Практическая работа №2

Денисов Кирилл ИВБО-02-19 16 февраля 2022 г.

1 Определение метрик производительности системы

Приведем характеристики виртуальной машины, к которой мы подключились в ходе данной практической работы (см. таблицу 1). Данные были получены с помощью программ «Perfomance test» и «CrystalDiskMark».

Таблица 1 — Метрики производительности системы

Вычислительная производительность в целочисленных операциях	6095 IOPS
Вычислительная производительность в вещественных операциях	3911 FLOPS
Пропускная способность оперативной памяти на чтение	5210 MB/s
Пропускная способность оперативной памяти на запись	4217 MB/s
Задержка отклика при работе с оперативной памятью	64 ns
Производительность системы хранения в режиме последовательного чтения	1099 MB/s
Производительность системы хранения в режиме последовательной записи	633 MB/s
Производительность системы хранения в режиме случайного чтения	31.28 MB/s
Производительность системы хранения в режиме случайной записи	64.89 MB/s
Пропускная полоса сети на загрузку	131.85 Mbit/s
Пропускная полоса сети на отдачу	91.8 Mbit/s
Емкость устройств хранения данных	55 GB

Приведем снимки экрана результатов измерений, проведенной на выделенной виртуальной машине (см. рисунки 1-7).

Рисунок 1 — Статистика 2D графики

Рисунок 2 — Статистика 3D графики

Рисунок 3 — Статистика СРИ

Рисунок 4 — CrystalDiskMark. Статистика памяти

Рисунок 5 — Статистика диска

Рисунок 6 — Статистика памяти

Рисунок 7 — Общая статистика

2 Создание томов в управлении дисками

Создадим на носителях виртуальной машины зеркальные (RAID1), чередующиеся(RAID0) и составные (JBOD) тома по следующей схеме (см. рисунки 8-11).

- 1. 1 зеркальный том.
- 2. 1 чередующийся том на 2 диска.
- 3. 1 чередующийся том на 3 диска.
- 4. 2 тома: 1 составной на 2.5 диска, другой простой на 0.5 диска.

Рисунок 8 — Зеркальный том

Рисунок 9 — Чередующийся том на два диска

Рисунок 10 — Чередующийся том на три диска

Рисунок 11 — Составной диск

Вывод: в ходе выполнения данной практической работы, мы научились измерять метрики производительности компьютера под управлением операционной системы Windows с помощью программ «Perfomance test» и «CrystalDiskMark», научились создавать тома с помощью утилиты «Управление дисками».