

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

BUKAERAKO ARIKETA (FINALA)

2017–2018 Ikasturtea. Lehenengo deialdia: 2018ko maiatzak 18

Izen Abizenak: Taldea:

1. ARIKETA

(2 puntu)

Izan bedi (\mathbb{P}_3 , <,>) espazio euklidearra ohiko biderkadura eskalarrarekin, eta izan bitez honako bi azpimultzoak:

$$W = \{ p(x) \in \mathbb{P}_3 / p(1) = p(0) = p'(0) = 0 \}$$

$$S = \mathcal{L} \{ p_1(x) = x^3 + x^2 - 1, p_2(x) = x^2 - 1, p_3(x) = -x^3 \} \subset \mathbb{P}_3$$

- (1.) Konprobatu Wazpiespazio bektoriala dela
- **(2.)** Zehaztu *W* azpiespazio bektorialaren oinarri bat eta dimentsioa.
- (3.) Zehaztu S azpiespazio bektorialaren ekuazio karakteristikoak
- **(4.)** Lortu $I = W \cap S$ azpiespazioa eta emaitza interpretatu. Betetzen al da $\mathbb{P}_3 \equiv W \oplus S$ dela?

2. ARIKETA

(3 puntu)

Izan bedi $M \in M_{3\times 3}(\mathbb{R})$ ondoko matrizea:

$$M = \begin{pmatrix} 1 & a & a-1 \\ 1 & a & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (1.) Lortu bere polinomio karakteristikoa $\forall a \in \mathbb{R}$ balioetarako eta lortutako emaitzarekin kalkulatu |M|
- (2.) Zehaztu $a \in \mathbb{R}$ parametroen zein baliotarako M matrizea diagonalizagarria den.
- (3.) Posible al da bektore propio ortonormalez osatutako \mathbb{R}^3 -ko oinarri bat lortzea? Arrazoitu. Erantzuna baiezkoa bada, diagonalizatu M matrizea oinarri hori erabiliz.

3. ARIKETA

(3 puntu)

Izan bedi AM ekuazio linealetako sistema adierazten duen matrize zabaldua

$$AM = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 2 & 0 & -2 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

- (1.) Kalkulatu AM matrizearen alderantzizkoa.
- (2.) Ebatzi sistema bateragarria bada. Sistema bateraezina bada, lor ezazu soluzio hurbildu bat karratu minimoen metodoa erabiliz.

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

4. ARIKETA

(puntu 1)

- (1.) Zein balio har dezake balio propio bakun bati elkartutako azpiespazio propioaren dimentsioak?
- (2.) Jakinda $A \in \mathbb{M}_{3\times 3}(\mathbb{R})$ -ren balio propioak $\lambda_1=1$ ($k_1=1$) eta λ_2 ($k_2=2$) direla, lortu A-ren polinomio deuseztatzailea
- (3.) \mathbb{R}^3 espazio bektorialean $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u} \in \mathbb{R}^3$ bektoreak hartu dira, halako moldez, non \vec{u} ez den $\vec{u}_1, \vec{u}_2, \vec{u}_3$ -ren konbinazio lineala; $\mathbf{F} = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}\}$ izanik, arrazoitu honako adierazpenak:
 - (3.1) F sistema librea da.
 - (3.2) F sistema lotua da.
 - (3.3) $F \mathbb{R}^3$ -ren sistema sortzailea da.

5. ARIKETA

(puntu 1)

Indukzio metodoa erabiliz, kalkulatu B^n (n > 2 izanik).

$$B = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & -2 & -1 & -2 \end{pmatrix}$$