CLAIMS

What is claimed is:

1	1.	A method of training a neural network, the method comprising:
2		creating a model for a desired function as a multi-dimensional function;
3		determining if the created model fits a simple finite geometry model;
4		generating a Radon transform to fit the simple finite geometry model;
5		feeding the desired function through the Radon transform to generate weights; and
6		training a multilayer perceptron of the neural network using the weights.
1	2.	The method of claim 1 wherein the neural network is a first neural network and the
2	Rado	n transform is a second neural network so that the first neural network is trained by
3	the second neural network.	
1	3.	The method of claim 1 wherein the first neural network and the second neural
2	netwo	ork are dual to each other.
1	4.	A system for training a neural network, the system comprising:
2		means for creating a model for a desired function as a multi-dimensional function;
3		means for determining if the created model fits a simple finite geometry model;
4		means for generating a Radon transform to fit the simple finite geometry model;
5		means for feeding the desired function through the Radon transform to generate
6	weights; and	
7		means for training a multilayer perceptron of the neural network using the weights
1	5.	A computer readable medium comprising instructions, which when executed on a
2	processor, perform a method of training a neural network, the method comprising:	
3		creating a model for a desired function as a multi-dimensional function;
4		determining if the created model fits a simple finite geometry model;
5		generating a Radon transform to fit the simple finite geometry model;
6		feeding the desired function through the Radon transform to generate weights; and
7	80398.	training a multilayer perceptron of the neural network using the weights. P342 -32-

1

2

1	6. An apparatus for training a first neural network, the apparatus comprising:
2	a model generator to create a model for a desired function as a multi-dimensional
3	function;
4	a decision module to determine if the created model fits a simple finite geometry
5	model, the decision module coupled to the model generator;
6	a Radon transform generator to generate a Radon transform to fit the simple finite
7	geometry model, the Radon transform generator coupled to the decision module;
8	a feeder to feed the desired function through the Radon transform to generate
9	weights, the feeder coupled to the decision module; and
10	a training module to train a multilayer perceptron of the first neural network using
11	the weights, the training module coupled to the Radon transform generator.
1	7. The apparatus of claim 6 wherein the Radon transform comprises a second neural
2	network such that the second neural network is used to train the first neural network.

8. The apparatus of claim 7 wherein the first neural network and the second neural network are dual to each other.