

K-atalystic Automated Screening

Taskflow

Automated Deep Learning Pipeline for Molecular Bioactivity Prediction. A comprehensive, user-friendly solution for training and deploying Machine Learning models in drug discovery

Contents

KAST 🥕

Installation

User Manual

Pipeline Steps

Output Analysis

!? FAQ

K Troubleshooting

What is K-talysticFlow?

K-talysticFlow or K-atalystic Automated Screening Taskflow (KAST) is a fully automated, interactive pipeline designed to streamline the process of training, evaluating, and using Deep Learning models for predicting molecular bioactivity. Built on a robust stack including DeepChem, RDKit, and TensorFlow, it provides an end-toend solution for computational drug discovery.

Key Features

- Fully Automated: Interactive menu-driven interface for a seamless workflow.
- Peep Learning Model: Utilizes a Multi-Layer Perceptron (MLP) trained on Morgan Fingerprints for highperformance prediction.
- **| Comprehensive Validation Suite**: Rigorous model assessment including ROC analysis, Enrichment Factor, k-fold Cross-Validation with Scaffold Splitting, and Learning Curve generation.
- Complete End-to-End Pipeline: Manages the entire process from raw SMILES data to actionable predictions.
- @ Cross-Platform: Compatible with Windows and Linux.
- Analysis-Ready Outputs: Generates clear reports, graphs, and CSV files for easy interpretation and further analysis.

Quick Navigation

Section	Description		
🚀 Installation Guide	Complete setup instructions and requirements		
User Manual	Step-by-step usage guide with examples		
▲ Pipeline Steps	Detailed documentation of each script		
K-Prediction Score Analysis	How to interpret results and metrics		
? FAQ	Frequently asked questions		
* Troubleshooting	Common issues and solutions		

Pipeline Overview

Pipeline Overview

Pipeline Steps:

- Data Preparation (1_preparation.py) Cleans and splits molecular datasets using Scaffold Splitting.
- Featurization (2_featurization.py) Converts SMILES to Morgan Fingerprints (ECFP).
- **Model Training** (3_training.py) Trains a Multi-Layer Perceptron (MLP) deep neural network.
- **Model Evaluation** (4_*.py) Performs a comprehensive performance assessment with a full suite of validation scripts.
- Predictions (5_*.py) Predicts the activity score for new molecules.

o Getting Started

- 1. [Install K-talysticFlow] Set up your environment.
- 2. [Follow the User Manual] Run your first analysis.
- 3. [Understand the Outputs] Interpret your results.

Support & Contact

- **GitHub Issues**: Report bugs or request features
- Wiki: Browse this documentation for detailed guides.
- **Discussions**: Community discussions (if enabled)

Last Updated: 2025-08-23

Made with ♥ for the computational chemistry community by Késsia Souza (@kelsouzs)

🚀 Installation

Complete setup instructions for K-talysticFlow on Windows and Linux systems.

System Requirements

Minimum Requirements

- Python: 3.8 3.10 (3.11+ not fully supported by DeepChem)
- RAM: 8GB minimum, 16GB+ recommended
- Storage: 5GB free space for dependencies
- **OS**: Windows 10+ or Ubuntu 18.04+

Recommended for Large Datasets

- CPU: Multi-core processor (4+ cores)
- RAM: 16GB+ for datasets with >10,000 compounds
- Storage: SSD for faster I/O operations

K Installation Methods

Method 1: Conda (Recommended)

```
# Create conda environment
conda create -n ktalysticflow python=3.9
conda activate ktalysticflow

# Install core dependencies
conda install -c conda-forge rdkit-pypi
pip install deepchem[tensorflow]
pip install pandas numpy scikit-learn matplotlib seaborn tqdm

# Clone the repository
git clone https://github.com/kelsouzs/KAST.git
cd KAST

# Test installation
python bin/check_env.py
```

Method 2: pip + Virtual Environment

```
# Create virtual environment
python -m venv ktalysticflow
source ktalysticflow/bin/activate # Linux
# ktalysticflow\Scripts\activate # Windows

# Install dependencies
pip install rdkit-pypi
pip install deepchem[tensorflow]
pip install pandas numpy scikit-learn matplotlib seaborn tqdm

# Clone repository
git clone https://github.com/kelsouzs/KAST.git
cd KAST

# Test installation
python bin/check_env.py
```

Detailed Dependencies

Core Libraries

```
# Essential packages
tensorflow \geq 2.8.0
deepchem \geq 2.7.0
rdkit-pypi \geq 2022.9.1
pandas \geq 1.3.0
```

```
numpy≥1.21.0
scikit-learn≥1.0.0

# Visualization
matplotlib≥3.5.0
seaborn≥0.11.0

# Utilities
tqdm≥4.62.0
```

Optional Dependencies

```
# For advanced analysis
jupyter≥1.0.0
plotly≥5.0.0
```

Verification Steps

1. Check Environment

```
cd KAST
python bin/check_env.py
```

Expected Output:

```
✓ Python version: 3.9.x✓ TensorFlow: 2.x.x✓ DeepChem: 2.x.x✓ RDKit: 202x.x.x✓ All dependencies satisfied!
```

Common Installation Issues

Issue 1: RDKit Installation Failed

```
# Solution 1: Use conda
conda install -c conda-forge rdkit
# Solution 2: Build from source (advanced)
pip install rdkit-pypi --no-cache-dir
```

Issue 2: TensorFlow Import Error

```
# Check TensorFlow version
python -c "import tensorflow as tf; print(tf.__version__)"
# Install compatible version
pip install tensorflow==2.10.0
```

Issue 3: DeepChem Import Error

```
# Downgrade Python if using 3.11+
conda create -n ktalysticflow python=3.9
conda activate ktalysticflow
# Reinstall DeepChem
pip install --upgrade deepchem
```

Issue 4: Memory Issues During Training

```
# Set environment variables
export TF_CPP_MIN_LOG_LEVEL=2
# On Windows
set TF_CPP_MIN_LOG_LEVEL=2
```

Update Instructions

Update K-talysticFlow

```
cd KAST
git pull origin main
```

Update Dependencies

```
# Update all packages
pip install --upgrade deepchem tensorflow pandas numpy
# Check for compatibility
python bin/check_env.py
```

Development Setup

For Contributors

```
# Clone with development branch
git clone -b develop https://github.com/kelsouzs/KAST.git
# Install in development mode
pip install -e .
# Install development dependencies
pip install pytest black flake8
```

Running Tests

```
# Run test suite (when available)
pytest tests/
# Lint code
```

Getting Help

If you encounter issues:

- 1. Check the logs in logs/ directory
- 2. Run environment check: python bin/check_env.py
- 3. Search existing issues: GitHub Issues
- 4. Create new issue with error logs and system info

User Manual

Complete guide to using K-talysticFlow for molecular bioactivity prediction.

@ Quick Start

1. Launch the Pipeline

```
cd KAST
python main.py
```

2. Choose Your Workflow

```
Option A: Full Training Pipeline 1. [1] Data Preparation \rightarrow [2] Featurization \rightarrow [3] Training \rightarrow [4] Evaluation
```

```
Option B: Prediction Only 1. [5] Load Database & Featurize \rightarrow [2] Only Predict
```

```
 \textbf{Option C: Analysis Tools} \ 1. \ \texttt{[4] Evaluate Model} \ \rightarrow \ \texttt{[Cross-validation]} \ \rightarrow \ \texttt{[Enrichment]} \ \rightarrow \ \texttt{and more}...
```

Data Requirements

Input Data Format

Training Data (data/folder):

```
smiles,activity
CCO,1
CCC,0
clccccc1,1
CC(C)0,0
```

Prediction Data (data/folder):

```
smiles
CCO
CCC
```

Data Quality Guidelines

- Valid SMILES: Use canonical SMILES when possible
- **Balanced Dataset**: Similar numbers of active/inactive compounds
- Clean Data: Remove duplicates and invalid structures
- Size: Minimum 1000 compounds for training, no limit for prediction

Complete Workflow Guide

Phase 1: Data Preparation

Step 1: Data Preparation (1_preparation.py)

[1] Data Preparation

What it does: - Loads your .smi file with SMILES and activity data - Validates molecular structures using RDKit - Removes invalid/duplicate SMILES - Splits data into train/validation/test sets - Saves cleaned datasets

Input: Raw .smi file in data/ folder Output: Clean train/val/test CSV files in data/prepared/

Interactive Process: 1. Select your input .smi file 2. Choose split ratios (default: 70/15/15) 3. Review data statistics 4. Confirm data splits

Step 2: Featurization (2_featurization.py)

[2] Featurization

What it does: - Converts SMILES to Morgan Circular Fingerprints - Creates binary fingerprint vectors (default: 2048 bits) - Saves featurized datasets for training

Settings (in settings.py):

```
FP_RADIUS = 3  # Fingerprint radius
FP_SIZE = 2048  # Fingerprint size
```

Output: Featurized datasets in data/featurized/

Phase 2: Model Training

Step 3: Model Training (3_training.py)

[3] Model Training

What it does: - Builds Multi-Layer Perceptron (MLP) model using DeepChem's MultitaskClassifier" - Trains on featurized data - Implements early stopping - Saves trained model

Model Architecture: - **Input:** Morgan fingerprints (2048 dimensions) - **Hidden Layers:** 3 layers with dropout - **Output:** Binary classification (active/inactive) - **Optimizer:** Adam with learning rate scheduling

Training Process: 1. Load featurized training data 2. Initialize GCN model 3. Train with validation monitoring 4. Save best model checkpoint

Phase 3: Model Evaluation

Step 4: Main Evaluation (4_0_evaluation_main.py)

[4] Evaluate the Model

What it does: - Tests model on held-out test set - Calculates comprehensive metrics - Generates ROC curve - Exports predictions for further analysis

Metrics Calculated: - ROC-AUC: Area under ROC curve - Precision/Recall: Classification accuracy metrics - F1-Score: Harmonic mean of precision/recall - Matthews Correlation: Balanced metric for imbalanced data

Outputs: - 4_0_evaluation_report.txt: Text summary - 4_0_roc_curve.png: ROC curve plot - 4_0_test_predictions.csv: Detailed predictions

Advanced Evaluation Tools

Cross-Validation (bin/4_1_cross_validation.py)

- [4] Evaluate Model → [Cross-validation]
- 5-fold cross-validation using scaffold splitting
- Reports mean AUC ± standard deviation
- Validates model robustness

Enrichment Factor (bin/4_2_enrichment_factor.py)

- [4] Evaluate Model → [Enrichment]
- Calculates enrichment at 1%, 5%, 10% thresholds
- Measures early recognition performance
- Essential for virtual screening validation

Tanimoto Similarity Analysis (bin/4_3_tanimoto_similarity.py)

- [4] Evaluate Model → [Tanimoto Similarity]
- Computes Tanimoto similarity between molecular fingerprints
- · Assesses chemical diversity and redundancy in datasets and predictions
- · Useful for analyzing scaffold hopping and diversity in hits

Learning Curve Plot (bin/4_4_learning_curve.py)

- [4] Evaluate Model → [Learning Curve]
- Plots training and validation metrics across epochs

- · Assesses model convergence, overfitting, and data sufficiency
- Aids in hyperparameter tuning and dataset size decisions

Phase 4: Predictions

Step 5: Prediction Workflow

5.0: Featurize New Data (5_0_featurize_for_prediction.py)

- [5] Load Database & Featurize for Prediction
- 1. Select SMILES file from data/ folder
- 2. Featurize all molecules
- 3. Save featurized dataset

5.1: Run Predictions (5_1_run_prediction.py)

- [2] Only Predict
- 1. Load featurized prediction data
- 2. Load trained model
- 3. Generate predictions
- 4. Save ranked results

Output: predictions.csv with molecules ranked by predicted activity

Configuration Options

Main Settings (settings.py)

Data Processing

Featurization

Model Training

Evaluation

Custom Fingerprints

Modify in settings.py

This documentation describes the scripts contained in the /bin directory of the **K-talysticFlow** pipeline, including purpose, inputs, outputs, and dependency workflow.

Script Overview

Script	Purpose	Input	Output
check_env.py	Validates Python environment	-	Console report
1_preparation.py	Loads, cleans, and splits data	.smi files (actives & inactives)	<pre>01_train_set.csv, 01_test_set.csv</pre>
2_featurization.py	Converts SMILES to numeric vectors	Clean CSVs from step 1	Featurized datasets in /featurized_datasets
3_training.py	Trains the MLP model	Featurized training data	Trained model in /trained_model
4_0_evaluation_main.py	Main model evaluation	Featurized test data + trained model	Report, ROC curve, prediction CSV
4_1_cross_validation.py	Assesses model robustness (k-fold CV)	Complete .smi dataset	Cross-validation report
4_2_enrichment_factor.py	Calculates enrichment metrics	Prediction CSV from 4_0	EF report
4_3_tanimoto_similarity.py	Analyzes similarity between train and test	Clean CSVs from step 1	Report, histogram, and metrics
4_4_learning_curve.py	Generates learning curves	Complete .smi dataset	Learning curve plot and data
5_0_featurize_for_prediction.py	Featurizes new molecules for screening	New .smi file	Featurized data in /prediction_featurized
5_1_run_prediction.py	Predicts activity of new molecules	Featurized data + trained model	Ranked predictions (CSV)

- Purpose: Validates that all dependencies (Python, DeepChem, RDKit, etc.) are installed.
- Usage:

python bin/check_env.py

Output: Console report with installed versions or missing packages.

1_preparation.py

Purpose: Loads SMILES data, assigns labels (1 = actives, 0 = inactives), cleans, and splits into train/test.

Key Features: - Loads from .smi as per settings.py . - Uses Scaffold Splitting by default. - Switches to Stratified Splitting if needed.

Output: - results/01_train_set.csv - results/01_test_set.csv

2_featurization.py

Purpose: Converts SMILES into numeric vectors (fingerprints).

Key Features: - Generates Morgan fingerprints (ECFP-like). - Creates DeepChem DiskDataset.

Settings (settings.py):

```
FP_RADIUS = 3
FP_SIZE = 2048
```

Output: results/featurized_datasets/ (subfolders train/ and test/).

3_training.py

Purpose: Trains MLP model (MultitaskClassifier).

Config (settings.py):

```
MODEL_PARAMS = {
    'n_tasks': 1,
    'layer_sizes': [1000, 500],
    'dropouts': 0.25,
    'learning_rate': 0.001,
    'mode': 'classification',
    'nb_epoch': 50
}
```

Output: - Final model in results/trained_model/ - Log: results/03_training_log.txt

4_0_evaluation_main.py

Purpose: Evaluates model on the test set.

Metrics: ROC-AUC, Accuracy, Precision, Recall, Specificity, F1-Score.

```
Output: - results/4_0_evaluation_report.txt - results/4_0_roc_curve.png -
results/4_0_test_predictions.csv
```

4_1_cross_validation.py

Purpose: Assesses model stability via k-fold CV (default: 5-fold).

Output: results/4_1_cross_validation_results.txt

4_2_enrichment_factor.py

Purpose: Calculates Enrichment Factor (EF) for virtual screening.

Input: 4_0_test_predictions.csv

Output: resultados/enrichment_metrics_results.txt

4_3_tanimoto_similarity.py

Purpose: Analyzes chemical similarity between train and test.

Key Features: - Tanimoto coefficient on Morgan fingerprints.

Output: - results/4_3_similarity_analysis_log.txt - results/4_3_similarity_test_actives_to_train.png - results/4_3_test_actives_similarity_to_train.csv

4_4_learning_curve.py

Purpose: Generates learning curves (overfitting/underfitting).

Output: - results/4_4_learning_curve.png - results/4_4_learning_curve_data.csv

5_0_featurize_for_prediction.py & 5_1_run_prediction.py

5_0_featurize_for_prediction.py

- Input: New .smi
- Output: results/5_0_prediction_featurized/

5_1_run_prediction.py

- Input: Featurized data + trained model
- Output: results/5_0_new_molecule_predictions.csv

Script Dependencies & Workflow

Script Dependencies & Workflow

Shared dependencies: settings.py, utils.py, and main libraries (DeepChem, RDKit, etc.).

📊 Output Analysis

An in-depth analysis of the mathematical foundation and interpretation of K-talysticFlow prediction scores.

© K-Prediction Score: Mathematical Foundation

1. Score Function Definition

The **K-Prediction Score** represents the predicted probability that a compound exhibits bioactivity, based on its molecular fingerprint representation. It is the final result of a complex non-linear function learned by a neural network.

Fundamental Equation

```
K-Prediction Score = Softmax(f_MLP(x))
```

Where: - Softmax = Softmax activation function, which converts raw scores into probabilities - \mathbf{f} _MLP(\mathbf{x}) = The output of the Multi-Layer Perceptron (MLP) neural network before the final activation - \mathbf{x} = The Morgan Fingerprint input vector (2048 dimensions)

Detailed Mathematical Implementation

```
def k_prediction_score_equation(morgan_fingerprint):
   K-prediction Score = Softmax(z_final)[active_class]
    Where z_final is calculated as:
   z_{final} = h_2 \cdot W_{final} + b_{final}
   h_2 = ReLU(h_1 \cdot W_2 + b_2)
   h_1 = ReLU(x \cdot W_1 + b_1)
   Parameters:
    -x = Morgan Fingerprint input vector (2048D)
    - W_1, W_2, W_2final = Learned weight matrices [2048\rightarrow1000], [1000\rightarrow500], [500\rightarrow2]
    -b_1, b_2, b_2final = Learned bias vectors
    - ReLU(z) = max(0, z)
    - Softmax(z_i) = exp(z_i) / \Sigma exp(z_j)
   # Layer 1: Input \rightarrow Hidden Layer 1
   z_1 = W_1 @ morgan_fingerprint + b_1
   h<sub>1</sub> = ReLU(z<sub>1</sub>) # Output with 1000 dimensions
   # Layer 2: Hidden Layer 1 \rightarrow Hidden Layer 2
   z_2 = W_2 @ h_1 + b_2
   h<sub>2</sub> = ReLU(z<sub>2</sub>) # Output with 500 dimensions
    # Output Layer: Generating Logits
   z_final = W_final @ h2 + b_final # Output with 2 dimensions [inactive_logit, active_logit]
    # Softmax Activation to obtain probabilities
    probabilities = Softmax(z_final) # 2D vector, e.g., [0.05, 0.95]
    k_prediction_score = probabilities[1] # Probability of the active class
   return k_prediction_score
```

2. Output Function Properties (Softmax)

The **Softmax** function is ideal for classification as it converts a vector of raw scores (logits) into a probability distribution.

Mathematical Characteristics

```
def softmax_properties_analysis():
    """
    Softmax Function: Softmax(z<sub>i</sub>) = exp(z<sub>i</sub>) / Σ<sub>j</sub> exp(z<sub>j</sub>)

Important properties:
    - Σ<sub>i</sub> Softmax(z<sub>i</sub>) = 1.0 (valid probability distribution)
    - Softmax is monotonic: if z<sub>i</sub> > z<sub>j</sub>, then Softmax(z<sub>i</sub>) > Softmax(z<sub>j</sub>)
    - Sensitive to differences between logits
    """

# Interpretation of logits for K-Prediction Score
logit_interpretations = {
    'active_logit ≫ inactive_logit': 'K-Prediction Score → 1.0 (high confidence active)',
    'active_logit ≪ inactive_logit': 'K-Prediction Score → 0.0 (high confidence inactive)',
    'active_logit ≈ inactive_logit': 'K-Prediction Score ≈ 0.5 (model uncertainty)'
}

return logit_interpretations
```

Sensitivity Analysis

- The logits (z_final) represent the evidence that the model has accumulated for each class
- An active_logit much larger than the inactive_logit will result in a K-Prediction Score close to 1.0
- An active_logit much smaller than the inactive_logit will result in a K-Prediction Score close to 0.0
- If the logits are similar, the K-Prediction Score will be close to **0.5**, indicating **model uncertainty**

Score Interpretation and Usage

return ranking_interpretation

1. Probabilistic Interpretation

Calibration and Practical Meaning

```
def score_interpretation_framework():
    """
    The K-Prediction Score is a point probability generated by the model.

IMPORTANT: Without formal calibration, the predicted probability (e.g., 0.8)
does NOT necessarily mean an 80% real chance of activity.

Instead, it should be interpreted as a reliable RANKING SCORE.
    """

ranking_interpretation = {
        'fundamental_principle': 'K-Prediction Score of 0.9 > Score of 0.8 > Score of 0.7',
        'reliable_ordering': 'The relative ordering of compounds is highly reliable',
        'absolute_probability': 'The absolute value may not reflect real probability',
        'auc_roc_validation': 'The excellent AUC-ROC performance validates the ranking quality'
}
```

Practical Interpretation Example

```
K-Prediction Score Interpretation:

Score 0.95: Compound A
Score 0.87: Compound B
Score 0.72: Compound C
Score 0.34: Compound D

✓ CORRECT Interpretation:
A > B > C > D (priority order for experimental testing)

X INCORRECT Interpretation:

"Compound A has a 95% real chance of being active"
```

2. Decision Threshold Optimization

While the **default threshold** for classification is **0.5**, KAST allows for a deeper analysis to find an optimal threshold depending on the screening objective.

Mathematical Implementation of Optimal Threshold

```
def optimal_threshold_calculation(scores, true_labels):
   Mathematical optimization of the K-Prediction Score threshold for decision.
   This is implemented in the KAST validation suite.
   Optimizes for: argmax_t [Sensitivity(t) + Specificity(t) - 1] (Youden's J)
   from sklearn.metrics import roc_curve
   import numpy as np
   # Calculate the ROC curve
   fpr, tpr, thresholds = roc_curve(true_labels, scores)
   # Youden's J statistic to find the optimal threshold
   # Maximizes the difference between true positive rate and false positive rate
   j_scores = tpr - fpr
   optimal_idx = np.argmax(j_scores)
   optimal_threshold = thresholds[optimal_idx]
   threshold_analysis = {
       'youden_optimal_threshold': optimal_threshold,
       'sensitivity_at_optimal': tpr[optimal_idx],
       'specificity_at_optimal': 1 - fpr[optimal_idx],
   }
   return threshold_analysis
```

!? FAQ

Common questions and answers about K-talysticFlow usage, troubleshooting, and best practices.

Q: What are the minimum system requirements?

A:

Python: 3.9 or 3.10. Python 3.11+ is not yet fully supported by all dependencies.

RAM: 8 GB minimum. For datasets with over 10,000 molecules, 16 GB+ is recommended.

Storage: ~5 GB free space for the Conda environment and dependencies.

OS: Windows 10+ or a modern Linux distribution (e.g., Ubuntu 18.04+).

Q: Can I run K-talysticFlow on a standard laptop?

A: Yes! KAST is designed to work on standard laptops using CPU only. For very large datasets, training will be significantly faster on a machine with a dedicated NVIDIA GPU.

Data Requirements

Q: What data format do I need?

A: You need two simple text files (.smi) located in the data/ directory:

ativas.smi: Contains one SMILES string per line for your active molecules.

inativas.smi: Contains one SMILES string per line for your inactive molecules or decoys.

KAST will automatically process these files, assign labels (1 for actives, 0 for inactives), and create the necessary CSV files.

Q: How many compounds do I need for training?

A: More high-quality data is always better, especially for Deep Learning. However, KAST has shown strong performance even on focused datasets.

Minimum suggested: ~50-100 active compounds.

Recommended: Several hundred active compounds.

Important: A sufficient number of high-quality inactives or decoys is also crucial.

Q: What's a good active/inactive ratio?

A: Virtual screening is an imbalanced problem. KAST is designed to handle this.

Realistic Scenario: A ratio of 1:10 to 1:50 (or even higher) is common and provides a more rigorous test for the model, simulating a real-world screening scenario.

Balanced Sets (e.g., 1:1): Can also be used, but the model's performance on highly imbalanced datasets might differ.

Technical Issues

Q: "ModuleNotFoundError: No module named 'deepchem'" - What do I do?

A: This indicates that your Conda/virtual environment is not activated or a library is missing.

First, ensure your environment is active: conda activate kast_env.

If the error persists, the library is likely missing. Reinstall it using the recommended Conda command: conda install -c conda-forge deepchem.

Q: My training is very slow. How can I speed it up?

A: Training time is influenced by dataset size and model complexity.

Use a GPU: This is the most effective way to accelerate training. Ensure you have a compatible version of TensorFlow for your GPU.

Reduce model complexity: In settings.py, you can try smaller layer_sizes (e.g., [512, 256]).

Reduce number of epochs: In settings.py, lower nb_epoch in MODEL_PARAMS (e.g., to 25), but this may result in an under-trained model.

Q: I get a "Memory Error" during featurization or training.

A: This happens when the dataset is too large for your RAM.

Ensure you have at least 8-16 GB of RAM and that other memory-intensive applications are closed.

For very large datasets (>100,000 molecules), consider running the pipeline on a machine with more RAM. The use of DiskDataset in KAST helps mitigate this, but featurization can still be memory-intensive.

Predictions

Q: How do I interpret the K-Activity Score?

A: It is the model's predicted probability that a compound is active. It should be used for ranking.

Score near 1.0: The model is very confident the compound is active. These are your top candidates.

Score near 0.5: The model is uncertain.

Score near 0.0: The model is very confident the compound is inactive.

K Configuration

Q: Can I change the fingerprint settings?

A: Yes, in settings.py. The recommended defaults are robust.

```
FP_RADIUS = 3
FP_SIZE = 2048
```

Q: How do I adjust the model architecture?

A: Modify MODEL_PARAMS in settings.py.

```
MODEL_PARAMS = {
    'layer_sizes': [1000, 500],  # Default 2 hidden layers
    'dropouts': 0.25,  # Default regularization
    'learning_rate': 0.001  # Default learning rate
}
```

Q: How do I change the train/test split ratio?

A: Modify TEST_SET_FRACTION in settings.py.

```
TEST_SET_FRACTION = 0.2 # Sets aside 20% of data for testing
```

File Management

Q: Where are my results saved?

A: All outputs are saved in the results/ directory. Each script prefixes its output files (e.g., 4_0_evaluation_report.txt, 4_1_cross_validation_results.txt).

Q: Can I move my trained model to another computer?

A: Yes. You need to copy the entire results/trained_model/ directory, as it contains the model weights and necessary metadata.

Q: Do I need to re-run featurization every time I train a model?

A: No. As long as your input data (.smi) and your fingerprint settings in settings.py have not changed, you can rerun the training (Step 3) multiple times using the existing featurized data.

****** Troubleshooting

Comprehensive guide to diagnosing and fixing common issues in K-talysticFlow.

Installation Issues

Issue 1: DeepChem Installation Failed

Symptoms

```
ERROR: Failed building wheel for deepchem
ERROR: Could not build wheels for deepchem
ModuleNotFoundError: No module named 'deepchem'
```

Solutions

```
# Solution 1: Use conda (recommended)
conda create -n ktalysticflow python=3.9
conda activate ktalysticflow
conda install -c conda-forge rdkit deepchem

# Solution 2: Pip with specific version
pip install deepchem==2.7.1
pip install tensorflow==2.10.0

# Solution 3: Force reinstall
pip uninstall deepchem tensorflow
pip install --no-cache-dir deepchem[tensorflow]
```

Prevention

- Always use Python 3.8-3.10 (avoid 3.11+)
- Use conda environments to avoid conflicts
- Install dependencies in correct order

Issue 2: RDKit Import Errors

Symptoms

```
ImportError: cannot import name 'Chem' from 'rdkit'
ModuleNotFoundError: No module named 'rdkit'
```

Solutions

```
# Solution 1: Conda installation
conda install -c conda-forge rdkit

# Solution 2: Pip installation
pip install rdkit-pypi

# Solution 3: Complete reinstall
pip uninstall rdkit rdkit-pypi
conda install -c conda-forge rdkit
```

Issue 3: TensorFlow Compatibility Issues

```
ImportError: cannot import name 'utils' from 'tensorflow.python'
AttributeError: module 'tensorflow' has no attribute 'Session'
```

Solutions

```
# Check TensorFlow version
python -c "import tensorflow as tf; print(tf.__version__)"
# Install compatible version
pip install tensorflow==2.10.0 # Most stable with DeepChem
# For older systems
pip install tensorflow==2.8.0
```

Data Loading Problems

Issue 4: CSV File Not Found

Symptoms

```
FileNotFoundError: [Errno 2] No such file or directory: 'data/your_file.csv' ERROR: Could not find any CSV files in the data directory
```

Solutions

File Format Requirements

```
# Correct format
smiles,activity
CCO,1
CCC,0
clcccc1,1
# Common mistakes to avoid:
# X Wrong column names: "SMILES,Activity"
# X Missing header row
```

```
# X Extra columns without proper handling
```

X Non-binary activity values

Issue 5: Invalid SMILES Structures

Symptoms

```
▲ WARNING: 245 invalid SMILES found and removed ERROR: Not enough valid molecules for training RDKit WARNING: [molecule parsing error]
```

Diagnosis

```
# Check your SMILES validity
from rdkit import Chem
import pandas as pd

df = pd.read_csv('data/your_file.csv')
valid_count = 0
invalid_smiles = []

for smi in df['smiles']:
    mol = Chem.MolFromSmiles(smi)
    if mol is None:
        invalid_smiles.append(smi)
    else:
        valid_count += 1

print(f"Valid: {valid_count}, Invalid: {len(invalid_smiles)}")
print("Sample invalid SMILES:", invalid_smiles[:5])
```

Solutions

```
# Clean your data before training
def clean_smiles_data(csv_file):
    df = pd.read_csv(csv_file)
    valid_rows = []

for _, row in df.iterrows():
    mol = Chem.MolFromSmiles(row['smiles'])
    if mol is not None:
        valid_rows.append(row)

clean_df = pd.DataFrame(valid_rows)
    clean_df.to_csv('data/cleaned_dataset.csv', index=False)
    print(f"Saved {len(clean_df)} valid molecules")

clean_smiles_data('data/your_file.csv')
```

Model Training Issues

Issue 6: Training Stops Immediately

```
Epoch 1/100: Loss: nan, Validation AUC: 0.5000
Training stopped due to early stopping
Model training failed
```

Causes & Solutions

```
# Cause 1: Learning rate too high
MODEL_PARAMS['learning_rate'] = 0.0001 # Reduce from 0.001
# Cause 2: Bad data scaling
# Check for extreme values in your features
# Solution: Use standard fingerprints (handled automatically)
# Cause 3: Insufficient data
# Ensure you have:
# - At least 1000 compounds
# - At least 10% actives in dataset
# - Balanced train/val/test splits
# Cause 4: Memory issues
MODEL_PARAMS['batch_size'] = 32 # Reduce from 128
```

Issue 7: Memory Errors During Training

Symptoms

```
OOM when allocating tensor
MemoryError: Unable to allocate array
ResourceExhaustedError: Out of memory
```

Solutions

```
# Solution 1: Reduce model size
MODEL_PARAMS = {
    'layer_sizes': [500, 500],
                                 # Smaller layers
    'batch_size': 32,
                                   # Smaller batches
}
# Solution 2: Reduce fingerprint size
FP_SIZE = 1024 # Instead of 2048
# Solution 3: System-level fixes
# Close other applications
# Check available RAM
free -h
                           # Linux
wmic OS get TotalVisibleMemorySize /value # Windows
# Restart Python session
# Use 64-bit Python (if on 32-bit)
```

Issue 8: Poor Model Performance

```
ROC-AUC: 0.52 (barely better than random)
Cross-validation: 0.54 ± 0.15 (high variance)
Enrichment Factor @ 1%: 0.8 (worse than random)
```

Diagnostic Steps

```
# Step 1: Check data quality
def analyze_dataset(csv_file):
    df = pd.read_csv(csv_file)

print(f"Total compounds: {len(df)}")
print(f"Active compounds: {df['activity'].sum()}")
print(f"Inactive compounds: {len(df) - df['activity'].sum()}")
print(f"Activity ratio: {df['activity'].mean():.2%}")

# Check for duplicates
duplicates = df['smiles'].duplicated().sum()
print(f"Duplicate SMILES: {duplicates}")

# Check SMILES length distribution
lengths = df['smiles'].str.len()
print(f"SMILES length: {lengths.mean():.1f} ± {lengths.std():.1f}")

analyze_dataset('data/your_file.csv')
```

Solutions

```
# Solution 1: Improve data quality
# - Remove duplicates
# - Balance active/inactive ratio (aim for 20-80%)
# - Increase dataset size (>5000 compounds recommended)
# Solution 2: Adjust model parameters
MODEL_PARAMS = {
    'layer_sizes': [2000, 1000, 500], # Larger network
    'dropouts': 0.3,
                                      # Less regularization
    'weight_decay_penalty': 0.0001, # Less penalty
}
# Solution 3: Try different fingerprint settings
FP_RADIUS = 3
                 # Larger radius
FP_SIZE = 4096
                  # More features
# Solution 4: Check for data leakage
# Ensure test compounds are truly different from training
```

Prediction Issues

Issue 9: Prediction Script Fails

```
ERROR: No featurized prediction data found ERROR: Could not load trained model
```

FileNotFoundError: Model file not found

Solutions

```
# Check required files exist
ls models/best_model/  # Model should be here
ls data/prediction_featurized/  # Featurized data should be here

# Re-run featurization if needed
python bin/5_0_featurize_for_prediction.py

# Check model training completed successfully
ls models/best_model/
# Should contain: model files, config.json, etc.
```

Issue 10: Unrealistic Prediction Scores

Symptoms

```
# All predictions are extreme values
Score: 0.9999 for simple molecules
Score: 0.0001 for complex drugs
# Or all predictions are similar (e.g., 0.5-0.6)
```

Diagnosis

```
# Check prediction distribution
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('results/predictions.csv')
plt.hist(df['K-prediction Score'], bins=50)
plt.xlabel('Prediction Score')
plt.ylabel('Frequency')
plt.title('Prediction Score Distribution')
plt.show()

# Healthy distribution should be spread across 0-1
# Problematic: All values clustered in narrow range
```

Solutions

```
# Solution 1: Check model calibration
# Re-evaluate model on test set to verify performance

# Solution 2: Validate input SMILES
# Ensure prediction molecules are in valid format

# Solution 3: Check for domain shift
# Are prediction molecules very different from training set?

# Solution 4: Model retraining may be needed
# If predictions don't match expected chemistry
```

File System Issues

Issue 11: Permission Denied Errors (Windows)

Symptoms

```
PermissionError: [Errno 13] Permission denied
OSError: [WinError 5] Access is denied
Cannot create directory
```

Solutions

```
# Solution 1: Run as Administrator

# Right-click Command Prompt → "Run as administrator"

# Solution 2: Change directory location

# Move K-talysticFlow to Documents folder

C:\Users\YourName\Documents\KAST\

# Solution 3: Check folder permissions

# Right-click folder → Properties → Security → Full Control

# Solution 4: Disable antivirus temporarily

# Some antivirus software blocks file creation
```

Issue 12: Disk Space Issues

Symptoms

```
OSError: [Errno 28] No space left on device IOError: Not enough space to write file
```

Check Available Space

Space Requirements

```
Typical space usage:

Dependencies: ~2-3 GB

Training data (10K compounds): ~100 MB

Featurized data: ~200 MB

Model files: ~50-100 MB

Results: ~10-50 MB

Total: ~3-4 GB for complete pipeline
```

Solutions

```
# Clean up space
rm -rf data/featurized/*/temp_*  # Remove temp files
rm -rf logs/old_*  # Remove old logs
rm -rf models/old_*/  # Remove old models
# Move to larger drive
# Copy entire KAST folder to drive with more space
```

Performance Issues

Issue 13: Very Slow Training

Symptoms

```
Epoch 1/100 - ETA: 2 hours 45 minutes
Training taking much longer than expected
```

Diagnosis

```
# Check dataset size
import pandas as pd
df = pd.read_csv('data/prepared/train_prepared.csv')
print(f"Training compounds: {len(df)}")
# Large datasets (>50K) will naturally take longer
```

Solutions

```
# Solution 1: Optimize batch size
MODEL_PARAMS['batch_size'] = 256  # Increase if you have RAM
# Solution 2: Reduce model complexity
MODEL_PARAMS = {
    'layer_sizes': [1000, 500],  # Fewer/smaller layers
    'epochs': 50,  # Fewer epochs
}
# Solution 3: Use subset for testing
# Test with smaller dataset first to verify settings
```

Issue 14: High Memory Usage

Symptoms

```
System becomes unresponsive
Other applications crash
Python process uses >8GB RAM
```

Monitoring Memory Usage

```
# Add memory monitoring to your scripts
import psutil
import os

def check_memory():
    process = psutil.Process(os.getpid())
    memory_mb = process.memory_info().rss / 1024 / 1024
    print(f"Memory usage: {memory_mb:.1f} MB")

# Call periodically during training
check_memory()
```

Solutions

```
# Solution 1: Reduce fingerprint size
FP_SIZE = 1024  # Instead of 2048

# Solution 2: Process in smaller batches
# Modify featurization to use smaller chunks

# Solution 3: Use memory-efficient formats
# K-talysticFlow already optimized for this

# Solution 4: Add garbage collection
import gc
gc.collect()  # Call periodically
```

Configuration Issues

Issue 15: Settings Not Applied

Symptoms

```
Changed FP_SIZE to 1024 but still using 2048
Modified layer_sizes but model architecture unchanged
```

Solutions

```
# Solution 1: Verify settings.py location
# Must be in same directory as scripts

# Solution 2: Check for syntax errors
python -c "import settings; print(settings.FP_SIZE)"

# Solution 3: Clear cached data
# Delete and regenerate featurized data
rm -rf data/featurized/
python bin/2_featurization.py

# Solution 4: Restart Python session
# Some settings are cached in memory
```

Issue 16: Import Path Issues

Symptoms

```
ModuleNotFoundError: No module named 'settings'
ModuleNotFoundError: No module named 'utils'
```

Solutions

```
# Solution 1: Run from correct directory
cd KAST/
                           # Must be in project root
python bin/1_preparation.py
# Solution 2: Check file structure
KAST/
igwedge settings.py
                        # Must exist here
├─ utils.py
                       # Must exist here
├─ bin/
    - 1_preparation.py
# Solution 3: Fix Python path
export PYTHONPATH="${PYTHONPATH}:$(pwd)" # Linux
set PYTHONPATH=%PYTHONPATH%;%cd%
                                        # Windows
```

Emergency Troubleshooting

Complete Reset Procedure

If everything is broken, start fresh:

```
# Step 1: Backup important data
cp data/your_dataset.csv ~/backup/
cp settings.py ~/backup/
cp -r results/ ~/backup/
# Step 2: Clean installation
                                # Remove virtual environment
rm -rf venv/
                            # Remove featurized data
# Remove prepared data
rm -rf data/featurized/
rm -rf data/prepared/
rm -rf models/
                                # Remove models
# Step 3: Fresh install
python -m venv venv
source venv/bin/activate
                              # Linux
# venv\Scripts\activate
                                # Windows
pip install --upgrade pip
pip install deepchem[tensorflow]
pip install rdkit-pypi pandas numpy scikit-learn matplotlib seaborn tqdm
# Step 4: Test installation
python bin/check_env.py
# Step 5: Restore data and start over
cp ~/backup/your_dataset.csv data/
python main.py
```

Collecting Debug Information

When reporting issues, collect this information:

```
# System information
python --version
python -c "import deepchem; print('DeepChem:', deepchem.__version__)"
python -c "import tensorflow; print('TensorFlow:', tensorflow.__version__)"
python -c "import rdkit; print('RDKit:', rdkit.__version__)"

# Check environment
python bin/check_env.py > debug_info.txt

# Check file structure
find . -name "*.py" | head -20 >> debug_info.txt
ls -la data/ >> debug_info.txt
ls -la models/ >> debug_info.txt
# Include any error logs
cat logs/error.log >> debug_info.txt
```

└ Getting Help

Before Asking for Help

- 1. Check this troubleshooting guide Many issues are covered here
- 2. Review error messages carefully Often contain solution hints
- 3. Check existing GitHub issues Your problem might already be solved
- 4. Test with sample data Isolate whether it's your data or the software

When Creating a GitHub Issue

Include: - **System information** (OS, Python version, package versions) - **Complete error message** (copy-paste, don't paraphrase) - **Steps to reproduce** (what did you do before the error?) - **Your data format** (anonymized sample of your CSV) - **Settings modifications** (if you changed anything in settings.py)

Useful Commands for Debug Information

```
# Generate comprehensive debug report
python bin/check_env.py > debug_report.txt
echo "== System Info ==" >> debug_report.txt
python --version >> debug_report.txt
echo "== File Structure ==" >> debug_report.txt
ls -la >> debug_report.txt
echo "== Recent Logs ==" >> debug_report.txt
tail -50 logs/*.log >> debug_report.txt 2>/dev/null || echo "No logs found"
```