1 Successioni

1.1 Successioni in \mathbb{R}

Sia $X \neq \emptyset$, una qualsiasi funzione $f : \mathbb{N} \to X$ si dice: **successione in** X. Una notazione si indica $\{f_n\}_{n\in\mathbb{N}}$ o f_1, f_2, \ldots, f_n f_n si chiama termine n-esimo.

 k_1, k_2, \ldots, k_n è una successione di numeri naturali:

$$k_1 < k_2 < \dots < k_n < k_{n+1} < \dots \quad \forall n \in \mathbb{N}$$
 (1)

La successione $\{f_{k_n}\}$ è una sottosuccessione di $\{f_n\}$.

Definizione 1:

Se a_n tende $a \ l \in \mathbb{R}$ per $n \to \infty$, si dice che $\lim_{n \to \infty} a_n = l$

$$\forall \epsilon > 0 \exists \overline{n} : \forall n \in \mathbb{N} (n > \overline{n} \implies |a_n - l| < \epsilon)$$
 (2)

 $\{a_n\}$ converge ad l ed esso è il limite di $\{a_n\}$

Esempio 1.

$$\lim_{n \to \infty} \frac{1}{n} = 0 \tag{3}$$

Ovvero

$$\forall \epsilon > 0 \exists \overline{n} : \forall n \in \mathbb{N} \left(n > \overline{n} \Rightarrow \left| \frac{1}{n} - 0 \right| < \epsilon \right)$$
 (4)

DIMOSTRAZIONE 1 (Il limite se esiste è unico).

$$\lim_{x \to \infty} a_n = l \quad \land \quad \lim_{x \to \infty} a_n = m \quad \iff \quad l = m \tag{5}$$

Esempio 2.

Poniamo per assurdo che $l \neq m$ Fissiamo $\epsilon > 0$

$$\underbrace{|a_n - l| < \frac{\epsilon}{2}}_{n > \overline{n_1}} & \underbrace{|a_n - m| < \frac{\epsilon}{2}}_{n > \overline{n_2}}$$

$$(6)$$

Ricordiamo che $|a_n - m| = |m - a_n|$

$$| a_n - l - a_n + m | |a_n - l| + |m - a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 (7)

 $\downarrow \downarrow$

$$|m-l| < \epsilon \implies |m-l| = 0$$
 (8)

Ma questo è assurdo perchè: $\epsilon > 0, \forall \epsilon \in \mathbb{R}$

$$m = l (9)$$

Definizione 2:

Se $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ converge ad $l\in\mathbb{R}$ ogni sua sottosuccessione $\{a_{k_n}\}_{n\in\mathbb{N}}$ converge ad l

DIMOSTRAZIONE 2 (Limiti).

Se $\{a_n\}_{n\in\mathbb{N}}$ converge $l\in\mathbb{R}$ \Longrightarrow $\{a_{k_n}\}_{k_n\in\mathbb{N}}$ converge $l\in\mathbb{R}$

 $\downarrow \downarrow$

Si ha che:

$$\forall \epsilon > 0 \ \exists \overline{n} \in \mathbb{N} : n > \overline{n} \implies |a_n - l| < \epsilon$$
 (10)

$$\forall \epsilon > 0 \ \exists \overline{n} \in \mathbb{N} : n > \overline{n} \implies |a_{k_n} - l| < \epsilon$$
 (11)

$$\lim_{n \to \infty} a_{k_n} = l \tag{12}$$

Esempio 3.

$$\lim_{n \to +\infty} \frac{1}{n} = 0 \qquad \& \qquad k = 2, \lim_{k_n \to +\infty} \frac{1}{k_n} = 0 \tag{13}$$

Esercizio 1.

DIMOSTRAZIONE 3.

$$\lim_{n \to +\infty} (a_n + b_n) = l + m \tag{14}$$

$$\lim_{n \to +\infty} a_n = l \quad \& \quad \lim_{n \to +\infty} b_n = m \tag{15}$$

$$|a_n - l| < \frac{\epsilon}{2} \quad \text{se} \quad n > \overline{n_1}$$
 (16)

$$|b_n - m| < \frac{\epsilon}{2} \quad \text{se} \quad n > \overline{n_2}$$
 (17)

 $n > \max\{\overline{n_1}, \overline{n_2}\}$

$$|a_n + b_n - l - m| \le |a_n - l| + |b_n - m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 (18)

 $\downarrow \downarrow$

$$\forall \epsilon > 0, \exists \overline{n} \equiv \max\{\overline{n_1}, \overline{n_2}\} : n > \overline{n} \Rightarrow \underbrace{\lfloor (a_n + b_n) - (l + m) \rfloor}_{0} < \epsilon$$
 (19)

$$(a_n + b_n) - (l+m) = 0 (20)$$

$$a_n + b_n = l + m \tag{21}$$

DIMOSTRAZIONE 4 (Permanenza del segno).

$$\forall \epsilon > 0, \exists \overline{n} \in \mathbb{N} : n > \overline{n} \Rightarrow \underbrace{|a_n - l < \epsilon|}_{l - \epsilon < a_n < l + \epsilon \quad \forall n > \overline{n}}$$
 (22)

$$\epsilon = |l|$$

Da questo otteniamo che

$$\underbrace{l-|l|}_{0} < a_n < \underbrace{l+|l|}_{2l} \tag{23}$$

In conclusione avremo che:

se
$$l > 0 \Rightarrow a_n > 0$$

se
$$l < 0 \Rightarrow a_n < 0$$

Definizione 3 (Teorema dei 2 carabinieri):

$$Se \quad \underbrace{\{a_n\}, \{b_n\}}_{convergono \ a}, \{c_n\}$$

è ovvio che:
$$a_n \le c_n \le b_n \implies c_n converge \ a \ l$$
 (24)

DIMOSTRAZIONE 5.

$$\forall \epsilon > 0, \exists \overline{n_1}, \overline{n_2} \in \mathbb{N} : \tag{25}$$

 \parallel

$$l - \epsilon < a_n < l + \epsilon \qquad \& \qquad l - \epsilon < b_n < l + \epsilon \tag{26}$$

se $n > \max\{\overline{n_1}, \overline{n_2}\}$

 $\downarrow \downarrow$

$$l - \epsilon < a_n \le c_n \le b_n < l + \epsilon \qquad \forall n > \overline{n} \tag{27}$$

$$\underbrace{l - \epsilon < c_n < l + \epsilon}_{|c_n - l| < \epsilon} \Longrightarrow \lim_{n \to +\infty} c_n = l \tag{28}$$

Definizione 4:

Sia una successione $\{a_n\}_n \subseteq \mathbb{R}$ è detta:

- superiormente limitata, se $\exists M \in \mathbb{R} : a_n \leq M \ \forall n \in \mathbb{N}$
- inferiormente limitata, se $\exists M \in \mathbb{R} : a_n \geq M \ \forall n \in \mathbb{N}$
- $limitata, se \exists M \in \mathbb{R} : |a_n| \leq M \ \forall n \in \mathbb{N}$

Definizione 5 (Ogni successione convergente è limitata): $Sia \{a_n\}_{n\in\mathbb{N}} \subseteq \mathbb{R}, \ a_n \underset{n\to\infty}{\to} l$

Allora (con $\epsilon = 1$)

$$\exists \overline{n} : \forall n \in \mathbb{N} (n > \overline{n} \implies |a_n - l| < 1) \tag{29}$$

Segue quindi che $|a_n| \le |a_n - l| + |l| < 1 + |l|, \ n > \overline{n}$

$$|a_n| \le 1 + |l| \tag{30}$$

Definizione 6 (Retta reala ampliata):

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty\} \cup \{-\infty\} \tag{31}$$

Definizione 7:

 $Sia\ \{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$

$$\lim_{n \to +\infty} a_n = +\infty$$

$$\downarrow \qquad \qquad (32)$$

$$\forall k \in \mathbb{R} \exists \overline{n} \in N : \forall n \in \mathbb{N} (n > \overline{n} \implies a_n > k)$$

La scrittura è analoga per $-\infty$ invertendo il segno: $(a_n < k)$ Potremo dire che a_n diverge positivamente o negativamente

1.2 Forme indeterminate

Se
$$\{a_n\}, \{b_n\} \subseteq \mathbb{R}$$
 e $\{a_n\} \to +\infty, \{b_n\} \to -\infty\}$ allora:

$$a_n + b_n \to +\infty - \infty = ? \tag{33}$$

 $+\infty~e~-\infty~non~sono~veri~e~propri~numeri,~piuttosto~sono~dei~simboli,~quindi~il~risultato~sarà~detto:$ FORMA INDETERMINATA $+\infty~-\infty$

Altri tipi di forme indeterminate sono:

$$\frac{\infty}{\infty}, \ \frac{0}{0}, \ 0 \cdot \infty, \ 1^{\infty}, \ 0^0, \ \infty^0 \tag{34}$$

1.3 Teoremi generali di esistenza

Una successione $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ è detta monotona crescente se $a_n\leq a_{n+1}, \forall n\in\mathbb{N}$

Si dice invece monotona decrescente se $a_n \geq a_{n+1}, \forall n \in \mathbb{N}$.

Sono rispettivamente **strettamente** monotone crescenti o decrescenti se le disuguaglianze sono **strette**

Le scritture $a_n \nearrow$ e $a_n \searrow$ indicano monotonia crescente e decrescente

Definizione 8:

Ogni successione monotona ammette limite: Se $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$:

1.
$$a_n \nearrow \Longrightarrow \lim_{n \to +\infty} a_n = \sup_{n \in \mathbb{N}} a_n$$

2.
$$a_n \searrow \Longrightarrow \lim_{n \to +\infty} a_n = \inf_{n \in \mathbb{N}} a_n$$

DIMOSTRAZIONE 6.

Se $\{a_n\}$ è superiormente limitata per l'assioma di completezza:

$$\exists \sup_{n \in \mathbb{N}} a_n = \lambda \tag{35}$$

Per la proprietà del sup si ha che $a_n \leq \lambda, \forall n \in \mathbb{N}$ dunque:

$$a_n < \lambda + \epsilon \ \forall n \in \mathbb{N}, \ \forall \epsilon > 0$$
 (36)

$$\forall \epsilon > 0, \exists \overline{n} \in \mathbb{N} : \lambda < a_{\overline{n}} + \epsilon \tag{37}$$

La definizione di limite è:

$$\lim_{n \to +\infty} a_n = \lambda \tag{38}$$

Esercizio 2 (Il numero di nepero e).

$$e \equiv \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n \tag{39}$$

Si nota che $a_n = \left(1 + \frac{1}{n}\right)^n$ e $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$ sono successioni **convergenti** che hanno lo stesso limite e, inoltre sono **strettamente monotone**

$$a_n < a_{n+1} \quad e \quad b_n > b_{n+1} \ \forall n \in \mathbb{N}$$
 (40)

Inoltre

$$a_n < b_n \ \forall n \in \mathbb{N} \tag{41}$$

allora:

$$a_n < a_p < b_p < b_m \quad \forall n, m, p; p = \max\{n, m\}$$
 (42)

Entrambe le successioni convergono: a_n è monotona crescente e superiormente limitata e b_n è monotona decrescente e inferiormente limitata.

$$\lim_{n \to +\infty} \frac{b_n}{a_n} = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right) = 1 \tag{43}$$

Questo implica che:

$$\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} a_n = e \tag{44}$$

DIMOSTRAZIONE 7.

$$b_n = \left(1 + \frac{1}{n}\right)^{n+1} \quad \& \quad b_{n+1} = \left(1 + \frac{1}{n+1}\right)^{(n+1)+1} \tag{45}$$

$$\frac{b_n}{b_{n+1}} > 1 \Longrightarrow \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(1 + \frac{1}{n+1}\right)^{(n+1)+1}} > 1 \quad \forall n \in \mathbb{N}$$

$$= \left(1 + \frac{1}{n}\right)^{n+1} \left(1 + \frac{1}{n}\right) = \left(\frac{n+1}{n}\right) \left(\frac{n+1}{n}\right) > 1$$

$$= \left(1 + \frac{1}{n+1}\right)^{n+2} \left(1 + \frac{1}{n+1}\right)^2 = \left(\frac{n+2^n}{n+1}\right) \left(\frac{n+2}{n+1}\right)^2 > 1$$

$$= \left(\frac{(n+1)(n+2)}{n(n+1)}\right)^n \cdot \left(\frac{n+1}{n}\right) \cdot \left(\frac{n+2}{n+1}\right)^2 > 1$$

$$= \left(\frac{n+2}{n}\right)^n \cdot \left(\frac{n+2}{n}\right) \cdot \left(\frac{n+2}{n+1}\right) > 1$$

$$= \left(\frac{n+2}{n}\right)^{n+1} > \left(\frac{n+2}{n+1}\right)$$

Definizione 9 (Bolzano - Weierstrass):

Ogni successione reale limitata ammette una sottosuccessione convergente.

DIMOSTRAZIONE 8.

Per ogni $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ esiste M>0: $|a_n|\leq M, \ \forall n\in\mathbb{N} \ \exists k_n\nearrow: \ a_{k_n}\underset{n\to+\infty}{\to} l\in\mathbb{R}$

$$-M \le a_n \le M \ \forall n \in \mathbb{N} \tag{47}$$

$$\alpha_n = \sup a_k : k \ge n, \ n \in \mathbb{N} \implies -M \le \alpha_n \le M \ \forall n \in \mathbb{N}$$
 (48)

Quindi dalla definizione ne segue che:

$$\alpha_{n+1} \le \alpha_n \ \forall n \in \mathbb{N} \Rightarrow \alpha_n \searrow$$

$$\downarrow \downarrow$$

$$(49)$$

$$\exists \lim_{n \to +\infty} \alpha_n \equiv l \quad \Longrightarrow \quad l \equiv \inf_{n \in \mathbb{N}} \alpha_n \tag{50}$$

$$\forall \epsilon > 0, \ \forall p \in \mathbb{N} \ \exists n \ge p : l - \epsilon \le a_n$$

$$\alpha_p \searrow \exists l \le \alpha_p \Rightarrow l - \epsilon < \alpha_p \ \forall \epsilon > 0 \ \forall p$$
(51)

Dato che $\alpha_p = \sup\{a_n : n \geq p\}$, deve esistere $n \geq p : a_n > l - \epsilon$ Sia $k_n : \mathbb{N} \to \mathbb{N}$ definita per ricorrenza:

$$\begin{cases} k_1 = \min\{k \in \mathbb{N} : l - 1 < a_k\} \\ k_{n+1} = \min\{k \in \mathbb{N} : k > k_n \land l - \frac{1}{n+1} < a_k\} \end{cases}$$
 (52)

 \parallel

$$k_{n+1} > k_n, \ \forall n \quad \land \quad l - \frac{1}{n} < a_{k_n} \ \forall n$$
 (53)

Questo implica che $\{a_{k_n}\}_{n\in\mathbb{N}}$ verifica le disuguaglianze

$$l - \frac{1}{n} < a_{k_n} \le \alpha_{k_n} \implies \alpha_{k_n} \underset{n \to +\infty}{\longrightarrow} l \implies a_{k_n} \to l$$
 (54)