# Safety design on FPGA's using soft Lockstep Processors

Roger May Industrial System Architect



## **Example of a Motor Control System**



Control algorithm implemented on Nios II Softcore processor

Low level motor control implemented in FPGA logic





## **Example of a Motor Control System with Safety**



#### **Background: Lockstep Safety Processors**

- Safety designs require diagnostics to be run periodically to ensure safety function is functioning correctly
- For a processor this generally requires Software Test Libraries (STL's)
  - STL's used to test processor functionality in addition to rest of system
- Disadvantages of STL's
  - Running STL's consume essential processing MIPS
  - STL's are often destructive and require system context to be
    - Saved before running
    - Restored after running
- Alternative to provide hardware realtime diagnostics via Lockstep processor implementation



## What is a lockstep processor ....

✓ It is not a 1002 system



Figure B.6 - 1002 physical block diagram

- It is a processor with hardware diagnostics
  - Diagnostics provided by 2<sup>nd</sup> slave processor and comparator





#### Why use a lockstep processor: DC requirements

| Safe Failure<br>Fraction | Hardware Fault Tolerance |      |      |
|--------------------------|--------------------------|------|------|
|                          | 0                        | 1    | 2    |
| <60%                     | Not Allowed              | SIL1 | SIL2 |
| 60% - <90%               | SIL1                     | SIL2 | SIL3 |
| 90% - <99%               | SIL2                     | SIL3 | SIL4 |
| ≥99%                     | SIL3                     | SIL4 | SIL4 |

- STL may achieve 70% DC
  - Limits safety capability to SIL1/2
- ✓ Lockstep capable of achieving >99%
  - Enables SIL3/4 capability



#### Why use a lockstep processor: Safety over IE

- Safety over Industrial Ethernet
  - IEC 61784-3



Figure A.1 - Model A

- Early solutions mapped logical SCL's to separate processors
  - 1x standard MCU
  - 2x "safe" MCU's
- High diagnostic coverage of lockstep solution allows both SCL's to be mapped to single lockstep core





#### **Nios II Lockstep**

- Verilog RTL IP implementing a smart comparator, integrated in a Dual Core Lock Step safety architectures using Nios II and Qsys
  - IEC 61508 compliant: SIL3 (DC > 99%)





Certification Body Safety & Security for Auton

Am Grauen Stein, 51105 Köln

www.fs-products.com www.tuv.com





## Nios II LockStep: Features

#### Self-checking Comparator

- Logic for self-diagnostic
- Scalable fine grain comparator
- Programmable blind window
- HW Fault injector

#### Timers

- Programmable Reset events counter
- Programmable Timeout on reset exit (timeout)
- HW fault injector

#### Error Controller

- Robust OKNOK signal to flag errors detection to an external supervisor
- Programmable alarms severity

## Configuration & Status interface

- Logs and alarm context information dedicated for each safety mechanism
- Protected configuration registers for safety relevant information







# What additional tools/concepts do you need to realise this concept



#### **IEC61508 ASIC V Flow**

(ASIC) V-Flow in IEC61508, is a cornerstone of safety development





#### **Altera Safety Data Package**

- Qualified methods
  - Altera have analysed IEC61508
  - Part of this is FPGA specific V Flow
- Altera FPGA specific V Flow
  - FPGA Tuned
  - Relates V Flow steps to FPGA tasks and tools



#### **Safety FPGA Toolflows**





Need to re-certify my design!!



#### **Safety Design Partitioning Overview**

- Minimize impact analysis and recertification efforts
- Tools to verify non-safe partition changes do not impact safe partitions
  - Significantly reduces risk and time-to-market
- Methodology and verification tools is qualified by TUV-Rheinland
- Available for use with Cyclone IV, Cyclone V & Cyclone V SoC







## Failure Modes Effects and Diagnostic Analysis Tools

- FMEDA tools calculates device specific failure rates
  - Inputs
    - Details of users design (resource used)
    - Diagnostic features used and coverage
    - Mission profile (for IEC 62380 calculations)
  - Outputs
    - Calculation of functional safety standard specific metrics
    - Device specific failure rates for permanent and transient faults
    - Detailed module / sub-module level failure rates





## **Example of a Motor Control System with Safety**







#### Safe Processor Architecture

Safe processor & peripherals is safety critical

Implement using

- LockStep processor
  - >99% DC
  - Reduces need for STL -> more performance for safety application
- **▼** ECC for program/data RAM
  - 90% DC
- STL (limited) for
  - Timers
  - Interrupts
  - Bus infrastructure
- **▼** CRC Calculation
  - Accelerate CRC calculations for Safe IE
- Clock Checker
  - Check clock network/PLL





#### **Use of FMEDA**



Enter Design Resource used for Safety design

**Enter Diagnostics Used** 



cate Failure Fraction (SFF)
- combined permanent and transient 98.38%

Diagnostic Coverage (DC)
- combined permanent and transient 96.7756

Review Summary page

• SFF > 98%



#### **FPGA Implementation**

- Use Certified FPGA Toolflow to map design into FPGA
- Separation of safe/non-safe blocks
  - To allow updates of non-safe portion





Example Floorplan in FPGA



## Altera's TÜV-Qualified Functional Safety Data Package

Ver 1.0: 2010



Hardware and/or Software



## **Functional Safety Data Package Rev 4**

#### **Qualified Tools**

Quartus II Software Version 14.1 QSys Altera Simulation Libraries **Synthesis** Place and Route **TimeQuest** Signal Tap II NIOS® II debugger In-System memory editor PowerPlay power analyzer Safety Design Partitioning Flow SoC FMEDA



#### **Qualified IP**

Nios® II Embedded Processor

# Nios<sup>®</sup> II

**CRC Compiler DDRx Memory Controller** 8B10B Encoder/Decoder **Qsys IP Suite** Diagnostic IP: CRC, SEU, Clock



#### **Qualified Devices**









Cyclone ® V SoC, Cyclone ® V, Cyclone ® IV, Arria<sup>®</sup> V SoC, Arria<sup>®</sup> V Arria® V GZ, Arria® II GX/GZ Stratix<sup>®</sup> V, Stratix<sup>®</sup> IV, Stratix® IV GX. MAX® V, MAX® II, MAX® II Z



## SafeFlex – Functional Safety Development Kit





- 2 Cyclone V FPGAs and associated logic
- 1oo2 architecture (IEC61508: HFT=1)
- DDR3 RAM
- monitored power supply
- 6 DSIs / 4 DSOs
- supports Industrial Ethernet
- connectors for expansion boards



# Thank You

