PAT data analysis

Magda Dubois

11/04/2022

Task

4 different FBs = -5, -1, +1, +5

Participants can either click after seeing the cue: 'Hit', or not do anything 'Miss'. In both cases they then see the reward but only recieve it if Hit. Frequencies of reward are cue-specific.

Cues = High Punishment (Cue_HP), Low Punishment (Cue_LP), Low Reward (Cue_LR), High Reward (Cue_HR)

N trials = 112 (per cue = 28)

N runs = 2 (56 trials per run, participants had a short break in between)

Reward frequencies:

```
##
         Cue R -5
                                   R_5
## 0
      Cue_HP
               14.0
                      6.0
                             4.0
                                   4.0
## 1
      Cue_HR
                4.0
                      4.0
                             6.0
                                  14.0
## 2
      Cue_LP
               10.0
                     10.0
                             4.0
                                   4.0
## 3
      Cue LR
                4.0
                      4.0
                           10.0
                                  10.0
```


Figure 1: Task information

Behaviour

Overall N participants = 170.

Figure 2: Summary of Behaviour

Accross time

Participant average:

Bump at the start of the 2nd run (each run is made of 56 trials)

t3 = 3 * 16 = 48 trials

t4 = 4 * 16 = 64 trials

Figure 3: Behaviour across time

Per Run

Doesn't seem to be an overall difference between runs

Figure 4: Behaviour by run

Per Block Pressing bias at the beginning of each run

Figure 5: Behaviour by run

Simulations

Plot softmax for different betas in a likely value range [-10,10] to know how to constrict the beta parameter in the model fitting.

Figure 6: Softmax visualisation

Functions

Model glossary: PE = prediction error, FB = observed feedback (irrespective of hit), V^{miss} = 0

Value functions

Rescorla Wagner no V0

function name = rescorla_wagner_noV0 rescorla_wagner with fixed parameter: $V_0 = 0$

Rescorla Wagner

function name = rescorla_wagner For each cue:

$$PE = FB_t - V_t^{hit}$$
$$V_{t+1}^{hit} = V_t^{hit} + \alpha \cdot PE$$

Rescorla Wagner 2 learning rates

function name = rescorla_wagner_2LR_FB For each cue:

$$PE = FB_t - V_t^{hit}$$

FB could take the following values: -5, -1, +1, +5 Different learning rates for reward and punishment: if $FB_t > 0$:

$$V_{t+1}^{hit} = V_t^{hit} + \alpha_{rew} \cdot PE$$

if
$$FB_t < 0$$
:

$$V_{t+1}^{hit} = V_t^{hit} + \alpha_{pun} \cdot PE$$

Rescorla Wagner weighted FB

function name = rescorla_wagner_weightRew For each cue: Scaling of feedback: if $abs(FB_t) = 5$:

$$FB_t = w \cdot FB_t$$

Prediction error:

$$PE = FB_t - V_t^{hit}$$

$$V_{t+1}^{hit} = V_t^{hit} + \alpha \cdot PE$$

Rescorla Wagner shrinking learning rate

function name = rescorla_wagner_shrinking_alpha For each cue:

$$PE = FB_t - V_t^{hit}$$

Shrinking factor:

$$shrink = \frac{N_{trials} - t}{N_{trials}}$$

With $N_{trials} = 112$, and $t \in [1, 112]$

$$V_{t+1}^{hit} = V_t^{hit} + \alpha_t \cdot shrink \cdot PE$$

Decision functions

Softmax

function name = my_softmax For each cue:

$$p_t(hit) = \frac{e^{\beta \cdot V_t^{hit}}}{e^{\beta \cdot V_t^{hit}} + e^{\beta \cdot V^{miss}}} = \frac{e^{\beta \cdot V_t^{hit}}}{e^{\beta \cdot V_t^{hit}} + 1}$$

Softmax press bias

 $function name = my_softmax_press_bias$

For each cue:

$$p_t(hit) = \frac{e^{\beta \cdot (V_t^{hit} + \pi)}}{e^{\beta \cdot (V_t^{hit} + \pi)} + e^{\beta \cdot V^{miss}}} = \frac{e^{\beta \cdot (V_t^{hit} + \pi)}}{e^{\beta \cdot (V_t^{hit} + \pi)} + 1}$$

Softmax shrinking press bias

function name = my_softmax_shrinking_press_bias Shrinking factor:

$$shrink = \frac{N_{runtrials} - t_{run}}{N_{runtrials}}$$

With $N_{runtrials} = 56$, and $t_{run} \in [1, 56]$

For each cue:

$$p_t(hit) = \frac{e^{\beta \cdot (V_t^{hit} + \pi_t \cdot shrink)}}{e^{\beta \cdot (V_t^{hit} + \pi_t \cdot shrink)} + e^{\beta \cdot V^{miss}}} = \frac{e^{\beta \cdot (V_t^{hit} + \pi_t \cdot shrink)}}{e^{\beta \cdot (V_t^{hit} + \pi_t \cdot shrink)} + 1}$$

Models

Model 0: alpha, beta

```
\label{eq:mod_info} \begin{array}{l} \bmod = 0 \\ \bmod _{info} = \operatorname{print\_model\_info(mod)} \\ \\ \# \operatorname{Model} = \operatorname{model0} \\ \# \operatorname{Value\ function} = \operatorname{rescorla\_wagner\_noV0} \\ \# \operatorname{Decision\ function} = \operatorname{my\_softmax} \\ \# \operatorname{Parameters} = \operatorname{alpha}, \operatorname{beta} \\ \\ \operatorname{Free\ parameters:} \ \alpha = \operatorname{learning\ rate}, \ \beta = \operatorname{inverse\ temperature} \\ \operatorname{Fixed\ parameters:} \ V_0 = 0 \\ \end{array}
```

Parameter fits

model_folder, data_mod, data_mod_num = print_model_stats(mod)

##	nLL	Ntrials	Nparams	alpha	beta
## count	170.000000	170.0	170.0	1.700000e+02	1.700000e+02
## mean	58.107500	112.0	2.0	6.582904e-02	6.519460e+00
## std	15.140554	0.0	0.0	9.337897e-02	6.652688e+00
## min	5.050840	112.0	2.0	3.737686e-09	5.820973e-09
## 25%	48.714325	112.0	2.0	4.740678e-03	1.290706e+00
## 50%	61.159156	112.0	2.0	1.462594e-02	3.345980e+00
## 75%	70.869630	112.0	2.0	1.136493e-01	9.997270e+00
## max	77.632484	112.0	2.0	5.801689e-01	2.000000e+01

Figure 7: Model parameters

Figure 8: Model predictions

Model 1: alpha, beta, v0

```
mod = 1
mod_info = print_model_info(mod)

## Model = model1

## Value function = rescorla_wagner

## Decision function = my_softmax

## Parameters = v0, alpha, beta

Free parameters: \alpha = learning rate, \beta = inverse temperature, V_0 = prior mean
```

Parameter fits

```
model_folder, data_mod, data_mod_num = print_model_stats(mod)
```

##	nLL	Ntrials	Nparams	vO	alpha	beta
## cou	nt 170.000000	170.0	170.0	170.000000	1.700000e+02	170.000000
## mea	n 52.360935	112.0	3.0	0.939961	9.182191e-02	5.850742
## std	15.228512	0.0	0.0	2.489884	1.355430e-01	6.377281
## min	4.867525	112.0	3.0	-10.000000	4.399281e-17	0.089751
## 25%	42.300949	112.0	3.0	0.025935	8.848244e-03	0.980210
## 50%	54.590413	112.0	3.0	0.198867	3.341520e-02	2.523140
## 75%	64.096722	112.0	3.0	1.003701	1.231332e-01	8.274388
## max	76.499244	112.0	3.0	10.000000	7.821228e-01	20.000000

Figure 9: Model parameters

Figure 10: Model predictions

Model 2: alpha, beta, v0, pi

```
\label{eq:mod_info} \begin{subarray}{ll} mod = 2 \\ mod_info = print_model_info(mod) \\ \begin{subarray}{ll} \# \ Model = model2 \\ \# \ Value \ function = rescorla_wagner \\ \# \ Decision \ function = my_softmax_press_bias \\ \# \ Parameters = v0, \ alpha, \ beta, \ pi \\ \begin{subarray}{ll} Free \ parameters: $\alpha = \text{learning rate}, $\beta = \text{inverse temperature}, $V_0 = \text{prior mean}, $\pi = \text{press bias} \\ \end{subarray}
```

Parameter fits

```
model_folder, data_mod, data_mod_num = print_model_stats(mod)
```

##		nLL	Ntrials	Nparams		
##	count	170.000000	170.0	170.0		
##	mean	50.262414	112.0	4.0		
##	std	15.314180	0.0	0.0		
##	min	3.240895	112.0	4.0		
##	25%	39.246651	112.0	4.0		
##	50%	52.002387	112.0	4.0		
##	75%	61.634458	112.0	4.0		
##	max	76.216917	112.0	4.0		
##		vO	al	pha	beta	pi
##	count	170.000000	1.700000e	+02 170	0.00000	170.000000
##	mean	0.990495	1.153701e	-01 4	1.880064	0.051348
##	std	2.795047	1.520297e	-01 5	.862168	1.212308
##	min	-10.000000	2.849998e	-16 (.100666	-3.717110
##	25%	-0.298361	1.232139e	-02	.910771	-0.641916
##	50%	0.340262	6.827151e	-02 2	2.096763	0.123916
##	75%	1.436749	1.472323e	-01 6	3.459079	0.747604
##	max	10.000000	1.000000e	+00 20	0.00000	4.374439

Figure 11: Model parameters

Figure 12: Model predictions

Model 3: alpha rew, alpha pun, beta, v0

```
mod = 3
mod_info = print_model_info(mod)
## Model = model3
## Value function = rescorla_wagner_2LR_FB
## Decision function = my_softmax
## Parameters = v0, alpha_rew, alpha_pun, beta
Free parameters: \alpha_{rew,pun} = learning rate for reward/punishment, \beta = inverse temperature, V_0 = prior mean
Parameter fits
model_folder, data_mod, data_mod_num = print_model_stats(mod)
##
                nLL Ntrials Nparams
## count 170.000000
                       170.0
                              170.0
                       112.0
                                  4.0
## mean
        50.796260
         15.403051
                        0.0
                                  0.0
## std
## min
          2.906027
                       112.0
                                  4.0
                     112.0
## 25%
          39.812044
                                  4.0
## 50%
        52.587297
                     112.0
                                  4.0
                     112.0
## 75%
          63.267533
                                  4.0
                     112.0
## max
          76.348831
                                  4.0
##
                 vΟ
                       alpha_rew
                                      alpha_pun
                                                       beta
## count 170.000000 1.700000e+02 1.700000e+02 170.000000
## mean
          1.191445 1.392805e-01 1.336050e-01
                                                   2.581129
           2.746771 1.560690e-01 1.659156e-01
## std
                                                   3.604441
         -10.000000 8.300815e-21 5.344292e-17
                                                   0.093321
## min
## 25%
           0.072541 4.538379e-02 3.665528e-02
                                                   0.648320
           0.383772 8.588038e-02 7.920729e-02
## 50%
                                                   1.442147
## 75%
           1.284494 1.851164e-01 1.452102e-01
                                                   2.820631
## max
          10.000000 1.000000e+00 1.000000e+00
                                                  20.000000
Stats on parameters
```

```
# Paired samples t-test
stats.ttest_rel(data_mod_num['alpha_rew'], data_mod_num['alpha_pun'])
```

Ttest_relResult(statistic=0.4463957230934856, pvalue=0.6558828708733997)

Figure 13: Model parameters

Figure 14: Model predictions

Model 4: alpha, beta, v0, w

```
mod = 4
mod_info = print_model_info(mod)
## Model = model4
## Value function = rescorla_wagner_weightRew
## Decision function = my_softmax
## Parameters = v0, alpha, beta, w
Free parameters: \alpha = learning rate, \beta = inverse temperature, V_0 = prior mean, \pi = press bias
Parameter fits
model_folder, data_mod, data_mod_num = print_model_stats(mod)
                 nLL Ntrials Nparams
## count 170.000000
                        170.0
                                 170.0
## mean
           52.822755
                        112.0
                                   4.0
                                   0.0
## std
           14.883087
                        0.0
           5.879380
                        112.0
                                   4.0
## min
## 25%
           42.537941
                        112.0
                                   4.0
## 50%
           54.503453
                        112.0
                                   4.0
## 75%
           64.818023
                        112.0
                                   4.0
                        112.0
           76.690227
                                   4.0
## max
##
                             alpha
                  v0
                                           beta
## count 170.000000 1.700000e+02 170.000000 170.000000
## mean
          0.978360 9.240670e-02
                                      5.932748
                                                  1.999998
## std
            2.627040 1.413147e-01
                                      6.605705
                                                   0.000029
         -10.000000 3.254914e-16
                                      0.060053
                                                   1.999627
## min
## 25%
          0.025435 1.157620e-02
                                      0.884595
                                                   2.000000
                                      2.804845
                                                   2.000000
## 50%
            0.190074 3.639225e-02
## 75%
            0.896349 1.154552e-01
                                      8.564268
                                                   2.000000
## max
           10.000000 9.698856e-01
                                      20.000000
                                                   2.000000
```


Figure 15: Model parameters

Figure 16: Model predictions

Model 5: alpha_t, beta, v0

```
mod = 5
mod_info = print_model_info(mod)

## Model = model5
## Value function = rescorla_wagner_shrinking_alpha
## Decision function = my_softmax
## Parameters = v0, alpha_t, beta
```

Free parameters: $\alpha_t =$ shrinking learning rate, $\beta =$ inverse temperature, $V_0 =$ prior mean

Parameter fits

```
model_folder, data_mod, data_mod_num = print_model_stats(mod)
```

##	nLL	Ntrials	Nparams	vO	alpha_t	beta
## count	170.000000	170.0	170.0	170.000000	1.700000e+02	170.000000
## mean	51.755054	112.0	3.0	1.041759	1.366831e-01	5.308782
## std	15.374300	0.0	0.0	2.711148	1.721451e-01	5.995968
## min	4.647453	112.0	3.0	-10.000000	2.583236e-16	0.093505
## 25%	41.106491	112.0	3.0	0.025068	1.185567e-02	0.951547
## 50%	54.004206	112.0	3.0	0.244133	6.695768e-02	1.921968
## 75%	63.455126	112.0	3.0	1.305117	1.951048e-01	8.745747
## max	76.580572	112.0	3.0	10.000000	9.189379e-01	20.000000

Figure 17: Model parameters

Figure 18: Model predictions

Model 6: alpha rew, alpha pun, beta, v0, pi t

```
mod = 6
mod_info = print_model_info(mod)

## Model = model6
## Value function = rescorla_wagner_2LR_FB
## Decision function = my_softmax_shrinking_press_bias
## Parameters = v0, alpha_rew, alpha_pun, beta, pi_t
```

Free parameters: $\alpha_{rew,pun}$ = learning rate for reward/punishment, β = inverse temperature, V_0 = prior mean, π_t = shrinking press bias

Parameter fits

```
model_folder, data_mod, data_mod_num = print_model_stats(mod)
```

```
##
               nLL Ntrials Nparams
                               170.0
## count 170.000000
                      170.0
         46.913267
                      112.0
                                 5.0
## mean
## std
          16.729136
                        0.0
                                 0.0
                      112.0
## min
          3.155677
                                 5.0
## 25%
          35.609496
                    112.0
                                 5.0
## 50%
          48.677384
                      112.0
                                 5.0
## 75%
          60.739674
                      112.0
                                 5.0
          76.499753
## max
                    112.0
                                 5.0
##
                vΟ
                       alpha_rew
                                    alpha_pun
                                                     beta
                                                                pi_t
## count 170.000000 1.700000e+02 1.700000e+02 170.000000 170.000000
        -0.107151 1.098816e-01 1.311821e-01
## mean
                                               3.791271
                                                            1.112207
## std
         1.964040 1.420514e-01 1.940812e-01
                                                 4.530921
                                                            1.677841
## min
         -5.000000 1.744307e-22 3.737089e-09
                                                 0.120519 -7.095337
          -1.046358 2.654594e-02 2.467444e-02
## 25%
                                                 0.958264
                                                            0.233941
## 50%
         -0.318710 5.443208e-02 5.757258e-02
                                                 1.912919
                                                            0.833557
## 75%
           0.405973 1.398089e-01 1.516415e-01
                                                 4.395514
                                                            1.759054
## max
           5.000000 1.000000e+00 1.000000e+00
                                                15.000000
                                                            7.500008
```

Stats on parameters

```
# Paired samples t-test
stats.ttest_rel(data_mod_num['alpha_rew'], data_mod_num['alpha_pun'])
```

Ttest_relResult(statistic=-1.7422330810432594, pvalue=0.08328687759338284)

Figure 19: Model parameters

Figure 20: Model predictions

Model 7: alpha, beta, v0, w, pi_t

```
\label{eq:mod_info} \begin{array}{l} \bmod = 7 \\ \bmod _{info} = \operatorname{print\_model\_info(mod)} \\ \\ \#\# \ \operatorname{Model} = \bmod = 17 \\ \#\# \ \operatorname{Value} \ \operatorname{function} = \operatorname{rescorla\_wagner\_weightRew} \\ \#\# \ \operatorname{Decision} \ \operatorname{function} = \operatorname{my\_softmax\_shrinking\_press\_bias} \\ \#\# \ \operatorname{Parameters} = v0, \ \operatorname{alpha}, \ \operatorname{beta}, \ w, \ \operatorname{pi\_t} \\ \\ \operatorname{Free} \ \operatorname{parameters:} \ \alpha = \operatorname{learning} \ \operatorname{rate}, \ \beta = \operatorname{inverse} \ \operatorname{temperature}, \ V_0 = \operatorname{prior} \ \operatorname{mean}, \ w = \operatorname{large} \ \operatorname{FB} \ \operatorname{weight}, \ \pi_t = 1 \\ \end{array}
```

Parameter fits

shrinking press bias

model_folder, data_mod, data_mod_num = print_model_stats(mod)

##		nLL	Ntrials Npa	rams		
##	count	170.000000	170.0 1	70.0		
##	mean	49.086785	112.0	5.0		
##	std	16.379621	0.0	0.0		
##	min	5.694755	112.0	5.0		
##	25%	37.089098	112.0	5.0		
##	50%	50.825920	112.0	5.0		
##	75%	62.037113	112.0	5.0		
##	max	76.516800	112.0	5.0		
##		νO	alpha	beta	W	pi_t
	count	v0 170.000000	alpha 1.700000e+02		w 1.700000e+02	pi_t 170.000000
##	count mean		-	170.000000		
##		170.000000	1.700000e+02	170.000000 3.839539	1.700000e+02	170.000000
## ## ##	mean	170.000000 -0.076820	1.700000e+02 1.185178e-01	170.000000 3.839539	1.700000e+02 2.000000e+00	170.000000 1.108973
## ## ## ##	mean std	170.000000 -0.076820 2.130397	1.700000e+02 1.185178e-01 1.423396e-01	170.000000 3.839539 4.262047 0.123766	1.700000e+02 2.000000e+00 4.173539e-10	170.000000 1.108973 2.071525
## ## ## ##	mean std min	170.000000 -0.076820 2.130397 -5.000000	1.700000e+02 1.185178e-01 1.423396e-01 4.686312e-16	170.000000 3.839539 4.262047 0.123766 0.788073	1.700000e+02 2.000000e+00 4.173539e-10 2.000000e+00	170.000000 1.108973 2.071525 -5.600134
## ## ## ## ##	mean std min 25%	170.000000 -0.076820 2.130397 -5.000000 -0.870512	1.700000e+02 1.185178e-01 1.423396e-01 4.686312e-16 2.929666e-02	170.000000 3.839539 4.262047 0.123766 0.788073 2.308973	1.700000e+02 2.000000e+00 4.173539e-10 2.000000e+00 2.000000e+00	170.000000 1.108973 2.071525 -5.600134 0.127697

Plots

<string>:11: RuntimeWarning: More than 20 figures have been opened. Figures created through the pypl

Figure 21: Model parameters

Figure 22: Model predictions

Model 8: alpha_t, beta, v0, pi_t

```
mod = 8
mod_info = print_model_info(mod)

## Model = model8
## Value function = rescorla_wagner_shrinking_alpha
## Decision function = my_softmax_shrinking_press_bias
## Parameters = v0, alpha_t, beta, pi_t
```

Free parameters: α_t = shrinking learning rate, β = inverse temperature, V_0 = prior mean, π_t = shrinking press bias

Parameter fits

```
model_folder, data_mod, data_mod_num = print_model_stats(mod)
```

##		nLL	Ntrials	${\tt Nparams}$		
##	count	170.000000	170.0	170.0		
##	mean	47.798468	112.0	4.0		
##	std	16.920126	0.0	0.0		
##	min	3.325319	112.0	4.0		
##	25%	37.156746	112.0	4.0		
##	50%	50.614676	112.0	4.0		
##	75%	61.386058	112.0	4.0		
##	max	76.705921	112.0	4.0		
##		νO	alph	na_t	beta	pi_t
##	count	170.000000	1.7000006	e+02 170	0.000000	170.000000
##	mean	-0.116659	1.811305	e-01 3	3.293070	1.062610
##	std	2.272556	2.089355	e-01 3	3.500643	1.764987
##	min	-5.000000	1.2641016	e-16 (0.122773	-6.415641
##	25%	-1.234541	3.692270	e-02 (0.877272	0.192999
##	50%	-0.338046	1.023679	e-01 :	1.757615	0.948407
##	75%	0.635814	2.4531326	e-01 4	4.711434	1.927004
##	max	5.000000	1.0000006	e+00 15	5.000000	6.668164

Figure 23: Model parameters

Figure 24: Model predictions

Model 9: alpha, beta, v0, pi_t

```
mod = 9
mod_info = print_model_info(mod)

## Model = model9
## Value function = rescorla_wagner
## Decision function = my_softmax_shrinking_press_bias
## Parameters = v0, alpha, beta, pi_t
```

Free parameters: α = learning rate, β = inverse temperature, V_0 = prior mean, π_t = shrinking press bias

Parameter fits

```
model_folder, data_mod, data_mod_num = print_model_stats(mod)
```

```
##
                nLL Ntrials Nparams
## count 170.000000
                       170.0
                               170.0
                       112.0
                                  4.0
## mean
          48.435748
          16.706529
                         0.0
                                  0.0
## std
## min
           3.563870
                       112.0
                                  4.0
## 25%
          36.917690
                       112.0
                                  4.0
## 50%
          50.649393
                       112.0
                                  4.0
                       112.0
                                  4.0
## 75%
          61.727837
## max
          77.041330
                       112.0
                                  4.0
##
                 vΟ
                            alpha
                                         beta
                                                     pi_t
## count 170.000000 1.700000e+02 170.000000 170.000000
## mean
          -0.092623 1.139156e-01
                                     3.445958
                                                 1.030806
           2.170045 1.427369e-01
                                     3.950705
                                                 2.004097
## std
## min
          -5.000000 3.737686e-09
                                     0.038199
                                               -7.720410
## 25%
          -1.136027 2.639210e-02
                                     0.818287
                                                 0.100299
## 50%
          -0.309904 6.618056e-02
                                     1.717946
                                                 0.984759
## 75%
           0.472413 1.488237e-01
                                     4.586511
                                                 1.948065
## max
           5.000000 1.000000e+00
                                    15.000000
                                                 8.429271
```


Figure 25: Model parameters

Figure 26: Model predictions

Model comparison

Formulas

$$BIC = 2 \cdot nLL + Nparams \cdot ln(Ntrials)$$

$$AIC = 2 \cdot nLL + 2 \cdot Nparams$$

With: nLL = negative log likelihood

Results

Figure 27: Model comparison

Compare mod 8 and mod 9

##		nLL_mod8	v0_mod8	alpha_mod8	beta_mod8	pi_t_mod8
##	count	170.000000	170.000000	1.700000e+02	170.000000	170.000000
##	mean	47.798468	-0.116659	1.811305e-01	3.293070	1.062610
##	std	16.920126	2.272556	2.089355e-01	3.500643	1.764987
##	min	3.325319	-5.000000	1.264101e-16	0.122773	-6.415641
##	25%	37.156746	-1.234541	3.692270e-02	0.877272	0.192999
##	50%	50.614676	-0.338046	1.023679e-01	1.757615	0.948407
##	75%	61.386058	0.635814	2.453132e-01	4.711434	1.927004
##	max	76.705921	5.000000	1.000000e+00	15.000000	6.668164

##		nLL_mod9	v0_mod9	alpha_mod9	beta_mod9	pi_t_mod9
##	count	170.000000	170.000000	1.700000e+02	170.000000	170.000000
##	mean	48.435748	-0.092623	1.139156e-01	3.445958	1.030806
##	std	16.706529	2.170045	1.427369e-01	3.950705	2.004097
##	min	3.563870	-5.000000	3.737686e-09	0.038199	-7.720410
##	25%	36.917690	-1.136027	2.639210e-02	0.818287	0.100299
##	50%	50.649393	-0.309904	6.618056e-02	1.717946	0.984759
##	75%	61.727837	0.472413	1.488237e-01	4.586511	1.948065
##	max	77.041330	5.000000	1.000000e+00	15.000000	8.429271

Plots

Figure 28: Likelihoods

Stats: t-tests

 V_0 :

mod8: Ttest_1sampResult(statistic=-0.6693136632195669, pvalue=0.504208757753263) ## mod9: Ttest_1sampResult(statistic=-0.5565136129805143, pvalue=0.5785959469927398)

Stats: paired t-tests

```
## nLL:
## means:
## mod8: 47.79846829164395
## mod9: 48.43574797474338
## normality asumption:
## mod8: ShapiroResult(statistic=0.9671643376350403, pvalue=0.00047616203664802015)
## mod9: ShapiroResult(statistic=0.965816855430603, pvalue=0.00034187137498520315)
## paired t-test:
## Ttest_relResult(statistic=-3.8856065639237953, pvalue=0.00014633609210649466)
## Wilcoxon:
## WilcoxonResult(statistic=4761.0, pvalue=9.61605197477806e-05)
##
##
## alpha:
```

mod8: 0.18113047681349354

means:

Figure 29: Parameters

```
## mod9: 0.11391557796897692
## normality asumption:
## mod8: ShapiroResult(statistic=0.766213595867157, pvalue=3.5342551368139352e-15)
## mod9: ShapiroResult(statistic=0.6862607002258301, pvalue=1.4018962722958882e-17)
## paired t-test:
## Ttest_relResult(statistic=6.986333592510897, pvalue=6.205745788256391e-11)
## Wilcoxon:
## WilcoxonResult(statistic=1553.0, pvalue=6.018819096847661e-19)
##
##
## beta:
## means:
## mod8: 3.2930702178297024
## mod9: 3.4459583450832176
## normality asumption:
## mod8: ShapiroResult(statistic=0.7934234142303467, pvalue=3.1690155463974176e-14)
## mod9: ShapiroResult(statistic=0.7512106895446777, pvalue=1.1391245299393021e-15)
## paired t-test:
## Ttest_relResult(statistic=-0.8245677093453079, pvalue=0.4107793372206133)
## Wilcoxon:
## WilcoxonResult(statistic=6077.0, pvalue=0.06396807304546269)
##
##
## pi_t:
## means:
## mod8: 1.0626103441929362
## mod9: 1.0308060195981652
```

```
## normality asumption:
## mod8: ShapiroResult(statistic=0.9398530125617981, pvalue=1.3971595080874977e-06)
## mod9: ShapiroResult(statistic=0.9111093282699585, pvalue=1.2255516601555883e-08)
## paired t-test:
## Ttest_relResult(statistic=0.45381132580971545, pvalue=0.6505468573621205)
## Wilcoxon:
## WilcoxonResult(statistic=6366.0, pvalue=0.16069971758461887)
##
## v0:
## means:
## mod8: -0.11665941953886272
## mod9: -0.09262325863891928
## normality asumption:
## mod8: ShapiroResult(statistic=0.9229835867881775, pvalue=7.624829123642485e-08)
## mod9: ShapiroResult(statistic=0.919902503490448, pvalue=4.672326170407359e-08)
## paired t-test:
## Ttest_relResult(statistic=-0.2631533724384663, pvalue=0.7927529234474232)
## Wilcoxon:
## WilcoxonResult(statistic=6258.0, pvalue=0.14670780158044705)
```

Parameter recovery

Simulation

Parameter values for simulation sampled from fitted parameter values (numpy.random.normal function):

$$param \sim \mathcal{N}(mean, std)$$

Dataset was randomly chosen from the 170 datasets (random.suffle function).

Model 8

```
## Model = model8
## Value function = rescorla_wagner_shrinking_alpha
## Decision function = my_softmax_shrinking_press_bias
## Parameters = v0, alpha_t, beta, pi_t
N sim = 1000 Simulation parameter values:
## v0 alpha_t beta pi_t
## mean -0.116659 0.181130 3.293070 1.062610
## std 2.272556 0.208935 3.500643 1.764987
Plots
```

Model 9

```
## Model = model9
## Value function = rescorla_wagner
## Decision function = my_softmax_shrinking_press_bias
```


Figure 30: Confusion matrix mod8

Figure 31: Conrrelations Model 8

```
## Parameters = v0, alpha, beta, pi_t
N sim = 1000 Simulation parameter values:

## v0 alpha beta pi_t
## mean -0.092623 0.113916 3.445958 1.030806
## std 2.170045 0.142737 3.950705 2.004097
Plots
```


Figure 32: Confusion matrix Model 9

Figure 33: Conrrelations mod9