

Course Code	Name of the Course			
216U01C302	Data Structures			
Teaching Scheme	TH	P	TUT	Total
(Hrs./Week)	03	-	-	03
Credits Assigned	03	-	-	03
•				
Evaluation Scheme	eme Marks			

Evaluation Scheme	Marks				
	LAB/TUT	CA (TH)		ESE	Total
	CA	IA	ISE		
	-	20	30	50	100

Course pre-requisites:

• Programming Language

Course Objectives:

The objective of this course is to introduce different types of data structure and how user can use data structure in software development. The course also familiarizes students with the concepts of advanced data structures such as balanced search trees, hash tables, priority queues, sorting and searching. Students will be master in the implementation of linked data structures such as linked lists and binary trees using any preferable language. Course mainly focuses on choosing the appropriate data structure for a specified application.

Course Outcomes (CO):

At the end of successful completion of the course the student will be able to

CO 2 Apply linear and non-linear data structure in application development.	
1.552 1.551, mean and non-mean and structure in approximent	
CO 3 Describe concepts of advance data structures like set, map & dictionary.	
CO 4 Demonstrate sorting and searching methods.	

Detailed Curriculum

Module No.	Unit No.	Contents	No of Hrs.	CO
1	Introduction to Data Structures			
	1.1	Defining Data structure, Types of Data Structures, Abstract Data Type (ADT), Static and Dynamic Implementations Introduction to space and time complexity, O notation	05	CO1
	1.2	Applications of data structures.		
2	2.1	r data structures: Linked List, Stack and Queue Introduction and Representation of Linked List, Linked List v/s Array, Implementation of Linked List, Circular Linked List, Doubly Linked List, Application – Polynomial Representation and Addition, Other additional applications/Case study.		
		#Self-learning - Sparse matrix addition		
	2.2	The Stack as an ADT, Stack operations, Array Representation of Stack, Linked Representation of Stack, Application of stack – Polish Notation, Recursion and other applications/Case study, Application of stack in conversion and evaluation of postfix and prefix expression.	16	CO2
	2.3	The Queue as an ADT, Queue operation, Array Representation of Queue, Linked Representation of Queue, Circular Queue, Priority Queue, and Double ended queue, Application of Queues – Simulation and other applications/Case study, Application of queue in Josephus's Problem.		
3	3.1	Basic tree terminologies, Types of trees, Binary tree representation, Binary tree operation, Binary tree traversal, Binary search tree implementation, Threaded binary trees. Different Search Trees -AVL tree, Overview-Trie, Suffix tree, Applications/Case study of trees. #Self-learning Learning – Red-Black and Splay Trees, Multiway Search Tree, #B Tree, #B+ Tree (# Also covered in DBMS in sem IV)	12	CO
	3.2	Introduction to graph as a data structure, Terminologies, Representation, Traversals – Depth First Search (DFS) and Breadth First Search (BFS). Applications/Case study of Graphs.		
4	Sot N	Ian and Diationary		
4	4.1	Set ADT, Set Implementation, and Partitions with Union-Find operations, Tree based partition implementation.	07	
	4.2	Map ADT, Implementation, Hash Tables Application of Maps	07	CO3
Self-earı	ning -	*Dictionary ADT, Implementation, Application of		

Module No.	Unit No.	Contents	No of Hrs.	СО		
(*Covere	(*Covered in python programming course in sem I)					
5	Searc 5.1	hing and Sorting Sort Concept: Sort Stability, in place sort, number of passes, Bubble Sort, Shell sort				
	5.2	#Self-learning - Bucket and Radix sort Search concept: Linear Search, Binary Search, Hashing, collision resolution: Separate chaining, Linear probing, quadratic probing, double hashing	05	CO4		
	•	Total	45			

[#] Self-learning topics will be evaluated through IA and/or Lab.

Reference Books*

Sr. No	Name/s of Author/s	Title of Book	Publisher	Edition/ Year	
1	Ellis Horowitz,	Fundamentals Of Data	University Press	Second	
	Sartaj Sahni, Susan	Structures In C		Edition	
	Anderson-Freed			2008	
2	Michael T	Data Structure and Algorithm in	Wiley	Second	
	Goodrich	C++		Edition	
	Roberto Tamassia			2011	
	David Mount				
3	Richard F. Gilberg	Data Structures A Pseudocode	CENGAGE	Second	
	& Behrouz A.	Approach with C	Learning	Edition	
	Forouzan			2005	
4	Aaron M	Data structure Using C	Pearson	Twelfth	
	Tanenbaum			Impression	
	Yedidyah Langsam			2013	
	Moshe J				
	Augentstein				
5	Jean Paul	An introduction to data	Tata McGraw-Hill	Second	
	Tremblay, Paul G.	structures with applications	Education	Edition	
	Sorenson			1984	
6	Reema Thareja	Data structures using C	Oxford Higher	Second	
			Education	edition,	
				2014	

^{*}In addition to printed books, faculty can suggest (authentic) urls or e-books, e-contents etc.