Homework 3

05 November 2018

1 Message Authentication Codes (MAC) (20 points)

1. Consider the following fixed-length MAC for messages of length $\ell(n) = 2n - 2$ using a pseudorandom function $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$:

$\mathsf{MAC}(k,m)$

- Parse $m = m_0 || m_1$.
- Output $t = F_k(0||m_0)||F_k(1||m_1)$

Is this a secure MAC? Prove your answer.

2. Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudorandom function. Consider the following MAC algorithm:

MAC(k, m)

- Parse $m = m_1 \| \cdots \| m_\ell$ where $m_i \in \{0, 1\}^{n/2}$.
- Choose $r \leftarrow \{0,1\}^n$ at random,
- Compute $t := F_k(r) \oplus F_k(\langle 1 \rangle || m_1) \oplus \cdots \oplus F_k(\langle \ell \rangle || m_\ell)$ where $\langle i \rangle$ is the n/2-bit encoding of the integer i.
- Output (r, t).

Is this a secure MAC? Prove your answer.

2 Hash Function (40 points)

For each of the following modifications to the Merkle-Damgaard transform (see the construction 5.3 in the textbook), determine whether the result is collision-resistant. If yes, provide a proof; If not, give a concrete attack.

- 3) (20 points) Modify the construction so that the first block is set as $z_0 := B$, z_i is computed as $z_i := h_s(z_{i-1}||x_i)$ for $i = 1, \dots, B$ and the final output is z_B .
- 4) (20 points) Modify the construction so that we just start the computation from x_1 instead of using an IV. Namely, we define $z_1 := x_1$ and then compute $z_i = h_s(z_{i-1}||x_i)$ for $i = 2, \dots, B+1$, and output z_{B+1} as the digest.

3 Digital Signatures (40 points)

Let f be a one-way permutation. Consider the following signature scheme for messages in the set $\{1, \ldots, n\}$:

- To generate keys, choose uniform $x \in \{0,1\}^n$ and set $y := f^{(n)}(x)$ (where $f^{(i)}(\cdot)$ refers to the *i*-fold iteration of f, and $f^{(0)}(x) \stackrel{\mathsf{def}}{=} x$). The public key is y and the private key is x.
- To sign message $i \in \{1, ..., n\}$, output $f^{(n-i)}(x)$.
- To verify signature σ on message i with respect to public key y, check whether $y \stackrel{?}{=} f^{(i)}(\sigma)$
- 5) (15 points) Show that the above is not a one-time-secure signature scheme. Given a signature on a message i, for what messages j can an adversary output a forgery.
- 6) (25 points) Prove that no PPT adversary given a signature on i can output a forgery on any message j > i, except with negligible probability. *Hint*. For this proof you need to show a reduction to the security of the underlying one-way function (we did a similar proof in class and you can read it in Chapter 12.6.1, Theorem 12.16 of Introduction to Modern Cryptography.) Start by assuming that you have a PPT adversary A_{forge} that on input y and (i, σ_i) , outputs a forgery for j > i. You should use this adversary to construct an adversary A_{owf} to break the one-wayness of f (namely, that inverts an output z that she received from an oracle).