Datasheet

Standard Sequences

$$\delta[n] = 1$$
 for $n = 0$ and 0 otherwise.

$$\mu[n] = 1$$
 for $n \ge 0$ and 0 otherwise.

Geometric Progression

$$\sum_{n=0}^{r} a^n z^{-n} = \frac{1 - a^{r+1} z^{-r-1}}{1 - a z^{-1}}$$
 provided that $az^{-1} \neq 1$

$$\sum_{n=0}^{\infty} a^n z^{-n} = \frac{1}{1-az^{-1}}$$
 provided that $|az^{-1}| < 1$

Forward and Inverse Transforms

DTFT:
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

DFT:
$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{kn}{N}}$$
 $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{kn}{N}}$
 z : $X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$ $x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{kn}{N}}$$

z:
$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$x[n] = \frac{1}{2\pi i} \oint_C X(z) z^{n-1} dz$$

Convolution

DTFT:
$$v[n] = x[n] \circledast y[n] \triangleq \sum_{r=-\infty}^{\infty} x[r]y[n-r] \iff V(e^{j\omega}) = X(e^{j\omega})Y(e^{j\omega})$$

$$\iff V(e^{j\omega}) = X(e^{j\omega})Y(e^{j\omega})$$

$$v[n] = x[n]y[n]$$

$$\Leftrightarrow$$

$$v[n] = x[n]y[n] \qquad \Longleftrightarrow \qquad V\left(e^{j\omega}\right) = X\left(e^{j\omega}\right) \circledast Y\left(e^{j\omega}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X\left(e^{j\theta}\right) Y\left(e^{j(\omega-\theta)}\right) d\theta$$

DFT:
$$v[n] = x[n] \bigotimes y[n] \triangleq \sum_{r=0}^{N-1} x[r] h[\langle n-r \rangle_N]$$
 \iff $V[k] = X[k] Y[k]$

$$\Leftrightarrow$$

$$V[k] = X[k]Y[k]$$

$$v[n] = x[n]y[n]$$

$$\Leftrightarrow$$

$$v[n] = x[n]y[n] \qquad \iff \qquad V[k] = \frac{1}{N}X[k] \bigotimes Y[k] = \frac{1}{N}\sum_{r=0}^{N-1}X[r]Y[\langle k-r\rangle_N]$$

Order Estimation for FIR Filters: $N \cong \frac{-20 \log_{10}(\sqrt{\delta_p \delta_s}) - 13}{14.6(\omega_s - \omega_p)/2\pi}$

Transformations

	Substitution	Parameters
Bilinear Transformation:	$s = k \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right), \ k > 0, \text{ or}$	$\Omega = k \tan\left(\frac{\omega}{2}\right) \text{ or } \omega = 2 \tan^{-1}\frac{\Omega}{k}$
$H(s) \leftrightarrow H(z)$	$z = \frac{k+s}{k-s}$	
Spectral transformation	$z^{-1} = \frac{\hat{z}^{-1} - \alpha}{1 - \alpha \hat{z}^{-1}}$, or	$\alpha = \frac{\sin(\frac{\omega - \hat{\omega}}{2})}{\sin(\frac{\omega + \hat{\omega}}{2})} \text{ or } \tan(\frac{\omega}{2}) = (\frac{1 + \alpha}{1 - \alpha}) \tan(\frac{\hat{\omega}}{2})$
Lowpass-to-lowpass $H(z) \leftrightarrow H(\hat{z})$	$\hat{z}^{-1} = \frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$	5(₂)
Spectral transformation	$z^{-1} = -\frac{\hat{z}^{-1} + \alpha}{1 + \alpha \hat{z}^{-1}}$, or	$\alpha = -\frac{\cos(\frac{\omega - \widehat{\omega}}{2})}{\cos(\frac{\omega + \widehat{\omega}}{2})}, \text{ or }$
Lowpass-to-highpass $H(z) \leftrightarrow H(\hat{z})$	$\hat{z}^{-1} = -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$	$\cot\left(\frac{\omega}{2}\right) = \left(\frac{-1+\alpha}{1+\alpha}\right) \tan\left(\frac{\widehat{\omega}}{2}\right)$