命令	作用/目的
axis	人工选择坐标轴尺寸
fplot	智能绘图功能
grid	显示网格线
plot	生成XY图
print	打印或绘图到文件
title	把文字置于顶部
xlabel	将文本标签添加到x轴
ylabel	将文本标签添加到y轴
axes	创建轴对象
close	关闭当前的绘图
close all	关闭所有绘图
figure	打开一个新的图形窗口
gtext	通过鼠标在指定位置放注文
hold	保持当前图形
legend	鼠标放置图例
refresh	重新绘制当前图形窗口
set	指定对象的属性,如轴
subplot	在子窗口中创建图
text	在图上做标记
bar	创建条形图
loglog	创建双对数图
polar	创建极坐标图像
semilogx	创建半对数图 (对数横坐标)
semilogy	创建半对数图 (对数纵坐标)
stairs	创建阶梯图
stem	创建针状图

 $_{\rm l}$ $\,$ import matplotlib.pyplot as plt $\,$

² import matplotlib

```
3 matplotlib.use('TkAgg')
```

```
1
2 axis([0 2*pi -1.5 1.5])x轴范围, y轴范围
3 plt.plot(range(test.size), test, c='blue',label='test')
4 plt.legend()#显示标签
5 plt.grid(True) # 显示网格线
```

子图subplot

```
1 subplot(m,n,p) 将当前图窗划分为 m×n 网格,当前访问第p个(共m*n个)
2 subplot(m,n,p,'replace') 删除位置p处现有坐标区并创建新坐标区
```

```
1 subplot(2,1,1);
2 x = linspace(0,10);
3 y1 = sin(x);
4 plot(x,y1)
5
6 subplot(2,1,2);
7 y2 = sin(5*x);
8 plot(x,y2)
```

标记

```
1 R=step(sys,x);
2 标记最大值点的坐标
3 [R_max, R_mpos] = max(R);
4 grid on
5 text(x(R_mpos),R_max,'o','color','r')
6 text(x(R_mpos-50), R(R_mpos-10),
7 ['(',num2str(x(R_mpos)),',',num2str(R(R_mpos)),')'],'color','k');
```