Suppose that A is an $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ where $|\lambda_1| > |\lambda_2| \ge \dots \ge |\lambda_n|$ and eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$. Let \mathbf{w} be a vector in R^n and $\mathbf{w}^T \mathbf{u}_1 \ne 0$ and $\mathbf{v}_0 = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_n \mathbf{u}_n$, where $a_1 \ne 0$. Let $\beta_i = \frac{\mathbf{w}^T \mathbf{v}_{i+1}}{\mathbf{w}^T \mathbf{v}_i}$ $i = 0, 1, \dots$, where $\mathbf{v}_k = A \mathbf{v}_{k-1}$ $k = 1, 2, \dots$. Find (a) $\lim_{k \to \infty} \beta_k$ and (b) $\lim_{k \to \infty} \frac{\beta_{k+1} - \lambda}{\beta_k - \lambda_1}$ when $a_2 \ne 0$ and $|\lambda_2| > |\lambda_3|$. (10 $\frac{1}{2}$)

[15%] Let A and B be two $n \times n$ matrices. Then $p(t) = \det(A + tB)$ is a polynomial in t. Suppose B is invertible. Show that p(t) is a polynomial of degree n.

2. Let

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

- (a) Compute the LU factorization of A. (10%)
- (b) Explain why A must be positive definite. (10%)

(12%) Let $f:V\to W$ and $g:W\to Z$ be linear transformations on finite-dimensional real vector spaces V,W and Z. Show that:

- (a) $rank(g \circ f) \leq rank(g)$.
- (b) $\operatorname{rank}(g \circ f) \leq \operatorname{rank}(f)$.

2. Let
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$
, (本題共 25 分)

- (1) find the eigenvalues and eigenvectors of the matrix A, (5 分)
- (2) find P and P^{-1} , then diagonalize the matrix A by $D = P^{-1}AP$, (5 %)
- (3) $\left[A^3 6A^2 + 11A 7I\right]^3 = ?$ (5 %)
- (4) If $X(t) = \Omega(t) C$ is the general solution of the system X' = A X, find the fundamental matrix $\Omega(t) = ?$ (10 %)

Let *W* be the subspace of R^3 defined by $W = \{(x_1 \ x_2 \ x_3) | x_1 + x_2 - 3x_3 = 0\}$. Then, a basis for *W* is $\{u_1, u_2\}$, where $u_1 = (1 - 1 \ 0)^T$ and $u_2 = (3 \ 0 \ 1)^T$. Let $v = (1 - 2 \ -4)^T$. Find w^* in *W* such that $(v - w^*)^T w = 0$ for all w in *W*. $(10 \ \%)$

(20 points)

A $n \times n$ matrix P is idempotent and symmetric. Prove that

- (a) (5 points) $I_n P$ is also an idempotent matrix, where I_n is the $n \times n$ identity matrix.
- (b) (5 points) P is a positive semi-definite matrix.
- (c) (5 points) If rank $[P] = r \le n$, then it has r eigenvalues equal to unity and n-r eigenvalues equal to zero.
- (d) (5 points) tr[P] = rank[P].

(15%) Let V be an inner product space, and let $y, z \in V$. Define $T : V \to V$ by $T(x) = \langle x, y \rangle z$ for all $x \in V$. First prove that T is linear. Then show that T^* exists, and find an explicit expression for it.