Bibliographic Information

Preparation of phthalic diamides and insecticides for agriculture and horticulture. Tozai, Masanori; Morimoto, Masayuki; Fujioka, Nobuhiro; Seo, Akira. (Nihon Nohyaku Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho (2001), 20 pp. CODEN: JKXXAF JP 2001335559 A2 20011204 Patent written in Japanese. Application: JP 2000-156791 20000526. Priority: CAN 136:19945 AN 2001:873233 CAPLUS (Copyright (C) 2006 ACS on SciFinder (R))

Patent Family Information

Patent No.	Kind	<u>Date</u>	Application No.	<u>Date</u>
JP 2001335559	A2	20011204	JP 2000-156791	20000526

Priority Application

JP 2000-156791 20000526

Abstract

Title compds. I (A1 = C1-8 alkylene, C3-8 alkenylene, C3-8 alkynylene, etc.; R1 = C3-6 cycloalkyl, C3-6 halocycloalkyl, Ph, heterocyclyl, etc.; R2, R3 = H, C3-6 cycloalkyl, A2R5, etc.; A2 = C1-8 alkylene, C1-8 haloalkylene, C3-6 alkenylene, C3-6 haloalkenylene, etc.; R5 = H, halo, cyano, NO2, C3-6 cycloalkyl, etc.; R4 = C1-6 alkyl, C3-6 alkenyl, C3-6 alkynyl, C1-6 haloalkyl, etc.; n = 0-1; X1-X4 = H, halo, cyano, NO2, C3-6 cycloalkyl, etc.; Y1-Y5 = H, halo, cyano, NO2, C3-6 halocycloalkyl, Ph, etc.; Q = agriculturally acceptable anion; m = 1-2).

3-lodo-N1-(4-heptafluoroisopropyl-2-methylphenyl)-N2-[3-(methylthio)propyl]phthalic diamide was reacted with MeI in CHCl3 under reflux for 5 h to give 40%

dimethyl-3-[2-[N-(4-heptafluoroisopropyl-2-methylphenyl)carbamoyl]-6-iodobenzoylamino]propylsulfonium iodide.

THIS PAGE BLANK (USPTL)

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-335559 (P2001 - 335559A)

(43)公開日 平成13年12月4日(2001.12.4)

(51) Int.Cl.7

證別記号

FΙ

テーマコート*(参考)

C 0 7 C 381/12 A01N 41/10 C 0 7 C 381/12

4H006

A01N 41/10

Z 4H011

審査請求 未請求 請求項の数5 OL (全 20 頁)

特願2000-156791(P2000-156791) (21)出願番号

(22)出願日

平成12年5月26日(2000.5.26)

(71)出願人 000232623

日本農薬株式会社

東京都中央区日本橋1丁目2番5号

(72)発明者 遠西 正範

大阪府堺市福田1040-1-408

(72)発明者 森本 雅之

大阪府河内長野市西之山町1-28-305

(72)発明者 藤岡 伸祐

大阪府河内長野市上原町474-1-103

(72) 発明者 瀬尾 明

和歌山県橋本市紀見ケ丘2丁目3番19号

(74)代理人 100068618

弁理士 萼 経夫 (外2名)

最終頁に続く

(54) 【発明の名称】 フタル酸ジアミド誘導体及び農園芸用殺虫剤並びにその使用方法

(57)【要約】

(修正有)

【解決手段】 式(I):

酸ジアミド誘導体、農園芸用殺虫剤及びその使用方法。 【効果】 式(I) のフタル酸ジアミド誘導体は農園芸用 殺虫剤として優れた防除効果を示す。

{式中、A1 はアルキレン、アルケニレン、アルキニレ ン等、R¹ は (ハロ) シクロアルキル、フェニル、複素 環、 $-A^2-R^5$ (式中、 A^2 は (ハロ) アルキレン、 (ハロ) アルケニレン等、 R^5 はH、ハロゲン、<math>CN、 NO。、(ハロ)シクロアルキル、アルコキシカルボニ ル、フェニル、複素環等、R² とR³ はH、シクロアル キル、-A²-R⁵ 等、R⁴ はアルキル、アルケニル、フ ェニル、複素環等、nは0~1、X¹、X²、X³、X 4 、 Y^{1} 、 Y^{2} 、 Y^{3} 、 Y^{4} 及び Y^{5} はH、ハロゲン、 CN, NO_2 , (Λ D) >DDDPN+N, PND+>DD ルボニル、フェニル、複素環等、Qは農業上許容しうる アニオンから選択される化合物、mは1~2}のフタル

THIS PAGE BLANK (USPTO)

【特許請求の範囲】 【請求項1】 一般式(I);

 ${式 中、<math>A^1$ は C_1 - C_8 アルキレン基、同一又は異なって も良く、ハロゲン原子、シアノ基、ニトロ基、ハロ C1- C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコ キシ基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アル キルスルホニル基又は C₁-C₆アルコキシカルボニル基か ら選択される1以上の置換基を有する置換 C₁-C₈アルキ レン基、 C₃-C₈アルケニレン基、同一又は異なっても良 く、ハロゲン原子、シアノ基、ニトロ基、ハロ C1-C6ア ルキル基、 C₁-C₆アルコキシ基、ハロ C₁-C₆アルコキシ 基、 C1-C6アルキルスルホニル基、ハロ C1-C6アルキル スルホニル基又は C₁-C₆アルコキシカルボニル基から選 択される1以上の置換基を有する置換 C3-C8アルケニレ ン基、 C₃-C₈アルキニレン基又は同一若しくは異なって も良く、ハロゲン原子、シアノ基、ニトロ基、ハロ C₁- C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコ キシ基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アル キルスルホニル基又は C_1 - C_6 アルコキシカルボニル基か ら選択される1以上の置換基を有する置換 C3-Cgアルキ ニレン基を示す。又、前記 C_1 - C_8 アルキレン基、置換 C1-C₈アルキレン基、 C₃-C₈アルケニレン基、置換 C₃-C₈ アルケニレン基、 C_3 - C_8 アルキニレン基又は置換 C_3 - C_8 アルキニレン基中の任意の飽和炭素原子は C2-C5アルキ レン基で置換されて C_3 - C_6 シクロアルカン環を示すこと もでき、前記 C₁-C₈アルキレン基、置換 C₁-C₈アルキレ ン基、 C₃-C₈アルケニレン基、置換 C₃-C₈アルケニレン 基中の任意の2個の炭素原子はアルキレン基又はアルケ ニレン基と一緒になって C3-C6シクロアルカン環又は C 3-C₆シクロアルケン環を示すこともできる。R¹ は C₃- C_6 シクロアルキル基、ハロ C_3 - C_6 シクロアルキル基、フ エニル基、同一又は異なっても良く、ハロゲン原子、シ アノ基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アル キル基、 C₁-C₆アルコキシ基、ハロ C₁-C₆アルコキシ 基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキルチオ 基、 C,-C。アルキルスルフィニル基、ハロ C,-C。アルキ ルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基又は C_1 - C_6 アルコキシカル ボニル基から選択される1以上の置換基を有する置換フ ェニル基、複素環基、同一又は異なっても良く、ハロゲ ン原子、シアノ基、ニトロ基、 C₁-C₆アルキル基、ハロ C1-C6アルキル基、C1-C6アルコキシ基、ハロ C1-C6ア

ルコキシ基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキ ルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆ アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル 基、ハロ C₁-C₆アルキルスルホニル基又は C₁-C₆アルコ キシカルポニル基から選択される1以上の置換基を有す る置換複素環基又は-A²-R⁵ (式中、A² は C,-C。ア ルキレン基、ハロ C₁-C₈アルキレン基、 C₃-C₆アルケニ レン基、ハロ C₃-C₆アルケニレン基、 C₃-C₆アルキニレ ン基又はハロ C_3 - C_6 アルキニレン基を示し、 R^5 は水素 原子、ハロゲン原子、シアノ基、ニトロ基、 Cg-Cgシク ロアルキル基、ハロ C₃-C₆シクロアルキル基、 C₁-C₆ア ルコキシカルボニル基、フェニル基、同一又は異なって も良く、ハロゲン原子、シアノ基、ニトロ基、 C1-C6ア ルキル基、ハロ C₁-C₆アルキル基、 C₁-C₆アルコキシ 基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、 ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフィニ ル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アル キルスルホニル基、ハロ C1-C6アルキルスルホニル基又 は C₁-C₆アルコキシカルボニル基から選択される1以上 の置換基を有する置換フェニル基、複素環基、同一又は 異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アル コキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチ オ基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスル フィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アルキルスルホニル基、ハロ C₁-C₆アルキルスルホニ ル基又は C,-C。アルコキシカルボニル基から選択される 1以上の置換基を有する置換複素環基又は-Z1-R ⁶ (式中、Z¹ はーOー、-SO₂-又は-N(R⁷) -(式中、 R^7 は C_1 - C_6 アルキルカルボニル基、ハロ C_1 -C₆アルキルカルボニル基、 C₁-C₆アルコキシカルボニル 基、フェニルカルボニル基、同一又は異なっても良く、 ハロゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキル 基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハ ロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスル ホニル基、ハロ C₁-C₆アルキルスルホニル基又は C₁-C₆ アルコキシカルボニル基から選択される1以上の置換基 を有する置換フェニルカルボニル基、フェニル C,-C,ア

ルコキシカルボニル基又は同一若しくは異なっても良 く、ハロゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキ ル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハ ロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C $_1$ - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、 ハロ C₁-C₆アルキルスルフィニル基、C₁-C₆アルキルス ルホニル基、ハロ C_1 - C_6 アルキルスルホニル基又は C_1 - C_6 アルコキシカルボニル基から選択される1以上の置換 基を環上に有する置換フェニル C_1 - C_4 アルコキシカルボ ニル基を示す。)を示し、 R^6 は水素原子、 C_1 - C_6 アル キル基、ハロ C_1 - C_6 アルキル基、 C_3 - C_6 アルケニル基、 ハロ C₃-C₆アルケニル基、 C₃-C₆アルキニル基、ハロ C $_3$ - C_6 アルキニル基、 C_3 - C_6 シクロアルキル基、ハロ C_3 -C₆シクロアルキル基、 C₁-C₆アルキルカルボニル基、ハ ロ C_1 - C_6 アルキルカルボニル基、 C_1 - C_6 アルコキシカル ボニル基、フェニル基、同一又は異なっても良く、ハロ ゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキル基、ハ ロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アル キルチオ甚、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル 基、ハロ C_1 - C_6 アルキルスルホニル基又は C_1 - C_6 アルコ キシカルボニル基から選択される1以上の置換基を有す る置換フェニル基、フェニル C₁-C₄アルキル基、同一又 は異なっても良く、ハロゲン原子、シアノ基、ニトロ 基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキ ルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキル スルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスル ホニル基又は C_1 - C_6 アルコキシカルボニル基から選択さ れる1以上の置換基を環上に有する置換フェニル C_1 - C_4 アルキル基、複素環基又は同一若しくは異なっても良 く、ハロゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキ ル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハ ロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C $_1$ - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、 ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルス ルホニル基、ハロ C_1 - C_6 アルキルスルホニル基又は C_1 -C₆アルコキシカルボニル基から選択される1以上の置換 基を有する置換複素環基を示す。)を示す。)を示す。 又、 R^1 は A^1 と結合して、 $1\sim 2$ 個の同一又は異な

又、 R^1 は A^1 と結合して、 $1\sim 2$ 個の同一又は異なっても良い酸素原子、硫黄原子又は窒素原子により中断されても良い $5\sim 8$ 員環を形成することができる。 R^2 及び R^3 は同一又は異なっても良く、水素原子、 C_3 $-C_6$ シクロアルキル基又は $-A^2$ - R^5 (式中、 A^2 及び R^5 は前記に同じ。)を示す。又、 R^2 は A^1 又は R^1 と結合して、 $1\sim 2$ 個の同一又は異なっても良い酸素原子、硫黄原子又は窒素原子により中断されても良い $5\sim 7$ 員 環を形成することができる。 R^4 は C_1 - C_6 アルキル基、

 C_3 - C_6 アルケニル基、 C_3 - C_6 アルキニル基、ハロ C_1 - C_6 アルキル基、 C_3 - C_6 シクロアルキル基、 C_1 - C_4 アルコキ シ C_1 - C_6 アルキル基、 C_1 - C_4 アルコキシカルボニル C_1 - C_6 アルキル基、シアノ C_1 - C_6 アルキル基、 C_1 - C_4 アルキ ルカルボニル C_1 - C_6 アルキル基、フェニル基、同一又は 異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アル コキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチ オ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスル フィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁- C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニ ル基又は C_1 - C_6 アルコキシカルボニル基から選択される 1以上の置換基を有する置換フェニル基、フェニル C₁- C_4 アルキル基、同一又は異なっても良く、ハロゲン原 子、シアノ基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁- C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコ キシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチ オ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アル キルスルフィニル基、 C₁-C₆アルキルスルホニル基、ハ ロ C_1 - C_6 アルキルスルホニル基又は C_1 - C_6 アルコキシカ ルボニル基から選択される1以上の置換基を有する置換 フェニル C_1 - C_4 アルキル基、フェニルカルボニル C_1 - C_4 アルキル基又は同一若しくは異なっても良く、ハロゲン 原子、シアノ基、ニトロ基、 C₁-C₆アルキル基、ハロ C $_1$ - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アル コキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキル チオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 ア ルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、 ハロ C₁-C₆アルキルスルホニル基又は C₁-C₆アルコキシ カルボニル基から選択される1以上の置換基を有する置 換フェニルカルボニル C_1 - C_4 アルキル基を示す。又、 ${\sf R}$ 4 は ${
m A^1}$ 又は ${
m R^1}$ と結合して、 $1\sim 2$ 個の同一又は異な っても良い酸素原子、硫黄原子又は窒素原子により中断 されても良い5~7員環を形成することができる。 n は $0\sim\!1$ の整数を示す。 X^1 、 X^2 、 X^3 及び X^4 は同一 又は異なっても良く、水素原子、ハロゲン原子、シアノ 基、ニトロ基、 C_3 - C_6 シクロアルキル基、ハロ C_3 - C_6 シ クロアルキル基、 C₁-C₆アルコキシカルボニル基、フェ ニル基、同一又は異なっても良く、ハロゲン原子、シア ノ基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキ ル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 $-C_6$ アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスル フィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基、モノ C_1 - C_6 アルキルアミノ基、 同一又は異なっても良いジ C₁-C₆アルキルアミノ基又は C_1 - C_6 アルコキシカルボニル基から選択される1以上の 置換基を有する置換フェニル基、複素環基、同一又は異 なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C $_1$ - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコ

キシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ 基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフ ィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C₁-C₆アルキルスルホニル 基、モノ C₁-C₆アルキルアミノ基、同一又は異なっても 良いジ C,-C。アルキルアミノ基又は C,-C。アルコキシカ ルポニル基から選択される1以上の置換基を有する置換 複素環基又は-A³-R⁸ (式中、A³ は-O-、-S $-, -so-, -so_2 -, -c (=o) -, -c (=$ NOR⁹) - (式中、R⁹ は水素原子、 C₁-C₆アルキル 基、ハロ C_1 - C_6 アルキル基、 C_3 - C_6 アルケニル基、ハロ C_3 - C_6 アルケニル基、 C_3 - C_6 アルキニル基、 C_3 - C_6 シク ロアルキル基、フェニル C₁-C₄アルキル基又は同一若し くは異なっても良く、ハロゲン原子、シアノ基、ニトロ 基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキ ルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキル スルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスル ホニル基、モノ C₁-C₆アルキルアミノ基、同一又は異な っても良いジ C₁-C₆アルキルアミノ基又は C₁-C₆アルコ キシカルボニル基から選択される1以上の置換基を環上 に有する置換フェニル C_1 - C_4 アルキル基を示す。)、 C1-C₆アルキレン基、ハロ C₁-C₆アルキレン基、 C₂-C₆ア ルケニレン基、ハロ C_2 - C_6 アルケニレン基、 C_2 - C_6 アル キニレン基又はハロ C3-C6アルキニレン基を示し、

(1) A³ が-O-、-S-、-SO-又は-SO₂ -を示す場合、R⁸ はハロC₃-C₆シクロアルキル基、ハロ C3-C6シクロアルケニル基、フェニル基、同一又は異な っても良く、ハロゲン原子、シアノ基、ニトロ基、 C₁- C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキ シ基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ 基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフ ィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆ アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル 基、モノ C_1 - C_6 アルキルアミノ基、同一又は異なっても 良いジC₁-C₆アルキルアミノ基又は C₁-C₆アルコキシカ ルボニル基から選択される1以上の置換基を有する置換 フェニル基、複素環基、同一又は異なっても良く、ハロ ゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキル基、ハ ロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アル キルチオ基、 C1-C6アルキルスルフィニル基、ハロ C1- C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル 基、ハロ C₁-C₆アルキルスルホニル基、モノ C₁-C₆アル キルアミノ基、同一又は異なっても良いジ C₁-C₆アルキ ルアミノ基又は C1-C6アルコキシカルボニル基から選択 される1以上の置換基を有する置換複素環基又は-A4-R¹⁰ (式中、A⁴ は C₁-C₆アルキレン基、ハロ C₁-C₆ア ルキレン基、 C₃-C₆アルケニレン基、ハロ C₃-C₆アルケ

ニレン基、 C_3 - C_6 アルキニレン基又はハロ C_3 - C_6 アルキ ニレン基を示し、 R^{10} は水素原子、ハロゲン原子、 C_3 -C₆シクロアルキル基、ハロ C₃-C₆シクロアルキル基、 C 1-C6アルコキシカルボニル基、フェニル基、同一又は異 なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C 1-C₆アルキル基、ハロ C₁-C₆アルキル基、 C₁-C₆アルコ キシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ 基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフ ィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆ アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル 基、モノ C₁-C₆アルキルアミノ基、同一又は異なっても 良いジ C₁-C₆アルキルアミノ基又は C₁-C₆アルコキシカ ルボニル基から選択される1以上の置換基を有する置換 フェニル基又は-A⁵-R¹¹ (式中、A⁵ は-O-、-S -、-SO-、-SO₂-又は-C(=O)-を示し、 R^{11} は C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_3 - C_6 アルケニル基、ハロ C_3 - C_6 アルケニル基、 C_3 - C_6 アル キニル基、ハロ C₃-C₆アルキニル基、 C₃-C₆シクロアル キル基、ハロ C3-C6シクロアルキル基、フェニル基、同 一又は異なっても良く、ハロゲン原子、シアノ基、ニト ロ基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C₁- C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アル・ キルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキ ルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル 基、 C₁-C₆アルキルスルホニル基、ハロ C₁-C₆アルキル スルホニル基、モノ C_1 - C_6 アルキルアミノ基、同一又は 異なっても良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 ア ルコキシカルボニル基から選択される1以上の置換基を 有する置換フェニル基、複素環基又は同一若しくは異な っても良く、ハロゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C₁-C₆アルコキ シ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ 基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフ ィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆ アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル 基、モノC₁-C₆アルキルアミノ基、同一又は異なっても 良いジ C₁-C₆アルキルアミノ基又は C₁-C₆アルコキシカ ルボニル基から選択される1以上の置換基を有する置換 複素環基を示す。) を示す。) を示し、(2) A³ が-C (=O) - 又は-C (=NOR⁹) - (式中、R⁹は前記に同じ。) を示す場合、R⁸ は C₁-C₆アルキル基、 ハロ C_1 - C_6 アルキル基、 C_2 - C_6 アルケニル基、ハロ C_2 - C_6 アルケニル基、 C_3 - C_6 シクロアルキル基、ハロ C_3 - C_6 シクロアルキル基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキ ルチオ基、モノ C₁-C₆アルキルアミノ基、同一又は異な っても良いジ C_1 - C_6 アルキルアミノ基、フェニル基、同 一又は異なっても良く、ハロゲン原子、シアノ基、ニト ロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アル キルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキ

ルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル 基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキル スルホニル基、モノ C₁-C₆アルキルアミノ基、同一又は 異なっても良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 ア ルコキシカルボニル基から選択される1以上の置換基を 有する置換フェニル基、フェニルアミノ基、同一又は異 なっても良く、ハロゲン原子、シアノ基、ニトロ基、C $_1$ - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコ キシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ 基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフ ィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C₁-C₆アルキルスルホニル 基、モノ C_1 - C_6 アルキルアミノ基、同一又は異なっても 良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 アルコキシカ ルボニル基から選択される1以上の置換基を環上に有す る置換フェニルアミノ基、複素環基又は同一若しくは異 なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C $_1$ - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコ キシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ 基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフ ィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル 基、モノ C₁-C₆アルキルアミノ基、同一又は異なっても 良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 アルコキシカ ルボニル基から選択される1以上の置換基を有する置換 複素環基を示し、(3) A^3 が C_1 - C_6 アルキレン基、ハ ロ C_1 - C_6 アルキレン基、 C_2 - C_6 アルケニレン基、ハロ C $_2$ - C_6 アルケニレン基、 C_2 - C_6 アルキニレン基又はハロ C $_3$ - C_6 アルキニレン基を示す場合、 R^8 は水素原子、ハロ ゲン原子、 C_3 - C_6 シクロアルキル基、ハロ C_3 - C_6 シクロ アルキル基、 C₁-C₆アルコキシカルボニル基、フェニル 基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル 基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 $_1$ - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 -C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフ ィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 ア ルキルスルホニル基、モノ C_1 - C_6 アルキルアミノ基、同 一又は異なっても良いジ C_1 - C_6 アルキルアミノ基又は C1-C6アルコキシカルボニル基から選択される1以上の置 換基を有する置換フェニル基、複素環基、同一又は異な っても良く、ハロゲン原子、シアノ基、ニトロ基、 C₁- C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキ シ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ 基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフ ィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル 基、モノ C₁-C₆アルキルアミノ基、同一又は異なっても 良いジ C₁-C₆アルキルアミノ基又は C₁-C₆アルコキシカ ルポニル基から選択される1以上の置換基を有する置換 複素環基又は-A⁶-R¹² (式中、A⁶ は-O-、-S ー、-SO-又は-SO₂ -を示し、R¹²は C₃-C₆シク ロアルキル基、ハロ C3-C6シクロアルキル基、フェニル 基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル 基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_6 1-Ceアルキルチオ基、ハロ C1-Ceアルキルチオ基、 C1- C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフ ィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 ア ルキルスルホニル基、モノ C_1 - C_6 アルキルアミノ基、同 一又は異なっても良いジ C₁-C₆アルキルアミノ基又は C 1-C6アルコキシカルボニル基から選択される1以上の置 換基を有する置換フェニル基、複素環基、同一又は異な っても良く、ハロゲン原子、シアノ基、ニトロ基、 C1- C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキ シ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ 基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフ ィニル基、ハロC₁-C₆アルキルスルフィニル基、 C₁-C₆ アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル 基、モノ C₁-C₆アルキルアミノ基、同一又は異なっても 良いジ C₁-C₆アルキルアミノ基又は C₁-C₆アルコキシカ ルボニル基から選択される1以上の置換基を有する置換 複素環基又は-A⁷-R¹³ (式中、A⁷ は C₁-C₆アルキレ ン基、ハロ C₁-C₆アルキレン基、 C₂-C₆アルケニレン 基、ハロ C_2 - C_6 アルケニレン基、 C_2 - C_6 アルキニレン基 又はハロ C_3 - C_6 アルキニレン基を示し、 R^{13} は水素原 子、ハロゲン原子、 C_3 - C_6 シクロアルキル基、ハロ C_3 - C_6 シクロアルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アル キルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁- C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル 基、ハロ C₁-C₆アルキルスルホニル基、フェニル基、同 一又は異なっても良く、ハロゲン原子、シアノ基、ニト ロ基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C₁- C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アル キルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキ ルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル 基、 C₁-C₆アルキルスルホニル基、ハロ C₁-C₆アルキル スルホニル基、モノ C₁-C₆アルキルアミノ基、同一又は 異なっても良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 ア ルコキシカルボニル基から選択される1以上の置換基を 有する置換フェニル基、フェノキシ基、同一又は異なっ ても良く、ハロゲン原子、シアノ基、ニトロ基、 C₁-C₆ アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ 基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、 ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフィニ ル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アル キルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基、 モノ C₁-C₆アルキルアミノ基、同一又は異なっても良い ジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 アルコキシカルボ

ニル基から選択される1以上の置換基を有する置換フェ ノキシ基、フェニルチオ基、同一又は異なっても良く、 ハロゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキル 基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 -C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル基、ハ ロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アルキルスル ホニル基、ハロ C_1 - C_6 アルキルスルホニル基、モノ C_1 -Ceアルキルアミノ基、同一又は異なっても良いジ C1-C6 アルキルアミノ基又は C_1 - C_6 アルコキシカルボニル基か ら選択される1以上の置換基を有する置換フェニルチオ 基、複素環基又は同一若しくは異なっても良く、ハロゲ ン原子、シアノ基、ニトロ基、 C1-C6アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 ア ルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキ ルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆ アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル 基、ハロ C₁-C6アルキルスルホニル基、モノ C₁-C6アル キルアミノ基、同一又は異なっても良いジ C₁-C₆アルキ ルアミノ基又は C1-C6アルコキシカルボニル基から選択 される1以上の置換基を有する複素環基を示す。)を示 す。)を示す。)を示す。又、フェニル環上の隣り合っ たX¹ 及びX² 、X² 及びX³ 又はX³ 及びX⁴は一緒 になって縮合環を形成することができ、該縮合環は同一 又は異なっても良く、ハロゲン原子、シアノ基、ニトロ 基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C₁-C₆ アルコキシ基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキ ルチオ基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキル スルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C₁-C₆アルキルスルホニル基、ハロ C₁-C₆アルキルスル ホニル基、モノ C₁-C₆アルキルアミノ基、同一又は異な っても良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 アルコ キシカルボニル基から選択される1以上の置換基を有す ることもできる。 Y^1 、 Y^2 、 Y^3 、 Y^4 及び Y^5 は同 一又は異なっても良く、水素原子、ハロゲン原子、シア ノ基、ニトロ基、ハロ C₃-C₆シクロアルキル基、フェニ ル基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、 C1-C6アルキル基、ハロ C1-C6アルキル 基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、C1-C₆アルキルチオ基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフ ィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 ア ルキルスルホニル基、モノ C₁-C₆アルキルアミノ基、同 一又は異なっても良いジ C₁-C₆アルキルアミノ基又は C 1-C6アルコキシカルボニル基から選択される1以上の置 換基を有する置換フェニル基、複素環基、同一又は異な っても良く、ハロゲン原子、シアノ基、ニトロ基、 C₁- C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキ シ基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ 基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフ

ィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C₁-C₆アルキルスルホニル 基、モノ C₁-C₆アルキルアミノ基、同一又は異なっても 良いジ C₁-C₆アルキルアミノ基又は C₁-C₆アルコキシカ ルボニル基から選択される1以上の置換基を有する置換 複素環基又は-A³-R⁸ (式中、A³ 及びR⁸ は前記に 同じ。)を示す。又、フェニル環上の隣り合ったY1及 びY² 、Y² 及びY³ 、Y³ 及びY⁴ 又はY⁴ 及びY⁵ は一緒になって縮合環を形成することができ、該縮合環 は同一又は異なっても良く、ハロゲン原子、 C1-C6アル キル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、 ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル 基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アルキ ルスルホニル基、ハロ C₁-C₆アルキルスルホニル基、フ ェニル基、同一又は異なっても良く、ハロゲン原子、シ アノ基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アル キル基、 C₁-C₆アルコキシ基、ハロ C₁-C₆アルコキシ 基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキルチオ 基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキ ルスルフィニル基、 C₁-C₆アルキルスルホニル基、ハロ C₁-C₆アルキルスルホニル基、モノ C₁-C₆アルキルアミ ノ基、同一又は異なっても良いジ C₁-C₆アルキルアミノ 基又は C₁-C₆アルコキシカルボニル基から選択される1 以上の置換基を有する置換フェニル基、複素環基又は同 一若しくは異なっても良く、ハロゲン原子、シアノ基、 ニトロ基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 ア ルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニ ル基、 C₁-C₆アルキルスルホニル基、ハロ C₁-C₆アルキ ルスルホニル基、モノ C₁-C₆アルキルアミノ基、同一又 は異なっても良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 アルコキシカルボニル基から選択される1以上の置換基 を有する置換複素環基から選択される1以上の置換基を 有することもできる。Qは農業上許容しうるアニオンか ら選択される化合物を示し、mは1乃至2の整数を示 す。)で表されるフタル酸ジアミド誘導体。

【請求項2】 Qがアニオン性対イオン、リン酸アニオン又はリン酸水素アニオンを示し、mは1乃至2の整数を示す請求項1記載のフタル酸ジアミド誘導体。

【請求項3】 アニオン性対イオンがハロゲンイオン、 R^4 OSO $_3$ 「式中、 R^4 は C_1 - C_6 アルキル基、 C_3 - C_6 アルケニル基、 C_3 - C_6 アルキニル基、 C_1 - C_6 アル キル基、 C_3 - C_6 シクロアルキル基、 C_1 - C_4 アルコキシ C_1 - C_6 アルキル基、 C_1 - C_6

シ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ 基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフ ィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C₁-C₆アルキルスルホニル 基又は C₁-C₆アルコキシカルボニル基から選択される1 以上の置換基を有する置換フェニル基、フェニル C₁-C₄ アルキル基、同一又は異なっても良く、ハロゲン原子、 シアノ基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 ア ルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ 基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ 基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキ ルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基又は C_1 - C_6 アルコキシカル ボニル基から選択される1以上の置換基を有する置換フ ェニル C_1 - C_4 アルキル基、フェニルカルボニル C_1 - C_4 ア ルキル基又は同一若しくは異なっても良く、ハロゲン原 子、シアノ基、ニトロ基、 C₁-C₆アルキル基、ハロC₁-C $_{6}$ アルキル基、 C_{1} - C_{6} アルコキシ基、ハロ C_{1} - C_{6} アルコ キシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチ オ基、 C₁-C₆アルキルスルフィニル基、ハロC₁-C₆アル キルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハ ロ C_1 - C_6 アルキルスルホニル基又は C_1 - C_6 アルコキシカ ルボニル基から選択される1以上の置換基を有する置換 フェニルカルボニル C₁-C₄アルキル基を示す。)、BF 又はR¹⁴SO₃ - (式中、R¹⁴はハロゲン原子、 C₁-C₆ アルキル基、ハロ C_1 - C_6 アルキル基、フェニル基又は同 一若しくは異なっても良く、ハロゲン原子、シアノ基、 ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 ア ルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニ ル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキ

ルスルホニル基又は C_1 - C_6 アルコキシカルボニル基から 選択される 1 以上の置換基を有する置換フェニル基を示 す。)である請求項 2 記載のフタル酸ジアミド誘導体。

【請求項4】 請求項1乃至3いずれか1項記載のフタル酸ジアミド誘導体を有効成分として含有することを特徴とする農園芸用殺虫剤。

【請求項5】 農園芸上、望ましくない有害生物を防除するために、請求項4記載の農園芸用殺虫剤の有効量を対象有害生物が生息する植物又は植物が栽培されている土壌に処理することを特徴とする農園芸用殺虫剤の使用方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は分子中にスルホニウム塩構造を含む新規なフタル酸ジアミド誘導体及び該化合物を有効成分として含有する農園芸用殺虫剤並びにその使用方法に関するものである。

[0002]

【従来の技術】特開平11-240857号公報に本発明のフタル酸ジアミド誘導体に類似した化合物が開示されているが、分子中にスルホニウム塩構造を含む化合物は開示されていない。

[0003]

【発明が解決しようとする課題】本発明者等は新規な農園芸用殺虫剤を開発すべく鋭意研究を重ねた結果、本発明の一般式(I)で表されるフタル酸ジアミド誘導体は文献未記載の新規化合物であり、農園芸用殺虫剤として有用であることを見いだし、本発明を完成させたものである

[0004]

【課題を解決するための手段】本発明は一般式(I); 【化2】

{式中、 A^1 は C_1 - C_8 アルキレン基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルコキルスルホニル基、ハロ C_1 - C_6 アルコキルスルボニル基とは C_1 - C_6 アルコキシカルボニル基から選択される 1以上の置換基を有する置換 C_1 - C_8 アルキレン基、 C_3 - C_8 アルケニレン基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、ハロ C_1 - C_6 アルコキシ

基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基又は C_1 - C_6 アルコキシカルボニル基から選択される 1 以上の置換基を有する置換 C_3 - C_8 アルケニレン基、 C_3 - C_8 アルキニレン基又は

【0005】同一若しくは異なっても良く、ハロゲン原子、シアノ基、ニトロ基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルは、ハロ C_1 - C_6 アルキルスルホニル基又は C_1 - C_6 アルコキシカルボニル基から選択される 1 以上

の置換基を有する置換 C_3 - C_8 アルキニレン基を示す。 又、前記 C_1 - C_8 アルキレン基、置換 C_1 - C_8 アルキレン基、 C_3 - C_8 アルケニレン基、置換 C_3 - C_8 アルケニレン基、では C_3 - C_8 アルキニレン基又は置換 C_3 - C_8 アルキニレン基中の任意の飽和炭素原子は C_2 - C_5 アルキレン基で置換 されて C_3 - C_6 シクロアルカン環を示すこともでき、前記 C_1 - C_8 アルキレン基、置換 C_1 - C_8 アルキレン基、の C_8 アルケニレン基中の任意の 2 個の炭素原子はアルキレン基又はアルケニレン基と一緒になって C_3 - C_6 シクロアルカン環又は C_3 - C_6 シクロアルケン環を示すこともできる。

【0006】 R^1 は C_3 - C_6 シクロアルキル基、ハロ C_3 -Cgシクロアルキル基、フェニル基、同一又は異なっても 良く、ハロゲン原子、シアノ基、ニトロ基、 C₁-C₆アル キル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、 ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル 基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アルキ ルスルホニル基、ハロ C₁-C₆アルキルスルホニル基又は C1-C6アルコキシカルボニル基から選択される1以上の 置換基を有する置換フェニル基、複素環基、同一又は異 なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C $_1$ - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコ キシ基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ 基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフ ィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆ アルキルスルホニル基、ハロ C₁-C₆アルキルスルホニル 基又は C₁-C₆アルコキシカルボニル基から選択される1 以上の置換基を有する置換複素環基又は-A²-R⁵ (式 中、 A^2 は C_1 - C_8 アルキレン基、ハロ C_1 - C_8 アルキレン 基、 C3-C6アルケニレン基、ハロ C3-C6アルケニレン 基、 C₃-C₆アルキニレン基又はハロ C₃-C₆アルキニレン 基を示し、

【0007】R⁵ は水素原子、ハロゲン原子、シアノ 基、ニトロ基、 C3-C6シクロアルキル基、ハロ C3-C6シ クロアルキル基、 C_1 - C_6 アルコキシカルボニル基、フェ ニル基、同一又は異なっても良く、ハロゲン原子、シア ノ基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキ ル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキルチオ基、 C ₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスル フィニル基、 C₁-C₆アルキルスルホニル基、ハロ C₁-C₆ アルキルスルホニル基又は C₁-C₆アルコキシカルボニル 基から選択される1以上の置換基を有する置換フェニル 基、複素環基、同一又は異なっても良く、ハロゲン原 子、シアノ基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁- C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコ キシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチ オ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アル キルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハ

ロ C_1 - C_6 アルキルスルホニル基又は C_1 - C_6 アルコキシカルボニル基から選択される1以上の置換基を有する置換複素環基又は

【0008】 $-Z^1$ - R^6 (式中、 Z^1 は-O-、 $-SO_2$ -又は-N(R^7)-(式中、 R^7 は C_1 - C_6 アルキルカルボニル基、 $-C_6$ アルキルカルボニル基、 $-C_6$ アルコキシカルボニル基、 $-C_6$ アルコキシカルボニル基、 $-C_6$ アルコキシカルボニル基、 $-C_6$ アルコキシ基、 $-C_6$ アルキルチオ基、 $-C_6$ アルキルメルティニル基、 $-C_6$ アルキルスルフィニル基、 $-C_6$ アルキルスルフィニル基、 $-C_6$ アルキルスルカンイニル基、 $-C_6$ アルキルスルボニル基、 $-C_6$ アルキルスルボニル基、 $-C_6$ アルキルスルボニル基、 $-C_6$ アルキルスルボニル基の置換基を有する置換フェニルカルボニル基、フェニル $-C_6$ アルコキシカルボニル基又は

【0009】同一若しくは異なっても良く、ハロゲン原 子、シアノ基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C₁-C₆アルコキシ基、ハロ C₁-C₆アルコ キシ基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキルチ オ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アル キルスルフィニル基、 C_1-C_6 アルキルスルホニル基、ハ ロ C₁-C₆アルキルスルホニル基又は C₁-C₆アルコキシカ ルボニル基から選択される1以上の置換基を環上に有す る置換フェニル C₁-C₄アルコキシカルボニル基を示 す。) を示し、R⁶ は水素原子、 C₁-C₆アルキル基、ハ ロ C₁-C₆アルキル基、C₃-C₆アルケニル基、ハロ C₃-C₆ アルケニル基、 C₃-C₆アルキニル基、ハロ C₃-C₆アルキ ニル基、 C₃-C₆シクロアルキル基、ハロ C₃-C₆シクロア ルキル基、 C_1 - C_6 アルキルカルボニル基、ハロ C_1 - C_6 ア ルキルカルボニル基、 C₁-C₆アルコキシカルボニル基、 フェニル基、同一又は異なっても良く、ハロゲン原子、 シアノ基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁-C₆ア ルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ 基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ 基、C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキ ルスルフィニル基、 C₁-C₆アルキルスルホニル基、ハロ C₁-C₆アルキルスルホニル基又は C₁-C₆アルコキシカル ボニル基から選択される1以上の置換基を有する置換フ ェニル基、

【0010】フェニル C_1 - C_4 アルキル基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルチルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基又は C_1 - C_6 アルコキシカルボニル基から選択される 1以上の置換基を環上に有する置換フェニル C_1 - C_4 アルキル基、検索環基又は同一若しくは異なっても良く、ハロ

ゲン原子、シアノ基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基とは C_1 - C_6 アルコキシカルボニル基から選択される 1以上の置換基を有する置換複素環基を示す。)を示す。)を示す。

【0011】又、 R^1 は A^1 と結合して、 $1\sim 2$ 個の同一又は異なっても良い酸素原子、硫黄原子又は窒素原子により中断されても良い $5\sim 8$ 員環を形成することができる。 R^2 及び R^3 は同一又は異なっても良く、水素原子、 C_3 - C_6 シクロアルキル基又は $-A^2$ - R^5 (式中、 A^2 及び R^5 は前記に同じ。)を示す。又、 R^2 は A^1 又は R^1 と結合して、 $1\sim 2$ 個の同一又は異なっても良い酸素原子、硫黄原子又は窒素原子により中断されても良い5~7 員環を形成することができる。

【0012】R⁴ は C₁-C₆アルキル基、 C₃-C₆アルケニ ル基、 C_3 - C_6 アルキニル基、ハロ C_1 - C_6 アルキル基、 C $_3$ - C_6 シクロアルキル基、 C_1 - C_4 アルコキシ C_1 - C_6 アルキ ル基、 C_1 - C_4 アルコキシカルボニル C_1 - C_6 アルキル基、 シアノ C_1 - C_6 アルキル基、 C_1 - C_4 アルキルカルボニル C1-C6アルキル基、フェニル基、同一又は異なっても良 く、ハロゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキ ル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハ ロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C $_1$ - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、 ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルス ルホニル基、ハロ C_1 - C_6 アルキルスルホニル基又は C_1 -C₆アルコキシカルボニル基から選択される1以上の置換 基を有する置換フェニル基、フェニル C₁-C₄アルキル 基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル

【0013】 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキ シ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ 基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキ ルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基又は C_1 - C_6 アルコキシカル ボニル基から選択される1以上の置換基を有する置換フ ェニル C_1 - C_4 アルキル基、フェニルカルボニル C_1 - C_4 ア ルキル基又は同一若しくは異なっても良く、ハロゲン原 子、シアノ基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁- C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコ キシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチ オ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アル キルスルフィニル基、 C₁-C₆アルキルスルホニル基、ハ ロ C_1 - C_6 アルキルスルホニル基又は C_1 - C_6 アルコキシカ ルボニル基から選択される1以上の置換基を有する置換 フェニルカルボニル C_1 - C_4 アルキル基を示す。又、 R^4

は A^1 又は R^1 と結合して、 $1\sim 2$ 個の同一又は異なっても良い酸素原子、硫黄原子又は窒素原子により中断されても良い $5\sim 7$ 員環を形成することができる。

【0014】nは0~1の整数を示す。X¹、X²、X ³ 及びX⁴ は同一又は異なっても良く、水素原子、ハロ ゲン原子、シアノ基、ニトロ基、 C₃-C₆シクロアルキル 基、ハロ C_3 - C_6 シクロアルキル基、 C_1 - C_6 アルコキシカ ルボニル基、フェニル基、同一又は異なっても良く、ハ ロゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキル基、 ハロ C₁-C₆アルキル基、C₁-C₆アルコキシ基、ハロ C₁-C $_{6}$ アルコキシ基、 C_{1} - C_{6} アルキルチオ基、ハロ C_{1} - C_{6} ア ルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C $_1$ - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニ ル基、ハロ C_1 - C_6 アルキルスルホニル基、モノ C_1 - C_6 ア ルキルアミノ基、同一又は異なっても良いジ C₁-C₆アル キルアミノ基又は C₁-C₆アルコキシカルボニル基から選 択される1以上の置換基を有する置換フェニル基、複素 環基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、 C1-C6アルキル基、ハロ C1-C6アルキル 基、 C₁-C₆アルコキシ基、

【0015】ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキル チオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルス ルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C,-C₆アルキルスルホニル基、ハロ C₁-C₆アルキルスルホ ニル基、モノ C_1 - C_6 アルキルアミノ基、同一又は異なっ ても良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 アルコキ シカルボニル基から選択される1以上の置換基を有する 置換複素環基又は-A³-R⁸ (式中、A³ は-O-、- $S - (-SO - (-SO_2 - (-C(=O) - (-C$ $(=NOR^9$) - (式中、 R^9 は水素原子、 C_1 - C_6 アル キル基、ハロ C_1 - C_6 アルキル基、 C_3 - C_6 アルケニル基、 ハロ C_3 - C_6 アルケニル基、 C_3 - C_6 アルキニル基、 C_3 - C_6 シクロアルキル基、フェニル C₁-C₄アルキル基又は同一 若しくは異なっても良く、ハロゲン原子、シアノ基、ニ トロ基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C $_1$ - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 ア ルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アル キルスルフィニル基、

【0016】ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基、モノ C_1 - C_6 アルキルアミノ基、同一又は異なっても良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 アルコキシカルボニル基から選択される 1 以上の置換基を環上に有する置換フェニル C_1 - C_4 アルキル基を示す。)、 C_1 - C_6 アルキレン基、ハロ C_1 - C_6 アルキレン基、 C_2 - C_6 アルケニレン基、 C_2 - C_6 アルケニレン基又はハロ C_3 - C_6 アルキニレン基を示し、

(1) A^3 が-O-、-S-、-SO-又は $-SO_2-$ を示す場合、 R^8 は $\cap DC_3-C_6$ シクロアルキル基、 $\cap DC_3-C_6$ シクロアルケニル基、フェニル基、同一又は異な

っても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ 基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、

【0017】ハロ C₁-C₆アルキルスルホニル基、モノ C $_1$ - C_6 アルキルアミノ基、同一又は異なっても良いジ C_1 -Caアルキルアミノ基又は C1-Caアルコキシカルボニル基 から選択される1以上の置換基を有する置換フェニル 基、複素環基、同一又は異なっても良く、ハロゲン原 子、シアノ基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁- C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコ キシ基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキルチ オ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アル キルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハ ロ C_1 - C_6 アルキルスルホニル基、モノ C_1 - C_6 アルキルア ミノ基、同一又は異なっても良いジ C₁-C₆アルキルアミ ノ基又は C₁-C₆アルコキシカルボニル基から選択される 1以上の置換基を有する置換複素環基又は-A⁴-R 10 (式中、A⁴ は C₁-C₆アルキレン基、ハロC₁-C₆アル キレン基、 C₃-C₆アルケニレン基、ハロ C₃-C₆アルケニ レン基、 C₃-C₆アルキニレン基又はハロ C₃-C₆アルキニ レン基を示し、 R^{10} は水素原子、ハロゲン原子、 C_3 - C_6 シクロアルキル基、ハロ C3-C6シクロアルキル基、

【0018】C₁-C₆アルコキシカルボニル基、フェニル 基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル 基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、C,-C₆アルキルチオ基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフ ィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 ア ルキルスルホニル基、モノC₁-C₆アルキルアミノ基、同 一又は異なっても良いジ C₁-C₆アルキルアミノ基又は C 1-C6アルコキシカルボニル基から選択される1以上の置 換基を有する置換フェニル基又は-A⁵-R¹¹(式中、A ⁵ は-O-、-S-、-SO-、-SO₂ -又は-C (=O) -を示し、R¹¹は C₁-C₆アルキル基、ハロ C₁- C_6 アルキル基、 C_3 - C_6 アルケニル基、ハロ C_3 - C_6 アルケ ニル基、 C₃-C₆アルキニル基、ハロ C₃-C₆アルキニル 基、 C₃-C₆シクロアルキル基、ハロ C₃-C₆シクロアルキ ル基、

【0019】フェニル基、同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキシ基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルカチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基、モノ C_1 - C_6 アルキルアミノ基、同一又は異なっても良いジ C_1 - C_6 アル

【0020】(2) A³ が-C (=O) -又は-C (= NOR⁹) - (式中、R⁹ は前記に同じ。) を示す場 合、R⁸ は C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C_2 - C_6 アルケニル基、ハロ C_2 - C_6 アルケニル基、 C_3 - C_6 シクロアルキル基、ハロ C_3 - C_6 シクロアルキル基、 C_1 -C₆アルコキシ基、 C₁-C₆アルキルチオ基、モノ C₁-C₆ア ルキルアミノ基、同一又は異なっても良いジ C1-C6アル キルアミノ基、フェニル基、同一又は異なっても良く、 ハロゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキル 基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C₁-C₆アルコキシ基、C₁-C₆ アルキルチオ基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル基、ハ ロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アルキルスル ホニル基、ハロ C_1 - C_6 アルキルスルホニル基、モノ C_1 -C6アルキルアミノ基、同一又は異なっても良いジ C1-C6 アルキルアミノ基又は C_1 - C_6 アルコキシカルボニル基か ら選択される1以上の置換基を有する置換フェニル基、 フェニルアミノ基、

【0021】同一又は異なっても良く、ハロゲン原子、 シアノ基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁-C₆ア ルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ 基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキルチオ 基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキ ルスルフィニル基、 C₁-C₆アルキルスルホニル基、ハロ C₁-C₆アルキルスルホニル基、モノ C₁-C₆アルキルアミ ノ基、同一又は異なっても良いジ C₁-C₆アルキルアミノ 基又は C₁-C₆アルコキシカルボニル基から選択される1 以上の置換基を環上に有する置換フェニルアミノ基、複 素環基又は同一若しくは異なっても良く、ハロゲン原 子、シアノ基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C₁-C₆アルコキシ基、ハロ C₁-C₆アルコ キシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチ オ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アル キルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハ ロ C_1 - C_6 アルキルスルホニル基、モノ C_1 - C_6 アルキルア ミノ基、同一又は異なっても良いジ C₁-C₆アルキルアミ ノ基又は C₁-C₆アルコキシカルボニル基から選択される

1以上の置換基を有する置換複素環基を示し、

【0022】 (3) A^3 が C_1 - C_6 アルキレン基、ハロ C₁-C₆アルキレン基、 C₂-C₆アルケニレン基、ハロ C₂-C₆ アルケニレン基、 C_2 - C_6 アルキニレン基又はハロ C_3 - C_6 アルキニレン基を示す場合、R⁸ は水素原子、ハロゲン 原子、 C₃-C₆シクロアルキル基、ハロ C₃-C₆シクロアル キル基、 C_1 - C_6 アルコキシカルボニル基、フェニル基、 同一又は異なっても良く、ハロゲン原子、シアノ基、ニ トロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C $_1$ - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 ア ルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アル キルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル 基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキル スルホニル基、モノ C_1 - C_6 アルキルアミノ基、同一又は 異なっても良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 ア ルコキシカルボニル基から選択される1以上の置換基を 有する置換フェニル基、複素環基、

【0023】同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルカホニル基、 C_1 - C_6 アルキルスルホニル基、 C_1 - C_6 アルキルスルホニル基、 C_1 - C_6 アルキルアミノ基、 同一又は異なっても良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 アルコキシカルボニル基から選択される 1以上の置換基を有する置換複素環基又は C_1 - C_6 アルコキシカルボニル基から選択される 1以上の置換基を有する置換複素環基又は 10、11、12 は 13、14、15 に 15 に 15 に 15 に 15 に 15 に 15 に 16 に 17 に 17 に 17 に 17 に 18 に 19 に

【0024】 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキ シ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ 基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキ ルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基、モノ C_1 - C_6 アルキルアミ ノ基、同一又は異なっても良いジ C_1 - C_6 アルキルアミノ 基又は C_1 - C_6 アルコキシカルボニル基から選択される 1以上の置換基を有する置換フェニル基、複素環基、同一 又は異なっても良く、ハロゲン原子、シアノ基、ニトロ 基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキ ルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキル スルフィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスル ホニル基、モノ C_1 - C_6 アルキルアミノ基、同一又は異な っても良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 アルコ キシカルボニル基から選択される1以上の置換基を有す る置換複素環基又は $-A^7$ - R^{13} (式中、 A^7 は C_1 - C_6 ア ルキレン基、ハロ C₁-C₆アルキレン基、

【0025】C₂-C₆アルケニレン基、ハロ C₂-C₆アルケ ニレン基、 C_2 - C_6 アルキニレン基又はハロ C_3 - C_6 アルキ ニレン基を示し、 R^{13} は水素原子、ハロゲン原子、 C_3 - C_6 シクロアルキル基、ハロ C_3 - C_6 シクロアルキル基、 C $_1$ - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 ア ルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アル キルスルフィニル基、ハロ C_1 ー C_6 アルキルスルフィニル 基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキル スルホニル基、フェニル基、同一又は異なっても良く、 ハロゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキル 基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 -C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル基、ハ ロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスル ホニル基、ハロ C_1 - C_6 アルキルスルホニル基、モノ C_1 - C_6 アルキルアミノ基、同一又は異なっても良いジ C_1 - C_6 アルキルアミノ基又は C₁-C₆アルコキシカルボニル基か ら選択される1以上の置換基を有する置換フェニル基、 フェノキシ基、同一又は異なっても良く、

【0026】ハロゲン原子、シアノ基、ニトロ基、 C₁- C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキ シ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ 基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフ ィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C₁-C₆アルキルスルホニル 基、モノ C_1 - C_6 アルキルアミノ基、同一又は異なっても 良いジ C₁-C₆アルキルアミノ基又は C₁-C₆アルコキシカ ルボニル基から選択される1以上の置換基を有する置換 フェノキシ基、フェニルチオ基、同一又は異なっても良 く、ハロゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキ ル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハ ロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C $_1$ - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、 ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルス ルホニル基、ハロ C₁-C₆アルキルスルホニル基、

【0028】又、フェニル環上の隣り合った X^1 及び X^2 、 X^2 及び X^3 又は X^3 及び X^4 は一緒になって縮合環を形成することができ、該縮合環は同一又は異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキシ基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルメルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基、エノ C_1 - C_6 アルキルアミノ基、同一又は異なっても良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 アルコキシカルボニル基から選択される 1 以上の置換基を有することもできる。

【0029】Y¹、Y²、Y³、Y⁴及びY⁵は同一又 は異なっても良く、水素原子、ハロゲン原子、シアノ 基、ニトロ基、ハロ Cg-Cgシクロアルキル基、フェニル 基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル 基、C₁-C₆アルコキシ基、ハロC₁-C₆アルコキシ基、C 1-C₆アルキルチオ基、ハロ C₁-C₆アルキルチオ基、 C₁-C₅アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフ ィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 ア ルキルスルホニル基、モノ C₁-C₆アルキルアミノ基、同 一又は異なっても良いジ C₁-C₆アルキルアミノ基又は C 1-C6アルコキシカルボニル基から選択される1以上の置 換基を有する置換フェニル基、複素環基、同一又は異な っても良く、ハロゲン原子、シアノ基、ニトロ基、 C₁- C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキ シ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ 基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフ ィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆ アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル 基、モノ C₁-C₆アルキルアミノ基、同一又は異なっても 良いジ C,-Ceアルキルアミノ基又は C,-Ceアルコキシカ ルボニル基から選択される1以上の置換基を有する置換 複素環基又は $-A^3-R^8$ (式中、 A^3 及び R^8 は前記に 同じ。)を示す。

【0030】又、フェニル環上の隣り合った Y^1 及び Y^2 、 Y^2 及び Y^3 、 Y^3 及び Y^4 又は Y^4 及び Y^5 は一緒になって縮合環を形成することができ、該縮合環は同一又は異なっても良く、ハログン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、、ハロ C_1 - C_6 アルキン基、、ハロ C_1 - C_6 アルコキシ基、、ハロ C_1 - C_6 アルキルチオ基、、ハロ C_1 - C_6 アルキルチオ基、、ハロ C_1 - C_6 アルキルスルフィニル基、 ハロ C_1 - C_6 アルキルスルフィニル基、 ハロ C_1 - C_6 アルキルスルフィニル基、 フェニル 基、同一又は異なっても良く、ハロゲン原子、シアノ 基、ニトロ基、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルチオ

 C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基、ハロ C_1 - C_6 アルキルスルホニル基、モノ C_1 - C_6 アルキルアミノ基、同一又は異なっても良いジ C_1 - C_6 アルキルアミノ基又は C_1 - C_6 アルコキシカルボニル基から選択される 1 以上の置換基を有する置換フェニル基、

【0031】複素環基又は同一若しくは異なっても良く、ハロゲン原子、シアノ基、ニトロ基、 C₁-C₆アルキル基、 ハロ C₁-C₆アルキル基、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル基、モノ C₁-C₆アルキルアミノ基、同一又は異なっても良いジ C₁-C₆アルキルアミノ基又は C₁-C₆アルコキシカルボニル基 から選択される1以上の置換基を有する置換複素環基から選択される1以上の置換基を有することもできる。 Q は農業上許容しうるアニオンから選択される化合物を示し、mは1乃至2の整数を示す。 とで表されるフタル酸ジアミド誘導体及び該化合物を有効成分とする農園芸用 殺虫剤並びにその使用方法に関するものである。

[0032]

【発明の実施の形態】本発明の一般式(I) で表されるフ タル酸ジアミド誘導体の一般式(I) の定義において、 「ハロゲン原子」とは塩素原子、臭素原子、沃素原子又 はフッ素原子を示し、「C1-C6アルキル」とは、例えば メチル、エチル、nープロピル、iープロピル、nーブ チル、iーブチル、sープチル、tーブチル、nーペン チル、n-ヘキシル等の直鎖又は分枝状の炭素原子数1 ~6個のアルキルを示し、「ハロC1-C6アルキル」と は、同一又は異なっても良い1以上のハロゲン原子によ り置換された直鎖又は分枝状の炭素原子数1~6個のア ルキルを示し、「C₁-C₈アルキレン」はメチレン、エチ レン、プロピレン、トリメチレン、ジメチルメチレン、 テトラメチレン、イソブチレン、ジメチルエチレン、オ クタメチレン等の直鎖又は分枝状の炭素原子数1~8個 のアルキレンを示す。又、「R1 及びR2 はお互いに結 合して1~3個の同一又は異なっても良い酸素原子、硫 黄原子又は窒素原子により中断されても良い4~7員 環」としては、例えばアゼチジン環、ピロリジン環、ピ ロリン環、ピペリジン環、イミダブリジン環、イミダブ リン環、オキサゾリジン環、チアゾリジン環、イソキサ ソリジン環、イソチアソリジン環、テトラヒドロピリジ ン環、ピペラジン環、モルホリン環、チオモルホリン 環、ジオキサジン環、ジチアジン環等を例示することが できる。

【0033】「複素環基」としては、例えばピリジル基、ピリジンーNーオキシド基、ピリミジニル基、フリル基、テトラヒドロフリル基、チエニル基、テトラヒドロチエニル基、テトラヒドロ

チオピラニル基、オキサソリル基、イソキサソリル基、オキサジアソリル基、チアゾリル基、イソチアソリル基、チアジアソリル基、イミダソリル基、トリアソリル基、ピラゾリル基等を例示することができ、又「複素環基」は「縮合複素環基」を示すことができ、例えばナフタレン、テトラヒドロナフタレン、インデン、インダン、キノリン、キナゾリン、インドール、インドリン、クロマン、イソクロマン、ベンゾジオキサン、ベンゾジオキソール、ベンゾフラン、ジヒドロベンゾフラン、ベンゾチオフェン、ジヒドロベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、ベンズイミダゾール、インダゾール等を例示することができる。

【0034】本発明の一般式(I)で表されるフタル酸ジアミド誘導体は、その構造式中に1つ又は複数個の不斉 炭素原子又は不斉中心を含む場合があり、2種以上の光 学異性体及びジアステレオマーが存在する場合もあり、 本発明は各々の光学異性体及びそれらが任意の割合で含 まれる混合物をも全て包含するものである。本発明の一般式(I) で表されるフタル酸ジアミド誘導体は、その構造式中に炭素原子一炭素原子の二重結合又は炭素原子一窒素原子の二重結合に由来する2種の幾何異性体が存在する場合もあるが、本発明は各々の幾何異性体及びそれらが任意の割合で含まれる混合物をも全て包含するものである。又、化合物によっては非水和物及び水和物も含むものである。

【0035】本発明の一般式(I) で表されるフタル酸ジアミド誘導体は、例えば下記に図示する製造方法により製造することができるが、本発明は、実験化学講座(丸善、第4版、1992)、24巻、373頁に記載の方法等でも製造できるが、これらに限定されるものではない

製造方法1.

【化3】

(式中、 R^1 、 R^2 、 R^{3} 、 R^4 、 A^1 、 X^1 、 X^2 、 X^3 、 X^4 、 Y^1 、 Y^2 、 Y^3 、 Y^4 、 Y^5 n、Q及び mは前記に同じ。)

一般式(II)で表されるフタル酸ジアミド類と一般式(II I) で表されるアルキル化剤とを不活性溶媒の存在又は不存在下に反応させることにより、一般式(I) で表されるフタル酸ジアミド誘導体を製造することができる。 又、場合によっては銀や水銀の塩($AgBF_4$ 、 $AgCIO_4$ 等)の存在下に反応させることにより、対応する BF_4 、 CIO_4 等を対アニオンとして有する一般式(I) で表されるフタル酸ジアミド誘導体を製造することもできる。

【0036】(1).一般式(II)→一般式(I)

本反応で使用できる不活性溶媒としては、本反応の進行を著しく阻害しないものであれば良く、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、クロロベンゼン、ジクロロベンゼン等の塩素化芳香族炭化水素類、ジエチルエーテル、ジオキサン、テトラヒドロフラン等の鎖状又は環状エーテル類、酢酸エチル等のエステル類、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、メタノール、エタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、アセトニトリル等のニトリル類、ジメチルスルホキシド、1、3ージメチルー2ーイミダゾリジノン等の不活性溶媒を例示することができ、これらの不活性溶

媒は単独で文は2種以上混合して使用することができる。

【0037】一般式(III)で表されるアルキル化剤としては、ハロゲン化アルキル、オキソニウム塩、硫酸エステル、スルホン酸エステル、フルオロスルホン酸エステル、トリフルオロスルホン酸エステル、ジアルコキソニウム塩、ヨードニウム塩等を使用することができる。本反応は等モル反応であるので、各反応剤を等モル使用すれば良いが、いずれかの反応剤を過剰に使用することもできる。本反応は必要に応じて脱水条件下で反応を行うこともできる。

【0038】反応温度は室温乃至使用する不活性溶媒の 還流温度下で行うことができ、反応時間は反応規模、反 応温度等により一定しないが、数分乃至48時間の範囲 で適宜選択すれば良い。反応終了後、目的物を含む反応 系から常法に従って単離すれば良く、必要に応じて再結 晶等で精製することにより目的物を製造することができ る。一般式(II)で表されるフタル酸ジアミド類は特開平 11-240857号公報及び本願出願人の出願である 特願平11-214000号等に記載の方法により製造 することができる。

【0039】以下に一般式(I) で表されるフタル酸ジアミド誘導体の代表的な化合物を第1表に例示するが、本発明はこれらに限定されるものではない。以下の表において、Meとはメチル基を、Etとはエチル基を、n-Prとはノルマルプロピル基を、i-Prとはイソプロ

ピル基を、Phとはフェニル基を、Pyrとはピリジル基を、Tsとはトルエンスルホニル基を示す。Z、Q-1はMe SO_3 を、Q-2はp-Ts Oを、Q-3は Me SO_3 を、Q-4はC1 O_4 を、Q-5はBF

 $_4$ を、Q-6はS b F_6 を、Q-7は CF_3 SO_3 を、Q-8はF SO_3 を示す。
一般式(I) ;
【化4】

[0040]

第1表 $(n=0, R^2=R^3=H, m=1)$

No	N-A ¹ -S	R ¹	R ⁴	X¹-X⁴	γ ¹ –γ ⁵	Q	プ点蛹
1	-(CH ₂) ₂ -	Me	Me	3-Br	2-Me-4-CF(CF ₃) ₂	I	
2	-(CH ₂) ₃ -	Me	Me	3-Br	$2 ext{-Me-}4 ext{-CF(CF}_3)_2$	I	211
3	-CH (Me) CH ₂ -	Me	Me	3-C1	4-CF (CF ₃) ₂	I	
4	-CH (Me) CH ₂ -	Me	Me	3-C1	4-CF ₂ CF ₃	I	
5	-CH (Me) CH ₂ -	Me	Me	3-F	4-CF(CF ₃) ₂	I	
6	-CH (Me) CH ₂ -	Me	Me	3-NO ₂	2-Me-4-CF ₂ CF ₃	I	
7	-CH (Me) CH ₂ -	Me	Me	3-I	$2 ext{-Me-}4 ext{-CF}(\text{CF}_3)_2$	I	195
8	-C(Me) $_2$ CH $_2$ -	Me	Me	3-I	$2 ext{-Me-4-CF(CF}_3)_2$	I	200
9	-CH (Me) CH ₂ -	Me	Me	3-Br	$2 ext{-Me-4-CF(CF}_3)_2$	Q-1	115
10	-(CH ₂) ₃ -	Me	Me	3-I	$2 ext{-Me-4-CF(CF}_3)_2$	I	118
11	-CH (Me) CH ₂ -	Et	Me	3-I	$2\text{-Me-}4\text{-CF}(\text{CF}_3)_2$	I	200
12	-CH (Me) CH ₂ -	Me	Me	3-Br	2-Me-4-OCF ₃	I	
13	-C(Me) $_2$ CH $_2$ -	Me	Me	3-I	2-Me-4-OCF ₃	I	
14	$-C(Me)_2(CH_2)_2$	Me	Me	3-I	2-Me-4-OCF ₃	I	
15	$-C(Me)_2(CH_2)_3-$	Me	Me	3-I	2-Me-4-OCF ₃	I	
16	$-C(Me)_2(CH_2)_4$	Me	Me	3-I	2-Me-4-OCF ₃	I	
17	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-OCF ₃	I	
18	-CH(Me)(CH $_2$) $_2$ -	Me	Me	3-I	2-Me-4-OCF ₃	I	
19	-CH(Me)(CH $_2$) $_3$ -	Me	Me	3-I	2-Me-4-OCF ₃	I	
20	-CH(Me)(CH ₂) ₄ -	Me	Me	3-I	2-Me-4-OCF ₃	I	
21	-CH (Me) CH (Me) -	Me	Me	3-I	2-Me-4-OCF ₃	1	
22	-(CH ₂) ₂ -	Me	Me	3-I	2-Me-4-0CF ₃	I	
23	-(CH ₂) ₃ -	Me	Me	3-I	2-Me-4-OCF ₃	Ι	

[0041]

第1表 (続き)

No	N-A ¹ -S	R ¹	R⁴	X1-X4	Y ¹ -Y ⁵	Q	プ点蛹
24	-CH (Me) CH ₂ -	Et	Et	3-1	2-Me-4-OCF ₃	I	
25	-CH (Me) CH ₂ -	Me	Me	3-C1	2-Me-4-OCF ₃	I	
26	-CH (Me) CH ₂ -	Me	Me	3-F	2-Me-4-OCF ₃	I	
27	-CH (Me) CH ₂ -	Me	Me	4-I	2-Me-4-CF(CF ₃) ₂	I	

```
Me 3-N0_2 2-Me-4-CF(CF_3)_2 I
                         Me
28 -CH(Me)CH<sub>2</sub>-
                                29 -CH(Me)CH<sub>2</sub>-
                         Мe
                                Me 3-Cl-4-F 2-Me-4-CF(CF_3)_2 I
30 -CH(Me)CH<sub>2</sub>-
                         Мe
                                                2\text{-Me-4-CF(CF}_3)_2 I
                                    6-I
31 -CH(Me)CH<sub>2</sub>-
                                                2-Me-4-0CF<sub>3</sub>
                               Me 4-I
32 -CH (Me) CH<sub>2</sub>-
                         Me
                                                2-Me-4-CF(CF_3)_2 I
                                Me 3-CF<sub>3</sub>
33 -CH (Me) CH<sub>2</sub>-
                         Мe
                                                2\text{-Me-4-CF(CF}_3)_2 I
                                Me 3-0CF<sub>3</sub>
34 -CH(Me)CH<sub>2</sub>-
                         Мe
                                Me 3\text{-I-4-F} 2\text{-Me-4-CF(CF}_3)_2 I
35 -CH(Me)CH<sub>2</sub>-
                         Me
                                                 2\text{-Me-4-CF(CF}_3)_2 Q-1
                                                                              108
                                      3-I
36 - C(Me)_2CH_2
                          Мe
                                Me
                                                 2-Me-4-CF(CF_3)_2 I
                                                                              197
                                      3-I
37 -CH(Me)(CH<sub>2</sub>)<sub>2</sub>-
                         Me
                                Me
                                                 2-Me-4-CF(CF_3)_2 Br
                                                                              115
     -C(Me)_2CH_2-
                          Мe
                                Мe
                                      3-I
38
                                                 2-Me-4-CF(CF<sub>3</sub>)<sub>2</sub>
                                      3-I
      -CH (Me) CH<sub>2</sub>-
                          Et
                                Мe
39
                                                 2-Me-4-CF(CF_3)_2
                                                                      I
                                      3-I
      -CH (Me) CH<sub>2</sub>-
                        n-Pr Me
40
                                                 2-Me-4-CF(CF_3)_2 I
41
       -CH (Me) \mathrm{CH_2}-
                         i-Pr Me
                                                 2-Me-4-CF(CF_3)_2 I
42
       -CH (Me) CH_2-
                          Ph
                                       3-I
                                       3-Br
                                                 2\text{-Me-}4\text{-OCF}_3
                          Et
                                Me
43
      -CH (Me) CH<sub>2</sub>-
                                                                       Ι
                                                 4-0CF<sub>3</sub>
                                       3-I
       -CH(Me)CH_2-
                         n-Pr Me
                                                 2-Me-4-CF(CF_3)_2 Q-1
       -CH (Me) CH_2-
                         i-Pr Me
                                       3-I
                                                 2-Me-4-CF(CF_3)_2 Q-5
                                       3-I
       -CH (Me) CH<sub>2</sub>-
                          Ph
```

[0042]

第1表 (続き)

No	N-A ¹ -S	R^1	R4	X ¹ -X ⁴	γ¹-γ⁵	Q	%点点
47	-CH(Me)CH ₂ -	Me	Me	3-I	2-Me-4-OCF ₃	Br	
48	-CH(Me)CH ₂ -	Me	Me	3-I	2 -Cl-4-CF(CF $_3$) $_2$	I	
49	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-CF ₃	Ι	
50	-CH (Me) CH ₂ -	Me	Me	3-I	2 -F-4-CF(CF $_3$) $_2$	I	
51	-CH (Me) CH ₂ -	Me	Me	3-I	$2 ext{-OMe-4-CF(CF}_3)_2$	I	
52	-CH (Me) CH ₂ -	Me	Me	3-I	$2-Et-4-C_2F_5$	I	
53	-CH (Me) $\mathrm{CH_2}$ -	Me	Me	3-C1	$2\text{-Me-}4\text{-OCHF}_2$	I	
54	-CH (Me) CH ₂ -	Me	Me	3-I	2 -Me- 3 -CF(CF $_3$) $_2$	I	
55	-CH (Me) CH ₂ -	Me	Me	3-I	$2\text{-Me-}3\text{-C}_2F_5$	I	
56	-CH(Me)CH ₂ -	Me	Me	3-I	$2\text{-Me-}5\text{-C}_2\text{F}_5$	1	
57	-CH (Me) $\mathrm{CH_2}$ -	Me	Me	3-I	$2\text{-Me-}4\text{-SCHF}_2$	Ι	
58	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-SOCHF_{2}	I	
59	-CH (Me) CH ₂ -	Me	Me	3-I	$2\text{-Me-}4\text{-OCF}_2\text{CHF}_2$	I	
60	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-Cl	I	
61	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-SCF_3	I	
62	-CH (Me) CH ₂ -	Me	Me	3-I	$2\text{-Me-}4\text{-SOCF}_3$	I	
63	-CH (Me) CH ₂ -	Me	Me	3-I	$2\text{-Me-4-SO}_2\text{CF}_3$	I	
64	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-SC_2F_5	I	
65	-CH (Me) CH ₂ -	Me	Me	3-I	2-C1-4-OCF ₃	I	
66	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-SOC_2F_5	I	
67	-CH(Me)CH ₂ -	Me	Me	3-I	$2\text{-Me-}4\text{-SO}_2\text{C}_2\text{F}_5$	I	
68	-CH(Me)CH ₂ -	Me	Me	3-I	$2\text{-Me-4-SCF(CF}_3)_2$	Ι	
69	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-SOCF(CF ₃) ₂	I	

[0043]

第1表 (続き)

No	N-A1-S	R ¹	R4	χ ¹- χ ⁴	γ¹-γ ⁵	Q	砂点蛤
70	-CH(Me)CH ₂ -	Me	Me	3-I	2-Me-4-SO ₂ CF(CF ₃) ₂	I	
71	-CH(Me)CH ₂ -	Me	Me	3-I	$2\text{-Me-4-CF}\left(\text{CF}_3\right)\text{C}_2\text{F}_5$	I	
72	-CH(Me)CH ₂ -	Me	Me	3-I	$\begin{array}{c} \text{2-Me-4-OC} \left(\text{C}_2\text{F}_5\right) \\ = \text{C} \left(\text{CF}_3\right)_2 \end{array}$	Ι	
73	-CH(Me)CH ₂ -	Me	Me	3-I	2-C1-4-OCF ₂ CHF0-5	I	
74	-CH(Me)CH ₂ -	Me	Me	3-1	2-C1-4-OCHFCF ₂ 0-5	I	
75	-CH(Me)CH ₂ -	Me	Me	3-I	2 -OMe-4-CF(CF $_3$) $_2$	I	
76	-CH(Me)CH ₂ -	Me	Me	3-I	2-0Et-4-C ₂ F ₅	I	
77	-CH(Me)CH ₂ -	Me	Мe	3-1	2-C1-3-OCF ₂ CHF0-4	I	
78	-CH(Me)CH ₂ -	Me	Me	3-I	2-C1-3-OCHFCF ₂ 0-4	I	
79	-CH(Me)CH ₂ -	Me	Me	3-I	2-Me-3-OCF ₂ CHF0-4	1	
80	-CH(Me)CH ₂ -	Me	Me	3-I	2-Me-3-OCHFCF ₂ 0-4	I	
82	-CH(Me)CH ₂ -	Me	Me	3-I	2-Me-4-OCF ₂ CHF0-5	I	
83	-CH(Me)CH ₂ -	Me	Me	3-1	2-Me-4-OCHFCF ₂ 0-5	Ι	
84	-CH(Me)CH ₂ -	Me	Me	3-I	$2 ext{-Me-4-CF(CF}_3)_2$ $-5 ext{-F}$	I	
85	-CH(Me)CH ₂ -	Me	Me	3-I	$2\text{-Me-}4\text{-CF}\left(\text{CF}_{3}\right)_{2}$ -3-F	Ι	
86	$-CH(Me)CH_2-$	Me	Me	3-I	2-Me-4-OCF ₂ CHFCF ₃	I	
87	-CH(Me)CH ₂ -	Me	Ме	3-I	2-Me-4-0-(3-C1- 5-CF ₃ -2-Pyi)	I	
88	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-0-(4-C1Ph)	I	
89	-CH(Me)CH ₂ -	Me	Me	3-I	2-Me-4-0-(4-CF ₃ Ph)	I	

[0044]

第1表 (続き)

No	N-A ¹ -S	R1	R4	X¹−X⁴	Y ¹ -Y ⁵	Q	融点℃
90	-CH(Me)CH ₂ -	Me	Ме	3-I	2-Me-4-0-(4-CF ₃ 0Ph)	I	
91	-CH(Me)CH ₂ -	Me	Me	3-I	2-Me-4-0-(4-CF ₃ SPh)	Ι	
92	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-(4-CF ₃ Ph)	1	
93	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-(4-C1Ph)	1	
94	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-C	1	
					$\equiv C(4-C1Ph)$		
95	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-CH	I	
					=CH (4-C1Ph)		
96	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-S-(4-C1Ph)	Ι	
97	-CH(Me)CH ₂ -	Me	Me	3-I	$2\text{-Me-}4\text{-CF}_2\text{CF}_2\text{CF}_3$	I	
98	-CH(Me)CH ₂ -	Me	Me	3-I	2-Me-4-OCF ₂ CHFOCF ₃	I	
99	-CH(Me)CH ₂ -	Me	Me	3-I	4-CF (CF ₃) ₂	I	
100	-CH(Me)CH ₂ -	Me	Me	3-I	4-CF ₂ CF ₃	I	
101	-CH(Me)CH ₂ -	Me	Me	3-I	4-0CF ₃	I	
102	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-CF ₃	I	
103	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-CH ₂	Ι	
	_				-CH ₂ (4-C1Ph)		

104	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-C(=0)	I
	_				-(4-C1Ph)	
105	-CH (Me) CH ₂ -	Me	Me	3-I	$2-Me-4-C (=0)-CH_2$	I
					-(4-C1Ph)	
106	-CH (Me) CH ₂ -	Me	Me	3-I	2-Me-4-C(=NO-Me)	I
					-(4-C1Ph)	

[0045]

第1表 (続き)

N-A ¹ -S	R ¹	R4	X ¹ -X ⁴	γ¹-γ⁵	Q	融点℃
-C (Me) 2CH2-	Me	Me	3-I	2-Me-4-C(=NO-Me)CF ₃	I	
-C (Me) 2CH2-	Me	Me	3-I ·	$2-Me-4-C (=0)-CF_3$	Ι	
-C(Me) ₂ CH ₂ -	Me	Me	3-I	$2\text{-Me-4-C} \equiv \text{C-CF}_3$	I	
-C(Me) ₂ CH ₂ -	Me	Me	3-I	$2\text{-Me-}4\text{-OCF}_3$	\mathtt{Br}	
-C (Me) 2CH2-	Me	Me	3-I	$2\text{-Me-}4\text{-CF}_2\text{CF}_3$	Cl	
-C (Me) 2CH2-	Me	Me	3-I	$2\text{-Me-}4\text{-CF}_2\text{CF}_3$	Q-4	
-C (Me) 2CH2-	Me	Me	3-I	$2\text{-Me-}4\text{-CF}_2\text{CF}_3$	Q-5	
-C (Me) 2CH2-	Me	Me	3-I	$2\text{-Me-4-CF}_2\text{CF}_3$	Q-3	
-C (Me) 2CH2-	Me	Me	3-I	$2\text{-Me-4-CF}_2\text{CF}_3$	Q -2	
-C (Me) 2CH2-	Me	Me	3-I	$2\text{-Me-4-CF}_2\text{CF}_3$	Q -6	
-C (Me) 2CH2-	Me	Me	3-I	$2\text{-Me-}4\text{-CF}_2\text{CF}_3$	Q-7	
-C(Me)2CH2-	Me	Me	3-I	$2\text{-Me-}4\text{-CF}_2\text{CF}_3$	Q-8	
-C(Me) ₂ CH ₂ -	Me	Me	3-I-4-Me	$2 ext{-Me-4-CF(CF}_3)_2$	I	
-C(Me) ₂ CH ₂ -	Me	Me	3-I-4-0Me	$2\text{-Me-}4\text{-CF(CF}_3)_2$	I	
-C(Me) ₂ CH ₂ -	Me	Me	3-C1-4-Me	$2\text{-Me-}4\text{-CF(CF}_3)_2$	I	
-C(Me) ₂ CH ₂ -	Me	Me	3-Br-4-Me	$2\text{-Me-}4\text{-CF(CF}_3)_2$	I	
	-C (Me) ₂ CH ₂ - -C (Me) ₂ CH ₂ -	-C (Me) ₂ CH ₂ - Me	-C (Me) ₂ CH ₂ - Me Me	-C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I -C (Me) ₂ CH ₂ - Me Me 3-I-4-Me -C (Me) ₂ CH ₂ - Me Me 3-I-4-Me -C (Me) ₂ CH ₂ - Me Me 3-I-4-Me	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

【0046】以下に本発明の代表的な実施例を例示するが、本発明はこれらに限定されるものではない。

[0047]

物性:m. p. 118℃ 収率:40%

【0048】製造例2. ジメチル 2-{2-[N-(4-ヘプタフルオロイソプロピル-2-メチルフェニル) カルバモイル}-6-ブロモベンゾイルアミノ}プロピルスルホニウム モノメチルスルフェート(化合物No. 9)の製造。

3-プロモーN1-(4-ヘプタフルオロイソプロピルー

2ーメチルフェニル)ーN²-[1ーメチルー2ー(ジメチルスルホニル)エチル] フタル酸ジアミド1.18gをフルオロベンゼン20m1に溶解し、該溶液にジメチル硫酸0.28gを加えて、還流加熱下に5時間攪拌した。反応終了後、反応混液を氷冷し、析出した結晶を濾集することにより、目的物0.32gを得た。

物性:m. p. 115℃

収率:22%

【0049】本発明の一般式(I)で表されるフタル酸ジアミド誘導体を有効成分として含有する農園芸用殺虫剤は水稲、果樹、野菜、その他の作物及び花卉等を加害する各種農林、園芸、貯穀害虫や衛生害虫或いは線虫等の害虫防除に適しており、例えばリンゴコカクモンハマキ(Adoxophyes orana fasciata)、チャノコカクモンハマキ(Adoxophyes sp.)、リンゴコシンクイ(Grapholita inopinata)、ナシヒメシンクイ(Grapholita molesta)、マメシンクイガ(Leguminivora glycinivorella)、クワハマキ(Olethreutes mori)チャノホソガ(Caloptilia tachrysa)、キンモンホソガ(Phyllonorycter ringoniella)、ナシホソガ(Spulerrina astaurota)、モンシロチョウ(Piers rapae crucivora)、オオタバコガ類

(Heliothis sp.)、コドリンガ (Laspey resia pomon ella)、コナガ (Plutella xylostella)、リンゴヒメシンクイ (Argyresthia conjugella)、

【0050】モモシンクイガ (Carposina niponensi s) 、ニカメイガ (Chilo suppressalis) 、コプノメイ ガ (Cnaphalocrocis medinalis) 、チャマダラメイガ (Ephestia elutella)、クワノメイガ (Glyphodes py loalis)、サンカメイガ (Scirpophaga incertulas)、 イチモンジセセリ (Parnara guttata)、アワヨトウ (Pseudaletia separata) 、イネヨトウ (Sesamia infe rens)、ハスモンヨトウ (Spodoptera litura)、シロ イチモンジョトウ(Spodoptera exigua)、等の鱗翅目 害虫、フタテンヨコバイ (Macrosteles fascifrons)、 ツマグロヨコバイ (Nephotettix cincticeps) 、トピイ ロウンカ (Nilaparvata lugens) 、セジロウンカ (Soga tella furcifera)、ミカンキジラミ (Diaphorina c itri) 、ブドウコナジラミ (Aleurolobus taonabae) 、 タバココナジラミ (Bemisia tabaci) 、オンシツコナジ ラミ(Trialeurodes vaporariorum)、ニセダイコンナ プラムシ (Lipaphis erysimi) 、モモアカアプラムシ (Myzus persicae) 、

【0051】ツノロウムシ (Ceroplastes ceriferus)、ミカンワタカイガラムシ (Pulvinaria aurantii)、ミカンマルカイガラムシ (Pseudaonidia duplex)、ナシマルカイガラムシ (Comstockaspis pernicios a)、ヤノネカイガラムシ (Unaspis yanonensis) 等の 半翅目害虫、ネグサレセンチュウ (Pratylenchus s p.)、ヒメコガネ (Anomala rufocuprea)、マメコガネ (Popillia japonica)、タバコシバンムシ (Lasioder ma serricorne) 、ヒラタキクイムシ(Lyctus brunneu s)、ニジュウヤホシテントウ(Epilachna vigintioto punctata)、アズキゾウムシ(Callosobruchus chinens is) 、ヤサイゾウムシ (Listroderes costirostris) 、 コクゾウムシ (Sitophilus zeamais) 、ワタミゾウムシ (Anthonomus gradis gradis) 、イネミズゾウムシ (Li ssorhoptrus oryzophilus) 、ウリハムシ (Aulacophor a femoralis)、イネドロオイムシ (Oulema oryzae)、

【0052】キスジノミハムシ (Phyllotreta striolata)、マツノキクイムシ (Tomicus piniperda)、コロラドポテトビートル (Leptinotarsa decemlineata)、メキシカンビーンビートル (Epilachna varivestis)、コーンルートワーム類 (Diabrotica sp.)等の甲虫目害虫、ウリミバエ (Dacus (Zeugodacus) cucurbitae)、ミカンコミバエ (Dacus (Bactrocera) dorsalis)、イネハモグリバエ (Agromyza oryzae)、タマネギバエ (Delia antiqua)、タネバエ (Delia platura)、ダイズサヤタマバエ (Asphondylia sp.)、イエバエ (Musca domestica)、アカイエカ (Culex pipiens pipiens)等の双翅目害虫、ミナミネグサレセンチュウ (Pratylench

us coffeae)、ジャガイモシストセンチュウ (Globoder a rostochiensis)、ネコブセンチュウ (Meloidogyne sp.)、ミカンネセンチュウ (Tylenchulus semipenetr ans)、ニセネグサレセンチュウ (Aphelenchus avena e)、ハガレセンチュウ (Aphelenchoides ritzemabos i) 等のハリセンチュウ目害虫等に対して強い殺虫効果を有するものである。

【0053】本発明の一般式(I)で表されるフタル酸ジアミド誘導体を有効成分とする農園芸用殺虫剤は水田作物、畑作物、果樹、野菜、その他の作物及び花卉等に被害を与える前記害虫に対して顕著な防除効果を有するものであるので、害虫の発生が予測される時期に合わせて、害虫の発生前又は発生が確認された時点で水田、畑、果樹、野菜、その他の作物、花卉等の水田水、茎葉又は土壌に処理することにより本発明の農園芸用殺虫剤の所期の効果が奏せられるものである。

【0054】本発明の農園芸用殺虫剤は農薬製剤上の常法に従い、使用上都合の良い形状に製剤して使用するのが一般的である。即ち、一般式(I)で表されるフタル酸ジアミド誘導体はこれらを適当な不活性担体に、又は必要に応じて補助剤と一緒に適当な割合に配合して溶解、分離、懸濁、混合、含浸、吸着若しくは付着させ、適宜の剤形、例えば懸濁剤、乳剤、液剤、水和剤、粒剤、粉剤、錠剤等に製剤して使用すれば良い。本発明で使用できる不活性担体としては固体又は液体の何れであっても良く、固体の担体になりうる材料としては、例えばダイズ粉、穀物粉、木粉、樹皮粉、鋸粉、タバコ茎粉、クルミ殻粉、ふすま、繊維素粉末、植物エキス抽出後の残渣、粉砕合成樹脂等の合成重合体、粘土類(例えばカオリン、ベントナイト、

【0055】酸性白土等)、タルク類(例えばタルク、ピロフィライド等)、シリカ類(例えば珪藻土、珪砂、雲母、ホワイトカーボン〔含水微粉珪素、含水珪酸ともいわれる合成高分散珪酸で、製品により珪酸カルシウムを主成分として含むものもある。〕)、活性炭、イオウ粉末、軽石、焼成珪藻土、レンガ粉砕物、フライアッシュ、砂、炭酸カルシウム、燐酸カルシウム等の無機鉱物性粉末、硫安、燐安、硝安、尿素、塩安等の化学肥料、堆肥等を挙げることができ、これらは単独で若しくは二種以上の混合物の形で使用される。

【0056】液体の担体になりうる材料としては、それ自体溶媒能を有するものの他、溶媒能を有さずとも補助剤の助けにより有効成分化合物を分散させうることとなるものから選択され、例えば代表例として次に挙げる担体を例示できるが、これらは単独で若しくは2種以上の混合物の形で使用され、例えば水、アルコール類(例えばメタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール等)、ケトン類(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロへキサノン等)、エーテル

類 (例えばエチルエーテル、ジオキサン、セロソルブ、ジプロピルエーテル、テトラヒドロフラン等)、脂肪族 炭化水素類 (例えばケロシン、鉱油等)、芳香族炭化水素類 (例えばベンゼン、トルエン、キシレン、ソルベントナフサ、アルキルナフタレン等)、ハロゲン化炭化水素類 (例えばジクロロエタン、クロロホルム、四塩化炭素、塩素化ベンゼン等)、エステル類 (例えば酢酸エチル、ジイソプピルフタレート、ジブチルフタレート、ジオクチルフタレート等)、アミド類 (例えばジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド等)、ニトリル類 (例えばアセトニトリル等)、ジメチルスルホキシド類等を挙げることができる。

【0057】他の補助剤としては次に例示する代表的な 補助剤をあげることができ、これらの補助剤は目的に応 じて使用され、単独で、ある場合は二種以上の補助剤を 併用し、又ある場合には全く補助剤を使用しないことも 可能である。有効成分化合物の乳化、分散、可溶化及び /又は湿潤の目的のために界面活性剤が使用され、例え ばポリオキシエチレンアルキルエーテル、ポリオキシエ チレンアルキルアリールエーテル、ポリオキシエチレン 高級脂肪酸エステル、ポリオキシエチレン樹脂酸エステ ル、ポリオキシエチレンソルビタンモノラウレート、ポ リオキシエチレンソルビタンモノオレエート、アルキル アリールスルホン酸塩、ナフタレンスルホン酸縮合物、 リグニンスルホン酸塩、高級アルコール硫酸エステル等 の界面活性剤を例示することができる。又、有効成分化 合物の分散安定化、粘着及び/又は結合の目的のため に、次に例示する補助剤を使用することもでき、例えば カゼイン、ゼラチン、澱粉、メチルセルロース、カルボ キシメチルセルロース、アラビアゴム、ポリビニルアル コール、松根油、糠油、ベントナイト、リグニンスルホン酸塩等の補助剤を使用することもできる。

• •

【0058】固体製品の流動性改良のために次に挙げる補助剤を使用することもでき、例えばワックス、ステアリン酸塩、燐酸アルキルエステル等の補助剤を使用できる。懸濁性製品の解こう剤として、例えばナフタレンスルホン酸縮合物、縮合燐酸塩等の補助剤を使用することもできる。消泡剤としては、例えばシリコーン油等の補助剤を使用することもできる。有効成分化合物の配合制合は必要に応じて加減することができ、例えば粉剤或いは粒剤とする場合は0.01~50重量%、又乳剤或いは水和剤とする場合も同様0.01~50重量%が適当である。

【0059】本発明の農園芸用殺虫剤は各種害虫を防除するためにそのまま、又は水等で適宜希釈し、若しくは懸濁させた形で病害防除にに有効な量を当該害虫の発生が予測される作物若しくは発生が好ましくない場所に適用して使用すれば良い。本発明の農園芸用殺虫剤の使用量は種々の因子、例えば目的、対象害虫、作物の生育状況、害虫の発生傾向、天候、環境条件、剤型、施用方法、施用場所、施用時期等により変動するが、有効成分化合物として10アール当たり0.1g~10kgの範囲から目的に応じて適宜選択すれば良い。本発明の農園芸用殺虫剤は、更に防除対象病害虫、防除適期の拡大のため、或いは薬量の低減をはかる目的で他の農園芸用病虫害防除剤と混合して使用することも可能である。

【0060】以下に本発明の代表的な実施例及び試験例を示すが、本発明はこれらに限定されるものではない。 尚、処方例中、部とあるのは重量部を示す。

50部

製剤例1.

第1表記載の化合物		5	Опр
キシレン		4	0部
ポリオキシエチレンノニ	ルフェニルエーテルと		
アルキルベンゼンスルホ	ン酸カルシウムとの混合物	1	0部
以上を均一に混合溶解	して乳剤とする。		
製剤例2.			
第1表記載の化合物			3部
クレー粉末		8	2部
珪藻土粉末		1	5部

以上を均一に混合粉砕して粉剤とする。

[0061]

製剤例3.

第1又は記載の化合物 5 部 ベントナイトとクレーの混合粉末 9 0 部 リグニンスルホン酸カルシウム 5 部 以上を均一に混合し、適量の水を加えて混練し、造粒、乾燥して粒剤とする

製剤例4.

第1表記載の化合物

20部

カオリンと合成高分散珪酸

75部

ポリオキシエチレンノニルフェニルエーテルとアル

キルベンゼンスルホン酸カルシウムとの混合物

5部

以上を均一に混合粉砕して水和剤とする。

【0062】試験例1. コナガ (Plutella xylostella)に対する殺虫試験。

ハクサイ実生にコナガの成虫を放飼して産卵させ、放飼 2日後に産下卵の付いたハクサイ実生を第1表記載の化 合物を有効成分とする薬剤を50ppmに希釈した薬液 に約30秒間浸漬し、風乾後に25℃の恒温室に静置し た。薬液浸漬6日後に孵化虫数を調査し、下記の式によ り死虫率を算出し、下記基準に従って判定を行った。1 区10頭3連制

〔数1〕

無処理区孵化虫数-処理区孵化虫数

補正死虫率(%) =-

 $-\times100$

[0063]

判定基準. A・・・死虫率100%

B···死虫率99%~90%

C・・・死虫率89%~80%

D···死虫率79%~50%

上記試験の結果、化合物番号2、7、8、9、10、1 1、36、37及び38がB以上の活性を示した。

【0064】試験例2.ハスモンヨトウ(Spodoptera 1 itura) に対する殺虫試験。

無処理な**新火止数**の化合物を有効成分とする薬剤を50ppm に希釈した薬液にキャベツ葉片(品種:四季穫)を約3 0秒間浸漬し、風乾後に直径9 c mのプラスチックシャ ーレに入れ、ハスモンヨトウ2令幼虫を接種した後、蓋 をして25℃の恒温室に静置した。接種8日後に生死虫 数を調査し、下記の式により死虫率を算出した。判定基 準は試験例1に従って行った。1区10頭3連制 〔数2〕

無処理区生存虫数-処理区生存虫数

補正死虫率(%)=-

----×100

番号2、7、8、9、10、11、36、37及び38 であった。

【0065】試験例3. チャノコカクモンハマキ (Adox ophyes sp.) に対する殺虫試験。

第1表記載の化合物を有効成分とする薬剤を50ppm に希釈した薬液にチャ葉を約30秒間浸漬し、風乾後に 直径9cmのプラスチックシャーレに入れ、チャノコカ

上記試験の結果、B以上の活性を示した化合物は化合物 無処理区生存虫数キ幼虫を接種した後、25℃、湿度70%の 恒温室に静置した。接種8日後に生死虫数を調査し、試 験例1の判定基準に従って判定を行った

1区10頭3連制

上記試験の結果、B以上の活性を示した化合物は化合物 番号2、7、8、9、10、11、36、37及び38 であった。

フロントページの続き

Fターム(参考) 4H006 AA01 AA03 AB02 TN50 4H011 AC01 BA01 BB07 BC01 BC07 BC19 BC20 DA02 DA15 DA16 DD03 DD04 DH03

THIS PAGE BLANK (USPTO)