CS434a/541a: Pattern Recognition Prof. Olga Veksler

Lecture 8

Today

- Continue with Dimensionality Reduction
- Last lecture: PCA
- This lecture: Fisher Linear Discriminant

Data Representation vs. Data Classification

- PCA finds the most accurate data representation in a lower dimensional space
- Project data in the directions of maximum variance
- However the directions of maximum variance may be useless for classification

Fisher Linear Discriminant project to a line which preserves direction useful for data classification

Main idea: find projection to a line s.t. samples from different classes are well separated

- Suppose we have 2 classes and **d**-dimensional samples x₁,...,x_n where
 - n_1 samples come from the first class n_2 samples come from the second class
 - consider projection on a line
- Let the line direction be given by unit vector v

Scalar $v^t x_j$ is the distance of projection of x_j from the origin

Thus it $\mathbf{v}^t \mathbf{x}_i$ is the projection of \mathbf{x}_i into a one dimensional subspace

- Thus the projection of sample x, onto a line in direction **v** is given by **v**^t**x**_i
- How to measure separation between projections of different classes?
- Let \vec{a}_1 and \vec{a}_2 be the means of projections of classes 1 and 2
- Let μ_1 and μ_2 be the means of classes 1 and 2
- $|\mathcal{U}_1 \mathcal{U}_2|$ seems like a good measure

$$\alpha_1 = \frac{1}{n_1} \sum_{x_i \in C_1}^{n_1} v^t x_i = v^t \left(\frac{1}{n_1} \sum_{x_i \in C_1}^{n_1} x_i \right) = v^t \mu_1$$

similarly,
$$\mu_2 = v^t \mu_2$$

- How good is $|\vec{u}_1 \vec{u}_2|$ as a measure of separation?
- The larger $|\mathcal{U}_1 \mathcal{U}_2|$, the better is the expected separation

- the vertical axes is a better line than the horizontal axes to project to for class separability
- however $|\hat{\mu}_{1} \hat{\mu}_{2}| > |\mu_{1} \mu_{2}|$

The problem with $|\vec{\mu}_1 - \vec{\mu}_2|$ is that it does not consider the variance of the classes

- We need to normalize $|\vec{u}_1 \vec{u}_2|$ by a factor which is proportional to variance
- Have samples $\mathbf{z}_{1}, \dots, \mathbf{z}_{n}$. Sample mean is $\mu_{z} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i}$
- Define their scatter as

$$\mathbf{S} = \sum_{i=1}^{n} \left(\mathbf{z}_i - \boldsymbol{\mu}_z \right)^2$$

- Thus scatter is just sample variance multiplied by *n*
- scatter measures the same thing as variance, the spread of data around the mean
- scatter is just on different scale than variance

- Fisher Solution: normalize $|a_1 a_2|$ by scatter
- Let $\mathbf{y}_i = \mathbf{v}^t \mathbf{x}_i$, i.e. \mathbf{y}_i 's are the projected samples
- Scatter for projected samples of class 1 is

$$\widetilde{\mathbf{S}}_1^2 = \sum_{\mathbf{y}_i \in Class \ 1} (\mathbf{y}_i - \mathbf{\mu}_1)^2$$

Scatter for projected samples of class 2 is $\widetilde{\mathbf{S}}_{2}^{2} = \sum_{\mathbf{y}_{i} \in Class} (\mathbf{y}_{i} - \widetilde{\mu}_{2})^{2}$

- We need to normalize by both scatter of class 1 and scatter of class 2
- Thus Fisher linear discriminant is to project on line in the direction v which maximizes

want projected means are far from each other

$$J(v) = \frac{(\overline{\mu_1 - \overline{\mu_2}})^2}{\widetilde{\mathbf{S}}_1^2 + \widetilde{\mathbf{S}}_2^2}$$

want scatter in class 1 is as small as possible, i.e. samples of class 1 cluster around the projected mean μ_1

want scatter in class 2 is as small as possible, i.e. samples of class 2 cluster around the projected mean μ_2

$$J(\mathbf{v}) = \frac{(\vec{\mu}_1 - \vec{\mu}_2)^2}{\tilde{\mathbf{S}}_1^2 + \tilde{\mathbf{S}}_2^2}$$

guaranteed that the classes are well separated If we find \mathbf{v} which makes $\mathbf{J}(\mathbf{v})$ large, we are

small S₁ implies that projected samples of class 1 are clustered around projected mean

small \tilde{S}_2 implies that projected samples of class 2 are clustered around projected mean

$$J(v) = \frac{(\overline{u}_1 - \overline{u}_2)^2}{\widetilde{\mathbf{S}}_1^2 + \widetilde{\mathbf{S}}_2^2}$$

- All we need to do now is to express Jexplicitly as a function of **v** and maximize it
- straightforward but need linear algebra and Calculus
- **S**, for classes 1 and 2. These measure the scatter Define the separate class scatter matrices S, and of original samples x, (before projection)

$$\mathbf{S}_{1} = \sum_{\mathbf{x}_{i} \in Class \ 1} (\mathbf{x}_{i} - \mu_{1})(\mathbf{x}_{i} - \mu_{1})^{t}$$

 $\mathbf{S}_{2} = \sum_{\mathbf{x}_{i} \in Class \ 2} (\mathbf{x}_{i} - \mu_{2})(\mathbf{x}_{i} - \mu_{2})^{t}$

Now define the within the class scatter matrix

$$\mathbf{S}_W = \mathbf{S}_1 + \mathbf{S}_2$$

Recall that $\mathbf{\tilde{s}}_1^2 = \sum_{\mathbf{y}_i \in Class \ 1} (\mathbf{y}_i - \mathbf{\tilde{u}}_1)^2$

Using $\mathbf{y}_i = \mathbf{v}^t \mathbf{x}_i$ and $\mathbf{\mu}_1 = \mathbf{v}^t \mu_1$

$$\tilde{\mathbf{S}}_{1}^{2} = \sum_{\mathbf{y}_{i} \in Class \ 1} (\mathbf{v}^{t} \mathbf{x}_{i} - \mathbf{v}^{t} \mu_{1})^{2}$$

$$= \sum_{\mathbf{y}_{i} \in Class \ 1} (\mathbf{v}^{t} (\mathbf{x}_{i} - \mu_{1}))^{t} (\mathbf{v}^{t} (\mathbf{x}_{i} - \mu_{1}))$$

$$= \sum_{\mathbf{y}_{i} \in Class \ 1} ((\mathbf{x}_{i} - \mu_{1})^{t} \mathbf{v})^{t} ((\mathbf{x}_{i} - \mu_{1})^{t} \mathbf{v})$$

$$= \sum_{\mathbf{y}_{i} \in Class \ 1} (\mathbf{x}_{i} - \mu_{1})^{t} \mathbf{v} (\mathbf{x}_{i} - \mu_{1})^{t} \mathbf{v} = \mathbf{v}^{t} \mathbf{S}_{1} \mathbf{v}$$

- Similarly $\tilde{\mathbf{S}}_2^2 = \mathbf{v}^t \mathbf{S}_2 \mathbf{v}$
- Therefore $\tilde{\mathbf{S}}_1^2 + \tilde{\mathbf{S}}_2^2 = \mathbf{v}^t \mathbf{S}_1 \mathbf{v} + \mathbf{v}^t \mathbf{S}_2 \mathbf{v} = \mathbf{v}^t \mathbf{S}_W \mathbf{v}$
- Define between the class scatter matrix

$$S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t$$

- S_B measures separation between the means of two classes (before projection)
- Let's rewrite the separations of the projected means = $\mathbf{v}^{t} (\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{t} \mathbf{v}$ $(\mu_1 - \mu_2)^2 = (\mathbf{v}^t \mu_1 - \mathbf{v}^t \mu_2)^2$

$$= V^t S_B V$$

Thus our objective function can be written:

$$J(\mathbf{v}) = \frac{(\mathbf{\vec{\mu}}_1 - \mathbf{\vec{\mu}}_2)^2}{\widetilde{\mathbf{S}}_1^2 + \widetilde{\mathbf{S}}_2^2} = \frac{\mathbf{v}^t \mathbf{S}_B \mathbf{v}}{\mathbf{v}^t \mathbf{S}_W \mathbf{v}}$$

Minimize J(v) by taking the derivative w.r.t. v and

setting it to 0
$$\frac{d}{dv}v^{t}S_{B}v v v - \left(\frac{d}{dv}v^{t}S_{W}v - \left(\frac{d}{dv}v^{t}S_{W}v\right)v^{t}S_{B}v\right)$$

$$\frac{d}{dv}J(v) = \frac{(2S_{B}v)v^{t}S_{W}v - (2S_{W}v)v^{t}S_{B}v}{(v^{t}S_{W}v)^{2}} = 0$$

$$= \frac{(2S_{B}v)v^{t}S_{W}v - (2S_{W}v)v^{t}S_{B}v}{(v^{t}S_{W}v)^{2}} = 0$$

Need to solve $\mathbf{v}^t \mathbf{S}_W \mathbf{v} (\mathbf{S}_B \mathbf{v}) - \mathbf{v}^t \mathbf{S}_B \mathbf{v} (\mathbf{S}_W \mathbf{v}) = \mathbf{0}$

$$\Rightarrow \frac{v^{t}S_{W}v(S_{B}v)}{v^{t}S_{W}v} - \frac{v^{t}S_{B}v(S_{W}v)}{v^{t}S_{W}v} = 0$$

$$\Rightarrow S_{B}v - \frac{v^{t}S_{W}v}{v^{t}S_{W}v} = \lambda$$

 $\Rightarrow \mathbf{S}_{B}\mathbf{V} = \lambda \mathbf{S}_{W}\mathbf{V}$

generalized eigenvalue problem

$$S_B V = \lambda S_W V$$

If S_w has full rank (the inverse exists), can convert this to a standard eigenvalue problem

$$S_W^{-1}S_BV=\lambda V$$

But S_B x for any vector x, points in the same direction as μ_1 - μ_2

$$S_B x = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t x = (\mu_1 - \mu_2)((\mu_1 - \mu_2)^t x) \neq \alpha(\mu_1 - \mu_2)$$

Thus can solve the eigenvalue problem immediately

$$|\mathbf{v} = \mathbf{S}_W^{-1}(\mu_1 - \mu_2)|$$

$$\mathbf{S}_{W}^{-1}\mathbf{S}_{B}[\mathbf{S}_{W}^{-1}(\mu_{1}-\mu_{2})] = \mathbf{S}_{W}^{-1}[\alpha(\mu_{1}-\mu_{2})] = \alpha[\mathbf{S}_{W}^{-1}(\mu_{1}-\mu_{2})]$$

Fisher Linear Discriminant Example

- Data
- Class 1 has 5 samples c₁=[(1,2),(2,3),(3,3),(4,5),(5,5)]
- Class 2 has 6 samples c₂=[(1,0),(2,1),(3,1),(3,2),(5,3),(6,5)]
- Arrange data in 2 separate matrices

$$c_{1} = \frac{7}{5} \cdot \frac{2}{5}$$

 Notice that PCA performs very poorly on this data because the direction of largest variance is not helpful for classification

Fisher Linear Discriminant Example

First compute the mean for each class

$$\mu_{_{1}} = mean \; (c_{_{1}}) = [3 \;\; 3.6]$$

$$\mu_2 = mean (c_2) = [3.3 \ 2]$$

Compute scatter matrices S₁ and S₂ for each class

$$S_{1} = 4 * cov(c_{1}) = \begin{bmatrix} 10 & 8.0 \\ 8.0 & 7.2 \end{bmatrix}$$
 $S_{2} = 5 * cov(c_{2}) = \begin{bmatrix} 17.3 & 16 \\ 16 & 16 \end{bmatrix}$

$$S_2 = 5 * cov(c_2) = \begin{vmatrix} 17.3 \\ 16 \end{vmatrix}$$

Within the class scatter:

$$S_W = S_1 + S_2 = \begin{bmatrix} 27.3 & 24 \\ 24 & 23.2 \end{bmatrix}$$

it has full rank, don't have to solve for eigenvalues

The inverse of
$$S_W$$
 is $S_W^{-1} = inv(S_W) = \begin{bmatrix} 0.39 & -0.41 \\ -0.41 & 0.47 \end{bmatrix}$

Finally, the optimal line direction
$$\mathbf{v}$$

$$\mathbf{v} = \mathbf{S}_{\mathbf{w}}^{-1}(\mu_1 - \mu_2) = \begin{bmatrix} -\mathbf{0.79} \\ \mathbf{0.89} \end{bmatrix}$$

Fisher Linear Discriminant Example

- Notice, as long as the line has the right direction, its exact position does not matter
- Last step is to compute the actual **1D** vector **y**. Let's do it separately for each class

$$Y_1 = v^t c_1^t = \begin{bmatrix} -0.65 & 0.73 \end{bmatrix} \begin{bmatrix} 1 & ... \\ 2 & ... \end{bmatrix} = \begin{bmatrix} 0.81 & ... \\ 0.4 \end{bmatrix}$$

$$Y_2 = v^t c_2^t = \begin{bmatrix} -0.65 & 0.73 \end{bmatrix} \begin{bmatrix} 1 & ... & 6 \\ 0 & ... & 5 \end{bmatrix} = \begin{bmatrix} -0.65 & ... -0.25 \end{bmatrix}$$

Multiple Discriminant Analysis (MDA)

- Can generalize FLD to multiple classes
- In case of classes, can reduce dimensionality to 1, 2, 3,..., c-1 dimensions
- Project sample x_i to a linear subspace $y_i = V^t x_i$
 - V is called projection matrix

Multiple Discriminant Analysis (MDA)

- n, by the number of samples of class i
- and μ_i be the sample mean of class i
- μ be the total mean of all samples

$$\mu_i = \frac{1}{n_i} \sum_{\mathbf{x} \in class \ i} \mathbf{x} \qquad \mu = \frac{1}{n} \sum_{\mathbf{x}_i} \mathbf{x}_i$$

- Objective function: $J(V) = \frac{det(V^{t}S_{B}V)}{det(V^{t}S_{W}V)}$
- within the class scatter matrix S_w is

$$S_{W} = \sum_{i=1}^{c} S_{i} = \sum_{i=1}^{c} \sum_{x_{k} \in class\ i} (x_{k} - \mu_{i})(x_{k} - \mu_{i})^{t}$$

 $S_B = \sum_{i=1} n_i (\mu_i - \mu) (\mu_i - \mu)^t$ between the class scatter matrix S_B is

maximum rank is c -1

Multiple Discriminant Analysis (MDA)

$$J(V) = \frac{\det\left(V^{t}S_{B}V\right)}{\det\left(V^{t}S_{W}V\right)}$$

First solve the generalized eigenvalue problem:

$$S_B V = \lambda S_W V$$

- At most c-1 distinct solution eigenvalues
- Let $v_1, v_2, ..., v_{c-1}$ be the corresponding eigenvectors
- The optimal projection matrix V to a subspace of corresponding to the largest k eigenvalues dimension k is given by the eigenvectors
- Thus can project to a subspace of dimension at most c-1

FDA and MDA Drawbacks

- Reduces dimension only to k = c 1 (unlike PCA)
- For complex data, projection to even the best line may result in unseparable projected samples
- Will fail:
- Vill fail:

 1. $J(\mathbf{v})$ is always 0: happens if $\mu_1 = \mu_2$

PCA also

reasonably well

PCA performs

fails:

2. If $J(\mathbf{v})$ is always large: classes have large overlap when projected to any line (PCA will also fail)

