Machine Learning I: Fractal 2

Rajendra Nagar

Assistant Professor Department of Electircal Engineering Indian Institute of Technology Jodhpur These slides are prepared from the following books: Shalev-Shwartz, Shai, and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014. Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Maximum Likelihood Estimator

• Given an IID training set $S = (x_1, \dots, x_m)$ sampled according to a density distribution \mathcal{P}_{θ} , we define the likelihood of S given θ as

$$L(\mathcal{S};\theta) = \log \left(\prod_{i=1}^m \mathcal{P}_{\theta}(x_i) \right) \text{ and solve } \hat{\theta} \in \arg \max_{\theta} L(\mathcal{S};\theta).$$

• For $\mathcal{P}_{\theta}(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$, we obtain the maximum likelihood estimates for μ and σ as: $\hat{\mu}=rac{1}{m}\sum_{i=1}^m x_i$ and $\hat{\sigma}^2=rac{1}{m}\sum_{i=1}^m (x_i-\hat{\mu})^2$.

Gaussian Mixture Models

Image Source: Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Algorithm 1 Expectation Maximization

- 1: Input: $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots, \mathbf{x}_n \end{bmatrix} \in \mathbb{R}^{d \times n}$ and $p(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \pi_k)$.
- 2: **Initialize:** μ_k , Σ_k , and π_k .
- 3: **E** step. Evaluate the responsibilities using the current parameter values.

$$\gamma(z_{nk}) \leftarrow \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum\limits_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}.$$

4: **M** step. Re-estimate the parameters using the current responsibilities.

$$\begin{split} & \boldsymbol{\mu}_k^{\mathsf{new}} & \leftarrow & \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n \\ & \boldsymbol{\Sigma}_k^{\mathsf{new}} & \leftarrow & \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\mathsf{new}}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\mathsf{new}})^\top \\ & \boldsymbol{\pi}_k^{\mathsf{new}} & \leftarrow & \frac{N_k}{N}. \end{split}$$

Gaussian Mixture Models

