Computational Methods

Differential Equations:)

Taylor Series:
$$y(x+h) = y(x) + hy'(x) + \frac{h^2y''(x)}{2!} + \frac{h^3y'''(x)}{3!} + \cdots$$
 (1)

Euler
$$y_{n+1} = y_n + hf(x_n, y_n)$$
 Modified Euler $y_{n+1} = y_n + hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hf(x_n, y_n))$ (2)

RK4
$$y_{n+1} = y_n + \frac{h}{6}(k_1 + k_2 + 2k_3 + k_4)$$
 (3)

where,

$$k_1 = f(t_n, y_n)$$
 $k_2 = f(t_n + \frac{h}{2}, y_n + h\frac{k_1}{2})$ $k_3 = f(t_n + \frac{h}{2}, y_n + h\frac{k_2}{2})$ $k_4 = f(t_n + h, y_n + hk_3)$

Adam Bashforth-Moulton

$$\mathbf{Predictor} \quad y_{n+1} = y_n + \frac{3}{2}hf(t_{n+1}, y_{n+1}) - \frac{1}{2}hf(t_n, y_n) \quad \mathbf{Corrector} \quad y_{n+1} = y_n + \frac{1}{2}(hf(t_{n+1}, y_{n+1}) + \frac{1}{2}hf(t_n, y_n)) \quad (4)$$

Integral Equations

Trapezoidal
$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left(f(x_0) + 2 \left(\sum_{i=1}^{n-1} f(x_i) \right) + f(x_n) \right)$$
 (5)

Simpson
$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[f(x_0) + 4 \left(\sum_{i=1, i \text{ odd}}^{n-1} f(x_i) \right) + 2 \left(\sum_{i=2, i \text{ even}}^{n-2} f(x_i) \right) + f(x_n) \right]$$
 (6)

Gauss Quadrature
$$\int_{a}^{b} f(x)dx \approx p[c_{1}f(px_{1}+q) + c_{2}f(px_{2}+q) + \dots + c_{n}f(px_{n}+q)]$$
 $p = \frac{b-a}{2}$ $q = \frac{b+a}{2}$ (7)

Weights and Abscissae: n = 2 ($x_i = -\sqrt{1/3}, \sqrt{1/3}$ $c_i = 1,1$) n = 3 ($x_i = -\sqrt{3/5}, 0, \sqrt{3/5}$ $c_i = 5/9, 8/9, 5/9$)

Finite Difference Methods

Central
$$f'(x_j) = \frac{f(x_{j+1}) - f(x_{j-1})}{2h}$$
 Forward $f'(x_j) = \frac{f(x_{j+1}) - f(x_j)}{h}$ Backward $f'(x_j) = \frac{f(x_j) - f(x_{j-1})}{h}$ (8)

Matrix Methods

For a matrix equation $\mathbf{A}\vec{x} = \vec{b}$ with an initial guess \vec{x}^0

Gauss Seidel
$$x_i^k = \left(-\sum_{j=1}^{i-1} a_{ij} x_j^k - \sum_{j=i+1}^n a_{ij} x_j^{k-1} + b_i \right) / a_{ii}$$
 (9)

Convergence Criteria : $\rho(\mathbf{A}) = \max |\lambda_i| < 1$ [Spectral radius], $|a_{ii}| \ge \sum_{j=1}^{n} |a_{ij}|$ [Diagonal Dominance]

Succesive Over Relaxation $(D + \omega L)x_{n+1} = -((1 - \omega)L + U)x_n + b$ $\omega = 0[Jacobi]$ $\omega = 1[GaussSeidel]$ (10)

Partial Differential Equations

$$\nabla^2 f(x,y) \approx \frac{f(x-h,y) + f(x+h,y) + f(x,y+h) - 4f(x,y)}{h^2} ; T_{i,j} = \frac{1}{4} \left(T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} \right)$$
 (11)

f eval | 2 | 3 | 4 |
$$5 \le n \le 7$$
 | $8 \le n \le 9$ | $n \ge 10$
Error | $O(h^2)$ | $O(h^3)$ | $O(h^4)$ | $O(h^{n-1})$ | $O(h^{n-2})$ | $O(h^{n-3})$

Table 1: Accuracy of ODE solvers