Лабораторная работа №1

Численные методы решения систем линейных алгебраических уравнений. Метод Гаусса с выбором главного элемента

Методы решения систем линейных алгебраических уравнений (СЛАУ) можно разделить на две группы: 1) прямые (точные); 2) итерационные (методы последовательных приближений).

С помощью точных методов, проделав конечное число операций, можно получить точные значения неизвестных. При этом предполагается, что коэффициенты и правые части системы известны точно, а все вычисления проводятся без округлений. Примером прямого метода является метод Гаусса.

Пусть задана СЛАУ

$$Ax = f, (1)$$

где A — вещественная квадратная матрица порядка n, а f — заданный и x — искомый векторы. Будем предполагать, что определитель матрицы A отличен от нуля. Тогда для каждого вектора f система (1) имеет единственное решение.

Или можно записать систему (1) в развернутом виде

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = f_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = f_2,$$

$$\dots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = f_n,$$
(2)

Метод Гаусса решения системы (2) состоит в последовательном исключении неизвестных $x_1, x_2, ..., x_n$ из этой системы (курс алгебры). После исключения неизвестных система (2) преобразуется в систему, матрица которой содержит нули всюду ниже главной диагонали. Получение такой системы называется прямой ход метода Гаусса. Обратный ход заключается в нахождении неизвестных $x_1, x_2, ..., x_n$ из полученной системы.

Может оказаться, что система Ax = f имеет единственное решение, хотя какойлибо из угловых миноров матрицы A равен нулю. Кроме того, заранее неизвестно, все ли угловые миноры матицы A отличны от нуля. Избежать указанных трудностей позволяет метод Гаусса с выбором главного элемента. Основная идея состоит в том, чтобы на очередном шаге исключать не следующее по номеру неизвестное, а то неизвестное, коэффициент при котором является наибольшем по модулю. Различают метод Гаусса с выбором главного элемента по строке. Он эквивалентен применению обычного метода Гаусса к системе, в которой на каждом шаге проводится соответствующая перенумерация переменных. Метод Гаусса с выбором главного элемента по столбцу эквивалентен применению обычного метода Гаусса к системе, в которой на каждом шаге исключения проводится соответствующая перенумерация строк. Иногда применяется и метод Гаусса с выбором главного элемента по всей матрице, когда в качестве ведущего выбирается максимальный по модулю элемент среди всех элементов матрицы системы.

Нахождение матрицы, обратной матрицы A, эквивалентно решению матричного уравнения

$$AX = E, (3)$$

где E — единичная матрица и X — искомая квадратная матрица. Пусть $A = [a_{ij}], X = [x_{ij}].$ Уравнение (3) можно записать в виде системы n^2 уравнений

$$\sum_{k=1}^{n} a_{ik} x_{kj} = \delta_{ij}, \qquad i, j = 1, 2, ..., n,$$
(4)

где $\delta_{ij} = 1$ при i = j и $\delta_{ij} = 0$ при $i \neq j$. Далее, можно заметить, что система (4) распадается на n независимых систем уравнений с одной и той же матрицей A, но с различными правыми частями. Эти системы имеют вид

$$Ax^{(j)} = \delta^{(j)}, \qquad j = 1, 2, ..., n,$$
 (5)

 $Ax^{(j)} = \delta^{(j)}, \qquad j = 1, 2, ..., n,$ (5) где $x^{(j)} = (x_{1j}, x_{2j}, ..., x_{nj})^T$, у вектора $\delta^{(j)}$ равна единице j-я компонента и равны нулю остальные компоненты.

Указания и требования. 1) Требуется решить систему линейных уравнений Ax = f с выбором главного элемента по строкам или столбцам:

	$4.3x_1 + 4.2x_2 - 3.2x_3 + 9.3x_4 = 8.6,$	$-2.00x_1 + 3.01x_2 + 0.12x_3 - 0.11x_4 = 4.13,$
	$7.9x_1 + 5.6x_2 + 5.7x_3 - 7.2x_4 = 6.68,$	$\begin{array}{l} 2.92x_1 - 0.17x_2 + 0.11x_3 + 0.22x_4 = 3.46, \\ 0.66x_1 + 0.52x_2 + 3.17x_3 + 2.11x_4 = 2.79, \end{array}$
a)	$8.5x_1 - 4.8x_2 + 0.8x_3 + 3.5x_4 = 9.95,$	$\begin{array}{c} \text{(1)} \\ 0.66x_1 + 0.52x_2 + 3.17x_3 + 2.11x_4 = 2.79, \end{array}$
	$3.2x_1 - 1.4x_2 + 8.9x_3 + 3.3x_4 = 1.$	$3.01x_1 + 0.42x_2 - 0.27x_3 + 0.15x_4 = 1.01.$
	$1.28x_1 + 0.42x_2 + 0.54x_3 + 1.00x_4 = 1.34,$	$3.25x_1 + 1.54x_2 + 2.91x_3 + 5.43x_4 = 4.14,$
б)	$2.11x_1 + 3.01x_2 + 4.02x_3 + 0.22x_4 = 1.56,$	$\begin{array}{c} -6.34x_1 - 8.17x_2 - 10.2x_3 + 3.93x_4 = 3.15, \\ \text{e}) \end{array}$
0)	$0.18x_1 + 3.41x_2 + 0.15x_3 + 1.43x_4 = 1.78,$	$4.52x_1 + 6.73x_2 + 1.37x_3 - 9.89x_4 = 2.92,$
	$2.14x_1 + 0.17x_2 + 0.26x_3 + 0.18x_4 = 1.91.$	$7.13x_1 + 8.21x_2 + 4.47x_3 - 2.11x_4 = 5.65.$
	$1.00x_1 + 0.47x_2 - 0.11x_3 + 0.55x_4 = 1.09,$	$3.25x_1 + 1.54x_2 + 4.91x_3 + 2.43x_4 = 0.14,$
в)	$0.42x_1 + 1.00x_2 + 0.35x_3 + 0.17x_4 = 2.87,$	$-3.34x_1 + 1.17x_2 + 3.2x_3 + 5.13x_4 = 1.15,$
В)	$-0.25x_1 + 0.67x_2 + 1.00x_3 + 0.36x_4 = 3.65,$	$ (3.52x_1 + 2.73x_2 + 3.37x_3 - 5.89x_4 = 0.92, $
	$0.54x_1 - 0.32x_2 - 0.74x_3 + 1.00x_4 = 4.43.$	$1.13x_1 + 2.21x_2 + 4.47x_3 + 5.11x_4 = 5.65.$
	$0.34x_1 + 1.17x_2 + 0.2x_3 + 8.13x_4 = 4.15,$	
г)	$3.52x_1 + 4.73x_2 + 4.37x_3 + 5.89x_4 = 2.92,$	
1)	$-6.25x_1 + 2.54x_2 + 6.91x_3 - 5.43x_4 = -3.14,$	
	$-2.13x_1 + 2.21x_2 + 4.17x_3 + 6.11x_4 = 7.65.$	

- метод и система определяются преподавателем.
 - 2) Вычислить вектор невязки $r = A\tilde{x} f$, где \tilde{x} полученное решение.
 - 3) Вычислить определитель матрицы A используя метод Гаусса.
 - 4) Найти обратную матрицу A^{-1} используя метод Гаусса.
 - 5) Сделать проверку, умножить матрицу A на полученную матрицу A^{-1} .
- 6) Оформить отчет. В отчете должна быть приведена постановка задачи, описан алгоритм решения задачи и приведена теоретическая задача, с подробным решением (дается преподавателем).

Литература

- 1. Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: «Наука»,
- 2. **Самарский А.А., Гулин А.В.** *Численные методы.* М.: «Наука», 1989.