ISI Mock 3 PSA

April 25, 2024

- a) 160
- b) 265
- c) 120
- d) 200

2) Find $\max\{xyz\}$ subject to $x^2+2y^2+9z^2=6$ where x>0, y>0, z>0.

a) $\frac{1}{3}$ b) $\frac{2}{3}$ c) 1
d) NONE

3) The value of sum $\cos\left(\frac{\pi}{1000}\right)+\cos\left(\frac{2\pi}{1000}\right)+\ldots+\cos\left(\frac{999\pi}{1000}\right)$ is a) 0 b) 1 c) $\frac{1}{1000}$ d) an irrational number

- 4) If $z_1, z_2, ..., z_7$ are the roots of $(z+1)^7+z^7=0$, the value of $\sum_{k=1}^7 Re\left(z_k\right)$ is (where Re denotes the real part) $a) \frac{7}{2}$ $b) \frac{5}{2}$ $c) \frac{7}{2}$ d) NONE

- 5) The last digit of $(2137)^{754}$ is a) 1

 - b) 3
 - c) 7 d) 9

- 6) The remainder when $3^{12} + 5^{12}$ is divisible by 13 is

 - a) 1 b) 2 c) 3

- 7) The number of 0's at the end of the integer 100! 101! + ... + 108! 109! + 110! is
 - a) 24
 - b) 25
 - c) 26
 - \vec{d}) 27

- 8) The general solution of sin(x) 3sin(2x) + sin(3x) = cos(x) 3cos(2x) + cos(3x) is

 - (a) $\frac{n\pi}{2} + \frac{\pi}{8}$ (b) $n\pi + \frac{\pi}{4}$ (c) $n\pi + \frac{\pi}{2}$ (d) $n\pi + \frac{3\pi}{4}$

9) In a triangle ABC, AD is the median. If length of AB is 7, length of AC is 15 and length of BC is 10, then, length of AD equals

- $a)\sqrt{125}$

- $d) \frac{\sqrt{864}}{5}$

10) Let f is continuous in [0,1], then,

$$\lim_{n \to \infty} \sum_{j=0}^{\left[\frac{n}{2}\right]} \frac{1}{n} f\left(\frac{j}{n}\right)$$

(where [y] is the largest integer less than or equal to y)

- a) does not exist
- b) exists and equal to $\frac{1}{2} \int_{0}^{x} f(x) dx$
- c) exists and equal to $\int_{0}^{\cdot} f(x)dx$
- d) exists and equal to $\int_{0}^{\frac{1}{2}} f(x)dx$

- b) (6,9)
- c) (3,6)
- d) (0,3)

12) Let
$$f(x) = \begin{cases} \frac{x}{|x|} & x \neq 0 \\ 1 & x = 0 \end{cases}$$
, $g(x) = \begin{cases} \frac{\sin(x+1)}{(x+1)} & x \neq -1 \\ 1 & x = -1 \end{cases}$, $h(x) = 2[x] - f(x)$, where $[x]$ is the greatest integer function $\leq x$. Then, the value of $\lim_{x \to 1} g(h(x-1))$ is ?

- a) Does not exist
- b) 1
- c) -1
- $d) \sin(1)$

13) Let M be the collection of all 3×3 real symmetric positive definite matrices. Consider the set

$$S = \left\{ A \in M : A^{50} - \frac{1}{4}A^{48} = 0 \right\},$$

where 0 denotes the 3×3 zero matrix. Then, the number of elements in S equals

- a) 0
- *b*) 1
- c) 8
- $d) \infty$

- 14) Let $A = [a, u_1, u_2, u_3]$, $B = [b, u_1, u_2, u_3]$ and $C = [u_2, u_3, u_1, a + b]$ be 4×4 real matrices, where a, b, u_1, u_2, u_3 are 4×1 real column vectors. Let det(A), det(B) and det(C) denotes the determinants of matrices A, B and C respectively. If det(A) = 6 and det(B) = 2, then, det(A + B) det(C) equals
 - a) 8
 - b) 16
 - c) 0
 - d) 72

- $15) \lim_{n \to 0} (2^n + n2^n \sin^2(\frac{n}{2}))^{\frac{1}{2n n\cos(\frac{1}{n})}}$ is
 - a) 0
 - b) 1
 - c) 2
 - d) NONE

- 16) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation whose matrix with respect to the standard basis $\{e_1, e_2, e_3\}$
- of R^3 is $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. Then, T
 - a) maps the subspace spanned by e_1 and e_2 into itself.
 - b) has distinct eigen-values
 - c) has eigen-vectors that span R^3
 - d) has non-zero null space

- 17) The total number of distinct $x^3 \in R$ for which $\begin{vmatrix} x & x^2 & 1+x^3 \\ 2x & 4x^2 & 1+8x^3 \\ 3x & 9x^2 & 1+27x^3 \end{vmatrix} = 10$ is
 - a) 0
 - b) 1
 - c) 2
 - d) 3

- 18) Let X and Y be two random variables such that the moment generating function of X is $M_X(t)$ and the moment generating function of Y is $H(t) = \left(\frac{3}{4}e^{2t} + \frac{1}{4}\right)M(t)$ where $t \in (-h,h), h > 0$. If the mean and variance of X are $\frac{1}{2}$ and $\frac{1}{4}$, respectively, then, the variance of Y (in integer) is equal to
 - a) 1
 - b) 2
 - c) 3
 - d) 4

- 19) 3 points are marked on a circle. The probability that the triangle formed is obtuse is

 - a) $\frac{1}{3}$ b) $\frac{1}{4}$ c) $\frac{1}{6}$ d) NONE

20) Let the random vector $\underset{\sim}{X}=(X_1,X_2,X_3)$ have the joint pdf

$$f_{X}\left(x_{1}, x_{2}, x_{3}\right) = \begin{cases} \frac{1 - sinx_{1}sinx_{2}sinx_{3}}{8\pi^{3}} & 0 \leq x_{1}, x_{2}, x_{3} \leq 2\pi\\ 0 & otherwise \end{cases}$$

Which of the following statements is TRUE?

- a) X_1, X_2 and X_3 are mutually independent
- b) X_1, X_2 and X_3 are pairwise independent
- c) (X_1, X_2) and X_3 are independently distributed
- d) Variance of $X_1 + X_2$ is π^2

21) Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables each having uniform distribution on [0,2]. For $n \geq 1$, let

$$Z_n = -log_e \left(\prod_{i=1}^n (2 - X_i) \right)^{\frac{1}{n}}.$$

Then, as $n \to \infty$, the sequence $\{Z_n\}_{n \ge 1}$ converges almost surely to

- a) 1
- $\begin{array}{c} b) \ log_e(\frac{4}{6}) \\ c) \ log_e(\frac{5}{2}) \end{array}$
- d) NONE

22) Let $X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$ follow $N_2(\mu, \Sigma)$ with $\mu = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$ and variance-covariance matrix $\Sigma = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 2 & a \\ 1 & a & 2 \end{bmatrix}$

where $a \in R$. Suppose that the partial correlation coefficient between X_2 and X_3 keeping X_1 fixed is $\frac{5}{7}$. Then, a is equal to

- a) 1
- b) -1
- c) 0
- d) NONE

23) Let (X,Y) have the joint probability density function

$$f_{X,Y}(x,y) = \begin{cases} \frac{4}{(x+y)^3} & x > 1, y > 1\\ 0 & otherwise \end{cases}$$

Then which one of the following statements is NOT true?

a) The probability density function of X + Y is

$$f_{X+Y}(z) = \begin{cases} \frac{4}{z^3}(z-2) & z > 2\\ 0 & otherwise \end{cases}$$

- b) $P(X + Y > 4) = \frac{3}{4}$ c) $E(X + Y) = 4log_e(2)$
- d) E(Y|X=2)=4

24) Let $\{X_n\}_{n>1}$ be a sequence of independent and identically distributed random variables each having probability density function

$$f(x) = \begin{cases} e^{-x} & x > 0\\ 0 & otherwise \end{cases}.$$

Let $X_{(n)} = max\{X_1, X_2, ..., X_n\}$ for $n \ge 1$. If Z is the random variable to which $\{X_{(n)} - log_e(n)\}_{n \ge 1}$ converges in distribution, as $n \to \infty$, then, the median Z equals

- a) 0.125
- b) 0.366
- c) 0.245
- d) 0.087

- 25) Let $X_1, X_2, ..., X_n$ be a random sample of size $n \geq 2$ from $N(\theta, \theta^2)$ distribution, where $\theta \in (0, \infty)$. Which of the following statements is TRUE?
 - a) $\frac{1}{n(n+2)} \left(\sum_{i=1}^{n} X_i\right)^2$ is the unique unbiased estimator of θ^2 that is a function of a minimal sufficient statistic.
 - $b)\frac{1}{(3n+1)}\sum_{i=1}^{n}X_{i}^{2}$ is an unbiased estimator of θ^{2} .
 - c) There exist infinite number of unbiased estimators of θ^2 which are functions of minimal sufficient statistic.
 - d) There does NOT exist any unbiased estimator of $\theta(\theta+1)$ that is a function of minimal sufficient statistic.

26) Suppose that $(X_i, Y_i), i = 1, ..., 2n$, are *iid* $N_2(0, 0, 1, 1, \rho)$ with $-1 < \rho < 1$. Let us denote

$$U_{i} = \begin{cases} 0 & if \ X_{2i-1}Y_{2i-1} + X_{2i}Y_{2i} \leq 0\\ 1 & if \ X_{2i-1}Y_{2i-1} + X_{2i}Y_{2i} \geq 0 \end{cases}; i = 1, 2, ..., n$$

- a) $U_i's$ are iid Bernoulli with $p = \frac{(1-\rho)}{2}$
- b) $U_i's$ are iid Bernoulli with $p = \frac{(1+\rho)}{2}$ c) $U_i's$ are iid Bernoulli with $p = \frac{1-\rho}{(1+\rho)^2}$
- d) NONE

- 27) Suppose that the bivariate data $(x_1, y_1), ..., (x_n, y_n)$ lie on the straight line y = a + bx, for some $a, b \in R$. Assume further that neither all the $x_i's$ are same, nor all the $y_i's$. Which of the following values is not a possibility for the correlation coefficient calculated for the above data?
 - a)

 - d) NONE

- 28) A simple random sample of size n is drawn with replacement from a population of N units. The expected number of distinct units in the sample is
 - $a) n \left[1 \left(\frac{N-1}{N}\right)^n\right]$
 - b) $n \left[1 \left(\frac{N-2}{N} \right)^n \right]$
 - c) $N \left[1 \left(\frac{N-1}{N}\right)^n\right]$
 - d) $N \left[1 n\left(\frac{N-1}{N}\right)\right]^n$

29) Let $X_1, X_2, ..., X_5$ be a random sample from a distribution with the probability density function

$$f(x;\theta) = \frac{1}{2}e^{-|x-\theta|}, x \in (-\infty, \infty),$$

where $\theta \in (-\infty, \infty)$. For testing $H_0: \theta = 0$ against $H_1: \theta < 0$. Let $\sum_{i=1}^{5} Y_i$ be the sign test statistic, where

$$Y_i = \begin{cases} 1 & X_i > 0 \\ 0 & otherwise \end{cases}.$$

- Then, the size of the test, which rejects H_0 if and only if $\sum_{i=1}^{5} Y_i \leq 2$ equals

 - $\begin{array}{c} a) \ \frac{1}{4} \\ b) \ \frac{1}{2} \\ c) \ \frac{3}{4} \\ d) \ NONE \end{array}$

- 30) Let $(X_1, X_2, ..., X_n)$ be iid RVs from a continous distribution where density is symmetric around 0. Suppose $E|X_1|=2$. Define, $Y=\sum_{i=1}^n X_i$ and $Z=\sum_{i=1}^n 1$ $(X_i>0)$. Calculate the covariance between Y and Z.

 - b) 2n
 - c) 3n
 - d) NONE