LECTURER: TAI LE QUY

MACHINE LEARNING SUPERVISED LEARNING

Introduction to Machine Learning	1
Regression	2
Basic Classification Techniques	3
Support Vector Machines	4
Decision & Regression Trees	5

REGRESSION

- Understand the **concept** of regression and when to use it.
- Evaluate a regression model's performance.
- Utilize regularization techniques and understand where they are implemented.
- Apply different well-known regression models with the use of **Python**.

- 1. Name **three terms** for the **x variables** in linear regression.
- 2. Explain why we should be alerted if **R**² is **1**.
- 3. Explain what makes **logistic regression different** from other regression techniques.

UNIT CONTENT

REGRESSION

Term	Synonyms	
Target variable (Y)	Label, y variable, dependent variable	
Input (X)	X variables, independent variables, predictors, fea- tures	
Coefficient (ω_i)	Weight, slope, regression coefficient	
(y-axis) Intercept (ω ₀)	Bias	
Loss function	Cost function, target function, objective function, error function	

Important Regression Terms and Their Synonyms

Source of image: Course book

Weight Slope Regression Coefficient

$$y = \dots \omega * x$$

Weight Slope Regression Coefficient

$$y = \omega_0 + \omega * x$$

Weight Slope Regression Coefficient

$$y = \omega_0 + \omega * x + \varepsilon$$
Random Error

$$y = \omega_0 + \sum_{i=1}^n \omega_i * x_i + \varepsilon$$

$$Residual = R_i = y_i - \hat{y}_i$$

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$R^{2} = 1 - \frac{RSS}{\sum_{i=1}^{n} (y_{i} - \overline{y}_{i})^{2}}$$

Coefficient of determination

Mean absolute error (MAE): absolute difference between all predictions and the actual values

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

- Mean squared error (MSE): The deviations between the actual and the predicted values are taken to the square.
- Root mean square error
 (RMSE): the result is
 telegraphed in the unit of the
 label being predicted

$$MSE \; = \; \frac{1}{n} \sum_{i \, = \, 1}^{n} \left(\; y_{i} - \widehat{y}_{\, i} \right)^{2} \hspace{5mm} RMSE \; = \; \sqrt{\frac{1}{n} \sum_{i \, = \, 1}^{n} \left(\; y_{i} - \widehat{y}_{\, i} \right)^{2}}$$

REGRESSION

GENERALIZATION

$$y = \omega_0 + \sum_{i=1}^n \omega_i * x_i + \varepsilon$$

Ridge regression

Loss =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \alpha \sum_{i=1}^{n} \omega_i^2$$

The penalty size, also known as the L2 **norm**

GENERALIZATION

Ridge regression

Loss =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \alpha \sum_{i=1}^{n} \omega_i^2$$

Lasso regression

$$Loss = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \alpha \sum_{i=1}^{n} |\omega_i|$$

Elastic net regression

Loss =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + r \sum_{i=1}^{n} \omega_i^2 + (1 - r) \sum_{i=1}^{n} |\omega_i|$$

LASSO REGRESSION

- Lasso (least absolute shrinkage and selection operator)
 - It differs from ridge regression only in that the L2 norm is exchanged for the L1 norm
- The loss function:

$$RSS + \alpha \sum_{i=1}^{n} |\omega_{i}|$$

ELASTIC NET

- Elastic net: selects important coefficients, as does lasso regression, and is effective in handling correlated features, as is ridge regression.
 - r=0: lasso regression
 - r=1: ridge regression

$$\alpha \sum_{i=1}^{n} \left(r\omega_i^2 + (1-r)|\omega_i| \right)$$

REGRESSION

Assumptions of linear regression models

- Linear relationship
- Normally distributed residuals
- Homoscedasticity (constant variance)

- These assumptions are **relaxed** in GLMs
- Assume that values of Y are drawn from a distribution.
- Predicting the **mean** of this distribution
- Introducing a link function

- Generalized linear models (GLMs) are a category of expanded linear regression models.
- General models are developed by relaxing the assumptions of linear models.
- GLMs all essentially comprise the following three components:
 - 1. A linear predictor $\eta_i = \omega_0 + \omega_1 \ x_{1i} + ... + \omega_p \ x_{pi}$
 - 2. A probability distribution that generates the target variable Y
 - 3. A monotone differentiable **link function** $g(\mu_i) = \eta_i$ describing how the mean depends on the linear predictor η_i .

Distribution	Use	Notation	Link function
Gaussian	Linear repose	Ν(μ,σ2)	"Identity": μ
Poisson	Counts of events	$N(\mu)$	$\mathrm{Log}(\mu)$
Bernoulli	Outcome of single yes/no occurrences	$\operatorname{Bern}(\mathbf{p})$	$\operatorname{Logit}(\mu)$
Binomial	Count of yes occurren- ces out of n yes/no events	Bin(n, μ)/n	$\operatorname{Logit}(\mu)$

Some Probability Distributions and Their Link Functions

Poisson regression

$$\begin{array}{l} ln \; \mathbf{\eta}_i = \omega_0 + \omega_1 x_{1i} \\ y_i \hspace{-0.5mm} \sim \hspace{-0.5mm} Poisson(\mathbf{\eta}_i) \end{array}$$

REGRESSION

Logistic function

$$p(X) = \frac{e^{\omega_0 + \omega_1 X}}{1 + e^{\omega_0 + \omega_1 X}}$$

Multiple features

$$p\!\left(\!X\right)\!=\frac{\mathrm{e}^{\omega_0+\omega_1X_1+\ldots+\omega_pX_p}}{1+\mathrm{e}^{\omega_0+\omega_1X_1+\ldots+\omega_pX_p}}$$

- Model Training via Maximum Likelihood
 - Estimates for our regression coefficients ω such that the predicted probability p(X) for each observation matches the observed output value Y of the observation as closely as possible

$$l(\omega_0,\omega_1) = \prod_{i\colon y_i=1} p(X_i) \prod_{i'\colon y'_i=0} [1-p(x'_i)]$$

LOGISTIC REGRESSION - EXAMPLE

- Understand the **concept** of regression and when to use it.
- Evaluate a regression model's performance.
- Utilize regularization techniques and understand where they are implemented.
- Apply different well-known regression models with the use of **Python**.

SESSION 2

TRANSFER TASK

TRANSFER TASKS

A start-up that sells **sustainable products in smaller stores** has been very successful in recent years. As a result, more stores are to be opened worldwide.

As a Data Scientist, you and your team are tasked with training a **machine learning model predicting product demand** one week ahead.

After fitting a first linear regression model, you realize that the **relationship** between features and the to-be-predicted demand seems **not** to be **linear**.

Also, the training R² is much higher than the testing R².

Explain why this might be and **propose solutions** for these issues.

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

- 1. What is not a synonym for the loss function in a linear regression model?
 - a) target function
 - b) kernel function
 - c) error function
 - d) objective function

- 2. What is the name given to the deviations in a regression model?
 - a) residuals
 - b) support vectors
 - c) eigenvalues
 - d) estimates

- 3. Which one of the following is not a link function used in generalized linear models?
 - a) identity
 - b) index
 - c) logit
 - d) log

