RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/847,809A

Input Set : N:\Crf3\RULE60\09847809A.txt
Output Set: N:\CRF3\11292001\1847809A.raw

SEQUENCE LISTING

11

```
(1) GENERAL INFORMATION:
             (i) APPLICANT: Bandman, Olga
                            Hillman, Jennifer L.
                            Lal, Preeti
                            Corley, Neil C.
                            Shah, Purvi
            (ii) TITLE OF INVENTION: HUMAN RETICULOCALBIN ISOFORMS
     3
     5
           (iii) NUMBER OF SEQUENCES: 6
            (iv) CORRESPONDENCE ADDRESS:
     Ĺ8
                  (A) ADDRESSEE: Incyte Pharmaceuticals, Inc.
                  (B) STREET: 3174 Porter Drive
     19
     20
                  (C) CITY: Palo Alto
                                                             ENTERED
    21
                  (D) STATE: CA
    22
                  (E) COUNTRY: USA
    23
                  (F) ZIP: 94304
    25
             (V) COMPUTER READABLE FORM:
                  (A) MEDIUM TYPE: Diskette
    26
    27
                  (B) COMPUTER: IBM Compatible
                  (C) OPERATING SYSTEM: DOS
    28
    29
                  (D) SOFTWARE: FastSEQ for Windows Version 2.0
    31
            (vi) CURRENT APPLICATION DATA:
C--> 32
                  (A) APPLICATION NUMBER: US/09/847,809A
C--> 33
                  (B) FILING DATE: 01-May-2001
    34
                  (C) CLASSIFICATION:
    36
           (vii) PRIOR APPLICATION DATA:
    37
                  (A) APPLICATION NUMBER: 09/270,270
    38
                  (B) FILING DATE: 1999-03-16
    40
          (viii) ATTORNEY/AGENT INFORMATION:
    41
                  (A) NAME: Billings, Lucy J.
    42
                  (B) REGISTRATION NUMBER: 36,749
    43
                  (C) REFERENCE/DOCKET NUMBER: PF-0358 US
    45
            (ix) TELECOMMUNICATION INFORMATION:
    46
                  (A) TELEPHONE: 650-855-0555
    47
                  (B) TELEFAX: 650-845-4166
                  (C) TELEX:
    48
        (2) INFORMATION FOR SEQ ID NO: 1:
    53
             (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 328 amino acids
    54
    55
                  (B) TYPE: amino acid
    56
                  (C) STRANDEDNESS: single
    57
                  (D) TOPOLOGY: linear
    59
           (vii) IMMEDIATE SOURCE:
    60
                  (A) LIBRARY: RATRNOT02
    61
                  (B) CLONE: 922578
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Leu Arg His

63

Input Set : N:\Crf3\RULE60\09847809A.txt
Output Set: N:\CRF3\11292001\1847809A.raw

66	1				5					10					15	
67	Gly	Ala	Gln	Gly	Lys	Pro	Ser	Pro	Asp	Ala	Gly	Pro	His	Gly	Gln	Gly
68				20					25					30		
69	Arg	Val	His	Gln	Ala	Ala	Pro	Leu	Ser	Asp	Ala	Pro	His	Asp	Asp	Ala
70			35					40					45			
71	His	Gly	Asn	Phe	Gln	Tyr	Asp	His	Glu	Ala	Phe	Leu	Gly	Arg	Glu	Val
72		50					55		•			60				
73	Ala	Lys	Glu	Phe	Asp	Gln	Leu	Thr	Pro	Glu	Glu	Ser	Gln	Ala	Arg	Leu
74	65					70					75					80
75	Gly	Arg	Ile	Val	Asp	Arg	Met	Asp	Arg	Ala	Gly	Asp	Gly	Asp	Gly	Trp
76					85					90					95	
77	Val	Ser	Leu	Ala	Glu	Leu	Arg	Ala	Trp	Ile	Ala	His	Thr	Gln	Gln	Arg
78				100					105					110		
79	His	Ile	Arg	Asp	Ser	Val	Ser	Ala	Ala	Trp	Asp	Thr	Tyr	Asp	Thr	Asp
80			115					120					125			
81	Arg	Asp	Gly	Arg	Val	Gly	Trp	Glu	Glu	Leu	Arg	Asn	Ala	Thr	Tyr	Gly
82	_	130	_	-			135					140				
83	His	Tyr	Ala	Pro	Gly	Glu	Glu	Phe	His	Asp	Val	Glu	Asp	Ala	Glu	Thr
84	145	-			_	150				_	155		_			160
85	Tyr	Lys	Lys	Met	Leu	Ala	Arg	Asp	Glu	Arg	Arg	Phe	Arg	Val	Ala	Asp
86	-	-	-		165		_	_		170	_		_		175	_
87	Gln	Asp	Gly	Asp	Ser	Met	Ala	Thr	Arg	Glu	Glu	Leu	Thr	Ala	Phe	Leu
88		-	-	180					185					190		
89	His	Pro	Glu	Glu	Phe	Pro	His	Met	Arg	Asp	Ile	Val	Ile	Ala	Glu	Thr
90			195					200	_	-			205			
91	Leu	Glu	Asp	Leu	Asp	Arg	Asn	Lys	Asp	Gly	Tyr	Val	Gln	Val	Glu	Glu
92		210	-		-		215	-	-	_	-	220				
93	Tyr	Ile	Ala	Asp	Leu	Tyr	Ser	Ala	Glu	Pro	Gly	Glu	Glu	Glu	Pro	Ala
94	225			-		230					235					240
95	Trp	Val	Gln	Thr	Glu	Arg	Gln	Gln	Phe	Arg	Asp	Phe	Arg	Asp	Leu	Asn
96	•				245	-				250	_		_	_	255	
97	Lys	Asp	Gly	His	Leu	Asp	Gly	Ser	Glu	Val	Gly	His	Trp	Val	Leu	Pro
98	-	_	_	260		_	_		265					270		
99	Pro	Ala	Gln	Asp	Gln	Pro	Leu	Val	Glu	Ala	Asn	His	Leu	Leu	His	Glu
100			27	_				280					28			
101	Se:	r As	o Thi	r Asj	p Lys	s Ası	Gly	y Ar	g Lei	ı Sei	r Lys	a Ala	a Glu	ı Ile	e Le	ı Gly
102		29					29		=		_	300				
103	Ası	n Tr	o Asi	n Me	t Phe	e Vai	l Gly	y Sei	r Gli	n Ala	a Thi	r Ası	туз	r Gly	y Glu	ı Asp
104	30		-			310		_			31!		_			320
105	Le	u Th	r Ar	g His	s His	s Ası	o Glu	ı Le	1							
106					32		•									
108	(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO: 3	2:							
110	` '				CE CI											
111	· · ·															
	112 (B) TYPE: nucleic acid															
113																
114				•	OPOL				-							
116		(vii	-	-	ATE S											
117		•			IBRAI			OTO	2							
			•	•												

Input Set : N:\Crf3\RULE60\09847809A.txt
Output Set: N:\CRF3\11292001\1847809A.raw

118	(B) CLONE: 922578										
120	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:										
122	CGCAGAGCGG ACGTGGAGAG CGGACGNCAG CTGGATAACA GGGGACCGAT GATGTGGCGA	60									
123	CCATCAGTTC TGCTGCTTCT GTTGCTACTG AGGCACGGGG CCCAGGGGAA GCCATCCCCA	120									
124	GACGCAGGCC CTCATGGCCA GGGGAGGGTG CACCAGGCGG CCCCCCTGAG CGACGCTCCC	180									
125	CATGATGACG CCCACGGGAA CTTCCAGTAC GACCATGAGG CTTTCCTGGG ACGGGAAGTG	240									
126	GCCAAGGAAT TCGACCAACT CACCCCAGAG GAAAGCCAGG CCCGTCTGGG GCGGATCGTG	300									
127	GACCGCATGG ACCGCGCGGG GGACGGCGAC GGCTGGGTGT CGCTGGCCGA GCTTCGCGCG	360									
128	TGGATCGCGC ACACGCAGCA GCGGCACATA CGGGACTCGG TGAGCGCGGC CTGGGACACG	420									
129	TACGACACGG ACCGCGACGG GCGTGTGGGT TGGGAGGAGC TGCGCAACGC CACCTATGGC	480									
130	CACTACGCGC CCGGTGAAGA ATTTCATGAC GTGGAGGATG CAGAGACCTA CAAAAAGATG	540									
131	CTGGCTCGGG ACGAGCGGCG TTTCCGGGTG GCCGACCAGG ATGGGGACTC GATGGCCACT	600									
132	CGAGAGGAGC TGACAGCCTT CCTGCACCCC GAGGAGTTCC CTCACATGCG GGACATCGTG	660									
133	ATTGCTGAAA CCCTGGAGGA CCTGGACAGA AACAAAGATG GCTATGTCCA GGTGGAGGAG	720									
134	TACATCGCGG ATCTGTACTC AGCCGAGCCT GGGGAGGAGG AGCCGGCGTG GGTGCAGACG	780									
135	GAGAGGCAGC AGTTCCGGGA CTTCCGGGAT CTGAACAAGG ATGGGCACCT GGATGGGAGT										
136	GAGGTGGGCC ACTGGGTGCT GCCCCCTGCC CAGGACCAGC CCCTGGTGGA AGCCAACCAC										
137	CTGCTGCACG AGAGCGACAC GGACAAGGAT GGGCGGCTGA GCAAAGCGGA AATCCTGGGT										
138	AATTGGAACA TGTTTGTGGG CAGTCAGGCC ACCAACTATG GCGAGGACCT GACCCGGCAC	1020									
139	CACGATGAGC TGTGAGCACC GCGCACCTGC CACAGCCTCA GAGGCCCGCA CAATGACCGG	1080									
140	AGGAGGGGCC GCTGTGGTCT GGCCCCCTCC CTGTCCAGGC CCCGCAGGAG GCAGATGCAG	1140									
141	TCCCAGGCAT CCTCCTGCCC CTGGGCTCTC AGGGACCCCC TGGGTCGGCT TCTGTCCCTG	1200									
142	TCACACCCCC AACCCCAGGG AGGGGCTGTC ATAGTCCCAG AGGATAAGCA ATACCTATTT	1260									
143	CTGACTGAGT CTCCCAGCCC AGACCCAGGG ACCCTTGGCC CCAAGCTCAG CTCTAAGAAC	1320									
144	CGCCCCAACC CCTCCAGCTC CAAATCTGAG CCTCCACCAC ATAGACTGAA ACTCCCCTGG	1380									
145	CCCCAGCCCT CTCCTGCCTG GCCTGGCCTG GGACACCTCC TCTCTGCCAG GAGGCAATAA	1440									
146	AAGCCAGCGC CGGGAAAAAA AAA	1463									
148	(2) INFORMATION FOR SEQ ID NO: 3:										
150	(i) SEQUENCE CHARACTERISTICS:										
151	(A) LENGTH: 315 amino acids										
152	(B) TYPE: amino acid										
153	(C) STRANDEDNESS: single										
154	(D) TOPOLOGY: linear										
156	6 (vii) IMMEDIATE SOURCE:										
	157 (A) LIBRARY: BLADNOT03										
158	(B) CLONE: 1601793										
160	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:										
162	Met Asp Leu Arg Gln Phe Leu Met Cys Leu Ser Leu Cys Thr Ala Phe										
163	1 5 10 15										
164	Ala Leu Ser Lys Pro Thr Glu Lys Lys Asp Arg Val His His Glu Pro										
165	20 25 30										
166	Gln Leu Ser Asp Lys Val His Asn Asp Ala Gln Ser Phe Asp Tyr Asp										
167	35 40 45										
168	His Asp Ala Phe Leu Gly Ala Glu Glu Ala Lys Thr Phe Asp Gln Leu										
169	50 55 60										
170	Thr Pro Glu Glu Ser Lys Glu Arg Leu Gly Lys Ile Val Ser Lys Ile										
171	65 70 75 80										
172	Asp Gly Asp Lys Asp Gly Phe Val Thr Val Asp Glu Leu Lys Asp Trp										
173	85 90 95										

Input Set: N:\Crf3\RULE60\09847809A.txt
Output Set: N:\CRF3\11292001\1847809A.raw

```
Ile Lys Phe Ala Gln Lys Arg Trp Ile Tyr Glu Asp Val Glu Arg Gln
175
                 100
                                     105
176
     Trp Lys Gly His Asp Leu Asn Glu Asp Gly Leu Val Ser Trp Glu Glu
177
             115
                                 120
                                                      125
178
     Tyr Lys Asn Ala Thr Tyr Gly Tyr Val Leu Asp Asp Pro Asp Pro Asp
179
                             135
180
     Asp Gly Phe Asn Tyr Lys Gln Met Met Val Arg Asp Glu Arg Arg Phe
181
                         150
                                              155
182
     Lys Met Ala Asp Lys Asp Gly Asp Leu Ile Ala Thr Lys Glu Glu Phe
183
                                          170
185
     Thr Ala Phe Leu His Pro Glu Glu Tyr Asp Tyr Met Lys Asp Ile Val
186
                 180
                                     185
187
     Val Gln Glu Thr Met Glu Asp Ile Asp Lys Asn Ala Asp Gly Phe Ile
188
                                 200
    Asp Leu Glu Glu Tyr Ile Gly Asp Met Tyr Ser His Asp Gly Asn Thr
189
190
                             215
191
    Asp Glu Pro Glu Trp Val Lys Thr Glu Arg Glu Gln Phe Val Glu Phe
192
                         230
                                              235
193
    Arg Asp Lys Asn Arg Asp Gly Lys Met Asp Lys Glu Glu Thr Lys Asp
194
                     245
                                          250
195
     Trp Ile Leu Pro Ser Asp Tyr Asp His Ala Glu Ala Glu Ala Arg His
196
                 260
                                     265
197
     Leu Val Tyr Glu Ser Asp Gln Asn Lys Asp Gly Lys Leu Thr Lys Glu
198
                                 280
199
    Glu Ile Val Asp Lys Tyr Asp Leu Phe Val Gly Ser Gln Ala Thr Asp
200
                             295
201
    Phe Gly Glu Ala Leu Val Arg His Asp Glu Phe
202
                         310
                                              315
204 (2) INFORMATION FOR SEQ ID NO: 4:
206
         (i) SEQUENCE CHARACTERISTICS:
207
              (A) LENGTH: 2658 base pairs
208
              (B) TYPE: nucleic acid
209
              (C) STRANDEDNESS: single
210
              (D) TOPOLOGY: linear
212
       (vii) IMMEDIATE SOURCE:
213
              (A) LIBRARY: BLADNOT03
214
              (B) CLONE: 1601793
216
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
218 CCCGCTTCCG GTTGGGCGGT GCTTGCGCGC GTGAGCTGAG CCGGTGGGTG AGCGGCGGCC
                                                                            60
    ACGGCATCCT GTGCTGTGGG GGCTACGAGG AAAGATCTAA TTATCATGGA CCTGCGACAG
                                                                           120
    TTTCTTATGT GCCTGTCCCT GTGCACAGCC TTTGCCTTGA GCAAACCCAC AGAAAAGAAG
                                                                           180
    GACCGTGTAC ATCATGAGCC TCAGCTCAGT GACAAGGTTC ACAATGATGC TCAGAGTTTT
221
                                                                           240
    GATTATGACC ATGATGCCTT CTTGGGTGCT GAAGAAGCAA AGACCTTTGA TCAGCTGACA
222
                                                                           300
    CCAGAAGAGA GCAAGGAAAG GCTTGGAAAG ATTGTAAGTA AAATAGATGG CGACAAGGAC
223
                                                                           360
    GGGTTTGTCA CTGTGGATGA GCTCAAAGAC TGGATTAAAT TTGCACAAAA GCGCTGGATT
                                                                           420
224
225 TACGAGGATG TAGAGCGACA GTGGAAGGGG CATGACCTCA ATGAGGACGG CCTCGTTTCC
                                                                           480
    TGGGAGGAGT ATAAAAATGC CACCTACGGC TACGTTTTAG ATGATCCAGA TCCTGATGAT
227
    GGATTTAACT ATAAACAGAT GATGGTTAGA GATGAGCGGA GGTTTAAAAT GGCAGACAAG
                                                                           600
228 GATGGAGACC TCATTGCCAC CAAGGAGGAG TTCACAGCTT TCCTGCACCC TGAGGAGTAT
                                                                           660
```

Input Set : N:\Crf3\RULE60\09847809A.txt
Output Set: N:\CRF3\11292001\1847809A.raw

```
229 GACTACATGA AAGATATAGT AGTACAGGAA ACAATGGAAG ATATAGATAA GAATGCTGAT
                                                                          720
230 GGTTTCATTG ATCTAGAAGA GTATATTGGT GACATGTACA GCCATGATGG GAATACTGAT
                                                                          780
231 GAGCCAGAAT GGGTAAAGAC AGAGCGAGAG CAGTTTGTTG AGTTTCGGGA TAAGAACCGT
                                                                          840
232 GATGGGAAGA TGGACAAGGA AGAGACCAAA GACTGGATCC TTCCCTCAGA CTATGATCAT
                                                                          900
233 GCAGAGGCAG AAGCCAGGCA CCTGGTCTAT GAATCAGACC AAAACAAGGA TGGCAAGCTT
                                                                          960
234 ACCAAGGAGG AGATCGTTGA CAAGTATGAC TTATTTGTTG GCAGCCAGGC CACAGATTTT
                                                                         1020
235 GGGGAGGCCT TAGTACGGCA TGATGAGTTC TGAGCTACGG AGGAACCCTC ATTTCCTCAA
                                                                         1080
236 AAGTAATTTA TTTTTACAGC TTCTGGTTTC ACATGAAATT GTTTGCGCTA CTGAGACTGT
    TACTACAAAC TTTTTAAGAC ATGAAAAGGC GTAATGAAAA CCATCCCGTC CCCATTCCTC
237
                                                                         1200
    CTCCTCTCTG AGGGACTGGA GGGAAGCCGT GCTTCTGAGG AACAACTCTA ATTAGTACAC
238
                                                                         1260
    TTGTGTTTGT AGATTTACAC TTTGTATTAT GTATTAACAT GGCGTGTTTA TTTTTGTATT
239
240 TTTCTCTGGT TGGGAGTATG ATATGAAGGA TCAAGATCCT CAACTCACAC ATGTAGACAA
                                                                         1380
241 ACATTAGCTC TTTACTCTTT CTCAACCCCT TTTATGATTT TAATAATTCT CACTTAACTA
                                                                         1440
242 ATTTTGTAAG CCTGAGATCA ATAAGAAATG TTCAGGAGAG AGGAAAGAAA AAAAATATAT
                                                                         1500
243 GCTCCACAT TTATATTTAG AGAGAGAACA CTTAGTCTTG CCTGTCAAAA AGTCCAACAT
                                                                         1560
244 TTCATAGGTA GTAGGGGCCA CATATTACAT TCAGTTGCTA TAGGTCCAGC AACTGAACCT
                                                                         1620
245 GCCATTACCT GGGCAAGGAA AGATCCCTTT GCTCTAGGAA AGCTTGGCCC AAATTGATTT
                                                                         1680
246 TCTTCTTTT CCCCCTGTAG GACTGACTGT TGGCTAATTT TGTCAAGCAC AGCTGTGGTG
                                                                         1740
247 GGAAGAGTTA GGGCCAGTGT CTTGAAAATC AATCAAGTAG TGAATGTGAT CTCTTTGCAG
                                                                         1800
248 AGCTATAGAT AGAAACAGCT GGAAAACTAA AGGAAAAATA CAAATGTTTT CGGGGCATAC
                                                                         1860
249 ATTTTTTTC TGGGTGTGCA TCTGTTGAAA TGCTCAAGAC TTAATTATTT GCCTTTTGAA
250 ATCACTGTAA ATGCCCCCAT CCGGTTCCTC TTCTTCCCAG GTGTGCCAAG GAATTAATCT
                                                                         1980
    TGGTTTCACT ACAATTAAAA TTCACTCCTT TCCAATCATG TCATTGAAAG TGCCTTTAAC
251
                                                                         2040
    GAAAGAAATG GTCACTGAAT GGGAATTCTC TTAAGAAACC CTGAGATTAA AAAAAGACTA
252
                                                                         2100
253 TTTGGATAAC TTATAGGAAA GCCTAGAACC TCCCAGTAGA GTGGGGATTT TTTTCTTCTT
                                                                         2160
254 CCCTTTCTCT TTTGGACAAT AGTTAAATTA GCAGTATTAG TTATGAGTTT GGTTGCAGTG
                                                                         2220
255 TTCTTATCTT GTGGGCTGAT TTCCAAAAAC CACATGCTGC TGAATTTACC AGGGATCCTC
                                                                         2280
256 ATACCTCACA ATGCAAACCA CTTACTACCA GGCCTTTTTC TGTGTCCACT GGAGAGCTTG
257 AGCTCACACT CAAAGATCAG AGGACCTACA GAGAGGGCTC TTTGGTTTGA GGACCATGGC
                                                                         2400
258 TTACCTTTCC TGCCTTTGAC CCATCACACC CCATTTCCTC CTCTTTCCCT CTCCCCGCTG
                                                                         2460
259 CCAAAAAAA AAAAAAAGGA AACGTTTATC ATGAATCAAC AGGGTTTCAG TCCTTATCAA
                                                                         2520
260 AGAGAGATGT GGAAAGAGCT AAAGAAACCA CCCTTTGTTC CCAACTCCAC TTTACCCATA
                                                                         2580
    TTTTATGCAA CACAAACACT GTCCTTTTGG GTCCCTTTCT TACAGATGGG ACCTCTTGAG
261
                                                                         2640
262 GAAGGAATTA TCGTATTC
                                                                         2658
264 (2) INFORMATION FOR SEQ ID NO: 5:
266
        (i) SEQUENCE CHARACTERISTICS:
267
             (A) LENGTH: 331 amino acids
268
             (B) TYPE: amino acid
269
             (C) STRANDEDNESS: single
270
             (D) TOPOLOGY: linear
272
     (vii) IMMEDIATE SOURCE:
273
             (A) LIBRARY: GenBank
274
             (B) CLONE: 1262329
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
276
278
    Met Ala Arg Gly Gly Arg Gly Arg Leu Gly Leu Ala Leu Gly Leu
279
                                        10
                     5
280
    Leu Leu Ala Leu Val Leu Ala Pro Arg Val Leu Arg Ala Lys Pro Thr
281
                                    25
    Val Arg Lys Glu Arg Val Val Arg Pro Asp Ser Glu Leu Gly Glu Arg
282
```

VERIFICATION SUMMARY

DATE: 11/29/2001

PATENT APPLICATION: US/09/847,809A

TIME: 14:05:28

Input Set : N:\Crf3\RULE60\09847809A.txt Output Set: N:\CRF3\11292001\1847809A.raw

L:5 M:220 C: Keyword misspelled or invalid format, [(1) GENERAL INFORMATION:] L:13 M:220 C: Keyword misspelled or invalid format, [(ii) TITLE OF INVENTION:] L:32 M:220 C: Keyword misspelled or invalid format, [(A) APPLICATION NUMBER:] L:33 M:220 C: Keyword misspelled or invalid format, [(B) FILING DATE:]