Exercici 14. Considerem la següent gramàtica incontextual:

$$S \rightarrow \underline{id} = C \mid if(C) S \mid \underline{while}(C) S \mid \{L\}.$$

$$L \to S \mid L ; S.$$

$$C \to \underline{id} == \underline{id} \mid \underline{id} ! = \underline{id} \mid C \&\& \underline{id}.$$

Llavors es demana:

- (a) Demostrar que la gramàtica no és LL(1).
- (b) Obtenir una gramàtica equivalent LL(1).
- (c) Construir la taula d'anàlisi de la gramàtica obtinguda en (b).

SOLUCIÓN: La gramática genera un minilenguaje de programación, ya que se generan instrucciones de asignación, instrucciones condicionales, instrucciones repetitivas (bucles) e instrucciones compuestas. Obsérvese que la variable C genera expresiones booleanas simples.

- (a) Se observa que hay conflictos al construir la tabla de análisis de la gramática. Por ejemplo, las producciones $C \to \underline{id} == \underline{id}$ y $C \to \underline{id} != \underline{id}$ pertenecen a TABLA (C,\underline{id}) . Por consiguiente, la gramática no es LL(1).
- (b) Para transformar la gramática en LL(1), aplicamos las reglas de factorización y recursión que vimos en clase de teoría. En primer lugar, aplicando la regla de recursión , reemplazamos las producciones $L \to S \mid L$; S por $L \to SL'$, $L' \to SL' \mid \lambda$.

A continuación, aplicando la regla de factorización, reemplazamos las producciones $C \to \underline{id} == \underline{id} \mid \underline{id} \mid = \underline{id}$ por $C \to \underline{id} C'$, $C' \to == id \mid ! = id$.

Por último, aplicando la regla de recursión , reemplazamos las producciones $C \to \underline{id}\,C' \mid C \&\& \underline{id}$ por $C \to \underline{id}\,C'C''$, $C'' \to \&\& \underline{id}\,C'' \mid \lambda$.

Por tanto, obtenemos la siguiente gramática G' equivalente a G:

$$1. S \rightarrow id = C$$

$$2. S \rightarrow if(C) S$$

$$3. S \rightarrow while (C) S$$

$$4. S \rightarrow \{L\}$$

$$5.L \rightarrow SL'$$

$$6. L' \rightarrow : SL'$$

$$7. L' \rightarrow \lambda$$

$$8. C \rightarrow \underline{id} C' C''$$

$$9. C' \rightarrow == \underline{id}$$

$$10. C' \rightarrow ! = \underline{id}$$

$$11. C'' \rightarrow \&\& \underline{id} C''$$

$$12. C'' \rightarrow \lambda$$

Tenemos que el conjunto Primeros(S) está compuesto por los símbolos \underline{id} , \underline{if} , \underline{while} y {. Tenemos que } es el único símbolo que está en Siguientes(L'), y que el conjunto Siguientes(C'') está compuesto por los símbolos) y }. Entonces, la tabla de análisis que se obtiene para G' es la siguiente:

TABLA	<u>id</u>	<u>if</u>	while	{	}	()	;	&&	=	==	! =
S	1	2	3	4								
L	5	5	5	5								
L'					7			6				
С	8											
C'											9	10
C"					12		12		11			

Como la tabla de análisis para G' no tiene conflictos, se tiene que G' es $\mathrm{LL}(1)$.