

Interpretable Embedding Procedure Knowledge Transfer via Stacked Principal Component Analysis and Graph Neural Network

Seunghyun Lee*, Byung Cheol Song

Department of Electrical and Computer Engineering, Inha University, Republic of Korea

Introduction

Knowledge Transfer

 Enhance shallow and simple network by transferring deep and complex network's knowledge.

Problem Definition

- Conventional knowledge doesn't coincide with CNN's goal that is embedding datasets into low-dimensional space.
- It is mostly hard to interpret its information.

Contribution Points

- Interpretable knowledge of embedding procedure, which matches to human insight.
- **SOTA performance** by transferring CNN's complete knowledge.

Related works

Embedded Feature Transfer Algorithm

- Extract information from better CNN's output.
- Some papers proposed the knowledge of inter-data relation, which is limited to the embedded results.

Softened output [1]

Factor transfer [2]

Inter-data relation [3]

♦ Latent Feature Transfer Algorithm

- Extract information from multiple latent feature maps to increase the quantity of knowledge.
- Feature maps have quite complex information so that the derived knowledge is not interpretable and has a far distance to the embedding procedure.

Attention transfer [4]

Singular vectors [5]

Activation boundary [6]

References

- [1] Distilling the knowledge in a neural network. NIPS 2014 Deep Learning Workshop
- [2] Paraphrasing Complex Network: Network Compression via Factor Transfer NeurIPS2018
- [3] Relational Knowledge Distillation. CVPR2019
- [4] Paying more attention to attention. ICLR2017
- [5] Self-supervised knowledge distillation using singular value decomposition. ECCV 2018
- [6] Knowledge transfer via distillation of activation boundaries formed by hidden neurons. AAAI2019
- [7] Linguistically-Informed Self-Attention for Semantic Role Labeling. EMNLP 2018
- [8] Graph-based Knowledge Distillation by Multi-head Attention Network. BMVC 2019

Method

Stacked Principal Component Analysis

- Compress feature maps to analyze the embedding procedure.
- 1st PCA: Compress a feature map into a principal component.
- 2nd PCA: Compress a principal component once more to increase compression rate and make it available to be interpreted.
- X Inter-data relation is captured by affinity matrices, which has information about the embedding procedure.

$$\mathbf{A} = \left[\frac{1}{\|\mathbf{c}_v\|_2 \|\mathbf{c}_w\|_2} \mathbf{c}_v^* \cdot \mathbf{c}_w \right]_{1 \le v, w \le N}$$

Message Passing Neural Network

- Distill the embedding procedure knowledge through estimating the affinity matrices by message passing neural network.
- The message $\mathbf{m}_{v,w}^{i}$ updates a previous affinity matrix into the next affinity matrix A_{l+1} .

$$\mathbf{e}_{v,w}^{i+1} = Up\left(\mathbf{e}_{v,w}^{i}, \mathbf{m}_{v,w}^{i}\right)$$
 , $\left[\tilde{\mathbf{A}}_{l+1}\right] = \left[Rd\left(\mathbf{e}_{v,w}^{I}\right)\right]_{1 \leq v,w \leq N}$

* The estimated affinity matrices contain the interim embedding knowledge \mathbf{K}^{int} and the messages represent their alteration knowledge Kalt.

Transfer Knowledge with Gradient Clipping

- Two kinds of knowledge \mathbf{K}^{int} and \mathbf{K}^{alt} have different scales.
- In order to balance each knowledge's constraint, apply gradient clipping.

$$\frac{\partial \Theta}{\partial \mathcal{L}^{Total}} = \frac{\partial \Theta}{\partial \mathcal{L}^{Target}} + clip\left(\frac{\partial \Theta}{\partial \mathcal{L}^{int}}\right) + clip\left(\frac{\partial \Theta}{\partial \mathcal{L}^{alt}}\right) \qquad clip\left(z\right) = \max\left(1, \left\|\frac{\partial \Theta}{\partial \mathcal{L}^{Target}}\right\|_{2} / \left\|z\right\|_{2}\right) z$$

Black-box Knowledge Distillation via Multi-head Graph Distillation

- CNN has a black-box which is not still interpretable.
- Adopt the concept of LISA [7] to distill the black-box knowledge, which accomplishes complete CNN's knowledge with IEP knowledge.
- * MHGD [8] is adopted as black-box knowledge distiller.

Experimental results

Visualization of IEP knowledge

The proposed IEP knowledge successfully shows how CNN embeds a dataset into the label space.

 A_1 and K_1^{alt} show a similar aspect to the previous graph.

 A_0 shows that images are clustered according to their classes.

Small Network Enhancement

• The performance gaps increase as the sample rate decreases.

Dataset	Rate	Student	AT	FT	AB	RKD	MHGD	CO	IEP	IEP+Black-box
	Full	76.09	76.98	77.14	77.29	77.02	77.45	78.21	78.12	78.37
CIFAR100	0.50	69.77	71.13	72.41	72.28	69.57	73.32	74.33	74.22	74.53
CIFAR100	0.25	59.28	63.07	63.70	66.79	53.57	67.27	67.90	68.57	69.02
	0.10	40.65	47.66	48.29	57.38	23.27	54.58	40.80	55.89	59.04
	Full	59.71	60.92	55.61	60.19	61.12	62.26	63.56	63.29	63.73
TinyImagaNat	0.50	52.53	54.50	55.81	54.41	54.09	56.56	59.14	58.56	59.27
TinyImageNet	0.25	43.56	46.54	39.19	48.99	42.19	50.59	52.56	53.20	53.68
	0.10	28.44	32.38	34.08	42.18	20.90	38.28	34.73	43.00	45.01

Transfer Knowledge into different domain or architecture

 Our knowledge outperforms others because it represents not the feature map itself but an inter-data relation.

Dataset	Rate	Student	AT	FT	AB	RKD	MHGD	CO	IEP	IEP+Black-box
	Full	52.21	58.87	59.96	56.80	52.54	55.77	60.83	60.13	61.35
CUB200-2011	0.50	30.58	39.51	42.94	39.77	29.72	34.02	37.61	42.24	43.06
CUB200-2011	0.25	14.25	19.68	21.18	20.52	14.15	18.41	14.29	22.00	22.60
	0.10	5.87	8.05	8.04	7.03	6.60	5.97	4.61	8.74	9.69
	Full	51.00	56.32	60.07	59.52	53.50	47.90	57.72	59.32	60.94
MIT-scene	0.50	36.83	42.43	46.53	46.80	39.18	36.48	35.16	45.83	47.85
WII I-scene	0.25	21.59	28.54	31.96	33.13	25.39	25.51	21.14	33.83	34.28
	0.10	10.59	14.44	14.39	19.79	12.17	10.07	6.07	18.44	19.94
		·								
Architectu	re	Student	AT	FT	AB	RKD	MHGI	CC) IEI	P+Black-box

Architecture	Student	AT	FT	AB	RKD	MHGD	CO	IEP+Black-box
WResNet16-2	56.61	59.42	57.28	62.53	54.27	59.29	60.21	63.78
WResNet16-1	51.88	53.01	50.95	55.01	48.46	50.72	52.67	56.09
MobileNet-V2	56.96	59.04	57.48	61.35	58.17	61.80	62.72	64.82
VGG	47.76	49.88	48.13	N/A	N/A	47.40	45.18	55.82

Ablation study

Each knowledge gives sufficient performance gain.

Dataset	Student	\mathbf{K}^{int}	\mathbf{K}^{alt}	IEP	\mathbf{K}_{BB}	
CIFAR100	59.28	61.77	68.14	68.57	67.75	,
TINY	43.56	45.90	52.62	53.26	51.92	

Incremental PCA better represents embedding spaces.

_	Sample rate	100%	50%	25%	10%
-	PCA-IPCA	78.12	74.22	68.57	55.89
	PCA-PCA	77.92	73.66	66.58	51.88

Too many iterations in MPNN gives over-constraints.

Iteration	1	2	3	4
CIFAR100	67.91	68.57	68.44	66.63
TinyImageNet	52.81	53.20	53.28	51.55

Conclusion

- The proposed knowledge gives not only SOTA performance gain but also tools for interpreting CNN's behavior.
- Need to more focus on what is CNN's authentic knowledge, not the performance.

^{*} Code is available at https://github.com/sseung0703/IEPKT