

Probability Methods in Engineering

Dr. Safdar Nawaz Khan Marwat DCSE, UET Peshawar

Lecture 11

Geometric Probability Law

- > Independent Bernoulli trials till occurrence of first success
- Success probability p
- $\rightarrow m-1$ trials result in failure
- $\rightarrow m^{th}$ trial results in success
- > Probability of such event is

$$p(m) = P[A_1^c A_2^c \dots A_{m-1}^c A_m] = (1-p)^{m-1}p$$

Geometric Probability Law (cont.)

- \triangleright If more than K trials required before a success
 - \square Probability of performing at least K trials before a success

$$P[\{m > K\}] = q^K$$

Examples

What is the probability that the coin has to be flipped i) 4 times ii) more than 4 times, for getting heads for the first time? The probability of heads is 0.6 and the probability of tails is 0.4.

Examples (cont.)

Computer A sends a message to computer B over an unreliable radio link. The message is encoded so that B can detect when errors have been introduced into the message during transmission. If B detects an error, it requests A to retransmit it. If the probability of a message transmission error is 0.1, what is the probability that a message needs to be transmitted i) twice ii) more than two times?

Sequences of Dependent Experiments

- > Sequence or "chain" of subexperiments
- > Outcome of a given subexperiment determines
 - ☐ Which subexperiment is performed next

$$P[\{s_0\} \cap \{s_1\} \cap \{s_2\}] = P[\{s_2\} | \{s_0\} \cap \{s_1\}] . P[\{s_0\} \cap \{s_1\}]$$

$$= P[\{s_2\} | \{s_0\} \cap \{s_1\}].P[\{s_1\} | \{s_0\}].P[\{s_0\}]$$

- > If next subexperiment depends only on last outcome
 - ☐ The sequence is called "Markov chain"

$$P[\{s_0\} \cap \{s_1\} \cap \{s_2\}] = P[\{s_2\} | \{s_1\}] . P[\{s_1\} | \{s_0\}] . P[\{s_0\}]$$

> Simplify notation by removing braces

Examples (cont.)

> A sequential experiment involves repeatedly drawing a ball from one of two urns, noting the number on the ball, and replacing the ball in its urn. Urn 0 contains a ball with the number 1 and two balls with the number 0, and urn 1 contains five balls with the number 1 and one ball with the number O. The urn from which the first draw is made is selected at random by flipping a fair coin. Urn 0 is used if the outcome is heads and urn 1 if the outcome is tails. Thereafter the urn used in a subexperiment corresponds to the number on the ball selected in the previous subexperiment. Draw the corresponding trellis diagram.

Examples (cont.)

Find the probability of the sequence 0011 for the urn experiment

