COMPLEX VARIABLES QUALIFYING EXAMINATION - Spring 1998 (Bennett and Burckel)

- Let $\mathbb R$ denote the real line, $\mathbb C$ the complex plane, $\mathbb D:=\{z\in\mathbb C:|z|<1\}$, Ω a non-void, open, connected subset of $\mathbb C$, $C(\Omega)$ the continuous $\mathbb C$ -valued functions on Ω , $H(\Omega)$ the complex-differentiable function on Ω .
- **1.** Let S be the open square $]0,1[\times]0,1[$ and identify $(x,y)\in\mathbb{R}^2$ with $x+iy\in\mathbb{C}$.
 - (i) What does it mean for a function $f: S \to \mathbb{R}^2$ to be \mathbb{R} -differentiable at $(x_0, y_0) \in S$?
 - (ii) If f is \mathbb{R} -differentiable at (x_0, y_0) , what property of its \mathbb{R} -derivative will make f also \mathbb{C} -differentiable at $x_0 + iy_0$?
- **2.** Suppose Ω is starlike with respect to its point a. Show that for every $f \in H(\Omega)$ the companion function F defined by

$$F(z) := \int_{[a,z]} f \qquad \forall z \in \Omega$$

is also holomorphic in Ω and satisfies F' = f.

- **3.** What is the topology of local uniform convergence in $C(\Omega)$? Is this a metric topology? Show that:
 - (i) $C(\Omega)$ is complete in this topology.
 - (ii) $H(\Omega)$ is a closed subset of $C(\Omega)$.

Hint: For (ii) Morera's theorem is useful.

4. Prove that $f \mapsto f'$ is a continuous mapping of $H(\Omega)$ into itself (in the topology of Problem 3). Give an example of an Ω for which this map is not surjective.

Hint: For the continuity, exploit Cauchy's integral formula.

- **5.** Show that if $f \in H(\Omega)$ is one-to-one, then f' is zero-free in Ω . Is the converse true?
- **6.** $h: \mathbb{C} \to \mathbb{R}$ is harmonic and not constant. Prove that h has a zero.

Hint: If h > 0 throughout \mathbb{C} , employ Harnack's inequalities.

where Γ is the indicated path.

- 8. The cross-ratio of an ordered quadruple of distinct complex numbers is $[z_1, z_2, z_3, z_4] := \frac{(z_1-z_2)(z_3-z_4)}{z_1-z_4)(z_3-z_2)}$. Show that $[z_1, z_2, z_3, z_4] = [w_1, w_2, w_3, w_4]$ if and only if there is a Möbius transformation (i.e., a linear fractional transformation) that maps each z_j to w_j .
- **9.** Suppose $\sum_{n=0}^{\infty} c_n z^n$ has radius of convergence 1. Show that the function $f(z) := \sum_{n=0}^{\infty} c_n z^n$ which it defines in $\mathbb D$ is holomorphic. Can you find such an f which can be continuously extended to $\overline{\mathbb D}$? Disprove or give an example.
- 10. Prove that the zeros of a non-constant polynomial depend continuously on its coefficients in the following sense: Given $P(z) = c_0 + c_1 z + \ldots + c_n z^n$ $(n > 0, c_n \neq 0)$ whose (distinct) zeros are z_1, \ldots, z_r and given $\varepsilon > 0$, there exists $\delta > 0$ such that whenever complex numbers satisfy $|b_j c_j| < \delta$ for all j, the polynomial $Q(z) := b_0 + b_1 z + \ldots + b_n z^n$ will have at least one zero in each of the disks $D(z_j, \varepsilon) := \{z \in \mathbb{C} : |z z_j| < \varepsilon\}$ and all its zeros in the union $\int_{j=1}^r D(z_j, \varepsilon)$ of these disks.