「情報科学における論理1」問題解答集(途中省略有り)

高田 篤司² 原田 崇司³

2016年5月30日

¹小野寛晰, 日本評論社, 1994

²神奈川大学理学部情報科学科

³神奈川大学大学院理学研究科情報科学専攻 田中研究室

問 1.1 の解答

- 1) 正しくない.
- 1) が正しくないことを証明する為には、 $A \supset B$ および A がともに充足可能であることを仮定して、B が充足可能であることを示せば良い。

よって, 初めに,

$$A \supset B$$
 および A がともに充足可能である (1)

と仮定する. そして,

論理式
$$A$$
 を p , 論理式 B を $r \land \neg r$ (2)

と仮定する.

仮定 (2) より、論理式 $A \supset B$ 、即ち、 $p \supset r \land \neg r$ の真理値表は表 1 となる.

表 1: $p \supset r \land \neg r$ (A \supset B) の真理値表

p	r	¬r	p	$r \wedge \neg r$	$p \supset r \land \neg r$
t	t	f	t	f	f
t	f	t	t	f	f
f	t	f	f	f	t
f	f	f	f	f	t

表1より、 $A \supset B$ は充足可能である.

さらに、表1より、A は充足可能である.

しかし、表1より、Bは充足可能でない。

以上より、1) は正しくない.

- 2) 正しい.
- 2) が正しいことを証明する為には、 $A \supset B$ がトートロジで A が充足可能であることを仮定して、B が充足可能であることを示せば良い。よって、初めに、

$$A \supset B$$
 がトートロジで A 充足可能である (3)

と仮定する.

仮定 (3) より, $A \supset B$ がトートロジーで A が充足可能なので, $\nu(A) = t$, $\nu(A \supset B) = t$ を満たす付値 ν が存在する.

ここで、表 2 より、 $\nu(A) = t \wedge \nu(A \supset B) = t$ ならば、 $\nu(B) = t$ である.

表 2: A ⊃ B の真理値表

A	В	$A\supset B$
t	t	t
t	f	f
f	t	t
f	f	t

よって、 $A \supset B$ がトートロジーで A が充足可能なとき、 $\nu(B) = t$ となる付値 ν が存在するので、B も充足可能である.

以上より, 2) は正しい.

1)

$$\begin{array}{c|c} P(x) \rightarrow P(x) \\ \hline P(x) \rightarrow P(x), Q(x) \\ \hline \rightarrow P(x), P(x) \supset Q(x) \\ \hline \rightarrow \forall x P(x), P(x) \supset Q(x) \\ \hline \rightarrow \forall x P(x), \exists x (P(x) \supset Q(x)) \\ \hline \rightarrow \exists x (P(x) \supset Q(x)), \forall x P(x) \\ \hline \hline \forall x P(x) \supset \exists Q(x) \rightarrow \exists x (P(x) \supset Q(x)) \\ \hline \forall x P(x) \supset \exists Q(x) \rightarrow \exists x (P(x) \supset Q(x)) \\ \hline \forall x P(x) \supset \exists Q(x) \rightarrow \exists x (P(x) \supset Q(x)) \\ \hline \hline \hline \end{array}$$

2) 誤り

$$\frac{\frac{P(x) \to P(x), Q(x)}{\to P(x), P(x) \supset Q(x)}}{\to \forall x P(x), P(x) \supset Q(x)}$$
$$\xrightarrow{\to \forall x P(x), \exists x (P(x) \supset Q(x))}$$

正しい

$$\frac{P(x) \to P(x), Q(x)}{\to P(x), P(x) \supset Q(x)}$$
$$\frac{\to P(x), \exists x (P(x) \supset Q(x))}{\to \forall x P(x), \exists x (P(x) \supset Q(x))}$$

.1 証明の書き方

- 接続詞などに用いる用語を統一する(教科書を参考にする).
- 証明を書くときは、一行ずつ書いて改行する。
- サ変動詞を用いない. \sim として、 \sim とする \Longrightarrow \sim と仮定する、 \sim と置く、... となるような \sim をとる.
- 仮定が何で結論は何なのかを明示する.
- 問題文の情報を用いた場合は、問題文のどこを用いたのかを明示する.
- 推論する場合は、用いた根拠と用いた推論規則を明示する.