

测量平差基础通用习题集

高士纯编著

武汉测绘科技大学出版社

(鄂)新登字 14号

内容提要

本习题集是测量平差基础课程教学的必备教学参考书。全书共分 13 章 60 节,近 500 题,涉及到测量平差方法和基础理论的所有问题,即传统、近代的平差理论、平差方法、平差数学模型、平差图形(网形),同时还兼顾到测绘生产实际需要。内容全面新颖,系统完整,习题量大,概念性强,科学实用,有较大创新。作为一本习题集,内容之深广为国内外所独有,为全国测绘教材委员会推荐的规划教材。根据内容主次和难易,尤其考虑到测量平差的实际应用,各章节题型题量配置得当。因此,可配合不同版本的授课教材,供全国含测绘类专业的高等院校本、专科及函授生使用,也可作为自学者的有益参考书。

图书在版编目(CIP)数据

测量平差基础通用习题集/高士纯编著、一武汉: 武汉测绘科技大学出版社,1999.8 ISBN 7-81030-717-7

I.测… II.高… III.测量平差-高等学校-习题 IV. P207-44 中国版本图书馆 CIP 数据核字(1999)第 46516 号

> 责任编辑:李蓬 封面设计:日文 武汉测绘科技大学出版社出版发行 (武汉市珞喻路 129 号,邮编 430079) 湖北省农科院科技杂志印刷厂印刷

开本:787×1092 1/16 印张:13 字数:333 干字 1999 年 8 月第 1 版 1999 年 8 月第 1 次印刷 印数:1~1800 册 定价:15.60 元

前言

测量平差基础是研究测量数据处理的一门理论与实践并重的学科,是测绘专业重要的专业基础课,选编好习题集是搞好本课程教学的重要环节。1983年由高士纯、于正林主编的《测量平差基础习题集》(测绘出版社出版),作为《测量平差基础》(增订本)的配套教材,在全国 20 余所高等院校中广泛使用,对提高教学质量起了较大作用。目前,随着学科的不断发展,不少兄弟院校使用自编教材教学,教学内容深浅程度与书中使用的公式符号、章节编排等各有不同,亟需一本完整的习题集以辅助教学。为适应形势发展,方便教学,本次重新编写的《测量平差基础通用习题集》,旨在使之适用于不同版本的测量平差基础教材,以便广大教师和读者根据需要选题。

本习题集内容全面新颖、系统完整、科学实用。习题量大、丰富多样,有较大创新。每题附有答案,可供读者自检。全书共分十三章,总共编人 473 题,除从《测量平差基础习题集》中录用了一部分外,大部分为作者自己设计和编算的新题。该书内容囊括了经典和近代的测量平差方法和基础理论,除了编人误差理论,广义传播律,条件平差,间接平差等经典平差方法的习题外,还编人了近代平差及新平差方法的习题,如相关条件平差,相关间接平差,曲线拟合间接平差,附有未知数的条件分组平差,序贯平差,加权秩亏自由网平差,拟稳平差,平稳随机函数的协方差函数,最小二乘内插、滤波与配置,以及统计假设检验等内容的习题。为了加强基础理论概念,第二章编人了协方差阵、协因数阵与权阵的习题,第三章编人了函数模型的习题。为适应当前测绘工作的实际,还增添了导线网条件平差与导线网间接平差的习题。

为便于教学和自学,本书采用按平差方法分章,按测量网形(如水准网、测角网、测边网等)分节的方法编题。本习题集的题号×.×.××中,×号依次表示章号,节号和题号,答案的题号与此相同,以便于对照查阅。

在文字符号意义上,全书前后一致。例如,在习题答案部分,条件方程式与附有未知数的条件方程式的常数项用 W 表示,误差方程式的常数项用 U 表示,限制条件方程式的常数项用 W_x 表示,中误差一律用 σ 或 $\hat{\sigma}$ 表示。这些文字符号与《测量平差基础》(第三版)的符号意义相同。

本书的出版得到了全国测绘教材指导委员会及陶本藻教授、王新洲教授的大力支持,於宗 传教授和张朝玉老师为本书审稿,并提出了宝贵意见,在此一并表示感谢。

本习题集中各题的答案大部分由作者亲自进行计算及检核,但仍不免有错误出现,不当之处,请读者批评指正。

作 者 1999年4月

目 录

第一章 观视	y误差与精度指标····································	(1)
第一节	观测误差与偶然误差特性	(1)
第二节	精度指标与相对精度指标	(2)
第二章 广义	《传播律与系统误差的传播	(3)
第一节	随机向量的协方差阵、协因数阵与权阵	
第二节	广义传播律····································	(6)
第三节	广义传播律在测量上的应用	(11)
第四节	系统误差的传播	(17)
第三章 平差	告函数模型及条件方程线性化 ····································	(18)
第一节	条件平差函数模型	(18)
第二节	附有未知数的条件平差函数模型	(21)
第三节	间接平差函数模型	(22)
第四节	附有限制条件的间接平差函数模型	(23)
第五节	附有限制条件的条件平差函数模型	(24)
第六节	条件方程线性化	(26)
第四章 条件	‡平差 ····································	(27)
第一节	条件平差原理	(27)
第二节	法方程组成与解算	(28)
第三节	水准网条件平差	(30)
第四节	测角网条件平差	(34)
第五节	测边网条件平差	(39)
第六节	边角网条件平差	(41)
第七节	相关条件平差	(45)
第八节	导线网条件平差	(47)
第五章 间接	冬平差	(50)
第一节	间接平差原理	(50)
第二节	法方程组成与解算	(52)
第三节	水准网间接平差	(52)
第四节	测角网间接平差	(57)
第五节	测边网间接平差	(61)
第六节	边角网间接平差	(62)
第七节	相关间接平差	(65)
第八节	曲线拟合间接平差	(66)
第九节	导线网间接平差	(67)
第六章 附在	有未知数的条件平差 ····································	(71)
第一节	附有未知数的条件平差原理	(71)
		1

第二节	· 水准网附有未知参数的条件平差 ····································	(71)
第三节	测角网附有未知数的条件平差	(73)
第四节	测边网与边角网附有未知数的条件平差	(76)
第七章 附	有限制条件的间接平差	(78)
第一节	附有限制条件的间接平差原理 ····································	(78)
第二节	水准网附有限制条件的间接平差	(79)
第三节		
第四节	**** — · · · · · · · · · · · · · · · · ·	
第八章 附	有限制条件的条件平差	
第一节		
第二节	• • • • • • • • • • • • • • • • • • • •	
第三节		
第九章 误	差椭圆	
第一节		
第二节		
第十章 分	·组平差 ······	
第一节	,	
第二节		
第三节	7	
第十一章	统计假设检验	
第一节		
第二节	, =	
第三节		
第四节		
第五节		
第六节		
第七节	######################################	
第八节		
第十二章	秩亏自由网平差	
第一节	f 加权秩亏自由网平差····································	(112)
第二节		
第三节	7	
	最小二乘内插、滤波与配置	
第一节		
第二节		
第三节		
第四节		
习题答案…		
	- 法方程的组成与计算检核	
陵录二	二 法方程解算——高斯约化法	(186)

第一章 观测误差与精度指标

第一节 观测误差与偶然误差的特性

- 1.1.01 在下列情况下用钢尺丈量距离,使量得的结果产生误差,试判别误差的性质与符号:
 - (1)尺长不准确;
 - (2)尺长检定过程中,尺长与标准尺长比较产生的误差:
 - (3)尺不水平;
 - (4)尺反曲或垂曲;
 - (5)尺端偏离直线方向;
 - (6)估读小数不准确。
 - 1.1.02 在下列情况下使水准测量中水准尺的读数带有误差,试判别误差的性质与符号:
 - (1)视准轴与水准轴不平行:
 - (2)仪器下沉;
 - (3)读数不准确;
 - (4)水准尺下沉;
 - (5)水准尺竖立不直。
 - 1.1.03 观测了某地区三角网120个三角形内角和的真误差如下(单位:"""):

试分析该组误差是否符合偶然误差的特性。

第二节 精度指标与相对精度指标

1.2.04 为检定某经纬仪的测角精度,对已知精确测定的水平角 $\alpha = 58^{\circ}02'00.0(无误差)$ 进行 10 次观测,其结果为:

 58°02′03″
 58°02′01″
 58°01′58″
 58°01′57″
 58°02′04″

 58°01′59″
 58°02′05″
 58°01′56″
 58°02′01″
 58°01′57″

试求测角中误差 â。

1.2.05 设有两组观测值 X_i 和 Y_i ,它们的真误差分别为:

$$\Delta x:2, -3, +1,0, +2$$
 $\Delta y:0, +3, +1, -2, +3$

试求观测量 X = Y 的方差 $\hat{\sigma}_X^2$ 和 $\hat{\sigma}_Y^2$,哪个量观测精度高?

1.2.06 观测了某一等三角锁43个三角形的内角,得三角形内角和的真误差见下表,试计算三角形内角和的中误差 $\hat{\sigma}_{\Sigma}$ 及其平均误差 $\hat{\theta}$ 和极限误差 Δ_{R} 。

1.2.07 某距离在相同的观测条件下观测20次,得独立观测值(单位:m)为:

437.59 437.61 437.60 437.55 437.59 437.62 437.64 437.62

437.64 437.61 437.69 437.63 437.61 437.62 437.61 437.60

437.56 437.68 437.65 437.58

试计算该距离的算术平均值 X 及其方差与中误差估值。

- 1.2.08 有两段距离 S_1 和 S_2 , 经多次观测得观测值及其中误差分别为 300.00m \pm 2cm 和 600.00m \pm 2cm, 试问哪段距离观测精度高?二距离各次观测值的观测真误差是否相同?
- 1.2.09 有一段距离,其观测值及其中误差为652.48m±9mm。(1)试估计该观测值的真误差实际可能出现的范围是多少?(2)试求该观测值的相对中误差。
- 1.2.10 某角以每测回中误差为 ± 3 "的精度观测 9 个测回,且其平均值的权为 1,试求单位权中误差 σ_{00} 。
- 1.2.11 设有观测值 L_1 的权 $P_1 = 2$,其方差为 $\sigma_1^2 = 4$,又知观测值 L_2 的方差 $\sigma_2^2 = 1$,试求其权 P_2 及协因数 Q_{11} 和 Q_{22} 。
- 1.2.12 在相同的观测条件下(每一测回观测精度相同)观测两个角度得 $\angle A = 30^{\circ}00^{\circ}$, $\angle B = 60^{\circ}00^{\circ}00^{\circ}$, 设对 $\angle A$ 观测 9 个测回的权为 $P_A = 1$, 则对 $\angle B$ 观测 16 个测回的权 P_B 为多少?
- 1.2.13 在相同的观测条件下,作了4条线路的水准测量,它们的中误差分别为 $\sigma_1 = \pm 2$ mm, $\sigma_2 = \pm 1.5$ mm, $\sigma_3 = \pm 1$ mm, $\sigma_4 = \pm 0.5$ mm,令单位权方差为 $\sigma_0 = \pm 1$ mm,试求各线路观测高差的权 $P_i(i=1,2,3,4)$ 。

第二章 广义传播律与系统误差的传播

第一节 随机向量的协方差阵、协因数阵与权阵

一、定义

2.1.01 设有观测值向量 $L = [L_1, L_2, L_3]^T$ 的方差阵为:

$$\mathbf{D}_{L} = \begin{bmatrix} 0.8 & 0.2 & 0.1 \\ 0.2 & 0.7 & 0.3 \\ 0.1 & 0.3 & 1.0 \end{bmatrix}$$

试写出 L_1 , L_2 及 L_3 的方差及协方差 $\sigma_{L_1L_3}$, $\sigma_{L_2L_3}$, $\sigma_{L_1L_2}$ 。

2.1.02 已知观测值向量 $L = [L_1, L_2, L_3]^T$ 的权阵为:

$$P_L = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

又知单位权方差 $\sigma_0^2 = 32/5$, 试求协因数阵 Q_L 与协方差阵 D_L 。

2.1.03 已知观测值 L_1 与 L_2 的协因数与互协因数 $Q_{11}=0.7908$, $Q_{22}=0.6123$, $Q_{12}=Q_{21}=0.1321$, 试写出其协因数阵 Q_L 。

2.1.04 已知测站点坐标 X 和 Y 的中误差分别为 $\sigma_x = \pm 4.0$ cm, $\sigma_y = \pm 3.0$ cm.

(1)若已知 X 和 Y 的协方差 $\sigma_{xy} = 9.0 \text{cm}^2$,试写出向量 $Z = \begin{bmatrix} x \\ y \end{bmatrix}$ 的方差阵 D_Z 和 X 与 Y 的相关系数 ρ_{xy} ;

- (2)若已知相关系数 $\rho_{xy} = -0.50$, 试求 x 和 y 的协方差 σ_{xy} 和方差阵 D_z ;
- (3)设单位权方差为 $\sigma_0^2 = 9 \text{cm}^2$,求以上两种情况下的协因数阵与权阵。

2.1.05 设测站点的平面位置由角度 θ 和距离 S 给出,已知其中误差 $\sigma_{\theta}=\pm20''$, $\sigma_{\rm S}=\pm0.10{\rm m}$,相关系数 $\rho=0.50$ 。

- (1)试求向量 $Z = \begin{bmatrix} \theta \\ S \end{bmatrix}$ 的协方差阵 D_z ;
- (2)设单位权方差 $\sigma_0^2 = 0.0010 \text{m}^2$,试求向量 Z 的协因数阵 Q_Z 和权阵 P_Z 。
- **2.1.06** 设某点平面位置由极坐标 r 和 θ 给出,其中,r 为边长, θ 为角度,已知方差 σ_r^2

=0.0001
$$\text{m}^2$$
, σ_{θ}^2 = 4.125(")2, 协方差 $\sigma_{r\theta}$ = 0.0371 $m \cdot$ ("), 令 $\mathbf{Y} = \begin{bmatrix} r \\ \theta \end{bmatrix}$ 。

- (1)试求 Dy;
- (2)若取 $\sigma_0^2 = 0.0001 \text{m}^2$ 时,求 Q_{Y} ;
- (3)若取 $\sigma_0^2 = 4.125(")^2$ 时,求 Q_{Y_0}

二、协方差估值的计算

2.1.07 设有两组观测值 X_i 与 Y_i ($i=1,2,\dots,9$)的真误差分别为:

$$\Delta_{X_i}$$
: +2.5, -1.5, -3.5, +3.5, -2.5, -0.5, +5.5, +2.5, -2.5;
 Δ_{Y_i} : -3.0, -7.0, 0.0, +3.0, +2.0, 0.0, -3.0, +8.0, 0.0;

设每组内的观测值均为同精度独立观测值,试求两组观测值的中误差与协方差估值。

2.1.08 在某测站上观测三个方向各5测回,得观测值 l_{1i} , l_{2i} , l_{3i} (i=1,2,3,4,5)如下:

	l_{t}		_	l_2		}	l_3	
(°		″)	(*	,	")	(°	•	")
20	10	30	61	18	19	125	08	42
20	10	29	61	18	17	125	08	40
20	10	32	61	18	16	125	08	41
20	10	33	61	18	21	125	08	39
20	_10	29	61	18	20	125	08	38

试求观测值 l_1, l_2, l_3 的方差与其各协方差的估值。

三、协方差阵、协因数阵、权阵、单位权方差的计算

2.1.09 设 $L_{n,1} = [L_1, L_2, \dots, L_n]^T, V = [V_1, V_2, \dots, V_n]^T, X = [X_1, X_2, \dots, X_t]^T$, 若令

$$\boldsymbol{Z} = \begin{bmatrix} L \\ \mathbf{V} \\ \hat{\mathbf{X}} \end{bmatrix}$$

试写出方差阵 Dz 及互协方差阵 Dvx。

2.1.10 已知相关观测值 $L_1 = [L_1, L_2]^T$ 的权阵为:

$$P_L = \begin{bmatrix} 5 & -2 \\ -2 & 4 \end{bmatrix}$$

试求权 P_{L_1} 与 P_{L_2} 。

2.1.11 已知独立观测值 $L = [L_1, L_2]^T$ 的方差阵

$$D_L = \begin{bmatrix} 16 & 0 \\ 0 & 8 \end{bmatrix}$$

及单位权方差 $\sigma_0^2 = 2$, 试求权阵 P_L 及权 P_1 , P_2 。

2.1.12 设有相关观测值 $X = [X_1, X_2]^T$,已知其权阵

$$P_X = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix}$$

及单位权方差 $\sigma_0^2 = 1$, 试求 X 的方差阵及观测值的权 P_1 和 P_2 。

2.1.13 已知相关观测值 L 的协因数阵

$$Q_L = \begin{bmatrix} 8 & -1 \\ -1 & 4 \end{bmatrix}$$

试求权阵 P_L 及权 P_1 , P_2 。

2.1.14 已知相关观测值 L 的方差阵

$$\mathbf{D}_L = \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}$$

及单位权方差 $\sigma_0^2 = 2$, 试求权阵 P_L 及权 P_1 和 P_2 。

2.1.15 已知相关观测值 L 的方差阵

$$\mathbf{D}_L = \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}$$

又知 L_1 的协因数 $Q_{11}=3/2$,试求观测值的权阵 P_L 及权 P_1 和 P_2 。

2.1.16 已知观测值 L 的权阵:

$$P_L = \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix}$$

及单位权方差 $\sigma_0^2 = 2$, 试求方差阵 D_L 。

2.1.17 已知观测值向量 $L = [L, L_2]^T$ 的协方差阵及协因数阵为:

$$\mathbf{D}_L = \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}, \quad \mathbf{Q}_L = \begin{bmatrix} 6 & -2 \\ -2 & 4 \end{bmatrix}$$

试求单位权方差 σ02。

四、随机向量组中各随机向量的权阵及协因数阵的计算

2.1.18 设有向量
$$Z = \begin{bmatrix} X \\ 2.1 \\ Y \end{bmatrix}$$
,其中, $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$,已知权阵 P_Z 为:

$$P_{Z} = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

试求 P_X , P_Y 及权 P_{X_1} , P_{X_2} , P_{Y_3}

2.1.19 若令
$$Z = \begin{bmatrix} X \\ 1,1 \\ Y \end{bmatrix}$$
,其中 $Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$,已知权阵 P_Z 为:

$$\mathbf{P}_{\mathbf{Z}} = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

试求 P_X , P_Y 及 P_{Y_1} , P_{Y_2} °

2.1.20 已知观测值向量 L 的权阵为:

$$\mathbf{P}_L = \frac{1}{8} \begin{bmatrix} 5 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 5 \end{bmatrix}$$

(1)试问这三个观测值中有无不相关的观测值,指出哪些是不相关的观测值;

(2)设以 L_1, L_2 组成观测向量 $L' = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}$,试写出它的权阵 P_L 及权 P_3 。

2.1.21 设已知
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}, Z = \begin{bmatrix} X \\ Y \end{bmatrix}$$
,权阵 P_Z 为:

$$\boldsymbol{P}_{Z} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

试求权阵 Px 及 Py。

2.1.22 设有观测向量
$$Z = \begin{bmatrix} X \\ 2.1 \\ Y \end{bmatrix}$$
,其中, $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$, $Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$,已知协因数阵 Q_Z 为:
$$Q_Z = \begin{bmatrix} 2 & 1 & -1 & 1 \\ -1 & 2 & -1 & 1 \\ -1 & 1 & 1 & 3 \end{bmatrix}$$

试求协因数阵 Q_X, Q_Y 及权阵 P_X, P_Y 。

第二节 广义传播律

- 一、线性函数的广义传播律
- **2.2.23** 在测站 A 上以等精度观测了三个方向得观测值 l_1, l_2, l_3 (见图 2-1),其方差均 为 σ^2 ,试求角度 α , β 和 γ 的方差及其协方差。

2.2.24 设有观测值向量
$$L$$
 的协方差阵为:
$$D_L = \begin{bmatrix} 6 & 0 & -2 \\ 0 & 4 & 1 \\ -2 & 1 & 2 \end{bmatrix}$$

- (1) 试计算线性函数: $X = L_1 + 3L_2 2L_3$ 及 $Y = 100 + 5L_1 L_2/3 + L_3/4$ 的方差 $\sigma_{X}^2 \setminus \sigma_{Y}^2$ 及协方差 σ_{XY} ;
- (2)设单位权方差 $\sigma_0^2 = 2$, 试问函数 $\varphi_1 = 2L_1 + L_2$ 与 $\varphi_2 = 4$. 5L2+6L3 是否相关。
- 2.2.25 设有独立观测值 L_1 和 L_2 ,其中误差为 $\sigma_1 = \pm 2.3 \text{cm}$, $\sigma_2 = \pm 1.7 \text{cm}$,试求它们的和数与差数的方差及协方差。
- 2.2.26 已知观测向量 L 及其协方差阵 D_L ,试求函数 X =AL, Y = BX 的协方差阵 $D_{XL}, D_{YL} \not D_{XY}$ 。
 - 2.2.27 已知观测值向量 L_1, L_2, L_3 及其协方差阵为:

$$\boldsymbol{D}_{L} = \begin{bmatrix} D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{31} & D_{32} & D_{33} \end{bmatrix}$$

将 L: 组成函数:

$$X = AL_1 + A_0$$

$$Y = BL_2 + B_0$$

$$Z = CL_3 + C_0$$

式中, $A \setminus B \setminus C$ 为系数阵, $A_0 \setminus B_0 \setminus C_0$ 为常数阵,若令向量

图 2-1

$$W = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

试求协方差阵 Dw。

2.2.28 设有观测值向量 $L = [L_1, L_2, L_3]^T$,其协方差阵为:

$$\mathbf{D}_{L} = \begin{bmatrix} 6 & -1 & -2 \\ +1 & 4 & 1 \\ -2 & 1 & 2 \end{bmatrix}$$

试求函数 $F = L_1 + 3L_2 - 2L_3$ 的方差。

2.2.29 设有观测值向量 $L_1 = [L_1, L_2, L_3]^T$ 及其函数为 $L_1 = L_1 - \frac{w}{3}$, $L_2 = L_2 - \frac{w}{3}$, $L_3 = L_3 - \frac{w}{3}$, 式中, $w = L_1 + L_3 - L_2$ 。 若令 $L = [L_1, L_2, L_3]^T$,

试求 L 的方差阵 D_L。

2.2.30 在高级水准点 A, B 间(其高程无误差)进行水准测量,如图 2-2。路线长为 S_1 = 2 km, S_2 = 6 km, S_3 = 4 km, 设每公里观测高差的中误差为 σ_{km} = $\pm 1.0 \text{mm}$ 。试求将闭合差 $w = (H_B - H_A) - (h_1 + h_2 + h_3)$,按距离成比例分配后 P_1 至 P_2 点间高差的中误差。(提示: $\hat{h}_2 = h_2 + \frac{wS_2}{|S|}$, $[S] = S_1 + S_2 + S_3$)。

图 2-2

2.2.31 已知独立观测值 L_1 , L_2 的中误差均为 σ , 试求函数 $X=2L_1+5$, $Y=L_1-2L_2$, Z=X+Y 的中误差 σ_X , σ_Y 和 σ_Z 。

2.2.32 设有随机向量

$$Y = AX$$

 $Z = BY$
 $H = CY + GZ$

其中,A,B,C,G 为常量矩阵,已知 D_X ,试求 D_Y , D_{YX} , D_{YZ} , D_Z , D_{ZH} 及 D_H 。

2.2.33 已知观测值向量 $L = [L_1, L_2]^T$ 的协因数阵为:

$$Q_L = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

试求其函数 $Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} L$ 的协因数阵 Q_Y 。

2.2.34 已知观测值向量 $L = [L_1, L_2]^T$ 的协因数阵为:

$$Q_L = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

试求函数:

$$\mathbf{Y}_{2,t} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} L, \quad \mathbf{Z}_{2,t} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} L, \quad \mathbf{W}_{2,1} = 2\mathbf{Y} + \mathbf{Z}$$

的协因数阵 $Q_Y, Q_{YZ}, Q_Z, Q_{YW}, Q_{ZW}, Q_W$ 。

2.2.35 在图2-3中,令方向观测值 $l = [l_1, l_2, \cdots, l_{10}]^T$ 的协因数阵为 $Q_l = I$,试求角度观测值 L_i 的协因数阵。

图 2-3

- 2.2.36 在图2-4中,令方向观测值 l 的协因数阵为 $Q_l = 1$,试求角度观测向量 $L = [L_1, L_2, \cdots, L_8]^T$ 的协因数阵 Q_L 。
- 2.2.37 在图2-5中,令方向观测值向量 $l_{12,1}$ 的协因数阵为 $Q_i = I$,试求角度观测向量 $L_{8,1}$ 的协因数阵 Q_L 。

图 2-4

图 2.5

2.2.38 已知同精度独立观测值 *L* 的权阵为:

$$\mathbf{P} = \begin{bmatrix} p & & & \\ & p & & \\ & & \ddots & \\ & & p \end{bmatrix}$$

试求算术平均值 X=[L]/n 的权 P_X 。其中, $[L]=L_1+L_2+\cdots+L_n$ 。

2.2.39 已知不等精度独立观测值 L_i 的权为 $p_i(i=1,2,\cdots,n)$, 试求带权平均值 Y=[PL]/[P] 的权 P_Y 。其中, $[P]=p_1+p_2+\cdots p_n$ 。

2.2.40 已知随机量 X_1, X_2 的函数及其协因数阵为: $Y = KX_1, Z = FX_2, Q_X = \begin{bmatrix} Q_{X_1} & Q_{X_1}X_2 \\ Q_{X_2X_1} & Q_{X_2} \end{bmatrix}$,试求协因数阵 Q_{YZ} 及 Q_{ZX_1} 。

二、广义传播律的记忆规则

- 2.2.41 设有线性函数 $Z = F_1X + F_2Y + F_0$, 试用广义传播律的记忆规则求协方差阵 D_{Z_0}
 - 2.2.42 设有两个函数:

$$Z = F_1X + F_2Y + F_0$$
$$H = AX + BY + C_0$$

已知 Q_X , Q_{XY} , Q_Y , 试用协因数传播律的记忆规则求 Q_{ZI} 及 Q_{ZX} 。

2.2.43 已知相关观测值向量
$$W=\begin{bmatrix}X\\Y\\Z\end{bmatrix}$$
的协因数阵为 :
$$Q_W=\begin{bmatrix}Q_X&Q_{XY}&Q_{XZ}\\Q_{YX}&Q_Y&Q_{YZ}\\Q_{ZX}&Q_{ZY}&Q_Z\end{bmatrix}$$

试用广义传播的记忆规则求函数 $H = F_1X + F_2Y + F_3Z$ 的协因数阵 Q_H 及 Q_{HX} 。

2.2.44 设有独立观测值向量 L,其协因数阵 $Q_{LL} = I$,设有函数:

$$V = B\hat{X} - L$$

$$\hat{X} = (B^{T}B)^{-1}B^{T}L$$

$$\hat{L} = L + V$$

试用广义传播律的记忆规则求协因数阵 Q_X , Q_L 及 Q_{VX} , Q_{VL} 。

2.2.45 设有线性函数

$$F = F_1X + F_2Y + F_3Z + F_0$$

$$G = G_2Y + G_3Z + G_0$$

已知 $Q_X, Q_Y, Q_Z, Q_{XY}, Q_{YZ}, Q_{XZ}$, 试用广义传播律的记忆规则写出 Q_{YZ} 的计算公式。

三、非线性函数的广义传播律

- 2.2.46 已知独立观测值 L_1, L_2 的中误差为 σ_1 和 σ_2 , 试求下列函数的中误差。
- (1) $X = L_1^2/2 + L_1L_2$;
- (2) $Y = \sin L_1 / \sin(L_1 + L_2)_{\circ}$
- 2.2.47 设有函数:

$$\varphi_1 = 3L_1 - 2L_3$$

$$\varphi_2 = L_1L_2 + L_3^2$$

已知观测值 L 的协因数阵为:

$$Q_L = \begin{bmatrix} 6 & -2 & 1 \\ -2 & 4 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

单位权方差为 $\sigma_0^2=0.2$,试求当 $L_1=6$, $L_2=8$, $L_3=10$ 时, φ_1 , φ_2 的方差及其协方差。

2.2.48 设有独立观测值向量 L 的协方差阵:

$$\boldsymbol{D}_L = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

试求函数 $F=3L_2L_3$ 的方差。

2.2.49 已知观测值向量 $L = [L_1, L_2, L_3]^T, \sigma_{L_1} = \pm 2'', L$ 的权阵

$$P_{L} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

试求函数 $Z = \sin L_2 / \sin L_3$ 的方差 σ_z^2 。

2.2.50 已知角度观测值 L_1, L_2 的中误差为 m_1 和 m_2, S_0 为无误差的已知边长,试求观测值函数

$$S_2 = S_0 \frac{\sin(L_1 + L_2)}{\sin L_2}$$

的中误差 $\sigma_{S,o}$

- 2.2.51 已知独立观测值 X_1, X_2 的权为 P_1, P_2 ,单位权中误差为 σ_0 ,试求下列函数的权倒数与中误差: $(1)Z_1 = X_1^2 + X_1 X_2$; $(2)Z_2 = \frac{\sin X_1 \sin X_2}{\sin (X_1 X_2)}$ 。
- 2.2.52 为了计算三角形地块的面积,量测了三角形 ABC 的一边长及其高,得观测值及其中误差为 $a \pm \sigma_a$, $h_a \pm \sigma_b$ (见图 2-6),试求三角形面积的中误差 σ_S 。
- 2.2.53 在图2-7的三角形 ABC 中测得 $\angle A\pm\sigma_A$,边长 $b\pm\sigma_b$, $c\pm\sigma_c$,求三角形面积的中误差 σ_S 。

图 2-6

图 2-7

- 2.5.54 已知边长 S 及坐标方位角 α 的中误差为 σ_S 和 σ_α , 试求坐标增量 $\Delta X = S \cos \alpha$, $\Delta Y = S \sin \alpha$ 的方差。
 - **2.2.55** 设有观测值 $X = [X_1, X_2]^T$ 的两组函数:

$$\begin{cases} Y_1 = X_1 - 2X_2^2 \\ Y_2 = 2X_1^2 \end{cases}, \qquad \begin{cases} Z_1 = 2X_1 + X_2 \\ Z_2 = X_1^2 \\ Z_3 = 3X_2^2 \end{cases}$$

巴知
$$\boldsymbol{D}_{X} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
, 令 $\boldsymbol{Y} = [Y_1, Y_2]^T$, $\boldsymbol{Z} = [Z_1, Z_2, Z_3]^T$ 。

- (1)试求 D_Y , D_{YX} , D_{YZ} 及 $\sigma_{Y_1Y_2}$, $\sigma_{Y_1Z_2}$;
- (2)若 $\sigma_0^2 = 2$, 试求 Q_X 及 Q_{VX} 。
- 2.2.56 设有同精度独立观测值 $\beta = [\beta_1, \beta_2, \beta_3]^T$ 的函数:

$$Y_1 = S_{AB} \frac{\sin \beta_1}{\sin \beta_3}$$
$$Y_2 = T_{AB} - \beta_2$$

其中, T_{AB} 和 S_{AB} 为无误差的已知值,设已知测角中误差为 $\sigma_{H} = \pm 1$ ",试求 $\sigma_{Y_{1}}^{2}$, $\sigma_{Y_{2}}^{2}$ 及 $\sigma_{Y_{1}Y_{2}}$ 。

2.2.57 设有同精度独立观测值 $\beta = [\beta_1, \beta_2, \beta_3]^T$ 的函数:

$$\Delta X = S_{AB} \frac{\sin \beta_1}{\sin \beta_2} \cos(T_{AB} - \beta_3)$$

已知 $S_{AB} = 2000 \text{m}$ (无误差), $T_{AB} = 120^{\circ}00'00''$ (无误差), $\rho'' = 206 \times 10^{3}$, 观测值及其中误差为 $\beta_{i} = 60^{\circ}$, $\sigma_{B} = \pm \sqrt{3} \text{s}$, 试求 ΔX 的值及其中误差 $\sigma_{\Delta X}$ 。

2.2.58 设有观测值 $L = [L_1, L_2]^T$ 的两组函数:

$$\begin{cases} Y_1 = L_1^2 + 3 \\ Y_2 = 3L_1L_2 - 2 \end{cases} \begin{cases} Z_1 = 2L_2 + 5 \\ Z_2 = L_1^3 - 1 \end{cases}$$

已知
$$D_L = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
, 若令 $Y = [Y_1, Y_2]^T$, $Z = [Z_1, Z_2]^T$,

- (1)试求 D_Y, D_{YZ}, D_{YL} ;
- (2)当 $L_1=2, L_2=1$ 时,求 $\sigma_{Y_1,Y_2}, \sigma_{Y_1,Z_1}, \sigma_{Y_1,L_1}$ 的值。

第三节 广义传播律在测量上的应用

- **2.3.59** 设用长为 30m 的钢尺量得正方形地块的一边边长为 a = 72.518m,其中误差 $a_a = \pm 0.051m$,如果钢尺的实际长度短了 0.020m,试求该正方形地块的实际面积 S'及其中误差 $\sigma_{S'}$ 。
- **2.3.60** 有一梯形地块 ABCD,其尺寸如图2-8所示(无误差),为求出距离 A 点为 d 处梯形的高h,测得距离 d=20m,其中误差为 $\sigma_d=\pm 1.6$ cm,试求计算值 h 及其中误差 σ_h 。(提示: 先要以 A 点为原点,设立直角坐标系,列出 CD 边的直线方程式)
- **2.3.61** 量得某梯形稻田的上底边长为 a = 50.746m,下底边长为 b = 86.767m,高为 h = 67.420m,它们彼此独立,其中误差分别为 $\sigma_a = \pm 0.030$ m, $\sigma_b = \pm 0.040$ m, $\sigma_h = \pm 0.034$ m (见图 2-9),试计算该梯形的面积 S 及其中误差 σ_S 。
- 2.3.62 在图2-10的三角网中,观测了基线边长 $S_1 = 220.516$ m,其中误差为 $\sigma_{S_1} = \pm 0.030$ m,角度观测值为 $\beta_1 = 45^\circ 10'30''$, $\beta_2 = 40^\circ 32'58''$, $\beta_3 = 80^\circ 20'50''$, $\beta_4 = 68^\circ 21'40''$,其中误差相同,均为 $\sigma_{S^2} = \pm 2.5''$,试求推算边长 S_2 及其中误差 σ_{S_2} 。
- 2.3.63 在直角三角形 ABC 中(见图 2-11),A 点为已知点(无误差),为确定 C 点坐标,观测了边长 S_1 , S_2 和角度 β ,得独立观测值及其中误差为 S_1 = 352.140m, σ_{S_1} = \pm 3cm, S_2 = 236.765m, σ_{S_2} = \pm 2cm, β = 42°15′20″, σ_{β} = \pm 15″。
 - (1)试求 C 点坐标计算值的中误差 σ_{X_C} , σ_{Y_C} ;

图 2-8

图 2-9

(2) AB 边长的中误差 σ_{AB} 。(提示: $X_C = X_A + S_1 \cos(90^\circ - \beta)$, $Y_C = Y_A + S_1 \sin(90^\circ - \beta)$)

图 2-10

2.3.64 在三角高程测量中,为求得 C, D 点间高度h,观测了平面三角形 ABC 的边长a 和 b,垂直角 α 和 β (见图 2-12),得独立观测值为 a = 433.488m, b = 430.852m, a = 12°15′37″, β = 12°20′23″, 其方差为 c_a 2°=0.0106m2°, σ_b 2°=0.0104m2°, σ_a 2°=5.285×10⁻⁹(rad)2°, σ_{β} 2°=5.285×10⁻⁹(rad)2°° (rad)2°° (rad)2°

2.3.65 某距离分三段丈量,每段丈量次数不等,取其简单平均值作为每一段长度,然后由各段长度平均值求和得该距离。各段观测值如下:

编号	第1段长(m)	第2段长(m)	第3段长(m)
1	234.615	319.642	887.177
2	234.633	319.617	887.151
3		319.649	887.186
4		319.626	

2.3.66 某角度用两种不同精度的仪器进行测量,其观测值及其中误差为:

58°06′41″ ± 3″ 58°06′46″ ± 1″

- (1)若令 $\sigma_0 = \pm 3^n$,试求该角的带权平均值 X 及其中误差 σ_X ;
- (2)若令 $\sigma_0 = \pm 1$ ",其所得结果 X 及 σ_X 是否与题(1)结果相同?
- 2.3.67 设由已知水准点 A, B, C, D 对待定点 E 点的高程进行水准测量(见图 2-13),得独立观测高程值及其相应的权为:

编号	观测高程(m)	权 P _i
1	218.342	2
2	218.295	3
3	218.361	1
4	218.308	3

如果权为 2 的观测高程其相应的中误差为 0.030m, 试求 E 点高程及其中误差。

2.3.68 在图2-14的三角形 ABC 中,测得边 长 S_1 和 S_2 ,角度 β ,令观测值向量 $L = [S_1, S_2, \beta]^T$ 的协方差阵为:

图 2-13

$$\mathbf{D}_{L} = \begin{bmatrix} \sigma_{S_{1}}^{2} & & & \\ & \sigma_{S_{2}}^{2} & & \\ & & \sigma_{\beta}^{2} \end{bmatrix}$$

试求推算边长 S_{AC} 的方差 $\sigma_{S_{AC}}^{2}$ 。

2.3.69 设 P₁ 点及 P₂ 点的坐标为:

$$\begin{cases} X_1 = 1 \ 000.00 \text{m} \\ Y_1 = 1 \ 000.00 \text{m} \end{cases} \begin{cases} X_2 = 1 \ 800.00 \text{m} \\ Y_2 = 1 \ 500.00 \text{m} \end{cases}$$

向量 $[X_1, Y_1, X_2, Y_2]^T$ 的协方差阵为:

$$\begin{bmatrix} 3 & 2 & 2 & 0 \\ 2 & 4 & -1 & 3 \\ 2 & -1 & 6 & -2 \\ 0 & 3 & -2 & 8 \end{bmatrix}$$
 (cm)²

(1)试求坐标差函数 $\Delta X = X_2 - X_1$ 与 $\Delta Y = Y_2 - Y_1$ 的协方差阵;

图 2-14

- (2)求两点间边长 $S = \sqrt{\Delta X^2 + \Delta Y^2}$ 与坐标方位角 $T = \arctan(\Delta Y/\Delta X)$ 的协方差阵。
- **2.3.70** 已知待定点 P 的直角坐标(X,Y)与极坐标 (r,θ) 的关系为 $X = r\cos\theta$ 及 $Y = r\sin\theta$,已知 X = 280.456m, Y = 426.576m, 其中误差为 $\sigma_X = \pm 0.024$ m, $\sigma_Y = \pm 0.038$ m, 試计算 P 点的极坐标 r,θ 及其中误差。
- 2.3.71 观测一矩形水库的底面,得独立观测值 L_1 和 L_2 ,其中底面长 $L_1=85$ m,宽 L_2 =60m,其观测精度为 $\sigma_{L_2}=\pm 7$ mm, $\sigma_{L_1}=\pm 5$ mm,试求水库底面面积的中误差 σ_S 。
 - 2.3.72 设有坐标函数:

$$X_P = X_A + S_{AP} \cos T_{AP}$$
, $Y_P = Y_A + S_{AP} \sin T_{AP}$

已知 $X_A=2~000.00$ m, $Y_A=3~000.00$ m 及 $\sigma_{X_A}=\pm 0.016$ m, $\sigma_{Y_A}=\pm 0.018$ m。 观測值为 $S_{AP}=$

2 880.00m, $T_{AP} = 80^{\circ}45'20''$, 其中误差 $\sigma_{S_{AP}} = \pm 0.050$ m, $\sigma_{T_{AP}} = \pm 12''$, 设全部数据是不相关的,试求 P 点坐标及其中误差。

- 2.3.73 设有两段距离, $S_1 = 300$ m, 由 3 次丈量的结果取平均值而得, $S_2 = 500$ m, 由 5 次 丈量的结果取平均值而得。设每 100m 一次丈量的权为单位权,其中误差为 $\sigma_0 = \pm 2$ cm。
 - (1)试求每段距离平均值的权 P_{S_s} 和 P_{S_s} ;
 - (2)哪一段距离的精度高。
- **2.3.74** 已知 AB = 100m,丈量一次的权为 2,丈量 4 次取平均值的中误差为 \pm 2cm,而 CD = 150m,丈量 CD 一次的权为 0.5,其共量 16 次取平均,试求其平均值的中误差 σ_{CD} 。
- 2.3.75 已知丈量 100m 长的距离一次,其权为 1.5。问(1):丈量 300m 长的距离一次的权是多少? (2)对 300m 距离需丈量几次,其平均值的权等于 4。
- **2.3.76** 在图2-15的单一水准路线中,A,B 点为已知水准点, P_1 , P_2 为待定点,观测各段高差得观测值 h_1 , h_2 , h_3 ,其路线长度为 S_1 , S_2 , S_3 。设每公里观测高差为单位权观测,水准路线的闭合差为 $w = H_A + h_1 + h_2 + h_3 H_B$,试求任一段高差的最佳估值 h_i 。(提示:以第二段高差观测值 h_2 及计算值 $h_2' = H_B h_1 h_3 H_A$,取加权平均值求 h_2 为例)。

2-15

- **2.3.77** 测量一矩形地块面积,得长和宽的独立观测值为 $l_1 = 85 \text{m}$, $l_2 = 60 \text{m}$ 。 若要求面积的中误差达到 $\sigma_S = \pm 0.5 \text{m}^2$,并设各观测值对面积精度产生的影响相等,试估算地块长和宽观测值所需的精度 σ_{l_2} 和 σ_{l_3} 。
- 2.3.78 设图2-16的三角形 ABC 为等边三角形,观测了边长和角度,得观测值为 $b \pm \sigma_b = 1~000 \text{m} \pm 0.015 \text{m}, \alpha$ = $\beta = 60^{\circ}00^{\circ}00^{\circ}$,且 $\sigma_a = \sigma_{\beta}$ 。为使算得的边长 a 具有中误差 $\sigma_a = \pm 0.02 \text{m}$,试问角 α 和 β 的观测精度应为多少?
- 2.3.79 某距离 S 用不同仪器进行不等精度测量,得独立观测值 S_i 及其中误差 m_{S_i} (i=1,2)为 550. 253m ± 0.03 m及 550. 246m ± 0.05 m, 试求该距离的加权平均值及其中误差。
- **2.3.80** 在图2-17的水准路线中,A,B 点为已知水准点,观测高差为 h_1 和 h_2 试求P 点的高程。设 σ_1 和 σ_2 分

- 别为观测值的中误差,且已知 $\sigma_1 = 2\sigma_2$,单位权中误差 $\sigma_0 = \sigma_2$ 。若要求 P 点高程的中误差为 $\sigma_P = \pm 2 \text{mm}$,问观测精度 σ_1 和 σ_2 的值各应是多少?
- **2.3.81** 设 A , B 点为已知水准点 , C 点为未知水准点 , 路线长度 $S_a = 3 \text{km}$, $S_b = 2 \text{km}$ (图 2-18)。
 - (1)设每公里观测高差的中误差为单位权中误差 $\sigma_0 = \pm 2 \text{mm}$,试求 C 点高程的中误差 C;
- (2)设 m_a , m_b 为观测高差的中误差, 若使 $\sigma_a^2 = 3\sigma_b^2$, 问应以怎样的观测精度观测 h_a , h_b 才能使 $\sigma_c = \pm 1$ mm。

图 2-17

图 2-18

- 2.3.82 在水准测量中,每站观测高差的中误差均为±1cm,今要求从已知点推算待定点的高程中误差不大于±5cm,问可以设多少站?
- 2.3.83 若要在观测点间布设一条附合水准路线(图2-19),已知 $\sigma_{km}=\pm 5.0 \text{mm}$,欲使平差后线路中点 C 点高程 $H_C=(H'_C+H''_C)/2$ 的中误差不大于 $\pm 10 \text{mm}$,问该线路长度最多可达几公里?(设 $H'_C=H_A+h_1$, $H''_C=H_B-h_2$)

图 2-19

- **2.3.84** 有一角度测20测回得中误差为±0.42″, 问再增加多少测回, 其中误差为±0.28″?
- **2.3.85** 设某角的三个观测值及其中误差为 $60^{\circ}44'20'' \pm 2.0'', 60^{\circ}44'26'' \pm 4.0'', 60^{\circ}44'16'' \pm 1.0'', 现分别取 <math>\pm 2.0'', \pm 4.0'', \pm 1.0''$ 作为单位权中误差,(1)试求三组不同精度观测值的权,(2)试求该角的加权平均值 X 及其中误差 σ_{X} 。
- 2.3.86 设已知点 A, B 之间的附合水准路线长为 80km(图 2-20), 令每公里观测高差的权等于 1, 试求平差后线路中点 C 点高程的权及平差前 C 点高程的权(设起高程无误差)。

- 2.3.87 在相同的观测条件下进行四条路线的水准测量,它们的长度分别为 $S_1 = 10.5 \text{km}, S_2 = 8.8 \text{km}, S_3 = 3.9 \text{km}, S_4 = 15.8 \text{km}, ixx各线路的权之比。$
- 2.3.88 应用水准测量测定了三角点 A, B, C 之间的高差,设该三角形边长分别为 S_1 = 10 km, S_2 = 8 km, S_3 = 4 km, \diamondsuit 40 km 的高差观测值为单位权观测,求各段高差的权。
- 2.3.89 已知距离 AB = 100m, 丈量一次的权为 2, 丈量 4 次平均值的中误差为 \pm 2cm, 距离 CD = 400m, 丈量 16 次, 其中每 100m 丈量一次的精度同 AB 距离的精度, 试求距离 CD 的中误差 σ CD 。
- **2.3.90** 由已知水准点 A, B, C(无误差)向待定点 D 进行水准测量(图 2-21),各线路长度为 $S_1 = 2$ km, $S_2 = S_3 = 4$ km, $S_4 = 1$ km, 设 2km 路线观测高差为单位权观测值,其中误差为 ± 2 mm,试求:
 - (1)D 点高程估值(加权平均值)的中误差 σ_D ;
 - (2)A, D 点间高差估值 $\bar{h}_{AD} = H_D H_A$ 的中误差 $\sigma_{h_{AD}}$ 。
- **2.3.91** 在图2-22的水准网中,各路线长度为 S_i ,独立观测高差为 h_i ($i=1,2,\cdots,8$),其权为 $P_i=\frac{1}{S_i}$ (以 1km 观测高差往、返值的中数为单位权观测值),试求各闭合环高差代数和:

 $h_{I} = h_{I} - h_{2} + h_{3}, h_{II} = -h_{3} + h_{4} + h_{8}, h_{II} = h_{5} + h_{6} - h_{7} - h_{8}$ 的协因数阵 $Q_{H}(H = [h_{I}, h_{II}, h_{II}]^{T})$ 及 h_{I}, h_{II}, h_{II} 的权。

图 2-21

图 2-22

- 2.3.92 在由 A, B, C 三点构成的闭合环间进行水准测量,得高差为 h_1 , h_2 , h_3 , 设各线路的测站数为 N_1 = 16, N_2 = 20, N_3 = 24, 且每站高差的观测精度相同均为 σ_{ss} = ± 2 mm, 并令4个测站上观测高差的权为单位权,试求各高差观测值的权 P_i 及单位权中误差 σ_0 , 以及各观测值的中误差 σ_i 。
 - 2.3.93 设图2-23是由直径为 AB 的半圆、矩形 ABCE 及三角形 ECD 组成的地块:
 - (1)试将地块面积 S 表示成三个独立变量 X_1, X_2 及 X_3 的函数;
- (2)已知独立观测值 $X_1 = 50$ m, $X_2 = 20$ m, $X_3 = 30$ m, 其方差分别为 $\sigma_{X_1}{}^2 = 0.0016$ m², $\sigma_{X_2}{}^2 = 0.004$ m², $\sigma_{X_3}{}^2 = 0.0009$ m², 试求该地块面积 S 及其中误差 σ_S 。

图 2-23

图 2-24

- **2.3.94** 某支导线如图2-24,其中,A 点坐标和方位角 $\alpha_0 = 240^{\circ}00'00''$ 均无误差,角度观测值为 β_1 和 β_2 ,其中误差相同,均为 α_β ,边长观测值为 S_1 和 S_2 ,其中误差均为 α_S ,试写出:
 - (1)P2点坐标方差的计算公式;(2)P2点点位方差的计算公式。
- 2.3.95 某一距离分成三段各往返测量一次,其结果列于下表。若令 1km 距离往、返测量平均值的权为单位权,试求
 - (1)该距离的最佳估值;
 - (2)单位权中误差(1km 往返高差平均值的中误差);
 - (3)全长一次测量中误差;
 - (4)全长平均值的中误差;

16

(5)第二段一次测量的中误差。

观测值见下表:

段号	往測(m)	返测(m)
1	1 000.009	1 000.007
2	2 000, 011	2 000 .009
3	3 000.008	3 000.010

2.3.96 有一水准路线分三段进行测量,每段均作往返观测,其观测值见下表:

路线长度(km)	往测高差(m)	返测高差(m)
2.2	2.563	2.565
5.3	1.517	1.513
1.0	2.526	2.526

试求:

- (1)1km 观测高差中数的中误差;
- (2)各段一次观测高差的中误差;
- (3)各段高差平均值的中误差;
- (4)全长一次观测高差的中误差;
- (5)全长高差平均值的中误差。

第四节 系统误差的传播

- 2.4.97 用钢尺量距,共测量12个尺段,设量一尺段的偶然中误差(如照准误差等)为 $m = \pm 0.001$ m,钢尺的检定中误差为 $\epsilon = \pm 0.0002$ m,求全长的综合中误差 M。
 - 2.4.98 设有相关观测值 L 的两组线性函数

$$Z = K_{s,n} L_{s,1} + K_{0}$$

$$Y = F_{s,n} L_{s,1} + F_{0}$$

$$S_{s,1} + F_{0}$$

已知 L 的综合误差为 $\Omega = \Delta + \epsilon$, 式中 , Δ 和 ϵ 分别为观测值 L 的偶然误差与系统误差,L 的方差阵为 D_L ,

$$\boldsymbol{D}_{L} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{n}^{2} \end{bmatrix}$$

试求 Z 的综合方差阵 $D_{ZZ} = E(\Omega_Z, \Omega_Z^T)$ 及 Z 与 Y 的综合协方差阵 $D_{ZY} = E(\Omega_Z, \Omega_Y^T)$ 。

第三章 平差函数模型及条件方程线性化

第一节 条件平差函数模型

3.1.01 试确定图3-1中各水准网按条件平差时条件方程的个数。

图 3-1

- 3.1.02 试确定图3-2中各图形按条件平差时条件方程的个数。
- 3.1.03 在图3-3中,A,B 点为已知水准点, P_1 , P_2 , P_3 , P_4 为待定水准点,观测高差向量为 $\tilde{L} = [\bar{h}_1, \bar{h}_2, \cdots, \bar{h}_8]^T$,试列出条件平差的平差函数模型(将条件方程写成真值之间的关系式)。
 - 3.1.04 试列出图3-4的水准网中按条件平差的平差函数模型。
 - 3.1.05 在图3-5的水准网中,已知水准点 A,B,C,D 及E 点的高程为 H_A,H_B,H_C,H_D , 18

 H_E (无误差),观测高差为 h_1,h_2,h_3,h_4,h_5 和 h_6 ,为了求待定点 P_1,P_2 的高程,试按条件平差列出条件方程式。

3.1.06 同精度观测了图3-6中的 5 个角度得观测值为 $L_i(i=1,2,\cdots,5)$ 。 A,B 为已知点,C 点为待定点, T_{CD} 为已知方位角,试列出条件平差的函数模型。

图 3-5

- 3.1.07 在图3-7的测角网中,已知 AB 边及EF 边的坐标方位角为 T_{AB} 及 T_{EF} ,观测值向量为 $\tilde{L} = [\tilde{\beta}_1, \tilde{\beta}_2, \cdots, \tilde{\beta}_{12}]^T$,试按条件平差列出平差函数模型。
- **3.1.08** 在图3-8的边角网中,A,B,C 点为待定点,观测边长得 S_1 , S_2 , S_3 ,观测角度得 β_1 和 β_2 ,试按条件平差列出条件方程式。

图 3-7

- 3.1.09 在图3-9的测角网中,A,B 点为已知点,C,D 点为待定点, T_{AC} 为已知坐标方位角, S_{CD} 为已知边长,角度观测值为 β_i ($i=1,2,\cdots,6$),试列出条件平差的平差函数模型。
- **3.1.10** 在图3-10的测角网中,A,B点为已知点,为确定待定点C,D,E点的坐标,观测了全部内角,得观测值向量 $\beta = [\beta_1, \beta_2, \cdots, \beta_9]^T$,同时又精确地测定了 DE 边的边长 S_{DE} 和 坐标方位角 T_{DE} ,试列出按条件平差的条件方程式。

第二节 附有未知数的条件平差函数模型

- 3.2.11 题同3.1.08题。在图 3-8 中, 若是 ∠ACB 为未知参数 X, 试列出平差函数模型。
- 3.2.12 在图3-11的附合水准路线中,A,B 点为已知点,其高程为 H_A , H_B ,观测高差为 h_1 , h_2 , h_3 。 若令待定点 P_1 点的高程为未知参数 \widetilde{X} ,试列出平差函数模型。
- 3.2.13 在图3-12的边角网中,A,B,C 点为已知点,P 点为待定点,边长观测值为 $S_i(i=1,2)$,角度观测值为 $\beta_i(i=1,2,\cdots,6)$ 。若选 CP 边长为未知参数 \tilde{X} .试列出平差函数模型。

- 3.2.14 在图3-13的水准网中,A,B点为已知点, P_i ($i=1,2,\cdots,5$)点为待定点,观测高差向量为 $\tilde{L}_{9,1} = [\tilde{h}_1,\tilde{h}_2,\cdots,\tilde{h}_9]^T$ 。 现选取 4 段水准路线高差作为未知参数 $\tilde{X}_{4,1} = [\tilde{X}_1,\tilde{X}_2,\tilde{X}_3,\tilde{X}_4]^T = [\tilde{h}_1,\tilde{h}_2,\tilde{h}_3,\tilde{h}_4]^T$,试列出平差函数模型。
- 3.2.15 在图3-14中,A,B,C 点为已知三角点, P_1 , P_2 点为待定点,为确定待定点坐标,观测了边长和角度,得观测值为 $S_1 \sim S_4$, $\beta_1 \sim \beta_8$,若设边长 CP_1 为未知参数 \widehat{X} ,试列出平差函数模型。

21

3.2.16 为确定某航摄像片中一块梯形的面积,用卡规量得上底边长为 l_1 ,下底边长为 l_2 ,高为h,并用求积仪量得面积为S(见图3-15),若设梯形面积为未知参数 \widetilde{X} ,试列出平差函数模型。

第三节 间接平差函数模型

3.3.17 在图3-16的水准网中,A 点为已知水准点, P_1, P_2, P_3 为待定点,观测高差向量为 $\tilde{L} = [\tilde{h}_1, \tilde{h}_2, \tilde{h}_3, \tilde{h}_4, \tilde{h}_5]^{\mathrm{T}}$,现选取 P_1, P_2, P_3 点高程为未知参数 $\tilde{X} = [\tilde{X}_1, \tilde{X}_2, \tilde{X}_3]^{\mathrm{T}}$,试列出间接平差的平差函数模型。

- 3.3.18 为确定测站 O 点上 4 个方向之间的角度,观测了 6 个角度,得观测值 L_i (i=1, $2,\cdots,6$)(见图 3-17),现选取 $\angle AOB$, $\angle BOC$, $\angle COD$ 为未知参数 $\tilde{X}_{3,1}=[\tilde{X}_1,\tilde{X}_2,\tilde{X}_3]^{\mathrm{T}}$,试列出观测方程。
- **3.3.19** 在图3-18的测边网中,A,B 点为已知点, P_1 , P_2 点为待定点,观测值为 S_i ($i=1,2,\cdots,5$),现选取待定点坐标为 $\tilde{X}=[\tilde{X}_1,\tilde{Y}_1,\tilde{X}_2,\tilde{Y}_2]^T$,试列出间接平差的平差函数模型。

- 3.3.20 在图3-19的水准网中,A,B 点为已知水准点, P_1 , P_2 , P_3 , P_4 为待定点,观测高差为 h_i ($i=1,2,\cdots,10$),若选未知参数为 $\tilde{X}_i = [\tilde{X}_1,\tilde{X}_2,\tilde{X}_3,\tilde{X}_4]^T = [\tilde{h}_1,\tilde{h}_2,\tilde{h}_9,\tilde{h}_{10}]^T$,试列出观测方程。
- 3.3.21 在题3.2.16中,观测值仍为 l_1, l_2, h 和 S,但未知参数设为 $\tilde{X} = [\tilde{X}_1, \tilde{X}_2, \tilde{X}_3]^T = [\tilde{l}_1, \tilde{l}_2, \tilde{h}]^T$,试列出按间接平差的观测方程。
- 3.3.22 在图3-20的测角网中,A,B,C点为已知三角点,P点为待定点,角度观测值为 $\beta_i(i=1,2,3,4,5)$ 。若选 P点坐标为未知参数, $\tilde{X}_{2,1} = [\tilde{X}_p, \tilde{Y}_p]^T$,试列出观测方程。

第四节 附有限制条件的间接平差函数模型

- 3.4.23 在图3-21的水准网中,A,B 点为已知水准点, P_1 , P_2 , P_3 , P_4 点为待定点,已知 P_2 点至 P_4 点间的高差为固定值 $\Delta H_{24}=1200\mathrm{m}$,观测高差为 h_i ($i=1,2,\cdots,6$)。若选各待定 点高程为未知参数 $\tilde{X}=[\tilde{X}_1,\tilde{X}_2,\tilde{X}_3,\tilde{X}_4]^\mathrm{T}$,试列出观测方程和限制条件。
- 3.4.24 在图3-22的测角网中,A,B 点为已知点,C,D 点为待定点,已知 A,B 点的坐标及 AC 边的坐标方位角 T_{AC} ,角度观测值为 $\beta_i(i=1,2,\cdots,9)$ 。现选取 C,D 两点坐标为未知参数 $\widetilde{X} = [\widetilde{X}_C,\widetilde{Y}_C,\widetilde{X}_D,\widetilde{Y}_D]^{\rm T}$,试列出观测方程和限制条件。

- 3.4.25 在图3-23的测角网中,已知 A、B 点坐标及 AC 边的坐标方位角 T_{AC} 和 CD 边的 边长 S_{CD} ,观测向量为 $L = [\beta_1, \beta_2, \cdots, \beta_9]^T$,现选取 C, D 点坐标为未知参数 $\tilde{X} = [\tilde{X}_C, \tilde{Y}_C, \tilde{X}_D, \tilde{Y}_D]^T$,试列出观测方程和限制条件。
- 3.4.26 在图3-24的直角三角形中,已知 $\angle BAC = 90^{\circ}$,边长观测值为 L_1, L_2, L_3 。 若选取 AB, AC 及 BC 边边长为未知参数, $\tilde{X} = [\tilde{X}_1, \tilde{X}_2, \tilde{X}_3]^{\mathrm{T}}$,试列出观测方程和限制条件。
- 3.4.27 在图3-25的边角网中, A, B 点为已知点, P_1 , P_2 点为待定点, 边长观测值为 $S_i(i=1,2,3)$, 角度观测值为 $\beta_i(i=1,2,3,4)$ 。 现选取 P_1 点、 P_2 点的坐标及 P_1P_2 边边长为未知参数, $\widetilde{X} = [\widetilde{X}_1, \widetilde{Y}_1, \widetilde{X}_2, \widetilde{Y}_2, \widetilde{S}_{12}]^T$, 试列出观测方程和限制条件。
- 3.4.28 在图3-26的测边网中,A,B 点为已知点,C,D 点为待定点,边长观测值为 S,(i=1,2,3,4,5),CD 边的坐标方位角 T_{CD} ,为精确测定值(固定值),若选取 C,D 点坐标为未知参数 $\widetilde{X} = [\widetilde{X}_C, \widetilde{Y}_C, \widetilde{X}_D, \widetilde{Y}_D]^T$,试列出观测方程和限制条件。
 - **3.4.29** 在图3-27的水准网中,A,B 点为已知水准点, P_1 , P_2 点为待定水准点,观测高差

为 h_1, h_2, h_3 和 h_4 。若设三段高差为未知参数, $\tilde{X} = [\tilde{X}_1, \tilde{X}_2, \tilde{X}_3]^T$ 如图所示,试按附有限制条件的间接平差列出平差函数模型。

第五节 附有限制条件的条件平差函数模型

- 3.5.30 在图3-28的水准网中,A,B 点为已知水准点, P_1 , P_2 , P_3 , P_4 , P_5 点为待定点,高差观测值为 h_i ($i=1,2,\cdots,9$),若选 AP_1 , P_1P_5 , P_1P_2 , P_2P_5 四段线路的高差为未知参数, \tilde{X} = $[\tilde{X}_1,\tilde{X}_2,\tilde{X}_3,\tilde{X}_4]^{\text{T}}$ (如图示),试按附有限制条件的条件平差列出条件方程和限制条件。
- 3.5.31 在图3-29的水准网中, A, B 点为已知点, P_1 , P_2 点为待定点, 观测高差为 $h_i(i=1,2,3,4,5,6)$, 若选 AP_1 , P_1P_2 及 P_2B 路线的三段高差为未知参数, $\tilde{X}_i = [\tilde{X}_1, \tilde{X}_2]^T$, 试按 附有限制条件的条件平差列出条件方程和限制条件。
- 3.5.32 在图3-30的侧角网中,A,B 点为已知点,C,D,E 点为待定点。为了确定 C, D 点坐标及 A , E 点间边长及 AC 边的坐标方位角,观测全部内角,得角度观测值向量为 L = $\begin{bmatrix} \beta_1, \beta_2, \cdots, \beta_9 \end{bmatrix}^T$,若设 C , D 点坐标及边长 S_{AE} 及坐标方位角 T_{AC} 为未知参数, \widetilde{X} = $\begin{bmatrix} \widetilde{X}_C, \widetilde{Y}_C, \widetilde{X}_D, \widetilde{Y}_D, \widetilde{S}_{AE}, \widetilde{T}_{AC} \end{bmatrix}^T$,试按附有限制条件的条件平差列出平差函数模型。
- 3.5.33 在图3-31的水准网中,A,B,C,D,E,F 均为待定水准点,为确定各待定点高程,得观测高差值为 $h_i(i=1,2,\cdots,8)$,设 A 点至E 点高差为已知值, $\Delta H_{AE}=48.280$ m,并选

取 $A \subseteq B$ 点, $B \subseteq C$ 点, $C \subseteq E$ 点间的高差分别为未知参数 X_1, X_2, X_3 (如图示),试列出条件方程和限制条件。

- 3.5.34 在图3-32的测角网中,A,B 两点为已知三角点,C,D 两点为待定点,现已知 A,B 点坐标及边长 S_{BC} 、方位角 T_{AC} ,观测角值为 β_i ($i=1,2,\cdots,9$),若选取 C 点坐标和 AD 边的 坐标方位角 T_{AD} 为未知参数, $\tilde{X}=[\tilde{X}_C,\tilde{Y}_C,\tilde{T}_{AD}]^T$,试列出按附有限制条件的条件平差时的平差函数模型。
- **3.5.35** 在图3-33的水准网中,D 点为已知点,A,B,C 点为待定点,观测高差向量为 $\tilde{L}_{5,1}$ = $[\hat{h}_1, \hat{h}_2, \hat{h}_3, \hat{h}_4, \hat{h}_5]^{\text{T}}$ 。若选取 A 点高程及 A 至 D 点间高差为未知参数 \tilde{X} = $[\tilde{X}_1, \tilde{X}_2]^{\text{T}}$,试列出其条件方程和限制条件。

3.5.36 在图3-34中,A,B 点为已知点, P_1 , P_2 点为待定点,边长观测值为 $S_1 \sim S_4$,角度观测值为 $\beta_1 \sim \beta_4$ 。设 P_1 点坐标及 P_1B 边边长为未知参数, $\tilde{X} = [\tilde{X}_1, \tilde{Y}_1, \tilde{S}_1]^T$,试列出条件方

第六节 条件方程线性化

3.6.37 同3.5.34题。试将图 3-32 中的条件方程

$$\frac{\sin \bar{\beta}_1}{\sin \bar{\beta}_6} \frac{\sin \bar{\beta}_3}{\sin \bar{\beta}_2} \frac{\sin \bar{\beta}_3}{\sin \bar{\beta}_4} - 1 = 0$$

线性化(令 $\bar{\beta}_i = \beta_i + \Delta_i$)。

3.6.38 试将边长观测方程

$$\sqrt{(\tilde{X}_P - X_A)^2 + (\tilde{Y}_P - Y_A)^2} - \tilde{S}_1 = 0$$

线性化(式中, X_A , Y_A 为已知坐标, \tilde{X}_P , \tilde{Y}_P 为未知参数的真值, \tilde{S}_1 为观测边长 S_1 的真值,令 $\tilde{X}_P = X_P^0 + x_P$, $\tilde{Y}_P = Y_P^0 + y_P$, $\tilde{S}_1 = S_1 + \Delta_1$)。

3.6.39 设有边长条件方程

$$S_{AB} \frac{\sin \bar{\theta}_2}{\sin \hat{\theta}_3} \frac{\sin \bar{\theta}_3}{\sin \hat{\theta}_6} - \bar{S}_{AD} = 0$$

试将其线性化(式中, \tilde{S}_{AD} 为未知参数的真值,令 $\tilde{S}_{AD}=S_{AD}^0+S_{AD},S_{AB}$ 为已知边长, $\tilde{\beta}_i$ (i=1, 2,…,6)为观测角的真值,令 $\tilde{\beta}_i=\beta_i+\Delta_i$)。

3.6.40 试将边长限制条件

$$\sqrt{(\tilde{X}_D - X_A)^2 + (\tilde{Y}_D - Y_A)^2} - \tilde{S}_{AD} = 0$$

线性化(式中, \tilde{X}_D , \tilde{Y}_D , \tilde{S}_{AD} 为未知参数的真值, X_A , Y_A 为已知坐标。令 $\tilde{X}_D = X_D^0 + x_D$, $\tilde{Y}_D = Y_D^0 + y_D$, $\tilde{S}_{AD} = S_{AD}^0 + S_{AD}$)。

3.6.41 试将方位角条件

$$T_{AB} - \tilde{\beta}_1 - \tilde{\beta}_4 - \arctan \frac{\widetilde{Y}_D - Y_A}{\widetilde{X}_D - X_A} = 0$$

线性化(式中, \widetilde{X}_D , \widetilde{Y}_D 为未知参数的真值,令 $\widetilde{X}_D = X_D^0 + x_D$, $\widetilde{Y}_D = Y_D^0 + y_D$; X_A , Y_A , T_{AB} 为已知值, $\widetilde{\beta}$;为观测角的真值, $\widetilde{\beta}$;= β ;+ Δ ;)。

3.6.42 在图3-35中, β_i (i=1,2,3)为观测角值,若选取 C 点坐标为未知参数, $\widetilde{X} = [\widetilde{X}_C, \widetilde{Y}_C]^T$,并令 $\widetilde{X}_C = X_C^0 + x_C$, $\widetilde{Y}_C = Y_C^0 + y_C$, $\widetilde{\beta}_i = \beta_i + \Delta_i$,试写出线性形式的观测方程式。

3.6.43 在图3-36的测边网中, A, B, C 点为已知点, P 点为待定点, S_i (i = 1, 2, 3)为观测边长值。若选取 P 点坐标为未知参数, $\tilde{X} = [\tilde{X}_P, \tilde{Y}_P]^T$, 试写出线性形式的观测方程(令 $\tilde{X}_P = X_P^0 + x_P$, $\tilde{Y}_P = Y_P^0 + y_P$, $\tilde{S}_i = S_i + \Delta_i$)。

第四章 条件平差

第一节 条件平差原理

4.1.01 在图4-1中,已知 A, B 点高程为HA=62.222m, HB=61.222m, 观测高差值及路 线长度如下:

$$h_1 = -1.003$$
m, $s_1 = 2$ km

$$h_2 = -0.500 \text{m}, \quad s_2 = 1 \text{km}$$

$$h_3 = -0.501$$
m, $s_3 = 0.5$ km

- (1)试列出改正数条件方程式;
- (2)按条件平差原理计算各段高差的平差值 h_i。
- 4.1.02 在图4-2中,已知角度独立观测值及其中误差为:

$$L_1 = 63^{\circ}19'40'', \quad \sigma_1 = \pm 30''$$

$$L_2 = 58^{\circ}25'20'', \quad \sigma_2 = \pm 20''$$

$$L_3 = 301^{\circ}45'42''$$
, $\sigma_3 = \pm 10''$

- (1)试列出改正数条件方程;
- (2)试按条件平差法求∠ACB 的平差值。

- 4.1.03 在图4-3中,同精度观测了 $\alpha, \beta, \gamma, \delta$ 角如图示,试按条件平差法求 γ 角的平差 值计算式。
- 4.1.04 在测站 A 点,同精度观测了三个角如图 4-4,其值为 $L_1 = 45^{\circ}02^{\prime}20^{\prime\prime}, L_2 =$ 85°03′30″, L₃ = 40°01′15″, 试按条件平差法求各角平差值 L_i。

图 4-3

- 4.1.05 在图4-5中,A,B,C 三点在一直线上,测出了 AB,BC 及 AC 的距离,得 4 个独立观测值; l_1 =200.010m, l_2 =300.050m, l_3 =300.070m, l_4 =500.090m。若令 100m 量距的权为单位权,试按条件平差法确定 A,C之间各段距离的平差值 l_1 。
 - 4.1.06 在图4-6中同精度观测了测站 A 周围的角度,得观测值为:

$$l_1 = 60^{\circ}00'00'', \quad l_2 = 60^{\circ}00'00''$$

 $l_3 = 240^{\circ}00'25'', \quad l_4 = 120^{\circ}00'05''$

设 Q=I,试用条件平差求各角平差值 l。

图 4-5

图 4-6

第二节 法方程组成与解算

4.2.07 设有等精度独立观测值 $L_i(i=1,2,\cdots,7)$ 所列的条件方程为:

$$V_1 - V_2 + V_3 + 2 = 0$$

 $V_3 + V_4 + V_7 + 1 = 0$
 $V_2 + V_5 + V_6 + V_7 - 1 = 0$

试按条件平差组成法方程。

4.2.08 设有水准网如图4-7所示,已列出 4个条件方程为:

$$V_2 - V_5 - V_7 - 2 = 0$$

$$V_3 - V_6 + V_7 + 4 = 0$$

$$- V_5 - V_6 + V_8 + 4 = 0$$

$$V_1 + V_4 + V_8 = 0$$

水准路线长度为:

$$S_1 = 1 \text{km}$$
, $S_2 = 2 \text{km}$, $S_3 = 2 \text{km}$, $S_4 = 1 \text{km}$, $S_5 = 2 \text{km}$, $S_6 = 2 \text{km}$, $S_7 = 2.5 \text{km}$, $S_8 = 2.5 \text{km}$

令 1km 水准路线的观测高差为单位权观测,试组成法方程并进行和检核计算。

4.2.09 设有条件方程为:

$$V_1 - V_2 + V_5 + V_7 - V_8 + 4.20 = 0$$

2.15 $V_1 - 3.26V_2 + 0.79V_4 - 0.21V_5 + 1.60V_6 - 2.32V_8 + 13.60 = 0$

 $1.70V_1 + 2.31V_2 + 0.82V_3 - 1.79V_5 + 3.46V_7 + 1.56V_8 + 21.50 = 0$

观测值的先验协因数阵为对角阵 Q。

$$Q = \begin{bmatrix} 0.61 & & & & & & & & & \\ & 2.13 & & & & & & & & \\ & & 1.78 & & & & & & & \\ & & & 0.89 & & & & & \\ & & & & 1.44 & & & & \\ & & & & & 1.50 & & & \\ & & & & & 2.57 & & \\ & & & & & & 1.36 \end{bmatrix}$$

试组成法方程。

4.2.10 解算法方程:

$$47.44K_a - 16.40K_b - 28.22 = 0$$
$$-16.40K_a + 81.24K_b - 31.84 = 0$$

已知[
$$\frac{as}{p}$$
] = +31.04,[$\frac{bs}{p}$] = +64.84。

4.2.11 试用高斯约化法解算4.2.08题组成的法方程:

$$\begin{bmatrix} 6.5 & -2.5 & 2.0 & 0 \\ -2.5 & 6.5 & 2.0 & 0 \\ 2.0 & 2.0 & 6.5 & 2.5 \\ 0 & 0 & 2.5 & 4.5 \end{bmatrix} \begin{bmatrix} k_a \\ k_b \\ k_c \\ k_d \end{bmatrix} - \begin{bmatrix} 2 \\ -4 \\ -4 \\ 0 \end{bmatrix} = 0$$

4.2.12 试按平方根法解算 4.2.11 题的法方程。

4.2.13 试解算法方程:

$$3.00k_a + 2.00k_b + 1.00k_c - 14.00 = 0$$
$$2.00k_a + 4.00k_b + 2.00k_c - 20.00 = 0$$
$$1.00k_a + 2.00k_b + 3.00k_c - 14.00 = 0$$

已知[
$$\frac{as}{p}$$
] = +6.00,[$\frac{bs}{p}$] = +8.00,[$\frac{cs}{p}$] = +6.00°

4.2.14 试解算法方程组:

$$\begin{bmatrix} 8.11 & 11.11 & 0.31 \\ 11.11 & 37.24 & -18.20 \\ 0.31 & -18.20 & 53.02 \end{bmatrix} \begin{bmatrix} k_a \\ k_b \\ k_c \end{bmatrix} - \begin{bmatrix} -4.20 \\ -13.60 \\ -21.50 \end{bmatrix} = 0$$

已知[
$$\frac{as}{p}$$
] = +19.53,[$\frac{bs}{p}$] = +30.15,[$\frac{cs}{p}$] = +35.13。

4.2.15 试用高斯约化法解算法方程组:

$$\begin{bmatrix} 12.00 & 2.00 & -8.00 & -9.34 \\ 2.00 & 12.00 & 2.00 & -3.56 \\ -8.00 & 2.00 & 12.00 & 9.59 \\ -9.34 & -3.56 & 9.59 & 196.81 \end{bmatrix} \begin{bmatrix} k_a \\ k_b \\ k_c \\ k_d \end{bmatrix} - \begin{bmatrix} 0.87 \\ 1.12 \\ -0.41 \\ -7.00 \end{bmatrix} = 0$$

已知[
$$\frac{as}{b}$$
] = -3.34,[$\frac{bs}{b}$] = +12.44,[$\frac{cs}{b}$] = +15.59,[$\frac{ds}{b}$] =193.50。

4.2.16 试用高斯约化法解算法方程组:

$$\begin{bmatrix} 3.00 & 0 & 0 & 0 & 1.00 & -1.67 \\ 0 & 3.00 & 0 & 0 & 0 & 1.00 & -1.58 \\ 0 & 0 & 3.00 & 0 & 0 & 1.00 & 0.52 \\ 0 & 0 & 0 & 3.00 & 0 & 1.00 & 0.28 \\ 0 & 0 & 0 & 0 & 3.00 & 1.00 & 0.28 \\ 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 5.00 & 0 \\ -1.67 & -1.58 & 0.52 & 0.28 & 2.45 & 0 & 34.72 \end{bmatrix} \begin{bmatrix} k_a \\ k_b \\ k_c \\ k_d \\ k_e \\ k_f \\ k_g \end{bmatrix} - \begin{bmatrix} 44.00 \\ -7.00 \\ 28.00 \\ -24.00 \\ 33.00 \\ 34.00 \end{bmatrix} = 0$$

已知
$$\left[\frac{as}{p}\right] = +2.33, \left[\frac{bs}{p}\right] = +2.42, \left[\frac{cs}{p}\right] = +4.52, \left[\frac{ds}{p}\right] = +4.28$$
 $\left[\frac{es}{p}\right] = +6.45, \left[\frac{fs}{p}\right] = +10.00, \left[\frac{gs}{p}\right] = +34.72$ 。

第三节 水准网条件平差

一、条件方程的列立

- **4.3.17** 在图4-8的水准网中, A 点为已知点, 其高程为 $H_A = 10.00$ m, B, C 点为待定点, 观测高差为 h = [1.32, 0.33 0.91, 2.41, 1.66]Tm, 各段高差的权相等, 试列出按条件平差的条件方程式。
 - 4.3.18 有水准网如图4-9,试列出该网的改正数条件方程。

已知数据: $H_A = 31.100$ m, $H_B = 34.165$ m。

观測高差值: $h_1 = +1.001$ m, $h_2 = +1.002$ m, $h_3 = +0.060$ m, $h_4 = +1.000$ m, $h_5 = +0.500$ m, $h_6 = +0.560$ m, $h_7 = +0.504$ m, $h_8 = +1.064$ mo

路线长度: $S_1 = 1 \text{km}$, $S_2 = 2 \text{km}$, $S_3 = 2 \text{km}$, $S_4 = 1 \text{km}$,

 $S_5 = 2 \text{km}$, $S_6 = 2 \text{km}$, $S_7 = 2.5 \text{km}$, $S_8 = 2.5 \text{km}$

4.3.19 试列出图4-10中水准网的条件方程。

已知起算数据: $H_A = 238.744$ m, $H_B = 258.732$ m, $H_C = 241.431$ m, $H_D = 262.160$ m。观测值:

$$h_1 = +13.019 \text{m}, h_2 = -3.092 \text{m}, h_3 = +2.175 \text{m}, h_4 = +6.949 \text{m}$$

$$h_5 = +7.251$$
m, $h_6 = -5.255$ m, $h_7 = +8.238$ m,

$$S_1 = 20.4 \text{km}$$
 $S_2 = 18.8 \text{km}$ $S_3 = 23.0 \text{km}$ $S_4 = 19.5 \text{km}$

$$S_5 = 16.1 \text{km} S_6 = 23.3 \text{km} S_7 = 17.1 \text{km}$$

4.3.20 在图4-11所示的水准网中, A 点为已知点, $H_A = 103.953$ m, $P_1 \sim P_4$ 点为待定点, 设各路线长度相等, 观测高差为:

$$h_1 = 0.050$$
m, $h_2 = 3.452$ m, $h_3 = 2.398$ m, $h_4 = 3.404$ m, $h_5 = 1.000$ m, $h_6 = 1.020$ m.

试按条件平差列立条件方程式。

二、平差计算与精度评定

- 4.3.21 题同4.3.17。试按条件平差计算各段高差的平差值 £, 及各待定点高程。
- 4.3.22 题同4.2.20。试按条件平差计 算各段高差的平差值及单位权方差 $\hat{\sigma}_0^2$ 。
- 4.3.23 在图4-12的水准网中,A,B点为已知点,C,D点为待定点。已知 H_A = 15000m, H_B = 18303m,高差观测值为 h = [1.258,2.041,1.571,1.724] Tm ,试按条件平差求各段高差平差值 \hat{h}_i 及C,D点高程平差值及单位权方差估值 σ_0^2 。
 - 4.3.24 题同4.2.08题及4.2.11题。
- (1)试在高斯约化表中计算 V^TPV 及单位权方差估值 $\hat{\sigma}_0^2$;

- (2)计算平差后 P_2 点高程的权倒数及 其方差 $\sigma_{\hat{p}}^2$ 。(设 $\hat{p} = \hat{H}_{P_2} = H_A + \hat{h}_1 + \hat{h}_2$)
- 4.3.25 在图4-13的水准网中,观测高 差及路线长度见下表:

	观製高差が	路线长度
序号	(m)	(km)
1	10, 356	1.0
2	15.000	1.0
3	20.360	2.0
4	14.501	2.0
5	4.651	1.0
6	5.856	1.0
7	10.500	2.0

已知 A,B 点高程为:

 $H_A = 50.000 \text{m}, H_B = 40.000 \text{m}$

试用条件平差法求:

- (1)各观测高差的平差值 h_i ;
- (2)平差后 P_1 到 P_2 点间高差的中误差 $\sigma_{\varphi} = \sigma_{h_{12}}$ 。
- **4.3.26** 水准网图4-14的观测高差及水准路线长度见下表: 试按条件平差求:
- (1)高差平差值 h;;
- (2)A 点至E 点平差后高差的中误差 oher;
- (3)E 点至C 点平差后高差的中误差 ohrc。

	观测高差 h	路线长度
序号	(m)	(km)
1	189.404(m)	3.1
2	736.977	9.3
3	376.607	59.7
4	547.576	6.2
5	273, 528	16.1
6	187.274	35.1
7	274.082	12.1
8	86.261	9.3

4.3.27 在图4-15的水准网中,已知 A,B,C 点高程为 $H_A=10.000$ m, $H_B=10.500$ m, $H_C=$

图 4-14

12.000m, P_1 , P_2 点为待定点,高差观测值为 h = [2.500, 2.000, 1.352, 1.851]Tm, 其权阵为 P,

- (1)试按条件平差法求高差平差值 £;
- (2)试求平差后 P_2 点高程的权倒数 $Q_p = \frac{1}{P_{H_{p_1}}}$ 。
- 4.3.28 试求4.2.13题的 V^TPV。
- 4.3.29 试在高斯约化表中计算4.2.14题的 VTPV 和 m。
- 4.3.30 试在高斯约化表中计算4.2.15题的 VTPV。
- 4.3.31 在图4-16的水准网中, 测得各点间的高差为:

 $h_1 = +1.357 \text{m}$, $h_2 = +2.008 \text{m}$, $h_3 = +0.353 \text{m}$, $h_4 = +1.000 \text{m}$, $h_5 = -0.657 \text{m}$,

 $s_1 = 1 \text{km}, \ s_2 = 1 \text{km}, \ s_3 = 1 \text{km}, \ s_4 = 1 \text{km}, \ s_5 = 2 \text{km}$

设每公里路线观测高差的权为单位权,试求:(1)平差后 A,B 两点间高差的权倒数;(2)平差后 A,C 两点间高差的权倒数。

4.3.32 已知水准网如图 4-17,试列出:(1)平差后 P_5 点高程的函数式;(2)平差后 A 至 P_5 点间高差函数式。

第四节 测角网条件平差

一、条件方程的列立及其线性化

4.4.33 在图4-18的三角网中,已知 AB 边及 EF 边的方位角 $T_{AB} = 45^{\circ}12'17.9''$, $T_{EF} = 42^{\circ}59'00.0''$,观测角值为:

序号	观测角值 L _i (° ′ ″)	序号	观測角值 L _i (* ' ")
1	45 23 19.4	7	72 39 34.1
2	84 32 21.6	8	54 01 13.3
3	50 04 19.0	9	53 19 14.0
4	39 43 47.8	10	60 09 43.7
5	64 04 51.0	11	59 41 17.2
6	76 11 18.5	12	60 09 01.1

试列出条件方程式。

4.4.34 在图4-19的大地四边形中,角度观测值为:

序号	观测角值 L _i (° ′ ″)	序号	观测角值 L _i (* ′ ″)
1	61 07 57	5	29 14 35
2	38 28 37	6	70 22 00
3	38 22 21	7	49 26 16
4	42 01 15	8	30 57 02

试按条件平差列出条件方程。

图 4-18

图 4-19

4.4.35 已知中点五边形(如图4-20)各角观测值为:

序号	观 瀕值 L _i (* ′ ″)	序号	观 测 值 L _i (* ´ *)
1	66 59 22	9	31 48 48
2	39 20 21	10	65 51 43
3	67 49 42	11	73 39 33
4	40 48 53	12	71 21 32
5	47 31 05	13	76 19 44
6	56 08 43	14	56 19 3 6
7	58 57 21	15	82 19 02
8	64 43 27		

4.4.36 试列出图4-21所示的附合三角网中的方位角条件和基线条件方程式。 已知起算数据为:

$$S_1 = 14293.652 \text{m}, S_2 = 10588.967 \text{m},$$

 $T_1 = 89^{\circ}40'59.98'', T_2 = 346'39'27.05''$

观测角值为:

•	角号	观测值 (* ′ ′ ′)	角号	观 测值 (* ^ *)	角号	观测值 (° ′ ″)
	1	47 08 06.69	4	55 34 13.86	7	40 27 34.65
	2	52 32 48.88	5	47 06 48.81	8	65 34 00.85
	3	80 19 04.43	6	77 18 57.33	9	73 58 24.50

- **4.4.37** 指出图4-22中,条件方程的总数和各类条件方程的个数,并列出全部条件方程式。
- **4.4.38** 试列出图4-23的全部平差值条件方程式。图中 A,B 点为已知点,C,D,E,F 点为待定点。

- 4.4.39 试列出图4-24的全部平差值条件方程式。
- **4.4.40** 在图4-25中,A,B 点为已知点,P 点为待定点,观测边长 S,方位角 T_1 和 T_2 ,试 按条件平差列出平差值条件方程式。
 - 4.4.41 指出图4-26中各图形按条件平差时条件方程的总数及各类条件的个数。
 - 4.4.42 试列出图4-27中扇形三角网的条件方程式。
 - **4.4.43** 设用三角高程测量测定图4-28中各点间的高差,测得竖角 a_1, a_2 及 a_3 ,平距 S_1 ,

图 4-26

(f)

 S_2 及 S_3 ,在各站量得仪器高 i_1 , i_2 及 i_3 ,瞄准高 j_1 , j_2 及 j_3 ,地球曲径差和大气折光差改正为 f_1 , f_2 及 f_3 。设 S, i, j 及 f 均无误差,试列出该图形的条件方程式。

- **4.4.44** 在图4-29中, OC 方向为已知方向, AOE 是一直线, 观测角值为 l_1, l_2, \cdots, l_7 , 试 按条件平差列出全部条件方程式。
- 4.4.45 有测角网如图4-30,其中,A,B 点为已知点, $P_1 \sim P_6$ 点为待定点,观测角为 $\beta_i(i=1,2,\cdots,23)$,若按条件平差,试列出平差值条件方程式(非线性条件不必线性化)。
- 4.4.46 在图4-31中,已知中点三边形中边长 AB = 2080.999m,今用同精度测得各角值如下表:

角号	观 測 值 (* ′ ″)	角号	观衡值 (* ′ ′′)	角号	观 测 值 (* / */)
1	106 50 40.3	4	20 58 20.2	7	28 26 12.5
2	42 16 38.6	5	125 20 36.8	8	23 45 11.9
3	30 52 46.4	6	33 40 57.1	_ 9	127 48 40.7

图 4-29

试用条件平差法求:

- (1)各角平差值;
- (2)平差后 DC 边边长及其相对中误差。
- 4.4.47 同精度测得图4-32的中点四边形的各角度,列表如下:

角号	观测值 (* ′ ″)	角号	观测值 (°′″)	角号	观测值 (° ′″)
1	84 07 38.2	5	126 01 55.7	9	28 13 43.2
2	37 46 34.9	6	20 55 02.3	10	55 21 09.9
3	58 05 44.1	7	74 18 16.8	11	72 22 25.8
4	33 03 03.2	8	77 27 59.1	12	52 16 20.5

假定 AB 边无误差,试用条件平差法求:

- (1)各角的平差值;
- (2)平差后 CD 边的边长相对中误差。

图 4-32

- **4.4.49** 在等边三角形单锁图4-33中, A, B 点为已知点, 设无误差, C, D, E 点为待定点, 现同精度观测各角度 β_i ($i=1,2,\cdots,9$), 得各三角形闭合差分别写在相应的三角形中, 试求平差后 CD 边边长的相对中误差。
 - 4.4.50 在图4-34中,观测了测站 O上的 4个角度,得同精度观测值:

$$l_1 = 30^{\circ}00'20'', l_2 = 50^{\circ}00'00''$$

 $l_3 = 20^{\circ}00'00''$, $l_4 = 40^{\circ}00'20''$

试按条件平差求:(1)各角的平差值及平差值的协因数阵;(2)平差后 ∠AOC 的权倒数。

4.4.51 在图4-35的测角网中, A, B, C, D 点均为待定点, 观测 5 个角度, 得观测值:

$$\beta_1 = 40^{\circ}00'20''$$
, $\beta_2 = 100^{\circ}00'30''$, $\beta_3 = 50^{\circ}00'20''$,

$$\beta_4 = 120^{\circ}00'00'', \ \beta_5 = 50^{\circ}00'20''$$

其中,A 角为固定值 90°00′00″, 试按条件平差求各角平差值及其协因数阵。

4.4.52 以同精度测得图4-36中的角值为:

$$L_1 = 64^{\circ}20'38''$$
 $L_2 = 61^{\circ}34'16''$ $L_3 = 54^{\circ}05'09''$

试按条件平差法计算:

- (1) 测角中误差 σ₀;
- (2)平差值 L₁ 及 L₂ 的中误差及协方差。

图 4-36

第五节 测边网条件平差

一、条件方程的列立及其线性化

- **4.5.53** 在图4-37的测边网中,A,B 点为已知点,C,D 点为待定点, T_{AD} 为已知坐标方位角,边长观测值为 S_1 , S_2 , S_3 , S_4 , S_5 ,试按条件平差列出条件方程式及其线性条件方程。
- 4.5.54 在图4-38中,观测边长为 $S_1 \sim S_8$,试用文字符号写出按条件平差列出条件方程式(线性形式)。

图 4-37

图 4-38

- 4.5.55 在图4-39的测边网中,A,B,C点为已知点,D点为待定点,观测边长得 S_1 , S_2 , S_3 ,试按条件平差列出线性形式的条件方程。
- **4.5.56** 在图4-40的测边网中,A,B,C,D 点为已知点, P_1 , P_2 点为待定点,观测边长为 $S_i(i=1,2,\cdots,7)$:
 - (1)试列出按条件平差的条件方程式;
- (2)若已知 A 点到 P_2 点的坐标方位角 T_0 ,以及 P_1 , P_2 两点间的边长 S_0 ,应增加哪些条件方程。
- **4.5.57** 在图4-41的测边网中,观测值为 $S_i(i=1,2,\cdots,5)$, A, B 为已知点, C, D 为待定点,试按条件平差列出条件方程式。
 - 4.4.58 试按条件平差列出图4-42中扇形测边网的条件方程。

图 4-39

图 4-40

图 4-41

图 4-42

图 4-43

3 4-44

4.5.59 用光电测距仪观测了图4-43中三边网的全部边长 S_i ($i=1,2,\cdots,13$),试按条件平差列出全部条件方程式。

二、平差计算与精度评定

4.5.60 在独立测边网图4-44中,观测了全部边长,观测值列于下表,试按条件平差求边 40

长改正数 V_s 及平差值 \S (设 $Q_s = I$)。

观测值表

边号	观测边长(m)	边号	观测边长(m)
Sı	3 110.398	S ₆	3 813.557
S_2	2 004 401	S ₇	2 526.140
S ₃	3 921.397	S ₈	3 588.582
S ₄	3 608.712	S	2 540.378
S ₅	1 712.624		

4.5.61 在图4-45的测边网中,A,B,C 点为已知点,P 点为待定点,边长观测值为:

$$S_1 = 3 128.86 m$$

$$S_2 = 3367.20$$
m

$$S_3 = 6129.88 \text{m}$$

已知边长为:

$$S_{AB} = 4949.186$$
m

$$S_{BC} = 6.354.379$$
m

$$S_{AC} = 9 \ 256.263 \text{m}$$

试按条件平差求边长改正数 V_S ,平差值 $S(Q_S = I)$ 及其协因数阵 Q_V 及 Q_S 。

图 4-45

第六节 边角网条件平差

一、条件方程的列立与线性化

4.6.62 在图4-46的边角网中,A,B 点为已知点, T_{BD} 为已知坐标方位角,C,D 点为待定点,角度观测值为 β_1 , β_2 , β_3 ,边长观测值为 $S_1 \sim S_5$ 。若按条件平差,共有几个条件,试列出条件方程式。

FR 4-46

图 4-47

4.6.63 在图4-47的边角网中, A, B, C, D 点均为符定点, 边长观测值为 $S_1 \sim S_5$, 角度

观测值为 $L_1 \sim L_4$, 试按条件平差列出全部平差值条件方程式及其线性形式。

- **4.6.64** 在图4-48的边角网中,A,B 点为已知点, $P_1 \sim P_4$ 为待定点,已知 P_2P_3 边的边长和方位角分别为 S_0 和 α_0 ,令测得角度 L_i ($i=1,2,\cdots,14$),边长 S_1 , S_2 。(1)对该网进行条件平差时,共有几个条件,每种条件有几个?(2)试列出全部条件方程式(不必化线性)。
- 4.6.65 在图4-49的边角网中,A,B,C 点为已知点,D,E 点为待定点,角度观测值为 β_1 ~ β_{14} ,边长观测值为 S_1 , S_2 。若按条件平差求:
 - (1)共有几个条件方程?各种条件有几个?
 - (2)试列出固定边条件及其线性形式;
 - (3)试列出由 S_{AB} 边推算到 S_1 边的边长条件及其线性形式。

图 4-48

图 4-49

- **4.6.66** 在图4-50中, A, B, C 点为已知点, T_{AP} 为已知方位角, P 点为待定点, 观测边长 S_1 , S_2 , S_3 , 角度观测值为 B, 试按条件平差列出线性形式的条件方程。
- **4.6.67** 在图4-51的边角网中, A, B 点为已知点, C, D 点为待定点, T_{AC} 和 S_{BD} 分别为已知方位角和边长。观测值为全部角度 $\beta_1 \sim \beta_7$ 和边长 S_1 , S_2 , 试按条件平差列出全部条件方程(不必线性化)。

图 4-50

图 4-51

- 4.6.68 在图4-52的边角网中,A,B,C 为已知三角点,P₁ 和 P₂ 为待定点,观测全部边长 S₁~S₆ 和角度 β ₁, β ₂, β ₃,试按条件平差法列出平差值条件方程及其线性形式的条件方程。
 - 4.6.69 在图4-53的边角网中, A, B 点为已知点, C, D, E 点为待定点, 观测边长得 S_1 ~

 S_7 ,观测角度得 β ,试用文字符号列出条件方程式及其线性形式。

4.6.70 用光电测距仪测出了图4-54中的全部边长 $S_i(i=1,2,\cdots,8)$,并用经纬仪测出了部分角度 $\beta_i(i=1,2,\cdots,11)$,若按条件平差,试计算多余观测数 r,并列出全部条件方程式。

二、平差计算与精度评定

4.6.71 在图4-55所示的直角三角形 ABC中,为确定 C 点坐标观测了边长 S_1 , S_2 和角度 β ,得观测值列于下表,试按条件平差法求:(1)观 测值的平差值;(2)C 点坐标的估值。

	观测值	中误差
β	45°00′15″	± 10"
S_1	215.286m	±2cm
S_2	152.223m	±3cm

4.6.72 在图4-56的三角形 *ABC* 中, 测得下列观测值:

图 4~55

 $\beta_1 = 52^{\circ}30'12''$

 $\beta_2 = 56^{\circ}18'20''$

 $\beta_3 = 71^{\circ}11'48''$

 $S_1 = 135.612$ m

 $S_2 = 119.180 \text{m}$

设测角中误差为±10°,边长观测值的中误差均为±2.0cm。

- (1)试按条件平差法列出条件方程;
- (2)试计算观测角度和边长的平差值。

图 4-56

图 4-57

4.6.73 有独立边角网如图4-57,边长观测值为 $S_1 \sim S_5$,角度观测值为 $\beta_1 \sim \beta_4$,其观测数据见下表:

边长	观测值(m)	角度	角度观测值 (° ′ ″)
S_{t}	2 107.841	β_1	59 16 08.72
S_2	3 024.710	β_2	44 07 55.17
S_3	2 751.098	β_3	36 47 59.03
S ₄	4 278.372	β_4	58 40 24.13
S ₅	3 499.105		

已知 $\sigma_{\beta} = \pm 0.7$ ", $\sigma_{S} = 5$ mm + $10^{-6} \cdot S$, 若按条件平差法平差,

- (1)列出全部条件方程式;
- (2)求出观测值的改正数及平差值。
- 4.6.74 有平面直角三角形 ABC 如图 4-58,测出边长 S_1 、 S_2 和角度 β ,其观测值及其中误差为:

$$S_1 = 416.050 \text{m}, \quad \sigma_{S_1} = \pm 2.0 \text{cm}$$

$$S_2 = 202.118$$
m, $\sigma_{S_2} = \pm 1.2$ cm

$$\beta = 29^{\circ}03'48'', \qquad \sigma_{\beta} = \pm 8.0 \text{cm}$$

- (1)试按条件平差列出条件方程式;
- (2)求出观测值的平差值及其协因数阵与协方差阵。
- **4.6.75** 在图4-59中,B 和C点的位置已知为固定值(见下表):

测得下列独立观测值:

$\beta_1 = 17^{\circ}11'15''$,	$\sigma_{\beta_1} = \pm 10^{\circ}$
$\beta_2 = 119^{\circ}09'39''$,	$\sigma_{\beta_2} = \pm 10''$
$\beta_3 = 43^{\circ}38'54''$,	$\sigma_{m{eta}_3} = \pm 10''$
$S_i = 1404.615m$,	$\sigma_{S_1} = \pm 8 \text{cm}$
$S_2 = 1110.082$ m.	- — ± 4"

点号	X(m)	Y(m)
В	1000.000	1000.000
С	714.754	1380.328

- (1)试按条件平差求各观测值的平差值及其协方差阵;
- (2) 试求 A 点坐标的最小二乘估值及其协方差阵。

图 4-58

图 4-59

第七节 相关条件平差

- 4.7.76 设有水准网如图4-60。
- (1)已知 A, B, C 点高程的协因数阵为 Q_H :

$$Q_H = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

独立观测值 h_1, h_2, h_3 的协因数阵为 $Q_h = I$,试求平差后 P 点高程平差值的权 P_{H_p} 。

(2)若 A,B,C 点高程的协因数阵为:

$$Q_H = \left[\begin{array}{rrr} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right]$$

试求权 Pff。

4.7.77 有三角网如图4-61所示。已知数据为:

点 号	X(km)	Y(km)	S(km)	Т	至何点
A	2.00	1.00	√2	225"00'00.0"	В
В	1.00	0.00	√2	135°00′00.0″	C
C	0.00	1.00			

角度观测值为:

角号	观测值 L (° ′ ″)	角号	观测值 L (° ′ ″)
1	90 00 03	4	89 59 57
2	44 59 59	5	44 59 59
3	45 00 01	6	45 00 04

设方向观测值为单位权独立观测值,试以角度为相关观测值按相关条件平差法,求:

- (1)列条件方程式;
- (2)计算改正数 V 及平差值;
- (3)计算 P 点坐标平差值 X_P 和 Y_P 。

图 4-60

图 4-61

4.7.78 已知某段距离的相关观测值为:

$$L_1 = 650.10 \text{m}, L_2 = 650.18 \text{m}$$

 L_1 与 L_2 的协因数阵为: $Q_L = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ 。

试按相关条件平差法求这段距离的最或是值及权。

图 4-62

图 4-63

4.7.79 有一单一水准路线如图4-62。A, B 两点高程分别为 H_A 和 H_B ,其权逆阵为:

$$Q_{H} = \begin{bmatrix} Q_{a} & Q_{ab} \\ Q_{ab} & Q_{b} \end{bmatrix}$$

高差观测值为 h_1,h_2,h_3 ,其权阵为 $P_L=I$,高差与高程之间互相独立,试按相关条件平差法求 46

C, D 两点高程平差值。

4.7.80 有水准网如图4-63。已知 A, B 两点高程 H_A , H_B 的权倒数为 2, 其相关权倒数为 -1。又知独立观测值 $h_1 \sim h_6$ 的权均为 1, 试求平差后 C 点高程的权。

第八节 导线网条件平差

4.8.81 在图4-64的单一附合导线上观测 4个左转折角和 3条边长,其中,B,C 点为已知点,2,3 点为待定导线点。已知起算数据为:

 $X_B = 203020.348 \text{m},$ $X_C = 203059.503 \text{m}$ $Y_B = -59049.801 \text{m},$ $Y_C = -59796.549 \text{m}$ $T_{AB} = 226^{\circ}44'59'',$ $T_{CD} = 324^{\circ}46'03''$

观测值及其中误差为:

点 号	观 测角 β (* ´´)	观测边长 S(m)	备 注
B(1) 2 3 C(4)	230 32 37 180 00 42 170 39 22 236 48 37	204. 952 200. 130 345. 153	测角中误差: σ _β = ±5" 边长中误差: σ _{S_i} = ±0.5 √S _i mm (S _i 以 m 为单位)

试按条件平差:

- (1)列出条件方程式;
- (2)组成法方程,求联系数 K 及改正数 V,平差值 L;
- (3)求各导线点的坐标平差值;
- (4)求第3点坐标平差值的中误差。

图 4-64

4.8.82 在单一附合导线(图 4-65)上观测 6 个转折角和 5 条边长,其中,B,C 点为已知点,2,3,4,5 点为待定点, α_{AB} 和 α_{CD} 为连接边的已知方位角,起算数据为:

 $X_B = 203020.348 \text{m},$ $X_C = 203702.437 \text{m}$ $Y_B = -59049.801 \text{m},$ $Y_C = -60133.399 \text{m}$ $T_{AB} = 226^{\circ}44'59'',$ $T_{CD} = 57^{\circ}59'31''$

观测值如下表:

点 号	左转折角 β (* ′ *)	边长 S(m)
B(1) 2 3 4 5 C(6)	230 32 37 180 00 42 170 39 22 236 48 37 192 14 25 260 59 01	204.952 200.130 345.153 278.059 451,691

已知 $\sigma_{\theta} = \pm 5$ ", $\sigma_{S_i} = 0.5 \sqrt{S_i} \text{mm}(S \text{ 以 m 为单位})$,试按条件平差:

- (1)列条件方程;
- (2)列法方程并求出 K, V 及 L;
- (3)求各导线点的坐标平差值;
- (4)求导线点 4点坐标平差值的中误差。

图 4-65

4.8.83 有闭合导线如图4-66,观测 4 条边长和 5 个左转折角,已知测角中误差 $\sigma_{\beta} = \pm 1$ ",边长中误差按 $\sigma_{S_i} = 0.2 \sqrt{S_i}$ mm 计算(S_i 以 m 为单位),起算数据为:

$$X_A = X_B = 2272.045 \text{m}, \quad Y_A = Y_B = 5071.330 \text{m}$$

 $T_A = 224^{\circ}04'09'', \quad T_B = 44^{\circ}04'09''$

观测值如下:

角号	观测角值 β (° ´ *)	边号	观侧边长(m)
1	92 49 45	1	805.195
2	316 43 55	2	269.482
3	205 08 26	3	272.717
4	235 44 32	4	441.595
5	229 33 09		

试按条件平差:

- (1)列条件方程和法方程;
- (2)求改正数 V 和平差值L;
- (3)求导线点 2,3,4 的坐标平差值。
- 4.8.84 有闭合导线如图4-67所示,观测 8 条边长和 9 个左转折角。已知测角中误差 $\sigma_{\theta}=\pm 1$ ",边长中误差 $\sigma_{S_i}=0.2\sqrt{S_i}$ mm,已知起算数据为:

₩ 4-66

3 4-67

$$X_A = X_B = 2272.045$$
m

$$T_A = 224^{\circ}04'09''$$

$$Y_A = Y_B = 5071.330$$
m

$$T_B = 44^{\circ}04'09''$$

观测值如下:

角号	观测角值 β (* ´ *)	边 号	边长观测值 S(m)
1	26 35 56	1	250.870
2	193 25 56	2	259.452
3	269 15 28	3	355,888
4	138 32 06	4	318.656
5	287 36 30	5	258.779
6	214 07 44	6	269.482
7	205 08 26	7	272.717
8	235 44 34	8	441.595
9	229 33 09		

试按条件平差:

- (1)列条件方程和法方程;
- (2)求改正数 V 和平差值L;
- (3)求各导线点的坐标平差值 X_i, Y_i (i = 2,3,4,5,6,7,8)。

第五章 间接平差

第一节 间接平差原理

5.1.01 在图5-1的水准网中, P_1, P_2 及 P_3 点为待定点,测得各段水准线路高差为:

$$h_1 = +1.335$$
m, $S_1 = 2$ km

$$h_2 = +0.055 \text{m}, \quad S_2 = 2 \text{km}$$

$$h_3 = -1.396$$
m, $S_3 = 3$ km

若令 2km 路线上的观测高差为单位权观测,试用间接平差法求高差的平差值。

5.1.02 在三角形 ABC 中(如图 5-2), 测得不等精度观测值如下:

$$\beta_1 = 51^{\circ}20'11.3'', P_1 = 1$$

$$\beta_2 = 88^{\circ}08'21.9'', P_2 = 2$$

$$\beta_3 = 40^{\circ}31'28.4'', P_3 = 2$$

试按间接平差计算各角的平差值。

- **5.1.03** 在图5-3的单一符合水准路线中, A, B 点为已知点, P_1 , P_2 点为待定点, 观测高差为 h_1 , h_2 , h_3 , 路线长度为 S_1 , S_2 , S_3 , 设观测高差的权为 $P_i = 1/S_i$, 并令 P_1 , P_2 点高程为未知参数, 试按间接平差原理求待定点高程平差值。
- 5.1.04 在图5-4中,A,B,C,D 点在同一直线上,为确定其间的三段距离,测出了距离 AB,BC,CD,AC 和BD,相应的观测值为:
- $l_1 = 200.000$ m, $l_2 = 200.000$ m $l_3 = 200.080$ m, $l_4 = 400.040$ m $l_5 = 400.000$ m 设它们不相关且等精度。若分别选取 AB, BC 及 CD 三段距离为未知参数 X_1 , X_2 和 \hat{X}_3 , 试按间接平差法求 A, D 两点间的距离平差值。
- 5.1.05 在图5-5中, AOE 是一直线, 为确定测站点 O 点上 5 个方向间的相对位置, 观测了 7 个角度, 得观测值为:

$$l_1 = 28^{\circ}50'15''$$
, $l_2 = 50^{\circ}16'28''$, $l_3 = 65^{\circ}22'17''$, $l_4 = 35^{\circ}31'04''$

$$l_5 = 79^{\circ}06'48''$$
, $l_6 = 100^{\circ}53'13''$, $l_7 = 115^{\circ}38'43''$.

设未知参数为 $X_1 = \angle AOB$, $X_2 = \angle BOC$, $X_3 = \angle COD$, 试按间接平差原理求 OA, OB, OC, OD, OE5 个方向之间相对位置的最优估值。

5.1.06 在测站 O 点测量了 4 个角度(如图 5-6 所示),得观测值为:

$$l_1 = 135^{\circ}25'20''$$
, $l_2 = 90^{\circ}40'08''$
 $l_3 = 133^{\circ}54'42''$, $l_4 = 226^{\circ}05'43''$

- (1)试按间接平差求各角平差值;
- (2)若各观测角的权分别为 1,1,1,3,试求各角平差值。
- 5.1.07 在图5-7的直角三角形 ABC 中,已知 AB=100.000m(无误差),测得边长 AC 和角A,得

图 5-7

观测值为 $l_1=115.470$ m, $l_2=29°59′55″$, 其中误差设为 $m_{l_1}=\pm 5$ mm, $m_{l_2}=\pm 4″$, 试按间接平差法求三角形高 BC 的平差值。

5.1.08 试证明间接平差中 \hat{X} 与 V , \hat{L} 与 V 不相关($Q_{XV}=0$, $Q_{LV}=0$)。

第二节 法方程组成与解算

5.2.09 根据下列误差方程及观测值的权组成法方程式。

误差方程	$v_1 = \hat{x}_1$	权	$p_1 = 1$
	$\boldsymbol{v_2} = \hat{\boldsymbol{x}}_2$		$p_2 = 1$
	$v_3 = \hat{x}_1 - 4$		$p_3 = 0.5$
	$v_4 = -\hat{x}_3$		$p_4 = 0.5$
	$v_5 = -\hat{x}_1 + \hat{x}_2 - 7$		$p_5 = 1$
	$v_6 = \hat{x}_1 - \hat{x}_3 - 1$		$p_6 = 1$
	$v_2 = \hat{x}_2 - \hat{x}_3 - 1$		$b_7 = 0.67$

5.2.10 设按同精度观测值 L(P=1)列出的误差方程为: $v_1 = \hat{x}_1 - \hat{x}_2 + 1$ $v_4 = -\hat{x}_2 + 2$

$$v_1 = \hat{x}_1 - \hat{x}_2 + 1$$
 $v_4 = -\hat{x}_2 + 2$
 $v_2 = -\hat{x}_2 + \hat{x}_3 - 6$ $v_5 = \hat{x}_3 - 4$
 $v_3 = \hat{x}_1 - \hat{x}_3 - 1$

- (1)试组成法方程式:
- (2)解算法方程求未知参数 x。
- 5.2.11 试根据相关观测值 L 的误差方程式及协因数阵 Q_L ,组成法方程。

5.2.12 试解算下列法方程组:

$$\begin{bmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \\ \hat{x}_3 \\ \hat{x}_4 \end{bmatrix} - \begin{bmatrix} 7.64 \\ 6.57 \\ 8.04 \\ 6.89 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

第三节 水准网间接平差

- 一、误差方程的列立
- 5.3.13 由高程已知的水准点 A,B,C及D 向待定点P 作水准测量(如图 5-8),得观测 值及路线长度如下:

$$h_1 = +3.476$$
m, $S_1 = 1$ km, $H_A = 3.520$ m

$$h_2 = +1.328$$
m, $S_2 = 2$ km, $H_B = 4.818$ m

$$h_3 = +2.198$$
m, $S_3 = 2$ km, $H_C = 3.768$ m

$$h_4 = +3.234$$
m, $S_4 = 1$ km, $H_D = 5.671$ m

试按间接平差法列出其误差方程式。

5.3.14 在图5-9的水准网中,已知 A,B 点高程 H_A =5.000m, H_B =6.000m,为确定 P_1 , P_2 , P_3 点高程进行了水准测量,观测结果为:

$$h_1 = +1.359$$
m, $S_1 = 1$ km

$$h_2 = +2.009 \text{m}, S_2 = 1 \text{km}$$

$$h_3 = +0.363$$
m, $S_3 = 2$ km

$$h_4 = +0.640 \text{m}, S_4 = 2 \text{km}$$

$$h_5 = +0.657 \text{m}, S_5 = 1 \text{km}$$

$$h_6 = +1.000 \text{m}, S_6 = 1 \text{km}$$

$$h_7 = +1.650$$
m, $S_7 = 1.5$ km

试按间接平差法列出其误差方程式。

5.3.15 在图5-10的水准网中, 欲测定 A, B, C 及 D 点间的高差进行了水准测量, 其观测高差及路线长度如下:

$$h_1 = +0.023$$
m, $S_1 = 5$ km

$$h_2 = +1.114$$
m, $S_2 = 5$ km

$$h_3 = +1.142$$
m, $S_3 = 5$ km

$$h_4 = +0.078 \text{m}, S_4 = 2 \text{km}$$

$$h_5 = +0.099 \text{m}, S_5 = 2 \text{km}$$

$$h_6 = +1.216 \text{m}, S_6 = 2 \text{km}$$

试按间接平差法列出其误差方程式。

5.3.16 设有水准网如图5-11所示,已知 A 点高程为 H_A=31.100m,观测高差为:

 $h_1 = 0.893 \text{m}, S_1 = 15 \text{km}$

 $h_2 = 9.125 \text{m}, S_2 = 20 \text{km}$

 $h_3 = 10.012$ m, $S_3 = 10$ km

 $h_4 = 2.640 \text{m}, S_4 = 30 \text{km}$

 $h_5 = 6.193$ m, $S_5 = 25$ km

 $h_6 = 6.481 \text{m}, S_6 = 20 \text{km}$

 $h_7 = 6.999 \text{m}, S_7 = 20 \text{km}$

 $h_8 = 1.712$ m, $S_8 = 15$ km

 $h_9 = 1.212 \text{m}, S_9 = 5 \text{km}$

设各待定点高程为未知参数, $\hat{X} = [\hat{X}_1, \hat{X}_2, \hat{X}_3, \hat{X}_4, \hat{X}_5, \hat{X}_6]^T$,其近似值为:

 $X^0 = [30.21,40.22,36.40,42.87,43.40,44.60]^{\text{T}}_{\text{m}}$

试按间接平差法列出误差方程式。

图 5-10

$$h_1 = 1.250 \text{m}$$

 $h_2 = -0.245$ m

 $h_3 = 0.750 \text{m}$

 $h_4 = 1.499 \text{m}$

设 B, C, D 点高程分别为未知参数 X_1, X_2, X_3 , 其 近 似 值 为 $X^0 = [6.500, 6.252, 6.998]^T(m)$,试按间接平差法列出误差方程。

图 5-11

图 5-12

二、平差计算与精度评定

- 5.3.18 同5.3.17题,设各线路长度相等 Q=I,试按间接平差求各待定点高程平差值及其协因数阵。
 - 5.3.19 设有误差方程为

$$V = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \hat{x} - \begin{bmatrix} 0 \\ -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

其中, $\hat{x}_1 = [\hat{x}_1, \hat{x}_2, \hat{x}_3]^T$,设观测值的权阵 P = I,试按间接平差求 \hat{x}_0

5.3.20 已知某平差问题的误差方程为:

$$\mathbf{V} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \\ -1 & 1 \\ 1 & 0 \end{bmatrix} \hat{x} - \begin{bmatrix} 4 \\ -3 \\ 3 \\ -4 \end{bmatrix}$$
 (mm)

未知参数 X 的近似值为 $X^0 = [20.002, 10.233]_m$, 设观测值的权阵为单位阵(P = I), 试按间接平差法求:

- (1)未知参数的估值 X;
- (2)未知参数估值 \hat{X} 的方差 $\sigma_{X_1}^2$ 和 $\sigma_{X_2}^2$ 。
- 5.3.21 设由同精度观测值 L(P=I)列出的误差方程为:

$$\mathbf{V} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} - \begin{bmatrix} -1 \\ 6 \\ 1 \end{bmatrix}$$

试按间接平差法求 Q_{X_2}, Q_{V_1}, Q_L 。

5.3.22 对某水准网列出如下的误差方程:

$$\mathbf{V} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \hat{x} - \begin{bmatrix} 0 \\ 0 \\ 8 \\ 7 \\ -6 \end{bmatrix}$$

试按间接平差法求:

- (1)未知参数 X_1 的权倒数 $1/P_{X_1}$;
- (2)未知数函数 $\hat{\varphi} = \hat{X}_1 + \hat{X}_3$ 的权倒数 $\frac{1}{P_{\hat{\varphi}}}$ 。
- 5.3.23 在图5-3的水准网中,A,B,C 点为已知点, P_1 , P_2 为待定点,已知点高程为 H_A = 8.500m, H_B = 7.000m, H_C = 12.500m,观测高差为:

 $h_1 = 1.241$ m, $h_2 = 2.738$ m, $h_3 = 3.001$ m, $h_4 = 2.500$ m, $h_5 = 0.256$ m 各水准路线长度相等,设 Q = I,试按间接平差求:

- (1)P₁,P₂点高程平差值;
- (2)平差后 P₁ 与 P₂ 点间高差的权。
- 5.3.24 在图5-14的水准网中,A,B 点为已知点, P_1 , P_2 点为待定点,设 P_1 , P_2 点的高程平差值为未知参数 \hat{X}_1 和 \hat{X}_2 ,按间接平差已列出法方程为:

$$5\hat{x}_1 - 4\hat{x}_2 + 2.5 = 0$$
$$-4\hat{x}_1 + 5\hat{x}_2 - 1.2 = 0$$

试求 P_1 至 P_2 点间高差平差值的权倒数。

图 5-13

图 5-14

- 5.3.25 在图5-15的水准网中,A 点为已知点, $H_A = 10.000$ m,观测各点间的高差为: $h_1 = 1.015$ m, $h_2 = -12.570$ m, $h_3 = 6.161$ m, $h_4 = -11.563$ m, $h_5 = 6.414$ m 设 Q = I,试按间接平差法求:
 - (1)待定点 P1, P2, P3 的高程平差值及其中误差;
 - (2)平差后 P₁ 至 P₃ 点间的高差平差值及其中误差。
 - 5.3.26 在图5-16的水准网中, $A \ B \ C$ 为已知水准点,高差观测值及路线长度如下:

$$h_1 = +1.003$$
m, $S_1 = 1$ km
 $h_2 = +0.501$ m, $S_2 = 2$ km
 $h_3 = +0.503$ m, $S_3 = 2$ km
 $h_4 = +0.505$ m, $S_4 = 1$ km

已知 $H_A = 11.000$ m, $H_B = 11.500$ m, $H_C = 12.008$ m, 试用间接平差法求:

- $(1)P_1$ 及 P_2 点的高程平差值及其中误差;
- (2)P₁ 点至 P₂ 点间高差平差值的中误差。

图 5-15

图 5-16

5.3.27 在水准网图5-17中, 测得各高差如下表:

编号	观测高差(m)	路线长度(km)	编号	观测高差(m)	路线长度(km)
1	1.015	6.25	4	11.563	3.95
2	12.570	4.70	5	6.414	4.25
3	6.161	7.15	6	5.139	5.50

设以 10km 路线的观测高差为单位权观测值, 试按间接平差法, 求:

- (1)A 点至B,C,D 三点间的高差平差值及其中 误差;
 - (2)10 公里路线的高差中误差。

第四节 测角网间接平差

$$L_1 = 48^{\circ}17'01'',$$
 $L_2 = 96^{\circ}52'19'',$ $L_3 = 152^{\circ}54'10'',$ $L_4 = 48^{\circ}35'12''$ $L_5 = 104^{\circ}37'07''$ $L_6 = 56^{\circ}01'49''$

图 5-17

未知参数 X_i 如图示,试列出误差方程式。

5.4.29 在图5-19中,已知固定角 / AOB = 85°00′00″, 观测角值为:

 $L_1=29^{\circ}59'50''$, $L_2=60''29'58''$, $L_3=30''29'55''$, $L_4=24''30''05''$ 试按间接平差法列出误差方程式。

图 5-18

5.4.30 在图5-20的交会定点中,A,B,C点为已知点,P点为待定点,已知点坐标如图示,观测角值为:

$$\beta_1 = 45^{\circ}00'01'', \ \beta_2 = 44^{\circ}59'59''$$
 $\beta_3 = 45^{\circ}00'02'', \ \beta_4 = 44^{\circ}59'58''$

设 P 点坐标为未知参数, $\hat{X} = [\hat{X}_P, \hat{Y}_P]^T$, 其近似值为 $X_P^0 = 1.00 \text{km}$, $Y_P^0 = 1.00 \text{km}$, $\rho'' = 2 \times$

105,试列出各角度的误差方程。

5.4.31 在图5-21中,A,B,C,D,E 点为已知点,在其间插入了新点 I、II 。起算数据列于表一,观测角列于表二。

表一

点号	坐 标(m)		坐标方位角	4-1/
	X	Y	(*	边长(m)
Α	15105.27	54664.74		
В	19024.85	56678.69	27 11 41.7	4406.71
"	19024.03	30070.09	115 07 05.7	3969.51
c	17339.84	60672.82		
D	14239.12	61653.72		
•			194 00 43.4	3314.64
E	11023.11	60851.16	1	

表二

角号	观测值 (* ´ ~)	角号	观测值 (* * ~*)	角号	观测值 (* ´ ´)
1	31 25 01.7	7	23 50 31.8	13	56 31 13.3
2	53 20 37.5	8	69 15 36.9	14	63 24 37.6
3	39 45 24,7	9	84 08 05.0	15	47 05 28.1
4	55 28 53.0	10	60 17 28.9	16	70 17 02.2
5	47 37 20.0	11	35 34 22.2	17	62 37 33.6
6	39 16 33.2	12	60 05 12.1	18	75 38 53.8

已算得 [、][两点的近似坐标为:

$$X_1^0 = 11801.16$$
m, $Y_1^0 = 55809.60$, $X_0^0 = 15060.45$ m, $Y_0^0 = 58904.12$ m

由此算得的近似方位角及近似边长列于表三。

表三

加何	近似方位角	近似边长 (km)	方问	近似方位角 (°´´´)	近似边长 (km)	方向	近似方位角 (* / *)	近似边长 (km)
1 A	340 53 20.5	3,50	A JI	90 36 20.6	4.24	IID	106 37 52.9	2.87
G I	67 21 21.0	6.33	$B \parallel$	150 41 31.8	4.55	ΠE	154 15 14.2	4.48
1ε	98 46 23.1	5.10	$C \mathbb{I}$	30 59 00.4	2.65	ΙΠ	43 30 52.2	4.49

试列出按坐标平差时 $\angle 1, \angle 2, \angle 3, \angle 4, \angle 7, \angle 17$ 的误差方程式。

5.4.32 在图5-22的测角网中, A, B, C 为已知点, P 为待定点, 为了确定 P 点坐标, 得观测角值为:

角号	观测角值 (* ´ ″)	由两边的近似方位角算得角值 (°´´´)
1	22 53 29.1	22 53 29.0
2	46 09 19.0	46 09 19.1
3	133 04 40.4	133 04 42.0
4	139 03 48.5	139 03 47.7
5	87 51 31.0	87 51 30.3
6	20 59 18.4	20 59 19.0
7	19 56 53.8	19 56 53.3

图 5-20 各边的近似方位角和近似边长为:

测站	照准点	点 近似方位角 点 (* / *)		位角 <i>"</i>)	近似边长(km)
P	С	40	03	48.3	1.75
,	В	266	59	06.3	1.83
	A	179	07	36.0	1.84

试列出按测角网坐标平差的误差方程式。

二、平差计算与精度评定

5.4.33 题同5.4.32题。(1)根据 5.4.32 题的误差方程组成法方程;(2)解出坐标改正数 $\hat{x} = [\hat{x}_{\mu}, \hat{y}_{\nu}]^{T}$ 及其协因数阵 Q_{X} ;(3)计算 V 和 Q_{V} 。

图 5-21

图 5-22

5.4.34 在图5-23中, A、B、C、D 为已知点, P点为待定点, 起算数据如下表:

点号	坐	标 (m)	至点	坐标方位角
	X	Υ	一至点	(° ′ ″)
A	40181.042	2574.607	В	91 30 15.4
В	40114.738	5099.477	c	145 21 31.7
C	37578.602	6851.732		
D	36450.845	3387.987	В	25 02 18.0

观测角值为:

角号	观测角值 (* ´ ~)
1	66 44 01.2
2	81 05 25.4
3 .	42 29 16.8
4	27 58 24.1

若选 P 点坐标 X_P , Y_P 为未知参数,试按间接平差求 P 点坐标平差值及点位中误差。

5.4.35 在图5-24的测角网中, A, B, C 为已知三角点, P点为待定点, 起算数据如下表:

起算数据

	坐	娇 (m)	坐标方位角	467	T _F
点号	X	_ Y	(* ' *)	边长(m)	点号
A	8 864.53	5 392.58	45 16 38.0	6 751.24	В
В	13 615.22	10 189.47	149 19 03.0	8 250.04	C
С	6 520.12	14 399.30	284 35 24.0	9306.84	A

观测角值

角号	角 值 (° ′ ″)	角号	角 值 (* ´ *)	角号	角 值 (* ´ *)
1	106 50 42	4	28 26 12	7	33 40 50
2	30 52 47	5	127 48 39	8	125 20 38
3	42 16 40	6	23 45 11	9	20 58 25

试用坐标平差法求待定点 P 的坐标平差值及其点位中误差。

3 7 8 P 6 C

图 5-23

图 5-24

5.4.36 在三角形 ABC 中(如图 5-25), A, B 点为已知点, C 点为待定点。已知数据为:

$$X_A = 1.0 \text{km}, Y_A = 1.0 \text{km}$$

$$X_B = 1.0 \text{km}, Y_B = 6.0 \text{km}$$

图 5-26

C 点的近似坐标为 $X_C^0 = 5.3 \,\mathrm{km}$, $Y_C^0 = 3.5 \,\mathrm{km}$, AC 及 BC 边的近似边长为 $S_{AC}^0 = 5.0 \,\mathrm{km}$, $S_{AC}^0 = 5.0 \,\mathrm{km}$, L_1 , L_2 及 L_3 是同精度角度观测值。试按间接平差法求 C 点坐标的权倒数及相关权倒数(设 $\rho'' = 2 \times 10^5$,未知数 X_C , Y_C 以 m 为单位)。

5.4.37 在图5-26的测角网中, A, B, C 点为已知点, P 点为待定点, 已知方位角 T_{AB} = 180°00′00″, T_{BC} = 90°00′00″, 设 P 点坐标为未知参数, $\hat{X} = [\hat{X}_p, \hat{Y}_p]^T$, 经计算得其近似值为 $X_p^0 = 1000.00$ m, $Y_p^0 = 577.00$ m, 各边的近似方位角和近似边长为:

$$T_{AP}^0 = 150^{\circ}00'00''$$
, $S_{AP}^0 = 1155$ m
 $T_{BP}^0 = 30^{\circ}00'00''$, $S_{AP}^0 = 1155$ m
 $T_{CP}^0 = 300^{\circ}00'00''$, $S_{CP}^0 = 2000$ m

角度观测值为:

$$\beta_1 = 30^{\circ}00'02'', \quad \beta_2 = 29^{\circ}59'59''$$
 $\beta_3 = 59^{\circ}59'57'', \quad \beta_4 = 30^{\circ}00'03''$

试按间接平差法计算 P 点坐标平差值 X 及协因数阵 Q_X 。

第五节 测边网间接平差

一、误差方程的列立

5.5.38 在图5-27的测边网中, A, B, C 点是已知点, P 为待定点, 观测了 3 条边长, 起算数据及观测值为:

图 5-27

E 5-28

F 6	坐	东 (m)	坐标方位角	** K (_)
点号	X	Y	(' ')	边长(m)
Α	60 509.596	69 902.525	117 18 33.72	4 949.186
В	58 238.935	74 300.086		
c	51 946.286	73 416,515	187 59 34.18	6 354.379

今选特定点的坐标为未知参数,已算得其近似值为 $X_P^0 = 57~578.93$ m, $Y_P^0 = 70~998.26$ m,试列出各观测边长的误差方程式。

5.5.39 在图5-28的直角三角形 ABC 中.

边长观测值为 $L_1 = 278.61$ m, $L_2 = 431.52$ m, $L_3 = 329.56$ m, $Q_L = I_0$ 若选 AB 及 AC 距离为未知参数 \hat{X}_1 和 \hat{X}_2 , 且令其近似值为 $X_1^0 = L_3$, $X_2^0 = L_1$, 试列出误差方程式。

边号	边长观测值(m)	
1	3128.86	
2	3367.20	
3	6129.88	

5.5.40 在图5-29的测边网中,A,B 点为已知点, P_1 , P_2 , P_3 点为待定点,观测边长为 S_i ($i=1,2,\cdots,7$), 若选取 P_1 , P_2 , P_3 点的坐标为未知参数, \hat{X} = $[\hat{X}_1,\hat{Y}_1,\hat{X}_2,\hat{Y}_2,\hat{X}_3,\hat{Y}_3]^T$,试列出边长观测值的误差方程式。

二、平差计算与精度评定

- **5.5.41** 同5.5.38题,试根据 5.5.38 题的误差方程计算 P 点坐标平差值及其协因数阵 **Q**₅。
- 5.5.42 同5.5.39题。(1)试求改正数 V 及 边长平差值 L_{1} (2)试列出 BC 边边长平差值的未 知数函数式,并计算其权。
- 5.5.43 在图5-30的测边网中,A,B点为已知点,C,D点为待定点。已知点坐标为 A(0m,0m),B(22141.335m,0m),同精度测得边长观测值为:

$$S_1 = 27 908.062 \text{m}, S_2 = 20 044.592 \text{m}$$

$$S_3 = 36\,577.034$$
m, $S_4 = 20\,480.046$ m

$$S_5 = 29 \, 402.438 \mathrm{m}$$

设待定点的近似坐标为:

$$X_C^0 = 19 \ 187.335 \text{m}, \ Y_C^0 = 20 \ 265.887 \text{m}$$

 $X_D^0 = -10~068.386$ m, $Y_D^0 = 17~332.434$ m 试按间接平差求 C.D 点坐标平差值及其协因数阵。

图 5-29

图 5-30

第六节 边角网间接平差

一、误差方程的列立

- 5.6.44 有边角网如图5-31,A,B,C 为已知点,P 为待定点,角度观测值为 L_1 , L_2 ,…, L_6 ,边长观测值为 S_1 , S_2 , S_3 。设 $\angle ABP$ 和边长 BP 的平差值为未知数 X_1 和 X_2 ,试用文字符号列出观测角和观测边长的误差方程式(非线性误差方程不必线性化)。
 - 5.6.45 在图5-32的边角网中,已知 A.B 点坐标及观测值为:

$$X_A = 0.00 \text{km}$$
 $X_B = 0.00 \text{km}$
 $Y_A = 0.00 \text{km}$ $Y_B = 1.00 \text{km}$

图 5-31

角度观测值为:

$$L_1 = 60^{\circ}00'05''$$

$$L_2 = 59^{\circ}59'58''$$

$$L_3 = 60^{\circ}00'00''$$

边长观测值为:

$$S_1 = 999.99 \text{m}, S_2 = 1000.01 \text{m}$$

设待定点 P 的坐标(\hat{X}_P,\hat{Y}_P)为未知参数,试列出线性化后的误差方程式。

(经计算,
$$P$$
点近似坐标为 $X_P^0 = \frac{\sqrt{3}}{2}$ km, $Y_P^0 = \frac{1}{2}$ km。)

5.6.46 在图5-33的边角网中,A,B,C是已知点, P_1 , P_2 为待定点,观测了 12 个角度和 6 条边长,共 18 个观测值。已知测角中误差为 ± 1.5 °,设边长测量中误差均为 ± 2.0 cm,起算数据和观测值分别列于表一和表二,今选待定点 P_1 , P_2 的坐标平差值为未知参数 \hat{X}_1 , \hat{Y}_1 , \hat{X}_2 , \hat{Y}_2 ,试列出各观测角及观测边的误差方程式。

图 5-33

点号	坐	标 (m)	坐标方位角	35 K/_)
点号	X	Y	(* ' ")	边 长(m)
A	4 899.846	130.812	14 00 35.77	4 001.117
В	8 781.945	1 099. 443	123 10 57.97	7 734.443
c	4 548.795	7 572.622	123 10 37.97	7 734.443

衰二

编号	,) (*	L MI	()	编号	(*	观测	角 ")	编号	观测边 (m)
1	84	07	38.2	7	74	18	16.8	13	2463.94
2	37	46	34.9	8	77	27	59.1	14	3414.71
3	58	05	44.1	9	28	13	43.2	15	5216.23
4	33	03	03.2	10	55	21	09.9	16	6042.94
5	126	01	55.7	11	72	22	25.8	17	5085.08
6	20	55	02.3	12	52	16	20.5	18	5014.99

[注]已算出近似坐标为:

$$X_1^0 = 5 656.89 m_1$$
 $Y_1^0 = 2 475.56 m$
 $X_2^0 = 663.90 m_1$ $Y_2^0 = 2 943.91 m$

二、平差计算与精度评定

- 5.6.47 在5.6.45题中, 若测角中误差为±1.5°, 测边中误差为±1.5cm, 试求:
- (1)特定点 P 点的坐标及其点位中误差;
- (2)观测角及观测边的平差值以及平差后边长 PA, PB 的中误差。
- 5.6.48 试根据5.6.46题的误差方程求;
- (1) 特定点 P_1, P_2 的坐标平差值 \hat{X} 及其协因数阵 Q_X ,以及坐标中误差;

图 5-34

- (2)P₁P₂ 边边长平差值及方位角平差值的中误差。
- 5.6.49 在直角三角形 ABC(见图 5-34)中,为确定 C 点坐标,观测了边长 S_1 , S_2 和角度

β ,得观测值为:

编 号	观測值	中误差
β	45°00′15″	± 10"
S_1	215.286m	±2cm
S_2	152.223m	±3cm

试按间接平差法求观测值的平差值,及 C 点坐标平差值。

第七节 相关间接平差

5.7.50 有三角网如图5-35,已知数据如下表:

	坐		6(1)	坐标方位角 丁	至何点
点 号	X	Y	S(km)	(° ′ *)	从例注
A	2.00	1.00	√2	225 00 00.0	В
В	1.00	0.00	√2	135 00 00.0	C
c	0.00	1.00			

观测角值:

角号	观測値 L (* ' *)	角号	观測值 L (* ´ ´)
1	90 00 03	4	89 59 57
2	44 59 59	5	44 59 59
3	45 00 01	6	45 00 04

观测值的权逆阵为:

$$Q_L = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

试按相关间接平差法组成法方程,并计算 P 点坐标平差值(设未知参数为 P 点坐标平差值,其近似值为 $X_P^0=1.00$ km, $Y_P^0=2.00$ km)。

5.7.51 已知某段距离的2个相关观测值为:

$$L_1 = 650.10 \text{m}, L_2 = 650.18 \text{m}$$

其权逆阵为:

$$Q_L = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

试按相关间接平差法求该距离的平差值及其权。

5.7.52 有一单一水准路线(如图 5-36)。A, B 两点的高程分别为 H_A 和 H_B , 其权逆阵为:

$$Q_L = \begin{bmatrix} Q_a & Q_{ab} \\ Q_{ba} & Q_b \end{bmatrix}$$

高差观测值为 h_1,h_2,h_3 ,其权阵为 $Q_L=I$,高差与高程之间互相独立,试按相关间接平差法求

图 5-36

 $C \setminus D$ 两点高程的平差值。

5.7.53 有水准网如图5-37, 已知 A, B 点高 程HA, HB 的权倒数为 2, 其相关权倒数为 -1, 独立 观测值 $h_1 \sim h_2$ 的权均为 1,试按相关间接平差法求 平差后 C 点高程的权。

第八节 曲线拟合间接平差

5.8.54 根据下列数据可以拟合一条直线 y = ax + b, 见图 5-38。其中, 设 x 坐标值 1, 2,3,4,5 是不带误差的常数,y 坐标是等精度独立观测值。若选 a,b 为未知参数,试按间接平 差法求该直线参数的估值及直线方程。

\boldsymbol{x}	1	2	3	4	5
у	9.60	8.85	8.05	7.50	7.15

- 5.8.55 在河流的水文测量中,应用直线交会法确定岸边两点 A,B 间的距离如图 5-39。 设 S 表示船逆流行进时,船到 A,B 两点间距离 S_1 和 S_2 之和,每隔 1 min 测定一次距离 S,得 同精度独立观测值为:
 - 6137m, 6075m, 6020m, 6015m, 6029m, 6072m, 6143m.
- 若将 S 近似地作为消逝时间 T 的抛物线函数,其方程为 $S = aT^2 + bT + c$ 。试求:
 - (1) 抛物线参数 a,b,c 的最小二乘估值;
 - (2) T 取 1',2',…,7'各值时,各距离观测值 S; 的平差值;
 - (3)A,B点间距离的估值。

(提示:(1)建立直角坐标系, T 表示时间, S 表示船逆水行进时, 船至 A, B 两点的距离之和,并设坐 标原点为 $T^0 = 0.00$ 和 $S_0 = 6.055$ m; (2)用 $\beta_i = S_i - S_0$, $\Delta T_i = T_i - T_0$ 表示相对于坐标原点(T_0 , S_0)的观测

值,列出 β 与 ΔT 之间的抛物线方程,并按间接平差法进行平差计算)。

第九节 导线网间接平差

5.9.56 有单一附合导线如图5-40。其中,B,C点为已知点, α_{AB} , α_{CD} 为连结边的已知坐

图 5-40

标方位角,起算数据为:

$$X_B = 203\ 020.348 \text{m}$$
, $Y_B = -59\ 049.801 \text{m}$
 $X_C = 203\ 071.802 \text{m}$, $Y_C = -59\ 451.609 \text{m}$
 $T_{AB} = 226^{\circ}44'59''$, $T_{CD} = 267^{\circ}57'29''$

观测值如下:

点 号	左转折角 β	边长 S(m)	备注
B(1)	230 32 37	204.952	巳知 m _# = ±5"
2	180 00 42		$m_{S_i} = \pm 0.5 \sqrt{S_i} \text{mm}$
C(3)	170 39 22	200.130	(S _i 以 m 为单位)

试按间接平差:

- (1)列误差方程和法方程;
- (2)计算导线点 2 点的坐标平差值:
- (3)计算观测值的改正数和平差值。

(经计算得 2 点近似坐标为 $X_2^0 = 203046.366$ m, $Y_2^0 = -59253.095$ m。)

5.9.57 在图5-41的单一附合导线上观测 4 个角度和 3 条边长。已知起算数据为:

图 5-41

$$X_B = 203 \ 020.348 \text{m}$$
, $Y_B = -59 \ 049.801 \text{m}$
 $X_C = 203 \ 059.503 \text{m}$, $Y_C = -59 \ 796.549 \text{m}$
 $T_{AB} = 226^{\circ}44'59''$, $T_{CD} = 324^{\circ}46'03''$

观测值如下:

点 号	左转折角 β (* ′ ″)	边长 S(m)
B(1)	230 32 37	
2	180 00 42	204.952
3	170 39 22	200.130
C(4)	236 48 37	345.153

已知獨角中误差 $m_{\beta}=\pm 5$ ",测边中误差 $m_{S_i}=\pm 0.5\sqrt{S_i}$ (mm), S_i 以 m 为单位,试按间接平差:

- (1)计算导线点 2,3 点的近似坐标;
- (2)列误差方程和法方程(令 $m_0 = m_\theta = \pm 5$ ");
- (3)求导线点 2,3 点的坐标平差值:
- (4)求观测值的改正数和平差值。
- 5.9.58 有导线网如图5-42,观测了 14 条边长和 16 个左转折角,已知 A,B,C,D,E,F 点的坐标(无误差),如下表:

图 5-42

点形	X(m)	Y(m)
\overline{A}	5 256, 953	4 520.068
В	5 163,752	4 281, 277
C	3 659.371	3 621 210
D	4 119,879	3 891, 607
E	4 581, 150	5 345.292
F	4 851.554	5 316, 953

观测值如下:

编号	角度观测值 (* ***********************************	编号	角度观测值 ("
1	163 45 04	9	169 10 30
2	64 58 37	10	98 22 04
3	250 18 11	11	94 53 5 0
4	103 57 34	12	111 14 23
5	83 08 05	13	79 20 18
6	258 54 18	14	268 06 04
7	249 13 17	15	180 41 18
8	207 32 34	16	103 23 08

编号	边长观测值(m)	编号	边长观测值(m)
1	238.619	8	241.560
2	170.759	9	224.996
3	217.869	10	261.826
4	318.173	11	279.840
5	245.635	12	346.443
6	215.514	13	312. 109
7	273.829	14	197.637

经计算得出各特定导线点的近似坐标为下表:

点 号	X ⁰ (m)	Y ⁰ (m)	点 号	X ⁰ (m)	Y ⁰ (m)
2	5 018.264	4 092.136	8	4 468.031	3 983.915
3	4 939.671	4 243.717	9	4 388.466	4 212.010
4	4 723.777	4 214.481	10	4 355.636	4 434, 609
5	4 606, 308	4 510.161	13	4 925.217	5 046.970
6	4 218.024	3 666, 448	14	4 579.911	5 019.215
7	4 428.441	3 712. 958	15	4 594.617	4 707.453

试按间接平差列出误差方程式。

第六章 附有未知数的条件平差

第一节 附有未知数的条件平差原理

6.1.01 设有水准网如图6-1所示,已知 A 点高程为 $H_A = 5.000$ m, P_1 , P_2 点为待定点,观测高差及路线长度为

$$h_1 = 1.365 \text{m}$$
, $S_1 = 1 \text{km}$
 $h_2 = 2.017 \text{m}$, $S_2 = 2 \text{km}$
 $h_3 = 3.377 \text{m}$, $S_3 = 2 \text{km}$

设 P_1 点高程为未知参数,试按附有未知参数的条件平差求:

- (1)P₁点高程平差值;
- (2)各段高差平差值。
- 6.1.02 已知附有未知参数的条件方程为:

$$v_1 + v_3 - 2 = 0$$

$$v_2 + v_3 + \hat{x} - 3 = 0$$

图 6-1

试按附有未知参数的条件平差求未知数 \hat{x} 及观测值 $L_{3,1}$ 的改正数 $v_1 \setminus v_2 \setminus v_3 (Q = I)$ 。

6.1.03 已知附有未知数的条件方程为:

$$v_1 - \hat{x} - 2 = 0$$

$$v_2 + v_4 + \hat{x} - 3 = 0$$

$$v_3 - v_4 + 5 = 0$$

试按附有未知数的条件平差求等精度观测值 L_1 的改正数 v_1, v_2, v_3, v_4 ,未知数 \hat{x} 。

第二节 水准网附有未知参数条件平差

6.2.04 有水准网如图6-2, A 点为已知点,已知 $H_A = 5.000$ m, $h_1 \sim h_7$ 为等精度独立观测值(Q = I):

$$h_1 = 1.215$$
m, $h_2 = 2.068$ m, $h_3 = -0.850$ m, $h_4 = 2.759$ m
 $h_5 = 1.903$ m, $h_6 = 0.861$ m, $h_7 = -2.760$ m

若取平差后 P_4 点高程为未知参数 \hat{X} ,其近似值为 $X^0 = 9.830$ m,试按附有未知参数的条件平差:

- (1)列出条件方程及法方程:
- (2)求最弱点 P₄点平差后高程的权倒数。
- 6.2.05 在图6-3的水准网中,A,B,C,D 点为已知水准点, P_1 , P_2 为待定点,已知 H_A = 5.000m, H_B = 6.500m, H_C = 8.000m, H_D = 9.000m,高差观测值为:

$$h = [1.250, -0.245, 0.750, -1.006, -2.003]^{T}m$$

其权阵为:

$$\mathbf{P} = \begin{bmatrix} \frac{1}{2} & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \\ & & & \frac{1}{2} \end{bmatrix}$$

若选 P_1 点高程平差值为未知参数 X.其近似值为 $X^0 = H_A + h_1 = 6.250$ m, 试按附有未知参数的条件平差求:

- (1)高差平差值;
- (2)P₁点高程平差值及其中误差。
- 6.2.06 设有水准网如图6-4所示,已知点 A,B 的高程为 $H_A=1.00$ m, $H_B=7.00$ m, P_1 , P_2 为特定点,高差观测值(Q=1)为:

$$h = [1.58, 4.40, 5.11, 0.85, 3.50]^{T}$$
m

现选 P_2 点高程为未知参数 \hat{X} , 试按附有未知参数的条件平差求:

- (1)改正数 V 及平差值 h;
- (2)P₂点高程平差值;
- (3)P2点高程平差值的权倒数。
- **6.2.07** 在图6-5的水准网中, A, B, C 为已知点, $P_1 \sim P_5$ 点为待定点, 取 P_3 点平差后高程为未知参数, 试按附有未知参数的条件平差列出条件方程式。
- 6.2.08 在图6-6的水准网中,已知点 A, B, C 的高程为 H_A = 10.000m, H_B = 10.500m, H_C = 12.000m, 高差观测值为:

$$h_1 = 2.500 \text{m}, h_2 = 2.000 \text{m}, h_3 = 1.300 \text{m}, h_4 = 1.805 \text{m}$$

其权逆阵 Q = I。 $P_1 \setminus P_2$ 点为待定点, 若选 P_2 点高程平差值为未知参数, $\hat{X} = \hat{H}_{P_2}$, 其近似值 $X^0 = 13.805 \text{m}$, 试按附有未知参数的条件平差求 P_2 点高程平差值及其权倒数。

6.2.09 在图6-7的水准网中, A 点为已知点, P_1 , P_2 , P_3 点为待定点, 已知 $H_{\Lambda}=3.560$ m, 各线路长度相等, 高差观测值为:

$$\mathbf{h}_{5.1} = [0.259, -0.872, 1.132, 2.138, 3.268]^{\text{T}}_{\text{m}}$$

Q=I。 若选 P_2 点和 P_3 点高程最或是值为未知参数 $\mathbf{\hat{X}}=[\hat{X}_1,\hat{X}_2]^{\mathrm{T}}$,其近似值为 $X_1^0=2.690\mathrm{m}$, $X_2^0=5.955\mathrm{m}$,试按附有未知参数的条件平差求 P_2 , P_3 点高程平差值及其协因数阵。

6.2.10 有水准网如图6-8,各条路线长度相同,等精度观测高差为:

$$h_1 = +1.359 \text{m},$$

 $h_2 = +2.009 \text{m},$
 $h_3 = +1.012 \text{m},$
 $h_4 = +0.657 \text{m}$

- 选取 A,D 两点间的最或是高差为未知参数,
 - (1)试求各段高差的平差值:
 - (2)求平差后 A,D 点间高差的中误差。

第三节 测角网附有未知数的条件平差

6.3.11 在图6-9的测角网中,A,B点为已知点, P_1 , P_2 点为待定点,已知起算数据如下表:

	坐标		坐标方位角	44/
点 号	X	Y	(* ′ ′)	边长(m)
В	14 239.12	61 653.72	194 00 43.4	3 214 64
A	11 023.11	60 851.16	194 00 43.4	3 314.64

观测值为:

角号	观测角值 (° ´ ″)	角号	观测角值 (* ´ ´)
1	55 15 33.5	4	55 28 53.0
2	53 20 37.5	5	116 52 56.9
1.3	39 05 24.7	6	39 16 33.2

已算得 P_1 点的近似坐标为:

 $X_1^0 = 11801.16$ m, $Y_1^0 = 55809.60$ m 设 P_1 点的坐标为未知参数,试按附有未知数的条件平差:

- (1)列出线性形式的条件方程;
- (2)组成法方程。

6.3.12 已知起算数据,观测角值与 6.3.11题相同。若选 $\angle BP_1A = X_1, \angle P_1P_2A = X_2$ 为未知数,试按附有未知数的条件平差:

图 6-9

- (1)列出条件方程式;
- (2)组成法方程。
- 6.3.13 有线形锁如图6-10,A,B点为已知点,已知其坐标为:

$$\begin{cases} X_A = 97689.562 \text{m}, & X_B = 102344.255 \text{m} \\ Y_A = 31970.853 \text{m}, & Y_B = 34194.167 \text{m} \end{cases}$$

又已知 BC 边的坐标方位角为 T°=284°57′29.5″。角度观测值为:

$$\beta_1 = 66^{\circ}40'43.9'', \ \beta_2 = 49^{\circ}21'49.8'', \ \beta_3 = 63^{\circ}57'27.7'',
\beta_4 = 65^{\circ}23'03.9'', \ \beta_5 = 60^{\circ}34'45.2'', \ \beta_6 = 54^{\circ}02'11.8'',
\beta_7 = 54^{\circ}14'40.2''$$

现选取 $\angle DBA$ 的最或是值为未知数 \hat{X} ,其近似值为 $\hat{X}^0=25^{\circ}10^{\circ}56^{\circ}$,试按附有未知数的条件平差:

- (1) 求未知数 X;
- (2)求各角的改正数与平差值;
- (3)求待定点 D,E 的坐标平差值。
- **6.3.14** 在测角网图6-11中, A, B点为已知点, 坐标值如下表:

点号	X(m)	Y(m)
A	9 582.67	13 931 . 43
B	13 701.90	17 053, 34

又已知边长 $S_{AP_1}=3~012.89$ m,等精度观测角值为

角 号	观测值 (* ´ ´)	角号	观测值 (* ′ ″)
1	72 25 44.7	4	29 47 46.1
2	77 09 44.9	5	105 15 16.7
3	30 24 28.2	6	44 57 02.1

现选 $\angle P_1AB=X$ 为未知参数,试按附有未知数的条件平差:

- (1)计算未知数的近似值 X^0 ;
- (2)列出线性条件方程式。
- 6.3.15 在图6-12的测角网中, A, B, C 点为已知点, P_1 , P_2 , P_3 点为待定点, 角度观测值为 β_i ($i=1,2,\cdots,16$), 今选 $\angle CP_3P_2$ 为未知参数, 试按附有未知数的条件平差:

- (1)列出全部条件方程(非线性条件不必线性化);
- (2)写出 X^0 的计算公式;
- (3)列出平差后边长 S_{CP} ,的平差值函数式。
- 6.3.16 在附有未知数的条件平差中。试证明。
- (1)未知数向量 \hat{X} 与改正数向量 V 互不相关;
- (2)平差值函数 $\hat{\varphi} = f^T L + f_x^T \hat{X} + f_0$ 与改正数 V 互不相关。
- **6.3.17** 有控制网如图6-13, A, B 点为已知点, S_{BD} 为已知基线, 取 $\angle BAD$ 的最或是值为未知数 \hat{X} , 试列出线性形式的条件方程及 \hat{X}^0 的计算式。

第四节 测边网与边角网附有未知数的条件平差

6.4.18 在图6-14的直角三角形 *ABC* 中,观测 3 条边长得观测值为:

 $S_1 = 278.61$ m, $S_2 = 431.52$ m, $S_3 = 329.56$ m 若选 $\angle ABC$ 为未知参数 \hat{X} ,试按附有未知数的条件平差:

- (1)列出条件方程式及其线性形式;
- (2)写出 X⁰ 的计算式。
- **6.4.19** 以同精度测得图6-15中的三条边长,得边长观测值为

 $S_1 = 387.363$ m, $S_2 = 306.065$ m, $S_3 = 354.631$ m $A \setminus B \setminus C$ 点为已知点,已知其起算数据见下表:

图 6-14

点 号	坐标		# K ()	坐标方位角
カ ラ	ラ X Y UK(I	边长(m)	(" ′ ″)	
A	2 692, 201	5 203.153	603.608	186 44 26.4
В	2 092.765	5 132.304	F45 004	77 00 10 0
С	2 210.593	5 665.422	545.984	77 32 13.3
Α			667.562	316 10 25.6

若选边长 AD 为未知参数,其近似值为 $X^0 = 387.350$ m,试按附有未知数的条件平差:

- (1)列出条件方程和法方程:
- (2)计算各边的边长平差值及未知数平差值。
- 6.4.20 设有边角网如图6-16所示,观测 2 条边长和 3 个角度,其观测值为:

$$\beta_1 = 129^{\circ}07'0.05''$$

$$S_1 = 2640.513 m$$

$$\beta_2 = 23^{\circ}28'50.06''$$

$$S_2 = 1356.011$$
m

$$\beta_3 = 27^{\circ}24'8.77''$$

设 $\sigma_{\beta_1} = \sigma_{\beta_2} = \sigma_{\beta_3} = \pm 1''$, $\sigma_{S_1} = \sigma_{S_2} = 1\sqrt{2}$ cm。 令 $\sigma_0 = \sigma_{\beta} = \pm 1''$, 并选取边长 AB 为未知参数 X, 其近似值为 $X^0 = 1$ 566.342m, 试按附有未知数的条件平差:

(1)列出条件方程;

图 6-16

- (2)组成法方程,解出 \hat{x} ;
- (3)求 AB 边长平差值 \hat{X} 及其权倒数 $1/P_{\hat{X}}$ 。
- 6.4.21 有边角网如图6-17,已知 A、B 点坐标为:

	坐标		440
点号	X	Y	边长(km)
\boldsymbol{A}	0.00	0.00	1.00
B	0.00	1.00	1.00

角度观测值为:

$$\beta_1 = 60^{\circ}00'05''$$
, $\beta_2 = 59^{\circ}59'58''$, $\beta_3 = 60^{\circ}00'00''$

边长观测值为:

$$S = 999.99 m_o$$

已知测角中误差均为 $\sigma_{\theta}=\pm 1$ ",边长中误差 $\sigma_{S}=\pm 2$ cm,令 $\sigma_{0}=\sigma_{\beta}=\pm 1$ "。现选 AP 边长为未知参数,其近似值设为 $X^{0}=1$ 000.01m,试按附有未知数的条件平差:

- (1)列条件方程;
- (2)求平差后 AP 边边长及其权倒数。

 S_i S_i C

图 6-17

图 6-18

6.4.22 有测边网如图6-18。A,B,C点为已知点,P为待定点,起算数据见下表:

点 号	<u> </u>	栎	坐标方位角	H- K ()
/44 - 24	X	Y	(* ′ *)	边长(m)
A	60 509.596	69 902.525	117 10 20 70	4 040 404
В	58 238.935	74 300.086	117 18 33.72	4 949.186
<u>C</u>	51 946.286	73 416.515	187 59 34.18	6 354.379

边长观测值为:

$$S_1 = 3 \ 128.86 \text{m}, \ S_2 = 3 \ 367.20 \text{m}, \ S_3 = 6 \ 129.88 \text{m}$$

设 Q=1。选 PC 边的边长平差值为未知参数 X, 试按附有未知数的条件平差:

- (1)列出条件方程(取 $X^0 = 6$ 129.85m);
- (2)组成法方程:
- (3)求 PC 边边长平差值及其权倒数。

第七章 附有限制条件的间接平差

第一节 附有限制条件的间接平差原理

7.1.01 有水准网如图7-1,测得 P_1P_2, P_2P_3 及 P_3P_1 线路上的高差为:

 $h_1 = 0.008 \text{m}$, $h_2 = 0.016 \text{m}$, $h_3 = -0.030 \text{m}$

已知 Q = I。设 P_1P_2 , P_2P_3 , P_3P_1 线路的高差为未知参数 \hat{x}_1 , \hat{x}_2 , \hat{x}_3 , 其近似值为 $X_i^0 = h_i(i=1,2,3)$, 试按附有限制条件的间接平差求各观测高差的平差值。

7.1.02 在图7-2的单一附合水准路线测量中,A,B 点为已知点,已知其高程为 H_A = 10.258m, H_B = 15.127m。 P_1 , P_2 为待定点,其观测高差及路线长度为:

$$h_1 = 2.154 \text{m}$$
, $S_1 = 2 \text{km}$

$$h_2 = 1.678 \text{m}, S_2 = 3 \text{km}$$

$$h_3 = 1.031 \text{m}, S_3 = 4 \text{km}$$

若选 P_1 , P_2 点的高程值为未知数 \hat{X}_1 , \hat{X}_2 , P_2 点至 P_3 点间高差为未知数 \hat{X}_3 , 试按附有限制条件的间接平差求 P_1 点、 P_2 点高程平差值及 P_2 至 P_3 点间高差平差值。

7.1.03 在三角形 ABC(图 7-3)中,以同精度测得三个内角为:

 $L_1 = 61^{\circ}20'11.3''$, $L_2 = 78^{\circ}08'21.9''$, $L_3 = 40^{\circ}31'28.4''$

若设各角的平差值为未知参数, $\hat{x}_1 = \hat{L}_1$, $\hat{x}_2 = \hat{L}_2$, $\hat{x}_3 = \hat{L}_3$,其近似值为 $X_1^0 = \hat{L}_1$, $X_2^0 = \hat{L}_2$, $X_3^0 = \hat{L}_3$,试按附有限制条件的间接平差求各角平差值及观测值的改正数。

7.1.04 在已知点 A 观测 AP_1 , AP_2 两个待定方向,如图 7-4。已知 $\angle BAC = 98°20′53″$ 为固定值(无误差),角度观测值为:

 $L_1 = 38^{\circ}20'51''$, $L_2 = 35^{\circ}18'23''$. $L_3 = 24^{\circ}41'32''$, $L_4 = 73^{\circ}39'16''$, $L_5 = 59^{\circ}59'50''$ 若选取 $\angle BAP_1$, $\angle P_1AP_2$, $\angle P_2AC$ 为未知参数, 其近似值为:

$$X_1^0 = L_1 = 38^{\circ}20'51''$$

$$X_2^0 = L_2 = 35^{\circ}18'23''$$

$$X_3^6 = L_3 = 24^{\circ}41'32''$$

试按附有限制条件的间接平差:

- (1)列出误差方程和未知参数之间的限制条件;
- (2)计算未知参数的平差值;
- (3)计算观测值的平差值。

第二节 水准网附有限制条件的间接平差

7.2.05 在图7-5的水准网中, A, B, C, D 为已知点, E, F 点为待定点。已知点高程为 $H_A=16.685$ m, $H_B=14.215$ m, $H_C=20.178$ m, $H_D=16.752$ m, 高差观测值(Q=I)为:

图 7-5

 $h_1=1.215$ m, $h_2=3.680$ m, $h_3=0.790$ m, $h_4=-1.495$ m, $h_5=1.930$ m 若选 E,F 点高程平差值为未知参数 X_1,X_2 ,选 A,E 点间高差平差值及C,F 点间高差平差值为未知参数 X_3 和 X_4 ,取其近似值为:

图 7-6

 $X_1^0=17.900$ m, $X_2^0=18.690$ m, $X_3^0=1.215$ m, $X_4=-1.495$ m 试按附有限制条件的问接平差:

- (1)列出误差方程和限制条件;
- (2)列出法方程。
- 7.2.06 有水准网如图7-6,其中,A,B 点为已知点,已知其高程为 $H_A = 5.000$ m, $H_B = 3.965$ m, P_1 , P_2 点为待定点,观测高差值为:

$$h_1 = 1.100 \text{m}, h_2 = 0.050 \text{m}, h_3 = 3.452 \text{m}, h_4 = 3.404 \text{m}$$

设 Q = I。若选 P_1 , P_2 点高程平差值及 B、 P_1 两点间高差平差值为未知参数,近似值为 $X_1^0 = 5.050$ m, $X_2^0 = 8.452$ m, $X_3^0 = 1.100$ m。试:

- (1)列出误差方程和限制条件:
- (2)组成法方程;
- (3)求 P_1, P_2 点高程平差值及 B, P_1 点间高差平差值及其权倒数;
- (4)求 B,P1点间高差平差值的中误差。
- 7.2.07 在图7-7的水准网中,已知 A,B 两点的高程为 $H_A = 1.00$ m, $H_B = 10.00$ m, P_1 , P_2 点为待定点,观测高差为:

$$h_1 = 3.58 \text{m}, h_2 = 5.40 \text{m}, h_3 = 4.11 \text{m}, h_4 = 4.85 \text{m}, h_5 = 0.50 \text{m}$$

设 Q=I。 现选 AP_1, P_1P_2, P_2B 三条路线的高差为未知参数 $\hat{X}_1, \hat{X}_2, \hat{X}_3,$ 其近似值为:

$$X_1^0 = h_1 = 3.58 \text{m}, X_2^0 = h_5 = 0.50 \text{m}, X_3^0 = h_4 = 4.85 \text{m}$$

试按附有限制条件的间接平差:

- (1)列出误差方程和限制条件:
- (2)求待定点高程的平差值及其方差阵:
- (3)求改正数 V 及其平差值 L。

7.2.08 有水准网如图7-8,已知 $H_A=8.608$ m, $H_D=9.740$ m,等精度观测高差为:

 $h_1 = 2.359$ m, $h_2 = 3.280$ m, $h_3 = 1.226$ m, $h_4 = 2.156$ m, $h_5 = 0.928$ m 若选取三个未知参数: $\hat{X}_1 = \hat{H}_C$, $\hat{X}_2 = \hat{H}_B$, $\hat{X}_3 = \hat{h}_5$, 其近似值为:

$$X_1^0 = 10.967 \text{m}, X_2^0 = 11.888 \text{m}, X_3^0 = 0.928 \text{m}$$

试按附有限制条件的间接平差:

- (1)列出误差方程和限制条件;
- (2)组成法方程:
- (3)试求各段高差的改正数与平差值;

80

(4)试求平差后 B,C 点高程平差值及其中误差。

第三节 测角网附有限制条件的间接平差

7.3.09 在图7-9的测角网中,A,B,C点为已知点,P点为待定点,起算数据如下表:

点 号	坐	标	坐标方位角 T
从 5	X(km)	Y(km)	(° ′ ″)
A	2.00	0.00	
В	0.00	0.00	180 00 00
\overline{c}	0.00	2.00	90 00 00
A			315 00 00
P	_		90 00 03

角度观测值为:

 $L_1 = 45^{\circ}00'01'' L_2 = 45^{\circ}00'02'' L_3 = 44^{\circ}59'58'' L_4 = 44^{\circ}59'59''$

选 P 点坐标为未知参数,其近似坐标及各边近似边长及近似方位角如下:

$$X_P^0 = 2.00 \text{km},$$
 $Y_P^0 = 2.00 \text{km},$ $T_{BP}^0 = 45^{\circ}00'00'',$ $S_{BP}^0 = \sqrt{8} \text{km}$ $T_{CP}^0 = 0^{\circ}00'00'',$ $S_{CP}^{00} = 2 \text{km}$ $T_{AP}^{00} = 90^{\circ}00'00'',$ $S_{AP}^{000} = 2 \text{km}$

试列出误差方程和限制条件(坐标未知数的改正数 \hat{x}_{p},\hat{y}_{p} 以 cm 为单位)。

- 7.3.10 在图7-10的测角网中, A, B, C 点为已知点, D 点为待定点, 观测角值为 $L_1 \sim L_6$ 。设未知参数为 $\hat{X}_1 = \hat{L}_1$, $\hat{X}_2 = \hat{L}_2$, $\hat{X}_3 = \hat{L}_4$, 其近似值为 $X_1^0 = L_1$, $X_2^0 = L_2$, $X_3^0 = L_4$, 试用文字符号列出误差方程和限制条件。
- 7.3.11 在图7-11中,观测了 9个内角,得观测值 $L_1 \sim L_9$,若取 5个未知参数, $\hat{X}_1 = \hat{L}_1$, $\hat{X}_2 = \hat{L}_2$, $\hat{X}_3 = \hat{L}_3$, $\hat{X}_4 = \hat{L}_4$, $\hat{X}_5 = \hat{L}_5$,其近似值为:

$$X_1^0 = L_1, X_2^0 = L_2, X_3^0 = L_3, X_4^0 = L_4, X_5^0 = L_5$$

试列出误差方程和限制条件。

7.3.12 以等精度测得图7-12中三角形的 4 个角值为 L₁, L₂, L₃ 及 L₄, 其中,

图 7-12

- 11

 $L_1 = 28^{\circ}26'12''$, $L_2 = 43^{\circ}45'11''$, $L_3 = 107^{\circ}48'39''$, $L_4 = 316^{\circ}14'53''$

现设三内角的平差值为未知参数, $\hat{X}_1 = \hat{L}_1$, $\hat{X}_2 = \hat{L}_2$, $\hat{X}_3 = \hat{L}_3$,其近似值为:

$$X_1^0 = L_1, X_2^0 = L_2, X_3^0 = L_3$$

试按附有限制条件的间接平差:

- (1)列出误差方程和限制条件方程;
- (2)列出法方程,并计算未知数的平差值 及其权倒数;
 - (3)计算平差值 L₄ 及其权倒数。
- 7.3.13 在大地四边形(如图7-13)中, A,B 点为已知点,现取 $\angle 3, \angle 4, \angle 5, \angle 6$, $\angle 8$ 的最或是值为未知数,分别记为 \hat{X}_1, \hat{X}_2 ,

 \hat{X}_3 , \hat{X}_4 及 \hat{X}_5 ,其近似值为 $X_1^0 = L_3$, $X_2^0 = L_4$, $X_3^0 = L_5$, $X_4^0 = L_6$, $X_5^0 = L_8$,试列出观测角值 $L_1 \sim L_8$ 的误差方程和未知数间的限制条件。

7.3.14 某平差问题中,有同精度独立观测值 L_1, L_2, L_3 及 $L_4(P=I)$,按附有限制条件的间接平差进行平差计算,已列出误差方程为:

$$v_1 = \hat{x}_1 - 1,$$

$$v_2 = \hat{x}_1 - 2,$$

$$v_3 = \hat{x}_2 + 1,$$

$$v_4 = \hat{x}_1 + \hat{x}_2 + 2$$

限制条件为: $\hat{x}_1 + 2\hat{x}_2 + 3 = 0$ 设有未知数的函数: $\hat{\varphi} = 3\hat{x}_1 - 5\hat{x}_2$,

- (1)试写出法方程,求出未知数 \hat{x}_1,\hat{x}_2 及联系数 K_S ;
- (2)计算未知数函数的权倒数 Q_a 。
- 7.3.15 有测角网如图7-14, A, B 点为已知点, 又已知 BC 边的边长和 AC 边的方位角 (见起算数据表), 观测全部内角, 得观测值 $L_1 \sim L_9(P=I, 见观测值表)$, 若选待定点 C, D 点的坐标为未知参数, 其近似坐标及各边的近似方位角如下:

$$X_C^0 = 6.519.45 \text{m}, Y_C^0 = 14.399.47 \text{m},$$

 $X_D^0 = 9.999.89 \text{m}, Y_D^0 = 10.000.04 \text{m}$

方向	近似方位角 T° (* ´ ´)		
AD	76 09 25.74		
AC	104 35 37.60		
BC	149 19 07.93		
BD	182 59 57.64		
CD	308 20 52.54		

起算数据表

⊥: A7	坐标	(m)	坐标方位角	边长	至何点
点名	X	Y	(* ′ ″)	(m)	主門点
A	8 864.53	5 392.56	104 35 24.0		C
В	13 615.22	10 189.47	225 16 38.5	6 751.252	A
C] ;	8 250.640	В

观测角值表

角号	观 測 值 (* ′ ″)	角号	观 测 值 (* ´ *)	角号	观 拠 值 (* ´ ")
1	30 52 47.2	4	42 16 40.7	7	106 50 41.6
2	28 26 11.9	5	23 45 11.0	8	125 20 39.2
3	33 40 49.8	6 _	20 58 24.8	9	127 48 39.2

试按附有限制条件的间接平差:

- (1)计算 C,D 点坐标的最或是值;
- (2)CD 边坐标方位角最或是值的中误差。
- 7.3.16 试证明:在附有限制条件的间接平差中:
- (1)改正数向量 V 与平差值向量 L 是互不相关的;
- (2) 联系数 K_S 与未知数的函数 $\hat{\varphi} = f^T \hat{X} + f$ 。也是互不相关的。
- 7.3.17 在图 7-15 的测角网中, A, B 点为已知三角点, 其坐标为:

图 7-14

图 7-15

点 号	X(m)	Y(m)
. A	9 582.67	13 931.43
В	13 701.90	17 053.34

 AP_1 边为已知边,已知 $S_{AP_1} = 3012.89$ m,等精度观测角值为:

角号	观 測 值	角号	观
1	72 25 44.7	4	29 47 46.1
2	77 09 44.9	5	105 15 16.7
. 3	30 24 28.2	6	44 57 02.1

现选待定点 P_1 及 P_2 点的坐标为未知参数,已算得其近似值为 X^0 , Y^0 , 见下表:

点 名	X ⁰ (m)	Y ⁰ (m)
P_1	12 580.607	14 231.226
P_2	8 049.983	17 931.463

试按附有限制条件的间接平差:

- (1)计算 P_1, P_2 点的坐标平差值及其协因数阵;
- (2)计算平差后 P_1 及 P_2 点的点位中误差。

第四节 测边网与边角网附有限制条件的间接平差

7.4.18 在图7-16的测边网中, A, B 点为已知点, C, D 点为待定点, 已知点坐标为:

点号	X(m)	Y(m)
Α	0.00	0.00
В	2 214 . 335	0.00

以同精度测得边长观测值为:

边 号	边长观测值(m)
S_1	27 908.062
S_2	20 044, 592
S_3	36 577.034
S_4	20 480.046
S_5	29 402.438

设待定点的近似坐标为:

$$X_0^0 = 19 \ 187.335 \text{m}, \ Y_0^0 = 20 \ 265.887 \text{m}$$

$$X_D^0 = -10.068.386$$
m, $Y_D^0 = 17.332.434$ m

又已知 AD 边的坐标方位角为 T_{AD} = 120°09′5.57′, 若选

图 7-16

C.D 点坐标为未知参数, 试按附有限制条件的间接平差法列出误差方程和限制条件。

7.4.19 在图7-17的测边网中, A, B, C 点为已知点, P 为待定点。边长观测值为:

$$S_1 = 3.128.86m$$
 $S_2 = 3.367.20m$ $S_3 = 6.129.88m$

起算数据为已知点坐标及已知边 AB, BC 的坐标方位角及边长, 另外, 还已知 CP 边的坐标方位角(见起算数据表):

起算数据表

点号	坐 枋	(m)	坐标方位角	H.K.()
点号	X	Y	(" ' ")	边长(m)
A	60 509. 596	69 902.525	117 18 33.72	4 949.186
В	58 238.935	74 300.086	187 59 34.18	6 354.379
c	51 946.286	73 416.515	107 39 34.10	0 334.379
P			336 45 56.25	

今选 P 点坐标为未知参数,已算得其近似值为:

$$X_P^0 = 57\,578.93$$
m $Y_P^0 = 70\,998.26$ m

- (1)试列出各观测边的误差方程和未知数间的限制条件;
- (2)试求 P 点坐标的最或是值;
- (3)求边长改正数向量 V 及边长平差值\$。
- 7.4.20 有边角网如图7-18, 已知 A, B 两点坐标及观测值如下:

点号	$X(\mathrm{km})$	Y(km)
A	0.00	0.00
В	0.00	1.00

$$\beta_1 = 60^{\circ}00'05'', \ \beta_2 = 59^{\circ}59'58''$$

$$\beta_3 = 60^{\circ}00'00'', \ S = 999.99m$$

图 7-17

已知 $\sigma_{\beta} = \pm 2^{\prime\prime}$, $\sigma_{S} = \pm 1$ cm, 令单位权中误差 $\sigma_{0} = \sigma_{\beta}$ 。设待定点 P 点的坐标及边长 AP 为未知 参数 \hat{X}_{P} , \hat{Y}_{P} 及 \hat{X}_{AP} , 其近似值为:

$$X_P^0 = 866 \text{m}, Y_P^0 = 500 \text{m}, X_{AP}^0 = 1000.01 \text{m}$$

- (1)试列出误差方程和限制条件;
- (2)试列出法方程并求出未知数的平差值;
- (3)计算改正数向量 V 及平差值向量 L。

图 7-18

图 7-19

7.4.21 在图7-19的边角网中,A,B,C点为已知点,P点为待定点,起算数据见下表,X

已知 AP 边的坐标方位角 $T_{AP}=90^{\circ}00'03''$,观测了 4 个角度和 2 条边长(见观测值表)。令 $\sigma_{\beta}=\pm1''$, $\sigma_{S}=\pm1$ cm,设 $\sigma_{0}=\sigma_{\beta}$ 。

起算数据表

点号	坐 标 (km)		坐标方位角	边长
M 7	X	Y	(° ′ ″)	(km)
A	2.00	0.00	180 00 00.00	
В	0.00	0.00		2.00
<i>C</i>	0.00	2.00	90 00 00.00	2.00

观测值表

角号	角度观测值 (* · *)	边号	边长观瀕值(m)
β_1	45 00 01	Si	2 828.40m
eta_2	45 00 02	S ₂	2 000.02m
β_3	90 00 02		
β_4	44 59 58		

若选 P 点坐标为未知参数,并已算得其近似坐标及各边的近似方位角与近似边长如下:

$$X_P^0 = 2.00 \text{km},$$
 $Y_P^0 = 2.00 \text{km}$
 $T_{AP}^0 = 90^{\circ}00'00'',$ $S_{AP}^0 = 2.00 \text{km}$
 $T_{BP}^0 = 45^{\circ}00'00'',$ $S_{BP}^0 = \sqrt{8} \text{km}$
 $T_{AP}^0 = 0^{\circ}00'00'',$ $S_{CP}^0 = 2.00 \text{km}$

- (1)试列出误差方程与未知数间的限制条件;
- (2)试列出法方程并解出未知数与联系数;
- (3)试求 P 点坐标的最或是值;
- (4)试求各观测角及观测边长的最或是值。

第八章 附有限制条件的条件平差

第一节 附有限制条件的条件平差原理

8.1.01 在图 8-1的单一附合水准路线中,已知 A, B 点高程为 $H_A = 10.258$ m, $H_B = 15.127$ m, P_1 , P_2 点为待定点,观测高差及路线长度为:

$$h_1 = 2.154 \text{m},$$
 $S_1 = 2 \text{km}$
 $h_2 = 1.678 \text{m},$ $S_2 = 3 \text{km}$
 $h_3 = 1.031 \text{m},$ $S_3 = 4 \text{km}$

若选 P_1 点高程及 AP_1 路线上高差平差值为未知参数 X_1 和 X_2 , 试按附有限制条件的条件平差:

- (1)试列出条件方程和未知数间的限制条件;
- (2)试求待定点 P₁ 及 P₂ 点的高程平差值及各路线上的高差平差值。

图 8-1

8.1.02 在测站 O 点观测A,B,C,D 四个方向间的夹角(如图 8-2)得等精度观测值(Q=I)为:

$$L_1 = 44^{\circ}03'14.5''$$
 $L_2 = 43^{\circ}14'20.0''$
 $L_3 = 53^{\circ}33'32.0''$ $L_4 = 87^{\circ}17'31.5''$

$$L_5 = 96^{\circ}47'53.0''$$
 $L_6 = 140^{\circ}51'06.5''$

若选 $\angle AOB$, $\angle BOC$ 和 $\angle AOC$ 的最或是值为未知参数 X_1 , X_2 和 X_3 , 设其近似值为:

$$X_1^0 = L_1$$
, $X_2^0 = L_2$, $X_3^0 = L_4$

试按附有限制条件的条件平差:

- (1)列出条件方程和未知数间的限制条件:
- (2)列出法方程,解出未知参数的平差值:
- (3)试求改正数向量及观测角的平差值。

图 8-2

水准网附有限制条件的条件平差 第二节

8.2.03 有水准网如图8-3,A 点为已知点,B,C,D,E 点为待定点,已知 B,E 两点间的 高差 AHEE = 1.000m,各水准路线的观测高差及距离如下表:

路线号	观测高差 h(m)	路线长度 S(km)	已知数据
1	4.342	1.5	
2	2. 140	1.2	$H_A = 25.859 m$
3	1.210	0.9	$\Delta H_{BE} = 1.000 \mathrm{m}$
4	-2.354	1.5	
5	5.349	1.8	

现选 B, E 两点的高程为未知参数, 其近似值设为:

$$X_1^0 = 30.201 \text{m}, \quad X_2^0 = 31.208 \text{m}$$

试按附有限制条件的条件平差:

- (1)列出条件方程和限制条件(令权 $P_i = 1/S_i$);
- (2)列出法方程;
- (3)求x, X, V, L;
- (4)求协因数阵 $Q_{\dot{x}}$ 和 $Q_{V_{\dot{x}}}$
- 8.2.04 在图8-4的水准网中,设已知点 D点的高程为 $H_D=15.100$ m,各段水准路线的 观测高差为:

$$L = [1.359, 2.009, 0.363, 1.012, 0.657]^{T}$$
m

且各路线长度相等,每公里的观测精度相同。若设 A 点高程的最或是值与 A, D 点间高差的 最或是值为未知参数 X_1 和 X_2 ,取其近似值为:

$$X_1^0 = 14.104 \text{m}, \quad X_2^0 = 0.996 \text{m}$$

- (1)试列出条件方程和限制条件;
- (2) 试计算x, X, V, L;
- (3)试计算 Qx和 Qv。

8.2.05 在图8-5的水准网中, A, B, C, D 点为已知点, P_1 , P_2 点为待定点, 已知点高程 为 $H_A = 5.000 \text{m}$, $H_B = 6.500 \text{m}$, $H_C = 8.000 \text{m}$, $H_D = 9.000 \text{m}$ 。高差观测值为:

$$\mathbf{h}_{s,1} = [1.250, -0.245, 0.750, -1.006, -2.003]^{T}_{m}$$

权阵 P 为:

$$\mathbf{P} = \begin{bmatrix} \frac{1}{2} & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \\ & & & \frac{1}{2} \end{bmatrix}$$

若选 AP_1 , BP_1 路线上高差的最或是值为未知参数 X_1 和 X_2 , 其近似值为:

$$X_1^0 = h_1 = 1.250 \text{m}, X_2^0 = h_2 = -0.245 \text{m}$$

试按附有限制条件的条件平差:

- (1)列出条件方程和限制条件;
- (2)试求高差平差值及 P₁, P₂ 点的高程平差值;
- (3)试求未知数 x, X及其协因数阵 Q_x 。

第三节 测角网附有限制条件的条件平差

8.3.06 在图8-6的测角网中,A,B,C点为已知点,P点为待定点,已知数据为:

$$S_{AB} = 4001.117$$
m, $S_{BC} = 7734.443$ m
 $T_{AB} = 14^{\circ}00'35.77''$, $T_{BC} = 123^{\circ}10'57.97''$

角度观测值为:

角号		观测值)	角 号		观测值 (* / *)
1	84	07	38.2	7	74	18	16.8
2	37	46	34.9	8	77	27	59.1
3	58	05	44.1	9	28	13	43.2
4	33	03	03.2	10	55	21	09.9
5	126	01	55.7	11	72	22	25.8
6	20	55	02.3	12	52	16	20.5

若选 $\angle 2$ 和 $\angle 4$ 为未知参数 X_1 和 X_2 ,其近似值设为 $X_1^0 = L_2$, $X_2^\circ = L_4$, 试按附有限制条件的条件平差:

- (1)列出条件方程和限制条件;
- (2)列出法方程。

第九章 误差椭圆

第一节 误差椭圆参数、位差及点位方差的计算与应用

9.1.01 某三角网中含有一个待定点 P.经间接平差得法方程为:

$$1.287\ddot{X} + 0.411\dot{Y} + 0.534 = 0$$

$$0.411\dot{X} + 1.762\dot{Y} - 0.394 = 0$$

单位权中误差为 $\sigma_0 = \pm 1.0^{\prime\prime}$, X, Y以 dm 为单位, 试求:

- (1)位差的极大值方向 φ_E 及极小值方向 φ_F ;
- (2)位差的极大值 E 和极小值 F:
- (3)坐标中误差 σχ, σγ及点位中误差 σρ;
- $(4)_{\varphi}=60^{\circ}$ 的位差 σ_{φ} 值。
- 9.1.02 某平差网如图9-1所示,经计算求得待定点 P 点的未知参数的协因数阵为 $Q_{\dot{X}}$,

$$Q_{\dot{X}} = \begin{bmatrix} 1.200 & 0.433 \\ 0.433 & 0.700 \end{bmatrix} \, dm^2 / (")^2$$

已知 $\sigma_0 = \pm 1$ ",

- (1)试计算 P 点的误差椭圆参数 φ_E, E, F ;
- (2)绘制误差椭圆略图;
- (3)计算 P 点的点位方差。6。
- 9.1.03 设某三角网中有一个待定点 P 点,并设其 坐标为未知参数 $X = [X_P, Y_P]^T$, 经平差求得 $\sigma_0^2 = [2 \quad 0.5]$

$$1(")^2, Q_{\dot{X}} = \begin{bmatrix} 2 & 0.5 \\ 0.5 & 2 \end{bmatrix}$$
 $(dm)^2/(")^2$

- (2)计算 $\varphi = 30$ °时的位差 $\sigma_{\varphi = 30}$ 及相应的 Ψ 值;
- (3)设 $\varphi=30^\circ$ 的方向为PC方向,且已知边长 $S_{bc}=3.120$ km,试求 PC 边的边长相对中误 差 $\sigma_{S_{bc}}/S_{PC}$ 及方位角中误差 $\sigma_{T_{bc}}$ 。
 - 9.1.04 已知某平面控制网经平差后 P 点的坐标协因数阵为:

$$Q_X = \begin{bmatrix} 2.10 & 0.25 \\ 0.25 & 1.60 \end{bmatrix} (dm)^2 / (")^2$$

单位权方差 $\sigma_0 = \pm 1$,

- (1)试求极值方向 φ_E 和 φ_F ,极大值 E 和极小值 F;
- (2)求 $\Psi = 232.5$ °时的位差 σ_{Ψ} ,以及 $\varphi = 30$ °时的 σ_{φ} ;
- (3)绘制误差椭圆略图。

9.1.05 在图9-2中, A, B, C 点为已知三角点, P 点为待定点, 起始数据及观测值如下: 起始数据

占县	坐 标(m)		坐标方位角	# K()
点号	X	Y	(° ′ ″)	边 长(m)
A B C	6 107 348.20 6 116 424.20 4 111 779.10	5 570 523.80 5 572 583.80 5 577 483.00	12 47 17.0 133 28 31.0	9 306.90 6 751.20

观测值(设 Q = I):

$$L_1 = 23^{\circ}45'11'', L_2 = 127'48'39'', L_3 = 28^{\circ}26'12'',$$

 $L_4 = 30^{\circ}52'47'', L_5 = 106^{\circ}50'42'' L_6 = 42^{\circ}16'40''$

试按条件平差法求:

- (1)P 点坐标的协因数阵 Q_{x} 及单位权中误差 σ_{0} ;
- (2)位差的极大值方向 φ_E 和极小值方向 φ_E ;
- (3)位差的极大值 F,极小值 F 及坐标中误差 σ_X , σ_Y 和点位中误差 σ_P ;
- $(4)\varphi = 60$ °时的位差 $\sigma_{\varphi=60}$ *;
- (5)绘出 P 点的误差曲线,并从图上量出 σ_{X} , σ_{Y} , $\sigma_{S_{AP}}$, σ_{u} , $\sigma_{\varphi=60}$ 的值。
- 9.1.06 在图9-3中, A, B, C 为已知三角点, P 点为待定点, 起始数据为:

占量	坐标(m)		坐	标方位	44.7	
点号	X	Y	(°	,	″)	边长(m)
A	16 906.066	6 325.434	720	20	1. 2	7.040 (544
B	14 532.209	4 352, 117	220	20		3 048, 6544
C	13 301, 175	3 601.255	210	22	34.2	1 484.8716

同精度观测值为:

$$L_1 = 28^{\circ}45'25.3''$$
, $L_2 = 74^{\circ}22'57.2''$, $L_3 = 76^{\circ}51'37.6''$
 $L_4 = 42^{\circ}43'29.5''$, $L_5 = 44^{\circ}05'48.1''$, $L_6 = 93^{\circ}10'44.2''$

试按条件平差法计算 P 点坐标平差值的协因数阵, σ_0 及误差椭圆参数 φ_E ,E,F。

图 9-2

图 9-3

9.1.07 题同9.1.05题(见图 9-2),已算出 P 点的近似坐标及各边近似边长和近似方位角如下:

 $X_P^0 = 6 \ 111 \ 854.693 \text{m}, \qquad Y_P^0 = 5 \ 573 \ 863.498 \text{m}$

$$T_{AP}^{0} = 36^{\circ}32'29.8'',$$
 $S_{AP}^{0} = 5609.11 \text{m}$
 $T_{BP}^{0} = 164^{\circ}21'18.0'',$ $S_{BP}^{0} = 4745.32 \text{m}$
 $T_{CP}^{0} = 271^{\circ}11'47.2'',$ $S_{CP}^{0} = 3620.29 \text{m}$

试按间接平差计算:

- (1) P 点坐标的协因数阵 $Q_{\rm X}$ 及单位权中误差 $\sigma_{\rm G}$:
- (2)位差的极大值方向 φ_E 和极小值方向 φ_F ;
- (3)位差的极大值 E,极小值 F 及坐标中误差 σ_X , σ_Y 和点位中误差 σ_B ;
- $(4)\varphi = 60$ 时的位差 $\sigma_{\varphi=60}$ 。
- 9.1.08 题同9.1.06(见图 9-3),经计算得 P 点近似坐标及各边近似方位角和近似边长如下:

$$X_P^0 = 13\,886.158$$
m, $Y_P^0 = 5\,706.666$ m
 $T_{AP}^0 = 191°34′45.9″$, $S_{AP}^0 = 3\,082.647\,7$ m
 $T_{BP}^0 = 117°11′48.8″$, $S_{BP}^0 = 1\,522.921\,5$ m
 $T_{CP}^0 = 74°28′19.87″$, $S_{CP}^0 = 2\,185.168\,3$ m

试按间接平差计算:

- (1)P 点坐标平差值的协因数阵 Q_X 及单位权中误差 σ_0 ;
- (2)P 点误差椭圆参数 $\varphi_{\rm E}$, E, F。
- 9.1.09 某平面控制网经平差后得出待定点 P 点的坐标的协因数阵为,

$$Q_{\dot{X}} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \quad (dm)^2 / (")^2$$

单位权中误差 $\sigma_0^2 = 0.5(^{\circ})^2$ 。

- (1)试求 P 点误差椭圆参数 φ_F , E, F;
- (2)已知方位角 $T_{PA}=45^{\circ}$,试求纵向位差 $\sigma_{S_{PA}}$,横向位差 $\sigma_{u_{PA}}$ 及点位中误差 σ_{P} 。
- 9.1.10 某平面控制网经平差后得出 P 点坐标的协因数阵为:

$$Q_{\dot{X}} = \begin{bmatrix} 1.69 & 0 \\ 0 & 1.69 \end{bmatrix} (dm)^2 / (")^2$$

单位权方差 $\sigma_0^2 = 1('')^2$,试求 P 点误差椭圆参数 φ_E , E, F 值, 并说明该误差椭圆的形状特点。

9.1.11 在图9-4中, A, B, C 点为已知点, P 点为待定点, 已知 P 点坐标平差值的协因数阵为:

$$Q_{X} = \begin{bmatrix} 1.21 & -0.28 \\ -0.28 & 0.94 \end{bmatrix}$$
 $(dm)^{2}/(")^{2}$

单位权中误差为 $\sigma_0 = \pm 1^{\prime\prime}$,试求:

- (1)P 点的误差椭圆参数 φ_{F} , E, F;
- (2)P 点与A 点两点间的相对误差椭圆参数。
- 9.1.12 某平面测边网,经平差后得 P 点坐标的协因数阵为:

$$Q_{\hat{X}} = \begin{bmatrix} 11.781 & -12.992 \\ -12.992 & 20.217 \end{bmatrix}$$

单位权中误差为 $\sigma_0 = \pm 0.23 \,\mathrm{dm}$, 试计算 P 点误差椭圆参数 φ_E , E, F。

9.1.13 设某平面控制网中已知点 A 与待定点 P 连线的坐标方位角为 $T_{PA} = 75^\circ$, 边长 $S_{PA} = 648.12$ m, 经平差算得 P 点误差椭圆参数 $\varphi_E = 45^\circ$, $E = \pm 4$ cm, $F = \pm 2$ cm, 试求边长相 对中误差 $\sigma_{S_{PA}}/S_{PA}$ 。

第二节 相对误差椭圆参数的计算与应用

- 9.2.14 已知某平面控制网中两待定点 P_1 与 P_2 间的边长 $S_{P_1P_2}=5$ km,已算得两点间横向位差 $\sigma_{u_{P_1P_2}}=\pm 0.645$ dm,试求 P_1P_2 方向的坐标方位角中误差 $\sigma_{T_{P_1P_2}}$ 。
 - 9.2.15 某平面控制网经平差后求得 P₁, P₂ 两待定点间坐标差的协因数阵为:

$$\begin{bmatrix} Q_{\Delta \dot{\mathbf{X}}} & Q_{\Delta \dot{\mathbf{X}} \Delta \dot{\mathbf{Y}}} \\ Q_{\Delta \dot{\mathbf{Y}} \Delta \dot{\mathbf{X}}} & Q_{\Delta \dot{\mathbf{Y}}} \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix} \text{ cm}^2 / (")^2$$

单位权方差为 $\hat{\sigma}_0^2=1(")^2$,试求两点相对误差椭圆参数 $\varphi_{E_{1,2}},E_{1,2},F_{1,2}$ 。

9.2.16 已知某测角网平差后两待定点坐标差的协因数阵为:

$$\begin{bmatrix} Q_{\Delta X} & Q_{\Delta X \Delta Y} \\ Q_{\Delta Y \Delta X} & Q_{\Delta Y} \end{bmatrix} = \begin{bmatrix} 0.380 & 0.025 \\ 0.025 & 0.510 \end{bmatrix} dm^2 / (")^2$$

已求得 $\hat{\sigma}_0^2 = 2(")^2$ 。

- (1)试求两点相对误差椭圆参数 $\varphi_{E_{1,2}}, E_{1,2}, F_{1,2}$;
- (2)若已知 $S_{1,2}=7.78$ km,方位角 $T_{1,2}=112°30′$,试求两点间边长相对中误差 $\sigma_{S_{1,2}}/S_{1,2}$ 。
- 9.2.17 某测角网如图9-4,经平差后求得 P1, P2 两待定点间坐标差的协因数阵为:

$$\begin{bmatrix} Q_{\Delta X} & Q_{\Delta X \Delta Y} \\ Q_{\Delta Y \Delta X} & Q_{\Delta Y} \end{bmatrix} = \begin{bmatrix} 1.200 & 0.433 \\ 0.433 & 0.700 \end{bmatrix} dm^2 / (")^2$$

单位权方差为 $\sigma_0^2 = 1(")^2$ 。

- (1)试计算相对误差椭圆参数 $\varphi_{E_{1,2}}, E_{1,2}, F_{1,2}$;
- (2)若已知 P_1,P_2 方向的坐标方位角为 $T_{P_1P_2}=60^\circ$,边长 $S_{P_1P_2}=3$. 32km,试求 P_1P_2 边 边长相对中误差 $\sigma_{S_{P_1P_2}}/S_{P_1P_2}$ 和方位角中误差 $\sigma_{T_{P_1P_2}}$ 。
- 9.2.18 设有一测角网如图9-5所示,网中A,B,C,D点是已知点,P₁和P₂是待定点,起算数据和角度观测值如下:

		V-31-200				
点名	坐 标(m)		M-1// \	坐标方位角		
	X	Y	边长(m)	(°	•	~)
Α	9 684.28	43 836.82				
В	10 649.55	31 996.50	11 879.60	274	39	38.4
C	19 063 . 66	37 818.86	10 232.16	34	40	56.3
D	17 814.63	49 923.19	12 168.60	95	53	29.1
A			10 156.11	216	49	06.5

起算数据

观测值 $(Q_L = I)$:

 $L_1 = 126^{\circ}14'24.1''$, $L_2 = 23^{\circ}39'46.9''$, $L_3 = 30^{\circ}05'46.7''$

 $L_4 = 117^{\circ}22'46.2''$, $L_5 = 31^{\circ}26'50.0''$, $L_6 = 31^{\circ}10'22.6''$

 $L_7 = 22^{\circ}02'43.0''$, $L_8 = 130^{\circ}03'14.2''$, $L_9 = 27^{\circ}53'59.3''$

 $L_{10} = 65^{\circ}55'0.08''$, $L_{11} = 67^{\circ}02'49.4''$, $L_{12} = 47''02'11.4''$

 $L_{13} = 46^{\circ}38'56.4''$, $L_{14} = 66^{\circ}34'54.7''$, $L_{15} = 66^{\circ}46'08.2''$

 $L_{16} = 29^{\circ}58'35.5''$, $L_{17} = 120^{\circ}08'31.1''$, $L_{18} = 29^{\circ}52'55.4''$

试按间接平差计算:

- (1)未知数的协因数阵 Q_x 及单位权中误差 σ_0 :
- $(2)P_1$ 点的误差椭圆参数;
- $(3)P_2$ 点的误差椭圆参数;
- $(4)P_1$ 与 P_2 两点间的相对误差椭圆参数;
- (5)绘出误差椭圆,并在相对误差椭圆上量取纵向中误差 $\sigma_{S_{P_1P_2}}$ 和横向中误差 $\sigma_{u_{P_1P_2}}$ 值。

9.2.19 某地布设的三角网如图9-6所示,A,B点为已知点, P_1 , P_2 为待定点,起算数据和观测值如下:

 $X_A = 11 801.183 \text{m}$, $Y_A = 55 809.601 \text{m}$, $T_{AB} = 38''51'46.51''$

 $X_B = 17 339.852 \text{m}$, $Y_B = 60 272.828 \text{m}$, $S_{AB} = 7 113.174 \text{m}$

 $L_1 = 4^{\circ}39'07.2''$, $L_2 = 7^{\circ}52'46.7''$, $L_3 = 167^{\circ}28'11.5''$

 $L_4 = 54^{\circ}59'22.4''$, $L_5 = 49^{\circ}21'46.3''$, $L_6 = 75^{\circ}38'57.1''$

 $L_7 = 39^{\circ}16'33.2''$, $L_8 = 23^{\circ}50'31.8''$, $L_9 = 116^{\circ}52'57.1''$

试用条件平差求:

- $(1)P_1$ 点及 P_2 点坐标未知数的协因数阵 Q_X 及单位权中误差 σ_0 ;
- (2)P, 点的误差椭圆参数;
- (3)P₂点的误差椭圆参数;
- (4)P₁与 P₂点间相对误差椭圆参数;
- (5)绘制误差椭圆,并在相对误差椭圆上量取纵向中误差 $\sigma_{\mathbf{s}_{p_1p_2}}$,横向中误差 $\sigma_{\mathbf{u}_{p_1p_2}}$ 。
- 9.2.20 今有测边网如图9-7所示,A,B,C,D 点为已知点, P_1 , P_2 点为待定点,以同精度观测了9条边长,起始数据及观测值如下:

观测值

编号	观测边长(m)	编号	观测边长(m)
1	660.286	6	317.077
2	324.613	7	472.529
3	212.444	8	347.431
4	437.793	9	347.336
5	333.549		

起始数据

点名	坐 标(m)		Y+12 ()	坐	坐标方位角		
	X	Y	边长(m)	(°	,	″)	
A	8 434.88	1 184.71				· · · · · · · · · · · · · · · · · · ·	
В	8 724.64	809.72	473.90	307	41	37.5	
c	9 221.07	1 008.40					
D	9 031.07	1 345.25	386.74	119	25	30.5	

经间接平差得待定点坐标未知数的协因数阵为:

$$Q_{\dot{X}} = \begin{bmatrix} 0.344 & 9 & -0.000 & 9 & 0.059 & 7 & -0.080 & 7 \\ -0.000 & 9 & 0.573 & 9 & -0.079 & 8 & 0.107 & 4 \\ 0.059 & 7 & -0.079 & 8 & 0.345 & 9 & 0.022 & 1 \\ -0.080 & 7 & 0.107 & 4 & 0.022 & 1 & 0.580 & 4 \end{bmatrix}$$

单位权中误差为 $\sigma_0 = \pm 0.53$ dm(即测边中误差),试计算 P_1 及 P_2 点的误差椭圆参数及两点间的相对误差椭圆参数。

- 9.2.21 试述当 $Q_{XY}=0$ 及 $Q_{X}>Q_{Y}$ 时, 位差的极大值方向是 X 轴方向, 极小值方向是 Y 轴方向, 即 $\varphi_{F}=0^{\circ}$, $\varphi_{F}=90^{\circ}$ 。
- 9.2.22 在图9-8的测边网中, A, B 点为已知点, C, D 点为待定点, 边长观测值为 $S_i(i=1,2,\cdots,5)$ 。经平差后求得 C, D 点坐标的协因数阵为:

$$Q_{\dot{X}} = \begin{bmatrix} 0.350 & 0.015 & -0.005 & 0 \\ 0.015 & 0.250 & 0 & 0.020 \\ -0.005 & 0 & 0.200 & 0.010 \\ 0 & 0.020 & 0.010 & 0.300 \end{bmatrix}$$

单位权中误差为 $\sigma_0 = \pm 2 cm$ 。

- (1)试求 C,D 两点相对误差椭圆参数 φ_E , E, F;
- (2)已知方位角 $T_{CD} = 142.5^{\circ}$,试求 C, D 两点的边长中误差 σs_{co} 。

图 9-8

第十章 分组平差

附有未知数的条件分组平差 第一节

10.1.01 已知附有未知参数的条件方程为:

$$v_1 - x - 2 = 0 \tag{1}$$

$$v_3 - v_4 + 5 = 0 (2)$$

$$v_2 + v_4 + x - 3 = 0 \tag{3}$$

设观测值为等精度观测值(n=4), P=I。现以(1), (2)条件为第一组条件(3)条件为第二组 条件进行分组平差,试求 K, V, x及 Q_X 。

10.1.02 在图 10-1的水准网中,已知点高程为 $H_A = 10.000$ m, $H_B = 10.500$ m, $H_C = 10.00$ m 12.000m。 P_1, P_2 点为待定水准点。等精度观测值为 $h = [2.500, 2.000, 1.300, 1.805]^{T}$ m, 现选 P_2 点高程平差值为未知参数, $x = H_{P_1}$,其近似值为 $X^0 = 13.805$ m,试按附有未知参数的 条件分组平差求 P2 点高程平差值及其协因数阵。

图 10-1

10.1.03 设有水准网如图10-2,已知 A 点高程为 $H_A = 31.100$ m,观测高差值如下:

$$h_1 = 0.893 \text{m}$$
, $S_1 = 15 \text{km}$ $h_2 = 9.125 \text{m}$, $S_2 = 20 \text{km}$ $h_3 = 10.012 \text{m}$, $S_3 = 10 \text{km}$

$$h_4 = 2.640 \text{m}$$
, $S_4 = 30 \text{km}$ $h_5 = 6.193 \text{m}$, $S_5 = 25 \text{km}$ $h_6 = 6.481 \text{m}$, $S_6 = 20 \text{km}$

$$h_7 = 6.999 \text{m}$$
, $S_7 = 20 \text{km}$ $h_8 = 1.712 \text{m}$, $S_8 = 15 \text{km}$ $h_9 = 1.212 \text{m}$, $S_9 = 5 \text{km}$

按 $P_i = C/S_i$, C = 10km 定权。若设 P_3 , P_4 两点的高程为未知参数 X_1 , X_2 , 取其近似值为:

$$X_1^0 = 36.400 \text{m}, \quad X_2^0 = 42.865 \text{m}$$

试按附有未知参数的条件分组平差求 X_1, X_2 和 Q_X 。

10.1.04 设有两组条件方程:

$$v_3 - v_4 + 5 = 0 \tag{I}$$

$$v_1 - x - 2 = 0 \\ v_2 + v_4 + x - 3 = 0$$
 (II)

试按附有未知参数的条件分组平差求 $x, V, Q_x, \sigma_0^2, \sigma_x^2$ 。

10.1.05 在图10-3的水准网中, A 点为已知点, $P_1 \sim P_4$ 点为待定点, $h_1 \sim h_7$ 为等精度独立观测值, 且 Q = I。已知 $H_A = 3.560$ m, 观测值为:

$$h_1 = 0.259 \text{m}, h_2 = -0.872 \text{m}, h_3 = 1.132 \text{m}, h_4 = 2.138 \text{m}, h_5 = 3.268 \text{m}, h_6 = -1.256 \text{m}, h_7 = -2.015 \text{m}$$

设 P_4 点高程平差值为未知参数 X, 其近似值为 $X^0 = 4.702m_o$

- (1)试按附有未知参数的条件分组平差求 V, L, X 及 Q_X ;
 - (2)试求 P₄ 点高程平差值及其权倒数。
- 10.1.06 观测数据与网形同10.1.03题,但将观测高差分为两组, $L = [L_1, L_2]$, 其中 $L_1 = [h_1, h_2, h_3, h_4, h_5, h_6]^T$, $L_2 = [h_7, h_8, h_9]^T$, 且 L_1 与 L_2 不相关。 $P = \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix}$ 。试按具有分块权逆阵的条件分组平差法:

图 10-3

- (1)列出两组条件方程;
- (2)求 \dot{X}_1, X_2 及 $Q_{\dot{X}_0}$
- 10.1.07 观测值与 A 点已知高程与 10.1.05 题相同。理将观测值分为两组, $L = [L_1, L_2]$,其中, $L_1 = [h_1, h_2, h_3, h_4]^T$, $L_2 = [h_5, h_6, h_7]^T$,权阵 $P_1 = I$, $P_2 = I$,又设 P_2 点及 P_3 点高程平差值为未知参数 \hat{X}_1 和 \hat{X}_2 ;
 - (1) 试按具有分块权逆阵的条件分组平差法列出两组条件方程式:
 - (2)试求 X及Qx。
- 10.1.08 同10.1.02题。设第一次观测值为 $L_1 = [h_1, h_2, h_3]^T$,第二次观测值为 $L_2 = h_4$,权阵 $P_1 = I$, $P_2 = I$,试按具有分块权逆阵的条件分组平差求 P_2 点高程平差值及其协因数阵。

第二节 无参数的条件分组平差

- 10.2.09 观测值与网形同10.1.03题,试按无参数的条件分组平差求改正数 V 和平差值 \hat{L} 。
 - 10.2.10 设有两组条件方程:

$$v_1 + v_2 + v_4 + 8 = 0 \tag{I}$$

$$v_3 + v_5 + v_6 - 8 = 0 \tag{II}$$

试按条件分组平差求 V', V''及 V。

10.2.11 设有两组条件方程:

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} v - \begin{bmatrix} -2 \\ 8 \end{bmatrix} = 0$$
 (I)

$$[2 \quad 0 \quad 0 \quad -1 \quad 0 \quad 1] \underset{6,1}{V} -6 = 0 \tag{II}$$

设 L 的协因数阵为 Q = I,试按条件分组平差求 V',V''及 V。

10.2.12 设有两组条件方程:

$$\begin{cases}
 v_1 + v_4 + 2 = 0 \\
 v_2 + v_3 - 3 = 0
 \end{cases}
 (I)$$

$$v_1 - 2v_3 + 3v_5 + 2 = 0 \tag{[]}$$

Q=1, 试按条件分组平差求改正数 V。

10.2.13 设有两组条件方程:

$$\begin{vmatrix} v_1 - v_2 + v_5 + 7 = 0 \\ -v_3 + v_4 - v_5 - 8 = 0 \end{vmatrix}$$
 (I)

$$v_3 + v_6 + v_7 + 6 = 0 \tag{II}$$

试按条件分组平差求平差值函数 $\varphi = L_1 + L_6$ 的权倒数。

10.2.14 设有两组条件方程:

$$\begin{vmatrix} v_1 + v_2 + 2 = 0 \\ v_3 + v_4 + v_5 + v_6 - 8 = 0 \end{vmatrix}$$
 (I)

$$2v_1 - v_4 + v_6 - 6 = 0 \tag{I}$$

试按条件分组平差求平差值函数 $\varphi=2L_2-4L_5$ 的权倒数。

10.2.15 在图10-4的固定角 $\angle AOB$ 中,为了确定方向 P_1, P_2 ,观测了 4 个角度,其结果为:

$$L_1 = 29^{\circ}59'50', L_2 = 60^{\circ}29'58'', L_3 = 30^{\circ}29'55'', L_4 = 24^{\circ}30'05''$$

 $\angle AOB = 85^{\circ}00'00'(无误差)$, 试按条件分组平差求平差后 $\angle P_1OP_2$ 的权倒数。

10.2.16 有水准网如图10-5,各路线长度相同,已知点 A 的高程为 $H_A = 5.000$ m(无误差),测得高差值为:

$$h_1 = +1.359$$
m, $h_2 = +2.009$ m, $h_3 = +0.363$ m, $h_4 = +1.012$ m

$$h_5 = +0.657 \text{m}, h_6 = +0.238 \text{m}, h_7 = -0.595 \text{m}$$

试按条件分组平差求:

- (1)平差后 P_1, P_2, P_3 及 P_4 点的高程,
- (2)平差后 P3 点高程的中误差。

10.2.17 在图10-6的中点多边形中,各角的观测值为:

$$(1) = 66^{\circ}59'22$$

$$(1) = 66^{\circ}59'22^{\circ}$$
 $(2) = 39^{\circ}20'21''$

$$(3) = 67^{\circ}49'42''$$

$$(4) = 40^{\circ}48'53''$$

$$(5) = 47^{\circ}31'05''$$

$$(6) = 56^{\circ}08'43''$$

$$(7) = 58^{\circ}57'21''$$

$$(7) = 58^{\circ}57'21''$$
 $(8) = 64^{\circ}43'27''$ $(9) = 31^{\circ}48'48''$

$$(10) = 65^{\circ}51'43''$$
 $(11) = 73^{\circ}39'33''$ $(12) = 71^{\circ}21'32''$

$$(11) = 73^{\circ}39^{\circ}33$$

$$(13) = 76^{\circ}19'44''$$

$$(13) = 76^{\circ}19'44''$$
 $(14) = 56^{\circ}19'36''$ $(15) = 82^{\circ}19'02''$

试按条件分组平差求:

- (2)测角中误差:
- (3)设 AE 边无误差,求 AE 边推算 BC 边的边长相对 中误差。

10.2.18 设有两组条件方程:

$$\begin{cases}
 v_1 + v_2 + v_6 + 6'' = 0 \\
 v_3 + v_4 + v_5 - 3'' = 0
 \end{cases}$$

$$\begin{cases}
 v_2 + v_3 = 0 \\
 v_5 - v_6 - 5'' = 0
 \end{cases}$$
(I)

已知 L 的权逆阵为:

$$Q_L = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

试按相关条件分组平差求改正数 V', V"及 V。

10.2.19 某平差问题有观测值 L₁~L₄,按条件分组平差已列出两组条件方程为:

$$v_1 + v_2 + v_3 + v_4 - 4 = 0$$
 (I)
 $v_1 + 2v_2 + v_3 + 2v_4 + 4 = 0$ (II)

- (1)若 $Q_L = I$, 试求第 I 组条件平差后所得结果 V', L' 的权逆阵 $Q_{L'}$, 以及第二次改正数 V''_{\circ}
 - (2)若观测值的权逆阵为:

$$Q_L = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & -1 & 0 \\ 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

试录 V', Q, 及 V'。

10.2.20 有三角网如图10-7所示,观测值为 $L_i(i=1,2,\cdots,6)$,列出条件方程式为:

$$v_1 + v_2 + v_3 + v_4 - 12'' = 0$$

 $v_3 + v_4 + v_5 + v_6 + 12'' = 0$

若观测值的协因数阵为:

$$Q_L = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

试按相关条件分组平差求角度改正数 V。

10.2.21 有水准网如图10-8,高差观测值为 h₁~h₅,列出条件方程为:

$$v_1 - v_2 + v_5 + 9 = 0$$
 (a)
 $v_3 + v_6 + v_7 + 6 = 0$ (b)

$$-v_3+v_4-v_5-5=0$$
 (c)

若观测值的协因数阵 $Q_L = I$,且以(a),(b)条件为第 I 组,(c)条件为第 I 组,试按相关条件分组平差求高差改正数 V(条件方程闭合差以 mm 为单位)。

图 10-7

图 10-8

10.2.22 有三角网如图10-9,观测值为 $L_i(i=1,2,\cdots,8)$,角度观测值为:

$$L_1 = 61^{\circ}07'57''$$
, $L_2 = 38^{\circ}28'37''$, $L_3 = 38^{\circ}22'21''$, $L_4 = 42^{\circ}01'15''$
 $L_5 = 29^{\circ}14'35''$, $L_6 = 70^{\circ}22'00''$, $L_7 = 49^{\circ}26'16''$, $L_8 = 30^{\circ}57'02''$

设方向观测值为独立观测值,且权阵 P = I,试以角度为相关观测值按相关条件分组平差法求角度改正数V。

10.2.23 设有两组条件方程:

$$v_1 + v_2 + v_4 + 8 = 0 \qquad (I)$$

$$v_3 + v_5 + v_6 - 8 = 0 \qquad (II)$$

已知相关观测值 L 的协因数阵 Q_L :

$$Q_L = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

试按相关条件分组平差求 V', V"及 V,

第三节 序贯平差及其特殊情况

10.3.24 设有两组误差方程:

$$V_{1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} - \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} (mm)$$

$$V_{2} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} - \begin{bmatrix} 3 \\ 1 \end{bmatrix} (mm)$$

其中, L_1 与 L_2 的权为 $P_1 = P_2 = I$,未知数的近似值为 $X^\circ = [5.650 7.120]^{\mathrm{T}}$ (m),试按序贯 平差求 \dot{X} 及 $Q_{\dot{X}}$ 。

10.3.25 设有两组误差方程:

$$V_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}_{(mm)} P_{1} = I$$

$$V_{2} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{2} \end{bmatrix} - \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}_{\text{(num)}} P_{2} = I$$

试按序贯平差法求:

$$(1)x',x'',x;(2)V_1,V_2$$

10.3.26 有三角网如图10-10,设第一次观测值为 $L_1 = [\beta_1 \ \beta_2 \ \beta_3]^T$,第二次观测值为 $L_2 = [\beta_4 \ \beta_5 \ \beta_6]^T$, $L = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}$ 。现已列出两组误差方程为:

$$\begin{vmatrix} v_1 = -x_1 - x_2 - 8 \\ v_2 = x_1 \\ v_3 = x_3 \end{vmatrix}$$

$$\begin{vmatrix} v_4 = x_2 \\ v_5 = x_4 \\ v_6 = -x_3 - x_4 + 8 \end{vmatrix}$$
 (11)

观测值的协因数阵为:

$$Q = \begin{bmatrix} Q_{11} & 0 \\ 0 & Q_{22} \end{bmatrix}, Q_{11} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, Q_{22} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

试按序贯平差法求角度改正数 V。

10.3.27 在图10-11的水准网中,已知 A,B,C点的高程为 H_A =11.000m, H_2 =10.500 m, H_C =12.512m,P点为待定点,各线路观测高差为:

$$h_1 = +2.003 \text{m}, h_2 = +2.501 \text{m}, h_3 = +0.497 \text{m}$$

Q=I。设 h_1,h_2 为第一次观测值, h_3 为第二次观测值,P 点高程为未知参数 X,试按序贯平 差求 P 点高程平差值及其权倒数(设 $X^{\circ}=13.003$ m)。

10.3.28 观测数据和网形同10.1.03题。若第一次观测了 $h_1 \sim h_6$,第二次观测了 $h_7 \sim h_9$ 。设各待定点高程平差值为未知参数, $X = \begin{bmatrix} X_1 & X_2 & X_3 & X_4 & X_5 & X_6 \end{bmatrix}^T$,其近似值为:

$$X_1^0 = 30.210 \text{m}, X_2^0 = 40.220 \text{m}, X_3^* = 36.400 \text{m},$$

 $X_4^0 = 42.870 \text{m}, X_5^0 = 43.400 \text{m}, X_6^* = 44.600 \text{m}_0$

按 $P_i = C/S_i(C=30 \text{km})$ 定权, 试按序贯平差法求各待定点的高程平差值。

10.3.29 设有两组误差方程为:

$$V_{1} = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} \dot{x}_{1} + \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \dot{x}_{2} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad P_{1} = I$$

$$V_{2} = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} \dot{x}_{2} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \dot{x}_{3} + \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad P_{2} = I$$

试按序贯平差法求 。

10.3.30 设有两组误差方程:

$$V_{1} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \dot{x}_{1} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \dot{x}_{2} - \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}, \quad i^{j}_{1} = I$$

$$V_{2} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \dot{x}_{2} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \dot{x}_{3} - \begin{bmatrix} 6 \\ -7 \end{bmatrix}, \quad P_{2} = I$$

试按序贯平差法求 $_{x}$ 及 $_{Q_{x}}$ 。

10.3.31 某水准网如图10-12所示。已知 A, B 点高程为 H_A = 10.000m, H_B = 5.000m。104

第一次观测高差为 h_1,h_2,h_3 ;第二次观测高差为 h_4,h_5 。 P_1 和 P_2 点为待定点,其高程平差值设为未知数, $\dot{X}_1=\dot{H}_{P_1}$, $\dot{X}_2=\dot{H}_{P_2}$,观测高差如下:

$$h_1 = 5.012$$
m, $h_2 = 4.853$ m, $h_3 = -9.861$ m, $h_4 = 10.011$ m, $h_5 = 14.863$ m $_{\circ}$

若取 $X_1 = 15.012$ m, $X_2 = 19.861$ m, 已知单位权中误差 $\sigma_0 = \pm 2$ mm, 权阵 $P_1 = I$, $P_2 = I$, 试按序贯平差(间接分组平差)法:

- (1)列出两组误差方程;
- (2) 求第一次平差结果,x',第二次平差结果x'',以及x 和 x
- (3) 求第一次改正数 V',第二次改正数 V'',以及改正数 V 与高差平差值 L.
- (4)求平差后 P_1, P_2 点高程平差值的协因数阵 Q_X 及其方差 $\sigma_{X_1}^2, \sigma_{X_2}^2$ 。
- 10.3.32 设有两组误差方程

$$\mathbf{V}_{\mathbf{j}} = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 1 & 1 \end{bmatrix} \mathbf{x} - \begin{bmatrix} 0 \\ -2 \\ 3 \end{bmatrix} \quad \mathbf{P}_{\mathbf{i}} = \mathbf{I}$$

$$\mathbf{V}_{\mathbf{j}} = \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} \mathbf{x} - \begin{bmatrix} -7 \\ 0 \end{bmatrix} \quad \mathbf{P}_{\mathbf{j}} = \mathbf{I}$$

其中, $x=[x_1 \ x_2]^T$,试按序贯平差法求 $x \not Q_X$ 。

10.3.33 某水准网如图10-13所示,已知点 A = 53.00 的高程分别为A = 53.00 的高程分别为A = 53.00 的高程,测得高差观测值为:

$$h_1 = 2.95 \text{m}, h_2 = 2.97 \text{m}, h_3 = 2.08 \text{m}, h_4 = 2.06 \text{m}$$

各条路线长度相等。设 $\mathbf{L} = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}, L_1 = \begin{bmatrix} h_1 h_2 \end{bmatrix}^T, L_2 = \begin{bmatrix} h_3 h_4 \end{bmatrix}, P$ 《高程平差值为未知参数 X:

- (1)试列出两组误差方程;
- (2)试按序贯平差法求 P 点高程平差值及其协因数阵。

图 10-12

图 10-13

10.3.34 有水准网如图10-14所示,已知 A 点高程 $H_A = 20.000$ m,第一次观测了 $h_1 \sim h_6$,第二次观测了 $h_7 \sim h_9$,其观测高差为:

$$h_1 = 1.545 \text{m}, h_2 = 5.506 \text{m}, h_3 = 3.955 \text{m},$$

 $h_4 = 3.455 \text{m}, h_5 = -7.510 \text{m}, h_6 = -7.000 \text{m},$

$$h_7 = 15.450 \text{m}, h_8 = -8.000 \text{m}, h_9 = -30.465 \text{m}$$

各段水准路线长度相等(Q=I),设各待定点高程平差值为未知参数, $\dot{X}=[\dot{X}_1\ \dot{X}_2\ \dot{X}_3\ \dot{X}_4\ \dot{X}_5\ \dot{X}_6]^T$,试分两次进行间接分组平差求各待定点高程平差值(近似值 $X_1^0=21.545\mathrm{m}$, $X_2^0=25.500\mathrm{m}$, $X_3^0=25.000\mathrm{m}$, $X_4^0=18.000\mathrm{m}$, $X_5^0=40.450\mathrm{m}$, $X_6^0=10.000\mathrm{m}$)。

10.3.35 有水准网如图10-15。已知 A 点高程为 $H_A=31.100$ m,第一次观测值为 $h_1\sim h_6$,观测高差和路线长度分别为

$$h_1 = +0.893$$
m, $S_1 = 15$ km
 $h_2 = +9.125$ m, $S_2 = 20$ km
 $h_3 = +10.012$ m, $S_3 = 10$ km
 $h_4 = +2.640$ m, $S_4 = 30$ km
 $h_5 = +6.193$ m, $S_5 = 25$ km
 $h_6 = +6.481$ m, $S_6 = 20$ km

第二次观测值为 h7~h12,观测高差和路线长度为:

$$h_7 = +6.999 \text{m},$$
 $S_7 = 20 \text{km}$
 $h_8 = +1.712 \text{m},$ $S_8 = 15 \text{km}$
 $h_9 = +1.212 \text{m},$ $S_9 = 5 \text{km}$
 $h_{10} = +126.214 \text{m},$ $S_{10} = 30 \text{km}$
 $h_{11} = +39.844 \text{m},$ $S_{11} = 10 \text{km}$
 $h_{12} = +164.388 \text{m},$ $S_{12} = 25 \text{km}$

试分两次进行间接分组平差求待定点 P1~P8 点的高程平差值。

10.3.36 有测角网如图 10-16 所示,已知数据和角度观测值如下表;

已知数据

点号	坐标		E(1)	方位角 T			자는 보
	$X(\mathrm{km})$	Y(km)	S(km)	(°	,	″)	至何点
A	2.00	1.00	√2	225	00	00.0	В
В	1.00	0.00	√2	135	00	00.0	С
\overline{c}	0.00	1.00					

角度观测值

	观測值 L			4. 5	观測値 L		
角号	(°	,	″)	角号	(*	,	″)
1	90	00	03	4	89	59	57
2	44	59	59	5	44	59	59
3	45	00	01	6	45	00	04

第一次观测了角度 L_1, L_2, L_3 ; 第二次观测了角度 L_4, L_5, L_6 。设方向观测值为单位权独立观测值,试以角度为相关观测值技逐次相关间接平差(序贯平差)求: P 点坐标平差值(取 $X_P^0=1.00$ km, $Y_P^0=2.00$ km)。

提示:角度观测值 [的协因数阵为:

$$Q_L = \begin{bmatrix} 2 & .0 & 0 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

第十一章 统计假设检验

第一节 正态母体均值的检验

11.1.01 设有某一等锁的32个三角形闭合差为:

它们的母体服从正态分布。设 $\sigma=1.0$,试在显著水平 $\alpha=0.05$ 下作 $\mu=0$ 的假设检验。

- 11.1.02 某热水瓶厂对产品进行检验,要求使用寿命不得低于 1500d。现从产品中随机抽取 20 件,测得其寿命平均值为 1437d。已知这批热水瓶寿命服从 σ = 120d 的正态分布,试在显著水平 α = 0.05 下确定这批产品是否合格。
- 11.1.03 一种元件,要求其使用寿命不得低于 1 000h,现从中抽取 25 件,得寿命均值为 950h,已知其寿命是服从标准差 σ = 100h 的正态分布,试以显著水平 α = 0.05 确定这批元件 是否合格。
- 11.1.04 某厂生产的钢索,其断裂强度服从 $N(\mu,\sigma^2)$ 分布,其中, $\sigma=40 \text{kg/cm}^2$ 。现从中抽取容量为 9 的一个子样,测得断裂强度的均值 x、与以往正常生产时的 μ 相比, x 较 μ 大 20kg/cm^2 。设母体方差不变,问在 $\alpha=0.01$ 下能否认为这批钢索质量有显著提高?
- 11.1.05 某一等锁的32个三角形闭合差的数据同 11.1.01 题,设母体标准差 σ 未知,试在显著水平 α =0.05 下作 μ =0 的假设检验。
 - 11.1.06 某批矿砂的5个样品中,经测定其镍含量为:

$$x(\%)$$
 3.25 3.27 3.24 3.26 3.24

设测定值服从正态分布,间在 $\alpha=0.01$ 下能否接受这批矿砂镍含量为 3.25 的假设。

11.1.07 测定某种溶液中的水分,取 10 个测定值得平均值为 \bar{x} = 0.452%,子样标准差 m = 0.037%,设测定值母体为正态分布, μ 为母体均值,试在显著水平 0.05 下检验假设:

$$H_0: \mu = 0.5\%, H_1: \mu < 0.5\%$$

11.1.08 用相同精度独立地观测某角10次,观测值为:

 $90°00′05″,90°00′10″,90°00′00″.90°00′07″,89°59′54″,89°59′58″,90°00′06″,90°00′03″,89°59′57″,90°00′10″试在显著水平 <math>\alpha = 5\%$ 下检验观测值均值等于 90°00′00″这一原假设,备选假设为该均值不等于 90°00′00″。

11.1.09 用设有测微器的精密水准仪在水准尺上读得15个读数(单位:mm)如下(假定它们是同一正态总体中的随机样本):

1 412.80,1 412.85,1 412.87,1 413.09,1 412.50,1 412.80,1 412.86,1 412.84

1 412.66,1 412.80,1 412.84,1 412.84,1 412.78,1 413.02,1 412.72 试以 5%的显著水平进行下列检验:

- (a)原假设 $H_0: \mu = 1$ 413.00mm,备选假设 $H_1: \mu \neq 1$ 413.00mm
- (b)原假设 $H_0: \mu = 1$ 412.75mm,备选假设 $H_1: \mu \neq 1$ 412.75mm

第二节 两个正态母体均值差的检验

- 11.2.10 设有甲、乙二人观测某两点间的高差,根据已往大量观测资料分析,得二人的观测精度相同, $\sigma_1 = \sigma_2 = \pm 1.5$ mm。现在,甲观测 16次,得高差平均值的毫米数为 9.5mm,乙观测 20次,得平均值的毫米数为 8.9mm。问二人所得结果的差异是否显著?
 - 11.2.11 测得两批电子器材的子样的电阻为:

A 批 x (欧姆) 0.140 0.138 0.143 0.142 0.144 0.137

B批y(欧姆) 0.135 0.140 0.142 0.136 0.138 0.140

设这两批器材的电阻分别服从 $N(\mu_1, \sigma_1^2)$ 与 $N(\mu_2, \sigma_2^2)$ 分布,且子样相互独立,检验假设($\alpha = 0.05$): $H_0: \mu_1 - \mu_2 = 0$ 。

第三节 正态母体方差的检验

- 11.3.12 某一等锁的32个三角形闭合差的数据同 11.1.01 题,试在显著水平 $\alpha = 0.05$ 下,作 $\sigma = 1.2$ 的假设检验。
 - 11.3.13 同11.1.07题, 试在显著水平 0.05 下检验假设:

$$H_0: \sigma = 0.04\%$$
, $H_1: \sigma < 0.04\%$

11.3.14 观测某角度10次,每个观测值都是独立且同精度,根据观测值算得子样均值为 $\bar{x} = 42^{\circ}12^{\circ}14.6^{\circ}$,子样标准差为 $m = \pm 3.7^{\circ}$,试在显著水平 0.05 下检验假设:

$$H_0: \sigma = 2.0'', \quad H_1: \sigma \neq 2.0''$$

11.3.15 同精度观测某角10次,观测数据同 11.1.08 题。试在显著水平 $\alpha = 0.05$ 下检验假设:

$$H_0: \sigma = 4.0^{\circ\prime}, \quad H_1: \sigma \neq 4.0^{\circ\prime}$$

- 11.3.16 15 个子样观测值同11.1.09题。试以 5%的显著水平检验如下假设:
- (a)原假设 $H_0: \sigma = 0.08 \text{mm}$, 备选假设 $H_1: \sigma \neq 0.08 \text{mm}$;
- (b)原假设 $H_0: \sigma = 0.20 \text{mm}$,备选假设 $H_1: \sigma \neq 0.20 \text{mm}$ 。

第四节 两个正态母体方差比的检验

- 11.4.17 两位化验员 A 和B,对一种矿砂的含矿量各独立地用同一方法做了 5 次分析,得子样方差分别为 0.432 2 和 0.500 6,若 A 和B 测定值的母体都是正态分布,其方差分别为 σ_A^2 和 σ_B^2 ,试在显著水平 0.05 下检验假设 $H_0:\sigma_A^2=\sigma_B^2$ 。
- 11.4.18 设两个母体均服从正态分布,从第一个母体中测得的 32 个三角形闭合差值同11.1.01 题:从第二个母体中测得 26 个三角形闭合差为:

$$0.12 \quad -0.66 \quad -1.45 \quad 1.08 \quad -0.44 \quad -0.51 \quad -0.24 \quad -0.86 \quad 1.19$$

$$-1.00$$
 0.35 -0.30 0.09 0.91 0.14 0.60 -2.00 1.97

- -0.56 -0.68 0.32 -1.41 1.46 -1.42 -0.80 0.83 试对两母体方差 σ_1^2 和 σ_2^2 在显著水平 0.05 下作 $\sigma_1^2 = \sigma_1^2$ 的假设检验。
- 11.4.19 由两台测距仪测定某一距离的测回数和子样方差分别为 $n_1=6$, $m_1^2=0.12$ dm² 和 $n_2=10$, $m_2^2=0.08$ dm², 试在 $\alpha=0.05$ 下检验两个母体方差是否相等。

第五节 误差分布的假设检验

- 11.5.20 试对11.1.01题的 32 个三角形闭合差作偶然误差特性的检验。
- 11.5.21 为了检定某经纬仪的观测精度,对同一角度观测 30 次,得观测误差 Δi 依次为:

11.5.22 为检定20m 钢尺长度,用钢尺在检定基线上作 20 次测量,基线真长为507.410 m,检定结果为(以 m 为单位):

试检验这20次的测定误差是否符合偶然误差的特性。

11.5.23 由电子计算机产生200条伪随机数,分为12组,各组频数见下表;

K	वि	频数
- 00	-1.306	4
-1.306	-1.046	11
-1.046	-0.786	16
-0.786	-0.527	25
-0.527	-0.267	19
-0.267	-0.007	20
~ 0.007	0.253	22
0.253	0.513	29
0.513	0, 773	21
0.773	1.032	16
1.082	1.812	13
1.812	00	4

试用 χ^2 检验法,在 $\alpha = 0.05$ 下检验其是否服从正态分布(已算出 $\hat{\mu} = \overline{x} = 0.0182$, $\sigma = m = 0.7664$)。

第六节 参数区间估计

11.6.24 某一等锁32个三角形闭合差数据同 11.1.01 题,设母体服从正态分布,试求:

 $\alpha(1)$ 已知 $\sigma=1.2$ 或(2) σ 未知两种情况下, 母体均值 μ 的 95% 置信区间。

11.6.25 随机地从一批产品中抽取16件,测得其长度(以 cm 为单位)为:

设产品长度服从正态分布,试求:(1)已知 σ =0.01cm,(2) σ 未知。两种情况下母体均值 μ =90%的置信区间。

11.6.26 同11.6.24题,试求 σ 的 95%的置信区间。

11.6.27 设有某种型号电子管的容量为100的子样,其寿命母体的子样标准差 m = 45h。 试给出这批电子管寿命母体标准差 σ 的 95% 置信区间。

11.6.28 同11.4.18题。两母体方差相等,试求两个母体均值之差的90%置信区间。

11.6.29 随机地从 A 批导线中抽取 4 根,从 B 批导线中抽取 5 根,测得电阻(欧姆)为:

A 批导线:0.143 0.142 0.143 0.137

B 批导线:0.140 0.142 0.136 0.138 0.140

设测试数据分别服从 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$ 分布,并且它们互相独立,又 μ_1, μ_2 和 σ^2 均为未知,试求 $\mu_1 - \mu_2$ 的 95% 置信区间。

11.6.30 同11.4.18题。试求两组母体方差比 σ²/σ² 的 95% 置信区间。

11.6.31 设分别进行了两组观测,子样容量均等于 10,其子样方差相应为 0.541 9 和 0.606 5。设 σ_A^2 和 σ_B^2 分别为两组母体(设为正态分布)的方差,试求方差比 σ_A^2/σ_B^2 的 95%置信区间。

第七节 验后单位权方差估值的检验

11.7.32 某三角锁进行间接平差,得单位权方差估值为:

$$\hat{\sigma}_0^2 = \frac{V^{\mathsf{T}}PV}{r} = \frac{4.392.8}{31} = 0.141.7$$

自由度 r=n-t=31,试检验假设 $H_0:\sigma_0^2=0.2$ (取 $\alpha=0.05$)。

11.7.33 某测边网进行间接平差得单位权方差估值为:

$$\dot{\sigma}_0^2 = \frac{V^T P V}{r} = \frac{0.001 \ 65}{3} = 0.000 \ 55 \text{m}^2$$

自由度为 r = n - t = 3, 试以 5%的显著水平检验 $H_0: \sigma_0^2 = 0.002 \text{ 0m}^2$ 。

第八节 两个单位权方差比的检验

11.8.34 设 11.7.32 题三角锁的单位权方差估值记为 $(\sigma_0^2)_1$,今另有一个三角锁,经平差后得到单位权方差估值为 $(\sigma_0^2)_2 = \frac{V_2^T P_2 V_2}{r_2} = \frac{8.715.2}{49} = 0.177.9$,试检验假设:

$$H_0: (\sigma_0^2)_2/(\sigma_0^2)_1 = 1$$
 ($\Re \sigma = 0.05$)

第十二章 秩亏自由网平差

第一节 加权秩亏自由网平差

12.1.01 设在两待定点之间的三条水准路线上进行水准测量,得高差观测值为 h_1,h_2 , h_3 。若设两待定点的高程为未知参数 X,并已知其近似值为 $X^0 = \begin{bmatrix} 10.000, 11.268 \end{bmatrix}^T$ m,先验权阵 $P_X = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$,误差方程为:

$$v_1 = -x_1 + x_2 + 10$$

$$v_2 = -x_1 + x_2 - 10$$

$$v_3 = -x_1 + x_2 - 6$$

常数项以mm 为单位,试按广义逆解法进行加权秩亏自由网平差,求法方程的加权最小范数解 x_P ,参数平差值 X_P 及其协因数阵 Q_{X_m} 。

12.1.02 设有矩阵 A 为:

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 4 & -3 \\ 0 & -3 & 3 \end{bmatrix}$$

试按分块法求 A 的广义逆 A^- 。

12.1.03 设有矩阵 N 为:

$$N = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$$

 $P_X = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}, Q_X = P_x^{-1},$ 试按分块法求 $(NQ_XN^T)^{-}$ 。

12.1.04 设有矩阵 N 及 Px 为:

$$N = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}, P_X = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 4 \end{bmatrix}$$

 $Q_X = P_X^{-1}$,试求广义逆 $(NQ_XN^T)^{-1}$

- 12.1.05 试按满秩分解法求12.1.02题中 A 矩阵的广义逆 A 。
- 12.1.06 试按满秩分解法求12.1.03题 N 的广义逆 $(NQ_xN^T)^-$ 。
- 12.1.07 数据同12.1.01题。试按加权秩亏网平差的直接解法求法方程的加权最小范数解 x_p, X_p 及其协因数阵 Q_{X_p} 。
- 12.1.08 数据同12.1.01题。试按加权秩亏网平差的附加条件法求加权最小范数解 x_p 、 X_p 及其协因数阵 Q_{X_p} 。
 - 12.1.09 在图12-1的水准网中.A 点为已知点,B 点为待定点,已知 $H_A=10.000$ m,观112

测高差为:

$$\mathbf{h} = [1.258, 1.278, 1.274]^{\mathrm{T}} \mathrm{m}$$

设 B 点高程为未知参数 X, 其近似高程为 $X^0 = 11.268$ m。

- (1)试按经典自由网平差求法方程的解 xc 及B 点高程平差值及其权倒数。
- (2)设A,B 两点均为待定点,其高程设为未知参数 $X = [\hat{X}_1, \hat{X}_2]^T$,先验权阵为:

$$P_X = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

试按经典转换法求加权秩亏网平差的解 x_p, X_P 和协因数阵 Q_{X_p} 。

12.1.10 在图12-2的水准网中, A 点为已知点, B, C, D 点为待定点, 观测高差及权阵为:

$$h_{4.1} = [1.250 -0.245 \ 0.750 \ 1.499]^{T}m, P = I$$

- (1)设B,C,D点高程为未知参数,其近似值为 $X^0 = [6.500,6.252,6.998]^{T}$ m,已知 H_A =5.000m,试按经典自由网间接平差求B,C,D点高程平差值 \hat{X}_C 和协因数阵 $Q_{\hat{X}_C}$ 。
 - (2)若设 A,B,C,D 点高程均为未知参数,且已知其先验权阵为:

$$P_X = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 0.5 \end{bmatrix}$$

试按经典转换法进行加权秩亏网平差,求加权秩亏网平差的解 X_P 和 Q_{X_n} 。

12.1.11 在图12-3的水准网中,A,B,C,D 均为待定水准点,设其高程为未知参数, $X = [X_1, X_2, X_3, X_4]^T = [H_A, H_B, H_C, H_D]^T$,其近似值及先验权阵分别为:

$$X^0 = [5.000, 6.500, 6.252, 6.998]^T m$$

$$\boldsymbol{P}_X = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 0.55 \end{bmatrix}$$

观测高差 $h = [1.250, -0.245, 0.750, 1.499]^{\text{T}}$ m,权 P = I,试按直接解法及附加条件法进行加权秩亏网平差求 \hat{x}_p, \hat{X}_P 及其 Q_{X_p} 。

12.1.12 设秩亏自由网平差的误差方程为 $V = B \underset{n,1}{x} - f$, 法方程为 $N \underset{u,uu,1}{x} - B^T P f = 0$, N 的秩为 $R(N) = R(B^T P B) = R(B) = t < u$, 试证明在加权最小范数 $x^T P_x x =$ 最小条件下, 法方程有惟一解:

$$x_P = Q_X N^{\mathrm{T}} (NQ_X N^{\mathrm{T}})^{-} B^{\mathrm{T}} P f$$

12.1.13 在图12-4的水准网中, A、B、C 点均为待定点, 观测高差为:

$$h = [1.499 \ 1.501 \ 0.885 \ 0.608]^{\mathrm{T}} \mathrm{m}$$

其权阵 P = I。若选各点高程为未知参数,其近似值为: $X_1^0 = 5.000$ m, $X_2^0 = 6.497$ m, $X_3^0 = 5.890$ m,已知其先验权阵:

$$P_X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

试用附加条件法进行加权秩亏网平差,求各点高程平差值 \hat{X}_P 和协因数阵 $Q_{\hat{X}_0}$ 。

图 12-3

12.1.14 在图12~5的测角网中,以等精度测得三内角的观测值为:

$$\beta_1 = 20^{\circ}58'24.0''$$

 $\beta_2 = 33^{\circ}40'52.5''$

$$\beta_3 = 125^{\circ}20'41.0''$$

设各待定点的坐标为未知参数,其近似值见右表: 设未知数的先验权阵为:

试按附加条件法进行加权秩亏网平差:

- (1)写出网的重心坐标 $\overline{X}^0, \overline{Y}^0$;
- (2)写出以重心坐标为原点下的附加阵 $G_{k_0}^{T}$;
- (3)写出满足 $G^{\mathsf{T}}P_{X}G = I$ 的标准化 G_{k}^{T} 阵;

点号 X⁰(m) Y⁰(m)

P₁ 6 613.389 63 471.447

P₂ 10 601.272 69 734.761

P₃ 10 669.394 66 477.321

(4)写出法方程 $N_x - f_e = 0$ 的系数阵 $N_x - f_e = 0$ 的系数性 $N_x - f_e = 0$ 的系数

第二节 秩亏自由网平差

12.2.15 设有误差方程:

$$v_1 = -x_1 + x_2 + 10$$

$$v_2 = -x_1 + x_2 - 10$$

$$v_3 = -x_1 + x_2 - 6$$

试按附加条件法作秩亏自由网平差,求法方程的解x,及其协因数阵 Q_X 。

12.2.16 在图12-6的水准网中, P_1 、 P_2 、 P_3 点均为待定点,观测高差为 h_i (i=1,2,3,4),其权阵为 P=I。现选全部待定点的高程为未知参数, $X=[X_1,X_2,X_3]^T=[H_{P_1},H_{P_2},H_{P_3}]^T$,已列出误差方程为:

$$V = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix}$$

试按附加条件法进行秩亏网平差,求x,及 Q_X 。

12.2.17 在图12-7的水准网中, h_1,h_2,h_3 为观测值,其 Q = I。设 P_1,P_2 点高程平差值 为未知参数,其误差方程为:

$$V = \begin{bmatrix} -1 & 1 \\ -1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

试按附加条件法进行秩亏自由网平差,求法方程的解 x, 及其协因数 Q_X 。

12.2.18 有水准网如图12-8,高差观测值为:

$$\mathbf{h}_{5,1} = [1.064, 1.002, 0.060, 0.560, 0.500]^{\mathrm{T}}$$
m

各线路长度均为 1km,各点的近似高程为:

$$X_1^0 = H_{P_1}^0 = 31.100 \text{m}, X_2^0 = H_{P_2}^0 = 32.100 \text{m}$$

 $X_3^0 = H_{P_3}^0 = 32.165 \text{m}, X_4^0 = H_{P_4}^0 = 31.600 \text{m}$

试按直接解法和附加条件法进行秩亏网平差,求各点高程平差值及其协因数阵 $Q_{\dot{x}}$ 。

12.2.19 在图12-9的水准网中,观测高差为:

$$h = [12.345, 3.478, -15.817]^{T}$$
m

设 P=I,各点的近似高程为:

$$X_1^0 = H_1^0 = 0.000 \text{m}, X_2^0 = H_2^0 = 22.345 \text{m}, X_3^0 = H_3^0 = 25.823 \text{m}$$

试按直接解法和附加条件法进行秩亏网平差,求各点高程平差值及其协因数阵 O_{vo}

- 12.2.20 数据同12.1.14题,设 $P_X = I$,试按附加条件法进行秩亏自由网平差;
- (1)列出误差方程:
- (2)写出标准化的附加阵 G_k^T :
- (3)写出法方程的系数阵及常数项。
- 12.2.21 在图12-10的大地四边形中,A,B,C,D 均为待定点。观测全部角度,得观测值为 $\beta_i(i=1,2,\cdots,8)$ 。设各待定点的坐标为未知参数 $\overset{\cdot}{X}$:

$$\mathbf{\ddot{X}}_{B1} = [\dot{X}_A, \dot{Y}_A, \dot{X}_B, \dot{Y}_B, \dot{X}_C, \dot{Y}_C, \dot{X}_D, \dot{Y}_D]^{\mathrm{T}}$$

其近似值为:

$$\dot{\mathbf{X}}^0 = [X_A^0, Y_A^0, X_B^0, Y_B^0, X_C^0, Y_C^0, X_D^0, Y_D^0]^{\mathrm{T}}$$

试写出按附加条件法进行秩亏自由网平差的 G^{T} 阵及标准化($G^{T}G=I$)的 G_{a}^{T} 阵。

12.2.22 在图12-11的边角网中, P₁, P₂, P₃ 为待定点。角度观测值为:

$$L_1 = 60^{\circ}00'05''$$
, $L_2 = 59^{\circ}59'58''$, $L_3 = 60^{\circ}00'00''$

边长观测值为:

$$S_1 = 999.99 \text{m}, \quad S_2 = 1000.01 \text{m}$$

设各待定点的坐标为未知参数,其近似值为:

$$X_1^0 = 0.000 \mathrm{km}$$
, $Y_1^0 = 0.000 \mathrm{km}$

$$X_2^0 = 0.000 \,\mathrm{km}$$
, $Y_2^0 = 1.000 \,\mathrm{km}$

$$X_3^0 = 0.866 \text{km}$$
, $Y_3^0 = 0.500 \text{km}$

试按附加条件法进行秩亏自由网平差:

- (1)列出误差方程,写出 B 阵与 f 阵;
- (2)写出标准化的 G^{T} 阵($G^{T}G=1$);
- (3)写出法方程系数阵 $N = B^{T}B + GG^{T}$ 与常数项 $f_e = B^{T}f_e$
- 12.2.23 在测站 A 进行方向观测,如图12-12所示。已知角度观测值(Q=I)如下: 116

若取观测方向 AP_1 , AP_2 , AP_3 , AP_4 的最或然值为未知参数 X_i , 其近似值为 $X_1^0 = 0^{\circ}00'00''$, $X_2^0 = 30^{\circ}00'00''$, $X_3^0 = 60^{\circ}00'00''$, $X_4^0 = 90^{\circ}00'00''$, 试按秩亏自由网直接解法进行测站平差,求 x, X 及其协因数 Q_X 。

图 12-12

图 12-13

12.2.24 有水准网如图12-13,各路线的高差观测值及路线长度如下:

$$h_1 = 0.505$$
m, $S_1 = 4$ km
 $h_2 = 4.010$ m, $S_2 = 1$ km
 $h_3 = -2.003$ m, $S_3 = 2$ km
 $h_4 = -2.501$ m, $S_4 = 4$ km

设待定点 P_1, P_2, P_3, P_4 点的高程为未知参数 X_1, X_2, X_3, X_4 ,其近似值为: $X^0 = \begin{bmatrix} 100.000, 100.505, 104.515, 102.512 \end{bmatrix}^{\mathrm{T}} \mathrm{m}$

试按秩亏自由网平差的假观测值法求各点高程平差值 X及 Qx。

第三节 拟稳平差

12.3.25 在 12.1.13 题中,若设 A 点为非拟稳点,B,C 点为拟稳点,未知参数为 $X_1 = H_A$, $X_2 = H_B$, $X_3 = H_C$,其先验权阵 P_X 为:

$$P_X = \begin{bmatrix} 0 & & \\ & 1 & \\ & & 1 \end{bmatrix}$$

试按拟稳平差的附加条件法求待定点高程平差值 X及其协因数阵 Q_X 。

12.3.26 在 12.1.10 题中,若设 C,D 两点为拟稳点,未知数为 $X_1 = H_A$, $X_2 = H_B$, $X = H_C$, $X_4 = H_D$,试将 12.1.10 题(1)中经典自由网平差的解转换为拟稳平差的解 X_S 和 Q_{X_S} 。

第十三章 最小二乘内插、滤波与配置

第一节 平稳随机函数的协方差函数

13.1.01 在图13-1中,两点间的距离 d 以 10 km 为单位,根据 1,2,3 点的多次观测值计算出协方差函数(估值)为:

$$\mathbf{D}(d) = \begin{bmatrix} 0.1168 & 0.0506 & 0.0394 \\ 0.0506 & 0.1073 & 0.0346 \\ 0.0394 & 0.0346 & 0.2203 \end{bmatrix}$$

若选择距离的二次多项式作为协方差函数,函数形式为:

$$\mathbf{D}(d) = \alpha_0 + \alpha_1 d + \alpha_2 d^2$$

试用间接平差法求该函数的具体形式。

13.1.02 已知协方差函数为 D(d),其中,d 为两点间距离,以 km 为单位,若已知协方 差函数为:

$$D(d) = 0.5 - 0.04d^2$$

如图 13-2 所示,其中,1、2 两点为数据点(已测点),3 点为计算点(未测点),试求;

(1)数据点信号 S 的方差阵 $D_{S'}$ (2)计算点信号 S' 与数据点信号 S 的协方差阵 $D_{S'S}$ 。

13.1.03 设 A , B 两点间距离 $d_{AB}=23.000$ km , 沿 AB 连线在 A , P_1 , P_2 , P_3 及 P_4 点上 濒定了大气温度,见图 13-3。各点上的气温观测值 L_i 和 P_i (i=1,2,3,4)点至 A 点的距离 d_{PA} 见下表:

	A	1 .	P_2	P_3	P_4	В	С
$\Gamma^i(\mathcal{L})$	L9.0	20.1	18.7	19.2	19.8		
$d_{P_i A} = (\mathrm{km})$	0	4.511	10.747	16.753	22.220	23.000	20.000

其中, C 点也在 AB 连线上, 且是未测点, C 点至 A 点距离为 $d_{AC} = 20.000$ km。设备点的气温为具有随机性的信号, 其协方差函数为:

 $D(d) = 0.14683 - 0.007689d - 0.286863d^2 + 0.278124d^3 - 0.070759d^4$ (d 以 10km 为单位),试求:

(1)观测向量的方差阵 D_L ;(2)C 点气温关于其他各数据点的协方差 $D_{i,L}$ 。

13.1.04 图13-4中,1,2 点为数据点,3 点为计算点。若已知信号 S 的协方差函数为:

$$D(d) = 0.31 - 0.04d - 0.01d^2$$

d 为两点问距离,以 km 为单位,已知 $d_{1,2}=2$ km, $d_{1,3}=3$ km,试求数据点信号的协方差阵 D_S 及数据点关于计算点信号的协方差阵 $D_{SS'}$ 。

第二节 平稳随机函数的线性内插

- 13.2.05 设在相距4km的 A, B 两点上测得信号值为 $S_A = 10$ cm, $S_B = 16$ cm, 如图 13-5。 设数据点信号的数学期望值 $\mu_S = 0$, 计算点信号的数学期望值 $\mu_{S'} = 0$:
 - (1)当协方差函数为:

$$D(d) = 5 - 0.5d(d)$$
 为两点间距离,以 km 为单位)

试计算点 C(位于 A, B 两点中央)处的信号估值 S_C ;

(2)若协方差函数为:

$$D(d) = 5 - 0.1d^2$$

求 Sc 为多少?

13.2.06 在图13-6中,1,2点为数据点,3点为计算点。已知距离 $d_{1,2}=4$ km, $d_{1,3}=5$ km,在1,2两点处测得信号值为 $S=[1.0,1.5]^T$ mm,且不含噪声,S(t)为平稳随机函数,假定 $\mu_S=0,\mu_{S'}=0$ 。已知信号的协方差函数为:

$$D(d) = 4 - 0.5d$$

试求计算点 3 的信号估值 S_3 及其方差 σ_S^2 。

5 km - 4 km - 2 3

- 13.2.07 (1)随机函数 $L_S(t)$, S(t), n(t)的协方差函数 $D_{L_S}(\tau)$, $D_S(\tau)$, $D_n(\tau)$ 之间有何函数关系? (2)当信号观测值 L_S 中不含噪声时, $D_{L_S}(\tau)$ 与 $D_S(\tau)$ 之间有何关系(指间隔 $\tau=0$ 或 $\tau\neq 0$ 两种情况下)? 可得出什么结论? ($L_S(t)$, S(t), n(t)分别为信号观测值、信号及噪声随机函数)。
- 13.2.08 设在相距为3km的 A, B 两点上测得信号值为 $S_A = 1.0$ mm, $S_B = 1.5$ mm,已知信号的协方差函数为:

$$D(d) = 0.6 - 0.02d$$

C 为计算点。已知 $d_{AC}=2$ km, $\mu_S=0$, $\mu_{S'}=$

0, 试求 C 点的信号估值 S_C 及其方差 $\sigma_{S_c}^2$ (见图 13-7)。

第三节 平稳随机函数的线性滤波

13.3.09 设 S(t)为平稳随机函数,在 1,2 两点上测得其函数值为 $L_1=1.0$ mm, $L_2=1.5$ mm, L_i 为含有噪声的信号观测值,其观测方程为:

$$L = S + n$$

式中,S 为信号向量,n 为噪声向量。已知数据点 1,2 的噪声的协方差阵为:

$$D_{\pi} = \begin{bmatrix} 0.1 & \\ & 0.1 \end{bmatrix} (\text{mm})^2$$

信号的协方差函数为:

$$D(d) = 0.5 - 0.02d^2$$

- 3 点为计算点,如图 13-8 所示。已知距离 $d_{1,2}=3{
 m km}$, $d_{1,3}=2{
 m km}$,且假定 $\mu_{
 m S}=0$, $\mu_{
 m S}=0$ 。
 - (1)试求数据点的信号估值 S及其协方差阵 Ds;
 - (2)试求计算点 3 的信号估值 S_3 及其方差 $\sigma_{S_3}^2$ 。
- 13.3.10 设 S(t)为平稳随机函数, L_i 为包含噪声的信号观测值。1,2 点为数据点,3,4 点为计算点,如图 13-9。今在 1,2 两点上测得信号观测值为 $L_1=2.2$ mm, $L_2=3.0$ mm,其观测方程为 L=S+n,假定 $\mu_S=0$, $\mu_{S'}=0$,信号的协方差函数为:

$$D(d) = 0.4 - 0.01d^2$$

已知数据点 1,2 的噪声的协方差阵为:

$$\boldsymbol{D}_n = \begin{bmatrix} 0.15 & 0 \\ 0 & 0.15 \end{bmatrix}^{-} \text{mm}$$

距离 $d_{1,2} = 4 \text{km}, d_{1,3} = 3 \text{km}, d_{2,4} = 1 \text{km}, 试求:$

- (1)数据点 1,2 的信号估值 S及方差阵 Ds;
- (2)计算点 3,4 的信号估值 S'及方差阵 $D_{S'}$ 。

3 km 1km:

13.3.11 设有观测方程

$$L = A_1 S + S_2 + n$$

式中, L 为观测向量, S_1 , S_2 为数据点信号, n 为噪声, 已知 D_n , D_{S_1} , D_{S_2} , 且 $D_{S_1 n} = D_{S_2 n} = D_{S_1 S_2} = 0$ 。

- (1)试求信号估值 S_1 及 S_2 的计算式;
- (2)试求 D_s 及 $D_{s,s}$ 的计算式。
- 13.3.12 同13.1.03。设 $\mu_{S'} = \mu_{t_c} = 19.36 \%$,试求 C 点的气温的推估值 t_C 。

第四节 最小二乘配置

13.4.13 在图13-10中,设已测得某函数 F(t) 在相距 1.445 的 5 个点处的函数值 $L_i(i=1,2,\cdots,5)$ 如下:

i	1	2	3	4	5
t_i	0.000	1.445	2.890	4. 335	5.780
L_i	0.610 8	1.086.3	2.903 4	4.592 5	6.271 4

函数 $F(t) = b_1 + b_2 t + S(t)$ 。式中, $b_1 + b_2 t$ 为倾向部分, b_1 和 b_2 为倾向参数,函数的倾向 面为一直线,其直线方程为 $b_1 + b_2 t$,S(t) 是统计相关的信号,是函数的残余变形。设 S 具有平稳性和各态历经性,且已知 $\mu_S = 0$,协方差函数为:

$$D(\tau) = D(0)e^{-a^2\tau^2} = 0.1260e^{-(0.6)^2\tau^2}$$

τ 为点的间隔,观测误差(噪声)的协方差函数为:

$$D_a = \sigma_a^2 I = 0.01 I$$

根据最小二乘配置法的观测方程:

$$L = b_1 + b_2 t + S + n = BX + S + n$$

可得:

$$\mathbf{X} = [b_1, b_2]^{\mathrm{T}}, \quad \mathbf{B} = \begin{bmatrix} 1 & 0.000 \\ 1 & 1.445 \\ 1 & 2.890 \\ 1 & 4.335 \\ 1 & 5.780 \end{bmatrix}$$

并已算得倾向参数估值 X及 Dx,以及信号方差阵为:

$$\mathbf{X} = [b_1, b_2]^{\mathrm{T}} = [0.325 \ 2, 0.989 \ 1]^{\mathrm{T}}$$

$$\mathbf{D}_{\hat{\mathbf{X}}} = \begin{bmatrix} 0.113 \ 6 & -0.023 \ 4 \\ -0.023 \ 4 & 0.008 \ 1 \end{bmatrix}$$

试按最小二乘配置法求:(1)已瀕点信号 S及其协方差阵 D_{S} ;(2) D_{SX} ;(3)5 个已测点上的函数估值 F。

习题答案

第一章

- 1.1.01 (1)当尺长大于标准尺长时,观测值小于真值,产生系统误差,符号是"+"($\Delta = \tilde{L} L$),当尺长小于标准尺长时,观测值大于真值,产生系统误差,符号是"-";
 - (2) 偶然误差,符号是"+"或"-";
 - (3) 系统误差,符号是"-";
 - (4) 系统误差、符号是"-";
 - (5) 系统误差,符号是"-";
 - (6) 偶然误差,符号是"+"或"-"。
 - 1.1.02 (1)当i角为正值时,产生系统误差,符号为"~",当i角为负值时,产生系统误差,符号为"+";
 - (2) 系统误差,符号为"+";
 - (3) 偶然误差,符号为"+"或"~";
 - (4) 系统误差,符号为"-";
 - (5) 系统误差,符号为"-"。
 - 1.1.03 根据题意列出误差分布表如下:

误差区间	Δ为	正值	△为负值		
$d\Delta$	个 数	频率	个 数	频率	
0~0.20"	16	0.133	16	0.133	
0.21"~0.40"	14	0.117	13	0.108	
0.41"~0.60"	12	0.100	12	0.100	
0.61'' - 0.80''	8	0.067	9	0.075	
$0.81'' \sim 1.00''$	5	0.042	4	0.033	
1.01"~1.20"	3	0.025	3	0.025	
1.21"~1.40"	2	0.017	2	0.017	
1.41"~1.60"	1	0.008	0	0	
1.61"以上	0		0		
总和	61	0.509	59	0.491	

从表中看出:(1)三角形内角和的真误差有一定的界限,最大误差为 + 1.56",绝对值超过 1.56"的概率为零。(2)绝对值小的误差比绝对值大的误差出现的个数多,概率大。其中 $|\Delta|$ < 0. "8 的误差出现的频率占83.3%;(3)绝对值相等的正、负误差出现的个数大致相等,或说概率相等。其中,正误差 61 个,负误差 59 个,该组误差符合偶然误差的分布规律性。

- 1.2.04 $\sigma = \pm 3.02^{\circ}$
- 1.2.05 $\sigma_X^2 = 3.6$, $\sigma_Y^2 = 4.6$, 观测量 X 的精度高于观测量 Y 的精度
- 1.2.06 $\sigma_{\Sigma} = \pm 1.05'', \theta = \pm 0.79''$ $\delta \theta = \pm 0.84'', \Delta_{\overline{N}} = \pm 3.15''$
- 1.2.07 $X = 437.615 \text{m}, \sigma_X^2 = 0.001.21 \text{m}^2, \sigma_X = \pm 0.035 \text{m}$
- 1.2.08 由于 $\frac{\sigma_1}{S_1} = \frac{1}{15000}$, $\frac{\sigma_2}{S_2} = \frac{1}{30000}$, 所以 S_2 的观测精度高。两距离观测值的观测中误差虽然相等,

但它们各次观测的真误差是偶然误差,不会相同。

1.2.09 (1)真误差可能出现的范围是 |Δ| < 27mm, 或写成 - 27mm < Δ< + 27mm

$$(2)\frac{1}{72498}$$

1.2.10 $\sigma_0 = \pm 1''$

1.2.11
$$P_2 = 8$$
, $Q_{11} = \frac{1}{2}$, $Q_{22} = \frac{1}{8}$

1.2.12
$$P_B = \frac{16}{9}$$

1.2.13
$$P_1 = 0.25, P_2 = 0.44, P_3 = 1, P_4 = 4$$

2.1.01
$$\sigma_{L_1}^2 = 0.8$$
, $\sigma_{L_2}^2 = 0.7$, $\sigma_{L_3}^2 = 1.0$, $\sigma_{L_1L_3} = 0.1$, $\sigma_{L_2L_3} = 0.3$, $\sigma_{L_1L_2} = 0.2$

2.1.02
$$Q_L = \frac{1}{8} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 5 \end{bmatrix}$$
, $D_L = \frac{4}{5} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 5 \end{bmatrix}$

2.1.03
$$Q_L = \begin{bmatrix} 0.7908 & 0.1321 \\ 0.1321 & 0.6123 \end{bmatrix}$$

2.1.03
$$Q_L = \begin{bmatrix} 0.7908 & 0.1321 \\ 0.1321 & 0.6123 \end{bmatrix}$$

2.1.04 (1) $D_Z = \begin{bmatrix} 16 & 9 \\ 9 & 9 \end{bmatrix} \text{cm}^2, \rho_{xy} = 0.75$

$$(2)\sigma_{XY} = -6\text{cm}^2$$
, $D_Z = \begin{bmatrix} 16 & -6 \\ -6 & 9 \end{bmatrix} \text{cm}^2$

(3)对于(1):
$$Q_Z = \begin{bmatrix} 1.778 & 1 \\ 1 & 1 \end{bmatrix}, P_Z = \begin{bmatrix} 1.285 & -1.285 \\ -1.285 & 2.285 \end{bmatrix}$$

以于(2): $Q_Z = \begin{bmatrix} 1.778 & -0.667 \\ 1.778 & 0.500 \end{bmatrix}, P_Z = \begin{bmatrix} 0.750 & 0.500 \\ 1.778 & 0.500 \end{bmatrix}$

2.1.05 (1)
$$\mathbf{D}_{Z} = \begin{bmatrix} \sigma_{\theta}^{2} & \sigma_{0} \\ \sigma_{d} & \sigma^{2} \end{bmatrix} = \begin{bmatrix} 400(")^{2} 1 ((") \cdot (\mathbf{m})) \\ \frac{1}{2}((") \cdot (\mathbf{m})) & 0.01(\mathbf{m}^{2}) \end{bmatrix};$$

$$(2) \sigma_{XY} = -6cm^{\alpha}, D_{Z} = \begin{bmatrix} 1.778 & 1 \\ 1 & 1 \end{bmatrix}, P_{Z} = \begin{bmatrix} 1.285 & -1.285 \\ -1.285 & 2.285 \end{bmatrix}$$

$$x! \mp (2) : Q_{Z} = \begin{bmatrix} 1.778 & -0.667 \\ -0.667 & 1 \end{bmatrix}, P_{Z} = \begin{bmatrix} 0.750 & 0.500 \\ 0.500 & 1.334 \end{bmatrix}$$

$$2.1.05 \quad (1) D_{Z} = \begin{bmatrix} \sigma_{\theta}^{2} & \sigma_{th} \\ \sigma_{s\theta} & \sigma_{s}^{2} \end{bmatrix} = \begin{bmatrix} 400(")^{2}1 & ((") \cdot (m)) \\ 1((") \cdot (m)) & 0.01(m^{2}) \end{bmatrix};$$

$$(2) Q_{Z} = \begin{bmatrix} 4 \times 10^{5} ((")^{2}/(m)^{2}) & 10^{3} ("/m) \\ 10^{3} ((")/m) & 10 \end{bmatrix};$$

$$P_{Z} = \begin{bmatrix} 3.33 \times 10^{-6} ((m)^{2}/(")^{2}) & -3.33 \times 10^{-4} (m/(")) \\ -3.33 \times 10^{-4} (m/(")) & 0.13 \end{bmatrix}$$

$$2.1.06 \quad (1) D_{Y} = \begin{bmatrix} \sigma_{r}^{2} & \sigma_{r\theta} \\ \sigma_{th} & \sigma_{\theta}^{2} \end{bmatrix} = \begin{bmatrix} 0.0001(m^{2}) & 0.0371(m \cdot (")) \\ 0.0371(m \cdot (")) & 4.125((")^{2}) \end{bmatrix};$$

$$(2) Q_{Y} = \begin{bmatrix} 1 & 371("/m) \\ 371((")/m) & 41250((")^{2}/(m)^{2}) \end{bmatrix}$$

$$(3) Q_{Y} = \begin{bmatrix} 8.89 \times 10^{-5} ((m)^{2}/(")^{2}) & 8.99 \times 10^{-3} (m/(")) \\ 8.99 \times 10^{-3} (m/(")) & 1 \end{bmatrix}$$

$$2.1.07 \quad \sigma_{X} = \pm 3.02 \quad \sigma_{Y} = \pm 4.00, \sigma_{XY} = \pm 1.33$$

$$P_Z = \begin{cases} 3.33 \times 10^{-6} ((m)^2 / (")^2) & -3.33 \times 10^{-4} (m / (")) \\ -3.33 \times 10^{-4} (m / (")) & 0.13 \end{cases}$$

$$2.1.06 \quad (1) \mathbf{D}_{Y} = \begin{bmatrix} a_{r} & a_{r\theta} \\ \sigma_{\theta r} & \sigma_{\theta}^{2} \end{bmatrix} = \begin{bmatrix} 0.0001(\text{m}^{2}) & 0.0371(\text{m}^{2}(1)) \\ 0.0371(\text{m}^{2}(1)) & 4.125((1)^{2}) \end{bmatrix}$$

(2)
$$Q_{Y} = \begin{bmatrix} 1 & 371("/m) \\ 371((")/m) & 41250((")^{2}/(m)^{2}) \end{bmatrix}$$

$$(3)Q_{Y} = \begin{bmatrix} 8.89 \times 10^{-5} ((m)^{2} / (")^{2}) & 8.99 \times 10^{-3} (m / (")) \\ 8.99 \times 10^{-3} (m / (")) & 1 \end{bmatrix}$$

2.1.07
$$\sigma_X = \pm 3.02$$
 $\sigma_Y = \pm 4.00, \sigma_{XY} = \pm 1.33$

2.1.08
$$\sigma_1^2 = 3.3((")^2), \sigma_2^2 = 4.3((")^2), \sigma_3^2 = 2.5((")^2)$$

 $\sigma_{12} = 0.55((")^2), \sigma_{13} = 0.25((")^2), \sigma_{23} = -1.75((")^2)$

$$2.1.09 \quad \mathbf{D}_{2} = \begin{bmatrix} D_{L} & D_{LV} & D_{L\dot{X}} \\ D_{VL} & D_{V} & D_{V\dot{X}} \\ D\dot{\chi}_{L} & D\dot{\chi}_{V} & D\dot{\chi}_{L} \end{bmatrix}, \quad \mathbf{D}_{V\dot{X}} = \begin{bmatrix} \sigma_{V_{1}}\dot{X}_{1}} & \sigma_{V_{1}}\dot{X}_{2} & \cdots & \sigma_{V_{1}}\dot{X}_{r} \\ \sigma_{V_{2}}\dot{X}_{1}} & \sigma_{V_{2}}\dot{X}_{2} & \cdots & \sigma_{V_{2}}\dot{X}_{r} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sigma_{V_{n}}\dot{X}_{1}} & \sigma_{V_{n}}\dot{X}_{2} & \cdots & \sigma_{V_{n}}\dot{X}_{r} \end{bmatrix}$$

2.1.10
$$P_{L_1} = 4$$
, $P_{L_2} = \frac{16}{5}$

2.1.11
$$P_{L} = \begin{bmatrix} \frac{1}{8} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$$
, $P_{1} = \frac{1}{8}$, $P_{2} = \frac{1}{4}$.

2.1.12
$$\mathbf{p}_{X} = \frac{1}{8} \begin{bmatrix} 3 & -2 \\ -2 & 4 \end{bmatrix}$$
, $P_{1} = \frac{8}{3}$, $P_{2} = 2$

2.1.13
$$P_L = \frac{1}{31} \begin{bmatrix} 4 & 1 \\ 1 & 8 \end{bmatrix}$$
, $P_1 = \frac{1}{8}$, $P_2 = \frac{1}{4}$

2.1.14
$$P_L = \frac{1}{5} \begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix}$$
, $P_1 = \frac{2}{3}$, $P_2 = 1$

2.1.15
$$P_L = \frac{1}{15} \begin{bmatrix} 12 & 4 \\ 4 & 8 \end{bmatrix}$$
, $P_1 = \frac{2}{3}$, $P_2 = \frac{4}{9}$

2.1.16
$$D_L = \frac{1}{7} \begin{bmatrix} 8 & 2 \\ 2 & 4 \end{bmatrix}$$

$$2.1.17 \quad \sigma_0^2 = 0.5$$

2.1.18
$$P_X = \frac{1}{2}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}, P_{X_1} = \frac{4}{3}, P_{X_2} = \frac{4}{3}, P_Y = 1$$

2.1.19
$$P_X = \frac{4}{3}, P_Y = \frac{1}{2} \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix}, P_{Y_1} = \frac{4}{3}, P_{Y_2} = 1$$

2.1.20 (1)L₁与 L₃是不相关观测值;

(2)
$$P_{L'} = \frac{1}{5} \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}, P_3 = \frac{1}{2}$$

2.1.21
$$P_X = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}, P_Y = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$

2.1.22
$$Q_X = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
, $Q_Y = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, $P_X = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, $P_Y = \frac{1}{5} \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}$

2.2.23
$$\sigma_{\alpha}^2 = 2\sigma^2$$
 $\sigma_{\alpha\beta} = -\sigma^2$ $\sigma_{\alpha\gamma} = \sigma^2$ $\sigma_{\beta}^2 = 2\sigma^2$ $\sigma_{\beta\gamma} = \sigma^2$ $\sigma_{\gamma}^2 = 2\sigma^2$

2.2.24 (1)
$$\sigma_X^2 = 46$$
, $\sigma_Y^2 = 145.403$, $\sigma_{XY} = 45.917$ (2) $Q_{\varphi_1 \varphi_2} = 0$, φ_1 与 φ_2 不相关

2.2.25
$$\sigma_X^2 = 8.18$$
, $\sigma_Y^2 = 8.18$, $\sigma_{XY} = 2.40$

2.2.26
$$D_{XL} = AD_L$$
, $D_{YL} = BAD_L = BD_{XL}$, $D_{XY} = AD_LA^TB^T = AD_{LX}B^T$

$$2.2.27 \quad \mathbf{D_{W}} = \begin{bmatrix} D_{X} & D_{XY} & D_{XZ} \\ D_{YX} & D_{Y} & D_{YZ} \\ D_{ZX} & D_{ZY} & D_{Z} \end{bmatrix} = \begin{bmatrix} AD_{11}A^{T} & AD_{12}B^{T} & AD_{13}C^{T} \\ BD_{21}A^{T} & BD_{22}B^{T} & BD_{23}C^{T} \\ CD_{31}A^{T} & CD_{32}B^{T} & CD_{33}C^{T} \end{bmatrix}$$

2.2.28
$$D_F = \sigma_F^2 = 40$$

2.2.29
$$D_L = \frac{1}{3} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix} \sigma^2$$

2.2.30
$$h_2 = \pm 1.73$$
mm

2.2.31
$$\sigma_x = 2m_1 \sigma_y = \sqrt{5}m_1 \sigma_z = \sqrt{13}m$$

2.2.32
$$D_Y = AD_XA^T$$
, $D_{YX} = AD_X$, $D_{YZ} = AD_XA^TB^T$
 $D_Z = BAD_XA^TB^T$, $D_{ZH} = BAD_XA^TC^T + BAD_XA^TB^TG^T$
 $D_H = CAD_XA^TC^T + GBAD_XA^TC^T + CAD_XA^TB^TG^T + GBAD_XA^TB^TG^T$

2.2.33
$$Q_Y = \begin{bmatrix} 6 & 9 \\ 9 & 14 \end{bmatrix}$$

- 2.2.42 $Q_{ZH} = F_1 Q_X A^T + F_1 Q_{XY} B^T + F_2 Q_{YX} A^T + F_2 Q_Y B^T$ $Q_{ZX} = F_1 Q_X + F_2 Q_{YX}$
- 2.2.43 $Q_H = F_1 Q_X F_1^T + F_1 Q_{XY} F_2^T + F_1 Q_{XZ} F_3^T + F_2 Q_{YX} F_1^T + F_2 Q_Y F_2^T + F_2 Q_{YZ} F_3^T + F_3 Q_{ZX} F_1^T + F_3 Q_{ZX} F_1^T + F_3 Q_{ZX} F_2^T + F_3 Q_Z F_3^T$ $Q_{HX} = F_1 Q_X + F_2 Q_{YZ} + F_3 Q_{ZX}$
- 2.2.44 $Q_{\dot{X}} = (B^{T}B)^{-1}$ $Q_{\dot{L}} = B(B^{T}B)^{-1}B^{T}$ $Q_{\dot{V}\dot{X}} = 0$, $Q_{\dot{V}\dot{L}} = 0$
- 2.2.45 $Q_{FG} = F_1 Q_{XY} G_2^T + F_2 Q_Y G_2^T + F_3 Q_{ZY} G_2^T + F_1 Q_{XZ} G_3^T + F_2 Q_{YZ} G_3^T + F_3 Q_Z G_3^T$
- 2.2.46 (1) $\sigma_X = \pm \sqrt{(L_1 + L_2)^2 m_1^2 + L_1^2 m_2^2}$

(2)
$$\sigma_Y = \pm \frac{1}{\sin^2(L_1 + L_2)} \sqrt{\sin^2 L_2 m_1^2 + \sin^2 L_1 \cos^2(L_1 + L_2) m_2^2}$$

或
$$\sigma_Y = \pm y \sqrt{\left[\operatorname{ctg} L_1 - \operatorname{ctg} (L_1 + L_2)\right]^2 m_1^2 + \operatorname{ctg}^2 (L_1 + L_2) m_2^2}$$

2.2.47 $\sigma_{\varphi_1}^2 = 10.8, \sigma_{\varphi_2}^2 = 371.2, \sigma_{\varphi_1 \varphi_2} = 6.4$

2.2.48
$$D_F = \sigma_F^2 = 18L_2^2 + 27L_3^2$$

$$2.2.49 \quad \sigma_Z^2 = \frac{1}{\rho^{''2}} \left(\frac{16 \cos^2 L_2}{5 \sin^2 L_3} + \frac{16 \sin L_2 \cos L_2 \cos L_3}{5 \sin^3 L_3} + \frac{4 \sin^2 L_2 \cos^2 L_3}{\sin^4 L_3} \right)$$

2.2.50
$$\sigma_{s_2} = \pm \frac{S_2}{\sigma''} \sqrt{\operatorname{ctg}^2(L_1 + L_2) m_1^2 + (\operatorname{ctg}(L_1 + L_2) - \operatorname{ctg}L_2)^2 m_2^2}$$

2.2.51 (1)
$$\frac{1}{P_Z} = (2X_1 + X_2)^2 \frac{1}{P_1} + X_1^2 \frac{1}{P_2}$$

$$\sigma_{Z_1} = \sigma_{0A} \sqrt{\frac{1}{P_2}} = \sigma_{0A} \sqrt{(2X_1 + X_2)^2 \frac{1}{P_1} + X_1^2 \frac{1}{P_2}}$$

$$(2) \frac{1}{P_{Z_2}} = \frac{\sin^2 X_1 \sin^2 X_2}{\sin^2 (X_1 - X_2)} \left| (\operatorname{ctg} X_1 - \operatorname{ctg} (X_1 - X_2))^2 \frac{1}{P_1} + (\operatorname{ctg} X_2 - \operatorname{ctg} (X - X_2))^2 \frac{1}{P_2} \right|$$

$$\sigma_{Z_2} = \frac{m_0}{\sqrt{P_{Z_2}}}$$

2.2.52
$$\sigma_S = \pm \sqrt{(\frac{S}{a})^2 m_a^2 + (\frac{S}{h_a})^2 m_{ha}^2}$$

2.2.53
$$\sigma_S = \pm \frac{1}{2} \sqrt{c^2 \sin^2 A m_b^2 + b^2 \sin^2 A m_c^2 + b^2 c^2 \cos^2 A m_A^2 / \rho^2}$$

2.2.54
$$\sigma_{\Delta X}^2 = \cos^2 \alpha \sigma_s^2 + (\Delta Y)^2 \sigma_{\alpha}^2 / \rho^2$$
 $\sigma_{\Delta Y}^2 = \sin^2 \alpha \sigma_S^2 + (\Delta X)^2 \sigma_{\alpha}^2 / \rho^2$

2.2.55 (1)
$$D_Y = \begin{bmatrix} 2+8X_2+32X_2^2 & 8X_1+16X_1X_2 \\ 8X_1+16X_1X_2 & 32X_1^2 \end{bmatrix}$$

$$D_{YX} = \begin{bmatrix} 2+4X_2 & -1-8X_2 \\ 8X_1 & -4X_1 \end{bmatrix}$$

$$\boldsymbol{D}_{YX} = \begin{bmatrix} 2+4X_2 & -1-8X_2 \\ 8X_1 & -4X_1 \end{bmatrix}$$

$$D_{YZ} = \begin{bmatrix} 3 & 4X_1 + 8X_1X_2 & -6X_2 - 48X_2^2 \\ 12X_1 & 16X_1^2 & -24X_1X_2 \end{bmatrix}$$

$$\sigma_{Y_1Y_2} = 8X_1 + 16X_1X_2 & \sigma_{Y_1Z_2} = 4X_1 + 8X_1X_2$$

$$\sigma_{Y_1Y_2} = 8X_1 + 16X_1X_2$$
 $\sigma_{Y_1Z_2} = 4X_1 + 8X_1X_2$

(2)
$$Q_X = \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix}$$
, $Q_{YX} = \begin{bmatrix} 1+2X_2 & -\frac{1}{2}-4X_2 \\ 4X_1 & -2X_1 \end{bmatrix}$

2.2.56
$$\sigma_{Y_1}^2 = S_{AB}^2 (\cos^2 \beta_1 + \cot^2 \beta_3) / \rho^{2}, \sigma_{Y_1 Y_2} = 0, \sigma_{Y_2}^2 = \frac{1}{\rho^{2}}$$

2.2.57
$$\Delta X = 1~000 \text{m}$$
, $\sigma_{\Delta X} = \pm 0.16 \text{m}$

2.2.58 (1)
$$D_{Y} = \begin{bmatrix} 8L_{1}^{2} & 12L_{1}L_{2} - 6L_{1}^{2} \\ 12L_{1}L_{2} - 6L_{1}^{2} & 18L_{2}^{2} - 18L_{1}L_{2} + 18L_{1}^{2} \end{bmatrix}$$

$$D_{YZ} = \begin{bmatrix} -4L_{1} & 12L_{1}^{3} \\ -6L_{2} + 12L_{1} & 18L_{1}^{2}L_{2} - 9L_{1}^{3} \end{bmatrix} \quad D_{YL} = \begin{bmatrix} 4L_{1} & -2L_{1} \\ 6L_{2} - 3L_{1} & -3L_{2} + 6L_{1} \end{bmatrix}$$

(2)
$$\sigma_{Y_1Y_2} = 0$$
, $\sigma_{Y_1Z_1} = -8$, $\sigma_{Y_1L_1} = 8$

2.3.59 S' = 5251.901m²,
$$\sigma_{S'} = \pm 7.39$$
m²

2.3.60
$$h = 25 \text{m}, \sigma_h = \pm 0.8 \text{cm}$$

2.3.61
$$S = 4635.563 \text{m}^2$$
, $\sigma_S = \pm 2.88 \text{m}^2$

2.3.62
$$S_2 = 110.959 \text{m}$$
, $\sigma_{S_2} = \pm 0.015 \text{m}$

2.3.63 (1)
$$\sigma_{X_C} = \pm 2.168$$
cm, $\sigma_{Y_C} = \pm 2.810$ m (2) $\sigma_{AB} = \pm 4.441$ cm

2.3.64
$$h = 94.2274$$
m, $\sigma_h = \pm 0.028$ m

2.3.65
$$X = 1241.4288 \text{m}$$
. $\sigma_X = \pm 0.0222 \text{m}$

2.3.66 (1)
$$X = 58^{\circ}06'45.5''$$
, $\sigma_X = \pm 0.95''$ (2)相同

2.3.67
$$H_E = 218.3171 \text{m}, \sigma_{H_E} = \pm 0.0141 \text{m}$$

2.3.68
$$\sigma_{S_{AC}}^2 = \frac{1}{S_{AC}^2} \left\{ (S_1 - S_2 \cos \beta)^2 \sigma_{S_1}^2 + (S_2 - S_1 \cos \beta) \sigma_{S_2}^2 + S_1^2 S_2^2 \sin^2 \beta \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2} \right\}$$

2.3.69 (1)
$$\begin{bmatrix} \sigma_{\Delta X}^2 & \sigma_{\Delta X \Delta Y} \\ \sigma_{\Delta Y \Delta X} & \sigma_{\Delta Y}^2 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ 1 & 6 \end{bmatrix} \text{cm}^2$$
(2)
$$\begin{bmatrix} \sigma_S^2 & \sigma_{ST} \\ \sigma_{TS} & \sigma_T^2 \end{bmatrix} = \begin{bmatrix} 6.1798(\text{cm}^2) & 1.941 & (\text{cm}^*(")) \\ 1.941(\text{cm}^*(")) & 22.983 & (")^2 \end{bmatrix}_{\circ}$$
2.3.70 $r = 510.512\text{m}, \sigma_r = \pm 0.0344\text{m}, \quad \theta = 56^{\circ}40'36.27'', \sigma_{\theta} = \pm 13.891''$

$$2.3.70 \quad r = 510.512 \text{m}$$
, $\sigma_r = \pm 0.0344 \text{m}$, $\theta = 56^{\circ}40'36.27''$ $\sigma_s = \pm 13.801'$

2.3.71
$$\sigma_S = \pm 0.597 \text{m}^2$$

2.3.72
$$X_P = 2462.663 \text{m}, Y_P = 5048.281 \text{m}, \sigma_{X_p} = \pm 0.166 \text{m}, \sigma_{Y_p} = \pm 0.075 \text{m}$$

2.3.73 (1)
$$P_{S_1} = 1$$
, $P_{S_2} = 1$ (2) $\frac{\sigma_{S_1}}{S_1} = \frac{1}{15000}$, $\frac{\sigma_{S_2}}{S_2} = \frac{1}{25000}$, S_2 的精度高

$$2.3.74 \quad \sigma_{CD} = \pm 2 \text{cm}$$

2.3.75 (1)
$$P = \frac{1}{2}$$
,(2)需丈量 8次

2.3.76
$$\hat{h}_i = h_i - \frac{S_i}{[S]} \omega$$
 (i=1,2,3)

2.3.77
$$\sigma_{L_1} = \pm 5.9 \text{mm}, \sigma_{L_2} = \pm 4.2 \text{mm}_{\odot}$$

2.3.78
$$\sigma_a = \sigma_\theta = \pm 3.34^n$$

2.3.79
$$S = 550.251 \text{m}, \sigma_S = \pm 0.03 \text{m}$$

2.3.80
$$\sigma_1 = 2\sqrt{5} \text{mm}, \sigma_2 = \sqrt{5} \text{mm}$$

2.3.81 (1)
$$\sigma_C = \sqrt{\frac{24}{5}} = \pm 2.19 \text{mm}$$
, (2) $\sigma_a = \pm 2 \text{mm}$, $\sigma_b = \frac{2}{\sqrt{3}} = \pm 1.15 \text{mm}$

2.3.85 (1)
$$\sigma_0 = \pm 2.0'', P_1 = 1, P_2 = \frac{1}{4}, P_3 = 4,$$

$$\sigma_0 = \pm 4.0'', P_1 = 4, P_2 = 1, P_3 = 16,$$

$$\sigma_0 = \pm 1.0'', P_1 = \frac{1}{4}, P_2 = \frac{1}{16}, P_3 = 1,$$
(2) $X = 60^\circ 44' 17.24'', \sigma_X = \pm 0.87''$

(2)
$$X = 60^{\circ}44^{\circ}17.24^{\circ}$$
, $\sigma_X = \pm 0.87^{\circ}$

2.3.86
$$P_c(平差前) = \frac{1}{40}, P_c(平差后) = \frac{1}{20}$$
。

2.3.87
$$P_1: P_1: P_3: P_4 = 0.95: 1.14: 2.56: 0.63$$

2.3.88
$$P_1 = 4, P_2 = 5, P_3 = 10_{\circ}$$

2.3.89
$$\sigma_{CD} = \pm 2 \text{mm}_{o}$$

2.3.90 (1)
$$\sigma_D = \pm 1 \text{mm}$$
, (2) $\sigma_{h_{AD}} = \pm 1 \text{mm}_a$

2.3.91
$$Q_{H} = \begin{bmatrix} S_{1} + S_{2} + S_{3} & -S_{3} & 0 \\ -S_{3} & S_{3} + S_{4} + S_{8} & -S_{8} \\ 0 & -S_{8} & S_{5} + S_{6} + S_{7} + S_{8} \end{bmatrix}$$

$$P_{1} = \frac{1}{S_{1} + S_{2} + S_{3}}, P_{11} = \frac{1}{S_{3} + S_{4} + S_{8}}, P_{12} = \frac{1}{S_{5} + S_{6} + S_{7} + S_{8}}$$

2.3.92
$$P_1 = \frac{1}{4}$$
, $P_2 = \frac{1}{5}$, $P_3 = \frac{1}{6}$, $\sigma_0 = \pm 4$ mm_o
 $\sigma_1 = \pm 8$ mm, $\sigma_2 = \pm 8.9$ mm, $\sigma_3 = \pm 9.8$ mm_o

2.3.93 (1)
$$S = \frac{\pi}{8} X_3^2 + X_1 X_3 + \frac{1}{2} X_2 X_3$$
,

(2)
$$S = 2.781.75 \text{m}^2$$
, $\sigma_c = \pm 2.80 \text{m}^2$.

2.3.94 (1)
$$\sigma_{X_2}^2 = (\cos^2 \alpha_1 + \cos^2 \alpha_2) \sigma_S^2 + [(S_1 \sin \alpha_1 + S_2 \sin \alpha_2)^2 + S_2^2 \sin^2 \alpha_2] \frac{\sigma_B^2}{\rho^2},$$

$$\sigma_{Y_2}^2 = (\sin^2 \alpha_1 + \sin^2 \alpha_2) \sigma_S^2 + [(S_1 \cos \alpha_1 + S_2 \cos \alpha_2)^2 + S_2^2 \cos^2 \alpha_2] \frac{\sigma_B^2}{\rho^2},$$

(2)
$$\sigma_{P_2}^2 = \sigma_{X_2}^2 + \sigma_{Y_2}^2 = 2\sigma_S^2 + (S_1^2 + 2S_2^2 + 2S_1S_2\cos(\alpha_1 - \alpha_2))\frac{\sigma_B^2}{\sigma_0^2}$$

2.3.95 (1)6000.027m, (2)
$$\pm$$
 0.78mm, (3) \pm 2.70mm, (4) \pm 1.91mm, (5) \pm 1.56mm.

$$2.3.96 \quad (1) \sigma_{loc}(+1) = \pm 0.63 \text{mm}$$

$$(2)\sigma_1 = \pm 1.33$$
mm, $\sigma_2 = \pm 2.07$ mm, $\sigma_3 = \pm 0.90$ mm

$$(3)\sigma_{L_1} = \pm 0.93$$
mm, $\sigma_{L_2} = \pm 1.45$ mm, $\sigma_{L_3} = \pm 0.63$ mm

$$(4) \pm 2.6 mm$$

$$2.4.97 \quad M = \pm 0.0042 \text{m}$$

2.4.98
$$D_{22} = KD_LK^T + K\epsilon\epsilon^TK^T, D_{ZY} = KD_LF^T + K\epsilon\epsilon^TF^T$$

第三章

$$3.1.01$$
 (a)1, (b)1, (c)3, (d)3, (e)2, (f)4, (g)7, (h)8

$$3.1.02$$
 (a)2, (b)1, (c)1, (d)2, (e)1, (f)1, (g)3, (h)5, (i)0, (j)10

3.1.03
$$\vec{h}_2 + \vec{h}_3 - \vec{h}_7 = 0$$
, $\vec{h}_2 - \vec{h}_6 - \vec{h}_8 = 0$, $\vec{h}_3 + \vec{h}_5 + \vec{h}_8 = 0$, $H_A + \vec{h}_1 + \vec{h}_4 + \vec{h}_7 - H_8 = 0$

3.1.04
$$H_A + \bar{h}_1 - \bar{h}_2 + \bar{h}_3 - H_B = 0$$

3.1.05
$$H_A + \bar{h}_1 - \bar{h}_2 - H_B = 0$$
, $H_C + \bar{h}_4 - \bar{h}_5 - H_D = 0$,
 $H_A + \bar{h}_1 + \bar{h}_3 - \bar{h}_4 - H_C = 0$, $H_D + \bar{h}_5 - \bar{h}_6 - H_E = 0$

3.1.06
$$\widetilde{L}_1 + \widetilde{L}_2 + \widetilde{L}_3 - 180^\circ = 0$$
, $\widetilde{L}_2 + \widetilde{L}_4 - 360^\circ = 0$, $T_{AB} + \widetilde{L}_1 + \widetilde{L}_3 + \widetilde{L}_5 - T_{CD} = 0$

3.1.07
$$\bar{\beta}_1 + \tilde{\beta}_2 + \tilde{\beta}_3 - 180^\circ = 0$$
, $\bar{\beta}_4 + \bar{\beta}_5 + \tilde{\beta}_6 - 180^\circ = 0$, $\bar{\beta}_7 + \tilde{\beta}_8 + \tilde{\beta}_9 - 180^\circ = 0$, $\bar{\beta}_{10} + \bar{\beta}_{11} + \tilde{\beta}_{12} - 180^\circ = 0$, $T_{AB} - \beta_2 + \bar{\beta}_5 + \bar{\beta}_7 + \tilde{\beta}_{10} + \bar{\beta}_{12} - T_{EF} = 0$

3.1.08
$$\frac{\bar{S}_1}{\sin \bar{\beta}_2} - \frac{\bar{S}_2}{\sin \bar{\beta}_1} = 0$$
, $\frac{\bar{S}_3}{\sin (\bar{\beta}_1 + \bar{\beta}_2)} - \frac{\bar{S}_2}{\sin \bar{\beta}_1} = 0$

3.1.09
$$\bar{\beta}_1 + \bar{\beta}_3 + \bar{\beta}_4 - 180^\circ = 0$$
, $\bar{\beta}_2 + \bar{\beta}_5 + \bar{\beta}_6 - 180^\circ = 0$

$$T_{AB}+\tilde{\beta}_1+\tilde{\beta}_2-T_{AC}=0\;,\;\;S_{AB}\frac{\sin\bar{\beta}_3}{\sin\bar{\beta}_4}\;\frac{\sin\bar{\beta}_2}{\sin\bar{\beta}_6}-S_{CD}=0$$

3.1.10
$$\bar{\beta}_1 + \bar{\beta}_2 + \bar{\beta}_3 - 180^{\circ} = 0$$
, $\bar{\beta}_4 + \bar{\beta}_5 + \bar{\beta}_6 - 180^{\circ} = 0$, $\bar{\beta}_7 + \bar{\beta}_8 + \bar{\beta}_9 - 180^{\circ} = 0$, $T_{BA} - \bar{\beta}_1 + \bar{\beta}_4 - \bar{\beta}_9 - T_{DE} = 0$,

$$S_{AB} \frac{\sin \hat{\beta}_2}{\sin \hat{\beta}_3} \frac{\sin \hat{\beta}_6}{\sin \hat{\beta}_5} \frac{\sin \hat{\beta}_7}{\sin \hat{\beta}_8} - S_{DE} = 0$$

3.2.11
$$\tilde{\beta}_1 + \tilde{\beta}_2 + \tilde{X} - 180^{\circ} = 0$$
, $\frac{\bar{S}_1}{\sin \tilde{\beta}_2} - \frac{\bar{S}_2}{\sin \tilde{\beta}_1} = 0$, $\frac{\bar{S}_3}{\sin \tilde{X}} - \frac{\bar{S}_2}{\sin \tilde{\beta}_1} = 0$

3.2.12
$$H_A + \tilde{h_1} - \tilde{x} = 0$$
, $H_A + \tilde{h_1} + \tilde{h_1} - \tilde{h_2} - H_B = 0$

3.2.13
$$\tilde{\beta}_1 + \tilde{\beta}_2 + \tilde{\beta}_6 - 180^\circ = 0$$
, $\tilde{\beta}_3 + \tilde{\beta}_4 + \tilde{\beta}_5 - 180^\circ = 0$, $\frac{\tilde{S}_1}{\sin \tilde{\beta}_2} - \frac{\tilde{S}_2}{\sin \tilde{\beta}_1} = 0$, $\frac{\tilde{S}_2}{\sin \tilde{\beta}_1} - \frac{S_{AB}}{\sin \tilde{\beta}_6} = 0$, $T_{BA} + \tilde{\beta}_2 + \tilde{\beta}_3 - T_{BC} = 0$,

$$S_{AB} \frac{\sin \bar{\beta}_1}{\sin \bar{\beta}_5} \frac{\sin \bar{\beta}_5}{\sin \bar{\beta}_4} - S_{BC} = 0, \quad \frac{\bar{X}}{\sin \bar{\beta}_3} - \frac{\bar{S}_2}{\sin \bar{\beta}_4} = 0$$

3.2.14
$$\tilde{X}_2 - \tilde{X}_3 - \tilde{h}_5 = 0$$
, $\tilde{h}_5 + \tilde{h}_7 + \tilde{h}_8 = 0$, $\tilde{X}_4 + \tilde{h}_6 + \tilde{h}_8 = 0$, $H_A + \tilde{X}_1 + \tilde{X}_2 - \tilde{h}_9 - H_B = 0$, $\tilde{h}_1 - \tilde{X}_1 = 0$, $\tilde{h}_2 - \tilde{X}_2 = 0$, $\tilde{h}_3 - \tilde{X}_3 = 0$, $\tilde{h}_4 - \tilde{X}_4 = 0$

3.2.15
$$\vec{\beta}_1 + \vec{\beta}_2 + \vec{\beta}_3 - 180^{\circ} = 0$$
, $\vec{\beta}_4 + \vec{\beta}_5 + \vec{\beta}_6 + \vec{\beta}_7 + \vec{\beta}_8 - 360^{\circ} = 0$,
$$\vec{\beta}_2 + \vec{\beta}_4 - (T_{BC} - T_{BA}) = 0$$
,
$$\frac{\tilde{S}_1}{\sin \tilde{\beta}_2} - \frac{\tilde{S}_2}{\sin \tilde{\beta}_1} = 0$$
,
$$\frac{S_{AB}}{\sin \tilde{\beta}_3} - \frac{\tilde{S}_2}{\sin \tilde{\beta}_1} = 0$$
,
$$\frac{\tilde{S}_2}{\sin \tilde{\beta}_5} - \frac{\tilde{x}}{\sin \tilde{\beta}_5} = 0$$
,
$$\frac{\tilde{S}_3}{\sin \tilde{\beta}_6} - \frac{\tilde{X}}{\sin \tilde{\beta}_7} = 0$$
,
$$\frac{\tilde{S}_4}{\sin (\tilde{\beta}_6 + \tilde{\beta}_7)} - \frac{\tilde{S}_3}{\sin \tilde{\beta}_6} = 0$$
,
$$S_{AB} \frac{\sin \tilde{\beta}_1 \sin (\tilde{\beta}_4 + \tilde{\beta}_5)}{\sin \tilde{\beta}_3} - S_{BC} = 0$$

3.2.16
$$\frac{1}{2}(\tilde{l}_1 + \tilde{l}_2)\tilde{h} - \tilde{S} = 0$$
, $\tilde{S} - \tilde{X} = 0$

3.3.17
$$\tilde{h_1} = \tilde{X_1} - H_A$$
, $\tilde{h_2} = \tilde{X_2} - H_A$, $\tilde{h_3} = \tilde{X_3} - H_A$, $\tilde{h_4} = \tilde{X_2} - \tilde{X_3}$, $\tilde{h_5} = -\tilde{X_1} + \tilde{X_2}$

3.3.18
$$\tilde{L}_1 = \tilde{X}_1$$
, $\tilde{L}_2 = \tilde{X}_2$, $\tilde{L}_3 = \tilde{X}_3$, $\tilde{L}_4 = \tilde{X}_1 + \tilde{X}_2$, $\tilde{L}_5 = \tilde{X}_2 + \tilde{X}_3$, $\tilde{L}_6 = \tilde{X}_1 + \tilde{X}_2 + \tilde{X}_3$

3.3.19
$$\tilde{S}_1 = \sqrt{(\tilde{X}_1 - X_A)^2 + (\tilde{Y}_1 - Y_A)^2}$$
, $\tilde{S}_2 = \sqrt{(\tilde{X}_1 - X_B)^2 + (\tilde{Y}_1 - Y_B)^2}$, $\tilde{S}_3 = \sqrt{(\tilde{X}_2 - X_B)^2 + (\tilde{Y}_2 - Y_B)^2}$, $\tilde{S}_4 = \sqrt{(\tilde{X}_2 - X_A)^2 + (\tilde{Y}_2 - Y_B)^2}$, $\tilde{S}_5 = \sqrt{(\tilde{X}_2 - \tilde{X}_1)^2 + (\tilde{Y}_2 - \tilde{Y}_1)^2}$

3.3.20
$$\tilde{h}_1 = \tilde{X}_1$$
, $\tilde{h}_2 = \tilde{X}_2$, $\tilde{h}_3 = -X_1 + X_2$,
 $\tilde{h}_4 = H_B - \tilde{X}_1 - \tilde{X}_3 - H_A$, $\tilde{h}_5 = H_B - X_2 - X_3 - H_A$,
 $\tilde{h}_6 = \tilde{X}_3 - \tilde{X}_4$, $\tilde{h}_7 = H_B - X_2 - X_4 - H_A$,
 $\tilde{h}_8 = H_B - \tilde{X}_1 - \tilde{X}_4 - H_A$, $\tilde{h}_9 = \tilde{X}_3$, $\tilde{h}_{10} = \tilde{X}_4$

3.3.21
$$\tilde{l}_1 = \tilde{X}_1$$
, $\tilde{l}_2 = \tilde{X}_2$, $\tilde{h}_3 = \tilde{X}_3$, $\tilde{S} = \frac{1}{2}(\tilde{X}_1 + \tilde{X}_2)\tilde{X}_3$

3.3.22
$$\tilde{\beta}_1 = \tilde{T}_{BP} - T_{BA} = \arctan \frac{\tilde{Y}_P - Y_B}{\tilde{X}_P - X_B} - T_{BA}$$
, $\tilde{\beta}_2 = T_{BC} - T_{BP} = T_{BC} - \arctan \frac{\tilde{Y}_P - Y_B}{\tilde{X}_P - X_B}$, $\tilde{\beta}_3 = T_{CP} - T_{CA} = \arctan \frac{\tilde{Y}_P - Y_C}{\tilde{X}_P - X_C} - T_{CA}$, $\tilde{\beta}_4 = T_{AC} - \tilde{T}_{BP} = T_{AC} - \arctan \frac{\tilde{Y}_P - Y_A}{\tilde{X}_P - X_A}$, $\tilde{\beta}_5 = \tilde{T}_{AC} - \tilde{T}_{PC} = \arctan \frac{Y_A - \tilde{Y}_P}{X_A - \tilde{X}_P} - \arctan \frac{Y_C - \tilde{Y}_P}{X_C - \tilde{Y}_C}$

3.4.23
$$\tilde{h_1} = \tilde{X_1} - H_A$$
, $\tilde{h_2} = -\bar{X_1} + \tilde{X_2}$, $\tilde{h_3} = -\tilde{X_2} + \tilde{X_3}$, $\tilde{h_4} = -\tilde{X_3} + \tilde{X_4}$, $\tilde{h_5} = \tilde{X_1} - \tilde{X_4}$, $\tilde{h_6} = \tilde{X_3} - H_B$ 及 $\tilde{X_2} - \tilde{X_4} + 1.200 = 0$ (限制条件)

3.4.24
$$\tilde{\beta}_{1} = \tilde{T}_{AD} - T_{AB} = \arctan \frac{\bar{Y}_{D} - Y_{A}}{\bar{X}_{D} - X_{A}} - \arctan \frac{Y_{B} - Y_{A}}{X_{B} - X_{A}},$$

$$\tilde{\beta}_{2} = T_{AC} - \tilde{T}_{AD} = T_{AC} - \arctan \frac{\tilde{Y}_{D} - Y_{A}}{\bar{X}_{D} - X_{A}},$$

$$\tilde{\beta}_{3} = \tilde{T}_{CD} - T_{CA} = \arctan \frac{\tilde{Y}_{D} - \tilde{Y}_{C}}{\tilde{X}_{D} - \tilde{X}_{C}} - T_{CA},$$

$$\tilde{\beta}_{4} = \tilde{T}_{CB} - \tilde{T}_{CD} = \arctan \frac{Y_{B} - \tilde{Y}_{C}}{X_{B} - \tilde{X}_{C}} - \arctan \frac{\bar{Y}_{D} - \tilde{Y}_{C}}{\tilde{X}_{D} - \tilde{X}_{C}},$$

$$\beta_{5} = \tilde{T}_{BC} - \tilde{T}_{BC} = \arctan \frac{\tilde{Y}_{D} - Y_{B}}{\bar{X}_{D} - X_{B}} - \arctan \frac{\bar{Y}_{C} - Y_{B}}{\tilde{X}_{C} - X_{B}},$$

$$\begin{split} \beta_6 &= \tilde{T_{BA}} - \tilde{T_{BD}} = \arctan \frac{Y_A - Y_B}{X_A - X_B} - \arctan \frac{\tilde{Y_D} - Y_B}{\tilde{X_D} - X_B}, \\ \beta_7 &= \tilde{T_{DC}} - \tilde{T_{DB}} = \arctan \frac{\tilde{Y_C} - \tilde{Y_D}}{\tilde{X_C} - \tilde{X_D}} - \arctan \frac{Y_B - \tilde{Y_D}}{X_B - \tilde{X_D}}, \\ \beta_8 &= \tilde{T_{DB}} - \tilde{T_{DA}} = \arctan \frac{Y_B - \tilde{Y_D}}{X_B - \tilde{X_D}} - \arctan \frac{Y_A - \tilde{Y_D}}{X_A - \tilde{X_D}}, \end{split}$$

$$\beta_9 = \tilde{T_{DA}} - \tilde{T_{DC}} = \arctan \frac{Y_A - \tilde{Y_D}}{X_A - \tilde{X_D}} - \arctan \frac{\tilde{Y_C} - \tilde{Y_D}}{\tilde{X_C} - \tilde{X_D}}$$

及
$$\operatorname{arctan} \frac{\tilde{Y_C} - Y_A}{\tilde{X_C} - X_A} - T_{AC} = 0$$
(限制条件)

3.4.25 观测方程问题 3.4.24 答案(略), 限制条件有 2 个:

$$\arctan \frac{\tilde{Y}_C - Y_A}{\tilde{X}_C - X_A} - T_{AC} = 0, \sqrt{(\tilde{X}_D - \tilde{X}_C)^2 + (\tilde{Y}_D - \tilde{Y}_C)^2} - S_{CD} = 0$$

3.4.26
$$\tilde{L_1} = \tilde{X_1}$$
, $\tilde{L_2} = \tilde{X_2}$, $\tilde{L_3} = \tilde{X_3}$,及 $\tilde{X_1}^2 + \tilde{X_2}^2 - \tilde{X_3}^2 = 0$ (限制条件)

3.4.27
$$\tilde{\beta}_1 = T_{AB} - \tilde{T}_{AP!} = \arctan \frac{Y_B - Y_A}{X_B - X_A} - \arctan \frac{\tilde{Y}_1 - Y_A}{\tilde{X}_1 - X_A}$$

$$\tilde{\beta_2} = \tilde{T}_{P_1 A} - \tilde{T}_{P_1 P_2} = \arctan \frac{Y_A - \tilde{Y}_1}{X_A - \tilde{X}_1} - \arctan \frac{\tilde{Y}_2 - \tilde{Y}_1}{\tilde{X}_2 - \tilde{X}_1},$$

$$\tilde{\beta_3} = T_{P_1P_2}^- - T_{P_1B}^- = \arctan \frac{\tilde{Y}_2 - \tilde{Y}_1}{\tilde{X}_2 = \tilde{X}_1} - \arctan \frac{Y_B - \tilde{Y}_1}{X_B - \tilde{X}_1},$$

$$\tilde{\beta_4} = \tilde{T_{BP_1}} - T_{BA} = \arctan \frac{\tilde{Y}_1 - Y_B}{\tilde{X}_1 - X_B} - \arctan \frac{Y_A - Y_B}{X_A - X_B},$$

$$\tilde{S}_1 = \sqrt{(\tilde{X}_1 - X_A)^2 + (\tilde{Y}_1 - Y_A)^2}$$

$$\bar{S}_2 = \sqrt{(X_B - \bar{X}_1)^2 + (Y_B - \bar{Y}_1)^2}$$
,

$$\tilde{S}_3 = \sqrt{(\tilde{X}_2 - X_B)^2 + (\tilde{Y}_2 - Y_B)^2}$$

及
$$(\tilde{X}_2 - \tilde{X}_1)^2 + (\tilde{Y}_2 - \tilde{Y}_1)^2 - \tilde{S}_{12}^2 = 0(限制条件)$$

3.4.28
$$\tilde{S}_1 = \sqrt{(\tilde{X}_C - X_B)^2 + (\tilde{Y}_C - Y_B)^2}$$
, $\tilde{S}_2 = \sqrt{(\tilde{X}_C - X_A)^2 + (\tilde{Y}_C - Y_A)^2}$,

$$\tilde{S}_3 = \sqrt{(\tilde{X_D} - \tilde{X_C})^2 + (\tilde{Y_D} - \tilde{Y_C})^2}, \ \tilde{S_4} = \sqrt{(\tilde{X_D} - X_B)^2 + (\tilde{Y_D} - Y_B)^2},$$

$$\tilde{S}_5 = \sqrt{(\tilde{X}_D - X_A)^2 + (\tilde{Y}_D - Y_A)^2}$$
,及 $\arctan \frac{\tilde{Y}_D - \tilde{Y}_C}{\tilde{X}_D - \tilde{X}_C} - T_{CD} = 0$ (限制条件)

3.4.29
$$\tilde{h_1} = \tilde{X_1}$$
, $\tilde{h_2} = \tilde{X_2}$, $\tilde{h_3} = \tilde{X_3}$, $\tilde{h_4} = H_B - \tilde{X_1} - \tilde{X_2} - H_A$,

及
$$\tilde{X}_2 - \tilde{X}_3 = 0$$
(限制条件)

3.5.30
$$\tilde{h}_7 + \tilde{h}_8 + \tilde{X}_4 = 0$$
, $\tilde{h}_4 + \tilde{h}_6 + \tilde{h}_8 = 0$,

$$H_A + \tilde{X}_1 + \tilde{X}_2 - \tilde{h}_9 - H_B = 0$$
, $\tilde{h}_1 - \tilde{X}_1 = 0$.

$$\tilde{h}_2 - \bar{X}_2 = 0$$
, $\tilde{h}_3 - \bar{X}_3 = 0$,

$$\vec{h}_5 - \hat{X}_4 = 0$$
.

及
$$\tilde{X}_2 - \tilde{X}_3 - \tilde{X}_4 = 0$$
(限制条件)

3.5.31
$$\vec{h}_3 - \vec{X}_2 = 0$$
, $H_A + \vec{X}_1 - \vec{h}_5 - \vec{h}_6 - H_B = 0$,

$$\tilde{h}_1 - \tilde{X}_1 = 0$$
, $\tilde{h}_2 - \tilde{X}_2 = 0$, $\tilde{h}_4 - \tilde{X}_3 = 0$,
及 $H_A + X_1 + X_2 + X_3 - H_B = 0$ (限制条件)

3.5.32
$$\vec{\beta}_1 + \vec{\beta}_8 + \vec{\beta}_9 - 180^\circ = 0$$
, $\vec{\beta}_2 + \vec{\beta}_6 + \vec{\beta}_7 - 180^\circ = 0$,

$$\tilde{\beta}_3 + \tilde{\beta}_4 + \tilde{\beta}_5 - 180^\circ = 0$$
, $T_{AB} + \tilde{\beta}_3 - \tilde{T}_{AC} = 0$,

$$S_{AB} \frac{\sin \tilde{\beta_6}}{\sin \tilde{\beta_7}} \frac{\sin \tilde{\beta_6}}{\sin \tilde{\beta_0}} - \tilde{S}_{AE} = 0, \arctan \frac{\tilde{Y}_D - Y_A}{\tilde{X}_D - X_A} + \tilde{\beta_2} - T_{AB} = 0,$$

$$S_{AE} \frac{\sin \bar{\beta}_{0}}{\sin \bar{\beta}_{0}} - \sqrt{(\bar{X}_{D} - X_{A})^{2} + (\bar{Y}_{D} - Y_{A})^{2}} = 0,$$

$$S_{AB} = \frac{\sin \tilde{\beta}_5}{\sin \tilde{\beta}_4} - \sqrt{(\tilde{X}_C - X_A)^2 + (\tilde{Y}_C - Y_A)^2} = 0,$$

及
$$\arctan \frac{\tilde{Y}_C - Y_A}{\tilde{X}_C - X_A} - \tilde{T}_{AC} = 0(限制条件)$$

3.5.33
$$\vec{h}_1 + \vec{h}_2 + \vec{h}_7 - \vec{h}_8 = 0$$
, $\vec{h}_4 + \vec{h}_5 + \vec{h}_6 - \vec{h}_7 = 0$

$$\bar{X}_3 - \bar{h}_4 = 0$$
, $\bar{h}_1 - \bar{X}_1 = 0$, $\bar{h}_2 - \bar{X}_2 = 0$ 及 $\bar{X}_1 + \bar{X}_2 + \bar{X}_3 - 48.280 = 0$ (限制条件)。

3.5.34
$$\hat{\beta}_1 + \hat{\beta}_6 + \hat{\beta}_8 - 180^\circ = 0$$
, $\hat{\beta}_4 + \hat{\beta}_5 + \hat{\beta}_7 - 180^\circ = 0$, $\hat{\beta}_2 + \hat{\beta}_3 + \hat{\beta}_9 - 180^\circ = 0$, $\hat{\beta}_7 + \hat{\beta}_8 + \hat{\beta}_9 - 360^\circ = 0$,

$$\frac{\sin \tilde{\beta}_1}{\sin \tilde{\beta}_6} \frac{\sin \tilde{\beta}_3}{\sin \tilde{\beta}_2} \frac{\sin \tilde{\beta}_5}{\sin \tilde{\beta}_4} - 1 = 0, \quad T_{AD} + \tilde{\beta}_2 - T_{AC} = 0,$$

$$\arctan \frac{\tilde{Y}_C - Y_A}{\tilde{X}_C - X_A} - T_{AC} = 0$$
(限制条件)

3.5.35
$$\vec{h}_1 - \vec{h}_2 + \vec{h}_5 = 0$$
, $\vec{h}_2 - \vec{h}_4 + \vec{X}_1 - H_D = 0$, $\vec{h}_1 - \vec{h}_3 - \vec{X}_2 = 0$, 及 $\vec{X}_1 + \vec{X}_2 - H_D = 0$ (限制条件)

$$3.5.36 \quad \tilde{\beta}_4 + \tilde{\beta}_2 + \tilde{\beta}_3 + \tilde{\beta}_4 - 180^\circ = 0, \quad \frac{\tilde{S}_1}{\sin \tilde{\beta}_4} - \frac{\tilde{S}_2}{\sin \tilde{\beta}_1} = 0, \quad \frac{S_{AB}}{\sin (\tilde{\beta}_2 + \tilde{\beta}_3)} - \frac{\tilde{S}_1}{\sin \tilde{\beta}_4} = 0, \quad \tilde{S}_2 - \tilde{S}_{1B} = 0,$$

$$\sqrt{(X_B - \bar{X}_1)^2 + (Y_B - \bar{Y}_1)^2} - \tilde{S}_2 = 0, \ \tilde{S}_2^2 + \tilde{S}_4^2 - 2 \ \bar{S}_2 \tilde{S}_4 \cos \tilde{\beta}_3 - \tilde{S}_3^2 = 0,$$

及
$$\sqrt{(X_B - \tilde{X}_1)^2 + (Y_B - \tilde{Y}_1)^2} - \tilde{S}_{1B} = 0$$
(限制条件)

3.6.37 $\cot \beta_1 \Delta_1 - \cot \beta_2 \Delta_2 + \cot \beta_3 \Delta_3 - \cot \beta_4 \Delta_4 + \cot \beta_5 \Delta_5 - \cot \beta_6 \Delta_6 - f = 0$,

$$-f = \rho'' \left(1 - \frac{\sin\beta_6 \sin\beta_2 \sin\beta_4}{\sin\beta_1 \sin\beta_3 \sin\beta_5}\right)$$

3.6.38
$$\Delta_1 = \frac{\Delta X_{AP}^0}{S_{AP}^0} x_P + \frac{\Delta Y_{AP}^0}{S_{AP}^0} y_P + S_{AP}^0 - S_t$$
, \vec{x} , \vec{r}

$$S_{AP}^0 = \sqrt{(X_P^0 - X_A)^2 + (Y_P^0 - Y_A)^2}$$

$$3.6.39 \quad \cot\beta_2\Delta_2 - \cot\beta_3\Delta_3 + \cot\beta_5\Delta_5 - \cot\beta_6\Delta_6 - \frac{\rho''}{S_{AD}''}S_{AD} + \rho''(1 - \frac{S_{AD}^0\sin\beta_3\sin\beta_6}{S_{AB}\sin\beta_2\sin\beta_5}) = 0$$

$$3.6.41 \quad -\Delta_1 - \Delta_4 + \frac{\rho'' \Delta Y_{AD}^0}{S_{AD}^0 + 2 \times 100} x_D - \frac{\rho'' \Delta X_{AD}^0}{S_{AD}^0 + 100} y_D + T_{AB} - \beta_1 - \beta_4 - \arctan \frac{Y_D^0 - Y_A}{X_D^0 - X_A} = 0$$

3.6.42
$$\Delta_{1} = \frac{\rho'' \Delta Y_{AC}^{0}}{S_{AC}^{0}^{2} \times 100} x_{C} - \frac{\rho'' \Delta X_{AC}^{0}}{S_{AC}^{0}^{2} \times 100} y_{C} + (T_{AB} - T_{AC}^{0} - \beta_{1}) = a_{AC}x_{C} + b_{AC}y_{C} + T_{AB} - T_{AC}^{0} - \beta_{1},$$

$$\Delta_{2} = (\frac{\rho''\Delta Y^{0}_{CA}}{S^{0}_{CA}^{2} \times 100} - \frac{\rho''\Delta Y^{0}_{CB}}{S^{0}_{CB}^{2} \times 100})x_{C} + (-\frac{\rho''\Delta X^{0}_{CA}}{S^{0}_{CA}^{2} \times 100} + \frac{\rho''\Delta X^{0}_{CB}}{S^{0}_{CB}^{2} \times 100})y_{C} + T^{0}_{CA} - T^{0}_{CB} - \beta_{2}$$

$$= (a_{CA} - a_{CB})x_{C} + (b_{CA} - b_{CB})y_{C} + T_{CA}^{0} - T_{CB}^{0} - \beta_{2},$$

$$\Delta_{3} = -\frac{\rho''\Delta Y_{BC}^{0}}{S_{BC}^{0}^{2} \times 100}x_{C} + \frac{\rho''\Delta X_{BC}^{0}}{S_{BC}^{0}^{2} \times 100})y_{C} + T_{BC}^{0} - T_{BA} - \beta_{3}$$

$$= -a_{BC}x_{C} - b_{BC}y_{C} + T_{BC}^{0} - T_{BA} - \beta_{3}$$

$$3.6.43 \quad \Delta_{1} = \frac{\Delta X_{AP}^{0}}{S_{AP}^{0}}x_{P} + \frac{\Delta Y_{AP}^{0}}{S_{AP}^{0}}y_{P} + S_{AP}^{0} - S_{1}$$

$$\Delta_{2} = \frac{\Delta X_{CP}^{0}}{S_{CP}^{0}}x_{P} + \frac{\Delta Y_{CP}^{0}}{S_{CP}^{0}}y_{P} + S_{CP}^{0} - S_{2}$$

$$\Delta_{3} = \frac{\Delta X_{BP}^{0}}{S_{BP}^{0}}x_{P} + \frac{\Delta Y_{BP}^{0}}{S_{DP}^{0}}y_{P} + S_{BP}^{0} - S_{1}$$

第四章

4.1.01 (1)
$$v_1 - v_2 + v_3 - 4 = 0$$
,
(2) $\tilde{h_1} = -1.0007$ m, $\tilde{h_2} = -0.5011$ m, $\tilde{h_3} = -0.5004$ m
4.1.02 (1) $v_1 + v_2 - v_3 - 42'' = 0$

(2)
$$\angle ACB = 58^{\circ}14'21''$$

4.1.03 $\hat{r} = \frac{1}{5}(2r - \alpha - \beta - 2\delta + 900'')$

4.1.04
$$h_1 = 45^{\circ}02'18.3''$$
, $h_2 = 85^{\circ}03'31.7''$, $h_3 = 40^{\circ}01'13.4''$

4.1.05
$$l_2 = [200.0147, 300.0635, 300.0635, 500.0782]^{T}$$
(m)

4.1.06
$$\hat{l_1} = 59^{\circ}59'56'', \hat{l_2} = 59'59'56'', \hat{l_3} = 240'00'08'', \hat{l_4} = 119'59'52''$$

4.1.06
$$l_1 = 59^{\circ}59 \ 56^{\circ}, l_2 = 59^{\circ}59 \ 56^{\circ}, l_3 = 240^{\circ}00 \ 08^{\circ}, l_4 = 119^{\circ}59 \ 52^{\circ}$$

4.2.07
$$\begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 4 \end{bmatrix} \begin{bmatrix} K_a \\ K_b \\ K_c \end{bmatrix} - \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix} = 0$$

4.2.08
$$\begin{bmatrix} 6.5 & -2.5 & 2.0 & 0 \\ -2.5 & 6.5 & 2.0 & 0 \\ 2.0 & 2.0 & 6.5 & 2.5 \\ 0 & 0 & 2.5 & 4.5 \end{bmatrix} \begin{bmatrix} K_a \\ K_b \\ K_c \\ K_d \end{bmatrix} - \begin{bmatrix} 2 \\ -4 \\ -4 \\ 0 \end{bmatrix} = 0, \begin{bmatrix} \underline{as} \\ \underline{p} \end{bmatrix} = 6, \begin{bmatrix} \underline{bs} \\ \underline{p} \end{bmatrix} = 6, \begin{bmatrix} \underline{bs} \\ \underline{p} \end{bmatrix} = 6, \begin{bmatrix} \underline{cs} \\ \underline{p} \end{bmatrix} = 13, \begin{bmatrix} \underline{ds} \\ \underline{p} \end{bmatrix} = 7$$

$$4.2.09 \begin{bmatrix} 8.11 & 11.11 & 0.31 \\ 11.11 & 37.24 & -18.19 \\ 0.31 & -18.19 & 53.02 \end{bmatrix} \begin{bmatrix} K_{\bullet} \\ K_{b} \\ K_{c} \end{bmatrix} - \begin{bmatrix} -4.20 \\ -13.60 \\ -21.50 \end{bmatrix} = 0$$

4.2.10
$$K_a = +0.7851$$
, $K_b = 0.5501$

4.2.11 (1)
$$K_a = 0.5660$$
, $K_b = -0.1004$, $K_c = -0.9651$, $K_d = 0.5370$

4.2.12
$$K_a = 0.5651$$
, $K_b = -0.1016$, $K_c = 0.9365$, $K_d = 0.5358$

4.2.13
$$K_a = 2.00$$
, $K_b = 3.00$, $K_c = 2.00$

4.2.14
$$K_a = +0.8690$$
, $K_b = -0.9915$, $K_c = -0.7509$

4.2.15
$$K_a = +0.0366$$
, $K_b = +0.0770$, $K_c = +0.0035$, $K_c = -0.0326$

4.2.16
$$K_a = +14.1774$$
, $K_b = -2.8519$, $K_c = +8.1306$, $K_d = -9.1246$, $K_c = +7.1685$, $K_f = +3.1001$, $K_g = +0.9774$

4.3.17
$$v_1 - v_2 + v_3 + 8 = 0$$
, $-v_3 - v_4 + v_5 + 16 = 0$

4.3.18
$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 0 & 1 \end{bmatrix} V - \begin{bmatrix} 0 \\ 2 \\ -4 \\ -4 \end{bmatrix} = 0$$

$$4.3.19 \quad \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 1 \end{bmatrix} V - \begin{bmatrix} 20 \\ 12 \\ 11 \\ -15 \end{bmatrix} = 0$$

- 4.3.20 $-v_1+v_2-v_4-2=0$, $-v_3+v_4-v_5+6=0$
- 4.3.21 $\hat{\mathbf{h}} = [1.27, 0.38, -0.89, 2.48, 1.59]^{\mathrm{T}} \text{m}, \hat{\mathbf{H}}_{B} = 11.27 \text{m}, \hat{\mathbf{H}}_{C} = 10.38 \text{m}, \hat{\mathbf{H}}_{D} = 8.79 \text{m}$
- 4.3.22 $\hat{h} = [0.050, 3.452, 2.400, 3.402, 1.002 \ 1.020]^{\text{T}} \text{m}, \hat{\sigma}_0^2 = 6 (\text{mm})^2$
- 4.3.23 $\hat{h} = [1.260, 2.043, 1.575, 1.728]^{T} \text{m}, \hat{H}_{C} = 16.260 \text{m}, \hat{H}_{D} = 16.728 \text{m}, \hat{\sigma}_{U}^{2} = 20 (\text{mm})^{2}$
- 4.3.24 (1) $V^{T} \rho V = 5.40$, $\hat{\sigma}_{\theta}^{2} = 1.35$, (2) $Q\hat{\varphi} = 1.27$, $\sigma_{\varphi}^{2} = 1.7145$
- 4.3.25 (1) $h_1 = 10.3556$ m, $h_2 = 15.0028$ m, $h_3 = 20.3556$ m, $h_4 = 14.5008$ m, $h_5 = 4.6472$ m, $h_6 = 5.8548$ m, $h_7 = 10.5020$ m
 - $(2) \sigma_{\dot{\phi}} = \sigma_{h_{12}} = \pm 2.2 \text{mm}$
- 4.3.26 (1) $h_1 = 189.4006$ m, $h_2 = 736.9806$ m, $h_3 = 376.6501$ m, $h_4 = 547.5801$ m, $h_5 = 273.5108$ m, $h_6 = 187.2495$ m, $h_7 = 274.0693$ m, $h_8 = 86.2612$ m
 - $(2)\,\sigma_{k_{AE}}=\pm\,15.6\mathrm{mm}$
 - $(3)\sigma_{h_{\rm EC}} = \pm 15.4 \mathrm{mm}$
- 4.3.27 (1) $\hat{h} = [2.4998, 1.9998, 1.3518, 1.8515]^{T}m$

(2)
$$Q_{\hat{q}} = \frac{1}{P_{\hat{H}_{p_1}}} = 1$$

- 4.3.28 $V^{T}PV = 116.00$
- 4.3.29 $V^{T}PV = 25.9839$, $m_0 = \pm 2.94$
- $4.3.30 \quad V^{T}PV = 0.3449$
- 4.3.31 $\frac{1}{P_{\bar{k}_{AB}}} = \frac{2}{3}$, $\frac{1}{P_{k_{AC}}} = 1$
- 4.3.32 (1) $\varphi_1 = \hat{H}_{P_4} = H_A + h_3 + h_6$

(2)
$$\varphi_2 = \Delta H_{AP_2} = h_3 + h_6$$

- 4.4.33 $v_1 + v_2 + v_3 = 0$, $v_4 + v_5 + v_6 2.7 = 0$, $v_7 + v_8 + v_9 + 1.4 = 0$, $v_{10} + v_{11} + v_{12} + 2.0 = 0$, $-v_2 + v_6 v_8 + v_{12} + 2.6 = 0$
- 4.4.34 $v_1 + v_2 + v_3 + v_4 + 10 = 0$ $v_3 + v_4 + v_5 + v_6 + 11 = 0$ $v_5 + v_6 + v_7 + v_8 - 7 = 0$

$$\frac{\sin L_4}{\sin(L_2 + L_3)} \frac{\sin(L_6 + L_7)\sin L_2}{\sin L_5} - 1 = 0$$
(以 A 点为极点)

线性化的极条件为:

$$1.02v_2 - 0.23v_3 + 1.11v_4 - 1.79v_5 - 0.57v_6 - 1.43v_7 + 9.29 = 0$$

- 4.4.35 $v_1 + v_2 + v_{11} 44 = 0$, $v_3 + v_4 + v_{12} + 7 = 0$, $v_5 + v_6 + v_{13} 28 = 0$, $v_7 + v_8 + v_{14} + 24 = 0$, $v_9 + v_{10} + v_{15} 27 = 0$, $v_{11} + v_{12} + v_{13} + v_{14} + v_{15} 33 = 0$, $0.42v_1 1.22v_2 + 0.41v_3 1.16v_4 + 0.92v_5 0.67v_6 + 0.60v_7 0.47v_8 + 1.61v_9 0.45v_{10} 16.22 = 0$ (极条件)
- 4.4.36 $v_3 v_6 + v_9 + 4.53 = 0$ (方位角条件) 0.93 $v_1 - 0.77v_2 + 0.69v_4 - 0.93v_5 + 1.17v_7 - 0.45v_8 - 2.21 = 0(基线条件)$
- 4.4.37 共有3个条件。其中,图形条件1个,固定角条件1个,极条件1个。其条件方程为:

$$L_1 + L_2 + L_3 - 180^\circ = 0$$
(图形条件)
$$L_4 + L_5 - (T_{BA} - T_{BC}) = 0$$
(固定角条件)
$$\frac{\sin L_5}{\sin (L_1 + T_{AC} - T_{AB})} \frac{\sin (L_3 + T_{CB} - T_{CA}) \sin L_1}{\sin L_4} - 1 = 0$$
(P点为极点的极条件)

4.4.38 $L_1 + L_2 + L_{13} - 180^{\circ} = 0$, $L_3 + L_8 + L_{14} - 180^{\circ} = 0$, $L_4 + L_5 + L_6 + L_7 - 180^{\circ} = 0$, $L_0 + L_{10} + L_{15} - 180^\circ = 0$, $L_{11} + L_{12} + L_{16} - 180^\circ = 0$, $L_{13} + L_{14} + L_{15} + L_{16} - 360^\circ = 0$, $\frac{\sin L_2 \sin L_8 \sin L_{10} \sin L_{12}}{1} - 1 = 0$ (中点四边形 ABDEF 的极条件), $\sin L_1 \sin L_3 \sin L_9 \sin L_{11}$

 $\frac{\sin L_5}{\sin(L_3 + L_4)} \frac{\sin(L_7 + L_8)\sin L_3}{\sin L_6} - 1 = 0$ (大地四边形 BCDF 的极条件)

4.4.39 $L_1 + L_4 + L_{13} - 180^\circ = 0$, $L_3 + L_9 + L_{12} - 180^\circ = 0$, $L_2 + L_6 + L_7 + L_{10} - 180^\circ = 0$, $L_5 + L_8 + L_{11} - 180^\circ = 0$, $L_2 + L_3 + L_4 - (T_{BC} - T_{BA}) = 0$ (固定角条件), $S_{AB} = \frac{\sin L_1 \cdot \sin(L_2 + L_3 + L_7)}{\sin L_{13} \cdot \sin L_7} - S_{BC} = 0$ (固定边条件), $\frac{\sin L_7 \cdot \sin(L_9 + L_{10}) \cdot \sin L_3}{-1 - 0}$ (以 P_1 点为极的极条件)

4.4.40 $\frac{S_{AB}}{\sin(360^{\circ} + T_1 - T_2)} - \frac{\$}{\sin(T_2 - T_{BA})} = 0$

 $\sin(L_2 + L_3) \cdot \sin L_6 \cdot \sin L_9$

4.4.41 图(a),共8个条件:5个图形条件,2个极条件,1个圆周条件。

图(b)共8个条件:6个图形条件,2个极条件

图(c)共11个条件:7个图形条件,3个极条件,1个圆周条件

图(d)共9个条件:7个图形条件,2个极条件

图(e)共 i2 个条件,7 个图形条件,2 个极条件,1 圆周条件,1 方位角条件,1 基线条件 图(f)共有7个条件:3个图形条件,2个极条件,1个固定边条件,1个固定角条件

4.4.42 $L_1 + L_2 + L_3 + L_{11} - 180^{\circ} = 0$, $L_4 + L_5 + L_{10} - 180^{\circ} = 0$, $L_6 + L_7 + L_8 + L_9 - 180^{\circ} = 0$, $L_1 + L_8 + L_9 + L_{10} + L_{11} - 180^\circ = 0, \frac{\sin L_3 \cdot \sin L_5 \cdot \sin (L_7 + L_8) \cdot \sin L_1}{\sin (L_1 + L_2) \cdot \sin L_4 \cdot \sin L_6 \cdot \sin L_8} - 1 = 0$

 $4.4.43 \quad \frac{S_1 \sec^2 \alpha_1}{\rho} v_{u_1} - \frac{S_2 \sec^2 \alpha_2}{\rho} v_{u_2} + \frac{S_3 \sec^2 \alpha_3}{\rho} v_{u_3} + w = 0$ 式中. $w = S_1 \tan \alpha_1 + i_1 - j_1 + f_1 - (S_2 \tan \alpha_2 + i_2 - j_2 + f_2) + S_3 \tan \alpha_3 + i_3 - j_3 + f_3$

4.4.44 $l_1 + l_2 - l_5 = 0$, $l_3 + l_4 - l_6 = 0$, $l_2 + l_3 - l_7 = 0$, $l_1 + l_2 + l_3 + l_4 - 180^\circ = 0$

4.4.45 8个图形条件:

$$\begin{split} L_1 + L_3 + L_4 + L_8 - 180^\circ &= 0, \ L_1 + L_5 + L_9 - 180^\circ &= 0, \\ L_6 + L_{10} + L_{12} + L_{13} - 180^\circ &= 0, \ L_4 + L_8 + L_9 + L_{10} + L_{12} - 180^\circ &= 0, \\ L_7 + L_{14} + L_{18} - 180^\circ &= 0, \ L_{15} + L_{19} + L_{20} - 180^\circ &= 0, \\ L_{16} + L_{21} + L_{22} - 180^\circ &= 0, \ L_{11} + L_{17} + L_{23} - 180^\circ &= 0, \\ 1 \wedge 圆周条件: L_{12} + L_{13} + L_{14} + L_{15} + L_{16} + L_{17} - 360^\circ &= 0, \\ 2 \wedge 极条件: \frac{\sin L_2 \cdot \sin L_5 \cdot \sin (L_{12} + L_{13}) \cdot \sin L_4}{\sin (L_3 + L_4) \cdot \sin L_1 \cdot \sin L_6 \cdot \sin L_{12}} - 1 &= 0, \end{split}$$

$$\frac{\sin L_{18} \cdot \sin L_{20} \cdot \sin (L_{22} \cdot \sin L_{11} \cdot \sin L_{6})}{\sin L_{7} \cdot \sin L_{19} \cdot \sin L_{21} \cdot \sin L_{23} \cdot \sin L_{10}} - 1 = 0$$

4.4.46 (1) $L_1 = 106^{\circ}50'39.65''$, $L_2 = 42^{\circ}16'35.47''$, $L_3 = 30^{\circ}52'44.88''$, $L_4 = 20^{\circ}58'20.24''$, $L_5 = 125^{\circ}20'40.21''$, $L_6 = 33^{\circ}40'59.55''$, $L_7 = 28^{\circ}26'09.02''$, $L_8 = 23^{\circ}45'10.84''$, $L_9 = 127^{\circ}48'40.14''$

(2)
$$DC = 1729.12$$
m, $\frac{\sigma_{DC}}{DC} = \frac{1}{33000}$

- 4.4.47 (1) $L_1 = 84^{\circ}07'38.99''$, $L_2 = 37^{\circ}46'35.53''$, $L_3 = 58^{\circ}05'45.48''$, $L_4 = 33^{\circ}03'03.65''$, $L_5 = 126^{\circ}01'55.21''$, $L_6 = 20^{\circ}55'01.14''$, $L_7 = 74^{\circ}18'16.90''$, $L_8 = 77^{\circ}27'58.97''$, $L_9 = 28^{\circ}13'44.13''$, $L_{10} = 55^{\circ}21'11.01''$, $L_{11} = 72^{\circ}22'26.83''$, $L_{12} = 52^{\circ}16'22.17''$
 - $(2)_{\sigma_{CD/CD}} \approx 1/90700$

4.4.48 (1)
$$\sigma_{\varphi_1} = \sigma_A = \pm 4.51''$$

$$(2)\frac{\sigma_{CD}}{CD} = \frac{1}{35\ 000}$$

(提示:单位权中误差 σ₀ = ±4.54")

4.4.49
$$\frac{\sigma_{CD}}{CD} = \frac{1}{4.7746}$$

4.4.50 (1)
$$\hat{l} = \begin{bmatrix} 30^{\circ} & 00^{\circ} & 10^{\circ} \\ 50 & 00 & 10 \\ 20 & 00 & 10 \\ 40 & 00 & 10 \end{bmatrix}$$
, $Q_{l} = \frac{1}{4} \begin{bmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{bmatrix}$
(2) $Q_{\hat{\varphi}} = \frac{1}{P_{L_{1}}} = \frac{3}{4}$

4. 4. 51 $\dot{\beta}_1 = 40^{\circ}00'00.00'', \dot{\beta}_2 = 100^{\circ}00'13.33'', \dot{\beta}_3 = 50^{\circ}00'00.00'', \dot{\beta}_4 = 119^{\circ}59'43.33'', \dot{\beta}_5 = 50^{\circ}00'03.34''$

$$Q_{\beta} = \frac{1}{6} \begin{bmatrix} 3 & 0 & -3 & 0 & 0 \\ 0 & 4 & 0 & -2 & -2 \\ -3 & 0 & 3 & 0 & 0 \\ 0 & -2 & 0 & 4 & -2 \\ 0 & -2 & 0 & -2 & 4 \end{bmatrix}$$

- 4.4.52 (1) $\sigma_0 = \sqrt{3}$; (2) $\sigma_{L_1} = \sqrt{2}$; $\sigma_{L_2} = \sqrt{2}$; $\sigma_{L_1 L_2} = -1$
- 4.5.53 (1)图形条件(以 B 点为角顶点)

$$\arccos\frac{S_{AB}^2+S_3^2-S_4^2}{2S_{AB}S_3}+\arccos\frac{S_1^2+S_3^2-S_5^2}{2S_1S_3}-\arccos\frac{S_{AB}^2+S_1^2-S_2^2}{2S_{AB}S_1^2}=0$$

(2)方位角条件

$$T_{AB} + \arccos \frac{S_{AB}^2 + S_4^2 - S_3^2}{2S_{AB}S_4} - T_{AD} = 0$$

线性条件方程为

$$(1)\frac{\rho''}{h_1}v_{S_4} + \frac{\rho''}{h_2}v_{S_5} - \frac{\rho''}{h_3}v_{S_2} - (\frac{\rho''}{h_2}\cos\angle BCD - \frac{\rho''}{h_3}\cos\angle BCA)v_{S_1} - (\frac{\rho''}{h_1}\cos\angle BDA + \frac{\rho''}{h_2}\cos\angle BDC)v_{S_3} - W_1 = 0,$$

其中,
$$-W_1 = \beta_1 + \beta_2 + \beta_3$$
, $\beta_1 = \arccos \frac{S_{AB}^2 + S_3^2 - S_4^2}{2S_{AB}S_3}$,

$$\beta_2 = \arccos \frac{{S_1}^2 + {S_3}^2 - {S_5}^2}{2S_1S_3}, \ \beta_3 = \arccos \frac{{S_{AB}}^2 + {S_1}^2 - {S_2}^2}{2S_{AB}S_1},$$

(2)
$$\frac{\rho''}{h_4}v_{S_3} - \frac{\rho''}{h_4}\cos\angle ADBv_{S_4} - f_2 = 0$$

其中, $-W_2 = T_{AB} + \beta_4 - T_{AD}$, $\beta_4 = \arccos \frac{S_{AB}^2 + S_4^2 - S_3^2}{2S_{AB}S_4}$, $h_4 = S_{AB}\sin\angle ABD$

以上 ZBCD, ZBCA, ZBDA, ZBDC, ZADB, ZABD 的观测角值均可按余弦定理由观测 边长反算得出(略),见图1。

图 1

$$\begin{split} &\frac{\rho^{''}}{h_1}v_{S_1} + \frac{\rho^{''}}{h_2}v_{S_3} + \frac{\rho^{''}}{h_3}v_{S_6} - (\frac{\rho^{''}}{h_1}\cos\angle ABD + \frac{\rho^{''}}{h_2}\cos\angle DBC)v_{S_2} - (\frac{\rho^{''}}{h_1}\cos\angle BAD + \frac{\rho^{''}}{h_3}\cos\angle DAC)v_{S_4} \\ &- (\frac{\rho^{''}}{h_2}\cos\angle DCB + \frac{\rho^{''}}{h_3}\cos\angle DCA)v_{S_5} - W = 0\,, \\ &\not \pm \Phi \,, \quad W = \beta_1 + \beta_2 + \beta_3 - 360^{\circ} = 0\,, \end{split}$$

$$\beta_1 = \arccos \frac{S_2^2 + S_4^2 - S_1^2}{2S_2S_4}, \ h_1 = S_2 \sin \angle ABD$$

$$\beta_2 = \arccos \frac{S_2^2 + S_5^2 - S_3^2}{2S_2S_5}$$
, $h_2 = S_2 \sin \angle DBC$.

$$\beta_3 = \arccos \frac{S_4^2 + S_5^2 - S_6^2}{2S_4S_5}$$
, $h_3 = S_4 \sin \angle DAC$,

$$\angle ABD = \arccos \frac{S_1^2 + S_2^2 - S_4^2}{2S_1S_2}, \ \angle DAC = \arccos \frac{S_4^2 + S_6^2 - S_5^2}{2S_4S_6},$$
 $\angle DBC = \arccos \frac{S_2^2 + S_3^2 - S_5^2}{2S_2S_3}, \ \angle DCB = \arccos \frac{S_3^2 + S_5^2 - S_2^2}{2S_5S_6},$

$$\angle DBC = \arccos \frac{S_2^2 + S_3^2 - S_5^2}{2S_2S_3}, \ \angle DCB = \arccos \frac{S_3^2 + S_5^2 - S_2^2}{2S_5S_5},$$

4.5.55 图形条件(见图 3)

$$-\left(\frac{\underline{\rho''}}{h_1}\cos\angle BAD - \frac{\underline{\rho''}}{h_3}\cos\angle CAD\right)v_{S_1} - \left(\frac{\underline{\rho''}}{h_1}\cos\angle ABD - \frac{\underline{\rho''}}{h_2}\cos\angle CBD\right)v_{S_2} - \left(\frac{\underline{\rho''}}{h_2}\cos\angle BCD - \frac{\underline{\rho''}}{h_3}\cos\angle ACD\right)v_{S_3} - W = 0$$

其中,
$$-W = \beta_1 + \beta_2 - \beta_3$$
,

$$\beta_1 = \arccos \frac{S_1^2 + S_2^2 - S_{AB}^2}{2S_1S_2}, \ h_1 = S_2 \sin \angle ABD$$

$$\beta_1 = \arccos \frac{S_1^2 + S_2^2 - S_{AB}^2}{2S_1 S_2}, \ h_1 = S_2 \sin \angle ABD$$

$$\beta_2 = \arccos \frac{S_2^2 + S_3^2 - S_{BC}^2}{2S_2 S_3}, \ h_2 = S_3 \sin \angle BCD$$

$$\beta_3 = \arccos \frac{S_1^2 + S_3^2 - S_{AC}^2}{2S_1S_3}$$
, $h_3 = S_1 \sin \angle CAD$

图 2

4.5.56 (1)图形条件:

$$\begin{split} & v_{\beta_1} + v_{\beta_2} + v_{\beta_3} + v_{\beta_4} + v_{\beta_5} - W_1 = 0 \\ & \not \Xi_1 + \nabla_1 - W_1 = \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 - 360^\circ \\ & v_{\beta_1} = \frac{\rho_1''}{h_1} \left(-\cos\beta_{15} v_{S_2} - \cos\beta_6 v_{S_3} \right) \\ & v_{\beta_2} = \frac{\rho_1'''}{h_2} \left(-\cos\beta_7 v_{S_2} - \cos\beta_6 v_{S_3} \right) \\ & v_{\beta_3} = \frac{\rho_1'''}{h_3} \left(-\cos\beta_9 v_{S_4} - \cos\beta_{10} v_{S_5} \right) \\ & v_{\beta_4} = \frac{\rho_1'''}{h_4} \left(v_{S_7} - \cos\beta_{11} v_{S_5} - \cos\beta_{12} v_{S_6} \right) \\ & v_{\beta_5} = \frac{\rho_1'''}{h_5} \left(v_{S_1} - \cos\beta_{13} v_{S_6} - \cos\beta_{14} v_{S_2} \right) \end{split}$$

间定用杂件:

$$v_{\beta_{6}}+v_{\beta_{7}}-W_{2}=0, \\ \Re \Phi-W_{2}=\beta_{6}+\beta_{7}+T_{AB}-T_{BC}, \\ v_{\beta_{6}}=\frac{\rho''}{h_{6}}(v_{S_{2}}-\cos\beta_{1}v_{S_{2}}), \\ v_{\beta_{7}}=\frac{\rho''}{h_{7}}(v_{S_{4}}-\cos\beta_{2}v_{S_{3}})$$

固定角条件:

$$v_{\beta_{\rm R}}+v_{\beta_{\rm Q}}-W_3=0$$

式中,
$$-W_3 = T_{CB} + \beta_9 + \beta_9 - T_{CD}$$
,

$$v_{\beta_8} = \frac{\rho^{''}}{h_8} (\ v_{S_3} - \cos\beta_2 \, v_{S_4}) \ , v_{\beta_9} = \frac{\rho^{''}}{h_9} (\ v_{S_5} - \cos\beta_3 \, v_{S_4})$$

各 β , 及 h, 的计算略,将 v_{β} 代入各条件方程中即得最后形式的条件方程。

(2)应增加2个条件方程,即方位角条件:

$$- v_{\beta_{14}} - v_{\beta_{15}} - W_4 = 0$$

其中,一
$$W_4 = T_{AB} - \beta_{14} - \beta_{15} - T_0$$
, $v_{\beta_{14}} = \frac{\rho''}{h_{10}} (v_{S_6} - \cos\beta_5 v_{S_2} - \cos\beta_{13} v_{S_1})$, $v_{\beta_{15}} = \frac{\rho''}{h_{11}} (v_{S_3} - \cos\beta_1 v_{S_2})$

边长条件:
$$v_{S_6} - W_5 = 0$$
, $-W_5 = S_6 - S_0$ 见图 4。

$$4.5.57$$
 $v_{\beta_1} + v_{\beta_2} - v_{\beta_3} - W = 0$ (图形条件)

式中,
$$-W=\beta_1+\beta_2-\beta_3$$

$$v_{\theta_1} = \frac{\rho''}{h_1} (v_{S_1} - \cos\angle ACDv_{S_3} - \cos\angle CADv_{S_2})$$

$$v_{\beta_2} = \frac{\rho''}{h_2} (v_{S_3} - \cos \angle BCDv_{S_5} - \cos \angle DBCv_{S_4})$$

$$v_{\theta_3} = \frac{\rho^{''}}{h_3} (-\cos BADv_{S_2} - \cos \angle ABDv_{S_4})$$

各 β , 可按余弦定理由边长反算,各 h, 可按正弦函数计算(省略), 再将 v_{β} 代人条件方程即得其最终 形式(略),见图 5。

图 5

图 6

4.5.58 见图 6。图形条件:

$$v_{\beta_1} + v_{\beta_2} + v_{\beta_3} - v_{\beta_4} - W = 0$$
,

式中,
$$-W = \beta_1 + \beta_2 + \beta_3 - \beta_4$$

$$-W = \beta_1 + \beta_2 + \beta_3 - \beta_4,$$

$$\beta_1 = \arccos \frac{S_1^2 + S_6^2 - S_2^2}{2S_1S_6}, \ \beta_2 = \arccos \frac{S_6^2 + S_7^2 - S_3^2}{2S_6S_7}$$

$$\beta_3 = \arccos \frac{S_5^2 + S_7^2 - S_4^2}{2S_5S_7}, \ \beta_4 = \arccos \frac{S_1^2 + S_5^2 - S_8^2}{2S_1S_5}$$

$$\beta_3 = \arccos \frac{S_5^2 + S_7^2 - S_4^2}{2S_1S_7}, \ \beta_4 = \arccos \frac{S_1^2 + S_5^2 - S_8^2}{2S_1S_4}$$

$$v_{\beta_1} = \frac{\rho''}{h_1} (v_{S_2} - \cos\angle BCAv_{S_6} - \cos\angle CBAv_{S_1})$$

$$v_{\beta_2} = \frac{\rho^{''}}{h_2} (v_{S_2} - \cos \angle DCAv_{S_6} - \cos \angle CDAv_{S_7})$$

$$v_{\beta_3} = \frac{\rho''}{h_3} (v_{S_4} - \cos\angle ADEv_{S_7} - \cos\angle DEAv_{S_5})$$

$$v_{\theta_4} = \frac{\rho''}{h_4} (v_{S_8} - \cos\angle ABEv_{S_1} - \cos\angle BEAv_{S_5})$$

将 证 代入条件方程式,并集项整理即得其最后形式(略)。

- 4.5.59 共有 4 个图形条件,见图 7。
- (1)以 F 点为角顶点大地四边形 ADEF 的图形条件:

$$\begin{split} &v_{\beta_4} + v_{\beta_5} - v_{\beta_6} - W_1 = 0 \\ &\not \sqsubseteq \psi_1 - W_1 = \beta_4 + \beta_5 - \beta_6 \\ &v_{\beta_4} = \frac{\rho''}{h_4} (v_{S_4} - \cos\angle FDEv_{S_{12}} - \cos\angle FEDv_{S_{10}}) \\ &v_{\beta_5} = \frac{\rho''}{h_5} (v_{S_5} - \cos\angle FAEv_{S_8} - \cos\angle AEFv_{S_{10}}) \bigcirc_A^A \\ &v_{\beta_6} = \frac{\rho''}{h_6} (v_{S_9} - \cos\angle FADv_{S_8} - \cos\angle FDAv_{S_{12}}) \end{split}$$

(2)以 F 点为角顶点大地四边形 ABEF 的图形条件:

$$v_{\beta_1} + v_{\beta_5} - v_{\beta_7} - W_2 = 0$$

其中,
$$-W_{2} = \beta_{1} + \beta_{5} - \beta_{7}$$

$$v_{\beta_{1}} = \frac{\rho''}{h_{1}} (v_{S_{1}} - \cos\angle ABFv_{S_{7}} - \cos\angle AEFv_{S_{10}})$$

$$v_{\beta_{5}} = \frac{\rho''}{h_{5}} (v_{S_{5}} - \cos\angle FAEv_{S_{8}} - \cos\angle AEFv_{S_{10}})$$

$$v_{\beta_{7}} = \frac{\rho''}{h_{7}} (v_{S_{6}} - \cos\angle FBEv_{S_{7}} - \cos\angle FEBv_{S_{10}})$$

(3)以 F 点为角顶点大地四边形 CDEF 的图形条件:

$$v_{\beta_3} + v_{\beta_4} - v_{\beta_8} - W_3 = 0$$

其中,
$$-W_{3} = \beta_{3} + \beta_{4} - \beta_{8}$$

$$v_{\beta_{3}} = \frac{\rho''}{h_{3}} (v_{S_{3}} - \cos\angle FCDv_{S_{13}} - \cos\angle CDFv_{S_{12}})$$

$$v_{\beta_{4}} = \frac{\rho''}{h_{4}} (v_{S_{4}} - \cos\angle FDEv_{S_{12}} - \cos\angle FEDv_{S_{10}})$$

$$v_{\beta_{3}} = \frac{\rho''}{h_{8}} (v_{S_{11}} - \cos\angle FCEv_{S_{13}} - \cos\angle FECv_{S_{10}})$$

(4)以 F 点为角顶点中点三边形 BCEF 的图形条件:

$$v_{\beta_2} + v_{\beta_7} + v_{\beta_8} - W_4 = 0$$

其中,
$$-W_4 = \beta_2 + \beta_7 + \beta_8 - 360^\circ$$

$$v_{\beta_2} = \frac{\rho''}{h_2} (v_{S_2} - \cos\angle BCFv_{S_{13}} - \cos\angle CBFv_{S_{\gamma}})$$

$$v_{\beta_7} = \frac{\rho''}{h_7} (v_{S_6} - \cos\angle FBEv_{S_7} - \cos\angle FEBv_{S_{10}})$$

$$v_{\beta_8} = \frac{\rho''}{h_8} (v_{S_{11}} - \cos\angle FCEv_{S_{13}} - \cos\angle FECv_{S_{10}})$$

- 4.5.60 $V_{S,1} = [-0.15, -0.49, 0.98, -0.65, 0.26, -0.17, -0.71, 0.90, -0.49]^{T}$ (cm) $\hat{S} = [3110.3965, 2004.3961, 3921.4068, 3608.7055, 1712.6266, 3813.5553, 2526.1329, 3588.5910, 2540.3731]^{T}$ (m)
- 4.5.61 $\mathbf{V}_{S} = [-5.73, 0.29, -5.78]^{T} (cm)$ $\mathbf{S}_{3,1} = [3128.803, 3367.203, 6129.822]^{T} (m)$ $\mathbf{Q}_{V} = \begin{bmatrix} 0.4951 & -0.0246 & 0.4994 \\ -0.0246 & 0.0012 & -0.0249 \\ 0.4994 & -0.0249 & 0.5037 \end{bmatrix}$

图 7

$$Q_S = \begin{bmatrix} 0.5049 & 1.0246 & 0.5006 \\ 1.0246 & 0.9988 & 1.0249 \\ 0.5006 & 1.0249 & 0.4963 \end{bmatrix}$$

4.6.62 共有5个条件,其中有3个余弦条件,1个方位角条件,1个图形条件,即余弦条件:

$$\beta_1 - \arccos \frac{S_1^2 + S_4^2 - S_{AB}^2}{2 S_1 S_4} = 0, \beta_2 - \arccos \frac{S_2^2 + S_3^2 - S_1^2}{2 S_3 S_3} = 0, \beta_3 - \arccos \frac{S_3^2 + S_5^2 - S_4^2}{2 S_3 S_5} = 0$$

方位角条件;

$$T_{BA} = \arccos \frac{S_{AB}^2 + S_5^2 - S_3^2}{2S_{AB}S_5} - T_{BD} = 0$$

图形条件:

$$\hat{\beta}_2 + \hat{\beta}_3 - \arccos \frac{\hat{S}_2^2 + \hat{S}_5^2 - \hat{S}_{AB}^2}{2 \hat{S}_2 \hat{S}_5} = 0(以 D 点为角顶点)见图 8。$$

 S_1 S_2 S_3 S_4 S_4 S_5 S_5 S_6 S_6 S_6 S_6 S_7 S_8 S_8

图 8

4.6.63 见图 9。平差值条件方程为:

图形条件:
$$L_1 + L_2 + L_3 - 180° = 0$$

正弦条件:
$$\frac{S_1}{S_5} - \frac{\sin L_3}{\sin L_2} = 0$$

正弦条件:
$$\frac{S_2}{S_5} - \frac{\sin L_1}{\sin L_2} = 0$$

$$S_5 \sin L_2$$

余弦条件: $L_4 - \arccos \frac{S_4^2 + S_3^2 - S_2^2}{2 S_3 S_4} = 0$

其线性形式为:

$$\begin{split} v_1 + v_2 + v_3 - W_1 &= 0, \\ \sin L_2 v_{S_1} - \sin L_3 v_{S_5} + S_1 \cos L_2 v_2 / \rho'' - S_5 \cos L_3 v_3 / \rho'' - W_2 &= 0, \\ \sin L_2 v_{S_2} - \sin L_1 v_{S_5} + S_2 \cos L_2 v_2 / \rho'' - S_5 \cos L_1 v_1 / \rho'' - W_3 &= 0, \\ \frac{\rho''}{h_1} v_{S_2} - \frac{\rho''}{h_1} \cos \angle DCB v_{S_3} - \frac{\rho''}{h_1} \cos \angle DBC v_{S_4} - v_4 - W_4 &= 0 \\ - W_1 &= L_1 + L_2 + L_3 - 180^\circ, - W_2 &= S_1 \sin L_2 - S_5 \sin L_3, \\ - W_3 &= S_2 \sin L_2 - S_5 \sin L_1, - W_4 &= \angle BDC - L_4 \\ \angle DCB &= \arccos \frac{S_3^2 + S_2^2 - S_4^2}{2S_3 S_2}, \angle DBC &= \arccos \frac{S_2^2 + S_4^2 - S_3^2}{2S_2 S_4}, \end{split}$$

$$\angle BDC = \arccos \frac{S_3^2 + S_4^2 - S_2^2}{2S_3S_4}, h_1 = S_4 \sin \angle CBD$$

4.6.64 (1)共有 10 个条件。其中,2 个图形条件,2 个极条件,2 个边长条件,1 个基线条件,1 个方位角条件。

(2)图形条件:
$$L_1 + L_2 + L_3 + L_{14} - 180^\circ = 0$$
, $L_4 + L_5 + L_{13} - 180^\circ = 0$
 $L_6 + L_{14} + L_{12} - 180^\circ = 0$, $L_2 + L_8 + L_9 + L_{10} - 180^\circ = 0$

四边形 ABP, P, 的极条件(以 P, 点为极):

$$\frac{\sin(L_1 + L_4)}{\sin L_2} \frac{\sin L_{13}}{\sin L_4} \frac{\sin L_1}{\sin(L_{13} + L_{14})} - 1 = 0$$

四边形 $P_1P_2P_3P_4$ 的极条件(以 P_4 点为极):

$$\frac{\sin(L_{10} + L_{11})}{\sin L_9} \frac{\sin L_6}{\sin L_{11}} \frac{\sin L_8}{\sin(L_6 + L_7)} - 1 = 0$$

边长条件(由 $S_{AB} \rightarrow S_1$):

$$S_{AB} \frac{\sin(\hat{L}_3 + \hat{L}_4)}{\sin(\hat{L}_2 + \hat{L}_3 + \hat{L}_4)} - \hat{S}_1 = 0$$

边长条件(由 $\dot{S_1} \rightarrow \dot{S_2}$):

$$S_1 \frac{\sin L_1}{\sin(L_{13} + L_{14})} \frac{\sin(L_6 + L_7)}{\sin L_8} - S_2 = 0$$

基线条件(由 $S_{AB} \rightarrow S_0$, 也可用 $S_2 \rightarrow S_0$ 的边长条件代替):

$$S_2 \frac{\sin(L_9 + L_{10} + L_{11})}{\sin(L_{10} + L_{11})} - S_9 = 0$$

方位角条件(由 a_{AB}→a₀):

$$a_{AB} - \dot{L}_3 - \dot{L}_4 - \dot{L}_5 - \dot{L}_6 - \dot{L}_7 - \dot{L}_8 - \dot{L}_9 - a_0 \pm i \cdot 180^\circ = 0$$

4.6.65 (1)共有 12 个条件。其中,5 个图形条件,1 个圆周条件,2 个极条件,1 个固定角条件,1 个固定边条件和 2 个边长条件。

(2)固定边条件:

$$\frac{S_{AB} \cdot \sin \beta_4 \cdot \sin \beta_{11}}{S_{BC} \cdot \sin \beta_{12} \cdot \sin \beta_{10}} - 1 = 0$$

线性形式为:

$$\cot \beta_4 v_4 + \cot \beta_{11} v_{11} - \cot \beta_{12} v_{12} - \cot \beta_{10} v_{10} - \rho'' (1 - \frac{S_{BC} \cdot \sin \beta_{12} \cdot \sin \beta_{10}}{S_{AB} \cdot \sin \beta_4} \cdot \sin \beta_{11}) = 0$$

(3)边长条件(由 SAR→S1)

$$\frac{S_{AB} \cdot \sin \beta_3 \cdot \sin \beta_{13}}{S_1 \cdot \sin \beta_{12} \cdot \sin \beta_6} - 1 = 0$$

线性形式为:

$$\cot\beta_3 v_3 + \cot\beta_{13} v_{13} - \cot\beta_{12} v_{12} - \cot\beta_6 v_6 - \frac{\beta''}{S_1} v_{S_1} - \rho'' (1 - \frac{S_1 \sin\beta_{12} \cdot \sin\beta_6}{S_{AB} \cdot \sin\beta_3 \cdot \sin\beta_{13}}) = 0$$

4.6.66 图形条件(见图 10):

$$v_{\beta_1} + v_{\beta_2} + v_{\beta_3} - W_1 = 0, \quad -W_1 = \beta_1 + \beta_2 + \beta_3 - 360^{\circ}$$

$$v_{\beta_1} = \frac{\rho''}{h_1} (-\cos\angle BAP \cdot v_{S_1} - \cos\angle ABP \cdot v_{S_2})$$

$$v_{\beta_2} = \frac{\rho''}{h_2} (-\cos\angle CBP \cdot v_{S_2} - \cos\angle BCP \cdot v_{S_3})$$

 $v_{\beta_3} = \frac{\rho''}{h_3} (-\cos\angle CAP \cdot v_{S_1} - \cos\angle ACP \cdot v_{S_3})$

 $h_1 = S_1 \sin \angle BAP$, $h_2 = S_2 \sin \angle CBP$, $h_3 = S_3 \sin \angle ACP$,

将 v_{β_1} 代人图形条件中,即得其最后形式,而条件方程中的 $\beta_1 \setminus \beta_2 \setminus \beta_3$ 及 $\angle BAP \setminus \angle ABP \cdots$ 等可按余弦定理由边长观测值反算得出 (略)。

余弦条件:
$$v_{\beta} - \frac{\rho''}{h_4} (v_{S_1} - \cos\angle APCv_{S_3}) - W_3 = 0$$

式中,
$$-W_3 = \beta - \arccos \frac{S_3^2 + S_{AC}^2 - S_1^2}{2S_3S_{AC}}$$

4.6.67 共有7个条件方程。2个图形条件:

$$\dot{\beta}_1 + \dot{\beta}_6 + \dot{\beta}_7 - 180^\circ = 0, \quad \dot{\beta}_2 + \dot{\beta}_3 + \dot{\beta}_4 + \dot{\beta}_5 - 180^\circ = 0$$

图 10

1个极条件:

$$\frac{\sin \beta_6 \cdot \sin(\beta_3 + \beta_4) \cdot \sin(\beta_1 + \beta_2 + \beta_3)}{\sin \beta_7 \cdot \sin \beta_5 \cdot \sin \beta_3} - 1 = 0$$

1个固定角条件: $T_{AB} - \beta_1 - T_{AC} = 0$

3个边长条件:

$$\frac{S_{AB}}{\sin(\hat{\beta}_3 + \hat{\beta}_4)} - \frac{S_{BD}}{\sin\hat{\beta}_2} = 0, \frac{\hat{S_2}}{\sin\hat{\beta}_5} - \frac{S_{AB}}{\sin(\hat{\beta}_3 + \hat{\beta}_4)} = 0, \frac{\hat{S_1}}{\sin\hat{\beta}_1} - \frac{S_{AB}}{\sin\hat{\beta}_7} = 0$$

4.6.68 见图 11。共有 5 个条件方程:

(1)四边形 $ABCP_1$ 的图形条件(以 P_1 点为角顶点):

$$\arccos \frac{\dot{S_1}^2 + \dot{S_2}^2 - \dot{S_{AB}}^2}{2 \cdot \dot{S_1} \dot{S_2}^2} + \arccos \frac{\dot{S_2}^2 + \dot{S_3}^2 - \dot{S_{BC}}^2}{2 \dot{S_2} \dot{S_3}} - \frac{\dot{S_1}^2 + \dot{S_3}^2 - \dot{S_{AC}}^2}{2 \dot{S_1} \dot{S_3}} = 0$$

(2)四边形 $ABCP_2$ 的图形条件(以 P_2 点为角顶点):

$$\arccos\frac{\hat{S_4}^2 + \hat{S_5}^2 - \hat{S_{AB}}^2}{2\hat{S_4}\hat{S_5}^2} + \frac{\hat{S_5}^2 + \hat{S_6}^2 - \hat{S_{BC}}^2}{2\hat{S_5}\hat{S_6}} - \frac{\hat{S_4}^2 + \hat{S_6}^2 - \hat{S_{AC}}^2}{2\hat{S_4}\hat{S_6}} = 0$$

(3)固定角条件: $T_{BA} + \hat{\beta_1} + \hat{\beta_2} + \hat{\beta_3} - T_{BC} = 0$

(4)三角形
$$ABP_1$$
 的余弦条件: $\hat{\beta}_1 - \arccos \frac{S_{AB}^2 + S_2 - S_1^2}{2S_{AB}S_2} = 0$

(5)三角形
$$BCP_2$$
 的余弦条件: $\beta_3 - \arccos \frac{S_5^2 + S_{BC} - S_6^2}{2 S_5 S_{BC}} = 0$

其线性形式为:

$$(1) v_{\angle AP_1B} + v_{\angle BP_1C} - v_{\angle AP_1C} + W_1 = 0$$
其中,
$$-W_1 = \angle AP_1B + \angle BP_1C - \angle AP_1C$$

$$v_{\angle AP_1B} = \frac{\rho''}{h_1} (-\cos\angle P_1ABv_{S_1} - \cos\angle ABP_1 \cdot v_{S_2})$$

$$v_{AP_1B} = \frac{\rho''}{h_2} (-\cos\angle P_1BC \cdot v_{S_2} - \cos\angle P_1CB \cdot v_{S_3})$$

$$v_{BP_1C} = \frac{\rho''}{h_2} (-\cos\angle P_1AC \cdot v_{S_1} - \cos\angle P_1CA \cdot v_{S_3})$$

(2)
$$v_{\angle AP_2B} + v_{\angle BP_2C} - v_{\angle AP_2C} - W_2 = 0$$

其中,
$$-W_2 = \angle AP_2B + \angle BP_2C - \angle AP_2C$$

$$v_{\angle AP_2B} = \frac{\rho''}{h_4} (-\cos\angle P_2AB \cdot v_{S_4} - \cos\angle P_2BA \cdot v_{S_5})$$

$$v_{\angle BP_2C} = \frac{\rho''}{h_5} (-\cos\angle P_2BC \cdot v_{S_5} - \cos\angle P_2CB \cdot v_{S_6})$$

$$v_{\angle AP_2C} = \frac{\rho''}{h_6} (-\cos\angle P_2AC \cdot v_{S_4} - \cos\angle P_2CA \cdot v_{S_6})$$

$$(3) v_{\beta_1} + v_{\beta_2} + v_{\beta_3} - W_3 = 0$$

$$-W_3 = \beta_1 + \beta_2 + \beta_3 + T_{BA} - T_{BC}$$

$$(4) v_{\beta_1} - \frac{\rho''}{h_7} (v_{S_1} - \cos \angle AP_1 B \cdot v_{S_2}) - W_4 = 0$$
$$- W_4 = \beta_1 - \arccos \frac{S_{AB}^2 + S_2^2 - S_1^2}{2S_{AB} \cdot S_2}$$

$$(5) v_{\beta_3} - \frac{\rho''}{h_8} (v_{S_6} - \cos \angle BP_2C \cdot v_{S_2}) - W_5 = 0$$
$$- W_5 = \beta_3 - \arccos \frac{S_5^2 + S_{BC}^2 - S_6^2}{2S_5 S_{BC}}$$

4.6.69 见图 12。有 2 个条件方程:

图形条件(四边形 ABDE)为:

$$\arccos\frac{\hat{S}_5{}^2 + \hat{S}_7{}^2 - \hat{S}_3{}^2}{2\hat{S}_5\hat{S}_7} + \arccos\frac{\hat{S}_7{}^2 + \hat{S}_6{}^2 - \hat{S}_4{}^2}{2\hat{S}_7\hat{S}_6} - \arccos\frac{\hat{S}_5{}^2 + \hat{S}_6 - \hat{S}_{AB}{}^2}{2\hat{S}_5\hat{S}_6} = 0$$

其线性形式为:

$$\begin{split} \frac{\rho^{''}}{h_1} v_{S_3} + \frac{\rho^{''}}{h_2} v_{S_4} + & (\frac{\rho^{''}}{h_3} \cos \angle EAB - \frac{\rho^{''}}{h_1} \cos \angle EAD) v_{S_5} \\ + & (\frac{\rho^{''}}{h_3} \cos \angle EBA - \frac{\rho^{''}}{h_2} \cos \angle EBD) v_{S_6} - (\frac{\rho^{''}}{h_1} \cos \angle BDA + \frac{\rho^{''}}{h_2} \cos \angle EDB) v_{S_7} - W_1 = 0 \\ - & W_1 = \arccos \frac{S_5^2 + S_7^2 - S_3^2}{2S_5S_7} + \arccos \frac{S_7^2 + S_6^2 - S_4^2}{2S_7S_6} - \arccos \frac{S_5^2 + S_6^2 - S_{AB}^2}{2S_5S_6} \end{split}$$

余弦条件为:

$$\beta - \arccos \frac{S_3^2 + S_4 - S_{AB}^2}{2 S_3 S_4} = 0$$

其线性形式为 $v_{\beta} - \frac{\rho''}{h_4} (-\cos\angle BADv_{S_3} - \cos\angle ABDv_{S_4}) - W_2 = 0$ $-W_2 = \beta - \arccos \frac{S_3^2 + S_4^2 - S_{AB}^2}{2S_3S_4}$

4.6.70 r=12,有4个图形条件和8个边长条件:

$$\begin{split} \dot{\beta_{2}} + \dot{\beta_{3}} + \dot{\beta_{4}} + \dot{\beta_{5}} - 180^{\circ} &= 0, \dot{\beta_{1}} + \dot{\beta_{6}} + \dot{\beta_{7}} + \dot{\beta_{8}} - 180^{\circ} &= 0, \\ \dot{\beta_{4}} + \dot{\beta_{5}} + \dot{\beta_{6}} + \dot{\beta_{11}} - 180^{\circ} &= 0, \dot{\beta_{7}} + \dot{\beta_{8}} + \dot{\beta_{9}} + \dot{\beta_{10}} - 180^{\circ} &= 0, \\ \frac{\dot{S_{1}}}{\sin \dot{\beta_{5}}} - \frac{\dot{S_{2}}}{\sin \dot{\beta_{2}}} &= 0, \frac{\dot{S_{7}}}{\sin (\dot{\beta_{3}} + \dot{\beta_{4}})} - \frac{\dot{S_{2}}}{\sin \dot{\beta_{2}}} &= 0, \frac{\dot{S_{3}}}{\sin \dot{\beta_{1}}} - \frac{\dot{S_{7}}}{\sin \dot{\beta_{8}}} &= 0 \\ \frac{\dot{S_{8}}}{\sin \dot{\beta_{4}}} - \frac{\dot{S_{5}}}{\sin (\dot{\beta_{5}} + \dot{\beta_{6}})} &= 0, \frac{\dot{S_{2}}}{\sin \dot{\beta_{11}}} - \frac{\dot{S_{8}}}{\sin \dot{\beta_{4}}} &= 0, \frac{\dot{S_{3}}}{\sin \dot{\beta_{1}}} - \frac{\dot{S_{6}}}{\sin (\dot{\beta_{8}} + \dot{\beta_{7}})} &= 0 \\ \frac{\dot{S_{3}}}{\sin \dot{\beta_{10}}} - \frac{\dot{S_{4}}}{\sin \dot{\beta_{7}}} &= 0, \frac{\dot{S_{8}}}{\sin (\dot{\beta_{8}} + \dot{\beta_{9}})} - \frac{\dot{S_{4}}}{\sin \dot{\beta_{7}}} &= 0 \end{split}$$

4.6.71 (1) $\hat{\beta} = 45^{\circ}00'13.83''$, $\hat{S}_1 = 215.2815$ m, $\hat{S}_2 = 152.2372$ m_o

 $(2)\dot{X}_{C} = 152.2372 \text{m}, \dot{Y}_{C} = 152.2168 \text{m}_{\odot}$

4.6.72 (1)条件方程为:

$$v_1 + v_2 + v_3 + 20'' = 0$$

 $0.0365v_2 - 0.0186v_3 + 0.832v_{S_1} - 0.947v_{S_2} + 1.083(cm) = 0$

(2)观测值的平差值为:

$$\beta_1 = 52^{\circ}30'5.42'', \ \beta_2 = 56^{\circ}18'12.88'', \ \beta_3 = 71^{\circ}11'41.70'',$$

$$S_1 = 135.6071 \text{m}, \ S_2 = 119.1856 \text{m}$$

4.6.73 (1)共有 4 个条件方程式:

①正弦条件,
$$\frac{S_3}{\sin(\beta_1 + \beta_2 + \beta_3)} - \frac{S_4}{\sin(\beta_3 + \beta_4)} = 0$$

②正弦条件:
$$\frac{\hat{S_1}}{\sin \hat{\beta_2}} - \frac{\hat{S_2}}{\sin \hat{\beta_1}} = 0$$

③余弦条件:
$$\beta_1 - \arccos \frac{\dot{S_1}^2 + \dot{S_5}^2 - \dot{S_2}^2}{2 S_1 S_5} = 0$$

④余弦条件:
$$\dot{\beta}_3 + \dot{\beta}_4 - \arccos \frac{\dot{S}_2^2 + \dot{S}_3^2 - \dot{S}_4^2}{2 \dot{S}_2 \dot{S}_3} = 0$$

线性条件为:

$$0.995v_{S_3} - 0.640v_{S_4} + 1.594v_{\beta_1} + 1.594v_{\beta_2} + 1.467v_{\beta_4} - 0.127v_{\beta_4} - 2.488 = 0$$

$$\textcircled{2}0.860v_{S_1}-0.599v_{S_2}+0.522v_{\beta_1}-1.174v_{\beta_3}-1.024\cdot0$$

$$30.984 v_{S_2} - 0.104 v_{S_1} - 0.788 v_{S_5} - v_{\beta_1} + 0.97 = 0$$

$$\textcircled{4}1.065v_{S_4} - 0.819v_{S_2} - 0.757v_{S_3} - v_{\beta_3} - v_{\beta_4} - 3.53 = 0$$

(2)观测值的改正数及平差值为:

$$V_S = [0.05 -0.67 -0.10 1.35 -0.67]^T (cm)$$

$$V_{\beta} = [0.84 \quad 1.35 \quad -0.13 \quad -1.33]^{\mathrm{T}}(")$$

 $S_1 = [2107.8415 \ 3024.7033 \ 2751.0970 \ 4278.3855 \ 3499.0983]^T (m)$

 $\beta_1 = [59^{\circ}16'09.56'' 44'07'56.52'' 36'47'58.90'' 58'40'22.80'']^{T}$

4.6.74 条件方程为:

$$\frac{S_1}{\sin 90^{\circ}} - \frac{S_2}{\sin \beta} = 0$$

线性条件为:

$$0.486v_{S_1} - v_{S_2} + 0.176v_{\beta} - 1.085 = 0$$

观测值的平差值为:

$$\dot{S}_1 = 416.0548 \text{m}, \quad \dot{S}_2 = 202.1144 \text{m}, \quad \dot{\beta} = 29^{\circ}03'50.80''$$

平差值 $L = [S_1S_2B]^T$ 的协因数阵为与协方差阵为:

$$Q_L = \begin{bmatrix} 0.7837 & 0.1602 & -1.2534 \\ 0.1602 & 0.2413 & 0.9284 \\ -1.2535 & 0.9285 & 8.7370 \end{bmatrix}, D_L = \begin{bmatrix} 3.1348 & 0.6408 & -.5.0136 \\ 0.6408 & 0.9652 & 3.7136 \\ -5.0140 & 3.7140 & 34.9480 \end{bmatrix}$$

4.6.75 (1)
$$\hat{L} = \begin{bmatrix} \hat{\beta_t} \\ \hat{\beta_2} \\ \hat{\beta_3} \\ S_1 \end{bmatrix} = \begin{bmatrix} 17'11'16.38'' \\ 119^\circ09'44.45'' \\ 43''38'59.17'' \\ 1410.5669m \\ 1110.0909m \end{bmatrix}$$

$$D_t = \begin{bmatrix} 5.86 & -14.56 & 8.74 & -7.45 & -5.36 \\ -14.56 & 59.87 & -45.28 & 9.46 & -0.13 \\ 8.74 & -45.28 & 36.58 & -1.99 & 5.49 \end{bmatrix}$$

$$D_L = \begin{bmatrix} -14.56 & 59.87 & -45.28 & 9.46 & -0.13 \\ 8.74 & -45.28 & 36.58 & -1.99 & 5.49 \\ -7.45 & 9.46 & -1.99 & 12.83 & 11.86 \\ -5.36 & -0.13 & 5.49 & 11.86 & 12.41 \end{bmatrix}$$

(2)
$$\hat{X}_A = 1967.476 \text{m}$$

 $\hat{Y}_A = 1544.327 \text{m}$
 $\hat{X} = \begin{bmatrix} \hat{X}_A \\ \hat{Y}_A \end{bmatrix}$
 $\hat{D}_X = \begin{bmatrix} 13.6549 & -2.1436 \\ -2.1436 & 16.0926 \end{bmatrix}$

4.7.76 (1)
$$P_{\hat{H}_b} = 3$$
, (2) $P_{\hat{H}_b} = 0.6$

4.7.77 (1)
$$v_1 + v_2 + v_6 + 6'' = 0$$
(图形条件), $v_3 + v_4 + v_5 - 3'' = 0$ (图形条件)
 $v_2 + v_3 = 0$ (固定角条件), $v_5 - v_6 - 5'' = 0$ (固定边条件)

(2)
$$\mathbf{V} = [-1.8'' -1.2'' 1.2'' -0.2'' 2.0'' -3.0'']^{\text{T}}$$

 $\mathbf{\hat{L}} = [90^{\circ}00'01.2'' 44^{\circ}59'57.8'' 45^{\circ}00'02.2'' 89^{\circ}59'56.8'' 45^{\circ}00'01.0'' 45^{\circ}00'01.0'']^{\text{T}}$
(3) $\hat{X}_{P} = 1000.021_{\text{Im}}, \hat{Y}_{P} = 1999.990_{\text{Im}}$

4.7.78 L = 650.140m, $P_L = 2$

4.7.79
$$H_C = H_A + h_1 - (Q_a - Q_{ab} + 1) \frac{H_A + h_1 + h_2 + h_3 - H_B}{3 + Q_a + Q_b - 2Q_{ab}}$$

$$H_D = H_B - h_3 + (Q_b - Q_{ab} + 1) \frac{H_A + h_1 + h_2 + h_3 - H_B}{3 + Q_a + Q_b - 2Q_{ab}}$$

4.7.80
$$P_{H_C} = \frac{8}{7}$$

4.8.81 (1)条件方程为:

$$v_1 + v_2 + v_3 + v_4 + 14^{"}.0 = 0$$
 (a)

$$3.620v_1 + 2.635v_2 + 1.672v_3 + 0.127v_{S_1} + 0.127v_{S_2} - 0.036v_{S_3} + 30.0 \text{ram} = 0$$
 (b)

$$0.190v_1 + 0.064v_2 - 0.060v_3 - 0.992v_{S_1} - 0.992v_{S_2} - 0.999v_{S_3} + 13.0mm = 0$$
 (c)

(2)法方程为:

$$\begin{bmatrix} 4 & 7.9 & 0.2 \\ 7.9 & 22.9 & 0.4 \\ 0.2 & 0.4 & 7.5 \end{bmatrix} \begin{bmatrix} Ka \\ Kb \\ Kc \end{bmatrix} - \begin{bmatrix} -14.0 \\ -30.0 \\ -13.0 \end{bmatrix} = 0$$

联系数:
$$\mathbf{K} = [-2.782 \quad -0.316 \quad -1.658]^{\mathrm{T}}$$

改正数: $\mathbf{V}_{\rho} = [-4.24'' \quad -3.72'' \quad -3.21'' \quad -2.78'']^{\mathrm{T}}$
 $\mathbf{V}_{S} = [3.29 \quad 3.21 \quad 5.75]^{\mathrm{T}} (\mathrm{mm})$

(3)导线点 2、3 点的坐标平差值为:

$$\hat{X}_2 = 203046.362 \text{m}, \hat{Y}_2 = -59253.099 \text{m}, \hat{X}_3 = 203071.802 \text{m}, \hat{Y}_3 = -59451.609 \text{m}$$

$$(4)\sigma_0 = \pm 4.83'', \frac{1}{P_{X_3}} = 0.6984, \frac{1}{P_{Y_3}} = 1.8447, \sigma_{X_3} = \pm 4.04 \text{mm}, \ \sigma_{Y_3} = \pm 6.56 \text{mm}$$

4.8.82 (1)条件方程:

$$v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + 12'' = 0$$
 (a)

$$5.251v_1 + 4.266v_2 + 3.306v_3 + 1.634v_4 + 0.853v_5 + 0.127v_{S_1} + 0.127v_{S_2}$$

$$-0.036v_{S_1} + 0.817v_{S_2} + 0.921v_{S_5} + 51.00mm = 0$$
 (b)

$$3.306v_1 + 3.180v_2 + 3.059v_3 + 3.117v_4 + 2.017v_5 - 0.992v_{S_1} - 0.992v_{S_2} - 0.999v_{S_3} - 0.577v_{S_4} + 0.391v_{S_5} + 61.00mm = 0$$
 (c)

(2)法方程为:

$$\begin{bmatrix} 6 & 15.3 & 14.7 \\ 15.3 & 65.9 & 44.5 \\ 14.7 & 44.5 & 53.2 \end{bmatrix} \begin{bmatrix} Ka \\ Kb \\ Kc \end{bmatrix} - \begin{bmatrix} -12 \\ -51 \\ -61 \end{bmatrix} = 0$$

联系数:
$$K = [2.999 -0.325 -1.706]^{T}$$

改正数:
$$V_{\beta} = [-4.34 -3.81 -3.29 -2.85 -0.72 3.00]^{T}(")$$

$$V_{\rm S} = [3.39 \ 3.30 \ 5.92 \ 2.00 \ 1.66]^{\rm T} ({\rm mm})$$

平差值:

 $\beta = [230^{\circ}32'33'' 180^{\circ}00'38'' 170'''39'19'' 236'48'34'' 192''14'24'' 260''59''04'']^{T}(")$

 $\hat{\mathbf{S}} = [204.955 \ 200.133 \ 345.159 \ 278.061 \ 451.693]^{\mathrm{T}}(\mathrm{m})$

(3)导线点 2、3、4、5 点的坐标平差值为:

$$\dot{X}_2 = 203046.362 \text{m}, \ \dot{Y}_2 = -59253.099 \text{m}$$

 $\dot{X}_3 = 203071.802 \text{m}, \ \dot{Y}_3 = -59451.609 \text{m}$
 $\dot{X}_4 = 203059.503 \text{m}, \ \dot{Y}_4 = -59796.549 \text{m}$
 $\dot{X}_5 = 203286.627 \text{m}, \ \dot{Y}_5 = -59956.962 \text{m}$
 $\dot{X}_6 = 203702.437 \text{m}, \ \dot{Y}_6 = -60133.399 \text{m}$

(4)导线点 4点的中误差及权倒数如下:

$$\sigma_0 = \pm 5.33''$$
(单位权中误差), $\frac{1}{P_{X_4'}} = 3.10$, $\frac{1}{P_{Y_4'}} = 3.56$, $\sigma_{X_4'} = \pm 9.38$ mm, $\sigma_{Y_4'} = \pm 10.06$ mm

4.8.83 (1)条件方程

$$v_1 + v_2 + v_3 + v_4 + v_5 - 11'' = 0$$
 (a)

$$2.668v_2 + 1.364v_3 + 0.205v_4 - 0.730v_{S_1} + 0.063v_{S_2} + 0.481v_{S_3} + 0.995v_{S_4} - 11\text{mm} = 0$$
 (b)

$$2.850v_2 + 2.767v_3 + 2.131v_4 + 0.683v_{S_1} - 0.998v_{S_2} - 0.877v_{S_3} - 0.096v_{S_4} - 26mm = 0$$
 (c)

法方程为

$$\begin{bmatrix} 5 & 4.2 & 7.7 \\ 4.2 & 46.2 & -11.2 \\ 7.7 & -11.2 & 54.6 \end{bmatrix} \begin{bmatrix} Ka \\ Kb \\ Kc \end{bmatrix} - \begin{bmatrix} 11 \\ 11 \\ 26 \end{bmatrix} = 0$$

(2)改正数: $V_{\beta} = [1.65 \ 2.86 \ 2.07 \ 2.27 \ 1.65]^{T}$ (")

$$V_S = [2.38 -2.87 -1.82 2.31]^T (mm)$$

平差值:

 $\beta = [92^{\circ}49'47'' 316'43'58'' 205'08'28'' 235'44'34'' 229'33'11'']^{T}$

 $\hat{\mathbf{S}} = [805.197 \ 269.479 \ 272.715 \ 441.597]^{\mathrm{T}}$ (m)

(3)导线点的坐标平差值:

$$\dot{X}_2 = 1684.132 \text{m}, \ \dot{Y}_2 = 5621.513 \text{m}$$

$$X_3 = 1701.201 \text{m}, Y_3 = 5352.575 \text{m}$$

$$\dot{X}_4 = 1832.469 \text{m}, \ \dot{Y}_4 = 5113.530 \text{m}$$

4.8.84 (1)条件方程为:

$$v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8 + v_9 - 11'' = 0$$
 (a)

 $1.148v_2 + 2.399v_3 + 2.599v_4 + 3.749v_5 + 2.668v_6 + 1.364v_7 + 0.205v_8 + 0.331v_{S_1}$

$$+0.103v_{S_4} - 0.993v_{S_3} - 0.668v_{S_4} - 0.508v_{S_5} + 0.063v_{S_6} + 0.481v_{S_7} + 0.995v_{S_8} - 1$$
mm = 0 (b)

$$-0.403v_2 - 0.532v_3 + 1.182v_4 + 2.213v_5 + 2.850v_6 + 2.767v_7 + 2.131v_8 + 0.944v_8$$

 $+0.995v_{S_2}+0.116v_{S_3}+0.744v_{S_4}-0.862v_{S_5}-0.998v_{S_6}-0.877v_{S_7}-0.096v_{S_8}-16mm=0$ (c) 法方程为:

$$\begin{bmatrix} 9 & 14.1 & 10.2 \\ 14.1 & 80.6 & 15.2 \\ 10.2 & 15.2 & 80.5 \end{bmatrix} \begin{bmatrix} Ka \\ Kb \\ Kc \end{bmatrix} - \begin{bmatrix} 11 \\ 1 \\ 16 \end{bmatrix} = 0$$

(2)改正数:

 $\mathbf{V}_{\theta} = [1.59 \ 1.25 \ 0.89 \ 0.93 \ 0.66 \ 1.00 \ 1.36 \ 1.65 \ 1.59]^{\mathrm{T}}(")$

$$\mathbf{V}_{S} = [-0.43 \ 0.25 \ 4.05 \ 2.89 \ 1.00 \ -0.76 \ -1.98 \ -5.01]^{T}$$
 (mm)

平差值:

$$\boldsymbol{\beta} = \begin{bmatrix} 26^{\circ}35'58'' & 193^{\circ}25'57'' & 269^{\circ}15'29'' & 138^{\circ}32'07'' & 287^{\circ}36'31'' & 214^{\circ}07'45'' \\ 205^{\circ}08'27'' & 235^{\circ}44'36'' & 229^{\circ}33'11'' \end{bmatrix}^{\mathrm{T}}$$

 $\hat{S} = [250.870 \ 259.452 \ 355.892 \ 318.659 \ 258.783 \ 269.481 \ 272.715 \ 441.590]^{T}(m)$

(3)各导线点的坐标平差值

点号	Ŷ(m)	X (m)
2	5308.055	2355.091
3	5564.134	2381.756
4	5607.291	2028.253
5	5844.493	1815.465
6	5621.514	1684.136
7	5352.574	1701.207
8	5113.530	1832. 476
A(B)	5071.330	2272.045

第五章

5.1.01
$$h_1 = +1.336 \text{ 7m}, h_2 = +0.056 \text{ 7m}, h_3 = -1.393 \text{ 4m}$$

5.1.02
$$\hat{\beta}_1 = 51^{\circ}20'10.5'', \hat{\beta}_2 = 88^{\circ}08'21.5'', \hat{\beta}_3 = 40^{\circ}31'28.0''$$

5.1.03
$$\dot{H}_{P_1} = \dot{X_1} = H_A + h_1 - \frac{S_1}{[S]} f_2, \dot{H}_{P_2} = \dot{X_2} = H_B - h_3 + \frac{S_3}{[S]} f_2, (f_2 = H_A + h_1 + h_2 + h_3 + H_B)$$

$$5.1.04 \quad AD = 600.060 \text{m}$$

5.1.05
$$\angle AOB = 28^{\circ}50'14.67''$$
, $\angle BOC = 50^{\circ}16'26.67''$, $\angle COD = 65^{\circ}22'20.10''$
 $\angle DOE = 35^{\circ}30'58.56''$, $\angle AOC = 79^{\circ}06'41.34''$, $\angle COE = 100^{\circ}53'18.66''$
 $\angle BOD = 115^{\circ}38'46.77''$

5.1.06 (1)
$$\vec{l}_1 = 135^{\circ}25'21'', \vec{l}_2 = 90^{\circ}40'09'', \vec{l}_3 = 133^{\circ}54'30'', \vec{l}_4 = 226^{\circ}05'30''$$

(2) $\vec{l}_1 = 135^{\circ}25'23.9'', \vec{l}_2 = 90^{\circ}40'11.9'', \vec{l}_3 = 133^{\circ}54'24.2'', \vec{l}_4 = 226^{\circ}05'35.8''$

$$5.1.07$$
 $BC = 57.732.0m$

$$5.2.09 \begin{bmatrix} 3.50 & -1.00 & -1.00 \\ -1.00 & 2.67 & -0.67 \\ -1.00 & -0.67 & 2.17 \end{bmatrix} \begin{bmatrix} -4.00 \\ x \\ -1.67 \end{bmatrix} = 0$$

5.2.10 (1)
$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix} \dot{x} - \begin{bmatrix} 0 \\ -3 \\ 9 \end{bmatrix} = 0, (2) \dot{x} = \frac{1}{4} \begin{bmatrix} 6 \\ 3 \\ 9 \end{bmatrix}$$

$$5.2.09 \begin{bmatrix} 3.50 & -1.00 & -1.00 \\ -1.00 & 2.67 & -0.67 \\ -1.00 & -0.67 & 2.17 \end{bmatrix} \begin{bmatrix} -4.00 \\ 7.67 \\ -1.67 \end{bmatrix} = 0$$

$$5.2.10 (1) \begin{bmatrix} 2 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix} x - \begin{bmatrix} 0 \\ -3 \\ 9 \end{bmatrix} = 0, (2) x = \frac{1}{4} \begin{bmatrix} 6 \\ 3 \\ 9 \end{bmatrix}$$

$$5.2.11 \begin{bmatrix} 1.167 & 0.500 & 0.333 & 0 \\ 0.500 & 1.167 & 0 & 0.333 \\ 0 & 0.333 & 0 & 1.167 & -0.500 \\ 0 & 0.333 & -0.500 & 1.167 \end{bmatrix} x - \begin{bmatrix} -4 \\ -4 \\ -4 \end{bmatrix} = 0$$

5.2.12
$$x_1 = 1.3944$$
, $x_2 = 0.8519$, $x_3 = 1.5887$, $x_4 = 1.0167$

5.3.13
$$\Rightarrow \dot{X} = \dot{H}_P$$
, $X^0 = 6.996$ m, $\dot{X} = X^0 + \dot{x}$

$$\mathbf{V} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} x - \begin{bmatrix} 0 \\ 3 \\ 20 \\ 6 \end{bmatrix}$$
 (mm)

5.3.14
$$\Rightarrow \hat{H}_{P_1} = \hat{X}_1, \hat{H}_{P_2} = \hat{X}_2, \hat{H}_{P_3} = \hat{X}_3, \hat{X} = X^0 + \hat{x}, X_1^0 = \hat{H}_A + h_1 = 6.359 \text{m}, X_2^0 = \hat{H}_A + h_2 = 7.009 \text{m}, X_3^0 = \hat{H}_B - h_4 = 5.360 \text{m}$$

$$V = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} x - \begin{bmatrix} 0 \\ 0 \\ 4 \\ 0 \\ 7 \\ 1 \\ 1 \end{bmatrix}$$
 (mm)

5.3.15
$$\mbox{ }\mbox{ }\mbox$$

$$\mathbf{V} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \dot{x} - \begin{bmatrix} 2 \\ -3 \\ 4 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 (mm)

5.3.16
$$\mathbf{V} = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 5 \\ 2 \\ -10 \\ 3 \\ 11 \\ -1 \\ -18 \\ 12 \end{bmatrix}$$
 (mm)

5.3.17
$$V_1 = x_2 + 2$$
, $V_2 = -x_1 + x_2 - 3$, $V_3 = -x_2 + x_3 - 4$, $V_4 = x_1 + 1$

5.3.18
$$\dot{\mathbf{X}} = \begin{bmatrix} 6.497 \ 7, 6.251 \ 3, 7.001 \ 3 \end{bmatrix}^{\mathrm{T}} \mathbf{m}, \mathbf{Q}_{\dot{\mathbf{X}}} = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 5 \end{bmatrix}$$

5.3.19
$$\dot{X} = [1,1,1]^T$$

5.3.20 (1)
$$\dot{\mathbf{X}} = [20.000 \ 10.235]^{\mathrm{T}} \mathrm{m}, (2) \ \sigma_{X_1}^2 = 3(\mathrm{mm})^2 \ \sigma_{X_2}^2 = 3(\mathrm{mm})^2$$

5.3.21
$$Q_{X_2} = \frac{2}{3}$$
, $Q_{V_3} = \frac{1}{3}$, $Q_{\tilde{L}} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$

5.3.22 (1)
$$\frac{1}{P_{X_1}} = \frac{1}{2}$$
, (2) $\frac{1}{P_{\varphi}^2} = \frac{21}{8}$

5.3.23 (1)
$$\dot{X_1} = \dot{H}_{P_1} = 9.740 \text{ 8m}, \dot{X_2} = \dot{H}_{P_2} = 9.999 \text{ 3m}; (2) P_{\dot{h}_{P_1}P_2} = 2$$

$$5.3.24 \quad \frac{1}{P_{h_{P_1P_2}}} = \frac{2}{9}$$

5.3.25 (1)
$$X_1 = \dot{H}_{P_1} = 11.012 \text{ 6m}, \dot{X}_2 = \dot{H}_{P_2} = 22.573 \text{ 2m}, \dot{X}_3 = \dot{H}_{P_3} = 16.160 \text{ 1m}$$

 $\sigma_{\dot{X}_1} = \pm 2.70 \text{mm}, \sigma_{\dot{X}_2} = \pm 2.42 \text{mm}, \sigma_{\dot{X}_3} = \pm 2.70 \text{mm}$

(2)
$$h_{P_1P_3} = 5.147 \text{ 5m}, \sigma_{h_{P_1P_3}} = \pm 3.42 \text{mm}$$

5.3.26 (1)
$$\dot{H}_{P_1} = 12.004 \text{ 7m}, \sigma \dot{H}_{P_2} = \pm 1.49 \text{mm}; (2) \dot{H}_{P_2} = 12.508 \text{ 3m}, \sigma \dot{H}_{P_2} = \pm 2.36 \text{mm}$$

5.3.27
$$\dot{h}_{AB} = -1.014 \text{ 0m}, \sigma_{\dot{h}_{AB}} = \pm 3.4 \text{mm}; \dot{h}_{AC} = 11.559 \text{ 0m}, \sigma_{\dot{h}_{AC}} = \pm 3.0 \text{mm}$$

 $\dot{h}_{AD} = 5.143 \text{ 5m}, \sigma_{\dot{H}_{AD}} = \pm 3.2 \text{mm}$

5.4.28
$$\Leftrightarrow X_1^0 = L_1, X_2^0 = L_4, X_3^0 = L_6$$

$$V = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ x \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 6 \\ 8 \\ 0 \\ 6 \end{bmatrix} (")$$

5.4.29
$$\forall \angle AOC = X_1, \angle COD = X_2, X_1^0 = L_1, X_2^0 = L_2$$

$$\mathbf{V} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -1 \end{bmatrix} \dot{x} - \begin{bmatrix} 0 \\ 13 \\ 0 \\ -10 \end{bmatrix}$$

 $v_{s_1} = \frac{\Delta X^0}{S^0_{AP_1}} \dot{x_1} + \frac{\Delta Y^0_{AP_1}}{S^0_{AP_1}} \dot{y_1} + S^0_1 - S_1 \,, \\ v_{s_2} = \frac{\Delta X^0}{S^0_{BP_1}} \dot{x_1} + \frac{\Delta Y^0_{BP_1}}{S^0_{BP_1}} \dot{y_1} + S^0_2 - S_2 \,.$

$$\begin{split} v_{s_3} &= \frac{\Delta X^0}{S_{AP_2}^0} \frac{AP_2}{x_2} + \frac{\Delta Y_{AP_2}^0}{S_{AP_2}^0} \dot{y}_2 + S_3^0 - S_3 \,, v_{s_4} = \frac{\Delta X^0}{S_{BP_2}^0} \dot{x}_2 + \frac{\Delta Y_{BP_2}^0}{S_{BP_2}^0} \dot{y}_2 + S_4^0 - S_4 \\ v_{s_5} &= \frac{\Delta X^0}{S_{AP_3}^0} \frac{AP_3}{x_3} + \frac{\Delta Y_{AP_3}^0}{S_{AP_3}^0} \dot{y}_3 + S_5^0 - S_5 \,, v_{s_6} = \frac{\Delta X^0}{S_{BP_3}^0} \dot{x}_3 + \frac{\Delta Y_{BP_3}^0}{S_{BP_3}^0} \dot{y}_3 + S_6^0 - S_6 \\ v_{s_7} &= -\frac{\Delta X^0}{S_{P_2P_3}^0} \dot{x}_2 - \frac{\Delta Y_{P_2P_3}^0}{S_{P_2P_3}^0} \dot{y}_2 + \frac{\Delta X_{P_2P_3}^0}{S_{P_2P_3}^0} \dot{x}_3 - \frac{\Delta Y_{P_2P_3}^0}{S_{P_2P_3}^0} \dot{y}_3 + S_7^0 - S_7 \end{split}$$

5.5.41 $\dot{x}_p = 4.8 \text{cm}, \dot{y}_p = 9.2 \text{cm}, \dot{X}_P = 57 578.978 \text{m}, \dot{Y}_P = 70 998.352 \text{m}$ $\mathbf{Q}\dot{x} = \begin{bmatrix} 0.641 & 1 & -0.257 & 7 \\ -0.257 & 7 & 1.910 & 1 \end{bmatrix}$

$$\mathbf{Q}_{\hat{X}} = \begin{bmatrix} 0.641 & -0.257 & 7 \\ -0.257 & 7 & 1.910 & 1 \end{bmatrix}$$

5.5.42 (1) $\dot{x} = [-1.1 \ -1.0]^{T}$ cm, $\dot{X} = [329.549 \ 278.600]^{T}$ m $V = [-1.0 \ 1.5 \ -1.1]^{T}$ cm

 $\hat{L} = [278,600 \quad 431,535 \quad 329,549]^{T}_{m}$

(2)
$$\varphi = L_2 = \sqrt{X_1^2 + X_2^2}$$
, $d\varphi = [0.763 \ 7 \ 0.645 \ 6] dX$
 $Q \varphi = Q_{L_2} = \frac{1}{P_{L_2}} = 0.5$ $P_{L_2} = 2$

5.5.43 $\mathbf{X} = [0.5 \ 0.5 \ 0.9 \ 0.8]^{\mathrm{T}}$ cm

 $X = [19 \ 187.340 \ 20 \ 265.892 \ -10 \ 068.377 \ 17 \ 332.442]^{T}_{m}$

$$\mathbf{Q}_{\bar{X}} = \begin{bmatrix} 1.686 & -0.027 & 1.215 & 1.097 \\ -0.027 & 0.767 & -0.253 & -0.228 \\ 1.215 & -0.253 & 1.573 & 1.325 \\ 1.097 & -0.228 & 1.325 & 2.140 \end{bmatrix}$$

5.6.44 非线性误差方程式为:

$$v_{1} = \arcsin \frac{x_{2} \sin x_{1}}{\sqrt{S_{AB}^{2} + \dot{X}_{2}^{2} - 2S_{AB}\dot{X}_{2}\cos \dot{X}_{1}}} - L_{1} \quad v_{2} = \dot{X}_{1} - L_{2}$$

$$v_{3} = \angle ABC - \dot{X}_{1} - L_{3} \quad v_{4} = \arcsin \frac{\dot{X}_{2} \sin(\angle ABC - \dot{X}_{1})}{\sqrt{S_{BC}^{2} + \dot{X}_{2}^{2} - 2S_{BC}\dot{X}_{2}\cos(\angle ABC - \dot{X}_{1})}} - L_{4}$$

$$v_5 = \arcsin \frac{S_{BC} \sin(\angle ABC - X_1)}{\sqrt{S_{BC}^2 + X_2^2 - 2S_{BC}X_2 \cos(\angle ABC - X_1)}} - L_5$$

$$v_6 = \arcsin \frac{S_{AB} \sin X_1}{\sqrt{S_{AB}^2 + \dot{X}_2^2 - 2S_{AB}\dot{X}_2 \cos \dot{X}_1}} - L_6 \quad v_{S_1} = \sqrt{S_{AB}^2 + \dot{X}_2^2 - 2S_{AB}\dot{X}_2 \cos \dot{X}_1} - S_1$$

$$v_{S_2} = \dot{X}_2 - S_2$$
 $v_{S_3} = \sqrt{S_{BC}^2 + \dot{X}_2^2 - 2S_{BC}\dot{X}_2\cos(\angle ABC - \dot{X}_1)} - S_3$

5.6.45
$$v_1 = 1.03x_p - 1.78y_p - 5$$
, $v_2 = 1.03x_p + 1.78y_p + 2$, $v_3 = -2.06x_p$
 $v_{S_1} = 0.87x_p - 0.50y_p + 1$, $v_{S_2} = 0.87x_p + 0.50y_p - 1$

其中,角度误差方程常数项的单位为10,边长误差方程常数项的单位为10 cm, 10 cm, 10 的单位为

5.6.46 误差方程:

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \\ v_7 \\ v_8 \\ v_9 \\ v_{10} \\ v_{11} \\ v_{12} \\ v_{13} \\ v_{14} \\ v_{15} \\ v_{16} \\ v_{17} \\ v_{18} \\ v_{17} \\ v_{18} \\ v_{18} \\ v_{17} \\ v_{18} \\ v_{18} \\ v_{19} \\ v_{10} \\ v_{11} \\ v_{12} \\ v_{13} \\ v_{14} \\ v_{15} \\ v_{16} \\ v_{17} \\ v_{18} \\ v_{19} \\ v_{10} \\ v_{11} \\ v_{12} \\ v_{13} \\ v_{14} \\ v_{15} \\ v_{16} \\ v_{17} \\ v_{18} \\ v_{17} \\ v_{18} \\ v_{18} \\ v_{19} \\ v_{19}$$

角度观测值的权 $P_i=1(i=1,2,\cdots,12)$ (无量纲)边长观测值的权 $P_{\mathbf{S}_j}=0.56$ $(j=13,14,\cdots,18)(('')^2/\text{cm}^2)$

5.6.47 (1)
$$x_p = 0.39 \text{cm}$$
, $y_p = -1.68 \text{cm}$
 $X_p = 866.029 \text{ 3cm}$, $Y_p = 499.983 \text{ 2cm}$
 $\sigma_{X_p} = \pm 0.67 \text{cm}$, $\sigma_{Y_p} = \pm 0.72 \text{cm}$, $\sigma_P = \pm 0.98 \text{cm}$
 $\begin{bmatrix} 60^{\circ}00^{\circ}03.39^{\circ} \end{bmatrix}$

(2)
$$\dot{\mathbf{L}} = \begin{bmatrix} 60 & 00 & 03.39 \\ 59^{\circ}59^{\circ}57.42^{\circ} \\ 59^{\circ}59^{\circ}59.19^{\circ} \\ 1 & 000.011 & 8m \\ 999.995 & 0m \end{bmatrix}$$

平差后 PA, PB 边的边长中误差相同, 均为±0.68cm。

5.6.48 (1)
$$\dot{X}_1 = 565 \ 6.894 \text{m}$$
, $\dot{Y}_1 = 2\ 475.546 \text{m}$

$$\dot{X}_2 = 663.838 \text{m}$$
, $\dot{Y}_2 = 2\ 944.030 \text{m}$

$$Q_X = \begin{bmatrix} 0.272\ 37 & 0.026\ 95 & 0.160\ 42 & 0.085\ 31 \\ 0.026\ 95 & 0.298\ 40 & 0.008\ 70 & 0.066\ 18 \\ 0.160\ 42 & 0.008\ 70 & 0.799\ 95 & 0.008\ 81 \\ 0.085\ 31 & 0.066\ 18 & 0.008\ 81 & 0.998\ 30 \end{bmatrix}$$

$$\sigma_{\dot{X}_1} = \pm 1.72 \text{cm}, \sigma_{\dot{Y}_1} = \pm 1.80 \text{cm}$$

$$\sigma_{\dot{X}_2} = \pm 2.94 \text{cm}, \sigma_{\dot{Y}_2} = \pm 3.29 \text{cm}$$
(2) $\sigma_{S_{p_1,p_2}} = \pm 2.88 \text{cm}, \sigma_{\dot{T}_{p_1,p_2}} = \pm 1.45^{\circ}$

5.6.49 $\dot{\beta} = 45^{\circ}00' 13.84''$, $\dot{S}_1 = 215.281 \text{ 6m}$, $\dot{S}_2 = 152.237 \text{ 3m}$, $\dot{X}_C = 152.237 \text{ 3m}$, $\dot{Y}_C = 152.216 \text{ 9m}$

5.7.50
$$\begin{bmatrix} 1.772 & 6 & 0 \\ 0 & 3.190 & 7 \end{bmatrix} \stackrel{\cdot}{\underset{2.1}{x}} = \begin{bmatrix} 3.781 & 4 \\ -3.093 & 9 \end{bmatrix} = 0$$

$$\dot{X}_P = 1~000.021 \text{m}, \dot{Y}_P = 1~999.990 \text{m}$$

5.7.51
$$\hat{L} = 650.140 \text{m}, P_{\hat{L}} = 2$$

5.7.52
$$H_C = H_A + h_1 - (Q_a - Q_{ab} + 1) \frac{H_A + h_1 + h_2 + h_3 - h_B}{3 + Q_a + Q_b - 2Q_{ab}}$$

 $H_D = H_B - h_3 + (Q_b - Q_{ab} + 1) \frac{H_A + h_1 + h_2 + h_3 - H_B}{3 + Q_a + Q_b - 2Q_{ab}}$

5.7.53
$$P_{H_C} = \frac{8}{7}$$

5.8.54
$$a = -0.625, b = 10.105$$

直线方程为 y = -0.625, x + 10.105

5.8.55 (1)
$$a = 0.0270345$$
, $b = -0.2153175$, $c = 0.3486384$

(2)
$$S = [6\ 055.166\ 6\ 055.026\ 6\ 054.946\ 6\ 054.920\ 6\ 054.948\ 6\ 055.030$$

6 054.166 $]^{T}(m)$

(3)
$$T_{AA} = 3.982 \ 3$$
, $S_{AB} = S_{AA} = 6.054.920 \text{m}$

5.9.56 (1)误差方程为(v, 方程的常数项以 mm 为单位):

法方程为:

$$\begin{bmatrix} 6.137 & 0.660 \\ 0.660 & 1.075 \end{bmatrix} \begin{bmatrix} \alpha_2 \\ \gamma_2 \end{bmatrix} - \begin{bmatrix} -21.80 \\ -6.32 \end{bmatrix} = 0 \quad (\diamondsuit \ \sigma_0 = \sigma_\beta = \pm 5'')$$

(2) 导线点 2点的坐标平差值:

$$\dot{X}_2 = 203\,046.363 \text{m}, \, \dot{Y}_2 = -59\,253.099 \text{m}$$

(3)
$$\mathbf{V}_{\beta} = \begin{bmatrix} -3.62 \\ 7.33 \\ -3.71 \end{bmatrix}$$
 ("), $\mathbf{V}_{S} = \begin{bmatrix} 3.53 \\ -3.53 \end{bmatrix}$ (mm) $\mathbf{\beta} = \begin{bmatrix} 230^{\circ}32'33'' \\ 180^{\circ}00'49'' \\ 170^{\circ}39'18'' \end{bmatrix}$, $\mathbf{S} = \begin{bmatrix} 204.956 \\ 200.126 \end{bmatrix}$ (m)

5.9.57 (1)各待定点近似坐标为:

$$X_2^0 = 203\,046.346$$
m, $Y_2^0 = -59\,253.095$ m, $X_3^0 = 203\,071.813$ m, $Y_3^0 = -59\,451.601$ m

(2) 误差方程(v, 方程的常数项以 mm 为单位):

$$v_1 = 0.998 \ x_2 + 0.128 \ y_2 - 1'',$$
 $v_2 = -2.020 \ x_2 - 0.259 \ y_2 + 1.022 \ x_3 + 0.131 \ y_3 + 1'',$
 $v_3 = 1.022 \ x_2 + 0.131 \ y_2 - 1.619 \ x_3 - 0.110 \ y_3 - 18'',$
 $v_4 = 0.597 \ x_3 - 0.021 \ y_3 + 4'',$
 $v_{4} = 0.127 \ x_2 - 0.992 + 0,$
 $v_{5} = 0.127 \ x_2 + 0.992 \ y_2 + 0.127 \ x_3 - 0.992 \ y_3 + 0,$
 $v_{5} = 0.036 \ x_3 + 0.999 \ y_3 + 15,$
 $v_{7} = 0.29$

法方程为:

$$\begin{bmatrix} 6.137 & 0.660 & -3.727 & -0.314 \\ 0.660 & 1.075 & -0.414 & -0.540 \\ -3.727 & -0.414 & 4.031 & 0.246 \\ -0.314 & -0.540 & 0.246 & 0.811 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ x_3 \\ y_3 \end{bmatrix} - \begin{bmatrix} 21.414 \\ 2.745 \\ -32.702 \\ -6.377 \end{bmatrix} = 0$$

(3) 导线点 2、3 的坐标平差值:

 $X_2 = 203\ 046.363$ m, $Y_2 = -59\ 253.09$ m, $X_3 = 203\ 071.80$ 2m, $Y_3 = -59\ 451.60$ 9m

$$V_{\beta} = \begin{bmatrix} -4.61 \\ -3.94 \\ -3.12 \\ -2.33 \end{bmatrix} (\cancel{b}), \quad V_{S} = \begin{bmatrix} 3.49 \\ 3.43 \\ 6.24 \end{bmatrix} (mm), \quad \beta = \begin{bmatrix} 230^{\circ}32'32'' \\ 180^{\circ}00'38'' \\ 170''39'19'' \\ 236'48'35'' \end{bmatrix}, \quad S = \begin{bmatrix} 204.955 \\ 200.133 \\ 345.159 \end{bmatrix} (m)$$

$$5.9.58$$
 角度误差方程:
 $v_1 = -0.685 x_2 - 0.527 y_2 + 7.75''$
 $v_2 = 1.757 x_2 + 1.083 y_2 - 1.072 x_3 - 0.556 y_3 - 11.25''$
 $v_3 = -1.072 x_2 - 0.556 y_2 + 0.945 x_3 + 1.494 y_3 - 9.85''$
 $v_4 = 0.127 x_3 - 0.938 y_3 + 0.475 x_4 + 1.177 y_4 - 0.602 x_5 - 0.239 y_5 - 15.43''$
 $v_5 = 0.770 x_6 + 0.336 y_6 - 10.60''$
 $v_6 = -0.563 x_6 - 1.271 y_6 - 0.207 x_7 + 0.935 y_7 + 25.54$
 $v_7 = -0.207 x_6 + 0.935 y_6 + 0.952 x_7 - 1.044 y_7 - 0.745 x_8 + 0.109 y_9 + 6.31''$
 $v_8 = -0.745 x_7 + 0.109 y_7 + 1.551 x_8 + 0.172 y_8 - 0.806 x_9 - 0.281 y_9 - 0.15''$
 $v_9 = -0.806 x_8 - 0.281 y_8 + 1.713 x_9 + 0.415 y_9 - 0.907 x_{10} - 0.134 y_{10} - 54.68''$
 $v_{10} = -0.227 x_5 + 0.754 y_5 - 0.907 x_9 - 0.134 y_9 + 1.134 x_{10} - 0.620 y_{10} + 54.48''$
 $v_{11} = 0.602 x_4 + 0.239 y_4 - 0.375 x_5 - 0.993 y_5 - 0.227 x_{10} + 0.754 y_{10} - 9.98''$
 $v_{12} = 0.711 x_{13} + 0.194 y_{13} + 16.00''$
 $v_{13} = -0.663 x_{13} + 0.400 y_{13} - 0.048 x_{14} - 0.594 y_{14} - 15.02''$

 $v_{15} = 1.042 \ x_5 + 0.062 \ y_5 + 0.660 \ x_{14} + 0.031 \ y_{14} - 1.702 \ x_{15} - 0.093 \ y_{15} + 7.97''$ $v_{16} = -1.269 x_5 + 0.692 y_5 + 0.227 x_{10} - 0.754 y_{10} + 1.042 x_{15} + 0.062 y_{15} - 14.70^{\circ}$ 边长误差方程(常数项以 mm 为单位):

 $v_{14} = -0.048 x_{13} - 0.594 y_{13} - 0.612 x_{14} + 0.563 y_{14} + 0.660 x_{15} + 0.031 y_{15} + 14.85''$

$$v_{s_1} = -0.610 \ x_2 - 0.793 \ y_2 + 4$$

$$v_{s_2} = 0.460 \ x_2 - 0.888 \ y_2 - 0.460 \ x_3 + 0.888 \ y_3 - 15$$

$$v_{s_3} = 0.991 \ x_3 + 0.134 \ y_3 - 0.991 \ x_4 - 0.134 \ y_4 - 4$$

$$v_{s_4} = 0.369 \ x_4 - 0.929 \ y_4 - 0.369 \ x_5 + 0.929 \ y_5 - 13$$

$$v_{s_5} = 0.400 \ x_6 - 0.917 \ y_6 - 15$$

$$v_{s_{6}} = -0.976 x_{6} - 0.216 y_{6} + 0.976 x_{7} + 0.216 y_{7} - 18$$

$$v_{s_{7}} = -0.145 x_{7} - 0.989 y_{7} + 0.145 x_{8} + 0.989 y_{8} + 5$$

$$v_{s_{8}} = 0.329 x_{8} - 0.944 y_{8} - 0.329 x_{9} + 0.944 y_{9} + 14$$

$$v_{s_{9}} = 0.146 x_{9} - 0.989 y_{9} - 0.146 x_{10} - 0.989 y_{10} + 11$$

$$v_{s_{10}} = 0.957 x_{5} + 0.289 y_{5} - 0.957 x_{10} - 0.289 y_{10} - 16$$

$$v_{s_{11}} = 0.263 x_{13} - 0.965 y_{13} + 12$$

$$v_{s_{12}} = 0.997 x_{13} + 0.080 y_{13} - 0.997 x_{14} - 0.080 y_{14} - 23$$

$$v_{s_{13}} = -0.047 x_{14} + 0.999 y_{14} + 0.047 x_{15} - 0.999 y_{15} + 0$$

$$v_{s_{14}} = 0.059 x_{5} + 0.998 y_{5} - 0.059 x_{15} - 0.998 y_{15} + 1$$

第六章

6.1.01 (1)
$$\hat{H}_{P_1} = 6.366 \text{m}$$
, (2) $\hat{h} = [1.366 \ 2.019 \ 3.375]^{\text{T}}\text{m}$

6.1.02
$$x=2, v_1=1, v_2=0, v_3=1$$

6.1.03
$$v_1 = 1, v_2 = 1, v_3 = -2, v_4 = 3, x = -1$$

6.2.04 (1) 条件方程为(常数项以 mm 为单位):

$$v_1 - v_2 - v_3 - 3 = 0$$
, $v_3 - v_4 - v_5 + 6 = 0$, $v_5 + v_6 + v_7 + 4 = 0$, $v_1 + v_4 + v_6 - x + 5 = 0$

法方程为:

$$\begin{bmatrix} 3 & -1 & 0 & 1 & 0 \\ -1 & 3 & -1 & 1 & 0 \\ 0 & -1 & 3 & 1 & 0 \\ 1 & 1 & 1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} K_a \\ K_b \\ K_c \\ K_d \\ \vdots \end{bmatrix} - \begin{bmatrix} 3 \\ -6 \\ -4 \\ -5 \\ 0 \end{bmatrix} = 0$$

$$(2) \ \frac{1}{P_{H_4}} = \frac{8}{7}$$

6.2.05 (1)
$$h = [1.251\ 0\ -0.249\ 0\ 0.746\ 4\ -1.002\ 6\ -2.002\ 6]^{T}(m)$$

(2)
$$H_{P_1} = 6.251 \text{ 0m}, \quad \sigma_{H_{P_1}} = \pm 2.56 \text{mm}$$

6.2.06 (1)
$$V = \begin{bmatrix} 2 & 0 & 1 & 3 & 2 \end{bmatrix}^T \text{cm}, \hat{h} = \begin{bmatrix} 3.60 & 5.40 & 4.12 & 4.88 & 0.52 \end{bmatrix}^T \text{(m)}$$

(2)
$$H_{P_1} = 5.12 \text{m}$$

(3)
$$\frac{1}{P_{H_{p_2}}} = \frac{3}{4}$$

6.2.07 8个条件方程为:

$$-v_1+v_2+v_3-f_1=0$$
, $-f_1=-h_1+h_2+h_3$

$$-v_4+v_5$$
 $-f_2=0, -f_2=-h_4+h_5$

$$-v_3-v_5+v_6+v_7-f_3=0$$
, $-f_3=-h_3-h_5+h_6+h_7$

$$-v_7 - v_8 + v_9 + v_{10} - f_4 = 0, -f_4 = -h_7 - h_8 + h_9 + h_{10}$$

$$-v_{10}+v_{11}-v_{12}-f_5=0$$
, $-f_5=-h_{10}+h_{11}-h_{12}$

$$v_1 + v_5$$
 $-f_6 = 0, -f_6 = H_A + h_1 + h_6 - H_B$

$$v_8 - v_{11}$$
 $-f_7 = 0$, $-f_7 = -H_C + H_B + h_8 - h_{11}$

$$v_7 + x - f_8 = 0$$
, $-f_8 = X^0 + h_7 - H_B$

6.2.08
$$\dot{H}_{P_2} = 13.803 \text{m}, \frac{1}{P_{\dot{H}_{P_2}}} = 0.6$$

6.2.09
$$\dot{X_1} = \dot{H}_{P_2} = 2.688 \text{m}, \dot{X_2} = \dot{H}_{P_3} = 5.954 \text{m}, Q_{\bar{X}} = \frac{1}{5} \begin{bmatrix} 3 & 3 \\ 3 & 8 \end{bmatrix}$$

6.2.10 (1) 各段高差平差值:

$$h_1 = 1.357 \text{ 4m}, h_2 = 2.010 \text{ 6m}, h_4 = 1.014 \text{ 1m}, h_3 = 0.360 \text{ 9m}, h_5 = 0.653 \text{ 2m}$$

(2) 平差后 $A \setminus D$ 点间高差的中误差: $\sigma_{h_{AD}} = \pm 3.77 \text{mm}$

6.3.11 (1)共 4 个条件方程:

图形条件: $v_1 + v_2 + v_3 + v_4 + v_5 + v_6 - 1.2'' = 0$

极条件(P2 点为极):0.693v1-0.046v2+1.202v3-0.688v4-2.263v5-1.086v6-5.910"=0

方位角条件(T_{BA}→T_{BP}): v₂-0.301 x₁+0.125 y₁-7.610"=0

边长条件($S_{AB} \rightarrow S_{BP_1}$):1.637 v_2 + 1.545 v_3 + 1.545 v_4 + 12.540 x_1 + 30.064 y_t - 21.922" = 0 (2)法方程为:

$$\begin{bmatrix} 6 & -2.188 & 1 & 4.727 & 0 & 0 \\ -2.188 & 8.701 & -0.046 & 0.719 & 0 & 0 \\ 1 & -0.046 & 1 & 1.637 & -0.301 & 0.125 \\ 4.727 & 0.719 & 1.637 & 7.454 & 12.540 & 30.064 \\ 0 & 0 & -0.301 & 12.540 & 0 & 0 \\ 0 & 0 & 0.125 & 30.064 & 0 & 0 \end{bmatrix} \begin{bmatrix} K_a \\ K_b \\ K_c \\ K_d \\ x_1 \\ x_1 \end{bmatrix} - \begin{bmatrix} 1.2 \\ 5.910 \\ 7.610 \\ 21.922 \\ 0 \\ 0 \end{bmatrix} = 0$$

6.3.12 (1)条件方程:

图形条件: $v_1 + v_4 + x_2 + 3.4'' = 0$

$$v_2 + v_3 + v_4 + x_1 - 3.1'' = 0$$

$$v_1 + v_5 + v_6 - x_1 + 1.9'' = 0$$

极条件(P_2 点为极): $-1.570v_1 - 0.046v_2 + 1.202v_3 - 0.688v_4 + 1.177v_5 + 2.263 <math>\hat{x_1} - 10.212'' = 0$ (2)法方程:

$$\begin{bmatrix} 2 & 1 & 1 & -2.258 & 0 & 1 \\ 1 & 3 & 0 & 0.468 & 1 & 0 \\ 1 & 0 & 3 & -0.393 & -1 & 0 \\ -2.258 & 0.468 & -0.393 & 5.770 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} K_a \\ K_b \\ K_c \\ K_d \\ \vdots \\ Y_1 \end{bmatrix} - \begin{bmatrix} -3.4 \\ 3.1 \\ -1.9 \\ 10.212 \\ 0 \\ 0 \end{bmatrix} = 0$$

6.3.13 (1) $\dot{X} = 25^{\circ}10^{'}58.83^{''}$

(2) 改正数与平差值表如下:

角号	改正数 v_i	角度平差值 Ĺ;
1	0.45	66°40′44.35″
2	-0.50	49°21′49.30″
3	-1.35	63°57′26.35″
4	0.73	65°23′04.63″
5	-0.40	60°34′44.79″
6	-1.22	54°02′10.58″
7	-2.83	54*14′37.37″

(3) 待定点坐标平差值表:

点号	X(m)	Y(m)
D	100 642.659 7	32 114.151 4
E	99 544.094 1	34 356.691 8

6.3.14 (1)
$$X^0 = 31^{\circ}26'50.57''$$

(2) 共 4 个条件方程:

图形条件:
$$v_1 + v_2 + v_3 - 2.2'' = 0$$

 $v_4 + v_5 + v_6 + 4.9'' = 0$

边长条件(SAB→SAP,):

$$-1.135v_1 - 1.135v_6 - 1.653x - 0.005'' = 0$$

极条件(B点为极):

$$0.835v_1 - 1.131v_3 + 0.573v_4 - 0.290v_5 + 0.518v_6 + 1.925x - 0.209'' = 0$$

6.3.15 (1)共有 11 个条件方程:

图形条件:
$$\beta_1 + \beta_{11} + \beta_{12} - 180^\circ = 0$$

$$\dot{\beta}_2 + \dot{\beta}_3 + \dot{\beta}_{13} - 180^\circ = 0$$

$$\beta_4 + \beta_5 + \beta_{14} - 180^\circ = 0$$

$$\beta_6 + \beta_{10} + \beta_{15} + \beta_{16} - 180^\circ = 0$$

$$\dot{\beta_7} + \dot{\beta_8} + \dot{\beta_9} - 180^\circ = 0$$

$$\beta_6 + \beta_7 + \beta_{15} + x - 180^\circ = 0$$

极条件:

中点四边形
$$ABCP_2(P_1$$
 点为极): $\frac{\sin\beta_1\sin\beta_3\sin\beta_5\sin\beta_{10}}{\sin\beta_1\sin\beta_2\sin\beta_4\sin\beta_6} - 1 = 0$

大地四边形
$$P_1P_2P_3C(C$$
 点为极): $\frac{\sin\beta_{10}\sin\beta_8\sin\beta_{15}}{\sin(\beta_{15}+\beta_{16})\sin\beta_9\sin x}-1=0$

固定角条件:
$$T_{BA} + \beta_3 + \beta_4 - T_{BC} = 0$$

固定边条件:
$$S_{AB} \frac{\sin \beta_2 \sin \beta_{14}}{\sin \beta_{13} \sin \beta_5} - S_{BC} = 0$$

圆周条件:
$$\beta_{12} + \beta_{13} + \beta_{14} + \beta_{15} + \beta_{16} - 360^{\circ} = 0$$
;

(2) 由
$$X^0 = 180^\circ - \beta_6 - \beta_7 - \beta_{15}$$
计算近似值 X^0 ;

(3)
$$\varphi = S_{CP_3} = S_{BC} \frac{\sin \beta_4 \sin \beta_{15}}{\sin \beta_{14} \sin x}$$

6.3.17 共4个条件方程:

圆形条件:
$$v_1 + v_2 + v_3 - W_1 = 0$$
 $v_4 + v_5 + v_6 - W_2 = 0$

极条件:
$$\cot(L_1 - X^0)v_1 - \cot(L_2 + L_4)v_2 + \cot(L_3 + L_5)v_3 + (\cot L_4 - \cot(L_2 + L_4))v_4 + (\cot(L_3 + L_5)v_5 - \cot L_5)v_5 - \cot(L_1 - X^0) + \cot X^0)\dot{x} - W_3 = 0$$

基线条件: $\cot X^0 x - \cot(L_3 + L_5)v_3 - \cot(L_3 + L_5)v_5 - W_4 = 0$

其中,闭合差的计算式为:

$$-W_1 = L_1 + L_2 + L_3 - 180^\circ$$
, $-W_2 = L_4 + L_5 + L_6 - 180^\circ$,

$$-W_{3} = \rho'' \left(1 - \frac{\sin L_{5} \cdot \sin(L_{2} + L_{4}) \cdot \sin X^{0}}{\sin L_{4} \cdot \sin(L_{1} - X^{0}) \sin(L_{3} + L_{5})}\right), \quad W_{4} = \rho'' \left(1 - \frac{BD \cdot \sin(L_{3} + L_{5})}{AB \cdot \sin X^{0}}\right),$$

$$X^0 = \arcsin(\frac{BD}{AB}\sin(L_3 + L_5))$$

6.4.18 (1) 2 个条件方程式、即:

$$\dot{S}_1^2 + \dot{S}_3^2 - \dot{S}_2^2 = 0$$
, $\dot{S}_2 \sin \hat{X} - \dot{S}_1 = 0$

线性化后并考虑各项单位,则有线性条件方程为:

$$5.572v_{s_1} - 8.630v_{s_2} + 6.591v_{s_3} + 23.815 = 0$$
, $-v_{s_1} + 0.646v_{s_2} + 0.160x = 0$ 式中, v_s 的单位为 cmo

(2)
$$X^0 = \arcsin \frac{S_1}{S_2} = 40^\circ 12' 51.38''$$

6.4.19 (1) 有 2 个条件方程:

图形条件:22.55 v_{s_1} +19.04 v_{s_2} +20.84 v_{s_3} -1.36"=0

边长条件:
$$v_{s_1} - x + 1.3 = 0$$
 (设 $X^0 = 387.350$ m)

法方程为:
$$\begin{bmatrix} 1 & 305 & 329 & 7 & 22 & 55 & 0 \\ 22 & 55 & 1 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \\ \vdots \end{bmatrix} - \begin{bmatrix} 1 & 36 \\ -1 & 3 \\ 0 \end{bmatrix} = 0$$

(2) 边长平差值 L与未知数平差值 X:

$$L = [387.3632 306.0652 354.6312]^{T}$$
(m)

$$X = X^0 + x = 387,363 \text{ 2m}$$

6.4.20 (1)条件方程:

图形条件:
$$\beta_1 + \beta_2 + \beta_3 - 180^\circ = 0$$

正弦条件:
$$\frac{\dot{S_1}}{\sin \dot{\beta_1}} - \frac{\dot{S_2}}{\sin \dot{\beta_2}} = 0, \frac{\dot{X}}{\sin \dot{\beta_3}} - \frac{\dot{S_1}}{\sin \dot{\beta_1}} = 0$$

线性条件: $v_1 + v_2 + v_3 - 1.12'' = 0$

$$0.41v_1 + 1.17v_2 + 0.40v_{s_1} - 0.78v_{s_2} + 0.25$$
cm = 0

$$0.48v_1 + 1.14v_3 + 0.46v_{x_1} - 0.78x - 0.33$$
cm = 0

设矩阵形式为 AV + Bx - W = 0,则:

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0.41 & 1.17 & 0 & 0.40 & -0.78 \\ 0.48 & 0 & 1.14 & 0.46 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ -0.78 \end{bmatrix}, W = \begin{bmatrix} 1.12 \\ -0.25 \\ 0.33 \end{bmatrix}$$
(2)法方程为:

$$\begin{bmatrix} 3 & 1.58 & 1.62 & 0 \\ 1.58 & 1.92 & 0.29 & 0 \\ 1.62 & 0.29 & 1.64 & -0.78 \\ 0 & 0 & -0.78 & 0 \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \\ K_3 \\ \frac{1}{x} \end{bmatrix} - \begin{bmatrix} 1.12 \\ -0.25 \\ 0.33 \\ 0 \end{bmatrix} = 0$$

由显表达式 $x = (B^{\mathsf{T}}(AQA^{\mathsf{T}})^{-1}B)^{-1}B^{\mathsf{T}}(AQA^{\mathsf{T}})^{-1}W$,可求得:

$$x = 0.91$$
cm

(3)边长平差值 SAB = X = 1 566.351 lm

$$\hat{S}_{AB}$$
的权倒数 $Q_X = \frac{1}{P_X} = \frac{1}{P_{S_{AB}}} = (B^T (AQA^T)^{-1}B)^{-1} = 0.78$

6.4.21 (1)共有3个条件方程:

图形条件: $\beta_1 + \beta_2 + \beta_3 - 180^\circ = 0$

正弦条件,
$$\frac{\dot{S_1}}{\sin \beta_1} - \frac{AB}{\sin \beta_3} = 0$$
, $\frac{\dot{S_1}}{\sin \beta_1} - \frac{\dot{X}}{\sin \beta_2} = 0$

线性条件: $v_1 + v_2 + v_3 + 3'' = 0$

$$-0.24v_1 + 0.24v_3 + 0.87v_{s_1} - 2.078$$
cm $= 0$

$$-0.24v_1 + 0.24v_2 + 0.87v_{s_1} - 0.87x - 3.428cm = 0$$

设其矩阵形式为: AV + Bx - W = 0,则:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ -0.24 & 0 & 0.24 & 0.87 \\ -0.24 & 0.24 & 0 & 0.87 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ -0.87 \end{bmatrix}, \mathbf{W} = \begin{bmatrix} -3 \\ 2.078 \\ 3.428 \end{bmatrix}$$

(2) AP 边边长平差值为 $S_{AP} = X = 999.994$ m,其中, X由显表达式 $x = (B^T (AQA^T)^{-1}B)^{-1}B^T (AQA^T)^{-1}$

W 求得, x = -1.6cm。

AP 边边长平差值的权倒数为:

$$Q_{\bar{X}} = (B^{T}(AQA^{T})^{-1}B)^{-1} = 0.151$$

6.4.22 (1) 2 个条件方程:

图形条件:联结 AC 边, SAC = 9 256.263m, 以 P 点为角顶点的图形条件

$$19.69 v_{s_1} - 0.98 v_{s_2} + 19.86 v_{s_3} + 227.87'' = 0$$

边长条件 $_{1}v_{i_{1}}-x+3=0$

(2) 法方程为:

$$\begin{bmatrix} 783.076 & 19.86 & 0 \\ 19.86 & 1 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \\ \vdots \end{bmatrix} - \begin{bmatrix} -227.87 \\ -3 \\ 0 \end{bmatrix} = 0$$

(3) PC 边边长平差值:

$$x = (B^{T}(AQA^{T})^{-1}B)^{-1}B^{T}(AQA^{T})^{-1}f = -2.78\text{cm}, x = 6.129.822.2\text{m}$$

$$A$$
、 B 矩阵为条件方程中 V_s 和 x 的系数阵, f 为常数项,本题中:
$$A = \begin{bmatrix} 19.69 & -0.98 & 19.86 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, f = \begin{bmatrix} -227.87 \\ -3 \end{bmatrix}$$

$$S_{PC} = X = X^0 + x = 6 \ 129.822 \ 2m \quad Q_X = \frac{1}{P_{S_{PC}}} = 0.496$$

第七章

7.1.01
$$h_1 = 0.010(m)$$
, $h_2 = 0.018(m)$, $h_3 = -0.028(m)$

7.1.02
$$\dot{H}_{P_1} = 12.413(m), \dot{H}_{P_2} = 14.093(m), \Delta \dot{h}_{1,2} = 1.680(m)$$

7.1.03
$$L_1 = 61^{\circ}20'10.77'', L_2 = 78^{\circ}08'21.37'', L_3 = 40^{\circ}31'27.86''$$

改正数: $v_1 = -0.53''$, $v_{12} = -0.53''$, $v_3 = -0.53''$

7.1.04 (1) 误差方程: 和限制条件为:

$$v_1 = x_1,$$
 $v_2 = x_2,$
 $v_3 = x_3,$
 $v_4 = x_1 + x_2 - 2,$
 $v_5 = x_2 + x_3 + 5, x_1 + x_2 + x_3 - 7 = 0$

- (2) $X_1 = (38^{\circ}20^{\circ}56.62^{\circ}, X_2 = 35^{\circ}18^{\circ}22.25^{\circ}, X_3 = 24^{\circ}41^{\circ}34.12^{\circ}$
- (3) 观测假的平差值:

 $L_1 = 38^{\circ}20'56.62''$, $L_2 = 35^{\circ}18'22.25''$, $L_3 = 24^{\circ}41'34.12''$, $L_4 = 73^{\circ}39'18.87''$, $L_5 = 59^{\circ}59'44.37''$ 7.2.05 误差方程为:

$$v_1 = x_3,$$

 $v_2 = x_1 + 5,$
 $v_3 = -x_1 + x_2,$
 $v_4 = x_4 + 7,$
 $v_5 = x_2 + 8$

限制条件为: $x_1-x_3=0$, x_2-x_4+7 0 法方程为:

$$\begin{bmatrix} 2 & -1 & 0 & () & 1 & 0 \\ -1 & 2 & 0 & () & 0 & 1 \\ 0 & 0 & 1 & () & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & () & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ K \end{bmatrix} - \begin{bmatrix} -5 \\ -8 \\ 0 \\ -7 \\ K_{s_1} \\ K \end{bmatrix} = 0$$

7.2.06 (1)误差方程为:

$$v_1 = x_3$$
,
 $v_2 = x_1$,
 $v_3 = x_2$,
 $v_4 = -x_1 + x_2 - 2$

限制条件为: $-x_1 + x_3 + 3i = 0$

(2)法方程为:

$$\begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_5 \end{bmatrix} - \begin{bmatrix} -2 \\ 2 \\ 0 \\ -3 \end{bmatrix} = 0$$

(3)
$$\dot{H}_{P_1} = -5.054 \text{m.} \dot{H}_{P_2} = 8.459 \text{m.} \dot{\Delta} h_{BP_1} = 1.089 \text{m.} \dot{Q}_{X} = \frac{1}{5} \begin{bmatrix} 2 & 1 & 2 \\ 1 & 3 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$

```
(4) m_0 = \pm 9.67 \text{mm}, \sigma_{\Delta h_B P_1} = \sigma_{x_3} = \pm 6.09 \text{mm}
```

7.2.07 (1)误差方程为:

$$v_1 = \dot{x}_1,$$

 $v_2 = -\dot{x}_1 + 2,$
 $v_3 = -\dot{x}_3 + 4,$
 $v_4 = \dot{x}_3,$
 $v_5 = \dot{x}_2,$

限制条件为: $x_1 + x_2 + x_3 - 7 = 0$

(2)
$$\dot{H}_{P_1} = 4.60(\text{m}), \dot{H}_{P_2} = 5.12(\text{m})$$

$$D_{H} = \begin{bmatrix} 2.25 & 0.75 \\ 0.75 & 2.25 \end{bmatrix}_{(cm)^{2}}$$

(3)
$$V = [2 \ 0 \ 1 \ 3 \ 2]^T (cm)$$

$$\hat{L} = [3.60 \quad 5.40 \quad 4.12 \quad 4.88 \quad 0.52]^{T} (cm)$$

7.2.08 (1) 误差方程为:

$$v_1 = x_1,$$

 $v_2 = x_2,$
 $v_3 = x_1 + 1,$
 $v_4 = x_2 - 8,$
 $v_5 = x_3$

限制条件为: $-x_1+x_2+x_3-7=0$

(2) 法方程为

$$\begin{bmatrix} 2 & 0 & 0 & -1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ -1 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ K \end{bmatrix} - \begin{bmatrix} -1 \\ 8 \\ 0 \\ 7 \end{bmatrix} = 0$$

(3)
$$V = [-1.1 \ 4.6 \ -0.1 \ -3.4 \ -1.2]^{T} (mm),$$

$$\dot{\mathbf{L}} = [2.357\ 9\ 3.284\ 6\ 1.225\ 9\ 2.152\ 6\ 0.926\ 8]^{\mathrm{T}}(\mathrm{m})$$

(4)
$$\dot{H}_B = 11.8926$$
 (m), $\dot{H}_C = 10.9659$ (m), $\sigma_{H_B} = \sigma_{X_2} = \pm 1.29$ (mm), $\sigma_{H_C} = \sigma_{X_1} = \pm 1.29$ (mm)

7.3.09 误差方程为:

$$v_1 = -0.516x_P + 0.516y_P - 1''$$

$$v_2 = 0.516x_P - 0.516y_P - 2''$$

$$v_3 = 1.031y_P + 2''$$

$$v_4 = -0.516x_P - 0.516y_P + 1''$$

限制条件为: $-1.031x_P-3''=0$

7.3.10 误差方程为:

$$v_1 = x_1$$
,

$$v_2 = x_2,$$

 $v_3 = -x_1 - x_2 - l_3,$
 $v_4 = x_3,$
 $v_5 = -x_2 - l_5,$
 $v_6 = x_2 - x_3 - l_6$

限制条件为:

$$AB \frac{\sin X_1 \sin X_3}{\sin (X_1 + X_2) \sin (\angle ABC - X_2 + X_3)} - BC = 0$$

$$\cot X_1^0 x_1 + \cot X_3^0 x_3 - \cot (X_1^0 + X_2^0)(x_1 + x_2) - \cot (\angle ABC - X_2^0 - X_3^0)(-x_2 + x_3)$$

$$+ \rho'' (1 - \frac{BC \sin(X_1^0 + X_2^0) \cdot \sin(\angle ABC - X_2^0 + X_3^0)}{AB \sin X_1^0 \cdot \sin X_3^0}) = 0$$

7.3.11 误差方程为:

$$v_{1} = x_{1} \qquad -l_{1} = 0$$

$$v_{2} = x_{2} \qquad -l_{2} = 0$$

$$v_{3} = x_{3} \qquad -l_{3} = 0$$

$$v_{4} = x_{4} \qquad -l_{4} = 0$$

$$v_{5} = x_{5} \qquad -l_{5} = 0$$

$$v_{6} = -x_{2} - x_{3} - l_{6} \qquad -l_{6} = 180^{\circ} - X_{2}^{0} - X_{3}^{0} - L_{6}$$

$$v_{7} = -x_{4} - x_{5} - l_{7} \qquad -l_{7} = 180^{\circ} - X_{4}^{0} - X_{5}^{0} - L_{7}$$

$$v_{8} = -x_{1} - x_{3} - x_{5} - l_{8} \qquad -l_{8} = -180^{\circ} - X_{1}^{0} + X_{3}^{0} + X_{5}^{0} - L_{8}$$

$$v_{9} = -x_{3} - x_{5} - l_{9} \qquad -l_{9} = 360^{\circ} + X_{3}^{0} - X_{5}^{0} - L_{9}$$

限制条件为极条件(D 点为极点):

$$\frac{\sin(180^{\circ} - X_2 - X_3) \cdot \sin X_1 \cdot \sin(180^{\circ} - X_4 - X_5)}{\sin X_2 \cdot \sin[180^{\circ} - (360^{\circ} - X_3 - X_5) - X_1] \cdot \sin X_4} - 1 = 0$$

线性化后为:

$$\begin{split} (\cot X_1^0 - \cot (X_1^0 + X_3^0 + X_5^0))x_1 + (\cot (X_2^0 + X_3^0) - \cot X_2^0)x_2 + (\cot (X_2^0 + X_3^0) - \cot (X_1^0 + X_3^0 + X_5^0))x_3 + \\ (\cot (X_4^0 + X_5^0) - \cot X_4^0)x_4 + (\cot (X_4^0 + X_5^0) - \cot (X_1^0 + X_3^0 + X_5^0))x_5 - W_X &= 0 \\ \\ \sharp \Phi \,, \, -W_X &= \rho'' \bigg(1 - \frac{\sin X_2^0 \cdot \sin (X_1^0 + X_3^0 + X_5^0) \cdot \sin X_4^0}{\sin (X_2^0 + X_3^0) \cdot \sin X_1^0 \cdot \sin (X_4^0 + X_5^0)} \bigg) \end{split}$$

其中,
$$-W_X = \rho'' \left(1 - \frac{\sin X_2^0 \cdot \sin(X_1^0 + X_3^0 + X_3^0) \cdot \sin X_4^0}{\sin(X_2^0 + X_3^0) \cdot \sin X_1^0 \cdot \sin(X_4^0 + X_3^0)}\right)$$

7.3.12 (1)误差方程:

$$v_1 = x_1,$$

 $v_2 = x_2,$
 $v_3 = x_3,$
 $v_4 = -x_2 - 4''$

限制条件: $x_1 + x_2 + x_3 + 2^{\prime\prime} = 0$

(2)法方程及其未知数的解:

164

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ K_1 \end{bmatrix} - \begin{bmatrix} 0 \\ -4 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\hat{X} = [0 \quad -2 \quad 0]^{\mathrm{T}}(\mathbf{D}), K_{\mathrm{s}} = 0$$

未知数的平差值及其权倒数为:

$$\dot{\mathbf{X}} = \begin{bmatrix} 28^{\circ}26'12'' \\ 43^{\circ}45'09'' \\ 107^{\circ}48'39'' \end{bmatrix}, \mathbf{Q}\dot{\mathbf{x}} = \frac{1}{5} \begin{bmatrix} 3 & -1 & -2 \\ -1 & 2 & -1 \\ -2 & 1 & 3 \end{bmatrix}$$

(3)
$$L_4 = 316^{\circ}14'51''$$
, $\frac{1}{P_{L_4}} = \frac{2}{5} = 0.4$

7.3.13 误差方程:

$$v_1 = x_2 + x_3 - x_5 - l_1$$
, $-l_1 = X_2^0 + X_3^0 - X_3^0 - L_1$
 $v_2 = -x_1 - x_2 - x_3 - l_2$, $-l_2 = 180^\circ - X_1^0 - X_3^0 - X_3^0 - L_2$
 $v_3 = x_1$
 $v_4 = x_2$
 $v_5 = x_3$
 $v_6 = x_4$
 $v_7 = -x_2 - x_3 - x_4 - l_7$, $-l_7 = 180^\circ - X_3^0 - X_3^0 - X_4^0 - L_7$

未知数间的限制条件为极条件(以 A 点为极):

$$\frac{\sin X_3 \cdot \sin[180^\circ - (X_2 + X_3 + X_4 - X_5)] \cdot \sin X_1}{\sin(X_1 + X_2) \cdot \sin X_4 \cdot \sin X_5} - 1 = 0$$

线性化条件为:

 $v_8 = x_5$

$$(\cot X_1^0 - \cot (X_1^0 + X_3^0) x_1 + (\cot (X_2^0 + X_3^0 + X_4^0 - X_3^0) - \cot (X_1^0 + X_3^0)) x_2 + (\cot X_3^0 + \cot (X_3^0 + X_3^0 + X_4^0 - X_4^0)) x_3 + (\cot (X_2^0 + X_3^0 + X_4^0 - X_3^0) - \cot X_4^0) x_4 + (\cot (X_3^0 + X_3^0 + X_4^0 - X_5^0) - \cot X_3^0) x_5 + \rho'' (1 - \frac{\sin (X_1^0 + X_2^0) \cdot \sin X_4^0 \cdot \sin X_5^0}{\sin X_3^0 \cdot \sin (X_3^0 + X_3^0 + X_4^0 - X_5^0) \cdot \sin X_1^0}) = 0$$

7.3.14 (1)法方程为:

$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ K_1 \end{bmatrix} - \begin{bmatrix} 1 \\ -3 \\ -3 \end{bmatrix} = 0$$

$$\dot{x}_1 = 1, \dot{x}_2 = -2, K_S = 0$$

(2)
$$Q_{\varphi} = 12.1$$

7.3.15 (1)
$$\dot{X}_C = 6.519.912 \text{ (m)}$$
, $\dot{Y}_C = 14.400.131 \text{ (m)}$
 $\dot{X}_D = 10.000.133 \text{ (m)}$, $\dot{Y}_D = 10.000.139 \text{ (m)}$

(2)
$$\sigma_0 = \pm 8.59'', \frac{1}{P_0} = 0.0918 \quad (\Leftrightarrow \varphi = T_{CO}), \sigma_{\varphi} = \pm 2.60''$$

7.3.17 (1)误差方程为(x,y以 dm 为单位):

$$v_1 = -4.082 \ x_1 + 5.239 \ y_1 - 2.230 \ x_2 - 2.731 \ y_2 + 3.33''$$

$$v_2 = 6.312 \ x_1 - 2.508 \ y_1 + 0.554 \ x_2 + 3.563 \ y_2 - 1.04''$$

$$v_3 = -2.230 \ x_1 - 2.731 \ y_1 + 1.676 \ x_2 - 0.832 \ y_2 - 0.09''$$

$$v_4 = 2.230 \ x_1 + 2.731 \ y_1 + 2.266 \ x_2 - 1.008 \ y_2 - 1.78''$$

$$v_5 = 0.681 \ x_1 - 6.812 \ y_1 - 4.496 \ x_2 - 1.723 \ y_2 - 0.04''$$

$$v_6 = -2.911 \ x_1 + 4.081 \ y_1 + 2.230 \ x_2 + 2.731 \ y_2 - 3.08''$$

限制条件为: $-0.995 x_1 - 0.100 y_1 - 0.01 = 0$ (常数项以 dm 为单位) 坐标平差值及其协因数阵为:

$$\dot{X} = \begin{bmatrix} \dot{X}_1 \\ \dot{Y}_1 \\ \dot{X}_2 \\ \dot{Y}_2 \end{bmatrix} = \begin{bmatrix} 12 580.608 \\ 14 231.214 \\ 8 050.025 \\ 17 931.498 \end{bmatrix}_{(m)}$$

$$Q_{\dot{X}} = \begin{bmatrix} 0.000 113 & -0.001 127 & 0.001 189 & -0.000 785 \\ 0.011 212 & 0.011 830 & 0.007 813 \\ 0.048 041 & -0.028 318 \\ \hline{\text{对 }} & & & & & & & \\ \hline{\text{N}} & & & \\ \hline{\text{N}} & & & &$$

 $\sigma_{X_3} = \pm 0.39 \,\mathrm{dm}, \sigma_{Y_3} = \pm 0.39 \,\mathrm{dm}$

 $\sigma_{P_1} = \pm 0.22 \text{dm}, \sigma_{P_2} = \pm 0.55 \text{dm}$

7.4.18 误差方程为(x,y及常数项均以 cm 为单位):

$$\begin{aligned} v_{s_1} &= 0.688 \ x_C + 0.726 \ y_C + 0.1, \\ v_{s_2} &= -0.502 \ x_D + 0.865 \ y_D, \\ v_{s_3} &= -0.881 \ x_D + 0.474 \ y_D, \\ v_{s_4} &= -0.144 \ x_C + 0.990 \ y_C, \\ v_{s_5} &= 0.995 \ x_C + 0.100 \ y_C - 0.995 \ x_D - 0.100 \ y_D - 1.7 \end{aligned}$$

限制条件为: $-0.089 x_D - 0.052 y_D + 2.50" = 0$

7.4.19 (1) 误差方程为(x, y, 的单位为 cm):

$$\mathbf{V} = \begin{bmatrix} -0.936 & 7 & 0.350 & 2 \\ -0.196 & 0 & -0.980 & 6 \\ 0.918 & 9 & -0.394 & 5 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \end{bmatrix} - \begin{bmatrix} 5.22 \\ 5.56 \\ 6.47 \end{bmatrix}$$
 (cm)

限制条件:0.132 7 x_p + 0.309 2 y_p - 3.08" = 0

(2)
$$\dot{x}_p = 5.33 \text{cm}, y_p = 7.67 \text{cm}$$

 $\dot{X}_P = 57.578.983 \text{m}, \dot{Y}_P = 70.998.337 \text{m}$

(3)
$$\mathbf{V} = \begin{bmatrix} -7.53 \\ -14.13 \\ -4.60 \end{bmatrix} \text{ cm, } \mathbf{\dot{S}} = \begin{bmatrix} 3.128.785 \\ 3.367.059 \\ 6.129.834 \end{bmatrix} \text{ m}$$

166

7.4.20 (1) 误差方程:

$$v_1 = 1.03 \ \dot{x}_p - 1.78 \ \dot{y}_p - 5'',$$
 $v_2 = 1.03 \ \dot{x}_p - 1.78 \ \dot{y}_p + 2'',$
 $v_3 = -2.06 \ \dot{x}_p,$
 $v_s = 0.87 \ \dot{x}_p - 0.50 \ \dot{y}_p - 1.2$ (常数项单位:cm)

限制条件: $0.87 x_p + 0.50 y_p - x_{AP} - 3.2 (cm) = 0$

(2) 法方程及其解:

$$\begin{bmatrix} 9.29 & -1.74 & 0 & 0.87 \\ -1.74 & 7.34 & 0 & 0.50 \\ 0 & 0 & 0 & -1 \\ 0.87 & 0.50 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \\ x_{AP} \\ K_1 \end{bmatrix} - \begin{bmatrix} 7.27 \\ -14.86 \\ 0 \\ 3.2 \end{bmatrix} = 0$$

$$x_b = 0.35$$
cm, $y_b = -1.86$ cm, $x_{AP} = -4.09$ cm

未知数平差值: $\dot{X}_P = 866.004$ m, $\dot{Y}_P = 499.981$ m, $\dot{X}_{AP} = 999.971$ m

(3)
$$\mathbf{V} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_z \end{bmatrix} = \begin{bmatrix} -1.33'' \\ -0.95'' \\ -0.72'' \\ 0.03 \text{cm} \end{bmatrix}, \dot{\mathbf{L}} = \begin{bmatrix} \dot{\beta}_1 \\ \dot{\beta}_2 \\ \dot{\beta}_3 \\ \dot{S} \end{bmatrix} = \begin{bmatrix} 60°00'3.67'' \\ 59°59'57.05'' \\ 59°59'59.28'' \\ 999.990.3 \text{m} \end{bmatrix}$$

7.4.21 (1) 误差方程和限制条件

$$v_{1} = -0.516 x_{p} + 0.516 y_{p} - 1'', \qquad P_{1} = 1$$

$$v_{2} = 0.516 x_{p} - 0.516 y_{p} - 2'', \qquad P_{2} = 1$$

$$v_{3} = 1.031 x_{p} - 2'', \qquad P_{3} = 1$$

$$v_{4} = -0.516 x_{p} - 0.516 y_{p} + 2'', \qquad P_{4} = 1$$

$$v_{s_{1}} = 0.707 x_{p} + 0.707 y_{p} + 3 \text{cm}, \qquad P_{5} = 1$$

$$v_{s_{2}} = 1.000 x_{p} - 2 \text{cm}, \qquad P_{6} = 1$$

$$-1.31 \dot{x}_p - 3'' = 0$$

(2) 法方程及其解:

$$\begin{bmatrix} 3.362 & 0.234 & -1.031 \\ 0.234 & 1.299 & 0 \\ -1.031 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_p \\ \dot{y}_p \\ K_s \end{bmatrix} - \begin{bmatrix} 3.489 \\ -1.605 \\ 3.000 \end{bmatrix} = 0$$

$$x_p = -2.9 \text{cm}, y_p = -0.7 \text{cm}, K_s = -13.034$$

- (3) $\dot{X}_P = 1.999.971 \text{m}, \dot{Y}_P = 1.999.993 \text{m}$
- (4) $\hat{\beta}_1 = 45^{\circ}00'00''$, $\hat{\beta}_2 = 45^{\circ}00'00''$, $\hat{\beta}_3 = 89^{\circ}59'57''$, $\hat{\beta}_4 = 45^{\circ}00'03''$, $\hat{S}_1 = 2.828.390 \text{m}$, $\hat{S}_2 = 1.999.971 \text{m}$

第八章

8.1.01 (1) 设 X⁰ = 12.412m, X⁰ = 2.154m 2个一般条件方程:

$$v_1 - x_2 = 0$$
, $v_2 + v_3 + x_4 - 6$ mm $= 0$

i 个未知数间的限制条件: $-x_1 + x_2 = 0$

(2)
$$x_1 = \frac{4}{3}$$
 mm, $x_2 = \frac{4}{3}$ mm
 $X_1 = 12.413$ 3m, $X_2 = 2.155$ 3m
 $V = [1.33 \ 2.00 \ 2.67]^T$ mm

高差平差值: h=[2.155 3 1.680 0 1.033 7] m

高程平差值: H_{P1} = 12.413 3m, H_{P2} = 14.093 3m

8.1.02 (1) 条件方程有 5 个:

$$v_1 - x_1 = 0, v_2 - x_2 = 0, v_4 - x_3 = 0, v_3 - v_5 + x_2 - 1'' = 0, v_3 - v_6 + x_3 - 3'' = 0$$

限制条件: $x_1 + x_2 - x_3 + 3' = 0$

(2) 法方程为:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \\ K_3 \\ K_4 \\ K_5 \\ \vdots \\ X_1 \\ \vdots \\ X_2 \\ \vdots \\ X_3 \\ K_s \end{bmatrix} = 0$$

未知参数:
$$x = \begin{bmatrix} -1.0 \\ -0.5 \\ 1.5 \end{bmatrix}$$
, $X = \begin{bmatrix} 44^{\circ}03'13.5'' \\ 43^{\circ}14'19.5'' \\ 87'17'33.0'' \end{bmatrix}$

$$(3) V = \begin{bmatrix} -1.0 \\ -0.5 \\ 1.0 \\ 1.5 \\ -0.5 \\ -0.5 \end{bmatrix}$$
, $L = \begin{bmatrix} 44^{\circ}03'13.5'' \\ 43^{\circ}14'19.5'' \\ 53^{\circ}33'33.0'' \\ 87^{\circ}17'33.0'' \\ 96^{\circ}47'52.5'' \\ 140^{\circ}51'06.0'' \end{bmatrix}$

8.2.03 (1) 3 个条件方程为:

$$v_1 - x_1 = 0$$
, $v_5 - x_2 = 0$, $v_2 + v_3 + v_4 + 4$ mm = 0

限制条件为: $x_1 - x_2 - 7mm = 0$

(2) 法方程为:

$$\begin{bmatrix} 1.5 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1.8 & 0 & 0 & -1 & 0 \\ 0 & 0 & 3.6 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \\ K_3 \\ \vdots \\ K_l \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ -4 \\ 0 \\ 0 \\ 7 \end{bmatrix} = 0$$

(3)
$$\mathbf{x} = [3.1815 -3.8178]^{\mathrm{T}}$$
mm

168

$$\mathbf{X} = [30.204\ 2\ 31.204\ 2]^{\mathrm{T}}$$
m

$$V = [3.1815 \ 1.3336 \ 1.0000 \ 1.6668 \ -3.8178]^{T}$$
tmrn

$$L = [4.345 \ 2 \ 2.141 \ 3 \ 1.211 \ 0 \ -2.352 \ 7 \ 5.345 \ 2]^{T} m$$

(4)
$$Q_{\dot{x}} = \begin{bmatrix} 0.818 & 25 & 0.818 & 10 \\ 0.818 & 10 & 0.818 & 28 \end{bmatrix}$$

$$Q_V = \begin{bmatrix} 0.68175 & 0 & 0 & 0 & -0.81810 \\ 0 & 0.4 & 0.3 & 0.5 & 0 \\ 0 & 0.225 & 0.375 & 0 \\ 0 & 0.5 & 0.375 & 0.625 & 0 \\ -0.81810 & 0 & 0 & 0 & 0.98172 - 0.000 \end{bmatrix}$$

8.2.04 (1) 有 3 个一般条件和 1 个限制条件:

$$v_1 - v_2 + v_5 + 7 = 0$$
, $v_2 - v_4 + x_1 + 1 = 0$, $v_1 - v_3 - x_2 = 0$, $x_1 + x_2 = 0$

(2)
$$\mathbf{x} = [-0.5 \ 0.5]^{\mathrm{T}} (\mathrm{mm}), \mathbf{X} = [14.1035 \ 0.9965]^{\mathrm{T}} (\mathrm{m})$$

$$V = [-1.625 \ 1.625 \ -2.125 \ 2.125 \ -3.750]^{T} \text{(mm)} \dot{L} = \begin{bmatrix} 1.357 \ 4 \\ 2.010 \ 6 \\ 0.360 \ 9 \\ 1.014 \ 1 \\ 0.653 \ 2 \end{bmatrix} \text{ (m)}$$

(3)
$$Q_X = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, Q_V = \frac{1}{8} \begin{bmatrix} 3 & -3 & -1 & 1 & 2 \\ -3 & 3 & 1 & -1 & -2 \\ -1 & 1 & 3 & -3 & 2 \\ 1 & -1 & -3 & 3 & -2 \\ 2 & -2 & 2 & -2 & 4 \end{bmatrix}$$

8.2.05 (1)4 个条件方程和 1 个限制条件(常数项单位:mm):

$$v_1 - x_1 = 0$$
, $v_2 - x_2 = 0$, $v_3 - v_4 - x_1 + 6 = 0$, $v_4 - v_5 - 3 = 0$, $x_1 - x_2 - 5 = 0$

(2)
$$V = [0.95 -4.05 -3.57 \ 3.38 \ 0.38]^{T} (mm)$$

$$L = [1.251\ 0\ -0.249\ 0\ 0.746\ 4\ -1.002\ 6\ -2.002\ 6]^{T}(m)$$

$$H_P = 6.251 \text{ O(m)}$$

$$\dot{H}_{P_n} = 6.997 \text{ 4(m)}$$

(3)
$$\dot{\mathbf{x}} = [0.95 \quad -4.05]^{\mathrm{T}} (\mathrm{mm}), \dot{\mathbf{X}} = [1.251 \ 0 \quad -0.249 \ 0]^{\mathrm{T}} (\mathrm{m}), \mathbf{Q} \dot{\mathbf{x}} = \begin{bmatrix} 0.476 & 0.476 \\ 0.476 & 0.476 \end{bmatrix}$$

8.3.06 (1) 条件方程为以下 9 个:

$$v_2 - x_1 = 0, v_4 - x_2 = 0$$

图形条件: $v_1 + v_3 + x_1 - 2.8'' = 0$, $v_5 + v_6 + x_2 + 1.2'' = 0$, $v_7 + v_8 + v_9 - 0.9'' = 0$, $v_{10} + v_{11} + v_{12} - 3.8'' = 0$ 圆周条件: $v_1 + v_5 + v_8 + v_{11} - 1.2'' = 0$

极条件: $-0.623v_3 + 2.616v_6 + 0.281v_7 - 1.863v_9 + 0.691v_{10} - 0.774v_{12} + 1.290 \dot{x_1} - 1.537 \dot{x_2} + 6.053'' = 0$ 固边定条件: $-0.103v_1 + 0.623v_3 - 0.707v_5 - 2.616v_6 - 1.078'' = 0$

限制条件 1 个: $x_1 + x_2 + 0.30^\circ = 0$

(2) 法方程为:

$$\begin{bmatrix} K_1 \\ K_2 \\ K_3 \\ K_4 \\ K_5 \\ K_6 \\ K_7 \\ -1.2 \\ 0.9 \\ 3.8 \\ 1.2 \\ -6.053 \\ 1.078 \\ 0 \\ 0 \\ -0.30 \end{bmatrix} = 0$$

第九章

9.1.01 (1)
$$\varphi_E = 150^{\circ}01'$$
和 330°01', $\varphi_F = 60^{\circ}01'$ 和 240°01'

(2)
$$E = \pm 0.98 \text{dm}$$
, $F = \pm 0.71 \text{dm}$;

(3)
$$\sigma_X = \pm 0.92 \text{dm}, \sigma_Y = \pm 0.78 \text{dm}, \sigma_P = \pm 1.21 \text{dm};$$

(4)
$$\sigma_{\varphi=60}$$
 = ± 0.71 dm

9.1.02 (1)
$$\varphi_E = 30^\circ \text{Re } 210^\circ$$
, $E = \pm 1.20 \text{dm}$, $F = \pm 0.67 \text{dm}$;

- (2) 略;
- (3) $\sigma_P^2 = 1.90 (dm)^2$

9.1.03 (1)
$$\varphi_E = 45^\circ \text{All } 225^\circ$$
, $E = \pm 1.58 \text{dm}$, $F = \pm 1.22 \text{dm}$, $\sigma_P^2 = 4 (\text{dm})^2$;

(2)
$$\sigma_{\varphi=30} = \pm 1.56 dm$$
, $\Psi = 345^{\circ}$

(3)
$$\frac{\sigma_{S_{PC}}}{S_{PC}} = \frac{1}{20\ 000}, \sigma_{T_{PC}} = \pm 8.25''$$

9.1.04 (1)
$$\varphi_E = 157.5^\circ \text{ } \text{ } 337.5^\circ, \varphi_F = 67.5^\circ \text{ } \text{ } 247.5^\circ, E = \pm 1.48 \text{dm}, F = \pm 1.22 \text{dm},$$

(2)
$$\sigma_{\Psi=232~S} = \pm 1.33 dm, \sigma_{\varphi=30} = \pm 1.33 dm$$

(3) B

9.1.05 (1)
$$Q_{X} = \begin{bmatrix} 1.2277 & -0.2814 \\ -0.2814 & 0.9573 \end{bmatrix} (cm)^{2} / (")^{2}, \quad \alpha_{0} = \pm 5.08"$$

- (2) $\varphi_E = 147^{\circ}50' \text{ ft } 327^{\circ}50', \varphi_F = 57^{\circ}50' \text{ ft } 237^{\circ}50'$
- (3) $E = \pm 6.02 \text{cm}, F = \pm 4.49 \text{cm}, \sigma_X = \pm 5.63 \text{cm}, \sigma_Y = \pm 4.97 \text{cm}, \sigma_P = \pm 7.51 \text{cm}$
- (4) $\sigma_{\varphi=60} = \pm 4.49$ cm
- (5) 误差曲线见图 13。

三角网比例尺为1:20万,误差曲线比例尺为1:2

从误差曲线图形上量出:

$$\sigma_{X} = \overline{P1} = \pm 5.6 \text{cm}, \sigma_{Y} = \overline{P2} = \pm 5.0 \text{cm}, \sigma_{S_{AP}} = \overline{P4} = \pm 5.0 \text{cm},$$

$$\sigma_{u} = \overline{P3} = \pm 5.85 \text{cm}, \sigma_{\varphi=60} = \overline{P5} = \pm 4.7 \text{cm}$$

9.1.06 $\sigma_0 = \pm 1.14''$

$$Q_X = \begin{bmatrix} 0.213 & 5 & -0.146 & 0 \\ -0.146 & 0 & 0.594 & 7 \end{bmatrix} (cm)^2 / (")^2$$

$$\varphi_E = 108' 44' \% 1288' 44', E = \pm 0.92 cm, F = \pm 0.47 cm$$

9.1.07 (1)
$$Q_{\dot{X}} = \begin{bmatrix} 1.209.8 & -0.284.1 \\ -0.284.1 & 0.936.2 \end{bmatrix} (cm)^2 / (")^2, \quad \sigma_0 = \pm 5.08";$$

- (2) $\varphi_E = 147^{\circ}51^{\circ} \text{ an } 327^{\circ}51^{\circ}, \quad \varphi_F = 57^{\circ}51^{\circ} \text{ an } 237^{\circ}51^{\circ};$
- (3) $E = \pm 5.99$ cm, $F = \pm 4.42$ cm, $\sigma_{X} = \pm 5.59$ cm, $\sigma_{Y} = \pm 4.92$ cm, $\sigma_{P} = \pm 7.44$ cm; (4) $\sigma_{\varphi=60} = \pm 4.42$ cm

9.1.08 (1)
$$Q_{X} = \begin{bmatrix} 0.213.5 & -0.146.0 \\ -0.146.0 & 0.594.7 \end{bmatrix} (dm)^{2} / (")^{2}, \sigma_{0} = \pm 1.14",$$

- (2) $\varphi_E = 108^{\circ}44' \text{ ft } 288^{\circ}44', E = \pm 0.91 \text{ cm}, F = \pm 0.46 \text{ cm}$
- 9.1.09 (1) $\varphi_E = 0^{\circ} \approx 180^{\circ}$, $E = \pm 1.00 \, \text{dm}$, $F = \pm 0.71 \, \text{dm}$;

(2)
$$\sigma_{S_{PA}} = \pm 0.87 \text{dm}, \sigma_{u_{PA}} = \pm 0.87 \text{dm}, \sigma_{P} = \pm 1.23 \text{dm}$$

- 9.1.10 φ_E = 0° ~ 360°, E = ±1.30dm, F = ±1.30dm, 误差椭圆为圆形。
- 9.1.11 (1) $\varphi_E = 147^{\circ}52^{\circ}$ 和 327°52 $^{\circ}$, $E = \pm 1.18$ dm, $F = \pm 0.87$ dm
 - (2) $A \setminus P$ 两点间的相对误差椭圆参数 $q_E \setminus E \setminus F$ 值与 P 点误差椭圆参数相同,见答案(1)。
- 9.1.12 $\varphi_E = 126^{\circ}0'$, $E = \pm 0.98 \text{dm}$, $F = \pm 0.85 \text{dm}$

9.1.13
$$\sigma_{S_{PA}}/S_{PA} = 1/16 284$$

9.2.14
$$\sigma_{T_{P_1P_2}} = \pm 2.66''$$

9.2.15
$$\varphi_{E_{1,2}} = 135^\circ$$
和 315° , $E_{1,2} = \pm 2.24$ cm, $F_{1,2} = \pm 1.00$ cm

9.2.16 (1)
$$\varphi_{E_{1,2}} = 79^{\circ}29' \text{ All } 259^{\circ}29', E_{1,2} = \pm 1.01 \text{ dm}, F_{1,2} = \pm 0.87 \text{ dm};$$

(2)
$$\sigma_{1,2}/S_{1,2}/79$$
 959

9.2.17 (1)
$$\varphi_{E_{1,2}} = 30$$
°和 210°, $E_{1,2} = \pm 1.20$ dm, $F = \pm 0.67$ dm;

(2)
$$\sigma_{S_{P_1P_2}}/S_{P_1P_2}/1/30$$
 319, $\sigma_{T_{P_1P_2}}=\pm 5.20''$

9.2.18 (1)
$$Q_{X} = \begin{bmatrix} 0.012 & 1 & 0.004 & 4 & 0.002 & 5 & 0.002 & 5 \\ 0.004 & 4 & 0.016 & 1 & 0.002 & 4 & 0.003 & 2 \\ 0.002 & 3 & 0.002 & 4 & 0.011 & 7 & 0.004 & 1 \\ 0.002 & 5 & 0.003 & 2 & 0.004 & 1 & 0.016 & 9 \end{bmatrix} (dm)^{2}/(")^{2}, \sigma_{0} = \pm 1.3";$$

- (2) $\varphi_{E_1} = 57^{\circ}13' \text{ ft } 237^{\circ}13', E_1 = \pm 0.18 \text{dm}, F_1 = \pm 0.12 \text{dm};$
- (3) $\varphi_{E_2} = 61^{\circ}12' \text{ ft } 241^{\circ}12', E_2 = \pm 0.18 \text{dm}, F_2 = \pm 0.13 \text{dm};$
- (4) $\varphi_{E_{1,2}} = 67^{\circ}54'$ 和 247°54', $E_{1,2} = \pm 0.22 \text{dm}$, $F_{1,2} = \pm 0.17 \text{dm}$
- (5)误差椭圆见图 14。从图上量得 $\sigma_{S_{P_1P_2}} = oe = \pm 0.225 dm$, $\sigma_{u_{P_1P_2}} = og = \pm 0.175 dm$

三角网比例尺 1:20 万, 误差椭圆比例尺 1:3

9.2.19 (1) $\sigma_0 = \pm 2.16''$

$$Q_{\tilde{X}} = \begin{bmatrix} 3.1607 & 2.1146 & 4.4407 & -0.6680 \\ 2.1146 & 1.8444 & 3.1217 & -0.1538 \\ 4.4407 & 3.1217 & 7.1011 & -1.2854 \\ -0.6680 & -0.1538 & -1.2854 & 2.1525 \end{bmatrix} (cm)^2 / (")^2;$$

- (2) $\varphi_{E_1} = 36^{\circ}21' \text{ Al } 216^{\circ}21', E_1 = \pm 4.69 \text{cm}, F_1 = \pm 1.16 \text{cm};$
- (3) $\varphi_{E_2} = 166^{\circ}16' \text{ ft } 346^{\circ}16', E_2 = \pm 5.88 \text{cm}, F_2 = \pm 2.93 \text{cm};$
- (4) $\varphi_{E_{1,2}} = 114^{\circ}00' \pi l \, 294^{\circ}00'$, $E_{1,2} = \pm 4.84 \, \text{cm}$, $F_{1,2} = \pm 1.75 \, \text{cm}$;
- (5) P_1 点, P_2 点的误差椭圆及两点间的相对误差椭圆图形见图 15(比例尺为 1:4)。

从图上量得
$$\sigma_{S_{P_1P_2}}=oe=\pm 4.8 \mathrm{cm}$$
, $\sigma_{u_{P_1P_2}}=og=\pm 1.8 \mathrm{cm}_o$

9.2.20
$$\varphi_{E_1} = 90^{\circ}14' \, \text{ft} \, 270^{\circ}14', E_1 = \pm 0.40 \, \text{dm}, F_1 = \pm 0.31 \, \text{dm},$$

$$\varphi_{E_2} = 84^{\circ}40' \, \text{ft} \, 264' \, 40', E_2 = \pm 0.40 \, \text{dm}, F_2 = \pm 0.31 \, \text{dm},$$

$$\varphi_{E_{1,2}} = 67' \, 41' \, \text{ft} \, 247' \, 41', E_{1,2} = \pm 0.53 \, \text{dm}, F_{1,2} = \pm 0.37 \, \text{dm}$$

9.2.21 根据 $\tan 2\varphi_0 = 0$,得 $\varphi_0 = 0$ °及 90°,将 $\varphi_0 = 0$ °和 $\varphi_0 = 90$ °分别代人位差公式 $\sigma_{\varphi_0}^2 = \sigma_0^2 (Q_X \cos^2 \varphi_0 + Q_{XY} \sin^2 \varphi_0 + Q_{XY} \sin^2 \varphi_0)$ 中,得 $\sigma_{\varphi_0 = 0}^2 = \sigma_0^2 Q_X$, $\sigma_{\varphi_0 = 90}^2 = \sigma_0^2 Q_X$,所以 $\varphi_E = 0$ °, 极大值方向是 X 轴方向,极小值方向是 Y 轴方向。

9.2.22 (1)
$$\varphi_E = 34^{\circ}06' \text{ ft } 214^{\circ}06', E = \pm 1.48 \text{cm}, F = \pm 1.40 \text{cm}$$

(2)
$$\sigma_{S_{cp}} = \pm 1.41$$
cm

第十章

10.1.01
$$K = [1 \quad -2 \quad 1]^T, V = [1 \quad 1 \quad -2 \quad 3]^T, \hat{x} = -1, Q_{\hat{x}} = \frac{3}{5}$$

10.1.02
$$H_{p_2} = \hat{X} = 13.803 \text{m}, Q_{\hat{X}} = \frac{3}{5}$$

10.1.03
$$\dot{X}_1 = 36.3921 \text{m}, \dot{X}_2 = 42.8744 \text{m}, Q_X = \begin{bmatrix} 2.4460 & 1.9497 \\ 1.9497 & 2.5530 \end{bmatrix}$$

10.1.04
$$\hat{x} = -1, V = \begin{bmatrix} 1 & 1 & -2 & 3 \end{bmatrix}^T, Q_{\hat{X}} = \frac{5}{3}, \hat{\sigma}_0^2 = \frac{15}{2}, \sigma_{\hat{X}}^2 = 1$$

10.1.05 (1)
$$V = [0.24 - 0.24 - 0.52 - 0.29 1.19 0.90 0.90]^{T}$$
mm
 $\hat{\mathbf{L}} = [0.2592 - 0.8722 1.1315 2.1377 3.2692 - 1.2551 - 2.0141]^{T}$ mm

$$\dot{X} = 4.7019 \text{m} (\hat{x} = -\frac{1}{7} = -0.14 \text{mm})$$

$$Q_{\bar{X}} = \frac{8}{7}$$

(2)
$$\hat{H}_{p_4} = 4.7019 \text{m}, Q_{\hat{H}_{p_4}} = \frac{8}{7}.$$

10.1.06 (1)

$$V_{1} + V_{2} - V_{3} + 6 = 0$$

$$V_{3} + V_{4} - V_{5} - V_{6} - 22 = 0$$

$$V_{2} - V_{4} = 0$$

$$V_{6} + \hat{x}_{1} - \hat{x}_{2} + 16 = 0$$
(I)

$$V_7 - V_8 + V_9 + \hat{x}_1 - \hat{x}_2 + 34 = 0$$
 ([])

 $(2)\hat{X}_1 = 36.3921m$, $\hat{X}_2 = 42.8744m$

$$Q_{\bar{X}} = \begin{bmatrix} 2.4460 & 1.9497 \\ 1.9497 & 2.5530 \end{bmatrix}.$$

$$v_1 - v_2 - v_3 - 1 = 0$$

$$\begin{array}{ccc}
v_1 - v_2 - v_3 - 1 = 0 \\
10.1.07 & (1)v_1 + v_4 - \hat{x}_2 + 2 = 0 \\
v_2 - \hat{x}_1 - 2 = 0
\end{array} \right\} (I)$$

$$\begin{vmatrix} v_5 - \hat{x}_1 - \hat{x}_2 + 3 = 0 \\ -v_6 - v_7 + \hat{x}_1 - \hat{x}_2 + 6 = 0 \end{vmatrix} (\text{II})$$

$$(2)\hat{\mathbf{X}} = \begin{bmatrix} 2.6876 \\ 5.9573 \end{bmatrix} \text{m}, \mathbf{Q}_{\bar{X}} = \frac{1}{22} \begin{bmatrix} 5 & 1 \\ 1 & 9 \end{bmatrix} = \begin{bmatrix} 0.2273 & 0.0455 \\ 0.0455 & 0.4091 \end{bmatrix}$$

10.1.08
$$H_{p_2} = \bar{X} = 13.803 \text{m}, Q_{\bar{X}} = \frac{3}{5}$$

10.2.09
$$\mathbf{V} = [-0.8329 -1.1105 \ 4.0570 \ 10.5052 -8.7543 \ 1.3309 -8.3344 \ 6.2508 -2.0836]^{T} (mm)$$

 $\hat{\mathbf{L}} = [0.8922 \ 9.1239 \ 10.0161 \ 2.6505 \ 6.1842 \ 6.4823 -6.9907 \ 1.7182 \ 1.2009]^{T} (m)$

10.2.10
$$\mathbf{V}' = [-\frac{8}{3} - \frac{8}{3} \ 0 - \frac{8}{3} \ 0 \ 0]^{\mathrm{T}}, \quad \mathbf{V}'' = [0 \ 0 \ \frac{8}{9} \ 0 \ \frac{8}{9} \ \frac{8}{9}]^{\mathrm{T}},$$

 $\mathbf{V} = [-\frac{24}{9} - \frac{24}{9} \ \frac{8}{9} \ -\frac{24}{9} \ \frac{8}{9} \ \frac{8}{9}]^{\mathrm{T}}$

10.2.11
$$V' = [-1 -12222]^T$$
, $V'' = [2 -20 -202]^T$, $V = [1 -32024]^T$

10.2.12
$$V = [-0.91 \ 1.67 \ 1.33 \ -1.09 \ 0.52]^T$$

10.2.13
$$\frac{1}{P_{\hat{q}}} = \frac{8}{7}$$

10.2.14
$$\frac{1}{P_{\hat{\varphi}}} = 13$$

$$10.2.15 \quad \frac{1}{P_{co}} = 0.6$$

10.2.16 (1)
$$\hat{H}_{p_1} = 6.3572$$
m, $\hat{H}_{p_2} = 7.0108$ m, $\hat{H}_{p_3} = 6.5937$ m, $\hat{H}_{p_4} = 5.9972$ m
(2) $\frac{1}{P\hat{H}_{p_3}} = 1.14$, $\sigma_0 = \pm 3.37$ mm, $\sigma_{\hat{H}_{p_3}} = \pm 3.60$ mm

10.2.17 (1)
$$L_1 = 66^{\circ}59'37.0''$$
, $L_2 = 39^{\circ}20'32.7''$, $L_3 = 67^{\circ}49'40.0''$
 $L_4 = 40^{\circ}48'47.8''$, $L_5 = 47^{\circ}31'15.0''$, $L_6 = 56^{\circ}08'49.7''$
 $L_7 = 58^{\circ}57'13.1''$, $L_8 = 64^{\circ}43'16.9''$, $L_9 = 31^{\circ}48'58.5'''$
 $L_{10} = 65^{\circ}51'49.2''$, $L_{11} = 73^{\circ}39'50.3''$, $L_{12} = 71^{\circ}21'32.2'''$
 $L_{13} = 76^{\circ}19'55.3''$, $L_{14} = 56^{\circ}19'30.0''$, $L_{15} = 82^{\circ}19'12.3''$

(2)测角中误差
$$\sigma_0 = \pm 14.24$$
"

(3) BC 边的边长中误差为
$$\frac{\sigma BC}{BC} = \frac{1}{12000}$$

10.2.18
$$\mathbf{V}' = \frac{1}{16} [-30 - 33 \ 21 \ 6 \ 21 \ -33]^{\mathrm{T}}$$

= $[-1.8750 \ -2.0625 \ 1.3125 \ 0.3750 \ 1.3125 \ -2.0625]^{\mathrm{T}}(")$
 $\mathbf{V}'' = [0.0750 \ 0.8625 \ -0.1125 \ -0.5750 \ 0.6875 \ -0.9375]^{\mathrm{T}}(")$

10.2.19 (1) $\mathbf{V}' = [1 \ 1 \ 1 \ 1]^{\mathrm{T}},$

$$Q_{L'} = \frac{1}{4} \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}$$
$$V'' = \begin{bmatrix} 5 & -5 & 5 & -5 \end{bmatrix}^{T}$$

$$V'' = [5 - 55 - 5]^T$$

(2)
$$\mathbf{V}' = [1 \ 1 \ 1 \ 1]^{\mathrm{T}}$$

$$Q_{L'} = \frac{1}{2} \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 5 & -3 & -1 \\ -1 & -3 & 5 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}$$

$$\mathbf{V}' = \left[\frac{10}{3} - \frac{20}{3} \frac{20}{3} - \frac{10}{3}\right]^{\mathrm{T}}$$

10.2.21
$$V = [-3 \ 3 \ -2 \ 0 \ -3 \ -2 \ -2]^T (mm)$$

10.2.22
$$V = \{-2.42.1 - 5.0 - 4.71.6 - 2.94.34.0\}^{T}(")$$

10.2.23
$$V' = \left[-\frac{8}{3} - \frac{8}{3} \cdot \frac{4}{3} - \frac{8}{3} \cdot \frac{4}{3} \cdot 0 \right]^{T}, V'' = \left[\frac{2}{3} - \frac{1}{3} \cdot \frac{5}{3} - \frac{1}{3} \cdot \frac{5}{3} \cdot 2 \right]^{T},$$

$$V = \left[-2 - 3 \cdot 3 - 3 \cdot 3 \cdot 2 \right]^{T}$$

10.3.24
$$\hat{\boldsymbol{X}} = [5.64827.1(89)]^{T} (m)$$

$$Q_{X} = \begin{bmatrix} 0.500 & 0.250 \\ 0.250 & 0.375 \end{bmatrix}$$

10.3.25 (1)
$$\hat{x}' = [2\ 2\ 4]^{\mathrm{T}} (\mathrm{mm}), \hat{x}'' = [0\ -0.5\ -2.5]^{\mathrm{T}} (\mathrm{mm}), \hat{x} = [2\ 1.5\ 1.5]^{\mathrm{T}} (\mathrm{mm})$$

(2) $V_1 = [0\ -0.5\ -2]^{\mathrm{T}} (\mathrm{mm}), V_2 = [1.5\ 0.5\ -1.5]^{\mathrm{T}} (\mathrm{mm})$

10.3.26
$$V = [-2 -33 -332]^{\mathrm{T}}(")$$

10.3.27
$$\hat{X} = H_p = 13.0043 m$$
, $Q_{\hat{X}} = \frac{1}{3}$

10.3.28
$$\hat{H}_{P_1} = \hat{X}_1 = 30.2078 \text{m}, \hat{H}_{P_2} = \hat{X}_2 = 40.2239 \text{m}$$

 $\hat{H}_{P_3} = \hat{X}_3 = 36.3921 \text{m}, \hat{H}_{P_4} = \hat{X}_4 = 42.8744 \text{m}$
 $\hat{H}_{P_5} = \hat{X}_5 = 43.3827 \text{m}, \hat{H}_{P_6} = \hat{X}_6 = 44.5927 \text{m}$

10.3.29
$$\hat{x} = [1 \ 1 \ 1]^{T}$$

10.3.30
$$\hat{\mathbf{x}} = [5\ 7\ 3]^{\mathrm{T}} (\mathrm{mm}), \mathbf{Q}_{\hat{\mathbf{x}}} = \frac{1}{8} \begin{bmatrix} 5\ 2\ 1\\ 2\ 4\ 2\\ 1\ 2\ 5 \end{bmatrix}$$

10.3.31 (1)误差方程为

$$V_{1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix} \hat{x} - \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}, P_{1} = I$$

$$V_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \hat{x} - \begin{bmatrix} -1 \\ 2 \end{bmatrix}, P_{2} = I$$

$$(2)\hat{\mathbf{x}}' = \begin{bmatrix} -1.33 \\ 1.33 \end{bmatrix} (mm), \hat{\mathbf{x}}'' = \begin{bmatrix} 0.208 \\ 0.292 \end{bmatrix} (mm), \hat{\mathbf{x}} = \begin{bmatrix} -1.122 \\ 1.622 \end{bmatrix} (mm),$$

$$\hat{\mathbf{x}} = \mathbf{x} = 15,0100p, \hat{\mathbf{x}} = \mathbf{x} = 19,8626pp,$$

$$\hat{X}_1 = \hat{H}_{p_1} = 15.0109 \text{m}, \hat{X}_2 = \hat{H}_{p_2} = 19.8626 \text{m}$$

$$(3) \mathbf{V}' = \begin{bmatrix} \mathbf{V}'_1 \\ \mathbf{V}'_2 \end{bmatrix} = \begin{bmatrix} -1.33 \\ -1.34 \\ -1.33 \\ 0 \\ 0 \end{bmatrix} \text{ (mm)}, \mathbf{V}' = \begin{bmatrix} \mathbf{V}'_1 \\ \mathbf{V}'_2 \end{bmatrix} = \begin{bmatrix} 0.28 \\ 0.02 \\ -0.29 \\ -0.06 \\ -0.38 \end{bmatrix} \text{ (mm)}$$

$$\mathbf{V} = \mathbf{V}' + \mathbf{V}'' = \begin{bmatrix} -1.05 \\ -1.32 \\ -1.62 \\ -0.06 \\ -0.38 \end{bmatrix} \text{ (mm) }, \mathbf{\hat{L}} = \begin{bmatrix} 5.0110 \\ 4.8517 \\ -9.8626 \\ 10.0109 \\ 14.8626 \end{bmatrix} \text{ (m)}$$

$$(4) Q_{X} = \frac{1}{8} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}, \sigma_{X_{1}}^{2} = 1.5, \sigma_{X_{2}}^{2} = 1.5$$

10.3.32
$$\hat{\mathbf{x}} = [2\ 2]^{\mathrm{T}}, \mathbf{Q}_{\bar{X}} = \frac{1}{8} \begin{bmatrix} 3 & -2 \\ -2 & 4 \end{bmatrix}$$

10.3.33
$$\hat{H}_b = \hat{X} = 55.945 \text{m}, Q_{\hat{X}} = 0.25$$

- 10.3.34 $\hat{\mathbf{X}} = [21.5466\ 25.5044\ 25.0003\ 17.9957\ 40.4538\ 9.9922]^{\mathrm{T}} \mathrm{m}$
- 10.3.35 $\dot{H}_1 = 30.2077 \text{m}$, $\dot{H}_2 = 40.2241 \text{m}$, $\dot{H}_3 = 36.3909 \text{m}$, $\dot{H}_4 = 42.8759 \text{m}$, $\dot{H}_5 = 43.3781 \text{m}$, $\dot{H}_6 = 44.5872 \text{m}$, $\dot{H}_7 = 169.1089 \text{m}$, $\dot{H}_8 = 208.9593 \text{m}$.
- 10.3.36 $\dot{X}_p = 1000.021 \text{m}, \dot{Y}_p = 1999.990 \text{m}.$

第十一章

- 11.1.01 接受假设
- 11.1.02 产品不合格
- 11.1.03 不合格
- 11.1.04 没有显著提高
- 11.1.05 接受假设
- 11.1.06 接受假设
- 11.1.07 拒绝 H₀
- 11.1.08 接受 H₀
- 11.1.09 (a)拒绝 H₀.接受 H₁ (b)接受 H₀
- 11.2.10 无显著差异
- 11.2.11 接受 H₀
- 11.3.12 接受假设
- 11.3.13 拒绝 Ho,接受 H
- 11.3.14 拒绝 Ho,接受 H1
- 11.3.15 接受 H₀
- 11.4.16 (a)拒绝 H₀,接受 H₁ (b)接受 H₀
- 11.4.17 接受 H₀
- ll.4.18 接受 H₀
- 11.4.19 接受 $H_0: \sigma_1^2 = \sigma_2^2$
- 11.5.20 符合偶然误差特性
- 11.5.21 符合偶然误差特性
- 11.5.22 符合偶然误差特性
- 11.5.23 接受服从正态分布的假设
- 11.6.24 (1)双侧置信区间为($\bar{x} Z_{\alpha/2} \frac{\sigma}{\int_{n}}$, $\bar{x} + Z_{\alpha/2} \frac{\sigma}{\int_{n}}$) = ($-0.4924\ 0.3392$)

单侧置信区间为
$$(-\infty, \bar{x} + Z_{\alpha} \frac{\sigma}{\sqrt{n}}) = (-\infty, 0.2724)$$

单侧置信区间为
$$(\bar{x}-Z_a\frac{\sigma}{\sqrt{n}},\infty)=(-0.4256,\infty)$$

(2)双侧置信区间为
$$(\ddot{x} - t_{a/2}(n-1)\frac{m}{\sqrt{n}}, \ddot{x} + t_{a/2}(n-1)\frac{m}{\sqrt{n}}) = (-0.4247, 0.2715)$$

单侧置信区间为
$$(-\infty, \bar{x} + t_a(n-1)\frac{m}{\sqrt{n}}) = (-\infty, 0.2128)$$

单侧置信区间为
$$(\overline{x}-t_{\sigma}(n-1)\frac{m}{\sqrt{n}},\infty)=(-0.3660,\infty)$$

- 11.6.25 (1)(2.121,2.129)
 - (2)(2.118, 2.132)

11.6.26
$$\left(\frac{\sqrt{n-1}m}{X_{\alpha/2}^2(n-1)}, \frac{\sqrt{n-1}m}{X_{1-\frac{\alpha}{2}}^2(n-1)}\right) = (0.7739, 1.2833)$$

$$[1.6.28 \quad (-0.3845, 0.4829)]$$

$$11.6.29 \quad (-0.002, 0.006)$$

第十二章

12.1.01
$$\hat{x}_p = [-1.5, 0.5]^T \text{(mm)}, \hat{X}_p = [9.9985, 11.2685]^T \text{(m)}, Q_{\hat{X}_p} = \frac{1}{48} \begin{bmatrix} 9 & -3 \\ -3 & 1 \end{bmatrix}$$

12.1.02
$$\mathbf{A}^{-} = \frac{1}{3} \begin{bmatrix} 4 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

12.1.03
$$(NQ_XN^T)^- = \begin{bmatrix} \frac{1}{12} & 0 \\ 0 & 0 \end{bmatrix}$$

$$12.1.04 \quad (\mathbf{NQ_XN^T})^{"} = \frac{1}{63} \begin{bmatrix} 26 & 22 & 0 \\ 22 & 38 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

12.1.05
$$\mathbf{A} = \frac{1}{27} \begin{bmatrix} 13 & -5 & -8 \\ -5 & 4 & 1 \\ -8 & 1 & 7 \end{bmatrix}$$

12.1.06
$$(NQ_XN^T)^{-1} = \frac{1}{48} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

12.1.07
$$\hat{\boldsymbol{x}}_p = [-1.5, 0.5]^T \text{(mm)}, \hat{\boldsymbol{X}}_p = [9.9985, 11, 2685]^T \text{(m)}, Q_{\hat{\boldsymbol{X}}_p} = \frac{1}{48} \begin{bmatrix} 9 & -3 \\ -3 & 1 \end{bmatrix}$$

12.1.08
$$\hat{\mathbf{x}}_p = [-1.5, 0.5]^{\mathrm{T}} (\mathrm{mm}), \hat{X}_p = [9.9985, 11.2685]^{\mathrm{T}} (\mathrm{m}), Q_{X_p} = \frac{1}{48} \begin{bmatrix} 9 & -3 \\ -3 & 1 \end{bmatrix}$$

12.1.09 (1)
$$\hat{x}_c = 2\text{mm}$$
, $\hat{H}_B = 11.276\text{m}$, $\frac{1}{P\hat{H}_B} = \frac{1}{3}$.

$$(2)\hat{x}_p = [-1.5, 0.5]^T (\text{mm}), \hat{X}_p = [9.9985, 11.2685]^T (\text{m}), Q_{\hat{X}_p} = \frac{1}{48} \begin{bmatrix} 9 & -3 \\ -3 & 1 \end{bmatrix}$$

12.1.10 (1)
$$\hat{\mathbf{x}}_{c} = [-2.33, -0.67, 3.33]^{T} \text{(mm)}, \hat{\mathbf{x}}_{c} = [6.4977, 6.2513, 7.0013]^{T} \text{(m)}, \mathbf{Q}_{X_{c}} = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 5 \end{bmatrix}$$

$$(2)\hat{\boldsymbol{x}}_{p} = [0.38, -1.95, -0.29, 3.71]^{T} \text{(mm)}, \hat{\boldsymbol{X}}_{p} = [5.0004, 6.4980, 6.2517, 7.0017]^{T} \text{(m)}$$

$$Q_{X_p} = \begin{bmatrix} 0.291 & -0.057 & -0.106 & -0.255 \\ -0.057 & 0.291 & -0.106 & -0.255 \\ -0.106 & -0.106 & 0.191 & 0.043 \\ -0.255 & -0.255 & 0.043 & 0.936 \end{bmatrix}$$

12.1.11 直接解法与附加条件法答案相同。

$$\hat{x}_p = [0.38, -1.95, -0.29, 3.71]^{\mathrm{T}} (\text{mm})$$

$$\hat{\boldsymbol{X}}_{p} = \boldsymbol{X}^{0} + \hat{\boldsymbol{x}}_{p} = [5.0004, 6.4980, 6.2517, 7.0017]^{T}(m)$$

$$\boldsymbol{Q}_{\boldsymbol{X}_{p}} = \begin{bmatrix} 0.2789 & -0.0544 & -0.1020 & -0.2449 \\ -0.0544 & 0.2789 & -0.1020 & -0.2449 \\ -0.1020 & -0.1020 & 0.1837 & 0.0408 \\ -0.2449 & -0.2449 & 0.0408 & 0.8980 \end{bmatrix}$$
12.1.13
$$\hat{\boldsymbol{x}}_{p} = [-0.25, 1.35, -2.45]^{T}(mm)$$

$$\hat{\boldsymbol{X}}_{p} = [4.9998, 6.4983, 5.8876]^{T}(m)$$

$$\boldsymbol{Q}_{\boldsymbol{X}_{p}} = \frac{1}{80} \begin{bmatrix} 15 & -5 & -5 \\ -5 & 7 & -9 \\ -5 & -9 & 23 \end{bmatrix} = \begin{bmatrix} 0.1875 & -0.0625 & -0.0625 \\ -0.0625 & 0.0875 & -0.1125 \\ -0.0625 & -0.1125 & 0.2875 \end{bmatrix}$$
12.1.14 (1)重心坐标:

12.1.14 (1)重心坐标

$$\overline{X}^{0} = \frac{\sum_{i=1}^{3} P_{X_{i}} X_{i}^{0}}{\sum_{i=1}^{3} P_{X_{i}}} = 9817.320(m), \overline{Y}^{0} = \frac{\sum_{i=1}^{3} P_{Y_{i}} Y_{i}^{0}}{\sum_{i=1}^{3} P_{Y_{i}}} = 67830.608(m)$$

(2)将该题附加阵 G^{T} 中的 X_{i}^{0} 、 Y_{i}^{0} 换成以网重心为坐标原点的各特定的近似坐标 x_{i}^{0} 、 y_{i}^{0} ,得:

$$G_{\frac{1}{4}}^{\text{T}} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 4.3592 & -3.2039 & -1.9042 & 0.7840 & 1.3533 & 0.8521 \\ -3.2039 & -4.3592 & 0.7840 & 1.9042 & 0.8521 & -1.3533 \end{bmatrix}$$

(3)将 $G_{4\pi}^{T}$ 阵的第 1 行元素除以 $\sqrt{\sum_{i=1}^{3} = P_{X_i}} = \sqrt{5}$,第 2 行元素除以 $\sqrt{\sum_{i=1}^{3} P_{Y_i}} = \sqrt{5}$,第 3 行元素除

以
$$\sqrt{\lambda_1} = \sqrt{\sum_{i=1}^{3} (P_X y_i^{0^2} + P_Y x_i^{0^2})} = 6.67435$$
,第 4 行元繁除以 $\sqrt{\lambda_2} = \sqrt{\sum_{i=1}^{3} (P_X x_i^{0^2} + P_Y y_i^{0^2})} = 6.67435$,得

$$(3)\sqrt{\lambda_1} = \sqrt{\sum_{i=1}^{3} (P_{X_i} y_i^0^2 + P_{Y_i} x_i^{02})} = 6.67435,$$
 第 4 行元素除以 $\sqrt{\lambda_2} = \sqrt{\sum_{i=1}^{3} (P_{X_i} x_i^0^2 + P_{Y_i} y_i^0^2)} = 6.67435,$ 得
$$G_{K}^T = \begin{bmatrix} 0.4472 & 0 & 0.4472 & 0 & 0.4472 & 0 \\ 0 & 0.4472 & 0 & 0.4472 & 0 & 0.4472 \\ 0.6531 & -0.4800 & -0.2853 & -0.1175 & 0.2028 & 0.1277 \\ -0.4800 & -0.6531 & 0.1175 & 0.2853 & 0.1277 & -0.2028 \end{bmatrix}$$

$$\begin{bmatrix} 0.9711 & 0.0433 & 0.9782 & -0.1407 & 0.6348 & 0.2572 \\ 0.0433 & 1.0190 & 0.2869 & -0.1214 & -0.0310 & 0.3177 \\ 0.9782 & 0.2869 & 3.2710 & 0.0381 & 1.3352 & -0.3811 \\ -0.1407 & -0.1214 & 0.0381 & 2.7055 & 0.2588 & 0.5184 \\ 0.6348 & -0.0310 & 1.3352 & 0.2588 & 1.4849 & 0.3476 \\ 0.2572 & 0.3177 & -0.3811 & 0.5184 & 0.3476 & 0.4646 \end{bmatrix}$$

 $f_e = [2.3765 \quad 0.2396 \quad 4.5160 \quad 1.3115 \quad -6.8925 \quad 0.5763]^T$

12.2.15
$$\hat{x}_r = [-1 \ 1]^T, Q_{\hat{x}_r} = \frac{1}{12} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

12.2.16
$$\hat{\mathbf{x}}_r = [-1\ 0.6\ 0.4]^T, \mathbf{Q}_{\hat{\mathbf{x}}_r} = \frac{1}{45} \begin{bmatrix} 10 & -5 & -5 \\ -5 & 7 & -2 \\ -5 & -2 & 7 \end{bmatrix}$$

12.2.17
$$\hat{\mathbf{x}}_r = \frac{1}{3} \begin{bmatrix} -1 & 1 \end{bmatrix}^T, \mathbf{Q}_{\hat{\mathbf{x}}_r} = \frac{1}{12} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

12.2.18
$$\dot{X}_1 = \dot{H}_{p_1} = 31.09975 (m)$$

$$\hat{X}_2 = \hat{H}_{p_2} = 32.10200 (m)$$

$$\hat{X}_3 = \hat{H}_{\rho_3} = 32.16225(m)$$

$$\bar{X}_4 = H_{p_1} = 31.60100 (m)$$

$$Q_{3} = \begin{bmatrix} 0.1875 & -0.0625 & -0.0625 & -0.0625 \\ -0.0625 & 0.3125 & -0.0625 & -0.1875 \\ -0.0625 & -0.0625 & 0.1875 & -0.0625 \\ -0.0625 & -0.1875 & -0.0625 & 0.3125 \end{bmatrix}$$

(直接解法与附加条件法结果相同)

12.2.19 $\hat{X}_1 = \hat{H}_1 = 10.002 \text{ (m)}, \hat{X}_2 = \hat{H}_2 = 22.345 \text{ (m)}, \hat{X}_3 = \hat{H}_3 = 25.821 \text{ (m)}$

$$Q_X = \frac{1}{9} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
 (直接解法与附加条件法相同)

12.2.20 (1)误差方程为 V=Br-f,其中,

$$\mathbf{B}_{3.6} = \begin{bmatrix}
-0.0090 & 0.1791 & -0.2343 & 0.1492 & 0.2433 & -0.3283 \\
-0.2343 & 0.1492 & -0.3986 & -0.1624 & 0.6329 & 0.0132 \\
0.2433 & 0.3283 & 0.6329 & 0.0132 & -0.8762 & 0.3151
\end{bmatrix} (")/(cm)$$

$$\frac{1}{3.6} = \begin{bmatrix} -1.08 & 6.82 & -3.24 \end{bmatrix}^{\mathrm{T}} (")$$

$$\hat{\mathbf{x}}_{3} = \begin{bmatrix} x_{1} & y_{1} & x_{2} & y_{2} & x_{3} & y_{3} \end{bmatrix}^{\mathrm{T}} (cm)$$

(2)标准化的 GT 阵为

$$G_{k}^{T} = \begin{bmatrix} 0.5774 & 0 & 0.5774 & 0 & 0.5774 & 0 \\ 0 & 0.5774 & 0 & 0.5774 & 0 & 0.5774 \\ 0.5603 & -0.4862 & -0.5755 & 0.2369 & 0.0152 & 0.2493 \\ -0.4862 & -0.5603 & 0.2369 & 0.5755 & 0.2493 & -0.0152 \end{bmatrix}$$

(3)法方程为 $\tilde{N}x - fe = 0$,其中 $\tilde{N} = B_{P}^{T}B + GG^{T}$,

$$\tilde{N} = \begin{bmatrix} 0.9979 & 0.0433 & 0.1453 & -0.1072 & 0.5844 & 0.2236 \\ 0.0433 & 1.0458 & 0.2534 & -0.0974 & 0.0026 & 0.2673 \\ 0.1453 & 0.2534 & 1.3350 & 0.0381 & 1.2475 & 0.1240 \\ -0.1072 & -0.0974 & 0.0381 & 0.7695 & 0.2251 & 0.4307 \\ 0.5844 & 0.0026 & 1.2475 & 0.2251 & 1.6233 & 0.3476 \\ 0.2236 & 0.2673 & 0.1240 & 0.4307 & 0.3476 & 0.6030 \end{bmatrix}$$

$$-f_c = \{-2.3765 - 0.2396 - 4.5160 - 1.3115 6.8925 - 0.5763\}^T$$

武中, $x_i^0 = X^0 - \vec{X}^0$, $y_i^0 = Y_i^0 - \vec{Y}^0$ (i = A, B, C, D)

$$\begin{split} \overline{X}^0 &= \frac{1}{4} \sum X_i^0, \overline{Y}^0 = \frac{1}{4} \sum Y_i^0 \\ \sqrt{\lambda} &= \sqrt{\sum (x_i^{02} + y_i^{02})} \end{split}$$

 \overline{X}^0 , \overline{Y}^0 为网的重心坐标, x^0 , y^0 为以网的重心为坐标原点的 A , B , C , D 四个点的近似坐标。 12.2.22 (1)误差方程:

$$v_{1} = 1.03\hat{x}_{1} + 1.78\hat{y}_{1} - 2.06\hat{x}_{2} + 1.03\hat{x}_{3} - 1.78\hat{y}_{3} - 5''$$

$$v_{2} = -2.16\hat{x}_{1} + 1.03\hat{x}_{2} - 1.78\hat{y}_{2} + 1.03\hat{x}_{3} + 1.78\hat{y}_{3} + 2''$$

$$v_{3} = 1.03\hat{x}_{1} - i.78\hat{y}_{1} + 1.03\hat{x}_{2} + 1.78\hat{y}_{2} - 2.06\hat{x}_{3} + 0''$$

$$v_{s_{1}} = -0.87\hat{x}_{2} + 0.50\hat{y}_{2} + 0.87\hat{x}_{3} - 0.50\hat{y}_{3} + 1\text{cm}$$

$$v_{s_{2}} = -0.87\hat{x}_{1} - 0.50\hat{y}_{1} + 0.87\hat{x}_{3} + 0.50\hat{y}_{3} - 1\text{cm}$$

$$\mathbf{B} = \begin{bmatrix} i.03 & 1.78 & -2.06 & 0 & 1.03 & -1.78 \\ -2.06 & 0 & 1.03 & -1.78 & 1.03 & 1.78 \\ -2.06 & 0 & 1.03 & -1.78 & 1.03 & 1.78 \\ 0 & 0 & -0.87 & 0.50 & 0.87 & -0.50 \\ 0 & 0 & -0.87 & 0.50 & 0.87 & -0.50 \end{bmatrix}$$

$$\mathbf{B}_{5.6} = \begin{bmatrix} -2.06 & 0 & 1.03 & -1.78 \\ -2.06 & 0 & 1.03 & -1.78 & 1.03 & 1.78 \\ 1.03 & -1.78 & 1.03 & 1.78 & -2.06 & 0 \\ 0 & 0 & -0.87 & 0.50 & 0.87 & -0.50 \\ -0.87 & -0.50 & 0 & 0 & 0.87 & 0.50 \end{bmatrix}$$

$$-\mathbf{f} = \begin{bmatrix} -5 & 2 & 0 & 1 & -1 \end{bmatrix}$$

$$(2) \mathbf{G}_{\tilde{\mathbf{N}}}^{\mathsf{T}} = \begin{bmatrix} 0.577 & 0 & 0.577 & 0 & 0.577 & 0 \\ 0 & 0.577 & 0 & 0.577 & 0 & 0.577 \\ 0.500 & -0.289 & -0.500 & -0.289 & 0 & 0.577 \\ 0.291 & -3.100 & 5.356 & -3.607 & -5.647 \\ 0.291 & 7.003 & -5.356 & -2.752 & 5.065 & -3.585 \\ -3.100 & -5.356 & 7.871 & -0.291 & -3.607 & 5.652 \\ 5.356 & -2.752 & -0.291 & 7.003 & -5.065 & -3.252 \\ -3.607 & 5.065 & -3.607 & -5.065 & 8.212 & 0 \\ -5.647 & -3.585 & 5.652 & -3.252 & 0 & 7.503 \end{bmatrix}$$

 $f_e = [8.40 \ 8.40 \ -11.49 \ 3.06 \ -11.46]^T$

12.2.23 $\hat{x} = [-1.75 \ 0.50 \ -0.75 \ 2.00]^{\text{T}}(")$

 $\hat{X} = [-0^{\circ}00'01.75'' \quad 30^{\circ}00'00.50'' \quad 59^{\circ}59'59.25'' \quad 90^{\circ}00'02.00'']$

$$Q_{X} = \frac{1}{16} \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}$$

12.2.24 $\hat{\mathbf{x}} = [4.00 - 1.0 - 3.0]^{\mathrm{T}} (\mathrm{mm})$

 $\hat{X} = X^0 + \hat{x} = [100.004 \ 100.505 \ 104.514 \ 102.509]^{\text{T}} (\text{m})$

$$Q_{X} = \frac{1}{176} \begin{bmatrix} 103 & -33 & -45 & -25 \\ -33 & 55 & 11 & -33 \\ -45 & 11 & 47 & -13 \\ -25 & -33 & -13 & 71 \end{bmatrix}$$

12.3.25 $\hat{x} = [0.31.9 - 1.9]_{\text{(nm)}}^T$, $\hat{x} = [5.00036.49895.8881]_{\text{(m)}}^T$

$$Q_{X} = \frac{1}{20} \begin{bmatrix} 7 & 1 & 1 \\ 1 & 3 & -3 \\ -1 & -3 & 3 \end{bmatrix} = \begin{bmatrix} 0.35 & 0.05 & -0.05 \\ 0.05 & 0.15 & -0.15 \\ -0.05 & -0.15 & 0.15 \end{bmatrix}$$

12.3.26 $\hat{\mathbf{x}}_s = [-1.33 - 3.66 - 2.06 \ 2.00]^T (mm)$

 $\hat{\mathbf{X}} = [4.9987 \ 6.4963 \ 6.2500 \ 7.0000]^{\mathrm{T}} (\mathrm{m})$

第十三章

13.1.01
$$D(d) = 0.1481 - 0.1412d + 0.0415d^2$$
13.1.02 $(1)D_S = \begin{bmatrix} D(0) & D(3) \\ D(3) & D(0) \end{bmatrix} = \begin{bmatrix} 0.5 & 0.14 \\ 0.14 & 0.5 \end{bmatrix}, (2)D_{SS} = [D(2)D(1)] = [0.36 \ 0.46]$
13.1.03 $(1)D_L = \begin{bmatrix} 0.0468 & 0.1076 & 0.0581 & 0.0792 & 0.0398 \\ 0.1076 & 0.1468 & 0.0872 & 0.0589 & 0.0823 \\ 0.0581 & 0.0872 & 0.1468 & 0.0898 & 0.0578 \\ 0.0581 & 0.0872 & 0.1468 & 0.0898 & 0.0578 \\ 0.0581 & 0.0872 & 0.1468 & 0.0899 & 0.0823 \\ 0.0581 & 0.0872 & 0.1468 & 0.0960 \\ 0.0398 & 0.0823 & 0.0578 & 0.0960 & 0.1468 \\ (2)D_{L_T} = [0.076848 & 0.072942 & 0.062576 & 0.122824 & 0.133857]^T$
13.1.04 $D_S = \begin{bmatrix} 0.310.19 \\ 0.19 & 0.31 \end{bmatrix}, D_{SS'} = [0.10 & 0.26]$
13.2.05 $(1)S_C = 13cm, (2)S_C = 14.238cm$
13.2.06 $S_3 = 1.29rmm, \sigma_3^3 = 0.92(rmm)^2$
13.2.07 $(1)D_{L_S}(\tau) = D_S(\tau) + D_{\lambda}(\tau)D_{\lambda}D_{L_S}S(\tau) = D_S(\tau)$
 $(2) \stackrel{.}{\cong} L_S + rh \stackrel{.}{\cong} rh nh, ph \stackrel{.}{\Re} 1.D_{L_S}(0) - D_S(0)(\stackrel{.}{\cong} \tau = 0), D_{L_S}(\tau) = D_S(\tau)(\stackrel{.}{\cong} \tau \neq 0)$
 $\stackrel{.}{\otimes} HR \stackrel{.}{\cong} rh nh, ph \stackrel{.}{\cong} 1.D_{L_S}(0) - D_S(0)(\stackrel{.}{\cong} \tau = 0), D_{L_S}(\tau) = D_S(\tau)(\stackrel{.}{\cong} \tau \neq 0)$
 $\stackrel{.}{\otimes} 1.3.300$ $(1)S = \begin{bmatrix} 0.9566 \\ 1.2779 \end{bmatrix} mm, D_S = \begin{bmatrix} 0.0757 & 0.0114 \\ 0.0114 & 0.0757 \end{bmatrix} (rmm)^2$
 $(2)S_3 = 1.2798mm, \sigma_3^3_3 = 0.0521(rmm)^2$
13.3.10 $(1)S = \begin{bmatrix} 1.8998 \\ 2.3127 \end{bmatrix} mm, D_S = \begin{bmatrix} 0.0795 & 0.0321 \\ 0.0221 & 0.0995 \end{bmatrix} (rmm)^2$
 $(2)S' = \begin{bmatrix} 2.4071 \\ 2.870 \end{bmatrix} mm, D_S = \begin{bmatrix} 0.0795 & 0.0898 \\ 0.0896 & 0.1225 \end{bmatrix} (rmm)^2$
13.3.11 $(1)S_1 = \mu_S + D_{S_1}A_1^T(D_s + A_1D_{S_1}A_1^T + D_{S_2})^{-1}(L - A\mu_S)$
 $S_2 = \mu_S + D_{S_1}A_1^T(D_s + A_1D_{S_1}A_1^T + D_{S_2})^{-1}(L - A\mu_S)$
 $D_S_1 = D_{S_1}A_1^T(D_s + A_1D_{S_1}A_1^T + D_{S_2})^{-1}(L - A\mu_S)$
 $D_S_1 = D_{S_1}A_1^T(D_s + A_1D_{S_1}A_1^T + D_{S_2})^{-1}(L - A\mu_S)$
 $O.0688 & 0.0433 & 0.0268 & 0.0111$
 $O.0688 & 0.0433 & 0.0268 & 0.0111$
 $O.0781 & 0.0116$
 $O.0781 & 0.0116$
 $O.0791 & 0.0217$
 $O.0781 & 0.0116$
 $O.0791 & 0.0217$
 $O.0781 & 0.0116$
 $O.0791 & 0.0217$
 $O.0791 & 0.0217$

附录一 法方程的组成与计算检核

不论何种平差方法,当函数模型列出之后,根据系数阵、常数项及权阵或权逆阵便可组成法方程。法方程的构成形式可分为两类,一类是条件平差(包括附有未知数的条件平差和附有限制条件的条件平差);另一类是间接平差(包括附有限制条件的间接平差)。以《测量平差基础》(第三版)(测绘出版社,1996年5月出版)为例,将其线性函数模型和法方程列于表1。

编号	平差方法	函数模型	法方程
I	条件平差	AV-W=0	$N_{aa}K - W = 0$
П	附有未知数的条件 平差	$AV + B\hat{x} - W = 0$	$\begin{bmatrix} N_{aa} & B \\ B^{T} & 0 \end{bmatrix} \begin{bmatrix} K \\ \hat{x} \end{bmatrix} - \begin{bmatrix} W \\ 0 \end{bmatrix} = 0$
<u>II</u>	附有限制条件的条 件平差	$AV + B\hat{x} - W = 0$ $C\hat{x} - W_X = 0$	$\begin{bmatrix} N_{aa} & B & 0 \\ B^{T} & 0 & C^{T} \\ 0 & C & 0 \end{bmatrix} \begin{bmatrix} K \\ \hat{x} \\ K_{S} \end{bmatrix} - \begin{bmatrix} W \\ 0 \\ W_{X} \end{bmatrix} = 0$
N	问接平差	V = Bx - l	$N_{bb}\hat{x} - W = 0$
V	附有限制条件的间 接平差	$V = R\hat{r} - t$ $C\hat{r} - W_X = 0$	$\begin{bmatrix} N_{bb} & C^{\mathrm{T}} \\ C & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ K_{S} \end{bmatrix} - \begin{bmatrix} W \\ W_{X} \end{bmatrix} = 0$

在以上五种形式的法方程中, N_{oa} 和 N_{bb} ,以及间接平差与附有限制条件的间接平差法方程中的常数项 W 需要单独计算,因此,法方程的组成工作,主要是计算它们。计算方法有两种:矩阵相乘法和列表计算法。

一、矩阵相乘法

1. 设
$$\mathbf{A} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \\ \vdots & \vdots & \ddots & \vdots \\ r_1 & r_2 & \cdots & r_n \end{bmatrix}$$
, 计算 N_{aa} .

(1)对独立观测值而言:

$$Q_{11} = \begin{bmatrix}
Q_{11} & & & \\ & Q_{22} & & \\ & & \ddots & \\ & & & Q_{nn}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{P_1} & & & \\ & \frac{1}{P_2} & & \\ & & \ddots & \\ & & & \frac{1}{P_n}
\end{bmatrix}$$

$$\mathbf{N}_{aa} = \mathbf{A}\mathbf{Q}\mathbf{A}^{\mathrm{T}} = \begin{bmatrix} \begin{bmatrix} \frac{aa}{p} \end{bmatrix} & \begin{bmatrix} \frac{ab}{p} \end{bmatrix} & \cdots & \begin{bmatrix} \frac{ar}{p} \end{bmatrix} \\ \begin{bmatrix} \frac{ab}{p} \end{bmatrix} & \begin{bmatrix} \frac{bb}{p} \end{bmatrix} & \cdots & \begin{bmatrix} \frac{br}{p} \end{bmatrix} \\ \vdots & \vdots & \vdots \\ \begin{bmatrix} \frac{ar}{p} \end{bmatrix} & \begin{bmatrix} \frac{br}{p} \end{bmatrix} & \cdots & \begin{bmatrix} \frac{rr}{p} \end{bmatrix} \end{bmatrix}$$

$$(1)$$

(2)对相关观测值而言:

$$Q = \begin{bmatrix} Q_{11} & Q_{12} & \cdots & \cdots & Q_{1n} \\ Q_{21} & Q_{22} & \cdots & Q_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ Q_{n1} & Q_{n2} & \cdots & Q_{nn} \end{bmatrix}$$

$$N_{aa} = AQA^{T} = \begin{bmatrix} [aa] & [ab] & \cdots & [ar] \\ [ab] & [bb] & \cdots & [br] \\ \vdots & \vdots & \ddots & \vdots \\ [ar] & [br] & \cdots & [rr] \end{bmatrix}$$
(2)

其中,[aa]表示 N_{aa} 矩阵中第 1 行第 1 列的元素,[ab]表示 N_{aa} 矩阵中第 1 行第 2 列的元素,[bb]表示 N_{bb} 矩阵中第 2 行第 2 列的元素,……等,依此类推。

$$egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & eta_n & N_b & egin{aligned} & eta_1 & b_1 & \cdots & t_1 \\ & a_2 & b_2 & \cdots & t_2 \\ & & & & & \\ & a_n & b_n & \cdots & t_n \end{aligned} \end{aligned}$$
 ,计算 N_{bb}

(1)对独立观测值而言:

$$\mathbf{P} = \begin{bmatrix} P_1 & & & & \\ & P_2 & & & \\ & & \ddots & & \\ & & P_n \end{bmatrix}$$

$$\mathbf{N}_{bb} = \mathbf{B}^{\mathsf{T}} \mathbf{P} \mathbf{B} = \begin{bmatrix} [paa] & [pab] & \cdots & [pat] \\ [pab] & [pbb] & \cdots & [pbt] \\ \vdots & \vdots & \vdots & \vdots \\ [pat] & [pbt] & \cdots & [ptt] \end{bmatrix}$$

$$(3)$$

(2)对相关观测值而言:

$$\mathbf{P} = \begin{bmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{bmatrix}$$

$$\mathbf{N}_{bb} = \mathbf{B}^{\mathrm{T}} \mathbf{P} \mathbf{B} = \begin{bmatrix} [aa] & [ab] & \cdots & [at] \\ [ab] & [bb] & \cdots & [bt] \\ \vdots & \vdots & \vdots & \vdots \\ [at] & [bt] & \cdots & [tt] \end{bmatrix}$$
(4)

式中,[aa],[ab]……[at]等符号意义与前同。

二、列表计算法(适合独立观测值)

1. 若计算 $N_{aa} = AQA^{T}$ 矩阵, 需列条件方程系数表, 见表 2(条件平差用)。

表 2

观测值编号	а	ь	41.	r	s	1 p
1	aı	b_1		r_{l}	S_1	$\frac{1}{p_1}$
2	a_2	<i>b</i> ₂		r ₂	S_2	$\frac{1}{p_2}$
:	:	i			:	:
n	a_n	b_n		r_n	S _n	$\frac{1}{p_n}$
[]	[a]	[b]	***	[r]	[S] [S]	

表 2 中,分别按 a、b、…、r 列填写 a、b、…、r 等条件方程的系数 a_i , b_i ,… , r_i , $S_i = a_i + b_i$ + … + r_i , 表示按行相加的加和数。根据等量加等量仍相等的原理,将 S 列中的 S_i 求和,所得值 [S] 写在表 1 末行斜线的上方,将各列总和 [a]、[b] … [r] 相加,所得值 [S] 写在斜线下方,若计算无误,此二值应相等。然后,由表 2 中的任何两列与 $\frac{1}{p}$ 列共 3 列数值对应相乘求和,便可得到 N_{ua} 矩阵中的各元素。例如, $\left[\frac{aa}{p}\right] = \frac{a_1a_1}{p_1} + \frac{a_2a_2}{p_2} + \dots + \frac{a_na_n}{p_n}$, $\left[\frac{ab}{p}\right] = \frac{a_1b_1}{p_1} + \frac{a_2b_2}{p_2} + \dots + \frac{a_nb_n}{p_n}$, $\left[\frac{as}{p}\right] = \frac{a_1s_1}{p_1} + \frac{a_2s_2}{p_2} + \dots + \frac{a_ns_n}{p_n}$ 。然后,按下式进行法方程系数正确性的检核:

$$\begin{bmatrix} \frac{aa}{p} \end{bmatrix} + \left[\frac{ab}{p} \right] + \dots + \left[\frac{ar}{p} \right] = \left[\frac{as}{p} \right] \\
 \begin{bmatrix} \frac{ab}{p} \end{bmatrix} + \left[\frac{bb}{p} \right] + \dots + \left[\frac{br}{p} \right] = \left[\frac{bs}{p} \right] \\
 \vdots \\
 \begin{bmatrix} \frac{ar}{p} \end{bmatrix} + \left[\frac{br}{p} \right] + \dots + \left[\frac{rr}{p} \right] = \left[\frac{rs}{p} \right]
 \end{bmatrix}
 \tag{5}$$

若该式等号两端数值不相等,则应重新计算,查出错误进行改正。

2. 若计算 $N_{bb} = B^{T}PB$,需列误差方程系数表,见表 3(间接平差用)。

表 3

观测值编号	а	ь		t	- t	S	Þ
1	a_1	<i>b</i> 1	•	t_1	- l ₁	S_1	p_1
2	a_2	b_2	•••	t_2	- l ₂	S_2	p ₂
:	:	. <u>:</u>		:	:		:
n	$a_{\scriptscriptstyle H}$	b_n		t_n	!,	S_n	₽n
[]	[a]	[<i>b</i>]		[t]	[t]	[S] [S]	

表 2 中,a 至 t 列中的 a_i , b_i , …, t_i 表示误差方程系数阵 B 中的各元素,-l 列中的 $-l_i$ 表示误差方程的常数项,按行相加,得 S_i , S_i = a_i + b_i + … $-l_i$, 再计算 S 列的总和 [S], 写在斜线上方,计算 [a] + [b] + … + [t] = [S], 写在斜线下方以资检核。最后,根据表 2 中任意两列与 列共 3 列数值对应相乘求和,便可得到 N_{bb} 中的各元素值。例如,[paa] = $p_1a_1a_1$ + $p_2a_2a_1$ + … + $p_na_na_n$ 等。并按下式进行法方系数正确性检核。

$$[paa] + [pab] + \cdots + [pat] - [pal] = [pas]$$

$$[pab] + [pbb] + \cdots + [pbt] - [pbl] = [pbs]$$

$$[pat] + [pbt] + \cdots + [ptt] - [ptl] = [pts]$$
(6)

及

$$-[pal] - [pbl] - \cdots - [ptl] + [ptl] = -[pts]$$
 (7)

若等号两端相等,则计算正确无误,否则,要重新计算。

附录二 法方程解算——高斯约化法

在附录一的表 1 中,五种平差方法的法方程系数与常数项和未知数各不相同,但它们都是 对称线性方程组,可用下面的统一形式表示,即:

$$N_{Y}Y - W_{Y} = 0$$

对 I(条件平差 $): N_Y = N_a, Y = K, W_Y = W$

対
$$\Pi$$
 (附有未知数的条件平差): $N_Y = \begin{bmatrix} N_{\alpha\alpha} & B \\ B^T & 0 \end{bmatrix}$, $Y = \begin{bmatrix} K \\ \hat{x} \end{bmatrix}$, $W_Y = \begin{bmatrix} W \\ 0 \end{bmatrix}$ 対 Π (附有限制条件的条件平差): $N_Y = \begin{bmatrix} N_{\alpha\alpha} & B & 0 \\ B^T & 0 & C^T \\ 0 & C & 0 \end{bmatrix}$, $Y = \begin{bmatrix} K \\ \hat{x} \\ K_S \end{bmatrix}$, $W_Y = \begin{bmatrix} W \\ 0 \\ W_X \end{bmatrix}$

对
$$\mathbb{N}$$
(间接平差): $N_Y = N_{bb}$, $Y = \hat{x}$, $W_Y = W = B^T pl$

对
$$V$$
 (附有限制条件的间接平差); $N_Y = \begin{bmatrix} N_{bb} & C^T \\ C & 0 \end{bmatrix}$, $Y = \begin{bmatrix} \hat{x} \\ K_S \end{bmatrix}$, $W_Y = \begin{bmatrix} W \\ W_X \end{bmatrix}$

一、高斯约化原理

高斯约化法是解算线性方程组的常用方法之一,即使今天采用电子计算机解题,也经常根据高斯约化原理编制程序进行法方程的解算。

高斯约化法的基本思想是以加减消元法为基础,按照方程的自然顺序,依次、逐个地消去方程组的未知数,将原方程组化为等值的三角形方程组,再从最末一个方程开始,用回代过程,按未知数的相反次序,逐个解出方程组的未知数。由于高斯约化法计算规律性强,采用手算时,可在固定的格式中进行。因此,无论哪一种平差方法,均可用下述高斯约化原理进行解算。

设有3阶对称线性方程组:

$$N_{\mathbf{Y}}\mathbf{Y} - \mathbf{W}_{\mathbf{Y}} = \mathbf{0} \tag{1}$$

中九

$$N_{Y} = \begin{bmatrix} \begin{bmatrix} aa \end{bmatrix} & \begin{bmatrix} ab \end{bmatrix} & \begin{bmatrix} ac \end{bmatrix} \\ \begin{bmatrix} ab \end{bmatrix} & \begin{bmatrix} bb \end{bmatrix} & \begin{bmatrix} bc \end{bmatrix} \\ \end{bmatrix}, Y = \begin{bmatrix} Y_{1} \\ Y_{2} \\ Y_{2} \end{bmatrix}, W_{Y} = \begin{bmatrix} W_{a} \\ W_{b} \\ W_{a} \end{bmatrix}$$

$$(2)$$

这里统一采用 Y_1, Y_2, Y_3 依次表示法方程的未知数, W_a, W_b, W_c 依次表示法方程的常数项。 其纯量形式为

$$[aa]Y_1 + [ab]Y_2 + [ac]Y_3 - W_a = 0$$
 (a)

$$[ab]Y_1 + [bb]Y_2 + [bc]Y_3 - W_b = 0$$
 (b)

$$[ac]Y_1 + [bc]Y_2 + [cc]Y_3 - W_c = 0 (c)$$

根据高斯约化法的基本思想,可按下列步骤进行消元。

(1)保持(a)方程不变,并用(a)方程消去(b)、(c)方程中的第一个未知数 Y_1 。具体做法是先将(a)方程除以其第一个未知数的负系数(-[aa]),使 Y_1 的系数变为 -1,得出一个新方程,称为(E)方程或消化方程(E),即

$$-Y_1 - \frac{ab}{aa}Y_2 - \frac{ac}{aa}Y_3 + \frac{W_a}{aa} = 0$$
 (E)

然后,再将(E)方程乘以[ab]并与(b)方程相加,将(E)方程乘以[ac]并与(c)方程相加,可分别得到 $(b\cdot 1)$ 和 $(c\cdot 1)$ 方程,称为高斯一次约化方程,即

$$[bb \cdot 1]Y_2 + [bc \cdot 1]Y_3 - [W_b \cdot 1] = 0 (b \cdot 1)$$

$$[bc \cdot 1]Y_2 + [cc \cdot 1]Y_3 - [W_c \cdot 1] = 0 (c \cdot 1)$$

式中, $[bb\cdot1]$ 、 $[bc\cdot1]$ 、 $[\alpha\cdot1]$ 、 $[W_b\cdot1]$ 、 $[W_c\cdot1]$ 称为高斯一次约化符号, 其含义是:

$$\begin{bmatrix} bb \cdot 1 \end{bmatrix} = \begin{bmatrix} bb \end{bmatrix} - \frac{ab}{aa} \begin{bmatrix} ab \end{bmatrix} \\ aa \end{bmatrix} \begin{bmatrix} bc \cdot 1 \end{bmatrix} = \begin{bmatrix} bc \end{bmatrix} - \frac{ab}{aa} \begin{bmatrix} ac \end{bmatrix} \\ aa \end{bmatrix} \begin{bmatrix} ac \end{bmatrix} \\ \begin{bmatrix} W_b \cdot 1 \end{bmatrix} = W_b - \frac{ab}{aa} W_a \\ \begin{bmatrix} cc \cdot 1 \end{bmatrix} = \begin{bmatrix} cc \end{bmatrix} - \frac{ac}{aa} \begin{bmatrix} ac \end{bmatrix} \\ aa \end{bmatrix} \begin{bmatrix} ac \end{bmatrix} \\ \begin{bmatrix} W_c \cdot 1 \end{bmatrix} = W_c - \frac{ac}{aa} W_a \end{bmatrix}$$

$$(3)$$

高斯一次约化符号的展开规律为:

一次约化系数:
$$[ij \cdot 1] = [ij] - \frac{[ai]}{[aa]}[aj]$$
一次约化常数项: $[W_i \cdot 1] = W_i - \frac{[ai]}{[aa]}W_a$

$$(i, j = b, c, \cdots)$$

$$(4)$$

即第 i 行第 j 列或第 j 行第 i 列的一次约化系数 $[ij\cdot 1]$,总是等于两项之差,其第一项是约化前的原系数 [ij],第二项是一个分数,分数的分母永为 [aa],分子是两个系数的乘积。其中,一个系数是将分母中的一个字母"a"与第一项中的第一个字母"i"组合而成,即 [ai],另一个系数是由分母中的另一个字母"a"与第一项中的另一个字母"j"组合而成,即 [aj]。一次约化常数项的规律与此类似。即一次约化常数项 $[W_i\cdot 1]$ 总是等于两项之差,其第一项是约化前的常数项 W_i ,第二项是一个分数,分数的分母是 [aa],分子是两个数的乘积。其中,一个数是分母中的一个字母"a"与第一项 W_i 中的下标"i"组合而成,即 [ai],另一个数是由分母中的另一个字母"a"与第一项 W_i 中的"W"组成而成,即 W_a 。

(2)继续消元。保持头两个方程(a)、(b·1)式不变,利用(b·1)式消去(c·1)式的第一个未知数 Y_2 。具体做法是先将(b·1)方程除以其第一个未知数的负系数(-[bb·1]),使 Y_2 的系数变为-1,得出第二个消化方程,称为(E·1)方程,即

$$-Y_2 - \frac{[bc \cdot 1]}{[bb \cdot 1]}Y_3 + \frac{[W_b \cdot 1]}{[bb \cdot 1]} = 0$$
 (E · 1)

再将 $(E \cdot 1)$ 方程乘以 $[bc \cdot 1]$,并与 $(c \cdot 1)$ 方程相加得第二次约化方程 $(c \cdot 2)$ 方程,即

$$[cc \cdot 2]Y_3 - [W_c \cdot 2] = 0 \qquad (c \cdot 2)$$

式中, $[cc\cdot 2]$, $[W_c\cdot 2]$ 称为高斯二次约化符号,其含义是:

$$[cc \cdot 2] = [cc \cdot 1] - \frac{[bc \cdot 1]}{[bb \cdot 1]} [bc \cdot 1]$$

$$[W_c \cdot 2] = [W_c \cdot 1] - \frac{[bc \cdot 1]}{[bb \cdot 1]} [W_b \cdot 1]$$

$$(4)$$

高斯二次约化符号的展开规律为:

二次约化系数:
$$[ij \cdot 2] = [ij \cdot 1] - \frac{[bi \cdot 1]}{[bb \cdot 1]}[bj \cdot 1]$$

二次约化常数项: $[W_i \cdot 2] = [W_i \cdot 1] - \frac{[bi \cdot 1]}{[bb \cdot 1]}[W_b \cdot 1]$ (5)
 $(i,j=c,\cdots)$

二次约化系数[$ij\cdot2$]与二次约化常数项[$W_i\cdot2$],也是等于两项之差,与一次约化符号类似,所不同的是二次约化符号的展开式均由一次约化符号构成。其中,第一项约化次数比二次约化符号少一次,第二项的分母永远是[$bb\cdot1$],分子是两个一次约化符号的乘积。

至此,(a)、(b)、(c)方程经两次消元后,变成了(a)、 $(b\cdot 1)$ 、 $(c\cdot 2)$ 方程。同样,将 $(c\cdot 2)$ 方程除以未知数 Y_3 的负系数 $(-[cc\cdot 2])$,使 Y_3 的系数变为-1,得第三个消化方程 $(E\cdot 2)$ 方程,即

$$-Y_3 + \frac{[W_c \cdot 2]}{[cc \cdot 2]} = 0 \qquad (E \cdot 2)$$

消元过程到此结束,得出等值方程和消化方程如下:

等值方程组:

$$\begin{bmatrix} aa \end{bmatrix} Y_1 + \begin{bmatrix} ab \end{bmatrix} Y_2 + \begin{bmatrix} ac \end{bmatrix} Y_3 - W_a = 0 \quad (a) \\ [bb \cdot 1] Y_2 + [bc \cdot 1] Y_3 - [W_b \cdot 1] = 0 \quad (b \cdot 1) \\ [cc \cdot 2] Y_3 - [W_c \cdot 2] = 0 \quad (c \cdot 2) \end{bmatrix}$$
(6)

消化方程组:

$$-Y_{1} - \frac{\begin{bmatrix} ab \end{bmatrix}}{\begin{bmatrix} aa \end{bmatrix}} Y_{2} - \frac{\begin{bmatrix} ac \end{bmatrix}}{\begin{bmatrix} aa \end{bmatrix}} Y_{3} + \frac{W_{a}}{\begin{bmatrix} aa \end{bmatrix}} = 0 \quad (E)$$

$$-Y_{2} - \frac{\begin{bmatrix} bc \cdot 1 \end{bmatrix}}{\begin{bmatrix} bb \cdot 1 \end{bmatrix}} Y_{3} + \frac{\begin{bmatrix} W_{b} \cdot 1 \end{bmatrix}}{\begin{bmatrix} bb \cdot 1 \end{bmatrix}} = 0 \quad (E \cdot 1)$$

$$-Y_{3} + \frac{\begin{bmatrix} W_{c} \cdot 2 \end{bmatrix}}{\begin{bmatrix} cc \cdot 2 \end{bmatrix}} = 0 \quad (E \cdot 2)$$

$$(7)$$

(3)回代过程。根据(7)式,按相反次序解未知数,即由($E \cdot 2$)、($E \cdot 1$)、(E)式分别解出 Y_3 、 Y_2 及 Y_1 。计算公式为:

$$Y_{3} = \frac{\left[W_{c} \cdot 2\right]}{\left[cc \cdot 2\right]}$$

$$Y_{2} = -\frac{\left[bc \cdot 1\right]}{\left[bb \cdot 1\right]} Y_{3} + \frac{\left[W_{b} \cdot 1\right]}{\left[bb \cdot 1\right]}$$

$$Y_{1} = -\frac{\left[ab\right]}{\left[aa\right]} Y_{2} - \frac{\left[ac\right]}{\left[aa\right]} Y_{3} + \frac{W_{a}}{\left[aa\right]}$$

$$(8)$$

二、矩阵分解与高斯约化原理

高斯约化原理的实质就是应用矩阵分解法将方程组的系数阵(方阵)变成上三角阵再求解。

设将(1)式的系数阵 N_V 分解为一个下三角阵 U 与一个上三角阵 U 的乘积.

$$N_{Y} = L \cdot U \tag{9}$$

$$L = \begin{bmatrix} 1 & & & \\ l_{21} & 1 & & \\ l_{31} & l_{32} & 1 \end{bmatrix}, U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ & u_{22} & u_{23} \\ & & u_{33} \end{bmatrix}$$

(1)式变为:

$$LUY - W_Y = 0 (10)$$

由(9)式及(2)式,并根据矩阵相等,其对应元素相等的理论,可确定 L、U 中的元素,其结果为

$$L = \begin{bmatrix} 1 \\ \begin{bmatrix} ab \\ aa \end{bmatrix} & 1 \\ \begin{bmatrix} ac \\ aa \end{bmatrix} & \begin{bmatrix} bc \cdot 1 \\ bb \cdot 1 \end{bmatrix} & 1 \end{bmatrix}, U = \begin{bmatrix} \begin{bmatrix} aa \end{bmatrix} & \begin{bmatrix} ab \end{bmatrix} & \begin{bmatrix} ac \\ bb \cdot 1 \end{bmatrix} & \begin{bmatrix} bc \cdot 1 \\ & & \\ & & \end{bmatrix} & \begin{bmatrix} cc \cdot 2 \end{bmatrix} \end{bmatrix}$$
(11)

及

$$L^{-1} = \begin{bmatrix} 1 \\ -\frac{[ab]}{[aa]} \\ \frac{[ab][bc \cdot 1]}{[aa][bb \cdot 1]} - \frac{[ac][bc \cdot 1]}{[aa][bb \cdot 1]} \end{bmatrix}$$

$$(12)$$

为了将方程组(1)的系数阵变为上三角阵,将(10)式两端左乘 L^{-1} ,得:

$$UY - L^{-1}W_Y = 0 (13)$$

�

$$Z = L^{-1}W_{\mathbf{Y}} \tag{14}$$

则有

$$UY - Z = 0 \tag{15}$$

式中,

$$Z = \begin{bmatrix} W_a \\ [W_b \cdot 1] \\ [W_c \cdot 2] \end{bmatrix}$$
 (16)

(15)式就是等值方程组,其纯量形式就是(6)式。

将 U 矩阵中的各行元素分别除以(-[aa])、(-[bb·1])、(-[cc·2])便可将其主对角线变成-1,以便方便地解出未知数。为此,设;

$$\mathbf{D} = \begin{bmatrix} aa \\ bb \cdot 1 \end{bmatrix} \begin{bmatrix} cc \cdot 2 \end{bmatrix}$$
 (17)

$$\mathbf{D}^{-1} = \begin{bmatrix} \frac{1}{[aa]} \\ \frac{1}{[bb \cdot 1]} \\ \frac{1}{[cc \cdot 2]} \end{bmatrix}$$
 (18)

将(15)式左乘以 - D-1,得

$$-L^{\mathsf{T}}Y + D^{-1}Z = 0 (19)$$

189

式中,

$$-L^{T} = -D^{-1}U = \begin{bmatrix} -1 & -\frac{ab}{aa} & -\frac{ac}{aa} \\ -1 & -\frac{bc \cdot 1}{bb \cdot 1} \\ -1 & -1 \end{bmatrix}$$

$$D^{-1}Z = \begin{bmatrix} \frac{W_a}{aa} \\ \frac{[w_b \cdot 1]}{bb \cdot 1} \\ \frac{[W_c \cdot 2]}{[cc \cdot 2]} \end{bmatrix}$$

$$(20)$$

(19)式就是消化方程,它的纯量形式就是(7)式。

若将消化方程的系数阵 - LT进行下列加法分解,可较方便地解出未知数 Y。即令

$$-L^{\mathrm{T}} = -I + C \tag{21}$$

式中,

$$C = \begin{bmatrix} -1 & & \\ & -1 & \\ & & -1 \end{bmatrix}$$

$$0 - \frac{ab}{aa} - \frac{ac}{aa}$$

$$0 - \frac{bc \cdot 1}{bb \cdot 1}$$

$$0 - \frac{ac}{aa}$$

$$0 - \frac{bc \cdot 1}{aa}$$

将(21)式代人(19)式,得:

$$Y = CY + D^{-1}Z \tag{23}$$

即

$$\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{ab}{aa} & -\frac{ac}{aa} \\ 0 & -\frac{bc \cdot 1}{bb \cdot 1} \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} + \begin{bmatrix} \frac{W_a}{aa} \\ \frac{[W_b \cdot 1]}{[bb \cdot 1]} \\ \frac{[W_c \cdot 2]}{[cc \cdot 2]} \end{bmatrix}$$
(24)

乘开后便是(8)式。

三、高斯--杜力特格式

将原方程(a)、(b)、(c)及等值方程(b·1)、(c·2),消化方程(E)、(E·1)、(E·2)按一定顺序在固定的表格中计算,这便是高斯一杜力特格式,或称为高斯约化表,见表 4。我国在电子计算机未问世之前,各级测量平差网的解算一直用高斯约化表进行,目前,各生产部门已使用计算机程序解算法方程,只有在少量个数的法方程解算,且手边没有计算机机及软件的情况下才用该表计算,特此说明。

	$(a)/Y_1$	(b)/Y ₂	(c)/Y ₃	(W_Y)	Σ	(S)
(a)	[au]	[ab]	[ac]	- W _u	\sum_{a}	S _n
(E)	- l	- <u>ab</u> aa]	- [ac] [aa]	W _a [aa]	\sum_{E}	$-\frac{\sum_{\underline{a}}}{[aa]}$
(6)		[bb]	[<i>bc</i>]	- W _b	$\sum_{b=1}^{\infty}$	S_b
-(b+1)		$[bb \cdot 1]$	$[bc \cdot 1]$	$-\{W_b\cdot 1\}$	$\sum_{b\cdot 1}$	$\left[\sum_{b}\cdot 1\right]$
(E · 1)		- 1	$-\frac{[\mathbf{bc} \cdot 1]}{[\mathbf{bb} \cdot 1]}$	$\frac{[\mathbf{W}_{b-1}]}{[\mathbf{b}\mathbf{b}\cdot1]}$	$\sum\nolimits_{E\in I}$	$-\frac{\sum_{\mathbf{b}\cdot1}}{[\mathbf{b}\mathbf{b}\cdot1]}$
(a)			[\alpha]	$-W_c$	\sum_{c}	S_c
(c · 2)			[cc · 2]	$-[W_c \cdot 2]$	$\sum_{e=2}^{c}$	$\left[\sum_{\epsilon} \cdot 2\right]$
(E · 2)		•	- 1	$\frac{[\mathbf{W}_{\mathbf{c}\cdot 2}]}{[\mathbf{cc}\cdot 2]}$	$\sum_{E=2}$	$-\frac{\sum_{e \cdot 2}}{[\mathbf{cc} \cdot 2]}$
(W_Y)			 	[WW]	$\sum_{\mathbf{w}}$	Sw
$(W_Y \cdot 3)$	$(Y_1 =)$	$(Y_2 =)$	$(Y_3 =)$	$[WW \cdot 3] = \Phi_Y$	- 47	$\left[\sum_{\mathbf{w}} \cdot 3\right]$

表 4 的计算步骤如下:

(1)将原方程系数及常数项填写在(a)、(b)、(c)各行中,并进行和检核。

由于方程系数对称,只需从自乘项[aa]、[bb]、[ac]向右填写,但计算加和数时,仍包括省写的那部分系数,即

$$[aa] + [ab] + [ac] - W_a = \sum_{a} [ab] + [bb] + [bc] - W_b = \sum_{b} [ac] + [bc] + [cc] - W_c = \sum_{c}$$
(25)

表中的 S 列,对于不同的平差方法,其计算方法也不同。对于条件平差, S_a 、 S_b 、 S_c 的计算方法为:

$$S_{a} = [as] - W_{a}, S_{b} = [bs] - W_{b}, S_{c} = [cs] - W_{c},$$

$$\sum_{a} = S_{a}, \sum_{b} = S_{b}, \sum_{c} = S_{c}$$
(26)

按照进行和检核。

(2)(E)方程的计算与检核。

将(a) 行各数除以(-[aa]) 后写在(E) 行中,但为了避免误差积累,在(S) 列下不写

$$-\frac{S_a}{[aa]}$$
,而写 $-\frac{\sum_a}{[aa]}$ 的值, \sum_E 按下式计算:

$$-1 - \frac{ab}{aa} - \frac{ac}{aa} + \frac{W_a}{aa} = \sum_E$$
 (27)

由

$$\sum_{E} = -\frac{\sum_{a}}{[aa]} \tag{28}$$

进行和检核。消化方程的数值一律用红字填写。

(3)(b·1)方程的计算与检核。

 $(b\cdot 1)$ 方程中的 $[bb\cdot 1]$ 、 $[bc\cdot 1]$ 、 $[W_b\cdot 1]$ 可按(3)式计算,为了在表 4 中计算方便,可改写

为下列形式:

$$\begin{bmatrix} bb \cdot 1 \end{bmatrix} = \begin{bmatrix} bb \end{bmatrix} + \left(-\frac{\begin{bmatrix} ab \end{bmatrix}}{\begin{bmatrix} aa \end{bmatrix}} \right) \begin{bmatrix} ab \end{bmatrix} = \begin{bmatrix} bb \end{bmatrix} + (b) \times (b)
 \begin{bmatrix} bc \cdot 1 \end{bmatrix} = \begin{bmatrix} bc \end{bmatrix} + \left(-\frac{\begin{bmatrix} ab \end{bmatrix}}{\begin{bmatrix} aa \end{bmatrix}} \right) \begin{bmatrix} ac \end{bmatrix} = \begin{bmatrix} bc \end{bmatrix} + (b) \times (c)
 - \begin{bmatrix} W_b \cdot 1 \end{bmatrix} = -W_b + \left(-\frac{\begin{bmatrix} ab \end{bmatrix}}{\begin{bmatrix} aa \end{bmatrix}} \right) (-W_a) = -W_b + (b) \times (W_Y)$$
(29)

一般写为:

$$[bj \cdot 1] = [bj] + \left(-\frac{[ab]}{[aa]}\right)[aj] = [bj] + (b) \times (j)$$

$$(j = b, c, \cdots)$$
(30)

(30)式表明, 若要计算(b·1)行、(j)列的一次约化值[bj·1], 可在该数值上方(b)行与(j)列交 叉处找到约化前的数值[bj], 再将(b)列中的红字($-\frac{ab}{aa}$)与(j)列等值方程(a)中的数值 [aj]相乘, 求两项之和而得。并简记为(b)×(j), 其中的"b"和"j"两字母可看作是由第一项 [bj]拆开得来的。所以, 将按照(30)式的规律计算[bj·1]的方法称为"两列规则"。根据"两列规则"可写出(S)列下的和检核数[Σ_b ·1]的计算公式,即

$$\left[\sum_{b} \cdot 1\right] = \sum_{b} + \left(-\frac{ab}{aa}\right) \sum_{a} = \sum_{b} + (b) \times (\sum)$$
 (31)

加和数:

$$[bb \cdot 1] + [bc \cdot 1] - [W_b \cdot 1] = \sum_{b \cdot 1}$$
 (32)

按

$$\sum_{b\cdot 1} = [\sum_b \cdot 1] \tag{33}$$

进行和检核。

(4)(E·1)方程的计算与检核。

将 $(b \cdot 1)$ 方程中各数值除以 $(-[bb \cdot 1])$ 便可得到 $(E \cdot 1)$ 方程,但(S) 列下的和检核数为 $(-\frac{\sum_{b \cdot 1}}{[bb \cdot 1]})$,加和数为:

$$-1 - \frac{\left[bc \cdot 1\right]}{\left[bb \cdot 1\right]} + \frac{\left[W_b \cdot 1\right]}{\left[bb \cdot 1\right]} = \sum_{E \cdot 1}$$
 (34)

按

$$\Sigma_{E\cdot 1} = -\frac{\sum_{b\cdot 1}}{[bb\cdot 1]} \tag{35}$$

进行检核。

 $(5)(c\cdot 2)$ 方程的计算与检核。

 $(c\cdot 2)$ 方程中的二次约化数值可按(4)式计算,为适应表 4,可将其改写为:

$$[cc \cdot 2] = [cc] + (-\frac{[ac]}{[aa]})[ac] + (-\frac{[bc \cdot 1]}{[bb \cdot 1]})[bc \cdot 2]$$

$$= [cc] + (c) \times (c)$$

$$- [W_c \cdot 2] = -W_c + (-\frac{[ac]}{[aa]})(-W_a) + (-\frac{[bc \cdot 1]}{[bb \cdot 1]})(-[W_b \cdot 1])$$

$$= -W_c + (c) \times (W_Y)$$

$$(36)$$

一般,可写为:

$$[cj \cdot 2] = [cj] + \left(-\frac{ac}{aa}\right)[aj] + \left(-\frac{bc \cdot 1}{bb \cdot 1}\right)(bj \cdot 1)$$

192

$$= [cj] + (c) \times (j)$$

$$(j = c, \cdots)$$
(37)

它们同样可用"两列规则"计算。即先在 $[c_j \cdot 2]$ 位置之上方,(c)行与(j)列交叉处,找到约化前数值 $[c_j]$,再将(c)列中第一个红字 $(-\frac{ac}{aa})$)与(j)列中等值方程(a)中的数值 $[a_j]$ 相乘,接着将(c)列的第二个红字 $(-\frac{bc \cdot 1}{bb \cdot 1})$,与(j)列中等值方程 $(b \cdot 1)$ 中的数值 $[b_j \cdot 1]$ 相乘,再将以上三项求和便得 $[c_j \cdot 2]$ 和检核数 $[\sum_c \cdot 2]$ 按下式计算:

$$\left[\sum_{c} \cdot 2\right] = \sum_{c} + \left(-\frac{\left[ac\right]}{\left[aa\right]}\right) \sum_{c} + \left(-\frac{\left[bc \cdot 1\right]}{\left[bb \cdot 1\right]}\right) \sum_{b \cdot 1}$$

$$= \sum_{c} + (c) \times (\sum)$$
(38)

加和数 $\sum_{c\cdot 2}$ 按下式计算:

$$[cc \cdot 2] - [W_c \cdot 2] = \sum_{c \cdot 2}$$
 (39)

检核式为:

$$\sum_{\epsilon \cdot 2} = \left[\sum_{\epsilon} \cdot 2 \right] \tag{40}$$

(6)计算(E·2)方程并检核。

将 $(c\cdot 2)$ 方程中的各数值除以 $(-[cc\cdot 2])$,便可得到 $(E\cdot 2)$ 方程,但(S) 列下的和检核数为 $(-\frac{\sum_{c\cdot 2}}{[cc\cdot 2]})$,而加和数按下式计算:

$$-1 + \frac{[\mathbf{W_c} \cdot 2]}{[\mathbf{cc} \cdot 2]} = \sum_{E \cdot 2}$$
 (41)

按下式进行和检核:

$$\sum_{E=1} = -\frac{\sum_{c:2}}{[cc \cdot 2]} \tag{42}$$

(7)计算未知数并检核。

未知数按(8)式计算。先由($E\cdot 2$)方程算出 Y_3 ,再将 Y_3 代入($c\cdot 2$)方程进行检查计算,若无误,则将 Y_3 代入($E\cdot 1$)方程计算 Y_2 值,然后将 Y_3 、 Y_2 代入($b\cdot 1$)方程检查其正确性,最后,将 Y_3 、 Y_2 值代入(E)方程计算 Y_1 ,并将 $Y_1\cdot Y_2$ 、 Y_3 值代入(a)方程进行检查。或者将 Y_1 , Y_2 , Y_3 代入原方程(a)、(b)、(c)进行检查计算。

由于高斯约化符号的规律性很强,因此,对于高阶的线性对称方程组均可以在高斯表中解算。

数字取位的一般规则是:等值方程与原方程小数位数相同,设为 n_1 位小数;消化方程的小数位数按方程系数和常数项的最大整数位数 n_2 与 n_1 相加确定。进行和检核时,加和数与和检核之差不应超过末位数的"3"。

四、在高斯约化表中计算 $V^{\mathsf{T}}PV$ 与未知数函数的权倒数或平差值函数的权倒数

设对称线性方程组仍为(1)式,现有一未知数的线性函数:

$$\Phi_{Y} = [WW] - W_{a}Y_{1} - W_{b}Y_{2} - W_{c}Y_{3}$$

$$= [WW] - W_Y^T Y \tag{43}$$

式中,[WW]是任意常数, Y_1 , Y_2 , Y_3 为方程组(1)的未知数, $-W_a$, $-W_a$, $-W_c$, $-W_c$ 为方程组(1)的常数项。若将方程组的解(8)式按 Y_1 , Y_2 , Y_3 的顺序逐个代入(43)式,经整理后便可得到:

$$\Phi_{Y} = [WW] - \frac{W_{a}^{2}}{[aa]} - \frac{[W_{b} \cdot 1]^{2}}{[bb \cdot 1]} - \frac{[W_{c} \cdot 2]^{2}}{[cc \cdot 2]}$$

$$= [WW] + (\frac{W_{a}}{[aa]})(-W_{a}) + (\frac{[W_{b} \cdot 1]}{[bb \cdot 1]})(-[W_{b} \cdot 1]) + (\frac{[W_{c} \cdot 2]}{[cc \cdot 2]})(-[W_{c} \cdot 2])$$

$$= [WW] + (W_{Y}) \times (W_{Y}) = [WW \cdot 3]$$
(44)

(44)式表明,若计算方程组(1)中未知数 Y 的函数值 $\Phi_Y(\mathbb{Q}(43)$ 式),可以直接用"两列规则" 在高斯表中进行。即在 (W_Y) 行、 (W_Y) 列交叉处填写常数[WW],利用 (W_Y) 列红字与 (W_Y) 列等值方程(a)、 $(b\cdot 1)$ 、 $(c\cdot 2)$ 中的数值求乘积和并与[WW]相加便可求得。在表 4 中, $\Phi_Y = [WW\cdot 3]$ 便是未知数 Y 的函数 Φ_Y 值的计算结果。从(43)式转变为(44)式称为"对称线性方程组的特性",简称"特性"。它的实质是在高斯约化表中,用"两列规则"解算方程组中未知数的线性函数值。

在测量平差中,法方程和转换系数方程组都是对称线性方程组,二者系数相同,仅常数项与未知数不同。 V^TPV 是法方程未知数 K 的线性函数,而平差值函数的权倒数 Q_{φ} 是转换系数方程未知数 q_K 的线性函数,因此, V^TPV 与 Q_{φ} 值都可看作(43)式中的 Φ_Y 值,并用"两列规则"在高斯约化表中求出。例如,条件平差的法方程为:

$$N_{co}K - W = 0$$

V^TPV 的计算式为:

$$V^{\mathsf{T}}\mathsf{P}\mathsf{V} = \mathsf{W}^{\mathsf{T}}\mathsf{K} = \mathsf{W}_{\mathsf{h}}\mathsf{K}_{\mathsf{h}} + \mathsf{W}_{\mathsf{h}}\mathsf{K}_{\mathsf{h}} + \mathsf{W}_{\mathsf{c}}\mathsf{K}_{\mathsf{c}} \tag{45}$$

为适应高斯约化表中 (W_v) 列填写的值是 $-W_{o,j}-W_{o,j}-W_{o,j}$ 故将(45)式改写为:

$$-V^{T}PV = -W^{T}K = -W_{a}K_{a} - W_{b}K_{b} - W_{c}K_{c}$$
 (46)

该式与(43)式对照,可知 $\Phi_Y = -V^T P V$, [WW] = 0, $W_Y^T = W^T$, Y = K, 所以可将(46)式转变为用"两列规则"表达的形式,即

$$-V^{T}PV = 0 - W^{T}K = 0 + (W_{Y}) \times (W_{Y})$$

$$= 0 + \frac{W_{a}}{[aa]}(-W_{a}) + \frac{[W_{b} \cdot 1]}{[bb \cdot 1]}(-[W_{b+1}] + \frac{[W_{c} \cdot 2]}{[ac \cdot 2]}(-[W_{c} \cdot 2])$$

$$= [0 \cdot 3]$$
(47)

实际计算时,只要在高斯约化表的 (W_Y) 行与 (W_Y) 列交叉处填写"0",用 (W_Y) 列紅字与 (W_Y) 列的等值方程常数项逐个相乘求和而得 $-V^TPV(见表 5)$ 。

Q。的计算公式为

$$Q_{\hat{w}} = f^{\mathrm{T}} Q f - f^{\mathrm{T}} Q A^{\mathrm{T}} N_{aa}^{-1} A Q f \tag{48}$$

式中, $f^{T} = [f_1 f_2 \cdots f_n]$ 为平差值函数 $\hat{\varphi} = f^{T}\hat{L}$ 的系数,令

$$F = AQf = \begin{bmatrix} af \\ bf \\ fef \end{bmatrix}, q_K = -N_{aa}AQf$$
 (49)

则(48)式又可表达为转换系数 g_K 的线性函数,即

$$Q_{\hat{\boldsymbol{q}}} = f^{\mathrm{T}} Q f + F^{\mathrm{T}} q_{k} \tag{50}$$

q_K 可由下列转换系数方程解出,即

$$N_{aa}q_K + F = 0 (51)$$

根据"特性",便可将(50)式转变为可用"两列规则"在高斯表中解算的形式,即

$$Q_{\tilde{\alpha}} = f^{\mathsf{T}} Q f + F^{\mathsf{T}} q_{\mathsf{K}} = f^{\mathsf{T}} Q f + (F_{\mathsf{Y}}) \times (F_{\mathsf{Y}}) \tag{52}$$

或

$$Q_{\varphi} = [ff] + [af]q_a + [bf]q_b + [cf]q_c$$

$$= [ff] + (\frac{-[af]}{[aa]})[af] + (-\frac{[bf \cdot 1]}{[bb \cdot 1]})[bf \cdot 1] + (-\frac{[cf \cdot 2]}{[cc \cdot 2]})[cf \cdot 2]$$

$$= [ff \cdot 3]$$
(52)

实际计算时,需要在高斯约化表中增加 (F_Y) 列, (Σ') 列与(S')列,在 (F_Y) 列的(a)、(b)、(c)行及 (W_Y) 行,分别填写[af]、[bf]、[cf]、[ff],根据(52)式,用 (F_Y) 列与 (F_Y) 列相乘,再与[ff]相加,便可求得 Q_a 值。

条件平差的高斯约化表见表 5。

表 5

404, 3						···			
	$(a)/K_a$	(b)/K _b	$(c)/K_c$	(W _Y)	(\sum)	(s)	(F _Y)	(∑)	(S')
(a)	[aa]	[ab]	[ac]	- W _u	\sum_{a}	Sa	[af]	\sum_{a}	S _u
(E)	- 1	- [ab] [aa]	- [ac] [aa]	<u>Wa</u> [aa]	\sum_{E}	$-\frac{\sum_a}{[aa]}$	$-\frac{[af]}{[aa]}$	$\sum_{\mathbf{E}}^{'}$	$-\frac{\sum_{o}}{[aa]}$
(b)		[<i>bb</i>]	[<i>bc</i>]	$-W_b$	\sum_{b}	S_b	[<i>bf</i>]	\sum_{b}	S_h
(b+1)		[bb·1]	[bc · 1]	$-[W_b \cdot 1]$	$\sum_{b \in \Gamma}$	$\left[\sum_{b}\cdot 1\right]$	[<i>bf</i> · 1]	$\sum_{b=1}^{n}$	$\left[\sum_{\underline{a},j}\right]$
(E · 1)		- 1	$-\frac{[bc \cdot 1]}{[bb \cdot 1]}$	$\frac{[W_b \cdot 1]}{[bb \cdot 1]}$	$\sum_{E \cdot 1}$	$-\frac{\sum_{b-1}}{[bb\cdot 1]}$	$-\frac{[bf \cdot 1]}{[bb \cdot 1]}$	$\sum_{E=1}^{r}$	$-\frac{\sum_{b\cdot 1}}{[bb\cdot 1]}$
(c)	<u> </u> 		[α]	$-\mathbf{w}_c$	\sum_{ϵ}	Sc	[cf]	\sum_{ϵ}	S_{c}
(c + 2)			[cc · 2]	$-[W_c \cdot 2]$	$\sum_{\varepsilon = 2}^{\infty}$	$\left[\sum_{\epsilon} \cdot 2\right]$	$[cf \cdot 2]$	$\sum_{\epsilon=2}^{\infty}$	$\left[\sum_{\varepsilon} \cdot 2\right]$
(E · 2)	; -	<u> </u>	- i	$\frac{[W_{e} \cdot 2]}{[cc \cdot 2]}$	$\sum_{E=2}$	$-\frac{\sum_{\mathbf{c}\cdot2}}{[\mathbf{c}\mathbf{c}\cdot2]}$	$\frac{-[cf \cdot 2]}{[cc \cdot 2]}$	$\sum_{k=2}^{r}$	$-\frac{\sum_{e\cdot 2}}{[\boldsymbol{\alpha}\cdot 2]}$
(W_Y)	 			0	$\sum_{\mathbf{w}}$	S_{W}	[ff]	$\sum_{\mathbf{w}}^{'}$	Sw
$(W_Y \cdot 3)$				$-V^{\mathrm{T}}PV$ $= [0 \cdot 3]$		$-V^{\mathrm{T}}PV$ $= \left[\sum_{\mathbf{w}} \cdot \right]$	$Q_{\hat{q}}$ $3[ff \cdot 3]$	= =====================================	$Q_{\tilde{\varphi}}$ \sum_{W} .

表 5 中的检核计算如下,[as],[bs],[cs]为乘和数。即

$$[aa] + [ab] + [ac] - W_a = \sum_{a}, [as] - W_a = S_a$$

$$[ab] + [bb] + [bc] - W_b = \sum_{b}, [bs] - W_b = S_b$$

$$[ac] + [bc] + [cc] - W_c = \sum_{c}, [cs] - W_c = S_c$$
(53)

Ŷ

$$a_{i} + b_{i} + c_{i} + f_{i} = S_{i}$$

$$[aa] + [ab] + [ac] + [af] = \sum_{a}, S_{a}' = [aS']$$

$$[ab] + [bb] + [bc] + [bf] = \sum_{b}, S_{b}' = [bS']$$

$$[ac] + [bc] + [cc] + [cf] = \sum_{c}, S_{c}' = [cS']$$

$$\sum_{w} = -W_{a} - W_{b} - W_{c} + 0 = S_{w},$$

$$\sum_{w}' = [af] + [bf] + [cf] + [ff], S_{w}' = [fS']$$
(54)

洏

$$[\sum_{w} \cdot 3] = -V^{T}PV = \sum_{w} + \frac{W_{a}}{[aa]} \sum_{a} + \frac{[W_{b} \cdot 1]}{[bb \cdot 1]} \sum_{b \cdot 1} + \frac{[W_{c} \cdot 2]}{[cc \cdot 2]} \sum_{c \cdot 2}$$

$$= \sum_{w} + (W_{Y}) \times (\sum)$$
(55)

 $[\Sigma_W\cdot 3]=-V^TPV$,也可用"两列规则"计算,表 5 中是用 (W_Y) 列红字与 (Σ) 列等值方程系数相乘,并与 Σ_W 值相加求得。

同理.

$$\left[\sum_{\mathbf{w}}^{\prime} \cdot 3\right] = Q_{\varphi} = \sum_{\mathbf{w}}^{\prime} + \left(-\frac{\left[\mathbf{af}\right]}{\left[\mathbf{aa}\right]}\right) \sum_{a}^{\prime} + \left(\frac{\left[\mathbf{bf} \cdot 1\right]}{\left[\mathbf{bb} \cdot 1\right]}\right) \sum_{b=1}^{\prime} + \left(-\frac{\left[\mathbf{cf} \cdot 2\right]}{\left[\mathbf{cc} \cdot 2\right]}\right) \sum_{c=2}^{\prime}$$

$$= \sum_{\mathbf{w}}^{\prime} + \left(F_{Y}\right) \times \left(\sum^{\prime}\right)$$
(56)

 Q_{φ} 也可用"两列规则"计算。即用 (F_Y) 列红字,与 (Σ') 列等值方程的系数相乘,并与 Σ_W 值相加求得。

例1:设有条件方程为:

$$v_1 - v_2 + v_5 + v_7 - v_8 + 4.20 = 0 \tag{a}$$

$$2.15v_1 - 3.26v_2 + 0.79v_4 - 0.21v_5 + 1.60v_6 - 2.32v_8 + 13.60 = 0$$
 (b)

$$1.70v_1 + 2.31v_2 + 0.82v_3 - 1.79v_5 + 3.46v_7 + 1.56v_8 + 21.50 = 0$$
 (c)

观测值的权逆阵为:

试按条件平差组成法方程,并用高斯约化法解出联系数 K 值。

解:根据题意,对照函数模型 AV-W=0,可写出系数阵 A 及常数项 W,得:

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & 0 & 1 & 0 & 1 & -1 \\ 2.15 & -3.26 & 0 & 0.079 & -0.21 & 1.60 & 0 & -2.32 \\ 1.70 & 2.31 & 0.82 & 0 & -1.79 & 0 & 3.46 & 1.56 \end{bmatrix}, \mathbf{W} = \begin{bmatrix} -4.20 \\ -13.60 \\ -21.50 \end{bmatrix}$$

196

用矩阵相乘法组成法方程系数 N₄₄得:

$$N_{\alpha\alpha} = AQA^{\mathrm{T}} = \begin{bmatrix} 8.11 & 11.11 & 0.31 \\ 11.11 & 37.23 & -18.20 \\ 0.31 & -18.20 & 53.02 \end{bmatrix}$$

用列表计算法,可列条件方程系数表表 6。

表 6

4K U					
观测值编号	а	b	с	s	<u>1</u>
1	1	2.15	1.70	4.85	0.61
2	-1	-3.26	2.31	-1,95	2.13
3	0	0	0.82	0.82	1.78
4	0	0.79	0	0.79	0.89
5	1	-0.21	- 1.79	-1.00	1.44
6	0	1.60	0	1.60	1.50
7	l	0	3.46	4.46	2.57
8	-1	-2.32	1.56	-1.76	1.36
[]	1	-1.25	8.06	7.81/7.81	

根据表6数值计算出法方程系数及和检核数值见表7。

表 7

	а	ь	С	s
а	8.11	11.11	0.31	19,53
ь		37.23	- 18.20	30.14
c l	_		53.02	35.14

根据(5)式按箭头指向经过的数值相加,其加和数应等于和检核数($[\frac{as}{p}]$ = 19.53, $[\frac{bs}{p}]$ = 30.14, $[\frac{cs}{p}]$ = 34.14)。 法方程为:

$$8.11k_a + 11.11k_b + 0.31k_c + 4.20 = 0$$

$$11.11k_a + 37.23k_b - 18.20k_c + 13.60 = 0$$

$$0.31k_a - 18.20k_b + 53.02k_c + 21.50 = 0$$

联系数 K 值的计算,见高斯约化表(表 8)。

:	(a)/K _a	(b)/K _b	(c)/K,	(W _Y)	(Σ)	(S)
(a)	8.11	11.11	0.31	4.20	23.73	23.73
(E)	-1	-1.3699	-0.0382	- 0.5179	- 2.9260	-2.9260
(h)		37.23	18.20	13.60	43.74	43.74
(b·1)		22.01	- 18.62	7.85	11.24	11.23
E · 1)		-1	0.8460	-0.3567	-0.5107	-0.5107
$(v)^{-1}$	 		53.02	21.50	56.63	56.64
(c-2)		!	37.26	27.98	65.24	65.23
$(E \cdot 2)$			-1	-0.7509	-1.7509	-1.7509
·	$K_a = 0.8697$	$K_6 = -0.9920$	$K_c = -0.7509$			·

对问接平差,法方程为 $N_{bb}\hat{x} - W = 0$, $W = [[al][bl][cl]]^T$, 其高斯约化表见表 9。

表り

	$(a)/(\hat{x}_1)$	(b)/(x̂2)	$(c)/(\hat{x}_3)$	(W _Y)	(Σ)	(5)	(F_Y)	(Σ')	(8')
(u)	[aa]	[ab]	[ac]	-[al]	\sum_{a}	[as]	- f ₁	<u> </u>	S_a
(E)	~1	- [ab] [aa]	- [ac]	[al] [aa]	$\Sigma_{\it E}$	$-\frac{\sum_{a}}{[aa]}$	$\frac{f_1}{[aa]}$	Σ_{E}^{c}	$-\frac{\sum_{a}^{r}}{[paa]}$
(b)		[66]	[bc]	-[<i>bl</i>]	Σ_{b}	[bs]	- f ₂	Σ_b	S_h
(b·1)	į	[bb·1]	[bc·1]	-[bl·1]	$\Sigma_{b\cdot 1}$	$[\Sigma_b \cdot 1]$	$-[f_2 \cdot 1]$	$\Sigma_{b+1}^{'}$	$[\Sigma_{k+1}]$
(E·1)		-1	$-\frac{[bc\cdot 1]}{[bb\cdot 1]}$	[bl·1] [bb·1]	Σ_{E-1}	$-\frac{\sum_{b\cdot 1}}{[bb\cdot 1]}$	$\frac{[f_2 \cdot 1]}{[bb \cdot 1]}$	Σ_{E+1}^{\cdot}	$\frac{\sum_{b=1}^{r}}{[bb\cdot 1]}$
(c)		[cc]	[cc]	-[ct]	Σ_{ϵ}	[cs]	$-f_3$	\sum_{k}^{r}	S_c
(c·2)			[cc·2]	-[cl·2]	$\Sigma_{\epsilon'2}$	$[\Sigma_{\epsilon}\cdot 2]$	$-[f_{3-2}]$	$\sum_{e=2}^{r}$	[\(\Sigma_i^2\)]
(E·2)			-1	$\frac{[cl \cdot 2]}{[cc \cdot 2]}$	$\Sigma_{E \cdot 2}$	$-\frac{\sum_{e\cdot 2}}{[ce\cdot 2]}$	$\frac{[f_{3-2}]}{[cc \cdot 2]}$	$\sum_{E=2}^{r}$	$-\frac{\sum_{r=2}^{r}}{[cc \cdot 2]}$
(W_Y)				[H]	Σ_t	-[ls]	0	$\Sigma_t^{'}$	S_t
$(W_Y \cdot 3)$	$\hat{x}_1 =$	$\hat{x}_2 =$	$\hat{x}_3 =$	$V^{T}PV$		$V^{T}PV$	- Q;		- Q

表中,因为设 $a_i + b_i + c_i - l_i = S_i$,故有:

$$[aa] + [ab] + [ac] - [al] = \sum_{a} = [as]$$

$$[ab] + [bb] + [bc] - [bl] = \sum_{b} = [bs]$$

$$[ac] + [bc] + [cc] - [cl] = \sum_{c} = [cs]$$

$$- [al] - [bl] - [cl] + [tl] = \sum_{l} = -[ls]'$$
(57)

并按此式进行和检核、其中,[as],[bs],[cs],[bs]为由误差方程系数表(表 3)求得的乘积和,填在(S)列下。由表 9 可计算出未知数 $\hat{x}_1,\hat{x}_2,\hat{x}_3$ 。

同样,在表 9 中还可计算出 V^TPV 和 Q_a 的值。根据间接平差 V^TPV 的计算公式:

$$V^{T}PV = l^{T}pl - B^{T}pl\hat{x}$$

= $[ll] - [al]\hat{x}_{1} - [bl]\hat{x}_{2} - [cl]x_{3}$ (58)

可知, V^TPV 是法方程未知数 \hat{x}_i 的线性函数、根据对称线性方程组特性、与(43)式对照,可看 198

出 $\Phi_Y = V^T P V$, [ff] = [ll], $f_Y^T = (B^T p l)^T = [[al][bl][cl]]$, $Y = \hat{x}$, 因此(58)式可以写成 用两列规则在高斯约化表中的计算形式为:

$$V^{\mathsf{T}}PV = l^{\mathsf{T}}pl + (W_Y) \times (W_Y)$$

$$= [ll] + \frac{[al]}{[aa]}(-[al]) + \frac{[bl \cdot 1]}{[bb \cdot 1]}(-[bl \cdot 1]) + \frac{[cl \cdot 2]}{[cc \cdot 2]}(-[cl \cdot 2]) \quad (59)$$

$$= [ll \cdot 3]$$

实际计算时,只要在 (W_Y) 行与 (W_Y) 列的交叉处填写 $[\mathcal{U}]$,利用 (W_Y) 列与 (W_Y) 相乘的两列规则,可算出 V^TPV 。利用 $[\Sigma_{I/3}] = V^TPV$ 作检核。

未知数函数的权倒数 Q。也可在表中解出。设有未知数的线性函数:

$$\hat{\varphi} = F^{T}\hat{X} = f_{1}\hat{X}_{1} + f_{2}\hat{X}_{2} + f_{3}\hat{X}_{3}
F^{T} = [f_{1} f_{2} f_{3}]$$
(60)

f, 为未知数的系数,则有:

$$Q_{\hat{\varphi}} = F^{\mathsf{T}} N_{bb}^{-1} F \tag{61}$$

若令

$$q_X = N_{bb}^{-1} F \tag{62}$$

则有

$$Q_{\dot{x}} = F^{\mathsf{T}} q_{\mathsf{X}} \tag{63}$$

转换系数方程为

$$N_{bb}q_{X} - F = 0 ag{64}$$

(64)式的常数项为-F,为了在表中计算方便,将(63)式改定为:

$$-Q_{\hat{\omega}} = 0 - F^{\mathrm{T}} q_{\mathrm{Y}} \tag{65}$$

将"特性"中的 ϕ_Y 看作 $-Q_{\hat{\varphi}}$, W_Y^T 看作 F^T , Y 看作 q_X , [WW] 看作 0, 则用对称线性方程组特性可将(65)式变为适于高斯约化表的计算格式,即:

$$-Q_{\varphi} = 0 - F^{T}q_{X} = 0 + (F_{Y}) \times (F_{Y})$$

$$= 0 + \frac{f_{1}}{[aa]}(-f_{1}) + \frac{[f_{2\cdot 1}]}{[bb\cdot 1]}(-[f_{2\cdot 1}]) + \frac{[f_{3\cdot 2}]}{[cc\cdot 2]}(-[f_{3\cdot 2}])$$

$$= [0\cdot 3]$$
(66)

实际计算时,在 (F_Y) 列的(a)、(b)、(c)、 (W_Y) 行填写 $= f_1$, $= f_2$, $= f_3$,0,利用两列规则,根据 (66)式便可算出 $= Q_a$ 和检核式为:

$$-Q_{\hat{\mathbf{p}}} = \left[\sum_{i=1}^{n} \cdot 3\right] \tag{67}$$

例 2 设某测角网,等精度观测 8 个角度,有 2 个待定点,设其坐标为未知数 \hat{X}_1 , \hat{Y}_1 , \hat{X}_2 , \hat{Y}_2 , 已列出误差方程为:

$$\begin{split} v_1 &= -1.373\hat{x}_1 + 0.745y_1 + 0 \\ v_2 &= 1.066\hat{x}_2 + 1.359\hat{y}_2 + 0 \\ v_3 &= 1.689\hat{x}_1 + 0.406\hat{y}_1 - 1.066\hat{x}_2 - 1.359\hat{y}_2 + 0 \\ v_4 &= -0.316\hat{x}_1 - 1.151\hat{y}_1 - 8.6 \\ v_5 &= 0.034\hat{x}_1 - 1.484\hat{y}_1 - 1.407\hat{x}_2 + 2.229\hat{y}_2 - 9.5 \\ v_6 &= -1.407\hat{x}_1 + 2.229\hat{y}_1 + 2.473\hat{x}_2 - 0.870\hat{y}_2 + 6.1 \end{split}$$

$$v_7 = 1.706\hat{x}_2 - 1.240\hat{y}_2 + 8.5$$

 $v_8 = 1.373\hat{x}_1 - 0.745\hat{y}_1 - 2.772\hat{x}_2 - 0.119 + 0$

未知数函数为 $d\hat{\varphi}=0.846\hat{x}_1+0.534\hat{y}_1-0.846\hat{x}_2-0.534\hat{y}_2$ 试组成法方程并按高斯约化法解出未知数并求出 V^TPV 与 $Q_{\hat{\varphi}}$ 。

[解]:列误差方程系数表见表 10。

表 10

角号	a	b	с	d	- <i>l</i>	S	P
1	-1.373	0.745	0	0	0	-0.628	1
2	0	0	1.066	1.359	0	2.425	1
3	1.689	0.406	-1.066	-1.359	0	-0.330	1
4	-0.316	-1.151	0	0	-8.6	- 10.067	1
5	0.034	-1.484	-1.407	2.229	-9.5	-10.128	1
6	-1.407	2.229	2.473	-0.870	6.1	8.525	1
7	0	0	1.706	-1.240	8.5	8.966	1
8	1.373	-0.745	-2.772	-0.119	0	-2.263	1
[]	0	0	0	0	-3.5	-3.5/-3.5	

由表 10 组成法方程系数,见表 11。

表 11

	a	b	<u>c</u>	d	- l	S
а	8.704	-4.183	-9.134	-1.159	-6.188	- 11.960
ь		9.770	9.233	-5.710	37.594	46.703
c			20.963	-4.176	42.953	59.838
d				10.971	-37.022	-37.097
- <i>t</i>					273.670	311.006

表 12

高斯约化表

	$(a)/x_1$	$(b)/\hat{y}_1$	$(c)/x_2$	$(d)/\bar{y}_2$	(W _Y)	(Σ)	(S)	(F_Y)	(Σ')	(S')
(a)	8.704	-4.183	-9.134	-1.159	- 6. 188	-11.960		-0.846	-6.618	-6.618
(E)	-1	0.48058	1.04940	0.13316	0.71094	1.37408	1.37408	0.09720	0.76034	0.76034
(b)		9.770	9.233	-5.710	37.594	46.704	46.703	-0.534	8.576	8.576
(b·1)		7.760	4.843	-6.267	34.620	40.956	40.956	-0.941	5.395	5.396
(E-1)		- 1	-0.62410	0.80760	-4.46134	- 5.27784	- 5.27784	0.12126	-0,69524	0.69523
(c)			20.963	-4.176	42.953	59.839	59.838	0.846	17.732	17.732
(c·2)		ĺ	8.355	-1.481	14, 853	21.727	21.728	0.545	7.419	7.420
$(E \cdot 2)$]	-1	0.17726	-1.77774	-2.60048	-2.60049	-0.06523	-0.88797	-0.88797
(d)		<u> </u>]	10.971	-37.022	-37.096	-37.097	0.534	0.460	0.460
$(d\cdot 3)$	i]		5.493	-7.254	-1.761	-1.761	0.242	5.251	5.251
(E·3)		ļ		-1	1.32059	0.32059	0.32059	0.04406	- 0.95594	- 0.95594
(W_Y)					273.670	311.007	311.006	0	0	0
$(W_Y\cdot 4)$	1			l	78.835]	78.835	-0.243		-0.242
(177'4)		1		L	$= V^{T}PV$!	$=V^{\mathrm{T}}PV$	$= -Q_{\dot{\varphi}}$	<u></u>	$\simeq -Q_{\hat{q}}$

由表 12 得:

200

$V^{T}PV = 78.835$ $Q_{\hat{\varphi}} = 0.243$

除了条件平差、间接平差以外,其它平差方法的法方程解算,同样可在高斯约化表中计算, 其解算方法相同。为了方便,也可以不列检核项,即在高斯约化表中取消(Σ),(S)列,约化方法不变。

