09 509,051

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07H 21/00

(11) Internationale Veröffentlichungsnummer:

WO 98/25943

A1

(43) Internationales
Veröffentlichungsdatum:

18. Juni 1998 (18.06.98)

(21) Internationales Aktenzeichen:

PCT/EP97/06907

(22) Internationales Anmeldedatum:

10. Dezember 1997

(10.12.97)

(81) Bestimmungsstaaten: AU, BR, CA, JP, KR, MX, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintraffen

(30) Prioritätsdaten:

196 51 560.2

11. Dezember 1996 (11.12.96) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US):
HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH & CO. KG [DE/DE]; Bruningstrasse 50,
D-65929 Frankfurt am Main (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): ESCHENMOSER, Albert [CH/CH]; Bergstrasse 9, CH-8700 Küsnacht (CH). MICULKA, Christian [AT/DE]; Gebeschusstrasse 36, D-65929 Frankfurt am Main (DE). WINDHAB, Norbert [DE/DE]; Akazienstrasse 28, D-65795 Hattersheim (DE). HOPPE, Hans-Ulrich [DE/DE]; Amselweg 11, D-65929 Frankfurt an Main (DE).
- (74) Anwälte: BÖSL, Raphael usw.; Galileiplatz 1, D-81679 München (DE).
- (54) Title: NON-HELICAL SUPRAMOLECULAR NANOSYSTEMS
- (54) Bezeichnung: NICHT-HELIKALE SUPRAMOLEKULARE NANOSYSTEME
- (57) Abstract

The invention relates to a supramolecular nanosystem containing at least one substantially non-helical oligomer (oligomer A) and one or more identical or different, substantially non-helical oligomers which do not pair with each other, with identical or different functional units (oligomer B), in which the oligomer A can pair specifically non-covalently, and oligomer B is determinable by its monomers.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein supramolekulares Nanosystem, das mindestens ein im wesentlichen nicht-helikales Oligomer (Oligomer A) und ein oder mehrere, gleiche oder verschiedene, im wesentlichen nicht-helikale und miteinander nicht-paarende Oligomere mit gleichen oder verschiedenen funktionnellen Einheiten (Oligomer B) enthält, wobei das Oligomer A mit dem Oligomer B spezifisch nicht-kovalent paaren kann und das Oligomer B durch seine Monomere bestimmbar ist.

WO 98/25943 PCT/EP97/06907

Nicht-helikale Supramolekulare Nanosysteme

5

15

20

25

30

Die vorliegende Erfindung betrifft ein supramolekulares Nanosystem, das mindestens ein im wesentlichen nicht-helikales Oligomer (Oligomer A) und ein oder mehrere, gleiche oder verschiedene, im wesentlichen nicht-helikale und miteinander nicht-paarende Oligomere mit gleichen oder verschiedenen funktionellen Einheiten (Oligomer B) enthält, wobei das Oligomer A mit dem Oligomer B spezifisch nicht-kovalent paaren kann und das Oligomer B durch seine Monomere bestimmbar ist.

Die Miniaturisierung von technischen Bauelementen dringt mittlerweile in den Bereich molekularer Größenordnungen vor. Die Herstellung von miniaturisierten, integrierten elektronischen Schaltungen mittels herkömmlicher Verfahren, wie z. B. mittels einer photochemischen Behandlung eines Bauteils, wird auch durch die jeweiligen chemischen und physikalischen Eigenschaften der verwendeten Materialien bestimmt. Im Nanobereich können die diskreten molekularen oder atomar-quantisierten Materialeigenschaften genutzt werden, um neuartige Bauteile zu schaffen.

Die Materialeigenschaften, die durch Nanostrukturierung hervorgerufen oder beeinflußt werden, sind vor allem optische oder chiroptische Eigenschaften, z. B. bei Kerr-Zellen und bei der LEP-Technik; elektrische Eigenschaften, z. B. bei Halbleiter oder Leiter durch Konstitution von Leitungsbändern, Defektelektronen, Farbzentren oder Bereichen mit modulierbaren Tunnelströmen; chemisch, katalytische Eigenschaften, wie z. B. bei Zeolithen, Metall-Cluster-Katalyse, Konstitution von Reaktionsräumen; sowie physikalische Oberflächen- und Transporteigenschaften wie Durchlässigkeit, Adhäsion und Kompatibilität mit anderen Werkstoffen oder empfindlichen biologischen Systemen (Biokompatibilität).

In der supramolekularen Chemie werden die beschriebenen nanomolekularen Eigenschaften gezielt genützt, um neuartige Werkstoffe zu schaffen, die sich in Form von Paarungssystemen selbst organisieren können.

20

25

30

Paarungssysteme sind supramolekulare Systeme nicht-kovalenter Wechselwirkung, die sich durch Selektivität, Stabilität und Reversiblität auszeichnen, und deren Eigenschaften bevorzugt thermodynamisch, d. h. z.B. durch Temperatur, pH-Wert und Konzentration beeinflußt werden. DNA und RNA spielen dabei als Träger der Erbanlagen eine fundamentale Rolle. Solche Paarungssysteme können z. B. aufgrund ihrer selektiven Eigenschaften aber auch als "molekularer Klebstoff" für die Zusammenführung von unterschiedlichen Metallclustern zu Cluster-Verbänden mit potentiell neuen Eigenschaften verwendet werden [Mirkin, C. A. et al.., Nature, 1996, 382, 607-9; Alivisatos, A. P. et al.., Nature, 1996, 382, 609-11). Die Paarungs- bzw. Hybridisierungseigenschaften von natürlich vorkommender DNA wurde z. B. verwendet, um an DNA-Stränge gebundene Metallcluster mit einem komplementären DNA-Strang paaren zu lassen. Hierdurch wurden Cluster-Verbände mit potentiell neuen Material-Eigenschaften gewonnen. Derartige supramolekulare Nanosysteme können daher als "molekulare Maschinen" bzw. funktionelle "molekulare Schaltungen" angesehen werden.

Starke und thermodynamisch kontrollierbare Paarungssysteme spielen eine immer wichtigere Rolle für die Anwendung im Bereich der Nanotechnologie, zur Herstellung neuer Materialien, Diagnostika, Therapeutika sowie mikroelektronischer, photonischer und optoelektronischer Bauteile und für das kontrollierte Zusammenführen molekularer Species zu supramolekularen Einheiten.

Zur Herstellung derartiger Paarungssysteme besitzen DNA- bzw. RNA-Bausteine jedoch folgende Nachteile:

- a) Die Kräfte, die zwei Stränge zusammenhalten, vor allem Wasserstoffbrücken und Stapeleffekte, sind naturgemäß sehr gering. Solche Duplices weisen daher eine geringe Stabilität auf. Dies kann durch Aufnahme einer sog. Umwandlungskurve und Ermittlung des Umwandlungspunktes leicht festgestellt werden. Folglich sind für die Herstellung von Paarungssystemen relativ lange Einzelstränge notwendig, was zur Folge hat, daß der Anteil des Paarungssystems an der supramolekularen Einheit überwiegt, d. h. die "Nucleotidlast" ist hoch.
- b) Durch die Ausbildung von *Hoogsteen*-Paarungen, die alternativ zu *Watson-Crick*-Paarungen möglich sind, nimmt die Selektivität ab. Damit sind oftmals parallele Duplices oder irreversible Paarungsvorgänge verbunden.

PCT/EP97/06907

5

10

15

25

30

- c) Durch die hohe Flexibilität des Zucker-Phosphat-Ruckgrates bilden sich helicale Konformationen, wodurch die räumliche Anordnung in supramolekularen Einheiten weniger gut gesteuert werden kann.
- d) Eine mögliche Interferenz mit dem genetischen Material biologischer Systeme ist nicht auszuschließen, falls die supramolekularen Einheiten in einem biologischen System zum Einsatz kommen, d. h. eine Orthogonalität des Paarungsvorganges fehlt.

Damit ist eine Verwendung von DNA- bzw. RNA-Bausteinen z. B. in komplementär gebundenen zwei- und dreidimensionalen supramolekularen Strukturen (siehe z. B. WO96/13522) in einem physiologischen Medium vor allem im Hinblick auf den Punkt d) nur schwer zu realisieren.

Aufgabe der vorliegenden Erfindung war daher, ein System zu finden, das ein oder mehrere der beschriebenen Nachteile so weit wie möglich vermeidet.

Es wurde nun überraschenderweise gefunden, daß im wesentlichen nicht-helikale supramolekulare Nanosysteme besonders vorteilhafte Bausteine darstellen.

Ein Gegenstand der vorliegenden Erfindung ist daher ein supramolekulares Nanosystem, das mindestens ein im wesentlichen nicht-helikales Oligomer (Oligomer A) und ein oder mehrere, gleiche oder verschiedene, im wesentlichen nicht-helikale und miteinander nicht-paarende Oligomere mit gleichen oder verschiedenen funktionellen Einheiten (Oligomer B) enthält, wobei das Oligomer A mit dem Oligomer B spezifisch nicht-kovalent paaren kann und das Oligomer B durch seine Monomere bestimmbar ist.

Nicht-kovalente Paarung im Sinne der vorliegenden Erfindung bedeutet eine Assoziation des Oligomer A mit dem Oligomer B über nicht-kovalente Wechselwirkungen, wie zum Beispiel Wasserstoffbrücken, Salzbrücken, Stapelungen ("Stacking"), Metalligandierungen, Charge-Transfer-Komplexe und Hydrophobe Wechselwirkungen.

Bestimmbar im Sinne der vorliegenden Erfindung bedeutet, daß die funktionelle Einheit durch das Oligomer addressiert, d.h. kodiert ist. Der Code wird durch die vorher festgelegte Reihenfolge und Art der Monomere definiert. Dies kann beispielsweise eine bestimmte Nucleotidsequenz sein.

15

20

25

Die Art und Reihenfolge der Monomere des Oligomer B bestimmt die Art und Reihenfolge der Monomere des Oligomer A. Im Falle von Nucleotiden sind dies die jeweils zueinander komplementären Nucleotide (siehe z.B. Figur 2).

In einer besonderen Ausführungsform kann das Oligomer A sowohl mit dem Oligomer B paaren wie auch mit sich selbst in Form einer Haarnadelschleife. In Abhängigkeit von den äußeren Bedingungen lassen sich hierdurch strukturelle Veränderungen leicht makroskopisch induzierbar und bestimmbar machen (siehe z.B. Figur 4). Beispielsweise können strukturelle Änderungen des erfindungsgemäßen molekularen Nanosystems durch eine Änderung der Gleichgewichtsbedingungen, wie z.B. Konzentration an Oligomer B, Salzkonzentration, pH-Wert, Druck und/oder Temperatur, hervorgerufen werden. Durch die Einstellung bestimmter Gleichgewichtsbedingungen können auch verschiedene Bereiche zum Paaren bzw. Entpaaren gebracht werden, so daß reversibel zunächst entfernte Molekülreste in unmittelbare Nähe gebracht werden können (sogenannter Nano-Transport).

In einer bevorzugten Ausführungsform handelt es sich bei dem im wesentlichen nicht-helikalen Oligomer um eine Pentopyranosyl-Nukleinsäure, insbesondere um eine Ribo-, Arabino-, Lyxo-und/oder Xylo-pyranosyl-Nukleinsäure, vorzugsweise um eine Ribopyranosyl-Nukleinsäure auch Pyranosyl-RNA (p-RNA) genannt.

Die p-RNA als Beispiel einer Pentopyranosyl-Nukleinsäure ist eine Nukleinsäure, die anstelle der Ribofuranose der RNA die Ribopyranose als Zuckerbaustein enthält und daher ausschließlich Watson-Crick-gepaarte, antiparallele, reversibel "schmelzende", quasi-lineare und stabile Duplices ausbildet. Daneben gibt es auch homochirale p-RNA-Stränge entgegengesetzten Chiralitätssinns, die ebenfalls kontrollierbar paaren und in der gebildeten Duplex nicht streng-helical sind. Diese für den Aufbau supramolekularer Einheiten wertvolle Spezifität hängt mit der relativ geringen Flexibilität des Ribopyranosephosphat-Rückgrats sowie mit der starken Neigung der Basenebene zur Strangachse und der hieraus folgenden Tendenz zu intercatenarer Basenstapelung im resultierenden Duplex zusammen und läßt sich auf die Teilnahme eines 2',4'-cis-disubstituierten Ribopyranoserings am Aufbau des Rückgrates zurückführen. Aufgrund der hohen Selektivität und Stabilität sowie der Ausbildung von streng planar linearen Duplex-Strängen ist die Pentopyranosyl-Nukleinsäure und vorzugsweise die p-RNA für die vorliegende Erfindung besonders bevorzugt. Alle Reste, die in

gleicher Weise an den Pentopyranosyl-Strang gebunden sind, befinden sich auf der gleichen Seite der Duplex, was besonders vorteilhaft ist. Pentopyranosyl-Nukleinsäuren lassen sich beispielsweise gemäß Eschenmoser et al.. (Helv. Chim. Acta 1993, 76, 2161; Helv. Chim Acta 1995, 78, 1621; Angew. Chem. 1996, 108, 1619-1623) herstellen und sind im allgemeinen Doder L-konfiguriert.

Für die Herstellung des erfindungsgemäßen supramolekularen Nanosystems dient als natürliches Modell die Dekodierung von Aminosäuren für die Proteinsynthese durch die jeweiligen Basentriplets als Anticodon (siehe Figur 1). Analog hierzu werden gemäß der vorliegenden Erfindung gleiche oder verschiedene funktionelle Einheiten an ein Oligomer einer definierten Struktur gebunden. Beispielsweise wird ein Pentopyranosyl-Oligonucleotid, welches am 3' und/oder 5'-Ende mit freien Sulphydryl-Gruppen modifiziert ist, an Monomaleimido-derivatisierten Goldpartikeln gebunden (analog Alivisatos, A.P. et al. (1996), supra). Mit dem so modifizierten Oligomer (Oligomer B genannt) wird ein hierzu komplementäres Oligomer A zur Paarung in Kontakt gebracht, so daß sich das erfindungsgemäße supramolekulare Nanosystem ausbilden kann. Die sich gebildeten Duplex-Stränge liegen im allgemeinen in einer im wesentlichen planar-linearen Form vor, was besonders vorteilhaft ist.

- Im allgemeinen ist das Oligomer A länger als das Oligomer B. Besonders bevorzugt ist eine Länge des Oligomer A von ca. 10 bis ca. 500, vorzugsweise von ca. 10 bis ca 100 Monomereinheiten. Das Oligomer B ist im allgemeinen ca. 4 bis ca. 50, vorzugsweise ca. 4 bis 25, insbesondere ca. 4 bis ca 15, vor allem ca. 4 bis ca. 8 Monomereinheiten lang.
- In einer weiteren Ausführungsform kann der Pentopyranosyl-Teil der Pentypyranosyl-Nukleinsäure in Form eines Thiophosphates, alkylierten Phosphates, Phosphonates und/oder Amids modifiziert sein (siehe z.B. Uhlmann E. und Peyman A. (1990) Chemical Reviews, 90, 543-584, Nr. 4). In einer weiteren Ausführungsform der vorliegenden Erfindung wird für die Codierung der Oligomere eine der kanonischen Nukleobasen Adenosin, Guanosin, Cytosin, Thymidin und/oder Uracil oder auch Isoguanosin, Isocytosin, 2,6-Diaminopurin und/oder Xanthin verwendet. In den zuletzt genannten Fällen liegen die komplementären Basen in Form von Isoguanin/Isocytosin- bzw. 2,6-Diaminopurin/Xanthin-Paaren vor. Ansonsten paart im allgemeinen Adenosin mit Thymidin bzw. Uracil und Guanosin mit Cytosin.

15

25

In einer anderen Ausführungsform kann die nicht-kovalente Paarung zwischen Oligomer A und Oligomer B über einen Chelatbildner erfolgen. Beispielsweise werden hierbei die Nukleobasen einer Pentopyranosyl-Nukleinsäure durch den Chelatbildner ersetzt. Hierfür geeignet sind beispielsweise Chelatbildner, die vom Pyrazolylpyridin oder Pyridoquinazolin abgeleitet sind. In Anwesenheit eines Metallions, z.B. Cu² oder Ni², erfolgt eine Komplexierung und somit spezifische Paarung zwischen den beiden Oligomeren (siehe Figur 3).

Als funktionelle Einheit des Oligomer B eignet sich im allgemeinen ein Metall, vorzugsweise ein Metallcluster, insbesondere ein Edelmetall, vor allem Gold, Silber und/oder Platin. Es eignen sich auch Halbleiterverbindungen, wie z.B. Cadmiumselenid und/oder Cadmiumsulfid. Ferner eignet sich als funktionelle Einheit ein Peptid, welches über einen geeigneten Linker z.B. N-Phthaloylaminoethyluracil oder N-Phthaloyltryptamin, an das Oligomer gebunden werden kann. Eine weitere funktionelle Einheit ist beispielsweise ein Redoxzentrum, d.h. ein Elektronen-Donor oder -Akzeptor, z.B. ein Chinon oder Hydrochinon. Auch sind Fluoreszenzmarker z.B. Fluoro- und/oder Chromophore, wie z.B. Benzochinone oder Azobenzole geeignet. Andere funktionelle Einheiten können ein Chelatbildner darstellen, Polyoxycarbonsäuren, Polyaminen, von Anthrocyanen, vorzugsweise welcher Dimethylglyoxim, Ethylendiamintetraessigsäure und/oder Nitrilotriessigsäure, abgeleitet ist, oder auch leitende Oligomere, wie z.B. konjugierte Alkin-Alken-Aromat-Verbindungen. Die Verknüpfung von einem Oligomeren mit einer funktionellen Einheit, welche das Oligomer B ergibt, läßt sich im allgemeinen mit dem Fachmann bekannten Linker (siehe z.B. Mirkin C.A. et al. (1996), Nature, 382, 607-609; Alivisatos, A.P. et al. (1996), supra; Dawson, P.E. et al. (1994), S.B.H. Kent Science, 30, 776-779; Liu C.-F. et al. (1996), 116, 4149-4153) oder mit käuflichen Basen- und Amidit-Linker (Wei Z. et al. Bioconjugate Chem. (1994), 5, 468-474; Liu C.-F. et al. (1991), Proc. Natl. Acad. Sci. USA, 91, 6584-6588) durchführen. Die Oligonucleotide selbst können beispielsweise automatisch an einem Oligonucleotidsynthesizer hergestellt werden.

In einer weiteren Ausführungsform kann das Oligomer A mit dem Oligomer B nach der Assoziation verknüpft, d.h. fixiert werden. Bevorzugt ist eine chemische Fixierung, beispielsweise eine kovalente Vernetzung, Metathese, Heckkupplung, Michael-Addition von Thiolen und/oder oxidative Bildung von Disulfidbrücken. Besonders bevorzugt ist es, wenn das erfindungsgemäße supramolekulare Nanosystem auf eine feste Phase z.B. ein sogenannter Wafer oder Träger aufgezogen wird.

Als Trägermaterialien eignen sich beispielsweise Keramik, Metall, insbesondere Edelmetall wie Gold, Silber oder Platin, Gläser, Kunststoffe, kristalline Materialien bzw. dünne Schichten des Trägers insbesondere der genannten Materialien, oder (bio)molekulare Filamente wie Zellulose oder Gerüstproteine.

Die Trägerung erfolgt im allgemeinen kovalent, quasi-kovalent, supramolekular oder physikalisch wie magnetisch (Shepard, A.R. (1997) Nucleic Acids Res., 25, 3183-3185, Nr. 15), im elektrischen Feld oder durch ein Molekularsieb. Beispielsweise kann das Oligomer A entweder direkt an der Position des Trägers synthetisiert oder an bestimmte Positionen des Trägers "gelinkt" werden. Beispiele sind Konjugations- und Trägerverfahren über Perjodadoxidation und reduktiver Aminierung der Schiffbase, N-Hydroxysuccinimidester von vorzugsweise Dicarbonsäurelinker, Ethylendiaminphosphoamidatlinker, Mercapto-, Jodacetyloder Maleinimido-Verfahren und/oder kovalente oder nicht-kovalente Biotin-Linker-Verfahren.

10

15

20

Eine andere Ausführungsform der vorliegenden Erfindung ist eine Bibliothek enthaltend mehrere verschiedene erfindungsgemäße supramolekulare Nanosysteme. Besonders vorteilhaft ist es, wenn die Bibliothek kombinatorisch aufgebaut ist. Eine kombinatorisch aufgebaute Bibliothek eignet sich beispielsweise zum Eigenschaftsscreening, indem eine statistisch bzw. nach kombinatorischen Dekonvolutionstechniken hergestellte (Sub)bibliothek zum komplementären Oligonucleotid paart (siehe z.B. Wilson-Linguardo (1996) J. med. Chem., 39, 2720-2726).

Für den Fall, daß die funktionelle Einheit des Oligomer B beispielsweise ein Metallcluster ist, ist eine kombinatorisch erstellte Bibliothek besonders für die Katalysatorsuche geeignet. Hierzu wird beispielsweise das Oligomer A kombinatorisch synthetisiert und mit mehreren verschiedenen Oligomeren B mit verschiedenen Metallclustern als funktionelle Einheiten gepaart. Hierdurch erhält man eine sogenannte Clusterbibliothek, deren Diversität direkt mit jener des Oligomer A korreliert. Bevorzugt eignen sich hier Sub-Bibliothek-Routinen, die eine einfache Identifizierung der aktiven Spezies, wie z.B. Positional Scanning oder Orthogonal Libraries erlauben. Die Clusterbibliothek kann anschließend auf ihre homogenen katalytischen Eigenschaften beispielsweise in Wasser zur Vinylacetatmonomer-Katalyse untersucht werden.

15

30

Im allgemeinen und insbesondere zur Herstellung von Bibliotheken ist es vorteilhaft, wenn die Pentopyranosyl-Nukleinsäure einen relativ hohen Cytosin- und Guanosin-Anteil enthält, da aufgrund der höheren Bindungsenthalpie dieses Nucleotid-Paares im Vergleich zu Adenosin bzw. Thymidin kürzere Oligonucleotide verwendet werden können, wodurch die "Nucleotidlast" des erfindungsgemäßen supramolekularen Nanosystems verringert werden kann.

Durch eine Substitution der Nukleobasen durch einen oder mehrere, gleiche oder unterschiedliche Chelatbildner, wie oben bereits näher beschrieben, kann die "Nucleotidlast" weiter verringert werden. Hierdurch werden Einzentrenkomplexe gebildet, die lineare, nichthelikale, oligomere Metallkomplexe ausbilden. Aufgrund einer sprossenartigen Anordnung in einer Ebene kann der Paarungsvorgang optimal auf die Größe von unterschiedlichen Metallzentren reagieren. Die so gebildeten Duplexe besitzen im allgemeinen eine geneigte, jedoch nicht-helikale, repetitive Struktur, die je nach Wahl des Liganden spezifische Metallzentren koordiniert und entlang der Duplex-Achse Metall-Metall-Wechselwirkungen oder gewünschte Fehlstellen ermöglicht. Hierdurch lassen sich kontrolliert Metallsequenzen herstellen, die einen neuen Nano-Legierungssatz zur Herstellung von sogenannten "Nano-Wires" darstellen.

Mit den oben beschriebenen erfindungsgemäßen supramolekularen Nanosystemen ist es auch möglich, beispielsweise unterschiedliche Metallcluster im Hinblick auf den Aufbau von elektronischen Schaltmustern auf der supramolekularen Ebene räumlich zu positionieren (siehe z.B. Kubiak C.P. (1996) Science, 272, 1323-1325). Auch ist der Aufbau von sogenannten Clustergittern mit stäbchenförmigen Dithiolen möglich, die eine gute Stabilität aufweisen (siehe z.B. Andres R.P. et al. (1996) Science, 273, 1690-1693; Schiffrin D.J. et al. (1995) ADV. Mat., 7, 795-797).

Das beschriebene erfindungsgemäße supramolekulare Nanosystem besitzt eine besonders große Stabilität und Selektivität und eignet sich besonders gut zur Selbstorganisation. Es besitzt ferner eine kontrollierbare Topizität und die Aggregation bzw. Selbstorganisation läßt sich besonders gut dynamisch beeinflussen.

Anwendungsgebiete sind daher insbesondere die Herstellung von elektronischen Bauteilen, wie z. B. Informationsspeichermedien, Diagnosesonden oder lichtelektronische Bauelemente;

This Page Blank (uspto)

15

20

30

Katalysatoren; Halbleiter, lichtchemische Einheiten, biokompatible Materialien bzw. Einheiten oder funktionelle Mikroprothesen.

Die folgenden Figuren und Beispiele sollen die Erfindung näher erläutern, ohne sie darauf zu beschränken.

Beschreibung der Figuren:

- Fig. 1: Schematische Darstellung der natürliche Basenpaarung bei der Peptidsynthese
- Fig. 2: Schematische Darstellung eines erfindungsgemäßen supramolekularen Nanosystems mit den Nukleobasen Adenosin (A) und Thymidin (T) und verschiedenen funktionellen Einheiten als x1 bis xl (codierende Einheiten) bezeichnet.
- Fig. 3: Schematische Darstellung eines Einzentrenchelatkomplexes über ein Pyrido[3,2-h]chinazolin-2(1)-on als Chelatbildner.
- Fig. 4: Schematische Darstellung einer Gleichgewichtsreaktion zwischen einer Haarnadelschleife und einem Duplex.
- Fig. 5: Ausschnitt einer Röntgenstrukturanalyse eines Nickelchelat-Ribopyranose-Pyrazolylpyridin-Komplexes

Beispiele

- 1. Herstellung einer Goldcluster-Pyranosyl-RNA
- Pyranosyl-RNA wurde gemäß Eschenmoser et al. (supra) über eine Phosphoamiditsynthese hergestellt. An einen Strang wurden Goldcluster wie in Mirkin C.A. et al. (1996), supra, beschrieben, gebunden. Die komplementären Stränge wurden in einer Pufferlösung (1M NaCl, 10mM Tris-HCl, pH 7) bei 0° C gepaart (siehe Fig. 2).
 - 2. Herstellung eines selbstkomplementären Oligonucleotids der Sequenz ITGGCCA

Die automatische Festphasensynthese des Oligonucleotids mit der Sequenz ITGGCCA wurde, wie bei Pitsch S. et al. (1993) Helv. Chim. Acta 78, 1621-1635 beschrieben, durchgeführt. Die Ausbeute an einem Ecosyn D300+ Syntheseautomaten der Firma Eppendorf lag bei

durchschnittlich 93,2 %. Die Kopplungszeiten betrugen 45 min., die Oxidationszeit 2 min. und die Detritylierungszeiten 7 min. mit Dichloressigsäure im Durchfluß. Nach der Synthese wurde das Oligonucleotid mit Tetrakistriphenylphosphinpalladium (20mg für 1 µmol Träger-Ansatz) unter Zugabe von 20mg Diethylammoniumhydrogencarbonat und 20mg Triphenylphosphin fünf Stunden bei Raumtemperatur entschützt, anschließend mit Aceton und Wasser gewaschen und mit frischer wässeriger Natriumdithiocarbamatlösung 45 min. lang behandelt. Das Produkt wurde danach durch eine 24 %ige Hydrazinhydratlösung bei 4°C, 24 Stunden lang unter Drehen abgespalten. Die Entsalzung erfolgte an einer Reverse-Phase-Sep-Pak Kartusche und die Aufreinigung mittels RP-HPLC (RP-18, Wasser/Acetonitrilgradient, pH 7). Anschließend wurde erneut entsalzt und lyophylisiert, wodurch das "Trityl-on"-Produkt erhalten wurde. Dieses wurde mit 80 %iger Ameisensäure entschützt, eingedampft, in 10ml Wasser aufgenommen, gegen Dichlormethan extrahiert und erneut über HPLC gereinigt. Es wurden 8 OD des gewünschten Produktes erhalten.

Die massenspektrometrische Untersuchung ergab folgendes Ergebnis:

Proben:

LX626-1: MS-Nr.: 970523

Aufgabenstellung:

Massenspektrometrische Charakterisierung der Probe

30

25

20

Massenspektrometer:

TSQ 700 (Finnigan/MAT)

Meßbedingungen:

MS; Spritzenpumpe

Ionisierung:

Electrospray ionization (ESI)

Ergebnisse: Das Massenspektrum zeigt eine Molmasse M = 2242

20

3. Molekulare Nano-Kinematik

Mithilfe der Phosphoamidit-Methode wurde ein teilweise als Hairpin selbstkomplementärer Pyranosyl-RNA-Strang mit 4'- und 5'-Linkerenden der Sequenz Linker-pr-GCGA₃CGC-Linker synthetisiert und an den Linkerenden wie bei Alivisatos, A.P. et al. (1996), supra beschrieben mit Maleinimido-Goldclustern verknüpft. Anschließend wurde im Standardpuffer (0,15M NaCl bzw. 1 M NaCl, 10mM Tris HCl, pH 7) die Paarung zum Hairpin von 10mM Zugabe Produkt spektroskopisch nachgewiesen. Die eines Äquivalents des Komplementarstranges pr-G(T₅)C bewies spektroskopisch die Öffung des Hairpins und das Auseinandertreten der Goldcluster. Einfaches Verdünnen der Lösung ließ die Hairpin-Struktur wieder herstellen. Auf diese Art und Weise kann man makroskopisch über die Verdünnung gesteuert ein Substrat unterschiedlichen Reaktionszentren aussetzen (siehe Fig. 4).

4. Synthese eines p-RNA-Pyridyl-Pyrazol-Liganden als Monomer für oligomere Liganden

Das folgende Reaktionsschema zeigt die Herstellung des 2-[7-(2',3',4'-Tri-O-benzoyl-1'ß-ribopyranose) Pyrazol-9-yl]pyridin:

Darstellung des 2-[7-(2',3',4'-tri-O-benzoyl-1'β-ribopyranose)Pyrazol-9-yl]pyridin

15

25

35

40

0.50 g (3.44 mmol) 2-[3(5)-Pyrazolyl]pyridin wurden in 30 ml CH₂Cl₂ gelöst und auf -15°C abgekühlt. 2.30 g 2',3',4'-tri-O benzoyl-1' trichloroimidat-D-ribopyranosyl in 15 ml CH₂Cl₂ wurden langsam zugetropft. Die Lösung wurde leicht gelb. Danach wurde 0.8 ml (1.2 Äquiv.) TMSOTf in 15 ml CH₂Cl₂ bei -15°C innerhalb von 15 Minuten zugetropft. Die Lösung wurde trüb und ein weißer Niederschlag bildete sich. Die Lösung wurde noch 5 Stunden zwischen -10°C und +5°C gerührt. Danach wurde die Lösung abfiltriert und eingeengt. Die Reinigung des Produkts erfolgte durch Flashchromatographie über Kieselgel (CH₂Cl₂/Aceton : 95/5): 1.77 g (3 mmol, 87%) Produkt.

 $Rf: 0.47 \quad (CH_2Cl_2 / Aceton: 9/1)$

Schmp.: $91 - 93^{\circ}C$ (CH₂Cl₂/Isohexan).

UV (CH₃CN): $\upsilon = 202 \text{ nm}^{-1}$ $\varepsilon = 21522$ $\upsilon = 230 \text{ nm}^{-1}$ $\varepsilon = 35826$ $\upsilon = 274 \text{ nm}^{-1}$ $\varepsilon = 7696$

NMR ¹H: δ (ppm) = 8.60 (dm, J=4.8 Hz, 1H, 6-H); 8.07 (d, J=8.5 Hz, 2H, 2•0-benz.-2'); 7.98 (d, J=7.8 Hz, 1H, H-3); 7.93 (d, J=8.3 Hz, 2H, 2•0-benz.-3' oder 4'); 7.82 (d, J=8.3 Hz, 2H, 2•0-benz.-3' oder 4'); 7.77 (d, J=2.6 Hz, 1H, H-11); 7.70 (td, J=7.6 u. 1.8 Hz, 1H, H-4); 7.62 (t, J=7.5 Hz, 1H, p-benz.-4'); 7.52 (t, J=7.5 Hz, 1H, p-benz.-3'); 7.48 (t, J=7.5 Hz, 2H, 2•m-benz.-4'); 7.46 (t, J=7.5 Hz, 1H, p-benz.-2'); 7.34 (t, J=7.8 Hz, 2H, 2•m-benz.-3'); 7.25 (t, J=7.7 Hz, 2H, 2•m-benz.-2'); 7.19 (ddd, J=7.6, 4.8 u. 1.8 Hz, 1H, H-5); 6.99 (d, J=2.6 Hz, 1H, H-10); 6.49 (t, J=3.1 Hz, 1H, H-3'); 6.17 (d, J=6.8 Hz, 1H, H-1'); 6.11 (dd, J=6.8 u. 3.1 Hz, 1H, H-2'); 5.69 (m; 1H, H-4'); 4.32 (dd, J=11.2 u. 8.2 Hz, 1H, H-5'); 4.28 (dd, J=11.2 u. 8.2 Hz, 1H, H-5').

Die Zuordnung der Signale erfolgte mit Hilfe eines ¹H, ¹H-COSY-Spektrums.

NMR ¹³C: δ (ppm) = 165.23 (CO-4'); 165.17 (CO-3'); 164.88 (CO-2'); 152.85 (C-2); 151.51(C-9); 149.16 (C-6); 136.62 (C-4); 133.50 (C-p-benz.-4'); 133.35 (C-p-benz.-3'); 133.32 (C-p-benz.-2'); 130.44 (C-11); 129.79 (2·C-o-benz.-4'); 129.78 (2·C-o-benz.-3'); 129.73 (2·C-o-benz.-2'); 129.37 (C-i-benz.-4'); 129.11 (C-i-benz.-3'); 128.78 (C-i-benz.-2'); 128.61(2·C-m-benz.-4'); 128.37 (2·C-m-benz.-3'); 128.24 (2·C-m-benz.-2'); 122.75 (C-5); 120.47 (C-3); 105.97 (C-10); 85.42 (C-1'); 68.57 (2C-2' u. 3'); 66.97 (C-4'); 63.85 (C-5').

Die Zuordnung der Signale erfolgte mit Hilfe eines ¹H, ¹³C-COSY-Spektrums.

NOESY . NOE zwischen H-11 und H-1', H-2' : Beweis zur Verknüpfung C-1' an N-7

MS: Electrospray ionization (ESI) [MH] = 590 $C_{34} H_{27} N_3 O_7$ M= 589

Die Röntgenstrukturanalyse von Kristallen des Monomers bewiesen die korrekte glykosidische Verknüpfung nach Umkristallisieren aus CH₂Cl₂/Isohexan. Das benzoylierte Monomere zeigte bereits nach Behandlung mit alkoholischer Nickel(II)-Chlorid-Hydrat-Lösung (Reflux) die gewünschten komplexierenden Eigenschaften (UV, NMR). Dieses Ergebnis wurde durch eine Röntgenstrukturanalyse des Nickelchelat-Ribopyranose-Pyrazolylpyridin-Komplexes bestätigt (Fig. 5).

Dies zeigt den Ersatz der paarungsfähigen Nucleobase durch einen starken Stickstoffrückbindungsliganden. Das so hergestellte und geschützte Monomere in Form des D-Enantiomers kann, wie oben bereits beschrieben, in das geschützte p-RNA-Phosphoamidit übergeführt werden.

WO 98/25943 PCT/EP97/06907

<u>Patentansprüche</u>

10

30

- 1. Supramolekulares Nanosystem, das mindestens ein im wesentlichen nicht-helikales Oligomer (Oligomer A) und ein oder mehrere, gleiche oder verschiedene, im wesentlichen nicht-helikale und miteinander nicht-paarende Oligomere mit gleichen oder verschiedenen funktionellen Einheiten (Oligomer B) enthält, dadurch gekennzeichnet, daß das Oligomer A mit dem Oligomer B spezifisch nicht-kovalent paaren kann und das Oligomer B durch seine Monomere bestimmbar ist.
- 2. Supramolekulares Nanosystem nach Anspruch 1, dadurch gekennzeichnet, daß das Oligomer A eine Haarnadelschleife ausbilden kann.
 - 3. Supramolekulares Nanosystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das im wesentlichen nicht-helikale Oligomer A und B eine Pentopyranosyl-Nukleinsäure ist.
- Supramolekulares Nanosystem nach Anspruch 3, dadurch gekennzeichnet, daß die Pentopyranosyl-Nukleinsäure eine Ribo-, Arabino-, Lyxo- und/oder Xylo-pyranosyl-Nukleinsäure, vorzugsweise eine Ribopyranosyl-Nukleinsäure ist.
- 5. Supramolekulares Nanosystem nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der Pentopyranosyl-Teil der Pentopyranosyl-Nukleinsäure D- oder L-konfiguriert ist.
 - 6. Supramolekulares Nanosystem nach einem der Ansprüche 3-6, dadurch gekennzeichnet, daß das nicht-helikale Oligomer A eine Länge von ca. 10 bis ca. 500, vorzugsweise von ca. 10 bis ca. 100 Monomereinheiten hat.
 - 7. Supramolekulares Nanosystem nach einem der Ansprüche 3-6, dadurch gekennzeichnet, daß das nicht-helikale Oligomer B eine Länge von ca. 4 bis ca. 50 vorzugsweise ca. 4 bis ca. 25 insbesondere ca. 4 bis ca. 15, vor allem ca. 4 bis ca. 8 Monomereinheiten hat.

WO 98/25943 PCT/EP97/06907

-15-

- 8. Supramolekulares Nanosystem nach einem der Ansprüche 3-7, dadurch gekennzeichnet, daß der Pentopyranosyl-Teil der Pentopyranosyl-Nukleinsäure in Form eines Thiophosphates, alkylierten Phosphates, Phosphonates und/oder Amids vorhanden ist.
- 9. Supramolekulares Nanosystem nach einem der Ansprüche 3-8, dadurch gekennzeichnet, daß die Nukleinsäure als Nucleobase Adenosin, Guanosin, Isoguanosin, Cytosin, Isocytosin, Tymidin, Uracil, 2,6-Diaminopurin und/oder Xanthin enthält.
- 10. Supramolekulares Nanosystem nach einem der Ansprüche 3-9, dadurch gekennzeichnet,
 daß die Nucleobase durch einen Chelatbildner ersetzt ist.
 - 11. Supramolekulares Nanosystem nach Anspruch 10, dadurch gekennzeichnet, daß der Chelatbildner abgeleitet ist von Pyrazolylpyridin und/oder Pyridoquinazolin.
- 12. Supramolekulares Nanosystem nach einem der Ansprüche 1-11, dadurch gekennzeichnet, daß die funktionelle Einheit ausgewählt ist aus einem Metall, vorzugsweise einem Metallcluster, eine Halbleiterverbindung, einem Peptid, einem Redox-Zentrum, einem Fluoreszenzmarker, einem Chelatbildner und/oder einem leitenden Oligomer.
- 20 13. Supramolekulares Nanosystem nach Anspruch 12, dadurch gekennzeichnet, daß das Metall ein Edelmetall, insbesondere Gold, Silber und/oder Platin ist.

25

- Supramolekulares Nanosystem nach Anspruch 12, dadurch gekennzeichnet, daß der Halbleiter ausgewählt ist aus Cadmiumselenid und/oder Cadmiumsulfid.
- Supramolekulares Nanosystem nach Anspruch 12, dadurch gekennzeichnet, daß der Fluoreszenzmarker ein Fluoro- und/oder Chromophores ist.
- Supramolekulares Nanosystem nach Anspruch 12, dadurch gekennzeichnet, daß der
 Chelatbildner abgeleitet ist von Anthrocyanen, Polyoxycarbonsäuren, Polyaminen,
 Dimethylglyoxim, Ethylendiamintetraessigsäure und/oder Nitrilotriessigsäure.
 - 17. Supramolekulares Nanosystem nach einem der Ansprüche 1-16, dadurch gekennzeichnet, daß das Oligomer A mit dem Oligomer B verknüpft ist.

- 18. Bibliothek enthaltend mehrere verschiedene supramolekulare Nanosysteme gemäß einem der Ansprüche 1-17.
- 19. Verfahren zur Herstellung eines supramolekularen Nanosystems gemäß einem der Ansprüche 1-11 oder einer Bibliothek gemäß Ansprüch 18, dadurch kennzeichnet, daß das Oligomer A mit einem oder mehreren, gleichen oder verschiedenen Oligomeren B unter geeigneten Bedingungen spezifisch nicht-kovalent gepaart wird.
- 20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß in einem weiteren Schritt das Oligomer A mit dem oder den Oligomeren B verknüpft wird.
 - 21. Verfahren zur strukturellen Änderung des supramolekularen Nanosystems gemäß einem der Ansprüche 1-16, dadurch gekennzeichnet, daß die Gleichgewichtsbedingungen geändert werden.

- 22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß die Konzentration an Oligomer B, Salzkonzentration, pH-Wert, Druck und/oder Temperatur geändert wird.
- 23. Verwendung eines supramolekularen Nanosystems gemäß einem der Ansprüche 1-17 als elektronischer Bauteil; Katalysator; Halbleiter; lichtchemische Einheit; biokompatibles Material bzw. Einheit oder funktionelle Mikroprothese.
- Verwendung einer Bibliothek gemäß Anspruch 18 zum Auffinden eines Metall Katalysators.

1/4

Hig. 1

NATÜRLICHE BASENPAARUNG BEI DER PEPTIDSYNTHESE

Hig: 2

CODIERTE EINHEITEN X1, X2, X3, usw. (Z.B. METALL - CLUSTER CHROMOPHORE, METALLE, METALLIONEN)

2/4

Hig: 3

4/4

INTERNATIONAL SEARCH REPORT

Inte onal Application No

IPC 6	FICATION OF SUBJECT MATTER C07H21/00					
According to International Patent Classification (IPC) or to both national classification and IPC						
	SEARCHED					
Minimum documentation searched (classification system followed by classification symbols)						
IPC 6 CO7H						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)						
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.			
Α	WO 96 13522 A (BURSTEIN LAB INC) 1996 cited in the application see claim 1	9 May	1			
Furth	ner documents are listed in the continuation of box C.	Patent family members are listed in	n annex.			
* Special car	legories of cited documents:	"T" later document published after the inter	national filing date			
"A" docume	ent defining the general state of the art which is not	or priority date and not in conflict with cited to understand the principle or the	the application but			
"E" earlier d	ered to be of particular relevance ocument but published on or after the international	invention				
filing da "L" docume	"L" document which may throw doubts on priority claim(s) or which is cited to possible the publication date of example and the considered movel or cannot be considered to involve an inventive step when the document is taken alone					
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document referring to an oral disclosure, use. exhibition or document is combined with one or more other such docu-						
other n	other means P* document published prior to the international filing date but document published prior to the international filing date but document published prior to the international filing date but					
later than the priority date claimed "&" document member of the same patent family						
Date of the actual completion of theinternational search Date of mailing of the international search report						
24 March 1998		08/04/1998				
Name and m	ailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer				
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Riolo, J				

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inti .onal Application No PCT/EP 97/06907

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9613522 A	09-05-96	AU 4197396 A EP 0789715 A US 5718915 A	23-05-96 20-08-97 17-02-98

INTERNATIONALER RECHERCHENBERICHT

Inte. ionales Aktenzeichen PCT/FP 97/06907

		PC1/EI	9//0690/			
a. klassifizierung des anmeldungsgegenstandes IPK 6 C07H21/00						
Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK						
B. RECHE	RCHIERTE GEBIETE					
Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 C07H						
Recherchier	rte aber nicht zum Mindestprufstoffgehörende Veröffentlichungen, so	owert diese unter die recherchierten G	ebiete fallen			
Während de	er internationalen Recherche konsultierte elektronische Datenbank (f	Name der Datenbank und evtl. verwe	ndete Suchbegriffe)			
CAISWE	SENTLICH ANGESEHENE UNTERLAGEN					
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	e der in Betracht kommenden Teile	Betr. Anspruch Nr.			
	g					
Α	WO 96 13522 A (BURSTEIN LAB INC) 9.Mai 1996		1			
	in der Anmeldung erwähnt					
	siehe Anspruch 1					
Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen						
"A" Veröffen	Kategorien von angegebenen Veröffentlichungen : itlichung, die den allgemeinen Stand der Technik definiert.	oder dem Prioritätsdatum veröff				
aber nicht als besonders bedeutsam anzusehen ist anneuen grundeliegenden Prinzips oder der ihr zugrundeliegenden Prinzips oder der ihr zugrundeliegenden						
Anmeldedatum veröffentlicht worden ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung						
Veroffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung blegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie						
Admir flicit dis dui effiliagnischer rangkeit beforend betrachtet						
"O" Veröffentlichung, die sich auf eine mundliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht						
*P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *a" Veröffentlichung, die Mitglied derselben Patentlamilie ist						
Datum des A	bschlusses der internationalen Recherche	Absendedatum des internationa	en Recherchenberichts			
24.März 1998		08/04/1998				
Name und Po	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2	Bevollmächtigter Bediensteter				
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Riolo, J				
	Fax: (+31-70) 340-3016	KIO10, 0				

1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröfferwlichurgen, die zur selben Patentfamilie gehören

Intra phales Aktenzeichen
PCT/EP 97/06907

ſ	Im Recherchenbericht	Datum der	Mitglied(er) der	Datum der
	angeführtes Patentdokument	Veröffentlichung	Patentfamilie	Veröffentlichung
	WO 9613522 A	09-05-96	AU 4197396 A EP 0789715 A US 5718915 A	23-05-96 20-08-97 17-02-98

This Page Blank (uspto)