

DIGITAL LOGIC

数字逻辑

01

Course Content

Ripple Counter

BCD Counter,
Arbitrary
sequence
Counters

Binary Counter with Parallel Load

Up-down Binary Counter

Synchronous
Binary
Counters

Serial Vs.
Parallel
Counters

- A counter is a register that goes through a <u>predetermined</u> sequence of states upon the application of clock pulses.
- Counters are categorized as:
 - Ripple Counters:
 The FF output transition serves as a source for triggering other
 FFs. No common clock.
 - Synchronous Counter:
 All FFs receive the common clock pulse, and the change of state is determined from the present state.

Example: A 4-bit Upward Counting Ripple Counter 四川大學

Less Significant Bit output is Clock for Next Significant Bit! (Clock is active low)

(a) <i>JK</i> Flip-Flop						
J	K	Q(t1 1)	Operation			
0	0	Q(t)	No change			
0	1	0	Reset			
1	0	1	Set			
1	1	$\overline{Q}(t)$	Complement			

- The output of each FF is connected to the C input of the next FF in sequence.
- The FF holding the least significant bit receives the incoming clock pulses.
- The J and K inputs of all FFs are connected to a permanent logic 1.
- The bubble next to the C label indicates that the FFs respond to the negative-going transition of the input.

Example (cont.)

Operation:

- The least significant bit (Q_0) is complemented with each negativeedge clock pulse input.
- Every time that Q₀ goes from 1 to 0, Q₁ is complemented.
- Every time that Q₁ goes from 1 to 0, Q₂ is complemented.
- Every time that Q₂ goes from 1 to 0, Q₃ is complemented, and so on.

Upward Counting Sequence

Q_3	\mathbf{Q}_2	\mathbf{Q}_1	\mathbf{Q}_0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

- The design procedure for a binary counter is the same as any other synchronous sequential circuit.
- The primary inputs of the circuit are the CLK and any control signals (EN, Load, etc).
- The primary outputs are the FF outputs (present state).
- Most efficient implementations usually use T-FFs or JK-FFs.
 We will examine JK and D flip-flop designs.

J-K Flip Flop Design of a 4-bit Binary Up Counter

Present state				Next state				
Q_3	\mathbf{Q}_2	\mathbf{Q}_1	\mathbf{Q}_0	\mathbf{Q}_3	\mathbf{Q}_2	\mathbf{Q}_1	Q	
0	0	0	0	0	0	0	1	
0	0	0	1	0	0	1	0	
0	0	1	0	0	0	1	1	
0	0	1	1	0	1	0	0	
0	1	0	0	0	1	0	1	
0	1	0	1	0	1	1	0	
0	1	1	0	0	1	1	1	
0	1	1	1	1	0	0	0	
1	0	0	0	1	0	0	1	
1	0	0	1	1	0	1	0	
1	0	1	0	1	0	1	1	
1	0	1	1	1	1	0	0	
1	1	0	0	1	1	0	1	
1	1	0	1	1	1	1	0	
1	1	1	0	1	1	1	1	
1	1	1	1	0	0	0	0	

J-K flip-flop characteristic table and equation

ender in	Preser	nt	Next
J	K	Q,	Q ₁₊₁
0	0	0	0
0	0		
0	1	0	0
0	1	0	0
1	0	0	1
1	0	1	D
1	1	0	1
1	1	1	0
	-	<u></u>	رف

 $Q_{i+1} = JQ_i' + K'Q_i$

J-K flip-flop excitation table

$\mathbf{Q}_{\mathbf{t}}$	Q_{t+1}	J	K	
0	0	0	d	
0	1	1	d	
V	0	d		>
1	1	d	0	

		Next state				Present state			
K Q	J _{Q3}	\mathbf{Q}_0	Q ₁	\mathbf{Q}_2	Q_3	\mathbf{Q}_0	Q ₁	\mathbf{Q}_2	Q_3
×	0	1	0	0	0	0	0	0	0
×	0	0	1	0	0	1	0	0	0
X	0	1	1	0	0	0	1	0	0
X	0	0	0	1	0	1	1	0	0
×	0	1	0	1	0	0	0	1	0
X	0	0	1	1	0	1	0	1	0
×	0	1	1	1	0	0	1	1	0
×	1	0	0	0	1	1	1	1	0
0	X	1	0	0	1	0	0	0	1
0	X	0	1	0	1	1	0	0	1
0	X	1	1	0	1	0	1	0	1
0	X	0	0	1	1	1	1	0	1
0	X	1	0	1	1	0	0	1	1
0	X	0	1	1	1	1	0	1	1
0	X	1	1	1	1	0	1	1	1
1	×	0	0	0	0	1	1	1	1

Χ	Χ	Χ	Χ
X	Х	Х	Х
		1	

$$K_{Q3} = Q_0 Q_1 Q_2$$

Flip-flo	F	Next state			Present state				
K _{Q2}	J _{Q2}	\mathbf{Q}_0	Q ₁	\mathbf{Q}_2	\mathbf{Q}_3	\mathbf{Q}_0	Q ₁	\mathbf{Q}_2	Q_3
×	0	1	0	0	0	0	0	0	0
×	0	0	1	0	0	1	0	0	0
×	0	1	1	0	0	0	1	0	0
×	1	0	0	1	0	1	1	0	0
0	×	1	0	1	0	0	0	1	0
0	×	0	1	1	0	1	0	1	0
0	×	1	1	1	0	0	1	1	0
1	×	0	0	0	1	1	1	1	0
×	0	1	0	0	1	0	0	0	1
×	0	0	1	0	1	1	0	0	1
X	0	1	1	0	1	0	1	0	1
×	1	0	0	1	1	1	1	0	1
0	×	1	0	1	1	0	0	1	1
0	×	0	1	1	1	1	0	1	1
0	X	1	1	1	1	0	1	1	1
1	×	0	0	0	0	1	1	1	1

		1	
Х	Х	Х	Х
Х	х	Х	Х
		1	

$$J_{Q2} = Q_0 Q_1$$

Х	Х	Х	Х
		1	
		1	
Х	Х	х	Х

$$K_{Q2} = Q_0Q_1$$

Present state				Next state			p inputs		
Q_3	\mathbf{Q}_2	\mathbf{Q}_1	\mathbf{Q}_0	\mathbf{Q}_3	\mathbf{Q}_2	\mathbf{Q}_1	\mathbf{Q}_0	J _{Q1}	Κ _Q
0	0	0	0	0	0	0	1	0	×
0	0	0	1	0	0	1	0	1	×
0	0	1	0	0	0	1	1	×	0
0	0	1	1	0	1	0	0	×	1
0	1	0	0	0	1	0	1	0	X
0	1	0	1	0	1	1	0	1	X
0	1	1	0	0	1	1	1	×	0
0	1	1	1	1	0	0	0	×	1
1	0	0	0	1	0	0	1	0	X
1	0	0	1	1	0	1	0	1	X
1	0	1	0	1	0	1	1	×	0
1	0	1	1	1	1	0	0	×	1
1	1	0	0	1	1	0	1	0	X
1	1	0	1	1	1	1	0	1	X
1	1	1	0	1	1	1	1	×	0
1	1	1	1	0	0	0	0	×	1

1	Х	Х
1	х	Х
1	x	Х
1	х	Х

$$J_{Q1} = Q_0$$

X	X	1	
Х	Х	1	
Х	Х	1	
X	X	1	

$$K_{Q1} = Q_0$$

$$J_{Q0} = 1$$

 $K_{Q0} = 1$

$$J_{Q1} = Q_0$$
$$K_{Q1} = Q_0$$

$$J_{Q2} = Q_0 Q_1$$

 $K_{Q2} = Q_0 Q_1$

$$J_{Q3} = Q_0 Q_1 Q_2$$

 $K_{Q3} = Q_0 Q_1 Q_2$

J-K Flip Flop Design of a Binary Up Counter with EN and CO

EN = enable control signal, when 0 counter remains in the same state, when 1 it counts

CO = carry output signal, used to extend the counter to more stages

 $J_{Q0} = 1 \cdot EN$ $K_{Q0} = 1 \cdot EN$ $J_{Q1} = Q_0 \cdot EN$ $K_{Q1} = Q_0 \cdot EN$ $J_{Q2} = Q_0 Q_1 \cdot EN$ $K_{Q2} = Q_0 Q_1 \cdot EN$ $J_{Q3} = Q_0 Q_1 Q_2 \cdot EN$ $K_{Q3} = Q_0 Q_1 Q_2 \cdot EN$ $C0 = Q_0 Q_1 Q_2 Q_3 \cdot EN$

Synchronous Binary Counters using D flip-flops (四川大学 SICHUAN UNIVERSITY)

$$\begin{array}{lll} \bullet & \mathsf{D}_{\mathsf{Q}0} = \mathsf{Q}_0 \otimes \mathsf{EN} \\ \bullet & \mathsf{D}_{\mathsf{Q}1} = \mathsf{Q}_1 \otimes (\; \mathsf{Q}_0 \cdot \mathsf{EN}) \\ \bullet & \mathsf{D}_{\mathsf{Q}2} = \mathsf{Q}_2 \otimes (\; \mathsf{Q}_0 \, \mathsf{Q}_1 \cdot \mathsf{EN} \;) \\ \bullet & \mathsf{D}_{\mathsf{Q}3} = \mathsf{Q}_3 \otimes (\; \mathsf{Q}_0 \, \mathsf{Q}_1 \, \mathsf{Q}_2 \cdot \mathsf{EN} \;) \\ \bullet & \mathsf{C0} = \mathsf{Q}_0 \, \mathsf{Q}_1 \, \mathsf{Q}_2 \, \mathsf{Q}_3 \cdot \mathsf{EN} \end{array}$$

JK-based design calls for 4 AND gates D-based design calls for 4 AND and 4 XOR gates

Up-Down Binary Counter

UD = 0: count up

UD = 1: count down

Up-Down Binary Counter (cont.)

UD	Q2	Q1	Q0	Q2.D	Q1.D	Q0.D	UD	Q2	Q1	Q0	Q2.D	Q1.D	Q0.D
0	0	0	0	0	0	1	1	0	0	0	1	1	1
0	0	0	1	0	1	0	1	0	0	1	0	0	0
0	0	1	0	0	1	1	1	0	1	0	0	0	1
0	0	1	1	1	0	0	1	0	1	1	0	1	0
0	1	0	0	1	0	1	1	1	0	0	0	1	1
0	1	0	1	1	1	0	1	1	0	1	1	0	0
0	1	1	0	1	1	1	1	1	1	0	1	0	1
0	1	1	1	0	0	0	1	1	1	1	1	1	0

Up-Counter

Down-Counter

Finish the design in class

Binary Counter with Parallel Load

 (Next slide) gives the logic diagram and symbol of a 4bit synchronous binary counter with parallel load capability. The function table for this binary counter is

Load	Count	Operation
0	0	Nothing
0	1	Count
1	X	Load

Binary Counter with Parallel Load

 The binary counter with parallel load can be converted into a synchronous BCD counter by connecting an external AND gate to it.

Load	Count	Operation
0	0	Nothing
0	1	Count
1	X	Load

- The counter starts with an all-zero output.
- As long as the output of the AND gate is 0, each positive clock pulse transition increments the counter by one.
- When the output reaches the count of 1001, both Q_0 and Q_3 become 1, making the output of the AND gate equal to 1. This condition makes Load active, so on the next clock transition, the counter does not count, but is loaded from its four inputs.
- The value loaded then is 0000.

Arbitrary Sequence Counter

- Given an arbitrary sequence, design a counter that will generate this sequence.
- Procedure:
 - Derive state table/diagram based on give sequence
 - Simplify (using K-maps, etc)
 - Draw logic diagram
- Example: Use D-FFs to draw the logic diagram for sequence generator (counter) for: $0 \rightarrow 7 \rightarrow 6 \rightarrow 1 \rightarrow 0$ $(000 \rightarrow 111 \rightarrow 110 \rightarrow 001 \rightarrow 000)$

• Use D-FFs to draw the logic diagram for sequence generator (counter) for: $0 \rightarrow 7 \rightarrow 6 \rightarrow 1 \rightarrow 0$ (000 \rightarrow 111 \rightarrow 110 \rightarrow 001 \rightarrow 000)

$Q_3Q_2Q_1$	$Q_3+Q_2+Q_1+$	$D_3D_2D_1$	Z
000	111	111	0
001	000	000	1
010	ddd	ddd	d
011	ddd	ddd	d
100	ddd	ddd	d
101	ddd	ddd	d
110	001	001	0
111	110	110	0

$$D_3 = Q_3'Q_1' + Q_3Q_1$$
 $D_2 = Q_3'Q_1' + Q_3Q_1$
 $D_1 = Q_1'$
 $Z = Q_3'Q_1$

$Q_3Q_2Q_1$	$Q_3+Q_2+Q_1+$	$D_3D_2D_1$	Z
000	111	111	0
001	000	000	1
010	ddd	ddd	d
011	ddd	ddd	d
100	ddd	ddd	d
101	ddd	ddd	d
110	001	001	0
111	110	110	0

$$D_3 = Q_3'Q_1' + Q_3Q_1$$

$$D_2 = Q_3' Q_1' + Q_3 Q_1$$

$$D_1 = Q_1$$

$$Z = Q_3'Q_1$$

$Q_3Q_2Q_1$	$Q_3+Q_2+Q_1+$
010	111
011	000
100	001
101	110

$$D_3 = Q_3'Q_1' + Q_3Q_1$$
 $D_2 = Q_3'Q_1' + Q_3Q_1$
 $D_1 = Q_1'$
 $Z = Q_3'Q_1$
 $D_1 = Q_1'$
 $D_1 = Q_1$
 $D_2 = Q_2$
 $D_3 = Q_3$

Thanks.