hardne	?55	compl	exity						
Sum	0	(n)							
hondes		ting p				,			On
							input X,	does	hait
		HISUMe	e 3 P						
						yes ho	if P hall other wise	t on x	
			1. 17	Hatt	(P, P,)			
			2,						, ,
			Diagono	rl (P)		Loop	if P	holds on	P.
			Diagona	l hat	ts on = di	13 it	and only	1 ig P ntradicti	Cops of
Probl	lem:		om putable	2					
		Com	Putable	(or	nplexity.	class EXP.	PSPAUE,	co-NP- 1	2p

1,	Civen a weighted graph and vertice s and t,
	what is the shortest path from 5 to t
2.	
	what is the length of shortest
3,	Gruen a, s, e, and integer K,
	is there a path from 5 to t whose length = K
	decrojon problem
	1=>2 : 1>>2
	2=>3 :, 2>3
	1
	3 => 2: bisection, loop.
	2=) 1: delete a certain edge, if the answer of 2
	changed, then this is in the shortest
	< G, S, t, K> => hinary string
	define a set X = { encodings of < a, s, t, K> for whose
	define a set X = { encodings of < a, s, t, K> for whose
	(honge to
	3(=) Given a string s, is s Ex)
	deusion <==> language
	pnblem
	in Honce (> 5tring 5= 0110
	(G15, t, K)

An algorithm 4 is a program, when given a strings, return yes or no -> A(s) An algorithm A solves a problem X, if for any string s (415) = yes if and only if s & X An algorithm A has a polynomial running time if there is a polynomial function P() so that for every string s, A terminates on s within P(IsI) steps P is the sex of all problems for which there exist a polynomial time algorithm (X, VX2VX3) 1 (X, VX2VX3) 1 (X, VX2VX4) to make the expression T Sotisficability SAT hint $(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 1)$ We say B is an efficient verifier for problem X if 1) B is a polynomial algorithm that takes two argument s and t 2) there exists a poly function P() so that for every string s, SEX if and only if I a string t such that B (sit) = yes (41 < p (151)

2 return the result

P) = N7 >	UnKnown							
									nition to
r.	eduction.					X	Y	Y in	puly
							(3	e) Y i	s harde
	Problem.	X				T.		Or (C · ·	
				f -> po	lynomral	time			
	input	Ir				$Ty = \frac{1}{2}$	f (Zx))	
		Iz E	X iff	<i>Iy</i> =	f(Zx)				
	2 poly non	nial - time	algorithm	AY 50	lues Y				
		17 E X	2						
	Īχ →	<u></u>	- f(Zx) ->	Ar	_ -> A	(f (Zx))			
		Poly (IZX))		poly (1	f (Zx) 1)				
	poly	(Ix) + poly	J (poly (IIx	1) =	poly (Ix)			
	I-J X≤p	Y and YEt	>, then	ХЕР					

		n Prob weighted				G =	(V.	, E)	ai	nd	on	inle	ge
K, is	there	a Simple	cycle	thou	•								-
on (e	and with	n total	Cost	5 K									
	0	-10											
3		3											
		8											
	HC	D E P	TSP										
				0./	, , , , , , , , , , , , , , , , , , ,	- / >			,				
G	= (VIE)			G S	: (V', E		on = 11		K				
0-	9				Ų-	i	9	,					
	R)	0		2					
					0 -	2	—-ψ						
-1 /	. /												
77 6		a homic				ort	m	ost		'V]			
-	a hos	no Ha	millonia	n (yo	le								
	every s	olution c	of G'	has	cost	al	(eas	t	10	1 + 1			

clique	problem				
	a has a	graph U complete	= (V)t), subgraph	and an with out	integer, does least 1< nodes?