Department of Computer Engineering

Experiment No. 4

Apply Random Forest Algorithm on Adult Census Income

Dataset and analyze the performance of the model

Date of Performance:

Date of Submission:

Department of Computer Engineering

Aim: Apply Random Forest Algorithm on Adult Census Income Dataset and analyze the performance of the model.

Objective: Able to perform various feature engineering tasks, apply Random Forest Algorithm on the given dataset and maximize the accuracy, Precision, Recall, F1 score.

Theory:

Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique. It can be used for both Classification and Regression problems in ML. It is based on the concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex problem and to improve the performance of the model.

As the name suggests, "Random Forest is a classifier that contains a number of decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset." Instead of relying on one decision tree, the random forest takes the prediction from each tree and based on the majority votes of predictions, and it predicts the final output.

The greater number of trees in the forest leads to higher accuracy and prevents the problem of overfitting.

The below diagram explains the working of the Random Forest algorithm:

Department of Computer Engineering

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Attribute Information:

Listing of attributes:

>50K, <=50K.

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.

fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Marriedspouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

capital-gain: continuous.

capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad & Tobago, Peru, Hong, Holand-Netherlands.

Code:

Department of Computer Engineering

Conclusion:

1. Observations from the Correlation Heat Map:

The correlation heat map is a useful tool for understanding the relationships between different features in the dataset. In the correlation heatmap, we can observe that the "relationship" and "sex" features exhibit a correlation. Consequently, it suggests that one of these features could be removed to potentially reduce multi-collinearity

2. Performance Metrics:

Accuracy gauges overall correctness, the confusion matrix details true/false predictions, precision focuses on accurate positive classifications, recall identifies relevant instances, and F1-Score balances precision and recall, crucial for imbalanced classes.

confusion [[732 [191 43	767]	rix			
		precision	recall	f1-score	support
	0	0.79	0.49	0.60	1499
	1	0.85	0.96	0.90	4529
accui	racy			0.84	6028
macro	avg	0.82	0.72	0.75	6028
weighted	avg	0.84	0.84	0.83	6028

3. Comparison with Decision Tree Algorithm:

Result obtain using decision tree were:

confusion mat [[764 735]]			
[]	precision	recall	f1-score	support
0	0.78	0.51	0.62	1499
1	0.85	0.95	0.90	4529
accuracy			0.84	6028
macro avg	0.82	0.73	0.76	6028
weighted avg	0.84	0.84	0.83	6028

Both the Decision Tree and Random Forest models achieved an accuracy of approximately 84%, indicating that they correctly predicted income levels for most individuals. However, they exhibited lower recall for the higher income class (1), indicating a tendency to miss some individuals with incomes over 50K, despite having good precision for the lower income class (0).

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

df = pd.read_csv("adult.csv")
df.head()

\Box >		age	workclass	fnlwgt	education	education.num	marital.status	occupation	relatio
	0	90	?	77053	HS-grad	9	Widowed	?	Not-in-
	1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-
	2	66	?	186061	Some- college	10	Widowed	?	Unn
	3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unn
	4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Ow
	4								•

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	age	32561 non-null	int64
1	workclass	32561 non-null	object
2	fnlwgt	32561 non-null	int64
3	education	32561 non-null	object
4	education.num	32561 non-null	int64
5	marital.status	32561 non-null	object
6	occupation	32561 non-null	object
7	relationship	32561 non-null	object
8	race	32561 non-null	object
9	sex	32561 non-null	object
10	capital.gain	32561 non-null	int64
11	capital.loss	32561 non-null	int64
12	hours.per.week	32561 non-null	int64
13	native.country	32561 non-null	object
14	income	32561 non-null	object

dtypes: int64(6), object(9)
memory usage: 3.7+ MB

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.ı
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.43
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.34
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000

Info for categorical features
df.describe(include=['0'])

	workclass	education	marital.status	occupation	relationship	race	sex	na
count	32561	32561	32561	32561	32561	32561	32561	
unique	9	16	7	15	6	5	2	
top	Private	HS-grad	Married-civ- spouse	Prof- specialty	Husband	White	Male	
freq	22696	10501	14976	4140	13193	27816	21790	

```
duplicated_rows = df.duplicated()
any_duplicates = duplicated_rows.any()
```

print("Duplicated Rows:")
df[duplicated_rows]

Duplicated Rows:

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	rel
8453	25	Private	308144	Bachelors	13	Never-married	Craft-repair	N
8645	90	Private	52386	Some- college	10	Never-married	Other- service	Ν
12202	21	Private	250051	Some- college	10	Never-married	Prof- specialty	
14346	20	Private	107658	Some- college	10	Never-married	Tech- support	Ν
15603	25	Private	195994	1st-4th	2	Never-married	Priv-house- serv	Ν
17344	21	Private	243368	Preschool	1	Never-married	Farming- fishing	Ν
19067	46	Private	173243	HS-grad	9	Married-civ- spouse	Craft-repair	
20388	30	Private	144593	HS-grad	9	Never-married	Other- service	Ν
20507	19	Private	97261	HS-grad	9	Never-married	Farming- fishing	Ν
22783	19	Private	138153	Some- college	10	Never-married	Adm- clerical	
22934	19	Private	146679	Some- college	10	Never-married	Exec- managerial	
23276	49	Private	31267	7th-8th	4	Married-civ- spouse	Craft-repair	
23660	25	Private	195994	1st-4th	2	Never-married	Priv-house- serv	Ν
23720	44	Private	367749	Bachelors	13	Never-married	Prof- specialty	Ν
23827	49	Self-emp- not-inc	43479	Some- college	10	Married-civ- spouse	Craft-repair	
26738	23	Private	240137	5th-6th	3	Never-married	Handlers- cleaners	Ν
27133	28	Private	274679	Masters	14	Never-married	Prof- specialty	Ν
28796	27	Private	255582	HS-grad	9	Never-married	Machine- op-inspct	٨
29051	42	Private	204235	Some- college	10	Married-civ- spouse	Prof- specialty	

```
Married-civ-
      29334
               39
                        Private
                                 30916
                                           HS-grad
                                                                                         Craft-repair
                                                                               spouse
df = df.drop duplicates()
# Correction of target value using a map
income_map = {'<=50K': 1, '>50K': 0}
df['income'] = df['income'].map(income map)
     <ipython-input-47-00c8c2884cd1>:3: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
        df['income'] = df['income'].map(income_map)
df['income'] = df['income'].astype('int')
     <ipython-input-48-c88e10f6120e>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
        df['income'] = df['income'].astype('int')
categorical = [col for col in df.columns if df[col].dtype == 'object' ]
numerical = [col for col in df.columns if df[col].dtype != 'object' ]
df[numerical].hist(bins=25, figsize=(7, 7))
plt.show()
```


sns.histplot(df, x='age', hue='income', bins=32)


```
#describe ages in classes
def age_group(df):
    age_bins = [0, 20, 40, 60, float('inf')]
    age_labels = ['1', '2', '3', '4']
```

```
df_age_range = df.copy()
    df_age_range['age'] = pd.cut(df_age_range['age'], bins=age_bins, labels=age_labels)
    return df_age_range

df = age_group(df).copy()

sns.histplot(df, x='age', hue='income', bins= 32)
```


Missing Values

df_missing = (df=='?').sum() print(df_missing) age 0 workclass 1836 fnlwgt 0 education 0 education.num marital.status 0 occupation 1843 relationship 0

```
sex 0
capital.gain 0
capital.loss 0
hours.per.week 0
native.country 582
income 0
dtype: int64
```

```
#droping row having missing values from dataset
df = df[df['workclass'] !='?']
df = df[df['occupation'] !='?']
df = df[df['native.country'] !='?']
df.head()
```

race	sex	capital.gain	capital.loss	hours.per.week	native.country	income	
White	Female	0	4356	18	United-States	1	
White	Female	0	3900	40	United-States	1	
White	Female	0	3900	40	United-States	1	
White	Female	0	3770	45	United-States	1	
White	Male	0	3770	40	United-States	1	
4							

```
df_missing = (df=='?').sum()
print(df_missing)
```

```
0
age
workclass
                   0
fnlwgt
                   0
education
                   0
education.num
                   0
marital.status
                   0
occupation
                   0
relationship
race
                   0
sex
capital.gain
capital.loss
                   0
hours.per.week
                   0
native.country
                   0
income
                   0
dtype: int64
```

Data Preparation

```
from sklearn import preprocessing
df_categorical = df.select_dtypes(include=['object'])
df_categorical.head()
```

	workclass	education	marital.status	occupation	relationship	race	sex	native
1	Private	HS-grad	Widowed	Exec- managerial	Not-in-family	White	Female	Unit
3	Private	7th-8th	Divorced	Machine- op-inspct	Unmarried	White	Female	Unit
4	Private	Some- college	Separated	Prof- specialty	Own-child	White	Female	Unit
5	Private	HS-grad	Divorced	Other- service	Unmarried	White	Female	Unit
6	Private	10th	Separated	Adm- clerical	Unmarried	White	Male	Unit
4								•

```
le = preprocessing.LabelEncoder()
df_categorical = df_categorical.apply(le.fit_transform)
df_categorical.head()
```

	workclass	education	marital.status	occupation	relationship	race	sex	native.cou
1	2	11	6	3	1	4	0	
3	2	5	0	6	4	4	0	
4	2	15	5	9	3	4	0	
5	2	11	0	7	4	4	0	
6	2	0	5	0	4	4	1	
4								•

```
df = df.drop(df_categorical.columns, axis=1)
df = pd.concat([df,df_categorical],axis=1)
df['income']=df['income'].astype('category')
df.head()
```

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week	income	workc
1	4	132870	9	0	4356	18	1	
3	3	140359	4	0	3900	40	1	
4	3	264663	10	0	3900	40	1	

df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 30139 entries, 1 to 32560
Data columns (total 15 columns):
```

Data	columns (total 1	L5 columns):	
#	Column	Non-Null Count	Dtype
0	age	30139 non-null	category
1	fnlwgt	30139 non-null	int64
2	education.num	30139 non-null	int64
3	capital.gain	30139 non-null	int64
4	capital.loss	30139 non-null	int64
5	hours.per.week	30139 non-null	int64
6	income	30139 non-null	category
7	workclass	30139 non-null	int64
8	education	30139 non-null	int64
9	marital.status	30139 non-null	int64
10	occupation	30139 non-null	int64
11	relationship	30139 non-null	int64
12	race	30139 non-null	int64
13	sex	30139 non-null	int64
14	native.country	30139 non-null	int64
dtype	es: category(2),	int64(13)	
memor	ry usage: 3.3 MB		

Splitting dataset

```
from sklearn.model_selection import train_test_split
```

```
X = df.drop('income',axis=1)
X = X.drop('sex',axis=1)
y=df['income']
X.head()
```

```
age fnlwgt education.num capital.gain capital.loss hours.per.week workclass ed
      1
                                  9
                                                0
                                                           4356
                                                                                         2
            132870
                                                                             18
y.head()
     1
          1
     3
          1
     4
          1
     5
          1
     6
          1
     Name: income, dtype: category
     Categories (2, int64): [0, 1]
X_train , X_test , y_train , y_test = train_test_split(X,y,test_size=0.20)
```

Applying RandomForest Algo

confusion matrix

```
from sklearn.ensemble import RandomForestClassifier
dt_default = RandomForestClassifier(max_depth=5)
dt_default.fit(X_train,y_train)
```

```
RandomForestClassifier
RandomForestClassifier(max_depth=5)
```

from sklearn.metrics import classification report, confusion matrix, accuracy score

```
y_pred_default=dt_default.predict(X_test)
print("confusion matrix\n",confusion_matrix(y_test,y_pred_default))
print(classification_report(y_test,y_pred_default))
```

```
[[ 732 767]
 [ 191 4338]]
              precision
                          recall f1-score
                                               support
           0
                   0.79
                              0.49
                                        0.60
                                                   1499
                   0.85
                                        0.90
           1
                              0.96
                                                   4529
                                        0.84
                                                   6028
    accuracy
   macro avg
                   0.82
                              0.72
                                        0.75
                                                  6028
weighted avg
                   0.84
                              0.84
                                        0.83
                                                   6028
```

```
print("accuracy score", accuracy_score(y_test, y_pred_default))
```

accuracy score 0.8410749834107498

✓ 0s completed at 2:52 AM