The product of force and displacement is called work don The Scalar product of force and displacement is called Mathematically It is a scalar quantity Its unit is Nm (Joule) If IN force is applied on a body and it distance of Im in the direction of force body is doing 1 Joule work. work is +ve work is zero work is -ve work is maximum viable force: If the direction or magnitude of force changes than the force is called variable force moves away from the earth.

V Total = limit Fi cos Oi Adi In this limit Ad approaches zero, the total area of the rectangles approaches the area between the Fcoso curve and from a to b as shown. Displacement d -Thus, the work done by a variable particle between two points is equal to the area under the Fcos O verses d' curve betimeen the two points Jork done by buavitational 1 around the earth with in which 1 on bodies is called gravitational son a body called gravitational • Nork done along the gravitational force is taken as +ve and work done against the gravitational force is taken -@....

Dale:	Man O	Tue O	Wed O		Tri O	Sat O	Sun O
Consider two points A an	nd B in	grav	itatio	mal	fie	ld	
C	В	23	Ž*				2
		* 40 - 18					
We have to calculate the as shown.	e workdone	ali	ng o	all	the	pat	hs
Nork done along po	th AC	B:	70	35	. %		
Me observe Nace = N	AC + NCB	Sing Pring	W				
$N_{AC} = F_{oa}$ $= F_{d}$	cos O	L					
Nac = Pa c Nac = 0 We observe that the and and displacement is 90°	gle betnicer	> 1	gra	vita	tem	alt	nvia
Now Now Res Fod	/	***					ore_
= Fd cost Now here we observe that between the gravitational	y while mo	ving	upu	lard	· 7,	he an	igle
180° dhan		- 0	uspia	cemi			
		*4			0	C WA	

 $N_1 = F \cdot \Delta y_1$ = $F \cdot \Delta y \cos(180)$ $N_1 = -F \cdot \Delta y$ Gimilarly $V_2 = -F\Delta y_2$ M3 = -FDYS $W_n = -F\Delta y_n$ NT= W1+ W2+ W3+....+ Wn $N_T = -F \triangle y_2 - F \triangle y_2 - F \triangle y_3 - \dots - F \triangle y_n$ $N_T = -F (\triangle y_2 + \triangle y_2 + \triangle y_3 + \dots + \triangle y_n)$ $N_T = -F (\triangle y_1 + \triangle y_2 + \triangle y_3 + \dots + \triangle y_n)$ S_0 $N_T = -F_k$:F=W=mg NI = -mgh Now from equ and we observe that

Conclusion: Workdone is a gravitational field
between two is independent of the path followed

(OR) Morkdone along a closed path is zero

conservative field: The field in which workdone is independent of the path followed. (OR)
The field in which workdone along a closed path is zero. The force act in a conservative field is called gravitational field, electric field. by the frictional force is non-conservative Why workdone along a closed path is zero? We have to calculate the workdone along total path

50 Angle between Fg and d is 90° $= Fd \cos(90)$ $V_{AB} = 0$ Now = Fd cos 0 between Fg and d is 180° = Fd cos(180) Wec = -mgh Angle between Fg and is 90°
= Fd cos (90)

V cp = 0 = Fd cos(0) = +mgh J = 0 - mgh + 0 + mgh J = 0

Date:		Mon Tue Wet	~ /	0
5/Q: 1kNh = 36MJ				30
1kWh = 1x 1000x.	3600 sec XI	W	V	
= 3600000 $= 3.6 \times 10^6 W$				
1kWh = 3.6M.T	7.4		1	
KWh is a commercial uni 1kWh is a workdone in	t of electric	ral energy.	whose	Daluer
is 1kwh.	me hour	by angle	whose	nner
0		P=W+	MCQs=	
Energy	£272.	$M = \frac{U}{A}$	Ms en	kdone
	,	Ms=J	и	nits _
Capacity of a body to The ability of a body	do work	(OR)	lod ener	au
	Age of the	belle of		10
Types: Mechanically	it has t	wo types:		
Kinetic ener	gy. mis	12 8		
Kinetic energy:	rgy.	. 4		
Energy :	persensed	by a body	due to	oits
motion is called kinetic	energy	J J	- V	
$K.E. = \frac{1}{2}mv^2$	At	0-3A		
5/Q: Is K.E. a scala quantity?	r quant	ily or a	Vector	_
quantity:	A out Ma			
The K.E. is a scalar qu	cantity is	le can wh	ite K.F.	us

MCQs: $F = ma \rightarrow a = F$ W = P.Ef. - P. Ei. = mgh1-mgh2 $2(F)_{S} = V_{4}^{2} - V_{i}^{2}$ 1N = mg (h1-h2) 2FS = m (1/f2-1/2) Work energy Principle. (in Case of Potential energy) $FS = \frac{1}{2} m \left(V_f^2 - V_i^2 \right)$ $FS = \frac{1}{2} m V_f^2 - \frac{1}{2} m V_i^2$ FG=W, K.Ef = 1 m V/2 9 K.E. = 1 m V/2 W = K.Ef. - K.Ej. W = AK.E. Force = F = 40N $0 = 20^{\circ}$ d = 20mM = Fd cos 0 $W = (40)(20)\cos(20)$ W = 751.7 T W= 7.51 x102,7

roblem#2: Friction Gravity F1 3.35 × 10 5 kg So, 0 = 180° So, 0=0° 9.8 ms-1 by the gravity = W = ? by the gravity Fd cos(0) Fd cos O Fd cos (180) W = -mgh $W = -13.35 \times 10^{-5})(9.8)(100)$ W= -0.0328J

@ ...

Date:_ Mon Tue Gii O Wed Thu Sat Sun 0 $(0)^2 - (15)^2$ = 400 (-225) -90000 = -90000 0 60 F = 1500N original K.E. is used to do work against 100m3 0x60 = 1200sec 1000 kg m-3 m @

Mon Tue Wed Thu Git Eat Sim Date: m = fv P.t. = frgh P.E = (1000)(100)(9.8)(10) = 9.8 x 10 J P = P.E Now 9.8x106 1200 roblem#7: 800 km h-1 800×1000 - 22.22ms-1 3600 V cos O (400) (22.22) cos (0) 8888 8.9 KW

2

45

<u>a</u>