დავალებები 1-35-ის პასუხები:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
5								X										X
δ									X	X				X	X			
გ						X					X	X					X	
Q				X	X								X					
O O	X	X	X				X									X		

	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
٥						X	X	X			X		X				
δ		X	X									X					
გ	X				X										X		
Q				X						X				X		X	
J									X								X

დავალებები 1-35-ის შეფასების სქემა: ყოველი დავალების სწორი პასუხი ფასდება 1 ქულით, ხოლო მცდარი პასუხი - 0 ქულით.

36. (**5 ქულა**) შეუსაბამეთ ციფრებით დანომრილ ფიზიკურ სიდიდეებს ასოებით დანომრილი განზომილებები. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი \mathbf{X} .

5 | 6

X

1. გრავიტაციული მუდმივა	ა. კგ/წმ²		1	2	3
2. წნევა	ბ. მ² /წმ²	১			
3. სიმძლავრე	გ. კგ·მ² /წმ²	δ			
4. ხახუნის კოეფიციენტი	დ. $\partial^3/(3 \cdot \beta \partial^2)$	გ			
5. სიხისტე	ე. კგ /(მ.წმ²)	Q	X		
6. დნობის კუთრი სითბო	ვ. კგ·მ² /წმ³	ე		X	
, , ,		3			Х

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია. (მაქს. 5 ქულა)

37. (**5 ქულა**) ზამბარაზე მიმაგრებული სხეული ირხევა გლუვ ჰორიზონტალურ ზედაპირზე. წონასწორობის მდებარეობაში სხეულის მასათა ცენტრის კოორდინატი ნულის ტოლია (იხ. ნახ.). საწყის მომენტში სხეულის მასათა ცენტრის კოორდინატია

(+A). შეუსაბამეთ ციფრებით დანომრილ სიდიდეებს მათი t დროზე დამოკიდებულების თვისებრივი გრაფიკები. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი **X**.

- 1. სიჩქარის გეგმილი \mathbf{x} ღერმზე
- 2. აჩქარების გეგმილი \mathbf{x} ღერმზე
- 3. ზამბარის პოტენციალური ენერგია
- 4. სხეულის კინეტიკური ენერგია
- 5. სრული მექანიკური ენერგია
- 6. სხეულის მასათა ცენტრის x კოორდინატი

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია. (მაქს. 5 ქულა)

- **38.** (5 ქულა) ჰორიზონტალური მიმართულებით მომრავი m მასის ტყვია მოხვდა L სიგრმის ვერტიკალურ მაფზე დაკიდებულ M მასის მელაკს და ჩარჩა მის მასათა ცენტრში. ამის შემდეგ მელაკის მასათა ცენტრი აიწია m სიმაღლეზე (m0.) მაფის მასა და ჰაერის წინააღმდეგობის ძალა უგულებელყავით.
- 1) რისი ტოლი იყო ძელაკის სიჩქარე ტყვიის დაჯახების ბოლოს?
- 2) რისი ტოლი იყო ტყვიის საწყისი სიჩქარე?
- 3) რისი ტოლი იყო ძაფის დაჭიმულობის ძალა ტყვიის ჩარჩენის შემდეგ, სანამ ძაფი შესამჩნევად გადაიხრებოდა?
- 4) რა სითბოს რაოდენობა გამოიყო ძელაკში ტყვიის მოძრაობისას?

$$1) \frac{(M+m)v^2}{2} = (M+m)gh \implies v = \sqrt{2gh}$$
 (1 ქულა) $2) \ mv_0 = (M+m)v \implies v_0 = \frac{(M+m)v}{m} = \frac{(M+m)\sqrt{2gh}}{m} pprox \frac{M\sqrt{2gh}}{m}$ (1 ქულა) თუ არ ჩასვა სიჩქარის გამოსახულება, არ ჩაწერა მიახლოებითი პასუხი მაინც ვწერთ 1 ქულას.

$$3) T - (M+m)g = (M+m)a.$$
 $a = \frac{v^2}{L} = \frac{2gh}{L} \Rightarrow T = (M+m)g\left(1+\frac{2h}{L}\right)$ (2 ქულა) სწორადაა ჩაწერილი მხოლოდ ნიუტონის მეორე კანონი ან აჩქარების გამოსახულება -1 ქულა. (M+m)-ს ნაცვლად დასაშვებია ეწეროს M.

$$4)~Q=rac{mv_0^2}{2}-(M+m)gh=rac{(M+m)Mgh}{m}pproxrac{M^2gh}{m}$$
 (1 ქულა) გასმები და გარდაქმნები არაა აუცილებელი. საკმარისია პირველი ტოლობა.

- **39.** (**5** ქულა) R მანძილით დაშორებული m და 2m მასების წერტილოვანი დამუხტული სხეულები თავდაპირველად უძრავია და ერთმანეთს მიიზიდავს F ძალით. სხეულები გაათავისუფლეს და ისინი ამოძრავდა. გაითვალისწინეთ მხოლოდ სხეულების ელექტრული ურთიერთქმედება. გამოთვალეთ, რისი ტოლი იქნება:
- 1) m მასის სხეულის იმპულსის მოდულის შეფარდება 2m მასის სხეულის იმპულსის მოდულთან, როდესაც სხეულებს შორის მანძილი განახევრდება.
- 2) m მასის სხეულის კინეტიკური ენერგიის შეფარდება 2m მასის სხეულის კინეტიკურ ენერგიასთან, როდესაც სხეულებს შორის მანძილი განახევრდება.
- 3) სხეულთა ურთიერთქმედების პოტენციალური ენერგიის ცვლილება სხეულებს შორის მანძილის განახევრებისას.
- 4) m მასის სხეულის კინეტიკური ენერგია, როდესაც სხეულებს შორის მანძილი განახევრდება.
- 5) 2m მასის სხეულის კინეტიკური ენერგია, როდესაც სხეულებს შორის მანძილი გახდება R/4-ის ტოლი.

1) p₁/p₂=1 **(1 ქულა)**

2)
$$E_1=p^2/(2m)$$
, $E_2=p^2/(4m)$ \Rightarrow $E_1/E_2=2$ (1 ქულა)

3)
$$\Delta U = U_2 - U_1 = k \frac{q_1 q_2}{R/2} - k \frac{q_1 q_2}{R} = k \frac{q_1 q_2}{R} = -FR$$
 (1 ქულა)

4) $E_1+E_2=-\Delta U=FR$, მეორე კითხვის პასუხის გათვალისწინებით მიიღება, რომ

5)
$$E_1/E_2=2$$
, $E_1+E_2=U_1-U_{12}=k\frac{q_1q_2}{R}-k\frac{q_1q_2}{R/4}=-3k\frac{q_1q_2}{R}=3FR$

აქედან გამომდინარეობს, რომ E_2 =FR (1 ქულა)

- **40.** (5 ქულა) v მოლი ერთატომიანი იდეალური აირის მდგომარეობა იცვლება კანონით $T=\alpha p^2$, სადაც p აირის წნევაა, T აბსოლუტური ტემპერატურაა, ხოლო α მოცემული მუდმივაა. აირის საწყისი აბსოლუტური ტემპერატურაა T_0 , ხოლო საბოლოო $3T_0$. იდეალური აირის უნივერსალური მუდმივაა R. განსაზღვრეთ:
- 1) α კოეფიციენტის ერთეული საერთაშორისო სისტემაში;
- 2) აირის შინაგანი ენერგიის ცვლილება;
- 3) რამდენჯერ შეიცვალა აირის მოცულობა;
- 4) აირის წნევის მოცულობაზე დამოკიდებულების p(V) კანონი;
- 5) აირის შესრულებული მუშაობა.

1) საერთაშორისო სისტემაში α კოეფიციენტის ერთეულია $K/3s^2$ (1 ქულა)

2)
$$\Delta U = \frac{3}{2} \nu R \cdot 3T_0 - \frac{3}{2} \nu R T_0 = 3 \nu R T_0$$
 (1 ქულა)

- 3) pV = ν RT და T= α p² ფორმულებიდან გამოდის, რომ V = ν R $\sqrt{\alpha}$ T, საიდანაც ვასკვნით, რომ მოცულობა გაიზარდა $\sqrt{3}$ -ჯერ. (1 ქულა)
- 4) pV = vRT და $T=\alpha p^2$ ფორმულებიდან გამოდის, რომ $p=\frac{V}{vR\alpha}$. (1 ქულა)
- 5) რადგანაც წნევა მოცულობის პირდაპირპროპორციულია, ამიტომ

$$A = \frac{p_1 + p_2}{2} (V_2 - V_1) = \frac{\nu R\alpha(p_2^2 - p_1^2)}{2} = \frac{\nu R(3T_0 - T_0)}{2} = \nu RT_0$$
(1 ქულა)

- **41.** (**5 ქულა**) ნახატზე გამოსახულ წრედში რეზისტორების წინაღობები ცნობილია. K ჩამრთველი ჩართულია. ამ დროს დენის წყაროში დენის ძალაა **240** მა. განსაზღვრეთ:
- 1) გარე წრედის სრული წინაღობა;
- 2) 5 ომი წინაღობის რეზისტორში გამოყოფილი სიმძლავრე;
- 3) 24 ომი წინაღობის რეზისტორში დენის ძალა;
- 4) დენის წყაროს შიგა წინაღობა, თუ ცნობილია, რომ K ჩამრთველის გამორთვის შემდეგ გარე წრედში გამოყოფილი სიმძლავრე არ შეიცვალა.

ნახატზე მითითებულია შემოტანილი აღნიშვნები.

1)
$$\frac{1}{R'} = \frac{1}{R_1} + \frac{1}{R_2} \Rightarrow R' = 15$$
 ომი, $R_{b6} = R' + R_3 = 20$ ომი (1 ქულა)

$$(1)$$
 P = I^2 R₃ = 0,288 ვტ (1 ქულა)

3)
$$I_1 = \frac{IR'}{R_1} = 0.15$$
 ა $= 150$ მა (1 ქულა)

4) ჩამრთველის გამორთვის შემდეგ გარე წრედის სრული წინაღობაა $R'_{\text{სრ}} = 45$ ომი.

$$I^2R_{bo} = I'^2R'_{bo}$$

 $I=\mathcal{E}/(R_{\mathrm{bh}}+r),$ $I'=\mathcal{E}/(R'_{\mathrm{bh}}+r)$. ამ განტოლებებიდან მიიღება

$$r = \sqrt{R_{b6}R'_{b6}} = 30$$
 ომი

(2 ქულა)

თუ სრულად არაა ამოხსნილი, მაგრამ ან სიმბლავრეებია გატოლებული ან დენის ძალებია სწორად ჩაწერილი -1 ქულა

42. (2 ქულა) თავდაპირველად უმრავ სხეულზე მოქმედებს ერთი მიმართულების ძალა, რომლის მოდული დროზე დამოკიდებულია კანონით: $F=At^2$, სადაც A მოცემული დადებითი ნიშნის მუდმივაა. განსაზღვრეთ, რამდენით შეიცვლება სხეულის იმპულსი დროის t_0 მომენტიდან $2t_0$ მომენტამდე. ამოხსნა:

$$dp = Fdt = At^2dt$$
 , $\Delta p = \int_{t_0}^{2t_0} At^2dt$

(1 ქულა)

$$\Delta p = \frac{A(2t_0)^3}{3} - \frac{At_0^3}{3} = \frac{7At_0^3}{3}$$

(1 ქულა)

43. (3 ქულა) დაამტკიცეთ, რომ $\frac{d^2x}{dt^2} + \omega^2x = 0$ დიფერენციალური განტოლების ამონახსენია x=Asin ω t+Bcos ω t, სადაც A და B ნებისმიერი მუდმივებია. რისი ტოლია A და B, თუ t=0 საწყის მომენტში გვაქვს: x=0 და $\frac{dx}{dt} = v_0$?

ამოხსნა:

ვაჩვენოთ, რომ x= $Asin\omega t$ + $Bcos\omega t$ აკმაყოფილებს მოცემულ დიფერენციალურ განტოლებას:

$$\frac{dx}{dt} = A\omega\cos\omega t - B\omega\sin\omega t$$

$$\frac{d^2x}{dt^2} = -A\omega^2\sin\omega t - B\omega^2\cos\omega t = -\omega^2x$$

(1 ქულა)

x=0 საწყისი პირობა გვაძლევს: B=0 (1 ქულა)

 $rac{dx}{dt} = v_0$ საწყისი პირობა გვაძლევს: $A = v_0/\omega$ (1 ქულა)