Límites y derivadas

© 1986 Peticolas / Megna, Fundamental Photographs, NYC

En Un previo de Cálculo (página 1) hemos visto cómo la idea de límite sustenta las distintas ramas del Cálculo. Por tanto, es apropiado comenzar nuestro estudio de éste investigando los límites y sus propiedades. El tipo especial de límite que se usa para encontrar rectas tangentes y velocidades da lugar a la idea central del Cálculo Diferencial, la Derivada.

Problemas de la tangente y la velocidad

En esta sección se verá cómo surgen los límites cuando tratamos de encontrar la recta tangente a una curva o la velocidad de un objeto.

El problema de la tangente

La palabra *tangente* se deriva de la voz latina *tangens*, que significa "tocar". Así, una tangente a una curva es una recta que toca la curva. En otras palabras, una recta tangente debe tener la misma dirección que la curva en el punto de contacto, pero, ¿cómo puede precisarse esta idea?

Para una circunferencia podemos simplemente seguir la idea de Euclides y decir que la tangente es una recta que interseca la circunferencia una y sólo una vez, como se ve en la figura 1a). Para curvas más complicadas esta definición es inadecuada. La figura 1b) muestra dos rectas l y t que pasan por un punto P en una curva C. La recta l cruza C sólo una vez, pero ciertamente no es la idea que tenemos de lo que es una tangente. La recta t, por otro lado, se parece más a una tangente, pero interseca a C dos veces.

Para ser más específicos, intentaremos resolver el problema de encontrar una recta t tangente a la parábola $y = x^2$ en el siguiente ejemplo.

V EJEMPLO 1 Encuentre la ecuación de la recta tangente a la parábola $y = x^2$ en el punto (1, 1).

SOLUCIÓN Podremos encontrar la ecuación de la recta tangente t tan pronto como conozcamos su pendiente m. La dificultad es que sólo conocemos un punto P sobre t, y para calcular la pendiente se necesitan dos puntos. Sin embargo, observamos que podemos calcular una aproximación a m eligiendo un punto cercano $Q(x, x^2)$ sobre la parábola (como en la figura 2) y calculando la pendiente m_{PQ} de la recta secante PQ. [Una **recta secante**, de la palabra latina *secans*, que significa cortar, es una recta que interseca (corta) una curva más de una vez.]

Elegimos $x \neq 1$ de manera que $Q \neq P$. Entonces

$$m_{PQ} = \frac{x^2 - 1}{x - 1}$$

Por ejemplo, para el punto Q(1.5, 2.25), tenemos

$$m_{PQ} = \frac{2.25 - 1}{1.5 - 1} = \frac{1.25}{0.5} = 2.5$$

Las tablas en el margen muestran los valores de m_{PQ} para varios valores de x cercanos a 1. Cuanto más cerca está Q de P, la x es más cercana a 1 y, de las tablas, m_{PQ} está más cerca de 2. Esto sugiere que la pendiente de la recta tangente t debe ser m=2.

Decimos que la pendiente de la recta tangente es el *límite* de las pendientes de las rectas secantes, y esto lo expresamos simbólicamente escribiendo

$$\lim_{Q \to P} m_{PQ} = m \qquad \text{y} \qquad \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Suponiendo que la pendiente de la recta tangente finalmente es 2, se utiliza la ecuación de la recta en la forma punto-pendiente (véase apéndice B) para escribir la ecuación de la recta tangente en (1, 1) como

$$y - 1 = 2(x - 1)$$
 o bien $y = 2x - 1$

FIGURA 1

FIGURA 2

x	m_{PQ}
2	3
1.5	2.5
1.1	2.1
1.01	2.01
1.001	2.001

x	m_{PQ}
0	1
0.5	1.5
0.9	1.9
0.99	1.99
0.999	1.999

La figura 3 muestra el proceso de límite que se presenta en este ejemplo. Cuando Q se aproxima a P a lo largo de la parábola, las correspondientes rectas secantes giran alrededor de P y se aproximan a la recta tangente t.

Q se aproxima a P por la derecha

Q se aproxima a P por la izquierda

Q

FIGURA 3

TEC En Visual 2.1 puede ver cómo funciona el proceso en la figura 3 para funciones adicionales.

t	Q
0.00	100.00
0.02	81.87
0.04	67.03
0.06	54.88
0.08	44.93
0.10	36.76

Muchas de las funciones que se producen en la ciencia no están descritas por ecuaciones explícitas, sino que están definidas por datos experimentales. El siguiente ejemplo muestra cómo estimar la pendiente de la recta tangente a la gráfica de este tipo de funciones.

EJEMPLO 2 La unidad de destello (flash) de una cámara funciona mediante el almacenamiento de carga en un condensador y su liberación repentina cuando el flash se activa. Los datos de la tabla describen la carga Q restante en el condensador (medida en microcoulombs) en el tiempo t (medido en segundos después de que el flash se dispara). Utilice los datos para dibujar la gráfica de esta función y estime la pendiente de la recta tangente en el punto donde t = 0.04. [*Nota*: la pendiente de la recta tangente representa la corriente eléctrica (medida en microamperios) que fluye desde el condensador a la lámpara del flash.]

SOLUCIÓN En la figura 4 se grafican los datos dados y se usan para trazar una curva que se aproxima a la gráfica de la función.

Dados los puntos P(0.04, 67.03) y R(0.00, 100.00) en la gráfica, nos encontramos con que la pendiente de la recta secante PR es

$$m_{PR} = \frac{100.00 - 67.03}{0.00 - 0.04} = -824.25$$

La tabla de la izquierda muestra los resultados de cálculos similares para las pendientes de otras rectas secantes. De esta tabla se esperaría que la pendiente de la recta tangente en t = 0.04 se encuentre en algún valor entre -742 y -607.5. De hecho, el promedio de las pendientes de las dos rectas secantes más próximas es

$$\frac{1}{2}(-742 - 607.5) = -674.75$$

Así, por este método, estimamos la pendiente de la recta tangente como -675.

Otro método consiste en elaborar una aproximación a la tangente en *P* y medir los lados del triángulo *ABC*, como en la figura 4. Esto da una estimación de la pendiente de la recta tangente como

$$-\frac{|AB|}{|BC|} \approx -\frac{80.4 - 53.6}{0.06 - 0.02} = -670$$

 $\begin{array}{c|cccc} R & m_{PR} \\ \hline (0.00, 100.00) & -824.25 \\ (0.02, 81.87) & -742.00 \\ (0.06, 54.88) & -607.50 \\ (0.08, 44.93) & -552.50 \\ (0.10, 36.76) & -504.50 \\ \hline \end{array}$

El significado físico de la respuesta en el ejemplo 2 es que la corriente eléctrica que fluye desde el condensador a la lámpara de flash, después de 0.04 segundos, es de unos —670 microamperios.

El problema de la velocidad

Si usted mira el velocímetro de un automóvil mientras viaja en el tráfico de la ciudad, se ve que la aguja no se queda quieta por mucho tiempo, es decir, la velocidad del automóvil no es constante. Suponemos, al ver el velocímetro, que el coche tiene una velocidad determinada en cada instante, pero, ¿cómo se define la velocidad "instantánea"? Vamos a investigar el ejemplo de la caída de una pelota.

V EJEMPLO 3 Supongamos que una pelota se deja caer desde la plataforma superior de observación de la Torre CN en Toronto, a 450 m sobre el suelo. Encuentre la velocidad de la pelota después de 5 segundos.

SOLUCIÓN Por medio de experimentos llevados a cabo hace cuatro siglos, Galileo descubrió que la distancia que recorre cualquier cuerpo en caída libre es proporcional al cuadrado del tiempo que ha estado cayendo. (Este modelo de caída libre no considera la resistencia del aire.) Si la distancia de caída después de t segundos se denota por s(t) y se mide en metros, entonces la ley de Galileo se expresa por la ecuación

$$s(t) = 4.9t^2$$

La dificultad para encontrar la velocidad después de $5 \,\mathrm{s}$ es que se trata de un solo instante de tiempo (t=5), por lo que no contamos con un intervalo de tiempo. Sin embargo, podemos aproximar la cantidad deseada mediante el cálculo de la velocidad promedio en el breve intervalo de tiempo de una décima de segundo, desde t=5 hasta t=5.1:

velocidad promedio =
$$\frac{\text{cambio en la posición}}{\text{tiempo transcurrido}}$$

= $\frac{s(5.1) - s(5)}{0.1}$
= $\frac{4.9(5.1)^2 - 4.9(5)^2}{0.1}$ = 49.49 m/s

La Torre CN en Toronto fue el edificio autoestable más alto en el mundo durante 32 años.

La siguiente tabla muestra los resultados de cálculos similares de la velocidad promedio durante periodos cada vez más pequeños.

Intervalo de tiempo	Velocidad promedio (m/s)
$5 \le t \le 6$	53.9
$5 \le t \le 5.1$	49.49
$5 \le t \le 5.05$	49.245
$5 \le t \le 5.01$	49.049
$5 \le t \le 5.001$	49.0049

Parece que, a medida que acorta el periodo, la velocidad promedio es cada vez más cercana a $49 \,\mathrm{m/s}$. La **velocidad instantánea** cuando t=5 se define como el valor límite de estas velocidades promedio, durante periodos cada vez más cortos que comienzan en t=5. Así, la velocidad (instantánea) después de $5 \,\mathrm{s}$ es

$$v = 49 \, \text{m/s}$$

Usted puede sospechar (y no está equivocado) que los cálculos utilizados en la solución de este problema son muy similares a los utilizados anteriormente en esta sección para encontrar tangentes. De hecho, hay una estrecha conexión entre el problema de obtener la tangente y aquel de encontrar la velocidad. Si dibujamos la gráfica de la función de la distancia recorrida por la pelota (como en la figura 5) y consideramos los puntos $P(a, 4.9a^2)$ y $Q(a + h, 4.9(a + h)^2)$ sobre la gráfica, entonces la pendiente de la recta secante PQ es

$$m_{PQ} = \frac{4.9(a+h)^2 - 4.9a^2}{(a+h) - a}$$

que es la misma que la velocidad promedio en el intervalo de tiempo [a, a + h]. Por tanto, la velocidad en el instante t = a (el límite de las velocidades promedio cuando h tiende a 0) debe ser igual a la pendiente de la recta tangente en P (el límite de las pendientes de las rectas secantes).

FIGURA 5

Los ejemplos 1 y 3 muestran que, para resolver los problemas de la tangente y la velocidad, debe ser capaz de calcular límites. Después de estudiar los métodos para calcular límites en las siguientes cinco secciones, regresaremos a estos problemas de encontrar tangentes y velocidades en la sección 2.7.

2.1 Ejercicios

1. Un tanque contiene 1 000 galones de agua que se drenan por la parte inferior del tanque en media hora. Los valores de la tabla muestran el volumen *V* de agua que queda en el tanque (en galones) después de *t* minutos.

t (min)	5	10	15	20	25	30
V (gal)	694	444	250	111	28	0

- a) Si P es el punto (15, 250) sobre la gráfica de V, encuentre las pendientes de las rectas secantes PQ cuando Q es el punto sobre la gráfica con t = 5, 10, 20, 25 y 30.
- b) Estime la pendiente de la recta tangente en P por medio del promedio de las pendientes de dos rectas secantes.
- c) Utilice una gráfica de la función para estimar la pendiente de la recta tangente en P. (Esta pendiente representa la rapidez a la que fluye el agua del tanque después de 15 minutos.)
- **2.** Un monitor se utiliza para medir la frecuencia cardiaca de un paciente después de una cirugía. El aparato compila el número de latidos del corazón después de *t* minutos y se registran en una tabla. Cuando los datos de la tabla se representan gráficamente, la pendiente de la recta tangente representa la frecuencia cardiaca en latidos por minuto.

t(min)	36	38	40	42	44
Latidos del corazón	2530	2661	2806	2948	3 080

El monitor estima este valor calculando la pendiente de una recta secante. Utilice los datos para estimar el ritmo cardiaco del paciente después de 42 minutos, utilizando la recta secante entre los puntos con los valores dados de *t*.

- a) t = 36 y t = 42
- b) t = 38 y t = 42
- c) t = 40 y t = 42
- d) t = 42 y t = 44

¿Cuáles son sus conclusiones?

- 3. El punto P(2, -1) se encuentra en la curva y = 1/(1 x)
 - a) Si Q es el punto (x, 1/(1-x)), utilice la calculadora para hallar la pendiente de la recta secante PQ (con una precisión de seis decimales) para los siguientes valores de x:
 - i) 1.5
- ii) 1.9
- iii) 1.99
- iv) 1.999

- v) 2.5
- vi) 2.1
- vii) 2.01
- viii) 2.001
- b) Utilice los resultados del inciso a), para intuir el valor de la pendiente de la recta tangente a la curva en P(2, -1).
- c) Utilizando la pendiente del inciso b), obtenga la ecuación de la recta tangente a la curva en P(2, -1).
- **4.** El punto P(0.5, 0) se encuentra sobre la curva $y = \cos \pi x$.
 - a) Si Q es el punto $(x, \cos \pi x)$, utilice la calculadora para hallar la pendiente de la secante PQ (con una precisión de seis decimales) para los siguientes valores de x:
 - i) 0
- ii) 0.4
- iii) 0.49
- iv) 0.499

- v) 1 v
- vi) 0.6
- vii) 0.51 viii) 0.501
- b) Utilice los resultados del inciso a), para intuir el valor de la pendiente de la recta tangente a la curva en P(0.5, 0).

- c) Utilice la pendiente del inciso b), para hallar la ecuación de la recta tangente a la curva en P(0.5, 0).
- d) Dibuje la curva, dos de las rectas secantes y la recta tangente.
- **5.** Si se lanza una pelota al aire con una velocidad de $40 \, \text{pies/s}$, su altura en pies después de t segundos está dada por $y = 40t 16t^2$.
 - a) Encuentre la velocidad promedio para el periodo que comienza cuando t=2 y permanece
 - i) 0.5 segundos
- ii) 0.1 segundos
- iii) 0.05 segundos
- iv) 0.01 segundos
- b) Estime la velocidad instantánea cuando t = 2.
- **6.** Si una piedra se lanza hacia arriba en el planeta Marte a una velocidad de $10 \,\mathrm{m/s}$, su altura en metros t segundos después está dada por $y = 10t 1.86t^2$.
 - a) Encuentre la velocidad promedio en los intervalos de tiempo dados:
 - i) [1, 2]
- ii) [1, 1.5]
- iii) [1, 1.1]
- iv) [1, 1.01] v) [1, 1.001]
- b) Estime la velocidad instantánea cuando t = 1.
- 7. La tabla muestra la posición de un ciclista.

t (segundos)	0	1	2	3	4	5
s (metros)	0	1.4	5.1	10.7	17.7	25.8

- a) Encuentre la velocidad promedio para cada periodo:
 - i) [1, 3]
- ii) [2, 3]
- iii) [3, 5]
- iv) [3, 4]
- b) Utilice la gráfica de s en función de t para estimar la velocidad instantánea cuando t = 3.
- 8. El desplazamiento (en centímetros) de una partícula que se mueve hacia adelante y hacia atrás a lo largo de una línea recta está dado por la ecuación de movimiento s = 2 sen πt + 3 cos πt, donde t se mide en segundos.
 - a) Encuentre la velocidad promedio durante cada periodo:
 - i) [1, 2]
- ii) [1, 1.1]
- iii) [1, 1.01]
- iv) [1, 1.001]
- b) Estime la velocidad instantánea de la partícula cuando t = 1.
- **9.** El punto P(1, 0) se encuentra sobre la curva $y = \sin(10\pi/x)$.
 - a) Si Q es el punto $(x, \text{sen}(10\pi/x))$, halle la pendiente de la recta secante PQ (con una precisión de cuatro decimales) para x = 2, 1.5, 1.4, 1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8 y 0.9. ¿Las pendientes parecen estar acercándose a un límite?
 - b) Utilice la gráfica de la curva para explicar por qué las pendientes de las rectas secantes en el inciso a) no están cercanas a la pendiente de la recta tangente en *P*.
 - c) Eligiendo rectas secantes apropiadas, estime la pendiente de la recta tangente en *P*.

2.2 Límite de una función

En la sección anterior vimos cómo surgen los límites cuando queremos encontrar la recta tangente a una curva o la velocidad de un objeto; ahora dirigimos nuestra atención a los límites en general y los métodos numéricos y gráficos para calcularlos.

Vamos a investigar el comportamiento de la función f definida por $f(x) = x^2 - x + 2$ para valores de x cercanos a 2. La siguiente tabla muestra los valores de f(x) para valores de x cercanos a 2, pero no iguales a 2.

	IG	и	D	Λ	-1
ГΙ	w	u	n	м	

х	f(x)	x	f(x)
1.0	2.000000	3.0	8.000000
1.5	2.750000	2.5	5.750000
1.8	3.440000	2.2	4.640000
1.9	3.710000	2.1	4.310000
1.95	3.852500	2.05	4.152500
1.99	3.970100	2.01	4.030100
1.995	3.985025	2.005	4.015025
1.999	3.997001	2.001	4.003001

De la tabla y la gráfica de f (una parábola) que se muestra en la figura 1, vemos que cuando x se aproxima a 2 (por ambos lados de 2), f(x) se aproxima a 4. De hecho, parece que podemos hacer que los valores de f(x) estén tan cerca de 4 como queramos, tomando x suficientemente cercano a 2. Esto lo expresamos diciendo que "el límite de la función $f(x) = x^2 - x + 2$ cuando x tiende a 2 es igual a 4". La notación para esto es

$$\lim_{x \to 2} (x^2 - x + 2) = 4$$

En general, usamos la siguiente notación.

1 Definición Supongamos que f(x) está definida cuando x está cerca del número a. (Esto significa que f está definida en algún intervalo abierto que contiene a a, excepto posiblemente en a misma.) Entonces escribimos

$$\lim_{x \to a} f(x) = L$$

y decimos que

es

"el límite de f(x), cuando x tiende a a, es igual a L"

si podemos hacer que los valores de f(x) estén arbitrariamente cercanos a L (tan cercanos a L como queramos), tomando valores de x suficientemente cerca de a (por ambos lados de a), pero no iguales a a.

En términos generales, esto quiere decir que los valores de f(x) se aproximan a L cuando x tiende a a. En otras palabras, los valores de f(x) tienden a estar más y más cerca del número L cuando x se acerca cada vez más al número a (de ambos lados de a), pero $x \neq a$. (En la sección 2.4 se dará una definición más precisa.)

Una notación alternativa para

$$\lim_{x \to a} f(x) = L$$

 $f(x) \rightarrow L$ cuando

que suele leerse "f(x) tiende a L cuando x tiende a a".

Note la frase "pero $x \neq a$ " en la definición de límite. Esto significa que al encontrar el límite de f(x) cuando x se aproxima a a, no se considera x = a. De hecho, f(x) no necesita estar definida cuando x = a. Lo único que importa es cómo se define f cerca de a.

La figura 2 muestra las gráficas de tres funciones. Observe que en el inciso c), f(a) no está definida y, en el inciso b), $f(a) \neq L$. Sin embargo, en cada caso, independientemente de lo que sucede en a, es cierto que $\lim_{x\to a} f(x) = L$.

FIGURA 2 $\lim_{x \to a} f(x) = L$ en los tres casos

EJEMPLO 1 Conjeture el valor de $\lim_{x \to 1} \frac{x-1}{x^2-1}$.

SOLUCIÓN Observe que la función $f(x) = (x-1)/(x^2-1)$ no está definida cuando x=1, pero eso no importa, porque la definición de $\lim_{x\to a} f(x)$ dice que se consideran los valores de x que están cerca de a, pero no iguales a a.

Las tablas de la izquierda dan valores de f(x) (con una precisión de seis decimales) para valores de x que tienden a 1 (pero no iguales a 1). Sobre la base de los valores en las tablas, hacemos la suposición de que

$$\lim_{x \to 1} \frac{x - 1}{x^2 - 1} = 0.5$$

 $\begin{array}{c|cccc} x > 1 & f(x) \\ \hline 1.5 & 0.400000 \\ 1.1 & 0.476190 \\ 1.01 & 0.497512 \\ 1.001 & 0.499750 \\ 1.0001 & 0.499975 \\ \hline \end{array}$

El ejemplo 1 se ilustra en la gráfica de f, en la figura 3. Ahora vamos a cambiar un poco f, dándole el valor de 2 cuando x = 1 y llamando g a la función obtenida:

$$g(x) = \begin{cases} \frac{x-1}{x^2 - 1} & \text{si } x \neq 1\\ 2 & \text{si } x = 1 \end{cases}$$

Esta nueva función q conserva el mismo límite cuando x tiende a 1. (Véase la figura 4.)

FIGURA 3

FIGURA 4

EJEMPLO 2 Estime el valor de $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$.

SOLUCIÓN La tabla enlista los valores de la función para varios valores de t cercanos a 0.

t	$\frac{\sqrt{t^2+9}-3}{t^2}$
±1.0	0.16228
±0.5	0.16553
±0.1	0.16662
±0.05	0.16666
±0.01	0.16667

A medida que t se acerca a 0, los valores de la función parecen acercarse a 0.1666666..., así que suponemos que

t	$\frac{\sqrt{t^2+9}-3}{t^2}$
±0.0005	0.16800
±0.0001	0.20000
±0.00005	0.00000
±0.00001	0.00000

$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{1}{6}$$

En el ejemplo 2, ¿qué habría sucedido si hubiéramos tomado valores aún más pequeños de t? La tabla en el margen muestra los resultados de una calculadora; sin duda, ¡algo extraño parece estar sucediendo!

Si trata de obtener estos cálculos en su propia calculadora podría obtener valores diferentes, pero al final obtendrá el valor 0 si hace t suficientemente pequeña. ¿Significa esto que la respuesta es realmente 0, en lugar de $\frac{1}{6}$? No, el valor del límite es $\frac{1}{6}$ como se demuestra en la siguiente sección. El problema es que la calculadora dio valores falsos porque $\sqrt{t^2+9}$ está muy cerca de 3 cuando t es pequeña. (De hecho, cuando t es suficientemente pequeña, una calculadora da el valor de 3.000 para $\sqrt{t^2+9}$... para tantos dígitos como la calculadora sea capaz de aceptar.)

Algo similar sucede cuando tratamos de graficar la función

$$f(t) = \frac{\sqrt{t^2 + 9} - 3}{t^2}$$

del ejemplo 2, en una calculadora graficadora o computadora. Los incisos a) y b) de la figura 5 muestran gráficas bastante precisas de f, y cuando se utiliza el modo trace (si está disponible) puede estimarse fácilmente que el límite es cercano a $\frac{1}{6}$. Pero si nos acercamos demasiado, como en los incisos c) y d), entonces obtenemos gráficas incorrectas, de nuevo debido a problemas con la sustracción.

calculadoras, a veces, dan valores falsos, haga

clic en Lies My Calculator and Computer Told Me. En particular, véase la sección llamada The

www.stewartcalculus.com Para una mayor explicación de por qué las

Perils of Subtraction.

sen x

х

0.84147098

0.95885108

0.97354586

0.98506736

0.99334665

0.99833417

0.99958339

0.99998333

0.99999583

0.99999983

V EJEMPLO 3 Obtenga el valor de $\lim_{x\to 0} \frac{\sin x}{x}$.

SOLUCIÓN La función $f(x) = (\sec x)/x$ no está definida cuando x = 0. Usando una calculadora (y recordando que, si $x \in \mathbb{R}$, sen x significa el seno del ángulo x medido en radianes) podemos elaborar una tabla de valores con una precisión de hasta ocho decimales. De la tabla a la izquierda y la gráfica en la figura 6 suponemos que

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

De hecho, esta conjetura es correcta como se demostrará en el capítulo 3 utilizando un argumento geométrico.

FIGURA 6

Informática de sistemas algebraicos

х

 ± 1.0

 ± 0.5

 ± 0.4

 ± 0.3

 ± 0.2

 ± 0.1

 ± 0.05

 ± 0.01

 ± 0.005

 ± 0.001

Los sistemas algebraicos computarizados (SAC) tienen comandos que calculan límites. A fin de evitar los tipos de trampas como las de los ejemplos 2, 4 y 5, no calculan límites a partir de la experimentación numérica. En su lugar, utilizan técnicas más sofisticadas, como el cálculo de series infinitas. Si usted tiene acceso a un SAC, utilice los comandos para límites a fin de estimar los límites de los ejemplos de esta sección y revisar sus respuestas en los ejercicios de este capítulo.

V EJEMPLO 4 Investigue $\lim_{x\to 0} \operatorname{sen} \frac{\pi}{x}$.

SOLUCIÓN Una vez más la función $f(x) = \text{sen}(\pi/x)$ no está definida en 0. Evaluando la función para algunos valores pequeños de x, obtenemos

$$f(1) = \sin \pi = 0$$
 $f(\frac{1}{2}) = \sin 2\pi = 0$ $f(\frac{1}{3}) = \sin 3\pi = 0$ $f(\frac{1}{4}) = \sin 4\pi = 0$ $f(0.1) = \sin 10\pi = 0$ $f(0.01) = \sin 100\pi = 0$

Del mismo modo, f(0.001) = f(0.0001) = 0. Sobre la base de esta información podríamos estar tentados a suponer que

$$\lim_{x \to 0} \operatorname{sen} \frac{\pi}{x} = 0$$

pero esta vez nuestra suposición es errónea. Tenga en cuenta que, aunque $f(1/n) = \sin n\pi = 0$ para cualquier entero n, también es cierto que f(x) = 1 para muchos valores de x cercanos a 0. Esto puede verse en la gráfica de f que se muestra en la figura 7.

Las líneas punteadas, cerca del eje y indican que los valores del sen (π/x) oscilan infinitamente entre 1 y -1 cuando x tiende a 0. (Véase el ejercicio 45.)

Ya que los valores de f(x) no se acercan a un número fijo cuando x tiende a 0,

$$\lim_{x\to 0} \operatorname{sen} \frac{\pi}{x} \quad \text{no existe}$$

x	$x^3 + \frac{\cos 5x}{10000}$
1	1.000028
0.5	0.124920
0.1	0.001088
0.05	0.000222
0.01	0.000101

0.00010000

0.001

EJEMPLO 5 Encuentre el
$$\lim_{x\to 0} \left(x^3 + \frac{\cos 5x}{10000}\right)$$
.

SOLUCIÓN Como antes, elaboramos una tabla de valores. De la primera tabla en el margen parece que

$$\lim_{x \to 0} \left(x^3 + \frac{\cos 5x}{10000} \right) = 0$$

Pero si perseveramos con valores más pequeños de x, la segunda tabla sugiere que

$$\lim_{x \to 0} \left(x^3 + \frac{\cos 5x}{10\,000} \right) = 0.000100 = \frac{1}{10\,000}$$

Más adelante veremos que $\lim_{x\to 0} \cos 5x = 1$; entonces deduciremos que el límite es 0.0001.

FIGURA 8
La función de Heaviside

V EJEMPLO 6 La función de Heaviside H se define por

$$H(t) = \begin{cases} 0 & \text{si } t < 0 \\ 1 & \text{si } t \ge 0 \end{cases}$$

[Esta función lleva el nombre del ingeniero eléctrico Oliver Heaviside (1850-1925) y se utiliza para describir una corriente eléctrica en un circuito en el tiempo t=0.] Su gráfica se muestra en la figura 8.

Cuando t se aproxima a 0 por la izquierda, H(t) se aproxima a 0. Conforme t se aproxima a 0 por la derecha, H(t) se aproxima a 1. No hay un único número al que se aproxime H(t) cuando t se aproxima a 0. Por tanto, $\lim_{t\to 0} H(t)$ no existe.

Límites laterales

Hemos notado en el ejemplo 6 que H(t) tiende a 0 cuando t se aproxima a 0 por la izquierda y H(t) tiende a 1 a medida t se aproxima a 0 por la derecha. Esta situación se indica simbólicamente escribiendo

$$\lim_{t \to 0^{-}} H(t) = 0$$
 y $\lim_{t \to 0^{+}} H(t) = 1$

El símbolo " $t \to 0$ " indica que se consideran sólo los valores de t que son menores que 0. De igual modo, " $t \to 0$ " indica que se consideran sólo los valores de t que son mayores que 0.

Definición Cuando escribimos

$$\lim_{x \to a^{-}} f(x) = L$$

estamos diciendo que el **límite izquierdo de** f(x) cuando x se aproxima a a [o el **límite de f(x) cuando x tiende a a por la izquierda**] es igual a L si podemos hacer que los valores de f(x) se acerquen arbitrariamente a L, tanto como queramos, tomando x suficientemente cercanos a a, pero menores que a.

Observe que la definición 2 difiere de la definición 1 sólo en el hecho de que x sea necesariamente menor que a. Del mismo modo, si se requiere que x sea mayor que a, se obtiene "el **límite de** f(x) cuando x tiende a a por la derecha es igual a L" y escribimos

$$\lim_{x \to a^+} f(x) = L$$

Así, el símbolo " $x \to a^+$ " significa que se consideran sólo x > a. Estas definiciones se ilustran en la figura 9.

FIGURA 9

Al comparar la definición 1 con las de los límites laterales, vemos que se cumple con lo siguiente.

 $\lim_{x \to a} f(x) = L \quad \text{ si y sólo si } \quad \lim_{x \to a^{-}} f(x) = L \quad \text{ y } \quad \lim_{x \to a^{+}} f(x) = L$ 3

FIGURA 10

- EJEMPLO 7 La gráfica de una función q se muestra en la figura 10. Utilícela para establecer los valores (si existen) de lo siguiente:
- a) $\lim_{x \to 2^{-}} g(x)$ b) $\lim_{x \to 2^{+}} g(x)$ c) $\lim_{x \to 2} g(x)$ d) $\lim_{x \to 5^{-}} g(x)$ e) $\lim_{x \to 5^{+}} g(x)$ f) $\lim_{x \to 5} g(x)$

SOLUCIÓN En la gráfica vemos que los valores de g(x) tienden a 3 conforme x tiende a 2 por la izquierda, pero se acercan a 1 a medida x tiende a 2 por la derecha. Por tanto,

a)
$$\lim_{x \to 2^{-}} g(x) = 3$$
 y b) $\lim_{x \to 2^{+}} g(x) = 1$

- c) Dado que los límites por la izquierda y por la derecha son diferentes, llegamos a la conclusión de $\boxed{3}$ que $\lim_{x\to 2} g(x)$ no existe.

La gráfica también muestra que

d)
$$\lim_{x \to 5^{-}} g(x) = 2$$
 y e) $\lim_{x \to 5^{+}} g(x) = 2$

f) Esta vez los límites por la izquierda y por la derecha son los mismos, así que, por 3, tenemos

$$\lim_{x \to 5} g(x) = 2$$

A pesar de esto, observe que $g(5) \neq 2$

Límites infinitos

EJEMPLO 8 Encuentre $\lim_{x\to 0} \frac{1}{x^2}$ si existe.

SOLUCIÓN Conforme x se acerca a 0, x^2 también se acerca a 0, y $1/x^2$ se hace muy grande. (Véase la tabla en el margen.) De hecho, se desprende de la gráfica de la función $f(x) = 1/x^2$ en la figura 11, que los valores de f(x) pueden ser arbitrariamente grandes, tomando x lo suficientemente cercano a 0. Así, los valores de f(x) no se aproximan a un número, por lo que $\lim_{x\to 0} (1/x^2)$ no existe.

Para indicar el tipo de comportamiento exhibido en el ejemplo 8, se usa la notación

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

1

4

25

100

400

10000

1000000

x

 ± 1

 ± 0.5

 ± 0.2

 ± 0.1

 ± 0.05

 ± 0.01

 ± 0.001

FIGURA 11

⊘ Esto no quiere decir que estemos considerando a ∞ como un número. Tampoco significa que el límite existe. Simplemente expresa la forma particular en que el límite no existe: $1/x^2$ puede hacerse tan grande como queramos, tomando a x suficientemente cerca de 0.

En general, podemos escribir simbólicamente

$$\lim_{x \to a} f(x) = \infty$$

para indicar que los valores de f(x) tienden a ser más y más grandes (o "crecen sin límite") a medida que x se acerca más y más a a.

4 Definición Sea f una función definida por ambos lados de a, excepto posiblemente en la misma a. Entonces

$$\lim_{x \to a} f(x) = \infty$$

significa que los valores de f(x) pueden ser arbitrariamente grandes (tan grandes como queramos), tomando x suficientemente cerca de a, pero no igual a a.

Otra notación para $\lim_{x\to a} f(x) = \infty$ es

$$f(x) \to \infty$$
 cuando $x \to a$

Una vez más, el símbolo ∞ no es un número, pero la expresión $\lim_{x\to a} f(x) = \infty$ se lee a menudo como

"el límite de f(x), cuando x tiende a a, es infinito"

o bien "f(x) tiende al infinito cuando x se aproxima a a"

o bien "f(x) crece sin cota cuando x se aproxima a a".

Esta definición se ilustra gráficamente en la figura 12.

FIGURA 12 $\lim_{x \to a} f(x) = \infty$

Cuando decimos que un número es "negativo muy grande", lo que queremos decir que es negativo, pero su magnitud (valor absoluto) es grande.

Un tipo similar de límite, para las funciones que se convierten en negativos muy grandes conforme x se aproxima a a, se precisa en la definición 5 y se ilustra en la figura 13.

Sea f definida por ambos lados de a, excepto posiblemente en a misma. Entonces

$$\lim_{x \to a} f(x) = -\infty$$

significa que los valores de f(x) pueden ser negativos arbitrariamente grandes, tomando x suficientemente cerca de a, pero no igual a a.

FIGURA 13

$$\lim_{x \to a} f(x) = -\infty$$

El símbolo lím $_{x\to a} f(x) = -\infty$ puede leerse como "el límite de f(x), cuando x se aproxima a a, es infinito negativo" o "f(x) decrece sin límite conforme x tiende a a". Como ejemplo tenemos

$$\lim_{x \to 0} \left(-\frac{1}{x^2} \right) = -\infty$$

Definiciones similares pueden darse a los límites laterales infinitos

$$\lim_{x \to a^{-}} f(x) = \infty \qquad \qquad \lim_{x \to a^{+}} f(x) =$$

$$\lim_{x \to a^{-}} f(x) = \infty \qquad \qquad \lim_{x \to a^{+}} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty \qquad \qquad \lim_{x \to a^{+}} f(x) = -\infty$$

recordando que " $x \rightarrow a$ " significa que se consideran sólo los valores de x que son menores que a, y del mismo modo " $x \rightarrow a^+$ " significa que se consideran sólo x > a. En la figura 14, se ilustran cuatro de estos casos.

b) $\lim_{x \to \infty} f(x) = \infty$

c) lím
$$f(x) = -\infty$$

d) $\lim_{x \to \infty} f(x) = -\infty$

FIGURA 14

6 Definición La recta x = a se llama asíntota vertical de la curva y = f(x) si al menos una de las siguientes afirmaciones son verdaderas:

$$\lim f(x) = \infty$$

$$\lim f(x) = \infty$$

$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty \qquad \qquad \lim_{x \to a^{-}} f(x) = -\infty \qquad \qquad \lim_{x \to a^{+}} f(x) = -\infty$$

$$\lim f(x) = -\infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

Por ejemplo, el eje y es una asíntota vertical de la curva $y=1/x^2$ debido a que $\lim_{x\to 0} (1/x^2) = \infty$. En la figura 14 la recta x=a es una asíntota vertical en cada uno de los cuatro casos que se muestran. En general, el conocimiento de asíntotas verticales es muy útil para dibujar gráficas.

EJEMPLO 9 Encuentre
$$\lim_{x\to 3^+} \frac{2x}{x-3}$$
 y $\lim_{x\to 3^-} \frac{2x}{x-3}$.

SOLUCIÓN Si x tiende a 3 con valores mayores que 3, entonces el denominador x-3 es un número positivo muy pequeño y 2x está muy cerca de 6, así que el cociente 2x/(x-3) es un número *positivo* muy grande. Por tanto, intuitivamente, podemos ver que

$$\lim_{x \to 3^+} \frac{2x}{x - 3} = \infty$$

Asimismo, si x es cercano a 3, pero con valores menores que 3, entonces x-3 es un número negativo pequeño, pero 2x es aún un número positivo (cercano a 6). Así, 2x/(x-3) es un número *negativo* muy grande. Por tanto,

$$\lim_{x \to 3^{-}} \frac{2x}{x - 3} = -\infty$$

La gráfica de la curva y = 2x/(x - 3) se ilustra en la figura 15. La recta x = 3 es una asíntota vertical.

SOLUCIÓN Ya que

$$\tan x = \frac{\sin x}{\cos x}$$

hay posibles asíntotas verticales donde $\cos x = 0$. De hecho, puesto que $\cos x \to a^+$ cuando $x \to (\pi/2)^-$ y $\cos x \to 0^-$ a medida que $x \to (\pi/2)^+$, mientras sen x es positivo cuando x está cerca de $\pi/2$, tenemos

$$\lim_{x \to (\pi/2)^{-}} \tan x = \infty \qquad \qquad \text{y} \qquad \lim_{x \to (\pi/2)^{+}} \tan x = -\infty$$

Esto muestra que la recta $x = \pi/2$ es una asíntota vertical. Un razonamiento similar, muestra que las rectas $x = (2n + 1)\pi/2$, donde n es un número entero, son todas asíntotas verticales de $f(x) = \tan x$. La gráfica en la figura 16 confirma esto.

Otro ejemplo de una función cuya gráfica tiene una asíntota vertical es la función logaritmo natural $y = \ln x$. En la figura 17 vemos que

$$\lim_{x \to 0^+} \ln x = -\infty$$

y así, la recta x = 0 (el eje y) es una asíntota vertical. De hecho, lo mismo es cierto para $y = \log_a x$ siempre que a > 1. (Véanse las figuras 11 y 12 en la sección 1.6.)

FIGURA 15

FIGURA 16 $y = \tan x$

FIGURA 17

El eje *y* es una asíntota vertical de la función logaritmo natural.

Ejercicios

96

1. Explique con sus propias palabras cuál es el significado de la ecuación

$$\lim_{x \to 2} f(x) = 5$$

¿Es posible que se cumpla con esta proposición y que aún f(2) = 3 sea verdadero? Explique.

2. Explique qué significa decir que

$$\lim_{x \to 1^{-}} f(x) = 3 \qquad \text{y} \qquad \lim_{x \to 1^{+}} f(x) = 7$$

$$\lim_{x \to 1^+} f(x) = 7$$

En esta situación, ¿es posible que $\lim_{x\to 1} f(x)$ exista? Explique.

3. Explique el significado de cada una de las siguientes proposiciones.

a)
$$\lim_{x \to a^2} f(x) = \infty$$

b)
$$\lim_{x \to 4^+} f(x) = -\infty$$

4. Utilice la gráfica de f para establecer el valor de cada cantidad si ésta existe. Si no existe, explique por qué.

a)
$$\lim_{x \to 2^{-}} f(x)$$

- b) $\lim_{x \to a} f(x)$
- c) $\lim_{x \to a} f(x)$

- d) f(2)
- e) $\lim_{x \to 0} f(x)$ f) f(4)

- 5. Para la función f cuya gráfica está dada, establezca el valor de cada una de las siguientes cantidades. Si no existe, explique por qué.
 - a) $\lim_{x \to a} f(x)$
- b) $\lim_{x \to \infty} f(x)$
- c) $\lim_{x \to 3^+} f(x)$

- d) $\lim_{x \to 0} f(x)$
- e) f(3)

- **6.** Para la función h cuya gráfica está dada, establezca el valor de cada una de las siguientes cantidades. Si no existe, explique por qué.
 - a) $\lim_{x \to -3^{-}} h(x)$ b) $\lim_{x \to -3^{+}} h(x)$ c) $\lim_{x \to -3} h(x)$

- d) h(-3)
- e) lím h(x)
- f) $\lim_{x \to \infty} h(x)$

- g) $\lim_{x\to 0} h(x)$
- h) h(0)
- i) $\lim h(x)$

- j) h(2)
- k) $\lim_{x \to \infty} h(x)$
- $\lim h(x)$

- 7. Para la función g cuya gráfica está dada, establezca el valor de cada una de las siguientes cantidades si existe. Si no, explique por qué.
 - a) $\lim_{t \to \infty} g(t)$
- b) $\lim_{t\to 0^+} g(t)$
- c) $\lim_{t\to 0} g(t)$
- d) $\lim_{t \to 2^{-}} g(t)$ e) $\lim_{t \to 2^{+}} g(t)$ f) $\lim_{t \to 2} g(t)$

- g) g(2)
- h) $\lim g(t)$

- 8. Para la función R cuya gráfica se muestra, establezca lo siguiente.
 - a) $\lim_{x\to 2} R(x)$
- b) $\lim R(x)$
- c) $\lim_{x \to \infty} R(x)$
- d) $\lim_{x \to a} R(x)$
- e) Las ecuaciones de las asíntotas verticales.

- **9.** Para la función f cuya gráfica se muestra, establezca lo siguiente.
 - a) $\lim_{x \to a} f(x)$
- b) $\lim_{x \to -3} f(x)$ c) $\lim_{x \to 0} f(x)$

- d) $\lim_{x \to 6^{-}} f(x)$ e) $\lim_{x \to 6^{+}} f(x)$
- f) Las ecuaciones de las asíntotas verticales.

10. Un paciente recibe una invección de 150 mg de un medicamento cada 4 horas. La gráfica muestra la cantidad f(t) del medicamento en el torrente sanguíneo después de t horas. Encuentre

$$\lim_{t \to 12^{-}} f(t) \qquad \text{y} \qquad \lim_{t \to 12^{+}} f(t)$$

y explique el significado de estos límites laterales.

11-12 Trace la gráfica de cada una de las siguientes funciones y utilícela para determinar los valores de a para los cuales $\lim_{x\to a} f(x)$ existe.

11.
$$f(x) = \begin{cases} 1 + x & \text{si } x < -1 \\ x^2 & \text{si } -1 \le x < 1 \\ 2 - x & \text{si } x \ge 1 \end{cases}$$
12.
$$f(x) = \begin{cases} 1 + \sin x & \text{si } x < 0 \\ \cos x & \text{si } 0 \le x \le \pi \\ \sin x & \text{si } x > \pi \end{cases}$$

12.
$$f(x) = \begin{cases} 1 + \sin x & \text{si } x < 0 \\ \cos x & \text{si } 0 \le x \le \pi \\ \sin x & \text{si } x > \pi \end{cases}$$

- \bigcap 13-14 Utilice la gráfica de la función f para establecer el valor de cada uno de los siguientes límites, si es que existen. Si no, explique por qué.
 - a) $\lim_{x \to 0^{-}} f(x)$
- b) $\lim_{x \to 0^+} f(x)$ c) $\lim_{x \to 0} f(x)$

13.
$$f(x) = \frac{1}{1 + e^{1/x}}$$

13.
$$f(x) = \frac{1}{1 + e^{1/x}}$$
 14. $f(x) = \frac{x^2 + x}{\sqrt{x^3 + x^2}}$

15-18 Trace la gráfica de un ejemplo de una función f que cumpla con todas las condiciones dadas.

15.
$$\lim_{x \to 0^{-}} f(x) = -1$$
, $\lim_{x \to 0^{+}} f(x) = 2$, $f(0) = 1$

16.
$$\lim_{x \to 0} f(x) = 1$$
, $\lim_{x \to 3^{-}} f(x) = -2$, $\lim_{x \to 3^{+}} f(x) = 2$, $f(0) = -1$, $f(3) = 1$

17.
$$\lim_{x \to 3^+} f(x) = 4$$
, $\lim_{x \to 3^-} f(x) = 2$, $\lim_{x \to -2} f(x) = 2$, $f(3) = 3$, $f(-2) = 1$

18.
$$\lim_{x \to 0^{-}} f(x) = 2$$
, $\lim_{x \to 0^{+}} f(x) = 0$, $\lim_{x \to 4^{-}} f(x) = 3$, $\lim_{x \to 4^{-}} f(x) = 0$, $f(0) = 2$, $f(4) = 1$

19-22 Conjeture el valor de cada uno de los siguientes límites (si existen) evaluando la función dada en los números propuestos (con una precisión de seis decimales).

19.
$$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 - x - 2},$$

$$x = 2.5, 2.1, 2.05, 2.01, 2.005, 2.001,$$

$$1.9, 1.95, 1.99, 1.995, 1.999$$

20.
$$\lim_{x \to -1} \frac{x^2 - 2x}{x^2 - x - 2},$$

$$x = 0, -0.5, -0.9, -0.95, -0.99, -0.999,$$

$$-2, -1.5, -1.1, -1.01, -1.001$$

21.
$$\lim_{t\to 0} \frac{e^{5t}-1}{t}$$
, $t=\pm 0.5, \pm 0.1, \pm 0.01, \pm 0.001, \pm 0.0001$

22.
$$\lim_{h \to 0} \frac{(2+h)^5 - 32}{h},$$

$$h = \pm 0.5, \pm 0.1, \pm 0.01, \pm 0.001, \pm 0.0001$$

23-26 Utilice una tabla de valores para estimar el valor de cada uno de los siguientes límites. Si dispone usted de una calculadora o computadora, utilícela para confirmar gráficamente su resultado.

23.
$$\lim_{x \to 0} \frac{\sqrt{x+4} - 2}{x}$$

24.
$$\lim_{x \to 0} \frac{\tan 3x}{\tan 5x}$$

25.
$$\lim_{x \to 1} \frac{x^6 - 1}{x^{10} - 1}$$

26.
$$\lim_{x \to 0} \frac{9^x - 5^x}{x}$$

- 27. a) Por medio de la grafica de la función $f(x) = (\cos 2x - \cos x)/x^2$ y un acercamiento al punto donde la gráfica interseca el eje y, estime el valor de $\lim_{x\to 0} f(x)$.
 - b) Verifique su respuesta del inciso a) mediante la evaluación de f(x) para valores de x que tiendan a 0.

$$\lim_{x\to 0} \frac{\operatorname{sen} x}{\operatorname{sen} \pi x}$$

graficando la función $f(x) = (\sin x)/(\sin \pi x)$. Exprese su respuesta con una precisión de dos decimales.

- b) Verifique su respuesta del inciso a) evaluando f(x) para valores de x que tiendan a 0.
- 29-37 Determine cada uno de los siguientes límites infinitos.

29.
$$\lim_{x \to -3^+} \frac{x+2}{x+3}$$

30.
$$\lim_{x \to -3^-} \frac{x+2}{x+3}$$

31.
$$\lim_{x \to 1} \frac{2 - x}{(x - 1)^2}$$

32.
$$\lim_{x \to 5^{-}} \frac{e^x}{(x-5)^3}$$

33.
$$\lim_{x \to 3^+} \ln(x^2 - 9)$$

34.
$$\lim_{x \to \pi^{-}} \cot x$$

35.
$$\lim_{x \to 2\pi^{-}} x \csc x$$

36.
$$\lim_{x \to 2^{-}} \frac{x^2 - 2x}{x^2 - 4x + 4}$$

 \mathbb{A}

37.
$$\lim_{x \to 2^+} \frac{x^2 - 2x - 8}{x^2 - 5x + 6}$$

38. a) Encuentre las asíntotas verticales de la función

$$y = \frac{x^2 + 1}{3x - 2x^2}$$

- b) Verifique su respuesta al inciso a) graficando la función.
- **39.** Determine $\lim_{x \to 1^-} \frac{1}{x^3 1}$ y $\lim_{x \to 1^+} \frac{1}{x^3 1}$
 - a) evaluando $f(x) = 1/(x^3 1)$ para valores de x que tiendan a 1, por el lado izquierdo y por el lado derecho.
 - b) razonando como en el ejemplo 9, y
- c) a partir de la gráfica de f.
- **40.** a) Por medio de la gráfica de la función $f(x) = (\tan 4x)/x$ y un acercamiento al punto donde la gráfica interseca el eje y estime el valor de $\lim_{x\to 0} f(x)$.
 - b) Verifique su respuesta del inciso a) para evaluar f(x) para valores de x que tiendan a 0.
 - **41.** a) Estime el valor de $\lim_{x\to 0} (1+x)^{1/x}$ con una precisión de cinco decimales. ¿Le parece conocido este número?
 - b) Ilustre el inciso a) graficando la función $y = (1 + x)^{1/x}$.
- **42.** a) Grafique la función $f(x) = e^x + \ln|x 4|$ para $0 \le x \le 5$. ¿Piensa que la gráfica es una buena representación de f?
 - b) ¿Cómo conseguiría una gráfica que represente mejor a f?

43. a) Evalúe la función $f(x) = x^2 - (2^x/1000)$ para x = 1, 0.8, 0.6, 0.4, 0.2, 0.1 y 0.05 e intuya el valor de

$$\lim_{x \to 0} \left(x^2 - \frac{2^x}{1000} \right)$$

- b) Evalúe f(x) para x = 0.04, 0.02, 0.01, 0.005, 0.003 y 0.001. Intuya otra vez.
- **44.** a) Evalúe $h(x) = (\tan x x)/x^3$ para x = 1, 0.5, 0.1, 0.05, 0.01 y 0.005.
 - b) Intuya el valor de $\lim_{x\to 0} \frac{\tan x x}{x^3}$.
 - c) Evalúe h(x) para sucesivos valores pequeños de x hasta que finalmente alcance un valor de 0 para h(x). ¿Aún confía usted en que su conjetura en el inciso b) es correcta? Explique por qué finalmente obtuvo valores 0. (En la sección 4.4 se explicará un método para evaluar el límite.)
- d) Grafique la función h en un rectángulo de vista [-1, 1] por [0, 1]. Después haga un acercamiento hacia el punto donde la gráfica interseca el eje y, para estimar el límite de h(x) cuando x tienda a 0. Continúe el acercamiento hasta que observe distorsiones en la gráfica de h. Compare con los resultados del inciso c).
- **45.** Grafique la función $f(x) = \text{sen}(\pi/x)$ del ejemplo 4 en el rectángulo de vista [-1, 1] por [-1, 1]. Después haga acercamientos al origen varias veces. Haga comentarios relacionados con el comportamiento de esta función.
 - **46.** En la teoría de la relatividad, la masa de una partícula con velocidad v es

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

donde m_0 es la masa de la partícula en reposo y c es la rapidez de la luz. ¿Qué pasa cuando $v \rightarrow c^-$?

47. Utilice una gráfica para estimar la ecuación de todas las asíntotas verticales de la curva

$$y = \tan(2 \operatorname{sen} x) \qquad -\pi \le x \le \pi$$

Después, encuentre las ecuaciones exactas de estas asíntotas.

48. a) Utilice evidencias numéricas y gráficas para intuir el valor del límite

$$\lim_{x\to 1} \frac{x^3-1}{\sqrt{x}-1}$$

b) ¿Qué tan cerca a 1 debe estar *x* para asegurar que la función del inciso a) está dentro de una distancia de 0.5 de este límite?

Cálculo de límites usando las leyes de los límites

En la sección 2.2 utilizamos calculadoras y gráficas para intuir los valores de un límite, pero observamos que tales métodos no siempre nos llevan a la respuesta correcta. En esta sección utilizaremos las siguientes propiedades de los límites, llamadas leyes de los límites, para calcularlos.

Leyes de los límites Suponga que c es una constante y que los límites

$$\lim_{x \to a} f(x) \qquad \text{y} \qquad \lim_{x \to a} g(x)$$

existen. Entonces

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{si } \lim_{x \to a} g(x) \neq 0$$

Estas cinco leves pueden expresarse verbalmente como sigue:

- 1. El límite de una suma es la suma de los límites.
- 2. El límite de una diferencia es la diferencia de los límites.
- 3. El límite de una constante por una función es la constante por el límite de la función.
- 4. El límite de un producto es el producto de los límites.
- 5. El límite de un cociente es el cociente de los límites (siempre que el límite del denominador no sea cero).

Es fácil creer que estas propiedades son verdaderas. Por ejemplo, si f(x) está cerca de L y g(x) está cerca de M, es razonable concluir que f(x) + g(x) está muy cerca de L + M. Esto nos da una base intuitiva para creer que la ley 1 es verdadera. En la sección 2.4 daremos una definición precisa de la idea de límite y la utilizaremos para demostrar esta ley. Las demostraciones del resto de las leyes están dadas en el apéndice F.

EJEMPLO 1 Utilice las leyes de los límites y las gráficas de f y g en la figura 1 para evaluar los siguientes límites, si es que existen.

a)
$$\lim_{x \to -2} [f(x) + 5g(x)]$$
 b) $\lim_{x \to 1} [f(x)g(x)]$ c) $\lim_{x \to 2} \frac{f(x)}{g(x)}$

b)
$$\lim_{x \to 1} [f(x)g(x)]$$

c)
$$\lim_{x \to 2} \frac{f(x)}{g(x)}$$

SOLUCIÓN

a) De las gráficas de f y g vemos que

$$\lim_{x \to -2} f(x) = 1$$
 y $\lim_{x \to -2} g(x) = -1$

Ley de la suma

Ley de la diferencia

Lev del producto

Ley del cociente

Ley del múltiplo constante

FIGURA 1

Por tanto, tenemos

$$\lim_{x \to -2} [f(x) + 5g(x)] = \lim_{x \to -2} f(x) + \lim_{x \to -2} [5g(x)] \qquad \text{(por la ley 1)}$$

$$= \lim_{x \to -2} f(x) + 5 \lim_{x \to -2} g(x) \qquad \text{(por la ley 3)}$$

$$= 1 + 5(-1) = -4$$

b) Vemos que $\lim_{x\to 1} f(x) = 2$. Pero $\lim_{x\to 1} g(x)$ no existe porque los límites por la izquierda y por la derecha son diferentes:

$$\lim_{x \to 1^{-}} g(x) = -2 \qquad \lim_{x \to 1^{+}} g(x) = -1$$

Así que no podemos utilizar la ley 4 para el límite deseado, pero *podemos* utilizarla para los límites laterales:

$$\lim_{x \to 1^{-}} [f(x)g(x)] = 2 \cdot (-2) = -4 \qquad \lim_{x \to 1^{+}} [f(x)g(x)] = 2 \cdot (-1) = -2$$

Los límites por la izquierda y por la derecha no son iguales, así que $\lim_{x\to 1} [f(x)g(x)]$ no existe.

c) La gráfica muestra que

$$\lim_{x \to 2} f(x) \approx 1.4 \qquad \text{y} \qquad \lim_{x \to 2} g(x) = 0$$

Ya que el límite del denominador es 0, no podemos utilizar la ley 5. El límite dado no existe porque el denominador tiende a 0, mientras que el numerador se acerca a un número no cero.

Si utilizamos repetidamente la ley del producto con g(x) = f(x), obtenemos la siguiente ley.

Ley de la potencia

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$
 donde n es un número entero positivo

Para la aplicación de estas seis leyes, necesitamos utilizar dos límites especiales:

7.
$$\lim_{x \to a} c = c$$
 8. $\lim_{x \to a} x = a$

Estos límites son obvios desde un punto de vista intuitivo (establézcalos en palabras o dibuje las gráficas de y = c y y = x), pero en los ejercicios de la sección 2.4 se requieren las demostraciones basadas en la definición precisa.

Si hacemos f(x) = x en la ley 6 y utilizamos la ley 8, obtenemos otra forma especial de límite.

9.
$$\lim_{x \to a} x^n = a^n$$
 donde *n* es un número entero positivo

Un límite similar con el que se cumple para las raíces es el siguiente. (Para la raíz cuadrada, la demostración se resume en el ejercicio 37 de la sección 2.4.)

10.
$$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$
 donde n es un número entero positivo (Si n es par, suponemos que $a > 0$.)

Más generalmente, tenemos la siguiente ley que hemos de demostrar en la sección 2.5 como una consecuencia de la ley 10.

Ley de la raíz

Newton y los límites

Isaac Newton nació el día de Navidad en 1642. año de la muerte de Galileo. Cuando entró en la Universidad de Cambridge en 1661, Newton no sabía muchas matemáticas, pero aprendió rápidamente mediante la lectura de Euclides y Descartes, y asistiendo a las conferencias de Isaac Barrow. Cambridge fue cerrada a causa de la peste en 1665 y 1666, y Newton regresó a su casa a reflexionar sobre lo que había aprendido. Esos dos años fueron extraordinariamente productivos porque hizo cuatro de sus descubrimientos más importantes: 1) su representación de funciones como sumas de series infinitas, incluyendo el teorema del binomio; 2) su trabajo sobre el cálculo diferencial e integral; 3) sus leves del movimiento y la ley de la gravitación universal y 4) sus experimentos con el prisma relacionados con la naturaleza de la luz y el color. Debido a un temor a la controversia y la crítica, se mostró reacio a publicar sus descubrimientos y no fue sino hasta 1687, a instancias del astrónomo Halley, que Newton publicó sus Principia Mathematica. En este trabajo, el tratado científico más grande jamás escrito, Newton expone su versión del Cálculo v su utilización en la investigación de la mecánica, la dinámica de fluidos, y el movimiento ondulatorio, así como en la explicación del movimiento de los planetas y los cometas.

Los inicios del Cálculo se encuentran en los procedimientos para obtener áreas y volúmenes ideados por los antiguos sabios griegos Eudoxo y Arquímedes. A pesar de que los aspectos de la idea de límite están implícitos en su "método de agotamiento", Eudoxo y Arquímedes nunca formularon explícitamente el concepto de límite. Tampoco matemáticos como Cavalieri, Fermat ni Barrow, antecesores inmediatos de Newton en el desarrollo del Cálculo, utilizaron los límites. Isaac Newton fue el primero en hablar explícitamente de límites. Explicó que la idea principal detrás de los límites es que las cantidades "se acercan más que cualquier diferencia dada". Newton dijo que el límite era el concepto básico en el Cálculo, pero fue el posterior trabajo de matemáticos como Cauchy v otros más el que finalmente clarificó las ideas relacionadas con los límites.

11.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$
 donde n es un número entero positivo

[Si n es par, suponemos que $\lim_{x \to a} f(x) > 0$.]

EJEMPLO 2 Evalúe los siguientes límites y justifique cada paso

a)
$$\lim_{x \to 5} (2x^2 - 3x + 4)$$
 b) $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$

SOLUCIÓN

a)
$$\lim_{x \to 5} (2x^2 - 3x + 4) = \lim_{x \to 5} (2x^2) - \lim_{x \to 5} (3x) + \lim_{x \to 5} 4 \qquad \text{(por las leyes 2 y 1)}$$

$$= 2 \lim_{x \to 5} x^2 - 3 \lim_{x \to 5} x + \lim_{x \to 5} 4 \qquad \text{(por la ley 3)}$$

$$= 2(5^2) - 3(5) + 4 \qquad \text{(por las leyes 9, 8 y 7)}$$

$$= 39$$

b) Empezamos utilizando la ley 5, pero su uso está completamente justificado sólo en la etapa final cuando vemos que los límites del numerador y el denominador existen y el límite del denominador no es cero.

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{\lim_{x \to -2} (x^3 + 2x^2 - 1)}{\lim_{x \to -2} (5 - 3x)}$$
 (por la ley 5)
$$= \frac{\lim_{x \to -2} x^3 + 2 \lim_{x \to -2} x^2 - \lim_{x \to -2} 1}{\lim_{x \to -2} 5 - 3 \lim_{x \to -2} x}$$
 (por las leyes 1, 2 y 3)
$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)}$$
 (por las leyes 9, 8 y 7)
$$= -\frac{1}{11}$$

NOTA Si hacemos $f(x) = 2x^2 - 3x + 4$, entonces f(5) = 39. En otras palabras, habríamos obtenido la respuesta correcta del ejemplo 2a) sustituyendo 5 por x. Del mismo modo, la sustitución directa aporta la respuesta correcta en el inciso b). Las funciones en el ejemplo 2 son una función polinomial y una función racional, respectivamente, y el mismo uso de las leyes de los límites demuestra que la sustitución directa siempre sirve para este tipo de funciones (Véanse los ejercicios 55 y 56). Este hecho se expresa de la siguiente manera:

Propiedad de sustitución directa Si f es una función polinomial o una función racional y a está en el dominio de f, entonces

$$\lim_{x \to a} f(x) = f(a)$$

EJEMPLO 3 Encuentre $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$.

SOLUCIÓN Sea $f(x) = (x^2 - 1)/(x - 1)$. No podemos encontrar el límite por sustitución directa de x = 1 porque f(1) no está definida. Tampoco podemos aplicar la ley del cociente porque el límite del denominador es 0. Ahora, necesitamos de un proceso algebraico preliminar. Factorizando el numerador como una diferencia de cuadrados:

$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1}$$

El numerador y el denominador tienen un factor común de x-1. Cuando tomamos el límite cuando x tiende a 1, tenemos que $x \ne 1$ y, por tanto, $x-1 \ne 0$. Así, podemos cancelar el factor común y calcular el límite como sigue:

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$
$$= \lim_{x \to 1} (x + 1)$$
$$= 1 + 1 = 2$$

El límite en este ejemplo surgió en la sección 2.1 cuando intentamos hallar la recta tangente a la parábola $y = x^2$ en el punto (1, 1).

NOTA En el ejemplo 3 pudimos calcular el límite sustituyendo la función dada, $f(x) = (x^2 - 1)/(x - 1)$, por la función más sencilla, g(x) = x + 1, que posee el mismo límite. Esto es válido porque f(x) = g(x), excepto cuando x = 1, y al calcular el límite cuando x tiende 1, no se considera qué sucede cuando x es en realidad igual a 1. En general, se tiene el siguiente hecho.

Si f(x) = g(x) cuando $x \neq a$, entonces $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ siempre que el límite exista.

EJEMPLO 4 Encuentre $\lim_{x \to a} g(x)$ donde

$$g(x) = \begin{cases} x+1 & \text{si } x \neq 1 \\ \pi & \text{si } x = 1 \end{cases}$$

SOLUCIÓN Aquí g está definida en x=1 y $g(1)=\pi$, pero el valor del límite cuando x tiende a 1, no depende del valor de la función en 1. Ya que g(x)=x+1 para $x\neq 1$, tenemos

$$\lim_{x \to 1} g(x) = \lim_{x \to 1} (x + 1) = 2$$

Note que los valores de las funciones en los ejemplos 3 y 4 son idénticos, excepto cuando x = 1 (véase la figura 2) y tienen el mismo límite cuando x tiende a 1.

FIGURA 2

Las gráficas de las funciones f (del ejemplo 3) y g (del ejemplo 4)

V EJEMPLO 5 Evalúe
$$\lim_{h\to 0} \frac{(3+h)^2-9}{h}$$
.

SOLUCIÓN Si definimos

$$F(h) = \frac{(3+h)^2 - 9}{h},$$

entonces, como en el ejemplo 3, no podemos calcular lím $_{h\to 0} F(h)$ poniendo h=0, ya que F(0) es indefinida. Pero si simplificamos algebraicamente a F(h), encontramos que

$$F(h) = \frac{(9+6h+h^2)-9}{h} = \frac{6h+h^2}{h} = 6+h$$

(Recuerde que consideramos sólo $h \neq 0$ cuando hacemos que h tienda a 0.) Así

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} (6+h) = 6$$

EJEMPLO 6 Encuentre $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$.

SOLUCIÓN No podemos aplicar inmediatamente la ley del cociente, ya que el límite del denominador es 0. Aquí, el álgebra preliminar consiste en la racionalización del numerador:

$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = \lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} \cdot \frac{\sqrt{t^2 + 9} + 3}{\sqrt{t^2 + 9} + 3}$$

$$= \lim_{t \to 0} \frac{(t^2 + 9) - 9}{t^2(\sqrt{t^2 + 9} + 3)}$$

$$= \lim_{t \to 0} \frac{t^2}{t^2(\sqrt{t^2 + 9} + 3)}$$

$$= \lim_{t \to 0} \frac{1}{\sqrt{t^2 + 9} + 3}$$

$$= \frac{1}{\sqrt{\lim_{t \to 0} (t^2 + 9)} + 3}$$

$$= \frac{1}{3 + 3} = \frac{1}{6}$$

Este cálculo confirma la conjetura que hicimos en el ejemplo 2 de la sección 2.2.

Algunos límites se calculan mejor encontrando primero los límites por la izquierda y por la derecha. El siguiente teorema es un recordatorio de lo que se descubrió en la sección 2.2. Decimos que los límites por los dos lados existen si y sólo si ambos límites existen y son iguales.

Teorema $\lim_{x \to a} f(x) = L$ si y sólo si $\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$

Cuando calculamos límites laterales, utilizamos el hecho de que las leyes de los límites también se cumplen para límites de este tipo.

EJEMPLO 7 Demuestre que $\lim_{x \to 0} |x| = 0$.

SOLUCIÓN Recuerde que

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

El resultado del ejemplo 7 parece verosímil viendo la figura 3.

Dado que |x| = x para x > 0, tenemos

$$\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0$$

Para x < 0 tenemos |x| = -x así que

$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{-}} (-x) = 0$$

Por tanto, por el teorema 1

$$\lim_{x \to 0} |x| = 0$$

FIGURA 3

EJEMPLO 8 Demuestre que $\lim_{x\to 0} \frac{|x|}{x}$ no existe.

SOLUCIÓN

$$\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = \lim_{x \to 0^+} 1 = 1$$

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = \lim_{x \to 0^{-}} (-1) = -1$$

FIGURA 4

Puesto que los límites por la izquierda y por la derecha son diferentes, se sigue, del teorema 1, que $\lim_{x\to 0} |x|/x$ no existe. La gráfica de la función f(x) = |x|/x se muestra en la figura 4 y exhibe la coincidencia con los límites laterales que encontró.

EJEMPLO 9 Si

$$f(x) = \begin{cases} \sqrt{x-4} & \text{si } x > 4\\ 8-2x & \text{si } x < 4 \end{cases}$$

determine si $\lim_{x\to 4} f(x)$ existe.

SOLUCIÓN Ya que $f(x) = \sqrt{x-4}$ para x > 4, tenemos

$$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \sqrt{x - 4} = \sqrt{4 - 4} = 0$$

Dado que f(x) = 8 - 2x para x < 4, tenemos

$$\lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{-}} (8 - 2x) = 8 - 2 \cdot 4 = 0$$

Los límites por la izquierda y por la derecha son iguales. Así que el límite existe y

$$\lim_{x \to 4} f(x) = 0$$

0

La gráfica de f se muestra en la figura 5.

Se muestra en el ejemplo 3 de la sección 2.4

que el lím $_{x\to 0^+}\sqrt{x}=0$

FIGURA 5

Otras notaciones para $[\![x]\!]$ son $[\![x]\!]$ y $[\![x]\!]$. En ocasiones, la función entero mayor se llama función piso.

FIGURA 6
Función entero mayor

EJEMPLO 10 La **función entero mayor** está definida por $[\![x]\!]$ = el mayor entero que es menor que o igual a x. (Por ejemplo, $[\![4]\!]$ = 4, $[\![4.8]\!]$ = 4, $[\![\pi]\!]$ = 3, $[\![\sqrt{2}]\!]$ = 1, $[\![-\frac{1}{2}]\!]$ = -1.) Demuestre que lím $_{x\to 3}$ $[\![x]\!]$ no existe.

SOLUCIÓN La gráfica de la función entero mayor se ilustra en la figura 6. Dado que $[\![x]\!]=3$ para $3 \le x < 4$, tenemos

$$\lim_{x \to 3^+} [\![x]\!] = \lim_{x \to 3^+} 3 = 3$$

Así que [x] = 2 para $2 \le x < 3$, tenemos

$$\lim_{x \to 3^{-}} [\![x]\!] = \lim_{x \to 3^{-}} 2 = 2$$

Ya que estos límites laterales no son iguales, $\lim_{x\to 3} [x]$ no existe por el teorema 1.

Los dos teoremas siguientes dan dos propiedades adicionales para los límites. Sus demostraciones se encuentran en el apéndice F.

2 Teorema Si $f(x) \le g(x)$ cuando x tiende a a (excepto posiblemente en x = a) y los límites de f y g existen cuando x tiende a a, entonces

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

3 El teorema de la compresión Si $f(x) \le g(x) \le h(x)$ cuando x tiende a a (excepto posiblemente en a) y

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

entonces

$$\lim_{x \to a} g(x) = L$$

SOLUCIÓN Primero note que no podemos utilizar

FIGURA 7

0

$$\lim_{x \to 0} x^2 \operatorname{sen} \frac{1}{x} = \lim_{x \to 0} x^2 \cdot \lim_{x \to 0} \operatorname{sen} \frac{1}{x}$$

ya que $\lim_{x\to 0} \text{sen}(1/x)$ no existe (véase el ejemplo 4 en la sección 2.2).

En su lugar aplicamos el teorema de la compresión, así que tenemos que encontrar una función f menor que $g(x) = x^2 \operatorname{sen}(1/x)$ y una función h mayor que g tal que f(x) y h(x) tiendan a 0.

Para hacer esto, utilizamos lo que sabemos de la función seno. Ya que el seno de cualquier número está entre -1 y 1, podemos afirmar que

4

$$-1 \le \operatorname{sen} \frac{1}{x} \le 1$$

Cualquier desigualdad permanece válida cuando la multiplicamos por un número positivo. Sabemos que $x^2 \ge 0$ para toda x, así que multiplicando cada lado de la desigualdad en 4 por x^2 , obtenemos

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2$$

como se ilustra en la figura 8. Sabemos que

$$\lim_{x \to 0} x^2 = 0 \qquad \text{y} \qquad \lim_{x \to 0} (-x^2) = 0$$

Tomando $f(x) = -x^2$, $g(x) = x^2 \sin(1/x)$ y $h(x) = x^2$ del teorema de la compresión, obtenemos

$$\lim_{x \to 0} x^2 \operatorname{sen} \frac{1}{x} = 0$$

FIGURA 8 $y = x^2 \operatorname{sen}(1/x)$

106

Ejercicios

1. Dado que

$$\lim_{x \to 2} f(x) = 4 \qquad \lim_{x \to 2} g(x) = -2 \qquad \lim_{x \to 2} h(x) = 0$$

encuentre los límites que existen. Si el límite no existe, explique por qué.

a)
$$\lim_{x \to 0} [f(x) + 5g(x)]$$

b)
$$\lim_{x \to 2} [g(x)]^3$$

c)
$$\lim_{x \to 2} \sqrt{f(x)}$$

d)
$$\lim_{x \to 2} \frac{3f(x)}{g(x)}$$

e)
$$\lim_{x \to 2} \frac{g(x)}{h(x)}$$

f)
$$\lim_{x \to 2} \frac{g(x)h(x)}{f(x)}$$

2. Las gráficas de f y q están dadas. Utilícelas para evaluar cada límite si es que existe. Si el límite no existe, explique por qué.

a)
$$\lim_{x \to 2} [f(x) + g(x)]$$

b)
$$\lim_{x \to 1} [f(x) + g(x)]$$

c)
$$\lim_{x \to 0} [f(x)g(x)]$$

d)
$$\lim_{x \to -1} \frac{f(x)}{g(x)}$$

e)
$$\lim_{x \to 2} \left[x^3 f(x) \right]$$

f)
$$\lim_{x \to 1} \sqrt{3 + f(x)}$$

3-9 Evalúe el límite y justifique cada paso indicando las leyes de los límites apropiadas.

3.
$$\lim_{x \to 3} (5x^3 - 3x^2 + x - 6)$$

4.
$$\lim_{x \to -1} (x^4 - 3x)(x^2 + 5x + 3)$$

5.
$$\lim_{t \to -2} \frac{t^4 - 2}{2t^2 - 3t + 2}$$
 6.
$$\lim_{u \to -2} \sqrt{u^4 + 3u + 6}$$

6.
$$\lim_{u \to -2} \sqrt{u^4 + 3u + 6}$$

7.
$$\lim_{x\to 8} (1+\sqrt[3]{x})(2-6x^2+x^3)$$
 8. $\lim_{t\to 2} \left(\frac{t^2-2}{t^3-3t+5}\right)^2$

8.
$$\lim_{t \to 2} \left(\frac{t^2 - 2}{t^3 - 3t + 5} \right)^2$$

9.
$$\lim_{x \to 2} \sqrt{\frac{2x^2 + 1}{3x - 2}}$$

10. a) ¿Cuál es el error en la siguiente ecuación?

$$\frac{x^2 + x - 6}{x - 2} = x + 3$$

b) Considerando el inciso a), explique por qué la ecuación

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2} (x + 3)$$

es correcta.

11-32 Evalúe cada uno de los siguientes límites si éstos existen.

11.
$$\lim_{x \to 5} \frac{x^2 - 6x + 5}{x - 5}$$

12.
$$\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

13.
$$\lim_{x \to 5} \frac{x^2 - 5x + 6}{x - 5}$$

14.
$$\lim_{x \to -1} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

15.
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$$

16.
$$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{x^2 - 2x - 3}$$

17.
$$\lim_{h\to 0} \frac{(-5+h)^2-25}{h}$$

18.
$$\lim_{h \to 0} \frac{(2+h)^3 - 8}{h}$$

19.
$$\lim_{x \to -2} \frac{x+2}{x^3+8}$$

20.
$$\lim_{t \to 1} \frac{t^4 - 1}{t^3 - 1}$$

21.
$$\lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h}$$

22.
$$\lim_{u \to 2} \frac{\sqrt{4u+1}-3}{u-2}$$

23.
$$\lim_{x \to -4} \frac{\frac{1}{4} + \frac{1}{x}}{4 + x}$$

24.
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^4 - 1}$$

25.
$$\lim_{t \to 0} \frac{\sqrt{1+t} - \sqrt{1-t}}{t}$$

26.
$$\lim_{t\to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t}\right)$$

27.
$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{16x - x^2}$$

28.
$$\lim_{h\to 0} \frac{(3+h)^{-1}-3^{-1}}{h}$$

29.
$$\lim_{t \to 0} \left(\frac{1}{t\sqrt{1+t}} - \frac{1}{t} \right)$$

30.
$$\lim_{x \to -4} \frac{\sqrt{x^2 + 9} - 5}{x + 4}$$

31.
$$\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$

32.
$$\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$$

33. a) Estime el valor de

$$\lim_{x \to 0} \frac{x}{\sqrt{1 + 3x} - 1}$$

graficando la función $f(x) = x/(\sqrt{1+3x} - 1)$.

- b) Haga una tabla de valores de f(x) para x cercana a 0 e intuya el valor del límite.
- c) Utilice las leyes de los límites para probar que su conjetura es correcta.

34. a) Utilice la gráfica de

$$f(x) = \frac{\sqrt{3+x} - \sqrt{3}}{x}$$

para estimar el valor de $\lim_{x\to 0} f(x)$ con dos decimales.

- b) Utilice una tabla de valores de f(x) para estimar el límite con cuatro decimales.
- c) Utilice las leyes de los límites para encontrar el valor exacto del límite.
- **35.** Utilice el teorema de la compresión para demostrar que $\lim_{x\to 0} (x^2 \cos 20\pi x) = 0$. Ilustre las funciones $f(x) = -x^2$, $g(x) = x^2 \cos 20\pi x$ y $h(x) = x^2$ graficando en la misma pantalla.

76. Utilice el teorema de la compresión para demostrar que

$$\lim_{x \to 0} \sqrt{x^3 + x^2} \operatorname{sen} \frac{\pi}{x} = 0$$

evidenciándolo con las gráficas de las funciones f, g y h (en la notación del teorema de la compresión), en la misma pantalla.

- **37.** Si $4x 9 ≤ f(x) ≤ x^2 4x + 7$ para x ≥ 0, encuentre
- **38.** Si $2x \le g(x) \le x^4 x^2 + 2$ para toda x, evalúe $\lim_{x \to 1} g(x)$.
- **39.** Demuestre que $\lim_{x\to 0} x^4 \cos \frac{2}{x} = 0$.
- **40.** Demuestre que $\lim_{x\to 0^+} \sqrt{x} e^{\operatorname{sen}(\pi/x)} = 0$.

41-46 Encuentre cada uno de los siguientes límites si éstos existen. Si el límite no existe, explique por qué.

41.
$$\lim_{x \to 3} (2x + |x - 3|)$$

42.
$$\lim_{x \to -6} \frac{2x + 12}{|x + 6|}$$

43.
$$\lim_{x \to 0.5^{-}} \frac{2x - 1}{|2x^3 - x^2|}$$

44.
$$\lim_{x \to -2} \frac{2 - |x|}{2 + x}$$

45.
$$\lim_{x \to 0^{-}} \left(\frac{1}{x} - \frac{1}{|x|} \right)$$

46.
$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

47. La función signo, denotada por sgn, está definida por

$$\operatorname{sgn} x = \begin{cases} -1 & \text{si } x < 0 \\ 0 & \text{si } x = 0 \\ 1 & \text{si } x > 0 \end{cases}$$

- a) Trace la gráfica de esta función
- b) Encuentre cada uno de los siguientes límites o explique por qué no existen.
 - i) lím sgn x
- ii) $\lim_{x \to 0^{-}} \operatorname{sgn} x$
- iii) $\lim_{x\to 0} \operatorname{sgn} x$ iv) $\lim_{x\to 0} |\operatorname{sgn} x|$

48. Sea

$$f(x) = \begin{cases} x^2 + 1 & \text{si } x < 1\\ (x - 2)^2 & \text{si } x \ge 1 \end{cases}$$

- a) Encuentre $\lim_{x\to 1^-} f(x)$ y $\lim_{x\to 1^+} f(x)$.
- b) ¿Existe lím $_{x\to 1}$ f(x)?
- c) Trace la gráfica de f.

49. Sea
$$g(x) = \frac{x^2 + x - 6}{|x - 2|}$$
.

- a) Encuentre
 - i) $\lim_{x \to 2^+} g(x)$
- ii) $\lim_{x \to 2^{-}} g(x)$
- b) ¿Existe $\lim_{x\to 2} g(x)$?
- c) Trace la gráfica de g.

$$g(x) = \begin{cases} x & \text{si } x < 1\\ 3 & \text{si } x = 1\\ 2 - x^2 & \text{si } 1 < x \le 2\\ x - 3 & \text{si } x > 2 \end{cases}$$

- a) Evalúe cada una de los siguientes límites si es que existen.

- b) Trace la gráfica de
- 51. a) Si el símbolo [] denota la función entero mayor definida en el ejemplo 10, evalúe:
 - i) $\lim_{x \to -2^+} \llbracket x \rrbracket$ ii) $\lim_{x \to -2} \llbracket x \rrbracket$
- b) Si n es un entero, evalúe

 - i) $\lim_{x \to n^{-}} \llbracket x \rrbracket$ ii) $\lim_{x \to n^{+}} \llbracket x \rrbracket$
- c) ¿Para qué valores de $a \lim_{x\to a} \|x\|$ existe?
- **52.** Sea $f(x) = [\cos x], -\pi \le x \le \pi$.
 - a) Trace la gráfica de f.
 - b) Evalúe cada uno de los siguientes límites si existen.
- $\begin{array}{lll} \mathrm{i)} & \lim_{x\to 0} f(x) & & \mathrm{ii)} & \lim_{x\to (\pi/2)^-} f(x) \\ \\ \mathrm{iii)} & \lim_{x\to (\pi/2)^+} f(x) & & \mathrm{iv)} & \lim_{x\to \pi/2} f(x) \end{array}$
- c) ¿Para qué valores de $a \lim_{x\to a} f(x)$ existe?
- **53.** Si f(x) = [x] + [-x], muestre que $\lim_{x\to 2} f(x)$ existe, pero no es igual a f(2).
- 54. En la teoría de la relatividad, la fórmula de Contracción de Lorentz

$$L = L_0 \sqrt{1 - v^2/c^2}$$

expresa la longitud L de un objeto como función de su velocidad v respecto a un observador, donde L_0 es la longitud del objeto en reposo y c es la rapidez de la luz. Encuentre $\lim_{v\to c^-} L$ e interprete el resultado. ¿Por qué es necesario el límite lateral por la izquierda?

- **55.** Si p es una función polinomial, demuestre que $\lim_{x \to a} p(x) = p(a).$
- **56.** Si r es una función racional, utilice el ejercicio 55 para demostrar que $\lim_{x\to a} r(x) = r(a)$ para todo número a en el dominio de r.

- **57.** Si $\lim_{x \to 1} \frac{f(x) 8}{x 1} = 10$, encuentre $\lim_{x \to 1} f(x)$.
- **58.** Si $\lim_{x \to 0} \frac{f(x)}{x^2} = 5$, encuentre cada uno de los siguientes límites.
 - a) $\lim_{x\to 0} f(x)$
- b) $\lim_{x \to 0} \frac{f(x)}{x}$
- **59**. Si

$$f(x) = \begin{cases} x^2 & \text{si } x \text{ es racional} \\ 0 & \text{si } x \text{ es irracional} \end{cases}$$

demuestre que $\lim_{x\to 0} f(x) = 0$

- **60.** Demuestre por medio de un ejemplo que $\lim_{x\to a} [f(x) + g(x)]$ puede existir, aunque no existan $\lim_{x\to a} f(x)$ ni $\lim_{x\to a} g(x)$.
- **61.** Demuestre por medio de un ejemplo que $\lim_{x\to a} [f(x) g(x)]$ puede existir, aunque no existan $\lim_{x\to a} f(x)$ ni $\lim_{x\to a} g(x)$.
- **62.** Evalúe $\lim_{x \to 2} \frac{\sqrt{6-x} 2}{\sqrt{3-x} 1}$
- **63.** ¿Existe un número a tal que

$$\lim_{x \to -2} \frac{3x^2 + ax + a + 3}{x^2 + x - 2}$$

exista? Si es así, encuentre el valor de a y el valor del límite.

64. La figura muestra una circunferencia C_1 con ecuación $(x-1)^2 + y^2 = 1$ y una circunferencia C_2 que se contrae con radio r y centro en el origen. P es el punto (0, r), Q es el punto superior de intersección de las dos circunferencias, y R es el punto de intersección de la recta PQ y el eje de las x. ¿Qué pasa con R cuando C_2 se contrae, esto es, cuando $r \rightarrow 0^+$?

La definición precisa de límite

La definición intuitiva de límite dada en la sección 2.2 es inadecuada para algunos propósitos porque frases como "x es muy cercano a 2" y "f(x) se acerca más y más a L" son muy vagas. A fin de demostrar convincentemente que

$$\lim_{x \to 0} \left(x^3 + \frac{\cos 5x}{10000} \right) = 0.0001 \qquad \text{o} \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$0 \qquad \lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

debemos precisar la definición de límite.

Para motivar la definición precisa de límite, consideremos la siguiente función

$$f(x) = \begin{cases} 2x - 1 & \text{si } x \neq 3\\ 6 & \text{si } x = 3 \end{cases}$$

Intuitivamente, es claro que cuando x está cerca de 3, pero $x \ne 3$, entonces f(x) está cerca de 5, así que $\lim_{x\to 3} f(x) = 5$

Para obtener una información más detallada de cómo varía f(x) cuando x está cerca de 3, nos preguntamos:

¿Qué tan cerca tiene que estar x de 3 para que f(x) difiera de 5 en menos de 0.1?

La distancia de x a 3 es |x-3|, y la distancia de f(x) a 5 es |f(x)-5|, así que nuestro problema es encontrar un número δ tal que

$$|f(x) - 5| < 0.1$$
 si $|x - 3| < \delta$ con $x \ne 3$

Si |x-3| > 0, entonces $x \ne 3$, así que una formulación equivalente de nuestro problema es encontrar un número δ tal que

$$|f(x) - 5| < 0.1$$
 si $0 < |x - 3| < \delta$

Note que si 0 < |x - 3| < (0.1)/2 = 0.05, entonces

$$|f(x) - 5| = |(2x - 1) - 5| = |2x - 6| = 2|x - 3| < 2(0.05) = 0.1$$

esto es,
$$|f(x) - 5| < 0.1$$
 si $0 < |x - 3| < 0.05$

Así, una respuesta al problema está dada por $\delta = 0.05$; esto es, si x está dentro de una distancia de 0.05 de 3, entonces f(x) deberá estar dentro de una distancia de 0.1 de 5.

Si cambiamos el número 0.1 en nuestro problema por el número menor 0.01, entonces, utilizando el mismo método, encontramos que f(x) diferirá de 5 por menos de 0.01 siempre que x difiera de 3 por menos de (0.01)/2 = 0.005:

$$|f(x) - 5| < 0.01$$
 si $0 < |x - 3| < 0.005$

Del mismo modo.

$$|f(x) - 5| < 0.001$$
 si $0 < |x - 3| < 0.0005$

Los números 0.1, 0.01 y 0.001 que hemos considerado son las *tolerancias de error* que nos podemos permitir. Para que 5 sea el límite exacto de f(x) cuando x tiende a 3, debemos no sólo poder hacer la diferencia entre f(x) y 5 por debajo de cada uno de estos tres números; también debemos ser capaces de estar por debajo de *cualquier* número positivo. Así, por el mismo razonamiento, ¡claro que es posible! Si escribimos ε (la letra griega épsilon) para un número positivo arbitrario, entonces encontramos al igual que antes

$$|f(x) - 5| < \varepsilon \quad \text{si} \quad 0 < |x - 3| < \delta = \frac{\varepsilon}{2}$$

Esta es una forma precisa de decir que f(x) está cerca de 5 cuando x se acerca a 3 porque $\boxed{1}$ establece que podemos hacer que los valores de f(x) queden dentro de una distancia arbitraria ε a partir de 5, tomando los valores de x dentro de una distancia $\varepsilon/2$ de 3 (con $x \neq 3$).

En esta situación es tradicional utilizar la letra griega δ (delta).

FIGURA 1

Note que 1 puede reescribirse como sigue:

si
$$3 - \delta < x < 3 + \delta$$
 $(x \ne 3)$ entonces $5 - \varepsilon < f(x) < 5 + \varepsilon$

y se ilustra en la figura 1. Tomando los valores de x (\neq 3) en el intervalo (3 - δ , 3 + δ), podemos lograr que los valores de f(x) estén en el intervalo (5 - ϵ , 5 + ϵ).

Utilizando 1 como un modelo, damos una definición precisa de límite.

2 Definición Sea f la función definida sobre algún intervalo abierto que contiene el número a, excepto posiblemente en a misma. Entonces, decimos que el **límite de** f(x) **cuando** x **tiene a** a **es** L, y lo expresamos como

$$\lim_{x \to a} f(x) = L$$

si para cada número $\varepsilon > 0$ existe un número $\delta > 0$ tal que

si
$$0 < |x - a| < \delta$$
 entonces $|f(x) - L| < \varepsilon$

Puesto que |x - a| es la distancia de x a a y |f(x) - L| es la distancia de f(x) a L, y como ε puede ser arbitrariamente pequeña, la definición de límite puede expresarse en palabras como sigue:

 $\lim_{x\to a} f(x) = L$ significa que la distancia entre f(x) y L puede hacerse arbitrariamente pequeña, tomando la distancia de x a a suficientemente pequeña (pero no 0).

Alternamente.

 $\lim_{x\to a} f(x) = L$ significa que los valores de f(x) pueden hacerse tan cercanos a L como queramos, tomando x lo suficientemente cerca de a (pero no igual a a).

También podemos reformular la definición 2 en términos de intervalos, observando que la desigualdad $|x-a| < \delta$ es equivalente a $-\delta < x-a < \delta$, que puede escribirse como $a-\delta < x < a+\delta$. Además, 0<|x-a| es verdadera si y sólo si $x-a \neq 0$; esto es, $x \neq a$. Del mismo modo, la desigualdad $|f(x)-L| < \varepsilon$ es equivalente al par de desigualdades $L-\varepsilon < f(x) < L+\varepsilon$. Por tanto, en términos de intervalos, la definición 2 puede establecerse como sigue:

 $\lim_{x\to a} f(x) = L$ significa que para toda $\varepsilon > 0$ (sin importar que tan pequeña sea ε), podemos encontrar una $\delta > 0$ tal que si x está dentro del intervalo abierto $(a - \delta, a + \delta)$ y $x \neq a$, entonces f(x) está dentro del intervalo abierto $(L - \varepsilon, L + \varepsilon)$.

Geométricamente, esta afirmación se interpreta representando una función por un diagrama de flechas, como en la figura 2, donde f hace corresponder un subconjunto de \mathbb{R} con otro subconjunto de \mathbb{R} .

FIGURA 2

La definición de límite señala que si cualquier intervalo pequeño $(L - \varepsilon, L + \varepsilon)$ está dado alrededor de L, entonces podemos encontrar un intervalo $(a - \delta, a + \delta)$ alrededor de a tal que f hace corresponder todos los puntos de $(a - \delta, a + \delta)$ (excepto posiblemente en a) con los puntos del intervalo $(L - \varepsilon, L + \varepsilon)$. (Véase la figura 3.)

f

FIGURA 3

Geométricamente, puede darse otra interpretación de límite en términos de la gráfica de una función. Si $\varepsilon>0$ está dada, entonces dibujamos las recta horizontales $y=L+\varepsilon$, $y=L-\varepsilon$ y la gráfica de f (véase la figura 4). Si $\lim_{x\to a} f(x)=L$, entonces podemos encontrar un número $\delta>0$ tal que si restringimos a x en el intervalo $(a-\delta,a+\delta)$ y tomamos $x\neq a$, entonces la curva y=f(x) está entre las rectas $y=L-\varepsilon$ y $y=L+\varepsilon$ (véase la figura 5). Puede usted ver que si se encuentra tal δ , entonces cualquier δ más pequeña también funcionará.

Es importante percatarse de que el proceso ilustrado en las figuras 4 y 5 debe funcionar para todo número positivo ε , sin importar qué tan pequeño se elija. En la figura 6 se ilustra que si se elige un ε más pequeño, entonces podría requerirse una δ más pequeña.

FIGURA 4

FIGURA 5

EJEMPLO 1 Utilice una gráfica para encontrar un número δ tal que

(1, 2)

y = 1.8

si
$$|x-1| < \delta$$
 entonces $|(x^3 - 5x + 6) - 2| < 0.2$

FIGURA 6

En otras palabras, encuentre un número δ que corresponda a $\varepsilon = 0.2$ en la definición de límite para la función $f(x) = x^3 - 5x + 6$ con a = 1 y L = 2.

SOLUCIÓN La gráfica de f se muestra en la figura 7; estamos interesados en la región cerca del punto (1, 2). Note que podemos reescribir la desigualdad

$$\left| (x^3 - 5x + 6) - 2 \right| < 0.2$$

como

$$1.8 < x^3 - 5x + 6 < 2.2$$

Así que necesitamos determinar los valores de x para los cuales la curva $y=x^3-5x+6$ está entre las rectas horizontales y=1.8 y y=2.2. Por eso, graficamos las curvas $y=x^3-5x+6$, y=1.8 y y=2.2 cerca del punto (1,2) en la figura 8. Después utilizamos el cursor para estimar que la coordenada x del punto de intersección de la recta y=2.2 y la curva $y=x^3-5x+6$ está cerca de 0.911. Del mismo modo, $y=x^3-5x+6$ interseca la recta y=1.8 cuando $x\approx1.124$. Así, al redondear para estar seguro, podemos decir que

FIGURA 8

0.8

FIGURA 7

2.3

si
$$0.92 < x < 1.12$$
, entonces $1.8 < x^3 - 5x + 6 < 2.2$

Este intervalo (0.92, 1.12) no es simétrico respecto a x = 1. La distancia de x = 1 al punto extremo izquierdo es 1 - 0.92 = 0.08, y la distancia al punto extremo derecho es 0.12. Es posible elegir δ más pequeña que estos números, esto es, $\delta = 0.08$. Entonces, podemos reescribir nuestras desigualdades en términos de distancias como sigue:

si
$$|x-1| < 0.08$$
 entonces, $|(x^3 - 5x + 6) - 2| < 0.2$

Esto dice justamente que manteniendo a x dentro del 0.08 de 1, mantendremos f(x)dentro del 0.2 de 2.

Aunque seleccionamos $\delta = 0.08$, cualquier valor positivo más pequeño de δ habría funcionado.

El procedimiento gráfico en el ejemplo 1 proporciona una ilustración de la definición para $\varepsilon = 0.2$, pero no demuestra que el límite es igual a 2. Una demostración tiene que proporcionar una δ para toda ε .

Para pulir los enunciados de límite sería útil pensar en la definición de límite como un desafío. Primero lo retan con un número ɛ. Después, debe usted ser capaz de producir una δ adecuada. Debe ser capaz de hacerlo para toda $\varepsilon > 0$, no sólo para una ε en particular.

Imagine una contienda entre dos personas A y B, en la que usted es B. La persona A estipula que debe aproximarse al número fijo L por medio de valores de f(x) dentro de un grado de exactitud ε, (digamos 0.01). Por tanto, la persona B (usted) responde determinando un número δ tal que si $0 < |x - a| < \delta$, entonces $|f(x) - L| < \varepsilon$. Después, A podría exigir aún más y desafiarlo con un valor más pequeño de ε, (digamos 0.0001). Una vez más, usted tiene que responder encontrando una correspondiente δ . Usualmente, a medida que el valor de ε es más pequeño, es menor el correspondiente valor de δ . Si usted siempre gana, sin importar qué tan pequeño haga A a ε , entonces $\lim_{x\to a} f(x) = L$.

TEC En Module 2.4/2.6 puede explorar la definición precisa de límite, gráfica y numéricamente

V EJEMPLO 2 Pruebe que $\lim_{x\to 3} (4x - 5) = 7$.

SOLUCIÓN

1. Análisis preliminar del problema (intuir un valor para δ). Sea ε un número positivo dado. Queremos encontrar un número δ tal que

si
$$0 < |x-3| < \delta$$
, entonces $|(4x-5)-7| < \varepsilon$

Pero |(4x-5)-7| = |4x-12| = |4(x-3)| = 4|x-3|. Por tanto, queremos una δ tal que

si
$$0 < |x-3| < \delta$$
, entonces $4|x-3| < \varepsilon$

esto es, si
$$0 < |x-3| < \delta$$
, entonces $|x-3| < \frac{\varepsilon}{4}$

Esto sugiere que debe elegir $\delta = \varepsilon/4$.

2. Demostración (demostrar que esta δ funciona). Dado $\varepsilon > 0$, elegir $\delta = \varepsilon/4$. Si $0 < |x - 3| < \delta$, entonces

$$|(4x-5)-7| = |4x-12| = 4|x-3| < 4\delta = 4\left(\frac{\varepsilon}{4}\right) = \varepsilon$$

Así

si
$$0 < |x-3| < \delta$$
, entonces $|(4x-5)-7| < \varepsilon$

Por tanto, por la definición de límite,

$$\lim_{x \to 3} (4x - 5) = 7$$

Este ejemplo se ilustra en la figura 9.

FIGURA 9

Las definiciones intuitivas de límites laterales que se presentan en la sección 2.2 pueden reformularse como se señala a continuación.

3 Definición de límite por la izquierda

$$\lim_{x \to a^{-}} f(x) = L$$

si para todo $\varepsilon > 0$ existe un número $\delta > 0$ tal que

si
$$a - \delta < x < a$$
, entonces $|f(x) - L| < \varepsilon$

Definición de límite por la derecha $\lim f(x) = L$

si para todo número $\varepsilon > 0$ existe un número $\delta > 0$ tal que

si
$$a < x < a + \delta$$
, entonces $|f(x) - L| < \varepsilon$

Observe que la definición 3 es la misma que la definición 2, excepto que x está restringida a quedar en la mitad *izquierda* $(a - \delta, a)$ del intervalo $(a - \delta, a + \delta)$. En la definición 4, x está restringida a estar en la mitad *derecha* $(a, a + \delta)$ del intervalo $(a - \delta, a + \delta)$.

V EJEMPLO 3 Utilice la definición 4 para demostrar que $\lim_{x\to 0^+} \sqrt{x} = 0$.

SOLUCIÓN

1. Intuya un valor para δ . Sea ϵ un número positivo dado. Aquí a=0 y L=0, así que queremos encontrar un número δ tal que

si
$$0 < x < \delta$$
, entonces $|\sqrt{x} - 0| < \varepsilon$

es decir, si
$$0 < x < \delta$$
, entonces $\sqrt{x} < \varepsilon$

o, elevando al cuadrado ambos lados de la desigualdad $\sqrt{x} < \epsilon$, obtenemos

si
$$0 < x < \delta$$
, entonces $x < \varepsilon^2$

Esto sugiere que debemos elegir $\delta = \varepsilon^2$.

2. Demuestre que este δ funciona. Dado $\varepsilon > 0$, sea $\delta = \varepsilon^2$. Si $0 < x < \delta$, entonces

$$\sqrt{x} < \sqrt{\delta} = \sqrt{\varepsilon^2} = \varepsilon$$

Así que,
$$|\sqrt{x} - 0| < \varepsilon$$

De acuerdo con la definición 4, esto demuestra que $\lim_{x\to 0^+} \sqrt{x} = 0$.

Cauchy y los límites

Después de la invención del Cálculo en el siglo xvII, siguió un periodo de fecundo desarrollo de la materia en el siglo xVIII. Matemáticos como las familias Bernoulli y Euler estaban ansiosos por aprovechar el potencial del Cálculo, por lo que exploraron audazmente las consecuencias de esta nueva y maravillosa teoría matemática, sin preocuparse demasiado por si sus demostraciones eran completamente correctas

El siglo xix, por el contrario, fue la Edad del Rigor en matemáticas. Hubo un movimiento para volver a los fundamentos del tema, para proporcionar cuidadosas definiciones y rigurosas demostraciones. A la vanguardia de este movimiento estaba el matemático francés Augustin Louis Cauchy (1789-1857), que comenzó como ingeniero militar antes de convertirse en profesor de matemáticas en París. Cauchy tomo la idea de Newton de límite, que mantuvo viva el matemático francés Jean d'Alembert, en el siglo xvIII, haciéndola más precisa. Su definición de un límite reza así: "Cuando los valores sucesivos atribuidos a una variable se aproximan indefinidamente a un valor fijo para terminar diferendo por tan poco como uno quiera, esto se llama el límite de los otros". Pero cuando Cauchy aplicaba esta definición en ejemplos y demostraciones, utilizaba a menudo desigualdades delta-epsilon similares a las de esta sección. Una demostración típica de Cauchy comienza con: "designar por δ y ε dos números muy pequeños;..." Utilizaba ε debido a la correspondencia entre épsilon y la palabra francesa erreur. Posteriormente, el matemático alemán Karl Weierstrass (1815-1897) estableció la definición de límite exactamente como en nuestra definición 2

EJEMPLO 4 Demuestre que $\lim_{x \to 3} x^2 = 9$.

SOLUCIÓN

1. Intuya un valor para δ . Sea $\varepsilon>0$ un valor dado. Tenemos que encontrar un número $\delta>0$ tal que

si
$$0 < |x - 3| < \delta$$
, entonces $|x^2 - 9| < \varepsilon$

Para relacionar $|x^2 - 9| \cos |x - 3|$ escribimos $|x^2 - 9| = |(x + 3)(x - 3)|$. Entonces queremos que

si
$$0 < |x-3| < \delta$$
, entonces $|x+3| |x-3| < \varepsilon$

Note que si podemos encontrar un número constante positivo C tal que $\mid x+3 \mid < C$, entonces

$$|x+3||x-3| < C|x-3|$$

y podemos hacer $C|x-3| < \varepsilon$ tomando $|x-3| < \varepsilon/C = \delta$.

Podemos encontrar tal número C si restringimos x a algún intervalo centrado en 3. De hecho, estamos interesados sólo en valores de x cercanos a 3, así que es razonable suponer que x está dentro de una distancia de 1 de 3, esto es, |x-3| < 1. Entonces 2 < x < 4, así que 5 < x + 3 < 7. Así, tenemos que |x+3| < 7, y, por tanto, C = 7 es una elección adecuada para la constante.

Pero ahora hay dos restricciones sobre |x-3|, haciendo

$$|x-3| < 1$$
 y $|x-3| < \frac{\varepsilon}{C} = \frac{\varepsilon}{7}$

Para asegurarnos de que ambas desigualdades se satisfacen, tomamos δ como el menor de los dos números 1 y $\varepsilon/7$. La notación para esto es $\delta = \min\{1, \varepsilon/7\}$.

2. Demuestre que esta δ funciona. Dado $\varepsilon > 0$, sea $\delta = \min\{1, \varepsilon/7\}$. Si $0 < |x - 3| < \delta$, entonces $|x - 3| < 1 \Rightarrow 2 < x < 4 \Rightarrow |x + 3| < 7$ (como en el inciso 1). También tenemos $|x - 3| < \varepsilon/7$, así que

$$|x^2 - 9| = |x + 3| |x - 3| < 7 \cdot \frac{\varepsilon}{7} = \varepsilon$$

Esto demuestra que $\lim_{x\to 3} x^2 = 9$.

Como se ilustra en el ejemplo 4, no siempre es fácil demostrar que los enunciados de límite son verdaderos utilizando la definición ε - δ . De hecho, si tenemos una función más complicada como $f(x) = (6x^2 - 8x + 9)/(2x^2 - 1)$, una demostración requeriría una gran cantidad de ingenio. Afortunadamente, esto es innecesario porque las leyes de los límites establecidas en la sección 2.3 pueden demostrarse utilizando la definición 2, y luego los límites de funciones complicadas pueden determinarse en forma rigurosa a partir de estas leyes, sin recurrir directamente a la definición.

Por ejemplo, para demostrar la ley de la suma: si $\lim_{x\to a} f(x) = L$ y $\lim_{x\to a} g(x) = M$ ambas existen, entonces

$$\lim_{x \to \infty} [f(x) + g(x)] = L + M$$

Las leyes restantes se demuestran en los ejercicios y en el apéndice F.

DEMOSTRACIÓN DE LA LEY DE LA SUMA Sea $\varepsilon > 0$. Debemos encontrar $\delta > 0$ tal que

si
$$0 < |x - a| < \delta$$
, entonces $|f(x) + g(x) - (L + M)| < \varepsilon$

Desigualdad del triángulo:

 $|a+b| \le |a| + |b|$

(Véase el apéndice A.)

Utilizando la desigualdad del triángulo podemos escribir

$$|f(x) + g(x) - (L + M)| = |(f(x) - L) + (g(x) - M)|$$

$$\leq |f(x) - L| + |g(x) - M|$$

Llevamos a cabo |f(x) + g(x) - (L + M)| menor que ε haciendo cada uno de los términos |f(x) - L| y |g(x) - M| menores que $\varepsilon/2$.

Dado que $\varepsilon/2 > 0$ y lím $_{x\to a} f(x) = L$, existe un número $\delta_1 > 0$ tal que

si
$$0 < |x - a| < \delta_1$$
, entonces $|f(x) - L| < \frac{\varepsilon}{2}$

Del mismo modo, puesto que $\lim_{x\to a} g(x) = M$, existe un número $\delta_2 > 0$ tal que

si
$$0 < |x - a| < \delta_2$$
, entonces $|g(x) - M| < \frac{\varepsilon}{2}$

Sea $\delta = \min\{\delta_1, \delta_2\}$, los más pequeños de los números δ_1 y δ_2 . Note que

si
$$0 < |x-a| < \delta$$
, entonces $0 < |x-a| < \delta_1$ y $0 < |x-a| < \delta_2$

Así que
$$|f(x) - L| < \frac{\varepsilon}{2}$$
 y $|g(x) - M| < \frac{\varepsilon}{2}$

Por tanto, por $\boxed{5}$,

$$|f(x) + g(x) - (L + M)| \le |f(x) - L| + |g(x) - M|$$

 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Para resumir,

si
$$0 < |x - a| < \delta$$
, entonces $|f(x) + g(x) - (L + M)| < \varepsilon$

Así, por la definición de límite,

$$\lim_{x \to \infty} [f(x) + g(x)] = L + M$$

Límites infinitos

Los límites infinitos también pueden definirse de manera precisa. La siguiente es una versión exacta de la definición 4 de la sección 2.2.

6 Definición Sea *f* una función definida sobre algún intervalo abierto que contiene al número *a*, excepto posiblemente en *a* misma. Entonces

$$\lim_{x \to a} f(x) = \infty$$

significa que para todo número positivo M existe un número positivo δ tal que

si
$$0 < |x - a| < \delta$$
, entonces $f(x) > M$

FIGURA 10

Esto dice que los valores de f(x) pueden hacerse arbitrariamente grandes (más grandes que cualquier número M dado), tomando x suficientemente cercano a a (dentro de una distancia δ , donde δ depende de M, pero con $x \neq a$). Una ilustración geométrica se muestra en la figura 10.

Dada cualquier recta horizontal y = M, podemos encontrar un número $\delta > 0$ tal que si restringimos x al intervalo $(a - \delta, a + \delta)$, pero $x \neq a$, entonces la curva y = f(x) está por debajo de la recta y = M. Usted puede ver que si se elige un valor muy grande de M, entonces se puede requerir un δ muy pequeño.

EJEMPLO 5 Utilice la definición 6, para demostrar que $\lim_{r\to 0} \frac{1}{r^2} = \infty$

SOLUCIÓN Sea M un número positivo dado. Queremos encontrar un número δ tal que

si
$$0 < |x| < \delta$$
, entonces $1/x^2 > M$

 $\frac{1}{x^2} > M$ \iff $x^2 < \frac{1}{M}$ \iff $|x| < \frac{1}{\sqrt{M}}$ Pero

Así que si elegimos $\delta = 1/\sqrt{M}$ y $0 < |x| < \delta = 1/\sqrt{M}$, entonces $1/x^2 > M$. Esto muestra que $1/x^2 \rightarrow \infty$ conforme $x \rightarrow 0$.

Del mismo modo, la siguiente es una versión precisa de la definición 5 de la sección 2.2. Esto se ilustra en la figura 11.

FIGURA 11

7 Definición Sea f una función definida sobre algún intervalo abierto que contiene el número a, excepto posiblemente en a misma. Entonces

$$\lim_{x \to a} f(x) = -\infty$$

significa que para todo número negativo N existe un número positivo δ tal que

si
$$0 < |x - a| < \delta$$
, entonces $f(x) < N$

Ejercicios

1. Utilice la gráfica de f para encontrar un número δ tal que

si
$$|x-1| < \delta$$
, entonces $|f(x)-1| < 0.2$

2. Utilice la gráfica de f para encontrar un número δ tal que

si
$$0 < |x - 3| < \delta$$
, entonces $|f(x) - 2| < 0.5$

3. Utilice la gráfica dada de $f(x) = \sqrt{x}$ para encontrar un número δ tal que

si
$$|x-4| < \delta$$
, entonces $|\sqrt{x}-2| < 0.4$

4. Utilice la gráfica dada de $f(x) = x^2$ para encontrar un número δ tal que

si
$$|x-1| < \delta$$
, entonces $|x^2-1| < \frac{1}{2}$

5. Utilice una gráfica para encontrar un número δ tal que

si
$$\left| x - \frac{\pi}{4} \right| < \delta$$
, entonces $\left| \tan x - 1 \right| < 0.2$

6. Utilice una gráfica para encontrar un número δ tal que

si
$$|x - 1| < \delta$$
 entonces $\left| \frac{2x}{x^2 + 4} - 0.4 \right| < 0.1$

7. Para el límite

$$\lim_{x \to 2} (x^3 - 3x + 4) = 6$$

ilustre la definición 2 para encontrar valores de δ que correspondan a $\varepsilon=0$ y $\varepsilon=0.1$.

8. Para el límite

$$\lim_{x \to 0} \frac{e^{2x} - 1}{x} = 2$$

ilustre la definición 2 para encontrar valores de δ que correspondan a $\varepsilon=0.5$ y $\varepsilon=0.1$.

- **9.** Dado que $\lim_{x\to\pi/2} \tan^2 x = \infty$, ilustre la definición 6 para encontrar valores de δ que correspondan a a) M = 1000 y b) M = 10000.
- \nearrow 10. Utilice una gráfica para encontrar un número δ tal que

si
$$5 < x < 5 + \delta$$
, entonces $\frac{x^2}{\sqrt{x-5}} > 100$

- 11. Se requiere un tornero para fabricar un disco metálico circular con 1000 cm² de área.
 - a) ¿Qué radio produce tal disco?
 - b) Si al tornero se le permite una tolerancia de error de ±5 cm² en el área del disco, ¿qué tan cercano al radio ideal del inciso a) debe el tornero mantener el radio?
 - c) En términos de la definición ε - δ de lím $_{x \to a} f(x) = L$, ¿Qué es x? ¿Qué es f(x)? ¿Qué es a? ¿Qué es L? ¿Qué valor de ε se da? ¿Cuál es el valor correspondiente de δ ?
- 12. Un horno de confección de cristales, se utiliza en la investigación para determinar la mejor manera de fabricar cristales que se usarán en las partes electrónicas de los transbordadores espaciales. Para que el crecimiento de los cristales sea el idóneo, la temperatura se tiene que controlar exactamente ajustando la potencia de entrada. Suponga que la relación se representa con

$$T(w) = 0.1w^2 + 2.155w + 20$$

donde T es la temperatura en grados Celsius y w es la potencia de entrada en watts.

- a) ¿Cuánta potencia se requiere para mantener la temperatura a 200°C?
- b) Si se permite una variación de temperatura de 200°C ±1°C, ¿qué intervalo se potencia en watts se permite para la potencia de entrada?
- c) De acuerdo con la definición ε - δ de lím $_{x\to a} f(x) = L$, ¿qué es x? ¿Qué es f(x)? ¿Qué es a? ¿Qué es L? ¿Qué valor de ε se da? ¿Cuál es el valor correspondiente de δ ?
- **13.** a) Encuentre un número δ tal que si $|x-2| < \delta$, entonces $|4x-8| < \varepsilon$, donde $\varepsilon = 0.1$.
 - b) Repita el inciso a) con $\epsilon = 0.01$.
- **14.** Dado que $\lim_{x\to 2} (5x 7) = 3$, ilustre la definición 2 encontrando valores de δ que corresponden a $\varepsilon = 0.1$, $\varepsilon = 0.05$ y $\varepsilon = 0.01$.

15-18 Demuestre cada una de las siguientes proposiciones utilizando la definición ε - δ de límite e ilústrelo con un diagrama como el de la figura 9.

15.
$$\lim_{x \to 3} \left(1 + \frac{1}{3}x \right) = 2$$

16.
$$\lim_{x \to 4} (2x - 5) = 3$$

17.
$$\lim_{x \to -3} (1 - 4x) = 13$$

18.
$$\lim_{x \to -2} (3x + 5) = -1$$

19-32 Demuestre cada una de las siguientes proposiciones utilizando la definición ε - δ de límite.

19.
$$\lim_{x \to 1} \frac{2 + 4x}{3} = 2$$

20.
$$\lim_{x \to 10} \left(3 - \frac{4}{5}x \right) = -5$$

21.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = 5$$

22.
$$\lim_{x \to -1.5} \frac{9 - 4x^2}{3 + 2x} = 6$$

23.
$$\lim_{x \to a} x = a$$

24.
$$\lim_{x \to a} c = c$$

25.
$$\lim_{x\to 0} x^2 = 0$$

26.
$$\lim_{x\to 0} x^3 = 0$$

27.
$$\lim_{x\to 0} |x| = 0$$

28.
$$\lim_{x \to -6^+} \sqrt[8]{6+x} = 0$$

29.
$$\lim_{x \to 2} (x^2 - 4x + 5) = 1$$

30.
$$\lim_{x \to 2} (x^2 + 2x - 7) = 1$$

31.
$$\lim_{x \to -2} (x^2 - 1) = 3$$

32.
$$\lim_{x \to 2} x^3 = 8$$

- 33. Verifique que otra posible elección de δ para mostrar que $\lim_{x\to 3} x^2 = 9$ en el ejemplo 4 es $\delta = \min\{2, \varepsilon/8\}$.
- 34. Verifique con argumentos geométricos que la mayor posible elección de δ para demostrar que $\lim_{x\to 3} x^2 = 9$ es $\delta = \sqrt{9 + \varepsilon} - 3$.

- SAC 35. a) Para el límite $\lim_{x\to 1} (x^3 + x + 1) = 3$, utilice una gráfica para encontrar un valor de δ que corresponda a $\varepsilon = 0.4$.
 - b) Utilizando un sistema algebraico computarizado para resolver la ecuación cúbica $x^3 + x + 1 = 3 + \varepsilon$, encuentre el mayor valor posible de δ que funciona para cualquier $\varepsilon > 0$ dado.
 - c) Ponga $\varepsilon = 0.4$ en su repuesta del inciso b) y compárelo con su respuesta del inciso a).
 - **36.** Demuestre que $\lim_{r\to 2} \frac{1}{r} = \frac{1}{2}$
 - **37.** Demuestre que $\lim_{x \to a} \sqrt{x} = \sqrt{a}$ si a > 0.

$$\left[\text{Sugerencia: utilice } \left| \sqrt{x} - \sqrt{a} \right| = \frac{|x - a|}{\sqrt{x} + \sqrt{a}}. \right]$$

38. Si H es la función de Heaviside definida en el ejemplo 6 en la sección 2.2, demuestre, utilizando la definición 2, que $\lim_{t\to 0} H(t)$ no existe. [Sugerencia: utilice una demostración indirecta como sigue. Suponga que el límite es L. Tome $\varepsilon = \frac{1}{2}$ en la definición de límite y trate de llegar a una contradicción.]

39. Si la función f está definida por

$$f(x) = \begin{cases} 0 & \text{si } x \text{ es racional} \\ 1 & \text{si } x \text{ es irracional} \end{cases}$$

Demuestre que $\lim_{x\to 0} f(x)$ no existe.

- 40. Comparando las definiciones 2, 3 y 4, demuestre el teorema 1 de la sección 2.3.
- **41.** ¿Qué tan cerca a -3 tiene que tomar x de manera que

$$\frac{1}{(x+3)^4} > 10\,000?$$

- **42.** Demuestre, utilizando la definición 6, que $\lim_{x \to -3} \frac{1}{(x+3)^4} = \infty$.
- **43.** Demuestre que $\lim_{x\to 0^+} \ln x = -\infty$.
- **44.** Suponga que $\lim_{x\to a} f(x) = \infty$ y $\lim_{x\to a} g(x) = c$, donde c es un número real. Demuestre cada una de las siguientes proposiciones.

a)
$$\lim_{x \to a} [f(x) + g(x)] = \infty$$

b)
$$\lim_{x \to a} [f(x)g(x)] = \infty$$
 si $c > 0$

c)
$$\lim_{x \to a} [f(x)g(x)] = -\infty$$
 si $c < 0$

Continuidad

En la sección 2.3, hemos visto que el límite de una función cuando x tiende a a, con frecuencia se obtiene simplemente calculando el valor de la función en a. Las funciones con esta propiedad son llamadas continuas en x = a. Veremos que la definición matemática de continuidad coincide notoriamente con el sentido de *continuidad* que la palabra tiene en el lenguaje cotidiano. (Un proceso continuo es uno que se lleva a cabo gradualmente, sin interrupción o cambio brusco.)

Como se ilustra en la figura 1, si f es continua, entonces los puntos (x, f(x)) en la gráfica de f tienden al punto (a, f(a)) sobre la gráfica. Así que no existe ninguna brecha en la curva.

Definición Una función f es **continua en un número** x = a si

$$\lim_{x \to a} f(x) = f(a)$$

Note que la definición 1 requiere implícitamente tres cosas. Si f es continua en a, entonces:

- **1.** f(a) está definida (esto es, a está en el dominio de f)
- 2. $\lim_{x \to a} f(x)$ existe
- $3. \quad \lim f(x) = f(a)$

La definición indica que f es continua en a si f(x) tiende a f(a) cuando x tiende a a. Así, una función continua f tiene la propiedad de que un pequeño cambio en x produce sólo un pequeño cambio en f(x). De hecho, el cambio en f(x) puede mantenerse tan pequeño como se quiera manteniendo el cambio en x suficientemente pequeño.

Si f está definida cerca de a (en otras palabras, f está definida sobre un intervalo abierto que contiene a a, excepto quizás en a), decimos que f es **discontinua en** a (o f tiene una **discontinuidad** en a) si f no es continua en a.

Los fenómenos físicos son generalmente continuos. Por ejemplo, el desplazamiento o la velocidad de un vehículo varían continuamente con el tiempo, como lo hace la estatura de una persona. Pero hay otras situaciones, como la corriente eléctrica, donde ocurren discontinuidades. [Véase el ejemplo 6 en el punto 2.2, donde la función de Heaviside es discontinua en 0 porque lím $_{t\to 0} H(t)$ no existe.]

Geométricamente, una función continua en cada número de un intervalo puede pensarse como una función cuya gráfica no tiene interrupciones. La gráfica puede dibujarse sin levantar la pluma del papel.

EJEMPLO 1 La figura 2 muestra la gráfica de una función f. ¿Para qué valores de x = a, f es discontinua? ¿Por qué?

SOLUCIÓN Pareciera que hay una discontinuidad cuando a=1 porque la gráfica tiene una ruptura allí. La razón formal de que f es discontinua en 1 es que f(1) no está definida.

La gráfica también tiene una ruptura cuando a=3, pero la razón para la discontinuidad es diferente. Aquí, f(3) está definida, pero $\lim_{x\to 3} f(x)$ no existe (porque los límites por la izquierda y por la derecha son diferentes), así que f es discontinua en x=3.

¿Qué hay en relación con a = 5? Aquí, f(5) está definida y el lím $_{x\to 5} f(x)$ existe (porque los límites por la izquierda y por la derecha son iguales). Pero

$$\lim_{x \to 5} f(x) \neq f(5)$$

Así que f es discontinua en 5.

Ahora veremos cómo detectar discontinuidades cuando una función está definida por una fórmula.

a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

b)
$$f(x) = \begin{cases} \frac{1}{x^2} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

c)
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{si } x \neq 2\\ 1 & \text{si } x = 2 \end{cases}$$

d)
$$f(x) = [x]$$

SOLUCIÓN

- a) Note que f(2) no está definida, así que f es discontinua en x=2. Más tarde veremos por qué f es continua en todos los otros números.
- b) Aquí f(0) = 1 está definida, pero

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x^2}$$

no existe. (Véase el ejemplo 8 de la sección 2.2.) Así que f es discontinua en x = 0.

c) Aquí f(2) = 1 está definida y

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - x - 2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{x - 2} = \lim_{x \to 2} (x + 1) = 3$$

FIGURA 2

existe. Pero

$$\lim_{x \to 2} f(x) \neq f(2)$$

así que f no es continua en x = 2.

d) La función entero mayor f(x) = [x] tiene discontinuidades en todos los enteros porque $\lim_{x\to n} [x]$ no existe si n es un entero. (Véanse el ejemplo 10 y el ejercicio 51 en la sección 2.3).

La figura 3 muestra las gráficas de las funciones del ejemplo 2. En cada caso la gráfica no puede ser dibujada sin levantar el lápiz del papel porque hay un agujero o ruptura o salto en la gráfica. El tipo de discontinuidad ilustrada en los incisos a) y c) se llama **removible** porque podemos remover la discontinuidad redefiniendo f sólo en x=2. [La función g(x)=x+1 es continua.] La discontinuidad en el inciso b) se llama **discontinuidad infinita**. Las discontinuidades en el inciso d) se llaman **discontinuidades de salto** porque la función "salta" de un valor a otro.

FIGURA 3 Gráficas de las funciones del ejemplo 2

2 Definición Una función f es continua por la derecha de un número x = a si

$$\lim_{x \to a^+} f(x) = f(a)$$

y f es continua por la izquierda de x = a si

$$\lim_{x \to a^{-}} f(x) = f(a)$$

EJEMPLO 3 En cada entero n, la función f(x) = [x] [Véase la figura 3d)] es continua por la derecha, pero discontinua por la izquierda porque

$$\lim_{x \to n^+} f(x) = \lim_{x \to n^+} [x] = n = f(n)$$

pero $\lim_{x \to n^{-}} f(x) = \lim_{x \to n^{-}} [\![x]\!] = n - 1 \neq f(n)$

3 Definición Una función f es **continua sobre un intervalo** si es continua en cada número en el intervalo. (Si f está definida sólo en un lado de un punto extremo del intervalo, entendemos por *continua* en el punto extremo, como *continua por la derecha* o *continua por la izquierda*.)

SOLUCIÓN Si -1 < a < 1, entonces utilizando las leyes de los límites, tenemos

$$\lim_{x \to a} f(x) = \lim_{x \to a} \left(1 - \sqrt{1 - x^2} \right)$$

$$= 1 - \lim_{x \to a} \sqrt{1 - x^2} \qquad \text{(por las leyes 2 y 7)}$$

$$= 1 - \sqrt{\lim_{x \to a} (1 - x^2)} \qquad \text{(por la ley 11)}$$

$$= 1 - \sqrt{1 - a^2} \qquad \text{(por las leyes 2, 7 y 9)}$$

$$= f(a)$$

Así, por la definición 1, f es continua en x = a si -1 < a < 1. Cálculos similares muestran que

$$\lim_{x \to -1^+} f(x) = 1 = f(-1) \qquad \text{y} \qquad \lim_{x \to 1^-} f(x) = 1 = f(1)$$

de manera que f es continua por la derecha en x = -1 y continua por la izquierda en x = 1. Por eso, de acuerdo con la definición 3, f es continua en [-1, 1].

La gráfica de f está trazada en la figura 4 y es la mitad inferior de la circunferencia

$$x^2 + (y - 1)^2 = 1$$

En lugar de aplicar siempre las definiciones 1, 2 y 3 para verificar la continuidad de una función como lo hicimos en el ejemplo 4, a menudo es conveniente utilizar el siguiente teorema, que muestra cómo construir funciones continuas complicadas a partir de otras simples.

FIGURA 4

4 Teorema Si f y g son continuas en x = a y x = c es una constante, entonces las siguientes funciones son también continuas en x = a:

1.
$$f + g$$

2.
$$f - g$$

$$5. \ \frac{f}{g} \quad \text{si } g(a) \neq 0$$

DEMOSTRACIÓN Cada uno de los cinco incisos de este teorema se sigue de las correspondientes leyes de los límites de la sección 2.3 Por ejemplo, damos la demostración del inciso 1. Ya que f y g son continuas en x = a, tenemos

$$\lim_{x \to a} f(x) = f(a) \qquad \text{y} \qquad \lim_{x \to a} g(x) = g(a)$$

Por tanto,

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} [f(x) + g(x)]$$

$$= \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \qquad \text{(por la ley 1)}$$

$$= f(a) + g(a)$$

$$= (f+g)(a)$$

Esto demuestra que f + g es continua en x = a.

Del teorema 4 y la definición 3 se deduce que si f y g son continuas sobre un intervalo, entonces también lo son las funciones f + g, f - g, cf, fg y f/g (si g no es cero). El siguiente teorema se estableció en la sección 2.3 como la propiedad de sustitución directa.

5 Teorema

- a) Cualquier función polinomial es continua en todo su dominio; es decir, es continua sobre $\mathbb{R} = (-\infty, \infty)$.
- b) Cualquier función racional es continua siempre que esté definida; esto es, es continua en su dominio.

DEMOSTRACIÓN

a) Una función polinomial es de la forma

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0$$

donde c_0, c_1, \ldots, c_n son constantes. Sabemos que

$$\lim_{r \to a} c_0 = c_0 \qquad \text{(por la ley 7)}$$

y
$$\lim_{x \to a} x^m = a^m \qquad m = 1, 2, \dots, n \qquad \text{(por la ley 9)}$$

Esta ecuación es precisamente la proposición de que la función $f(x) = x^m$ es una función continua. Así, por el inciso 3 del teorema 4, la función $g(x) = cx^m$ es continua. Como P es una suma de funciones de esta forma y una función constante, se sigue del inciso 1 del teorema 4 que P es continua.

b) Una función racional es una de la forma

$$f(x) = \frac{P(x)}{Q(x)}$$

donde $P \setminus Q$ son funciones polinomiales. El dominio de f es $D = \{x \in \mathbb{R} \mid Q(x) \neq 0\}$. Sabemos del inciso a) que $P \setminus Q$ son continuas en todo su dominio. Así, por el inciso 5 del teorema 4, f es continua en todo número en D.

Como una ilustración del teorema 5, observe que el volumen de una esfera varía continuamente con su radio porque la fórmula $V(r)=\frac{4}{3}\pi r^3$ muestra que V es una función polinomial de r. Del mismo modo, si una pelota se lanza verticalmente hacia arriba con una velocidad de 50 pies/s, entonces la altura de la pelota en pies, t segundos después, está dada por la fórmula t0 de t1. Otra vez, ésta es una función polinomial, así que la altura es una función continua del tiempo transcurrido.

Saber qué funciones son continuas nos permite evaluar muy rápidamente algunos límites como se ve en el siguiente ejemplo. Compárelo con el ejemplo 2b) de la sección 2.3.

EJEMPLO 5 Encuentre el $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$.

SOLUCIÓN La función

$$f(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

es racional, así que por el teorema 5 es continua en su dominio, que es $\{x \mid x \neq \frac{5}{3}\}$.

FIGURA 5

Otra manera de establecer los límites en $\boxed{6}$ es utilizar el teorema de la compresión con la desigualdad sen $\theta < \theta$ (para $\theta > 0$), que se demostró en la sección 3.3

FIGURA 6 $y = \tan x$

En la sección 1.6 se hace un repaso de las funciones trigonométricas inversas.

Por tanto,

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \lim_{x \to -2} f(x) = f(-2)$$
$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)} = -\frac{1}{11}$$

Resulta que la mayor parte de las funciones conocidas son continuas en todo número de su dominio. Por ejemplo, la ley 10 de los límites (página 100) es exactamente la proposición de que las funciones raíz son continuas.

Del aspecto de las gráficas de las funciones seno y el coseno (figura 18 de la sección 1.2), podríamos suponer con toda certeza que son continuas. De acuerdo con la definición de sen θ y cos θ , las coordenadas del punto P de la figura 5 son (cos θ , sen θ). Cuando $\theta \to 0$, vemos que P tiende al punto (1, 0), así que $\theta \to 1$ y sen $\theta \to 0$. Así,

$$\lim_{\theta \to 0} \cos \theta = 1 \qquad \lim_{\theta \to 0} \sin \theta = 0$$

Dado que cos 0 = 1 y sen 0 = 0, las ecuaciones en $\boxed{6}$ afirman que las funciones coseno y seno son continuas en 0. Las fórmulas de adición para senos y cosenos pueden ser utilizadas entonces para deducir que estas funciones son continuas para toda x (ejercicios 60 y 61).

Del inciso 5 del teorema 4, se deduce que

$$\tan x = \frac{\sin x}{\cos x}$$

es continua, excepto donde cos x=0. Esto sucede cuando x es un número entero impar múltiplo de $\pi/2$, así que $y=\tan x$ tiene infinitas discontinuidades cuando $x=\pm\pi/2,\pm3\pi/2,\pm5\pi/2$, y así sucesivamente (figura 6).

La función inversa de cualquier función continua uno a uno también es continua. (Este hecho se comprueba en el apéndice F, pero la intuición geométrica lo hace parecer razonable: la gráfica de f^{-1} se obtiene reflejando la gráfica de f respecto a la recta g=x. También, si la gráfica de f no tiene ruptura alguna, tampoco la tiene la gráfica de f^{-1} .) De este modo, las funciones trigonométricas inversas son continuas.

En la sección 1.5 definimos la función exponencial $y = a^x$ de modo que se llenaran los huecos en la gráfica de esta función donde x es racional. En otras palabras, la simple definición de $y = a^x$ la hace una función continua en \mathbb{R} . Por tanto, su función inversa $y = \log_a x$ es continua sobre $(0, \infty)$.

7 Teorema Los siguientes tipos de funciones son continuas en todo número de sus dominios:

funciones polinomiales funciones racionales funciones raíz
funciones trigonométricas funciones trigonométricas inversas
funciones exponenciales funciones logarítmicas

EJEMPLO 6 ¿En dónde es continua la función $f(x) = \frac{\ln x + \tan^{-1}x}{x^2 - 1}$?

SOLUCIÓN Por el teorema 7 sabemos que la función $y = \ln x$ es continua para x > 0 y $y = \tan^{-1}x$ es continua sobre \mathbb{R} . Así, por el inciso 1 del teorema 4, $y = \ln x + \tan^{-1}x$ es continua sobre $(0, \infty)$. El denominador, $y = x^2 - 1$, es una función polinomial, de modo que

EJEMPLO 7 Evalúe
$$\lim_{x \to \pi} \frac{\sin x}{2 + \cos x}$$
.

SOLUCIÓN El teorema 7 nos dice que $y = \sec x$ es continua. La función en el denominador, $y = 2 + \cos x$, es la suma de dos funciones continuas y en consecuencia es continua. Note que esta función jamás es cero porque $\cos x \ge -1$ para toda x y también $2 + \cos x > 0$ para toda x. Así, el cociente

$$f(x) = \frac{\sin x}{2 + \cos x}$$

es continuo para toda x. Por tanto, mediante la definición de función continua,

$$\lim_{x \to \pi} \frac{\sin x}{2 + \cos x} = \lim_{x \to \pi} f(x) = f(\pi) = \frac{\sin \pi}{2 + \cos \pi} = \frac{0}{2 - 1} = 0$$

Otra manera de combinar las funciones continuas f y g para obtener una nueva función continua es formar la función compuesta $f \circ g$. Este hecho es una consecuencia del siguiente teorema.

Este teorema expresa que puede moverse un símbolo de límite a través de un símbolo de función si la función es continua y el límite existe. En otras palabras, puede invertirse el orden de estos dos símbolos.

8 Teorema Si f es continua en b, y $\lim_{x \to a} g(x) = b$, entonces $\lim_{x \to a} f(g(x)) = f(b)$. En otras palabras,

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$

Intuitivamente, el teorema 8 es razonable porque si x está cerca de a, entonces g(x) está cerca de b, y como f es continua en b, si g(x) está cerca de b, entonces f(g(x)) está cerca de f(b). En el apéndice F se proporciona una demostración del teorema 8.

EJEMPLO 8 Evalúe
$$\lim_{x \to 1} \arcsin\left(\frac{1 - \sqrt{x}}{1 - x}\right)$$
.

SOLUCIÓN Ya que arcsen es una función continua, aplicamos el teorema 8:

$$\lim_{x \to 1} \arcsin\left(\frac{1 - \sqrt{x}}{1 - x}\right) = \arcsin\left(\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}\right)$$

$$= \arcsin\left(\lim_{x \to 1} \frac{1 - \sqrt{x}}{(1 - \sqrt{x})(1 + \sqrt{x})}\right)$$

$$= \arcsin\left(\lim_{x \to 1} \frac{1}{1 + \sqrt{x}}\right)$$

$$= \arcsin\frac{1}{2} = \frac{\pi}{6}$$

Aplicamos el teorema 8 en el caso especial donde $f(x) = \sqrt[n]{x}$, donde n es un entero positivo. Entonces

$$f(g(x)) = \sqrt[n]{g(x)}$$

У

$$f\left(\lim_{x\to a}g(x)\right) = \sqrt[n]{\lim_{x\to a}g(x)}$$

Si sustituimos estas expresiones en el teorema 8 obtenemos

$$\lim_{x \to a} \sqrt[n]{g(x)} = \sqrt[n]{\lim_{x \to a} g(x)}$$

con lo que queda demostrada la ley 11 de los límites. (Suponiendo que las raíces existen.)

9 Teorema Si g es continua en x = a y f es continua en g(a), entonces la función compuesta $f \circ g$ dada por $(f \circ g)(x) = f(g(x))$ es continua en x = a.

A menudo, este teorema se expresa de manera informal diciendo: "una función continua de una función continua es una función continua".

DEMOSTRACIÓN Como q es continua en x = a, tenemos

$$\lim_{x \to a} g(x) = g(a)$$

Puesto que f es continua en b = g(a), podemos aplicar el teorema 8 para obtener

$$\lim_{x \to a} f(g(x)) = f(g(a))$$

que es precisamente la proposición de que la función h(x) = f(g(x)) es continua en x = a; es decir, $f \circ g$ es continua en x = a.

V EJEMPLO 9 ¿En dónde son continuas las siguientes funciones?

a)
$$h(x) = \operatorname{sen}(x^2)$$

b)
$$F(x) = \ln(1 + \cos x)$$

SOLUCIÓN

a) Tenemos h(x) = f(g(x)), donde

$$g(x) = x^2$$
 y $f(x) = \sin x$

Ahora g es continua sobre \mathbb{R} puesto que es una función polinomial, y f también es continua para toda x. Por consiguiente, $h = f \circ g$ es continua sobre \mathbb{R} por el teorema 9.

b) Con base en el teorema 7, sabemos que $f(x) = \ln x$ es continua y $g(x) = 1 + \cos x$ es continua (porque tanto y = 1 como $y = \cos x$ son continuas). Por tanto, del teorema 9, F(x) = f(g(x)) es continua siempre que esté definida. Ahora bien, $\ln(1 + \cos x)$ está definida cuando $1 + \cos x > 0$. De este modo, no está definido cuando $\cos x = -1$, y esto sucede cuando $x = \pm \pi, \pm 3\pi, \dots$ Así, F tiene discontinuidades cuando x es un múltiplo impar de x y es continua sobre los intervalos entre estos valores (véase la figura 7).

FIGURA 7 $y = \ln(1 + \cos x)$

Una propiedad importante de las funciones continuas se expresa con el siguiente teorema, cuya demostración se encuentra en libros más avanzados de cálculo.

Teorema del valor intermedio Suponga que f es continua sobre el intervalo cerrado [a, b] y sea N cualquier número entre f(a) y f(b), donde $f(a) \neq f(b)$. Entonces existe un número c en (a, b) tal que f(c) = N.

El teorema del valor intermedio establece que una función continua toma todos los valores intermedios entre los valores de la función f(a) y f(b). Este hecho se ilustra en la figura 8. Observe que el valor N puede tomarse una vez [como en la parte a)] o más de una vez [como en la parte b)].

FIGURA 8

Si piensa en una función continua como en una función cuya gráfica no tiene huecos o rupturas, es fácil creer que el teorema del valor intermedio es verdadero. En términos geométricos, señala que si se da cualquier recta horizontal y = N entre y = f(a) y y = f(b), como en la figura 9, entonces la gráfica de f no puede saltar la recta: debe intersecar y = N en alguna parte.

FIGURA 9

Es importante que la función f del teorema 10 sea continua. En general, el teorema del valor intermedio no se cumple para las funciones discontinuas (véase el ejercicio 48).

Un uso del teorema del valor intermedio es en la búsqueda de las raíces de ecuaciones, como en el ejemplo siguiente.

V EJEMPLO 10 Demuestre que existe una raíz de la ecuación

$$4x^3 - 6x^2 + 3x - 2 = 0$$

entre 1 y 2.

SOLUCIÓN Sea $f(x) = 4x^3 - 6x^2 + 3x - 2$. Buscamos una solución de la ecuación dada; es decir, un número c entre 1 y 2 tal que f(c) = 0. Por tanto, tomando a = 1, b = 2 y N = 0 en el teorema 10, tenemos

$$f(1) = 4 - 6 + 3 - 2 = -1 < 0$$

y
$$f(2) = 32 - 24 + 6 - 2 = 12 > 0$$

Así, f(1) < 0 < f(2); es decir, N = 0 es un número entre f(1) y f(2). Ahora bien, f es continua porque es polinomial, de modo que el teorema del valor intermedio afirma que existe un número c entre 1 y 2 tal que f(c) = 0. En otras palabras, la ecuación $4x^3 - 6x^2 + 3x - 2 = 0$ tiene por lo menos una raíz c en el intervalo (1, 2).

De hecho, podemos localizar con mayor precisión una raíz aplicando de nuevo el teorema del valor intermedio. Puesto que

$$f(1.2) = -0.128 < 0$$
 y $f(1.3) = 0.548 > 0$

$$f(1.22) = -0.007008 < 0$$
 y $f(1.23) = 0.056068 > 0$

así que la raíz está en el intervalo (1.22, 1.23)

Podemos utilizar una calculadora graficadora o computadora para ilustrar el uso del teorema del valor intermedio en el ejemplo 10. La figura 10 muestra la gráfica de f en el rectángulo de vista [-1, 3] por [-3, 3], y puede usted ver que la gráfica cruza el eje x entre 1 y 2. La figura 11 muestra el resultado de un acercamiento en un rectángulo de vista [1.2, 1.3] por [-0.2, 0.2].

0.2 1.3 1.2 -0.2

FIGURA 10

FIGURA 11

De hecho, el teorema del valor intermedio desempeña un importante papel en el modo en que funcionan estos dispositivos de graficación. Una computadora calcula un número finito de puntos de la gráfica y activa los píxeles que contienen estos puntos calculados. Se supone que la función es continua y toma todos los valores intermedios entre dos puntos consecutivos. La computadora une los píxeles activando aquellos intermedios.

Ejercicios 2.5

- 1. Escriba una ecuación que exprese el hecho de que una función f es continua en el número 4.
- **2.** Si f es continua sobre $(-\infty, \infty)$, ¿qué puede decir acerca de su grafica?
- 3. a) A partir de la grafica de f, establezca el número en el cual f es discontinua y explique por qué.
 - b) Para cada uno de los números que se obtuvieron en el inciso a), determine si f es continua por la derecha, por la izquierda o por ninguno de los dos lados.

4. A partir de la grafica de q, establezca los intervalos sobre los que g es continua.

- 5-8 Dibuje la gráfica de una función f que es continua, a excepción de la discontinuidad señalada.
- **5.** Discontinua, pero continua por la derecha, en x = 2.
- **6.** Discontinuidades en x = -1 y x = 4, pero continuas por la izquierda en x = -1 y por la derecha en x = 4.
- 7. Discontinuidad removible en x = 3, discontinuidad de salto en x = 5.
- **8.** Ni por la izquierda ni por la derecha es continua en x = -2, continua sólo por la izquierda en x = 2.

- 9. El peaje T que se cobra por conducir en un determinado tramo de una carretera es de \$5, excepto durante las horas pico (entre las 7 y las 10 y entre las 16 y 19 horas) cuando el peaje es de \$7.
 - a) Esboce una gráfica de T como una función del tiempo t, medido en horas pasada la medianoche.
 - b) Analice las discontinuidades de esta función y su significado para alguien que utiliza la carretera.
- 10. Explique por qué cada una de las siguientes funciones es continua o discontinua.
 - a) La temperatura en una localidad específica como una función del tiempo
 - b) La temperatura en un momento determinado como una función de la distancia al oeste de la ciudad de Nueva York
 - La altitud sobre el nivel del mar como una función de la distancia al oeste de la ciudad de Nueva York
 - El costo de transportarse en taxi como una función de la distancia de traslado
 - e) La corriente en un circuito de iluminación en una habitación como una función del tiempo
- 11. Si f y q son funciones continuas tales que q(2) = 6 y $\lim_{x\to 2} [3f(x) + f(x)g(x)] = 36$, encuentre f(2).
- 12-14 Utilice la definición de continuidad y las propiedades de los limites para demostrar que cada una de las siguientes funciones es continua en el número dado x = a.
- **12.** $f(x) = 3x^4 5x + \sqrt[3]{x^2 + 4}$, a = 2
- **13.** $f(x) = (x + 2x^3)^4$, a = -1
- **14.** $h(t) = \frac{2t 3t^2}{1 + t^3}, \quad a = 1$
- 15-16 Utilice la definición de continuidad y las propiedades de los límites para demostrar que cada una de las siguientes funciones es continua sobre el intervalo dado.
- **15.** $f(x) = \frac{2x+3}{x-2}$, $(2,\infty)$
- **16.** $q(x) = 2\sqrt{3-x}$. $(-\infty, 3]$
- 17-22 Explique por qué cada una de las siguientes funciones es discontinua en el número dado x = a. Dibuje la gráfica de la función.

17.
$$f(x) = \frac{1}{x+2}$$

18.
$$f(x) = \begin{cases} \frac{1}{x+2} & \text{si } x \neq -2\\ 1 & \text{si } x = -2 \end{cases}$$
 $a = -2$

19.
$$f(x) = \begin{cases} e^x & \text{si } x < 0 \\ x^2 & \text{si } x \ge 0 \end{cases}$$
 $a = 0$

20.
$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 1} & \text{si } x \neq 1 \\ 1 & \text{si } x = 1 \end{cases}$$
 $a = 1$

21.
$$f(x) = \begin{cases} \cos x & \text{si } x < 0 \\ 0 & \text{si } x = 0 \\ 1 - x^2 & \text{si } x > 0 \end{cases}$$
 $a = 0$

22.
$$f(x) = \begin{cases} \frac{2x^2 - 5x - 3}{x - 3} & \text{si } x \neq 3\\ 6 & \text{si } x = 3 \end{cases}$$
 $a = 3$

23-24 ¿Cómo podría "remover la discontinuidad" en cada una de las siguientes funciones? En otras palabras, ¿cómo redefiniría f(2)a fin de que sean continuas en x = 2?

23.
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

24.
$$f(x) = \frac{x^3 - 8}{x^2 - 4}$$

25-32 Utilizando los teoremas 4, 5, 7 y 9, explique por qué cada una de las siguientes funciones es continua en todo número de su dominio. Determine el dominio.

25.
$$F(x) = \frac{2x^2 - x - 1}{x^2 + 1}$$

26.
$$G(x) = \frac{x^2 + 1}{2x^2 - x - 1}$$

27.
$$Q(x) = \frac{\sqrt[3]{x-2}}{x^3-2}$$

27.
$$Q(x) = \frac{\sqrt[3]{x-2}}{x^3-2}$$
 28. $R(t) = \frac{e^{\sec t}}{2+\cos \pi t}$

29.
$$A(t) = \arcsin(1 + 2t)$$

30.
$$B(x) = \frac{\tan x}{\sqrt{4 - x^2}}$$

31.
$$M(x) = \sqrt{1 + \frac{1}{x}}$$
 32. $N(r) = \tan^{-1}(1 + e^{-r^2})$

32.
$$N(r) = \tan^{-1}(1 + e^{-r^2})$$

33-34 Identifique las discontinuidades de cada una de las siguientes funciones e ilústrelas con una gráfica.

33.
$$y = \frac{1}{1 + e^{1/x}}$$

$$34. \ y = \ln(\tan^2 x)$$

35-38 Utilice la continuidad para evaluar cada uno de los siguientes límites.

35.
$$\lim_{x \to 4} \frac{5 + \sqrt{x}}{\sqrt{5 + x}}$$

36.
$$\lim_{x \to \pi} \text{sen}(x + \text{sen } x)$$

37.
$$\lim_{x \to 1} e^{x^2}$$

38.
$$\lim_{x \to 2} \arctan\left(\frac{x^2 - 4}{3x^2 - 6x}\right)$$

39-40 Demuestre que cada una de las siguientes funciones es continua sobre $(-\infty, \infty)$.

39.
$$f(x) = \begin{cases} x^2 & \text{si } x < 1\\ \sqrt{x} & \text{si } x \ge 1 \end{cases}$$

40.
$$f(x) = \begin{cases} \sin x & \text{si } x < \pi/4 \\ \cos x & \text{si } x \ge \pi/4 \end{cases}$$

41-43 Encuentre los números en los que f es discontinua. ¿En cuáles de estos números f es continua por la derecha, por la izquierda o por ninguna de las dos? Trace la gráfica de f.

41.
$$f(x) = \begin{cases} 1 + x^2 & \text{si } x \le 0 \\ 2 - x & \text{si } 0 < x \le 2 \\ (x - 2)^2 & \text{si } x > 2 \end{cases}$$

- **43.** $f(x) = \begin{cases} x + 2 & \text{si } x < 0 \\ e^x & \text{si } 0 \le x \le 1 \\ 2 x & \text{si } x > 1 \end{cases}$
- 44. La fuerza gravitacional ejercida por la Tierra sobre una masa unitaria a una distancia r del centro del planeta es

$$F(r) = \begin{cases} \frac{GMr}{R^3} & \text{si } r < R \\ \frac{GM}{r^2} & \text{si } r \ge R \end{cases}$$

donde M es la masa de la Tierra, R su radio y G la constante gravitacional. ¿Es F una función continua de r?

45. ¿Para qué valor de la constante c la función f es continua sobre $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx^2 + 2x & \text{si } x < 2\\ x^3 - cx & \text{si } x \ge 2 \end{cases}$$

46. Encuentre los valores de a y b que hacen a f continua para toda x.

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{si } x < 2\\ ax^2 - bx + 3 & \text{si } 2 \le x < 3\\ 2x - a + b & \text{si } x \ge 3 \end{cases}$$

47. ¿Cuál de las funciones f siguientes tiene discontinuidad removible en x = a? Si la discontinuidad es removible, determine una función g que concuerde con f para $x \neq a$ y sea continua en

a)
$$f(x) = \frac{x^4 - 1}{x - 1}$$
, $a = 1$

b)
$$f(x) = \frac{x^3 - x^2 - 2x}{x - 2}$$
, $a = 2$

c)
$$f(x) = [\![\operatorname{sen} x]\!], \quad a = \pi$$

- **48.** Suponga que una función f es continua sobre [0, 1], excepto en 0.25 y que f(0) = 1 y f(1) = 3. Sea N = 2. Trace dos posiblesgraficas de f, una en que se muestre que f podría no satisfacer la conclusión del teorema del valor intermedio y la otra que muestre que f todavía podría satisfacer ese teorema (aun cuando no satisfaga la hipótesis).
- **49.** Si $f(x) = x^2 + 10$ sen x, demuestre que existe un número c tal que f(c) = 1000.
- **50.** Suponga que f es continua sobre [1, 5] y las únicas soluciones de la ecuación f(x) = 6 son x = 1 y x = 4. Si f(2) = 8, explique por qué f(3) > 6.

51-54 Utilice el teorema del valor intermedio para demostrar que existe una raíz en cada una de las ecuaciones dadas en el intervalo especificado.

- **51.** $x^4 + x 3 = 0$, (1,2) **52.** $\sqrt[3]{x} = 1 x$, (0,1)
- **53.** $e^x = 3 2x$, (0, 1)
- **54.** sen $x = x^2 x$. (1.2)

55-56 a) Demuestre que cada una de las siguientes ecuaciones tiene cuando menos una raíz real.

- b) Utilice su calculadora para hallar un intervalo de longitud 0.01 que contenga una raíz.
- **55.** $\cos x = x^3$
- **56.** $\ln x = 3 2x$
- FF 57-58 a) Demuestre que cada una de las siguientes ecuaciones tiene cuando menos una raíz real.
 - b) Utilice un dispositivo de graficación para encontrar la raíz correcta hasta tres cifras decimales.
 - **57.** $100e^{-x/100} = 0.01x^2$
- **58.** $\arctan x = 1 x$
- **59.** Demuestre que f es continua en a si y sólo si

$$\lim_{h \to 0} f(a+h) = f(a)$$

60. Para demostrar que la función seno es continua necesita demostrar que $\lim_{x\to a} \sin x = \sin a$ para todo número real x = a. Según el ejercicio 59, una proposición equivalente es que

$$\lim_{h \to 0} \operatorname{sen}(a + h) = \operatorname{sen} a$$

Aplique 6 para demostrar que esto es cierto.

- 61. Demuestre que la función coseno es continua.
- 62. a) Demuestre el teorema 4, inciso 3.
 - b) Demuestre el teorema 4, inciso 5.
- **63.** ¿Para qué valores de x es f continua?

$$f(x) = \begin{cases} 0 & \text{si } x \text{ es racional} \\ 1 & \text{si } x \text{ es irracional} \end{cases}$$

64. ¿Para qué valores de x es q continua?

$$g(x) = \begin{cases} 0 & \text{si } x \text{ es racional} \\ x & \text{si } x \text{ es irracional} \end{cases}$$

- **65.** ¿Existe un número que es exactamente 1 más que su cubo?
- **66.** Si a y b son números positivos, demuestre que la ecuación

$$\frac{a}{x^3 + 2x^2 - 1} + \frac{b}{x^3 + x - 2} = 0$$

tiene por lo menos una solución en el intervalo (-1, 1).

67. Demuestre que la función

$$f(x) = \begin{cases} x^4 \sec(1/x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

es continua sobre $(-\infty, \infty)$

- **68.** a) Demuestre que la función valor absoluto F(x) = |x| es continua para toda x.
 - b) Demuestre que si f es una función continua sobre un intervalo, entonces también lo es |f|.

- c) ¿Lo inverso de la proposición del inciso b) también es verdadero? En otras palabras, si |f| es continua, ¿se deduce que f es continua? De ser así, demuéstrelo. En caso de no ser así, halle un contraejemplo.
- 69. Un monje tibetano sale del monasterio a las 7:00 y emprende su camino habitual hacia la cima de la montaña, adonde llega a las 19:00. La mañana siguiente inicia el regreso desde la cima por la misma ruta a las 7:00 y llega al monasterio a las 19:00. Mediante el teorema del valor intermedio demuestre que existe un punto a lo largo de la ruta que el monje cruzará exactamente a la misma hora en ambos días.

Límites al infinito, asíntotas horizontales

x	f(x)		
0	-1		
±1	0		
±2	0.600000		
±3	0.800000		
±4	0.882353		
±5	0.923077		
±10	0.980198		
±50	0.999200		
±100	0.999800		
±1000	0.999998		

2.6

En las secciones 2.2 y 2.4 se trataron los límites infinitos y las asíntotas verticales. Ahí aproximamos x a un número y vimos que los valores de y se vuelven arbitrariamente grandes (ya sean positivos o negativos). En esta sección haremos x arbitrariamente grande en magnitud y observaremos qué ocurre con y.

Empecemos por investigar el comportamiento de la función f definida por

$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

a medida que x se hace grande. La tabla al margen da valores de esta función con una aproximación de seis decimales, y en la figura 1 se ha trazado la gráfica de f por medio de la computadora.

FIGURA 1

Conforme x crece más y más, puede verse que los valores de f(x) se aproximan cada vez más a 1. De hecho, parece que puede acercar cuanto quiera los valores de f(x) a 1 eligiendo una x lo suficientemente grande. Esta situación se expresa en forma simbólica escribiendo

$$\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = 1$$

En general, utilizamos la notación

$$\lim_{x \to \infty} f(x) = L$$

para indicar que los valores de f(x) tienden a L conforme x se hace más y más grande.

1 Definición Sea f una función definida sobre algún intervalo (a, ∞) . Entonces

$$\lim_{x \to \infty} f(x) = L$$

significa que los valores de f(x) pueden aproximarse arbitrariamente a L tanto como desee, eligiendo a x suficientemente grande.

Otra notación para $\lim_{x\to\infty} f(x) = L$ es

$$f(x) \rightarrow L$$
 conforme $x \rightarrow \infty$

El símbolo ∞ no representa un número. No obstante, la expresión $\lim_{x\to\infty} f(x) = L$ a menudo se lee como

"el límite de f(x) cuando x tiende al infinito, es L"

o "el límite de f(x), cuando x se va al infinito, es L"

o bien "el límite de f(x), cuando x crece sin cota, es L".

El significado de estas frases está dado por la definición 1. Al final de esta sección, se encuentra una definición más precisa, utilizando la definición ε - δ de la sección 2.4.

En la figura 2 se muestran ilustraciones geométricas de la definición 1. Advierta que hay muchas maneras de aproximar la gráfica de f a la recta y = L (la cual se llama *asíntota horizontal*) a medida que usted ve hacia el extremo derecho de cada gráfica.

FIGURA 2 Ejemplos que ilustran $\lim_{x \to \infty} f(x) = L$

Si regresa a la figura 1, verá que para valores negativos de x grandes en magnitud, los valores de f(x) están cercanos a 1. Al decrecer x a través de valores negativos sin cota, puede acercar cuando quiera f(x) a 1. Esto se expresa escribiendo

$$\lim_{x \to -\infty} \frac{x^2 - 1}{x^2 + 1} = 1$$

La definición general es como sigue.

2 Definición Sea f una función definida sobre algún intervalo $(-\infty, a)$. Entonces

$$\lim f(x) = L$$

significa que los valores de f(x) pueden hacerse arbitrariamente cercanos a L haciendo que x sea negativa y suficientemente grande en magnitud.

FIGURA 3 Ejemplos que ilustran lím f(x) = L

Es necesario subrayar que el símbolo $-\infty$ no representa un número, pero la expresión $\lim_{x\to-\infty}f(x)=L$ se lee a menudo como

"el límite de f(x), cuando x tiende al infinito negativo o a menos infinito, es L".

La definición 2 se ilustra en la figura 3. Observe que la gráfica tiende a la recta y = L a medida que vemos hacia el extremo izquierdo de cada gráfica.

3 Definición La recta y = L se llama asíntota horizontal de la curva y = f(x) si

$$\lim_{x \to \infty} f(x) = L \qquad \text{o} \qquad \lim_{x \to -\infty} f(x) = L$$

Por ejemplo, la curva que se ilustra en la figura 1 tiene a la recta y = 1 como asíntota horizontal porque

$$\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = 1$$

Un ejemplo de una curva con dos asíntotas horizontales es $y = \tan^{-1}x$. (Véase la figura 4.) En efecto.

4

FIGURA 4 $y = \tan^{-1} x$

$$\lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2}$$

de modo que las rectas $y = -\pi/2$ y $y = \pi/2$ son asíntotas horizontales. (Esto se sigue del hecho de que las rectas $x = \pm \pi/2$ son asíntotas verticales de la gráfica de $y = \tan x$.)

EJEMPL0 1 Encuentre los límites infinitos, los límites en el infinito y las asíntotas para la función f cuya gráfica se muestra en la figura 5.

SOLUCIÓN Vemos que los valores de f(x) se vuelven grandes cuando $x \rightarrow -1$ por ambos lados, así que

$$\lim_{x \to -1} f(x) = \infty$$

Advierta que f(x) se hace negativo grande en magnitud cuando x tiende a 2 por la izquierda, pero grande positivo cuando x tiende a 2 por la derecha. De este modo,

$$\lim_{x \to 2^{-}} f(x) = -\infty \qquad \text{y} \qquad \lim_{x \to 2^{+}} f(x) = \infty$$

Del comportamiento de estos límites, las dos rectas x = -1 y x = 2 son asíntotas

Cuando x es muy grande, parece que f(x) tiende a 4. Pero, a medida que x decrece a través de valores negativos, f(x) tiende a 2. Por tanto,

$$\lim_{x \to \infty} f(x) = 4 \qquad \text{y} \qquad \lim_{x \to -\infty} f(x) = 2$$

Esto significa que tanto y = 4 como y = 2 son asíntotas horizontales.

 $-\frac{\pi}{2}$

FIGURA 5

EJEMPLO 2 Encuentre $\lim_{r\to\infty}\frac{1}{r}$ y $\lim_{r\to\infty}\frac{1}{r}$.

SOLUCIÓN Observe que cuando x es grande, 1/x es pequeño. Por ejemplo,

$$\frac{1}{100} = 0.01$$
 $\frac{1}{10000} = 0.0001$ $\frac{1}{1000000} = 0.000001$

De hecho, si elige una x suficientemente grande, puede aproximar 1/x a 0 cuanto quiera. Por tanto, según la definición 1, tenemos

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

Un razonamiento similar hace ver que cuando x es negativo grande en magnitud, 1/x es pequeño negativo; de este modo, también se tiene que

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

FIGURA 6

$$\lim_{x \to \infty} \frac{1}{x} = 0, \quad \lim_{x \to -\infty} \frac{1}{x} = 0$$

Se infiere que la recta y = 0 (el eje x) es una asíntota horizontal de la curva y = 1/x (que es una hipérbola equilátera; véase figura 6).

La mayor parte de las leyes de los límites que se dieron en la sección 2.3 también se cumplen para los límites en el infinito. Puede demostrarse que las leyes de los límites, cuya lista se da en la sección 2.3 (con la excepción de las leyes 9 y 10), también son válidas si " $x \to a$ " se reemplaza con " $x \to \infty$ " o con " $x \to -\infty$ ". En particular, si combinamos las leyes 6 y 11 con los resultados del ejemplo 2, obtenemos la siguiente importante regla para el cálculo de límites.

5 Teorema Si r > 0 es un número racional, entonces

$$\lim_{x\to\infty}\frac{1}{x^r}=0$$

Si r > 0 es un número racional tal que x^r está definida para toda x, entonces

$$\lim_{x \to -\infty} \frac{1}{x^r} = 0$$

V EJEMPLO 3 Evalúe

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$$

e indique cuáles propiedades de los límites se utilizaron en cada paso.

SOLUCIÓN Cuando *x* es muy grande, tanto numerador como denominador son muy grandes, así que no es obvio qué pasa con su cociente. Necesitamos hacer algo de álgebra preliminar.

Para evaluar el límite en el infinito de cualquier función racional, primero dividimos el numerador y el denominador por la potencia mayor de x que hay en el denominador. (Suponemos que $x \neq 0$, ya que estamos interesados sólo en valores muy grandes de x). En este caso, la potencia mayor del denominador es x^2 , así que tenemos

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} = \lim_{x \to \infty} \frac{\frac{3x^2 - x - 2}{x^2}}{\frac{5x^2 + 4x + 1}{x^2}} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} \left(3 - \frac{1}{x} - \frac{2}{x^2}\right)}{\lim_{x \to \infty} \left(5 + \frac{4}{x} + \frac{1}{x^2}\right)}$$
(por la ley de los límites 5)
$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$
(por las leyes 1, 2 y 3)
$$= \frac{3 - 0 - 0}{5 + 0 + 0}$$
(por la ley 7 y el teorema 5)
$$= \frac{3}{5}$$

FIGURA 7

$$y = \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$$

Un cálculo semejante muestra que el límite cuando $x \to -\infty$ también es $\frac{3}{5}$. En la figura 7 se ilustran los resultados de estos cálculos mostrando cómo la gráfica de la función racional dada se aproxima a la asíntota horizontal $y = \frac{3}{5}$.

EJEMPLO 4 Encuentre la asíntotas horizontales y verticales de la gráfica de la función

$$f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

SOLUCIÓN Al dividir entre *x* tanto el numerador como el denominador y aplicar las propiedades de los límites, tenemos

$$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} = \lim_{x \to \infty} \frac{\sqrt{2 + \frac{1}{x^2}}}{3 - \frac{5}{x}} \qquad (ya \text{ que } \sqrt{x^2} = x \text{ para } x > 0)$$

$$= \frac{\lim_{x \to \infty} \sqrt{2 + \frac{1}{x^2}}}{\lim_{x \to \infty} \left(3 - \frac{5}{x}\right)} = \frac{\sqrt{\lim_{x \to \infty} 2 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 3 - 5 \lim_{x \to \infty} \frac{1}{x}} = \frac{\sqrt{2 + 0}}{3 - 5 \cdot 0} = \frac{\sqrt{2}}{3}$$

Por tanto, la recta $y = \sqrt{2}/3$ es una asíntota horizontal de la gráfica de f.

En el cálculo del límite conforme $x \to -\infty$, debemos recordar que para x < 0, tenemos $\sqrt{x^2} = |x| = -x$. Así que cuando dividimos el numerador entre x, para x < 0 obtenemos

$$\frac{1}{x}\sqrt{2x^2+1} = -\frac{1}{\sqrt{x^2}}\sqrt{2x^2+1} = -\sqrt{2+\frac{1}{x^2}}$$

Por tanto,

$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} = \lim_{x \to -\infty} \frac{-\sqrt{2 + \frac{1}{x^2}}}{3 - \frac{5}{x}} = \frac{-\sqrt{2 + \lim_{x \to -\infty} \frac{1}{x^2}}}{3 - 5 \lim_{x \to -\infty} \frac{1}{x}} = -\frac{\sqrt{2}}{3}$$

Así que la recta $y = -\sqrt{2}/3$ también es una asíntota horizontal.

Es probable que haya una asíntota vertical cuando el denominador, 3x - 5, es 0; esto es, cuando $x = \frac{5}{3}$. Si x esta cerca de $\frac{5}{3}$ y $x > \frac{5}{3}$, entonces el denominador está cerca de 0 y 3x - 5 es positivo. El numerador $\sqrt{2x^2 + 1}$ es siempre positivo, así que f(x) es positivo. Por tanto,

$$\lim_{x \to (5/3)^+} \frac{\sqrt{2x^2 + 1}}{3x - 5} = \infty$$

Si x está cerca de $\frac{5}{3}$, pero $x < \frac{5}{3}$, entonces 3x - 5 < 0, así que f(x) es negativo grande. Así,

$$\lim_{x \to (5/3)^{-}} \frac{\sqrt{2x^2 + 1}}{3x - 5} = -\infty$$

La asíntota vertical es $x = \frac{5}{3}$. Las tres asíntotas se muestran en la figura 8.

FIGURA 8

$$y = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

EJEMPLO 5 Calcule
$$\lim_{x \to \infty} (\sqrt{x^2 + 1} - x)$$
.

SOLUCIÓN Ya que tanto $\sqrt{x^2 + 1}$ como x son muy grandes cuando x es grande, es difícil ver qué pasa con su diferencia, así que utilizamos el álgebra para reescribir la función. Primero multiplicamos el numerador y el denominador por el radical conjugado:

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) = \lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x}$$
$$= \lim_{x \to \infty} \frac{(x^2 + 1) - x^2}{\sqrt{x^2 + 1} + x} = \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x}$$

Observe que el denominador de esta última expresión $(\sqrt{x^2 + 1} + x)$ resulta muy grande cuando $x \to \infty$ (más grande que x). Así que

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) = \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x} = 0$$

La figura 9 ilustra este resultado.

EJEMPLO 6 Evalúe el
$$\lim_{x\to 2^+} \arctan\left(\frac{1}{x-2}\right)$$
.

SOLUCIÓN Si hacemos t = 1/(x-2), sabemos que $t \to \infty$ cuando $x \to 2^+$. Por tanto, por la segunda ecuación en $\boxed{4}$, tenemos

$$\lim_{x \to 2^+} \arctan\left(\frac{1}{x-2}\right) = \lim_{t \to \infty} \arctan t = \frac{\pi}{2}$$

La gráfica de la función exponencial natural $y = e^x$ tiene a la recta y = 0 (el eje x) como una asíntota horizontal. (Lo mismo es verdadero para cualquier función exponencial con base a > 1). De hecho, de la gráfica en la figura 10 y la correspondiente tabla de valores, vemos que

$$\lim_{x \to -\infty} e^x = 0$$

Note que los valores de e^x se aproximan a 0 muy rápidamente.

x	e^x			
0	1.00000			
-1	0.36788			
-2	0.13534			
- 3	0.04979			
- 5	0.00674			
-8	0.00034			
- 10	0.00005			

Puede considerar que la función dada tiene un denominador igual a 1.

FIGURA 9

FIGURA 10

RP La estrategia para resolver los problemas 6 y 7 es *introducir algo extra* (véase la página 75). Aquí, el algo extra, el elemento auxiliar, es la nueva variable *t*.

V EJEMPLO 7 Evalúe $\lim_{x\to 0^-} e^{1/x}$.

SOLUCIÓN Si hacemos t = 1/x, sabemos que $t \to -\infty$ cuando $x \to 0^-$. Por tanto, por $\boxed{6}$,

$$\lim_{x\to 0^-} e^{1/x} = \lim_{t\to -\infty} e^t = 0$$

(Véase el ejercicio 75.)

EJEMPLO 8 Evalúe lím sen x.

SOLUCIÓN Conforme x crece, los valores de sen x oscilan infinitamente entre 1 y -1, así que no se aproximan a ningún número definido, por lo que $\lim_{x\to\infty}$ sen x no existe.

Límites infinitos en el infinito

La notación

$$\lim_{x \to \infty} f(x) = \infty$$

se utiliza para indicar que los valores de f(x) se hacen más grandes cuando x se hace muy grande. Un significado similar está asociado con los siguientes símbolos:

$$\lim_{x \to -\infty} f(x) = \infty \qquad \qquad \lim_{x \to \infty} f(x) = -\infty \qquad \qquad \lim_{x \to -\infty} f(x) = -\infty$$

EJEMPLO 9 Encuentre $\lim_{x\to\infty} x^3$ y $\lim_{x\to-\infty} x^3$.

SOLUCIÓN Cuando x se hace más grande, x^3 también se hace grande. Por ejemplo,

$$10^3 = 1000$$
 $100^3 = 1000000$ $1000^3 = 1000000000$

De hecho, podemos hacer x^3 tan grande como queramos tomando x suficientemente grande. Por esta razón, podemos escribir

$$\lim_{n \to \infty} x^3 = \infty$$

Del mismo modo, cuando x es muy grande negativo, también lo es x^3 . Así que

$$\lim_{n \to \infty} x^3 = -\infty$$

Estos límites establecidos también pueden verse en la gráfica de $y = x^3$ en la figura 11.

En la figura 10 vemos que

$$\lim_{x\to\infty}e^x=\infty$$

pero, como se observa en la figura 12, $y = e^x$ se hace más grande cuando $x \to \infty$, con mucha mayor rapidez que $y = x^3$.

EJEMPLO 10 Encuentre $\lim_{x \to \infty} (x^2 - x)$.

SOLUCIÓN Sería un error escribir

$$\lim_{x \to \infty} (x^2 - x) = \lim_{x \to \infty} x^2 - \lim_{x \to \infty} x = \infty - \infty$$

Las leyes de los límites no pueden aplicarse a límites infinitos porque ∞ no es un número ($\infty - \infty$ no puede definirse). Sin embargo, *podemos* escribir

$$\lim_{x \to \infty} (x^2 - x) = \lim_{x \to \infty} x(x - 1) = \infty$$

debido a que tanto x como x-1 se hacen arbitrariamente grandes y, por tanto, también su producto.

FIGURA 11 $\lim x^3 = \infty$, $\lim x^3 = -\infty$

FIGURA 12 e^x es mucho más grande que x^3 cuando x es muy grande.

EJEMPLO 11 Encuentre
$$\lim_{x \to \infty} \frac{x^2 + x}{3 - x}$$
.

SOLUCIÓN Como en el ejemplo 3, dividimos el numerador y el denominador entre la mayor potencia de x en el denominador, que es justamente x:

$$\lim_{x \to \infty} \frac{x^2 + x}{3 - x} = \lim_{x \to \infty} \frac{x + 1}{\frac{3}{x} - 1} = -\infty$$

ya que
$$x + 1 \rightarrow \infty$$
 y $3/x - 1 \rightarrow -1$ conforme $x \rightarrow \infty$.

El siguiente ejemplo muestra que utilizando límites infinitos al infinito, además de las intersecciones, podemos tener una idea general de la gráfica de una función polinomial sin tener que disponer de un gran número de puntos.

V EJEMPLO 12 Trace la gráfica de $y = (x - 2)^4(x + 1)^3(x - 1)$ encontrando las intersecciones y sus límites cuando $x \to \infty$ y cuando $x \to -\infty$.

SOLUCIÓN La intersección con el eje y es $f(0) = (-2)^4(1)^3(-1) = -16$ y las intersecciones con el eje x, x = 2, -1, 1 se encuentran haciendo y = 0. Note que puesto que $(x - 2)^4$ es positivo, la función no cambia de signo en 2; así que la gráfica no cruza el eje x en 2. La gráfica interseca el eje x en -1 y 1.

Cuando x es un número positivo muy grande, todos los factores son muy grandes, así que

$$\lim_{x \to \infty} (x - 2)^4 (x + 1)^3 (x - 1) = \infty$$

Cuando x es un número negativo muy grande, el primero de los factores es un número positivo muy grande y los factores segundo y tercero son negativos muy grandes, así que

$$\lim_{x \to -\infty} (x - 2)^4 (x + 1)^3 (x - 1) = \infty$$

Combinando esta información, obtenemos el esbozo de la gráfica de la figura 13.

FIGURA 13 $y = (x-2)^4(x+1)^3(x-1)$

Definición precisa

La definición 1 puede establecerse de manera precisa como sigue.

7 Definición Sea f una función definida sobre algún intervalo (a, ∞) . Entonces

$$\lim_{x \to \infty} f(x) = L$$

significa que para toda $\varepsilon > 0$ existe un correspondiente número N tal que

si
$$x > N$$
, entonces $|f(x) - L| < \varepsilon$

En palabras, esto indica que los valores de f(x) pueden acercarse arbitrariamente a L (dentro de una distancia ε , donde ε es cualquier número positivo) tomando x suficientemente grande (más grande que N, donde N depende de ε). Gráficamente, esto nos dice que eligiendo x suficientemente grande (más grande que algún número N) podemos hacer que la gráfica de f esté atrapada entre las rectas horizontales dadas $y = L - \varepsilon$ y

 $y = L + \varepsilon$ como se ve en la figura 14. Esto debe ser verdadero sin importar qué tan pequeño elijamos ε . La figura 15 muestra que si elegimos un valor de ε muy pequeño, entonces puede necesitarse un valor de N muy grande.

FIGURA 14 $\lim_{x \to a} f(x) = L$

Del mismo modo, una versión precisa de la definición 2 está dada por la definición 8, que se ilustra en la figura 16.

8 Definición Sea f una función definida sobre algún intervalo $(-\infty, a)$. Entonces

$$\lim_{x \to -\infty} f(x) = L$$

significa que para todo $\varepsilon > 0$ existe un correspondiente número N tal que

si
$$x < N$$
, entonces $|f(x) - L| < \varepsilon$

FIGURA 16 $\lim_{x \to -\infty} f(x) = L$

En el ejemplo 3 obtuvimos que

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} = \frac{3}{5}$$

En el siguiente ejemplo utilizamos una calculadora o computadora para relacionar esta proposición con la definición 7, con $L=\frac{3}{5}$ y $\varepsilon=0.1$.

TEC En Module 2.4/2.6 puede explorar la definición precisa de límite de manera gráfica o numérica.

EJEMPLO 13 Utilice una gráfica para encontrar un número N tal que

si
$$x > N$$
, entonces $\left| \frac{3x^2 - x - 2}{5x^2 + 4x + 1} - 0.6 \right| < 0.1$

SOLUCIÓN Reescribimos la desigualdad dada como

$$0.5 < \frac{3x^2 - x - 2}{5x^2 + 4x + 1} < 0.7$$

Necesitamos determinar las valores de x para los cuales la curva dada está entre las rectas horizontales y=0.5 y y=0.7. Las gráficas de la curva y de estas rectas se muestran en la figura 17. Entonces utilizamos el cursor para estimar que la curva cruza la recta y=0.5 cuando $x\approx 6.7$. A la derecha de este número parece que la curva está entre las rectas y=0.5 y y=0.7. Redondeando, podemos decir que

si
$$x > 7$$
, entonces $\left| \frac{3x^2 - x - 2}{5x^2 + 4x + 1} - 0.6 \right| < 0.1$

En otras palabras, para $\varepsilon = 0.1$ podemos elegir N = 7 (o cualquier otro número mayor) en la definición 7.

EJEMPLO 14 Utilice la definición 7 para demostrar que $\lim_{x\to\infty} \frac{1}{x} = 0$.

SOLUCIÓN Dado $\varepsilon > 0$, queremos encontrar N tal que

si
$$x > N$$
, entonces $\left| \frac{1}{x} - 0 \right| < \varepsilon$

Al calcular el límite podemos suponer que x>0. Entonces $1/x<\varepsilon \Longleftrightarrow x>1/\varepsilon$. Elegimos $N=1/\varepsilon$. Así que

si
$$x > N = \frac{1}{\varepsilon}$$
, entonces $\left| \frac{1}{x} - 0 \right| = \frac{1}{x} < \varepsilon$

Por tanto, de la definición 7

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

La figura 18 ilustra la demostración mostrando algunos valores de ϵ y los correspondientes valores de N.

FIGURA 17

FIGURA 19 $\lim f(x) = \infty$

Finalmente notamos que un límite infinito al infinito puede definirse como sigue. En la figura 19 se muestra una ilustración geométrica.

9 Definición Sea f una función definida sobre algún intervalo (a, ∞) . Entonces

$$\lim_{x \to \infty} f(x) = \infty$$

significa que para todo número positivo M existe un correspondiente número positivo N tal que

si
$$x > N$$
, entonces $f(x) > M$

Definiciones similares se aplican cuando el símbolo ∞ se reemplaza por $-\infty$. (Véase el ejercicio 74.)

Ejercicios 2.6

1. Explique con sus propias palabras el significado de cada uno de los siguientes límites

a)
$$\lim_{x \to 0} f(x) = 5$$

b)
$$\lim_{x \to \infty} f(x) = 3$$

- **2.** a) ¿Puede la gráfica de y = f(x) intersecar una asíntota vertical? ¿Puede intersecar una asíntota horizontal? Ilustre trazando gráficas.
 - b) ¿Cuántas asíntotas horizontales puede tener la gráfica de y = f(x)? Trace gráficas que muestren las posibilidades.
- **3.** Para la función f cuya gráfica está dada, establezca lo siguiente:

a)
$$\lim_{x \to \infty} f(x)$$

b)
$$\lim_{x \to -\infty} f(x)$$

c)
$$\lim_{x \to 0} f(x)$$

d)
$$\lim_{x \to 3} f(x)$$

e) Las ecuaciones de las asíntotas

4. Para la función g cuya gráfica está dada, establezca lo siguiente.

a)
$$\lim_{x\to\infty} g(x)$$

b)
$$\lim g(x)$$

c)
$$\lim_{x \to 0} g(x)$$

d)
$$\lim_{x \to 2^{-}} g(x)$$

- e) $\lim_{x\to 2^+} g(x)$
- f) Las ecuaciones de las asíntotas

5-10 Trace la gráfica de un ejemplo de una función f que satisfaga todas las condiciones dadas

5.
$$\lim_{x \to 0} f(x) = -\infty$$
, $\lim_{x \to -\infty} f(x) = 5$, $\lim_{x \to \infty} f(x) = -5$

6.
$$\lim_{x \to 2} f(x) = \infty$$
, $\lim_{x \to -2^+} f(x) = \infty$, $\lim_{x \to -2^-} f(x) = -\infty$, $\lim_{x \to -2^-} f(x) = 0$, $\lim_{x \to -2^-} f(x) = 0$

7.
$$\lim_{x \to 2} f(x) = -\infty$$
, $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to -\infty} f(x) = 0$, $\lim_{x \to 0^+} f(x) = \infty$, $\lim_{x \to 0^-} f(x) = -\infty$

- **8.** $\lim_{x \to \infty} f(x) = 3$, $\lim_{x \to 2^{-}} f(x) = \infty$, $\lim_{x \to 2^{+}} f(x) = -\infty$, fes impar
- **9.** f(0) = 3, $\lim_{x \to 0^-} f(x) = 4$, $\lim_{x \to 0^+} f(x) = 2$, $\lim_{x \to -\infty} f(x) = -\infty, \quad \lim_{x \to 4^-} f(x) = -\infty, \quad \lim_{x \to 4^+} f(x) = \infty,$ $\lim f(x) = 3$
- **10.** $\lim_{x \to 2} f(x) = -\infty$, $\lim_{x \to 2} f(x) = 2$, f(0) = 0, f(0) = 0

11. Conjeture el valor del límite

$$\lim_{x\to\infty}\frac{x^2}{2^x}$$

evaluando la función $f(x) = x^2/2^x$ para x = 0, 1, 2, 3, 4, 5, 6,7, 8, 9, 10, 20, 50 y 100. Después, utilice una gráfica de f para respaldar su conjetura.

12. a) Utilice la gráfica de

$$f(x) = \left(1 - \frac{2}{x}\right)^x$$

para estimar el valor de $\lim_{x\to\infty} f(x)$ con una aproximación de dos cifras decimales.

b) Utilice una tabla de valores de f(x) para estimar el límite con una aproximación de cuatro cifras decimales.

13-14 Evalúe el límite y justifique cada paso indicando las propiedades adecuadas de los límites.

13.
$$\lim_{x \to \infty} \frac{3x^2 - x + 4}{2x^2 + 5x - 8}$$

14.
$$\lim_{x \to \infty} \sqrt{\frac{12x^3 - 5x + 2}{1 + 4x^2 + 3x^3}}$$

15-38 Encuentre el límite o demuestre que no existe.

15.
$$\lim_{x \to \infty} \frac{3x - 2}{2x + 1}$$

16.
$$\lim_{x \to \infty} \frac{1 - x^2}{x^3 - x + 1}$$

17.
$$\lim_{x \to -\infty} \frac{x-2}{x^2+1}$$

18.
$$\lim_{x \to -\infty} \frac{4x^3 + 6x^2 - 2}{2x^3 - 4x + 5}$$

19.
$$\lim_{t \to \infty} \frac{\sqrt{t} + t^2}{2t - t^2}$$

20.
$$\lim_{t \to \infty} \frac{t - t\sqrt{t}}{2t^{3/2} + 3t - 5}$$

21.
$$\lim_{x \to \infty} \frac{(2x^2 + 1)^2}{(x - 1)^2(x^2 + x)}$$

22.
$$\lim_{x \to \infty} \frac{x^2}{\sqrt{x^4 + 1}}$$

23.
$$\lim_{x \to \infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}$$

24.
$$\lim_{x \to -\infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}$$

25.
$$\lim_{x \to \infty} (\sqrt{9x^2 + x} - 3x)$$

26.
$$\lim_{x \to -\infty} (x + \sqrt{x^2 + 2x})$$

27.
$$\lim \left(\sqrt{x^2 + ax} - \sqrt{x^2 + bx} \right)$$
 28. $\lim \sqrt{x^2 + 1}$

28. lím
$$\sqrt{x^2 + 1}$$

29.
$$\lim_{x \to \infty} \frac{x^4 - 3x^2 + x}{x^3 - x + 2}$$

30.
$$\lim_{x \to \infty} (e^{-x} + 2\cos 3x)$$

31.
$$\lim_{x \to -\infty} (x^4 + x^5)$$

32.
$$\lim_{x \to -\infty} \frac{1 + x^6}{x^4 + 1}$$

33.
$$\lim_{x\to\infty} \arctan(e^x)$$

34.
$$\lim_{x \to \infty} \frac{e^{3x} - e^{-3x}}{e^{3x} + e^{-3x}}$$

35.
$$\lim_{x \to \infty} \frac{1 - e^x}{1 + 2e^x}$$

36.
$$\lim_{x \to \infty} \frac{\sin^2 x}{x^2 + 1}$$

37.
$$\lim_{x \to \infty} (e^{-2x} \cos x)$$

38.
$$\lim_{x \to 0^+} \tan^{-1}(\ln x)$$

39. a) Estime el valor de

$$\lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} + x \right)$$

dibujando la gráfica de la función

$$f(x) = \sqrt{x^2 + x + 1} + x.$$

- b) Utilice una tabla de valores de f(x) para conjeturar el valor del límite.
- c) Pruebe que su conjetura es correcta.

40. a) Utilice la gráfica de

$$f(x) = \sqrt{3x^2 + 8x + 6} - \sqrt{3x^2 + 3x + 1}$$

para estimar el valor de $\lim_{x\to\infty} f(x)$ con una aproximación de una cifra decimal.

- b) Utilice una tabla de valores de f(x) para estimar el límite con una aproximación de cuatro cifras decimales.
- c) Halle el valor exacto del límite.

41-46 Encuentre las asíntotas horizontal y vertical de cada curva. Si tiene un dispositivo graficador, verifique su trabajo graficando la curva y estimando las asíntotas.

41.
$$y = \frac{2x+1}{x-2}$$

42.
$$y = \frac{x^2 + 1}{2x^2 - 3x - 2}$$

43.
$$y = \frac{2x^2 + x - 1}{x^2 + x - 2}$$

44.
$$y = \frac{1+x^4}{x^2-x^4}$$

45.
$$y = \frac{x^3 - x}{x^2 - 6x + 5}$$

46.
$$y = \frac{2e^x}{e^x - 5}$$

47. Estime la asíntota horizontal de la función

$$f(x) = \frac{3x^3 + 500x^2}{x^3 + 500x^2 + 100x + 2000}$$

mediante la gráfica de f para $-10 \le x \le 10$. Después obtenga la ecuación de la asíntota evaluando el límite. ¿Cómo explica la discrepancia?

48. a) Grafique la función

$$f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

¿Cuántas asíntotas horizontales y verticales observa? Utilice la gráfica para estimar el valor de los límites

$$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} \qquad y \qquad \lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

- b) Calcule algunos valores de f(x) y proporcione estimaciones numéricas de los límites del inciso a).
- c) Calcule los valores exactos de los límites en el inciso a). ¿Obtiene el mismo valor o valores diferentes de esos dos límites? [En relación con su respuesta al inciso a), tendrá que verificar su cálculo para el segundo límite.]

49. Encuentre una fórmula para una función f que satisfaga las condiciones siguientes:

$$\lim_{x \to +\infty} f(x) = 0, \quad \lim_{x \to 0} f(x) = -\infty, \quad f(2) = 0,$$

$$\lim_{x \to 3^{-}} f(x) = \infty, \quad \lim_{x \to 3^{+}} f(x) = -\infty$$

- 50. Proponga una fórmula para una función que tiene asíntotas verticales x = 1 y x = 3 y asíntota horizontal y = 1.
- **51**. Una función f es un cociente de funciones cuadráticas y tiene una asíntota vertical x = 4 y una intersección de x en x = 1. Se sabe que f tiene una discontinuidad removible en x = -1 y $\lim_{x \to -1} f(x) = 2$. Evalúe

a)
$$f(0)$$

b)
$$\lim_{x \to \infty} f(x)$$

52-56 Determine los límites cuando $x \to \infty$ y cuando $x \to -\infty$. Utilice esta información junto con las intersecciones para esbozar la gráfica como en el ejemplo 12.

52.
$$y = 2x^3 - x^4$$

53.
$$y = x^4 - x^6$$

54.
$$y = x^3(x+2)^2(x-1)$$

55.
$$y = (3 - x)(1 + x)^2(1 - x)^4$$

56.
$$y = x^2(x^2 - 1)^2(x + 2)$$

- **57.** a) Utilice el teorema de la compresión para evaluar $\lim_{x\to\infty} \frac{\sin x}{x}$
- asíntota?
- **58.** Por el *comportamiento al final* de una función entenderemos una descripción de lo que sucede con sus valores cuando $x \to \infty$ y a medida que $x \to -\infty$
 - a) Describa y compare el comportamiento al final de las funciones

$$P(x) = 3x^5 - 5x^3 + 2x$$
 $Q(x) = 3x^5$

graficando las dos funciones en los rectángulos de vista [-2, 2] por [-2, 2] y [-10, 10] por [-10000, 10000].

- b) Se dice que dos funciones tienen el mismo comportamiento al final si su cociente tiende a 1 cuando $x \rightarrow \infty$. Demuestre que P y Q tienen el mismo comportamiento al final.
- **59.** Sean P y O dos polinomios. Encuentre

$$\lim_{x \to \infty} \frac{P(x)}{Q(x)}$$

si el grado de P es a) menor que el grado de Q y b) mayor que el grado de O.

- **60.** Haga un esbozo aproximado de la gráfica de la curva $y = x^n$ (n un entero) para los cinco casos siguientes:
 - i) n = 0
- ii) n > 0, n impar
- iii) n > 0, n par
- iv) n < 0, n = 0
- v) n < 0, n par

Después utilice estos esbozos para encontrar los límites siguientes:

- a) $\lim_{x\to 0^+} x^n$
- b) $\lim_{x\to 0^-} x^n$
- c) $\lim x^n$
- d) $\lim_{n \to \infty} x^n$

61. Determine $\lim_{x\to\infty} f(x)$ si, para toda x>1,

$$\frac{10e^x - 21}{2e^x} < f(x) < \frac{5\sqrt{x}}{\sqrt{x - 1}}$$

62. a) Un depósito contiene 5 000 L de agua pura. Se bombea salmuera que contiene 30 g de sal por litro de agua al depósito con una proporción de 25 L/min. Demuestre que la concentración de sal t minutos después (en gramos por litro) es

$$C(t) = \frac{30t}{200 + t}$$

- b) ¿Qué sucede con la concentración cuando $x \rightarrow \infty$?
- 63. En el capítulo 9 se demostrará que, según ciertas hipótesis, la velocidad v(t) de una gota de lluvia que cae, en el instante t, es

$$v(t) = v*(1 - e^{-gt/v*})$$

donde q es la aceleración debida a la gravedad y v^* es la velocidad final de la gota de lluvia.

a) Encuentre $\lim_{t\to\infty} v(t)$.

M

- b) Trace la grafica de v(t) si $v^* = 1 \text{ m/s y } q = 9.8 \text{ m/s}^2$. ¿Cuánto tiempo transcurre para que la velocidad de la gota de agua alcance 99% de su velocidad final?
- b) Grafique $f(x) = (\sin x)/x$. ¿Cuántas veces cruza la gráfica la **64.** a) Mediante el trazo de $y = e^{-x/10}$ y y = 0.1 en una pantalla común, descubra cuánto tiene que aumentar x de modo que $e^{-x/10} < 0.1$.
 - b) ¿Puede resolver el inciso a) sin un dispositivo de graficación?
 - **65.** Mediante una gráfica determine un número N tal que

si
$$x > N$$
, entonces $\left| \frac{3x^2 + 1}{2x^2 + x + 1} - 1.5 \right| < 0.05$

66. En el caso del límite

$$\lim_{x \to \infty} \frac{\sqrt{4x^2 + 1}}{x + 1} = 2$$

ilustre la definición 7 mediante la determinación de valores de N que correspondan a $\varepsilon = 0.5$ y $\varepsilon = 0.1$.

67. Ilustre la definición 8 para el límite

$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + 1}}{x + 1} = -2$$

determinando valores de N que correspondan a $\varepsilon = 0.5$ y $\varepsilon = 0.1$.

68. Ilustre la definición 9 para el límite

$$\lim_{x \to \infty} \frac{2x+1}{\sqrt{x+1}} = \infty$$

calculando valores de N que correspondan a M = 100.

$$\lim_{x \to \infty} \frac{1}{x^2} = 0$$

Demuéstrela directamente aplicando la definición 7.

70. a) ¿Qué tan grande debemos tomar a x de manera que $1/\sqrt{x} < 0.0001$?

b) Tomando $r = \frac{1}{2}$ en el teorema 5, tenemos la proposición

$$\lim_{x \to \infty} \frac{1}{\sqrt{x}} = 0$$

Demuéstrela directamente aplicando la definición 7.

71. Demuestre, mediante la definición 8, que $\lim_{x \to -\infty} \frac{1}{x} = 0$.

72. Demuestre, mediante la definición 9, que lím $x^3 = \infty$.

73. Utilice la definición 9 para demostrar que lím $e^x = \infty$.

74. Formule una definición precisa de

$$\lim_{x \to -\infty} f(x) = -\infty$$

Después utilice su definición para demostrar que

$$\lim_{x \to -\infty} (1 + x^3) = -\infty$$

75. Demuestre que

$$\lim_{x \to \infty} f(x) = \lim_{t \to 0^+} f(1/t)$$

$$\lim_{x \to \infty} f(x) = \lim_{t \to 0^+} f(1/t)$$
$$\lim_{x \to -\infty} f(x) = \lim_{t \to 0^-} f(1/t)$$

si estos límites existen.

Derivadas y razones de cambio

El problema de encontrar la recta tangente a una curva y el problema de encontrar la velocidad de un objeto involucran encontrar el mismo tipo de límite, como vimos en la sección 2.1. Este tipo especial de límite se denomina derivada y en las ciencias e ingeniería puede ser interpretada como una razón de cambio.

Tangentes

Si una curva C tiene la ecuación y = f(x) y quiere usted hallar la recta tangente a C en el punto P(a, f(a)), entonces considere un punto cercano Q(x, f(x)), donde $x \neq a$, y calcule la pendiente de la recta secante PQ:

$$m_{PQ} = \frac{f(x) - f(a)}{x - a}$$

Después, acerque Q a P a lo largo de la curva C, haciendo que x tienda a a. Si m_{PO} tiende un número m, entonces definimos la tangente t como la recta que pasa por P con pendiente m. (Esto equivale a decir que la recta tangente es la posición límite de la recta secante PQ cuando Q tiene a P. (Véase la figura 1.)

siempre que este límite exista.

1 Definición La recta tangente a la curva y = f(x) en el punto P(a, f(a)) es la recta que pasa por P con pendiente

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

En nuestro primer ejemplo, se confirma la suposición que hicimos en el ejemplo 1 de la sección 2.1.

V EJEMPLO 1 Encuentre la ecuación de la recta tangente a la parábola $y = x^2$, en el punto P(1,1).

SOLUCIÓN En este caso, a = 1 y $f(x) = x^2$, de modo que la pendiente es

$$m = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
$$= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$
$$= \lim_{x \to 1} (x + 1) = 1 + 1 = 2$$

Forma punto-pendiente para una recta que pasa por el punto (x_1, y_1) con pendiente m:

$$y - y_1 = m(x - x_1)$$

Con la forma punto-pendiente de la ecuación de la recta, se encuentra que la ecuación de la recta tangente en (1, 1) es

$$y - 1 = 2(x - 1)$$
 o bien $y = 2x - 1$

A veces se hace referencia a la pendiente de la recta tangente a una curva en un punto como la **pendiente de la curva** en el punto. La idea es que si se acerca lo suficiente al punto, la curva parece una línea recta. En la figura 2 se ilustra este procedimiento para la curva $y = x^2$ del ejemplo 1. Cuanto más se acerque, tanto más la parábola se parece a una recta. En otras palabras, la curva casi se vuelve indistinguible de su recta tangente.

TEC Visual 2.7 muestra una animación de la figura 2.

FIGURA 2 Acercamiento hacia el punto (1, 1) sobre la parábola $y = x^2$

Existe otra expresión para la pendiente de la recta tangente que a veces es más fácil de usar. Si h = x - a, en este caso x = a + h, entonces la pendiente de la recta secante PQ es

$$m_{PQ} = \frac{f(a+h) - f(a)}{h}$$

(Véase la figura 3, donde se ilustra el caso h > 0 y Q está a la derecha de P. Sin embargo, si h < 0, Q estaría a la izquierda de P.)

Note que conforme x se aproxima a a, h se acerca a 0 (puesto que h = x - a) y, por ende, la expresión de la pendiente de la recta tangente, en la definición 1 se convierte en

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

FIGURA 3

EJEMPLO 2 Encuentre una ecuación de la recta tangente a la hipérbola y = 3/x, en el punto (3, 1).

SOLUCIÓN Sea f(x) = 3/x. Entonces, la pendiente de la tangente en (3, 1) es

FIGURA 4

$$m = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} \frac{\frac{3}{3+h} - 1}{h} = \lim_{h \to 0} \frac{\frac{3 - (3+h)}{3+h}}{h}$$
$$= \lim_{h \to 0} \frac{-h}{h(3+h)} = \lim_{h \to 0} -\frac{1}{3+h} = -\frac{1}{3}$$

En consecuencia, la ecuación de la tangente en el punto (3, 1) es

$$y - 1 = -\frac{1}{3}(x - 3)$$

la cual se simplifica a

$$x + 3y - 6 = 0$$

En la figura 4 se muestra la hipérbola y su tangente.

FIGURA 5

FIGURA 6

Velocidades

En la sección 2.1 investigamos el movimiento de una pelota que se dejó caer desde la Torre CN, y se definió su velocidad como el límite del valor de las velocidades promedio sobre periodos de tiempo cada vez más cortos.

En general, suponga que un objeto se mueve a lo largo de una línea recta, de acuerdo con una ecuación del movimiento s = f(t), donde s es el desplazamiento (distancia dirigida) del objeto respecto al origen, en el tiempo t. La función f que describe el movimiento se conoce como **función posición** del objeto. En el intervalo de tiempo t = a hasta t = a + h, el cambio en la posición es f(a + h) - f(a). (Véase la figura 5.) La velocidad promedio en este intervalo de tiempo es

velocidad promedio =
$$\frac{\text{desplazamiento}}{\text{tiempo}} = \frac{f(a+h) - f(a)}{h}$$

que es lo mismo que la pendiente de la recta secante PQ en la figura 6.

Suponga ahora que calcula las velocidades promedio sobre intervalos de tiempo [a, a + h] más y más cortos. En otras palabras, haga que h tienda a 0. Como en el ejemplo de la pelota que cae, se definió la **velocidad** (o **velocidad instantánea**) v(a) en el instante t = a como el límite de estas velocidades promedio:

$$v(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Esto significa que la velocidad en el instante t = a es igual a la pendiente de la recta tangente en P. (Compare las ecuaciones 2 y 3.)

Ahora que sabe calcular límites, vuelva a considerar el problema de la pelota que cae.

V EJEMPLO 3 Suponga que se deja caer una pelota desde la plataforma superior de observación de la Torre CN, a 450 m sobre el nivel del suelo.

- a) ¿Cuál es la velocidad de la pelota después de 5 segundos?
- b) ¿Con qué rapidez cae cuando choca contra el suelo?

SOLUCIÓN Necesita usted hallar la velocidad cuando t=5 y cuando la pelota golpea el suelo, de tal manera que es conveniente iniciar la búsqueda de la velocidad en

Recuerde que en la sección 2.1 vimos que la distancia (en metros) que recorre la pelota que cae una vez que transcurre t segundos es $4.9t^2$.

un tiempo general t = a. Empleando la ecuación de movimiento $s = f(t) = 4.9t^2$, se tiene

$$v(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{4.9(a+h)^2 - 4.9a^2}{h}$$
$$= \lim_{h \to 0} \frac{4.9(a^2 + 2ah + h^2 - a^2)}{h} = \lim_{h \to 0} \frac{4.9(2ah + h^2)}{h}$$
$$= \lim_{h \to 0} 4.9(2a+h) = 9.8a$$

- a) La velocidad después de 5 s es $v(5) = (9.8)(5) = 49 \,\mathrm{m/s}$.
- b) Puesto que la plataforma de observación está a 450 m sobre el nivel del suelo, la pelota chocará contra el suelo en el instante t_1 , cuando $s(t_1) = 450$; es decir,

$$4.9t_1^2 = 450$$

Esto da

$$t_1^2 = \frac{450}{4.9}$$
 y $t_1 = \sqrt{\frac{450}{4.9}} \approx 9.6 \text{ s}$

Por tanto, la velocidad de la pelota cuando choca contra el suelo es

$$v(t_1) = 9.8t_1 = 9.8\sqrt{\frac{450}{4.9}} \approx 94 \text{ m/s}$$

Derivadas

Hemos visto que en la búsqueda de la pendiente de una recta tangente (ecuación 2) o la velocidad de un objeto (ecuación 3) surge la misma clase de límite. De hecho, límites en la forma

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

surgen cuando calculamos una razón de cambio en cualquiera de las ciencias o en ingeniería, tal como la velocidad de reacción en química o un costo marginal en economía. Ya que esta clase de límite aparece muy a menudo, se da un nombre y notación especial.

4 Definición La derivada de una función f en un número x = a, denotada por f'(a), es

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

si este límite existe.

Si se escribe x = a + h, entonces h = x - a y h tiende a 0 si y sólo si x tiende a a. En consecuencia, una manera equivalente de expresar la definición de la derivada, como vimos en la búsqueda de rectas tangentes, es

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

EJEMPLO 4 Encuentre la derivada de la función $f(x) = x^2 - 8x + 9$ en el número x = a.

f'(a) se lee "f prima de a".

SOLUCIÓN De la definición 4 se tiene

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{\left[(a+h)^2 - 8(a+h) + 9 \right] - \left[a^2 - 8a + 9 \right]}{h}$$

$$= \lim_{h \to 0} \frac{a^2 + 2ah + h^2 - 8a - 8h + 9 - a^2 + 8a - 9}{h}$$

$$= \lim_{h \to 0} \frac{2ah + h^2 - 8h}{h} = \lim_{h \to 0} (2a + h - 8)$$

$$= 2a - 8$$

Definimos la recta tangente a la curva y = f(x) en el punto P(a, f(a)) como la recta que pasa por P y tiene pendiente m, dada por la ecuación 1 o 2. Ya que, por la definición 4, ésta es la misma que la derivada f'(a), podemos decir lo siguiente.

La recta tangente a y = f(x) en (a, f(a)) es la recta que pasa por (a, f(a)) cuya pendiente es igual a f'(a), la derivada de f en x = a.

Si utilizamos la forma punto-pendiente de la ecuación de la recta, podemos escribir la ecuación de la recta tangente a la curva y = f(x) en el punto (a, f(a)):

$$y - f(a) = f'(a)(x - a)$$

V EJEMPLO 5 Encuentre la ecuación de la recta tangente a la parábola $y = x^2 - 8x + 9$ en el punto (3, -6).

SOLUCIÓN Del ejemplo 4 sabemos que la derivada de $f(x) = x^2 - 8x + 9$ en el número x = a es f'(a) = 2a - 8. En consecuencia, la pendiente de la recta tangente en (3, -6) es f'(3) = 2(3) - 8 = -2. En estos términos, la ecuación de la recta tangente que se muestra en la figura 7, es

$$y - (-6) = (-2)(x - 3)$$
 o bien $y = -2x$

FIGURA 7

Razones de cambio

Suponga que y es una cantidad que depende de otra cantidad x. Así, y es una función de x y lo expresamos como y = f(x). Si x cambia de x_1 a x_2 , entonces el cambio en x (también conocido como **incremento** de x) es

$$\Delta x = x_2 - x_1$$

y el cambio correspondiente en y es

$$\Delta y = f(x_2) - f(x_1)$$

El cociente de diferencias

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

razón de cambio promedio $= m_{PQ}$ razón de cambio instantánea =pendiente de la recta tangente en P

FIGURA 8

FIGURA 9Los valores de *y* cambian rápidamente en *P* y lentamente en *Q*.

se llama **razón de cambio promedio de y respecto a x** sobre el intervalo $[x_1, x_2]$, y puede interpretarse como la pendiente de la recta secante PQ en la figura 8.

Por analogía con la velocidad, considere la razón de cambio promedio en intervalos cada vez más pequeños haciendo que x_2 tienda a x_1 y, por tanto, hacer que Δx tienda a 0. El límite de estas razones de cambio promedio se llama **razón de cambio (instantánea) de y respecto a x** en $x = x_1$, lo cual se interpreta como la pendiente de la recta tangente a la curva y = f(x) en $P(x_1, f(x_1))$:

Razón de cambio instantánea = $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$

Reconocemos este límite como la derivada $f'(x_1)$.

Sabemos que una interpretación de la derivada f'(a) es como la pendiente de la recta tangente a la curva y = f(x) cuando x = a. Ahora tenemos una segunda interpretación:

La derivada f'(a) es la razón de cambio instantánea de y = f(x) respecto a x cuando x = a.

El vínculo con la primera interpretación es que si dibuja la curva y = f(x), entonces la razón de cambio instantánea es la pendiente de la recta tangente a esta curva en el punto donde x = a. Esto significa que cuando la derivada es grande (y, en consecuencia, la curva es escarpada, como en el punto P de la figura 9), los valores de y cambian rápidamente. Cuando la derivada es pequeña, la curva es relativamente plana (como en el punto Q), y el valor de y cambia lentamente.

En particular, si s = f(t) es la función posición de una partícula que se mueve a lo largo de una línea recta, entonces f'(a) es la razón de cambio del desplazamiento s respecto al tiempo t. En otras palabras, f'(a) es la velocidad de la partícula en el tiempo t = a. La **rapidez** de la partícula es el valor absoluto de la velocidad, es decir, |f'(a)|.

En el siguiente ejemplo se analiza el significado de la derivada de una función que está definida verbalmente.

- **V** EJEMPLO 6 Un fabricante produce un rollo de un tejido con ancho fijo. El costo de producir x yardas de este tejido es de C = f(x) dólares.
- a) ¿Cuál es el significado de la derivada f'(x)? ¿Cuáles son sus unidades?
- b) En términos prácticos, ¿qué significa decir que f'(1000) = 9?
- c) ¿Cuál piensa que es más grande f'(50) o f'(500)? ¿Qué hay respecto a f'(5000)?

SOLUCIÓN

a) La derivada f'(x) es la razón de cambio instantánea de C respecto a x, es decir, f'(x) significa la razón de cambio del costo de producción respecto al número de yardas producidas. (Los economistas llaman a esta rapidez de cambio *costo marginal*. Esta idea se analiza en más detalle en las secciones 3.7 y 4.7.)

Ya que

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta C}{\Delta x}$$

las unidades para f'(x) son las mismas que las unidades para el cociente de diferencias $\Delta C/\Delta x$. Puesto que ΔC se mide en dólares y Δx en yardas, las unidades para f'(x) son dólares por cada yarda.

En este caso suponga que la función costo se comporta bien; en otras palabras, C(x) no oscila rápidamente cerca de $x=1\,000$.

b) El enunciado de que f'(1000) = 9 significa que, después de fabricar 1000 yardas de tejido, la cantidad a la cual se incrementa el costo de producción es de 9 dólares/yarda. (Cuando x = 1000, C se incrementa 9 veces tan rápido como x.)

Dado que $\Delta x = 1$ es pequeño si se le compara con x = 1000, podría usarse la aproximación

$$f'(1000) \approx \frac{\Delta C}{\Delta x} = \frac{\Delta C}{1} = \Delta C$$

y decimos que el costo de fabricación de las 1000 yardas (o de la 1001) es de casi 9 dólares.

c) La razón a la cual se incrementa el costo de producción (por cada yarda) probablemente es inferior cuando x = 500 que cuando x = 50 (el costo de fabricación de la yarda 500 es menor que el costo de la yarda 50) debido a la escala económica. (El fabricante hace más eficiente el uso de los costos de producción fijos.) De manera que

Pero, conforme se expande la producción, el resultado de la operación a gran escala será ineficiente y con eso los costos de horas extra de trabajo. En estos términos, es posible que la razón de incremento de costos empezarán con el tiempo a subir. De este modo, es posible que suceda que

En el ejemplo siguiente estimaremos la razón de cambio de la deuda nacional respecto al tiempo. En este caso, la función no se define mediante una fórmula sino mediante una tabla de valores.

V	EJEMPLO 7	Sea $D(t)$ la deuda nacional de EU en el tiempo t . La tabla en el margen
pro	porciona val	ores aproximados de esta función siempre que se estime a fin de año,
en 1	miles de mil	lones de dólares, desde 1980 hasta 2005. Interprete y estime el valor
de l	D'(1990).	

SOLUCIÓN La derivada D'(1990) significa la razón de cambio de D respecto a t cuando t = 1990, es decir, la razón de incremento de la deuda nacional en 1990.

De acuerdo con la ecuación 5.

$$D'(1990) = \lim_{t \to 1990} \frac{D(t) - D(1990)}{t - 1990}$$

Así que calculamos y tabulamos los valores del cociente de diferencias (la razón de cambio promedio) como sigue.

t	$\frac{D(t) - D(1990)}{t - 1990}$			
1980	230.31			
1985	257.48			
1995	348.14			
2000	244.09			
2005	313.29			

A partir de esta tabla vemos que D'(1990) se localiza en alguna parte entre 257.48 y 348.14 miles de millones de dólares por cada año. [En este caso, está haciendo la suposición razonable de que la deuda no fluctuará de manera errática entre 1980 y el 2000.] Se estima que la razón de incremento de la deuda nacional de EU en 1990 fue el promedio de estos números, específicamente

$$D'(1990) \approx 303$$
 miles de millones de dólares por cada año.

Otro método sería una gráfica de la función deuda y estimar la pendiente de la recta tangente cuando t = 1990.

Una nota sobre unidades

Las unidades de la razón de cambio promedio $\Delta D/\Delta t$ son las unidades para ΔD divididas entre las unidades de Δt , o sea, miles de millones de dólares por cada año. La razón de cambio instantánea es el límite de la razón de cambio promedio, de este modo, se mide en las mismas unidades: miles de millones de dólares por cada año.

En los ejemplos 3, 6 y 7 aparecen tres casos específicos de razones de cambio: la velocidad de un objeto es la razón de cambio del desplazamiento respecto al tiempo; el costo marginal es la razón de cambio del costo de producción respecto al número de artículos producidos; la razón de cambio de la deuda respecto al tiempo es de interés en economía. Existen otras razones de cambio: en física, la razón de cambio de trabajo respecto al tiempo se le denomina potencia. Los químicos que estudian una reacción química están interesados en la razón de cambio de la concentración de un reactivo respecto al tiempo (denominada velocidad de reacción). Un biólogo se interesa en la relación de cambio de la población de una colonia de bacterias respecto al tiempo. De hecho, el cálculo de razones de cambio es importante en todas las ciencias naturales, en la ingeniería e, incluso, en las ciencias sociales. En la sección 3.7 se darán más ejemplos.

Todas estas razones de cambio son derivadas y pueden interpretarse como pendientes de rectas tangentes. Esto le confiere un significado adicional a la solución del problema de la tangente. Siempre que resuelve usted problemas en que intervienen rectas tangentes, no sólo resuelve un problema de geometría, también resuelve implícitamente gran variedad de problemas de las ciencias y la ingeniería, en que intervienen razones de cambio.

Ejercicios

- **1.** Una curva tiene la ecuación y = f(x).
 - a) Escriba una expresión para la pendiente de la recta secante que pasa por los puntos P(3, f(3)) y Q(x, f(x)).
 - b) Escriba una expresión para la pendiente de la recta tangente
- **2.** Dibuje la curva $y = e^x$ en los rectángulos de vista [-1, 1]por [0, 2], [-0.5, 0.5] por [0.5, 1.5] y [-0.1, 0.1] por [0.9, 1.1]. ¿Qué advierte acerca de la curva conforme hace un acercamiento hacia el punto (0, 1)?
 - 3. a) Halle la pendiente de la recta tangente a la parábola $y = 4x - x^2$ en el punto (1, 3)
 - i) usando la definición 1 ii) usando la ecuación 2
 - b) Encuentre la ecuación de la recta tangente del inciso a).
 - c) Dibuje la parábola y la recta tangente. Como verificación de su trabajo, haga un acercamiento hacia el punto (1, 3) hasta que la parábola y la recta tangente sean indistinguibles.
 - **4.** a) Encuentre la pendiente de la recta tangente a la curva $y = x - x^3$ en el punto (1, 0)
 - i) usando la definición 1 ii) usando la ecuación 2
 - b) Halle la ecuación de la recta tangente del inciso a).
 - c) Dibuje la curva y la recta tangente en rectángulos de vista cada vez más pequeños centrados en (1, 0) hasta que parezcan coincidir la curva y la recta.
 - 5-8 Encuentre la ecuación de la recta tangente a cada una de las siguientes curvas en el punto dado.
- **6.** $y = x^3 3x + 1$, (2, 3)
- **5.** $y = 4x 3x^2$, (2, -4) **6.** $y = x^3 3x + 1$, (2, -4) **7.** $y = \sqrt{x}$, (1, 1) **8.** $y = \frac{2x + 1}{x + 2}$, (1, 1)
- 9. a) Determine la pendiente de la recta tangente a la curva $y = 3 + 4x^2 - 2x^3$ en el punto donde x = a.

- b) Determine las ecuaciones de las rectas tangentes en los puntos (1, 5) y (2, 3).
- c) Grafique la curva y ambas rectas tangentes en una misma pantalla.
- 10. a) Determine la pendiente de la recta tangente a la curva $y = 1/\sqrt{x}$ en el punto donde x = a.
 - b) Plantee las ecuaciones de las rectas tangentes en los puntos (1, 1) y $(4, \frac{1}{2})$.
- c) Grafique la curva y ambas rectas tangentes en una misma pantalla.
- 11. a) Una partícula empieza moviéndose a la derecha a lo largo de una recta horizontal; la gráfica de su función posición se muestra enseguida. ¿Cuándo se mueve la partícula a la derecha? ¿Cuándo a la izquierda? ¿Cuándo permanece inmóvil?
 - b) Dibuje una gráfica de la función velocidad.

12. Se muestran las gráficas de las funciones posición de dos competidoras, A y B, quienes compiten en los 100 m y terminan en empate.

M

M

M

- b) ¿En qué momento hay la mayor distancia entre las competidoras?
- c) ¿En qué momento tienen la misma velocidad?
- **13.** Si una pelota se lanza al aire verticalmente hacia arriba, con una velocidad de $40 \, \text{pies/s}$, su altura (en pies) una vez que transcurren t segundos, está dada por $y = 40t 16t^2$. Encuentre la velocidad cuando t = 2.
- **14.** Si se lanza una roca verticalmente hacia arriba en el planeta Marte con una velocidad de $10 \,\mathrm{m/s}$, su altura (en metros) después de t segundos está dada por $H = 10t 1.86t^2$.
 - a) Halle la velocidad de la roca después de un segundo.
 - b) Halle la velocidad de la roca cuando t = a.
 - c) ¿Cuándo caerá la roca a la superficie?
 - d) ¿Con qué velocidad la roca chocará contra la superficie?
- **15.** El desplazamiento (en metros) de una partícula que se mueve en línea recta está dado por la ecuación de movimiento $s = 1/t^2$, donde t se mide en segundos. Halle la velocidad de la partícula en los instantes t = a, t = 1, t = 2 y t = 3.
- **16.** El desplazamiento (en metros) de una partícula que se mueve en línea recta esta dado por $s = t^2 8t + 18$, donde t se mide en segundos.
 - a) Encuentre la velocidad promedio en cada intervalo de tiempo;
 - i) [3, 4]
- ii) [3.5, 4]
- iii) [4, 5]
- iv) [4, 4.5]
- b) Halle la velocidad instantánea cuando t = 4.
- c) Dibuje la grafica de s como función de t y trace las rectas secantes cuyas pendientes son las velocidades promedio en el inciso a) y la recta tangente cuya pendiente es la velocidad instantánea en el inciso b).
- **17.** Para la función *g* cuya gráfica está dada, reordene los números siguientes en orden creciente y explique su razonamiento.

- **18.** Halle una ecuación de la recta tangente a la gráfica de y = g(x) en x = 5 si g(5) = -3 y g'(5) = 4.
- **19.** Si la ecuación de la recta tangente a la curva y = f(x) en el punto donde a = 2 es y = 4x 5, encuentre f(2) y f'(2).
- **20.** Si la recta tangente a y = f(x) en (4, 3) pasa a través del punto (0, 2), halle f(4) y f'(4).
- **21.** Dibuje la gráfica de una función f para la cual f(0) = 0, f'(0) = 3, f'(1) = 0 y f'(2) = -1.

22. Dibuje la grafica de una función q para la cual

$$g(0) = g(2) = g(4) = 0, g'(1) = g'(3) = 0, g'(0) = g'(4) = 1,$$

 $g'(2) = -1, \lim_{x \to \infty} g(x) = \infty \text{ y } \lim_{x \to -\infty} g(x) = -\infty.$

- **23.** Si $f(x) = 3x^2 x^3$, encuentre f'(1) y utilícela para encontrar la ecuación de la recta tangente a la curva $y = 3x^2 x^3$ en el punto (1, 2).
- **24.** Si $g(x) = x^4 2$ encuentre g'(1) y utilícela para encontrar la ecuación de la recta tangente a la curva $y = x^4 2$ en el punto (1, -1).
- **25.** a) Si $F(x) = 5x/(1 + x^2)$, encuentre F'(2) y utilícela para encontrar la ecuación de la recta tangente a la curva $y = 5x/(1 + x^2)$ en el punto (2, 2).
- b) Ilustre el inciso a) graficando la curva y la recta tangente en la misma pantalla.
 - **26.** a) Si $G(x) = 4x^2 x^3$, encuentre G'(a) y utilícela para encontrar las rectas tangentes a la curva $y = 4x^2 x^3$ en los puntos (2, 8) y (3, 9).
 - b) Ilustre el inciso a) graficando la curva y las rectas tangentes en la misma pantalla.
 - **27-32** Encuentre f'(a) en cada una de las siguientes funciones.
 - **27.** $f(x) = 3x^2 4x + 1$
- **28.** $f(t) = 2t^3 + t$
- **29.** $f(t) = \frac{2t+1}{t+3}$
- **30.** $f(x) = x^{-2}$
- **31.** $f(x) = \sqrt{1 2x}$
- **32.** $f(x) = \frac{4}{\sqrt{1-x}}$
- **33-38** Cada uno de los siguientes límites representa la derivada de alguna función f en algún número x = a. Establezca una f y una a en cada caso.
- **33.** $\lim_{h \to 0} \frac{(1+h)^{10} 1}{h}$
- **34.** $\lim_{h \to 0} \frac{\sqrt[4]{16 + h} 2}{h}$
- **35.** $\lim_{x \to 5} \frac{2^x 32}{x 5}$
- **36.** $\lim_{x \to \pi/4} \frac{\tan x 1}{x \pi/4}$
- 37. $\lim_{h \to 0} \frac{\cos(\pi + h) + 1}{h}$
- **38.** $\lim_{t \to 1} \frac{t^4 + t 2}{t 1}$
- **39-40** Una partícula se desplaza a lo largo de una línea recta con ecuación de movimiento s = f(t), donde s se mide en metros y t en segundos. Halle la velocidad y la rapidez cuando t = 5.
- **39.** $f(t) = 100 + 50t 4.9t^2$
- **40.** $f(t) = t^{-1} t$
- **41.** Una lata de gaseosa tibia se pone a enfriar en un refrigerador. Grafique la temperatura de la gaseosa como función del tiempo. ¿La razón de cambio inicial de la temperatura es mayor o menor que la relación de cambio después de una hora?
- **42.** Se saca un pavo asado del horno cuando su temperatura ha alcanzado 185°F y se coloca sobre la mesa de un cuarto donde

la temperatura es de 75°F. En la gráfica se muestra cómo disminuye la temperatura del pavo y, finalmente, tiende a la temperatura del cuarto. Por medio de la medición de la pendiente de la recta tangente, estime la razón de cambio de la temperatura después de una hora.

43. La tabla muestra el número *N* de usuarios de telefonía celular en EU. (Se proporcionan estimaciones semestrales.)

t	1996	1998	2000	2002	2004	2006
N	44	69	109	141	182	233

- a) Halle la razón de crecimiento promedio de celulares
 - i) de 2002 a 2006
- ii) de 2002 a 2004
- iii) de 2000 a 2002

En cada caso, incluya las unidades.

- b) Estime la razón de crecimiento instantáneo en 2002 tomando dos razones de cambio promedio. ¿Cuáles son sus unidades?
- c) Estime la razón de crecimiento instantáneo en 2002 midiendo la pendiente de una recta tangente.
- **44.** En la tabla se proporciona el numero *N* de establecimientos de una popular cadena de cafeterías. (Se dan los números de establecimientos al 1 de octubre.)

Año	2004	2005	2006	2007	2008
N	8569	10 241	12 440	15 011	16 680

- a) Determine la tasa promedio de crecimiento
 - i) desde 2006 hasta 2008 ii) desde 2006 hasta 2007
 - iii) de 2005 hasta 2006

En cada caso incluya las unidades.

- b) Estime la razón de crecimiento instantáneo en 2006 considerando dos razones de cambio promedio. ¿Cuáles son sus unidades?
- c) Estime la razón de crecimiento instantáneo en 2006 midiendo la pendiente de una recta tangente.
- d) Estime la razón de crecimiento instantáneo en 2007 y compárela con la razón de crecimiento en 2006. ¿Qué concluye?
- **45.** El costo (en dólares) de producir x unidades de cierto artículo es $C(x) = 5000 + 10x + 0.05x^2$.
 - a) Encuentre la razón de cambio promedio de C respecto a x, cuando cambia el nivel de producción:
 - i) de x = 100 a x = 105
 - ii) de x = 100 a x = 101

- b) Halle la razón de cambio instantáneo de C respecto a x, cuando x = 100. (Esto se conoce como *costo marginal*. En la sección 3.7 se explica su significado.)
- **46.** Si un tanque cilíndrico contiene 100 000 galones de agua que se pueden drenar por el fondo del depósito en 1 h, entonces la ley de Torricelli da el volumen *V* del agua que queda después de *t* minutos como

$$V(t) = 100\,000\,\left(1 - \frac{1}{60}t\right)^2$$
 $0 \le t \le 60$

Encuentre la rapidez con que fluye el agua hacia afuera del tanque (la razón de cambio instantáneo de V respecto a t) como función de t. ¿Cuáles son sus unidades? Para los instantes $t=0,\,10,\,20,\,30,\,40,\,50$ y 60 min, encuentre el gasto y la cantidad de agua que queda en el tanque. Resuma sus hallazgos en una frase o dos. ¿En qué instante el gasto es máximo? ¿Cuándo es mínimo?

- 47. El costo de producir x onzas de oro a partir de una reciente mina de oro es C = f(x) dólares.
 - a) ¿Cual es el significado de la derivada f'(x)? ¿Cuáles son sus unidades?
 - b) ¿Que significa establecer f'(800) = 17?
 - c) Qué piensa usted: ¿los valores de f'(x) se incrementarán o disminuirán en corto plazo? ¿Y a largo plazo? Explique.
- **48.** El número de bacterias después de t horas en un experimento controlado de laboratorio es n = f(t).
 - a) ¿Cuál es el significado de la derivada f'(5)? ¿Cuáles son sus unidades?
 - b) Considere que existe una cantidad de espacio y nutrientes para la bacteria. Qué cree usted: ¿Es mayor f'(5) o f'(10)? Si se limita el suministro de nutrientes, ¿afectaría su conclusión? Explique.
- **49.** Sea T(t) la temperatura (en °F) en Phoenix t horas después de la medianoche del 10 de septiembre de 2008. La tabla muestra los valores de esta función registrada cada dos horas. ¿Cuál es el significado de T'(8)? Estime su valor.

t	0	2	4	6	8	10	12	14
T	82	75	74	75	84	90	93	94

- **50.** La cantidad (en libras) de un café que es vendido por una compañía en un precio de p dólares por cada libra es Q = f(p).
 - a) ¿Cuál es el significado de la derivada f'(8)? ¿Cuáles son sus unidades?
 - b) f'(8) es positiva o negativa? Explique.
- **51.** La cantidad de oxígeno que puede disolverse en agua depende de la temperatura de ésta. (De esa manera la polución térmica induce el contenido de oxígeno en el agua.) La gráfica muestra

cómo varia la solubilidad S de oxígeno como una función de la temperatura del agua T.

- a) ¿Cuál es el significado de la derivada S'(T)? ¿Cuáles son sus unidades?
- b) Estime e interprete el valor de S'(16).

Adaptada de Environmental Science: Living Within the System of Nature, 2a. ed.; por Charles E. Kupchella, © 1989. Reimpreso con autorizacion de Prentice-Hall, Inc., Upper Saddle River, N.J.

- **52.** La grafica muestra la influencia de la temperatura *T* en la rapidez máxima sostenible de nado del salmón Coho.
 - a) ¿Cuál es el significado de la derivada S'(T)? ¿Cuáles son sus unidades?

b) Estime los valores de S'(15) y S'(25) e interprételos.

53-54 Determine si f'(0) existe en cada una de las siguientes funciones.

53.
$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

54.
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

REDACCIÓN DE PROYECTO PRIMEROS MÉTODOS PARA ENCONTRAR TANGENTES

La primera persona en formular explícitamente las ideas de límites y derivadas fue Isaac Newton en la década de 1660. Pero Newton reconoció: "Si he visto más lejos que otros hombres, es porque he estado parado sobre los hombros de gigantes". Dos de esos gigantes fueron Pierre Fermat (1601-1665) y el maestro de Newton en Cambridge, Isaac Barrow (1630-1677). Newton estaba familiarizado con los métodos que estos hombres habían aplicado para hallar rectas tangentes, y los métodos de ambos tuvieron que ver con la formulación final del cálculo a la que llegó Newton.

Las siguientes referencias contienen explicaciones de estos métodos. Lea una o varias de estas referencias y escriba un informe en que compare los métodos de Fermat o de Barrow con los métodos modernos. En particular, aplique el método de la sección 2.7 para hallar la ecuación de la recta tangente a la curva $y = x^3 + 2x$ en el punto (1, 3) y muestre cómo habrían resuelto Fermat o Barrow el mismo problema. Aunque usted usó derivadas y ellos no, señale las semejanzas entre los dos métodos.

- 1. Carl Boyer y Uta Merzbach, *A History of Mathematics* (Nueva York: Wiley, 1989), pp. 389, 432.
- **2.** C. H. Edwards, *The Historical Development of the Calculus* (Nueva York: Springer-Verlag, 1979), pp. 124, 132.
- **3.** Howard Eves, *An Introduction to the History of Mathematics*, 6a. ed. (Nueva York: Saunders, 1990), pp. 391, 395.
- **4.** Morris Kline, *Mathematical Thought from Ancient to Modern Times* (Nueva York: Oxford University Press, 1972), pp. 344, 346.

La derivada como una función

En la sección anterior consideramos la derivada de una función f en un número fijo x = a:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Ahora cambiaremos el punto de vista y haremos que el número x=a varíe. Si en la ecuación 1 reemplaza a con una variable x, obtenemos

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Dado cualquier numero x para el cual este límite exista, asignamos a x el número f(x). De modo que consideramos a f' como una nueva función, llamada **derivada de f** y definida por medio de la ecuación 2. Sabemos que el valor de f' en x, f'(x) puede interpretarse geométricamente como la pendiente de la recta tangente a la gráfica de f en el punto (x, f(x)).

La función f' se conoce como derivada de f porque se ha "derivado" de f por medio de la operación de hallar el límite en la ecuación 2. El dominio de f' es el conjunto $\{x \mid f'(x) \text{ existe}\}$ y puede ser menor que el dominio de f.

V EJEMPLO 1 En la figura 1 se muestra la gráfica de una función f. Utilícela para dibujar la gráfica de la derivada f'.

FIGURA 1

SOLUCIÓN Puede estimar el valor de la derivada, en cualquier valor de x, trazando la tangente en el punto (x, f(x)) y estimando su pendiente. Por ejemplo, para x = 5, trace la recta tangente en P de la figura 2a) y estime su pendiente alrededor de $\frac{3}{2}$, por tanto, $f'(5) \approx 1.5$. Esto nos permite situar el punto P'(5, 1.5) en la gráfica de f' directamente debajo de P. Si repite este procedimiento en varios puntos, se obtiene la gráfica que se muestra en la figura 2b). Advierta que las tangentes en A, B y C son horizontales, de modo que la derivada es 0 allí, y la gráfica de f' cruza el eje x en los puntos A', B' y C', directamente debajo de A, B y C. Entre A y B las tangentes tienen pendiente positiva, por lo que f'(x) es positiva allí. Pero entre B y C las tangentes tienen pendiente negativa, de modo que f'(x) allí es negativa.

TEC Visual 2.8 muestra una animación de la figura 2 para diferentes funciones.

FIGURA 2

V EJEMPLO 2

- a) Si $f(x) = x^3 x$, encuentre una fórmula para f'(x).
- b) Ilústrela comparando las gráficas de f y f'.

SOLUCIÓN

a) Cuando se usa la ecuación 2 para calcular una derivada, hay que recordar que la variable es *h y* que *x* se considera temporalmente como una constante durante el cálculo del límite.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\left[(x+h)^3 - (x+h) \right] - \left[x^3 - x \right]}{h}$$

$$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x - h - x^3 + x}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - h}{h} = \lim_{h \to 0} (3x^2 + 3xh + h^2 - 1) = 3x^2 - 1$$

b) Use un dispositivo de graficación para trazar las graficas de f y f' de la figura 3. Note que f'(x) = 0 cuando f tiene tangentes horizontales y que f'(x) es positiva cuando las tangentes tienen pendientes positivas. De modo que estas graficas sirven como comprobación de nuestra solución del inciso a).

FIGURA 3

EJEMPLO 3 Si $f(x) = \sqrt{x}$, encuentre la derivada de f. Establezca el dominio de f'.

SOLUCIÓN

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \lim_{h \to 0} \left(\frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} \right)$$

$$= \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

Aquí, racionalice el numerador

a)
$$f(x) = \sqrt{x}$$

 $b) f'(x) = \frac{1}{2\sqrt{x}}$

FIGURA 4

$$\frac{\frac{a}{b} - \frac{c}{d}}{e} = \frac{ad - bc}{bd} \cdot \frac{1}{e}$$

Observe que f'(x) existe si x > 0, de modo que el dominio de f' es $(0, \infty)$ y es menor que el dominio de f, $[0, \infty)$.

Compruebe que el resultado del ejemplo 3 es razonable observando las graficas de f f' en la figura 4. Cuando x esta cerca de 0, \sqrt{x} está cerca de 0, por tanto, $f'(x) = 1/(2\sqrt{x})$ es muy grande, y esto corresponde a rectas tangentes muy empinadas cerca de (0,0) de la figura 4a), y a valores grandes de f'(x) justo a la derecha de 0 en la figura 4b). Cuando x es grande, f'(x) es muy pequeña, y esto corresponde a rectas tangentes más aplanadas en la extrema derecha de la gráfica de f y a la asíntota horizontal de la gráfica de f'.

EJEMPLO 4 Encuentre f' si $f(x) = \frac{1-x}{2+x}$.

SOLUCIÓN

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1 - (x+h)}{2 + (x+h)} - \frac{1 - x}{2 + x}}{h}$$

$$= \lim_{h \to 0} \frac{(1 - x - h)(2 + x) - (1 - x)(2 + x + h)}{h(2 + x + h)(2 + x)}$$

$$= \lim_{h \to 0} \frac{(2 - x - 2h - x^2 - xh) - (2 - x + h - x^2 - xh)}{h(2 + x + h)(2 + x)}$$

$$= \lim_{h \to 0} \frac{-3h}{h(2 + x + h)(2 + x)} = \lim_{h \to 0} \frac{-3}{(2 + x + h)(2 + x)} = -\frac{3}{(2 + x)^2}$$

157

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

Los símbolos D y d/dx se llaman **operadores de derivación** porque indican la operación de derivación, que es el proceso de calcular una derivada.

El símbolo dy/dx, introducido por Leibniz, no debe considerarse como una razón (por ahora); es sencillamente un sinónimo de f'(x). No obstante, es una notación útil y sugerente, en especial cuando se usa en la notación de incrementos. Con base en la ecuación 2.7.6, puede volver a escribir la definición de derivada en la notación de Leibniz en la forma

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Si desea indicar el valor de una derivada dy/dx en la notación de Leibniz en un número específico x = a, use la notación

$$\frac{dy}{dx}\Big|_{x=a}$$
 o bien $\frac{dy}{dx}\Big|_{x=a}$

que es un sinónimo para f'(a).

Una función f es derivable en x = a si f'(a) existe. Es derivable sobre un intervalo abierto (a, b) [o (a, ∞) o $(-\infty, a)$ o $(-\infty, \infty)$] si es derivable en todo número del intervalo.

Newton y los de Leibniz acerca de quién había inventado el Cálculo. Leibniz incluso fue

acusado de plagio por los miembros de la Real Academia de Inglaterra. La verdad es que cada uno lo inventó por separado. Newton llegó primero a su versión del Cálculo; pero, debido a su temor a la controversia, no la publicó de inmediato. Por tanto, el informe de Leibniz del

Cálculo en 1684 fue el primero en publicarse.

Leibniz

Gottfried Wilhelm Leibniz nació en Leipzig, en

el grado de bachiller a los 17 años. Después de lograr su doctorado en leyes a la edad de 20,

ingresó al servicio diplomático y pasó la mayor parte de su vida viajando por las capitales de Europa, en misiones diplomáticas. En particular, trabajó para conjurar una amenaza militar

francesa contra Alemania e intentó reconciliar

Su estudio formal de las matemáticas no se inició sino hasta 1672, cuando se encontraba

en una misión diplomática en París. Allí construyó una máquina para realizar cálculos y se encontró con científicos, como Huygens, quienes dirigieron su atención hacia los desarrollos más

recientes en las matemáticas y las ciencias. Leibniz se empeñó en desarrollar una lógica simbólica y un sistema de notación que simplificara el razonamiento lógico. En su

versión del Cálculo, que publicó en 1684.

estableció la notación y las reglas para hallar

derivadas que aún se usan en la actualidad. Por desgracia, en la década de 1690 surgía una terrible disputa entre los seguidores de

las Iglesias católica y protestante.

1646, y estudio leyes, teología, filosofía y matemáticas en la universidad de allí. Obtuvo

EJEMPLO 5 ¿Dónde es derivable la función f(x) = |x|?

SOLUCIÓN Si x > 0, entonces |x| = x y podemos elegir h lo suficientemente pequeño de modo que x + h > 0, de aquí que |x + h| = x + h. Por tanto, para x > 0 tenemos

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h} = \lim_{h \to 0} \frac{(x+h) - x}{h}$$
$$= \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 = 1$$

y, por consiguiente, f es derivable para cualquier x > 0.

De manera análoga, para x < 0 se tiene que |x| = -x y se puede elegir h lo suficientemente pequeña para que x + h < 0 y, así, |x + h| = -(x + h). Por tanto, para x < 0,

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h} = \lim_{h \to 0} \frac{-(x+h) - (-x)}{h}$$
$$= \lim_{h \to 0} \frac{-h}{h} = \lim_{h \to 0} (-1) = -1$$

así que f es derivable para cualquier x < 0.

Para x = 0 debemos investigar

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{|0+h| - |0|}{h}$$
 (si existe).

Calcule por separado los límites por la izquierda y por la derecha:

$$\lim_{h \to 0^+} \frac{ \left| \ 0 + h \right| - \left| \ 0 \ \right| }{h} = \lim_{h \to 0^+} \frac{ \left| \ h \ \right| }{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$$

$$\lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = \lim_{h \to 0^{-}} (-1) = -1$$

Puesto que estos límites son diferentes, f'(0) no existe. Así, f es derivable en toda x, excepto en x = 0.

La fórmula para f' está dada por

$$f'(x) = \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases}$$

y su gráfica aparece en la figura 5b). La inexistencia de f'(0) se refleja geométricamente en el hecho de que la curva y = |x| no tiene una recta tangente en (0, 0). [Véase la figura 5a).]

Tanto la continuidad como la derivabilidad son propiedades deseables para una función. El teorema siguiente muestra cómo se relacionan estas propiedades.

4 Teorema Si f es derivable en x = a, entonces f es continua en x = a.

DEMOSTRACIÓN Para demostrar que f es continua en x = a, debemos demostrar que $\lim_{x\to a} f(x) = f(a)$. Para esto empezamos por probar que la diferencia f(x) - f(a) tiende a 0.

La información dada es que f es derivable en x = a; es decir,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

existe (véase la ecuación 2.7.5). Para relacionar lo dado con lo desconocido, divida y multiplique f(x) - f(a) por x - a (lo cual es posible cuando $x \ne a$):

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a} (x - a)$$

De este modo, si usamos la ley del producto y la ecuación (2.7.5), podemos escribir

$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a)$$

$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a)$$

$$= f'(a) \cdot 0 = 0$$

a)
$$y = f(x) = |x|$$

b) y = f'(x)

FIGURA 5

RP Un aspecto importante de la solución de problemas es intentar encontrar una conexión entre lo dado y lo desconocido. Consulte el paso 2 (Piense en un plan) en Principios para la resolución de problemas, en la página 75.

Para utilizar lo que acabamos de demostrar, comenzamos con f(x) y sumamos y restamos f(a):

$$\lim_{x \to a} f(x) = \lim_{x \to a} \left[f(a) + (f(x) - f(a)) \right]$$
$$= \lim_{x \to a} f(a) + \lim_{x \to a} \left[f(x) - f(a) \right]$$
$$= f(a) + 0 = f(a)$$

En consecuencia, f es continua en x = a.

NOTA El inverso del teorema 4 es falso; es decir, hay funciones que son continuas, pero que no son derivables. Por ejemplo, la función f(x) = |x| es continua en x = 0 porque

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} |x| = 0 = f(0)$$

(Véase el ejemplo 7 de la sección 2.3.) Pero en el ejemplo 5 demostramos que f no es derivable en x=0.

¿Cómo deja de ser derivable una función?

En el ejemplo 5 vimos que la función y = |x| no es derivable en x = 0 y en la figura 5a) se muestra que su gráfica cambia de dirección repentinamente cuando x = 0. En general, si la gráfica de una función f tiene "esquinas" o "picos", la gráfica de f no tiene recta tangente en esos puntos y f no es derivable allí. [Al intentar calcular f'(a), encontramos que los limites por la izquierda y por la derecha son diferentes.]

El teorema 4 señala otra forma en que una función no tiene derivada. En él se afirma que si f no es continua en a, entonces f no es derivable en x = a. Por ende, en cualquier discontinuidad (p. ej., una discontinuidad de salto), f no es derivable.

Una tercera posibilidad es que la curva tenga una **recta tangente vertical** cuando x = a; es decir, f es continua en x = a y

$$\lim_{x \to a} |f'(x)| = \infty$$

Esto significa que las rectas tangentes se vuelven más y más empinadas cuando $x \rightarrow a$. En la figura 6 se muestra una forma en que esto puede suceder; la figura 7c) ilustra otra. Las tres posibilidades recién analizadas se ilustran en la figura 7.

FIGURA 6

FIGURA 7
Tres maneras para que f no sea derivable en x = a

a) Una esquina o pico

b) Una discontinuidad

c) Una tangente vertical

Una calculadora graficadora o una computadora ofrecen otra manera de ver la derivabilidad. Si f es derivable en x = a, entonces, con un acercamiento al punto (a, f(a)), la gráfica se alinea y adquiere más y más la apariencia de un recta. (Véase la figura 8. Un ejemplo específico es la figura 2 de la sección 2.7.) Pero no importa cuánto se acerque a puntos como los de las figuras 6 y 7a): no puede eliminar el punto agudo o esquina. (Véase la figura 9.)

FIGURA 8

f es derivable en x = a.

FIGURA 9

f no es derivable en x = a.

Derivadas superiores

Si f es una función derivable, entonces su derivada f' también es una función, así que f' puede tener una derivada de sí misma, señalada por (f')' = f''. Esta nueva función f'' se denomina **segunda derivada** de f porque es la derivada de la derivada de f. Utilizando la notación de Leibniz, la segunda derivada de f se escribe como

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$$

EJEMPLO 6 Si $f(x) = x^3 - x$, halle e interprete f''(x).

SOLUCIÓN En el ejemplo 2 encontramos que la primera derivada es $f'(x) = 3x^2 - 1$. Así que la segunda derivada es

$$f''(x) = (f')'(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

$$= \lim_{h \to 0} \frac{[3(x+h)^2 - 1] - [3x^2 - 1]}{h}$$

$$= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 1 - 3x^2 + 1}{h}$$

$$= \lim_{h \to 0} (6x + 3h) = 6x$$

FIGURA 10

Las gráficas de f, f' y f'' se exhiben en la figura 10.

Puede interpretarse f''(x) como la pendiente de la curva y = f'(x) en el punto (x, f'(x)). En otras palabras, es la razón de cambio de la pendiente de la curva original y = f(x).

Observe de la figura 10 que f''(x) es negativa cuando y = f'(x) tiene pendiente negativa y es positiva cuando y = f'(x) tiene pendiente positiva. De esta manera, las gráficas sirven como una comprobación de sus cálculos.

TEC En Module 2.8 puede usted ver cómo cambian los coeficientes de un polinomio f y cómo afectan el aspecto de la gráfica de f, f' y f''.

En general, puede interpretarse una segunda derivada como una razón de cambio de una razón de cambio. El ejemplo más conocido es la *aceleración*, que se define como sigue.

161

Si s = s(t) es la función posición de un objeto que se desplaza en línea recta, su primera derivada representa la velocidad v(t) del objeto como una función del tiempo:

$$v(t) = s'(t) = \frac{ds}{dt}$$

A la razón de cambio de la velocidad instantánea respecto al tiempo se le llama **aceleración** a(t) del objeto. En estos términos, la función aceleración es la derivada de la función velocidad y, en consecuencia, es la segunda derivada de la función posición:

$$a(t) = v'(t) = s''(t)$$

o en la notación de Leibniz

$$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

La tercera derivada f''' es la derivada de la segunda derivada: f''' = (f'')'. De este modo, f'''(x) puede interpretarse como la pendiente de la curva y = f''(x) o como la razón de cambio de f''(x). Si y = f(x), entonces, las notaciones alternativas para la tercera derivada son

$$y''' = f'''(x) = \frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3}$$

El proceso puede continuar. La cuarta derivada f'''' usualmente se denota mediante $f^{(4)}$. En general, la n-ésima derivada de f se denota mediante $f^{(n)}$ y se obtiene derivando n veces a f. Si y = f(x), escribimos

$$y^{(n)} = f^{(n)}(x) = \frac{d^n y}{dx^n}$$

EJEMPLO 7 Si $f(x) = x^3 - x$, halle f'''(x) y $f^{(4)}(x)$.

SOLUCIÓN En el ejemplo 6 encontramos que f''(x) = 6x. La gráfica de la segunda derivada tiene ecuación y = 6x y, de este modo, es una línea recta con pendiente 6. Ya que la derivada f'''(x) es la pendiente de f''(x), se tiene

$$f'''(x) = 6$$

para todos los valores de x. Así, f''' es una función constante y su gráfica es una recta horizontal. En consecuencia, para todos los valores de x,

$$f^{(4)}(x)=0$$

Puede interpretarse físicamente la tercera derivada en el caso donde la función es la función posición s = s(t) de un objeto que se desplaza a lo largo de una línea recta. Como s''' = (s'')' = a', la tercera derivada de la función posición es la derivada de la función aceleración y se le denomina **jerk** (tirón):

$$j = \frac{da}{dt} = \frac{d^3s}{dt^3}$$

Así, el jerk, j, es la razón de cambio de la aceleración. Nombre apropiado porque un jerk considerable significa un cambio repentino de aceleración, que ocasiona un movimiento repentino en un vehículo.

Se ha visto que una aplicación de la segunda y tercera derivada sucede al analizar el movimiento de objetos empleando aceleración y jerk. Se investigará otra aplicación de la segunda derivada en la sección 4.3, donde se muestra cómo el conocer f'' proporciona información acerca de la forma de la gráfica de f. En el capítulo 11 veremos cómo la segunda derivada y las derivadas superiores nos permiten representar funciones como sumas de series infinitas.

Ejercicios 2.8

1-2 Utilice la gráfica que se proporciona para estimar el valor de cada derivada. Luego dibuje f'.

1. a) f'(-3)

162

- b) f'(-2)
- c) f'(-1)
- d) f'(0)
- e) f'(1)
- f) f'(2)
- g) f'(3)

- b) f'(1)
- c) f'(2)d) f'(3)
- e) f'(4)
- f) f'(5)
- g) f'(6)
- h) f'(7)

3. Relacione la gráfica de cada función dada en las figuras a)-d) con las gráficas de sus derivadas en las figuras I a IV. Dé las razones para sus selecciones.

b)

c)

d)

II

III

IV

4-11 Trace o copie la gráfica de la función dada f. (Suponga que los ejes tienen escalas iguales.) Luego aplique el método del ejemplo 1 para trazar la gráfica de f' debajo de ella.

4.

5.

6.

7.

8.

9.

10.

11.

12. Se muestra la gráfica de la función población P(t) para células de levadura en un cultivo de laboratorio. Utilice el método

del ejemplo 1 para dibujar la derivada P'(t). ¿Qué indica la gráfica de P' acerca de la población de levadura?

- **13.** Una batería recargable se conecta con un cargador. La gráfica muestra C(t), el porcentaje de capacidad que la batería alcanza como una función del tiempo t transcurrido (en horas).
 - a) ¿Cuál es el significado de la derivada C'(t)?
 - b) Trace la gráfica de C'(t). ¿Qué le indica la gráfica?

- **14.** La gráfica (proporcionada por el Departamento de Energía de EU) muestra cómo afecta la rapidez de manejo el consumo de combustible. La economía *F* se mide en millas por galón, y la rapidez *v* se mide en millas por hora.
 - a) ¿Cuál es el significado de la derivada F'(v)?
 - b) Trace la gráfica de la derivada de F'(v).
 - c) ¿A qué rapidez debería manejar si quiere ahorrar combustible?

15. La gráfica ilustra cómo ha variado la edad promedio en que contraían matrimonio por primera vez los hombres japoneses en la segunda mitad del siglo xx. Trace la gráfica de la función derivada M'(t). ¿Durante cuáles años fue negativa la derivada?

16-18 Trace una gráfica cuidadosa de f y debajo de ella la grafica de f' de la misma manera que en los ejercicios 4-11. ¿Puede intuir una fórmula para f'(x) a partir de su gráfica?

16.
$$f(x) = \sin x$$

17.
$$f(x) = e^x$$

18.
$$f(x) = \ln x$$

19. Sea $f(x) = x^2$.

- a) Estime los valores de f'(0), $f'(\frac{1}{2})$, f'(1), y f'(2) usando un dispositivo graficador para hacer un acercamiento sobre la grafica de f.
- b) Utilice la simetría para deducir los valores de $f'(-\frac{1}{2})$ f'(-1) y f'(-2).
- c) Con los resultados de los incisos a) y b), proponga una fórmula para f'(x).
- d) Aplique la definición de derivada para probar que su propuesta del inciso c) es correcta.

20. Sea $f(x) = x^3$.

- a) Estime los valores de f'(0), $f'(\frac{1}{2})$, f'(1), f'(2) y f'(3) usando un dispositivo graficador para hacer un acercamiento sobre la grafica de f.
- b) Aplique la simetría para deducir los valores de $f'(-\frac{1}{2}), f'(-1), y f'(-2) y f'(-3)$.
- c) Utilice los valores de los incisos a) y b) para trazar la gráfica de f'.
- d) Proponga una fórmula para f'(x).
- e) Aplique la definición de derivada para probar que su propuesta del inciso d) es correcta.
- **21-31** Encuentre la derivada de cada una de las siguientes funciones aplicando la definición de derivada. Establezca los dominios de la función y de su derivada.

21.
$$f(x) = \frac{1}{2}x - \frac{1}{3}$$

22.
$$f(x) = mx + b$$

23.
$$f(t) = 5t - 9t^2$$

24.
$$f(x) = 1.5x^2 - x + 3.7$$

25.
$$f(x) = x^2 - 2x^3$$

26.
$$g(t) = \frac{1}{\sqrt{t}}$$

27.
$$g(x) = \sqrt{9 - x}$$

28.
$$f(x) = \frac{x^2 - 1}{2x - 3}$$

29.
$$G(t) = \frac{1-2t}{3+t}$$

30.
$$f(x) = x^{3/2}$$

31.
$$f(x) = x^4$$

- **32.** a) Dibuje la gráfica de $f(x) = \sqrt{6-x}$ a partir de la gráfica $y = \sqrt{x}$ y aplicando las transformaciones de la sección 1.3.
 - b) Use la gráfica del inciso a) para trazar la gráfica de f'.
 - c) Aplique la definición de derivada para hallar f'(x). ¿Cuáles son los dominios de f y de f'?
- d) Utilice un dispositivo graficador para trazar la grafica de f' y compárela con su trazo del inciso b).
 - **33.** a) Si $f(x) = x^4 + 2x$, encuentre f'(x).
 - b) Vea si su respuesta al inciso a) es razonable comparando las graficas de f y de f'.
 - **34.** a) Si f(x) = x + 1/x, encuentre f'(x).
- b) Vea si su respuesta al inciso a) es razonable comparando las graficas de f y de f'.

35. La tasa de desempleo U(t) varía con el tiempo. La tabla del Bureau of Labor Statistics (Oficina de Estadísticas de Empleo) proporciona el porcentaje de desempleados en la fuerza laboral de EU de 1999 a 2008.

t	U(t)	t	U(t)
1999	4.2	2004	5.5
2000	4.0	2005	5.1
2001	4.7	2006	4.6
2002	5.8	2007	4.6
2003	6.0	2008	5.8

- a) ¿Cuál es el significado de U'(t)? ¿Cuáles son sus unidades?
- b) Elabore una tabla de valores estimados para U'(t).
- **36.** Sea *P*(*t*) el porcentaje de estadounidenses por debajo de 18 años de edad en el instante *t*. La tabla proporciona valores de esta función en los años en que se levantó un censo de 1950 a 2000.

t	P(t)	t	P(t)
1950	31.1	1980	28.0
1960	35.7	1990	25.7
1970	34.0	2000	25.7

- a) ¿Cuál es el significado de P'(t)? ¿Cuáles son sus unidades?
- b) Elabore una tabla de valores para P'(t).
- c) Dibuje P y P'.
- d) ¿Cómo sería posible obtener valores más precisos para P'(t)?
- **37-40** Se proporciona la gráfica de f. Establezca con argumentos, los números en los cuales f no es derivable.

37.

38

39.

40.

- **41.** Grafique la función $f(x) = x + \sqrt{|x|}$. Haga acercamientos sucesivos primero hacia el punto (-1, 0) y luego en dirección al origen. ¿Qué diferencia existe en cuanto al comportamiento de f en las cercanías de estos dos puntos? ¿Qué conclusiones infiere acerca de la derivabilidad de f?
- **42.** Haga un acercamiento hacia los puntos (1, 0), (0, 1) y (-1, 0) sobre la gráfica de la función $g(x) = (x^2 1)^{2/3}$. ¿Que observa? Registre lo que observa en términos de la derivabilidad de g.

43. La figura muestra las graficas de f, f' y f''. Indique cada curva y explique el porqué de su elección.

44. La figura muestra gráficas de f, f', f'' y f'''. Identifique cada curva y explique las razones de su elección.

45. La figura exhibe las gráficas de tres funciones. Una es la función posición de un automóvil, otra es la velocidad del mismo, y la de su aceleración. Identifique cada curva y explique las razones de su elección.

46. La figura muestra las gráficas de cuatro funciones relacionadas con el movimiento de un automóvil: la de posición, la de velocidad, la de aceleración y la del jerk. Identifique cada curva y explique los motivos de su elección.

- 47-48 Utilice la definición de derivada para hallar f'(x) y f''(x). Después, grafique f, f' y f'' en una misma pantalla y verifique para ver si sus respuestas son razonables.
 - **47.** $f(x) = 3x^2 + 2x + 1$
- **48.** $f(x) = x^3 3x$
- **49.** Si $f(x) = 2x^2 x^3$, encuentre f'(x), f''(x) y f'''(x) y $f^{(4)}(x)$. Grafique f, f' f'' y f''' en una misma pantalla. ¿Las gráficas son consistentes con la interpretación geométrica de estas derivadas?
 - **50.** a) Se muestra la gráfica de una función posición de un automóvil, donde *s* se mide en pies y *t* en segundos. Utilice la gráfica de la velocidad y la aceleración del automóvil. ¿Cuá1 es la aceleración en *t* = 10 segundos?

- b) Utilice la curva de aceleración del inciso a) para estimar el jerk en t = 10 segundos. ¿Cuáles son las unidades del jerk?
- **51.** Sea $f(x) = \sqrt[3]{x}$.
 - a) Si $a \neq 0$, utilice la ecuación 2.7.5 para hallar f'(a).
 - b) Demuestre que f'(0) no existe.
 - c) Demuestre que $y = \sqrt[3]{x}$ tiene una recta tangente vertical en (0, 0). (*Recuerde:* la forma de la función de f. Véase la figura 13 de la sección 1.2.)
- **52.** a) Si $g(x) = x^{2/3}$, demuestre que g'(0) no existe.
 - b) Si $a \neq 0$, encuentre q'(a).
 - c) Demuestre que $y = x^{2/3}$ tiene una recta tangente vertical en (0, 0).
- A
- d) Ilustre el inciso c) graficando $y = x^{2/3}$.
- **53.** ¿Demuestre que la función f(x) = |x 6| no es derivable en x = 6. Encuentre una fórmula para f' y trace su gráfica.
- **54.** ¿Dónde no es derivable la función entero mayor f(x) = [x]? Encuentre una fórmula para f' y trace su gráfica.

- **55.** a) Dibuje la gráfica de la función $f(x) = x \mid x \mid$.
 - b) ¿Para qué valores de x es f derivable?
 - c) Encuentre una fórmula para f'.
- **56.** Las **derivadas por la izquierda** y **por la derecha** de f en x = a están definidas por

$$f'_{-}(a) = \lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h}$$

y
$$f'_{+}(a) = \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h}$$

si estos límites existen. En tal caso, f'(a) existe si y sólo si estas derivadas laterales existen y son iguales.

a) Halle $f'_{-}(4)$ y $f'_{+}(4)$ para la función

$$f(x) = \begin{cases} 0 & \text{si } x \le 0 \\ 5 - x & \text{si } 0 < x < 4 \\ \frac{1}{5 - x} & \text{si } x \ge 4 \end{cases}$$

- b) Dibuje la grafica de f
- c) ¿Dónde es discontinua f?
- d) ¿Dónde f no es derivable?
- **57.** Recuerde que a una función f se le denomina par si f(-x) = f(x) para toda x en su dominio, e impar si f(-x) = -f(x) para toda x. Demuestre cada uno de los siguientes enunciados
 - a) La derivada de una función par es una función impar.
 - b) La derivada de una función impar es una función par.
- **58.** Cuando abre el grifo del agua caliente, la temperatura *T* del agua depende del tiempo que el agua ha estado corriendo.
 - a) Trace una posible gráfica de *T* como función del tiempo transcurrido desde que abrió el grifo.
 - b) Describa cómo varía la razón de cambio de *T* respecto a *t*, conforme ésta aumenta.
 - c) Dibuje la derivada de T.
- **59.** Sea ℓ la recta tangente a la parábola $y = x^2$ en el punto (1, 1). El *ángulo de inclinación* de ℓ es el ángulo ϕ que ℓ forma con la dirección positiva del eje x. Calcule ϕ con una aproximación al grado más cercano.

Repaso

Verificación de conceptos

- Explique qué significa cada una de las siguientes afirmaciones e ilustre mediante un esbozo.
 - a) $\lim_{x \to a} f(x) = L$
- b) $\lim_{x \to a^+} f(x) = L$
- c) $\lim_{x \to a^{-}} f(x) = L$
- d) $\lim_{x \to a} f(x) = \infty$
- e) $\lim_{x \to \infty} f(x) = L$

- **2.** Describa varias formas en que un límite puede no existir. Ilustre con gráficas.
- 3. Enuncie las siguientes leyes de los límites.
 - a) Ley de la suma
- b) Ley de la diferencia
- c) Ley del múltiplo constante
- d) Ley del producto
- e) Ley del cocienteg) Ley de la raíz
- f) Ley de la potencia

- 4. ¿Qué establece el teorema de la compresión?
- **5.** a) ¿Qué quiere darse a entender al decir que la recta x = a es una asíntota vertical de la curva y = f(x)? Dibuje curvas para ilustrar las diversas posibilidades.
 - b) ¿Oué significa decir que la recta v = L es una asíntota horizontal de la curva y = f(x)? Dibuje curvas para ilustrar las diversas posibilidades.
- 6. ¿Cuál de las curvas siguientes tiene asíntotas verticales? ¿Cuál tiene asíntotas horizontales?
 - (a) $y = x^4$
- (b) $y = \sin x$
- (c) $y = \tan x$
- (d) $y = \tan^{-1} x$
- (e) $y = e^x$
- (f) $y = \ln x$
- (g) y = 1/x

- (h) $y = \sqrt{x}$
- 7. a) ¿Qué significa que f sea continua en x = a?
 - b) ¿Qué significa que f sea continua sobre el intervalo $(-\infty, \infty)$? ¿Qué puede decir acerca de la gráfica de tal función?
- 8. ¿Qué establece el teorema del valor intermedio?
- 9. Escriba una expresión para la pendiente de la recta tangente a la curva y = f(x) en el punto (a, f(a)).
- 10. Suponga que un objeto se mueve a lo largo de una línea recta con posición f(t) en el instante t. Escriba una expresión para la

- velocidad instantánea de un objeto en el instante t = a. ¿Cómo puede interpretar esta velocidad en términos de la grafica de f?
- 11. Si y = f(x) y x cambia de x_1 a x_2 , escriba expresiones para lo siguiente.
 - a) La razón promedio de cambio de y respecto a x a lo largo del intervalo $[x_1, x_2]$.
 - b) La razón de cambio instantáneo de y respecto a x en $x = x_1$.
- 12. Defina la derivada f'(a). Analice dos maneras de interpretar este número.
- **13.** Defina la segunda derivada de f. Si f(t) es la función de posición de una partícula, ¿cómo puede interpretar la segunda
- **14.** a) ¿Qué significa que f sea derivable en x = a?
 - b) ¿Cuál es la relación entre la derivabilidad y la continuidad de una función?
 - c) Trace la gráfica de una función que sea continua, pero no derivable en a = 2.
- 15. Describa varias maneras en que una función puede no ser derivable. Ilustre con gráficas.

Examen rápido Verdadero-Falso

Determine si la proposición es verdadera o falsa. Si es verdadera explique por qué. Si es falsa, explique por qué o dé un ejemplo que refute la proposición.

1.
$$\lim_{x \to 4} \left(\frac{2x}{x - 4} - \frac{8}{x - 4} \right) = \lim_{x \to 4} \frac{2x}{x - 4} - \lim_{x \to 4} \frac{8}{x - 4}$$

2.
$$\lim_{x \to 1} \frac{x^2 + 6x - 7}{x^2 + 5x - 6} = \frac{\lim_{x \to 1} (x^2 + 6x - 7)}{\lim_{x \to 1} (x^2 + 5x - 6)}$$

3.
$$\lim_{x \to 1} \frac{x - 3}{x^2 + 2x - 4} = \frac{\lim_{x \to 1} (x - 3)}{\lim_{x \to 1} (x^2 + 2x - 4)}$$

- **4.** Si $\lim_{x\to 5} f(x) = 2$ y $\lim_{x\to 5} g(x) = 0$, entonces $\lim_{x\to 5} [f(x)/g(x)]$ no existe.
- **5.** Si $\lim_{x\to 5} f(x) = 0$ y $\lim_{x\to 5} g(x) = 0$, entonces $\lim_{x\to 5} [f(x)/g(x)]$ no existe.
- **6.** Si $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ no existen, entonces $\lim_{x\to a} [f(x) + g(x)]$ no existe.
- 7. Si $\lim_{x\to a} f(x)$ existe, pero $\lim_{x\to a} g(x)$ no existe, entonces $\lim_{x\to a} [f(x) + g(x)]$ no existe.
- **8.** Si $\lim_{x\to 6} [f(x)g(x)]$ existe, entonces el límite debe ser f(6)g(6).
- **9.** Si p es un polinomio, entonces $\lim_{x\to b} p(x) = p(b)$.
- **10.** Si $\lim_{x\to 0} f(x) = \infty$ y $\lim_{x\to 0} g(x) = \infty$, entonces $\lim_{x\to 0} [f(x) - g(x)] = 0.$
- 11. Una función puede tener dos asíntotas horizontales distintas.

- **12.** Si f tiene dominio $[0, \infty)$ y no tiene asíntota horizontal entonces $\lim_{x\to\infty} f(x) = \infty$ o $\lim_{x\to\infty} f(x) = -\infty$.
- 13. Si la recta x = 1 es una asíntota vertical de y = f(x), entonces f no está definida en 1.
- **14.** Si f(1) > 0 y f(3) < 0, entonces existe un número c entre 1 y 3 tal que f(c) = 0.
- **15.** Si f es continua en 5 y f(5) = 2 y f(4) = 3, entonces $\lim_{x\to 2} f(4x^2 - 11) = 2.$
- **16.** Si f es continua en [-1, 1] y f(-1) = 4 y f(1) = 3, entonces existe un número r tal que |r| < 1 y $f(r) = \pi$.
- 17. Sea f una función tal que $\lim_{x\to 0} f(x) = 6$. Entonces existe un número δ tal que si $0 < |x| < \delta$, entonces |f(x) - 6| < 1.
- **18.** Si f(x) > 1 para toda x y lím $_{x\to 0} f(x)$ existe, entonces $\lim_{x\to 0} f(x) > 1$.
- **19.** Si f es continua en x = a, entonces f es derivable en x = a.
- **20.** Si f'(r) existe, entonces $\lim_{x\to r} f(x) = f(r)$.

$$21. \ \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$$

- **22.** La ecuación $x^{10} 10x^2 + 5 = 0$ tiene una raíz en el intervalo
- **23.** Si f es continua en x = a, también lo es |f|.
- **24.** Si |f| es continua en x = a, también lo es |f|.

Ejercicios

- **1.** Se da la gráfica de *f*.
 - a) Encuentre cada uno de los siguientes límites o explique por qué no existen.
 - i) $\lim_{x \to \infty} f(x)$
- ii) $\lim_{x \to -2^+} f(x)$
- iii) $\lim_{x \to a} f(x)$ iv) $\lim_{x \to a} f(x)$
- v) $\lim_{x\to 0} f(x)$ vi) $\lim_{x\to 2^{-}} f(x)$
- vii) $\lim f(x)$ viii) $\lim f(x)$
- b) Establezca las ecuaciones de las asíntotas horizontales.
- c) Establezca las ecuaciones de las asíntotas verticales.
- d) ¿En qué números f es discontinua? Explique.

2. Trace la gráfica de un ejemplo de una función f que satisfaga todas las condiciones siguientes

$$\lim_{x \to -\infty} f(x) = -2, \quad \lim_{x \to \infty} f(x) = 0, \quad \lim_{x \to -3} f(x) = \infty,$$

$$\lim_{x \to 3^{-}} f(x) = -\infty, \quad \lim_{x \to 3^{+}} f(x) = 2,$$

f es continua por la derecha en x = 3

- 3-20 Encuentre cada uno de los siguientes límites
- 3. $\lim_{x \to 1} e^{x^3 x}$

- 4. $\lim_{x\to 3} \frac{x^2-9}{x^2+2x-3}$
- **5.** $\lim_{x \to -3} \frac{x^2 9}{x^2 + 2x 3}$
- **6.** $\lim_{x \to 1^+} \frac{x^2 9}{x^2 + 2x 3}$
- 7. $\lim_{h \to 0} \frac{(h-1)^3 + 1}{h}$
- 8. $\lim_{t \to 2} \frac{t^2 4}{t^3 8}$
- 9. $\lim_{r \to 0} \frac{\sqrt{r}}{(r-0)^4}$
- **10.** $\lim_{v \to 4^+} \frac{4-v}{|4-v|}$
- **11.** $\lim_{u \to 1} \frac{u^4 1}{u^3 + 5u^2 6u}$
- **12.** $\lim_{x \to 3} \frac{\sqrt{x+6} x}{x^3 3x^2}$
- **13.** $\lim_{x \to \infty} \frac{\sqrt{x^2 9}}{2x 6}$
- **14.** $\lim_{x \to -\infty} \frac{\sqrt{x^2 9}}{2x 6}$
- **15.** $\lim_{x \to \pi^{-}} \ln(\operatorname{sen} x)$
- **16.** $\lim_{x \to -\infty} \frac{1 2x^2 x^4}{5 + x 3x^4}$

- **17.** $\lim_{x \to \infty} (\sqrt{x^2 + 4x + 1} x)$ **18.** $\lim_{x \to \infty} e^{x x^2}$
- **19.** $\lim_{x \to 0} \tan^{-1}(1/x)$
- **20.** $\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2-3x+2} \right)$
- 21-22 Utilice las gráficas para evidenciar las asíntotas de la curva. Después, pruebe que realmente son evidencias.
 - **21.** $y = \frac{\cos^2 x}{x^2}$
 - **22.** $y = \sqrt{x^2 + x + 1} \sqrt{x^2 x}$
 - **23.** Si $2x 1 \le f(x) \le x^2$ para 0 < x < 3, encuentre $\lim_{x \to 1} f(x)$
 - **24.** Demuestre que $\lim_{x\to 0} x^2 \cos(1/x^2) = 0$.
 - 25-28 Demuestre cada uno de los siguientes resultados, utilizando la definición precisa de límite.
 - **25.** $\lim_{x \to 2} (14 5x) = 4$ **26.** $\lim_{x \to 0} \sqrt[3]{x} = 0$

 - **27.** $\lim_{x \to 2} (x^2 3x) = -2$ **28.** $\lim_{x \to 4^+} \frac{2}{\sqrt{r 4}} = \infty$
 - 29. Sea

$$f(x) = \begin{cases} \sqrt{-x} & \text{si } x < 0\\ 3 - x & \text{si } 0 \le x < 3\\ (x - 3)^2 & \text{si } x > 3 \end{cases}$$

- a) Evalúe cada límite, si éste existe

- b) ¿Dónde es discontinua f
- c) Trace la gráfica de f
- **30**. Sea

$$g(x) = \begin{cases} 2x - x^2 & \text{si } 0 \le x \le 2\\ 2 - x & \text{si } 2 < x \le 3\\ x - 4 & \text{si } 3 < x < 4\\ \pi & \text{si } x \ge 4 \end{cases}$$

- a) Para cada uno de los números 2, 3 y 4, descubra si g es continua por la izquierda, por la derecha o continua en el número.
- b) Bosqueje la gráfica de q.

31-32 Demuestre que cada una de las siguientes funciones es continua en su dominio. Establézcalo.

31.
$$h(x) = xe^{\sin x}$$

32.
$$g(x) = \frac{\sqrt{x^2 - 9}}{x^2 - 2}$$

33-34 Utilice el teorema del valor intermedio para demostrar que existe una raíz de la ecuación en el intervalo dado.

33.
$$x^5 - x^3 + 3x - 5 = 0$$
. (1.2)

34.
$$\cos \sqrt{x} = e^x - 2$$
, $(0, 1)$

- **35.** a) Encuentre la pendiente de la recta tangente a la curva $y = 9 2x^2$ en el punto (2, 1).
 - b) Determine la ecuación de esta tangente.
- **36.** Encuentre las ecuaciones de las rectas tangentes a la curva

$$y = \frac{2}{1 - 3x}$$

y los puntos de abscisas 0 y -1.

- **37.** El desplazamiento en metros de un objeto que se mueve en línea recta está dado por $s=1+2t+\frac{1}{4}t^2$, donde t se mide en segundos
 - a) Encuentre la velocidad promedio en los siguientes periodos de tiempo:

ii)
$$[1, 2]$$

M

- b) Halle la velocidad instantánea cuando t = 1.
- **38.** Según la ley de Boyle, si la temperatura de un gas confinado se mantiene fija, entonces el producto de la presión *P* y el volumen *V* es constante. Suponga que, para cierto gas, PV = 800, donde *P* se mide en libras por pulgada cuadrada y *V* en pulgadas cúbicas.
 - a) Encuentre la razón de cambio promedio de P cuando V se incrementa de 200 a 250 pulg³.
 - b) Exprese *V* como función de *P* y demuestre que la razón de cambio instantáneo de *V* respecto a *P* es inversamente proporcional al cuadrado de ésta.
- **39.** a) Utilice la definición de derivada para hallar f'(2), donde $f(x) = x^3 2x$.
 - b) Encuentre la ecuación de la recta tangente a la curva $y = x^3 2x$ en el punto (2, 4).

40. Encuentre una función f y un número x = a tales que

$$\lim_{h \to 0} \frac{(2+h)^6 - 64}{h} = f'(a)$$

- **41.** El costo total de pagar un préstamo para estudiante a una tasa de interés de r% por año es C = f(r).
 - a) ¿Cuál es el significado de la derivada f'(r)? ¿Cuáles son sus unidades?
 - b) ¿Que significa la afirmación f'(10) = 1200?
 - c) i f'(r) siempre es positiva o cambia de signo?

42-44 Trace o copie la gráfica de la función dada. Luego dibuje directamente debajo su derivada.

42.

43.

44.

- **45.** a) Si $f(x) = \sqrt{3 5x}$, utilice la definición de derivada para hallar f'(x).
 - b) Encuentre los dominios de f y f'.

A

- c) Grafique f y f' en una pantalla común. Compare las gráficas para ver si su respuesta al inciso a) es razonable.
- **46.** a) Encuentre las asíntotas de la grafica de $f(x) = \frac{4-x}{3+x}$ y utilícelas para dibujar la gráfica.
 - b) Utilice la grafica del inciso a) para graficar f'.
 - c) Aplique la definición de derivada para hallar f'(x).

 \wedge

- d) Utilice un dispositivo graficador para trazar la gráfica de f' y compárela con su dibujo del inciso b).
- **47.** Se muestra la grafica de *f*. Enuncie, con razones, los números *x* en que *f* no es derivable.

48. La figura muestra la grafica de f, f' y f''. Identifique cada curva y explique su elección.

49. Sea C(t) el valor total de certificados bancarios en circulación en el instante t. La tabla de valores de esta función de 1980 a 2000, en miles de millones de dólares. Estime e interprete el valor de C'(1990).

t	1980	1985	1990	1995	2000
C(t)	129.9	187.3	271.9	409.3	568.6

- **50.** La *tasa de fertilidad total*, en el tiempo *t*, denotada con *F*(*t*), es una estimación del número promedio de niños nacidos de cada mujer (suponiendo que las tasas de natalidad actuales permanezcan constantes). En la gráfica de la tasa de fertilidad total en EU, se muestran las fluctuaciones desde 1940 hasta 1990.
 - a) Estime los valores de F'(1950), F'(1965) y F'(1987).
 - b) ¿Cuáles son los significados de estas derivadas?
 - c) ¿Puede sugerir razones para los valores de estas derivadas?

- **51.** Suponga que $|f(x)| \le g(x)$ donde $\lim_{x\to a} g(x) = 0$. Encuentre $\lim_{x\to a} f(x)$.
- **52.** Sea f(x) = [x] + [-x].
 - a) ¿Para qué valores de *a* existe $\lim_{x\to a} f(x)$?
 - b) ¿En qué números es discontinua la función f?

Problemas adicionales

En el análisis de los principios para la resolución de problemas, se consideró la estrategia para resolver problemas llamada Introduzca algo extra (véase la página 75). En el ejemplo siguiente se muestra cómo este principio resulta útil a veces cuando evalúa límites. La idea es cambiar la variable —introducir una nueva variable relacionada con la original— de tal manera que el problema se haga más sencillo. Más adelante, en la sección 5.5, utilizará más esta idea general.

EJEMPLO 1 Evalúe $\lim_{x\to 0} \frac{\sqrt[3]{1+cx}-1}{x}$, donde $c\neq 0$ es una constante.

SOLUCIÓN Según se ve, este límite parece desafiante. En la sección 2.3 evaluamos varios límites en los que tanto el numerador como el denominador tendieron a 0. Allí, la estrategia fue realizar cierto tipo de manipulación algebraica que condujo a una cancelación simplificadora, pero en este caso no está claro qué clase de álgebra se necesita.

Por tanto, se introduce una nueva variable t mediante la ecuación

$$t = \sqrt[3]{1 + cx}$$

También necesitamos expresar x en términos de t, de modo que resuelva esta ecuación

$$t^{3} = 1 + cx$$
 $x = \frac{t^{3} - 1}{c}$ (si $c \neq 0$)

Observe que $x \to 0$ equivalente a $t \to 1$. Esto permite convertir el límite dado en uno que involucra la variable t:

$$\lim_{x \to 0} \frac{\sqrt[3]{1 + cx} - 1}{x} = \lim_{t \to 1} \frac{t - 1}{(t^3 - 1)/c}$$
$$= \lim_{t \to 1} \frac{c(t - 1)}{t^3 - 1}$$

El cambio de variable permitió reemplazar un límite relativamente complicado con uno más sencillo de un tipo que ya ha visto. Si factoriza el denominador como un diferencia de cubos, obtiene

$$\lim_{t \to 1} \frac{c(t-1)}{t^3 - 1} = \lim_{t \to 1} \frac{c(t-1)}{(t-1)(t^2 + t + 1)}$$
$$= \lim_{t \to 1} \frac{c}{t^2 + t + 1} = \frac{c}{3}$$

Mediante el cambio de variable tuvimos que excluir el caso en que c=0: pero si c=5, la función es 0 para toda $x \neq 0$, así, el límite es 0. En consecuencia, en todos los casos, el límite es c/3.

Los problemas siguientes sirven para poner a prueba y desafiar sus habilidades para resolver problemas. Algunos requieren una cantidad considerable de tiempo para pensar, de modo que no se desaliente si no los puede resolver de inmediato. Si tiene alguna dificultad, quizá le sirva consultar en la página 75 el análisis de los principios para la resolución de problemas.

Problemas

1. Evalúe
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}$$
.

2. Encuentre números
$$a$$
 y b tales que $\lim_{x\to 0} \frac{\sqrt{ax+b}-2}{x} = 1$.

FIGURA PARA EL PROBLEMA 4

FIGURA PARA EL PROBLEMA 10

- **3.** Evalúe $\lim_{x \to 0} \frac{|2x 1| |2x + 1|}{x}$
- **4.** En la figura se muestra un punto P sobre la parábola $y = x^2$ y el punto Q donde la bisectriz de OP interseca al eje y. Conforme P se aproxima al origen, a lo largo de la parábola, ¿qué sucede con *O*? ¿Tiene una posición límite? Si es así, encuéntrela.
- **5.** Evalúe los siguientes límites, si éstos existen, donde [x] denota la función entero mayor.

a)
$$\lim_{x \to 0} \frac{\llbracket x \rrbracket}{x}$$
 b) $\lim_{x \to 0} x \llbracket 1/x \rrbracket$

6. Dibuje la región en el plano definida por cada una de las ecuaciones siguientes:

a)
$$||x||^2 + ||y||^2 = 1$$
 b) $||x||^2 - ||y||^2 = 3$ c) $||x + y||^2 = 1$ d) $||x|| + ||y|| = 1$

b)
$$[x]^2 - [y]^2 = 3$$

c)
$$[x + y]^2 = 1$$

d)
$$[x] + [y] = 1$$

7. Encuentre todos los valores de a tales que f sea continua en \mathbb{R} .

$$f(x) = \begin{cases} x+1 & \text{si } x \le a \\ x^2 & \text{si } x > a \end{cases}$$

- **8.** Un **punto fijo** de una función f es un número c en su dominio tal que f(c) = c. (La función no mueve a c; éste permanece fijo.)
 - a) Dibuje la gráfica de una función continua con dominio [0, 1] cuyo rango también se encuentre en [0, 1]. Localice un punto fijo de f.
 - b) Intente graficar una función continua con dominio [0, 1] y rango en [0, 1] que no tenga un punto fijo. ¿Cuál es el obstáculo?
 - c) Utilice el teorema de valor intermedio para comprobar que cualquier función continua con dominio [0, 1] y rango en [0, 1] debe tener un punto fijo.
- **9.** Si $\lim_{x\to a} [f(x) + g(x)] = 2$ y $\lim_{x\to a} [f(x) g(x)] = 1$, encuentre $\lim_{x\to a} [f(x)g(x)]$.
- **10.** a) En la figura se muestra un triángulo isósceles ABC con $\angle B = \angle C$. La bisectriz del ángulo B interseca el lado AC en el punto P. Suponga que la base BC permanece fija, pero que la altura | AM | del triángulo tiende a 0, de modo que A se aproxima al punto medio M de BC. ¿Qué sucede con P durante este proceso? ¿Tiene una posición límite? Si es así, encuéntrela.
 - b) Intente trazar la trayectoria recorrida por P durante este proceso. A continuación, halle la ecuación de esta curva y úsela para dibujarla.
- **11.** a) Si parte de 0° de latitud y avanza en dirección Oeste, puede denotar con T(x) la temperatura en el punto x en cualquier tiempo dado. Suponga que T es una función continua de x, y demuestre que, en cualquier tiempo fijo, existen por lo menos dos puntos opuestos sobre el ecuador que tienen exactamente la misma temperatura.
 - b) ¿El resultado del inciso a) se cumple para puntos que estén sobre cualquier circunferencia sobre la superficie de la Tierra?
 - c) ¿El resultado del inciso a) se cumple para la presión barométrica y para la altitud arriba del nivel del mar?
- 12. Si f es una función derivable y g(x) = xf(x), utilice la definición de derivada para demostrar que q'(x) = xf'(x) + f(x).
- **13.** Suponga que f es una función que satisface

$$f(x + y) = f(x) + f(y) + x^2y + xy^2$$

para todos los números reales x y y. Suponga también que

$$\lim_{x \to 0} \frac{f(x)}{x} = 1$$

- a) Encuentre f(0).
- b) Encuentre f'(0).
- c) Encuentre f'(x).
- **14.** Suponga que f es una función con la propiedad de que $|f(x)| \le x^2$ para toda x. Muestre que f(0) = 0. Enseguida, muestre que f'(0) = 0.