Feedback — Problem Set 6

You submitted this homework on **Wed 13 Feb 2013 9:25 AM CET**. You got a score of **7.33** out of **9.00**.

Question 1

Core

- Three players together can obtain 1 to share, any two players can obtain 0.8, and one player by herself can obtain zero.
- Then, N=3 and v(1)=v(2)=v(3)=0, v(1,2)=v(2,3)=v(3,1)=0.8, v(1,2,3)=1.

Which allocation is in the core of this coalitional game?

Your Answer		Score	Explanation
© c) (1/3, 1/3, 1/3);	X	0.00	
Total		0.00 / 1.00	

Question Explanation

(d) is true.

- By definition, the core of this game is formed by a triplet $(x_1,x_2,x_3)\in R_+^3$ that satisfies:
 - $\circ \ x_i + x_j \geq 0.8$ for i
 eq j
 - $x_1 + x_2 + x_3 \ge 1$
 - $\circ~$ There is no triplet (x_1,x_2,x_3) that satisfies all inequalities. Then, the core is empty.

Question 2

Buyers and Sellers

- $\bullet\,$ There is a market for an indivisible good with B buyers and S sellers.
- Each seller has only one unit of the good and has a reservation price of 0.
- Each buyer wants to buy only one unit of the good and has a reservation price of 1.
- ullet Thus $v(C)=min(B_C,S_C)$ where B_C and S_C are the number of buyers and sellers

in coalition C (and so, for instance, v(i)=0 for any single player, and v(i,j)=1 if i,j are a pair of a buyer and seller).

If the number of buyers and sellers is B=2 and S=1, respectively, which allocations are in the core? [There might be more than one]

Your Answer		Score	Explanation
a) Each seller receives 1 and each buyer receives 0.	✓	0.33	
■ b) Each seller receives 0 and each buyer receives 1.	✓	0.33	
c) Each seller receives 1/2 and each buyer receives 1/2.	1	0.33	
Total		1.00 / 1.00	

Question Explanation

- (a) is true.
 - By definition, the core of this game is formed by a vector of payoffs to buyers (b1 and b2) and to the seller (s) (x_{b1}, x_{b2}, x_s) $\in R^3_+$ that satisfies:
 - $x_{b1} + x_{b2} \ge 0;$
 - $\circ \ x_{bi} + x_s \geq 1 \text{ for } i = 1, 2;$
 - $x_{b1} + x_{b2} + x_s \ge 1$;
 - \circ and the feasibility constraint $x_{b1}+x_{b2}+x_s\leq 1$.
 - It is easy to verify that allocation (a) is the only one that satisfies the set of inequalities.

Question 3

Buyers and Sellers

- ullet There is a market for an indivisible good with B buyers and S sellers.
- Each seller has only one unit of the good and has a reservation price of 0.
- Each buyer wants to buy only one unit of the good and has a reservation price of 1.
- Thus $v(C)=min(B_C,S_C)$ where B_C and S_C are the number of buyers and sellers in coalition C (and so, for instance, v(i)=0 for any single player, and v(i,j)=1 if i,j are a pair of a buyer and seller).

Now assume that competition among sellers increases, so that B=2 and S=2. Which allocations are in the core? [There might be more than one]

Your Answer	Score	Explanation

a) Each seller receives 1 and each buyer receives 0.	✓	0.33
b) Each seller receives 0 and each buyer receives 1.	X	0.00
c) Each seller receives 1/2 and each buyer receives 1/2.	✓	0.33
Total		0.67 / 1.00

Question Explanation

(d) is true.

- Again, the core of this game is formed by a vector of payoffs to buyers and sellers $(x_{b1},x_{b2},x_{s1},x_{s2})\in R_+^4$ that satisfies:
 - $x_{b1} + x_{b2} \geq 0$;
 - $x_{s1} + x_{s2} \ge 0$;
 - $\circ \ x_{bi} + x_{sj} \geq 1 \ ext{for} \ i = 1, 2 \ ext{and} \ j = 1, 2;$
 - $x_{b1} + x_{b2} + x_{s1} + x_{s2} \ge 2;$
 - \circ and the feasibility constraint $x_{b1}+x_{b2}+x_{s1}+x_{s2}\leq 2$.
- It is easy to verify that allocations (a), (b) and (c) satisfy the set of inequalities.
- In fact, any split of the surplus that gives α to all sellers and $1-\alpha$ to all buyers (with $\alpha \in [0,1]$) is in the core. That is, any split of the surplus is possible; the only restriction imposed by the increase in competition (i.e., increase in the number of sellers) is that all pairs must receive the same share of the surplus.

Question 4

Core and Shapley Value

- The instructor of a class allows the students to collaborate and write up together a particular problem in the homework assignment.
- Points earned by a collaborating team are divided among the students in any way they agree on.
- There are exactly three students taking the course, all equally talented, and they need to decide which of them if any should collaborate.
- The problem is so hard that none of them working alone would score any points. Any two of them can score 4 points together. If all three collaborate, they can score 6 points.

Which allocations are in the core of this coalitional game?

Your Answer		Score	Explanation
© c) (2, 2, 2);	✓	1.00	

Total 1.00 / 1.00

Question Explanation

(c) is true.

- By definition, the core of this game is formed by a vector of payoffs to each student $(x_1,x_2,x_3)\in R^3_+$ that satisfies:
 - $\circ \ x_i + x_j \geq 4 ext{ for } i
 eq j$
 - $x_1 + x_2 + x_3 \ge 6$
 - (2,2,2) is the only option that satisfies these inequalities. Then, it belongs to the core.

Question 5

Core and Shapley Value

- The instructor of a class allows the students to collaborate and write up together a particular problem in the homework assignment.
- Points earned by a collaborating team are divided among the students in any way they agree on.
- There are exactly three students taking the course, all equally talented, and they need to decide which of them if any should collaborate.
- The problem is so hard that none of them working alone would score any points. Any two of them can score 4 points together. If all three collaborate, they can score 6 points.

What is the Shapley value of each player?

Your Answer		Score	Explanation
$m{\phi}$ d) $\phi=(2,2,2)$	✓	1.00	
Total		1.00 / 1.00	

Question Explanation

(d) is true.

- Use the definition of the Shapley Value to compute its value for each player.
- Another way to find the Shapley Value is to remember that:
 - by the axiom of symmetry, all agents should receive the same payoff.
 - the Shapley value divides the payoff to the grand coalition completely
 - $\circ\,\,$ Then, all agents will have a Shapley value of 6/3=2.

Question 6

Production

- There is a single capitalist (c) and a group of 2 workers (w1 and w2).
- The production function is such that total output is 0 if the firm (coalition) is composed only of the capitalist or of the workers (a coalition between the capitalist and a worker is required to produce positive output).
- The production function satisfies:
 - $F(c \cup w1) = F(c \cup w2) = 3$
 - $\circ \ F(c \cup w1 \cup w2) = 4$

Which allocations are in the core of this coalitional game? [There might be more than one]

Your Answer		Score	Explanation
$lacksquare$ a) $x_c=2$, $x_{w1}=1$, $x_{w2}=1$;	✓	0.33	
$lacksqress$ b) $x_c=2.5$, $x_{w1}=0.5$, $x_{w2}=1$;	✓	0.33	
$lacksquare$ c) $x_c=4$, $x_{w1}=0$, $x_{w2}=0$;	X	0.00	
Total		0.67 / 1.00	

Question Explanation

(d) is true.

- It is easy to verify that allocations (a), (b) and (c) satisfy the definition of the core.
- It can be shown more generally that for any given number n of workers and any increasing and concave production function f, the core of this coalitional game is defined by:
- $\begin{array}{l} \circ \ x_{wi} \leq f(c \cup w1 \ldots \cup wn) f(c \cup w1 \ldots \cup w(n-1)) \\ \circ \ x_c + \sum_{i=1}^n x_{w1} \leq f(c \cup w1 \cup \ldots \cup wn) \\ \\ \bullet \ \ \text{Intuitively, the first equation requires each worker to receive less than the marginal} \\ \end{array}$
- Intuitively, the first equation requires each worker to receive less than the marginal product of the n^{th} worker. If this condition would not hold for worker i, then the rest of the workers and the capitalist could abandon him and get a higher value for the new coalition.
- The second condition is a feasibility condition (the sum of payoffs of the grand coalition is not greater than the resources available).

Question 7

Production

- There is a single capitalist (c) and a group of 2 workers (w1 and w2).
- The production function is such that total output is 0 if the firm (coalition) is composed only of the capitalist or of the workers (a coalition between the capitalist and a worker is required to produce positive output).
- The production function satisfies:
 - $F(c \cup w1) = F(c \cup w2) = 3$
 - $\circ \ F(c \cup w1 \cup w2) = 4$

What is the Shapley value of the capitalist?

Your Answer		Score	Explanation
© c) 7/3;	✓	1.00	
Total		1.00 / 1.00	

Question Explanation

(c) is true.

• Use the definition of the Shapley Value to compute its value for the capitalist.

Question 8

Production

- There is a single capitalist (c) and a group of 2 workers (w1 and w2).
- The production function is such that total output is 0 if the firm (coalition) is composed only of the capitalist or of the workers (a coalition between the capitalist and a worker is required to produce positive output).
- The production function satisfies:
 - $\circ \ F(c \cup w1) = F(c \cup w2) = 3$
 - $\circ \ F(c \cup w1 \cup w2) = 4$

What is the Shapley value of each worker?

Your Answer		Score	Explanation
6 b) 5/6;	✓	1.00	
Total		1.00 / 1.00	

Question Explanation

(b) is true.

- Use the definition of the Shapley Value to compute its value for each worker.
- Another way to find the Shapley Value is to remember that:
 - by the axiom of symmetry, all workers should receive the same payoff
 - the Shapley value divides the payoff to the grand coalition completely
 - \circ Then, all agents will have a Shapley value of $(F(c \cup w1 \cup w2) 7/3)/2 = (4-7/3)/2 = 5/6.$

Question 9

Production

- There is a single capitalist (c) and a group of 2 workers (w1 and w2).
- The production function is such that total output is 0 if the firm (coalition) is composed only of the capitalist or of the workers (a coalition between the capitalist and a worker is required to produce positive output).
- The production function satisfies:
 - $F(c \cup w1) = F(c \cup w2) = 3$
 - $\bullet \ F(c \cup w1 \cup w2) = 4$

True or False: If there was an additional 3^{rd} worker that is completely useless (i.e., his marginal contribution is 0 in every coalition), then the sum of the Shapley Values of the capitalist and the first two workers will remain unchanged.

Your Answer		Score	Explanation
a) True;	✓	1.00	
Total		1.00 / 1.00	

Question Explanation

(a) is correct.

- The Shapley Value satisfies the Dummy player Axiom:
 - $\circ \,\,$ if i is a dummy player, then he/she must have a Shapley Value of 0
- ullet Since the 3^{rd} worker is a Dummy player (check the definition), his/her Shapley Value must be 0.
- Thus, the statement is true because the Shapley Value divides the payoff of the grand coalition completely.