MACHINE LEARNING

« Donner à une machine la capacité d'apprendre sans la programmer de façon explicite. » Arthur Samuel

→ Développer un modèle à partir de données

Apprentissage Supervisé

Apprentissage Non-supervisé

Apprentissage Par renforcement

SUPERVISED LEARNING https://machinelearnia.com/

Label / Target

La machine reçoit des données caractérisées par des variables et annotées d'une variable v

SUPERVISED LEARNING https://machinelearnia.com/

1. En fournissant beaucoup de données à la machine, on constitue un **Dataset.**

2. On spécifie quel **type de modèle** la machine doit apprendre, en précisant les **hyperparamètres** du modèle.

3. Grâce a un algorithme d'optimisation, la machine trouve les paramètres qui fournissent les meilleures performances sur le Dataset.

SUPERVISED LEARNING https://machinelearnia.com/

Permet de résoudre 2 types de problèmes:

Linear Regression

Decision Tree

Random

K-NN

SVM

Neural **Network**

Différents mécanismes

Mais la **même interface**

score

predict

INTERFACE DE SKLEARN

 Sélectionner un estimateur et préciser ses hyperparamètres :

```
model = LinearRegression(.....)

objet Constructeur Hyperparamètres
```

- 2. Entrainer le modèle sur les données X, y (divisées en 2 tableaux Numpy) model.fit(X, y)
- 3. Évaluer le modèle model.score(X, y)
- **4. Utiliser** le modèle model.**predict(X)**

1. Sélectionner un estimateur et préciser ses hyperparamètres:

Exemples:

```
model = SGDRegressor(eta0 = 0.3) # Learning_rate = 0.3
```

model = RandomForestClassifier(n_estimators=100)

1. Sélectionner un estimateur et préciser ses hyperparamètres:

```
model = LinearRegression(.....)
```

Entrainer le modèle sur les données X, y (divisées en 2 tableaux Numpy) model.fit(X, y)

https://machinelearnia.com/

INTERFACE DE SKLEARN

 Sélectionner un estimateur et préciser ses hyperparamètres :

model = LinearRegression(.....)

2. Entrainer le modèle sur les données X, y (divisées en 2 tableaux Numpy) model.fit(X, y)

⇒ X et y doivent avoir 2 dimensions!

[n_samples, n_features]

INTERFACE DE SKLEARN

 Sélectionner un estimateur et préciser ses hyperparamètres :

```
model = LinearRegression(.....)
```

- 2. Entrainer le modèle sur les données X, y (divisées en 2 tableaux Numpy) model.fit(X, y)
- 3. Évaluer le modèle model.score(X, y)

INTERFACE DE SKLEARN

- 1. Sélectionner un estimateur et préciser ses hyperparamètres :
 - model = LinearRegression(.....)
- 2. Entrainer le modèle sur les données X, y (divisées en 2 tableaux Numpy) model.fit(X, y)
- 3. Évaluer le modèle model.score(X, y)
- 4. Utiliser le modèle model.predict(X)

```
Linear
Regression
```



```
model = LinearRegression()
model.fit(X, y)
model.score(X, y)
model.predict(X)
```

Decision Tree


```
model = DecisionTreeClassifier()
model.fit(X, y)
model.score(X, y)
model.predict(X)
```