1100ITT305122103 Pages: 3

Reg No.:	Name:

 \mathbf{C}

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2022 (2019 Scheme)

Course Code: ITT 305

Course Name: DATA COMMUNICATION AND NETWORKING

Max. M	Marks: 100 Duration	: 3 Hours
	PART A	
	(Answer all questions; each question carries 3 marks)	Marks
1	Why are routers known as intelligent devices?	(3)
2	List any two specific functions of the following OSI model layers.	(3)
	i. Presentation Layerii. Application Layer	(-)
3	Encode the pattern 010001011 using the following techniques. i. Manchester ii. Alternative Mark Inverse (AMI) iii. Pseudoternary	(3)
4	Encode the sequence 11000000011000 using B8ZS scrambling technique. Assume that the last non-zero signal level has been positive.	(3)
5	Differentiate between Synchronous and Asynchronous transmission.	(3)
6	One of the challenges in Time-Division Multiplexing is how to handle a disparity in the input data rate. Name the three data rate management strategies related to Time Division Multiplexing.	(3)
7	We need a data word of at least 16 bits. Find the values of k and n in the Hamming code C (n, k) with $d_{min} = 3$.	(3)
8	What are the different persistence methods used with CSMA?	(3)
9	With an example, explain the principle of optimality.	(3)
10	Differentiate between adaptive and non-adaptive routing algorithms.	(3)

1100ITT305122103

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

a) Explain the purpose of cladding in an optical fiber. 11 (4)b) With a neat sketch, explain OSI reference model in detail. (10)a) Write a short note on satellite communication. 12 (6) b) Explain any two physical transmission media used in computer network. (8) Write the advantages and disadvantages of each. Module -2 a) Explain the different types of transmission impairment in data communi-13 (8)cation systems. b) Explain any three metrics used to measure network performance. (6)14 a) The available bandwidth of a channel is 100 kHz, which spans from 250 (4) to 350 kHz. Determine the carrier frequency and the bit rate if we modulated our data using the following techniques. (Let d=1) i. Amplitude Shift Keying Frequency Shift Keying ii. b) With a neat diagram, explain Pulse Code Modulation encoding process. (10)Module -3 15 a) Five channels, each with a 150 kHz bandwidth are to be multiplexed to-(4) gether. Calculate the minimum bandwidth of the link if there is a need for a guard band of 15 kHz between the channels to prevent inferences. b) Explain Frequency Hopping Spread Spectrum with an example. (10)a) Distinguish between synchronous and statistical TDM. 16 (6)

1100ITT305122103

D: (+1, -1, -1, +1) Ime that station A and B are sending 0 bit and station D is sending 1 Station C is silent. Find the resultant channel chip sequence. Suppose station 3 and 2 are communicating each other. Show that how station 3 can detect the data sent by station 2.	
time that station A and B are sending 0 bit and station D is sending 1 Station C is silent.	
me that station A and B are sending 0 bit and station D is sending 1	
D: (+1, -1, -1, +1)	
C: (+1, +1, -1, -1)	
3: (+1, -1, +1, -1)	
A: (+1, +1, +1, +1)	
sion Multiple Access). The code assign to each station is as follows:	
sider four stations A, B, C, D are communicating using CDMA (Code	(8
Si A:	ion Multiple Access). The code assign to each station is as follows: $(+1, +1, +1, +1)$ $(+1, -1, +1, -1)$

- 17 a) Explain Two-dimensional Parity Check method for error detection with an example. (6)
 - b) Explain the operation of CSMA/CD with suitable figures. (8)
- 18 a) Differentiate between slotted ALOHA and pure ALOHA. (4)
 - b) Outline the structure of encoder and decoder for a Hamming code with an example. (10)

Module -5

- 19 a) Explain the count to infinity problem with an example. (6)
 - b) With an example, explain the Distance Vector Routing algorithm. (8)
- 20 a) Define the term traffic shaping. Explain any one technique to shape traffic. (6)
 - b) Write short note on the following: (8)
 - i. Random Early Detection
 - ii. Network Flooding
