MID-SEMESTER EXAMINATION, MARCH-2020 CALCULUS-II (MTH-2001)

Programme: B.Tech. Full Marks: 30 Semester: 2nd Time: 2 Hours

Subject/Course Learning Outcome	*Taxonomy Level	Ques. Nos.	Marks
Use the knowledge of three dimensions and vectors to describe the region, lines, planes and surfaces.	L1, L1, L1	1 (a)(b)(c)	
	L1, L1, L5	2 (a)(b)(c)	2 X 9=18
	L1, L1, L3	3 (a)(b)(c)	
Compute the length of the curve, curvature, tangent, normal vector and tangent plane.	L1, L1, L1	4 (a)(b)(c)	2 X 3=6
Apply the concept of function of several variables to find the limit, continuity and partial derivatives.	L1, L1, L1	5 (a)(b)(c)	2 X 3=6

*Bloom's taxonomy levels: Knowledge (L1), Comprehension (L2), Application (L3), Analysis (L4), Evaluation (L5), Creation (L6)

Answer all questions. Each question carries equal mark.

- 1. (a) Find the region of \Re^3 represented by the inequality $x^2 + y^2 + z^2 \le 2z$.
 - (b) Find the center and radius of the sphere $2x^2 + 2y^2 + 2z^2 = 8x 24z + 1$. [2]
 - (c) Find the direction cosines and direction angles of the vector $\vec{a} = 6\hat{i} + 3\hat{j} 2\hat{k}$.

- 2. (a) Find a vector that has the same direction as the vector $\vec{a} = -2\hat{i} + 4\hat{j} + 2\hat{k}$ but has length 6.
 - (b) Find a nonzero vector \vec{v} that is orthogonal to the plane through the vertices P(1,0,1), Q(-2,1,3) and R(4,2,5).
 - (c) Find the area of the parallelogram with vertices A(-2,1), B(0,4), C(4,2) and D(2,-1).
- 3. (a) Find the angle between the planes 2x-3y+4z=5 and x+6y+4z=3. [2]
 - (b) Find an equation of the plane through the point (4,0,-3) and with normal vector $\langle 0,1,2\rangle$.
 - (c) Sketch the region bounded by the surfaces $z = \sqrt{x^2 + y^2} \text{ and } x^2 + y^2 = 1 \text{ for } 1 \le z \le 2$
- 4. (a) Find the domain of the vector $\text{function } \vec{r}(t) = \left\langle \sqrt{4 t^2}, e^{-3t}, \ln(t+1) \right\rangle.$
 - (b) A projectile is fired with muzzle speed 150 m/s and angle of elevation 45 degree from a position 10m above ground level. Find, where does the projectile hit the ground?
 - (c) Find the length of the curve $\vec{r}(t) = \sqrt{2}t\hat{i} + e^t\hat{j} + e^{-t}\hat{k}$, $0 \le t \le 1$. [2]

- 5. (a) Find the domain and range of the function $f(x, y) = \cos(x + 2y)$
 - (b) Find the limit if it exists $\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{2x^2+y^2}$.
 - (c) Find the first partial derivatives of the

function
$$f(x, y) = \frac{x}{(x+y)^2}$$
.

End of Questions