Mathematical analysis 2

Chapter 1: Multivariable and vectorial functions

Part 1: Elements of topology

R. KECHKAR

2023/2024

- Elements of topology
 - Metrics and Norms
 - Metrics
 - Norms
 - Equivalence of norms
 - Link between metric and norm
 - Topology of \mathbb{R}^n
 - Open balls, closed balls, spheres
 - Bounded sets, open and closed sets
 - Neighborhood, interior, exterior, boundry
 - Clusure, accumulation point

- Elements of topology
 - Metrics and Norms
 - Metrics
 - Norms
 - Equivalence of norms
 - Link between metric and norm
 - Topology of \mathbb{R}^n
 - Open balls, closed balls, spheres
 - Bounded sets, open and closed sets
 - Neighborhood, interior, exterior, boundry
 - Clusure, accumulation point

Definition

Let E be a non empty vectorial space on \mathbb{R} .

- **1** A metric (distance) on E is a mapping $d: E \times E \to \mathbb{R}^+$ satisfying
 - $\forall x, y \in E: d(x, y) = 0 \iff x = y.$
 - $\forall x, y \in E$: d(x, y) = d(y, x). (symmetrically)
 - $\forall x, y, z \in E$: $d(x, y) \le d(x, z) + d(z, y)$. (triangle inequality).
- **2** A metric space is a pair (E,d), where d is a metric on E.

Metric example

Example.

We can define the following metrics on \mathbb{R}^n

• The taxicab or Manhattan distance defined by

$$d_1(X, Y) = \sum_{i=1}^{n} |X_i - Y_i|$$

2 The euclidian distance defined by

$$d_2(X,Y) = \sqrt{\sum_{i=1}^{n} |X_i - Y_i|^2}$$

3 The Minikowski distance defined by

$$d_p(X,Y) = \left(\sum_{i=1}^n |X_i - Y_i|^p\right)^{1/p}$$

4 The uniform or Chebyshev distance defined by

$$d_{\infty}(X,Y) = \max_{1 < i < n} |X_i - Y_i|$$

- Elements of topology
 - Metrics and Norms
 - Metrics
 - Norms
 - Equivalence of norms
 - Link between metric and norm
 - Topology of \mathbb{R}^n
 - Open balls, closed balls, spheres
 - Bounded sets, open and closed sets
 - Neighborhood, interior, exterior, boundry
 - Clusure, accumulation point

Definition

Let E be a non empty vercorial space on \mathbb{R} .

- **1** A norm on E is a mapping $||.||: E \to \mathbb{R}^+$ satisfing
 - $\forall X \in E$: $||X|| = 0 \iff X = 0$ (definiteness).
 - $\forall X \in E, \ \forall \lambda \in \mathbb{R}$: $||\lambda X|| = |\lambda|||X||$. (homogeneity).
 - $\forall X, Y \in E$: $||X + Y|| \le ||X|| + ||Y||$. (triangle inequality).
- ② A normed space is a pair (E, ||.||), where ||.|| is a norm on E.

Norm example

Example.

We can define the following metrics on \mathbb{R}^n

• The Manhattan norm defined by

$$||X||_1 = \sum_{i=1}^n |X_i|.$$

2 The euclidian norm defined by

$$||X||_2 = \sqrt{\sum_{i=1}^n |X_i|^2}.$$

3 The Minikowski norm defined by

$$||X||_p = \left(\sum_{i=1}^n |X_i|^p\right)^{1/p}$$
.

1 The uniform or Chebyshev norm defined by

$$||X||_{\infty} = \max_{1 \le i \le n} |X_i|.$$

- Elements of topology
 - Metrics and Norms
 - Metrics
 - Norms
 - Equivalence of norms
 - Link between metric and norm
 - Topology of \mathbb{R}^n
 - Open balls, closed balls, spheres
 - Bounded sets, open and closed sets
 - Neighborhood, interior, exterior, boundry
 - Clusure, accumulation point

Equivalence of norms

Definition

Tow norms $\|\cdot\|_1$ on a vectorial space E said to be equivalent if there exists tow positive constant C_1 , C_2 such that

$$\forall X \in E: \quad C_1 ||X|| \le ||X||' \le C_2 ||X||.$$

Proposition

All norms on a finite dimensional space E are equivalent.

Proposition

The usual norms on \mathbb{R}^n are equivalent and for all X in \mathbb{R}^n and we have

$$||X||_{\infty} \le ||X||_{1} \le n||X||_{\infty}$$
.

$$||X||_{\infty} \le ||X||_2 \le \sqrt{n}||X||_{\infty}.$$

$$\frac{1}{\sqrt{n}}||X||_2 \le ||X||_1 \le n||X||_2.$$

- Elements of topology
 - Metrics and Norms
 - Metrics
 - Norms
 - Equivalence of norms
 - Link between metric and norm
 - Topology of \mathbb{R}^n
 - Open balls, closed balls, spheres
 - Bounded sets, open and closed sets
 - Neighborhood, interior, exterior, boundry
 - Clusure, accumulation point

Link between metric and norm

Proposition

Let ||.|| be a norm on \mathbb{R}^n . The mapping d defined on $\mathbb{R}^n \times \mathbb{R}^n$ by $(X,Y) \longmapsto d(X,Y) = ||X-Y||$ is a distance on \mathbb{R}^n .

Proof.

It remains to show that the mapping d satisfies the conditions of norms.

Elements of topology

- Metrics and Norms
 - Metrics
 - Norms
 - Equivalence of norms
 - Link between metric and norm
- Topology of \mathbb{R}^n
 - Open balls, closed balls, spheres
 - Bounded sets, open and closed sets
 - Neighborhood, interior, exterior, boundry
 - Clusure, accumulation point

- Elements of topology
 - Metrics and Norms
 - Metrics
 - Norms
 - Equivalence of norms
 - Link between metric and norm
 - Topology of \mathbb{R}^n
 - Open balls, closed balls, spheres
 - Bounded sets, open and closed sets
 - Neighborhood, interior, exterior, boundry
 - Clusure, accumulation point

Open balls, closed balls, spheres

Definition

Let ||.|| be a norm on \mathbb{R}^n , $a \in \mathbb{R}^n$ and $r \in \mathbb{R}_+^*$.

- $B(a,r) = \{X \in \mathbb{R}^n : ||X-a|| < r\}$ is called the open ball of radius r and center a.
- $\overline{B}(a,r) = \{X \in \mathbb{R}^n : ||X-a|| \le r\}$ is called the closed ball of radius r and center a.
- $S(a,r) = \{X \in \mathbb{R}^n : ||X-a|| = r\}$ is called the sphere ball of radius r and center a.

Open balls, closed balls, spheres

Example.

Let us determine B(a,1) of \mathbb{R}^2 for the usual norms.

• With the norm $\|\cdot\|_1$:

$$B_1(0_{\mathbb{R}^2}, 1) = \left\{ (x, y) \in \mathbb{R}^2 / \| (x, y) - (0, 0) \|_1 < 1 \right\}$$
$$= \left\{ (x, y) \in \mathbb{R}^2 / |x| + |y| < 1 \right\}.$$

- If $x \ge 0$, $y \ge 0$: $|x| + |y| < 1 \iff x + y < 1 \iff y < 1 x$.
- If $x \le 0, y \ge 0$: $|x| + |y| < 1 \iff -x + y < 1 \iff y < 1 + x$.
- If $x \ge 0, y \le 0 : |x| + |y| < 1 \iff x y < 1 \iff y > x 1$.
- If $x \le 0, y \le 0$: $|x| + |y| < 1 \Longleftrightarrow -x y < 1 \Longleftrightarrow y > -1 x$.

 $B_1(0_{\mathbb{R}^2},1)$ is the interior of diamond centered at the origin.

Open balls, closed balls, spheres

Example.

• With the norm $\|\cdot\|_2$:

$$B_2(0_{\mathbb{R}^2}, 1) = \left\{ (x, y) \in \mathbb{R}^2 / \| (x, y) - (0, 0) \|_2 < 1 \right\} = \left\{ (x, y) \in \mathbb{R}^2 / \sqrt{x^2 + y^2} < 1 \right\}$$
$$= \left\{ (x, y) \in \mathbb{R}^2 / x^2 + y^2 < 1 \right\}.$$

 $B_2(0_{\mathbb{R}^2},1)$ is the interior of circle centred at the origin and radius 1.

• With the norm $\|\cdot\|_{\infty}$:

$$\begin{split} B_{\infty}\left(0_{\mathbb{R}^{2}},1\right) &= \left\{(x,y) \in \mathbb{R}^{2} / \|(x,y) - (0,0)\|_{\infty} < 1\right\} \\ &= \left\{(x,y) \in \mathbb{R}^{2} / \max\{|x|,|y|\} < 1\right\} \\ B_{\infty}\left(0_{\mathbb{R}^{2}},1\right) &= \left\{(x,y) \in \mathbb{R}^{2} / |x| < 1 \ et \ |y| < 1\right\} = \left] -1,1[\times] -1,1[.] \end{split}$$

 $B_{\infty}(0_{\mathbb{R}^2},1)$ is the interior of square centered at the origin and side 2.

- Elements of topology
 - Metrics and Norms
 - Metrics
 - Norms
 - Equivalence of norms
 - Link between metric and norm
 - Topology of \mathbb{R}^n
 - Open balls, closed balls, spheres
 - Bounded sets, open and closed sets
 - Neighborhood, interior, exterior, boundry
 - Clusure, accumulation point

Bounded sets, open and closed sets

Definition

Let ||.|| be a norm on \mathbb{R}^n and E a non empty subset of \mathbb{R}^n . We say that E is **bounded set** if

$$\exists a \in \mathbb{R}^n, \exists r > 0 : E \subset B(a,r) \quad (or \ E \subset \overline{B}(a,r)).$$

Definition

Let ||.|| be a norm on \mathbb{R}^n

- A non empty subset E of \mathbb{R}^n is said to be an **open of** \mathbb{R}^n if $\forall X \in E, \exists r > 0 : B(X, r) \subseteq E$.
- A non empty subset E of \mathbb{R}^n is said to be a **closed of** \mathbb{R}^n if E^c is open.

Bounded sets, open and closed sets

Example.

- A singleton $\{X\}$, $X \in \mathbb{R}^n$ is closed.
- An open ball in \mathbb{R}^n is open.
- A closed ball in \mathbb{R}^n is closed.
- \emptyset and \mathbb{R}^n are opens and closed in the same time.
- The set $\{(X, Y) \in \mathbb{R}^2 : 0 \le X < 1\}$ is neither open nor closed.

Proposition

We have

- An arbitrary union of open sets is open.
- A finite intersection of open sets is open.
- An arbitrary intersection of closed sets is closed.
- A finite union of closed sets is closed.

- Elements of topology
 - Metrics and Norms
 - Metrics
 - Norms
 - Equivalence of norms
 - Link between metric and norm
 - Topology of \mathbb{R}^n
 - Open balls, closed balls, spheres
 - Bounded sets, open and closed sets
 - Neighborhood, interior, exterior, boundry
 - Clusure, accumulation point

Neighborhood, interior, exterior, boundry

Definition

Let ||.|| be a morm on \mathbb{R}^n , E a subset of \mathbb{R}^n and $X_0 \in \mathbb{R}^n$.

- *E* is neighborhood of X_0 if: $\exists r > 0$, $B(X_0, r) \subseteq E$.
- X_0 is an interior point of E if: $\exists r > 0$, $B(X_0, r) \subseteq E$.
- The set of all interior points of is denoted by Int E
- The exterior of E is the interior of E^c and is denoted by Ext(E).
- X_0 is said to be **boundary** point or frontier point of E if each open set containing X_0 intersects both E and E^c .
- The set of all boundary points of E is denoted by ∂E .

Neighborhood, interior, exterior, boundry

Example.

Let us consider the subset of \mathbb{R}^n defined by

$$E = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1\}$$

Then for the euclidean norm

- The points (-1/2, -1) and (1/3, 5) are interior points. but the point (2, 1) is an exterior point.
- $Int E = \{(x, y) \in \mathbb{R}^2 : -1 < x < 1\}.$
- $ExtE = \{(x, y) \in \mathbb{R}^2 : x < -1 \text{ or } x > 1\}.$
- $\partial E = \{(x, y) \in \mathbb{R}^2 : x = -1 \text{ or } x = 1\}.$

Neighborhood, interior, exterior, boundry

Proposition

Let E be a non empty subset of \mathbb{R}^n .

- *Int E* is the larget open subset of *E*.
- E is open if and only if Int E = E.
- If E is closed then $E = Int E \cup \partial E$.

- Elements of topology
 - Metrics and Norms
 - Metrics
 - Norms
 - Equivalence of norms
 - Link between metric and norm
 - Topology of \mathbb{R}^n
 - Open balls, closed balls, spheres
 - Bounded sets, open and closed sets
 - Neighborhood, interior, exterior, boundry
 - Clusure, accumulation point

Clusure, accumulation point

Definition

Let ||.|| be a norm on \mathbb{R}^n and E a subset of \mathbb{R}^n .

• A point $X \in E$ is an adherent point for E if every open set containing X contains at least one point of E:

$$\forall r > 0 : B(X, r) \cap E \neq \emptyset.$$

- The set of all adherent points of \underline{E} is called **closure** of \underline{E} and is denoted by $\overline{\underline{E}}$.
- A point X is an accumulation point if

$$\forall r > 0 : B(X, r) \setminus \{X\} \cap E \neq \emptyset.$$