M.Sc. (CA) SEMESTER - I M.Sc. (CA) PAPER - I TITLE: MATHEMATICAL FOUNDATION PAPER CODE: CSA4101

[CREDITS - 4]

earning Object	ive:		[CREDITS -
		thematical foundations required for various computer so	ience courses.
es Reserve		Title and Contents	No. of Lectures
Unit - I	Sets, Re	elations and Functions	5
	1.1	Sets	
	1.2	Relations and functions	
	1.3	Methods of proof	
	1.4	Equivalence relations	
	1.5	Cardinality	
Unit - II	Introductory Logic		7
	1.1	Fundamentals of Logic	
	1.2	Logic operators such as AND, OR etc., Truth tables	
	1.3	Logical inferences	
	1.4	Methods of proofs of an implication	
	1.5	First order logic	
	1.6	Predicate calculus Predicates and Quantifiers	
	1.7	Rules of inference for quantified propositions	
Unit - III	Recurrence Relations		7
	3.1	Recursion	
	3.2	Forming and solving recurrence relations by	
		substitution method and generating function	
	3.3	Method of characteristic roots	
Annual Annual Streets	3.4	Solving non homogeneous recurrence relations	
Unit - IV	Theory of Graphs		10
	4.1	Graphs	
	4.2	Subgraphs	
	4.3	Isomorphism Proofs	
	4.4	Types of graphs	
	4.5	Paths and cycles	
	4.6	Adjacency matrices	
	4.7	Transitive closure	
	4.8	Connectivity	
	4.9	Directed acyclic graphs	
	4.10	Planar graphs and Euler's formula	
	4.11	Dual of a graph	
	4.12	Hamiltonian and Eulerian graphs	
	4.13	Applications like matching and colouring graphs	
	4.14	Graph traversals (BFS and DFS)	
	4.15	Trees	
	4.16	Spanning trees	
Unit - V		ility and Random Vectors	7
	5.1	Introduction to regular expression to finite automata	
	5.2	Random vectors	
	5.3	Conditional Probability	
	5.4	Bayes Rule	

	5.5 Multivariate Gaussian	
	5.6 Random Processes	
Unit - VI	Basics of statistics	
	 Introduction to measure of central tendency and dispersion 	•
	6.2 Best linear unbiased estimator and weighted least-squares, maximum likelihood	
	6.3 Computing estimates: unconstrained optimization, stochastic gradient descent	
	6.4 Bayesian estimation	
	6.5 Hypothesis testing	
Unit - VII	Basics of Vector spaces	5
	7.1 Linear Vector spaces	
	7.2 Linear independence	
	7.3 Norms and Inner products	
	7.4 Bases and Orthobases	
	7.5 Examples: Bsplines, cosines / Fourier, radial basis	
	Functions, etc.	
	 7.6 Linear approximation (closest point in a subspace, Least squares - I) 	

References:

- J. L. Mott, A. Kandel, T. P. Baker, Discrete Mathematics for Computer Scientists and Mathematicians: PHI.
- 2. John Truss, Discrete Mathematics for Computer Science: Pearson International, 2001.
- Introduction to Discrete Mathematical Structures with Applications to Computer Science, McGraw Hill, 1975.
- 4. Liu, Computer Science: Mathematical Introduction: PHI.