Polytopes defined by Oracles: Algorithms & Combinatorics

Vissarion Fisikopoulos

Dept. of Informatics & Telecommunications, University of Athens

University of Padova, Seminar, 12 Feb. 2014

Main actor: resultant polytope

- ► Geometry: Minkowski summands of secondary polytopes, equival. classes of secondary vertices, generalize Birkhoff polytopes
- ▶ Algebra: useful to express the solvability of polynomial systems
- ► Applications: discriminant and resultant computation, implicitization of parametric hypersurfaces

Enneper's Minimal Surface

Outline

Introduction: resultant polytopes

An output-sensitive algorithm for computing projections of resultant polytopes [Emiris, F, Konaxis, Peñaranda, SoCG'12]

Combinatorics of 4-d resultant polytopes [Emiris, F, Dickenstein, ISSAC'13]

Conclusion & Extensions

• Given n + 1 polynomials on n variables.

$$f_0(x) = ax^2 + b$$

$$f_1(x) = cx^2 + dx + e$$

- Given n + 1 polynomials on n variables.
- ▶ Supports (set of exponents of monomials with non-zero coefficient) $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$.

$$f_0(x) = ax^2 + b$$

$$f_1(x) = cx^2 + dx + e$$

$$A_0$$

$$A_1$$

$$A_1$$

- Given n + 1 polynomials on n variables.
- ▶ Supports (set of exponents of monomials with non-zero coefficient) $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$.
- ▶ The resultant R is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.

$$f_0(x) = ax^2 + b$$

$$f_1(x) = cx^2 + dx + e$$

$$A_0$$

$$A_1$$

$$A_1$$

$$R(a, b, c, d, e) = ad^{2}b + c^{2}b^{2} - 2caeb + a^{2}e^{2}$$

- Given n + 1 polynomials on n variables.
- ▶ Supports (set of exponents of monomials with non-zero coefficient) $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$.
- ▶ The resultant R is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.
- ► The resultant polytope N(R), is the convex hull of the support of R, i.e. the Newton polytope of the resultant.

The case of linear polynomials

$$f_0(x,y) = ax + by + c$$
 A_0

$$f_1(x,y) = dx + ey + f$$
 A_1

$$f_2(x,y) = gx + hy + i$$
 A_2

$$R(a,b,c,d,e,f,g,h,i) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$

4-dimensional Birkhoff polytope

In the general case \dots

$$f_0(x,y) = axy^2 + x^4y + c$$

$$f_1(x,y) = dx + ey$$

$$f_2(x,y) = gx^2 + hy + i$$

$$A_2$$

Q1: How can we compute
$$N(R)$$

Q2: How
$$N(R)$$
 looks like $?$

Outline

Introduction: resultant polytopes

An output-sensitive algorithm for computing projections of resultant polytopes [Emiris, F, Konaxis, Peñaranda, SoCG'12]

Combinatorics of 4-d resultant polytopes [Emiris, F, Dickenstein, ISSAC'13]

Conclusion & Extensions

Regularity and subdivisions

Regular subdivisions of $A \subset \mathbb{R}^d$ are obtained by projecting the lower (or upper) hull of A lifted to \mathbb{R}^{d+1} via a lifting function $w \in (\mathbb{R}^{|A|})^{\times}$.

$$w = (2, 6, 4)$$
 $w = (2, 1, 4)$

A . . .

Resultant polytope vertices and mixed subdivisions

A subdivision S of $A = A_0 + A_1 + \cdots + A_n$ is

- mixed when each cell is Minkowski sum of convex hulls of point subsets in A_i's,
- fine when each cell has dimension equal to the sum of its summands dimensions.

Resultant polytope vertices and mixed subdivisions

A subdivision S of $A = A_0 + A_1 + \cdots + A_n$ is

- mixed when each cell is Minkowski sum of convex hulls of point subsets in A_i's,
- fine when each cell has dimension equal to the sum of its summands dimensions.

Theorem [GKZ '94]

- regular fine mixed subdivisions of \mathcal{A} are in one-to-one relation with the vertices of the secondary polytope $\Sigma(\mathcal{A})$
- ▶ \exists a many-to-one relation between regular fine mixed subdivisions of \mathcal{A} and N(R) vertices

Don't lose sight of the forest for the trees . . .

Existing work

- ► Theory of resultants, secondary polytopes, Cayley trick [GKZ '94]
- ▶ TOPCOM [Rambau '02] computes all vertices of secondary polytope.
- [Michiels & Verschelde DCG'99] coarse equivalence classes of secondary polytope vertices.
- ▶ [Michiels & Cools DCG'00] decomposition of $\Sigma(A)$ in Minkowski summands, including N(R).
- ▶ Tropical geometry [Sturmfels-Yu '08]: algorithms for resultant polytope (GFan library) [Jensen-Yu '11] and discriminant polytope (TropLi software) [Rincòn '12].

The idea of the algorithm

Input: $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ (recall: $A = A_0 + A_1 + \cdots + A_n \subset \mathbb{Z}^n$) Simplistic method:

- ightharpoonup compute the secondary polytope $\Sigma(\mathcal{A})$
- ▶ many-to-one relation between vertices of $\Sigma(A)$ and N(R) vertices

Cannot enumerate $\boldsymbol{1}$ representative per class by walking on secondary edges

The idea of the algorithm

Input: $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ (recall: $A = A_0 + A_1 + \cdots + A_n \subset \mathbb{Z}^n$) New Algorithm:

- ightharpoonup Vertex oracle: given a direction vector compute a vertex of N(R)
- ▶ Output sensitive: computes only one r.f.m. subdivision of $\mathcal A$ per N(R) vertex + one per N(R) facet
- ▶ Computes projections of N(R) or $\Sigma(A)$

Input: $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$, direction $w \in (\mathbb{R}^{|A_0| + \cdots + |A_n|})^{\times}$ Output: vertex $\in N(R)$, extremal wrt w

1. use w as a lifting to construct r. m. subdivision S of $\mathcal A$

Input: $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$, direction $w \in (\mathbb{R}^{|A_0| + \cdots + |A_n|})^{\times}$ Output: vertex $\in N(R)$, extremal wrt w

- 1. use w as a lifting to construct r. m. subdivision S of $\mathcal A$
- 2. refine S into fine r.m. subdivision T of \mathcal{A}

Input: $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$, direction $w \in (\mathbb{R}^{|A_0| + \cdots + |A_n|})^{\times}$ Output: vertex $\in N(R)$, extremal wrt w

- 1. use w as a lifting to construct r. m. subdivision S of $\mathcal A$
- 2. refine S into fine r.m. subdivision T of \mathcal{A}
- 3. return $\rho_T \in \mathbb{N}^{|A_0|+\cdots+|A_n|}$


```
Input: A_0, A_1, ..., A_n \subset \mathbb{Z}^n, direction w \in (\mathbb{R}^{|A_0| + ... + |A_n|})^{\times}
Output: vertex \in N(R), extremal wrt w
```

- 1. use w as a lifting to construct r. m. subdivision S of $\mathcal A$
- 2. refine S into fine r.m. subdivision T of ${\cal A}$
- 3. return $\rho_T \in \mathbb{N}^{|A_0|+\cdots+|A_n|}$

Lemma

Oracle's output is

- always a vertex of the target polytope,
- extremal wrt w.

Input: A

 $\label{eq:continuity} \mbox{Output: H-rep. Q_H, V-rep. Q_V of $Q=N(R)$}$

1. initialization step

initialization:

- $\blacktriangleright \ Q \subset N(R)$
- $\blacktriangleright \ dim(Q) = dim(N(R))$

Input: A

 $\label{eq:continuity} \begin{array}{ll} \text{Output: } \text{H-rep. } Q_H \text{, V-rep. } Q_V \text{ of } Q = N(R) \end{array}$

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal

- $2\ \text{kinds}$ of hyperplanes of Q_H :
 - ▶ legal if it supports facet $\subset N(R)$
 - ▶ illegal otherwise

Input: A

 $\label{eq:continuity} \mbox{Output: H-rep. Q_H, V-rep. Q_V of $Q=N(R)$}$

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$

Extending an illegal facet

Input: A

Output: H-rep. Q_H , V-rep. Q_V of Q = N(R)

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Extending an illegal facet

Input: A

 $\label{eq:continuity} \mbox{Output: H-rep. Q_H, V-rep. Q_V of $Q=N(R)$}$

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{\nu\})$ else H is legal

Validating a legal facet

Input: A

Output: H-rep. Q_H , V-rep. Q_V of Q = N(R)

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{\nu\})$ else H is legal

Validating a legal facet

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

 $\label{eq:continuity} \mbox{Output: H-rep. Q_H, V-rep. Q_V of $Q=N(R)$}$

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

At any step, Q is an inner approximation . . .

Input: A

Output: H-rep. Q_H , V-rep. Q_V of Q = N(R)

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
- if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

At any step, Q is an inner approximation ... from which we can compute an outer approximation Q_o .

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

 $\label{eq:continuity} \mbox{Output: H-rep. Q_H, V-rep. Q_V of $Q=N(R)$}$

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

 $\label{eq:continuity} \mbox{Output: H-rep. Q_H, V-rep. Q_V of $Q=N(R)$}$

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Input: A

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Complexity

Theorem

We compute the Vertex- and Halfspace-representations of N(R), as well as a triangulation T of N(R), in

$$O^*(\mathfrak{m}^5 | vtx(N(R))| \cdot |T|^2),$$

where $\mathfrak{m}=\dim N(R)$, and |T| the number of full-dim faces of T.

Elements of proof

- ▶ Computation is done in dimension $m = |A_0| + \cdots + |A_n| 2n + 1$, $N(R) \subset \mathbb{R}^{|A_0| + \cdots + |A_n|}$.
- ▶ At most $\leq vtx(N(R)) + fct(N(R))$ oracle calls.
- ▶ Beneath-and-Beyond algorithm for converting V-rep. to H-rep.

ResPol package

- ► C++
- ► Towards high-dimensional 🦃
- ▶ Propose hashing of determinantal predicates scheme: optimizing sequences of similar determinants (x100 speed-up)
- ▶ Computes 5-, 6- and 7-dimensional polytopes with 35K, 23K and 500 vertices, respectively, within 2hrs
- ► Computes polytopes of many important surface equations encountered in geometric modeling in < 1sec, whereas the corresponding secondary polytopes are intractable
- http://sourceforge.net/projects/respol

Outline

Introduction: resultant polytopes

An output-sensitive algorithm for computing projections of resultant polytopes [Emiris, F, Konaxis, Peñaranda, SoCG'12]

Combinatorics of 4-d resultant polytopes [Emiris, F, Dickenstein, ISSAC'13]

Conclusion & Extensions

Existing work

 $\blacktriangleright \ [\mathsf{GKZ'90}] \ \mathsf{Univariate} \ \mathsf{case} \ / \ \mathsf{general} \ \mathsf{dimensional} \ \mathsf{N}(\mathsf{R})$

Existing work

► [GKZ'90] Univariate case / general dimensional N(R)

► [Sturmfels'94] Multivariate case / up to 3 dimensional N(R)

One step beyond... 4-dimensional N(R)

▶ Polytope $P \subseteq \mathbb{R}^4$; f-vector is the vector of its face cardinalities.

One step beyond... 4-dimensional N(R)

- ▶ Polytope $P \subseteq \mathbb{R}^4$; f-vector is the vector of its face cardinalities.
- ► Call vertices, edges, ridges, facets, the 0,1,2,3-d, resp., faces of P.

One step beyond... 4-dimensional N(R)

- ▶ Polytope $P \subseteq \mathbb{R}^4$; f-vector is the vector of its face cardinalities.
- ► Call vertices, edges, ridges, facets, the 0,1,2,3-d, resp., faces of P.
- ► f-vectors of 4-dimensional N(R) (computed with ResPol)

```
(5, 10, 10, 5)
                                     (18, 53, 53, 18)
(6, 15, 18, 9)
                                     (18, 54, 54, 18)
(8, 20, 21, 9)
                                     (19, 54, 52, 17)
(9, 22, 21, 8)
                                     (19, 55, 51, 15)
                                     (19, 55, 52, 16)
                                     (19, 55, 54, 18)
                                     (19, 56, 54, 17)
(17, 49, 48, 16)
                                     (19, 56, 56, 19)
                                     (19, 57, 57, 19)
(17, 49, 49, 17)
(17, 50, 50, 17)
                                     (20, 58, 54, 16)
(18, 51, 48, 15)
                                     (20, 59, 57, 18)
(18, 51, 49, 16)
                                      (20, 60, 60, 20)
(18, 52, 50, 16)
                                     (21, 62, 60, 19)
(18, 52, 51, 17)
                                     (21, 63, 63, 21)
(18, 53, 51, 16)
                                      (22, 66, 66, 22)
```

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with N(R) of dimension 4. Then N(R) are degenerations of the polytopes in following cases.

▶ Degenarations can only decrease the number of faces.

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with N(R) of dimension 4. Then N(R) are degenerations of the polytopes in following cases.

(i) All $|A_i|=2$, except for one with cardinality 5, is a 4-simplex with f-vector (5,10,10,5).

Degenarations can only decrease the number of faces.

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with N(R) of dimension 4. Then N(R) are degenerations of the polytopes in following cases.

- (i) All $|A_i| = 2$, except for one with cardinality 5, is a 4-simplex with f-vector (5, 10, 10, 5).
- (ii) All $|A_i| = 2$, except for two with cardinalities 3 and 4, has f-vector (10, 26, 25, 9).

▶ Degenarations can only decrease the number of faces.

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with N(R) of dimension 4. Then N(R) are degenerations of the polytopes in following cases.

- (i) All $|A_i| = 2$, except for one with cardinality 5, is a 4-simplex with f-vector (5, 10, 10, 5).
- (ii) All $|A_i| = 2$, except for two with cardinalities 3 and 4, has f-vector (10, 26, 25, 9).
- (iii) All $|A_i|=2$, except for three with cardinality 3, maximal number of ridges is $\tilde{f_2}=66$ and of facets $\tilde{f_3}=22$. Moreover, $22 \leq \tilde{f_0} \leq 28$, and $66 \leq \tilde{f_1} \leq 72$. The lower bounds are tight.

- Degenarations can only decrease the number of faces.
- ▶ Focus on new case (iii), which reduces to n = 2 and each $|A_i| = 3$.

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with N(R) of dimension 4. Then N(R) are degenerations of the polytopes in following cases.

- (i) All $|A_i| = 2$, except for one with cardinality 5, is a 4-simplex with f-vector (5, 10, 10, 5).
- (ii) All $|A_i| = 2$, except for two with cardinalities 3 and 4, has f-vector (10, 26, 25, 9).
- (iii) All $|A_i|=2$, except for three with cardinality 3, maximal number of ridges is $\tilde{f_2}=66$ and of facets $\tilde{f_3}=22$. Moreover, $22 \leq \tilde{f_0} \leq 28$, and $66 \leq \tilde{f_1} \leq 72$. The lower bounds are tight.

- ▶ Degenarations can only decrease the number of faces.
- ▶ Focus on new case (iii), which reduces to n = 2 and each $|A_i| = 3$.
- Previous upper bound for vertices yields 6608 [Sturmfels'94].

A subdivision S of $A_0 + A_1 + \cdots + A_n$ is mixed when its cells have expressions as Minkowski sums of convex hulls of point subsets in A_i 's.

A subdivision S of $A_0 + A_1 + \cdots + A_n$ is mixed when its cells have expressions as Minkowski sums of convex hulls of point subsets in A_i 's.

Proposition (Sturmfels'94)

A regular mixed subdivision S of $A_0 + A_1 + \cdots + A_n$ corresponds to a face of N(R) which is the Minkowski sum of the resultant polytopes of the cells (subsystems) of S.

Example

 \blacktriangleright white, blue, red cells $\to N(R)$ vertex

Example

- lacktriangle white, blue, red cells ightarrow N(R) vertex
- $\blacktriangleright \ \, \text{purple cell} \to N(R) \,\, \text{segment}$

Example

- ightharpoonup white, blue, red cells ightharpoonup N(R) vertex
- ▶ purple cell \rightarrow N(R) segment
- ightharpoonup turquoise cell ightarrow N(R) triangle

subd. S of $A_0 + A_1 + A_2$

Mink. sum of N(R) triangle and N(R) segment

Tool (2): Input genericity

Proposition

Input genericity maximizes the number of resultant polytope faces.

Proof idea

Tool (2): Input genericity

Proposition

Input genericity maximizes the number of resultant polytope faces.

 \rightarrow For upper bounds on the number of N(R) faces consider generic inputs, i.e. no parallel edges.

Facets of 4-d resultant polytopes

Lemma

3D

All the possible types of N(R) facets are

- ► resultant facet: 3-d N(R)
- ▶ prism facet: 2-d N(R) (triangle) + 1-d N(R)
- cube facet: 1-d N(R) + 1-d N(R) + 1-d N(R)

Facets of 4-d resultant polytopes

Lemma

All the possible types of N(R) facets are

- ► resultant facet: 3-d N(R)
- ▶ prism facet: 2-d N(R) (triangle) + 1-d N(R)
- cube facet: 1-d N(R) + 1-d N(R) + 1-d N(R)

Counting facets

Lemma

There can be at most 9,9,4 resultant, prism, cube facets, resp., and this is tight.

Proof idea

▶ Unique subdivision that corresponds to 4 cube facets

Faces of 4-d resultant polytopes

Lemma

The maximal number of ridges of N(R) is $\tilde{f_2}=66$. Moreover, $\tilde{f_1}=\tilde{f_0}+44$, $22\leq \tilde{f_0}\leq 28$, and $66\leq \tilde{f_1}\leq 72$. The lower bounds are tight.

Elements of proof

► [Kalai87]

$$f_1 + \sum_{i>4} (i-3)f_2^i \ge df_0 - {d+1 \choose 2},$$

where f_2^i is the number of 2-faces which are i-gons.

Outline

Introduction: resultant polytopes

An output-sensitive algorithm for computing projections of resultant polytopes [Emiris, F, Konaxis, Peñaranda, SoCG'12]

Combinatorics of 4-d resultant polytopes [Emiris, F, Dickenstein, ISSAC'13]

Conclusion & Extensions

Q3: Efficient/practical computation in high dimensions?

- 1. Edge skeleton computation [Emiris, F, Gärtner '14]
 - ▶ Input: oracle for polytope P + edge directions of P
 - Output: edge skeleton of P
 - Oracle polynomial time in (input + output) size

Q3: Efficient/practical computation in high dimensions?

- 2. Randomized volume approximation [Emiris, F '14]
 - ▶ Input: H-representation of polytope P
 - lackbox Output: ϵ -approximation of volume of P for fixed error ϵ
 - ► Compute with <1% error the volume of several polytopes up to dimension 100 in <1hr whereas exact software can compute up to dimension 15
 - ► Compute the volume of Birkhoff polytopes B₁₁,..., B₁₅ in few hrs whereas exact methods have only computed that of B₁₀ by specialized parallel software in a sequential time of years

Thank you!