Do not distribute. For your personal study only.

Name:_

- 1. The following data matrix is observed for a two-dimensional random vector $\mathbf{X} = \begin{bmatrix} 3 & 4 \\ 6 & 2 \\ 3 & 3 \end{bmatrix}$ Assume that the population is multivariate normal with unknown mean vector and unknown covariance matrix .
 - (a) Use the Hotelling T^2 to test $H_0: \mu = (3,2)^T$ against $H_a: \mu = (3,2)^T$ at 0.05 level of significance.

(b) (b) Construct the simultaneous 95% T^2 confidence levels for μ_1, μ_2 from the mean vector μ .

2. A cardiologist considered three treatments for treating patients who had recently experienced severe heart attacks. Forty patients (n = 40) enrolling in the study received all three treatments, one at a time, spaced out over sufficient time so there would not be any carry-over effect. The order of applying the treatments was also randomized. A single response variable was calculated after a week of each treatment to produce scores of efficacy. We provide the summary statistics from the study:

$$\overline{\mathbf{x}} = \begin{bmatrix} 46.1 \\ 57.3 \\ 50.4 \end{bmatrix} \qquad \text{and} \qquad \mathbf{S} = \begin{bmatrix} 101.3 & 63.0 & 71.0 \\ 63.0 & 80.2 & 55.6 \\ 71.0 & 55.6 & 97.4 \end{bmatrix}$$

Assume that the population is multivariate normal with unknown mean vector μ and unknown covariance matrix Σ .

- (a) What is the experimental design of this study?
- (b) To test the equality of the treatments at .05 level, specify the appropriate null and alternative hypotheses through an explicit contrast matrix, C.
- (c) Calculate the Hotelling T^2 statistic.

- (d) What is the distribution of T^2 under H_0 ?
- (e) What can you conclude about the equality of means?

3. Consider the spectral decomposition of the covariance matrix for two variables, X_1 =height of lawyer, X_2 = number of litigation cases lost throughout career:

$$\Sigma = \begin{bmatrix} 3 & -2 \\ -2 & 6 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 7 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$

(a) What is the relationship between the total variance, $\operatorname{tr}(\Sigma) = \sigma_{11} + \sigma_{22}$, and the eigenvalues λ_1, λ_2 ?

(b) What proportion of the total variance does the first population principal component, Y_1 , explain?

(c) Calculate ρ_{Y_1,X_1} and ρ_{Y_1,X_2} . Do these numbers shed any additional light on principal component Y_1 , than say, the components of e_1 ?

4. Complete Exercise 9.12(a)-(c) in your textbook.