

## Grundbegriffe der Elektrotechnik Elektrische Leistung

Blatt-Nr.: 2.9





Die elektrische Leistung, die vom Stromkreis abgegeben wird, z.B. als Wärme, nennt man Wirkleistung. Nur im Wechselstromkreis muss man die elektrische Leistung *P* "Wirkleistung" nennen.

1. Was versteht man allgemein unter Leistung?

Leistung ist die Arbeit, die in einer bestimmten Zeit verrichtet wird.

Nennen Sie vier Formeln zur Berechnung der elektrischen Leistung bei Gleichstrom.

| P =W / t | P = U * I | $P = R^*I^*I$ | <i>P</i> =U*U/R |
|----------|-----------|---------------|-----------------|
|----------|-----------|---------------|-----------------|

## W steht in diesem Falle für Arbeit

- 5. Wie ändert sich die Leistung an einem Bauelement mit konstantem Widerstand, wenn man die Spannung am Bauelement a) verdoppelt und b) um 10% verringert?
  - Leistung steigt um das Vierfache
  - b) Leistung verringert sich auf 81%

2. Ergänzen Sie die Tabelle 1.

| Tabelle 1: Elektrische Leistung |      |  |  |
|---------------------------------|------|--|--|
| Formelzeichen                   | р    |  |  |
| Einheitenname                   | Watt |  |  |
| Einheitenzeichen                | W    |  |  |

Geben Sie in Tabelle 2 Beispielwerte von Leistungen folgender Verbraucher an.

| Tabelle 2: Verbraucherleistungen (Beispiele) |  |  |  |
|----------------------------------------------|--|--|--|
| Leuchtmittel                                 |  |  |  |
| Quarz-Uhrwerk                                |  |  |  |
| Warmwasserbereiter                           |  |  |  |
| ICE-Antrieb                                  |  |  |  |
| Kühlschrank                                  |  |  |  |



Ohmsche Widerstände R werden wegen der Wärmeabgabe im Betrieb auch **Wirkwiderstände** R genannt. Jeder Widerstand als Bauelement hat eine **Bemessungsleistung**  $P_{\rm N}$ , die nicht überschritten werden darf, damit der Widerstand nicht durchbrennt. Die Bemessungsleistung  $P_{\rm N}$  legt den im Dauerbetrieb maximal zulässigen Strom fest.

- Für verschiedene Widerstände mit einer Bemessungsleistung P<sub>N</sub> = P<sub>max</sub> = 1 W, soll im Bild die Leistungskurve eingetragen werden.
  - a) Ergänzen Sie in Tabelle 2 die Stromwerte für eine Belastung von 1 W.

| Tabelle 2: <i>U-I</i> -Wertepaare für 1 W |    |    |    |    |     |  |
|-------------------------------------------|----|----|----|----|-----|--|
| <i>U</i> in V                             | 10 | 20 | 30 | 40 | 50  |  |
| <i>I</i> in mA                            |    |    |    |    |     |  |
| <i>U</i> in V                             | 60 | 70 | 80 | 90 | 100 |  |
| I in mA                                   |    |    |    |    |     |  |

- Tragen Sie diese U-I-Wertepaare in das Bild ein und verbinden Sie die Punkte zu einer 1-W-Leistungskurve.
- c) Schraffieren Sie im Bild den Bereich größer 1 W rot.



Bild: Leistungskurve für 1-W-Widerstände

- d) Wie nennt man im Bild den Verlauf der Leistungskurve? Leistungshyperbel ,tangiert niemals null
- e) Welche praktische Bedeutung hat der schraffierte Bereich im Bild?

Die Widerstände dürfen nicht mit Werten betrieben werden, die im schraffierten Bereich liegen.