PRACTICO NRO1

PROGRAMACION II-RECURSIVIDAD

I. Recursiones numéricas

- 1. Escribir una función que devuelva el mayor de los dígitos de un número.
 - Ej. Mayor(385267) ==> 8
- 2. Escribir una función que devuelva la suma de los dígitos múltiplos de 3.
 - Ej. SumaPares(382735) ==> 6
- 3. Escribir un proceso que lleve el mayor de los dígitos al final de un número.
 - Ej. x=382731; MoverMayor(x); ==> x=327318
- 4. Escribir una función que devuelva true si un número está ordenado en sus dígitos.
 - Ej. EstaOrdenado(1237) ==> true
- 5. Escriba un algoritmo recursivo. Dado N muestre la serie y realice el sumatorio :

$$(1 + 4/3 + 8/7 + 16/15 \dots)$$
 Su

Suma=4.5428

II. Recursiones con cadenas

- 1. Escribir una función que devuelva la palabra más larga de una cadena Ej. CadenaMasLarga("esta es una prueba más") --> "prueba"
- 2. Escribir un proceso para eliminar la primer letra de cada palabra" Ej. x="esta es una prueba más"; EliminaPrim (x) x="sta s na rueba ás"
- 3. Un palíndromo es una palabra que se lee igual hacia adelante que hacia atras. Desarrolle una función que determine si una palabra es palíndromo o no.
- 4. Desarrolle una función que calcule la cantidad de vocales que tiene una cadena
- 5. Desarrolle una función que lea caracter a caracter, mostrándolo por pantalla, mediante el teclado y que valide que el carácter pertenezca a un conjunto valido de caracteres devolviendo la cadena resultante.

Leer conjunto "abcABCHoOLA"

Leer x H => pertenece a conjunto? si Leer x O => pertenece a conjunto? SI Leer x Ñ => PERTENENE A conjunto? NO

La cadena resultante es "HO"

III. EJERCICIOS CON VECTORES

1. Cargar un vector con la siguiente serie numérica

2 4 16 22 176 186 N=6

2. Dado un vector con N elementos, invertirlo

2 5 11 23 N=4

3. Ordene en sentido inverso un vector de N elementos

12 5 31 23 N=4

IV. EJERCICIOS CON MATRICES

1. Escriba un algoritmo recursivo para generar la siguiente matriz de dimensiones NxM

Donde N: Es Impar, M: Es par y es siempre ((N/2) +1) 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 3

2. Crear un algoritmo recursivo para generar la siguiente matriz de dimensiones NxN

Donde N: Es impar Por ejemplo, para Mat[5][5]

1 2 6 3 7 10 4 8 11 13 5 9 12 14 15

- 3. Crear un algoritmo recursivo que obtenga la sumatoria los elementos arriba de la diagonal principal (no incluye diagonal principal)
- 4. Generar las siguientes matrices para NxM. Los siguientes ejemplos suponen N=5

25	24	23	22	21
20	19	18	17	16
15	14	13	12	11
10	9	8	7	6
5	4	3	2	1

1	100	121	400
4	81	144	361
9	64	169	324
16	49	196	289
25	36	225	256

1	2	3	4	5
7				6
6				7
5				8
4	3	2	1	9