Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №11.1.

по курсу общей физики
на тему:
«Определение ширины запрещенной
зоны полупроводника»

Работу выполнил: Баринов Леонид (группа Б02-827)

1. Аннотация

В работе будет исследована температурная зависимость проводимости типичного полупроводника и меди, определена ширина запрещенной зоны полупроводника с помощью универсального цифрового вольтметра В7-34А.

2. Теоретические сведения

Величина электропроводности в полупроводниках определяется числом электронов в зоне проводимости и дырок в валентной зоне. Число электронов, находящихся в зоне проводимости, равно произведению числа имеющихся уровней на вероятность их заполнения.

Вероятность заполнения уровней определяется функцией Ферми

$$f(E) = \frac{1}{\exp\left(\frac{E-\mu}{k_{\rm B}T}\right) + 1} \approx \exp\left(-\frac{E-\mu}{k_{\rm B}T}\right) \quad \left(\text{при } (E-\mu) \gg k_{\rm B}T\right) \tag{1}$$

 μ — уровень Ферми.

Число электронов в зоне проводимости будет равно

$$n_n = Q_n \exp\left(-\frac{E_c - \mu}{k_{\rm B}T}\right) \tag{2}$$

 E_c — энергия дна зоны проводимости, Q_n — эффективное число уровней, находящихся вблизи дна зоны.

Число дырок в зоне проводимости будет равно

$$n_p = Q_p \exp\left(-\frac{E_v - \mu}{k_{\rm B}T}\right) \tag{3}$$

 E_v — энергия верхнего края валентной зоны, Q_p — эффективное число уровней, находящихся вблизи края валентной зоны.

Для проводника без примесей число электронов будет равно числу дырок, тогда

$$n_n n_p = n^2 = Q_n Q_p \exp\left(-\frac{E_c - E_v}{k_{\scriptscriptstyle \mathrm{E}} T}\right) \tag{4}$$

Выражая n и обозначая $C=\sqrt{Q_nQ_p},$ а $E_c-E_v=\Delta$ — ширина запрещенной зоны, получаем

$$n = C \exp\left(-\frac{\Delta}{2k_{\rm B}T}\right) \tag{5}$$

Зависимость средней дрейфовой скорости электронов $v_{\rm cp}$ от напряженности электрического поля

$$v_{\rm cp} = \mu_n E \tag{6}$$

 μ_n — коэффициент пропорциональности, носящий название подвижности электронов.

Плотность электрического тока определяется по формуле $j=nev_{\rm cp},$ тогда проводимость σ будет равна

$$\sigma = j/E = e\left(n_n \mu_n + n_p \mu_p\right) \tag{7}$$

Окончательно получим $(n_n = n_n)$

$$\sigma = eC\left(\mu_n + \mu_p\right) \exp\left(-\frac{\Delta}{2k_{\rm E}T}\right) = A \exp\left(-\frac{\Delta}{2k_{\rm E}T}\right) \tag{8}$$

3. Оборудование

Для изучения зависимости $\sigma(T)$ используется установка, схематически изображенная на $puc.\ 1$

Рис. 1. Схема установки по измерению зависимости $\sigma(T)$ с помощью вольтметра B7-34A

Исследуемые образцы (O_1 и O_2) в специальном зажиме помещаются в электронагревательную печь Π . Сопротивление образцов измеряется универсальным цифровым вольтметром B7-34A, который обеспечивает высокую точность измерений.

Удельная проводимость находится по формуле

$$\sigma = \frac{l}{RS} \tag{9}$$

где R — сопротивление образца, l — его длина, S — поперечное сечение образца. В нашем случае l=13,4 м, а $S=\pi d^2/4=3,85$ мм 2

4. Результаты измерений и обработка результатов

4 Результаты измерений и обработка результатов

U, мВ	T, K	$R_{\rm пп}$, Ом	R_{Cu} , Om	$\sigma_{_{\Pi\Pi}}, \ (\mathrm{O}_{\mathrm{M}}\cdot{_{\mathrm{MM}}})^{-1}$	$\sigma_{Cu}, \ (\mathrm{O}_{\mathrm{M}}\cdot_{\mathrm{MM}})^{-1}$	$1/T$, 10^{-3} K ⁻¹	$\ln \sigma_{\scriptscriptstyle{\Pi\Pi}}$
0,21	303,12	288,1	181,3	12,08	19,20	3,30	2,492
0,21	303,12	287,9	181,4	12,09	19,19	3,30	2,492
0,22	303,37	287,6	181,4	12,10	19,19	3,30	2,493
0,24	303,85	287,2	181,5	12,12	19,18	3,29	2,495
0,26	304,34	286,2	181,6	12,16	19,17	3,29	2,498
0,30	305,32	283,8	181,9	12,26	19,13	3,28	2,507
0,42	308,24	275,1	183,3	12,65	18,99	3,24	2,538
0,50	310,20	266,8	184,4	13,05	18,87	3,22	2,568
0,61	312,88	254,4	186,1	13,68	18,70	3,20	2,616
0,75	316,29	237,7	188,2	14,64	18,49	3,16	2,684
0,81	317,76	229,5	189,0	15,17	18,42	3,15	2,719
0,97	321,66	206,4	191,6	16,86	18,17	3,11	2,825
1,11	325,07	184,5	193,8	18,86	17,96	3,08	2,937
1,24	328,24	169,0	195,8	20,59	17,78	3,05	3,025
1,35	330,93	153,0	198,0	22,75	17,58	3,02	3,124
1,52	335,07	133,0	200,6	26,17	17,35	2,98	3,265
1,70	339,46	114,0	203,6	30,53	17,09	2,95	3,419
1,85	343,12	101,0	206,0	34,46	16,90	2,91	3,540
1,98	346,29	91,0	208,2	38,25	16,72	2,89	3,644
2,18	351,17	77,0	211,4	45,20	16,46	2,85	3,811
2,30	354,10	70,0	213,4	49,72	16,31	2,82	3,906
2,40	356,54	65,0	215,0	53,55	16,19	2,80	3,981
2,75	365,07	49,6	220,6	70,17	15,78	2,74	4,251
2,92	369,22	44,0	223,3	79,10	15,59	2,71	4,371
3,00	371,17	41,0	224,5	84,89	15,50	2,69	4,441
3,09	373,37	38,9	226,0	89,47	15,40	2,68	4,494
3,22	376,54	35,0	228,0	99,44	15,27	2,66	4,600
3,35	379,71	32,2	230,3	108,09	15,11	2,63	4,683
3,45	382,15	30,2	231,8	115,25	15,02	2,62	4,747
3,57	385,07	28,0	233,6	124,30	14,90	2,60	4,823
3,70	388,24	25,7	235,3	135,43	14,79	2,58	4,908
3,79	390,44	24,1	237,1	144,42	14,68	2,56	4,973
3,88	392,63	22,8	238,5	152,65	14,59	2,55	5,028

Таблица 1. Зависимость сопротивления меди R_{Cu} и полупроводника R_{\min} от температуры $T, \mathbf{K},$ определенной с помощью напряжения на термопаре U

Построим график зависимости удельной проводимости полупроводника и меди σ от температуры T.

 $\mathbf{Puc.}$ 2. График зависимости удельной проводимости полупроводника и меди σ от температуры T

Построим график зависимости сопротивления меди R_{Cu} от температуры T

Рис. 3. График зависимости сопротивления меди R_{Cu} от температуры T

Коэффициент наклона равен

$$k_1 = (0.648 \pm 0.003) \text{ Om/K}$$

Определим температурный коэффициент сопротивления меди:

$$\alpha = \frac{k_1}{R(T_0)} = (35.7 \pm 0.2) \ 10^{-4} \ \mathrm{K}^{-1}$$

Построим график зависимости $\ln \sigma$ от 1/T для полупроводника

Рис. 4. График зависимости $\ln \sigma$ от 1/T для полупроводника

Коэффициент наклона равен

$$k_2 = (3.98 \pm 0.02) \ 10^3 \ \mathrm{K}^{-1}$$

Определим запрещенную зону полупроводника:

$$\Delta = 2k_{\rm B}k_2 = (0.686 \pm 0.013) \text{ 3B}$$

5. Обсуждение результатов и выводы

В работе была исследована температурная зависимость проводимости полупроводника и меди $(puc.\ 2)$. По графику зависимости сопротивления меди R_{Cu} от температуры T $(puc.\ 3)$ был определен температурный коэффициент сопротивления меди

$$\alpha = (35.7 \pm 0.2) \ 10^{-4} \ \mathrm{K}^{-1}$$

Значение довольно близко к табличному

$$\alpha^{\text{\tiny T}} = 41 \cdot 10^{-4} \, \text{K}^{-1}$$

По графику зависимости логарифма проводимости $\ln \sigma$ от температуры T для полупроводника была найдена ширина запрещенной зоны Δ

$$\Delta = (0.686 \pm 0.013) \text{ sB}$$

В пределах погрешности экспериментальное значение совпадет с шириной запрещенной зоны германия:

$$\Delta_{\mathrm{Ge}} = 0.67\,\mathrm{sB}$$