Ausgabe: 14.12.2022 Abgabe: 03.01.2023

Aufgabe 6

Beweisen oder widerlegen Sie, dass es sich bei den gegebenen Abbildungen um eine Norm für Vektoren des Vektorraums \mathbb{R}^n handelt.

a)

$$||x|| = \sum_{i=1}^n x_i$$

b)

$$||x|| = \left| \prod_{i=1}^{n} x_i \right|$$

c)

$$||x|| = \min_{i=1,\dots,n} |x_i|$$

Lösung 6

Nach Definition 3.114, Seite 106 heißt eine Abbildung $\|\cdot\|:V\to\mathbb{R}$ Norm, genau dann, wenn

• **N0** : $||a|| \in \mathbb{R}$

• **N1**: $||a|| \ge 0$

• **N2**: $||a|| = 0 \Leftrightarrow a = 0$

• N3: $\forall \lambda \in \mathbb{K} : \|\lambda \cdot a\| = |\lambda| \cdot \|a\|$

• **N4**: $||a+b|| \le ||a|| + ||b||$.

Lösung 6a

Bei der Abbildung $||x|| = \sum_{i=1}^{n} x_i$ handelt es sich nicht um eine Norm, da für den Vektor x = (-1) die Bedingung N1, $||a|| \ge 0$ verletzt ist.

Darüber hinaus wäre für den Vektor $x = (1; -1)^T$ die Bedingung N2 verletzt und für $\lambda < 0$ auch die Bedingung N3.

Lösung 6b

Bei der Abbildung $||x|| = |\prod_{i=1}^{n} x_i|$ ist die Bedingung N2 verletzt, da für jeden Vektor a mit einer beliebigen Komponente $a_i = 0$ die Norm ||a|| = 0 wäre.

Lösung 6c

Auch bei der Abbildung $||x|| = \min_{i=1,\dots,n} |x_i|$ handelt es sich nicht um eine Norm, weil die Bedingung N4 verletzt ist:

Sei $a = (1, 2)^T$, $b = (2, 1)^T$ dann ist

$$\|(3;3)^T\| = 3 \le \|(1;2)^T\| + \|(2;1)^T\| = 1 + 1 \ \ \ \ \ \ \ .$$

Aufgabe 7

Bestimmen Sie mit der Projektionsformel $p=\frac{\langle x,y\rangle}{\langle y,y\rangle}\cdot y$ im unitären Raum \mathbb{C}^2 die Projektion von $x=(1+i;\ 2+i)^T$ auf $y=(1-i;\ -1)^T$.

Lösung 7

Nach Definition 3.108 ist das Standardskalarprodukt in \mathbb{C}^2 definiert als $\langle a, b \rangle = a_1 \overline{b_1} + a_2 \overline{b_2}$.

Es folgt mit der gegebenen Projektionsformel

$$p = \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y$$

$$\stackrel{\text{def}}{=} \frac{(1+i)(1+i)+(2+i)(-1)}{(1-i)(1+i)+(-1)(-1)} \cdot \begin{pmatrix} 1-i\\-1 \end{pmatrix}$$

$$= \frac{-2+i}{3} \cdot \begin{pmatrix} 1-i\\-1 \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{3}+i\\\frac{2-i}{3} \end{pmatrix}$$

Aufgabe 8

Zeigen Sie, dass die Vektoren

$$x = \begin{pmatrix} -3/5 \\ 4/5 \\ 0 \end{pmatrix}$$
, $y = \begin{pmatrix} 4/5 \\ 3/5 \\ 0 \end{pmatrix}$, $z = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

eine Orthonormalbasis des euklidischen Raums R^3 (mit dem Standardskalarprodukt) bilden.

Lösung 8

Nach Definition 3.128, Seite 111 muss für eine Orthonormalbasis $\mathcal{B}_{ON} = (x, y, z)$ folgende Bedingungen erfüllt sein:

1. Orthogonalsystem: $x \perp y \land y \perp z \land x \perp z$

Ausgabe: 14.12.2022

Abgabe: 03.01.2023

Ausgabe: 14.12.2022 Abgabe: 03.01.2023

- 2. Orthonormalsystem: ||x|| = ||y|| = ||z|| = 1
- 3. Orthogonalbasis: x, y, z ist ein minimales Erzeugendensystem vom Vektorraum V
- 1. \mathcal{B}_{ON} ist ein Orthogonalsystem, wenn alle Vektoren paarweise orthogonal sind:

$$\langle x, y \rangle = \frac{-3 \cdot 4}{5} + \frac{4 \cdot 3}{5} + 0$$
$$= 0$$
$$\Rightarrow x \perp y$$

$$\langle y, z \rangle = \frac{4 \cdot 0}{5} + \frac{3 \cdot 0}{5} + 0$$
$$= 0$$
$$\Rightarrow y \perp z$$

$$\langle x, z \rangle = \frac{-3 \cdot 0}{5} + \frac{4 \cdot 0}{5} + 0$$
$$= 0$$
$$\Rightarrow x \perp z$$

$$\Rightarrow x \perp y \wedge y \perp z \wedge x \perp z \checkmark$$

2. Ein Orthogonalsystem \mathcal{B}_{ON} ist ein Orthonormalsystem, wenn die Norm aller Vektoren 1 beträgt:

$$||x|| = \sqrt{\left(\frac{-3}{5}\right)^2 + \left(\frac{4}{5}\right)^2 + 0^2}$$

$$= \sqrt{\frac{9}{25} + \frac{16}{25}}$$

$$= \sqrt{\frac{25}{25}}$$

$$= 1$$

$$||y|| = \sqrt{\left(\frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2 + 0^2}$$
$$= \sqrt{\frac{16}{25} + \frac{9}{25}}$$
$$= 1$$

$$||z|| = \sqrt{0^2 + 0^2 + 1^2}$$
$$= 1$$

$$\Rightarrow ||x|| = ||y|| = ||z|| = 1$$

Abgabe: 03.01.2023

Ausgabe: 14.12.2022

3. Ein Orthogonalsystem \mathcal{B}_{ON} ist eine Orthogonalbasis von V, wenn es eine Basis von V ist. Man sieht, dass die Vektoren x,y,z eine Lineare Hülle aufspannen, sodass $L(x,y,z)=\mathbb{R}^3$. Es bleibt die lineare Unabhängigkeit der Vektoren zu zeigen:

$$det(x,y,z) = \frac{-9}{5} + 0 + 0 - 0 - 0 - \left(\frac{-9}{5}\right)$$
$$= 0$$

 $\Rightarrow x, y, z$ ist ein minimales Erzeugendes System vom Vektorraum V. \checkmark

Aus 1, 2 und 3 folgt, dass es sich bei der \mathcal{B}_{ON} um eine Orthonormalbasis des Vektorraums \mathbb{R}^3 handelt.