BREAST CANCER HISTOPATHOLOGICAL IMAGE CLASSIFICATION

Al Applications course – MSc in Al

Georgios Batsis

Signs of Breast Cancer

Retracted or inverted nipple

Breast or nipple pain

Lumps

Nipple discharge

Swelling

Redness/rash

Changes to skin texture

Lump around collar bone or underarm

healthline

Benign vs. Malignant Tumors

Benign (not cancer) tumor cells grow only locally and cannot spread by invasion or metastasis

Malignant (cancer) cells invade neighboring tissues, enter blood vessels and metastasize to different sites

Breast exams – Detection/Diagnosis:

- Mammogram
- Breast Ultrasound
- Breast Tomosynthesis (3D Mammography)
- Contrast-Enhanced Digital Mammography (CEDM)
- Breast MRI

Tumor Screening:

Histopathological examination

The study of the microscopic structure of cells and tissues of organisms. Pathologists examine the tissue under a microscope slide observing it at various levels of magnification to identify the morphological characteristics that indicate the presence of diseases, such as cancer.

Methodology

Pretrained MobileNet v2

Dataset

Breast Cancer Histopathological Database (BreakHis)

Collected from 82 patients

• Different magnifying factors (40X, 100X, 200X & 400X)

• 2,480 benign and 5,429 malignant samples

Pre-processing

- Image resize → Network requirements
- Normalization of pixel values
- Patient-level train/validation/test split
- Data Augmentation on random samples of training dataset (Horizontal Flip and Rotation)

Model Development

- 100 Epoch with 4 epoch patience for early stopping
- Adam Optimizer
- Binary Cross Entropy as Loss Function
- F1 Score as metric
- Pytorch Framework
- Development using Kaggle Notebooks

Results: Training Curves

Image – Level Results

	precision	recall	f1-score	support	
0	0.83	0.94	0.88	548	
1	0.96	0.89	0.93	956	
accuracy			0.91	1504	
macro avg	0.90	0.91	0.90	1504	
weighted avg	0.91	0.91	0.91	1504	

True\Predicted	Benign	Malignant
Benign	515	33
Malignant	105	851

Patient - Level Results

Patient - Level Results

Patient Score =
$$\frac{N_{rec}}{N_P}$$

Recognition Rate =
$$\frac{\sum Patient \ score}{Total \ number \ of \ patients}$$

90 %