Optimization Algorithms

Sidharth Baskaran

July 2021

Mini-batch gradient descent

- Vectorization allows for compute on m examples
 - Let $X = [x^{(1)}, \dots, x^{(1000)} | x^{(1001)}, \dots, x^{(2000)}]$ be split into $x^{\{1\}}$ and $x^{\{2\}}$ for example, these are the batches
 - Up to 5000 batches
 - Y can also be divided this way into minibatches
 - $X^{\{j\}}$ has dimension (n_x, t) and $Y^{\{j\}}$ is of (1, t)
 - * t is the batch size
- Use vectorization to process
 - For each minibatch, perform propagation step using each minibatch
 - Can then calculate cost and perform backprop
- Epoch is a single pass through training set

Understanding mini-batch gradient descent

- Batch gradient descent
 - Must decrease on every iteration
- Mini-batch gradient descent
 - Train as if new dataset on each batch
- Choosing mini-batch size
 - If size = m, then batch gradient descent
 - If size = 1, then stochastic gradient descent with each example as a minibatch
 - * Lose vectorization benefit
 - In practice, size $\in (1, m)$
- For small training sets use batch GD
- For typical use, can do m = 64, 128, 256, 512, ... or powers of 2

Exponentially weighted averages

- Initialize $v_0 = 0$, and every following time unit $v_1 = 0.9V_0 + 0.1\theta_0$ where θ is a set of weights
 - Is an exponentially weighted moving average of temperature
 - General

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

- v_t is approx. average over $\frac{1}{1-\beta}$ time units Shorter window \rightarrow more noise in average plot, more susceptible to minute change
- Implementation

Batch gradient descent

Figure 1: Batch GD

Mini-batch gradient descent

Figure 2: Mini-batch GD

Figure 3: Exponential averages

- Re-update v_{θ} with weighted average on each iteration of loop
- Takes little memory, overwrite the variable

Bias correction in Exponentially Weighted Averages

- With this approach, v_t will be much less than the weight values durind update
- To correct, divide by $1 \beta^t$ on each step to normalize and remove bias

Gradient Descent with Momentum

- Compute EWA of gradients to use in parameter update
- On each iteration t
 - Compute dW, db on mini-batch
 - $-v_{dw} = \beta dW + (1-\beta)dW$ and likewise for db
- Update: $w := w \alpha dW$ and same for b
 - $-v_{dW}$ is velocity and dW is acceleration, whereas β is like friction
- Takes faster steps towards global minimum
 - Damps oscillations
- Hyperparameters
 - $-\alpha, \beta = 0.9$ (typical)

RMSprop

- Root mean squared propagation
- On iteration t
 - Calculate dW, db on current minibatch
 - $-S_{dW} = \beta S_{dW} + (1-\beta)dW^2$, elementwise squaring
 - $S_{dn} = \beta_2 S_{db} + (1 \beta_2) db^2$
 - Keeps an exponentially weighted average of square of derivatives $W:=W-\alpha\frac{dW}{\sqrt{s_{dW}+\epsilon}}$ $b:=\alpha\frac{db}{\sqrt{s_{db}+\epsilon}}$

 - - * From image, want to damp out oscillations on b axis

Figure 4: Oscillations in GD

• $\epsilon \approx 10^{-8}$ prevents undefined error for numerical stability

Adam Optimization Algorithm

- Adaptive moment estimation
- Initialize $v_{dW} = 0, s_{dW} = 0, v_{db} = 0, s_{db} = 0$
- On iteration t
 - Compute dW, db using current minibatch

$$-v_{dW} = \beta_1 v_{dW} + (1 - \beta_1)dW$$

$$-v_{db} = \beta_1 v_{db} + (1 - \beta_1) db$$

$$- s_{dW} = \beta_2 s_{dW} + (1 - \beta_2) dW^2$$

$$- s_{db} = \beta_2 s_{db} + (1 - \beta_2) db^2$$

$$-v_{dW} := v_{dW}/(1-\beta_1^t), v_{db} := v_{db}/(1-\beta_1^t)$$

$$-s_{dW} := s_{dW}/(1-\beta_2^t), s_{db} := s_{db}/(1-\beta_2^t)$$

$$-W := W - \alpha \frac{v_{dW}}{\sqrt{s_{dW}+\epsilon}}$$

$$-b := b - \alpha \frac{v_{db}}{\sqrt{s_{db}+\epsilon}}$$

$$-W := W - \alpha \frac{v_{dW}}{\sqrt{s_{dW} + \epsilon}}$$

$$-b := b - \alpha \frac{v_{db}}{\sqrt{s_{db} + \epsilon}}$$

• Hyperparameter choice

–
$$\alpha$$
 - need to tune

$$-\beta_1 = 0.9, \, \beta_2 = 0.999, \, \epsilon \approx 10^{-8}$$

Learning Rate Decay

- Decreasing value of α lessens probability of diverging
- Take larger steps at beg. of learning, eventually smaller

$$\alpha = \frac{1}{1 + \operatorname{decay} * \operatorname{epoch}} \alpha_0$$

• Other methods

$$-\alpha = \alpha_0 0.95^{\text{epoch}}$$

-
$$\alpha = \alpha_0 0.95^{\text{epoch}}$$
- $\alpha = \frac{k}{\sqrt{\text{epoch}}} \alpha_0 \text{ or } \alpha = \frac{k}{\sqrt{t}} \alpha$

- Discrete staircase
- Manual decay

Local Optima Problem

- Challenge getting stuck on a local minima
- Saddle point has derivative 0, can then go off of side
- Plateau → derivative close to 0 for a long time, takes long time to reach saddle