<u> House Price Assignment - Part II</u>

1. What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans: Optimal Value of alpha for Ridge Regression is 0.6 and for Lasso Regression it is 0.0001.

When we double the value of alpha as Ridge Regression = 1.2 and Lasso Regression = 0.0002, which means we are doubling the penalty terms and penalizing more on the coefficients.

Observations as per below table with Ridge Regression = 1.2 and Lasso Regression = 0.0002,

- Observed lesser Coefficient values with Higher alpha value. This means coefficients are penalized thus their magnitude is less.
- More number of coefficients are reduced to absolute 0 in Lasso Regression model

Below is the list of Predictors after doubling the alpha for Ridge Regression = 1.2 and Lasso Regression = 0.0002

	reage (aipila c.o)	Lasso (alpha = 0.0001)		Ridge (alpila - 1.2)	Lasso (alpha = 0.000)
MSSubClass	-0.053894	-0.051807	MSSubClass	-0.053551	-0.04825
LotFrontage	-0.025400	-0.007462	LotFrontage	-0.020855	-0.00000
LotArea	0.117785	0.091775	LotArea	0.097262	0.04685
OverallQual	0.148582	0.156275	OverallQual	0.148515	0.16560
OverallCond	0.065891	0.058091	OverallCond	0.082873	0.04537
YearBuilt	0.057359	0.059882	YearBuilt	0.056844	0.05758
MasVnrArea	0.030416	0.024733	MasVnrArea	0.030235	0.01814
ExterQual	0.046119	0.048320	ExterQual	0.049202	0.05124
BsmtQual	0.054613	0.041814	BsmtQual	0.053465	0.03255
BsmtCond	-0.040763	-0.027131	BsmtCond	-0.039982	-0.01380
BsmtExposure	0.048161	0.049292	BsmtExposure	0.048021	0.05184
BsmtFinSF1	0.089013	0.072495	BsmtFinSF1	0.077327	0.05898
BsmtFinSF2	0.024981	0.012800	BsmtFinSF2	0.024309	0.00348
TotalBsmtSF	0.009063	-0.000000	TotalBsmtSF	0.021238	0.00000
1stFIrSF	0.180878	0.008185	1stFlrSF	0.159468	0.01384
2ndFlrSF	0.090097	0.000000	2ndFlrSF	0.087308	0.00000
LowQualFin SF	-0.010113	-0.017907	LowQualFinSF	-0.008004	-0.00284
GrLivArea	0.184903	0.402643	GrLivArea	0.166230	0.36353
BedroomAbvGr	-0.026070	-0.023151	BedroomAbvGr	-0.015178	-0.00000
KitchenAbvGr	-0.011422	-0.001951	KitchenAbvGr	-0.008391	-0.00000
GarageArea	0.063896	0.051908	GarageArea	0.067638	0.05168
PoolArea	-0.023422	-0.013028	PoolArea	-0.021542	-0.00000
MiscVal	0.003042	-0.000000	MiscVal	0.001045	0.00000
Street_Pave	0.026843	0.001078	Street Pave	0.021434	0.00000
Neighborhood_Crawfor	0.039774	0.037128	Neighborhood_Crawfor	0.041708	0.03818
Neighborhood_NoRidge	0.068666	0.068086	Neighborhood NoRidge	0.071957	0.07057
Neighborhood_NridgHt	0.052955	0.052931	Neighborhood_NridgHt	0.054273	0.05365
Neighborhood_StoneBr	0.042383	0.035959	Neighborhood StoneBr	0.043019	0.03043
Condition2_PosN	-0.299413	-0.370038	Condition2 PosN	-0.207127	-0.23444
RoofMatl_CompShg	0.132491	0.046188	RoofMatl CompShq	0.072728	0.01834
RoofMatl_Membran	0.105452	0.000000	RoofMatl_Membran	0.049326	0.00000
RoofMatl_Metal	0.101014	0.000000	RoofMati Metal	0.046581	0.00000
RoofMatl_Roll	0.075776	0.000000	RoofMati_Roll	0.027165	-0.00000
RoofMatl_Tar&Grv	0.116422	0.013851	RoofMatl Tar&Grv	0.027165	0.00000
RoofMatl_WdShake	0.095387	0.000000			
RoofMati WdShngi	0.214988	0.141227	RoofMatl_Wd Shake	0.044001	0.00000
Exterior1st_CemntBd	-0.021777	0.000000	RoofMatl_WdShngl	0.149469	0.09955
Exterior2nd CmentBd	0.034290	0.015238	Exterior1st_CemntBd	-0.014057	0.00000
Heating OthW	-0.051424	-0.000000	Exterior2nd_CmentBd	0.025481	0.01125
Heating Wall	0.038827	0.008121	Heating_OthW	-0.035597	-0.00000
Functional Mod	-0.016429	-0.000000	Heating_Wall	0.030900	0.00000
Functional Sev	-0.070818	-0.000000	Functional_Mod	-0.012400	-0.00000
GarageType_No_Garage	0.016327	0.007630	Functional_Sev	-0.048162	-0.00000

Most important predictor variables after doubling the alpha value :

	Ridge (alpha = 1.2)		Lasso (alpha = 0.0002)	
GrLivArea	0.168230	GrLivArea	0.363530	
1stFIrSF	0.159466	OverallQual	0.165804	
RoofMatl_WdShngl	0.149469	RoofMatl_WdShngl	0.099556	
OverallQual	0.148515	Neighborhood_NoRidge	0.070573	
LotArea	0.097262	BsmtFinSF1	0.058988	
2ndFlrSF	0.087308	YearBuilt	0.057587	
BsmtFinSF1	0.077327	Neighborhood_NridgHt	0.053654	
RoofMatl_CompShg	0.072728	GarageArea	0.051681	
Neighborhood_NoRidge	0.071957	BsmtExposure	0.051643	
GarageArea	0.067638	ExterQual	0.051245	
OverallCond	0.062673	LotArea	0.046853	
YearBuilt	0.058844	OverallCond	0.045377	
RoofMatl_Tar&Grv	0.055957	Neighborhood_Crawfor	0.036180	
Neighborhood_NridgHt	0.054273	BsmtQual	0.032550	
BsmtQual	0.053465	Neighborhood_StoneBr	0.030439	
RoofMatl_Membran	0.049326	RoofMatl_Comp Shg	0.018340	
ExterQual	0.049202	MasVnrArea	0.018146	
BsmtExposure	0.048021	SaleType_New	0.016926	
RoofMatl_Metal	0.046581	1stFirSF	0.013844	
SaleType_Con	0.045245	Exterior2nd_CmentBd	0.011259	

2. You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Ans: Decision of which regression model to use was done based on R2 Score and RSME value. Below is the R2 Score and RSME values for Ridge and Lasso Regressions obtained with their respective optimal alpha values.

Summary of Ridge and Lasso Regression -

- Ridge Regression Model Observed R2 score of 0.871 for train dataset and 0.854 for test
 dataset which means this model explained about 85.4% of the variation in the Test Data .
 Also, Train and Test R2 Scores are decent enough for this model.
- Lasso Regression Model Observed R2 score of 0.860 for train dataset and 0.846 for test dataset which means this model explained about 84.6% of the variation in the Test Data. Also Train and Test R2 Scores are decent enough for this model.

Now, as we observe for both the models, R2 Scores of Train and Test dataset are decent.

To decide on the Final Model we will consider "BETTER" R2 Scores on the test dataset and as we see, R2 Score of Test dataset for Ridge Regression model (0.8547) is better than Lasso Regression Model (0.8461)

So, we choose Ridge Regression model as our final model.

3. After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Ans: Current Model's 5 most important predictor variables in Lasso Model are → GrLivArea, OverallQual, RoofMatl_WdShngl, LotArea, BsmtFinSF1.

Now, as mentioned in the question, above predictors are not available in the incoming data and we need to create a new model without them.

In this case, we remove above 5 predictors from the dataset and recreate the Lasso Model to get new 5 most important predictor variables \rightarrow 1stFirSF, 2ndFirSF, Neighborhood_NoRidge, BsmtQual, Neighborhood_NridgHt

4. How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Ans: For a model to be robust and generalisable,

- It should not be complex.
- Model should perform well on train dataset as well as test dataset. Metrics can be R2 scores and RMSE.
- Find a Bias-Variance trade-off to avoid model overfitting and underfitting.

Above requirements can be met using Regularization methods along with existing data cleaning methods like outlier treatments ..etc

With Regularization, complexity of model is reduced and methods like Hyperparameter tuning and Cross Validation helps to find the optimal value of lambda needed to find the Bais-Variance - trade-off best fit values. With the small compromise in the bias there is a significant reduction in variance.