

Ketentuan;

Simpanlah file lembar jawaban ini dengan format; Kelas_Nama Lengkap

Contoh; TI 3C_Rifki Fakhrudin

Upload tugas jobsheet ini dengan batas maksimum sesuai jadwal perkuliahan masing masing kelas

Upload file tugas jobsheet di website Ims.polinema

Nama	:	Rifki Fakhrudin
Nim	:	2241720218
Kelas	:	3C

Tulislah Jawaban Pada Kolom Yang tersedia di bawah ini;

LEMBAR JAWABAN JOBSHEET-3

Soal No	Jawaban				
1	Langkah 1: Import Library				
	<pre># import package import numpy as np import pandas as pd</pre>				
2	Langkah 2: Baca Data				
	<pre># baca data dari file CSV from google.colab import files uploaded = files.upload() # upload dataset df ='dataset.csv' data = pd.read_csv(df)</pre>				
3	Langkah 3: Pemahaman Terhadap Data				
	<pre># melihat beberapa data awal data.head()</pre>				
	# mengecek ukuran data data.shape				
	<pre># informasi tentang data data.info()</pre>				
	<pre># deskripsi data data.describe()</pre>				

	Email	Address	Avatar	Avg. Session Length	Time on App	Time on Website	Length of Membership	Yearly Amount Spent
O	mstephenson@fernandez.com	835 Frank Tunnellr\nWrightmouth, MI 82180-9605	Violet	34.497268	12.655651	39.577668	4.082621	587.951054
1	hduke@hotmail.com	4547 Archer Common\r\nDiazchester, CA 06566-8576	DarkGreen	31.926272	11.109461	37.268959	2.664034	392.204933
2	pallen@yahoo.com	24645 Valerie Unions Suite 582\r\nCobbborough,	Bisque	33.000915	11.330278	37.110597	4.104543	487.547505
3	riverarebecca@gmail.com	1414 David Throughway\r\nPort Jason, OH 22070	SaddleBrown	34.305557	13.717514	36.721283	3.120179	581.852344
4	mstephens@davidson-herman.com	14023 Rodriguez Passage\r\nPort Jacobville, PR	MediumAquaMarine	33.330673	12.795189	37.536653	4.446308	599.406092

Langkah 4: Visualisasi Data

```
# import library untuk visualisasi
import matplotlib.pyplot as plt
import seaborn as sns
```

Import library Matplotlib dan Seaborn untuk visualisasi data.

Gunakan pairplot untuk menampilkan hubungan antara variabel bebas dan variabel target dalam bentuk scatter plot.

```
# Pilih hanya kolom numerik
numerical_data = data.select_dtypes(include=[np.number])

# Hitung korelasi hanya pada kolom numerik
correlation = numerical_data.corr()

# Visualisasikan korelasi dengan heatmap
sns.heatmap(correlation, cmap="YlGnBu", annot=True)
plt.show()
```


5 Langkah 6: Regresi Linier

```
#Regresi linear
# Membuat variabel bebas X dan Y, contoh pengambilan dari analisis korelasi sebelumnya
X = data['Length of Membership']
y = data['Yearly Amount Spent']
```

Pisahkan variabel bebas (X) dan variabel target (y).

```
# Pembagian data latih dan data uji dengan proporsi 7:3
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3, random_state=100)
```

Bagi data menjadi data latih (70%) dan data uji (30%) menggunakan train_test_split. Lakukan training model regresi linier menggunakan library StatsModels. Tambahkan konstanta (intercept) ke variabel bebas.

```
# Training model
import statsmodels.api as sm

X_train_sm = sm.add_constant(X_train)
lr = sm.OLS(y_train, X_train_sm).fit()
```


Visualisasikan garis regresi pada data latih.

```
# Visualisasi garis regresi
plt.scatter(X_train, y_train)
plt.plot(X_train, 265.2483 + 66.3015*X_train, 'r')
plt.show()
```


6 Langkah 7: Analisis Residual

```
# Prediksi nilai y_value dari data x yang telah dilatih
y_train_pred = lr.predict(X_train_sm)

# Menghitung residual
res = (y_train - y_train_pred)
```

Lakukan prediksi nilai y dari data latih dan hitung residual (selisih antara nilai sebenarnya dan nilai prediksi).

```
# Histogram residual
fig = plt.figure()
sns.distplot(res, bins=15)
plt.title('Error Terms', fontsize=15)
plt.xlabel('y_train - y_train_pred', fontsize=15)
plt.show()
# Scatter plot residual
plt.scatter(X_train, res)
plt.show()
```


Jurusan Teknologi Informasi Politeknik Negeri Malang Jobsheet-3: Regresi Linear

Mata Kuliah Pembelajaran Mesin

Langkah 8: Prediksi pada Data Uji dan Evaluasi Model 7

```
‡ Prediksi pada data uji
X_test_sm = sm.add_constant(X_test)
y_test_pred = lr.predict(X_test_sm)
```

Lakukan prediksi pada data uji.

```
# Hitung nilai R-squared
from sklearn.metrics import r2_score
r_squared = r2_score(y_test, y_test_pred)
```

Hitung nilai R-squared untuk mengukur kinerja model pada data uji.

```
# Hitung nilai R-squared
from sklearn.metrics import r2_score
r_squared = r2_score(y_test, y_test_pred)
```

Langkah 9: Visualisasi Hasil 8

Jurusan Teknologi Informasi Politeknik Negeri Malang Jobsheet-3: Regresi Linear

Mata Kuliah Pembelajaran Mesin

Jurusan Teknologi Informasi Politeknik Negeri Malang Jobsheet-3: Regresi Linear

Mata Kuliah Pembelajaran Mesin

```
Feature Scaling
       from sklearn.preprocessing import StandardScaler
       sc_X = StandardScaler()
       sc_y = StandardScaler()
       X = sc_X.fit_transform(X.reshape(-1, 1))
       y = sc_y.fit_transform(y.reshape(-1, 1))
      Langkah 4 : Fitting SVR ke Dataset
12
       # Fitting SVR ke dataset
      from sklearn.svm import SVR
      regressor = SVR(kernel='rbf')
       regressor.fit(X, y)
      /usr/local/lib/python3.10/dist-pa
        y = column_or_1d(y, warn=True)
       + SVR
       SVR()
13
      Langkah 5 : Visualisasi Hasil SVR:
       # Visualisasi hasil SVR (resolusi tinggi dan kurva yang lebih halus)
       X_grid = np.arange(min(X), max(X), 0.01).reshape(-1, 1)
       plt.scatter(X, y, color='red')
       plt.plot(X_grid, regressor.predict(X_grid), color='blue')
       plt.title('Jujur atau tidak (SVR)')
       plt.xlabel('Tingkat posisi')
       plt.ylabel('Gaji')
       plt.show()
                           Jujur atau tidak (SVR)
         2.5
         2.0
          1.5
      E 1.0
          0.5
          0.0
         -0.5
                            -0.5
                                  0.0
                                                1.0
                               Tingkat posisi
      Langkah 6: Prediksi Hasil:
14
```



```
# Prediksi hasil
      # Buat array 2D yang berisi tingkat posisi yang akan diprediksi
      tingkat_posisi_prediksi = np.array([[6.5]])
       # Penskalaan fitur untuk data yang akan diprediksi
      tingkat_posisi_prediksi = sc_X.transform(tingkat_posisi_prediksi)
      # Melakukan prediksi menggunakan model SVR
      gaji_prediksi = regressor.predict(tingkat_posisi_prediksi)
      # Kembalikan hasil prediksi ke skala aslinya
      gaji_prediksi = sc_y.inverse_transform(gaji_prediksi.reshape(-1, 1))
15
      Langkah 7 : Menampilkan Hasil:
       # Menampilkan hasil prediksi
      print("Prediksi Gaji untuk Tingkat Posisi 6.5:", gaji_prediksi[0])
      Prediksi Gaji untuk Tingkat Posisi 6.5: [170370.0204065]
      Langkah 8: Evaluasi Model SVR
16
       # Evaluasi model
       from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
       y_actual = y
       y_pred = regressor.predict(X)
       # Menghitung MAE
       mae = mean_absolute_error(y_actual, y_pred)
       # Menghitung MSE
       mse = mean_squared_error(y_actual, y_pred)
       # Menghitung RMSE
       rmse = np.sqrt(mse)
       # Menghitung R-squared
       r2 = r2_score(y_actual, y_pred)
       print("MAE:", mae)
       print("MSE:", mse)
       print("RMSE:", rmse)
       print("R-squared:", r2)
      MAE: 0.22299274095734414
      MSE: 0.24839989293792014
      RMSE: 0.4983973243687411
       R-squared: 0.7516001070620798
```