

Domain specific induction for data wrangling automation

Lidia

Contreras Ochando Universitat Politècnica de València

DSIC liconoc@upv.es

Susumu

Katayama University of Miyazaki skata@cs.miyazaki-u.ac.jp

Cèsar

Ferri Ramírez Universitat Politècnica de València

DSIC cferri@dsic.upv.es

Fernando Martinez Plumed

Universitat Politècnica de València DSIC fmartinez@dsic.upv.es

José

Hernández Orallo Universitat Politècnica de València **DSIC**

jorallo@dsic.upv.es María José

Ramírez Quintana Universitat Politècnica de València **DSIC** mramirez@dsic.upv.es

Introduction

Data Science process follows several steps:

Data wrangling

This step includes:

Transform

Combine

- It is the most tedious, boring and repetitive step
- Spends up to 80% of the project time

Goal

(Semi-)Automate data wrangling process

Methodology

Inductive Programming²

- The program receives:
- Some examples Background Knowledge

The result is a hypothesis on how to obtain new examples by using the knowledge.

MagicHaskeller³

MagicHaskeller is an inductive functional programming system that learns Haskell programs from pairs of input-output examples.

MagicHaskeller receives an input example (x) and the expected result (y), and returns a list of functions (f) that makes the values of the expressions fx and y be equal (fx == y).

We use MagicHaskeller as a inductive funcional programming tool:

- We extend its general background knowledge with specific domain functions.
- We have collected or created a set of datasets for data wrangling tests.

"03/29/86"

We complete a few examples (n)

These examples are used as input predicates for MagicHaskeller

background knowledge for the domain (that contains b functions) with a maximun of functions concatenated d_{max}

MagicHaskeller uses the specific

The function is applied to the rest of the inputs

"I3"

"11"

"3 I "

"30"

Results

We have performed a set of experiments to analyse the performance of our approach:

- We analyse the capabilities of MagicHaskeller as a data wrangler by using the right DSBK.
- We compare our results with other data wrangling systems on a range of data wrangling problems.

Results for a dataset of dates when d_{max} goes from I to 4. The "right" domain for this dataset is dates.dom.

d dataset	input	output	FlashFill	Trifacta Wrangler	Our Approach
3	03/29/86	29			
	74-03-3 I	31	03	03	31
	05 30 85	30	30	30	30
		Accuracy:	0.16	0.16	1
	Nancy.FreeHafer@fourthcoffee.com	fourthcoffee			
6	Andrew.Cencini@northwindtraders.com	northwindtraders	northwindtraders	northwindtraders	northwindtraders
	Laura.Giussani@adventure-works.com	adventure-works	adventure-works	adventure	adventure-works
		Accuracy:	1	0.93	1
9	Mr. Roger	Male			
	Mrs. Simona	Female			Female
	Mr. John	Male			Male
		Accuracy:	0	0	1
16	CAMP DRY DBL NDL 3.6 OZ	3.6 OZ			
	DRY NDL 0.23 KG	0.23 KG	0 KG	0.23 KG	0.23 KG
		Accuracy:	0	1	1

Some illustrative outcomes and accuracy obtained for four datasets with our approach compared with other two tools: Microsoft FlashFill and Trifacta Wrangler. The first instance (in italic) for each dataset (input/output columns) is the one used for inducing the solution in the diferent tools.

Future Work

- Automate the detection of the domain by using machine learning techniques.
- Integrate in a more standalone tool or web-service in a more usable, standard and accesible format.
- Develop an API allowing its use with any language or tool.

Related Work

result (f) with d functions

concatenated

- FlashFill⁴: Tool for automate repeititve string transforms in Excel.
- **Trifacta Wrangler**⁵: Generates suggestions inferred automatically from user input.
- OpenRefine⁶: Provides a ser of built-in operators to specify data transformations.

References

- I. D. Steinberg. How much time needs to be spent preparing data for analysis?
- 2. S. Gulwani, J. Hernandez-Orallo, E. Kitzelmann, S. H. Muggleton, U. Schmid, and B. Zorn. Inductive programming meets the real world.
- 3. S. Katayama. An analytical inductive functional programming system that avoids unintended programs.
- 4. S. Gulwani. Automating string processing in spreadsheets using input-output examples.
- 5. S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive visual specification of data transformation scripts.
- 6. K. Ham. Openrefine (version 2.5). http://openrefine. org. free, open-source tool for cleaning and transforming data.

Download the poster: