Numerical Analysis

10th ed

R L Burden, J D Faires, and A M Burden

Beamer Presentation Slides
Prepared by
Dr. Annette M. Burden
Youngstown State University

Selecting a Grid

- 1. Choose integers n and m to define step sizes h = (b a)/n and k = (d c)/m.
- 2. Partition the interval [a, b] into n equal parts of width h and the interval [c, d] into m equal parts of width k.
- 3. Place a grid on the rectangle R by drawing vertical and horizontal lines through the points with coordinates (x_i, y_j) , where

$$x_i = a + ih$$
, for each $i = 0, 1, ..., n$, and $y_j = c + jk$, for each $j = 0, 1, ..., m$.

4. The lines $x = x_i$ and $y = y_j$ are **grid lines**, and their intersections are the **mesh points** of the grid.

Selecting a Grid

Figure: Figure 12.4

ALGORITHM 12.1 POISSON EQUATION FINITE-DIFFERENCE

To approximate the solution to the Poisson equation

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = f(x,y), \quad a \le x \le b, \quad c \le y \le d,$$

subject to the boundary conditions

$$u(x, y) = g(x, y)$$
 if $x = a$ or $x = b$ and $c \le y \le d$

and

$$u(x, y) = g(x, y)$$
 if $y = c$ or $y = d$ and $a \le x \le b$:

INPUT endpoints a, b, c, d; integers $m \ge 3$, $n \ge 3$; tolerance TOL; maximum number of iterations N.

OUTPUT approximations $w_{i,j}$ to $u(x_i, y_j)$ for each i = 1, ..., n-1 and for each j = 1, ..., m-1 or a message that the maximum number of iterations was exceeded.

```
Step 1 Set h = (b - a)/n;
            k = (d - c)/m.
Step 2 For i = 1, ..., n-1 set x_i = a + ih. (Steps 2 & 3 construct mesh pts.)
Step 3 For j = 1, ..., m - 1 set y_i = c + jk.
Step 4 For i = 1, ..., n - 1
            for j = 1, ..., m - 1 set w_{i,j} = 0.
Step 5 Set \lambda = h^2/k^2:
            \mu = 2(1 + \lambda);
            / — 1
Step 6 While I < N do Steps 7–20. (Steps 7–20 perform
            (Gauss-Seidel iterations.)
     Step 7 Set z = (-h^2 f(x_1, y_{m-1}) + g(a, y_{m-1}) + \lambda g(x_1, d)
                  + \lambda W_{1 m-2} + W_{2 m-1} / \mu;
                  NORM = |z - w_{1,m-1}|;
                  W_{1,m-1} = Z.
```

Step 8 For
$$i=2,\ldots,n-2$$
 set $z=\left(-h^2f(x_i,y_{m-1})+\lambda g(x_i,d)+w_{i-1,m-1}+w_{i+1,m-1}+\lambda w_{i,m-2}\right)/\mu;$ if $|w_{i,m-1}-z|>NORM$ then set $NORM=|w_{i,m-1}-z|;$ set $w_{i,m-1}=z.$ Step 9 Set $z=\left(-h^2f(x_{n-1},y_{m-1})+g(b,y_{m-1})+\lambda g(x_{n-1},d)+w_{n-2,m-1}+\lambda w_{n-1,m-2}\right)/\mu;$ if $|w_{n-1,m-1}-z|>NORM$ then set $NORM=|w_{n-1,m-1}-z|;$ set $w_{n-1,m-1}=z.$ Step 10 For $j=m-2,\ldots,2$ do Steps 11, 12, and 13. Step 11 Set $z=\left(-h^2f(x_1,y_j)+g(a,y_j)+\lambda w_{1,j+1}+\lambda w_{1,j-1}+w_{2,j}\right)/\mu;$ if $|w_{1,j}-z|>NORM$ then set $NORM=|w_{1,j}-z|;$ set $w_{1,j}=z.$

Step 12 For
$$i=2,\ldots,n-2$$
 set $z=\left(-h^2f(x_i,y_j)+w_{i-1,j}+\lambda w_{i,j+1}+w_{i+1,j}+\lambda w_{i,j-1}\right)/\mu;$ if $|w_{i,j}-z|>NORM$ then set $NORM=|w_{i,j}-z|;$ set $w_{i,j}=z.$ Step 13 Set $z=\left(-h^2f(x_{n-1},y_j)+g(b,y_j)+w_{n-2,j}+\lambda w_{n-1,j+1}+\lambda w_{n-1,j-1}\right)/\mu;$ if $|w_{n-1,j}-z|>NORM$ then set $NORM=|w_{n-1,j}-z|;$ set $w_{n-1,j}=z.$ Step 14 Set $z=\left(-h^2f(x_1,y_1)+g(a,y_1)+\lambda g(x_1,c)+\lambda w_{1,2}+w_{2,1}\right)/\mu;$ if $|w_{1,1}-z|>NORM$ then set $NORM=|w_{1,1}-z|;$ set $w_{1,1}=z.$

Step 15 For
$$i=2,\ldots,n-2$$
 set
$$z=\left(-h^2f(x_i,y_1)+\lambda g(x_i,c)+w_{i-1,1}+\lambda w_{i,2}+w_{i+1,1}\right)/\mu;$$
 if $|w_{i,1}-z|>NORM$ then set $NORM=|w_{i,1}-z|;$ set $w_{i,1}=z.$ Step 16 Set $z=\left(-h^2f(x_{n-1},y_1)+g(b,y_1)\right)$
$$+\lambda g(x_{n-1},c)+w_{n-2,1}+\lambda w_{n-1,2}\right)/\mu;$$
 if $|w_{n-1,1}-z|>NORM$ then set $NORM=|w_{n-1,1}-z|;$ set $w_{n-1,1}=z.$ Step 17 If $NORM\leq TOL$ then do Steps 18 and 19. Step 18 For $i=1,\ldots,n-1$ for $j=1,\ldots,m-1$ OUTPUT $(x_i,y_j,w_{i,j}).$ Step 19 STOP. (The procedure was successful.) Step 20 Set $l=l+1.$ Step 21 OUTPUT ('Maximum number of iterations exceeded'); STOP. (The procedure was unsuccessful.)

BACKWARD DIFFERENCE

The Backward-Difference method involves the mesh points (x_i, t_{j-1}) , (x_{i-1}, t_j) , and (x_{i+1}, t_j) to approximate the value at (x_i, t_j) , as illustrated in Figure 12.9.

Figure: Figure 12.9

Algorithm 12.2: HEAT EQUATION BACKWARD-DIFFERENCE

To approximate the solution to the parabolic partial differential equation

$$\frac{\partial u}{\partial t}(x,t) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0, \quad 0 < x < I, \quad 0 < t < T,$$

subject to the boundary conditions

$$u(0, t) = u(l, t) = 0, \quad 0 < t < T,$$

and the initial conditions

$$u(x,0) = f(x), \quad 0 \le x \le I$$
:

Algorithm 12.2: HEAT EQUATION BACKWARD-DIFFERENCE

INPUT endpoint I; maximum time T; constant α ; integers $m \geq 3$, N > 1.

OUTPUT approximations $w_{i,j}$ to $u(x_i, t_j)$ for each i = 1, ..., m-1 and j = 1, ..., N.

Step 1 Set
$$h = I/m$$
; $k = T/N$; $\lambda = \alpha^2 k/h^2$.

Step 2 For i = 1, ..., m-1 set $w_i = f(ih)$. (Initial values.) (Steps 3–11 solve tridiagonal linear system by Algorithm 6.7.)

Step 3 Set
$$I_1 = 1 + 2\lambda$$
;

$$u_1 = -\lambda/I_1$$
.

Step 4 For
$$i = 2, ..., m-2$$
 set $l_i = 1 + 2\lambda + \lambda u_{i-1}$; $u_i = -\lambda/l_i$.

Algorithm 12.2: HEAT EQUATION BACKWARD-DIFFERENCE

```
Step 5 Set I_{m-1} = 1 + 2\lambda + \lambda u_{m-2}.

Step 6 For j = 1, \dots, N do Steps 7–11.

Step 7 Set t = jk; (Current t_j.)
z_1 = w_1/I_1.
Step 8 For i = 2, \dots, m-1 set z_i = (w_i + \lambda z_{i-1})/I_i.

Step 9 Set w_{m-1} = z_{m-1}.

Step 10 For i = m-2, \dots, 1 set w_i = z_i - u_i w_{i+1}.

Step 11 OUTPUT (t); (Note: t = t_j.)
For i = 1, \dots, m-1 set x = ih;
OUTPUT (x, w_i). (Note: w_i = w_{i,j}.)
Step 12 STOP. (The procedure is complete.)
```

FORWARD DIFFERENCE

The Forward-Difference method involves the mesh points (x_{i-1}, t_{j-1}) , (x_i, t_{j-1}) , and (x_{i+1}, t_{j-1}) to approximate the value at (x_i, t_j) , as illustrated in Figure 12.10. This method has stability problems, so the Backward-Difference method is preferred.

Figure: Figure 12.10

CRANK-NICLOSON

The Crank-Nicolson represents an averaging of the backward-difference method and forward-difference method involving the mesh points (x_{i-1}, t_j) , (x_i, t_j) , (x_{i+1}, t_j) , (x_{i-1}, t_{j+1}) , and (x_{i+1}, t_{j+1}) to approximate the value at (x_i, t_{i+1}) , as illustrated in Figure 12.11.

Figure: Figure 12.11

Algorithm 12.3: CRANK-NICOLSON METHOD

To approximate the solution to the parabolic partial differential equation

$$\frac{\partial u}{\partial t}(x,t) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0, \quad 0 < x < I, \quad 0 < t < T,$$

subject to the boundary conditions

$$u(0, t) = u(I, t) = 0, \quad 0 < t < T,$$

and the initial conditions

$$u(x,0) = f(x), \quad 0 \le x \le I$$
:

Algorithm 12.3: CRANK-NICOLSON METHOD

INPUT endpoint I; maximum time T; constant α ; integers m > 3,

```
N > 1.
OUTPUT approximations w_{i,j} to u(x_i, t_i) for each i = 1, ..., m-1 and
i = 1, ..., N.
Step 1 Set h = I/m;
             k = T/N;
             \lambda = \alpha^2 k/h^2:
             W_m = 0.
Step 2 For i = 1, ..., m-1 set w_i = f(ih). (Initial values.)
(Steps 3-11 solve a tridiagonal linear system using Algorithm 6.7.)
Step 3 Set I_1 = 1 + \lambda:
             U_1 = -\lambda/(2I_1).
Step 4 For i = 2, ..., m-2 set I_i = 1 + \lambda + \lambda u_{i-1}/2;
                                     u_i = -\lambda/(2I_i).
```

Algorithm 12.3: CRANK-NICOLSON METHOD

Step 5 Set
$$I_{m-1} = 1 + \lambda + \lambda u_{m-2}/2$$
.
Step 6 For $j = 1, \ldots, N$ do Steps 7–11.
Step 7 Set $t = jk$; (Current t_j .)
$$z_1 = \left[(1 - \lambda) w_1 + \frac{\lambda}{2} w_2 \right] / I_1.$$
Step 8 For $i = 2, \ldots, m-1$ set
$$z_i = \left[(1 - \lambda) w_i + \frac{\lambda}{2} (w_{i+1} + w_{i-1} + z_{i-1}) \right] / I_i.$$
Step 9 Set $w_{m-1} = z_{m-1}$.
Step 10 For $i = m-2, \ldots, 1$ set $w_i = z_i - u_i w_{i+1}$.
Step 11 OUTPUT (t) ; (Note: $t = t_j$.)
For $i = 1, \ldots, m-1$ set $x = ih$;
OUTPUT (x, w_i) . (Note: $w_i = w_{i,j}$.)
Step 12 STOP. (The procedure is complete.)

Algorithm 12.4: WAVE EQUATION FINITE-DIFFERENCE

To approximate the solution to the wave equation

$$\frac{\partial^2 u}{\partial t^2}(x,t) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0, \quad 0 < x < I, \quad 0 < t < T,$$

subject to the boundary conditions

$$u(0, t) = u(l, t) = 0, \quad 0 < t < T,$$

and the initial conditions

$$u(x,0) = f(x)$$
, and $\frac{\partial u}{\partial t}(x,0) = g(x)$, for $0 \le x \le l$,

INPUT endpoint I; maximum time T; constant α ; integers $m \ge 2$, N > 2.

Algorithm 12.4: WAVE EQUATION FINITE-DIFFERENCE

```
OUTPUT approximations w_{i,j} to u(x_i, t_j) for each i = 0, ..., m and j = 0, ..., N.
```

Step 1 Set
$$h = I/m$$
; $k = T/N$; $\lambda = k\alpha/h$.
Step 2 For $j = 1, \dots, N$ set $w_{0,j} = 0$; $w_{m,j} = 0$;
Step 3 Set $w_{0,0} = f(0)$; $w_{m,0} = f(I)$.
Step 4 For $i = 1, \dots, m-1$ (Initialize for $t = 0$ and $t = k$.) set $w_{i,0} = f(ih)$; $w_{i,1} = (1 - \lambda^2)f(ih) + \frac{\lambda^2}{2}[f((i+1)h) + f((i-1)h)] + kg(ih)$.

Algorithm 12.4: WAVE EQUATION FINITE-DIFFERENCE

```
Step 5 For j=1,\ldots,N-1 (Perform matrix multiplication.) for i=1,\ldots,m-1 set w_{i,j+1}=2(1-\lambda^2)w_{i,j}+\lambda^2(w_{i+1,j}+w_{i-1,j})-w_{i,j-1}. Step 6 For j=0,\ldots,N set t=jk; for i=0,\ldots,m set x=ih; OUTPUT (x,t,w_{i,j}). Step 7 STOP. (The procedure is complete.)
```


The first step is to divide the region into a finite number of sections, or elements, of a regular shape, either rectangles or triangles. (Figure 12.14.) The set of functions used for approximation is generally a set of piecewise polynomials of fixed degree in x and y, and the approximation requires that the polynomials be pieced together in such a manner that the resulting function is continuous with an integrable or continuous first or second derivative on the entire region.

Figure: Figure 12.14

Algorithm 12.5: FINITE-ELEMENT METHOD

To approximate the solution to the partial differential equation

$$\frac{\partial}{\partial x}\Big(p(x,y)\frac{\partial u}{\partial x}\Big)+\frac{\partial}{\partial y}\Big(q(x,y)\frac{\partial u}{\partial y}\Big)+r(x,y)u=f(x,y),\quad (x,y)\in D$$

subject to the boundary conditions

$$u(x, y) = g(x, y), \quad (x, y) \in \mathcal{S}_1$$

and

$$p(x,y)\frac{\partial u}{\partial x}(x,y)\cos\theta_1 + q(x,y)\frac{\partial u}{\partial y}(x,y)\cos\theta_2 + g_1(x,y)u(x,y)$$
$$= g_2(x,y), \quad (x,y) \in \mathcal{S}_2,$$

where $S_1 \cup S_2$ is the boundary of D, and θ_1 and θ_2 are the direction angles of the normal to the boundary:


```
Step 0 Divide the region D into triangles T_1, \ldots, T_M such that:
        T_1, \ldots, T_K are the triangles with no edges on S_1 or S_2;
           (Note: K = 0 implies that no triangle is interior to D.)
        T_{K+1}, \ldots, T_N are the triangles with at least one edge on S_2;
        T_{N+1}, \ldots, T_M are the remaining triangles.
           (Note: M = N implies that all triangles have edges on S_2.)
        Label the three vertices of the triangle T_i by
           (x_1^{(i)}, y_1^{(i)}), (x_2^{(i)}, y_2^{(i)}), and (x_3^{(i)}, y_3^{(i)}).
        Label the nodes (vertices) E_1, \ldots, E_m where
           E_1, \ldots, E_n are in D \cup S_2 and E_{n+1}, \ldots, E_m are on S_1.
           (Note: n = m implies that S_1 contains no nodes.)
```


Algorithm 12.5: FINITE-ELEMENT METHOD

INPUT integers *K*, *N*, *M*, *n*, *m*; vertices

$$(x_1^{(i)}, y_1^{(i)}), (x_2^{(i)}, y_2^{(i)}), (x_3^{(i)}, y_3^{(i)})$$
 for each $i = 1, ..., M$; nodes E_j for each $j = 1, ..., m$.

(Note: All that is needed is a means of corresponding a vertex $\left(x_k^{(i)},y_k^{(i)}\right)$ to a node $E_j=(x_j,y_j)$.)

OUTPUT constants $\gamma_1, \ldots, \gamma_m$; $a_j^{(i)}, b_j^{(i)}, c_j^{(i)}$ for each j = 1, 2, 3 and $i = 1, \ldots, M$.

Step 1 For
$$l = n + 1, \ldots, m$$
 set $\gamma_l = g(x_l, y_l)$. (Note: $E_l = (x_l, y_l)$.)
Step 2 For $i = 1, \ldots, n$
set $\beta_i = 0$;
for $i = 1, \ldots, n$ set $\alpha_{i,i} = 0$.

Step 3 For
$$i=1,\ldots,M$$

$$\begin{split} & \text{set } \Delta_i = \det \begin{vmatrix} 1 & x_1^{(i)} & y_1^{(i)} \\ 1 & x_2^{(i)} & y_2^{(i)} \\ 1 & x_3^{(i)} & y_3^{(i)} \end{vmatrix}; \\ & a_1^{(i)} = \frac{x_2^{(i)}y_3^{(i)}-y_2^{(i)}x_3^{(i)}}{\Delta_i}; & b_1^{(i)} = \frac{y_2^{(i)}-y_3^{(i)}}{\Delta_i}; & c_1^{(i)} = \frac{x_3^{(i)}-x_2^{(i)}}{\Delta_i}; \\ & a_2^{(i)} = \frac{x_3^{(i)}y_1^{(i)}-y_3^{(i)}x_1^{(i)}}{\Delta_i}; & b_2^{(i)} = \frac{y_3^{(i)}-y_1^{(i)}}{\Delta_i}; & c_2^{(i)} = \frac{x_1^{(i)}-x_2^{(i)}}{\Delta_i}; \\ & a_3^{(i)} = \frac{x_1^{(i)}y_2^{(i)}-y_1^{(i)}x_2^{(i)}}{\Delta_i}; & b_3^{(i)} = \frac{y_1^{(i)}-y_2^{(i)}}{\Delta_i}; & c_3^{(i)} = \frac{x_2^{(i)}-x_1^{(i)}}{\Delta_i}; \\ & \text{for } j=1,2,3 \\ & \text{define } N_j^{(i)}(x,y) = a_j^{(i)} + b_j^{(i)}x + c_j^{(i)}y. \end{split}$$

Step 4 For
$$i=1,\ldots,M$$
 (The integrals in Steps 4 & 5 can be evaluated using numerical integration.) for $j=1,2,3$ for $k=1,\ldots,j$ (Compute all double integrals over.) the triangles.) set $z_{j,k}^{(i)}=b_j^{(i)}b_k^{(i)}\int_{\mathcal{T}_i}p(x,y)\,dx\,dy+c_j^{(i)}c_k^{(i)}\int_{\mathcal{T}_i}p(x,y)\,dx\,dy-\int_{\mathcal{T}_i}r(x,y)N_j^{(i)}(x,y)N_k^{(i)}(x,y)\,dx\,dy;$ set $H_j^{(i)}=-\int_{\mathcal{T}_i}f(x,y)N_j^{(i)}(x,y)\,dx\,dy$. Step 5 For $i=K+1,\ldots,N$ (Compute all line integrals.) for $j=1,2,3$ for $k=1,\ldots,j$ set $J_{j,k}^{(i)}=\int_{\mathcal{S}_2}g_1(x,y)N_j^{(i)}(x,y)N_k^{(i)}(x,y)\,dS;$ set $I_j^{(i)}=\int_{\mathcal{S}_2}g_2(x,y)N_j^{(i)}(x,y)\,dS$.

```
Step 6 For i = 1, ..., M do Steps 7–12. (Assembling the integrals
                                                        over each triangle into the.)
                                                        linear system.)
       Step 7 For k = 1, 2, 3 do Steps 8–12.
              Step 8 Find I so that E_I = (x_k^{(i)}, y_k^{(i)}).
              Step 9 If k > 1 then for j = 1, ..., k - 1 do Steps 10, 11.
                      Step 10 Find t so that E_t = (x_i^{(i)}, y_i^{(i)}).
                      Step 11 If l \le n then
                                           if t \leq n then set \alpha_{lt} = \alpha_{lt} + Z_{k,i}^{(i)};
                                                                  \alpha_{tl} = \alpha_{tl} + Z_{k,i}^{(i)}
                                                      else set \beta_I = \beta_I - \gamma_t Z_{k,i}^{(i)}
                                            else
                                                  if t \leq n then set \beta_t = \beta_t - \gamma_t Z_{k,i}^{(t)}.
```


Algorithm 12.5: FINITE-ELEMENT METHOD

Step 12 If
$$I \le n$$
 then set $\alpha_{II} = \alpha_{II} + z_{k,k}^{(i)}$;

$$\beta_I = \beta_I + H_k^{(i)}.$$

Step 13 For i = K + 1, ..., N do Steps 14–19. (Assembling the line integrals into.) into the linear system.)

Step 14 For k = 1, 2, 3 do Steps 15–19.

Step 15 Find *I* so that
$$E_I = (x_k^{(i)}, y_k^{(i)})$$
.

Step 16 If k > 1 then for j = 1, ..., k-1 do Steps 17, 18.

Step 17 Find
$$t$$
 so that $E_t = \left(x_j^{(i)}, y_j^{(i)}\right)$.

Step 18 If
$$l \leq n$$
 then
$$\text{if } t \leq n \text{ then set } \alpha_{lt} = \alpha_{lt} + J_{k,j}^{(i)}; \\ \alpha_{tl} = \alpha_{tl} + J_{k,j}^{(i)}; \\ \alpha_{tl} = \alpha_{tl} + J_{k,j}^{(i)}; \\ \text{else set } \beta_l = \beta_l - \gamma_t J_{k,j}^{(i)}; \\ \text{else} \\ \text{if } t \leq n \text{ then set } \beta_t = \beta_t - \gamma_l J_{k,j}^{(i)}. \\ \text{Step 19 If } l \leq n \text{ then set } \alpha_{ll} = \alpha_{ll} + J_{k,k}^{(i)}; \\ \beta_l = \beta_l + I_k^{(i)}. \\ \text{Step 20 Solve the linear system } A\mathbf{c} = \mathbf{b} \text{ where } A = (\alpha_{l,t}), \mathbf{b} = (\beta_l) \\ \text{and } \mathbf{c} = (\gamma_t) \text{ for } 1 \leq l \leq n \text{ and } 1 \leq t \leq n.$$

Step 21 OUTPUT
$$(\gamma_1, \ldots, \gamma_m)$$
.
 $(For each \ k = 1, \ldots, m \ let \ \phi_k = N_j^{(i)} \ on \ T_i \ if \ E_k = \left(x_j^{(i)}, y_j^{(i)}\right)$.
 $Then \ \phi(x,y) = \sum_{k=1}^m \gamma_k \phi_k(x,y) \ approximates$
 $u(x,y) \ on \ D \cup \mathcal{S}_1 \cup \mathcal{S}_2$.)
Step 22 For $i=1,\ldots,M$
for $j=1,2,3$ OUTPUT $\left(a_j^{(i)},b_j^{(i)},c_j^{(i)}\right)$.
Step 23 STOP. (The procedure is complete.)