従って、本発明化合物は、カンナビノイド2型受容体が関与する疾患に対して治療又は予防の目的で使用することができる。例えば、Proc. Natl. Acad. Sci. USA 96, 14228-14233.には、カンナビノイド2型受容体アゴニストが抗炎症作用、鎮痛作用を有する旨記載されている。また、Nature, 1998, 349, 277-281 には、カンナビノイド2型受容体アゴニストが鎮痛作用を有する旨記載されている。また、Cancer Research 61(2001)5784-5789 には、カンナビノイド2型受容体アゴニストが脳腫瘍の退縮作用を有する旨記載されている。また、European Journal of Pharmacology 396 (2000) 85-92 には、カンナビノイド2型受容体アンタゴニストが鎮痛作用を有する旨記載されている。さらに、J Pharmacol Exp Ther, 2001, 296, 420-425 には、カンナビノイド2型受容体親和性作用(アゴニスト作用及び/又はアンタゴニスト作用)を有する化合物が、抗炎症作用を示す旨記載されている。

10

15

20

すなわち、本発明化合物は、免疫系細胞、炎症系細胞又は末梢神経の活性化を 抑制し、末梢細胞系作用(免疫抑制、抗炎症、鎮痛作用)を発現すると考えられ、 抗炎症剤、抗アレルギー剤、鎮痛剤、免疫不全治療剤、免疫抑制剤、免疫調節剤、 自己免疫疾患治療剤、慢性関節リューマチ治療剤、多発性硬化症治療剤、脳腫瘍 治療剤、緑内障治療薬等として用いることができる。

また、カンナビノイド2型受容体作動剤は、ラット Thy-1 抗体惹起腎炎に対す 25 る抑制効果を有していることが知られており(WO97/29079)、腎炎治療剤としても有用である。

本発明化合物を治療に用いるには、通常の経口又は非経口投与用の製剤として 製剤化する。本発明化合物を含有する医薬組成物は、経口及び非経口投与のため の剤形をとることができる。即ち、錠剤、カプセル剤、顆粒剤、散剤、シロップ 剤などの経口投与製剤、あるいは、静脈注射、筋肉注射、皮下注射などの注射用 溶液又は懸濁液、吸入薬、点眼薬、点鼻薬、坐剤、もしくは軟膏剤などの経皮投 与用製剤などの非経口投与製剤とすることもできる。

これらの製剤は当業者既知の適当な担体、賦形剤、溶媒、基剤等を用いて製造することができる。例えば、錠剤の場合、活性成分と補助成分を一緒に圧縮又は成型する。補助成分としては、製剤的に許容される賦形剤、例えば結合剤(例えば、トウモロコシでん粉等)、充填剤(例えば、ラクトース、微結晶性セルロース等)、崩壊剤(例えば、でん粉グリコール酸ナトリウム等)又は滑沢剤(例えば、ステアリン酸マグネシウム等)などが用いられる。錠剤は、適宜、コーティングしてもよい。シロップ剤、液剤、懸濁剤などの液体製剤の場合、例えば、懸濁化剤(例えば、メチルセルロース等)、乳化剤(例えば、レシチン等)、保存剤などを用いる。注射用製剤の場合、溶液、懸濁液又は油性もしくは水性乳濁液の形態のいずれでもよく、これらは懸濁安定剤又は分散剤などを含有していてもよい。吸入剤として使用する場合は吸入器に適応可能な液剤として、点眼剤として使用する場合も液剤又は懸濁化剤として用いる。

20

25

10

15

本発明化合物の投与量は、投与形態、患者の症状、年令、体重、性別、あるいは併用される薬物(あるとすれば)などにより異なり、最終的には医師の判断に委ねられるが、経口投与の場合、体重 $1 \, \mathrm{kg}$ あたり、 $1 \, \mathrm{HO} \, .0 \, 1 \sim 1 \, 0 \, \mathrm{0 \, mg}$ 、好ましくは $0.0 \, 1 \sim 1 \, 0 \, \mathrm{mg}$ 、より好ましくは $0.1 \sim 1 \, 0 \, \mathrm{mg}$ 、非経口投与の場合、体重 $1 \, \mathrm{kg}$ あたり、 $1 \, \mathrm{HO} \, .0 \, 0 \, 1 \sim 1 \, 0 \, 0 \, \mathrm{mg}$ 、好ましくは $0.0 \, 0 \, 1 \sim 1 \, \mathrm{mg}$ 、より好ましくは $0.0 \, 0 \, 1 \sim 1 \, \mathrm{mg}$ 、より好ましくは $0.0 \, 0 \, 1 \sim 1 \, \mathrm{mg}$ 、より好ましくは $0.0 \, 0 \, 1 \sim 1 \, \mathrm{mg}$ を投与する。これを $1 \sim 4 \, \mathrm{mg}$ に分割して投与すればよい。

実施例

5

以下に実施例(説明及び表)を挙げて本発明を詳しく説明するが、これらは単なる例示であり本発明はこれらに限定されるものではない。なお、説明中の実施例番号は表中の化合物番号と同一である。

なお、各略号は以下に示す意味を有する。

Me: メチル、Et: エチル、nPr: n-プロピル、iPr: イソプロピル、

nBu: n-ブチル、iBu: イソブチル、sBu: sec-ブチル、tBu: tert-ブチル

Ph: フェニル、Ac: アセチル、Bn: ベンジル

10 DMF: N,N-ジメチルホルムアミド、THF: テトラヒドロフラン

Ms: メシル、TBDMS: tert-ブチルジメチルシリル

<実施例 1-004>

15

a) エチル 3-ベンジルアミノ-2-メチルクロトナート (1-004-02)の合成

5

15

エチル 2-メチルアセトアセタート (1-004-01) (115.34g)、ベンジルアミン (85.73g)、トルエン(1.6L)の溶液を、窒素気流中、145 $^{\circ}$ C油浴中で 8 時間共沸脱水 を行った後、ベンジルアミン(12.86g)を追加し更に脱水を行った。6 時間後、そのまま常圧蒸留を行い、約 600 $^{\circ}$ l を留去後、減圧留去しエチル 3-ベンジルアミノ-2-メチルクロトナート(1-004-02)(195.66g)を得た。

¹H NMR (300 MHz, CDCl₃): δ 1.28(t, J = 7.2 Hz, 3H), 1.80 (s, 3H), 1.93 (s, 3H), 4.13 (q, J = 7.2 Hz, 2H), 4.43 (d, J = 6.3 Hz, 2H), 7.20-7.40 (m, 5H), 9.65 (br s, 1H).

10 b) エチル N-ベンジルメトキシアセタミド-2-メチルクロトナート(1-004-03)の合成

エチル 3-ベンジルアミノ-2-メチルクロトナート (1-004-02) (97.83g)をエーテル (2L)に溶。解し、窒素気流中、氷冷攪拌下、ビリジン(35.6ml)を加えいれた後、内温 $5\sim6$ °Cでメトキシアセチルクロリド(40.2ml)のエーテル溶液を 45 分で滴下した。30 分攪拌後、室温攪拌を行った。2 時間後、反応混合物を氷水(1.5L)中に注入し、エーテルで 2 回抽出後、水洗(1L)1 回後、重曹水溶液で洗浄した。抽出液を硫酸マグネシウムで乾燥後、減圧留去し、エチル 1-ベンジルメトキシアセタミド-2-メチルクロトナート (1-004-03) (111.47g, 91.3%)を油状物で得た。

¹H NMR (300 MHz, CDCl₃): δ 1.21 (t, J = 7.2 Hz, 3H), 1.74 (s, 3H), 1.89 (s, 3H), 3.44 (s, 3H), 3.97 (d, J = 14.7 Hz, 1H), 3.98 (q, J = 7.2 Hz, 2H), 4.12 (d, J = 14.7 Hz, 1H), 4.31 (d, J = 14.4 Hz, 1H), 4.95 (d, J = 14.4 Hz, 1H), 7.20-7.40 (m, 5H).

- c) 1-ベンジル 5,6-ジメチル-4-ヒドロオキシ-3-メトキシ 2-ピリドン (1-004-04)の 合成
- 25 窒素気流中、トルエン(1.391)及びエタノール(2.08ml)の溶液中に金属ナトリウム片 (7.98g)を加え入れ、140℃油浴中で攪拌還流下、エチル (1-ベンジル)-メトキシアセタミド-2-メチルクロトナート (1-004-03) (105.93g)のトルエン(340ml)

溶液を 1 時間 20 分で滴下し、そのまま投拌還流を行った。 2 時間後、反応混合物を氷冷攪拌し、4N 塩酸-ジオキサン(86.8 ml)を 10 分で滴下し、その後室温攪拌を行った。 2 時間後、析出物を 500 ml を加え、500 ml を利力を表し、500 ml を利力を表し、500 ml を利力を表し、500 ml を利力を表して 500 ml を利力を表し、500 ml を表し、500 ml を表し、50

10 ¹H NMR (300 MHz, CDCl₃): δ 2.03 (s, 3H), 2.19 (s, 3H), 3.99 (s, 3H), 5.38 (br s, 2H), 6.41 (br s, 1H), 7.11-7.33 (m, 5H).

15

20

d) 1-ベンジル 5,6-ジメチル-3-メトキシ 4-O-(1-フェニル-1*H*-テトラソリル)-2-ピリドン (1-004-05)の合成

1-ベンジル 5,6-ジメチル-4-ヒドロキシ-3-メトキシ 2-ピリドン(1-004-04)(25.93g)及び 5-クロロ-1-フェニル-1H-テトラゾール(21.67g)更に炭酸カリウム (27.64g)に窒素気流中、DMF(300ml)を加え懸濁し室温攪拌を行った。4.5 時間後、反応混合物を氷水(1L)中に注入し酢酸エチル(500ml)で 3 回抽出後、水洗(500ml)2 回行った後、硫酸マグネシウムで乾燥後、減圧留去した。得られた残渣(42.4g)をアセトン(300ml)に加温溶解し減圧濃縮後、エーテル(300ml)を加え析出した結晶を濾取し、1-ベンジル 5,6-ジメチル-3-メトキシ4-O-(1-フェニル-1*H*-テトラゾリル)-2-ピリドン (1-004-05) (29.87g、74.0%、融点 178℃)を得た。又濾液をシリカゲルカラムクロマト(150g、CHCl₃)精製を行い、更に 1-004-05 (4.3g、10.7%)を得た。

¹H NMR (300 MHz, CDCl₈): 8 2.07 (s, 3H), 2.28 (s, 3H), 3.79 (s, 3H), 5.41 (br 25 s, 2H), 7.15-7.84 (m, 10H).

e) 5,6-ジメチル-3-メトキシ 2-ピリドン (1-004-06) の合成 1-ベンジル 5,6-ジメチル-3-メトキシ 4-O-(1-フェニル-1*H*-テトラゾリル)-2-ピリ

ドン (1-004-05) (27.15g)の DMF(272ml)溶液に 10% パラジウム炭素(5.43g)の水 (27ml) 懸濁液を加えいれ、5kg / cm²加圧下、室温で中圧還元を行った。途中で 10% パラジウム炭素(2.72g)を追加した。48 時間後、触媒をセライト上で濾去しメタノール洗浄し減圧留去した。得られた残渣に水(160ml)を加え、85℃水浴上で加熱し不溶物を濾去し熱水で洗浄し(不溶物、8.77g) 減圧留去し、得られた残渣 (11.55g)にアセトン(110ml)を加え室温攪拌後、無色粉末を濾取し、1-004-06 (8.23g, 79.8%, 融点 215-9℃)を得た。又濾液から同様の処理を行い、更に 1-004-06 (0.31g, 3.0%)を得た。

¹H NMR (300 MHz, CDCl₃): δ 2.07 (s, 3H), 2.28 (s, 3H), 3.79 (s, 3H), 5.41 (br 10 s, 2H), 7.15-7.84 (m, 10H).

f) 1-ブチル 5,6-ジメチル-3-メトキシ 2-ピリドン(1-004-07) の合成

5

15

25

5,6-ジメチル-3-メトキシ 2-ピリドン (1-004-06) (306mg)及び水酸化カリウム (157mg)に <math>n- ブタノール (13ml)を加え 懸濁し窒素気流中、1- ヨード ブタン (0.44ml)を加え、85 $^{\circ}$ $^{\circ}$

¹H NMR (300 MHz, CDCl₃): δ 0.96 (t, *J* = 7.2 Hz, 3H), 1.36-1.48 (m, 2H), 20 1.60-1.70 (m, 2H), 2.09 (s, 3H), 2.26 (s, 3H), 3.78 (s, 3H), 4.08 (t, *J* = 7.8 Hz, 2H), 6.44 (s, 1H).

g) 1-ブチル 5,6-ジメチル-3-ハイドロキシ 2-ピリドン (1-004-08) の合成

1-ブチル 5,6-ジメチル-3-メトキシ 2-ピリドン(1-004-07)(124mg)にピリジニウムクロリド(293mg)を加え、窒素気流中、200℃油浴中で加熱攪拌を行った。30分後、反応混合物にエーテル及び水を加え溶解しエーテルで 2 回抽出し水洗 1 回行い、硫酸マグネシウムで乾燥後減圧留去した。 1-ブチル 5,6-ジメチル-3-ハイドロキシ 2-ピリドン (1-004-08) (94mg, 81%, 融点 112-116℃)を得た。

¹H NMR (300 MHz, CDCl₃): δ 0.98 (t, J = 7.2 hz, 3H), 1.37-1.50 (m, 2H), 1.61-1.72 (m, 2H), 2.08 (s, 3H), 2.26 (s, 3H), 4.10 (t, J = 7.8 Hz, 2H), 6.66 (br s, 2H).

h) 3-(ベンゾオキサゾール 2-イルオキシ)-1-ブチル-5,6-ジメチル-1*H*-ビリジン-2-

5 オン (1-004) の合成

1-015と同様に行った (66.7%, 融点 106-8℃)。

実施例 1-001~実施例 1-003 と実施例 1-005 は、実施例 1-004 と同様に合成した。

10 <実施例 1-013>

a) 2-メチル-3-オキソ-ブタナール・ナトリウム塩 (1-013-01)の合成

28% ナトリウムメトキシド・メタノール溶液(138ml)に窒素気流中、エーテル (920ml)を加え希釈し、氷冷攪拌下、2-ブタノン(51.2g)とエチルホルメート(57.2g) の混合物を内温 4~6℃にて 45 分で滴下し 30 分攪拌後、一晩室温攪拌を行った。翌日、析出した無色粉末をろ取し、2-メチル-3-オキソ-ブタナール・ナトリウム塩 (1-013-01) (60.66g, 70%)を得た。

¹H NMR (300 MHz, CDCl₃): δ 1.62 (s, 3H), 2.13 (s, 3H), 8.99 (s, 1H).

b) 3-シアノ-5,6-ジメチル-2-ピリドン (1-013-02)の合成

2-メチル-3-オキソ-ブタナール・ナトリウム塩 (1-013-01) (34.73g)に水 (546ml)を加え、2-シアノアセタミド(23.91g)を加え入れ、続いて 1.76 モル ピペリジニウムアセタート(119.4ml)を加え、127℃油浴中で攪拌還流を行った。21 時間後、反応液に酢酸(42.7ml)を内温 65℃の時に少しずつ加え入れ(15 分)、そのまま攪拌を行い、内温 24℃になってから析出した結晶をろ取し水洗し、3-シアノ-5,6-ジメチル-2-ピリドン (1-013-02) (27.76g, 65.9%, 融点 258-263℃)を得た。

¹H NMR (300 MHz, DMSO): δ 1.98 (s, 3H), 2.23 (s, 3H), 7.95 (s, 1H), 12.45 (br 15 s, 1H).

c) 5,6-ジメチル-2-ピリドン (1-013-03)の合成

10

3-シアノ-5,6-ジメチル-2-ピリドン (1-013-02) (12.0g)に水(293ml)を加え懸濁し、濃塩酸(293ml)を加え、135℃油浴中で攪拌還流を行った。3 日後、反応液を冷却し減圧留去した。残渣(24.75g)にクロロホルム(300ml)とメタノール(15ml)を20 加え、65℃水浴上で加温し不溶物をろ去した。更に不溶物をクロロホルム(200ml)とメタノール(10ml)で同様に処理した。溶液部を合併し減圧留去した。得られた残渣(13.26g)にメタノール(150ml)を加え、炭酸カリウム(10g)を加え、30 分室温攪拌後、不溶物をろ去し減圧留去した。得られた残渣(14.7g)にクロロホルム(200ml)を加え、再び不溶物をろ去し減圧留去して 5,6-ジメチル-2-ピリドン (1-013-03) (9.41g, 94.3%, 融点 202-207℃)を得た。

¹H NMR (300 MHz, CDCl₃): δ 2.05 (s, 3H), 2.31 (s, 3H), 6.38 (d, J = 9.0 Hz, 1H), 7.26 (d, J = 9.0 Hz, 1H), 13.17 (br s, 1H).

d) 5,6-ジメチル-3-ニトロ-2-ピリドン (1-013-04)の合成

5,6-ジメチル-2-ピリドン (1-013-03) (3.695g)に氷冷下、濃硫酸(38ml)を加え溶解し氷冷攪拌下、70% 硝酸(3.53ml)を内温 3~5℃で 50 分で滴下しそのまま攪拌した。2 時間後、反応液を氷中に少しずつ加え入れ、析出した結晶をろ取し水洗し5,6-ジメチル-3-ニトロ-2-ピリドン (1-013-04) (3.102g, 61.5%, 融点 251-257(dec))を得た。又、水層をクロロホルム 5 回抽出し、硫酸マグネシウムで乾燥後、減圧濃縮し析出した結晶をろ取し、更に 271mg(5.4%)を得た。

¹H-NMR (300MHz, DMSO):2.06 (s, 3H), 2.29 (s, 3H), 8.35 (s, 1H), 12.79 (br s, 1H).

10 e) 2-クロロ-5,6-ジメチル-3-ニトロ-ピリジン (1-013-05)の合成

15

20

5,6-ジメチル-3-ニトロ-2-ビリドン (1-013-04) (841mg)及び五塩化燐(1.25g)を窒素気流中、140℃油浴中で加熱攪拌を行った。35 分後、反応混合物を氷冷し、 氷水中に注入しクロロホルムで 2 回抽出し、水洗 1 回後、飽和重曹水で洗浄し、 脱色炭を加え、硫酸マグネシウムで乾燥後、減圧留去し結晶性残渣の 2-クロロ-5,6-ジメチル-3-ニトロ-ビリジン (1-013-05) (842mg, 90.2%)を得た。

¹H NMR (300 MHz, CDCl₃): δ 2.38 (s, 3H), 2.58 (s, 3H), 8.01 (s, 1H).

f) 5,6-ジメチル-2-メトキシ 3-ニトロ-ピリジン (1-013-06)の合成

28% ナトリウムメトキシド(1.11ml)とメタノール(5.5m)中に窒素気流中、室温 攪拌下、2-クロロ-5,6-ジメチル-3-ニトロ-ビリジン (1-013-05)(837mg)のメタノ ール(6.6ml)溶液を 5 分で滴下し 50°C油浴中で 7 時間加熱攪拌を行った。反応液に エーテルを加え水中に注入し、エーテル 2 回抽出後、水洗 1 回行い硫酸マグネシ ウムで乾燥し減圧留去しオレンジ色結晶の 5,6-ジメチル-2-メトキシ 3-ニトロ-ピ リジン (1-013-06)(675mg, 82.6%, 融点 71-73°C)を得た。

¹H NMR (300 MHz, CDCl₃): δ 2.28 (s, 3H), 2.48 (s, 3H), 4.08 (s, 3H), 8.07 (s, 1H).

g) 3-アミノ-5,6-ジメチル-2-メトキシビリジン (1-013-07)の合成 5,6-ジメチル-2-メトキシ 3-ニトロ-ビリジン (1-013-06) (2.56g)をテトラヒド

ロフラン(41ml)に溶解し 5%パラジウム炭素(450mg)のメタノール(41ml) 懸濁液を加え、接触還元を行った。3 時間後、触媒をろ去し減圧留去し褐色結晶の 3-アミノ-5,6-ジメチル-2-メトキシビリジン (1-013-07) (2.096g, 97.9%, 融点 56-58℃)を得た。

¹H NMR (300 MHz, CDCl₃): δ 2.12 (s, 3H), 2.30 (s, 3H), 2.48-3.49 (br s, 2H), 3.95 (s, 3H), 6.70 (s, 1H).

h) 5,6-ジメチル-3-[[エトキシ(チオカルボニル)]チオ]-2-メトキシヒリジン (1-013-08) の合成

3-アミノ-5,6-ジメチル-2-メトキシビリジン (1-013-07) (1.787g)を水(3ml)と濃塩酸(3ml)に溶解後、氷-アセトン冷浴に浸し、冷却攪拌下、亜硝酸ソーダ(4.81g)の水(27.1ml)溶液を内温-4~-5℃で 45 分で滴下後、そのまま 20 分攪拌した。一方、エチルキサントゲン酸カリウム(12.64g)を水(17.3ml)に溶解し、40℃油浴中で加温攪拌下、先に調製したジアゾニウム塩の冷却溶液を 35 分で加え入れ、その後40 分加熱攪拌を行った。反応混合物を氷冷後、クロロホルム 3 回抽出し飽和重曹水 1回、次いで飽和食塩水 1回、洗浄後、硫酸マグネシウムで乾燥し減圧留去した。赤色オイルの残渣(12.49g)をシリカゲルカラムクロマト(300g,トルエン・ヘキサン(2:3))を行い、5,6-ジメチル-3-[[エトキシ(チオカルボニル)]チオ]-2-メトキシビリジン (1-013-08) (6.281g, 36%)を赤色液体として得た。尚、ここで得られた化合物は回転障害と思われる 2 種類を含んでいた。

¹H NMR (300 MHz, CDCl₃): δ 1.45 (t, J = 7.2 Hz, 3H), 2.18 (s, 3H), 2.39 (s, 3H), 3.98 (s, 3H), 4.70 (q, J = 7.2 Hz, 2H), 7.47 (s, 1H).

¹H NMR (300 MHz, CDCl₃): δ 1.33 (t, J = 7.2 Hz, 3H), 2.21 (s, 3H), 2.44 (s, 3H), 3.94 (s, 3H), 4.60 (q, J = 7.2 Hz, 2H), 7.43 (s, 1H).

i) (5,6-ジメチル-2-メトキシピリジン-3-イル)ジスルフイド (1-013-09)の合成

5,6-ジメチル-3-[[エトキシ(チオカルボニル)]チオ]-2-メトキシピリジン (1-013-08) (6.275g)をエタノール(200ml)に溶解し窒素気流中、室温攪拌下、1N 水酸化ナトリウム(67ml)を一時に加え入れ、一晩攪拌を行った。15 時間後、析出物をろ

取し水洗し(543mg)を得た。又、ろ液に 5N 塩酸水溶液を加え pH3とし減圧留去し残渣(7.6g)に塩化メチレン(100ml)を加え室温攪拌後、不溶物をろ去し再び減圧留去し(2.00g)を得た。

続いて、上で得られた 2.00g と 543mg を合併しジメチルスルフォキサイド (20ml)と懸濁し、窒素気流中、85℃油浴中で加熱攪拌を行った。7 時間後、反応混合物に室温攪拌化、水(100ml)を加え入れ、30 分間氷冷攪拌後、析出した黄色粉末として(5,6-ジメチル-2-メトキシピリジン-3-イル)ジスルフイド (1-013-09) (2.23g, 54.4%)を得た。

 1 H NMR (300 MHz, CDCl₃): δ 2.16 (s, 3H), 2.36 (s, 3H), 3.96 (s, 3H), 7.53 (s, 10 1H).

J) (5,6-ジメチル-2-ビリドン-3-イル)ジスルフイド (1-013-10) の合成

5

15

25

(5,6-ジメチル-2-メトキシピリジン-3-イル)ジスルフイド (1-013-09) (2.225g)に ピリジニウムクロリド(7.69g)を加え、窒素気流中、160℃油浴中で加熱攪拌した。 40 分後、反応混合物を冷却後、水(100ml)を加え室温攪拌しろ取し水洗し褐色粉 末の(5,6-ジメチル-2-ピリドン-3-イル)ジスルフイド (1-013-10) (1.736g, 85.1%) を得た。又、水層をクロロホルムで 2 回抽出し水洗 2 回行い硫酸マグネシウムで 乾燥し減圧留去して得られた残渣(81mg)をエタノール処理し、更に黄色粉末の目 的物(41mg, 2.0%)を得た。

 1 H NMR (300 MHz, CDCl₃): δ 1.95 (s, 3H), 2.13 (s, 3H), 7.42 (s, 1H), 11.89 (br 20 s, 1H).

k)(1-ブチル 5,6-ジメチル-2-ヒリドン-3-イル)ジスルフイド (1-013-11)の合成 (5,6-ジメチル-2-ヒリドン-3-イル)ジスルフイド (1-013-10) (31mg)を DMF(1ml)と懸濁し、1-ヨードブタン(78mg)続いて炭酸カリウム(42mg)を加え窒素気流中、3日間室温攪拌を行った。反応混合物に酢酸エチルを加え水中に注入し、酢酸エチル 2 回抽出後、水洗 1 回行い硫酸マグネシウムで乾燥後、減圧留去し (39mg, 92.9%)を得た。尚、ここで得た化合物はNMRより 20%の 1-ブチル体 (1-013-11)を含む。

1) 1-ブチル 5,6-ジメチル-3-メルカプト-2-ピリドン (1-013-12)の合成

(1-ブチル 5,6-ジメチル-2-ピリドン-3-イル)ジスルフイド (1-013-11) (123mg)をアセトン(8ml)に溶解し、室温攪拌下、トリ-n-ブチルホスフィン(0.16ml)を加え水 (4ml)を少しずつ加えた。そのまま 2 時間攪拌後、一晩室温放置した。反応液を塩化メチレンで希釈し水を加え、塩化メチレンで 2 回抽出し水洗 1 回行い硫酸マグネシウムで乾燥後、減圧留去した。得られた残渣(277mg)を分取薄層クロマトグラフィー(トルエン-アセトン(39:1))を行い、結晶性の 1-ブチル 5,6-ジメチル-3-メルカプト-2-ピリドン (1-013-12) (11mg, 8.9%)を得た。

¹H NMR (300 MHz, CDCl₃): δ 0.93 (t, J = 7.2 Hz, 3H), 1.32-1.45 (m, 2H), 10 1.62-1.72 (m, 2H), 2.11 (s, 3H), 2.32 (s, 3H), 4.20 (t, J = 7.8 Hz, 2H), 7.68 (s, 1H).

m) N-1-ブチル 5,6-ジメチル-3-(ベンズオキサゾール 2-イル)チオ-2-ピリドン (1-013)

先の実施例 1-015 と同様に行い、1-ブチル 5,6-ジメチル-3-メルカプト-2-ピリド ン(11mg)から、結晶性の 1-013 (4.5mg, 26.5%)を得た。

また、実施例 1-013 と同様な手法により、実施例 1-012 も合成した。

<実施例 1-014>

20 a) 2-クロロ-3-ハイドロキシ 6-メチルピリジン (1-014-02) の合成

5-ハイドロキシ 2-メチルピリジン (1-014-01) (27.01g)に濃塩酸 (200ml)を加えて溶解し、68-74℃にて塩素ガスを 7時間通じた。反応液を一夜放置後、窒素ガスを通じ揮発性物を除去し、ついで減圧濃縮して結晶性残渣を得た。メタノールに

溶かし活性炭処理後、再結晶し目的とする 2-クロロ-3-ハイドロキシ 6-メチルビリジン (1-014-02) (23.96g, 67.3%)を得た。

b) 2-メトキシ-3-ハイドロキシ 6-メチルピリジン (1-014-03)の合成

5

15

20

25

金属製封管に 2-クロロ-3-ハイドロキシ 6-メチルピリジン (1-014-02) (22.91g) および 28%ナトリウムメトキシド-メタノール溶液 (120ml)を加え 150 $^{\circ}$ にて 3 日間反応した。反応液に氷水 (100ml)を加え酢酸にて中和して反応液をすべて乾 固した。この残渣をクロロホルムにてシリカゲルクロマトを行い目的とする 2-メトキシ-3-ハイドロキシ 6-メチルピリジン (1-014-03) (10.44g, 48.1%)を得た。また原料をふくむフラクションは再度、封管中で反応を行った。

¹H-NMR (300MHz, CDCl₃): δ 2.35 (s,3H), 3.97 (s,3H), 6.60 (d, J= 7.8Hz, 1H), 6.98 (d, J= 7.8Hz, 1H).

c) 2、3-ジハイドロキシ 6-メチルピリジン (1-014-04) の合成

先の実験で得られた 2-メトキシ 3-ハイドロキシ 6-メチルピリジン (1-014-03) (10.43g) にピリジン塩酸塩 43.3g を加え、窒素気流下 160 で 1 時間さらに 170 で 20 分加熱反応した。反応液に H_2O (50ml)を加え 5%メタノール/酢酸エチルおよび酢酸エチルにて抽出を繰り返したのち、可溶物を併せ濃縮乾固することにより灰白色の残渣を得た。この 2、3-ジハイドロキシ 6-メチルピリジン (1-014-04) は精製することなくつぎの反応に用いた。

d) 1-ブチル 3-ブチル-6-メチル-2-ピリドン (1-014-05) の合成

粗製の 2、3-ジハイドロキシ 6-メチルビリジン (1-014-04) (16.04g)を乾燥 DMF (70 ml) に溶かし固体で 60%水素化ナトリウム (10.25g)を少量ずつ加え窒素下室温にて 30 分攪拌反応させた。つぎに 1-ヨードブタン(29.1 ml)-DMF (30 ml)よりなる溶液を 20 分で滴下、室温にて 3 時間反応させた。 反応後、飽和塩化アンモニウム水溶液を加え酢酸エチル 150 ml にて 3 回抽出した。さらに水層をクロロホルムにて抽出を重ね、有機層を併せて活性炭処理し濃縮した。得られた残渣は n-ヘキサン-酢酸エチルを用いたシリカゲルクロマトを行い油状の 1-ブチル 3-O-ブチル-6-メチル-2-ピリドン (1-014) (8.915g) を得た。(収率 50.1% 2 工程)

¹H-NMR (300MHz, CDCl₃): δ 0.96 (t, J = 7.5 Hz, 6H), 1.43 (m,4H), 1.67 (m,2H), 1.82 (m,2H), 2.31 (s,3H), 3.88 (t, J = 6.6 Hz, 2H), 4.01 (t, J = 7.8 Hz, 2H), 5.87 (d, J = 7.8 Hz, 1H), 6.52(d, J = 7.8 Hz, 1H).

5 <実施例 1-015>

10

15

20

a) ブチル-シクロヘキシリデン-アミン (1-015-01)の合成

シクロヘキサノン (10.36 ml, 0.1 mol)に、1-ブチルアミン (9.88 ml, 0.1 mol) とトルエン (15 ml)を加え、モレキュラーシーブ 4A を入れたディーンスターク還流管を用いて脱水条件下、24 時間加熱還流した。反応液を室温まで冷却後減圧濃縮し、残渣を減圧蒸留(64°C, 2 mmHg)して、ブチル-シクロヘキシリデン-アミン (1-015-01) (12.8 g, 84%)を無色油状物質として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.93 (t, J= 7.5 Hz, 3H), 1.35 (sextet, J= 7.5 Hz, 2H), 1.58 (quint, J= 7.5 Hz, 2H), 1.61-1.70 (m, 4H), 1.71-1.77 (m, 2H), 2.30 (t, J= 6.0 Hz, 2H), 2.34 (t, J= 6.0 Hz, 2H), 3.30 (t, J= 7.5 Hz, 2H).

b) 1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-イソキノリン-3-カルボン酸メチルエステル (1-015-02)の合成

ブチル・シクロヘキシリデン・アミン (1-015-01) (12.8g, 83.6 mmol)をジグライム (75 ml)に溶解し 120°C に加熱した。この溶液にメトキシメチレンマロン酸ジメチル (14 g, 80.4 mmol)のジグライム溶液 (75 ml)を 1 時間かけて滴下しさらに

3 時間 120°C で反応させた。反応液を冷却後、ジグライムを減圧留去し、得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-イソキノリン-3-カルボン酸メチルエステル (1-015-02) (15 g, 71%)を黄色油状物質として得た。

- 5 1 H NMR (300 MHz, CDCl₃): δ 0.97 (t, J= 7.5 Hz, 3H), 1.43 (sextet, J= 7.5 Hz, 2H), 1.63-1.78 (m, 4H), 1.87 (quint, J= 6.0 Hz, 2H), 2.57 (t, J= 6.0 Hz, 2H), 2.73 (t, J= 6.0 Hz, 2H), 3.90 (s, 3H), 4.02 (t, J= 7.8 Hz, 2H), 7.92 (s, 1H).
 - c) 1-ブチル-3-ヒドロキシメチル-5,6,7,8-テトラヒドロ-1*H*-キノリン-2-オン (1-015-03)の合成
- 10 1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-イソキノリン-3-カルボン酸メチルエステル (1-015-02) (130 mg, 0.5 mmol)を THF (12 ml)に溶解し、CeCl₃・7H₂O (372.6 mg, 1 mmol)と水素化ホウ素リチウム (21.8 mg, 1 mmol)を加え、室温で20 分攪拌した。反応液に希塩酸 (1N, 20 ml)を加え酢酸エチル (40 ml)で抽出後、飽和食塩水 (30 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。この残渣をもう一度上記と同じ条件で反応させ、同様の反応後処理を行った。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、1-ブチル-3-ヒドロキシメチル-5,6,7,8-テトラヒドロ-1*H*-キノリン-2-オン (1-015-03) (80 mg, 68%)を無色油状物質として得た。
- ¹H NMR (300 MHz, CDCl₃): δ 0.98 (t, J= 7.5 Hz, 3H), 1.43 (sextet, J= 7.5 Hz, 2H), 1.65 (quint, J= 7.5 Hz, 2H), 1.71 (quint, J= 6.0 Hz, 2H), 1.85 (quint, J= 6.0 Hz, 2H), 2.52 (t, J= 6.0 Hz, 2H), 2.68 (t, J= 6.0 Hz, 2H), 4.00 (t, J= 7.8 Hz, 2H), 4.53 (s, 2H), 7.02 (s, 1H).
 - d) 1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-カルボアルデヒド (1-015-04)の合成
- 25 DMSO (0.54 ml, 7.64 mmol)を塩化メチレン (27 ml)に溶解し-78°C に冷却した。この溶液にオキザリルクロリド (0.4 ml, 4.58 mmol)と 1-ブチル-3-ヒドロキシメチル-5,6,7,8-テトラヒドロ-1*H*-キノリン-2-オン (1-015-03) (0.9 g, 3.82 mmol)の

塩化メチレン溶液 (20 ml)をこの順番に滴下し、さらにトリエチルアミン (1.33 ml, 9.55 mmol)を加え、-78°C で 5 分攪拌した後、徐々に室温へ昇温した。室温でさらに 20 分攪拌した後、反応液に希塩酸 (1N, 50 ml)を加え酢酸エチル (200 ml)で抽出後、飽和炭酸水素ナトリウム水溶液 (50 ml)、飽和食塩水 (50 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-カルボアルデヒド (1-015-04) (0.5 g, 56%)を淡黄色泡状物質として得た。

5

¹H NMR (300 MHz, CDCl₃): δ 0.99 (t, J= 7.5 Hz, 3H), 1.46 (sextet, J= 7.5 Hz, 10 2H), 1.68 (quint, J= 7.5 Hz, 2H), 1.74 (quint, J= 6.0 Hz, 2H), 1.88 (quint, J= 6.0 Hz, 2H), 2.59 (t, J= 6.0 Hz, 2H), 2.76 (t, J= 6.0 Hz, 2H), 4.05 (t, J= 7.8 Hz, 2H), 7.76 (s, 1H), 10.34 (s, 1H).

- e) 1-プチル-3-ヒドロキシ-5,6,7,8-テトラヒドロ-1*H*-キノリン-2-オン (1-015-05) の合成
- 1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-カルボアルデヒド (1-015-04) (160 mg, 0.69 mmol)を塩化メチレン (10 ml)に溶解し、NaH₂PO₄・H₂O (190 mg, 1.38 mmol)とメタクロロ過安息香酸 (237 mg, 1.38 mmol)を加え、室温で 30 分攪拌した。反応液に 5%チオ硫酸ナトリウム水溶液 (20 ml)を加え酢酸エチル (50 ml)で抽出後、飽和炭酸水素ナトリウム水溶液 (20 ml)、飽和食塩水 (20 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。残渣をエタノール (5 ml)に溶解し、水酸化ナトリウム水溶液 (2M, 0.35 ml, 0.7 mmol)を加え、室温で30 分攪拌した。反応液に希塩酸 (0.2N, 7 ml)を加え酢酸エチル (25 ml)で抽出後、飽和食塩水 (10 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、1-ブチル-3-ヒドロキシ-5,6,7,8-テトラヒドロ-1*H*-キノリン-2-オン (1-015-05) (82 mg, 54%)を淡褐色結晶として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.97 (t, J = 7.5 Hz, 3H), 1.42 (sextet, J = 7.5 Hz,

2H), 1.60-1.74 (m, 4H), 1.83 (quint, J = 6.0 Hz, 2H), 2.50 (t, J = 6.0 Hz, 2H), 2.62 (t, J = 6.0 Hz, 2H), 4.02 (t, J = 7.8 Hz, 2H), 6.57 (s, 1H).

f) 3-(ベンゾオキサゾール 2-イルオキシ)1-ブチル-5,6,7,8-テトラヒドロ-1H-キノリン-2-オン (1-015)の合成

1-ブチル-3-ヒドロキシ-5,6,7,8-テトラヒドロ-1H-キノリン-2-オン (1-015-05) (10 mg, 0.045 mmol)を DMF (1 ml)に溶解し、水素化ナトリウム (60% oil suspension, 2.7 mg, 0.068 mmol)を加え室温で 5 分激しく攪拌した。この溶液に 2-クロロベンゾオキサゾール (7.7 μ l、0.068 mmol)を加え室温で 20 分攪拌,反応液に希塩酸 (1N, 3 ml)を加え酢酸エチル (8 ml)で抽出後、飽和食塩水 (4 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、3-(ベンゾオキサゾール2-イルオキシ)1-ブチル-5,6,7,8-テトラヒドロ-1H-キノリン-2-オン (1-015) (12 mg, 79%)を淡黄色粉末として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.94 (t, J= 7.5 Hz, 3H), 1.40 (sextet, J= 7.5 Hz, 2H), 1.66 (quint, J= 7.5 Hz, 2H), 1.74 (quint, J= 6.0 Hz, 2H), 1.87 (quint, J= 6.0 Hz, 2H), 2.58 (t, J= 6.0 Hz, 2H), 2.69 (t, J= 6.0 Hz, 2H), 4.02 (t, J= 7.8 Hz, 2H), 7.16-7.26 (m, 2H), 7.24 (s, 1H), 7.40 (dd, J= 6.9 Hz, 2.4 Hz, 1H), 7.48 (dd, J= 6.9 Hz, 2.4 Hz, 1H).

20 <実施例 1-017>

5

10

15

a) 1-(2-ブロモフェネチル)-3-メトキシ 2-ピリドン (1-017-01)の合成

2-034-02 と同様にして合成した (44%)。

¹H NMR (300 MHz, CDCl₃): δ 3.22 (t, J= 7.3 Hz, 2H), 3.83 (s, 3H), 4.21 (t, J= 7.6 Hz, 2H), 5.96 (t, J= 7.3 Hz, 1H), 6.60 (m, 2H), 7.07-7.22 (m, 3H), 7.55 (d, J= 7.6 Hz, 1H).

5 b) 1-(2-ブロモフェネチル)-3-ヒドロキシ-2-ピリドン (1-017-02)の合成 1-004-08 と同様にして合成した (100%)。

¹H NMR (300 MHz, CDCl₃): δ 3.23 (t, J= 7.3 Hz, 2H), 4.23 (t, J= 7.3 Hz, 2H), 6.02 (t, J= 7.0 Hz, 1H), 6.57 (dd, J= 7.0, 1.2 Hz, 1H), 6.78 (dd, J= 7.3, 1.8 Hz, 1H), 7.08-7.14 (m, 2H), 7.18-7.23 (m, 1H), 7.56 (dd, J= 7.0, 1.2 Hz, 1H).

10 c) 3-(ベンゾオキサゾール 2-イルオキシ)-1-(2-ブロモフェネチル)-3-ヒドロキシ-2-ピリドン (1-017)の合成

1-015 と同様にして合成した (70%)。

<実施例 1-018>

15

20

キシ 6,7-ジヒドロビリド[2,1,a]イソキノリン-4-オン (1-017-02) (50.6 mg, 69%) を油状物質として得た。

¹H NMR (300 MHz, CDCl₃): δ 2.97 (t, J= 6.4 Hz, 2H), 3.88 (s, 3H), 4.34 (t, J= 6.3 Hz, 2H), 6.64 (d, J= 7.9 Hz, 1H), 6.74 (d, J= 7.9 Hz, 1H), 7.23-7.34 (m, 3H), 7.64-7.67 (m, 1H).

b) 3-ヒドロキシ-6,7-ジヒドロピリド[2,1,a]イソキノリン-4-オン (1-018-02)の合成

1-004-08 と同様にして合成した (98%)。

¹H NMR (300 MHz, CDCl₃): δ 3.00 (t, J= 6.6 Hz, 2H), 4.35 (t, J= 6.6 Hz, 2H), 6.71 (d, J= 7.8 Hz, 1H), 6.93 (d, J= 7.8 Hz, 1H), 7.24-7.34 (m, 3H), 7.64-7.68 (m, 1H).

d) 3-(ベンゾオキサゾール 2-イルオキシ)-6,7-ジヒドロビリド[2,1,a]イソキノリン-4-オン (1-018)の合成

1-004と同様にして合成した (47%)。

15

5

<実施例 2-004>

a) 1-ブチル 5, 6-ジメチル-3-メトキシ 2-チオ-ビリドン (2-004-01)の合成

1-ブチル 5, 6-ジメチル-3-メトキシ 2-ビリドン (1-004-07) (222mg)及びローソ 20 ン試薬(502mg)にトルエン(8ml)を加え懸濁し、窒素気流中、攪拌還流を行った。7 時間後、反応混合物にメタノール(25ml)を加え 室温攪拌し、1 時間後、減圧留去した。残渣(0.80g) をローバーカラムBでシリカゲルカラムクロマト(トルエン-ア

セトン(4:1))を行い、 1-ブチル 5,6-ジメチル-3-メトキシ 2-チオ-ピリドン (2-004-01) (177mg, 74.1%, 融点 111-112℃)。

¹H NMR (300 MHz, CDCl₃): δ 1.00 (t, J = 7.2 Hz, 3H), 1.43-1.55 (m, 2H), 1.70-1.95 (br s, 2H), 2.22 (s, 3H), 2.46 (s, 3H), 3.89 (s, 3H), 4.90 (br s, 2H), 6.54 (s, 1H).

- b) *N*-1-ブチル 5,6-ジメチル-3-ヒドロキシ-2-チオ-ピリドン (2-004-02) 1-013-10 と同様に行うことにより、 2-004-01 (170mg)から 1-ブチル 5,6-ジメチル-3-ヒドロキシ-2-チオ-ピリドン (2-004-02) (118mg, 74.2%, 融点 81-88℃). を得た。
- ¹H NMR (300 MHz, CDCl₃): δ 1.02 (t, J = 7.2 Hz, 3H), 1.45-1.57 (m, 2H), 1.70-1.90 (m, 2H), 2.21 (s, 3H), 2.45 (s, 3H), 4.72 (br s, 2H), 6.87 (s, 1H), 8.44 (br s, 1H).
 - c) 1-ブチル 5,6-ジメチル-3-〇-(ベンズオキサゾール 2-イル)-2-チオ-ビリドン (2-004) の合成
- 15 実施例 1-004と同様に行うことにより、2-004-02 (118mg)から 1-ブチル 5,6-ジメチル-3-〇-(ベンズオキサゾール 2-イル)-2-チオ-ピリドン (2-004) (84mg, 45.9%, 融点 185-187℃)を得た。

実施例 2-001~実施例 2-013 は、実施例 2-004 と同様に合成した。

20 <実施例 2-014>

5

a) 2-ヨード-3-ハイドロキシ 6-メチルビリジン (2-014-01) の合成

5-ハイドロキシ 2-メチルピリジン(1-014-01) (36.11g)に炭酸ソーダ (68.0g) お

よび水 (810ml)を加えて室温にて攪拌溶解した後、ヨウ素 (117g)、ヨウ化カリウム (117g)および水 (810ml)よりなる溶液を 35 分要して滴下した。反応液に析出してくる橙黄色の結晶をろ過、減圧乾燥して 2-ヨード 3-ハイドロキシ 6-メチルピリジン (2-014-01) (34.1g, 43.9%, 融点 187-190℃)を得た。

- 1 H-NMR (300MHz, CDCl₃+CD₃OD): δ 2.45 (s,3H), 6.45 (d, J = 6.9 Hz, 1H), 7.02 (dd, J = 6.6, 1.5 Hz, 1H)
 - b) 3-ハイドロキシ 2-ヨード 1,6-ジメチル-ピリジニウム ヨージド (2-014-02) の 合成

ガラス製の封管に 2-ヨード 3-ハイドロキシ 6-メチルピリジン 835mg およびヨ
10 ードメタン 3ml を入れ、130℃で 4 時間さらに 180℃で 1 時間反応した。反応液
は濃縮乾固し 1.42g の 3-ハイドロキシ 2-ヨード 1,6-ジメチル-ピリジニウム ヨージド (2-014-02)を得た。

c) 1, 6-ジメチル-3-ハイドロキシ 2-チオピリドン (2-014-03) の合成

15

20

25

3-ハイドロキシ 2-ヨード 1,6-ジメチル-ピリジニウム ヨージド (2-014-02) (852 mg) にトリエチルアミン 457 mg およびアセトニトリル 10 ml よりなる溶液に、 1,3-ジフェニルチオ尿素 517 mg を加え 2 時間還流した。反応後、濃縮しシリカゲルクロマト(n-ヘキサン-酢酸エチルにて溶出)を行い 279 mg の 1,6-ジメチル-3-ハイドロキシ 2-チオピリドン (2-014-03) を得た。

¹H NMR (300 MHz, CDCl₃): δ 2.47 (s,3H),4.12 (s,3H), 6.53 (d, J = 8.1Hz, 1H), 6.95 (d, J = 8.1Hz, 1H), 8.35 (br s, 1H).

d) 3-(ベンゾオキサゾール 2-イルオキシ)-1,6-ジメチル-1H-ピリジン-2-チオン(2-014)の合成

1,6-ジメチル-3-ハイドロキシ 2-チオピリドン (2-014-03) (157 mg)を DMF (3ml)に溶かし 60%水素化ナトリウム 52mg を加えて室温にて 7 分反応させた。この反応液に 2-クロロベンゾオキサゾール (184 mg)を DMF (0.5 ml) にて洗い込み、室温にて 2 時間反応させた。反応後、飽和塩化アンモニア水溶液および酢酸エチルにて繰り返し抽出し、シリガゲルクロマトにて精製しイソプロパノール/ク

ロロホルムより再結晶を行うことにより、3-(ベンゾオキサゾール 2-イルオキシ)-1,6-ジメチル-1*H*-ピリジン-2-チオン (2-014) (182 mg, 66.8%, 融点 245-247 $^{\circ}$ C) を得た。

5 < 実施例 2-015、2-018、2-026>

20

a) 1-ブチル 3-ブチル-6-メチル-2-チオピリドン(2-026)の合成

1-ブチル 3-ブチル-2-ピリドン (1-014) (8.91 g)に乾燥トルエン (200 ml)に溶かしローソン試薬 (19.41 g)を加え窒素気流下還流して 3.5 時間反応させた。反応後 メタノール (80 ml)を加えて室温にて、1.5 時間攪拌し反応液を濃縮する。残液を n-ヘキサン-酢酸エチルを用いてシリカゲルクロマトを行った。油状の 1-ブチル-3-ブチル-6-メチル-2-チオピリドン (2-026) (12.97 g)を得、精製することなく次の 反応に用いた。

¹H-NMR (300MHz, CDCl₃): δ 0.94 (t, J = 7.5Hz, 3H), 0.99 (t, J = 7.5Hz, 3H), 1.46 (m, 4H), 1.87 (m, 4H), 2.50 (s,3H), 3.98 (t, J = 6.9Hz, 2H), 4.75 (brs, 2H), 6.40 (d, J = 7.8Hz, 1H), 7.80 (d, J = 7.8Hz, 1H)

b) 1-ブチル 3-ハイドロキシ 6-メチル-2-チオピリドン(2-018)の合成

1-ブチル 3-ブチル -6-メチル -2-チオピリドン (2-026) (12.97g)を乾燥塩化メチレン (200 ml)に溶かし 1 mmol/ml の三臭化ホウ素 -塩化メチレン溶液 (5.6 ml)をゆっくりと加え、室温にて 5 時間攪拌反応させた。反応液を 150 ml の氷水に注加し濃アンモニアにて pH 8-9 としクロロホルムにて抽出、飽和食塩水にて洗浄しアルミナ (150 g) のカラムを通しさらにクロロホルムにて溶出した。オレンジ色の油状物として 1-ブチル 3-ハイドロキシ 6-メチル -2-チオピリドン (2-018) (5.439 g, 1)

73.4%)を得た。

¹H-NMR (300MHz, CDCl₃): δ 1.02 (t, J = 7.8 Hz), 1.50 (m,2H), 1.85 (m,2H), 2.51 (s,3H), 4.66 (br s,2H), 6.49 (d, J = 7.8 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 8.44(brs. 1H).

5 c) 1-ブチル 3-(ベンズオキサゾール 2-イル)-オキシ-6-メチル-2-チオピリドン (2-014)の合成

1-ブチル 3-ハイドロキシ 6-メチル・2-チオピリドン (2-018) (113 mg)を乾燥 DMF (1.1 ml)に溶かし、この中に 60%水素化ナトリウム(36 mg)を加えて室温にて 30 分攪拌した。2-クロロベンゾオキサゾール (112 mg)を加え 2 時間 40 分反応した。反応後氷水 (20 ml)に加え酢酸エチル(30 ml)にて 2 回抽出し、有機層は飽和食塩水にて洗浄し濃縮した。残渣をクロロホルムを展開溶媒とした分取薄層クロマトにて精製し、エーテルより再結晶して 1-ブチル 3-(ベンズオキサゾール 2-イル)・オキシ・6-メチル・2-チオピリドン (2-014) (117 mg, 融点 125-127.5℃)を得た。

15 実施例 2-015~実施例 2-029 は、実施例 2-014 に準拠した方法にて合成した。

<実施例 2-034>

10

a) 1-ブチル-3-メトキシ 2-ビリドン (2-034-02)の合成

20 3-メトキシ 2(1*H*)-ビリドン (2-034-01) (5.0 g) の DMF (40 ml) 溶液に,室温で水素化ナトリウム (60%wt, 2,2 g) を加えた。20 分攪拌した後,1-ヨードブタ

ン(15.5 g) を加え、さらに 40 分攪拌した。水を加え反応を停止した後、溶媒を留去した.残渣に飽和塩化アンモニウム水溶液と酢酸エチルを加え有機相を分離した後、水相を酢酸エチルで 3 回抽出した。合わせた有機相を水、飽和食塩水で順次洗い、無水硫酸マグネシウムで乾燥した.溶媒を減圧下で留去し、得られた粗生成物をカラムクロマトグラフィー(トルエン/アセトン = 4/1)で精製することにより 1-ブチル-3-メトキシ 2-ピリドン(2-034-02)(6.7 g, 93%) を油状物質として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.93 (t, J = 7.2 Hz, 2H), 1.30-1.42 (m, 2H), 1.68-1.78 (m, 2H), 3.81 (s, 3H), 3.97 (t, J = 7.2 Hz, 2H), 6.09 (t, J = 7.2 Hz, 1H), 6.59 (dd, J = 7.2, 1.5 Hz, 1H), 6.88 (dd, J = 7.2, 1.5 Hz, 1H).

b) 1-ブチル-3-メトキシピリジン-2-チオン (2-034-03) の合成

5

10

1-ブチル-3-メトキシ 2-ピリドン (2-034-02) (6.4 g) のトルエン (150 ml) 溶液にローソン試薬 (16.8 g) を加え,加熱還流した。3 時間攪拌した後,室温でメタノール (100 ml) を加え,さらに 30 分攪拌した。減圧下で溶媒を留去した後,

- 15 水,及び酢酸エチルを加え有機相を分離し、水相を酢酸エチルで 3 回抽出した。 合わせた有機相を、水、及び飽和食塩水で洗い、無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去した後、得られた粗生成物をカラムクロマトグラフィー (トルエン/アセトン = 4/1) で精製することにより 1-ブチル-3-メトキシピリジン-2-チオン (2-034-03) (5.6 g, 80%) を油状物質として得た。
- ¹H NMR (300 MHz, CDCl₃): δ 0.98 (t, J= 7.3 Hz, 3H), 1.36-1.48 (m, 2H), 1.84-1.94 (m, 2H), 3.92 (s, 3H), 4.62 (t, J= 7.6 Hz, 2H), 6.61 (dd, J= 7.9, 6.2 Hz, 1H), 6.69 (dd, J= 7.9, 1.2 Hz, 1H), 7.38 (dd, J= 6.2, 1.2 Hz, 1H).
 - c) 1-ブチル-3-ヒドロキシヒリジン-2-チオン (2-034-04)の合成

1-ブチル-3-メトキシビリジン-2-チオン (2-034-03) (1.4 g) にビリジン塩酸塩
25 (3.6 g) を加えた。190 ℃で 40 分攪拌した後,水,及び酢酸エチルを加え有機相
を分離し,水相を酢酸エチルでさらに 3 回抽出した。合わせた有機相を,水,及
び飽和食塩水で洗い,無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去す

PCT/JP01/11427

10

15

20

25

ることにより 1-ブチル-3-ヒドロキシピリジン-2-チオン (2-034-04) (1.02 g, 78%) を油状物質として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.99 (t, J = 7.3 Hz, 3H), 1.43 (m, 2H), 1.91 (m, 2H), 4.53 (t, J = 7.6 Hz, 2H), 6.66 (dd, J = 7.6, 6.7 Hz, 1H), 6.97 (dd, J = 7.6, 1.2 Hz, 1H), 7.34 (dd, J = 6.7, 1.2 Hz, 1H), 8.61 (br s, 1H).

d) 1-ブチル-3-ヒドロキシ-4-(N,N-ジメチルアミノメチル)ピリジン-2-チオン(2-034-05)の合成

¹H NMR (300 MHz, CDCl₃): δ 0.99 (t, J = 7.3 Hz, 3H), 1.39-1.47 (m, 2H), 1.86-1.93 (m, 2H), 2.29 (s, 6H), 3.48 (s, 2H), 4.51 (t, J = 7.3 Hz, 2H), 6.87 (d, J = 6.7 Hz, 1H), 7.32 (d, J = 6.7 Hz, 1H).

e) 1-ブチル-3-ヒドロキシ-4-メチルピリジン-2-チオン (2-034-06)の合成

1-ブチル-3-ヒドロキシ-4-(N,N-ジメチルアミノメチル)ピリジン-2-チオン (2-034-05) (1.0 g) の塩化メチレン (20 ml) 溶液に室温でヨードメタン (2.1 g) を加えた。1 時間攪拌した後,減圧下で溶媒を留去した。残渣にエタノール (20 ml),

及びトリフェニルホスフィン (1.6 g) を加えた。75 °Cで 20 時間攪拌した後,減圧下で溶媒を留去した。次に,残渣にメタノール (10 ml),及び 1 規定水酸化ナトリウム水溶液 (8 ml) を加え,さらに 60 °Cで 2 時間攪拌した。減圧下で溶媒を留去した後,得られた粗生成物をカラムクロマトグラフィー (トルエン/アセトン= 4/1) で精製することにより 1-ブチル-3-ヒドロキシ-4-メチルピリジン-2-チオン (2-034-06) (0.57 g, 70%) を油状物質として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.98 (t, J = 7.3 Hz, 3H), 1.36-1.48 (m, 2H), 1.84-1.94 (m, 2H), 2.25 (s, 3H), 4.50 (t, J = 7.6 Hz, 2H), 6.55 (d, J = 6.7 Hz, 1H),

7.25 (d, J = 6.7 Hz, 1H), 8.67 (s, 1H).

f) 3-(ベンゾオキサゾール 2-イルオキシ)-1-ブチル-4-メチルピリジン-2-チオン(2-034) の合成

1-ブチル-3-ヒドロキシ-4-メチルビリジン-2-チオン (2-034-06) (50 mg) の DMF (1.0 ml) 溶液に、室温で水素化ナトリウム (60%wt, 15 mg) を加えた。20 分攪拌した後、2-クロロベンゾオキサゾール (85 mg) を加え、さらに 75 ℃で 17 時間攪拌した。水を加え反応を停止した後、溶媒を留去した。残渣に飽和塩化アンモニウム水溶液と酢酸エチルを加え有機相を分離した後、水相を酢酸エチルで 3 回抽出した。合わせた有機相を水、飽和食塩水で順次洗い、無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去し、得られた粗生成物をカラムクロマトグラフィー (トルエン/アセトン = 4/1) で精製することにより 3-(ベンゾオキサゾール2-イルオキシ)-1-ブチル-4-メチルビリジン-2-チオン (2-034) (73 mg、92%)を 黄色結晶として得た。得られた結晶をさらに再結晶(塩化メチレン-エーテル)により精製した。

15

10

5

<実施例 2-035>

a) 5-(N,N-ジメチルアミノメチル)-3-メトキシ 2(1*H*)-ピリドン (2-085-01)の合成 3-メトキシ 2(1*H*)-ピリドン (2-034-01) (5.0 g) の 10%含水エタノール (150 ml) 20 溶液に、室温で N,N,N',N'-テトラメチルジアミノメタン (54 ml) を加え、加熱還流した。48 時間攪拌した後、減圧下で溶媒を留去し得られた粗生成物をカラムク

ロマトグラフィー (クロロホルム/メタノール/水 = 6/4/1) で精製することにより 5-(N,N-ジメチルアミノメチル)-3-メトキシ <math>2(1H)-ピリドン (2-035-01) (4.5 g, 53%) を油状物質として得た。

¹H NMR (300 MHz, CDCl₃): δ 2.21 (s, 6H), 3.17 (s, 2H), 3.87 (s, 3H), 6.86 (d, J = 1.8 Hz, 1H), 6.90 (d, J = 1.8 Hz, 1H).

b) 3-メトキシ 5-メチル-2(1*H*)-ピリドン (2-035-02)の合成 2-034-06 と同様にして合成した (71%)。

¹H NMR (300 MHz, CDCl₃): δ 2.11 (d, J= 1.2 Hz, 3H), 3.84 (s, 3H), 6.62 (d, J= 2.1 Hz, 1H), 6.80 (dd, J= 2.1, 1.2 Hz, 1H).

10 c) 1-ブチル-3-メトキシ 5-メチル-2-ビリドン (2-035-03)の合成 2-034-02 と同様にして合成した (63%)。

¹H NMR (300 MHz, CDCl₃): δ 0.94 (t, J = 7.3 Hz, 3H), 1.29-1.42 (m, 2H), 1.66-1.76 (m, 2H), 2.08 (d, J = 1.2 Hz, 3H), 3.80 (s, 3H), 3.92 (t, J = 7.3 Hz, 2H), 6.45 (d, J = 1.2 Hz, 1H), 6.65 (dd, J = 2.1, 1.2 Hz, 1H).

15 d) 1-ブチル-3-メトキシ 5-メチルピリジン-2-チオン (2-035-04)の合成2-034-03 と同様にして合成した (100%)。

¹H NMR (300 MHz, CDCl₃): δ 0.97 (t, J = 7.4 Hz, 3H), 1.35-1.48 (m, 2H), 1.83-1.93 (m, 2H), 2.21 (s, 3H), 3.91 (s, 3H), 4.59 (t, J = 7.7 Hz, 2H), 6.55 (s, 1H), 7.21 (s, 1H).

20 e) 1-ブチル-3-ヒドロキシ-5-メチルピリジン-2-チオン (2-035-05)の合成 2-034-04 と同様にして合成した (76%)。

¹H-NMR (CDCl₃, 300 MHz): δ 0.99 (t, J = 7.3 Hz, 3H), 1.37-1.50 (m, 2H), 1.85-1.95 (m, 2H), 2.19 (d, J = 0.9 Hz, 3H), 4.49 (t, J = 7.6 Hz, 2H), 6.86 (d, J = 1.2 Hz, 1H), 7.16 (dd, J = 1.9, 0.9 Hz, 1H), 8.55 (s, 1H).

25 f) 3-(ベンゾオキサゾール 2-イルオキシ)-1-ブチル-5-メチルピリジン-2-チオン (2-035)の合成

1-ブチル-3-ヒドロキシ-5-メチルピリジン-2-チオン (2-035-05) (300 mg) の

5

10

DMF (6.0 ml) 溶液に、室温で水素化ナトリウム (60%wt, 79 mg) を加えた。20 分攪拌した後、2-クロロベンゾオキサゾール (432 mg) を加え、さらに室温で 2 時間攪拌した。水を加え反応を停止した後、溶媒を留去した。残渣に飽和塩化アンモニウム水溶液と酢酸エチルを加え有機相を分離した後、水相を酢酸エチルで 3 回抽出した。合わせた有機相を水、飽和食塩水で順次洗い、無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去し、得られた粗生成物をカラムクロマトグラフィー (トルエン/アセトン = 4/1) で精製することにより 3-(ベンゾオキサゾール2-イルオキシ)-1-ブチル-4-メチルビリジン-2-チオン (2-035) (372 mg, 78%) を黄色結晶として得た。得られた結晶をさらに再結晶 (塩化メチレン-エーテル) により精製した。

実施例 2-030~実施例 2-037 は、実施例 2-034、2-035 と同様に合成した。 <実施例 3-003>

a) N-エチル シアノアセタミド (3-003-02)

エチルシアノアセタート (3-003-01) (11.31g)に室温攪拌下、70% エチルアミン水溶液(15.5ml)を滴下した。この時、内温が 44℃に上昇したので、水冷攪拌し15 分を要し 32~37℃で行った。そのまま 9 時間攪拌後、一晩室温放置した。翌日、反応液を減圧留去した。得られた褐色結晶性残渣(11.93g)にエーテル(20ml)とn-ヘキサン(10ml)を加え、オレンジ色結晶をろ取し N-エチル シアノアセタミ
 ド (3-003-02) (9.05g, 80.7%、融点 54-59℃)を得た。

¹H NMR (300 MHz, CDCl₃): δ 1.20 (t, J = 7.2 Hz, 3H), 3.31-3.40 (m, 4H), 6.22 (br s, 1H).

b) 1-エチル 3-シアノ-5,6-ジメチル-2-ビリドン (3-003-03)

5

10

15

25

2-メチル-3-オキソブタナール ナトリウム塩 (3.18g)と N-エチル シアノアセタミド (3-003-02)(2.243g)を DMF(20ml)に懸濁し、室温攪拌下、酢酸(1.49ml)、続いてピベリジン(0.40ml)を加え入れ、135^{\circ}C油浴中で攪拌還流を行った。5 時間後、反応混合物をクロロホルムと水に溶解しクロロホルムで 3 回抽出し、硫酸マグネシウムで乾燥後、減圧留去した。得られた結晶性残渣(4.07g)をn-ヘキサン(15ml)で 3 回洗浄し、 1-エチル 3-シアノ-5,6-ジメチル-2-ピリドン (3-003-03) (3.38g, 96%)を褐色結晶として得た。

¹H NMR (300 MHz, CDCl₃): δ 1.33 (t, J = 7.2 Hz, 3H), 2.13 (s, 3H), 2.43 (s, 3H), 4.19 (q, J = 7.2 Hz, 2H), 7.59 (s, 1H).

c) 1-エチル 3-カルボキシ-5,6-ジメチル-2-ピリドン (3-003-04)

3H), 4.28 (q, J = 7.2 Hz, 2H), 8.28 (s, 1H), 14.73 (br s, 1H).

1-エチル 3-シアノ-5,6-ジメチル-2-ビリドン (3-003-03) (3.37g)を 80%エタノール(65ml)に溶解し、水酸化カリウム (7.96g)を加え、窒素気流中、102℃油浴中で攪拌還流を行った。 24 時間後、反応液を減圧濃縮し水 (50ml)と酢酸エチル(50ml)を加え、氷冷攪拌後、振とう分液し水層を氷冷下、濃塩酸 (13ml)を加え入れ、析出した結晶をろ取し冷水で洗浄し、1-エチル 3-カルボキシ-5,6-ジメチル-2-ビリドン (3-003-04) (2.734g, 73.3%, 融点 164-165℃.)を黄土色結晶として得た。

¹H NMR (300 MHz, CDCl₃): δ 1.38 (t, *J* = 7.2 Hz, 3H), 2.20 (s, 3H), 2.49 (s,

20 d) 1-エチル-2-オキソ-5,6-ジメチル-1,2-ジヒドロピリジン 3-カルボン酸 ベンジル アミド (3-003)

1-エチル 3-カルボキシ-5,6-ジメチル-2-ピリドン (3-003-04) (195mg)を DMF(3ml)に溶解し、ベンジルアミン(0.17ml)、ジイソプロピルエチルアミン (0.35ml)、次いでベンゾトリアゾール 1-イル-トリス-ピロジリノ-ホスホニウムへキサフルオロホスフェイト(PyBOP, 624mg)を加え入れ、室温攪拌を行った。1時間後、反応液を酢酸エチルで希釈し、塩酸水溶液で2回洗浄し、続いて重曹水溶液2回洗浄し、更に水洗1回行い硫酸マグネシウムで乾燥後、減圧留去した。残

渣(0.40g)をシリカゲルカラムクロマト(30g, クロロホルム)を行い、1-エチル-2-オキソ-5,6-ジメチル-1,2-ジヒドロビリジン <math>3-カルボン酸 ベンジルアミド (3-003)の結晶(259mg, 91.1%)を得、塩化メチレン/n-ヘキサンで再結晶し、無色針状晶 $(207mg, 72.9\%, 融点 <math>117^{\circ}$ C)を得た。

5 実施例 3-001~実施例 3-036 は、実施例 3-004 と同様に合成した。

<実施例 3-067、3-068、3-069>

a) 2-ヒドロキシニコチン酸 メチルエステル (3-067-02)の合成

2-ヒドロキシニコチン酸 (3-067-01) (50 g) のメタノール (500 ml) 溶液に、室温で濃硫酸 (15 ml)、及びトルエン (100 ml) を加えた。ディーンスターク還流管を取り付け 28 時間攪拌した後、炭酸カリウム水溶液を加え中和した後、溶媒を留去した。残渣に飽和塩化アンモニウム水溶液とクロロホルムを加え有機相を分離した後、水相をクロロホルムで 3 回抽出し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去することにより 2-ヒドロキシニコチン酸メチルエステル (3-067-02) (46 g, 84%) を白色固体として得た。

¹H NMR (300 MHz, CDCl₃): δ 3.92 (s, 3H), 6.45 (dd, J= 7.3, 6.4 Hz, 1H), 7.78 (dd, J= 6.4, 2.4 Hz, 1H), 8.29 (dd, J= 7.3, 2.4 Hz, 1H).

b) 2-ヒドロキシ-5-ヨードニコチン酸 メチルエステル (3-067-03) の合成

2-ヒドロキシニコチン酸 メチルエステル (3-067-02) (20 g) の塩化メチレン (500 ml) 溶液に、室温で N-ヨードサクシンイミド (NIS, 38 g)を加え、加熱還流した。16 時間攪拌した後、溶媒を留去し残渣に酢酸エチル (200 ml) を加え、さらに 2 時間加熱還流した。反応液に不溶の固体を濾別することにより 2-ヒドロキシ-5-ヨードニコチン酸 メチルエステル (3-067-03) (30g, 81%) を白色固体として得た。

¹H NMR (300 MHz, CDCl₃): δ 3.97 (s, 3H), 8.33 (brs, 1H), 8.43 (d, J= 2.4 Hz, 1H).

c) 1-ブチル-5-ヨード 2-オキソ-1,2-ジヒドロビリジン 3-カルボン酸 メチルエステル (3-067-04) の合成

2-034-02 と同様にして合成した (89%)。

10

20

¹H NMR (300 MHz, CDCl₃): δ 0.96 (t, J = 7.4 Hz, 3H), 1.31-1.44 (m, 2H), 1.69-1.79 (m, 2H), 3.90 (s, 3H), 3.94 (t, J = 7.4 Hz, 2H), 7.71 (d, J = 2.8 Hz, 1H), 8.24 (d, J = 2.8 Hz, 1H).

15 c) 1-ブチル-5-ヨード 2-オキソ-1,2-ジヒドロビリジン 3-カルボン酸 (3-067-05)の 合成

3-003-04と同様にして合成した (89%)。

¹H NMR (300 MHz, CDCl₃): δ 0.99 (t, J = 7.4 Hz, 3H), 1.35-1.47 (m, 2H), 1.74-1.84 (m, 2H), 4.05 (t, J = 7.5 Hz, 2H), 7.83 (d, J = 2.7 Hz, 1H), 8.63 (d, J = 2.7 Hz, 1H), 14.13 (s, 1H).

d) 1-ブチル-5-ヨード 2-オキソ-1,2-ジヒドロビリジン 3-カルボン酸 ベンジルアミド (3-067)の合成

3-003と同様にして合成した (82%)。

実施例 3-037、3-038 は、実施例 3-067 と同様に合成した。

25 e) 1-ブチル-2-オキソ-5-フェニル-1,2-ジヒドロビリジン 3-カルボン酸 ベンジルア ミド (3-068)の合成

1-ブチル-5-ヨード 2-オキソ-1,2-ジヒドロビリジン 3-カルボン酸 ベンジルアミ

ド (3-067) (100 mg) の DMF (2.0 ml) 溶液に、室温で $Pd(PPh_3)_4$ (20 mg)、フェニルホウ酸 (89 mg),及び炭酸カリウム水溶液 (2M, 0.24 ml) を加えた。90 ℃で 18 時間攪拌した後,飽和塩化アンモニウム水溶液と酢酸エチルを加え有機相を分離した。水相を酢酸エチルで 3 回抽出した後、合わせた有機相を水、飽和食塩水で順次洗い、無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去し、得られた粗生成物を分取薄層クロマトグラフィー(トルエン/アセトン = 7/1)で精製することにより 1-ブチル-2-オキソ-5-フェニル-1,2-ジヒドロビリジン 3-カルボン酸 ベンジルアミド (3-068) (77 mg, 88%) を油状物質として得た。

f) 1-ブチル-2-オキソ-5-フェニルエチニル-1,2-ジヒドロピリジン 3-カルボン酸 べ 10 ンジルアミド (3-069)の合成

1-ブチル-5-ヨード 2-オキソ-1,2-ジヒドロビリジン 3-カルボン酸 ベンジルアミド (3-067) (78 mg) の DMF (2.0 ml) 溶液に、室温で $PdCl_2(PPh_3)_2$ (15 mg)、フェニルアセチレン (89 mg)、CuI (11 mg)、及びトリエチルアミン (48 mg) を加えた。90 °Cで 18 時間攪拌した後、飽和塩化アンモニウム水溶液と酢酸エチルを加え有機相を分離した。水相を酢酸エチルで 3 回抽出した後、合わせた有機相を水、飽和食塩水で順次洗い、無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去し、得られた粗生成物を分取薄層クロマトグラフィー (トルエン/アセトン = 7/1) で精製することにより 1-ブチル-2-オキソ-5-フェニルエチニル-1,2-ジヒドロビリジン 3-カルボン酸 ベンジルアミド (3-068) (65 mg, 89%) を油状物質として得た。

実施例 3-039~実施例 3-044 と実施例 3-061~実施例 3-066 は、実施例 3-067、 3-068 と同様に合成した。

<実施例 3-101>

5

15

20

a) 2-ヒドロキシ-1-(2-ブロモフェネチル)ニコチン酸 メチルエステル (3-101-01) の合成

2-034-02と同様にして合成した (59%)。

¹H NMR (300 MHz, CDCl₃): δ 3.25 (t, J= 7.2 Hz, 2H), 3.93 (s, 3H), 4.23 (t, J= 7.2 Hz, 2H), 6.09 (t, J= 7.5 Hz, 1H), 7.08-7.23 (m, 4H), 7.56 (dd, J= 8.1, 2.1 Hz, 1H), 8.15 (dd, J= 7.5, 2.4 Hz, 1H).

b) 4-オキソ-6,7-ジヒドロビリド[2,1,a]イソキノリン-3-カルボン酸 メチルエステル (3-101-02)の合成

10 1-018-01と同様にして合成した (42%)。

20

¹H NMR (300 MHz, CDCl₃): δ 3.01 (t, J = 6.7 Hz, 2H), 3.93 (s, 3H), 4.35 (t, J = 6.7 Hz, 2H), 6.76 (d, J = 7.6 Hz, 1H), 7.32 (dd, J = 7.3, 1.2 Hz, 1H), 7.39 (ddd, J = 7.6, 7.3, 1.5 Hz, 1H), 7.46 (ddd, J = 7.9, 7.6, 1.2 Hz, 1H), 7.78 (dd, J = 7.9, 1.5 Hz, 1H), 8.25 (d, J = 7.6 Hz, 1H).

15 c) 4-オキソ-6,7-ジヒドロビリド[2,1,a]イソキノリン-3-カルボン酸 (3-101-03)の 合成

4-オキソ-6,7-ジヒドロビリド[2,1,a]イソキノリン-3-カルボン酸 メチルエステル (3-101-02) (252 mg) のジオキサン (2.0 ml) 溶液に,室温で 2 規定水酸化ナトリウム水溶液 (2.0 ml) を加えた。1 時間攪拌した後、反応液をエーテルで洗浄し濃塩酸で酸性にした。水、及び酢酸エチルを加え有機相を分離した後、水相を酢酸エチルでさらに 3 回抽出し、合わせた有機相を水、飽和食塩水で順次洗い無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去することにより 4-オキソ・

6,7-ジヒドロピリド[2,1,a]イソキノリン-3-カルボン酸 (3-101-03) (209 mg, 88%) を白色固体として得た。

¹H NMR (300 MHz, CDCl₃): δ 3.10 (t, J= 6.7 Hz, 2H), 4.42 (t, J= 6.7 Hz, 2H), 7.05 (d, J= 7.6 Hz, 1H), 7.36 (d, J= 7.3 Hz, 1H), 7.41-7.56 (m, 2H), 7.84 (d, J= 7.3 Hz, 1H), 8.56 (d, J= 7.6 Hz, 1H), 14.40 (s, 1H).

d) 4-オキソ-6,7-ジヒドロビリド[2,1,a]イソキノリン-3-カルボン酸 フェネチルアミド (3-101)の合成

4-オキソ-6,7-ジヒドロピリド[2,1,a]イソキノリン-3-カルボン酸 (3-101-03) (76 mg) の DMF (2.0 ml) 溶液に、室温で 1-エチル-3-(3-ジメチルアミノプロピル) カルボジイミド塩酸塩(EDC, 83 mg)、1-ヒドロキシベンゾトリアゾール (HOBt, 58 mg)、及びフェネチルアミン (80 mg) を加えた。18 時間攪拌した後、0.5 規定塩酸で反応を停止し、酢酸エチルを加え有機相を分離した。水相を酢酸エチルでさらに3 回抽出した後、合わせた有機相を水、飽和食塩水で順次洗い無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去し、得られた粗結晶を再結晶することにより4-オキソ-6,7-ジヒドロピリド[2,1,a]イソキノリン-3-カルボン酸フェネチルアミド (3-101) (84 mg, 74%) を黄色結晶として得た。

<実施例 4-002>

5

10

15

25

20 a) 1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-カルボン酸 (4-002-01)の合成

1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-イソキノリン-3-カルボン酸メチルエステル (1-015-02) (263 mg, 1 mmol)をエタノール (6 ml)に溶解し、水酸化ナトリウム水溶液 (2M, 0.6 ml, 1.2 mmol)を加え、室温で 30 分攪拌した。反応液に希塩酸 (0.4N, 6 ml)を加え酢酸エチル (25 ml)で抽出、水層はさらに食塩で塩析

した後、酢酸エチル (25 ml)で抽出、有機層は合一して無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた結晶性残渣をヘキサンから再結晶し、1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-カルボン酸 (4-002-01) (220 mg, 88%)を白色結晶として得た。

¹H NMR (300 MHz, CDCl₃): δ 1.00 (t, J= 7.5 Hz, 3H), 1.46 (sextet, J= 7.5 Hz, 2H), 1.68-1.73 (m, 2H), 1.77 (quint, J= 6.0 Hz, 2H), 1.92 (quint, J= 6.0 Hz, 2H), 2.65 (t, J= 6.0 Hz, 2H), 2.80 (t, J= 6.0 Hz, 2H), 4.10 (t, J= 7.8 Hz, 2H), 8.22 (s, 1H), 14.82 (s, 1H).

b) 1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-カルボン酸フェネチル-アミド (4-002)の合成

10

15

20

25

¹H NMR (300 MHz, CDCl₃): δ 0.99 (t, J= 7.5 Hz, 3H), 1.45 (sextet, J= 7.5 Hz, 2H), 1.63 (quint, J= 7.5 Hz, 2H), 1.74 (quint, J= 6.0 Hz, 2H), 1.88 (quint, J= 6.0 Hz, 2H), 2.62 (t, J= 6.0 Hz, 2H), 2.74 (t, J= 6.0 Hz, 2H), 2.93 (t, J= 7.8 Hz, 2H), 3.66 (dt, J= 9.0 Hz, 6.0 Hz, 2H), 4.03 (t, J= 7.8 Hz, 2H), 7.20-7.33 (m, 5H), 8.25 (s, 1H), 10.05 (br t, J= 6.0 Hz, 1H).

実施例 4-001~実施例 4-310 は、実施例 3-002 と同様に合成した。

<実施例 4-501>

5

10

15

a) 3-クロロ-2-シクロヘキセン-1-オン (4-501-03)の合成

1,3-シクロヘキサンジオン (4-501-01) (8.72 g, 77.6 mmol)を塩化メチレン (400 ml)に溶解し、メタンスルホニルクロリド (6 ml, 77.6 mmol)と炭酸カリウム (32 g, 232 mmol)を加え、室温で 2 時間攪拌した。反応液を塩化メチレン (1.4 l)と水 (400 ml)の混合液に加え分液し有機層は飽和食塩水 (400 ml)で洗浄後、無水硫酸マグネシウムで乾燥し全体量が 300ml になるまで減圧濃縮した。このメシレート体(1)の塩化メチレン溶液に塩化ベンジルトリエチルアンモニウム (25 g, 110 mmol)とボロントリフルオリドエチルエーテルコンプレックス (1.9 ml, 15.4 mmol)を加え、室温で 1.5 時間攪拌した。反応液を塩化メチレン (0.8 l)と水 (400 ml)の混合液に加え分液し有機層は飽和食塩水 (400 ml)で洗浄後、無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製して 3-クロロ-2-シクロヘキセン・1-オン (4-501-03) (7.24 g, 72%)を黄色油状物質として得た。

¹H NMR (300 MHz, CDCl₃): δ 2.09 (quint, J = 6.0 Hz, 2H), 2.40 (t, J = 6.6 Hz, 2H), 2.69 (td, J = 6.0 Hz, 1.5 Hz, 2H), 6.23 (t, J = 1.5 Hz, 1H).

b) 3-シアノアセタミド-2-シクロヘキセン-1-オン (4-501-04)の合成

2.シアノアセタミド (4.42 g, 52.8 mmol)をジグライム (50 ml)に溶解し、水素

化ナトリウム (60% oil suspension, 2.1 g, 52.8 mmol)を加え室温で 5 分間激しく 攪拌した。この溶液に 3-クロロ-2-シクロヘキセン-1-オン (4-501-03) (6.24 g, 48 mmol)のジグライム溶液 (60 ml)を徐々に加え、室温で 2.5 時間攪拌し、さらに 2-シアノアセタミド (1.6 g, 19.2 mmol)と水素化ナトリウム (60% oil suspension, 0.76 g, 19.2 mmol)を加え室温で 1.5 時間攪拌した。反応液に希塩酸 (1N, 100 ml)を加え酢酸エチル (300 ml)で抽出した。水層はさらに食塩で塩析した後、酢酸エチル (300 ml)で抽出した。水層はさらに食塩で塩析した後、酢酸エチル (300 ml)で抽出、有機層は合一して無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた結晶性残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、ヘキサンから再結晶して 3-シアノアセタミド-2-シクロヘキセン-1-オン (4-501-04) (6.5 g, 76%)を白色結晶として得た。

¹H NMR (300 MHz, d_{6} -DMSO): δ 1.71 (quint, J= 6.0 Hz, 2H), 1.79 (quint, J= 6.0 Hz, 2H), 2.78 (t, J= 6.0 Hz, 2H), 5.90 (s, 1H), 6.90 (s, 1H), 11.16 (br d, J= 1.5 Hz, 2H).

10

20

c) 3,8-ジオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-15 010)の合成

3-シアノアセタミド-2-シクロヘキセン-1-オン (4-501-04) (1.25 g, 7 mmol)を DMF (25 ml)に溶解し N, N'-ジメチルホルムアミドジメチルアセタール (1.1 ml, 8.4 mmol)を加え室温で 70 時間攪拌した。反応液に希塩酸 (1N, 100 ml)を加え酢酸エチル (300 ml)で抽出した。水層はさらに食塩で塩析した後、酢酸エチル (300 ml)で抽出、有機層は合一して無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた結晶性残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、トルエンから再結晶して 3,8-ジオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-010) (0.92 g, 70%)を淡褐色結晶として得た。

¹H NMR (300 MHz, CDCl₃ + (a small amount of CD₃OD)): δ 2.17 (quint, J= 6.3 Hz, 2H), 2.63 (t, J= 6.3 Hz, 2H), 3.09 (t, J= 6.3 Hz, 2H), 8.34 (s, 1H).

d) 2-ブチル-3,8-ジオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-011)の合成

3,8-ジオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-010) (770 mg, 4.1 mmol)を DMF (15 ml)に溶解し、1-ヨードブタン (0.51 ml, 4.5 mmol)と水素化ナトリウム (60% oil suspension, 180 mg, 4.5 mmol)を加え、室温で 3 時間攪拌した。反応液に希塩酸 (1N, 60 ml)を加え酢酸エチル (150 ml)で抽出後、飽和食塩水 (50 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮する。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、2-ブチル-3,8-ジオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-011) (610 mg, 61%)を白色結晶として得た。

5

25

¹H NMR (300 MHz, CDCl₃): δ 0.97 (t, J= 7.5 Hz, 3H), 1.38 (sextet, J= 7.5 Hz, 10 2H), 1.76 (quint, J= 7.5 Hz, 2H), 2.15 (quint, J= 6.3 Hz, 2H), 2.61 (t, J= 6.3 Hz, 2H), 3.06 (t, J= 6.3 Hz, 2H), 4.03 (t, J= 7.5 Hz, 2H), 8.39 (s, 1H).

e) 2-ブチル-3-オキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-012)の合成

2-ブチル-3,8-ジオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-011) (100 mg, 0.41 mmol)を THF (7 ml)に溶解し、ボロントリフルオリドエチルエーテル錯体 (0.21 ml, 1.64 mmol)と水素化シアノホウ素ナトリウム (90 mg, 1.44 mmol)を加え、室温で 30 分攪拌した。反応液に飽和炭酸水素ナトリウム水溶液 (30 ml)を加え酢酸エチル (60 ml)で抽出後、飽和食塩水 (30 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、2-ブチル-3-オキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-012) (70 mg, 74%)を白色粉末として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.96 (t, J= 7.5 Hz, 3H), 1.37 (sextet, J= 7.5 Hz, 2H), 1.67-1.86 (m, 6H), 2.54 (t, J= 6.3 Hz, 2H), 2.87 (t, J= 6.3 Hz, 2H), 3.93 (t, J= 7.5 Hz, 2H), 7.22 (s, 1H).

f) 2-ブチル-3-オキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボン酸 (4-501-05)の合成

10

15

20

25

2-ブチル-3-オキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-012) (260 mg, 1.13 mmol)を水 (6ml) / エタノール (26 ml)に溶解し、水酸化 カリウム (444 mg, 7.91 mmol)を加え 24 時間加熱還流した。反応液を氷冷、希塩酸 (2N, 8 ml)を滴下し、酢酸エチル (70 ml)で抽出後、無水硫酸マグネシウムで乾燥し減圧濃縮した。結晶性残渣をヘキサンから再結晶して、2-ブチル-3-オキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボン酸 (4-501-05) (197 mg, 70%)を白色結晶として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.97 (t, J= 7.5 Hz, 3H), 1.37 (sextet, J= 7.5 Hz, 2H), 1.70-1.82 (m, 6H), 2.56 (t, J= 6.0 Hz, 2H), 2.87 (t, J= 6.0 Hz, 2H), 3.95 (t, J= 7.5 Hz, 2H), 7.27 (s, 1H).

g) 2-ブチル-3-オキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボン酸ベンジルアミド (4-501)の合成

2-ブチル-3-オキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボン酸 (4-501-05) (5 mg, 0.02 mmol)をトルエン (1 ml)に溶解し、塩化チオニル (4.4 μl, 0.06 mmol)と触媒量の DMF を加え、75°C で 30 分反応させた。この反応液を減圧濃縮し、残渣を塩化メチレン (1 ml)に溶解した後、ベンジルアミン (6.2 μl, 0.06 mmol)を加え室温で 10 分攪拌した。反応液に希塩酸 (1N, 3 ml)を加え酢酸エチル (8 ml)で抽出後、飽和食塩水 (4 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、2-ブチル-3-オキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボン酸ベンジルアミド (4-501) (5 mg, 74%)を白色粉末として得た。

¹H-NMR (CDCl₃, 300 MHz): δ 0.95 (t, J= 7.5 Hz, 3H), 1.37 (sextet, J= 7.5 Hz, 2H), 1.66-1.77 (m, 6H), 2.57 (br t, J= 6.3 Hz, 2H), 3.27 (br t, J= 6.3 Hz, 2H), 3.92 (t, J= 7.5 Hz, 2H), 4.60 (d, J= 5.7 Hz, 2H), 7.12 (s, 1H), 7.23-7.40 (m, 5H), 9.58 (br t. J= 5.7 Hz, 1H).

実施例 4-502~実施例 4-504 は、実施例 4-501 と同様に合成した。

<実施例 5-004>

- a) 3-ベンジルオキシカルボニルアミノ-1-ブチル 5,6-ジメチル-2-ピリドン (5-017) の合成
- 1-ブチル 3-カルボキシ-5,6-ジメチル-2-ビリドン (5-004-01) (2.233g)をジオキサン(50ml)に溶解し、トリエチルアミン(4.2ml)、続いてジフェニルホスホリルアジド(2.4ml)を加え入れ、窒素気流中、110℃油浴中で攪拌還流を行った。5 時間後、ベンジルアルコール(1.1ml)を加え、同様に加熱攪拌を続けた。4 時間後、反応液を氷水中に注入し、酢酸エチル及び塩酸水溶液を加え、振とう分液後、重曹水溶10 液、水洗を各 1 回行い硫酸マグネシウムで乾燥後、減圧留去した。得られた残渣(3.56g)をシリカゲルカラムクロマト(ローバーカラム B, トルエン-アセトン(29:1))を行い、3-ベンジルオキシカルボニルアミノ-1-ブチル 5,6-ジメチル-2-ビリドン (5-017)を黄色結晶(2.477g, 75.4%, 融点 65-66℃)で得た。
 - b) 3-アミノ-1-ブチル 5,6-ジメチル-2-ピリドン (5-004-02) の合成
- 3-ベンジルオキシカルボニルアミノ-1-ブチル 5,6-ジメチル-2-ピリドン (5-017)
 (2.487g)をメタノール(25ml)に溶解し 10%パラジウム炭素(373mg)の水(2.5ml)懸濁液を加え入れ、常圧にて接触還元を行った。4 時間後、反応混合物をセライト上で濾過し、メタノール洗浄し減圧留去して 3-アミノ・N-1-ブチル 5,6-ジメチル-2-ピリドン (5-004-02) (1.438g, 97.8%, 融点 94-97℃)を褐色結晶として得た。
- ¹H NMR (300 MHz, CDCl₃): δ 0.97 (t, J = 7.2 Hz, 3H), 1.37-1.49 (m, 2H), 1.60-1.71 (m, 2H), 4.08 (d, J = 7.8 Hz, 2H), 6.42 (s, 1H).
 - c) $N-1-7+\mu$ 3-(4-7) $N-1-1-\mu$ 3-(4-7) $N-1-1-\mu$ 3-(4-7) $N-1-\mu$ 3-(4

004) の合成

5

20

3-アミノ-1-ブチル 5,6-ジメチル-2-ビリドン (5-004-02) (117mg)をビリジン (1ml)に溶解し、窒素気流中、氷冷攪拌下、4-フルオロベンゾイルクロリド(0.08ml) のテトラヒドロフラン(1ml)溶液を 10 分で滴下し、そのまま攪拌を行った。 3 時間後、反応混合物を酢酸エチルで希釈し氷水中に注入し、酢酸エチルで 1 回抽出後、塩酸水溶液、水洗、重曹水溶液、更に水洗を行い、硫酸マグネシウムで乾燥後、減圧留去した。得られた結晶性残渣(202mg)を塩化メチレンn-ヘキサンで再結晶を行い、無色針状晶の 1-ブチル 3-(4-フルオロベンゾイル)アミノ-5,6-ジメチル-2-ビリドン (5-004) (103mg, 54.2%, 融点 129-130℃)を得た。

10 実施例 5-001~実施例 5-017 は、実施例 5-001 と同様に合成した。

<実施例 5-018>

a) 4-(ベンゾオキサゾール 2-イルオキシ)-1-ベンジル 3-メトキシ 5,6-ジメチル-1*H*-15 ピリジン-2-オン (5-018)

2-ブロモフェニ-ルイソシアネート(80mg)をテトラヒドロフラン(2ml)に溶解し窒素気流中、室温攪拌下、3-アミノ-1-ブチル 5,6-ジメチル-2-ピリドン (5-004-02) (78mg)のテトラヒドロフラン(2ml)溶液を 10 分で滴下し一晩室温放置した。翌日 反応液を減圧留去し得られた結晶をジクロルメタン-エーテルで再結晶し、4-(ベンゾオキサゾール 2-イルオキシ)-1-ベンジル 3-メトキシ 5,6-ジメチル-1*H*-ピリジン-2-オン (5-018) (142mg, 89.9%, 融点 197-8℃) を得た。

実施例 5-019 は、実施例 5-018 と同様に合成した。

<実施例 6-001、6-005、6-007>

a) (1-プチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-イル)-カルバミン酸 ベンジルエステル (6-007) の合成

1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-カルボン酸 (4-002-01) (100 mg, 0.38 mmol)をトルエン (5 ml)に溶解し、塩化チオニル (57 μl, 0.76 mmol)と触媒量の DMF を加え、75°Cで 30 分反応させた。この反応液を減圧濃縮し、残渣をアセトン (5 ml)に溶解した後、アジ化ナトリウム (29 mg, 0.42 mmol) 水溶液 (0.5 ml)を加え室温で 15 分攪拌した。反応液に水 (5 ml)を加え酢酸エチル (10 ml)で抽出後、飽和食塩水 (5 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。残渣をトルエン (5 ml)に溶解し 120°Cで 30 分反応した後、ベンジルアルコール (46 μl, 0.44 mmol)を加えさらに 120°Cで 2 時間反応させた。反応液をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、(1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-イル)-カルバミン酸ベンジルエステル (6-007) (90 mg, 63%)を白色泡状物質として得た。

b) 3-アミノ-1-ブチル-5,6,7,8-テトラヒドロ-1*H*-キノリン-2-オン酢酸塩 (6-001-

20 01) の合成

5

10

 $(1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-イル)-カルバミン酸ベンジルエステル (6-007) (100 mg, 0.28 mmol)をメタノール (7 ml)に溶解し、酢酸 (16 <math>\mu$ l, 0.28 mmol)とパラジウム炭素 (10%, 30 mg)を加え、水素雰囲気下 1.5時間激しく攪拌した。パラジウム炭素をろ過、母液を減圧濃縮した後、結晶性残渣をヘキサンから再結晶して 3-アミノ-1-ブチル-5,6,7,8-テトラヒドロ-1 H-キノリン-2-オン酢酸塩 (6-001-01) (60 mg, 76%)を白色結晶として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.98 (t, J= 7.5 Hz, 3H), 1.43 (sextet, J= 7.5 Hz, 2H), 1.67 (quint, J= 7.5 Hz, 2H), 1.76 (quint, J= 6.0 Hz, 2H), 1.88 (quint, J= 6.0 Hz, 2H), 2.05 (s, 3H), 2.58 (t, J= 6.0 Hz, 2H), 2.67 (t, J= 6.0 Hz, 2H), 4.04 (t, J= 7.8 Hz, 2H), 8.27 (s, 1H).

c) N-(1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-イル)-ベンズアミド (6-001)の合成

10

15

20

3-アミノ-1-ブチル-5,6,7,8-テトラヒドロ-1H-キノリン-2-オン酢酸塩(6-001-01)(5 mg, 0.018 mmol)を塩化メチレン(1 ml)に溶解し、ベンゾイルクロリド(2.3 μl, 0.02 mmol)とトリエチルアミン(5.6 μl, 0.04 mmol)を加え、室温で <math>10 分 攪拌した。反応液に希塩酸(0.1N, 3 ml)を加え酢酸エチル(10 ml)で抽出後、飽和食塩水(3 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー(トルエン/酢酸エチル)にて精製し、N-(1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-イル)・ベンズアミド(6-001)(4.9 mg, 83%)を白色泡状物質として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.99 (t, J= 7.5 Hz, 3H), 1.45 (sextet, J= 7.5 Hz, 2H), 1.66 (quint, J= 7.5 Hz, 2H), 1.74 (quint, J= 6.0 Hz, 2H), 1.87 (quint, J= 6.0 Hz, 2H), 2.60 (t, J= 6.0 Hz, 2H), 2.69 (t, J= 6.0 Hz, 2H), 4.06 (t, J= 7.8 Hz, 2H), 7.43-7.56 (m, 3H), 7.94 (d, J= 6.9 Hz, 2H), 8.31 (s, 1H), 9.26 (br s, 1H).

25 実施例 6-002~実施例 6-004 は、実施例 6-001 と同様に合成した。

d) 1-ペンジル 3-(1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-イル)-

ウレア (6-005)の合成

5

10

 $3-アミノ-1-ブチル-5,6,7,8-テトラヒドロ-1H-キノリン-2-オン酢酸塩 (6-001) (5 mg, 0.018 mmol)を塩化メチレン (1 ml)に溶解し、ベンジルイソシアナート (2.5 <math>\mu$ l, 0.02 mmol)と 4-ジメチルアミノビリジン (2.4 mg, 0.02 mmol)を加え、室温で 4 時間攪拌した。反応液に希塩酸 (0.1N, 3 ml)を加え酢酸エチル (10 ml)で抽出後、飽和食塩水 (3 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、ヘキサンから再結晶して 1-ベンジル 3-(1-ブチル-2-オキソ-1,2,5,6,7,8-ヘキサヒドロ-キノリン-3-イル)-ウレア (6-005) (5.0 mg, 79%)を白色結晶として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.92 (t, J= 7.5 Hz, 3H), 1.32 (sextet, J= 7.5 Hz, 2H), 1.57-1.65 (m, 2H), 1.69 (quint, J= 6.0 Hz, 2H), 1.82 (quint, J= 6.0 Hz, 2H), 2.55 (t, J= 6.0 Hz, 2H), 2.59 (t, J= 6.0 Hz, 2H), 3.90 (t, J= 7.8 Hz, 2H), 4.46 (d, J= 6.0 Hz, 2H), 5.72 (br s, 1H), 7.24-7.32 (m, 5H), 7.95 (s, 1H), 8.00 (br s, 1H).

15 <実施例 7-004>

a) 1-(2-ブロモ-フェニル)-3-(1-ブチル-5,6-ジメチル-2-オキソ-1,2-ジヒドロピリジン 3-イル)-ウレア (7-004)

1-ベンジル 5,6-ジメチル-4-ヒドロキシ-3-メトキシ 2-ピリドン (1-004-04) 20 (259mg)を DMF(3ml)に溶解し、窒素気流中、室温攪拌下、60%水素化ナトリウム (48mg)を一時に加え入れ、10 分後 2-クロルベンズオキサゾール(261mg)の DMF(0.5ml)溶液を加え、5 時間攪拌後一晩室温放置した。反応混合物を氷水中に 注入し酢酸エチルエステルで 2 回抽出し水洗 2 回行った後硫酸マグネシウムで乾燥後,減圧留去した。得られた結晶性残渣(278mg,73.9%)をアセトン溶解し脱色炭

処理後、エーテルを加え室温放置。析出した結晶を濾取し、1-(2-ブロモ-フェニル)-3-(1-ブチル-5,6-ジメチル-2-オキソ-1,2-ジヒドロ-ピリジン-3-イル)-ウレア (7-004) (144mg, 38.3%, 融点 154~155℃) を無色プリズム晶として得た。

¹H NMR (300 MHz, CDCl₃): δ 2.07 (s, 3H), 2.28 (s, 3H), 3.88 (s, 3H), 5.42 (br s, 2H), 7.19-7.54 (m, 9H).

<実施例 7-008>

10

15

3-ヒドロキシメチル-2(1*H*)-ピリドン (7-008-01)の合成

2-ヒドロキシニコチン酸 (3-067-01) (5.0 g) のトルエン (70 ml) 溶液に、室温でヘキサメチルジシラザン(HMDS, 19 ml)、及びクロロトリメチルシラン(TMSCl, 0.23 ml) を加え加熱還流した。2 時間攪拌した後、溶媒を留去し残渣にトルエン (100ml) を加えた。次に、水素化ジイソブチルアルミニウム (DIBAL, 2M トルエン溶液、90 ml) を -78 ℃で加え 4 時間攪拌した後、メタノールを加えて反応を停止し、不溶物をセライトを用いて滤過した。減圧下で滤液を留去し、残渣に水と酢酸エチルを加え有機相を分離した後、水相を酢酸エチルで3回抽出した。合わせた有機相を水、飽和食塩水で順次洗い、無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去することにより 3-ヒドロキシメチル・2(1*H*)-ピリドン (7-008-01) (2.6 g, 59%) を白色固体として得た。

¹H NMR (300 MHz, CDCl₃): δ 4.50 (s, 2H), 6.43 (t, J= 6.7 Hz, 1H), 7.33-7.36 (m, 1H), 7.64-7.67 (m, 1H).

b) 1-ブチル-3-ヒドロキシメチル-2-ピリドン (7-008-02)の合成 3-ヒドロキシメチル-2(1*H*)-ピリドン (7-008-01) (0.63 g) の DMF (15 ml) 溶液

に、室温で炭酸カリウム (1.4 g)、および 1-3-ドブタン (1.86 g) を加えた。 70 ° で 2 時間攪拌した後、溶媒を留去した。残渣に飽和塩化アンモニウム水溶液と酢酸エチルを加え有機相を分離した後、水相を酢酸エチルで 3 回抽出した。合わせた有機相を水、飽和食塩水で順次洗い、無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去し、得られた粗生成物をカラムクロマトグラフィー (トルエン/アセトン = 2/1) で精製することにより 1-ブチル-3-ヒドロキシメチル-2-ビリドン (7-008-02) (0.56 g, 61%) を油状物質として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.96 (t, J = 7.3 Hz, 3H), 1.32-1.45 (m, 2H), 1.69-1.79 (m, 2H), 3.95 (t, J = 7.6 Hz, 2H), 4.57 (s, 2H), 6.20 (t, J = 6.7 Hz, 1H), 7.24 (dd, J = 6.7, 1.2 Hz, 1H), 7.28-7.31 (m, 1H).

c) 3-(ベンゾオキサゾール 2-イルオキシメチル)-1-ブチル-2-ピリドン (7-008-03) の合成

2-034-03と同様にして合成した (50%)。

- d) 1-ブチル-3-クロロメチル-2-ピリドン (7-008-04)の合成
- 15 1-ブチル-3-ヒドロキシメチル-2-ビリドン (7-008-03) (169 mg) の塩化メチレン (4.0 ml) 溶液に、室温で塩化チオニル (122 mg) を加えた。1 時間攪拌した後、溶媒を留去することにより 1-ブチル-3-クロロメチル-2-ビリドン (7-008-04)を油状物質として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.96 (t, J = 7.3 Hz, 3H), 1.32-1.45 (m, 2H), 20 1.69-1.79 (m, 2H), 3.96 (t, J = 7.3 Hz, 2H), 6.19 (t, J = 6.7 Hz, 1H), 7.27 (dd, J = 6.7, 2.1 Hz, 1H), 7.49 -7.53 (m, 1H).

e) 3-(ベンゾオキサゾール 2-イルスルファニルメチル)-1-ブチル-2-ビリドン (7-008)の合成

2-035 と同様にして合成した (97%)。

25

10

<実施例 7-009>

a) 3-(ベンゾオキサゾール 2-イルオキシメチル)-1-ブチル-2-ピリドン (7-009)の合成

2-035 と同様にして合成した (50%)。

5

20

<実施例 7-013~実施例 7-017>

a) 2-ブチル-8-ヒドロキシ-3-オキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-013)の合成

10 2-ブチル-3,8-ジオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-011) (10 mg, 0.04 mmol)を THF (1 ml)に溶解し、水素化ホウ素ナトリウム (2.1 mg, 0.056 mmol)を加え、室温で 10 分攪拌した。反応液に希塩酸 (1N, 3 ml)を加え酢酸エチル (10 ml)で抽出後、飽和食塩水 (5 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた結晶性残渣を塩化メチレンから再結晶し、2-ブチル-8-ヒドロキシ-3-オキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-013) (7.4 mg, 75%)を白色結晶として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.97 (t, J= 7.5 Hz, 3H), 1.38 (sextet, J= 7.5 Hz, 2H), 1.76 (quint, J= 7.5 Hz, 2H), 2.15 (quint, J= 6.0 Hz, 2H), 2.61 (t, J= 6.0 Hz, 2H), 3.06 (t, J= 6.0 Hz, 2H), 3.45-3.58 (m, 1H), 4.03 (t, J= 7.5 Hz, 2H), 8.39 (s, 1H).

b) 2-ブチル-3-チオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-014)の合成

2.ブチル-3-オキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-012) (80 mg, 0.35 mmol)をトルエン (8 ml)に溶解し、ローソン試薬 (169 mg, 0.42 mmol)を加え、12 時間加熱還流した。室温まで冷却後、メタノール (14 ml)を加え 1 時間室温で攪拌し、反応液を減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、2-ブチル-3-チオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-014) (63 mg, 73%)を淡褐色粉末として得た。

- - c) 2-ブチル-3-チオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボアルデヒド (7-015)の合成
- 2-ブチル-3-チオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-014) (220 mg, 0.89 mmol)をトルエン (20 ml)に溶解し、氷冷下、水素化ジイソブチルアルミニウム (1Mトルエン溶液, 1.7 ml, 1.7 mmol)を加え 30 分攪拌した。反応液に希塩酸 (1N, 5 ml)を加え酢酸エチル (10 ml)で抽出後、飽和食塩水(10 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮する。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、2-ブチル-3-チオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボアルデヒド (7-015) (44 mg, 20%)を淡褐色結晶として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.99 (t, J= 7.5 Hz, 3H), 1.44 (sextet, J= 7.5 Hz, 2H), 1.74 (quint, J= 3.3 Hz, 4H), 1.87 (quint, J= 7.5 Hz, 2H), 2.62 (br t, J= 6.3 Hz, 2H), 2.95 (br t, J= 6.3 Hz, 2H), 4.51 (t, J= 7.5 Hz, 2H), 7.53 (s, 1H), 10.60 (s, 1H).

25

d) 2-ブチル-4-ヒドロキシメチル-5,6,7,8-テトラヒドロ-2*H*-イソキノリン-3-チオ

ン (7-016)の合成

10

2-ブチル-3-チオキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボアルデヒド (7-015) (10 mg, 0.04 mmol)をメタノール (2 ml)に溶解し、水素化ホウ素ナトリウム (4.6 mg, 0.12 mmol)を加え室温で 10 分攪拌した。反応液に希塩酸 (1N, 4 ml)を加え酢酸エチル (10 ml)で抽出後、飽和食塩水 (5 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、2-ブチル-4-ヒドロキシメチル-5,6,7,8-テトラヒドロ-2H-イソキノリン-3-チオン (7-016) (9 mg, 90%)を淡褐色粉末として得た。 1 H NMR (300 MHz, CDCl $_{3}$): δ 0.99 (t, J=7.2 Hz, 3H), 1.43 (sextet, J=7.2 Hz, 2H), 1.71-1.95 (m, 6H), 2.66 (br t, J=6.3 Hz, 2H), 2.83 (t, J=6.3 Hz, 2H), 4.58 (br t, J=7.2 Hz, 2H), 4.79 (s, 2H), 7.61 (s, 1H).

e) 4-(ベンゾオキサゾール 2-イルチオメチル)-2-ブチル-5,6,7,8-テトラヒドロ-2*H*-イソキノリン-3-チオン (7-017)の合成

2-ブチル-4-ヒドロキシメチル-5,6,7,8-テトラヒドロ-2*H*-イソキノリン-3-チオン (7-016) (14 mg, 0.056 mmol)を THF (1 ml)に溶解し、2-メルカプトベンゾオキサゾール (16.3 mg, 0.11 mmol)、1,1'-(アゾジカルボニル)ジピペリジン (28.1 mg, 0.11 mmol)、イミダゾール (7.6 mg, 0.11 mmol)、トリメチルホスフィン (1M トルエン溶液, 0.11 ml, 0.11 mmol)をそれぞれ加え、室温で 18 時間攪拌した。反応液を減圧濃縮しトルエン (2 ml)を加え析出してくる不溶物をろ過後、母液をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、4-(ベンゾオキサゾール 2-イルチオメチル)-2-ブチル-5,6,7,8-テトラヒドロ-2*H*-イソキノリン-3-チオン (7-017) (6.5 mg, 30%)を淡褐色粉末として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.99 (t, J= 7.5 Hz, 3H), 1.43 (sextet, J= 7.5 Hz, 2H), 1.70-1.95 (m, 6H), 2.62 (t, J= 6.3 Hz, 2H), 3.01 (t, J= 6.3 Hz, 2H), 4.58 (t, J= 7.5 Hz, 2H), 5.05 (s, 2H), 7.15-7.30 (m, 2H), 7.42 (dd, J= 7.2 Hz, J= 1.8 Hz, 1H), 7.48 (br s, 1H), 7.60 (dd, J= 7.2 Hz, J= 1.8 Hz, 1H).

<実施例 7-018>

a) 2-ブチル-3-オキソ-1,2,3,4,5,6,7,8-オクタヒドロ-イソキノリン-4-カルボニトリ 5 ル (7-018)の合成

2-ブチル-3-オキソ-2,3,5,6,7,8-ヘキサヒドロ-イソキノリン-4-カルボニトリル (7-012) (100 mg, 0.43 mmol)をトルエン (10 ml)に溶解し、氷冷下、水素化ジイソブチルアルミニウム (1M トルエン溶液, 0.8 ml, 0.8 mmol)を加え 10 分攪拌した。反応液に希塩酸 (1N, 5 ml)を加え酢酸エチル (10 ml)で抽出後、飽和食塩水 (5 ml)で洗浄、無水硫酸マグネシウムで乾燥し減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー (トルエン/酢酸エチル)にて精製し、2-ブチル-3-オキソ-1,2,3,4,5,6,7,8-オクタヒドロ-イソキノリン-4-カルボニトリル (7-018) (70 mg, 70%)を白色粉末として得た。

¹H NMR (300 MHz, CDCl₃): δ 0.93 (t, J= 7.5 Hz, 3H), 1.32 (sextet, J= 7.5 Hz, 2H), 1.42-1.59 (m, 5H), 1.88 (s, 1H), 1.97-2.08 (m, 2H), 2.20-2.32 (m, 1H), 2.54-2.66 (m, 1H), 3.06-3.19 (m, 2H), 3.33-3.43 (m, 3H).

以下の表に、化合物の構造及びNMR値を記載する。

				<u> </u>	,
化合物 No.	R ²	R³	\mathbb{R}^4	\mathbb{R}^5	¹H-NMR (CDCl₃)
1-001	Н	Me	Me	Me	2.16 (s, 3H), 2.33 (s, 3H), 3.62 (s, 3H), 7.17-7.26 (m, 2H), 7.34 (s, 1H), 7.34-7.43 (m, 1H), 7.46-7.50 (m, 1H).
1-002	Н	Me	Me	Et	1.32 (t, $J = 7.2$ Hz, 3H), 2.15 (s, 3H), 2.36 (s, 3H), 4.19 (q, $J = 7.2$ Hz, 2H), 7.19-7.25 (m, 2H), 7.34 (s, 1H), 7.39-7.42 (m, 1H), 7.46-7.49 (m, 1H).
1-003	Н	Me	Me	nPr	0.98 (t, $J = 7.2$ Hz, 3H), 1.65-1.78 (m, 2H), 2.15 (s, 3H), 2.34 (s, 3H), 4.03-4.08 (m, 2H), 7.16-7.26 (m, 2H), 7.33 (s, 1H), 7.38-7.41 (m, 1H), 7.46-7.49 (m, 1H).
1-004	н	Me	Me	nBu	0.95 (t, $J = 7.5$ Hz, 3H), 1.35-1.48 (m, 2H), 1.62-1.72 (m, 2H), 2.15 (s, 3H), 2.35 (s, 3H), 4.10 (t, $J = 7.8$ Hz, 2H), 7.19-7.25 (m, 2H), 7.33 (s, 1H), 7.38-7.42 (m, 1H), 7.46-7.49 (m, 1H).
1-005	н	Me	Me	Bn	2.14 (s, 3H), 2.25 (s, 3H), 5.42 (br s, 2H), 7.17-7.51 (m, 10H).
1-006	н		Н	nBu	0.94 (t, $J = 7.4$ Hz, 3H), 1.35-1.48 (m, 2H), 1.76-1.86 (m, 2H), 4.06 (t, $J = 7.4$ Hz, 2H), 7.22-7.28 (m, 3H), 7.34-7.51 (m, 7H), 7.81 (d, $J = 2.5$ Hz, 1H).
1-007	Н	F	н	nBu	0.96 (t, J = 7.3 Hz, 3H), 1.35-1.48 (m, 2H), 1.75-1.85 (m, 2H), 4.05 (t, J = 7.3 Hz, 2H), 7.10-7.17 (m, 2H), 7.22-7.24 (m, 3H), 7.37-7.44 (m, 3H), 7.48-7.52 (m, 1H), 7.76 (d, J = 2.7 Hz, 1H).
1-008	Н	N.	Н	nBu	0.97 (t, $J = 7.3$ Hz, 3H), 1.36-1.49 (m, 2H), 1.79-1.87 (m, 2H), 4.08 (t, $J = 7.3$ Hz, 2H), 7.23-7.27 (m, 2H), 7.37-7.44 (m, 2H), 7.45-7.52 (m, 1H), 7.50 (d, $J = 2.7$ Hz, 1H), 7.75-7.78 (m, 1H), 7.81 (d, $J = 2.7$ Hz, 1H), 8.61 (d, $J = 3.7$ Hz, 1H), 8.74 (s, 1H).

表 2

$$\begin{array}{c|c}
 & R^2 \\
 & R^3 \\
 & R^4 \\
 & R^5
\end{array}$$

	R°						
化合物 No	R ²	R³	R ⁴	R ⁵	¹ H-NMR (CDCl ₃)		
1-009	Н	⊘ =-	н	nBu	0.97 (t, $J = 7.4$ Hz, 3H), 1.38-1.48 (m, 2H), 1.75-1.85 (m, 2H), 4.05 (t, $J = 7.4$ Hz, 2H), 6.92 (s, 1H), 7.23-7.52 (m, 6H), 7.67-7.69 (m, 2H), 7.71 (d, $J = 2.7$ Hz, 1H), 7.89 (d, $J = 2.7$ Hz, 1H).		
1-010	Me	Н	М́е	nBu	0.94 (t, J = 7.5 Hz, 3H), 1.39 (sextet, J = 7.5 Hz, 2H), 1.61-1.71 (m, 2H), 2.21 (s, 3H), 2.37 (s, 3H), 3.99 (t, J = 7.8 Hz, 2H), 5.95 (s, 1H), 7.18 (ddd, J = 7.5, 7.5, 1.8 Hz), 7.23 (ddd, J = 7.5, 7.5, 1.8 Hz, 1H), 7.40 (m, 1H), 7.47 (m, 1H).		
1-011	Me	Н	Me	nBu	0.94 (t, J = 7.5 Hz, 3H), 1.37 (sextet, J = 7.5 Hz, 2H), 1.68-1.78 (m, 2H), 1.73 (d, J = 1.0 Hz, 3H), 3.32 (s, 2H), 3.94 (t, J = 7.5 Hz, 2H), 4.82 (s, 1H), 4.88 (s, 1H), 6.13 (d, J = 7.2 Hz, 1H), 7.17 (d, J = 7.2 Hz, 1H), 7.19 (ddd, J = 7.5, 7.5, 1.5 Hz, 1H), 7.23 (ddd, J = 7.5, 7.5, 1.5 Hz, 1H), 7.48 (m, 1H), 7.40 (m, 1H), 7.48 (m, 1H).		

表 3

化合物 No.	構造	¹H-NMR (CDCl₃)
1-012	N S Me Me Me	2.16 (s, 3H), 2.36 (s, 3H), 7.20-7.29 (m, 2H), 7.40-7.44 (m, 1H9, 7.58-7.61 (m, 1H), 7.83 (s, 1H).
1-013	N S Me N Me nBu	0.95 (t, J = 7.2 Hz), 1.35-1.48 (m, 2H), 1.60-1.72 (m, 2H), 2.15 (s, 3H), 2.39 (s, 3H), 4.11 (t, J = 7.8 Hz, 2H), 7.22-7.29 (m, 2H), 7.41-7.44 (m, 1H), 7.57-7.61 (m, 1H), 7.81 (s, 1H).
1-014	O N Me nBu	0.96 (t, J=7.2 Hz, 6H), 1.30-1.60 (m, 4H), 1.60-1.75 (m, 2H), 1.76-1.90 (m, 2H), 2.31 (s, 3H), 3.89 (t, J=6.9 Hz, 2H), 4.02 (t, J=8.1 Hz, 2H), 5.88 (d, J=7.8 Hz, 1H), 6.52 (d, J=7.2 Hz, 1H).
1-015	N O N O N N N N N N N N N N N N N N N N	0.94 (t, J = 7.5 Hz, 3H), 1.40 (sextet, J = 7.5 Hz, 2H), 1.66 (quint, J = 7.5 Hz, 2H), 1.74 (quint, J = 6.0 Hz, 2H), 1.87 (quint, J = 6.0 Hz, 2H), 2.58 (t, J = 6.0 Hz, 2H), 2.69 (t, J = 6.0 Hz, 2H), 4.02 (t, J = 7.8 Hz, 2H), 7.16-7.26 (m, 2H), 7.24 (s, 1H), 7.40 (dd, J = 6.9 Hz, 2.4 Hz, 1H), 7.48 (dd, J = 6.9 Hz, 2.4 Hz, 1H).
1-016	O N Bu	0.96 (t, $J = 7.5$ Hz, 3H), 1.42 (sextet, $J = 7.5$ Hz, 2H), 1.60-1.76 (m, 4H), 1.81 (quint, $J = 6.0$ Hz, 2H), 2.43 (t, $J = 6.0$ Hz, 2H), 2.61 (t, $J = 6.0$ Hz, 2H), 4.01 (t, $J = 7.8$ Hz, 2H), 5.07 (s, 2H), 6.43 (s, 1H), 7.28-7.39 (m, 1H), 7.34 (d, $J = 7.5$ Hz, 2H), 7.45 (d, $J = 7.5$ Hz, 2H).
1-017	NTO N Br	3.23 (t, $J = 7.5$ Hz, 2H), 4.24 (t, $J = 7.5$ Hz, 2H), 6.10 (t, $J = 6.9$ Hz, 1H), 6.99 (dd, $J = 1.8$, 6.9 Hz, 1H), 7.08-7.29 (m, 5H), 7.42-7.45 (m, 1H), 7.49-7.52 (m, 2H), 7.56 (dd, $J = 1.2$, 7.8 Hz, 1H).
1-018	C NTO N	3.03 (t, J = 6.1 Hz, 2H), 4.34 (t, J = 6.1 Hz, 2H), 6.74 (d, J = 7.9 Hz, 1H), 7.19-7.45 (m, 6H), 7.50 (d, J = 6.4 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.73 (d, J = 7.3Hz, 1H).
1-019	O N n-Bu	0.96 (t, $J = 7.5$ Hz, 3H), 1.41 (sextet, $J = 7.5$ Hz, 2H), 1.58-1.73 (m, 4H), 1.81 (quint, $J = 6.0$ Hz, 2H), 2.45 (t, $J = 6.0$ Hz, 2H), 2.61 (t, $J = 6.0$ Hz, 2H), 3.18 (t, $J = 7.5$ Hz, 2H), 4.00 (t, $J = 7.8$ Hz, 2H), 4.07 (t, $J = 7.5$ Hz, 2H), 6.34 (s, 1H), 7.21-7.33 (m, 5H).

	·	·	
化合物 No.	\mathbb{R}^3	R ⁵	¹ H-NMR (CDCl ₈)
2-001	Me	Me	2.28 (s, 3H), 2.49 (s, 3H), 4.17 (s, 3H), 7.19-7.24 (m, 2H), 7.40 (s, 1H), 7.43-7.49 (m, 2H).
2-002	Me	Et	1.46 (t, $J = 7.2$ Hz, 3H), 2.25 (s, 3H), 2.55 (s, 3H), 4.92 (br s, 2H), 7.18-7.24 (m, 2H), 7.37 (s, 1H), 7.42-7.49 (m, 2H).
2-003	Me	nPr	1.04 (t, J = 7.2 Hz, 3H), 1.89 (br s, 2H), 2.25 (s, 3H), 2.52 (s, 3H), 4.71 (br s, 2H), 7.19-7.26 (m, 2H), 7.36 (s, 1H), 7.42-7.49 (m, 2H).
2-004	Me	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.42-1.54 (m, 2H), 1.83 (br s, 2H), 2.25 (s, 3H), 2.53 (s, 3H), 4.80 (br s, 2H), 7.18-7.26 (m, 2H), 7.36 (s, 1H), 7.42-7.49 (m, 2H).
2-005	Me	iBu	0.97-0.99 (m, 6H), 2.27 (s, 3H), 2.51 (s, 3H), 2.51-2.66 (m, 1H), 3.81 (br s, 1H), 5.64 (br s, 1H), 7.20-7.24 (m, 2H), 7.39 (s, 1H), 7.42-7.48 (m, 2H).
2-006	Me	nPent	0.92 (t, $J = 7.2$ Hz, 3H), 1.36-1.48 (m, 4H), 1.85 (br s, 2H), 2.25 (s, 3H), 2.53 (s, 3H), 4.76 (br s, 2H), 7.18-7.26 (m, 2H), 7.36 (s, 1H), 7.42-7.49 (m, 2H).
2-007	Me	nHexyl	0.89 (t, $J = 7.2$ Hz, 3H), 1.30-1.50 (m, 6H), 1.84 (br s, 2H), 2.25 (s, 3H), 2.52 (s, 3H), 4.79 (br s, 2H), 7.17-7.26 (m, 2H), 7.35 (s, 1H), 7.42-7.49 (m, 2H).
2-008	Me	Bn	2.24 (s, 3H), 2.38 (s, 3H), 6.27 (br s, 2H), 7.14-7.52 (m, 10H).
2-009	Et	Me	1.23 (t, $J = 7.8$ Hz, 3H), 2.50 (s, 3H), 2.61 (q, $J = 7.8$ Hz, 2H), 4.17 (s, 3H), 7.19-7.24 (m, 2H), 7.42 (s, 1H), 7.42-7.49 (m, 2H).
2-010	Et	Et	1.23 (t, $J = 7.5$ Hz, 3H), 1.47 (t, $J = 7.2$ Hz, 3H), 2.57 (s, 3H), 2.59 (q, $J = 7.5$ Hz, 2H), 4.92 (br s, 2H), 7.18-7.24 (m, 2H), 7.39 (s, 1H), 7.43-7.49 (m, 2H).
2-011	Et	nPr .	1.04 (t, $J = 7.2$ Hz, 3H), 1.22 (t, $J = 7.5$ Hz, 3H), 1.89 (br s, 2H), 2.54 (s, 3H), 2.59 (q, $J = 7.5$ Hz, 2H), 4.72 (br s, 2H), 7.18-7.24 (m, 2H), 7.38 (s, 1H), 7.42-7.49 (m, 2H).
2-012	Et	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.22 (t, $J = 7.5$ Hz, 3H), 1.42-1.54 (m, 2H), 1.83 (br s, 2H), 2.55 (s, 3H), 2.59 (q, $J = 7.5$ Hz, 2H), 4.77 (br s, 2H), 7.20-7.24 (m, 2H), 7.38 (s, 1H), 7.42-7.49 (m, 2H).
2-013	Et	Bn	1.22 (t, $J = 7.5$ Hz, 3H), 2.40 (s, 3H), 2.57 (q, $J = 7.5$ Hz, 2H), 6.26 (br s, 2H), 7.13-7.51 (m, 10H).

		H <u>*</u>	
化合物 No.	Rr	R ⁵	¹H-NMR (CDCl₃)
2-014		Me	2.55 (s, 3H), 4.10 (s, 3H), 6.57 (d, J) = 7.8 Hz, 1H), 7.20-7.26 (m, 2H), 7.40-7.50 (m, 3H).
2-015		nBu	0.99 (t, J = 7.2 Hz, 3H), 1.47 (sextet, J = 7.5 Hz, 2H), 1.84 (m, 2H), 2.58 (s, 3H), 4.69 (br s, 2H), 6.52 (d, J = 7.8 Hz, 1H), 7.20-7.26 (m, 2H), 7.30-7.50 (m, 3H).
2-016		nBu	0.82 (t, $J = 7.5$ Hz, 3H), 1.32 (sextet, $J = 7.5$ Hz, 2H), 1.47-1.52 (m, 2H), 2.46 (s, 3H), 4.37 (br s, 2H), 4.80 (s, 2H), 7.06 (d, $J = 9.0$ Hz, 1H), 7.26-7.35 (m, 3H), 7.38-7.44 (m, 1H), 7.60-7.67 (m, 1H).
2-017	Ac	nBu	0.99 (t, J = 7.5 Hz, 3H), 1.47 (sextet, J = 7.5 Hz, 2H), 1.83 (m, 2H), 2.38 (s, 3H), 2.54 (s, 3H), 4.70 (br s, 2H), 6.44 (d, J = 7.8 Hz, 1H), 7.04 (d, J = 7.5 Hz, 1H).
2-018	H	nBu	1.02 (t, $J = 7.8$ Hz, 3H), 1.50 (sextet, $J = 7.8$ Hz, 2H), 1.80-1.90 (m, 2H), 2.51 (s, 3H), 4.66 (br s, 2H), 6.49 (d, $J = 8.1$ Hz, 1H), 6.91 (d. $J = 7.8$ Hz, 1H), 8.44 (br s, 1H).
2-019	SO ₂ -	nBu	0.96 (t, $J = 7.5$ Hz, 3H), 1.41 (sextet, $J = 7.5$ Hz, 2H), 1.70 (m, 2H), 2.43 (s, 3H), 2.52 (s, 3H), 4.61 (brs, 2H), 6.38 (d, $J = 8.1$ Hz, 1H), 7.26-7.35 (m, 3H), 7.97 (d, $J = 8.7$ Hz, 1H).
2-020	H ₃ C-SO ₂ -	nBu	1.01 (t, $J = 7.5$ Hz, 3H), 1.49 (sextet, $J = 7.2$ Hz, 2H), 1.82 (m, 2H), 2.57 (s, 3H), 3.48 (dd, $J = 3.0$, 1.5 Hz, 3H), 4.70 (brs, 2H), 6.47 (d, $J = 7.8$ Hz, 1H), 7.31 (dd, $J = 7.8$, 1.8 Hz, 1H).
2-021	CY	nBu	0.98 (t, J = 7.2 Hz, 3H), 1.46 (sextet, J = 7.5 Hz, 2H), 1.81 (m, 2H), 2.51 (s, 3H), 4.00 (s, 2H), 4.67 (brs, 2H), 6.39 (d, J = 7.8 Hz, 1H), 6.98 (d, J = 7.8 Hz, 1H), 7.10-7.50 (m, 5H).
2-022	ا	nBu	0.99 (t, J = 7.2 Hz, 3H), 1.47 (sextet, J = 7.2 Hz, 2H), 1.85 (m, 2H), 2.54 (s, 3H), 2.90-3.00 (m, 2H), 3.10-3.20 (m, 2H), 4.70 (brs, 2H), 3.10-3.20 (m, 2H), 4.70 (brs, 2H), 6.42 (d, J = 8.1 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 7.18-7.34 (m, 5H).

WO 02/053543

		R*	
化合物 No.	\mathbb{R}^{r}	$ m R^5$	¹ H-NMR (CDCl ₃)
2-023	CI	nBu	0.92 (t, J = 6.9 Hz, 3H), 1.37 (m, 4H), 2.41 (s, 3H), 4.17 (brs, 2H), 4.47 (s, 2H), 6.99 (d, J = 9.0 Hz, 1H), 7.00-7.30 (m, 5H).
2-024	SO ₂ -	nBu	0.94 (t, $J = 6.9$ Hz, 3H), 1.40 (sextet, $J = 7.8$ Hz, 2H), 1.70 (m,2H), 2.48 (s, 3H), 2.89 (s, 6H), 4.60 (br s, 2H), 6.27 (d, $J = 8.1$ Hz, 1H), 6.97 (dd, $J = 8.1$, 1.2 Hz, 1H), 7.21 (d, $J = 7.8$ Hz, 1H), 7.51 (dd, $J = 8.1$, 7.8 Hz, 1H), 7.61 (dd, $J = 8.4$, 7.8 Hz, 1H), 8.28 (dd, $J = 7.2$, 0.9 Hz, 1H), 8.61 (t, $J = 8.4$ Hz, 2H).
2-025	O ₂ S. N	nBu	1.02 (t, $J = 7.5$ Hz, 3H), 1.50 (sextet, $J = 7.5$ Hz, 2H), 1.80-1.85 (m, 2H), 2.51 (s, 3H), 4.67 (br s, 2H), 6.51 (dd, $J = 5.1$, 4.8 Hz, 1H), 6.57 (d, $J = 7.8$ Hz, 1H), 7.38 (d, $J = 8.1$ Hz, 1H), 7.70-7.85 (m, 2H).
2-026	nBu	nBu	0.90-1.03 (m, 6H), 1.4-1.6 (m, 4H), 1.8-1.9 (m, 4H), 2.50 (s, 3H), 3.98 (t, J = 6.9 Hz, 2H), 4.76 (brs, 2H), 6.40 (d, J = 8.1 Hz, 1H), 6.60 (d, J = 7.8 Hz, 1H).
2-027	MeO	nBu	0.91 (t, J = 7.2Hz, 3H), 1.25-1.44 (m, 4H), 1.25-1.44 (m, 4H), 2.40 (s, 3H), 3.75 (s, 3H), 4.18 (brs, 2H), 4.44 (s,2H), 6.73 (A ₂ B ₂ -type, J = 8.7Hz, 2H), 6.98 (d, J=9.3Hz, 1H), 7.09 (A ₂ B ₂ -type, J = 8.4Hz, 2H), 7.25 (d, J=9.0Hz, 1H).
2-028	EtO ₂ C-	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.40 (t, $J = 7.2$ Hz, 3H), 1.47 (sextet, $J = 7.5$ Hz, 2H), 1.84 (m, 2H), 2.55 (s, 3H), 4.35 (q, $J = 7.5$ Hz, 2H), 4.69 (brs, 2H), 6.45 (dd, $J = 7.5$, 0.6 Hz, 1H), 7.12 (d, $J = 7.5$ Hz, 1H).
2-029		nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.48 (sextet, $J = 7.2$ Hz, 2H), 1.85 (m, 2H), 2.57 (s, 3H), 4.73 (brs, 2H), 6.48 (d, $J = 7.8$ Hz, 1H), 7.18 (d, $J = 7.5$ Hz, 1H), 7.20-7.70 (m, 3H), 8.20-8.30 (m, 2H).

$$\begin{array}{c|c}
 & R^2 \\
 & R^3 \\
 & R^4 \\
 & R^5
\end{array}$$

化合 物 No.	\mathbb{R}^2	\mathbb{R}^3	R4	\mathbb{R}^5	¹H-NMR (CDCl ₈)
2-030	Н	Н	н	iPr	1.45 (s, 3H), 1.48 (s, 3H), 6.31-6.45 (m, 1H), 6.76 (t, J=7.0 Hz, 1H), 7.03-7.29 (m, 3H), 7.43-7.29 (m, 3H), 7.43-7.54 (m, 2H), 7.74 (dd, J=1.5, 7.0 Hz, 1H).
2-031	Me	Н	н	nPr	1.00 (t, J = 7.3 Hz, 3H), 1.83- 2.02 (m, 2H), 4.48 (t, J = 7.7 Hz, 2H), 6.56 (d, J = 6.6 Hz, 1H), 7.20-7.28 (m, 2H), 7.43-7.49 (m, 2H), 7.57 (d, J = 6.6 Hz, 1H).
2-032	-CH ₂ OMe	Н	H	nPr	0.96 (t, J = 7.3 Hz, 3H), 1.35- 1.47 (m, 2H), 1.81-1.91 (m, 2H), 3.43 (s, 3H), 4.48-4.56 (m, 3H), 6.89 (d, J = 6.7 Hz, 1H), 6.97- 7.48 (m, 4H), 7.68 (d, J = 6.7 Hz, 1H).
2-033	Н	Н	Н	nBu	0.98 (t, J = 7.3 Hz, 3H), 1.37- 1.49 (m, 2H), 1.83-1.94 (m, 2H), 4.57 (t, J = 7.6 Hz, 2H), 6.65- 6.70 (m, 1H), 7.22-7.27 (m, 2H), 7.43-7.51 (m, 3H), 7.68 (dd, J = 1.5, 6.4 Hz, 1H).
2-034	Me	Н	H	nBu	0.95 (t, J = 7.3 Hz, 3H), 1.34- 1.46 (m, 2H), 1.79-1.90 (m, 2H), 2.29 (s, 3H), 4.51 (t, J = 7.4 Hz, 2H), 6.55 (d, J = 6.6 Hz, 1H), 7.20-7.28 (m, 2H), 7.43-7.48 (m, 2H), 7.59 (d, J = 6.6 Hz, 1H).
2-035	Н	Me	Н	nBu	0.97 (t, J = 7.3 Hz, 3H), 1.36- 1.46 (m, 2H), 1.82-1.92 (m, 2H), 4.54 (t, J = 7.6 Hz, 2H), 7.19- 7.27 (m, 2H), 7.40-7.52 (m, 4H).
2-036	Н	Br	н	nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.83-1.93 (m, 2H), 4.53 (t, $J = 7.5$ Hz, 2H), 7.21-7.30 (m, 2H), 7.42-7.52 (m, 2H), 7.64 (d, $J = 2.1$ Hz, 1H), 7.79 (d, $J = 2.1$ Hz, 1H).
2-037	Н	<u> </u>	H	nBu	1.00 (t, $J = 7.3$ Hz, 3H), 1.45 (sextet, $J = 7.3$ Hz, 2H), 1.85-1.97 (m, 2H), 4.57 (t, $J = 7.6$ Hz, 2H), 7.22-7.28 (m, 2H), 7.34-7.44 (m, 3H), 7.44-7.52 (m, 4H), 7.61 (d, $J = 1.8$ Hz, 1H), 7.89 (d, $J = 1.8$ Hz, 1H).

化合物 No.	Rr	R ⁵	¹H-NMR (CDCl ₃)
3-001		Me	2.20 (s, 3H), 2.39 (s, 3H), 3.62 (s, 3H), 4.65 (d, $J = 6.0 \text{ Hz}$, 2H); 7.21-7.38 (m, 5H), 8.37 (s, 1H), 10.28 (br s, 1H).
3-002		Me	2.19 (s, 3H), 2.38 (s, 3H), 2.93 (t, J = 7.2 Hz, 2H), 3.62 (s, 3H), 3.65- 3.72 (m, 2H), 7.21-7.33 (m, 5H), 8.34 (s, 1H), 9.99 (br s, 1H).
3-003		Et	1.32 (t, $J = 7.2$ Hz, 3H), 2.18 (s, 3H), 2.42 (s, 3H), 4.20 (q, $J = 7.2$ Hz, 2H), 4.64 (d, $J = 6.0$ Hz, 2H), 7.24-7.38 (m, 5H), 8.35 (s, 1H), 10.30 (br s, 1H).
3-004		Et	1.33 (t, J = 7.2 Hz, 3H), 2.18 (s, 3H), 2.42 (s, 3H), 2.93 (t, J = 7.5 Hz, 2H), 3.64-3.71 (m, 2H), 4.21 (q, J = 7.2 Hz, 2H), 7.18-7.33 (m, 5H), 8.32 (s, 1H), 10.03 (br s, 1H).
3-005		nPr	1.03 (t, $J = 7.8$ Hz, 3H), 1.65-1.78 (m, 2H), 2.19 (s, 3H), 2.42 (s, 3H), 4.07 (t, $J = 8.1$ Hz, 2H), 4.65 (d, $J = 6.0$ Hz, 2H), 7.24-7.38 (m, 5H), 8.36 (s, 1H), 10.30 (br s, 1H).
3-006		nPr	1.05 (t, J = 7.5 Hz, 3H), 1.67-1.80 (m, 2H), 2.19 (s, 3H), 2.42 (s, 3H), 2.92-2.97 (m, 2H), 3.64-3.72 (m, 2H), 4.09 (t, J = 7.8 Hz, 2H), 7.20-7.35 (m, 5H), 8.33 (s, 1H), 10.05 (br s, 1H).
3-007		iPr	1.60 (s, 3H), 1.63 (s, 3H), 2.17 (s, 3H), 2.40 (s, 3H), 4.64 (d, $J = 6.0$ Hz, 3H), 7.24-7.34 (m, 5H), 8.31 (s, 1H), 10.31 (br s, 1H).
3-008		iPr	1.62 (s, 3H), 1.64 (s, 3H), 2.17 (s, 3H), 2.40 (s, 3H), 2.93 (d, J = 7.8 Hz, 2H), 3.62-3.69 (m, 2H), 4.64 (br s, 1H), 7.18-7.33 (m, 5H), 8.28 (s, 1H), 10.04 (br s, 1H).
3-009		nBu	0.98 (t, $J = 7.2$ Hz, 3H), 1.38-1.51 (m, 2H), 1.61-1.71 (m, 2H), 2.18 (s, 3H), 2.41 (s, 3H), 4.10 (t, $J = 8.1$ Hz, 2H), 4.64 (d, $J = 6.0$ Hz, 2H), 7.21-7.38 (m, 5H), 8.35 (s, 1H), 10.30 (br s, 1H).
3-010		nBu	1.00 (t, $J = 7.2$ Hz, 3H), 1.40 (m, 2H), 1.61-1.72 (m, 2H), 2.93 (t, $J = 7.2$ Hz, 2H), 3.63-3.70 (m, 2H), 4.11 (t, $J = 7.8$ Hz, 2H), 7.18-7.32 (m, 5H), 8.32 (s, 1H), 10.03 (br s, 1H).

表 9

	H					
化合物 No.	$\mathbf{R^r}$	R ⁵	¹H-NMR (CDCl₃)			
3-011		nHexyl	0.89 (t, J = 7.2 Hz, 3H), 1.30-1.50 (m, 6H), 1.60-1.75 (m, 2H), 2.18 (s, 3H), 2.41 (s, 3H), 4.09 (t, J = 7.8 Hz, 2H), 4.64 (d, J = 5.7 Hz, 2H), 7.23-7.38 (m, 5H), 8.35 (s, 1H).			
3-012		nHexyl	0.91 (t, $J = 6.9$ Hz, 3H), 1.32-1.45 (m, 6H), 1.63-1.70 (m, 2H), 2.18 (s, 3H), 2.40 (s, 3H), 2.93 (t, $J = 7.5$ Hz, 2H), 3.63-3.70 (m, 2H), 4.10 (t, $J = 7.8$ Hz, 2H), 7.18-7.32 (m, 5H), 8.31 (s, 1H), 10.04 (br s, 1H).			
3-013		Bn	2.19 (s, 3H), 2.31 (s, 3H), 4.64 (d, J) = 5.7 Hz, 2H), 5.44 (br s, 2H), 7.07-7.38 (m, 10H), 8.44 (s, 1H), 10.24 (br s, 1H).			
3-014		Bn	2.18 (s, 3H), 2.31 (s, 3H), 2.93 (t, J) = 7.5 Hz, 2H), 3.64-3.71 (m, 2H), 5.45 (br s, 2H), 7.08-7.36 (m, 10H), 8.41 (s, 1H), 9.98 (br s, 1H).			
3-015		Ph	2.00 (s, 3H), 2.22 (s, 3H), 4.58 (d, J = 5.7 Hz, 2H), 7.15-7.32 (m, 7H), 7.49-7.58 (m, 3H), 8.49 (s, 1H), 10.02 (br s, 1H).			
3-016		Ph	2.00 (s, 3H), 2.22 (s, 3H), 2.88 (t, J) = 7.8 Hz, 2H), 3.59-3.66 (m, 2H), 7.16-7.29 (m, 7H), 7.51-7.61 (m, 3H), 8.46 (s, 1H), 9.82 (br s, 1H).			

表 1 0

n'Bu				
化合物 No.	$\mathbf{R^r}$	\mathbb{R}^3	¹H-NMR (CDCl ₃)	
3-033		nBu	0.93 (t, $J = 7.2$ Hz, 3H), 0.98 (t, $J = 7.2$ Hz, 3H), 1.32-1.51 (m, 6H), 1.61-1.69 (m, 2H), 2.41 (s, 3H), 2.48 (t, $J = 7.8$ Hz, 2H), 4.09 (t, $J = 7.8$ Hz, 2H), 4.64 (d, $J = 6.0$ Hz, 2H), 7.23-7.38 (m, 5H), 8.35 (s, 1H), 10.30 (br s, 1H).	
3-034		nBu	0.93 (t, $J = 7.2$ Hz, 3H), 1.00 (t, $J = 7.2$ Hz, 3H), 1.30-1.54 (m, 6H), 1.63-1.72 (m, 2H), 2.42 (s, 3H), 2.48 (t, $J = 7.8$ Hz, 2H), 2.93 (m, 2H), 3.62-3.70 (m, 2H), 4.10 (t, $J = 7.8$ Hz, 2H), 7.16-7.32 (m, 5H), 8.32 (s, 1H), 10.04 (br s, 1H).	
3-035		nPentyl	0.90 (t, $J = 6.9$ Hz, 3H), 0.98 (t, $J = 7.2$ Hz, 3H), 1.30-1.53 (m, 8H), 1.62-1.69 (m, 2H), 2.47 (s, 3H), 2.48 (t, $J = 7.5$ Hz, 2H), 4.09 (t, $J = 7.8$ Hz, 2H), 4.64 (d, $J = 5.7$ Hz, 2H), 7.23-7.38 (m, 5H), 8.35 (s, 1H), 10.31 (br s, 1H).	
3-036		nPentyl	0.90 (t, $J = 6.9$ Hz, 3H), 1.00 (t, $J = 7.2$ Hz, 3H), 1.28-1.39 (m, 4H), 1.40-1.55 (m, 4H), 1.62-1.72 (m, 2H), 2.42 (s, 3H), 2.47 (t, $J = 7.5$ Hz, 2H), 2.93 (t, $J = 7.2$ Hz, 2H), 3.63-3.70 (m, 2H), 4.10 (t, $J = 7.8$ Hz, 2H), 7.20-7.32 (m, 5H), 8.32 (s, 1H), 10.04 (br s, 1H).	
3-037		I	0.98 (t, J = 7.3 Hz, 3H), 1.38-1.50 (m, 2H), 1.61-1.71 (m, 2H), 2.71 (s, 3H), 4.16 (t, J = 7.9 Hz, 2H), 4.63 (d, J = 5.8 Hz, 2H), 7.22-7.37 (m, 5H), 8.78 (s, 1H), 10.4 (br s, 1H).	
3-038		I	1.00 (t, J = 7.3 Hz, 3H), 1.39-1.51 (m, 2H), 1.59 (s, 3H), 1.61-1.71 (m, 2H), 2.71 (s, 3H), 2.92 (t, J=7.6 Hz, 2H), 3.62-3.69 (m, 2H), 4.17 (t, J=7.9 Hz, 2H), 7.19-7.33 (m, 5H), 8.74 (s, 1H), 9.77 (br s, 1H).	
3-039			1.00 (t, $J = 7.3$ Hz, 3H), 1.41-1.53 (m, 2H), 1.68-1.78 (m, 2H), 4.15 (t, $J = 7.6$ Hz, 2H), 4.65 (d, $J = 5.8$ Hz, 2H), 7.22-7.45 (m, 10H), 8.46 (s, 1H), 10.25 (br s, 1H).	
3-040			1.02 (t, $J = 7.3$ Hz, 3H), 1.43-1.55 (m, 2H), 1.69-1.79 (m, 2H), 2.41 (s, 3H), 2.94 (t, $J = 7.9$ Hz, 2H), 3.65-3.72 (m, 2H), 4.16 (t, $J = 7.6$ Hz, 2H), 7.19-7.45 (m, 10H), 8.43 (s, 1H), 9.98 (br s, 1H).	

表 1 1

化合物 No.	Rr	\mathbb{R}^3	¹H-NMR (CDCl ₈)
3-044		$\mathrm{CF_3}$	1.02 (t, J = 6.7 Hz, 3H), 1.42-1.54 (m, 2H), 1.66-1.74 (m, 2H), 2.61 (s, 3H), 2.93 (t, J = 7.3 Hz, 2H), 3.64-3.69 (m, 2H), 4.14 (t, J = 7.9 Hz, 2H), 7.20-7.33 (m, 5H), 8.69 (s, 1H), 9.61 (brs, 1H).

表 1 2

		nBu	
化合物 No.	Rr	\mathbb{R}^3	¹H-NMR (CDCl₃)
3-061	n-Hexyl	O ↓ N (CH ₂)₅CH ₃ H	0.86-0.91 (m, 6H), 0.95 (t, $J = 7.3 \text{ Hz}$, 3H), 1.26-1.47 (m, 16H), 1.54-1.65 (m, 4H), 1.73-1.83 (m, 2H), 3.38-3.45 (m, 4H), 4.07 (t, $J = 7.3 \text{ Hz}$, 2H), 6.72 (t, $J = 5.5 \text{ Hz}$, 1H), 8.40 (d, $J = 2.7 \text{ Hz}$, 1H), 8.83 (d, $J = 2.7 \text{ Hz}$, 1H), 9.69 (t, $J = 5.5 \text{ Hz}$, 1H).
3-062			1.02 (t, $J = 7.3$ Hz, 3H), 1.33- 1.45 (m, 2H), 1.72-1.82 (m, 2H), 4.06 (t, $J = 7.6$ Hz, 2H), 4.58 (d, $J = 5.5$ Hz, 4H), 6.81 (br s, 1H), 7.24-7.36 (m, 10H), 7.42 (d, $J =$ 2.7 Hz, 1H), 8.78 (d, $J =$ 2.7 Hz, 1H), 10.00 (br s, 1H).
3-063			0.97 (t, J = 7.3 Hz, 3H), 1.33- 1.46 (m, 2H), 1.72-1.82 (m, 2H), 2.88-2.94 (m, 4H), 3.63-3.72 (m, 4H), 4.06 (t, J = 7.6Hz, 2H), 7.20-7.34 (m, 10H), 8.37 (d, J = 2.7 Hz, 1H), 8.65 (d, J = 2.7 Hz, 1H), 9.52 (br s, 1H).
3-064		O N (CH ₂) ₃ CH ₃ (CH ₂) ₃ CH ₃	2H), 7.23-7.39 (m, 5H), 7.85 (d, J= 2.7 Hz, 1H), 8.58 (d, J= 2.7 Hz, 1H), 10.04 (t, J= 5.5 Hz, 1H).
3-065		O C	0.96 (t, $J = 7.3$ Hz, 3H), 1.15-1.49 (m, 6H), 1.64-1.81 (m, 6H), 1.96-2.05 (m, 2H), 3.87-3.99 (m, 1H), 4.05 (t, $J = 7.3$ Hz, 2H), 4.64 (d, $J = 5.8$ Hz, 2H), 6.10 (d, $J = 7.9$ Hz, 2H), 6.92-7.38 (m, 5H), 8.38 (d, $J = 2.7$ Hz, 1H), 8.72 (d, $J = 2.7$ Hz, 1H), 10.05 (t, $J = 5.8$ Hz, 1H).
3-066		O N (CH ₂) ₅ CH ₃ H	0.89 (t, $J = 6.7 \text{ Hz}$, 3H), 0.97 (t, $J = 7.3 \text{ Hz}$, 3H), 1.27-1.45 (m, 8H), 1.54-1.63 (m, 2H), 1.73-1.82 (m, 2H), 2.93 (t, $J = 7.6 \text{ Hz}$, 2H), 3.38-3.45 (m, 2H), 3.65-3.72 (m, 2H), 4.06 (t, $J = 7.6 \text{ Hz}$, 2H), 6.44 (t, $J = 5.5 \text{ Hz}$, 1H), 7.20-7.34 (m, 5H), 8.39 (d, $J = 2.7 \text{ Hz}$, 1H), 8.74 (d, $J = 2.7 \text{ Hz}$, 1H), 9.78 (t, $J = 5.5 \text{ Hz}$, 1H).

表 1 3

nBu				
化合物 No.	R^{r}	\mathbb{R}^3	¹H-NMR (CDCl₃)	
3-067		I	0.96 (t, J = 7.3 Hz, 3H), 1.31-1.44 (m, 2H), 1.68-1.78 (m, 2H), 3.95 (t, J = 7.3 Hz, 2H), 4.62 (d, J = 7.3 Hz, 2H), 7.23-7.36 (m, 5H), 7.70 (d, J = 2.6 Hz, 1H), 8.67 (d, J = 2.6 Hz, 1H), 10.03 (br s, 1H).	
3-068			0.98 (t, $J = 7.3$ Hz, 3H), 1.36-1.48 (m, 2H), 1.75-1.85 (m, 2H), 4.08 (t, $J = 7.6$ Hz, 2H), 4.67 (d, $J = 5.8$ Hz, 2H), 7.22-7.50 (m, 10H), 7.69 (d, $J = 2.7$ Hz, 1H), 8.87 (d, $J = 2.7$ Hz, 1H), 10.25 (br s, 1H).	
3-069		-=-	0.98 (t, J = 7.6 Hz, 3H), 1.34-1.46 (m, 2H), 1.72-1.82 (m, 2H), 4.01 (t, J = 7.6 Hz, 2H), 4.65 (d, J = 5.8 Hz, 2H), 7.23-7.40 (m, 8H), 7.45-7.51 (m, 2H), 7.73 (d, J = 2.7 Hz, 1H), 8.66 (d, J = 2.7 Hz, 1H), 10.03 (t, J = 5.8 Hz, 1H).	
3-070	nBuO	H	0.95 (t, J= 7.5 Hz, 3H), 1.38 (sextet, J= 7.8 Hz, 2H), 1.73-1.79 (m, 2H), 3.90 (s, 3H), 3.98 (t, J= 7.5 Hz, 2H), 6.24 (d, J= 6.9 Hz, 1H), 7.53 (dd, J= 6.7, 2.1 Hz, 1H), 8.14 (dd, J= 7.5, 2.4 Hz, 1H).	
3-071		Н	0.95 (t, J = 6.9 Hz, 3H), 1.36 (sextet, J = 7.8 Hz, 2H), 1.66-1.80 (m, 2H), 3.96 (t, J = 7.2 Hz, 2H), 4.60 (d, J = 6.0 Hz, 2H), 6.36 (t, J = 7.5 Hz, 1H), 7.20-7.40 (m, 5H), 7.46 (dd, J = 6.3, 2.1 Hz, 1H), 8.47 (dd, J = 7.2, 2.4 Hz, 1H).	
3-072		CF ₃	0.99 (t, $J = 7.3$ Hz, 3H), 1.34-1.47 (m, 2H), 1.72-1.82 (m, 2H), 2.93 (t, $J = 7.3$ Hz, 2H), 3.66-3.73 (m, 2H), 7.20-7.34 (m, 5H), 7.83 (m, 1H), 8.69 (d, $J = 2.7$ Hz, 1H), 9.62 (br s, 1H).	
3-073		CI	0.99 (t, $J = 7.3$ Hz, 3H), 1.37-1.49 (m, 2H), 2.95 (t, $J = 7.3$ Hz, 2H), 3.66-3.73 (m, 2H), 4.07 (t, $J = 7.3$ Hz, 2H), 7.19-7.31 (m, 6H), 7.34 (d, $J = 2.4$ Hz, 1H), 7.42 (d, $J = 8.5$ Hz, 1H), 7.65 (d, $J = 2.7$ Hz, 1H), 8.63 (dd, $J = 2.7$, 0.6 Hz, 1H), 9.89 (t, $J = 5.8$ Hz, 1H).	

表 1 4

		HDU	
化合物 No.	R ^r	R³	¹ H-NMR (CDCl ₃)
3-074		H Z	1.00 (t, J = 7.3 Hz, 3H), 1.38- 1.50 (m, 2H), 1.70-1.87 (m, 2H), 2.97 (t, J = 7.3 Hz, 2H), 3.69- 3.76 (m, 2H), 4.09 (t, J = 7.3 Hz, 2H), 6.58 (brs, 1H), 7.20- 7.34 (m, 6H), 7.44-7.47 (m, 2H), 8.63 (s, 1H), 8.89 (d, J = 2.4 Hz, 1H), 10.11 (t, J = 5.8 Hz, 1H).

表 1 5

	nbu					
化合物 No.	Rr	R ⁴	¹H-NMR (CDCl₃)			
3-081		Me	0.98 (t, $J = 7.2$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.60-1.70 (m, 2H), 2.46 (s, 3H), 4.05 (t, $J = 8.1$ Hz, 2H), 4.27 (dd, $J = 7.2$, 6.6 Hz, 1H), 4.64 (d, $J = 5.7$ Hz, 2H), 7.20-7.40 (m, 5H), 8.41 (d, $J = 7.5$ Hz, 1H), 10.2 (br s, 1H).			
3-082		nPentyl	0.93 (t, J= 7.2 Hz, 3H), 0.98 (t, J = 7.2 Hz, 3H), 1.37-1.50 (m, 6H), 1.62-1.70 (m, 4H), 2.67 (t, J = 7.8 Hz, 2H), 4.05 (t, J = 7.8 Hz, 2H), 4.64 (d, J = 6.0Hz, 2H), 6.27 (d, J = 7.5 Hz, 1H), 7.20-7.40 (m, 5H), 8.44 (d, J = 7.5 Hz, 1H), 10.21 (br s, 1H).			
3-083		nPentyl	0.93 (t, $J = 6.9$ Hz, 3H), 1.00 (t, $J = 7.2$ Hz, 3H), 1.38-1.49 (m, 6H), 1.63-1.70 (m, 4H), 2.66 (t, $J = 7.8$ Hz, 2H), 2.93 (t, $J = 7.5$ Hz, 2H), 3.63-3.68 (m, 2H), 4.06 (t, $J = 7.8$ Hz, 2H), 6.27 (d, $J = 7.5$ Hz, 1H), 7.17-7.32 (m, 5H), 8.40 (d, $J = 7.5$ Hz, 1H), 9.94 (br s, 1H).			
3-084		nHexyl	0.91 (t, $J = 7.2 \text{ Hz}$, 3H), 0.98 (t, $J = 7.2 \text{ Hz}$, 3H), 1.30-1.50 (m, 8H), 1.60-1.72 (m, 4H), 2.67 (t, $J = 7.8 \text{ Hz}$, 2H), 4.05 (t, $J = 8.1 \text{ Hz}$, 2H), 4.64 (d, $J = 5.7 \text{ Hz}$, 2H), 6.28 (d, $J = 7.8 \text{ Hz}$, 1H), 7.20-7.40 (m, 5H), 8.44 (d, $J = 7.8 \text{ Hz}$, 1H), 10.21 (br s, 1H).			
3-085		nHexyl	0.91 (t, $J = 7.2$ Hz, 3H), 1.00 (t, $J = 7.2$ Hz, 3H), 1.31-1.49 (m, 8H), 1.61-1.71 (m, 4H), 2.67 (t, $J = 7.8$ Hz, 2H), 2.93 (t, $J = 7.2$ Hz, 2H), 3.63-3.70 (m, 2H), 4.06 (t, $J = 7.8$ Hz, 2H), 6.27 (d, $J = 7.8$ Hz, 1H), 7.18-7.33 (m, 5H), 8.41 (d, $J = 7.8$ Hz, 1H), 9.94 (t, $J = 5.1$ Hz, 1H).			

表 1 6

化合物	————————————————— 構造	¹H-NMR (CDCl ₃)
No.	117 AC	· · · · · · · · · · · · · · · · · · ·
3-101		3.03 (t, J= 6.4 Hz, 2H), 4.35 (t, J= 6.4 Hz, 2H), 4.68 (d, J= 5.8 Hz, 2H), 6.94 (d, J= 7.9 Hz, 1H), 7.23-7.49 (m, 8H), 7.81 (d, J= 7.3 Hz, 1H), 8.63 (d, J=7.9 Hz, 1H), 10.22 (br s, 1H).
3-102		1.79-1.88 (m, 2H), 1.95-2.03 (m, 2H), 2.88 (t, J=6.4 Hz, 2H), 4.04 (t, J=6.1 Hz, 2H), 4.65 (d, J=5.8 Hz, 2H), 6.26 (d, J=7.3 Hz, 1H), 7.20-7.38 (m, 5H), 8.46 (d, J=7.3 Hz, 1H), 10.19 (br s, 1H).
3-103		2.97 (t, J = 7.3 Hz, 2H), 3.04 (t, J = 6.4 Hz, 2H), 3.68-3.75 (m, 2H), 4.35 (t, J = 6.4 Hz, 2H), 6.92 (d, J = 7.9 Hz, 1H), 7.19-7.35 (m, 5H), 7.37-7.43 (m, 3H), 7.80 (dd, J = 1.5, 7.3 Hz, 1H), 8.59 (d, J = 7.9 Hz, 1H), 9.93 (br s, 1H).
3-104	Q N O N	1.79-1.88 (m, 2H), 1.95-2.04 (m, 2H), 2.87 (t, J=6.4 Hz, 2H), 2.93 (t, J=7.3 Hz, 2H), 3.65-3.72 (m, 2H), 4.04 (t, J=6.4 Hz, 2H), 6.24 (d, J=7.3 Hz, 1H), 7.18-7.33 (m, 5H), 8.42 (d, J=7.3 Hz, 1H), 9.90 (br s, 1H).
3-105	O Me N N Me nBu	0.97 (t, J = 7.5 Hz, 3H), 1.42 (sextet, J = 7.5 Hz, 2H), 1.60-1.70 (m, 2H), 2.39 (s, 3H), 2.63 (s, 3H), 3.91 (t, J = 7.9 Hz, 2H), 4.60 (s, 2H), 6.05 (s, 1H), 7.20-7.40 (m, 5H).
3-106	O Me N H O N Me hBu	0.98 (t, J = 7.5 Hz, 3H), 1.43 (sextet, J = 7.5 Hz, 2H), 1.60-1.72 (m, 2H), 2.39 (s, 3H), 2.61 (s, 3H), 2.93 (t-like, 2H), 3.63 (t-like, 2H), 4.00 (t, J = 7.9 Hz, 2H), 6.04 (s, 1H), 7.17-7.33 (m, 5H).
3-107	O Me Me H O N Me nBu	0.97 (t, $J = 7.5$ Hz, 3H), 1.42 (sextet, $J = 7.5$ Hz, 2H), 1.58-1.72 (m, 2H), 2.08 (s, 3H), 2.41 (s, 3H), 2.52 (s, 3H), 4.08 (t, $J = 7.5$ Hz, 2H), 4.62 (s, 2H), 7.20-7.42 (m, 5H), 9.02 (br s, 1H).
3-108	O Me Me H O N Me nBu	0.98 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.58-1.72 (m, 2H), 2.07 (s, 3H), 2.40 (s, 3H), 2.44 (s, 3H), 2.93 (t, $J = 7.5$ Hz, 2H), 3.67 (t, $J = 7.5$ Hz, 2H), 4.07 (t, $J = 7.8$ Hz, 2H), 7.16-7.34 (m, 5H), 8.47 (br s, 1H).

表17

化合物 No.	構造	¹H-NMR (CDCl₃)
3-109	NH ON Me	1.00-1.28 (m, 4H), 1.56-1.90 (m, 7H), 2.18 (s, 3H), 2.39 (s, 3H), 4.00 (br s, 2H), 4.64 (d, J=6.0 Hz, 2H), 7.20-7.40 (m, 5H), 8.35 (s, 1H), 10.3 (br s, 1H).
3-110	N Me Me	1.00-1.30 (m, 4H), 1.58-1.90 (m, 7H), 2.93 (t, J=7.5 Hz, 2H), 3.62-3.69 (m, 2H), 4.01 (br s, 2H), 7.18-7.35 (m, 5H), 8.32 (s, 1H), 10.3 (br s, 1H).
3-111	N Me N Me nPentyl	0.92 (t, J = 7.2 Hz, 3H), 1.37-1.42 (m, 4H), 1.60-1.75 (m, 2H), 2.18 (s, 3H), 2.40 (s, 3H), 4.08 (t, J = 8.1 Hz, 2H), 4.64 (d, J = 5.7 Hz, 2H), 7.20-7.40 (m, 5H), 8.35 (s, 1H), 10.3 (br s, 1H).
3-112	N Me H N Me nPentyl	0.94 (t, J = 7.2 Hz, 3H), 1.38-1.42 (m, 4H), 1.60-1.75 (m, 2H), 2.18 (s, 3H), 2.40 (s, 3H), 2.93 (t, J=7.8 Hz, 2H), 3.60-3.70 (m, 2H), 4.10 (t, J=7.8 Hz, 2H), 7.20-7.35 (m, 5H), 8.31 (s, 1H), 10.03 (br s, 1H).

表 1 8

化合物 No.	Rr	Y	¹H-NMR (CDCl ₃)
4-001		-CH ₂ -	0.97 (t, J = 7.5 Hz, 3H), 1.43 (sextet, J = 7.5 Hz, 2H), 1.62 (quint, J = 7.5 Hz, 2H), 1.74 (quint, J = 6.0 Hz, 2H), 1.88 (quint, J = 6.0 Hz, 2H), 2.62 (t, J = 6.0 Hz, 2H), 2.74 (t, J = 6.0 Hz, 2H), 4.03 (t, J = 7.8 Hz, 2H), 4.64 (d, J = 6.0 Hz, 2H), 7.23-7.38 (m, 5H), 8.28 (s, 1H), 10.32 (br t, J = 6.0 Hz, 1H).
4-002		-CH ₂ -	0.99 (t, J = 7.5 Hz, 3H), 1.45 (sextet, J = 7.5 Hz, 2H), 1.63 (quint, J = 7.5 Hz, 2H), 1.74 (quint, J = 6.0 Hz, 2H), 1.88 (quint, J = 6.0 Hz, 2H), 2.62 (t, J = 6.0 Hz, 2H), 2.74 (t, J = 6.0 Hz, 2H), 2.93 (t, J = 7.8 Hz, 2H), 3.66 (dt, J = 9.0 Hz, 6.0 Hz, 2H), 4.03 (t, J = 7.8 Hz, 2H), 7.20-7.33 (m, 5H), 8.25 (s, 1H), 10.05 (br t, J = 6.0 Hz, 1H).
4-003	H ₂ N	-CH ₂ -	0.99 (t, $J = 7.5$ Hz, 3H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.66 (quint, $J = 7.5$ Hz, 2H), 1.73 (quint, $J = 6.0$ Hz, 2H), 1.87 (quint, $J = 6.0$ Hz, 2H), 2.61 (t, $J = 6.0$ Hz, 2H), 2.73 (t, $J = 6.0$ Hz, 2H), 2.82 (t, $J = 7.8$ Hz, 2H), 3.60 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 4.03 (t, $J = 7.5$ Hz, 2H), 6.65 (dd, $J = 6.3$ Hz, 2.1 Hz, 2H), 7.05 (dd, $J = 6.3$ Hz, 2.1 Hz, 2H), 8.23 (s, 1H), 10.01 (br t, $J = 6.0$ Hz, 1H).
4-004		-CH ₂ -	0.99 (t, J = 7.2 Hz, 3H), 1.44 (sextet, J = 7.2 Hz, 2H), 1.65 (quint, J = 7.2 Hz, 2H), 1.74 (quint, J = 6.0 Hz, 2H), 1.88 (quint, J = 6.0 Hz, 2H), 2.64 (t, J = 6.0 Hz, 2H), 2.74 (t, J = 6.0 Hz, 2H), 2.94 (t, J = 7.5 Hz, 2H), 3.70 (q, J = 6.9 Hz, 2H), 4.03 (t, J = 7.8 Hz, 2H), 7.20 (d, J = 4.8 Hz, 2H), 8.22 (s, 1H), 8.51 (br s, 2H), 10.10 (br t, J = 6.0 Hz, 1H).
4-005		-CH ₂ -	1.01 (t, J = 7.5 Hz, 3H), 1.44 (sextet, J = 7.5 Hz, 2H), 1.70 (quint, J = 7.5 Hz, 2H), 1.76 (quint, J = 6.0 Hz, 2H), 1.91 (quint, J = 6.0 Hz, 2H), 2.66 (t, J = 6.0 Hz, 2H), 2.78 (t, J = 6.0 Hz, 2H), 4.09 (t, J = 7.8 Hz, 2H), 7.09 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 2H), 7.77 (d, J = 7.5 Hz, 2H), 8.34 (s, 1H), 12.18 (br s, 1H).

表 19

化合物 No.	R^r	\ \ \	¹H-NMR (CDCl ₃)
4-006		-CH₂-	0.98 (t, J = 7.5 Hz, 3H), 1.43 (sextet, J = 7.5 Hz, 2H), 1.65 (quint, J = 7.5 Hz, 2H), 1.74 (quint, J = 6.0 Hz, 2H), 1.88 (quint, J = 6.0 Hz, 2H), 2.62 (t, J = 6.0 Hz, 2H), 2.74 (t, J = 6.0 Hz, 2H), 4.02 (t, J = 7.8 Hz, 2H), 4.53 (d, J = 6.0 Hz, 2H), 5.02 (s, 2H), 6.74 (d, J = 7.8 Hz, 1H), 6.81 (dd, J = 7.8 Hz, 1H), 8.11 (dd, J = 7.8 Hz, 1H), 8.27 (s, 1H), 10.26 (br t, J = 6.0 Hz, 1H).
4-007		-CH ₂ -	0.98 (t, $J=7.5$ Hz, 3H), 1.44 (sextet, $J=7.5$ Hz, 2H), 1.63 (quint, $J=7.5$ Hz, 2H), 1.73 (quint, $J=6.0$ Hz, 2H), 1.88 (quint, $J=6.0$ Hz, 2H), 2.62 (t, $J=6.0$ Hz, 2H), 2.74 (t, $J=6.0$ Hz, 2H), 4.03 (t, $J=7.8$ Hz, 2H), 4.62 (d, $J=5.4$ Hz, 2H), 6.25 (dd, $J=3.0$ Hz, 0.9 Hz, 1H), 6.28-6.31 (m, 1H), 7.35 (d, $J=0.9$ Hz, 1H), 8.26 (s, 1H), 10.25 (br t, $J=5.4$ Hz, 1H).

	,		
化合物 No.	\mathbb{R}^r	Y	¹H-NMR (CDCl₃)
4-008	a	-CH ₂ -	0.98 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.62 (quint, $J = 7.5$ Hz, 2H), 1.74 (quint, $J = 6.0$ Hz, 2H), 1.88 (quint, $J = 6.0$ Hz, 2H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.74 (t, $J = 6.0$ Hz, 2H), 4.03 (t, $J = 7.8$ Hz, 2H), 4.59 (d, $J = 6.0$ Hz, 2H), 7.26 (s, 2H), 7.28 (s, 2H), 8.26 (s, 1H), 10.35 (br t, $J = 6.0$ Hz, 1H).
4-009	MeO	-CH₂-	0.97 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.64 (quint, $J = 7.5$ Hz, 2H), 1.74 (quint, $J = 6.0$ Hz, 2H), 1.88 (quint, $J = 6.0$ Hz, 2H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.73 (t, $J = 6.0$ Hz, 2H), 3.78 (s, 3H), 4.01 (t, $J = 7.8$ Hz, 2H), 4.57 (d, $J = 6.0$ Hz, 2H), 6.85 (d, $J = 9.0$ Hz, 2H), 7.29 (d, $J = 9.0$ Hz, 2H), 8.27 (s, 1H), 10.24 (br t, $J = 6.0$ Hz, 1H).
4-010		-0-	0.98 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.66 (quint, $J = 7.5$ Hz, 2H), 2.82 (t, $J = 6.0$ Hz, 2H), 4.01 (t, $J = 6.0$ Hz, 2H), 4.62 (t, $J = 7.5$ Hz, 2H), 4.60 (s, 2H), 4.64 (d, $J = 6.0$ Hz, 2H), 7.24-7.38 (m, 5H), 8.22 (s, 1H), 10.22 (br t, $J = 6.0$ Hz, 1H).
4-011		-0-	1.00 (t, $J = 7.5$ Hz, 3H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.69 (quint, $J = 7.5$ Hz, 2H), 2.83 (t, $J = 6.0$ Hz, 2H), 2.93 (t, $J = 7.5$ Hz, 2H), 3.67 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 4.01 (t, $J = 6.0$ Hz, 2H), 4.03 (t, $J = 7.5$ Hz, 2H), 4.60 (s, 2H), 7.18-7.36 (m, 5H), 8.19 (s, 1H), 9.96 (br t, $J = 6.0$ Hz, 1H).
4-012	H ₂ N	0-	0.99 (t, $J = 7.5$ Hz, 3H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.67 (quint, $J = 7.5$ Hz, 2H), 2.82 (t, $J = 6.0$ Hz, 2H), 2.83 (t, $J = 7.5$ Hz, 2H), 3.61 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 4.01 (t, $J = 6.0$ Hz, 2H), 4.03 (t, $J = 7.5$ Hz, 2H), 4.59 (s, 2H), 6.71 (d, $J = 7.5$ Hz, 2H), 7.07 (d, $J = 7.5$ Hz, 2H), 8.17 (s, 1H), 9.92 (br t, $J = 6.0$ Hz, 1H).

化合物 No.	\mathbb{R}^r	Y	¹H-NMR (CDCl₃)
4-013			0.96 (t, $J = 7.5$ Hz, 3H), 1.41 (sextet, $J = 7.5$ Hz, 2H), 1.60-1.73 (m, 2H), 2.78 (d, $J = 4.2$ Hz, 2H), 2.84 (d, $J = 4.2$ Hz, 2H), 3.48 (s, 2H), 3.69 (s, 2H), 3.99 (t, $J = 7.5$ Hz, 2H), 4.63 (d, $J = 6.0$ Hz, 2H), 7.26-7.37 (m, 10H), 8.21 (s, 1H), 10.24 (br t, $J = 6.0$ Hz, 1H).
4-014			0.98 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.65 (quint, $J = 7.5$ Hz, 2H), 2.78 (d, $J = 4.5$ Hz, 2H), 2.85 (d, $J = 4.5$ Hz, 2H), 2.92 (t, $J = 7.5$ Hz, 2H), 3.48 (s, 2H), 3.66 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 3.69 (s, 2H), 4.01 (t, $J = 7.8$ Hz, 2H), 7.23-7.38 (m, 10H), 8.18 (s, 1H), 9.99 (br t, $J = 6.0$ Hz, 1H).

化合物 No.	$\mathbf{R^r}$	Y	¹H-NMR (CDCl₃)
4-015		/ ZF_	0.97 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.65 (quint, $J = 7.5$ Hz, 2H), 2.77 (t, $J = 6.0$ Hz, 2H), 3.19 (t, $J = 6.0$ Hz, 2H), 3.86 (s, 2H), 4.01 (t, $J = 7.8$ Hz, 2H), 4.64 (d, $J = 6.0$ Hz, 2H), 7.23-7.38 (m, 5H), 8.24 (s, 1H), 10.27 (br t, $J = 6.0$ Hz, 1H).
4-016	$\langle \rangle$	NH -	0.99 (t, $J = 7.5$ Hz, 3H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.66 (quint, $J = 7.5$ Hz, 2H), 2.78 (t, $J = 6.0$ Hz, 2H), 2.93 (t, $J = 7.5$ Hz, 2H), 3.19 (t, $J = 6.0$ Hz, 2H), 3.67 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 3.86 (s, 2H), 4.02 (t, $J = 7.8$ Hz, 2H), 7.18-7.34 (m, 5H), 8.21 (s, 1H), 10.01 (br t, $J = 6.0$ Hz, 1H).
4-017		N O	0.98 (t, $J = 7.5$ Hz, 3H), 1.44 (sextet, $J = 7.5$ Hz, 2H), 1.66 (quint, $J = 7.5$ Hz, 2H), 2.93 (br t, $J = 6.0$ Hz, 2H), 3.80 (br t, $J = 6.0$ Hz, 2H), 4.02 (t, $J = 7.8$ Hz, 2H), 4.49 (s, 2H), 4.62 (d, $J = 6.0$ Hz, 2H), 7.23-7.35 (m, 5H), 7.43-7.51 (m, 5H), 8.10 (s, 1H), 10.16 (br t, $J = 6.0$ Hz, 1H).
4-018		_N	0.98 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.55-1.90 (m, 10H), 2.84 (quint, $J = 6.0$ Hz, 1H), 2.91 (t, $J = 7.5$ Hz, 2H), 3.82 (t, $J = 6.0$ Hz, 1/3×2H), 3.91 (t, $J = 6.0$ Hz, 2/3×2H), 4.01 (t, $J = 7.8$ Hz, 2H), 4.52 (s, 2/3×2H), 4.59 (s, 1/3×2H), 4.65 (d, $J = 6.0$ Hz, 2H), 7.24-7.39 (m, 5H), 8.31 (s, 2/3×1H), 8.33 (s, 1/3×1H), 10.20 (br t, $J = 6.0$ Hz, 1H).

化合物 No.	$\mathbf{R^r}$	Y	¹ H-NMR (CDCl ₃)
4-019		O N nPr	0.98 (t, $J = 7.5$ Hz, 3H), 0.99 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.66 (quint, $J = 7.5$ Hz, 2H), 1.67 (quint, $J = 7.5$ Hz, 2H), 2.37 (t, $J = 7.5$ Hz, 2H), 2.84 (t, $J = 6.0$ Hz, 2/3×2H), 2.89 (t, $J = 6.0$ Hz, 1/3×2H), 3.77 (t, $J = 6.0$ Hz, 1/3×2H), 3.90 (t, $J = 6.0$ Hz, 2/3×2H), 4.01 (t, $J = 7.8$ Hz, 2H), 4.47 (s, 2/3×2H), 4.58 (s, 1/3×2H), 4.65 (d, $J = 6.0$ Hz, 2H), 7.24-7.39 (m, 5H), 8.30 (s, 2/3×1H), 8.33 (s, 1/3×1H), 10.19 (br t, $J = 6.0$ Hz, 1H).
4-020		O N− tBu	0.98 (t, $J = 7.5$ Hz, 3H), 1.29 (s, 9H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.65 (quint, $J = 7.5$ Hz, 2H), 2.85 (t, $J = 6.0$ Hz, 2H), 3.90 (t, $J = 6.0$ Hz, 2H), 4.00 (t, $J = 7.8$ Hz, 2H), 4.62 (s, 2H), 4.64 (d, $J = 6.0$ Hz, 2H), 7.24-7.38 (m, 5H), 8.31 (s, 1H), 10.20 (br t, $J = 6.0$ Hz, 1H).

表 2 4

化合物 No.	R ^r	Y	¹ H-NMR (CDCl ₃)
4-021		0 Z Z	0.88 (t, $J = 7.5$ Hz, $1/3 \times 3$ H), 0.99 (t, $J = 7.5$ Hz, $2/3 \times 3$ H), 1.44 (sextet, $J = 7.5$ Hz, 2H), 1.66 (quint, $J = 7.5$ Hz, 2H), 2.86 (t, $J = 6.0$ Hz, $1/3 \times 2$ H), 2.99 (t, $J = 6.0$ Hz, $2/3 \times 2$ H), 3.69 (t, $J = 6.0$ Hz, $1/3 \times 2$ H), 4.02 (t, $J = 6.0$ Hz, $2/3 \times 2$ H), 4.05 (t, $J = 6.0$ Hz, 24), 4.06 (t, $J = 7.8$ Hz, 2H), 4.63 (d, $J = 6.0$ Hz, 2H), 7.24-7.38 (m, 7H), 8.11 (s, $2/3 \times 1$ H), 8.39 (s, $1/3 \times 1$ H), 8.76 (d, $J = 5.4$ Hz, 2H), 10.12 (br t, $J = 6.0$ Hz, 1H).
4-022		_N	1.00 (t, $J = 7.5$ Hz, 3H), 1.46 (sextet, $J = 7.5$ Hz, 2H), 1.67 (quint, $J = 7.5$ Hz, 2H), 2.91 (t, $J = 7.5$ Hz, 2H), 2.92 (t, $J = 6.0$ Hz, 2H), 3.66 (dt, $J = 6.3$ Hz, 6.9 Hz, 2H), 4.03 (t, $J = 6.0$ Hz, 2H), 4.04 (t, $J = 7.5$ Hz, 2H), 4.48 (br s, 2/3 × 2H), 4.68 (br s, 1/3 × 2H), 7.20-7.32 (m, 5H), 7.44-7.51 (m, 5H), 8.08 (br s, 2/3 × 1H), 8.37 (br s, 1/3 × 1H), 9.89 (br t, $J = 6.0$ Hz, 1H).
4-023		-z, - — — — — — — — — — — — — — — — — — — —	0.99 (t, $J = 7.5$ Hz, 3H), 1.44 (sextet, $J = 7.5$ Hz, 2H), 1.60-1.88 (m, 10H), 2.83 (t, $J = 6.0$ Hz, 2H), 2.89 (quint, $J = 6.0$ Hz, 1H), 2.93 (t, $J = 7.5$ Hz, 2H), 3.68 (dt, $J = 6.6$ Hz, 7.2 Hz, 2H), 3.82 (t, $J = 6.0$ Hz, 1/3 \times 2H), 3.91 (t, $J = 6.0$ Hz, 2/3 \times 2H), 4.02 (t, $J = 7.8$ Hz, 2H), 4.52 (s, 2/3 \times 2H), 4.58 (s, 1/3 \times 2H), 7.18-7.34 (m, 5H), 8.27 (s, 2/3 \times 1H), 8.30 (s, 1/3 \times 1H), 9.93 (br t, $J = 6.0$ Hz, 1H).

化合物 No.	Rr	Y	¹ H-NMR (CDCl ₃)
4-024		O N nPr	0.98 (t, J = 7.5 Hz, 3H), 0.99 (t, J = 7.5 Hz, 3H), 1.45 (sextet, J = 7.5 Hz, 2H), 1.66 (quint, J = 7.5 Hz, 2H), 1.67 (quint, J = 7.5 Hz, 2H), 2.37 (t, J = 7.5 Hz, 2H), 2.84 (t, J = 6.0 Hz, 2H), 2.93 (t, J = 7.5 Hz, 2H), 3.68 (q, J = 6.9 Hz, 2H), 3.77 (t, J = 6.0 Hz, 1/3×2H), 3.90 (t, J = 6.0 Hz, 2/3×2H), 4.03 (t, J = 7.8 Hz, 2H), 4.47 (s, 2/3×2H), 4.58 (s, 1/3×2H), 7.20-7.33 (m, 5H), 8.27 (s, 2/3×1H), 8.30 (s, 1/3×1H), 9.81 (br t, J = 6.0 Hz, 1/3×1H), 9.93 (br t, J = 6.0 Hz, 2/3×1H).
4-025		N tBu	1.00 (t, $J = 7.5$ Hz, 3H), 1.30 (s, 9H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.66 (quint, $J = 7.5$ Hz, 2H), 2.85 (t, $J = 6.0$ Hz, 2H), 2.93 (t, $J = 7.5$ Hz, 2H), 3.68 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 3.90 (t, $J = 6.0$ Hz, 2H), 4.01 (t, $J = 7.8$ Hz, 2H), 4.62 (s, 2H), 7.18-7.33 (m, 5H), 8.28 (s, 1H), 9.94 (br t, $J = 6.0$ Hz, 1H).
4-026			0.88 (t, $J = 7.5$ Hz, $1/3 \times 3H$), 1.00 (t, $J = 7.5$ Hz, $2/3 \times 3H$), 1.46 (sextet, $J = 7.5$ Hz, 2H), 1.65 (quint, $J = 7.5$ Hz, 2H), 2.82-3.01 (m, 4H), 3.66 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 4.04 (t, $J = 6.0$ Hz, 2H), 4.07 (t, $J = 7.8$ Hz, 2H), 4.39 (br s, 2/3 × 2H), 4.73 (br s, 1/3 × 2H), 7.20-7.37 (m, 7H), 8.07 (s, 2/3 × 1H), 8.35 (s, 1/3 × 1H), 8.76 (d, $J = 4.8$ Hz, 2H), 9.85 (br t, $J = 6.0$ Hz, 1H).

表 2 6

<u>nBu</u>						
化合物 No.	$\mathbb{R}^{\mathbf{r}}$	n	¹H-NMR (CDCl₃)			
4-051		1	(t, $J = 7.8$ Hz, 2H), 4.64 (d, $J = 6.0$ Hz, 2H), 7.23-7.39 (m, 5H), 8.46 (s, 1H), 10.31 (br t, $J = 6.0$ Hz, 1H).			
4-052		1	(t, $J = 7.5$ Hz, 2 H), 3.67 (dt, $J = 9.0$ Hz, 6.0 Hz, 2 H), 3.99 (t, $J = 7.8$ Hz, 2 H), $7.18-7.34$ (m, 5 H), 8.43 (s, 1 H), 10.05 (br t, $J = 6.0$ Hz, 1 H).			
4-053		3	0.98 (t, $J = 7.5$ Hz, 3H), 1.44 (sextet, $J = 7.5$ Hz, 2H), 1.57-1.65 (m, 4H), 1.68 (quint, $J = 6.0$ Hz, 2H), 1.86 (quint, $J = 6.0$ Hz, 2H), 1.80 (quint, $J = 6.0$ Hz, 2H), 2.04			
4-054		3	0.99 (t, $J = 7.5$ Hz, 3H), 1.46 (sextet, $J = 7.5$ Hz, 2H), 1.60-1.67 (m, 4H), 1.69 (quint, $J = 6.0$ Hz, 2H), 1.86 (quint, $J = 6.0$ Hz, 2H), 2.71 (t, $J = 6.0$ Hz, 2H), 2.71 (t, $J = 6.0$ Hz, 2H), 2.71 (t, $J = 7.5$ Hz, 2H), 2.72 (t, $J = 6.0$ Hz, 2H), 3.66 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 4.17 (br t, $J = 7.8$ Hz, 2H), 7.19-7.34 (m, 5H), 8.29 (s, 1H), 10.05 (br t, $J = 6.0$ Hz, 1H).			
4-055	F	3	0.98 (t, $J = 7.5$ Hz, 3H), 1.44 (sextet, $J = 7.5$ Hz, 2H), 1.58-1.65 (m, 4H), 1.69 (quint, $J = 6.0$ Hz, 2H), 1.86 (quint, $J = 6.0$ Hz, 2H), 2.71 (t, $J = 6.0$ Hz, 2H), 2.94 (t, $J = 6.0$ Hz, 2H), 4.15 (br t, $J = 7.8$ Hz, 2H), 4.59 (d, $J = 6.0$ Hz, 2H), 6.99 (t, $J = 9.0$ Hz, 2H), 7.32 (dd, $J = 9.0$ Hz, 6.0 Hz, 2H), 8.32 (s, 1H), 10.32 (br t, $J = 6.0$ Hz, 1H).			
4-056	F	3	0.99 (t, $J = 7.5$ Hz, 3H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.57-1.66 (m, 4H), 1.69 (quint, $J = 6.0$ Hz, 2H), 1.86 (quint, $J = 6.0$ Hz, 2H), 2.71 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 7.5$ Hz, 2H), 2.94 (t, $J = 6.0$ Hz, 2H), 3.63 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 4.16 (br t, $J = 7.8$ Hz, 2H), 6.97 (t, $J = 9.0$ Hz, 2H), 7.20 (dd, $J = 9.0$ Hz, 6.0 Hz, 2H), 8.29 (s, 1H), 10.04 (br t, $J = 6.0$ Hz, 1H).			

表 2 7

	nBunBu				
化合物 No.	Rr	n	¹ H-NMR (CDCl ₃)		
4-057	но	3	0.99 (t, $J = 7.5$ Hz, 3H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.57-1.68 (m, 4H), 1.69 (quint, $J = 6.0$ Hz, 2H), 1.86 (quint, $J = 6.0$ Hz, 2H), 2.70 (t, $J = 6.0$ Hz, 2H), 2.84 (t, $J = 7.5$ Hz, 2H), 2.94 (t, $J = 6.0$ Hz, 2H), 3.63 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 4.16 (br t, $J = 7.8$ Hz, 2H), 6.22 (br s, 1H), 6.76 (d, $J = 8.4$ Hz, 2H), 7.06 (d, $J = 8.4$ Hz, 2H), 8.29 (s, 1H), 10.10 (br t, $J = 6.0$ Hz, 1H).		

nBu nBu					
化合物 No.	Rr	n	¹ H-NMR (CDCl ₃)		
4-058	H ₂ N	3	0.99 (t, J = 7.5 Hz, 3H), 1.45 (sextet, J = 7.5 Hz, 2H), 1.57-1.68 (m, 4H), 1.69 (quint, J = 6.0 Hz, 2H), 1.86 (quint, J = 6.0 Hz, 2H), 2.70 (t, J = 6.0 Hz, 2H), 2.81 (t, J = 7.5 Hz, 2H), 2.93 (t, J = 6.0 Hz, 2H), 3.60 (dt, J = 9.0 Hz, 6.0 Hz, 2H), 4.16 (br t, J = 7.8 Hz, 2H), 6.40 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 8.29 (s, 1H), 10.00 (br t, J = 6.0 Hz, 1H).		
4-059	но	3	0.98 (t, J = 7.5 Hz, 3H), 1.44 (sextet, J = 7.5 Hz, 2H), 1.56-1.68 (m, 4H), 1.69 (quint, J = 6.0 Hz, 2H), 1.87 (quint, J = 6.0 Hz, 2H), 2.71 (t, J = 6.0 Hz, 2H), 2.94 (t, J = 6.0 Hz, 2H), 4.16 (br t, J = 7.8 Hz, 2H), 4.48 (d, J = 6.0 Hz, 2H), 6.05 (br s, 1H), 6.53 (br s, 1H), 6.74 (s, 2H), 6.87 (s, 1H), 8.30 (s, 1H), 10.35 (br t, J = 6.0 Hz, 1H).		
4-060	HO ₂ C	3	0.99 (t, J = 7.5 Hz, 3H), 1.45 (sextet, J = 7.5 Hz, 2H), 1.56-1.69 (m, 4H), 1.70 (quint, J = 6.0 Hz, 2H), 1.87 (quint, J = 6.0 Hz, 2H), 2.72 (t, J = 6.0 Hz, 2H), 2.95 (t, J = 6.0 Hz, 2H), 4.18 (br t, J = 7.8 Hz, 2H), 4.70 (d, J = 6.0 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 8.00 (d, J = 8.1 Hz, 2H), 8.33 (s, 1H), 10.44 (br t, J = 6.0 Hz, 1H).		
4-061		6	0.97 (t, $J = 7.5$ Hz, 3H), 1.26-1.34 (m, 4H), 1.42 (sextet, $J = 7.5$ Hz, 2H), 1.46-1.60 (m, 4H), 1.65 (quint, $J = 7.5$ Hz, 2H), 1.80 (quint, $J = 6.0$ Hz, 2H), 1.87 (quint, $J = 6.0$ Hz, 2H), 2.73 (t, $J = 6.0$ Hz, 2H), 2.93 (br t, $J = 6.0$ Hz, 2H), 4.12 (br t, $J = 7.8$ Hz, 2H), 4.64 (d, $J = 6.0$ Hz, 2H), 7.23-7.41 (m, 5H), 8.38 (s, 1H), 10.36 (br t, $J = 6.0$ Hz, 1H		
4-062		6	0.98 (t, $J = 7.5$ Hz, 3H), 1.24-1.33 (m, 4H), 1.46 (sextet, $J = 7.5$ Hz, 2H), 1.47-1.58 (m, 4H), 1.66 (quint, $J = 7.5$ Hz, 2H), 1.80 (quint, $J = 6.0$ Hz, 2H), 1.86 (quint, $J = 6.0$ Hz, 2H), 2.73 (t, $J = 6.0$ Hz, 2H), 2.94 (t, $J = 7.5$ Hz, 2H), 2.95 (t, $J = 6.0$ Hz, 2H), 3.67 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 4.14 (br t, $J = 7.8$ Hz, 2H), 7.21-7.34 (m, 5H), 8.35 (s, 1H), 10.10 (br t, $J = 6.0$ Hz, 1H).		

	<u> </u>				
化合物 No.	Rr	¹H-NMR (CDCl₃)			
4-101		0.97 (t, $J = 7.5$ Hz, 3H), 1.35-1.53 (m, 4H), 1.44 (sextet, $J = 7.5$ Hz, 2H), 1.60-1.78 (m, 6H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 4.09 (br t, $J = 7.8$ Hz, 2H), 4.64 (d, $J = 6.0$ Hz, 2H), 7.17-7.39 (m, 5H), 8.34 (s, 1H), 10.34 (br t, $J = 6.0$ Hz, 1H).			
4-102		0.99 (t, J = 7.5 Hz, 3H), 1.34-1.53 (m, 4H), 1.46 (sextet, J = 7.5 Hz, 2H), 1.62-1.80 (m, 6H), 2.64 (t, J = 6.0 Hz, 2H), 2.89 (t, J = 6.0 Hz, 2H), 2.94 (t, J = 7.5 Hz, 2H), 3.67 (dt, J = 9.0 Hz, 6.0 Hz, 2H), 4.10 (br t, J = 7.8 Hz, 2H), 7.18-7.34 (m, 5H), 8.31 (s, 1H), 10.07 (br t, J = 6.0 Hz, 1H).			
4-103	F	0.99 (t, $J = 7.5$ Hz, 3H), 1.36-1.58 (m, 4H), 1.46 (sextet, $J = 7.5$ Hz, 2H), 1.59-1.74 (m, 4H), 1.76 (quint, $J = 6.0$ Hz, 2H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 7.5$ Hz, 2H), 3.64 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 4.09 (br t, $J = 7.8$ Hz, 2H), 6.98 (t, $J = 8.4$ Hz, 2H), 7.21 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 8.30 (s, 1H), 10.06 (br t, $J = 6.0$ Hz, 1H).			
4-104	H ₂ N	0.99 (t, $J = 7.5$ Hz, 3H), 1.37-1.52 (m, 4H), 1.46 (sextet, $J = 7.5$ Hz, 2H), 1.61-1.73 (m, 4H), 1.76 (quint, $J = 6.0$ Hz, 2H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.82 (t, $J = 7.5$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 3.61 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 4.09 (br t, $J = 7.8$ Hz, 2H), 6.64 (d, $J = 8.4$ Hz, 2H), 7.05 (d, $J = 8.4$ Hz, 2H), 8.30 (s, 1H), 10.02 (br t, $J = 6.0$ Hz, 1H).			
4-105	но	0.99 (t, J = 7.5 Hz, 3H), 1.36-1.52 (m, 4H), 1.45 (sextet, J = 7.5 Hz, 2H), 1.60-1.72 (m, 4H), 1.76 (quint, J = 6.0 Hz, 2H), 2.63 (t, J = 6.0 Hz, 2H), 2.85 (t, J = 7.5 Hz, 2H), 2.88 (t, J = 6.0 Hz, 2H), 3.63 (dt, J = 9.0 Hz, 6.0 Hz, 2H), 4.10 (br t, J = 7.8 Hz, 2H), 6.76 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 8.31 (s, 1H), 10.10 (br t, J = 6.0 Hz, 1H).			

0 0 1			H*
化合物 No	\mathbb{R}^{r}	R⁵	¹ H-NMR (CDCl ₃)
4-301		ОМе	1.36 (quint, $J = 6.0 \text{ Hz}$, 2H), 1.49 (quint, $J = 6.0 \text{ Hz}$, 2H), 1.61-1.68 (m, 2H), 1.69 (quint, $J = 6.0 \text{ Hz}$, 2H), 2.66 (t, $J = 6.0 \text{ Hz}$, 2H), 3.03 (t, $J = 6.0 \text{ Hz}$, 2H), 3.30 (s, 3H), 3.67 (t, $J = 5.4 \text{ Hz}$, 2H), 4.32 (t, $J = 5.4 \text{ Hz}$, 2H), 4.64 (d, $J = 6.0 \text{ Hz}$, 2H), 7.26-7.40 (m, 5H), 8.36 (s, 1H), 10.25 (br t, $J = 6.0 \text{ Hz}$, 1H).
4-302		OMe	1.38 (quint, $J = 4.8$ Hz, 2H), 1.49 (quint, $J = 4.8$ Hz, 2H), 1.60-1.67 (m, 2H), 1.70 (quint, $J = 6.0$ Hz, 2H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.94 (t, $J = 7.5$ Hz, 2H), 3.03 (t, $J = 6.0$ Hz, 2H), 3.31 (s, 3H), 3.67 (dt, $J = 9.0$ Hz, 6.0 Hz, 2H), 3.68 (t, $J = 5.4$ Hz, 2H), 4.33 (t, $J = 5.4$ Hz, 2H), 7.24-7.34 (m, 5H), 8.33 (s, 1H), 9.98 (br t, $J = 6.0$ Hz, 1H).
4-303		<u></u>	0.99 (d, J = 6.7 Hz, 6H), 1.32-1.82 (m, 11H), 2.64 (t, J=6.3 Hz, 2H), 2.87 (t, J=6.3 Hz, 2H), 3.98-4.20 (br s, 2H), 4.64 (d, J=5.8 Hz, 2H), 7.23-7.40 (m, 5H), 8.34 (s, 1H), 10.3 (t-like).
4-304		N	(CD ₃ OD): 1.24-1.57 (m, 2H), 1.64-1.85 (m, 2H), 2.70 (t-like, 2H), 2.94 (t-like, 2H), 3.06 (t, J = 7.5 Hz, 2H), 4.41 (t, J = 7.5 Hz, 2H), 4.61 (s, 2H), 7.22-7.40 (m, 7H), 8.44 (A ₂ B ₂ , J = 5.2 Hz), 8.26 (d, J = 0.9 Hz, 1H).
4-305			1.32-1.82 (m, 14H), 2.38-2.53 (m, 4H), 2.57 (t, J=7.5 Hz, 2H), 2.64 (t, J=6.0 Hz, 2H), 2.94 (t, J=6.4 Hz, 2H), 4.26 (t-like, 1H), 4.64 (d, J=5.8 Hz, 2H), 7.22-7.39 (m, 5H), 8.34 (s, 1H), 10.29 (d, J=5.8 Hz, 2H).
4-306		N N	1.32-1.50 (m, 4H), 1.52-1.72 (m, 4H), 2.17 (quint, $J = 6.7 \text{ Hz}$, 2H), 2.52-2.70 (m, 4H), 3.98-4.10 (m, 2H), 4.10 (t, $J = 6.7 \text{ Hz}$, 2H), 4.65 (d, $J = 5.8 \text{ Hz}$, 2H), 6.98 (s, 1H), 7.10 (s, 1H), 7.22-7.40 (m, 5H), 7.54 (s, 1H), 8.35 (s, 1H), 10.19 (t, $J = 5.8 \text{ Hz}$, 1H).

表 3 1

			<u> </u>
化合物 No.	Rr	\mathbb{R}^5	¹ H-NMR (CDCl ₃)
4-307		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.34-1.54 (m ,4H), 1.60-1.81 (m, 4H), 1.82-1.94 (m, 2H), 2.28-2.50 (m, 6H), 2.64 (t, J = 6.4 Hz, 2H), 2.93 (t, J = 6.4 Hz, 2H), 3.70 (t, J = 4.5 Hz, 2H), 4.17 (t, J = 7.5 Hz, 2H), 4.64 (d, J = 5.8 Hz, 2H), 7.20-7.39 (m, 5H), 8.34 (s, 1H), 10.29 (t-like, 1H).
4-308			1.30-1.42 (m, 2H), 1.42-1.52 (m, 2H), 1.60-1.80 (m, 4H), 2.64 (t, $J = 5.9 \text{ Hz}$, 2H), 2.79 (t, $J = 6.1 \text{ Hz}$, 2H), 3.01 (t, $J = 7.7 \text{ Hz}$, 2H), 4.87 (t, $J = 5.8 \text{ Hz}$, 2H), 7.14-7.28 (m, 2H), 7.30-7.42 (m, 4H), 7.57 (ddd, $J = 6.0$, 1.9, 1.9 Hz, 2H), 8.38 (s, 1H), 8.51 (d-like, 2H), 10.3 (t, $J = 5.8 \text{ Hz}$, 1H).
4-309			1.37-1.53 (m, 4H), 1.60-1.80 (m, 4H), 2.66 (t, J = 6.1 Hz, 2H), 2.81 (t, J = 6.4 Hz, 2H), 4.64 (t, J = 5.8 Hz, 2H), 5.44 (br s, 2H), 7.20-7.42 (m, 7H), 8.45 (s, 1H), 8.45-8.58 (m, 2H), 10.1 (t, J = 5.8 Hz, 1H).
4-310		N N	1.35-1.55 (m, 4H), 1.60-1.80 (m, 4H), 2.68 (t, $J = 5.9$ Hz, 2H), 2.74 (t, $J = 6.1$ Hz, 2H), 4.62 (t, $J = 5.8$ Hz, 2H), 5.42 (br s, 2H), 6.97 (A ₂ B ₂ , $J = 6.1$ Hz, 2H), 7.19-7.37 (m, 5H), 8.47 (s, 1H), 8.54-8.58 (m, 2H), 10.1 (t-like, 1H).

表32

化合物 No.	構造	¹H-NMR (CDCl ₃)
4-311	Me O N H O N nBu	0.99 (t, J = 7.4 Hz, 3H), 1.36-1.75 (m, 12H), 2.62 (t, J = 5.9 Hz, 2H), 2.88 (t, J = 6.3 Hz, 2H), 4.08 (brs, 2H), 5.31 (m, 1H), 7.14-7.42 (m, 5H), 8.29 (s, 1H), 10.35 (d, J = 7.5 Hz, 1H).
4-312	Me O N N N N N N N N N N N N N N N N N N	0.99 (t, J = 7.4 Hz, 3H), 1.36-1.75 (m, 12H), 2.62 (t, J = 5.9 Hz, 2H), 2.88 (t, J = 6.3 Hz, 2H), 4.08 (brs, 2H), 5.31 (m, 1H), 7.14-7.42 (m, 5H), 8.29 (s, 1H), 10.35 (d, J = 7.5 Hz, 1H).
4-313	Me Me O N H O N nBu	0.98 (t, $J = 7.1$ Hz, 3H), 1.40-1.76 (m, 12H), 1.42 (s, 6H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.5$ Hz, 2H), 3.19 (s, 2H), 4.07 (brs, 2H), 7.16-7.26 (m, 5H), 8.33 (s, 1H), 9.87 (s, 1H).
4-314	HO N N nBu	0.98 (t, J = 7.4 Hz, 3H), 1.39-1.76 (m, 12H), 2.64 (t, J = 5.9 Hz, 2H), 2.89 (t, J = 6.3 Hz, 2H), 3.93 (dd, J = 11.4, 4.5 Hz, 1H), 3.97 (dd, J = 11.4, 6.9 Hz, 1H), 4.10 (brs, 2H), 5.31 (m, 1H), 7.27-7.46 (m, 5H), 8.31 (s, 1H), 10.75 (d, J = 6.3 Hz, 1H).
4-315	HO N N N N N N N N N N N N N N N N N N N	0.98 (t, $J = 7.4$ Hz, 3H), 1.39-1.76 (m, 12H), 2.64 (t, $J = 5.9$ Hz, 2H), 2.89 (t, $J = 6.3$ Hz, 2H), 3.93 (dd, $J = 11.4$, 4.5 Hz, 1H), 3.97 (dd, $J = 11.4$, 6.9 Hz, 1H), 4.10 (brs, 2H), 5.31 (m, 1H), 7.27-7.46 (m, 5H), 8.31 (s, 1H), 10.75 (d, $J = 6.3$ Hz, 1H).
4-316	O N H O N H O N H N H N H N H N H N H N	0.99 (t, $J = 7.2 \text{ Hz}$, 3H), 1.32-1.76 (m, 12H), 2.63 (t, $J = 5.9 \text{ Hz}$, 2H), 2.89 (t, $J = 6.0 \text{ Hz}$, 2H), 3.91 (d, $J = 5.7 \text{ Hz}$, 2H), 4.12 (brs, 2H), 5.54 (m, 1H), 7.28-7.45 (m, 5H), 8.29 (s, 1H), 10.77 (d, $J = 7.5 \text{ Hz}$, 1H).
4-317	CI NHON NHBU	0.99 (t, $J = 7.2$ Hz, 3H), 1.32-1.76 (m, 12H), 2.63 (t, $J = 5.9$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.91 (d, $J = 5.7$ Hz, 2H), 4.12 (brs, 2H), 5.54 (m, 1H), 7.28-7.45 (m, 5H), 8.29 (s, 1H), 10.77 (d, $J = 7.5$ Hz, 1H).
4-318	NH ON NHBU	0.97 (t, $J = 7.4$ Hz, 3H), 1.38-1.75 (m, 12H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.2$ Hz, 2H), 2.99 (dd, $J = 16.0$, 6.6 Hz, 2H), 3.41 (dd, $J = 16.0$, 7.5 Hz, 2H), 4.07 (brs, 2H), 4.88 (m, 1H), 7.15-7.24 (m, 4H), 8.32 (s, 1H), 10.17 (d, $J = 6.0$ Hz, 1H).

表 3 3

化合物 No.	構造	¹H-NMR (CDCl₃)
4-319	N H O N H D N H BU	0.99 (t, $J = 7.2$ Hz, 3H), 1.25-1.77 (m, 12H), 2.18 (m, 1H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.4$ Hz, 2H), 3.14 (m, 1H), 4.10 (brs, 2H), 7.16-7.30 (m, 5H), 8.33 (s, 1H), 10.12 (d, $J = 3.6$ Hz, 1H).
4-320	Me Me O N H O N nBu	1.00 (t, $J = 7.2$ Hz, 3H), 1.30-1.55 (m, 6H), 1.59 (s, 6H), 1.56-1.89 (m, 6H), 2.58 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.3$ Hz, 2H), 4.00-4.23 (m, 2H), 7.10-7.40 (m, 5H), 7.46 (d, $J = 8.4$ Hz, 2H), 8.23 (s, 1H).
4-321	N ₃ O N N N N N N N N N N N N N N N N N N	1.35-2.04 (m, 8H), 2.03-2.15 (m, 2H), 2.64 (t, J = 6.0 Hz, 2H), 2.88-2.96 (m, 4H), 3.63-3.71 (m, 2H), 3.78 (t, J = 6.0 Hz, 2H), 4.05 (dd, J = 6.9, 2.1 Hz, 2H), 4.18-4.27 (m, 3H), 6.49 (dd, J = 14.1, 6.6 Hz, 1H), 7.15-7.35 (m, 5H), 8.32 (s, 1H), 10.01 (brs, 1H).
4-322	N ₃ O N N N N N N N N N N N N N N N N N N	1.35-2.04 (m, 8H), 2.03-2.15 (m, 2H), 2.64 (t, J = 6.0 Hz, 2H), 2.88-2.96 (m, 4H), 3.63-3.71 (m, 2H), 3.78 (t, J = 6.0 Hz, 2H), 4.05 (dd, J = 6.9, 2.1 Hz, 2H), 4.18-4.27 (m, 3H), 6.49 (dd, J = 14.1, 6.6 Hz, 1H), 7.15-7.35 (m, 5H), 8.32 (s, 1H), 10.01 (brs, 1H).
4-323	CI N	1.20-1.90 (m, 8H), 2.13-2.28 (m, 2H), 2.55-2.72 (m, 2H), 2.82-3.02 (m, 2H), 3.62-3.78 (m, 2H), 4.20-4.38 (m, 2H), 4.64 (d, J = 6.3 Hz, 2H), 7.18-7.43 (m, 5H), 8.36 (s, 1H).
4-324	O N N N N N N N N N N N N N N N N N N N	1.20-1.90 (m, 8H), 2.12-2.28 (m, 2H), 2.65 (t, J = 6.6 Hz, 2H), 2.92-3.02 (m, 4H), 3.60 3.78 (m, 4H), 4.29 (t, J = 9.0 Hz, 2H), 7.10-7.40 (m, 5H), 8.33 (s, 1H).
4-325		1.37-1.80 (m, 8H), 2.02 (m, 2H), 2.65 (t, J = 6.3 Hz, 2H), 2.92 (t, J = 6.6 Hz, 2H), 3.77 (t, J = 5.4 Hz, 2H), 4.04 (dd, J = 6.9, 2.1 Hz, 1H), 4.16-4.26 (m, 3H), 4.65 (d, J = 6.0 Hz, 2H), 6.48 (dd, J = 14.1, 6.6 hz, 1H), 7.21-7.42 (m, 5H), 8.35 (s, 1H), 10.29 (brs, 1H).
4-326		1.37 (m, 8H), 2.07 (m, 2H), 2.64 (t, $J = 6.0 \text{ Hz}$, 2H), 2.64 (t, $J = 6.0 \text{ Hz}$, 2H), 2.64 (t, $J = 6.0 \text{ Hz}$, 2H), 2.90-2.96 (m, 4H), 3.63-3.71 (m, 2H), 3.78 (t, $J = 6.0 \text{ Hz}$, 2H), 4.05 (dd, $J = 6.9 \text{ Hz}$, 2.1 Hz, 1H), 4.18-4.27 (m, 3H), 6.49 (dd, $J = 14.1$, 6.6 Hz, 1H), 7.18-7.33 (m, 5H), 8.32 (s, 1H), 10.01 (brs, 1H).

表 3 4

化合物	構造	¹H-NMR (CDCl₃)
No. 4-327	HO N	1.38-1.81 (m, 8H), 1.88-1.96 (m, 2H), 2.66 (t, J = 6.3 Hz, 2H), 2.93 (t, J = 6.3 Hz, 2H), 3.52 (t, J = 5.1 Hz, 2H), 3.72 (brs, 1H), 4.65 (d, J = 6.3 Hz, 2H), 7.22-7.38 (m, 5H), 8.40 (s, 1H), 10.18 (brs, 1H).
4-328	N HON HO	1.38-1.95 (m, 10H), 2.65 (t, J = 6.0 Hz, 2H), 2.90-2.94 (m, 4H), 3.45-3.52 (m, 2H), 3.65-3.72 (m, 2H), 3.91 (brs, 1H), 4.34 (brs, 2H), 7.20-7.35 (m, 5H), 8.37 (s, 1H), 9.88 (brs, 1H).
4-329	N H O N-BU	0.96 (t, J = 6.9 Hz, 3H), 1.30-1.55 (m, 6H), 1.55-1.82 (m, 6H), 1.97 (ddd, J = 16.5, 12.9, 8.4 Hz, 1H), 2.60-2.73 (m, 3H), 2.84-2.96 (m, 3H), 3.03 (ddd, J = 16.5, 9.3, 3.6 Hz, 1H), 3.93-4.20 (m, 2H), 5.67 (q-like, 1H), 7.10-7.35 (m, 3H), 7.38 (m, 1H), 8.37 (s, 1H).
4-330	N H _O N H ₂ N	1.25-1.28 (m, 14H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.80 (brs, 2H), 2.92 (t, $J = 6.0$ Hz, 2H), 4.22 (m, 2H), 4.65 (d, $J = 6.0$ Hz, 2H), 7.24-7.39 (m, 5H), 8.36 (s, 1H), 10.25 (brs, 1H).
4-331	H ₂ N _N N	1.37-1.90 (m, 12H), 2.64 (t, J=6.3 Hz, 2H), 2.80 (m, 2H), 2.90-2.96 (m, 4H), 3.68 (q, J=6.3 Hz, 2H), 4.23 (brs, 2H), 7.21-7.33 (m, 5H), 8.33 (s, 1H), 9.98 (brs, 1H).
4-332	HO N N N N N N N N N N N N N N N N N N N	1.00 (t, $J = 7.5$ Hz, 3H), 1.33-1.54 (m, 6H), 1.55-1.79 (m, 6H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.3$ Hz, 2H), 2.98 (d, $J = 7.5$ Hz, 2H), 3.66 (dd, $J = 10.1$, 6.3 Hz, 1H), 3.79 (dd, $J = 10.1$, 3.6 Hz, 1H), 4.33 (m, 1H), 7.18-7.40 (m, 5H), 8.27 (s, 1H).
4-333	HO O N N N N N N N N N N N N N N N N N N	1.00 (t, $J = 7.5 \text{ Hz}$, 3H), 1.33-1.54 (m, 6H), 1.55-1.79 (m, 6H), 2.63 (t, $J = 6.0 \text{ Hz}$, 2H), 2.89 (t, $J = 6.3 \text{ Hz}$, 2H), 2.98 (d, $J = 7.5 \text{ Hz}$, 2H), 3.66 (dd, $J = 10.1$, 6.3 Hz, 1H), 3.79 (dd, $J = 10.1$, 3.6 Hz, 1H), 4.33 (m, 1H), 7.18-7.40 (m, 5H), 8.27 (s, 1H).

表 3 5

化合物	· + + + + + + + + + + + + + + + + + + +	
No.	構造	¹ H-NMR (CDCl ₃)
4-501	O N H O N In-Bu	0.95 (t, $J = 7.5$ Hz, 3H), 1.37 (sextet, $J = 7.5$ Hz, 2H), 1.66-1.77 (m, 6H), 2.57 (br t, $J = 6.3$ Hz, 2H), 3.27 (br t, $J = 6.3$ Hz, 2H), 3.92 (t, $J = 7.5$ Hz, 2H), 4.60 (d, $J = 5.7$ Hz, 2H), 7.12 (s, 1H), 7.23-7.40 (m, 5H), 9.58 (br t, $J = 5.7$ Hz, 1H).
4-502	O N H O N n-Bu	0.95 (t, $J = 7.5$ Hz, 3H), 1.37 (sextet, $J = 7.5$ Hz, 2H), 1.66-1.77 (m, 6H), 2.56 (br t, $J = 6.3$ Hz, 2H), 3.27 (br t, $J = 6.3$ Hz, 2H), 3.92 (t, $J = 7.5$ Hz, 2H), 4.50 (s, 2H), 5.92 (s, 2H), 6.75 (d, $J = 8.4$ Hz, 1H), 6.83 (d, $J = 8.4$ Hz, 1H), 6.88 (s, 1H), 7.13 (s, 1H), 9.58 (br s, 1H).
4-503	MeO N H O N n-Bu	0.95 (t, $J = 7.5$ Hz, 3H), 1.37 (sextet, $J = 7.5$ Hz, 2H), 1.65-1.77 (m, 6H), 2.56 (br t, $J = 6.3$ Hz, 2H), 3.27 (br t, $J = 6.3$ Hz, 2H), 3.79 (s, 3H), 3.91 (t, $J = 7.5$ Hz, 2H), 4.53 (s, 2H), 6.86 (d, $J = 8.4$ Hz, 2H), 7.12 (s, 1H), 7.30 (d, $J = 8.4$ Hz, 2H), 9.54 (br s, 1H).
4-504	O N H O N I n-Bu	0.95 (t, $J = 7.2$ Hz, 3H), 1.37 (sextet, $J = 7.2$ Hz, 2H), 1.66-1.78 (m, 6H), 2.56 (br t, $J = 6.3$ Hz, 2H), 3.27 (br t, $J = 6.3$ Hz, 2H), 3.92 (t, $J = 7.2$ Hz, 2H), 4.58 (s, 2H), 6.27 (dd, $J = 3.0$ Hz, 0.9 Hz, 1H), 6.30 (dd, $J = 3.0$ Hz, 1.8 Hz, 1H), 7.13 (s, 1H), 7.35 (dd, $J = 1.8$ Hz, 0.9 Hz, 1H), 9.65 (br s, 1H).
4-505	MeO ₂ C	0.97 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.63-1.78 (m, 4H), 1.87 (quint, $J = 6.0$ Hz, 2H), 2.57 (t, $J = 6.0$ Hz, 2H), 2.73 (t, $J = 6.0$ Hz, 2H), 3.90 (s, 3H), 4.02 (t, $J = 7.8$ Hz, 2H), 7.92 (s, 1H).

表 3 6

化合物 No.	構造	¹ H-NMR (CDCl ₈)
4-506	O N-Me Me N-Bu	0.96 (t, J = 7.5 Hz, 3H), 1.42 (sextet, J = 7.5 Hz, 2H), 1.60-1.77 (m, 4H), 1.84 (quint, J = 6.0 Hz, 2H), 2.54 (t, J = 6.0 Hz, 2H), 2.54 (t, J = 6.0 Hz, 2H), 2.70 (t, J = 6.0 Hz, 2H), 2.88 (s, 3H), 4.02 (t, J = 7.8 Hz, 2H), 4.75 (s, 2H), 7.17-7.40 (m, 6H). (minor isomer): δ 0.95 (t, J = 7.5 Hz, 3H), 1.41 (sextet, J = 7.5 Hz, 2H), 1.60-1.77 (m, 4H), 1.83 (quint, J = 6.0 Hz, 2H), 2.50 (t, J = 6.0 Hz, 2H), 2.68 (t, J = 6.0 Hz, 2H), 2.97 (s, 3H), 4.01 (t, J = 7.8 Hz, 2H), 4.49 (s, 2H), 7.17-7.40 (m, 6H).
4-507	MeO ₂ C O N n-Bu	0.89 (t, J = 7.5 Hz, 3H), 1.30 (sextet, J = 7.5 Hz, 2H), 1.92 (quint, J = 6.9 Hz, 2H), 2.57, 2.77 (ABq, J = 9.0 Hz, 2H), 2.58, 2.76 (ABq, J = 7.5 Hz, 2H), 3.93 (s, 3H), 4.30 (t, J = 7.5 Hz, 2H), 7.31-7.41 (m, 3H), 7.56 (dd, J = 7.2 Hz, 2.4 Hz, 1H), 8.10 (s, 1H).
4-508	HO ₂ C O N n-Bu	0.91 (t, J = 7.5 Hz, 3H), 1.30 (sextet, J = 7.5 Hz, 2H), 1.91 (quint, J = 6.6 Hz, 2H), 2.65, 2.80 (ABq, J = 9.0 Hz, 2H), 2.66, 2.79 (ABq, J = 7.5 Hz, 2H), 4.42 (t, J = 7.5 Hz, 2H), 7.38-7.46 (m, 3H), 7.57 (d, J = 7.5 Hz, 1H), 8.39 (s, 1H), 14.77 (br s, 1H).
4-509	O N N N N N N N N N N N N N N N N N N N	0.88 (t, J = 7.5 Hz, 3H), 1.27 (sextet, J = 7.5 Hz, 2H), 1.87 (quint, J = 6.0 Hz, 2H), 2.62, 2.78 (ABq, J = 9.0 Hz, 2H), 2.64, 2.76 (ABq, J = 7.5 Hz, 2H), 4.35 (t, J = 7.5 Hz, 2H), 4.68 (d, J = 6.0 Hz, 2H), 7.21-7.41 (m, 8H), 7.53 (dd, J = 6.9 Hz, 2.4 Hz, 1H), 8.46 (s, 1H), 10.33 (br t, J = 6.0 Hz, 1H).
4-510	N H O N H O N H O H O H O H O H O H O H	0.90 (t, J = 7.5 Hz, 3H), 1.29 (sextet, J = 7.5 Hz, 2H), 1.87 (quint, J = 6.6 Hz, 2H), 2.62, 2.78 (ABq, J = 9.0 Hz, 2H), 2.63, 2.76 (ABq, J = 7.5 Hz, 2H), 2.96 (t, J = 7.5 Hz, 2H), 3.66-3.74 (m, 2H), 4.36 (t, J = 7.5 Hz, 2H), 7.19-7.37 (m, 8H), 7.53 (dd, J = 6.9 Hz, 2.4 Hz, 1H), 8.42 (s, 1H), 10.06 (br t, J = 6.0 Hz, 1H).

表 3 7

nou		
化合物 No.	Rr	¹H-NMR (CDCl₃)
5-001	Me	0.98 (t, $J = 7.5$ Hz, 3H), 1.37-1.50 (m, 2H), 1.60-1.70 (m, 2H), 2.12 (s, 3H), 2.17 (s, 3H), 2.30 (s, 3H), 4.10 (t, $J = 7.8$ Hz, 2H), 8.20 (s, 1H), 8.35 (br s, 1H), 1.64-1.74
5-002		1.00 (t, $J = 7.2$ Hz, 3H), 1.40-1.52 (m, 2H), 1.64-1.74 (m, 2H), 2.17 (s, 3H), 2.34 (s, 3H), 4.14 (t, $J = 7.8$ Hz, 2H), 7.44-7.57 (m, 3H), 7.92-7.95 (m, 2H), 8.41 (s, 1H), 9.22 (br s, 1H).
5-003	F	0.99 (t, $J = 7.2$ Hz, 3H), 1.39-1.52 (m, 2H), 1.64-1.74 (m, 2H), 2.16 (s, 3H), 2.34 (s, 3H), 4.13 (t, $J = 7.8$ Hz, 2H), 7.15-7.24 (m, 1H), 7.30 (dd, 1.8, 8.4 Hz, 1H), 7.47-7.54 (m, 1H), 8.12 (dt, 1.8, 7.8 Hz, 1H), 8.42 (s, 1H), 9.75 (br s, 1H).
5-004	F	1.00 (t, $J = 7.2$ Hz, 3H), 1.40-1.52 (m, 2H), 1.63-1.74 (m, 2H), 2.17 (s, 3H), 2.34 (s, 3H), 4.13 (t, $J = 7.8$ Hz, 2H), 7.12-7.18 (m, 2H), 7.93-7.97 (m, 2H), 8.37 (s, 1H), 9.16 (br s, 1H).
5-005	CI	0.98 (t, J = 7.2 Hz, 3H), 1.38-1.50 (m, 2H), 1.64-1.72 (m, 2H), 2.17 (s, 3H), 2.34 (s, 3H), 4.11 (t, J = 7.8 Hz, 2H), 7.31-7.47 (m, 3H), 7.73 (dd, J = 2.1,7.2 Hz, 1H), 8.41 (s, 1H), 9.13 (br s, 1H).
5-006	Me	0.98 (t, $J = 7.2$ Hz, 3H), 1.38-1.50 (m, 2H), 1.61-1.72 (m, 2H), 2.17 (s, 3H), 2.34 (s, 3H), 2.53 (s, 3H), 4.11 (t, $J = 7.8$ Hz, 2H), 7.20-7.26 (m, 2H), 7.32-7.37 (m, 1H), 7.54 (d, $J = 7.8$ Hz, 1H), 8.39 (s, 1H), 8.74 (br s, 1H)
5-007	Me	1.00 (t, $J = 7.2$ Hz, 3H), 1.40-1.52 (m, 2H), 1.64-1.74 (m, 2H), 2.17 (s, 3H), 2.34 (s, 3H), 2.42 (s, 3H), 4.13 (t, $J = 7.8$ Hz, 2H), 7.35 (m, 2H), 7.74 (m, 2H), 8.41 (s, 1H), 9.21 (br s, 1H).
5-008	Me	0.99 (t, $J = 7.2$ Hz, 3H), 1.40-1.52 (m, 2H), 1.64-1.74 (m, 2H), 2.16 (s, 3H), 2.34 (s, 3H), 2.41 (s, 3H), 4.13 (t, $J = 7.8$ Hz, 2H), 7.27 (d, $J = 8.1$ Hz, 2H), 7.84 (d, $J = 8.1$ Hz, 2H), 8.40 (s, 1H), 9.20 (br s, 1H).
5-009	F	1.00 (t, J = 7.2 Hz, 3H), 1.40-1.52 (m, 2H), 1.64-1.74 (m, 2H), 2.17 (s, 3H), 2.35 (s, 3H), 4.13 (t, J = 7.8 Hz, 2H), 7.20-7.27 (m, 1H), 7.41-7.48 (m, 1H), 7.63-7.70 (m, 2H), 8.38 (s, 1H), 9.19 (br s, 1H).
5-010		0.98 (t, J = 7.2 Hz, 3H), 1.38-1.50 (m, 2H), 1.62-1.73 (m, 2H), 2.20 (s, 3H), 2.36 (s, 3H), 4.12 (t, J = 7.8 Hz, 2H), 7.46-7.59 (m, 3H), 7.79 (dd, J = 1.2, 7.2 Hz, 1H), 7.88 (dd, 1.5, 7.2 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 8.45 (dd, J = 1.5, 7.5 Hz, 1H), 8.50 (s,1H), 8.95 (br s, 1H).
5-011		1.01 (t, $J = 7.2$ Hz, 3H), 1.42-1.54 (m, 2H), 1.66-1.76 (m, 2H), 2.19 (s, 3H), 2.36 (s, 3H), 4.16 (t, $J = 7.8$ Hz, 2H), 7.53-7.62 (m, 2H), 7.88-8.03 (m, 4H), 8.47 (s, 2H), 9.41 (br s, 1H).

表 3 8

		11Du
化合物 No.	Rr	¹ H-NMR (CDCl ₃)
5-012		0.96 (t, J = 7.2 Hz, 3H), 1.35-1.47 (m, 2H), 1.57-1.67 (m, 2H), 2.09 (s, 3H), 2.28 (s, 3H), 3.72 (s, 2H), 4.05 (t, J = 7.8 Hz, 2H), 7.28-7.40 (m, 5H), 8.22 (s, 1H), 8.40 (br s, 1H).
5-013		0.98 (t, $J = 7.2$ Hz, 3H), 1.37-1.49 (m, 2H), 1.60-1.70 (m, 2H), 2.12 (s, 3H), 2.31 (s, 3H), 2.69 (t, $J = 7.5$ Hz, 2H), 3.04 (t, $J = 7.5$ Hz, 2H), 4.09 (t, $J = 7.8$ Hz, 2H), 7.17-7.34 (m, 5H), 8.23 (s, 1H), 8.35 (br s, 1H).
5-014	CO ₂ H	0.92 (t, J = 7.2 Hz, 3H), 1.31-1.39 (m, 2H), 1.51-1.62 (m, 2H), 2.11 (s, 3H), 2.33 (s, 3H), 4.05 (t, J = 7.8 Hz, 2H), 7.54-7.64 (m, 3H), 7.83 (d, J = 7.5 Hz, 1H), 8.14 (s, 1H), 8.99 (s, 1H), 13.06 (br s, 1H).
5-015	nBuO-	0.94 (t, $J = 7.5$ Hz, 3H), 1.35-1.49 (m, 4H), 1.60-1.70 (m, 4H), 2.11 (s, 3H), 2.29 (s, 3H), 4.09 (t, $J = 7.8$ Hz, 2H), 4.15 (t, $J = 6.6$ Hz, 2H), 7.73 (br s, 1H), 7.85 (br s, 1H).
5-016		0.99 (t, $J = 7.2$ Hz, 3H), 1.39-1.51 (m, 2H), 1.62-1.73 (m, 2H), 2.11 (s, 3H), 2.31 (s, 3H), 4.13 (t, $J = 7.8$ Hz, 2H), 7.16-7.41 (m, 5H), 7.88 (s, 1H), 8.09 (br s, 1H).
5-017	BnO-	0.97 (t, J= 7.2 Hz, 3H), 1.36-1.48 (m, 2H), 1.59-1.69 (m, 2H), 2.11 (s, 3H), 2.29 (s, 3H), 4.08 (t, J= 7.8 Hz, 2H), 5.19 (s, 2H), 7.26-7.41 (m, 5H), 7.83 (s, 1H), 7.86 (s, 1H).
5-018	H N Br	0.90 (t, $J = 7.2$ Hz, 3H), 1.27-1.40(m, 2H), 1.57-1.67(m, 2H), 2.14(s, 3H), 2.31(s, 3H), 4.09(t, $J = 7.8$ Hz, 2H), 6.91-6.97(m, 1H), 7.28-7.34(m, 1H), 7.49(br s, 1H), 7.50-7.54(m, 1H), 8.08-8.11(m, 1H), 8.10(s, 1H), 8.38(br s, 1H).
5-019	H _N	1.00 (t, J = 7.2 Hz, 3H), 1.39-1.51 (m, 2H), 1.61-1.71 (m, 2H), 2.15 (s, 3H), 2.35 (s, 3H), 4.15 (t, J = 7.8 Hz, 2H), 6.98-7.03 (m, 1H), 7.25-7.30 (m, 2H), 7.41-7.45 m, 2H), 8.03 (s, 1H).
5-020	SO ₂ NH-	0.98 (t, J=7.2 Hz, 3H), 1.42-1.75 (m, 4H), 2.12 (s, 3H), 4.27 (t, J=7.8Hz, 2H), 7.48-7.61 (m, 3H), 8.04-8.09 (m, 3H),8.98 (s, 1H), 10.35 (br s, 1H).

表 3 9

化合物 No.	構造	¹H-NMR (CDCl ₃)
5-101	N H N Me	0.97 (t, J= 7.2 Hz, 3H), 1.36-1.49 (m, 2H), 1.60-1.70 (m, 2H), 2.04 (s, 3H), 2.22 (s, 3H), 4.08 (t, J= 7.5 Hz, 2H), 4.51 (s, 2H), 6.27 (s, 1H), 7.30-7.35 (m, 2H), 7.48-7.52 (m, 1H), 7.69-7.72 (m, 1H).
5-102	H N Me Me	0.98 (t, J = 7.2 Hz, 3H), 1.37-1.49 (m, 2H), 1.59-1.69 (m, 2H), 2.18 (s, 3H), 2.38 (s, 3H), 4.10 (t, J = 7.8 Hz, 2H), 7.23-7.43 (m, 1H), 7.42-7.43 (m, 4H), 8.86 (s, 1H).
5-103	S N Me Me nBu	0.92 (t, J = 7.2 Hz, 3H), 1.25-1.37 (m, 2H), 1.45-1.55 (m, 2H), 2.08 (s, 3H), 2.23 (s, 3H), 3.97 (t, J = 7.8 Hz, 2H), 7.35 (s, 1H), 7.41-7.55 (n, 2H), 7.65 (br s, 1H), 7.83-7.87 (m, 2H).
5-104	O N Me O N Me nBu	0.95 (t, J = 7.2 Hz, 3H), 1.33-1.45 (m, 2H), 1.59-1.70 (m, 2H), 2.00 (s, 3H), 2.30 (s, 3H), 4.10 (t, J = 7.8 Hz, 2H), 7.03 (s, 1H), 7.28-7.44 (m, 6H), 7.79-7.82 (m, 4H).
5-105	N Me N Me nBu	0.96 (t, J = 7.2 Hz, 3H), 1.37-1.49 (m, 2H), 1.62-1.73 (m, 2H), 2.16 (s, 3H), 2.39 (s, 3H), 4.11 (t, J = 8.1 Hz, 2H), 7.30 (s, 1H), 7.72-7.77 (m, 2H), 7.88-7.94 (m, 2H).
5-106	H N Me Me nBu	0.99 (t, J = 7.2 Hz, 3H), 1.40-1.52 (m, 2H), 1.64-1.75 (m, 2H), 2.20 (s, 3H), 2.37 (s, 3H), 4.15 (t, J = 7.8 Hz, 2H), 7.38-7.50 (m, 3H), 7.89-7.92 (m, 2H), 9.57 (s, 1H), 10.60 (br s, 1H).

表 4 0

	<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>
化合物 No.	\mathbb{R}^{r}	¹H-NMR (CDCl ₈)
6-001		0.99 (t, $J = 7.5$ Hz, 3H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.66 (quint, $J = 7.5$ Hz, 2H), 1.74 (quint, $J = 6.0$ Hz, 2H), 1.87 (quint, $J = 6.0$ Hz, 2H), 2.60 (t, $J = 6.0$ Hz, 2H), 2.69 (t, $J = 6.0$ Hz, 2H), 4.06 (t, $J = 7.8$ Hz, 2H), 7.43-7.56 (m, 3H), 7.94 (d, $J = 6.9$ Hz, 2H), 8.31 (s, 1H), 9.26 (br s, 1H).
6-002		0.95 (t, $J = 7.5$ Hz, 3H), 1.40 (sextet, $J = 7.5$ Hz, 2H), 1.56-1.65 (m, 2H), 1.69 (quint, $J = 6.0$ Hz, 2H), 1.82 (quint, $J = 6.0$ Hz, 2H), 2.52 (t, $J = 6.0$ Hz, 2H), 2.62 (t, $J = 6.0$ Hz, 2H), 3.72 (s, 2H), 3.98 (t, $J = 7.8$ Hz, 2H), 7.27-7.39 (m, 5H), 8.13 (s, 1H), 8.44 (br s, 1H).
6-003		0.97 (t, $J = 7.5$ Hz, 3H), 1.42 (sextet, $J = 7.5$ Hz, 2H), 1.61 (quint, $J = 7.5$ Hz, 2H), 1.71 (quint, $J = 6.0$ Hz, 2H), 1.84 (quint, $J = 6.0$ Hz, 2H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.70 (t, $J = 7.8$ Hz, 2H), 3.04 (t, $J = 7.8$ Hz, 2H), 4.02 (t, $J = 7.8$ Hz, 2H), 7.18-7.33 (m, 5H), 8.15 (s, 1H), 8.41 (br s, 1H).
6-004		0.98 (t, $J = 7.5$ Hz, 3H), 1.41 (sextet, $J = 7.5$ Hz, 2H), 1.64 (quint, $J = 7.5$ Hz, 2H), 1.72 (quint, $J = 6.0$ Hz, 2H), 1.85 (quint, $J = 6.0$ Hz, 2H), 2.57 (t, $J = 6.0$ Hz, 2H), 2.67 (t, $J = 6.0$ Hz, 2H), 4.03 (t, $J = 7.8$ Hz, 2H), 4.60 (s, 2H), 7.03 (d, $J = 7.8$ Hz, 2H), 7.32 (d, $J = 7.8$ Hz, 3H), 8.19 (s, 1H), 9.49 (br s, 1H).
6-005	H _N	0.92 (t, $J = 7.5$ Hz, 3H), 1.32 (sextet, $J = 7.5$ Hz, 2H), 1.57-1.65 (m, 2H), 1.69 (quint, $J = 6.0$ Hz, 2H), 1.82 (quint, $J = 6.0$ Hz, 2H), 2.55 (t, $J = 6.0$ Hz, 2H), 2.59 (t, $J = 6.0$ Hz, 2H), 3.90 (t, $J = 7.8$ Hz, 2H), 4.46 (d, $J = 6.0$ Hz, 2H), 5.72 (br s, 1H), 7.24-7.32 (m, 5H), 7.95 (s, 1H), 8.00 (br s, 1H).
6-006	H _N	(in d_6 -DMSO): 0.93 (t, $J = 7.5$ Hz, 3H), 1.35 (sextet, $J = 7.5$ Hz, 2H), 1.56 (quint, $J = 7.5$ Hz, 2H), 1.60-1.70 (m, 2H), 1.71-1.80 (m, 2H), 2.51 (t, $J = 6.0$ Hz, 2H), 2.67 (t, $J = 6.0$ Hz, 2H), 4.00 (t, $J = 7.5$ Hz, 2H), 6.96 (t, $J = 7.2$ Hz, 1H), 7.27 (t, $J = 7.5$ Hz, 2H), 7.43 (d, $J = 7.5$ Hz, 2H), 7.84 (s, 1H), 8.53 (br s, 1H), 9.51 (br s, 1H).
6-007	Qo	0.96 (t, $J = 7.5$ Hz, 3H), 1.41 (sextet, $J = 7.5$ Hz, 2H), 1.63 (quint, $J = 7.5$ Hz, 2H), 1.70 (quint, $J = 6.0$ Hz, 2H), 1.83 (quint, $J = 6.0$ Hz, 2H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.63 (t, $J = 6.0$ Hz, 2H), 4.01 (t, $J = 7.8$ Hz, 2H), 5.19 (s, 2H), 7.29-7.41 (m, 5H), 7.76 (s, 1H), 7.86 (br s, 1H).

表 4 1

化合物 No.	構造	¹H-NMR (CDCl₃)
7-001	N S Me	0.71 (t, J=7.2 Hz, 3H), 1.10-1.23(m, 2H), 1.46-1.55(m, 2H), 2.22(s, 3H), 2.43(s, 3H), 4.28 (t, J=6.3 Hz, 2H), 7.20-7.29(m, 2H), 7.38-7.41(m, 1H), 7.58-7.60(m, 1H), 7.67(s, 1H).
7-002	S,O, Me O ₂ S, N Me nBu	0.97 (t, J = 7.2 Hz, 3H), 1.37-1.49 (m, 2H), 1.60-1.80 (m, 2H), 2.21 (s, 3H), 2.44 (s, 3H), 2.48 (s, 3H), 4.71 (br s, 2H), 7.30-7.35 (m, 3H), 8.01 (s, 1H), 8.04 (s, 1H).
7-003	SCN Me N Me nBu	0.97 (t, $J = 7.5$ Hz, 3H), 1.37-1.50 (m, 2H), 1.62-1.73 (m, 2H), 2.07 (s, 3H), 2.33 (s, 3H), 4.09 (t, $J = 7.8$ Hz, 2H), 6.96 (s, 1H).
7-004	MeO Me Me Bn	2.07 (s, 3H), 2.28 (s, 3H), 3.88 (s, 3H), 5.42 (br s, 2H), 7.19-7.54 (m, 9H).
7-005	MeO Et Me	1.10 (t, J = 7.5 Hz, 3H), 2.30 (s, 3H), 2.53 (q, J = 7.5 Hz, 2H), 3.85 (s, 3H), 5.41 (br s, 2H), 7.18-7.55 (m, 9H).
7-006	O H nBuO N CH ₃	0.84 (t, J=7.2 Hz, 3H), 1.28 (sextet, J=7.5 Hz, 2H), 1.61-1.68 (m, 2H), 2.46 (s, 3H), 4.42 (t, J=6.6 Hz, 2H), 4.64 (d, J=5.1 Hz, 1H), 6.87 (d, J=6.0 Hz, 1H), 7.26-7.37 (m, 5H), 8.32 (br s, 1H), 8.42 (d, J=7.5 Hz, 1H).
7-007	O N H N O nBu	0.95 (t, J=7.2 Hz, 3H), 1.39 (m, 2H), 1.74 (m, 2H), 3.98 (t, J=7.5 Hz, 2H), 4.50 (d, J=5.7 Hz, 1H), 4.60 (d, 5.7 Hz, 1H), 5.9 (brs, 1H), 6.36 (brs, 1H), 6.56 (dd, J=9.6, 3.6 Hz, 1H), 7.25-7.36 (m, 5H), 7.86 (m, 1H), 8.22 (m, 2H).
7-008	N S N N N N N N N N N N N N N N N N N N	0.96 (t, $J = 7.3$ Hz, 3H), 1.32-1.45 (m, 2H), 1.69-1.79 (m, 2H), 3.96 (t, $J = 7.6$ Hz, 2H), 4.44 (s, 2H), 7.19-7.30 (m, 3H), 7.40-7.43 (m, 1H), 7.59-7.62 (m, 1H), 7.66 (dd, $J = 7.0$ Hz, 1H).
7-009	N O N N N N N N N N N N N N N N N N N N	0.96 (t, $J = 7.3$ Hz, 3H), 1.32-1.44 (m, 2H), 1.68-1.79 (m, 2H), 3.96 (t, $J = 7.6$ Hz, 2H), 6.14 (t, $J = 7.0$ Hz, 1H), 7.06-7.27 (m, 5H), 7.39 (dd, $J = 1.8$, 7.0 Hz, 1H).

表 4 2

化合物 No.	構造	¹H-NMR (CDCl ₃)
7-010	NC NO	(in CDCl ₃ + CD ₃ OD): 2.17 (quint, $J =$ 6.3 Hz, 2H), 2.63 (t, $J =$ 6.3 Hz, 2H), 3.09 (t, $J =$ 6.3 Hz, 2H), 8.34 (s, 1H).

表 4 3

ルム伽		
化合物 No.	構造	¹ H-NMR (CDCl ₃)
7-011	NC N O O N Bu	0.97 (t, J = 7.5 Hz, 3H), 1.38 (sextet, J = 7.5 Hz, 2H), 1.76 (quint, J = 7.5 Hz, 2H), 2.15 (quint, J = 6.3 Hz, 2H), 2.61 (t, J = 6.3 Hz, 2H), 3.06 (t, J = 6.3 Hz, 2H), 4.03 (t, J = 7.5 Hz, 2H), 8.39 (s, 1H).
7-012	NC N N N N N N N N N N N N N N N N N N	0.96 (t, J = 7.5 Hz, 3H), 1.37 (sextet, J = 7.5 Hz, 2H), 1.67-1.86 (m, 6H), 2.54 (t, J = 6.3 Hz, 2H), 2.87 (t, J = 6.3 Hz, 2H), 3.93 (t, J = 7.5 Hz, 2H), 7.22 (s, 1H).
7-013	NC OH OH	0.97 (t, J = 7.5 Hz, 3H), 1.38 (sextet, J = 7.5 Hz, 2H), 1.76 (quint, J = 7.5 Hz, 2H), 2.15 (quint, J = 6.0 Hz, 2H), 2.61 (t, J = 6.0 Hz, 2H), 3.06 (t, J = 6.0 Hz, 2H), 3.45-3.58 (m, 1H), 4.03 (t, J = 7.5 Hz, 2H), 8.39 (s, 1H).
7-014	NC N N N N N N N N N N N N N N N N N N	0.98 (t, $J = 7.5$ Hz, 3H), 1.41 (sextet, $J = 7.5$ Hz, 2H), 1.75-1.90 (m, 6H), 2.60 (t, $J = 6.3$ Hz, 2H), 2.87 (t, $J = 6.3$ Hz, 2H), 4.81 (t, $J = 7.5$ Hz, 2H), 7.50 (s, 1H).
7-015	OHC S N nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.44 (sextet, $J = 7.5$ Hz, 2H), 1.74 (quint, $J = 3.3$ Hz, 4H), 1.87 (quint, $J = 7.5$ Hz, 2H), 2.62 (br t, $J = 6.3$ Hz, 2H), 2.95 (br t, $J = 6.3$ Hz, 2H), 4.51 (t, $J = 7.5$ Hz, 2H), 7.53 (s, 1H), 10.60 (s, 1H).
7-016	HO S N Bu	0.99 (t, J=7.2 Hz, 3H), 1.43 (sextet, J=7.2 Hz, 2H), 1.71-1.95 (m, 6H), 2.66 (br t, J=6.3 Hz, 2H), 2.83 (t, J=6.3 Hz, 2H), 4.58 (br t, J=7.2 Hz, 2H), 4.79 (s, 2H), 7.61 (s, 1H).
7-017	S N N N N N N N N N N N N N N N N N N N	0.99 (t, J = 7.5 Hz, 3H), 1.43 (sextet, J = 7.5 Hz, 2H), 1.70-1.95 (m, 6H), 2.62 (t, J = 6.3 Hz, 2H), 3.01 (t, J = 6.3 Hz, 2H), 4.58 (t, J = 7.5 Hz, 2H), 5.05 (s, 2H), 7.15-7.30 (m, 2H), 7.42 (dd, J = 7.2 Hz, J = 1.8 Hz, 1H), 7.48 (br s, 1H), 7.60 (dd, J = 7.2 Hz, J = 1.8 Hz, 1H).
7-018	NC N N N N N N N N N N N N N N N N N N	0.93 (t, J=7.5 Hz, 3H), 1.32 (sextet, J=7.5 Hz, 2H), 1.42-1.59 (m, 5H), 1.88 (s, 1H), 1.97-2.08 (m, 2H), 2.20-2.32 (m, 1H), 2.54-2.66 (m, 1H), 3.06-3.19 (m, 2H), 3.33-3.43 (m, 3H).
7-019	HO N N N N N N N N N N N N N N N N N N N	0.98 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.65 (quint, $J = 7.5$ Hz, 2H), 1.71 (quint, $J = 6.0$ Hz, 2H), 1.85 (quint, $J = 6.0$ Hz, 2H), 2.52 (t, $J = 6.0$ Hz, 2H), 2.68 (t, $J = 6.0$ Hz, 2H), 4.00 (t, $J = 7.8$ Hz, 2H), 4.53 (s, 2H), 7.02 (s, 1H).

化合物 No.	構造	¹H-NMR (CDCl₃)
7-020	N O N N N N N N N N N N N N N N N N N N	0.97 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.57-1.72 (m, 4H), 1.81 (quint, $J = 6.0$ Hz, 2H), 2.45 (t, $J = 6.0$ Hz, 2H), 2.65 (t, $J = 6.0$ Hz, 2H), 4.01 (t, $J = 7.8$ Hz, 2H), 4.93 (s, 2H), 7.08-7.30 (m, 4H), 7.13 (s, 1H).
7-021	S O N N N N N N N N N N N N N N N N N N	0.97 (t, $J = 7.5$ Hz, 3H), 1.43 (sextet, $J = 7.5$ Hz, 2H), 1.59-1.73 (m, 4H), 1.81 (quint, $J = 6.0$ Hz, 2H), 2.49 (t, $J = 6.0$ Hz, 2H), 2.66 (t, $J = 6.0$ Hz, 2H), 4.01 (t, $J = 7.8$ Hz, 2H), 4.43 (s, 2H), 7.24 (quint d, $J = 7.5$ Hz, 1.5 Hz, 2H), 7.40 (s, 1H), 7.42 (dd, $J = 7.5$ Hz, 1.5 Hz, 1H), 7.60 (dd, $J = 7.5$ Hz, 1.5 Hz, 1H).
7-022	O N-Bu	0.96 (t, $J = 7.5$ Hz, 3H), 1.42 (sextet, $J = 7.5$ Hz, 2H), 1.64 (quint, $J = 7.5$ Hz, 2H), 1.70 (quint, $J = 6.0$ Hz, 2H), 1.84 (quint, $J = 6.0$ Hz, 2H), 2.53 (t, $J = 6.0$ Hz, 2H), 2.67 (t, $J = 6.0$ Hz, 2H), 3.99 (t, $J = 7.8$ Hz, 2H), 4.12 (dt, $J = 6.0$ Hz, 1.5 Hz, 2H), 4.46 (s, 2H), 5.20 (dq, $J = 10.5$ Hz, 1.8 Hz, 1H), 5.33 (dq, $J = 17.1$ Hz, 1.8 Hz, 1H), 5.91-6.05 (m, 1H), 7.19 (s, 1H).
7-023	OHC N N N N N N N N N N N N N N N N N N N	0.99 (t, $J = 7.5$ Hz, 3H), 1.46 (sextet, $J = 7.5$ Hz, 2H), 1.68 (quint, $J = 7.5$ Hz, 2H), 1.74 (quint, $J = 6.0$ Hz, 2H), 1.88 (quint, $J = 6.0$ Hz, 2H), 2.59 (t, $J = 6.0$ Hz, 2H), 2.76 (t, $J = 6.0$ Hz, 2H), 4.05 (t, $J = 7.8$ Hz, 2H), 7.76 (s, 1H), 10.34 (s, 1H).

表 4 5

R ^o					
化合物 No.	Rr	R^5	¹H-NMR (CDCl₃)		
10-001	⊙N~~	nBu	0.99 (d, $J = 7.3$ Hz, 3H), 1.22-1.53 (m, 6H), 1.62-1.86 (m, 6H), 2.36-2.42 (m, 6H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.3$ Hz, 2H), 3.48 (dt, $J = 7.2$, 6.9 Hz, 2H), 3.72 (t, $J = 4.8$ Hz, 4H), 4.05-4.14 (m, 2H), 8.29 (s, 1H), 10.1 (t, $J = 5.4$ Hz, 1H).		
10-002	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	nBu	0.98 (d, $J = 7.3$ Hz, 3H), 1.34-1.54 (m, 6H), 1.62-1.83 (m, 6H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.4$ Hz, 2H), 4.05-4.20 (m, 2H), 4.80 (d, $J = 5.5$ Hz, 2H), 7.16 (m, 1H), 7.35 (d, $J = 7.8$ Hz, 1H), 7.64 (ddd, $J = 7.8$, 7.8, 1.8 Hz, 1H), 8.34 (s, 1H), 8.59 (dlike, 1H), 10.6 (t, $J = 5.5$ Hz, 1H).		
10-003	Z	nBu ·	0.99 (d, $J = 7.3$ Hz, 3H), 1.34- 1.53 (m, 6H), 1.60-1.90 (m, 6H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.3$ Hz, 2H), 2.94 (t, $J = 7.5$ Hz, 2H), 3.70 (dt, $J = 7.5$, 6.0 Hz, 2H), 4.03-4.14 (m, 2H), 7.18-7.20 (m, 2H), 8.29 (s, 1H), 8.50-8.52 (m, 2H), 10.1 (t, $J = 6.0$ Hz, 1H).		
10-004	N)	nBu	0.99 (d, $J = 7.2$ Hz, 3H), 1.34- 1.54 (m, 6H), 1.62-1.85 (m, 6H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.91 (t, $J = 6.3$ Hz, 2H), 4.12 (t, $J = 7.3$ Hz, 2H), 4.65 (d, $J = 5.8$ Hz, 2H), 7.28 (A2B2, $J = 5.0$ Hz, 2H), 8.53 (s, 1H), 8.54 (A2B2, $J = 5.0$ Hz, 2H), 10.5 (t, $J = 5.8$ Hz, 1H).		
10-005	Z X	nBu	0.99 (d, J = 7.3 Hz, 3H), 1.34- 1.54 (m, 6H), 1.60-1.82 (m, 6H), 2.64 (t, J = 6.1 Hz, 2H), 2.89 (t, J = 6.4 Hz, 2H), 2.94 (t, J = 7.5 Hz, 2H), 3.68 (dt, J = 7.5, 6.3 Hz, 2H), 4.04-4.14 (m, 2H), 7.23 (dd, J = 7.8, 4.6 Hz, 1H), 7.59 (ddd, J = 7.8, 2.1, 1.5 Hz, 1H), 8.29 (s, 1H), 8.47 (dd, J = 7.8, 1.5 Hz, 1H), 8.50 (d, J = 2.1 Hz, 1H), 10.1 (t, J = 6.3 Hz, 1H).		
10-006	FOX	nBu	0.98 (d, J = 7.3 Hz, 3H), 1.34- 1.53 (m, 6H), 1.41 (s, 6H), 1.61- 1.80 (m, 6H), 2.63 (t, J = 6.1 Hz, 2H), 2.88 (t, J = 6.4 Hz, 2H), 3.16 (s, 2H), 4.06 (br.s, 2H), 6.88-6.94 (m, 2H), 7.11-7.16 (m, 2H), 8.32 (s, 1H), 9.83 (br.s, 1H).		

表 4 6

		· · · · · · · · · · · · · · · · · · ·	R`
化合物 No.	Rr	\mathbb{R}^5	¹H-NMR (CDCl₃)
10-007	CI CI	nBu	0.98 (d, $J = 7.2$ Hz, 3H), 1.38-1.49 (m, 6H), 1.51-1.80 (m, 6H), 2.64 (t, $J = 6.4$ Hz, 2H), 2.89 (t, $J = 6.4$ Hz, 2H), 4.10 (br.s, 2H), 4.73 (d, $J = 5.8$ Hz, 2H), 7.16-7,25 (m, 4H), 7.35 (m, 1H), 7.46 (m, 1H), 8.32 (s, 1H), 10.4 (br.s, 1H).
10-008	OMe	nBu	0.98 (d, $J = 7.3$ Hz, 3H), 1.37-1.48 (m, 6H), 1.51-1.79 (m, 6H), 2.63 (t, $J = 6.4$ Hz, 2H), 2.87 (t, $J = 6.4$ Hz, 2H), 3.88 (s, 3H), 4.09 (m, 2H), 4.65 (d, $J = 5.8$ Hz, 2H), 6.85-6.93 (m, 2H), 7.22 (dt, $J = 7.6$, 1.8 Hz, 1H), 7.35 (dd, $J = 7.6$, 1.8 Hz, 1H), 8.32 (s, 1H), 10.3 (br.s, 1H).
10-009	Me	nBu	0.97 (d, $J = 7.3$ Hz, 3H), 1.38-1.50 (m, 6H), 1.60-1.80 (m, 6H), 2.38 (s, 3H), 2.64 (t, $J = 6.1$ Hz, 2H), 2.88 (t, $J = 6.4$ Hz, 2H), 4.08 (m, 2H), 4.63 (d, $J = 5.5$ Hz, 2H), 7.15-7.20 (m, 3H), 7.33 (m, 1H), 8.33 (s, 1H), 10.2 (br.s, 1H).
10-010	F	nBu	0.97 (d, $J = 7.3$ Hz, 3H), 1.36-1.50 (m, 6H), 1.61-1.78 (m, 6H), 2.64 (t, $J = 6.1$ Hz, 2H), 2.87 (t, $J = 6.7$ Hz, 2H), 4.08 (br.s, 2H), 4.72 (d, $J = 5.5$ Hz, 2H), 6.84-6.92 (m, 2H), 7.20 (m, 1H), 8.32 (s, 1H), 10.2 (br.s, 1H).
10-011	N ₃	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.34-1.54 (m, 4H), 1.47 (sextet, $J = 7.2$ Hz, 2H), 1.65-1.81 (m, 6H), 2.63 (t, $J = 6.3$ Hz, 2H), 2.89 (t, $J = 6.3$ Hz, 2H), 3.71 (d, $J = 6.3$ Hz, 2H), 4.11 (br t, $J = 7.2$ Hz, 2H), 5.43 (dt, $J = 8.1$ Hz, 6.0 Hz, 1H), 7.26-7.70 (m, 5H), 8.23 (s, 1H), 10.74 (d, $J = 8.1$ Hz, 1H).
10-012	H₂N CH₃CO₂H	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.34-1.56 (m, 4H), 1.47 (sextet, $J = 7.2$ Hz, 2H), 1.61-1.80 (m, 6H), 2.06 (s, 3H), 2.63 (t, $J = 6.3$ Hz, 2H), 2.89 (t, $J = 6.3$ Hz, 2H), 3.15 (d, $J = 6.0$ Hz, 2H), 4.12 (br t, $J = 7.2$ Hz, 2H), 5.25 (dt, $J = 7.8$ Hz, 6.0 Hz, 1H), 7.35-7.42 (m, 5H), 8.28 (s, 1H), 10.67 (d, $J = 8.4$ Hz, 1H).

表 4 7

			R
化合物 No.	Rr	R^{5}	¹H-NMR (CDCl₃)
10-013	CH₃CO₂H	nBu	1.00 (t, $J = 7.5$ Hz, 3H), 1.34- 1.55 (m, 4H), 1.47 (sextet, $J =$ 7.5 Hz, 2H), 1.62-1.80 (m, 6H), 2.01 (s, 3H), 2.63 (t, $J =$ 6.0 Hz, 2H), 2.78-3.06 (m, 4H), 2.88 (t, $J =$ 6.0 Hz, 2H), 4.10 (br t, $J =$ 7.5 Hz, 2H), 4.35-4.45 (m, 1H), 7.18-7.30 (m, 5H), 8.24 (s, 1H), 10.25 (d, $J =$ 7.8 Hz, 1H).
10-014	AcHN	nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.36-1.55 (m, 4H), 1.46 (sextet, $J = 7.5$ Hz, 2H), 1.63-1.79 (m, 6H), 1.97 (s, 3H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.70-3.81 (m, 2H), 4.09 (br t, $J = 7.5$ Hz, 2H), 5.31-5.39 (m, 1H), 6.61 (br t, $J = 4.5$ Hz, 1H), 7.28-7.44 (m, 5H), 8.28 (s, 1H), 10.66 (d, $J = 7.5$ Hz, 1H).
10-015	MeO ₂ SHN	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.38-1.57 (m, 4H), 1.47 (sextet, $J = 7.2$ Hz, 2H), 1.62-1.80 (m, 6H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.90 (s, 3H), 2.90 (t, $J = 6.0$ Hz, 2H), 3.60 (d, $J = 6.6$ Hz, 2H), 4.10 (br t, $J = 7.2$ Hz, 2H), 5.38 (dt, $J = 7.5$ Hz, 6.0 Hz, 1H), 7.35-7.43 (m, 5H), 8.29 (s, 1H), 10.75 (d, $J = 9.0$ Hz, 1H).
10-016	CI	nBu	0.99 (d, $J = 7.3$ Hz, 3H), 1.34-1.54 (m, 6H), 1.62-1.82 (m, 6H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.3$ Hz, 2H), 4.06-4.17 (m, 2H), 4.68 (d, $J = 6.4$ Hz, 2H), 7.16 (dd, $J = 8.5$, 2.4 Hz, 1H), 7.28 (d, $J = 8.5$ Hz, 1H), 7.41 (d, $J = 2.4$ Hz, 1H), 8.32 (s, 1H), 10.5 (t, $J = 6.4$ Hz, 1H).
10-017	NH.N	nBu	1.01 (t, $J = 7.3$ Hz, 3H), 1.35-1.57 (m, 6H), 1.65-1.85 (m, 6H), 2.69 (t, $J = 6.0$ Hz, 2H), 2.94 (t, $J = 6.2$ Hz, 2H), 4.08-4.20 (m, 2H), 6.33 (s, 1H), 6.48 (dd, $J = 3.4$, 1.8 Hz, 1H), 6.68 (d, $J = 3.4$ Hz, 1H), 7.46 (m, 1H), 8.35 (s, 1H), 12.8 (s, 1H).

表 4 8

			_ H*
化合物 No.	Rr	\mathbb{R}^5	¹H-NMR (CDCl₃)
10-018	O LO HN	nBu	1.00 (t, J = 7.5 Hz, 3H), 1.37-1.57 (m, 4H), 1.47 (sextet, J = 7.5 Hz, 2H), 1.61-1.80 (m, 6H), 2.62 (t, J = 6.0 Hz, 2H), 2.88 (t, J = 6.0 Hz, 2H), 2.94 (t, J = 7.5 Hz, 2H), 3.23-3.33 (m, 1H), 3.45-3.55 (m, 1H), 4.09 (br t, J = 7.5 Hz, 2H), 4.40-4.50 (m, 1H), 4.53 (d, J = 6.0 Hz, 2H), 5.14-5.30 (m, 2H), 5.52 (br s, 1H), 5.82-5.96 (m, 1H), 7.17-7.28 (m, 5H), 8.25 (s, 1H), 10.18 (d, J = 7.5 Hz, 1H).
10-019	X070 HN	nBu	1.00 (t, $J = 7.5$ Hz, 3H), 1.40 (s, 9H), 1.41-1.55 (m, 4H), 1.47 (sextet, $J = 7.5$ Hz, 2H), 1.64-1.80 (m, 6H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 3.18-3.28 (m, 1H), 3.38-3.48 (m, 1H), 4.09 (br t, $J = 7.5$ Hz, 2H), 4.37-4.47 (m, 1H), 5.11 (br s, 1H), 7.22-7.32 (m, 5H), 8.25 (s, 1H), 10.13 (d, $J = 7.8$ Hz, 1H).
10-020	HN	nBu	1.00 (t, $J = 7.2$ Hz, 3H), 1.36-1.81 (m, 12H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.74-3.04 (m, 6H), 3.21-3.37 (m, 2H), 4.09 (br t, $J = 7.2$ Hz, 2H), 4.44-4.53 (m, 1H), 5.06-5.17 (m, 2H), 5.08-5.95 (m, 1H), 7.18-7.29 (m, 5H), 8.25 (s, 1H), 10.17 (br s, 1H).
10-021	OHN OHN	nBu	1.00 (t, J = 7.2 Hz, 3H), 1.36-1.52 (m, 4H), 1.47 (sextet, J = 7.2 Hz, 2H), 1.61-1.79 (m, 6H), 2.63 (t, J = 6.0 Hz, 2H), 2.88 (t, J = 6.0 Hz, 2H), 2.95-3.11 (m, 2H), 3.49-3.59 (m, 1H), 3.68-3.76 (m, 1H), 4.10 (br t, J = 7.2 Hz, 2H), 4.51-4.64 (m, 1H), 7.17-7.85 (m, 10H), 7.92 (br s, 1H), 8.27 (s, 1H), 10.45 (d, J = 7.5 Hz, 1H).
10-022	N- HN	nBu	1.00 (t, $J = 7.5$ Hz, 3H), 1.36-1.57 (m, 4H), 1.48 (sextet, $J = 7.5$ Hz, 2H), 1.60-1.80 (m, 6H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 2.96-3.12 (m, 2H), 3.46-3.56 (m, 1H), 3.70-3.79 (m, 1H), 4.11 (br t, $J = 7.5$ Hz, 2H), 4.51-4.63 (m, 1H), 7.17-7.39 (m, 6H), 8.17 (d, $J = 8.1$ Hz, 1H), 8.28 (s, 1H), 8.37 (br s, 1H), 8.69 (d, $J = 3.9$ Hz, 1H), 9.07 (br s, 1H), 10.52 (d, $J = 7.2$ Hz, 1H).

表 4 9

	R*					
化合物 No.	Rr	$ m R^5$	¹H-NMR (CDCl₃)			
10-023		nBu	1.01 (t, J =7.5 Hz, 3H), 1.39-1.59 (m, 4H), 1.50 (sextet, J =7.5 Hz, 2H), 1.63-1.85 (m, 6H), 2.68 (t, J =6.0 Hz, 2H), 2.94 (t, J =6.0 Hz, 2H), 4.17 (br t, J =7.5 Hz, 2H), 7.46-7.61 (m, 3H), 8.11 (d, J =7.2 Hz, 2H), 8.42 (s, 1H), 13.76 (br s, 1H).			
10-024	Н-	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.37-1.56 (m, 4H), 1.47 (sextet, $J = 7.2$ Hz, 2H), 1.63-1.81 (m, 6H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.0$ Hz, 2H), 4.11 (t, $J = 7.2$ Hz, 2H), 5.69 (br s, 1H), 8.30 (s, 1H), 9.63 (br s, 1H).			
10-025	ZE	nBu	1.00 (t, $J = 7.5$ Hz, 3H), 1.37-1.84 (m, 12H), 2.69 (t, $J = 6.0$ Hz, 2H), 2.94 (t, $J = 6.0$ Hz, 2H), 4.13 (br t, $J = 7.5$ Hz, 2H), 7.50-7.53 (m, 3H), 8.00-8.08 (m, 2H), 8.37 (s, 1H), 13.04 (br s, 1H).			
10-026	S	nBu	1.00 (t, J = 7.2 Hz, 3H), 1.38-1.57 (m, 4H), 1.48 (sextet, J = 7.2 Hz, 2H), 1.63-1.87 (m, 6H), 2.68 (t, J = 6.0 Hz, 2H), 2.94 (t, J = 6.0 Hz, 2H), 4.16 (br t, J = 7.2 Hz, 2H), 7.40-7.56 (m, 3H), 7.95 (d, J = 7.2 Hz, 2H), 8.42 (s, 1H), 14.37 (br s, 1H).			
10-027	N-OH	nBu.	0.99 (t, $J = 7.2 \text{ Hz}$, 3H), 1.38-1.56 (m, 4H), 1.47 (sextet, $J = 7.2 \text{ Hz}$, 2H), 1.63-1.82 (m, 6H), 2.62 (t, $J = 6.0 \text{ Hz}$, 2H), 2.90 (t, $J = 6.0 \text{ Hz}$, 2H), 4.11 (br t, $J = 7.2 \text{ Hz}$, 2H), 6.12 (br s, 1H), 7.39-7.51 (m, 3H), 7.75-7.79 (m, 2H), 8.12 (s, 1H).			
10-028	N-OMe	nBu	1.01 (t, J = 7.5 Hz, 3H), 1.37-1.58 (m, 4H), 1.48 (sextet, J = 7.2 Hz, 2H), 1.60-1.82 (m, 6H), 2.60 (t, J = 6.0 Hz, 2H), 2.91 (t, J = 6.0 Hz, 2H), 4.06 (s, 3H), 4.17 (br t, J = 7.5 Hz, 2H), 7.36-7.56 (m, 3H), 7.52-7.57 (m, 2H), 8.23 (s, 1H), 12.43 (br s, 1H).			
10-029	N-OEt	nBu	1.01 (t, J = 7.5 Hz, 3H), 1.37-1.55 (m, 4H), 1.40 (t, J = 6.9 Hz, 3H), 1.48 (sextet, J = 7.5 Hz, 2H), 1.60-1.83 (m, 6H), 2.60 (t, J = 6.0 Hz, 2H), 2.91 (t, J = 6.0 Hz, 2H), 4.17 (br t, J = 7.5 Hz, 2H), 4.30 (q, J = 6.9 Hz, 2H), 7.32-7.40 (m, 3H), 7.51-7.61 (m, 2H), 8.23 (s, 1H), 12.44 (br s, 1H).			

	R~					
化合物 No.	Rr	R ⁵	¹H-NMR (CDCl ₃)			
10-030		_N	1.37-1.53 (m, 4H), 1.56 (d, $J = 7.2$ Hz, 3H), 1.61-1.79 (m, 4H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.72 (t, $J = 6.3$ Hz, 2H), 5.30 (quint, $J = 6.9$ Hz, 1H), 5.42 (br s, 2H), 6.98 (d, $J = 5.1$ Hz, 2H), 7.25-7.41 (m, 5H), 8.43 (s, 1H), 8.58 (br s, 2H), 10.11 (d, $J = 7.8$ Hz, 1H).			
10-031	НО	N	1.37-1.80 (m, 8H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.74 (t, $J = 6.0$ Hz, 2H), 3.07 (br t, $J = 6.0$ Hz, 1H), 3.94 (t, $J = 6.0$ Hz, 2H), 5.30 (q, $J = 6.9$ Hz, 1H), 5.45 (br s, 2H), 6.99 (d, $J = 5.4$ Hz, 2H), 7.29-7.42 (m, 5H), 8.44 (s, 1H), 8.57 (d, $J = 5.4$ Hz, 2H), 10.50 (d, $J = 7.5$ Hz, 1H).			
10-032		nBu	0.96 (t, $J = 7.5$ Hz, 3H), 1.37-1.58 (m, 6H), 1.60-1.80 (m, 6H), 1.92-2.05 (m, 1H), 2.62-2.73 (m, 1H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.84-2.95 (m, 1H), 2.89 (t, $J = 6.0$ Hz, 2H), 2.99-3.09 (m, 1H), 3.95-4.16 (m, 2H), 5.68 (q, $J = 7.5$ Hz, 1H), 7.15-7.29 (m, 3H), 7.36-7.40 (m, 1H), 8.37 (s, 1H), 10.25 (d, $J = 8.4$ Hz, 1H).			
10-033		nBu	0.96 (t, $J = 7.5$ Hz, 3H), 1.35-1.56 (m, 6H), 1.59-1.79 (m, 6H), 1.91-2.04 (m, 1H), 2.62-2.72 (m, 1H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.84-2.95 (m, 1H), 2.89 (t, $J = 6.0$ Hz, 2H), 2.99-3.09 (m, 1H), 3.98-4.18 (m, 2H), 5.68 (q, $J = 7.5$ Hz, 1H), 7.15-7.26 (m, 3H), 7.36-7.40 (m, 1H), 8.37 (s, 1H), 10.25 (d, $J = 8.1$ Hz, 1H).			
10-034	Me N	nBu	1.00 (t, $J = 7.5$ Hz, 3H), 1.38-1.56 (m, 4H), 1.48 (sextet, $J = 7.5$ Hz, 2H), 1.63-1.83 (m, 6H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.91 (t, $J = 6.0$ Hz, 2H), 3.29 (s, 3H), 4.13 (t, $J = 7.5$ Hz, 2H), 6.82 (t, $J = 7.5$ Hz, 1H), 6.90 (d, $J = 8.7$ Hz, 2H), 7.22-7.27 (m, 2H), 8.34 (s, 1H), 11.48 (br s, 1H).			
10-035		nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.20-1.53 (m, 12H), 1.59-1.80 (m, 8H), 1.95-2.01 (m, 2H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 3.91-4.02 (m, 1H), 4.09 (br t, $J = 7.2$ Hz, 2H), 8.30 (s, 1H), 9.88 (d, $J = 7.5$ Hz, 1H).			
10-036	0	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.13-1.30 (m, 2H), 1.36-1.83 (m, 21H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 3.28 (t, $J = 6.0$ Hz, 2H), 4.10 (br t, $J = 7.5$ Hz, 2H), 8.31 (s, 1H), 9.98 (br s, 1H).			

表 5 1

化合物 No.	Rr	$ m R^5$	¹H-NMR (CDCl₃)
10-037	Me	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.36-1.53 (m, 6H), 1.62-1.81 (m, 6H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 2.98 (d, $J = 3.6$ Hz, 3H), 4.10 (br t, $J = 7.2$ Hz, 2H), 8.31 (s, 1H), 9.85 (br s, 1H).
10-038	Et	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.24 (t, $J = 7.2$ Hz, 3H), 1.34-1.54 (m, 4H), 1.47 (sextet, $J = 7.2$ Hz, 2H), 1.63-1.80 (m, 6H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.42-3.51 (m, 2H), 4.10 (br t, $J = 7.2$ Hz, 2H), 8.31 (s, 1H), 9.90 (br s, 1H).
10-039	iPr	nBu	0.99 (t, $J = 7.2 \text{ Hz}$, 3H), 1.26 (d, $J = 6.9 \text{ Hz}$, 6H), 1.34-1.52 (m, 4H), 1.47 (sextet, $J = 7.2 \text{ Hz}$, 2H), 1.60-1.80 (m, 6H), 2.65 (t, $J = 6.0 \text{ Hz}$, 2H), 2.88 (t, $J = 6.0 \text{ Hz}$, 2H), 4.09 (br t, $J = 7.2 \text{ Hz}$, 2H), 4.25 (sextet, $J = 6.6 \text{ Hz}$, 1H), 8.31 (s, 1H), 9.82 (br s, 1H).
10-040	tBu	nBu	0.99 (t, J = 7.5 Hz, 3H), 1.35-1.56 (m, 6H), 1.47 (s, 9H), 1.61-1.79 (m, 6H), 2.62 (t, J = 6.0 Hz, 2H), 2.88 (t, J = 6.0 Hz, 2H), 4.09 (br t, J = 7.5 Hz, 2H), 8.30 (s, 1H), 9.92 (br s, 1H).
10-041	\langle	nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.01 (s, 9H), 1.36-1.57 (m, 6H), 1.62-1.80 (m, 6H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.27 (t, $J = 6.0$ Hz, 2H), 4.12 (br t, $J = 7.5$ Hz, 2H), 8.32 (s, 1H), 1010 (br s, 1H).
10-042	₽	nBu	0.99 (t, J = 7.5 Hz, 3H), 1.38-1.54 (m, 6H), 1.62-1.83 (m, 6H), 2.67 (t, J = 6.0 Hz, 2H), 2.92 (t, J = 6.0 Hz, 2H), 4.14 (br t, J = 7.5 Hz, 2H), 7.15-7.30 (m, 2H), 7.47-7.56 (m, 1H), 7.96 (td, J = 7.8 Hz, 1.5 Hz, 1H), 8.38 (s, 1H), 13.37 (br s, 1H).
10-043	FO	nBu	1.02 (t, $J = 7.2$ Hz, 3H), 1.40-1.58 (m, 6H), 1.67-1.85 (m, 6H), 2.69 (t, $J = 6.0$ Hz, 2H), 2.94 (t, $J = 6.0$ Hz, 2H), 4.18 (br t, $J = 7.2$ Hz, 2H), 7.25-7.32 (m, 1H), 7.47-7.55 (m, 1H), 7.80 (dt, $J = 9.6$ Hz, 2.4 Hz, 1H), 7.89 (t, $J = 7.8$ Hz, 1H), 8.41 (s, 1H), 13.84 (br s, 1H).
10-044	F-C	nBu	1.01 (t, $J = 7.5$ Hz, 3H), 1.39-1.62 (m, 6H), 1.65-1.89 (m, 6H), 2.69 (t, $J = 6.0$ Hz, 2H), 2.94 (t, $J = 6.0$ Hz, 2H), 4.17 (br t, $J = 7.5$ Hz, 2H), 7.20 (t, $J = 9.0$ Hz, 2H), 8.11-8.16 (m, 2H), 8.42 (s, 1H), 13.79 (br s, 1H).

表 5 2

	Ř ⁵				
化合物 No.	R ^r	$ m R^{5}$	¹H-NMR (CDCl₃)		
10-045	F	nBu	0.99 (t, J = 7.5 Hz, 3H), 1.38-1.54 (m, 6H), 1.62-1.83 (m, 6H), 2.63 (t, J = 6.0 Hz, 2H), 2.91 (t, J = 6.0 Hz, 2H), 4.12 (br t, J = 7.5 Hz, 2H), 6.96 (t, J = 7.8 Hz, 2H), 7.34-7.44 (m, 1H), 8.29 (s, 1H), 13.18 (br s, 1H).		
10-046	F O	nBu	1.02 (t, $J = 7.2$ Hz, 3H), 1.39-1.56 (m, 6H), 1.67-1.85 (m, 6H), 2.69 (t, $J = 6.0$ Hz, 2H), 2.94 (t, $J = 6.0$ Hz, 2H), 4.17 (br t, $J = 7.2$ Hz, 2H), 7.32 (dt, $J = 9.0$ Hz, 1.2 Hz, 1H), 7.86-8.01 (m, 2H), 8.41 (s, 1H), 13.88 (br s, 1H).		
10-047	FF	nBu	1.02 (t, J = 7.2 Hz, 3H), 1.42-1.57 (m, 6H), 1.63-1.82 (m, 6H), 2.66 (t, J = 6.0 Hz, 2H), 2.95 (t, J = 6.0 Hz, 2H), 4.15 (br t, J = 7.2 Hz, 2H), 8.25 (s, 1H), 13.37 (br s, 1H).		
10-048	F ₃ C O	nBu	1.03 (t, $J = 7.5$ Hz, 3H), 1.40-1.55 (m, 6H), 1.68-1.87 (m, 6H), 2.70 (t, $J = 6.0$ Hz, 2H), 2.96 (t, $J = 6.0$ Hz, 2H), 4.20 (br t, $J = 7.5$ Hz, 2H), 8.08 (s, 1H), 8.41 (s, 1H), 8.57 (s, 2H), 14.30 (br s, 1H).		
10-049		nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.01-1.34 (m, 6H), 1.18 (d, $J = 6.9$ Hz, 3H), 1.37-1.57 (m, 8H), 1.62-1.88 (m, 9H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 3.99-4.10 (m, 2H), 4.05-4.21 (m, 1H), 8.30 (s, 1H), 9.88 (d, $J = 9.0$ Hz, 1H).		
10-050	The state of the s	nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.01-1.32 (m, 6H), 1.18 (d, $J = 6.6$ Hz, 3H), 1.34-1.52 (m, 8H), 1.62-1.86 (m, 9H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 4.01-4.11 (m, 2H), 4.05-4.22 (m, 1H), 8.30 (s, 1H), 9.88 (d, $J = 8.4$ Hz, 1H).		
10-051		nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.36-1.55 (m, 4H), 1.48 (sextet, $J = 7.2$ Hz, 2H), 1.65-1.82 (m, 6H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.0$ Hz, 2H), 4.16 (br t, $J = 7.2$ Hz, 2H), 4.97 (d, $J = 4.2$ Hz, 2H), 7.47-7.63 (m, 3H), 8.02-8.06 (m, 2H), 8.31 (s, 1H), 10.81 (br s, 1H).		
10-052	OH	nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.28-1.55 (m, 12H), 1.59-1.80 (m, 10H), 1.99 (br s, 1H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.47 (d, $J = 6.3$ Hz, 2H), 4.11 (br t, $J = 7.5$ Hz, 2H), 8.30 (s, 1H), 10.27 (br s, 1H).		

表 5 3

			R
化合物 No.	Rr	R^{5}	¹H-NMR (CDCl₃)
10-053	0	nBu	0.99 (t, $J = 7.5 \text{ Hz}$, 3H), 1.35-1.80 (m, 14H), 1.46 (sextet, $J = 7.5 \text{ Hz}$, 2H), 2.00 (br s, 4H), 2.64 (t, $J = 6.0 \text{ Hz}$, 2H), 2.88 (t, $J = 6.0 \text{ Hz}$, 2H), 3.94 (d, $J = 6.0 \text{ Hz}$, 2H), 4.10 (br t, $J = 7.5 \text{ Hz}$, 2H), 5.63 (br s, 1H), 8.31 (s, 1H), 9.97 (br s, 1H).
10-054	Br	nBu	1.00 (t, $J = 7.2$ Hz, 3H), 1.35-1.79 (m, 10H), 1.47 (sextet, $J = 7.2$ Hz, 2H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.0$ Hz, 2H), 3.79 (d, $J = 6.0$ Hz, 2H), 4.13 (br t, $J = 7.2$ Hz, 2H), 5.52-5.59 (m, 1H), 7.26-7.45 (m, 5H), 8.32 (br s, 1H), 10.80 (br s, 1H).
10-055	NC NC	nBu	0.98 (t, $J = 7.5$ Hz, 3H), 1.36-1.79 (m, 10H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.03 (dd, $J = 6.0$ Hz, 2.4 Hz, 2H), 4.10 (br t, $J = 7.5$ Hz, 2H), 5.47 (q, $J = 6.6$ Hz, 1H), 7.31-7.50 (m, 5H), 8.28 (s, 1H), 10.82 (d, $J = 7.5$ Hz, 1H).
10-056	OH OH	nBu	0.96 (t, $J = 7.5$ Hz, 3H), 1.38-1.79 (m, 12H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.04, 3.21 (ABx, $J = 16.2$ Hz, 3.0 Hz, 2H), 4.07 (br t, $J = 7.5$ Hz, 2H), 4.74-4.80 (m, 1H), 5.56 (dd, $J = 7.2$ Hz, 5.1 Hz, 1H), 7.20-7.30 (m, 3H), 7.34-7.39 (m, 1H), 8.35 (s, 1H), 10.43 (d, $J = 7.2$ Hz, 1H).
10-057	OH	nBu	0.96 (t, J = 7.5 Hz, 3H), 1.35-1.81 (m, 12H), 2.66 (t, J = 6.0 Hz, 2H), 2.90 (t, J = 6.0 Hz, 2H), 8.04, 3.21 (ABx, J = 16.2 Hz, 3.0 Hz, 2H), 4.07 (br t, J = 7.5 Hz, 2H), 4.77 (sextet, J = 3.0 Hz, 1H), 5.56 (dd, J = 7.2 Hz, 5.1 Hz, 1H), 7.23-7.32 (m, 3H), 7.35-7.39 (m, 1H), 8.35 (s, 1H), 10.44 (d, J = 7.5 Hz, 1H).
10-058		nBu	0.96 (t, J = 7.5 Hz, 3H), 0.99 (t, J = 7.5 Hz, 3H), 1.35-1.53 (m, 4H), 1.46 (sextet, J = 7.5 Hz, 2H), 1.64-1.79 (m, 6H), 1.85-1.98 (m, 2H), 2.61 (t, J = 6.0 Hz, 2H), 2.88 (t, J = 6.0 Hz, 2H), 4.11 (br t, J = 7.5 Hz, 2H), 5.08 (q, J = 7.5 Hz, 1H), 7.18-7.40 (m, 5H), 8.27 (s, 1H), 10.40 (d, J = 7.8 Hz, 1H).

表 5 4

			H H
化合物 No.	Rr	\mathbb{R}^5	¹H-NMR (CDCl₃)
10-059		nBu	0.96 (t, J =7.5 Hz, 3H), 0.99 (t, J =7.5 Hz, 3H), 1.35-1.52 (m, 4H), 1.46 (sextet, J =7.5 Hz, 2H), 1.61-1.79 (m, 6H), 1.84-1.98 (m, 2H), 2.61 (t, J =6.0 Hz, 2H), 2.88 (t, J =6.0 Hz, 2H), 4.10 (br t, J =7.5 Hz, 2H), 5.08 (q, J =7.5 Hz, 1H), 7.18-7.40 (m, 5H), 8.27 (s, 1H), 10.40 (d, J =7.8 Hz, 1H).
10-060	OMs ""	nBu	0.96 (t, J = 7.2 Hz, 3H), 1.35-1.56 (m, 4H), 1.42 (sextet, J = 7.2 Hz, 2H), 1.59-1.80 (m, 6H), 2.67 (t, J = 6.0 Hz, 2H), 2.90 (t, J = 6.0 Hz, 2H), 3.04 (s, 3H), 3.28-3.43 (m, 2H), 3.97-4.09 (m, 2H), 5.58 (td, J = 4.5 Hz, 1.5 Hz, 1H), 5.90 (dd, J = 7.5 Hz, 4.5 Hz, 1H), 7.18-7.35 (m, 4H), 8.35 (s, 1H), 10.64 (d, J = 8.4 Hz, 1H).
10-061	OMs	nBu	0.96 (t, $J = 7.5$ Hz, 3H), 1.35-1.56 (m, 4H), 1.42 (sextet, $J = 7.5$ Hz, 2H), 1.61-1.81 (m, 6H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.0$ Hz, 2H), 3.04 (s, 3H), 3.28-3.44 (m, 2H), 3.92-4.09 (m, 2H), 5.58 (td, $J = 4.5$ Hz, 1.5 Hz, 1H), 5.90 (dd, $J = 7.5$ Hz, 4.5 Hz, 1H), 7.20-7.35 (m, 4H), 8.35 (s, 1H), 10.64 (d, $J = 8.4$ Hz, 1H).
10-062	N3	nBu	0.97 (t, $J = 7.2$ Hz, 3H), 1.36-1.54 (m, 6H), 1.61-1.80 (m, 6H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.0$ Hz, 2H), 2.95, 3.34 (ABx, $J = 7.8$ Hz, 2H), 3.98-4.10 (m, 2H), 4.23 (q, $J = 7.2$ Hz, 1H), 5.65 (t, $J = 7.2$ Hz, 1H), 7.19-7.32 (m, 4H), 8.39 (s, 1H), 10.36 (d, $J = 8.4$ Hz, 1H).
10-063	N ₃	nBu	0.97 (t, J = 7.5 Hz, 3H), 1.36-1.54 (m, 6H), 1.61-1.81 (m, 6H), 2.66 (t, J = 6.0 Hz, 2H), 2.90 (t, J = 6.0 Hz, 2H), 2.95, 3.34 (ABx, J = 7.5 Hz, 2H), 3.98-4.10 (m, 2H), 4.23 (q, J = 7.2 Hz, 1H), 5.65 (t, J = 7.2 Hz, 1H), 7.19-7.32 (m, 4H), 8.39 (s, 1H), 10.36 (d, J = 8.4 Hz, 1H).
10-064	OH OH	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.36-1.52 (m, 6H), 1.63-1.80 (m, 6H), 1.99 (br s, 1H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 3.36 (s, 3H), 3.45, 3.58 (ABx, $J = 5.4$ Hz, 4.2 Hz, 2H), 4.02-4.21 (m, 2H), 4.33-4.41 (m, 1H), 5.03 (d, $J = 5.1$ Hz, 1H), 7.26-7.35 (m, 3H), 7.42-7.46 (m, 2H), 8.25 (s, 1H), 10.62 (d, $J = 7.8$ Hz, 1H).

表 5 5

11- A 44- I			R
化合物 No.	Rr	$ m_{.}$ $ m_{R^{5}}$	¹H-NMR (CDCl₃)
10-065	OMe	Bu	1.00 (t, J = 7.2 Hz, 3H), 1.35-1.53 (m, 6H), 1.61-1.80 (m, 6H), 2.62 (t, J = 6.0 Hz, 2H), 2.89 (t, J = 6.0 Hz, 2H), 3.31, 3.57 (ABx, J = 5.4 Hz, 4.2 Hz, 2H), 3.34 (s, 3H), 4.12 (br t, J = 7.2 Hz, 2H), 4.76-4.85 (m, 1H), 5.36 (d, J = 5.4 Hz, 1H), 7.26-7.35 (m, 3H), 7.45-7.49 (m, 2H), 8.24 (s, 1H), 10.53 (d, J = 8.1 Hz, 1H).
10-066	Et _	Bu	0.95 (t, J = 7.5 Hz, $3H \times 2$), 0.99 (t, J = 7.5 Hz, $3H$), 1.35-1.79 (m, 16H), 2.63 (t, J = 6.0 Hz, $2H$), 2.88 (t, J = 6.0 Hz, $2H$), 3.92-4.05 (m, 1H), 4.10 (br t, J = 7.2 Hz, $2H$), 8.31 (s, $1H$), 9.76 (d, J = 7.5 Hz, $1H$).
10-067	OMe	Bu _.	0.98 (t, $J = 7.5$ Hz, 3H), 1.34-1.51 (m, 6H), 1.61-1.79 (m, 6H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 3.31, (s, 3H), 3.79-3.90 (m, 2H), 4.11 (br t, $J = 7.5$ Hz, 2H), 5.87-5.94 (m, 1H), 7.45-7.62 (m, 3H), 8.05-8.09 (m, 2H), 8.26 (s, 1H), 10.80 (d, $J = 7.8$ Hz, 1H).
10-068		Me ^{-O}	1.35 (quint, $J = 6.0$ Hz, 2H), 1.48 (quint, $J = 6.0$ Hz, 2H), 1.58 (d, $J = 6.9$ Hz, 3H), 1.61-1.75 (m, 4H), 2.64 (t, $J = 6.0$ Hz, 2H), 3.04 (t, $J = 6.0$ Hz, 2H), 3.70 (t, $J = 5.4$ Hz, 2H), 4.26-4.42 (m, 2H), 5.31 (quint, $J = 7.2$ Hz, 1H), 7.22-7.44 (m, 5H), 8.32 (s, 1H), 10.29 (d, $J = 7.8$ Hz, 1H).
10-069		Me_O_	0.98-1.54 (m, 8H), 1.18 (d, $J = 6.6 \text{ Hz}$, 3H), 1.61-1.85 (m, 11H), 2.65 (t, $J = 6.0 \text{ Hz}$, 2H), 3.04 (t, $J = 6.0 \text{ Hz}$, 2H), 3.31 (s, 3H), 3.70 (t, $J = 6.0 \text{ Hz}$, 2H), 4.00-4.14 (m, 1H), 4.25-4.43 (m, 2H), 8.33 (s, 1H), 9.81 (d, $J = 8.7 \text{ Hz}$, 1H).
10-070	MeO TO TO THE MEO	nBu	1.00 (t, $J = 7.2 \text{ Hz}$, 3H), 1.34-1.53 (m, 6H), 1.63-1.80 (m, 6H), 2.62 (t, $J = 6.0 \text{ Hz}$, 2H), 2.83(s, 3H), 2.88 (t, $J = 6.0 \text{ Hz}$, 2H), 3.22, 3.50 (ABx, $J = 4.8 \text{ Hz}$, 2H), 3.32 (s, 3H), 4.02-4.21 (m, 2H), 4.68-4.78 (m, 1H), 5.86 (d, $J = 6.9 \text{ Hz}$, 1H), 7.32-7.49 (m, 5H), 8.23 (s, 1H), 10.50 (d, $J = 9.6 \text{ Hz}$, 1H).

R ^s				
化合物 No.	Rr	\mathbb{R}^5	¹H-NMR (CDCl ₃)	
10-071	MeO III	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.33-1.50 (m, 6H), 1.62-1.79 (m, 6H), 2.60 (t, $J = 6.0$ Hz, 2H), 2.86 (t, $J = 6.0$ Hz, 2H), 3.38, 3.68 (ABx, $J = 4.8$ Hz, 2H), 3.36 (s, 3H), 4.01-4.19 (m, 2H), 4.60-4.69 (m, 1H), 5.01 (d, $J = 7.2$ Hz, 1H), 7.28-7.45 (m, 5H), 8.20 (s, 1H), 10.25 (d, $J = 7.2$ Hz, 1H).	
10-072	HO	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.35-1.52 (m, 6H), 1.62-1.80 (m, 6H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.77, 3.87 (ABx, $J = 6.6$ Hz, 4.8 Hz, 2H), 4.11 (br t, $J = 7.2$ Hz, 2H), 4.25 (quint, $J = 4.8$ Hz, 1H), 5.07 (d, $J = 6.0$ Hz, 1H), 7.26-7.36 (m, 3H), 7.44-7.48 (m, 2H), 8.27 (s, 1H), 10.70 (d, $J = 5.4$ Hz, 1H).	
10-073	HO HO	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.38-1.54 (m, 6H), 1.61-1.80 (m, 6H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.77, 3.87 (ABx, $J = 6.6$ Hz, 4.5 Hz, 2H), 4.08-4.16 (m, 2H), 4.25 (quint, $J = 6.0$ Hz, 1H), 5.07 (d, $J = 5.4$ Hz, 1H), 7.23-7.36 (m, 3H), 7.44-7.49 (m, 2H), 8.28 (s, 1H), 10.70 (d, $J = 6.6$ Hz, 1H).	
10-074	0,50	nBu	1.01 (t, $J = 7.5$ Hz, 3H), 1.32-1.54 (m, 4H), 1.46 (sextet, $J = 7.5$ Hz, 2H), 1.61-1.78 (m, 6H), 2.57 (t, $J = 6.0$ Hz, 2H), 2.86 (t, $J = 6.0$ Hz, 2H), 4.03-4.22 (m, 2H), 4.12, 5.32 (ABx, $J = 12.0$ Hz, 1.5 Hz, 2H), 4.60 (dd, $J = 9.0$ Hz, 1.5 Hz, 1H), 6.32 (d, $J = 1.5$ Hz, 1H), 7.24-7.32 (m, 3H), 7.38-7.42 (m, 2H), 8.09 (s, 1H), 10.97 (d, $J = 8.7$ Hz, 1H).	
10-075	0.5.0.	nBu	1.01 (t, $J = 7.5$ Hz, 3H), 1.35-1.56 (m, 4H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.61-1.79 (m, 6H), 2.57 (t, $J = 6.0$ Hz, 2H), 2.86 (t, $J = 6.0$ Hz, 2H), 4.02-4.23 (m, 2H), 4.12, 5.32 (ABx, $J = 9.9$ Hz, 1.5 Hz, 2H), 4.56-4.63 (m, 1H), 6.32 (d, $J = 1.8$ Hz, 1H), 7.24-7.32 (m, 3H), 7.38-7.42 (m, 2H), 8.09 (s, 1H), 10.97 (d, $J = 8.7$ Hz, 1H).	

			K K
化合物 No.	\mathbb{R}^{r}	${f R^5}$	¹H-NMR (CDCl₃)
10-076	OH OH	, nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.38-1.52 (m, 4H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.63-1.79 (m, 6H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.55, 3.77 (ABx, $J = 6.0$ Hz, 5.1 Hz, 2H), 3.73 (br s, 1H), 4.03-4.19 (m, 2H), 4.43-4.52 (m, 1H), 5.10 (d, $J = 6.0$ Hz, 1H), 7.26-7.37 (m, 3H), 7.46-7.50 (m, 2H), 8.25 (s, 1H), 10.67 (d, $J = 8.1$ Hz, 1H).
10-077	OTBDMS ŌH	nBu	0.05 (s, 3H), 0.06 (s, 3H), 0.93 (s, 9H), 0.98 (t, $J = 7.5 \text{ Hz}$, 3H), 1.33-1.51 (m, 6H), 1.62-1.79 (m, 6H), 1.90 (br s, 1H), 2.61 (t, $J = 6.0 \text{ Hz}$, 2H), 2.88 (t, $J = 6.0 \text{ Hz}$, 2H), 3.73, 3.82 (ABx, $J = 6.0 \text{ Hz}$, 4.5 Hz, 2H), 4.01-4.19 (m, 2H), 4.26 (sextet, $J = 4.5 \text{ Hz}$, 1H), 5.10 (d, $J = 5.4 \text{ Hz}$, 1H), 7.24-7.33 (m, 3H), 7.43-7.48 (m, 2H), 8.22 (s, 1H), 10.71 (d, $J = 7.5 \text{ Hz}$, 1H).
10-078	O-TBDMS OH	nBu	0.05 (s, 3H), 0.06 (s, 3H), 0.93 (s, 9H), 0.99 (t, $J = 7.5$ Hz, 3H), 1.33-1.50 (m, 6H), 1.62-1.79 (m, 6H), 2.05 (br s, 1H), 2.61 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 3.73, 3.82 (ABx, $J = 6.0$ Hz, 4.5 Hz, 2H), 4.02-4.20 (m, 2H), 4.27 (sextet, $J = 4.5$ Hz, 1H), 5.10 (d, $J = 4.8$ Hz, 1H), 7.22-7.34 (m, 3H), 7.44-7.47 (m, 2H), 8.22 (s, 1H), 10.72 (d, $J = 8.1$ Hz, 1H).
10-079	NH2 CH6CO2H	nBu	0.97 (t, J = 7.5 Hz, 3H), 1.37-1.52 (m, 6H), 1.61-1.80 (m, 6H), 2.03 (s, 3H), 2.67 (t, J = 6.0 Hz, 2H), 2.91 (t, J = 6.0 Hz, 2H), 3.06, 3.40 (ABx, J = 9.0 Hz, 7.2 Hz, 2H), 3.74 (quint, J = 7.5 Hz, 1H), 3.99-4.21 (m, 2H), 5.46 (t, J = 6.9 Hz, 1H), 7.22-7.29 (m, 3H), 7.33-7.38 (m, 1H), 8.33 (s, 1H), 10.60 (d, J = 6.3 Hz, 1H).
10-080	CSCH,co₂H	nBu	0.97 (t, J = 7.5 Hz, 3H), 1.37-1.54 (m, 6H), 1.61-1.78 (m, 6H), 2.01 (s, 3H), 2.67 (t, J = 6.0 Hz, 2H), 2.91 (t, J = 6.0 Hz, 2H), 3.11, 3.41 (ABx, J = 9.0 Hz, 7.5 Hz, 2H), 3.76 (quint, J = 7.5 Hz, 1H), 3.99-4.23 (m, 2H), 5.48 (t, J = 6.6 Hz, 1H), 7.21-7.30 (m, 3H), 7.34-7.38 (m, 1H), 8.32 (s, 1H), 10.64 (d, J = 6.0 Hz, 1H).

			R
化合物 No.	R ^r	R ⁵	¹H-NMR (CDCl ₃)
10-081	NHAc ""	nBu	0.97 (t, $J = 7.5$ Hz, 3H), 1.37-1.57 (m, 6H), 1.62-1.81 (m, 6H), 2.02 (s, 3H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.71, 3.68 (ABx, $J = 15.6$ Hz, 7.8 Hz, 2H), 2.91 (t, $J = 6.0$ Hz, 2H), 3.92-4.07 (m, 1H), 4.11-4.27 (m, 2H), 5.60 (t, $J = 9.0$ Hz, 1H), 7.21-7.35 (m, 5H), 8.31 (s, 1H), 10.66 (d, $J = 8.1$ Hz, 1H).
10-082	NHAC	nBu	0.97 (t, $J = 7.5$ Hz, 3H), 1.38-1.58 (m, 6H), 1.66-1.82 (m, 6H), 2.02 (s, 3H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.71, 3.68 (ABx, $J = 15.6$ Hz, 7.8 Hz, 2H), 2.91 (t, $J = 6.0$ Hz, 2H), 3.92-4.06 (m, 1H), 4.12-4.28 (m, 2H), 5.60 (t, $J = 9.0$ Hz, 1H), 7.20-7.34 (m, 5H), 8.31 (s, 1H), 10.66 (d, $J = 7.8$ Hz, 1H).
10-083	O NH	пВu	0.98 (t, J = 7.5 Hz, 3H), 1.17 (t, J = 7.5 Hz, 6H), 1.37-1.56 (m, 4H), 1.44 (sextet, J = 7.5 Hz, 2H), 1.63-1.80 (m, 6H), 2.43 (quint, J = 7.2 Hz, 1H), 2.67 (t, J = 6.0 Hz, 2H), 2.70, 3.71 (ABx, J = 15.6 Hz, 7.8 Hz, 2H), 2.91 (t, J = 6.0 Hz, 2H), 3.98-4.06 (m, 1H), 4.13-4.21 (m, 2H), 5.60 (t, J = 9.0 Hz, 1H), 7.22-7.37 (m, 5H), 8.31 (s, 1H), 10.65 (d, J = 7.5 Hz, 1H).
10-084	OH	nBu	0.98 (t, $J = 7.2$ Hz, 3H), 1.38-1.52 (m, 6H), 1.62-1.80 (m, 6H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.0$ Hz, 2H), 3.94, 4.14 (ABx, $J = 12.0$ Hz, 6.0 Hz, 2H), 4.08-4.18 (m, 2H), 5.76-5.82 (m, 1H), 7.47-7.53 (m, 2H), 7.57-7.63 (m, 1H), 8.08-8.11 (m, 2H), 8.29 (s, 1H), 11.13 (d, $J = 6.6$ Hz, 1H).
10-085	OH	nBu	0.98 (t, $J = 7.5$ Hz, 3H), 1.37-1.56 (m, 6H), 1.61-1.80 (m, 6H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.0$ Hz, 2H), 3.94, 4.14 (ABx, $J = 12.0$ Hz, 6.0 Hz, 2H), 4.08-4.18 (m, 2H), 5.77-5.83 (m, 1H), 7.48-7.53 (m, 2H), 7.57-7.65 (m, 1H), 8.08-8.12 (m, 2H), 8.30 (s, 1H), 11.14 (d, $J = 6.6$ Hz, 1H).
10-086	C	nBu	0.98 (t, J = 7.5 Hz, 3H), 1.38-1.53 (m, 6H), 1.65-1.81 (m, 6H), 2.64 (t, J = 6.0 Hz, 2H), 2.89 (t, J = 6.0 Hz, 2H), 3.89, 4.11 (ABx, J = 11.4 Hz, 5.1 Hz, 2H), 4.08-4.19 (m, 2H), 6.01-6.08 (m, 1H), 7.45-7.53 (m, 2H), 7.57-7.63 (m, 1H), 8.04-8.08 (m, 2H), 8.28 (s, 1H), 10.92 (d, J = 7.5 Hz, 1H).

表 5 9

			R°
化合物 No.	Rr	R^5	¹H-NMR (CDCl₃)
10-087	CI	nBu	0.98 (t, $J = 7.5$ Hz, 3H), 1.36-1.51 (m, 6H), 1.62-1.79 (m, 6H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.90, 4.11 (ABx, $J = 11.4$ Hz, 5.1 Hz, 2H), 4.08-4.19 (m, 2H), 6.00-6.08 (m, 1H), 7.45-7.53 (m, 2H), 7.56-7.63 (m, 1H), 8.03-8.07 (m, 2H), 8.28 (s, 1H), 10.92 (d, $J = 7.8$ Hz, 1H).
10-088		nBu	0.98 (t, $J = 7.5 \text{ Hz}$, 3H), 1.38-1.54 (m, 6H), 1.64-1.80 (m, 6H), 2.66 (t, $J = 6.0 \text{ Hz}$, 2H), 2.91 (t, $J = 6.0 \text{ Hz}$, 2H), 4.17 (br t, $J = 7.5 \text{ Hz}$, 2H), 5.58 (s, 1H), 7.10 (s, 1H), 7.42-7.49 (m, 2H), 7.53-7.59 (m, 1H), 7.77-7.82 (m, 2H), 8.31 (s, 1H), 12.52 (br s, 1H).
10-089	F	nBu	0.99 (t, J = 7.5 Hz, 3H), 1.37-1.55 (m, 6H), 1.60-1.81 (m, 6H), 2.63 (t, J = 6.0 Hz, 2H), 2.89 (t, J = 6.0 Hz, 2H), 3.91 (d, J = 6.0 Hz, 2H), 4.12 (br t, J = 7.5 Hz, 2H), 5.51-5.58 (m, 1H), 7.27-7.48 (m, 5H), 8.29 (s, 1H), 10.77 (d, J = 8.1 Hz, 1H).
10-090	CI	nBu	0.98 (t, J = 7.5 Hz, 3H×2/5), 0.99 (t, J = 7.5 Hz, 3H×3/5), 1.36-1.79 (m, 12H), 2.61 (t, J = 6.0 Hz, 2H×2/5), 2.62 (t, J = 6.0 Hz, 2H×3/5), 2.87 (t, J = 6.0 Hz, 2H×2/5), 2.88 (t, J = 6.0 Hz, 2H×3/5), 3.52, 4.15 (ABx, J = 11.1 Hz, 4.2 Hz, 2H), 4.10-4.20 (m, 2H), 4.83-4.91 (m, 1H×3/5), 4.98-5.08 (m, 1H×2/5), 5.30 (d, J = 5.4 Hz, 1H×2/5), 5.44 (d, J = 5.4 Hz, 1H×3/5), 7.28-7.38 (m, 3H), 7.46-7.53 (m, 2H), 8.16 (s, 1H×2/5), 8.23 (s, 1H×3/5), 10.46 (d, J = 8.4 Hz, 1H×2/5), 10.72 (d, J = 8.4 Hz, 1H×3/5).
10-091	O-TBDMS	nBu	-0.12 (s, 3H), -0.11 (s, 3H), 0.74 (s, 9H), 0.98 (t, J = 7.5 Hz, 3H), 1.36-1.53 (m, 6H), 1.62-1.78 (m, 6H), 2.62 (t, J = 6.0 Hz, 2H), 2.88 (t, J = 6.0 Hz, 2H), 3.96-4.10 (m, 2H), 4.11-4.22 (m, 2H), 5.80-5.88 (m, 1H), 7.43-7.49 (m, 2H), 7.53-7.61 (m, 1H), 8.05-8.09 (m, 2H), 8.26 (s, 1H), 10.81 (d, J = 7.5 Hz, 1H).

	•		R ⁵
化合物 No.	Rr	R⁵	¹H-NMR (CDCl₃)
10-092	O-TBDMS	nBu	-0.12 (s, 3H), -0.11 (s, 3H), 0.74 (s, 9H), 0.98 (t, J = 7.5 Hz, 3H), 1.37-1.52 (m, 6H), 1.62-1.78 (m, 6H), 2.62 (t, J = 6.0 Hz, 2H), 2.88 (t, J = 6.0 Hz, 2H), 3.96-4.10 (m, 2H), 4.10-4.23 (m, 2H), 5.80-5.87 (m, 1H), 7.43-7.49 (m, 2H), 7.53-7.61 (m, 1H), 8.05-8.09 (m, 2H), 8.26 (s, 1H), 10.80 (d, J = 7.5 Hz, 1H).
10-093	ÖH CI	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.37-1.52 (m, 6H), 1.63-1.81 (m, 6H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.56, 3.77 (ABx, $J = 11.1$ Hz, 5.1 Hz, 2H), 4.08-4.18 (m, 2H), 4.44-4.53 (m, 1H), 5.10 (d, $J = 6.0$ Hz, 1H), 7.25-7.37 (m, 3H), 7.46-7.49 (m, 2H), 8.28 (s, 1H), 10.69 (d, $J = 7.8$ Hz, 1H).
10-094	ÇCI3	nBu	1.00 (t, J = 7.2 Hz, 3H), 1.38-1.52 (m, 6H), 1.63-1.80 (m, 6H), 2.63 (t, J = 6.0 Hz, 2H), 2.89 (t, J = 6.0 Hz, 2H), 4.11 (br t, J = 7.2 Hz, 2H), 4.34-4.42 (m, 1H), 4.48-4.57 (m, 2H), 5.03 (d, J = 4.8 Hz, 1H), 7.26-7.37 (m, 3H), 7.41-7.46 (m, 2H), 8.26 (s, 1H), 10.62 (d, J = 7.5 Hz, 1H).
10-095	OH CCCI ³	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.38-1.52 (m, 6H), 1.62-1.79 (m, 6H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 4.11 (br t, $J = 7.2$ Hz, 2H), 4.34-4.42 (m, 1H), 4.48-4.57 (m, 2H), 5.03 (d, $J = 4.5$ Hz, 1H), 7.26-7.37 (m, 3H), 7.41-7.46 (m, 2H), 8.24 (s, 1H), 10.60 (d, $J = 7.5$ Hz, 1H).
10-096	F-	nBu	0.99 (t, J = 7.2 Hz, 3H), 1.38-1.51 (m, 6H), 1.64-1.78 (m, 6H), 2.65 (t, J = 6.0 Hz, 2H), 2.90 (t, J = 6.0 Hz, 2H), 4.15 (br t, J = 7.2 Hz, 2H), 4.93 (d, J = 4.5 Hz, 2H), 7.14-7.21 (m, 2H), 8.04-8.10 (m, 2H), 8.30 (s, 1H), 10.79 (br s, 1H).
10-097	CI	nBu	0.98 (t, J = 7.5 Hz, 3H), 1.36-1.50 (m, 6H), 1.62-1.78 (m, 6H), 2.59 (t, J = 6.0 Hz, 2H), 2.86 (t, J = 6.0 Hz, 2H), 3.76, 4.15 (ABx, J = 11.7 Hz, 4.5 Hz, 2H), 4.00-4.13 (m, 2H), 4.98-5.07 (m, 1H), 5.30 (d, J = 8.1 Hz, 1H), 7.24-7.37 (m, 3H), 7.49-7.53 (m, 2H), 8.16 (s, 1H), 10.46 (d, J = 8.7 Hz, 1H).

表 6 1

	H H				
化合物 No.	$\mathbf{R}^{\mathbf{r}}$	\mathbb{R}^5	¹ H-NMR (CDCl ₃)		
10-098	OHC, CI	nBu	1.01 (t, $J = 7.2$ Hz, 3H), 1.38-1.52 (m, 6H), 1.63-1.81 (m, 6H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.47, 3.65 (ABx, $J = 11.1$ Hz, 5.1 Hz, 2H), 4.08-4.19 (m, 2H), 4.83-4.92 (m, 1H), 6.28 (d, $J = 6.6$ Hz, 1H), 7.29-7.39 (m, 3H), 7.44-7.53 (m, 2H), 8.17 (s, 1H), 8.23 (s, 1H), 10.64 (d, $J = 8.7$ Hz, 1H).		
10-099		nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.38-1.52 (m, 6H), 1.62-1.79 (m, 6H), 2.59 (t, $J = 6.0$ Hz, 2H), 2.86 (t, $J = 6.0$ Hz, 2H), 3.76, 4.15 (ABx, $J = 11.4$ Hz, 4.5 Hz, 2H), 3.99-4.13 (m, 2H), 4.98-5.07 (m, 1H), 5.30 (d, $J = 7.8$ Hz, 1H), 7.24-7.41 (m, 3H), 7.50-7.53 (m, 2H), 8.16 (s, 1H), 10.46 (d, $J = 8.4$ Hz, 1H).		
10-100	OHC	nBu	1.01 (t, $J = 7.5$ Hz, 3H), 1.40-1.53 (m, 6H), 1.64-1.80 (m, 6H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.47, 3.65 (ABx, $J = 11.1$ Hz, 5.1 Hz, 2H), 4.08-4.18 (m, 2H), 4.83-4.92 (m, 1H), 6.28 (d, $J = 6.3$ Hz, 1H), 7.30-7.38 (m, 3H), 7.45-7.49 (m, 2H), 8.17 (s, 1H), 8.23 (s, 1H), 10.64 (d, $J = 9.0$ Hz, 1H).		
10-101	Q	~~	1.21-1.52 (m, 8H), 1.59-1.79 (m, 8H), 1.94-1.99 (m, 2H), 2.09 (quint, J = 6.0 Hz, 2H), 2.64 (t, J = 6.0 Hz, 2H), 2.92 (t, J = 6.0 Hz, 2H), 3.78 (t, J = 6.0 Hz, 2H), 3.93-4.03 (m, 1H), 4.05 (dd, J = 6.6 Hz, 2.1 Hz, 1H), 4.20 (dd, J = 14.1 Hz, 2.1 Hz, 1H), 4.25 (br t, J = 7.5 Hz, 2H), 6.49 (dd, J = 14.4 Hz, 6.9 Hz, 1H), 8.31 (s, 1H), 9.85 (d, J = 7.8 Hz, 1H).		
10-102	0	но	1.30-1.54 (m, 8H), 1.60-1.78 (m, 8H), 1.87-2.00 (m, 4H), 2.65 (t, $J = 6.0 \text{ Hz}$, 2H), 2.93 (t, $J = 6.0 \text{ Hz}$, 2H), 3.53 (t, $J = 6.0 \text{ Hz}$, 2H), 3.91-4.02 (m, 1H), 4.34 (br t, $J = 7.5 \text{ Hz}$, 2H), 8.37 (s, 1H), 9.77 (d, $J = 7.2 \text{ Hz}$, 1H).		
10-103	CF ₃	nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.39-1.55 (m, 4H), 1.49 (sextet, $J = 7.5$ Hz, 2H), 1.68-1.83 (m, 6H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.92 (t, $J = 6.0$ Hz, 2H), 4.18 (br t, $J = 7.5$ Hz, 2H), 7.21 (t, $J = 7.5$ Hz, 1H), 7.55 (t, $J = 7.5$ Hz, 1H), 7.64 (d, $J = 8.1$ Hz, 1H), 8.32 (d, $J = 8.1$ Hz, 1H), 8.36 (s, 1H), 12.41 (br s, 1H).		

			R°
化合物 No.	Rr	$ m R^{5}$	¹H-NMR (CDCl₃)
10-104	MeO-	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.38-1.52 (m, 6H), 1.63-1.80 (m, 6H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.0$ Hz, 2H), 3.88 (s, 3H), 4.14 (br t, $J = 7.2$ Hz, 2H), 4.91 (d, $J = 4.5$ Hz, 2H), 6.97 (d, $J = 8.4$ Hz, 2H), 8.03 (d, $J = 8.4$ Hz, 2H), 8.30 (s, 1H), 10.80 (br s, 1H).
10-105	Br—O	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.36- 1.53 (m, 4H), 1.47 (sextet, $J =$ 7.2 Hz, 2H), 1.63-1.80 (m, 6H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J =$ 6.0 Hz, 2H), 4.15 (br t, $J =$ 7.2 Hz, 2H), 4.91 (d, $J =$ 4.5 Hz, 2H), 7.64 (d, $J =$ 8.7 Hz, 2H), 7.90 (d, J = 8.7 Hz, 2H), 8.29 (s, 1H), 10.79 (br s, 1H).
10-106	\Diamond	Me ^O	1.30-1.53 (m, 8H), 1.58-1.79 (m, 8H), 1.96-2.02 (m, 2H), 2.65 (t, $J = 6.0 \text{ Hz}$, 2H), 3.03 (t, $J = 6.0 \text{ Hz}$, 2H), 3.31 (s, 3H), 3.69 (t, $J = 5.4 \text{ Hz}$, 2H), 3.92-4.03 (m, 1H), 4.33 (t, $J = 5.4 \text{ Hz}$, 2H), 8.32 (s, 1H), 9.83 (d, $J = 7.2 \text{ Hz}$, 1H).
10-107		Me ^O	1.35-1.42 (m, 2H), 1.43-1.52 (m, 2H), 1.62-1.79 (m, 4H), 2.70 (t, $J = 6.0 \text{ Hz}$, 2H), 3.06 (t, $J = 6.0 \text{ Hz}$, 2H), 3.31 (s, 3H), 3.74 (t, $J = 5.4 \text{ Hz}$, 2H), 4.40 (d, $J = 5.4 \text{ Hz}$, 2H), 4.97 (d, $J = 4.5 \text{ Hz}$, 2H), 7.50 (t, $J = 7.5 \text{ Hz}$, 2H), 7.61 (t, $J = 7.5 \text{ Hz}$, 1H), 8.05 (d, $J = 7.5 \text{ Hz}$, 2H), 8.33 (s, 1H), 10.75 (br s, 1H).
10-108	Bn. _N	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.38-1.52 (m, 6H), 1.63-1.79 (m, 8H), 1.95-2.07 (m, 2H), 2.20-2.33 (m, 2H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.82-2.94 (m, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 3.55 (br s, 2H), 3.96-4.07 (m, 1H), 4.10 (br t, $J = 7.2$ Hz, 2H), 7.23-7.40 (m, 5H), 8.27 (s, 1H), 9.97 (br s, 1H).
10-109	HN CH ₃ CO ₂ H	nBu	1.00 (t, $J = 7.5$ Hz, 3H), 1.37-1.50 (m, 6H), 1.63-1.79 (m, 6H), 1.81-1.97 (m, 2H), 2.04 (s, 3H), 2.15-2.24 (m, 2H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.01 (t, $J = 10.2$ Hz, 2H), 3.33-3.41 (m, 2H), 4.09 (br t, $J = 7.5$ Hz, 2H), 4.10-4.25 (m, 1H), 8.26 (s, 1H), 10.21 (d, $J = 7.2$ Hz, 1H).

化合物	R ^r	R ⁵	¹H-NMR (CDCl₃)
No.	K -		
10-110	Ac. N	nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.36-1.58 (m, 4H), 1.46 (sextet, $J = 7.5$ Hz, 2H), 1.62-1.79 (m, 8H), 1.97-2.11 (m, 2H), 2.11 (s, 3H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 2.92-3.02 (m, 1H), 3.21-3.31 (m, 1H), 3.75-3.81 (m, 1H), 4.09 (br t, $J = 7.5$ Hz, 2H), 4.11-4.23 (m, 1H), 4.37-4.43 (m, 1H), 8.29 (s, 1H), 10.08 (d, $J = 7.5$ Hz, 1H).
10-111	Bz.N	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.36-1.57 (m, 4H), 1.46 (sextet, $J = 7.2$ Hz, 2H), 1.62-1.79 (m, 8H), 1.93-2.15 (m, 2H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.11-3.27 (m, 2H), 3.69-3.79 (m, 1H), 4.10 (br t, $J = 7.2$ Hz, 2H), 4.19-4.30 (m, 1H), 4.50-4.60 (m, 1H), 7.41 (s, 5H), 8.29 (s, 1H), 10.12 (d, $J = 7.5$ Hz, 1H).
10-112	22	nBu	0.99 (t, J = 7.5 Hz, 3H), 1.29 (s, 9H), 1.35-1.79 (m, 14H), 2.00-2.09 (m, 2H), 2.65 (t, J = 6.0 Hz, 2H), 2.89 (t, J = 6.0 Hz, 2H), 3.09 (t, J = 11.4 Hz, 2H), 4.06-4.35 (m, 5H), 8.30 (s, 1H), 10.06 (d, J = 7.5 Hz, 1H).
10-113		nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.28-1.81 (m, 24H), 1.98-2.10 (m, 2H), 2.44-2.53 (m, 1H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 2.89-2.99 (m, 1H), 3.15-3.28 (m, 1H), 3.85-3.93 (m, 1H), 4.09 (br t, $J = 7.2$ Hz, 2H), 4.10-4.25 (m, 1H), 4.40-4.48 (m, 1H), 8.30 (s, 1H), 10.06 (d, $J = 6.9$ Hz, 1H).
10-114	Ms. _N	nBu	1.02 (t, $J = 7.5$ Hz, 3H), 1.38-1.78 (m, 14H), 2.07-2.20 (m, 2H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.81 (s, 3H), 2.90 (t, $J = 6.0$ Hz, 2H), 2.94-3.01 (m, 2H), 3.70-3.79 (m, 2H), 4.11 (br t, $J = 7.5$ Hz, 2H), 4.11-4.23 (m, 1H), 8.29 (s, 1H), 10.11 (d, $J = 7.2$ Hz, 1H).
10-115	0,s.0	nBu	0.99 (t, $J = 7.2 \text{ Hz}$, 3H), 1.37-1.51 (m, 6H), 1.62-1.78 (m, 8H), 2.03-2.09 (m, 2H), 2.53 (td, $J = 11.4 \text{ Hz}$, 2.4 Hz, 2H), 2.62 (t, $J = 6.0 \text{ Hz}$, 2H), 2.88 (t, $J = 6.0 \text{ Hz}$, 2H), 3.71-3.77 (m, 2H), 3.82-3.94 (m, 1H), 4.07 (br t, $J = 7.5 \text{ Hz}$, 2H), 7.52-7.65 (m, 3H), 7.76-7.71 (m, 2H), 8.25 (s, 1H), 10.00 (d, $J = 6.9 \text{ Hz}$, 1H).

表 6 4

. Н				
化合物 No.	$\mathbf{R}^{\mathbf{r}}$	R ⁵	¹H-NMR (CDCl₃)	
10-116	Me, N	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.38-1.50 (m, 4H), 1.47 (quint, $J = 7.2$ Hz, 2H), 1.64-1.82 (m, 8H), 2.01-2.09 (m, 2H), 2.25-2.34 (m, 2H), 2.35 (s, 3H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.82-2.90 (m, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 3.97-4.06 (m, 1H), 4.10 (br t, $J = 7.2$ Hz, 2H), 8.28 (s, 1H), 9.98 (d, $J = 7.2$ Hz, 1H).	
10-117	\bigcirc	CI	1.21-1.53 (m, 8H), 1.62-1.82 (m, 8H), 1.95-2.00 (m, 2H), 2.20 (dt, $J = 15.0$ Hz, 6.0 Hz, 2H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.94 (t, $J = 6.0$ Hz, 2H), 3.69 (t, $J = 6.0$ Hz, 2H), 3.92-4.02 (m, 1H), 4.28 (t, $J = 7.5$ Hz, 2H), 8.33 (s, 1H), 9.80 (d, $J = 6.9$ Hz, 1H).	
10-118		MsO	1.26-1.52 (m, 8H), 1.60-1.80 (m, 8H), 1.94-2.00 (m, 2H), 2.19 (quint, $J = 6.3$ Hz, 2H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.0$ Hz, 2H), 3.06 (s, 3H), 3.92-4.01 (m, 1H), 4.27 (t, $J = 7.5$ Hz, 2H), 4.38 (t, $J = 6.0$ Hz, 2H), 8.33 (s, 1H), 9.78 (d, $J = 8.1$ Hz, 1H).	
10-119		Acs	1.25-1.52 (m, 8H), 1.59-1.79 (m, 8H), 1.93-2.05 (m, 4H), 2.32 (s, 3H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 2.98 (t, $J = 6.9$ Hz, 2H), 3.91-4.01 (m, 1H), 4.15 (t, $J = 7.2$ Hz, 2H), 8.30 (s, 1H), 9.82 (d, $J = 7.5$ Hz, 1H).	
10-120		N ₃	1.25-1.52 (m, 8H), 1.58-1.80 (m, 8H), 1.93-2.03 (m, 4H), 2.64 (t, $J = 6.0 \text{ Hz}$, 2H), 2.91 (t, $J = 6.0 \text{ Hz}$, 2H), 3.48 (t, $J = 6.0 \text{ Hz}$, 2H), 3.92-4.03 (m, 1H), 4.20 (t, $J = 7.5 \text{ Hz}$, 2H), 8.32 (s, 1H), 9.81 (d, $J = 6.9 \text{ Hz}$, 1H).	
10-121		CH₃CO₂H H₂N	1.27-1.53 (m, 8H), 1.60-1.81 (m, 8H), 1.92-2.01 (m, 2H), 2.05 (s, 3H), 2.20-2.29 (m, 2H), 2.66 (t, $J = 6.0 \text{ Hz}$, 2H), 2.90 (t, $J = 6.0 \text{ Hz}$, 2H), 2.98 (br s, 2H), 3.90-4.00 (m, 1H), 4.27-4.35 (m, 2H), 8.40 (s, 1H), 9.50 (d, $J = 7.5 \text{ Hz}$, 1H).	
10-122		AcHN	1.24-1.52 (m, 8H), 1.62-1.79 (m, 8H), 1.88-2.03 (m, 4H), 2.03 (s, 3H), 2.65 (t, J = 6.0 Hz, 2H), 2.89 (t, J = 6.0 Hz, 2H), 3.24-3.30 (m, 2H), 3.97-4.05 (m, 1H), 4.22 (br t, J = 7.5 Hz, 2H), 6.72 (br s, 1H), 8.35 (s, 1H), 9.81 (d, J = 7.8 Hz, 1H).	

R ^r				
化合物 No.	\mathbb{R}^{r}	R ⁵	¹ H-NMR (CDCl ₈)	
10-123	F ₃ C N	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.37-1.52 (m, 6H), 1.60-1.72 (m, 6H), 1.71-1.80 (m, 2H), 2.07-2.17 (m, 2H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.17 (t, $J = 11.1$ Hz, 1H), 3.37 (t, $J = 11.1$ Hz, 1H), 3.92-3.99 (m, 1H), 4.03-4.12 (m, 2H), 4.22-4.37 (m, 2H), 8.28 (s, 1H), 10.17 (d, $J = 7.2$ Hz, 1H).	
10-124	\bigcirc	BzHN	1.29-1.51 (m, 8H), 1.65-1.77 (m, 8H), 1.92-2.05 (m, 4H), 2.65 (t, $J = 6.0 \text{ Hz}$, 2H), 2.93 (t, $J = 6.0 \text{ Hz}$, 2H), 3.45 (br s, 2H), 3.97-4.05 (m, 1H), 4.32 (br t, $J = 7.5 \text{ Hz}$, 2H), 7.42-7.55 (m, 3H), 7.89 (br s, 1H), 7.90-7.96 (m, 2H), 8.37 (s, 1H), 9.90 (d, $J = 7.8 \text{ Hz}$, 1H).	
10-125	\bigcirc	NH H	1.25 (s, 9H), 1.28-1.51 (m, 8H), 1.60-1.78 (m, 8H), 1.85-2.00 (m, 4H), 2.64 (t, $J = 6.0 \text{ Hz}$, 2H), 2.90 (t, $J = 6.0 \text{ Hz}$, 2H), 3.23 (br s, 2H), 3.95-4.04 (m, 1H), 4.22 (br t, $J = 7.5 \text{ Hz}$, 2H), 7.12 (br s, 1H), 8.35 (s, 1H), 9.89 (d, $J = 7.5 \text{ Hz}$, 1H).	
10-126	\Diamond	→ H N N N N N N N N N N N N N N N N N N	1.27-1.52 (m, 8H), 1.57-1.80 (m, 14H), 1.83-2.01 (m, 6H), 2.55-2.65 (m, 1H), 2.64 (t, $J = 6.0 \text{ Hz}$, 2H), 2.89 (t, $J = 6.0 \text{ Hz}$, 2H), 3.25-3.29 (m, 2H), 3.95-4.04 (m, 1H), 4.22 (br t, $J = 7.5 \text{ Hz}$, 2H), 6.73 (br s, 1H), 8.34 (s, 1H), 9.85 (d, $J = 8.1 \text{ Hz}$, 1H).	
10-127	0	F ₃ C N	1.29-1.52 (m, 8H), 1.61-1.79 (m, 8H), 1.91-2.02 (m, 4H), 2.66 (t, $J = 6.0 \text{ Hz}$, 2H), 2.91 (t, $J = 6.0 \text{ Hz}$, 2H), 3. 34 (br s, 2H), 3.97-4.04 (m, 1H), 4.27 (br t, $J = 7.5 \text{ Hz}$, 2H), 8.39 (s, 1H), 8.67 (br s, 1H), 9.76 (d, $J = 8.1 \text{ Hz}$, 1H).	
10-128	Br	nBu	1.00 (t, $J = 7.5$ Hz, 3H), 1.40- 1.54 (m, 6H), 1.68-1.81 (m, 6H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.92 (t, $J = 6.0$ Hz, 2H), 4.15 (br t, $J = 7.5$ Hz, 2H), 7.18 (d, $J = 7.5$ Hz, 1H), 7.53 (t, $J = 7.5$ Hz, 1H), 8.33 (d, $J = 7.5$ Hz, 1H), 8.34 (s, 1H), 12.69 (br s, 1H).	

PCT/JP01/11427

表 6 6

WO 02/053543

H-					
化合物 No.	R*	R ⁵	¹ H-NMR (CDCl ₃)		
10-129	OCHF₂	nBu	1.00 (t, $J = 7.2$ Hz, 3H), 1.37-1.54 (m, 6H), 1.65-1.81 (m, 6H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.92 (t, $J = 6.0$ Hz, 2H), 4.17 (br t, $J = 7.2$ Hz, 2H), 6.22 (s, 1H×1/5), 6.39 (s, 1H×1/5), 6.47 (s, 1H×1/5), 6.64 (s, 1H×1/5), 6.88 (s, 1H×1/5), 7.01-7.10 (m, 1H), 7.18-7.27 (m, 2H), 8.36 (s, 1H), 8.60 (dd, $J = 7.8$ Hz, 1.8 Hz, 1H), 12.59 (br s, 1H).		
10-130	OCF ₃	nBu	1.00 (t, $J = 7.5$ Hz, 3H), 1.37-1.53 (m, 4H), 1.47 (sextet, $J = 7.5$ Hz, 2H), 1.65-1.82 (m, 6H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.92 (t, $J = 6.0$ Hz, 2H), 4.18 (br t, $J = 7.5$ Hz, 2H), 7.08 (td, $J = 8.4$ Hz, 1.8 Hz, 1H), 7.26-7.34 (m, 2H), 8.36 (s, 1H), 8.64 (dd, $J = 9.0$ Hz, 1.8 Hz, 1H), 12.76 (br s, 1H).		
10-131	Br S	nBu	1.00 (t, $J = 7.5$ Hz, 3H), 1.38-1.54 (m, 4H), 1.47 (sextet, $J = 7.5$ Hz, 2H), 1.61-1.82 (m, 6H), 2.68 (t, $J = 6.0$ Hz, 2H), 2.93 (t, $J = 6.0$ Hz, 2H), 4.16 (br t, $J = 7.5$ Hz, 2H), 7.41 (s, 1H), 8.34 (s, 1H), 13.49 (br s, 1H).		
10-132	S.	nBu	1.01 (t, $J = 7.5$ Hz, 3H), 1.38-1.52 (m, 4H), 1.48 (sextet, $J = 7.5$ Hz, 2H), 1.63-1.85 (m, 6H), 2.68 (t, $J = 6.0$ Hz, 2H), 2.94 (t, $J = 6.0$ Hz, 2H), 4.17 (br t, $J = 7.5$ Hz, 2H), 7.27-7.32 (m, 1H), 7.36-7.42 (m, 2H), 7.57-7.61 (m, 2H), 7.71 (s, 1H), 8.37 (s, 1H), 13.52 (br s, 1H).		
10-133		nBu	1.01 (t, $J = 7.5$ Hz, 3H), 1.40-1.55 (m, 4H), 1.49 (sextet, $J = 7.5$ Hz, 2H), 1.65-1.81 (m, 6H), 2.68 (t, $J = 6.0$ Hz, 2H), 2.93 (t, $J = 6.0$ Hz, 2H), 4.19 (br t, $J = 7.5$ Hz, 2H), 7.38-7.52 (m, 4H), 7.78 (t, $J = 8.1$ Hz, 1H), 8.09 (d, $J = 8.1$ Hz, 2H), 8.33 (d, $J = 8.1$ Hz, 1H), 8.40 (s, 1H), 12.61 (br s, 1H).		
10-134	0	MsHN	1.28-1.52 (m, 8H), 1.63-1.80 (m, 8H), 1.92-2.01 (m, 4H), 2.64 (t, $J = 6.0 \text{ Hz}$, 2H), 2.90 (t, $J = 6.0 \text{ Hz}$, 2H), 2.94 (s, 3H), 3.08 (q, $J = 5.4 \text{ Hz}$, 2H), 3.94-4.02 (m, 1H), 4.29 (br t, $J = 7.5 \text{ Hz}$, 2H), 5.84 (br t, $J = 7.5 \text{ Hz}$, 1H), 8.35 (s, 1H), 9.72 (d, $J = 7.5 \text{ Hz}$, 1H).		

表 6 7

R*				
化合物 No.	$\mathbf{R}^{\mathbf{r}}$	\mathbb{R}^5	¹H-NMR (CDCl₃)	
10-135	Q	0.s.o H	1.29-1.50 (m, 8H), 1.63-1.78 (m, 8H), 1.86-2.00 (m, 4H), 2.61 (t, J=6.0 Hz, 2H), 2.79-2.90 (m, 2H), 2.85 (t, J=6.0 Hz, 2H), 3.95-4.03 (m, 1H), 4.24 (br t, J=7.5 Hz, 2H), 6.19 (br s, 1H), 7.44-7.58 (m, 3H), 7.82-7.87 (m, 2H), 8.34 (s, 1H), 9.75 (d, J=7.5 Hz, 1H).	
10-136	Acs	nBu	0.98 (t, $J = 7.5$ Hz, 3H), 1.36-1.53 (m, 4H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.64-1.77 (m, 6H), 2.31 (s, 3H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 3.21, 3.66 (ABx, $J = 13.8$ Hz, 6.0 Hz, 2H), 4.10 (br t, $J = 7.5$ Hz, 2H), 5.92-6.00 (m, 1H), 7.46-7.52 (m, 2H), 7.55-7.62 (m, 1H), 8.12-8.16 (m, 2H), 8.27 (s, 1H), 10.76 (d, $J = 8.4$ Hz, 1H).	
10-137	Acs / IIII	nBu	0.98 (t, $J = 7.5$ Hz, 3H), 1.36-1.52 (m, 4H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.63-1.77 (m, 6H), 2.31 (s, 3H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 3.21, 3.66 (ABx, $J = 13.8$ Hz, 6.0 Hz, 2H), 4.11 (br t, $J = 7.5$ Hz, 2H), 5.92-6.00 (m, 1H), 7.46-7.62 (m, 3H), 8.12-8.16 (m, 2H), 8.27 (s, 1H), 10.75 (d, $J = 7.8$ Hz, 1H).	
10-138		Me Me	1.01 (d, $J = 6.9$ Hz, 6H), 1.38-1.52 (m, 4H), 1.60-1.73 (m, 5H), 1.78 (quint, $J = 6.0$ Hz, 2H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.96 (t, $J = 6.0$ Hz, 2H), 4.16 (br t, $J = 7.5$ Hz, 2H), 4.97 (d, $J = 4.8$ Hz, 2H), 7.50 (t, $J = 7.5$ Hz, 2H), 7.61 (t, $J = 7.5$ Hz, 1H), 8.02-8.06 (m, 2H), 8.30 (s, 1H), 10.79 (br s, 1H).	
10-139		~	1.05-1.38 (m, 6H), 1.50 (br s, 2H), 1.63-1.77 (m, 10H), 1.82-1.93 (m, 1H), 2.65 (t, $J = 6.0 \text{ Hz}$, 2H), 2.93 (t, $J = 6.0 \text{ Hz}$, 2H), 4.97 (d, $J = 4.5 \text{ Hz}$, 2H), 7.50 (t, $J = 7.5 \text{ Hz}$, 2H), 7.61 (t, $J = 7.5 \text{ Hz}$, 1H), 8.02-8.06 (m, 2H), 8.31 (s, 1H), 10.79 (br s, 1H).	
10-140	Q	N	1.31-1.51 (m, 10H), 1.57-1.79 (m, 14H), 1.94-2.01 (m, 2H), 2.50-2.66 (m, 8H), 3.90-4.01 (m, 1H), 4.28 (br t, $J = 7.5$ Hz, 2H), 8.30 (s, 1H), 9.84 (d, $J = 7.8$ Hz, 1H).	

			R'
化合物 No.	Rr	\mathbb{R}^5	¹H-NMR (CDCl₃)
10-141	Bn. _N	Me Me	1.01 (t, $J = 6.3$ Hz, 6H), 1.34-1.53 (m, 4H), 1.56-1.80 (m, 9H), 1.97-2.05 (m, 2H), 2.17-2.27 (m, 2H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.81-2.89 (m, 2H), 2.87 (t, $J = 6.0$ Hz, 2H), 3.54 (s, 2H), 3.96-4.04 (m, 1H), 4.11 (br t, $J = 7.5$ Hz, 2H), 7.26-7.35 (m, 5H), 8.27 (s, 1H), 9.96 (d, $J = 7.2$ Hz, 1H).
10-142	Bn N	<i>\</i>	1.05-1.36 (m, 8H), 1.48 (br s, 2H), 1.64-1.88 (m, 11H), 1.96-2.05 (m, 2H), 2.22 (t, J= 9.9 Hz, 2H), 2.63 (t, J= 6.0 Hz, 2H), 2.81-2.86 (m, 2H), 2.91 (t, J= 6.0 Hz, 2H), 3.54 (s, 2H), 3.93-4.02 (m, 3H), 7.23-7.36 (m, 5H), 8.29 (s, 1H), 9.96 (d, J= 7.8 Hz, 1H).
10-143	HN CH₃CO₂H	Me Me	1.02 (d, $J = 6.6$ Hz, 6H), 1.36-1.73 (m, 8H), 1.77 (quint, $J = 6.0$ Hz, 4H), 1.98-2.10 (m, 1H), 2.05 (s, 3H), 2.21-2.30 (m, 2H), 2.61-2.68 (m, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.09 (t, $J = 9.9$ Hz, 2H), 3.42-3.50 (m, 2H), 4.05-4.21 (m, 3H), 8.25 (s, 1H), 10.27 (d, $J = 6.3$ Hz, 1H).
10-144	Ac. _N	Me Me	1.01 (d, J = 6.6 Hz, 6H), 1.36-1.72 (m, 9H), 1.76 (quint, J = 6.0 Hz, 4H), 1.99-2.10 (m, 2H), 2.11 (s, 3H), 2.64 (t, J = 6.0 Hz, 2H), 2.88 (t, J = 6.0 Hz, 2H), 2.91-3.00 (m, 1H), 3.21-3.03 (m, 1H), 3.76-3.81 (m, 1H), 4.10 (br t, J = 7.5 Hz, 2H), 4.11-4.25 (m, 1H), 4.36-4.44 (m, 1H), 8.28 (s, 1H), 10.07 (d, J = 7.2 Hz, 1H).
10-145	Ms. _N	Me Me	1.01 (d, $J = 6.3$ Hz, 6H), 1.37-1.80 (m, 13H), 2.08-2.16 (m, 2H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.81 (s, 3H), 2.88 (t, $J = 6.0$ Hz, 2H), 2.89-2.99 (m, 2H), 3.68-3.76 (m, 2H), 4.05-4.16 (m, 3H), 8.27 (s, 1H), 10.10 (d, $J = 7.2$ Hz, 1H).
10-146	F ₃ C N	Me Me	1.01 (d, $J = 6.3$ Hz, 6H), 1.38-1.78 (m, 13H), 2.08-2.15 (m, 2H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.11-3.21 (m, 1H), 3.31-3.41 (m, 1H), 3.96 (t, $J = 14.4$ Hz, 1H), 4.14 (br t, $J = 7.5$ Hz, 2H), 4.21-4.38 (m, 2H), 8.28 (s, 1H), 10.16 (d, $J = 7.5$ Hz, 1H).

表 6 9

	H [*]		
化合物 No.	Rr	R ⁵	¹H-NMR (CDCl₃)
10-147	HN CH₃CO₂H	<i>\\</i>	1.06-1.40 (m, 8H), 1.49 (br s, 2H), 1.61-1.99 (m, 11H), 2.18-2.28 (m, 2H), 2.64 (t, J = 6.0 Hz, 2H), 2.92 (t, J = 6.0 Hz, 2H), 3.04 (t, J = 10.5 Hz, 2H), 3.38-3.44 (m, 2H), 4.05-4.20 (m, 3H), 8.26 (s, 1H), 10.23 (d, J = 7.2 Hz, 1H).
10-148	Ac-N		1.02-1.33 (m, 8H), 1.45-1.80 (m, 13H), 1.98-2.10 (m, 2H), 2.11 (s, 3H), 2.65 (t, J=6.0 Hz, 2H), 2.92 (t, J=6.0 Hz, 2H), 2.93-3.01 (m, 1H), 3.21-3.31 (m, 1H), 3.74-3.81 (m, 1H), 3.99 (br s, 1H), 4.10-4.23 (m, 2H), 4.37-4.43 (m, 1H), 8.29 (s, 1H), 10.08 (d, J=7.8 Hz, 1H).
10-149	Ms N	<i>\\</i>	1.02-1.33 (m, 8H), 1.49 (br s, 2H), 1.60-1.81 (m, 11H), 2.08-2.15 (m, 2H), 2.65 (t, $J = 6.0$ Hz, 2H), 2.81 (s, 3H), 2.90-3.00 (m, 4H), 3.69-3.76 (m, 2H), 3.99 (br s, 1H), 4.06-4.12 (m, 2H), 8.28 (s, 1H), 10.10 (d, $J = 7.2$ Hz, 1H).
10-150	F ₃ C N		1.03-1.38 (m, 8H), 1.49 (br s, 2H), 1.60-1.85 (m, 11H), 2.07-2.17 (m, 2H), 2.65 (t, $J = 6.0 \text{ Hz}$, 2H), 2.91 (t, $J = 6.0 \text{ Hz}$, 2H), 3.11-3.21 (m, 1H), 3.31-3.41 (m, 1H), 3.96 (d, $J = 14.4 \text{ Hz}$, 2H), 4.00 (br s, 1H), 4.22-4.38 (m, 2H), 8.29 (s, 1H), 10.17 (d, $J = 7.5 \text{ Hz}$, 1H).
10-151	Me N	nBu	1.00 (t, $J = 7.2$ Hz, 3H), 1.37-1.54 (m, 4H), 1.47 (sextet, $J = 7.2$ Hz, 2H), 1.66-1.83 (m, 6H), 2.49 (s, 3H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.92 (t, $J = 6.0$ Hz, 2H), 4.16 (br t, $J = 7.2$ Hz, 2H), 6.87 (d, $J = 7.5$ Hz, 1H), 7.59 (t, $J = 7.5$ Hz, 1H), 8.15 (d, $J = 8.4$ Hz, 1H), 8.37 (s, 1H), 12.55 (br s, 1H).
10-152		nBu	0.99 (t, $J = 7.2 \text{ Hz}$, 3H), 1.38-1.54 (m, 4H), 1.46 (sextet, $J = 7.2 \text{ Hz}$, 2H), 1.66-1.83 (m, 6H), 2.67 (t, $J = 6.0 \text{ Hz}$, 2H), 2.92 (t, $J = 6.0 \text{ Hz}$, 2H), 4.15 (t, $J = 7.2 \text{ Hz}$, 2H), 6.99-7.04 (m, 1H), 7.67-7.74 (m, 1H), 8.38-8.37 (m, 2H), 8.36 (s, 1H), 12.77 (br s, 1H).
10-153	Br	Me ^O	1.36-1.43 (m, 2H), 1.47-1.55 (m, 2H), 1.65-1.80 (m, 4H), 2.69 (t, $J = 6.0$ Hz, 2H), 3.08 (t, $J = 6.0$ Hz, 2H), 3.31 (s, 3H), 3.74 (t, $J = 5.1$ Hz, 2H), 4.39 (t, $J = 5.1$ Hz, 2H), 7.18 (dd, $J = 7.5$ Hz, 0.9 Hz, 1H), 7.54 (t, $J = 7.8$ Hz, 1H), 8.33 (dd, $J = 8.1$ Hz, 0.9 Hz, 1H), 8.37 (s, 1H), 12.62 (br s, 1H).

表70

	•	·	Ř ⁵ .
化合物 No.	Rr	$ m R^5$	¹H-NMR (CDCl₃)
10-154	Br		1.38-1.83 (m, 14H), 2.52-2.73 (m, 6H), 2.67 (t, $J = 6.0$ Hz, 2H), 3.02 (br t, $J = 6.0$ Hz, 2H), 4.39 (br t, $J = 7.5$ Hz, 2H), 7.19 (dd, $J = 7.5$ Hz, 0.6 Hz, 1H), 7.54 (t, $J = 7.5$ Hz, 1H), 8.33 (dd, $J = 8.4$ Hz, 0.6 Hz, 1H), 8.35 (s, 1H), 12.58 (br s, 1H).
10-155	Br N	но	1.37-1.55 (m, 4H), 1.67-1.86 (m, 4H), 1.97 (quint, $J = 6.0 \text{ Hz}$, 2H), 2.68 (t, $J = 6.0 \text{ Hz}$, 2H), 2.97 (t, $J = 6.0 \text{ Hz}$, 2H), 3.60 (t, $J = 5.7 \text{ Hz}$, 2H), 4.39 (br t, $J = 7.5 \text{ Hz}$, 2H), 7.20 (dd, $J = 7.5 \text{ Hz}$, 0.6 Hz, 1H), 7.54 (t, $J = 7.8 \text{ Hz}$, 1H), 8.33 (dd, $J = 8.1 \text{ Hz}$, 0.6 Hz, 1H), 8.40 (s, 1H), 12.45 (br s, 1H).
10-156	Br N	MsO	1.39-1.46 (m, 2H), 1.47-1.56 (m, 2H), 1.66-1.74 (m, 2H), 1.77-1.85 (m, 2H), 2.23 (quint, $J = 6.0$ Hz, 2H), 2.68 (t, $J = 6.0$ Hz, 2H), 2.94 (t, $J = 6.0$ Hz, 2H), 3.10 (s, 3H), 4.33 (t, $J = 7.5$ Hz, 2H), 4.40 (t, $J = 6.0$ Hz, 2H), 7.19 (dd, $J = 7.5$ Hz, 0.6 Hz, 1H), 7.55 (t, $J = 7.8$ Hz, 1H), 8.32 (dd, $J = 8.4$ Hz, 0.6 Hz, 1H), 8.37 (s, 1H), 12.56 (br s, 1H).
10-157	Br N	Acs	1.37-1.45 (m, 2H), 1.47-1.56 (m, 2H), 1.66-1.74 (m, 2H), 1.76-1.85 (m, 2H), 2.03 (quint, $J = 7.5$ Hz, 2H), 2.37 (s, 3H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.92 (t, $J = 6.0$ Hz, 2H), 3.00 (t, $J = 7.2$ Hz, 2H), 4.21 (t, $J = 7.5$ Hz, 2H), 7.18 (d, $J = 7.5$ Hz, 1H), 7.54 (t, $J = 7.5$ Hz, 1H), 8.32 (d, $J = 8.4$ Hz, 1H), 8.35 (s, 1H), 12.59 (br s, 1H).
10-158	Br N	N ₃	1.38-1.45 (m, 2H), 1.47-1.56 (m, 2H), 1.66-1.74 (m, 2H), 1.77-1.86 (m, 2H), 1.97-2.07 (m, 2H), 2.68 (t, $J = 6.0 \text{ Hz}$, 2H), 2.95 (t, $J = 6.0 \text{ Hz}$, 2H), 3.52 (t, $J = 6.0 \text{ Hz}$, 2H), 4.25 (t, $J = 7.5 \text{ Hz}$, 2H), 7.19 (dd, $J = 7.5 \text{ Hz}$, 0.6 Hz, 1H), 7.54 (t, $J = 7.8 \text{ Hz}$, 1H), 8.32 (dd, $J = 8.4 \text{ Hz}$, 0.6 Hz, 1H), 8.36 (s, 1H), 12.58 (br s, 1H).

表71

			R*
化合物 No.	Rr	R ⁵	¹ H-NMR (CDCl ₃)
10-159	Br N	AcHN	1.38-1.44 (m, 2H), 1.47-1.56 (m, 2H), 1.65-1.74 (m, 2H), 1.76-1.84 (m, 2H), 1.94 (quint, $J = 6.6$ Hz, 2H), 2.10 (s, 3H), 2.68 (t, $J = 6.0$ Hz, 2H), 2.93 (t, $J = 6.0$ Hz, 2H), 3.30 (q, $J = 6.0$ Hz, 2H), 4.26 (br t, $J = 7.5$ Hz, 2H), 6.63 (br t, $J = 7.5$ Hz, 1H), 7.21 (dd, $J = 8.1$ Hz, 0.6 Hz, 1H), 7.56 (t, $J = 7.8$ Hz, 1H), 8.34 (dd, $J = 8.1$ Hz, 0.6 Hz, 1H), 8.39 (s, 1H), 12.51 (br s, 1H).
10-160	Br N	MsHN	1.41-1.85 (m, 8H), 2.01-2.11 (m, 2H), 2.68 (t, J = 6.0 Hz, 2H), 2.94 (t, J = 6.0 Hz, 2H), 3.04 (s, 3H), 3.18 (q, J = 6.0 Hz, 2H), 4.34 (br t, J = 7.5 Hz, 2H), 5.58 (br t, J = 7.5 Hz, 1H), 7.20 (dd, J = 7.5 Hz, 0.6 Hz, 1H), 7.55 (t, J = 7.8 Hz, 1H), 8.31 (dd, J = 8.1 Hz, 0.6 Hz, 1H), 8.39 (s, 1H), 12.45 (br s, 1H).
10-161	Br N	F₃C N H	1.42-1.83 (m, 8H), 2.03 (quint, $J = 6.0$ Hz, 2H), 2.69 (t, $J = 6.0$ Hz, 2H), 2.93 (t, $J = 6.0$ Hz, 2H), 3.41 (q, $J = 6.0$ Hz, 2H), 4.30 (br t, $J = 7.5$ Hz, 2H), 7.22 (dd, $J = 7.8$ Hz, 0.6 Hz, 1H), 7.56 (t, $J = 7.8$ Hz, 1H), 8.13 (br s, 1H), 8.31 (dd, $J = 7.8$ Hz, 0.6 Hz, 1H), 8.42 (s, 1H), 12.40 (br s, 1H).
10-162	Me N	nBu	0.99 (t, $J = 7.2$ Hz, 3H), 1.39-1.57 (m, 4H), 1.47 (sextet, $J = 7.2$ Hz, 2H), 1.65-1.83 (m, 6H), 2.51 (s, 3H), 2.68 (t, $J = 6.0$ Hz, 2H), 2.92 (t, $J = 6.0$ Hz, 2H), 4.16 (br t, $J = 7.2$ Hz, 2H), 6.86 (d, $J = 4.8$ Hz, 1H), 8.41 (s, 1H), 8.54 (d, $J = 4.8$ Hz, 1H), 12.91 (br s, 1H).
10-163	Me N	nBu	0.99 (t, J= 7.5 Hz, 3H), 1.39-1.53 (m, 4H), 1.46 (sextet, J = 7.5 Hz, 2H), 1.65-1.82 (m, 6H), 2.47 (s, 6H), 2.67 (t, J= 6.0 Hz, 2H), 2.91 (t, J= 6.0 Hz, 2H), 4.15 (br t, J= 7.5 Hz, 2H), 6.74 (s 1H), 8.41 (s, 1H), 12.75 (br s, 1H).
10-164	Q	онс	1.22-1.52 (m, 8H), 1.63-1.79 (m, 8H), 1.92-2.00 (m, 2H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 2.96 (t, $J = 7.2$ Hz, 2H), 3.92-4.03 (m, 1H), 4.42 (t, $J = 7.2$ Hz, 2H), 8.32 (s, 1H), 9.75 (d, $J = 7.5$ Hz, 1H), 9.84 (s, 1H).

表72

R*			
化合物 No.	R ^r	$ m R^5$	¹H-NMR (CDCl₃)
10-165	Q	OH Me	1.20 (d, $J = 6.6$ Hz, 3H), 1.21- 1.87 (m, 18H), 1.90-2.01 (m, 2H), 2.55-2.73 (m, 2H), 2.85-3.02 (m, 2H), 3.62-3.70 (m, 1H), 3.92-4.01 (m, 2H), 4.65-4.78 (m, 1H), 8.36 (s, 1H), 9.77 (d, $J = 7.5$ Hz, 1H).
10-166		Me	1.23-1.51 (m, 8H), 1.58-1.78 (m, 8H), 1.94-2.00 (m, 2H), 2.20 (s, 3H), 2.63 (t, J=6.0 Hz, 2H), 2.88 (t, J=6.0 Hz, 2H), 2.93 (t, J=7.5 Hz, 2H), 3.92-4.01 (m, 1H), 4.36 (t, J=7.5 Hz, 2H), 8.31 (s, 1H), 9.78 (d, J=8.1 Hz, 1H).
10-167		но	1.38-1.43 (m, 2H), 1.44-1.52 (m, 2H), 1.65-1.83 (m, 4H), 1.86-1.95 (m, 2H), 1.91-2.05 (m, 1H), 2.63-2.74 (m, 1H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.85-2.96 (m, 1H), 2.93 (t, $J = 6.0$ Hz, 2H), 2.99-3.09 (m, 1H), 3.51 (br t, $J = 4.5$ Hz, 2H), 4.22-4.38 (m, 2H), 5.66 (q, $J = 7.5$ Hz, 1H), 7.19-7.38 (m, 4H), 8.43 (s, 1H), 10.11 (d, $J = 6.9$ Hz, 1H).
10-168	\$	MsO	1.38-1.42 (m, 2H), 1.44-1.52 (m, 2H), 1.64-1.80 (m, 4H), 1.91-2.08 (m, 1H), 2.11-2.21 (m, 2H), 2.62-2.73 (m, 1H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.83-2.96 (m, 1H), 2.91 (t, $J = 6.0$ Hz, 2H), 2.99-3.06 (m, 1H), 3.02 (s, 3H), 4.25 (t, $J = 6.9$ Hz, 2H), 4.33 (t, $J = 6.0$ Hz, 2H), 5.67 (q, $J = 7.8$ Hz, 1H), 7.16-7.26 (m, 3H), 7.35-7.39 (m, 1H), 8.39 (s, 1H), 10.13 (d, $J = 8.4$ Hz, 1H).
10-169		F	1.37-1.43 (m, 2H), 1.44-1.53 (m, 2H), 1.67-1.80 (m, 4H), 1.91-2.10 (m, 1H), 2.00-2.20 (m, 2H), 2.62-2.73 (m, 1H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.84-2.96 (m, 1H), 2.93 (t, $J = 6.0$ Hz, 2H), 2.98-3.08 (m, 1H), 4.25 (sextet, $J = 7.5$ Hz, 2H), 4.45 (t, $J = 7.8$ Hz, 1H), 4.61 (t, $J = 5.4$ Hz, 1H), 5.67 (q, $J = 7.5$ Hz, 1H), 7.16-7.28 (m, 3H), 7.35-7.39 (m, 1H), 8.39 (s, 1H), 10.17 (d, $J = 6.6$ Hz, 1H).

表73

<u> </u>			
化合物 No.	Rr	${ m R}^5$	¹ H-NMR (CDCl ₃)
10-170		NC~	1.38-1.43 (m, 2H), 1.44-1.54 (m, 2H), 1.67-1.82 (m, 4H), 1.91-2.06 (m, 1H), 2.06 (quint, $J = 7.5$ Hz, 2H), 2.49 (t, $J = 7.2$ Hz, 2H), 2.62-2.74 (m, 1H), 2.67 (t, $J = 6.0$ Hz, 2H), 2.85-2.96 (m, 1H), 2.91 (t, $J = 6.0$ Hz, 2H), 2.99-3.09 (m, 1H), 4.21 (sextet, $J = 7.2$ Hz, 2H), 5.67 (q, $J = 7.5$ Hz, 1H), 7.19-7.26 (m, 3H), 7.35-7.39 (m, 1H), 8.40 (s, 1H), 10.08 (d, $J = 8.1$ Hz, 1H).
10-171		N ₃	1.37-1.44 (m, 2H), 1.45-1.55 (m, 2H), 1.67-1.80 (m, 4H), 1.93-2.03 (m, 3H), 2.62-2.73 (m, 1H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.84-2.96 (m, 1H), 2.91 (t, $J = 6.0$ Hz, 2H), 2.99-3.09 (m, 1H), 3.50 (t, $J = 6.0$ Hz, 2H), 4.17 (sextet, $J = 7.5$ Hz, 2H), 5.67 (q, $J = 7.8$ Hz, 1H), 7.18-7.26 (m, 3H), 7.35-7.39 (m, 1H), 8.39 (s, 1H), 10.16 (d, $J = 8.4$ Hz, 1H).
10-172		AcHN~	1.37-1.43 (m, 2H), 1.44-1.52 (m, 2H), 1.63-1.78 (m, 4H), 1.83-2.02 (m, 1H), 1.87 (quint, $J = 6.0 \text{ Hz}$, 2H), 2.69-2.76 (m, 1H), 2.88-2.95 (m, 1H), 2.90 (t, $J = 6.0 \text{ Hz}$, 2H), 2.69-2.76 (m, 1H), 2.97-3.08 (m, 1H), 3.23 (quint, $J = 6.0 \text{ Hz}$, 2H), 4.19 (br t, $J = 7.5 \text{ Hz}$, 2H), 5.67 (q, $J = 7.5 \text{ Hz}$, 1H), 6.65 (br t, $J = 7.5 \text{ Hz}$, 1H), 7.18-7.28 (m, 3H), 7.36-7.39 (m, 1H), 8.41 (s, 1H), 10.15 (d, $J = 8.1 \text{ Hz}$, 1H).
10-173		MsHN	1.37-1.42 (m, 2H), 1.44-1.53 (m, 2H), 1.63-1.78 (m, 4H), 1.90-2.02 (m, 3H), 2.62-2.73 (m, 1H), 2.67 (t, J=6.0 Hz, 2H), 2.84 (s, 3H), 2.85-2.97 (m, 1H), 2.90 (t, J=6.0 Hz, 2H), 3.00-3.10 (m, 2H), 4.25 (br s, 2H), 5.67 (q, J=7.5 Hz, 2H), 7.19-7.36 (m, 4H), 8.42 (s, 1H), 10.06 (d, J=8.1 Hz, 1H).
10-174		O F₃C N H	1.38-1.43 (m, 2H), 1.44-1.52 (m, 2H), 1.65-1.80 (m, 4H), 1.88-2.00 (m, 3H), 2.68 (t, $J = 6.0 \text{ Hz}$, 2H), 2.69-2.76 (m, 1H), 2.88-2.98 (m, 1H), 2.91 (t, $J = 6.0 \text{ Hz}$, 2H), 3.00-3.10 (m, 1H), 3.25-3.37 (m, 2H), 4.24 (br s, 2H), 5.61 (q, $J = 7.5 \text{ Hz}$, 1H), 7.18-7.39 (m, 4H), 8.42 (br s, 1H), 8.44 (s, 1H), 10.05 (d, $J = 7.2 \text{ Hz}$, 1H).

	$ \mathbf{R}^{5} $		
化合物 No	Rr	R ⁵	¹ H-NMR (CDCl ₃)
10-175	OH	nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.02-1.28 (m, 6H), 1.36-1.52 (m, 8H), 1.62-1.80 (m, 8H), 1.92 (br d, $J = 12.0$ Hz, 1H), 2.64 (t, $J = 6.0$ Hz, 2H), 2.89 (t, $J = 6.0$ Hz, 2H), 3.45-3.62 (m, 3H), 4.07-4.15 (m, 2H), 8.30 (s, 1H), 10.28 (br s, 1H).
10-176		nBu	0.98 (t, $J = 7.5$ Hz, 3H), 1.20-1.51 (m, 14H), 1.58-1.91 (m, 8H), 2.41-2.50 (m, 1H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.88 (t, $J = 6.0$ Hz, 2H), 4.12 (br t, $J = 7.5$ Hz, 2H), 4.36 (d, $J = 5.4$ Hz, 2H), 8.26 (s, 1H), 10.50 (br s, 1H).
10-177	ОН	nBu	0.98 (t, $J = 7.5$ Hz, 3H), 1.15 (d, $J = 6.6$ Hz, 3H), 1.37-1.53 (m, 4H), 1.44 (sextet, $J = 7.5$ Hz, 2H), 1.61-1.81 (m, 6H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.0$ Hz, 2H), 4.09 (br t, $J = 7.5$ Hz, 2H), 4.39-4.48 (m, 1H), 4.98 (d, $J = 2.7$ Hz, 1H), 7.23-7.39 (m, 5H), 8.33 (s, 1H), 10.10 (d, $J = 7.5$ Hz, 1H).
10-178	HOH	nBu	0.98 (t, $J = 7.2$ Hz, 3H), 1.15 (d, $J = 6.9$ Hz, 3H), 1.87-1.53 (m, 4H), 1.44 (sextet, $J = 7.2$ Hz, 2H), 1.62-1.80 (m, 6H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.90 (t, $J = 6.0$ Hz, 2H), 4.09 (br t, $J = 7.2$ Hz, 2H), 4.39-4.49 (m, 1H), 4.98 (d, $J = 2.7$ Hz, 1H), 7.23-7.40 (m, 5H), 8.33 (s, 1H), 10.10 (d, $J = 6.9$ Hz, 1H).
10-179		nBu	0.99 (t, J=7.5 Hz, 3H), 1.37-1.50 (m, 4H), 1.43 (sextet, J=7.5 Hz, 2H), 1.54 (d, J=7.5 Hz, 3H), 1.63-1.80 (m, 6H), 2.63 (t, J=6.0 Hz, 2H), 2.88 (t, J=6.0 Hz, 2H), 4.12 (br t, J=7.5 Hz, 2H), 5.69-5.79 (m, 1H), 7.45-7.51 (m, 2H), 7.55-7.61 (m, 1H), 8.05-8.09 (m, 2H), 8.28 (s, 1H), 10.73 (d, J=6.9 Hz, 1H).
10-180	O	nBu	0.99 (t, J = 7.5 Hz, 3H), 1.37-1.50 (m, 4H), 1.43 (sextet, J = 7.5 Hz, 2H), 1.54 (d, J = 6.9 Hz, 3H), 1.65-1.80 (m, 6H), 2.63 (t, J = 6.0 Hz, 2H), 2.89 (t, J = 6.0 Hz, 2H), 4.12 (br t, J = 7.5 Hz, 2H), 5.69-5.79 (m, 1H), 7.45-7.51 (m, 2H), 7.55-7.61 (m, 1H), 8.05-8.09 (m, 2H), 8.28 (s, 1H), 10.73 (d, J = 7.2 Hz, 1H).

表75

			Ä⁵
化合物 No.	R ^r	\mathbb{R}^5	¹ H-NMR (CDCl ₃)
11-001	X	nBu	1.01 (t, J = 7.2 Hz, 3H), 1.42-1.54 (m, 2H), 1.65-1.79 (m, 2H), 1.79 (s, 6H), 2.13 (s, 3H), 2.41 (s, 3H), 4.13 (t, J = 7.8 Hz, 2H), 7.16-7.22 (m, 2H), 7.26-7.33 (m, 2H), 7.42-7.46 (m, 2H), 8.25 (s, 1H), 10.40 (br s, 1H).
11-002	OX	Bn	1.79 (s, 6H), 2.13 (s, 3H), 2.29 (s, 3H), 5.50(br s, 2H), 7.09-7.47 (m, 10H), 8.35 (s, 1H), 10.35 (br s, 1H).
11-003	X	>	1.05-1.32 (m, 4H), 1.58-1.91 (m, 7H), 1.79 (s, 6H), 2.12 (s, 3H), 2.38 (s, 3H), 4.01 (br s, 2H), 7.16-7.21 (m, 1H), 7.26-7.32 (m, 2H), 7.43-7.46 (m, 2H), 8.24 (s, 1H), 10.39 (br s, 1H).
11-004	HO	7	1.00-1.30 (m, 4H), 1.55-1.90 (m, 7H), 2.18 (s, 3H), 2.40 (s, 3H), 3.89-4.00 (m, 2H), 4.03 (br s, 2H), 5.26-5.32 (m, 1H), 7.26-7.43 (m, 5H), 8.33 (s, 1H), 10.72 (br d, J = 6.9 Hz, 1H).
11-005	Ci Ci	7	1.00-1.30 (m, 4H), 1.60-1.92 (m, 7H), 2.17 (s, 3H), 2.39 (s, 3H), 3.90 (d, $J =$ 6.0 Hz, 2H), 4.04 (br s, 2H), 5.50-5.56 (m, 1H), 7.26-7.44 (m, 5H), 8.30 (s, 1H), 10.73 (d, $J =$ 8.1 Hz, 1H).
11-006		7	1.00-1.30 (m, 4H), 1.56-1.88 (m, 7H), 1.90-2.00 (m, 2H), 2.18 (s, 3H), 2.39 (s, 3H), 2.71 (t, J = 8.1 Hz, 2H), 3.46 (quint, J = 6.9 Hz, 2H), 4.03 (br s, 2H), 7.14-7.30 (m, 5H), 8.32 (s, 1H), 9.98 (br s, 1H).
11-007	но	nBu	0.99 (t, $J = 7.5$ Hz, 3H), 1.39-1.51 (m, 2H), 1.62-1.73 (m, 2H), 2.18 (s, 3H), 2.42 (s, 3H), 3.89-4.00 (m, 2H), 4.12 (dd, $J = 9.0$ Hz, $J = 5.1$ Hz, 2H), 5.26-5.32 (m, 1H), 7.26-7.43 (m, 5H), 8.32 (s, 1H), 10.72 (br d, $J = 6.9$ Hz, 1H).
11-008	CI	nBu	1.00 (t, $J = 7.5$ Hz, 3H), 1.41-1.53 (m, 2H), 1.64-1.74 (m, 2H), 2.16 (s, 3H), 2.41 (s, 3H), 3.91 (d, $J = 5.7$ Hz, 2H), 4.13 (t, $J = 7.5$ Hz, 2H), 5.50-5.57 (m, 1H), 7.28-7.45 (m, 5H), 8.30 (s, 1H), 10.73 (br d, $J = 8.1$ Hz, 1H).
11-009	Me Me		0.84 (d, J = 6.6 Hz, 6H), 1.06-1.85 (m, 21H), 2.17 (s, 3H), 2.38 (s, 3H), 4.00 (br s, 2H), 4.09-4.18 (m, 1H), 8.31 (s, 1H), 9.77 (d, J = 7.5 Hz, 1H).

表 7 6

			R° .
化合物 No.	Rr	$ m R^5$	¹ H-NMR (CDCl ₃)
11-010	4	<i>\</i>	0.60-0.65 (m, 2H), 0.77-0.84 (m, 2H), 1.05-1.26 (m, 5H), 1.59-1.85 (m, 6H), 2.18 (s, 3H), 2.38 (s, 3H), 2.89-2.98 (m, 1H), 4.00 (br s, 2H), 8.32 (s, 1H), 9.89 (br s, 1H).
11-011		<u></u>	0.86-2.19 (m, 15H), 2.19 (s, 3H), 2.38 (s, 3H), 2.72-2.91 (m, 2H), 3.94 (br s, 2H), 5.37-5.44 (m, 1H), 7.06-7.16 (m, 3H), 7.34-7.37 (m, 1H), 8.38 (s, 1H), 10.22 (br d, J=8.7 Hz, 1H).
11-012	Me Me	\bigcirc	0.92 (t, J= 7.5 Hz, 3H), 0.95 (d, J= 6.6 Hz, 3H), 1.06-1.85 (m, 14H), 2.18 (s, 3H), 2.39 (s, 3H), 3.20-3.29 (m, 1H), 3.34-3.42 (m, 1H), 4.03 (br s, 2H), 8.32 (s, 1H), 9.95 (br s, 1H).
11-013	*		0.98 (s, 9H), 1.07-1.23 (m, 5H), 1.62- 1.83 (m, 6H), 2.18 (s, 3H), 2.39 (s, 3H), 3.26 (d, J=6.0 Hz, 2H), 4.03 (br s, 2H), 8.33 (s, 1H), 10.06 (br s, 1H).
11-014			1.05-1.23 (m, 5H), 1.62-1.87 (m, 6H), 2.18 (s, 3H), 2.39 (s, 3H), 4.00 (br s, 2H), 4.62 (d, J=5.4 Hz, 2H), 6.25-6.31 (m, 2H), 7.35 (s, 1H), 8.34 (s, 1H), 10.23 (br s, 1H).
11-015		Me Me	0.88 (d, J=6.9 Hz, 3H), 0.93 (t, J=7.5 Hz, 3H), 1.16-1.30 (m, 1H), 1.35-1.48 (m, 1H), 1.89-2.00 (m, 1H), 2.19 (s, 3H), 2.39 (s, 3H), 4.03 (br s, 1H), 4.64 (d, J=6.0 Hz, 2H), 7.20-7.38 (m, 5H), 8.37 (s, 1H), 10.30 (br s, 1H).
11-016		Me Me	0.90 (t, J= 7.2 Hz, 3H), 0.95 (t, J= 7.5 Hz, 3H), 1.17-1.32 (m, 1H), 1.35-1.49 (m, 1H), 1.88-2.00 (m, 1H), 2.18 (s, 3H), 2.39 (s, 3H), 2.93 (t, J= 7.5 Hz, 2H), 3.62-3.69 (m, 2H), 4.06 (br s, 2H), 7.17-7.31 (m, 5H), 8.33 (s, 1H), 10.03 (br s, 1H).
11-017		\rightarrow	0.98 (s, 9H), 2.18 (s, 3H), 2.40 (s, 3H), 4.34 (br s, 2H), 7.20-7.37 (m, 5H), 8.34 (s, 1H), 10.31 (br s, 1H).
11-018		X	0.99 (s, 9H), 2.17 (s, 3H), 2.39 (s, 3H), 2.91 (t, J = 7.5 Hz, 2H), 3.63-3.70 (m, 2H), 7.16-7.31 (m, 5H), 8.30 (s, 1H), 10.01 (br s, 1H).
11-019			2.19 (s, 3H), 2.53 (s, 3H), 4.63 (d, $J = 5.7 \text{ Hz}$, 2H), 5.34 (s, 2H), 6.33 (m, 2H), 7.21-7.37 (m, 6H), 8.38 (s, 1H), 10.18 (br s, 1H).

表77

			<u>M</u>
化合物 No.	$\mathbf{R}^{\mathbf{r}}$	\mathbb{R}^5	¹ H-NMR (CDCl ₃)
11-020		(T)	2.19 (s, 3H), 2.53 (s, 3H), 2.92 (t, J = 7.5 Hz, 2H), 3.62-3.69 (m, 2H), 5.34 (s, 2H), 6.35 (m, 2H), 7.17-7.32 (m, 5H), 7.35 (t, J = 1.5 Hz, 1H), 8.34 (s, 1H), 9.92 (br s, 1H).
11-021		\	0.45-0.66 (m, 4H), 1.08-1.18 (m, 1H), 2.19 (s, 3H), 2.45 (s, 3H), 4.11 (d, $J = 6.9$ Hz, 2H), 4.64 (d, $J = 5.7$ Hz, 2H), 7.20-7.38 (m, 5H), 8.36 (s, 1H), 10.31 (br s, 1H).
11-022		\bigvee	0.47-0.61 (m, 4H), 1.09-1.17 (m, 1H), 2.19 (s, 3H), 2.45 (s, 3H), 2.93 (t, J = 7.8 Hz, 2H), 3.63-6.70 (m, 2H), 4.12 (d, J = 6.9 Hz, 2H), 7.17-7.32 (m, 5H), 8.33 (s, 1H), 10.03 (br s, 1H).
11-023	н	nBu	1.00 (t, J = 7.5 Hz, 3H), 1.40-1.53 (m, 2H), 1.63-1.73 (m, 2H), 2.18 (s, 3H), 2.42 (s, 3H), 4.13 (t, J = 8.1 Hz, 2H), 5.73 (br s, 1H), 8.31 (s, 1H), 9.62 (br s, 1H).
11-024		<i>\\</i>	1.05-1.26 (m, 6H), 1.66-1.77 (m, 4H), 1.83-1.92 (m, 1H), 2.19 (s, 3H), 2.41 (s, 3H), 4.08 (br s, 2H), 4.97 (d, J= 4.5 Hz, 2H), 7.50 (t, J= 7.5 Hz, 2H), 7.61 (t, J= 7.5 Hz, 1H), 8.02-8.06 (m, 2H), 8.32 (s, 1H), 10.78 (br s, 1H).
11-025		Bn	2.19 (s, 3H), 2.33 (s, 3H), 4.98 (d, J = 4.5 Hz, 2H), 5.52 (br s, 2H), 7.14 (d, J = 7.5 Hz, 2H), 7.29-7.36 (m, 3H), 7.50 (t, J = 7.5 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 8.03 (d, J = 7.5 Hz, 2H), 8.41 (s, 1H), 10.74 (br s, 1H).

表78

ήΒυ			
化合物 No.	R^{r}	$ m R^3$	¹ H-NMR (CDCl ₃)
12-001		CI	1.04 (t, J = 7.3 Hz, 3H), 1.42-1.54 (m, 2H), 1.67-1.78 (m, 2H), 2.28 (s, 3H), 2.94 (t, J = 7.3 Hz, 2H), 3.65-3.72 (m, 2H), 4.12-4.18 (m, 8H), 8.29 (s, 1H), 9.91 (t, J = 5.5 Hz, 1H).
12-002		NH	1.04 (t, $J = 7.3$ Hz, 3H), 1.43-1.55 (m, 2H), 1.70-1.80 (m, 2H), 2.44 (s, 3H), 2.97 (m, 2H), 3.67-3.74 (m, 2H), 4.18 (t, $J = 7.9$ Hz, 3H), 6.55 (m, 1H), 6.90-6.94 (m, 1H), 7.19-7.46 (m, 8H), 8.50 (s, 1H), 8.79 (brs, 1H), 10.14 (t, $J = 5.8$ Hz, 1H).
12-003		Et	0.98 (t, $J = 7.5$ Hz, 3H), 1.16 (t, $J = 7.5$ Hz, 3H), 1.38-1.51 (m, 2H), 1.60-1.72 (m, 2H), 2.43 (s, 3H), 2.53 (quint, $J = 7.5$ Hz, 2H), 4.09 (t, $J = 7.8$ Hz, 2H), 4.64 (d, $J = 6.0$ Hz, 2H), 7.20-7.38 (m, 5H), 8.38 (s, 1H), 10.30 (br s, 1H).
12-004		Et	1.00 (t, $J = 7.5 \text{ Hz}$, 3H), 1.16 (t, $J = 7.5 \text{ Hz}$, 3H), 1.40-1.52 (m, 2H), 1.61-1.73 (m, 2H), 2.43 (s, 3H), 2.52 (quint, $J = 7.5 \text{ Hz}$, 2H), 2.94 (t, $J = 7.8 \text{ Hz}$, 2H), 3.63-3.70 (m, 2H), 4.11 (t, $J = 7.8 \text{ Hz}$, 2H), 7.17-7.32 (m, 5H), 8.35 (s, 1H), 10.04 (br s, 1H).

表 7 9

化合物	構造	¹H-NMR (CDCl₃)
No. 13-001	O HO N	0.99 (t, J=7.5 Hz, 3H), 1.08 (t, J=7.5 Hz, 3H), 1.19 (t, J=7.5 Hz, 3H), 1.38-1.50 (m, 2H), 1.53-1.72 (m, 4H), 2.50 (quint, J=7.5 Hz, 2H), 2.62-2.68 (m, 2H), 4.06 (m, 2H), 4.64 (t, J=6.0 Hz, 2H), 7.23-7.37 (m, 5H), 8.40 (s, 1H), 10.32 (br s, 1H).
13-002	O HONN	1.01 (t, J = 7.2 Hz, 3H), 1.09 (t, J = 7.5 Hz, 3H), 1.19 (t, J = 7.5 Hz, 3H), 1.40-1.52 (m, 2H), 1.54-1.73 (m, 4H), 2.50 (quint, J = 7.5 Hz, 2H), 2.62-2.68 (m, 2H), 2.93 (t, J = 7.8 Hz, 2H), 3.63-3.70 (m, 2H), 4.04-4.10 (m, 2H), 7.18-7.32 (m, 5H), 8.37 (s, 1H), 10.06 (br s, 1H).
13-003	O HONN	0.98 (t, J=7.2 Hz, 3H), 1.08 (t, J=7.2 Hz, 3H), 1.38-1.50 (m, 2H), 1.53-1.72 (m, 4H), 2.19 (s,3H), 2.62-2.68 (m, 2H), 4.04-4.10 (m, 2H), 4.64 (d, J=5.7 Hz, 2H), 7.21-7.38 (m, 5H), 8.35 (s, 1H), 10.30 (br s, 1H).
13-004	O HO N	1.00 (t, J=7.5 Hz, 3H), 1.08 (t, J=7.5 Hz, 3H), 1.40-1.52 (m, 2H), 1.53-1.72 (m, 4H), 2.18 (s, 3H), 2.62-2.68 (m, 2H), 2.93 (t, J=7.5 Hz, 2H), 3.63-3.70 (m, 2H), 4.04-4.10 (m, 2H), 7.18-7.32 (m, 5H), 8.31 (s, 1H), 10.03 (br s, 1H).
13-005	H N N N N N N N N N N N N N N N N N N N	0.98 (t, $J = 7.3$ Hz, 3H), 1.38-1.53 (m, 6H), 1.62-1.72 (m, 6H), 2.54 (s, 3H), 2.62 (t, $J = 6.1$ Hz, 2H), 2.83 (t, $J = 6.4$ Hz, 2H), 4.10 (t, $J = 7.9$ Hz, 2H), 7.21-7.38 (m, 2H), 7.55 (d, $J = 7.6$ Hz, 1H), 8.38 (s, 1H), 8.79 (br s, 1H).
13-006	CI OON Me	0.97 (t, $J = 7.3$ Hz, 3H), 1.38-1.53 (m, 6H), 1.62-1.75 (m, 6H), 2.62 (t, $J = 6.1$ Hz, 2H), 2.83 (t, $J = 6.1$ Hz, 2H), 4.10 (t, $J = 7.9$ Hz, 2H), 7.32-7.47 (m, 3H), 7.72-7.75 (m, 1H), 8.39 (s, 1H), 9.18 (br s, 1H).
13-007	BnO N CI	0.97 (t, $J = 7.3$ Hz, 3H), 1.34-1.46 (m, 2H), 1.72-1.82 (m, 2H), 4.03 (t, $J = 7.3$ Hz, 2H), 5.21 (s, 2H), 7.06 (d, $J = 2.1$ Hz, 1H), 7.23-7.40 (m, 8H), 7.95 (s, 1H), 8.15 (br s, 1H).
13-008	FONNIA	0.96 (d, $J = 7.3$ Hz, 3H), 1.36-1.56 (m, 6H), 1.58-1.71 (m, 4H), 1.71-1.81 (m, 2H), 2.57 (t, $J = 6.0$ Hz, 2H), 2.85 (t, $J = 6.3$ Hz, 2H), 3.08-3.20 (m, 2H), 3.18 (t, $J = 5.0$ Hz, 2H), 3.92 (t, $J = 5.0$ Hz, 2H), 4.06 (tlike, 2H), 6.87-7.00 (m, 5H).
13-009	O N O N O N O N O N O N O N O N O N O N	0.98 (t, $J = 7.5$ Hz, 3H), 1.22 (t, $J = 7.5$ Hz, 3H), 1.36-1.51 (m, 2H), 1.61-1.72 (m, 2H), 2.19 (s, 3H), 2.73 (quint, $J = 7.5$ Hz, 2H), 4.08 (t, $J = 7.8$ Hz, 2H), 4.64 (d, $J = 6.0$ Hz, 2H), 7.20-7.39 (m, 5H), 8.35 (s, 1H), 10.03 (br s, 1H).

表 8 0

化合物	124-5-0	
No.	構造	¹ H-NMR (CDCl ₃)
13-010	HON	1.00 (t, J= 7.5 Hz, 3H), 1.23 (t, J= 7.5 Hz, 3H), 1.40-1.52 (m, 2H), 1.61-1.73 (m, 2H), 2.19 (s, 3H), 2.73 (quint, J= 7.5 Hz, 2H), 2.93 (t, J= 7.5 Hz, 2H), 3.63-3.70 (m, 2H), 4.08 (t, J= 7.5 Hz, 2H), 7.17-7.32 (m, 5H), 8.31 (s, 1H), 10.03 (br s, 1H).
13-011	O HOUN	0.98 (t, $J = 7.5 \text{ Hz}$, 3H), 1.06 (t, $J = 7.5 \text{ Hz}$, 3H), 1.38-1.50 (m, 2H), 1.61-1.77 (m, 4H), 2.66 (t, $J = 7.8 \text{ Hz}$, 2H), 4.05 (t, $J = 7.8 \text{ Hz}$, 2H), 4.64 (d, $J = 6.0 \text{ Hz}$, 2H), 6.28 (d, $J = 7.8 \text{ Hz}$, 1H), 7.20-7.40 (m, 5H), 8.44 (d, $J = 7.8 \text{ Hz}$, 1H), 10.21 (br s, 1H).
13-012	ON HOW	1.00 (t, J = 7.5 Hz, 3H), 1.06 (t, J = 7.5 Hz, 3H), 1.39·1.55 (m, 2H), 1.61·1.77 (m, 4H), 2.66 (t, J = 7.8 Hz, 2H), 2.93 (t, J = 7.8 Hz, 2H), 3.62·3.70 (m, 2H), 4.06 (t, J = 7.8 Hz, 2H), 6.27 (d, J = 7.5 Hz, 1H), 7.18·7.32 (m, 5H), 8.41 (d, J = 7.5 Hz, 1H), 9.95 (br s, 1H).
13-013	CI O N Me	0.98 (t, $J = 7.8$ Hz, 3H), 1.37-1.49 (m, 2H), 1.76-1.86 (m, 2H), 4.08 (t, $J = 7.3$ Hz, 2H), 7.26 (d, $J = 2.4$ Hz, 1H), 7.32-7.54 (m, 8H), 7.76-7.79 (m, 1H), 8.92 (d, $J = 2.4$ Hz, 1H), 9.29 (s, 1H).
13-014	Me O N Me	0.99 (t, $J = 7.3$ Hz, 3H), 1.38-1.50 (m, 2H), 1.60 (d, $J = 7.0$ Hz), 1.77-1.87 (m, 2H), 4.09 (dt, $J = 7.1$, 3.7 Hz, 2H), 5.32 (dt, $J = 7.3$, 7.0 Hz, 1H), 7.21-7.48 (m, 5H), 7.69 (d, $J = 2.7$ Hz, 1H), 8.83 (d, $J = 2.7$ Hz, 1H), 10.29 (d, $J = 7.9$ Hz).
13-015	Me O N Me	0.98 (t, J = 7.3 Hz, 3H), 1.37-1.49 (m, 2H), 1.76-1.86 (m, 2H), 2.54 (s, 3H), 4.06 (t, J = 7.3 Hz, 2H), 7.18-7.59 (m, 4H), 8.70 (d, J = 2.4 Hz, 1H), 8.84 (br s, 1H).
13-016	Me O N H _O N Me	0.98 (t, $J = 7.3$ Hz, 3H), 1.38-1.46 (m, 2H), 1.57 (d, $J = 7.0$ Hz, 3H), 1.70-1.80 (m, 2H), 3.97 (dt, $J = 4.3$, 7.0 Hz, 2H), 5.29 (q, $J = 7.3$ Hz, 2H), 7.21-7.40 (m, 5H), 7.69 (d, $J = 2.4$ Hz, 1H), 8.62 (d, $J = 2.4$ Hz, 1H), 10.08 (d, $J = 7.3$ Hz, 1H).
13-017	Me O CI N HON Me	0.99 (t, $J = 7.3$ Hz, 3H), 1.37-1.49 (m, 2H), 1.59 (d, $J = 7.0$ Hz, 3H), 1.77-1.87 (m, 2H), 4.00-4.15 (m, 2H), 5.31 (dt, $J = 7.6$, 7.3 Hz, 1H), 7.21-7.43 (m, 3H), 7.65 (d, $J = 2.7$ Hz, 1H), 8.61 (d, $J = 2.7$ Hz, 1H), 10.19 (d, $J = 7.6$ Hz, 1H).
13-018	Me O HON Me	0.99 (t, $J = 7.3$ Hz, 3H), 1.38-1.50 (m, 2H), 1.60 (d, $J = 7.0$ Hz), 1.77-1.87 (m, 2H), 4.09 (dt, $J = 7.1$, 3.7 Hz, 2H), 5.32 (dt, $J = 7.3$, 7.0 Hz, 1H), 7.21-7.48 (m, 5H), 7.69 (d, $J = 2.7$ Hz, 1H), 8.83 (d, $J = 2.7$ Hz, 1H), 10.29 (d, $J = 7.9$ Hz).

表 8 1

化合物 No.	構造	¹H-NMR (CDCl ₈)
13-019	OMe	0.90 (t, J = 7.2 Hz, 3H), 1.23-1.71 (m, 12H), 2.41 (br t, J = 6.0 Hz, 2H), 2.68 (br t, J = 6.0 Hz, 2H), 3.27 (s, 3H), 3.70-4.00 (m, 2H), 4.01 (s, 3H), 7.11-7.61 (m, 6H).
13-020	HONON	0.99 (t, J=7.2 Hz, 3H), 1.08 (t, J=7.5 Hz, 3H), 1.39-1.73 (m, 6H), 2.18 (s, 3H), 2.63-2.69 (m, 2H), 3.89-3.99 (m, 2H), 4.08 (s, 2H), 5.26-5.32 (m, 1H), 7.27-7.43 (m, 5H), 8.31 (s, 1H), 10.72 (d, J=5.7 Hz, 1H).
13-021	HON	0.99 (t, $J = 7.5 \text{ Hz}$, 3H), 1.23 (t, $J = 7.5 \text{ Hz}$, 3H), 1.39-1.52 (m, 2H), 1.63-1.74 (m, 2H), 2.19 (s, 3H), 2.74 (q, $J = 7.5 \text{ Hz}$, 2H), 3.89-4.00 (m, 2H), 4.09 (s, 2H), 5.26-5.32 (m, 1H), 7.26-7.43 (m, 5H), 8.32 (s, 1H), 10.72 (d, $J = 7.2 \text{ Hz}$, 1H).
13-022		1.00 (t, $J = 7.5$ Hz, 3H), 1.19-1.26 (m, 2H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.52-1.62 (m, 1H), 1.72 (quint, $J = 7.5$ Hz, 2H), 1.81-1.87 (m, 1H), 1.92-2.07 (m, 2H), 3.40 (br s, 1H), 3.47 (br s, 1H), 3.89-3.99 (m, 1H), 4.17-4.26 (m, 1H), 4.57-4.71 (m, 2H), 7.20-7.38 (m, 5H), 8.44 (s, 1H), 10.30 (br s, 1H).
13-023		1.01 (t, $J = 7.5$ Hz, 3H), 1.18-1.30 (m, 4H), 1.43-1.60 (m, 2H), 1.64-1.81 (m, 2H), 1.78 (s, 6H), 1.89-2.05 (m, 2H), 3.33 (br s,1H), 3.47 (br s, 1H), 3.92-4.01 (m, 1H), 4.21-4.31 (m, 1H), 7.24-7.32 (m, 3H), 7.43-7.46 (m, 2H), 8.33 (s, 1H), 10.42 (br s, 1H).
13-024		1.00 (t, $J = 7.5$ Hz, 3H), 1.17-1.26 (m, 2H), 1.39-1.60 (m, 4H), 1.55 (d, $J = 3.0$ Hz, 3H), 1.68-1.85 (m, 2H), 1.90-2.07 (m, 2H), 3.37 (br s,1H), 3.47 (br s, 1H), 3.88-4.01 (m, 1H), 4.17-4.30 (m, 1H), 5.30 (quint, $J = 7.5$ Hz, 1H), 7.18-7.41 (m, 5H), 8.40 (s, 1H), 10.34 (d, $J = 7.8$ Hz, 1H).
13-025	HO NH ON N	1.00 (t, $J = 7.2$ Hz, 3H), 1.19-1.26 (m, 1H), 1.41-2.10 (m, 9H), 3.39 (br s,1H), 3.49 (br s, 1H), 3.89-3.99 (m, 3H), 4.20-4.30 (m, 1H), 5.29 (q, $J = 6.0$ Hz, 1H), 7.26-7.43 (m, 5H), 8.40 (s, 1H), 10.71 (d, $J = 7.2$ Hz, 1H).
13-026	CI NH ON O	1.01 (t, J = 7.5 Hz, 3H), 1.20-1.31 (m, 2H), 1.41-1.55 (m, 2H), 1.70-1.88 (m, 4H), 1.90-2.08 (m, 2H), 3.38 (br s,1H), 3.48 (br s, 1H), 3.90 (d, J = 4.8 Hz, 2H), 3.95-4.02 (m, 1H), 4.20-4.31 (m, 1H), 5.50-5.58 (m, 1H), 7.26-7.44 (m, 5H), 8.39 (s, 1H), 10.74 (d, J = 7.8 Hz, 1H).
13-027	CI N HON	1.00 (t, J = 7.5 Hz, 3H), 1.08 (t, J = 7.5 Hz, 3H), 1.40-1.72 (m, 6H), 2.17 (s, 3H), 2.63-2.68 (m, 2H), 3.90 (d, J = 5.7 Hz, 2H), 4.11 (br s, 2H), 5.54 (s, 1H), 7.26-7.44 (m, 5H), 8.30 (s, 1H), 10.74 (br d, J = 7.8 Hz, 1H).

表82

۵		
化合物 No.	構造	¹H-NMR (CDCl ₃)
13-028	CI O N N N N N N N N N N N N N N N N N N	1.00 (t, $J = 7.5$ Hz, 3H), 1.23 (t, $J = 7.5$ Hz, 3H), 1.41-1.53 (m, 2H), 1.65-1.78 (m, 2H), 2.18 (s, 3H), 2.74 (quint, $J = 7.8$ Hz, 2H), 3.90 (d, $J = 5.7$ Hz, 2H), 4.11 (br s, 2H), 5.50-5.57 (m, 1H), 7.26-7.44 (m, 5H), 8.30 (s, 1H), 10.74 (br d, $J = 7.5$ Hz, 1H).
13-029	O N N N N N N N N N N N N N N N N N N N	0.70 (t, J = 7.2 Hz, 3H), 1.11 (sextet, J = 7.2 Hz, 2H), 1.54 (quint, J = 7.2 Hz, 2H), 1.61 (s, 3H), 1.81 (s, 3H), 3.70-3.86 (m, 2H), 5.34 (quint, J = 7.2 Hz, 1H), 7.17-7.58 (m, 10H), 8.43 (s, 1H), 10.41 (d, J = 7.8 Hz, 1H).
13-030	O N N N N N N N N N N N N N N N N N N N	0.72 (t, $J = 7.5$ Hz, 3H), 1.12 (sextet, $J = 7.5$ Hz, 2H), 1.57 (quint, $J = 7.5$ Hz, 2H), 1.78 (s, 3H), 1.82 (s, 6H), 3.81 (t, $J = 8.4$ Hz, 2H), 7.16-7.57 (m, 10H), 8.37 (s, 1H), 10.49 (br s, 1H).
13-031	HONN	0.70 (t, J = 7.2 Hz, 3H), 1.10 (sextet, J = 7.2 Hz, 2H), 1.54 (quint, J = 7.2 Hz, 2H), 1.83 (s, 3H), 3.76-3.86 (m, 2H), 3.91-4.03 (m, 2H), 5.29-5.36 (m, 1H), 7.16-7.57 (m, 10H), 8.48 (s, 1H), 10.82 (d, J = 6.6 Hz, 1H).
13-032	NH ON ON	0.70 (t, $J = 7.2$ Hz, 3H), 1.01 (s, 9H), 1.11 (sextet, $J = 7.2$ Hz, 2H), 1.54 (quint, $J = 7.2$ Hz, 2H), 1.83 (s, 3H), 3.29 (t, $J = 4.8$ Hz, 2H), 3.80 (t, $J = 7.2$ Hz, 2H), 7.20-7.67 (m, 2H), 7.50-7.60 (m, 3H), 8.46 (s, 1H), 10.15 (br s, 1H).
13-033	CI NH ON N	0.71 (t, $J = 7.5$ Hz, 3H), 1.11 (sextet, $J = 7.5$ Hz, 2H), 1.56 (quint, $J = 7.5$ Hz, 2H), 1.82 (s, 3H), 3.81 (dd, $J = 6.0$ Hz, 3.6 Hz, 2H), 3.93 (d, $J = 6.0$ Hz, 2H), 5.53-5.61 (m, 1H), 7.19-7.57 (m, 10H), 8.44 (s, 1H), 10.83 (d, $J = 8.4$ Hz, 1H).
13-034	N N N N N N N N N N N N N N N N N N N	0.99 (t, $J = 7.2$ Hz, 3H), 1.45 (sextet, $J = 7.2$ Hz, 2H), 1.58 (d, $J = 7.2$ Hz, 3H), 1.64-1.77 (m, 4H), 1.83-1.92 (m, 2H), 2.60 (t, $J = 6.0$ Hz, 2H), 2.74 (t, $J = 6.0$ Hz, 2H), 4.00-4.10 (m, 2H), 5.30 (quint, $J = 7.2$ Hz, 1H), 7.19-7.42 (m, 5H), 8.23 (s, 1H), 10.34 (d, $J = 7.5$ Hz, 1H).
13-035	HO N N N N N N N N N N N N N N N N N N N	0.98 (t, $J = 7.5$ Hz, 3H), 1.44 (sextet, $J = 7.5$ Hz, 2H), 1.60-1.70 (m, 2H), 1.69-1.80 (m, 2H), 1.83-1.93 (m, 2H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.75 (t, $J = 6.0$ Hz, 2H), 3.89-3.98 (m, 2H), 4.00-4.08 (m, 2H), 5.25-5.32 (m, 1H), 7.27-7.43 (m, 5H), 8.27 (s, 1H), 10.75 (d, $J = 5.4$ Hz, 1H).
13-036	CI N N N N N N N N N N N N N N N N N N N	0.99 (t, $J = 7.2$ Hz, 3H), 1.45 (sextet, $J = 7.2$ Hz, 2H), 1.62-1.78 (m, 4H), 1.83-1.93 (m, 2H), 2.61 (t, $J = 6.0$ Hz, 2H), 2.75 (t, $J = 6.0$ Hz, 2H), 3.91 (d, $J = 6.0$ Hz, 2H), 4.06 (t, $J = 7.2$ Hz, 2H), 5.50-5.58 (m, 1H), 7.27-7.45 (m, 5H), 8.23 (s, 1H), 10.75 (t, $J = 7.5$ Hz, 1H).

表 8 3

化合物 No.	構造	¹H-NMR (CDCl₃)
13-037	O N N N	0.99 (t, $J = 7.2$ Hz, 3H), 1.18-1.51 (m, 8H), 1.61-1.77 (m, 6H), 1.83-1.92 (m, 2H), 1.96-2.02 (m, 2H), 2.61 (t, $J = 6.0$ Hz, 2H), 2.73 (t, $J = 6.0$ Hz, 2H), 3.90-4.01 (m, 1H), 4.03 (t, $J = 7.2$ Hz, 2H), 8.24 (s, 1H), 9.86 (d, $J = 7.5$ Hz, 1H).
13-038	HONN HONN	0.99 (t, $J = 7.5$ Hz, 3H), 1.13-1.30 (m, 2H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.59-1.92 (m, 15H), 2.61 (t, $J = 6.0$ Hz, 2H), 2.74 (t, $J = 6.0$ Hz, 2H), 3.28 (t, $J = 6.0$ Hz, 2H), 4.04 (t, $J = 7.5$ Hz, 2H), 8.25 (s, 1H), 9.96 (br s, 1H).
13-039	O N N N N N N N N N N N N N N N N N N N	0.98 (t, $J = 7.5$ Hz, 3H), 1.44 (sextet, $J = 7.5$ Hz, 2H), 1.52-1.78 (m, 10H), 1.82-1.91 (m, 2H), 1.99-2.11 (m, 2H), 2.61 (t, $J = 6.0$ Hz, 2H), 2.73 (t, $J = 6.0$ Hz, 2H), 4.02 (t, $J = 7.5$ Hz, 2H), 4.36 (sextet, $J = 6.6$ Hz, 1H), 8.24 (s, 1H), 9.91 (d, $J = 6.9$ Hz, 1H).
13-040	HONN HONN	0.99 (t, $J = 7.2$ Hz, 3H), 1.05-1.29 (m, 6H), 1.18 (d, $J = 6.6$ Hz, 3H), 1.45 (sextet, $J = 7.2$ Hz, 2H), 1.59-1.92 (m, 11H), 2.61 (t, $J = 6.0$ Hz, 2H), 2.73 (t, $J = 6.0$ Hz, 2H), 3.93-4.13 (m, 1H+2H), 8.24 (s, 1H), 9.85 (d, $J = 8.7$ Hz, 1H).
13-041	N ₃	0.99 (t, $J = 7.2$ Hz, 3H), 1.45 (sextet, $J = 7.2$ Hz, 2H), 1.60-1.78 (m, 4H), 1.83-1.91 (m, 2H), 2.61 (t, $J = 6.0$ Hz, 2H), 2.75 (t, $J = 6.0$ Hz, 2H), 3.70 (d, $J = 6.0$ Hz, 2H), 4.06 (t, $J = 7.2$ Hz, 2H), 5.38-5.46 (m, 1H), 7.26-7.45 (m, 5H), 8.23 (s, 1H), 10.73 (t, $J = 8.7$ Hz, 1H).
13-042	H _O N _N	0.99 (t, $J = 7.5$ Hz, 3H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.58 (d, $J = 7.2$ Hz, 3H), 1.68 (quint, $J = 7.5$ Hz, 2H), 2.82 (t, $J = 6.0$ Hz, 2H), 4.00 (t, $J = 6.0$ Hz, 2H), 4.05 (t, $J = 7.5$ Hz, 2H), 4.58 (s, 2H), 5.29 (quint, $J = 7.2$ Hz, 1H), 7.23-7.42 (m, 5H), 8.17 (s, 1H), 10.25 (d, $J = 7.5$ Hz, 1H).
13-043	N N N N N N N N N N N N N N N N N N N	0.99 (t, $J = 7.2$ Hz, 3H), 1.03-1.30 (m, 4H), 1.18 (d, $J = 6.6$ Hz, 3H), 1.45 (sextet, $J = 7.2$ Hz, 2H), 1.60-1.84 (m, 9H), 2.82 (t, $J = 6.0$ Hz, 2H), 3.92-4.13 (m, 5H), 4.59 (s, 2H), 8.18 (s, 1H), 9.77 (d, $J = 8.1$ Hz, 1H).
13-044	HONNO	1.01 (t, $J = 7.5$ Hz, 3H), 1.47 (sextet, $J = 7.5$ Hz, 2H), 1.71 (quint, $J = 7.5$ Hz, 2H), 1.79 (s, 6H), 2.82 (t, $J = 6.0$ Hz, 2H), 4.00 (t, $J = 6.0$ Hz, 2H), 4.05 (t, $J = 7.5$ Hz, 2H), 4.54 (s, 2H), 7.26-7.34 (m, 3H), 7.42-7.46 (m, 2H), 8.11 (s, 1H), 10.34 (br s, 1H).
13-045		0.99 (t, $J = 7.5$ Hz, 3H), 1.19-1.52 (m, 8H), 1.62-1.79 (m, 8H), 1.80-1.88 (m, 2H), 1.91-2.02 (m, 2H), 2.71 (t, $J = 6.0$ Hz, 2H), 2.93 (t, $J = 6.0$ Hz, 2H), 3.93-4.02 (m, 1H), 4.16 (br t, $J = 7.5$ Hz, 2H), 8.29 (s, 1H), 9.86 (d, $J = 6.9$ Hz, 1H).

表 8 4

化合物 No.	構造	¹ H-NMR (CDCl ₃)
13-046	O H O N	1.00 (t, J = 7.2 Hz, 3H), 1.47 (sextet, J = 7.2 Hz, 2H), 1.63-1.74 (m, 6H), 1.83-1.90 (m, 2H), 2.72 (t, J = 6.0 Hz, 2H), 2.96 (t, J = 6.0 Hz, 2H), 4.23 (br t, J = 7.2 Hz, 2H), 4.96 (d, J = 4.5 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 8.04 (d, J = 7.5 Hz, 2H), 8.29 (s,1H), 10.79 (br s, 1H).
13-047	O H O H O H O H O H O H O H O H O H O H	0.99 (t, $J = 7.2$ Hz, 3H), 1.22-1.49 (m, 6H), 1.60-1.78 (m, 6H), 1.94-2.01 (m, 2H), 2.82 (t, $J = 6.0$ Hz, 2H), 3.91-4.05 (m, 5H), 4.60 (s, 2H), 8.18 (s, 1H), 9.79 (d, $J = 6.3$ Hz, 1H).
13-048	OH OH OH	0.98 (t, $J = 7.2$ Hz, 3H), 1.10-1.29 (m, 6H), 1.40-1.56 (m, 8H), 1.65-1.82 (m, 8H), 1.93 (br t, $J = 12.0$ Hz, 1H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.93 (t, $J = 6.0$ Hz, 2H), 3.78-3.87 (m, 2H), 4.00-4.12 (m, 1H), 4.16 (br t, $J = 7.2$ Hz, 2H), 7.29 (br s, 1H), 8.00 (s, 1H).
13-049	CI NHO	0.99 (t, $J = 7.2$ Hz, 3H), 1.46 (sextet, $J = 7.2$ Hz, 2H), 1.61-1.73 (m, 6H), 1.87 (sextet, $J = 6.0$ Hz, 2H), 2.74 (t, $J = 6.0$ Hz, 2H), 2.96 (t, $J = 6.0$ Hz, 2H), 4.19 (br t, $J = 7.2$ Hz, 2H), 4.68 (d, $J = 6.0$ Hz, 2H), 7.15 (dd, $J = 8.4$ Hz, 2.4 Hz, 1H), 7.23-7.29 (m, 1H), 7.39 (d, $J = 2.4$ Hz, 1H), 8.31 (s,1H), 10.43 (br s, 1H).
13-050	CI NHONN	0.99 (t, $J = 7.2$ Hz, 3H), 1.45 (sextet, $J = 7.2$ Hz, 2H), 1.63-1.79 (m, 4H), 1.89 (quint, $J = 6.0$ Hz, 2H), 2.63 (t, $J = 6.0$ Hz, 2H), 2.76 (t, $J = 6.0$ Hz, 2H), 4.05 (t, $J = 8.1$ Hz, 2H), 4.68 (d, $J = 6.0$ Hz, 2H), 7.15 (dd, $J = 8.7$ Hz, 2.4 Hz, 1H), 7.25-7.29 (m, 1H), 7.38 (d, $J = 2.4$ Hz, 1H), 8.27 (s,1H), 10.44 (br s, 1H).

以下の化合物も本発明に包含される。

表 8 5

化合物 No.	R1	\mathbb{R}^2
3-031		Et
3-032		Et
3-041		CI
3-042		T, H
3-043		CF ₈

表 8 6

No	構造
3-017	Ph N Me
3-018	Ph N Me
3-019	Ph N Me
3-020	Ph N Me
5-021	CI H N Me CI O N Me nBu
5-022	H N N N N N N N N N N N N N N N N N N N

表 8 7

化合物 No.	Y²	. Rr
8-001	-C(=O)-NH-	
8-002	-C(=O)-NH-	
8-003	-C(=O)-NH-	
8-004	-C(=O)-NH-	
8-005	-C(=O)-NH-	ZI
8-006	-C(=O)-NH-	Tz'
8-007	-C(=O)-NH-	\bigcirc
8-008	-NH-C(=0)-	
8-009	-NH-C(=0)-	
8-010	-NH-C(=0)-	
8-011	-NH-C(=0)-	
8-012	-NH-C(=0)-	Zz
8-013	-NH-C(=0)-	H Z
8-014	-NH-C(=0)-	Qa

表 8 8

化合物 No.	Y ²	Rr
8-015	-C(=O)-NH-	
8-016	-C(=O)-NH-	
8-017	-C(=O)-NH-	
8-018	-C(=O)-NH-	
8-019	-C(=O)-NH-	H _N
8-020	-C(=O)-NH-	N.
8-021	-C(=O)-NH-	
8-022	-NH-C(=O)-	
8-023	-NH-C(=O)-	
8-024	-NH-C(=O)-	
8-025	-NH-C(=0)-	
8-026	-NH-C(=O)-	
-8-027	-NH-C(=O)-	HN
8-028	-NH-C(=0)-	00

表89

化合物番号 R9		n		
9-002 (3-Cl)C6H4CH2- n-Bu 3 9-003 (2-Cl)C6H4CH2- n-Bu 3 9-004 (4-F)C6H4CH2- n-Bu 3 9-005 (3-F)C6H4CH2- n-Bu 3 9-006 (2-F)C6H4CH2- n-Bu 3 9-006 (2-F)C6H4CH2- n-Bu 3 9-007 (4-Me)C6H4CH2- n-Bu 3 9-008 (3-Me)C6H4CH2- n-Bu 3 9-009 (2-Me)C6H4CH2- n-Bu 3 9-010 (4-Me)C6H4CH2- n-Bu 3 9-011 (3-Me)C6H4CH2- n-Bu 3 9-011 (3-Me)C6H4CH2- n-Bu 3 9-012 (2-Me)C6H4CH2- n-Bu 3 9-013 (4-Me2N)C6H4CH2- n-Bu 3 9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-Me0CO)C6H4CH2- n-Bu 3 9-017 (8-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 3 9-026 (3-Cl)C6H4CH2- n-Bu 3 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-020 (3-Cl)C6H4CH2- n-Bu 4 9-021 (2-CN)C6H4CH2- n-Bu 4 9-022 (4-CN)C6H4CH2- n-Bu 4 9-023 (3-Cl)C6H4CH2- n-Bu 4 9-024 (2-CN)C6H4CH2- n-Bu 4 9-025 (4-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-Me)C6H4CH2- n-Bu 4 9-035 (3-Me)C6H4CH2- n-Bu 4 9-036 (2-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-039 (3-Me)C6H4CH2- n-Bu 4 9-030 (2-Me)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-033 (3-Me)C6H4CH2- n-Bu 4 9-034 (4-Me)C6H4CH2- n-Bu 4 9-035 (3-Me)C6H4CH2- n-Bu 4 9-036 (2-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-039 (3-Me)C6H4CH2- n-Bu 4	化合物番号	R9	R10	n
9-003 (2-Cl)C6H4CH2- n-Bu 3 9-004 (4-F)C6H4CH2- n-Bu 3 9-005 (3-F)C6H4CH2- n-Bu 3 9-006 (2-F)C6H4CH2- n-Bu 3 9-007 (4-Me)C6H4CH2- n-Bu 3 9-007 (4-Me)C6H4CH2- n-Bu 3 9-008 (3-Me)C6H4CH2- n-Bu 3 9-009 (2-Me)C6H4CH2- n-Bu 3 9-010 (4-MeO)C6H4CH2- n-Bu 3 9-011 (3-MeO)C6H4CH2- n-Bu 3 9-012 (2-Me)C6H4CH2- n-Bu 3 9-013 (4-Me2N)C6H4CH2- n-Bu 3 9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me)C6H4CH2- n-Bu 3 9-016 (4-Me)CO)C6H4CH2- n-Bu 3 9-017 (3-MeO)C6H4CH2- n-Bu 3 9-018 (2-MeO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2CN)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 3 9-026 (3-Cl)C6H4CH2- n-Bu 3 9-027 (2-Cl)C6H4CH2- n-Bu 3 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-Me)C6H4CH2- n-Bu 4 9-035 (3-Me)C6H4CH2- n-Bu 4 9-036 (2-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-039 (2-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-039 (2-Me)C6H4CH2- n-Bu 4	9-001	(4-Cl)C6H4CH2-	n-Bu	3
9-004 (4-F)C6H4CH2- n-Bu 3 9-005 (3-F)C6H4CH2- n-Bu 3 9-006 (2-F)C6H4CH2- n-Bu 3 9-007 (4-Me)C6H4CH2- n-Bu 3 9-008 (3-Me)C6H4CH2- n-Bu 3 9-008 (3-Me)C6H4CH2- n-Bu 3 9-009 (2-Me)C6H4CH2- n-Bu 3 9-010 (4-Me)C6H4CH2- n-Bu 3 9-011 (3-Me)C6H4CH2- n-Bu 3 9-012 (2-Me)C6H4CH2- n-Bu 3 9-013 (4-Me2N)C6H4CH2- n-Bu 3 9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-Me)CO)C6H4CH2- n-Bu 3 9-017 (3-Me)CO)C6H4CH2- n-Bu 3 9-018 (2-Me)CO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 3 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-Me)C6H4CH2- n-Bu 4 9-035 (3-Me)C6H4CH2- n-Bu 4 9-036 (2-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-039 (2-Me)NC6H4CH2- n-Bu 4	9-002	(3-Cl)C6H4CH2-	n-Bu	3
9-005 (3-F)C6H4CH2- n-Bu 3 9-006 (2-F)C6H4CH2- n-Bu 3 9-007 (4-Me)C6H4CH2- n-Bu 3 9-008 (3-Me)C6H4CH2- n-Bu 3 9-009 (2-Me)C6H4CH2- n-Bu 3 9-009 (2-Me)C6H4CH2- n-Bu 3 9-010 (4-MeO)C6H4CH2- n-Bu 3 9-011 (3-MeO)C6H4CH2- n-Bu 3 9-011 (3-MeO)C6H4CH2- n-Bu 3 9-012 (2-MeO)C6H4CH2- n-Bu 3 9-013 (4-Me2N)C6H4CH2- n-Bu 3 9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-MeOCO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3SNO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 3 9-026 (3-Cl)C6H4CH2- n-Bu 3 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-Me)C6H4CH2- n-Bu 4 9-035 (3-Me)C6H4CH2- n-Bu 4 9-036 (2-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-039 (2-Me)NC6H4CH2- n-Bu 4 9-038 (3-Me)NC6H4CH2- n-Bu 4 9-039 (2-Me)NC6H4CH2- n-Bu 4	9-003	(2-Cl)C6H4CH2-	_n-Bu	3
9-006 (2-F)C6H4CH2- n-Bu 3 9-007 (4-Me)C6H4CH2- n-Bu 3 9-008 (3-Me)C6H4CH2- n-Bu 3 9-009 (2-Me)C6H4CH2- n-Bu 3 9-009 (2-Me)C6H4CH2- n-Bu 3 9-010 (4-MeO)C6H4CH2- n-Bu 3 9-011 (3-MeO)C6H4CH2- n-Bu 3 9-012 (2-MeO)C6H4CH2- n-Bu 3 9-013 (4-Me2N)C6H4CH2- n-Bu 3 9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-MeOCO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 3 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-Me)C6H4CH2- n-Bu 4 9-035 (3-Me)C6H4CH2- n-Bu 4 9-036 (3-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)C6H4CH2- n-Bu 4 9-036 (2-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-036 (2-Me)C6H4CH2- n-Bu 4 9-037 (4-Me)C6H4CH2- n-Bu 4 9-038 (3-Me)NC6H4CH2- n-Bu 4 9-039 (2-Me)NC6H4CH2- n-Bu 4 9-039 (2-Me)NC6H4CH2- n-Bu 4 9-038 (3-Me)NC6H4CH2- n-Bu 4 9-039 (2-Me)NC6H4CH2- n-Bu 4	9-004	(4-F)C6H4CH2-	n-Bu	3
9-007 (4-Me)C6H4CH2- n-Bu 3 9-008 (3-Me)C6H4CH2- n-Bu 3 9-009 (2-Me)C6H4CH2- n-Bu 3 9-010 (4-MeO)C6H4CH2- n-Bu 3 9-011 (3-MeO)C6H4CH2- n-Bu 3 9-012 (2-MeO)C6H4CH2- n-Bu 3 9-013 (4-Me2N)C6H4CH2- n-Bu 3 9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-Me0CO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2-	9-005	(3-F)C6H4CH2-	n-Bu	3
9-008 (3-Me)C6H4CH2- n-Bu 3 9-009 (2-Me)C6H4CH2- n-Bu 3 9-010 (4-MeO)C6H4CH2- n-Bu 3 9-011 (3-MeO)C6H4CH2- n-Bu 3 9-012 (2-MeO)C6H4CH2- n-Bu 3 9-013 (4-Me2N)C6H4CH2- n-Bu 3 9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-MeOCO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 4 9-025 (4-CI)C6H4CH2-	9-006	(2-F)C6H4CH2-	n-Bu	
9-009 (2-Me)C6H4CH2- n-Bu 3 9-010 (4-MeO)C6H4CH2- n-Bu 3 9-011 (3-MeO)C6H4CH2- n-Bu 3 9-012 (2-MeO)C6H4CH2- n-Bu 3 9-013 (4-Me2N)C6H4CH2- n-Bu 3 9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-MeOCO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 4 9-025 (4-C1)C6H4CH2-	9-007	(4-Me)C6H4CH2-	n-Bu	3
9-010 (4-MeO)C6H4CH2- n-Bu 3 9-011 (3-MeO)C6H4CH2- n-Bu 3 9-012 (2-MeO)C6H4CH2- n-Bu 3 9-013 (4-Me2N)C6H4CH2- n-Bu 3 9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-MeOCO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 4 9-025 (4-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2-	9-008	(3-Me)C6H4CH2-	n-Bu	3
9-011 (3-MeO)C6H4CH2- n-Bu 3 9-012 (2-MeO)C6H4CH2- n-Bu 3 9-013 (4-Me2N)C6H4CH2- n-Bu 3 9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-MeOCO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 4 9-025 (4-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2-	9-009	(2-Me)C6H4CH2-	n-Bu	
9-012 (2-MeO)C6H4CH2- n-Bu 3 9-013 (4-Me2N)C6H4CH2- n-Bu 3 9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-MeOCO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-C1)C6H4CH2- n-Bu 4 9-026 (3-C1)C6H4CH2- n-Bu 4 9-027 (2-C1)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2-	9-010	(4-MeO)C6H4CH2-	n-Bu	
9-013 (4-Me2N)C6H4CH2- n-Bu 3 9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-MeOCO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 4 9-025 (4-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n	9-011	(3-MeO)C6H4CH2-	n-Bu	3
9-014 (3-Me2N)C6H4CH2- n-Bu 3 9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-MeOCO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-C1)C6H4CH2- n-Bu 4 9-026 (3-C1)C6H4CH2- n-Bu 4 9-027 (2-C1)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu	9-012	(2-MeO)C6H4CH2-	n-Bu	3
9-015 (2-Me2N)C6H4CH2- n-Bu 3 9-016 (4-MeOCO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-C1)C6H4CH2- n-Bu 4 9-026 (3-C1)C6H4CH2- n-Bu 4 9-027 (2-C1)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu <td>9-013</td> <td>(4-Me2N)C6H4CH2-</td> <td>n-Bu</td> <td>3</td>	9-013	(4-Me2N)C6H4CH2-	n-Bu	3
9-016 (4-MeOCO)C6H4CH2- n-Bu 3 9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-014	(3-Me2N)C6H4CH2-	n-Bu	
9-017 (3-MeOCO)C6H4CH2- n-Bu 3 9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-Me)C6H4CH2- n-Bu 4 9-035 (3-Me)C6H4CH2- n-Bu 4	9-015	(2-Me2N)C6H4CH2-	n-Bu	3
9-018 (2-MeOCO)C6H4CH2- n-Bu 3 9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-Me)C6H4CH2- n-Bu 4 9-035 (3-Me)C6H4CH2- n-Bu	9-016	(4-MeOCO)C6H4CH2-	n-Bu	3
9-019 (4-CN)C6H4CH2- n-Bu 3 9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 3 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-017	(3-MeOCO)C6H4CH2-	n-Bu	3
9-020 (3-CN)C6H4CH2- n-Bu 3 9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-018	(2-MeOCO)C6H4CH2-	n-Bu	3
9-021 (2CN)C6H4CH2- n-Bu 3 9-022 (4N02)C6H4CH2- n-Bu 3 9-023 (3N02)C6H4CH2- n-Bu 3 9-024 (2N02)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4 </td <td>9-019</td> <td>(4-CN)C6H4CH2-</td> <td>n-Bu</td> <td>3</td>	9-019	(4-CN)C6H4CH2-	n-Bu	3
9-022 (4NO2)C6H4CH2- n-Bu 3 9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-020	(3-CN)C6H4CH2-	n-Bu	3
9-023 (3NO2)C6H4CH2- n-Bu 3 9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-C1)C6H4CH2- n-Bu 4 9-026 (3-C1)C6H4CH2- n-Bu 4 9-027 (2-C1)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-021		n-Bu	3
9-024 (2NO2)C6H4CH2- n-Bu 3 9-025 (4-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-022		n-Bu	
9-025 (4-Cl)C6H4CH2- n-Bu 4 9-026 (3-Cl)C6H4CH2- n-Bu 4 9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-023	(3NO2)C6H4CH2-	n-Bu	
9-026 (3-C1)C6H4CH2- n-Bu 4 9-027 (2-C1)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-024	(2NO2)C6H4CH2-	n-Bu	
9-027 (2-Cl)C6H4CH2- n-Bu 4 9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-025	(4-Cl)C6H4CH2-	n-Bu	4
9-028 (4-F)C6H4CH2- n-Bu 4 9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-026	(3-CI)C6H4CH2-	n-Bu	
9-029 (3-F)C6H4CH2- n-Bu 4 9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-027	(2-Cl)C6H4CH2-	n-Bu	4
9-030 (2-F)C6H4CH2- n-Bu 4 9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-028	(4-F)C6H4CH2-	n-Bu	4
9-031 (4-Me)C6H4CH2- n-Bu 4 9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-029	(3-F)C6H4CH2-	n-Bu	4
9-032 (3-Me)C6H4CH2- n-Bu 4 9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-030	(2-F)C6H4CH2-	n-Bu	
9-033 (2-Me)C6H4CH2- n-Bu 4 9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-031	(4-Me)C6H4CH2-	n-Bu	
9-034 (4-MeO)C6H4CH2- n-Bu 4 9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-032	(3-Me)C6H4CH2-	n-Bu	
9-035 (3-MeO)C6H4CH2- n-Bu 4 9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-033	(2-Me)C6H4CH2-	n-Bu	
9-036 (2-MeO)C6H4CH2- n-Bu 4 9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-034		n-Bu	
9-037 (4-Me2N)C6H4CH2- n-Bu 4 9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-035			
9-038 (3-Me2N)C6H4CH2- n-Bu 4 9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-036	(2-MeO)C6H4CH2-	n-Bu	
9-039 (2-Me2N)C6H4CH2- n-Bu 4	9-037	(4-Me2N)C6H4CH2-	n-Bu	4
	9-038	(3-Me2N)C6H4CH2-	n-Bu	4
9-040 (4-MeOCO)C6H4CH2- n-Bu 4	9-039	(2-Me2N)C6H4CH2-	n-Bu	4
	9-040	(4-MeOCO)C6H4CH2-	n-Bu	4

表 9 0

化合物番号	R9	R10	n
9-041	(3-MeOCO)C6H4CH2-	n-Bu	4
9-042	(2-MeOCO)C6H4CH2-	n-Bu	4
9-043	(4-CN)C6H4CH2-	n-Bu	4
9-044	(3-CN)C6H4CH2-	n-Bu	4
9-045	(2CN)C6H4CH2-	n-Bu	4
9-046	(4NO2)C6H4CH2-	n-Bu	4
9-047	(3NO2)C6H4CH2-	n-Bu	4
9-048	(2NO2)C6H4CH2-	n-Bu	4
9-049	(4-Cl)C6H4CH2-	n-Bu	_ 5
9-050	(3-Cl)C6H4CH2-	n-Bu	5
9-051	(2-Cl)C6H4CH2-	n-Bu	5
9-052	(4-F)C6H4CH2-	n-Bu	5
9-053	(3-F)C6H4CH2-	n-Bu	5
9-054	(2-F)C6H4CH2-	n-Bu	5
9-055	(4-Me)C6H4CH2-	n-Bu	5
9-056	(3-Me)C6H4CH2-	n-Bu	5
9-057	(2-Me)C6H4CH2-	n-Bu	5
9-058	(4-MeO)C6H4CH2-	n-Bu	5
9-059	(3-MeO)C6H4CH2-	n-Bu	5
9-060	(2-MeO)C6H4CH2-	n-Bu	5
9-061	(4-Me2N)C6H4CH2-	n-Bu	5
9-062	(3-Me2N)C6H4CH2-	n-Bu	5
9-063	(2-Me2N)C6H4CH2-	n-Bu	5
9-064	(4-MeOCO)C6H4CH2-	n-Bu	5
9-065	(3-MeOCO)C6H4CH2-	n-Bu	5
9-066	(2-MeOCO)C6H4CH2-	n-Bu	5
9-067	(4-CN)C6H4CH2-	n-Bu	5
9-068	(3-CN)C6H4CH2-	n-Bu	5
9-069	(2CN)C6H4CH2-	n-Bu	5
9-070	(4NO2)C6H4CH2-	n-Bu	5
9-071	(3NO2)C6H4CH2-	n-Bu	5
9-072	(2NO2)C6H4CH2-	n-Bu	5
9-073	(4-C1)C6H4CH2-	n-Bu	6
9-074	(3-C1)C6H4CH2-	n-Bu	6
9-075	(2-C1)C6H4CH2-	n-Bu	6
9-076	(4-F)C6H4CH2-	n-Bu	6
9-077	(3-F)C6H4CH2-	n-Bu	6
9-078	(2-F)C6H4CH2-	n-Bu	6
9-079	(4-Me)C6H4CH2-	n-Bu	6
9-080	(3-Me)C6H4CH2-	n-Bu	6

表 9 1

化合物番号	R9	R10	n
9-081	(2-Me)C6H4CH2-	n-Bu	6
9-082	(4-MeO)C6H4CH2-	n-Bu	6
9-083	(3-MeO)C6H4CH2-	n-Bu	6
9-084	(2-MeO)C6H4CH2-	n-Bu	6
9-085	(4-Me2N)C6H4CH2-	n-Bu	6
9-086	(3-Me2N)C6H4CH2-	n-Bu	6
9-087	(2-Me2N)C6H4CH2-	n-Bu	6
9-088	(4-MeOCO)C6H4CH2-	n-Bu	6
9-089	(3-MeOCO)C6H4CH2-	n-Bu	6
9-090	(2-MeOCO)C6H4CH2-	n-Bu	6
9-091	(4-CN)C6H4CH2-	n-Bu	6
9-092	(3-CN)C6H4CH2-	n-Bu	6
9-093	(2CN)C6H4CH2-	n-Bu	6
9-094	(4NO2)C6H4CH2-	n-Bu	6
9-095	(3NO2)C6H4CH2-	n-Bu	6
9-096	(2NO2)C6H4CH2-	n-Bu	6
9-097	(4-Cl)C6H4CH2-	Bnzyl	3
9-098	(3-Cl)C6H4CH2-	Bnzyl	3
9-099	(2-Cl)C6H4CH2-	Bnzyl	3
9-100	(4-F)C6H4CH2-	Bnzyl	3
9-101	(3-F)C6H4CH2-	Bnzyl	3
9-102	(2-F)C6H4CH2-	Bnzyl	3
9-103	(4-Me)C6H4CH2-	Bnzyl	3
9-104	(3-Me)C6H4CH2-	Bnzyl	3
9-105	(2-Me)C6H4CH2-	Bnzyl	3
9-106	(4-MeO)C6H4CH2-	Bnzyl	3
9-107	(3-MeO)C6H4CH2-	Bnzyl	3
9-108	(2-MeO)C6H4CH2-	Bnzyl	3
9-109	(4-Me2N)C6H4CH2-	Bnzyl	3
9-110	(3-Me2N)C6H4CH2-	Bnzyl	3
9-111	(2-Me2N)C6H4CH2-	Bnzyl	3
9-112	(4-MeOCO)C6H4CH2-	Bnzyl	3
9-113	(3-MeOCO)C6H4CH2-	Bnzyl	3
9-114	(2-MeOCO)C6H4CH2-	Bnzyl	3
9-115	(4-CN)C6H4CH2-	Bnzyl	3
9-116	(3-CN)C6H4CH2-	Bnzyl	3
9-117	(2CN)C6H4CH2-	Bnzyl	3
9-118	(4NO2)C6H4CH2-	Bnzyl	3_
9-119	(3NO2)C6H4CH2-	Bnzyl	3
9-120	(2NO2)C6H4CH2-	Bnzyl	3

表 9 2

化合物番号	R9	R10	n
9-121	(4-C1)C6H4CH2-	Bnzyl	4
9-122	(3-Cl)C6H4CH2-	Bnzyl	4
9-123	(2-Cl)C6H4CH2-	Bnzyl	4
9-124	(4-F)C6H4CH2-	Bnzyl	4
9-125	(3-F)C6H4CH2-	Bnzyl	4
9-126	(2-F)C6H4CH2-	Bnzyl	4
9-127	(4-Me)C6H4CH2-	Bnzyl	4
9-128	(3-Me)C6H4CH2-	Bnzyl	4
9-129	(2-Me)C6H4CH2-	Bnzyl	4
9-130	(4-MeO)C6H4CH2-	Bnzyl	4
9-131	(3-MeO)C6H4CH2-	Bnzyl	4
9-132	(2-MeO)C6H4CH2-	Bnzyl	4
9-133	(4-Me2N)C6H4CH2-	Bnzyl	4
9-134	(3-Me2N)C6H4CH2-	Bnzyl	4
9-135	(2-Me2N)C6H4CH2-	Bnzyl	4
9-136	(4-MeOCO)C6H4CH2-	Bnzyl	4
9-137	(3-MeOCO)C6H4CH2-	Bnzyl	4
9-138	(2-MeOCO)C6H4CH2-	Bnzyl	4
9-139	(4-CN)C6H4CH2-	Bnzyl	4
9-140	(3-CN)C6H4CH2-	Bnzyl	4
9-141	(2CN)C6H4CH2-	Bnzyl	4
9-142	(4NO2)C6H4CH2-	Bnzyl	4
9-143	(3NO2)C6H4CH2-	Bnzyl	4
9-144	(2NO2)C6H4CH2-	Bnzyl	4
9-145	(4-Cl)C6H4CH2-	Bnzyl	5
9-146	(3-Cl)C6H4CH2-	Bnzyl	5
9-147	(2-Cl)C6H4CH2-	Bnzyl	5
9-148	(4-F)C6H4CH2-	Bnzyl	5
9-149	(3-F)C6H4CH2-	Bnzyl	5
9-150	(2-F)C6H4CH2-	Bnzyl	5
9-151	(4-Me)C6H4CH2-	Bnzyl	5
9-152	(3-Me)C6H4CH2-	Bnzyl	5
9-153	(2-Me)C6H4CH2-	Bnzyl	5
9-154	(4-MeO)C6H4CH2-	Bnzyl	5
9-155	(3-MeO)C6H4CH2-	Bnzyl	5
9-156	(2-MeO)C6H4CH2-	Bnzyl	5
9-157	(4-Me2N)C6H4CH2-	Bnzyl	5
9-158	(3-Me2N)C6H4CH2-	Bnzyl	5
9-159	(2-Me2N)C6H4CH2-	Bnzyl	5
9-160	(4-MeOCO)C6H4CH2-	Bnzyl	5
U-100	(- 1.10000)001110112-		

表 9 3

化合物番号	R9	R10	n
9-161	(3-MeOCO)C6H4CH2-	Bnzyl	5
9-162	(2-MeOCO)C6H4CH2-	Bnzyl	5
9-163	(4-CN)C6H4CH2-	Bnzyl	5
9-164	(3-CN)C6H4CH2-	Bnzyl	5
9-165	(2CN)C6H4CH2-	Bnzyl	. 5
9-166	(4NO2)C6H4CH2-	Bnzyl	5
9-167	(3NO2)C6H4CH2-	Bnzyl	5
9-168	(2NO2)C6H4CH2-	Bnzyl	5
9-169	(4-Cl)C6H4CH2-	Bnzyl	6
9-170	(3-Cl)C6H4CH2-	Bnzyl	6
9-171	(2-Cl)C6H4CH2-	Bnzyl	6
9-172	(4-F)C6H4CH2-	Bnzyl	6
9-173	(3-F)C6H4CH2-	Bnzyl	6
9-174	(2-F)C6H4CH2-	Bnzyl	6
9-175	(4-Me)C6H4CH2-	Bnzyl	6
9-176	(3-Me)C6H4CH2-	Bnzyl	6
9-177	(2-Me)C6H4CH2-	Bnzyl	6
9-178	(4-MeO)C6H4CH2-	Bnzyl	6
9-179	(3-MeO)C6H4CH2-	Bnzyl	6
9-180	(2-MeO)C6H4CH2-	Bnzyl	6
9-181	(4-Me2N)C6H4CH2-	Bnzyl	6
9-182	(3-Me2N)C6H4CH2-	Bnzyl	6
9-183	(2-Me2N)C6H4CH2-	Bnzyl	6
9-184	(4-MeOCO)C6H4CH2-	Bnzyl	6
9-185	(3-MeOCO)C6H4CH2-	Bnzyl	6
9-186	(2-MeOCO)C6H4CH2-	Bnzyl	6
9-187	(4-CN)C6H4CH2-	Bnzyl	6
9-188	(3-CN)C6H4CH2-	Bnzyl	6
9-189	(2CN)C6H4CH2-	Bnzyl	6
9-190	(4NO2)C6H4CH2-	Bnzyl	66
9-191	(3NO2)C6H4CH2-	Bnzyl	6
9-192	(2NO2)C6H4CH2-	Bnzyl	6
9-193	(4-Cl)C6H4CH2-	4-pyridyl-CH2-	3
9-194	(3-Cl)C6H4CH2-	4-pyridyl-CH2-	3
9-195	(2-Cl)C6H4CH2-	4-pyridyl-CH2-	3
9-196	(4-F)C6H4CH2-	4-pyridyl-CH2-	3
9-197	(3-F)C6H4CH2-	4-pyridyl-CH2-	3
9-198	(2-F)C6H4CH2-	4-pyridyl-CH2-	3
9-199	(4-Me)C6H4CH2-	4-pyridyl-CH2-	3
9-200	(3-Me)C6H4CH2-	4-pyridyl-CH2-	3

表 9 4

	H.		
化合物番号	R9	R10	n
9-201	(2-Me)C6H4CH2-	4-pyridyl-CH2-	3
9-202	(4-MeO)C6H4CH2-	4-pyridyl-CH2-	3
9-203	(3-MeO)C6H4CH2-	4-pyridyl-CH2-	3
9-204	(2-MeO)C6H4CH2-	4-pyridyl-CH2-	3
9-205	(4-Me2N)C6H4CH2-	4-pyridyl-CH2-	3
9-206	(3-Me2N)C6H4CH2-	4-pyridyl-CH2-	3
9-207	(2-Me2N)C6H4CH2-	4-pyridyl-CH2-	. 3
9-208	(4-MeOCO)C6H4CH2-	4-pyridyl-CH2-	3
9-209	(3-MeOCO)C6H4CH2-	4-pyridyl-CH2-	3
9-210	(2-MeOCO)C6H4CH2-	4-pyridyl-CH2-	3
9-211	(4-CN)C6H4CH2-	4-pyridyl-CH2-	33
9-212	(3-CN)C6H4CH2-	4-pyridyl-CH2-	3
9-213	(2CN)C6H4CH2-	4-pyridyl-CH2-	3
9-214	(4NO2)C6H4CH2-	4-pyridyl-CH2-	3
9-215	(3NO2)C6H4CH2-	4-pyridyl-CH2-	3 ·
9-216	(2NO2)C6H4CH2-	4-pyridyl-CH2-	3
9-217	(4-Cl)C6H4CH2-	4-pyridyl-CH2-	4
9-218	(3-Cl)C6H4CH2-	4-pyridyl-CH2-	4
9-219	(2-Cl)C6H4CH2-	4-pyridyl-CH2-	4
9-220	(4-F)C6H4CH2-	4-pyridyl-CH2-	4
9-221	(3-F)C6H4CH2-	4-pyridyl-CH2-	4
9-222	(2-F)C6H4CH2-	4-pyridyl-CH2-	4
9-223	(4-Me)C6H4CH2-	4-pyridyl-CH2-	· 4
9-224	(3-Me)C6H4CH2-	4-pyridyl-CH2-	4
9-225	(2-Me)C6H4CH2-	4-pyridyl-CH2-	4
9-226	(4-MeO)C6H4CH2-	4-pyridyl-CH2-	4
9-227	(3-MeO)C6H4CH2-	4-pyridyl-CH2-	4
9-228	(2-MeO)C6H4CH2-	4-pyridyl-CH2-	4
9-229	(4-Me2N)C6H4CH2-	4-pyridyl-CH2-	4
9-230	(3-Me2N)C6H4CH2-	4-pyridyl-CH2-	4
9-231	(2-Me2N)C6H4CH2-	4-pyridyl-CH2-	4
9-232	(4-MeOCO)C6H4CH2-	4-pyridyl-CH2-	4
9-233	(3-MeOCO)C6H4CH2-	4-pyridyl-CH2-	4
9-234	(2-MeOCO)C6H4CH2-	4-pyridyl-CH2-	4
9-235	(4-CN)C6H4CH2-	4-pyridyl-CH2-	4
9-236	(3-CN)C6H4CH2-	4-pyridyl-CH2-	4
9-237	(2CN)C6H4CH2-	4-pyridyl-CH2-	4
9-238	(4NO2)C6H4CH2-	4-pyridyl-CH2-	4
9-239	(3NO2)C6H4CH2-	4-pyridyl-CH2-	4
9-240	(2NO2)C6H4CH2-	4-pyridyl-CH2-	4

表 9 5

	R'*		
化合物番号	R9	R10	n
9-241	(4-Cl)C6H4CH2-	4-pyridyl-CH2-	5
9-242	(3-C1)C6H4CH2-	4-pyridyl-CH2-	5
9-243	(2-Cl)C6H4CH2-	4-pyridyl-CH2-	5
9-244	(4-F)C6H4CH2-	4-pyridyl-CH2-	5
9-245	(3-F)C6H4CH2-	4-pyridyl-CH2-	5
9-246	(2-F)C6H4CH2-	4-pyridyl-CH2-	_ 5
9-247	(4-Me)C6H4CH2-	4-pyridyl-CH2-	5
9-248	(3-Me)C6H4CH2-	4-pyridyl-CH2-	5
9-249	(2-Me)C6H4CH2-	4-pyridyl-CH2-	5
9-250	(4-MeO)C6H4CH2-	4-pyridyl-CH2-	5
9-251	(3-MeO)C6H4CH2-	4-pyridyl-CH2-	5
9-252	(2-MeO)C6H4CH2-	4-pyridyl-CH2-	5
9-253	(4-Me2N)C6H4CH2-	4-pyridyl-CH2-	5
9-254	(3-Me2N)C6H4CH2-	4-pyridyl-CH2-	5
9-255	(2-Me2N)C6H4CH2-	4-pyridyl-CH2-	5
9-256	(4-MeOCO)C6H4CH2-	4-pyridyl-CH2-	5
9-257	(3-MeOCO)C6H4CH2-	4-pyridyl-CH2-	5
9-258	(2-MeOCO)C6H4CH2-	4-pyridyl-CH2-	5
9-259	(4-CN)C6H4CH2-	4-pyridyl-CH2-	5
9-260	(3-CN)C6H4CH2-	4-pyridyl-CH2-	5
9-261	(2CN)C6H4CH2-	4-pyridyl-CH2-	5
9-262	(4NO2)C6H4CH2-	4-pyridyl-CH2-	5
9-263	(3NO2)C6H4CH2-	4-pyridyl-CH2-	5
9-264	(2NO2)C6H4CH2-	4-pyridyl-CH2-	5
9-265	(4-Cl)C6H4CH2-	4-pyridyl-CH2-	66
9-266	(3-Cl)C6H4CH2-	4-pyridyl-CH2-	6
9-267	(2-Cl)C6H4CH2-	4-pyridyl-CH2-	6
9-268	(4-F)C6H4CH2-	4-pyridyl-CH2-	6
9-269	(3-F)C6H4CH2-	4-pyridyl-CH2-	6
9-270	(2-F)C6H4CH2-	4-pyridyl-CH2-	6
9-271	(4-Me)C6H4CH2-	4-pyridyl-CH2-	6
9-272	(3-Me)C6H4CH2-	4-pyridyl-CH2-	6
9-273	(2-Me)C6H4CH2-	4-pyridyl-CH2-	66
9-274	(4-MeO)C6H4CH2-	4-pyridyl-CH2-	6
9-275	(3-MeO)C6H4CH2-	4-pyridyl-CH2-	6
9-276	(2-MeO)C6H4CH2-	4-pyridyl-CH2-	6
9-277	(4-Me2N)C6H4CH2-	4-pyridyl-CH2-	6
9-278	(3-Me2N)C6H4CH2-	4-pyridyl-CH2-	6
9-279	(2-Me2N)C6H4CH2-	4-pyridyl-CH2-	6
9-280	(4-MeOCO)C6H4CH2-	4-pyridyl-CH2-	6

表 9 6

	in .		
化合物番号	R9	R10	n_
9-281	(3-MeOCO)C6H4CH2-	4-pyridyl-CH2-	6
9-282	(2-MeOCO)C6H4CH2-	4-pyridyl-CH2-	6
9-283	(4-CN)C6H4CH2-	4-pyridyl-CH2-	6
9-284	(3-CN)C6H4CH2-	4-pyridyl-CH2-	6
9-285	(2CN)C6H4CH2-	4-pyridyl-CH2-	6
9-286	(4NO2)C6H4CH2-	4-pyridyl-CH2-	6
9-287	(3NO2)C6H4CH2-	4-pyridyl-CH2-	6
9-288	(2NO2)C6H4CH2-	4-pyridyl-CH2-	6
9-289	(4-Cl)C6H4CH2CH2-	n-Bu	3
9-290	(3-C1)C6H4CH2CH2-	n-Bu	3
9-291	(2-Cl)C6H4CH2CH2-	n-Bu	3
9-292	(4-F)C6H4CH2CH2-	n-Bu	3
9-293	(3-F)C6H4CH2CH2-	n-Bu	3
9-294	(2-F)C6H4CH2CH2-	n-Bu	3
9-295	(4-Me)C6H4CH2CH2-	n-Bu	3
9-296	(3-Me)C6H4CH2CH2-	n-Bu	3
9-297 ·	(2-Me)C6H4CH2CH2-	n-Bu	3
9-298	(4-MeO)C6H4CH2CH2-	n-Bu	3
9-299	(3-MeO)C6H4CH2CH2-	n-Bu	3
9-300	(2-MeO)C6H4CH2CH2-	n-Bu	3
9-301	(4-Me2N)C6H4CH2CH2-	n-Bu	3
9-302	(3-Me2N)C6H4CH2CH2-	n-Bu	3
9-303	(2-Me2N)C6H4CH2CH2-	n-Bu	3
9-304	(4-MeOCO)C6H4CH2CH2-	n-Bu	3
9-305	(3-MeOCO)C6H4CH2CH2-	n-Bu	3
9-306	(2-MeOCO)C6H4CH2CH2-	n-Bu	3
9-307	(4-CN)C6H4CH2CH2-	n-Bu	3
9-308	(3-CN)C6H4CH2CH2-	n-Bu	3
9-309	(2CN)C6H4CH2CH2-	n-Bu	3
9-310	(4NO2)C6H4CH2CH2-	n-Bu	3
9-311	(3NO2)C6H4CH2CH2-	n-Bu	3
9-312	(2NO2)C6H4CH2CH2-	n-Bu	3
9-313	(4-Cl)C6H4CH2CH2-	n-Bu	4
9-314	(3-Cl)C6H4CH2CH2-	n-Bu	4
9-315	(2-Cl)C6H4CH2CH2-	n-Bu	4
9-316	(4-F)C6H4CH2CH2-	n-Bu	4
9-317	(3-F)C6H4CH2CH2-	n-Bu	4
9-318	(2-F)C6H4CH2CH2-	n-Bu	4
9-319	(4-Me)C6H4CH2CH2-	n-Bu	4
9-320	(3-Me)C6H4CH2CH2-	n-Bu	4

表 9 7

化合物番号	R9	R10	n
9-321	(2-Me)C6H4CH2CH2-	n-Bu	4
9-322	(4-MeO)C6H4CH2CH2-	n-Bu	4
9-323	(3-MeO)C6H4CH2CH2-	n-Bu	4
9-324	(2-MeO)C6H4CH2CH2-	n-Bu	4
9-325	(4-Me2N)C6H4CH2CH2-	n-Bu	4
9-326	(3-Me2N)C6H4CH2CH2-	n-Bu	4
9-327	(2-Me2N)C6H4CH2CH2-	n-Bu	4
9-328	(4-MeOCO)C6H4CH2CH2-	n-Bu	4
9-329	(3-MeOCO)C6H4CH2CH2-	n-Bu	4
9-330	(2-MeOCO)C6H4CH2CH2-	n-Bu	4
9-331	(4-CN)C6H4CH2CH2-	n-Bu	4
9-332	(3-CN)C6H4CH2CH2-	n-Bu	4
9-333	(2CN)C6H4CH2CH2-	n-Bu	4
9-334	(4NO2)C6H4CH2CH2-	n-Bu	4
9-335	(3NO2)C6H4CH2CH2-	n-Bu	4
9-336	(2NO2)C6H4CH2CH2-	n-Bu	4
9-337	(4-Cl)C6H4CH2CH2-	n-Bu	5
9-338	(3-C1)C6H4CH2CH2-	n-Bu	5
9-339	(2-C1)C6H4CH2CH2-	n-Bu	5
9-340	(4-F)C6H4CH2CH2-	n-Bu	5
9-341	(3-F)C6H4CH2CH2-	n-Bu	5
9-342	(2-F)C6H4CH2CH2-	n-Bu	5 .
9-343	(4-Me)C6H4CH2CH2-	n-Bu	5
9-344	(3-Me)C6H4CH2CH2-	n-Bu_	5
9-345	(2-Me)C6H4CH2CH2-	n-Bu_	5
9-346	(4-MeO)C6H4CH2CH2-	n-Bu_	5
9-347	(3-MeO)C6H4CH2CH2-	n-Bu	5
9-348	(2-MeO)C6H4CH2CH2-	n-Bu	5
9-349	(4-Me2N)C6H4CH2CH2-	n-Bu	5
9-350	(3-Me2N)C6H4CH2CH2-	n-Bu	5
9-351	(2-Me2N)C6H4CH2CH2-	n-Bu	5
9-352	(4-MeOCO)C6H4CH2CH2-	n-Bu	5
9-353	(3-MeOCO)C6H4CH2CH2-	n-Bu	5
9-354	(2-MeOCO)C6H4CH2CH2-	n-Bu	5
9-355	(4-CN)C6H4CH2CH2-	n-Bu	5
9-356	(3-CN)C6H4CH2CH2-	n-Bu	5
9-357	(2CN)C6H4CH2CH2-	n-Bu	5
9-358	(4NO2)C6H4CH2CH2-	n-Bu	5
9-359	(3NO2)C6H4CH2CH2-	n-Bu	5
9-360	(2NO2)C6H4CH2CH2-	n-Bu	5

表 9 8

化合物番号	R9	R10	n
9-361	(4-Cl)C6H4CH2CH2-	n-Bu	6
9-362	(3-C1)C6H4CH2CH2-	n-Bu	6
9-363	(2-Cl)C6H4CH2CH2-	n-Bu	6
9-364	(4-F)C6H4CH2CH2-	n-Bu	6
9-365	(3-F)C6H4CH2CH2-	n-Bu	6
9-366	(2-F)C6H4CH2CH2-	n-Bu	6
9-367	(4-Me)C6H4CH2CH2-	n-Bu	6
9-368	(3-Me)C6H4CH2CH2-	n-Bu	6
9-369	(2-Me)C6H4CH2CH2-	n-Bu	6
9-370	(4-MeO)C6H4CH2CH2-	n-Bu	6
9-371	(3-MeO)C6H4CH2CH2-	n-Bu	6
9-372	(2-MeO)C6H4CH2CH2-	n-Bu	6
9-373	(4-Me2N)C6H4CH2CH2-	n-Bu	6
9-374	(3-Me2N)C6H4CH2CH2-	n-Bu	6
9-375	(2-Me2N)C6H4CH2CH2-	n-Bu	6
9-376	(4-MeOCO)C6H4CH2CH2-	n-Bu	6
9-377	(3-MeOCO)C6H4CH2CH2-	n-Bu	6
9-378	(2-MeOCO)C6H4CH2CH2-	n-Bu	6
9-379	(4-CN)C6H4CH2CH2-	n-Bu	6
9-380	(3-CN)C6H4CH2CH2-	n-Bu	6
9-381	(2CN)C6H4CH2CH2-	n-Bu	6
9-382	(4NO2)C6H4CH2CH2-	n-Bu	6
9-383	(3NO2)C6H4CH2CH2-	n-Bu	6
9-384	(2NO2)C6H4CH2CH2-	n-Bu	6
9-385	(4-Cl)C6H4CH2CH2-	Bnzyl	3
9-386	(3-C1)C6H4CH2CH2-	Bnzyl	3
9-387	(2-C1)C6H4CH2CH2-	Bnzyl	3
9-388	(4-F)C6H4CH2CH2-	Bnzyl	3
9-389	(3-F)C6H4CH2CH2-	Bnzyl	3
9-390	(2-F)C6H4CH2CH2-	Bnzyl	3
9-391	(4-Me)C6H4CH2CH2-	Bnzyl	3
9-392	(3-Me)C6H4CH2CH2-	Bnzyl	3
9-393	(2-Me)C6H4CH2CH2-	Bnzyl	3
9-394	(4-MeO)C6H4CH2CH2-	Bnzyl	3
9-395	(3-MeO)C6H4CH2CH2-	Bnzyl	3
9-396	(2-MeO)C6H4CH2CH2-	Bnzyl	3
9-397	(4-Me2N)C6H4CH2CH2-	Bnzyl	3
9-398	(3-Me2N)C6H4CH2CH2-	Bnzyl	3
9-399	(2-Me2N)C6H4CH2CH2-	Bnzyl	3
9-400	(4-MeOCO)C6H4CH2CH2-	Bnzyl	3

表 9 9

化合物番号	R9	R10	\mathbf{n}
9-401	(3-MeOCO)C6H4CH2CH2-	Bnzyl	3
9-402	(2-MeOCO)C6H4CH2CH2-	Bnzyl	3
9-403	(4-CN)C6H4CH2CH2-	Bnzyl	3
9-404	(3-CN)C6H4CH2CH2-	Bnzyl	3
9-405	(2CN)C6H4CH2CH2-	Bnzyl	3
9-406	(4NO2)C6H4CH2CH2-	Bnzyl	3
9-407	(3NO2)C6H4CH2CH2-	Bnzyl	3
9-408	(2NO2)C6H4CH2CH2-	Bnzyl	3
9-409	(4-Cl)C6H4CH2CH2-	Bnzyl	4
9-410	(3-Cl)C6H4CH2CH2-	Bnzyl	· 4
9-411	(2-Cl)C6H4CH2CH2-	Bnzyl	4
9-412	(4-F)C6H4CH2CH2-	Bnzyl _	4
9-413	(3-F)C6H4CH2CH2-	Bnzyl	4
9-414	(2-F)C6H4CH2CH2-	Bnzyl	4
9-415	(4-Me)C6H4CH2CH2-	Bnzyl	4
9-416	(3-Me)C6H4CH2CH2-	Bnzyl	4
9-417	(2-Me)C6H4CH2CH2-	Bnzyl	4
9-418	(4-MeO)C6H4CH2CH2-	Bnzyl	4
9-419	(3-MeO)C6H4CH2CH2-	Bnzyl	4
9-420	(2-MeO)C6H4CH2CH2-	Bnzyl	4
9-421	(4-Me2N)C6H4CH2CH2-	Bnzyl	4
9-422	(3-Me2N)C6H4CH2CH2-	Bnzyl	4
9-423	(2-Me2N)C6H4CH2CH2-	Bnzyl	4
9-424	(4-MeOCO)C6H4CH2CH2-	Bnzyl	4
9-425	(3-MeOCO)C6H4CH2CH2-	Bnzyl	4
9-426	(2-MeOCO)C6H4CH2CH2-	Bnzyl	4
9-427	(4-CN)C6H4CH2CH2-	Bnzyl	4
9-428	(3-CN)C6H4CH2CH2-	Bnzyl	4
9-429	(2CN)C6H4CH2CH2-	Bnzyl	4
9-430	(4NO2)C6H4CH2CH2-	Bnzyl	4
9-431	(3NO2)C6H4CH2CH2-	Bnzyl	4
9-432	(2NO2)C6H4CH2CH2-	Bnzyl	4
9-433	(4-C1)C6H4CH2CH2-	Bnzyl	5
9-434	(3-Cl)C6H4CH2CH2-	Bnzyl	5
9-435	(2-Cl)C6H4CH2CH2-	Bnzyl	5
9-436	(4-F)C6H4CH2CH2-	Bnzyl	5
9-437	(3-F)C6H4CH2CH2-	Bnzyl	5
9-438	(2-F)C6H4CH2CH2-	Bnzyl	5
9-439	(4-Me)C6H4CH2CH2-	Bnzyl	5
9-440	(3-Me)C6H4CH2CH2-	Bnzyl	5

表100

	Π.		
化合物番号	R9	R10	n
9-441	(2-Me)C6H4CH2CH2-	Bnzyl	5
9-442	(4-MeO)C6H4CH2CH2-	Bnzyl	5
9-443	(3-MeO)C6H4CH2CH2-	Bnzyl	5
9-444	(2-MeO)C6H4CH2CH2-	Bnzyl	5
9-445	(4-Me2N)C6H4CH2CH2-	Bnzyl	5
9-446	(3-Me2N)C6H4CH2CH2-	Bnzyl	5
9-447	(2-Me2N)C6H4CH2CH2-	Bnzyl	5
9-448	(4-MeOCO)C6H4CH2CH2-	Bnzyl	5
9-449	(3-MeOCO)C6H4CH2CH2-	Bnzyl	5
9-450	(2-MeOCO)C6H4CH2CH2-	Bnzyl	5
9-451	(4-CN)C6H4CH2CH2-	Bnzyl	5
9-452	(3-CN)C6H4CH2CH2-	Bnzyl	5
9-453	(2CN)C6H4CH2CH2-	Bnzyl	5
9-454	(4NO2)C6H4CH2CH2-	Bnzyl	5
9-455	(3NO2)C6H4CH2CH2-	Bnzyl	5
9-456	(2NO2)C6H4CH2CH2-	Bnzyl	5
9-457	(4-Cl)C6H4CH2CH2-	Bnzyl	6
9-458	(3-C1)C6H4CH2CH2-	Bnzyl	6
9-459	(2-C1)C6H4CH2CH2-	Bnzyl	6
9-460	(4-F)C6H4CH2CH2-	Bnzyl_	6
9-461	(3-F)C6H4CH2CH2-	Bnzyl	6
9-462	(2-F)C6H4CH2CH2-	Bnzyl	6
9-463	(4-Me)C6H4CH2CH2-	Bnzyl	6
9-464	(3-Me)C6H4CH2CH2-	Bnzyl	6
9-465	(2-Me)C6H4CH2CH2-	Bnzyl	6
9-466	(4-MeO)C6H4CH2CH2-	Bnzyl	6
9-467	(3-MeO)C6H4CH2CH2-	Bnzyl	6
9-468	(2-MeO)C6H4CH2CH2-	Bnzyl	6
9-469	(4-Me2N)C6H4CH2CH2-	Bnzyl	6
9-470	(3-Me2N)C6H4CH2CH2-	Bnzyl	6
9-471	(2-Me2N)C6H4CH2CH2-	Bnzyl	6
9-472	(4-MeOCO)C6H4CH2CH2-	Bnzyl	6
9-473	(3-MeOCO)C6H4CH2CH2-	Bnzyl	6
9-474	(2-MeOCO)C6H4CH2CH2-	Bnzyl	6
9-475	(4-CN)C6H4CH2CH2-	Bnzyl _	6
9-476	(3-CN)C6H4CH2CH2-	Bnzyl	6
9-477	(2CN)C6H4CH2CH2-	Bnzyl	6
9-478	(4NO2)C6H4CH2CH2-	Bnzyl	6
9-479	(3NO2)C6H4CH2CH2-	Bnzyl	6
9-480	(2NO2)C6H4CH2CH2-	Bnzyl	6

表 1 0 1

化合物番号	R9	R10	n
9-481	(4-Cl)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-482	(3-Cl)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-483	(2-Cl)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-484	(4-F)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-485	(3-F)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-486	(2-F)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-487	(4-Me)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-488	(3-Me)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-489	(2-Me)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-490	(4-MeO)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-491	(3-MeO)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-492	(2-MeO)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-493	(4-Me2N)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-494	(3-Me2N)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-495	(2-Me2N)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-496	(4-MeOCO)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-497	(3-MeOCO)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-498	(2-MeOCO)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-499	(4-CN)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-500	(3-CN)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-501	(2CN)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-502	(4NO2)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-503	(3NO2)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-504	(2NO2)C6H4CH2CH2-	4-pyridyl-CH2-	3
9-505	(4-C1)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-506	(3-C1)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-507	(2-C1)C6H4CH2CH2-	4-pyridyl-CH2-	. 4
9-508	(4-F)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-509	(3-F)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-510	(2-F)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-511	(4-Me)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-512	(3-Me)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-513	(2-Me)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-514	(4-MeO)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-515	(3-MeO)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-516	(2-MeO)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-517	(4-Me2N)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-518	(3-Me2N)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-519	(2-Me2N)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-520	(4-MeOCO)C6H4CH2CH2-	4-pyridyl-CH2-	4

表102

	n .		
化合物番号	R9	R10	n
9-521	(3-MeOCO)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-522	(2-MeOCO)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-523	(4-CN)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-524	(3-CN)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-525	(2CN)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-526	(4NO2)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-527	(3NO2)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-528	(2NO2)C6H4CH2CH2-	4-pyridyl-CH2-	4
9-529	(4-Cl)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-530	(3-Cl)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-531	(2-C1)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-532	(4-F)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-533	(3-F)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-534	(2-F)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-535	(4-Me)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-536	(3-Me)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-537	(2-Me)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-538	(4-MeO)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-539	(3-MeO)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-540	(2-MeO)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-541	(4-Me2N)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-542	(3-Me2N)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-543	(2-Me2N)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-544	(4-MeOCO)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-545	(3-MeOCO)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-546	(2-MeOCO)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-547	(4-CN)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-548	(3-CN)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-549	(2CN)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-550	(4NO2)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-551	(3NO2)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-552	(2NO2)C6H4CH2CH2-	4-pyridyl-CH2-	5
9-553	(4-Cl)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-554	(3-Cl)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-555	(2-Cl)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-556	(4-F)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-557	(3-F)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-558	(2-F)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-559	(4-Me)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-560	(3-Me)C6H4CH2CH2-	4-pyridyl-CH2-	6

表 1 0 3

化合物番号	R9	R10	n
9-561	(2-Me)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-562	(4-MeO)C6H4CH2CH2-	4-pyridyl-CH2-	6 .
9-563	(3-MeO)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-564	(2-MeO)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-565	(4-Me2N)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-566	(3-Me2N)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-567	(2-Me2N)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-568	(4-MeOCO)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-569	(3-MeOCO)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-570	(2-MeOCO)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-571	(4-CN)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-572	(3-CN)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-573	(2CN)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-574	(4NO2)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-575	(3NO2)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-576	(2NO2)C6H4CH2CH2-	4-pyridyl-CH2-	6
9-577	(4-Cl)C6H4CH(Me)-	n-Bu	3
9-578	(3-Cl)C6H4CH(Me)-	n-Bu	3
9-579	(2-Cl)C6H4CH(Me)-	n-Bu	3
9-580	(4-F)C6H4CH(Me)-	n-Bu	3
9-581	(3-F)C6H4CH(Me)-	n-Bu	3
9-582	(2-F)C6H4CH(Me)-	n-Bu	3
9-583	(4-Me)C6H4CH(Me)-	n-Bu	3
9-584	(3-Me)C6H4CH(Me)-	n-Bu	3
9-585	(2-Me)C6H4CH(Me)-	n-Bu	3
9-586	(4-MeO)C6H4CH(Me)-	n-Bu	3
9-587	(3-MeO)C6H4CH(Me)-	n-Bu	3
9-588	(2-MeO)C6H4CH(Me)-	n-Bu	3
9-589	(4-Me2N)C6H4CH(Me)-	n-Bu	3
9-590	(3-Me2N)C6H4CH(Me)-	n-Bu	3
9-591	(2-Me2N)C6H4CH(Me)-	n-Bu	3
9-592	(4-MeOCO)C6H4CH(Me)-	n-Bu	3
9-593	(3-MeOCO)C6H4CH(Me)-	n-Bu	3
9-594	(2-MeOCO)C6H4CH(Me)-	n-Bu	· 3
9-595	(4-CN)C6H4CH(Me)-	n-Bu	3
9-596	(3-CN)C6H4CH(Me)-	n-Bu	3
9-597	(2CN)C6H4CH(Me)-	n-Bu	3
9-598	(4NO2)C6H4CH(Me)-	n-Bu	3
9-599	(3NO2)C6H4CH(Me)-	n-Bu	3
9-600	(2NO2)C6H4CH(Me)-	n-Bu	3

表 1 0 4

化合物番号	R9	R10	n
9-601	(4-Cl)C6H4CH(Me)-	n-Bu	
9-602	(3-C1)C6H4CH(Me)-	n-Bu	4
9-603	(2-Cl)C6H4CH(Me)-	n-Bu	4
9-604	(4-F)C6H4CH(Me)-	n-Bu	4
9-605	(3-F)C6H4CH(Me)-	n-Bu n-Bu	4
9-606	(2-F)C6H4CH(Me)-		
	(4-Me)C6H4CH(Me)-	n-Bu	4
9-607		n-Bu	4
9-608	(3-Me)C6H4CH(Me)-	n-Bu	4
9-609	(2-Me)C6H4CH(Me)-	n-Bu	4
9-610	(4-MeO)C6H4CH(Me)-	n-Bu	4
9-611	(3-MeO)C6H4CH(Me)-	n-Bu	4
9-612	(2-MeO)C6H4CH(Me)-	n-Bu	4
9-613	(4-Me2N)C6H4CH(Me)-	n-Bu	4
9-614	(3-Me2N)C6H4CH(Me)-	n-Bu	4
9-615	(2-Me2N)C6H4CH(Me)-	n-Bu	4
9-616	(4-MeOCO)C6H4CH(Me)-	n-Bu	4
9-617	(3-MeOCO)C6H4CH(Me)-	n-Bu	4
9-618	(2-MeOCO)C6H4CH(Me)-	n-Bu	4
9-619	(4-CN)C6H4CH(Me)-	n-Bu	4
9-620	(3-CN)C6H4CH(Me)-	n-Bu	4
9-621	(2CN)C6H4CH(Me)-	n-Bu	4
9-622	(4NO2)C6H4CH(Me)-	n-Bu	4
9-623	(3NO2)C6H4CH(Me)-	n-Bu	4
9-624	(2NO2)C6H4CH(Me)-	n-Bu	4
9-625	(4-Cl)C6H4CH(Me)-	n-Bu	5
9-626	(3-Cl)C6H4CH(Me)-	n-Bu	5
9-627	(2-Cl)C6H4CH(Me)-	n-Bu	5
9-628	(4-F)C6H4CH(Me)-	n-Bu	5
9-629	(3-F)C6H4CH(Me)-	n-Bu	5
9-630	(2-F)C6H4CH(Me)-	n-Bu	5
9-631	(4-Me)C6H4CH(Me)-	n-Bu	5
9-632	(3-Me)C6H4CH(Me)-	n-Bu	5
9-633	(2-Me)C6H4CH(Me)-	n-Bu	5
9-634	(4-MeO)C6H4CH(Me)-	n-Bu	5
9-635	(3-MeO)C6H4CH(Me)-	n-Bu	5
9-636	(2-MeO)C6H4CH(Me)-	n-Bu	5
9-637	(4-Me2N)C6H4CH(Me)-	n-Bu	5
9-638	(3-Me2N)C6H4CH(Me)-	n-Bu	5
9-639	(2-Me2N)C6H4CH(Me)-	n-Bu	5
9-640	(4-MeOCO)C6H4CH(Me)-	n-Bu	5
9-640	(4-MeOCO)Con4Cn(Me)-	n-bu	<u> </u>

表 1 0 5

	H."		
化合物番号	R9	R10	n
9-641	(3-MeOCO)C6H4CH(Me)-	n-Bu	5
9-642	(2-MeOCO)C6H4CH(Me)-	n-Bu	5
9-643	(4-CN)C6H4CH(Me)-	n-Bu	5
9-644	(3-CN)C6H4CH(Me)-	n-Bu	5
9-645	(2CN)C6H4CH(Me)-	n-Bu	5
9-646	(4NO2)C6H4CH(Me)-	n-Bu	5
9-647	(3NO2)C6H4CH(Me)-	n-Bu	5
9-648	(2NO2)C6H4CH(Me)-	n-Bu	5
9-649	(4-Cl)C6H4CH(Me)-	n-Bu	6
9-650	(3-Cl)C6H4CH(Me)-	n-Bu	6
9-651	(2-Cl)C6H4CH(Me)-	n-Bu	6
9-652	(4-F)C6H4CH(Me)-	n-Bu	6
9-653	(3-F)C6H4CH(Me)-	n-Bu	6
9-654	(2-F)C6H4CH(Me)-	n-Bu	6
9-655	(4-Me)C6H4CH(Me)-	n-Bu	6
9-656	(3-Me)C6H4CH(Me)-	n-Bu	6
9-657	(2-Me)C6H4CH(Me)-	n-Bu	6
9-658	(4-MeO)C6H4CH(Me)-	n-Bu	6
9-659	(3-MeO)C6H4CH(Me)-	n-Bu	6
9-660	(2-MeO)C6H4CH(Me)-	n-Bu	6
9-661	(4-Me2N)C6H4CH(Me)-	n-Bu	6
9-662	(3-Me2N)C6H4CH(Me)-	n-Bu	6
9-663	(2-Me2N)C6H4CH(Me)-	n-Bu	6
9-664	(4-MeOCO)C6H4CH(Me)-	n-Bu	6
9-665	(3-MeOCO)C6H4CH(Me)-	n-Bu	6
9-666	.(2-MeOCO)C6H4CH(Me)-	n-Bu	6
9-667	(4-CN)C6H4CH(Me)-	n-Bu	6
9-668	(3-CN)C6H4CH(Me)-	n-Bu	. 6
9-669	(2CN)C6H4CH(Me)-	n-Bu	6
9-670	(4NO2)C6H4CH(Me)-	n-Bu	6
9-671	(3NO2)C6H4CH(Me)-	n-Bu	6
9-672	(2NO2)C6H4CH(Me)-	n-Bu	6
9-673	(4-Cl)C6H4CH(Me)-	Bnzyl	3
9-674	(3-Cl)C6H4CH(Me)-	Bnzyl	3
9-675	(2-Cl)C6H4CH(Me)-	Bnzyl	3
9-676	(4-F)C6H4CH(Me)-	Bnzyl	3
9-677	(3-F)C6H4CH(Me)-	Bnzyl	3
9-678	(2-F)C6H4CH(Me)-	Bnzyl	3
9-679	(4-Me)C6H4CH(Me)-	Bnzyl	3
9-680	(3-Me)C6H4CH(Me)-	Bnzyl	3

化合物番号	R9	R10	n
9-681	(2-Me)C6H4CH(Me)-	Bnzyl	3
9-682	(4-MeO)C6H4CH(Me)-	Bnzyl	3
9-683	(3-MeO)C6H4CH(Me)-	Bnzyl	3
9-684	(2-MeO)C6H4CH(Me)-	Bnzyl	3
9-685	(4-Me2N)C6H4CH(Me)-	Bnzyl	3
9-686	(3-Me2N)C6H4CH(Me)-	Bnzyl	3
9-687	(2-Me2N)C6H4CH(Me)-	Bnzyl	3
9-688	(4-MeOCO)C6H4CH(Me)-	Bnzyl	3
9-689	(3-MeOCO)C6H4CH(Me)-	Bnzyl	3
9-690	(2-MeOCO)C6H4CH(Me)-	Bnzyl	3
9-691	(4-CN)C6H4CH(Me)-	Bnzyl	3
9-692	(3-CN)C6H4CH(Me)-	Bnzyl	3
9-693	(2CN)C6H4CH(Me)-	Bnzyl	3
9-694	(4NO2)C6H4CH(Me)-	Bnzyl	3
9-695	(3NO2)C6H4CH(Me)-	Bnzyl	3
9-696	(2NO2)C6H4CH(Me)-	Bnzyl	3
9-697	(4-Cl)C6H4CH(Me)-	Bnzyl	4
9-698	(3-Cl)C6H4CH(Me)-	Bnzyl	4
9-699	(2-C1)C6H4CH(Me)-	Bnzyl	4
9-700	(4-F)C6H4CH(Me)-	Bnzyl	4
9-701	(3-F)C6H4CH(Me)-	Bnzyl	4
9-702	(2-F)C6H4CH(Me)-	Bnzyl	4
9-703	(4-Me)C6H4CH(Me)-	Bnzyl	4
9-704	(3-Me)C6H4CH(Me)-	Bnzyl	4
9-705	(2-Me)C6H4CH(Me)-	Bnzyl	4
9-706	(4-MeO)C6H4CH(Me)-	Bnzyl	4
9-707	(3-MeO)C6H4CH(Me)-	Bnzyl	4
9-708	(2-MeO)C6H4CH(Me)-	Bnzyl	4
9-709	(4-Me2N)C6H4CH(Me)-	Bnzyl	4
9-710	(3-Me2N)C6H4CH(Me)-	Bnzyl	4
9-711	(2-Me2N)C6H4CH(Me)-	Bnzyl	4
9-712	(4-MeOCO)C6H4CH(Me)-	Bnzyl	4
9-713	(3-MeOCO)C6H4CH(Me)-	Bnzyl	4
9-714	(2-MeOCO)C6H4CH(Me)-	Bnzyl	4
9-715	(4-CN)C6H4CH(Me)-	Bnzyl	4
9-716	(3-CN)C6H4CH(Me)-	Bnzyl	4
9-717	(2CN)C6H4CH(Me)-	Bnzyl	4
9-718	(4NO2)C6H4CH(Me)-	Bnzyl	4
9-719	(3NO2)C6H4CH(Me)-	Bnzyl	4
9-720	(2NO2)C6H4CH(Me)-	Bnzyl	4

表107

化合物番号	R9	R10	n
9-721	(4-Cl)C6H4CH(Me)-	Bnzyl	5
9-722	(3-Cl)C6H4CH(Me)-	Bnzyl	5
9-723	(2-Cl)C6H4CH(Me)-	Bnzyl	5
9-724	(4-F)C6H4CH(Me)-	Bnzyl	5
9-725	(3-F)C6H4CH(Me)-	Bnzyl	5
9-726	(2-F)C6H4CH(Me)-	Bnzyl	5
9-727	(4-Me)C6H4CH(Me)-	Bnzyl	5
9-728	(3-Me)C6H4CH(Me)-	Bnzyl	5
9-729	(2-Me)C6H4CH(Me)-	Bnzyl	5
9-730	(4-MeO)C6H4CH(Me)-	Bnzyl	5
9-731	(3-MeO)C6H4CH(Me)-	Bnzyl	5
9-732	(2-MeO)C6H4CH(Me)-	Bnzyl	5
9-733	(4-Me2N)C6H4CH(Me)-	Bnzyl	5
9-734	(3-Me2N)C6H4CH(Me)-	Bnzyl	5
9-735	(2-Me2N)C6H4CH(Me)-	Bnzyl	5
9-736	(4-MeOCO)C6H4CH(Me)-	Bnzyl	5
9-737	(3-MeOCO)C6H4CH(Me)-	Bnzyl	5
9-738	(2-MeOCO)C6H4CH(Me)-	Bnzyl	5
9-739	(4-CN)C6H4CH(Me)-	Bnzyl	5
9-740	(3-CN)C6H4CH(Me)-	Bnzyl	5
9-741	(2CN)C6H4CH(Me)-	Bnzyl	5
9-742	(4NO2)C6H4CH(Me)-	Bnzyl	5
9-743	(3NO2)C6H4CH(Me)-	Bnzyl	5
9-744	(2NO2)C6H4CH(Me)-	Bnzyl	5
9-745	(4-Cl)C6H4CH(Me)-	Bnzyl	6
9-746	(3-Cl)C6H4CH(Me)-	Bnzyl	6
9-747	(2-Cl)C6H4CH(Me)-	Bnzyl	6
9-748	(4-F)C6H4CH(Me)-	Bnzyl	6
9-749	(3-F)C6H4CH(Me)-	Bnzyl	6
9-750	(2-F)C6H4CH(Me)-	Bnzyl	6
9-751	(4-Me)C6H4CH(Me)-	Bnzyl	6
9-752	(3-Me)C6H4CH(Me)-	Bnzyl	6
9-753	(2-Me)C6H4CH(Me)-	Bnzyl	6
9-754	(4-MeO)C6H4CH(Me)-	Bnzyl	6
9-755	(3-MeO)C6H4CH(Me)-	Bnzyl	6
9-756	(2-MeO)C6H4CH(Me)-	Bnzyl	6
9-757	(4-Me2N)C6H4CH(Me)-	Bnzyl	6
9-758	(3-Me2N)C6H4CH(Me)-	Bnzyl	6
9-759	(2-Me2N)C6H4CH(Me)-	Bnzyl	6
9-760	(4-MeOCO)C6H4CH(Me)-	Bnzyl	6

化合物番号		H.*		
9-762 (2-MeOCO)C6H4CH(Me)- Bnzyl 6 9-763 (4-CN)C6H4CH(Me)- Bnzyl 6 9-764 (3-CN)C6H4CH(Me)- Bnzyl 6 9-765 (2CN)C6H4CH(Me)- Bnzyl 6 9-765 (2CN)C6H4CH(Me)- Bnzyl 6 9-766 (4NO2)C6H4CH(Me)- Bnzyl 6 9-767 (3NO2)C6H4CH(Me)- Bnzyl 6 9-768 (2NO2)C6H4CH(Me)- Bnzyl 6 9-769 (4-Cl)C6H4CH(Me)- Bnzyl 6 9-769 (4-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-770 (3-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-771 (2-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-772 (4-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-773 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3	3物番号	R9	R10	n
9-763 (4-CN)C6H4CH(Me)- Bnzyl 6 9-764 (3-CN)C6H4CH(Me)- Bnzyl 6 9-765 (2CN)C6H4CH(Me)- Bnzyl 6 9-766 (4NO2)C6H4CH(Me)- Bnzyl 6 9-767 (3NO2)C6H4CH(Me)- Bnzyl 6 9-768 (2NO2)C6H4CH(Me)- Bnzyl 6 9-768 (2NO2)C6H4CH(Me)- Bnzyl 6 9-769 (4-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-770 (3-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-771 (2-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-772 (4-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-773 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-761	(3-MeOCO)C6H4CH(Me)-	Bnzyl	6
9-764 (3-CN)C6H4CH(Me)- Bnzyl 6 9-765 (2CN)C6H4CH(Me)- Bnzyl 6 9-766 (4NO2)C6H4CH(Me)- Bnzyl 6 9-767 (3NO2)C6H4CH(Me)- Bnzyl 6 9-768 (2NO2)C6H4CH(Me)- Bnzyl 6 9-768 (2NO2)C6H4CH(Me)- Bnzyl 6 9-769 (4-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-770 (3-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-771 (2-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-772 (4-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-773 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-MeOOO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-762	(2-MeOCO)C6H4CH(Me)-	Bnzyl	6
9-764 (3-CN)C6H4CH(Me)- Bnzyl 6 9-765 (2CN)C6H4CH(Me)- Bnzyl 6 9-766 (4NO2)C6H4CH(Me)- Bnzyl 6 9-767 (3NO2)C6H4CH(Me)- Bnzyl 6 9-768 (2NO2)C6H4CH(Me)- Bnzyl 6 9-769 (4-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-770 (3-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-771 (2-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-772 (4-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-773 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 <	9-763	(4-CN)C6H4CH(Me)-	Bnzyl	6
9-765 (2CN)C6H4CH(Me)- Bnzyl 6 9-766 (4NO2)C6H4CH(Me)- Bnzyl 6 9-767 (3NO2)C6H4CH(Me)- Bnzyl 6 9-768 (2NO2)C6H4CH(Me)- Bnzyl 6 9-769 (4-Cl)C6H4CH(Me)- Bnzyl 6 9-770 (3-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-771 (2-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-772 (4-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-773 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3		(3-CN)C6H4CH(Me)-	Bnzyl	6
9-767 (3NO2)C6H4CH(Me)- Bnzyl 6 9-768 (2NO2)C6H4CH(Me)- Bnzyl 6 9-769 (4-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-770 (3-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-771 (2-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-772 (4-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-773 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-765	(2CN)C6H4CH(Me)-	Bnzyl	6
9.768 (2NO2)C6H4CH(Me)- Bnzyl 6 9.769 (4-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.770 (3-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.771 (2-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.772 (4-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.773 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-766	(4NO2)C6H4CH(Me)-	Bnzyl	
9.769 (4-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.770 (3-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.771 (2-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.772 (4-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.773 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9.789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-767	(3NO2)C6H4CH(Me)-	Bnzyl	6
9-770 (3-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-771 (2-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-772 (4-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-773 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-768	(2NO2)C6H4CH(Me)-	Bnzyl	6
9-771 (2-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-772 (4-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-773 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-769	(4-Cl)C6H4CH(Me)-	4-pyridyl-CH2-	3
9-772 (4-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-773 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-770	(3-Cl)C6H4CH(Me)-	4-pyridyl-CH2-	
9-773 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-771	(2-Cl)C6H4CH(Me)-	4-pyridyl-CH2-	3
9-774 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-772	(4-F)C6H4CH(Me)-	4-pyridyl-CH2-	
9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-773	(3-F)C6H4CH(Me)-	4-pyridyl-CH2-	3
9-775 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-776 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-774	(2-F)C6H4CH(Me)-	4-pyridyl-CH2-	3
9-777 (2-Me)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3		(4-Me)C6H4CH(Me)-	4-pyridyl-CH2-	
9-778 (4-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3		(3-Me)C6H4CH(Me)-	4-pyridyl-CH2-	
9-779 (3-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-777	(2-Me)C6H4CH(Me)-	4-pyridyl-CH2-	
9-780 (2-MeO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-778	(4-MeO)C6H4CH(Me)-	4-pyridyl-CH2-	
9-781 (4-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-779	(3-MeO)C6H4CH(Me)-	4-pyridyl-CH2-	
9-782 (3-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-780	(2-MeO)C6H4CH(Me)-	4-pyridyl-CH2-	
9-783 (2-Me2N)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-781	(4-Me2N)C6H4CH(Me)-	4-pyridyl-CH2-	
9-784 (4-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-782	(3-Me2N)C6H4CH(Me)-	4-pyridyl-CH2-	
9-785 (3-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-783	(2-Me2N)C6H4CH(Me)-		
9-786 (2-MeOCO)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-784	(4-MeOCO)C6H4CH(Me)-	4-pyridyl-CH2-	
9-787 (4-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-785	(3-MeOCO)C6H4CH(Me)-	4-pyridyl-CH2-	
9-788 (3-CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-786	(2-MeOCO)C6H4CH(Me)-		
9-789 (2CN)C6H4CH(Me)- 4-pyridyl-CH2- 3 9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-787	(4-CN)C6H4CH(Me)-	4-pyridyl-CH2-	
9-790 (4NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-788	(3-CN)C6H4CH(Me)-		
	9-789	(2CN)C6H4CH(Me)-		
9-791 (3NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-790			
0 102 (02.02/0012000)	9-791	(3NO2)C6H4CH(Me)-	4-pyridyl-CH2-	
9-792 (2NO2)C6H4CH(Me)- 4-pyridyl-CH2- 3	9-792			
9-793 (4-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 4				
9-794 (3-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 4	9-794			
9-795 (2-Cl)C6H4CH(Me)- 4-pyridyl-CH2- 4	9-795			
9-796 (4-F)C6H4CH(Me)- 4-pyridyl-CH2- 4	9-796			
9-797 (3-F)C6H4CH(Me)- 4-pyridyl-CH2- 4	9-797			
9-798 (2-F)C6H4CH(Me)- 4-pyridyl-CH2- 4	9-798	(2-F)C6H4CH(Me)-	4-pyridyl-CH2-	
9-799 (4-Me)C6H4CH(Me)- 4-pyridyl-CH2- 4	9-799	(4-Me)C6H4CH(Me)-		
9-800 (3-Me)C6H4CH(Me)- 4-pyridyl-CH2- 4	9-800	(3-Me)C6H4CH(Me)-	4-pyridyl-CH2-	4

化合物番号	R9	R10	n
9-801	(2-Me)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-802	(4-MeO)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-803	(3-MeO)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-804	(2-MeO)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-805	(4-Me2N)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-806	(3-Me2N)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-807	(2-Me2N)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-808	(4-MeOCO)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-809	(3-MeOCO)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-810	(2-MeOCO)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-811	(4-CN)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-812	(3-CN)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-813	(2CN)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-814	(4NO2)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-815	(3NO2)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-816	(2NO2)C6H4CH(Me)-	4-pyridyl-CH2-	4
9-817	(4-Cl)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-818	(3-C1)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-819	(2-Cl)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-820	(4-F)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-821	(3-F)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-822	(2-F)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-823	(4-Me)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-824	(3-Me)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-825	(2-Me)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-826	(4-MeO)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-827	(3-MeO)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-828	(2-MeO)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-829	(4-Me2N)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-830	(3-Me2N)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-831	(2-Me2N)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-832	(4-MeOCO)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-833	(3-MeOCO)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-834	(2-MeOCO)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-835	(4-CN)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-836	(3-CN)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-837	(2CN)C6H4CH(Me)-	4-pyridyl-CH2-	- 5
9-838	(4NO2)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-839	(3NO2)C6H4CH(Me)-	4-pyridyl-CH2-	5
9-840	(2NO2)C6H4CH(Me)-	4-pyridyl-CH2-	5

表 1 1 0

	R'*	·	
化合物番号	R9	R10	n
9-841	(4-Cl)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-842	(3-Cl)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-843	(2-C1)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-844	(4-F)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-845	(3-F)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-846	(2-F)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-847	(4-Me)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-848	(3-Me)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-849	(2-Me)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-850	(4-MeO)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-851	(3-MeO)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-852	(2-MeO)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-853	(4-Me2N)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-854	(3-Me2N)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-855	(2-Me2N)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-856	(4-MeOCO)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-857	(3-MeOCO)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-858	(2-MeOCO)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-859	(4-CN)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-860	(3-CN)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-861	(2CN)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-862	(4NO2)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-863	(3NO2)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-864	(2NO2)C6H4CH(Me)-	4-pyridyl-CH2-	6
9-865	(4-Cl)C6H4C(Me2)-	n-Bu	3
9-866	(3-Cl)C6H4C(Me2)-	n-Bu	3
9-867	(2-Cl)C6H4C(Me2)-	n-Bu	3
9-868	(4-F)C6H4C(Me2)-	n-Bu	3
9-869	(3-F)C6H4C(Me2)-	n-Bu	3
9-870	(2-F)C6H4C(Me2)-	n-Bu_	3
9-871	(4-Me)C6H4C(Me2)-	n-Bu	3
9-872	(3-Me)C6H4C(Me2)-	n-Bu	3
9-873	(2-Me)C6H4C(Me2)-	n-Bu	3
9-874	(4-MeO)C6H4C(Me2)-	n-Bu	3
9-875	(3-MeO)C6H4C(Me2)-	n-Bu	3
9-876	(2-MeO)C6H4C(Me2)-	n-Bu	3
9-877	(4-Me2N)C6H4C(Me2)-	n-Bu	3
9-878	(3-Me2N)C6H4C(Me2)-	n-Bu	3
9-879	(2-Me2N)C6H4C(Me2)-	n-Bu	3
9-880	(4-MeOCO)C6H4C(Me2)-	n-Bu	3

表111

化合物番号	D.C.	D10	
	R9	R10	n
9-881	(3-MeOCO)C6H4C(Me2)-	n-Bu	3
9-882	(2-MeOCO)C6H4C(Me2)-	n-Bu	3
9-883	(4-CN)C6H4C(Me2)-	n-Bu	3
9-884	(3-CN)C6H4C(Me2)-	n-Bu	3
9-885	(2CN)C6H4C(Me2)-	n-Bu	3
9-886	(4NO2)C6H4C(Me2)-	n-Bu	3
9-887	(3NO2)C6H4C(Me2)-	n-Bu	3
9-888	(2NO2)C6H4C(Me2)-	n-Bu	3
9-889	(4-Cl)C6H4C(Me2)-	n-Bu	4
9-890	(3-Cl)C6H4C(Me2)-	n-Bu	4
9-891	(2-Cl)C6H4C(Me2)-	n-Bu	4
9-892	(4-F)C6H4C(Me2)-	n-Bu_	4
9-893	(3-F)C6H4C(Me2)-	n-Bu	4
9-894	(2-F)C6H4C(Me2)-	n-Bu	. 4
9-895	(4-Me)C6H4C(Me2)-	n-Bu	4 .
9-896	(3-Me)C6H4C(Me2)-	n-Bu	4
9-897	(2-Me)C6H4C(Me2)-	n-Bu	4
9-898	(4-MeO)C6H4C(Me2)-	n-Bu	4
9-899	(3-MeO)C6H4C(Me2)-	n-Bu	4
9-900	(2-MeO)C6H4C(Me2)-	n-Bu	4
9-901	(4-Me2N)C6H4C(Me2)-	n-Bu	4
9-902	(3-Me2N)C6H4C(Me2)-	n-Bu	4
9-903	(2-Me2N)C6H4C(Me2)-	n-Bu	4
9-904	(4-MeOCO)C6H4C(Me2)-	n-Bu	4
9-905	(3-MeOCO)C6H4C(Me2)-	n-Bu	4
9-906	(2-MeOCO)C6H4C(Me2)-	n-Bu	4
9-907	(4-CN)C6H4C(Me2)-	n-Bu	4
9-908	(3-CN)C6H4C(Me2)-	n-Bu	4
9-909	(2CN)C6H4C(Me2)-	n-Bu	4
9-910	(4NO2)C6H4C(Me2)-	n-Bu	4
9-911	(3NO2)C6H4C(Me2)-	n-Bu	4
9-912	(2NO2)C6H4C(Me2)-	n-Bu	4
9-913	(4-Cl)C6H4C(Me2)-	n-Bu	5
9-914	(3-Cl)C6H4C(Me2)-	n-Bu	5
9-915	(2-Cl)C6H4C(Me2)-	n-Bu	5
9-916	(4-F)C6H4C(Me2)-	n-Bu_	5
9-917	(3-F)C6H4C(Me2)-	n-Bu	5
9-918	(2-F)C6H4C(Me2)-	n-Bu	5
9-919	(4-Me)C6H4C(Me2)-	n-Bu	5
9-920	(3-Me)C6H4C(Me2)-	n-Bu	5

表 1 1 2

化合物番号	R9	R10	n
9-921	(2-Me)C6H4C(Me2)-	n-Bu	5
9-922	(4-MeO)C6H4C(Me2)-	n-Bu	5
9-923	(3-MeO)C6H4C(Me2)-	n-Bu	5
9-924	(2-MeO)C6H4C(Me2)-	n-Bu_	5
9-925	(4-Me2N)C6H4C(Me2)-	n-Bu	5
9-926	(3-Me2N)C6H4C(Me2)-	n-Bu	5
9-927	(2-Me2N)C6H4C(Me2)-	n-Bu	5
9-928	(4-MeOCO)C6H4C(Me2)-	n-Bu	5
9-929	(3-MeOCO)C6H4C(Me2)-	n-Bu	5
9-930	(2-MeOCO)C6H4C(Me2)-	n-Bu	5
9-931	(4-CN)C6H4C(Me2)-	n-Bu	5
9-932	(3-CN)C6H4C(Me2)-	n-Bu	5
9-933	(2CN)C6H4C(Me2)-	n-Bu	5
9-934	(4NO2)C6H4C(Me2)-	n-Bu	5
9-935	(3NO2)C6H4C(Me2)-	n-Bu	5
9-936	(2NO2)C6H4C(Me2)-	n-Bu	5
9-937	(4-Cl)C6H4C(Me2)-	n-Bu	6
9-938	(3-Cl)C6H4C(Me2)-	n-Bu	6
9-939	(2-Cl)C6H4C(Me2)-	n-Bu	6
9-940	(4-F)C6H4C(Me2)-	n-Bu	6
9-941	(3-F)C6H4C(Me2)-	n-Bu_	6
9-942	(2-F)C6H4C(Me2)-	n-Bu	6
9-943	(4-Me)C6H4C(Me2)-	n-Bu	6
9-944	(3-Me)C6H4C(Me2)-	n-Bu	6
9-945	(2-Me)C6H4C(Me2)-	n-Bu_	6
9-946	(4-MeO)C6H4C(Me2)-	n-Bu	6
9-947	(3-MeO)C6H4C(Me2)-	n-Bu	6
9-948	(2-MeO)C6H4C(Me2)-	n-Bu	6
9-949	(4-Me2N)C6H4C(Me2)-	n-Bu_	6
9-950	(3-Me2N)C6H4C(Me2)-	n-Bu	6
9-951	(2-Me2N)C6H4C(Me2)-	n-Bu	6
9-952	(4-MeOCO)C6H4C(Me2)-	n-Bu	6
9-953	(3-MeOCO)C6H4C(Me2)-	n-Bu	6
9-954	(2-MeOCO)C6H4C(Me2)-	n-Bu	6
9-955	(4-CN)C6H4C(Me2)-	n-Bu	6
9-956	(3-CN)C6H4C(Me2)-	n-Bu	6
9-957	(2CN)C6H4C(Me2)-	n-Bu	6
9-958	(4NO2)C6H4C(Me2)-	n-Bu	6
9-959	(3NO2)C6H4C(Me2)-	n-Bu	6
9-960	(2NO2)C6H4C(Me2)-	n-Bu	6

表113

	R'*		
化合物番号	R9	R10	n
9-961	(4-Cl)C6H4C(Me2)-	Bnzyl	3
9-962	(3-Cl)C6H4C(Me2)-	Bnzyl	3
9-963	(2-Cl)C6H4C(Me2)-	Bnzyl	3
9-964	(4-F)C6H4C(Me2)-	Bnzyl	3
9-965	(3-F)C6H4C(Me2)-	Bnzyl	3
9-966	(2-F)C6H4C(Me2)-	Bnzyl	3
9-967	(4-Me)C6H4C(Me2)-	Bnzyl	3
9-968	(3-Me)C6H4C(Me2)-	Bnzyl	3
9-969	(2-Me)C6H4C(Me2)-	Bnzyl	3
9-970	(4-MeO)C6H4C(Me2)-	Bnzyl	3
9-971	(3-MeO)C6H4C(Me2)-	Bnzyl	3
9-972	(2-MeO)C6H4C(Me2)-	Bnzyl	3
9-973	(4-Me2N)C6H4C(Me2)-	Bnzyl	3
9-974	(3-Me2N)C6H4C(Me2)-	Bnzyl	3
9-975	(2-Me2N)C6H4C(Me2)-	Bnzyl	3
9-976	(4-MeOCO)C6H4C(Me2)-	Bnzyl	3
9-977	(3-MeOCO)C6H4C(Me2)-	Bnzyl	3
9-978	(2-MeOCO)C6H4C(Me2)-	Bnzyl	3
9-979	(4-CN)C6H4C(Me2)-	Bnzyl	3
9-980	(3-CN)C6H4C(Me2)-	Bnzyl	3
9-981	(2CN)C6H4C(Me2)-	Bnzyl	3
9-982	(4NO2)C6H4C(Me2)-	Bnzyl	3
9-983	(3NO2)C6H4C(Me2)-	Bnzyl	3
9-984	(2NO2)C6H4C(Me2)-	Bnzyl	3
9-985	(4-Cl)C6H4C(Me2)-	Bnzyl_	4
9-986	(3-Cl)C6H4C(Me2)-	Bnzyl	4
9-987	(2-Cl)C6H4C(Me2)-	Bnzyl	4
9-988	(4-F)C6H4C(Me2)-	Bnzyl	4
9-989	(3-F)C6H4C(Me2)-	Bnzyl_	4
9-990	(2-F)C6H4C(Me2)-	Bnzyl	44
9-991	(4-Me)C6H4C(Me2)-	Bnzyl	4
9-992	(3-Me)C6H4C(Me2)-	Bnzyl	4
9-993	(2-Me)C6H4C(Me2)-	Bnzyl	4
9-994	(4-MeO)C6H4C(Me2)-	Bnzyl	4
9-995	(3-MeO)C6H4C(Me2)-	Bnzyl	4
9-996	(2-MeO)C6H4C(Me2)-	Bnzyl	4
9-997	(4-Me2N)C6H4C(Me2)-	Bnzyl	4
9-998	(3-Me2N)C6H4C(Me2)-	Bnzyl	4
9-999	(2-Me2N)C6H4C(Me2)-	Bnzyl	4
9-1000	(4-MeOCO)C6H4C(Me2)-	Bnzyl	4

表 1 1 4

	· · · · · · · · · · · · · · · · · · ·		
化合物番号	R9	R10	n
9-1001	(3-MeOCO)C6H4C(Me2)-	Bnzyl	4
9-1002	(2-MeOCO)C6H4C(Me2)-	Bnzyl	4
9-1003	(4-CN)C6H4C(Me2)-	Bnzyl	4
9-1004	(3-CN)C6H4C(Me2)-	Bnzyl	4
9-1005	(2CN)C6H4C(Me2)-	Bnzyl	4
9-1006	(4NO2)C6H4C(Me2)-	Bnzyl	4
9-1007	(3NO2)C6H4C(Me2)-	Bnzyl	4
9-1008	(2NO2)C6H4C(Me2)-	Bnzyl	4
9-1009	(4-Cl)C6H4C(Me2)-	Bnzyl	5
9-1010	(3-Cl)C6H4C(Me2)-	Bnzyl	5
9-1011	(2-C1)C6H4C(Me2)-	Bnzyl	5
9-1012	(4-F)C6H4C(Me2)-	Bnzyl	5
9-1013	(3-F)C6H4C(Me2)-	Bnzyl	5
9-1014	(2-F)C6H4C(Me2)-	Bnzyl	5
9-1015	(4-Me)C6H4C(Me2)-	Bnzyl	5
9-1016	(3-Me)C6H4C(Me2)-	Bnzyl	5
9-1017	(2-Me)C6H4C(Me2)-	Bnzyl	5
9-1018	(4-MeO)C6H4C(Me2)-	Bnzyl	5
9-1019	(3-MeO)C6H4C(Me2)-	Bnzyl	5
9-1020	(2-MeO)C6H4C(Me2)-	Bnzyl	5
9-1021	(4-Me2N)C6H4C(Me2)-	Bnzyl	5
9-1022	(3-Me2N)C6H4C(Me2)-	Bnzyl	5
9-1023	(2-Me2N)C6H4C(Me2)-	Bnzyl	5
9-1024	(4-MeOCO)C6H4C(Me2)-	Bnzyl	5
9-1025	(3-MeOCO)C6H4C(Me2)-	Bnzyl	5
9-1026	(2-MeOCO)C6H4C(Me2)-	Bnzyl	5
9-1027	(4-CN)C6H4C(Me2)-	Bnzyl	5
9-1028	(3-CN)C6H4C(Me2)-	Bnzyl	5
9-1029	(2CN)C6H4C(Me2)-	Bnzyl	5
9-1030	(4NO2)C6H4C(Me2)-	Bnzyl	5
9-1031	(3NO2)C6H4C(Me2)-	Bnzyl	5
9-1032	(2NO2)C6H4C(Me2)-	Bnzyl	5
9-1033	(4-Cl)C6H4C(Me2)-	Bnzyl	6
9-1034	(3-C1)C6H4C(Me2)-	Bnzyl	6
9-1035	(2-Cl)C6H4C(Me2)-	Bnzyl	6
9-1036	(4-F)C6H4C(Me2)-	Bnzyl	6
9-1037	(3-F)C6H4C(Me2)-	Bnzyl	6
9-1038	(2-F)C6H4C(Me2)-	Bnzyl	6
9-1039	(4-Me)C6H4C(Me2)-	Bnzyl	6
9-1040	(3-Me)C6H4C(Me2)-	Bnzyl	6

表115

化合物番号 R9 R10 n 9-1041		<u>n</u>		
9-1042 (4-MeO)C6H4C(Me2)- Bnzyl 6 9-1043 (3-MeO)C6H4C(Me2)- Bnzyl 6 9-1044 (2-MeO)C6H4C(Me2)- Bnzyl 6 9-1046 (4-Me2N)C6H4C(Me2)- Bnzyl 6 9-1046 (3-Me2N)C6H4C(Me2)- Bnzyl 6 9-1047 (2-Me2N)C6H4C(Me2)- Bnzyl 6 9-1048 (4-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1049 (3-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1049 (3-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1050 (2-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1051 (4-CN)C6H4C(Me2)- Bnzyl 6 9-1052 (3-CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- Bnzyl 6 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me)CO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-Me)CO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-Me)CO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079	化合物番号	R9	R10	n
9-1043 (3-MeO)C6H4C(Me2)- Bnzyl 6 9-1044 (2-MeO)C6H4C(Me2)- Bnzyl 6 9-1045 (4-Me2N)C6H4C(Me2)- Bnzyl 6 9-1046 (3-Me2N)C6H4C(Me2)- Bnzyl 6 9-1047 (2-Me2N)C6H4C(Me2)- Bnzyl 6 9-1047 (2-Me2N)C6H4C(Me2)- Bnzyl 6 9-1048 (4-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1049 (3-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1050 (2-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1051 (4-CN)C6H4C(Me2)- Bnzyl 6 9-1052 (3-CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- Bnzyl 6 9-1059 (2-Cl)C6H4C(Me2)- Bnzyl 6 9-1060 (4-F)C6H4C(Me2)- Bnzyl 6 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3-MOOC)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1041	(2-Me)C6H4C(Me2)-	Bnzyl	6
9-1044 (2-MeO)C6H4C(Me2)- Bnzyl 6 9-1046 (4-Me2N)C6H4C(Me2)- Bnzyl 6 9-1046 (3-Me2N)C6H4C(Me2)- Bnzyl 6 9-1047 (2-Me2N)C6H4C(Me2)- Bnzyl 6 9-1048 (4-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1049 (3-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1049 (3-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1050 (2-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1051 (4-CN)C6H4C(Me2)- Bnzyl 6 9-1052 (3-CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- Bnzyl 6 9-1059 (2-Cl)C6H4C(Me2)- Bnzyl 6 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3-MOOC)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1042	(4-MeO)C6H4C(Me2)-	Bnzyl	6
9-1045 (4-Me2N)C6H4C(Me2)- Bnzyl 6 9-1046 (3-Me2N)C6H4C(Me2)- Bnzyl 6 9-1047 (2-Me2N)C6H4C(Me2)- Bnzyl 6 9-1048 (4-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1049 (3-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1050 (2-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1051 (4-CN)C6H4C(Me2)- Bnzyl 6 9-1052 (3-CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- Bnzyl 6 9-1050 (2-Cl)C6H4C(Me2)- Bnzyl 6 9-1050 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1050 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1050 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1050 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1069 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4-NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3-MO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1043	(3-MeO)C6H4C(Me2)-	Bnzyl	6
9-1046 (3-Me2N)C6H4C(Me2)- Bnzyl 6 9-1047 (2-Me2N)C6H4C(Me2)- Bnzyl 6 9-1048 (4-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1049 (3-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1050 (2-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1051 (4-CN)C6H4C(Me2)- Bnzyl 6 9-1052 (3-CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- Bnzyl 6 9-1059 (2-Cl)C6H4C(Me2)- Bnzyl 6 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1044	(2-MeO)C6H4C(Me2)-	Bnzyl	6
9-1047 (2-Me2N)C6H4C(Me2)- Bnzyl 6 9-1048 (4-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1049 (3-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1050 (2-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1051 (4-CN)C6H4C(Me2)- Bnzyl 6 9-1052 (3-CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- Bnzyl 6 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4-MoOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3-MoOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1045	(4-Me2N)C6H4C(Me2)-	Bnzyl	
9-1048 (4-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1049 (3-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1050 (2-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1051 (4-CN)C6H4C(Me2)- Bnzyl 6 9-1052 (3-CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- Bnzyl 6 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4-NOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1046	(3-Me2N)C6H4C(Me2)-	Bnzyl	
9-1049 (3-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1050 (2-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1051 (4-CN)C6H4C(Me2)- Bnzyl 6 9-1052 (3-CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- Bnzyl 6 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1047	(2-Me2N)C6H4C(Me2)-	Bnzyl	
9-1050 (2-MeOCO)C6H4C(Me2)- Bnzyl 6 9-1051 (4-CN)C6H4C(Me2)- Bnzyl 6 9-1052 (3-CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- Bnzyl 6 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1048	(4-MeOCO)C6H4C(Me2)-		
9-1051 (4-CN)C6H4C(Me2)- Bnzyl 6 9-1052 (3-CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- Bnzyl 6 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1049			
9-1052 (3-CN)C6H4C(Me2)- Bnzyl 6 9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4-NOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3-NOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1050	(2-MeOCO)C6H4C(Me2)-	Bnzyl	
9-1053 (2CN)C6H4C(Me2)- Bnzyl 6 9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- Bnzyl 6 9-1058 (3-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1051	(4-CN)C6H4C(Me2)-	Bnzyl _	
9-1054 (4NO2)C6H4C(Me2)- Bnzyl 6 9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1058 (3-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1052	(3-CN)C6H4C(Me2)-	Bnzyl	6
9-1055 (3NO2)C6H4C(Me2)- Bnzyl 6 9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1058 (3-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1053	(2CN)C6H4C(Me2)-		
9-1056 (2NO2)C6H4C(Me2)- Bnzyl 6 9-1057 (4-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1058 (3-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1054	(4NO2)C6H4C(Me2)-	Bnzyl	
9-1057 (4-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1058 (3-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-Me0)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-Me0)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-Me0)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-Me0CO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1055		Bnzyl	
9-1058 (3-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1056	(2NO2)C6H4C(Me2)-		
9-1059 (2-Cl)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1057	(4-Cl)C6H4C(Me2)-	4-pyridyl-CH2-	
9-1060 (4-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1058	(3-Cl)C6H4C(Me2)-		
9-1061 (3-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1059	(2-Cl)C6H4C(Me2)-	4-pyridyl-CH2-	
9-1062 (2-F)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1060	(4-F)C6H4C(Me2)-		
9-1063 (4-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1061	(3-F)C6H4C(Me2)-		
9-1064 (3-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1062	(2-F)C6H4C(Me2)-		
9-1065 (2-Me)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1063	(4-Me)C6H4C(Me2)-		
9-1066 (4-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1064	(3-Me)C6H4C(Me2)-		
9-1067 (3-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1065	(2-Me)C6H4C(Me2)-	4-pyridyl-CH2-	
9-1068 (2-MeO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1066	(4-MeO)C6H4C(Me2)-		
9-1069 (4-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1067	(3-MeO)C6H4C(Me2)-		
9-1070 (3-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1068	(2-MeO)C6H4C(Me2)-	4-pyridyl-CH2-	
9-1071 (2-Me2N)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1069	(4-Me2N)C6H4C(Me2)-	4-pyridyl-CH2-	3
9-1072 (4-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1070	(3-Me2N)C6H4C(Me2)-		3
9-1073 (3-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1071	(2-Me2N)C6H4C(Me2)-		
9-1074 (2-MeOCO)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1072	(4-MeOCO)C6H4C(Me2)-	4-pyridyl-CH2-	
9-1075 (4-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1073	(3-MeOCO)C6H4C(Me2)-		
9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1074	(2-MeOCO)C6H4C(Me2)-		
9-1076 (3-CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1075	(4-CN)C6H4C(Me2)-		
9-1077 (2CN)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1076			
9-1078 (4NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3 9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3		(2CN)C6H4C(Me2)-	4-pyridyl-CH2-	
9-1079 (3NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3	9-1078			
9-1080 (2NO2)C6H4C(Me2)- 4-pyridyl-CH2- 3				
	9-1080	(2NO2)C6H4C(Me2)-	4-pyridyl-CH2-	3

	11		
化合物番号	R9	R10	n
9-1081	(4-Cl)C6H4C(Me2)-	4-pyridyl-CH2-	44
9-1082	(3-C1)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1083	(2-Cl)C6H4C(Me2)-	4-pyridyl-CH2-	4 .
9-1084	(4-F)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1085	(3-F)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1086	(2-F)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1087	(4-Me)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1088	(3-Me)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1089	(2-Me)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1090	(4-MeO)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1091	(3-MeO)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1092	(2-MeO)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1093	(4-Me2N)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1094	(3-Me2N)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1095	(2-Me2N)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1096	(4-MeOCO)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1097	(3-MeOCO)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1098	(2-MeOCO)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1099	(4-CN)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1100	(3-CN)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1101	(2CN)C6H4C(Me2)-	4-pyridyl-CH2-	44
9-1102	(4NO2)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1103	(3NO2)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1104	(2NO2)C6H4C(Me2)-	4-pyridyl-CH2-	4
9-1105	(4-Cl)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1106	(3-Cl)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1107	(2-Cl)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1108	(4-F)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1109	(3-F)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1110	(2-F)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1111	(4-Me)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1112	(3-Me)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1113	(2-Me)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1114	(4-MeO)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1115	(3-MeO)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1116	(2-MeO)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1117	(4-Me2N)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1118	(3-Me2N)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1119	(2-Me2N)C6H4C(Me2)-	4-pyridyl-CH2-	5
9-1120	(4-MeOCO)C6H4C(Me2)-	4-pyridyl-CH2-	5

表117

R''				
化合物番号	R9	R10	n	
9-1121	(3-MeOCO)C6H4C(Me2)-	4-pyridyl-CH2-	5	
9-1122	(2-MeOCO)C6H4C(Me2)-	4-pyridyl-CH2-	5	
9-1123	(4-CN)C6H4C(Me2)-	4-pyridyl-CH2-	5	
9-1124	(3-CN)C6H4C(Me2)-	4-pyridyl-CH2-	5 .	
9-1125	(2CN)C6H4C(Me2)-	4-pyridyl-CH2-	5	
9-1126	(4NO2)C6H4C(Me2)-	4-pyridyl-CH2-	5	
9-1127	(3NO2)C6H4C(Me2)-	4-pyridyl-CH2-	5	
9-1128	(2NO2)C6H4C(Me2)-	4-pyridyl-CH2-	5	
9-1129	(4-Cl)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1130	(3-Cl)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1131	(2-Cl)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1132	(4-F)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1133	(3-F)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1134	(2-F)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1135	(4-Me)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1136	(3-Me)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1137	(2-Me)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1138	(4-MeO)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1139	(3-MeO)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1140	(2-MeO)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1141	(4-Me2N)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1142	(3-Me2N)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1143	(2-Me2N)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1144	(4-MeOCO)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1145	(3-MeOCO)C6H4C(Me2)-	4-pyridyl-CH2-	66	
9-1146	(2-MeOCO)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1147	(4-CN)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1148	(3-CN)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1149	(2CN)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1150	(4NO2)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1151	(3NO2)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1152	(2NO2)C6H4C(Me2)-	4-pyridyl-CH2-	6	
9-1153	(4-Cl)C6H4CH2C(Me2)-	n-Bu	3	
9-1154	(3-Cl)C6H4CH2C(Me2)-	n-Bu	3	
9-1155	(2-Cl)C6H4CH2C(Me2)-	n-Bu	3	
9-1156	(4-F)C6H4CH2C(Me2)-	n-Bu	3	
9-1157	(3-F)C6H4CH2C(Me2)-	n-Bu	3	
9-1158	(2-F)C6H4CH2C(Me2)-	n-Bu	3	
9-1159	(4-Me)C6H4CH2C(Me2)-	n-Bu	3	
9-1160	(3-Me)C6H4CH2C(Me2)-	n-Bu	3	

表118

			
化合物番号	R9	R10	n
9-1161	(2-Me)C6H4CH2C(Me2)-	n-Bu	3
9-1162	(4-MeO)C6H4CH2C(Me2)-	n-Bu	3
9-1163	(3-MeO)C6H4CH2C(Me2)-	n-Bu	3
9-1164	(2-MeO)C6H4CH2C(Me2)-	n-Bu	3
9-1165	(4-Me2N)C6H4CH2C(Me2)-	n-Bu	3
9-1166	(3-Me2N)C6H4CH2C(Me2)-	n-Bu	3
9-1167	(2-Me2N)C6H4CH2C(Me2)-	n-Bu	3
9-1168	(4-MeOCO)C6H4CH2C(Me2)-	n-Bu	3
9-1169	(3-MeOCO)C6H4CH2C(Me2)-	n-Bu	3
9-1170	(2-MeOCO)C6H4CH2C(Me2)-	n-Bu	3
9-1171	(4-CN)C6H4CH2C(Me2)-	n-Bu	3
9-1172	(3-CN)C6H4CH2C(Me2)-	n-Bu	3
9-1173	(2CN)C6H4CH2C(Me2)-	n-Bu	3
9-1174	(4NO2)C6H4CH2C(Me2)-	n-Bu	3
9-1175	(3NO2)C6H4CH2C(Me2)-	n-Bu	3
9-1176	(2NO2)C6H4CH2C(Me2)-	n-Bu	3
9-1177	(4-Cl)C6H4CH2C(Me2)-	n-Bu	4
9-1178	(3-C1)C6H4CH2C(Me2)-	n-Bu	4
9-1179	(2-C1)C6H4CH2C(Me2)-	n-Bu	4
9-1180	(4-F)C6H4CH2C(Me2)-	n-Bu	4
9-1181	(3-F)C6H4CH2C(Me2)-	n-Bu	4
9-1182	(2-F)C6H4CH2C(Me2)-	n-Bu	4
9-1183	(4-Me)C6H4CH2C(Me2)-	n-Bu	4
9-1184	(3-Me)C6H4CH2C(Me2)	n-Bu	4
9-1185	(2-Me)C6H4CH2C(Me2)-	n-Bu	4
9-1186	(4-MeO)C6H4CH2C(Me2)-	n-Bu	4
9-1187	(3-MeO)C6H4CH2C(Me2)-	n-Bu	4
9-1188	(2-MeO)C6H4CH2C(Me2)-	n-Bu	4
9-1189	(4-Me2N)C6H4CH2C(Me2)-	n-Bu	4
9-1190	(3-Me2N)C6H4CH2C(Me2)-	n-Bu	4
9-1191	(2-Me2N)C6H4CH2C(Me2)-	n-Bu	4
9-1192	(4-MeOCO)C6H4CH2C(Me2)-	n-Bu	4
9-1193	(3-MeOCO)C6H4CH2C(Me2)-	n-Bu	4
9-1194	(2-MeOCO)C6H4CH2C(Me2)-	n-Bu	4
9-1195	(4-CN)C6H4CH2C(Me2)-	n-Bu	4
9-1196	(3-CN)C6H4CH2C(Me2)-	n-Bu	4
9-1197	(2CN)C6H4CH2C(Me2)-	n-Bu	4
9-1198	(4NO2)C6H4CH2C(Me2)-	n-Bu	4
9-1199	(3NO2)C6H4CH2C(Me2)-	n-Bu	4
9-1200	(2NO2)C6H4CH2C(Me2)-	n-Bu	4
U-1200	(21.02/0011101120(1102)		

表119

	, t		
化合物番号	R9	R10	n
9-1201	(4-Cl)C6H4CH2C(Me2)-	n-Bu_	5
9-1202	(3-Cl)C6H4CH2C(Me2)-	n-Bu	5
9-1203	(2-C1)C6H4CH2C(Me2)-	n-Bu	5
9-1204	(4-F)C6H4CH2C(Me2)-	n-Bu	5
9-1205	(3-F)C6H4CH2C(Me2)-	n-Bu	5
9-1206	(2-F)C6H4CH2C(Me2)-	n-Bu	5
9-1207	(4-Me)C6H4CH2C(Me2)-	n-Bu	5
9-1208	(3-Me)C6H4CH2C(Me2)-	n-Bu	5
9-1209	(2-Me)C6H4CH2C(Me2)-	n-Bu	5
9-1210	(4-MeO)C6H4CH2C(Me2)-	n-Bu_	5
9-1211	(3-MeO)C6H4CH2C(Me2)-	n-Bu	5
9-1212	(2-MeO)C6H4CH2C(Me2)-	n-Bu	5
9-1213	(4-Me2N)C6H4CH2C(Me2)-	n-Bu	5
9-1214	(3-Me2N)C6H4CH2C(Me2)-	n-Bu	5
9-1215	(2-Me2N)C6H4CH2C(Me2)-	n-Bu	5
9-1216	(4-MeOCO)C6H4CH2C(Me2)-	n-Bu	5
9-1217	(3-MeOCO)C6H4CH2C(Me2)-	n-Bu	5
9-1218	(2-MeOCO)C6H4CH2C(Me2)-	n-Bu	5
9-1219	(4-CN)C6H4CH2C(Me2)-	n-Bu	5
9-1220	(3-CN)C6H4CH2C(Me2)-	n-Bu	5
9-1221	(2CN)C6H4CH2C(Me2)-	n-Bu	5
9-1222	(4NO2)C6H4CH2C(Me2)-	n-Bu	5
9-1223	(3NO2)C6H4CH2C(Me2)-	n-Bu	5
9-1224	(2NO2)C6H4CH2C(Me2)-	n-Bu	5
9-1225	(4-C1)C6H4CH2C(Me2)-	n-Bu	6
9-1226	(3-C1)C6H4CH2C(Me2)-	n-Bu	6
9-1227	(2-Cl)C6H4CH2C(Me2)-	n-Bu	6
9-1228	(4-F)C6H4CH2C(Me2)-	n-Bu	6
9-1229	(3-F)C6H4CH2C(Me2)-	n-Bu	6
9-1230	(2-F)C6H4CH2C(Me2)-	n-Bu	6
9-1231	(4-Me)C6H4CH2C(Me2)-	n-Bu	6
9-1232	(3-Me)C6H4CH2C(Me2)-	n-Bu_	6
9-1233	(2-Me)C6H4CH2C(Me2)-	n-Bu	6
9-1234	(4-MeO)C6H4CH2C(Me2)-	n-Bu	6
9-1235	(3-MeO)C6H4CH2C(Me2)-	n-Bu	6
9-1236	(2-MeO)C6H4CH2C(Me2)-	n-Bu_	6
9-1237	(4-Me2N)C6H4CH2C(Me2)-	n-Bu	6
9-1238	(3-Me2N)C6H4CH2C(Me2)-	n-Bu	6
9-1239	(2-Me2N)C6H4CH2C(Me2)-	n-Bu	6
9-1240	(4-MeOCO)C6H4CH2C(Me2)-	n-Bu	6

表120

	n.		
化合物番号	R9	R10	n
9-1241	(3-MeOCO)C6H4CH2C(Me2)-	n-Bu	6
9-1242	(2-MeOCO)C6H4CH2C(Me2)-	n-Bu	6
9-1243	(4-CN)C6H4CH2C(Me2)-	n-Bu	6
9-1244	(3-CN)C6H4CH2C(Me2)-	n-Bu	6
9-1245	(2CN)C6H4CH2C(Me2)-	n-Bu	6
9-1246	(4NO2)C6H4CH2C(Me2)-	n-Bu	6
9-1247	(3NO2)C6H4CH2C(Me2)-	n-Bu	6
9-1248	(2NO2)C6H4CH2C(Me2)-	n-Bu	6
9-1249	(4-Cl)C6H4CH2C(Me2)-	Bnzyl	3
9-1250	(3-C1)C6H4CH2C(Me2)-	Bnzyl	3
9-1251	(2-C1)C6H4CH2C(Me2)-	Bnzyl	3
9-1252	(4-F)C6H4CH2C(Me2)-	Bnzyl	3
9-1253	(3-F)C6H4CH2C(Me2)-	Bnzyl	3
9-1254	(2-F)C6H4CH2C(Me2)-	Bnzyl	3
9-1255	(4-Me)C6H4CH2C(Me2)-	Bnzyl	3
9-1256	(3-Me)C6H4CH2C(Me2)-	Bnzyl	3
9-1257	(2-Me)C6H4CH2C(Me2)-	Bnzyl	3
9-1258	(4-MeO)C6H4CH2C(Me2)-	Bnzyl	3
9-1259	(3-MeO)C6H4CH2C(Me2)-	Bnzyl	3
9-1260	(2-MeO)C6H4CH2C(Me2)-	Bnzyl	3
9-1261	(4-Me2N)C6H4CH2C(Me2)-	Bnzyl	3
9-1262	(3-Me2N)C6H4CH2C(Me2)-	Bnzyl	3
9-1263	(2-Me2N)C6H4CH2C(Me2)-	Bnzyl	3
9-1264	(4-MeOCO)C6H4CH2C(Me2)-	Bnzyl	3
9-1265	(3-MeOCO)C6H4CH2C(Me2)-	Bnzyl	3
9-1266	(2-MeOCO)C6H4CH2C(Me2)-	Bnzyl	3
9-1267	(4-CN)C6H4CH2C(Me2)-	Bnzyl	3
9-1268	(3-CN)C6H4CH2C(Me2)-	Bnzyl	3
9-1269	(2CN)C6H4CH2C(Me2)-	Bnzyl	3
9-1270	(4NO2)C6H4CH2C(Me2)-	Bnzyl	3
9-1271	(3NO2)C6H4CH2C(Me2)-	Bnzyl	3
9-1272	(2NO2)C6H4CH2C(Me2)-	Bnzyl	3
9-1273	(4-Cl)C6H4CH2C(Me2)-	Bnzyl	4
9-1274	(3-Cl)C6H4CH2C(Me2)-	Bnzyl	4
9-1275	(2-Cl)C6H4CH2C(Me2)-	Bnzyl	4
9-1276	(4-F)C6H4CH2C(Me2)-	Bnzyl	4
9-1277	(3-F)C6H4CH2C(Me2)-	Bnzyl	4
9-1278	(2-F)C6H4CH2C(Me2)-	Bnzyl	4
9-1279	(4-Me)C6H4CH2C(Me2)-	Bnzyl	4
9-1280	(3-Me)C6H4CH2C(Me2)-	Bnzyl	4

表 1 2 1

化合物番号	R9	R10	n
9-1281	(2-Me)C6H4CH2C(Me2)-	Bnzyl	4
9-1281	(4-MeO)C6H4CH2C(Me2)-	Bnzyl	4
	(3-MeO)C6H4CH2C(Me2)-	Bnzyl	4
9-1283 9-1284	(2-MeO)C6H4CH2C(Me2)-	Bnzyl	4
	(4-Me2N)C6H4CH2C(Me2)-	Bnzyl	4
9-1285	(3-Me2N)C6H4CH2C(Me2)-	Bnzyl	4
9-1286	(2-Me2N)C6H4CH2C(Me2)-	Bnzyl	4
9-1287	(4-MeOCO)C6H4CH2C(Me2)-	Bnzyl	4
9-1288	(3-MeOCO)C6H4CH2C(Me2)-	Bnzyl	4
9-1289	(2-MeOCO)C6H4CH2C(Me2)-	Bnzyl	4
9-1290		Bnzyl	4
9-1291	(4-CN)C6H4CH2C(Me2)-	Bnzyl	4
9-1292	(3-CN)C6H4CH2C(Me2)-	Bnzyl	4
9-1293	(2CN)C6H4CH2C(Me2)-		4
9-1294	(4NO2)C6H4CH2C(Me2)-	Bnzyl Bnzyl	4
9-1295	(3NO2)C6H4CH2C(Me2)-	Bnzyl	4
9-1296	(2NO2)C6H4CH2C(Me2)-	Bnzyl	5
9-1297	(4-Cl)C6H4CH2C(Me2)-	Bnzyl	5
9-1298	(3-Cl)C6H4CH2C(Me2)-	Bnzyl	5
9-1299	(2-C1)C6H4CH2C(Me2)-	Bnzyl	5
9-1300	(4-F)C6H4CH2C(Me2)-	Bnzyl	5
9-1301	(3-F)C6H4CH2C(Me2)-	Bnzyl	5
9-1302	(2-F)C6H4CH2C(Me2)-	Bnzyl	
9-1303	(4-Me)C6H4CH2C(Me2)-	Bnzyl	5 5
9-1304	(3-Me)C6H4CH2C(Me2)-	Bnzyl	
9-1305	(2-Me)C6H4CH2C(Me2)-	Bnzyl	_ 5
9-1306	(4-MeO)C6H4CH2C(Me2)-	Bnzyl	5
9-1307	(3-MeO)C6H4CH2C(Me2)-	Bnzyl	5
9-1308	(2-MeO)C6H4CH2C(Me2)-	Bnzyl	5
9-1309	(4-Me2N)C6H4CH2C(Me2)-	Bnzyl	5
9-1310	(3-Me2N)C6H4CH2C(Me2)-	Bnzyl	5
9-1311	(2-Me2N)C6H4CH2C(Me2)-	Bnzyl	5
9-1312	(4-MeOCO)C6H4CH2C(Me2)-	Bnzyl	5
9-1313	(3-MeOCO)C6H4CH2C(Me2)-	Bnzyl	5
9-1314	(2-MeOCO)C6H4CH2C(Me2)-	Bnzyl	5
9-1315	(4-CN)C6H4CH2C(Me2)-	Bnzyl	5
9-1316	(3-CN)C6H4CH2C(Me2)-	Bnzyl	5
9-1317	(2CN)C6H4CH2C(Me2)-	Bnzyl	5
9-1318	(4NO2)C6H4CH2C(Me2)-	Bnzyl	5
9-1319	(3NO2)C6H4CH2C(Me2)-	Bnzyl	5
9-1320	(2NO2)C6H4CH2C(Me2)-	Bnzyl	5

表 1 2 2

H				
化合物番号	R9	R10	n	
9-1321	(4-Cl)C6H4CH2C(Me2)-	Bnzyl	6	
9-1322	(3-Cl)C6H4CH2C(Me2)-	Bnzyl	6	
9-1323	(2-Cl)C6H4CH2C(Me2)-	Bnzyl	6	
9-1324	(4-F)C6H4CH2C(Me2)-	Bnzyl	6	
9-1325	(3-F)C6H4CH2C(Me2)-	Bnzyl	6	
9-1326	(2-F)C6H4CH2C(Me2)-	Bnzyl	6	
9-1327	(4-Me)C6H4CH2C(Me2)-	Bnzyl	_6	
9-1328	(3-Me)C6H4CH2C(Me2)-	Bnzyl_	6	
9-1329	(2-Me)C6H4CH2C(Me2)-	Bnzyl	6	
9-1330	(4-MeO)C6H4CH2C(Me2)-	Bnzyl	6	
9-1331	(3-MeO)C6H4CH2C(Me2)-	Bnzyl	6	
9-1332	(2-MeO)C6H4CH2C(Me2)-	Bnzyl	6	
9-1333	(4-Me2N)C6H4CH2C(Me2)-	Bnzyl	6	
9-1334	(3-Me2N)C6H4CH2C(Me2)-	Bnzyl	6	
9-1335	(2-Me2N)C6H4CH2C(Me2)-	Bnzyl	6	
9-1336	(4-MeOCO)C6H4CH2C(Me2)-	Bnzyl	6	
9-1337	(3-MeOCO)C6H4CH2C(Me2)-	Bnzyl	6	
9-1338	(2-MeOCO)C6H4CH2C(Me2)-	Bnzyl	6	
9-1339	(4-CN)C6H4CH2C(Me2)-	Bnzyl	6	
9-1340	(3-CN)C6H4CH2C(Me2)-	Bnzyl	6	
9-1341	(2CN)C6H4CH2C(Me2)-	Bnzyl	6	
9-1342	(4NO2)C6H4CH2C(Me2)-	Bnzyl_	6	
9-1343	(3NO2)C6H4CH2C(Me2)-	Bnzyl	6	
9-1344	(2NO2)C6H4CH2C(Me2)-	Bnzyl_	6	
9-1345	(4-C1)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1346	(3-C1)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1347	(2-C1)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1348	(4-F)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1349	(3-F)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1350	(2-F)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1351	(4-Me)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1352	(3-Me)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1353	(2-Me)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1354	(4-MeO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1355	(3-MeO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1356	(2-MeO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1357	(4-Me2N)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1358	(3-Me2N)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1359	(2-Me2N)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
9-1360	(4-MeOCO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3	
	_ 1 <u>}</u>			

表123

化合物番号 9-1361 (3	R9	R10	n
9-1361 (3			
0 1001	3-MeOCO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3
9-1362 (2	2-MeOCO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3
9-1363	(4-CN)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3 .
9-1364	(3-CN)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3.
9-1365	(2CN)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3
9-1366	(4NO2)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3
9-1367	(3NO2)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3 -
9-1368	(2NO2)C6H4CH2C(Me2)-	4-pyridyl-CH2-	3
9-1369	(4-Cl)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1370	(3-Cl)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1371	(2-Cl)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1372	(4-F)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1373	(3-F)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1374	(2-F)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1375	(4-Me)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1376	(3-Me)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1377	(2-Me)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1378	(4-MeO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1379	(3-MeO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1380	(2-MeO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1381	(4-Me2N)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1382	(3-Me2N)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1383	(2-Me2N)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1384 ((4-MeOCO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1385 ((3-MeOCO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1386	(2-MeOCO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1387	(4-CN)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1388	(3-CN)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1389	(2CN)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1390	(4NO2)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1391	(3NO2)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1392	(2NO2)C6H4CH2C(Me2)-	4-pyridyl-CH2-	4
9-1393	(4-Cl)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1394	(3-Cl)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1395	(2-Cl)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1396	(4-F)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1397	(3-F)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1398	(2-F)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1399	(4-Me)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1400	(3-Me)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5

表 1 2 4

化合物番号 R9		R10	n
9-1401	(2-Me)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1401	(4-MeO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1403	(3-MeO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1404	(2-MeO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1405	(4-Me2N)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1406	(3-Me2N)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1407	(2-Me2N)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1408	(4-MeOCO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1409	(3-MeOCO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1410	(2-MeOCO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1411	(4-CN)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1412	(3-CN)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1413	(2CN)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1414	(4NO2)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1415	(3NO2)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1416	(2NO2)C6H4CH2C(Me2)-	4-pyridyl-CH2-	5
9-1417	(4-C1)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1418	(3-Cl)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1419	(2-C1)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1420	(4-F)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1421	(3-F)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1422	(2-F)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1423	(4-Me)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1424	(3-Me)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1425	(2-Me)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1426	(4-MeO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1427	(3-MeO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1428	(2-MeO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1429	(4-Me2N)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1430	(3-Me2N)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1431	(2-Me2N)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1432	(4-MeOCO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1433	(3-MeOCO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1434	(2-MeOCO)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1435	(4-CN)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1436	(3-CN)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1437	(2CN)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1438	(4NO2)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1439	(3NO2)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6
9-1440	(2NO2)C6H4CH2C(Me2)-	4-pyridyl-CH2-	6

さらに本発明化合物を以下に示すように固相反応を用いて行い、パラレル合成 した。なお、確認はマススペクトルで行い、各化合物の生物試験を行った。 <ライブラリーA>

5 1-ブチル-2-オキソ-5-アリール-1,2-ジヒドロピリジン-3-カルボン酸 アミド誘導体 (Combi-A)のコンピナトリアル合成

- a) レジン A-02 の合成: 4-スルファミルブチリル AM レジン (3.9 g) の塩化メチ 10 レン (80 ml) 溶液に,室温で 1-ブチル-5-ヨード-2-オキソ-1,2-ジヒドロピリジン-3-カルボン酸 (A-01)(4.1 g),及び N,N-ジイソプロピルエチルアミン (3.7 ml)を加えた. 10 分撹拌した後に PyBOP (6.6 g) を室温で加え,さらに 18 時間撹拌した. レジンを濾取し,水,THF,塩化メチレン,及びエーテルで順次洗浄することによりレジン(A-02)[5.2 g,92%(ヨウ素元素分析)]を得た.
- b) レジン(A-03-01~A-03-24)の合成:レジン A-02 (150 mg) を 24 個のフラスコ に分量し、それぞれに DME (2.5 ml)、 PdCl₂(dppf) (35 mg)、アリールホウ酸 (5 当量)、及び炭酸カリウム水溶液 (2M、0.34 ml) を加えた. 80 ℃で 18 時間撹拌した後、レジンを濾取し、水、THF、N-メチルピロリドン、塩化メチレン、及びエーテルで順次洗浄することによりレジン A-03-01~A-03-24 を得た.

10

- c) レジン $A-04-01\sim A-04-24$ の合成: レジン $A-03-01\sim A-03-24$ に N-メチルピロリドン (2.0 ml), ヨードアセトニトリル (0.16 ml), N, N-ジイソプロピルエチルアミン (0.1 ml) を室温で加えた. 24 時間撹拌した後, レジンを濾取し, N-メチルピロリドン, 塩化メチレン, 及びエーテルで順次洗浄することによりレジン $A-04-01\sim A-04-24$ を得た.
- d) 1-ブチル-2-オキソ-5-アリール-1,2-ジヒドロビリジン-3-カルボン酸 アミド誘導体 A-05-01~A-05-96 の合成: レジン A-04-01~A-04-24 のそれぞれをさらに 4 分割し,96 穴プレートに分量した.それぞれに THF (0.7 ml) を加えた後に,アミンを 24 種類のレジンにそれぞれ加えた.24 時間振とうした後に高分子固定化イソシアネート樹脂を加え,さらに 3 時間振とうした.レジンを濾別し,塩化メチレンで洗浄し濾液を減圧下で留去することにより 1-ブチル-2-オキソ-5-アリール-1,2-ジヒドロビリジン-3-カルボン酸 アミド誘導体 A-001~A-096 を得た.

以下に A-001~A-096 の構造を示す。

表125

No No	構造	No	構造
A-001	O NOT NOT NOT NOT NOT NOT NOT NOT NOT NO	A-008	ON STO
A-002	O TO	A-009	
A-003	P O N	A-010	
A-004	ON O	A-011	FON
A-005	NON STO	A-012	
A-006	O S	A-013	O ST
A-007	P O N	A-014	CI ON ON

表126

Z 0		<u> </u>	Litte Nata
No	構造	No	構造
A-015	F O N S CI	A-022	ON P
A-016		A-023	F O N
A-017		A-024	ON NON F
A-018	ON ON	A-025	
A-019	FUNDA	A-026	
A-020		A-027	F O N
A-021	O N F	A-028	

表 1 2 7

No	構造	No	構造
A-029	ON ON ON	A-036	
A-030	O N O N	A-037	
A-031	F O N	A-038	
A-032		A-039	F O N
A-033		A-040	
A-034	O N O N	A-041	ON
A-035	F O N	A-042	O N

表128

2 8			
No	構造	No	構造
A-043	F O N	A-050	O N
A-044		A-051	FON
A-045	NON CO	A-052	
A-046	NO N	A-053	ON ON ON
A-047	F ON ON	A-054	O N
A-048		A-055	FON
A-049		A-056	

表129

<u>ح</u>			
No	構造	No	構造
A-057	O N O N	A-064	
A-058	ON ON	A-065	O N S
A-059	F O N	A-066	ON IS
A-060		A-067	F O N
A-061	ON STATE OF	A-068	
A-062	ON SON	A-069	ON FFF
A-063	F O N	A-070	ON FFF

表130

No	構造	No	構造
140	1件 心	100	
A-071	F O N F F	A-078	O N
A-072	ON N FFF	A-079	F F F F F F F F F F F F F F F F F F F
A-073	ON FF	A-080	F F F F F F F F F F F F F F F F F F F
A-074	O N F F	A-081	O N CI CI
A-075	F O N F F	A-082	O N CI
A-076	ON NO N F F	A-083	F O N
A-077	F F F F F F F F F F F F F F F F F F F	A-084	

表131

No	構造	No	構造
A-085	ON CI CI	A-091	F O N
A-086	O N CI	A-092	
A-087	F O N CI	A-093	O N O N
A-088		A-094	
A-089		A-095	F O N
A-090		A-096	ON O

<ライブラリーB>

10

15

20

a) 1-ブチル-2-オキソ-1,2,5,6,7,8,9,10-オクタヒドロ-シクロオクタ[b]ピリジン-3-カルボニルクロリド (B-02)の合成

1-ブチル-2-オキソ-1,2,5,6,7,8,9,10-オクタヒドロ-シクロオクタ[b]ピリジン-3-カルボン酸 (B-O1) (416 mg、1.50 mmol)をトルエン (15 ml)に溶解し、塩化チオニル (328 μ l、4.50 mmol)を加え、65°C で 20 分反応させる。この反応液を減圧濃縮することにより、1-ブチル-2-オキソ-1,2,5,6,7,8,9,10-オクタヒドロ-シクロオクタ[b]ピリジン-3-カルボニルクロリド(B-O2)を得た。

b) 1-ブチル-2-オキソ-1,2,5,6,7,8,9,10-オクタヒドロ-シクロオクタ[b]ピリジン-3-カルボン酸 アミド誘導体 (B-03-01~B-03-94)の合成

高分子固定化 N-メチルモルホリン樹脂 (1.93 mmol/g)を 96 穴反応プレートに <math>15 mg ずつ 分量したのち、アミン $(R-NH_2)$ の 50 mM 塩化メチレン溶液を $300 \text{ <math>\Box 1$ }、塩化メチレン $(700 \text{ <math>\Box 1)$ }、1-ブチル-2-オキソ-1,2,5,6,7,8,9,10-オクタヒドロ-シクロオクタ[b]ピリジン-3-カルボニルクロリド(B-02)の 30 mg/ml 塩化メチレン溶液を $100 \text{ <math>\Box 1$ } を 996 穴反応プレートにそれぞれ加えた。

室温で 15 時間振とうした後に高分子固定化イソシアネート樹脂を加え,さらに 3 時間振とうした。レジンを濾別し、塩化メチレンで洗浄し濾液を減圧下で留去することにより B-001~B-094 を得た。

以下に B-001~B-094 の構造を示す。

表 1 3 2

No	構造	No	構造
B-001	ON	B-008	CI O N
B-002	ON O	B-009	F N O N
B-003	F O N	B-010	
B-004	ON O	B-011	ON O
B-005	CI C	B-012	CI ON NOTINE
B-006	DNO N	B-013	
B-007.		B-014	

表133

No	構造	No	構造
B-015		B-022	
B-016	F O N	B-023	O N N
B-017	SUNN	B-024	
B-018		B-025	CI NO N
B-019		B-026	O N O N O N O N O N O N O N O N O N O N
B-020	O N O N	B-027	O'N JND
B-021		B-028	FUND N

表134

No	構造	No	構造
B-029	CICD	B-036	~0~N
B-030	O N O N	B-037	O N O N
B-031	O N O N	B-038	
B-032	S NON	B-039	
B-033		B-040	
B-034	F O N O	B-041	
B-035	S N N N	B-042	ON

表135

No	構造	
B-043		
B-044		
B-045		
B-046		
B-047	F F O N	
B-048		
B-049	ON O	

····	
No	構造
B-050	
B-051	
B-052	
B-053	NN NO N
B-054	
B-055	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
B-056	John Jan

表136

3 0		_
No	構造	
B-057	N O N	
B-058		
B-059		
B-060		
B-061		
B-062	CINON	
B-063	CICION	

No	構造
B-064	O N O N
B-065	
B-066	ON O
B-067	
B-068	
B-069	
B-070	D'NO'N

表137

No	構造	No	構造
B-071	F O N	B-078	
B-072		B-079	O N
B-073		B-080	
B-074	La L	B-081	
B-075	DH O H	B-082	
B-076		B-083	O NO
B-077		B-084	SO ON O

表138

No	構造
B-085	N O N
B-086	NO N
B-087	N O N
B-088	
B-089	
B-090	CN~NON

No	構造		
B-091			
B-092			
B-093			
B-094			

<ライブラリーC>

- a) N-(1-ブチル-5,6-ジメチル-2-オキソ-1,2-ジヒドロ-ピリジン-3-イル) アルキルアミド誘導体 (C-02-01~C-02-19)の合成
- 5 高分子固定化 N-メチルモルホリン樹脂(3.0 mmol/g)を 48 穴反応プレートに 50 mg ずつ 分量したのち、3-アミノ-1-ブチル-5,6-ジメチル-1H-ピリジン-2-オン (C-01)の 25 mM 塩化メチレン溶液を 2 ml、酸クロリド(R-COCl,0.10 mmol)を順に 48 穴反応プレートにそれぞれ加えた。

室温で 15 時間振とうした後に高分子固定化カーボナート樹脂(MP-Carbonate)
10 を加え、さらに 12 時間振とうした。レジンを濾別し、塩化メチレンで洗浄し濾液
を減圧下で留去することにより C-02-01~C-02-19 を得た。

表 1 3 9

No	構造	No	構造
C-001	F F F OO N	C-008	
C-002		C-009	
C-003	O O N	C-010	F OO N
C-004	CICI	C-011	F CI O _O N
C-005	CI O O N	C-012	F CI OO N
C-006	CICI	C-013	F F OO N
C-007		C-014	Br N N

表 1 4 0

No	構造
C-015	OON
C-016	0N0001N
C-017	ON NO N
C-018	
C-019	N N N N N N N N N N N N N N N N N N N

なお、表125~140において、アミド結合の窒素上の水素は省略している。

試験例

5 上記の本発明化合物の試験例を以下に示す。

試験例1 ヒト CB2 受容体結合阻害実験

ヒト CB2 受容体をコードする cDNA 配列 (Munro 等, Nature, 1993, 365, 61-65) を、動物細胞用発現ベクターである pSVL SV40 Late Promoter Expression

15

Vector (Amersham Pharmacia Biotech 社)のプロモーター下流域に順方向に挿入した。得られた発現ベクターを LipofectAMINE 試薬 (Gibco BRL 社)を用いて、宿主細胞 CHO に使用説明書にしたがってトランスフェクションし、CB2 受容体安定発現細胞を得た。

5 CB2 受容体を発現させた CHO 細胞から調製した膜標品を、被検化合物及び 38,000 dpm の[*H]CP55940 (終濃度 0.5 nM: NEN Life Science Products 社製) とともに、アッセイ緩衝液 (0.5% 牛血清アルブミンを含む 50 mM Tris-HC1 緩衝液 (pH 7.4)、1 mM EDTA、3 mM MgCl2)中で、25℃、2 時間インキュベーションした後、1% ポリエチレンイミン処理したグラスフィルターGF/C にて濾過した。0.1% BSA を含む 50 mM Tris-HCl 緩衝液 (pH 7.4)にて洗浄後、液体シンチレーションカウンターにてグラスフィルター上の放射活性を求めた。非特異的結合は 10 [M WIN55212-2 (US 5081122 記載のカンナビノイド受容体アゴニスト、Research Biochemicals International 社製)存在下で測定し、特異的結合に対する被検化合物の 50%阻害濃度 (IC50値)を求めた。

ヒト CB1 受容体に対する結合実験は、CB1 受容体を安定発現する CHO 細胞を上記と同じ方法で作製し、その膜画分を用いて行った。これらの結合実験の結果、得られた被検化合物の各ヒトカンナビノイド受容体に対する K,値を表に示した。表に示したとおり、本発明の一連の化合物は、CB2 受容体への CP55940 (US 4371720 記載のカンナビノイド受容体アゴニスト) の結合を阻害した。

表 1 4 1

化合物	Ki (nM)		•	化合物	Ki (nM)	
	CB1受容体	CB2受容体			CB1受容体	CB2受容体
2-004	nt	101		4-062	>5000	4
3-010	nt	57		4-101	890	1.5
-038	1252	12		4-102	908	1.6
-001	2851	28		4-104	54	6
-002	746	17		4-105	91	2.1
003	680	44		4-301	1769	8
052	1497	24		4-302	>5000	10
-053	254	6		4-310	512	9
-054	482	6		5-005	391	16
-056	551	8	_	5-006	390	14
1-061	124	2.5				

n.t.: not tested

10

5 試験例2 ヒト CB2 受容体を介する cAMP 生成阻害実験

ヒト CB2 受容体を発現させた CHO 細胞に、被検化合物を添加し 15 分間インキュベーションの後、フォルスコリン(終濃度 4 μ M、SIGMA 社)を加えて 20 分間インキュベーションした。 1N HCl を添加して反応を停止させた後、上清中の cAMP 量を Amersham Pharmacia Biotech 社製の EIA kit を用いて測定した。フォルスコリン刺激による cAMP 生成をフォルスコリン無刺激に対して 100%とし、50%の抑制作用を示す被検化合物の濃度(IC $_{50}$ 値)を求めた。この結果得られた 被検化合物の IC $_{50}$ 値を表に示す。表に示すとおり、本発明化合物は、CB2 受容体に対してアゴニスト作用を示した。

なお、同様に試験することにより、アンタゴニスト作用についても試験するこ 15 とができる。

表142

化合物	IC ₅₀ (nM)
3-038	28.6
4-001	64.2
4-053	7.9
4-054	4.2
4-056	4.3
4-061	2.3
4-062	1.3
4-101	1.4
4-102	1.7
4-104	9.8

なお、本発明化合物は以下に示すインビボでの試験により、抗炎症効果を確認 5 することができる。

試験 ヒツジ赤血球(SRBC)誘発遅延型過敏反応(DTH)モデル実験

雌性 ddy マウス(7週令)を用い、10⁷個の SRBC をマウス左後肢足蹠皮内(40 ml)に注射することにより感作する。感作から 5 日後に 10⁸ 個の SRBC をマウス右後肢足蹠皮内(40 ml)に注射することにより DTH 反応を惹起する。カンナビノイド 2 型受容体親和性化合物である本発明化合物を 0.6%アラビアゴム溶液に懸濁し、DTH 反応惹起 1 時間前および 5 時間後に経口投与(10 ml/kg)する。 SRBC 注射 24 時間後に左右後肢の容積を水置換法により測定し、右足容積と左足容積の差を求めることにより足浮腫容量を算出して DTH 反応の指標とする。なお、統計的検定は Welch の t検定法により行なうことができ、P<0.05 のとき有意差ありと判定することにより、本発明化合物の抗炎症効果を確認することができる。

産業上の利用可能性

10

15

本発明化合物は、カンナビノイド2型受容体に結合し、カンナビノイド2型受

容体アンタゴニスト作用またはカンナビノイド2型受容体アゴニスト作用を示す。 従って、カンナビノイド2型受容体が関与する疾患に対して治療又は予防の目的 で使用することができる。

請求の範囲

1. 式(I):

$$R^1$$
 R^2
 R^3
 R^4
 R^5

(式中、R1は水素、ハロゲン、シアノ、ホルミル、アシル、カルボキシ、アルコ キシカルボニル、置換されていてもよいカルバモイル、イソチオシアナト、置換 されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニル オキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニト ロ又は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 はそれぞれ独立して単結 合又は置換されていてもよいアルキレンであり;Y²は単結合、-O-、-O-C 10 (=0) -, -0 - (=0) - 0 -, -0 - $_{2}$ - $_{1}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{5}$ - $_$ NH) - $\sim NR^{b}-C$ (=0) -0- $\sim -NR^{b}-C$ (=0) - $NR^{b}-\sim -N$ $R^{b}-C (= 0) - NR^{b}-SO_{2}- - NR^{b}-C (= S) - - NR^{b}-C (= S)$ $S) - N R^{b} - \sqrt{-N R^{b} - S O_{2} - N R^{b} - \sqrt{-N R^{b} - C}} (= N H) - N R^{b} - \sqrt{-N R^{b} - C}$ 15 -S-, $-SO_2-O-$, $-SO_2-NR^b-$, $-SO_2-NR^b-C$ (=0) -N $R^{b} - (-C (= 0) - 0 - - C (= 0) - N R^{b} - (-C (= 0) - N R^{b} - - C (= 0) - N R^{b} - (-C (= 0) - N R^{b} - C (= 0) - (-C (= 0) - N R^{b} - C (= 0) - (-C (= 0) - N R^{b} - C (= 0) - (-C (= 0) - N R^{b} - C (= 0) - (-C (= 0) - C (= 0) - (-C (= 0) - C (= 0) - C (= 0) - (-C (= 0) - C (= 0) - C (= 0) - (-C (= 0) - C (= 0) - C (= 0) - (-C (= 0) - C (= 0) - C (= 0) - (-C (= 0) - C (= 0) - C (= 0) - (-C (= 0) - C (= 0) - C (= 0) - (-C (= 0) - C (= 0) - C (= 0) - (-C (= 0) - C (= 0) - C (= 0) - C (= 0) - (-C (= 0) - C (= 0) - C (= 0) - C (= 0) - (-C (= 0) - C (= 0) - C (=$ $C (= 0) - C (= 0) - NR^{b} - C (= S) - C (= S) - NR^{b} - C$ $-C (=S) - NR^{b} - C (=O) - - - C (=NH) - NR^{b} - - - C (=O)$ -, -C (=0) -NR b -C (=NR b) -Xt-C (=0) -NR b -NR b 20 -であり;Raは置換されていてもよいアルキル、置換されていてもよいアルケニ ル、置換されていてもよいアルキニル、置換されていてもよい炭素環式基、置換 されていてもよい複素環式基又はアシルであり; Rbはそれぞれ独立して水素、置 換されていてもよいアルキル、置換されていてもよいアルケニル、置換されてい

でもよいアルキニル、置換されていてもよい炭素環式基、置換されていてもよい複素環式基、アシル、ヒドロキシ又はアルコキシである)で示される基であり; R^2 は水素、置換されていてもよいアルキル、置換されていてもよいアルケニル、 置換されていてもよいアルキニル、ハロゲン、シアノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていてもよいカルバモイル、イソチオシアナト、置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニルオキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニトロ又は式: $-Y^4-R^\circ$ (式中、 Y^4 は単結合、-O-、-S-、-SO-、 $-SO_2-$ 、-NH-、-C(=O) -、 $-CH_2-$ 、-C(=O) - NH-又は一NH-C(=O) -であり; R° は置換されていてもよい炭素環式基である)で示される基であり;

10

15

20

 R^3 及び R^4 はそれぞれ独立して、水素、置換されていてもよいアルキル、置換されていてもよいアルケニル、置換されていてもよいアルキニル、ハロゲン、シアノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていてもよいカルバモイル、イソチオシアナト、置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニルオキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニトロ又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合、置換されていてもよいアルキレン、アルケニレン、アルキニレン、 $-C(=0)-NH-E-V^d$ 1、 $-C(=0)-V^d$ 1、-C(-C(-

換されていてもよいアルキレンであり; R^d は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり; R^5 は水素、ヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよいアルキル又は式・ R^6 は単結合、置換されていても

てもよいアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 は単結合、置換されていても 25 よいアルキレン、アルケニレン、アルキニレン、-O-、-S-、-SO-、 $-SO_2-$ 、-NH-、-C(=O)-、-C(=O)-NH-E-又は-NH-C(=O)-であり; Eは単結合又は置換されていてもよいアルキレンであり; R e は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり;

又は、 R^2 及び R^3 の組合わせ、 R^3 及び R^4 の組合わせ、 R^4 及び R^5 の組合わせのいずれか一つの組合わせが一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい環を形成していてもよく;

XはS又はOである;

10

20

但し、R³及びR⁴が一緒になって、隣接する原子と共にアルコキシでジ置換されたベンゼン環を形成し、かつR⁵が水素又はメチルである場合を除く。)で示される化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物を有効成分として含有するカンナビノイド2型受容体親和性医薬組成物。

- 2. R⁵がヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数2以上のアルキル又は式:-Y⁶-R^e(式中、Y⁶及びR^eは請求の範囲第1項と同意義である)で示される基である請求の範囲第1項記載のカンナビノイド2型受容体親和性医薬組成物。
 - 3. R^5 がヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数 3以上のアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 は置換されていてもよいアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロサイクルである)で示される基である請求の範囲第 2 項記載のカンナビノイド 2 型受容体親和性医薬組成物。
 - 4. R¹が式:-Y¹-Y²-Y³-R^a (式中、Y¹、Y²、Y³、R^a及びR^bは請求の範囲第1項と同意義である)で示される基である請求の範囲第1項~ 第3項のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物。
- E=1 5. R E=1 が式: E=1 E=1

示される基である請求の範囲第4項記載のカンナビノイド2型受容体親和性医薬 組成物。

- 6. R³及びR⁴が一緒になっていない請求の範囲第1項~第5項のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物。
- 7. R³が水素、置換されていてもよいアルキル、ハロゲン又は式: $-Y^5$ -R^d (式中、 Y^5 は単結合、置換されていてもよいアルキレン、アルケニレン、アルキニレンであり; R^d は置換されていてもよいアリール又は置換されていてもよいヘテロアリールである)で示される基であり; R^d が水素又は置換されていてもよいアルキルである (但し、R³及びR^d が同時に水素である場合を除く。) 請求の範囲第6項記載のカンナビノイド2型受容体親和性医薬組成物。
 - 8. R³及びR⁴が一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい環(但し、置換されていてもよいベンゼン環でない)を形成する請求の範囲第1項~第5項のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物。
- 9. R¹が水素、シアノ、ホルミル、カルボキシ、イソチオシアナト、アミ 15 ノ、ヒドロキシ、カルバモイル又は式:- Y¹-Y²-Y³-R°(式中、Y¹及び Y³はそれぞれ独立して単結合又は置換されていてもよいアルキレン(置換基とし ては、ハロゲン、アルケニレン、ヒドロキシ、アジド、アミノ、アシルアミノ、 アルキルスルホニルアミノ、アルケニルオキシカルボニルアミノ、アルコキシカ ルボニルアミノ、アルケニルアミノ、アリールカルボニルアミノ、ヘテロアリー 20 ルカルボニルアミノ、シアノ、アルコキシ、アルキルスルホニルオキシ、トリア ルキルシリルオキシ、オキソ、メチレン、ハロゲン化アルコキシカルボニルオキ シ、ホルミルオキシ及び/又はアシルチオ)であり;Y²は単結合、-〇-、-〇 -, $-NR^{b}-C$ (=0) -, -NH-C (=0) -0-, -NH-C (=0) -25 $NH - - NH - C = S - NH - - S - - SO_2 - O - - SO_2 - NH$ -, -SO₂-NH-C(=0)-NH-, -C(=0)-O-, -C(=0)-

 $NR^{b} - C = S - NH - C = O - NH - C = O - C = O$ $O) - NH - C (= S) - C (= O) - C (= O) - NR^{b} - C (= NR)$ b) -又は-C (=O) -NH-NRb-であり; R^aが置換されていてもよいア ルキル (置換基としては、ヒドロキシ及び/又はアラルキル)、アルケニル、置 換されていてもよいアリール(置換基としては、カルボキシ、置換されていても よいアミノ、アルコキシ、アルキルチオ、アルキレンジオキシ、ハロゲン、アル キル、ヒドロキシ、ハロゲン化アルキル及び/又はハロゲン化アルコキシ)、置 換されていてもよいシクロアルキル(置換基としては、アリール及び/又はヒド ロキシ)、置換されていてもよいシクロアルケニル(置換基としては、アルケニ レン、ヒドロキシ、アルキルスルホニルオキシ、アジド、アミノ及び/又はアシ 10 ルアミノ)、置換されていてもよいヘテロアリール(置換基としては、オキソ、 ヘテロアリール、ハロゲン、アリール及び/又はアルキル) 又は置換されていて もよいヘテロサイクル (置換基としては、ハロゲンで置換されていてもよいアリ ール、アラルキル、アシル、アリールカルボニル、シクロアルキルカルボニル、 アルキルスルホニル、アリールスルホニル、アルキル及び/又はハロゲン化アル

15 アルキルスルホニル、アリールスルホニル、アルキル及び/又はハロケン化アルキルカルボニル)であり;Rbが水素、アルキル、アシル、ヒドロキシ及び/又はアルコキシである)で示される基であり;

 R^2 が水素、アルキル、アルケニル又は式: $-Y^4-R^c$ (式中、 Y^4 が-O-であり; R^c がヘテロアリールである)で示される基であり;

- R^3 が水素、アルキル、ハロゲン又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合、アルキニレン又は-C(=O) $-NH-アルキレン-であり;<math>R^d$ は置換されていてもよいアリール(置換基としては、ハロゲン、アルキル、アルコキシ、アルキレンジオキシ及び/又はハロゲン化アルキル)又は置換されていてもよいヘテロアリール(置換基としては、ハロゲン、アルキル、アルコキシ、アルキレンジオキシ
- 25 及び/又はハロゲン化アルキル)である)で示される基であり; R^4 が水素、アルキル又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合であり; R^d はアリールである)で示される基であり;

 R^5 が水素、ヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数 3以上のアルキル(置換基としては、ハロゲン、ヒドロキシ、アジド、アミノ、アルコキシ、アルケニルオキシ、アルキルスルホニルオキシ、アシルチオ、アシルアミノ、アリールカルボニルアミノ、シクロアルキルカルボニルアミノ、ハロゲン化アルキルカルボニルアミノ、アルキルスルホニルアミノ、アリールスルホニルアミノ、ホルミル、オキソ及び/又はシアノ)又は式: $-Y^6$ - R^e (式中、 Y^6 はアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロアリークルである)で示される基であり;

- 10 又は、R²及びR³が一緒になって、隣接する原子と共に置換されていてもよい炭素環(置換基としては、オキソ及び/又はヒドロキシ)を形成するか、R³及びR⁴が一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい環(置換基としては、アシル、アラルキル、アルケニレン及び/又はアルキレン)を形成するか、又はR⁴及びR⁵が一緒になって、隣接する原子と共に不飽和結合が介在していてもよい置換されていてもよい炭素環(置換基としては、アルケニレン)を形成する請求の範囲第1項記載のカンナビノイド2型受容体親和性医薬組成物。
 - 10. 抗炎症剤である請求の範囲第1項~第9項のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物。
- 20 11. 免疫抑制剤である請求の範囲第1項~第9項のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物。
 - 12. 腎炎治療剤である請求の範囲第1項~第9項のいずれかに記載のカンナビノイド2型受容体親和性医薬組成物。
- 13. 鎮痛剤である請求の範囲第1項~第9項のいずれかに記載のカンナ 25 ビノイド2型受容体親和性医薬組成物。
 - 14. 式(I):

(式中、 R^1 は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 、 Y^2 、 Y^3 及び R^b は請求の範囲第1項と同意義であり; R^a は置換されていてもよい炭素環式基、置換されていてもよい複素環式基又はアシルである)で示される基であり;

5 R²は水素又は置換されていてもよいアルキルであり;

 R^3 は置換されていてもよいアルキル、ハロゲン又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合又はアルキニレンであり; R^d は請求の範囲第1項と同意義である)で示される基であり;

R⁴は水素又は置換されていてもよいアルキルであり;

10 R^5 はヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていても よい炭素数 3以上のアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 及び R^e は請求の範 囲第 1 項と同意義である)で示される基であり;

又は、R³及びR⁴は一緒になって、隣接する原子と共にヘテロ原子及び/又は不 飽和結合が介在していてもよい環を形成していてもよく;

15 Xは請求の範囲第1項と同意義である;

20

但し、 R^3 及び R^4 が一緒になって、隣接する原子と共に置換されていてもよいベンゼン環を形成する場合は、 R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 が単結合であり; Y^3 が置換されていてもよいアルキレンであり; Y^2 は $-NR^b-C$ (=O)-、-C(=O) $-NR^b$ -であり; R^a は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基であり; R^b は水素又は置換されていてもよいアルキルである。)で示される基である;

なお、 R^3 及び R^4 が一緒になって、隣接する原子と共に非置換炭素環(但し、 R^3 が置換している炭素原子と R^4 が置換している炭素原子間の結合のみが二重結合であり、他の炭素原子間の結合は単結合である)を形成し、かつ R^1 が式:-Y

 $^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 が単結合であり; Y^2 が-O-であり; R^a フェニルである)で示される基である場合及び R^3 及び R^4 が一緒になって、隣接する原子と共にベンゼン環を形成し、かつ R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 が単結合であり、 Y^3 がエチレンであり、 Y^2 が-C(=O) $-NR^b$ -であり、かつ R^a がスルファモイルで置換されたフェニルである)で示される基である場合を除く。)で示される化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物。

15. R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 、 Y^3 及び R^a は請求の範囲第14項と同意義であり; Y^2 は-O-、 $-NR^b-C$ (=O) -又は-C(=O) $-NR^b-$ であり; R^b は水素又は置換されていてもよいアルキルである)で示される基である請求の範囲第14項記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物。

10

- 16. R³及びR⁴が一緒になっていない請求の範囲第14項又は第15項 記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物。
- 17. R³及びR⁴が一緒になって、隣接する原子と共にヘテロ原子及び/ 又は不飽和結合が介在していてもよい環を形成する請求の範囲第14項又は第1 5項記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和 物。
- 18. R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^3 20 は置換されていてもよいアルキレンであり; Y^2 は-O-、-NH-C(=O) 又は-C(=O) -NH-であり; R^a は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり; R^2 が水素であり; R^3 がアルキル、ハロゲン又は式: $-Y^5-R^d$ (式中、 Y^5 は単結合であり; R^d は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり; R^4 が水素又はアルキルであり; R^5 が置換されていてもよい炭素数3以上のアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 は置換されていてもよいアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいアリール、

てもよいシクロアルキル又は置換されていてもよいヘテロアリールである)で示される基であり;

又はR³及びR⁴は一緒になって、隣接する原子と共にヘテロ原子が介在していて もよい環を形成していてもよい請求の範囲第14項記載の化合物、そのプロドラ ッグ、その製薬上許容される塩又はその溶媒和物。

19. 式(I):

5

10

15

(式中、 R^1 は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^3 は単結合又は置換されていてもよいアルキレンであり; Y^2 は一C(=O) $-NR^b-$ であり; R^a は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基であり; R^b は水素である)で示される基であり; R^2 は水素であり; R^3 及び R^4 は一緒になって、隣接する原子と共に非置換炭素環(但し、 R^3 が置換している炭素原子と R^4 が置換している炭素原子間の結合のみが二重結合であり、他の炭素原子間の結合は単結合である)を形成し; R^5 は炭素数 3以上のアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 は置換されていてもよいアルキレンであり; R^e は置換されていてもよいアリール、置換されていてもよいシクロアルキル又は置換されていてもよいアリールである)で示される基であり;XはS又はOである。)で示される化合物のライブラリー。

20. 請求の範囲第19項記載の化合物(但し、 R^3 及び R^4 が一緒になって、隣接する原子と共に6員の炭素環(但し、 R^3 が置換している炭素原子と R^4 が置換している炭素原子間の結合のみが二重結合であり、他の炭素原子間の結合は単結合である)を形成し、かつ R^1 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 が単結合であり; Y^2 が-O-であり; R^a フェニルである)で示される基である場合を除く。)、そのプロドラッグ、その製薬上許容される塩又はその

溶媒和物。

21. 式(I):

$$R^1$$
 R^2
 R^3
 R^4
 R^5

(式中、 R^1 は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^2 はって(=0) $-NR^b$ -であり; Y^3 は単結合又は置換されていてもよいアルキレンであり; R^a は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基であり; R^b は水素である)で示される基であり; R^2 は水素であり; R^3 は式: $-Y^5-R^d$ (式中、 Y^5 は単結合、 R^d は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり; R^4 は水素又は Y^b のアルキルであり; Y^b のアルキルスは式: Y^b 0- Y^b 0に置換されていてもよいアルキレンであり; Y^b 0に置換されていてもよいアリール、置換されていてもよいシクロアルキル又は置換されていてもよいヘテロアリールである)で示される基であり; Y^b 1に関換されていてもよいヘテロアリールである)で示される基であり; Y^b 1に対していてもよいのライブラリー。

15 22. 請求の範囲第21項記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物。

23. 式(I):

(式中、 R^1 は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 は単結合であり; Y^2 は $-NR^b-C$ (=O) -であり; R^a は置換されていてもよい炭素環式基であり; R^b は水素である)で示される基であり; R^2 は水素であり; R^3 及び R^4

はそれぞれ独立してアルキルであり; R^5 は炭素数 3 以上のアルキルで示される基であり; X はOである。)で示される化合物のライブラリー。

24. 請求の範囲第23項記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物。

5 25. 式:

(式中、Yは単結合、-NH-、-O-又は $-(CH_2)_{1-5}$ -であり、 Y^2 はー C (=O) -NH-又は-NH-C (=O) -であり、 Y^3 は単結合又は置換されていてもよいアルキレンであり、 R^a は置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよいシクロアルケニル、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロサイクルであり、 R^5 は置換されていてもよい炭素数 3以上のアルキル又は式: $-Y^6-R^a$ (式中、 Y^6 はアルキレンであり; R^a は置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロアリール又は置換されていてもよいヘテロアリールスは置換されていてもよいヘテロサイクルである)で示される基である化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物。

26. Yが $-(CH_2)_3-$ である請求の範囲第25項記載の化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物。

27. 式:

$$R^{a}$$
 O
 N
 R^{3}
 R^{4}

20

10

15

(式中、 R^3 及び R^4 はそれぞれ独立してアルキルであり、 Y^2 は一C(=O) -NH-又は-NH-C(=O)ーであり、 Y^3 は単結合又は置換されていてもよいアルキレンであり、 R^a は置換されていてもよいアリール、置換されていてもよい

シクロアルキル、置換されていてもよいシクロアルケニル、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロサイクルであり、 R^5 は置換されていてもよい炭素数 3 以上のアルキル又は式: $-Y^6-R^6$ (式中、 Y^6 はアルキレンであり; R^6 は置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよいヘテロアリール又は置換されていてもよいヘテロサイクルである)で示される基である化合物、そのプロドラッグ、その製薬上許容される塩又はその溶媒和物。

- 28. Y³が置換されていてもよいアルキレンである請求の範囲第25項~ 第27項のいずれかに記載の化合物、そのプロドラッグ、その製薬上許容される 塩又はその溶媒和物。
- 29. 請求の範囲第14項~第18項、第20項、第22項、第24~第 28項のいずれかに記載の化合物を有効成分として含有する医薬組成物。
- 30. カンナビノイド2型受容体親和性である請求の範囲第29項記載の医薬組成物。
- 15 31. 抗炎症剤である請求の範囲第29項記載の医薬組成物。

10

- 32. 免疫抑制剤である請求の範囲第29項記載の医薬組成物。
- 33. 腎炎治療剤である請求の範囲第29項記載の医薬組成物。
- 34. 鎮痛剤である請求の範囲第29項記載の医薬組成物。
- 35. 請求の範囲第1項~第13項のいずれかに記載の化合物を投与する 20 ことを特徴とするカンナビノイド2型受容体に関連する疾患の治療方法。
 - 36. カンナビノイド2型受容体に関連する疾患の治療剤を製造するための請求の範囲第1項~第13項のいずれかに記載の化合物の使用。

International application No.
PCT/JP01/11427

	·	<u></u>		
	FICATION OF SUBJECT MATTER extra sheet.)			
According to International Patent Classification (IPC) or to both national classification and IPC				
	SEARCHED			
Minimum do	cumentation searched (classification system followed by	y classification symbols)		
	extra sheet.)			
Documentati	on searched other than minimum documentation to the	extent that such documents are included	in the fields searched	
Electronic da	ata base consulted during the international search (name STRY (STN), CAPLUS (STN)	of data base and, where practicable, sea	rch terms used)	
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app		Relevant to claim No.	
Х	EP 887340 A1 (Japan Tobacco I 30 December, 1998 (30.12.98),	Inc.),	1-15,17,18, 29-34,36	
A	Full text	6017919 A	16,19-28	
	u 110 3/25015 122		1 15 17 10	
Х	WO 99/02499 A1 (Japan Tobacco 12 January, 1999 (12.01.99),	o Inc.),	1-15,17,18, 29-34,36	
A	& AU 9881279 A1 Full text		16,19-28	
· x	WO 00/69826 A1 (Monsanto Co.) 23 November, 2000 (23.11.00), Full text),	1,2,4,6,9-14, 29-34,36	
	RN 308134-09-0	(/aminoiminomethyl)		
	1(2H)-Pyridineacetamide, N-[4 amino]-1-(2-thiazolylcarbonyl)butyl]-5-		
	(hydroxymethyl) -2-oxo-3-[(2-p (phenylmethyl)-	henylethyl)aminoj-6-		
	(Family: none)			
X Furth	er documents are listed in the continuation of Box C.	See patent family annex.		
"A" docum	I categories of cited documents: ent defining the general state of the art which is not	"T" later document published after the in priority date and not in conflict with	the application but cited to	
considered to be of particular relevance understand the principle or theory underlying the invention considered to be of particular relevance; the claimed invention of document of particular relevance.				
date "L" docum cited to	nent which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other	step when the document is taken alor "Y" document of particular relevance; the	ne e claimed invention cannot be	
Specia "O" docum	I reason (as specified) nent referring to an oral disclosure, use, exhibition or other	considered to involve an inventive si combined with one or more other su combination being obvious to a pers	ch documents, such	
"P" docum	means "P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed			
Date of the	actual completion of the international search April, 2002 (03.04.02)	Date of mailing of the international set 16 April, 2002 (16	arch report	
03 4	PLIT, 2002 (00.03.02)		<u> </u>	
	mailing address of the ISA/ anese Patent Office	Authorized officer		
Facsimile N		Telephone No.		
	10.		·	

International application No. PCT/JP01/11427

	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category*	Citation of document, with indication, where appropriate, of the relevant passages	*
х	Synthesis and evaluation of 2-pyridinone derivatives as HIV-1-specific reverse transcriptase inhibitors. 2. Analogs of 3-aminopyridin-2(1H)-one. SAARI, W.S.; WAI, J.S.; FISHER, T.E.; THOMAS, C.M.; HOFFMAN, J.M.; ROONEY, C.S.; SMITH, A.M.; JONES, J.H.; BAMBERGER, D.L.; et al. J. Med. Chem., 1992, Vol.35, No.21, pages 3792 to 3802 Full text RN 143708-20-7 2(1H)-Pyridinone, 5-ethyl-1, 6-dimethyl-3-[(2-naphthalenylmethyl)amino]-	29,30
X	Formation of Dihydropyridone- and Pyridone-Based Peptide Analogs through Aza-Annulation of. betaEnamino Ester and Amide Substrates with. alpha Amido Acrylate Derivatives. BEHOLZ, L.G.; BENOVSKY, P.; WARD, D.L.; BARTHA, N.S.; STILLE, J.R. J. Org. Chem., 1997, Vol.62, No.4, pages 1033 to 1042 Full text	14,16
x	Studies on amino acid derivatives. IV. Synthesis of 3-amino-2(1H)-pyridone derivatives using 4-ethoxymethylene-2-phenyl-5-oxazolone. CHIBA, T.; TAKAHASHI, T. Chem. Pharm. Bull., 1985, Vol.33, No.7, pages 2731 to 2734 RN 103910-17-4 3-Pyridinecarboxylic acid, 5-(benzoylamino)-1, 6-dihydro-2-methyl-6-oxo-1-(phenylmethyl)-, ethyl ester RN 103910-20-9 3-Pyridinecarboxamide, 5-(benzoylamino)-1, 6-dihydro-2-methyl-6-oxo-1-(phenylmethyl)-	
i	· · · · · · · · · · · · · · · · · · ·	

International application No.

PCT/JP01/11427

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
 X Claims Nos.: 35 because they relate to subject matter not required to be searched by this Authority, namely: Claim 35 falls under the category of methods for treatment of the human body by therapy, that category being provided for in Rule 39.1(iv) of the Regulations under the PCT as a subject matter of international applications which requires no international search. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: (See extra sheet)
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: (See extra sheet)
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.
PCT/JP01/11427

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl⁷ C07D213/82, 215/54, 221/04, 401/04, 12, 405/04, 409/04, 413/06, 12, 14, 417/12, 455/02, 06, 471/04, 491/052, A61K31/4439, 4709, 473, 465, 4375, 435, 4545, 5377, 4725, 506, 496, 4433, 4436, A61P43/00, 25/00, 04, 37/00, 29/00 (According to International Patent Classification (IPC) or to both national classification and IPC)

<u>Continuation of B. FIELDS SEARCHED</u>

Minimum Documentation Searched(International Patent Classification (IPC))

Int.Cl⁷ C07D213/00-82, 215/00-54, 221/00-04, 401/00-12, 405/00-04, 409/00-04, 413/00-14, 417/00-12, 455/00-06, 471/00-04, 491/00-052, A61K31/00-5377

Minimum documentation searched (classification system followed by classification symbols)

Continuation of Box No.II of continuation of first sheet(1)

This international application relates to a medicinal composition with a cannabinoid 2-type receptor affinity which contains as the active ingredient a compound having a pyridone moiety and to the pyridone derivative compound.

Medicinal compositions with a cannabinoid 2-type receptor affinity which contain as the active ingredient a compound having a pyridone moiety were already disclosed in documents, i.e., EP 887340 Al and WO 99/02499 Al, published before the priority date for this international application. In claim 1 and other claims of this application, the term "exclude" is used for the active ingredient to exclude the activeingredient compounds disclosed in those documents.

Although the active-ingredient compounds disclosed in those documents have been excluded from the claims, the points which remain unchanged are that the only technical feature common to the subject matters of the claims is to use a compound having a pyridone moiety as the active ingredient of a medicinal composition with a cannabinoid 2-type receptor affinity and that this technical feature is not novel. Consequently, this technical feature cannot be regarded as a special technical feature provided for in Rule 13.2 of the Regulations under the PCT in view of the prior art techniques. In the current claims, a subject matter having a special technical feature cannot be recognized until a specific combination of substituents in the active ingredient represented by the formula (I) is specified.

In order to specify a combination of substituents in the active ingredient represented by the formula (I), the choices with respect to each of R1, R2, R3, R4, and R5 are first classified into groups based on substituent similarity.

Five groups of choices for R1:

- 1) hydrogen,
- 2) halogeno,
- 3) cyano, formyl, acyl, carboxy, alkoxycarbonyl, substituted carbamoyl, and isothiocyanato, optionally
- 4) optionally substituted amino, hydroxy, alkoxy, alkylthio, alkenyloxy, alkynyloxy, alkylsulfinyl, alkylsulfonyl, and nitro, and
 - 5) -Y1-Y2-Y3-Ra.

Six groups of choices for R2:

- 1) hydrogen,
- 2) optionally substituted alkyl, optionally substituted alkenyl, and optionally substituted alkynyl,
 - 3) halogeno,
- 4) cyano, formyl, acyl, carboxy, alkoxycarbonyl, optionally substituted carbamoyl, and isothiocyanato,
- 5) optionally substituted amino, hydroxy, alkoxy, alkylthio, alkenyloxy, alkynyloxy, alkylsulfinyl, alkylsulfonyl, and nitro, and
 - 6) -Y4-Rc.

Six groups of choices for R3:

- 1) hydrogen,
- 2) optionally substituted alkyl, optionally substituted alkenyl, and optionally substituted alkynyl,
 - 3) halogeno,

International application No.

PCT/JP01/11427

Continuation of Box No.II of continuation of first sheet(1)

- 4) cyano, formyl, acyl, carboxy, alkoxycarbonyl, optionally substituted carbamoyl, isothiocyanato, and nitro,
- 5) optionally substituted amino, hydroxy, alkoxy, alkylthio, alkenyloxy, alkynyloxy, alkylsulfinyl, and alkylsulfonyl, and

6) -Y5-Rd.

Five groups of choices for R4:

1) hydrogen,

2) optionally substituted alkyl, optionally substituted alkenyl, and optionally substituted alkynyl,

3) halogeno,

- 4) cyano, formyl, acyl, carboxy, alkoxycarbonyl, optionally substituted carbamoyl, and isothiocyanato,
- 5) optionally substituted amino, hydroxy, alkoxy, alkylthio, alkenyloxy, alkynyloxy, alkylsulfinyl, alkylsulfonyl, and nitro, and

6) -Y5-Rd.

Three groups of choices for R5:

1) hydrogen,

- 2) carbocyclic or heterocyclic group optionally having one or more heteroatoms and/or unsaturated bonds in the ring structure, and
 - 3) -Y6-Re.

The claims disclose inventions containing as the active ingredient a compound specified based on a combination of choices out of the respective groups. Namely, the number of medicinal compositions disclosed in the claims is regarded as equal to the product of the numbers of the groups of choices for R1, R2, R3, R4, and R5, i.e., 5x6x6x6x3=3,240.

(The invention relating to the compound and those subject matters in which R1 is -Y1-Y2-Y3-Ra comply with the requirement of unity of invention.)

Continuation of Box No.II-4 of continuation of first sheet (1)

An international search for this international application was made with respect to, among those subject matters, compounds corresponding to the compound 1--001 described in the description, wherein

(1) R1 is selected among optionally substituted amino, hydroxy, alkoxy, alkylthio, alkenyloxy, alkynyloxy, alkylsulfinyl, alkylsulfonyl, and nitro,

R2 is hydrogen, and

R3, R4, and R5 each is optionally substituted alkyl.

·	
A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl. ⁷ C07D213/82, 215/54, 221/04, 401/04, 12, 405/04, 409/ A61K31/4439, 4709, 473, 465, 4375, 435, 4545, 5377, 4725, 506, 496	/04, 413/06, 12, 14, 417/12, 455/02, 06, 471/04, 491/052, , 4433, 4436, A61P43/00, 25/00, 04, 37/00, 29/00
70 AUGUS A 77 A 7 MZ	
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl. ⁷ C07D213/00-82, 215/00-54, 221/00-04, 401/00-12, 40471/00-04, 491/00-052, A61K31/00-5377	05/00-04, 409/00-04, 413/00-14, 417/00-12, 455/00-06,
最小限資料以外の資料で調査を行った分野に含まれるもの	
国際調査で使用した電子データベース (データベースの名称、 REGISTRY (STN), CAPLUS (STN)	調査に使用した用語)
C. 関連すると認められる文献	HEIVE J.
引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連すると	関連する きは、その関連する箇所の表示 請求の範囲の番号
X EP 887340 A1 (JAPAN TOBACCO INC.) 3 全文献を参照。 & WO 9729079 A1 A US 6017919 A WO 99/02499 A1 (JAPAN TOBACCO INC. 9881279 A1 全文献を参照。 A	18, 29–34, 36 16, 19–28
☑ C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別紙を参照。
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「&」同一パテントファミリー文献
国際調査を完了した日 03.04.02	国際調査報告の発送日 16.04.02
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 4P 9164 齋藤 恵 電話番号 03-3581-1101 内線 3490

C(続き).	関連すると認められる文献	BRVdr 1-
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO 00/69826 A1 (MONSANTO COMPANY) 23.11月.00(23.11.00) 全文献を参照。 RN 308134-09-0 1(2H)-Pyridineacetamide, N-[4-[(aminoiminomethyl)amino]-1-(2-thiazolylcarbonyl)butyl]-5-(hydroxymethyl)-2-oxo-3-[(2-phenylethyl)amino]-6-(phenylmethyl)-	1, 2, 4, 6, 9-14, 29-34, 36
:	(ファミリーなし)	
X .	Synthesis and evaluation of 2-pyridinone derivatives as HIV-1-specific reverse transcriptase inhibitors. 2. Analogs of 3-aminopyridin-2(1H)-one. SAARI, W.S.; WAI, J.S.; FISHER, T.E.; THOMAS, C.M.; HOFFMAN, J.M.; ROONEY, C.S.; SMITH, A.M.; JONES, J.H.; BAMBERGER, D.L.; et al. J. Med. Chem., 1992, Vol. 35, No. 21, p. 3792-3802 全文献を参照。 RN 143708-20-7 2(1H)-Pyridinone, 5-ethyl-1,6-dimethyl-3-[(2-naphthalenylmethyl)amino]-	1, 4, 6, 7, 14, 16, 29, 30
X	Formation of Dihydropyridone— and Pyridone—Based Peptide Analogs through Aza—Annulation of .beta.—EnaminoEste r and Amide Substrates with .alpha.—Amido Acrylate Derivatives. BEHOLZ, L.G.; BENOVSKY, P.; WARD, D.L.; BARTA, N.S.; STILLE, J.R. J. Org. Chem., 1997, Vol. 62, No. 4, p. 1033—1042 全文 献を参照。	14, 16
X	Studies on amino acid derivatives. IV. Synthesis of 3-amino-2(1H)-pyridone derivatives using 4-ethoxymethylene-2-phenyl-5-oxazolone. CHIBA, T.; TAKAHASHI, T. Chem. Pharm. Bull., 1985, Vol. 33, No. 7, p. 2731-2734 RN 103910-17-4 3-Pyridinecarboxylic acid, 5-(benzoylamino)-1, 6-dihydro-2-m ethyl-6-oxo-1-(phenylmethyl)-, ethyl ester RN 103910-20-9 3-Pyridinecarboxamide, 5-(benzoylamino)-1, 6-dihydro-2-meth yl-6-oxo-1-(phenylmethyl)-	14, 16

	第I欄	簡求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
□ まり。 国際調査をすることを要しない国際出願の対象としてPCT規則39.1(iv)に規定された治療による人体の処置方法に該当する。 2. □ 請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、 3. □ 請求の範囲 は、後属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に発って記載されていない。 第1個 発明の単一性が欠如しているときの意見(第1ページの3の銃き) 次に述べるようにこの国際出版に二以上の発明があるとこの国際調査機関は認めた。 (別紙を参照。) 1. □ 出版人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。 2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の給付を求めなかった。 3. □ 出版人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 4. 区 出版人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。 (別紙を参照。) 追加調査手数料の異論の申立てに関する注意 □ 追加調金手数料の異論の申立てに関する注意 □ 追加調金手数料の異論の申立てに関する注意 □ □ 追加調金手数料の異語の申立てに関する注意 □ □ 追加調金手数料の過程と表に出頭人から異語申立てがあった。		
国際調査をすることを要しない国際出願の対象としてPCT規則39.1(iv)に規定された治療による人体の処置方法に該当する。 2.	1. X	
ない国際出願の部分に係るものである。つまり、 3.	•	国際調査をすることを要しない国際出願の対象としてPCT規則39.1(iv)に規定され
ない国際出願の部分に係るものである。つまり、 3.		
 第Ⅱ欄 発明の単一性が欠加しているときの意見 (第1ページの3の続き) 次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。 (別紙を参照。) 1.	2.	
 第日欄 発明の単一性が欠加しているときの意見(第1ページの3の続き) 次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。 (別紙を参照。) 1. □ 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。 2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 4. 区 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。 (別紙を参照。) 追加調査手数料の異議の申立てに関する注意 」追加調査手数料の異議の申立てに関する注意 」追加調査手数料の異議の申立てに関する注意 」追加調査手数料の異議の申立てに関する注意 」追加調査手数料の異議の申立てに関する注意 」追加調査手数料の異議の申立てに関する注意 」追加調査手数料の異議の申立てに関する注意 		
 第日欄 発明の単一性が欠加しているときの意見(第1ページの3の続き) 次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。 (別紙を参照。) 1. □ 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。 2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 4. 区 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。 (別紙を参照。) 追加調査手数料の異議の申立てに関する注意 」追加調査手数料の異議の申立てに関する注意 」追加調査手数料の異議の申立てに関する注意 」追加調査手数料の異議の申立てに関する注意 」追加調査手数料の異議の申立てに関する注意 」追加調査手数料の異議の申立てに関する注意 」追加調査手数料の異議の申立てに関する注意 	•	
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。 (別紙を参照。) 1.	3. 🗌	
(別紙を参照。) 1.	第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
田願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。 □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 □ 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に配載されている発明に係る次の請求の範囲について作成した。 (別紙を参照。) 追加調査手数料の異議の申立てに関する注意 □ 追加調査手数料の異議の申立てに関する注意 □ 追加調査手数料の熱付と共に出願人から異議申立てがあった。	次に立	此べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
田願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。 □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。 □ 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に配載されている発明に係る次の請求の範囲について作成した。 (別紙を参照。) 追加調査手数料の異議の申立てに関する注意 □ 追加調査手数料の異議の申立てに関する注意 □ 追加調査手数料の熱付と共に出願人から異議申立てがあった。		
の範囲について作成した。 2.		(別紙を参照。)
の範囲について作成した。 2.		
の範囲について作成した。 2.		
の範囲について作成した。 2.	_	
加調査手数料の納付を求めなかった。 3.	1.	
付のあった次の請求の範囲のみについて作成した。 4. 区 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。 (別紙を参照。) 追加調査手数料の異議の申立てに関する注意 追加調査手数料の納付と共に出願人から異議申立てがあった。	2.	
でれている発明に係る次の請求の範囲について作成した。 (別紙を参照。) 追加調査手数料の異議の申立てに関する注意 □ 追加調査手数料の納付と共に出願人から異議申立てがあった。	3. 🗌	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
でれている発明に係る次の請求の範囲について作成した。 (別紙を参照。) 追加調査手数料の異議の申立てに関する注意 □ 追加調査手数料の納付と共に出願人から異議申立てがあった。	:	
追加調査 手数料 の異議の申立てに関する注意 □ 追加調査手数料の納付と共に出願人から異議申立てがあった。	4. X	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
□ 追加調査手数料の納付と共に出願人から異議申立てがあった。		(別紙を参照。)
	追加調	査手数料の異議の申立てに関する注意
		□ 追加調査手数料の納付と共に出願人から異議申立てがあった。 □ 追加調査手数料の納付と共に出願人から異議申立てがなかった。

<第II欄の続き>

本国際出願は、ピリドン部分構造を有する化合物を有効成分として含有するカンナビノイ ド2型受容体親和性医薬組成物と、ピリドン誘導体化合物に関するものである。

ピリドン部分構造を有する化合物を有効成分とするカンナビノイド2型受容体親和性医薬 組成物は、EP 887340 A1、WO 99/02499 A1に本国際出願の優先日前の文献にすでに記載され ている。本願請求の範囲1等においては、有効成分について、「除く」という記載があり、 上記文献に記載されたものは除外されている。

しかし、これら文献に記載されたものが請求の範囲から除外されていても、請求の範囲に 記載された発明が共有する技術的特徴は、ピリドン部分構造を有する化合物をカンナビノイ ド2型受容体親和性医薬組成物の有効成分として用いる点にしかない点、および、このよう な技術的特徴が新規でない点には変わりがない。したがって、当該技術的特徴は、先行技術 に照らしてみたときには、PCT規則13.2に規定する特別な技術的特徴とはなり得ず、現段 階では、特別な技術的特徴を有する発明は、式(I)で表される有効成分の置換基の特定の 組み合わせを特定して初めて認識され得る。

そこで、式(I)で表される有効成分の置換基の組み合わせを特定するために、まず、置 換基の類似性により、R1、R2、R3, R4, R5の選択肢をグループ化してみる。

R1の5つの選択肢群:

- 1) 水素、
- 2) ハロゲン、
- 3) シアノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていてもよ いカルバモイル、イソチオシアナト、
- 4) 置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニルオ キシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニトロ、
- 5) -Y1-Y2-Y3-Ra

R2の6つの選択肢群:

- 1) 水素、
- 2) 置換されていてもよいアルキル、置換されていてもよいアルケニル、置換されていても よいアルキニル、
- 3) ハロゲン、
- 4) シアノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていてもよ いカルバモイル、イソチオシアナト、
- 5) 置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニルオ キシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニトロ、
- 6) Y4 Rc

(続きあり)

R3の6つの選択肢群:

- 1) 水素、
- 2) 置換されていてもよいアルキル、置換されていてもよいアルケニル、置換されていても よいアルキニル、
- 3) ハロゲン、
- 4) シアノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていてもよ いカルバモイル、イソチオシアナト、ニトロ、
- 5) 置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニルオキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、
- $6) \cdot Y5 Rd$

R4の5つの選択肢群:

- 1) 水素、
- 2) 置換されていてもよいアルキル、

置換されていてもよいアルケニル、置換されていてもよいアルキニル、

- 3) ハロゲン、
- 4) シアノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていてもよ いカルバモイル、イソチオシアナト、
- 5) 置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニルオキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニトロ、
- 6) Y5 Rd

R5の3つの選択肢群:

- 1)水素、
- 2) ヘテロ原子及び/又は不飽和結合が介在していてもよい炭素環式基又は複素環式基、
- 3) -Y6-Re

請求の範囲には、上記の選択肢の各群の組み合わせで特定される化合物を有効成分とする発明が記載されている。そうすると、請求の範囲に記載された医薬組成物の発明は、R1、R2、R3、R4、R5のとりうる選択肢群の数の積により、 $5\times6\times6\times6\times3=3$, 240の発明であると認定される。

(化合物に関する発明は、これらのうち、R1が-Y1-Y2-Y3-Raであるものと単一性を 満たしている。)

そして、本国際出願についての国際調査は、上記発明のうち、明細書に記載された 化合物1-001に対応する

(1) R1が置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニルオキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニトロから選ばれ、

R2が水素、

R3、R4、R5が置換されていてもよいアルキルである化合物について行った。

			Walter Barrier			tion of the particular state of	
. 4							
Á							•
197 a	and the state of t						ار بالمراجع المراجع ا المراجع المراجع
			The second secon				
Sa		, v			*		of the second s
ŧ.				engelen er Stagen			
		* **		•	A STATE OF THE STA		
	* ************************************						
		1	and the second second				
ly i							
*		*	general de la companya de la company		- A		A. 7.
		3°					
*				• • • • • • • • • • • • • • • • • • •			
	A Marine				\$	7.40 9	
	*						
*							
1 · · · · · · · · · · · · · · · · · · ·						•	
2.					i.	**************************************	
NA.						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
							#
		ay nakatan					√ ³ · · · · · · · ·
		- a* - a					
L.			- da				en e
		-		the second of the second			
	$\frac{d}{dt} = \frac{dt}{dt} = \frac{dt}{dt}$			production of the second		\$	
*							
*				*, *	1. *		
\$1.5 m		e e e e e e e e e e e e e e e e e e e					
		en en state en en en ek en en en ek en					