Verilog with Quartus

Tools

You need two things

1. Editor

Quartus II 5.1sp2 Web Edition Full

2. Simulators

Quartus II 5.1sp2 Web Edition Full

Quartus IDE

Example of MUX 2/1

Create a project

Create/Add verilog file to the project

Structural

```
module mux21(a, b, s, y);
  input a, b, s;
  output y;
  wire m, n, p;
  and g1(m, b, s);
  not g2(n, s);
  and g3(p, a, n);
  or g4(y, m, p);
endmodule
```

RTL

```
module mux21(a, b, s, y);
input a, b, s;
output y;
assign y = s ? b : a;
endmodule
```

Behavioral

```
module mux21(A, B, S, Y);
  input A, B, S;
  output Y;
  reg Y;
  always @(A or B or S)begin
     if(S==0) Y = A;
     else Y = B;
  end
endmodule
```

File is added to the project

Set the file as top level entity

Create a vector waveform file to synthesize and add to the project

Settings

Functional Simulation

Compilation Start

Compilation Successful

Generate Simulation Netlist

Insert Node

Setup Node

Insert Node or Bus		
Name:		ОК
Туре:	INPUT	Cancel
Value type:	9-Level	Node Finder
Radix:	Binary	
Bus width:	1	
Start index:	0	
Display gray code count as binary count		

Select Node

Select Node

Select Node

Assign Value to the Node

Start Simulation

Simulation Successful

Simulation Waveform

Simulation Output

The End