Regular language and context-free grammar

Lin Chen

Email: Lin.Chen@ttu.edu

Grader: zulfi.khan@ttu.edu

Context-free grammar

- Is CFG more general than REG?
- CFG is not a subset of REG, as $\{0^n1^n : n \ge 0\}$ is in CFG
- $L_{REG} \subseteq L_{CFG}$

$$L_{REG} \subseteq L_{CFG}$$

- Given any regular expression r, we can create a CFG G
 - $= (V, \Sigma, R, S)$ such that L[G] = L[r]
 - We prove it inductively

Regular expression

- The regular expressions of Σ^* are all strings over $\Sigma \cup \{(,),\emptyset,+,\star\}$ that can be obtained through the following operations:
 - \emptyset and every member of Σ is a regular expression
 - If α and β are regular expressions, then so is $(\alpha\beta)$
 - if α and β are regular expressions, then so is $(\alpha + \beta)$
 - if α is a regular expression, then so is α^*
 - Nothing else is a regular expression

$$L_{REG} \subseteq L_{CFG}$$

Base case

$$-r=a$$
, $a \in \Sigma$

• CFG : $S \rightarrow a$

$$L_{REG} \subseteq L_{CFG}$$

- Base case
 - -r=e

• CFG : $S \rightarrow e$

$$L_{REG} \subseteq L_{CFG}$$

Base case

$$-r=\emptyset$$

• CGF: $S \rightarrow SS$ (no derivation to terminals)

$$L_{REG} \subseteq L_{CFG}$$

$$- r = (r_1 r_2)$$

- CFG:
 - suppose we have G_1 , G_2 such that $L(G_i) = L(r_i)$ for i = 1,2

$$L_{REG} \subseteq L_{CFG}$$

$$- r = (r_1 r_2)$$

• CFG:

- suppose we have G_1 , G_2 such that $L(G_i) = L(r_i)$ for i = 1,2
- Let S_1 , S_2 be the start symbols of G_1 , G_2
- G = all rules from G_1 , G_2 , plus new start symbol S, and new rule:

$$S \rightarrow S_1 S_2$$

$$L_{REG} \subseteq L_{CFG}$$

$$-r = (r_1 + r_2)$$

- CFG:
 - suppose we have G_1 , G_2 such that $L(G_i) = L(r_i)$ for i = 1,2

$$L_{REG} \subseteq L_{CFG}$$

$$-r = (r_1 + r_2)$$

• CFG:

- suppose we have G_1 , G_2 such that $L(G_i) = L(r_i)$ for i = 1,2
- Let S_1, S_2 be the start symbols of G_1, G_2
- G = all rules from G_1 , G_2 , plus new start symbol S, and new rule: $S \rightarrow S_1 | S_2$

$$L_{REG} \subseteq L_{CFG}$$

- Recursive case
 - $-r = (r_1^*)$

- CFG:
 - suppose we have G_1 such that $L(G_1) = L(r_1)$

$$L_{REG} \subseteq L_{CFG}$$

$$-r = (r_1^*)$$

• CFG :

- suppose we have G_1 such that $L(G_1) = L(r_1)$
- Let S_1 be the start symbols of G_1
- G = all rules from G_1 , plus new start symbol S, and new rule:

$$S \rightarrow S_1 S | e$$

• Recall $L_{REG} = L_{DFA}$, we can also transform a DFA directly to CFG $L = \{w \in \{0,1\}^* : 101 \text{ is a substring of } w\}.$

• Recall $L_{REG}=L_{DFA}$, we can also transform a DFA directly to CFG $L=\{w\in\{0,1\}^*:\ 101\ \text{is a substring of}\ w\}.$

$$\begin{array}{ccc} S & \rightarrow & 0S|1A \\ A & \rightarrow & 0B|1A \\ B & \rightarrow & 0S|1C \\ C & \rightarrow & 0C|1C|\epsilon \end{array}$$

- Recall $L_{REG} = L_{DFA}$, we can also transform a DFA directly to CFG $L = \{w \in \{0,1\}^* : 101 \text{ is a substring of } w\}.$
 - Example: watch the string 010011011 S, S, A, B, S, A, A, B, C, C.

 $S \rightarrow 0S|1A$ $A \rightarrow 0B|1A$ $B \rightarrow 0S|1C$ $C \rightarrow 0C|1C|\epsilon$

- Recall $L_{REG} = L_{DFA}$, we can also transform a DFA directly to CFG $L = \{w \in \{0,1\}^* : 101 \text{ is a substring of } w\}.$
 - Example: watch the string 010011011

S, S, A, B, S, A, A, B, C, C.

 $S \Rightarrow 0S$ $\Rightarrow 01A$ $\Rightarrow 010B$ $\Rightarrow 0100S$ $\Rightarrow 01001A$ $\Rightarrow 010011A$ $\Rightarrow 0100110B$ $\Rightarrow 01001101C$ $\Rightarrow 010011011C$ $\Rightarrow 010011011C$

 $\begin{array}{ccc} S & \rightarrow & 0S|1A \\ A & \rightarrow & 0B|1A \\ B & \rightarrow & 0S|1C \\ C & \rightarrow & 0C|1C|\epsilon \end{array}$

- Recall $L_{REG} = L_{DFA}$, we can also transform a DFA directly to CFG $L = \{w \in \{0,1\}^* : 101 \text{ is a substring of } w\}.$
 - Example: watch the string 10011

$$S \rightarrow 0S|1A$$

$$A \rightarrow 0B|1A$$

$$B \rightarrow 0S|1C$$

$$C \rightarrow 0C|1C|\epsilon$$

- Recall $L_{REG} = L_{DFA}$, we can also transform a DFA directly to CFG $L = \{w \in \{0,1\}^* : 101 \text{ is a substring of } w\}.$
 - Example: watch the string 10011

$$S \Rightarrow 1A \qquad B \rightarrow 0S|1C$$

$$C \rightarrow 0C|1C|\epsilon$$

$$\Rightarrow 10B$$

$$\Rightarrow 100S$$

$$\Rightarrow 1001A$$

$$\Rightarrow 10011A.$$

$$S \rightarrow 0S|1A$$

$$A \rightarrow 0B|1A$$

$$B \rightarrow 0S|1C$$

$$C \rightarrow 0C|1C|\epsilon$$

- A context-free grammar $G = (V, \Sigma, R, S)$ is said to be in Chomsky normal form, if every rule in R has one of the following three forms
 - 1. $A \rightarrow BC$, where A, B, C nonterminals, $B \neq S$, and $C \neq S$.
 - 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal.
 - 3. $S \rightarrow e$, where S is the start variable.

• Theorem: For every CFG L, there exists a CFG in Chomsky normal form whose language is L.

```
- 1. A \rightarrow BC, where A, B, C are nonterminals, B \neq S, and C \neq S.
```

^{- 2.} $A \rightarrow a$, where A is a nonterminal and a is a terminal

^{- 3.} $S \rightarrow e$, where S is the start variable.

- Theorem: For every CFG L, there exists a CFG in Chomsky normal form whose language is L.
- We can always modify a given CFG into Chomsky normal form in 5 steps.

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

- We can always modify a given CFG into Chomsky normal form in 5 steps.
- Step 1: Eliminate the start variable from the right-hand side of the rules.
 - $G_1 = (V_1, \Sigma, R_1, S_1),$
 - New start variable S1 is the start variable
 - $V_1 = V \cup \{S_1\},\$
 - $R_1 = R \cup \{S_1 \to S\}.$

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

- We can always modify a given CFG into Chomsky normal form in 5 steps.
 - Step 2: Eliminate all rules of the form $A \rightarrow e$ for $A \neq S$
 - 1. Remove $A \rightarrow e$
 - 2. Patch the rules such that:
 - a). $B \rightarrow A$, add the rule $B \rightarrow e$ unless this rule has already been deleted
 - b). $B \rightarrow uAv$ (where u and v are strings that are not both empty), add the rule $B \rightarrow uv$;
 - c). $B \to uAvAw$ (where u, v, w are strings), add the rules $B \to uvw$, $B \to uAvw$, and $B \to uvAw$; if u = v = w = e and the rule $B \to e$ has already been deleted, then we do not add the rule $B \to e$;
 - d). treat rules in which A occurs more than twice on the right-hand side in a similar fashion

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

- We can always modify a given CFG into Chomsky normal form in 5 steps.
 - Step 3: Eliminate all rules of the form $A \rightarrow B$ for nonterminals A, B
 - 1. Remove $A \rightarrow B$
 - 2. Patch the rules such that:
 - a). $B \rightarrow u$, add the rule $A \rightarrow u$ unless this rule has already been deleted

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

- We can always modify a given CFG into Chomsky normal form in 5 steps.
 - Step 4: Eliminate all rules having more than 2 symbols on the right
 - 1. Remove $A \rightarrow u_1 u_2 \cdots u_k$
 - 2. Patch the rules such that:

$$\begin{array}{cccc}
A & \rightarrow & u_1 A_1 \\
A_1 & \rightarrow & u_2 A_2 \\
A_2 & \rightarrow & u_3 A_3 \\
& \vdots \\
A_{k-3} & \rightarrow & u_{k-2} A_{k-2} \\
A_{k-2} & \rightarrow & u_{k-1} u_k
\end{array}$$

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

- We can always modify a given CFG into Chomsky normal form in 5 steps.
 - Step 5: Eliminate $A \rightarrow uv$ where u, v are not both nonterminals
 - 1. Remove $A \rightarrow u_1 u_2$
 - 2. Patch the rules such that:
 - a). u_1 terminal, u_2 nonterminal, then add $A \rightarrow U_1 u_2$,
 - $U_1 \rightarrow u_1$
 - b). u_1 nonterminal, u_2 terminal, then add $A \rightarrow u_1 U_2$,
 - $U_2 \rightarrow u_2$
 - c). u_1 , u_2 different terminals, then add $A \rightarrow U_1U_2$,
 - $U_1 \rightarrow u_1, U_2 \rightarrow u_2$
 - d). u_1, u_2 same terminal, then add $A \rightarrow U_1U_1, U_1 \rightarrow u_1$

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

$$A \rightarrow BAB|B|e$$

$$B \rightarrow 00|e$$

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

• Example: $G = (V, \Sigma, R, A)$, where $V = \{A, B, 0, 1\}, \Sigma = \{0, 1\}$, start variable A, Rules:

$$A \to BAB|B|e$$

$$B \to 00|e$$

- Step 1: Eliminate the start variable from the right-hand side of the rules.

$$S \to A$$

$$A \to BAB|B|e$$

$$B \to 00|e$$

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

```
S \rightarrow A

A \rightarrow BAB|B|e After Step 1

B \rightarrow 00|e
```

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

• Example: $G = (V, \Sigma, R, A)$, where $V = \{A, B, 0, 1\}, \Sigma = \{0, 1\}$, start variable A, Rules:

```
S \rightarrow A

A \rightarrow BAB|B|e After Step 1

B \rightarrow 00|e
```

- Step 2: Eliminate all rules of the form $A \rightarrow e$ for $A \neq S$
 - 1. Remove $A \rightarrow e$
 - 2. Patch the rule:

$$S \rightarrow A$$
, add $S \rightarrow e$
 $A \rightarrow BAB$, add $A \rightarrow BB$

3. Remove $B \rightarrow e$

$$A \rightarrow BAB$$
, add $A \rightarrow AB$, $A \rightarrow BA$
 $A \rightarrow B$, add $A \rightarrow e$, but is deleted already, do not add

 $A \rightarrow BB$, add $A \rightarrow B$, do not add $A \rightarrow e$

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

```
S \rightarrow A|e

A \rightarrow BAB|B|BB|AB|BA After Step 2

B \rightarrow 00
```

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

```
S \rightarrow A|e

A \rightarrow BAB|B|BB|AB|BA After Step 2

B \rightarrow 00
```

- Step 3: Eliminate all rules of the form $A \rightarrow B$ for nonterminals A, B
 - 1. Remove $S \rightarrow A$ Patch the rule: Add $S \rightarrow BAB|B|BB|AB|BA$
 - 2. Remove $S \rightarrow B$ Add $S \rightarrow 00$
 - 3. Remove $A \rightarrow B$ Add $A \rightarrow 00$

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

```
S \rightarrow e|BAB|BB|AB|BA|00

A \rightarrow BAB|BB|AB|BA|00 After Step 3

B \rightarrow 00
```

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

```
S \rightarrow e|BAB|BB|AB|BA|00

A \rightarrow BAB|BB|AB|BA|00 After Step 3

B \rightarrow 00
```

- Step 4: Eliminate all rules having more than 2 symbols on the right
 - 1. Remove $S \to BAB$ Add $S \to BA_1$ and $A_1 \to AB$
 - 2. Remove $A \rightarrow BAB$ Add $A \rightarrow BA_2$ and $A_2 \rightarrow AB$

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

```
S \rightarrow e|BB|AB|BA|00|BA_1

A \rightarrow BB|AB|BA|00|BA_2 After Step 4

B \rightarrow 00

A_1 \rightarrow AB

A_2 \rightarrow AB
```

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

```
S \rightarrow e |BB|AB|BA|00|BA_1

A \rightarrow BB|AB|BA|00|BA_2 After Step 4

B \rightarrow 00

A_1 \rightarrow AB

A_2 \rightarrow AB
```

- Step 5: Eliminate $A \rightarrow uv$ where u, v are not both nonterminals
 - 1. Remove $S \to 00$ Add $S \to A_3 A_3$ and $A_3 \to 0$
 - 2. Remove $A \rightarrow 00$ Add $A \rightarrow A_4 A_4$ and $A_4 \rightarrow 0$
 - 3. Remove $B \rightarrow 00$ Add $B \rightarrow A_5 A_5$ and $A_5 \rightarrow 0$

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.

```
S \rightarrow e |BB|AB|BA|A_3A_3|BA_1

A \rightarrow BB|AB|BA|A_4A_4|BA_2 After Step 5

B \rightarrow A_5A_5

A_1 \rightarrow AB

A_2 \rightarrow AB

A_3 \rightarrow 0

A_4 \rightarrow 0

A_5 \rightarrow 0
```

- 1. $A \rightarrow BC$, where A, B, C are nonterminals, $B \neq S$, and $C \neq S$.
- 2. $A \rightarrow a$, where A is a nonterminal and a is a terminal
 - 3. $S \rightarrow e$, where S is the start variable.