Math Notation

see conventional math notation

this note describes my own <u>math notation</u>, meant to solve inconsistencies in <u>conventional math notation</u>. it is not meant to be a fully formal system of <u>mathematics</u>; rather, it is built to be easy to understand and intuitive to use by mere humans.

this <u>math notation</u> obviously cannot be used to communicate ideas to people who do not know it, but it has made my own experience of using <u>mathematics</u> much more enjoyable. being able to use a single relatively well defined notation in various <u>mathematics fields</u> that conventially use their own made up notation has been invaluable

principles

- all equality <u>operators</u> check for equality and return a <u>boolean</u>, and it is implied that an <u>expression</u> on its own must evaluate to ⊤. this allows for <u>boolean logic ></u> <u>operators</u> to be applied on equalities explicitly as opposed informally
- sets are <u>functions</u> that return a <u>boolean</u> (<u>set</u>s are <u>predicates</u>). this way, <u>boolean</u> <u>logic > operators</u> and <u>set operators</u> are one and the same. other <u>data structures</u> that work similarly include <u>vectors</u>, <u>matrixes</u>, <u>sequences</u>, <u>multisets</u>, <u>ordered pairs</u>...
- some <u>operator</u>s are identical but have different precedence as "more brackets means more explicit, but less brackets means less complex and less confusing"
- $\lfloor a \rfloor$ returns both positive and negative square roots ($\lfloor q2 \rfloor \equiv \because q$). the same is true for other reciprocals
- superscripts are modifiers (subscripts with special meanings). this distinction is extremely useful when working with <u>forward propagation</u> and <u>backpropagation</u> in <u>neural networks</u>, for example
- <u>derivative</u>s are not to be written as y', but rather as their complete form $\delta y \delta x$. this makes <u>calculus notation</u> way more intuitive
- all indices start at 0, as they always should have
- rank polymorphism is supported over all operators

notation

also see trigonometric functions, hyperbolic functions and calculus notation

let:

• M be a matrix

- V be a vector
- P be an ordered pair
- M' be a multiset
- G be a graph
- E be an expression
- x be a variable
- f be a function
- A be a <u>sequence</u>
- B be a series
- a, b be any mathematical objects
- $\bullet \ A, B$ be any mathematical objects with rank greater than 1
- n, i be <u>natural</u> numbers
- b be a boolean
- ω be any <u>number</u>
- o be any operator

operator descriptions

notation	description	notes
a:b	addition or disjoint union	
$a \cdot b$	subtraction	
∵ and ∴	\pm and \mp	
a ı b and $a\mid b$	multiplication	
a- b and a $ b$	division	
ab	exponentiation	represents a power by convention
a[b]	exponentiation	represents an exponential by convention
$\lfloor a \rfloor b$	b th root of a	b=2 if b is omitted
$\lceil a \rceil b$	base- b <u>logarithm</u> of a	b=e if b is omitted
x o E	<u>function</u> literal	$f=x ightarrow E\equiv f\leftarrow x=E$
$f \leftarrow E$	function application	uncommon, shorthand preferred
a = b	equality	numerical equality by convention
a < b and $a > b$	strict inequality	
$a \leq b$ and $a \geq b$	non-strict inequality	

notation	description	notes
$a \wedge b$	logical AND or min function	
$a \lor b$	logical OR or max function	
a / b	logical difference	$a \wedge b = ot$
$a\equiv b$	equality	logical equality by convention
a imes b	nonequality	also serves as logical XOR
$a \vdash b$	implication, <u>set > subset</u>	a implies b , b for all a
$\boxed{a\dashv b}$	reverse implication, set > superset	a for all b , b implies a
$a_0 \circ a_1 \circ \cdots a_n$	with $n=3$, $a_0\circ a_1\circ a_2\circ a_3$	step size is \because 1 if $a_1\circ$ is omitted
$a_0\cdots a_n$	with $n=3$, a_0,a_1,a_2,a_3	step size is \because 1 if a_1 is omitted
$oxed{f \; dots \; a \circ b}$	$oxed{ f \ a \circ f \ b}$	
$oxed{f \; dots \; x o a}$	the \underline{limit} of f as x approaches a	
$oxed{x_{sub}}$	the $\underline{\text{variable}}\ x$ with a subscript	
w sub	sub	
V^n	the n th component of V	
A^i	the i th element of A	
$oxed{B^i}$	the i th element of B	
$M^{\langle i,j angle}$	the i,j th element of M	uncommon, shorthand preferred
P^b	the $\it b$ th element of $\it P$	
S a	whether a is element of S	
M' a	the number of elements a in M^\prime	
G a	whether vertex a is in G	
$G^{\langle a,b angle}$	the number of edges from a to b in G	uncommon, shorthand preferred

shorthands

shorthand	definition	notes
a ot b, $a eq b$, $a eq b$, $a eq b$	$oxed{/(a dash b)$, $/a = b$, $/a \le b$, $/a < b$	
$x\omega$	$[x]\omega$	
ax	$a \mid x$	

shorthand	definition	notes
$\int f E$	$f \leftarrow E$	common, longhand discouraged
$oxed{x\ y o E}$	$oxed{x ightarrow y ightarrow E}$	
⟨⟩	$\langle\langle \rangle \rangle$	see <u>empty</u> <u>set</u>
()	(())	see <u>multiset</u>
V^x,V^y,V^z	V^0,V^1,V^2	
$M^{i,j}$	$M^{\langle i,j angle}$	common, longhand discouraged
$M^{i,}$	the i th row of M	
$M^{,j}$	the j th column of M	
$oxedsymbol{P}=\langle f,t angle$	$P^\perp = f \wedge P^ op = t$	see <u>ordered pair</u>
$S = \langle\langle a\cdots b angle angle$	$Sx\equiv x=aee\cdots x=b$	see <u>set</u>
$V=(a\cdots b)$	$V^0=a\wedge\cdots V^n=b$	see <u>vector in rn</u>
M'=((1,2,2,2,3,3))	multiset literal	see <u>multiset</u>
$egin{bmatrix} M = egin{bmatrix} a & b \ c & d \end{bmatrix}$	matrix literal	see <u>matrix</u>
x o (a < x < b)	the interval from a to b	
$A \circ B$	$oxed{x ightarrow A \ x \circ B \ x}$	see rank polymorphism
$A\circ B$	$A x \circ B x$ for all x	why not $\wedge A \circ B$ #think
$\circ A$	the <u>reduce function</u> of A with \circ	
$A \circ B$	the $\underline{\text{outer product}}$ of A and B with \circ	
$\delta y - \delta x$	the <u>derivative</u> of y with respect to x	δ should be used instead of d
$\int y \mid \delta x$	the $\underline{\text{antiderivative}}$ of y with respect to x	δ should be used instead of d

constants

constant	definition	notes
Ø	undefined	see <u>improved expression</u> <u>evaluation</u>
Т	logical true	
	logical false	

constant	definition	notes
au	the ratio of the circumference of a <u>circle</u> to its radius	using π is discouraged
e	Euler's constant	see <u>eulers constant</u>
ι	[.1]	see $\underline{imaginary}$, using i is discouraged
П	the pi function	using fact is discouraged
#	the size of the range of a <u>function</u>	
ψ	the multiset of prime factors of a natural	see psi function in mat2348

operator properties

in order of high to low precedence

#todo fix asymmetry between $=\neq>\geq<\leq$ and $\land\lor\dashv\vdash\equiv\times$

operator	associativity	unary identity	unary description
$igg()\ igl()\ igl(\ x\ x_a^i$			
1 -	left	1	inverse
$\delta \sin \# \leftarrow$	right-ish		
: • • • •	left	0	negation
-	left	1	inverse
\int : $\cdots \rightarrow \mod$	right-ish		
=#>><<	AND	0	is (not) 0
/	left	Т	boolean logic NOT
∧ ∨	left		
	left		
\equiv ×	AND	Т	boolean logic NOT
,			

note: above,

- ullet x represents $\underline{\text{variable}}$ s
- $ullet \ x_a^i$ represents subscripts and superscripts
- $\bullet \hspace{0.1in} \leftarrow \text{represents} \hspace{0.1in} \underline{\text{function}} \hspace{0.1in} \text{application}$

- ullet ightarrow represents $\underline{\text{function}}$ literals
- represents <u>matrix</u> literals

note: unary <u>operator</u>s have identical precedence to their binary counterparts, but are right associative

definition let \circ be an <u>operator</u> with *AND associativity*. then, $a \circ b \circ c \circ \cdots \equiv a \circ b \wedge b \circ c \wedge c \circ \cdots$

variable scope

<u>variable scope</u> is currently entirely context dependent. this is know to cause occasional issues, such as with <u>derivatives</u>: $\delta f x - \delta x$ could represent both the <u>derivative</u> of f with respect to x in the general sense, or the <u>derivative</u> of f with respect to f at the point f

examples

description	in this <u>math notation</u>	in conventional math notation
the <u>quadratic</u> formula	$x = \cdot b : \lfloor b2 \cdot 4ac floor - 2a$	$x_{1,2}=rac{-b\pm\sqrt{b^2-4ac}}{2a}$
definition of complex numbers	$\mathbb{C}x\equiv x=a:b\iota\wedge\mathbb{R}a\wedge\mathbb{R}b$	$\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}$
the gaussian function	$oxed{G^{\sigma} \ p = - \lfloor au \sigma 2 floor - e[:p2-2\sigma 2]}$	$G(x,y,\ldots) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{x^2+y^2+\ldots}{2\sigma^2}}$
<u>limit</u> form of a <u>derivative</u>	$\int f x \cdot f a - x \cdot a \stackrel{.}{:} x o a$	$\lim_{h o 0}rac{f(x+h)-f(x)}{h}$
definition of factorials	$\mathrm{fact} n=1\mid \cdots n$	$n! = \prod_{i=1}^n i$
the resonant frequency of an LC circuit	$f = - au \lfloor LC floor$	$f=rac{1}{2\pi\sqrt{LC}}$
definition of the dot product	$:\! xy$	$x\cdot y=\sum_{i=1}^n x_iy_i$
definition of the outer product	$egin{array}{c} x\ \dot{\ } y \end{array}$	$(x\otimes y)_{i,j}=x_i imes y_j$
definition of the cartesian product	x,y	$oxed{x imes y = \{(x,y) \mid x \in X ext{ and } y \in Y\}}$
definition of <u>vector</u> <u>in rn > magnitude</u>	$\lfloor : v2 floor$	$ v = \sqrt{x^2 + y^2 + \dots}$ with $v = (x, y, \dots)$

description	in this <u>math notation</u>	in conventional math notation
definition of <u>set</u> difference	$A/B \equiv A \wedge imes B$	$A\setminus B=\{x\in A:x otin B\}$
the p-adic > absolute value	$oxed{ n ^p = -p[\psi \ n \ p]}$	not really doable in a concise way without using plain English

definition of the <u>boolean logic > implication</u> / <u>set > subset</u> / <u>set > superset</u> / <u>quantifier</u> > <u>universal quantifier</u> in this <u>math notation</u>: $a \vdash b \equiv /a \lor b$ and $a \dashv b \equiv a \lor /b$

in <u>set theory</u>, if U is a <u>set > subset</u> of V and V is a <u>set > subset</u> of U, then V is U. in this <u>math notation</u>: $(U x \vdash V x) \land (U x \dashv V x) \equiv U = V$

the negation of a boolean logic > implication in this math notation: $B \vdash C \times B / C$

 $\text{in } \underline{\text{conventional math notation}} \colon \neg (B \to C) = B \land \neg C \text{ or } (a \in B \to a \in C) \iff a \not\in B \backslash C \text{ or } B \subset C \iff \forall a \in C, a \not\in B$