Data Wrangling Report

1. Gathering Data

Gather Twitter archive CSV file

Using the link provided by Udacity, I downloaded the WeRateDogs Twitter archive manually as twitter_archive_enhanced.csv and imported this file into a dataframe (twitter_archive).

Gather tweet image predictions

Download the tweet image predictions file hosted on Udacity's servers programmatically using Python's Requests library and saved it locally to image_predictions.tsv file. Then, I imported this file into a Python Pandas dataframe (image_prediction original).

Gather data from Twitter API

By using the tweet IDs in the WeRateDogs Twitter archive, I queried the Twitter API for each tweet's JSON data using Python's Tweepy library and stored each tweet's entire set of JSON data in a file called tweet_json.txt file. I read this .txt file line by line into a pandas dataframe with tweet ID, favorite count, retweet count, followers count, friends count, source, retweeted status and url.

2. Assessing Data

In total, I have spotted 9 quality issues and 3 tidiness issues.

Visual Assessment

I opened the twitter_archive_enhanced.csv and image_predictions.tsv in Excel and scrolled through them, looking for quality and tidiness issues. I was able to spot the following **quality** and **tidiness** issues:

Quality:

- 1. unnecessary html tags in source column of twitter archive in place of utility name e.g.Twitter for iPhone
- 2. text column of twitter archive contains untruncated text instead of displayable text
- Twitter archive data without any duplicates (i.e. retweets) will have empty retweeted_status_id, retweeted_status_user_id and retweeted_status_timestamp columns, which can be dropped

Tidiness:

- doggo, floofer, pupper and puppo columns in twitter_archive table should be merged into one column named "stage"
- 2. there is some twitter that contains multiple dog stages, we need to separate the two stages using a comma after we combine them into one column **stage**

Programmatic Assessment

I used pandas' info, value_counts and other methods on twitter_archive to spot the following quality and tidiness issues:

Quality:

- 1. contains retweets and therefore, duplicates
- 2. many tweet_id(s) of twitter_archive table are missing in image_prediction table
- 3. erroneous datatypes (in_reply_to_status_id, in_reply_to_user_id and timestamp columns, rating numerator and rating denominator)
- 4. rating denominator column has values other than 10
- 5. there isn't **rating** variable(= rating_numerator/ rating_denominator) that is more representative of how people rate the dog.
- 6. erroneous dog names starting with lowercase characters (e.g. a, an, actually, by)

Tidiness:

- 1. "breed" column should be added in twitter_archive table; its values based on p1_conf and p1_dog columns of image_prediction (image predictions) table
- 2. The third rule of tidy data says: "each type of observational unit forms a table". The retweet_count and favorite_count from status_df_original (tweet status) table are part of the same observational unit as twitter_archive_original table so should be merged into the same table and stored in a file called twitter_archive_master.csv

3. Cleaning Data

As all the quality and tidiness issues were related to twitter_archive table, I created a copy of only this table and named it archive_clean. For each quality/tidiness issue, I performed the programmatic data cleaning process in 3 stages - Define, Code & Test. During the cleaning process, I converted the datatypes of source and newly created stage columns of archive_clean to category datatype.

Storing Data

After the completion of the cleaning process, I stored the archive_clean DataFrame in twitter_archive_master.csv file.

(540 words)