

Найдем число верных знаков у приближенного корня $\tilde{\xi}_2=0,17164882$. Так как $\Delta_{\tilde{\xi}_2}=0,000000003<\frac{1}{2}10^{-7}=\frac{1}{2}10^{m-n+1},\ m=0$, то получим n=8. Округлим до верных знаков $\tilde{\xi}_{21}=0,1716488$, при этом погрешность округления будет $\Delta_{okp}=0,000000003$, а погрешность приближенного решения $\Delta_{\tilde{\xi}_{21}}=0,000000006$.

Найдем число верных знаков $\Delta_{\tilde{\xi}_{21}} = 0,000000006 < \frac{1}{2} 10^{-6} = \frac{1}{2} 10^{m-n_1+1}, \ m=0, \ n_1=7$.

Округлим до верных знаков $\tilde{\xi}_{22}$ = 0,171649 , при этом погрешность округления будет $\Delta_{o\kappa p_1}$ = 0,00000003 , а погрешность приближенного решения $\Delta_{\tilde{\xi}_{22}}$ = 0,00000036 .

Найдем число верных знаков $\Delta_{\tilde{\xi}_{22}}=0,00000036<\frac{1}{2}10^{-6}=\frac{1}{2}10^{m-n_2+1},\ m=0\,,\ n_2=7\,.$ Так как $n_2=n_1$, то прекращаем округление.

Otbet: $\tilde{\xi}_2 = 0.171649 \pm 0.00000036$.

Лабораторная работа № 6

Тема: Решение системы линейных уравнений методом итерации и методом Зейделя.

Задание:

- 1) Решить систему линейных уравнений методом итерации и методом Зейделя с точностью $\varepsilon = 0.5 \cdot 10^{-3}$;
- 2) Найти погрешности полученных приближенных решений;
- 3) Сравнить полученные приближенные решения и их погрешности.

Вопросы самоконтроля.

- 1) Постановка задачи.
- 2) Основная идея метода итерации.
- 3) Какое условие должно выполняться для сходимости итерационной процесса?
- 4) Сформулировать канонические нормы, используемые в методе итерации.
- 5) Как находится равносильная система уравнений, применяемая для итерационного процесса? Критерий выбора равносильной системы уравнений.
- 6) Как определяется погрешность метода итерации при заданной точности?
- 7) В чем отличие метода Зейделя от метода итерации?

Вариант	Система уравнений
1	$\begin{cases} 3x_1 + x_2 - x_3 = 3; \\ x_1 + x_2 - 4x_3 = -2; \\ -2x_1 + 4x_2 - x_3 = 1. \end{cases}$
2	$\begin{cases} 3x_1 + x_2 - x_3 = 4; \\ x_1 + x_2 - 4x_3 = -1; \\ -2x_1 + 4x_2 - x_3 = 5. \end{cases}$
3	$\begin{cases} 3x_1 + x_2 - x_3 = 2; \\ x_1 + x_2 - 4x_3 = -6; \\ -2x_1 + 4x_2 - x_3 = 0. \end{cases}$
4	$\begin{cases} x_1 + 5x_2 - 2x_3 = 5; \\ x_1 + x_2 - 3, 5x_3 = -0, 5; \\ -3, 2x_1 + 2x_2 - x_3 = -5, 4. \end{cases}$
5	$\begin{cases} -x_1 + 5x_2 + 3x_3 = 5; \\ x_1 + x_2 - 2, 5x_3 = -1, 5; \\ 4x_1 - 2x_2 - x_3 = 9. \end{cases}$

Вариант	Система уравнений
31	$\begin{cases} x_1 - 3x_2 + 2x_3 = -4; \\ -x_1 - x_2 - 2, 3x_3 = 0, 3; \\ 3x_1 - 2x_2 - x_3 = 2. \end{cases}$
32	$\begin{cases} -x_1 + 5x_2 + 3x_3 = 1; \\ x_1 + x_2 + 2,5x_3 = -0,5; \\ 4x_1 - 2x_2 - x_3 = 3. \end{cases}$
33	$\begin{cases} 3x_1 - x_2 - x_3 = 2; \\ x_1 + x_2 + 2x_3 = 3; \\ x_1 + 6x_2 - x_3 = 0. \end{cases}$
34	$\begin{cases} 2x_1 - 5x_2 + 2x_3 = -3; \\ x_1 + x_2 - 4x_3 = 2; \\ -7x_1 + 3x_2 + 2x_3 = -4. \end{cases}$
35	$\begin{cases} 2x_1 - 5x_2 - 2x_3 = 2; \\ x_1 + x_2 - 4x_3 = -2; \\ -0.5x_1 + 3x_2 + 2x_3 = 1. \end{cases}$

	,
6	$\begin{cases} 3x_1 - x_2 - x_3 = -1; \\ x_1 + x_2 - 4x_3 = -10; \\ -2x_1 + 6x_2 - x_3 = 1. \end{cases}$
7	$\begin{cases} 2x_1 - 5x_2 + 2x_3 = -2; \\ x_1 + x_2 - 4x_3 = 0; \\ -7x_1 + 3x_2 + 2x_3 = -3. \end{cases}$
8	$\begin{cases} 2x_1 - 5x_2 + 2x_3 = -2; \\ x_1 + x_2 - 4x_3 = -4; \\ -7x_1 + 3x_2 + 2x_3 = -4. \end{cases}$
9	$\begin{cases} 1,5x_1 - 5x_2 + 2x_3 = 2; \\ x_1 + x_2 - 4x_3 = -5; \\ 5x_1 - 3x_2 - 2x_3 = 3. \end{cases}$
10	$\begin{cases} 2x_1 - 4x_2 + 1, 4x_3 = 0,7; \\ x_1 + x_2 - 3x_3 = 1,5; \\ 3,5x_1 - x_2 - 2x_3 = 5. \end{cases}$
11	$\begin{cases} 2x_1 - 5x_2 + x_3 = -3; \\ 2x_1 + 1, 2x_2 - 4, 3x_3 = -2, 1; \\ -6x_1 + 3, 3x_2 + 2x_3 = 2, 3. \end{cases}$
12	$\begin{cases} x_1 - 5x_2 + 2x_3 = 0; \\ x_1 + x_2 - 3x_3 = 1; \\ 3,1x_1 - x_2 - 2x_3 = 6,3. \end{cases}$
13	$\begin{cases} 6x_1 - 3x_2 + 2x_3 = 1; \\ x_1 + x_2 - 3x_3 = 0; \\ -7x_1 + 3x_2 + 2x_3 = 0, 5. \end{cases}$
14	$\begin{cases} 5x_1 - x_2 - 3x_3 = 1; \\ x_1 + x_2 + 3x_3 = 2; \\ 2x_1 - 5x_2 + 2x_3 = 2. \end{cases}$
15	$\begin{cases} x_1 - 7x_2 + 4x_3 = -5; \\ x_1 + 2x_2 - 4x_3 = 0; \\ -7x_1 + 3x_2 + 2x_3 = 4. \end{cases}$
16	$\begin{cases} 2x_1 + x_2 - 2x_3 = 1; \\ x_1 - x_2 + 3x_3 = 3; \\ 2x_1 - 3x_2 + 2x_3 = 1. \end{cases}$
17	$\begin{cases} x_1 - 5x_2 - 2x_3 = 0; \\ x_1 + x_2 + 3x_3 = -2; \\ -4x_1 + x_2 - 2x_3 = 0, 5. \end{cases}$
18	$\begin{cases} x_1 - 5x_2 + 2x_3 = -3; \\ -x_1 - x_2 + 2, 3x_3 = 3, 9; \\ 3x_1 + 2x_2 - x_3 = 4. \end{cases}$

36	$\begin{cases} 1,5x_1 - 5x_2 + 2x_3 = -2; \\ x_1 + x_2 - 4x_3 = 3; \\ 5x_1 - 3x_2 - 2x_3 = 7. \end{cases}$
37	$\begin{cases} x_1 + 2x_2 - 3x_3 = -1 \\ 3x_1 - 2x_2 - x_3 = 1 \\ x_1 + 4x_2 - 2x_3 = 1 \end{cases}$
38	$\begin{cases} x_1 + 5x_2 - 2x_3 = 1; \\ x_1 + x_2 + 1, 5x_3 = 0, 5; \\ 3, 2x_1 - 2x_2 - x_3 = -3, 4. \end{cases}$
39	$\begin{cases} 3x_1 + x_2 - x_3 = 6; \\ x_1 + x_2 - 4x_3 = -1; \\ -2x_1 + 4x_2 + x_3 = 1. \end{cases}$
40	$\begin{cases} -3x_1 + x_2 - x_3 = 3; \\ x_1 + x_2 - 3x_3 = 1; \\ -2x_1 + 4x_2 - x_3 = -1. \end{cases}$
41	$\begin{cases} 3x_1 + x_2 - x_3 = 3; \\ x_1 + x_2 - 4x_3 = 4; \\ -2x_1 - 4x_2 - x_3 = 3. \end{cases}$
42	$\begin{cases} 2x_1 - 5x_2 + 2x_3 = 5; \\ x_1 - x_2 - x_3 = -1; \\ 1,5x_1 - x_2 + 0,5x_3 = 0. \end{cases}$
43	$\begin{cases} 2x_1 + 3x_2 - x_3 = 0; \\ -1, 4x_1 + 0, 1x_2 + 2x_3 = 3, 5; \\ 1, 25x_1 + 0, 3x_2 - 0, 55x_3 = -1, 5. \end{cases}$
44	$\begin{cases} 2x_1 + 5x_2 + x_3 = -2; \\ 1,1x_1 + 0,3x_2 - 2x_3 = -1,2; \\ -1,75x_1 + 0,25x_2 + x_3 = -1. \end{cases}$
45	$\begin{cases} 2x_1 - 5x_2 + 2x_3 = 4; \\ x_1 - x_2 - 2x_3 = 2; \\ -2x_1 + 3x_2 + 2x_3 = 0. \end{cases}$
46	$\begin{cases} 2x_1 - 7x_2 + 4x_3 = -5; \\ x_1 + 2x_2 - 4x_3 = 3; \\ 7x_1 - 3x_2 + 2x_3 = 4. \end{cases}$
47	$\begin{cases} x_1 - 5x_2 - 2x_3 = 0; \\ -x_1 + x_2 + 3x_3 = 1; \\ 0, 5x_1 + x_2 - 2x_3 = -1. \end{cases}$
48	$\begin{cases} 5x_1 - x_2 - 3x_3 = 2; \\ x_1 + x_2 + 3x_3 = 4; \\ 2x_1 - 5x_2 - 2x_3 = 0. \end{cases}$

19	$\begin{cases} 2x_1 - 5x_2 + x_3 = 2; \\ 1, 1x_1 + 0, 3x_2 - 2x_3 = -3, 5; \\ -1, 75x_1 + 0, 5x_2 + x_3 = 0. \end{cases}$
20	$\begin{cases} 2x_1 - 5x_2 - x_3 = 1; \\ -1,5x_1 + 0,1x_2 + 2x_3 = 3; \\ 1,25x_1 + 0,3x_2 - 0,5x_3 = 1. \end{cases}$
21	$\begin{cases} 2x_1 - 5x_2 + 2x_3 = -1; \\ x_1 - x_2 - 4x_3 = 1; \\ 1,5x_1 - x_2 + 0,2x_3 = 2. \end{cases}$
22	$\begin{cases} x_1 - 5x_2 + 2x_3 = 0; \\ x_1 + x_2 - 3x_3 = 1; \\ 3.1x_1 - x_2 - 2x_3 = 6.3. \end{cases}$
23	$\begin{cases} 2x_1 - 5x_2 + x_3 = -3; \\ 2x_1 + 1, 2x_2 - 4, 3x_3 = -2, 1; \\ -6x_1 + 3, 3x_2 + 2x_3 = 2, 3. \end{cases}$
24	$\begin{cases} 2x_1 - 5x_2 - x_3 = 1; \\ -1,5x_1 + 0,1x_2 + 2x_3 = 3; \\ 1,25x_1 + 0,3x_2 - 0,5x_3 = 1. \end{cases}$
25	$\begin{cases} 2x_1 - 5x_2 + x_3 = 2; \\ 1, 1x_1 + 0, 3x_2 - 2x_3 = -3, 5; \\ -1, 75x_1 + 0, 5x_2 + x_3 = 0. \end{cases}$
26	$\begin{cases} x_1 - 5x_2 + 2x_3 = -3; \\ -x_1 - x_2 + 2, 3x_3 = 3, 9; \\ 3x_1 + 2x_2 - x_3 = 4. \end{cases}$
27	$\begin{cases} x_1 - 5x_2 - 2x_3 = 0; \\ x_1 + x_2 + 3x_3 = -2; \\ -4x_1 + x_2 - 2x_3 = 0, 5. \end{cases}$
28	$\begin{cases} x_1 - 7x_2 + 4x_3 = -5; \\ x_1 + 2x_2 - 4x_3 = 0; \\ -7x_1 + 3x_2 + 2x_3 = 4. \end{cases}$
29	$\begin{cases} 5x_1 - x_2 - 3x_3 = 1; \\ x_1 + x_2 + 3x_3 = 2; \\ 2x_1 - 5x_2 + 2x_3 = 2. \end{cases}$
30	$\begin{cases} 6x_1 - 3x_2 + 2x_3 = 1; \\ x_1 + x_2 - 3x_3 = 0; \\ -7x_1 + 3x_2 + 2x_3 = 0, 5. \end{cases}$

49	$\begin{cases} 6x_1 - 3x_2 + 2x_3 = 1; \\ x_1 + x_2 - 3x_3 = 2; \\ -7x_1 + 3x_2 + x_3 = -4. \end{cases}$
50	$\begin{cases} x_1 - 5x_2 + 2x_3 = 1; \\ x_1 - 2x_2 + x_3 = 2; \\ 1,1x_1 - x_2 - 0,5x_3 = 0,2. \end{cases}$
51	$\begin{cases} 2x_1 - 5x_2 + x_3 = -2; \\ 2x_1 + 1, 2x_2 - 4, 3x_3 = -1, 1; \\ -6x_1 + 3, 3x_2 + 2x_3 = -0, 7. \end{cases}$
52	$\begin{cases} 2x_1 - 4x_2 + 1, 4x_3 = -0, 6; \\ x_1 + x_2 - 3x_3 = 2; \\ 2, 1x_1 - x_2 - 2x_3 = 2, 3. \end{cases}$
53	$\begin{cases} 1,5x_1 - 5x_2 - 2x_3 = 0; \\ x_1 + x_2 - 2x_3 = -1; \\ 5x_1 + 3x_2 - 4x_3 = 3. \end{cases}$
54	$\begin{cases} 2x_1 + 5x_2 + 2x_3 = 3; \\ x_1 + x_2 - x_3 = -1; \\ -x_1 + 3x_2 + 2x_3 = -1. \end{cases}$
55	$\begin{cases} 3x_1 - x_2 - x_3 = 3; \\ x_1 + x_2 - 4x_3 = 0; \\ -2x_1 + 3x_2 - x_3 = 1. \end{cases}$
56	$\begin{cases} -x_1 + 5x_2 - 3x_3 = 2; \\ x_1 + x_2 - 2, 5x_3 = 1, 5; \\ 4x_1 - x_2 - x_3 = 4. \end{cases}$
57	$\begin{cases} x_1 + 5x_2 - 2x_3 = 6; \\ x_1 + x_2 - 3, 5x_3 = 0, 5; \\ -1, 2x_1 + 2x_2 - x_3 = -2, 6. \end{cases}$
58	$\begin{cases} 3x_1 + x_2 - 2x_3 = 3; \\ x_1 + x_2 - 4x_3 = 0; \\ -2x_1 + 4x_2 - 3x_3 = 0, 5. \end{cases}$
59	$\begin{cases} 3x_1 + x_2 - x_3 = 2; \\ 2x_1 + x_2 - x_3 = 0; \\ -2x_1 + 4x_2 - x_3 = -1. \end{cases}$
60	$\begin{cases} 3x_1 + x_2 - x_3 = 1; \\ x_1 + 4x_2 - x_3 = 2; \\ -2x_1 + 4x_2 - x_3 = -1. \end{cases}$

Образец выполнения лабораторной работы № 6

(Приближенное решение систем уравнений)

Дана система линейных уравнений Ax=b, где $b=(b_1,b_2,...,b_n)^T$, $A=\left\{a_{i,j}\right\}$, $i,j=\overline{1,n}$. Найти приближенное решение данной системы $x=(x_1,x_2,...,x_n)^T$ с точностью $\varepsilon=10^{-3}$.

Рассмотрим пример решения следующей системы уравнений методами итераций и Зейделя

$$\begin{cases} 3x_1 + x_2 - x_3 = 2 \\ -x_1 + 4x_2 - 2x_3 = 1, \text{ точное решение которой } x = (1,2,3)^T. \\ x_1 - x_2 + 3x_3 = 8 \end{cases}$$

Так как определитель системы $\Delta = |A| = 46 \neq 0$, то система имеет единственное решение.

Приведем данную систему к виду
$$x = \beta + \alpha \cdot x$$
, где $\beta = \begin{pmatrix} 2/3 \\ 1/4 \\ 8/3 \end{pmatrix}$,

$$\alpha = \begin{pmatrix} 0 & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & 0 & \frac{1}{2} \\ -\frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix};$$

решение будем искать в виде итерационной последовательности $x^{(k+1)}=\beta+\alpha\cdot x^{(k)},\ k=0,1,2,\ldots,\ x^{(0)}=\beta$. Найдем канонические нормы матрицы α .

$$\|\alpha\|_{L} = 0.75$$
, $\|\alpha\|_{m} = 0.8333$, $\|\alpha\|_{k} = 0.87$.

Минимальной нормой является норма $\|\alpha\|_L = 0,75 < 1$. Поэтому все действия будем производить по этой норме. Итерационный процесс будем продолжать до тех пор, пока не будет выполняться условие $\|x^{(k+1)} - x^{(k)}\|_L \le \frac{1 - \|\alpha\|_L}{\|\alpha\|_r} \cdot \varepsilon$, $k = 0,1,2,\ldots$

А) По методу итерации получим
$$\tilde{\xi} = x^{(k)} = \begin{pmatrix} 0,9999783 \\ 2,0000017 \\ 2,9998545 \end{pmatrix}, \ \Delta_{\tilde{\xi}} = 0,000333, \ k = 23.$$

Определим число верных знаков в приближенном значении решения.

Так как
$$\Delta_{\tilde{\xi}} = 0,000333 < \frac{1}{2}10^{-3} = \frac{1}{2}10^{m-n+1}$$
, $m = 0$, $n = 4$, то получим $\tilde{\xi}_1 = \begin{pmatrix} 1,000 \\ 2,000 \\ 3,000 \end{pmatrix}$ с по-

грешностью округления $\Delta_{o\kappa p} = \left\| \tilde{\xi} - \tilde{\xi}_1 \right\|_L = 0,0001455$. Тогда $\Delta_{\tilde{\xi}_1} = 0,0004788$.

Определим число верных знаков в приближенном решении $\tilde{\xi}_1$. Так как $\Delta_{\tilde{\xi}_1}=0,0004788<\frac{1}{2}10^{-3}=\frac{1}{2}10^{m-n_1+1}$, m=0, $n_1=n=4$, то получим приближенное решение $\tilde{\xi}_1=\begin{pmatrix}1,000\\2,000\\3,000\end{pmatrix}$, с погрешностью $\Delta_{\tilde{\xi}_1}=0,0004788$.

Otbet:
$$\tilde{\xi} = \begin{pmatrix} 1,000 \\ 2,000 \\ 3,000 \end{pmatrix}$$
, $\Delta_{\tilde{\xi}} = 0,0004788$.

Б) По методу Зейделя получим
$$\tilde{\xi} = x^{(k)} = \begin{pmatrix} 1,0000704 \\ 1,9999846 \\ 2,9999614 \end{pmatrix}, \ \Delta_{\tilde{\xi}} = 0,000333 \ , \ k = 21 \ .$$

Определим число верных знаков в приближенном значении решения.

Так как
$$\Delta_{\tilde{\xi}}=0,000333<\frac{1}{2}10^{-3}=\frac{1}{2}10^{m-n+1}$$
, $m=0,\ n=4$, то получим $\tilde{\xi}_1=\begin{pmatrix}1,000\\2,000\\3,000\end{pmatrix}$ с по-

грешностью округления $\Delta_{o\kappa p} = \left\| \tilde{\xi} - \tilde{\xi}_1 \right\|_L = 0,0000704$. Тогда $\Delta_{\tilde{\xi}_1} = 0,0004034$.

Определим число верных знаков в приближенном решении $\tilde{\xi}_1$. Так как $\Delta_{\tilde{\xi}_1}=0,0004034<\frac{1}{2}10^{-3}=\frac{1}{2}10^{m-n_1+1}$, m=0, $n_1=n=4$, то получим приближенное решение $\tilde{\xi}_1=\begin{pmatrix}1,000\\2,000\\3,000\end{pmatrix}$, с погрешностью $\Delta_{\tilde{\xi}_1}=0,0004034$.

Otbet:
$$\tilde{\xi} = \begin{pmatrix} 1,000 \\ 2,000 \\ 3,000 \end{pmatrix}$$
, $\Delta_{\tilde{\xi}} = 0,0004034$.