

ANÁLISE DE DADOS UTILIZANDO CLUSTER DE BAIXO CUSTO

COMPARAÇÃO DE DESEMPENHO DE AMBIENTES VIRTUAIS

Felipe Fonseca Rocha

Orientador: Ítalo Fernando Scotá Cunha

Universidade Federal de Minas Gerais

09 de Fevereiro de 2022

Sumário

Contexto e Motivação I

A todo momento nós geramos milhoes de dados que são coletados por diferentes meios

Várias ferramentas estão disponíveis para Transforma-los em informações e embasar descisões

Contexto e Motivação II

Isso também acontece na área da saúde Porém o uso dessas ferramentas nessa área, para transformar dados em informação, ainda é pouco significativo

Contexto e Motivação III

- : Tendência crescente de trabalho interdisciplinar
- : Potencial de melhora do sistema de Saúde através de análise de dados
- : Necessário Propor e Validar estratégias que sejam viáveis e facilitem o processamento de analise de grande volume de dados produzido na área

Contexto e Motivação IV

- : No Brasil, dados do Sistema de Informação em Sáude (SIS) são disponibilizados desde 2016
- : Faltam recursos e Estratégias Viáveis para essa elboração.

Introdução - Justificativa

• Restrição Orçamentária

- Diminuição de verbas para ciência e técnologia -2, 32%, mesmo com o aumento de base de alunos
- Aumento do dólar em mais de 3,27% diminuindo o poder de compra
- Tomada de decisão em saúde, mais de 152mi de Brasileiros dependem exclusivamente do SUS
- Necessidade de dispor estratégias de análise de dados

Introdução - Justificativa

- Restrição Orçamentária
 - Diminuição de verbas para ciência e técnologia -2, 32%, mesmo com o aumento de base de alunos
 - Aumento do dólar em mais de 3,27% diminuindo o poder de compra
 - Tomada de decisão em saúde, mais de 152mi de Brasileiros dependem exclusivamente do SUS
- Necessidade de dispor estratégias de análise de dados

Introdução - Abordagem

Utilizar um Cluster Kubernetes como plataforma de orquestração de cargas de trabalho em ambiente virtual.

- Cargas de trabalho:
 - Analise de tendencia de uso de azitromicina entre 2014 e 2021
- Ambientes virtualizados (simulando Host do cluster):
 - completa *Hypervisor* tipo 2
 - sistema operacional contêineres
- Ambiente virtual:

Simulação de máquina de baixo poder computacional:

- 1 vCPU
- 2 GB de RAM
- 6-8 máquinas

Essa Abordagem visa comparar o desempenho desses ambientes simulados, e validar o uso de computadores de baixo poder computacional, no processo de análise de dados de grande volume

Introdução - Abordagem

O uso de conceitos, métodose o uso de ferramentas complementares na aplicação da cultura DevOps em ambientes produtivos, permitirá o deployment simplificado melhorando a agilidade e diminuindo a complexidade e operação/sustentação do cluster

- Conceitos como:
 - CI (integração contínua)
 - CD (entrega contínua)
- Uso do metodo USE (utilização, saturação e erro). Esse método propoe um checklist de métricas a serem coletadas e a avaliação de três paramêtros por meio dessas métricas, relacioando assim o performance da carga de trabalho (aplicação) e o desempenho dos nós do cluster sob monitoramento.

Objetivo

Objetivos Geral:

Realizar a comparação de desempenho de orquestração de recursos em cluster de baixo custo em ambientes virtualizados, para o processamento e a análise dos dados.

Objetivos Específicos:

- Realizar a orquestração de recursos em cluster de baixo custo;
- Comparar o desempenho de clusters em ambientes virtualizados;
- Validar o uso de um cluster de utilização compartilhada para processamento de dados distribuídos;
- Propor um método de análise em cluster Kubernetes com uso de computadores desktops;

1

Revisão de literatura- Análise de dados

- Descisões em saúde costumam ser complexas precisam de suporte científico (dados) e avaliação de Contexto
- Com o crescimento dos 3V's de dados na área da saúde (Big Data) processar e analisar esses dados tornouse fundamental para tomada de descisões adequadas
- Desafios:
 - complexidade dos dados obtidos
 - ausencia de validação de sistemas, métodos e ferramentas para o tratamento de dados na área
 - custos de novos equipamentos capazes de analisar tal volume
- Há grande oportunidade para a proposição de estratégias de processamento e anális de dados na área

Revisão de literatura - Alternativas open source

- Considerando
 - O escopo deste trabalho
 - As estratégias para processamento e análise de dados disponíveis no mercado

As soluções encontradas no mercado foram agrupadas em dois grupos:

- Soluções de Computação em nuvem privada:
 - ► Se extendem para além do proposito desse trabalho
 - ► Requisitos de hardware elevados
 - Complexidade de configuração devido a sua abrangência

Revisão de literatura- Alternativas open source

- Soluções de Orquestração de Containers:
 - Kubernetes®
 - Apache Mesos®
 - Hashicorp Nomad®
 - Docker Swarm®

Revisão de literatura- Cluster orquestrador de container

- Kubernetes®:
 - Origem de 15 anos de trabalho da Google (Borg)
 - Estrutura de objetos componentizados
 - ► Kube-apiserver
 - Kube-scheduler
 - Kube-controller-manager
 - Kuhelet
 - Kube-proxy
 - ► Pod

Método - Especificação dos nós integrantes cluster de baixo custo

- Cluster Simulado:
 - Virtualização:
 - Maquinas Virtuais (VMs) (Hypervisor tipo 2)
 - Contêineres Aninhados (Docker In Docker, ou DinD)
 - Especificações de hardware 1vCPU, 2 GB de RAM;
- provisionamento em 2 etapas
- máquinas subutilizadas
- CAPEX

Método - Plataforma de orquestração de carga de trabalho

- Arquitetura sugerida para produção:
 - Multi-master com Etcd junto ao nó master
- Alta disponibilidade do cluster
- Recursos de hardware limitados

Método - Plataforma de orquestração de carga de trabalho

- Implantação da carga de Trabalho
 - Container
 - Parametrizável.
 - Volume compartilhado

Método - Configuração e provisionamento do cluster

O uso de gereniadores de configuração garantem o versionamento das configurações permitindo maio controle sobre as propriedades dos *assets* gerenciados (Ansible®)

- Agentless
- Idempotência
- Gerenciamento de inventário
- SSH Escolha do algoritimo de criptografia

Método - Monitoramento

- OpenTelemetry
- Prometheus Monitoramento de sistemas e Banco de dados de series temporais
- Grafana Dashboard e observabilidade
- Parametros de tempo, taxa de utilização de memoria e processamento