Théorie des Langages

TD2

Analyse Syntaxique et Grammaires LR(k)

Elana Courtines courtines.e@gmail.com https://github.com/irinacake

Séance 3 - 27 septembre 2022

Emmanuel Rio - emmanuel.rio@univ-tlse3.fr

Exercice 1:

Grammaire G_0 :

- $(0) S' \to S^{k}$
- (1) $S \rightarrow CC$
- $(2) C \rightarrow aC$
- $(3) C \rightarrow b$

Fermetures:

- \bullet I_0 :
 - $S' \rightarrow \cdot S^k$
 - $S \to \cdot CC$
 - $C \rightarrow \cdot aC$
 - $C \rightarrow \cdot b$
- $goto(I_0, S) = I_1$ $S' \to S \cdot \k
 - (reduce 0)
- $goto(I_0, C) = I_2$
 - $S \to C \cdot C$
 - $C \rightarrow \cdot aC$
 - $C \rightarrow \cdot b$
- $goto(I_0, a) = I_3$
- $C \rightarrow a \cdot C$
 - $C \rightarrow \cdot aC$
 - $C \rightarrow \cdot b$
- $goto(I_0, b) = I_4$
 - $C \rightarrow b$ •
 - (reduce 3)
- $goto(I_2, C) = I_5$
 - $S \to CC$ •
 - (reduce 1)
- $goto(I_2, a) = I_3$
 - $C \rightarrow a \cdot C$
 - $C \rightarrow \cdot aC$
 - $C \rightarrow \cdot b$
- $goto(I_2, b) = I_4$
 - $C \rightarrow b$.
- $goto(I_3, C) = I_6$
 - C o aC •
 - (reduce 2)
- $goto(I_3, a) = I_3$
 - $C \rightarrow a \cdot C$
 - $C \rightarrow {}^{\bullet}aC$
 - $C o {}^{ullet} b$

$$\bullet \ goto(I_3, b) = I_4$$

$$C \to b \bullet$$

Ce qui donne l'automate suivant :

D'où la table d'analyse :

	a	b	S	C	λ
I_0	shI_3	shI_4	shI_1	shI_2	err
I_1	err	err	err	err	reduce(0)
I_2	shI_3	shI_4	err	shI_5	err
I_3	shI_3	shI_4	err	shI_6	err
I_4	err	err	err	err	reduce(3)
I_5	err	err	err	err	reduce(1)
I_6	err	err	err	err	reduce(2)

Parse du mot abaab\$:

pile	mot	action	
λ	abaab	shift	
a	baab	shift	
ab	aab	reduce 3	
aC	aab	reduce 2	
\mathbf{C}	aab	shift	
Ca	ab	shift	
Caa	b	shift	
Caab	λ	reduce 3	
CaaC	λ	reduce 2	
CaC	λ	reduce 2	
CC	λ	reduce 1	
\mathbf{S}	λ	reduce 0	
S'	λ	accept	

Grammaire G_1 :

- $(0) S' \to S^{k}$
- $(1) S \rightarrow aAc$
- $(2) A \rightarrow Abb$
- $(3) A \rightarrow b$

Fermetures:

- I_0 : $S' \to \cdot S\k $S \to \cdot aAc$
- $goto(I_0, S) = I_1$ $S' \to S \cdot \k (reduce 0)
- $goto(I_0, a) = I_2$ $S \to a \cdot Ac$ $A \to \cdot Abb$ $A \to \cdot b$
- $goto(I_2, A) = I_3$ $S \to aA \cdot c$ $A \to A \cdot bb$
- $goto(I_2, b) = I_4$ $S \to b$ • reduce(3)
- $goto(I_3, c) = I_5$ $S \to aAc$ • reduce(1)
- $goto(I_3, b) = I_6$ $A \to Ab \cdot b$
- $goto(I_6, b) = I_7$ $A \to Abb$ • reduce(2)

Ce qui donne l'automate suivant :

D'où la table d'analyse :

	a	b	c	S	A	λ
I_0	shI_2	err	err	shI_1	err	err
I_1	err	err	err	err	err	reduce(0)
I_2	shI_4	err	err	err	shI_3	err
I_3	err	shI_6	shI_5	err	err	err
I_4	err	err	err	err	err	reduce(3)
I_5	err	err	err	err	err	reduce(1)
I_6	err	shI_7	err	err	err	err
I_7	err	err	err	err	err	reduce(2)

Grammaire G_3 :

$$(0) - S' \to S\k$

$$(1) - S \rightarrow aAc$$

$$(2) - A \rightarrow bbA$$

$$(3) - A \rightarrow b$$

Fermetures :

- $I_0:$ $S' \to \cdot S,\k $S \to \cdot aAc,\$$
- $goto(I_0, S) = I_1$ $S' \to S \cdot \k (reduce 0)
- $goto(I_0, a) = I_2$ $S \to a \cdot Ac$ $A \to bbA, c$ $A \to b, c$
- $goto(I_2, A) = I_3$ $S \to aA \cdot c$
- $goto(I_2, b) = I_4$ $A \to b \cdot bA, c \text{ shift on b}$ $A \to b \cdot c \text{ reduce}(3) \text{ on c}$
- $goto(I_3, c) = I_5$ $S \to aAc$ • reduce(1)
- $goto(I_4, b) = I_6$ $A \to bb \cdot A$ $A \to \cdot bbA, c$ $A \to \cdot b, c$

- $goto(I_6, A) = I_7$ $A \to bbA$ • reduce(2)
- $goto(I_6, b) = I_4$

Ce qui donne l'automate suivant :

