PAST YEAR QUESTIONS CIRCULAR MEASURE

JUNE 2005

In the diagram, ABC is a semicircle, centre O and radius 9 cm. The line BD is perpendicular to the diameter AC and angle AOB = 2.4 radians.

- (i) Show that BD = 6.08 cm, correct to 3 significant figures. [2]
- (ii) Find the perimeter of the shaded region. [3]
- (iii) Find the area of the shaded region. [3]

ANS:

- (i) 6.08 cm
- (ii) 43.3 cm
- (iii) 117 cm²

JUNE 2006

The diagram shows a circle with centre O and radius 8 cm. Points A and B lie on the circle. The tangents at A and B meet at the point T, and AT = BT = 15 cm.

- (i) Show that angle AOB is 2.16 radians, correct to 3 significant figures. [3]
- (ii) Find the perimeter of the shaded region. [2]
- (iii) Find the area of the shaded region. [3]

ANS:

- (i) 2.16
- (ii) 47.3
- (iii) 50.8 or 50.9

In the diagram, OAB is a sector of a circle with centre O and radius 12 cm. The lines AX and BX are tangents to the circle at A and B respectively. Angle $AOB = \frac{1}{3}\pi$ radians.

- (i) Find the exact length of AX, giving your answer in terms of $\sqrt{3}$. [2]
- (ii) Find the area of the shaded region, giving your answer in terms of π and $\sqrt{3}$. [3]

JUNE 2008

The diagram shows a circle with centre O and radius 5 cm. The point P lies on the circle, PT is a tangent to the circle and PT = 12 cm. The line OT cuts the circle at the point Q.

- (i) Find the perimeter of the shaded region. [4]
- (ii) Find the area of the shaded region. [3]

JUNE 2009

The diagram shows a circle with centre O. The circle is divided into two regions, R_1 and R_2 , by the radii OA and OB, where angle $AOB = \theta$ radians. The perimeter of the region R_1 is equal to the length of the major arc AB.

(i) Show that
$$\theta = \pi - 1$$
. [3]

(ii) Given that the area of region R_1 is $30 \, \mathrm{cm}^2$, find the area of region R_2 , correct to 3 significant figures.

JUNE 2010(3)

ANS:

- (i) 1.287 rad
- (ii) 61.1
- (iii) 281 or 282

The diagram shows a metal plate ABCDEF which has been made by removing the two shaded regions from a circle of radius 10 cm and centre O. The parallel edges AB and ED are both of length 12 cm.

- (i) Show that angle *DOE* is 1.287 radians, correct to 4 significant figures. [2]
- (ii) Find the perimeter of the metal plate. [3]
- (iii) Find the area of the metal plate. [3]

NOV 2005

ANS:

- (i) 62.4 cm²
- (ii) 0.65

In the diagram, OAB and OCD are radii of a circle, centre O and radius 16 cm. Angle $AOC = \alpha$ radians. AC and BD are arcs of circles, centre O and radii 10 cm and 16 cm respectively.

- (i) In the case where $\alpha = 0.8$, find the area of the shaded region. [2]
- (ii) Find the value of α for which the perimeter of the shaded region is 28.9 cm. [3]

In the diagram, AOB is a sector of a circle with centre O and radius 12 cm. The point A lies on the side CD of the rectangle OCDB. Angle $AOB = \frac{1}{3}\pi$ radians. Express the area of the shaded region in the form $a(\sqrt{3}) - b\pi$, stating the values of the integers a and b.

NOV 2007

In the diagram, AB is an arc of a circle, centre O and radius r cm, and angle $AOB = \theta$ radians. The point X lies on OB and AX is perpendicular to OB.

(i) Show that the area, $A \text{ cm}^2$, of the shaded region AXB is given by

$$A = \frac{1}{2}r^2(\theta - \sin\theta\cos\theta).$$
 [3]

(ii) In the case where r = 12 and $\theta = \frac{1}{6}\pi$, find the perimeter of the shaded region AXB, leaving your answer in terms of $\sqrt{3}$ and π .

ANS:

- (i) 1.8
- (ii) 6.30cm
- (iii) 9.00

In the diagram, the circle has centre O and radius 5 cm. The points P and Q lie on the circle, and the arc length PQ is 9 cm. The tangents to the circle at P and Q meet at the point T. Calculate

- (i) angle *POQ* in radians, [2]
- (ii) the length of PT, [3]
- (iii) the area of the shaded region. [3]

NOV 2009(1)

ANS:

- (i) 6.66(7)
- (ii) 10.3

The diagram shows a semicircle ABC with centre O and radius 6 cm. The point B is such that angle BOA is 90° and BD is an arc of a circle with centre A. Find

- (i) the length of the arc BD, [4]
- (ii) the area of the shaded region. [3]

NOV 2009(2)

A piece of wire of length 50 cm is bent to form the perimeter of a sector POQ of a circle. The radius of the circle is r cm and the angle POQ is θ radians (see diagram).

(i) Express θ in terms of r and show that the area, $A \text{ cm}^2$, of the sector is given by

$$A = 25r - r^2.$$

(ii) Given that r can vary, find the stationary value of A and determine its nature. [4]

NOV 2010(1)

The diagram shows two circles, C_1 and C_2 , touching at the point T. Circle C_1 has centre P and radius 8 cm; circle C_2 has centre Q and radius 2 cm. Points R and S lie on C_1 and C_2 respectively, and RS is a tangent to both circles.

(i) Show that
$$RS = 8$$
 cm. [2]

NOV 2010(2)

The diagram shows points A, C, B, P on the circumference of a circle with centre O and radius 3 cm. Angle AOC = angle BOC = 2.3 radians.

- (i) Find angle *AOB* in radians, correct to 4 significant figures. [1]
- (ii) Find the area of the shaded region *ACBP*, correct to 3 significant figures. [4]

NOV 2010(3)

The diagram shows a rhombus ABCD. Points P and Q lie on the diagonal AC such that BPD is an arc of a circle with centre C and BQD is an arc of a circle with centre A. Each side of the rhombus has length 5 cm and angle BAD = 1.2 radians.

- (i) Find the area of the shaded region BPDQ. [4]
- (ii) Find the length of PQ. [4]