(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 25 mars 2004 (25.03.2004)

PCT

(10) Numéro de publication internationale WO 2004/024665 A1

(51) Classification internationale des brevets7: C07C 57/05, 51/215, 57/04

(21) Numéro de la demande internationale :

PCT/FR2003/002673

(22) Date de dépôt international :

9 septembre 2003 (09.09.2003)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité :

02/11197

10 septembre 2002 (10.09.2002) FR

03/06413

27 mai 2003 (27.05,2003)

(71) Déposant (pour tous les États désignés sauf US): ATO-FINA [FR/FR]; 4/8, cours Michelet, F-92800 Puteaux (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement): DUBOIS, Jean-Luc [FR/FR]; 190, rue du Coteau, F-69390 Millery (FR). DESDEVISES, Fabienne [FR/FR]; 3, rue du Guycholet, F-69390 Millery (FR). SERREAU, Stéphanie [FR/FR]; 25bis, rue de la Sarra, F-69600 Oullins (FR). VITRY, Damien [FR/FR]; Route d'Arc-en-Barrois, F-52120 Richebourg (FR). UEDA, Wataru [JP/JP]; 1979-57 Naruse, Machida-shi, Tokyo (JP).

(74) Mandataires: POCHART, François etc.; Cabinet Hirsch-Pochart, 34, rue de Bassano, F-75008 Paris (FR).

[Suite sur la page suivante]

(54) Title: METHOD FOR PRODUCING ACRYLIC ACID FROM PROPANE

(54) Titre: PROCEDE DE FABRICATION D'ACIDE ACRYLIQUE A PARTIR DE PROPANE

D...PRODUCTS

E...FRESH CATALYST

F...USED CATALYST

G...REGENERATOR

(57) Abstract: The invention concerns a method for producing acrylic acid from propane, which consists in passing a gas mixture including propane, water vapour, and optionally an inert gas and/or molecular oxygen, on a catalyst of formula (I): Mo₁V_aSb_bNb_cSi_dO_x, wherein: a ranges between 0.006 and 1, inclusively; b ranges between 0.006 and 1, inclusively; c ranges between 0.006 and 1, inclusively; d ranges between 0 and 3.5, inclusively; and x is the amount of oxygen bound to the other elements and depends on their state of oxidation, for oxidizing propane into acrylic acid, and which is carried out in the presence of molecular oxygen, the propane/molecular oxygen mol ratio in the initial gas mixture is not less than 0.5.

(57) Abrégé: Procédé de fabrication d'acide acrylique à partir de propane, selon lequel on fait passer un mélange gazeux comprenant du propane, de la vapeur d'eau, ainsi qu'éventuellement un gaz inerte et/ou de l'oxygène moléculaire, sur un catalyseur de formule (I): Mo₁V_aSb_bNb_cSi_dO_x dans lesquelles: a est compris entre 0,006 et 1, bornes incluses; b est compris entre 0,006 et 1, bornes incluses; c est compris entre 0,0006 et 1, bornes incluses; d est compris entre 0 et 3,5, bornes incluses; et x est la quantité d'oxygène lié aux autres éléments et dépend de leurs états d'oxydation,

[Suite sur la page suivante]

- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Déclaration en vertu de la règle 4.17 :

 relative à la qualité d'inventeur (règle 4.17.iv)) pour US seulement

Publiée:

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

PCT/FR2003/002673

5

10

15

20

25

30

35

• -}

PROCEDE DE FABRICATION D'ACIDE ACRYLIQUE A PARTIR DE PROPANE

La présente invention concerne la production d'acide acrylique à partir de propane en présence ou en absence d'oxygène moléculaire.

Il est connu d'après la demande de brevet européen n°EP-A-608838 de préparer un acide carboxylique insaturé à partir d'un alcane selon une réaction d'oxydation catalytique en phase vapeur en présence d'un catalyseur contenant un oxyde métallique mixte comprenant comme composants essentiels, Mo, V, Te, O, ainsi qu'au moins un élément choisi dans le groupe constitué par le niobium, le tantale, le tungstène, le titane, l'aluminium, le zirconium, le chrome, le manganèse, le fer, le ruthénium, le cobalt, le rhodium, le nickel, le palladium, le platine, l'antimoine, le bismuth, le bore, l'indium et le cérium, ces éléments étant présents dans des proportions bien précises. La réaction peut être mise en œuvre à partir d'un mélange gazeux composé de l'alcane, d'oxygène, d'un gaz inerte et de vapeur d'eau répondant aux proportions molaires suivantes:

alcane/oxygène/gaz inerte/vapeur d'eau = 1/0,1-10/0-20/0,2-70 et de préférence 1/1-5/0-10/5-40.

Par ailleurs, la demande de brevet européen n° EP-A-895809 décrit des catalyseurs à base d'oxydes comprenant du molybdène, du vanadium, du niobium, de l'oxygène, du tellure et/ou de l'antimoine, ainsi qu'au moins un autre élément tel que le fer ou l'aluminium. Ces catalyseurs peuvent être utilisés pour la conversion du propane en acide acrylique, en présence d'oxygène moléculaire, comme l'illustrent les exemples 9 et 10. L'exemple 9, en particulier, décrit l'oxydation du propane au moyen d'un catalyseur de formule Mo₁V_{0,33}Nb_{0,11}Te_{0,22}O_n à partir d'un courant gazeux composé de propane, d'oxygène et d'hélium et d'un courant de vapeur d'eau, selon un rapport molaire propane/oxygène/ hélium/vapeur d'eau d'environ 1/3,2/12,1/14,3. Dans un tel courant gazeux, le flux de gaz réactif est très peu concentré en propane. Il s'ensuit que le recyclage du propane non converti est beaucoup plus difficile car ce propane non converti est trop dilué dans le flux réactionnel.

L'invention a pour but de proposer un procédé de production d'acide acrylique à partir de propane, en présence ou en absence d'oxygène moléculaire, qui permette d'obtenir une conversion du propane élevée tout en conservant une bonne sélectivité en acide acrylique.

Les inventeurs ont découvert que l'on peut atteindre ce but en faisant passer un mélange gazeux comprenant du propane, de la vapeur d'eau, ainsi qu'éventuellement un gaz inerte et/ou de l'oxygène moléculaire, sur un catalyseur particulier. Lorsque l'on opère en présence d'oxygène moléculaire l'oxydation

10

15

30

)

s'effectue dans des conditions telles que l'oxygène du mélange gazeux soit en proportion sous-stœchiométrique par rapport au propane introduit, ce qui permet vraisemblablement au catalyseur d'agir comme un système rédox et de fournir l'oxygène manquant pour que la réaction s'effectue de manière satisfaisante.

Les avantages de cette nouvelle manière de procéder sont donc les suivants :

- la limitation de la suroxydation des produits formés qui a lieu en présence d'une quantité trop importante d'oxygène moléculaire; selon la présente invention, du fait que l'on opère en sous-stœchiométrie, la formation de CO_X (monoxyde de carbone et dioxyde de carbone), produits de dégradation, est réduite, ce qui permet d'augmenter la sélectivité en acide acrylique;
- la sélectivité en acide acrylique se maintient à un bon niveau;
- la conversion est augmentée sans perte de sélectivité;
- le catalyseur ne subit qu'une faible réduction et donc une faible perte de son activité; il est facilement régénérable par chauffage en présence d'oxygène ou d'un gaz contenant de l'oxygène après une certaine période d'utilisation; après la régénération, le catalyseur retrouve son maximum d'activité et peut être utilisé dans un nouveau cycle de réaction;
- en outre, on peut prévoir la séparation des étapes de réduction du catalyseur et de régénération de celui-ci, ce qui permet d'augmenter la pression partielle en propane, une telle pression partielle d'alimentation en propane étant peu limitée par l'existence d'une zone explosive créée par le mélange propane + oxygène, car se dernier est présent sous forme moléculaire en proportions sous-stœchimétriques;
 - par ailleurs, ce procédé permet de réduire la formation de produits issus de l'hydratation, en particulier, l'acide propionique, l'acétone et l'acide acétique.

La présente invention a donc pour objet un procédé de fabrication de l'acide acrylique à partir de propane, dans lequel on fait passer un mélange gazeux comprenant du propane, de la vapeur d'eau, éventuellement un gaz inerte et/ou de l'oxygène moléculaire, sur un catalyseur de formule (I):

$$Mo_1V_aSb_bNb_cSi_dO_x$$
 (I)

dans lesquelles:

- a est compris entre 0,006 et 1, bornes incluses;
 - b est compris entre 0,006 et 1, bornes incluses;
 - c est compris entre 0,006 et 1, bornes incluses;

15

25

35

- d est compris entre 0 et 3,5, bornes incluses; et
- x est la quantité d'oxygène lié aux autres éléments et dépend de leurs états d'oxydation,

pour oxyder le propane en acide acrylique, et lorsque l'on opère en présence d'oxygène moléculaire, le rapport molaire propane/oxygène moléculaire dans le mélange gazeux de départ est supérieur à 0,5.

Un tel procédé permet d'obtenir simultanément une sélectivité en acide acrylique de près de 60% et une conversion du propane élevée. En outre, il peut être aisément mis en œuvre en lit fluidisé ou en lit transporté et l'injection des réactifs peut être effectuée en différents points du réacteur, de sorte qu'on se trouve en dehors de la zone d'inflammabilité tout en ayant une concentration en propane élevée et, par conséquent, une productivité du catalyseur élevée.

Selon un mode de réalisation particulièrement avantageux, le procédé selon l'invention comprend les étapes suivantes :

I/ En l'absence d'oxygène moléculaire

Lorsque le mélange gazeux de départ est dépourvu d'oxygène moléculaire, le propane est oxydé selon la réaction rédox (A) suivante :

 $SOLIDE_{oxyde} + PROPANE \rightarrow SOLIDE_{réduit} + ACIDE ACRYLIQUE$ (A)

II/ En présence d'oxygène moléculaire

- a) on introduit le mélange gazeux de départ dans un premier réacteur à lit de catalyseur transporté,
 - b) à la sortie du premier réacteur, on sépare les gaz du catalyseur;
 - c) on envoie le catalyseur dans un régénérateur ;
 - d) éventuellement on introduit les gaz dans un second réacteur à lit de catalyseur transporté;
 - e) le cas échéant, à la sortie du second réacteur, on sépare les gaz du catalyseur et on récupère l'acide acrylique contenu dans les gaz séparés ;
 - f) le cas échéant, on renvoie le catalyseur dans le régénérateur ; et
- g) on réintroduit du catalyseur régénéré provenant du régénérateur dans le premier réacteur et le cas échéant dans le second réacteur.

Selon un autre mode de réalisation avantageux de l'invention, le ou les réacteurs sont en outre pourvus d'un co-catalyseur.

Selon un autre mode de réalisation avantageux de l'invention, le procédé comprend la répétition, dans un réacteur pourvu du catalyseur de formule (I) et, le cas échéant, d'un co-catalyseur, du cycle comprenant les étapes successives suivantes :

1) une étape d'injection du mélange gazeux tel que précédemment défini ;

10

15

20

30

35

- 2) une étape d'injection de vapeur d'eau et, le cas échéant de gaz inerte;
- 3) une étape d'injection d'un mélange d'oxygène moléculaire, de vapeur d'eau et, le cas échéant, de gaz inerte ; et
- 4) une étape d'injection de vapeur d'eau et, le cas échéant de gaz inerte.

Selon un perfectionnement du mode de réalisation avantageux qui vient d'être décrit, le cycle comprend une étape supplémentaire qui précède ou suit l'étape 1) et au cours de laquelle on injecte un mélange gazeux correspondant à celui de l'étape 1) mais sans l'oxygène moléculaire, le rapport molaire propane/oxygène moléculaire étant alors calculé globalement pour l'étape 1) et cette étape supplémentaire.

Selon un mode de réalisation avantageux du perfectionnement qui vient d'être présenté, l'étape supplémentaire précède l'étape 1) dans le cycle.

D'autres caractéristiques et avantages de l'invention vont maintenant être décrits en détail dans l'exposé qui suit et qui est donné en référence à la figure unique annexée qui représente schématiquement un appareillage apte à la mise en œuvre d'un mode de réalisation avantageux du procédé selon l'invention.

Exposé détaillé de l'invention

Selon l'invention, dans les alternatives où l'on introduit de l'oxygène moléculaire, du fait que le rapport molaire propane/oxygène moléculaire dans le mélange gazeux de départ est supérieur ou égal à 0,5, la conversion du propane en acide acrylique au moyen du catalyseur s'effectue par oxydation, vraisemblablement selon les réactions concurrentes (A) et (B) suivantes :

- la réaction catalytique classique (B):

$$CH_3-CH_2-CH_3 + 2O_2 \rightarrow CH_2=CH-COOH + 2H_2O$$
 (B)

- et la réaction rédox (A) citée ci-avant :

25 SOLIDE_{oxydé} + CH₃-CH₂-CH₃
$$\rightarrow$$
 SOLIDE_{réduit} + CH₂=CH-COOH (A)

Le rapport en volume propane/vapeur d'eau dans le mélange gazeux de départ n'est pas critique et peut varier dans de larges limites.

De même, la proportion de gaz inerte, qui peut être de l'hélium, du krypton, un mélange de ces deux gaz, ou bien de l'azote, du dioxyde de carbone, etc., n'est pas non plus critique et peut aussi varier dans de larges limites.

Les proportions des constituants du mélange gazeux de départ sont généralement les suivantes (en rapports molaires) : propane/oxygène/inerte(He-Kr)/H₂O (vapeur) = 1/0,05-2/1-10/1-10

De préférence, elles sont de 1/0,1-1/1-5/1-5.

Plus préférentiellement encore, elles sont de 1/0,167-0,667/2-5/2-5. On peut encore citer comme proportions particulièrement intéressantes les suivantes :

1/0,2-0,4/4-5/4-5.

Généralement, les réactions (A) et (B) sont conduites à une température de 200 à 500°C, de préférence de 250 à 450°C, plus préférentiellement encore, de 350 à 5 400°C. La pression dans le ou les réacteur(s) est généralement de 1,01.10⁴ à 1,01.10⁶ Pa (0,1 à 10 atmosphères), de préférence de 5,05.10⁴ à 5,05.10⁵ Pa (0,5-5 atmosphères).

Le temps de séjour dans le réacteur, ou s'il y en a plusieurs, dans chaque réacteur, est généralement de 0,01 à 90 secondes, de préférence, de 0,1 à 30 10 secondes.

Le catalyseur, répond à la formule (I) suivante :

Mo1VaSbbNbcSidOx

(I)

dans lesquelles:

- 15 a est compris entre 0,006 et 1, bornes incluses;
 - b est compris entre 0,006 et 1, bornes incluses;
 - c est compris entre 0,006 et 1, bornes incluses;
 - d est compris entre 0 et 3,5, bornes incluses; et
- x est la quantité d'oxygène lié aux autres éléments et dépend de leurs états 20 d'oxydation.

Avantageusement:

)

- a est compris entre 0,09 et 0,8, bornes incluses;
- b est compris entre 0,04 et 0,6, bornes incluses;
- c est compris entre 0,01 et 0,4, bornes incluses; et
- d est compris entre 0,4 et 1,6, bornes incluses. 25

Les oxydes des différents métaux entrant dans la composition du catalyseur de formule (I) peuvent être utilisés comme matières premières dans la préparation de ce catalyseur, mais les matières premières ne sont pas limitées aux oxydes; parmi les matières premières pouvant être utilisées, on peut citer, à titre non limitatif :

- 30 dans le cas du molybdène, le molybdate d'ammonium, le paramolybdate d'ammonium, l'hepta-molybdate d'ammonium, l'acide molybdique, les halogènures ou oxyhalogénures de molybdène tels que MoCl5, les composés organométalliques du molybdène comme les alkoxydes de molybdène tels que Mo(OC₂H₅)₅, le molybdényle d'acétylacétone ;
- dans le cas du vanadium, le métavanadate d'ammonium, les halogénures 35 ou oxyhalogénures de de vanadium tels que VCl₄, VCl₅ ou VOCl₃, les

10

15

20

25

35

composés organométalliques du vanadium comme les alkoxydes de vanadium tels que $VO(OC_2H_5)_3$;

- dans le cas de l'antimoine par exemple de l'oxyde d'antimoine (trioxyde d'antimoine), notamment la variété Senarmontite, le sulfate d'antimoine (Sb₂(SO₄)₃) ou un chlorure d'antimoine (trichlorure d'antimoine, pentachlorure d'antimoine);
- dans le cas du niobium, l'acide niobique, le tartrate de niobium, l'hydrogéno-oxalate de niobium, le niobiate d'oxotrioxalato-ammonium {(NH₄)₃[NbO(C₂O₄)₃]•1,5H₂O}, l'oxalate de niobium et d'ammonium, l'oxalate de niobium et de tartrate, les halogénures ou oxyhalogénures de niobium tels que NbCl₃, NbCl₅ et les composés organométalliques du niobium comme les alkoxydes de niobium tels que Nb(OC₂H₅)₅, Nb(O-n-Bu)₅;

et, d'une manière générale, tous les composés susceptibles de former un oxyde par calcination, à savoir, les sels métalliques d'acides organique, les sels métalliques d'acides minéraux, les composés métalliques complexes, etc.

La source de silicium est généralement constituée de silice colloïdale et/ou d'acide polysilicique.

Conformément à des modes de réalisation particuliers, on peut préparer le catalyseur de formule (I) en mélangeant sous agitation des solutions aqueuses d'acide niobique, d'acide oxalique, d'heptamolybdate d'ammonium, de métavanadate d'ammonium, d'oxyde d'antimoine, en ajoutant le cas échéant de la silice colloïdale, puis de préférence en précalcinant sous air à une température comprise entre 280 et 340°C, de préférence à environ 300-320°C, et en calcinant sous azote à environ 600°C.

De préférence, dans le catalyseur de formule (I) ainsi préparé :

- a est compris entre 0,09 et 0,8, bornes incluses;
- b est compris entre 0,04 et 0,6, bornes incluses;
- c est compris entre 0,01 et 0,4, bornes incluses; et
- o d est compris entre 0,4 et 1,6, bornes incluses.

Plus particulièrement, le procédé de préparation du catalyseur de formule (I) est mis en œuvre par préparation d'une solution d'acide niobique, d'acide oxalique, préparation d'une solution de molybdène, de vanadium, d'antimoine et éventuellement de silice, mélange des 2 solutions donnant lieu à la formation d'un gel, séchage du gel obtenu donnant lieu à la formation d'un précurseur de formule (I') ci-après, précalcination puis calcination.

Plus précisément, selon un procédé particulièrement préféré, le catalyseur peut être préparé en mettant en œuvre les étapes suivantes :

j

)

25

30

35

- 1) dissolution dans de l'eau d'une source de vanadium, par exemple, du métavanadate d'ammonium, sous agitation et en chauffant éventuellement;
- 2) addition à la solution obtenue précédemment d'une source d'antimoine, par exemple, de l'oxyde d'antimoine, en particulier la variété Sénarmontite;
- addition d'une source de molybdène, par exemple, de l'heptamolybdate d'ammonium;
 - 4) réaction de la solution obtenue, sous reflux ;
 - 5) addition d'un oxydant tel que l'eau oxygénée;
 - 6) le cas échéant, addition de silice;
- 10 7) addition d'une solution préparée en mélangeant, sous chauffage, une source de niobium, par exemple, de l'acide niobique, avec de l'acide oxalique;
 - réaction du mélange réactionnel sous reflux et de préférence sous atmosphère inerte, jusqu'à l'obtention d'un gel; séchage du gel obtenu conduisant à un précurseur;
- 15 9) précalcination du précurseur ; et
 - 10) calcination du gel précalciné pour obtenir le catalyseur.

En variante, au lieu d'avoir trois étapes 1), 2) et 3) successives, on fusionne ces étapes en introduisant les sources de vanadium, d'antimoine et de molybdène dans de l'eau froide et en agitant pour obtenir une solution.

De préférence, dans l'étape 5), on ajoute l'eau oxygénée jusqu'à l'obtention d'une solution limpide de couleur orange.

Dans les alternatives de procédés ci-dessus :

le séchage (par exemple de l'étape 9)) peut être effectué en étuve en couche mince, par atomisation, par lyophilisation, par zéodratation, par micro-ondes, etc;

la précalcination peut être effectuée sous flux d'air à 280-300°C ou sous air statique à 320°C, en lit fluidisé, en four tournant en lit fixe dit aéré, de façon à ce que les grains de catalyseur soient séparés les uns des autres pour éviter qu'ils ne fusionnent lors de la précalcination ou éventuellement lors de la calcination;

la calcination est de préférence effectuée sous azote très pur et à une température voisine de 600°C, par exemple en four tournant ou en lit fluidisé et pendant une durée qui peut être de 2 heures.

Le catalyseur obtenu au terme de la calcination peut être broyé pour donner des particules plus petites. Si le broyage est poussé jusqu'à l'obtention d'une poudre constituée de particules de la taille d'un micron environ, la poudre peut être remise ultérieurement en forme au moyen d'un liant tel que par exemple la silice sous forme d'acide polysilicique, la suspension étant alors à nouveau séchée, par exemple par atomisation.

20

25

30

Selon un mode de réalisation plus particulièrement préféré de l'invention, la précalcination est effectuée :

- soit à une température inférieure à 300°C sous un débit d'air d'au moins 10 ml/min/g de catalyseur;
- 5 soit à une température allant de 300 à 350°C sous un débit d'air inférieur à 10 ml/min/g de catalyseur.

Selon un mode de réalisation particulièrement préféré, la précalcination est effectuée :

- à environ 320°C sous un débit d'air inférieur à 10 ml/min/g; ou
- 10 à environ 290°C, sous un débit d'air d'environ 50 ml/min/g.

Régénération du catalyseur

Au cours de la réaction rédox (B), le catalyseur subit une réduction et une perte progressive de son activité. C'est pourquoi, une fois que le catalyseur est au moins partiellement passé à l'état réduit, on conduit sa régénération selon la réaction (C):

$$SOLIDE_{réduit} + O_2 \rightarrow SOLIDE_{oxydé}$$
 (C)

par chauffage en présence d'oxygène ou d'un gaz contenant de l'oxygène à une température de 250 à 500°C, pendant le temps nécessaire à la réoxydation du catalyseur.

Les proportions des constituants du mélange gazeux de régénération sont généralement les suivantes (en rapports molaires):

oxygène/inerte(He-Kr)/H₂O (vapeur) =

1/1-10/0-10

De préférence, elles sont de 1/1-5/0-5.

Au lieu d'utiliser de l'oxygène seul, on peut utiliser de l'air (21% de O₂) sec. A la place ou en complément de la vapeur d'eau, on peut alors utiliser de l'air humide.

La température de régénération est généralement de 250 à 500°C.

On met en général le procédé en œuvre jusqu'à ce que le taux de réduction du catalyseur soit compris entre 0,1 et 10 g d'oxygène par kg de catalyseur.

Ce taux de réduction peut être surveillé au cours de la réaction par la quantité de produits obtenus. On calcule alors la quantité d'oxygène équivalente. On peut aussi le suivre par l'exothermicité de la réaction. On peut aussi suivre le taux de réduction par la quantité d'oxygène consommé au régénérateur.

Après la régénération, qui peut être effectuée dans des conditions de température et de pression identiques à, ou différentes de celles des réactions (A) et

10

15

25

(B), le catalyseur retrouve une activité initiale et peut être réintroduit dans les réacteurs.

On peut conduire les réactions (A) et (B) et la régénération (C) dans un réacteur classique, tel qu'un réacteur à lit fixe, un réacteur à lit fluidisé ou un réacteur à lit transporté.

On peut donc conduire les réactions (A) et (B) et la régénération (C) dans un dispositif à deux étages, à savoir un réacteur et un régénérateur qui fonctionnent simultanément et dans lesquels alternent périodiquement deux charges de catalyseur.

On peut également conduire les réactions (A) et (B) et la régénération (C) dans un même réacteur en alternant les périodes de réaction et de régénération.

De préférence, les réactions (A) et (B) et la régénération (C) sont effectuées dans un réacteur à lit de catalyseur transporté, en particulier dans un réacteur vertical, le catalyseur se déplaçant alors de préférence du bas vers le haut.

On peut utiliser un mode de fonctionnement à un seul passage des gaz ou avec recyclage des gaz.

Selon un mode de réalisation préféré, le propylène produit et/ou le propane n'ayant pas réagi sont recyclés (ou renvoyés) à l'entrée du réacteur, c'est-à-dire qu'ils sont réintroduits à l'entrée du réacteur, en mélange ou parallèlement avec le mélange de départ de propane, de vapeur d'eau et le cas échéant de gaz inerte(s).

20 <u>Utilisation d'un appareillage à deux réacteurs et un régénérateur</u>

Selon un mode de réalisation avantageux de l'invention, le procédé selon l'invention est mis en œuvre dans un appareillage tel que celui représenté sur la figure annexée.

Le mélange gazeux de départ comprenant du propane, de l'oxygène moléculaire, de la vapeur d'eau, ainsi que, le cas échéant, un gaz inerte, est introduit dans un premier réacteur (Riser 1) contenant le lit de catalyseur transportable.

Ensuite, à la sortie du premier réacteur, les effluents sont séparés en des gaz et le catalyseur transporté.

Le catalyseur est envoyé dans un régénérateur.

Les gaz sont introduits dans un second réacteur (Riser 2) contenant également un lit de catalyseur transportable.

A la sortie du second réacteur, les effluents sont séparés en des gaz et le catalyseur transporté.

Le catalyseur est envoyé dans un régénérateur.

Les gaz sont traités de façon connue, généralement par absorption et purification, en vue de la récupération de l'acide acrylique produit.

10

15

20

25

30

Le catalyseur régénéré est réintroduit dans le premier réacteur ainsi que dans le second réacteur.

Le procédé fonctionne ainsi de façon continue, la circulation du catalyseur entre les réacteurs et le régénérateur s'effectue de façon régulière et généralement continue.

Bien entendu, l'unique régénérateur peut être remplacé par deux ou plus régénérateurs.

En outre, il est possible d'ajouter à la suite du second réacteur d'autres réacteurs ayant eux aussi un catalyseur circulant entre chacun de ces réacteurs et le régénérateur ou d'autres régénérateurs.

De préférence, les premier et second réacteurs sont verticaux et le catalyseur est transporté vers le haut par le flux des gaz.

On peut utiliser un mode de fonctionnement à un seul passage des gaz ou avec recyclage des produits sortant du deuxième réacteur.

Selon un mode de réalisation préféré de l'invention, après traitement des gaz issus du deuxième réacteur, le propylène produit et/ou le propane n'ayant pas réagi sont recyclés (ou renvoyés) à l'entrée du premier réacteur, c'est-à-dire qu'ils sont réintroduits à l'entrée du premier réacteur, en mélange ou parallèlement avec le mélange de départ de propane, d'oxygène, de vapeur d'eau et le cas échéant de gaz inerte(s).

Utilisation d'un co-catalyseur

Selon un autre mode de réalisation avantageux de l'invention, le mélange gazeux passe également sur un co-catalyseur.

Ceci a pour avantage de réduire la production d'acide propionique, qui est généralement un sous-produit de la réaction de conversion et qui pose des problèmes dans certaines applications de l'acide acrylique lorsqu'il est présent en trop grande quantité.

Ainsi, on réduit fortement le rapport acide propionique/acide acrylique en sortie de réacteur.

En outre, la formation d'acétone, qui est aussi un sous-produit de la fabrication d'acide acrylique à partir de propane, est diminuée.

A cet effet, le réacteur, ou, s'il y en a plusieurs, l'un au moins des réacteurs, comprend un co-catalyseur ayant la formule (II) suivante :

$$Mo_1Bi_a$$
, Fe_b , Co_c , Ni_d , K_e , Sb_f , Ti_g , Si_h , Ca_i , Nb_j , Te_k , Pb_l , W_m , Cu_n , (II)

35 dans laquelle:

- a' est compris entre 0,006 et 1, bornes incluses;
- b' est compris entre 0 et 3,5, bornes incluses ;

```
c' est compris entre 0 et 3,5, bornes incluses;
d' est compris entre 0 et 3,5, bornes incluses;
e' est compris entre 0 et 1, bornes incluses;
f' est compris entre 0 et 1, bornes incluses;
g' est compris entre 0 et 1, bornes incluses;
h' est compris entre 0 et 3,5, bornes incluses;
i' est compris entre 0 et 1, bornes incluses;
j' est compris entre 0 et 1, bornes incluses;
k' est compris entre 0 et 1, bornes incluses;
l' est compris entre 0 et 1, bornes incluses;
m' est compris entre 0 et 1, bornes incluses;
m' est compris entre 0 et 1, bornes incluses; et
n' est compris entre 0 et 1, bornes incluses; et
n' est compris entre 0 et 1, bornes incluses.
```

Un tel co-catalyseur peut être préparé de la même manière que le catalyseur de formule (I).

Les oxydes des différents métaux entrant dans la composition du cocatalyseur de formule (II) peuvent être utilisés comme matières premières dans la préparation de ce co-catalyseur, mais les matières premières ne sont pas limitées aux oxydes; comme autres matières premières, on peut citer dans le cas du nickel, du cobalt, du bismuth, du fer ou du potassium, les nitrates correspondants.

De manière générale, le co-catalyseur est présent sous forme de lit transportable et de préférence, il est régénéré et circule le cas échéant de la même manière que le catalyseur.

De préférence, dans le co-catalyseur de formule (II) :

```
- a' est compris entre 0,01 et 0,4, bornes incluses;
```

25 - b' est compris entre 0,2 et 1,6, bornes incluses;

- c' est compris entre 0,3 et 1,6, bornes incluses;

d' est compris entre 0,1 et 0,6, bornes incluses ;

- e' est compris entre 0,006 et 0,01, bornes incluses.

f' est compris entre 0 et 0,4, bornes incluses;

30 - g' est compris entre 0 et 0,4, bornes incluses;

- h' est compris entre 0,01 et 1,6, bornes incluses;

- i' est compris entre 0 et 0,4, bornes incluses;

- j' est compris entre 0 et 0,4, bornes incluses;

- k' est compris entre 0 et 0,4, bornes incluses;

35 - l'est compris entre 0 et 0,4, bornes incluses ;

- m' est compris entre 0 et 0,4, bornes incluses; et

- n' est compris entre 0 et 0,4, bornes incluses.

10

Le rapport massique du catalyseur au co-catalyseur est généralement supérieur à 0,5 et de préférence d'au moins 1.

Avantageusement, le co-catalyseur est présent dans les deux réacteurs.

Le catalyseur et le co-catalyseur se présentent sous la forme de compositions solides catalytiques.

Ils peuvent être chacun sous la forme de grains généralement de 20 à 300 μm de diamètre, les grains de catalyseur et de co-catalyseur étant généralement mélangés avant la mise en œuvre du procédé selon l'invention.

Le catalyseur et le co-catalyseur peuvent aussi se présenter sous la forme d'une composition solide catalytique composée de grains dont chacun comprend à la fois le catalyseur et le co-catalyseur.

Exemples

Les exemples suivants illustrent la présente invention sans toutefois en limiter la portée.

Dans les formules indiquées dans l'exemple 1, x est la quantité d'oxygène lié aux autres éléments et dépend de leurs états d'oxydation.

Les conversions, sélectivités et rendements sont définis comme suit :

	Conversion (%) = -	Nombre de moles de propane ayant réagi
20	du propane	Nombre de moles de propane introduites
	Sélectivité (%) =	Nombre de moles d'acide acrylique formées
25	en acide acrylique	Nombre de moles de propane ayant réagi
	Rendement (%) = -	Nombre de moles d'acide acrylique formées
	en acide acrylique	Nombre de moles de propane introduites
	Les sélectivités et ren	ndements relatifs aux autres composés sont calculées de manière

Le ratio conversion est la masse de catalyseur (en kg) nécessaire pour convertir 1 kg de propane.

Exemple 1 (comparatif)

similaire.

30

On a préparé un catalyseur de la manière suivante.

Dans 30 ml d'eau chauffée à 80°C, on ajoute successivement, et sous agitation, 5,35 g de paramolybdate d'ammonium et 1,33 g de sulfate d'antimoine (Sb₂(SO₄)₃).

10

15

20

25

.30

L'agitation est maintenue pendant 15 minutes. Séparément, une solution contenant 10 mmoles de vanadium est préparée en dissolvant 2,63 g de sulfate de vanadyle hydraté dans 10 ml d'eau distillée chauffée à 80°C. La deuxième solution est ajoutée à la première et le mélange est agité pendant 15 minutes avant d'être introduit dans un autoclave de 70 ml revêtu de Téflon®. On fait ensuite buller de l'azote pendant 5 minutes afin qu'il se substitue à l'air présent dans l'autoclave, avant de le fermer. L'autoclave est alors placé à 175°C pendant 24 heures. Après ce délai, l'autoclave est refroidi par de l'eau sous le robinet, pendant 10 minutes. Le solide noir-pourpre obtenu dans l'autoclave est séparé de la solution par filtration, lavé abondamment avec de l'eau distillée et séché pendant 12 heures à 80°C. Le précurseur ainsi obtenu est ensuite précalciné sous air à 280°C pendant 2 heures, puis calciné sous flux d'azote (25 ml/h/g) à 600°C pendant 2 heures. Le catalyseur 1 est ainsi obtenu. Ce catalyseur est testé. Les résultats sont regroupés dans les tableaux 2 et 3.

Exemple 2 (comparatif)

On a préparé un catalyseur de la manière suivante.

Dans 20 ml d'eau chauffée à 80°C, on ajoute successivement, et sous agitation, 5,35 g de paramolybdate d'ammonium et 0,55 g d'une solution de peroxyde d'hydrogène à 31%, et 0,74 g de trioxyde d'antimoine. L'agitation est maintenue pendant 60 minutes jusqu'à dissolution de l'oxyde d'antimoine. Séparément, une solution contenant 12 mmoles, de vanadium est préparée en dissolvant 3,16 g de sulfate de vanadyle hydraté dans 10 ml d'eau distillée chauffée à 80°C. La deuxième solution est ajoutée à la première et 1,89 g d'acide oxalique en poudre sont ajoutés à la solution. Le mélange est agité pendant 10 minutes avant d'être introduit dans un autoclave de 70 ml revêtu de Téflon®. On fait ensuite buller de l'azote pendant 5 minutes afin qu'il se substitue à l'air présent dans l'autoclave, avant de fermer ce dernier. L'autoclave est alors placé à 175°C pendant 48 heures.

Après ce délai, l'autoclave est refroidi par de l'eau sous le robinet, pendant 10 minutes. Le solide noir-pourpre obtenu dans l'autoclave est séparé de la solution par filtration, lavé abondamment avec de l'eau distillée et séché pendant 12 heures à 80°C. Le précurseur ainsi obtenu est ensuite calciné sous flux d'azote (25 ml/h/g) à 600°C pendant 2 heures. Le catalyseur 2 est ainsi obtenu. Ce catalyseur est testé. Les résultats sont regroupés dans les tableaux 2 et 3.

Exemple 3

On a préparé un catalyseur de la manière suivante.

Dans 20 ml d'eau chauffée à 80°C, on ajoute successivement, et sous agitation, 5,35 g de paramolybdate d'ammonium et 0,55 g d'une solution de peroxyde d'hydrogène à 31%, et 0,74 g de trioxyde d'antimoine. L'agitation est maintenue pendant 60 minutes

15

20

25

30

35

jusqu'à dissolution de l'oxyde d'antimoine. Séparément, une solution contenant 9 mmole de vanadium est préparée en dissolvant 2,37 g de sulfate de vanadyle hydraté dans 10 ml d'eau distillée chauffée à 80°C. Une troisième solution contenant 3 mmoles de niobium est préparée simultanément en dissolvant sous agitation, 1,94 g d'oxalate de niobium hydraté dans 10 ml d'eau distillée chauffée à 80°C. La deuxième solution est ajoutée à la première et l'agitation est maintenue pendant 5 minutes. Finalement, la solution contenant le niobium est ajoutée. Le mélange est agité pendant 10 minutes avant de l'introduire dans un autoclave de 70 ml revêtu de Téflon®. On fait ensuite buller de l'azote pendant 5 minutes afin qu'il se substitue à l'air présent dans l'autoclave, avant de fermer ce dernier. L'autoclave est alors placé à 175°C pendant 48 heures.

Après ce délai, l'autoclave est refroidi par de l'eau sous le robinet, pendant 10 minutes. Le solide noir-pourpre obtenu dans l'autoclave est séparé de la solution par filtration, lavé abondamment avec de l'eau distillée et séché pendant 12 heures à 80°C. Le précurseur ainsi obtenu est ensuite calciné sous flux d'azote (25 ml/h/g) à 600°C pendant 2 heures. Le catalyseur 3 est ainsi obtenu. Ce catalyseur est testé dans les mêmes conditions que les autres catalyseurs. Les résultats sont regroupés dans les tableaux 2 et 3.

Exemple 4

On a préparé un catalyseur de la manière suivante.

Dans 20 ml d'eau chauffée à 80°C, on ajoute successivement, et sous agitation, 5,35 g de paramolybdate d'ammonium et 0,55 g d'une solution de peroxyde d'hydrogène à 31%, et 0,74 g de trioxyde d'antimoine. L'agitation est maintenue pendant 60 minutes jusqu'à dissolution de l'oxyde d'antimoine. Séparément, une solution contenant 12 mmoles de vanadium est préparée en dissolvant 3,16 g de sulfate de vanadyle hydraté dans 10 ml d'eau distillée chauffée à 80 °C. Une troisième solution contenant 1,5 mmole de niobium est préparée simultanément en dissolvant sous agitation, 0,97 g d'oxalate de niobium hydraté dans 10 ml d'eau distillée chauffée à 80°C. La deuxième solution est ajoutée à la première et l'agitation est maintenue pendant 5 minutes. Finalement, la solution contenant le niobium est ajoutée. Le mélange est agité pendant 10 minutes avant de l'introduire dans un autoclave de 70 ml revêtu de Téflon®. On fait ensuite buller de l'azote pendant 5 minutes afin qu'il se substitue à l'air présent dans l'autoclave, avant de fermer ce dernier. L'autoclave est alors placé à 175°C pendant 48 heures.

Après ce délai, l'autoclave est refroidi par de l'eau sous le robinet, pendant 10 minutes. Le solide noir-pourpre obtenu dans l'autoclave est séparé de la solution par filtration, lavé abondamment avec de l'eau distillée et séché pendant 12 heures à

15

20

25

30

35

80°C. Le précurseur ainsi obtenu est ensuite calciné sous flux d'azote (25 ml/h/g) à 600°C pendant 2 heures. Le catalyseur 4 est ainsi obtenu. Ce catalyseur est testé dans les mêmes conditions que le catalyseur 3. Les résultats sont regroupés dans les tableaux 2 et 3.

5 Exemple 5 (comparatif)

On a préparé un catalyseur de la manière suivante.

Dans 45 ml d'eau, on dissous 2,0008 g de métavanadate d'ammonium à chaud (90°C). Ensuite, on ajoute 1,2149 g de trioxyde d'antimoine (phase sénarmontite) et 10,0142 g d'heptamolybdate d'ammonium. Le tout est mis à reflux sous argon, la température est fixée à 70°C et la solution est laissée sous agitation pendant 14 heures. Le mélange résultant est bleu-noir opaque. 2 ml d'eau oxygénée à 30 % sont ajoutés à l'aide d'une seringue, et la solution est laissée sous agitation. La couleur évolue progressivement vers l'orange en passant par des teintes vert-kaki. On distingue alors un léger précipité dans une solution orange foncé. Parallèlement, on avait dissous 1,7254 g d'acide oxalique dans 20 ml d'eau et cette solution est ajoutée à la première, restée à 70°C, sans que l'on note de changement de couleur ou d'aspect. Le pH de la solution est alors de 3 à 4. Le mélange est laissé à maturer pendant encore 30 minutes, puis il est mis à sécher en étuve pendant 12 heures à 110°C. Le précurseur amorphe est ensuite pré-calciné sous air (15 ml/min/g) à 300°C, pendant 4 heures, puis calciné sous flux d'azote (15 ml/min/g) pendant 2 heures à 600°C. Le catalyseur 5 est ainsi obtenu. Ce catalyseur est testé dans les mêmes conditions que les autres catalyseurs. Les résultats sont regroupés dans le tableau 4.

Exemple 6

Le catalyseur 6 est préparé comme le catalyseur 5, sauf que 0,75 g d'acide niobique sont dissous dans la solution d'acide oxalique, en la chauffant à 70°C pendant 2 heures. Cette solution est centrifugée avant d'être mélangée à la solution contenant les autres éléments. Les résultats sont regroupés dans le tableau 4.

Exemple 7

On a préparé un catalyseur de la manière suivante.

Dans 20 ml d'eau chauffée à 80°C, on ajoute sous agitation, 5,35 g de paramolybdate d'ammonium. Séparément, une solution contenant 15 mmoles de vanadium est préparée en dissolvant 3,94 g de sulfate de vanadyle hydraté dans 20 ml d'eau distillée chauffée à 80°C. La deuxième solution est ajoutée à la première et le mélange est ensuite agité pendant 10 minutes avant d'être introduit dans un autoclave de 70 ml revêtu de Téflon®. On fait ensuite buller de l'azote pendant 5 minutes afin qu'il se substitue à l'air présent dans l'autoclave, avant de fermer ce dernier.

L'autoclave est alors placé à 175°C pendant 24 heures.

Après ce délai, l'autoclave est refroidi par de l'eau sous le robinet, pendant 10 minutes. Le solide noir-bleu obtenu dans l'autoclave est séparé de la solution par filtration, lavé abondamment avec de l'eau distillée et séché pendant 12 heures à 80°C. Le précurseur ainsi obtenu est ensuite calciné sous flux d'azote (25 ml/h/g) à 500°C pendant 2 heures. Le catalyseur 7 est ainsi obtenu. Ce catalyseur est testé dans les mêmes conditions que les autres catalyseurs.

Tableau 1 : 7	Tableau récapitulatif des différent	es préparations
Exemple N°	Composition de la solution	Méthode de préparation
	(sans oxygène)	
Exemple 1	$Mo_{1,0}V_{0,33}Sb_{0,17}$	Synthèse Hydrothermale
Exemple 2	$Mo_{1,0}V_{0,40}Sb_{0,17}$	Synthèse Hydrothermale
Exemple 3	$Mo_{1,0}V_{0,30}Sb_{0,17}Nb_{0,10}$	Synthèse Hydrothermale
Exemple 4	$Mo_{1,0}V_{0,40}Sb_{0,17}Nb_{0,05}$	Synthèse Hydrothermale
Exemple 5	$Mo_{1,0}V_{0,30}Sb_{0,15}$	Evaporation séchage
Exemple 6	$Mo_{1,0}V_{0,30}Sb_{0,15}Nb_{0,08}$	Evaporation séchage
Exemple 7	$Mo_{0,1}V_{0,50}$	Synthèse Hydrothermale

Ta	bleau 2	: Oxydation	du propa	ne à 320°C	sur les cata	lyseurs à	l'antimo	ine
Conversi	on (%)			Sélectivi	té (%)	ì		Rendeme
								nt (%)
Exemple	C ₃ H ₈	Acide	C₃H ₆	Acétone	Acide	СО	CO ₂	Acide
No		acrylique			acétique			acrylique
1	9,74	34,3	19,6	5,88	17,0	14,0	9,25	3,34
2	13,1	12,1	19,3	2,05	23,5	21,1	21,9	1,59
3	10,2	44,1	26,9	3,45	10,3	7,89	7,33	4,50
4	21,6	40,0	15,0	2,00	16,0	13,0	13,0	8,64
7	11,1	5,41	19,5	0,97	20,4	33,1	20,6	0,60

10

Tabl	eau 3 : (Oxydation o	lu propa	ne à 360°C	sur les ca	talyse	urs à l'a	ntimoine
Conversi	on (%)			Sélectivité	(%)			Rendement
	т			· · · · · · · · · · · · · · · · · · ·				(%)
Exemple	C ₃ H ₈	Acide	C_3H_6	Acétone	Acide	СО	CO ₂	Acide
No		acrylique			acétique			acrylique
1	20,8	33,9	15,3	1,70	17,5	17,6	14,0	7,05
2	21,9	11,0	14,7	1,23	22,8	24,7	25,5	2,41
3	21,2	45,1	17,7	1,07	11,8	13,1	11,3	9,56
4	37,8	19,0	8,0	1,00	21,0	24,0	27,0	7,18
7	23,4	4,21	11,4	0,27	14,8	41,4	27,9	0,98

T	ableau 4	: Oxyd	ation du pi	opane	sur les cata	ılyseurs év	aporati	on-séc	hage
	Temp. de ré- action	Conv.			Sélectivit	é (%)			Rende- ment (%)
Ex.	°C	CII	A =: 3 =	CII					
		C ₃ H ₈	Acide	C ₃ H ₆	Acétone	Acide	CO	CO ₂	Acide
N°			acrylique			acétique	ł		acrylique
5	320	9,76	27,1	30,2	5,20	13,0	13,4	11,1	2,33
6	320	7,21	24,0	35,7	2,91	13,4	13,3	10,7	1,73
5	360	15,6	29,4	19,8	1,77	15,2	17,8	16,0	5,06
6	360	23,8	25,1	18,7	0,59	11,9	23,9	19,9	5,96

Dans le cas des exemples 1 et 3, les effluents du test sont collectés pendant 4 heures dans un piège à glace. 2 analyses par chromatographie couplée à un spectromètre de masse sont effectuées par échantillon.

5 principaux produits sont détectés par échantillon : acétone, eau, acide acétique, acide propionique et acide acrylique.

Les ratios molaires acide propionique/acide acrylique sont ainsi calculés pour chaque échantillon, pour des températures de réaction de 320°C et 360°C. La moyenne des deux analyses effectuées par échantillon est rapportée dans le tableau 5 ci-dessous.

 Tableau 5 : Ratio molaire
 Acide propionique
 / Acide acrylique

 Exemple
 320°C
 360°C

 1
 6,49%
 1,64%

 3
 6,36%
 1,42%

On constate que le ratio molaire diminue avec une augmentation de la température et la présence de niobium dans la composition du catalyseur.

Exemple 8

Préparation d'un catalyseur A de formule : $Mo_1V_{0.30}Sb_{0.15}Nb_{0.10}Si_{0.93}O_x$ et de son précurseur.

Synthèse du Précurseur

Cette synthèse permet de préparer environ 100 g de précurseur sec.

Etape 1 : Dissolution-précipitation

Solution A

12,3 g (0,1052 mol V) de métavanadate d'ammonium (MVA) sont mis en solution dans 260 ml d'eau déminéralisée, dans un réacteur SVL® en verre de 1 litre, sous agitation, dans un bain d'huile thermostaté à 128 °C. Une solution jaune est obtenue. 7,7 g (0,0528 mol Sb) de Sb₂O₃ sont ajoutés à la solution limpide (léger ajout d'eau pour rincer l'entonnoir), puis 61,8 g d'heptamolybdate d'ammonium (HMA, 0,3501 mole de Mo) sont ajoutés. Après l'ajout d'HMA, le réacteur est mis sous balayage d'azote, la réaction est maintenue sous agitation, à reflux, pendant 4 heures. Progressivement une solution bleu - noir est obtenue.

Solution B

6 g (0,0530 mol) d'une solution aqueuse d'H₂O₂ à 30 % poids, dissous dans 100 g d'eau, sont alors ajoutés lentement (30 minutes environ). Afin d'obtenir une solution orange limpide, deux gouttes d'eau oxygénée pure sont rajoutées.

Solution C

Puis 49,1 g de silice Ludox® AS40 ($n_{Si} = 0,327$ mole) sont ajoutés en une fois, et la solution se trouble légèrement. La solution formée est appelée solution C.

25 Solution D

20

30

Une solution D est préparée simultanément à la solution A. Dans un bêcher de 500 ml, on introduit 100 g d'eau distillée, 5.9 g d'acide niobique commercialisé par la société brésilienne CBMM soit $n_{Nb} = 0.035$ mole, et 13.2 g d'acide oxalique Prolabo soit $n_{Oxalates} = 0.105$ mole. Le mélange est chauffé à 60°C sous agitation pendant 2 heures, puis ramené à 30°C. La solution est ensuite centrifugée à 6200 tours/min pendant 12 minutes pour obtenir une solution limpide.

La solution D est ajoutée à la solution C, en une fois. On obtient un gel fluide orange puis jaune. L'agitation est maintenue pendant 30 minutes sous flux d'azote, sous reflux.

Etape 2 : Séchage

Le gel est alors séché en étuve ventilée, sur des plateaux recouverts de Téflon®, pendant la nuit, à 130°C. 86,3 g de précurseur sec sont récupérés. Le précurseur est sous forme de feuilles, noir dessus et pellicule mince verte en dessous. On obtient ainsi un précurseur.

Etape 3: Traitement thermique

30 g de précurseur otenu précédemment sont précalcinés à 305°C avec un débit d'air de 18,7 ml/min/g.

Après calcination, à 601°C sous un débit d'azote de 49.8 ml/min/g, on obtient une masse de solide calciné de 24,6 g. Ce catalyseur est appelé CATALYSEUR A.

Exemple 9

Préparation d'un catalyseur B de formule : $Mo_1V_{0.30}Sb_{0.15}Nb_{0.10}Si_{0.76}O_x$ et de son précurseur.

Synthèse du précurseur

- 15 On procède comme dans l'exemple 8, mais avec :
 - 30,75 g (0,2630 mole de V) de métavanadate d'ammonium (MVA);
 - $19,25 g (0,1321 \text{ mole de Sb) de Sb}_2O_3$;
 - 154,5 g (0,8753 mole de Mo) d'heptamolybdate d'ammonium (HMA);
 - 15,25 g (0,1346 mol) d'une solution aqueuse d' H_2O_2 à 30 % poids ;
- 20 100 g de silice Ludox® AS 40 ($n_{Si} = 0,6667$ mole);
 - 14,75 g d'acide niobique CBMM soit $n_{Nb} = 0.088$ mole ; et
 - 33,0 g d'acide oxalique Prolabo® soit n_{Oxalates} = 0,262 mole.

259 g de précurseur sec sont récupérés. Le précurseur est sous forme de feuilles noires au-dessus et de pellicules minces jaune-vertes en dessous.

25 g de ce précurseur sont précalcinés à 321°C sous air statique pendant 4 heures, puis calciné à 598°C sous un débit d'azote de 51,85 ml/min/g pendant 2 heures. On obtient une masse de solide calciné de 20,30 g. Ce catalyseur est appelé catalyseur B.

Exemple 10

Préparation d'un catalyseur C de formule : Mo₁V_{0.30}Sb_{0.15}Nb_{0.10}Si_{0.93}O_x et de son précurseur.

10

15

25

Synthèse du précurseur

Un réacteur à double enveloppe de 10 litres est utilisé. Le schéma de l'installation est donné sur la figure 2. L'installation comporte le réacteur à double enveloppe 1, pourvu d'un orifice de soutirage 2 et d'un bain d'huile 3 thermostaté à 140°C (de façon à ce que la température à l'intérieur du réacteur soit d'environ 99°C), d'un agitateur 4 prévu pour fonctionner à 125 tours/min d'une entrée 5 pour les réactifs

agitateur 4 prévu pour fonctionner à 125 tours/min, d'une entrée 5 pour les réactifs, d'une entrée 6 pour l'azote, d'un réfrigérant 7 relié à un évent 8.

On introduit à froid sous agitation et sous flux d'azote, 2600 g d'eau, 123 g de métavanadate d'ammonium (1,052 mole), 77 g d'oxyde d'antimoine (0,528 mole), et 618 g d'heptamolybdate d'ammonium (3,501 mole). Après mise en chauffe, le

mélange évolue rapidement vers le vert, puis vers le bleu-noir.

Après stabilisation de la température interne du réacteur (T=99°C), 4 heures d'agitation de la solution permettent à celle-ci d'être parfaitement homogène. 60 g d'eau oxygénée dilués dans 500 g d'eau sont ajoutés de manière à obtenir une solution orange limpide (oxydation de tous les cations présents).

30 minutes après, 491 g (3,27 mole) de silice colloïdale sont introduits ainsi qu'une solution d'acide niobique (59 g, 0,5 mole) et d'acide oxalique (132 g, 1,05 mole) préalablement chauffée pendant deux heures et centrifugée (12 minutes à 6200 tours/min).

20 Encore 30 minutes après, le chauffage est arrêté mais l'agitation est maintenue pendant la nuit afin de conserver une solution homogène. Le mélange a pris une coloration jaune et la consistance d'un gel.

Mise en forme

On utilise un atomiseur de laboratoire (ATSELAB® de la société Sodeva). L'atomisation se déroule sous atmosphère d'air.

Les paramètres de marche sont globalement :

- débit d'azote de l'ordre de 40 m³/h;
- débit de barbotine de l'ordre de 2600 g/h;
- température d'entrée des gaz : 290°C ;
- température de sortie des gaz : 134°C.

L'augmentation du taux de matière sèche dans la barbotine est effectuée sur un évaporateur rotatif jusqu'à 30,8 % poids.

On récupère une fraction comprise entre 40 et 160 µm dans la chambre qui correspond au précurseur.

35 Traitement thermique

26,6 g de la fraction obtenue précédemment, c'est-à-dire le précurseur, sont précalcinés 4 heures à 316°C sous air statique pour donner un solide précalciné.

Le solide précalciné est ensuite calciné 2 heures à 598°C sous un débit d'azote de 49,83 ml/g/min et donne ainsi 21 g de catalyseur appelé CATALYSEUR C.

Exemple 11

Tests des catalyseurs

5 a) Appareillage

Afin de simuler le procédé selon l'invention, on a effectué des simulations en laboratoire dans un réacteur en lit fixe de laboratoire, en générant des impulsions de propane et des impulsions d'oxygène.

On charge, du bas vers le haut, dans un réacteur vertical de forme cylindrique et en pyrex :

- une première hauteur de 2 ml de carbure de silicium sous forme de particules de 0,125 mm de diamètre,
- une seconde hauteur de 5,00 g de catalyseur sous forme de particules de 0,02 à 1 mm dilué avec 10 ml de carbure de silicium sous forme de particules de 0,125 mm de diamètre,
- une troisième hauteur de 2 ml de carbure de silicium sous forme de particules de 0,125 mm de diamètre, et
- une quatrième hauteur de carbure de silicium sous forme de particules de 1,19 mm de diamètre, de manière à remplir la totalité du réacteur.

20 b) Tests du catalyseur A

15

25

30

1) Mode opératoire

On chauffe le réacteur à 250°C et le vaporisateur à 200°C. L'amorçage électrique de la pompe à eau est activé.

Une fois que le réacteur et le vaporisateur ont atteint les températures indiquées ci-dessus, on active la pompe à eau et on fait monter la température du réacteur à 400°C et on attend 30 minutes pour que le point chaud soit stabilisé.

Puis, de l'oxygène est introduit en 10 impulsions de 23 secondes chacune pour bien oxyder le catalyseur. Le catalyseur est considéré comme totalement oxydé lorsque la température du point chaud s'est stabilisée, c'est-à-dire quand il n'y a plus d'exothermie due à la réaction (en suivant la température du catalyseur mesurée au moyen d'un thermocouple placé dans le lit catalytique, on peut voir les fluctuations de température en fonction des impulsions).

On peut alors procéder aux mesures concernant la production d'acide acrylique proprement dite.

Pendant chaque bilan, des prélèvements liquides sont faits. On effectue aussi des prélèvements de gaz à l'aide de poches à gaz, chaque prélèvement représentant un certain nombre de cycles.

Chaque petit flacon laveur (de 25 ml de contenance et rempli de 20 ml d'eau) est équipé d'une poche à gaz, et lorsque l'on connecte le flacon à la sortie du réacteur (dès que le liquide fait des bulles), la poche est ouverte et le chronomètre est déclenché.

Pour vérifier l'état d'oxydation du catalyseur, une nouvelle série de 10 impulsions de 23 secondes d'oxygène est effectuée. Elle montre que l'état d'oxydation du solide a été maintenu pendant le bilan.

Les effluents liquides sont analysés sur un chromatographe HP 6890, après avoir effectué un étalonnage spécifique.

Les gaz sont analysés pendant le bilan sur un chromatographe micro-GC Chrompack.

Un dosage de l'acidité est effectué sur chaque flacon pour déterminer le nombre exact de moles d'acide produites au cours de chaque micro-bilan et valider les analyses chromatographiques.

i) Test TA1

10

15

20

25

30

Il s'agit d'un test d'oxydation du propane effectué en l'absence d'oxygène moléculaire. Ce test a été réalisé avec avec des pressions partielles en propane et oxygène correspondant aux ratios suivants :

Pour l'oxydation: Propane / He-Kr / H₂O: 10 / 45 / 45

Pour la régénération : O_2 / He-Kr / H_2O : 20 / 45 / 45, avec un débit d'He-Kr de 4,262 Nl/h (Nl/h = normaux litres par heures), c'est-à-dire litres/h à 0°C et à la pression atmosphérique) et à une température de 400°C.

Dans ce test, un bilan rédox est composé de 60 cycles.

Un cycle rédox représente:

- 12,2 secondes de propane dans un flux continu d'hélium-krypton/eau,
- 45 secondes de flux continu d'hélium-krypton/eau,
- 20 secondes d'oxygène dans un flux continu d'hélium-krypton/eau,
- 45 secondes de flux continu d'hélium-krypton/eau.

Pendant chaque bilan, on effectue 4 prélèvements liquides, chacun représentant 15 cycles et 4 prélèvements de gaz à l'aide de poches à gaz, chaque prélèvement représentant 15 cycles.

35 ii) Test TA2

Il s'agit également d'un test d'oxydation du propane effectué en l'absence d'oxygène moléculaire.

Dans ce test, la durée de l'impulsion de propane (ainsi que celle de l'oxygène) est modifiée au cours du bilan permettant ainsi d'observer le comportement du catalyseur face à un mélange oxydo-réducteur plus ou moins riche. La durée de l'impulsion d'oxygène est toujours deux fois plus importante que celle de propane, et avec un débit double, pour maintenir le catalyseur oxydé.

Les pressions partielles en propane et oxygène restent les mêmes que dans le test précédent TA1 :

10 Pour l'oxydation: Propane / He-Kr / H₂O: 10 / 45 / 45

Pour la régénération : O_2 / He-Kr / H_2O : 20 / 45 / 45, avec un débit d'He-Kr de 4,262 Nl/h à une température de 400°C.

Le bilan est dans cet exemple de 60 cycles divisé en six micro-bilans de la manière suivante :

15 2 premiers micro-bilans de 7 et 8 cycles:

- 10 secondes de propane dans un flux de He-Kr/H₂O,
- 45 secondes sous He-Kr,
- 20 secondes d'O2 dans un flux de He-Kr,
- 45 secondes sous He-Kr.

20 3ème micro-bilan de 15 cycles:

- 5 secondes de propane dans un flux de He-Kr/H₂O,
- 50 secondes sous He-Kr,
- 10 secondes d'O2 dans un flux de He-Kr,
- 55 secondes sous He-Kr.

25 4ème micro-bilan de 8 cycles :

- 2 secondes de propane dans un flux de He-Kr/H₂O,
- 50 secondes sous He-Kr,
- 4 secondes d'O2 dans un flux de He-Kr,
- 55 secondes sous He-Kr.

30 <u>5^{ème} micro-bilan de 8 cycles :</u>

- 20 secondes de propane dans un flux de He-Kr/H₂O,
- 45 secondes sous He-Kr,
- 40 secondes d'O2 dans un flux de He-Kr,
- 45 secondes sous He-Kr.

35 6ème micro-bilan de 7 cycles :

30 secondes de propane dans un flux de He-Kr/ H2O,

45 secondes sous He-Kr,

60 secondes d'O2 dans un flux de He-Kr.

45 secondes sous He-Kr.

Les durées des impulsions qui viennent d'être indiquées sont des durées théoriques.

5 <u>iii) Test TA3</u>

10

15

20

25

30

35

Dans ce test, on procède à l'oxydation du propane en présence d'oxygène moléculaire, à 400°C.

On fait varier la durée d'injection d'oxygène dans l'impulsion de propane en conservant les pressions en propane et en oxygène constantes.

Le bilan de 40 cycles est ici décomposé comme suit :

10 cycles de 30 s de propane + 5 s d'O₂ (l'oxygène étant injecté dès le début de l'injection du propane), avec des proportions Propane/O₂/He-Kr/H₂O de 30/30/45/45, avec un flux d'hélium-krypton de 4,262 Nl/h.

On a ensuite une impulsion intermédiaire composée seulement du flux de gaz porteur He-Kr/H₂O de 60 s, puis une impulsion d'oxygène avec les proportions O₂/He-Kr/H₂O de 20/45/45, pendant 60 s et à nouveau une impulsion intermédiaire de He-Kr/H₂O de 60 s.

Puis on a une nouvelle série de 10 cycles de 30 s de propane + 10 s d'oxygène, avec des proportions Propane/O₂/He-Kr/H₂O de 30/30/45/45, avec un flux d'hélium-krypton de 4,262 Nl/h. On a alors une impulsion intermédiaire composée seulement du flux de gaz porteur He-Kr/H₂O de 60s, puis une impulsion d'oxygène avec les proportions O_2 /He-Kr/H₂O = 20/45/45, pendant 60 s et à nouveau une implusion intermédiaire de He-Kr/H₂O de 60 s.

Puis, on a une nouvelle série de 10 cycles de 30 s de propane + 15 s d' O_2 , avec des proportions Propane/ O_2 / He-Kr/ H_2O de 30/30/45/45, avec un flux d'hélium-krypton de 4,262 Nl/h. On a alors une impulsion intermédiaire composée seulement du flux de gaz porteur He-Kr/ H_2O de 60 s, puis une impulsion d'oxygène avec les proportions O_2 /He-Kr/ H_2O = 20 / 45 / 45, pendant 60 s et à nouveau une impulsion intermédiaire de He-Kr/ H_2O de 60 s.

Puis, on a une nouvelle série de 10 cycles de 30 s de propane + 20 s d'O₂, avec des proportions Propane/O₂/He-Kr/H₂O de 30/30/45/45, avec un flux d'hélium-krypton de 4,262 Nl/h. On a alors une impulsion intermédiaire composée seulement du flux de gaz porteur He-Kr/H₂O de 60 s, puis une impulsion d'oxygène avec les proportions O₂/He-Kr/H₂O de 20/45/45, pendant 60 s et à nouveau une impulsion intermédiaire de He-Kr/H₂O de 60 s.

Comme dans le test TA2, les durées des impulsions qui viennent d'être indiquées sont des durées théoriques.

2) Résultats

Les résultats des tests TA1, TA2 et TA3 sont regroupés dans les tableaux cidessous.

Dans ces tableaux, on a indiqué non plus les durées théoriques des impulsions comme précédemment, mais les durées réelles correspondantes qui ont été calculées à l'aide d'un étalonnage spécifique.

Tableau 6 - Test	TAI			TA2					TA3	
Conditions à la réaction Propane/He-Kr/H ₂ O ou Propane+O ₂ /He-Kr/H ₂ O	10/45/45			10/45/45	من			30-	30+30 / 45 / 45	
Conditions à la régénération O ₂ /He-Kr/H ₂ O	20 / 45 / 45			20/45/45	87			2	20 / 45 / 45	
Commentaires	Test standard	Variation	de la dur	rée de l'injecti cours du bilan	ection de p lan	Variation de la durée de l'injection de propane au cours du bilan		durée d'in e. Injectior	jection d'O ₂ (1 O ₂ en début	Variation durée d'injection d'O ₂ dans l'impulsion de propane. Injection O ₂ en début de l'injection de propane.
Récapitulatif	Moyenne	flacon 4 flacon 3	flacon 3	flacon 2	Flacon 5	flacon 6	Flacon 1	Flacon 2	Flacon 3	Flacon 4
Nombre de CYCLES	09	15	15	∞	∞	7	01	10	10	10
Durée de l'impulsion de propane(s)	12,2	4,4	9,7	12,9	22,5	32,8	33	33,6	33,7	32,7
Durée de l'impulsion d'oxygène injecté dans le propane (s)	•		•		•		8	10	15	20
Rendements (%)										
Acétaldéhyde	00'0	0,00	00'0	0,00	0,00	0,00	0,00	0.00	0.00	0.00
Propanaldéhyde	00'0	00,00	0,00	0,00	0,00	00'0	000	0,00	000	00'0
Acétone	0,17	0,17	0,16	0,16	0,16	0,18	0,15	0,15	0,15	0,15
Acroléine	0,02	0,03	0,02	0,03	0,02	0,02	0,01	0,01	0,01	0,02
Alcool allylique	0,02	0,03	0,02	0,00	0,00	0,00	0,00	00,00	00,0	00'0
Acrylate d'allyle	00,00	0,00	0,00	0,00	0,00	00'0	00'0	00,0	0,00	00'0
Acide Acétique	1,40	1,97	1,47	1,46	1,06	1,09	0,63	0,74	0,75	0,82
Acide Propionique	0,11	0,15	0,12	0,13	80,0	60,0	0,05	90'0	90,0	0,07
Acide Acrylique.	11,43	15,80	11,79	10,25	7,88	7,50	3,68	5,21	5,77	6,59
Monoxyde de carbone	1,66	2,26	1,80	1,68	1,24	1,07	0,64	0,70	08'0	06'0
Dioxyde de carbone	0,81	1,23	78,0	0,91	0,75	09'0	0,83	0,44	0.50	0.56
Propylène	3,56	3,56	3,70	3,65	3,57	3,44	3,34	3,57	3,76	3,87
Propane	79,60	75,02	80,04	82,11	85,21	85,74	85'06 .	89,26	87,76	87,01
Bilan Carbone (%)	98,8	100,2	100,0	100,4	100,0	2,66	6,66	100,1	9,66	100,0

Tableau 7 - Test	TAI			TA7						
Conditions & la réaction Draman (II. VMI O	10 / 45 / 45			2					TA3	
Propane+O ₂ /He-Kr/H ₂ O ou	10 / 45 / 45			10/45/45				30+3	30+30 / 45 / 45	
Conditions a la régénération O ₂ /He-Kr/H ₂ O	20 / 45 / 45			20/45/45				20	20/45/45	
Commentaire	Test standard	Variation	de la duré	Variation de la durée de l'impulsion de propane au cours du bilan	ılsion de p	opane an	Variatio	n de la dur	Variation de la durée d'injection d'O ₂ dans	n d'O ₂ dans
Récapitulatif	Moyenne	flacon 4	flacon 3	Flacon 2	flacon 5	flacon 6	Flacon 1	Flacon 2	lacon 2 Flacon 3	Elecen 4
Nombre de CYCLES	09	15	15	80	8	7	10	10	10	1 Jacou
Durée de l'injection de Propane	12,2	4,4	7,6	12,9	22.5	32.8	33	33.6	33.7	32.7
Durée des impulsions d'oxygène injecté dans le								0,00	1600	7,70
propane (s)							n	10	15	20
Sélectivités (%)										
Acétaldéhyde	0,00	0,00	00'0	0.00	0.00	000	0.04	0.03	900	5
Propanaldéhyde	0.00	000	000	000	200	3	500	50,0	20,0	0,03
Acétone	0.01	22,0	20,00	0,00	20,0	00,0	0,00	0,00	00,0	0,00
Acrolóina	0,21	0,00	0,'0	0,89	7,03	1,28	1,58	1,39	1,26	1,14
	0,12	0,13	0,12	0,15	0,13	0,14	0,14	0,12	0,12	0,12
Alcool Allylique	0,10	0,13	80,0	0,00	00'0	0,00	0,04	0,03	0,03	0.03
Actylate d'Allyle	0,00	0,00	0,00	00'0	00'0	0,00	00'0	0,0	00.0	000
Acide Acétique	7,31	7,81	7,38	8,00	7,17	7,82	6,71	6.77	6.33	630
Acide Propionique	0,56	0,58	0,58	0,70	0,53	0,64	0.58	0.56	0.53	0.51
Acide Acrylique	59,56	65,69	59,14	56,10	53,45	53,60	39.37	47.83	48 88	50.82
Monoxyde de carbone	8,64	86'8	9,01	9,22	8,41	7.64	6.88	6.39	6.78	6 03
Dioxyde de carbone	4,22	4,88	4,35	4,97	5,07	4,32	8,88	4,04	4.24	4.33
Propylene	18,56	14,13	18,56	19,96	24,19	24,57	35.78	32.83	31.83	20.80
Quantité d'O ₂ consommé (g O/ kg catalyseur)	0,32	0,158	0,207	0,321	0,436	0,589	1,16	1.30	1.43	1.56
μmole de propane pour 1 cycle	131,8	47,5	82,1	139,4	243.1	354.4	1072	1001	1007	1062
μmole d'O ₂ ajoutée par cycle	·						152	317	727	1002
μmole d'O ₂ consommées (produits formés) /							35.	/15	C/#	950
Datio					,		200		448	488
rano conversion Propane (kg catalyseur / kg Propane converti)	4233	9584	6942	4565	3166	2253	1107	971	852	803
					-	_		_	-	

Dans le test TA3, où l'on opère en présence d'oxygène moléculaire, on note que les rendements en acide acrylique augmentent beaucoup plus vite, en fonction de l'ajout d'oxygène dans l'impulsion de propane, que les rendements en CO_x et acide acétique. Il s'en suit un gain substantiel en sélectivité en acide acrylique. On constate aussi une baisse de la sélectivité en produits d'hydratation (acétone, acide propionique).

L'ajout d'oxygène conduit aussi à un gain en ratio conversion qui passe ainsi de 1107 à 803 kg/kg.

c) Tests du catalyseur B

10 1) Mode opératoire

L'appareillage utilisé est celui décrit à l'exemple 11 a).

i) Tests TB1 et TB2

On teste le catalyseur B dans les mêmes conditions et de la même manière que pour le test TA1.

15 <u>ii) Test TB3</u>

20

25

30

On teste le catalyseur B dans les mêmes conditions et de la même manière que pour le test TA3 (présence d'oxygène moléculaire).

iii) Tests TB4 à TB6

Dans le cas du test TB4, on teste le catalyseur B dans les mêmes conditions et de la même manière que pour le test TA2, à 420°C.

Dans le cas des tests TB5 et TB6, on modifie simplement la teneur en propane au cours de l'oxydation et de l'oxygène au cours de la régénération.

iv) Tests TB7

Dans ce test, on procède à l'oxydation du propane en présence d'oxygène moléculaire, à 420°C.

On fait varier la durée d'injection d'oxygène dans l'impulsion de propane en conservant des pressions en propane et en oxygène constantes.

L'oxygène est injecté en fin d'impulsion de propane afin de voir s'il y a une influence au niveau des performances catalytiques par rapport à une injection en début de l'impulsion.

Le bilan de 40 cycles est décomposé comme suit :

10 cycles de 30 s de propane + 20 s d'O₂ (l'oxygène étant injecté sur la fin de l'impulsion de propane), avec des proportions Propane/O₂/ He-Kr / H₂O de 30/30/45/45, avec un flux d'hélium-krypton de 4,27 NI/h.

10

15

20

25

30

On a ensuite une impulsion intermédiaire composée seulement du flux de gaz porteur He-Kr/H₂O de 60 s, puis une impulsion d'O₂ avec les proportions O₂ / He-Kr / H₂O = 20 / 45 / 45, pendant 60 s et à nouveau une impulsion de gaz porteur de 60 s.

Puis, on a une nouvelle série de 10 cycles de 30 s de propane + 15 s d'oxygène, avec des proportions propane/ O_2 / He-Kr / H_2O de 30/30/45/45, avec un flux d'hélium-krypton de 4,27 Nl/h. On a alors une impulsion intermédiaire composée seulement du flux de gaz porteur He-Kr/ H_2O de 60 s, puis une impulsion d'oxygène avec les proportions O_2 / He-Kr / H_2O = 20 / 45 / 45, pendant 60 s et à nouveau une impulsion intermédiaire de gaz porteur de 60 s.

Puis, on a une nouvelle série de 10 cycles de 30 s de propane + 10 s d'O₂, avec des proportions Propane/O₂/ He-Kr / H_2O de 30/30/45/45, avec un flux d'hélium-krypton de 4,27 Nl/h. On a alors un impulsion intermédiaire composée seulement du flux de gaz porteur He-Kr/ H_2O de 60 s, puis une impulsion d'O₂ avec les proportions O₂ / He-Kr / H_2O = 20 / 45 / 45, pendant 60 s et à nouveau une impulsion intermédiaire de gaz porteur de 60 s.

Puis, on a une nouvelle série de 10 cycles de 30 s de propane + 5 s d'O₂, avec des proportions Propane/O₂/He-Kr / H₂O de 30/30/45/45, avec un flux d'hélium-krypton de 4,27 Nl/h. On a alors une impulsion intermédiaire composée seulement du flux de gaz porteur He-Kr/H₂O de 60 s, puis une impulsion d'O₂ avec les proportions O₂ / He-Kr / H₂O = 20 / 45 / 45, pendant 60 s et à nouveau une impulsion intermédiaire de gaz porteur de 60 s.

v) Tests TB8

Dans ce test, on procède également à l'oxydation du propane en présence d'oxygène moléculaire.

On compare l'effet de l'injection d'oxygène en fin et en début d'impulsion de propane en conservant des pressions en propane et en oxygène constantes mais aussi une durée d'injection en oxygène constante dans l'impulsion de propane.

Le bilan de 40 cycles est décomposé comme suit :

10 cycles de 30 s de propane + 20 s d' O_2 (l'oxygène étant injecté sur la fin de l'impulsion de propane), avec des proportions Propane/ O_2 /He-Kr/ H_2O de 30/30/45/45, avec un flux d'hélium-krypton de 4,27 Nl/h. On a ensuite une impulsion intermédiaire composée seulement du flux de gaz porteur He-Kr/ H_2O de 60 s, puis une impulsion intermédiaire d' O_2 avec les proportions O_2 /He-Kr/ H_2O = 20/45/45, pendant 60 s et à nouveau une impulsion intermédiaire de gaz porteur de 60 s.

Puis, on a une nouvelle série de 10 cycles de 30 s de propane + 20 s d'oxygène (O₂ étant injecté sur la fin de l'impulsion de propane), avec des proportions Propane/O₂/He-Kr/H₂O de 30/30/45/45, avec un flux d'hélium-krypton

de 4,27 Nl/h. On a alors une impulsion intermédiaire composée seulement du flux de gaz porteur He-Kr/H₂O de 60 s, puis une impulsion intermédiaire d'oxygène avec les proportions O_2/He -Kr/H₂O = 20/45/45, pendant 60 s et à nouveau une impulsion intermédiaire de gaz porteur de 60 s.

10 cycles de 30 s de propane + 20 s d' O_2 (l'oxygène étant injecté en début d'impulsion de propane), avec des proportions Propane/ O_2 /He-Kr/H $_2$ O de 30/30/45/45, avec un flux d'hélium-krypton de 4,27 Nl/h. On a alors une impulsion intermédiaire composée seulement du flux de gaz porteur He-Kr/H $_2$ O de 60 s, puis une impulsion intermédiaire d' O_2 avec les proportions O_2 /He-Kr/H $_2$ O = 20/45/45, pendant 60 s et à nouveau une impulsion intermédiaire de gaz porteur de 60 s.

Puis, on a une nouvelle série de 10 cycles de 30 s de propane + 20 s d' O_2 (l'oxygène étant injecté en début d'impulsion de propane), avec des proportions Propane/ O_2 /He-Kr/ H_2O de 30/30/45/45, avec un flux d'hélium-krypton de 4,27 Nl/h. On a alors une impulsion intermédiaire composée seulement du flux de gaz porteur He-Kr/ H_2O de 60 s, puis une impulsion intermédiaire d' O_2 avec les proportions O_2 /He-Kr/ H_2O = 20/45/45, pendant 60 s et à nouveau une impulsion intermédiaire de gaz porteur de 60 s.

2) Résultats des tests a)Tests TB1 et TB2

5

10

15

Tableau 8 - Test	TB1	TB2
Conditions à la réaction Propane/He-Kr/H ₂ O	10 / 45 / 45	10/45/45
Conditions à la régénération O2/He-Kr/H ₂ O	20 / 45 / 45	20 / 45 / 45
Température (°C)	400	420
Récapitulatif	Moyenne	Moyenne
Nombre de CYCLES	60	60
durée de l'injection de propane	12,06	12,06
Rendements (%)		
Acétaldéhyde	0,00	0,00
Propanaldéhyde	0,00	0,00
Acétone	0,22	0,17
Acroléine	0,00	0,01
Alcool Allylique	0,00	0,00
Acrylate d'Allyle	0,00	0,00
Acide Acétique	2,04	2,72
Acide Propionique	0,08	0,04
Acide Acrylique	13,0	15,3
Monoxyde de carbone	2,48	4,47

Tableau 8 (suite) - Test	TB1	TB2
Conditions à la réaction Propane/He-Kr/H ₂ O	10 / 45 / 45	10/45/45
Conditions à la régénération O ₂ /He-Kr/H ₂ O	20 / 45 / 45	20 / 45 / 45
Température (°C)	400	420
Récapitulatif	Moyenne	Moyenne
Nombre de CYCLES	60	60
Durée de l'injection de propane(s)	12,06	12,06
Rendements (%) (suite)		
Dioxyde de carbone	1,44	2,92
Propylène	3,42	3,69
Propane	. 74,7	71,2
Bilan Carbone (%)	97,4	100,5
Sélectivités (%)		
Acétaldéhyde	0,00	0,00
Propanaldéhyde	0,00	0,00
Acétone	0,99	0,59
Acroléine	0,00	0,03
Alcool Allylique	0,00	0,00
Acrylate d'Allyle	0,00	0,00
Acide Acétique	8,99	9,25
Acide Propionique	0,33	0,15
Acide Acrylique	57,4	52,2
Monoxyde de carbone	10,9	15,2
Dioxyde de carbone	6,3	10,0
Propylène	15,1	12,6
Quantité d'O ₂ consommé (g O/kg catalyseur)	0,42	0,59
μmole de propane pour 1 cycle	135,9	135,9
atio conversion Propane (kg catalyseur / kg Propane	3309	000
converti)	2309	2904

On observe une meilleure conversion à 420°C qu'à 400°C. La sélectivité en acide acrylique passe de 57,4% à 52,2% lorsque l'on modifie la tepérature. On observe une nette diminution (division par deux) des sélectivités en acétone et acide propionique.

Le fait d'augmenter la température permet d'augmenter la conversion et de diminuer la formation des produits d'hydratation ainsi que le ratio-conversion.

Le ratio conversion passe de 3300 à 2900 kg/kg en passant de 400 à 420 °C.

b)Tests TB4 à TB6

Les résultats figurent dans les deux tableaux ci-dessous.

On constate que l'augmentation de la pression partielle en propane et/ou de la durée de l'injection de propane conduit à une diminution du rendement en acide acrylique, mais à un maintien du rendement en produits d'hydratation. Les sélectivités en produits d'hydratation augmentent donc avec la réduction du catalyseur. Les sélectivités en acroléine et en propylène augmentent aussi avec la réduction du catalyseur. Le catalyseur réduit devient moins actif.

TB4 10/45/45
20 / 45 / 45
Flacon Flacon Flacon
15 15
4,5 7,4 12.35
0,00 0,00 0,00
0,00 0,00 0,00
┿
0.00
000
200
2,67
2,00
10.05
3,5
4,73
2,48
3,57
07,70
100,5 99,9 100,0

		134					TB5					TB6		
10/45/45	10/45/	5				7	20/45/45	1 0			30	30/45/45		
20 / 45 / 45	20 / 45 / 4	Λ.				2(20/45/45				30	30/45/45		
Flacon 4 Flacon 3 Flacon	Flacon		Flacon 5	Flacon 6	Flacon	Flacon	Flacon	Flacon 5	Flacon	Flacon 4	Flacon 3	Flacon	Flacon	Flacon
15 15 8	8	_	80	7	15	15	8	∞	٥	15	15	8	, ∞	7
4,5 7,4 12,35	12,35	$\overline{}$	21,4	30,6	4,4	7,5	12,6	22,7	31,8	4,35	6,85	12,3	21,8	29,9
	_	Г												
	00'0	-	00,0	0,00	00'0	00'0	0,00	0,00	0,0	00,0	0,00	00'0	0.05	900
00,00	0,00	\neg	00'0	00,00	00'0	0,00	0,00	0,00	0,00	000	0,00	00'0	0,00	0.00
0,48	0,68		0,94	1,13	0,70	0,83	1,11	1,58	1,80	62'0	1,02	1,37	1,87	2,00
00'0	0,0		0,00	0,11	00'0	80'0	0,12	0,14	0,16	0,08	0,10	0,14	0.18	0.17
\dashv	0,00	-	00,00	00'0	00'0	00,0	0,00	000	0,00	0,00	00'0	000	0,00	0.00
-	0,00	_	00,00	00'0	00'0	00,0	00'0	000	0,0	00,0	0,00	00'0	0,00	000
8,17	9,34	1	10,66	10,97	68'6	10,27	10,91	11,04	11,19	10,22	10,18	10,81	10,59	10,66
0,15	0,18		0,19	0,21	0,19	0,20	0,21	0,26	0,26	0,20	0,21	0,24	0,29	0,28
58,26	54,99	—1	49,96	47,15	54,27	52,54	47,64	43,51	41,51	52,14	45,22	45,69	40,89	38,98
14,45	13,69	-	13,52	13,16	13,41	12,86	12,17	10,62	10,48	12,72	13,12	10,72	9,36	9,40
7,58	8,66	\rightarrow	80'6	9,60	8,26	8,46	9,74	8,88	9,20	8,97	10,55	60'6	8,53	8,46
8,11 10,91 12,47	12,47		15,66	17,67	13,29	14,76	18,11	23,97	25,39	14,87	19,60	21,94	28,24	29,99
0,305 0,397 0,586	0,586		0,815	1,012	0,387	0,578	0,793	866'0	1,232	0,525	0,617	0,934	1,141	1,360
50,7 83,4 139,2	139,2		241,2	344,9	94,0	160,2	269,1	484,7	1,679	141,3	222,5	399,5	708,0	971.1
5659 4159 2815	2815		1994	1590	4243	2736	2038	1486	1193	3110	2593	1652	1247	1019
											1			

c) Tests TB3, TB7 et TB8

Les résultats figurent dans les trois tableaux ci-dessous.

On constate que l'ajout d'oxygène moléculaire permet une nette diminution du ratio conversion tout en maintenant une bonne selectivité. On passe de 2904 kg de catalyseur/Kg de propane converti pour un test classique à 1019 kg de catalyseur/Kg de propane converti pour un test en variation de durée d'impulsion (30 s de propane avec propane ou oxygène/He-Kr/H₂O: 30 ou 30/45/45). Avec l'ajout d'oxygène, il est de 460 à 500 kg de catalyseur/Kg de propane converti.

Il est avantageux d'ajouter de l'oxygène qui permet non seulement de diminuer encore le ratio conversion, mais aussi de remonter les sélectivités en acide acrylique. On constate que le catalyseur même réduit peut rester déshydrogénant.

_

TB7 30+30 / 45 / 45
début
d'impulsion de propane l'impulsion de propane. Injection de l'O2 en fin d'impulsion
Flacon 3 Flacon 4 Flacon 1 Flacon 2 Flacon 3
10 10
34,6 34,4
20 20
0,00 0,01
0,00 0,00
0,16 0,06
0,02 0,02
0,00 0,00
0,00 0,00
1,76 1,76
0,04 0,04
11,04 10,33
2,34 2,42
1,77 1,95
4,27 4,09
78,78 79,61
100,2 100,3

l Un problème d'analyse a été détecté sur le flacon 2, pour cette raison les résultats obtenus ne sont pas indiqués.

~													_									
			lans instante. npulsion	sion	Flacon 4	10	35	20		500	70,0	0,00	0,78	0.07	0.00	0.00	8.44	0.19	51.34	11 11	9 03	19.02
900	30+30 / 45 / 45	20 / 45 / 45	Durée d'injection O ₂ dans l'impulsion de propane constante. Injection de l'O ₂ en fin d'impulsion	puis en début d'impulsion	Flacon 3	10	34.6	20		60	70,0	9,0	0,77	0,07	0.00	0.00	8.42	0.19	51.48	11 30	8 99	18.75
	30+30	707	urée d'inje Ilsion de on de l'O ₂	us en débu	riacoul & Flacon 3 Flacon 4 Flacon 1 Flacon 2	10	34.3	20.		0.00	7000	0,00	0,74	0,07	0,00	0,00	8.18	0.21	49,28	12.27	9.54	19,68
			D l'impu Injecti	E .	rlacon I	10	34,4	20		0.00	700	0,00	0,71	0,07	0,00	0,00	8,24	0,19	49,59	12.52	9.72	18,94
			O ₂ dans ijection ijon	ici.	riacon 4	10	33,6	5		0.05	200	0,00	0,38	0,11	0,00	0,00	10,56	0,25	41,42	11,15	10,15	25,94
37	45 / 45	5 / 45	Variation durée injection O ₂ dans l'impulsion de propane. Injection de l'O ₂ en fin d'impulsion	F1000 3	riacon 5	10	34,2	10		0.04	000	30,0	0,49	0,11	0,00	0,00	65'6	0,23	44,48	11,41	10,11	23,53
TR7	30+30 / 45 / 45	20 / 45 / 45	n durée i ion de pr O2 en fin	Flagon 2	7.1ac011.2	2	36,5	15		-												
			Variatio l'impuls de l'	Flacon 1	I Jacoli I	2	34,4	20		0.02	000	2000	0,31	0,09	0,00	0,00	8,52	0,20	49,94	11,69	9,42	19,80
			n O ₂ en	Flacon 4	יורסקון ד	21	34,6	20		0.02	000	0,00	//5	0,10	0,0	0,00	8,21	0,19	51,56	10,95	8,27	19,93
TB3	30 / 45 / 45	20 / 45 / 45	Variation durée injection O ₂ en début d'impulsion de propane	Flacon 1 Flacon 2 Flacon 3 Flacon 4		2	34,2	15		0,03	00.0	0.06	0,70	0,11	0,00	0,00	8,60	0,21	50,59	10,34	7,80	21,37
F	30+30	20/4	ion durée d'impuls	Flacon 2	5	2	34,4	10		0,03	0.00	1.15	21,1	0,13	0,00	0,00	8,98		48,11	10,06	8,20	23,12
			Variation di début d'im	Flacon 1	2	2 5	5,5,5	ν,		0,05	0,00	1 33	2,00	0,12	0,00	0,00	69,6	0,21	44,85	10,56	8,99	24,21
Tableau 11 - Test	Conditions à la réaction Propane + O ₂ / He-Kr / H ₂ O	Conditions à la régénération O ₂ / He-Kr /H ₂ O	Commentaire	Récapitulatif	Nombre de CVCI FS	durée injection de	duce injection de propane(s)	Duree implusions d'O ₂ injecté dans impulsion de propane	Sélectivités (%)	Acétaldéhyde	Propanaldéhyde	Acétone	Acrolóno	A 10.21 A 11.41	Alcool Allylique	Activiate d'Allyle	Acide Acetique	Acide Propionique	Acide Acrylique	Monoxyde de carbone	Dioxyde de carbone	Propylene

d)Tests du catalyseur C

1) Mode opératoire

L'appareillage utilisé est celui décrit à l'exemple 11 a).

i) Test TC1

On teste le catalyseur C de la même manière que pour le test TA1. Les conditions sont identiques à l'exception du débit de He-Kr qui est de 4,27 Nl/h et de la température du test qui est de 420°C.

ii) Tests TC2 à TC4

Dans le cas du test TC2, on teste le catalyseur C dans les mêmes conditions et de la même manière que pour le test TA2.

Dans le cas des tests TC3 et TC4, on modifie simplement la teneur en propane au cours de l'oxydation et de l'oxygène au cours de la régénération.

Ces trois tests ont été réalisés à 420°C et avec un débit d'He-Kr de 4,27 NI/h.

iii) Test TC5

10

On teste le catalyseur C de la même manière que pour le test TA3 (présence d'oxygène moléculaire). Les conditions sont également identiques à l'exception du débit de He-Kr qui est maintenant de 4,27 Nl/h. La température est de 420°C.

iv) Test TC6

On teste le catalyseur C de la même manière que pour le test TB7. Les conditions sont identiques.

v) Test TC7

On teste le catalyseur C de la même manière que pour le test TB8. Les conditions sont identiques à l'exception du débit de He-Kr qui est de 4,27 Nl/h et de la température du test qui est de 420°C.

25 <u>2) Résultats</u>

30

a) Tests TC1 à TC4

Les résultats sont regroupés dans les deux tableaux suivants.

On constate, comme pour le catalyseur B, que la sélectivité en acide propionique et en acétone augmentent avec la pression partielle de propane, c'est-à-dire que plus le catalyseur est réduit moins il est sélectif.

La cinétique de consommation initiale de l'oxygène est très rapide, puis semble évoluer en fonction du temps.

	_		$\overline{}$			-	_			_	_	_	_	_	_	_				_			
				propane		Flacon 6	7	30,4		0,01	0,00	0.20	0,02	0.00	0.00	1,31	6,03	4.12	1 23	110	1,10	3,36	100,72
	•	2	2	lsion de	ige.	Flacon 5	æ	21,8		0,01	00'0	0,21	0,01	00'0	0,0	1,49	0,03	5.11	1 30	1 26	5,7	3,26 8,69	100.02
	75	30/45/45	30/45/45	Variation durée de l'impulsion de propane	dans le mélange.	riacon 2	8	12,3		0,01	0,00	0,21	0,02	0,00	00'0	1,99	0,04	2,66	2.12	200	2000	3,78	1003
		8	8	n durée	gg	r Iacon 3	15	7,4		0,01	000	0,21	0,02	00,0	0,0	2,48	0,04	10,33	2,93	2 40	12.	78 00	1003
				Variatio	1	r racon 4	15	4,25		0,01	0,00	0,18	0,02	0,00	00,0	2,75	0,04	13,29	3,81	2.90	383	+	1-
				opane	Placen 6	o incom	9	32,5		0,01	00,00	0,25	0,02	00'0	00,00	1,86	0,04	6,31	1,52	1.39	3.47	+	┰
				ion de pi	Flamm &	0	» (7,7		10,0	8,0	0,23	0,02	00,00	0,00	1,86	0,04	69'9	1,77	1.64	3,60	╁	╁
	2	20 / 45 / 45	20/45/45	l'impuls	dails le mejange.	,	»	2,03		10,0	30,0	0,21	0,02	0,00	0,00	2,42	0,04	9,91	2,73	2,28	3.76	╁	+-
		70	79	durée de	Flacon 3	ļ	2	٥,	200	10,0	30,0	0,19	0,02	0,0	0,0	2,75	9,0	13,41	3,54	2,67	3.75	73.96	╁
				Variation durée de l'impulsion de propane	Flacon 4 Flacon 3 Flacon 2 Flacon 4 Flacon 3 Flacon 5 Flacon 4 Flacon 9 Flacon 9	٤	CI V	Ç+,+	000	30,0	20,0	0,17	0,00	0,0	0,00	3,10	0,05	16,65	4,22	2,81	3,70	68,93	9,66
				ropane	Flacon 6	,	310	31,0	100	5 6	3 6	0770	10,0	0,00	000	2,19	0,0 40,0	9,12	2,82	2,11	3,67	66,67	100,2
				sion de p	Flacon 5 Flacon 6	~	22.2		900	3 6	3,6	61,0	000	000	000	7,57	0,04	11,46	3,27	2,32	3,70	76,66	100,2
TC		10/45/45	20/45/45	Variation durée de l'impulsion de propane	Flacon 2	×	17.5		90 0	000	2,00	CI,U	00,0	00,0	00,0	7,80	40,0	ci,ci	4,77	3,24	3,59	70,26	100,0
		-	2	on durée	Flacon 3	2	7.7		000	000	0 12	21.5	3 8	3 8	30,0	1,17	3 5	61,61	5,31	3,01	3,50	65,71	9'66
					Flacon 4	15	4.45		0.00	000	=======================================	1 8	3 8	3 6	0,00	24,0	5,5	06,42	6,30	3,79	3,20	59,24	100,4
TCI	10/16/16	10 / 43 / 45	20/45/45	Test standard	Moyenne	09	12.2		0,03	0.00	910	2,00	70,0	0,00	20,0	200	16.05	10,00	4,/1	3,25	3,60	18,69	100,4
Tableau 12 - Test	Conditions & la réaction		Conditions & la régénération O ₂ /He-K ₂ /H ₂ O		Récapitulatif	Nombre de CYCLES	durée injection de propane	Rendements (%)	Acétaldéhyde	Propanaldéhyde	Acétone	Acroléine	Alcool Allvlione	Acrylate d'Allyle	Acide Acétique	Acide Pronionime	Acide Acrylione	Monovide de carbone	Dioxida do carbone	Clonyde de carbone	Fropylene	Propane	Bilan Carbone (%)

			ropane	Flacon 6	7	30.4		80,0	0,00	1,77	0,13	0,00	0,00	11,44	0,22	35,95	10,74	10,34	29.33	1,454	987.3	
			ion de p	lacon 5	∞	21.8		90,0	0,0	1,56	0,10	8,	8,0	11,34	0,24	38,75	10,56	10,34	27.05	1,220	708.0	1
ĮŽĮ	30/45/45	30/45/45	rée de l'impulsio	acon 2 F	∞	12.3		90,0	0,00	1,19	0,10	8,0	0,00	11,17	0,20	42,99	11,88	╂	21.21	4 &	399.5	1626
	30'	30	Variation durée de l'impulsion de propane	Flacon 4 Flacon 3 Flacon 2 Flacon 5 Flacon 6 Flacon 4 Flacon 3 Flacon 2 Flacon 5 Flacon 6 Flacon 4 Flacon 3 Flacon 5 Flacon 6 Flacon 6	15	7,4	╁	90'0	0,00	96'0	600	0,00	0,00	11,14	0,18	46,43 4	13,15	11,18	16,81	1 %	240.3	2160
			Variation	Flacon 4	15	4,25		0,05	00,00	29,0	90,0	00,00	00,00	10,25	0,17	49,54	14,21	10,80	14,25	0,548	138.0	3108
				Flacon 6	9	32,5		20,0	0,00	1,70	0,12	00,00	0,00	12,48	0,25	42,43	10,23	9,37	23,34	1,363	694.0	1125
			sion de p	Flacon 5	∞	22,5		90,0	0,00	1,42	0,10	00,0	0,00	11,65	0,23	42,00	11,10	10,29	23,15	1,033	480,5	1490
TC3	20 / 45 / 45	20/45/45	Variation durée de l'impulsion de propane dans le méjange.	Flacon 2	∞	12,65		90,0	00'0	1,01	60'0	00,00	0,00	11,31	0,19	46,36	12,75	10,67	17,57	0,825	270,1	1969
	32	20	ı durée d dans	Flacon 3	15	7,6		90'0	0,00	0,74	0,07	0,00	00,00	10,42	0,16	50,83	13,41	10,11	14,21	0,625	162,3	2693
			Variation	Flacon 4	15	4,45		0,00	0,00	0,56	0,00	0,00	00,00	10,11	0,15	54,23	13,73	9,16	12,06	0,428	95,0	3854
				Flacon 6	7	31,8		90,0	00'0	1,01	0,07	0,00	00,0	10,87	0,19	45,19	13,98	10,46	18,16	1,019	352,5	1612
		10	sion de p	Flacon 5	∞	22,2		0,00	00'0	0,82	00,0	0,00	0,00	10,71	0,18	48,76	13,92	6,87	15,73	0,836	246,1	1980
TC2	10/45/45	20 / 45 / 45	ée de l'impulsio lans le mélange.	Flacon 2	_∞	12,5		0,00	00'0	0,52	00'0	0,00	0,00	9,40	0,13	56,05	16,03	10,91	12,06	0,628	138,6	2759
)	7(n durée d dans	Flacon 3	15	7,7		0,00	00'0	0,37	0,00	0,00	00,00	8,15	0,11	56,53	15,65	8,86	10,32	0,434	85,4	3884
			Variation	Flacon 4	15	4,45		00'0	00'0	0,27	0,00	0,00	00'0	8,30	60,0	59,03	15,31	9,21	7,78	0,310	49,3	5655
TCI	10/45/45	20/45/45	Test standard Variation durée de l'impulsion de propane dans le mélange.	Moyenne	09	12,2		60'0	00'0	0,53	90,0	00,00	00,00	8,97	0,14	52,46	15,38	10,63	11,76	0,627	135,3	2783
Tableau 12 - Test	Conditions à la réaction Propane/He-Kr/H ₂ O	Conditions à la régénération O ₂ /He-Kx/H ₂ O	Commentaire	Récapitulatif	Nombre de CYCLES	durée injection de propane	Sélectivités (%)	Acétaldéhyde	Propanaldéhyde	Acétone	Acroléine	Alcool Allylique	Acrylate d'Allyle	Acide Acétique	Acide Propionique	Acide Acrylique	Monoxyde de carbone	Dioxyde de carbone	Propylène	Quantité O ₂ consommé (g O/kg catalyseur)	μmole propane pour 1 cycle	Ratio conversion Propane (kg catalysew/kg Propane converti)

j

Les résultats sont regroupés dans les trois tableaux suivants.

On constate que l'ajout d'oxygène dès le début de l'impulsion de propane, plutôt qu'en fin d'impulsion, conduit à un léger gain en sélectivité en acide acrylique, qui semble venir d'une plus faible sélectivité en CO_x.

Variation l'impulsi de l'O. Flacon 10 ane 32,6	TC5 30+30 / 45 / 45 20 / 45 / 45 n durée injection O ₂ dans on de propane – injection cen début d'impulsion Flacon2 Flacon3 Flacon4 10 10 10 10			T(30+30,	TC6 30+30/45/45			TC7 30+30 / 45 / 45	TC7 0/45/45	
Variation l'impulsi de l'O Flacon1 10 32,6	/ 45 / 45 45 / 45 injection (propane – i out d'impu 2 Flacon3			30+30	/45/45			30+30 /	45/45	
Variation l'impulsi de l'O. Flacon1 10 32,6	45 / 45 injection (propane – i out d'impu 2 Flacon3									
Variation 1'impulsi de l'O Flacon1 10 32,6	injection (propane – i put d'impu Flacon3 10 10 20 10 20 10 20 20			20 / 4	20 / 45 / 45			20 / 45 / 45	5/45	
Flacon1 10 32,6	2 Flacon3		Variatic l'impuls de l'	on durée i ion de pr O ₂ en fin	Variation durée injection O ₂ dans l'impulsion de propane – injection de l'O ₂ en fin d'impulsion	O ₂ dans injection sion	Dur l'impul – Inject	Durée d'injection O ₂ dans l'impulsion de propane constante – Injection O ₂ en fin d'impulsion	tion O ₂ copane cofin d'im	lans instante pulsion
10 32,6 5	10	Flacon4	Flacon1	Flacon2	Flacon 1 Flacon 2 Flacon 4 Flacon 4	Flacond		puis en début d'impulsion	d'impul	ion
32,6	22.0	10	10	10	10	10		10 10 10 10 10 10 10 10	riacono	r Jacon4
V	5,7	34	34.9	35.4	34.7	33.6	33.0	345	22.0	27 6
`	15	20	20	15	-	2,5	200	2, 6		
Rendements (%)				;	2	,	07	77	77	20
	6	0	Į,							
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
7,0	0,2	7,0	0,1	0,1	0,2	0,2	0,1	0,1	0,2	0.2
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0.0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0.0
1,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	7,0	0,7	8,1	1,6	1,6	1,5	1,9	1,9	2,0	2,0
0,0	2,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
7,0	10,2	11,6	10,5	7,9	9,9	5,1	11,4	11,1	11,9	12,0
1,8	2,4	2,7	2,9	2,4	2,0	1,7	3,1	2.9	2.8	2.9
Dioxyde de carbone 1,6 1,8	2,0	2,1	2,3	2,0	1,7	1,5	2.5	2.3	2.4	23
	4,1	4,2	4,1	3.9	3.7	3.4	41	4.2	1,00	2,7
Fropane 84,4 81,5	79,0	77,3	78,2	82,2	84.1	86.6	76.5	77.6	7,4	76.1
Bilan Carbone (%) 100,1 100,0	6'66	100,2	100,1	100.2	100.0	100	× 00	1001	2 2	1,0

	Γ	T	_	0 0	T	<u>4</u> 1			Г	T	Т		_		Т	Т	Т	_	_	$\overline{}$	Τ	_	┰
				dans onstant ipulsion	Sion	Flacor	10	34	20			0,0	0,00	0,67	0.10	0.00	8	85.8	0.17	50.5	120	00	?
	TC7	30+30 / 45 / 45	20 / 45 / 45	ction O ₂ ropane c	ndui p 1	Flacon3	10	33,9	20			0,04	0,00	99'0	0.10	0.00	000	8.57	0.16	50.7	× = = = = = = = = = = = = = = = = = = =	10.0	252
	H	30+30	20/4	Durée d'injection O ₂ dans l'impulsion de propane constante — Injection O ₂ en fin d'impulsion	puis en deout a impuision	r lacon 2	10	34,5	20		, 0	0,04	0,00	0,64	0,11	0,00	0.00	8.24	0.17	49.1	12.8	10.4	- (2)
				Dur l'impul – Inject	Simo	riaconi	10	33,9	20		200	CU,U	0,00	0,60	0,11	00'0	00.0	8,21	0,16	48,9	13.3	10.9	
				O ₂ dans injection sion	Discount.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2]	33,6	\$		000	0,03	0,00	1,53	0,14	00'0	0,00	11,20	0,22	37,7	12.3	11,4	
	TC6	30+30 / 45 / 45	20 / 45 / 45	Variation durée injection O ₂ dans l'impulsion de propane – injection de l'O ₂ en fin d'impulsion	Floor	CIIOCALI	2	34,7	10		0.07	0,0	0,00	1,13	0,13	0,00	0,00	9,85	0,21	41,8	12,7	11,0	
	Ή	30+30	20/4	on durée ion de pi 'O2 en fir	Flacon	1.1900112	21	35,4	15		0.05	3,6	30,0	0,81	0,10	0,00	0,00	8,78	0,18	43,9	13,3	11,1	
				Variatic l'impuls de l	Flacon 1	10011	OT S	34,9	20		0.05	36	0,00	0,64	0,10	0,00	0,00	8,45	0,17	48,1	13,4	10,4	
				O ₂ dans njection Ision	Flacon4	10	7,5	34	70		0.05	200	3,00	0,73	0,10	0,00	0,00	8,90	0,18	50,7	11,7	9,3	
	55	45 / 45	5/45	durée injection O ₂ dans n de propane – injectior en début d'impulsion	Flacon 3	0	2 6	32,9	15		0.05	0.00	20,00	0,88	0,10	0,0	0,00	9,35	0,19	49,0	11,7	9,4	7 0
Ì	TCS	30+30 / 45 / 45	20 / 45 / 45	n durée ii on de pro 2 en débu	Flacon2	10	2,5	22	10		90.0	000	30,0	1,03	0,11	0,00	0,00	9,81	0,19	46,5	11,6	9,6	-
				Variation durée injection O ₂ dans l'impulsion de propane – injection de l'O ₂ en début d'impulsion	Flacon1	0	20 6	32,0	S		0,08	000	1 36	1,30	5,5	00,0	00,0	10,50	0,20	42,8	11,5	10,2	727
Tobles: 12 Test	Tableau 13 - Test	Conditions à la réaction Propane + O ₂ /He-Kr/H ₂ O	Conditions à la régénération O ₂ /He-Kr/H ₂ O	Commentaire	Récapitulatif	Nombre de CYCLES	durée de l'injection de propage	Dire des immilaions	injecté dans le propane(s)	Sélectivités (%)	Acétaldéhyde	Propanaldéhyde	Acétone	Acroléina	A Joseph A Hadisana	Activities d'All-li-	Acidiale d'Allyle	Action Acendue	Acide Propionique	Acide Acrylique	MINION yue de carbone	Dioxyde de carbone	Pronviène

Tableau 13 - Test		TCS	35			Ĕ	TC6			E	TC7	
Conditions à la réaction Propane $+ O_2/He-Kr/H_2O$		30+30 / 45 / 45	45 / 45			30+30	30+30 / 45 / 45			30+30,	30+30 / 45 / 45	
Conditions à la régénération O ₂ /He-Kr/H ₂ O		20 / 45 / 45	5 / 45			20 / 4	20 / 45 / 45			20 / 4	20 / 45 / 45	
Commentaire	Variation durée injection O ₂ dans l'impulsion de propane – injection de l'O ₂ en début d'impulsion	Variation durée injection O ₂ dans 'impulsion de propane – injection de l'O ₂ en début d'impulsion	njection opane – i t d'impu	O ₂ dans njection Ision	Variatic l'impuls de l	Variation durée injection O ₂ dans 'impulsion de propane – injection de l'O ₂ en fin d'impulsion	injection ropane – 1 d'impul	Variation durée injection O ₂ dans l'impulsion de propane – injection de l'O ₂ en fin d'impulsion	Dus 1'impuls Injection	rée d'injerion de pr O2 en fir	Durée d'injection O ₂ dans l'impulsion de propane constante – Injection O ₂ en fin d'impulsion en début d'impulsion	ans stante – sion puis
Récapitulatif	Flacon1	Flacon2	Flacon3	Flacon4	Flacon1 Flacon2 Flacon3 Flacon4 Flacon1 Flacon2 Flacon3	Flacon2	Flacon3	Flacon4	Flacon 1	Flacon 1 Flacon 2	Flacon3 Flacon4	Flacon4
Nombre de CYCLES	10	10	10	10	10	10	19	10	10	10		10
durée de l'injection de propane	32,6	33	32,9	34	34,9	35,4	34,7	33,6	33.9	34.5	33.9	34
Durée des impulsions O ₂ injecté dans le propane(s)	5	10	15	20	20	15	10	5	20	20	20	20
Quantité d'oxygène consommé (g O/Kg catalyseur)	2,25	2,69	3,08	3,52	3,53	2,91	2,47	2,00	3,67	3,56	3,62	3,66
μmoles de propane pour 1 cycle	1059	1072	1069	1104	1133	1150	1127	1001	1101	1120	1101	1104
µmoles d'O ₂ ajoutée par cycle	158	317	475	634	634	475	317	158	634	634	634	634
μmoles d'oxygène consommées (produits formés) / cycle	704	843	696	1101	1104	911	773	625	1153	1119	1140	1152
Ratio conversion Propane (kg catalyseur/kg Propane converti)	681	575	504	467	454	556	623	740	435	457	433	427

Exemple 12

Préparation du précurseur d'un catalyseur de formule : Mo₁V_{0,3}Sb_{0,15}Nb_{0,1}Si_{0,76}O_x

45

1) Etape 1: dissolution - précipitation

Solution A

10

15

20

25

On utilise le montage illustré sur la Figure 2 qui comprend un réacteur du type SVL de 1 litre muni d'un agitateur relié à un moteur et d'un réfrigérant à eau contenant des anneaux raschig. Une alimentation en azote est installée sur le réacteur et un bulleur est placé en sortie du réfrigérant. Le chauffage est assuré par un bain d'huile thermostaté.

12,3 g de métavanade d'ammonium (MVA) (soit 0,1052 mole de vanadium) sont mis en solution dans 260 ml d'eau déminéralisée, dans le réacteur, sous agitation. Une solution jaune est obtenue. 7,7 g de Sb₂O₃ (soit 0,0528 mole d'antimoine) sont ajoutés à la solution limpide, puis 61,8 g d'heptamolybdate d'ammonium (HMA) (soit 0,3501 mole de molybdène) sont ajoutés. Après l'ajout de HMA, le réacteur est mis sous flux d'azote, la réaction est maintenue sous agitation, à reflux, pendant 4 heures. Progressivement, une solution noire est obtenue ; la réaction est considérée comme totale au bout de 1 heure.

La solution obtenue est appelée solution A.

Solution B

6,1 g (0,0532 mole) d'une solution aqueuse d'H₂O₂ à 30% en poids sont dissous dans 98 g d'eau, sont alors ajoutés en 2 à 3 minutes à la solution A. La solution devient orange limpide en 4-5 minutes. Puis 40 g de silice ludox (0,2663 mole de Si) sont ajoutés en une fois et la solution se trouble. La solution formée est appelée solution B.

Solution C

Une solution C est préparée simultanément à la solution A: 13,2 g (0,1047 mole) d'acide oxalique et 5,9 g d'acide niobique (soit 0,0351 mole de Nb) sont dissous sous agitation à 80°C, dans 100 g d'eau, pendant 2 heures. Cette solution est ensuite centrifugée à 6200 tr/min pendant 12 minutes, pour obtenir une solution C limpide.

Ensuite, La solution C est ajoutée à la solution B, en une fois. On obtient un gel fluide orange puis jaune. L'agitation est maintenue pendant 30 minutes sous flux d'azote, sous reflux.

2) Etape 2 : séchage

Le gel obtenu précédemment est séché en étuve ventilée, sur des plateaux téflonés, pendant la nuit, à 130°C. 104,2 g de précurseur sec sont récupérés. Ce précurseur ci-après appelé P1 se présente sous forme de feuilles, noires dessus, avec une pellicule verte en-dessous.

Exemple 13

Préparation des précurseurs P2 à P15

On procède comme indiqué dans l'exemple 12, à l'exception des conditions indiquées dans le Tableau 14 suivant, dans lequel figurent également les aspects des précurseurs obtenus.

<u>TABLEAU 14</u> Récapitulatif des synthèses de précurseur

	aspect précurseur	noir, vert en dessous	noir avec qq traces vertes	noir	noir	noir		noir vert en dessous
Solution C	remarque			Ox/Mo :0,28	Ох/Мо : 0,28		chauffe pendant 1h30	
	Si⁄Mo	0,76	0,76	0,76	0,76	9,76	0,76	9,76
ygénée	remarque	précipité jaune	transfert dans un ballon tricol chauffé avant introduction de H ₂ O ₂ , reste limpide	transfert dans un ballon tricol chauffé ayant introduction de H,O,	transfert dans un ballon tricol chauffé avant introduction de H,O,	pas de transfert		
Solution B : ajout de l'eau oxygénée	limpidité	поп	oui	oni	oni	ino	ino	oni
ion B : ajc	virage	orange	orange	orange en 5 mn	orange en 5-7 mn	orange en 2-3 mn	orange en 4-5 mn	orange en 2-3 mn
Solut	Temps d'introduction H ₂ O ₂	5 h	2 mn	2-3 mn	2-3 mn	2-3 mn	2-3 mn	
	H ₂ 0 ₂ /Mo	0,15 dilué	0,15 dilué	0,15 dilué	0,15 dilué	0,15 dilué	0,15 dilué	0,15 dilué
Solution A	durée agitation solution (Mo, V, Sb) en heures	\$	\$	E	2	4	5	4
So	Sb/Mo	0,15	0,15	0,15	0,15	0,15	0,15	0,15
	Montage	Ballon tricol avec agitateur magnétique	SAL	SVL	SAL	SVL	SVL	SVL
	Précurseur	P2	P3	P4	PS	P1	P6	P7

TABLEAU 14 (suite)

	_				_			_					-		_,	
. [aspect	precurseur	noir, vert en dessous	noir, vert en dessous		nou, pius nn que d'habitude		Andre west bold force	and decome	snossan ma	noir, vert en dessous.	zone entièrement	noir fin, vert en	dessons	noir avec parties	jannes
Columbia	Remarque				Cachilos	ajoutée	directement,	nas de niohium	chauffe à 30°C		chauffe 1h15				nouveau lot	d'acide oxalique
	Si/Mo		92'0	0,76	92.0	2.'5		0.76	<u>.</u>	92,0	9,76		92'0		0,93	
oxvaénée	remarque		+ quelques gouttes	n2O2	ajout de H.O. dans la	solution C				+ quelques gouttes	nouvelle bouteille,	même lot, + 20 gouttes de H,O,	+ 20 gouttes de H ₂ O ₂		+2 gouttes de H ₂ O ₂	
Solution B : ajout de l'eau oxvgénée	limpidité		non	non	non			oui		oui	oui puis	trouble	oui		omi	
olution B :	virage		orange	татоп	noir	violet	ronce	orange en	5 minutes	orange	orange		lent,	2811180	lent,	2911112
03	Temps d'introduction	H_2O_2	en deux fois	en 1-2 minutes	NA											
	H ₂ 0 ₂ /Mo		0,23 dilué	0,23 dilué	0,23	dilué		0,15	dilué	0,15 dilué	0,15 pure		0,23 dilué		0,15 dilué	
Solution A	du soluti	en heures	4	4	5			4		4	4		4		4	
щ	Sb/Mo	П	0,23	0,23	0,23			0,15	,	0,15	0,15		0,23		0,15	
	Montage		SVL	IAS	TAS			SVL	1	SVL	SAT	1	7 /s		SNL	
	Précurseur Montage	94	ъ S	Ъ9	P10			P11		F12	P13	1	1		P15	

Exemple 14

5

Précalcination et calcination des précurseurs P1 à P15

Les précalcinations et les calcinations sont effectuées dans des nacelles respectivement sous flux d'air et d'azote, dans des capacités en acier. Ces capacités sont directement installées dans des fours à moufles et l'alimentation en air ou en azote se fait par la cheminée. Un puits thermométrique interne permet un juste contrôle de la température. Le couvercle évite le retour d'air vers le catalyseur. (voir figure 3)

Les précurseurs P1 à P15 obtenus aux exemples 12 et 13 sont précalcinés à 300°C, pendant 4 heures, sous débit d'air, puis calcinés à 600°C, pendant 2 heures sous flux d'azote de 50 ml/mn/g dans un four à moufles. Les calcinations

Les conditions suivantes de traitement thermiques des précurseurs sont étudiées :

- four de calcination ;
- débit d'air de précalcination en ml/min/g;
- 15 pente de variation de température de calcination en °C/min.

Ces conditions sont regroupées dans le Tableau 15 suivant.

TABLEAU 15 Traitement thermiques des précurseurs (pour des masses de 25 à 30 g)

ļ	Cata-	Pré-	Débit de précalci-	Pentes	de calcina	tion sous N	J ₂ (°C/min)
	lyseur	curseur	nation (ml/min/g)	1	2	5	10
	C2	P2	50,4				
Ţ	C3	P3	47				
	C4	.P4	47				
	C5	P5	47			-	
L	C1	P1	48,5				
	C6	P6	45,8				
L	C7	P7	44,9				
	C8	P7	45				
L	C9	P7	47,2				
L	C10	P7	47				
L	C11	P7	0				A STATE OF THE STA
L	C12	P7	10				
L	C13	P7	20,1				
L	C14	P7	51,6				
L	C15	P8	46,9				
L	C16	P8	47,1				
L	C17	P8	45,5				
L	C18	P8	48				
	C19	P8	22,15				
L	C20	P8	10,55				
L	C21	P8	20,9				2.2
	C22	P8	10,5				
_	C23	P9	45,2				
_	C24	P10	47,2				
	C25	P11	46				
	C26	P12	45,7				
_	C27	P13	47,5				
_	C28	P14	47				
	C29	P15	50,7				
	C30	P15	50,3				
_	C31	P15	34,8				
L	C32	P15	18,7				

Exemple 15

Tests des catalyseurs obtenus 5

a) Appareillage

Afin de simuler le procédé selon l'invention, on a effectué des simulations en laboratoire dans un réacteur en lit fixe de laboratoire.

On charge donc, du bas vers le haut, dans un réacteur vertical de forme cylindrique et en pyrex :

- une première hauteur de 1 ml de carbure de silicium sous forme de particules de 0,125 mm de diamètre,
- une seconde hauteur de 5 g de catalyseur sous forme de particules de 0,02
 à 1 mm dilué avec 10 ml de carbure de silicium sous forme de particules de 0,125 mm de diamètre,
- une troisième hauteur de 1 ml de carbure de silicium sous forme de particules de 0,125 mm de diamètre, et
- une quatrième hauteur de carbure de silicium sous forme de particules de 1,19 mm de diamètre, de manière à remplir la totalité du réacteur.

b) Conditions des tests

5

25

Le catalyseur est alimenté en propane et en oxygène simultanément. L'hélium joue le rôle de gaz diluant et de l'eau est vaporisée dans le flux gazeux.

Les catalyseur sont testés à 380°C, 390°C et 400°C avec un ratio propane/O₂/He-Kr/H₂O de 10/10/45/45. Le débit total du flux gazeux s'élève à 8,65 Nl/h.

Le réacteur est placé dans un four isotherme. Il est alimenté en propane, en oxygène et en hélium par des débit-mètres massiques. Une pompe HPLC et un vaporisateur assurent la production de vapeur.

Des thermocouples sont placés dans le four pour en permettre la régulation, et dans le réacteur pour la mesure du « point chaud », c'est-à-dire la température la plus élevée dans le lit de catalyseur.

c) Résultats des tests

Seuls les résultats des tests effectués à 400°C sont donnés. C'est à cette température qu'il a été constaté qu'on obtenait en général les meilleurs résultats. Les résultats des tests sont consignés dans les Tableaux 16 et 17 suivants dans lesquels les rendements sont uniquement calculés sur la base des analyses chromatographiques de routine. Les sélectivités sont calculées comme étant le rendement en un produit donné sur la somme des rendements en produits.

- Les bilans carbone sont utilisés pour s'assurer de l'homogénéité des données. Ils sont considérés comme acceptables pour des valeurs comprises entre 95 et 105%. Les calculs de rendement sont basés sur la teneur en krypton du gaz. La mesure du débit de gaz sec en sortie de réacteur permet de faire des calculs basés sur ce débit de gaz. Les calculs de rendement peuvent ainsi être validés.
- Les rendements et sélectivités en chacun des produits dosés sont donnés, ainsi que le rendement en acide, obtenu par dosage à la soude 0,1N. Il s'agit d'un pseudo rendement obtenu en supposant que tous les acides formés ont 3 atomes de carbone.

TABLEAU 16

Tablean recapitulatif des rendements produits des catalyseurs						_		_		_	_	_																
Tableau récapitulatif des rendements produits des catalyseurs Temp, réac.				side par sage	ob	10,1	10.2	9.1	6,6	8,7	10.6	9.7	8,7	8.8	10.6	8.2	100	5	2.9	10,8	6.8	15	12.3	12,3	9,4	5,	4,7	2
## Tablean récapitulatif des rendements produits cless catalysesure Particularit des rendements produits cless catalysesure Particularit des rendements produits cless catalysesure Particularit des rendements produits cless catalysesure Particularit des rendements produits cless catalysesure Particularit des rendements produits cless catalysesure Particularit des rendements produits cless catalysesure Particularit des rendements produits cless catalysesure Particularit des rendements produits cless catalysesure Particularit des rendements produits cless catalysesure Particularit des rendements produits cless catalysesure Particularit des rendements produits cless cless cless catalysesure Particularit des rendements produits cless cles				² OO+C	CC	5,0	5,2	4,3	4,2	3,3		3,6	3,6	3,9	4,8	3,6	3,6	3,9	2,2	2,3	2.4	2.4	4.2	4,2	3,2	0,4	1,2	27
Tablean récapitulatif des rendements produits des catalyseurs Tablean récapitulatif des rendements produits des catalyseurs Rendements - ITUC (%)				орале	I-d	81,4	78,9	83,4	82,7	83,3	82,1	82,9	83,1	88,2	84,2	81,6	81,5	82,5	85,9	82,9	85,0	87.8	78,9	78,9	86,4	95,0	94,1	2 6
Tableau récapitulatif des rendements produits des catalyseurs (°C°C) Accident récapitulatif des rendements produits des catalyseurs Accident récapitulatif des rendements produits des catalyseurs				орујеће	ď	4,6	4,0	4,4	4,6	4,2	4,5	4,5	4,5	4,3	4,3	4,7	4,1	4,1	4,0	4,3	4,4	4,0	4,2	4,2	4,4	2,5	3,3	43
Tableau récapitulatif des rendements produits des catalyseurs Accident des la laint oxygène Accident des laint oxygène Accid				O _z	၁	2,2	2,1	1,8	1,8	1,4	2,7	1,5	1,5	1,7	2,0	1,5	1,5	1,6	6,0	6,0	1,0	6,0	1,8	1,8	1,4	0,2	2,0	-
Tableau récapitulatif des rendements produits des catalyseurs (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)		5	<u>@</u>	O:	0	2,8	3,0	2,5	2,4	1,9	3,6	2,1	2,1	2,2	2,8	2,1	2,1	2,3	1,3	1,4	1,4	1,4	2,4	2,4	1,9	0,3	5	1.6
Tableau récapitulatif des rendements produits des cataleur (e.C.) Temp. réac. Tableau récapitulatif des rendements produits des cataleur (e.C.) Temp. point T		Scurs	307	.c. acrylique	٧	7,3	6,5	6,1	7,4	9,6	7,0	7,3	6,1	5,9	7,7	5,6	7,7	6,9	6,1	9,0	7,5	5,6	9,7	9,6	4,	95	5,9	7.4
Тепр. геяс. Тепр. роілі теяс. 400 413 19,5 42,8 100,9 101,6 400 411,9 18,3 38,9 101,0 100,8 400 410, 410, 13,0 39,1 39,1 100,2 400 410, 410, 13,0 39,3 39,1 100,2 400 410, 15,7 32,2 97,3 99,3 99,6 400 410, 15,7 36,5 99,3 99,6 400 410, 17,0 36,1 99,4 99,8 400 410, 17,0 36,1 99,9 99,8 400 411,1 20,3 42,9 99,2 98,9 400 411,1 20,3 42,9 99,2 98,9 400 410, 15,6 29,6 100,6 100,9 400 410, 15,7 36,5 99,9 99,8 400 411,1 20,3 42,9 99,2 98,8 400 410, 15,6 29,6 100,6 100,9 400 410, 15,6 29,6 100,6 100,9 400 410,1 120,3 42,9 99,2 98,8 400 410,4 12,5 99,0 98,8 400 410,4 12,5 21,1 106,4 104,3 400 401,8 12,3 21,1 106,4 104,3	110400	Carary	1155 — 1	c. propionique	7	0,1	0,1	0,1	5	7,0	7	00	0)	3	0,1	0,1	0,2	0,1	0,0	0,1	0,1	0,1	0,1	[5]	3	3;	3	0,1
Тепр. геяс. Тепр. роілі теяс. 400 413 19,5 42,8 100,9 101,6 400 411,9 18,3 38,9 101,0 100,8 400 410, 410, 13,0 39,1 39,1 100,2 400 410, 410, 13,0 39,3 39,1 100,2 400 410, 15,7 32,2 97,3 99,3 99,6 400 410, 15,7 36,5 99,3 99,6 400 410, 17,0 36,1 99,4 99,8 400 410, 17,0 36,1 99,9 99,8 400 411,1 20,3 42,9 99,2 98,9 400 411,1 20,3 42,9 99,2 98,9 400 410, 15,6 29,6 100,6 100,9 400 410, 15,7 36,5 99,9 99,8 400 411,1 20,3 42,9 99,2 98,8 400 410, 15,6 29,6 100,6 100,9 400 410, 15,6 29,6 100,6 100,9 400 410,1 120,3 42,9 99,2 98,8 400 410,4 12,5 99,0 98,8 400 410,4 12,5 21,1 106,4 104,3 400 401,8 12,3 21,1 106,4 104,3		od one o	Haeine	Acide acétique	,	2,4	2,3	1,7	0,2		5,2	-1	91.	1,	0,2	1,0	1,9	6,1		=	1,2	0,1	»,	»; 	41,6	7/2	2 2 3	1,4
Тепр. геяс. Тепр. роілі теяс. 400 413 19,5 42,8 100,9 101,6 400 411,9 18,3 38,9 101,0 100,8 400 410, 410, 13,0 39,1 39,1 100,2 400 410, 410, 13,0 39,3 39,1 100,2 400 410, 15,7 32,2 97,3 99,3 99,6 400 410, 15,7 36,5 99,3 99,6 400 410, 17,0 36,1 99,4 99,8 400 410, 17,0 36,1 99,9 99,8 400 411,1 20,3 42,9 99,2 98,9 400 411,1 20,3 42,9 99,2 98,9 400 410, 15,6 29,6 100,6 100,9 400 410, 15,7 36,5 99,9 99,8 400 411,1 20,3 42,9 99,2 98,8 400 410, 15,6 29,6 100,6 100,9 400 410, 15,6 29,6 100,6 100,9 400 410,1 120,3 42,9 99,2 98,8 400 410,4 12,5 99,0 98,8 400 410,4 12,5 21,1 106,4 104,3 400 401,8 12,3 21,1 106,4 104,3	i nrodi	Don	2			0,0	000	0,0	0,0	0,0	2,0	0,0	0,0	2,0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	9	0,0	0,0	25	3,6	3,6	0,0
Тепр. геяс. Тепр. роілі теяс. 400 413 19,5 42,8 100,9 101,6 400 411,9 18,3 38,9 101,0 100,8 400 410, 410, 13,0 39,1 39,1 100,2 400 410, 410, 13,0 39,3 39,1 100,2 400 410, 15,7 32,2 97,3 99,3 99,6 400 410, 15,7 36,5 99,3 99,6 400 410, 17,0 36,1 99,4 99,8 400 410, 17,0 36,1 99,9 99,8 400 411,1 20,3 42,9 99,2 98,9 400 411,1 20,3 42,9 99,2 98,9 400 410, 15,6 29,6 100,6 100,9 400 410, 15,7 36,5 99,9 99,8 400 411,1 20,3 42,9 99,2 98,8 400 410, 15,6 29,6 100,6 100,9 400 410, 15,6 29,6 100,6 100,9 400 410,1 120,3 42,9 99,2 98,8 400 410,4 12,5 99,0 98,8 400 410,4 12,5 21,1 106,4 104,3 400 401,8 12,3 21,1 106,4 104,3	emente			Alcool allylique	,	2,0	200	200	0,0	200	200	200	0,0	2,0	200	200	0,0	200	2,0	0,0	2,0	200	2,0	250	2, 6	200	3 6	2,
Тепр. геяс. Тепр. роілі теяс. 400 413 19,5 42,8 100,9 101,6 400 411,9 18,3 38,9 101,0 100,8 400 410, 410, 13,0 39,1 39,1 100,2 400 410, 410, 13,0 39,3 39,1 100,2 400 410, 15,7 32,2 97,3 99,3 99,6 400 410, 15,7 36,5 99,3 99,6 400 410, 17,0 36,1 99,4 99,8 400 410, 17,0 36,1 99,9 99,8 400 411,1 20,3 42,9 99,2 98,9 400 411,1 20,3 42,9 99,2 98,9 400 410, 15,6 29,6 100,6 100,9 400 410, 15,7 36,5 99,9 99,8 400 411,1 20,3 42,9 99,2 98,8 400 410, 15,6 29,6 100,6 100,9 400 410, 15,6 29,6 100,6 100,9 400 410,1 120,3 42,9 99,2 98,8 400 410,4 12,5 99,0 98,8 400 410,4 12,5 21,1 106,4 104,3 400 401,8 12,3 21,1 106,4 104,3	rend			Acroléine	,	2	2		3 -	100	200		0,0		200	200	200	2,0	3	100	2,5	7	1,0			3 -		2,5
Тепр. геяс. Тепр. роілі теяс. 400 413 19,5 42,8 100,9 101,6 400 411,9 18,3 38,9 101,0 100,8 400 410, 410, 13,0 39,1 39,1 100,2 400 410, 410, 13,0 39,3 39,1 100,2 400 410, 15,7 32,2 97,3 99,3 99,6 400 410, 15,7 36,5 99,3 99,6 400 410, 17,0 36,1 99,4 99,8 400 410, 17,0 36,1 99,9 99,8 400 411,1 20,3 42,9 99,2 98,9 400 411,1 20,3 42,9 99,2 98,9 400 410, 15,6 29,6 100,6 100,9 400 410, 15,7 36,5 99,9 99,8 400 411,1 20,3 42,9 99,2 98,8 400 410, 15,6 29,6 100,6 100,9 400 410, 15,6 29,6 100,6 100,9 400 410,1 120,3 42,9 99,2 98,8 400 410,4 12,5 99,0 98,8 400 410,4 12,5 21,1 106,4 104,3 400 401,8 12,3 21,1 106,4 104,3	latif de			эпојээА		3 0	3 2	1	200	-	1 0	3	0,0	2,0	7,0	7,0	2,0	, ,	3 -	1,5	3	1,5	7,0	7,0	100	3 -	* -	7,5
Тепр. геяс. Тепр. роілі теяс. 400 413 19,5 42,8 100,9 101,6 400 411,9 18,3 38,9 101,0 100,8 400 410, 410, 13,0 39,1 39,1 100,2 400 410, 410, 13,0 39,3 39,1 100,2 400 410, 15,7 32,2 97,3 99,3 99,6 400 410, 15,7 36,5 99,3 99,6 400 410, 17,0 36,1 99,4 99,8 400 410, 17,0 36,1 99,9 99,8 400 411,1 20,3 42,9 99,2 98,9 400 411,1 20,3 42,9 99,2 98,9 400 410, 15,6 29,6 100,6 100,9 400 410, 15,7 36,5 99,9 99,8 400 411,1 20,3 42,9 99,2 98,8 400 410, 15,6 29,6 100,6 100,9 400 410, 15,6 29,6 100,6 100,9 400 410,1 120,3 42,9 99,2 98,8 400 410,4 12,5 99,0 98,8 400 410,4 12,5 21,1 106,4 104,3 400 401,8 12,3 21,1 106,4 104,3	scapitu		1	Propanaldéhyde	C	200		200	3 6	0.0	000	0	000	00	0,0	0,0	0,0	0,0	200	200	200	0,0	200	200	3 6	; 8	200	2,2
Temp. réac. Temp. reac. Temp. point 400 413,6 15,9 36,4 110,9 101 400 410,4 11,9 18,3 38,9 101,0 100 400 410,4 11,1 17,3 35,5 100,2 100 400 400,3 11,1 20,3 14,6 103,3 100 400 400,4 11,1 20,3 13,5 20,4 99,8 100,6 10,6 1				Acétaldéhyde	0	00	0	0	18	0.0	0	00	000	0	000	200	200	000	0.0	0.0	000	200	200	00	00	0.0	00	;
Temp. réac. Temp. reac. Temp. point 400 411, 97, 2 400 410, 17, 0 400 411, 120, 1 400 400, 32, 5 400 400, 411, 10, 32, 3 400 400, 411, 10, 32, 3 400 400, 411, 10, 32, 3 400 400, 411, 10, 32, 3 400 400, 411, 10, 32, 3 400 400, 411, 10, 32, 3 400 400, 411, 10, 32, 3 400 400, 411, 10, 32, 3 400 400, 411, 10, 32, 3 400 400, 411, 10, 32, 3 400 400, 411, 10, 32, 3 400 411, 10, 32, 3 400 411, 10, 32, 3 400 410, 410, 10, 32, 3 400 410, 410, 10, 32, 3 400 410, 410, 10, 32, 3 400 410, 410, 410, 410, 410, 410, 410, 4	Tal			Bilan oxygène	101.6	99.1	100.2	100.8	99.1	7.66	100.4	94.1	99.9	100.0	97.5	966	8 66	8,66	8 66	100.9	98.7	686	98.5	98.8	8,66	104.3	8,66	
Temp. réac. Temp. reac. 400 400 413,6 60 400 411,9 400 411,0 400 411,1 400 411,1 400 411,1 400 411,1 400 411,1 400 411,1 400 411,1 400 411,1 400 411,1 400 411,1 400 411,1 400 411,1 400 410,1 410,1				Bilan carbone	100.9	97.2	100.3	101.0	99,3	102,5	100.2	99.2	104,3	103.3	97.3	99.3	99.4	99.4	6,66	9.00	010	99.2	99.0	02.9	6,86	├	╀	
Temp. réac. 7 Comp. réac. 1 Comp. réac. 1 Comp. point 1 Comp.					42,8	41,4	36,4	38,9	32,5	<u> </u>	<u> </u>	-	├ ─	⊢	 	⊢	╀	₽	\vdash	L		╄	!	┞	├-			
. Co.) Co.) Co.) Co.) Co.) Co.) Co.) Co.				(UTT3) DTT	19,5	18,2	16,9	18,3	16,0	20,4	17,3	16,1	16,1			 	⊢	╌	⊢	⊢	├	 -	┢	\vdash		Н	16,0	
Temp. réac.				Temp. point chand (°C)	413	417	413,6	411,9	410	424	411	409,3	416	420	410,7	405,2	411	409,5	410	410	408,8	411,1	411,1	410	405	401,8	410,4	I
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				Temp. réac. (C)	400	400	400	400	99	400	400	400	400	400	400	400	400	400	400	9	400	400	400	400	\dashv	+	\dashv	
				Catalyseur	\Im	2	디	ဗ	8	ප	ઇ	జ	ව	<u> </u>	C12	C14	C26	e E	37	3	C16	C17	C18	8	S	57	C27 [

<u>TABLEAU 17</u> <u>Tableau récapitulatif des sélectivités des catalyseurs</u>

_																								
	уторујеве	73.6	21,5	10.4	24.9	26.3	21.8	262	0 %	26.5	22.5	200	23.4	23.9	29,8	25,6	28,2	30,5	20.8	21.0	26.3	64.1	26,6	27.2
	zooz) -	- 1	10.4	8,6	8,6	133	8.8	93	10.7	10.5	86	8.5	9.4	6,3	5,5	6,3	7,1	& &	6,8	8.2	0.4	4,3	0,9
	00	14.4	16.7	10.4	13,3	12,1	17,8	12.2	13.2	13.5	14.5	13.4	11.6	13,6	9,6	8,1	9,0	10,6	11,9	12,1	11,2	6,7	5,5	0.0
	Acide acrylique	37.2	35.6	10,4	40,3	41,2	34,4	42,1	37.8	37.0	40,6	35,4	43,2	40,9	45,0	52,8	48,0	42,4	47,8	47,6	44,9	16,6	47,9	46.1
	Acide propionique		4,0	10,4	0,3	8,0	0,3	0,3	0,4	5,0	4,0	4,0	1, 0,	0,3	0,3	9,4	0,3	9,6	0,7	0,7	0,4	9,0	H	0,4
és (%)	Aupitèse sbioA	12,5	12,6	10,4	10,7	9,2	11,3	9,6	10,0	10,4	10,6	10,3	10,7	11,2	8,2	6,7	7.4	7,7	8,7	8,8	8,2	5,9	4,9	8,5
Sélectivités (%)	Acrylate d'allyle	0,0	0,0	0,0	0'0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	S	9	0,0	2	0,0) 0,	S)	0,0	0,0	0,0	0,0
Sé	Alcool allylique	0,0	0,0	0,0	٥ <u>.</u>	0,0	S	0,0	0,1	0,0	0,0	0,0	0,0	3	3	0,0) (3)	0,0	0,0	0,0	00	히	9	0,0
	əniəlo12A	0,1	0,2	0,1	5	0,5	0,2	0,1	0,2	0,1	0,1	0,2	0,0	2	5	5	5,	0,4	4,0	0,0	0,1	9,7	4,	0,2
	ənotəəA	9,0	8,0	0,7	0,7	0,1	0,7	8,0	6,0	1,2	8,0	6,0	9,1	5	9,6	2,0 0,0	9 5		57	6,0	2	2	6,6	8,0
	Propanaldéhyde	0,0	3	0,0	3	0,	0,0	0,0	0,0	3	8	0,0	3	3	200		2,6	2,0	200	0,0	0,0	2,0	0,0	2,
	Acétal-déhyde	0,0	0,1	0,0	0,0	200	000	2	0,0	0,0	0,0	0,0	0,0	2),	1 6	200	0,0	2,0	2 6	2,6	3	7,0	0,0	2,0
	Bilan oxygène	101,6	8. 	100,2	200,8	1,5	7,6	100,4	24,1	6,66	100,0	97,5	93,6	8,60	0,60	1000		200	20,00	0,00	0,00	8,62	2,401	22,0
	Bilan carbone	100,9	97,2	100,3	0,101	2,22	102,5	7,001	7,6%	104,3	103,3	5,73	5,60	+	2,20	+	╀	╀	1/0	+	+		100,4	\dashv
	TTG O ₂ (SomTTU)		4	4 0	7	2 4	۰	2	مارد	5	٦,	7,	,	-1,	100	1	1	+	1	1.	+			-
	(UTTmo2) DTT	5		Π.	_		17,1	_	Π.	0	1.	7.	11,1	1.	_	156	+-	+-		16.6	┽~	12,2	+-	5
	Temp. point chand (°C)	413	41/	413,0	212	424	411	7007	5,50	420	7107	406,7	4117	409.5	410	410	408.8	1_	-		T	1	╀	┨
	Temp. réac. (°C)	8 6	3 8	3 5	80	004	5 6	+	╁	- -	┽	+-	┰	+-	\$ \$	400	┨	⊢	╂	╀-	400	-	\$ 8 4	┨
	Catalyseur	ව ව	3 2	3 8	38	9	S	2	3 8	3 5	-	-		٠.,	32		₽	C17	C18	╂—	╂	╄	23	1

5

Exemple 16

On prépare, selon le mode opératoire indiqué dans l'Exemple 12, des précurseurs P16 du catalyseur de formule $Mo_1V_{0,3}Sb_{0,15}Nb_{0,1}Si_{0,76}O_x$.

A partir de ces précurseur P16, on prépare une série de catalyseurs que l'on teste.

Les conditions de précalcination et de calcination du précurseur P16 sont regroupées dans les tableaux 18 et 19 suivants.

1) Etape 1 : dissolution - précipitation

Solution A

On utilise le montage illustré sur la Figure 2 qui comprend un réacteur du type SVL de 1 litre muni d'un agitateur relié à un moteur et d'un réfrigérant à eau contenant des anneaux raschig. Une alimentation en azote est installée sur le réacteur et un bulleur est placé en sortie du réfrigérant. Le chauffage est assuré par un bain d'huile thermostaté.

30,75 g de métavanade d'ammonium (MVA) (soit 0,2629 mole de vanadium) sont mis en solution dans 650 ml d'eau déminéralisée, dans le réacteur, sous agitation. Une solution jaune est obtenue. 19,25 g de Sb₂O₃ (soit 0,1321 mole d'antimoine) sont ajoutés, avec154,5 g d'heptamolybdate d'ammonium (HMA) (soit 0,8753 mole de molybdène) sont ajoutés. Après l'ajout, le réacteur est mis sous flux d'azote, la réaction est maintenue sous agitation, à reflux, pendant 4 heures. Progressivement, une solution noire est obtenue; la réaction est considérée comme totale au bout de 1 heure.

La solution obtenue est appelée solution A.

Solution B

15,25 g (0,1346 mole) d'une solution aqueuse d'H₂O₂ à 30% en poids sont dissous dans 90 g d'eau, sont alors ajoutés en 5 minutes à la solution A. La solution devient orange limpide en 4-5 minutes. Puis 100 g de silice ludox AS 40® (0,6667 mole de Si) sont ajoutés en une fois et la solution se trouble légèrement. La solution formée est appelée solution B.

30 Solution C

35

Une solution C est préparée simultanément à la solution A: 33,0 g (0,2618 mole) d'acide oxalique et 14,75 g d'acide niobique (soit 0,0877 mole de Nb) sont dissous sous agitation à 66°C, dans 250 g d'eau, pendant 2 heures. Cette solution est ensuite centrifugée à 6200 tr/min pendant 12 minutes, pour obtenir une solution C limpide.

Ensuite, La solution C est ajoutée à la solution B, en une fois. On obtient un gel

2) Etape 2 : séchage

Le gel obtenu précédemment est séché en étuve ventilée, sur des plateaux téflonés, pendant la nuit, à 130°C. 259 g de précurseur sec sont récupérés. Ce précurseur est sous forme de feuilles, noires dessus, avec une pellicule verte endessous.

On obtient ainsi le précurseur ci-après appelé P16.

Le tableau 18 regroupe les rendements en carbone (TTUc), avec $TTG_C = \Sigma TTU_C$ et $TTG_{02} = \Sigma TTU_0$, les acidités mesurées par dosage avec de la soude, les bilans carbone et oxygène.

Le tableau 19 regroupe les sélectivités en carbone.

TABLEAU 18
Rendements des produits obtenus lors des tests des catalyseurs

T	_	_	_		_													
Acide par	, ,		3/2	3	3/6	7	2	27	10.1	5.5	8.5	× ×		3/2		7	3	27 5
	1,	2 %	315	1 2	╁	+	0,7	3,7	3,6	H	H	-	╁	╁	+	0,0	┿	4, 6
	-		12	2 2	2 5	1		4	1,5	5	⊢	╀	╀	1	,	10	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	+	+	, ,	,,,	十	†	+	1	_	H	-	H	✝	+	+	†	+	\dagger
Propène							1	4	4,	4,	4	4			ř ~		+	+
₹00	ļ.	汇	~	1	-	- -	1	9	1,5	1,7	3,1		ļ°	1	1	4	2	7 4
တ	26	100	24	0	=	1	1 6	77	2,1	2,4	4,3	2.3	1,	1	;	1 6	1 0	3 5
Acide acrylique	53	× ×	12	0.9	12	2 2	3	ò	7,7	12,8	15,0	11,3	0.5	5	i a	0,0	3 5	17.4
		-	12	-	-	=	3 2	175	0,2	0,1	0,0	0,1	=	-	: 6	3 2	; =	: 6
Acide acétique	6.	12	1	1.5	2	9	2 -	2	6,1	2,1	2,6	1,8	2.0	2	-	, ×	2 0	2 ~
or from the country of	9	000	8	100	8	15	3 5	3 3	3	ွှ	0,0	0,0	00		100		1	3 5
Activiste d'allyle	\perp	-	L	F	F	1	-	1	4		_	_	L	\perp	1	1	1	1
Alcool allylique.	00	0.0	8	0,0	8	9	0		2	읭	0,0	0,0	0.0	8	5		6	2
Acroléine	0,0	0.0	0,0	0,0	0,1	0.0	0	2 6	0,0	0,0	0,0	0,0	0'0	0.0	00	0.0	0.0	0.0
эпотээА	0,	9	0,1	0,1	0,1	3	=		3	0,5	引	0,2	0,2	0.0	0.0	=	-	00
Ргорава І деруде	0,0	0,0	0,0	0,0	0'0	0.0	6	2	3	3	ွ	엵	0,0	0.0	00	00	00	00
Acétaldéhyde	0,0	0,0	0'0	0,0	0'0	0.0	0		3	3	릵	응	0,0	0,0	0.0	0.0	00	00
O nslia	102,1	103,2	103,0	102,1	98,1	97.5	101	2 4	0,2	103,1	101,6	102,5	101,8	95,8	95.7	99.9	∞.	1_
2 libita	98,4	8,86	99,3	98,2	96,6	97,3	98.1	200	2	3,	78,7	0,0	99,5	6,3	2,60	01.1	1.00	98.0
UlTmos=	Ш	Н	_	Щ	Ч	<u> </u>	-	╀-	+	4	4	-	_		4	┡	⊬	7
UTT mos	ш			\dashv	\neg	_	Ͱ	+-	-i -	+	+	-+	5		_	5	╌	1
(၁.)	1-1		\dashv		\dashv	_	\vdash	+	+	+	+	+	\dashv	\perp	-	┢	\vdash	2 16,
Temp. chaud	\vdash	4	4	4	4	41	41	A		=	7	4	4	41,	41.	4	4	412
Température du (°C) uoì	400	흫	출	ફ	흥	9	400	400		3 2	3	3	\$ 8	6	₹	400	\$	400
Débit d'air (ml/mn/gca)	0	10,6		901		2	20,1	516			3	2	21,2	<u>5</u>	19,2	49,2	52,9	51,6
Temp. de calcination	280	8	8	82	e e	S S	300	300	320	325	255	275	280	8	320	280	730	320
Catalysew	3	8	3	38	5	<u></u>	39	040	٤	1 5	3 6	3	-+	-	8	C47		89
	Temp. de Calcination Temp. de Calcination Température du four (°C) Temp. chaud (°C) TTG = com TTU =com TTU Propanaldéhyde Propanaldéhyde Acétone Acide acétique Acide acétique Acide acétique Acide acétique CO Actolèine	Températue du (ml/mn/gea) Température du four (°C) Température du four (°C) Temp chaud four (°C) Temp chaud four (°C) Tre = 1760 Tre = 20mTTU Tre = 20mTTU Tre = 20mTTU Bilan C Acide acétique Actoléine Actoléine	28 % Acide par hone of a control of a contro	280 Calcination (ml/mm/gca) Ca	280 10, 6 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0,	Temp. de Calcination (ml/mn/gca) (all/mn/gca) (all/mn/gca	Température du (mi)/muyges) Température du (Tempe de Calcination Débit d'air (ml/mu/gca) Temperature du (ml/mu/gc	Température du Calcination Composition Com	Tempicature du Calcination Débit d'air d'a	Temp, chaud Calcinate du Calcin	280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tempe, de Calcination Débit d'air. Tempe, de Calcination Débit d'air. Débit d'air.	280 10; 6 calcination Compared to Compar	230 10 6 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 15 6 12 1 1 15 6 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	280 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Tempp. de calcination	Tempo chandrate du Débit d'air. 280

<u>TABLEAU 19</u>
<u>Sélectivités des produits obtenus lors des tests des catalyseurs</u>

_																				
	эпэфот.	270	01/7	8,82	27,9	28,9	31.1	29.7	27.0	21,2	23,4	17,9	15,1	20,0	20.9	24.7	21.7	22,0	203	
	CO ⁵	11.6	21.0	8,4	11,0	8,9	2'8	8.6	03		x,٥	7,3	10,6	7,7	9.2	9.6	× 3		63	
	00	15.7	12:	12,1		12,8	11,7	13,4	126		11,0	10,4	14,5	10,5	12,4	12.5	11.5	0	11.9	1
	Acide acrylique	32.2				% %	38,0	35,4	30.0	, ;	45,4	54,5	50,6	52,3	46,6	42,8	48.4	46.9	48.3	300
	Acide propionique	0.3	2 2	3 5	3	5,5	0,7	0,4	4.0		3	0,3	5	0,3	0,3	0,3	0.3	H	一	6
tés (%	Acide acétique	11.5	0.7	1	21/2	5,	8,5	10,3	9.7	2 2		8,8 8,0	8,7	8,5	9,7	2,6	9,5	\vdash	├	-
Sélectivités (%)	Acrylate d'allyle	0.0	C	200	200	3	S.	0,0	0,0	000	2 6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0 0
S	Alcool allylique.	0,0	0	2,0		3,6	0,0	0,0	0,0	S		3,	3,	0,0	0,	0,0	0,0	0,0	0,0	0.0
	Acroléine	0,1	0.1	-	1,0	1	0,4	0,2	0,1	0.0	3 2	3	7,0	0,1	0,1	0,1	0,1	0,1	0,1	0.1
	эпотээА	0,7	6.0	0.7	000		Ž,	60	6,0	1.6	000		7, 5	3	8,0	27	0,3	6,3	0,3	0,5
	Propanaldéhyde	0,0	0.0	00	5		3	2	0,0	0.0	c		2 6	3 6	3	3	0,0	3	3	0,0
	Acétaldéhyde	0,0	0,1	0	C	3 6	3	3	읽	0,0	15		3	3	3,	3	3	3	3	0,1
	O nslia	102,1	103,2	103.0	102	08 1	707	5/7	101,6	9,66	103 1	101	101,0	102,0	8,101 0,101	8,0%	7,5	666	101,8	99,1
	Bilan C	98,4	98'8	99,3	98.2	9 00	3,75	3,7	28,1	99,3	5 66	08.7	100,	200	2,2,2	2,0	7,75	7.101	1,65	28,0
	TTGO ₂	35,0	31,6	34,5	30.9	28.1	1 6	7,7,7	4,4	36,5	48.7	673	2 2	12 4	2 1	7,5	4,46	2,5	, , , ,	7,00
	OLL wos	16,5	15,6	16,5	15,5	╁	╫	╁	J,	17,7	23.5	L	┿	2 4	+-	٦.	+		20,3	10,1
	(0.)	_	┥	412	411	410	╁╴	╅	+	£0	414	Н	+	╁	+-	╁	╁	十	+	777
	Température du (O°) moi	000	\$ §	4 0 0	400	400	400	400	3 5	4	400	420	007	400	400	400		+	+	\exists
	Débit d'air (ml/mn/gca)	3	<u>0</u>	0	10,6	0	2	20,		0,1,	0	0	101	21.2	10,1	50	40,2	3 20	21.5	
	Temp. de calcination	3 6	202	230	290	300	300	30	200	3	320	320	320	280	+-	╁	╁	╁	╅╸	-
	Catalyseur	3 8	3	ŝ	38	37	38	33	3		4	C42	C43	C44	⊢ –	╄	╄	4	+-	4

WO 2004/024665

PCT/FR2003/002673

On constate donc que les meilleurs résultats sont obtenus avec une précalcination à 320°C et sous un débit d'air nul, suivie par une calcination à 600°C pendant 2 heures sous un débit d'azote de 50 ml/mn/g.

REVENDICATIONS

1. Procédé de fabrication d'acide acrylique à partir de propane, caractérisé en ce que l'on fait passer un mélange gazeux comprenant du propane, de la vapeur d'eau, ainsi qu'éventuellement un gaz inerte et/ou de l'oxygène moléculaire, sur un catalyseur de formule (I):

Mo₁V_aSb_bNb_cSi_dO_x (I)

dans lesquelles:

- a est compris entre 0,006 et 1, bornes incluses;
- 10 b est compris entre 0,006 et 1, bornes incluses;
 - c est compris entre 0,006 et 1, bornes incluses;
 - d est compris entre 0 et 3,5, bornes incluses ; et
 - x est la quantité d'oxygène lié aux autres éléments et dépend de leurs états d'oxydation,
- pour oxyder le propane en acide acrylique, et lorsque l'on opère en présence d'oxygène moléculaire, le rapport molaire propane/oxygène moléculaire dans le mélange gazeux de départ est supérieur ou égal à 0,5.
 - 2. Procédé selon la revendication 1, dans lequel les proportions molaires des constituants du mélange gazeux de départ sont les suivantes :
- propane/ O_2 /gaz inerte/ H_2O (vapeur) = 1/0,05-2/1-10/1-10; et de préférence 1/0,1-1/1-5/1-5.
 - 3. Procédé selon la revendication 1 ou la revendication 2, dans lequel, dans le catalyseur de formule (I):
 - a est compris entre 0,09 et 0,8, bornes incluses:
- 25 b est compris entre 0,04 et 0,6, bornes incluses;
 - c est compris entre 0,01 et 0,4, bornes incluses ; et
 - d est compris entre 0,4 et 1,6, bornes incluses.
 - 4. Procédé selon l'une des revendications 1 à 3, caractérisé en que l'on conduit les réactions d'oxydation à une température de 200 à 500°C.
- Procédé selon la revendication 4, caractérisé en que l'on conduit la réaction d'oxydation à une température de 250 à 450°C.

- 6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'on conduit les réactions d'oxydation sous une pression de 1,01.10⁴ à 1,01.10⁶ Pa (0,1 à 10 atmosphères).
- 7. Procédé selon la revendication 6, caractérisé en ce que l'on conduit les réactions d'oxydation sous une pression de 5,05.10⁴ à 5,05.10⁵ Pa (0,5-5 atmosphères).
 - 8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'il est mis en œuvre jusqu'à un taux de réduction du catalyseur compris 0,1 et 10 g d'oxygène par kg de catalyseur.
- 9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'une fois que le catalyseur est au moins partiellement passé à l'état réduit, on conduit sa régénération selon la réaction (C):

 $SOLIDE_{réduit} + O_2 \rightarrow SOLIDE_{oxydé}$ (C)

par chauffage en présence d'oxygène ou d'un gaz contenant de l'oxygène à une température de 250 à 500°C, pendant le temps nécessaire à la réoxydation du catalyseur.

- 10. Procédé selon la revendication 9, caractérisé en ce que l'on conduit les réactions d'oxydation et la régénération (C) dans un dispositif à deux étages, à savoir un réacteur et un régénérateur qui fonctionnement simultanément et dans lesquels alternent périodiquement deux charges de catalyseur.
- 11. Procédé selon la revendication 9, caractérisé en ce que l'on conduit les réactions d'oxydation et la régénération (C) dans un même réacteur en alternant les périodes de réaction et de régénération.
- 12. Procédé selon la revendication 9, caractérisé en ce que l'on conduit les réactions d'oxydation et la régénération (C) dans un réacteur à lit transporté.
 - 13. Procédé selon l'une des revendications 1 à 7, dans lequel :
 - a) on introduit le mélange gazeux de départ dans un premier réacteur à lit de catalyseur transporté,
 - b) à la sortie du premier réacteur, on sépare les gaz du catalyseur ;
- c) on envoie le catalyseur dans un régénérateur ;

20

d) éventuellement on introduit les gaz dans un second réacteur à lit de catalyseur transporté;

10

15

- e) le cas échéant, à la sortie du second réacteur, on sépare les gaz du catalyseur et on récupère l'acide acrylique contenu dans les gaz séparés;
- f) le cas échéant, on renvoie le catalyseur dans le régénérateur ; et
- g) on réintroduit du catalyseur régénéré provenant du régénérateur dans le premier réacteur et le cas échéant dans le second réacteur.
- 14. Procédé selon la revendication 13, dans lequel les premier et second réacteurs sont verticaux et le catalyseur est transporté vers le haut par le flux des gaz.
- 15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que l'on conduit les réactions d'oxydation avec un temps de séjour de 0,01 à 90 secondes dans chaque réacteur.
- 16. Procédé selon la revendication 15, caractérisé en ce que l'on conduit les réactions d'oxydation avec un temps de séjour de 0,1 à 30 secondes.
- 17. Procédé selon l'une des revendications 1 à 16, caractérisé en ce que le propylène produit et/ou le propane n'ayant pas réagi sont recyclés à l'entrée du réacteur, ou s'il y a plusieurs réacteurs, à l'entrée du premier réacteur.
- 18. Procédé selon l'une des revendications 1 à 17, dans lequel, le réacteur, ou lorsqu'il y a plusieurs réacteurs, l'un au moins des réacteurs comprend en outre un co-catalyseur répondant à la formule (II) suivante :

 $Mo_1Bi_a\cdot Fe_b\cdot Co_c\cdot Ni_d\cdot K_e\cdot Sb_f\cdot Ti_g\cdot Si_h\cdot Ca_i\cdot Nb_j\cdot Te_k\cdot Pb_l\cdot W_m\cdot Cu_n\cdot \ (\Pi)$

20 dans laquelle:

- a' est compris entre 0,006 et 1, bornes incluses;
- b' est compris entre 0 et 3,5, bornes incluses;
- c' est compris entre 0 et 3,5, bornes incluses;
- d' est compris entre 0 et 3,5, bornes incluses ;
- 25 e' est compris entre 0 et 1, bornes incluses ;
 - f' est compris entre 0 et 1, bornes incluses ;
 - g' est compris entre 0 et 1, bornes incluses;
 - h' est compris entre 0 et 3,5, bornes incluses;
 - i' est compris entre 0 et 1, bornes incluses;
- or j' est compris entre 0 et 1, bornes incluses;
 - k' est compris entre 0 et 1, bornes incluses;
 - l' est compris entre 0 et 1, bornes incluses;
 - m' est compris entre 0 et 1, bornes incluses ; et
 - n' est compris entre 0 et 1, bornes incluses.

. .)

30

19. Procédé selon la revendication 18, dans lequel le co-catalyseur est régénéré et circule, le cas échéant, de la même manière que le catalyseur.

- 20. Procédé selon la revendication 18 ou la revendication 19, dans lequel, dans le co-catalyseur de formule (II):
- 5 a' est compris entre 0,01 et 0,4, bornes incluses;
 - b' est compris entre 0,2 et 1,6, bornes incluses;
 - c' est compris entre 0,3 et 1,6, bornes incluses ;
 - d' est compris entre 0,1 et 0,6, bornes incluses ;
 - e' est compris entre 0,006 et 0,01, bornes incluses;
- 10 f' est compris entre 0 et 0,4, bornes incluses;
 - g' est compris entre 0 et 0,4, bornes incluses;
 - h' est compris entre 0,01 et 1,6, bornes incluses;
 - i' est compris entre 0 et 0,4, bornes incluses;
 - j' est compris entre 0 et 0,4, bornes incluses;
- 15 k' est compris entre 0 et 0,4, bornes incluses;
 - 1' est compris entre 0 et 0,4, bornes incluses;
 - m' est compris entre 0 et 0,4, bornes incluses ; et
 - n' est compris entre 0 et 0,4, bornes incluses.
- 21. Procédé selon l'une des revendications 18 à 20, dans lequel, on utilise un rapport massique du catalyseur au co-catalyseur supérieur à 0,5 et de préférence d'au moins 1.
 - 22. Procédé selon l'une des revendications 18 à 21, dans lequel le catalyseur et le co-catalyseur sont mélangés.
- 23. Procédé selon l'une des revendications 18 à 21, dans lequel le catalyseur et le co-catalyseur se présentent sous la forme de grains, chaque grain comprenant à la fois le catalyseur et le co-catalyseur.
 - 24. Procédé selon l'une des revendications 1 à 23, comprenant la répétition, dans un réacteur pourvu du catalyseur de formule (I) défini dans la revendication 1, et le cas échéant, du co-catalyseur de formule (II) défini dans la revendication 18, du cycle comprenant les étapes successives suivantes :
 - une étape d'injection du mélange gazeux tel que défini dans les revendications 1 à 3;
 - 2) une étape d'injection de vapeur d'eau et, le cas échéant de gaz inerte ;

- 3) une étape d'injection d'un mélange d'oxygène moléculaire, de vapeur d'eau et, le cas échéant, de gaz inerte ; et
- 4) une étape d'injection de vapeur d'eau et, le cas échéant de gaz inerte.
- 25. Procédé selon la revendication 24, caractérisé en ce que le cycle comprend une étape supplémentaire qui précède ou suit l'étape 1) et au cours de laquelle on injecte un mélange gazeux correspondant à celui de l'étape 1) mais sans l'oxygène moléculaire, le rapport molaire propane/oxygène moléculaire étant alors calculé globalement pour l'étape 1) et cette étape supplémentaire.
- 26. Procédé selon la revendication 25, caractérisé en ce que l'étape 10 supplémentaire précède l'étape 1) dans le cycle.
 - 27. Procédé selon l'une des revendications 24 à 26, caractérisé en ce que le réacteur est un réacteur à lit transporté.

1/2

5

Fig. 1

25

30

Fig. 2

2/2

Schéma des creusets utilisés

Fig. 3

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07C57/05 C07C51/215 C07C57/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

Calation of document, with indication, where appropriate, of the relevant passages	
Common or documents, with indication, where appropriate, of the relevant passages	Relevant to claim No.
US 2002/115879 A1 (HINAGO HIDENORI ET AL) 22 August 2002 (2002-08-22) column 8, paragraph 0188; claims 1,18; example 14	1-12, 15-23
DE 101 45 958 A (ASAHI CHEMICAL IND) 29 May 2002 (2002-05-29) page 15, paragraph 0109; example 8; table 2	1-12, 15-23
EP 1 238 960 A (ATOFINA) 11 September 2002 (2002-09-11) the whole document	1-12, 15-23
FR 2 833 005 A (ATOFINA) 6 June 2003 (2003-06-06) claims	1-12, 15-23
-/	
	22 August 2002 (2002-08-22) column 8, paragraph 0188; claims 1,18; example 14 DE 101 45 958 A (ASAHI CHEMICAL IND) 29 May 2002 (2002-05-29) page 15, paragraph 0109; example 8; table 2 EP 1 238 960 A (ATOFINA) 11 September 2002 (2002-09-11) the whole document FR 2 833 005 A (ATOFINA) 6 June 2003 (2003-06-06)

Patent family members are listed in annex.
 'T' later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family
Date of mailing of the international search report 04/03/2004
Authorized officer Bonnevalle, E

Ì	Interna
	PCT/FK 03/02673

Category •	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
1	US 6 291 393 B1 (FURUTA MADOKA ET AL) 18 September 2001 (2001-09-18) column 5, line 63 - line 67; examples 1,3	1-12, 15-23
	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 12, 3 January 2001 (2001-01-03) & JP 2000 256257 A (TOAGOSEI CO LTD), 19 September 2000 (2000-09-19) abstract	1-12, 15-23
		·

PCT/FR 03/02673

Patent document cited in search report	ł	Publication date		Patent family member(s)		Publication date
US 2002115879	A1	22-08-2002	CN	1360971	A	31-07-2002
			DE	10161318		25-07-2002
			JP	2002239382		27-08-2002
DE 10145958	Α	29-05-2002	CN	1344584	A .B	17-04-2002
			DE	10145958		29-05-2002
			JP	2002159853	A	04-06-2002
			US	2003017944	A1	23-01-2003
EP 1238960	Α	11-09-2002	FR	2821840	A1	13-09-2002
			CN	1375487		23-10-2002
			EP	1238960	A1	11-09-2002
			JP	2002332256	Α	22-11-2002
			US	2003088124	A1	08-05-2003
FR 2833005	Α	06-06-2003	FR	2833005	A1	06-06-2003
			WO	03045886		05-06-2003
US 6291393	B1	18-09-2001	JP	2000254496	Α	19-09-2000
			US	2001029234		11-10-2001
JP 2000256257	Α	19-09-2000	NONE			

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 C07C57/05 C07C51/215 C07C57/04

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CTB 7 C07C

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des dornaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) **EPO-Internal**

C. DOCUMENTS CONSIDERES COMME PERTINENTS

RI ET AL) 1-12.
RI ET AL) 1-12, 15-23 ations
IND) 1-12, 15-23 tableau 2
1-12, 15-23
1-12, 15-23
- /

Voir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe
A document définissant l'état général de la technique, non considéré comme particulièrement pertinent *E* document antérieur, mais publié à la date de dépôt international ou après cette date *L* document pouvant jeter un doute sur une revendication de priorité ou clié pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'Indiquée) *O* document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens *P* document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée *.	T° document uttérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention X° document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément Y° document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier 8° document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée 25 février 2004	Date d'expédition du présent rapport de recherche internationale 04/03/2004
Nom el adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax. (+31-70) 340-3016	Fonctionnaire autorisé Bonnevalle, E

RAPPORT DE REINTERNATIONALE

_		
Dema	nationale No	
PCT/FI	03/02673	

		101711	PC1/FR U3/U26/3						
C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS									
Catégorie ^e	Identification des documents cités, avec, le cas échéant, l'Indicationdes passa	ges pertinents	no. des revendications visées						
1	US 6 291 393 B1 (FURUTA MADOKA ET AL) 18 septembre 2001 (2001-09-18) colonne 5, ligne 63 - ligne 67; exemples 1,3		1-12, 15-23						
	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 12, 3 janvier 2001 (2001-01-03) & JP 2000 256257 A (TOAGOSEI CO LTD), 19 septembre 2000 (2000-09-19) abrégé		1-12, 15-23						

RAPPORT DE RECHER EINTERNATIONALE

Renseignements relatifs aux memores de familles de brevets

PCT/FR 03/02673

Document brevet cité au rapport de recherche			Date de publication	Membre(s) de la famille de brevet(s)			Date de publication
US	2002115879	A1	22-08-2002	CN	1360971	Α	31-07-2002
				DE	10161318	A1	25-07-2002
				JP	2002239382	Α	27-08-2002
DE	10145958	Α	29-05-2002	CN	1344584	A ,B	17-04-2002
				DE	10145958	A1	29-05-2002
				JP	2002159853	Α	04-06-2002
				US	2003017944	A1	23-01-2003
EP	1238960	Α	11-09-2002	FR	2821840	A1	13-09-2002
				CN	1375487	Α	23-10-2002
				EP	1238960	A1	11-09-2002
				JP	2002332256	Α	22-11-2002
				US	2003088124	A1	08-05-2003
FR	2833005	Α	06-06-2003	FR	2833005	A1	06-06-2003
				WO	03045886		05-06-2003
US	6291393	B1	18-09-2001	JP	2000254496	A	19-09-2000
				US	2001029234		11-10-2001
JP	2000256257	Α	19-09-2000	AUCUN			