Homework 5: Relations

- 1. R and S are reflexive relations on a set A
 - a. R∪S is reflexive true
 - i. Let x be an element in the set A $(x \in A)$.
 - ii. If R is reflexive, then all $(x,x) \in R$ will also be contained in R \cup S. The same applies for S.
 - iii. Therefore, R ∪ S is reflexive.
 - b. $R \cap S$ is reflexive true
 - i. Let x be an element in the set A $(x \in A)$.
 - ii. If R and S are reflexive, then $(x,x) \in R$ and $(x,x) \in S$ for every element x in the set A. As a result, (x,x) will be contained in $R \cap S$.
 - iii. Therefore, $R \cap S$ is reflexive.
 - c. R S is reflexive false
 - i. Counterexample:
 - ii. Let the sets R and S be equal (R = S).
 - iii. $R S = \emptyset$, which is not reflexive, since there are no elements.
 - iv. Therefore, R S is not reflexive.
 - d. RoSis reflexive true
 - i. Let x be an element in the set A $(x \in A)$.
 - ii. $(a, c) \in R$ o S if there exists a $b \in A$ such that $(a, b) \in S$ and $(b, c) \in R$
 - iii. If R and S are reflexive, then a = b = c = x satisfy $(x, x) \in S$ and $(x, x) \in R$.
 - iv. Therefore, $(x, x) \in R$ o S, and R o S is reflexive.
- 2. The set R on a set A is reflexive if and only if R⁻¹ is reflexive.
 - a. Let x be an element in the set A $(x \in A)$.
 - b. If R is reflexive, then $(x,x) \in R$ for every element x in A. Taking the inverse of $(x,x) \in R$ yields $(x,x) \in R^{-1}$. The elements of R match R^{-1} , so R^{-1} is reflexive.
 - c. If R^{-1} is reflexive, then $(x,x) \in R^{-1}$ for every element x in A. Taking the inverse of $(x,x) \in R^{-1}$ yields $(x,x) \in R$. The elements of R^{-1} match R, so R is reflexive.
 - d. Therefore, the set R on a set A is reflexive if and only if R⁻¹ is reflexive.
- 3. Use the directed graph for R to obtain the directed graph for
 - $\bar{R} = \{ (a, b) \in A \times A \mid (a, b) \notin R \}$
 - a. You can obtain the directed graph of \bar{R} by adding all missing edges and removing all original edges from the directed graph of R.

- 4. Give a poset that has:
 - a. a minimal element but no maximal element
 - i. All positive integers
 - ii. (Z⁺, ≤)
 - b. a maximal element but no minimal element
 - i. All negative integers
 - ii. (Z⁻, ≤)
 - c. neither a minimal element nor a maximal element
 - i. All integers
 - ii. (Z, ≤)
- 5. Must a finite nonempty poset have a maximal element?
 - a. True.
 - b. Let R be a finite nonempty poset and let x be an element in set R. $(x \in R)$
 - c. If x is the only element in set R, then x must be the maximum (and minimum) element.
 - d. If there is more than one element, suppose there is an element y in set R, and assume that x is the maximal element.
 - e. If x > y, then x remains the maximal element. If y > x, then we set the value for y to be the new maximal element. We can repeat this process for every element in the poset R. Since R is finite, there will eventually be a distinct value for x, which is your maximal element.
 - f. Therefore, there will always be a maximal element in a finite nonempty poset.