b. Explain about	active LTES system.	10	3	3	1,7
29. a. Explain about	chemical energy storage materials and methods.	10	3	4	1,7
b. Explain the c	(OR) criteria for the selection of geometry heat exchanger and	10	3	4	1,7
container designation	gn for LTES.	10	3	5	1,7
30. a. Explain about technologies.	t the cool storage concept and comparison of cold storage				
b. Explain about	(OR) t solar power plant application for TES.	10	3	5	1,7
	A seal for sealing the party and the seal pair.				

Reg. No.								

B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth and Seventh Semester

18MEE445T – THERMAL ENERGY STORAGE SYSTEMS

(For the candidates admitted from the academic year 2018-2019 to 2019-20.	20)			
Note: (i) Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet over to hall invigilator at the end of 40 th minute.	et shoul	d be	han	ded
(ii) Part - B should be answered in answer booklet.				
Time: 2½ Hours	Max.	Ma	rks:	75
$PART - A (25 \times 1 = 25 \text{ Marks})$ Answer ALL Questions	Marks	BL	СО	PO
1. Which material is most suitable for sensible thermal energy storag system?	e ¹	1	1	1 2 3
(A) Water (B) Paraffin (C) Magnesium Chloride (D) Sodium nitrate Hexahydrate				
2. The operation temperature range for cold thermal energy storage system is	1	1	1	1
(A) Below 10°C (B) 20°C - 100°C (C) 100°C - 250°C (D) Above 250°C				
3. The amount of energy stored in the brick can be calculated by	1	1	1	1
(A) $Q = m.h \delta g$ (B) $Q = m.c_p.\Delta T$				
(C) $Q = \Delta U + W$ (D) $Q = hA\Delta T$				
4. Choose the correct range of specific heat (J/kg K), (high to low) for the sensible material.	ie ¹	2	1	1
 (A) Water > wood > clay > steel (B) Steel > clay > water > wood (C) steel > clay > wood > water (D) clay > wood > steel > water 				
5. The draw back of using water as sensible heat storage.	1	2	1	1
 (A) Low specific heat (B) High density (C) Limited temperature range (D) Low thermal conductivity (0-100°C) 				
6. Long term seasonal energy storage system operates with (A) Higher temperature and higher (B) Higher temperature and low capacity	er	1	2	2
(C) Lower temperature and lower (D) Lower temperature and high capacity capacity	er			
7. The salt solution yielded an average temperature of 55°C and provide bett thermal storage performance compared to other salt materials.	er ¹	1	2	1
(A) Ammonium nitrate (C) Sodium chloride (B) Sodium carbonate (D) Potassium nitrate				

8.	. The device which is used in active s (A) Turbine	(B) Pump	1 1 2 1	20. The phenomenon of capturing a gas or a vapour by a substance existing in the condensed state is known as	1	1 1	1,7 4
0	(C) Compressor	(D) Condenser		(A) Adsorption (C) Sorbent (B) Absorption (D) Sorpent			
9.	The advantageous character of s system is	olid sensible thermal energy storag	ge ¹ 1 2 1	(2) Solpont			
	(A) High specific heat capacity	(B) Reduce risk related to the		21. The device which is employed for producing chilled water (A) Fan (B) Proheat coil	1	1	1 5
	_11	leakage of the heat storag	ge	(A) Fan (B) Proheat coil (C) Chiller (D) Cooling coil			
	(C) High energy density	(D) Stratification		22. To produce a thicker layer of Ice, the charging temperature is maintained	1	1	1 5
10.	Thermo system (passive) solar heati	ng storage system works due to the	1 1 2 1	between	1		1 5
	(A) Pressure gradients(C) Density gradients	(B) Salinity gradients		(A) -7 and -3°C (B) -12 and -9°C (C) 7 and 3°C (D) 12 and 9°C			
		(D) Concentration gradients					
11.	The major advantage in organic PCI (A) Readily available	M is (B) High latent heat	1 1 3 1	23. Typical heat losses through crack in walls, windows and door from a conventional house is about	1	1	1 5
	(C) Very expensive	(D) Low thermal conductivity		(A) 5% (B) 17% (C) 38% (D) 20%			
12.	To determine the stability of encaps	ulant materials PCMs are subject to	1 1 3 1	(C) 38% (D) 20% 24. East facing rooms are suitable for			t
	(A) Super cooling	(B) Nucleation		(A) Bedroom (B) Receiving good passive solar	1	1]	5
	(C) Thermal cycling	(D) Compatibility		gain in winter			
13.	The advantages of latent heat storage (A) Efficiency		1 1 3 1	(C) Receiving goods afternoon (D) Bathroom. daylight			
	(C) Size	(B) Simplicity (D) Cost					
14.	The major drawback of organic PCM	I is its	1 1 3 1	25. MWCNT is added to PCM to increase its (A) Latent heat (B) Super cooling	1	1	5
	(A) Availability(C) Expensive	(B) Low thermal conductivity		(C) Specific heat (D) Thermal conductivity			
15		(D) Latent heat		DADT D (5 v 10 - 50 M - 1)			
15.	void volume without any supporting	ation of PCM which provide sufficient device is	t 1 1 1 1 1 2 3 3 7	PART – B (5 × 10 = 50 Marks) Answer ALL Questions Max	arks B	L CO	о ро
	(A) Rectangle(C) Sphere	(B) Cylinder	,	26. a. Explain about the mechanical storage system			
16.	Thermal conductivity enhancement i	(D) Ellipse n PCM leads to	1 1 1 4	(i) Hydro storage system (ii) Compressed air storage system	4 3 3	1	1,7
	(A) Increases in heat transfer rate(C) Constant heat transfer rate	(B) Decreases in heat transfer rate(D) Transient heat transfer rate		(iii) Flywheel	3	2).	6
17.	Thermal conductivity ratio of water b	petween its solid and liquid state is	1 1 1 1	b. Explain about the seasonal thermal energy storage technologies.	10 3	1	1,7
	(A) Eight	(B) Four	1 1 1 1			•	-,,,
	(C) Three	(D) Two		27. a. Explain the following STES systems with neat sketch (i) Rock bed thermal energy storage system	5	- 0	1,7
18.	The melting temperature of the PCM system lies in the range of	I suitable for solar domestic hot water	- 1 1 1 4	(ii) Solar Pond	5 2	2	
	(A) $25 - 30^{\circ}$ C	(B) 40 - 60°C		(OR) b. Explain active solar energy TES for water heating application with a neat	0 2	2	1.7
	(C) 60 - 95°C	(D) 100 - 175°C		sketch.			<
19.	DSC is sued for measuring. (A) Physical property.	(D) V' (1 1,7 4	28. a. Explain briefly about encapsulation technique of LTES materials.	0 3	3	1,7
	(A) Physical property(C) Chemical property	(B) Kinetic property(D) Thermal property		(OR)			
Page 2 of 4			19MF6-718MEE445T	Page 3 of 4	F6-718N	1EE44	5T