Ayudontia

def) Árbol: grafo conexo que no posee o

Problema 1

En el hotel El Colorcillo del Amico, que es propiedad de Don Giordini, se encuentran hospedadas 10 personas. Para la jornada de hoy, 3 de estas personas asistirán a una misa en la Plaza de San Pedro, otras 3 deben llegar a las Catacumbas de San Sebastián para un tour guiado, y las últimas 4 irán al estadio olímpico de Roma a ver un partido de fútbol. La distancia en kilómetros que separa los puntos de inter´es se muestra en la siguiente tabla:

Origen/Destino	Hotel	Plaza	Estadio	Catacumbas
Hotel	-	1	13	12
Plaza	-	-	4	-
Estadio	13	5	-	4
Catacumbas	4	-	-	_

Don Giordino desea aconsejar a sus huéspedes sobre el camino que deben hacer para llegar a cada lugar, acompañarlos a al menos uno de estos sitios y dirigirse de regreso a su hotel (los huéspedes se quedarán realizando sus actividades). Todo esto, buscando minimizar la distancia total recorrida por el grupo completo (esto considera a los 10 huéspedes realizando sus actividades y a Don Giordini de regreso en su hotel)

$$x_B = \{x_{H,E}; x_{E,P}; x_{E,C}; x_{C,HD}\}$$

b) Ayude a Don Giordino a encontrar la ruta óptima. Para esta tarea, un amigo de usted le sugiere la siguiente base: $x_B = \{x_{H,E}; x_{E,F}; x_{E,C}; x_{CHD}\}$. Indique por qué la solución sugerida por su amigo es factible, pero no óptima. Utilice el criterio de optimalidad del algoritmo Simplex especializado en redes (para el problema de Flujo a Costo Mínimo) a partir de la base sugerida por su amigo para encontrar la solución óptima del problema.

Nuestro amigo nos sugiere la siguiente base

$$\begin{split} \bar{c}_{HE} &= c_{HE} - \pi_H + \pi_E = 0 \\ \bar{c}_{EP} &= c_{EP} - \pi_E + \pi_P = 0 \\ \bar{c}_{EC} &= c_{EC} - \pi_E + \pi_C = 0 \\ \bar{c}_{CHD} &= c_{CHD} - \pi_C + \pi_{HD} = 0 \end{split}$$

$$\begin{split} \bar{c}_{HE} &= 13 - \pi_H + \pi_E = 0 \\ \bar{c}_{EP} &= 5 - \pi_E + \pi_P = 0 \\ \bar{c}_{EC} &= 4 - \pi_E + \pi_C = 0 \\ \bar{c}_{CHD} &= 4 - \pi_C + \pi_{HD} = 0 \end{split}$$

$$\begin{split} \bar{c}_{HE} &= 13 - \pi_H + \pi_E = 0 \\ \bar{c}_{EP} &= 5 - \pi_E + \pi_P = 0 \\ \bar{c}_{EC} &= 4 - \pi_E + \pi_C = 0 \\ \bar{c}_{CHD} &= 4 - \pi_C + \pi_{HD} = 0 \end{split}$$

$$\begin{split} &\bar{c}_{HE} = 13 - \pi_H + 0 = 0 \rightarrow \pi_H = 13 \\ &\bar{c}_{EP} = 5 - 0 + \pi_P = 0 \rightarrow \pi_P = -5 \\ &\bar{c}_{EC} = 4 - 0 + \pi_C = 0 \rightarrow \pi_C = -4 \\ &\bar{c}_{CHD} = 4 - \pi_C + \pi_{HD} = 0 \rightarrow \pi_{HD} = -8 \end{split}$$

Con los pi calculados anteriormente, podemos ver los costos reducidos para nuestras variables NO básicas:

Con este nuevo arco, se nos forma un circuito:

Podemos notar que el primer arco en hacerse 0 es (E,P). Por lo tanto, nuestra nueva base es:

$$B = \{(H, E); (H, P); (E, C); (C, HD)\}$$

Con este nuevo arco, se nos forma un circuito:

no-

basias

Podemos notar que el primer arco en hacerse 0 es (E,P). Por lo tanto, nuestra nueva base es:

$$B = \{(H, E); (H, P); (E, C); (C, HD)\}\$$

Hacemos una segunda iteración con esta nueva base:

$$\begin{split} \bar{c}_{HE} &= 13 - \pi_H + \pi_E = 0 \\ \bar{c}_{HP} &= 1 - \pi_H + \pi_P = 0 \\ \bar{c}_{EC} &= 4 - \pi_E + \pi_C = 0 \\ \bar{c}_{CHD} &= 4 - \pi_C + \pi_{HD} = 0 \end{split}$$

Con los pi calculados anteriormente, podemos ver los costos reducidos para nuestras variables NO básicas:

$$\begin{split} \bar{c}_{EP} &= c_{EP} - \pi_E + \pi_P = 5 - (-13) + (-1) = 17 \\ \bar{c}_{HC} &= c_{HC} - \pi_H + \pi_C = 12 - 0 + (-17) = -5 \\ \bar{c}_{PE} &= c_{PE} - \pi_P + \pi_E = 4 - (-1) + (-13) = -8 \\ \bar{c}_{EHD} &= c_{EHD} - \pi_E + \pi_{HD} = 13 - (-13) + (-21) = 5 \end{split}$$

Como $\bar{c}_{PE} < 0$ y el más negativo, el arco (P,E) entra a la base

Solución 1.b

Con este nuevo arco, se nos forma un circuito:

Podemos notar que el primer arco en hacerse 0 es (H,E). Por lo tanto, nuestra nueva base es

$$B = \{(H, P); (P, E); (E, C); (C, HD)\}\$$

Con los pi calculados anteriormente, podemos ver los costos reducidos para nuestras variables NO básicas:

$$\begin{split} \bar{c}_{EP} &= c_{EP} - \pi_E + \pi_P = 5 - (-5) + (-1) = 9 \\ \bar{c}_{HC} &= c_{HC} - \pi_H + \pi_C = 12 - 0 + (-9) = 3 \\ \bar{c}_{HE} &= c_{HE} - \pi_H + \pi_E = 13 - (0) + (-5) = 8 \\ \bar{c}_{EHD} &= c_{EHD} - \pi_E + \pi_{HD} = 13 - (-5) + (-13) = 5 \end{split}$$

Como todos son >= 0, la solución es óptima.

Considere el siguiente grafo (N,A), que representa una instancia de un problema de flujo en redes a mínimo costo. Los costos por unidad de flujo c_a se detallan sobre cada arco $a \in A$ del grafo y las ofertas netas b_i se declaran al lado de cada nodo $i \in N$.

a) Resuelva el problema a optimalidad ejecutando el algoritmo simplex de redes desde el siguiente árbolbase inicial factible:

$$B = \{(1,3); (1,4); (2,1); (3,5); (5,6)\}$$

b) Si se suma una constante h al costo de cada arco de la red. ¿En qué rango de valores puede estar hpara que la(s) solucion(es) óptima(s) encontrada(s) en (a) se mantengan óptimas?

Solución 1.b

Por lo tanto, la solución óptima es:

Para ver si la solución es óptima, debemos ver los costos reducidos de nuestros arcos básico primero, para así poder despejar sus pis:

Con los pi calculados anteriormente, podemos ver los costos reducidos para nuestras variables NO básicas

$$\begin{array}{l} \bar{c}_{24} = c_{24} - \pi_2 + \pi_4 = 9 - 8 + 0 = 1 \\ \bar{c}_{34} = c_{34} - \pi_3 + \pi_4 = 5 - 3 + 0 = 2 \\ \bar{c}_{45} = c_{45} - \pi_4 + \pi_5 = 2 - 0 + (-3) = -1 \\ \bar{c}_{46} = c_{46} - \pi_4 + \pi_6 = 6 - 0 + (-6) = 0 \end{array}$$

Como $\bar{c}_{45} < 0$, el arco (4,5) entra a la base

Determinamos los flujos a través de cada arco

Con este nuevo arco, se nos forma un circuito

Podemos notar que los primeros arcos en hacerse 0 son 2: (1,3) y (3,5). Eligiendo este último

$$B = \{(2,1); (1,3); (1,4); (4,5); (5,6)\}$$

Para ver si la solución es óptima, debemos ver los costos reducidos de nuestros arcos básico primero, para así poder despejar sus pi:

Con los pi calculados anteriormente, podemos ver los costos reducidos para nuestras variables NO básicas: $b_{i,j}=0$

$$\begin{array}{l} \bar{c}_{24} = c_{24} - \pi_2 + \pi_4 = 9 - 8 + 0 = 1 \\ \bar{c}_{34} = c_{34} - \pi_3 + \pi_4 = 5 - 3 + 0 = 2 \\ \bar{c}_{35} = c_{35} - \pi_3 + \pi_5 = 6 - 3 + (-2) = 1 \\ \bar{c}_{46} = c_{46} - \pi_4 + \pi_6 = 6 - 0 + (-5) = 1 \end{array}$$

Como todos son >= 0, la solución es óptima.

b) Si se suma una constante h al costo de cada arco de la red. ¿En qué rango de valores puede estar h para que la(s) solucion(es) óptima(s) encontrada(s) en (a) se mantengan óptimas?

Si se agrega h al costo de cada arco, las condiciones para que se cumpla la optimalidad son las siguientes:

$$\begin{split} &\bar{c}_{21}=2+h-\pi_2+\pi_1=0\\ &\bar{c}_{14}=6+h-\pi_1+\pi_4=0\\ &\bar{c}_{13}=3+h-\pi_1+\pi_3=0\\ &\bar{c}_{45}=2+h-\pi_4+\pi_5=0\\ &\bar{c}_{56}=3+h-\pi_5+\pi_6=0\\ &\bar{c}_{24}=9+h-\pi_2+\pi_4\geq0\\ &\bar{c}_{34}=5+h-\pi_3+\pi_4\geq0\\ &\bar{c}_{35}=6+h-\pi_3+\pi_5\geq0\\ &\bar{c}_{46}=6+h-\pi_4+\pi_6\geq0 \end{split}$$

Al igual que antes, si asignamos $\pi_4=0$, obtenemos de las 5 primeras ecuaciones lo siguiente:

Despejando, obtenemos que $h \in [-2,1]$