대학원신입생세미나 과제1

통계학과 박현정 2015-20299

April 16, 2020

Abstract

Probability Theory and Examples, Rick durret 교재의 Theorem1.6.8을 정리.

1 Mesure theory

1.1 Expected Value

Theorem 1. Suppose $X_N \to Xa.s.$ Let g, h be continuos functions with

- (i) $g \ge 0$ and $g(x) \to \infty$ as $|x| \to \infty$,
- (ii) $|h(x)|/g(x) \rightarrow 0$ as $|x| \rightarrow \infty$ and
- (iii) $Eg(X_n) \leq K < \infty$ for all n.

Then $Eh(X_n) \to Eh(X_n)$.

Proof. By subtracting a contrast from h, we can suppose without loss of generality that h(0)=0. Pick M large so that P(|X|=M) 0 and g(x)>0 when $|x|\geq M$. Given a random variable Y, let $\bar{Y}=Y1_{(|y|\leq M)}$. Since $P(|X|=M)=0, \bar{X_n}\to \bar{X}$ a.s. Since $h(\bar{X_n})$ is bounded and h is countinous, it follows from the bounded convergence theorem that

- (a) $Eh(\bar{X}_n) \rightarrow Eh(\bar{X})$
- (b) $|Eh(\bar{Y}) Eh(Y)| \leq E|h(barY) h(Y)| \leq E(|h(Y)|; |Y| > M) \leq_{\in M} Eg(Y)$ where $_{\in M} = \sup\{|h(x)|/g(x): |x| \geq M\}$. To check the second inequality, not that when $|Y| \leq M, Y = Y$, and we have supposed h(0) = 0. The third inequality follows from the definition of $_{\in m}$. Taking $Y = X_n$ in (b) and using (iii), it follows that

(c) $|Eh(\bar{X}_n) - Eh(X_n)| \le K_{\in M}$ To estimate $|Eh(\bar{X}_n) - Eh(X_n)|$, we observe that $g \ge 0$ and g is continuous, so Fatou's lemma implies

$$Eg(X) \le \liminf_{n \to \infty} Eg(X_n) \le K$$

Taking Y = X in (b) gives

(d) $|Eh(\bar{X}) - Eh(X)| \le K_{\in M}$ The triangle inequality implies

$$|Eh(X_n) - Eh(X)| \leq |Eh(X_n) - Eh(X)|$$

$$+ |Eh(\bar{X}) - Eh(\bar{X})| + |Eh(\bar{X}) - Eh(X)|$$

Taking limits and using (a), (c), (d), we have

$$\limsup_{n \to \infty} |Eh(X_n) - Eh(X)| \le 2K_{\in m}$$

which proves the desired result since $K < \infty$ and $\in M \to 0$ as $M \to \infty$.