Exponentialfunktionen Übung

Ben Siebert Tanel Malak Julina Elfert Moritz Junkermann

29. Januar 2024

Inhaltsverzeichnis

1	S. 136 Nr. 3	2
	1.1 Teilaufgabe a)	2
	1.2 Teilaufgabe c)	2
	1.3 Teilaufgabe f)	
2	S. 137 Nr. 5	4
	2.1 Teilaufgabe a)	4
	2.2 Teilaufgabe b)	
	2.3 Teilaufgabe c)	
	2.4 Teilaufgabe d)	5
3	S. 139 Nr. 1	6
	3.1 Teilaufgabe a)	6
	3.2 Teilaufgabe e)	
4	S. 139 Nr. 2	7
	4.1 Teilaufgabe a)	
	4.2 Teilaufgabe b)	7
	4.3 Teilaufgabe g)	7
	4.4 Teilaufgabe h)	7
5	S. 139 Nr. 5	8
	5.1 Toilaufgaba a)	Q

1. S. 136 Nr. 3

Produktregel: $f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$

1.1 Teilaufgabe a)

$$f(x) = x \times e^x$$

 $u_1 = x; v_1 = e^x \Rightarrow u'_1 = 1; v'_1 = e^x$

$$f'(x) = 1 \times e^x + x \times e^x \Leftrightarrow f'(x) = e^x \times (1+x) u_2 = e^x; \ v_2 = 1 + x; \ u'_2 = e^x; \ v'_2 = 1$$

$$f''(x) = u'_2 \times v_2 + u_2 \times v'_2$$

$$\Leftrightarrow f''(x) = e^x \times (1+x) + e^x \times 1$$

$$\Leftrightarrow f''(x) = e^x \times (2+x)$$

Extremstellen

notwendige Bedingung für EST: f'(x) = 0

$$f'(x) = 0$$

$$e^{x} \times (1+x) = 0 \mid \div e^{x}$$

$$1+x=0 \mid -1$$

$$x_{1} = -1$$

hinreichende Bedingung für EST: $f'(x) = 0 \land f''(x) \neq 0$

$$f''(-1) = e^{-1} \times (2 - 1)$$

$$f''(-1) = e^{-1} \times 1$$

$$f''(-1) = e^{-1}$$

Y-Koordinate: $f(-1) = -1e^{-1}$ Tiefpunkt bei P(-1|- e^{-1})

1.2 Teilaufgabe c)

$$f(x) = (4x - 1) \times e^x$$

 $u_1 = 4x - 1; \ v_1 = e^x; \ u'_1 = 4; \ v'_1 = e^x$

$$f'(x) = 4 \times e^x + (4x - 1) \times e^x$$

$$\Leftrightarrow f'(x) = e^x \times (4x + 3)$$

$$u_2 = e^x; \ v_2 = 4x + 3; \ u'_2 = e^x; \ v'_2 = 4$$

$$f''(x) = e^x \times (4x+3) + e^x \times 4$$

$$\Leftrightarrow f''(x) = e^x \times (4x+7)$$

Extremstellen

notwendige Bedingung für EST: f'(x) = 0

$$f'(x) = 0$$

$$e^{x} \times (4x + 7) = 0 \mid \div e^{x}$$

$$4x + 7 = 0 \mid -7$$

$$4x = -7 \left| \div 4 \right|$$
$$x = -\frac{7}{2}$$

4x=-7 $\Big|\div 4$ $x=-\frac{7}{4}$ hinreichende Bedingung für EST: $f'(x)=0 \ \land \ f''(x)\neq 0$

$$f''(-\frac{7}{4}) = e^{-\frac{7}{4}} \times (4 \times -\frac{7}{4} + 7)$$

$$f''(-\frac{7}{4}) = 0$$
 Vorzeichenwechselkriterium (VZW):

$$f'(-2) = -5e^{-2} \Rightarrow negativ$$

 $f'(2) = 11e^2 \Rightarrow positiv$

Y-Koordinate:
$$f(-\frac{7}{4})=-8\times e^{-\frac{7}{4}}$$
 Tiefpunkt bei T $(-\frac{7}{4}|-8\times e^{-\frac{7}{4}})$

Teilaufgabe f) 1.3

$$f(x) = x^2 \times e^x$$

 $u_1 = x^2; \ v_1 = e^x; \ u'_1 = 2x; \ v'_1 = e^x$

$$f'(x) = 2x \times e^x + x^2 \times e^x$$

$$\Leftrightarrow e^x \times (2x + x^2)$$

$$u_2 = e^x$$
; $v_2 = 2x + x^2$; $u_2' = e^x$; $v_2' = 2 + 2x$

$$f''(x) = e^x \times (2x + x^2) + e^x \times (2 + 2x)$$

 $\Leftrightarrow f''(x) = e^x \times (x^2 + 2 + 4x)$

2. S. 137 Nr. 5

2.1 Teilaufgabe a)

$$f(x) = (3 - x) \times e^{-x}$$

Nullstellen:

$$f(x) = 0$$

$$(3-x) \times e^{-x} = 0$$

Satz vom Nullprodukt: $x_1 = 3$

$$u_1 = 3 - x$$
; $v_1 = e^{-x}$; $u'_1 = -1$; $v'_1 = -e^{-x}$

$$f'(x) = -1 \times e^{-x} + (3 - x) \times (-e^{-x})$$

$$\Leftrightarrow f'(x) = e^{-x} \times (x - 4)$$

$$u_2 = e^{-x}; \ v_2 = x - 4; \ u'_2 = -e^{-x}; \ v'_2 = 1$$

$$f''(x) = -e^{-x} \times (x - 4) + e^{-x} \times 1$$

$$\Leftrightarrow f''(x) = e^{-x} \times (5 - x)$$

2.2 Teilaufgabe b)

notwendige Bedingung für EST: f'(x) = 0

$$f'(x) = 0$$

$$e^{-x} \times (x-4) = 0$$

Satz des Nullprodukts: $x_1 = 4$

hinreichende Bedingung für EST: $f'(x) = 0 \land f''(x) \neq 0$

$$f''(4) = e^{-4} \Rightarrow positiv \rightarrow TP$$

Y-Wert: $f(4) = -e^{-4}$

Der Graph der Funktion f hat einen Tiefpunkt $T(4 \left| -e^{-4} \right|)$

2.3 Teilaufgabe c)

2.4 Teilaufgabe d)

$$t(x) = mx + b$$

$$m = f'(0) = -4$$

$$t(0) = -4 \times 0 + b = 3$$

$$\Leftrightarrow b = 3$$

$$t(x) = -4x + 3$$

3. S. 139 Nr. 1

3.1 Teilaufgabe a)

$$f(x) = (x+2)^4$$
 $u^{\circ}v$

$$u = x^4; \ v = x+2; \ u' = 4x^3; \ v' = 1$$

$$f'(x) = u'(v(x)) \times v'(x)$$

$$\Leftrightarrow f'(x) = 4 \times (x+2)^3 \times 1$$

$$\Leftrightarrow f'(x) = 4 \times (x+2)^3$$

3.2 Teilaufgabe e)

$$f(x) = e^{2x}$$

$$u^{\circ}v$$

$$u = e^{x}; \ v = 2x; \ u' = e^{x}; \ v' = 2$$

$$f'(x) = u'(v(x)) \times v'(x)$$

$$\Leftrightarrow f'(x) = e^{2x} \times 2$$

$$\Leftrightarrow f'(x) = 2e^{2x}$$

4. S. 139 Nr. 2

4.1 Teilaufgabe a)

$$f(x) = 2e^{x^3 - x^2}$$

$$u^{\circ}v$$

$$u = 2e^x; \ v = x^3 - x^2; \ u' = 2e^x; \ v' = 3x^2 - 2x$$

$$f'(x) = 2e^{x^3 - x^2} \times (3x^2 - 2x)$$

$$f'(x) = (6x^2 - 4x) \times e^{x^3 - x^2}$$

4.2 Teilaufgabe b)

$$f(x) = e^{\sqrt{x}}$$

$$u = e^{x}; \ v = \sqrt{x}; \ u' = e^{x}; \ v' = \frac{1}{2 \times \sqrt{x}}$$

$$f'(x) = e^{\sqrt{x}} \times \frac{1}{2 \times \sqrt{x}}$$

$$\Leftrightarrow f'(x) = \frac{e^{\sqrt{x}}}{2 \times \sqrt{x}}$$

4.3 Teilaufgabe g)

$$f(x) = 3x \times ln(2x)$$

$$u = 3x; \ v = ln(2x) = ln(2) + ln(x); \ u' = 3; \ v' = \frac{1}{x}$$

$$f'(x) = 3 \times ln(2x) + 3x \times \frac{1}{x}$$

$$f'(x) = 3 \times (ln(2x) + 1)$$

4.4 Teilaufgabe h)

$$f(x) = \ln(\sqrt{x})$$

$$u^{\circ}v$$

$$u = \ln(x); \ u' = \frac{1}{x}; \ v = \sqrt{x}; \ v' = \frac{1}{2 \times \sqrt{x}}$$

$$f'(x) = \frac{1}{\sqrt{x}} \times \frac{1}{2 \times \sqrt{x}}$$

$$\Leftrightarrow f'(x) = \frac{1}{2x}$$

5. S. 139 Nr. 5

$$f(x) = (2x - 1)^2 \times e^x$$

5.1 Teilaufgabe a)

$$u = e^x; \ u' = e^x; \ v = (2x - 1)^2 = 4x^2 - 4x + 1; \ v' = 8x - 4$$

$$f'(x) = e^x \times (8x - 4) + e^x \times (4x^2 - 4x + 1)$$

$$f'(x) = e^x \times (8x - 4 + 4x^2 - 4x + 1)$$

$$f'(x) = e^x \times (4x - 3 + 4x^2)$$

Steigung im Punkt
$$P\Big(2\Big|f(2)\Big)$$

 $f'(2)=e^2\times(4\times2-3+4\times2^2)$
 $\Leftrightarrow e^2\times21$

Die Steigung im Punkt $P\Big(2\Big|f(2)\Big)$ liegt bei $21\times e^2$