Text Data in Business and Economics

Basel University – Autumn 2023

6. Machine Learning with Text

Outline

ML Essentials
Overview
Regression / Regularization
Binary Classification
Multi-Class Models

Ensemble Learning with XGBoos

What is machine learning?

Data

Answers

Machine

learning

Rules

- ► In classical computer programming, humans input the rules and the data, and the computer provides answers.
- ► In machine learning, humans input the data and the answers, and the computer learns the rules.

What do ML Algorithms do? Fit a function to data points

Figure 4-14. High-degree Polynomial Regression

What do ML Algorithms do? Minimize a cost function

➤ A typical cost function (or loss function) for regression problems is Mean Squared Error (MSE):

$$MSE(\theta) = \frac{1}{n_D} \sum_{i=1}^{n_D} (h(x_i; \theta) - y_i)^2$$

- \triangleright n_D , the number of rows/observations
- \triangleright x, the matrix of predictors, with row x_i
- \triangleright y, the vector of outcomes, with item y_i
- $h(x_i; \theta) = \hat{y}$ the model prediction (hypothesis)

The data (x, y) are taken as given, and the ML algorithm searches for parameters θ to minimize the cost function.

Linear Regression is Machine Learning

▶ Ordinary Least Squares Regression (OLS) assumes the functional form $f(x; \theta) = x_i'\theta$ and minimizes the mean squared error (MSE)

$$\min_{\hat{\theta}} \frac{1}{n_D} \sum_{i=1}^{n_D} (x_i' \hat{\theta} - y_i)^2$$

Linear Regression is Machine Learning

▶ Ordinary Least Squares Regression (OLS) assumes the functional form $f(x; \theta) = x_i'\theta$ and minimizes the mean squared error (MSE)

$$\min_{\hat{\theta}} \frac{1}{n_D} \sum_{i=1}^{n_D} (x_i' \hat{\theta} - y_i)^2$$

This minimand has a closed form solution

$$\hat{\theta} = (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{y}$$

 \blacktriangleright most machine learning models do **not** have a closed form solution \to use numerical optimization instead (gradient descent).

$$MSE(\theta) = \frac{1}{n_D} \sum_{i=1}^{n_D} (h(\theta; \boldsymbol{x}_i) - y_i)^2$$

► The partial derivative for feature *j* is

$$\frac{\partial \mathsf{MSE}}{\partial \theta_j} = \frac{2}{n_D} \sum_{i=1}^{n_D} (\underbrace{h(\theta; \mathbf{x}_i) - y_i}_{\mathsf{error for this obs}}) \underbrace{\frac{\partial h(\theta; \mathbf{x}_i)}{\partial \theta_j}}_{\mathsf{how } \theta_i \mathsf{ shifts } h(\cdot)}$$

ightharpoonup estimates how changing θ_i would reduce the error across the whole dataset.

$$MSE(\theta) = \frac{1}{n_D} \sum_{i=1}^{n_D} (h(\theta; \mathbf{x}_i) - y_i)^2$$

► The partial derivative for feature *j* is

$$\frac{\partial \mathsf{MSE}}{\partial \theta_j} = \frac{2}{n_D} \sum_{i=1}^{n_D} (\underbrace{h(\theta; \mathbf{x}_i) - y_i}_{\mathsf{error for this obs}}) \underbrace{\frac{\partial h(\theta; \mathbf{x}_i)}{\partial \theta_j}}_{\mathsf{how } \theta_j \mathsf{ shifts } h(\cdot)}$$

- ightharpoonup estimates how changing θ_i would reduce the error across the whole dataset.
- ▶ The *gradient* ∇ gives the vector of these partial derivatives for all features:

$$\nabla_{\theta}\mathsf{MSE} = \begin{bmatrix} \frac{\partial \mathsf{MSE}}{\partial \theta_1} \\ \frac{\partial \mathsf{MSE}}{\partial \theta_2} \\ \vdots \\ \frac{\partial \mathsf{MSE}}{\partial \theta_{n_x}} \end{bmatrix}$$

▶ **Gradient descent** nudges θ against the gradient (the direction that reduces MSE):

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} \mathsf{MSE}$$

 $ightharpoonup \eta = \text{learning rate}$

$$MSE(\theta) = \frac{1}{n_D} \sum_{i=1}^{n_D} (h(\theta; \mathbf{x}_i) - y_i)^2$$

► The partial derivative for feature *j* is

$$\frac{\partial \mathsf{MSE}}{\partial \theta_j} = \frac{2}{n_D} \sum_{i=1}^{n_D} (\underbrace{h(\theta; \mathbf{x}_i) - y_i}_{\mathsf{error for this obs}}) \underbrace{\frac{\partial h(\theta; \mathbf{x}_i)}{\partial \theta_j}}_{\mathsf{how } \theta_i \mathsf{ shifts } h(\cdot)}$$

- ightharpoonup estimates how changing θ_i would reduce the error across the whole dataset.
- ► The *gradient* ∇ gives the vector of these partial derivatives for all features:
- ▶ **Gradient descent** nudges θ against the gradient (the direction that reduces MSE):

 $\theta_{t+1} = \theta_t - \eta \nabla_{\theta} MSE$

$$abla_{ heta}^{ ext{MSE}} = egin{bmatrix} rac{\partial ext{MSE}}{\partial heta_1} \ rac{\partial ext{MSE}}{\partial heta_2} \ dots \ rac{\partial ext{MSE}}{\partial heta_{n_{ ext{x}}}} \ \end{bmatrix}$$

 $ightharpoonup \eta = \text{learning rate}$

If the cost function is convex, gradient descent is guaranteed to find the global minimum.

Machine Learning with Text Data

▶ We have a corpus (or dataset) D of $n_D \ge 1$ documents d_i (or data points).

Machine Learning with Text Data

- ▶ We have a corpus (or dataset) D of $n_D \ge 1$ documents d_i (or data points).
- **Each** document *i* has an associated outcome or label \mathbf{y}_i with dimensions $n_y \geq 1$

Machine Learning with Text Data

- ▶ We have a corpus (or dataset) D of $n_D \ge 1$ documents d_i (or data points).
- **Each** document i has an associated outcome or label y_i with dimensions $n_v \geq 1$
- lacktriangle Some documents are labeled and some are unlabeled ightarrow
 - lacktriangle we would like to learn a function $\hat{m{y}}(d_i)$ based on the labeled data ...
 - ... to machine-classify the unlabeled data.

First Problem

ightharpoonup Each document is a sequence of symbols d_i , while (standard) ML algorithms work on numbers.

First Problem

- **Each** document is a sequence of symbols d_i , while (standard) ML algorithms work on numbers.
- ► The solution: all the methods from previous lectures for extracting informative numerical information from documents:
 - style features
 - counts over dictionary patterns
 - tokens
 - n-grams
 - principal components
 - topic shares
 - etc.
- ▶ documents can thus be **featurized** represented as a matrix of vectors \mathbf{x} with $n_x \ge 1$ features.

Three Types of (Standard) Machine Learning Problems

Determined by the data type of the outcome variable (or label):

- **Binary classification**: two choices, normalized to zero and one.
 - e.g., guilty or innocent

Three Types of (Standard) Machine Learning Problems

Determined by the data type of the outcome variable (or label):

- **Binary classification**: two choices, normalized to zero and one.
 - e.g., guilty or innocent
- ▶ **Regression**: a one-dimensional, continuous, real-valued outcome.
 - e.g., number of days of prison assigned

Three Types of (Standard) Machine Learning Problems

Determined by the data type of the outcome variable (or label):

- **Binary classification**: two choices, normalized to zero and one.
 - e.g., guilty or innocent
- ▶ **Regression**: a one-dimensional, continuous, real-valued outcome.
 - e.g., number of days of prison assigned
- ▶ Multinomial Classification: Three or more discrete, un-ordered outcomes.
 - e.g., predict what judge is assigned to a case: Alito, Breyer, or Cardozo

Loss functions, more generally

- ▶ The loss function $L(\hat{y}, y)$ assigns a score based on prediction and truth:
 - Should be bounded from below, with the minimum attained only for cases where the prediction is correct.
- ► The average loss for the test set is

$$\mathcal{L}(\theta) = \frac{1}{n_D} \sum_{i=1}^{n_D} L(h(\mathbf{x}_i; \theta), \mathbf{y}_i)$$

ightharpoonup The estimated parameter matrix θ solves

$$\hat{ heta} = rg \min_{ heta} \mathcal{L}(heta)$$

→ optimizes over parameter space; treats the data as constants.

Gradient Descent

- even when cost function is not convex (eg neural nets), gradient descent often gets decent results.
- **Stochastic** gradient descent (SGD) computes the gradient for a single randomly sampled instance (at each iteration).
 - Much faster, still works well.

Data Prep for Machine Learning

- ▶ Data Pre-Processing: See Geron Chapter 2 for pandas and sklearn syntax:
 - imputing missing values.
 - feature scaling (often helpful/necessary for ML models to work well)
 - ▶ if predictors are sparse (e.g. bag-of-words), use StandardScaler(with_mean=False).
 - encoding categorical variables.
 - Best practice: reproducible data pipeline.

Data Prep for Machine Learning

- ▶ Data Pre-Processing: See Geron Chapter 2 for pandas and sklearn syntax:
 - imputing missing values.
 - feature scaling (often helpful/necessary for ML models to work well)
 - ▶ if predictors are sparse (e.g. bag-of-words), use StandardScaler(with_mean=False).
 - encoding categorical variables.
 - Best practice: reproducible data pipeline.
- ► Train/Test Split:
 - ML models can achieve arbitrarily high accuracy in-sample, so performance should be evaluated out-of-sample.

Data Prep for Machine Learning

- ▶ Data Pre-Processing: See Geron Chapter 2 for pandas and sklearn syntax:
 - imputing missing values.
 - feature scaling (often helpful/necessary for ML models to work well)
 - ▶ if predictors are sparse (e.g. bag-of-words), use StandardScaler(with_mean=False).
 - encoding categorical variables.
 - Best practice: reproducible data pipeline.
- ► Train/Test Split:
 - ML models can achieve arbitrarily high accuracy in-sample, so performance should be evaluated out-of-sample.
 - standard approach: randomly sample 80% training dataset to learn parameters, form predictions in 20% testing dataset for evaluating performance.

Use Cross-Validation During Model Training

- ► Within the training set:
 - Use cross-validation with grid search to get model performance metrics across subsets of data using different hyperparameter specs.
 - Find the best hyperparameters for out-of-fold prediction in the training set.
- ▶ Then evaluate model performance in the test set using these hyperparameters.

Model Evaluation in Test Set

Evaluating a "good" model is context-dependent. Here are some basics.

Regression:

- mean squared error (MSE)
- ▶ R-squared (same ranking as MSE, but units are more interpretable)
- ▶ mean absolute error (MAE, $\sum |\hat{y}(\theta) y|$) is less sensitive to outliers.

Model Evaluation in Test Set

Evaluating a "good" model is context-dependent. Here are some basics.

Regression:

- mean squared error (MSE)
- ▶ R-squared (same ranking as MSE, but units are more interpretable)
- ▶ mean absolute error (MAE, $\sum |\hat{y}(\theta) y|$) is less sensitive to outliers.

Classification:

more complicated, but accuracy is a good baseline: accuracy = (# correct test-set predictions) / (# of test-set observations)

Model Evaluation in Test Set

Evaluating a "good" model is context-dependent. Here are some basics.

Regression:

- mean squared error (MSE)
- R-squared (same ranking as MSE, but units are more interpretable)
- ▶ mean absolute error (MAE, $\sum |\hat{y}(\theta) y|$) is less sensitive to outliers.

Classification:

- more complicated, but accuracy is a good baseline: accuracy = (# correct test-set predictions) / (# of test-set observations)
- ▶ What if one of the outcomes is over-represented e.g., 19 out of 20? Then I can guess the modal class and get 95% accuracy.
 - Some alternative classifier metrics designed to address class imbalance (more below).

Regression models ↔ Continuous outcome

- ► If the outcome is continuous (e.g., Y = tax revenues collected, or criminal sentence imposed in months of prison):
 - Need a regression model.
- Problems with OLS:
 - tends to over-fit training data.
 - cannot handle multicollinearity.

Regression models ↔ Continuous outcome

- ► If the outcome is continuous (e.g., Y = tax revenues collected, or criminal sentence imposed in months of prison):
 - Need a regression model.
- Problems with OLS:
 - tends to over-fit training data.
 - cannot handle multicollinearity.

▶ *Regularization*: model training methods designed to reduce/prevent over-fitting.

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{n_D} \sum_{i=1}^{n_D} L(h(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i) + \lambda R(\boldsymbol{\theta})$$

- \triangleright $R(\theta)$ is a "regularization function" or "regularizer", designed to reduce over-fitting.
- \triangleright λ is a hyperparameter where higher values increase regularization.

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{n_D} \sum_{i=1}^{n_D} L(h(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i) + \lambda R(\boldsymbol{\theta})$$

- \triangleright $R(\theta)$ is a "regularization function" or "regularizer", designed to reduce over-fitting.
- $ightharpoonup \lambda$ is a hyperparameter where higher values increase regularization.

In particular:

► "Lasso" (or L1) penalty:

$$R_1 = \left\|\theta\right\|_1 = \sum_{i=1}^{n_x} \left|\theta_i\right|$$

shrinks coefficents toward zero. automatically performs feature selection and outputs a sparse model.

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{n_D} \sum_{i=1}^{n_D} L(h(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i) + \lambda R(\boldsymbol{\theta})$$

- \triangleright $R(\theta)$ is a "regularization function" or "regularizer", designed to reduce over-fitting.
- $ightharpoonup \lambda$ is a hyperparameter where higher values increase regularization.

In particular:

► "Lasso" (or L1) penalty:

$$R_1 = \left\|\theta\right\|_1 = \sum_{j=1}^{n_x} |\theta_j|$$

- shrinks coefficents toward zero. automatically performs feature selection and outputs a sparse model.
- "Ridge" (or L2) penalty:

$$R_2 = \|\theta\|_2^2 = \sum_{j=1}^{n_x} (\theta_j)^2$$

shrinks coefficients toward zero and helps select between collinear predictors.

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{n_D} \sum_{i=1}^{n_D} L(h(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i) + \lambda R(\boldsymbol{\theta})$$

- \triangleright $R(\theta)$ is a "regularization function" or "regularizer", designed to reduce over-fitting.
- $ightharpoonup \lambda$ is a hyperparameter where higher values increase regularization.

In particular:

► "Lasso" (or L1) penalty:

$$R_1 = \|\theta\|_1 = \sum_{i=1}^{n_{\chi}} |\theta_i|$$

- shrinks coefficents toward zero. automatically performs feature selection and outputs a sparse model.
- "Ridge" (or L2) penalty:

$$R_2 = \|\theta\|_2^2 = \sum_{i=1}^{n_x} (\theta_i)^2$$

- shrinks coefficients toward zero and helps select between collinear predictors.
- ▶ Elastic Net: $R_{\text{enet}} = \lambda_1 R_1 + \lambda_2 R_2$

Binary Outcome ↔ Binary Classification

- ▶ Binary classifiers try to match a boolean outcome $y \in \{0, 1\}$.
 - ▶ The standard approach is to apply a transformation (e.g. sigmoid/logit) to normalize $\hat{y} \in [0, 1]$.
 - ▶ Prediction rule is 0 for $\hat{y} < .5$ and 1 otherwise.

Binary Outcome ↔ Binary Classification

- ▶ Binary classifiers try to match a boolean outcome $y \in \{0,1\}$.
 - ▶ The standard approach is to apply a transformation (e.g. sigmoid/logit) to normalize $\hat{y} \in [0, 1]$.
 - ▶ Prediction rule is 0 for \hat{y} < .5 and 1 otherwise.
- ► The binary cross-entropy (or log loss) is:

$$L(\theta) = \underbrace{-\frac{1}{n_D}}_{\text{negative}} \sum_{i=1}^{n_D} \underbrace{\left[\underbrace{y_i}_{y_i=1} \underbrace{\log(\hat{y}_i)}_{\log \text{prob}y_i=1} + \underbrace{(1-y_i)}_{y_i=0} \underbrace{\log(1-\hat{y}_i)}_{\log \text{prob}y_i=0} \right]}_{\text{log prob}y_i=0}$$

▶ In **logistic regression** we use a sigmoid transformation:

$$\hat{y} = \operatorname{sigmoid}(\mathbf{x} \cdot \theta) = \frac{1}{1 + \exp(-\mathbf{x} \cdot \theta)}$$

▶ In **logistic regression** we use a sigmoid transformation:

$$\hat{y} = \operatorname{sigmoid}(\mathbf{x} \cdot \mathbf{\theta}) = \frac{1}{1 + \exp(-\mathbf{x} \cdot \mathbf{\theta})}$$

Plugging into the binary-cross entropy loss gives the logistic regression cost objective:

$$\min_{\theta} \sum_{i=1}^{n_D} -y_i \log(\operatorname{sigmoid}(\boldsymbol{x}_i \cdot \theta)) - [1-y_i] \log(1-\operatorname{sigmoid}(\boldsymbol{x}_i \cdot \theta))$$

does not have a closed form solution, but it is convex (guaranteeing that gradient descent will find the global minimum). ▶ In **logistic regression** we use a sigmoid transformation:

$$\hat{y} = \mathsf{sigmoid}(\pmb{x} \cdot \theta) = \frac{1}{1 + \exp(-\pmb{x} \cdot \theta)}$$

Plugging into the binary-cross entropy loss gives the logistic regression cost objective:

$$\min_{\theta} \sum_{i=1}^{n_D} -y_i \log(\operatorname{sigmoid}(\boldsymbol{x}_i \cdot \theta)) - [1-y_i] \log(1-\operatorname{sigmoid}(\boldsymbol{x}_i \cdot \theta))$$

- does not have a closed form solution, but it is convex (guaranteeing that gradient descent will find the global minimum).
- ► The gradient for one data point is

$$\frac{\partial L(\theta)}{\partial \theta_j} = (\underbrace{\operatorname{sigmoid}(\mathbf{x}_i \cdot \theta) - y_i}_{\text{error for obs } i}) \underbrace{x_i^j}_{\text{input } j}$$

▶ In **logistic regression** we use a sigmoid transformation:

$$\hat{y} = \operatorname{sigmoid}(\mathbf{x} \cdot \theta) = \frac{1}{1 + \exp(-\mathbf{x} \cdot \theta)}$$

▶ Plugging into the binary-cross entropy loss gives the logistic regression cost objective:

$$\min_{\theta} \sum_{i=1}^{n_D} -y_i \log(\operatorname{sigmoid}(\boldsymbol{x}_i \cdot \theta)) - [1-y_i] \log(1-\operatorname{sigmoid}(\boldsymbol{x}_i \cdot \theta))$$

- does not have a closed form solution, but it is convex (guaranteeing that gradient descent will find the global minimum).
- ► The gradient for one data point is

$$\frac{\partial L(\theta)}{\partial \theta_j} = \underbrace{\left(\underset{\text{error for obs } i}{\text{sigmoid}(\mathbf{x}_i \cdot \theta) - y_i}\right)}_{\text{input } j} \underbrace{x_i^j}_{\text{input } j}$$

▶ Like linear regression, logistic regression can be regularized with L1 or L2 penalties.

		Predicted Class		
		Negative	Positive	
2*True Class	Negative	# True Negatives	# False Positives	
	Positive	# False Negatives	# True Positives	

► Cell values give counts in the test set.

		Predicted Class		
		Negative	Positive	
2*True Class	Negative	# True Negatives	# False Positives	
	Positive	# False Negatives	# True Positives	

► Cell values give counts in the test set.

$$\mbox{Accuracy} = \frac{\mbox{True Positives} + \mbox{True Negatives}}{\mbox{True Positives} + \mbox{False Positives} + \mbox{False Negatives} + \mbox{True Negatives}}$$

		Predicted Class		
		Negative	Positive	
2*True Class	Negative	# True Negatives	# False Positives	
	Positive	# False Negatives	# True Positives	

Cell values give counts in the test set.

$$\label{eq:accuracy} \begin{aligned} \mathsf{Accuracy} &= \frac{\mathsf{True}\;\mathsf{Positives}\;+\;\mathsf{True}\;\mathsf{Negatives}}{\mathsf{True}\;\mathsf{Positives}\;+\;\mathsf{False}\;\mathsf{Positives}\;+\;\mathsf{False}\;\mathsf{Negatives}\;+\;\mathsf{True}\;\mathsf{Negatives}} \\ \mathsf{Precision}\;(\mathsf{for}\;\mathsf{positive}\;\mathsf{class}) &= \frac{\mathsf{True}\;\mathsf{Positives}}{\mathsf{True}\;\mathsf{Positives}\;+\;\mathsf{False}\;\mathsf{Positives}} \end{aligned}$$

▶ Precision decreases with false positives. "When I guess this outcome, I tend to guesses correctly."

		Predicted Class		
		Negative	Positive	
2*True Class	Negative	# True Negatives	# False Positives	
	Positive	# False Negatives	# True Positives	

Cell values give counts in the test set.

$$\label{eq:accuracy} \begin{aligned} \mathsf{Accuracy} &= \frac{\mathsf{True}\;\mathsf{Positives}\;+\;\mathsf{True}\;\mathsf{Negatives}}{\mathsf{True}\;\mathsf{Positives}\;+\;\mathsf{False}\;\mathsf{Positives}\;+\;\mathsf{False}\;\mathsf{Negatives}\;+\;\mathsf{True}\;\mathsf{Negatives}} \\ \mathsf{Precision}\;(\mathsf{for}\;\mathsf{positive}\;\mathsf{class}) &= \frac{\mathsf{True}\;\mathsf{Positives}}{\mathsf{True}\;\mathsf{Positives}\;+\;\mathsf{False}\;\mathsf{Positives}} \end{aligned}$$

▶ Precision decreases with false positives. "When I guess this outcome, I tend to guesses correctly."

$$\mbox{Recall (for positive class)} = \frac{\mbox{True Positives}}{\mbox{True Positives} + \mbox{False Negatives}}$$

Recall decreases with false negatives. "When this outcome occurs, I don't miss it."

▶ If not (say 90% in one category), accuracy will be uninformative/misleading.

▶ If not (say 90% in one category), accuracy will be uninformative/misleading.

Balanced accuracy = the average recall in both classes:

Balanced Accuracy =
$$\frac{1}{2} \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP} \right)$$

ightharpoonup equal to accuracy when classes are balanced, or when performance is the same across classes.

▶ If not (say 90% in one category), accuracy will be uninformative/misleading.

Balanced accuracy = the average recall in both classes:

Balanced Accuracy =
$$\frac{1}{2} (\frac{TP}{TP + FN} + \frac{TN}{TN + FP})$$

ightharpoonup equal to accuracy when classes are balanced, or when performance is the same across classes.

 F_1 **score** = the harmonic mean of precision and recall:

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

penalizes both false positives and false negatives; still ignores true negatives.

▶ If not (say 90% in one category), accuracy will be uninformative/misleading.

Balanced accuracy = the average recall in both classes:

Balanced Accuracy =
$$\frac{1}{2} (\frac{TP}{TP + FN} + \frac{TN}{TN + FP})$$

ightharpoonup equal to accuracy when classes are balanced, or when performance is the same across classes.

 F_1 **score** = the harmonic mean of precision and recall:

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

penalizes both false positives and false negatives; still ignores true negatives.

AUC-ROC = Area Under the Receiver Operating Characteristic Curve

- provides an aggregate measure of performance across all possible classification thresholds.
- ▶ Interpretation: randomly sample one positive and one negative example. AUC = probability that the model correctly guesses which is which.

Evaluating Classification Models: Calibration Curves

- Plotting the binned fraction in a category (Y axis) against the predicted probability in a category (X axis):
- Provides evidence of whether the classifer is replicating the conditional distribution of the outcome.

Multiple Classes: Setup

▶ The outcome is $y_i \in \{1, ..., k, ..., n_y\}$ output classes, which can also be represented as a one-hot vector

$$\mathbf{y}_i = {\mathbf{1}[y_i = 1], ..., \mathbf{1}[y_i = n_y]}$$

Multiple Classes: Setup

▶ The outcome is $y_i \in \{1, ..., k, ..., n_y\}$ output classes, which can also be represented as a one-hot vector

$$\mathbf{y}_i = {\mathbf{1}[y_i = 1], ..., \mathbf{1}[y_i = n_y]}$$

▶ We want to learn a vector function

$$\mathbf{y} = \mathbf{h}(\mathbf{x}, \theta)$$

taking text features x as inputs and outputing a vector of probabilities across outcome classes:

$$\hat{\mathbf{y}} = \{\hat{y}^1, ..., \hat{y}^{n_y}\}, \sum_{k=1}^{n_y} \hat{y}^k = 1, \hat{y}^k \ge 0 \ \forall k$$

for prediction step, can select the highest-probability class:

$$\tilde{\mathbf{y}} = \arg\max_{\mathbf{k}} \hat{\mathbf{y}}_{[\mathbf{k}]}$$

Categorical Cross Entropy

▶ The standard loss function in multinomial classification is categorical cross entropy:

$$L(\theta) = -\sum_{k=1}^{n_y} \mathbf{y}^k \log(\hat{y}^k(\mathbf{x}, \theta))$$

measures dissimilarity between the true label distribution y and the predicted label distribution ŷ.

Categorical Cross Entropy

The standard loss function in multinomial classification is categorical cross entropy:

$$L(\theta) = -\sum_{k=1}^{n_y} \mathbf{y}^k \log(\hat{y}^k(\mathbf{x}, \theta))$$

- **•** measures dissimilarity between the true label distribution y and the predicted label distribution \hat{y} .
- ightharpoonup Since there is just one true class (y=1 for one class k^* , and zero for others), simplifies to

$$L(\theta) = -\log(\hat{y}^{k^*}(\boldsymbol{x}, \theta))$$

- Rewards putting higher probability on the true class, ignores distribution of probabilities on other classes.
- ► function is convex → gradient descent will find the optimum.

Multinomial Logistic Regression

Multinomial logistic regression computes probabilities for each class k using the softmax transformation

$$\hat{y}_k(\boldsymbol{x}_i) = \Pr(y_i = k) = \frac{\exp(\theta_k' \boldsymbol{x}_i)}{\sum_{l=1}^{n_y} \exp(\theta_l' \boldsymbol{x}_i)}$$

- **>** softmax is the multiclass generalization of sigmoid \rightarrow can then interpret \hat{y} as probabilities.
- ▶ n_x features and n_y output classes \rightarrow there is a $n_y \times n_x$ parameter matrix Θ , where the parameters for each class θ_k are stored as rows.

Multinomial Logistic Regression

Multinomial logistic regression computes probabilities for each class k using the softmax transformation

$$\hat{y}_k(\mathbf{x}_i) = \Pr(y_i = k) = \frac{\exp(\theta_k' \mathbf{x}_i)}{\sum_{l=1}^{n_y} \exp(\theta_l' \mathbf{x}_i)}$$

- ightharpoonup softmax is the multiclass generalization of sigmoid ightharpoonup can then interpret \hat{y} as probabilities.
- ▶ n_x features and n_y output classes \rightarrow there is a $n_y \times n_x$ parameter matrix Θ , where the parameters for each class θ_k are stored as rows.

The **L2-penalized logistic regression** has loss function

$$\mathcal{L}(\theta) = -\frac{1}{n_D} \sum_{i=1}^{n_D} \log \frac{\exp(\theta'_{k^*} \mathbf{x}_i)}{\sum_{l=1}^{n_y} \exp(\theta'_l \mathbf{x}_i)} + \lambda \sum_{j=1}^{n_x} \sum_{k=1}^{n_y} (\theta_{[j,k]})^2$$

- λ = strength of L2 penalty (could also add lasso penalty)
 - ▶ as before, predictors should be scaled to the same variance.

		Predicted Class		
		Class A Class B Clas		
3*True Class	Class A	Correct A	A, classed as B	A, classed as C
	Class B	B, classed as A	Correct B	B, classed as C
	Class C	C, classed as A	C, classed as B	Correct C

More generally, with **multi-class confusion matrix** M with items M_{ij} (row i, column j):

Precision for
$$k = \frac{\text{True Positives for } k}{\text{True Positives for } k + \text{False Positives for } k} = \frac{M_{kk}}{\sum_{l} M_{lk}}$$
Recall for $k = \frac{\text{True Positives for } k}{\text{True Positives for } k + \text{False Negatives for } k} = \frac{M_{kk}}{\sum_{l} M_{kl}}$

$$F_1(k) = 2 \times \frac{\operatorname{precision}(k) \times \operatorname{recall}(k)}{\operatorname{precision}(k) + \operatorname{recall}(k)}$$

		Predicted Class		
		Class A	Class B	Class C
3*True Class	Class A	Correct A	A, classed as B	A, classed as C
	Class B	B, classed as A	Correct B	B, classed as C
	Class C	C, classed as A	C, classed as B	Correct C

More generally, with **multi-class confusion matrix** M with items M_{ij} (row i, column j):

Precision for
$$k = \frac{\text{True Positives for } k}{\text{True Positives for } k + \text{False Positives for } k} = \frac{M_{kk}}{\sum_{l} M_{lk}}$$

$$\text{Recall for } k = \frac{\text{True Positives for } k}{\text{True Positives for } k + \text{False Negatives for } k} = \frac{M_{kk}}{\sum_{l} M_{kl}}$$

$$F_1(k) = 2 \times \frac{\operatorname{precision}(k) \times \operatorname{recall}(k)}{\operatorname{precision}(k) + \operatorname{recall}(k)}$$

Can average these metrics across classes to get aggregate metrics.

- e.g., balanced accuracy = unweighted average of recalls across classes.
- can weight classes by their frequency in dataset

Outline

ML Essentials
Overview
Regression / Regularization
Binary Classification
Multi-Class Models

Ensemble Learning with XGBoost

XGBoost: Overview

XGBoost Ingredients: Decision Trees

Bootstrap aggregating or Bagging is a ensemble meta-algorithm combining predictions from multipledecision trees through a majority voting mechanism

Models are built sequentially by minimizing the errors from previous models while increasing (or boosting) influence of high-performing models

Optimized Gradient Boosting algorithm through parallel processing, tree-pruning, handling missing values and regularization to avoid overfitting/bias

Decision Trees

Classification Tree

- Decision trees learn a series of binary splits in the data based on hard thresholds.
 - if yes, go right; if no, go left.
- ► Can have additional splits as you move through the tree.
- ▶ fast and interpretable, but performance is often poor.

Voting Classifiers

- voting classifiers (ensembles of different models that vote on the prediction) generally out-perform the best classifier in the ensemble.
 - more diverse algorithms will make different types of errors, and improve your ensemble's robustness.

XGBoost Ingredients: Bootstrapping

Bootstrap aggregating or Bagging is a ensemble meta-algorithm combining predictions from multipledecision trees through a majority voting mechanism

Models are built sequentially by minimizing the errors from previous models while increasing (or boosting) influence of high-performing models

Optimized Gradient Boosting algorithm through parallel processing, tree-pruning, handling missing values and regularization to avoid overfitting/bias

Bootstrapping

Rather than use the same data on different classifiers, one can use different subsets of the data on the same classifier:

can also use different subsets of features across subclassifiers.

Bootstrapping Benefits

- A bootstraped ensemble generally has a similar bias but lower variance than a single predictor trained on all the data.
- ▶ Predictors can be trained in parallel using separate CPU cores.

XGBoost Ingredients: Random Forests

Bootstrap aggregating or Bagging is a ensemble meta-algorithm combining predictions from multipledecision trees through a majority voting mechanism Models are built sequentially by minimizing the errors from previous models while increasing (or boosting) influence of high-performing models

Optimized Gradient Boosting algorithm through parallel processing, tree-pruning, handling missing values and regularization to avoid overfitting/bias

Random Forests are optimized ensembles of bootstrapped decision trees:

Random Forests are optimized ensembles of bootstrapped decision trees:

1. Each voting tree gets its own sample of data.

Random Forests are optimized ensembles of bootstrapped decision trees:

- 1. Each voting tree gets its own sample of data.
- 2. At each tree split, a random sample of features is drawn, only those features are considered for splitting.

Random Forests are optimized ensembles of bootstrapped decision trees:

- 1. Each voting tree gets its own sample of data.
- 2. At each tree split, a random sample of features is drawn, only those features are considered for splitting.
- 3. For each tree, error rate is computed using data outside its bootstrap sample.

XGBoost Ingredients: Gradient Boosting

Bootstrap aggregating or Bagging is a ensemble meta-algorithm combining predictions from multipledecision trees through a majority voting mechanism

Models are built sequentially by minimizing the errors from previous models while increasing (or boosting) influence of high-performing models Optimized Gradient Boosting algorithm through parallel processing, tree-pruning, handling missing values and regularization to avoid overfitting/bias

Gradient Boosting Machines

▶ Gradient boosting refers to an additive ensemble of trees:

Adds additional layers of trees to fit the residuals of the first layers

XGBoost Ingredients

Bootstrap aggregating or Bagging is a ensemble meta-algorithm combining predictions from multipledecision trees through a majority voting mechanism

Models are built sequentially by minimizing the errors from previous models while increasing (or boosting) influence of high-performing models Optimized Gradient Boosting algorithm through parallel processing, tree-pruning, handling missing values and regularization to avoid overfitting/bias

Boosting XGBoost Bagging Gradient Decision Random Boosting **Trees Forest** Bagging-based algorithm where only a subset of **Gradient Boosting** A graphical employs gradient representation of features are selected at descent algorithm to possible solutions to random to build a forest minimize errors in a decision based on or collection of decision sequential models certain conditions

trees

39 / 44

XGBoost

- ▶ Feurer et al (2018) find that XGBoost beats a sophisticated AutoML procedure with grid search over 15 classifiers and 18 data preprocessors.
- A good starting point for any machine learning task.
- easy to use
- actively developed
- efficient / parallelizable
- provides model explanations
- takes sparse matrices as input

Tree Ensembles are Black Boxes

Small decision trees have the advantage of being highly interpretable.

Tree Ensembles are Black Boxes

Small decision trees have the advantage of being highly interpretable.

- Larger trees and ensembles (e.g. XGBoost) lose this nice feature.
- Best-performing ML models are hard to interpret because they use lots of features and exploit non-linearities and interactions.

Interpreting Tree Ensembles

XGBoost's Feature Importance Metric:

- At each decision node, compute **information gain** for feature *j* **(change in predicted probability)**.
- Average across all nodes for each j.

Ranks predictors by their relative contributions.

```
from xgboost import plot_importance
plot_importance(xgb_reg, max_num_features=10)
```

Feature Importance

```
from xgboost import plot_importance
plot_importance(xgb_reg, max_num_features=20)
```

<IPython.core.display.Javascript object>

1. Take POS-filtered bigrams as inputs X.

- 1. Take POS-filtered bigrams as inputs X.
- 2. Select a machine learning model for predicting outcome *y*:
 - ► For regression (y is one-dimensional and continuous), elastic net or gradient boosted regressor.
 - ▶ For classification (y is discrete), L2-penalized logistic regression or gradient boosted classifier.

- 1. Take POS-filtered bigrams as inputs X.
- 2. Select a machine learning model for predicting outcome *y*:
 - For regression (y is one-dimensional and continuous), elastic net or gradient boosted regressor.
 - ▶ For classification (y is discrete), L2-penalized logistic regression or gradient boosted classifier.
 - ightharpoonup (If y is more complicated, e.g. a sequence of words, we use deep learning.)

- 1. Take POS-filtered bigrams as inputs X.
- 2. Select a machine learning model for predicting outcome *y*:
 - For regression (y is one-dimensional and continuous), elastic net or gradient boosted regressor.
 - ▶ For classification (y is discrete), L2-penalized logistic regression or gradient boosted classifier.
 - ► (If y is more complicated, e.g. a sequence of words, we use deep learning.)
- 3. Use cross-validation grid search in training set to select model hyperparameters.
 - For classification, use cross entropy; for regression, use mean squared error.

- 1. Take POS-filtered bigrams as inputs X.
- 2. Select a machine learning model for predicting outcome *y*:
 - For regression (y is one-dimensional and continuous), elastic net or gradient boosted regressor.
 - ▶ For classification (y is discrete), L2-penalized logistic regression or gradient boosted classifier.
 - ► (If y is more complicated, e.g. a sequence of words, we use deep learning.)
- 3. Use cross-validation grid search in training set to select model hyperparameters.
 - For classification, use cross entropy; for regression, use mean squared error.
- 4. Evaluate model in held-out test set:
 - For classification, use balanced accuracy, confusion matrix, and calibration plot.
 - For regression, use R squared and binscatter plot.

- 1. Take POS-filtered bigrams as inputs X.
- 2. Select a machine learning model for predicting outcome *y*:
 - For regression (y is one-dimensional and continuous), elastic net or gradient boosted regressor.
 - ▶ For classification (y is discrete), L2-penalized logistic regression or gradient boosted classifier.
 - ► (If y is more complicated, e.g. a sequence of words, we use deep learning.)
- 3. Use cross-validation grid search in training set to select model hyperparameters.
 - For classification, use cross entropy; for regression, use mean squared error.
- 4. Evaluate model in held-out test set:
 - For classification, use balanced accuracy, confusion matrix, and calibration plot.
 - For regression, use R squared and binscatter plot.
- 5. Interpret the model predictions:
 - for gradient boosting, use feature importance ranking.
 - ▶ for linear models, examine coefficients
 - ▶ look at highest and lowest ranked documents for \hat{y}

- 1. Take POS-filtered bigrams as inputs X.
- 2. Select a machine learning model for predicting outcome y:
 - For regression (y is one-dimensional and continuous), elastic net or gradient boosted regressor.
 - ▶ For classification (y is discrete), L2-penalized logistic regression or gradient boosted classifier.
 - ► (If y is more complicated, e.g. a sequence of words, we use deep learning.)
- 3. Use cross-validation grid search in training set to select model hyperparameters.
 - For classification, use cross entropy; for regression, use mean squared error.
- 4. Evaluate model in held-out test set:
 - For classification, use balanced accuracy, confusion matrix, and calibration plot.
 - For regression, use R squared and binscatter plot.
- 5. Interpret the model predictions:
 - for gradient boosting, use feature importance ranking.
 - ▶ for linear models, examine coefficients
 - look at highest and lowest ranked documents for \hat{y}
- 6. Answer the research question!