

Documento de Arquitetura

Controlador de Estufa.

Universidade Estadual de Feira de Santana

Compilação 1.1

Histórico de Revisões

Date	Descrição	Autor(s)
30/03/2015	Desenvolveu a Introdução, Arquitetura do Sistema, Casos de Uso e Esquema Elétrico	Felipe Pinheiro
30/03/2015	Revisão de texto e desenvolvimento da seção Ambiente de Desenvolvimento	Bianca Santana
31/03/2015	Revisão do texto de Introdução a seção Visão Geral da Arquitetura	Lucas Almeida
31/03/2015	Seção de Introdução a Visão Geral da Arquitetura	Lucas Almeida
xx/xx/xxxx	Exemplo de;Revisões em lista;	<autor(es)></autor(es)>

SUMÁRIO

ı	intro	odução	4
	1	Propósito do Documento	4
	2	Visão Geral do Documento	4
	3	Definições	5
	4	Acrônimos e Abreviações	5
2	Visã	o Geral da Arquitetura	6
	1	Introdução	6
	2	Descrição Geral da Arquitetura	6
		2.1 Definições dos blocos	7
	3	Diagrama de Atividade	8
	4	Diagrama de Sequência	9
	5	Diagrama de Estado	16
	6	Ambiente de Desenvolvimento	18
3	Desc	crição da Arquitetura de Hardware	20
	1	Introdução	20
	2	Datapath	20
	3	Esquema Elétrico	20
	4	Módulo de Comunicação	23
		4.1 Descrição	23
		4.2 Diagrama de Classe	23
		4.3 Definições de Entrada e Saída	23
	5	Módulo Sensorial	23
		5.1 Diagrama de Classe	24

		5.2	Definições de Entrada e Saída	24
	6	Contro	ole de Porta	24
		6.1	Descrição	24
		6.2	Diagrama de Classe	24
		6.3	Definições de Entrada e Saída	25
	7	Sistem	a de Aquecimento	25
		7.1	Descrição	25
		7.2	Diagrama de Classe	25
		7.3	Definições de Entrada e Saída	25
	8	Contro	ole Central	25
		8.1	Descrição	25
		8.2	Diagrama de Classe	26
		8.3	Definições de Entrada e Saída	26
4	D	•_~_	J. A	20
4	Des	crição c	la Arquitetura de Software	28
	1	Introd	ução	28
	2	Diagra	ma de Classe	28

1 Introdução

1. Propósito do Documento

Este documento de arquitetura se baseia em um projeto de controle de um local aberto e uma estufa, onde o usuário poderá solicitar determinadas informações sobre suas condições atuais, além de poder controlar à distância a abertura e fechamento da porta dessa estufa. Aqui serão detalhados todos os requisitos, explicando como eles serão implementados e agrupados ao projeto, dessa forma, definindo a arquitetura do sistema. Os diagramas definidos abaixo, foram baseados em diagramas utilizados no campo da Engenharia de Software, devido a semelhança no desenvolvimento de um projeto de Software e de um Sistema Embarcado.

2. Visão Geral do Documento

O presente documento é apresentado como segue:

- Capítulo 2 Este capítulo apresenta uma visão geral da arquitetura, com foco em entrada e saída do sistema e arquitetura geral do mesmo;
- Capítulo 3 Este capítulo descreve a arquitetura interna do IP a partir do detalhamento dos seus componentes, definição de portas de entrada e saída e diagrama de blocos.
- Capítulo 4 Este capítulo descreve a arquitetura da aplicação Android.

3. Definições

Termo	Descrição		
RS232	Protocolo de comunicação serial utilizado em aplicações que requerem transmissão de dados entre elementos conectados à um mesmo canal.		
PIC	É um dispositivo caracterizado tipicamente por encapsular um microprocessador, memória de programa e periféricos como: temporizadores, watchdog timers, comunicação serial, conversores Analógico/Digital, geradores de PWM, etc.		
LDR	Dispositivo semicondutor de dois terminais, cuja resistência diminui em função do aumento da intensidade de luz incidente ou vice-versa.		
Sensor de Temperatura	Disposito que permite a monitoração da temperatura ambiente ou da temperatura interna de um sistema eletrônico.		
USART	É um tipo de periférico de comunicação de dados de forma serial que pode operar de dois modos distintos de funcionamento: síncrono e o assíncrono.		
MAX 232	É um circuito integrado capaz de converter os sinais de +/- 12 volt (típicos da interface RS232) para sinais 0 à 5 volts compatíveis com as portas do PIC.		

4. Acrônimos e Abreviações

Sigla	Descrição			
TBD	To be defined (A ser definido)			
LDR	Light Dependent Resistor. (Fotoresistor)			
LM35	Sensor de Temperatura			
USART	Universal Synchronous Asynchronous Receiver Trasmitter (Transmis sor e Receptor Universal Síncrono e Assíncrono)			
GPRS	General Packet Radio Service (Serviço de Rádio de Pacote geral)			

2 | Visão Geral da Arquitetura

1. Introdução

Este capítulo visa apresentar uma visão geral da arquitetura proposta, além das subdivisões das arquitetura em duas esferas: Hardware e Software. Sendo assim, será apresentado nas duas seções: Arquitetura de Hardware e Arquitetura de Software os diagramas de classes de cada módulo e diagramas de bloco com uma visão mais abstrata da arquitetura. A visão mais genérica da arquitetura do sistema é apresentada na seção Descrição Geral da Arquitetura .

2. Descrição Geral da Arquitetura

A partir de uma aplicação para a plataforma Android 2.2, ou superior, o usuário poderá controlar ou visualizar informações de um projeto solarimétrico. Com o aplicativo será possível ao usuário solicitar os seguintes dados: temperatura, luminosidade, estado da bateria ("abaixo da metade" ou "acima da metade"). Essas variáveis serão obtidas por meio de sensores, sendo eles: LDR, LM35. Os dados obtidos serão processados por um microcontrolador PIC.

A comunicação o módulo de controle da estufa e o usuário será realizada por meio de um módulo GPRS, que permite o envio e o recebimento de mensagem de texto. O interfaceamento do PIC e do módulo GPRS ocorrerá por meio do módulo USART. A troca de informações acontecerá quando o usuário requisitar uma informação ou operação, ou o sistema de controle enviar um dado para o módulo de Software. Solicitada uma informação todas as demais serão enviadas para o usário e junto a elas a data e hora da medição. O sistema a depender da temperatura (caso seja inferior a 20°C ou superior a 40°C) aciona ou desliga, automaticamente, o sistema de aquecimento. O usuário também poderá, por motivo de segurança, ligar ou desligar o sistema de aquecimento por meio do aplicativo.

Quando o sistema for ligado a porta da estufa deve ser fechada automaticamente, e quando desligado a porta deve se abrir. O controle dessa porta será feito com um motor de corrente contínua, onde um circuito de Ponte H controlará a direção de rotação desse motor fazendo com que a porta se movimente. A Figura 2.1 apresenta a visão geral do sistema com todos os possíveis módulos e a comunicação entre eles. O Dispositivo Controlador representa o PIC junto com todos os outros dispositivos elétricos necessários para o seu funcionamento.

Figura 2.1: Visão abstrata da Arquitetura do Sistema.

2.1. Definições dos blocos

Nome	Descrição
Módulo em Software	Aplicação desenvolvida para plataforma Android com versão mínima 2.2
Módulo de Comunicação	Módulo GPRS responsável por enviar e receber as mensagens de texto
Controlador Central	Módulo que realiza o controle do sistema de aquecimento e aciona o módulo de controle da porta a depender das informações recebidas do usário ou lidas dos sensores.
Controlador da porta	Módulo que contém o circuito Ponte H responsável pelo controle de abrir e fechar a porta da estufa adequadamente
Sistema de Aquecimento	Sistema independete responsável por aquecer a estufa
Módulo Sensorial	Módulo que realiza a leitura das informações dos sensores: LDR e LM35, e realiza a leitura do estado da bateria a partir de um circuito resistivo

3. Diagrama de Atividade

Na Figura 2.2 e na Figura 2.3 podemos analisar as atividades exercidas pelos módulos da Estufa e de Ambiente Externo respectivamente. As linhas vermelhas representam quebras de fluxo devido à comunicação com módulo móvel. Note também que após uma atividade finalizada odemos redirecionar o fluxo, inclusive para o inicio da mesma atividade.

Figura 2.2: Diagrama de Atividade da Estufa.

Figura 2.3: Diagrama de Atividade da Estufa.

4. Diagrama de Sequência

Esta Seção tem como objetivo apresentar os principais Diagramas de Atividade. As Figuras 2.4 e 2.5 ilustram como o Sistema de Aquecimento pode ser acionado ou desativado a partir da solicitação do usuário na aplicação Android. As Figuras 2.6 e 2.7 apresentam como a partir da medição da temperatura o sistema aciona ou desativa o Sistema de Aquecimento. Por fim, as Figuras 2.8 e 2.9 apresentam como o usuário da aplicação Android pode ser atualizado das informações da estufa.

Figura 2.4: Diagrama de Atividade para acionamento do Sistema de Aquecimento da Estufa.

Figura 2.5: Diagrama de Atividade para desativar o Sistema de Aquecimento da Estufa.

Figura 2.6: Diagrama de Atividade para acionamento automático do Sistema de Aquecimento da Estufa.

Figura 2.7: Diagrama de Atividade para desativar automaticamente o Sistema de Aquecimento da Estufa.

Figura 2.8: Diagrama de Atividade para atualização do status do aquecimento da estufa a partir da aplicação Android.

Figura 2.9: Diagrama de Atividade para atualização dos dados da estufa a partir da aplicação Android.

5. Diagrama de Estado

Os Diagramas de Estado apresentados nas Figuras 2.10, 2.11, 2.12 apresentam o comportamento e os eventos necessários para a mudança de estado do sistema. A Figura 2.10 apresenta o acionamento do sistema de aquecimento da estufa e as condições de eventos para cada estado acontecer. A Figura 2.11 apresenta o mesmo propósito da Figura 2.10, entretanto para a comunicação a partir do módulo em software. A Figura 2.12 ilustra os estados do sistema durante a troca de mensagens da aplicação Android e o módulo em Hardware.

Figura 2.10: Diagrama de Estado para o acionamento do Sistema de Aquecimento.

Figura 2.11: Diagrama de Estado para o acionamento do Sistema de Aquecimento via o aplicativo Android.

Figura 2.12: Diagrama de Estado para troca de informações entre o Aplicativo Android e o módulo em Hardware.

6. Ambiente de Desenvolvimento

Por se tratar de um sistema híbrido, o desenvolvimento do sistema aqui apresentado demanda dois tipos de ambientes de desenvolvimento, um deles voltado para o aplicativo mobile e outro para o protótipo do sistema em hardware.

O aplicativo mobile, a princípio exclusivo para o sistema Android, será desenvolvido utilizando o framework open-source SenchaTouch, que possibilita o desenvolvimento de aplicações híbridas utilizando tecnologias web como JavaScript, HTML5 e CSS3. O SenchaTouch implementa o padrão arquitetural MVC (Model, View e Controller) além de possibilitar um processo de desenvolvimento ágil o que pode diminuir o tempo previsto para o desenvolvimento do aplicativo em comparação com o desenvolvimento de um aplicativo inteiramente nativo, por exemplo. O processo de desenvolvimento segue o mesmo de aplicações web, escrita de código em editor de texto e teste em browser. Uma grande vantagem oferecida por este framework é o fornecimento de recursos para exportar aplicativos de forma nativa, para outras plataformas além da Android, o que pode ser útil para uma possível expansão do produto.

O sistema em hardware contará com prototipação com auxílio do software Proteus, que garantirá a simulação do projeto antes de ser descarregado no microcontrolador. O Proteus oferece um ambiente extremamente poderoso para simulação de circuitos incluindo a capacidade de simular adequadamente o funcionamento dos microcontroladores mais populares. As simulações realizadas neste software podem incluir instrumentos de medição que representam os sinais obtidos na simulação.

O desenvolvimento do programa que será descarregado do microcontrolador será feito na MPLAB IDE (Integrated Development Environment), que é um ambiente de programação, simulação e gravação de microcontroladores. O MPLAB IDE é oferecido gratuitamente pela empresa Microchip Technology e foi escolhido por ter bom desempenho no desenvolvimento de aplicações e sistemas embarcados. Para descarregar o programa no microcontrolador será utilizado o PICKIT 2 que é uma ferramenta de gravação e debugação de microcontroladores PIC. Com o PICKIT 2 é possível fazer o debugger no próprio microcontrolador, além disso, valores dos registradores do PIC podem ser enviados para o computador, possibilitando a análise dos valores na memória RAM e avaliação do desempenho do programa.

3 | Descrição da Arquitetura de Hardware

1. Introdução

Este capítulo tem por objetivo apresenta a arquitetura de Hardware de um sistema embarcado para controle de uma estufa. O capítulo é subdividido em algumas seções, que descrevem a arquitetura mais detalhadamente. Na Seção 2 é apresentado o Datapath da arquitetura. Cada módulo no diagrama será representado por uma classe. Estas classes são apresentadas nas Seções 4, 5, 6, 7 e 8. A Seção 3 ilustra o Esquema Elétrico Geral da arquitetura.

2. Datapath

O objetivo deste Datapath é apresentar a interconexão entre os módulos definidos para a arquitetura. A partir deste também é sabido o relacionamento entre as classes de cada módulo descritos nas seções 4, 5, 6, 7 e 8. A definição de componentes e funcionalidades podem ser visualizadas no Esquema Elétrico da Seção 3.

3. Esquema Elétrico

O Esquema Elétrico aqui apresentado objetiva dispor de uma visão mais específica sobre a implementação da arquitetura definida. Neste esquema é apresentado os componentes que serão utilizados e as interconexões entre estes. Como descrito na Seção 2 o esquema apresenta as funcionalidades abstraídas na Figura 3.1.

Figura 3.1: Datapath Geral da Arquitetura de Hardware.

22

Figura 3.2: Esquema Elétrico da arquitetura de Hardware.

4. Módulo de Comunicação

4.1. Descrição

O módulo de comunicação é responsável por interligar a aplicação em software com o módulo de controle. Este módulo realiza a atividade de receber e enviar mensagens de textos. As mensagens recebidas devem ser enviadas ao módulo de controle que irá processar a informação. O módulo deve também receber uma mensagem do Controle Central e enviar para o celular com a aplicação Android. Para realizar o envio e recepção das mensagens é utilizada um kit modem SIM 300 GSM-GPRS. O modem é conectado ao Controle Central a partir de uma conexão USART Síncrona. Os sinais transmitidos serão tratados a patir de um MAX 232 para serem adequados ao trabalho com o PIC (Controle Central).

4.2. Diagrama de Classe

Modulo Comunicacao + mensagem_enviada : output bit [8] + mensagem_recebida : input bit [8] - «sequ» enviar_codigo_SMS() - «sequ» receber_codigo_SMS() - «sequ» enviar_comando()

4.3. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
mensagem_recebida	8	entrada	Mensagem de texto recebida pelo módulo de comunicação
mensagem_enviada	8	saída	Mensagem de texto que deve ser enviada pelo módulo de comunicação

5. Módulo Sensorial

Este módulo tem o papel de concentrar o conjunto de sensores e o circuito medidor de carga. As informações são enviadas desses sensores para o Controle Central (PIC).

5.1. Diagrama de Classe

Modulo Sensorial

- + temperatura_estufa : output bit [10]
- + temperatura_ambiente : output bit [10]
- + luminosidade_ambiente : output bit [10]
- + nivel_bateria : output

5.2. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
temperatura_estufa	10	saída	Temperatura da estufa
temperatura_ambiente	10	saída	Temperatura do ambiente
luminosidade_ambiente	10	saída	Intensidade de luminosidade do ambi- ente
nivel_bateria	1	saída	Nível da bateria solar: acima ou abaixo da metade. Deve ser utilizado 0 para abaixo e 1 para acima da metade.

6. Controle de Porta

6.1. Descrição

Este módulo tem por objetivo controlar o motor de corrente contínua responsável por abrir ou fechar a porta da estufa. Para realizar esta atividade é utilizado um CI L293D que implementa dois circuitos Ponte H. Para este fim somente é utilizado uma Ponte H. A partir dos valores de comando e enable enviados para o módulo a rotação do motor é controlada.

6.2. Diagrama de Classe

Controle Porta + comando : input bit [2] + en_cp : input -«circ» controla_porta()

6.3. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição	
comando	2	entrada	Define o sentido de giro do motor de corrente contínua.	
en_cp	1	entrada	Habilita a operação do módulo para o controle do motor.	

7. Sistema de Aquecimento

7.1. Descrição

Sistema idependente que aquece a estufa quando ativado. O módulo de Controle Central apenas precisa ativá-lo quando solicitado, ou quando a temperatura estiver fora do intervalo de 20 à 40 graus.

7.2. Diagrama de Classe

7.3. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição	
en_sa	1	entrada	Aciona o sistema de aquecimento.	

8. Controle Central

8.1. Descrição

O Controle Central é o módulo responsável por processar as informações coletas no Módulo Sensorial e as mensagens enviadas pelo Módulo de Comunicação. Este módulo controla o acionamento do Sistema de Aquecimento e o Controle da Porta. O componente que representa este módulo é o PIC 16F877A. O PIC é responsável por converter os valores os dados, recebidos pelos sensores, em valores digitais, além de capturar as men-

sagens enviadas do módulo GPRS. Sua função é gerenciar, a depender da necessidade do usuário ou das variáveis do sistema, a temperatura da Estufa.

8.2. Diagrama de Classe

Central Controle
+ temperatura_estufa : input bit [10]
+ temperatura_ambiente : input bit [10]
+ luminosidade_ambiente : input bit [10]
+ nivel_bateria : input
+ mensagem_recebida : input byte [8]
+ mensagem_enviada : output byte [8]
+ en_sa : output
+ en_cp : output
+ comando : output bit[2]
- «comb» ler_sensor_temperatura()
- «comb» realizar_conversao_ad()
- «comb» verificar_status_sistema_aquecimento()
- «comb» abrir_porta_estufa() - «comb» fechar_porta_estufa()
- «comb» ligar_sistema_aquecimento()
- «comb» desligar_sistema_aquecimento()
- «comb» acender_LED_sistema_aquecimento()
- «comb» apagar_LED_sistema_aquecimento()
- «sequ» enviar_status_sistema_aquecimento()
- «sequ» enviar_temp_ambiente()
- «sequ» enviar_luminosidade()
-«sequ» enviar_carga_bateria()

8.3. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
temperatura_estufa	10	entrada	Temperatura da estufa
temperatura_ambiente	10	entrada	Temperatura do ambiente
luminosidade_ambiente	10	entrada	Intensidade de luminosidade do ambi- ente
			continua na próxima página

continuação da página anterior			
Nome	Tamanho	Direção	Descrição
nivel_bateria	1	entrada	Nível da bateria solar: acima ou abaixo da metade
mensagem_recebida	8	entrada	Mensagem de texto enviada pelo módulo de comunicação.
mensagem_enviada	8	saída	Mensagem de texto a ser enviada pelo módulo de comunicação.
en_sa	1	saída	Ativa o sistema de aquecimento da estufa
en_cp	1	saída	Ativa o controlador da porta
comando	2	saída	Define a rotação do motor de corrente contínua.

4 | Descrição da Arquitetura de Software

1. Introdução

Neste capítulo é apresentada a Arquitetura de Software desenvolvida. A aplicação será híbrida e contém um modelo de aplicação voltada a extrair, manipular e exibir para o usuário (estruturado em uma tabela) as informações recebidas do outro módulo em Hardware. Essas informações são recebidas em mensagens de textos. A aplicação extraí o conteúdo da mensagem e o manipula criando um DataInfo. Manipulando o objeto DataInfo é possível apresentar ao usuário as informações da Estufa. Além disso, são disponibilizadas as funções de ligar e desligar o Sistema de Aquecimento, assim como solicitar ou atualizar as informações. Na Seção 2 é possível visualizar o Diagrama de Classes da Aplicação Android.

2. Diagrama de Classe

Figura 4.1: Diagrama de Classes da Aplicação Android.