LITERATURE SURVEY

PROBLEM STATEMENT:		
Airline Data Analytics for Aviation Industry		
DOMAIN:		
Data Analytics		

TEAM ID: PNT2022PMID23167

By,

G. Poorna Shivani- 913119106076

S. Haritha Sri-913119106029

B. G. Bhavanidevi-913119106016

K. V. Indhumathi-913119106034

S.NO	TITLE	AUTHOR	ABSTRACT

1	Applications of Dis	Davi	Mith the educate of his state and an arrangement
1.	Applications of Big	Dou	With the advent of big data era, modern
	Data in Airline Industry	Lee	aviation industry can find solutions for
	(Publication: JAAUTH,	Nikolopoulos and	their major challenges of safety and
	Vol. 21 No 4, pp.73-	Petropoulos	performance improvement because big
	108, 2021)	Izzo	data can provide multidimensional,
		Larsen	adequate, and real-time information and
		Sternberg	improve the predictive and preventive
			capabilities of aviation flight risks. Big
			data will effectively improve the technical
			performance and operating conditions
			of aircraft, avoid various adverse
			external environmental conditions, and
			reduce manual errors, to enhance aviation
			safety. By adopting big data technology,
			fuel consumption, crew deployment, and
			flight operations could be optimized;
			maintenance could anticipate when parts
			•
			need replacing; air congestion could be
			reduced; flight routes could be altered
			well in advance of takeoff to avoid
			storms and passengers could be kept
			informed about schedules from the
			minute they leave their home for the
			airport. The airline industry makes use
			of primary data sets that come from
			many different parameters such as flight
			tracking data, airport operations data,
			weather conditions, airline information,
			market information, passenger
			information, aircraft data and air safety
			reports.
2.	A Machine Learning	Daniel Wesely	Developed a novel approach for predicting
2.	Approach to Predict	Andrew Churchill	the landing time of airborne flights in
	• •		
	Aircraft Landing Times	John Slough	realtime operations. The first step predicts
	using Mediated Predictions from	William J Coupe	a landing time by using mediation rules to
			select from among physics-based
	Existing Systems		predictions (relying on the expected flight
	(Publications: AIAA		trajectory) already available in real time in
	AVIATION FORUM,		the Federal Aviation Administration
	2024, 2021)		System Wide Information Management
			system data feeds. The second step uses a
			machine learning model built upon the
			mediated predictions. The model is trained
			to predict the error in the mediated
	1		

		prediction, using features describing the current state of an airborne flight. These features are calculated in real time from a relatively small number of data elements that are readily available for airborne flights. Initial results based on five months of data at six large airports demonstrate that incorporating a machine learning model on top of the mediated physics-based prediction can lead to substantial additional improvements in prediction quality.
Predictive analytics with aviation Big Data (Publicatins: Intergrated Communicatins, Navigation and Surveillance Conference, 2013)	Samet Ayhan Johnathan Pesce Paul H Comitz Gary Gerberick	In this paper, we describe a novel analytics system that enables query processing and predictive analytics over streams of big aviation data. As part of an Internal Research and Development project, Boeing Research and Technology (BR&T) Advanced Air Traffic Management (AATM) built a system that makes predictions based upon descriptive patterns of massive aviation data. Boeing AATM has been receiving live Aircraft Situation Display to Industry (ASDI) data and archiving it for over two years. At the present time, there is not an easy mechanism to perform analytics on the data. The incoming ASDI data is large, compressed, and requires correlation with other flight data before it can be analyzed. The service exposes this data once it has been uncompressed, correlated, and stored in a data warehouse for further analysis using a variety of descriptive, predictive, and possibly prescriptive analytics tools. The service is being built partially in response to requests from Boeing Commercial Aviation (BCA) for analysis of capacity and flow in the US National Airspace System (NAS). The service utilizes a custom tool developed by Embry Riddle Aeronautical University (ERAU) that correlates the raw ASDI feed, IBM Warehouse with DB2 for data management, WebSphere Message Broker for real-time message brokering, SPSS Modeler for statistical analysis, and Cognos BI for front-end business

			intelligence (BI) visualization tools. This paper describes a scalable service architecture, implementation and value it adds to the aviation domain
4.	Prediction of runway configurations and airport acceptance rates for multi-airport system using gridded weather forecast (Publication: Transportation Research Part C-Emerging Technologies 125, 103049, 2021)	Yuan Wang Yu Zhang	Accurate prediction of real-time airport capacity, a.k.a. airport acceptance rates (AARs), is key to enabling efficient air traffic flow management. AARs are dependent on selected runway configurations and both are affected by weather conditions. Although there have been studies tackling on the prediction of AARs or runway configurations or both, the prediction accuracy is relatively low and only single airport is considered. This study presents a data-driven deep-learning framework for predicting both runway configurations and AARs to support efficient air traffic management for complex multi-airport systems. The two major contributions from this work are 1) the proposed model uses assembled gridded weather forecast for the terminal airspace instead of an isolated station-based terminal weather forecast, and 2) the model captures the operational interdependency aspects inherent in the parameter learning process so that proposed modeling framework can predict both runway configuration and AARs simultaneously with higher accuracy. The proposed method is demonstrated with a numerical experiment taking three major airports in New York Metroplex as the case study. The prediction accuracy of the proposed method is compared with methods in current literature and the analysis results show that the proposed method outperforms all existing methods.