1

4.13.25

EE25BTECH11020 - Darsh Pankaj Gajare

Question:

Two sides of a rhombus are along the lines, x - y + 1 = 0 and 7x - y - 5 = 0. If its diagonals intersect at (-1, -2), then which one of the following is a vertex of this rhombus?

1)
$$\left(\frac{1}{3}, -\frac{8}{3}\right)$$

2)
$$\left(-\frac{10}{3}, -\frac{7}{3}\right)$$

4)
$$(-3, -8)$$

Solution:

TABLE I

Line	Normal n	Constant c
$\mathbf{n_1}^T \mathbf{x} = -1$	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	-1
$\mathbf{n_2}^T \mathbf{x} = 5$	$\begin{pmatrix} 7 \\ -1 \end{pmatrix}$	5
Centre	-	$\mathbf{O} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$

$$A\mathbf{V_A} = b, \quad A = \begin{pmatrix} 1 & -1 \\ 7 & -1 \end{pmatrix}, \ b = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$
 (1)

$$\begin{pmatrix} 1 & -1 & | & -1 \\ 7 & -1 & | & 5 \end{pmatrix} \xrightarrow{R_2 - 7R_1} \begin{pmatrix} 1 & -1 & | & -1 \\ 0 & 6 & | & 12 \end{pmatrix} \tag{2}$$

$$\mathbf{V_A} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{3}$$

$$\mathbf{V_C} = 2\mathbf{O} - \mathbf{V_A} = 2 \begin{pmatrix} -1 \\ -2 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ -6 \end{pmatrix} \tag{4}$$

$$k = -\mathbf{n_1}^T \mathbf{V_C} = -3, \quad m = -\mathbf{n_2}^T \mathbf{V_C} = 15$$
 (5)

$$\begin{pmatrix} 1 & -1 & 3 \\ 7 & -1 & 5 \end{pmatrix} \xrightarrow{R_2 - 7R_1} \begin{pmatrix} 1 & -1 & 3 \\ 0 & 6 & -16 \end{pmatrix} \tag{6}$$

$$\mathbf{V} = \begin{pmatrix} \frac{1}{3} \\ -\frac{8}{3} \end{pmatrix} \tag{7}$$

(8)

Plot using C libraries:

Plot using Python:

