习题 3.5

1.

a) $f(x)=e^x$, $x \in \mathbb{R}$, \vec{y} f(x)=|x|, $x \in \mathbb{R}$.

b)

$$f(x) = \begin{cases} 0 & x = \frac{1}{2} \\ (\frac{1}{2})^{n-1} & x = (\frac{1}{2})^n & (n \ge 2) \\ x & \text{ \sharp } \text{ $\sharp$$

- c) f(x) = 1/2 x/4 \vec{x} $f(x) = 1/2 \cos(\pi x/3)$
- 2. 证明: 令 $S_i=x_1+...+x_i$, $i\in[1,n]$,即 S_i 是序列 $x_1,x_2,...,x_n$ 的前 i 个的和。令 bi 是 Si 除 n 后的余数, $i\in[1,n]$,则 bi 的取值为 0,1,...,n-1。若存在一个 $b_j=0$,则此时,令 i=1,k=j,有 $S_j=x_i+...+x_k$ 能被 n 整除。

否则, b_i, i∈[1, n],只有 n-1 个取值 1,..., n-1。

因为一共有 n 个 bi, 由抽屉原理知必有两个 bj,bk (j<k)相等。

则 S_k - S_j = x_{j+1} +...+ S_k 能被 n 整除。

7. 证明:设 37 天中每天复习的小时数分别为 $a_1, a_2, ..., a_{36}, a_{37}$ 构造出数列 $a_1, a_2, ..., a_{36}, a_{37}$ 的前 n 项和的数列 $s_1, s_2, ..., s_{36}, s_{37}$,即 $s_i=a_1+...+a_i, i\in[1,n]$ 。

则有: $1 \le a_1 = s_1 < s_2 < ... < s_3 < s_{37} \le 60$,是严格递增序列,

而序列 s_1+13 , s_2+13 , ..., $s_{36}+13$, $s_{37}+13$ 也是一个严格递增序列:

 $14 \le s_1 + 13 < s_2 + 13 < \dots < s_{36} + 13 < s_{37} + 13 \le 60 + 13 = 73$

于是,这 74 个数 s_1 , s_2 ,… s_{36} , s_{37} 和 s_1+13 , s_2+13 ,…, $s_{36}+13$, $s_{37}+13$ 都在区间[1,73]内。

根据抽屉原理,必定存在两个数相等。

由于 $s_1, s_2, ..., s_{36}, s_{37}$ 与 s_1+13 , s_2+13 , ..., $s_{36}+13$, $s_{37}+13$ 均为严格 单调的,因此必然存在一个 i 和 j ,使得 $s_i=s_j+13$ 。

因此该工人在第j+1 天起到第i天的这些天里, 共复习了13小时。