函数项级数与一致收敛 练习题

Edited by G.Cui

Ex 1. 设 f(x) 是 $(-\infty, +\infty)$ 内的连续函数, $f_n(x) = \sum_{k=0}^{n-1} \frac{1}{n} f(x + \frac{k}{n})$, 证明: 函数列 $f_n(x)(n = 1, 2, 3, ...)$ 在任何有限区间上一致收敛.

Ex 2. 求证: 级数

$$\frac{\sin x}{1} + \frac{\sin 2x}{2} + \dots + \frac{\sin nx}{n} + \dots$$

在 x = 0 的邻域内非一致收敛.

Ex 3. 证明: 级数

$$\sum_{n=1}^{\infty} (-1)^n \frac{e^{x^2} + \sqrt{n}}{n^{\frac{3}{2}}}$$

在任何有穷区间 [a,b] 上一致收敛, 但在任何一点 x_0 处不绝对收敛.

Ex 4. 证明 $f(x) = \sum_{n=1}^{\infty} (x + \frac{1}{n})^n$ 在 (-1,1) 内连续.

Ex 5. 试证级数 $\sum_{n=1}^{\infty} x^{2n} \ln x$ 在 [0,1] 内不一致收敛, 但在 [0,1] 上可逐项积分.

1

Ex 6. k 取何值时,

- $1)f_n(x) = n^k x e^{-nx} (n = 1, 2, ...)$ 在 [0, 1] 上收敛;
- $2)f_n(x)$ 在 [0,1] 上一致收敛;
- 3) $\lim_{n\to\infty}\int_0^1 f_n(x) dx$ 可在积分号下取极限.

Ex 7. 计算积分 $\int_0^1 \frac{\ln x}{1-x^2} dx$.

Ex 8. 对于幂级数 $\sum_{n=1}^{\infty} \frac{2^n \ln n}{n} x^n$,

1)求出收敛半径; 2)讨论在收敛域端点上的收敛性.

参考答案

Ex 1. (定积分定义的逆用, Cantor 定理)

证明:
$$|f_n(x) - \int_0^1 f(x+t) dt| = |\sum_{k=0}^{n-1} \frac{1}{n} f(x+\frac{k}{n}) - \sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x+t) dt|$$

$$= |\sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x+\frac{k}{n}) dt - \sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x+t) dt| = |\sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} [f(x+\frac{k}{n}) - f(x+t)] dt|$$

$$\leq \sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} |f(x+\frac{k}{n}) - f(x+t)| dt. \qquad (1)$$

由于 f(x) 在 $(-\infty, +\infty)$ 连续, 故在任何有限闭区间连续. 由 Cantor 定理, 在其上一

致连续, 即 $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0$, s.t. $\forall |x' - x''| < \delta$, $|f(x') - f(x'')| < \varepsilon$.

注意到 $|(x+t) - (x + \frac{k}{n})| < \frac{1}{n}, t \in [\frac{k}{n}, \frac{k+1}{n}].$

对于上述 ε 和 δ , $\exists N \in \mathbb{N}^+$, s.t. $\forall n > N$, $\frac{1}{n} < \delta$, 故 $|f(x + \frac{k}{n}) - f(x + t)| < \varepsilon$.

所以(1)式
$$<\sum_{k=0}^{n-1}\int_{\frac{k}{n}}^{\frac{k+1}{n}}\varepsilon dt = \varepsilon$$
. 即题目中左右之差为无穷小量.

Ex 2. (和的估计)

证明: 已知: (1) $\sum \frac{1}{n}$ 发散, 且 $\sum_{n=1}^{2n} \frac{1}{k} \ge n \frac{1}{2n} = \frac{1}{2}$; (2) $x \in [\frac{\pi}{4}, \frac{\pi}{2}]$, $\sin x \ge \sin \frac{\pi}{4}$.

当 n 充分大, 在 0 的邻域内, $\sin(nx) \ge \sin \frac{\pi}{4}$.

所以
$$\sum_{k=n+1}^{2n} \frac{\sin kx}{k} \ge \sin \frac{\pi}{4} \sum_{k=n+1}^{2n} \frac{1}{n} \ge \frac{\sqrt{2}}{4} \ge \varepsilon_0.$$

Ex 3. (一致收敛判别法)

证明: (一).

 $(1) \mid \sum_{k=1}^{n} (-1)^k \mid \leq 2;$ (2) 固定 x_0 , $\frac{e^{x_0^2} + \sqrt{n}}{n^{\frac{3}{2}}}$ 关于 n 单调递减趋于 0.

由 Dirichlet 判别法, 一致收敛.

 $(\underline{}).$

$$|(-1)^n \frac{e^{x_0^2} + \sqrt{n}}{n^{\frac{3}{2}}}| = \frac{e^{x_0^2} + \sqrt{n}}{n^{\frac{3}{2}}} \sim \frac{1}{n}$$
, 故非绝对收敛. (注: 是 Leibniz 型级数, 条件收敛).

Ex 4. (一致收敛级数性质, 内闭一致收敛)

证明: $\forall 0 < q < 1, [-q,q] \subset [-1,1]. |(x+\frac{1}{n})^n| \le |(|x|+\frac{1}{n})^n| \le (q+\frac{1}{n})^n.$

得到 $\sum (q+\frac{1}{n})^n$. 而 $\overline{\lim_{n\to+\infty}} \sqrt[n]{(q+\frac{1}{n})^n} = \lim_{n\to+\infty} (q+\frac{1}{n}) = q < 1$. 由 Cauchy 比较法知 其绝对收敛, 再由 Weierstrass 判别法知原级数在 [-q,q] 上一致收敛. 又由 q 的任意性, 原级数在 [-1,1] 内闭一致收敛, 故在 (-1,1) 内连续.

Ex 5. (一致收敛级数的一个反例)

证明: $\forall x_0 \in (0,1), \sum_{n=1}^{\infty} x_0^{2n} \ln x_0 = \ln x_0 \frac{x_0^2}{1-x_0^2}.$ $x_0 = 0$ 或 $x_0 = 1$ 时,通项为 0,级数的和为 0. 但和函数 $S(x) = \ln x_0 \frac{x_0^2}{1-x_0^2}$ 在 x = 0 处的(左)极限为 0,在 x = 1 处的(右)极限为 $-\frac{1}{2}$,故不一致收敛.

考察级数的余和 $R_n(x) = \sum_{n=1}^{\infty} x^{2k} \ln x = \frac{x^{2n+2} \ln x}{1-x^2} = \ln x \frac{x^2}{1-x^2} x^{2n}$,其中 $\ln x \frac{x^2}{1-x^2}$ 在 (0,1) 连续,且在 0,1 处存在单侧极限,故 $\exists M > 0$,s.t. $|\ln x \frac{x^2}{1-x^2}| \leq M(\forall x \in [0,1])$.

$$|\int_0^1 R_n(x) dx| \le \int_0^1 |R_n(x)| dx \le M \int_0^1 x^{2n} dx = \frac{M}{2n+1} \to 0 (n \to \infty)$$
. 即余和趋于 0.

Ex 6. (收敛与一致收敛)

解: (1) $\forall x \in [0,1], \forall k \in \mathbb{R}, f_n(x) = \frac{n^k x}{e^{nx}} \to 0.$

(2)
$$||f_n(x) - 0|| = \sup_{x \in [0,1]} |f_n(x)| = \sup_{x \in [0,1]} |\frac{n^k x}{e^{nx}}|.$$

令 $f'_n(x) = \frac{n^k (1-nx)}{e^{nx}} = 0$, 得 $x = \frac{1}{n}$. 代入得 $f_n(\frac{1}{n}) = n^{k-1}e^{-1}$, 使之趋于 0, 得 $k < 1$.

(3) 因为 $\int_0^1 \lim_{n \to \infty} f_n(x) dx = 0$, $\lim_{n \to \infty} \int_0^1 f_n(x) dx = \lim_{n \to \infty} n^{k-2} [1 - (1+n)e^{-n}]$. 故 k < 2 时二者相等.

Ex 7. (用一致收敛级数计算积分)

解: $I = \int_0^1 \frac{\ln x (1-x^2+x^2)}{1-x^2} dx = \int_0^1 \ln x dx + \int_0^1 \frac{x^2 \ln x}{1-x^2} dx = -1 + \int_0^1 (\sum_{n=1}^\infty x^{2n} \ln x) dx.$ 由第五题知,第二项可逐项积分.

$$\int_0^1 \left(\sum_{n=1}^\infty x^{2n} \ln x\right) \mathrm{d}x = \sum_{n=1}^\infty \int_0^1 x^{2n} \ln x \mathrm{d}x = \sum_{n=1}^\infty \left[\frac{1}{2n+1} \int_0^1 \ln x \mathrm{d}(x^{2n+1})\right] = \sum_{n=1}^\infty -\frac{1}{(2n+1)^2}.$$

于是原积分 $I = -1 - \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} = -\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = -\frac{\pi^2}{8}$.

(注: 在 $[0,\pi]$ 上用 Fourier 展开, 把 f(x)=x 展开成余弦级数, 再令 x=0 即可.)

Ex 8. (幂级数)

解: (1)由 d'Alember 判别法, $\overline{\lim_{n\to\infty}} \frac{x_{n+1}}{x_n} = 2$, 所以收敛半径 $R = \frac{1}{2}$.

(2)
$$x = \frac{1}{2}$$
 时, 得到 $\sum_{n=1}^{\infty} \frac{\ln n}{n}$. 当 $n > 3$ 时, $\frac{\ln n}{n} > \frac{1}{n}$. 由比较判别法知发散.

(2)
$$x = \frac{1}{2}$$
 时,得到 $\sum_{n=1}^{\infty} \frac{\ln n}{n}$. 当 $n > 3$ 时, $\frac{\ln n}{n} > \frac{1}{n}$. 由比较判别法知发散. $x = -\frac{1}{2}$ 时,得到 $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$. 这是一 Leibniz 型级数,故收敛.