Longest Common Subsequence

Review: Dynamic programming

- DP is a method for solving certain kind of problems
- DP can be applied when the solution of a problem includes solutions to subproblems
- We need to find a recursive formula for the solution
- We can recursively solve subproblems, starting from the trivial case, and save their solutions in memory
- In the end we'll get the solution of the whole problem

Dynamic programming

- It is used, when the solution can be recursively described in terms of solutions to subproblems (optimal substructure)
- Algorithm finds solutions to subproblems and stores them in memory for later use
- More efficient than "brute-force methods", which solve the same subproblems over and over again

Properties of a problem that can be solved with dynamic programming

- Simple Subproblems
 - We should be able to break the original problem to smaller subproblems that have the same structure
- Optimal Substructure of the problems
 - The solution to the problem must be a composition of subproblem solutions
- Subproblem Overlap
 - Optimal subproblems to unrelated problems can contain subproblems in common

Longest Common Subsequence Problem

Given two strings X and Y, a common subsequence is a subsequence that appears in both X and Y.

The longest common subsequence problem is to find a longest common subsequence (lcs) of X and Y

- subsequence: characters need not be contiguous
- different than substring

Can you use dynamic programming to solve the longest common subsequence problem?

Longest Common Subsequence

- Longest common subsequence (LCS) problem:
 - Given two sequences x[1..m] and y[1..n], find the longest subsequence which occurs in both
 - $Ex: x = \{A B C B D A B\}, y = \{B D C A B A\}$
 - {B C} and {A A} are both subsequences of both
 - What is the LCS?
 - Brute-force algorithm: For every subsequence of x, check if it's a subsequence of y
 - How many subsequences of x are there?
 - What will be the running time of the brute-force alg?

Longest Common Subsequence (LCS)

Application: comparison of two DNA strings

Ex: $X = \{A B C B D A B\}, Y = \{B D C A B A\}$

Longest Common Subsequence:

X = AB C BDAB

Y = BDCABA

Brute force algorithm would compare each subsequence of X with the symbols in Y

LCS Algorithm

- if |X| = m, |Y| = n, then there are 2^m subsequences of x; we must compare each with Y (n comparisons)
- So the running time of the brute-force algorithm is O(n 2^m)
- Notice that the LCS problem has optimal substructure: solutions of subproblems are parts of the final solution.
- Subproblems: "find LCS of pairs of prefixes of X and Y"

LCS Algorithm

- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.
- Define X_i , Y_j to be the prefixes of X and Y of length i and j respectively
- Define c[i,j] to be the length of LCS of X_i and Y_j
- Then the length of LCS of X and Y will be *c*[*m*,*n*]

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- We start with i = j = 0 (empty substrings of x and y)
- Since X_0 and Y_0 are empty strings, their LCS is always empty (i.e. c[0,0] = 0)
- LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- When we calculate c[i,j], we consider two cases:
- **First case:** x[i]=y[j]: one more symbol in strings X and Y matches, so the length of LCS X_i and Y_j equals to the length of LCS of smaller strings X_{i-1} and Y_{i-1} , plus 1

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- Second case: x[i] != y[j]
- As symbols don't match, our solution is not improved, and the length of LCS(X_i, Y_j) is the same as before (i.e. maximum of LCS(X_i, Y_{j-1}) and LCS(X_{i-1},Y_j)

Why not just take the length of $LCS(X_{i-1}, Y_{j-1})$?

LCS Length Algorithm

LCS-Length(X, Y)

- 1. m = length(X) // get the # of symbols in X
- 2. n = length(Y) // get the # of symbols in Y
- 3. for i = 1 to m c[i,0] = 0 // special case: Y_0
- 4. for j = 1 to n c[0,j] = 0 // special case: X_0
- 5. for i = 1 to m // for all X_i
- 6. for j = 1 to n // for all Y_i
- 7. if $(X_i == Y_i)$
- 8. c[i,j] = c[i-1,j-1] + 1
- 9. else c[i,j] = max(c[i-1,j], c[i,j-1])
- 10. return c

LCS Example

We'll see how LCS algorithm works on the following example:

- $\mathbf{X} = \mathbf{ABCB}$
- $\mathbf{Y} = \mathbf{BDCAB}$

What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$

$$X = A B C B$$

$$Y = BDCAB$$

i	j	LC 0 Yj	SE B	z Zxan 2 D	nple 3	4 A		ABCB BDCAB
0	Xi	0	0	0	0	0	0	
1	A	0	•					_
2	В	0						
3	C	0						_
4	В	0						
	i = 1 to j = 1 to							-

		j	LC ₀	S ₁	xan	nple	(3)	5 I	ABCB BDCAB
п	i	J	Yj	В	D	C	A	В	
	0	Xi	0	0	0	0	0	0	
	1	A	0	0	0	0			
	2	В	0						
	3	C	0						
-	4	В	0						
					i,j] = c[i-1,j-1 (c[i-1,j		1])	

H		j	LC	SE	xan	nple	(5)		ABCB BDCAB
	i	J	Yj	В	D		A	(B))
	0	Xi	0	0	0	0	0	0	
	1	A	0	0	0	0	1 -	+ 1	
	2	В	0						
	3	C	0						
	4	В	0						
					i,j] = c	[i-1,j-1] (c[i-1,j		-1])	

П		I j		S Ex	xam	ple 3	(10)) A	ABCB BDCAB
	i	J	Yj	B	D) C	A	В	
	0	Xi	0	0	0	0	0	0	
	1	A	0	0	0	0	1	1	
	2	В	0	1	_1	1	1	2	
	3	\bigcirc	0	1 -	1				
-	4	В	0						
					i,j] = c	[i-1,j-1] (c[i-1,j		-1])	

		I j		S E:	xam 2	ple	(14)) A	ABCB BDCAB	
п	i	J	Yj	В	D	C	A	S B		
	0	Xi	0	0	0	0	0	0		
	1	A	0	0	0	0	1	1		
	2	В	0	1	1	1	1	2		
	3	C	0	1	1	2	2	2		
-	4	\bigcirc B	0	1 -	1	2 -	2			
	$if (X_i == Y_j) \\ c[i,j] = c[i-1,j-1] + 1 \\ else c[i,j] = max(c[i-1,j],c[i,j-1])$									

	I	LCS	S E	xam	ple	(15)) A	ABC <mark>B</mark>		
	j	0	1	2	3	4	51	DCAD		
i		Yj	В	D	C	Α	(B)			
0	Xi	0	0	0	0	0	0			
1	A	0	0	0	0	1	1			
2	В	0	1	1	1	1	2			
3	C	0	1	1	2	2 、	2			
4	B	0	1	1	2	2	3			
if $(X_i == Y_j)$ c[i,j] = c[i-1,j-1] + 1 else $c[i,j] = max(c[i-1,j],c[i,j-1])$										

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?

O(m*n)

since each c[i,j] is calculated in constant time, and there are m*n elements in the array

How to find actual LCS

- So far, we have just found the *length* of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y

Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1,j-1]

For each c[i,j] we can say how it was acquired:

For example, here c[i,j] = c[i-1,j-1] + 1 = 2+1=3

How to find actual LCS - continued

Remember that

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- So we can start from c[m,n] and go backwards
- Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part of LCS)
- When i=0 or j=0 (i.e. we reached the beginning), output remembered letters in reverse order

- Problem: how to find the longest pattern of characters that is common to two text strings X and Y
- Dynamic programming algorithm: solve subproblems until we get the final solution
- Subproblem: first find the LCS of prefixes of X and Y.
- this problem has optimal substructure: LCS of two prefixes is always a part of LCS of bigger strings

Review: Longest Common Subsequence (LCS) continued

- Define X_i , Y_j to be prefixes of X and Y of length i and j; m = |X|, n = |Y|
- We store the length of LCS(X_i , Y_j) in c[i,j]
- Trivial cases: $LCS(X_0, Y_j)$ and $LCS(X_i, Y_0)$ is empty (so c[0,j] = c[i,0] = 0)
- Recursive formula for c[i,j]:

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

c[m,n] is the final solution

Review: Longest Common Subsequence (LCS)

- After we have filled the array c[], we can use this data to find the characters that constitute the Longest Common Subsequence
- Algorithm runs in O(m*n), which is *much* better than the brute-force algorithm: $O(n 2^m)$

