定理 2.25 有限整域(すなわち,有限集合上の整域)は体である。

【証明】

n を有限集合 A の要素の個数とする。A の任意の要素 a,b,c に対して,< A ,+ , $\times >$ は整域であるから, $c \neq q$ とき $a \neq b$ ならば, $c \times a \neq c \times b$ である。 よって, $c \times A$ の中に,またn 個の異なる要素がある。乗法はA 上の閉じた演算であるから, $c \times A = A$ が成り立つ。よって,A の乗法の単位元 I に対して,A の中に必ず要素 d があり, $c \times d = I$ が成り立つ。すなわち,d はc の逆元である。 よって,可換モノイド< A , $\times >$ に対して, $< A - \{q\}$, $\times >$ はアーベル群である。ゆえに,有限整域< A ,+ , $\times >$ は体である。