Cryptography behind

Private Machine Learning

Morten Dahl

(Cyber)Security for Software Engineers meetup, June 2018

Why?

Machine Learning Process

IM ... GENET

Skin Cancer Image Classification

Brett Kuprel

12:30-12:40pm

Join Brett Kuprel, and see how TensorFlow was used by the artificial intelligence lab and medical school of Stanford to classify skin cancer images. He'll describe the project steps: from acquiring a dataset, training a deep network, and evaluating of the results. To wrap up, Brett will give his take on the future of skin cancer image classification.

Potential Bottlenecks

Prediction

Unencrypted Prediction

Prediction on Encrypted Data

Paillier Encryption

Paillier Encryption

public encryption key
$$c = \text{Enc}(x, r) = g^x * r^n \mod n^2$$

Private Addition

```
\operatorname{Enc}(\mathbf{x}, \mathbf{r}) * \operatorname{Enc}(\mathbf{y}, \mathbf{s})
= (g^x * r^n \mod n^2) * (g^y * s^n \mod n^2)
             = g^{(x + y)} * (r * s)^n \mod n^2
                           = \operatorname{Enc}(\mathbf{x} + \mathbf{y}, \mathbf{r} * \mathbf{s})
                          Enc(5, 2) * Enc(5, 4)
                                 = 718 * 674
                                       = 57
                               = 36^10 * 8^35
                                 = \operatorname{Enc}(10, 8)
```

Public Multiplication

```
Enc(x, r) \(^{\text{v}}\)
= (g^{\text{x}} * r^{\text{n}} \mod n^{\text{2}}) ^{\text{w}} \)
<math display="block">= g^{\text{x}} (x*w) * (r^{\text{w}})^{\text{n}} \mod n^{\text{2}} \)
<math display="block">= Enc(x*w, r^{\text{w}})
```

What's Next?

computationally expensive

4096 bit modulus

data expansion

available operations

private multiplication

. . .

Secret Sharing

replace computation with communication

Prediction on Secret Shared Data

Secret Sharing in SPDZ

```
public parameter
   x1 = Sharel(x, r) = r \mod m
   x2 = Share2(x, r) = x - r \mod m
         x1 + x2 = x \mod m
               Share1(5, 7) = 7 \mod 10 = 7
m = 10
              Share 2(5, 7) = 5 - 7 \mod 10 = 8
```

Private Addition

x1

yl

$$z1 = x1 + y1$$

x2

y2

$$z2 = x2 + y2$$

$$x1 + x2 = x$$

$$y1 + y2 = y$$

$$z1 + z2$$

= $(x1 + y1) + (x2 + y2)$
= $(x1 + x2) + (y1 + y2)$
= $x + y$

Public Multiplication

x1

N

$$z1 = x1 * w$$

x2

M

$$z2 = x2 * w$$

$$x1 + x2 = x$$

$$z1 + z2$$

= $(x1 * w) + (x2 * w)$
= $(x1 + x2) * w$
= $x * w$

Private Multiplication

$$z2 = (x - a)*b2$$

+ $(y - b)*a2$
+ $c2$

$$a1 + a2 = a$$

 $b1 + b2 = b$
 $c1 + c2 = a * b$

$$x1 + x2 = x$$
 $y1 + y2 = y$

Performance

logistic regression

Sigmoid evaluation, 100 features, servers on Google cloud (2 vCPU, 10 GB)

Getting Involved

Tools for Safe AI

- Federated Learning
- Homomorphic Encryption
- Multi-Party Computation
- Gradient Validation Markets

@mortendahlcs mortendahl.github.io

@openminedorg
openmined.org