Hypothesis Testing

Null hypothesis $H_0: \theta \in \Theta_0$, alternative $H_1: \theta \in \Theta_1$.

Type I error: If H_0 true but we reject H_0 .

To construct a test:

- 1. Choose a test statistic $W = W(X_1, \ldots, X_n)$
- 2. Choose a rejection region R
- 3. If $W \in \mathbb{R}$, reject H_0 otherwise retain H_0

The **power function** $\beta(\theta) = \mathbb{P}_{\theta}(W \in R)$ for a rejection region R. Want **level-** α test ($\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha$) that maximizes $\beta(\theta \in \Theta_1)$. A level- α test with power fn β is **uniformly most powerful** if: $\beta(\theta) \ge \beta'(\theta) \ \forall \theta \in \Theta_1 \ \forall \beta' \ne \beta$.

Neyman-Pearson Test

For simple $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$, reject H_0 if $\frac{L(\theta_1)}{L(\theta_0)} > k$. where k chosen s.t. $\mathbb{P}(\frac{L(\theta_1)}{L(\theta_0)} > k) = \alpha$.

Wald Test

For
$$H_0: \theta = \theta_0$$
 and $H_1: \theta \neq \theta_0$, reject H_0 if $\left|\frac{\hat{\theta}_n - \theta_0}{se(\hat{\theta}_n)}\right| > z_{\alpha/2}$.
where $z_{\alpha/2}$ is the inverse standard-normal CDF of $1 - \frac{\alpha}{2}$.
and $\hat{\theta}_n$ an estimator s.t. $(\hat{\theta} - \theta)/\text{se} \rightsquigarrow \mathcal{N}(0, 1)$ eg: $\theta = \hat{\theta}_{\text{mle}}$ and $se = \sqrt{\text{Var}(\hat{\theta}_n)}$. Can also use (for eg.) $\hat{se} = \sqrt{S_n^2/n}$.
and if $\hat{\theta}_n$ efficient, can approx: $se \approx \sqrt{\frac{1}{I_n(\theta)}}$ or $\hat{se} \approx \sqrt{\frac{1}{I_n(\hat{\theta}_n)}}$.

Likelihood Ratio Test

For
$$H_0: \theta \in \Theta_0$$
 and $H_1: \theta \notin \Theta_0$, reject H_0 if $\lambda(x^n) = \frac{L(\hat{\theta}_0)}{L(\hat{\theta})} \leq c$.
where $L(\hat{\theta}_0) = \sup_{\theta \in \Theta_0} L(\theta)$ and $L(\hat{\theta}) = \sup_{\theta \in \Theta} L(\theta)$.
and c chosen s.t. $\mathbb{P}(\lambda(x^n) \leq c) = \alpha$.

Thm: under
$$H_0: \theta = \theta_0 \Longrightarrow W_n = -2\log\lambda(X^n) \rightsquigarrow \chi_1^2$$

 $\Longrightarrow \text{ reject } H_0 \text{ if } W_n > \chi_{1,\alpha}^2.$

Also: for $\theta = (\theta_1, \dots, \theta_k)$, if H_0 fixes some of the parameters $\implies -2\log\lambda(X^n) \rightsquigarrow \chi^2_{\nu}$, where $\nu = \dim(\Theta) - \dim(\Theta_0)$.

P-Values

The **p-value** $p(x^n)$ is the smallest α -level s.t. we reject H_0 .

Thm: For a test of the form: reject
$$H_0$$
 when $W(x^n) > c$,
 $\Longrightarrow p(x^n) = \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(W(X^n) \ge W(x^n)) = \sup_{\theta \in \Theta_0} [1 - F(W(x^n)|\theta)].$

Thm: Under $H_0: \theta = \theta_0, p(x^n) \sim \text{Unif}(0,1).$

Permutation Test

$$X^n \sim F, \ Y^m \sim G, \ H_0: F = G, \ H_1: F \neq G$$

Let $Z = (X^n, Y^m)$ and $L = (1, \dots, 1, 2, \dots, 2)$.
Let $W = g(L, Z) = |(\text{ave of 1 labeled pts}) - (\text{ave of 2 labeled pts})|$.
Let $p = \frac{1}{N!} \sum_{\pi} \mathbb{I}(g(L_{\pi}, Z) > g(L, Z)) \implies \text{reject } H_0 \text{ when } p < \alpha$.

Confidence Intervals

We want a $1 - \alpha$ confidence interval $C_n = [L(X^n), U(X^n)]$ s.t. $\mathbb{P}_{\theta}(L(X^n) \leq \theta \leq U(X^n)) \geq 1 - \alpha, \quad \forall \theta \in \Theta.$

Generally, a $1 - \alpha$ confidence set C_n is a random set $C_n \subset \Theta$ s.t. $\inf_{\theta \in \Theta} \mathbb{P}_{\theta} (\theta \in C_n(X^n)) \ge 1 - \alpha$.

Using Probability Inequalities

Prob inequalities give (for eg.)
$$\mathbb{P}(|\hat{\theta}_n - \theta| > \epsilon) \le g(\exp^{-f(\epsilon)}) = \alpha$$
.
solving for ϵ gives $\epsilon = \tilde{f}(\alpha) \Longrightarrow \mathbb{P}(|\hat{\theta}_n - \theta| > \tilde{f}(\alpha)) \le \alpha$
 $\Longrightarrow C_n = (\hat{\theta} - \tilde{f}(\alpha), \hat{\theta} + \tilde{f}(\alpha))$.

Inverting a Test

In level- α tests $\mathbb{P}_{\theta_0}(T(x^n) \in R) \leq \alpha \Rightarrow \text{let } C_n = \{\theta : T(x^n) \in A(\theta_0)\}.$ where $A(\theta_0) = \{T(x^n) \notin R \mid \theta = \theta_0\}$ (ie the accept region if $\theta = \theta_0$). For Wald: $C_n = \hat{\theta}_n \pm (z_{\alpha/2} \times se) = \hat{\theta}_n \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$

For LRT: $C_n = \{\theta : \frac{L(\theta)}{L(\hat{\theta})} > c\}$ (for test where reject H_0 if $\frac{L(\hat{\theta}_0)}{L(\hat{\theta})} \le c$).

Pivots

 $Q(X^n, \theta)$ a **pivot** if the distribution of Q does not depend on θ . Find a, b s.t. $\mathbb{P}_{\theta}(a \leq Q(X^n, \theta) \leq b) \geq 1 - \alpha, \forall \theta$. $\implies C_n = \{\theta : a \leq Q(X^n, \theta) \leq b\} \geq 1 - \alpha\}.$

Large Sample Confidence Intervals

For mle $\hat{\theta}_n$ with se $\approx 1/\sqrt{I_n(\hat{\theta}_n)}$, approx $1 - \alpha$ confidence sets are: For Wald: $C_n = \hat{\theta}_n \pm (z_{\alpha/2} \times \text{se})$ For Wald with delta method: $C_n = \tau(\hat{\theta}_n) \pm (z_{\alpha/2} \times \text{se}(\hat{\theta}) \times |\tau'(\hat{\theta}_n)|)$ For LRT: $C_n = \left\{ \theta : -2\log\left(\frac{L(\theta)}{I(\hat{\theta})}\right) \le \chi_{k,\alpha}^2 \right\}$

Nonparametric Inference

The empirical CDF is: $\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$

Thm (DKW): $\forall \epsilon > 0$, $\mathbb{P}(\sup_x |\hat{F}(x) - F(x)| > \epsilon) \le 2e^{-2n\epsilon^2}$ The **kernel density estimator** is: $\hat{p}_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} K\left(\frac{x-X_i}{h}\right)$ where K a symmetric zero-mean density, and bandwidth h > 0.

Thm: The risk $R = \mathbb{E}(\mathcal{L}(p,\hat{p})) = \int (b^2(x) + \operatorname{Var}(x)) dx = \frac{a}{n^{4/5}}$ for some a, where $\mathcal{L}(p,\hat{p}) = \int (p(x) - \hat{p}(x))^2 dx$, and $b^2(x) = \mathbb{E}(\hat{p}(x)) - p(x)$. And this is minimax.

A statistical functional T(F) is any function of the CDF.

A plug-in estimator of $\theta = T(F)$ is: $\hat{\theta}_n = T(\hat{F}_n)$.

Often, $\hat{\theta}_n \approx \mathcal{N}(T(F), \hat{\text{se}}^2)$, where $\hat{\text{se}}$ is estimate of $\sqrt{\text{Var}(T(\hat{F}_n))}$.

Bootstrap

The **bootstrap** is a nonparametric way to find standard errors and confidence intervals of estimators of statistical functionals:

- 1. Draw $X_1^*,\dots,X_n^* \sim \hat{F}_n$ (via $X_i^* \sim \{X_1,\dots,X_n\}$ unif).
- 2. Compute $T_n^* = g(X_1^*, ..., X_n^*)$
- 3. Do 1. and 2. B times to get $T_{n,1}^*, \dots, T_{n,B}^*$ (2)

4. Let
$$v_{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \left(T_{n,b}^* - \frac{1}{B} \sum_{r=1}^{B} T_{n,r}^* \right)^2$$

Then: $v_{\text{boot}} \xrightarrow{a.s.} \text{Var}_{\hat{F}_n}(T_n)$ as $B \to \infty$ and $\hat{\text{se}}(T_N) = \sqrt{v_{\text{boot}}}$

Bayesian Inference

Frequentists: probability is long-run frequencies. Procedures are random but parameters are fixed, unknown quantities.

Bayesians: probability is a measure of subjective degree of belief. Everything is random, including parameters.

Using Bayes Thm \Rightarrow Bayesian inference.

For $X_1, \ldots, X_n \sim p(x|\theta)$, and prior $\pi(\theta)$, **Bayes Thm** gives:

$$\pi(\theta|X^n) = \frac{p(X^n|\theta)\pi(\theta)}{m(X^n)} = \frac{p(X^n|\theta)\pi(\theta)}{\int p(X^n|\theta)\pi(\theta)d\theta}$$
(3)

Prediction

For train-data $(X_i, Y_i)|_{i=1,...,n}$, want to predict Y given a new X, where $Y \in \{0,1\}$ (classification) or $Y \in \mathbb{R}$ (regression). For prediction rule h(X),

classification risk: $R(h) = \mathbb{P}(Y \neq h(X)) = \mathbb{E}(I(Y \neq h(X)))$ regression risk: $R(h) = \mathbb{E}((Y - h(X))^2)$

Thm 1: R(h) minimized by $m(x) = \mathbb{E}(Y|X=x)$. The Bayes classifier $h_B(x) = I(m(x) \ge 1/2)$

Model Selection

Consider models $\mathcal{M}_{1,...,k}$, $\mathcal{M}_j = \{p(y; \theta_j) : \theta_j \in \Theta_j\}$, $\hat{\theta}_j = \text{mle}(\mathcal{M}_j)$ **AIC**: choose $j^* = \arg\max|_j \text{AIC}(j) = 2\log L_j(\hat{\theta}_j) - 2\dim(\Theta_j)$ **BIC**: choose $j^* = \arg\max|_j \text{BIC}(j) = \log L_j(\hat{\theta}_j) - \left(\frac{\dim(\Theta_j)}{2}\log n\right)$ **Cross-validation**: For train-data $= Y_{1,...,n}$ and test-data $= Y_{1,...,n}^*$

choose $j^* = \arg\max_j |_j \hat{K}_j = \frac{1}{n} \sum_{i=1}^n \log p(Y_i^*; \hat{\theta}_j)$