DETECTEZ LES BAD BUZZ GRÂCE AU DEEP LEARNING

Présentation "Projet 7" chez "OPENCLASSROOM" Jaoid KRAIRI (Janvier 2021)

SOMMAIRE

Cahier des charges,

Modèle selon l'approche « API sur étagère »,

Modèle selon l'approche "Modèle sur mesure simple",

Modèles selon l'approche "Modèle sur mesure avancé",

Mise en production du modèle avancé choisi,

Remerciement,

Cahier des charges: 1/Contexte

Rappel du contexte

- ✓ Air Paradis a missionné notre cabinet pour créer un produit IA,
- ✓ Anticiper les bad buzz sur les réseaux sociaux,
- ✓ N'a pas toujours bonne presse sur les réseaux.

Cahier des charges: 2/ Compte-rendu

- Prédire le sentiment associé à un tweet,
- Pas de données clients chez Air Paradis,
- Utiliser des données Open Source,
- Utilisateur ayant posté, contenu, moment du post et label,
- Préparer un prototype fonctionnel du modèle,
- Préparer un support de présentation explicitant la méthodologie utilisée.

Cahier des charges: 3/ Directive de mon manager

- Marc, mon manager, m'a contacté pour, selon ses mots, "faire d'une pierre deux coups",
- Ce produit pourrait se généraliser à d'autres cas d'usage,
- De tester plusieurs approches,
- L'approche "API sur étagère",
- L'approche "Modèle sur mesure simple",
- L'approche "Modèle sur mesure avancé".

Modèle selon l'approche « API sur étagère » : 1/ Déployer l'API « Analyse de texte » du service cognitif Azure

Modèle selon l'approche « API sur étagère » : 2/ Appeler l'API « Analyse de texte » du service cognitif Azure en local sur un article blog avion

Créer un fichier nommé « P7_02_scripts_api_analyse_sentiment »

```
import para
key = para.key
endpoint = para.endpoint
from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential
```

```
def sentiment analysis example(client):
   documents = ["My next plane ticket has just been booked! I fly in March to the Philippines. ]
   response = client.analyze_sentiment(documents=documents)[0]
   print("Document Sentiment: {}".format(response.sentiment))
   print("Overall scores: positive={0:.2f}; neutral={1:.2f}; negative={2:.2f} \n".format(
       response.confidence scores.positive.
       response.confidence scores.neutral,
       response.confidence scores.negative,
   for idx, sentence in enumerate(response.sentences):
       print("Sentence: {}".format(sentence.text))
       print("Sentence {} sentiment: {}".format(idx+1, sentence.sentiment))
       print("Sentence score:\nPositive={0:.2f}\nNeutral={1:.2f}\nNegative={2:.2f}\n".format(
           sentence.confidence scores.positive,
           sentence.confidence scores.neutral,
           sentence.confidence scores.negative,
sentiment analysis example(client)
```

Document Sentiment: mixed

Overall scores: positive=0.44; neutral=0.09; negative=0.47

Modèle selon l'approche "Modèle sur mesure simple" : 1/ Préparation du service Azure

Modèle selon l'approche "Modèle sur mesure simple" : 2/ Importation du jeu de données de 1000 tweets

Créer un fichier nommé « P7_02_scripts_prepa_jeu_mod_simple »


```
1 # des tweets vides après nettoyage?
2 print(df_1.loc[df_1.tweet==""].shape[0])
0

1 # retrait des tweets correspondants
2 df_ok = df_1.loc[df_1.tweet != ""]
3 print(df_ok.shape)
(1000, 2)
```

df_ok.to_csv (r'P7_03_fichiercsv_tweet_red_simple_net_cat_test_1000.csv', index = False, header=True)

Modèle selon l'approche "Modèle sur mesure simple" : 3/ Former le modèle

Modèle selon l'approche "Modèle sur mesure simple" : 4/ Créer un clusters d'inférence

Modèle selon l'approche "Modèle sur mesure simple" : 5/ Création d'une inférence en temps réel

Modèle selon l'approche "Modèle sur mesure simple" : 6/ Le modèle est déployé

Modèle selon l'approche "Modèle sur mesure simple" : 7/ Tester le modèle sur un article de blog

Accueil > Points de terminaison > simple simple Détails Test Consommer Journaux de déploiement							
Entrer des données pour tester le point de terminaison en temps réel Sélectionner le type d'éditeur Éditeur de formulaire Éditeur JSON	Lancement du test Le résultat de test est trop long pour être affiché. Longueur : 5781	analysés hnute Cliquez pour copier	J'ai copié le résultat que j'ai enregistrè dans un bloc note au format texte				
✓ WebServiceInput0 □							
negative negative	Je dètermine arbitrairement un label nègatif						
tweet My next plane ticket has just been booked! I fly in March to J'intègre mon article de blog d'avion de plus de 800 mots environ							

"Scored Probabilities negative": 0.46346136371179714.
"Scored Probabilities positive": 0.5365386362882029,
"Scored Labels": "positive"

Modèles selon l'approche "Modèle sur mesure avancé" : 1/ Description générale de la méthode

Modèles selon l'approche "Modèle sur mesure avancé" : 2/ Exemple hyperparamètres du modèle keras embedding optimisé

```
Modélisation prédictive (1) - régularisation KERAS simple(optimisé)
 1 # créer un modèle
 2 from tensorflow.keras.models import Sequential
 3 from tensorflow.keras.layers import Dense, Flatten, Embedding, MaxPooling1D, Dropout
 4 # perception multicouche
 5 #==> output dim précise la taille de l'espace de représentation dans lequelle seront projetés les termes
 6 #==> input_dim = dico_size + 1 à cause de l'index des termes commence à la colonne 1
 7 #(la colonne 0 existe mais n'est pas associée à un terme)
 8 model KSO = Sequential()
   model KSO add(Embedding(input dim = dico size +1. output dim = 10, input length= max length + marge length))
10 # 2 opérations de régularisation
model_KSO.add(MaxPooling1D(pool_size=5, strides=2))
12 model KSO.add(Dropout(0.7))
14 model KSO.add(Flatten())
15 model_KSO.add(Dense(units=1, activation="sigmoid"))
17 # structure du réseau
18 print(model_KSO.summary())
Model: "sequential"
Laver (type)
                         Output Shape
                                                Param #
______
 embedding (Embedding)
                                                3193600
                         (None, 38, 10)
 max_pooling1d (MaxPooling1D (None, 17, 10)
 dropout (Dropout)
                         (None, 17, 10)
 flatten (Flatten)
                         (None, 170)
 dense (Dense)
                         (None, 1)
______
Total params: 3,193,771
Trainable params: 3,193,771
Non-trainable params: 0
```

Modèles selon l'approche "Modèle sur mesure avancé" : 3/ Comparer la performance des 5 modèles

Modèle	Taille du jeu de données(%)	Perte(%)	Performance(%)	Durée formation modèle (heure)	Durée évaluation modèle (seconde)
model_KSO (Keras Embedding)	100%	49,58%	77,03%	0h14min et 8 secondes	43 secondes
model_LSTM (Keras Embedding avec LSTM)	100%	50,41%	76,05%	0h23min et 6 secondes	68 secondes
bert_model	100%	41,34%	81,66%	05h04min et 51 secondes	935 secondes
clf (Word2Vec SVM avec noyau RBF par défaut)	2,5%	Non indiqué	70%	02h	Non indiqué
clf (glove SVM avec noyau RBF par défaut)	2,5%	Non indiqué	74%	02h	Non indiqué

Mise en production du modèle avancé choisi : 1/Cartographie

REMERCIEMENT

Merci de m'avoir écouter

REPONDRE AUX QUESTIONS