

INTRODUCTION

Bellabeat is a high-tech manufacturer of health-focused products for women such as Bellabeat app, Leaf, Time, Spring, and Bellabeat membership. It was founded in 2013 by Urška Sršen and Sando Mur. The company is quite successful, with lots of potential to become a larger player in the global smart device industry. The founders are of the view that analyzing smart device fitness data could help unlock new growth opportunities for the company.

In this case study, I will follow the six steps of the data analysis process: **ask**, **prepare**, **process**, **analyze**, **share**, and **act**, to break down how I analyzed the FitBit fitness Tracker Data in order to gain some insights that could be beneficial to Bellabeat.

1. ASK

1.1. KEY STAKEHOLDERS

- 1. Urška Sršen: Cofounder and Chief Creative Officer at Bellabeat.
- 2. Sando Mur: Cofounder and key member of the Bellabeat executive team.
- 3. **Marketing analytics team at Bellabeat**: A team of data analysts responsible for collecting, analyzing, and reporting data that helps guide Bellabeat's marketing strategy.
- 4. Customers: Everyone who purchases their product or use Bellabeat's services.

1.2. BUSINESS TASK

- 1. To analyze FitBit Fitness Tracker Data from thirty eligible FitBit users, in order to gain some insights that could unlock new growth opportunities for the company.
- 2. To focus on one of Bellabeat's products and analyze smart device data to gain insight into how customers are using their smart devices.
 - For this case study, I will focus on the **Bellabeat membership program**. This is a subscription-based membership program that gives users 24/7 access to fully personalized guidance on nutrition, activity, sleep, health and beauty, and mindfulness based on their lifestyle and goals.

2: PREPARE

2.1. DATA SOURCE

- 1. The data is a free to use **FitBit** Fitness tracker dataset made available through Mobius. It contains personal fitness tracker data from over thirty FitBit users who have given consent to use their data.
- 2. There are 18 csv files in all, but the datasets I find relevant to the product I want to focus on are daily activity, hourly calories, hourly steps, and sleep day dataset.

2.2. SORTING THE DATA

- 1. To have a quick overview of the data I have chosen, I opened each of them in Google sheets. The first thing I noticed was that the data was organized in a long format. I also noticed that the dailyActivity_merged data contains some metrics that can give us some insights like the total steps taken by the Fitbit users, the active minutes spent, and the calories burned. With that we can establish some correlation between calories burned and the steps taken. The hourly calories and the hourly steps contain info about the activity hour that will help give some insight about calories and the time of the day.
- 2. I then created a separate folder on my desktop to store the files, since I was going to use python and jupyter notebook to process the data.

2.3. DATA CREDIBILITY

- In terms of reliability, a general rule of thumb for the Large Enough Sample Condition is that the sample size should be greater than or equal to 30. <u>Reference (https://reviews.tn/wiki/why-is-30-a-good-sample-size/)</u>. Hence, we can say that with 33 FitBit Users, we can derive some good insights that can be generalized.
- 2. In terms of recency, the data is also still current since it's not older than 10 years.
- 3. The data collected also matches Bellabeat's products. Hence, some results from the analysis can be applied to Bellabeat's products.
- 4. Even though this is a third-party data, the quality of the data is not questionable. The source is also known.

3: PROCESS

3.1. LOADING LIBRARIES

Let's start by loading the libraries we would need for processing and visualizing the data.

In [1]:

```
%matplotlib inline
import pandas as pd
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

Loading Datasets

Next, we'll load the fitbit datasets we're interested in exploring for insights.

In [2]:

```
daily_activity = pd.read_csv('Fitabase Data/dailyActivity_merged.csv')
hourly_steps = pd.read_csv('Fitabase Data/hourlySteps_merged.csv')
hourly_calories = pd.read_csv('Fitabase Data/hourlyCalories_merged.csv')
sleepday = pd.read_csv('Fitabase Data/sleepDay_merged.csv')
daily_calories = pd.read_csv('Fitabase Data/dailyCalories_merged.csv')
daily_intensity = pd.read_csv('Fitabase Data/dailyCalories_merged.csv')
weight_log = pd.read_csv('Fitabase Data/weightLogInfo_merged.csv')
daily_steps = pd.read_csv('Fitabase Data/dailySteps_merged.csv')
heartrate_secs = pd.read_csv('Fitabase Data/heartrate_seconds_merged.csv'')
```

3.2. DATA EXPLORATION

Let's explore our data by viewing some statistical information about them.

We'll start by pulling the first 5 rows of each dataset.

In [3]:

```
daily_activity.head()
```

Out[3]:

	ld	ActivityDate	TotalSteps	TotalDistance	TrackerDistance	LoggedActivitiesDistance
0	1503960366	4/12/2016	13162	8.50	8.50	0.0
1	1503960366	4/13/2016	10735	6.97	6.97	0.0
2	1503960366	4/14/2016	10460	6.74	6.74	0.0
3	1503960366	4/15/2016	9762	6.28	6.28	0.0
4	1503960366	4/16/2016	12669	8.16	8.16	0.0

In [4]:

```
hourly_steps.head()
```

Out[4]:

	ld	ActivityHour	StepTotal
0	1503960366	4/12/2016 12:00:00 AM	373
1	1503960366	4/12/2016 1:00:00 AM	160
2	1503960366	4/12/2016 2:00:00 AM	151
3	1503960366	4/12/2016 3:00:00 AM	0
4	1503960366	4/12/2016 4:00:00 AM	0

In [5]:

hourly_calories.head()

Out[5]:

	ld	ActivityHour	Calories
0	1503960366	4/12/2016 12:00:00 AM	81
1	1503960366	4/12/2016 1:00:00 AM	61
2	1503960366	4/12/2016 2:00:00 AM	59
3	1503960366	4/12/2016 3:00:00 AM	47
4	1503960366	4/12/2016 4:00:00 AM	48

In [6]:

sleepday.head()

Out[6]:

	ld	SleepDay	TotalSleepRecords	TotalMinutesAsleep	TotalTimeInBed
0	1503960366	4/12/2016 12:00:00 AM	1	327	346
1	1503960366	4/13/2016 12:00:00 AM	2	384	407
2	1503960366	4/15/2016 12:00:00 AM	1	412	442
3	1503960366	4/16/2016 12:00:00 AM	2	340	367
4	1503960366	4/17/2016 12:00:00 AM	1	700	712

In [7]:

daily_calories.head()

Out[7]:

	ld	ActivityDay	Calories
0	1503960366	4/12/2016	1985
1	1503960366	4/13/2016	1797
2	1503960366	4/14/2016	1776
3	1503960366	4/15/2016	1745
4	1503960366	4/16/2016	1863

In [8]:

daily_intensity.head()

Out[8]:

	ld	ActivityDay	Calories
0	1503960366	4/12/2016	1985
1	1503960366	4/13/2016	1797
2	1503960366	4/14/2016	1776
3	1503960366	4/15/2016	1745
4	1503960366	4/16/2016	1863

In [9]:

weight_log.head()

Out[9]:

	ld	Date	WeightKg	WeightPounds	Fat	ВМІ	IsManualReport	
0	1503960366	5/2/2016 11:59:59 PM	52.599998	115.963147	22.0	22.650000	True	14622335
1	1503960366	5/3/2016 11:59:59 PM	52.599998	115.963147	NaN	22.650000	True	14623199
2	1927972279	4/13/2016 1:08:52 AM	133.500000	294.317120	NaN	47.540001	False	14605097
3	2873212765	4/21/2016 11:59:59 PM	56.700001	125.002104	NaN	21.450001	True	14612831
4	2873212765	5/12/2016 11:59:59 PM	57.299999	126.324875	NaN	21.690001	True	14630975

In [10]:

daily_steps.head()

Out[10]:

	ld	ActivityDay	StepTotal
0	1503960366	4/12/2016	13162
1	1503960366	4/13/2016	10735
2	1503960366	4/14/2016	10460
3	1503960366	4/15/2016	9762
4	1503960366	4/16/2016	12669

In [11]:

heartrate_secs.head()

Out[11]:

	ld	Time	Value
0	2022484408	4/12/2016 7:21:00 AM	97
1	2022484408	4/12/2016 7:21:05 AM	102
2	2022484408	4/12/2016 7:21:10 AM	105
3	2022484408	4/12/2016 7:21:20 AM	103
4	2022484408	4/12/2016 7:21:25 AM	101

In [12]:

```
print("Daily Activity:", daily activity.columns)
print()
print("Hourly Steps:", hourly steps.columns)
print()
print("Hourly Calories:", hourly calories.columns)
print()
print("Sleepday:",sleepday.columns)
print()
print("Daily Calories:", daily calories.columns)
print()
print("Daily Intensity:",daily intensity.columns)
print()
print("Weight Log:", weight_log.columns)
print()
print("Daily Steps:",daily steps.columns)
print()
print("Heart Rate:", heartrate secs.columns)
Daily Activity: Index(['Id', 'ActivityDate', 'TotalSteps', 'TotalDista
nce', 'TrackerDistance',
       'LoggedActivitiesDistance', 'VeryActiveDistance',
       'ModeratelyActiveDistance', 'LightActiveDistance',
       'SedentaryActiveDistance', 'VeryActiveMinutes', 'FairlyActiveMi
nutes',
       'LightlyActiveMinutes', 'SedentaryMinutes', 'Calories'],
      dtype='object')
Hourly Steps: Index(['Id', 'ActivityHour', 'StepTotal'], dtype='objec
t')
Hourly Calories: Index(['Id', 'ActivityHour', 'Calories'], dtype='obje
ct')
Sleepday: Index(['Id', 'SleepDay', 'TotalSleepRecords', 'TotalMinutesA
sleep',
       'TotalTimeInBed'],
      dtype='object')
Daily Calories: Index(['Id', 'ActivityDay', 'Calories'], dtype='objec
t')
Daily Intensity: Index(['Id', 'ActivityDay', 'Calories'], dtype='objec
t')
Weight Log: Index(['Id', 'Date', 'WeightKg', 'WeightPounds', 'Fat', 'B
MI',
       'IsManualReport', 'LogId'],
      dtype='object')
Daily Steps: Index(['Id', 'ActivityDay', 'StepTotal'], dtype='object')
Heart Rate: Index(['Id', 'Time', 'Value'], dtype='object')
```

Next, let's see how many unique users are in each dataset. We'll start with the first 4, and then the last 4.

In [13]:

```
print("Daily Activity Dataset:",daily_activity.Id.nunique(), "unique users")
print("Hourly Steps Dataset:",hourly_steps.Id.nunique(), "unique users")
print("Hourly Calories Dataset:",hourly_calories.Id.nunique(), "unique users")
print("SleepDay Dataset:",sleepday.Id.nunique(), "unique users")
print("Daily Calories Dataset:",daily_calories.Id.nunique(), "unique users")
print("Daily Intensity Dataset:",daily_intensity.Id.nunique(), "unique users")
print("Weight Logged Dataset:",weight_log.Id.nunique(), "unique users")
print("Daily Steps Dataset:",daily_steps.Id.nunique(), "unique users")
print("Heart Rate Dataset:",heartrate_secs.Id.nunique(), "unique users")
```

Daily Activity Dataset: 33 unique users Hourly Steps Dataset: 33 unique users Hourly Calories Dataset: 33 unique users SleepDay Dataset: 24 unique users Daily Calories Dataset: 33 unique users Daily Intensity Dataset: 33 unique users Weight Logged Dataset: 8 unique users Daily Steps Dataset: 33 unique users Heart Rate Dataset: 14 unique users

Let's view the data types in each dataset.

In [14]:

daily activity.dtypes

Out[14]:

Id	int64
ActivityDate	object
TotalSteps	int64
TotalDistance	float64
TrackerDistance	float64
LoggedActivitiesDistance	float64
VeryActiveDistance	float64
ModeratelyActiveDistance	float64
LightActiveDistance	float64
SedentaryActiveDistance	float64
VeryActiveMinutes	int64
FairlyActiveMinutes	int64
LightlyActiveMinutes	int64
SedentaryMinutes	int64
Calories	int64
dtype: object	

In [15]:

hourly steps.dtypes

Out[15]:

Id int64
ActivityHour object
StepTotal int64

dtype: object

In [16]:

hourly_calories.dtypes

Out[16]:

Id int64
ActivityHour object
Calories int64

dtype: object

In [17]:

sleepday.dtypes

Out[17]:

Id int64
SleepDay object
TotalSleepRecords int64
TotalMinutesAsleep int64
TotalTimeInBed int64

dtype: object

In [18]:

daily_calories.dtypes

Out[18]:

Id int64
ActivityDay object
Calories int64

dtype: object

In [19]:

daily_intensity.dtypes

Out[19]:

Id int64
ActivityDay object
Calories int64

dtype: object

In [20]:

weight_log.dtypes

Out[20]:

int64 Ιd Date object float64 WeightKg WeightPounds float64 float64 Fat float64 BMI IsManualReport bool int64 LogId

dtype: object

In [21]:

```
daily_steps.dtypes
```

Out[21]:

Id int64
ActivityDay object
StepTotal int64
dtype: object

In [22]:

```
heartrate_secs.dtypes
```

Out[22]:

Id int64
Time object
Value int64
dtype: object

Next, let's view their shape

In [23]:

```
print("Shape of Daily Activity:",daily_activity.shape)
print("Shape of Hourly Steps:",hourly_steps.shape)
print("Shape of Hourly Calories:",hourly_calories.shape)
print("Shape of SleepDay:",sleepday.shape)
print("Shape of Daily Calories:",daily_calories.shape)
print("Shape of Daily Intensity:",daily_intensity.shape)
print("Shape of Weight Logged:",weight_log.shape)
print("Shape of Daily Steps:",daily_steps.shape)
print("Shape of Heart Rate:",heartrate_secs.shape)
```

```
Shape of Daily Activity: (940, 15)
Shape of Hourly Steps: (22099, 3)
Shape of Hourly Calories: (22099, 3)
Shape of SleepDay: (413, 5)
Shape of Daily Calories: (940, 3)
Shape of Daily Intensity: (940, 3)
Shape of Weight Logged: (67, 8)
Shape of Daily Steps: (940, 3)
Shape of Heart Rate: (2483658, 3)
```

Next, let's check if we have missing values in our datasets, weight_logged dataset not inclusive.

In [24]:

```
print("Daily Activity Dataset has",daily_activity.isnull().values.sum(), "missing values
print("Hourly Steps Dataset has",hourly_steps.isnull().values.sum(), "missing values
print("Hourly Calories Dataset has",hourly_calories.isnull().values.sum(), "missing
print("SleepDay Dataset has",sleepday.isnull().values.sum(), "missing values")
print("Daily Calories Dataset has",daily_calories.isnull().values.sum(), "missing values")
print("Daily Intensity Dataset has",daily_intensity.isnull().values.sum(), "missing
print("Daily Steps Dataset has",daily_steps.isnull().values.sum(), "missing values")
print("Heart Rate Dataset has",heartrate_secs.isnull().values.sum(), "missing values")
```

```
Daily Activity Dataset has 0 missing values Hourly Steps Dataset has 0 missing values Hourly Calories Dataset has 0 missing values SleepDay Dataset has 0 missing values Daily Calories Dataset has 0 missing values Daily Intensity Dataset has 0 missing values Daily Steps Dataset has 0 missing values Heart Rate Dataset has 0 missing values
```

Let's also check for duplicates.

In [25]:

```
print("Duplicates in Daily Acitivity: ", daily_activity.duplicated().sum())
print("Duplicates in Hourly Steps: ", hourly_steps.duplicated().sum())
print("Duplicates in Hourly Calories: ", hourly_calories.duplicated().sum())
print("Duplicates in Sleepday: ", sleepday.duplicated().sum())
print("Duplicates in Daily Calories: ", daily_calories.duplicated().sum())
print("Duplicates in Daily Intensity: ", daily_intensity.duplicated().sum())
print("Duplicates in Daily Steps: ", daily_steps.duplicated().sum())
print("Duplicates in Heart Rate: ", heartrate_secs.duplicated().sum())
```

```
Duplicates in Daily Acitivity: 0
Duplicates in Hourly Steps: 0
Duplicates in Hourly Calories: 0
Duplicates in Sleepday: 3
Duplicates in Daily Calories: 0
Duplicates in Daily Intensity: 0
Duplicates in Daily Steps: 0
Duplicates in Heart Rate: 0
```

3.2. SUMMARY OF INITIAL FINDINGS

- Of all the datasets we inspected, heartrate_secs, weight_logged and sleepday fell short of our n>=30 rule. heartrate_secs has n=14, and weight_logged only has n=8, hence we're going to drop both of them. sleepday has n=24, which is also quite small. However, we are going to keep it, since we might gain some relevant insights from it.
- daily_calories, daily_intensity, and daily_steps all have exactly the same data that is
 found in the daily_activity dataset. StepTotal in daily_intensity was only changed to
 TotalSteps in daily_activity datasets. Other than that, they are the same data. Hence, we'll discard
 them. Leaving us with daily_activity, hourly_steps, hourly_calories, and sleepday
 datasets.
- From the shape, I observed that hourly_steps and hourly_calories have similar structures: (22099, 3). Hence, we can decide to merge them for further analysis.

- As for the data types, "ActivityDate" in daily_activity, "ActivityHour" in hourly_steps, "ActivityHour" in hourly_calories, and "SleepDay" in sleepday are objects instead of datetime data type. We'll have to convert them to datetime data type for easy processing.
- I also observed that there are **NO** missing values and **3** duplicates only in sleepday datasets, We can ignore that.

3.3. DATA TRANSFORMATION

Let's start by converting the "ActivityDate" in daily_activity, "ActivityHour" in hourly_steps, "ActivityHour" in hourly_calories, and "SleepDay" in sleepday to datetime data type.

In [26]:

```
daily_activity["ActivityDate"] = pd.to_datetime(daily_activity["ActivityDate"])
hourly_steps["ActivityHour"] = pd.to_datetime(hourly_calories["ActivityHour"])
hourly_calories["ActivityHour"] = pd.to_datetime(hourly_calories["ActivityHour"])
sleepday["SleepDay"] = pd.to_datetime(sleepday["SleepDay"])
```

Let's Check for Changes

In [27]:

```
print("Daily Acitivity data type is", daily_activity["ActivityDate"].dtypes, "data type int("Hourly Steps data type is", hourly_steps["ActivityHour"].dtypes, "data type")
print("Hourly Calories data type is", hourly_calories["ActivityHour"].dtypes, "data
print("Sleepday data type is", sleepday["SleepDay"].dtypes, "data type")
```

Daily Acitivity data type is datetime64[ns] data type Hourly Steps data type is datetime64[ns] data type Hourly Calories data type is datetime64[ns] data type Sleepday data type is datetime64[ns] data type

They are now all in the right data types, which is the datetime data type.

Index(['Id', 'ActivityHour', 'Calories'], dtype='object')

Merge hourly steps with hourly calories datasets.

In [28]:

```
for col in hourly_steps.columns, hourly_calories.columns:
    print (col)

Index(['Id', 'ActivityHour', 'StepTotal'], dtype='object')
```

Above we can see that they both share Id and ActivityHour in common. Hence, we'll merge them on Id and ActivityHour.

In [29]:

Out[29]:

	ld	ActivityHour	StepTotal	Calories
0	1503960366	2016-04-12 00:00:00	373	81
1	1503960366	2016-04-12 01:00:00	160	61
2	1503960366	2016-04-12 02:00:00	151	59
3	1503960366	2016-04-12 03:00:00	0	47
4	1503960366	2016-04-12 04:00:00	0	48

Now we have a new dataframe merge_df .

Create new colums

Let's create a new column (WeekDay) from the ActivityHour in our new dataset merged_df, and ActivityDate in daily_activity. This will help us see if the days of the week has any bearing on our analysis.

In [30]:

```
daily_activity["WeekDay"] = daily_activity["ActivityDate"].dt.day_name()
merge_df["WeekDay"] = merge_df["ActivityHour"].dt.day_name()
sleepday["WeekDay"] = sleepday["SleepDay"].dt.day_name()
```

In [31]:

```
# View changes
daily_activity.head()
```

Out[31]:

	ld	ActivityDate	TotalSteps	TotalDistance	TrackerDistance	LoggedActivitiesDistance
0	1503960366	2016-04-12	13162	8.50	8.50	0.0
1	1503960366	2016-04-13	10735	6.97	6.97	0.0
2	1503960366	2016-04-14	10460	6.74	6.74	0.0
3	1503960366	2016-04-15	9762	6.28	6.28	0.0
4	1503960366	2016-04-16	12669	8.16	8.16	0.0

In [32]:

```
merge_df.head()
```

Out[32]:

	ld	ActivityHour	StepTotal	Calories	WeekDay
0	1503960366	2016-04-12 00:00:00	373	81	Tuesday
1	1503960366	2016-04-12 01:00:00	160	61	Tuesday
2	1503960366	2016-04-12 02:00:00	151	59	Tuesday
3	1503960366	2016-04-12 03:00:00	0	47	Tuesday
4	1503960366	2016-04-12 04:00:00	0	48	Tuesday

We still need to make some changes to the merge_df dataframe. We need to extract the ActivityHour column, by creating a seaparate column for it.

In [33]:

```
merge_df["DateHour"] = merge_df["ActivityHour"].dt.hour
```

In [34]:

```
merge_df.head()
```

Out[34]:

	ld	ActivityHour	StepTotal	Calories	WeekDay	DateHour
0	1503960366	2016-04-12 00:00:00	373	81	Tuesday	0
1	1503960366	2016-04-12 01:00:00	160	61	Tuesday	1
2	1503960366	2016-04-12 02:00:00	151	59	Tuesday	2
3	1503960366	2016-04-12 03:00:00	0	47	Tuesday	3
4	1503960366	2016-04-12 04:00:00	0	48	Tuesday	4

Now that we have our <code>DateHour</code> , lets remove the Hour min and sec.

In [35]:

```
merge_df["ActivityDay"] = merge_df["ActivityHour"].dt.date
```

Now, let's drop ActivityHour

In [36]:

```
merge_df = merge_df.drop("ActivityHour", axis = 1)
merge_df.head()
```

Out[36]:

	ld	StepTotal	Calories	WeekDay	DateHour	ActivityDay
0	1503960366	373	81	Tuesday	0	2016-04-12
1	1503960366	160	61	Tuesday	1	2016-04-12
2	1503960366	151	59	Tuesday	2	2016-04-12
3	1503960366	0	47	Tuesday	3	2016-04-12
4	1503960366	0	48	Tuesday	4	2016-04-12

In [37]:

```
# Let's change ActivityDay to DateTime data type
merge_df["ActivityDay"] = pd.to_datetime(merge_df["ActivityDay"])
```

Next, we're going to merge sleepday with merge_df to create a new dataframe that contains sleepday record with calories for some analysis. Hence, before we do, let's change the column name SleepDay in sleepday df, so it matches ActivityDay in merge df.

In [38]:

```
sleepday = sleepday.rename(columns={'SleepDay': 'ActivityDay'})
sleepday.head()
```

Out[38]:

	ld	ActivityDay	TotalSleepRecords	TotalMinutesAsleep	TotalTimeInBed	WeekDay
0	1503960366	2016-04-12	1	327	346	Tuesday
1	1503960366	2016-04-13	2	384	407	Wednesday
2	1503960366	2016-04-15	1	412	442	Friday
3	1503960366	2016-04-16	2	340	367	Saturday
4	1503960366	2016-04-17	1	700	712	Sunday

Now, let's merge sleepday with merge_df . But first, let's see the columns they share in common.

In [39]:

Since they have Id, ActivityDay and WeekDay in common, we'll merge both dataframes on Id, ActivityDay and WeekDay.

In [40]:

Out[40]:

	ld	StepTotal	Calories	WeekDay	DateHour	ActivityDay	TotalSleepRecords	TotalMi
0	1503960366	373	81	Tuesday	0	2016-04-12	1	
1	1503960366	160	61	Tuesday	1	2016-04-12	1	
2	1503960366	151	59	Tuesday	2	2016-04-12	1	
3	1503960366	0	47	Tuesday	3	2016-04-12	1	
4	1503960366	0	48	Tuesday	4	2016-04-12	1	

In [41]:

```
merge_df2.tail(5)
```

Out[41]:

	ld	StepTotal	Calories	WeekDay	DateHour	ActivityDay	TotalSleepRecords	То
9766	8792009665	8	74	Wednesday	19	2016-05-04	1	
9767	8792009665	132	91	Wednesday	20	2016-05-04	1	
9768	8792009665	0	71	Wednesday	21	2016-05-04	1	
9769	8792009665	0	70	Wednesday	22	2016-05-04	1	
9770	8792009665	0	70	Wednesday	23	2016-05-04	1	

Let's see how many unique users and missing values we have in our new dataframe

In [42]:

```
print("Merge_df2 Dataframe:", merge_df2.Id.nunique(), "unique users")
print("Merge_df2 DataFrame has", merge_df2.isnull().values.sum(), "missing values")
```

```
Merge_df2 Dataframe: 24 unique users
Merge_df2 DataFrame has 0 missing values
```

Great! Let's also make some changes to the daily_activity dataframe. We'll start by creating 2 additional columns (TotalActiveMinutes, TotalMinutes, and TotalActiveHours). Then we'll remove some columns we won't need.

In [43]:

In [44]:

Out[44]:

	TotalActiveMinutes	TotalMinutes	TotalActiveHours
0	NaN	NaN	NaN
1	NaN	NaN	NaN
2	NaN	NaN	NaN
3	NaN	NaN	NaN
4	NaN	NaN	NaN

Awesome! The **TotalActiveMinutes** and **TotalMinutes** columns have been created, but they currently don't have any values since they have not been created.

For the **TotalActiveMinutes**, I will created the values by summing up all the active minutes i.e VeryActiveMinutes , FairlyActiveMinutes , and LightActiveMinutes and for the **TotalMinutes**, I will sum up the TotalActiveMinutes and the SedentaryMinutes .

In [45]:

```
daily_activity["TotalActiveMinutes"] = daily_activity["VeryActiveMinutes"] + daily_a
daily_activity["TotalMinutes"] = daily_activity["TotalActiveMinutes"] + daily_activi
daily_activity["TotalActiveHours"] = round(daily_activity["TotalActiveMinutes"] / 60
```

In [46]:

```
daily_activity[["TotalActiveMinutes", "TotalMinutes", "TotalActiveHours"]].head()
```

Out[46]:

	TotalActiveMinutes	TotalMinutes	TotalActiveHours
0	366	1094	6.0
1	257	1033	4.0
2	222	1440	4.0
3	272	998	5.0
4	267	1040	4.0

In [47]:

```
daily_activity.head()
```

Out[47]:

	ld	ActivityDate	WeekDay	TotalSteps	TotalDistance	VeryActiveDistance	Moderate
0	1503960366	2016-04-12	Tuesday	13162	8.50	1.88	_
1	1503960366	2016-04-13	Wednesday	10735	6.97	1.57	
2	1503960366	2016-04-14	Thursday	10460	6.74	2.44	
3	1503960366	2016-04-15	Friday	9762	6.28	2.14	
4	1503960366	2016-04-16	Saturday	12669	8.16	2.71	

4. ANALYZE

Now that our data is processed, it's time to analyze it for insights. We have narrowed down our datasets to 3 dataframes:

- daily_activity
- merge_df, and
- merge_df2

So, we're going to draw our insights from these dataframes. Let's start by getting some statistical info about them.

In [48]:

daily_activity.describe()

Out[48]:

	ld	TotalSteps	TotalDistance	VeryActiveDistance	ModeratelyActiveDistance
count	9.400000e+02	940.000000	940.000000	940.000000	940.000000
mean	4.855407e+09	7637.910638	5.489702	1.502681	0.567543
std	2.424805e+09	5087.150742	3.924606	2.658941	0.883580
min	1.503960e+09	0.000000	0.000000	0.000000	0.000000
25%	2.320127e+09	3789.750000	2.620000	0.000000	0.000000
50%	4.445115e+09	7405.500000	5.245000	0.210000	0.240000
75%	6.962181e+09	10727.000000	7.712500	2.052500	0.800000
max	8.877689e+09	36019.000000	28.030001	21.920000	6.480000

In [49]:

merge_df.describe()

Out[49]:

	ld	StepTotal	Calories	DateHour
count	2.209900e+04	22099.000000	22099.000000	22099.000000
mean	4.848235e+09	320.166342	97.386760	11.415765
std	2.422500e+09	690.384228	60.702622	6.915140
min	1.503960e+09	0.000000	42.000000	0.000000
25%	2.320127e+09	0.000000	63.000000	5.000000
50%	4.445115e+09	40.000000	83.000000	11.000000
75%	6.962181e+09	357.000000	108.000000	17.000000
max	8.877689e+09	10554.000000	948.000000	23.000000

In [50]:

merge_df2.describe()

Out[50]:

	ld	StepTotal	Calories	DateHour	TotalSleepRecords	TotalMinutesAsl
count	9.771000e+03	9771.000000	9771.000000	9771.000000	9771.000000	9771.000
mean	5.000942e+09	358.765838	100.978917	11.422884	1.120356	419.350
std	2.061194e+09	652.628865	63.440338	6.921320	0.347304	118.789
min	1.503960e+09	0.000000	42.000000	0.000000	1.000000	58.000
25%	3.977334e+09	0.000000	63.000000	5.000000	1.000000	361.000
50%	4.702922e+09	107.000000	84.000000	11.000000	1.000000	433.000
75%	6.962181e+09	420.000000	117.000000	17.000000	1.000000	490.000
max	8.792010e+09	6357.000000	669.000000	23.000000	3.000000	796.000

Some Key Findings

- 1. Out of 1218 Total minutes, 991 minutes were spent inactive (Sedentary). Approximately 228 active minutes were spent.
- 2. An average of 7638 total steps were taken by the users daily.
- 3. There is also an average of 2304 calories burnt daily.
- 4. Also, there is a positive correlation between steps taken and calories burnt.

5. SHARE

Now is time to do some data visualization.

5.1. CORRELATION MATRIX

Let see the correlation between TotalDistance --TotalSteps --SedentaryMinutes --TotalActiveMinutes --Calories

In [51]:

- There is a positive correlation between Calories and TotalActiveMinutes, TotalSteps, and TotalDistance.
- There is a negative correlation between Calories and SedentaryMinutes.

5.2. COMPARING TOTAL STEPS AND SEDENTARY MINUTES TO CALORIES

In [52]:

/opt/anaconda3/envs/analytics-env/lib/python3.9/site-packages/matplotl ib/collections.py:1098: UserWarning: Collection without array used. Make sure to specify the values to be colormapped via the `c` argument. warnings.warn("Collection without array used. Make sure to "

- This scatterplot gives us a clearer view of the correlation between TotalSteps and SedentaryMinutes to Calories.
- The more the steps taken, the more the calories burnt. On the other hand, the more the Sedentary minutes, the less the calories burnt.

5.3. SEDENTARY MINUTES VS TOTAL ACTIVE MINUTES

In [53]:

Sedentary Minutes Vs Total Active Minutes

- There is a huge gap between SedentaryMinutes and TotalActiveMinutes.
- It is obvious that the users spend more time sitting or lying down, than they do being active. This can also say something about their occupation or lifestyle. Mostly likely they belong to the working class that spends countless hours behind their desk.

5.4. TOTAL CALORIES BURNT BY DAY OF THE WEEK

In [54]:

```
fig, ax = plt.subplots(figsize=(10,8))
plt.bar(merge_df.WeekDay, merge_df.Calories, color = "#fe8a78")
plt.xlabel("Week Day")
plt.ylabel("Calories Burned")
plt.title("Calories Burned by Day of the Week")
plt.grid()
plt.show()
```


- This plot shows that the most calories were burnt on **Saturday** and that the least calories were burnt on **Monday**.
- Saturday is quite understandable being that it is a weekend and the users probably have enough time to exercise. Monday, on the other hand, is quite strange, given that is seen to be one of the busiest days at work for most people.
- The first thing that came to mind is the fact that the users could probably be very busy behind their work desks that they barely have enough time to exercise or take a walk.

5.5. TOTAL STEPS BY DAY OF THE WEEK

Next, I checked to see the relationship between Total Steps taken by Day of the Week.

In [55]:

- This gives us the true picture of why Monday recorded the least Calories burnt. Here we see that the least steps were taken by the users on Monday compared to the other days of the week. Meaning they probably spent more hours sitting behind their work desks.
- It also gives us a clue about the profile of the users in the survey. They are most likely working class individuals.
- The most steps were taken on Saturday and Sunday, which makes sense.

5.6. TOTAL TIME ASLEEP BY DAY OF THE WEEK

In [56]:

```
fig, ax = plt.subplots(figsize=(10,8))
x = merge_df2["WeekDay"]
y = merge_df2["TotalMinutesAsleep"]

plt.title("Total Time Asleep By Day of The Week")
plt.bar(x, y, width = 0.8, color = "#fe8a78")
plt.show()
```


- This tells us that the least amount of sleep was taken on Thursday and the most amount of sleep was taken on Monday. Usually people tend to sleep longer when they are more exhausted.
- However, we can also see that the users also slept longer hours on Saturday, Tuesday, and Sunday, which were also the days when they lost the most calories.

5.7. THE MOST AND LEAST ACTIVE HOURS OF THE DAY

Finally I checked to see the least active hours of the day

In [57]:

```
#Least active time of the day for targeted Ads

fig, axs = plt.subplots(figsize=(10, 8))
merge_df.groupby(merge_df['DateHour'])['StepTotal'].mean().plot(kind='bar', rot=0, a
plt.xlabel("Hour of the Day")
plt.ylabel("Total Steps")
plt.show()
```


• Here we can see that their day starts getting really busy from 8 in the morning all the way to 7 in the evening. The least active hours of the day are between 8 p.m and 10 p.m. These are probably the best hours to reach them with targetted ads.

6. ACT

6.1. RECOMMENDATION

1. Promotion: The data we explored revealed that consumers are less active between 8 and 10 p.m., shortly before they retire for the night. This is the ideal moment for Bellabeat to schedule their advertising initiatives for optimal results. Google AdWords, for example, allows internet advertisers to schedule when

- their adverts are shown with its ad scheduling function. Such functions can allow Bellabeat to effectively reach its consumers. Scheduling adverts will also help Bellabeat save money on advertisements.
- 2. Retention: The objective of any membership program is not limited to generating a regular stream of new members. Retention is crucial! According to an online report (https://themembershipguys.s3-us-west-2.amazonaws.com/Online+Membership+Industry+Report+-+2019.pdf), eighty percent of customers quit their subscription to a member site within the first two years of joining the site. For Bellabeat to retain its consumers, it must focus on personalized contents that offer value. For instance, the data revealed a positive correlation between the number of steps walked and the number of calories burnt. The more steps a person takes each day, the more calories they burn.
- The data also revealed that one of the issues people have is that they are hardly able to reach the minimum 10,000 steps per day <u>recommended (https://www.healthline.com/health/how-many-steps-a-day#How-many-steps-should-you-take-a-day?)</u> for healthy adults. To address this issue, Bellabeat can provide fascinating tips to assist its consumers achieve their daily objectives. This may be published periodically on its website. Additionally, it can create engaging challenges to motivate its users to walk regularly. This will not only drive engagement, but also provide enormous value to them.
- I also noted that people spend far more time being inactive than being active. Inactivity is related with several health problems, including obesity, heart disease, stroke, etc. Bellabeat can create explainer videos and blogs to educate its users about the negative impacts of sedentary lifestyle and how to prevent them. This is also a fantastic opportunity to promote its other products, such as the Bellabeat app, which provides users with lifestyle-related health data, and Time, which links to the Bellabeat app to offer users with insights on their daily wellbeing.