Equivalence Class Testing

Venkatesh-Prasad Ranganath Kansas State University

Equivalence Classes

Weak Normal Equivalence Class Testing

Weak Robust Equivalence Class Testing

Strong Normal Equivalence Class Testing

Strong Robust Equivalence Class Testing

Limitations

- Arriving at correct equivalent classes may not be easy
 - Often relies on domain knowledge
- Possible to introduce
 - redundant test cases
 - incomplete test suite
 - "impossible" test cases

Type of Triangle

- Universe of test data (input) is the set of all triples of positive integers
- Properties
 - p0(x, y, z) is true if x+y>z and z+x>y and y+z>x
 - p1(x, y, z) is true if x==y==z
 - p2(x, y, z) is true if x==y or y==z or z==x
- Equivalence Classes
 - Not-a-triangle: all triples satisfying !p0
 - Equilateral: all triples satisfying p0 and p1
 - since p1 implies p0, we could drop p0
 - Isosceles: all triples satisfying p0, !p1, and p2
 - Scalene: all triples satisfying p0, !p1, and !p2