Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.11.22

Key words: Hoffman's Theorem, Fisher's Inequality, design

Recall (EKR Theorem). If $n \ge 2k$, $\mathcal{F} \subset \binom{[n]}{k}$ is an intersecting family, then $|\mathcal{F}| \le \binom{n-1}{k-1}$.

Definition. Kneser graph KG(n,k) for $n \ge 2k$ is a graph with vertex set $\binom{[n]}{k}$ such that $A, B \in \binom{[n]}{k}$, $A \sim B$ iff $A \cap B = \emptyset$.

Fact.

- (1) $\mathcal{F} \subset \binom{[n]}{k}$ is an intersecting family. $\iff \mathcal{F}$ is an independent set in KG(n,k).
- (2) EKR Theorem $\iff \alpha(KG(n,k)) \leqslant \binom{n-1}{k-1}$

Definition. G = (V, E), V = [n], the adjacency matrix of G $A_G = (a_{ij})_{n \times n}$ is defined by $a_{ij} = \begin{cases} 1, & \text{if } i \sim j \\ 0, & \text{otherwise.} \end{cases}$

Definition. The real eigenvalues $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$ of A_G is called the eigenvalues of G. The eigenvectors v_1, v_2, \cdots, v_n of A_G

对称阵河对角化」存在特征向量构成规范正交基。

such that $\begin{cases} A_G v_i = \lambda_i v_i, ||v_i|| = 1 \text{ for all } i \in [n] \\ v_i \perp v_j \text{ for all } i \neq j. \end{cases}$ are called the orthogonal eigenvectors of G.

Definition. A graph G is called d-regular if each vertex has degree d.

Theorem 1 (Hoffman's Theorem). If an *n*-vertex graph G is d-regular with eigenvalues $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$, then

$$\alpha(G) \leqslant n \frac{-\lambda_n}{\lambda_1 - \lambda_n}.$$

proof: Let v_1, \dots, v_n be the corresponding orthogonal eigenvectors of $\overline{\lambda}_1, \dots, \lambda_n$. Let I be any independent set of G. Let e_I be the column indicator vector of I, and write $e_I = \sum_{i=1}^n \alpha_i v_i$, where $\alpha_i = \langle e_I, v_i \rangle$. Since G is d-regular, we have $\lambda_1 = d$ (prove this as an exercise!) and $v_1 = (\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}})^T$. So $\alpha_1 = \langle e_I, v_1 \rangle = \frac{|I|}{\sqrt{n}}$. Since I is an independent set of G, $e_I^T A_G e_I = \sum_{i,j} x_i a_{ij} x_j = 0$, where we assume $e_I = (x_1, \dots, x_n)^T$. So we have

$$0 = e_I^T A_G e_I = e_I^T \sum_{i=1}^n \alpha_i A_G v_i = \sum_{i=1}^n \alpha_i \lambda_i \langle e_I, v_i \rangle$$

$$= \sum_{i=1}^n \alpha_i^2 \lambda_i \geqslant \alpha_1^2 \lambda_1 + (\alpha_2^2 + \dots + \alpha_n^2) \lambda_n$$

$$= (\frac{|I|}{\sqrt{n}})^2 \lambda_1 + (|I| - (\frac{|I|}{\sqrt{n}})^2) \lambda_n$$

$$\implies 0 \geqslant \frac{|I|^2}{n} \lambda_1 + (|I| - \frac{|I|^2}{n}) \lambda_n = |I| (\frac{|I|}{n} \lambda_1 + \lambda_n - \frac{|I|}{n} \lambda_n)$$

$$\implies \frac{|I|}{n} \lambda_1 + \lambda_n - \frac{|I|}{n} \lambda_n \leqslant 0 \implies \frac{|I|}{n} (\lambda_1 - \lambda_n) \leqslant -\lambda_n$$

dI-A行标的の Uも入、e-vec Xも絶対重量 大分量、UX = (AU) x = (AU) x = Axy y = dux・

$$\Longrightarrow |I| \leqslant n \frac{-\lambda_n}{\lambda_1 - \lambda_n}$$

Lemma 2. The eigenvalues of KG(n,k) are $u_j = (-1)^j \binom{n-k-j}{k-j}$ of multiplicity $\binom{n}{j} - \binom{n}{j-1}$ for every $0 \le j \le k$.

<u>proof:</u> Omitted. (Refer to Chapter 9 of GTM 207 Algebraic Graph Theory.)

The second proof of EKR Theorem.

Consider the eigenvalues of KG(n,k), say $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{\binom{n}{k}}$,

where
$$\lambda_1 = \binom{n-k}{k} = u_0$$
 and $\lambda_{\binom{n}{k}} = -\binom{n-k-1}{k-1} = u_1$.

Then by Hoffman's bound, we have

$$\alpha(KG(n,k)) \leqslant \binom{n}{k} \frac{-\lambda_{\binom{n}{k}}}{\lambda_1 - \lambda_{\binom{n}{k}}} = \binom{n}{k} \frac{\binom{n-k-1}{k-1}}{\binom{n-k}{k} + \binom{n-k-1}{k-1}} = \binom{n-1}{k-1}.$$

By Fact(2), we are done.

Theorem 3 (Fisher's Inequality). Let A_1, \dots, A_m be distinct subsets of [n] such that $|A_i \cap A_j| = k$ for some fixed $k \in [n]$, $\forall i \neq j$, then $m \leq n$.

<u>proof:</u> Consider the incidence matrix of A_1, \dots, A_m , and let v_1, \dots, v_m be the m column vectors. Then it suffices to show that v_1, \dots, v_m are linearly independent in \mathbb{R} .

Assume, for the sake of contradiction, that $\exists \lambda_i \neq 0 \text{ s.t. } \sum_{i=1}^m \lambda_i v_i = 0.$

Since
$$\langle v_i, v_j \rangle = |A_i \cap A_j| = \begin{cases} |A_i| \geqslant k, & i = j \\ k, & i \neq j. \end{cases}$$
 we have
$$0 = \langle \sum_{i=1}^m \lambda_i v_i, \sum_{j=1}^m \lambda_j v_j \rangle = \sum_{i=1}^m \lambda_i^2 \langle v_i, v_i \rangle + \sum_{1 \leqslant i \neq j \leqslant m} \lambda_i \lambda_j \langle v_i, v_j \rangle$$

$$= \sum_{i=1}^m \lambda_i^2 |A_i| + k \sum_{1 \leqslant i \neq j \leqslant m} \lambda_i \lambda_j = \sum_{i=1}^m \lambda_i^2 (|A_i| - k) + k (\sum_{i=1}^m \lambda_i)^2$$

Note that $|A_i| = k$ for at most one $i \in [m]$. (Otherwise $|A_i \cap A_j| < k$ for $|A_i|, |A_j| = k$ with $i \neq j$.) But there are at least two $\lambda_i \neq 0$. So $\sum_{i=1}^{m} \lambda_i^2(|A_i| - k) > 0, \text{ a contradiction.}$

Designs

Definition. A (v, k, λ) design over X is a pair (X, D), where

 $M \circ S = X \text{ is a set of points. } |X| = v.$ $M \circ S = X \text{ is a set of points. } |X| = v.$ $M \circ D \subset \binom{X}{k} \text{ is called a set of blocks. } |D| = b.$

• \forall pair of distinct points of X is contained in exactly λ blocks.

Example. $X = [7], v = 7, k = 3, \lambda = 1, D = \{123, 147, 156, 345, 367, 257, 246\}.$

Figure 1: the Fano plane

Fact. $b \geqslant v$.

<u>proof:</u> $\forall x \in X$, define $A_x = \{B \in D : x \in B\}$. Since each pair of distinct points of X is contained in exactly λ blocks, $|A_x \cap A_y| = \lambda$ for $x \neq y$. By Fisher's Inequality, $v \leq b$.

Definition. If b = v, a (v, k, λ) design is called a symmetric design.

Definition. D is called r-regular if every point appears in exactly r blocks, and r is called replication number.

Theorem 4. (X, D) is a (v, k, λ) design with b blocks, then D 2. (v, k, λ) is r-regular satisfying $r(k-1) = \lambda(v-1)$ and bk = vr.

<u>proof:</u> $\forall a \in X$, assume a occurs in r_a blocks. Consider $S = \{(x, B) : B \in D; a, x \in B; x \neq a\}$.

- Since a is fixed, there are v-1 possibilities for x. For each chosen x, there are exactly λ blocks containing both x and a. Hence $|S| = (v-1)\lambda$.
- For each of the r_a blocks containing a, there are k-1 ways to choose $x \in B \setminus \{a\}$. Hence $|S| = r_a(k-1)$.

So, by double counting, we have $r_a(k-1) = (v-1)\lambda$ for $\forall a \in X$, which implies that r_a is independent of a, i.e. D is regular. To prove bk = vr, consider $T = \{(x, B) : B \in D, x \in B\}$.

- $\forall x \in X$, we can choose B in r ways. Hence |T| = vr.
- $\forall B \in D$, we can choose x in k ways. Hence |T| = bk.

が成 design 都是 r-reguler