Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

Logika pre informatikov a Úvod do matematickej logiky

Poznámky z prednášok

Ján Kľuka, Ján Mazák, Jozef Šiška

Letný semester 2024/2025 Posledná aktualizácia: 17. februára 2025

Obsah

P1	Úv	od. Atomické formuly a štruktúry	2
0	Úvod	ı	2
	0.1	O logike	2
	0.2	O kurzoch LPI a UdML	11
1	Aton	nické formuly a štruktúry	12
	1.1	Syntax atomických formúl	18
	1.2	Štruktúry	22
		Sémantika atomických formúl	
	1.4	Zhrnutie	26

1. prednáška

Úvod

Atomické formuly a štruktúry

0 Úvod

0.1 O logike

Čo je logika

Logika je vedná disciplína, ktorá študuje usudzovanie. Správne, racionálne usudzovanie je základom vedy a inžinierstva. Vyžaduje rozoznať

- správne úsudky z predpokladaných princípov a pozorovania
- od chybných úvah a špekulácií.

Správnosť úsudkov, zdá sa, nie je iba vec konvencie a dohody.

Logika skúma, *aké* sú zákonitosti správneho usudzovania a *prečo* sú zákonitosťami.

Historicky sa logika venovala najmä filozofickým hľadiskám, dnes kladieme väčší dôraz na výpočtové aspekty.

Ako logika študuje usudzovanie

Logika má dva hlavné predmety záujmu:

Jazyk zápis pozorovaní, definície pojmov, formulovanie teórií

Syntax pravidlá zápisu tvrdení

Sémantika význam tvrdení

Usudzovanie (inferencia) odvodzovanie nových *logických dôsledkov* z doterajších poznatkov. (Úzko súvisí s jazykom: čím viac možno v jazyku vyjadriť, tým ťažšie je definovať či algoritmicky rozhodovať logické vyplývanie.)

Jazyk, poznatky a teórie

Jazyk slúži na formulovanie tvrdení, ktoré vyjadrujú poznatky o svete (princípy jeho fungovania aj pozorované fakty).

Súboru poznatkov, ktoré považujeme za pravdivé, hovoríme teória.

Príklad 0.1 (Party time!). Máme troch nových známych — Kim, Jima a Sarah. Organizujeme párty a P0: chceme na ňu pozvať niekoho z nich. Od spoločných kamarátov sme sa ale dozvedeli o ich požiadavkách:

P1: Sarah nepôjde na párty, ak pôjde Kim.

P2: Jim pôjde na párty, len ak pôjde Kim.

P3: Sarah nepôjde bez Jima.

Možné stavy sveta a modely

Jedna z otázok, ktoré si o teórii o party môžeme položiť, je: "*Môžu* noví známi prísť na párty tak, aby boli *všetky podmienky splnené*? Ak áno, v akých zostavách?"

Priamočiaro (aj keď prácne) to zistíme tak, že:

- 1. vymenujeme všetky možné stavy sveta (účasti nových známych),
- 2. zistíme, v ktorých sú všetky podmienky splnené.

K	J	S	P0	P1	P2	P3
n	n	n	n			
n	n	p	p	p	p	n
n	p	n	p	p	n	
n	p	p	p	p	n	
p	n	n	p	p	p	p
p	n	p	p	n		
p	p	n	p	p	p	p
p	p	p	p	n		

Možné stavy sveta a modely

Teória rozdeľuje možné stavy sveta (interpretácie) na:

⊧ stavy, v ktorých je pravdivá – *modely* teórie,

⊭ stavy, v ktorých je nepravdivá.

Tvrdenie aj teória môžu mať viacero modelov, ale aj žiaden.

Príklad 0.2. Modelmi teórie P0, P1, P2, P3 sú dve situácie: keď Kim príde na párty a ostatní noví známi nie, a keď Kim a Jim prídu na párty a Sarah

nie.

·K	J	S	P0	P1	P2	P3	
n	n	n	n				≠ P0, P1, P2, P3
n	n	p	р	p	p	n	⊭ P0, P1, P2, P3
n	p	n	р	p	n		⊭ P0, P1, P2, P3
n	p	p	p	p	n		⊭ P0, P1, P2, P3
p	n	n	p	p	p	p	⊧ P0, P1, P2, P3
p	n	p	p	n			⊭ P0, P1, P2, P3
p	p	n	p	p	p	p	F P0, P1, P2, P3
p	p	p	p	n			⊭ P0, P1, P2, P3

Logické dôsledky

Často je zaujímavá iná otázka o teórii — musí byť nejaké tvrdenie pravdivé vždy, keď je pravdivá teória?

V našom príklade: Kto *musí* a kto *nesmie* prísť na párty, aby boli podmienky P0, ..., P3 splnené?

K	J	S	P0	P1	P2	P3	
n	n	n	n				≠ P0, P1, P2, P3
n	n	p	p	p	p	n	¥ P0, P1, P2, P3
n	p	n	p	p	n		¥ P0, P1, P2, P3
n	p	p	p	p	n		¥ P0, P1, P2, P3
p	n	n	p	p	p	p	₽ P0, P1, P2, P3
p	n	p	p	n			⊭ P0, P1, P2, P3
p	p	n	p	p	p	p	F P0, P1, P2, P3
p	p	p	p	n			⊭ P0, P1, P2, P3

Logické dôsledky

Logickými dôsledkami teórie sú tvrdenia, ktoré sú pravdivé vo všetkých modeloch teórie.

Príklad 0.3. Logickými dôsledkami teórie P0, P1, P2, P3 sú napríklad:

- Kim príde na párty.
- Sarah nepríde na párty.

Logických dôsledkov je nekonečne veľa, môžu nimi byť ľubovoľne zložité tvrdenia:

- Na party príde Kim alebo Jim.
- Ak príde Sarah, tak príde aj Jim.
- Ak príde Jim, tak nepríde Sarah.

:

Logické usudzovanie

Preskúmať všetky stavy sveta je často nepraktické až nemožné.

Logické dôsledky ale môžeme odvodzovať usudzovaním (inferovať).

Pri odvodení vychádzame z *premís* (predpokladov) a postupnosťou *správnych úsudkov* dospievame k *záverom*.

Príklad 0.4. Vieme, že ak na párty pôjde Kim, tak nepôjde Sarah (P1), a že ak pôjde Jim, tak pôjde Kim (P2).

- 1. Predpokladajme, že na párty pôjde Jim.
- 2. Podľa 1. a P2 pôjde aj Kim.
- 3. Podľa 2. a P1 nepôjde Sarah.

Teda podľa uvedenej úvahy: Ak na párty pôjde Jim, tak nepôjde Sarah.

Dedukcia

Úsudok je správny (*korektný*) vtedy, keď *vždy*, keď sú pravdivé jeho premisy, je pravdivý aj jeho záver.

Ak sú všetky úsudky v odvodení správne, záver *je logickým dôsledkom* premís a odvodenie je jeho *dôkazom* z premís.

Dedukcia je usudzovanie, pri ktorom sa používajú iba správne úsudky.

Logika študuje dedukciu, ale aj niektoré nededuktívne úsudky, ktoré sú vo všeobecnosti nesprávne, ale sú správne v špeciálnych prípadoch alebo sú užitočné:

- indukcia zovšeobecnenie;
- abdukcia odvodzovanie možných príčin z následkov;
- usudzovanie na základe analógie (podobnosti).

Kontrapríklady

Ak úsudok nie je správny, existuje *kontrapríklad* — stav sveta, v ktorom sú *predpoklady pravdivé*, ale *záver je nepravdivý*.

Príklad 0.5. Nesprávny úsudok: Ak platia tvrdenia teórie o party, na party príde Jim.

Kontrapríklad: Stav, kedy príde Kim, nepríde Jim, nepríde Sarah. Teória je pravdivá, výrok "na party príde Jim" nie je pravdivý.

K	J	S	
n	n	n	¥ P0, P1, P2, P3
n	n	p	⊭ P0, P1, P2, P3
n	p	n	⊭ P0, P1, P2, P3
n	p	p	⊭ P0, P1, P2, P3
p	n	n	F P0, P1, P2, P3
p	n	p	⊭ P0, P1, P2, P3
p	p	n	F P0, P1, P2, P3
p	p	р	¥ P0, P1, P2, P3

Matematická logika

Matematická logika

- modeluje jazyk, jeho sémantiku a usudzovanie ako matematické objekty (množiny, postupnosti, zobrazenia, stromy);
- rieši logické problémy matematickými metódami.

Rozvinula sa koncom 19. a v prvej polovici 20. storočia hlavne vďaka *Hilbertovmu programu* — snahe vybudovať základy matematiky bez sporov a paradoxov, mechanizovať overovanie dôkazov alebo priamo hľadanie matematických viet.

Matematická logika a informatika

Informatika sa vyvinula z matematickej logiky (J. von Neumann, A. Turing, A. Church, ...)

Väčšina programovacích jazykov obsahuje logické prvky:

• all(x > m for x in arr),

fragmenty niektorých sú priamo preložiteľné na logické formuly:

• SELECT t1.x FROM t1 JOIN t2 ON t1.y = t2.y WHERE t1.y > 25,

niektoré (Prolog, Datalog) sú podmnožinou logických jazykov.

Metódami logiky sa dá *presne špecifikovať*, čo má program robiť, *popísať*, čo robí, a *dokázať*, že robí to, čo bolo špecifikované.

Matematická logika a informatika

Veľa otázok v logike je algoritmických:

- Možno usudzovanie pre danú triedu jazykov automatizovať?
- Dá sa nájsť dôkaz pre tvrdenia s takouto štruktúrou dostatočne rýchlym algoritmom?

Výpočtová logika hľadá algoritmické riešenia problémov pre rôzne triedy logických jazykov. Aplikovateľné na iné ťažké problémy (grafové, plánovacie, vysvetľovanie, ...) vyjadriteľné v príslušnej triede.

Logika umožňuje hľadať všeobecné odpovede.

• Ak možno vlastnosť grafu popísať *prvorádovou formulou s najviac dvomi kvantifikátormi* a zároveň ..., existuje pomerne rýchly algoritmus, ktorý rozhodne, či daný graf túto vlastnosť má.

Matematická logika a informatika

Automatizované dokazovače: napr. v r. 1996 počítač dokázal Robbins Conjecture, ktorá odolávala ľudskej snahe 60 rokov.

Donedávna malo automatizované dokazovanie nepresvedčivé výsledky a niektoré oblasti výskumu boli relatívne mŕtve, napr. expertné systémy.

S novými modelmi umelej inteligencie však ožíva, napr. AlphaProof rieši 84% úloh z IMO.

Formálne jazyky a formalizácia

Matematická logika nepracuje s prirodzeným jazykom, ale s jeho zjednodušenými modelmi — *formálnymi jazykmi*.

- Presne definovaná, zjednodušená syntax a sémantika.
- Obchádzajú problémy prirodzeného jazyka:

viacznačnosť slov, nejednoznačné syntaktické vzťahy, zložitá syntaktická analýza, výnimky, obraty s ustáleným významom, ...

• Niekoľko formálnych jazykov už poznáte: aritmetika, jazyky fyzikálnych a chemických vzorcov, programovacie jazyky, ...

Problémy z iných oblastí opísané v prirodzenom jazyku musíme najprv *sformalizovať*, a potom naň môžeme použiť aparát mat. logiky.

Formalizácia vyžaduje cvik – trocha veda, trocha umenie.

Ťažkosti s prirodzeným jazykom

Prirodzený jazyk je problematický:

- Viacznačné slová: Milo je v posluchárni A.
- Viacznačné tvrdenia: Chlieb sa predáva v potravinách. Videl som dievča v sále s ďalekohľadom.
- Ťažko syntakticky analyzovateľné tvrdenia:

Vlastníci bytov a nebytových priestorov v dome prijímajú rozhodnutia na schôdzi vlastníkov dvojtretinovou väčšinou hlasov všetkých vlastníkov bytov a nebytových priestorov v dome, ak hlasujú o zmluve o úvere a o každom dodatku k nej, o zmluve o zabezpečení úveru a o každom dodatku k nej, o zmluve o nájme a kúpe veci, ktorú vlastníci bytov a nebytových priestorov v dome užívajú s právom jej kúpy po uplynutí dojednaného času užívania a o každom dodatku k nej, o zmluve o vstavbe alebo nadstavbe a o každom dodatku k nim, o zmene účelu užívania spoločných častí domu a spoločných zariadení domu a o zmene formy výkonu správy; . . .

– Zákon č. 182/1993 Z. z. SR v znení neskorších predpisov

 Výnimky a obraty so špeciálnym ustáleným významom: Nikto nie je dokonalý.

Formalizácia poznatkov

S formalizáciou ste sa už stretli – napríklad pri riešení slovných úloh:

Karol je trikrát starší ako Mária. Súčet Karolovho a Máriinho veku je 12 rokov. Koľko rokov majú Karol a Mária? $k = 3 \cdot m$ k + m = 12

Stretli ste sa už aj s formálnym jazykom výrokovej logiky.

Príklad 0.6. Sformalizujme náš párty príklad:

P0: Niekto z trojice Kim, Jim, Sarah pôjde na párty. $p(K) \lor p(J) \lor p(S)$

P1: Sarah nepôjde na párty, ak pôjde Kim. $p(K) \rightarrow \neg p(S)$

P2: Jim pôjde na párty, len ak pôjde Kim. $p(J) \rightarrow p(K)$

P3: Sarah nepôjde bez Jima. $\neg p(J) \rightarrow \neg p(S)$

Všimnite si, koľko vetných konštrukcií v slovenčine zodpovedá jednej formálnej spojke →.

Logika prvého rádu

Jazyk logiky prvého rádu (FOL) je jeden zo základných formálnych jazykov, ktorými sa logika zaoberá.

Do dnešnej podoby sa vyvinul koncom 19. a v prvej polovici 20. storočia — G. Frege, G. Peano, C. S. Peirce.

Výrokové spojky + kvantifikátory ∀ a ∃.

Dá sa v ňom vyjadriť veľa zaujímavých tvrdení, bežne sa používa v matematike.

$$\forall \varepsilon > 0 \ \exists \delta > 0 \dots$$

Kalkuly — formalizácia usudzovania

Pre mnohé logické jazyky sú známe kalkuly-množiny usudzovacích pravidiel, ktoré sú

korektné – odvodzujú iba logické dôsledky,

úplné – umožňujú odvodiť všetky logické dôsledky.

Kalkuly sú bežné v matematike

- kalkul elementárnej aritmetiky: na počítanie s číslami, zlomkami,
- kalkul lineárnej algebry: riešenie lineárnych rovníc,
- kalkul matematickej analýzy: derivovanie, integrovanie, riešenie diferenciálnych rovníc

:

Sú korektné, ale nie vždy úplné.

Poznáte už aj jeden logický kalkul – ekvivalentné úpravy.

Symbolické vs. aproximačné výpočty

Symbolický výpočet:

$$x^{2} = 2$$
$$(x + \sqrt{2})(x - \sqrt{2}) = 0$$
$$x = \pm \sqrt{2}$$

Symboly majú jasný význam, výpočet pozostáva z overiteľných krokov, ktoré samé osebe "dávajú zmysel".

Aproximačný výpočet:

$$x^{2} = 2$$

$$x \in (1,2)$$

$$x \in (1.4, 1.5)$$
...
$$x \approx 1.4142$$

Kroky výpočtu nenesú samé osebe zmysel, sú to len aritmetické operácie, výsledok je nespoľahlivý.

Symbolické vs. aproximačné výpočty Symbolické:

- úprava výrazov
- derivovanie elem, f.
- matematické dôkazy
- expertné systémy (kľúč na
 LLM (ChatGPT) určovanie druhu húb)

Aproximačné / data-driven:

- numerická optimalizácia
- strojové učenie
- neurónové siete

Symbolické vs. aproximačné výpočty

Nevýhodou výpočtov založených na dátach je chýbajúca kontrola nad smerovaním výpočtu a nemožnosť pochopenia/overenia.

Napr. ChatGPT generuje text, ktorý je "pravdepodobný" (vzhľadom na texty v trénovacích vstupoch). Nevie merať ani overovať správnosť. Na začiatku nezvládal ani sčítanie jednociferných čísel; užitočnosť a spoľahlivosť LLM výrazne stúpne, ak majú prístup ku kalkulačke, ktorá vie robiť symbolickú aritmetiku.

V kontraste s tým symbolické kalkuly garantujú správnosť. Ukážeme si dva (tablá a rezolvenciu), existuje mnoho ďalších (napr. AlphaProof používa Lean).

Schéma riešenia problémov pomocou logiky

0.2 O kurzoch LPI a UdML

Prístup k logike na tomto predmete

Stredoškolský prístup príliš *neoddeľuje jazyk* výrokov od jeho *významu* a vlastne ani jednu stránku *nedefinuje jasne*.

Prevedieme vás základmi matematickej a výpočtovej logiky pre (postupne čoraz zložitejšie) fragmenty jazykov logiky prvého rádu.

Teoretická časť:

- Matematické definície logických pojmov (výrok, model, logický dôsledok, dôkaz,...)
- Dôkazy ich vlastností

Praktická časť

• Dátové štruktúry na reprezentáciu logických objektov

- · Algoritmické riešenie logických problémov
- Formalizácia rôznych problémov v logických jazykoch a ich riešenie nástrojmi na riešenie logických problémov

Organizácia kurzu – rozvrh, kontakty, pravidlá

Organizácia — rozvrh, kontakty a pravidlá absolvovania — je popísaná na oficiálnych webových stránkach predmetov:

1-AIN-412 https://dai.fmph.uniba.sk/w/Course:Logic_for_CS

1-INF-210 http://www.dcs.fmph.uniba.sk/~mazak/vyucba/udml/

1 Atomické formuly a štruktúry

Problémy s výrokmi

Ukážeme si, prečo je formalizácia pomocou výrokov nedostatočná. Čo je *výrok?* Oznamovacia veta,

- ktorej sa dá priradiť pravdivostná hodnota.
- pre ktorú má zmysel otázka na jej platnosť, správnosť, pravdivosť.

Problémy s výrokmi

Nech x je kladné reálne číslo. Potom $x^2 > 0.[5mm]$

Počet hviezd je nepárny.[5mm]

Zajtra vznikne jadro hélia.[5mm]

Odteraz až navždy každú sekundu vznikne jadro hélia.

Problémy s výrokmi

Postupnosť 0, 1, 2, 3, 4, 5, 6, ... je rastúca. [4mm]

- Je to výrok?
- Ako vieme, ako bude postupnosť pokračovať?
- Aký je význam troch bodiek ako symbolu? Môže byť súčasťou výroku popis algoritmu?
- Môže byť výrok nekonečne dlhý?

Problémy s výrokmi

Bu bayonot emas.[4mm]

- Znamená "toto nie je výrok" v uzbečtine. Aký jazyk je prípustný?
- Čo ak má v rôznych jazykoch ten istý reťazec rôzny význam?
- Môže výrok hovoriť o sebe?

Môže viesť k paradoxom: Zoberme množinu X všetkých množín, ktoré neobsahujú samé seba. Je veta "X patrí do X" výrok? Nemôže to byť ani pravda, ani nepravda, pritom to vyzerá ako neškodné matematické tvrdenie.

Problémy s výrokmi

Ako navrhnúť jazyk logiky?

- Bez akýchkoľvek odkazov na pravdivosť (ale zároveň aby pravdivosť bolo možné bez paradoxov neskôr definovať).
- Presný a jednoznačný: vieme pomocou jednoduchých pravidiel rozhodnúť, či reťazec je tvrdením v jazyku alebo nie.
- Logická štruktúra (spojky, kvantifikátory) musí byť oddelená od popisovaného sveta.

Jazyky logiky prvého rádu

Logika prvého rádu je trieda (rodina) formálnych jazykov. Zdieľajú:

- časti abecedy *logické symboly* (spojky, kvantifikátory)
- pravidlá tvorby formúl (slov)

Líšia sa v *mimologických symboloch* – časť abecedy, pomocou ktorej sa tvoria najjednoduchšie – *atomické formuly* (*atómy*).

Jazyk logiky: príklad

Každý človek umrie.
$$\forall x (C(x) \rightarrow U(x))$$

Konštanty: s Predikáty: C, U

Jazyk logiky: príklad

$$\forall x \in \mathbb{R} : x > 0 \rightarrow x$$
 je celé číslo

$$\forall x (\in (x, \mathbb{R}) \to (>(x, 0) \to \in (x, \mathbb{Z})))$$

Konštanty: $0, \mathbb{R}, \mathbb{Z}$ Predikáty: $>, \in$

Konštanty aj predikáty sú úplne iné, ale logické spojky, kvantifikátory a zátvorkovanie majú uvedené dva jazyky spoločné.

Atómy

Atómy zodpovedajú jednoduchým výrokom – nemajú žiadnu vnútornú logickú štruktúru.

Sokrates je človek. C(s)7 > 0 >(7,0)

Juraj má psa Rexa. ma_psa(Juraj, Rexo)

Atomické formuly a výroky v prirodzenom jazyku

Atomické formuly logiky prvého rádu zodpovedajú *pozitívnym jednoduchým vetám* o vlastnostiach, stavoch, vzťahoch a rovnosti *jednotlivých pomenovaných* objektov.

Príklady 1.1.

Milo beží.

Jarka vidí Mila.

Milo beží, ale Jarka ho nevidí.

Jarka vidí všetkých.

✓ Jarka dala Milovi Bobyho v piatok.

3 Jarka nie je doma.

Niekto je doma.

✓ Súčet 2 a 2 je 3.

Prezidentkou SR je Zuzana Čaputová.

Atomické formuly sa skladajú z *indivíduových konštánt* a *predikátových symbolov*.

Indivíduové konštanty

Indivíduové konštanty sú symboly jazyka logiky prvého rádu, ktoré pomenúvajú jednotlivé, pevne zvolené objekty.

Zodpovedajú *približne* vlastným menám, jednoznačným pomenovaniam, niekedy zámenám; konštantám v matematike a programovacích jazykoch.

Príklady 1.2. Jarka, 2, Zuzana_Čaputová, sobota, π , ...

Indivíduová konštanta:

• vždy pomenúva skutočný, existujúci objekt (na rozdiel od vlastného mena Yeti);

- nikdy nepomenúva viac objektov (na rozdiel od vlastného mena *Jarka*). Objekt z domény, ktorú chceme prvorádovým jazykom opísať,
 - môže byť pomenovaný aj viacerými indivíduovými konštantami (napr. Prezidentka_ SR a Zuzana_Čaputová);
 - nemusí mať žiadne meno.

Predikátové symboly a arita

Predikátové symboly sú symboly jazyka logiky prvého rádu, ktoré označujú vlastnosti alebo vzťahy.

Zodpovedajú

- prísudkom v slovenských vetách,
- množinám alebo reláciám v matematike,
- identifikátorom funkcií s boolovskou návratovou hodnotou.

Predikátový symbol má pevne určený počet argumentov – aritu.

Vždy musí mať práve toľko argumentov, aká je jeho arita.

Úloha argumentu v predikáte je daná jeho poradím (podobne ako pozičné argumenty funkcií/metód v prog. jazykoch).

Dohoda 1.3. Aritu budeme niekedy písať ako horný index symbolu. Napríklad beží¹, vidí², dal⁴, <².

Zamýšľaný význam predikátových symbolov

Unárny predikátový symbol (teda s aritou 1) zvyčajne označuje *vlastnosť*, druh, rolu, stav.

```
Priklady 1.4. pes(x) x je pes 
čierne(x) x je čierne 
beží(x) x beží
```

Binárny, *ternárny*, ... predikátový symbol (s aritou 2, 3, ...) zvyčajne označuje *vzťah* svojich argumentov.

```
Príklady 1.5. vidí(x, y) x vidí y dal(x, y, z, t) x dal(a/o) objektu y objekt z v čase t
```

Kategorickosť významu predikátových symbolov

V bežnom jazyku často nie je celkom jasné, či objekt má alebo nemá nejakú vlastnosť – kedy je niekto *mladý*?

Predikátové symboly predstavujú *kategorické* vlastnosti/vzťahy — pre každý objekt sa dá *jednoznačne rozhodnúť*, či má alebo nemá túto vlastnosť/vzťah s iným objektom či inými objektmi.

Význam predikátového symbolu preto často zodpovedá rovnakému slovenskému predikátu iba približne.

Príklad 1.6. Predikát mladší 2 môže označovať vzťah "x je mladší ako y" presne.

Predikát mladý 1 zodpovedá vlastnosti "x je mladý" iba približne.

Nekategorickými vlastnosťami sa zaoberajú *fuzzy* logiky. Predikáty v nich zachytávajú význam týchto vlastností presnejšie.

Atomické formuly

Atomické formuly majú tvar

 $predik \acute{a}t(argument_1, argument_2, ..., argument_k),$

alebo

$$argument_1 \doteq argument_2$$
,

pričom k je arita predikátu, a $argument_1, ..., argument_k$ sú (nateraz) indivíduové konštanty.

Atomická formula zodpovedá (jednoduchému) *výroku* v slovenčine, t.j. tvrdeniu, ktorého *pravdivostná hodnota* (pravda alebo nepravda) sa dá jednoznačne určiť, lebo predikát označuje kategorickú vlastnosť/vzťah a indivíduové konštanty jednoznačne označujú objekty.

Formalizácia jednoduchých výrokov

Formalizácia je preklad výrokov z prirodzeného jazyka do formálneho logického jazyka.

Nie je to jednoznačný proces.

V spojení s *návrhom vlastného jazyka* (konštánt a predikátov) je typicky *iteratívna*.

- Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.
- Zanedbávame nepodstatné detaily.
- Doterajší jazyk sa snažíme využiť čo najlepšie.

Návrh jazyka popri formalizácii

```
Priklad 1.7. A_1: Jarka dala Milovi Bobyho.
```

```
→ d(Jarka, Milo, Boby) dal(Jarka, Milo, Boby)
```

*A*₂: Evka dostala Bobyho od Mila.

```
→ dalBobyho(Milo, Evka) dal(Milo, Evka, Boby)
```

A₃: Evka dala Jarke Cilku.

```
→ dalCilku(Evka, Jarka) dal(Evka, Jarka, Cilka)
```

 A_4 : Boby je pes.

→ pes(Boby)

Návrh jazyka pri formalizácii

Minimalizujeme počet predikátov, uprednostňujeme flexibilnejšie, viacúčelovejšie (dal³ pred dalBobyho² a dalCilku²).

Dosiahneme

- expresívnejší jazyk (vyjadrí viac menším počtom prostriedkov),
- zrejmejšie logické vzťahy výrokov.

1.1 Syntax atomických formúl

Presné definície

Cieľom logiky je uvažovať o jazyku, výrokoch, vyplývaní, dôkazoch.

Výpočtová logika sa snaží automaticky riešiť konkrétne problémy vyjadrené v logických jazykoch.

Spoľahlivé a overiteľné úvahy a výpočty vyžadujú *presnú* dohodu na tom, o čom hovoríme — *definíciu* logických pojmov (jazyk, výrok, pravdivosť, ...). Pojmy (napr. *atomická formula*) môžeme zadefinovať napríklad

- *matematicky* ako množiny, *n*-tice, relácie, funkcie, postupnosti, ...;
- *informaticky* tým, že ich *naprogramujeme*, napr. zadefinujeme triedu AtomickaFormula v Pythone.

Matematický jazyk je univerzálnejší ako programovací — abstraktnejší, menej nie až tak podstatných detailov.

Syntax atomických formúl logiky prvého rádu

Najprv sa musíme dohodnúť na tom, aká je *syntax* atomických formúl logiky prvého rádu:

- · z čoho sa skladajú,
- čím vlastne sú,
- akú majú štruktúru.

Symboly jazyka atomických formúl logiky prvého rádu

Z čoho sa skladajú atomické formuly?

Definícia 1.8. *Symbolmi jazyka* \mathcal{L} *atomických formúl logiky prvého rádu* sú mimologické, logické a pomocné symboly, pričom:

Mimologickými symbolmi sú

- $\mathit{individuov\'e}$ konštanty z nejakej neprázdnej spočítateľnej množiny $\mathcal{C}_{\mathcal{L}}$
- a predikátové symboly z nejakej spočítateľnej množiny $\mathcal{P}_{\mathcal{L}}.$

Jediným *logickým symbolom* je ≐ (symbol rovnosti).

Pomocnými symbolmi sú (,) a , (ľavá, pravá zátvorka a čiarka).

Množiny $\mathcal{C}_{\mathcal{L}}$ a $\mathcal{P}_{\mathcal{L}}$ sú disjunktné. Pomocné symboly sa nevyskytujú v symboloch z $\mathcal{C}_{\mathcal{L}}$ ani $\mathcal{P}_{\mathcal{L}}$. Každému symbolu $P \in \mathcal{P}_{\mathcal{L}}$ je priradená arita ar $_{\mathcal{L}}(P) \in \mathbb{N}^+$.

Abeceda jazyka atomických formúl logiky prvého rádu

Na Úvode do teoretickej informatiky/Formálnych jazykoch a automatoch by ste povedali, že *abecedou* jazyka \mathcal{L} atomických formúl logiky prvého rádu je $\Sigma_{\mathcal{L}} = \mathcal{C}_{\mathcal{L}} \cup \mathcal{P}_{\mathcal{L}} \cup \{ \doteq, (,), \}$.

V logike sa väčšinou pojem *abeceda* nepoužíva, pretože potrebujeme rozlišovať *rôzne druhy* symbolov.

Namiesto abeceda jazyka $\mathcal L$ hovoríme množina všetkých symbolov jazyka $\mathcal L$ alebo len symboly jazyka $\mathcal L$.

Na zápise množiny $\Sigma_{\mathcal{L}}$ však ľahko vidíme, čím sa rôzne jazyky atomických formúl logiky prvého rádu od seba líšia a čo majú spoločné.

Príklady symbolov jazykov atomických formúl logiky prvého rádu

 $\mathit{Príklad}$ 1.9. Príklad o deťoch a zvieratkách sme sformalizovali v jazyku $\mathcal{L}_{dz},$ v ktorom

$$\begin{split} &\mathcal{C}_{\mathcal{L}_{\mathrm{dz}}} = \{\mathsf{Boby}, \mathsf{Cilka}, \mathsf{Evka}, \mathsf{Jarka}, \mathsf{Milo}\}, \\ &\mathcal{P}_{\mathcal{L}_{\mathrm{dz}}} = \{\mathsf{dal}, \mathsf{pes}\}, \quad \mathrm{ar}_{\mathcal{L}_{\mathrm{dz}}}(\mathsf{dal}) = 3, \quad \mathrm{ar}_{\mathcal{L}_{\mathrm{dz}}}(\mathsf{pes}) = 1. \end{split}$$

Príklad 1.10. Príklad o návštevníkoch party by sme mohli sformalizovať v jazyku \mathcal{L}_{party} , kde

$$\begin{split} &\mathcal{C}_{\mathcal{L}_{\text{party}}} = \{\text{Kim, Jim, Sarah}\}, \\ &\mathcal{P}_{\mathcal{L}_{\text{party}}} = \{\text{pride}\}, \quad \text{ar}_{\mathcal{L}_{\text{party}}}(\text{pride}) = 1. \end{split}$$

Označenia symbolov

Keď budeme hovoriť o *ľubovoľnom* jazyku \mathcal{L} , často budeme potrebovať nejak označiť niektoré jeho konštanty alebo predikáty, aj keď nebudeme vedieť, aké konkrétne symboly to sú.

Na označenie symbolov použijeme meta premenné: premenné v (matematickej) slovenčine, pomocou ktorých budeme hovoriť o (po grécky meta) týchto symboloch.

Dohoda 1.11. Indivíduové konštanty budeme spravidla označovať meta premennými a, b, c, d s prípadnými dolnými indexmi.

Predikátové symboly budeme spravidla označovať meta premennými P, Q, R s prípadnými dolnými indexmi.

Atomické formuly jazyka

Čo sú atomické formuly?

Definícia 1.12. Nech \mathcal{L} je jazyk atomických formúl logiky prvého rádu.

Rovnostný atóm jazyka \mathcal{L} je každá postupnosť symbolov $c_1 \doteq c_2$, kde c_1 a c_2 sú indivíduové konštanty z $\mathcal{C}_{\mathcal{L}}$.

Predikátový atóm jazyka \mathcal{L} je každá postupnosť symbolov $P(c_1, ..., c_n)$, kde P je predikátový symbol z $\mathcal{P}_{\mathcal{L}}$ s aritou n a $c_1, ..., c_n$ sú indivíduové konštanty z $\mathcal{C}_{\mathcal{L}}$.

Atomickými formulami (skrátene atómami) jazyka $\mathcal L$ súhrnne nazývame všetky rovnostné a predikátové atómy jazyka $\mathcal L$.

Množinu všetkých atómov jazyka \mathcal{L} označujeme $\mathcal{A}_{\mathcal{L}}$.

Slová jazyka atomických formúl logiky prvého rádu

Na UTI/FoJa by ste povedali, že jazyk \mathcal{L} atomických formúl logiky prvého rádu nad abecedou $\Sigma_{\mathcal{L}} = \mathcal{C}_{\mathcal{L}} \cup \mathcal{P}_{\mathcal{L}} \cup \{\dot{=}, (,),,\}$ je množina slov

$$\begin{split} \{\, c_1 \doteq c_2 \mid c_1 \in \mathcal{C}_{\mathcal{L}}, c_2 \in \mathcal{C}_{\mathcal{L}} \,\} \\ & \quad \cup \{\, P(c_1, \dots, c_n) \mid P \in \mathcal{P}_{\mathcal{L}}, \mathrm{ar}_{\mathcal{L}}(P) = n, c_1 \in \mathcal{C}_{\mathcal{L}}, \dots, c_n \in \mathcal{C}_{\mathcal{L}} \,\}. \end{split}$$

V logike sa jazyk takto nedefinuje, pretože potrebujeme rozlišovať *rôzne druhy slov*.

Príklady atómov jazyka

Priklad 1.13. V jazyku \mathcal{L}_{dz} , kde $\mathcal{C}_{\mathcal{L}_{dz}} = \{Boby, Cilka, Evka, Jarka, Milo\}, \mathcal{P}_{\mathcal{L}_{dz}} = \{dal, pes\}, ar_{\mathcal{L}_{dz}}(dal) = 3, ar_{\mathcal{L}_{dz}}(pes) = 1, sú$ *okrem iných*rovnostné atómy:

a predikátové atómy:

pes(Cilka) dal(Cilka, Milo, Boby) dal(Jarka, Evka, Milo).

1.2 Štruktúry

Vyhodnotenie atomickej formuly

Ako zistíme, či je atomická formula pes(Boby) *pravdivá* v nejakej situácii (napríklad u babky Evky, Jarky a Mila na dedine)?

Pozrieme sa na túto situáciu a zistíme:

- 1. aký objekt *b* pomenúva konštanta Boby;
- 2. akú vlastnosť *p* označuje predikát pes;
- 3. či objekt *b* má vlastnosť *p*.

Vyhodnotenie atomickej formuly

Ako môžeme tento postup matematicky alebo informaticky modelovať? Potrebujeme:

• matematický/informatický model situácie (stavu vybranej časti sveta),

• postup na jeho použitie pri vyhodnocovaní pravdivosti formúl.

Matematický model stavu sveta

Potrebujeme vedieť:

- ktoré objekty sú v popisovanej situácii prítomné,
- ▶ množina všetkých týchto objektov *doména*;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- ▶ interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka \mathcal{L} , ktorý *objekt* z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka \mathcal{L} , ktoré objekty z domény majú vlastnosť označenú predikátom P,
- ▶ tvoria podmnožinu domény;
- pre každý n-árny predikát R z jazyka \mathcal{L} , n>1, ktoré n-tice objektov z domény sú vo vzťahu ozn. pred. R,
- ▶ tvoria *n-árnu reláciu* na doméne.

Štruktúra pre jazyk

Definícia 1.14. Nech \mathcal{L} je jazyk atomických formúl logiky prvého rádu. Štruktúrou pre jazyk \mathcal{L} (niekedy interpretáciou jazyka \mathcal{L}) nazývame dvojicu $\mathcal{M} = (D, i)$, kde D je ľubovoľná neprázdna množina nazývaná doména štruktúry \mathcal{M} ; i je zobrazenie, nazývané interpretačná funkcia štruktúry \mathcal{M} , ktoré

- každej indivíduovej konštante c jazyka \mathcal{L} priraďuje prvok $i(c) \in D$;
- každému predikátovému symbolu P jazyka $\mathcal L$ s aritou n priraďuje množinu $i(P)\subseteq D^n$.

Dohoda 1.15. Štruktúry označujeme veľkými písanými písmenami $\mathcal{M}, \mathcal{N}, \dots$

Príklad štruktúry

Priklad 1.16.

$$\mathcal{M} = (D, i), \quad D = \left\{ \mathbf{\dot{\downarrow}}, \mathbf{\dot{\downarrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}} \right\}$$

$$i(\mathsf{Boby}) = \mathbf{\dot{\uparrow}} \qquad i(\mathsf{Cilka}) = \mathbf{\dot{\downarrow}} \qquad i(\mathsf{Milo}) = \mathbf{\dot{\uparrow}} \qquad i(\mathsf{Evka}) = \mathbf{\dot{\uparrow}} \qquad i(\mathsf{Jarka}) = \mathbf{\dot{\uparrow}} \qquad i(\mathsf{Milo}) = \mathbf{\dot{\uparrow}} \qquad i(\mathsf{pes}) = \left\{ \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}} \right\}$$

$$i(\mathsf{dal}) = \left\{ (\mathbf{\dot{\uparrow}}, \mathbf{\dot{\downarrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}), (\mathbf{\dot{\downarrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}), (\mathbf{\dot{\downarrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\downarrow}}) \right\}$$

Štruktúra ako informatický objekt

Štruktúru sme definovali pomocou matematických objektov.

Aký informatický objekt sa podobá na štruktúru? Databáza.

Predikátové symboly jazyka \sim zjednodušená databázová schéma (arita \sim počet stĺpcov)

Interpretácia predikátových symbolov ~ konkrétne tabuľky s dátami (doména ~ dátový typ)

$i(pes^1)$
1
J, J,

i(dal³)
2	3
÷ ;	ħ
Ė	Ħ
ŧ	L i
	2

$i(clovek^2)$				
Meno	Rodné číslo			
Petra	1234			
Michal	5678			

Štruktúra ako informatický objekt

Dopytom zodpovedajú logické formuly:

```
"rodné čísla ľudí, ktorí sa volajú Michal" = \{rc \mid \text{clovek}(\text{Michal}, rc)\}
"rodné čísla všetkých ľudí" = \{rc \mid \exists m \text{ clovek}(m, rc)\}
```

Štruktúry — upozornenia

Štruktúr pre daný jazyk je *nekonečne veľa*. Doména štruktúry

- nesúvisí so zamýšľaným významom interpretovaného jazyka;
- môže mať ľubovoľné prvky;
- môže byť nekonečná.

Interpretácia symbolov konštánt:

- každej konštante je priradený objekt domény;
- nie každý objekt domény musí byť priradený nejakej konštante;
- rôznym konštantám môže byť priradený rovnaký objekt.

Interpretácie predikátových symbolov môžu byť nekonečné.

```
Priklad \ 1.17 (Štruktúra s nekonečnou doménou). \mathcal{M} = (\mathbb{N}, i) i(\text{pes}) = \{2n \mid n \in \mathbb{N}\} i(\text{dal}) = \{(n, m, n + m) \mid n, m \in \mathbb{N}\} i(\text{Boby}) = 0 i(\text{Cilka}) = 1 i(\text{Evka}) = 3 i(\text{Jarka}) = 5 i(\text{Milo}) = 0
```

1.3 Sémantika atomických formúl

Pravdivosť atomickej formuly v štruktúre

Ako zistíme, či je atomická formula pravdivá v štruktúre?

Definícia 1.18. Nech $\mathcal{M} = (D, i)$ je štruktúra pre jazyk \mathcal{L} atomických formúl jazyka logiky prvého rádu.

Rovnostný atóm $c_1 \doteq c_2$ jazyka $\mathcal L$ je pravdivý v štruktúre $\mathcal M$ vtedy a len vtedy, keď $i(c_1)=i(c_2)$.

Predikátový atóm $P(c_1, ..., c_n)$ jazyka \mathcal{L} je *pravdivý* v *štruktúre* \mathcal{M} vtedy a len vtedy, keď $(i(c_1), ..., i(c_n)) \in i(P)$.

Vzťah atóm A je pravdivý v štruktúre \mathcal{M} skrátene zapisujeme $\mathcal{M} \models A$. Hovoríme aj, že \mathcal{M} je modelom A.

Vzťah atóm A nie je pravdivý v štruktúre $\mathcal M$ zapisujeme $\mathcal M \not\models A$. Hovoríme aj, že A je nepravdivý v $\mathcal M$ a $\mathcal M$ nie je modelom A.

Príklad 1.19 (Určenie pravdivosti atómov v štruktúre).

$$\mathcal{M} = (D, i), \quad D = \left\{ \mathbf{\dot{\uparrow}}, \mathbf{\dot{\diamondsuit}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}} \right\}$$

$$i(\mathsf{Boby}) = \mathbf{\dot{\uparrow}} \qquad i(\mathsf{Cilka}) = \mathbf{\dot{\downarrow}}$$

$$i(\mathsf{Evka}) = \mathbf{\dot{\Diamond}} \qquad i(\mathsf{Jarka}) = \mathbf{\dot{\uparrow}} \qquad i(\mathsf{Milo}) = \mathbf{\dot{\uparrow}}$$

$$i(\mathsf{pes}) = \left\{ \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}} \right\}$$

$$i(\mathsf{dal}) = \left\{ (\mathbf{\dot{\uparrow}}, \mathbf{\dot{\diamondsuit}}, \mathbf{\dot{\uparrow}}), (\mathbf{\dot{\downarrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}), (\mathbf{\dot{\diamondsuit}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\downarrow}}) \right\}$$

Atóm pes(Boby) *je pravdiv*ý v štruktúre \mathcal{M} , t.j., $\mathcal{M} \models \text{pes(Boby)}$, lebo objekt $i(\text{Boby}) = \mathbf{k}$ je prvkom množiny $\{\mathbf{k}, \mathbf{k}\} = i(\text{pes})$.

Atóm Cilka \doteq Boby *nie je pravdivý* v \mathcal{M} , t.j., $\mathcal{M} \not\models$ Cilka \doteq Boby, lebo $i(\mathsf{Cilka}) = \biguplus \neq \biguplus = i(\mathsf{Boby}).$

1.4 Zhrnutie

Zhrnutie

- Logika prvého rádu je rodina formálnych jazykov.
- Každý jazyk logiky prvého rádu je daný neprázdnou množinou indivíduových konštánt a množinou predikátových symbolov.
- Atomické formuly sú základnými výrazmi prvorádového jazyka.
 - Postupnosti symbolov $P(c_1, \dots, c_n)$ (predikátové) a $c_1 \doteq c_2$ (rovnostné).
 - Zodpovedajú pozitívnym jednoduchým výrokom o vlastnostiach, stavoch, vzťahoch, rovnosti jednotlivých pomenovaných objektov.

- Význam jazyku dáva štruktúra matematický opis stavu sveta
 - Skladá sa z neprázdnej domény a z interpretačnej funkcie.
 - Konštanty interpretuje ako prvky domény.
 - Predikáty interpretuje ako podmnožiny domény/relácie na doméne.
- Pravdivosť atómu určíme interpretovaním argumentov a zistením, či je výsledná *n*-tica objektov prvkom interpretácie predikátu, resp. pri rovnostnom atóme, či sa objekty rovnajú.

Literatúra