Lecture 3: Measurement, concept, definition, fundamentals, representational theory of measurement

Software Engineering

Measurement, concept, definition, fundamentals, representational theory of measurement

Content of the Lecture

- Introduction to measurements
- Theory of measurement in software
 - Representational condition
 - Measurement scales
 - Measurements and models

Introduction to Measurement (with an eye on Software Measures)

Measurement & Metrics

from Pressman Companion Slides(chp 4)

Definition

Measurement is the process by which numbers or symbols are assigned to attributes of entities in the real world in such a way as to describe them according to clearly defined rules

N. Fenton and S. L. Pfleeger, 1997

Entities and Attributes

- Human being
- Apple
- Computer
- Computer
- Human being
- o ...

- Name
- Weight
- Memory
- Hard Disk space
- Weight
- ...

Rules

- The LOC measure is obtained by counting all the lines that contain at least one character, and that do not contain comments.
- Interpretation: C Code?
- Visual BASIC 4 Code?

Why Measuring?

- Lack of measurable targets (Gilb's principle)
- Identification failure
- Lack of quality assurance
- Lack of consistent tool evaluation

The Measurement Advantage

Management

- Cost
- Productivity
- Quality
- User satisfaction
- Optimisation

Engineering

- Requirements testing
- Fault detection
- Meeting goals
- Forecasting

Scope of Measurement (partial list)

- Cost and effort estimation
- Productivity measures and models
- Data collection
- Quality models and measures
- Reliability models
- Performance evaluation and models
- Structural and complexity metrics
- Capability-maturity assessment
- Management by metrics
- Evaluation of methods and tools

Cost and Effort Estimation

- The aim is to predict project costs as early as possible
- Various models exist, expressing cost or effort as a function of size and/or other project attributes
- E.g., COCOMO (Boehm, 1981), COCOMO2 (Boehm, 1995), SLIM (Putnam, 1979), Function Points (Albrecht, 1979),

Productivity Models and Measures

Productivity Model (Fig. 1.3 of FP, pag. 15)

Data Collection

- Where
- How
- When

Should we collect software measurement data?

Quality Models and Measures

Reliability Models

- For how long will be our application up?
- Once we fix this failure, when the next failure will occur?

Performance Evaluation and Models

- Aspect of quality
- Include:
 - Response time
 - Average and worst case time complexity
 - Average and worst case space complexity
 - Required resources
 - ...

Structural and Complexity Metrics

- Describe inner properties of the system
- Examples include:
 - Weighted number of nested loops
 - Complexity of the program graph
 - Coupling between objects
 - o ...

Management by Metrics

- Customers, developers, and managers can use software metrics to track the evolution of the project in terms of:
 - Hours spent
 - Required quality levels
 - Requests for new requirements
 - Work overtime
 - Quality of work

Evaluation of Methods and Tools

- New methods and tools can be very expensive for software companies both for:
 - Purchase / license
 - Training of employees
- It is therefore essential to have some systematic means to evaluate them (even if in most case this does not occur)
- Forms of experimental design help in defining proper structures for such studies

Capability Maturity Assessment

- Model of production maturity
- Ensures customers of capability of the development process (e.g., ISO 9000 uses the buzzwords "say what you do and do what you say")
- Provides paths for improvement
- Few exist ...

Proposed exercise (1/2)

- Form groups of 3 people, with at least one data scientist and a software engineer in each group
- Send on Telegram your gmail account to the instructor
- For each category mentioned above, provide an example coming from your personal experience
- Write the results of the following spreadsheet: http://tiny.cc/IU_EM_F20_L3, in the tab: GeneralExerciseOnMetrics

Proposed exercise (2/2)

http://tiny.cc/IU_EM_F20_L3, tab: GeneralExerciseOnMetrics

Theory of Measurement

The Representational Theory of Measurement

Set of rules to define measurement

Empirical Relations

- Links two entities by means of an attribute e.g., Person (entity class) and height (attribute)
- Can be ambiguous e.g., colour as perceived by human eye varies depending on subject measuring it
- Improves with the understanding of the attribute, and measures can foster improvement

Empirical Relations for the Attribute Height

Measurement

To overcome these differences it is important to agree on:

- A **measurement** is a mapping from the empirical world to the formal, relational world
- A **measure** is the number or symbol assignment to an entity by this mapping in order to characterise an attribute

Fenton and Pfleeger, 1997

Measurement

from Fenton pg 31

Representation Condition

 A measurement mapping must map entities into numbers and empirical relation into numerical relations that preserve them and vice-versa

Fenton and Pfleeger, 1997

• Valid measure: satisfying the representation condition

Representation Condition

Empirical relation preserved under M as Numerical relation

from Fenton pg 31

Measurement Mapping

from Fenton pg 32

A tall iff M(A) > 70

A taller than B iff M(A) > M(B)

A much taller than B iff M(A) > M(B) + 20

Role of the Representation Condition

Figure 2.7: Measurement mapping

from Fenton pg 34

Alternative ...

$$M(R1) = 3$$

$$M(R2) = 4$$

$$M(R3) = 5$$

Your Example:)

Role of the Representation Condition

- Beware that properly defining the representational condition in true generality is far from easy
- Remember Gödel's Disjunction[†]: "Either the human mind (even within the realm of pure mathematics) can surpass the power of any finite computing machine, or there are absolutely undecidable mathematical problems"

[†] Panu Raatikainen (2018) Gödel's Disjunction: The Scope and Limits of Mathematical Knowledge, History and Philosophy of Logic, DOI: 10.1080/01445340.2018.1495851

On the Representation Condition (1/2)

- The program started as a philosophical problem more than a century ago:
 - H. von Helmholtz, Zur Geschichte des Princips der kleinsten Action. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 14, 1887
 - O. Hölder, Die Axiome der Quantität und die Lehre vom Mass, Berichte über die Verhandlungen der Königliche Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Matematisch-Physische Klasse 53, 1 – 64, 1901
- It has then evolved in a economical and mathematical problem:
 - R.D. Luce, Semiorders and a Theory of Utility Discrimination, Econometrica 24, 178 – 191, 1956
 - L. Fuchs, Partially Ordered Algebraic Systems, Addison Wesley, Reading, Massachusetts, 1963
 - D. Krantz, Extensive Measurement in Semiorders, Philosophy of Science 34, 348 – 62, 1967

On the Representation Condition (2/2)

- After, it has been considered in social sciences:
 - E.W. Holman, Strong and Weak Extensive Measurement, Journal of Mathematical Psychology 6, 286 – 293, 1969
 - A. Rutland, Measuring the zone of proximal development: studies of map-use in children with learning difficulties, PhD Dissertation, University of Stirling, 1993
 - F. Sani, J. Todman, Experimental Design and Statistics for Psychology: A First Course, John Wiley & Sons, Apr 15, 2008
- Fenton adopted it in Software Engineering more as a reference than as a full theory only much later

Key Stages of Formal Measurement

from Fenton pg 33

Questions?

End of Lecture 3