IIT Bhubaneswar School of Electrical Sciences

COA Lab (0 - 0 - 3) Autumn 2020

Lab Schedule: Thu (10AM -1PM)

Instructor: Debi Prosad Dogra (dpdogra@iitbbs.ac.in)

Teaching Assistant: Shivani and Rohit **Submission Deadline: 11-11-2020 (midnight)**

Assignment 6 (Mini Project)
Points: 200

Name: Dushyanth

Roll No.:18CS01009

Encoding Scheme:

General Instruction Format: (32-bit)

31-30	29-26	25-21	20-16	15-11	10-0
Unused	op_code	Rd	S1	S2	Unused

(or)

31-30	29-26	25-21	20-16	15-0
Unused	op_code	Rd	S1	Immediate_value

Op_code: 4-bit

Rd: Destination Register(5-bit)

S1: 1st Source Register(5-bit)

S2: 2nd Source Register(5-bit)

Immediate_value: 16-bit

Instructions without Immediate and their format:

	1		1	ı	ı	1
Instruction	31-30	29-26	25-21	20-16	15-11	11-0
	Unused	Op_code	Rd	S1	S2	Unused
MOVE Ri, Rj	00	1000	Ri	00000	Rj	All Zeros
ADD R i, R j, R k	00	0000	Ri	Rj	R k	All Zeros
SUB Ri, Rj, Rk	00	0010	Ri	Rj	R k	All Zeros
AND Ri, Rj, Rk	00	0100	Ri	Rj	R k	All Zeros
OR R i, R j, R k	00	0110	Ri	Rj	Rk	All Zeros
HLT	00	1100	00000	00000	00000	All Zeros

Note: I have used explicit zeros for encoding if specific part of the Instruction is not required

Ex: For HLT we do not require Ri, Rj, Rk hence the values are zeros.

Ri, Rj, Rk: 5-bit number that represents one of the 32 GPRs.

Instructions with Immediate and their format:

Instruction	31-30	29-26	25-21	20-16	15-0
	Unused	Op_code	Rd	S1	X
MOVE R i, X	00	1001	Ri	0	X
LOAD R $_{i}$, X (R $_{j}$)	00	1010	Ri	Rj	X
STORE R $_{i}$,X (R $_{j}$)	00	1011	Rj	Ri	X
ADI R _i , R _j , X	00	0001	Ri	Rj	X
SUI Ri, Rj, X	00	0011	Ri	Rj	X
ANI R i, R j, X	00	0101	Ri	Rj	Х
ORI R _i , R _j , X	00	0111	Ri	Rj	Х

X: immediate value (16-bit)

Note: The encoding for STORE is different.

Rj is stored at 25-21 and Ri is stored at 20-16 so that the decoding becomes easy.

The 32-bit instruction is represented as Hexa-decimal number and is entered at suitable location in RAM.

EX: Store R4, 6(R1)

Encoding format: 00 op_code R1 R4 X i.e. 00 1011 00001 00100 000000000000110

Entered into RAM as: 2c240006 (hexa-decimal equivalent)