Základní chemické zákony

Chemické zákony, látkové množství, atomová a molekulová hmotnost, stechiometrický vzorec, platné číslice

Zákony zachování

- Zákon zachování hmoty
 - Lavoisier, 1785
 - Hmota se netvoří, ani nemůže být zničena
- Zákon zachování energie
 - Energii nelze ani vyrobit, ani zničit, lze ji pouze přeměnit na jiný druh energie.
- Zákon zachování hmoty a energie
 - ightharpoonup Ekvivalence hmoty a energie je dána rovnicí $E=mc^2$
 - $u = 1.66.10^{-27} kg = 931.4 MeV = 1.49.10^{-10} J$
 - Uzavřená soustava hmotnost a energie v soustavě je konstantní
 - Otevřená soustava hmotnost v soustavě je konstantní a energie se vyměňuje s okolím

Zákon stálých poměrů slučovacích

- ▶ Louis Joseph Proust, 1799¹
- Hmotnostní poměr prvků nebo součástí dané sloučeniny je vždy stejný a nezávisí na způsobu přípravy sloučeniny.

$$\begin{array}{c} {\rm C} + {\rm O}_2 \longrightarrow {\rm CO}_2 \\ 2\,{\rm CO} + {\rm O}_2 \longrightarrow 2\,{\rm CO}_2 \\ {\rm CaCO}_3 \longrightarrow {\rm CaO} + {\rm CO}_2 \end{array}$$

▶ V CO₂ je vždy obsah uhlíku 27,29 % a kyslíku 72,71 %.

¹Proust, J.-L. (1799). Researches on copper, Ann. chim., 32:26 54. ← ≥ → ← ≥ → − ≥

Zákon násobných poměrů slučovacích

- John Dalton, 1808
- Tvoří-li spolu dva prvky více sloučenin, pak hmotnosti jednoho prvku, který se slučuje se stejným množstvím prvku druhého, jsou vzájemně v poměrech, které lze vyjádřit malými celými čísly.

Sloučenina	m (N) [g]	m (O) [g]	$\frac{m(O)N_2O}{m(O)N_xO_y}$
N_2O	1,00	0,57	1,00
NO	1,00	1,14	2,00
N_2O_3	1,00	1,72	3,00
NO_2	1,00	2,28	4,00
N_2O_5	1,00	2,85	5,00

- Daltonidy sloučeniny, které splňují zákon násobných poměrů slučovacích.
- **Bertolidy** nestechiometrické sloučeniny, např. pyrhotin, minerál s přibližným vzorcem $Fe_{1-x}S$, kde x=0-0,2.

Zákon stálých poměrů objemových

- ► Gay-Lussac, 1805
- Při stálém tlaku a teplotě jsou objemy plynů vstupujících spolu do reakce, popřípadě též objemy plynných produktů reakce, vždy ve stejném poměru, který je možno vyjádřit malými celými čísly.
- $lackbox{1}\ dm^3$ kyslíku se sloučí s $2\ dm^3$ vodíku za vzniku $2\ dm^3$ vody.
- $ightharpoonup O_2 + 2 \ H_2 o 2 \ H_2 O$

Avogadrův zákon

- Amadeo Avogadro
- Stejné objemy všech plynů obsahují za stejného tlaku a teploty vždy stejný počet molekul.
- \blacktriangleright Avogadrova konstanta: $N_A=6,022.10^{23}$ částic. 2 Její hodnotu stanovil roku 1865 rakouský chemik Johan Josef Loschmidt.
- ightharpoonup Původně byla definována jako počet atomů ve 12 g nuklidu $^{12}_{\ 6}\mathrm{C}.$
- ▶ V roce 2018 byla její hodnota zafixována:³
- $N_A = 6,02214076 \times 10^{23}$
- $lackbox{L\'atkov\'e mno\'zstv\'i:} n = rac{\mathrm{po\'et}\ \check{\mathrm{c\'astic}}}{N_A} = rac{m}{M}$
- \blacktriangleright Molární objem: $V_m=22,414~{\rm dm}^3.$ Objem 1 molu plynu za standardních podmínek.

²A mole of moles

³CODATA recommended values of the fundamental physical constants: 2018

Atomová, molekulová a molární hmotnost

- Hmotnost atomu je dána především počtem protonů a neutronů v jádře, hmotnost elektronů je zanedbatelná.
- ▶ Hmotnost atomu je velmi malé číslo, např. hmotnost ${}^{12}_{6}$ C je $1,99.10^{-26}$ kg. Proto tuto hmotnost vztahujeme na *atomovou hmotnostní jednotku*, která je rovna $\frac{1}{12}$ hmotnosti nuklidu ${}^{12}_{6}$ C. 4
- \blacktriangleright u = 1,661.10 $^{-27}$ kg; $A_r=\frac{m}{u}$
- **Relativní atomová hmotnost** (A_r) je dána hmotnostním poměrem atomových hmotností jednotlivých izotopů prvku.
- ► Chlor: ³⁵Cl (75,529 %), ³⁷Cl (24,471 %)⁵
- ▶ $Ar(Cl) = w(^{35}Cl) \cdot A_r(^{35}Cl) + w(^{37}Cl) \cdot A_r(^{37}Cl) = 0,75529 \cdot 34,97 + 0,24471 \cdot 36,97 = 35,45$

⁴IUPAC Commission on Isotopic Abundances and Atomic Weights

⁵NIST Atomic Weights and Isotopic Compositions for All-Elements () + () + () + ()

Atomová, molekulová a molární hmotnost

- ▶ Relativní molekulová hmotnost (M_r) prvku nebo sloučeniny je rovna součtu A_r všech atomů v molekule.
- ► H₃PO₄:
- $\qquad \qquad M_r = 2A_r(H) + A_r(P) + 4A_r(O) = 2.1,01 + 30,97 + 4.16,00 = 98,02$
- Molární hmotnost (M) látky je rovna podílu hmotnosti a látkového množství.
- $M = \frac{m}{n} [g.mol^{-1}]$

Stechiometrický vzorec

- Stechiometrický vzorec vyjadřuje poměr zastoupení prvků v molekule. Získáme jej např. z elementární analýzy.
- Uzavíráme jej do složených závorek {}.
- Elementární analýza poskytuje procentuální zastoupení prvků ve zkoumaném vzorku.
- Stechiometrický vzorec nemusí odpovídat pouze jedné sloučenině.

Sloučenina	Stechiometrický vzorec	Sumární vzorec
Voda	$\{H_2O\}$	H ₂ O
Modrá skalice	$\{H_{10}O_9SCu\}$	$CuSO_4 \cdot 5H_2O$
Methan	{CH ₄ }	CH ₄
Ethan	{CH ₃ }	C ₂ H ₆
Propan	$\{C_3H_8\}$	C ₃ H ₈
Ethyn	{CH}	C_2H_2
Cyklobutadien	{CH}	C ₄ H ₄
Benzen	{CH}	C_6H_6

Stechiometrický vzorec

Získání stechiometrického vzorce z elementární analýzy

Elementární analýzou fosforečnanu hlinitého bylo zjištěno, že obsahuje 10,22~% Al, 35,21~% P a 54,56~% O. Určete stechiometrický vzorec sloučeniny.

Jedná se o sloučeninu se stechiometrickým vzorcem AIP_3O_9 .

Platné číslice

- Exaktní čísla mají nekonečný počet platných desetinných míst, nemají chybu měření.
- Výsledek měření počet platných míst je dán přesností měření.
- Nuly mezi desetinnou čárkou a první nenulovou číslicí nejsou platné číslice. 0,000 **124**; 0,0**105 002**
- Nuly, které jsou na konci výsledkou mohou, ale nemusí být platnými číslice, záleží na přesnosti měření. 0,010 400 0
- lacktriangle Čísla je výhodné zapisovat v exponenciálním tvaru: $1,040.10^{-2}$.
- Při násobení a dělení má výsledek tolik *platných číslic* jako nejméně přesné číslo.
- Při sčítání a odčítání má výsledek tolik *desetinných míst* jako nejméně přesné číslo.