Summary of EDDE

Methods to solve ODEs:

- 1. Separation of Variables
- 2. Homogenous equations
- 3. Linear differential equations
- 4. Bernoulli equations
- 5. Exact method with optional integrating factor

Separation of Variables

Step 1: Change the equation to the form

$$F(y)dy = G(x)dx$$

Step 2: Integrate both sides

$$\int F(y)dy = \int G(x)dx$$

Step 3: Solve this new equation like any other

Homogenous equations

Step 1: Let y = vx

Step 2: Differentiate both sides using product rule

$$dy = x \cdot dv + v \cdot dx$$

Step 3: Substitute

Step 4: Simplify

Step 5: Separation of Variables

Step 6: Substitute back $v = \frac{x}{y}$

Linear differential equations

Given a function:

$$y' + P(x)y = Q(x)$$

Step 1: Calculate an integrating factor

$$I(x) = e^{\int P(x) dx}$$

Step 2: Calculate general solution

$$y=rac{1}{I(x)}iggl[\int Q(x)I(x)dxiggr]$$

Bernoulli equations

For a function in a form

$$y + P(x)y' = Q(x) \cdot y^n$$

Step 1: Find an integrating factor following this formula

$$I(x) = e^{\int (1-n)P(x)dx}$$

Step 2: Solve equation

$$y^{1-n}=rac{1}{I(x)}iggl[\int (1-n)Q(x)I(x)dxiggr]$$

Exact method

Step 1: Turn equation into a form: f(x,y) := P(x,y)dx + Q(x,y)dy = 0

Step 2: Calculate P_y, Q_x

Step 3: Calculate $Q_x - P_y$.

if equal to 0: follow to Step 4, else follow the Integrating factor for exact method

Step 4: Integrate P over x or Q over y.

$$f(x,y)=\int Pdx=\int Qdy$$

Step 5: Use one of $f_x = P, f_y = Q$ properies.

Just differentiate the f over dy (or dx if we integrated Q)

Integrating factor for exact equations

For a original function

$$f(x,y) := P(x,y)dx + Q(x,y)dy = 0$$

we transform it into

$$f(x,y) := P(x,y)\mu dx + Q(x,y)\mu dy = 0$$

Calculating μ

1.

$$rac{\mu'}{\mu} = rac{P_y - Q_x}{Q}$$
 and dx in the integral

or, if that is dependant on both x and y:

2.

$$\frac{\mu'}{\mu} = \frac{Q_x - P_y}{P}$$
 and dy in the integral

to get μ just integrate both side using dx or dy depending how u got $\frac{\mu'}{\mu}$.

Table of derivatives

Function	Derivative
scalars	0
$oxed{x^n,\ n\in\mathbb{N}-\{0\}}$	$n \cdot x^{n-1}$
ln(x)	$\frac{1}{x}$
e^x	e^x
$e^{c\cdot x}$	$c \cdot e^{cx}$
\mathbb{C}^x	$ig _{\mathbb{C}^x}=ln(\mathbb{c})\cdot \mathbb{c}^x$
sin(x)	cos(x)
cos(x)	-sin(x)
tan(x)	$\frac{1}{cos^2(x)}$
(fg)'	f'g+fg'
$\frac{f}{g}$	$rac{f'g{-}fg'}{g^2}$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$\frac{-1}{\sqrt{1-x^2}}$
arctan(x)	$\frac{1}{1-x^2}$