Chapter 2 (Initial Value Problems) and Chapter 3 (Numerical Linear Algebra)

Submit carefully written solutions to the following exercises: Exercises 2.7, 2.14, 3.12 and 3.15.

Attach the marking sheet to the front of your solutions using a stable. Don't use paper clips. No plastic covers/envelopes, please.

Exercise 2.7 (\star). In his seminal paper of 1901, Carl Runge gave an example of what we now call a *Runge-Kutta 2 method*, where

$$\Phi(t_i,y_i;h) = \frac{1}{4} f(t_i,y_i) + \frac{3}{4} f\big(t_i + \frac{2}{3}h,y_i + \frac{2}{3}hf(t_i,y_i)\big).$$

- (i) Show that it is consistent.
- (ii) Show how this method fits into the general framework of RK2 methods. That is,
 - (a) What are α , b, α , and β ?
 - (b) Do they satisfy the conditions

$$\beta = \alpha$$
, $b = \frac{1}{2\alpha}$, $a = 1 - b$?

(iii) Use it to estimate the solution at the point t=2 to y(1)=1, y'=1+t+y/t taking n=2 time steps.

Here are some entries for 3-stage Runge-Kutta method tableaux for Exercise 2.14.

Method 0:
$$\alpha_2 = 2/3$$
, $\alpha_3 = 0$, $b_1 = 1/12$, $b_2 = 3/4$, $\beta_{32} = 3/2$

Method 1:
$$\alpha_2 = 1/4$$
, $\alpha_3 = 1$, $b_1 = -1/6$, $b_2 = 8/9$, $\beta_{32} = 12/5$

Method 2:
$$\alpha_2 = 1/4$$
, $\alpha_3 = 1/2$, $b_1 = 2/3$, $b_2 = -4/3$, $\beta_{32} = 2/5$

Method 3:
$$\alpha_2 = 1/4$$
, $\alpha_3 = 1/3$, $b_1 = 3/2$, $b_2 = -8$, $\beta_{32} = 4/45$

Method 4:
$$\alpha_2 = 1$$
, $\alpha_3 = 1/4$, $b_1 = -1/6$, $b_2 = 5/18$, $\beta_{32} = 3/16$

Method 5:
$$\alpha_2 = 1$$
, $\alpha_3 = 1/5$, $b_1 = -1/3$, $b_2 = 7/24$, $\beta_{32} = 4/25$

Method 6:
$$\alpha_2 = 1$$
, $\alpha_3 = 1/6$, $b_1 = -1/2$, $b_2 = 3/10$, $\beta_{32} = 5/36$

Method 7:
$$\alpha_2=1/2$$
, $\alpha_3=1/7$, $b_1=7/6$, $b_2=22/15$, $\beta_{32}=-10/49$

Method 8:
$$\alpha_2 = 1/2$$
, $\alpha_3 = 1/8$, $b_1 = 4/3$, $b_2 = 13/9$, $\beta_{32} = -3/16$

Method 9:
$$\alpha_2 = 1/3$$
, $\alpha_3 = 1/9$, $b_1 = 4$, $b_2 = 15/4$, $\beta_{32} = -2/27$

Exercise 2.14 (Your own RK3 method \star). Answer the following questions for Method K from the list above, where K is the last digit of your ID number. For example, if your ID number is 01234567, use Method 7.

- (a) Assuming that the method is consistent, determine the value of b₃.
- (b) Consider the initial value problem:

$$y(0) = 1, y'(t) = \lambda y(t).$$

Using that the solution is $y(t) = e^{\lambda t}$, write out a Taylor series for $y(t_{i+1})$ about $y(t_i)$ up to terms of order h^4 (use that $h = t_{i+1} - t_i$).

Using that your method should agree with the Taylor Series expansion up to terms of order h^3 , determine β_{21} and β_{31} .

Exercise 3.12 (*). Show that, for any vector $\mathbf{x} \in \mathbb{R}^n$, $\|\mathbf{x}\|_{\infty} \leqslant \|\mathbf{x}\|_2$ and $\|\mathbf{x}\|_2^2 \leqslant \|\mathbf{x}\|_1 \|\mathbf{x}\|_{\infty}$. For each of these inequalities, give an example for which the equality holds. Deduce that $\|\mathbf{x}\|_{\infty} \leqslant \|\mathbf{x}\|_2 \leqslant \|\mathbf{x}\|_1$.

Exercise 3.15 (\star) . Prove that

$$\|A\|_1 = \max_{j=1,\dots,n} \sum_{i=1}^n |\alpha_{i,j}|.$$

Hint: Suppose that

$$\sum_{i=1}^n |\alpha_{ij}| \leqslant C, \qquad j=1,2,\dots n,$$

show that for any vector $\mathbf{x} \in \mathbb{R}^n$

$$\sum_{i=1}^n |(A\mathbf{x})_i| \leqslant C \|\mathbf{x}\|_1.$$

Now find a vector x such that $\sum_{i=1}^n |(Ax)_i| = C\|x\|_1$. Now deduce the result.