# **Chapter 5.2: Network Design**

NGUYỄN CAO ĐẠT

E-mail:dat@hcmut.edu.vn

#### **Outline**

- Logical Network Design
  - Design a network topology
  - Design models for addressing and naming
  - Select switching and routing protocols
  - Develop network security strategies
  - Develop network management strategies

## **Network Topology Design Themes**

- Hierarchy
- Redundancy
- Modularity
- Well-defined entries and exits
- Protected perimeters

#### Why Use a Hierarchical Model?

- Reduces workload on network devices
  - Avoids devices having to communicate with too many other devices (reduces "CPU adjacencies")
- Constrains broadcast domains
- Enhances simplicity and understanding
- Facilitates changes
- Facilitates scaling to a larger size

## **Hierarchical Network Design**



## Cisco's Hierarchical Design Model

- A core layer of high-end routers and switches that are optimized for availability and speed
- A distribution layer of routers and switches that implement policies and segment traffic
- An access layer that connects users via hubs, switches, and other devices

## **Star Hierarchical Topology**



## **Flat Versus Hierarchy**





#### A Partial-Mesh Hierarchical Design



10

#### **Avoid Chains and Backdoors**



## How Do You Know When You Have a Good Design?

- When you already know how to add a new building, floor, WAN link, remote site, e-commerce service, and so on
- When new additions cause only local change, to the directly-connected devices
- When your network can double or triple in size without major design changes
- When troubleshooting is easy because there are no complex protocol interactions to wrap your brain around

#### **Cisco's SAFE Security Reference Architecture**



#### **Campus Topology Design**

- Use a hierarchical, modular approach
- Minimize the size of bandwidth domains
- Minimize the size of broadcast domains
- Provide redundancy
  - Mirrored servers
  - Multiple ways for workstations to reach a router for off-net communications

## Virtual LANs (VLANs)

- An emulation of a standard LAN that allows data transfer to take place without the traditional physical restraints placed on a network
- A set of devices that belong to an administrative group
- Designers use VLANs to constrain broadcast traffic

## **VLANs Span Switches**



#### WLANs and VLANs

- A wireless LAN (WLAN) is often implemented as a **VLAN**
- Facilitates roaming
- Users remain in the same VLAN and IP subnet as they roam, so there's no need to change addressing information
- Also makes it easier to set up filters (access control lists) to protect the wired network from wireless users

#### **Workstation-to-Router Communication**

- Proxy ARP (not a good idea)
- Listen for route advertisements (not a great idea either)
- ICMP router solicitations (not widely used)
- Default gateway provided by DHCP (better idea but no redundancy)
  - Use Hot Standby Router Protocol (HSRP) for redundancy

#### **HSRP**



#### **Multihoming the Internet Connection**



#### **Security Topologies**





#### **Outline**

- Logical Network Design
  - Design a network topology
  - Design models for addressing and naming
  - Select switching and routing protocols
  - Develop network security strategies
  - Develop network management strategies

#### **Guidelines for Addressing and Naming**

- Use a structured model for addressing and naming
- Assign addresses and names hierarchically
- Decide in advance if you will use
  - Central or distributed authority for addressing and naming
  - Public or private addressing
  - Static or dynamic addressing and naming

#### Advantages of Structured Models for Addressing & Naming

- It makes it easier to
  - Read network maps
  - Operate network management software
  - Recognize devices in protocol analyzer traces
  - Meet goals for usability
  - Design filters on firewalls and routers
  - Implement route summarization

#### **Public IP Addresses**

- Managed by the Internet Assigned Numbers Authority (<u>IANA</u>)
- Users are assigned IP addresses by Internet service providers (ISPs).
- ISPs obtain allocations of IP addresses from their appropriate Regional Internet Registry (RIR)

## **Private Addressing**

- **■** 10.0.0.0 − 10.255.255.255
- 172.16.0.0 **−** 172.31.255.255
- 192.168.0.0 **−** 192.168.255.255

## Criteria for Using Static Vs. Dynamic Addressing

- The number of end systems
- The likelihood of needing to renumber
- The need for high availability
- Security requirements
- The importance of tracking addresses
- Whether end systems need additional information
  - (DHCP can provide more than just an address)

## **Designing Networks with Subnets**

- Determining subnet size
- Computing subnet mask
- Computing IP addresses



#### **More Practice**

- Network is 172.16.0.0
- You have eight LANs, each of which will be its own subnet.
- What subnet mask should you use?
- What is the address of the first node on the first subnet?
- What address would this node use to send to all devices on its subnet?

#### **One More**

- Network is 192.168.55.0
- You want to divide the network into subnets.
- You will have approximately 25 nodes per subnet.
- What subnet mask should you use?
- What is the address of the last node on the last subnet?
- What address would this node use to send to all devices on its subnet?

#### **Classless Addressing**

- Prefix/host boundary can be anywhere
- Less wasteful
- Supports route summarization
  - Also known as
    - Aggregation
    - Supernetting
    - Classless routing
    - Classless inter-domain routing (CIDR)
    - Prefix routing

## Supernetting

- Move prefix boundary to the left
- Branch office advertises 172.16.0.0/14



#### 172.16.0.0/14 Summarization

**000100**00

**000100**01

18 **000100**10

**000100**11

## **Upgrading to IPv6**

- Dual stack
- Tunneling
- Translation



## **Guidelines for Assigning Names**

- Names should be
  - Short
  - Meaningful
  - Unambiguous
  - Distinct
  - Case insensitive
- Avoid names with unusual characters
  - Hyphens, underscores, asterisks, and so on

#### **Domain Name System (DNS)**

- Maps names to IP addresses
- Supports hierarchical naming
  - example: frodo.rivendell.middle-earth.com
- A DNS server has a database of resource records (RRs) that maps names to addresses in the server's "zone of authority"
- Client queries server
  - Uses UDP port 53 for name queries and replies
  - Uses TCP port 53 for zone transfers

## **Outline**

- Logical Network Design
  - Design a network topology
  - Design models for addressing and naming
  - Select switching and routing protocols
  - Develop network security strategies
  - Develop network management strategies

## **Switching and Routing Choices**

- Switching
  - Layer 2 transparent bridging (switching)
  - Multilayer switching
  - Spanning Tree Protocol enhancements
  - VLAN technologies
- Routing
  - Static or dynamic
  - Distance-vector and link-state protocols
  - Interior and exterior
  - Etc.

#### **Selection Criteria for Switching and Routing Protocols**

- Network traffic characteristics
- Bandwidth, memory, and CPU usage
- The number of peers supported
- The capability to adapt to changes quickly
- Support for authentication

## **Making Decisions**

- Goals must be established
- Many options should be explored
- The consequences of the decision should be investigated
- Contingency plans should be made
- A decision table can be used

## **Example Decision Table**

|       | Critical Goals                                                                            |                                                           |                                                                     | Other Goals                              |                                            |                                              |
|-------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|--------------------------------------------|----------------------------------------------|
|       | Adaptability—<br>must adapt<br>to changes<br>in a large<br>internetwork<br>within seconds | Must scale to a<br>large size<br>(hundreds of<br>routers) | Must be an industry standard and compatible with existing equipment | Should not<br>create a lot of<br>traffic | Should<br>run on<br>inexpensive<br>routers | Should be easy<br>to configure<br>and manage |
| BGP   | X*                                                                                        | X                                                         | X                                                                   | 8                                        | 7                                          | 7                                            |
| OSPF  | X                                                                                         | X                                                         | X                                                                   | 8                                        | 8                                          | 8                                            |
| IS-IS | X                                                                                         | X                                                         | X                                                                   | 8                                        | 6                                          | 6                                            |
| IGRP  | X                                                                                         | X                                                         |                                                                     |                                          |                                            |                                              |
| EIGRP | X                                                                                         | X                                                         |                                                                     |                                          |                                            |                                              |
| RIP   |                                                                                           |                                                           | X                                                                   |                                          |                                            |                                              |

X= Meets critical criteria. 1 = Lowest. 10 = Highest.

## **Transparent Bridging (Switching) Tasks**

- Forward frames transparently
- Learn which port to use for each MAC address
- Flood frames when the destination unicast address hasn't been learned yet
- Filter frames from going out ports that don't include the destination address
- Flood broadcasts and multicasts

#### **Redundant Uplinks**



- If a link fails, how long will STP take to recover?
- Use UplinkFast to speed convergence

# **Protocols for Transporting VLAN Information**

- Inter-Switch Link (ISL)
  - Tagging protocol
  - Cisco proprietary
- IEEE 802.1Q
  - Tagging protocol
  - IEEE standard
- VLAN Trunk Protocol (VTP)
  - VLAN management protocol

## **Selecting Routing Protocols**

- They all have the same general goal:
  - To share network reachability information among routers
- They differ in many ways:
  - Interior versus exterior
  - Metrics supported
  - Dynamic versus static and default
  - Distance-vector versus link-sate
  - Classful versus classless
  - Scalability

### **Interior Versus Exterior Routing Protocols**

- Interior routing protocols are used within an autonomous system
- Exterior routing protocols are used between autonomous systems

Autonomous system (two definitions that are often used):

"A set of routers that presents a common routing policy to the internetwork"

"A network or set of networks that are under the administrative control of a single entity"

## **Routing Protocol Metrics**

- Metric: the determining factor used by a routing algorithm to decide which route to a network is better than another
- Examples of metrics:
  - Bandwidth capacity
  - Delay time
  - Load amount of network traffic
  - Reliability error rate
  - Hop count number of routers that a packet must travel through before reaching the destination network
  - Cost arbitrary value defined by the protocol or administrator

## **Static Routing Example**



RouterA(config)#ip route 172.16.50.0 255.255.255.0 172.16.20.2

Send packets for subnet 50 to 172.16.20.2 (Router B)

## **Default Routing Example**



RouterA(config)#ip route 0.0.0.0 0.0.0.0 172.16.20.2

If it's not local, send it to 172.16.20.2 (Router B)

## **Distance-Vector Routing**

- Router maintains a routing table that lists known networks, direction (vector) to each network, and the distance to each network
- Router periodically (every 30 seconds, for example) transmits the routing table via a broadcast packet that reaches all other routers on the local segments
- Router updates the routing table, if necessary, based on received broadcasts

#### **Distance-Vector Routing Tables**



#### **Router A's Routing Table**

 Network
 Distance
 Send To

 172.16.0.0
 0
 Port 1

 192.168.2.0
 1
 Router B

#### **Router B's Routing Table**

| <u>Network</u> | <u>Distance</u> | Send To  |
|----------------|-----------------|----------|
| 192.168.2.0    | 0               | Port 1   |
| 172.16.0.0     | 1               | Router A |

## **Link-State Routing**

- Routers send updates only when there's a change
- Router that detects change creates a link-state advertisement (LSA) and sends it to neighbors
- Neighbors propagate the change to their neighbors
- Routers update their topological database if necessary

#### Distance-Vector Vs. Link-State

- Distance-vector algorithms keep a list of networks, with next hop and distance (metric) information
- Link-state algorithms keep a database of routers and links between them
  - Link-state algorithms think of the internetwork as a graph instead of a list
  - When changes occur, link-state algorithms apply
     <u>Dijkstra's shortest-path algorithm</u> to find the shortest path between any two nodes

# **Dynamic IP Routing Protocols**

#### **Distance-Vector**

- Routing InformationProtocol (RIP) Version 1 and2
- Interior Gateway Routing Protocol (IGRP)
- Enhanced IGRP
- Border Gateway Protocol (BGP)

#### **Link-State**

- Open Shortest Path First (OSPF)
- Intermediate System-to-Intermediate System (IS-IS)

## **Outline**

- Logical Network Design
  - Design a network topology
  - Design models for addressing and naming
  - Select switching and routing protocols
  - Develop network security strategies
  - Develop network management strategies

## **Network Security Design The 12 Step Program**

- Identify network assets
- Analyze security risks
- Analyze security requirements and tradeoffs
- Develop a security plan
- Define a security policy 5.
- Develop procedures for applying security policies

# The 12 Step Program (continued)

- Develop a technical implementation strategy
- 8. Achieve buy-in from users, managers, and technical staff
- 9. Train users, managers, and technical staff
- Implement the technical strategy and security procedures
- Test the security and update it if any problems are found
- 12. Maintain security

#### **Network Assets**

- Hardware
- Software
- Applications
- Data
- Intellectual property
- Trade secrets
- Company's reputation

## **Security Risks**

- Hacked network devices
  - Data can be intercepted, analyzed, altered, or deleted
  - User passwords can be compromised
  - Device configurations can be changed
- Reconnaissance attacks
- Denial-of-service attacks

## **Security Tradeoffs**

- Tradeoffs must be made between security goals and other goals:
  - Affordability
  - Usability
  - Performance
  - Availability
  - Manageability

## **A Security Plan**



- High-level document that proposes what an organization is going to do to meet security requirements
  - Specifies time, people, and other resources that will be required to develop a security policy and achieve implementation of the policy

# **A Security Policy**

- Per RFC 2196, "The Site Security Handbook," a security policy is a
  - "Formal statement of the rules by which people who are given access to an organization's technology and information assets must abide."
- The policy should address
  - Access, accountability, authentication, privacy, and computer technology purchasing guidelines

## **Security Mechanisms**

- Physical security
- Authentication
- Authorization
- Accounting (Auditing)
- Data encryption
- Packet filters
- Firewalls
- Intrusion Detection Systems (IDS)
- Intrusion Prevention Systems (IPS)



## **Modularizing Security Design**

- Security defense in depth
  - Network security should be multilayered with many different techniques used to protect the network
- Secure all components of a modular design:
  - Internet connections
  - Public servers and e-commerce servers
  - Remote access networks and VPNs
  - Network services and network management
  - Server farms
  - User services
  - Wireless networks

## **Securing Internet Connections**

- Physical security
- Firewalls and packet filters
- Audit logs, authentication, authorization
- Well-defined exit and entry points
- Routing protocols that support authentication



## **Securing Public Servers**

- Place servers in a DMZ that is protected via firewalls
- Run a firewall on the server itself
- Enable DoS protection
  - Limit the number of connections per timeframe
- Use reliable operating systems with the latest security patches
- Maintain modularity
  - Front-end Web server doesn't also run other services

## **Security Topologies**





# Securing Remote-Access and Virtual Private Networks

- Physical security
- Firewalls
- Authentication, authorization, and auditing
- Encryption
- One-time passwords
- Security protocols
  - CHAP
  - RADIUS
  - IPSec

## **Securing Network Services**

- Treat each network device (routers, switches, and so on) as a high-value host and harden it against possible intrusions
- Require login IDs and passwords for accessing devices
  - Require extra authorization for risky configuration commands
- Use SSH rather than Telnet
- Change the welcome banner to be less welcoming

# **Securing Server Farms**

- Deploy network and host IDSs to monitor server subnets and individual servers
- Configure filters that limit connectivity from the server in case the server is compromised
- Fix known security bugs in server operating systems
- Require authentication and authorization for server access and management
- Limit root password to a few people
- Avoid guest accounts

## **Securing User Services**

- Specify which applications are allowed to run on networked PCs in the security policy
- Require personal firewalls and antivirus software on networked PCs
  - Implement written procedures that specify how the software is installed and kept current
- Encourage users to log out when leaving their desks
- Consider using 802.1X port-based security on switches

#### **Securing Wireless Networks**

- Place wireless LANs (WLANs) in their own subnet or **VLAN** 
  - Simplifies addressing and makes it easier to configure packet filters
- Require all wireless (and wired) laptops to run personal firewall and antivirus software
- Disable beacons that broadcast the SSID, and require MAC address authentication
  - Except in cases where the WLAN is used by visitors

## **WLAN Security Options**

- IEEE 802.11i
- Wi-Fi Protected Access (WPA)
- IEEE 802.1X Extensible Authentication Protocol (EAP)
  - Lightweight EAP or LEAP (Cisco)
  - Protected EAP (PEAP)
- Virtual Private Networks (VPNs)

#### **VPN Software on Wireless Clients**

- Safest way to do wireless networking for corporations
- Wireless client requires VPN software
- Connects to VPN concentrator at HQ
- Creates a tunnel for sending all traffic
- VPN security provides:
  - User authentication
  - Strong encryption of data
  - Data integrity

## **Outline**

- Logical Network Design
  - Design a network topology
  - Design models for addressing and naming
  - Select switching and routing protocols
  - Develop network security strategies
  - Develop network management strategies

## **Network Management**

- Helps an organization achieve availability, performance, and security goals
- Helps an organization measure how well design goals are being met and adjust network parameters if they are not being met
- Facilitates scalability
  - Helps an organization analyze current network behavior, apply upgrades appropriately, and troubleshoot any problems with upgrades

## **Network Management Design**

- Consider scalability, traffic patterns, data formats, cost/benefit tradeoffs
- Determine which resources should be monitored
- Determine metrics for measuring performance
- Determine which and how much data to collect

# **Proactive Network Management**

- Plan to check the health of the network during normal operation, not just when there are problems
- Recognize potential problems as they develop
- Optimize performance
- Plan upgrades appropriately

#### **Network Management Processes According** to the ISO

- Fault management
- Configuration management
- Accounting management
- Performance management
- Security management