

Analyzing Weighted Abstract Reduction Systems via Semirings

Emma Ahrens, Jan-Christoph Kassing, Jürgen Giesl, Joost-Pieter Katoen RWTH Aachen University 01.08.2025

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R			
a		true	
b		false	
P			
\overline{a}	a	true	
b	a	false	
a	b	true	
b	b	true	

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R				
a		true		
b		false		
P				
a	a	true		
b	a	false		
a	b	true		
b	b	true		

 $Ra \wedge (Pab \vee Pbb)$

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R		
a		true
b		false
P		
\overline{a}	a	true
b	a	false
a	b	true
b	b	true

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R		
a		true
b		false
P		
\overline{a}	a	true
b	a	false
a	b	true
b	b	true

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R		
a		true
b		false
P		
\overline{a}	a	true
b	a	false
a	b	true
b	b	true

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R		
a		true
b		false
P		
\overline{a}	\overline{a}	true
b	a	false
a	b	true
b	b	true

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R		
a		true
b		false
P		
a	\overline{a}	true
b	a	false
a	b	true
b	b	true

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R	
a	true
b	false
P	
a a	true
b a	false
a b	true
b	true

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R	
a	true
b	false
P	
a a	true
b a	false
a b	true
b b	true

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R			cost
a		true	2
b		false	∞
P			cost
\overline{a}	a	true	2
b	a	false	∞
a	b	true	7
b	b	true	10

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R			cost
a		true	2
b		false	∞
P			cost
\overline{a}	a	true	2
b	a	false	∞
a	b	true	7
b	b	true	10

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R			cost
a		true	2
b		false	∞
P			cost
\overline{a}	a	true	2
b	a	false	∞
a	b	true	7
b	b	true	10

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R			cost
a		true	2
b		false	∞
P			cost
\overline{a}	a	true	2
b	a	false	∞
a	b	true	7
b	b	true	10

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R			cost	
a		true	2	
b		false	∞	
P			cost	
\overline{a}	a	true	2	
b	a	false	∞	
a	b	true	7	
b	b	true	10	

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R			cost
a		true	2
b		false	∞
P			cost
\overline{a}	a	true	2
b	a	false	∞
a	b	true	7
b	b	true	10

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R			cost	confidence
a		true	2	0.8
b		false	∞	0
P			cost	confidence
\overline{a}	a	true	2	0.8
b	a	false	∞	0
a	b	true	7	0.5
b	b	true	10	0.2

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R			cost	confidence
a		true	2	0.8
b		false	∞	0
P			cost	confidence
\overline{a}	a	true	2	0.8
b	a	false	∞	0
a	b	true	7	0.5
b	b	true	10	0.2

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R			cost	confidence
\overline{a}		true	2	0.8
b		false	∞	0
P			cost	confidence
\overline{a}	a	true	2	0.8
b	a	false	∞	0
a	b	true	7	0.5
b	b	true	10	0.2

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R			cost	confidence
a		true	2	0.8
b		false	∞	0
P			cost	confidence
\overline{a}	a	true	2	0.8
b	a	false	∞	0
a	b	true	7	0.5
b	b	true	10	0.2

$$\psi = Ra \wedge (Pab \vee Pbb)$$

R			cost	confidence
\overline{a}		true	2	0.8
b		false	∞	0
P			cost	confidence
\overline{a}	a	true	2	0.8
b	a	false	∞	0
a	b	true	7	0.5
b	b	true	10	0.2

Abstract Reduction System

 (A, \rightarrow)

Abstract Reduction System

$$(A, \rightarrow)$$

Provenance Analysis via Semirings

$$\mathbb{S}_{\mathbb{N}^{\infty}} = (\mathbb{N}^{\infty}, +, \cdot, 0, 1)$$

Semiring $\mathbb{S} = (S, \oplus, \odot, \mathbf{0}, \mathbf{1})$ with

► *S* the universe,

Semiring $\mathbb{S}=(S,\oplus,\odot,\mathbf{0},\mathbf{1})$ with

- ► *S* the universe,
- ▶ ⊕ associative, commutative,

Semiring $\mathbb{S}=(S,\oplus,\odot,\mathbf{0},\mathbf{1})$ with

- ► *S* the universe,
- ▶ ⊕ associative, commutative,
- ▶ ⊙ associative,

Semiring $\mathbb{S} = (S, \oplus, \odot, \mathbf{0}, \mathbf{1})$ with

► *S* the universe,

▶ ⊕ distributes over ⊙, and

- ⊕ associative, commutative,
- associative.

Semiring $\mathbb{S}=(S,\oplus,\odot,\mathbf{0},\mathbf{1})$ with

- ► *S* the universe,
- → ⊕ associative, commutative,
- ▶ ⊙ associative,

- ► ⊕ distributes over ⊙, and
- $\blacktriangleright \ 0$ and 1 are neutral elements of \oplus and $\odot,$ resp.

Semiring $\mathbb{S} = (S, \oplus, \odot, \mathbf{0}, \mathbf{1})$ with

- ► *S* the universe.
 - ⊕ associative, commutative,
- associative.

▶ ⊕ distributes over ⊙, and

ightharpoonup 0 and 1 are neutral elements of \oplus and \odot , resp.

Semiring $\mathbb{S} = (S, \oplus, \odot, \mathbf{0}, \mathbf{1})$ with

- ► *S* the universe,
- ► ⊕ associative, commutative,
- ▶ ⊙ associative,

- → distributes over ⊙, and
- ▶ 0 and 1 are neutral elements of \oplus and \odot , resp.
- ► (No negative elements!)

For example: $\mathbb{S}_{arc} = (\mathbb{N}^{\pm \infty}, \max, +, -\infty, 0)$

Semiring $\mathbb{S}=(S,\oplus,\odot,\mathbf{0},\mathbf{1})$ with

- ► *S* the universe,
- → associative, commutative,
- ▶ ⊙ associative,

- ightharpoonup \oplus distributes over \odot , and
- ▶ 0 and 1 are neutral elements of \oplus and \odot , resp.
- ► (No negative elements!)

For example: $\mathbb{S}_{\rm arc} = (\mathbb{N}^{\pm \infty}, \max, +, -\infty, 0)$

Natural Order

$$s \prec t \quad :\Leftrightarrow \quad \exists v \in S \setminus \{\mathbf{0}\} : s \oplus v = t$$

Semiring $\mathbb{S}=(S,\oplus,\odot,\mathbf{0},\mathbf{1})$ with

- S the universe,
- → ⊕ associative, commutative,
- ▶ ⊙ associative,

- → distributes over ⊙, and
- ▶ 0 and 1 are neutral elements of \oplus and \odot , resp.
- ► (No negative elements!)

For example: $\mathbb{S}_{\text{arc}} = (\mathbb{N}^{\pm \infty}, \max, +, -\infty, 0)$

Natural Order

$$s \prec t \quad :\Leftrightarrow \quad \exists v \in S \setminus \{\mathbf{0}\} : s \oplus v = t$$

For example: $2 \max 4 = 4$, hence $2 \prec 4$ ($\prec = <$)

Semiring $\mathbb{S} = (S, \oplus, \odot, \mathbf{0}, \mathbf{1})$ with

- S the universe.
- A associative, commutative.
- ▶ ⊙ associative.

- ▶ ⊕ distributes over ⊙. and
- ightharpoonup 0 and 1 are neutral elements of \oplus and \odot , resp.
- (No negative elements!)

For example: $\mathbb{S}_{arc} = (\mathbb{N}^{\pm \infty}, \max, +, -\infty, 0)$

Natural Order

$$s \prec t \quad :\Leftrightarrow \quad \exists v \in S \setminus \{\mathbf{0}\} : s \oplus v = t$$

For example: $2 \max 4 = 4$, hence $2 \prec 4$ ($\prec = <$)

Complete Lattice, ⊤

 $X \subseteq S \implies \sup X \in S$,

Semiring $\mathbb{S}=(S,\oplus,\odot,\mathbf{0},\mathbf{1})$ with

- S the universe,
- → ⊕ associative, commutative,
- ▶ ⊙ associative,

- → distributes over ⊙, and
- ▶ 0 and 1 are neutral elements of \oplus and \odot , resp.
- ► (No negative elements!)

For example: $\mathbb{S}_{arc} = (\mathbb{N}^{\pm \infty}, \max, +, -\infty, 0)$

Natural Order

$$s \prec t \quad :\Leftrightarrow \quad \exists v \in S \setminus \{\mathbf{0}\} : s \oplus v = t$$

For example: $2 \max 4 = 4$, hence $2 \prec 4 \ (\prec = <)$

Complete Lattice, ⊤

 $X \subseteq S \implies \sup X \in S$, $\sup S = \top$ (maximal element)

Semiring

Semiring $\mathbb{S}=(S,\oplus,\odot,\mathbf{0},\mathbf{1})$ with

S the universe,

- ightharpoonup \oplus distributes over \odot , and
- ⊕ associative, commutative,

 $lackbox{0}$ and f 1 are neutral elements of \oplus and \odot , resp.

→ o associative,

(No negative elements!)

For example: $\mathbb{S}_{arc} = (\mathbb{N}^{\pm \infty}, \max, +, -\infty, 0)$

Natural Order

$$s \prec t \quad :\Leftrightarrow \quad \exists v \in S \setminus \{\mathbf{0}\} : s \oplus v = t$$

For example: $2 \max 4 = 4$, hence $2 \prec 4$ ($\prec = <$)

Complete Lattice, ⊤

$$X \subseteq S \implies \sup X \in S$$
, $\sup S = \top$ (maximal element)

For example: $\mathbb{N} \subseteq \mathbb{N}^{\pm \infty}$ and $\sup \mathbb{N} = \mathbb{T} = \infty \in \mathbb{N}^{\pm \infty}$

Weighted Abstract Reduction System $(A, \rightarrow, \mathbb{S}, f_{NF}, Aggr)$ with

Weighted Abstract Reduction System $(A, \rightarrow, \mathbb{S}, f_{NF}, Aggr)$ with

ightharpoonup sequence abstract reduction system (A, \rightarrow) ,

Costs for query:

Weighted Abstract Reduction System $(A, \rightarrow, \mathbb{S}, f_{NF}, Aggr)$ with

- \blacktriangleright sequence abstract reduction system (A, \rightarrow) ,
- ► a complete lattice semiring S,

Costs for query: Choose $\mathbb{S}_{arc} = (\mathbb{N}^{\pm \infty}, \max, +, -\infty, 0)$ and

$$Ra \qquad \psi \land \varphi \longrightarrow [\psi, \varphi]$$

$$\psi \lor \varphi \longrightarrow [\psi, \varphi]$$

Weighted Abstract Reduction System $(A, \rightarrow, \mathbb{S}, f_{NF}, Aggr)$ with

- ightharpoonup sequence abstract reduction system (A, \rightarrow) ,
- ► a complete lattice semiring S,
- ightharpoonup the interpretation of the normal forms f_{NF} ,

Costs for query: Choose $\mathbb{S}_{\mathsf{arc}} = (\mathbb{N}^{\pm \infty}, \max, +, -\infty, 0)$ and

$$\begin{array}{ccc}
 & 2 \\
 & Ra & \psi \land \varphi \longrightarrow [\psi, \varphi] \\
 & \psi \lor \varphi \longrightarrow [\psi, \varphi]
\end{array}$$

Weighted Abstract Reduction System $(A, \rightarrow, \mathbb{S}, f_{NF}, Aggr)$ with

- ightharpoonup sequence abstract reduction system (A, \rightarrow) ,
- ► a complete lattice semiring S,
- \triangleright the interpretation of the normal forms f_{NF} ,
- ▶ and aggregator functions $Aggr_{a\to B}$ for each rule $a\to B$.

Costs for query: Choose $\mathbb{S}_{\mathsf{arc}} = (\mathbb{N}^{\pm\infty}, \max, +, -\infty, 0)$ and

$$\begin{array}{ccc}
2 & x+y & \longleftarrow & [x,y] \\
Ra & \psi \land \varphi & \longrightarrow & [\psi,\varphi]
\end{array}$$

$$\begin{array}{ccc}
max\{x,y\} & \longleftarrow & [x,y] \\
\psi \lor \varphi & \longrightarrow & [\psi,\varphi]
\end{array}$$

Weighted Abstract Reduction System $(A, \rightarrow, S, f_{NF}, Aggr)$ with

- \triangleright sequence abstract reduction system (A, \rightarrow) ,
- a complete lattice semiring S,
- \triangleright the interpretation of the normal forms f_{NE} .
- \blacktriangleright and aggregator functions Aggr_{$a \rightarrow B$} for each rule $a \rightarrow B$.

Costs for query: Choose $\mathbb{S}_{arc} = (\mathbb{N}^{\pm \infty}, \max, +, -\infty, 0)$ and

$$\begin{array}{ccc}
2 & x+y & \longleftarrow & [x,y] \\
Ra & \psi \land \varphi & \longrightarrow & [\psi,\varphi]
\end{array}$$

$$\begin{array}{ccc}
\max\{x,y\} & \longleftarrow & [x,y] \\
\psi \lor \varphi & \longrightarrow & [\psi,\varphi]
\end{array}$$

The weight of $a \in A$ is [a] with e.g. $[Ra \land (Pab \lor Pbb)] = 12$.

Overview

Expressivity Termination/Runtime Safety Combinations and more... **Prove Boundedness**: $\forall a \in A : [a] \prec \top$ Sufficient Conditions for Boundedness Disproving via Increasing Loops e.g. $f_{NF} \leq C$ and all Aggr_{$a \rightarrow B$} selective **Proving via Interpretations Techniques**

Overview

Sequence abstract reduction system (\mathbb{N}, \to) with grammar

$$n+1 \rightarrow [n,n+2]$$

Sequence abstract reduction system $(\mathbb{N}, \rightarrow)$ with grammar

$$n+1 \to [n,n+2]$$

and normal form $NF_{\rightarrow} = \{0\}.$

Sequence abstract reduction system (\mathbb{N}, \to) with grammar

$$n+1 \to [n,n+2]$$

and normal form $NF_{\rightarrow} = \{0\}.$

What is the probability to reach 0 in 3 steps? What about finitely many steps? What is the expected runtime?

Probability to reach 0 in 3 steps?

Probability to reach 0 in 3 steps? Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{>0},+,\cdot,0,1)$ and

0

Probability to reach 0 in 3 steps? Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{\geq 0},+,\cdot,0,1)$ and

n+1

$$\begin{array}{ccc}
1 & & \\
0 & & n+1 & \longrightarrow [n, n+2]
\end{array}$$

$$\begin{array}{ccc}
 & & & [x,y] \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

$$\begin{array}{cccc}
1 & & ^{2}/_{3} \cdot x + ^{1}/_{3} \cdot y & \longleftarrow & [x, y] \\
0 & & & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

Probability to reach 0 in 3 steps? Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{>0},+,\cdot,0,1)$ and

$$\begin{array}{cccc}
1 & & ^{2}/_{3} \cdot x + ^{1}/_{3} \cdot y & \longleftarrow & [x,y] \\
0 & & & n+1 & \longrightarrow & [n,n+2]
\end{array}$$

3

$$\begin{array}{cccc}
1 & & ^{2/3} \cdot x + ^{1/3} \cdot y & \longleftarrow & [x, y] \\
0 & & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

$$\begin{array}{cccc}
1 & & ^{2/3} \cdot x + ^{1/3} \cdot y & \longleftarrow & [x, y] \\
0 & & & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

$$\begin{array}{cccc}
1 & & ^{2/3} \cdot x + ^{1/3} \cdot y & \longleftarrow & [x, y] \\
\hline
0 & & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

$$\begin{array}{cccc}
1 & & ^{2/3} \cdot x + ^{1/3} \cdot y & \longleftarrow & [x, y] \\
0 & & & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

Probability to reach 0 in 3 steps? Choose $\mathbb{S}_{\mathbb{R}^{\infty}} = (\mathbb{R}^{\infty}_{>0}, +, \cdot, 0, 1)$ and

$$\begin{array}{cccc}
1 & & ^{2/3} \cdot x + ^{1/3} \cdot y & \longleftarrow & [x, y] \\
0 & & & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

Probability to reach 0 in 3 steps? Choose $\mathbb{S}_{\mathbb{R}^{\infty}} = (\mathbb{R}^{\infty}_{>0}, +, \cdot, 0, 1)$ and

$$\begin{array}{cccc}
1 & & ^{2/3} \cdot x + ^{1/3} \cdot y & \longleftarrow & [x, y] \\
0 & & & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

Probability to reach 0 in 3 steps? Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{\geq 0},+,\cdot,0,1)$ and

Probability to reach 0 in 3 steps? Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{>0},+,\cdot,0,1)$ and

$$\begin{array}{cccc}
1 & & ^{2/3} \cdot x + ^{1/3} \cdot y & \longleftarrow & [x, y] \\
0 & & & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

Probability to reach 0 in 3 steps? Choose $\mathbb{S}_{\mathbb{R}^{\infty}} = (\mathbb{R}^{\infty}_{>0}, +, \cdot, 0, 1)$ and

$$\begin{array}{cccc}
1 & & ^{2/3} \cdot x + ^{1/3} \cdot y & \longleftarrow & [x, y] \\
\hline
0 & & & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

Probability to reach 0 in 3 steps? Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{>0},+,\cdot,0,1)$ and

Probability to reach 0 in 3 steps? Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{>0},+,\cdot,0,1)$ and

Probability to reach 0 in 3 steps? Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{>0},+,\cdot,0,1)$ and

Probability to reach 0 ?

Probability to reach 0 in 3 steps? Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{>0},+,\cdot,0,1)$ and

Probability to reach 0 = $\sup_{n \in \mathbb{N}} \{ \text{ Probability to reach 0 in (at most) } n \text{ steps } \}$ (Forward Unrolling)

What is the expected runtime?

What is the expected runtime? Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{\geq 0},+,\cdot,0,1)$ and

3 1 3 3 5 0 : : : : : :

What is the expected runtime? Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{\geq 0},+,\cdot,0,1)$ and

0

$$\begin{array}{cccc}
0 & & & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [x, y] \\
0 & & & & & & [n, n + 2]
\end{array}$$

$$\begin{array}{cccc}
0 & & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [x, y] \\
\hline
0 & & & n + 1 & \longrightarrow & [n, n + 2]
\end{array}$$

$$\begin{array}{cccc}
0 & & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [x, y] \\
0 & & & n + 1 & \longrightarrow & [n, n + 2]
\end{array}$$

$$\begin{array}{ccc}
0 & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [x, y] \\
0 & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

$$\begin{array}{ccc}
0 & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [x, y] \\
0 & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

$$\begin{array}{ccc}
0 & & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [x, y] \\
0 & & & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

$$\begin{array}{ccc}
0 & & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [x, y] \\
0 & & & n+1 & \longrightarrow & [n, n+2] \\
& & & & & & & \\
\end{array}$$

What is the expected runtime? Choose $\mathbb{S}_{\mathbb{R}^{\infty}}=(\mathbb{R}^{\infty}_{>0},+,\cdot,0,1)$ and

$$\begin{array}{cccc}
0 & & & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [x, y] \\
0 & & & & & & [n, n+2] \\
& & & & & & \ddots
\end{array}$$

Is $[n] \prec \infty$ for all $n \in \mathbb{N}$?

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

z is even and z < -2: $z \rightarrow z + 2$

z is even and $z \ge 2$: $z \to z - 2$

z is odd: $z \rightarrow -z$

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

z is even and $z \le -2$: $z \to z+2$

z is even and $z \ge 2$: $z \to z - 2$

 $z \text{ is odd}: \quad z \to -z$

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

z is even and $z \le -2$: $z \to z+2$

z is even and $z \ge 2$: $z \to z - 2$

 $z \text{ is odd}: z \rightarrow -z$

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

z is even and $z \le -2$: $z \to z+2$

z is even and $z \ge 2$: $z \to z - 2$

 $z \text{ is odd}: z \rightarrow -z$

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

z is even and $z \le -2: z \to z+2$

z is even and $z \ge 2$: $z \to z-2$

 $z ext{ is odd}: z o -z$

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

z is even and $z \le -2$: $z \to z+2$

z is even and $z \ge 2$: $z \to z - 2$

 $z ext{ is odd}: z o -z$

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

z is even and $z \le -2$: $z \to z+2$

z is even and $z \ge 2$: $z \to z - 2$

 $z ext{ is odd}: z o -z$

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

z is even and $z \le -2$: $z \to z+2$

 $z \text{ is even and } z \geq 2: \quad z \to z-2$

 $z ext{ is odd}: z o -z$

Abstract reduction system (\mathbb{Z}, \to) with

z is even and $z \leq -2$: $z \rightarrow z+2$ z is even and $z \geq 2$: $z \rightarrow z-2$

 $z ext{ is odd}: z o -z$

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

z is even and $z \le -2$: $z \to z+2$

 $z \text{ is even and } z \geq 2: \quad z \to z-2$

 $z ext{ is odd}: z o -z$

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

$$\begin{array}{lll} z \text{ is even and } z \leq -2: & z \rightarrow z+2 \\ z \text{ is even and } z \geq 2: & z \rightarrow z-2 \\ & z \text{ is odd}: & z \rightarrow -z \end{array}$$

and normal form $\mathtt{NF}_{
ightarrow} = \{0\}$

Do all reductions terminate?

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

$$\begin{array}{lll} z \text{ is even and } z \leq -2: & z \to z+2 \\ z \text{ is even and } z \geq 2: & z \to z-2 \\ & z \text{ is odd}: & z \to -z \end{array}$$

and normal form $NF_{\rightarrow} = \{0\}$

Do all reductions terminate? Choose $\mathbb{S}_{\mathbb{N}^{\infty}}=(\mathbb{N},+,\cdot,0,1)$ and count steps.

Termination and Runtime Complexity

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

$$\begin{array}{lll} z \text{ is even and } z \leq -2: & z \rightarrow z+2 \\ z \text{ is even and } z \geq 2: & z \rightarrow z-2 \\ & z \text{ is odd}: & z \rightarrow -z \end{array}$$

and normal form $\mathtt{NF}_{
ightarrow} = \{0\}$

Do all reductions terminate? Choose $\mathbb{S}_{\mathbb{N}^{\infty}}=(\mathbb{N},+,\cdot,0,1)$ and count steps. No!

Overview

Overview

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

z is even and $z \le -2$: $z \to z+2$

z is even and $z \ge 2: \quad z \to z-2$

 $z \text{ is odd}: z \rightarrow -z$

and normal form $NF_{\rightarrow} = \{0\}$

Abstract reduction system $(\mathbb{Z}, \rightarrow)$ with

$$z$$
 is even and $z \le -2$: $z \to z+2$

$$z$$
 is even and $z \geq 2$: $z \rightarrow z-2$

$$z \text{ is odd}: \quad z \to -z$$

and normal form $NF_{\rightarrow} = \{0\}$

Hitting an even number is "unsafe". Are all reductions safe?

Hitting an even number is "unsafe". Are all reductions safe?


```
Hitting an even number is "unsafe". Are all reductions safe? Choose \mathbb{S}_{\mathbb{B}}=(\{\text{false},\text{true}\},\vee,\wedge,\text{false},\text{true}) and
```

z is even:

Hitting an even number is "unsafe". Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}} = (\{false, true\}, \vee, \wedge, false, true)$ and

z is even: z is odd:

```
Hitting an even number is "unsafe". Are all reductions safe? Choose \mathbb{S}_{\mathbb{B}} = (\{false, true\}, \vee, \wedge, false, true\} and
```

true

0 z is even:

```
Hitting an even number is "unsafe".
```

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}}=(\{\text{false},\text{true}\},\vee,\wedge,\text{false},\text{true})$ and

true

0

z is even:

z


```
Hitting an even number is "unsafe".
```

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}} = (\{false, true\}, \vee, \wedge, false, true\}$ and

true

0

$$z$$
 is even: $z \longrightarrow z \pm 2$

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}}=(\{\text{false},\text{true}\},\vee,\wedge,\text{false},\text{true})$ and

true z is even: $z \longrightarrow z \pm 2$ z is odd:

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}} = (\{false, true\}, \vee, \wedge, false, true\}$ and

 $\mathsf{true} \vee x \longleftarrow x$ true z is even: $z \longrightarrow z + 2$ 0 z is odd:

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}} = (\{false, true\}, \lor, \land, false, true)$ and

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}}=(\{\text{false},\text{true}\},\vee,\wedge,\text{false},\text{true})$ and

4 | 2

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}}=(\{\text{false},\text{true}\},\vee,\wedge,\text{false},\text{true})$ and

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}}=(\{\text{false},\text{true}\},\vee,\wedge,\text{false},\text{true})$ and

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}}=(\{\text{false},\text{true}\},\vee,\wedge,\text{false},\text{true})$ and

Hitting an even number is "unsafe" .

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}}=(\{\text{false},\text{true}\},\vee,\wedge,\text{false},\text{true})$ and


```
Hitting an even number is "unsafe".
```

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}}=(\{\text{false},\text{true}\},\vee,\wedge,\text{false},\text{true})$ and

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}}=(\{\text{false},\text{true}\},\vee,\wedge,\text{false},\text{true})$ and

true $z \leftarrow z$ true $\forall x \leftarrow z$ $z \rightarrow z \pm 2$ $z \text{ is odd:} z \rightarrow -z$

true 4
true 2
true 0

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}}=(\{\text{false},\text{true}\},\vee,\wedge,\text{false},\text{true})$ and

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}} = (\{false, true\}, \vee, \wedge, false, true)$ and

true $z \leftarrow x \leftarrow x$ false $\forall x \leftarrow x$ false $z \leftarrow x \leftarrow x$ $z \rightarrow -z$

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}} = (\{false, true\}, \vee, \wedge, false, true)$ and

true $z \leftarrow x \leftarrow x$ false $\forall x \leftarrow x$ false $z \leftarrow x \leftarrow x$ $z \rightarrow -z$

true 4
true 2
true 0

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}} = (\{false, true\}, \vee, \wedge, false, true)$ and

true $z \leftarrow x \leftarrow x$ false $\forall x \leftarrow x$ false $z \leftarrow x \leftarrow x$ $z \rightarrow -z$

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}} = (\{false, true\}, \vee, \wedge, false, true)$ and

true $z \leftarrow x \leftarrow x$ false $\forall x \leftarrow x$ false $z \leftarrow x \leftarrow x$ $z \rightarrow -z$

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{R}} = (\{false, true\}, \vee, \wedge, false, true)$ and

true $\vee x \leftarrow x$ false $\vee x$ true z is even:

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{R}} = (\{false, true\}, \vee, \wedge, false, true)$ and

true $\vee x \leftarrow x$ false $\vee x$ true z is even:

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}} = (\{false, true\}, \vee, \wedge, false, true)$ and

true $z \leftarrow x \leftarrow x$ false $\forall x \leftarrow x$ false $z \leftarrow x \leftarrow x$ $z \rightarrow -z$

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}} = (\{false, true\}, \vee, \wedge, false, true)$ and

true $z \leftarrow x \leftarrow x$ false $\forall x \leftarrow x$ false $z \leftarrow x \leftarrow x$ $z \rightarrow -z$

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}} = (\{false, true\}, \vee, \wedge, false, true)$ and

Is $[\![z]\!] < \mathsf{true}$ for all $z \in \mathbb{Z}$?

Hitting an even number is "unsafe".

Are all reductions safe? Choose $\mathbb{S}_{\mathbb{B}} = (\{false, true\}, \vee, \wedge, false, true)$ and

true $z \mapsto z + 2$ true $\forall x \leftarrow x$ false $\forall x \leftarrow x$ $z \mapsto -z$

Is $[\![z]\!]$ < true for all $z\in\mathbb{Z}$? No!

Overview

Overview

Combining Complexity and Safety

Are all runs terminating or safe?

Combining Complexity and Safety

Are all runs terminating or safe? Choose product semiring $\mathbb{S}_{\mathbb{N}^\infty} \times \mathbb{S}_{\mathbb{B}}$ and

z is even:

Are all runs terminating or safe? Choose product semiring $\mathbb{S}_{\mathbb{N}^\infty}\times\mathbb{S}_\mathbb{B}$ and

z is even:

z is odd:

Are all runs terminating or safe? Choose product semiring $\mathbb{S}_{\mathbb{N}^\infty}\times\mathbb{S}_\mathbb{B}$ and

 $(0,\mathsf{true})$

z is even:

z is odd:

Are all runs terminating or safe? Choose product semiring $\mathbb{S}_{\mathbb{N}^{\infty}} \times \mathbb{S}_{\mathbb{R}}$ and

(0, true)z is even: z is odd:

Are all runs terminating or safe? Choose product semiring $\mathbb{S}_{\mathbb{N}^{\infty}} \times \mathbb{S}_{\mathbb{R}}$ and

(0, true)z is even: z is odd:

Are all runs terminating or safe? Choose product semiring $\mathbb{S}_{\mathbb{N}^\infty}\times\mathbb{S}_\mathbb{B}$ and

Are all runs terminating or safe? Choose product semiring $\mathbb{S}_{\mathbb{N}^\infty}\times\mathbb{S}_{\mathbb{B}}$ and

Are all runs terminating or safe? Choose product semiring $\mathbb{S}_{\mathbb{N}^{\infty}} \times \mathbb{S}_{\mathbb{R}}$ and

 $\begin{array}{cccc} (0,\mathsf{true}) & & & (1,\mathsf{true}) \oplus x & \longleftarrow & x \\ 0 & & z \text{ is even:} & & z \longrightarrow z \pm 2 \\ \end{array}$ z is odd:

$$(2, true)$$
 4 $(1, true)$ 2 $(0, true)$ 0

$$(2, true)$$
 4 $(1, true)$ 2 $(0, true)$ 0

$$(2, true)$$
 4 $(1, true)$ 2 $(0, true)$ 0

$$\begin{array}{c|c} (2,\mathsf{true}) & & & 5 \\ (1,\mathsf{true}) & & & \\ (1,\mathsf{true}) & 2 & & \\ (0,\mathsf{true}) & & & \\ \hline & & & \\ \end{array}$$

$$(0,\mathsf{true}) \qquad (1,\mathsf{true}) \oplus x \leftarrow x \qquad (1,\mathsf{false}) \oplus x \leftarrow x \\ 0 \qquad z \text{ is even:} \qquad z \longrightarrow z \pm 2 \qquad z \text{ is odd:} \qquad z \longrightarrow -z$$

$$(2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad (1,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad (1,\mathsf{false$$

Are all runs terminating or safe? Choose product semiring $\mathbb{S}_{\mathbb{N}^\infty}\times\mathbb{S}_\mathbb{B}$ and

$$(0,\mathsf{true}) \qquad (1,\mathsf{true}) \oplus x \leftarrow x \qquad (1,\mathsf{false}) \oplus x \leftarrow x \\ 0 \qquad z \text{ is even:} \qquad z \longrightarrow z \pm 2 \qquad z \text{ is odd:} \qquad z \longrightarrow -z$$

$$(2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (1,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (1,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 2 \qquad \qquad (2,\mathsf{false})$$

Is $[\![z]\!]<(\infty,\mathsf{true})$ for all $z\in\mathbb{Z}$?

Are all runs terminating or safe? Choose product semiring $\mathbb{S}_{\mathbb{N}^\infty}\times\mathbb{S}_\mathbb{B}$ and

$$(0,\mathsf{true}) \qquad (1,\mathsf{true}) \oplus x \leftarrow x \qquad (1,\mathsf{false}) \oplus x \leftarrow x \\ 0 \qquad z \text{ is even:} \qquad z \longrightarrow z \pm 2 \qquad z \text{ is odd:} \qquad z \longrightarrow -z$$

$$(2,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \qquad \\ (1,\mathsf{true}) \qquad (1,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \\ (1,\mathsf{false}) \oplus \llbracket 5 \rrbracket \qquad 5 \qquad \\ (0,\mathsf{true}) \qquad [5] \qquad 5 \qquad \\ [5] \qquad 5 \qquad \\ [5] \qquad 1 \qquad$$

Is $[\![z]\!]<(\infty,\mathsf{true})$ for all $z\in\mathbb{Z}$? Yes!

 $(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$ is bounded : \Leftrightarrow for all $a \in A$: $[\![a]\!] \prec \top$

```
(A,\to,\mathbb{S},\mathsf{f}_{\mathsf{NF}},\mathsf{Aggr}) \text{ is bounded } :\Leftrightarrow \mathsf{for all} \ a\in A \colon [\![a]\!] \prec \top
```

Interpretation method via embedding $\mathfrak{e}:A\to\mathbb{S}\setminus\{\top\}$ (sound, for ω -continuous semirings complete)

 $(A,\to,\mathbb{S},\mathsf{f}_{\mathsf{NF}},\mathsf{Aggr}) \text{ is bounded } :\Leftrightarrow \mathsf{for all} \ a\in A \colon [\![a]\!] \prec \top$

Interpretation method via embedding $\mathfrak{e}:A\to\mathbb{S}\setminus\{\top\}$ (sound, for ω -continuous semirings complete)

Choose e

such that

$$(A,\to,\mathbb{S},\mathsf{f}_{\mathsf{NF}},\mathsf{Aggr}) \text{ is bounded } :\Leftrightarrow \mathsf{for all} \ a\in A \colon [\![a]\!] \prec \top$$

Interpretation method via embedding $\mathfrak{e}:A\to\mathbb{S}\setminus\{\top\}$ (sound, for ω -continuous semirings complete)

Choose ¢ such that

ightharpoonup $\mathfrak{e}(a)\succeq \llbracket a \rrbracket = \mathsf{f}_{\mathrm{NF}}(a)$ for all normal forms $a\in A.$

$$(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$$
 is bounded : \Leftrightarrow for all $a \in A$: $[a] \prec \top$

▶ Interpretation method via embedding $e: A \to \mathbb{S} \setminus \{\top\}$ (sound, for ω -continuous semirings complete)

such that Choose e

- $ho \quad \mathfrak{e}(a) \succeq \llbracket a \rrbracket = \mathsf{f}_{NF}(a)$ for all normal forms $a \in A$.
- $ightharpoonup \mathfrak{e}(a) \succeq \mathsf{Aggr}_{a \to [b_1, \dots, b_n]}(\mathfrak{e}(b_1), \dots, \mathfrak{e}(b_n)) \text{ for all } a \to [b_1, \dots, b_n].$

$$(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$$
 is bounded : \Leftrightarrow for all $a \in A$: $\llbracket a \rrbracket \prec \top$

Interpretation method via embedding $\mathfrak{e}:A\to\mathbb{S}\setminus\{\top\}$ (sound, for ω -continuous semirings complete)

Random Walk: Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{\geq 0},+,\cdot,0,1)$ and

$$\begin{array}{cccc}
0 & & & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [x, y] \\
0 & & & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

Choose e such that

- $ightharpoonup \mathfrak{e}(a) \succeq \llbracket a \rrbracket = \mathsf{f}_{\mathsf{NF}}(a) \text{ for all normal forms } a \in A.$
- $ightharpoonup (a) \succeq \operatorname{Aggr}_{a \to [b_1, \dots, b_n]}(\mathfrak{e}(b_1), \dots, \mathfrak{e}(b_n)) \text{ for all } a \to [b_1, \dots, b_n].$

$$(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$$
 is bounded : \Leftrightarrow for all $a \in A$: $\llbracket a \rrbracket \prec \top$

Interpretation method via embedding $\mathfrak{e}:A\to\mathbb{S}\setminus\{\top\}$ (sound, for ω -continuous semirings complete)

Random Walk: Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{\geq 0},+,\cdot,0,1)$ and

$$\begin{array}{cccc}
0 & & & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [x, y] \\
0 & & & n + 1 & \longrightarrow & [n, n + 2]
\end{array}$$

- $ightharpoonup \mathfrak{e}(a) \succeq \llbracket a \rrbracket = \mathsf{f}_{\mathsf{NF}}(a) \text{ for all normal forms } a \in A.$
- $ightharpoonup (a) \succeq \operatorname{Aggr}_{a \to [b_1, \dots, b_n]}(\mathfrak{e}(b_1), \dots, \mathfrak{e}(b_n)) \text{ for all } a \to [b_1, \dots, b_n].$

$$(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$$
 is bounded : \Leftrightarrow for all $a \in A$: $\llbracket a \rrbracket \prec \top$

Interpretation method via embedding $\mathfrak{e}:A\to\mathbb{S}\setminus\{\top\}$ (sound, for ω -continuous semirings complete)

Random Walk: Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{\geq 0},+,\cdot,0,1)$ and

$$\begin{array}{cccc}
0 & & & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [x, y] \\
0 & & & n + 1 & \longrightarrow & [n, n + 2]
\end{array}$$

- $\mathfrak{e}(a) \succeq \llbracket a \rrbracket = \mathsf{f}_{NF}(a)$ for all normal forms $a \in A$.
- $ightharpoonup (a) \succeq \operatorname{Aggr}_{a \to [b_1, \dots, b_n]}(\mathfrak{e}(b_1), \dots, \mathfrak{e}(b_n)) \text{ for all } a \to [b_1, \dots, b_n].$

$$(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$$
 is bounded : \Leftrightarrow for all $a \in A$: $\llbracket a \rrbracket \prec \top$

Interpretation method via embedding $\mathfrak{e}:A\to\mathbb{S}\setminus\{\top\}$ (sound, for ω -continuous semirings complete)

Random Walk: Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{\geq 0},+,\cdot,0,1)$ and

$$\begin{array}{cccc}
0 & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [\mathfrak{e}(n), \mathfrak{e}(n+2)] \\
0 & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

- $\mathfrak{e}(a) \succeq \llbracket a \rrbracket = \mathsf{f}_{NF}(a)$ for all normal forms $a \in A$.
- $ightharpoonup (a) \succeq \operatorname{Aggr}_{a \to [b_1, \dots, b_n]}(\mathfrak{e}(b_1), \dots, \mathfrak{e}(b_n)) \text{ for all } a \to [b_1, \dots, b_n].$

$$(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$$
 is bounded $:\Leftrightarrow$ for all $a \in A$: $[\![a]\!] \prec \top$

Interpretation method via embedding $\mathfrak{e}:A\to\mathbb{S}\setminus\{\top\}$ (sound, for ω -continuous semirings complete)

Random Walk: Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{\geq 0},+,\cdot,0,1)$ and

$$\begin{array}{ccc}
0 & 1 + \frac{2}{3} \cdot x + \frac{1}{3} \cdot y & \longleftarrow & [3n, 3n + 6] \\
0 & n + 1 & \longrightarrow & [n, n + 2]
\end{array}$$

- $ightharpoonup \mathfrak{e}(a) \succeq \llbracket a \rrbracket = \mathsf{f}_{\mathrm{NF}}(a) \text{ for all normal forms } a \in A.$
- $ightharpoonup (a) \succeq \operatorname{Aggr}_{a \to [b_1, \dots, b_n]}(\mathfrak{e}(b_1), \dots, \mathfrak{e}(b_n)) \text{ for all } a \to [b_1, \dots, b_n].$

$$(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$$
 is bounded : \Leftrightarrow for all $a \in A$: $[\![a]\!] \prec \top$

Interpretation method via embedding $\mathfrak{e}:A\to\mathbb{S}\setminus\{\top\}$ (sound, for ω -continuous semirings complete)

Random Walk: Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{\geq 0},+,\cdot,0,1)$ and

$$\begin{array}{cccc}
0 & 1 + \frac{2}{3} \cdot 3n + \frac{1}{3} \cdot (3n+6) & \leftarrow & [3n, 3n+6] \\
0 & n+1 & \longrightarrow & [n, n+2]
\end{array}$$

- $ightharpoonup \mathfrak{e}(a) \succeq \llbracket a \rrbracket = \mathsf{f}_{\mathsf{NF}}(a) \text{ for all normal forms } a \in A.$
- $ightharpoonup (a) \succeq \operatorname{Aggr}_{a \to [b_1, \dots, b_n]}(\mathfrak{e}(b_1), \dots, \mathfrak{e}(b_n)) \text{ for all } a \to [b_1, \dots, b_n].$

$$(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$$
 is bounded : \Leftrightarrow for all $a \in A$: $[\![a]\!] \prec \top$

▶ Interpretation method via embedding $e: A \to \mathbb{S} \setminus \{\top\}$ (sound, for ω -continuous semirings complete)

Random Walk: Choose $\mathbb{S}_{\mathbb{R}^{\infty}} = (\mathbb{R}^{\infty}_{>0}, +, \cdot, 0, 1)$ and

$$\begin{array}{ccc}
0 & 1+2n+n+2 & \longleftarrow & [3n,3n+6] \\
0 & n+1 & \longrightarrow & [n,n+2]
\end{array}$$

Choose $\mathfrak{e}: n \mapsto 3 \cdot n$ such that

- $ightharpoonup \mathfrak{e}(a) \succeq \llbracket a \rrbracket = \mathsf{f}_{\mathsf{NF}}(a)$ for all normal forms $a \in A$.
- $ightharpoonup
 varepsilon(a) \succeq \operatorname{Aggr}_{a \to [b_1, \dots, b_n]}(\mathfrak{e}(b_1), \dots, \mathfrak{e}(b_n)) \text{ for all } a \to [b_1, \dots, b_n].$

$$(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$$
 is bounded : \Leftrightarrow for all $a \in A$: $\llbracket a \rrbracket \prec \top$

▶ Interpretation method via embedding $e: A \to \mathbb{S} \setminus \{\top\}$ (sound, for ω -continuous semirings complete)

Random Walk: Choose $\mathbb{S}_{\mathbb{R}^{\infty}} = (\mathbb{R}^{\infty}_{>0}, +, \cdot, 0, 1)$ and

Choose $\mathfrak{e}: n \mapsto 3 \cdot n$ such that

- $ightharpoonup \mathfrak{e}(a) \succeq \llbracket a \rrbracket = \mathsf{f}_{\mathsf{NF}}(a)$ for all normal forms $a \in A$.
- $ightharpoonup
 varepsilon(a) \succeq \operatorname{Aggr}_{a \to [b_1, \dots, b_n]}(\mathfrak{e}(b_1), \dots, \mathfrak{e}(b_n)) \text{ for all } a \to [b_1, \dots, b_n].$

10

$$(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$$
 is bounded : \Leftrightarrow for all $a \in A$: $\llbracket a \rrbracket \prec \top$

▶ Interpretation method via embedding $e: A \to \mathbb{S} \setminus \{\top\}$ (sound, for ω -continuous semirings complete)

Random Walk: Choose $\mathbb{S}_{\mathbb{R}^{\infty}} = (\mathbb{R}^{\infty}_{>0}, +, \cdot, 0, 1)$ and

$$\begin{array}{ccc}
0 & 3n+3 & & & [3n,3n+6] \\
0 & & \mathfrak{e}(n+1) & & [n,n+2]
\end{array}$$

Choose $\mathfrak{e}: n \mapsto 3 \cdot n$ such that

- $ightharpoonup \mathfrak{e}(a) \succeq \llbracket a \rrbracket = \mathsf{f}_{\mathsf{NF}}(a)$ for all normal forms $a \in A$.
- $ightharpoonup
 varepsilon(a) \succeq \operatorname{Aggr}_{a \to [b_1, \dots, b_n]}(\mathfrak{e}(b_1), \dots, \mathfrak{e}(b_n)) \text{ for all } a \to [b_1, \dots, b_n].$

Proving via Interpretations

$$(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$$
 is bounded : \Leftrightarrow for all $a \in A$: $\llbracket a \rrbracket \prec \top$

▶ Interpretation method via embedding $e: A \to \mathbb{S} \setminus \{\top\}$ (sound, for ω -continuous semirings complete)

Random Walk: Choose $\mathbb{S}_{\mathbb{R}^{\infty}} = (\mathbb{R}^{\infty}_{>0}, +, \cdot, 0, 1)$ and

$$\begin{array}{ccc}
0 & 3n+3 & \longleftarrow & [3n,3n+6] \\
\hline
0 & 3n+3 & \longrightarrow & [n,n+2]
\end{array}$$

Choose $\mathfrak{e}: n \mapsto 3 \cdot n$ such that

- $ightharpoonup \mathfrak{e}(a) \succeq \llbracket a \rrbracket = \mathsf{f}_{\mathsf{NF}}(a)$ for all normal forms $a \in A$.
- $ightharpoonup
 varepsilon(a) \succeq \operatorname{Aggr}_{a \to [b_1, \dots, b_n]}(\mathfrak{e}(b_1), \dots, \mathfrak{e}(b_n)) \text{ for all } a \to [b_1, \dots, b_n].$

Proving via Interpretations

$$(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$$
 is bounded : \Leftrightarrow for all $a \in A$: $\llbracket a \rrbracket \prec \top$

Interpretation method via embedding $\mathfrak{e}:A\to\mathbb{S}\setminus\{\top\}$ (sound, for ω -continuous semirings complete)

Random Walk: Choose $\mathbb{S}_{\mathbb{R}^\infty}=(\mathbb{R}^\infty_{\geq 0},+,\cdot,0,1)$ and

$$\begin{array}{ccc}
0 & 3n+3 & \longleftarrow & [3n,3n+6] \\
\hline
0 & 3n+3 & \longrightarrow & [n,n+2]
\end{array}$$

Choose $\mathfrak{e}: n \mapsto 3 \cdot n$ such that

- $ightharpoonup \mathfrak{e}(a) \succeq \llbracket a \rrbracket = \mathsf{f}_{NF}(a)$ for all normal forms $a \in A$.
- $ightharpoonup \mathfrak{e}(a) \succeq \mathsf{Aggr}_{a \to [b_1, \dots, b_n]}(\mathfrak{e}(b_1), \dots, \mathfrak{e}(b_n)) \text{ for all } a \to [b_1, \dots, b_n].$

Is the expected runtime finite? Yes, $[n] \le 3 \cdot n < \infty$!

Overview

Overview

 $(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$ is unbounded : \Leftrightarrow there exists an $a \in A$: $[a] = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

 $(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$ is unbounded : \Leftrightarrow there exists an $a \in A$: $[a] = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

 $(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$ is unbounded : \Leftrightarrow there exists an $a \in A$: $[a] = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

Termination: Choose $\mathbb{S}_{\mathbb{N}^{\infty}} = (\mathbb{N}^{\infty}, +, \cdot, 0, 1)$ and

5

 $(A, \to, \mathbb{S}, \mathsf{f}_{\mathtt{NF}}, \mathsf{Aggr})$ is unbounded : \Leftrightarrow there exists an $a \in A$: $[\![a]\!] = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

$$5 \longrightarrow -5$$

 $(A,\to,\mathbb{S},\mathsf{f}_{\mathsf{NF}},\mathsf{Aggr}) \text{ is unbounded } :\Leftrightarrow \mathsf{there} \text{ exists an } a\in A \text{: } [\![a]\!] = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

$$5 \longrightarrow -5 \longrightarrow 5$$

 $(A, \to, \mathbb{S}, \mathsf{f}_{\mathtt{NF}}, \mathsf{Aggr})$ is unbounded : \Leftrightarrow there exists an $a \in A$: $[\![a]\!] = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

$$5 \longrightarrow -5 \longrightarrow 5$$

 $(A,\to,\mathbb{S},\mathsf{f}_{\mathsf{NF}},\mathsf{Aggr}) \text{ is unbounded } :\Leftrightarrow \mathsf{there} \text{ exists an } a\in A \text{: } [\![a]\!] = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

 $(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathtt{NF}}, \mathsf{Aggr})$ is unbounded $:\Leftrightarrow$ there exists an $a \in A$: $[\![a]\!] = \top$

▶ Show unboundedness via induced weight polynomial $P_a(X)$ of loops $a \rightarrow^+ a$

 $(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$ is unbounded : \Leftrightarrow there exists an $a \in A$: $\llbracket a \rrbracket = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

 $(A,\to,\mathbb{S},\mathsf{f}_{\mathsf{NF}},\mathsf{Aggr}) \text{ is unbounded } :\Leftrightarrow \mathsf{there} \text{ exists an } a\in A \text{: } [\![a]\!] = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

 $(A, \to, \mathbb{S}, \mathsf{f}_{\mathtt{NF}}, \mathsf{Aggr})$ is unbounded : \Leftrightarrow there exists an $a \in A$: $[\![a]\!] = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

Termination: Choose $\mathbb{S}_{\mathbb{N}^{\infty}}=(\mathbb{N}^{\infty},+,\cdot,0,1)$ and

 $(A, \to, \mathbb{S}, \mathsf{f}_{\mathtt{NF}}, \mathsf{Aggr})$ is unbounded : \Leftrightarrow there exists an $a \in A$: $[\![a]\!] = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

Termination: Choose $\mathbb{S}_{\mathbb{N}^{\infty}}=(\mathbb{N}^{\infty},+,\cdot,0,1)$ and

$$0 \qquad 1+x \longleftarrow x \qquad 1+x \longleftarrow x$$

$$0 \qquad z \longrightarrow -z \qquad z \longrightarrow z \pm 2$$

$$2+X \longleftarrow 1+X \longleftarrow X$$

$$5 \longrightarrow -5 \longrightarrow 5 \qquad \mathcal{P}_{5}(X) = 2+X, \qquad \bigoplus_{i \in \mathbb{N}} 2 = \infty \checkmark$$

$$\max\{1,X\} \leftarrow \max\{1,X\} \longleftarrow X$$

 $(A, \rightarrow, \mathbb{S}, \mathsf{f}_{\mathsf{NF}}, \mathsf{Aggr})$ is unbounded : \Leftrightarrow there exists an $a \in A$: $\llbracket a \rrbracket = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

Termination: Choose $\mathbb{S}_{\mathbb{N}^{\infty}} = (\mathbb{N}^{\infty}, +, \cdot, 0, 1)$ and

$$0 \qquad 1+x \longleftarrow x \qquad 1+x \longleftarrow x$$

$$0 \qquad z \longrightarrow -z \qquad z \longrightarrow z \pm 2$$

$$2+X \longleftarrow 1+X \longleftarrow X$$

$$5 \longrightarrow -5 \longrightarrow 5 \qquad \mathcal{P}_5(X) = 2+X, \qquad \bigoplus_{i \in \mathbb{N}} 2 = \infty \checkmark$$

$$\max\{1,X\} \leftarrow \max\{1,X\} \longleftarrow X \qquad \mathcal{P}_5(X) = \max\{1,X\},$$

 $(A,\to,\mathbb{S},\mathsf{f}_{\mathsf{NF}},\mathsf{Aggr}) \text{ is unbounded } :\Leftrightarrow \mathsf{there} \text{ exists an } a\in A \text{: } [\![a]\!] = \top$

▶ Show unboundedness via induced weight polynomial $\mathcal{P}_a(X)$ of loops $a \to^+ a$

Termination: Choose $\mathbb{S}_{\mathbb{N}^\infty}=(\mathbb{N}^\infty,+,\cdot,0,1)$ and

$$0 \qquad 1+x \longleftarrow x \qquad 1+x \longleftarrow x$$

$$0 \qquad z \longrightarrow -z \qquad z \longrightarrow z \pm 2$$

$$2+X \longleftarrow 1+X \longleftarrow X$$

$$5 \longrightarrow -5 \longrightarrow 5 \qquad \mathcal{P}_5(X) = 2+X, \qquad \bigoplus_{i \in \mathbb{N}} 2 = \infty \checkmark$$

$$\max\{1,X\} \leftarrow \max\{1,X\} \longleftarrow X \qquad \mathcal{P}_5(X) = \max\{1,X\}, \qquad \bigoplus_{i \in \mathbb{N}} 1 = 1 \ \text{$\not K$}$$

Overview

One Framework Fits All

- Framework to unify research questions
- Lifts techniques from one area to another
- ► Future Work:
 - ► Lift more techniques to weighted rewriting
 - Confluence w.r.t. weightings
 - Automate the techniques

Emma Ahrens, Jan-Christoph Kassing, Jürgen Giesl, Joost-Pieter Katoen: Weighted Rewriting: Semiring Semantics for Abstract Reduction Systems.

