

Created	@December 20, 2024 1:53 PM		
	RoboDive		

Fusion 360 diagram of the gear train

• consists of a hypoid gear with a helical gear in contact with a helical gear rack

Efficiency calculation

 $\begin{array}{lll} \mbox{Hypoid Gear} & - (80\mbox{-}95)\% \\ \mbox{Helical Gear} & - (94\mbox{-}98)\% \\ \mbox{Helical gear rack efficiency} & - (90\mbox{-}99.5)\% \end{array}$

Overall efficiency - (72-95)%

W4-A1 1

Comparison Table

Motor Type	Torque	Speed	Control Complexity
DC Motor	High torque; suitable for applications requiring continuous rotation.	High speed; speed varies with applied voltage	Simple control; speed controlled by varying voltage, direction by reversing polarity.
Stepper Motor	High torque at low speeds; excellent for precise positioning.	Low to moderate speed; speed decreases with increasing load.	Moderate complexity; requires driver circuits and precise pulse control for accurate positioning.
Servo Motor	Moderate torque; designed for precise angular positioning.	Moderate speed; speed varies with control signal.	High complexity; incorporates feedback systems for precise control.

W4-A1 2