On Dialectica and Differentiation

Davide Barbarossa db2437@bath.ac.uk

Department of Computer Science

Seminar at University of Sussex, Brighton (UK)

06/11/2024

Cartesian differential categories

$$\frac{f:A\to B}{Df:A\times A\to B}$$

Cartesian tangent categories

$$\frac{f:A\to B}{Tf:TA\to TB}$$

Cartesian differential categories

$$\frac{f:A\to B}{Df:A\times A\to B}$$

Cartesian tangent categories

$$\frac{f:A\to B}{Tf:TA\to TB}$$

Cartesian differential categories

$$\frac{f:A\to B}{Df:A\times A\to B}$$

Cartesian tangent categories

$$\frac{f:A\to B}{Tf:TA\to TB}$$

Cartesian differential categories

$$\frac{f:A\to B}{Df:A\times A\to B}$$

Cartesian tangent categories

$$\frac{f:A\to B}{Tf:TA\to TB}$$

Cartesian reverse differential categories

$$\frac{f:A\to B}{Rf:A\times B\to A}$$

Cartesian reverse tangent categories

$$\frac{f:A\to B}{T^*f:f^*T^*B\to T^*A}$$

Dialectica (overview)

	$Source \rightarrow Target$	
Gödel	$A \in \mathrm{HA} \longmapsto A_D\{w,c\} \in \mathrm{T}$	
('58)	$ \begin{array}{ccc} & such \ that \\ \vdash_{\mathrm{HA}} A & \Longrightarrow & \vdash_{\mathrm{T}} A_D \{\mathtt{M},c\} \ for \ some \ \mathtt{M} \in \mathrm{T} \end{array} $	

Dialectica (overview)

		Sour	$rce \rightarrow Target$
Gödel ('58)	$A \in \mathrm{HA}$ $\vdash_{\mathrm{HA}} A$	$such\ that$	$A_D\{w,c\} \in \mathcal{T}$ $\vdash_{\mathcal{T}} A_D\{\mathtt{M},c\} \ \textit{for some} \ \mathtt{M} \in \mathcal{T}$
Pédrot (Diller- Nahm) ('15)	$A \in \Lambda \\ \mathtt{M} \in \Lambda$ $\mathtt{x}: A \vdash_{\Lambda} \mathtt{M}: B$	$\begin{array}{c} \longmapsto \\ \longmapsto \\ such \ that \\ \Longrightarrow \end{array}$	$\begin{split} W(A), C(A) &\in \mathbf{P} \\ \mathbf{M}^{\bullet}, \mathbf{M}_{\mathbf{x}} &\in \mathbf{P} \ (\textit{for } \mathbf{x} \ \textit{variable}) \\ \\ \begin{cases} \mathbf{x} : W(A) \vdash_{\mathbf{P}} \mathbf{M}^{\bullet} : W(B) \\ \mathbf{x} : W(A) \vdash_{\mathbf{P}} \mathbf{M}_{\mathbf{x}} : C(B) \to \mathcal{M}[C(A)] \end{cases} \end{split}$

Dialectica (Transformation)

	α	$E \to F$
W	$lpha_W$	$W(E) \to W(F)$ \times $W(E) \times C(F) \to \mathcal{M}[C(E)]$
\mathbf{C}	α_C	$W(E) \times C(F)$

	x	λ x.M	PQ
(_)•	x	$\left\langle\begin{array}{c} \lambda \mathbf{x}.\mathbf{M}^{\bullet} \\ \lambda \pi.(\lambda \mathbf{x}.\mathbf{M}_{\mathbf{x}})\pi^{1}\pi^{2} \end{array}\right\rangle$	P ^{•1} Q•
(_) _y	$\begin{cases} \lambda \pi.[\pi], & \mathbf{x} = \mathbf{y} \\ \lambda \pi.0, & \mathbf{y} \neq \mathbf{y} \end{cases}$		$\lambda \pi. \begin{pmatrix} P_{y} \langle \mathbb{Q}^{\bullet}, \pi \rangle \\ + \\ P^{\bullet 2} \langle \mathbb{Q}^{\bullet}, \pi \rangle \gg \mathbb{Q}_{y} \end{pmatrix}$

Arrows in $C: A \xrightarrow{f} B$ (linear) Arrows in $C_!: A \xrightarrow{f} B := !A \xrightarrow{f} B$ (non-linear)

Arrows in $C: A \xrightarrow{f} B$ (linear) Arrows in $C_!: A \xrightarrow{f} B := !A \xrightarrow{f} B$ (non-linear)

$$Cartesian \\ +SMC \\ +Seely$$
 $A B A B A B$ T

$$\overline{\operatorname{ev}_{A,B} : [A \multimap B] \otimes A \multimap B}$$

$$\frac{f : A \multimap [E \multimap F]}{\lambda f : A \otimes E \multimap F}$$

 $\mathit{Arrows\ in}\ \mathcal{C}\colon A \xrightarrow{f} B\ (\mathit{linear}) \quad \mathit{Arrows\ in}\ \mathcal{C}_!\colon A \xrightarrow{f} B := !A \xrightarrow{f} B\ (\mathit{non-linear})$

$$\begin{array}{ccc} Cartesian \\ +SMC \\ +Seely \end{array} \quad \begin{array}{ccc} \underline{A} & \underline{B} & \underline{A} & \underline{B} \\ \overline{A \otimes B} & \overline{A \otimes B} & \overline{!\top} \\ \\ \star \text{-}autonomous & & \underline{f}: A \longrightarrow B \\ \underline{f^{\perp}: B^{\perp} \longrightarrow A^{\perp}} \end{array}$$

$$\overline{\operatorname{ev}_{A,B} : [A \multimap B] \otimes A \multimap B}$$

$$\frac{f : A \multimap [E \multimap F]}{\lambda f : A \otimes E \multimap F}$$

$$\overline{f^{\bot \bot} = f}$$

 $\mathit{Arrows\ in}\ \mathcal{C}\colon A \stackrel{f}{\multimap} B\ (\mathit{linear}) \quad \mathit{Arrows\ in}\ \mathcal{C}_!\colon A \stackrel{f}{\rightarrow} B := !A \stackrel{f}{\multimap} B\ (\mathit{non-linear})$

$$\begin{array}{ccc} +SMC \\ +Seely \end{array} & \begin{array}{ccc} A & B \\ \hline A \& B \end{array} & \begin{array}{c} A & B \\ \hline A \otimes B \end{array} & \begin{array}{c} F \\ \hline \end{array}$$

$$\star \text{-}autonomous \\ comm. \\ monoids \\ enriched \end{array} & \begin{array}{c} f:A \multimap B \\ \hline f^{\perp}:B^{\perp} \multimap A^{\perp} \end{array}$$

Cartesian

$$\overline{\operatorname{ev}_{A,B}: [A \multimap B] \otimes A \multimap B}$$

$$\frac{f: A \multimap [E \multimap F]}{\lambda f: A \otimes E \multimap F}$$

$$\overline{f^{\bot \bot} = f}$$

$$f: A \multimap B \quad g: A \multimap B$$

$$f+g: A \multimap B$$

Arrows in \mathcal{C} : $A \stackrel{f}{\multimap} B$ (linear) Arrows in $\mathcal{C}_!$: $A \stackrel{f}{\rightarrow} B := !A \stackrel{f}{\multimap} B$ (non-linear)

Arrows in $\mathcal{C} \colon A \stackrel{f}{\multimap} B$ (linear) Arrows in $\mathcal{C}_! \colon A \stackrel{f}{\rightarrow} B := !A \stackrel{f}{\multimap} B$ (non-linear)

 $\mathcal{C}_!$ is a model of differential λ -calculus where we can transpose linear arrows:

$$\frac{f:A\to B}{Df:A\times A\to B}\quad (in\ \mathcal{C}_!,\ E\times F:=E\&F)$$

Dialectica and (Categorical) Differentiation

$$\sim_B \subseteq \{\vdash_{\mathbf{P}} \mathtt{M} : W(B)\} \times \mathcal{C}_!(\top, B)$$

$$\bowtie_B^A \ \subseteq \ \{\vdash_{\mathbf{P}} \mathtt{M} : C(B) \to \mathcal{M}[C(A)]\} \ \times \ \mathcal{C}_!(A,B) \times \mathcal{C}(B^\perp,A^\perp)$$

$\mathbf{M} \sim_{E \to F} f$	
$\mathbf{M}\bowtie_{E\to F}^{A}\binom{f}{g}$	for all $\mathtt{H} \sim_E e$, we have $\lambda \pi.\mathtt{M} \langle \mathtt{H}, \pi \rangle \bowtie^A_F \left(\begin{array}{c} f _e : A \to F \\ g^\perp _e : F^\perp \multimap A^\perp \end{array} \right)$
	$\lambda^{\pi,\mathbb{M}(\mathbb{H},\pi)} \bowtie_F^{\perp} \left(g^{\perp} _{a}^{\perp} : F^{\perp} \multimap A^{\perp} \right)$

The theorem

Let $x : A \vdash_{\Lambda} M : B$. Then:

$$1) \quad (\lambda \mathbf{x}.\mathbf{M})^{\bullet} \quad \sim_{A \to B} \quad [\![\lambda \mathbf{x}.\mathbf{M}]\!] : [A \to B]$$

2)
$$(\lambda \mathbf{x} \cdot \mathbf{M}_{\mathbf{x}}) \mathbf{N} \bowtie_{B}^{A} \begin{pmatrix} [\![\mathbf{M}]\!] & : & A \to B \\ ([\![\mathbf{M}]\!] & a)^{\perp} & : & B^{\perp} \multimap A^{\perp} \end{pmatrix}$$
 for all $\mathbf{N} \sim_{A} a$.

Moral:

$$((\lambda x.M)^{\bullet}, \lambda x.M_x)$$

"represents" the pair ([M], R[M]), where

$$R[M]: A \times B^{\perp} \to A^{\perp}$$

is the reverse differential of $\llbracket M \rrbracket$.

Yet, can we say that Dialectica really is (reverse) Differentiation?

• All Dialectica transformation/only the transformation of λ -calculus. What about quantifiers?

Yet, can we say that Dialectica really is (reverse) Differentiation?

All Dialectica transformation/only the transformation of λ-calculus.
 What about quantifiers?
 Counterexample (thanks to Thomas Powell), but that's another topic...

- All Dialectica transformation/only the transformation of λ-calculus.
 What about quantifiers?
 Counterexample (thanks to Thomas Powell), but that's another topic...
- The main feature of Dialectica is that in the target we have (e.g.) binary predicates (non-trivial subobjects in Dialectica categories). Here we don't: aren't we lose something about Dialectica?

- All Dialectica transformation/only the transformation of λ -calculus. What about quantifiers? Counterexample (thanks to Thomas Powell), but that's another topic...
- The main feature of Dialectica is that in the target we have (e.g.) binary predicates (non-trivial subobjects in Dialectica categories). Here we don't: aren't we lose something about Dialectica?

- All Dialectica transformation/only the transformation of λ -calculus. What about quantifiers? Counterexample (thanks to Thomas Powell), but that's another topic...
- The main feature of Dialectica is that in the target we have (e.g.) binary predicates (non-trivial subobjects in Dialectica categories). Here we don't: aren't we lose something about Dialectica?

 Not really, we are just formulating it differently.
- Is this correspondence astonishing/magic? Can we find some "reason" clarifying it?

- All Dialectica transformation/only the transformation of λ -calculus. What about quantifiers? Counterexample (thanks to Thomas Powell), but that's another topic...
- The main feature of Dialectica is that in the target we have (e.g.) binary predicates (non-trivial subobjects in Dialectica categories). Here we don't: aren't we lose something about Dialectica?

 Not really, we are just formulating it differently.
- Is this correspondence astonishing/magic? Can we find some "reason" clarifying it?
 Definitely yes at first sight... but then we can clearly understand its reason by looking at the categorical framework behind it.

Lens Categories

The category Lens(\mathcal{L}) of lenses over \mathcal{L} is defined as follows:

- ullet objects: arrows in \mathcal{L} , which we think as fibre bundles and we write $p:\binom{\alpha}{A}$
- arrows from $p:\binom{\alpha}{A}$ to $q:\binom{\beta}{B}$ are the data of both a $f:A\to B$ in $\mathcal L$ and a span $\alpha \xleftarrow{F} f^*\beta \xrightarrow{\overline{f}} \beta$ in $\mathcal L$, taken from the following pullback diagram:

Lens Categories

The category Lens(\mathcal{L}) of lenses over \mathcal{L} is defined as follows:

- objects: arrows in \mathcal{L} , which we think as fibre bundles and we write $p:\binom{\alpha}{A}$
- arrows from $p:\binom{\alpha}{A}$ to $q:\binom{\beta}{B}$ are the data of both a $f:A\to B$ in $\mathcal L$ and a span $\alpha \xleftarrow{F} f^*\beta \xrightarrow{\overline{f}} \beta$ in $\mathcal L$, taken from the following pullback diagram:

$$\alpha \xleftarrow{F} f^*\beta \xrightarrow{\overline{f}} \beta$$

$$\downarrow^{p} f^*q \downarrow \qquad \downarrow^{q}$$

$$A \xrightarrow{f} B$$

Let $\mathcal{E}Lens(\mathcal{L})$ be the full subcategory of Lens(\mathcal{L}) of trivial bundles, i.e. first projections. Concretely:

- Objects are first projections $\pi_1:\binom{A\times X}{A}$
- An arrow from $\pi_1: \binom{A\times X}{A}$ to $\pi_1: \binom{B\times Y}{B}$ is given by an $f: A\to B$ and a span $A\times X\xleftarrow{F} A\times Y\xrightarrow{f\times 1} B\times Y$ such that $F; \pi_1^{A,X}=\pi_1^{A,Y}$.

Let \mathcal{L} be a Cartesian (closed, if you want λ -calculus) differential category where from the differential Df of a function f (a primitive data in \mathcal{L}) we can define the reverse differential Rf of f. (Think of $\mathcal{L} := \mathcal{C}_!$ of the first part).

Let \mathcal{L} be a Cartesian (closed, if you want λ -calculus) differential category where from the differential Df of a function f (a primitive data in \mathcal{L}) we can define the reverse differential Rf of f. (Think of $\mathcal{L} := \mathcal{C}_!$ of the first part).

We have a functor $\mathcal{L} \to \mathcal{E} Lens(\mathcal{L})$ defined by:

$$A \qquad \mapsto \qquad \qquad \pi_1 : \binom{A \times A^{\perp}}{A}$$

$$A \xrightarrow{f} B \quad \mapsto \quad (\quad f \quad , \quad A \times A^{\perp} \xleftarrow{\langle \pi_1, Rf \rangle} A \times B^{\perp} \xrightarrow{f \times 1} B \times B^{\perp} \quad).$$

Let ${\mathcal L}$ a Cartesian reverse differential category.

Let \mathcal{L} a Cartesian reverse differential category.

We have a functor $\mathcal{L} \to \mathcal{E} Lens(\mathcal{L})$ defined by:

$$A \qquad \mapsto \qquad \qquad \pi_1 : {A \times A \choose A}$$

$$A \xrightarrow{f} B \qquad \mapsto \qquad (f \quad , \quad A \times A \xrightarrow{\langle \pi_1, Rf \rangle} A \times B \xrightarrow{f \times 1} B \times B \quad)$$

where $Rf: A \times B \to A$ is the reverse differential of f (a primitive data in \mathcal{L}).

Let \mathcal{L} be a reverse tangent category. This means that \mathcal{L} has a tangent functor T giving tangent bundles $p_A: \binom{TA}{A}$ of objects A and giving tangent arrows $Tf: TA \to TA$ for arrows $f: A \to B$, and we can "reverse" T in order to get cotangent bundles $p_A^*: \binom{T^*A}{A}$ and arrows in the pullback diagram below:

where f^*T^*B is the diff. geometry formulation of the reverse differential of f.

Let \mathcal{L} be a reverse tangent category. This means that \mathcal{L} has a tangent functor T giving tangent bundles $p_A: \binom{TA}{A}$ of objects A and giving tangent arrows $Tf: TA \to TA$ for arrows $f: A \to B$, and we can "reverse" T in order to get cotangent bundles $p_A^*: \binom{T^*A}{A}$ and arrows in the pullback diagram below:

$$T^*A \xleftarrow{T^*f} f^*T^*B \xrightarrow{\overline{f}} T^*B$$

$$\downarrow p_A^* \downarrow A \xrightarrow{f} B$$

where f^*T^*B is the diff. geometry formulation of the reverse differential of f.

We have a functor $\mathcal{L} \to \text{Lens}(\mathcal{L})$ defined by:

$$A \mapsto p_A^* : \binom{T^*A}{A}$$

$$A \xrightarrow{f} B \mapsto (f, T^*A \xleftarrow{T^*f} f^*T^*B \xrightarrow{\overline{f}} T^*B).$$

Expressing Dialectica as a functor

 $\Lambda_{\rm cat} \to \mathcal{E} {
m Lens}({f P}_{\rm cat})$

Expressing Dialectica as a functor

$$\Lambda_{\rm cat} \to \mathcal{E} {\rm Lens}(\mathbf{P}_{\rm cat})$$

- An object A is sent to $(z:W(A)\times\mathcal{M}[C(A)]\vdash_{\mathbf{P}} z^1:W(A));$
- An arrow $(z: A \vdash_{\Lambda} M: B)$ in Λ_{cat} from A to B is sent to the arrow in $\mathcal{E}\text{Lens}(\mathbf{P}_{\text{cat}})$ from $(z: W(A) \times \mathcal{M}[C(A)] \vdash_{\mathbf{P}} z^1 : W(A))$ to $(z: W(B) \times \mathcal{M}[C(B)] \vdash_{\mathbf{P}} z^1 : W(B))$ given by the following diagram:

$$W(A) \times \mathcal{M}[C(A)] \overset{\langle z^1, z^2 \rangle = M_{(z^1)} \rangle}{\longleftarrow} W(A) \times \mathcal{M}[C(B)] \xrightarrow{\langle \mathbb{M}^{\bullet}, z^2 \rangle} W(B) \times \mathcal{M}[C(B)] \xrightarrow{z^1} W(A) \xrightarrow{\downarrow z^1} W(B)$$

Expressing Dialectica as a functor

 $\Lambda_{\rm cat} \to \mathcal{E} {\rm Lens}({\bf P}_{\rm cat})$

Moral:

The Dialectica transformation of λ -calculus encodes (reverse) Differentiation because it is a transformation into a category of Lenses, the latter being the abstract setting for Reverse Differentiation.

Final comments

- I didn't talk about Dialectica categories. I could have said something (ask me if you are interested)
- Explore categorical framework to reverse a Cartesian closed differential category in order to define Cartesian closed reverse differential/tangent categories
- Reverse differential λ -calculus? There is an interesting paper from Ong and Mak.

Final comments

- I didn't talk about Dialectica categories. I could have said something (ask me if you are interested)
- Explore categorical framework to reverse a Cartesian closed differential category in order to define Cartesian closed reverse differential/tangent categories
- Reverse differential λ -calculus? There is an interesting paper from Ong and Mak.

THANK YOU!