RC4136 General Performance Quad 741 Operational Amplifier

Features

- Unity gain bandwidth 3 MHz
- Short circuit protection
- No frequency compensation required
- No latch-up
- Large common mode and differential voltage ranges
- Low power consumption
- Parameter tracking over temperature range
- Gain and phase match between amplifiers

Description

The 4136 is made up of four 741 type independent high gain operational amplifiers internally compensated and constructed on a single silicon chip using the planar epitaxial process.

This amplifier meets or exceeds all specifications for 741 type amplifiers. Excellent channel separation allows the use of the 4136 quad amplifier in all 741 operational amplifier applications providing the highest possible packaging density.

The specially designed low noise input transistors allow the 4136 to be used in low noise signal processing applications such as audio preamplifiers and signal conditioners.

Ordering Information

Part Number	Package	Operating Temperature Range
RC4136N	N	0°C to +70°C
RC4136M	M	0°C to +70°C
RV4136N	N	-25° C to +85°C
RV4136D	D	-25° C to +85°C
RM4136D	D	-55°C to +125°C
RM4136D/883B*	D	-55°C to +125°C

Notes

*/883B suffix denotes Mil-Std-883, Level B processing

N = 14-lead plastic DIP

D = 14-lead ceramic DIP

M = 14-lead plastic SOIC

Contact a Raytheon sales office or representative for ordering information on special package/temperature range combinations.

Connection Information

Absolute Maximum Ratings

Supply Voltage
RM4136±22V
RC4136, RV4136±18V
Input Voltage*±30V
Differential Input Voltage30V
Output Short Circuit Duration**Indefinite
Storage Temperature
Range65°C to +150°C
Operating Temperature Range
RM413655°C to +125°C
RV413625°C to +85°C
RC41360°C to +70°C
Lead Soldering Temperature
(DIP, 60 sec)+300°C
(SO-14, 10 sec)+260°C

^{*}For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Thermal Characteristics

	14-Lead Small Outline	14-Lead Plastic DIP	14-Lead Ceramic DIP
Max. Junction Temp.	125°C	125°C	175°C
Max. P _D T _A <50°C	300 mW	468 mW	1042 mW
Therm. Res θ _{Jc}	_	_	50°C/W
Therm. Res. θ _{JA}	200°C/W	160°C/W	120°C/W
For T _A >50°C Derate at	5.0 mW per °C	6.25 mW per *C	8.33 mW/ per *C

Mask Pattern

^{**}Short circuit may be to ground, typically 45 mA.

Electrical Characteristics ($V_s = \pm 15V$ and $T_A = +25^{\circ}C$, unless otherwise noted)

		RM4136			RC/RV4136			
Parameters	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	$R_S \le 10 k\Omega$		0.5	5.0		0.5	6.0	m۷
Input Offset Current			5.0	200		5.0	200	nA
Input Bias Current			40	500		40	500	nA
Input Resistance		0.3	5.0		0.3	5.0		MΩ
Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_{OUT} = \pm 10V$	50	300		20	300		V/mV
Output Voltage Swing	$R_L \ge 10k\Omega$	±12	±14		±12	±14		V
	$R_L \geq 2k\Omega$	±10	±13		±10	±13		
Input Voltage Range		±12	±14		±12	±14		٧
Common Mode Rejection Ratio	$R_S \le 10 k\Omega$	70	100		70	100		dB
Power Supply Rejection Ratio	$R_S \le 10k\Omega$	76	100		76	100		dB
Power Consumption	R _L = ∞, All Outputs		210	340		210	340	mW
Transient Response Rise Time	$V_{IN} = 20 \text{mV}, R_L = 2 \text{k}\Omega$		0.13			0.13		μS
Overshoot	C _L ≤ 100pF		5.0			5.0		%
Unity Gain Bandwidth			3.0			3.0		MHz
Slew Rate	$R_L \ge 2k\Omega$		1.5			1.0		V/µS
Channel Separation	$f = 1.0kHz, R_S = 1k\Omega$		90			90		dB
The following specifications ap	oply for -55°C \leq T _A \leq +125°C f T _A \leq +85°C for RV413	or RM4 6, V _s =	1136; 0°0 ±15V	C ≤ T _A ≤	+70°C	for RC4	136; -25	5°C ≤
Input Offset Voltage	$R_S \le 10k\Omega$			6.0			7.5	mV
Input Offset Current RM/RC4136				500			300	
RV4136							500	nA
Input Bias Current RM/RC4136				1500			800	
RV4136							1500	nA
Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_{OUT} = \pm 10V$	25			15			V/mV
Output Voltage Swing	$R_L \ge 2k\Omega$	±10			±10			٧
Power Consumption			240	400		240	400	mW

Electrical Characteristics Comparison ($V_s = \pm 15 V$ and $T_A + 25 ^{\circ} C$ unless otherwise noted)

Parameter	RC4136 (Typ)	RC741 (Typ)	LM324 (Typ)	Units
Input Offset Voltage	0.5	2.0	2.0	mV
Input Offset Current	5.0	10	5.0	nA
Input Bias Current	40	80	55	nA
Input Resistance	5.0	2.0		MΩ
Large Signal Voltage Gain (R _L = 2kΩ)	300	200	100	V/mV
Output Voltage Swing (R _L = 2kΩ)	±13V	±13V	+V _S - 1.2V to -V _S	V
Input Voltage Range	±14V	±13V	+V _S - 1.5V to -V _S	V
Common Mode Rejection Ratio	100	90	85	dB
Power Supply Rejection Ratio	100	90	100	dB
Transient Response Rise Time	0.13	0.3		μS
Overshoot	5.0	5.0		%
Unity Gain Bandwidth	3.0	0.8	0.8	MHz
Slew Rate	1.0	0.5	0.5	V/µS
Input Noise Voltage Density (f = 1kHz)	10	22.5		nV/√Hz
Short Circuit Current	±45	±25		mA

Typical Performance Characteristics

Input Bias Current as a Function of Ambient Temperature

Input Offset Current as a Function of Ambient Temperature

Common Mode Range as a Function of Supply Voltage

Typical Output Voltage as a Function of Supply Voltage

Open Loop Gain as a Function of Temperature

Power Consumption as a Function of Ambient Temperature

Typical Performance Characteristics (Continued)

Open Loop Voltage Gain as a Function of Frequency

Output Voltage Swing as a Function of Frequency

Input Noise Voltage as a Function of Frequency

Input Noise Current as a Function of Frequency

Output Voltage Swing as a Function of Load Resistance

Quiescent Current as a Function of Supply Voltage

Typical Performance Characteristics (Continued)

Total Harmonic Distortion vs. Output Voltage

4136 Versus 741

Although the 324 is an excellent device for single-supply applications where ground sensing is important, it is a poor substitute for four 741s in split supply circuits.

The simplified input circuit of the 4136 exhibits much lower noise than that of the 324 and exhibits no crossover distortion as compared with the 324 (see illustration). The 324 shows serious crossover distortion and pulse delay in attempting to handle a large signal input pulse.

Comparative Crossover Distortion

Voltage Follower Large Signal Pulse Response

Input Common Mode Voltage Range as a Function of Supply Voltage

Unit Cost Comparisons

Typical Applications

Stereo Tone Control

400 Hz Lowpass Butterworth Active Filter

RIAA Preamplifier

Low Frequency Sine Wave Generator With Quadrature Output

Triangular-Wave Generator

Raytheon

Lamp Driver

Power Amplifier

65-00523A

Voltage Follower

Comparator With Hysteresis

DC Coupled 1 kHz Lowpass Active Filter

Squarewave Oscillator

1 kHz Bandpass Active Filter

AC Coupled Non-Inverting Amplifier

AC Coupled Inverting Amplifier

Voltage Controlled Oscillator (VCO)

Full-Wave Rectifier and Averaging Filter

Notch Filter Using the 4136 as a Gyrator

Notch Frequency as a Function of C1

Multiple Aperture Window Discriminator

Differential Input Instrumentation Amplifier With High Common Mode Rejection

Analog Multiplier/Divider

65-00534A

Spot Noise Measurement Test Circuit

65-00535A

Schematic Diagram

