数字电路 Digital Circuits and System

李文明 liwenming@ict.ac.cn

- 可编程器件概述
- 简单可编程逻辑器件 (SPLD)
 - 可编程阵列逻辑 (PAL)
 - 通用阵列逻辑 (GAL)
- 高容量可编程逻辑器件
 - 复杂的可编程逻辑器件 (CPLD)
 - 现场可编程门阵列 (FPGA)
- PLD的编程

- 可编程器件概述
- 简单可编程逻辑器件 (SPLD)
 - 可编程阵列逻辑(PAL)
 - 通用阵列逻辑(GAL)
- 高容量可编程逻辑器件
 - 复杂的可编程逻辑器件(CPLD)
 - 现场可编程门阵列(FPGA)
- PLD的编程

可编程器件概述

- 通用器件: 54/74、74HC、74HCT等系列
 - 随系统规模扩大: 焊点多, 可靠性下降, 功耗增加、成本升高, 占用空间扩大

- 专用型: ASIC (Application Specific Integrated Circuit)
 - 要承担设计风险、周期长、成本高
- 系统设计师们希望自己设计ASIC芯片,缩短设计周期,能在实验室设计好后,立即投入实际应用
- 可编程器件 (PLD: Programmable Logic Device)
 - Xilinx was founded in 1984
 - Altera was founded in 1983
 - Lattice 1983, Cypress 1982, Actel 1985

可编程逻辑器件分类

- 可编程器件概述
- 简单可编程逻辑器件 (SPLD)
 - 可编程阵列逻辑 (PAL)
 - 通用阵列逻辑 (GAL)
- 高容量可编程逻辑器件
 - 复杂的可编程逻辑器件 (CPLD)
 - 现场可编程门阵列(FPGA)
- PLD的编程

简单可编程逻辑阵列 (SPLD)

● SPLD包括3类器件:

PLA: Programmable Logic Array

- PAL: Programmable Array Logic

- GAL: Generic Array Logic

● PAL: 一般只能编程一次 (One Time Programmable, OTP)

● GAL: 是一类特定的PAL, 可重复编程使用, GAL最早由Lattice半导体公司 推出, 后来授权给其他公司

● PAL/GAL的基本结构是"或"逻辑固定, "与"逻辑可编程

PLD的基本结构

- 如图为PLD的一般结构
- 通过或阵列直接输出,可构成组合逻辑函数
- 通过寄存器输出,附加反馈逻辑,可构成时 序逻辑

PAL基本结构

- PAL包括可编程的我与阵列,连接到一个固定的或门上
- 一般PAL采用熔丝技术实现,只能编程一次

● PAL可以实现任意最小项和逻辑函数

- 熔丝编程前联通,变成后熔断
- 熔丝可以采用二极管
- 也可以采用MOS管实现

PAL编程举例

- 如图所示
- 编程后,不需要连接的熔丝开趵
- 需要连接的熔丝保留
- 可以产生图中所示逻辑函数

- 只能编程一次
- 灵活性差
- 考虑更改熔丝的实现技术,使其具备 重复编程的能力

GAL基本结构

- 如图所示
- GAL的基本结构与PAL相同
- 与逻辑可编程,或逻辑固定
- 可反复编程,实用电可擦除的 浮栅晶体管代替熔丝,实现与 逻辑的编程和擦除功能

PAL/GAL的简单符号表示

- 实际的PAL/GAL包括多个可编程的与门阵列,以及多个或门
- 还包括输入输出驱动、输入反相器、输出三态门等功能模块
- 一个实现组合逻辑函数的举例

PAL/GAL框图

- 如图所示为PAL/GAL的基本 结构
- PAL/GAL的差别在于GAL可 重复编程,而PAL只能编程一 次
- 或门阵列及其相应的输出逻辑 称为宏单元
- 一般封装为20~28脚,决定 了输入/输出个数,如16V8, 16个I/O,最多8个输出

PAL/GAL宏单元结构

- 不同器件的输出宏单元结构不同
- 宏单元可以配置成组合逻辑电路
- 如果宏单元中包含触发器,可以配置成时序逻辑电路
- 輸出引脚可以只配置成輸出,也可以配置成輸入/輸出复用,輸出电平的 有效极性可以配置修改
 - $-A\oplus 0=A$, $A\oplus 1=A'$

PAL/GAL带触发器的宏单元结构

- 有些GAL器件的宏单元内包含触发器
- 可构成时序逻辑电路,GAL16V8的宏单元如下

GAL16V8原理框图

- 输入缓冲器
- 可编程"与"阵列 64X32
- 反馈输入缓冲器
- 输出逻辑宏单元(OLMC)
- 三态输出缓冲器

- 可编程器件概述
- 简单可编程逻辑器件 (SPLD)
 - 可编程阵列逻辑(PAL)
 - 通用阵列逻辑(GAL)
- 高容量可编程逻辑器件
 - 复杂的可编程逻辑器件 (CPLD)
 - 现场可编程门阵列 (FPGA)
- PLD的编程

复杂可编程逻辑器件 (CPLD)

- Complex programmable Devices 包含多个简单可编程阵列,以及可编程的互连结构
- 其中的简单可编程阵列可以称为LAB (Logic Array Block),每个LAB可以包含多个Logic Element (LE)
- 可编程互连结构称为PIA (Programmable Interconnection Array)
- 输入信号可以通过编程配置连接到所有LAB
- 使用EDA工具软件实现对CPLD器件内的各部分进行编程配置
- CPLD的编程配置采用EEPROM或SRAM技术实现

CPLD中的宏单元 (MacroCell)

- 宏单元包括:
 - 可编程"与"逻辑
 - 乘积项选择矩阵
 - 或门
 - 输出/输入粘合逻辑
 - 并行扩展器连线
 - 共享扩展连线
- 并行扩展、共享扩展都是为了实现多个宏单元之间直接 连接,扩展实现更复杂的逻辑函数

共享扩展和并行扩展方法

共享扩展可以增加组合逻辑函数的 变量数,以及逻辑函数的复杂度

并行扩展也可以增加组合 逻辑函数的变量数,逻辑 函数的复杂度

Altera Max7000 CPLD结构

● 每个LAB包含16个宏单元

● 多个宏单元间通过PIA相连

● 专用引脚、I/O引脚与宏单 元间通过全局总线连接

Altera Max7000 CPLD宏单元

宏单元的工作模式

● 通过对数据选择器MUX的编程,实现不同的工作模式

- MUX1清0选择; MUX2时钟和触发器使能选择
- MUX3触发器输入来源选择; MUX4输出旁路选择

宏单元组合逻辑工作模式

● 组合逻辑模式跳过触发器,逻辑函数直接连到I/O引脚上

宏单元寄存器工作模式

● 寄存器模式下,联通触发器的数据和时钟信号,乘积项输出被锁存

Field Programmable Gate Array (FPGA)

● FPGA采用与PAL/GAL不同的可编程逻辑结构,比CPLD有更高密度

● FPGA的可编程互连结构采用行列MESH

- FPGA包括三种基本模块
 - Configurable Logic Block (CLB)
 - •细粒度CLB, CLB功能简单
 - 粗粒度CLB, CLB具有更复杂的功能
 - 分布式MESH结构的互连网络,连接CLB和I/O块
 - I/O Block, 连接I/O和互连网络,内部也有触发器和可编程逻辑
- FPGA一般采用SRAM或反熔丝技术实现 编程配置

FPGA资源容量举例 (Xilinx)

Device Resources

	Kintex UltraScale FPGA	Kintex UltraScale+ FPGA	Virtex UltraScale FPGA	Virtex UltraScale+ FPGA	Zynq UltraScale+ MPSoC	Zynq UltraScale+ RFSoC
MPSoC Processing System					1	1
RF-ADC/DAC						1
SD-FEC						1
System Logic Cells (K)	318-1,451	356-1,143	783-5,541	862-3,780	103-1,143	678-930
Block Memory (Mb)	12.7-75.9	12.7-34.6	44.3-132.9	23.6-94.5	4.5-34.6	27.8-38.0
UltraRAM (Mb)		0-36		90-360	0-36	13.5-22.5
HBM DRAM (GB)				0-8		
DSP (Slices)	768-5,520	1,368-3,528	600-2,880	2,280-12,288	240-3,528	3,145-4,272
DSP Performance (GMAC/s)	8,180	6,287	4,268	21,897	6,287	7,613
Transceivers	12-64	16-76	36-120	32-128	0-72	8-16
Max. Transceiver Speed (Gb/s)	16.3	32.75	30.5	58.0	32.75	32.75
Max. Serial Bandwidth (full duplex) (Gb/s)	2,086	3,268	5,616	8,384	3,268	1,048
Memory Interface Performance (Mb/s)	2,400	2,666	2,400	2,666	2,666	2,666
I/O Pins	312-832	280-668	338-1,456	208-832	82-668	280-408

FPGA的CLB结构

- 每个CLB包括多个小的逻辑模块 , 类似于CPLD的宏单元
- CLB内部逻辑模块之间采用局部 互连总线连接
- CLB再通过行、列全局互连网络连接其他CLB、IOB、BRAM、DSP、CPU Core等全局资源

Logic Module结构

- 逻辑模块包括一个LUT (Look Up Table),和一个关联的逻辑电路
- 关联电路内包含有触发器,及其相关控制逻辑
- 逻辑模块可以配置成组合逻辑,或者时序逻辑
- LUT可以实现类似PAL/GAL的逻辑功能

 $A'_2A'_1A'_0$

 $A'_2A'_1A_0$

查找表 (LUT)

- LUT由RAM单元和数据选择器实现
- 对于n输入LUT,可以实现n变量的任意组合 逻辑函数
- LUT可以工作在以下模式
 - 普通LUT模式 (逻辑函数) ,单LUT实现组合逻辑
 - -扩展LUT模式,多个LUT,增加变量数

● 写出SOP out的逻辑函数:

$$SOPout = A_2'A_1'A_0 + A_2'A_1A_0' + A_2A_1'A_0' + A_2A_1A_0$$

LUT扩展工作模式

- 多个LUT扩展,可以增加逻辑函数的变量数,需要LM中的附加可编程逻辑实现所需的MUX
- 如图实用2个6输入LUT实现8变量逻辑函数
- 该电路是否可以实现8变量的所有函数?

FPGA CLB举例

- Xilinx Spartan 3 CLB包括:
 - 2个LUT
 - 2个触发器
 - 4个输出
 - 2个组合逻辑输出
 - 2个寄存器输出
 - 对触发器的控制输入
 - I/O进位链

½ CLB详细结构

可编程互连结构 (PIA)

- 金属连线(经可编程的连接点与CLB、IOB的开关矩阵相连)
 - 通用连线用于CLB之间的连接
 - 长线用于长距离或多分支信号的传送
 - 全局连线用于输送一些公共信号
- 开关矩阵SM
 - 通过对开关矩阵编程,可以将来自任何方向上的一根导线转接至其他方向的某一根导线上

FPGA编程数据存储

● FPGA内建非易失存储器, 存储编程数据

● FPGA外接Flash芯片, 用于存储编程数据

基于可编程器件系统开发流程

问题和建议?

