金融计量学HW2

23210980044 加兴华

Problem 1 (Example 1.7)

Suppose B is a Brownian motion with $\mathcal{T} = [0, \infty)$. Brownian bridge is defined as $X_t = B_t - tB_1, t \in [0, 1]$. Note that $X_0 = X_1 = 0$. Then, show that X is a Gaussian process with $\mu(t) = 0$ and $c(t, s) = t \wedge s - ts$.

$$egin{aligned} E(X_t) &= E(B_t - tB_1) \ &= E(B_t) - tE(B_1) \ &= 0 - t \cdot 0 \ &= 0, \ c(t,s) &= Cov(X_t, X_s) \ &= Cov(B_t - tB_1, B_s - sB_1) \ &= Cov(B_t, B_s) - tCov(B_1, B_s) - sCov(B_1, B_t) + stCov(B_1, B_1) \ &= t \wedge s - t \cdot (s \wedge 1) - s \cdot (t \wedge 1) + ts \ &= t \wedge s - ts \end{aligned}$$

Problem 2 (Example 1.8)

Verify the following collections are σ -filed.

$$\mathcal{F}_1 = \{\emptyset, \Omega\}, \quad \mathcal{F}_2 = \{\emptyset, A, A^c, \Omega\}, \quad \mathcal{F}_3 = \{A \mid A \subseteq \Omega\}.$$

(1) \mathcal{F}_1

- $\emptyset \in \mathcal{F}_1$
- $\emptyset, \Omega \in \mathcal{F}_1, :: \forall A \in \mathcal{F}_1, s.t. A^c \in \mathcal{F}_1$
- $\forall A_i \in \mathcal{F}_1, \ \bigcup_i^{\infty} A_i = \emptyset \ \text{id} \ \Omega, \ \therefore \bigcup_i^{\infty} A_i \in \mathcal{F}_1$

(2) \mathcal{F}_2

- ullet $\emptyset\in\mathcal{F}_2$
- ullet $\emptyset,\Omega,A,A^c\in\mathcal{F}_2,\quad \therefore orall x\in\mathcal{F}_2,\ s.\ t.\ x^c\in\mathcal{F}_2$
- $\forall A_i \in \mathcal{F}_2$, $\bigcup_i^{\infty} A_i = \emptyset(A_i$ 全为 $\emptyset)$ or Ω (存在 $A_i = \Omega$ 或 存在 $A_i, A_j = A, A^c$) or $A(A_i$ 全为A) or $A^c(A_i$ 全为 $A^c)$, $\therefore \bigcup_i^{\infty} A_i \in \mathcal{F}_2$

(3) \mathcal{F}_3

- $\emptyset \subseteq \Omega, :: \emptyset \in \mathcal{F}_3$
- ullet $orall A\subseteq\Omega,\;s.\,t.\,A^c\subseteq\Omega\; \therefore orall A\in\mathcal{F}_3,\;s.\,t.\,A^c\in\mathcal{F}_3$
- ullet $orall A_i \in \mathcal{F}_3, s.\ t.\ A_i \subseteq \Omega$, $\ldots igcup_i^\infty A_i \subseteq \Omega$, $\ldots igcup_i^\infty A_i \in \mathcal{F}_3$

Problem 3 (Example 1.15)

Suppose $B = (B_t, t \ge 0)$ is a Brownian motion and denote $\mathcal{F}_t = \sigma(B_s, s \in [0, t])$ for any $t \ge 0$. Define $X_t = B_t^2 - t$. Show that $\mathbb{E}[X_t | \mathcal{F}_s] = X_{s \wedge t}$.

$$\sigma(X_t) = \sigma(f(B_t, t)) \subseteq \mathcal{F}_t,$$

(1) t>s时:

$$Note: E[X_t] = E[B_t^2 - t] = E[B_t^2] - t = t - t = 0, \ \therefore E[X_t | \mathcal{F}_s] = E[X_t - X_s | \mathcal{F}_s] + E[X_s | \mathcal{F}_s] = E[X_{t-s}] + X_s = X_s$$

(2) t<s时:

$$X_t \in \sigma(X_t) \subseteq \mathcal{F}_t \subseteq \mathcal{F}_s, \ dots E[X_t|\mathcal{F}_s] = X_t$$

综上: $E[X_t|\mathcal{F}_s] = X_{t \wedge s}$.

Problem 4 (Example 1.19)

Let $B = (B_t, t \ge 0)$ be Brownian motion. Then, find the A_t and D_t such that $(B_t^3 + A_t, t \ge 0)$ and $(B_t^4 + D_t, t \ge 0)$ are also martingales.

(1) $B_t^3 + A_t$:

$$E[B_t^3|\mathcal{F}_s] = E[(B_t - B_s + B_s)^3|\mathcal{F}_s]$$

$$= E[(B_t - B_s)^3 + B_s^3 + 3(B_t - B_s)^2 B_s + 3(B_t - B_s) B_s^2|\mathcal{F}_s]$$

$$= E[(B_t - B_s)^3] + B_s^3 + 3B_s E[(B_t - B_s)^2] + 3B_s^2 E[(B_t - B_s)]$$

$$= 0 + B_s^3 + 3B_s \cdot (t - s) + 3B_s^2 \cdot 0$$

$$= (B_s^3 - 3B_s \cdot s) + 3B_s \cdot t$$

$$= (B_s^3 + A_s) - E[A_t|\mathcal{F}_s]$$

假设 $A_t = -3tB_t$, 需验证 $E[A_t|\mathcal{F}_s] = -3tB_s$:

$$E[A_t|\mathcal{F}_s] = -3tE[B_t - B_s + B_s|\mathcal{F}_s] \ = -3tE[B_{t-s}] - 3tB_s \ = 0 - 3tB_s \ = -3tB_s$$

综上, $A_t = -3tB_t$

(2)
$$B_t^4 + D_t$$
:

$$\begin{split} E[B_t^4|\mathcal{F}_s] &= E[(B_t - B_s + B_s)^4|\mathcal{F}_s] \\ &= E[(B_t - B_s)^4 + B_s^4 + 4(B_t - B_s)^3 B_s + 4(B_t - B_s) B_s^3 + 6(B_t - B_s)^2 B_s^2|\mathcal{F}_s] \\ &= E[B_{t-s}^4] + B_s^4 + 4B_s E[B_{t-s}^3] + 4B_s^3 E[B_{t-s}] + 6B_s^2 E[B_{t-s}^2] \\ &= 3(t-s)^2 + B_s^4 + 4B_s E \cdot 0 + 4B_s^3 \cdot 0 + 6B_s^2 \cdot (t-s) \\ &= (B_s^4 - 6sB_s^2 + 3s^2) + 3t^2 - 6ts + 6tB_s^2 \\ &= (B_s^4 + D_s) - E[D_t|\mathcal{F}_s] \end{split}$$
 假设 $D_t = 3t^2 - 6tB_t^2$,需验证 $E[D_t|\mathcal{F}_s] = -3t^2 + 6ts - 6tB_s^2$:
$$E[D_t|\mathcal{F}_s] = 3t^2 - 6tE[(B_t - B_s + B_s)^2|\mathcal{F}_s]$$

$$egin{aligned} E[D_t|\mathcal{F}_s] &= 3t^2 - 6tE[(B_t - B_s + B_s)^2|\mathcal{F}_s] \ &= 3t^2 - 6tE[(B_t - B_s)^2 + B_s^2 - 2(B_t - B_s)B_s|\mathcal{F}_s] \ &= 3t^2 - 6t\{E[(B_t - B_s)^2] + B_s^2 - 2B_sE[B_{t-s}]\} \ &= 3t^2 - 6t\{t - s + B_s^2 - 2B_s \cdot 0\} \ &= -3t^2 + 6ts - 6tB_s^2 \end{aligned}$$

综上,
$$D_t = 3t^2 - 6tB_t^2$$