СОДЕРЖАНИЕ

СПИСОК СОКРАЩЕНИЙ					
1	Ана	алитический раздел	5		
	1.1	Анализ предметной области	5		
	1.2	Анализ существующих решений	5		
	1.3	Классификация СУБД	6		
		1.3.1 Модель хранения данных	6		
		1.3.2 Модель обработки данных	7		
		1.3.3 Архитектура	7		
		1.3.4 Способ доступа к БД	7		
	1.4	Выбор СУБД	8		
	1.5	Вывод из аналитического раздела	8		
2	Koı	нструкторский раздел	9		
	2.1	Описание сущностей	9		
	2.2	Ролевая модель	11		
	2.3	Структура программы	14		
	2.4	Вывод из конструкторского раздела	14		

СПИСОК СОКРАЩЕНИЙ

 $\Pi O-$ программное обеспечение

БД — база данных

1 Аналитический раздел

В данном разделе анализируется предметная область и существующие решения, рассматривается классификация СУБД.

1.1 Анализ предметной области

Реселлинг (от англ. resale, также реселл/ресейл) — это процесс покупки товаров с целью их последующей перепродажи, как правило, с прибылью.

Актуальность реселлинга обусловлена несколькими факторами.

- 1. Возможность продать товар компании, которая будет его реализовывать сама (удобство).
- 2. Возможность дать вторую жизнь в других руках неиспользуемому электронному товару, а не просто выкинуть его (экологичность).
- 3. Наличие множества складов и возможность использования любого из них для реализации товара.

1.2 Анализ существующих решений

Среди компаний, занимающихся реселлингом электронных товаров на территории РФ, можно выделить SYRO, Мосгорломбард и Электро-Маркет. В таблице 1.1 приведен сравнительный анализ этих компаний по следующим критериям:

- наличие складов;
- наличие ремонтного сервиса;
- ассортимент товаров.

Таблица 1.1 – Сравнение компаний-реселлеров электроники

Название	Наличие	Наличие ремонт-	Ассортимент
Пазвание	склада	ного сервиса	товаров
SYRO	+	+	Только электротовары
Мосгорломбард	+	-	Все товары
ЭлектроМаркет	-	-	Только электротовары

1.3 Классификация СУБД

СУБД классифицируются по различным критериям, в зависимости от их архитектуры, способа доступа к БД, модели хранения данных и модели обработки данных.

1.3.1 Модель хранения данных

По модели хранения данных выделяют несколько типов СУБД:

- иерархические;
- сетевые;
- реляционные;
- объектно-ориентированные.

Иерархические СУБД организовывают данные в виде иерархии, где каждый узел имеет родителя и может иметь несколько дочерних узлов.

Сетевые СУБД хранят данные в виде графа, где сущность может быть связана с несколькими другими сущностями.

Реляционные СУБД хранят данные в виде таблиц, которые состоят из строк и столбцов. Реляционные базы и используют структурированный язык запросов (SQL) для доступа к данным.

Объектно-ориентированные СУБД организовывают хранение данных в виде объектов и классов, что позволяет эффективно работать с комплексными данными и их отношениями.

1.3.2 Модель обработки данных

По модели обработки данных, СУБД разделяются на OLTP и OLAP. OLTP (Online Transaction Processing) базы данных предназначены для обработки оперативных транзакций (оформление заказов, бронирование и т.д.) в реальном времени. OLTP-модель как правило используется для быстрой записи, обновления и удаления данных. Главная цель OLTP — обеспечить быструю и надежную обработку операций.

OLAP (Online Analytical Processing) базы данных предназначены для анализа и отчетности. Эффективно работают с крупными объемами данных. OLAP-модель обычно используется для агрегации данных, создания сводных таблиц, проведения аналитических запросов и прогнозирования.

1.3.3 Архитектура

По архитектуре организации хранения данных, СУБД разделяются на локальные и распределенные.

Локальная СУБД устанавливается и работает на одном компьютере (сервере). Она хранит и обрабатывает данные только на нем. Примерами локальных СУБД являются SQLite, Microsoft Access и PostgreSQL (если установлена на одном сервере).

Распределенные СУБД распределяют хранение и обработку данных между несколькими устройствами (серверами). Распределенные СУБД обычно имеют более высокую производительность и масштабируемость, поскольку распределение данных по разным узлам сети уменьшает нагрузку на отдельные устройства. Примерами распределенных СУБД являются МопgoDB и Cassandra.

1.3.4 Способ доступа к БД

По способу доступа к БД выделяют следующие виды СУБД:

- файл-серверные (Microsoft Access);
- клиент-серверные (PostgreSQL, Oracle, MS SQL Server);
- встраиваемые (Redis, SQLite);
- сервисно-ориентированные;
- другие.

Файл-серверные СУБД используются для хранения данных в файлах на сервере. В этом случае клиенты обращаются к серверу для доступа ко всем данным сразу. При такой организации доступа, каждый пользователь хранит на своем компьютере локальную копию БД, а запросы выполняются локально.

Клиент-серверные СУБД представляют собой систему, в которой клиентские компьютеры соединены с сервером, который управляет хранением и обработкой данных. Клиенты обращаются к серверу для доступа только к нужным данным. Запросы обрабатываются на сервере.

Встраиваемые СУБД представляют собой хранилище, интегрированное в ПО или устройство. Они работают непосредственно в рамках программы и не требуют отдельной установки или запуска сервера.

Сервисно-ориентированные СУБД используются для хранения данных, предоставляемых через веб-сервисы. В этом случае доступ к данным и обработка запросов для клиентов осуществляется через API.

1.4 Вывод из аналитического раздела

В данном разделе была проанализирована предметная область и существующие решения, рассмотрена классификация СУБД.

2 Конструкторский раздел

В данном разделе рассмотрено проектирование ПО.

2.1 Описание сущностей

1.	Фирма имеет следующие атрибуты:
	- ID;
	— название;
	— телефон;
	— email;
	— физический адрес;
	— юридический адрес.
2.	Менеджер имеет следующие атрибуты:
	- ID;
	$-\Phi$ ИО;
	— фирма;
	— телефон;
	— email.
3.	Руководитель имеет следующие атрибуты:
	- ID;
	$-\Phi$ ИО;
	— фирма;
	— телефон;
	— email.

4.	Товар имеет следующие атрибуты:			
	— ID;			
	— название;			
	— категория;			
	— поставщик;			
	— стоимость;			
	— производитель.			
5.	Категория товара имеет следующие атрибуты:			
	- ID;			
	— название.			
6.	Склад имеет следующие атрибуты:			
	- ID;			
	— адрес.			
7.	Контракт имеет следующие атрибуты:			
	- ID;			
	— ID фирмы;			
	— руководитель 1;			
	— руководитель 2;			
	— менеджер 1;			
	— менеджер 2;			
	— дата заключения;			
	— дата истечения;			
	— документ.			

- 8. Товар на складе имеет следующие атрибуты:
 - ID товара;
 - ID склада;
 - количество.
- 9. Позиция контракта имеет следующие атрибуты:
 - ID контракта;
 - ID товара;
 - ID склада;
 - количество.

На рисунке 2.1 представлена ER-модель в нотации Чена.

2.2 Ролевая модель

Выделены следующие роли:

- 1. Менеджер менеджер фирмы; может управлять товарами (добавлять, изменять и удалять), а также составлять контракты от лица своей фирмы.
- 2. Руководитель руководитель фирмы; может управлять товарами (добавлять, изменять и удалять), а также подписывать контракты от лица своей фирмы.
- 3. Администратор суперпользователь; может управлять (добавлять, изменять и удалять) всеми компонентами системы (фирмами, складами, товарами и пользователями).

Рисунок 2.1 – ER-модель в нотации Чена

В соответствии с ролевой моделью, на рисунке 2.2 приведена диаграмма прецедентов.

Рисунок 2.2 – Диаграмма прецедентов

2.3 Структура программы

На рисунке 2.3 приведена верхнеуровневая UML-диаграмма модулей. ПО состоит из трех компонентов: компонент бизнес-логики, компонент до-

Рисунок 2.3 – Верхнеуровневая UML-диаграмма модулей

ступа к данным и компонент пользовательского интерфейса.

2.4 Вывод из конструкторского раздела

В данном разделе было рассмотрено проектирование ПО.

Рисунок 2.4 – UML-диаграмма классов