

Protecting DVB broadcasts from hackers

Using TS 102 809 1.3.1

Webinar 9 May 2017

Overview

- The problem
 - Robert Esterer (IRT <u>robert.esterer@irt.de</u>)
- The DVB Solution
 - Nick Birch (S&T <u>nick.birch@s-and-t.com</u>)
- How to secure your market!
 - Nigel Earnshaw (BBC R&D <u>nigel.earnshaw@rd.bbc.co.uk</u>)

The problem

Robert Esterer (IRT robert.esterer@irt.de)

What is the Problem?

- TV signals can include interactive components that cause applications to run automatically when a channel is selected.
- An attacker can modify a broadcast to introduce their own applications.
- If there is a vulnerability in the TV receiver then the attacker may be able to take control of the receiver.

Two Example TV Attack Scenarios

Multiple Dwelling Unit (MDU)

Why is it Relevant Now?

- Attacks via broadcast have been discussed for at least 15 years
 - Initially called "man in a van attack"
- Security researchers have brought analysis of vulnerabilities to the attention of TV organisations
 - In particular Ben Michéle at TU-Berlin spent significant time with DVB and HbbTV and motivated the start of the DVB specification work
- Several things have changed in the last few years
 - Price and size of DVB-T modulators has fallen
 - E.g. UT-100C for US\$170 \$230
 - Price & size of equipment to modify streams has fallen
 - Can now be done in software on a Raspberry Pi
 - TV sets now use commodity software
 - Exploits for bugs in open source software (e.g. libraries and/or browsers) can be aimed at TVs
 - TVs have become the centre of networked home entertainment and offer much more possibilities for attackers

Affected and "Mush" Area

Signal level, DTT Rx: -60 dBm

Grid step = 21m

Grid step = 21m

Rai - Centro Ricerche e Innovazione Tecnologica

How Many People Might an Attack Reach?

- Densely populated urban area might have up to 5900 people per square km
 - Mobile attack with 60m radius would therefore cover 67 people or 29 households
- Degree of success depends on proportion of TVs that are:
 - Both smart (i.e. connectable) and actually connected
 - In use at the time
 - Tuned to a channel on which the attack is happening
 - Vulnerable to the exploit(s) selected by the attacker
- Making assumptions and multiplying these out suggest 30 attacks might be needed to get a single victim

Source: DVB CM-SEG calculation based on publicly available statistics

Why is this a Problem?

- The stakeholders need to protect the consumer and consumer confidence
- Potential for reputational damage to receiver manufacturers
- Potential to make consumers afraid of buying/ connecting advanced receivers:
 - Reduces perceived value of advanced receivers
 - Reduces audience for internet delivered services

What could happen?

Examples from the Real World

Example 1: The Stagefright vulnerability

- An Android vulnerability first discovered on July 27, 2015
- It had existed for over 5 years before it was discovered and affects devices from Android version 2.2 through 5.1 (2010 2015).
 - A second vulnerability (called Stagefright 2.0) was discovered on October 1, 2015 which affected Android versions 1.5 through 5.1
- Affected devices from all manufacturers and from all countries, including alternate OSs like CyanogenMod
 - It was estimated that over one billion devices have been vulnerable
- The original Stagefright vulnerability was in an Android library that processed video files
 - This library was also used when processing videos contained in MMS
 - Many messaging apps like Google Hangouts automatically processed any incoming message, including any videos they contain
 - This allowed attackers to automatically execute malicious code on android devices
- The second vulnerability was in the Android Mediaserver
 - Could be triggered with manipulated MP3 and MP4 files

Example 2: Weeping Angel hack

- Details from a secret government document from 2014 which was leaked by Wikileaks in March 2017
- The hack specifically targeted Samsung's F8000 series TVs released in 2013
 - It was successfully tested on TVs running firmware versions 1111, 1112, and 1116
 - Because the document is from 2014, no information about any future versions is available
- Permanently installed malware that could put the TV in a fake sleep mode in which camera and microphone still worked
 - SmartTV effectively turned into a surveillance device
- Could also extract the WiFi (WPA) password
 - SmartTV as bridgehead into the private network

On the reality of the threat

- SmartTVs offer a multitude of features which are provided by an ever increasing number of software libraries, each of which might contain a flaw
- Manufacturer independent operating systems like AndroidTV offer the possibility of exploits that work across devices from different manufacturers
- The concrete interest of intelligence agencies in hacking SmartTVs shows that there is gain in doing so

The need for being proactive

- The Stagefright exploit showed not only that exploits can exists in multi-year old components, but also that it is often impractical for manufacturers to patch such devices
- It is therefore necessary to pro-actively take measures to protect devices from receiving malicious applications to protect against vulnerabilities that have not yet been discovered

Questions?

The DVB Solution

Nick Birch (S&T nick.birch@s-and-t.com)

Solution Provided by DVB

Authentication of broadcast data for interactivity

 Trust establishment for public keys used for verification of the authentication messages

Basic Principle of Solution

- Each service carries all the information needed to authenticate its interactive components
 - Makes things easy for re-multiplexing
 - Avoids complex operational relationships between competing broadcasters
- No need to include root of trust in TV / STB
 - Trust is derived from the broadcast
 - Signalling becomes trusted based on either
 - Persistence in the broadcast over time or
 - Authentication by previously trusted signalling
- Works with a unidirectional TV broadcast
- Also optional "coordinating entity" mode with root of trust included in TV / STB

Part 1: Authentication

Authentication Overview

Authentication principles

- The broadcaster:
 - Calculates Hash for payload sections
 - Signs groups of Hashes with a Private Key
 - Transmits signed Hashes

The receiver:

- Receives signed Hashes and validates with a Public Key
- Calculates Hash for received payload sections
- Check that the Hash for each received payload section matches a validated signed Hash

Cryptographic toolkit

- Section hash algorithm
 - SHA-256 or SHA-512
 - Well established and standard algorithms
- Signature algorithm
 - At least Edwards-curve Digital Signature Algorithm
 - ED25519 (RFC8032)
 - Offers significant benefits
 - Adoption spreading in the internet and other places
 - Optional support for RSA and ECDSA

Authentication at the Broadcaster

Verification at the Receiver

Part 2: Trust Establishment

Establishing Trust: Introduction

- Receivers need a "trusted" Public Key to verify Authentication Sections
- Broadcast Certificate Collection Messages deliver a certificate chain that provides a Public Key
- Initially "trust" comes from the receiver observing the same certificates for a period of time
- Certificate updates are authenticated by previous certificates

Including Trust Establishment

Establishing Trust: Two schemes

- Stand alone mode
 - Basic mode supported by all implementations
 - Relies on persistence of certificate signalling in the broadcast

- Coordinating entity mode (optional)
 - Uses a certificate pre-installed in the receiver
 - Requires coordinated effort within a market

Scheme 1: Stand alone Trust Establishment

Trust Establishment: Receiver State Machine (overview)

Trust Establishment: State Machine (detail)

Service detected but

not vet visited

Establishing Trust: New services

The time for new service to establish trust depends on the user and receiver behaviour:

- Following receiver installation or manual channel scan: 300s
- If receiver detects new service automatically: 1800s

Carriage of protection data

- The Authentication and Certificate Collection messages can be carried on the same PID as the AIT or the Object Carousel
- No new PID required
- Naturally will go with the service if it is re-multiplexed

Scheme 2: Using a Coordinating Entity

Option to use a Coordinating Entity Certificate

- In addition establishing trust via persistence (the stand alone scheme) a Coordinating Entity Root can be used
- Coordinating Entity provides an "anchor" that is installed in receivers
- Broadcasts include certificates leading to this anchor

Properties of using a Coordinating Entity

- Allows trust to be established instantly
 - Services can be trusted immediately when a new receiver is first used
 - Removes the delay before new services become trusted
- Potentially more secure
- Removes the "persistence" state machine
- Requires coordinated activity by the stake holders in a market
 - This might not be possible due to commercial or legal obstacles in some markets
- May require regulator oversight

Coexistence of Coordinating Entity and Standalone schemes

- The Coordinating Entity scheme is designed to coexist with the Stand-alone Scheme
 - All receivers support Standalone Scheme
 - All receivers tolerate Coordinating Entity signalling if present
 - Optionally receivers can use the Coordinating Entity signalling
 - Both schemes can be efficiently supported by the same broadcast signalling

Certificate chain examples

Stand alone only

Stand alone + Coordinating Entity

Trust Management

Trust Management

- Broadcast certificates for Trust Establishment can be securely updated
- The Public Key provided by the certificates for authenticating payload sections can be securely updated
- The generation of new certificates can be done off-line (which may be operationally convenient)

ETSI TS 102 809 V1.3.1 (2017-04)

Digital Video Broadcasting (DVB); Signalling and carriage of interactive applications and services in Hybrid broadcast/broadband environments

Questions?

How to secure your market!

Nigel Earnshaw (BBC R&D nigel.earnshaw@rd.bbc.co.uk)

Market stakeholders

Choose the Trust Establishment scheme most suitable for your market or region.

- If service providers are autonomous with no way of organising a common trust anchor and controlled certificate hierarchy, then the standalone method can be deployed.
- Alternatively, if service providers are used to working together they can provide trust anchors to devices and coordinate a trust hierarchy, broadcasters may use a dual hierarchy utilising both the coordinated trust anchor and stand alone mode.

Different approaches to trust

- Within a market that has a coordinating entity not all broadcasters may participate
- Within a market that has a coordinating entity possibly not all receivers will support the coordinating entity (e.g. imports from other markets)
- A highly regulated market may choose to encourage or enforce a co-ordinated trust anchor approach.
 - E.g. as a condition for a trademark

A market can have a mix of support and can evolve over time to get the best level of robustness in general over a range of mixed business strategies.

=> Which approach suites your market?

Partial deployment

- Within a market perhaps not all broadcasters are ready to authenticate their services
- Within a market perhaps not all receivers implement authentication

Even where there is only partial coverage of the protection there is a benefit to the market as whole as the attack surface is reduced compared to no deployment

=> Analogous to vaccination – some protection is better than none

Technical Community

Moving from a specification to consistent and robust deployment requires the development of a test regime.

Ensure predictable behaviour when pairing a receiver with a broadcast service in terms of all aspects of the functionality including;

device response to attack device response to new service device response to service trust updates sample transport streams

⇒ Develop a conformance strategy for your market

Summary

- Market stakeholders should discuss:
 - Do they want to authenticate broadcasts in their market
 - How can authentication work in their market (trust establishment, proportion of services that will be authenticated etc.)
 - How to achieve conformance in their market

- Services/broadcasters can start operating using the stand-alone scheme independently
 - Can migrate to using a coordinating entity later

Conclusions

Conclusions

- Vulnerabilities likely in advanced TV receivers!
- Patching receivers may not be practical
- TS 102 809 describes a method to protect against malicious applications added to a broadcast signal

 Deployment doesn't require all stakeholders in a market to participate but becomes more beneficial as more stakeholders participate

Questions?

Thank you

Credits

Some images are from community commons sources:

 $\underline{https://openclipart.org/detail/217930/meeting-around-a-table-in-grayscale}$

Vtheikki

https://openclipart.org/detail/179429/worldwide-community

colinda

https://openclipart.org/detail/273315/signal-spectrum-analyst

Juhele

