# EM384: Analytical Methods for Engineering Management

Lesson 15: Mixed Problems

# Table of contents

1. Lesson Objectives

2. Mixed Problems

3. Conclusion

# Lesson Objectives

# Lesson 15 Objectives

- · Understand and recognize mixed problems.
- Formulate mixed algebraically.
- $\cdot$  Solve mixed problems using Excel Solver.

**Mixed Problems** 

## **Mixed Problems**

Linear programming problems that don't fit in the resource allocation or cost-benefit trade-ff categories.

Identifying feature: requirement constraints and limiting constraints

- Different types of constraints  $(\leq, \geq, =)$
- · Objective: Maximize or Minimize

### In-class exercise

Model and solve the following Linear Program in Excel (You may omit the Parameters part of the model):

#### Decision variables:

$$X_1, X_2, Y_1$$

#### Objective function:

Maximize 
$$Z = 10x_1 + 5x_2 - 10y_1$$

#### Constraints:

$$y_1 + 10 = 2x_1 - x_2$$
  
 $3x_2 - x_1 \ge 35$   
 $x_1 + x_2 + y_1 \le 82$   
 $x_1, x_2 > 0$ 

4

# **Excel Solution**

| 1  | A                  | В        | С        | D        | E        | F        |  |
|----|--------------------|----------|----------|----------|----------|----------|--|
| 1  | Decision Variables |          |          |          |          |          |  |
| 2  |                    |          |          |          |          |          |  |
| 3  | x1                 | x2       | y1       |          |          |          |  |
| 4  | 68.33333           | 0        | 13.66667 |          |          |          |  |
| 5  |                    |          |          |          |          |          |  |
| 6  | Objective          | Function |          | Maximize | 546.6667 |          |  |
| 7  |                    |          |          |          |          |          |  |
| 8  | Constraint         | ts       |          |          |          |          |  |
| 9  |                    |          |          |          |          |          |  |
| 10 | x1                 | x2       | y1       | LHS      |          | RHS      |  |
| 11 | 0                  | 0        | 10       | 136.6667 | =        | 136.6667 |  |
| 12 | 0                  | -1       | 3        | 41       | >=       | 35       |  |
| 13 | 1                  | 1        | 1        | 82       | <=       | 82       |  |
| 11 |                    |          |          |          |          |          |  |

5

#### **Practical Exercise**

You are a consultant for the Super Grain Corporation, and your boss has asked you to help develop the advertising campaign strategy for the promotion campaign for Crunchy Start cereal. The three most effective advertising media for this product are:

- Television commercials on Saturday morning programs for children.
- · Advertisements in food and family-oriented magazines.
- · Advertisements in Sunday supplements of major newspapers.

The limited resources in the problem are:

- · Advertising budget (\$4 million).
- · Planning budget (\$1 million).
- TV commercial spots available (5).

Additional parameters are on the PE handout and the objective will be measured in terms of maximizing the expected number of exposures.

- 1. Formulate your linear program algebraically.
- 2. Design an Excel model to solve your linear program.

#### **Problem Formulation**

#### Decision variables:

x<sub>1</sub>: Number of Television commercials on Saturday morning programs for children.

 $x_2$ : Advertisements in food and family-oriented magazines.

 $x_3$ : Advertisements in Sunday supplements of major newspapers.

#### Objective function:

Maximize  $Z = 1300x_1 + 600x_2 + 500x_3$  (Exposure in 1000s)

#### Constraints:

```
300x_1 + 150x_2 + 100x_3 \le 4000 (Advertising budget in 1000s)
```

$$90x_1 + 30x_2 + 40x_3 \le 1000$$
 (Planning budget in 1000s)

 $x_1 \le 5$  (TV commercial spots available)  $x_1, x_2, x_3 \ge 0$  (non-negativity)

# **Excel Solution**

| 1  | Α                   | В                | C      | D        | E      | F         | G  | Н    | 1         |
|----|---------------------|------------------|--------|----------|--------|-----------|----|------|-----------|
| 1  | Parameters          |                  |        |          |        |           |    |      |           |
| 2  |                     |                  | TV     | Magazine | Sunday |           |    |      |           |
| 3  |                     | Ad Budget        | 300    | 150      | 100    | (\$1000s) |    |      |           |
| 4  |                     | Planning Budget  | 90     | 30       | 40     | (\$1000s) |    |      |           |
| 5  |                     | # Exposures      | 1300   | 600      | 500    | (1000s)   |    |      |           |
| 6  |                     |                  |        |          |        |           |    |      |           |
| 7  | <b>Decision Var</b> | iables           |        |          |        |           |    |      |           |
| 8  |                     |                  | TV     | Magazine | Sunday |           |    |      |           |
| 9  |                     | # Ads            | 0      | 20       | 10     | )         |    |      |           |
| 10 |                     |                  |        |          |        |           |    |      |           |
| 11 | Objective Function  |                  |        |          |        |           |    |      |           |
| 12 |                     | Max. # Exposures | 17,000 | (1000s)  |        |           |    |      |           |
| 13 |                     |                  |        |          |        |           |    |      |           |
| 14 | Constraints         |                  |        |          |        |           |    |      |           |
| 15 |                     |                  | TV     | Magazine | Sunday | LHS       |    | RHS  |           |
| 16 |                     | Ad Budget        | 300    | 150      | 100    | 4000      | <= | 4000 | (\$1000s) |
| 17 |                     | Planning Budget  | 90     | 30       | 40     | 1000      | <= | 1000 | (\$1000s) |
| 18 |                     | # TV Ads         | 1      | 0        | 0      | 0         | <= | 5    |           |
| 10 |                     |                  |        |          |        |           |    |      |           |

# **Revised Problem Formulation**

#### Decision variables:

x₁: Number of Television commercials on Saturday morning programs for children.

 $x_2$ : Advertisements in food and family-oriented magazines.

 $x_3$ : Advertisements in Sunday supplements of major newspapers.

#### Objective function:

Maximize  $Z = 1300x_1 + 600x_2 + 500x_3$  (Exposure in 1000s)

#### Constraints:

```
300x_1 + 150x_2 + 100x_3 \le 4000 (Advertising budget in 1000s)
```

$$90x_1 + 30x_2 + 40x_3 \le 1000$$
 (Planning budget in 1000s)

$$x_1 \le 5$$
 (TV commercial spots available)

$$1.2x_1 + 0.1x_2 \ge 5$$
 (Young Children, in millions)

$$0.5x_1 + 0.2x_2 + 0.2x_3 > 5$$
 (Parents, in millions)

$$40x_2 + 120x_3 = 1490$$
 (Coupon redemption, in 1000s)

$$x_1, x_2, x_3 > 0$$
 (non-negativity)

# **Excel Solution**

| 4  | A        | В                 | С      | D        | E      | F          | G  | Н    | 1          |
|----|----------|-------------------|--------|----------|--------|------------|----|------|------------|
| 1  | Parame   | ters              |        |          |        |            |    |      |            |
| 2  |          |                   | TV     | Magazine | Sunday |            |    |      |            |
| 3  |          | Ad Budget         | 300    | 150      | 100    | (\$1000s)  |    |      |            |
| 4  |          | Planning Budget   | 90     | 30       | 40     | (\$1000s)  |    |      |            |
| 5  |          | Young Children    | 1.2    | 0.1      | 0      | (Millions) |    |      |            |
| 6  |          | Parents           | 0.5    | 0.2      | 0.2    | (Millions) |    |      |            |
| 7  |          | Coupon Redemption | 0      | 40       | 120    | (\$1000s)  |    |      |            |
| 8  |          | # Exposures       | 1300   | 600      | 500    | (1000s)    |    |      |            |
| 9  |          |                   |        |          |        |            |    |      |            |
| 10 | Decision | n Variables       |        |          |        |            |    |      |            |
| 11 |          |                   | TV     | Magazine | Sunday |            |    |      |            |
| 12 |          | # Ads             | 3      | 14       | 7.75   |            |    |      |            |
| 13 |          |                   |        |          |        |            |    |      |            |
| 14 | Objectiv | e Function        |        |          |        |            |    |      |            |
| 15 |          | Max. # Exposures  | 16,175 | (1000s)  |        |            |    |      |            |
| 16 |          |                   |        |          |        |            |    |      |            |
| 17 | Constra  | ints              |        |          |        |            |    |      |            |
| 18 |          |                   | TV     | Magazine | Sunday | LHS        |    | RHS  |            |
| 19 |          | Ad Budget         | 300    | 150      | 100    | 3775       | <= | 4000 | (\$1000s)  |
| 20 |          | Planning Budget   | 90     | 30       | 40     | 1000       | <= | 1000 | (\$1000s)  |
| 21 |          | # TV Ads          | 1      | 0        | 0      | 3          | <= | 5    |            |
| 22 |          | Young Children    | 1.2    | 0.1      | 0      | 5          | >= | 5    | (Millions) |
| 23 |          | Parents           | 0.5    | 0.2      | 0.2    | 5.85       | >= | 5    | (Millions) |
| 24 |          | Coupon Redemption | 0      | 40       | 120    | 1490       | =  | 1490 | (\$1000s)  |



Conclusion

# **Next Class**

#### Homework:

- · work on Homework Set 5
- Read Chapter 7.3

#### Next Lesson:

- · Create and interpret Sensitivity Reports, to include:
  - · Shadow Price
  - · Reduced Cost
  - Constraint outcomes: binding and nonbinding