

PROJEKT WYKONAWCZY KONSTRUKCJI

DWUPODPOROWA KONSTRUKCJA GRUNTOWA POD MODUŁY FOTOWOLTAICZNE

Lokalizacja	Polska – do wysokości 300 m n.p.m.					
	1 i 2 strefa obciążenia śniegiem wg PN-EN 1991-1-3					
	1 strefa obciążenia wiatrem wg PN-EN 1991-1-4					
	Kategoria terenu II					
	Obszary z niską roślinnością, taką jak trawa, oraz pojedynczymi przeszkodami (drzewa, budynki) oddalonymi od siebie na odległość nie mniejszą niż 20 ich wysokości					
Zleceniodawca	ULAMEX Zbigniew Zientek					
	Zawada 144					
	97-200 Tomaszów Mazowiecki					
	SPECJALNOŚĆ KONSTRUKCYJNO-BUDOWLANA					
Projektant	mgr inż. Paweł Kowalski					
	uprawnienia bud. nr ewid. SLK/7224/PBKb/17					
Data	8 lutego 2023					

SPIS TREŚCI

CZĘŚĆ	OPISOWA	3
1		3
2	Przedmiot opracowania	3
3	Materialy	3
4	Geotechniczne warunki i sposób posadowienia	3
5	Zestawienie obciążeń	4
CZĘŚĆ	OBLICZENIOWA	5
Poz.		5
Poz.	. 2 Słup górny (ponad gruntem) wysoki	6
Poz.		8
Poz.	. 4 Stężenie poprzeczne	9
Poz.	. 5 Stężenie podłużne	10
Poz.	. 7 Rygiel	11
Poz.		13
CZĘŚĆ	CRYSUNKOWA	
U1	Układ poprzeczny, elementy złączne	
U2	Pozycje: 1, 2, 3 – słupy	
U3	Pozycje: 4, 5, 6 – stężenia, łącznik	
U4	Pozycje: 71, 72, 73 – rygle	
U5	Pozvcie 81, 82 – płatwie	

CZĘŚĆ OPISOWA

1 Podstawa formalna

- PN-EN 1990 Podstawy projektowania konstrukcji
- PN-EN 1991 Oddziaływania na konstrukcje
- PN-EN 1993 Projektowanie konstrukcji stalowych

2 Przedmiot opracowania

- Konstrukcja wsporcza to wolnostojąca wiata jednospadowa o kącie spadku połaci z regulacją od 20° do 30°
- Kategoria projektowego okresu użytkowania S3 (od 15 do 30 lat)
- Mnożnik KFI do współczynników częściowych = 0,9 klasa niezawodności RC1 na podstawie klasy konsekwencji CC1 (małe lub nieznaczne konsekwencje społeczne, ekonomiczne i środowiskowe)
- Konstrukcje wykonać i montować zgodnie z PN-EN 1090 klasa EXC2 oraz dołączoną instrukcją montażu konstrukcji.

3 Materialy

Stal konstrukcyjna (profilowa) gatunku S350GD z powłoką Magnelis ®

4 Geotechniczne warunki i sposób posadowienia

- Kategoria geotechniczna obiektu budowlanego zgodnie z projektem budowlanym
- Posadowienie bezpośrednie wbijanie słupów w grunt na głębokość według próbnych obciążeń
- Wartości obliczeniowe nośności na wyciąganie ustalone zgodnie z PN-EN 1997-1 nie powinny przekraczać maksymalnych reakcji obliczeniowych pokazanych poniżej

Rysunek 1: Reakcje obliczeniowe w kierunku pionowym

5 Zestawienie obciążeń

Ciężar własny konstrukcji uwzględniono automatycznie w programie obliczeniowym. (Przypadek: Nr 1)

Tabela 1: Obciążenia stałe (Przypadek: Nr 2)

Opis	Wartość [kN/m²]
Instalacja fotowoltaiczna	0,13
Razem =	0,13

Tabela 2: Obciążenie zmienne śniegiem (Przypadek: Nr 3)

Obciążenie śniegiem gruntu (2 strefa)	s _k = 0,9 kN/m ²
Współczynnik ekspozycji (teren wystawiony na działanie wiatru)	C _e = 0,8
Współczynnik termiczny	C _t = 1,0
Współczynnik kształtu dachu (α = 30°)	μ ₁ = 0,80
Obciążenie śniegiem równomiernie rozłożone na powierzchni dachu	s ₁ = 0,58 kN/m ²

Tabela 3: Obciążenie zmienne wiatrem (Przypadek: Nr 4, 6 parcie ALBO Nr 5, 7 ssanie)

Wartość podstawowa ba	v _{b,o} = 22 m/s					
Współczynnik kierunkow	c _{dir} = 0,8					
Współczynnik sezonowy	1			c _{season} = 1,0		
Bazowa prędkość wiatru	I			v _b = 17,6 m/s		
Wysokość odniesienia n	z = h = 3,0 m					
Współczynnik ekspozycj	c _e (z) = 1,72					
Średnie (bazowe) ciśnie	$q_b = 0,19 \text{ kN/m}^2$					
Szczytowe ciśnienie prę	$q_p(z) = 0.33 \text{ kN/m}^2$					
Współczynnik konstrukc	c _s c _d = 1,0					
Globalny wsp	Pow. odniesienia					
(wiata jednospadowa α :	= 30°, współczynnik blokow	wania φ = 0)				
c _{f-} = -1,8	Cf+ = 1,2	F _{w-} = -32,73 kN	F _{w-} = -32,73 kN F _{w+} = 21,82 kN			
Cf- = -1,8	$c_{f-} = -1.8$ $c_{f+} = 1.2$ -0.95 kN/m 0.63 kN/m					
Cf- = -1,8	II = 2,7					
c _{f-} = -1,8	c _{f+} = 1,2	-0,38 kN/m	III = 0,64			
c _{f-} = -1,8	$c_{f-} = -1.8$ $c_{f+} = 1.2$ -0.19 kN/m 0.13 kN/m					
c _{f-} = -1,8	V = 0,11					

Oddziaływania termiczne przyjęto jako podniesienie lub obniżenie temperatury o 20°C. (Przypadek: Nr 8 ALBO Nr 9)

CZĘŚĆ OBLICZENIOWA

Rysunek 2: Przyjęty schemat statyczny

```
Wariant: 10/1 (1+2+3x0,2 (Częsta))
Nr
       Mnoż. Opis
1(St) 1,0
           Ciężar własny (F)
2(St)
      1,0
             Stałe
3(Wa)
     0,2
             Śnieg
Wariant: 11/2 (1+2+5x0,2 (Częsta))
Nr
       Mnoż. Opis
1(St) 1,0
           Ciężar własny (F)
2(St) 1,0
           Stałe
5(Wa)
      0,2
             Ssanie wiatru Y+
Wariant: 12/3 (1+2+7x0,2 (Częsta))
Nr
       Mnoż. Opis
1(St) 1,0 Ciężar własny (F)
2(St) 1,0
           Stałe
7 (Wa)
      0,2
             Ssanie wiatru Y-
```

Poz. 1 Słup dolny (w gruncie)

```
OBIEKT: Słup (Cg75x45x15x3)
Od węzła: 8 do węzła: 9 (L= 0,5 m)
Przekrój nr: 1 (Cg75x45x15x3)
Materiał: S350GD (f=350/420)
(m0=1,0 m1=1,0 m2=1,25)
Granica plastyczności fy = 350 MPa
Odległość między przekrojami< 0,5 m
UGIĘCIE WSPORNIKA (z wariantów: 10,11,12)
```

```
f = 2,742 \text{ mm} < 3,333 \text{ mm} (2L/300)
KLASA PRZEKROJU: 1
CECHY GEOMETRYCZNE PRZEKROJU
  Pole przek.poprz. (A) = 5,04 cm2
  Pola na ścinanie (Avy) = 0,0 cm2
  Pola na ścinanie (Avz) = 0,0 cm2
  Wsk.na zginanie (Wcy) = 11,46 cm3 (Wcz) = 4,656 cm3
  Wsk.na zginanie (Wty) = 11,46 \text{ cm} 3 \text{ (Wtz)} = 7,76 \text{ cm} 3
NOŚNOŚCI OBLICZENIOWE PRZEKROJU
  Na rozciąganie (NRt) = 123,5 kN
      (Osłab.przekroju otworami/mimośrodem= 30 %)
 Na ściskanie (NRc) = 176,4 kN
                (VRy) = 0,0 kN
  Na ścinanie
  Na ścinanie (VRz) = 0,0 \text{ kN}
 Na zginanie (MRy) = 4,01 \text{ kNm}
                (MRz) = 1,629 \text{ kNm}
 Na zginanie
OBCIAŻENIA OBLICZENIOWE
Warianty i siły dla maksymalnych naprężeń
  Nrr:
  1*1,0 + 2*1,0 + 5*1,35 + 8*0,81
  Rozciąg. (Nt) = 5,972 \text{ kN}
  Ścinanie (Vz) = 0,1094 \text{ kN} Ścinanie (Vy) = 0,006045 \text{ kN}
  Zginanie (My) = 0,9508 kNm Zginanie (Mz) = 0,002712 kNm
Warianty i siły dla minimalnych naprężeń
  1*1,04 + 2*1,04 + 7*1,35 + 8*0,81
  Ściskanie (Nc) = 5,502 kN
  Ścinanie (Vz) = 0,663 \text{ kN} Ścinanie (Vy) = 0,008654 \text{ kN}
  Zginanie (My) = 1,406 \text{ kNm} Zginanie (Mz) = 0,008226 \text{ kNm}
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
  My/MRy+Mz/MRz=0,36 < 1
  Nc/NRc+My/MRy+Mz/MRz=0,39 < 1
STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
  Dł.oblicz.pręta (Loy) = 0,5 \text{ m} (Loz) = 0,5 \text{ m}
  Wsp.dł.wyboczen. (miy) = 2,47
                                     (miz) = 1,49
  Smukłość pręta
                     (1 y) = 42,3
                                     (1 z) = 46,22
  Wsp.wyboczeniowy (fiy) = 0,7808 (fiz) = 0,7432
STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
  Długość zwichrzenia (Lo) = 0,5 m
  Wsp.zwichrzenia (fiL) = 0,8
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
  My/(fiL*MRy)+Mz/MRz=0,44 < 1
  Nc/(fi*NRc) = 0,04 < 1
     Wsp.beta by= 1
                            bz = 1
     Poprawki Dy= 0,0
                            Dz=0,0
  Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,48 < 1
  Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,49 < 1
```

Poz. 2 Słup górny (ponad gruntem) wysoki

```
OBIEKT: Słup (Cg82x50x18x2)
Od węzła: 22 do węzła: 60 (L= 2,393 m)
Przekrój nr: 2 (Cg82x50x18x2)
Materiał: S350GD (f=350/420)
(m0=1,0 m1=1,0 m2=1,25)
Granica plastyczności fy = 350 MPa
Odległość między przekrojami< 0,5 m
```

```
UGIECIE WSPORNIKA (z wariantów: 10,11,12)
  f = 4,92 \text{ mm} < 15,95 \text{ mm} (2L/300)
KLASA PRZEKROJU: 4
  Brak usztywnień poprzecznych
CECHY GEOMETRYCZNE PRZEKROJU
  Pole przek.poprz. (A) = 4 \text{ cm}2
  Pola na ścinanie (Avy) = 0,0 cm2
  Pola na ścinanie (Avz) = 0,0 cm2
  Wsk.na zginanie (Wcy) = 10,46 \text{ cm} 3 \text{ (Wcz)} = 4,72 \text{ cm} 3
  Wsk.na zginanie (Wty) = 10,46 \text{ cm} 3 \text{ (Wtz)} = 7,394 \text{ cm} 3
NOŚNOŚCI OBLICZENIOWE PRZEKROJU
  Na ściskanie (NRc) = 134,2 kN
      Wsp.reduk.nośności przek.(psiC) = 0,9588
                 (VRy) = 0,0 kN
  Na ścinanie
  Na ścinanie (VRz) = 0,0 \text{ kN}
  Na zginanie (MRy) = 3,661 \text{ kNm}
  Na zginanie
                  (MRz) = 1,652 \text{ kNm}
OBCIĄŻENIA OBLICZENIOWE
Warianty i siły dla maksymalnych naprężeń
  1*1,0 + 2*1,0 + 5*1,35 + 9*0,81
  Ściskanie (Nc) = 0,4333 kN
  Ścinanie (Vz) = 0,5372 \text{ kN}
                               Ścinanie (Vy) = 0,001887 \text{ kN}
  Zginanie (My) = 1,012 \text{ kNm} Zginanie (Mz) = 0,003554 \text{ kNm}
Warianty i siły dla minimalnych naprężeń
  1*1,04 + 2*1,04 + 3*0,68 + 5*1,35 + 9*0,81
  Ściskanie (Nc) = 3,178 kN
  Ścinanie (Vz) = 0,5373 \text{ kN} Ścinanie (Vy) = 0,001683 \text{ kN}
  Zginanie (My) = 1,012 \text{ kNm} Zginanie (Mz) = 0,00317 \text{ kNm}
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
  My/MRy+Mz/MRz=0,28 < 1
  Nc/NRc+My/MRy+Mz/MRz=0,3 < 1
STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
  Dł.oblicz.pręta (Loy) = 1,893 \text{ m} (Loz) = 1,893 \text{ m}
  Wsp.dł.wyboczen. (miy) = 2,1
                                      (miz) = 2,11
  Smukłość pręta (1 y) = 121,4 (1 z) = 210,5
  Wsp.wyboczeniowy (fiy) = 0,256
                                      (fiz) = 0,09685
STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
  Długość zwichrzenia (Lo) = 1,89 m
  Wsp.zwichrzenia (fiL) = 0,8
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
  My/(fiL*MRy)+Mz/MRz=0,35 < 1
  Nc/(fi*NRc) = 0.24 < 1
     Wsp.beta by= 1
     Poprawki Dy= 0,01
                             Dz = 0,0
  Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,45 < 1
  Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,59 < 1
```

Poz. 2.1 Połączenie słup-rygiel

```
Wariant: 16/7 (1+2+3x0,5+6 (Połączenie))
Nr
       Mnoż. Opis
1(St) 1,0
          Ciężar własny (F)
2(St) 1,0
          Stałe
3(Wa) 0,5
            Śniea
6(Wa) 1,0 Parcie wiatru Y-
```

Kategoria A

Połączenie typu dociskowego

Poz. 3 Słup górny (ponad gruntem) niski

```
OBIEKT: Słup (Cg82x50x18x2)
   Od węzła: 24 do węzła: 58 (L= 0,45 m)
   Przekrój nr: 2 (Cg82x50x18x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 UGIĘCIE WSPORNIKA (z wariantów: 10,11,12)
   f= 3,85 \text{ mm} < 6,33 \text{ mm} (2L/300)
 KLASA PRZEKROJU: 4
   Brak usztywnień poprzecznych
 CECHY GEOMETRYCZNE PRZEKROJU
   Pole przek.poprz. (A) = 4 \text{ cm}2
   Pola na ścinanie (Avy) = 0,0 cm2
   Pola na ścinanie (Avz) = 0,0 cm2
   Wsk.na zginanie (Wcy) = 10,46 \text{ cm} 3 \text{ (Wcz)} = 4,72 \text{ cm} 3
   Wsk.na zginanie (Wty) = 10,46 \text{ cm} 3 \text{ (Wtz)} = 7,394 \text{ cm} 3
 NOŚNOŚCI OBLICZENIOWE PRZEKROJU
   Na rozciąganie (NRt) = 98 kN
        (Osłab.przekroju otworami/mimośrodem= 30 %)
   Na ściskanie
                   (NRc) = 134,2 \text{ kN}
       Wsp.reduk.nośności przek.(psiC) = 0,9588
                  (VRy) = 0,0 kN
   Na ścinanie
   Na ścinanie
                  (VRz) = 0,0 kN
   Na zginanie
                  (MRy) = 3,661 \text{ kNm}
```

```
Na zginanie
                  (MRz) = 1,652 \text{ kNm}
OBCIAŻENIA OBLICZENIOWE
Warianty i siły dla maksymalnych naprężeń
  Nrr:
  1*1,0 + 2*1,0 + 5*1,35 + 8*0,81
  Rozciag. (Nt) = 5,971 \text{ kN}
  Ścinanie (Vz) = 6,134 \text{ kN}
                             Ścinanie (Vy) = 0,01108 \text{ kN}
  Zginanie (My) = 0,9202 \text{ kNm} Zginanie (Mz) = 0,001655 \text{ kNm}
Warianty i siły dla minimalnych naprężeń
  1*1,04 + 2*1,04 + 3*0,68 + 7*1,35 + 9*0,81
  Ściskanie (Nc) = 8,196 kN
  Ścinanie (Vz) = 5,839 \text{ kN} Ścinanie (Vy) = 0,0145 \text{ kN}
  Zginanie (My) = 1,055 \text{ kNm} Zginanie (Mz) = 0,006515 \text{ kNm}
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
  Nt/NRt+My/MRy+Mz/MRz=0,31 < 1
  Nc/NRc+My/MRy+Mz/MRz=0,35 < 1
STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
  Dł.oblicz.pręta (Loy) = 0,45 \text{ m} (Loz) = 0,45 \text{ m}
  Wsp.dł.wyboczen. (miy) = 1,03
                                     (miz) = 3
  Smukłość preta
                   (1_y) = 14,16
                                    (1 z) = 71,14
  Wsp.wyboczeniowy (fiy) = 0,9806 (fiz) = 0,5294
STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
  Długość zwichrzenia (Lo) = 0,45 m
  Wsp.zwichrzenia
                    (fil) = 0,8
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
  Nt/NRt+My/(fiL*MRy)+Mz/MRz=0,38 < 1
  Nc/(fi*NRc) = 0,12 < 1
     Wsp.beta by= 1
                            bz= 1
     Poprawki Dy= 0,0
                            Dz = 0,0
  Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,43 < 1
  Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,48 < 1
```

Poz. 4 Stężenie poprzeczne

```
OBIEKT: Belka (Lg60x2)
   Od węzła: 63 do węzła: 54 (L= 2,588 m)
   Przekrój nr: 4 (Lg60x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 STRZAŁKA UGIĘCIA (z wariantów: 10,11,12)
   f=2,945 \text{ mm} < 12,94 \text{ mm} (L/200)
 KLASA PRZEKROJU: 4
   Brak usztywnień poprzecznych
 CECHY GEOMETRYCZNE PRZEKROJU
   Pole przek.poprz. (A) = 2,31 \text{ cm}2
   Pola na ścinanie (Avy) = 0,0 cm2
   Pola na ścinanie (Avz) = 0,0 cm2
   Wsk.na zginanie (Wcy) = 3,228 \text{ cm} 3 \text{ (Wcz)} = 1,512 \text{ cm} 3
   Wsk.na zginanie (Wty) = 3,228 cm3 (Wtz) = 1,591 cm3
 NOŚNOŚCI OBLICZENIOWE PRZEKROJU
   Na rozciąganie (NRt) = 56,59 kN
        (Osłab.przekroju otworami/mimośrodem= 30 %)
                  (NRc) = 20,5 kN
   Na ściskanie
       Wsp.reduk.nośności przek.(psiC) = 0,2536
```

```
Na ścinanie
                  (VRy) = 0,0 kN
  Na ścinanie (VRz) = 0,0 \text{ kN}
 Na zginanie (MRy) = 1,13 \text{ kNm}
  Na zginanie
                  (MRz) = 0,5293 \text{ kNm}
OBCIĄŻENIA OBLICZENIOWE
Warianty i siły dla maksymalnych naprężeń
  Nrr:
  1*1,04 + 2*1,04 + 5*1,35 + 9*0,81
  Rozciag. (Nt) = 6,301 \text{ kN}
  Ścinanie (Vz) = 0,005371 \text{ kN }Ścinanie (Vy) = 0,005371 \text{ kN}
  Zginanie (My) = 0,009323 \text{ kNmZginanie} (Mz) = 0,009323 \text{ kNm}
Warianty i siły dla minimalnych naprężeń
  1*1,04 + 2*1,04 + 4*1,35 + 8*0,81
  Ściskanie (Nc) = 4,202 kN
  Ścinanie (Vz) = 0,005371 \text{ kN Ścinanie} (Vy) = 0,005371 \text{ kN}
  Zginanie (My) = 0,009323 \text{ kNmZginanie} (Mz) = 0,009323 \text{ kNm}
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
  Nt/NRt+My/MRy+Mz/MRz=0,14 < 1
  Nc/NRc+My/MRy+Mz/MRz=0,23 < 1
STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
  Dł.oblicz.pręta (Loy) = 2,588 \text{ m} (Loz) = 2,588 \text{ m}
  Wsp.dł.wyboczen. (miy) = 1
                                     (miz) = 1
  Smukłość pręta
                     (1_y) = 106,3 (1_z) = 220,2
  Wsp.wyboczeniowy (fiy) = 0,6021 (fiz) = 0,2606
STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
  Długość zwichrzenia (Lo) = 2,58 m
  Wsp.zwichrzenia (fiL) = 0.8
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
  Nt/NRt+My/(fiL*MRy)+Mz/MRz=0,14 < 1
  Nc/(fi*NRc) = 0,79 < 1
     Wsp.beta by= 1
                            bz= 1
                             Dz = 0,0
     Poprawki Dy= 0,0
  Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,37 < 1
  Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,81 < 1
```

Poz. 5 Stężenie podłużne

```
OBIEKT: Belka (Lg70x2)
   Od węzła: 62 do węzła: 66 (L= 3,447 m)
   Przekrój nr: 6 (Lg70x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 STRZAŁKA UGIĘCIA (z wariantów: 10,11,12)
   f=5,712 \text{ mm} < 17,23 \text{ mm} (L/200)
 KLASA PRZEKROJU: 4
   Brak usztywnień poprzecznych
 CECHY GEOMETRYCZNE PRZEKROJU
   Pole przek.poprz. (A) = 2,71 \text{ cm}2
   Wsk.na zginanie (Wcy) = 4,425 \text{ cm} 3 \text{ (Wcz)} = 2,094 \text{ cm} 3
   Wsk.na zginanie (Wty) = 4,425 \text{ cm} 3 \text{ (Wtz)} = 2,188 \text{ cm} 3
 NOŚNOŚCI OBLICZENIOWE PRZEKROJU
   Na rozciąganie (NRt) = 66,39 kN
        (Osłab.przekroju otworami/mimośrodem= 30 %)
   Na ściskanie (NRc) = 18,79 kN
```

```
Wsp.reduk.nośności przek.(psiC) = 0,1981
 Na zginanie (MRy) = 1,549 \text{ kNm}
 Na zginanie
                (MRz) = 0,733 \text{ kNm}
OBCIĄŻENIA OBLICZENIOWE
Warianty i siły dla maksymalnych naprężeń
  1*1,22 + 2*1,22 + 7*0,81 + 9*0,81
  Rozciąg. (Nt) = 0,01468 \text{ kN}
  Ścinanie (Vz) = 0,01755 \text{ kN} Ścinanie (Vy) = 0,01755 \text{ kN}
  Zginanie (My) = 0,01993 kNm Zginanie (Mz) = 0,01993 kNm
Warianty i siły dla minimalnych naprężeń
  1*1,22 + 2*1,22 + 6*0,81 + 8*0,81
  Ściskanie (Nc) = 0,01443 kN
  Ścinanie (Vz) = 0,01755 \text{ kN} Ścinanie (Vy) = 0,01755 \text{ kN}
  Zginanie (My) = 0,01993 kNm Zginanie (Mz) = 0,01993 kNm
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
  Nt/NRt+My/MRy+Mz/MRz=0.04 < 1
  Nc/NRc+My/MRy+Mz/MRz=0,04 < 1
STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
  Dł.oblicz.pręta
                   (Loy) = 3,447 \text{ m} (Loz) = 3,447 \text{ m}
  Wsp.dł.wyboczen. (miy) = 1
                                   (miz) = 1
                    (1 y) = 121,2 (1 z) = 249,8
  Smukłość pręta
  Wsp.wyboczeniowy (fiy) = 0,5981 (fiz) = 0,2595
STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
  Długość zwichrzenia (Lo) = 3,44 m
  Wsp.zwichrzenia
                    (fiL) = 0,8
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
  Nt/NRt+My/(fiL*MRy)+Mz/MRz=0,04 < 1
  Nc/(fi*NRc) = 0 < 1
     Wsp.beta by= 1
                            bz=1
     Poprawki Dy= 0,0
                           Dz=0,0
  Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,04 < 1
  Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,05 < 1
```

Poz. 7 Rygiel

Poz. 7.1 Przesło

```
OBIEKT: Belka (Cg110x50x15x2)
   Od węzła: 2 do węzła: 4 (L= 2,887 m)
   Przekrój nr: 3 (Cg110x50x15x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 STRZAŁKA UGIĘCIA (z wariantów: 10,11,12)
   f=5,715 \text{ mm} < 14,44 \text{ mm} (L/200)
 KLASA PRZEKROJU: 4
   Brak usztywnień poprzecznych
 CECHY GEOMETRYCZNE PRZEKROJU
   Pole przek.poprz. (A) = 4,44 \text{ cm}2
   Pola na ścinanie (Avy) = 0,0 cm2
   Pola na ścinanie (Avz) = 0,0 cm2
   Wsk.na zginanie (Wcy) = 15,18 cm3 (Wcz) = 4,41 cm3
   Wsk.na zginanie (Wty) = 15,18 cm3 (Wtz) = 9,074 cm3
 NOŚNOŚCI OBLICZENIOWE PRZEKROJU
```

```
Na rozciaganie (NRt) = 108,8 kN
       (Osłab.przekroju otworami/mimośrodem= 30 %)
   Na ściskanie
                 (NRc) = 104,2 \text{ kN}
       Wsp.reduk.nośności przek.(psiC) = 0,6708
                 (VRy) = 0,0 kN
   Na ścinanie
                 (VRz) = 0,0 kN
   Na ścinanie
   Na zginanie
                  (MRy) = 5,314 \text{ kNm}
   Na zginanie
                  (MRz) = 1,543 \text{ kNm}
 OBCIĄŻENIA OBLICZENIOWE
 Warianty i siły dla maksymalnych naprężeń
   Nrr:
   1*1,04 + 2*1,04 + 3*0,68 + 6*1,35 + 9*0,81
   Rozciag. (Nt) = 5,754 \text{ kN}
   Ścinanie (Vz) = 7,444 \text{ kN}
                                Ścinanie (Vy) = 0,0697 \text{ kN}
   Zginanie (My) = 3,734 \text{ kNm} Zginanie (Mz) = 0,03884 \text{ kNm}
 Warianty i siły dla minimalnych naprężeń
   1*1,0 + 2*1,0 + 7*1,35 + 9*0,81
   Ściskanie (Nc) = 6,042 kN
   Ścinanie (Vz) = 6,634 \text{ kN} Ścinanie (Vy) = 0,02245 \text{ kN}
   Zginanie (My) = 2,89 \text{ kNm}
                                Zginanie (Mz) = 0,01432 \text{ kNm}
 STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
   Nt/NRt+My/MRy+Mz/MRz=0,78 < 1
   Nc/NRc+My/MRy+Mz/MRz=0,73 < 1
 STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
   Dł.oblicz.pręta (Loy) = 2,887 \text{ m} (Loz) = 2,887 \text{ m}
   Wsp.dł.wyboczen. (miy) = 0,6
                                      (miz) = 0,27
   Smukłość pręta (1 y) = 39,94
                                     (1 z) = 42,64
   Wsp.wyboczeniowy (fiy) = 0.8671 (fiz) = 0.8483
 STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
   Długość zwichrzenia (Lo) = 2,88 m
                     (fil) = 0,8
   Wsp.zwichrzenia
 STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
   Nt/NRt+My/(fiL*MRy)+Mz/MRz=0,96 < 1
   Nc/(fi*NRc) = 0,07 < 1
      Wsp.beta by= 1
                              bz = 0,4
      Poprawki Dy= 0,0
                            Dz=0,0
   Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,89 < 1
   Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,89 < 1
Poz. 7.2
            Wspornik
OBIEKT: Belka (Cg110x50x15x2)
   Od węzła: 4 do węzła: 12 (L= 1,207 m)
   Przekrój nr: 3 (Cg110x50x15x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 UGIĘCIE WSPORNIKA (z wariantów: 10,11,12)
   f = 7,742 \text{ mm} < 12,07 \text{ mm} (2L/200)
 KLASA PRZEKROJU: 4
   Brak usztywnień poprzecznych
 CECHY GEOMETRYCZNE PRZEKROJU
   Pole przek.poprz. (A) = 4,44 \text{ cm}2
   Pola na ścinanie (Avy) = 0,0 cm2
   Pola na ścinanie (Avz) = 0,0 cm2
```

```
Wsk.na zginanie (Wcy) = 15,18 cm3 (Wcz) = 4,41 cm3
  Wsk.na zginanie (Wty) = 15,18 cm3 (Wtz) = 9,074 cm3
NOŚNOŚCI OBLICZENIOWE PRZEKROJU
  Na ściskanie (NRc) = 104,2 kN
      Wsp.reduk.nośności przek.(psiC) = 0,6708
 Na ścinanie (VRy) = 0,0 kN
  Na ścinanie
               (VRz) = 0,0 kN
 Na zginanie (MRy) = 5,314 \text{ kNm}
               (MRz) = 1,543 \text{ kNm}
 Na zginanie
OBCIĄŻENIA OBLICZENIOWE
  Nrr:
  1*1,04 + 2*1,04 + 3*0,68 + 6*1,35 + 9*0,81
  Ściskanie (Nc) = 0,5208 kN
                             Ścinanie (Vy)= 0,07057 kN
  Ścinanie (Vz) = 3,113 \text{ kN}
  Zginanie (My) = 3,734 \text{ kNm} Zginanie (Mz) = 0,03882 \text{ kNm}
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
  My/MRy+Mz/MRz=0.73 < 1
  Nc/NRc+My/MRy+Mz/MRz=0,73 < 1
STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
  Dł.oblicz.pręta
                   (Loy) = 1,207 \text{ m} (Loz) = 1,207 \text{ m}
  Wsp.dł.wyboczen. (miy) = 2,05
                                    (miz) = 1,42
                                   (1 z) = 93,76
  Smukłość pręta
                    (1 y) = 57,06
  Wsp.wyboczeniowy (fiy) = 0,7383 (fiz) = 0,4744
STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
  Długość zwichrzenia (Lo) = 1,2 m
  Wsp.zwichrzenia
                    (fiL) = 0,8
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
  My/(fiL*MRy)+Mz/MRz=0,9 < 1
  Nc/(fi*NRc) = 0,01 < 1
     Wsp.beta by= 1
                           bz= 1
                          Dz= 0,0
     Poprawki Dy= 0,0
  Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,91 < 1
  Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,91 < 1
```

Poz. 8 Płatew

Poz. 8.1 Przesło

```
OBIEKT: Rygiel (Cg110x50x15x2)
   Od węzła: 3 do węzła: 18 (L= 2,6 m)
   Przekrój nr: 5 (Cg110x50x15x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 STRZAŁKA UGIĘCIA (z wariantów: 10,11,12)
   f=5,423 \text{ mm} < 13 \text{ mm} (L/200)
 KLASA PRZEKROJU: 1(4)
 CECHY GEOMETRYCZNE PRZEKROJU
   Pole przek.poprz. (A) = 4,44 \text{ cm}2
   Pola na ścinanie (Avy) = 0,0 cm2
   Pola na ścinanie (Avz) = 0,0 cm2
   Wsk.na zginanie (Wcy) = 15,18 cm3 (Wcz) = 4,41 cm3
   Wsk.na zginanie (Wty) = 15,18 cm3(Wtz) = 9,074 cm3
 NOŚNOŚCI OBLICZENIOWE PRZEKROJU
   Na rozciąganie (NRt) = 108,8 kN
```

```
(Osłab.przekroju otworami/mimośrodem= 30 %)
   Na ścinanie (VRy) = 0,0 kN
   Na ścinanie (VRz) = 0,0 \text{ kN}
   Na zginanie
                  (MRy) = 5,314 \text{ kNm}
                  (MRz) = 1,543 \text{ kNm}
   Na zginanie
 OBCIĄŻENIA OBLICZENIOWE
   Nrr:
   1*1,04 + 2*1,04 + 3*1,35 + 6*0,81 + 9*0,81
   Rozciag. (Nt) = 0,004415 \text{ kN}
   Ścinanie (Vz) = 2,536 \text{ kN}
                                Ścinanie (Vy) = 0,8137 \text{ kN}
   Zginanie (My) = 1,648 \text{ kNm} Zginanie (Mz) = 0,3669 \text{ kNm}
 STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
   Nt/NRt+My/MRy+Mz/MRz=0,55 < 1
   Nc/NRc+My/MRy+Mz/MRz=0,55 < 1
 STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
   Długość zwichrzenia (Lo) = 2,6 m
   Wsp.zwichrzenia
                     (fil) = 0,5
 STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
   Nt/NRt+My/(fiL*MRy)+Mz/MRz=0,86 < 1
Poz. 8.2
             Wspornik
OBIEKT: Rygiel (Cg110x50x15x2)
   Od węzła: 18 do węzła: 37 (L= 1,3 m)
   Przekrój nr: 5 (Cg110x50x15x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 UGIĘCIE WSPORNIKA (z wariantów: 10,11,12)
   f= 6,2 \text{ mm} < 13 \text{ mm} (2L/200)
 KLASA PRZEKROJU: 1(4)
 CECHY GEOMETRYCZNE PRZEKROJU
   Pola na ścinanie (Avy) = 0,0 cm2
   Pola na ścinanie (Avz) = 0,0 cm2
   Wsk.na zginanie (Wcy) = 15,18 cm3 (Wcz) = 4,41 cm3
   Wsk.na zginanie (Wty) = 15,18 cm3 (Wtz) = 9,074 cm3
 NOŚNOŚCI OBLICZENIOWE PRZEKROJU
                 (VRy) = 0,0 kN
   Na ścinanie
                 (VRz) = 0,0 kN
  Na ścinanie
  Na zginanie (MRy) = 5,314 \text{ kNm}
   Na zginanie
                   (MRz) = 1,543 \text{ kNm}
 OBCIĄŻENIA OBLICZENIOWE
 Warianty i siły dla maksymalnych naprężeń
   1*1,04 + 2*1,04 + 3*1,35 + 6*0,81
   Ścinanie (Vz) = 2,536 \text{ kN} Ścinanie (Vy) = 0,8135 \text{ kN}
   Zginanie (My) = 1,648 \text{ kNm} Zginanie (Mz) = 0,5288 \text{ kNm}
 Warianty i siły dla minimalnych naprężeń
   1*1,0 + 2*1,0 + 7*1,35
   Ścinanie (Vz) = 2,576 \text{ kN} Ścinanie (Vy) = 0,1342 \text{ kN}
   Zginanie (My) = 1,674 \text{ kNm} Zginanie (Mz) = 0,08722 \text{ kNm}
 STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
   My/MRy+Mz/MRz=0,65 < 1
   Nc/NRc+My/MRy+Mz/MRz=0,65 < 1
 STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
```

```
Długość zwichrzenia (Lo)= 1,3 m
Wsp.zwichrzenia (fiL)= 0,5
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
My/(fiL*MRy)+Mz/MRz= 0,96 < 1
```

Poz. 8.3 Połączenie płatew-rygiel

Rysunek 3: Obwiednia charakterystycznych sił ścinających w lokalnym układzie płatwi

Kategoria B

Połączenie cierne w SGU

mgr inż. Paweł Kowalski

NUMER POZYCJI ORAZ ROZSTAW RAM ZALEŻY OD WYMIARÓW I UKŁADU MODUŁÓW I JEST POKAZANY W INSTRUKCJI MONTAŻU KONSTRUKCJI

1x M12

1x Śruba M12 x 35 -8.8 S.1

DIN-933-TZN Mom. dokr. 80 Nm

1x Nakrętka M12 -8 S.2

DIN-6923

2 x Podkładka D13 S. 3 DIN-9021

1x M8

1x Nakrętka M8 -8 S. 5
DIN-895

2 x Podkładka D9 S.6

ewizja

- 2023.02.08 - Zmiana łączników płatwi do rygli - 2023.01.30 - Pierwsze wydanie

2023.02 Format

PROJEKT WYKONAWCZY KONSTRUKCJI
Dwupodporowa konstrukcja gruntowa pod moduły fotowoltaiczne

A3

dres Polska – do wysokości 300 m n.p.m.
1 i 2 strefa obciążenia śniegiem wg PN-EN 1991-1-3
1 strefa obciążenia wiatrem wg PN-EN 1991-1-4

SPECJALNOŚĆ KONSTRUKCYJNO-BUDOWLANA

rojektant mgr inż. Paweł Kowalski uprawnienia bud. nr ewid. SLK/7224/PBKb/17

UKŁAD POPRZECZNY, ELEMENTY ZŁĄCZNE

U1

1:10

Rewizja	Rewizja					
- 2023.02.08	- Zmiana łąc	zników płatwi	i do rygli			
- 2023.01.30	- Pierwsze w	ydanie				
	PROJEK	T WYKONAV	VCZY KONST	FRUKCJI		
Dwupo	odporowa kon	istrukcja grur	ntowa pod mo	duly fotowolt	aiczne	
Adres	Polska – do	wysokości 30	00 m n.p.m.			
	1 i 2 strefa o	bciążenia śn	iegiem wg PN	N-EN 1991-1-	3	
	1 strefa obci	ążenia wiatre	m wg PN-EN	l 1991-1-4		
	SPECJALNO	ŚĆ KONSTR	UKCYJNO-B	UDOWLANA	1	
Projektant	mgr inż. Pav	veł Kowalski				
	uprawnienia	bud. nr ewid	. SLK/7224/F	BKb/17		
Data	2023.02	Format	A3	Skala	1:10	
	POZYCJE: 1, 2, 3					
, ,				U2		
SŁUPY						

	8 - Zmiana łą 0 - Pierwsze		twi do ryg	i		
Dwup				ONSTRUKCJI od moduły fotowo	ltaiczne	
Adres	Adres Polska – do wysokości 300 m n.p.m. 1 i 2 strefa obciążenia śniegiem wg PN-EN 1991-1-3 1 strefa obciążenia wiatrem wg PN-EN 1991-1-4					
	SPECJALNO	OŚĆ KONST	TRUKCYJ	NO-BUDOWLAN	A	
Projektant	Projektant mgr inż. Paweł Kowalski uprawnienia bud. nr ewid. SLK/7224/PBKb/17					
Data	2023.02 Format A3 Skala 1:10					
	POZ` STĘŻE	YCJE: NIA, Ł	• •		U3	

Rewizja - 2023.02.08 - Zmiana łączników płatwi do rygli - 2023.01.30 - Pierwsze wydanie

PROJEKT WYKONAWCZY KONSTRUKCJI
Dwupodporowa konstrukcja gruntowa pod moduły fotowoltaiczne

Adres Polska – do wysokości 300 m n.p.m.
1 i 2 strefa obciążenia śniegiem wg PN-EN 1991-1-3
1 strefa obciążenia wiatrem wg PN-EN 1991-1-4

SPECJALNOŚĆ KONSTRUKCYJNO-BUDOWLANA
Projektant mgr inż. Paweł Kowalski
uprawnienia bud. nr ewid. SLK/7224/PBKb/17

Data 2023.02 Format A3 Skala 1:10

POZYCJE: 71, 72, 73 RYGLE

U4

Rewizja	Rewizja					
	- Zmiana łąc		vi do rygl	i		
- 2023.01.30	- Pierwsze v	vydanie				
	PROJEK	T WYKONA	WCZY K	ONS	FRUKCJI	
Dwupe	odporowa kor	nstrukcja gru	intowa po	od mo	duly fotowo	oltaiczne
Adres	Polska – do	wysokości 3	300 m n.p).m.		
	1 i 2 strefa d				I-EN 1991-	1-3
	1 strefa obc	iążenia wiat	rem wg P	N-EN	l 1991-1-4	
	SPECJALNO	ŚĆ KONSTI	RUKCYJI	NO-B	UDOWLAN	Α
Projektant	nt mgr inż. Paweł Kowalski					
	uprawnienia	ı bud. nr ewi	d. SLK/7	224/F	BKb/17	
Data	2023.02	Format	A3		Skala	1:10
POZYCJE: 81, 82 PŁATWIE					U5	

Katowice, dnia 18 grudnia 2017 r.

DECYZJA

Na podstawie art. 12 ust. 2, 3, 4, art. 13, art. 14 ust. 1 pkt. 2 ustawy z dnia 7 lipca 1994 r. Prawo budowlane (Dz.U. z 2017 r., poz. 1332 z późn. zm.), § 10 i § 12 ust. 1 rozporządzenia Ministra Infrastuktury i Rozwoju z dnia 11 września 2014 r. w sprawie samodzielnych funkcji technicznych w budownictwie (Dz.U. z 2014 r., poz. 1278) oraz na podstawie art. 24 ust. 1 pkt 2 ustawy z dnia 15 grudnia 2000 r. o samorządach zawodowych architektów oraz inżynierów budownictwa (Dz.U. z 2016 r., poz. 1725 z późn. zm.), po ustaleniu, że zostały spełnione warunki w zakresie przygotowania zawodowego oraz po złożeniu egzaminu na uprawnienia budowlane z wynikiem pozytywnym

Pan Paweł Kowalski

mgr inż. budownictwa ur. dnia 16 września 1989 w Katowicach

otrzymuje

UPRAWNIENIA BUDOWLANE numer ewidencyjny SLK/7224/PBKb/17 do projektowania w specjalności konstrukcyjno - budowlanej bez ograniczeń

Zakres uprawnień:

- sporządzanie projektu architektoniczno budowlanego w odniesieniu do konstrukcji obiektu,
- sporządzanie projektu zagospodarowania działki lub terenu wyłącznie w zakresie uzyskanej specjalności
- sprawdzanie projektów budowlanych w zakresie specjalności konstrukcyjno budowlanej i sprawowanie nadzoru autorskiego
- sprawowanie kontroli technicznej utrzymania obiektów budowlanych

UZASADNIENIE

W wyniku pozytywnego postępowania kwalifikacyjnego i pozytywnego wyniku egzaminu ze znajomości procesu budowlanego oraz praktycznego zastosowania wiedzy technicznej wydanie niniejszych uprawnień budowlanych jest uzasadnione.

Od niniejszej decyzji służy prawo odwołania do Krajowej Komisji Kwalifikacyjnej Polskiej Izby Inżynierów Budownictwa w Warszawie, za pośrednictwem Okręgowej Komisji Kwalifikacyjnej ŚlOIIB w Katowicach w terminie 14 dni od dnia jej doręczenia.

Otrzymują:

- Pan Paweł Kowalski
 Ludomira Różyckiego 10 H/15
 41-400 Mysłowice
- Okręgowa Rada Izby
- Główny Inspektor Nadzoru Budowlanego
- 4. a/a.

Skład orzekający OKK

mgr inż. Piotr Szatkowski

2.

inż. Hieronim Spiżewski

. Zhianie

mgr inż. Zbigniew Dzierżewicz

Zaświadczenie o numerze weryfikacyjnym: SLK-I7B-VUC-3E2 *

Pan Paweł Kowalski o numerze ewidencyjnym SLK/BO/0373/18 adres zamieszkania ul. Różyckiego 10 H/15, 41-400 Mysłowice jest członkiem Śląskiej Okręgowej Izby Inżynierów Budownictwa i posiada wymagane ubezpieczenie od odpowiedzialności cywilnej.

Niniejsze zaświadczenie jest ważne do dnia 2023-03-31.

Zaświadczenie zostało wygenerowane elektronicznie i opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu w dniu 2022-02-07 roku przez:

Roman Karwowski, Przewodniczący Rady Śląskiej Okręgowej Izby Inżynierów Budownictwa.

(Zgodnie art. 5 ust 2 ustawy z dnia 18 września 2001 r. o podpisie elektronicznym (Dz. U. 2001 Nr 130 poz. 1450) dane w postaci elektronicznej opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu są równoważne pod względem skutków prawnych dokumentom opatrzonym podpisami własnoręcznymi.)

^{*} Weryfikację poprawności danych w niniejszym zaświadczeniu można sprawdzić za pomocą numeru weryfikacyjnego zaświadczenia na stronie Polskiej Izby Inżynierów Budownictwa www.piib.org.pl lub kontaktując się z biurem właściwej Okręgowej Izby Inżynierów Budownictwa.

