1. ARHENIOVÁ TEÓRIA

KYSELINA- látka ktorá je schopná vo vodnom roztoku odštepovať katióny H⁺

ZÁSADA- látka ktorá je vo vodnom roztoku schopná odštepovať hydroxidové anióny OH-

NEDOSTATKY: viazaná iba na vodné prostredie

Zásady sú aj látky ktoré nemajú OH-skupinu

2. BRONSTEDOVÁ TEÓRIA

KYSELINA- látka schopná odovzdať protóny vodíka H⁺ (darca) HCl- H⁺

CI

ZÁSADA- látka schopná protón vodíka prijímať (príjemca) NH₃+ H♣ NH₄⁺

Kyselinami môžu byť: Zásadami môžu byť:

NEUTRÁLNE MOLEKULY: HNO₃, HCl, H₃PO₄ **NEUTRÁLNE MOLEKULY:** H₂O, HN₃

ANIÓNY: HCO₃, H₂PO₄ ANIÓNY: CO₂-2, HCO₃-, OH

KATIÓNY:NH₄⁺- amónny katión, H₃O⁺- oxóniový katión

AMFOTÉRNE LÁTKY

Reagujú aj ako kyseliny aj ako zásady (môžu odovzdávať aj prijímať H†) závisí to od reakčného partnera

PRI PROTOLYTICKEJ REAKCIÍ

HNO₂+ H₂O ➡ H₃O⁺+ NO₂⁻ môžeme rozdeliť na 2 čiastkové reakcie:

Z kyseliny odštiepením protónu vzniká KONJUGOVANÁ ZÁSADA HNO3- H NO₂-

Zo zásady prijatím protónu vzniká KONJUGOVANÁ KYSELINA H₂O+ H H₃O⁺

Sila kyselín- **silné kyseliny** odštepujú protóny **veľmi ľahko**(v roztoku sú takmer uplne disociované na ióny)

Kyselina chloristá, jodovodíková, bromovodíková, chlorovodíková, dusičná, sírová

-slabé kyseliny uvoľňujú protóny veľlmi ťažko, ich disociácia je len čiastková

Mieru sily kyselín a zásad- DISOCIAČNÁ KONŠTANTANTA

Disociačná konštanta kyseliny (ACIDUM) K_A – všeobecne sa kyselina označuje HA

Disociačná konštanta zásady (BÁZA) K_B

Disociačná konštanta kyseliny sa vyjadruje nasledovne: