

NPS-68-85-012

# NAVAL POSTGRADUATE SCHOOL

Monterey, California



HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM OPTOMA12 8 - 18 October 1984
OPTOMA13 22 October - 3 November 1984
OPTOMA14 3 - 14 November 1984
OPTOMA13P 27 October 1984

by

Paul A. Wittmann Edward A. Kelley, Jr. Christopher N.K. Mooers

March 1985

Approved for public release; distribution unlimited.

FEDDOCS D 208.14/2 NPS-68-85-012 epared for:
fice of Naval Research
vironmental Sciences Directorate (Code 420)
lington, VA 22217

- Luci - 1942-5 p

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943

Commodore R.H. Shumaker Superintendent

David A. Schrady Provost

This report is for the research project "Ocean Prediction Through Observations, Modeling and Analysis" sponsored by the Physical Oceanography Program of the Office of Naval Research under Program Element 61153N.

Reproduction of all or part of this report is authorized.

This report was Prepared by:

|    | REPORT DOCUMENTATION                           | PAGE                       | READ INSTRUCTIONS BEFORE COMPLETING FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | REPORT NUMBER                                  | 2. GOVT ACCESSION NO.      | 3. RECIPIENT'S CATALOG NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | NPS 68-85-012                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | TITLE (and Subtitle)                           | A DDOCDAM                  | S. TYPE OF REPORT & PERIOD COVERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | HYDROGRAPHIC DATA FROM THE OPTOM               |                            | REPORT FOR OCTOBER 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | OPTOMA12, OPTOMA13, OPTOMA14 AND               | OPTOMAT3P.                 | TO MARCH 1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    |                                                |                            | 6. PERFORMING ORG. REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | AUTHOR(a)                                      |                            | 8. CONTRACT OR GRANT NUMBER(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | <mark>PAUL A. WITIMANN, EDWARD A. KELLI</mark> | EY, JR                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | CHRISTOPHER N.K. MOOERS                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | PERFORMING ORGANIZATION NAME AND ADDRESS       |                            | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | NAVAL POSTGRADUATE SCHOOL                      |                            | THE A COUNTY TO THE COUNTY TO |
|    | MONTEREY, CA 93943                             |                            | 61153N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                                |                            | N0001484NR24501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ١. | CONTROLLING OFFICE NAME AND ADDRESS            |                            | 12. REPORT DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | OFFICE OF NAVAL RESEARCH (CODE 4               | 20)                        | MARCH 1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | ARLINGTON, VA 22217                            |                            | 13. NUMBER OF PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | <u> </u>                                       |                            | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4. | MONITORING AGENCY NAME & ADDRESS(II dilferen   | t from Controlling Office) | 15. SECURITY CLASS. (of this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |                                                |                            | UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                                |                            | 15a. DECLASSIFICATION DOWNGRADING SCHEDULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide if necessary and identify by block number)

CALIFORNIA CURRENT SYSTEM PHYSICAL OCEANOGRAPHY DYNAMIC OCEANOGRAPHY

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The three cruises, OPTOMA12, OPTOMA13, and OPTOMA14, and one AXBT flight, OPTOMA13P, were under taken in October and November, 1984. This report presents the hydrographic data, acquired by XBT, AXBT and CTD casts, from the cruises and the flight.

| SECURITY CLASSIFICATION OF T | HIS PAGE (When Data Entered) |  |  |
|------------------------------|------------------------------|--|--|
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |
|                              |                              |  |  |

## Hydrographic Data from the OPTOMA Program:

OPTOMA12 8 - 18 October, 1984 OPTOMA13 22 October - 3 November, 1984 OPTOMA13P 27 October, 1984 OPTOMA14 3 - 14 November, 1984

by

Paul A. Wittmann Edward A. Kelley, Jr. Christopher N. K. Mooers

Chief Scientists:

C. N. K. Mooers, E. A. Kelley, Jr. A. A. Bird, M. C. Colton

The **OPTOMA** Program is a joint program of

Department of Oceanography Naval Postgraduate School Monterey, CA 93943. Center for Earth and Planetary Physics Harvard University Cambridge, MA 02138.



LUBD

### 939.

## TABLE OF CONTENTS

|                           | PAGE |
|---------------------------|------|
| LIST OF TABLES            | ii   |
| LIST OF FIGURES           | iii  |
| INTRODUCTION              | 2    |
| DATA ACQUISITION          | 3    |
| DATA PROCESSING           | 3    |
| DATA PRESENTATION         | 4    |
| SECTION 1: OPTOMA12       | 7    |
| SECTION 2: OPTOMA13       | 31   |
| SECTION 3: OPTOMA14       | 61   |
| SECTION 4: OPTOMA13P      | 89   |
| ACKNOWLEDGEMENTS          | 102  |
| REFERENCE                 | 102  |
| INITIAL DISTRIBUTION LIST | 103  |

#### LIST OF TABLES

| Table No. | Caption                                  | Page |
|-----------|------------------------------------------|------|
| 1.        | Scientific instruments aboard R/V ACANIA | 6    |
| 2.        | OPTOMA12 Station Listing                 | 11   |
| 3.        | OPTOMA13 Station Listing                 | 35   |
| 4.        | OPTOMA14 Station Listing                 | 65   |
| 5.        | OPTOMA13P Station Listing                | 93   |

#### LIST OF FIGURES

| Figure | No.      | Caption                                                                                                                                                                                 | Page |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.     |          | The NOCAL, CENCAL, and WABC subdomains of the OPTOMA Program. Isobaths are shown in meters.                                                                                             | 1    |
| 2.     |          | The cruise track for OPTOMA12.                                                                                                                                                          | 8    |
| 3.     |          | XBT and CTD locations for OPTOMA12.                                                                                                                                                     | 9    |
| 4.     |          | Station numbers for OPTOMA12.                                                                                                                                                           | 10   |
| 5      | (a)-(e). | XBT temperature profiles, staggered by multiples of 5C (OPTOMA12).                                                                                                                      | 14   |
| 6      |          | CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA12).                                                               | 19   |
| 7.     |          | CTD casts deeper than 500m (OPTOMA12).                                                                                                                                                  | 20   |
| 8      | (a)-(j). | Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA12). | 21   |
| 9.     |          | Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA12).                                                                                | 27   |
| 10.    |          | Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA12).                                                                         | 28   |
| 11.    |          | (a) T-S pairs and (b) mean T-S relation, with<br>+ and - the standard deviation, from the CTD's.<br>Selected sigma-t contours are also shown.<br>(OPTOMA12).                            | 29   |
| 12.    |          | Mean $N^2$ profile $()$ , with $+$ and $-$ the standard deviation $()$ . The $N^2$ profile from $T(z)$ and $S(z)$ is also shown $(\cdots)$ . (OPTOMA12).                                | 30   |
| 13.    |          | The cruise track for OPTOMA13. The first excursion of the track is shown as a solid line, the second excursion as a broken line.                                                        | 32   |

| Figure | No.      | Caption                                                                                                                                                                                 | Page |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 14.    |          | XBT and CTD locations for OPTOMA13.                                                                                                                                                     | 33   |
| 15.    |          | Station numbers for OPTOMA13.                                                                                                                                                           | 34   |
| 16     | (a)-(f). | XBT temperature profiles, staggered by multiples of 5C (OPTOMA13).                                                                                                                      | 39   |
| 17     | (a)-(b). | CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA13).                                                               | 45   |
| 18     | (a)-(s). | Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA13). | 47   |
| 19     |          | Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA13).                                                                                                    | 56   |
| 20.    |          | Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA13).                                                                                | 57   |
| 21.    |          | Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA13).                                                                         | 58   |
| 22.    |          | (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA13).                                     | 59   |
| 23.    |          | Mean $N^2$ profile $()$ , with $+$ and $-$ the standard deviation $()$ . The $N^2$ profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown $(\cdots)$ . (OPTOMA13).          | 60   |
| 24.    |          | The cruise track for OPTOMA14.                                                                                                                                                          | 62   |
| 25.    |          | XBT and CTD locations for OPTOMA14.                                                                                                                                                     | 63   |
| 26.    |          | Station numbers for OPTOMA14.                                                                                                                                                           | 64   |
| 27     | (a)-(g). | XBT temperature profiles, staggered by multiples of 5C (OPTOMA14).                                                                                                                      | 69   |

| Figure | No.      | Caption                                                                                                                                                                                  | Page |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 28     |          | CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA14).                                                                | 76   |
| 29     | (a)-(n). | Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA14).  | 77   |
| 30.    |          | Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA14).                                                                                 | 84   |
| 31.    |          | Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA14).                                                                          | 85   |
| 32.    |          | (a) T-S pairs and (b) mean T-S relation, with<br>+ and - the standard deviation, from the CTD's.<br>Selected sigma-t contours are also shown.<br>(OPTOMA14).                             | 86   |
| 33.    |          | Mean $N^2$ profile $()$ , with $+$ and $-$ the standard deviation $()$ . The $N^2$ profile from $T(z)$ and $S(z)$ is also shown $()$ . (OPTOMA14).                                       | 87   |
| 34.    |          | The flight track for OPTOMA13P.                                                                                                                                                          | 90   |
| 35.    |          | AXBT locations for OPTOMA13P.                                                                                                                                                            | 91   |
| 36.    |          | Station numbers for OPTOMA13P.                                                                                                                                                           | 92   |
| 37     | (a)-(c). | AXBT temperature profiles, staggered by multiples of 5C (OPTOMA13P).                                                                                                                     | 94   |
| 38     | (a)-(h). | Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA13P). | 97   |
| 39.    |          | Mean temperature profile, with + and - the standard deviation. (OPTOMA13P).                                                                                                              | 101  |





Figure 1: The NOCAL, CENCAL and WABC subdomains of the OPTOMA Program. Isobaths shown in meters.

#### INTRODUCTION

The OPTOMA (Ocean Prediction Through Observations, Modeling and Analysis)
Program, a joint NPS/Harvard program sponsored by ONR, seeks to understand the mesoscale (fronts, eddies, and jets) variability and dynamics of the California Current System and to determine the scientific limits to practical mesoscale ocean forecasting. To help carry out the aims of this project, a series of cruises has been planned in three subdomains, NOCAL, CENCAL, and WABC shown in Figure 1.

The three cruises and one AXBT flight were undertaken, during October and November 1984, in the NOAA Ship McARTHUR and a Reserve Patrol Wing P3B aircraft. Hydrographic data were acquired off the coast of Washington, Oregon, and California in an area which covered and extended the WABC and NOCAL regions.

OPTOMA12 was carried out from 8 to 18 October and sampled the WABC subdomain, an area approximately 150km square about 150km west of the Straits of Juan de Fuca. An additional transect from the WABC area to Pt. Arena was sampled, as shown in Figure 2.

OPTOMA13 was carried out from 22 October to 3 November, and sampled an area approximately 200km square centered about 190km off the coast between Pt. Reyes and Pt. Arena in the NOCAL domain, with additional transects to and from Monterey, as shown in Figure 13.

OPTOMA14 was carried out from 3 to 14 November, and sampled the Mendocino escarpment area, off the coast of Cape Mendocino, with additional transects from Monterey and to Seattle, as shown in Figure 24.

OPTOMA13P was carried out on 27 October aboard a USNR P3B aircraft, and sampled an area approximately 250km square in the NOCAL area, as shown in Figure 34.

On each cruise track, transect extremes are identified by letter in these figures to aid in cross-referencing the data presented in subsequent figures. On each of these cruises, hydrographic stations were occupied at approximately 15 km along the track. For the AXBT flight, the along-track spacing was about 46km.

DATA ACQUISITION

Data acquired during OPTOMA12, OPTOMA13, and OPTOMA14 include XBT and CTD profiles; whereas data acquired during OPTOMA13P are AXBT profiles. Bucket surface temperature and water samples for salinity were taken at most CTD stations. These surface values were used for calibration purposes as well as contributions to the data base.

The XBT and AXBT data were digitized using a Sippican MK9 unit. All data were recorded, using an HP200 series computer, on data disks and transferred to the IBM 3033 mainframe computer for editing and processing.

Station positions aboard ship were determined by Loran C fixes and are claimed to be accurate to within about 0.1 km. A Plessey CTD and Sippican XBT's were employed during OPTOMA12; a Neil Brown CTD and Sippican XBT's were used during OPTOMA13 and OPTOMA14. Their accuracies are stated in Table 1. The bottle surface salinity samples from OPTOMA12 and OPTOMA13 were determined onboard by a Plessy salinometer; its accuracy is contained in Table 1. Samples from OPTOMA14 were determined by a Guildline Model 8400 "Autosal" salinometer with an accuracy of  $\pm 0.003$ ppt. Also during OPTOMA13, expendable current profiler (XCP) data were acquired, but will not be presented in this report.

Station positions for OPTOMA13P are accurate to within 1 km, temperature values to within 0.2C and depth values to within 2% or 5m (whichever is larger).

DATA PROCESSING

Data processing, such as estimating depth profiles for the XBT and AXBT temperature profiles based on the descent speed, and conversion of CTD conductivity to salinity using the algorithm given in Lewis and Perkin (1981),

was carried out on the IBM 3033 at the Naval Postgraduate School. The data were then edited by removing obvious salinity spikes and eliminating cast failures that were not identified during the cruise. Approximately 100%, 94%, 100% and 81% of casts were retained in the data set of OPTOMA12, OPTOMA13, OPTOMA14 and OPTOMA13P, respectively. During OPTOMA12 the conductivity cell appeared to be unstable during the first three CTD stations; only the temperature data from those stations appear in this report. The surface salinities for the next four CTD stations of OPTOMA12 were too high on average by 2.16 ppt and were adjusted accordingly. No corrections were made to the remaining two CTD's. For the OPTOMA13 and 14 salinities, no corrections were required. The CTD data were interpolated to 5 m intervals and then up and down casts were averaged.

The data have been transferred on digital tape to the National Oceanographic Data Center in Washington, DC.

#### DATA PRESENTATION

The cruise track, station locations (with XBT's, CTD's and AXBT's identified) and station numbers are shown in the first three figures of each of the next four sections, which present the data from OPTOMA12, OPTOMA13, OPTOMA14 and OPTOMA13P respectively. These figures are followed by a listing of the stations, with their coordinates, the date and time at which the station was occupied, and the surface information obtained at the station.

Vertical profiles of temperature from the XBT casts are shown in staggered fashion. The location of these profiles may be found by reference to the various maps of the cruise tracks. Transect extremes are identified as nearly as possible. The first profile on each plot is shown with its temperature unchanged; to each subsequent profile an appropriate multiple of 5C has been added. Vertical profiles from the CTD's follow (except Leg P). Profiles of temperature are staggered by 5C and those of salinity by 4 ppt.

Isotherms for each transect are shown in the next pages, followed (except for Leg P) by isopleths of temperature, salinity and sigma-t, from the CTD's, when four or more casts were acquired along a transect. Based on instrument accuracy and the vertical temperature gradient, it is estimated that depths of isotherms in the main thermocline are uncertain to +20m. The tick marks identify station positions and, again, the transect extremes are shown on these plots.

Sections 1, 2, and 3 include mean profiles of temperature from the XBT's and CTD's. In addition mean profiles of temperature, salinity and sigma-t from the CTD's are given, as well as a scatter diagram of the T-S pairs and the mean S(T) curve, with the  $\pm$  standard deviation envelope; the data presentation concludes with a plot of the mean  $N^2$  (Brunt-Vaisala frequency squared) profile, with  $\pm$  the standard deviation. On the sigma-t and  $N^2$  plots, the appropriate profiles derived from the mean temperature and mean salinity profiles are also shown.

Section 4 includes the mean profile of the temperature from the AXBT's.

Table 1: Scientific instruments aboard the NOAA Ship McARTHUR

|   | Instrument                     | Variable                                | Sensor                                      | Accuracy                                   | Resolution                         |
|---|--------------------------------|-----------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------|
| * | Neil Brown<br>CTD<br>Mark IIIb | pressure<br>temperature<br>conductivity | strain gage<br>thermistor<br>electrode cell | 1.6 db<br>0.005 C<br>0.005 mmho            | 0.025 db<br>0.0005 C<br>0.001 mmho |
|   | Sippican<br>BT                 | temperature<br>depth                    | thermistor<br>descent speed                 | 0.2 C<br>greater of 4.6<br>and 2% of depti |                                    |
|   | Plessey<br>CTD                 | pressure<br>temperature<br>conductivity |                                             | +0.04% of depth<br>+0.005 C<br>+0.005 mmho | 1                                  |
|   | Plessey<br>salinometer         | salinity                                |                                             | <u>+</u> 0.003ppt                          |                                    |

<sup>\*</sup> employed only during OPTOMA13 and OPTOMA14

Section 1 OPTOMA12



Figure 2: The cruise track for OPTOMA12.



Figure 3: XBT and CTD locations for OPTOMA12.



Figure 4: Station numbers for OPTOMA12.

Table 2: OPTOMA12 Station Listing

| STN                                                         | TYPE                                                               | YR/DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GMT                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LONG<br>(WEST)<br>(DDD.MM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SURFACE<br>TEMP<br>(DEG C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SALINIT | Y TEMP | SALINITY |
|-------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|
| 12345678910112131456171819201222324525233345363738940142344 | XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT | 84283<br>84283<br>84283<br>84283<br>84283<br>84283<br>84283<br>84285<br>84285<br>84285<br>84285<br>84285<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288<br>84288 | 101<br>156<br>246<br>334<br>419<br>511<br>610<br>656<br>743<br>831<br>918 | 48.27<br>48.37<br>48.28<br>48.18<br>48.32<br>48.32<br>48.32<br>48.32<br>48.32<br>48.32<br>48.32<br>48.33<br>48.54<br>48.33<br>48.55<br>47.53<br>47.53<br>47.45<br>47.37<br>47.49<br>47.37<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.35<br>47.53<br>47.45<br>47.45<br>47.45<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>47.45<br>47.45<br>47.45<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>47.45<br>47.45<br>47.45<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>47.45<br>47.45<br>47.45<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>48.23<br>47.43<br>47.43<br>47.43<br>47.43<br>47.43<br>47.43<br>47.43<br>47.43 | 124.48<br>124.52<br>124.57<br>125.03<br>125.12<br>125.21<br>125.29<br>125.35<br>125.35<br>125.43<br>125.52<br>126.00<br>126.08<br>126.16<br>126.12<br>126.07<br>126.04<br>126.07<br>126.05<br>126.05<br>126.33<br>127.31<br>127.31<br>127.31<br>127.36<br>127.37<br>127.31<br>127.31<br>127.31<br>127.31<br>127.36<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.31<br>127.30<br>127.43<br>127.43<br>127.47 | 13.1<br>13.2<br>13.1<br>13.2<br>13.1<br>13.0<br>12.6<br>11.9<br>13.8<br>13.6<br>12.7<br>12.9<br>13.8<br>13.6<br>12.3<br>12.6<br>13.4<br>13.3<br>12.6<br>13.4<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.6<br>14.1<br>14.2<br>14.2<br>13.8<br>13.8<br>13.6<br>14.1<br>14.2<br>13.8<br>13.8<br>13.6<br>14.1<br>14.2<br>13.8<br>13.8<br>13.6<br>14.1<br>14.1<br>14.2<br>14.2<br>13.8<br>13.6<br>13.7<br>14.1<br>14.1<br>14.2<br>14.2<br>13.8<br>13.6<br>13.7<br>13.8<br>13.6<br>13.7<br>14.1<br>14.1<br>14.2<br>14.2<br>13.8<br>13.6<br>13.7<br>13.8<br>13.8<br>13.8<br>13.6<br>13.7<br>14.1<br>14.1<br>14.2<br>13.8<br>13.8<br>13.6<br>13.7<br>13.8<br>13.8<br>13.8<br>13.6<br>13.7<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8<br>13.8 | 32.05   | * *    | * *      |
| 45                                                          | CTD                                                                | 84289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1130                                                                      | 47.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.08   | *      | 32.03    |

| STN                              | TYPE                                   | YR/DAY                                             | GMT                                          | LAT<br>(NORTH)<br>(DD.MM)                          |                                                          |                                              | SALINI | TY TEMP | T BOTTLE<br>SALINITY<br>) (PPT) |
|----------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------|--------|---------|---------------------------------|
| 46<br>47<br>48<br>49<br>50<br>51 | XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT | 84289<br>84289<br>84289<br>84289<br>84289          | 1221<br>1309<br>1414<br>1513<br>1614<br>1711 | 47.25<br>47.23<br>47.19<br>47.17<br>47.14<br>47.12 | 125.54<br>126.06<br>126.22<br>126.36<br>126.51<br>127.06 | 13.7<br>14.1<br>14.5<br>14.4<br>13.9<br>14.0 |        |         |                                 |
| 52<br>53<br>54<br>55<br>56<br>57 | CTD<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT | 84289<br>84289<br>84289<br>84289<br>84289          | 1810<br>2019<br>2110<br>2202<br>2253<br>2347 | 47.09<br>46.59<br>46.49<br>46.40<br>46.30<br>46.20 | 127.19<br>127.16<br>127.13<br>127.10<br>127.07<br>127.04 | 14.1<br>14.7<br>14.6<br>14.5<br>14.8<br>15.2 | 32.10  | *       | 32.13                           |
| 58<br>59<br>60<br>61<br>62<br>63 | XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT | 84290<br>84290<br>84290<br>84290<br>84290          | 37<br>131<br>218<br>306<br>357<br>451        | 46.11<br>46.00<br>45.51<br>45.43<br>45.32<br>45.22 | 127.01<br>126.58<br>126.55<br>126.52<br>126.48<br>126.46 | 14.9<br>14.7<br>14.8<br>15.0<br>15.1         |        |         |                                 |
| 64<br>65<br>66<br>67<br>68<br>69 | XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT | 84290<br>84290<br>84290<br>84290<br>84290<br>84290 | 534<br>622<br>710<br>756<br>840<br>927       | 45.12<br>45.02<br>44.52<br>44.42<br>44.33<br>44.23 | 126.43<br>126.40<br>126.37<br>126.34<br>126.31<br>126.28 | 14.8<br>15.0<br>15.1<br>15.0<br>14.3<br>14.3 |        |         |                                 |
| 70<br>71<br>72<br>73<br>74<br>75 | XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT | 84290<br>84290<br>84290<br>84290<br>84290<br>84290 | 1021<br>1110<br>1200<br>1246<br>1335<br>1422 | 44.12<br>44.03<br>43.53<br>43.43<br>43.33<br>43.23 | 126.25<br>126.22<br>126.19<br>126.15<br>126.13<br>126.10 | 14.9<br>14.7<br>15.3<br>15.5<br>15.7         |        |         |                                 |
| 76<br>77<br>78<br>79<br>80<br>81 | XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT | 84290<br>84290<br>84290<br>84290<br>84290<br>84290 | 1518<br>1605<br>1655<br>1741<br>1830<br>1925 | 43.12<br>43.03<br>42.53<br>42.44<br>42.35<br>42.24 | 126.09<br>126.06<br>126.04<br>126.02<br>125.59<br>125.57 | 15.3<br>15.3<br>15.8<br>15.6<br>14.7<br>15.1 |        |         |                                 |
| 82<br>83<br>84<br>85<br>86       | XBT<br>XBT<br>XBT<br>XBT<br>XBT        | 84290<br>84290<br>84290<br>84290<br>84290          | 2011<br>2100<br>2150<br>2238<br>2328         | 42.15<br>42.05<br>41.55<br>41.46<br>41.36          | 125.56<br>125.54<br>125.52<br>125.49<br>125.47           | 15.1<br>14.6<br>14.6<br>14.0<br>13.9         |        |         |                                 |
| 87<br>88<br>89<br>90             | XBT<br>XBT<br>XBT<br>XBT               | 84291<br>84291<br>84291<br>84291                   | 18<br>106<br>200<br>256                      | 41.26<br>41.17<br>41.06<br>40.56                   | 125.46<br>125.43<br>125.41<br>125.38                     | 14.6<br>14.1<br>14.4<br>14.5                 |        |         |                                 |

| STN | TYPE | YR/DAY | GMT  |       | LONG<br>(WEST)<br>(DDD.MM) | TEMP | SALINI | TY TEM | ET BOTTLE IP SALINITY C) (PPT) |
|-----|------|--------|------|-------|----------------------------|------|--------|--------|--------------------------------|
| 91  | XBT  | 84291  | 347  | 40.46 | 125.35                     | 14.9 |        |        |                                |
| 92  | XBT  | 84291  | 439  | 40.37 | 125.32                     | 14.9 |        |        |                                |
| 93  | XBT  | 84291  | 532  | 40.27 | 125.28                     | 14.7 |        |        |                                |
| 94  | XBT  | 84291  | 626  | 40.17 | 125.25                     | 14.4 |        |        |                                |
| 95  | XBT  | 84291  | 715  | 40.07 | 125.23                     | 14.7 |        |        |                                |
| 96  | XBT  | 84291  | 806  | 39.58 | 125.16                     | 15.2 |        |        |                                |
| 97  | XBT  | 84291  | 855  | 39.50 | 125.09                     | 15.2 |        |        |                                |
| 98  | XBT  | 84291  | 952  | 39.40 | 125.02                     | 14.9 |        |        |                                |
| 99  | XBT  | 84291  | 1047 |       | 124.55                     | 13.2 |        |        |                                |
| 100 | XBT  | 84291  | 1139 | 39.22 | 124.46                     | 13.3 |        |        |                                |
| 101 | XBT  | 84291  | 1235 | 39.13 | 124.42                     | 12.8 |        |        |                                |
| 102 | XBT  | 84291  | 1331 | 39.05 | 124.35                     | 13.0 |        |        |                                |
| 103 | XBT  | 84291  | 1425 | 38.56 | 124.29                     | 12.6 |        |        |                                |
| 104 | CTD  | 84291  | 1600 | 38.49 | 124.22                     | 12.6 | 33.27  | *      | 33.35                          |
| 105 | XBT  | 84291  | 1707 | 38.38 | 124.15                     | 13.2 |        |        |                                |
| 106 | XBT  | 84291  | 1758 | 38.30 | 124.08                     | 13.4 |        |        |                                |
| 107 | XBT  | 84291  | 1852 | 38.21 | 124.01                     | 13.5 |        |        |                                |
| 108 | CTD  | 84291  | 1942 | 38.12 | 123.54                     | 12.8 | 33.45  | *      | 33.45                          |
| 109 | XBT  | 84291  | 2141 | 38.04 | 123.44                     | 14.4 |        |        |                                |
| 110 | XBT  | 84291  | 2300 | 37.56 | 123.34                     | 14.1 |        |        |                                |
| 111 | XBT  | 84291  | 11   | 37.49 | 123.25                     | 13.7 |        |        |                                |
| 112 | XBT  | 84292  | 125  | 37.40 | 123.18                     | 12.6 |        |        |                                |
| 113 | XBT  | 84292  | 231  | 37.32 | 123.10                     | 12.6 |        |        |                                |
| 114 | XBT  | 84292  | 346  | 37.24 | 123.03                     | 12.7 |        |        |                                |
| 115 | XBT  | 84292  | 501  | 37.16 | 122.56                     | 14.1 |        |        |                                |

<sup>\*</sup> Data not available



Figure 5(a): XBT temperature profiles, staggered by multiples of 5C (OPTOMA12).







Figure 5(d)









Figure 6: CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA12).





Figure 7: CTD casts deeper than 500m (OPTOMA12).



Figure 8(a)-(c): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA12).



Figure 8(d)



Figure 8(e)



Figure 8(f)



Figure 8(g)



Figure 8(h)



Figure 8(i)



Figure 8(j)



Figure 9: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA12).



Figure 10: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA12).



Figure II: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown (OPTOMA12).



Figure 12: Mean  $N^2$  profile(—), with + and - the standard deviation(---). The  $N^2$  profile from  $\overline{T(z)}$  and  $\overline{S(z)}$  is also shown(...) (OPTOMA12).

Section 2

OPTOMA13



Figure 13: The cruise track for OPTOMA13. The first excursion of the track is shown as a solid line, the second excursion as a broken line.



Figure 14: XBT and CTD locations for OPTOMA13.



Figure 15: Station numbers for OPTOMA13.

Table 3: OPTOMA13 Station Listing

| STN .                                                                                                                            | TYPE                                            | YR/DAY                                                                                                                                                                  | GMT                                                                                                                                                                    | LAT<br>(NORTH)<br>(DD.MM)                                                                                                                                                        | LONG<br>(WEST)<br>(DDD.MM)                                                                                                                                                                           | TEMP                                                                                                                                         |                | Y TEMP       | SALINITY       |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|----------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                  | XBT<br>XBT<br>CTD<br>XBT<br>XBT<br>XBT<br>XBT   | 84296<br>84296<br>84296<br>84296<br>84296<br>84296                                                                                                                      | 1724<br>1816<br>1919<br>2030<br>2127<br>2224<br>2322                                                                                                                   | 36.44<br>36.49<br>36.54<br>36.59<br>37.05<br>37.08                                                                                                                               | 122.08<br>122.19<br>122.30<br>122.42<br>122.53<br>123.05<br>123.16                                                                                                                                   | 12.7<br>14.4<br>14.3<br>14.2<br>15.0<br>15.1<br>14.4                                                                                         | 33.35          | *            | 33.21          |
| 8<br>9<br>10<br>11<br>12<br>13                                                                                                   | XBT<br>CTD<br>XBT<br>XBT<br>XBT<br>XBT          | 84297<br>84297<br>84297<br>84278<br>84298<br>84298                                                                                                                      | 3<br>122<br>2250<br>115<br>122<br>302                                                                                                                                  | 37.15<br>37.22<br>36.48<br>37.02<br>37.03<br>37.12                                                                                                                               | 123.16<br>123.28<br>122.18<br>122.48<br>122.49<br>123.00                                                                                                                                             | 14.1<br>13.6<br>14.7<br>14.3<br>14.4<br>15.2                                                                                                 | 33.27          | 13.8         | 33.23          |
| 14<br>15                                                                                                                         | CTD<br>CTD                                      | 84298<br>84298                                                                                                                                                          | 415<br>825                                                                                                                                                             | 37.18<br>37.21                                                                                                                                                                   | 123.23<br>123.26                                                                                                                                                                                     | 13.2<br>12.7                                                                                                                                 | 33.32<br>33.43 | 13.9<br>13.0 | 33.42<br>33.45 |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37 | XBT CTD XBT | 84298<br>84298<br>84298<br>84298<br>84298<br>84298<br>84298<br>84299<br>84299<br>84299<br>84299<br>84299<br>84299<br>84299<br>84299<br>84299<br>84299<br>84299<br>84299 | 910<br>1013<br>1152<br>1302<br>1426<br>1547<br>1805<br>1949<br>2144<br>2341<br>201<br>344<br>531<br>702<br>836<br>1039<br>1147<br>1321<br>1409<br>1457<br>1603<br>1758 | 37.24<br>37.26<br>37.36<br>37.44<br>37.53<br>38.01<br>38.12<br>38.21<br>38.29<br>38.37<br>38.48<br>38.56<br>39.05<br>39.13<br>39.22<br>39.31<br>39.36<br>39.31<br>39.22<br>39.14 | 123.26<br>123.24<br>123.30<br>123.35<br>123.41<br>123.46<br>123.56<br>124.02<br>124.09<br>124.15<br>124.23<br>124.28<br>124.42<br>124.49<br>124.56<br>125.00<br>125.12<br>125.06<br>124.59<br>124.39 | 14.3<br>13.8<br>14.3<br>13.8<br>13.1<br>12.7<br>13.1<br>12.7<br>11.6<br>12.6<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7 | 33.18          | 14.0         | 33.20          |
| 38<br>39<br>40                                                                                                                   | XBT<br>CTD<br>XBT                               | 84299<br>84299<br>84299                                                                                                                                                 | 1841<br>1955<br>2125                                                                                                                                                   | 38.41<br>38.32<br>38.24                                                                                                                                                          | 124.33<br>124.27<br>124.20                                                                                                                                                                           | 11.4<br>12.1<br>12.9                                                                                                                         | 33.26          | 12.3         | 33.26          |
| 41<br>42                                                                                                                         | CTD<br>XBT                                      | 84299<br>84299                                                                                                                                                          | 2235<br>2352                                                                                                                                                           | 38.16<br>38.07                                                                                                                                                                   | 124.13<br>124.07                                                                                                                                                                                     | 13.8<br>13.4                                                                                                                                 | 33.10          | 14.0         | 33.16          |
| 43<br>44<br>45                                                                                                                   | CTD<br>XBT<br>CTD                               | 84300<br>84300<br>84300                                                                                                                                                 | 128<br>305<br>444                                                                                                                                                      | 38.03<br>38.11<br>38.19                                                                                                                                                          | 124.18<br>124.24<br>124.30                                                                                                                                                                           | 14.0<br>14.0<br>13.6                                                                                                                         | 32.98          | 13.8<br>13.6 | 32.99          |

| STN                                                                                                                                    | TYPE                                                               | YR/DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GMT                                                                                                                                                                                                                   | LAT<br>(NORTH)<br>(DD.MM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                | SURFACE<br>TEMP<br>(DEG C)                                                                                                                                                                                                                                                                                                                                                                                                                                   | SALINIT                          |                           | SALINITY                         |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|----------------------------------|
| 46<br>47<br>48<br>49<br>50<br>51<br>52<br>53                                                                                           | XBT<br>XBT<br>CTD<br>XBT<br>CTD<br>CTD<br>CTD                      | 84300<br>84300<br>84300<br>84300<br>84300<br>84300<br>84300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 628<br>739<br>911<br>1257<br>1521<br>1702<br>1911<br>2222                                                                                                                                                             | 38.27<br>38.37<br>38.48<br>38.56<br>39.03<br>39.06<br>38.52<br>38.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 124.37<br>124.45<br>124.53<br>124.59<br>124.50<br>125.08<br>125.10<br>124.59                                                                                                                                                                                                                                                                                                   | 13.0<br>12.2<br>12.6<br>12.8<br>12.5<br>13.0<br>13.0                                                                                                                                                                                                                                                                                                                                                                                                         | 33.24<br>33.07<br>33.11<br>33.22 | 12.7<br>*<br>12.8<br>12.8 | 34.93<br>33.50<br>33.07<br>33.21 |
| 54<br>55<br>56<br>57<br>58<br>60<br>61<br>62<br>63<br>64<br>66<br>66<br>67<br>67<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77 | XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT | 84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302 | 122<br>240<br>326<br>410<br>439<br>531<br>622<br>710<br>757<br>847<br>935<br>1027<br>1118<br>1213<br>1302<br>1347<br>1447<br>1532<br>1633<br>1711<br>1836<br>2119<br>2210<br>2303<br>2352<br>413<br>450<br>527<br>632 | 39.15<br>39.25<br>39.16<br>39.08<br>39.02<br>38.52<br>38.43<br>38.35<br>38.26<br>38.30<br>37.51<br>37.54<br>37.56<br>37.59<br>38.08<br>38.15<br>38.25<br>38.32<br>38.42<br>38.50<br>38.50<br>38.50<br>38.50<br>38.50<br>38.70<br>38.50<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>38.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39.70<br>39 | 125.15<br>125.22<br>125.25<br>125.29<br>125.31<br>125.25<br>125.18<br>125.11<br>125.05<br>124.58<br>124.51<br>124.43<br>124.49<br>125.01<br>125.12<br>125.19<br>125.25<br>125.33<br>125.38<br>125.47<br>125.53<br>125.58<br>126.04<br>126.10<br>126.00<br>125.41<br>125.42<br>125.45<br>125.45<br>125.45<br>125.47<br>125.45<br>125.47<br>125.37<br>125.37<br>125.33<br>125.33 | 12.9<br>14.3<br>13.6<br>12.7<br>13.1<br>14.2<br>14.6<br>14.1<br>13.1<br>14.0<br>14.1<br>13.9<br>13.4<br>13.7<br>13.8<br>14.2<br>14.3<br>13.6<br>13.7<br>13.8<br>14.3<br>13.6<br>13.7<br>13.6<br>13.7<br>13.6<br>13.7<br>13.6<br>13.7<br>13.6<br>13.7<br>13.6<br>13.7<br>13.6<br>13.7<br>13.6<br>13.7<br>13.6<br>13.7<br>13.6<br>13.7<br>13.6<br>13.7<br>13.6<br>13.7<br>13.6<br>13.6<br>13.7<br>13.6<br>13.6<br>13.6<br>13.6<br>13.6<br>13.6<br>13.6<br>13.6 | 33.12                            | 13.8                      | 33.07                            |

| STN                                                                                                                                                    | TYPE                                                        | YR/DAY                                                                                                                                                                  | GMT                                                                                                                                                        |                                                                                                                                                                                           | LONG<br>(WEST)<br>(DDD.MM)                                                                                                                                                                                     | SURFACE<br>TEMP<br>(DEG C)                                                                                                                   | SALINIT | Y TEMP | SALINITY |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|
| 91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99                                                                                                     | XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT | 84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302<br>84302                                                                                  | 917<br>939<br>955<br>1010<br>1026<br>1039<br>1052<br>1106<br>1118<br>1130                                                                                  | 39.13<br>39.12<br>39.10<br>39.09<br>39.08<br>39.07<br>39.07<br>39.05<br>39.05                                                                                                             | 125.25<br>125.26<br>125.26<br>125.27<br>125.27<br>125.28<br>125.28<br>125.28<br>125.28                                                                                                                         | 13.7<br>13.3<br>13.2<br>12.9<br>12.8<br>12.8<br>12.8<br>12.8                                                                                 |         |        |          |
| 101<br>102<br>103<br>104<br>105                                                                                                                        | XBT<br>CTD<br>XBT<br>XBT<br>XBT<br>XBT                      | 84302<br>84302<br>84302<br>84302<br>84302                                                                                                                               | 1602<br>2005<br>2102<br>2155<br>2252                                                                                                                       | 39.04<br>39.11<br>39.08<br>39.03<br>38.58<br>38.53                                                                                                                                        | 125.29<br>125.26<br>125.12<br>125.00<br>124.48<br>124.35                                                                                                                                                       | 12.6<br>13.2<br>12.7<br>13.0<br>12.9                                                                                                         | 33.03   | 13.2   | 33.06    |
| 106<br>107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115<br>116<br>117<br>118<br>119<br>120<br>121<br>122<br>123<br>124<br>125<br>126<br>127 | CTD XBT                 | 84303<br>84303<br>84303<br>84303<br>84303<br>84303<br>84303<br>84305<br>84305<br>84305<br>84306<br>84306<br>84306<br>84306<br>84306<br>84306<br>84306<br>84306<br>84306 | 12<br>214<br>338<br>501<br>625<br>810<br>934<br>1109<br>1243<br>2103<br>2200<br>2311<br>18<br>126<br>225<br>327<br>443<br>530<br>636<br>740<br>922<br>1010 | 38.47<br>38.41<br>38.34<br>38.28<br>38.22<br>38.15<br>38.09<br>38.02<br>37.55<br>37.55<br>37.58<br>38.01<br>38.04<br>38.07<br>38.09<br>38.12<br>38.15<br>38.20<br>38.23<br>38.23<br>38.23 | 124.23<br>124.12<br>124.03<br>123.53<br>123.43<br>123.24<br>123.15<br>123.05<br>123.13<br>123.24<br>123.36<br>123.48<br>124.00<br>124.12<br>124.24<br>124.38<br>124.48<br>125.00<br>125.12<br>125.36<br>125.47 | 12.5<br>12.4<br>12.2<br>12.0<br>13.5<br>13.2<br>12.9<br>11.8<br>11.8<br>11.6<br>11.3<br>13.5<br>13.0<br>12.6<br>13.9<br>13.5<br>12.6<br>13.9 | 33.34   | 13.1   | 33.34    |
| 128<br>129<br>130<br>131<br>132<br>133<br>134<br>135                                                                                                   | XBT<br>XBT<br>CTD<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT        | 84306<br>84306<br>84306<br>84306<br>84306<br>84306<br>84306                                                                                                             | 1101<br>1152<br>1411<br>1528<br>1644<br>1850<br>2000<br>2113                                                                                               | 38.34<br>38.37<br>38.41<br>38.45<br>38.36<br>38.19<br>38.11<br>38.03                                                                                                                      | 125.59<br>126.11<br>126.35<br>126.51<br>126.43<br>126.31<br>126.24<br>126.18                                                                                                                                   | 16.5<br>16.8<br>16.7<br>16.4<br>17.3<br>17.2                                                                                                 | 32.73   | 16.8   | *        |

| STN | TYPE | YR/DAY | GMT  | LAT<br>(NORTH)<br>(DD.MM) | LONG<br>(WEST)<br>(DDD.MM) | SURFACE<br>TEMP<br>(DEG C) |
|-----|------|--------|------|---------------------------|----------------------------|----------------------------|
| 136 | XBT  | 84306  | 2213 | 37.54                     | 126.11                     | 17.0                       |
| 137 | XBT  | 84306  | 2311 | 37.46                     | 126.05                     | 16.6                       |
| 138 | XBT  | 84307  | 10   | 37.38                     | 125.58                     | 15.9                       |
| 139 | XBT  | 84307  | 109  | 37.29                     | 125.52                     | 16.6                       |
| 140 | XBT  | 84307  | 209  | 37.20                     | 125.45                     | 15.1                       |
| 141 | XBT  | 84307  | 309  | 37.26                     | 125.33                     | 15.3                       |
| 142 | XBT  | 84307  | 544  | 37.15                     | 125.55                     | 15.2                       |
| 143 | XBT  | 84307  | 702  | 37.10                     | 126.07                     | 15.1                       |
| 144 | XBT  | 84307  | 956  | 37.35                     | 125.39                     | 16.0                       |
| 145 | XBT  | 84307  | 1056 | 37.45                     | 125.37                     | 15.8                       |
| 146 | XBT  | 84307  | 1205 | 37.56                     | 125.34                     | 14.9                       |
| 147 | XBT  | 84307  | 1259 | 38.04                     | 125.30                     | 13.3                       |
| 148 | XBT  | 84307  | 1406 | 38.04                     | 125.18                     | 13.8                       |
| 149 | XBT  | 84307  | 1456 | 38.04                     | 125.06                     | 14.2                       |
|     |      |        |      |                           |                            |                            |

<sup>\*</sup> Data not available



Figure 16(a): XBT temperature profiles, staggered by multiples of 5C (OPTOMA13).











Figure 16(f)





Figure 17(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt. (OPTOMA13).





Figure 17(b)



Figure 18(a): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA13).





Figure 18(c)



Figure 18(d)



Figure 18(e)















Figure 18(o)



Figure 18(p)







Figure 18(r)

Figure 18(s)



Figure 19: Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA13).



Figure 20: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation (OPTOMA13).



Figure 21: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA13).



Figure 22: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown (OPTOMA13). Selected sigma-t contours are also shown (OPTOMA13)



Figure 23: Mean  $N^2$  profile(--), with + and - the standard deviation(---). The  $N^2$  profile from  $\overline{T(z)}$  and  $\overline{S(z)}$  is also shown(...) (OPTOMA13).

Section 3
OPTOMA14



Figure 24: The cruise track for OPTOMA14.



Figure 25: XBT and CTD locations for OPTOMA14.



Figure 26: Station numbers for OPTOMA14.

Table 4: OPTOMA 14 Station Listing

| STN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TYPE                                                        | YR/DAY                                                                                                                                                                                             | GMT                                                                  | LAT<br>(NORTH)<br>(DD.MM)                                   |                                                                                        |      |       | Y TEMP S | SALINITY |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|------|-------|----------|----------|
| 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 9 30 31 32 33 34 35 6 37 38 9 40 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 14 20 1 | XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>CTD | 84309<br>84309<br>84309<br>84309<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310<br>84310 | 1022<br>1114<br>1202<br>1303<br>1406<br>1502<br>1600<br>1658<br>1724 | 40.19<br>40.20<br>40.21<br>40.23<br>40.24<br>40.26<br>40.26 | 125.08<br>124.54<br>124.42<br>124.56<br>125.10<br>125.24<br>125.38<br>125.52<br>125.52 |      | 32.14 | *        | 32.23    |
| 43<br>44<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XBT<br>CTD<br>XBT                                           | 84310<br>84310<br>84310                                                                                                                                                                            | 1838<br>1952<br>2114                                                 | 40.26                                                       | 126.05<br>126.18<br>126.31                                                             | 14.7 | 32.22 | *        | 33.22    |

| STN                                                                                 | TYPE                                                                             | YR/DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GMT                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LONG<br>(WEST)<br>(DDD.MM)                                                                                                                                                                                                                                                                                                                       | SURFACE<br>TEMP<br>(DEG C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SALINI |   | SALINITY |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----------|
| 447890123456789012345678901234567890<br>4478955555555666666666777777777888888888890 | XBT<br>CTD<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT<br>XBT | 84310<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84311<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312<br>84312 | 2208<br>2319<br>31<br>131<br>247<br>326<br>355<br>540<br>602<br>701<br>801<br>846<br>934<br>1022<br>1114<br>1210<br>1301<br>1411<br>1505<br>1559<br>1676<br>1803<br>1905<br>2011<br>2121<br>2236<br>2358<br>110<br>202<br>252<br>350<br>440<br>522<br>623<br>711<br>806<br>852<br>955<br>1043<br>1139<br>1230<br>1310<br>1310<br>1310<br>1310<br>1310<br>1310<br>1310 | 40.23<br>40.22<br>40.21<br>40.20<br>40.32<br>40.32<br>40.33<br>40.35<br>40.36<br>40.38<br>40.38<br>40.48<br>40.48<br>40.51<br>40.53<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40.55<br>40 | 126.45<br>126.58<br>127.12<br>127.24<br>127.37<br>127.33<br>127.29<br>127.03<br>126.56<br>126.40<br>126.24<br>125.59<br>125.46<br>125.33<br>125.20<br>125.31<br>125.47<br>125.34<br>125.47<br>126.00<br>126.13<br>126.52<br>127.05<br>127.19<br>127.31<br>127.19<br>127.31<br>127.19<br>127.06<br>126.52<br>127.05<br>127.19<br>127.31<br>127.40 | 15.2<br>15.4<br>15.3<br>15.4<br>15.7<br>15.7<br>15.6<br>14.8<br>14.6<br>14.6<br>14.5<br>14.8<br>13.5<br>13.8<br>13.7<br>13.8<br>13.7<br>13.8<br>14.1<br>14.6<br>14.7<br>14.6<br>14.7<br>14.6<br>14.7<br>14.7<br>14.8<br>15.1<br>14.7<br>14.6<br>14.7<br>14.8<br>15.1<br>14.7<br>14.8<br>15.1<br>14.6<br>14.7<br>14.8<br>15.1<br>14.6<br>14.7<br>14.8<br>15.1<br>14.6<br>14.7<br>14.8<br>15.1<br>14.6<br>14.7<br>14.6<br>14.7<br>14.8<br>15.1<br>14.6<br>14.7<br>14.8<br>15.1<br>14.6<br>14.7<br>14.8<br>15.1<br>14.6<br>14.7<br>14.7<br>14.8<br>15.1<br>14.8<br>15.1<br>14.8<br>15.1<br>14.8<br>15.1<br>14.8<br>15.1<br>14.8<br>15.1<br>16.8<br>16.8<br>16.8<br>16.8<br>16.8<br>16.8<br>16.8<br>16 | 32.42  | * | 33.42    |

| 91 XBT 84312 1707 42.02 127.32<br>92 XBT 84312 1758 42.05 127.18<br>93 XBT 84312 1844 42.07 127.06<br>94 XBT 84312 1944 42.14 127.16<br>95 XBT 84312 2041 42.21 127.26<br>96 XBT 84312 2138 42.29 127.35<br>97 XBT 84312 2233 42.36 127.46<br>98 XBT 84312 2233 42.36 127.46<br>98 XBT 84312 2327 42.43 127.56<br>99 XBT 84313 19 42.50 128.07<br>100 XBT 84313 109 42.58 128.14<br>101 XBT 84313 201 43.05 128.23<br>102 XBT 84313 253 43.13 128.32<br>103 XBT 84313 347 43.20 128.43<br>104 XBT 84313 438 43.27 128.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SURFACE<br>TEMP<br>() (DEG C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 105       XBT       84313       542       43.35       129.03         106       XBT       84313       646       43.43       129.12         107       XBT       84313       750       43.49       129.21         108       XBT       84313       856       43.57       129.31         109       XBT       84313       1007       44.04       129.41         110       XBT       84313       1114       44.12       129.51         111       XBT       84313       1222       44.18       130.00         112       XBT       84313       1238       44.26       130.09         113       XBT       84313       1439       44.33       130.18         114       XBT       84313       2100       44.46       130.16         115       XBT       84313       2200       44.52       130.06         117       XBT       84313       2300       45.02       129.53         118       XBT       84314       31       45.12       129.53         120       XBT       84314       201       45.26       129.53         121       XBT       84314 | 10 (DEG C)  14.0  14.0  13.8  14.0  13.8  14.1  13.7  13.8  14.1  13.7  13.8  14.1  13.5  13.5  13.5  13.5  13.5  13.5  13.5  13.5  13.5  13.5  13.5  13.6  13.5  13.1  12.9  12.6  12.7  12.6  12.7  12.8  12.8  12.8  12.8  12.9  12.8  12.9  12.8  12.9  12.6  12.7  12.5  12.8  12.7  12.8  12.8  12.9  12.8  12.9  12.8  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.8  12.9  12.8  12.9  12.8  12.9  12.8  12.9 |
| 131     XBT     84314     1009     46.31     127.33       132     XBT     84314     1059     46.38     127.24       133     XBT     84314     1146     46.44     127.14       134     XBT     84314     1228     46.51     127.03       135     XBT     84314     1322     46.57     126.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 12.3<br>4 12.3<br>3 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| STN | TYPE | YR/DAY | GMT  | LAT<br>(NORTH)<br>(DD.MM) | LONG<br>(WEST)<br>(DDD.MM) | SURFACE<br>TEMP<br>(DEG C) |
|-----|------|--------|------|---------------------------|----------------------------|----------------------------|
| 136 | XBT  | 84314  | 1402 | 47.03                     | 126.43                     | 11.9                       |
| 137 | XBT  | 84314  | 1448 | 47.09                     | 126.33                     | 11.9                       |
| 138 | XBT  | 84314  | 1536 | 47.16                     | 126.22                     | 11.6                       |
| 139 | XBT  | 84314  | 1627 | 47.23                     | 126.12                     | 11.1                       |
| 140 | XBT  | 84314  | 1713 | 47.29                     | 126.02                     | 11.6                       |
| 141 | XBT  | 84314  | 1800 | 47.35                     | 125.52                     | 11.7                       |
| 142 | XBT  | 84314  | 1835 | 47.39                     | 125.48                     | 11.6                       |
| 143 | XBT  | 84314  | 1919 | 47.36                     | 125.59                     | 11.6                       |
| 144 | XBT  | 84314  | 2011 | 47.37                     | 126.13                     | 11.2                       |
| 145 | XBT  | 84314  | 2105 | 47.37                     | 126.28                     | 11.5                       |
| 146 | XBT  | 84314  | 2157 | 47.35                     | 126.43                     | 11.1                       |
| 147 | XBT  | 84314  | 2255 | 47.40                     | 126.30                     | 11.3                       |
| 148 | XBT  | 84314  | 2350 | 47.45                     | 126.17                     | 11.6                       |
| 149 | XBT  | 84315  | 41   | 47.49                     | 126.05                     | 10.4                       |
| 150 | XBT  | 84315  | 139  | 47.54                     | 125.51                     | 10.5                       |
| 151 | XBT  | 84315  | 235  | 48.00                     | 125.39                     | 10.8                       |
| 152 | XBT  | 84315  | 328  | 48.05                     | 125.27                     | 11.1                       |
| 153 | XBT  | 84315  | 422  | 48.12                     | 125.15                     | 11.3                       |

<sup>\*</sup> Data not available



Figure 27(a): XBT temperature profiles, staggered by multiples of 5C (OPTOMA14).

















Figure 28: CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt. (OPTOMA14).



given. Dashed lines are used if the cast was too shallow (OPTOMA14). horizontal axis show station positions. Some station numbers are Figure 29(a): Along-track isotherms. Tick marks along the upper



Figure 29(b)



Figure 29(c)



Figure 29(d)



Figure 29(e)











Figure 30: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation (OPTOMA14).



Figure 31: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA14).



Figure 32: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown (OPTOMA14).



Figure 33: Mean  $N^2$  profile(——), with + and - the standard deviation(---). The  $N^2$  profile from  $\overline{T(z)}$  and  $\overline{S(z)}$  is also shown(...) (OPTOMA14).

This page left intentionally blank

Section 4

OPTOMA13P



Figure 34: The flight track for OPTOMA13P.



Figure 35: AXBT locations for OPTOMA13P.



Figure 36: Station numbers for OPTOMA13P.

Table 5: OPTOMA13P Station Listing

| STN                                                                                                       | TYPE                                                         | YR/DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GMT                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LONG<br>(WEST)<br>(DDD.MM)                                                                                                                                                                                                                                                                                                   | TEMP                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | AXBT<br>AXBT<br>AXBT<br>AXBT<br>AXBT<br>AXBT<br>AXBT<br>AXBT | 84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301<br>84301 | 1900<br>1749<br>1755<br>1800<br>1808<br>1814<br>1824<br>1944<br>1955<br>2014<br>2027<br>2033<br>2050<br>2100<br>2107<br>2122<br>2132<br>2138<br>2146<br>2152<br>2200<br>2205<br>2213<br>2221<br>2230<br>2241<br>2250<br>2255<br>2319<br>2325<br>2333<br>2341<br>2347<br>2358 | 37.52<br>37.30<br>37.12<br>37.02<br>36.52<br>37.09<br>37.19<br>37.39<br>38.01<br>38.73<br>37.36<br>37.36<br>37.46<br>38.27<br>37.17<br>37.36<br>37.46<br>38.27<br>38.45<br>38.25<br>38.45<br>38.25<br>38.35<br>38.25<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35<br>38.35 | 123.42<br>124.26<br>125.10<br>125.32<br>125.52<br>125.52<br>125.52<br>125.31<br>124.47<br>124.02<br>124.25<br>124.46<br>125.30<br>125.51<br>126.12<br>126.12<br>125.50<br>125.50<br>125.50<br>125.61<br>125.26<br>125.49<br>126.30<br>126.31<br>126.30<br>126.31<br>126.30<br>125.24<br>125.03<br>124.41<br>124.40<br>125.02 | 14.1<br>14.4<br>15.7<br>15.6<br>15.2<br>14.4<br>13.1<br>14.2<br>16.6<br>15.9<br>16.1<br>11.3<br>14.7<br>16.6<br>17.6<br>16.4<br>17.6<br>16.4<br>17.6<br>17.8<br>17.8 |
| 40<br>41<br>42                                                                                            | AXBT                                                         | 84302<br>84302<br>84302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5<br>23<br>29                                                                                                                                                                                                                                                                | 39.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125.22                                                                                                                                                                                                                                                                                                                       | 13.4                                                                                                                                                                 |



Figure 37(a): AXBT temperature profiles; staggered by multiples of 5C (OPTOMA13P).











Figure 38(a)-(b): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA13P).







Figure 38(e)



Figure 38(f)





Figure 38(h)



Figure 39: Mean temperature profile, with + and - the standard deviation (OPTOMA13P).

## ACKNOWLEDGEMENTS

This research was sponsored by the ONR Physical Oceanography Program. The success of the fieldwork was strongly dependent on the competent, willing support of the crew of the NOAA Ship McARTHUR and the P3 Reserve Patrol Wing aircraft. The National Ocean Service, NOAA is thanked for making the NOAA ship McARTHUR available for cooperative PMEL and NPS ocean circulation and mesoscale prediction studies of the Pacific Coast EEZ. Members of the scientific cruise party were:

OPTOMA12 - Prof. C.N.K. Mooers, Chief Scientist, NPS
Mr. Paul Wittmann, Assistant Chief Scientist, NPS
Ms. Elzbet Diaz de Leon, Assistant Chief Scientist, UCSC

OPTOMA13 - Dr. Edward Kelley, Jr., Chief Scientist, NPS
Dr. Robert Loch, NPS
Mr. Eric Kunze, Applied Physics Laboratory
Mr. Arthur Bartlett, Applied Physics Laboratory

OPTOMA14 - Ms. Arlene Bird, Chief Scientist, NPS Mr. Donald Martens, Party Chief, NPS

OPTOMA13P - Ms. Marie Colton, NPS LT Mark Johnson, USN

## REFERENCE

Lewis, E.L. and R.G. Perkin, 1981: The Practical Salinity Scale 1978: conversion of existing data. Deep Sea Res. 28A, 307-328.

## INITIAL DISTRIBUTION LIST

| 1 | Naval Postgraduate School<br>Department of Oceanography<br>Monterey, CA 93943 Prof. Christopher N.K. Mooers<br>Dr. Michele M. Rienecker<br>Dr. Edward A. Kelley<br>Ms. Marie C. Colton<br>Mr. Paul A. Wittmann<br>Dr. Mary L. Batteen<br>Dr. Laurence C. Breaker<br>LCDR J. Edward Johnson, USN | 33<br>1<br>1<br>1<br>1<br>1<br>1 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 2 | ·                                                                                                                                                                                                                                                                                               | •                                |
|   | Prof. Allan R. Robinson Dr. James A. Carton Dr. Everett F. Carter Mr. Leonard J. Walstad Mr. Wayne G. Leslie Ms. Nadia Pinardi Prof. Myron B. Fiering                                                                                                                                           | 1<br>1<br>1<br>1<br>1<br>1       |
| 3 | Office of Naval Research (ONR)<br>800 N. Quincy St.<br>Arlington, VA 22217                                                                                                                                                                                                                      |                                  |
|   | Dr. Thomas W. Spence<br>Dr. Thomas B. Curtin                                                                                                                                                                                                                                                    | 1                                |
| 4 | College of Oceanography<br>Oregon State University<br>Corvallis, OR 97331                                                                                                                                                                                                                       |                                  |
|   | Prof. Robert L. Smith<br>Dr. Adrian Huyer                                                                                                                                                                                                                                                       | 1                                |
| 5 | Jet Propulsion Laboratory (JPL)<br>California Institute of Tech.<br>4800 Oak Grove Road<br>Pasadena, CA 91109                                                                                                                                                                                   |                                  |
|   | Dr. Denise E. Hagan (Code 183-501)<br>Dr. Mark Abbott (also at Scripps)                                                                                                                                                                                                                         | 1<br>1                           |

| 6.  | Commanding Officer<br>Fleet Numerical Oceanography Center (FNOC)<br>Monterey, CA 93943                                        |                  |
|-----|-------------------------------------------------------------------------------------------------------------------------------|------------------|
|     | CDR John F. Pfeiffer, USN Mr. R. Michael Clancy Mr. Ken Pollak Ms. Evelyn Hesse LCDR Michael R. Frost, RN                     | 1<br>1<br>1<br>1 |
| 7.  | Sandia National Laboratories<br>Div. 6334<br>Albuquerque, NM 97185                                                            |                  |
|     | Dr. Mel Marietta<br>Dr. Eugene S. Hertel<br>Dr. Stuart L. Kupferman                                                           | 1<br>1<br>1      |
| 8.  | Marine Products Branch, W/NMC21<br>National Meteorological Center<br>National Weather Service, NOAA<br>Washington, D.C. 20233 |                  |
|     | LCDR Craig S. Nelson, NOAA Corps                                                                                              | 1                |
| 9.  | National Center for Atmospheric Research (NCAR)<br>P.O. Box 3000<br>Boulder, CO 80307                                         |                  |
|     | Dr. Dale B. Haidvogel                                                                                                         | 1                |
| 10. | Scripps Institution of Oceanography<br>University of California, San Diego<br>La Jolla, CA 92093                              |                  |
|     | Prof. Russ E. Davis<br>Dr. Jerome A. Smith<br>Mr. Phillip Bogden                                                              | 1<br>1<br>1      |
| 11. | Princeton University<br>Geophysical Fluid Dynamics Program<br>P.O. Box 308<br>Princeton, NJ 08540                             |                  |
|     | Prof. George L. Mellor                                                                                                        | 1                |
| 12. | Tulane University Department of Mathematics 6823 St. Charles New Orleans, LA 70118                                            |                  |
|     | Dr. Robert N. Miller                                                                                                          | 1                |

| 13. | Woods Hole Oceanographic Institution<br>Department of Physical Oceanography<br>Woods Hole, MA 02543                                   |             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|-------------|
|     | Dr. Kenneth H. Brink<br>Dr. Robert C. Beardsley                                                                                       | 1           |
| 14. | Naval Ocean Research and<br>Development Activity (NORDA)<br>NSTL Station<br>Bay St. Louis, MS 39525                                   |             |
|     | Dr. Steve A. Piacsek Dr. Dana A. Thompson Dr. Harley C. Hurlburt Dr. Alexander Warn-Varnas                                            | 1<br>1<br>1 |
| 15. | Mathematics Department 121-1984 Mathematics Road University of British Columbia Vancouver, British Columbia CANADA V6T 1Y4            |             |
|     | Prof. Lawrence A. Mysak                                                                                                               | 1           |
| 16. | Department of Oceanography<br>University of Hawaii<br>2525 Correa Road<br>Honolulu, HI 96822                                          |             |
|     | Prof. Lorenz Magaard                                                                                                                  | 1           |
| 17. | NAVOCEANCOMFAC Keflavik Iceland<br>FPO NY 09571                                                                                       |             |
|     | LTJG Diane C. Durban, USN                                                                                                             | 1           |
| 18. | Ocean Circulation Division Atlantic Oceanography Laboratory Bedford Institute of Oceanography Dartmouth, N.S. Box 1006 CANADA B2Y 4A2 |             |
|     | Dr. Motoyoshi Ikeda                                                                                                                   | 1           |
| 19. | Precision Marine Meteorologic Nationale 2 Ave. RAPP 75340 Paris CEDEX 07 France                                                       |             |
|     | Dr. Jacques Saurel                                                                                                                    | 1           |

| 20. | Div. of Oceanography RSMAS University of Miami 4600 Rickenbacker Causeway Miami, FL 33149           |   |
|-----|-----------------------------------------------------------------------------------------------------|---|
|     | Dr. Otis Brown                                                                                      | 1 |
| 21. | Applied Physics Laboratory<br>University of Washington<br>1013 NE 40th Str.<br>Seattle, WA 98105    |   |
|     | Dr. Thomas B. Sanford                                                                               | 1 |
| 22. | School of Oceanography<br>University of Washington<br>Seattle, WA 98195                             |   |
|     | Dr. Steven C. Riser                                                                                 | 1 |
| 23. | California Space Institute<br>MS-A021<br>Scripps Institution of Oceanography<br>La Jolla, CA 92093  |   |
|     | Dr. Robert L. Bernstein                                                                             | 1 |
| 24. | Marine Sciences Research Center<br>State University of New York<br>Stony Brook, NY 11794            |   |
|     | Dr. Dong-Ping Wang                                                                                  | 1 |
| 25. | Applied Physics Laboratory<br>Johns Hopkins University<br>Laurel, MD 20707                          |   |
|     | Dr. Jack Calman                                                                                     | 1 |
| 26. | Pacific Marine Environmental Lab<br>NOAA<br>Bldg. 3<br>7600 Sand Point Way, NE<br>Seattle, WA 98115 |   |
|     | Mr. James R. Holbrook                                                                               | 1 |
| 27. | Defense Technical Information Center<br>Cameron Station<br>Alexandria, VA 22314                     | 2 |
| 28. | Dudley Knox Library<br>Code 0142<br>Naval Postgraduate School<br>Monterey, CA 93943                 | 2 |



