Chapter 3 Exercise Solutions

Jörg Barkoczi

3

3.1

3.1-1

Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ -notation, prove that $max(f(n), g(n)) = \Theta(f(n) + g(n))$.

Given constants c_1 , c_2 and n_0 , a function $(m(n) = max(f(n), g(n))) \in \Theta(f(n) + g(n))$ if and only if $0 \le c_1(f(n) + g(n)) \le m(n) \le c_2(f(n) + g(n))$. Since $m(n) \le f(n) + g(n)$ we already have an upper bound to work with and can thus default c_2 to just 1.

For the lower bound we can just take the factor $min(\frac{f(n)}{f(n)+g(n)},\frac{g(n)}{f(n)+g(n)})$, which shrinks the expression f(n)+g(n) to min(f(n),g(n)) and therefore is always smaller or equal to max(f(n),g(n)).

And thus our function m(n) satisfies $0 \le min(\frac{f(n)}{f(n)+g(n)}, \frac{g(n)}{f(n)+g(n)})(f(n)+g(n)) \le m(n) \le f(n)+g(n), \forall n>0$ and is indeed in the set of functions described by $\Theta(f(n)+g(n))$.

3.1-2

Show that for any real constants a and b, where b > 0,

$$(n+a)^b = \Theta(n^b).$$

Let us start by showing that $(n+a)^b = O(n^b)$. This requires us to find constants c, n_0 such that

$$0 \le (n+a)^b \le cn^b, \forall n \ge n_0.$$

Let $c = 2^b$

$$\Leftrightarrow (n+a)^b \le (2n)^b$$

and thus we have $(n+a)^b \leq (2n)^b, \forall n \geq n_0 = |a|$ which implies

$$(n+a)^b = O(n^b).$$

Next we need to show that $(n+a)^b = \Omega(n^b)$, which again requires us to find constants c, n_0 such that

$$0 \le cn^b \le (n+a)^b, \forall n \ge n_0.$$

Let $c = (\frac{1}{2})^b$.

$$\Rightarrow (n+a)^b \ge (\frac{1}{2}n)^b$$

and thus we have $(n+a)^b \geq (\frac{1}{2}n)^b, \forall n \geq n_0 = 2|a|$ which implies

$$(n+a)^b = \Omega(n^b).$$

And therefore, by Theorem 3.1, $(n+a)^b = \Theta(n^b)$.

3.1-3

Explain why the statement, "The running time of algorithm A is at least $O(n^2)$ ", is meaningless.

Saying that the running time of algorithm A is at least $O(n^2)$ gives no information about the worst-case running time, because "at least" implies the best-case input. It gives no information on the best-case running time either, since the O-notation bounds a function from the above, not from below as the Ω -notation does. Therefore the statement is to be considered meaningless.

3.1-4

Is
$$2^{n+1} = O(2^n)$$
?

Inequality to prove:

$$0 \le 2^{n+1} \le c \cdot 2^n, \forall n \ge n_0.$$

Let c=2, then

$$2^{n+1} \le 2 \cdot 2^n = 2^{n+1}, \forall n \ge 0.$$

Therefore $2^{n+1} = O(n^2)$.

Is
$$2^{2n} = O(2^n)$$
?

Inequality to prove:

$$0 \le 2^{2n} \le c \cdot 2^n, \forall n \ge n_0.$$
$$2^{2n} \le c \cdot 2^n$$
$$2^n \le c$$

There is obviously no constant c that satisfies

$$\lim_{n \to \infty} 2^n \le c,$$

therefore $2^{2n} \neq O(2^n)$.

3.1-5

Prove Theorem 3.1.

"For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ " (Theorem 3.1).

Per definition $\Theta(g(n))$ requires the existence of constants c_1, c_2, n_0 such that

$$0 < c_1 \cdot q(n) < f(n) < c_2 \cdot q(n), \forall n > n_0.$$

Therefore we can split of the inequalities as

$$0 \le c_1 \cdot g(n) \le f(n), \forall n \ge n_0,$$

which implies $f(n) = \Omega(n)$, and

$$0 \le f(n) \le c_2 \cdot g(n), \forall n \ge n_0,$$

which implies f(n) = O(n).

From the other side of the equivalence, if we have constants c_a, c_b, n_a, n_b such that

$$0 \le c_a \cdot g(n) \le f(n), \forall n \ge n_a,$$

and

$$0 \le f(n) \le c_b \cdot g(n), \forall n \ge n_b,$$

we can let $n_0 = max(n_a, n_b)$ and thus satisfy

$$0 \le c_a \cdot g(n) \le f(n) \le c_b \cdot g(n), \forall n \ge n_0.$$

3.1-6

Prove that the running time of an algorithm is $\Theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is $\Omega(g(n))$.

If the worst-case running time of an algorithm is O(g(n)), the implication is that the running time is bounded from above (by some funtion f(n) = O(g(n))) for any input of size n.

Likewise if the best-case running time of an algorithm is $\Omega(g(n))$, the implication is that the running time is bounded from below (by some function $f(n) = \Omega(g(n))$) for any input of size n.

Therefore by Theorem 3.1, that algorithm's running time is $\Theta(g(n))$.

Written as an equivalence:

$$f(n) \in \Theta(g(n))$$

$$\Leftrightarrow \exists c_1, c_2, n_0 : 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0$$

$$\Leftrightarrow (0 \le c_1 g(n) \le f(n) \land 0 \le f(n) \le c_2 g(n)), \forall n \ge n_0$$

$$\Leftrightarrow f(n) \in \Omega(g(n)) \cap O(g(n))$$

3.1-7

Prove that $o(g(n)) \cap \omega(g(n))$ is the empty set.

For a function f(n) to be considered a member of $o(g(n)) \cap \omega(g(n))$, the following equivalence must be true:

$$f(n) \in \omega(g(n)) \cap o(g(n))$$

$$\Leftrightarrow 0 \le c_1 g(n) < f(n) \land 0 \le f(n) < c_2 g(n)$$

$$\Leftrightarrow 0 \le c_1 g(n) < f(n) < c_2 g(n)$$

for all positive real constants c_1 and c_2 , and for all n bigger than some positive constant n_0 .

But since $c_1g(n) < c_2g(n)$ can't be true for all positive constants c_1 and c_2 , $o(g(n)) \cap \omega(g(n))$ must be the empty set.

3.1-8

$$O(g(n,m)) = \{f(n,m) : \exists c, n_0, m_0 > 0 : 0 \le f(n,m) \le cg(n,m), \forall n \ge n_0 \lor \forall m \ge m_0\}$$

$$\Omega(g(n,m)) = \{ f(n,m) : \exists c, n_0, m_0 > 0 : 0 \le cg(n,m) \le f(n,m), \forall n \ge n_0 \lor \forall m \ge m_0 \}$$

$$\Theta(g(n,m)) = \{f(n,m): f(n,m) \in \Omega(g(n,m)) \cap O(g(n,m))\}$$

3.2

3.2 - 1

Show that if f(n) and g(n) are monotonically increasing functions, then so are the functions f(n) + g(n) and f(g(n)), and if f(n) and g(n) are in addition nonnegative, then $f(n) \cdot g(n)$ is monotonically increasing.

f(n) and g(n) being monotonically increasing implies that for $n \leq m$

$$f(n) \le f(m) \land g(n) \le g(m)$$

$$\Leftrightarrow f(n) + g(m) \ge f(n) + g(n)$$

$$\Leftrightarrow f(m) + g(m) \ge f(n) + g(n),$$

likewise it implies that $f(g(n)) \leq f(g(m))$.

If in addition both f(n) and g(n) are nonnegative, the following holds

$$f(n)g(n) = f(n)g(n)$$

$$\Leftrightarrow f(n)g(n) \le f(n)g(m)$$

$$\Leftrightarrow f(n)g(n) \le f(m)g(m)$$

3.2-2

Proof equation (3.16).

$$a^{\log_b c} = c^{\log_b a}$$

$$a^{\log_b c} = c^{\log_b a}$$

$$\Leftrightarrow a^{\frac{\log_b c}{\log_b a}} = c$$

$$\Leftrightarrow a^{\log_a c} = c$$

$$\Leftrightarrow c = c$$

3.2-3

Prove equation 3.19 $\lg(n!) = \Theta(n \lg n)$. Also prove that $n! = \omega(2^n)$ and $n! = o(n^n)$.

Let us start with equation **3.19** and by showing its membership to $O(n \lg n)$.

Let c be some positive real constant, then

$$\lg(n!) \in O(n \lg n)$$

$$\Leftrightarrow 0 \le \lg(n!) \le cn \lg n$$

$$\Leftrightarrow \lg(n^n) \le cn \lg n$$

$$\Leftrightarrow n \lg n \le cn \lg n$$

holds for all $n \ge n_0 = 1$ if c >= 1.

Now we will need to additionally show that $\lg(n!)$ is also a member of $\Omega(n \lg n)$.

Again let c be some positive real constant, then

$$\lg(n!) \in \Omega(n \lg n)$$

$$\Leftrightarrow 0 \le cn \lg n \le \lg(n!)$$