DS-GA 1003: Homework 6 Generalized Hinge Loss and Multiclass SVM

Due on Monday, April 11, 2016

 $Professor\ David\ Ronsenberg$

See complete code at: git@github.com:cryanzpj/1003.git

Yuhao Zhao Yz3085

2. Convex Surrogate Loss Function

• 2.1 Hinge loss is a convex surrogate for 0/1 loss.

- 2.1.1.

i) if $y \neq sign(f(x)), yf(x) \leq 0, 1 - yf(x) \geq 1 = I(y \neq sign(f(x)))$. Therefore, $I(y \neq sign(f(x))) \leq max\{0, 1 - yf(x)\}$

ii) if $y = sign(f(x)), I(y \neq sign(f(x))) = 0, max\{0, 1 - yf(x)\} \ge 0.$

Therefore, $I(y \neq sign(f(x))) \leq max\{0, 1 - yf(x)\}\$

- 2.1.2.

Since $f_1(m) = 0$ is convex, $f_2(m) = 1 - m$ is an affine function and thus convex.

Since the point-wise maximum of convex functions is also convex, $max\{f_1, f_2\} = max\{0, 1 - m\}$ is a convex function of the margin m.

- 2.1.3.

 $f_1(m) = 0$ is convex, we need to show $f_2 = 1 - yw^T x$ is convex.

It's sufficient to show f_2 is affine. For $\forall w_1, w_2 \text{ and } \alpha \in [0, 1]$:

$$\alpha f_2(w_1) + (1 - \alpha)f_2(w_2) = \alpha (1 - yw_1^T x) + (1 - \alpha)(1 - yw_2^T x)$$
(1)

$$= 1 - y(\alpha w_1^T + (1 - \alpha)w_2^T)x \tag{2}$$

$$= f(\alpha w_1 + (1 - \alpha)w_2 \tag{3}$$

Therefore f_2 is affine w.r.t w and thus convex, and $max\{f_1, f_2\} = max\{0, 1 - yw^Tx\}$ is a convex function of w.

• 2.2 Multiclass Hinge Loss.

- 2.2.1.

Since $f(x) = \underset{y \in \mathcal{V}}{\operatorname{argmax}} h(x, y)$, f(x) is the y that max h, by definition:

$$h(x, f(x)) \le h(x, y)$$
 for $\forall x \in \mathcal{X}, y \in \mathcal{Y}$ (4)

-2.2.2.

Since from 2.2.1, $h(x, f(x)) - h(x, y) \le 0$:

$$\Delta(y, f(x)) \le \Delta(y, f(x)) + h(x, f(x)) - h(x, y) \tag{5}$$

$$\leq \max_{y' \in \mathcal{Y}} \Delta(y, y') + h(x, y') - h(x, y) \tag{6}$$

$$=\ell(h,(x,y))\tag{7}$$

- **2.2.3.**

For $\mathcal{H} = \{h_w(w, \Psi(x, y)) | w \in \mathbb{R}^d\}$:

$$\ell(h_w, (x_i, y_i)) = \max_{y \in \mathcal{Y}} \Delta(y_i, y) + h_w(x_i, y) - h_w(x_i, y_i)$$
(8)

$$= \max_{y \in \mathcal{Y}} \Delta(y_i, y) + \langle w, \Psi(x_i, y) \rangle - \langle w, \Psi(x_i, y_i) \rangle$$
 (9)

$$= \max_{y \in \mathcal{V}} \Delta(y_i, y) + \langle w, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle$$
(10)

- 2.2.4.

Let $f(w) = \Delta(y_i, y) + \langle w, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle$, for $\forall w_1, w_2 \in \mathbb{R}^d$ and $\alpha \in [0, 1]$:

$$\alpha f(w_1) + (1 - \alpha)f(w_2) = \alpha(\Delta(y_i, y) + \langle w_1, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle$$

$$\tag{11}$$

$$+ (1 - \alpha)(\Delta(y_i, y) + \langle w_2, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle \tag{12}$$

$$= \Delta(y_i, y) + \langle \alpha w_1, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle + \langle (1 - \alpha) w_2, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle$$
 (13)

$$= \Delta(y_i, y) + \langle \alpha w_1 + (1 - \alpha)w_2, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle \tag{14}$$

$$= f(\alpha w_1 + (1 - \alpha)w_2) \tag{15}$$

Therefore, f(w) is an affine function of w, thus convex.

let $f_j(w) = \Delta(y_i, y_j') + \langle w, \Psi(x_i, y_j') - \Psi(x_i, y_i) \rangle$, which $y_j' = j, j \in \{1, 2, ..., k\}, f_j$ is convex:

$$\max_{y \in \mathcal{V}} \Delta(y_i, y) + \langle w, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle = \max\{f_1, f_2, ..., f_k\}$$
 (16)

LHS is the point-wise maximum of k convex convex functions, thus is convex.

- 2.3.5.

In 2.2.4 we showed that $\ell(h_w, (x_i, y_i))$ is convex, and in 2.2.2/2.2.3 we showed $\ell(h_w, (x_i, y_i))$ is an upper bound of $\Delta(y_i, f_w(x_i))$, which is our loss function of interest. Therefore, by definition, $\ell(h_w, (x_i, y_i))$ is a convex surrogate for $\Delta(y_i, f_w(x_i))$

3 Hinge Loss is a Special Case of Generalized Hinge Loss

 $\ell(h,(x,y)) = \max_{y' \in \mathcal{V}} \Delta(y,y') + h(x,y') - h(x,y), \text{ where } \Delta(y,\hat{y}) = I(y \neq \hat{y}).$

Since h(x, y) in our case is constant, and $yin\{1, -1\}$:

$$\ell(h, (x, y)) = \max_{y' \in \mathcal{V}} \Delta(y, y') + h(x, y') - h(x, y)$$
(17)

$$= \max_{y' \in \mathcal{V}} \Delta(y, y') + h(x, y') \tag{18}$$

$$= \max\{I(y \neq 1) + h(x, 1), I(y \neq -1) + h(x, -1)\}$$
(19)

$$= \max\{I(y \neq 1) + \frac{g(x)}{2}, I(y \neq -1) - \frac{g(x)}{2}\}$$
 (20)

If y = 1, eqn(20) becomes:

$$\max\{\frac{g(x)}{2}, 1 - \frac{g(x)}{2}\} = \max\{0, 1 - g(x)\} = \max\{0, 1 - yg(x)\}$$
 (21)

if y = -1, eqn(20) becomes:

$$\max\{1 + \frac{g(x)}{2}, -\frac{g(x)}{2}\} = \max\{1 + g(x), 0\} = \max\{1 - yg(x), 0\}$$
 (22)

Therefore, in binary case:

$$\ell(h, (x, y)) = \max\{0, 1 - yq(x)\}\$$

4 Another Formulation of Generalized Hinge Loss

-4.1.

$$\ell(h, (x_i, y_i)) = \max_{y' \in \mathcal{Y}} \Delta(y_i, y') + h(x_i, y') - h(x_i, y_i)$$
(23)

$$= \max_{y' \in \mathcal{Y}} \Delta(y_i, y') - (h(x_i, y_i) - h(x_i, y'))$$
(24)

$$= \max_{y' \in \mathcal{V}} \Delta(y_i, y') - m_{i,y'}(h) \tag{25}$$

- **4.2.**

From 2.2.2 we know that $\ell(h,(x,y)) \ge \Delta(y,f(x))$. If we assume $\Delta(y,y') \ge 0$ for $\forall y,y' \in \mathcal{Y}$:

$$\ell(h,(x,y)) \ge \Delta(y,f(x)) \ge 0$$

Thus, $(\Delta(y_i, y) - m_{i,y}(h), 0)_+ = \max\{\Delta(y_i, y) - m_{i,y}(h), 0\} = \Delta(y_i, y) - m_{i,y}(h)$ Therefore:

$$\max_{y \in \mathcal{Y}} (\Delta(y_i, y) - m_{i,y}(h), 0)_+ = \max_{y \in \mathcal{Y}} (\Delta(y_i, y) - m_{i,y}(h))$$

-4.3.

We assume that $m_{i,y}(h) = h(x_i, y_i) - h(x_i, y) \ge \Delta(y_i, y), \forall y \ne y_i \text{ and } \Delta(y, y) = 0$ For $\forall y_j \ne y_i$:

$$\Delta(y_i, y_j) - m_{i, y_j}(h) \le 0 \tag{26}$$

$$(\Delta(y_i, y_j) - m_{i,y_i}(h))_+ = 0 (27)$$

For $y = y_i$:

$$\Delta(y_i, y) - m_{i,y}(h) = 0 - 0 = 0 \tag{28}$$

Therefore:

$$\ell(h,(x,y)) = \max_{y' \in \mathcal{Y}} (\Delta(y_i, y') - m_{i,y'}(h))_{+} = 0$$
(29)

5. SGD for Multiclass SVM

- 5.1.

a) In 2.2.4 we should that $w \mapsto \max_{y \in \mathcal{Y}} \Delta(y_i, y) + \langle w, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle$ is a convex funtion.

Then it's obvious that $\frac{1}{n} \sum_{i=1}^{n} \max_{y \in \mathcal{Y}} \Delta(y_i, y) + \langle w, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle$ is a convex function of w since it's a constant times the sum of n convex functions.

b) Let $f(w) = ||w||^2$, for $\forall w_1, w_2 \in \mathbb{R}^d, \alpha \in [0, 1]$

$$f(\alpha w_1 + (1 - \alpha)w_2) = ||\alpha w_1 + (1 - \alpha)w_2||^2 \le \alpha^2 ||w_1||^2 + (1 - \alpha)^2 ||w_2||^2$$
(30)

Since $\alpha, (1-\alpha) \le 1$ we have $\alpha^2 \le \alpha$ and $(1-\alpha)^2 \le 1-\alpha$

RHS of eng (30)
$$\leq \alpha ||w_1||^2 + (1-\alpha)||w_2||^2 = \alpha f(w_1) + (1-\alpha)f(w_2)$$

Therefore, $||w||^2$ is convex function of w.

c) $J(w) = \lambda ||w||^2 + \frac{1}{n} \sum_{i=1}^n \max_{y \in \mathcal{Y}} \Delta(y_i, y) + \langle w, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle$ is convex since it's a sum of convex functions.

- 5.2.

From homework 3 Q2.1:

Suppose $f_1, ..., f_m$ are functions and $f(x) = \max_{i=1,...,m} f_i(x)$, let k be the index that $f_k(x) = f(x)$, if we choose $g \in \partial f_k(x), g \in \partial f(x)$

Let $\hat{y}_i = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \Delta(y_i, y) + \langle w, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle$, if we choose $g_i \in \partial \Delta(y_i, \hat{y}_i) + \langle w, \Psi(x_i, \hat{y}_i) - \Psi(x_i, y_i) \rangle$, we also have $g_i \in \partial \max_{y \in \mathcal{Y}} \Delta(y_i, y) + \langle w, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle$ Therefore we can choose $g_i = \Psi(x_i, \hat{y}_i) - \Psi(x_i, y_i)$

One subgradient for J(w) is:

$$2\lambda w + \frac{1}{n} \sum_{i=1}^{n} \Psi(x_i, \hat{y}_i) - \Psi(x_i, y_i)$$
(31)

- 5.3.

The stochastic subgradient based on (x_i, y_i) is:

$$2\lambda w + \Psi(x_i, \hat{y}_i) - \Psi(x_i, y_i) \tag{32}$$

- 5.4.

The minibatch subgradient based on m data points $(x_i, y_i), ..., (x_{i+m-1}, y_{i+m-1})$ is:

$$2\lambda w + \frac{1}{m} \sum_{j=0}^{m-1} \Psi(x_{i+j}, \hat{y}_{i+j}) - \Psi(x_{i+j}, y_{i+j})$$
(33)