Problem

(AMC) Point E is selected on side AB of triangle ABC in such a way that AE: EB = 1:3 and point D is selected on side BC so that CD: DB = 1:2.

The point of intersection of AD and CE is F. Then

EF + $\frac{AF}{FD}$ is (A) $\frac{4}{5}$ (B) $\frac{5}{4}$ (C) $\frac{3}{2}$ (D) 2 (E) $\frac{5}{2}$

Solution

(C).

Draw DH//AB. : DG: 3a = b: 3b; DG = a = EA. : EF = FG and AF = GD, so that AF/FD = 1. Also DH : 4a = b : 3b, DH = 4a/3 and $GH=DH-DG=a/3; :: GC=\frac{1}{3}EC$ and $EG=\frac{2}{3}EC$ and , since $EF=FG,FC=\frac{2}{3}EC.$:

$$EF/FC = \frac{1}{2}.$$

$$\therefore \quad (EF/FC) + (AF/FD) = \frac{1}{2} + 1 = \frac{3}{2}.$$