Athability Concepts.
O if all ontoomes in the sample space are equally-likely: For event $A \cdot P(A) = \frac{\#(A)}{\#(S)}$;
Note that this also applies if ne're looking at the results of a sequence of enemts with each event having equality-likely-outcomes. Printation: $P[n,r] = \frac{n!}{(n-n)!}$; Combination: $C[n,r] = \frac{n!}{r!(n-n)!} = \frac{n!}{r!}$ P[n,r];
The have an experiment with a constant probability of "success" p and that experiment is nepeated a times such that each trial is independent of the other trials, we can use the Binomial Park. Noted: $P(r \text{ "snaesses"}) = C[n,r](p)^r(1-p)^{n-r}$;
1 Sudesses) = ((11/1,12(b) (1-b) /
Conditional Probability: $P(A B) = \frac{P(A \cap B)}{P(B)}$;
Onyound Probability. AND: P(A NB) = P(A) · P(B A); OR: P(A UB) = P(A) + P(B) - P(A NB);
@ Independence: The Polaving-are equivalent: 10 A and B are independent;
in the property and the property is
(B) P(A NB) = RA) (F)
(1) Muthal Exclusiveness: The Pollaving are equivalent: (1) A and B are muthally exclusive.
$(3) \Re A \cap \mathcal{F}) = O.$
$(\mathfrak{H}) + (\mathfrak{H}) = \mathfrak{G}.$
(4) P(A V B) = P(A) + P(B).
© Complement: For an emit $A : P(A) + P(\overline{A}) = 1$
P(A B) + P(A B) = 1 for some exist.
1 Fortition Theorem: If we have a partition of $S = B_1 U B_2$ (with B_1 and B_2 multipling exclusive):
then frall events A. P(A) = P(A N B) + P(A N B);
A complou partition is S=AUA for any event A.
10 In a Venn discoom with 2 enouts A and B there is a partition of S by 22 = 4 events.
1 In a Venn diagram with 2 events A and B, there is a partition of S by 22=4 events. That is, S-(A 1 B) L (A 1 B) L (A 1 B) L (A 1 B).
Mustated: An B: 0
② ① ③ ④ A V ½ · ⑤ ▼ ∪ B · Ø · Ø · Ø · Ø · Ø · Ø · Ø · Ø · Ø ·
Since we have a partition, we have: $P(S) = L = P(A \cap B) + P(A \cap B) + P(A \cap B) + P(A \cap B)$;
Since we have a partition, we have: $P(S) = I = P(A \cap B) + P(A \cap B) + P(A \cap B) + P(A \cap B)$; Theorem: $P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$;