BONUS HONEWORK

WE'TE CODE THAT CALGULATES MODULAR MULTIPLICATIVE INVERSE.

- 1) To find the modular inverse we can use the extended enclaidin algorithm. This will stendt with Bezut coefficients of and T where T will be the inverse. The algorithm will find the questient, remarked and coefficients all sogether step by Mep.
- 2) I will me 4 equations
 - 1. q= a: b
 - 2. ti+1 = ri-1 9iori
 - 3. Si+1 = Si-1 91. Si
 - 4. tin = tin qi · ti

ro=a, r,=b, so=1, s1=0, t0=0, t1=1

3) Exemple calculation

n =	8	CL	1	3
-----	---	----	---	---

, Qualient	Remainder	si	Ti			
	8	٨	0			
	3	0	1			
2:3=2	2-2.3=2	1-200=1	0-2.1=-2			
3-2=1	3-1-2=1	0-1.1=-1	1-10(-2)=3			
2-1-2	2-2.1=0	1-2:(-1)=3	-2-2.3=-8			
	2÷3=2 3÷2=1	3-2=1 3-1・2=1	Qualient Remainder Si 8 1 3 0 $2 \div 3 = \lambda$ $8 - \lambda \cdot 3 = \lambda$ $1 - \lambda \cdot 0 = 1$ $3 \div \lambda = 1$ $3 - 1 \cdot \lambda = 1$ $0 - 1 \cdot 1 = -1$ $2 \div 1 = \lambda$ $2 - 1 \cdot \lambda = 0$ $1 - 2 \cdot (-1) = 3$			

The coefficients are on the now just above where the remainder in equal to O.

$$n \cdot s + a \cdot t = 1$$

 $2 \cdot (-1) + 3 \cdot 3 = 1$
 $s \cdot t$

4) When the integer is 3 with modulo 8 then the multiplicative inverse is 3. Because from the about calculation $t_3 = 3$.