Introducción al Análisis Numérico Errores

María González Taboada

Departamento de Matemáticas

28 de febrero de 2007

Esquema:

- 1 Estudio matemático de un problema real
- 2 Análisis numérico y métodos constructivos
- 3 Tipos de problemas en análisis numérico y errores
- 4 Representación en coma flotante
 - Formato en coma flotante para números decimales
 - Representación en coma flotante de números binarios
 - El estándar IEEE 754
 - Exactitud de la representación en coma flotante
- 5 Aproximación por redondeo y por redondeo a cero
 - Sistema decimal
 - Sistema binario
- 6 Error absoluto y error relativo. Cifras significativas
- 7 Errores de redondeo y estabilidad numérica
- 8 Condicionamiento
- 9 Bibliografía

Errores de redondeo y estabilidad numérica

- Los errores de redondeo aparecen cuando se opera con aritmética finita.
- En general, son pequeños en cada cálculo concreto.
- Sin embargo, al realizar muchas operaciones en un algoritmo, pueden acumularse de modo que la diferencia entre la solución exacta y el resultado final de los cálculos sea grande.
 - Este fenómeno se conoce como inestabilidad numérica.

Ejemplos de inestabilidad numérica

Ejemplo:

■ La sucesión $x_k = \left(\frac{1-\sqrt{5}}{2}\right)^k$, $k \ge 0$, puede calcularse mediante dos algoritmos distintos:

(a)
$$x_0 = 1$$
, $x_1 = \frac{1-\sqrt{5}}{2}$ y para $k \ge 2$, $x_k = x_{k-1} + x_{k-2}$

(b)
$$x_0 = 1$$
 y para $k \ge 1$, $x_k = \left(\frac{1-\sqrt{5}}{2}\right) x_{k-1}$

- Usando (a), obtenemos $x_{100} = -1,18921493 \times 10^4$. Usando (b), tenemos que $x_{100} = -2,04278949 \times 10^{-21}$.
- Como la sucesión $(x_k)_k \to 0$, el resultado obtenido con (b) parece más fiable.
- Al utilizar el primer algoritmo, se produce inestabilidad numérica por acumulación de los errores de redondeo.

Ejemplos de inestabilidad numérica

Ejemplo:

Sea
$$S_n = 1 + 2 + ... + n = \frac{n(n+1)}{2}$$
. Calculamos la suma:

$$x = \frac{1}{S_n} + \frac{2}{S_n} + \ldots + \frac{n}{S_n} = \frac{S_n}{S_n} = 1$$

para distintos valores de n (cálculos en simple precisión con Fortran 90).

n	$\widehat{\mathbf{X}}$	Error relativo
10 ¹	1,0000000	0,0
10 ³	0,9999999	1.0×10^{-7}
10 ⁶	0,9998996	$1,004 \times 10^{-4}$
10 ⁷	1,002663	$2,663 \times 10^{-3}$

Condicionamiento

- Un problema matemático se dice bien condicionado cuando pequeñas variaciones de los datos producen pequeñas variaciones en la solución.
 - En caso contrario, decimos que el problema es mal condicionado.
- El condicionamiento de un problema no depende del método numérico empleado para resolverlo.

Ejemplo:

- En la resolución de ciertos sistemas de ecuaciones lineales, pequeñas variaciones de sus coeficientes pueden producir grandes variaciones en la solución del sistema.
- En algunos polinomios, pequeñas variaciones de sus coeficientes hacen variar mucho el valor de sus raíces.

Condicionamiento

Ejemplo:

Las raíces del polinomio

$$p(x) = x^6 - 21x^5 + 175x^4 - 735x^3 + 1624x^2 - 1764x + 720$$

son 1, 2, 3, 4, 5, 6.

Modificamos ligeramente el coeficiente de x⁶:

$$q(x) = 1,1x^6 - 21x^5 + 175x^4 - 735x^3 + 1624x^2 - 1764x + 720$$

Las raíces de q son 1, 1,853, 2,546 \pm 1,048i y 5,573 \pm 3,939i.

Condicionamiento en la evaluación de una función

- Sean x y x + h dos números reales, siendo h > 0 pequeño.
- El error relativo entre x y x + h es:

$$e_r(x) = \frac{|(x+h)-x|}{|x|} = \frac{h}{|x|}$$

■ El error relativo entre f(x) y f(x + h) es:

$$e_r(f(x)) = \frac{|f(x+h) - f(x)|}{|f(x)|} = \frac{h|f'(\xi)|}{|f(x)|}$$

$$\approx \frac{|xf'(x)|}{|f(x)|} \frac{h}{|x|} = \frac{|xf'(x)|}{|f(x)|} e_r(x) = \kappa(x) e_r(x)$$

donde $\xi \in (x, x + h)$.

Si $\kappa(x)$ es grande, el error en la evaluación de la función puede ser grande incluso si el error relativo entre x y x+h es pequeño.

Condicionamiento en la evaluación de una función

Ejemplo:

If
$$Si f(x) = \sqrt{x}$$
,
$$e_r(\sqrt{x}) \approx \frac{1}{2} e_r(x)$$

En este caso, $\kappa(x) = 0.5 \Rightarrow$ problema bien condicionado.

 $Si f(x) = \arcsin x$,

$$e_r(\arcsin x) \approx \left| \frac{x}{\sqrt{1-x^2}\arcsin(x)} \right| e_r(x)$$

En este caso, $\kappa(x) \underset{x \to 1^{-}}{\longrightarrow} +\infty \Rightarrow$ problema mal condicionado para x próximo a 1.

Bibliografía

- 1 K. Atkinson & W. Han (2004)
- 2 R.L. Burden & J.D. Faires (2002)
- **3** J.F. Epperson (2002)
- 4 A. Quarteroni & F. Saleri (2006)
- J. Stoer & R. Bulirsch (2002)
- 6 J.M. Viaño (1995)