Desirable Properties of Decomposition

Module No. 3

Functional dependency (FD), Closure of FD, Closure of Attributes, Cover, Equivalence of FD, Canonical cover, Key generation, Normalization, Desirable properties of decomposition.

Properties of Decomposition

The following two properties must be followed when decomposing a given relation

1. Lossless Decomposition

Lossless decomposition ensures-

- 1. No information is lost from the original relation during decomposition.
- 2. When the sub-relations are joined back, the same relation is obtained that was decomposed. Every decomposition must always be lossless.

Properties of Decomposition

2. Dependency Preservation

Dependency preservation ensures:

- None of the functional dependencies that hold on the original relation are lost.
- The sub-relations still hold or satisfy the functional dependencies of the original relation.
 - Let a relation R (A,B,C,D) and a set of FDs F = $\{A->B,A->C,C->D\}$ are given.
 - A relation is decomposed into -
 - R1 = (A, B, C) with FDs F1 = {A->B, A->C}.
 - R2 = (C, D) with FDs F2 = {C->D}
 - F' = F1 U F2 = {A->B, A->C, C->D} So, F'= F. And so, F'+ = F+.
 - Thus, the decomposition is dependency-preserving decomposition.

 The process of breaking up or dividing a single relation into two or more sub-relations is called as decomposition of a relation.

Types of Decomposition

1.Lossless Join Decomposition

- Consider there is a relation R which is decomposed into subrelations R1, R2,..., Rn.
- This decomposition is called lossless join decomposition when the join of the subrelations results in the same relation R that was decomposed.
- For lossless join decomposition, we always have-.

$$\mathbf{R}_1 \bowtie \mathbf{R}_2 \bowtie \mathbf{R}_3 \ldots \bowtie \mathbf{R}_n = \mathbf{R}$$

where ⋈ is a natural join operator

1.Lossless Join Decomposition

Example: Consider the following relation R(A, B, C)

A	В	C
1	2	1
2	5	3
3	3	3

Consider this relation is decomposed into two sub relations R1(A,B) and R2(B,C)

The two sub relations are-

A	В
1	2
2	5
3	3
D.(A	D

R2(B,C)

1.Lossless Join Decomposition

Example:

The two sub relations are-

A	В
1	2
2	5
3	3

-	5	2	В
	3	1	C

- Now, let us check whether this decomposition is lossless or not. For lossless decomposition, we must
- have $R1 \bowtie R2 = R$.
- Now, if we perform the natural join (⋈) of the sub relations R1 and R2, we get

A	В	C
1	2	1
2	5	3
3	3	3

1.Lossless Join Decomposition

Lossless join decomposition is also known as non-additive join decomposition.

- This is because the resultant relation after joining the sub-relations is the same as the decomposed relation.
- No extraneous tuples appear after joining of the sub-relations.

2. Lossy Join Decomposition

- Consider there is a relation R which is decomposed into sub-relations R1, R2,, Rn.
- This decomposition is called lossy join decomposition when the join of the sub-relations does not result in the same relation R that was decomposed.
- The natural join of the sub-relations is always found to have some extraneous tuples.

```
R_1 \bowtie R_2 \bowtie R_3 \dots \bowtie R_n \supset R
```

where ⋈ is a natural join operator

2. Lossy Join Decomposition

Example Consider the following relation R(A, B, C)

A	В	C
1	2	1
2	5	3
3	3	3

Consider this relation is decomposed into two sub relations R1(A,C) and R2(B,C)

The two sub relations are-

A	C
1	1
2	3
3	3

 $R_2(B,C)$

2. Lossy Join Decomposition

Example

- Now, let us check whether this decomposition is lossy or not.
- For lossy decomposition, we must have $R1 \bowtie R2 \supset R$

Now, if we perform the natural join (\bowtie) of the sub relations R1 and R2

A	В	C
1	2	1
2	5	3
2	3	3
3	5	3
3	3	3

R(A, B, C)

A	C
1	1
2	3
3	3

В	C
2	1
5	3
3	3

 $R_2(B,C)$

- This relation is not the same as the original relation R and contains some extraneous tuples.
- Clearly, R1 \bowtie R2 \supset R. Thus, we conclude that the above decomposition is lossy join decomposition.

2. Lossy Join Decomposition

NOTE-

- Lossy join decomposition is also known as careless decomposition.
- This is because extraneous tuples get introduced in the natural join of the sub-relations.
- Extraneous tuples make the identification of the original tuples difficult.

Determining Whether Decomposition is Lossless or Lossy

Consider a relation R is decomposed into two sub relations R1 and R2. Then,

- If all the following conditions are satisfied, then the decomposition is lossless.
- If any of these conditions fail, then the decomposition is lossy.

Condition-01

The Union of both the sub-relations must contain all the attributes that are present in the original relation R. Thus
 R1 U R2 = R

Condition-02

• The intersection of both the sub relations must not be null. In other words, there must be some common attribute that is present in both the sub relations. Thus $R1 \cap R2 \neq \emptyset$

Condition-03

Intersection of both the sub relations must be a super key of either R1 or R2 or both. Thus

 $R1 \cap R2 = Super key of R1 or R2$

Examples

• Consider a relation schema R (A , B , C , D) with the functional dependencies $A \to B$ and $C \to D$. Determine whether the decomposition of R into R1 (A , B) and R2 (C , D) is lossless or lossy.

Solution

Condition-01: The union of both the sub relations must contain all the attributes of relation R.

$$R1(A,B) \cup R2(C,D) = R(A,B,C,D)$$

• The union of the sub-relations contains all the attributes of relation R. Thus, condition-01 satisfies.

Condition-01: the intersection of both the sub relations must not be null.

R1 (A,B)
$$\cap$$
 R2 (C,D) = Φ

- The intersection of the sub-relations is null.
- So, condition-02 fails.
- Thus, we conclude that the decomposition is lossy.

Examples

• Consider a relation schema R(A,B,C,D) with the following functional dependencies.

$$\mathrm{FD}:\mathsf{A}\to\mathsf{B}$$
 , $\mathsf{B}\to\mathsf{C}$, $\mathsf{C}\to\mathsf{D}$, $\mathsf{D}\to\mathsf{B}$

Determine whether the decomposition of R into R1 (A, B), R2 (B, C) and R3 (B, D) is lossless or lossy.

Strategy to Solve

When a given relation is decomposed into more than two sub relations, then-

- Consider any one possible way in which the relation might have been decomposed into those subrelations.
- First, divide the given relation into two sub-relations.
- Then, divide the sub-relations according to the sub-relations given in the question.

As a thumb rule,

remember Any relation can be decomposed only into two sub-relations at a time.

Examples

• Consider a relation schema R(A,B,C,D) with the following functional dependencies.

$$\mathrm{FD}:\mathsf{A}\to\mathsf{B}$$
 , $\mathsf{B}\to\mathsf{C}$, $\mathsf{C}\to\mathsf{D}$, $\mathsf{D}\to\mathsf{B}$

Determine whether the decomposition of R into R1 (A, B), R2 (B, C) and R3 (B, D) is lossless or lossy.

Condition-01

The union of both the sub-relations must contain all the attributes of relation R.

$$R'(A,B,C) \cup R3(B,D) = R(A,B,C,D)$$

Condition-01 satisfies.

Examples Cont'd . R(A,B,C,D)

 $\mathrm{FD}:\mathsf{A}\to\mathsf{B}$, $\mathsf{B}\to\mathsf{C}$, $\mathsf{C}\to\mathsf{D}$, $\mathsf{D}\to\mathsf{B}$

Determine whether the decomposition of R into R1 (A, B), R2 (B, C) and R3 (B, D) is lossless or lossy.

Condition-02: The intersection of both the sub relations must not be null.

$$R'(A,B,C) \cap R3(B,D) = B$$

Condition-02 satisfies

Condition-03:

• The intersection of both the sub-relations must be the super key of one of the two sub-relations or both.

$$R'(A,B,C) \cap R3(B,D) = B$$

the closure of attribute B is $B + = \{ B, C, D \}$

- Attribute 'B' can not determine attribute 'A' of sub relation R'.
- Thus, it is not a super key of the sub relation R'.
- Attribute 'B' can determine all the attributes of sub relation R3.
- Thus, it is a super key of the sub relation R3

condition-03 satisfies

Examples Cont'd • R(A,B,C,D) FD: $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$, $D \rightarrow B$

Determine whether the decomposition of R into R1 (A, B), R2 (B, C) and R3 (B, D) is lossless or lossy.

Decomposition of R'(A, B, C) into R1(A, B) and R2(B, C)-

<u>Condition-01:</u> According to condition-01, the union of both the sub relations must contain all the attributes of relation R'. So,

$$R1(A,B) \cup R2(B,C) = R'(A,B,C)$$

Clearly, the union of the sub relations contain all the attributes of relation R'.

Thus, condition-01 satisfies.

Condition-02: According to condition-02, intersection of both the sub relations must not be null. So, we have-

$$R1(A,B) \cap R2(B,C) = B$$

Clearly,

intersection of the sub-relations is not null. Thus, condition-02 satisfies.

Examples Cont'd •
$$R(A,B,C,D)$$
 FD: $A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow B$

$$\mathrm{FD}:\mathsf{A}\to\mathsf{B}$$
 , $\mathsf{B}\to\mathsf{C}$, $\mathsf{C}\to\mathsf{D}$, $\mathsf{D}\to\mathsf{B}$

Determine whether the decomposition of R into R1 (A, B), R2 (B, C) and R3 (B, D) is lossless or lossy.

Decomposition of R'(A, B, C) into R1(A, B) and R2(B, C)-

Condition-03:

According to condition-03, intersection of both the sub relations must be the super key of one of the two sub-relations or both. So, we have-

$$R1(A,B) \cap R2(B,C) = B$$

Now, the closure of attribute B is $B + = \{B, C, D\}$

- Attribute 'B' can not determine attribute 'A' of sub relation R1.
- Thus, it is not a super key of the sub relation R1.
- Attribute 'B' can determine all the attributes of sub relation R2.
- Thus, it is a super key of the sub relation R2.

Condition-03 satisfies. The decomposition is lossless.

Try this

EmployeeProjectDetail

Employee_Code	Employee_Name	Employee_Email	Project_Name	Project_ID
101	John	john@demo.com	Project103	P03
101	John	john@demo.com	Project101	P01
102	Ryan	ryan@example.com	Project102	P02
103	Stephanie	stephanie@abc.com	Project102	P02

EmployeeProject

Employee _Code	Project_ID	Employee _Name	Employee_Email
101	P03	John	john@demo.com
101	P01	John	john@demo.com
102	P04	Ryan	ryan@example.com
103	P02	Stephanie	stephanie@abc.com

The primary key of the above relation is {Employee_Code, Project_ID}.

ProjectDetail

Project_ID	Project_Name
P03	Project103
P01	Project101
P04	Project104
P02	Project102

The primary key of the above relation is {Project_ID}.

Dependency Preservation

Example:

$$R=(A, B, C), F=\{A \rightarrow B, B \rightarrow C\}$$

Decomposition of R: R1=(A, C) R2=(B, C)

Does this decomposition preserve the given dependencies?

Solution:

```
In R1 the following dependencies hold: F1'=\{A \rightarrow A, C \rightarrow C, A \rightarrow C, AC \rightarrow AC\}
```

In R2 the following dependencies hold:
$$F2' = \{B \rightarrow B, C \rightarrow C, B \rightarrow C, BC \rightarrow BC\}$$

The set of nontrivial dependencies hold on R1 and R2: $F' := \{B \rightarrow C, A \rightarrow C\}$

A→B can not be derived from F', so this decomposition is NOT dependency preserving.

Dependency Preservation

Dependency preservation

Example:

 $R=(A, B, C), F=\{A \rightarrow B, B \rightarrow C\}$

Decomposition of R: R1=(A, B) R2=(B, C)

Does this decomposition preserve the given dependencies?

Solution:

In R1 the following dependencies hold: $F1=\{A\rightarrow B, A\rightarrow A, B\rightarrow B, AB\rightarrow AB\}$ In R1 the following dependencies hold: $F2=\{B\rightarrow B, C\rightarrow C, B\rightarrow C, BC\rightarrow BC\}$

 $F'=F1' \cup F2' = \{A \rightarrow B, B \rightarrow C, \text{ trivial dependencies}\}\$

In F' all the original dependencies occur, so this decomposition preserves dependencies.

Dependency Preservation

Example:

```
R(A, B, C, D), F = \{A \rightarrow B, B \rightarrow C\}
Let S(A,C) be a decomposed relation of R. What dependencies do hold on S?
Solution: Need to compute the closure of each subset of {A,C}, wrt F<sup>+</sup>
    Compute \{A\} + = \{ABC\}
      C is in S
      - so A \rightarrow C holds for S
    Compute {C}+
      - \{C\} += C, no new FD
    Compute {AC}+
       - \{AC\} + = ABC, no new FD
```

Hence, A \rightarrow C is the only non-trivial FD for S, $\Pi_s(F^+)=\{A\rightarrow C, + \text{trivial FDs}\}\$

Dependency Preservation

Example:

```
R(A, B, C, D), F = \{A \rightarrow B, B \rightarrow C\}
Let S(A,C) be a decomposed relation of R. What dependencies do hold on S?
Solution: Need to compute the closure of each subset of {A,C}, wrt F<sup>+</sup>
    Compute \{A\} + = \{ABC\}
      C is in S
      - so A \rightarrow C holds for S
    Compute {C}+
      - \{C\} += C, no new FD
    Compute {AC}+
       - \{AC\} + = ABC, no new FD
```

Hence, A \rightarrow C is the only non-trivial FD for S, $\Pi_s(F^+)=\{A\rightarrow C, + \text{trivial FDs}\}\$

Dependency Preservation

Example:

```
R(A, B, C, D, E), A \rightarrow D, B \rightarrow E, DE \rightarrow C.
Let S(A, B, C) be a decomposed relation of R. What FD-s do hold on S?
```

Solution: Need to compute the closure of each subset of {A, B, C}

```
Compute \{A\}+=AD, A \to D, no new FD
Compute \{B\}+=BE, but E is not in S, so B \to E does not hold
Compute \{C\}+=C, no new FD
Compute \{AB\}+=ABCDE, so AB \to C holds for S ( since DE are not in S)
Compute \{BC\}+=BCE, no new FD
Compute \{AC\}+=ACD, no new FD
Compute \{ABC\}+=ABCDE, no new FD
```

Hence, AB \rightarrow C is the only nontrivial FD for S, so $\Pi_s(F^+) = \{A \rightarrow C, + \text{trivial FDs}\}\$

Dependency Preservation

Try

```
    R (A, B, C, D) is decomposed into R1(A, B, C), R2(C, D) and

F = \{B \rightarrow C, AC \rightarrow D\}.
What dependencies do hold in R1 and in R2?
Hint: Find the following closures:
\{A\}^{+}=
{\bf B}^+ =
\{C\}^{+}=
{A,B}^{+}
{A,C}^{+}=
{A,D}^{+}=
\{B,C\}^{+}=
\{B,D\}^+ =
\{C,D\}^+ =
{A,B,C}^+=
{A,B,D}^+=
{B,C,D}^+=
{A,C,D}^+=
```