$$T(n) = aT(n|b) + f(n)$$

a>,1,6>1

on Comparing

$$a = 3, b = 2, f(n) = n^2$$

Now,
$$C = \log_b a = \log_2 3 = 1584$$

$$T(n) = O(ny)$$

97,1,671

$$Q = 4, b = 2, f(n) = n^2$$

$$n^{c} = n^{2} = f(n) = n^{2}$$

$$a=1, b=2, f(n)=2^h$$

:
$$T(n) = O(2^n)$$

due-4.
$$T(n) = 2^h T(n/2) + n^h$$

here, Montor's theorem can't
be applied as 'a' must be constant

$$f(n) = n$$

$$c = \log 16 = \log 4^2 = 2$$

$$-T(n) = \theta(n^2)$$

$$a=2$$
, $b=2$

$$a=2$$
, $b=2$
 $f(n) = n \log n \Rightarrow C = \log^2 = 1$

$$-m^{c}=n^{\prime}=n$$

$$a = 2, b = 2, f(n) = n | log n$$

$$C = \log^2 = 1$$

$$-i \cdot m^c = n^l = n$$

$$T(n) = O(n)$$

Que-8.
$$T(n) = 2T(n|4) + n^{0.51}$$
 $a = 2, b = 4, f(n) = n^{0.51}$
 $c = \log a = \log^2 = 0.5$
 $n^c = n^{0.5}$

Since, $n^{0.5}(n^{0.51})$
 $f(n) > n^c$
 $T(n) = 0(n^{0.51})$

Que-9. $T(n) = 0.5T(n|2) + 1/n$
 $a = 0.5, b = 2$

Acc. to Master's Theorem

 $a > 1, but here a is 0.5$
 a

due-lo.
$$t(n) = 16T(n/4) + n$$
,
 $a = 16$, $b = 4$, $f(n) = n!$
 $c = log q = log \frac{16}{4} = 2$
Now, $n^c = n^2$
 $as n! 7n^2$
 $t(n) = o(n!)$

Que-11.
$$4T(n|2) + \log n$$

 $a = 4, b = 2, f(n) = \log n$
 $c = \log a = \log 4 = 2$
 $n^{c} = n^{2} \text{ and } f(n) = \log n$
 $\log n < n^{2}$
 $f(n) = O(n^{2})$

au-12. T(n) = Sqrt(n) T(n/2) + logn here, MT can not be applied as a must be constant.

du - 13:
$$T(n) = 3T(n/2) + n$$

 $a = 3, b = 2, f(n) = n$
 $c = log a = log 3 = 1.5849$.
 $f(n) = 0 (m^{1.5489})$

But-14.
$$T(n) = 3T(n)/3) + 49rt(n)$$

 $a = 3, b = 3, c = \log_3^3 = 1$
 $\therefore n^c = n^1 = n$
as $49rt(n) < n$
 $\therefore f(n) < n^c$
 $\therefore T(n) = \theta(n)$

au-15.
$$T(n) = 4T(n/2) + cn$$

$$\alpha = 4, b = 2$$

$$c = log a = log 4 = 2$$

$$c = n^{2}$$

$$cn < n^{2} (for any constant)$$

$$c. T(n) = 0 (n^{2})$$

Due-16.
$$T(n) = 3T(n|4) + n \log n$$

 $a = 3$, $b = 4$, $f(n) = n \log n$
 $c = \log q \Rightarrow \log 3 = 0.792$
 $m^{c} = n^{0.792} < n \log n$
 $T(n) = \delta(n \log n)$
 $T(n) = \delta(n \log n)$
 $T(n) = 3T(n|3) + n|2$
 $a = 3$, $b = 3$
 $c = \log q = \log 3 = 1$
 $f(n) = n|2$
 $n = n' = n$
 $f(n) = n|2$
 $f(n) = 0(n)$
 $f(n) = 0(n)$
 $f(n) = 0(n)$
 $f(n) = 0(n)$
 $f(n) = 0(n)$

 $: T(n) = O(m^2 \log n)$