

CLAIMS

What is claimed is:

1 1. A method for closing a communications stream between a first terminal
2 and a second terminal in a communications system, the communications stream having
3 repeating time slots in a time division channel comprising:

4 sending a closing message in a first slot from the first terminal to the second
5 terminal to request that the communications stream be closed;

6 listening to the communications stream at the first terminal to determine whether
7 any messages are sent from the second terminal to the first terminal in a slot after the first
8 slot; and

9 closing the stream, if no further messages are received from the second terminal.

1 2. The method of Claim 1, wherein the repeating time slots comprise a set of
2 repeating slots for the second terminal and wherein closing the stream comprises closing
3 the stream if no further messages are received in the next slot for the second terminal
4 after sending the closing message.

1 3. The method of Claim 1, wherein the communications stream comprises a
2 data traffic channel and wherein sending a closing message comprises sending a closing
3 message in the data traffic channel.

1 4. The method of Claim 1, wherein closing the stream comprises sending a
2 further closing message in a second slot from the first terminal to the second terminal, if a
3 further message is received from the second terminal.

1 5. The method of Claim 1, further comprising checking a transmit buffer in
2 the first terminal and wherein sending a closing message is performed in response to an
3 absence of data in the buffer.

1 6. The method of Claim 1, wherein sending a closing message is performed
2 in response to an absence of data in a transmit buffer for more than a determined amount
3 of time.

1 7. The method of Claim 1 wherein the determined amount of time is selected
2 to be greater than the amount of time required to close the communications stream and
3 then open a new communications stream.

1 8. The method of Claim 1, wherein listening to the communications stream
2 comprises listening at the first terminal in a sequence of slots after the first slot, the
3 number of slots in the sequence being determined by the possibility of being able to
4 distinguish a message from the second terminal from noise in the channel.

1 9. The method of Claim 8 wherein the number of slots in the sequence is
2 determined by a class of modulation being used for the stream.

1 10. A machine-readable medium having stored thereon data representing
2 sequences of instructions which, when executed by a machine, cause the machine to
3 perform operations comprising:

4 sending a closing message in a first slot of a communications stream from the first
5 terminal to the second terminal to request that the communications stream be closed the
6 stream having repeating time slots in a time division channel;

7 listening to the communications stream at the first terminal to determine whether
8 any messages are sent from the second terminal to the first terminal in a slot after the first
9 slot; and

10 closing the stream, if no further messages are received from the second terminal.

1 11. The medium of Claim 10, wherein the repeating time slots comprise a set
2 of repeating slots for the second terminal and wherein the instructions for closing the

3 stream comprise further instructions which, when executed by the machine, cause the
4 machine to perform further operations comprising closing the stream if no further
5 messages are received in the next slot for the second terminal after sending the closing
6 message.

1 12. The medium of Claim 10, wherein the instructions comprise further
2 instructions which, when executed by the machine, cause the machine to perform further
3 operations comprising checking a transmit buffer in the first terminal and wherein the
4 instructions for sending a closing message are performed in response to an absence of
5 data in the buffer.

1 13. The medium of Claim 10, wherein the instructions for sending a closing
2 message are performed in response to an absence of data in a transmit buffer for more
3 than a determined amount of time.

1 14. A method of determining to close a communications stream between a
2 first terminal and a second terminal in a communications system comprising:
3 checking a transmit buffer for data to transmit in the stream;
4 waiting for a determined amount of time;
5 rechecking the transmit buffer; and
6 determining to close the communications stream, if there is no data in the transmit
7 buffer to transmit after the checking and the rechecking.

1 15. The method of Claim 14, wherein the determined amount of time is
2 selected to be greater than the amount of time required to close the communications
3 stream and then open a new communications stream.

1 16. The method of Claim 14, further comprising:
2 determining whether previously transmitted data included a data boundary value;
3 comparing the boundary value to the data previously transmitted; and
4 if the data boundary value is satisfied then determining to close the
5 communications stream.

1 17. The method of Claim 16, wherein the data boundary value indicates the
2 size of a data packet to be transmitted.

1 18. The method of Claim 16, wherein the data boundary value indicates
2 streaming data with no predetermined endpoint.

1 19. The method of Claim 16, wherein the data boundary value indicates a
2 diagnostic sequence.

1 20. The method of Claim 14, further comprising:
2 checking a higher layer protocol to determine whether all data units to be
3 transmitted have been received; and
4 determining to close the communications stream, if all of the data units to be
5 transmitted have been received and there is no data in the data buffer after the checking
6 and rechecking.

1 21. A machine-readable medium having stored thereon data representing
2 sequences of instructions which, when executed by a machine, cause the machine to
3 perform operations comprising:

4 checking a transmit buffer a first terminal for data to transmit in a
5 communications stream;
6 waiting for a determined amount of time;
7 rechecking the transmit buffer; and
8 determining to close the communications stream, if there is no data in the transmit
9 buffer to transmit after the checking and the rechecking.

1 22. The medium of Claim 21, further comprising instructions which, when
2 executed by the machine, cause the machine to perform further operations comprising:
3 determining whether previously transmitted data included a data boundary value;
4 comparing the boundary value to the data previously transmitted; and
5 if the data boundary value is satisfied then determining to close the
6 communications stream.

1 23. The medium of Claim 22, wherein the data boundary value indicates the
2 size of a data packet to be transmitted.

1 24. The medium of Claim 21, further comprising instructions which, when
2 executed by the machine, cause the machine to perform further operations comprising:
3 checking a higher layer protocol to determine whether all data units to be
4 transmitted have been received; and
5 determining to close the communications stream, if all of the data units to be
6 transmitted have been received and there is no data in the data buffer after the checking
7 and rechecking.