

Algorithm

Yangjun Ahn

yangjunahn@sungshin.ac.kr

https://sites.google.com/sungshin.ac.kr/mhail

Evolution Process of Biology

Selection

selection in relation to sex

Cross over

 At the very beginning of meiosis, two chromosomes exchange genetic material during sexual reproduction.

Evolution Process of Biology

Selection

selection in relation to sex

Cross over

 At the very beginning of meiosis, two chromosomes exchange genetic material during sexual reproduction.

Mutation

the possibility of evolution by natural selection.

Replacement

Survival of the fitness

Genetic Algorithm: Pseudo Code

```
Initialize chromosome population
repeat{
          selection: father chromosome & mother chromosome;
          offspring : crossover father and mother chromosomes;
          offspring : mutation (offspring);
          if (offspring cost < the worst chromosome cost) {
                replacement;
          }
} until no progress;
return (the best chromosome in the population);</pre>
```


Minimize
$$f(\mathbf{x}) = x_1^2 + x_2^2 - 8x_1 - 8x_2$$

1st Generation Evaluation

Α	(1	,	1)	i -14 i
В	(2	,	5)	-27
C	(3	,	4)	¦-31¦
D	(4	,	2)	-28
Ε	(6	,	2)	-24
F	(6	,	7)	¦ <u>-19</u> ¦

Parents
(3 , 4)
(4 , 2)

Minimize
$$f(\mathbf{x}) = x_1^2 + x_2^2 - 8x_1 - 8x_2$$

Example of Application: Uber

- Cross over and mutation
 - Uber's car assignment example (15 customers and 7 cars)

Genetic Programming (GP)

- The computer program creates a program (in 1985, John Koza).
- A program has been developed since March.
 - Three expression is implemented in C++.
 - Genetic algorithm has been verified and applied.

operators	+,-,x,/,>,<,=				
functions	exp, pow, log, ln, sin, cos, tan, sinh, cosh, tanh				
number of variables	799				
number of branches	1,000				

Genetic Programming

Genetic Programming

Chromosome Expression & Evaluation

$$C_P = \left[\frac{m_{21}}{c_{11}}\right] + \left[m_{11} \times c_4\right]$$

$$cost = \frac{1}{n} \sum_{i} \left[C_{P,EXP,i} - C_{P,GA,i} \right]^{2}$$

superior

inferior

$$C_P = \left[\log(m_{42})\right] - \left[\left\{\exp(m_{11})\right\} \times c_4\right]$$

$$cost = \frac{1}{n} \sum_{i} \left[C_{P,EXP,i} - C_{P,GA,i} \right]^{2}$$

Genetic Algorithm

Roulette Wheel Selection

Roulette wheel selection

• $f_i = (C_w - C_i) + (C_w - C_b) / (k - 1), k > 1$

 C_w : cost of the worst chromosome

 C_b : cost of the best chromosome

 C_i : cost of *i* th chromosome

k: the selection pressure

Pseudo Code

```
\begin{aligned} & \text{point} = \text{rand}(0, \, \text{sum} \, f_i); \\ & \text{sum} = 0.0; \\ & \text{for} \, i = 0 \, \text{to} \, n - 1 \, \{ \\ & \text{sum} = \text{sum} + f_i; \\ & \text{if} \, (\text{dart} < \text{sum}) \, \text{return} \, i; \\ & \} \end{aligned}
```


Tournament Selection

Pseudo Code

```
t = 0.7;
r = rand(0, 1);
for i = 0 to 1 {
    chromosome1 = rand(0, number of chromosomes);
    chromosome2 = rand(0, number of chromosomes);
   if (t > r) {
         if (cost of chromosome 1 > cost of chromosome 2) parent[i] = chromosome 1;
         else father = chromosome 2;
   else {
         if (cost of chromosome 1 > cost of chromosome 2) parent[i] = chromosome 2;
         else father = chromosome 1;
```


Genetic Algorithm

Cross Over

Genetic Algorithm

Pseudo code

Mutation

Atrophy

Atrophy

Verification Case II: Results

- GA is very vulnerable to the local optimization.
- Schema cannot be automatically purified or simplified.

Verification Case II: Results

- GA is very vulnerable to the local optimization.
- Schema cannot be automatically purified or simplified.

