Orthogonal Projection

Alvin Kim

July 16, 2024

- 1 Introduction
 - Definitions
 - \blacksquare Example

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Note

In this presentation, projection refers to specifically orthogonal projection, \vec{p} refers to $\text{proj}_S \vec{b}$, and \vec{e} refers to the error vector $\vec{e} = \vec{b} - \vec{p}$.

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Closest means that the error is orthogonal to S.

Example

Draw $\operatorname{proj}_a b$.

Note

When projecting a vector onto another vector \vec{a} , the subspace S is the span of \vec{a} .

