

Perspectives in Materials Science

Materials Science quo vadis

Adva Big-Data Driven Materials Science (The 4th Paradigm of Materials Research) Improving the quality of life.

High-Throughput Screening in Computational (and Experimental) Materials Science

NOVEL MATERIALS DISCOVERY

Consider as many compounds a possible, typically $O(10^3) - O(10^5)$

Sharing Advances Science

Needs for a FAIR, Efficient Research-Data Infrastructure

O(101) compounds selected Rignanese

The NOMAD Repository >100 Mio. DFT Calculations

"Maps of Materials Properties"

NOVEL MATERIALS DISCOVERY

Adaptivity in science and data analysis

question

hypothesis > scientific model

data

scientists

results

Feedback loop defeats all available statistics

Building a "map of materials properties" from data, without a scientific model

Normal insulators

Materials for photovoltaics

Transparent metals

Descriptor d₁········

Building "Maps of Materials Properties" (Role Models: Periodic Table, Ashby Plots)

The science is in the determination (and understanding) of the descriptors. How to find them by statistical learning?

"Invert" the big-data problem:

Construct billions of *possible* descriptors and evaluate their values for *N* materials.

Find the strongest correlations of these *N* billion data points with computed (or experimental) results (properties) of the *N* studied materials. – *Sure Independent Screening and Sparsifying Operator (SISSO) by Ouyang, Ghiringhelli et al. (2018).*

Building Maps of Materials (Role Models: Periodic Table, Ashby Plots)

NOVEL MATERIALS DISCOVERY

Crystal-structure prediction

- Octet binaries (ZB vs. RS)
- $Al_xGa_yIn_zO_3$ (x+y+z=2)
- Perovskites (Goldschmidt tolerance factor)

Activation of CO₂ at metal oxides and carbides

Property classification:

 Topological insulators

Property classification:

 Metal vs. insulator

The Materials-Science Challenge Is Different to That of Standard Machine Learning

NOVEL MATERIALS DISCOVERY

Max Planck Society

The **infrastructure** needed to carry out the work efficiently and reliably

Smart knowledge extraction from large and complex data sets

Smart methods of knowledge representation and combination

Next Steps

NOVEL MATERIALS DISCOVERY

FAIR Data Infrastructure for Physics, Chemistry, Materials Science, and Astronomy e.V.

https://www.fair-di.eu

For a Federated, Al-Ready DI

Video Conference on a

FAIR Data Infrastructure for

Materials Genomics

(3-5 June, 2020)

A fantastic line-up of speakers

We need

- a federated system for data, as data are getting too large for been transported
- new (different) AI tools: domain specific AI; outlier detection, local vs. global models; bring codes to (federated/ distributed) data
- "complete" characterization of the measurement conditions by metadata (basis for reproducibility)
- to avoid (much) more load on the researcher (make metadata assignment and data standards automatic)
- IT and practical AI specialists