Réutilisation et valorisation du CO2

Projet N°24

Clémence JUNG, Matéo ALEN, Enzo BOULIN, Corentin LE GALL, Alice BELLICAUD

Introduction

Dans le World Energy Outlook 2021, pour atteindre la neutralité carbone d'ici 2050, l'Agence internationale de l'énergie a chiffré les volumes de CO2 qu'il va falloir capter et stocker/valoriser. Le besoin est estimé à 4 Gt CO2 /an d'ici à 2035 et à 7,6 Gt*CO*₂ /an d'ici à 2050. Quelles sont les méthodes les plus avancées pour réutiliser et valoriser le CO₂ afin d'atteindre ces objectifs?

Familles de capture

- Postcombustion: captage du CO2 en sortie d'un flux de gaz
- Précombustion : oxydation préalable du combustible pour libérer H2 et CO₂ concentrés.
- Oxycombustion: combustion avec O_2 (et non de l'air) afin d'avoir un flux $CO_2 + H_2O$

Méthodes de capture

- Absorption
- Membranes
- Adsorption
- Combustion en boucle chimique
- Stockage par minéralisation
- Distillation cryogénique

Qualités de CO₂

CO₂ pur (> 99,9%)

CO₂ dilué (entre 20 et 99%)

CO₂ industriel (< 20%)

(1) VOIE

G

0

り

Ш

Ш

(5)

BIOL

OIES

Géothermie

Concept: la récupération assistée de la chaleur en géothermie profonde consiste à injecter de l'eau froide à haute pression dans la formation géologique, pour les boucles de réactiver convection, ramenant la chaleur des profondeurs vers la surface. Le CO₂ pourrait remplacer l'eau comme fluide de travail.

Energie

Récupération Assistée des Hydrocarbures

Concept: la récupération assistée d'hydrocarbures (RAH) est l'ensemble des techniques destinées à accroître les quantités d'hydrocarbures extraites d'un gisement. En utilisant du CO_2 à l'état supercritique, la RAH permet d'augmenter la récupération d'hydrocarbures de 7 à 23 %, ce qui en fait une opération économiquement intéressante.

Energie

Etat des lieux:

En 2016, la consommation de CO_2 pour la RAH était de l'ordre de 65 à 72 Mt/an. Le potentiel d'utilisation du CO_2 en 2050 au niveau mondial est estimé entre :

- 16 et 22 GtCO₂ pour la récupération de pétrole (EOR). L'amélioration des techniques de récupération offre un potentiel de récupération de pétrole entre 67 et 137 milliards de barils et celui du CO2 capté et stocké de l'ordre de 20 à 45 MtCO₂
- 160 et 390 GtCO₂ pour la récupération de gaz naturel (EGS)

Propriété/état	Utilisations
CO ₂ supercritique/ Solvant	Extraction, séparation, réaction, formulation stérilisation, nettoyage
Fluide caloporteur	Réfrigérant, hydrate de CO_2 , nettoyage, cryo-broyage
Gaz	Conditionnement et gazéification alimentaire, agent gonflant, séchage, technique de moussage
Propriétés acido-basiques	Agent neutralisant du pH, traitement des eaux
Propriétés minérales	Reminéralisation de l'eau associée à l'injection des chaux

Electrolyse à haute température

Concept : l'eau et le dioxyde de carbone sont tous deux électrolysés à haute température (500°C à 800 °C) afin de produire du syngaz ($CO + H_2$)

Réaction chimique : $H_2O + CO_2 \rightarrow H_2 + CO + O_2$

Qualité du CO2 CO₂ pur R&D

Exemple de projet :

Energie

Au Centre énergétique et procédés des Mines ParisTech, l'équipe de recherche travaille sur la coélectrolyse de l'eau et du CO2 avec notamment une évaluation technico-économique des SOEC (Solid Oxid Electrolysis Cells) dans l'objectif d'obtenir du gaz de synthèse. Une simulation du procédé de la technologie SOEC montre la possibilité d'atteindre un coût de production de 0,85 €/kg d'éthanol (pour une production annuelle de 165 kt).

Reformage à sec et variantes

Concept : réaction du dioxyde de carbone avec du méthane pour produire du syngaz

Réaction chimique : $CO_2 + CH_4 \rightarrow 2CO + 2H_2$ Autres variantes: reformage avec de l'eau et du dioxyde de carbone, trireformage

Qualité du CO2 nécessaire

Energie

Exemple de projet :

Il existe en Iran une usine de production de méthanol à partir de gaz de synthèse avec la méthode de reformage avec de l'eau et du dioxyde de carbone. Le CO₂ utilisé est capté d'une usine d'ammoniac voisine. Cette unité, démarrée en 2004, produit 3,03 kt de méthanol par jour.

Le « Mindrex Syngas System » est un système de reformage sec pour produire un gaz de composition de 10 à 20% de CO et de 80 à 90% de H_2 , ensuite utilisé pour l'obtention du fer par la réduction d'oxyde de fer.

Hydrogénation

Concept : addition de molécules de dihydrogène (obtenues par électrolyse

de l'eau) sur du CO2 pour obtenir des produits à valeurs énergétiques

(méthanol, méthane, CO destiné à être transformé en biocarburant...) ou

Le syngaz, pour quoi faire?

Viticulture, carboxythérapie

Le gaz de synthèse produit peut être converti en carburants de synthèse (essence, diesel, éthanol...) via les réactions de synthèse de Fischer-Tropsch, en éthanol ou en méthanol. L'ajout de l'éthanol à l'essence réduit les émissions des gaz à effets de serre ainsi que d'autres polluants en garantissant le même potentiel énergétique.

Réaction de Fischer-Tropsch : $(2n + 1)H_2 + nCO_2 \rightarrow C_nH_{2n+2} + nH_2O$

Comparaison vaporeformage et reformage à sec

par kg de méthane reformé Energie à fournir (en MJ) pour

Synthèse organique

Concept : utilisation du CO_2 dans les synthèses de carboxylation en chimie organique pour rentrer dans la composition de nouveaux matériaux tels que certains polymères ou pour produire de nouvelles molécules telles que l'urée ou les polycarbonates.

Réaction chimique : pour l'urée: $2NH_3 + CO_2 \rightarrow CH_4N_2O + H_2O$

Qualité du CO2 nécessaire Urée: industrielle :: Autre: CO₂ pur

Etat des lieux:

 Urée, acide salicylique : industrialisé Polymère: R&D

Préindustriel

chimiques (acide formique, acide acétique, méthanol...).

Energie

Exemple de projet :

Qualité du CO2

nécessaire

CO₂ pur

L'usine George Olah en Islande, mise en service en 2011, utilise du CO2 purifié provenant d'une centrale géothermale. La production s'élève à environ 2 millions de litres de méthanol renouvelable par an. La capacité de production envisagée est de 5 millions de litres par an pour une consommation de CO_2 de 4.500 t/an. Les futures installations à l'échelle commerciale pourront produire entre 50 et 100 Mt de méthanol/an pour une consommation d'environ 45 kt de CO_2 .

Biocatalyse

Concept : la biocatalyse utilise des biocatalyseurs comme des enzymes

isolées ou maintenues au sein du micro-organisme d'origine afin de stimuler

les réactions chimiques, en imitant les processus naturels. Il existe, en effet,

dans la nature, certaines enzymes (ou voies enzymatiques) qui convertissent

le CO2 en molécules d'intérêt (lipides et composés oxygénés) comme

Thermochimie

Concept : réaliser des réactions chimiques à hautes températures pour transformer le CO_2 en monoxyde de carbone CO, notamment en utilisant la chaleur solaire obtenue par des miroirs réfléchissants.

Réaction chimique: $CO_2 \rightarrow CO + \frac{1}{2}O_2$

Qualité du CO2

méthane

Inertage

Energie

Exemple de projet:

Situé dans les Pyrénées Orientales à Font-Romeu, le four solaire d'Odeillo est l'un des plus grands au monde. La puissance de ce four est de 1 MW et les températures maximales obtenues sont supérieures à 3.000°C. Ce type d'installation destiné à la recherche est utilisé pour faire fonctionner un cycle thermochimique comme celui à base d'oxyde de zinc qui est dissocié en Zn gazeux et O_2 à environ 1.600°C. Le Zn métal récupéré en sortie sous forme de particules fines permet de dissocier le CO_2 à environ 300-400°C.

Via l'urée, 135 à 138 Mt de CO_2 sont valorisées par an. Les améliorations de ces procédés portent notamment sur l'utilisation de CO2 dilué et contenant des impuretés.

Le bilan carbone est plutôt défavorable : la synthèse de l'urée génère plus de 2 tonnes de CO_2 par tonne de CO_2 utilisée. Pour la production de polymères, ce ratio monte à 5,5.

Culture de microalgues

Concept: les algues et microalgues sont des organismes qui, grâce à leur activité photosynthétique, utilisent le CO_2 en présence de lumière. La biomasse générée par ce processus aboutit à la production de protéines, de lipides et de cellulose, valorisables dans les filières alimentaire, pharmaceutique... mais aussi potentiellement dans celle des algocarburants. **Réaction chimique :** $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

Le pilote Seambiotic en Israël est une unité de culture de microalgues en

bassin ouvert utilisant des gaz de fumées issus des cheminées de

combustion. Les gaz utilisés sont préalablement traités pour éliminer les

composés soufrés. La productivité moyenne obtenue est de 20 g/m²/jour.

Les algues sont ensuite congelées et envoyées par bateau aux États-

Unis. La société Inventure se charge d'extraire les lipides et la cellulose

Qualité du CO2

Exemple de projet :

pour la production d'algocarburant.

industrielle industrialisé Alimentation Chimie

Qualité du CO2 Energie CO_2 pur R&D

Energie

Exemple de projet :

l'anhydrase carbonique (AC) et la RuBisCO.

Le projet CarBioRed vise à développer de nouveaux catalyseurs efficaces et sélectifs pour l'électroréduction de CO_2 à base de métaux non nobles donc abondants. Le choix des métaux et des ligands constituant les catalyseurs étudiés repose notamment sur une approche bioinspirée des métalloenzymes transformant le CO_2 . Ils ont ainsi obtenu des catalyseurs capables de réduire le CO_2 en CO, acide formique ou formaldéhyde. Les projets consacrés à la biocatalyse du CO2 sont rares.

Minéralisation

Concept : la minéralisation du CO_2 consiste en une réaction entre le CO_2 et des oxydes de calcium ou de magnésium pour former des carbonates (MCO_3) . Les carbonates sont des produits inertes et stables. Ils constituent la forme thermodynamique la plus stable du CO_2 . On distingue deux types de minéralisation:

- la minéralisation in-situ : le CO_2 est injecté dans des formations géologiques. Ayant lieu en sous-sol, cette minéralisation s'apparente à une opération de stockage géologique.
- la minéralisation ex-situ : la minéralisation a lieu dans une usine de transformation dédiée. Les produits obtenus peuvent être valorisés : calcaire, ciment, matériaux de construction... La principale application de la minéralisation ex-situ est la formation de calcaire obtenu par réaction entre le CO_2 et la chaux éteinte $(Ca(OH)_2)$ avec de l'eau comme coproduit.

Qualité du CO2 Industrielle industriel

Etat de développement

Réaction chimique:

 CO_2 + oxyde métallique (MO) \rightarrow MCO_3 + chaleuravec M métal contenant du Mg, du Ca, du Fe...

www.mines-paristech.fr

- L. Dumergues, « Valorisation du CO2 - Partie 1 : voies directes et voies avec transformation biologique », Chimie verte, juillet 2016

- L. Dumergues, « Valorisation du CO2 - Partie 2 : voies par transformations chimiques », Chimie verte, juillet 2016 - C. Bouallou, Valorisation du CO2, Mines ParisTech-PSL, 2021

- L. Dumergues, B. Favier, R. Alvaro Claver. « Les filières de valorisation du CO2 », septembre 2014

R E S E A R C H U N I V E R S I T Y

