CE100 Algorithms and Programming II

Week-3 (Matrix Multiplication/ Quick Sort)

Spring Semester, 2021-2022

Download DOC, SLIDE, PPTX

<iframe width=700, height=500 frameBorder=0 src="../ce100-week-3matrix.md_slide.html"></iframe>

Matrix Multiplication / Quick Sort

Outline

- Matrix Multiplication
 - Traditional
 - Recursive
 - Strassen

Outline

- Quicksort
 - Hoare Partitioning
 - Lomuto Partitioning
 - Recursive Sorting

Outline

- Quicksort Analysis
 - Randomized Quicksort
 - Randomized Selection
 - Recursive
 - Medians

Matrix Multiplication

- Input: $A=[a_{ij}], B=[b_{ij}]$
- ullet Output: $C=[c_{ij}]=A\cdot B\Longrightarrow i,j=1,2,3,\ldots,n$

$$egin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \ c_{21} & c_{22} & \dots & c_{2n} \ dots & dots & dots & dots \ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & dots \ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \cdot egin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \ b_{21} & b_{22} & \dots & b_{2n} \ dots & dots & dots & dots \ b_{n1} & a_{n2} & \dots & b_{nn} \end{bmatrix}$$

Matrix Multiplication

$$egin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \ c_{21} & c_{22} & \cdots & c_{2n} \ dots & dots & \ddots & dots \ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot egin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \ b_{21} & b_{22} & \cdots & b_{2n} \ dots & dots & \ddots & dots \ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$$

$$ullet c_{ij} = \sum_{1 \leq k \leq n} a_{ik}.b_{kj}$$

Matrix Multiplication: Standard Algorithm

Running Time: $\Theta(n^3)$

```
for i=1 to n do
    for j=1 to n do
        C[i,j] = 0
        for k=1 to n do
            C[i,j] = C[i,j] + A[i,k] + B[k,j]
        endfor
    endfor
endfor
```


Matrix Multiplication: Divide & Conquer

IDEA: Divide the nxn matrix into 2x2 matrix of (n/2)x(n/2) submatrices.

$$egin{pmatrix} egin{pmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \end{pmatrix} = egin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix} \cdot egin{pmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{pmatrix} & egin{pmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \end{pmatrix} = egin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix} \cdot egin{pmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{pmatrix}$$

$$c_{11} = a_{11}b_{11} + a_{12}b_{21}$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21}$$

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \qquad \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22}$$

$$c_{22} = a_{21}b_{12} + a_{22}b_{22}$$

Matrix Multiplication: Divide & Conquer

$$egin{bmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \end{bmatrix} = egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} \cdot egin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix}$$

 $8 ext{ mults and 4 adds of (n/2)*(n/2) submatrices} = egin{cases} c_{11} = a_{11}b_{11} + a_{12}b_{21} \ c_{21} = a_{21}b_{11} + a_{22}b_{21} \ c_{12} = a_{11}b_{12} + a_{12}b_{22} \ c_{22} = a_{21}b_{12} + a_{22}b_{22} \end{cases}$

Matrix Multiplication: Divide & Conquer

```
MATRIX-MULTIPLY(A, B)
    // Assuming that both A and B are nxn matrices
    if n == 1 then
        return A * B
    else
        //partition A, B, and C as shown before
        C[1,1] = MATRIX-MULTIPLY (A[1,1], B[1,1]) +
                 MATRIX-MULTIPLY (A[1,2], B[2,1]);
        C[1,2] = MATRIX-MULTIPLY (A[1,1], B[1,2]) +
                MATRIX-MULTIPLY (A[1,2], B[2,2]);
        C[2,1] = MATRIX-MULTIPLY (A[2,1], B[1,1]) +
        MATRIX-MULTIPLY (A[2,2], B[2,1]);
       C[2,2] = MATRIX-MULTIPLY (A[2,1], B[1,2]) +
        MATRIX-MULTIPLY (A[2,2], B[2,2]);
    endif
    return C
```

Matrix Multiplication: Divide & Conquer Analysis

$$T(n) = 8T(n/2) + \Theta(n^2)$$

- 8 recursive calls $\Longrightarrow 8T(\cdots)$
- ullet each problem has size $n/2 \Longrightarrow \cdots T(n/2)$
- Submatrix addition $\Longrightarrow \Theta(n^2)$

Matrix Multiplication: Solving the Recurrence

$$ullet T(n) = 8T(n/2) + \Theta(n^2)$$

$$a = 8, b = 2$$

$$\circ \ f(n) = \Theta(n^2)$$

$$\circ \ n^{log^a_b} = n^3$$

$$ullet$$
 Case 1: $rac{n^{log_b^a}}{f(n)}=\Omega(n^arepsilon)\Longrightarrow T(n)=\Theta(n^{log_b^a})$

Similar with ordinary (iterative) algorithm.

Compute $c_{11}, c_{12}, c_{21}, c_{22}$ using 7 recursive multiplications.

In normal case we need 8 as below.

$$egin{bmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \end{bmatrix} = egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} \cdot egin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix}$$

 $8 ext{ mults and 4 adds of (n/2)*(n/2) submatrices} = egin{cases} c_{11} = a_{11}b_{11} + a_{12}b_{21} \ c_{21} = a_{21}b_{11} + a_{22}b_{21} \ c_{12} = a_{11}b_{12} + a_{12}b_{22} \ c_{22} = a_{21}b_{12} + a_{22}b_{22} \end{cases}$

• Reminder:

- \circ Each submatrix is of size (n/2)*(n/2)
- \circ Each add/sub operation takes $\Theta(n^2)$ time
- ullet Compute $P1\dots P7$ using 7 recursive calls to matrix-multiply

$$P_1 = a_{11} * (b_{12} - b_{22})$$
 $P_2 = (a_{11} + a_{12}) * b_{22}$
 $P_3 = (a_{21} + a_{22}) * b_{11}$
 $P_4 = a_{22} * (b_{21} - b_{11})$
 $P_5 = (a_{11} + a_{22}) * (b_{11} + b_{22})$
 $P_6 = (a_{12} - a_{22}) * (b_{21} + b_{22})$
 $P_7 = (a_{11} - a_{21}) * (b_{11} + b_{12})$

14

$$egin{aligned} P_1 &= a_{11} * (b_{12} - b_{22}) \ P_2 &= (a_{11} + a_{12}) * b_{22} \ P_3 &= (a_{21} + a_{22}) * b_{11} \ P_4 &= a_{22} * (b_{21} - b_{11}) \ P_5 &= (a_{11} + a_{22}) * (b_{11} + b_{22}) \ P_6 &= (a_{12} - a_{22}) * (b_{21} + b_{22}) \ P_7 &= (a_{11} - a_{21}) * (b_{11} + b_{12}) \end{aligned}$$

• How to compute c_{ij} using $P1 \dots P7$?

$$c_{11} = P_5 + P_4 - P_2 + P_6 \ c_{12} = P_1 + P_2 \ c_{21} = P_3 + P_4$$

- 7 recursive multiply calls
- 18 add/sub operations

e.g. Show that $c_{12}=P_1+P_2$

$$egin{aligned} c_{12} &= P_1 + P_2 \ &= a_{11}(b_{12} - b_{22}) + (a_{11} + a_{12})b_{22} \ &= a_{11}b_{12} - a_{11}b_{22} + a_{11}b_{22} + a_{12}b_{22} \ &= a_{11}b_{12} + a_{12}b_{22} \end{aligned}$$

Strassen's Algorithm

- Divide: Partition A and B into (n/2)*(n/2) submatrices. Form terms to be multiplied using + and -.
- Conquer: Perform 7 multiplications of (n/2)*(n/2) submatrices recursively.
- Combine: Form C using + and on (n/2)*(n/2) submatrices.

Recurrence:
$$T(n) = 7T(n/2) + \Theta(n^2)$$

Strassen's Algorithm: Solving the Recurrence

$$ullet T(n) = 7T(n/2) + \Theta(n^2)$$

$$a = 7, b = 2$$

$$\circ \ f(n) = \Theta(n^2)$$

$$\circ \ n^{log^a_b} = n^{lg7}$$

$$ullet$$
 Case 1: $rac{n^{log_b^a}}{f(n)}=\Omega(n^arepsilon)\Longrightarrow T(n)=\Theta(n^{log_b^a})$

$$T(n) = \Theta(n^{log_2^7})$$

$$2^3=8, 2^2=4$$
 so $\Longrightarrow log_2^7pprox 2.81$

or use https://www.omnicalculator.com/math/log

Strassen's Algorithm

- ullet The number 2.81 may not seem much smaller than 3
- But, it is significant because the difference is in the exponent.
- ullet Strassen's algorithm beats the ordinary algorithm on today's machines for $n \geq 30$ or so.
- Best to date: $\Theta(n^{2.376...})$ (of theoretical interest only)

Maximum Subarray Problem

Input: An array of values

Output: The contiguous subarray that has the largest sum of elements

• Input array:

$$[13][-3][-25][20][-3][-16][-23]$$
 $\overbrace{[18][20][-7][12]}$ $[-22][-4][7]$

max. contiguous subarray

Maximum Subarray Problem: Divide & Conquer

- Basic idea:
- Divide the input array into 2 from the middle
- Pick the best solution among the following:
 - The max subarray of the left half
 - The max subarray of the right half
 - The max subarray crossing the mid-point

Maximum Subarray Problem: Divide & Conquer

Maximum Subarray Problem: Divide & Conquer

- **Divide:** Trivial (divide the array from the middle)
- Conquer: Recursively compute the max subarrays of the left and right halves
- ullet Combine: Compute the max-subarray crossing the mid-point
 - \circ (can be done in $\Theta(n)$ time).
 - Return the max among the following:
 - the max subarray of the left-subarray
 - the max subarray of the rightsubarray
 - the max subarray crossing the mid-point

TODO: detailed solution in textbook...

Conclusion: Divide & Conquer

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- Can lead to more efficient algorithms

Quicksort

- One of the most-used algorithms in practice
- Proposed by C.A.R. *Hoare* in 1962.
- Divide-and-conquer algorithm
- In-place algorithm
 - The additional space needed is O(1)
 - The sorted array is returned in the input array
 - Reminder: Insertion-sort is also an in-place algorithm, but Merge-Sort is not inplace.
- Very practical

Quicksort

- **Divide:** Partition the array into 2 subarrays such that elements in the lower part \leq elements in the higher part
- Conquer: Recursively sort 2 subarrays
- Combine: Trivial (because in-place)

Key: Linear-time $(\Theta(n))$ partitioning algorithm

Divide: Partition the array around a pivot element

- Choose a pivot element x
- Rearrange the array such that:
 - \circ Left subarray: All elements $\leq x$
 - \circ Right subarray: All elements $\geq x$

Conquer: Recursively Sort the Subarrays

Note: Everything in the left subarray ≤ everything in the right subarray

Note: Combine is trivial after conquer. Array already sorted.

TEU CE100 Week-3

Two partitioning algorithms

• Hoare's algorithm:

Partitions around the first element of subarray

$$\circ \ (pivot = x = A[p])$$

• Lomuto's algorithm:

Partitions around the last element of subarray

$$\circ \ (pivot = x = A[r])$$

Hoare's Partitioning Algorithm

• Choose a pivot element: pivot = x = A[p]

- Grow two regions:
 - \circ from left to right: $A[p\dots i]$
 - \circ from right to left: $A[j \dots r]$
 - such that:
 - \circ every element in $A[p\ldots i] \leq \mathsf{pivot}$
 - \circ every element in $A[p\dots i] \geq$ pivot

Hoare's Partitioning Algorithm

Hoare's Partitioning Algorithm

- Elements are exchanged when
 - \circ A[i] is too large to belong to the left region
 - $\circ \ A[j]$ is too small to belong to the right region
 - assuming that the inequality is strict
- ullet The two regions $A[p\dots i]$ and $A[j\dots r]$ grow until $A[i]\geq pivot\geq A[j]$

```
H-PARTITION(A, p, r)

pivot = A[p]

i = p - 1

j = r - 1

while true do

repeat j = j - 1 until A[j] <= pivot

repeat i = i - 1 until A[i] <= pivot

if i < j then

exchange A[i] with A[j]

else

return j
```

Hoare's Partitioning Algorithm Example (Step-1)

Hoare's Partitioning Algorithm Example (Step-2)

```
Pivot = 5
\underline{\text{H-PARTITION}(A, p, r)}
                                                Input
                                                                           6
     pivot \leftarrow A[p]
     i \leftarrow p-1
    j \leftarrow r + 1
    while true do
                                                           STEP-2
      repeat j \leftarrow j - 1 until A[j] \leq pivot
      repeat i \leftarrow i + 1 until A[i] \ge pivot
      if i < j then
            exchange A[i] \leftrightarrow A[j]
      else
            return j
```


Hoare's Partitioning Algorithm Example (Step-3)

```
Pivot = 5
H-PARTITION (A, p, r)
                                             Input
    pivot \leftarrow A[p]
    i \leftarrow p-1
    j \leftarrow r + 1
    while true do
                                                        STEP-3
     repeat j \leftarrow j - 1 until A[j] \leq pivot
      repeat i \leftarrow i + 1 until A[i] \ge pivot
     if i < j then
            exchange A[i] \leftrightarrow A[j]
     else
            return j
```


Hoare's Partitioning Algorithm Example (Step-4)

```
Pivot = 5
\underline{\text{H-PARTITION}(A, p, r)}
                                                Input
     pivot \leftarrow A[p]
     i \leftarrow p-1
     j \leftarrow r + 1
     while true do
                                                            STEP-4
      repeat j \leftarrow j - 1 until A[j] \leq pivot
      repeat i \leftarrow i + 1 until A[i] \ge pivot
      if i < j then
            exchange A[i] \leftrightarrow A[j]
      else
             return j
```


Hoare's Partitioning Algorithm Example (Step-5)

```
Pivot = 5
\underline{\text{H-PARTITION}(A, p, r)}
                                                Input
     pivot \leftarrow A[p]
     i \leftarrow p-1
    j \leftarrow r + 1
    while true do
                                                            STEP-5
      repeat j \leftarrow j - 1 until A[j] \leq pivot
      repeat i \leftarrow i + 1 until A[i] \ge pivot
      if i < j then
            exchange A[i] \leftrightarrow A[j]
      else
            return j
```


Hoare's Partitioning Algorithm Example (Step-6)

```
Pivot = 5
\underline{\text{H-PARTITION}(A, p, r)}
                                                Input
    pivot \leftarrow A[p]
     i \leftarrow p-1
    j \leftarrow r + 1
    while true do
                                                           STEP-6
      repeat j \leftarrow j - 1 until A[j] \le pivot
      repeat i \leftarrow i + 1 until A[i] \ge pivot
      if i < j then
            exchange A[i] \leftrightarrow A[j]
      else
            return j
```

Hoare's Partitioning Algorithm Example (Step-7)

```
Pivot = 5
\underline{\text{H-PARTITION}(A,p,r)}
                                                Input
     pivot \leftarrow A[p]
     i \leftarrow p-1
    j \leftarrow r + 1
     while true do
                                                           STEP-7
      repeat j \leftarrow j - 1 until A[j] \leq pivot
      repeat i \leftarrow i + 1 until A[i] \ge pivot
      if i < j then
            exchange A[i] \leftrightarrow A[j]
      else
            return j
```

Hoare's Partitioning Algorithm Example (Step-8)

```
Pivot = 5
\underline{\text{H-PARTITION}(A,p,r)}
                                                Input
     pivot \leftarrow A[p]
     i \leftarrow p-1
    j \leftarrow r + 1
     while true do
                                                           STEP-8
      repeat j \leftarrow j - 1 until A[j] \leq pivot
      repeat i \leftarrow i + 1 until A[i] \ge pivot
      if i < j then
            exchange A[i] \leftrightarrow A[j]
      else
            return j
```

Hoare's Partitioning Algorithm Example (Step-9)

```
Pivot = 5
\underline{\text{H-PARTITION}(A,p,r)}
                                                           3 3 2
                                               Input
     pivot \leftarrow A[p]
     i \leftarrow p-1
    j \leftarrow r + 1
     while true do
                                                          STEP = 9
      repeat j \leftarrow j - 1 until A[j] \leq pivot
      repeat i \leftarrow i + 1 until A[i] \ge pivot
      if i < j then
            exchange A[i] \leftrightarrow A[j]
      else
            return j
```

Hoare's Partitioning Algorithm Example (Step-10)

```
Pivot = 5
\underline{\text{H-PARTITION}(A, p, r)}
                                                Input
     pivot \leftarrow A[p]
     i \leftarrow p-1
     j \leftarrow r + 1
    while true do
                                                           STEP - 10
      repeat j \leftarrow j - 1 until A[j] \leq pivot
      repeat i \leftarrow i + 1 until A[i] \ge pivot
      if i < j then
            exchange A[i] \leftrightarrow A[j]
      else
            return j
```

Hoare's Partitioning Algorithm Example (Step-11)

```
Pivot = 5
\underline{\text{H-PARTITION}(A, p, r)}
                                                Input
     pivot \leftarrow A[p]
     i \leftarrow p-1
     j \leftarrow r + 1
    while true do
                                                          STEP-11
      repeat j \leftarrow j - 1 until A[j] \leq pivot
      repeat i \leftarrow i + 1 until A[i] \ge pivot
      if i < j then
            exchange A[i] \leftrightarrow A[j]
      else
            return j
```

Hoare's Partitioning Algorithm Example (Step-12)

```
Pivot = 5
\underline{\text{H-PARTITION}(A, p, r)}
                                                Input
     pivot \leftarrow A[p]
     i \leftarrow p-1
    j \leftarrow r + 1
    while true do
                                                          STEP-12
      repeat j \leftarrow j - 1 until A[j] \leq pivot
      repeat i \leftarrow i + 1 until A[i] \ge pivot
      if i < j then
            exchange A[i] \leftrightarrow A[j]
      else
            return j
```

Hoare's Partitioning Algorithm - Notes

- Elements are exchanged when
 - \circ A[i] is too large to belong to the left region
 - $\circ \ A[j]$ is too small to belong to the right region
 - assuming that the inequality is strict
- ullet The two regions $A[p\dots i]$ and $A[j\dots r]$ grow until $A[i] \geq pivot \geq A[j]$
- ullet The asymptotic runtime of Hoare's partitioning algorithm $\Theta(n)$

```
H-PARTITION(A, p, r)
    pivot = A[p]
    i = p - 1
    j = r - 1
    while true do
        repeat j = j - 1 until A[j] <= pivot
        repeat i = i - 1 until A[i] <= pivot
        if i < j then exchange A[i] with A[j]
    else return j</pre>
```

Quicksort with Hoare's Partitioning Algorithm

```
QUICKSORT (A, p, r)

if p < r then

q = H-PARTITION(A, p, r)

QUICKSORT(A, p, q)

QUICKSORT(A, q + 1, r)

endif
```

Initial invocation: QUICKSORT(A,1,n)

```
\sum x \geq x r
```


Hoare's Partitioning Algorithm: Pivot Selection

ullet if we select pivot to be A[r] instead of A[p] in **H-PARTITION**

- ullet Consider the example where A[r] is the largest element in the array:
 - \circ End of H-PARTITION: i=j=r
 - \circ In QUICKSORT: q=r
 - So, recursive call to:
 - QUICKSORT(A, p, q=r)
 - infinite loop

Correctness of Hoare's Algorithm (1)

We need to prove 3 claims to show correctness:

- ullet Indices i and j never reference A outside the interval $A[p\dots r]$
- Split is always non-trivial; i.e., j
 eq r at termination
- ullet Every element in $A[p\dots j] \leq$ every element in $A[j+1\dots r]$ at termination

$$\leq x$$
 $\geq x$

Correctness of Hoare's Algorithm (2)

- Notations:
 - \circ k: # of times the while-loop iterates until termination
 - \circ i_m : the value of index i at the end of iteration m
 - $\circ j_m$: the value of index j at the end of iteration m
 - \circ x: the value of the pivot element
- ullet Note: We always have $i_1=p$ and $p\leq j_1\leq r$ because x=A[p]

Correctness of Hoare's Algorithm (3)

Lemma 1: Either $i_k=j_k$ or $i_k=j_k+1$ at termination

Proof of Lemma 1:

- The algorithm terminates when $i \geq j$ (the else condition).
- ullet So, it is sufficient to prove that $i_k j_k \leq 1$
- There are 2 cases to consider:
 - \circ Case 1: k=1, i.e. the algorithm terminates in a single iteration
 - \circ Case 2: k>1, i.e. the alg. does not terminate in a single iter.

By contradiction, assume there is a run with $i_k - j_k > 1$

Correctness of Hoare's Algorithm (4)

Original correctness claims:

- ullet Indices i and j never reference A outside the interval $A[p\dots r]$
- Split is always non-trivial; i.e., $j \neq r$ at termination

Proof:

- For k=1:
 - \circ Trivial because $i_1=j_1=p$ (see Case 1 in proof of Lemma 2)
- For k > 1:
 - $\circ \ i_k > p$ and $j_k < r$ (due to the repeat-until loops moving indices)
 - $\circ \ i_k \leq r$ and $j_k \geq p$ (due to Lemma 1 and the statement above)

Correctness of Hoare's Algorithm (5)

Lemma 2: At the end of iteration m, where m < k (i.e. m is not the last iteration), we must have:

$$A[p\ldots i_m] \leq x$$
 and $A[j_m\ldots r] \geq x$

Proof of Lemma 2:

• Base case: m=1 and k>1 (i.e. the alg. does not terminate in the first iter.)

Ind. Hyp.: At the end of iteration m-1, where m < k (i.e. m is not the last iteration), we must have:

$$A[p\ldots i_m-1]\leq x$$
 and $A[j_m-1\ldots r]\geq x$

General case: The lemma holds for m, where m < k

Proof of base case complete!

53

Correctness of Hoare's Algorithm (6)

Original correctness claim:

ullet (c) Every element in $A[\ldots j] \leq$ every element in $A[j+\ldots r]$ at termination

Proof of claim (c)

- There are 3 cases to consider:
 - \circ Case 1: k=1, i.e. the algorithm terminates in a single iteration
 - \circ Case 2: k>1 and $i_k=j_k$
 - \circ Case 3: k>1 and $i_k=j_k+1$

Lomuto's Partitioning Algorithm

ullet Choose a pivot element: pivot=x=A[r]

- Grow two regions:
 - \circ from left to right: $A[p\dots i]$
 - \circ from left to right: $A[i+1\dots j]$
 - such that:
 - lacksquare every element in $A[p\dots i] \leq pivot$
 - lacksquare every element in $A[i+1\dots j]>pivot$

Lomuto's Partitioning Algorithm

Lomuto's Partitioning Algorithm Ex. (Step-1)

return i+1

```
p Pivot = 4  r
7 8 2 6 5 1 3 4
```

STEP-1

Lomuto's Partitioning Algorithm Ex. (Step-2)

```
Pivot = 4
L-PARTITION (A, p, r)
                                             Input
      pivot \leftarrow A[r]
     i \leftarrow p-1
     for j \leftarrow p to r-1 do
           if A[j] \leq pivot then
                                                        STEP-2
                  i \leftarrow i + 1
                  exchange A[i] \leftrightarrow A[j]
     exchange A[i+1] \leftrightarrow A[r]
      return i+1
```


Lomuto's Partitioning Algorithm Ex. (Step-3)

```
L-PARTITION (A, p, r)
      pivot \leftarrow A[r]
      i \leftarrow p-1
      for j \leftarrow p to r-1 do
            if A[j] \leq pivot then
                    i \leftarrow i + 1
                   exchange A[i] \leftrightarrow A[j]
      exchange A[i+1] \leftrightarrow A[r]
      return i+1
```


Lomuto's Partitioning Algorithm Ex. (Step-4)

Lomuto's Partitioning Algorithm Ex. (Step-5)

```
Pivot = 4
L-PARTITION (A, p, r)
                                                Input
      pivot \leftarrow A[r]
      i \leftarrow p-1
      for j \leftarrow p \text{ to } r-1 \text{ do}
            if A[j] \leq pivot then
                                                            STEP-5
                   i \leftarrow i + 1
                   exchange A[i] \leftrightarrow A[j]
      exchange A[i+1] \leftrightarrow A[r]
      return i+1
```


Lomuto's Partitioning Algorithm Ex. (Step-6)

```
Pivot = 4
L-PARTITION (A, p, r)
                                                Input
      pivot \leftarrow A[r]
      i \leftarrow p-1
      for j \leftarrow p \text{ to } r-1 \text{ do}
            if A[j] \leq pivot then
                                                           STEP-6
                   i \leftarrow i + 1
                   exchange A[i] \leftrightarrow A[j]
      exchange A[i+1] \leftrightarrow A[r]
      return i+1
```


Lomuto's Partitioning Algorithm Ex. (Step-7)

Lomuto's Partitioning Algorithm Ex. (Step-8)

```
Pivot = 4
L-PARTITION (A, p, r)
                                                Input
      pivot \leftarrow A[r]
      i \leftarrow p-1
      for j \leftarrow p \text{ to } r-1 \text{ do}
            if A[j] \leq pivot then
                                                            STEP-8
                   i \leftarrow i + 1
                   exchange A[i] \leftrightarrow A[j]
      exchange A[i+1] \leftrightarrow A[r]
      return i+1
```


Lomuto's Partitioning Algorithm Ex. (Step-9)

```
Pivot = 4
L-PARTITION (A, p, r)
                                                                         6 5 8
                                               Input
      pivot \leftarrow A[r]
     i \leftarrow p-1
      for j \leftarrow p \text{ to } r-1 \text{ do}
            if A[j] \leq pivot then
                                                          STEP-9
                   i \leftarrow i + 1
                  exchange A[i] \leftrightarrow A[j]
      exchange A[i+1] \leftrightarrow A[r]
      return i+1
```


Lomuto's Partitioning Algorithm Ex. (Step-10)

$$STEP-10$$

Lomuto's Partitioning Algorithm Ex. (Step-11)

```
Pivot = 4
L-PARTITION (A, p, r)
                                                                        6 5 8
                                               Input
      pivot \leftarrow A[r]
     i \leftarrow p-1
      for j \leftarrow p \text{ to } r-1 \text{ do}
            if A[j] \leq pivot then
                                                         STEP-11
                   i \leftarrow i + 1
                  exchange A[i] \leftrightarrow A[j]
      exchange A[i+1] \leftrightarrow A[r]
      return i+1
```


Lomuto's Partitioning Algorithm Ex. (Step-12)

```
L-PARTITION (A, p, r)
                                                    Input
       pivot \leftarrow A[r]
      i \leftarrow p-1
      for j \leftarrow p \text{ to } r-1 \text{ do}
             if A[j] \leq pivot then
                     i \leftarrow i + 1
                    exchange A[i] \leftrightarrow A[j]
       exchange A[i+1] \leftrightarrow A[r]
       return i+1
```


$$STEP-12$$

Lomuto's Partitioning Algorithm Ex. (Step-13)

```
Pivot = 4
L-PARTITION (A, p, r)
                                                     2 1 3 6 5 8
                                          Input
     pivot \leftarrow A[r]
     i \leftarrow p-1
     for j \leftarrow p to r-1 do
           if A[j] \leq pivot then
                                                    STEP-13
                 i \leftarrow i + 1
                 exchange A[i] \leftrightarrow A[j]
     exchange A[i+1] \leftrightarrow A[r]
     return i+1
```


Lomuto's Partitioning Algorithm Ex. (Step-14)

```
Pivot = 4
L-PARTITION (A, p, r)
                                                               3 4
                                                                        5 8
                                           Input
      pivot \leftarrow A[r]
     i \leftarrow p-1
     for j \leftarrow p to r-1 do
           if A[j] \leq pivot then
                                                     STEP - 14
                 i \leftarrow i + 1
                 exchange A[i] \leftrightarrow A[j]
     exchange A[i+1] \leftrightarrow A[r]
     return i+1
```


Lomuto's Partitioning Algorithm Ex. (Step-15)

```
Pivot = 4
L-PARTITION (A, p, r)
                                                              3 4
                                                                       5 8
                                           Input
      pivot \leftarrow A[r]
     i \leftarrow p-1
     for j \leftarrow p to r-1 do
           if A[j] \leq pivot then
                                                     STEP-15
                 i \leftarrow i + 1
                 exchange A[i] \leftrightarrow A[j]
     exchange A[i+1] \leftrightarrow A[r]
     return i+1
```


Quicksort with Lomuto's Partitioning Algorithm

```
QUICKSORT (A, p, r)

if p < r then

q = L-PARTITION(A, p, r)

QUICKSORT(A, p, q - 1)

QUICKSORT(A, q + 1, r)

endif
```

Initial invocation: QUICKSORT(A,1,n)

Comparison of Hoare's & Lomuto's Algorithms

- Notation: n = r p + 1
 - $\circ \ pivot = A[p]$ (Hoare)
 - $\circ \ pivot = A[r]$ (Lomuto)
- ullet # of element exchanges: e(n)
 - \circ Hoare: $0 \geq e(n) \geq \lfloor \frac{n}{2} \rfloor$
 - lacksquare Best: k=1 with $i_1=j_1=p$ (i.e., $A[p+1\dots r]>pivot$)
 - $lacksymbol{lack}$ Worst: $A[p+1\dots p+\lfloor rac{n}{2}
 floor-1] \geq pivot \geq A[p+\lceil rac{n}{2}
 ceil \dots r]$
 - \circ Lomuto : $1 \leq e(n) \leq n$
 - $lacksquare \mathsf{Best:}\, A[p\dots r-1] > pivot$
 - $lacksquare Worst: A[p\dots r-1] \leq pivot$

Comparison of Hoare's & Lomuto's Algorithms

- ullet # of element comparisons: $c_e(n)$
 - \circ Hoare: $n+1 \leq c_e(n) \leq n+2$
 - lacksquare Best: $i_k=j_k$
 - Worst: $i_k = j_k + 1$
 - \circ Lomuto: $c_e(n) = n-1$
- ullet # of index comparisons: $c_i(n)$
 - \circ Hoare: $1 \leq c_i(n) \leq \lfloor rac{n}{2}
 floor + 1 ert(c_i(n) = e(n) + 1)$
 - \circ Lomuto: $c_i(n) = n-1$

Comparison of Hoare's & Lomuto's Algorithms

- ullet # of index increment/decrement operations: a(n)
 - \circ Hoare: $n+1 \leq a(n) \leq n+2 | (a(n)=c_e(n)) |$
 - \circ Lomuto: $n \leq a(n) \leq 2n-1 | (a(n)=e(n)+(n-1)) |$
- Hoare's algorithm is in general faster
- ullet Hoare behaves better when pivot is repeated in $A[p\dots r]$
 - Hoare: Evenly distributes them between left & right regions
 - Lomuto: Puts all of them to the left region

Analysis of Quicksort

```
QUICKSORT (A, p, r)

if p < r then

q = H-PARTITION(A, p, r)

QUICKSORT(A, p, q)

QUICKSORT(A, q + 1, r)

endif
```

Initial invocation: QUICKSORT(A,1,n)

Assume all elements are distinct in the following analysis

Analysis of Quicksort

- ullet H-PARTITION always chooses A[p] (the first element) as the pivot.
- ullet The runtime of **QUICKSORT** on an already-sorted array is $\Theta(n^2)$

Example: An Already Sorted Array

Partitioning always leads to 2 parts of size 1 and n-1

Worst Case Analysis of Quicksort

- Worst case is when the PARTITION algorithm always returns imbalanced partitions (of size 1 and n-1) in every recursive call.
 - This happens when the pivot is selected to be either the min or max element.
 - This happens for H-PARTITION when the input array is already sorted or reverse sorted

$$T(n) = T(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n2)$$

Worst Case Recursion Tree

$$T(n) = T(1) + T(n-1) + cn$$

Best Case Analysis (for intuition only)

• If we're extremely lucky, H-PARTITION splits the array evenly at every recursive call

$$T(n) = 2T(n/2) + \Theta(n) \ = \Theta(nlgn)$$

(same as merge sort)

• Instead of splitting 0.5:0.5, if we split 0.1:0.9 then we need solve following equation.

$$T(n) = T(n/10) + T(9n/10) + \Theta(n) = \Theta(nlgn)$$

"Almost-Best" Case Analysis

- We have seen that if **H-PARTITION** always splits the array with 0.1-to-0.9 ratio, the runtime will be $\Theta(nlgn)$.
- Same is true with a split ratio of 0.01 to 0.99, etc.
- Possible to show that if the split has always constant $(\Theta(1))$ proportionality, then the runtime will be $\Theta(nlgn)$.
- In other words, for a **constant** $\alpha | (0 < \alpha \le 0.5)$:
 - $\circ \; lpha \! \! to \! \! (1-lpha)$ proportional split yields $\Theta(nlgn)$ total runtime

- In the rest of the analysis, assume that all input permutations are equally likely.
 - This is only to gain some intuition
 - We cannot make this assumption for average case analysis
 - We will revisit this assumption later
- Also, assume that all input elements are distinct.

• Question: What is the probability that H-PARTITION returns a split that is more balanced than 0.1-to-0.9?

Reminder: H-PARTITION will place the pivot in the right partition unless the pivot is the smallest element in the arrays.

Question: If the pivot selected is the mth smallest value $(1 < m \le n)$ in the input array, what is the size of the left region after partitioning?

- Question: What is the probability that the pivot selected is the m^{th} smallest value in the array of size n?
 - $\circ 1/n$ (since all input permutations are equally likely)
- Question: What is the probability that the left partition returned by H-PARTITION has size m, where 1 < m < n?
 - $\circ \ 1/n$ (due to the answers to the previous 2 questions)

CE100 Algorithms and Programming II Balanced Partitioning

 Question: What is the probability that H-PARTITION returns a split that is more balanced than 0.1 - to - 0.9?

The partition boundary will be in this region for a more balanced split than

$$0.1 - to - 0.9$$

$$Probability = \sum_{q=0.1n+1}^{0.9n-1} rac{1}{n} = rac{1}{n}(0.9n-1-0.1n-1+1)$$

$$=0.8-\frac{1}{n}$$

 ≈ 0.8 for large n

- The probability that **H-PARTITION** yields a split that is more balanced than 0.1-to-0.9 is 80% on a random array.
- Let $P_{\alpha>}$ be the probability that **H-PARTITION** yields a split more balanced than $\alpha-to-(1-lpha)$, where $0<lpha\leq 0.5$
- Repeat the analysis to generalize the previous result

ce100 Algorithal anced than lpha-to-(1-lpha)?

The partition boundary will be in this region for a more balanced split than

$$\alpha n - to - (1 - \alpha)n$$

$$Probability = \sum_{q=lpha n+1}^{(1-lpha)n-1} rac{1}{n} \ = rac{1}{n}((1-lpha)n-1-lpha n-1+1)$$

- ullet We found $P_{lpha>}=1-2lpha$
 - $_{\circ}\,$ Ex: $P_{0.1>}=0.8$ and $P_{0.01>}=0.98$
- Hence, **H-PARTITION** produces a split
 - more balanced than a
 - lacksquare 0.1-to-0.9 split 80% of the time
 - 0.01-to-0.99 split 98% of the time
 - less balanced than a
 - 0.1-to-0.9 split 20% of the time
 - 0.01-to-0.99 split 2% of the time

- Assumption: All permutations are equally likely
 - Only for intuition; we'll revisit this assumption later
- Unlikely: Splits always the same way at every level
- Expectation:
 - Some splits will be reasonably balanced
 - Some splits will be fairly unbalanced
- Average case: A mix of good and bad splits
 - Good and bad splits distributed randomly thru the tree

- Assume for intuition: Good and bad splits occur in the alternate levels of the tree
 - Good split: Best case split
 - Bad split: Worst case split

Compare 2-successive levels of avg case vs. 1 level of best case

- In terms of the remaining subproblems, **two levels of avg case** is slightly better than the **single level of the best case**
- The avg case has **extra divide cost of** $\Theta(n)$ at alternate levels
- The extra divide cost $\Theta(n)$ of bad splits absorbed into the $\Theta(n)$ of good splits.
- ullet Running time is still $\Theta(nlgn)$
 - But, slightly larger hidden constants, because the height of the recursion tree is about twice of that of best case.

- Another way of looking at it:
 - Suppose we alternate lucky, unlucky, lucky, unlucky, ...
 - We can write the recurrence as:
 - $L(n) = 2U(n/2) + \Theta(n)$ lucky split (best)
 - $lacksquare U(n) = L(n-1) + \Theta(n)$ unlucky split (worst)
 - Solving:

$$egin{aligned} L(n) &= 2(L(n/2-1) + \Theta(n/2)) + \Theta(n) \ &= 2L(n/2-1) + \Theta(n) \ &= \Theta(nlgn) \end{aligned}$$

How can we make sure we are usually lucky for all inputs?

• Worst case: Unbalanced split at every recursive call

$$T(n) = T(1) + T(n-1) + \Theta(n)$$
 $T(n) = \Theta(n2)$

• Best case: Balanced split at every recursive call (extremely lucky)

$$T(n) = 2T(n/2) + \Theta(n)$$
 $T(n) = \Theta(nlgn)$

• Almost-best case: Almost-balanced split at every recursive call

$$T(n) = T(n/10) + T(9n/10) + \Theta(n)$$
 or $T(n) = T(n/100) + T(99n/100) + \Theta(n)$ or $T(n) = T(\alpha n) + T((1 - \alpha n) + \Theta(n)$

for any constant $lpha, 0 < lpha \leq 0.5$

- For a random input array, the probability of having a split
 - \circ more balanced than 0.1–to–0.9:80%
 - \circ more balanced than 0.01–to–0.99:98%
 - \circ more balanced than lpha to (1-lpha): 1 2lpha for any constant $lpha, 0 < lpha \le 0.5$

- Avg case intuition: Different splits expected at different levels
 - some balanced (good), some unbalanced (bad)
- Avg case intuition: Assume the good and bad splits alternate
 - i.e. good split -> bad split -> good split -> ...
 - $\circ \ T(n) = \Theta(nlgn)$
 - (informal analysis for intuition)

Randomized Quicksort

- In the avg-case analysis, we assumed that all permutations of the input array are equally likely.
 - But, this assumption does not always hold
 - e.g. What if all the input arrays are reverse sorted?
 - Always worst-case behavior
- Ideally, the avg-case runtime should be independent of the input permutation.
- Randomness should be within the algorithm, not based on the distribution of the inputs.
 - i.e. The avg case should hold for all possible inputs

Randomized Algorithms

- Alternative to assuming a uniform distribution:
 - Impose a uniform distribution
 - o e.g. Choose a random pivot rather than the first element
- Typically useful when:
 - there are many ways that an algorithm can proceed
 - o but, it's difficult to determine a way that is always guaranteed to be good.
 - o If there are many good alternatives; simply choose one randomly.

Randomized Algorithms

- Ideally:
 - Runtime should be independent of the specific inputs
 - No specific input should cause worst-case behavior
 - Worst-case should be determined only by output of a random number generator.

Randomized Quicksort

• Using Hoare's partitioning algorithm:

```
R-QUICKSORT(A, p, r)
if p < r then
  q = R-PARTITION(A, p, r)
  R-QUICKSORT(A, p, q)
  R-QUICKSORT(A, q+1, r)</pre>
```

```
R-PARTITION(A, p, r)
s = RANDOM(p, r)
exchange A[p] with A[s]
return H-PARTITION(A, p, r)
```

- Alternatively, permuting the whole array would also work
 - but, would be more difficult to analyze

Randomized Quicksort

• Using Lomuto's partitioning algorithm:

```
R-QUICKSORT(A, p, r)
if p < r then
  q = R-PARTITION(A, p, r)
  R-QUICKSORT(A, p, q-1)
  R-QUICKSORT(A, q+1, r)</pre>
```

```
R-PARTITION(A, p, r)
s = RANDOM(p, r)
exchange A[r] with A[s]
return L-PARTITION(A, p, r)
```

- Alternatively, permuting the whole array would also work
 - o but, would be more difficult to analyze

Notations for Formal Analysis

- ullet Assume all elements in $A[p\dots r]$ are distinct
 - \circ Let n=r–p+1
- ullet Let $rank(x) = |A[i]: p \leq i \leq r ext{ and } A[i] \leq x|$
- ullet i.e. rank(x) is the number of array elements with value less than or equal to x
 - $\circ A = \{5, 9, 7, 6, 8, 1, 4\}$
 - p = 5, r = 4
 - $\circ rank(5) = 3$
 - i.e. it is the 3^{rd} smallest element in the array

Formal Analysis for Average Case

- The following analysis will be for **Quicksort** using **Hoare's** partitioning algorithm.
- ullet Reminder: The pivot is selected randomly and exchanged with A[p] before calling H-PARTITION
- Let x be the random pivot chosen.
- ullet What is the probability that rank(x)=i for $i=1,2,\ldots n$?

$$P(rank(x) = i) = 1/n$$

Various Outcomes of H-PARTITION

- ullet Assume that rank(x)=1
 - i.e. the random pivot chosen is the smallest element
 - \circ What will be the size of the left partition (|L|)?
 - \circ Reminder: Only the elements less than or equal to x will be in the left partition.

$$p=2, r=4 \ pivot=x=2$$

CE100 Various Outcomes of H-PARTITION

- ullet Assume that rank(x)>1
 - o i.e. the random pivot chosen is not the smallest element
 - \circ What will be the size of the left partition (|L|)?
 - \circ Reminder: Only the elements less than or equal to x will be in the left partition.
 - \circ Reminder: The pivot will stay in the right region after H-PARTITION if rank(x)>1

$$A = \{ \overbrace{2}^p, 4$$
 , $7, 6, 8, \overbrace{5}^{pivot}, \overbrace{9}^r \}$ $\Longrightarrow |L| = rank(x) - 1$

$$egin{aligned} p=2, r=4 \ pivot=x=5 \end{aligned}$$

RTEU CE100 Week-3

TODO: convert to image...S6_P10

Various Outcomes of H-PARTITION - Summary

- $\bullet x: pivot$
- |L| : size of left region
- $P(rank(x) = i) = 1/n \text{ for } 1 \leq i \leq n$
 - $\circ ext{ if } rank(x) = 1 ext{ then } |L| = 1$
 - $\circ ext{ if } rank(x) > 1 ext{ then } |L| = rank(x) 1$
- P(|L| = 1) = P(rank(x) = 1) + P(rank(x) = 2)
 - $| \circ P(|L|=1)=2/n$
- P(|L| = i) = P(rank(x) = i + 1) for 1 < i < n
 - P(|L| = i) = 1/n for 1 < i < n

Various Outcomes of H-PARTITION - Summary

CE100 Average regrease Analysis: Recurrence

$$x = pivot$$

$$T(n) = rac{1}{n}(T(1) + t(n-1)) \qquad rank:1 \ + rac{1}{n}(T(1) + t(n-1)) \qquad rank:2 \ + rac{1}{n}(T(2) + t(n-2)) \qquad rank:3 \ dots \qquad dots \qquad dots \ + rac{1}{n}(T(i) + t(n-i)) \qquad rank:i+1 \ dots \ + rac{1}{n}(T(n-1) + t(1)) \qquad rank:n \ + \Theta(n)$$

Recurrence

$$T(n) = rac{1}{n} \sum_{q=1}^{n-1} (T(q) + T(n-q)) + rac{1}{n} (T(1) + T(n-1)) + \Theta(n)$$
 $ext{Note: } rac{1}{n} (T(1) + T(n-1)) = rac{1}{n} (\Theta(1) + O(n^2)) = O(n)$
 $T(n) = rac{1}{n} \sum_{q=1}^{n-1} (T(q) + T(n-q)) + \Theta(n)$

for $k=1,2,\ldots,n-1$ each term T(k) appears twice once for q=k and once for q=n-k

$$T(n)=rac{2}{n}\sum_{k=1}^{n-1}T(k)+\Theta(n)$$

Solving Recurrence: Substitution

- Guess: T(n) = O(nlgn)
- $T(k) \leq aklgk$ for k < n, for some constant a > 0

$$egin{align} T(n) &= rac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n) \ &\leq rac{2}{n} \sum_{k=1}^{n-1} aklgk + \Theta(n) \ &\leq rac{2a}{n} \sum_{k=1}^{n-1} klgk + \Theta(n) \end{aligned}$$

ullet Need a tight bound for $\sum klgk$

Tight bound for $\sum klgk$

Bounding the terms

$$0.5 \sum_{k=1}^{n-1} klgk \leq \sum_{k=1}^{n-1} nlgn = n(n-1)lgn \leq n^2 lgn$$

This bound is not strong enough because

$$\circ \ T(n) \leq rac{2a}{n} n^2 lgn + \Theta(n)$$

$$\circ = 2anlgn + \Theta(n) \Longrightarrow$$
 couldn't prove $T(n) \leq anlgn$

Tight bound for $\sum klgk$

- Splitting summations: ignore ceilings for simplicity
- $ullet \sum_{k=1}^{n-1} k lgk \leq \sum_{k=1}^{n/2-1} k lgk + \sum_{k=n/2}^{n-1} k lgk$
 - \circ First summation: lgk < lg(n/2) = lgn 1
 - \circ Second summation: lgk < lgn

Splitting:
$$\sum_{k=1}^{n-1} klgk \leq \sum_{k=1}^{n/2-1} klgk + \sum_{k=n/2}^{n-1} klgk$$

$$ullet \sum_{k=1}^{n-1} k l g k \leq (l g (n-1)) \sum_{k=1}^{n/2-1} k + l g n \sum_{k=n/2}^{n-1} k$$

$$0 = lgn \sum_{k=1}^{n-1} k - \sum_{k=1}^{n/2-1} k$$

$$o = \frac{1}{2}n(n-1)lgn - \frac{1}{2}\frac{n}{2}(\frac{n}{2}-1)$$

$$0 = rac{1}{2}n^2lgn - rac{1}{8}n^2 - rac{1}{2}n(lgn - 1/2)$$

•
$$\sum_{k=1}^{n-1} k lgk \leq rac{1}{2} n^2 lgn - rac{1}{8} n^2$$
 for $lgn \geq 1/2 \Longrightarrow n \geq \sqrt{2}$

Substituting: -
$$\sum_{k=1}^{n-1} k lgk \leq rac{1}{2} n^2 lgn - rac{1}{8} n^2$$

$$egin{align} T(n) &\leq rac{2a}{n} \sum_{k=1}^{n-1} k l g k + \Theta(n) \ &\leq rac{2a}{n} (rac{1}{2} n^2 l g n - rac{1}{8} n^2) + \Theta(n) \ &= a n l g n - (rac{a}{4} n - \Theta(n)) \end{aligned}$$

ullet We can choose a large enough so that $rac{a}{4}n \geq \Theta(n)$

$$T(n) \leq anlgn \ T(n) = O(nlgn)$$

Q.E.D.

References

Introduction to Algorithms, Third Edition | The MIT Press

http://nabil.abubaker.bilkent.edu.tr/473/

TODO