Reconf. Embedded Systems

Projekt: Cache Controller Moritz Nöltner-Augustin, Tim Schneider, Dennis Sebastian Rieber

- Einleitung
 - Ausgangssituation und Ziel
- Grundlagen
 - Direct Mapped Cache
 - AHB
 - Memory Controller
- Realisierung
 - Allgemeines Design
 - Read FSM
 - Write FSM
 - Register
 - Integration
- Fazit

Ausgangssituation

Zielsystem

- Einleitung
 - Ausgangssituation und Problemstellung
- Grundlagen
 - Direct Mapped Cache
 - AHB
 - Memory Controller
- Realisierung
 - Allgemeines Design
 - Read FSM
 - Write FSM
 - Register
 - Integration
- Fazit

Direct Mapped Cache

AHB - Lite Architecture

Figure 1-1 AHB-Lite block diagram

AHB - Lite

Memory Controller

DRAM Cache Controller

- Einleitung
 - Ausgangssituation und Problemstellung
- Grundlagen
 - Direct Mapped Cache
 - AHB
 - Memory Controller
- Realisierung
 - Allgemeines Design
 - Read FSM
 - Write FSM
 - Register
 - Integration
- Fazit

Realisierung – Allgemeines Design

- Gesamtkapazität: 4kByte
- Cacheline: 8 Wörter á 32 Bit = 32 Bytes
 - 128 Cachelines
 - Tag: 12 Bits
 - Flags: Invalid (Wird am Anfang gesetzt, oder wenn der Prozessor den Cache anweist, [eine] Cachezeile[n] zu invalidieren, oder Reset)
- Cache in Hardware: zwei getrennte Dual Port RAMS für TAG und Daten
- Logik aufgeteilt in zwei FSM
 - Read
 - Write
- Eigene Coherence durch mehrere Devices die den DRAM nutzen können

Read FSM

DRAM Cache Controller 12

Write FSM

Register

- Registersatz in bestehenden Integriert
- Invalidate Registerset (2 x 32bit)
 - Spezifizieren Addressrange
 - Werden von Cache auf 0xFFFFFF gesetzt wenn fertig
- Hit/Miss counter (2 x 32bit)
 - CPU read only
 - Counter-logik im cache-controller

Integration

- Cache auf Adressbereich gemappt
- Integration des Controllers in singleARM.vhd als component
- Hxxgen.vhd angepasst

- Einleitung
 - Ausgangssituation und Problemstellung
- Grundlagen
 - Direct Mapped Cache
 - AHB
 - Memory Controller
- Realisierung
 - Allgemeines Design
 - Read FSM
 - Write FSM
 - Register
 - Integration
- Fazit

Fazit – Was tut, was nicht?

- Cache Controller
- Integration in bestehende Architektur
- Erste Tests mit Software

- Noch keine Instruktionen über Cache
- Keine Invalidate Register
- Keine Hit/Miss Counter

Fazit – Was war das Problem

- Performante Realisierung schwerer als angenommen
 - Unterschiedliche Takte (100MHz vs. 50 MHz)
 - Zwei Interfaces mit gänzlich unterschiedlicher Funktionsweise
 - Nebenläufiges Lesen und Schreiben

25.07.2016

Quellen

• Bilder:

- Xilinx User Guide 388
- AMBA 3 AHB-Lite Protocol® v1.0 Specification
- Foliensatz res9.pdf, Dr. Kugel
- Vorlesungs Script PCA, Dr. Brüning

DRAM Cache Controller 19