

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

Total #:	$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{1}^{\#1\alpha}==0$	$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	$\sigma_0^{\#1} == 0$	SO(3) irreps	Source constraints
17	U	ω	ω	ω	1	1	1	#	

 $_{lpha}^{}\partial^{\kappa}f^{\prime}_{\prime}+t_{1}\;\omega_{\kappa\lambda}^{}\;\partial^{\kappa}f^{\prime}_{\prime}+$

	$\sigma_{0^+}^{\sharp 1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#2} +$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	0

$f_{1}^{#2} + \alpha$	$f_{1-}^{#1} + ^{\alpha}$	$\omega_{1}^{#2} + \alpha$	$\omega_{1^{-}}^{*1} + ^{lpha}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1+}^{#2} \dagger^{\alpha\beta}$	$\omega_{1+}^{*1} + \alpha^{\beta}$	
0	0	0	0	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{t_1}{3\sqrt{2}}$	$k^2 r_5 + \frac{t_1}{6}$	$\omega_{1}^{\#1}{}_{lphaeta}$
0	0	0	0	$-rac{1}{3}ar{\it l}\it k\it t_1$	<u>t1</u> 3	$-\frac{t_1}{3\sqrt{2}}$	$\omega_{1}^{\#2}{}_{lphaeta}$
0	0	0	0	$\frac{k^2t_1}{3}$	<u> </u>	$-\frac{ikt_1}{3\sqrt{2}}$	$f_{1}^{\#1}{}_{\alpha\beta}$
$-\bar{\imath}kt_1$	0	$\frac{t_1}{\sqrt{2}}$	$k^2 r_5 - \frac{t_1}{2}$	0	0	0	$\omega_{1^-}^{\#1}{}_{lpha}$
0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	$\omega_{1^-}^{\#2}{}_{lpha}$
0	0	0	0	0	0	0	$f_{1^-\alpha}^{\#1}$
0	0	0	ikt_1	0	0	0	$f_{1^-\alpha}^{\#2}$

_	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

Unitarity conditions $r_5 > 0 \&\& t_1 < 0 || t_1 > 0$

 $^{\prime\prime}_{\alpha}\partial^{\lambda}\omega^{\theta\kappa}$

 $^{\lambda}_{\theta}\partial^{\kappa}f_{\lambda}^{\theta}$

(No massive particles)