9		Paper / Subject Cod	
	F	Paper / Subject Code: 58652 / Engineering Physics - I F SemT (R-2019 C Scheme) "All Branches" July '201	
	06/0	+ /2023 "All Branches" July 20	23
	(2 He N.B :	(1) Question No.1 is compulsory. (2) Attempt any three questions from Q.no 2 to Q.no 6. (3) Assume suitable data and symbol if required. (4) Figures to the right indicate full marks.	
ζ	21)	Attempt any FIVE from the fall.	
	a)	One of the following with reference to cubic unit cell	J 3
	b)	atoms/m ³ . Given mobility of all	3
	d)		3
	e)	Draw and explain Fermi level diagram of p-n junction diode.	3
	f)	An electron has a speed of 400 m/sec with uncertainty of 0.01%. Find the accuracy in its position. Define superconductivity, critical temperature and oritical temperature and oritical temperature.	3
	g)	The Bragg angle corresponding to the State and Critical magnetic field.	3
Q	2)a)	The Bragg angle corresponding to the first order reflection from (1 1 1) planes of a crystal is 30°. Wavelength of X-ray is 1.75 A°. Determine interplanar spacing and lattice constant of the crystal. Derive the conditions for the maxima and minima due to it is 6.	3
		Derive the conditions for the maxima and minima due to interference of light in a wedge shaped	8
	b)	Derive Bragg's equation for x ray diffraction in and 1 1000	7
Q		Derive Schrodinger Time Independent Wave Equation. Find the lowest energy of a neutron within a nucleus of dimension 10 ⁻¹⁴ m. given mass of a neutron 1.67 X 10 ⁻²⁷ kg.	8
	b)	Draw and explain the energy band diagram for a p-n junction in forward and reverse biased mode.	7
Q	4)a)	Define drift current, diffusion current and mobility of charge carriers and state its S.I units.	5
		Describe in detail the concept of anti-reflecting film with a proper ray diagram.	5
	c)	Explain phase velocity of a wave and group velocity of matter waves.	5
Q	5)a)	Explain formation of Newton's rings with experimental arrangement? Also give characteristics of Newton's rings.	5
	b)	Define Fermi level and explain it in detail for conductors.	5
	c)	Explain de-Broglie hypothesis of matter waves and deduce the expression for wavelength.	5
Q	6)a)	What are type- I and type-II superconductors?	5
The second	b)	Find the thickness of the soap film which appear yellow (wavelength 5896 A ⁰) in reflection when it is illuminated by white light at an angle of 45°. Given refractive index of the film is 1.33.	5
	c)	The minimum energy possible for a particle trapped in a 1-d box is $3.2 \times 10^{-18} \text{ J}$. What are the next three energies in eV the particle can have? ***********************************	5 -34 0 -18