PLSC 503 – Spring 2021 Residuals, Model Fit, and Outliers + Simultaneity

February 23, 2021

Discrepancy, Leverage, and Influence

Note: Solid line is the regression fit for Wilma, Fred, and Betty only. Long-dashed line is the regression for Wilma, Fred, Betty, and Barney. Short-dashed (red) line is the regression for Wilma, Fred, Betty and Dino.

Discrepancy, Leverage, and Influence

Influence = Leverage \times Discrepancy

Leverage

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} \\
= \mathbf{X}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}] \\
= \mathbf{H}\mathbf{Y}$$

where

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'.$$

$$h_i = \mathbf{X}_i(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_i'$$

Residuals

Variation:

$$\widehat{\mathsf{Var}(\hat{u}_i)} = \hat{\sigma}^2 [1 - \mathsf{X}_i (\mathsf{X}'\mathsf{X})^{-1} \mathsf{X}_i']$$
 (1)

$$\widehat{\mathsf{s.e.}(\hat{u}_i)} = \hat{\sigma}\sqrt{[1-\mathsf{X}_i(\mathsf{X}'\mathsf{X})^{-1}\mathsf{X}_i']}$$

$$= \hat{\sigma}\sqrt{1-h_i}$$
(2)

"Standardized":

$$\tilde{u}_i = \frac{\hat{u}_i}{\hat{\sigma}\sqrt{1 - h_i}} \tag{3}$$

Residuals

"Studentized": define

$$\hat{\sigma}_{-i}^{2} = \text{Variance for the } N-1 \text{ observations } \neq i$$

$$= \frac{\hat{\sigma}^{2}(N-K)}{N-K-1} - \frac{\hat{u}_{i}^{2}}{(N-K-1)(1-h_{i})}. \tag{4}$$

Then:

$$\hat{u}_i' = \frac{\hat{u}_i}{\hat{\sigma}_{-i}\sqrt{1 - h_i}} \tag{5}$$

Influence

"DFBETA":

$$D_{ki} = \hat{\beta}_k - \hat{\beta}_{k(-i)} \tag{6}$$

"DFBETAS" (the "S" is for "standardized):

$$D_{ki}^* = \frac{D_{ki}}{\widehat{s.e.(\hat{\beta}_{k(-i)})}} \tag{7}$$

Cook's D:

$$D_{i} = \frac{\tilde{u}_{i}^{2}}{K} \times \frac{h_{i}}{1 - h_{i}}$$

$$= \frac{h_{i}\hat{u}_{i}^{2}}{K\hat{\sigma}^{2}(1 - h_{i})^{2}}$$
(8)

Variance

```
> # No Barney OR Dino...
> summary(lm(Y~X,data=subset(flintstones,name!="Dino" & name!="Barney")))
Residuals:
    2 4 5
0.714 -2.143 1.429
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 159.286 6.776 23.5 0.027 *
Х
              6.786 0.619 11.0 0.058 .
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.67 on 1 degrees of freedom
Multiple R-squared: 0.992, Adjusted R-squared: 0.984
F-statistic: 120 on 1 and 1 DF, p-value: 0.0579
```

Variance

```
> # No Barney (Dino included...)
> summary(lm(Y~X,data=subset(flintstones,name!="Barney")))
Residuals:
       2
-8.88e-16 2.63e-01 -2.11e+00 1.84e+00
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 157.368 2.465 63.8 0.00025 ***
Х
              6.974
                        0.161 43.3 0.00053 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.99 on 2 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.998
F-statistic: 1.87e+03 on 1 and 2 DF, p-value: 0.000534
```

A Variance-Based Statistic

"COVRATIO":

$$\mathsf{COVRATIO}_i = \left[(1 - h_i) \left(\frac{N - K - 1 + \hat{u}_i'^2}{N - K} \right)^K \right]^{-1} \tag{9}$$

Example: Federal Judicial Review, 1789-1996

Basic Regression...

```
> Fit<-lm(nulls~age+tenure+unified)
> summary(Fit)

Residuals:
    Min    1Q Median    3Q Max
-2.7857 -1.0773 -0.3634    0.4238    6.9694

Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -12.10340    2.54324 -4.759    6.57e-06 ***
age    0.21886    0.04484    4.881    4.01e-06 ***
tenure    -0.06692    0.06427 -1.041    0.300
unified    0.71760    0.45844    1.565    0.121
```

Residual standard error: 1.715 on 100 degrees of freedom Multiple R-squared: 0.2324, Adjusted R-squared: 0.2093 F-statistic: 10.09 on 3 and 100 DF, p-value: 7.241e-06

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Federal Judicial Review and Mean SCOTUS Age

Residuals, etc.

- > FitResid<-(nulls predict(Fit)) # residuals
- > FitStandard<-rstandard(Fit) # standardized residuals
- > FitStudent<-rstudent(Fit) # studentized residuals
- > FitCooksD<-cooks.distance(Fit) # Cook's D
- > FitDFBeta<-dfbeta(Fit) # DFBeta
- > FitDFBetaS<-dfbetas(Fit) # DFBetaS
- > FitCOVRATIO<-covratio(Fit) # COVRATIOs

Studentized Residuals

```
> FitStudent[74]
     74
4.415151
> Congress74<-rep(0,length=104)</pre>
> Congress74[74]<-1
> summary(lm(nulls~age+tenure+unified+Congress74))
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -10.17290 2.37692 -4.280 4.33e-05 ***
             0.18820 0.04177 4.505 1.82e-05 ***
age
tenure
          -0.06356 0.05905 -1.076 0.284
unified 0.55159 0.42282 1.305 0.195
Congress74 7.14278 1.61779 4.415 2.58e-05 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.576 on 99 degrees of freedom
Multiple R-squared: 0.3586, Adjusted R-squared: 0.3327
```

F-statistic: 13.84 on 4 and 99 DF, p-value: 5.304e-09

"Bubble Plot"

> influencePlot(Fit,id.n=4,labels=Congress,id.cex=0.8, id.col="red",xlab="Leverage")

DFBETAS

> dfbetasPlots(Fit,id.n=5,id.col="red",main="",pch=19)

COVRATIO Plot

- > plot(FitCOVRATIO~congress,pch=19,xlab="Congress",ylab="Value of COVRATIO")
- > abline(h=1,lty=2)

Sensitivity Analyses: Omitting Outliers

```
> Outlier<-rep(0,104)
> Outlier[74]<-1
> Outlier[98]<-1
> Outlier[104]<-1
> DahlSmall<-Dahl[which (Outlier==0).]
> summary(lm(nulls~age+tenure+unified,data=DahlSmall))
Call:
lm(formula = nulls ~ age + tenure + unified, data = DahlSmall)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -10.38536    1.99470   -5.206   1.08e-06 ***
          age
tenure -0.10069 0.04974 -2.024 0.0457 *
unified 0.76645 0.36069 2.125 0.0361 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.319 on 97 degrees of freedom
Multiple R-squared: 0.2578, Adjusted R-squared: 0.2349
F-statistic: 11.23 on 3 and 97 DF, p-value: 2.167e-06
```

Thinking About Diagnostics

Observational Data Complex Data Structure Informative Missingness Complex / Uncertain Causality Experimental Data
Simple Data Structure
No / Uninformative
Missingness
Simple / Clear Causality

One Approach

Pena, E.A. and E.H. Slate. 2006. "Global Validation of Linear Model Assumptions." *J. American Statistical Association* 101(473):341-354.

Tests for:

- Normality in ûs (via skewness & kurtosis tests)
- "Link function" (linearity / additivity)
- Constant variance and uncorrelatedness in ûs ("heteroskedasticity" test)

In Action

```
> Fit <- with(Africa, lm(adrate~gdppppd+muslperc+subsaharan+healthexp+
                 literacv+internalwar))
> library(gvlma)
> Nope <- gvlma(Fit)
> display.gvlmatests(Nope)
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
Call:
 gvlma(x = Fit)
                    Value
                           p-value
                                                      Decision
Global Stat
                   21.442 0.0002587 Assumptions NOT satisfied!
                    5.720 0.0167698 Assumptions NOT satisfied!
Skewness
Kurtosis
                    2.345 0.1256876
                                       Assumptions acceptable.
Link Function
                    5.892 0.0152059 Assumptions NOT satisfied!
Heteroscedasticity 7.485 0.0062227 Assumptions NOT satisfied!
```

Another Approach: plot(fit)

#1: Residuals vs. Fitted Values

#2: Q-Q Plot of \hat{u} s

"Scale-Location" Plot

Cook's D

Residuals vs. Leverage

Cook's D vs. Leverage

Simultaneity and Endogeneity

Endogeneity

Consider:

Rewrite:

$$\begin{array}{rcl} Y_1 & = & \textbf{X}_1\beta_1 + \gamma_1[\textbf{X}_2\beta_2 + \gamma_2\,Y_1 + \textbf{u}_2] + \textbf{u}_1 \\ & = & \textbf{X}_1\beta_1 + \gamma_1(\textbf{X}_2\beta_2) + \gamma_1\gamma_2\,Y_1 + \gamma_1\textbf{u}_2 + \textbf{u}_1 \\ Y_1 - \gamma_1\gamma_2\,Y_1 & = & \textbf{X}_1\beta_1 + \gamma_1(\textbf{X}_2\beta_2) + \gamma_1\textbf{u}_2 + \textbf{u}_1 \\ (1 - \gamma_1\gamma_2)\,Y_1 & = & \textbf{X}_1\beta_1 + \gamma_1(\textbf{X}_2\beta_2) + \gamma_1\textbf{u}_2 + \textbf{u}_1 \\ Y_1 & = & \textbf{X}_1\left(\frac{1}{1 - \gamma_1\gamma_2}\beta_1\right) + \textbf{X}_2\left(\frac{\gamma_1}{1 - \gamma_1\gamma_2}\beta_2\right) + \left(\frac{\gamma_1\textbf{u}_2 + \textbf{u}_1}{1 - \gamma_1\gamma_2}\right) \\ & = & \Delta_1\textbf{X}_1 + \Delta_2\textbf{X}_2 + \textbf{e} \end{array}$$

"Reduced Form"

$$\mathbf{\textit{Y}}_{1} = \mathbf{\textit{X}}_{1}\left(\frac{1}{1-\gamma_{1}\gamma_{2}}\boldsymbol{\textit{\beta}}_{1}\right) + \mathbf{\textit{X}}_{2}\left(\frac{\gamma_{1}}{1-\gamma_{1}\gamma_{2}}\boldsymbol{\textit{\beta}}_{2}\right) + \left(\frac{\gamma_{1}\mathbf{\textit{u}}_{2} + \mathbf{\textit{u}}_{1}}{1-\gamma_{1}\gamma_{2}}\right)$$

means

$$\frac{\partial Y_1}{\partial X_\ell} = \frac{\beta_\ell}{1 - \gamma_1 \gamma_2}.$$

But

$$\hat{\Delta}_1 \neq \hat{\boldsymbol{\beta}}_1.$$

Simultaneity Bias

For (e.g.)

$$Y_1 = \mathbf{X}_1 \boldsymbol{\beta}_1 + \gamma_1 Y_2 + \mathbf{u}_1$$

we have:

$$\mathsf{E}(Y_2,\mathbf{u}_1) = \frac{\gamma_2}{1 - \gamma_1 \gamma_2} \sigma_{\mathbf{u}}^2$$

Result:

- Bias (unless $\gamma_2 = 0$)
- Inconsistency

What To Do

- OLS
- Lagged Variables
- Two-Stage Least Squares (2SLS)
- Systems of Equations / 3SLS / etc.

Recall that a simple linear model:

$$Y = X\beta + u$$

gives us:

$$\hat{\boldsymbol{\beta}}_{OLS} = \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}.$$

Suppose $Cov(X, u) \neq 0$, but we have Z with

- $Cov(Z, X) \neq 0$ and
- $\bullet \ \, \mathsf{Cov}(\mathbf{Z},\mathbf{u}) = \mathbf{0}. \\$

Then:

$$\hat{\boldsymbol{\beta}}_{IV} = (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{Y}
= (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'(\mathbf{X}\boldsymbol{\beta} + \mathbf{u})
= \boldsymbol{\beta} + (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{u}$$

is consistent.

2SLS: How-To

- Regress endogenous Xs variables on $\{Z, X\}$
- Generate X̂s
- Regress Y on $\hat{\mathbf{X}}$ to get β_{2SLS} .
- Adjust standard error estimates

IV Estimation

```
library(MASS)
library(sem)
library(car)
seed<-1337
set.seed(seed)
mu < -c(0,0,0) \# <== X, Z, U
Sigma<-matrix(c(1,0.8,0.4,0.8,1,0,0.4,0,1),
                                                # Cor(X,Y)=0.8, etc.
             nrow=3,byrow=TRUE)
Vars<- mvrnorm(500,mu,Sigma)</pre>
colnames(Vars)<-c("X","Z","U")</pre>
Vars<-data.frame(Vars)
Vars$Y<- 1 + Vars$X + Vars$U
```


Plain Old OLS...

```
> OLS<- lm(Y~X,data=Vars)</pre>
> summary(OLS)
Call:
lm(formula = Y ~ X, data = Vars)
Residuals:
   Min
            10 Median 30
                                   Max
-3.3809 -0.6058 -0.0102 0.6320 2.9470
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.04770 0.04209 24.89 <2e-16 ***
X
            1.40254   0.04005   35.02   <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.9413 on 498 degrees of freedom
Multiple R-squared: 0.7112, Adjusted R-squared: 0.7106
F-statistic: 1226 on 1 and 498 DF, p-value: < 2.2e-16
```

Two-Stage Least Squares

```
> TSLS<-tsls(Y~I(X).data=Vars.instruments=~Z)
> summary(TSLS)
2SLS Estimates
Model Formula: Y ~ I(X)
Instruments: ~7
Residuals:
   Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.29300 -0.68210 -0.06139 0.00000 0.76270 2.70300
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.0491828  0.0456017  23.00754 < 2.22e-16 ***
T(X)
           1.0302012 \quad 0.0536909 \quad 19.18763 < 2.22e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.0196738 on 498 degrees of freedom
```

IV: A (Toy) Example

> summary(IRData)

dyadid	logdisputes	logtrade	I0s
Min. : 2020	Min. :-0.6931	Min. :-0.6931	Min. : 4.579
1st Qu.:135155	1st Qu.:-0.6931	1st Qu.: 2.4079	1st Qu.:19.500
Median :220484	Median :-0.6931	Median : 5.5786	Median :27.704
Mean :275526	Mean :-0.2627	Mean : 4.6518	Mean :30.891
3rd Qu.:385710	3rd Qu.: 0.0000	3rd Qu.: 7.1248	3rd Qu.:39.289
Max. :900920	Max. : 3.4965	Max. :11.5037	Max. :93.700
contiguity	capratio	GDPgrowth	
Min. :0.0000	Min. : 1.081	Min. :-9.0800	
1st Qu.:0.0000			
	1st Qu.: 4.849	1st Qu.:-0.2923	
Median :0.0000	1st Qu.: 4.849 Median : 26.577	1st Qu.:-0.2923 Median : 0.8363	
•		•	
Median :0.0000	Median : 26.577	Median : 0.8363 Mean : 0.5097	

Ordinary Regression

```
> OLSWar<-lm(logdisputes~logtrade+contiguity+capratio,data=IRData)
> summary(OLSWar)
Call:
lm(formula = logdisputes ~ logtrade + contiguity + capratio,
   data = TRData)
Residuals:
  Min 10 Median 30 Max
-0.828 -0.326 -0.269 -0.090 3.455
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4253192  0.0602014  -7.06  3.5e-12 ***
logtrade 0.0085581 0.0105739 0.81 0.419
contiguity 0.4622674 0.0712406 6.49 1.5e-10 ***
capratio -0.0001296 0.0000647 -2.00 0.045 *
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.853 on 813 degrees of freedom
Multiple R-squared: 0.083, Adjusted R-squared: 0.0796
F-statistic: 24.5 on 3 and 813 DF, p-value: 3.35e-15
```

2SLS "By-Hand" (stage one)

```
> ITrade<-lm(logtrade~contiguity+IOs+capratio)
> summary(ITrade)
```

Residuals:

```
Min 1Q Median 3Q Max
-6.0385 -1.7666 0.4139 1.6154 7.6029
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.7319793 0.1912570 3.827 0.000140 ***
contiguity 1.3386037 0.1816041 7.371 4.17e-13 ***
IOS 0.1218373 0.0055313 22.027 < 2e-16 ***
capratio -0.0013913 0.0001626 -8.555 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 2.239 on 813 degrees of freedom Multiple R-squared: 0.5535, Adjusted R-squared: 0.5519 F-statistic: 335.9 on 3 and 813 DF, p-value: < 2.2e-16

2SLS "By-Hand" (stage two)

```
> IVWarByHand<-with(IRData, lm(logdisputes~capratio+contiguity+
                        (ITrade$fitted.values)))
> summary(IVWarByHand)
Call:
lm(formula = logdisputes ~ capratio + contiguity + (ITrade$fitted.values))
Residuals:
  Min 10 Median 30
                             Max
-1.006 -0.362 -0.278 -0.049 3.530
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  -0.1515180 0.0832287 -1.82 0.06905 .
capratio
                   -0.0002664 0.0000705 -3.78 0.00017 ***
contiguity
                   0.6263774 0.0788444 7.94 6.5e-15 ***
ITrade$fitted.values -0.0558374 0.0171921 -3.25 0.00121 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.848 on 813 degrees of freedom
Multiple R-squared: 0.094, Adjusted R-squared: 0.0907
F-statistic: 28.1 on 3 and 813 DF, p-value: <2e-16
```

2SLS, Automagically

```
> library(sem)
> TwoSLSWar<-tsls(logdisputes~contiguity+capratio+I(logtrade),
   instruments=~contiguity+capratio+IOs)
> summary(TwoSLSWar)
2SLS Estimates
Model Formula: logdisputes ~ contiguity + capratio + I(logtrade)
Instruments: ~contiguity + capratio + IOs
Residuals:
    Min. 1st Qu. Median Mean 3rd Qu.
                                                    Max.
-1.21e+00 -5.24e-01 -2.26e-01 -7.44e-17 -2.10e-02 3.65e+00
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1515180 8.562e-02 -1.770 7.717e-02
contiguity 0.6263774 8.111e-02 7.722 3.353e-14
capratio -0.0002664 7.252e-05 -3.674 2.543e-04
I(logtrade) -0.0558374 1.769e-02 -3.157 1.652e-03
Residual standard error: 0.8723 on 813 degrees of freedom
```

45 / 49

Weak Instruments

```
> OLSTrade<-lm(logtrade~logdisputes+contiguity+IOs)
> summary(OLSTrade)
```

Residuals:

```
Min 1Q Median 3Q Max
-6.2467 -2.2067 0.4275 1.6659 6.1264
```

Coefficients:

Residual standard error: 2.312 on 813 degrees of freedom Multiple R-squared: 0.5241, Adjusted R-squared: 0.5223 F-statistic: 298.4 on 3 and 813 DF, p-value: < 2.2e-16

Weak Instruments (continued)

```
> TwoSLSTrade<-tsls(logtrade~contiguity+IOs+I(logdisputes),
   instruments=~contiguity+capratio+IOs)
> summary(TwoSLSTrade)
2SLS Estimates
Model Formula: logtrade ~ contiguity + IOs + I(logdisputes)
Instruments: ~contiguity + capratio + IOs
Residuals:
    Min. 1st Qu. Median Mean 3rd Qu.
                                                  Max.
-2.57e+01 -1.46e+00 1.36e+00 2.84e-14 4.00e+00 1.09e+01
             Estimate Std. Error t value Pr(>|t|)
             2.150 0.85122 2.526 1.173e-02
(Intercept)
contiguity -2.728 1.52615 -1.787 7.427e-02
IOs
               0.172 0.02045 8.408 2.220e-16
I(logdisputes) 7.371 2.45198 3.006 2.727e-03
```

Residual standard error: 6.3721 on 813 degrees of freedom

47 / 49

Pretty Good Instrument (Trade)

Crappy Instrument (War)

