MATH 311

Chapter 6

SECTION 6.3: LINEAR INDEPENDENCE AND DIMENSION

Contents

Linear	Independence											2
Basis												6
	Subspaces of \mathbb{R}^m		•	•	•				•			S
	Subspaces of Mat	rices					•					11

Created by: Pierre-Olivier Parisé Spring 2024

LINEAR INDEPENDENCE

EXAMPLE 1. Let
$$\mathbf{v} = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$$
. Let $\mathbf{u_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{u_2} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u_3} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{v_3} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$

- a) Consider the vectors. Can you write \mathbf{v} as a unique linear combination of the vectors $\mathbf{u_1}$, $\mathbf{u_2}$, and $\mathbf{u_3}$?
- b) Consider the vectors. Can you write the vector \mathbf{v} as a unique linear combination of the vectors $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$?

(a) Let
$$\vec{v} = a_1\vec{u}_1 + a_2\vec{u}_2 + a_3\vec{u}_3$$
. The solution
15 $a_1 = 2 - t$, $a_2 = -1 - t$ and $a_3 = t$.
 $t = 0 - 0$ $\vec{v} = 2\vec{u}_1 + (-1)\vec{u}_2 + 0\vec{u}_3$ not $t = 1 - 0$ $\vec{v} = 1\vec{u}_1 + (-2)\vec{u}_2 + 1\vec{u}_3$ unique.
(b) Let $\vec{v} = a_1\vec{v}_1 + a_2\vec{v}_2 + a_3\vec{v}_3$. The solution $a_1 = 3$, $a_2 = 2$, $a_3 = -3$.
 -0 $\vec{v} = 3\vec{v}_1 + 2\vec{v}_2 + (-3)\vec{v}_3$ Unique!

DEFINITION 1. A set of vectors $\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ in a vector space V is called **linearly independent** (or simply **independent**) if

$$s_1\mathbf{v_1} + s_2\mathbf{v_2} + \dots + s_n\mathbf{v_n} = \mathbf{0} \quad \Rightarrow \quad s_1 = s_2 = \dots = s_n = 0.$$

A set of vectors that is not independent is said to be **linearly dependent** (or simply **dependent**).

Note:

• The trivial linear combination of the vectors $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_n}$ is the one with every coefficient zero:

$$0\mathbf{v_1} + 0\mathbf{v_2} + \dots + 0\mathbf{v_n}.$$

• So the vectors $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_n}$ are linearly independent if and only if the only way to write $\mathbf{0}$ is using the trivial linear combination.

EXAMPLE 2. Show that the set

$$\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\}$$

is independent.

EXAMPLE 3. Let $\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}\}$ be an independent set in a vector space V. Which of the following set is independent?

a)
$$\{\mathbf{x} - \mathbf{y}, \mathbf{y} - \mathbf{z}, \mathbf{z} - \mathbf{x}\}.$$

b)
$$\{\mathbf{x} - \mathbf{y}, \mathbf{y} - \mathbf{z}, \mathbf{z} - \mathbf{w}, \mathbf{w} - \mathbf{x}\}.$$

Basis

DEFINITION 2. A set $\{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$ of vectors in a vector space V is called a basis of V if it satisfies the following two conditions:

- ① $\{e_1, e_2, \dots, e_n\}$ is linearly independent.
- $2 V = \operatorname{span}\{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}.$

EXAMPLE 4. Let $V = \mathbb{R}^3$. Verify the following.

- a) If $\mathbf{e_1}$, $\mathbf{e_2}$, $\mathbf{e_3}$ are the columns of I_3 , then $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ is a basis for \mathbb{R}^3 .
- b) $\{[1 \ -1 \ 0]^{\top}, [3 \ 2 \ -1]^{\top}, [3 \ 5 \ -2]^{\top}\}$ is a basis for \mathbb{R}^3 .

Observations:

• Invariance Theorem (p.347): If $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis for a vector space V and if $\{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_m\}$ is a basis for a vector space V, then m = n.

DEFINITION 3. If $\{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$ is a basis of a nonzero vector space V, the number n of vectors in the basis is called the **dimension**, and we write

$$\dim V = n$$
.

In the case of the zero vector space, we define $\dim\{\mathbf{0}\}=0$.

Note:

- ① We have dim $\mathbb{R}^m = m$ because the n columns of the identity matrix I_m is a basis.
- ② We have dim $\mathbf{M_{mn}} = mn$. Let E_{ij} be the matrix with a 1 in the (i, j)-entry and 0 elsewhere. A basis for $\mathbf{M_{mn}}$ is

$$B = \{M_{ij} : 1 \le i \le m, 1 \le j \le n\}.$$

This is called the **canonical basis** or **standard basis** of $\mathbf{M_{mn}}$. For instance, if m = n = 2, then a basis for $\mathbf{M_{22}}$ is

$$B = \{M_{11}, M_{12}, M_{21}, M_{22}\}$$

$$= \left\{$$

③ We have $\dim \mathbf{P_n} =$

4 Any subspace U of a vector space V is a vector space. Therefore, we can find the dimension of U.

Subspaces of \mathbb{R}^m

For subspaces of \mathbb{R}^m , there is a really nice way to determine a basis and the dimension of a spanning set. Let

$$U = \operatorname{span}\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}.$$

Let

- $A = [\mathbf{v_1} \ \mathbf{v_2} \ \cdots \ \mathbf{v_n}].$
- R be the RREF of A.

Then

- $\dim U = \text{number of pivots in } R$.
- A basis for U is given by the vector in the same column as the pivots.

EXAMPLE 5. Find a basis and calculate the dimension for the following subspace of \mathbb{R}^4 :

$$U = \mathrm{span}\{(1, -1, 2, 0), (2, 3, 0, 3), (1, 9, -6, 6)\}.$$

Subspaces of Matrices

EXAMPLE 6. Define the subspace of M_{22} as

$$U = \left\{ X \in \mathbf{M}_{22} \ : \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} X = X \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \right\}.$$

Find a basis of U and its dimension.