Лекция 11. Представление функций степенными рядами.

Рассмотрим достаточное условие представления функции степенным рядом.

Лемма. Пусть функция f в некоторой окрестности $B_{\delta}(x_0)$ имеет производную любого порядка и $\exists C>0 \ \forall n\in \mathbb{N} \forall x\in B_{\delta}(x_0) \ \left(|f^{(n)}(x)\leq C|\right)$. Тогда для всех $x\in B_{\delta}(x_0)$ выполнено

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

▲ Рассмотрим *п*-ый остатой в формуле Тейлора:

$$r_N(x) = f(x) - \sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

По формуле Тейлора с остаточным членом в форме Лагранжа

$$r_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!} (x - x_0)^{N+1}$$

для некоторого c, лежащей между x и x_0 , и, значит,

$$|r_N(x)| \le \frac{C}{(N+1)!} \delta^{N+1} \to 0$$

Следовательно, f является суммой своего ряда Тейлора в $B_{\delta}(x_0)$.

Следствие. Ряды Маклорена функций e^x , $\sin x$, $\cos x$, $\sin x$ сходятся к этим функциям для $\forall x \in \mathbb{R}$.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad \sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}, \qquad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!},$$

$$\sin x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, \qquad ch x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

▲ Указанные функции бесконечно дифференцируемы на ℝ:

$$(e^x)^{(n)} = e^x$$
, $(\sin x)^{(n)} = \sin(x + \frac{\pi}{2}n)$, $(\cos x)^{(n)} = \cos(x + \frac{pi}{2}n)$, $(\sin x)^{(n)} = \frac{e^x - (-1)^n e^{-x}}{2}$, $(\cosh x)^{(n)} = \frac{e^x + (-1)^n e^x}{2}$

Пусть $\delta > 0$, тогда при $|x| < \delta$ имеем

$$|(e^x)^{(n)}| \le e^{\delta}, \quad (\sin x)^{(n)} \le 1,$$
 $(\cos x)^{(n)} \le 1$
 $(\sin x)^{(n)} \le e^{\delta},$ $(\cosh x)^{(n)} \le e^{\delta}$

По лемме ряды Маклорена этих функций сходятся к самим функциям на интервале $(-\delta, \delta)$. Т.к. $\delta > 0$ - любое, то эти ряды сходятся на \mathbb{R} .

Теорема 5. Биномиальный ряд. Пусть $\alpha \notin \mathbb{N}$ и

$$C_{\alpha}^{n} = \frac{\alpha \cdot (\alpha - 1) \cdot \ldots \cdot (\alpha - n + 1)}{n!}, C_{\alpha}^{0} = 1.$$

Тогда

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} C_{\alpha}^{n} x^{n}, |x| < 1$$

 \blacktriangle Положим $f(x) = (1+x)^{\alpha}$, тогда

$$f^{(n)}(x) = \alpha \cdot (\alpha - 1) \cdot \ldots \cdot (\alpha - n + 1) \cdot (a + x)^{\alpha - n}$$

и, значит,

$$\frac{f^{(n)}(0)}{n!} = C_{\alpha}^{n}, \ n = 0, 1, 2, \dots$$

Т.к. при $x \neq 0$

$$\lim_{n\to\infty}\frac{|C_{\alpha}^{n+1}x^{n+1}|}{|C_{\alpha}^{n}x^{n}|}=\lim_{n\to\infty}\frac{|\alpha-n|}{n+1}|x|=|x|$$

По признаку Даламбера ряд абсолютно сходится при |x|<1 и абсолютно расходится при |x|>1. Следовательно, радиус сходимости биномиального ряда равен 1.

Определим функцию

$$g(x) = \sum_{n=0}^{\infty} C_{\alpha}^{n} x^{n}, |x| < 1$$

Покажем, что f = g на (-1, 1), т.е.

$$\forall x \in (-1,1) \quad (1+x)^{-\alpha} g(x) = 1$$

Найдём производную функции, стоящей в левой части последнего равенства:

$$((1+x)^{-\alpha}g(x))' = -\alpha(1+x)^{-\alpha-1} \sum_{n=0}^{\infty} C_{\alpha}^{n} x^{n} + (1+x)^{-\alpha} \sum_{n=0}^{\infty} n C_{\alpha}^{n} x^{n-1} =$$

$$= (1+x)^{-\alpha-1} \left[-\alpha \sum_{n=0}^{\infty} C_{\alpha}^{n} x^{n} + \sum_{n=0}^{\infty} n C_{\alpha}^{n} x^{n} + \sum_{n=1}^{\infty} n C_{\alpha}^{n} x^{n-1} \right]$$

В последнем слагаемом сделаем замену индекса суммирования, тогда после приведения подобных слагаемых имееем:

$$((1+x)^{-\alpha-1}g(x))' = (1+x)^{-\alpha-1} \sum_{n=0}^{\infty} [(n+1)C_{\alpha}^{n+1} - (\alpha-n)C_{\alpha}^{n}] x^{n} = 0$$

Следовательно, функция $(1+x)^{-\alpha}g(x)$ постоянна на (-1,1). Подстановка x=0 дает, что $(1+x)^{-\alpha}g(x)=1$ на (-1,1). \blacksquare Замечание. При $\alpha>0$ ряд $\sum_{n=0}^{\infty}C_{\alpha}^{n}x^{n}$ сходится равномерно на [-1,1]. \blacktriangle Положим $a_{n}=|C_{\alpha}^{n}|$. Покажем, что ряд $\sum_{n=0}^{\infty}a_{n}$ сходится. Т.к. $\frac{a_{n+1}}{a_{n}}=\frac{n-\alpha}{n+1}$ при $n>\alpha$.