Laporan Tugas Besar Pembelajaran Mesin Lanjut Klasifikasi Dataset " Breast Cancer Wisconsin " Menggunakan Automated Machine Learning

Disusun Oleh:

- 1. MUHAMMAD RIZKI NURFIQRI (1301204009)
 - 2. <u>KIKI DWI PRASETYO</u> (1301204027)

IF-43-PIL-01

Program Studi Sarjana Informatika Fakultas Informatika Universitas Telkom Bandung 2023

Daftar isi

BAB I Formulasi Masalah

Formulasi Masalah

BAB II Eksplorasi Dan Persiapan Data

- A. Eksplorasi Data
- B. Load Dataset
- C. Pembersihan Data
- D. Spliting feature Data

BAB III Pemodelan

- A. Metode Machine Learning menggunakan Automation Tools (TpOT)
- B. Fit Data
- C. Eksperimen
 - 1. Pemodelan
 - 2. Fit data

BAB IV Evaluasi

Evaluasi

BAB V Penutup

- A. Penutup
- B. Link Source Code

REFERENCE

BAB I Formulasi Masalah

Pada bab ini, akan dijelaskan tentang masalah yang ingin diselesaikan melalui tugas besar pembelajaran mesin lanjut. Masalah yang akan dipecahkan adalah klasifikasi dataset "Breast Cancer Wisconsin" untuk memprediksi hasil dari label "Diagnosis" yang akan mempresentasikan yang menandakan bahwa mana yang kanker dengan inisial "M" lalu untuk yang bukan kanker berinisial "B"

BAB II Eksplorasi dan Persiapan Data

A. Eksplorasi Data

Eksplorasi data (data exploration) adalah suatu proses dalam analisis data yang bertujuan untuk memahami karakteristik, pola, dan informasi yang terkandung dalam data. Eksplorasi data dilakukan sebelum analisis data yang lebih mendalam dilakukan, seperti pemodelan statistik atau pembuatan prediksi.

Range Data	ss 'pandas.core.frame.Dat eIndex: 106 entries, 0 to columns (total 31 column	105 s):		Rang	ss 'pandas.core.frame.Dat eIndex: 463 entries, 0 to columns (total 32 column	462	
	Column	Non-Null Count	Dtype		Column	Non-Null Count	Dtyp
0	id	106 non-null	int64	е	id	463 non-null	int6
	radius mean	106 non-null	float64		diagnosis	463 non-null	obje
	texture mean	106 non-null	float64		radius mean	463 non-null	floa
	perimeter mean	106 non-null	float64		texture mean	463 non-null	floa
	area mean	106 non-null	float64		perimeter mean	463 non-null	floa
	smoothness mean	106 non-null	float64		area mean	463 non-null	floa
6	compactness mean	106 non-null	float64		smoothness mean	463 non-null	floa
	concavity mean	106 non-null	float64		compactness mean	463 non-null	floa
8	concave points mean	106 non-null	float64		concavity_mean	456 non-null	floa
9	symmetry mean	106 non-null	float64		concave points_mean	456 non-null	floa
10	fractal dimension mean	106 non-null	float64		symmetry_mean	463 non-null	floa
11	radius se	106 non-null	float64		fractal_dimension_mean	463 non-null	floa
12	texture se	106 non-null	float64		radius_se	463 non-null	floa
13	perimeter se	106 non-null	float64		texture_se	463 non-null	floa
14	area se	106 non-null	float64	14	perimeter_se	463 non-null	floa
15	smoothness se	106 non-null	float64		area_se	463 non-null	floa
16	compactness se	106 non-null	float64	16	smoothness_se	463 non-null	floa
17	concavity se	106 non-null	float64		compactness_se	463 non-null	floa
	concave points se	106 non-null	float64	18	concavity_se	456 non-null	floa
19	symmetry se	106 non-null	float64	19	concave points_se	456 non-null	floa
20	fractal dimension se	106 non-null	float64	20	symmetry_se	463 non-null	floa
	radius_worst	106 non-null	float64	21	fractal_dimension_se	463 non-null	floa
	texture worst	106 non-null	float64	22	radius_worst	463 non-null	floa
	perimeter_worst	106 non-null	float64	23	texture_worst perimeter worst	463 non-null 463 non-null	floa
24	area_worst	106 non-null	float64	24 25	perimeter_worst area worst	463 non-null 463 non-null	floa
	smoothness worst	106 non-null	float64	25	smoothness worst	463 non-null	floa
26	compactness_worst	106 non-null	float64	26 27	compactness_worst	463 non-null	floa
	concavity_worst	106 non-null	float64	27	compactness_worst	456 non-null	floa
28	concave points_worst	106 non-null	float64	20 29	concavity_worst	456 non-null	floa
29	symmetry_worst	106 non-null	float64	30	symmetry worst	463 non-null	floa
30	fractal dimension worst	106 non-null	float64		fractal dimension worst		floa

B. Load Dataset

Load dataset adalah sebuah proses untuk membaca atau memuat data dalam suatu format tertentu ke dalam suatu program atau aplikasi untuk tujuan analisis atau pemrosesan data lebih lanjut. Dataset dapat berupa file teks, file CSV, file Excel, file SQL, atau format lain yang sesuai dengan program yang digunakan.

C. Mengganti nilai Missing Value

Beberapa Dataset ada beberapa yang perlu di bersihkan, yaitu pada dataset ini meimiliki baris yang berisikan nilai "?" dan ada beberapa atribut seperti "id" irelevan dalam proses training,

Lalu kami mengganti nilai tersebut dengan nilai mean

```
#Ganti missing value dengan nilai mean
df_train = df_train.fillna(df_train.mean())
df_test = df_test.fillna(df_test.mean())

<ipython-input-19-e04d38d2c11e>:2: FutureWarning: The default value of r
    df_train = df_train.fillna(df_train.mean())

[20] missing_values_train = df_train.isnull().sum()
    missing_values_test = df_test.isnull().sum()
    print("Jumlah missing value di train.csv: \n", missing_values_train)
    print("Jumlah missing value di test.csv: \n", missing_values_test)
```

D. Spliting feature Data

Splitting feature data adalah suatu proses dalam analisis data yang bertujuan untuk memisahkan variabel atau fitur dalam dataset menjadi dua atau lebih kelompok yang saling terpisah. Tujuannya adalah untuk memudahkan analisis dan pemrosesan data selanjutnya, serta memastikan bahwa data yang digunakan untuk pelatihan model atau pengujian model tidak tercampur atau terjadi kebocoran informasi.

BAB III

Pemodelan

A. Metode Machine Learning menggunakan Automation Tools (TpOT).

TpOT (Tree-based Pipeline Optimization Tool) adalah sebuah perangkat lunak yang digunakan untuk otomatisasi dan optimasi pembuatan pipeline (rantai alur kerja) dalam pembelajaran mesin. TpOT dikembangkan dengan menggunakan algoritma genetika dan pohon keputusan untuk mencari dan mengoptimalkan kombinasi terbaik dari preprocessing data, model, dan hiperparameter untuk mendapatkan model yang optimal.

Pada Tugas Besar ini kali ini kami menggunakan TpOT karena dapat membuat memberikan informasi yang benar dalam melakukan pemodelan dari dataset yang kami miliki. Dengan ini dapat diharaspkan mampu memberikan akurasi yang terbaik dari dataset ini. Dan kami menggunakan TPOTClassifier dengan atribut generations=5, population size=20, cv=5, random state=42, verbosity=2

B. Fit Data

"Fit data" adalah istilah yang sering digunakan dalam konteks pemodelan atau pembelajaran mesin. Fungsi "fit" pada dasarnya digunakan untuk melatih model atau mengatur parameter model agar cocok dengan data yang diberikan. Dalam konteks ini, "fit data" merujuk pada proses melatih model dengan data yang telah dikumpulkan atau disediakan.

Fungsi "fit" biasanya diimplementasikan dalam kerangka kerja atau pustaka pemodelan tertentu, seperti scikit-learn dalam Python. Biasanya, fungsi ini mengambil dua argumen utama: data masukan (fit data) dan target yang sesuai (label atau hasil yang diharapkan). Proses melatih model dengan data masukan tersebut melibatkan

penyesuaian parameter internal model untuk meminimalkan kesalahan atau perbedaan antara output yang dihasilkan oleh model dan target yang diharapkan.

dibawah ini adalah model fit data dari hasil TPOTClassifier dengan atribut generations=5

C. Eksperimen

1. Pemodelan

Berikut adalah eksperimen kami dengan mengubah nilai TPOTClassifier dengan atribut generations manjadi 7

```
tpot = TPOTClassifier(generations=7, population_size=20, cv=5, random_state=42, verbosity=2)
```

2. Fit Data

Dan dibawah ini adalah hasil dari Fit data dengan perubahan TPOTClassifier dengan atribut generations manjadi 7

BAB IV Evaluasi

Dalam tugas besar ini, kami akan mengukur performa model TpOT dalam klasifikasi pada dataset Breast Cancer Wisconsin (Diagnostic) menggunakan akurasi, F1-score, dan confusion matrix. Metode ini dipilih untuk mengevaluasi kemampuan model dalam membedakan kanker dengan non-kanker. Akurasi memberikan gambaran persentase prediksi yang tepat, sedangkan F1-score menggabungkan presisi dan recall untuk memberikan gambaran lebih lengkap. Confusion matrix memberikan informasi tentang prediksi yang benar dan salah untuk setiap kelas klasifikasi. Evaluasi ini akan membantu kami dalam menilai kualitas model TpOT dan mengidentifikasi area yang perlu diperbaiki atau dikembangkan lebih lanjut.

```
#EVALUASI
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score

y_pred=tpot.predict(x_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
print("-"*20, "confusion matrix", "-"*20)
plt.figure(figsize=(8,8))
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font_scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
plt.xlabel('Predicted Class')
plt.ylabel('Original Class')
plt.show()
```


Hasil evaluasi dari performa model TpOT dalam klasifikasi pada dataset Breast Cancer Wisconsin (Diagnostic) menunjukkan tingkat akurasi sebesar 95,699%, F1-score sebesar 0,962, dan confusion matrix dengan false positive sebanyak 39, false negative sebanyak 2, dan true negative sebanyak 50. Dengan hasil ini, dapat disimpulkan bahwa model TpOT memiliki performa yang sangat baik dalam mengklasifikasikan kanker dan non-kanker pada dataset ini.

BAB V Penutup

A. Penutup

Dalam tugas besar ini, kami berhasil menerapkan Automated Machine Learning menggunakan model TPOT dan mengevaluasi performa model TPOT dalam klasifikasi pada dataset Breast Cancer Wisconsin (Diagnostic). Kami menggunakan metrik evaluasi akurasi, F1-score, dan confusion matrix untuk menilai kinerja model TPOT dalam membedakan antara kanker dan non-kanker.

Namun, untuk meningkatkan performa dan keandalan model, diperlukan upaya perbaikan dan pengembangan lebih lanjut. Analisis yang lebih mendalam terhadap kasus false positive dan false negative, penerapan teknik pra-pemrosesan data, dan penalaan parameter.

Dengan upaya perbaikan dan pengembangan yang tepat, model TPOT memiliki potensi untuk menjadi alat yang sangat berguna dalam membantu identifikasi kanker pada dataset Breast Cancer Wisconsin (Diagnostic). Harapan kami adalah bahwa hasil dari tugas besar ini dapat memberikan kontribusi positif dan membuka peluang untuk pengembangan lebih lanjut di bidang klasifikasi kanker.

Kami berharap penelitian dan pengembangan dalam bidang klasifikasi kanker terus berkembang untuk memberikan manfaat yang besar bagi dunia medis dan kesehatan. Dengan demikian, kami mengakhiri tugas besar ini dengan harapan yang tinggi terhadap potensi dan kemajuan di masa depan.

B. Link Source Code

https://drive.google.com/drive/folders/1d0fJAzBRmXyw9WiSlltJr0tPu9SphniE?usp=sharing

REFERENCE

- Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
- Wickham, H. (2016). ggplot2: elegant graphics for data analysis.
 Springer.
- Tufte, E. R. (2001). The visual display of quantitative information.
 Graphics press.
- Kandel, S., Parikh, R., Paepcke, A., Hellerstein, J. M., & Heer, J. (2011).
 Profiler: Integrated statistical analysis and visualization for data quality assessment. ACM Transactions on Interactive Intelligent Systems (TiiS), 1(3), 1-37.
- Dasu, T., & Johnson, T. (2003). Exploratory data mining and data cleaning. John Wiley & Sons.
- McKinney, W. (2010). Data structures for statistical computing in python. Proceedings of the 9th Python in Science Conference, 51-56.
- Wickham, H. (2011). The split-apply-combine strategy for data analysis.
 Journal of Statistical Software, 40(1), 1-29.
- Ince, D. C., Hatton, L., & Graham-Cumming, J. (2012). The case for open computer programs. Nature, 482(7386), 485-488.
- Peng, R. D. (2011). Reproducible research in computational science.
 Science, 334(6060), 1226-1227.