Part IB — Numerical Analysis Example Sheet 1

Supervised by Dr. Saxton
Examples worked through by Christopher Turnbull
Lent 2018

We seek some polynomial interpolant $p \in \mathbb{P}_3[x]$. Using the Lagrange formula we have that

$$p(x) = \sum_{k=0}^{3} f(k)l_k$$

where

$$l_k = \prod_{i=0, i \neq k}^{3} \frac{x-i}{k-i}$$

that is.

$$p(x) = f(0)\frac{(x-1)(x-2)(x-3)}{-6} + f(1)\frac{x(x-2)(x-3)}{2} + f(2)\frac{x(x-1)(x-3)}{-2} + f(3)\frac{x(x-1)(x-2)}{6} + f(3)\frac{x(x-2)(x-3)}{6} + f(3)\frac{x(x-2)(x-$$

(i) The approximant p(6)

We have

$$p(6) = f(0)\frac{5 \cdot 4 \cdot 3}{-6} + f(1)\frac{6 \cdot 4 \cdot 3}{2} + f(2)\frac{6 \cdot 5 \cdot 3}{-2} + f(3)\frac{6 \cdot 5 \cdot 4}{6}$$
$$= -10f(0) + 36f(1) + -45f(2) + 20f(3)$$

(ii) The approximant p'(0)

Taking the derivative of each term individually, we then plug in x=0. We deduce that

$$p'(0) = -\frac{11}{6}f(0) + 3f(1) - \frac{3}{2}f(2) + \frac{1}{3}f(3)$$

(iii) The approximant $\int_0^3 p(x) dx$

Expanding each term and integrating (I can't see a shorter way) we have that

$$p(x) = f(0)\frac{x^3 - 6x^2 + 11x - 6}{-6} + f(1)\frac{x^3 - 5x^2 + 6x}{2} + f(2)\frac{x^3 - 4x^2 + 3x}{-2} + f(3)\frac{x^3 - 3x^2 + 2x}{6} + f(3)\frac{x^3 - 6x^2 + 11x - 6}{6} + f(3)\frac{x^3 - 6x^2 + 11x - 6}{2} + f(3)\frac{x^3 - 6x^2 + 11x - 6}{6} + f(3)\frac{x^3 - 6x^2 + 11x - 6}{2} + f(3)\frac{x^3 - 6x^2 + 11x - 6}{2} + f(3)\frac{x^3 - 6x^2 + 11x - 6}{6} + f(3)\frac{x^3 - 6x^2 + 11x - 6}{2} + f(3)\frac{x^3 - 6x^2 + 11x - 6}{6} + f(3)\frac{x^3 - 6x^2 + 11x - 6}{6} + f(3)\frac{x^3 - 6x^2 + 11x - 6}{6} + f(3)\frac{x^3 - 12x - 12x - 6}{6} + f(3)\frac{x^3 - 12x - 12x - 6}{6} + f(3)\frac{x^3 - 12x -$$

(I've cheated a bit with Mathematica here)

$$\int_0^3 p(x) \, dx = \frac{3}{8}f(0) + \frac{9}{8}f(1) + \frac{9}{8}f(2) + \frac{3}{8}f(3)$$

We can check this by supposing f(x)=x, so that f(k)=k for each k. Indeed, p(6)=6, p'(0)=1, and $\int_0^3 p(x) \, \mathrm{d}x=9/2$,

The formula is true when x = 0, 1 since both sides of the equation vanish. Let $x \in (0, 1)$ be any other point and define (for x fixed).

$$\phi(t) := [f(t) - p(t)] \prod_{i=0}^{3} (x - x_i) - [f(x) - p(x)] \prod_{i=0}^{3} (t - x_i), \quad t \in (0, 1)$$

where $x_0 = x_1 = 0$, $x_2 = x_3 = 1$. Note $\phi(0) = \phi(1) = 0$, and also $\phi(x) = 0$. Hence, ϕ has at least 3 zeroes. Applying Rolle's theorem, and using the condition that f'(0) = f'(1) = 0, we deduce that $\phi'(t)$ has at least 4 zeroes: one at $x_0 = 0$, one at $x_2 = 1$, and two more: one in the interval (0, x), and the other in (x, 1).

Then $\phi''(t)$ has at least 3 zeroes in (0,1), and... $\phi^{(4)}(x)$ has at least one zero in (0,1); call it ξ . Then

$$0 = \phi^{(4)}(\xi) = \left[f^{(n+1)}(\xi) - p^{(n+1)}(\xi) \right] \prod_{i=0}^{3} (x - x_i) - [f(x) - p(x)] \frac{\mathrm{d}^4}{\mathrm{d}t^4} \Big|_{t=\xi} \prod_{i=0}^{3} (t - x_i)$$

Since $p^{(4)} \equiv 0$, and $\frac{d^4}{dt^4}\Big|_{t=\xi} \prod_{i=0}^3 (t-x_i) = 4!$, we obtain

$$f(x) - p(x) = \frac{1}{4!} f^{(4)}(\xi) \prod_{i=0}^{3} (x - x_i)$$
$$= \frac{1}{24} x^2 (1 - x)^2 f^{(4)}(\xi)$$

Seeking a contradiction we suppose there exists some nonzero polynomial $p \in \mathbb{P}_4[x]$ st.

$$p(a) = p(b) = p'(a) = p'(b) = p'(c) = 0$$
 (*)

Suppose that $q_1 \in \mathbb{P}_4[x]$ and $q_2 \in \mathbb{P}_4[x]$ both interpolate the data, then $q_1 - q_2$ vanishes at these points. Hence, we have

$$q_1 = q_2 + kp$$

for some $k \in \mathbb{R}$, so the solution of this interpolation problem is not unique. To pick a value of c that satisfies (*), try

$$p(x) = (x - a)(x - b) + (x - a)(x - b)(x - c)$$

Immediately we have p(a) = p(b) = 0. Now,

$$p'(x) = (x-a) + (x-b)(x-b)(x-c) + (x-a)(x-c) + (x-a)(x-b)$$

By definition, $f[x_0, x_1, \dots, x_n, x]$ is the coefficient of x^{n+1} in $q \in \mathbb{P}_{n+1}[x]$ that interpolates the n+2 points $[x_0, x_1, \dots, x_n, x]$ with f.

From the definition of the divided difference we have that

$$f[x_0, x_1, \cdots, x_n, x] = \frac{f[x_1, x_2, \cdots, x_{n+1}, x] - f[x_0, x_1, \cdots, x_n]}{x - x_0}$$

But also,

$$f[x_1, \cdots, x_n, x] = \frac{f[x_2, \cdots, x_{n+1}, x] - f[x_1, \cdots, x_n]}{x - x_1}$$

When n = 0 the identity reads

$$f(x) - p(x) = f[x_0, x](x - x_0)$$

= $f(x) - f(x_0)$

When n = 1 the identity reads

$$f(x) - p(x) = f[x_0, x_1, x](x - x_0)(x - x_1)$$
$$= \frac{f[x_0, x_1] - f[x_1, x]}{x - x_0}$$

Nah fuck that, third attempt

The Newton divided difference table for Question 5 is shown below.

x_i	f_i	f[*,*]	f[*, *, *]	f[*,*,*,*]
0	f[0] = 0			
0.1	f[0.1] 0.0000	f[0, 0.1] = 0.998	e[0 0 1 0 4]	
0.1	f[0.1] = 0.0998	f[0.1, 0.4] = 0.9687	f[0, 0.1, 0.4] = 0.0733	f[0, 0.1, 0.4, 0.7]
0.4	f[0.4] = 0.3894	J[0.1, 0.4] = 0.0001	f[0.1, 0.4, 0.7]	f[0,0.1,0.4,0.1] = -0.389
		f[0.4, 0.7] = 0.8493	=-0.1990	
0.7	f[0.7] = 0.6442			

Using Newton's formula, the polynomial interpolating these points is given as

$$p(x) = f[0] + f[0, 0.1]x + f[0, 0.1, 0.4]x(x - 0.1) + f[0, 0.1, 0.4, 0.7]x(x - 0.1)(x - 0.4)$$

= 0.998x + 0.0733(x² - 0.1x) - 0.389(x³ - 0.5x² + 0.04x)
= 0.9751x+