mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Joybien Batman BM101 mmWave EVM kit is a compact, low power, high accuracy, and simple-to-use Millimeter-Wave (mmWave) Sensor Hardware & Software integrated evaluation kit suitable for various applications including: Education, Engineering, Science, Automotive, Industrial, Medical, and Business & Consumer applications.

Batman BM101 EVM Kit package includes

- A Small & Compact application dedicated mmWave Sensor Module based on Texas Instruments (TI) IWR1642 76GHz~81GHz mmWave ASIC, with pin-connection for UART communication.
- A Raspberry Pi-Hat Board with optional JBT24M Bluetooth Module; and that this Hat Board can also work independently for connecting the mmWave Sensor Module to other MCU based Hardware Board such as an Arduino Board, etc.
- An iOS mmWave Demo App available for download on Apple App Store. (Not including Short Range Radar)
- A Python SDK on GitHub available for developing software on Raspberry Pi and other computers, which is a perfect companion for AI + IoT Integration Implementation

Batman BM101 EVM Kit is for

- Technologically inclined engineering professors & students, scientists, electronics hardware &software engineers, automotive engineers and technologists, electronics hobbyists, etc.
- For a Novice, the user may follow the included sample Apps via Bluetooth wireless connectivity to iPhone/iPad to gain mmWave Radar's practical experience.
- For an Intermediate User, the user may apply Batman Kit for the Target Application by configuring Hardware I/O Port, and designing Software based on the included SDK
- For an Advanced User, the user may utilize Batman Kit as an IoT Sensor End Device for AI+IoT application with **Deep Learning**

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Specification

(VSD) Vital Signs Detection	For a contactless and wearableless human Vital Signs Detection (VSD) with real-time Heartbeat Rate & Respiration Rate data, for range of 30cm ~ 90cm (about 1~3 feet); along with Status Indicator for sensing the presence of a person, as well as the measurement stability, and whether the person is present but without Vital Signs.
(HAM) High Accuracy Measurement	For a wireless High Accuracy Measurement (HAM) of an object distance with range of 30cm ~ 3 meters (about 1~10 feet), having millimeter measurement resolution.
(PMB) People Movement Behavior	For a wireless People Movement Behavior (PMB) detection in 4 x 4 meter or 16 meter square area (or about 172 square feet); and with software that could set virtual geo-fence(s) to trigger alert or action when People are moving into the geo-fence(s).
(SRR) Short Range Radar	For Short Range Radar (SRR) detection of human in 1 meter ~ 20 meters (about 3 ~ 66 feet), or detection of vehicle in 1 meter ~ 50 meters (about 3 ~ 164 feet), along with viewing angle of 120 degrees; along with Doppler Data to distinguish for whether the objects are moving-towards or moving-away from the mmWave sensor.
(ZOD) Zone Occupancy Detection	For plotting a Range-Azimuth-Heatmap with a 64 x48 Grid Matrix covering: Range of 3meter/64row (approx. 0.047meter per row) x Azimuth of 120degree/48column (approx. 2.5degree/column). Subsequently a programmer may write a program to group the Grid(s) into Zone(s) for detecting whether the particular Zone(s) is occupied by Target(s).

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Make sure you are using the correct power supply of 5 V, >2.0 A with a Micro USB

Develope SDK: Python SDK

(VSD) **Vital Signs Detection**

(HAM)

High Accuracy Measurement

(PMB)

People Movement Behavior

(SRR)

Short Range Radar

(ZOD)

Zone Occupancy Detection

Available on GitHub

Note: Please refer to README.md file first for proper configuration

https://github.com/bigheadG/mmWave

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

APP Demos: VSD, HAM and PMB

• Available on Apple App Store for Vital Signs Detection, High Accuracy **Measurement and People Movement Behavior.** (Not including Short Range Radar and Zone Occupancy Detection)

mmWaveApi Free APP Download

iOS mmWave **Demo App**

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Selection: Key Data Mode or Raw Data Mode Application

(B) Key Data Mode

This is for Bluetooth Data Transfer usage, NOT USED if using Raspberry Pi 4 / NVIDIA Jetson Nano / External Microprocessor

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Batman BM101 Module J3 Pin Assignment Note

PINHEADER J3 PIN12_GPIO_0 High: Raw Data Baud Rate 921600/8/n/1 selection for PIN23_TX1 PINHEADER J3 PIN12 GPIO 0 Low: Key Data Baud Rate 115200/8/n/1 selection for PIN23 TX1

Alert: All GPIO Pins base on 3.3V System. Pin23_TX1 is DC 3.3V system.

Batman BM101 EVM Kit + External Microprocessor

Wire connections for external microprocessor access on the HAT-Board

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Batman Kit + NVIDIA Jetson Nano / Batman Kit + Raspberry Pi Please make sure that the JUMPER SETTING is for Raw Data Mode

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Specifications

mmWave Sensor Evaluation Module

FMCW Transceiver	Integrated PLL, Transmitter, Receiver, Baseband, and A2D
	● 76- to 81-GHz Coverage With 4-GHz
	Continuous Bandwidth
	Four Receive Channels
	Two Transmit Channels
	Ultra-Accurate Chirp (Timing) Engine Based on Fractional-N PLL
	• TX Power: 12.5 dBm
	RX Noise Figure:
	14 dB (76 to 77 GHz)
	15 dB (77 to 81 GHz)
Built-in Calibration	ARM® Cortex® -R4F-Based Radio Control System
and Self-Test	Built-in Firmware (ROM)
(Monitoring)	Self-calibrating System Across Frequency and Temperature
DSP	C674x DSP for FMCW Signal Processing
MCU	ARM Cortex-R4F Microcontroller for Application Control
I/O	• SPI / CAN x 1
	• Up to 2 UARTs
	● I 2C x 1
	● GPIO: 0 ~ 2
Antenna	Tx Antenna x 2 on Board
	Rx Antenna x 4 on Board
Pre-Programmed Firmware "Flavor"	 Vital Signs Detection (VSD) Firmware; for 30cm ~ 90cm wireless & contactless detection of Heartbeat & Respiration Rate
	 High Accuracy Measurement (HAM) Firmware; for 30cm ~ 300cm distance measurement with millimeter resolution
	 People Movement Behavior (PMB) Firmware; for detecting People Movement in 4m x 4m or 16 meter-square region for setting geo-fence(s) trigger action
	 Short Range Radar (SRR) Firmware; for detecting objects' distance with the range of 20meters ~ 50meters (about 66 ~ 164 feet) and with viewing angle of 120 degrees, along with Doppler Data to distinguish for whether the objects are mov- ing-towards or moving-away from the mmWave sensor.
	 Zone Occupancy Detection (ZOD) Firmware; for plotting a Range-Azimuth-Heatmap with a 64 x48 Grid Matrix covering: Range of 3meter/64row (approx. 0.047meter per row) x Azimuth of 120degree/48column (approx. 2.5degree/column). Subsequently a programmer may write a program to group the Grid(s) into Zone(s) for detecting whether the particular Zone(s) is occupied by Target(s).
	Note: ONLY one of VSD, HAM, or PMB Firmware is pre-programmed within a single mmWave Module

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

	Operating Temperature Operating Humidity	 0° to 40° degree Celsius 10 ~ 85% Non-Condensing 	
Dimensions & Weight • 54.1mm x 45.7mm; 13.7 grams net		● 54.1mm x 45.7mm; 13.7 grams net	

mmWave Raspberry Pi Hat

Connector	Matching mmWave Module Female Connector			
	Matching Raspberry Pi GPIO Female Connector Micro USB Power Connector			
	Jumpers for Bluetooth Tx/Rx or Raspberry Pi Tx/Rx Selection			
	Jumper for mmWave Raw Data or Key Data Selection			
Bluetooth (optional)	Joybien JBT24M Bluetooth Low Energy Module			
Micro USB Input Power	5VDC, 2Amp. (Note: Power Adapter and Micro USB Cable NOT included)			
Operating Temperature	• 0° to 40° degree Celsius			
Operating Humidity	● 10 ~ 85% Non-Condensing			
Dimensions & Weight	• 65.3mm x 56.3mm 30 grams with JBT24M Bluetooth			

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

mmWave Pin Assignment

J2 J2 Pin Assignment

	Name	Pin#
0	GND	10
•	ANAMUX	09
OSC	CLKOUT	80
•	VSENSE	07
0	DP8	06
	MM CLK	05
	IM SYNC	04
HO	STINTR1	03
MCU	CLKOUT	02
	DP7	01

J3 Pin Assignment

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

mmWave Pin Assignment

J1 Pin Assignment

Pin No	Name	Pin Type	Function Description
01	GND	GROUND	Digital ground
02	ANATEST1	0	ADC Channel 1
03	ANATEST2	0	ADC Channel 2
04	DP0	10	General-purpose I/O
05	DP1	10	General-purpose I/O
06	DP2	10	General-purpose I/O
07	DP3	10	General-purpose I/O
08	DP4	10	General-purpose I/O
09	DP5	10	General-purpose I/O
10	DP6	10	General-purpose I/O

J2 Pin Assignment

Pin No	Name	Pin Type	Function Description
1 111 140	Name	TillType	· · · · · · · · · · · · · · · · · · ·
01	DP7	10	General-purpose I/O
02	MCUCLKOUT	О	Programmable clock given out to external MCU or the processor
03	HOSTINTR1	0	Out of Band Interrupt to an external host communicating over SPI
04	DMM SYNC	1	Debug Interface(Hardware In Loop) - Sync
05	DMM CLK	ı	Debug Interface(Hardware In Loop) - Clock
06	DP8	10	General-purpose I/O
07	VSENSE	10	ADC Channel 6
08	OSC CLKOUT	0	Reference clock output from clocking sub system after cleanup PLL(1.8V output voltage swing).
09	ANAMUX	10	ADC Channel 5
10	GND	GROUND	Digital ground

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

J3 Pin Assignment

Pin No	Name	Din Tuno	Function Description
		Pin Type	Function Description
01	USBD5V	0	USB POWER DC 5V Input
02	3V3	0	For meaurement only
03	USBD5V	10	USB POWER DC 5V Input
04	SDA	10	I2C Pin
05	GND SCL	GROUND	Digital ground
06 07		10	I2C Pin
	RS232 RX0		UART A Receive
08	SYNC IN JBRX1	0	Low frequency Synchronization signal input, UART B Receive
09	RS232 TX0	0	UART A Transmit
10	GND	GROUND .	Digital ground
11	nRST	10	Power on reset for chip. Active low
12	GPIO 0	10	Select KeyData or RawData
13	GND	GROUND .	Digital ground
14	GPIO 1		Reserved
15	JBCANRX DP13		CanRx
16	CS1	10	SPI Channel A - chip Select
17	JBCANTX DP12	0	CanTx
18	3V3	0	For meaurement only
19	GND	GROUND	Digital ground
20	MOSI 1	10	SPI Channel A - Master Out Slave In
21	BSS LOGGER	10	BSS LOGGER
22	MISO 1	10	SPI Channel A - Master In Slave Out
23	MSS LOGGER JBTX1	0	UART B Transmit
24	SPICLK 1	10	SPI Channel A - Clock
25	SOP2	ı	SOP2
26	GND	GROUND	Digital ground
27	SOP1	ı	SOP1
28	nERRIN	I	Failsafe input to the device. Nerror output from any other device can be concentrated in the error signaling monitor module inside the device and appropriate action can be taken by Firmware.
29	GND	GROUND	Digital ground
30	nERR OUT	0	Open drain fail safe output signal. Connected to PMIC/ Processor/MCU to indicate that some severe criticallity fault has happened. Recovery would be through reset.
31	WARMRST	10	Mistake Proofing Pin
32	GPIO2	0	LED Indicator

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

mmWave Raspberry Pi Hat Pin Assignment

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Product Dimensions

Copyright ©2021, Joybien Technologies Co., Ltd.

Joybien reserves the right to make changes without further notice to and products herein. Joybien makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Joybien assume any liability arising out of the application or use of any product or circuit. Joybien's products are not to be used in life support devices or systems, if a failure of an Joybien's product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.

> For the latest version of this document, visit our website: www.joybien.com

Note:

NVIDIA logo, and Jetson Nano are trademarks and/or registered trademarks of NVIDIA Corporation.

Raspberry Pi logo and Raspberry Pi 4 are trademarks and/or registered trademarks of Raspberry Pi Foundation.

Apple logo, iPhone, iPad, and iOS are trademarks and/or registered trademarks of Apple Inc.

"Python" is a registered trademark of the PSF.

This EVM Kit does not include Apple iPhone/iPad, Raspberry Pi computer, nor NVIDIA Jetson Nano computer.

(BM101-VSD) Vital Signs Detection

For a contactless and wearableless human Vital Signs Detection (VSD) with real-time Heartbeat Rate & Respiration Rate data, for range of 30cm ~ 90cm (about 1~3 feet); along with Status Indicator for sensing the presence of a person, as well as the measurement stability, and whether the person is present but without Vital Signs.

(BM101-HAM) High Accuracy Measurement

For a wireless High Accuracy Measurement (HAM) of an object distance with range of 30cm ~ 3 meters (about 1~10 feet), having millimeter measurement resolution.

(BM101-PMB)
People Movement Behavior

For a wireless People Movement Behavior (PMB) detection in 4 x 4 meter or 16 meter square area (or about 172 square feet); and with software that could set virtual geo-fence(s) to trigger alert or action when People are moving into the geo-fence(s).

(BM101-SRR) Short Range Radar

For Short Range Radar (SRR) detection of human in 1 meter \sim 20 meters (about 3 \sim 66 feet), or detection of vehicle in 1 meter \sim 50 meters (about 3 \sim 164 feet), along with viewing angle of 120 degrees; along with Doppler Data to distinguish for whether the objects are moving-towards or moving-away from the mmWave sensor.

(BM101-ZOD)
Zone Occupancy Detection

For plotting a Range-Azimuth-Heatmap with a 64 x48 Grid Matrix covering: Range of 3meter/64row (approx. 0.047meter per row) x Azimuth of 120degree/48column (approx. 2.5degree/column). Subsequently a programmer may write a program to group the Grid(s) into Zone(s) for detecting whether the particular Zone(s) is occupied by Target(s).

(BM201-LPD)
Long-Range People Detection

For a contactless and wearableless Long-Range People Detection (LPD) of 1 meter ~ 50 meters (about 3 ~ 164 feet), for various applications that require people sensing or counting without privacy invasion.

(BM201-TMD)
Traffic Monitoring Detection

For detecting moving objects (such as vehicles) in 5m ~ 50m with FOV of approx. +/- 54 degrees with Position X&Y, Velocity X&Y info. And based on the detected data, a programmer may write a program to define virtual Zones, for mapping objects (vehicles) moving in and out of certain Zones for traffic monitoring applications.

(BM201-VSD) Vital Signs Detection For a contactless and wearableless human Vital Signs Detection (VSD) with real-time Heartbeat Rate & Respiration Rate data, for range of 30cm ~ 90cm (about 1~3 feet); along with Status Indicator for sensing the presence of a person, as well as the measurement stability, and whether the person is present but without Vital Signs.

(BM301-FDS)
Fall Detection Sensing

For the wireless detection of People in 3-Dimensional movement from -3 meter \sim +3 meter on one direction, and -3 meter \sim + 3 meter on the perpendicular/orthogonal direction, and +3 meter from ceiling to ground, all with the respect to the mmWave Sensor positioned in the center of the ceiling; and thus, the Sensor is capable to detect and track people movement along with standing, sitting, lying down positions