Lecture 5

Resolution

Introduction to Logic for Computer Science

Resolution proof calculus, Davis-Putnam procedure

Prof Hongseok Yang KAIST

These slides are minor variants of those made by Prof Worrell and Prof Haase for their logic course at Oxford.

Overview

SAT is bad.

- Truth tables: exponential time usually.
- Horn-SAT, 2-SAT and X-SAT require special formulas.
- Resolution: still worst case exponential time.

Overview

SAT is bad.

- Truth tables: exponential time usually.
- Horn-SAT, 2-SAT and X-SAT require special formulas.
- Resolution: still worst case exponential time.

But, resolution has merits.

- Can exploit the structure of a given formula.
- Only takes polynomial time on Horn and 2-CNF formulas.
- Very easy to automate.
- Very easy to analyse theoretically.
- Still sound and complete.

Resolution

Resolution

Resolution

The latter is more related to resolution in logic.

Proof calculus

Resolution is a **proof calculus** for propositional logic.

- A proof calculus consists of rules of inference.
- Enables to derive series of conclusions from series of hypothesis.
- Mechanical.

Proof calculus

Resolution is a **proof calculus** for propositional logic.

- A proof calculus consists of rules of inference.
- Enables to derive series of conclusions from series of hypothesis.
- Mechanical.
- Resolution has only one rule of inference.
- Lets us show a formula is unsatisfiable.
- For the proof by contradiction.
- Soundness: Anything proved to be unsatisfiable via resolution is unsatisfiable indeed.
- Completeness: Anything unsatisfiable can be proved to be unsatisfiable via resolution.

Resolution only works on CNF formulas.

Handy representation:

- Clause → set of literals.
- CNF formula \rightarrow set of clauses.

Resolution only works on CNF formulas.

Handy representation:

- Clause → set of literals.
- CNF formula → set of clauses.

Example

$$(p_1 \vee \neg p_2) \wedge (p_3 \vee \neg p_4 \vee p_5) \wedge (\neg p_2)$$

is represented as

$$\{\{p_1,\neg p_2\},\{p_3,\neg p_4,p_5\},\{\neg p_2\}\}.$$

Resolution only works on CNF formulas.

Handy representation:

- Clause → set of literals.
- CNF formula → set of clauses.

Example

$$(p_1 \vee \neg p_2) \wedge (p_3 \vee \neg p_4 \vee p_5) \wedge (\neg p_2)$$

is represented as

$$\{\{p_1, \neg p_2\}, \{p_3, \neg p_4, p_5\}, \{\neg p_2\}\}.$$

Ex1: Write $(p_1 \vee \neg p_2 \vee p_1) \wedge (\neg p_2 \vee p_1) \wedge (p_3 \vee \neg p_4) \wedge (\neg p_2)$ as a set.

Ex2: What is good about this set representation?

Elements have no order or multiplicity, so set representation is only normal form modulo associativity, commutativity, and idempotence:

$$(p_3 \wedge (p_1 \vee p_1 \vee \neg p_2) \wedge p_3),$$

 $((\neg p_2 \vee p_1 \vee \neg p_2) \wedge (p_3 \vee p_3)),$ and
 $(p_3 \wedge (\neg p_2 \vee p_1))$

all have representation $\{\{p_3\}, \{p_1, \neg p_2\}\}.$

Elements have no order or multiplicity, so set representation is only normal form modulo associativity, commutativity, and idempotence:

$$(p_3 \wedge (p_1 \vee p_1 \vee \neg p_2) \wedge p_3),$$

 $((\neg p_2 \vee p_1 \vee \neg p_2) \wedge (p_3 \vee p_3)),$ and
 $(p_3 \wedge (\neg p_2 \vee p_1))$

all have representation $\{\{p_3\}, \{p_1, \neg p_2\}\}$.

Empty clause (empty set of literals) is equivalent to *false*. Denoted \Box .

If a CNF formula contains \square , it is unsatisfiable.

If a CNF formula is the empty set, it is equivalent to true.

(Compare: the sum of empty set of natural numbers is 0, but the product of empty set of natural numbers is 1.)

Resolvents

Recall: for a literal L, its **complementary** literal \overline{L} is defined by

$$\overline{L} := \left\{ \begin{array}{ll} \neg p & \text{if } L = p, \\ p & \text{if } L = \neg p. \end{array} \right.$$

Resolvents

Recall: for a literal L, its **complementary** literal \overline{L} is defined by

$$\overline{L} := \left\{ \begin{array}{ll} \neg p & \text{if } L = p, \\ p & \text{if } L = \neg p. \end{array} \right.$$

Definition

Let C_1 and C_2 be clauses. A clause R is called a **resolvent** of C_1 and C_2 if there are complementary literals $L \in C_1$ and $\overline{L} \in C_2$ such that

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\}).$$

Resolvents

Recall: for a literal L, its **complementary** literal \overline{L} is defined by

$$\overline{L} := \left\{ \begin{array}{ll} \neg p & \text{if } L = p, \\ p & \text{if } L = \neg p. \end{array} \right.$$

Definition

Let C_1 and C_2 be clauses. A clause R is called a **resolvent** of C_1 and C_2 if there are complementary literals $L \in C_1$ and $\overline{L} \in C_2$ such that

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\}).$$

We say R is derived from C_1 and C_2 by resolution, and write

$$\frac{C_1}{R}$$

Resolvents: example

Example

$$\{p_1, p_3, \neg p_4\}$$
 resolves $\{p_1, p_2, \neg p_4\}$ and $\{\neg p_2, p_3\}$.

The empty clause is a resolvent of $\{p_1\}$ and $\{\neg p_1\}$.

$$\frac{\{\rho_1, \rho_2, \neg \rho_4\} \quad \{\neg \rho_2, \rho_3\}}{\{\rho_1, \rho_3, \neg \rho_4\}} \qquad \frac{\{\rho_1\} \quad \{\neg \rho_1\}}{\Box}$$

Resolvents: example

Example

 $\{p_1, p_3, \neg p_4\}$ resolves $\{p_1, p_2, \neg p_4\}$ and $\{\neg p_2, p_3\}$.

The empty clause is a resolvent of $\{p_1\}$ and $\{\neg p_1\}$.

$$\frac{\{\rho_1, \rho_2, \neg \rho_4\} \quad \{\neg \rho_2, \rho_3\}}{\{\rho_1, \rho_3, \neg \rho_4\}} \qquad \frac{\{\rho_1\} \quad \{\neg \rho_1\}}{\Box}$$

Ex: Compute a resolvent of each of the following pairs of clauses:

- 1. $\{p_1, \neg p_2, p_4\}$ and $\{p_1, \neg p_4, \neg p_5\}$.
- 2. $\{p_1, \neg p_2, p_4\}$ and $\{\neg p_1, \neg p_4, \neg p_5\}$.
- 3. $\{p_1, \neg p_2, p_4\}$ and $\{\neg p_1\}$.

Derivations and refutations

Definition

A **derivation** (or **proof**) of a clause C from a set of clauses F is a sequence C_1, C_2, \ldots, C_m of clauses where

- $C_m = C$; and
- for each i = 1, 2, ..., m, either $C_i \in F$ or C_i is a resolvent of C_j and C_k for some j, k < i.

Derivations and refutations

Definition

A **derivation** (or **proof**) of a clause C from a set of clauses F is a sequence C_1, C_2, \ldots, C_m of clauses where

- $C_m = C$; and
- for each i = 1, 2, ..., m, either $C_i \in F$ or C_i is a resolvent of C_j and C_k for some j, k < i.

A derivation of the empty clause \square from a formula F is called a **refutation** of F.

Derivations: example

A resolution refutation of the CNF formula

$$\{\{x, \neg y\}, \{y, z\}, \{\neg x, \neg y, z\}, \{\neg z\}\}$$

is as follows:

1.	$\{x, \neg y\}$	(Assumption)	5.	$\{\neg X, Z\}$	(2,4 Resolution)
2.	$\{y,z\}$	(Assumption)	6.	$\{\neg Z\}$	(Assumption)
3.	$\{X,Z\}$	(1,2 Resolution)	7.	{ <i>z</i> }	(3,5 Resolution)
4.	$\{\neg x, \neg y, z\}$	(Assumption)	8.		(6,7 Resolution)

Derivations: example

A resolution refutation of the CNF formula

$$\{\{x, \neg y\}, \{y, z\}, \{\neg x, \neg y, z\}, \{\neg z\}\}$$

is as follows:

1.
$$\{x, \neg y\}$$
(Assumption)5. $\{\neg x, z\}$ (2,4 Resolution)2. $\{y, z\}$ (Assumption)6. $\{\neg z\}$ (Assumption)3. $\{x, z\}$ (1,2 Resolution)7. $\{z\}$ (3,5 Resolution)4. $\{\neg x, \neg y, z\}$ (Assumption)8. \square (6,7 Resolution)

Graphically represented by the following proof tree:

Refutations: comments

- A resolution refutation of a formula F can be seen as a proof that F is unsatisfiable.
- Resolution can be used to prove entailments by transforming them to refutations.
- For example, the refutation in previous example can be used to show that

$$(x \vee \neg y) \wedge (y \vee z) \wedge (\neg x \vee \neg y \vee z) \models z.$$

Intuitively, proof by contradiction.

Refutations: comments

- A resolution refutation of a formula F can be seen as a proof that F is unsatisfiable.
- Resolution can be used to prove entailments by transforming them to refutations.
- For example, the refutation in previous example can be used to show that

$$(x \vee \neg y) \wedge (y \vee z) \wedge (\neg x \vee \neg y \vee z) \models z.$$

- Intuitively, proof by contradiction.
- Ex: Suppose that we would like to prove $F \models G$ for CNF formulas F and G. How to do this using resolution?

Set of resolvents

Given a set F of clauses, we are interested in the set of all clauses derivable from F by resolution.

Definition

For a set F of clauses, Res(F) is defined as

$$Res(F) = F \cup \{R \mid R \text{ is a resolvent of two clauses in } F\}.$$

Furthermore, define

$$Res^{0}(F) = F$$
, $Res^{n+1}(F) = Res(Res^{n}(F))$ for $n \ge 0$

and write

$$Res^*(F) = \bigcup_{n \geq 0} Res^n(F).$$

Set of resolvents

Given a set F of clauses, we are interested in the set of all clauses derivable from F by resolution.

Definition

For a set F of clauses, Res(F) is defined as

$$Res(F) = F \cup \{R \mid R \text{ is a resolvent of two clauses in } F\}.$$

Furthermore, define

$$Res^{0}(F) = F$$
, $Res^{n+1}(F) = Res(Res^{n}(F))$ for $n \ge 0$

and write

$$Res^*(F) = \bigcup_{n>0} Res^n(F).$$

Theorem

 $C \in Res^*(F)$ iff there is a derivation of C from F.

Set of resolvents

Given a set F of clauses, we are interested in the set of all clauses derivable from F by resolution.

Definition

For a set F of clauses, Res(F) is defined as

$$Res(F) = F \cup \{R \mid R \text{ is a resolvent of two clauses in } F\}.$$

Furthermore, define

$$Res^{0}(F) = F$$
, $Res^{n+1}(F) = Res(Res^{n}(F))$ for $n \ge 0$

and write

$$Res^*(F) = \bigcup_{n>0} Res^n(F).$$

Theorem

 $C \in Res^*(F)$ iff there is a derivation of C from F.

Ex: Prove the theorem.

Soundness and completeness

- Soundness: Anything proved to be unsatisfiable via resolution is unsatisfiable indeed.
- Completeness: Anything unsatisfiable can be proved to be unsatisfiable via resolution.
- For every F, there is a resolution refutation of F iff F is unsatisfiable.

Lemma

Let F be a CNF formula represented as a set of clauses. If R is a resolvent of clauses C_1 and C_2 of F, then $F \equiv F \cup \{R\}$.

Lemma

Let F be a CNF formula represented as a set of clauses. If R is a resolvent of clauses C_1 and C_2 of F, then $F \equiv F \cup \{R\}$.

Ex: Show $F \cup \{R\} \models F$.

Lemma

Let F be a CNF formula represented as a set of clauses. If R is a resolvent of clauses C_1 and C_2 of F, then $F \equiv F \cup \{R\}$.

Ex: Show $F \cup \{R\} \models F$. Now show that $F \models F \cup \{R\}$.

Lemma

Let F be a CNF formula represented as a set of clauses. If R is a resolvent of clauses C_1 and C_2 of F, then $F \equiv F \cup \{R\}$.

Ex: Show $F \cup \{R\} \models F$. Now show that $F \models F \cup \{R\}$.

Proof.

We focus on proving $F \models F \cup \{R\}$. Suppose

- $A \models F$, and
- $R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$ for some literal $L \in C_1$ with $\overline{L} \in C_2$.

We will have to show $A \models F \cup \{R\}$.

Lemma

Let F be a CNF formula represented as a set of clauses. If R is a resolvent of clauses C_1 and C_2 of F, then $F \equiv F \cup \{R\}$.

Ex: Show $F \cup \{R\} \models F$. Now show that $F \models F \cup \{R\}$.

Proof.

We focus on proving $F \models F \cup \{R\}$. Suppose

- $A \models F$, and
- $R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$ for some literal $L \in C_1$ with $\overline{L} \in C_2$.

We will have to show $A \models F \cup \{R\}$.

- If $A \models L$, then since $A \models C_2$, it follows that $A \models C_2 \setminus \{\overline{L}\}\$, and thus $A \models R$.
- If $A \models \overline{L}$, then since $A \models C_1$, it follows that $A \models C_1 \setminus \{L\}$, and thus $A \models R$.

Soundness of resolution

Soundness: Can derive a contradiction only from an unsatisfiable set of clauses.

Soundness of resolution

Soundness: Can derive a contradiction only from an unsatisfiable set of clauses.

Theorem

If we can derive \square from F, then F is unsatisfiable.

Ex: Prove this using the Resolution Lemma.

Soundness of resolution

Soundness: Can derive a contradiction only from an unsatisfiable set of clauses.

Theorem

If we can derive \square from F, then F is unsatisfiable.

Ex: Prove this using the Resolution Lemma.

Proof.

Suppose $C_1, C_2, \ldots, C_m = \square$ is a resolution proof of \square from F.

Soundness of resolution

Soundness: Can derive a contradiction only from an unsatisfiable set of clauses.

Theorem

If we can derive \square from F, then F is unsatisfiable.

Ex: Prove this using the Resolution Lemma.

Proof.

Suppose $C_1, C_2, \ldots, C_m = \square$ is a resolution proof of \square from F.

The repeated application of the Resolution Lemma shows

$$F \equiv F \cup \{C_1, C_2, \dots, C_m\}.$$

But the latter set of clauses includes the empty clause. Thus, F is unsatisfiable.

Completeness is the converse of soundness: if a CNF formula is unsat., then we can derive the empty clause from it by resolution.

Completeness is the converse of soundness: if a CNF formula is unsat., then we can derive the empty clause from it by resolution.

Theorem

If F is unsatisfiable, then we can derive \square from F.

Proof.

By induction on the number n of variables in F.

 If n = 0, then F has no variables. So either it contains no clauses or only the empty clause. The former is impossible because then F ≡ true would be satisfiable. Thus, F = {□}. We can give an one-line resolution refutation of F.

Proof.

- If n = 0, then F has no variables. So either it contains no clauses or only the empty clause. The former is impossible because then F ≡ true would be satisfiable. Thus, F = {□}. We can give an one-line resolution refutation of F.
- Ex: Prove the inductive case.

Proof.

- If n = 0, then F has no variables. So either it contains no clauses or only the empty clause. The former is impossible because then F ≡ true would be satisfiable. Thus, F = {□}. We can give an one-line resolution refutation of F.
- Ex: Prove the inductive case.
- Suppose variables p_0, \ldots, p_n . Since F is unsatisfiable, so is $F_0 := F[false/p_n]$. Induction hypothesis gives a resolution proof $C_0, C_1, \ldots, C_m = \square$ that derives \square from F_0 .

Proof.

- If n = 0, then F has no variables. So either it contains no clauses or only the empty clause. The former is impossible because then F ≡ true would be satisfiable. Thus, F = {□}. We can give an one-line resolution refutation of F.
- Ex: Prove the inductive case.
- Suppose variables p_0, \ldots, p_n . Since F is unsatisfiable, so is $F_0 := F[false/p_n]$. Induction hypothesis gives a resolution proof $C_0, C_1, \ldots, C_m = \square$ that derives \square from F_0 . Each C_i from F_0 is either already in F or $C_i \cup \{p_n\}$ is in F.

Proof.

- If n = 0, then F has no variables. So either it contains no clauses or only the empty clause. The former is impossible because then F ≡ true would be satisfiable. Thus, F = {□}. We can give an one-line resolution refutation of F.
- Ex: Prove the inductive case.
- Suppose variables p_0, \ldots, p_n . Since F is unsatisfiable, so is $F_0 := F[false/p_n]$. Induction hypothesis gives a resolution proof $C_0, C_1, \ldots, C_m = \square$ that derives \square from F_0 . Each C_i from F_0 is either already in F or $C_i \cup \{p_n\}$ is in F. Re-introducing p_n and propagating it gives a res. proof C'_0, C'_1, \ldots, C'_m from F where either $C'_m = \square$ or $C'_m = \{p_n\}$.

Proof.

- If n = 0, then F has no variables. So either it contains no clauses or only the empty clause. The former is impossible because then F ≡ true would be satisfiable. Thus, F = {□}. We can give an one-line resolution refutation of F.
- Ex: Prove the inductive case.
- Suppose variables p_0, \ldots, p_n . Since F is unsatisfiable, so is $F_0 := F[false/p_n]$. Induction hypothesis gives a resolution proof $C_0, C_1, \ldots, C_m = \square$ that derives \square from F_0 . Each C_i from F_0 is either already in F or $C_i \cup \{p_n\}$ is in F. Re-introducing p_n and propagating it gives a res. proof C'_0, C'_1, \ldots, C'_m from F where either $C'_m = \square$ or $C'_m = \{p_n\}$.
- Apply similar reasoning to $F_1 := F[true/p_n]$. Get a proof of $C''_1 = \Box$ or $C''_1 = \{\neg p_n\}$ from F.

Proof.

- If n = 0, then F has no variables. So either it contains no clauses or only the empty clause. The former is impossible because then F ≡ true would be satisfiable. Thus, F = {□}. We can give an one-line resolution refutation of F.
- Ex: Prove the inductive case.
- Suppose variables p_0, \ldots, p_n . Since F is unsatisfiable, so is $F_0 := F[false/p_n]$. Induction hypothesis gives a resolution proof $C_0, C_1, \ldots, C_m = \square$ that derives \square from F_0 . Each C_i from F_0 is either already in F or $C_i \cup \{p_n\}$ is in F. Re-introducing p_n and propagating it gives a res. proof C'_0, C'_1, \ldots, C'_m from F where either $C'_m = \square$ or $C'_m = \{p_n\}$.
- Apply similar reasoning to $F_1 := F[true/p_n]$. Get a proof of $C''_l = \Box$ or $C''_l = \{\neg p_n\}$ from F.
- If $C'_m = \square$ or $C''_l = \square$, done. Otherwise, glue together these two proofs and apply one more resolution step to $\{p_n\}$ and $\{\neg p_n\}$.

Completeness: example

Example

Consider
$$F = \{\{p,r\}, \{\neg p,q\}, \{\neg q,r\}, \{\neg q,\neg r\}, \{p,\neg r\}\}.$$

Transform the following derivation of \square from F[false/r]

$$\begin{array}{c|c} \{p\} & \{\neg p, q\} \\
\hline
& \{q\} & \{\neg q\}
\end{array}$$

to the following derivation of $\{r\}$ from F:

$$\frac{\{p,r\} \qquad \{\neg p,q\}}{\{q,r\}} \qquad \{\neg q,r\}$$

$$\frac{\{r\}}{\{r\}}$$

Completeness: example

Example

Consider $F = \{\{p,r\}, \{\neg p,q\}, \{\neg q,r\}, \{\neg q,\neg r\}, \{p,\neg r\}\}.$

Transform the following derivation of \square from F[false/r]

$$\begin{array}{c|c} \{p\} & \{\neg p, q\} \\ \hline
\hline
 & \{q\} & \{\neg q\}
\end{array}$$

to the following derivation of $\{r\}$ from F:

$$\frac{\{p,r\} \qquad \{\neg p,q\}}{\{q,r\}} \qquad \{\neg q,r\}$$

$$\frac{\{r\}}{\{r\}}$$

Ex: Handle the other case F[true/r]. Construct the derivation of \Box from F.

The Davis-Putnam procedure

Can turn resolution into a SAT solver.

Davis-Putnam procedure.

Basic idea: Use resolution to perform **variable elimination** when searching for a satisfying assignment.

Variable elimination

Eliminate *p* from a CNF formula *F* to get a new formula *G*:

- If p occurs only positively in F, delete all clauses containing p, so G := F[true/p].
- If p occurs only negatively in F, delete all clauses containing \overline{p} , so G := F[false/p].
- Suppose p occurs both positively and negatively in F. For every pair of clauses C, D in F with $p \in C$ and $\overline{p} \in D$, add the resolvant of C and D to F. Delete all clauses containing p or \overline{p} from F to get G.

Variable elimination

Eliminate *p* from a CNF formula *F* to get a new formula *G*:

- If p occurs only positively in F, delete all clauses containing p, so G := F[true/p].
- ② If p occurs only negatively in F, delete all clauses containing \overline{p} , so G := F[false/p].
- Suppose p occurs both positively and negatively in F. For every pair of clauses C, D in F with p ∈ C and p̄ ∈ D, add the resolvant of C and D to F. Delete all clauses containing p or p̄ from F to get G.

Example

Eliminating *p* from $\{\{p\}, \{\neg p, q\}, \{\neg q, r\}, \{\neg r, s, t\}, \{r, s\}, \{\neg r, t\}\}$ gives $\{\{q\}, \{\neg q, r\}, \{\neg r, s, t\}, \{r, s\}, \{\neg r, t\}\}.$

Variable elimination

Eliminate *p* from a CNF formula *F* to get a new formula *G*:

- If p occurs only positively in F, delete all clauses containing p, so G := F[true/p].
- If p occurs only negatively in F, delete all clauses containing \overline{p} , so G := F[false/p].
- Suppose p occurs both positively and negatively in F. For every pair of clauses C, D in F with p∈ C and p̄∈ D, add the resolvant of C and D to F. Delete all clauses containing p or p̄ from F to get G.

Example

```
Eliminating p from \{\{p\}, \{\neg p, q\}, \{\neg q, r\}, \{\neg r, s, t\}, \{r, s\}, \{\neg r, t\}\}\} gives \{\{q\}, \{\neg q, r\}, \{\neg r, s, t\}, \{r, s\}, \{\neg r, t\}\}.
```

Ex: Eliminate *r* from the above set of clauses.

Variable elimination: correctness

Lemma (Elimination Lemma)

If eliminating a variable p from F gives G then

- F and G are equisatisfiable; and
- if $A \models G$ then $A_{[p\mapsto a]} \models F$ for some $a \in \{0, 1\}$ that can be determined from A and F.

Variable elimination: correctness

Lemma (Elimination Lemma)

If eliminating a variable p from F gives G then

- F and G are equisatisfiable; and
- if $A \models G$ then $A_{[p\mapsto a]} \models F$ for some $a \in \{0,1\}$ that can be determined from A and F.

Ex: Prove the lemma.

The Davis-Putnam algorithm

```
Davis—Putnam(F) begin remove all valid clauses from F if F = \{\Box\} then return UNSAT if F = \emptyset then return the 0 assignment let G arise by eliminating a variable p from F if Davis—Putnam(G) = UNSAT then return UNSAT if Davis—Putnam(G) = \mathcal{A} then return \mathcal{A}_{[p\mapsto a]}, with a chosen as in the Elimination Lemma end
```

Davis-Putnam: example

First eliminate variables (p, q, r, s):

```
\begin{aligned} &\mathsf{Davis-Putnam}(\{\{p\}, \{\neg p, \neg q\}, \{q, r\}, \{\neg r, s, \neg t\}\}) \\ &= \mathsf{Davis-Putnam}(\{\{\neg q\}, \{q, r\}, \{\neg r, s, \neg t\}\}) \\ &= \mathsf{Davis-Putnam}(\{\{r\}, \{\neg r, s, \neg t\}\}) \\ &= \mathsf{Davis-Putnam}(\{\{s, \neg t\}\}) \\ &= \mathsf{Davis-Putnam}(\emptyset) \end{aligned}
```

Davis-Putnam: example

First eliminate variables (p, q, r, s):

$$\begin{aligned} &\mathsf{Davis-Putnam}(\{\{p\}, \{\neg p, \neg q\}, \{q, r\}, \{\neg r, s, \neg t\}\}) \\ &= \mathsf{Davis-Putnam}(\{\{\neg q\}, \{q, r\}, \{\neg r, s, \neg t\}\}) \\ &= \mathsf{Davis-Putnam}(\{\{r\}, \{\neg r, s, \neg t\}\}) \\ &= \mathsf{Davis-Putnam}(\{\{s, \neg t\}\}) \\ &= \mathsf{Davis-Putnam}(\emptyset) \end{aligned}$$

Then recurse back up to get satisfying assignment:

$$t\mapsto 1$$
 $s\mapsto 1$
 $r\mapsto 1$
 $q\mapsto 0$
 $p\mapsto 1$

Davis—Putnam takes exponential time in the worst case. (unsurprising: intermediate clauses can become big).

Davis—Putnam takes exponential time in the worst case. (unsurprising: intermediate clauses can become big).

Questions:

 Can one efficiently precompute a (near)optimal variable ordering?

Davis—Putnam takes exponential time in the worst case. (unsurprising: intermediate clauses can become big).

Questions:

- Can one efficiently precompute a (near)optimal variable ordering?
- Given k, can one efficiently precompute a variable ordering such that Davis—Putnam only produces at most k-clauses?

Davis—Putnam takes exponential time in the worst case. (unsurprising: intermediate clauses can become big).

Questions:

- Can one efficiently precompute a (near)optimal variable ordering?
- Given k, can one efficiently precompute a variable ordering such that Davis—Putnam only produces at most k-clauses?
- More simply: suppose F = F₁ ∧ F₂, where F₁ and F₂ have only variable p in common. Should I eliminate p first, last or in some other position?

Davis—Putnam takes exponential time in the worst case. (unsurprising: intermediate clauses can become big).

Questions:

- Can one efficiently precompute a (near)optimal variable ordering?
- Given k, can one efficiently precompute a variable ordering such that Davis—Putnam only produces at most k-clauses?
- More simply: suppose F = F₁ ∧ F₂, where F₁ and F₂ have only variable p in common. Should I eliminate p first, last or in some other position?

Actually, I don't know the answers. But I recommend you to think about this type of questions.

Summary

Resolution:

- A proof calculus.
- Sound and complete.
- Very simple.

Davis-Putnam:

- Decision algorithm for SAT.
- Basis of SAT solvers.
- Polynomial time on nice formulas.
- Worst case exponential time.
- Depend on the order of variable elimination.