

- ► Goal: investigate the **physical layer**, e.g.,
 - 1. communication media and signals,
 - 2. encoding and/or modulation,
 - 3. multiplexing, and
 - 4. efficiency metrics (and limits)

st. we can transmit (unstructured) **bit-sequences** along a physical connection between two end-points.

- ► Goal: investigate the physical layer, e.g.,
 - 1. communication media and signals,
 - 2. encoding and/or modulation,
 - 3. multiplexing, and
 - 4. efficiency metrics (and limits)

st. we can transmit (unstructured) **bit-sequences** along a physical connection between two end-points.

- ► Goal: investigate the physical layer, e.g.,
 - 1. communication media and signals,
 - 2. encoding and/or modulation,
 - 3. multiplexing, and
 - 4. efficiency metrics (and limits)

st. we can transmit (unstructured) **bit-sequences** along a physical connection between two end-points.

COMS20001 lecture: week #20

- ► Idea:
 - we have some digital input (i.e., our data), so can
 - 1. directly encode it, i.e.,

via a digital signalling scheme, or

2. use it to modulate a carrier signal, i.e.,

via an analogue signalling scheme

to produce an (digital or analogue) output signal,

- ▶ so can then transmit that signal along a communication medium (e.g., a wire), and
- the resulting behaviour has a clear theoretical basis.

Definition (sinusoid)

The sinusoidal function

$$s(t) = A \cdot \sin(2\pi \cdot f \cdot t + \varphi)$$

is periodic, and parameterised by

- 1. an **amplitude** A (which is the maximum deviation of s(t) from 0),
- 2. a **frequency** f (which is inversely proportional to the period, which is normally termed the **wavelength** λ), and
- 3. a **phase** (or offset) φ (which basically dictates where in the cycle the wave is at time t = 0).

Definition (sinusoid)

The sinusoidal function

$$s(t) = A \cdot \sin(2\pi \cdot f \cdot t + \varphi)$$

is periodic, and parameterised by

- 1. an **amplitude** A (which is the maximum deviation of s(t) from 0),
- 2. a **frequency** f (which is inversely proportional to the period, which is normally termed the **wavelength** λ), and
- 3. a **phase** (or offset) φ (which basically dictates where in the cycle the wave is at time t = 0).

By evaluating over a time period (i.e., over a range of t), such a wave can be visualised as a **waveform**, e.g.,

where A = 0.5, f = 0.5, $\varphi = 0$.

Definition (**sinusoid**)

The sinusoidal function

$$s(t) = A \cdot \sin(2\pi \cdot f \cdot t + \varphi)$$

is periodic, and parameterised by

- 1. an **amplitude** A (which is the maximum deviation of s(t) from 0),
- 2. a **frequency** f (which is inversely proportional to the period, which is normally termed the **wavelength** λ), and
- 3. a **phase** (or offset) φ (which basically dictates where in the cycle the wave is at time t = 0).

By evaluating over a time period (i.e., over a range of t), such a wave can be visualised as a **waveform**, e.g.,

where A = 1.0, f = 0.5, $\varphi = 0$.

Definition (**sinusoid**)

The sinusoidal function

$$s(t) = A \cdot \sin(2\pi \cdot f \cdot t + \varphi)$$

is periodic, and parameterised by

- 1. an **amplitude** A (which is the maximum deviation of s(t) from 0),
- 2. a **frequency** f (which is inversely proportional to the period, which is normally termed the **wavelength** λ), and
- 3. a **phase** (or offset) φ (which basically dictates where in the cycle the wave is at time t = 0).

By evaluating over a time period (i.e., over a range of t), such a wave can be visualised as a **waveform**, e.g.,

where A = 1.0, f = 1.0, $\varphi = 0$.

Definition (sinusoid)

The sinusoidal function

$$s(t) = A \cdot \sin(2\pi \cdot f \cdot t + \varphi)$$

is periodic, and parameterised by

- 1. an **amplitude** A (which is the maximum deviation of s(t) from 0),
- 2. a **frequency** f (which is inversely proportional to the period, which is normally termed the **wavelength** λ), and
- 3. a **phase** (or offset) φ (which basically dictates where in the cycle the wave is at time t = 0).

By evaluating over a time period (i.e., over a range of t), such a wave can be visualised as a **waveform**, e.g.,

where A = 1.0, f = 1.0, $\varphi = \pi$.

Definition (Fourier analysis [4])

Fourier analysis allows us to represent a signal as an (infinite) sum of sinusoids:

$$s(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cdot \cos(2\pi \cdot f \cdot t \cdot n) + b_n \cdot \sin(2\pi \cdot f \cdot t \cdot n)$$

The resulting **Fourier series** (or **Fourier expansion**) s(t) typically makes use of **Fourier coefficients** a_n and b_n for $1 \le n < N$ wrt. some (finite) bound N.

► Eh?!

► Eh?!

► Eh?!

► Eh?!

► Eh?!

► Eh?!

- larger bandwidth (i.e., wider range of frequencies) normally allows a higher fidelity representation,
- but, when transmitted, the signal will still be
 - 1. delayed, since it takes time to propagate,
 - 2. attenuated, meaning it becomes weaker,
 - 3. subjected to bandwidth degradation, and
 - 4. subjected to the influence of **noise**.

- larger bandwidth (i.e., wider range of frequencies) normally allows a higher fidelity representation,
- but, when transmitted, the signal will still be
 - 1. delayed, since it takes time to propagate,
 - 2. attenuated, meaning it becomes weaker,
 - 3. subjected to bandwidth degradation, and
 - 4. subjected to the influence of **noise**.

- larger bandwidth (i.e., wider range of frequencies) normally allows a higher fidelity representation,
- but, when transmitted, the signal will still be
 - 1. delayed, since it takes time to propagate,
 - 2. attenuated, meaning it becomes weaker,
 - 3. subjected to bandwidth degradation, and
 - 4. subjected to the influence of **noise**.

- larger bandwidth (i.e., wider range of frequencies) normally allows a higher fidelity representation,
- but, when transmitted, the signal will still be
 - 1. delayed, since it takes time to propagate,
 - 2. attenuated, meaning it becomes weaker,
 - 3. subjected to bandwidth degradation, and
 - 4. subjected to the influence of **noise**.

- larger bandwidth (i.e., wider range of frequencies) normally allows a higher fidelity representation,
- but, when transmitted, the signal will still be
 - 1. delayed, since it takes time to propagate,
 - 2. attenuated, meaning it becomes weaker,
 - 3. subjected to bandwidth degradation, and
 - 4. subjected to the influence of **noise**.

Definition (**signalling levels**)

When sampled at a given instance in time, a signal will take one of l signalling levels; this means each symbol transmitted will take one of l values. Note that l > 2 implies the ability to transmit *more* than 1 bit of information per symbol.

Definition (modulation rate)

The **modulation rate** measures how quickly (i.e., how often per unit of time) the channel can change (or transition, which may be termed a **signalling event**) between signalling levels; this of course determines the (minimum) **symbol period**.

(for l = 4)

... or, to summarise, we have something like the following

	Signalling	Modulation	Self		Runs of
Scheme	levels	rate	clocked?	Differential?	$x \in X$
NRZ	2	r	×	×	$X = \{0, 1\}$
NRZ-I	2	r	×	✓	$X = \{0\}$
RZ	2(ish)	$r \cdot 2$	✓	×	$X = \emptyset$
Manchester	2	$r \cdot 2$	✓	×	$X = \emptyset$
<i>l</i> -ary	1	$r/\log_2(l)$	×	×	$X = \{0, 1, \dots, n-1\}$

where the last column suggests a problem, i.e.,

- ► (A) solution:
 - 1. pre-encode the data, e.g., by using a block code such as 4B/5B where

4.1.4	F1.		
4-bit	5-bit		
data word	code word		
0000	11110		
0001	01001		
0010	10100		
0011	10101		
0100	01010		
0101	01011		
0110	01110		
0111	01111		
1000	10010		
1001	10011		
1010	10110		
1011	10111		
1100	11010		
1101	11011		
1110	11100		
1111	11101		

- 2. the combination of say 4B/5B plus NRZ-I means
 - there is never a long sequence of transmitted 0 or 1, and
 - the overhead is *lower* than using alternatives such as Manchester.

Carrier signal

Multiplexing (1)

- ▶ Problem: what if we have 1 communication medium, and *m* streams of data (each of *n* symbols say)?
- ► (A) solution: statically (de)multiplex the streams, via
 - 1. **Time-Division Multiplexing (TDM)**, st. time is divided into "slots" and then allocated on a round-robin basis to the streams, or
 - Frequency-Division Multiplexing (FDM), where each stream is "shifted" into a different range of frequencies.
 - or, from the perspective of a given stream ...

Multiplexing (2)

... we can visualise utilisation as

st. the stream either

- 1. has access to all of the available bandwidth, but for part of the time, or
- 2. has access to *part* of the available bandwidth, but for *all* of the time.

Multiplexing (3) – TDM

Multiplexing (4) – FDM

Definition (bandwidth)

The **bandwidth** of a communication channel is the number of symbols which can be transmitted per unit of time; this is sometimes referred to as the **channel capacity**, and often measured in bits per second (which is then the **bit rate**).

It is common to contrast total available bandwidth, with that achievable in practice; the latter is termed **throughput**, st.

 $bandwidth \geq throughput + overhead.$

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given *n* symbols and a bandwidth of *r* symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- ▶ **Round-Trip Time (RTT)** measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , plus the latency of \mathcal{H}_1 transmitting an associated response back to \mathcal{H}_0 .

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- Round-Trip Time (RTT) measures the latency of H₀ transmitting data to H₁, plus the latency of H₁ transmitting an associated response back to H₀.

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- ▶ Round-Trip Time (RTT) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , plus the latency of \mathcal{H}_1 transmitting an associated response back to \mathcal{H}_0 .

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- Round-Trip Time (RTT) measures the latency of H₀ transmitting data to H₁, plus the latency of H₁ transmitting an associated response back to H₀.

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- Round-Trip Time (RTT) measures the latency of H₀ transmitting data to H₁, plus the latency of H₁ transmitting an associated response back to H₀.

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- Round-Trip Time (RTT) measures the latency of H₀ transmitting data to H₁, plus the latency of H₁ transmitting an associated response back to H₀.

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- Round-Trip Time (RTT) measures the latency of H₀ transmitting data to H₁, plus the latency of H₁ transmitting an associated response back to H₀.

i.e.,

st. latency = x + y = transmission delay + propagation delay.

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given *n* symbols and a bandwidth of *r* symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- ▶ **Round-Trip Time (RTT)** measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , plus the latency of \mathcal{H}_1 transmitting an associated response back to \mathcal{H}_0 .

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- ▶ Round-Trip Time (RTT) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , plus the latency of \mathcal{H}_1 transmitting an associated response back to \mathcal{H}_0 .

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given *n* symbols and a bandwidth of *r* symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- ▶ Round-Trip Time (RTT) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , plus the latency of \mathcal{H}_1 transmitting an associated response back to \mathcal{H}_0 .

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- Round-Trip Time (RTT) measures the latency of H₀ transmitting data to H₁, plus the latency of H₁ transmitting an associated response back to H₀.

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- ▶ Round-Trip Time (RTT) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , plus the latency of \mathcal{H}_1 transmitting an associated response back to \mathcal{H}_0 .

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- ▶ Round-Trip Time (RTT) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , plus the latency of \mathcal{H}_1 transmitting an associated response back to \mathcal{H}_0 .

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- ▶ Round-Trip Time (RTT) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , plus the latency of \mathcal{H}_1 transmitting an associated response back to \mathcal{H}_0 .

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- ▶ Round-Trip Time (RTT) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , plus the latency of \mathcal{H}_1 transmitting an associated response back to \mathcal{H}_0 .

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- ▶ Round-Trip Time (RTT) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , plus the latency of \mathcal{H}_1 transmitting an associated response back to \mathcal{H}_0 .

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given n symbols and a bandwidth of r symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- Round-Trip Time (RTT) measures the latency of H₀ transmitting data to H₁, plus the latency of H₁ transmitting an associated response back to H₀.

Definition (latency)

The **latency** of a connection relates to the (total) time required to transmit data between two end-points (e.g., between \mathcal{H}_0 and \mathcal{H}_1). This is typically expressed as n/r+d, where

- ightharpoonup n/r is the **transmission delay**, and
- d is the propagation delay

given *n* symbols and a bandwidth of *r* symbols per unit of time. Note that

- ▶ One-Way Delay (OWD) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , whereas
- ▶ Round-Trip Time (RTT) measures the latency of \mathcal{H}_0 transmitting data to \mathcal{H}_1 , plus the latency of \mathcal{H}_1 transmitting an associated response back to \mathcal{H}_0 .

$$\mathcal{H}_0$$
 \mathcal{H}_1

st. RTT =
$$(x + y) + (x' + y') \ge 2 \cdot OWD$$
.

Definition (bandwidth-latency product)

Imagine that a given channel is a pipe, whose diameter is defined by bandwidth and length by latency. The "volume" of the pipe is termed the **bandwidth-latency product** (or **bandwidth-delay product**), and captures the amount of data "in-flight".

Definition (bandwidth-latency product)

Imagine that a given channel is a pipe, whose diameter is defined by bandwidth and length by latency. The "volume" of the pipe is termed the **bandwidth-latency product** (or **bandwidth-delay product**), and captures the amount of data "in-flight".

Definition (bandwidth-latency product)

Imagine that a given channel is a pipe, whose diameter is defined by bandwidth and length by latency. The "volume" of the pipe is termed the **bandwidth-latency product** (or **bandwidth-delay product**), and captures the amount of data "in-flight".

Definition (bandwidth-latency product)

Imagine that a given channel is a pipe, whose diameter is defined by bandwidth and length by latency. The "volume" of the pipe is termed the **bandwidth-latency product** (or **bandwidth-delay product**), and captures the amount of data "in-flight".

i.e.,

st. bandwidth-latency product = $x \cdot y$ = bandwidth · latency

Conclusions

► Take away points:

- Digital and analogue signal processing is a big topic; this is a light-weight introduction only!
- ▶ There are *many* of possible ways to address the initial (fairly simple) goal ...
- ... on one hand this is great (because we can match a choice to our needs); on the other, it's not so great (since making a *good* choice is harder).
- Keep in mind that
 - 1. a given approach is often underpinned by theory, but
 - 2. choices are often made with lower-level, Engineering requirements in mind,
 - 3. we can only make *good* choices by understanding how the channel is used.

References

- Wikipedia: Block code. http://en.wikipedia.org/wiki/Block_code.
- [2] Wikipedia: Data transmission. http://en.wikipedia.org/wiki/Data_transmission.
- [3] Wikipedia: Line code. http://en.wikipedia.org/wiki/Line_code.
- [4] G. Hall.
 Chapter 12: Introduction to Fourier series.
 In Modern Engineering Mathematics. Prentice Hall, 4th edition, 2010.
- [5] H. Nyquist.Certain topics in telegraph transmission theory.Transactions of the AIEE, 47:617–644, 1928.
- [6] C.E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21, 1949.
- [7] W. Stallings.
 Chapter 4: Data transmission.

 In Data and Computer Communications [10].

References

- [8] W. Stallings. Chapter 5: Transmission media. In Data and Computer Communications [10].
- [9] W. Stallings. Chapter 6: Signal encoding techniques. In Data and Computer Communications [10].
- [10] W. Stallings. Data and Computer Communications. Pearson, 9th edition, 2010.