NAME: ANIL

SURNAME: ICEN

ID: 2448488

ANSWER 1)

a)

$$(a*b*)*(aa)(a*b*)(bb)(a*b*)* \cup (a*b*)*(bb)(a*b*)(aa)(a*b*)*$$

c) Let M = (K, Σ , Δ , s, F) be a nondeterministic finite automaton. We shall construct a deterministic finite automaton M' = (K', Σ , δ' , s', F') equivalent to M.

For M, K = $\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$ and $\Sigma = \{a, b\}$ and F = $\{q_4\}$ and s = $\{q_0\}$.

State	а	b
-> q 0	q ₀ , q ₁	q ₀ , q ₅
q_1	q_2	
q_2	q_2	q ₂ , q ₃
q_3		q ₄
*q ₄	q ₄	q 4
q ₅		q ₆
q_6	q ₆ , q ₇	q 6
q ₇	Q 4	

For M' transition (δ ') I will construct a table below.

State	а	b
q ₀	q ₀ , q ₁	q 0, q 5
q ₀ , q ₁	q ₀ , q ₁ , q ₂	q ₀ , q ₅
q 0, q 5	q ₀ , q ₁	q ₀ , q ₅ , q ₆
q ₀ , q ₁ , q ₂	q ₀ , q ₁ , q ₂	q ₀ , q ₂ , q ₃ , q ₅
q 0, q 5, q 6	q 0, q 1, q 6, q 7	q ₀ , q ₅ , q ₆
q ₀ , q ₂ , q ₃ , q ₅	q ₀ , q ₁ , q ₂	q ₀ , q ₂ , q ₃ , q ₄ , q ₅ , q ₆
q ₀ , q ₁ , q ₆ , q ₇	q ₀ , q ₁ , q ₂ , q ₄ , q ₆ , q ₇	q ₀ , q ₅ , q ₆
q ₀ , q ₂ , q ₃ , q ₄ , q ₅ , q ₆	q ₀ , q ₁ , q ₂ , q ₄ , q ₆ , q ₇	q ₀ , q ₂ , q ₃ , q ₄ , q ₅ , q ₆
q ₀ , q ₁ , q ₂ , q ₄ , q ₆ , q ₇	q ₀ , q ₁ , q ₂ , q ₄ , q ₆ , q ₇	q ₀ , q ₂ , q ₃ , q ₄ , q ₅ , q ₆

For M' K = $\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$ and $\Sigma = \{a, b\}$ and F = $\{q_4\}$ and s = $\{q_0\}$.

d)

$$(q_0, bbabb) \vdash_M (q_5, babb)$$
 $\vdash_M (q_6, abb)$
 $\vdash_M (q_6, bb)$
 $\vdash_M (q_6, b)$
 $\vdash_M (q_6, e)$

$$(q_0, bbabb) \vdash_M (q_0, babb)$$

$$\vdash_M (q_0, abb)$$

$$\vdash_M (q_0, bb)$$

$$\vdash_M (q_0, b)$$

$$\vdash_M (q_0, e)$$

$$(q_0, bbabb) \vdash_M (q_5, babb)$$
 $\vdash_M (q_6, abb)$
 $\vdash_M (q_6, bb)$
 $\vdash_M (q_6, b)$
 $\vdash_M (q_6, e)$

$$(q_0, bbabb) \vdash_M (q_0, babb)$$
 $\vdash_M (q_0, abb)$
 $\vdash_M (q_1, bb)$

$$(q_0, bbabb) \vdash_M (q_5, babb)$$
 $\vdash_M (q_6, abb)$
 $\vdash_M (q_7, bb)$

ANSWER 2)

a)

 L_1 is given in the question. Assume that $w \in L_1$ and w is regular. $w = a^{n+3}b^n$ where |w| > n. From pumping lemma we need w = xyz split. $x = a^{n-3}y = a^nz = a^3b^n$. Again from the pumping lemma xy^iz must be in the L_1 . But in our case when i = 0, it becomes a^nb^n . In the language's condition it says a's count must be greater than the b's count. Therefore, L_1 is not regular.

Assume that L_2 is regular. From the book's Finite Automata and Regular Expression part, we get the complement part. It says if L_2 is regular, \overline{L}_2 must be regular. But in our case $L_1 = \overline{L}_2$ and we know that L_1 is not regular. Therefore, L_2 is not regular.

b)

L4= $\{a_nb_n | n \in \mathbb{N}+\}$, L5= $\{a_mb_n | m,n \in \mathbb{N}\}$ and L6= b*a(ab*a)*

We need to prove whether $L4 \cup L5 \cup L6$ is regular or not.

L6 is a regular expression. Therefore, it is a regular language.

L4 is a language where it has equal number of consecutive a's and b's. and this language is not regular.

L5 is a language where it has consecutive a's and b's. Then, we see that L4 is a subset of L5. Although L4 is not a regular language, L5 is a regular language, and it contains L4. So L4 \cup L5 = L5.

Union of two regular languages is regular. And in our case L5 and L6 is regular. Therefore, $L4 \cup L5 \cup L6$ is regular.