CREDIT ONE

Credit one is a company that rates customers but there is an increase in customer default rates.

The agenda is to ensure customers can/will pay their loans.

DATA CLEANING & ADDITIONAL COLUMNS

All the column was of object data types.

Needed to remove the duplicate rows

The default status column, sex column and Education columns

needed to be duplicated and populated with numeric data

```
(default =1 ; non-default = 2)

df['DEFAULT']=df['DEFAULT STATUS'].map({'default': 1, 'not default': 2})

#(Gender: male =1; female=2)

df['GENDER']= df['SEX'].map({'male':1, 'female': 2})

# Education 'graduate school': 1, 'university': 2, 'high school': 3, 'other': 4

df['ED_LEVEL']= df['EDUCATION'].map({'graduate school': 1, 'university': 2, 'high school': 3, 'other': 4})
```

Additional Columns

Additional column to store discretized CREDIT LIMIT data needed to be created.

AGE_BIN column is created to store discretized age

BILL_AMT_AVG was create to store the averages of six BILL_AMT columns

PAY_AMT_AVG was create to store the averages of six PAY_AMT columns

Additional columns were created to store the discretized data for the above two columns

BILL_DIFF_AVG column was created to check if it is has any correlation with default

DATAFRAME COLUMNS

#	Column	Non-Null Count	Dtype
0	ID	30000 non-null	int64
1	LIMIT_BAL	30000 non-null	int64
2	SEX	30000 non-null	object
3	EDUCATION	30000 non-null	object
4	MARRIAGE	30000 non-null	int64
5	AGE	30000 non-null	int64
6	PAY_0	30000 non-null	int64
7	PAY_2	30000 non-null	int64
8	PAY_3	30000 non-null	int64
9	PAY_4	30000 non-null	int64
10	PAY_5	30000 non-null	int64
11	PAY_6	30000 non-null	int64
12	BILL_AMT1	30000 non-null	int64
13	BILL_AMT2	30000 non-null	int64
14	BILL_AMT3	30000 non-null	int64
15	BILL_AMT4	30000 non-null	int64

```
16 BILL_AMT5
                    30000 non-null int64
    BILL AMT6
                    30000 non-null int64
    PAY_AMT1
                    30000 non-null int64
    PAY_AMT2
                    30000 non-null int64
                    30000 non-null int64
    PAY AMT3
    PAY_AMT4
                    30000 non-null int64
    PAY_AMT5
                    30000 non-null int64
    PAY_AMT6
                    30000 non-null int64
    DEFAULT STATUS
                    30000 non-null object
    DEFAULT
                    30000 non-null int64
    GENDER
                    30000 non-null int64
    ED_LEVEL
                    30000 non-null int64
    age_bin
                    30000 non-null category
    CREDIT_LIM
                    30000 non-null category
dtypes: category(2), int64(25), object(3)
memory usage: 6.5+ MB
```

EDA FOR AGE AND DEFAULT

There was no relationship between age and default status. The 20-30 and 30-40 age group appears to be more in the non-default status because that age group has more more number of rows

EDA FOR AGE AND DEFAULT

	age_bin	DEFAULT	T STATUS	rows
0	30		default	2471
1	30	not	default	8542
2	40		default	2189
3	40	not	default	8524
4	50		default	1399
5	50	not	default	4606
6	60		default	504
7	60	not	default	1493
8	70		default	68
9	70	not	default	189
10	80		default	5
11	80	not	default	10

	age_bin
30	11013
40	10713
50	6005
60	1997
70	257
80	15

EDA FOR CREDIT LIMIT AND DEFAULT

There was no relationship between age and default status. There is more number of customers who fall between 100-200K followed by 25-50K and 50K-100K.

EDA FOR CREDIT LIMIT AND DEFAULT

	CREDIT_LIM	DEFAULT STATUS	rows	2221	0.04044
0	25K	default	895	200K	0.262667
1	25K	not default	1576	FOV	0 177500
2	50K	default	1545	50K	0.173500
3	50K	not default	3660	300K	0.168633
4	100K	default	1244	3001	0.100033
5	100K	not default	3578	100K	0.160733
6	200K	default	1535	1001	0.100/33
7	200K	not default	6345	400K	0.091967
8	300K	default	812	4001	0.071707
9	300K	not default	4247	25K	0.082367
10	400K	default	388	2011	0.002007
11	400K	not default	2371	500K	0.053267
12	500K	default	194	55511	0.000207
13	500K	not default	1404	1M	0.006867
14	1M	default	23		
15	1M	not default	183		

EDA FOR GENDER AND DEFAULT

There was no relationship between gender and default status.
About 66% of the customers are women. So it appear that they are more in both the default and not default status

EDA FOR GENDER AND DEFAULT

	SEX	DEFAUL	r status	Number	of	Customers
0	female		default			3763
1	female	not	default			14349
2	male		default			2873
3	male	not	default			9015

	SEX
female	18112
male	11888

EDA FOR MARRIAGE AND DEFAULT

There was no relationship between marriage status and default status.
There is more number of customers are married and single than others and divorced.

EDA FOR MARRIAGE AND DEFAULT

O-others, 1-married, 2-single, 3- divorce

	MARRIAGE	DEFAULT	STATUS	Number	of	Customers
0	0		default			5
1	0	not	default			49
2	1		default			3206
3	1	not	default			10453
4	2		default			3341
5	2	not	default			12623
6	3		default			84
7	3	not	default			239

O-others, 1-married, 2-single, 3- divorce

	MARRIAGE
0	54
1	13659
2	15964
3	323

EDA PAY STATUS & DEFAULT

The EDA output revealed that there are more customers who use

- Revolving credit followed by, (status 0)
- no consumption and then by, (status -2)
- paid in full. (status -1).

EDA AVG BILL AMOUNT VS DEFAULT

rows	LT STATUS	DEFAUL	BILL_AMT_AVG_BIN	
368	default		0K	0
703	t default	not	0K	1
3272	default		25K	2
11784	t default	not	25K	3
1300	default		50K	4
4268	t default	not	50K	5
872	default		100K	6
3336	t default	not	100K	7
588	default		200K	8
2473	t default	not	200K	9
154	default		300K	10
580	t default	not	300K	11
56	default		400K	12
159	t default	not	400K	13
22	default		500K	14
52	t default	not	500K	15
4	default		900K	16
9	t default	not	900K	17

EDA AVG BILL AMOUNT VS CREDIT LMT AND DEFAULT STATUS

EDA AVG BILL AMOUNT VS CREDIT LMT AND DEFAULT STATUS

EDA AVG PAY AMOUNT VS CREDIT LMT AND DEFAULT STATUS

	PAY_AMT_AVG
count	30000.000000
mean	5275.232108
std	10137.946323
min	0.000000
25%	1113.290000
50%	2397.165000
75%	5583.915000
max	627344.330000

EDA AVG BILL AMOUNT VS AVG PAY AMOUNT AND DEFAULT STATUS

EDA BILL DIFF AVG BIN AND DEFAULT STATUS

EDA BILL DIFF AVG BIN AND PAY AMT AVG & DEFAULT STATUS

CORRELATION MAP

CORRELATION

LIMIT_BAL is positively correlated with BILL_AMT_AVG,
 PAY_AMT_AVG,BILL_DIFF_AVG with 30%, 35%, 25% respectively

LIMIT_BAL and DEFAULT is correlated 15%

 Payment status columns next to each other seems to be positively correlated at or above 0.75

PAY_0 AND PAY_1; PAY_1 AND PAY_2; PAY_3 AND PAY_4; PAY_5 and PAY_6

RECOMMENDATION AND CONCLUSION

- Looks like the payment status are the only columns that can be used to predict the subsequent payment status.
- Instead of waiting for 8 months, Credit one can take actions within 2-3 months.