1002119049 Hao Wang (UTORid: wangh110)

February 28, 2016

1 Problem 1

1.1 Comments

For starting points $x_0 = (1.2, 1.2)^T$ and $x_0 = (-1.2, 1)^T$, four algorithms all converges to the minimizer x = (1, 1). The BFGS and Newton methods reach the convergence very soon, while it takes longer time for the steepest descent method and conjugate method. The reason is BFGS and Newton methods exploit the second order information (*i.e.* Hessian), which accounts for the "velocity" of the gradient, and takes the appropriate step size in that direction.

1.2 Plots

Figure 1: $\{x_k\}$ iteration with initial point $x_0 = (1.2, 1.2)^T$.

1.3 Output

Figure 2: $\{x_k\}$ iteration with initial point $x_0 = (-1.2, 1)^T$.

1	% Steepest	descent meth	ods with start	= [1.2, 1.2]';	
2	% i	x(1)	x (2)	$ x_{k+1} - x_k _2$	
3	1	1.2	1.2	0	
4	2	1.08711	1.24687	0.122236	
5	3	1.11457	1.23417	0.0302593	
6	4	1.11082	1.23575	0.00407096	
7	5	1.1114	1.23539	0.000678414	
8	6	1.11113	1.23532	0.000280713	
9	7	1.11131	1.23504	0.000337664	
10	8	1.1109	1.23503	0.000419141	
11	9	1.11109	1.23485	0.000266203	
12	10	1.1105	1.23433	0.000782034	
13					
14	10163	1.00001	1.00002	2.52871e-08	
15	10164	1.00001	1.00002	2.4512e-08	
16	10165	1.00001	1.00002	2.37806e-08	
17	10166	1.00001	1.00002	2.30909e-08	
18	10167	1.00001	1.00002	2.24411e-08	
19	10168	1.00001	1.00002	2.18294e-08	
20	10169	1.00001	1.00002	2.1254e-08	
21	10170	1.00001	1.00002	2.07133e-08	
22	10171	1.00001	1.00002	2.02055e-08	
23	10172	1.00001	1.00002	1.97291e-08	

```
% Steepest descent methods with start = [-1.2, 1]';
   응 i
                  x(1)
                                 x(2)
                                                ||x_{k+1} - x_k||_2
                                                   ()
     1
                 -1.2
                                    1
     2
               -0.989453
                                 1.08594
                                                  0.22741
     3
               -1.06433
                                                 0.0857393
                                1.04417
     4
               -1.02345
                                 1.06148
                                                 0.0443947
     5
               -1.02677
                                 1.056
                                                0.00640425
     6
               -1.02026
                                1.05532
                                                 0.00654475
     7
               -1.02384
                                1.04969
                                                 0.00666594
                                                 0.00676867
               -1.01709
                                1.04913
10
     8
     9
               -1.02085
                                1.0434
                                                0.00684839
11
               -1.01397
                                1.04291
                                                 0.00690576
    10
   . . .
                 0.999992
                                  0.999984
                                                    2.58026e-08
  10908
14
                                   0.999984
                                                    2.49943e-08
15
   10909
                 0.999992
  10910
                 0.999992
                                   0.999984
                                                    2.4231e-08
16
  10911
                 0.999992
                                   0.999984
                                                    2.35109e-08
                                                    2.28321e-08
  10912
                 0.999992
                                   0.999984
18
  10913
                 0.999992
                                   0.999984
                                                    2.21926e-08
  10914
                 0.999992
                                   0.999984
                                                    2.15908e-08
                 0.999992
  10915
                                   0.999984
                                                    2.10248e-08
21
                                                    2.04931e-08
  10916
                 0.999992
                                   0.999984
23
  10917
                 0.999992
                                   0.999984
                                                    1.99938e-08
```

_					
1	90	Conjugate	gradient	methods with start	= [1.2, 1.2]';
2	용	i	x(1)	x (2)	$ x_{k+1} - x_k _2$
3		1	1.2	1.2	0
4		2	1.08711	1.24687	0.122236
5		3	1.08711	1.24687	0
6		4	1.11229	1.23471	0.027968
7		5	1.11099	1.23519	0.00138719
8		6	1.11133	1.23485	0.000479725
9		7	1.11102	1.23489	0.000305256
10		8	1.11105	1.23449	0.000402873
11		9	1.11066	1.23446	0.000386174
12	1	L 0	1.11083	1.23429	0.000243104
13					
14	10	213	1.00001	1.00002	2.54752e-08
15	10	214	1.00001	1.00002	2.46817e-08
16	10	215	1.00001	1.00002	2.39326e-08
17	10	216	1.00001	1.00002	2.32258e-08
18	10	217	1.00001	1.00002	2.25596e-08
19	10	218	1.00001	1.00002	2.19322e-08
20	10	219	1.00001	1.00002	2.13417e-08
21	10	220	1.00001	1.00002	2.07864e-08
22	10)221	1.00001	1.00002	2.02647e-08
23	10)222	1.00001	1.00002	1.9775e-08

```
% Conjugate gradient methods with start = [-1.2, 1]';
                                  x (2)
                                                 ||x_{k+1} - x_k||_2
                  x(1)
     1
                 -1.2
                                    1
                                                   0
     2
               -0.989453
                                  1.08594
                                                   0.22741
     3
               -0.989453
                                  1.08594
                                                      0
               -1.06013
                                 1.04339
                                                  0.0824913
     4
     5
               -1.02278
                                 1.05911
                                                  0.0405224
     6
               -1.02639
                                 1.04952
                                                  0.0102459
     7
               -1.01531
                                 1.05107
                                                  0.0111914
               -1.02321
                                 1.0432
                                                 0.0111493
10
     9
               -1.01231
                                 1.04467
                                                  0.011002
11
               -1.01994
                                 1.03693
                                                  0.0108714
    10
12
    9424
                 1.00001
                                  1.00002
                                                   2.55843e-08
                                                   2.47822e-08
    9425
                 1.00001
                                  1.00002
15
    9426
                                                   2.40247e-08
                 1.00001
                                  1.00002
16
                                                   2.33099e-08
    9427
                 1.00001
                                  1.00002
17
    9428
                 1.00001
                                  1.00002
                                                   2.26361e-08
18
    9429
                 1.00001
                                  1.00002
                                                   2.20012e-08
19
    9430
                 1.00001
                                  1.00002
                                                   2.14036e-08
20
    9431
                                                   2.08415e-08
                 1.00001
                                  1.00002
21
                                                   2.03134e-08
    9432
                 1.00001
                                  1.00002
                                                   1.98174e-08
    9433
                 1.00001
                                  1.00002
```

```
% BFGS methods with start = [1.2, 1.2]';
   응 i
                   x(1)
                                   x(2)
                                                  ||x_{k+1} - x_k||_2
     1
                   1.2
                                   1.2
                                                    0
               1.08711
                                1.24687
                                                  0.122236
     2
     3
               0.90482
                                0.786471
                                                   0.495178
               1.06594
                                1.15932
                                                  0.406168
     4
               1.0531
                                1.12056
                                                 0.0408245
     6
                1.026
                               1.05009
                                                 0.0755019
     7
               1.02814
                                1.05676
                                                  0.00700632
9
               1.02509
                                                  0.00689535
     8
                                1.05058
10
     9
               1.0014
                                1.00217
                                                 0.0538974
11
               1.00151
                                 1.003
                                                 0.000836001
    10
12
    11
               1.00013
                                1.00026
                                                  0.00306171
    12
                     1
                                     1
                                                0.000294169
14
    13
                                                1.02671e-06
15
```

```
2
                -0.989453
                                   1.08594
                                                    0.22741
     3
                                   0.570592
                                                      0.55921
                -0.772346
5
     4
                -0.741285
                                   0.518426
                                                      0.0607132
     5
                -0.463158
                                   0.141711
                                                      0.468262
                -0.497591
     6
                                   0.267292
                                                      0.130215
     7
                -0.381971
                                   0.133909
                                                      0.176519
                -0.304751
                                   0.0582936
                                                       0.108077
10
     9
                -0.261659
                                   0.0361369
                                                       0.0484548
11
                -0.12335
                                  0.0013522
                                                      0.142616
    10
12
    11
                -0.0311547
                                    -0.0311259
                                                         0.0977486
13
    12
                0.130051
                                  -0.0154993
                                                       0.161962
14
    13
                0.177649
                                  0.0583964
                                                      0.0878984
15
                0.351569
                                  0.0905307
                                                      0.176863
16
    14
    15
                0.293915
                                  0.0882444
                                                      0.0576994
17
    16
                0.356436
                                  0.119517
                                                    0.0699063
18
    17
                0.461592
                                  0.182783
                                                    0.122721
19
    18
                0.441625
                                  0.182158
                                                    0.0199774
20
    19
                0.483813
                                  0.229011
                                                    0.0630482
21
    20
                0.637325
                                  0.379702
                                                    0.215114
22
    21
                0.603506
                                  0.36134
                                                   0.0384828
                                  0.42751
                                                   0.0849515
    22
                0.656782
24
    23
                0.75299
                                 0.550488
                                                   0.15614
25
26
    24
                0.760526
                                  0.572652
                                                    0.0234097
    25
                0.840085
                                  0.698663
                                                    0.149025
27
    26
                0.8864
                                0.781153
                                                  0.0946026
28
                                                     0.079281
    27
                                  0.851441
                0.923076
    28
                0.96517
                                 0.925438
                                                   0.0851321
30
    29
                0.965304
                                  0.931125
                                                    0.00568878
31
    30
                0.983979
                                  0.967864
                                                    0.0412131
32
    31
                0.997896
                                  0.995347
                                                    0.0308055
33
                0.999294
                                  0.998613
                                                    0.0035529
    32
34
    33
                1.00001
                                 1.00002
                                                  0.00158085
35
    34
                     1
                                0.999999
                                                  2.5459e-05
36
    35
                     1
                                      1
                                                7.83587e-07
```

```
Newton methods with start = [1.2, 1.2]';
   응
     i
2
                   x(1)
                                    x(2)
                                                    ||x_{k+1} - x_k||_2
     1
                   1.2
                                    1.2
                                                       \cap
     2
                1.19592
                                  1.4302
                                                  0.23024
     3
                1.09828
                                  1.19669
                                                    0.253105
     4
                                  1.13199
                                                    0.0729909
                1.06449
     5
                1.01199
                                  1.02137
                                                    0.122445
                1.00426
                                  1.00848
                                                    0.0150321
     6
     7
                1,00005
                                  1.00008
                                                    0.00939417
9
                                                 9.66249e-05
     8
                      1
                                      1
10
```

```
% Newton methods with start = [-1.2, 1]';
   응 i
                  x(1)
                                  x(2)
                                                 ||x_{k+1} - x_k||_2
     1
                 -1.2
                                                    0
                                     1
     2
               -1.17528
                                 1.38067
                                                  0.381476
     3
               -0.932981
                                  0.811211
                                                    0.618868
               -0.78254
                                                   0.267738
     4
                                 0.589736
6
     5
               -0.459997
                                  0.107563
                                                    0.580108
     6
               -0.393046
                                  0.150002
                                                    0.079269
     7
               -0.209412
                                  0.00677013
                                                       0.232888
     8
               -0.065719
                                  -0.0163287
                                                       0.145538
10
     9
               0.142043
                                 -0.0229888
                                                     0.207868
11
    10
               0.231107
                                 0.045478
                                                   0.11234
12
                                                   0.165448
               0.379743
                                 0.118146
    11
13
    12
               0.479595
                                 0.220041
                                                   0.142664
14
    13
               0.653406
                                 0.396729
                                                   0.247849
15
               0.702624
    14
                                 0.491258
                                                   0.106574
16
    15
               0.802786
                                 0.633221
                                                   0.173741
17
    16
               0.863491
                                 0.741931
                                                   0.124511
18
    17
                                 0.881336
                                                   0.160031
               0.942079
    18
               0.967992
                                 0.936337
                                                   0.0607992
20
    19
               0.99621
                                0.991639
                                                  0.0620854
21
    20
               0.999479
                                 0.998948
                                                   0.00800735
22
    21
               0.999999
                                 0.999998
                                                   0.00117074
23
                                               2.72682e-06
    22
```

1.4 Source code list

```
1 function a3_1()
      % assignment 3 Q1 main function
      TOL = 10e-6;
      objFunc = @rosenbrock;
      start = [1.2, 1.2]';
        start = [-1.2, 1]';
6 %
      algs = {@stpDescent, @conjGrd, @BFGS, @newton};
      alg_names = {'stpDescent', 'conjGrd', 'BFGS', 'newton'};
10
      for i = 1:length(algs)
11
          [xiter, output] = algs{i}(objFunc, start, TOL);
12
          fig = draw(xiter);
13
          fig.PaperUnits = 'inches';
14
          fig.PaperPosition = [0 \ 0 \ 6 \ 3];
          print(fig, '-depsc', '-r0', sprintf('../figs/%s-1', alg_names{i}));
17
          dlmwrite(sprintf('../output/1-%s-0.txt', alg_names{i}), ...
18
              output, 'delimiter','\t', 'precision', '%6.6g');
19
```

```
end
```

21 **end**

20

```
1 function [ xiter, outputlist ] = stpDescent( func, x, tol )
      % steepest descent methods
      [^{\sim}, gx, ^{\sim}] = feval(func, x);
      gxnorm = norm(gx, 2);
      it = 1;
      xiter{it} = x;
      outputlist(it, :) = [it, x(1), x(2), 0];
        outputlist(it, :) = [it, 0];
10
      while( gxnorm > tol )
11
           s = -qx;
12
           alphak = backtracking(func, s, x, 0.5, 1e-4);
13
          x = x + alphak * s;
          disp(x);
           [\tilde{g}, gx, \tilde{g}] = feval(func, x);
          it = it + 1;
          xiter{it} = x;
          diff = norm(xiter{it} - xiter{it-1}, 2);
          outputlist(it, :) = [it, x(1), x(2), diff];
20
21 %
             outputlist(it, :) = [it, diff];
22
          gxnorm = norm(gx, 2);
23
      end
```

```
1 function [ xiter, outputlist ] = conjGrd( func, x, tol )
      % conjugate gradient methods
      [\tilde{g}, gx, \tilde{g}] = feval(func, x);
      gxnorm = norm(gx, 2);
      old_gx = gx;
      p = -qx;
      it = 1;
      xiter{it} = x;
      outputlist(it, :) = [it, x(1), x(2), 0];
11 %
       outputlist(it, :) = [it, 0];
12
13
      while( gxnorm > tol )
14
          b = (gx' * (gx - old_gx)) / (old_gx' * old_gx);
          b = max(b, 0);
```

```
p = -gx + b * p;
18
           alphak = backtracking(func, p, x, 0.5, 1e-4);
19
           x = x + alphak * p;
20
           disp(x);
           it = it + 1;
           xiter{it} = x;
           diff = norm(xiter{it} - xiter{it-1}, 2);
24
           outputlist(it, :) = [it, x(1), x(2), diff];
25
            outputlist(it, :) = [it, diff];
26
27
           [\tilde{y}, gx, \tilde{y}] = feval(func, x);
           qxnorm = norm(qx, 2);
      end
31 end
```

```
1 function [ xiter, outputlist ] = BFGS( func, x, tol )
      % BFGS methods
      [n, \tilde{}] = size(x);
      H = eve(n);
      dist = 2*tol;
      it = 1;
      xiter{it} = x;
      outputlist(it, :) = [it, x(1), x(2), 0];
       outputlist(it, :) = [it, 0];
10
11
      while dist > tol
12
           [\tilde{}, grad] = func(x);
13
          p = -H * grad;
14
          alpha = backtracking(func, p, x, 0.5, 1e-4);
16
17
          x = x + alpha * p;
19
           it = it + 1;
20
          xiter{it} = x;
21
          diff = norm(xiter{it} - xiter{it-1}, 2);
          outputlist(it, :) = [it, x(1), x(2), diff];
23
24 응
            outputlist(it, :) = [it, diff];
           s = alpha * p;
26
          dist = norm(s);
27
           [ newgrad] = func(x);
28
          y = newgrad - grad;
29
          rho = 1 / (y' * s);
30
          H = (eye(n) - rho * s * y') * H * (eye(n) - rho*y*s') ...
31
               + rho \star (s \star s');
```

```
end
```

34 **end**

```
1 function [ xiter, outputlist ] = newton( func, x, tol )
      % Newton methods
      [^{\circ}, gx, hx] = feval(func, x);
      qxnorm = norm(gx, 2);
      it = 1;
      xiter{it} = x;
      outputlist(it, :) = [it, x(1), x(2), 0];
       outputlist(it, :) = [it, 0];
      while( gxnorm > tol )
          p = - hx \setminus qx;
11
          alphak = backtracking(func, p, x, 0.5, 1e-4);
12
          x = x + alphak * p;
13
          it = it + 1;
          xiter{it} = x;
          diff = norm(xiter{it} - xiter{it-1}, 2);
          outputlist(it, :) = [it, x(1), x(2), diff];
           outputlist(it, :) = [it, diff];
19
20
          [\tilde{}, qx, hx] = feval(func, x);
21
          gxnorm = norm(gx, 2);
      end
23
24 end
```

```
function [ fig ] = draw( x )
figure;

set(gcf, 'Position', [0 0 500 200]);
set(gca,'FontSize',14);

hold on;
grid on;
```

```
9
      X = NaN(length(x), 2);
10
      Y = NaN(length(x), 2);
11
      for i = 1:length(x)
          X(i,:) = [i, x{i}(1)];
13
          Y(i,:) = [i, x{i}(2)];
14
      end
15
16
      plot(X(:,1), X(:,2));
17
      plot(Y(:,1), Y(:,2));
18
      xlabel('Iteration');
      ylabel('x');
20
21
      fig = gcf;
22
23 end
```

2 Problem 2

2.1 Comments

I spent a lot of time in developing the gradient and hessian calculation function. Since I think hard coding all those functions is ugly and redundant. With symbolic toolbox in MATLAB, I implemented the following function to calculate gradient and hessian in flight. Unfortunately, this implementation is too slow, it takes more than hours to finish steepest descent method with n=4. Eventually, I hard coded gradient and hessian functions as extRosenbrock4, extRosenbrock8 and extRosenbrock16, which are pre-calculated by the MATLAB hessian function and symbolic toolbox.

```
function [ y, gy, hy ] = extRosenbrock( x )
      [n, \tilde{}] = size(x);
      r = sym(zeros(n, 1));
      v = sym('v', [n, 1]);
5
6
      for i = 1 : 2 : n - 1
           r(i) = 10.0 * (v(i + 1) - v(i)^2);
           r(i + 1) = 1.0 - v(i);
10
      end
11
      y = r' * r;
12
      gy = gradient(y, v);
13
      hy = hessian(y, v);
14
15
      y = vpa(subs(y, v, x), 5);
16
      qy = vpa(subs(qy, v, x), 5);
17
      hy = vpa(subs(hy, v, x), 5);
18
19
20 end
```

The iteration number increases when n is getting larger. Newton and BFGS methods still have better performance than steepest descent method and conjugate gradient method. The Newton method has slightly better performance than BFGS. BFGS applies rank-one updates specified by gradient evaluations (or approximate gradient evaluations) to approximate the Hessian matrix.

2.2 Output:

2.2.1 n=4.

```
1 % Steepest descent methods

2 % i ||x_{k+1} - x_k||_2

3 1 0

4 2 0.172867

5 3 0.0427932
```

```
4
               0.0057572
     5
                0.000959422
     6
                0.000396988
     7
                0.00047753
                0.000592755
     8
     9
                0.000376468
11
    10
                0.00110596
12
13
    . . .
14 0594
               2.5424e-08
15 0595
               2.46391e-08
16 0596
                2.38982e-08
17 0597
                2.31995e-08
18 0598
                2.25411e-08
19 0599
                2.19211e-08
20 0600
                2.13378e-08
21 0601
                2.07895e-08
22 0602
                2.02746e-08
23 0603
                1.97913e-08
```

```
% Conjugate gradient methods
   응 i
                ||x_{k+1} - x_k||_2
     1
                     0
     2
                0.172867
                     0
     3
     4
                0.0395527
     5
                0.00196178
     6
                0.000678434
     7
                0.000431697
     8
                0.000569749
10
    9
11
                0.000546132
                0.000343801
12
   10
   . . .
14 0644
                2.56139e-08
15 0645
                2.48107e-08
16 0646
                2.40521e-08
17 0647
                2.33363e-08
18 0648
                2.26615e-08
19 0649
                2.20258e-08
20 0650
                2.14274e-08
21 0651
                2.08645e-08
                2.03356e-08
22 0652
23 0653
                1.9839e-08
```

```
1 % BFGS methods  2 \ \% \ i \ ||x_{k+1}-x_k||_2
```

```
1
                     0
     2
                0.172867
     3
                0.700287
     4
                0.574409
     5
                0.0577346
                0.106776
     7
                0.00992511
                0.0027258
10
     9
                0.0122801
11
                0.0310893
12
    10
    11
                0.0274482
    12
                0.0176052
    13
                0.0034513
15
                0.00176654
    14
16
    15
                0.00213944
17
    16
                0.000422755
18
    17
                9.62826e-05
19
    18
                8.74168e-06
```

```
% Newton methods
응 i
            ||x_{k+1} - x_k||_2
  1
                  0
  2
             0.325609
  3
             0.357944
  4
             0.103225
  5
             0.173163
  6
             0.0212586
  7
             0.0132854
             0.000136648
```

2.2.2 n = 8.

```
% Steepest descent methods
                ||x_{k+1} - x_k||_2
   응 i
                     0
     1
     2
                0.244471
     3
                0.0605187
     4
                0.00814191
     5
                0.00135683
     6
                0.000561426
                0.000675329
                0.000838282
10
     9
                0.000532406
11
                0.00156407
    10
12
```

```
14 1025
               2.55135e-08
15 1026
               2.47215e-08
               2.39739e-08
16 1027
17 1028
               2.32686e-08
18 1029
               2.2604e-08
19 1030
               2.1978e-08
20 1031
               2.1389e-08
21 1032
               2.08352e-08
22 1033
               2.0315e-08
23 1034
               1.98267e-08
```

```
% Conjugate gradient methods
   % i
               ||x_{k+1} - x_k||_2
     1
                   0
     2
               0.244471
     3
                     0
               0.055936
     4
     5
               0.00277438
    6
               0.00095945
     7
               0.000610512
    8
               0.000805747
    9
               0.000772347
               0.000486207
    10
  . . .
14 1075
               2.57049e-08
15 1076
               2.48945e-08
16 1077
               2.41292e-08
17 1078
               2.34069e-08
18 1079
               2.27259e-08
19 1080
               2.20841e-08
               2.148e-08
20 1081
21 1082
               2.09117e-08
22 1083
               2.03775e-08
               1.98759e-08
23 1084
```

```
% BFGS methods
  응 i
               ||x_{k+1} - x_k||_2
    1
                 0
     2
               0.244471
    3
               0.990356
    4
               0.812336
6
    5
              0.081649
    6
              0.151004
    7
               0.0140853
              0.00672896
```

```
9
               0.0201702
11
    10
                0.0321362
12
                0.00383713
    11
13
    12
                0.000393179
    13
                0.0214331
    14
                0.0434435
16
    15
                0.0200948
17
    16
                0.00026547
18
    17
                0.000354085
                0.000357901
20
    18
    19
                1.84209e-05
21
    20
                4.11455e-06
```

```
% Newton methods
응 i
            ||x_{k+1} - x_k||_2
               0
  1
            0.460481
  2
  3
            0.50621
 4
            0.145982
  5
            0.24489
  6
            0.0300642
  7
            0.0187883
            0.00019325
```

2.2.3 n = 16.

```
% Steepest descent methods
   응 i
               ||x_{k+1} - x_k||_2
     1
                  0
     2
               0.345735
     3
               0.0855863
     4
               0.0115144
     5
               0.00191884
     6
               0.000793976
     7
               0.000955059
     8
               0.00118551
    9
               0.000752935
   10
               0.00221192
    . . .
14 1456
               2.55691e-08
15 1457
               2.47719e-08
               2.40194e-08
16 1458
17 1459
               2.33094e-08
18 1460
               2.26402e-08
19 1461
               2.20098e-08
```

```
      20
      1462
      2.14166e-08

      21
      1463
      2.08589e-08

      22
      1464
      2.03348e-08

      23
      1465
      1.98429e-08
```

```
% Conjugate gradient methods
               ||x_{k+1} - x_k||_2
                    0
     1
               0.345735
     2
     3
                 0
               0.0791054
     4
    5
               0.00392356
     6
               0.00135687
     7
               0.000863394
    8
               0.0011395
10
    9
               0.00109226
11
   10
               0.000687601
12
  . . .
14 1482
               2.5175e-08
15 1483
               2.4405e-08
               2.36784e-08
16 1484
17 1485
               2.29933e-08
18 1486
               2.2348e-08
               2.17405e-08
19 1487
20 1488
               2.11691e-08
21 1489
               2.06323e-08
22 1490
               2.01282e-08
               1.96552e-08
23 1491
```

```
% BFGS methods
   응 i
                ||x_{k+1} - x_k||_2
     1
                  0
     2
                0.345735
     3
                1.40057
     4
                1.14882
               0.115469
     5
     6
               0.213552
     7
                0.0199354
                0.00988384
     8
10
    9
               0.014455
11
    10
               0.0367697
12
    11
               0.0171865
13
    12
               0.093136
14
    13
                0.0314112
15
    14
               0.0105094
```

```
    17
    15
    0.0158041

    18
    16
    0.000949521

    19
    17
    0.00291164

    20
    18
    6.51753e-06
```

```
% Newton methods
                ||x_{k+1} - x_k||_2
      1
                       0
      2
                 0.651218
      3
                 0.715889
      4
                 0.206449
      5
                 0.346327
      6
                 0.0425171
      7
                 0.0265707
                 0.000273297
10
```

2.3 Source code list

```
1 function a3_2()
      TOL = 10e-6;
      start1(1:4) = 1.2;
      start2(1:8) = 1.2;
      start3(1:16) = 1.2;
      input = {start1, start2, start3};
      algs = {@stpDescent, @conjGrd, @BFGS, @newton};
      obj = {@extRosenbrock4, @extRosenbrock8, @extRosenbrock16};
10
      alg_names = {'stpDescent', 'conjGrd', 'BFGS', 'newton'};
      for j = 1:length(input)
13
          start = input{j}';
14
          for i = 1:length(algs)
15
16
              [~, output] = algs{i}(obj{j}, start, TOL);
17
              disp(alg_names{i});
              dlmwrite(sprintf('../output/2-%s-%d.txt', alg_names{i}, j), ...
                  output, 'delimiter','\t', 'precision', '%6.6g');
20
          end
21
      end
23 end
```

```
1 function [ y, gy, hy ] = extRosenbrock4(x)
2     t = num2cell(x);
```

```
[v1, v2, v3, v4] = t\{:\};
  3
  4
                       y = (conj(v1) - 1) * (v1 - 1) + (conj(v3) - 1) * (v3 - 1) ...
  5
                                      + (10*conj(v2) - 10*conj(v1)^2)*(-10*v1^2 + 10*v2)...
                                      + (10*conj(v4) - 10*conj(v3)^2)*(-10*v3^2 + 10*v4);
                       gy = [v1 + conj(v1) - 20*v1*(10*conj(v2) - 10*conj(v1)^2) - 20*conj(v1)*(-10*v2)]
  9
                                       100*v2 + 100*conj(v2) - 100*conj(v1)^2 - 100*v1^2;
10
                                      v3 + conj(v3) - 20*v3*(10*conj(v4) - 10*conj(v3)^2) - 20*conj(v3)*(-10*v3)^2
11
                                      100*v4 + 100*conj(v4) - 100*conj(v3)^2 - 100*v3^2];
12
                       hy = [200*conj(v1)^2 - 200*conj(v2) - 200*v2 + 800*v1*conj(v1) + 200*v1^2 + 2,
14
                                       -200*v1 - 200*conj(v1), 200, 0, 0;
15
                                       0,0,200*conj(v3)^2 - 200*conj(v4) - 200*v4 + 800*v3*conj(v3) + 200*v3^2 + 200*v3^3 + 2
16
                                       0,0,-200*v3 - 200*conj(v3),200];
17
18 end
```

To save space, function extRosenbrock8 and function extRosenbrock16 are not presented.

3 Problem 3

3.1 Comments

Beale's function is selected as our objective function:

$$f(x,y) = (1.5 - x + xy)^{2} + (2.25 - x + xy^{2})^{2} + (2.625 - x + xy^{3})^{2}$$

Output by three initial points $(x_0 = (2.5, 0.4)^T, x_0 = (1.2, 1.2)^T \text{ and } x_0 = (-1.2, 1)^T)$ are presented. All the four algorithms successfully converged and found the minimizer with the initial points $x_0 = (2.5, 0.4)^T$ and $x_0 = (1.2, 1.2)^T$, while none of them reached the minimizer.

Figure 6 and the output of x_1 and x_2 show that methods of steepest descent, conjugate gradient keep zig-zag on the valley (as Figure 3), which is extremely slow and only part of the output is presented. I think steepest descent method and conjugate gradient method will eventually find a local minimizer and stop there. BFGS method converges to a stationary point $(-2.6825, 0)^T$ and Newton method converges to $(0, 1)^T$.

Figure 3: $\{x_k\}$ iteration with initial point $x_0 = (2.5, 0.4)^T$.

3.2 Plots

3.3 Output

With initial point at $x_0 = [2.5, 0.4]^T$.

1	응	Steepest	descent	methods with start	= [2.5, 0.4]';
2	응	i	x(1)	x (2)	$ x_{k+1} - x_k _2$
3		1	2.5	0.4	0
4		2	2.54909	0.31975	0.0940765
5		3	2.54413	0.386595	0.0670293
6		4	2.57548	0.352199	0.0465373
7		5	2.58056	0.388361	0.036517
8		6	2.60381	0.370396	0.0293844

Figure 4: $\{x_k\}$ iteration with initial point $x_0 = (2.5, 0.4)^T$.

9	7	2.61142	0.394369	0.0251537
10	8	2.63035	0.383013	0.0220785
11	9	2.63827	0.40142	0.0200364
12	10	2.65461	0.392695	0.0185216
13				
14	615	2.99997	0.499993	5.40255e-07
15	616	2.99997	0.499993	7.25272e-07
16	617	2.99997	0.499994	5.75613e-07
17	618	2.99997	0.499993	7.48008e-07
18	619	2.99997	0.499994	6.16034e-07
19	620	2.99997	0.499993	7.76807e-07
20	621	2.99998	0.499994	6.61839e-07
21	622	2.99998	0.499993	8.12149e-07
22	623	2.99998	0.499994	7.1338e-07
23	624	2.99998	0.499994	4.27255e-07

```
Conjugate gradient with start = [2.5, 0.4]';
                                            ||x_{k+1} - x_k||_2
i
              x(1)
                             x (2)
              2.5
                             0.4
1
2
          2.54909
                           0.31975
                                            0.0940765
3
          2.54909
                           0.31975
4
          2.76238
                           0.474171
                                             0.263321
          2.77852
                           0.430273
                                             0.0467711
```


Figure 5: $\{x_k\}$ iteration with initial point $x_0 = (1.2, 1.2)^T$.

8	6	2.78619	0.430608	0.00767723	
9	7	2.78676	0.442708	0.0121136	
10	8	2.81231	0.439416	0.025766	
11	9	2.81245	0.450516	0.0111008	
12	10	2.82372	0.44728	0.0117244	
13					
14	595	2.99997	0.499993	5.14323e-07	
15	596	2.99997	0.499993	7.10408e-07	
16	597	2.99997	0.499993	5.45684e-07	
17	598	2.99997	0.499993	7.28461e-07	
18	599	2.99997	0.499994	5.81854e-07	
19	600	2.99997	0.499993	7.52168e-07	
20	601	2.99997	0.499994	6.23136e-07	
21	602	2.99998	0.499993	7.82015e-07	
22	603	2.99998	0.499994	6.69854e-07	
23	604	2.99998	0.499994	4.0924e-07	

```
1 % BFGS methods with start = [2.5, 0.4]';

2 % i x(1) x(2) ||x_{k+1}-x_k||_2

3 1 2.5 0.4 0

4 2 2.54909 0.31975 0.0940765

5 3 2.81737 0.456467 0.301103
```


Figure 6: $\{x_k\}$ iteration with initial point $x_0 = (-1.2, 1)^T$.

```
2.89849
                                                  0.0839215
     4
                                0.477988
     5
               2.9663
                               0.489385
                                                 0.06877
               3.00569
                                0.502971
                                                  0.0416631
               2.99821
                                0.499546
                                                  0.0082237
               2.99971
                                0.499934
                                                  0.00154413
10
                                  0.5
                                              0.000297382
     9
                     3
11
                     3
                                  0.5
                                              1.73945e-06
    10
```

```
% Newton methods with start = [2.5, 0.4]';
 i
               x(1)
                               x(2)
                                              ||x_{k+1} - x_k||_2
               2.5
                               0.4
            2.76661
                            0.430869
                                               0.268387
            2.94357
                            0.490473
                                               0.186733
            2.99153
                             0.497874
                                               0.0485273
            2.99989
                             0.499979
                                               0.00861654
                 3
                               0.5
                                           0.000115568
```

With initial point at $x_0 = (1.2, 1.2)^T$.

```
1 % Steepest descent methods with start = [1.2, 1.2]';
2 % i x(1) x(2) ||x_{k+1} - x_k||_2
```

```
1
                   1.2
                                  1.2
                                                     0
     2
               0.942669
                                 -0.564086
                                                    1.78276
4
     3
                                                    1.46924
               2.40297
                                -0.402277
     4
               2.1087
                               0.206745
                                                 0.676389
     5
                                0.215649
               2.41606
                                                  0.307492
     6
               2.39978
                                0.332126
                                                  0.117609
     7
               2.48361
                                0.285803
                                                  0.0957701
9
     8
               2.47998
                                0.361086
                                                  0.0753706
10
     9
               2.51456
                                0.334633
                                                  0.0435412
11
    10
               2.53879
                                0.393072
                                                  0.0632642
12
    . . .
   630
               2.99997
                                0.499994
                                                  5.30772e-07
               2.99997
                                0.499993
                                                  7.10887e-07
   631
   632
               2.99997
                                0.499994
                                                  5.65698e-07
16
               2.99997
                                                  7.33527e-07
17
   633
                                0.499993
   634
               2.99997
                                0.499994
                                                  6.05598e-07
18
               2.99998
   635
                                0.499993
                                                  7.62131e-07
19
               2.99998
                                0.499994
                                                  6.50789e-07
   636
20
   637
               2.99998
                                0.499994
                                                  7.9717e-07
   638
               2.99998
                                0.499994
                                                  7.01616e-07
                                                  4.19553e-07
   639
               2.99998
                                0.499994
```

1	% Con	jugate gradient m	nethods with start	= [1.2, 1.2]';	
2	응 i	x (1)	x (2)	$ x_{k+1} - x_k _2$	
3	1	1.2	1.2	0	
4	2	0.942669	-0.564086	1.78276	
5	3	1.63513	-0.741576	0.714841	
6	4	1.47093	0.473935	1.22655	
7	5	2.07428	-0.504601	1.1496	
8	6	1.77897	0.424608	0.975006	
9	7	2.00774	0.0510181	0.438069	
10	8	2.2746	0.383558	0.426377	
11	9	2.37166	0.228042	0.183318	
12	10	2.37705	0.309104	0.0812412	
13					
14	628	2.99997	0.499993	5.19994e-07	
15	629	2.99997	0.499993	7.08701e-07	
16	630	2.99997	0.499994	5.52813e-07	
17	631	2.99997	0.499993	7.28662e-07	
18	632	2.99997	0.499994	5.90503e-07	
19	633	2.99997	0.499993	7.54402e-07	
20	634	2.99998	0.499994	6.3337e-07	
21	635	2.99998	0.499993	7.864e-07	
22	636	2.99998	0.499994	6.81748e-07	
23	637	2.99998	0.499994	4.12563e-07	

```
% BFGS methods with start = [1.2, 1.2]';
    i
                   x(1)
                                  x(2)
                                                 ||x_{k+1} - x_k||_2
     1
                   1.2
                                  1.2
                                                    ()
     2
               0.942669
                                 -0.564086
                                                     1.78276
     3
               1.61932
                                -0.725104
                                                    0.695545
               1.4872
                               -0.515602
                                                   0.247683
     5
               1.65541
                                -0.31168
                                                   0.264348
               2.18018
                                0.271298
                                                   0.784378
     7
               2.33323
                                0.343672
                                                   0.1693
     8
               2.63866
                                0.371026
                                                   0.306649
10
               2.76922
     9
                                0.440192
                                                   0.147747
11
               2.88573
                                0.477628
                                                   0.122378
    10
12
               2.95532
                                0.488673
                                                   0.0704597
    11
13
    12
               2.99129
                                0.49821
                                                 0.0372132
14
    13
               2.99921
                                0.49979
                                                 0.00808016
15
               3.00001
                                0.500008
                                                   0.000830284
    14
16
    15
                     3
                                  0.5
                                               1.56344e-05
17
                     3
                                   0.5
                                               6.53115e-07
    16
```

```
% Newton methods with start = [1.2, 1.2]';
 i
                               x(2)
               x(1)
                                             ||x_{k+1} - x_k||_2
               1.2
                               1.2
  1
                                                0
  2
            0.540199
                              1.07454
                                              0.671622
            0.0890643
                               1.00898
                                                0.455874
            0.00129436
                                1.00007
  4
                                                 0.0882206
            1.37612e-07
                                                 0.00129627
```

With initial point at $x_0 = (-1.2, 1)^T$.

```
% Steepest descent methods with start = [-1.2, 1]';
                                                ||x_{k+1} - x_k||_2
   응 i
                  x(1)
                                 x(2)
                 -1.2
     1
                                    1
                                                  0
                 -1.2
                              1.52031
                                               0.520312
     2
                                1.5284
               -1.21118
                                                0.0137969
               -1.21186
                                1.51649
                                                 0.0119342
     4
6
               -1.21748
                                1.52091
                                                 0.00715315
     5
     6
               -1.22362
                                1.51284
                                                 0.0101336
     7
               -1.22923
                                1.51752
                                                 0.00730539
               -1.23519
                                1.50914
                                                 0.0102777
                                1.5143
               -1.24086
                                                0.00766699
     9
11
               -1.24657
                                1.50536
                                                 0.0106101
    10
               -5.106
                              1.1673
                                             0.00042718
14 9991
15 9992
               -5.10605
                                1.16711
                                                 0.00019731
16 9993
               -5.10625
                                1.16725
                                                 0.000246758
17 9994
               -5.10629
                                1.16711
                                                 0.000152507
```

```
18 9995
               -5.10649
                                 1.16722
                                                 0.0002257
19 9996
                                                 0.000119595
               -5.10653
                                 1.16711
20 9997
               -5.10693
                                 1.16727
                                                 0.000425461
21 9998
               -5.10697
                                 1.16708
                                                 0.000193325
22 9999
                                                 0.000244851
               -5.10717
                                 1.16723
                -5.10721
                                  1.16708
                                                  0.00014983
23 10000
```

```
% Conjugate gradient methods with start = [-1.2, 1]';
   응 i
                  x(1)
                                  x(2)
                                                 ||x_{k+1} - x_k||_2
                                    1
                                                    0
     1
                 -1.2
                                                0.520312
     2
                 -1.2
                               1.52031
     3
               -1.21118
                                 1.5284
                                                 0.0137969
     4
               -1.21213
                                 1.51668
                                                  0.0117595
               -1.22315
                                 1.52478
                                                  0.0136739
               -1.22407
                                 1.51301
                                                  0.0118074
8
     7
               -1.22956
                                 1.51727
                                                  0.00694877
9
     8
               -1.23581
                                 1.50945
                                                  0.0100091
10
     9
               -1.24128
                                 1.51392
                                                  0.00706556
11
               -1.24738
                                 1.50585
                                                  0.0101172
    10
12
    . . .
    9991
                 -5.10274
                                   1.16726
                                                    0.000145182
    9992
                 -5.10293
                                   1.16714
                                                    0.00022226
15
                 -5.10303
                                   1.16734
    9993
                                                    0.000225513
16
    9994
                 -5.10308
                                   1.1672
                                                   0.000149726
17
    9995
                 -5.10327
                                   1.16731
                                                    0.000223441
18
    9996
                 -5.10336
                                   1.16709
                                                    0.000230521
19
                                                    0.00015355
    9997
                 -5.10342
                                   1.16724
                 -5.10361
                                                    0.00022573
    9998
                                   1.16712
    9999
                 -5.10371
                                   1.16733
                                                    0.000237675
22
    10000
                  -5.10376
                                     1.16718
                                                     0.000158596
23
```

```
% BFGS methods with start = [-1.2, 1]';
   응 i
                  x(1)
                                  x(2)
                                                ||x_{k+1} - x_k||_2
                 -1.2
                                    1
     1
                                                   0
     2
                 -1.2
                               1.52031
                                               0.520312
     3
               -1.24541
                                 1.52182
                                                  0.0454398
     4
               -1.31342
                                 1.49776
                                                  0.0721334
     5
               -1.67489
                                 1.38386
                                                  0.378989
     6
               -1.5312
                                1.43668
                                                0.153091
     7
               -1.62524
                                 1.41533
                                                  0.0964328
               -2.11356
                                 1.31651
                                                  0.498226
     8
10
     9
               -1.90094
                                 1.37048
                                                  0.219367
11
               -2.02833
                                 1.35306
                                                  0.12858
    10
14 2520
               -2.6658e+06
                                         1
                                                 0.00792383
```

```
15 2521
               -2.6658e+06
                                           1
                                                     0.316947
16 2522
               -2.66919e+06
                                           1
                                                      3385.36
17 2523
               -2.67372e+06
                                            1
                                                      4531.23
18 2524
               -2.67706e+06
                                            1
                                                      3342.14
19 2525
               -2.68435e+06
                                            1
                                                      7291.67
20 2526
               -2.68026e+06
                                            1
                                                      4092.93
21 2527
               -2.68251e+06
                                            1
                                                      2247.88
22 2528
               -2.68251e+06
                                                      2.0647e-05
23 2529
               -2.68251e+06
                                                      3.62424e-06
                                            1
```

3.4 Source code list

```
1 function a3 3()
      % assignment 3 main function
      TOL = 10e-6;
      objFunc = @bealsFunction;
        start = [1.2, 1.2]';
      start = [-1.2, 1]';
      algs = {@stpDescent, @conjGrd, @BFGS, @newton};
      alg_names = {'stpDescent', 'conjGrd', 'BFGS', 'newton'};
10
11
      for i = 1:length(algs)
12
          [xiter, output] = algs{i}(objFunc, start, TOL);
          disp(alg_names{i});
15
          fig = draw(xiter);
16
          fig.PaperUnits = 'inches';
17
          fig.PaperPosition = [0 \ 0 \ 6 \ 3];
18
          print(fig, '-depsc', '-r0', ...
19
              sprintf('../figs/3-%s-1', alg_names{i}));
20
          dlmwrite(sprintf('../output/3-%s-1.txt', alg_names{i}), ...
              output, 'delimiter','\t', 'precision', '%6.6g');
23
      end
24
25 end
```

```
1 function [ y, gy, hy ] = bealsFunction( x )
```

```
v1 = x(1);
       v2 = x(2);
4
       y = (1.5 - v1 + v1*v2)^2 + (2.25 - v1 + v1*v2^2)^2 + ...
            (2.625 - v1 + v1*v2^3)^2;
       qy = [2*(v2^2 - 1)*(v1*v2^2 - v1 + 9/4)...
            + 2*(v2^3 - 1)*(v1*v2^3 - v1 + 21/8)...
9
            + 2*(v2 - 1)*(v1*v2 - v1 + 3/2);
10
           2*v1*(v1*v2 - v1 + 3/2) + 4*v1*v2*(v1*v2^2 - v1 + 9/4)...
11
           + 6 \times v1 \times v2^2 \times (v1 \times v2^3 - v1 + 21/8);
       hy = [2*(v2 - 1)^2 + 2*(v2^2 - 1)^2 + 2*(v2^3 - 1)^2,...
            6*v2^2*(v1*v2^3 - v1 + 21/8) - 2*v1 + 2*v1*v2...
            + 2 * v1 * (v2 - 1) + 4 * v2 * (v1 * v2^2 - v1 + 9/4) ...
15
            + 4 \times v1 \times v2 \times (v2^2 - 1) + 6 \times v1 \times v2^2 \times (v2^3 - 1) + 3;...
16
            6*v2^2*(v1*v2^3 - v1 + 21/8) - 2*v1 + 2*v1*v2...
17
           + 2 \times v1 \times (v2 - 1) + 4 \times v2 \times (v1 \times v2^2 - v1 + 9/4) \dots
           + 4*v1*v2*(v2^2 - 1) + 6*v1*v2^2*(v2^3 - 1) + 3,...
            8*v1^2*v2^2 + 18*v1^2*v2^4 + 4*v1*(v1*v2^2 - v1 + 9/4)...
           + 2 \times v1^2 + 12 \times v1 \times v2 \times (v1 \times v2^3 - v1 + 21/8)];
23 end
```