Deep Learning: Project presentation

Deep Reinforcement Learning with JAVAgario

DEBES Baptiste

NELISSEN Louis

WEYDERS Pierre-Francois

August 2020

The Game: Agar.io

- Popular Massively Multiplayer browser game
- Player is a cell that eats pellets
- Constantly shrinks, but grows when eating

pellets

Controlled with mouse

The Game: JAVAgar.io

- Coded in JAVA
- Greyscale image
- Ability to launch our own servers
- Simplified rules
 - One agent
 - One box (small)
 - 20 pellets
- Objective: get all the pellets as fast as possible without dying

The Networks

The Theory: Q-Learning

- Branch of reinforcment learning
- Model-free
- Value based learning
 - Q → (**s**tate, **a**ction)
- ullet Q-learning aims to approximate the optimal Q^*
- Deep Q-learning: use NN as approximators

The Theory: Policy Gradient

- Branch of reinforcment learning
- Model-free
- Seek an approximator $\pi_{\theta}\left(a|s\right)$ of the optimal policy $\pi^{*}(a|s)$

The Theory: The RL family

Value based

- No policy (implicit)
- Value function

Policy based

- Policy
- No value function

Actor critic

- Policy
- Value function

Model based

Transition and reward model

Model free

 No transition and no reward model (implicit)

The Theory: The general algorithm

1) Draw some action

The Theory: The losses

A2C: Advantage Actor Critic

•
$$L^{PG}(\theta) = E\left[-\log(\pi_{\theta}(a_n|s_n)A(s_n,a_n))\right]$$

DDPG: Double DPG

•
$$L^{DDPG}(\theta) = -E[Q_{\tau}(s,a)|_{s=s_n,a_n=\pi_{\theta}(s_n)}]$$

DDQN: Double Deep Q Network

•
$$L^{TD}(\theta) = \frac{1}{2} \left[Q_{\theta}(s, a) - r - \gamma \max_{\{a'\}} Q_{\overline{\theta}}(s', a') \right]^2$$

The Theory: Other tricks

- Batch normalization:
 - Observed in the DDPG paper
- Target networks:
 - Stabilizes training
 - Soft update equation

$$\theta' \leftarrow \tau * \theta + (1 - \tau) * \theta'$$
 with $\tau \in [0,1]$

The Methods: General Network

The Methods: Convolutional Network

- 3 Convolution layers
- Batch normalisation

The Methods: Multi Layer Perceptron

- 2 dense layers
- Batch normalisation

Different versions for the different algorithms

The Methods: A2C

Actor:

Critic:

Parameters	Value
Learning rate	0.0001
Tau	0.001
Discount factor	0.99

The Methods: DDPG

Actor:

Critic:

Parameters	Value
Learning rate critic	0.0005
Learning rate actor	0.00001
Tau	0.001
Discount factor	0.99

The Methods: DDQN

Parameters	Value
Learning rate	0.0001
Tau	0.001
Discount factor	0.99

The Methods: Training

- Random environments
 - Random pellet position
 - Random init position
- Constants:
 - Size of map
 - Number of pellets (20)
- Images of 64 x 64
- Episodes of 2500 steps
- Total of 350 000 frames
- Replay buffer of size 65 000
- Adam optimizer

<u>Hardware</u>:

- CPU: I7-6700k 4GHZ (4 cores)
- GPU: NVIDIA GTX 1070 (training was ~ 30 % faster)

The Results

The Results

The Results: example trajectories

Greedy agent

A₂C after 3000 steps

A₂C after 4000 steps

The Results: Discussion

- Lack of training
- Simplicity of RL Algorithms
- Complexity of the input
- Size of the replay buffer

Thank you for your attention