

January 2007 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks	
1.	(a) $\sin 3\theta = \sin(2\theta + \theta) = \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$ $= 2\sin \theta \cos^2 \theta + (1 - 2\sin^2 \theta)\sin \theta$ $= 2\sin \theta - 2\sin^3 \theta + \sin \theta - 2\sin^3 \theta$ $= 3\sin \theta - 4\sin^3 \theta$ * cso	B1 B1 B1 M1 A1	(5)
	(b) $\sin 3\theta = 3 \times \frac{\sqrt{3}}{4} - 4\left(\frac{\sqrt{3}}{4}\right)^3 = \frac{3\sqrt{3}}{4} - \frac{3\sqrt{3}}{16} = \frac{9\sqrt{3}}{16}$ or exact equivalent	M1 A1	(2) [7]
2.	(a) $f(x) = \frac{(x+2)^2, -3(x+2)+3}{(x+2)^2}$	M1 A1, A1	I
	$= \frac{x^2 + 4x + 4 - 3x - 6 + 3}{\left(x + 2\right)^2} = \frac{x^2 + x + 1}{\left(x + 2\right)^2} $ \$\psi\$ cso	A1	(4)
	(b) $x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$, > 0 for all values of x.	M1 A1, A1	1 (3)
	(c) $f(x) = \frac{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}}{\left(x + 2\right)^2}$ Numerator is positive from (b) $x \neq -2 \implies \left(x + 2\right)^2 > 0$ (Denominator is positive)		
	Hence $f(x) > 0$	B1	(1) [8]
	Alternative to (b) $\frac{d}{dx}(x^2 + x + 1) = 2x + 1 = 0 \implies x = -\frac{1}{2} \implies x^2 + x + 1 = \frac{3}{4}$	M1 A1	
	A parabola with positive coefficient of x^2 has a minimum $\Rightarrow x^2 + x + 1 > 0$ Accept equivalent arguments	A1	(3)

edexcel ...

Question Number	Scheme	Marks
3.	(a) $y = \frac{\pi}{4} \implies x = 2\sin\frac{\pi}{4} = 2 \times \frac{1}{\sqrt{2}} = \sqrt{2} \implies P \in C$ Accept equivalent (reversed) arguments. In any method it must be clear that $\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}$ or exact equivalent is used.	B1 (1)
	(b) $\frac{dx}{dy} = 2\cos y or 1 = 2\cos y \frac{dy}{dx}$ $\frac{dy}{dx} = \frac{1}{2\cos y} \qquad \text{May be awarded after substitution}$ $y = \frac{\pi}{4} \Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{2}} * cso$	M1 A1 M1 A1 (4)
	(c) $m' = -\sqrt{2}$ $y - \frac{\pi}{4} = -\sqrt{2}(x - \sqrt{2})$ $y = -\sqrt{2}x + 2 + \frac{\pi}{4}$	B1 M1 A1 A1 (4) [9]
4.	(i) $\frac{dy}{dx} = \frac{(9+x^2) - x(2x)}{(9+x^2)^2} \left(= \frac{9-x^2}{(9+x^2)^2} \right)$ $\frac{dy}{dx} = 0 \implies 9-x^2 = 0 \implies x = \pm 3$ $\left(3, \frac{1}{6}\right), \left(-3, -\frac{1}{6}\right) \text{Final two A marks depend on second M only}$	M1 A1 M1 A1 A1, A1 (6)
	(ii) $\frac{dy}{dx} = \frac{3}{2} (1 + e^{2x})^{\frac{1}{2}} \times 2e^{2x}$ $x = \frac{1}{2} \ln 3 \implies \frac{dy}{dx} = \frac{3}{2} (1 + e^{\ln 3})^{\frac{1}{2}} \times 2e^{\ln 3} = 3 \times 4^{\frac{1}{2}} \times 3 = 18$	M1 A1 A1 M1 A1 (5) [11]

Question Number	Scheme	Marks
5.	(a) $R^2 = (\sqrt{3})^2 + 1^2 \implies R = 2$ $\tan \alpha = \sqrt{3} \implies \alpha = \frac{\pi}{3}$ accept awrt 1.05	M1 A1 (4)
	(b) $\sin(x + \text{their } \alpha) = \frac{1}{2}$	M1
	$x + \text{ their } \alpha = \frac{\pi}{6} \left(\frac{5\pi}{6}, \frac{13\pi}{6} \right)$ $x = \frac{\pi}{2}, \frac{11\pi}{6}$ accept awrt 1.57, 5.76	M1 A1 (4)
	The use of degrees loses only one mark in this question. Penalise the first time it occurs in an answer and then ignore.	[8]

Question Number	Scheme	Mark	S
6.	(a) $y = \ln(4-2x)$ $e^y = 4-2x$ leading to $x = 2-\frac{1}{2}e^y$ Changing subject and removing ln	M1 A1	
	$y = 2 - \frac{1}{2}e^{x} \implies f^{-1} \mapsto 2 - \frac{1}{2}e^{x} *$ cso	A1	
	Domain of f^{-1} is \square	B1	(4)
	(b) Range of f^{-1} is $f^{-1}(x) < 2$ (and $f^{-1}(x) \in \Box$)	B1	(1)
	(c) $f^{-1}(x) = 2$ Shape	B1	
	1.5 ln 4	B1 B1	
	$y = 2$ $\ln 4$	B1	(4)
	(d) $x_1 \approx -0.3704$, $x_2 \approx -0.3452$ cao If more than 4 dp given in this part a maximum on one mark is lost. Penalise on the first occasion.	B1, B1	(2)
	(e) $x_3 = -0.35403019\dots$ $x_4 = -0.35092688\dots$ $x_5 = -0.35201761\dots$		
	$x_6 = -0.352 \text{ of } 7 \text{ of } \dots$ $x_6 = -0.351 633 86 \dots \qquad \text{Calculating to at least } x_6 \text{ to at least four dp}$ $k \approx -0.352 \qquad \text{cao}$	A1	(2) [13]
	Alternative to (e) $k \approx -0.352$ Found in any way Let $g(x) = x + \frac{1}{2}e^x$		
	4	M1	
	$g(-0.3515) \approx +0.0003$, $g(-0.3525) \approx -0.001$ Change of sign (and continuity) $\Rightarrow k \in (-0.3525, -0.3515)$	M1	
	$\Rightarrow k = -0.352 \text{ (to 3 dp)}$	A1	(2)

Question Number	Scheme	Marks
7.	(a) $f(-2)=16+8-8(=16)>0$ f(-1)=1+4-8(=-3)<0 Change of sign (and continuity) \Rightarrow root in interval $(-2,-1)$ ft their calculation as long as there is a sign change (b) $\frac{dy}{dx} = 4x^3 - 4 = 0 \Rightarrow x = 1$ Turning point is $(1,-11)$ (c) $a=2, b=4, c=4$	B1 B1 B1ft (3) M1 A1 A1 (3) B1 B1 B1 (3)
	Shape ft their turning point in correct quadrant only 2 and -8	B1 B1 ft B1 (3)
	Shape	B1 (1) [13]

Question Number	Scheme	Mar	ks
8.	(i) $\sec^2 x - \csc^2 x = (1 + \tan^2 x) - (1 + \cot^2 x)$ $= \tan^2 x - \cot^2 x * $ cso	M1 A1 A1	(3)
	(ii)(a) $y = \arccos x \implies x = \cos y$ $x = \sin\left(\frac{\pi}{2} - y\right) \implies \arcsin x = \frac{\pi}{2} - y$	B1 B1	(2)
	$ \begin{array}{c} 2 \\ \text{Accept} \\ \text{arcsin } x = \arcsin \cos y \end{array} $		(-)
	(b) $\arccos x + \arcsin x = y + \frac{\pi}{2} - y = \frac{\pi}{2}$	B1	(1) [6]
	Alternatives for (i)		
	$\sec^{2} x - \tan^{2} x = 1 = \csc^{2} x - \cot^{2} x$ Rearranging $\sec^{2} x - \csc^{2} x = \tan^{2} x - \cot^{2} x *$ cso	M1 A1 A1	(3)
	$\left(LHS = \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x \sin^2 x}\right)$		
	RHS = $\frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\sin^2 x} = \frac{\sin^4 x - \cos^4 x}{\cos^2 x \sin^2 x} = \frac{(\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x)}{\cos^2 x \sin^2 x}$	M1	
	$= \frac{\sin^2 x - \cos^2 x}{\cos^2 x \sin^2 x}$ $= LHS * \qquad \text{or equivalent}$	A1 A1	(3)
	- -		