Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки та комп'ютерних систем

Лабораторна робота № 1 **Тема:** « Дослідження кількості інформації при різних варіантах кодування »

> Роботу виконав студент 3 курсу КІ - СА Гулівець Владислав Андрійович

Mema: Дослідити імовірнісні параметри української мови для оцінки кількості інформації текстів. Дослідити вплив різних методів кодування інформації на її кількість.

Теоретичні відомості

Відносна частота появи символу - імовірність появи певного символу в певному місці тексту - відношення числа появи символу в тексті до загальної кількості символів.

Середня ентропія нерівноймовірного алфавіту:

$$H = \sum_{i=1}^{m} p_i \log_2 \frac{1}{p_i} = -\sum_{i=1}^{m} p_i \log_2 p_i$$

де m - кількість символів алфавіту, p - імовірність появи символу Ентропія вимірюється в **БІТАХ** (як представлення кількості можливих варіантів).

Кількість інформації в тексті - середня ентропія вихідного алфавіту помножена на кількість символів тексту. (**HINT**: результат обрахунку для порівняння значення з розміром файлів треба перевести з бітів в байти)

Хід виконання роботи:

Дослідження кількості інформації в тексті

- 1. Оберіть 3 текстових файла різного тематичного та лінгвістичного спрямування (наприклад, вірш Тараса Шевченка "Мені тринадцятий минало", "Казка про рєпку" Леся Подерв'янського та специфікацію інерфейсу РСІ)
 - text1.txt куплет пісні Скрябіна.
 - text2.txt історія України за 1917 рік.
 - text3.txt рецензія на фільм «Захар Беркут».
- 2. Створіть програму (будь-якою зручною для вас мовою), яка в якості вхідних даних приймає текстовий файл, та аналізуючи його вміст:
 - обраховує частоти (імовірності) появи символів в тексті
 - обраховує середню ентропію алфавіту для даного тексту
 - виходячи з ентропії визначає кількість інформації та порівнює її з розмірами файлів
 - виводить на екран значення частот, ентропії та кількості інформації 4. Проведіть стиснення кожного вхідного файлу за допомогою 5 різних алгоритмів стиснення (zip, rar, gzip, bzip2, xz, або будь-які інші на ваш вибір, можна використовувати готові програмні засоби для стиснення).

Analyze of *text1.txt*

```
Leŭ cumbon A syctp?чається 14 раз з ймов?рн?стю 0,06034483. Εнтроп?я символа = 0,24443433

Leŭ cumbon B syctp?чається 3 раз з ймов?рн?стю 0,01293103. Ентроп?я символа = 0,88111662

Leŭ cumbon B syctp?чається 11 раз з ймов?рн?стю 0,08080806. Ентроп?я символа = 0,20855191

Leŭ cumbon P syctp?чається 2 раз з ймов?рн?стю 0,08080806. Ентроп?я символа = 0,08912053

Leŭ cumbon P syctp?чається 3 раз з ймов?рн?стю 0,08080806. Ентроп?я символа = 0,080808060

Leŭ cumbon P syctp?чається 7 раз з ймов?рн?стю 0,08080806. Ентроп?я символа = 0,08111662

Leŭ cumbon P syctp?чається 7 раз з ймов?рн?стю 0,08080806. Ентроп?я символа = 0,08111662

Leŭ cumbon P syctp?чається 1 раз з ймов?рн?стю 0,08081031. Ентроп?я символа = 0,08111662

Leŭ cumbon P syctp?чається 1 раз з ймов?рн?стю 0,08081031. Ентроп?я символа = 0,18387061

Leŭ cumbon S syctp?чається 5 раз з ймов?рн?стю 0,0815172. Ентроп?я символа = 0,193817861

Leŭ cumbon S syctp?чається 5 раз з ймов?рн?стю 0,0815172. Ентроп?я символа = 0,193817861

Leŭ cumbon S syctp?чається 15 раз з ймов?рн?стю 0,0845517. Ентроп?я символа = 0,25545843

Leŭ cumbon S syctp?чається 15 раз з ймов?рн?стю 0,08465517. Ентроп?я символа = 0,25545843

Leŭ cumbon N syctp?чається 2 раз з ймов?рн?стю 0,08465517. Ентроп?я символа = 0,25545843

Leŭ cumbon N syctp?чається 9 раз з ймов?рн?стю 0,08465517. Ентроп?я символа = 0,65912053

Leŭ cumbon N syctp?чається 9 раз з ймов?рн?стю 0,08465517. Ентроп?я символа = 0,65912053

Leŭ cumbon N syctp?чається 9 раз з ймов?рн?стю 0,384818649

Leŭ cumbon N syctp?чається 8 раз з ймов?рн?стю 0,384818649

Leŭ cumbon N syctp?чається 8 раз з ймов?рн?стю 0,08465517. Ентроп?я символа = 0,18751659

Leŭ cumbon N syctp?чається 8 раз з ймов?рн?стю 0,93479310. Ентроп?я символа = 0,16751659

Leŭ cumbon N syctp?чається 8 раз з ймов?рн?стю 0,93479310. Ентроп?я символа = 0,16751659

Leŭ cumbon N syctp?чається 6 раз з ймов?рн?стю 0,93479310. Ентроп?я символа = 0,16751659

Leŭ cumbon N syctp?чається 6 раз з ймов?рн?стю 0,903408076. Ентроп?я символа = 0,16751659

Leŭ cumbon N syctp?чається 6 р
```

Analyze of *text2.txt*

```
частоту появи символу в текст?.
В текст? було знайдено наступн? букви:
агальна ентроп.л. 1,2791
INT файлу: 1267,87306101
```

Entropy:

text1.txt - 4.25588104 text2.txt - 2.27625325 text3.txt - 2.63565820

Size of file (bytes):

text1.txt - 987bit/8 = 123.375bytes text2.txt - 1277bit/8 = 159.625bytestext3.txt - 1204bit/8 = 150.5bytes

Result of compression

Назва файлу	BZip2	RAR	Lzma	Zlib	Lzf4	Number of information
text1.txt	221	321	356	242	330	123.375
text2.txt	438	595	590	513	626	159.625
text3.txt	395	525	492	446	589	150.5

Дослідження способів кодування інформації на прикладі Base64

- 1. Ознайомтесь зі стандартом RFC4648
- 2. Для практичного засвоєння методу кодування, створіть програму, що кодує довільний файл в Base64 (шляхом реалізації алгоритму вручну, а не виклику бібліотечної функції).
 - Перевірте коректність роботи програми, порівнявши результат з існуючими програмними засобами (наприклад, openssl enc -base64)
- 3. Закодуйте в Base64 обрані вами текстові файли Обрахуйте кількість інформації в base64-закодованому варіанті файлу Порівняйте отримане значення з кількістю інформації вихідного файлу Зробіть висновки з отриманого результату
- 4. Закодуйте в Base64 стиснені кращим з алгоритмів текстові файли Обрахуйте кількість інформації в base64-закодованому варіанті стисненого файлу
 - Порівняйте отримане значення з кількістю інформації вихідного файлу та base64-закодованого файлу
 - Зробіть висновки з отриманого результату

Хід виконання роботи:

Base64 compression of *text1.txt*

```
Original string:
Я завжди мр?яв написати п?сню про маму
Але р?вн? поети вс? слова вже скавали
 я не хот?в повторити когось ?в них
Я б?ля сво∈ї мами буду завжди маленьким
? як т?льки покличе приб?жу скоренько
Тому я їй ? написав ц? слова як м?г
Original string length:
232
Encrypted string:
0K8g0LfQsNCy0LbQtNC4INC80YDRltGP0LIg0L3QsNC/0LjRgdCw0YLQuCDQv9GW0YHQvdGOINC/0YDQv1DQvNCw0LzRgw0K0JD
NGCÖLGGÖLTQVTCZÖL7RGdGMINGWƏLCGƏL3QUNGFDQTQT YDQSdGWƏLVRJYDRĞdCYƏL7RÌNGXINC8ƏLDQVNC4ÌNCXƏYPQTNGDINC3
LQVTC8ƏYMGƏY8GƏZFQUSDRliDQVdCwƏL/QUNGBƏLDQSiDRhtGWINGBƏLVQVTCYƏLAGƏY/QUIDQVNGWƏLM=
Encrypted string length:
556
```

Base64 compression of *text2.txt*

На початку березня 1917 року до Києва династ?я Романових пала. ?мператор Микола ?? зр?кся г В умовах невизначеност? майбутнього пол?тичного життя професор Михайло Грушевський побачив их пол?тичних сил та орган?зац?й, як л?берального, так ? соц?ал?стичного спрямування.

```
Original string length:
557
```

Encrypted string:

0J3QsCDQv9C+0YfQsNGC0LrRgyDQsdC10YDQtdC30L3RjyAxOTE3INGA0L7QutGDINC00L4g0JrQuNGU0LLQsCDQtNC iDQktC70LDQtNGDINC/0LXRgNC10LnQvdGP0LvQuCDRgNC+0YHRltC50YHRjNC60ZYg0LvRltCx0LXRgNCw0LvRjNC9 PQstGW0LnRiNC70Lgg0LIg0ZbRgdGC0L7RgNGW0Y4g0Y/QuiDQm9GO0YLQvdC10LLQsCDRgNC10LLQvtC70Y7RhtGW0 A0L7RhNC10YHQvtGAINCc0LjRhdCw0LnQu9C+INCT0YDRg9GI0LXQstGB0YzQutC40Lkg0L/QvtCx0LDRh9C40LIg0Y gNCw0LvRjNC90YMg0KDQsNC00YMuINCm0LXQuSDQvtGA0LPQsNC9INGD0YLQstC+0YDQuNC70Lgg0YMg0LHQtdGA0LX . SDRgdC40Lsg0YLQsCDQvtGA0LPQsNC90ZbQt9Cw0YbRltC5LCDRj9C6INC70ZbQsdC10YDQsNC70YzQvdC+0LPQviwg

Encrypted string length:

Base64 compression of *text3.txt*

```
Друга екран?зац?я псевдо?сторичної пов?ст? ?вана Франка «Захар Беркут» (?снує ще ф?льм 1971 р.) - на
ржк?но), неабияк? плани просування ф?льму на зах?дний ринок. ⟨Захар Беркут⟩ ?з самого початку зн?мав
Original string length:
457
Encrypted string:
ØJTRgNGD0LPQsCDQtdC60YDQsNC90ZbQt9Cw0YbRltGPINC/0YHQtdCy0LTQvtGW0YHRgtC+0YDQuNGH0L3QvtGXINC/0L7QstG\
dCw@inqsNC80LHR1tGC0L3R1tGI0LAg0YLQsCDQvdCw0LnQtNC+0YDQvtC20YfQsCDRgdGC0YDR1tGH0LrQsCDRh9Cw0YHR1tCy
GI0YLQvtGA0LjRgSDQsiAxMTMsNSDQvNC70L0uINCz0YDQvS4gKDMwINC80LvQvS4g0L3QsNC00LDQvdC+INCU0LXRgNC20LrRl
Cq9CX8LDRhdcw8YAg8JHQtdGA8LrRg9GCwrsg8ZbQtyDRgdCw8LzQvtCz8L4g8L/QvtGH8LDRgtC68YMg8LfQvdGW8LzQsNCy8YF
8LLQvtGOLiDQktGW8L8g8ZYg8LLQuNCz8LvRj9C88LDR1CDRj9C6INCz8L7Qu9C78ZbQstGD8LTRgdGM8LrQuNC5INGE8ZbQu9Gr
```

Encrypted string length: 1104

Size of file (bytes):

text1encrypted.txt = 1267bit/8 = 158.375 bytes

text2encrypted.txt = 1554bit/8 = 194.25 bytes

text3encrypted.txt = 1486bit/8 = 185.75 bytes

Entropy:

text1.txt - 4.25588104

text2.txt - 2.27625325

text3.txt - 2.63565820

Size of file (bytes):

text1.txt - 987bit/8 = 123.375bytes

text2.txt - 1277bit/8 = 159.625bytes

text3.txt - 1204bit/8 = 150.5bytes

Назва файлу		Entropy		Length	Count of information		ormation
text1encrypted.txt		2,2793		556	158.375		75
text2encrypted.txt		1,1398		1364	194.25		5
text3encry	pted.txt	1,34	169	1104	185.75		5
Назва							_
файлу	BZip2	RAR	Lzma	Zlib	Lzf4		
text1.txt	221	321	356	242	330		
text2.txt	438	595	590	513	603		
text3.txt	395	525	492	446	541		
Назва файлу		BZip(BASE64)		Count of information		Number of	
						information	
text1encrypted.txt		335		158.375		123.375	
text2encrypted.txt		630		194.25		159.625	
text3encrypted.txt		577		185.75		150.5	

Назва файлу	CoI(BASE64) ²	Number of information
text1encrypted.txt	170	123.375
text2encrypted.txt	205.875	159.625
text3encrypted.txt	197.375	150.5

Висновок: В цій лабораторній роботі мною була зроблена програма що аналізує текст та обчислює ймовірності появи букви в тексті, загальний ентропію тексту, обсяг інформації. Мною проаналізований обсяг зайнятого простору на диску файлів з різним типом стиснення. Як результат аналізу можна сказати, що обсяг інформації є значно меншим аніж обсяг який займає стиснутий цей же файл на диску. Було встановлено що найкращим з перевірених алгоритмом стиснення ϵ BZip2. Об'єм його файлів ϵ найближчим до кількості інформації. Також були опрацьовані навички в кодуванні Base64. Як результат можна сказати, що с кожним повторним кодуванням файлу обсяг інформації збільшується. Це зумовлено тим, що сама кількість символів в файлі збільшується, а отже й сам обсяг збільшується також.