Sparse Principal Component Analysis for Frequency Data

Tobias Bork

Institute for Numerical Simulation

December 10, 2019

Sparse Principal Component Analysis

Tobias Bork

ntroduction

1 0

lde:

racu

iviatnematical Formulatio

imite of Heability

Application

ipaise i CA

Mathematical Formulatio

Sparsity and Norms

Numerical Solution
Application

Further Analysis

References

Dimensionality Reduction

Sparse Principal Component Analysis

Tobias Bork

Introduction

Problems in high dimensions:

- Time and storage space
- Visualizing data set
- Curse of dimensionality
- ▶ Idea: Reduce the number of variables while preserving structure in the data
- Approach: Feature selection methods
- **Approach:** Feature extraction methods

Idea of PCA

data set

(a) Finding principal axis on a (b) Linear projection of data to first principal axis

Sparse Principal Component Analysis

Tobias Bork

Idea

Mathematical Formulation

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be a centered data matrix with n samples and p variables. We find the first principal axis by

$$v_1 = \underset{\|v\|_2=1}{\operatorname{arg max}} \operatorname{Var}[\mathbf{X}v] = \underset{\|v\|_2=1}{\operatorname{arg max}} v^T \mathbf{\Sigma} v$$

where $\Sigma = \frac{\mathbf{X}^T \mathbf{X}}{n}$ is the sample covariance matrix.

Sparse Principal Component Analysis

Tobias Bork

ntroduction

CA

Mathematical Formulations

heorems

Carres DCA

rse PCA

Mathematical Formulation Sparsity and Norms

Numerical Solution
Application

urther Analysis

References

Mathematical Formulation

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be a centered data matrix with n samples and p variables. We find the first principal axis by

$$v_1 = \underset{\|v\|_2=1}{\operatorname{arg max}} \operatorname{Var}[\mathbf{X}v] = \underset{\|v\|_2=1}{\operatorname{arg max}} v^T \mathbf{\Sigma} v$$

where $\Sigma = \frac{\mathbf{X}^T \mathbf{X}}{n}$ is the sample covariance matrix. We compute the following principal axis successively

$$v_{k+1} = rg \max_{\|v\|=1} v^T \mathbf{\Sigma} v$$

subject to
$$v_{k+1}^T v_l = 0 \quad \forall 1 \le l \le k$$

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

Idea

Mathematical Formulations

Theorems Limits of Usa

arse PCA

hematical Formulat

parsity and Norms umerical Solution

Further Analysis

.

Mathematical Formulations

Limits of Usab

parse PCA

Mathematical Formulation Sparsity and Norms

Application
Further Analysis

rurther Analysis

. ..

Appendix

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be a centered data matrix with n samples and p variables. We find the first principal axis by

$$v_1 = \underset{\|v\|_2=1}{\operatorname{arg\,max}} \operatorname{Var}[\mathbf{X}v] = \underset{\|v\|_2=1}{\operatorname{arg\,max}} v^T \mathbf{\Sigma} v$$

where $\Sigma = \frac{\mathbf{X}^T \mathbf{X}}{n}$ is the sample covariance matrix. We compute the following principal axis successively

$$v_{k+1} = arg \max_{\|v\|=1} v^T \mathbf{\Sigma} v$$

subject to
$$v_{k+1}^T v_l = 0 \quad \forall 1 \le l \le k$$

The new principal components are defined by $Z_i = \mathbf{X}v_i$

Mathematical Formulation using SVD

The principal axis can also be computed via the eigendecomposition of Σ .

$$\pmb{\Sigma} = \pmb{\mathsf{VLV}}^{T}$$

where ${\bf L}$ is a diagonal matrix with eigenvalues λ_i and ${\bf V}$ is the matrix of eigenvectors.

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

Idea

Mathematical Formulations

Theorems Limits of Usab

orse PCA

arse PCA

Sparsity and Norms

Numerical Soluti Application

urther Analysis

eferences

Mathematical Formulation using SVD

The principal axis can also be computed via the eigendecomposition of Σ .

$$\Sigma = VLV^T$$

where **L** is a diagonal matrix with eigenvalues λ_i and **V** is the matrix of eigenvectors.

Closely related is the Singular Value Decomposition (SVD)

$$X = UDV^T$$

where **D** is a diagonal matrix with singular values d_1, \ldots, d_p , **U** a $n \times p$ and **V** a $p \times p$ orthogonal matrix.

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

Idea

Mathematical Formulations

Limits of Usabili

arse PCA

Sparsity and Norms

Application

rurtner Analysis

Reference

PCA as a regression problem

Figure: Two equivalent ways of finding principal axis

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

Idea

Mathematical Formulations

Theorems

Limits of Usability Application

Anthomatical Formulati

Sparsity and Norms

Application

Ť

References

PCA as a regression problem

Theorem

Let x_i be the *i*th row of **X**.

$$\hat{\mathbf{A}}_k = \underset{\mathbf{A}_k}{\operatorname{arg\,min}} \sum_{i=1}^n \left\| x_i - \mathbf{A}_k \mathbf{A}_k^T x_i \right\|^2 + \lambda \sum_{j=1}^k \|\beta_j\|^2$$

subject to
$$\mathbf{A}_k^T \mathbf{A}_k = \mathbf{I}_{k \times k}$$

Then, if we normalize each column $\tilde{\mathbf{A}}_k = \begin{bmatrix} \hat{\alpha}_1 \\ \|\hat{\alpha}_1\| \end{bmatrix} \cdots \begin{bmatrix} \hat{\alpha}_k \\ \|\hat{\alpha}_1\| \end{bmatrix}$ we recover the first k principal axis.

Sparse Principal Component Analysis

Tobias Bork

itroduction

PCA

Idea

Mathematical Formulations

Theorems Limits of Usability

Application

athematical Formulation

Sparsity and Norms Numerical Solution

Further Analysis

recrements

Theorems

The Success of PCA is due to the following optimal properties:

- Principal Components sequentially capture the maximum variability
- Principal Components are uncorrelated
- Eckart-Young-Mirsky-Theorem

Sparse Principal Component Analysis

Tobias Bork

Theorems

Limits of Usability

Sparse Principal Component Analysis

Tobias Bork

Limits of Usability

Drawbacks:

- Linear Relationship between variables
- Completeness of data set
- Outliers in data set
- ▶ PCA is inconsistent when $p \gg n$
- Interpreation of principal axis

Application to handwritten digits

Data Set Characteristics:

► Number of Instances: 1797

► Number of Attributes: 64

▶ Attribute Information: 8 × 8 image of integer pixels

(a) Handwritten digit 1

(b) Handwritten digit 5

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

Idea

Mathematical Form

Theorems

Application

DCA

Mathematical Formulation Sparsity and Norms

Application

Further Analysis

References

Application to handwritten digits

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PC.

. . .

idea

Theorems

nits of Usability

Application

arse PCA

Mathematical Formulation

Numerical Solution

Further Analysis

References

Sparse PCA

Problem: Principal Components are hard to interpret **Approach:** Require sparse loadings when performing PCA

$$\max v^T \Sigma v$$

subject to
$$\|v\|_2 = 1$$
, $\|v\|_0 \le t$

Relaxation:

- a regression framework
- a convex semidefinite programming framework
- a generalized power method framework
- ▶ an alternating maximization framework
- forward-backward greedy search and exact methods using branch-and-bound techniques
- ► Bayesian formulation framework

Sparse Principal Component Analysis

Tobias Bork

ntroduction

Idea

Markey

Theorems

Limits of Usabilit

Application

Sparse PCA

Sparse F CA

Sparsity and Norms

Numerical Solution

Further Analysis

References

Theorems

Application

Sparse PCA

Mathematical Formulation

Sparsity and Norms Numerical Solution Application

■ Further Analysis

Appendix

We will use a regression framework to derive sparse PCA.

Problem Formulation:

Let $\mathbf{B} = \left[\beta_1 \middle| \cdots \middle| \beta_k \right]$. The Sparse PCA Criterion is defined by

$$(\hat{\mathbf{A}}, \hat{\mathbf{B}}) = \underset{\mathbf{A}, \mathbf{B}}{\operatorname{arg \, min}} \sum_{i=1}^{n} \left\| x_{i} - \mathbf{A} \mathbf{B}^{T} x_{i} \right\|^{2} + \lambda \sum_{j=1}^{k} \|\beta_{j}\|^{2} + \sum_{j=1}^{k} \lambda_{1,j} \|\beta_{j}\|_{1}$$

subject to
$$\mathbf{A}^T \mathbf{A} = I_{k \times k}$$

Then, β_i represent the newly found sparse principal axis and $Z_i = \mathbf{X}\beta_i$ the sparse principal components.

Sparsity inducing norms

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PC

1.1.

Mathematical Ec

Theorems

imits of Usabilit

Sparse PCA

Mathematical Formulation

Sparsity and Norms

Numerical Soluti

Further Analysis

References

Sparsity inducing norms

Sparse Principal Component Analysis

Tobias Bork

Introduction

PC

Ido

Mathematical Formulatio

Theorems

Application

parse PCA

Asthematical Formulation

Sparsity and Norms

Numerical Solut

Further Analysi

References

Numerical Solution

Sparse Principal Component Analysis

Tobias Bork

atroduction

CA

PCA

Idea

Theorems

Application

Sparse PCA

Mathematical Formulation

Sparsity and Norms

Numerical Solution Application

Turtiler Allalysis

References

Appendix

Problem: How do we minimize the Sparse PCA criterion?

$$(\hat{\mathbf{A}}, \hat{\mathbf{B}}) = \arg\min_{\mathbf{A}, \mathbf{B}} \sum_{i=1}^{n} \left\| x_{i} - \mathbf{A} \mathbf{B}^{T} x_{i} \right\|^{2} + \lambda \sum_{j=1}^{k} \|\beta_{j}\|^{2} + \sum_{j=1}^{k} \lambda_{1, j} \|\beta_{j}\|_{1}$$

subject to
$$\mathbf{A}^T \mathbf{A} = I_{k \times k}$$

▶ **B given A:** For each j, let $Y^* = \mathbf{X}\alpha_j$. We minimize over $\hat{\mathbf{B}} = \begin{bmatrix} \hat{\beta}_1, \dots, \hat{\beta}_k \end{bmatrix}$ by solving k elastic net problems

$$\hat{\beta}_{j} = \operatorname*{min}_{\beta_{j}} \left\| \boldsymbol{Y}^{*} - \boldsymbol{X} \beta_{j} \right\|^{2} + \lambda \left\| \beta_{j} \right\|^{2} + \lambda_{1,j} \left\| \beta_{j} \right\|_{1}$$

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

Idea

Mathematical Formulation

imits of Usability

arse PCA

atnematical Formulation

Numerical Solution

Further Analysis

References

$$\hat{\beta}_{j} = \operatorname*{arg\,min}_{\beta_{j}} \left\| \boldsymbol{Y}^{*} - \boldsymbol{\mathsf{X}} \beta_{j} \right\|^{2} + \lambda \left\| \beta_{j} \right\|^{2} + \lambda_{1,j} \left\| \beta_{j} \right\|_{1}$$

▶ A given B: We can ignore the penalties and minimize

$$\sum_{i=1}^{n} \left\| x_i - \mathbf{A} \mathbf{B}^T x_i \right\|^2 = \left\| \mathbf{X} - \mathbf{X} \mathbf{B} \mathbf{A}^T \right\|_F^2$$

subject to
$$\mathbf{A}^T \mathbf{A} = I_{k \times k}$$

This problem has an explicit solution which is obtained by computing the SVD of

$$(\mathbf{X}^T\mathbf{X})\mathbf{B} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

Sparse Principal Component Analysis

Tobias Bork

ntroduction

. .

Idea

Mathematical Formula

Theorems Limits of Usability

Application

parse PCA

Mathematical Formulation

Numerical Solution

Application

Further Analysis

Reference

Sparse Principal Component Analysis

Tobias Bork

Numerical Solution

Theorem (Reduced Rank Procrustes Rotation)

Let $\mathbf{M} \in \mathbb{R}^{n \times p}$ and $\mathbf{N} \in \mathbb{R}^{n \times k}$ be two matrices. Consider the constrained minimization problem

$$\hat{\mathbf{A}} = \underset{\mathbf{A}}{\operatorname{arg min}} \| \mathbf{M} - \mathbf{N} \mathbf{A}^T \|_F^2$$
 subject to $\mathbf{A}^T \mathbf{A} = I_{k \times k}$

Suppose the SVD of $\mathbf{M}^T \mathbf{N}$ is \mathbf{UDV}^T , then

$$\hat{\mathbf{A}} = \mathbf{U}\mathbf{V}^T$$
.

 $\mathbf{A} \leftarrow \mathbf{V}[1: k]$, the loadings of the first k ordinary principal components

3: while not converged do

4: Given a fixed $\mathbf{A} = [\alpha_1, \dots, \alpha_k]$, solve k elastic net problems

$$\beta_{j} = \mathop{\arg\min}_{\beta} \left\| \left\| \mathbf{X} \alpha_{j} - \mathbf{X} \beta \right\|^{2} + \lambda \left\| \beta \right\|^{2} + \lambda_{1,j} \left\| \beta \right\|_{1}$$

For a fixed $\mathbf{B} = [\beta_1, \dots, \beta_k]$, compute the SVD of 5:

$$\mathbf{X}^T \mathbf{X} \mathbf{B} = \mathbf{U} \mathbf{D} \mathbf{V}^T$$

$$A \leftarrow UV^T$$

6: end while

7:
$$\hat{V}_j \leftarrow \frac{\beta_j^2}{\|\beta_i\|}$$
 for $j = 1, \dots, k$

8: end procedure

Sparse Principal Component Analysis

Tobias Bork

Numerical Solution

Sparse Principal Component Analysis

Tobias Bork

troduction

PCA

lde

Mathematical Formulatio

I heorems

Application

Sparse PCA

Mathematical Formulation

Non-sized Colonia

Application

Further Analysis

References

Further Analysis

- ► Consistency theorem for Sparse PCA when $p \gg n$
- ▶ Efficient implementation when $p \gg n$
- Computation of ajusted variances
- ▶ Identify differences in Sparse PCA implementations across different platforms (R, Python)
- ► Application to frequency data set

Sparse Principal Component Analysis

Tobias Bork

Introduction

PCA

Idea

Mathematical Formulation

Theorems

Application

arse PCA

hamatial Familia

Mathematical Formulation

lumerical Solution

Further Analysis

Furtner Analys

Reterences

References

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

lde

Mathematical Formulation

Limits of Usabil

Application

Sparse PCA

Mathematical Formulation

Numerical Solution

Further Analys

References

Theorem (Eckart-Young-Mirsky-Theorem)

Let $\widehat{\mathbf{A}}^* = \mathbf{U}_1 \mathbf{D}_1 \mathbf{V}_1^{\top}$ be the truncated singular value decomposition. Then $\widehat{\mathbf{A}}^*$ solves the matrix rank approximation problem

$$\min_{\mathrm{rank}(\widehat{\mathbf{A}}) \leq r} \|\mathbf{A} - \widehat{\mathbf{A}}\|_F = \|\mathbf{A} - \widehat{\mathbf{A}}^*\|_F = \sqrt{\sigma_{r+1}^2 + \dots + \sigma_m^2}$$

where σ_i are the singular values of **A**.

Sparse Principal Component Analysis

Tobias Bork

Introduction

1 0,

Idea

Mathematical Formulation

Limits of Usability

Sparce DCA

parse PCA

lathematical Formulation parsity and Norms

Application

Further Analysis

References

Appendix

Consider a linear regression model with n observations and ppredictors. Let $Y = (y_1, \dots, y_n)^T$ be the response vector and $\mathbf{X} = [X_1 | \cdots | X_n]$.

The linear regression model has the form

$$f(\mathbf{X}) = \beta_0 + \sum_{i=1}^p X_i \beta_i$$

where the β_i 's are unknown coefficients. We define the residual sum of squares

$$RSS(\beta) = \sum_{i=1}^{n} (y_i - f(x_i))^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2$$

Ridge Regression

Problem Formulation

$$\hat{\beta}^{\textit{ridge}} = \mathop{\arg\min}_{\beta} \| Y - \mathbf{X}\beta \|_2^2 + \lambda \quad \text{subject to } \| \beta \|_2^2 \leq t$$

or equivalently in Lagrangian Form

$$\hat{\beta}^{ridge} = \arg\min_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \|\beta\|_2^2 \right\}$$

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PCA

Idea

Mathematical Formu

Theorems

Limits of Usability

Sparse PCA

Sparsity and Norms

Numerical Solutio

Further Analysis

References

LASSO Regression

Problem Formulation

$$\hat{\beta}^{\textit{lasso}} = \mathop{\arg\min}_{\beta} \left\| Y - \mathbf{X} \beta \right\|_2^2 + \lambda \quad \text{subject to} \ \left\| \beta \right\|_1 \leq t$$

or equivalently in Lagrangian Form

$$\hat{\beta}^{lasso} = \arg\min_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \|\beta\|_1 \right\}$$

Sparse Principal Component Analysis

Tobias Bork

Appendix

The elastic net penalty is a convex combination of the ridge and lasso penalties.

Problem Formulation:

$$\hat{\beta}^{\textit{en}} = \operatorname*{arg\,min}_{\beta}(1+\lambda_{2})\left\{ \left\| \boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta} \right\|^{2} + \lambda_{2} \left\| \boldsymbol{\beta} \right\|_{2}^{2} + \lambda_{1} \left\| \boldsymbol{\beta} \right\|_{1} \right\}$$

Given a fixed λ_2 , the LARS-EN algorithm (Zou and Hastie 2005) efficiently solves the elastic net problem for all λ_1 with the computational cost of a single least squares fit.

RUNTIME SPCA ALGORITHM

Sparse Principal Component Analysis

Tobias Bork

ntroduction

PC

Idea

Mathematical Formulation

Limits of Usabili

Application

oparse r CA

Mathematical Formulation

Numerical Solution

Application

Further Analys

References

Mathematical Formulation Theorems

Application

Sparse PCA

Mathematical Formulation

Numerical Solution

Further Analysis

Reference

Appendix

Let $\mathbf{A}_{p \times k} = [\alpha_1, \dots, \alpha_k]$ and $\mathbf{B}_{p \times k} = [\beta_1, \dots, \beta_k]$. Since \mathbf{A} is orthonomal, let \mathbf{A}_\perp be any orthonormal matrix such that $[\mathbf{A}; \mathbf{A}_\perp]$ is $p \times p$ orthonormal. Then we ran reformulate the problem

$$\begin{split} \sum_{i=1}^{n} \left\| \mathbf{x}_{i} - \mathbf{A} \mathbf{B}^{T} \mathbf{x}_{i} \right\|^{2} &= \left\| \mathbf{X} - \mathbf{X} \mathbf{B} \mathbf{A}^{T} \right\|_{F}^{2} \\ &= \left\| \mathbf{X} \mathbf{A}_{\perp} \right\|_{F}^{2} + \left\| \mathbf{X} \mathbf{A} - \mathbf{X} \mathbf{B} \right\|_{F}^{2} \\ &= \left\| \mathbf{X} \mathbf{A}_{\perp} \right\|_{F}^{2} + \sum_{j=1}^{k} \left\| \mathbf{X} \alpha_{j} - \mathbf{X} \beta_{j} \right\|^{2} \end{split}$$