Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas DEPARTAMENTO DE MATEMÁTICA

MTM 131 – Geometria Analítica e Cálculo Vetorial – 2019/2 Prof. Fabiana Lopes Fernandes

Lista L2P4 – Planos

- 1. Determine a equação reduzida do plano nos seguintes casos:
 - (a) Determinado pelos pontos $A = (-2, 1, 0), B = (-1, 4, 2) \in C = (0, -2, 2).$
 - (b) Paralelo ao plano $\pi: 2x-3y-z+5=0$ e passa pelo ponto (4,-1,2).
 - (c) Perpendicular à reta r: $\begin{cases} x = 1 3t \\ y = 5 + 2t \text{ e contém o ponto } (-1,0,2). \\ z = -t \end{cases}$
 - (d) Determinado pelas retas $\begin{cases} x = 1 + 2t \\ y = 4t \\ z = -1 + 6t \end{cases} e \begin{cases} x = s \\ y = 1 + 2s \\ z = -2 + 3s \end{cases}$
 - (e) Perpendicular ao eixo x e passa pelo ponto (2,7,-1)
 - (f) Determinado pelas retas $\begin{cases} x = 1 + 2t \\ y = -2 + 3t \\ z = 3 t \end{cases}$ e $\frac{1-x}{2} = -y 2 = \frac{z-3}{2}$

 (g) Determinado pelo ponto (3,-1,2) e pela reta $r : \begin{cases} x = t \\ y = 2 t \\ z = 3 + 2t \end{cases}$

 - (h) Determinado pelo ponto (3, -2, -1) e pela reta de interseção dos planos $\pi_1: x + 2y +$ $z-1=0 \ \mathrm{e} \ \pi_2: 2x+y-z+7=0.$
 - (i) Determinado pelo ponto P=(1,2,1) e pela interseção dos planos $\pi_1:x-2y+z=3$ e
 - (j) Determinado pelo ponto (1,-2,3) e pela reta $\begin{cases} x = 1 2t \\ y = -2 + 3t \\ z = 1 + t \end{cases}$
- 2. Determine um vetor unitário ortogonal ao plano determinado pelos pontos A=(2,-1,2), $B = (1, 0, -1) \in C = (3, 2, 1).$
- 3. Determine a e b de modo que o plano $\pi_1: ax + by + 4z 1 = 0$ seja paralelo ao plano $\pi_2: 3x - 5y - 2z + 5 = 0.$
- 4. Determine m de modo que os planos $\pi_1: 2mx+2y-z=0$ e $\pi_2: 3xs-my+2z-1=0$ sejam perpendiculares.
- 5. Determine a interseção da reta que passa pela origem e tem $\vec{\mathbf{v}} = \vec{\mathbf{i}} + 2\vec{\mathbf{j}} + \vec{\mathbf{k}}$ como vetor diretor, com o plano 2x + y + z - 5 = 0.
- **6.** Dado o ponto P = (4, 1, -1) e a reta r : (x, y, z) = (2 + t, 4 t, 1 + 2t), mostre que $P \notin r$ e obtenha a equação geral do plano determinado por $r \in P$.
- 7. Dados os planos $\pi_1: x-y+z+1=0$ e $\pi_2: x+y-z+1=0$, determine a equação do plano que contém a reta de interseção entre π_1 e π_2 e é ortogonal ao vetor $\vec{\mathbf{n}} = (-1, 1, -1)$.
- 8. Obtenha as equações paramétricas da reta que contém o ponto P = (1,0,1) e é paralela aos planos $\pi_1 : 2x + 3y + z + 1 = 0$ e $\pi_2 : x - y + z = 0$.

1

- 9. Mostre que a reta r: $\begin{cases} x=1+3t\\ y=-1-2t & \text{é paralela ao plano } \pi:x+2y+z+3=0.\\ z=t \end{cases}$
- **10.** Mostre que a reta r: $\begin{cases} x=1+t\\ y=-1-2t \text{ está contida no plano } \pi:2x+y-3z-1=0.\\ z=0 \end{cases}$
- **11.** Calcule os valores de m e n para que a reta r: $\begin{cases} x = t \\ y = -3 + 2t \\ z = 4 t \end{cases}$ esteja contida no plano $\pi: nx + my z 2 = 0$.
- 12. Seja r a reta determinada pela interseção dos planos $\pi_1: x+y-z=0$ e $\pi_2: 2x-y+3z-1=0$. Obtenha a equação do plano que contém o ponto A=(1,0,-1) e a reta r.
- 13. Determine o ponto simétrico a P=(4,-7,4) em relação ao plano $\pi:x-3y+z+4=0$.
- **14.** Determine a equação reduzida do plano que contém os pontos A=(2,-1,6) e B=(1,-2,4) e é perpendicular ao plano $\pi: x-2y-2z+9=0$.
- 15. Considere os vetores $\vec{\mathbf{a}} = \vec{\mathbf{i}} + 3\vec{\mathbf{j}} + 2\vec{\mathbf{k}}$, $\vec{\mathbf{b}} = 2\vec{\mathbf{i}} \vec{\mathbf{j}} + \vec{\mathbf{k}}$ e $\vec{\mathbf{c}} = \vec{\mathbf{i}} 2\vec{\mathbf{j}}$. Seja π o plano paralelo aos vetores $\vec{\mathbf{b}}$ e $\vec{\mathbf{c}}$ e r uma reta ortogonal a π . Determine o comprimento da projeção ortogonal do vetor $\vec{\mathbf{a}}$ sobre a reta r.
- 16. Determine as equações paramétricas da reta que passa pelo ponto dado e é paralela à reta de interseção dos planos π_1 e π_2 .
 - (a) (1,2,0); $\pi_1: 2x-y-z+1=0$ e $\pi_2: x+3y+2z=4$
 - **(b)** (4,-1,3); $\pi_1: 2x-y-z+3=0$ e $\pi_2: 17x+9y+3z+3=0$
- 17. Determine, se existir, o ponto de interseção e o plano determinado pelas retas r_1 : $\begin{cases} x = 1 + 2t \\ y = 2 + 3t \\ z = 3 + 4t \end{cases}$

$$e r_2 : \begin{cases} x = 2 + s \\ y = 4 + 2s \\ z = -1 - 4s \end{cases}$$

18. Para o plano de equação reduzida

(a)
$$\pi_1: 5x + 4y + 10z - 20 = 0$$

(b)
$$\pi_2: 3x + 2z = 12,$$

determine:

- (i) o ponto de interseção com o eixo x;
- (ii) o ponto de interseção com o eixo y;
- (iii) o ponto de interseção com o eixo z;
- (iv) a reta de interseção com o plano xy;
- (v) a reta de interseção com o plano xz;
- (vi) a reta de interseção com o plano yz;
- (vii) faça um esboço do plano.

RESPOSTAS

1. (a)
$$12x + 2y - 9z + 22 = 0$$

(b)
$$2x - 3y - z + 1 = 0$$

(c)
$$3x - 2y + z + 1 = 0$$

(d)
$$5x + 2y - 3z = 2$$

(e)
$$y = 7$$

(f)
$$5x - 2y + 4z = 21$$

(g)
$$x + y - 2 = 0$$

(h)
$$2x + 3y + z + 1 = 0$$

(i)
$$6x - 2y + z = 3$$

(j)
$$3x + 2y + 1 = 0$$

2.
$$\pm \frac{\sqrt{6}}{3}(1,-1,-1)$$

3.
$$a = -6 e b = 10$$

4.
$$m = \frac{1}{2}$$

6.
$$8x + 6y - z - 39 = 0$$

7.
$$x - y + z + 1 = 0$$

8.
$$r: \begin{cases} x = 1 + 4t \\ y = -t \\ z = 1 - 5t \end{cases}$$

11.
$$m = -2 e n = 3$$

12.
$$3x + 2z - 1 = 0$$

13.
$$(-2, 11, -2)$$

14.
$$2x + 4y - 3z + 18 = 0$$

15.
$$\frac{1}{\sqrt{14}}$$

16. (a)
$$\begin{cases} x = 1 + t \\ y = 2 - s \\ z = t \end{cases}$$

(b)
$$\begin{cases} x = 4 - 6t \\ y = -1 + 23t \\ z = 3 - 35t \end{cases}$$

17.
$$(1,2,3)$$
 e $20x - 12y - z = 7$

18. (a) (i)
$$(4,0,0)$$

(ii)
$$(0,5,0)$$

(iv)
$$\begin{cases} 5x + 4y = 20 \\ z = 0 \end{cases}$$

$$(v) \begin{cases} x + 2z = 4 \\ y = 0 \end{cases}$$

(vi)
$$\begin{cases} 2y + 5z = 10 \\ x = 0 \end{cases}$$

(iii)
$$(0,0,6)$$

(iv)
$$\begin{cases} x = 4 \\ y = 0 \\ z = 0 \end{cases}$$

$$(v) \begin{cases} 3x + 2z = 12 \\ y = 0 \end{cases}$$

$$(vi) \begin{cases} x = 0 \\ y = 0 \\ z = 6 \end{cases}$$