An Auxiliary Task for Learning Nuclei Segmentation in 3D Microscopy Images

Peter Hirsch, Dagmar Kainmueller

MDC Berlin/BIH

MIDL 2020

C. elegans L1 larva, 3d, near-isotropic $0.116\times0.116\times0.122\mu m^3$, average size of $140\times140\times1100$ pixel

We thank Long et. al $\left[1\right]$ for providing the 3d nuclei data and segmentation.

(B) Boundary label

(C) Center point vectors

(D) Prediction

- consistently get improvement with auxiliary task:
 - \blacktriangleright +1.5-4% in terms of $AP_{0.5}$
 - \blacktriangleright +1-2.5% in terms of avAP
- ► StarDist[2]: avAP: 0.628, AP_{0.5}: **0.765**
- our best model: avAP: 0.638, AP_{0.5}: 0.750

conclusion:

- performance on par with StarDist yet simpler
- easy to integrate into existing systems

Peter Hirsch

Kainmueller Lab Dagmar Kainmueller

Preibisch Lab Stephan Preibisch

example detection and segmentation: cyan: $\ensuremath{\mathsf{TP}}$, yellow: $\ensuremath{\mathsf{FP}}$, red: $\ensuremath{\mathsf{FN}}$

References

- [1] F. Long, H. Peng, X. Liu, S. K. Kim, and E. Myers. A 3d digital atlas of c. elegans and its application to single-cell analyses. *Nature methods*, 6(9):667, 2009.
- [2] M. Weigert, U. Schmidt, R. Haase, K. Sugawara, and G. Myers. Star-convex polyhedra for 3d object detection and segmentation in microscopy. arXiv:1908.03636, 2019.

