试题分析:

- (1) 三地址指令的操作码 3 位,留下 4 个扩展窗口,其中 2 个用来扩展二地址指令,1 个用来扩展一地址指令,1 个用来扩展零地址指令。
 - (2) 需要 4 个译码器, 分别对 4 类指令进行译码。
- (3)操作码的平均长度=全部指令的操作码长度÷指令总数=(4×3+16×6+64×9+16×12)÷(4+16+64+16)=8.76。
- 【例 4.20】某机字长为 16 位,采用一地址格式的指令系统,允许直接、间接、变址、基址寻址,变址寄存器和基址寄存器均为 16 位,试回答:
- (1) 若采用单字指令, 共能完成 108 种操作, 画出指令格式, 并指出直接寻址和一次 间址的寻址范围各为多少?
- (2) 若采用双字指令,操作码位数和寻址方式不变,指令可直接寻址的范围又是多少? 画出指令格式。
 - (3) 字长不变,可采用什么方法方位容量为 8MB 的主存任一地址单元,说明理由。解答:
 - (1) 指令格式如图 2-4-4 (a) 所示。直接寻址 128 个字, 间址寻址 65536 个字。
 - (2) 指令格式如图 2-4-4 (b) 所示。直接寻址 8M 个字。
 - (3) 双字指令或变址寻址。

7	2	7		7	2	23
OP	MOD	A		OP	MOD	A
	(a)					(b)
			图 2-4-4 某	 夫机的指	格式	3/5

试题分析:

- (1)由于指令集有 108 条指令,则操作码位数为 7位;允许 4 种不同的寻址方式,寻址方式字段需要 2 位。故采用单字指令时,地址码的位数为 7位。设存储器按字编址,直接寻址的范围为 2 ' 个字。采用一次间址时,由于地址码字段中是操作数地址的地址,操作数的有效地址在存储器内,该地址是 16 位的,因此,间址寻址的范围为 2 ' ° 个字。
- (2) 当采用双字指令时,指令中地址码字段的长度增加,所以方位的范围也加大。该范围为2"**" = 2*" (8M) 个字。
- (3) 采用双字指令的直接寻址方式即可 以访问 8MW,但这样每条指令需要占用两个 存储字,处理上比较复杂且代价高。也可以使 用变址或基址寻址来访问比较大的寻址空间, 因为 8MB=4MW,该存储器按字编址,物理空 间需要 22 位地址。由于变址或基址寄存器只 有 16 位,可以将变址或基址寄存器种的内容 左移 6 位之后再与 A 相加。

图 2-4-5 寄存器与主存内容示意图

【例 4.21】一条双字长的 LOAD 指令存储在地址为 200 和 201 的存储位置,该指令将制定的内容装入累加器 AC 中。指令的第 1 个字指定操作码和寻址方式,第 2 个字是地址部分。寄存器与主存内容示意图如图 2-4-5 所示。

指令的寻址方式字段可指定任何一种寻址方式。问在下列寻址方式中,装入 AC 的值。

- (1) 直接寻址。
- (2) 立即寻址。
- (3) 间接寻址。
- (4) 相对寻址。
- (5) 变址寻址。
- (6) 寄存器 展寻址。
- (7) 寄存器 R. 间接寻址。

解答:

- (1) 800。
- (2) 500.
- (3) 300。
- (4) 325.
- (5) 900。
- (6) 400。
- (7) 700。

试题分析:

- (1) 直接寻址时,有效地址是指令中的地址码部分 500,装入 AC 的是 800。
- (2) 立即寻址时, 指令的地址码部分是操作数而不是地址, 所以将 500 装入 AC。
- (3) 间接寻址时,操作数的有效地址存储在地址为 500 的单元中,由此得到有效地址为 800,操作数是 300。
- (4) 相对寻址时,有效地址 EA=(PC)+A=202+500=702,所以操作数是 325。这是因为指令是双字长,在该指令的执行阶段,PC的内容已经+2,更新为下一条指令的地址 202。
 - (5) 变址寻址时,有效地址 EA=(XR)+A=100+500=600, 所以操作数是 900。
 - (6) 寄存器寻址时, R, 的内存装入 AC。
 - (7) 寄存器间接寻址时,有效地址是 R 的内容 400,装入 AC 的操作数是 700。

【例 4.22】某机的指令格式如图 2-4-6 所示。

其中, X 为寻址特征位, 且 X=0 时不变址; X=1 时用变址寄存器 x_1 进行变址; X=2 时用变址寄存器 x_2 进行变址; X=3 时相对寻址。设 (PC) =1234H,(x_1)=0037H,(x_2)=1122H,请确定下列指令的有效地址(均用十六进制表示)。

(1) 4420H

(2) 2244H

(3) 1322H

(4) 352BH

解答:

(1) 0020H

(2) 1166H

15 10 9 8 7

OP X A

(3) 1256H

图 2-4-6 例 4.22 的指令格式

(4) 0062H

试题分析:

- (1) 指令 4420H 写成二进制为 0100 0100 0010 0000。X=00,不变址,即直接寻址, EA=A=0020H。
- (2) 指令 2244H 写成二进制为 0010 0010 0100 0100。X=10,用变址寄存器x。进行变址,EA=(x、)+A=1122+44=1166H。

- (3) 指令 1322H 写成二进制为 0001 0011 0010 0010。X=11, 相对寻址, EA=(PC) +A=1234+22=1256H.
- (4) 指令 352BH 写成二进制为 0011 0101 0010 1011。X=01,用变址寄存器 x,进行变 址, EA=(x,)+A=0037+2B=0062H。

【例 4.23】某机字长 16 位,主存容量为 64KB,指令为单字长指令,有 50 种操作码, 采用页面、间接和直接寻址方式。

- (1) 指令格式如何安排?
- (2) 存储器能划分为多少页面? 每页多少单元?
- (3) 能否再增加其他寻址方式?

解答:

- (1)操作码字段6位,寻址方式字段2位,地址码字段8位。
- (2) 存储器分 256 个页面,每一页面有 256 个单元。
- (3) 还可以再增加一种寻址方式。

试题分析:

- (1) 指令为单字长指令(16位),50种不同的操作码,需要操作码字段6位;寻址方 式 3 种,需要寻址方式字段 2 位;剩下的 8 位为地址码字段。
- (2) 若采用页面寻址,需将存储器划分成若干页面。主存容量共 64KB,需要地址 16 位。已知指令中的地址字段(页内地址)为8位,则页面地址也有8位(16-8=8),故存储 器能划分 256 个页面,每一页面有 256 个单元。
 - (3) 因为寻址方式字段有 2 位,允许出现 4 种不同的寻址方式。

【例 4.24】设有一台计算机, 其指令长度位 16 位, 指令格式如图 2-4-7 所示。

其中, OP 位操作码, 占 5 位; R 为寄 存器编号,占3位,用来指定目标空间; M 为寻址方式特征码,占 2 位,与 D 一起 决定源操作数,规定如下:

15	1	1 10 8	7 6	5	0
OP		R	M	A	
		图 2-4-7	7 例 4	.24 的指令格式	

001000

001001

001002

001003

002001

002002

M=00,为立即寻址,D为立即数;

M=01,为相对寻址,D为位移量;

M=10, 为变址寻址, D 为位移量。

假定要执行的指令为加法指令, 存放在 001000 单元中, 目标 空间为 R. 。该指令执行前存储器和有关寄存器的存储情况如下, 其内容用8进制表示。

变址寄存器的内容为 001002, R。的内容为 000015。

存储器内容如图 2-4-8 所示。

当该加法指令的寻址方式为立即寻址、相对寻址和变址寻址 时,分别写出指令执行之后, R。和 PC 的内容。

解答: 立即寻址时, R₆=000016, PC=001001。相对寻址时,

R_a =001065, PC=001001。变址寻址时, R_a =001265, PC=001001。 图 2-4-8 存储器内容

****01

001050

001150

001250

002066

002016

试题分析:

被执行的指令为加法指令,存放在主存001000单元中,所以指令执行之前程序计数器 (PC)的内容为 001000。指令****01 的含义是:指令的操作码、寄存器编号、寻址方式特 征码部分用****表示,指令中的形式地址为01。

当寻址方式为立即寻址时,指令中的01为立即数,应当实现 к,的内容与立即数相加之 后送回 R_0 。所以,加法指令执行后的 R_0 的内容为 000015+01=000016, PC 的内容为 001000+1=001001。

当寻址方式为相对寻址时 ,指令中的 01 为位移量,操作数的有效地址为(PC)+01=001002(假设取出指令后 PC 内容已自动+1),应当实现 R_a 的内容主存 001002 单元的内容相加之后送回 R_a 。所以,加法指令执行后的 R_a 的内容为 0000015+001150=001165,PC 的内容为 001000+1=001001.

【例 4.25】设相对寻址的转移指令占 4 个字节,其中第 1、第 2 字节是操作码,第 3、第 4 字节时相对位移量(用补码表示)。

- (1) 设当前 PC 的内容为 2003H,要求转移到 200AH 的地址,则该转移指令第 3、第 4 字节的内容应为多少?
- (2) 设当前 PC 的内容为 2008H, 要求转移到 2001H 的地址,则该转移指令第 3、第 4 字节的内容应为多少?

解答:

- (1) 0003H。
- (2) FFF5H。

试题分析:

由于指令占4个字节,取指令之后(PC)+4

- (1) 第3、第4字节的内容为: 200A-(2003+4)=3(补码表示为0003H)。
- (2) 第3、第4字节的内容为: 2001-(2008+4)=-11(补码表示为FFF5H)。

【例 4.26】以主存地址 7EA8H 为首地址存放了一条两字节指令,其第 1 字节为操作码 OP,是转移指令;第 2 字节为相对寻址的位移量 D,它是一个 8 位补码(可正可负)。问:

- (1) 位移量 D 的表示范围从多少到多少?
- (2) 该指令的转移空间可以从哪里到哪里?

解答:

- (1) -128 到 127
- (2) 7E2A~7F29H

试题分析:

- (1) 位移量 D 时 8 位补码,表示范围从-128 到 127,用十六进制表示为-80H~7FH。
- (2)该指令的转移空间是相对于取出该指令之后的 PC 值=7EA8H+2=7EAAH 计算的, 7EAAH-80H=7E2AH, 7EAAH+7FH=7F29H, 所以转移空间为 7E2AH~7F29H。此题中虽没有强调每取一个字节指令, PC 自动+1, 但题干中说明了指令占 2 个字节, 应该要考虑 (PC)+2 的问题。

【例 4.27】存储器堆栈的栈顶内容是 1000H, 堆栈自底向上生成, 栈指针寄存器 SP 的内容是 100H, 一条双字长的子程序调用指令位于存储器地址为 2000H、2001H 处, 指令第 2 个字是地址字段, 内容为 3000H。问以下情况下 PC、SP 和栈顶的内容。

- (1) 子程序调用指令被读取之前。
- (2) 子程序调用指令被执行之后。
- (3) 从子程序返回之后。

解答:

- (1)(PC)=2000H,(SP)=100H, 栈顶内容=1000H。
- (2)(PC)=3000H,(SP)=FFH, 栈顶内容=2002H。
- (3) (PC) =2002H, (SP) =100H, 栈顶内容=1000H。

试题分析:

- (1) PC 的内容为子程序调用指令的地址, SP 和栈顶的内容在题干中已给出。
- (2) 子程序调用指令被执行之后, PC 内容为子程序入口的指令地址; 返回地址进入栈

顶, 栈指针减1;由于子程序调用指令为双字长,所以返回地址为子程序调用指令的地址加2,即2000H+2=2002H。

(3) 从子程序返回之后,将返回地址从堆栈中弹出到 PC,这时 SP 加 1,栈顶内容恢复到子程序调用指令被执行之前的值。

4.3 精选试题练习

【题 4.1】执行一条一地址加法指令需要	访问主存的次数是()
A. 1 B. 2	C. 3 D. 4
	式指令的执行速度,由快至慢的排序是()
A. 直接、立即、间接	B. 直接、间接、立即
C. 立即、直接、间接	D. 立即、间接、直接
	1位数,而指令的执行时间又相对短,则有效的
寻址方式是()	
A. 立即寻址 B. 寄存器寻址	
【题 4.4】采用变址寻址可以扩大寻址范	.围,且()
A. 变址寄存器的内容由用户确定,在和	程序执行过程中不能改变
B. 变址寄存器的内容由操作系统确定,	在程序执行过程中不能改变
C. 变址寄存器的内容由用户确定,在和	程序执行过程中可以改变
D. 变址寄存器的内容由操作系统确定,	在程序执行过程中可以改变
【题 4.5】便于处理数组问题的寻址方式	是()
A. 间接寻址 B.变址寻址	C. 相对寻址 D. 立即寻址
【题 4.6】基址寻址方式中,操作数的有	效地址是()
A. 基址寄存器内容加上形式地址(位积	多量)
B. 程序计数器内容加上形式地址	
C. 变址寄存器内容加上形式地址	cin com
D. 寄存器内容加上形式地址	
【题 4.7】假设寄存器 R 中的数值为 200	, 主存地址为 200 和 300 的地址单元中存放的
内容分别是 300 和 400,若访问到的操作数是	· 200,则寻址方式是()
A. 直接寻址 200	B. 寄存器间接寻址(R)
C. 存储器间接寻址(200)	D. 寄存器寻址 R
【题 4.8】在变址寄存器寻址方式中, 若	变址寄存器的内容是 4E3CH,指令中的形式地
址是 63H,则它对应的有效地址是()	
A. 63H B. 4D9FH	C. 4E3CH D. 4E9FH
【题 4.9】一条指令长2个字节,存储在	存储器中字节地址为 160 的地方, 读取这条指
令之后 PC 的值为()	
A. 160 B. 161	C. 162 D. 164
【题 4.10】一条指令有 128 位,按字节约	扁址,读取这条指令后,PC的值自动加()
A. 1 B. 2	C. 4 D. 16
【题 4.11】计算机指令系统采用不同的。	寻址方式的主要目的是()
A. 增加主存的容量	B. 为编写程序提供方便
C. 提高访存速度	D. 简化指令译码
【题 4.12】直接寻址的无条件转移指令工	功能是将指令中的地址码送入()

- A. PC
- B. 地址寄存器C. 累加器D. ALU

【题 4.13】程序控制类指令的功能是())

- A. 进行主存和 CPU 之间的数据传送 B. 进行 CPU 和外设之间的数据传送
- C. 改变程序执行的顺序
- D. 控制进、出栈操作

【题 4.14】在存储器堆栈中,保持不变的是()

- A. 栈顶
- B. 栈指针
- C. 栈底
- D. 栈中的数据

【题 4.15】RISC 思想主要基于的是()

- A. 减少指令的平均执行周期数
- B. 减少指令的复杂程度
- C. 减少硬件的复杂程度
- D. 便于编译器编写

【题 4.16】下面关于 RISC 计算机的描述中,正确的是()

- A. 在 RISC 计算机中减少了通用寄存器的数量
- B. 由于指令简单,一个机器周期可以执行多条指令
- C. RISC 计算机的指令更适合流水处理
- D. RISC 计算机程序只占用很小的内存

【题 4.17】某计算机的指令系统定长为 16 位,采用扩展操作码,操作数地址需要 4 位。 该指令系统已有三地址指令 M 条, 二地址指令 N 条, 没有零地址指令。问: 最多还有多少 条一地址指令?

参考答案: 一地址指令最多还有((2*- M) × 2*- N) × 2* = 2''- M × 2*- N × 2* 条。

【题 4.18】设计算机 A 有 60 条指令, 指令操作码为 6 位固定长度编码, 从 000000 到 111011。其后继产品 B 需要增加 32 条指令, 并与 A 保持兼容。

- (1) 试采用操作码扩展技术为计算机 B 设计指令操作码。
- (2) 计算操作码的平均长度。

参考答案:

- (1)6 位操作码中保留了 111100 到 111111 共 4 个扩展窗口,将它们扩展成 9 位操作码, 可扩展 32 条指令 (4×8=32), 为保证与计算机 A 的指令兼容, 新增加的 32 条指令的操作码 从 111100000 到 111111111。
- (2) 操作码的平均长度=(60×6+32×9) ÷(60+32) =7.04
- 【题 4.19】设计计算机指令字长为 16 位,指令中地址字段的长度为 4 位,共 11 条三地 址指令,72条二地址指令,64条零地址指令。问最多还能安排多少条一地址指令?

参考答案:

三地址指令只有 4 位操作码,现有 11 条三地址指令,所以还有 16-11=5 个扩展窗口用 于二地址指令。二地址指令有8位操作码,去掉三地址指令用掉的操作码,可规定5×16=80 条二地址指令,现有 72 条二地址指令,所以还有 80-72=8 个扩展窗口用于一地址指令。一 地址指令有 12 位操作码, 可规定 8×16=128 条一地址指令。但要求有 64 条零地址指令, 所 以需要由一地址指令提供给零地址指令 64÷16=4 个扩展窗口,因此,最多还能安排 128-4=124 条一地址指令。

图 2-4-3 指令译码逻辑

【题 4.20】某机字长 32 位,共有机器指令 100 条,指令单字长,等长操作码,CPU 内 部有通用寄存器 32 个,可做变址寄存器用。存储器按字节编址,指令拟用直接寻址、间接 寻址、变址寻址和相对寻址4种方式。

- (1) 分别画出采用 4 种不同寻址方式的单地址指令的指令格式。
- (2) 采用直接寻址和间接寻址方式时,可寻址的存储器空间各是多少?
- (3) 写出4种方式下,有效地址EA的表达式。

参考答案:

(1) 指令长度 32 位, 其中操作码字段 7 为, 寻址方式字段 2 位, 剩余的 23 位即为地

址码字段。但在变址寻址 时还需要有 5 位寄存器编 码,所以真正的地址码只 有 18 位。4 种不同寻址方 式的单地址指令的指令格 式如图 2-4-9 所示。

(2)存储器按字节编 址,直接寻址时,寻址范 围为 8MB(2"); 间接寻 址时, 由于机器的字长为 32 位, 所以可寻址范围为 4GB (2³²).

图 2-4-9 单地址指令的指令格式

(3) 4 种寻址方式下,有效地址 EA 的表达式为

直接寻址 EA=AEA=(A)间接寻址

变址寻址 $EA = (R_x) + A$

相对寻址 EA = (PC) + A

【题 4.21】设某计算机有变址寻址、间接寻址、相对寻址等寻址方式,设当前指令的地 址码部分为 001AH, 正在执行的指令所在地址为 1F05H, 变址寄存器中的内容为 23A0H。

- (1) 当执行取数指令时,如为变址寻址方式,则取出的数为多少?
- (2) 如为间接寻址,取出的数为多少?
- (3) 当执行转移指令时,转移地址为多少?

已知存储器的部分地址及相应内容,如表 2-4-2 所示。

地 址	内 容
001AH	23A0H
1F05H	2400H
1F1FH	2500H
23A0H	2600H
23BAH	1748H

参考答案:

- (1) $S = ((R_v) + A) = (23A0H + 001AH) = (23BAH) = 1748H$
- (2) S = ((A)) = ((001AH)) = (23A0H) = 2600H
- (3) 转移地址=(PC)+A=1F05H+001AH=1F1FH。因为在本题中没有指出指令的长度, 故此题未考虑 PC 值的更新。

【题 4.22】假定指令格式如图 2-4-10 所示。

=1:

变址寄存器」寻址;

віт,。=1: 变址寄存器 г, 寻址;

Bit, =1: 当前页寻址。

віт。(直接/间接寻址): D/I=0表示直接寻址; D/I=1表示间接寻址。

若主存容量为21个存储单元,分为2个页面,每个页面有2个字。

设有关寄存器的内容为

(I,> =35A7H

(1,) = 1B28H

(PC) = 46C9H

试计算下列指令的有效地址:

(1) D4C1H

(2) 780BH

(3) F253H

C009H

参考答案:

- (1) 变址寄存器」, 寻址, EA=(1) +A=1B28+C1=1BE9H。
- (2) 变址寄存器 I, 寻址, EA=(I,) +A=35A7+0B=35B2H。
- (3) 当前页寻址, EA≒ PC> //A=46//53=4653H。
- (4) 直接寻址, EA=A=0009H。

【题 4.23】某机主存容量为 4M×16, 且存储字长等于指令字长, 若该机指令系统可完成 108 种操作, 操作码位数固定, 且具有直接、间接、变址、基址、相对和立即 6 种寻址方式, 试回答:

- (1) 画出一地址指令格式,并指出各字段的作用;
- (2) 该指令直接寻址的最大范围:
- (3) 一次间址和多次间址的寻址范围:
- (4) 立即数的范围(十进制表示)
- (5) 相对寻址的位移量(十进制表示)
- (6)上述6种寻址方式的指令那一种执行时间最短?那一种最长?为什么?哪一种便 于程序浮动?哪一种最适合处理数组问题?

参考答案:

- 一地址指令格式如图 2-4-11 所示。
- (2) 直接寻址的最大范围为2°。因为操作码字段占7位,寻址方式字段占3位,所以 地址码字段长 6 位。直接寻址的范围为 $2^{(6-7-7)} = 2^{6} = 64$ 个单元。
- (3) 间接寻址有一次间址和多次间址之分,一次间址的寻址范围为 2" =65 536 个单元; 多次寻址的寻址范围为215=32 768 个单元。
 - (4)十进制表示立即数的范围为-32~31(补码时)或-31~31(原码时)。
 - (5) 十进制表示相对寻址的位移量为-32~31(补码时)或-31~31(原码时)。
- (6)在上述6种寻址方式中,立即寻址指令执行时间最短,间接寻址(多次寻址)指 令执行时间最长。相对寻址方式便于实现程序浮动,变址寻址方式最适合处理数组问题。

【题 4.24】CPU 的双操作数指令格式如图 2-4-12 所示。

OP 为 4 位操作码: Md 和 Ms 分别为 3 位目的和源操作作数寻址方式: Rd 和 Rs 分别为 3 位目的和源寄存器号。问:

- (1) 计算机设计 16 种双操作数指令是否可取? 为什么?
- (2) CPU 内部寄存器增加到 16 个,在不改变指令长度的条件下,可以用哪两种方式 修改指令格式(画出修改后的指令格式),将对指令功能产生什么影响?
 - (3)如不降低指令功能,指令长度可变,画出具有 16 个寄存器的双操作数指令的格式。 参考答案:
- (1) 不可取, 因为操作码字段有 4 位。通常指令系统中还有单操作数指令和误操作数 指令,所以应当留出一些扩展窗口供它们扩展操作码使用。
- (2) 当 CPU 内部寄存器增加到 16 个,在不改变指令长度的条件下,可以用两种方式 修改指令格式。

方式 1: 减少操作码字段长度来增加 Rd 和 Rs 的长度, 这种方式将减少双操作数指令的 条数,如图 2-4-13 (a) 所示。

方式 2: 减少 Md 和 Ms 的长度来增加 Rd 和 Rs 的长度,这种方式将减少寻址方式,如 图 2-4-13(b) 所示。

(3) 如不降低指令功能,指令长度不变,则指令长度增加为 18 位。图 2-4-14 所示为 具有 16 个寄存器的双操作数指令的格式。

图 2-4-13 不改变指令长度条件下的修改方案 图 2-4-14 改变指令长度条件下的修改方案

	4	3	4	3	4
	OP	Md	Rd	Ms	Rs
图 2 4 4 4 北京长人区库及从工始校北之库					

【题 4.25】某机字长 16 位,直接寻址空间 128 字,变址时的位移量是-64~+63,16 个 通用寄存器都可以作为变址寄存器,设计一套指令系统,满足下列寻址类型的要求。

- 直接寻址的二地址指令3条。
- (2) 变址寻址的一地址指令6条。

- (3) 寄存器寻址的二地址指令8条。
- (4) 直接寻址的一地址指令12条。
- (5) 零地址指令 32 条。

参考答案:

5 种类型的指令格式如图 2-4-15 所示。

图 2-4-15 5 种类型的指令格式

(1) 直接寻址的二地址指令3条, 其操作码编码为

00

01

10

(2) 变址寻址的一地址指令 6 条,器操作码编码为

 $1\ 1\ 0\ 0\ 0$

11110000

11110111

(4) 直接寻址的一地址指令 12 条, 其操作码编码为

111110000 111111011

(5) 零地址指令 32条, 其操作码编码为

11111110000000000 ŧ 11111110000111111

【题 4.26】某 16 位机器所使用的指令 格式和寻址方式如图 2-4-16 所示,该机有 2 个 20 位基址寄存器, 4 个 16 位变址寄存器, 16个16位通用寄存器,指令汇编格式中的S

LDA D,M

图 2-4-16 题 4.26 的指令格式

(源), D(目标)都是通用寄存器,M是主存的一个单元,3种指令的操作码分别是MOV(OP)=0AH,STA(OP)=1BH,LDA(OP)=3CH,其中MOV为传送指令,STA为写数指令,LDA为读数指令。

要求:

- (1) 分析 3 种指令的指令格式和寻址方式特点。
- (2) CPU 完成那一种操作所花时间最短?哪一种最长?第2种指令的执行时间有时会等于第3种指令的执行时间吗?
- (3)下列情况下每个十六进制指令字分别代表什么操作?其中有编码不正确时,如何 改正才能成为合法指令?

①F0F1H, 3CD2H ②2856H ③6FD6H ④1C2H 参考答案:

- (1) 第 1 种指令是单字长二地址指令, R-R型, 寄存器寻址; 第 2 种指令是双字长二地址指令, R-M型, 其中 R由源寄存器决定, M采用基址寻址或变址寻址; 第 3 种也是双字二地址指令, R-M型, 其中 R由目标寄存器决定, M由 20 位地址(直接寻址)决定。
- (2) CPU 完成第 1 种指令所花的时间最短,因为是 R-R 型指令,除掉取指令之外不需要访问存储器。第 2 种指令所花的时间最长,因为是 R-M 型指令,需要访问存储器,同时还要进行寻址方式的变换运算(基址或变址)。第 2 种指令的执行时间不会等于第 3 种指令,因为第 3 种指令虽也访问存储器,但节省了求有效地址运算的时间开销。
- (3)指令操作码采用定长编码(6位),根据已知条件: MOV(OP)=001010, STA(OP)=011011, LDA(OP)=111100。

指令的十六进制格式转换成二进制代码且比较后可知:

- ①将 F0F1H, 3CD2H 的前 6 位转换成二进制代码可以发现这是一条 LDA 指令,编码正确,其含义是把主存 13CD2H 地址单元的内容取至第 15 号通用寄存器中。
- ②将 2856H 的前 6 位转换成二进制代码可以发现这是一条 MOV 指令,编码正确,含义是把第 6 号通用寄存器(源)的内容传送至第 5 号通用寄存器(目标)中。
 - ③由于 6FD6H 是单字长指令,一定是 MOV 指令,但编码错误,可将其改正为 28D6H。
 - ④1C2H 也是单字长指令,但编码错误,可改正为 28C2H,代表 MOV 指令。
- 【题 4.27】某一个自底向上生成的存储器堆栈, 栈指针始终指向指向栈顶的满单元。若 栈底地址为 3000H, 栈中已压入两个数据 a 和 b, SP 为堆栈指针。
 - (1) 试画出此时堆栈的示意图。
- (2) 若现在将数据 c 和 d 按顺序压入堆栈,试写出这两个数据进展的操作步骤,并画出数据进栈之后堆栈的示意图。
 - (3) 写出数据 d 出栈的操作步骤。

注: 设数据交换通过累加器 AC 进行。

参考答案:

- (1) 数据 a 和 b 进栈之后堆栈的示意图如图 2-4-17 (a) 所示。
- (2) 将数据 c 压入堆栈的操作步骤为

 $c \rightarrow AC$ 数据 c 放入累加器 AC

(SP) -1 → SP 栈指针-1

(AC)→(SP) AC 的内容压入栈顶单元

将数据 d 压入堆栈的操作步骤为

d → A C 数据 d 放入累加器 AC

(SP) -1 → SP 栈指针-1

(AC)→(SP) AC 的内容压入栈顶单元

这两个数据进栈后堆栈的示意图如图 2-4-17(b) 所示。

图 2-4-17 堆栈的示意图

(3) 数据 d 出栈的操作步骤为

((SP)) → AC 将栈顶单元内容弹出送入 AC 中

(SP) +1 → SP 栈指针+1

此时数据 d 弹出到累加器 AC 种,再将 AC 的内容写入某个主存单元。 选择题参考答案:

(1) B (2) C (3) B (4) C (5) B (6) A (7) D (8) D (9) C (10) D (11) B (12) A (13) C (14) C (15) A (16) C

www.docin.com