Deep-Learning-for-Autonomous-Driving

Lab1: back propagation

ID: 310605007

Member: 鄭晴立

Department:機器人學程

目錄

表	目錄.		. 2
圖	目錄.		. 2
1.	Inti	oduction	. 3
2.	Exp	periment setups	. 4
	2.1.	Activation Functions	. 4
	2.2.	Neural network	. 5
	2.3.	Backpropagation and Optimizer	. 6
	2.4.	Data augmentation	. 7
3.	Res	sults of your testing	. 8
4.	Dis	cussion	. 9
	4.1.	Data augmentation	. 9
	4.2.	不同 learning rate	. 9
	4.3.	將模型加深加大	10
	4.4.	不同的 Batch size	11
	4.5.	Sigmoid Function	12

表目錄

	表	ー Neural Network 相關資料	.3
	表	二 最終模型參數	.8
圖	目錄		
	昌	- Sigmoid functions code	.4
	圖	= Softmax functions code	.4
	圖	≡ Relu functions code	.5
	昌	四 利用 numpy 創建三層 Network	.5
	圖	五 所有 layer 的 Backpropagation	.6
	昌	六 利用 Optimizer 更新參數	.6
	昌	→ Data augmentation code	.7
	昌	∧ Data augmentation	.7
	昌	九 Learning rate = 0.005	.9
	昌	+ Learning rate = 0.01	10
	昌	+ - Learning rate = 0.1	10
	昌	十二 加大網路	10
	昌	十三加深網路	11
	昌	十四 batch size = 1024	11
	昌	十五 batch size = 512	11
	昌	十六 全部改為 sigmol learning rate 為 0.0001	12
	昌	十七 全部改為 sigmol learning rate 為 0.01	12
	昌	十八2兩層改為 sigmol learning rate 為 0.01	12

1. Introduction

本次實驗要分辨 47 類 28*28 的圖片,並用 numpy 去實作網路,程式部分 大多按照助教所給提示及檔案去完成,盡量不去做大幅度的修改。

表 - Neural Network 相關資料

Parameter	Neural Network
Number of input layer	784
Number of hidden layer	2~5
Number of output layer	47
Activation function	Relu · Sigmoid · Softmax
Optimizer	Adam · SDG
Learning rate	0.01~0.0001
Epoch	50~1000
Loss function	Mean Squared Error
Batch size	256~1024

2. Experiment setups

2.1. Activation Functions

本實驗最後一層採用 softmax,其餘則嘗試 relu 及、sigmoid,由於本次為 47 分類的圖像辨識問題,relu 的結果應該會較佳,最後與預期符合,以下為 Activation Functions 的說明與實作。

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

```
class sigmoid():
    def __init__(self):
        pass

def forward(self, x:np.array):
        self.inputs = x
        return self.sigmoid(x)

def sigmoid(self, x:np.array):
        return 1.0 / (1.0 + np.exp(-x))

def backward(self, dy:np.array):
        dx = self.sigmoid(self.inputs) * (1 - self.sigmoid(self.inputs)) * dy
        return dx
```

圖 — Sigmoid functions code

```
class SoftmaxWithloss(_Layer):
    def __init__(self):
        self.soft_x=None

def forward(self, input):

    self.soft_x = np.zeros(shape = (input.shape[0], input.shape[1]))
    for i in range(input.shape[0]):
        self.soft_x[i] = (np.exp(input[i]-np.max(input[i]))/sum(np.exp(input[i]-np.max(input[i]))))
    predict = self.soft_x

    return predict

def loss(self,target):
    diff = self.soft_x - target
    differences_squared = diff ** 2
    your_loss = differences_squared.mean()
    return your_loss

def backward(self, a3:np.array, target:np.array):
    input_grad = (a3-target) /len(target)
    return input_grad
```

圖 二 Softmax functions code

```
class relu(_Layer):
    def __init__(self):
        pass

def forward(self, input):
        output = (np.maximum(0, input))
        return output

def backward(self, z):
    dz = np.heaviside(z,1)
    return dz
```

圖 三 Relu functions code

2.2. Neural network

本實驗使用三到五層網路,其模型示意圖,經過實驗發現,加深網路及加 大網路,皆無法使結果更好,其實程式說明如圖 四。

```
layers = [
layer.FullyConnected(28*28, 1024) ,
layer.relu() ,
layer.FullyConnected(1024, 512),
layer.relu() ,
layer.FullyConnected(512, 256),
layer.relu() ,
layer.FullyConnected(256, 47),
layer.SoftmaxWithloss()
]
net = Network(layers,Learning_rate,opt)
```

圖 四 利用 numpy 創建三層 Network

2.3. Backpropagation and Optimizer

有別於助教給的 code, 我把 Optimizer 放在 Backpropagation 後面,實作上相對容易, backward 之後直接更新參數,其程式如圖 五、圖 六。

```
def backward(self, target):
    self.h_last_grad = self.layers[-1].backward(self.pred, target)
    grad=self.h_last_grad
    for i in range(int((len(self.layers))/2)-1):
        act_grad=self.layers[-3-2*i].backward(self.act_f[i+1])
        grad=self.layers[-2-2*i].backward(act_grad,grad,self.lr,self.opt)
```

圖 五 所有 layer 的 Backpropagation

```
def backward(self, act grad3,h4 grad,lr,opt):
    self.d = np.multiply(act_grad3, self.weight.dot(h4_grad.transpose()).transpose())
    if opt.name == 'adam':
       beta1 = 0.9
       beta2 = 0.999
       epsilon = 1e-8
       if self.trained == 0:
           self.m = np.zeros((self.in_features, self.out_features))
           self.v = np.zeros((self.in_features, self.out_features))
           self.m_b = np.zeros((1, self.out_features))
           self.v b = np.zeros((1, self.out features))
       self.m = beta1 * self.m + (1 - beta1) * self.input.transpose().dot(h4_grad)
       self.v = beta2 * self.v + (1 - beta2) * (self.input.transpose().dot(h4_grad)** 2)
       m_hat = self.m / (1 - beta1)
       v_{hat} = self.v / (1 - beta2)
       self.weight = self.weight - lr * m_hat / np.sqrt(v_hat + epsilon)
        self.m_b = beta1 * self.m_b + (1 - beta1) * np.sum(h4_grad, axis=0)
       self.v_b = beta2 * self.v_b + (1 - beta2) * (np.sum(h4_grad, axis=0) ** 2)
       m_b_hat = self.m_b / (1 - beta1)
       v_b_{at} = self.v_b / (1 - beta2)
       self.bias = self.bias - lr * m_b_hat / np.sqrt(v_b_hat + epsilon)
   elif opt.name == 'SGD':
       for i in range(len(self.weight)):
            self.weight-= lr*(self.input.transpose().dot(h4_grad))
           self.bias-= lr*np.sum(h4_grad, axis=0)
    self.trained = 1
```

圖 六 利用 Optimizer 更新參數

2.4. Data augmentation

我嘗試使用 Data augmentation 去改善 overfitting,我將圖片往八個角落移動 1 個 pixel,使我的資料有九種變化,最終使精準度有效提升。

```
print("After shift")
shiftpoint=3
imageleft=np.zeros((28,28), dtype=int)
imageright=np.zeros((28,28), dtype=int)
magedown=np.zeros((28,28), dtype=int)
magedownleft=np.zeros((28,28), dtype=int)
mageupleft=np.zeros((28,28), dtype=int)
mageupright=np.zeros((28,28), dtype=int)
magedownleft=np.zeros((28,28), dtype=int)
train_data_augl=np.zeros((100000, 784), dtype=int)
train_data_aug2=np.zeros((100000, 784), dtype=int)
train_data_aug3=np.zeros((100000, 784), dtype=int)
train_data_aug4=np.zeros((100000, 784), dtype=int)
train_data_aug4=np.zeros((100000, 784), dtype=int)
for index in range(len(train_data)):
    image = train_data[index].reshape(28,28)

for i in range(28-shiftpoint):
    imageleft[i]=image[i+shiftpoint]
    imageright[i]=image[i+shiftpoint]

for i in range(28-shiftpoint):
    mageupleft[:,i]=imageleft[:,i+shiftpoint]
    magedownleft[:,i]=imageleft[:,i-shiftpoint]
    magedownright[:,i]=imageright[:,i-shiftpoint]
    train_data_aug1[index]=mageupleft.reshape(784,)
    train_data_aug3[index]=mageupright.reshape(784,)
    train_data_aug4[index]=mageupownright.reshape(784,)
    train_data_aug4[index]=mageupownright.reshap
```

圖 七 Data augmentation code

圖 八 Data augmentation

3. Results of your testing

經過反覆測試,利用此模型,最高可達86.679%左右的精確度。

表 二 最終模型參數

Parameter	Neural Network
Number of input layer	784
Number of hidden layer	3
Number of output layer	47
Activation function	Relu · Softmax
Optimizer	Adam
Learning rate	0.0001
Epoch	500
Loss function	Mean Squared Error
Batch size	256

#	Team	Members	Score	Entries	Last	Code	Join
1	0810885	9	0.87570	9	1h		
2	310605007	9	0.86679	20	10h		

Your Best Entry!
Your submission scored 0.85921, which is not an improvement of your previous score. Keep trying!

圖 九 最高 Accuracy

圖 十 Loss 及 Accuracy

4. Discussion

因為時間關係,大多沒有完成訓練,僅訓練到大致看得出結果為止。

4.1. Data augmentation

大幅改善 overfitting 的問題。

圖 十一利用 Data augmentation 去改善模型

4.2. 不同 learning rate

我嘗試了不同的 learning rate,在 learning rate>0.001 之後,Accuracy 幾乎都很小,很快就發生,也很容易趨向發生 overfitting。

圖 十二 Learning rate = 0.005

圖 十三 Learning rate = 0.01

圖 十四 Learning rate = 0.1

4.3. 將模型加深加大

嘗試將模型加大加深,也是非常容易 overfitting,但結果相對好。

圖 十五 加大網路

```
Optimizer: adam
layers: [xmodel.layer.FullyConnected object at 0x0000028E5148E580>, <model.layer.relu object at 0x0000028E4FA78CDO>, <model.layer.FullyConnected object at 0x0000028E59163DF0>, <model.layer.relu object at 0x0000028E403E4040>, <model.layer.FullyConnected object at 0x0000028E39163DF0>, <model.layer.relu object at 0x0000028E39150640>, <model.layer.FullyConnected object at 0x0000028E47AA89A0>, <model.layer.FullyConnected object at 0x0000028E47AA89A0>, <model.layer.FullyConnected object at 0x0000028E47AA89A0>, <model.layer.FullyConnected object at 0x00000028E47AA89A0>, <model.layer.FullyConnected object at 0x00000028E400381700>, <model.layer.SoftmaxWithloss object at 0x00000028E502F5490>]
Batch size: 1024
Learning rate: 0.01

Validation loss

Taning loss

Validation loss

Faning loss

Taning loss

Taning loss

Faning loss

Fochs
```

圖 十六加深網路

4.4. 不同的 Batch size

經過多次嘗試,不同 batch size 對結果影響不大,主要還是在模型架構的調整。

圖 十七 batch size = 1024

圖 十八 batch size = 512

4.5. Sigmoid Function

嘗試使用 sigmiod 的結果, accuracy 皆無法有效提升,因此,最後使用 relu 作為 Activation Function。

圖 十九 全部改為 sigmol learning rate 為 0.0001

圖 二十 全部改為 sigmol learning rate 為 0.01

圖 二十一2兩層改為 sigmol learning rate 為 0.01