

PMT assigment of photons with Neural Networks

F. Javier Vara Carbonell

Software call

8th January 2025

Motivation I

- Current IceCube simulation for Gen2 OMs (PPC) assumes:
 - 1. All PMTs within an OM are equivalent
 - 2. The angular acceptance of a PMT is symmetric with respect to its symmetry axis
- These assumptions are not true → especially for LOM:
 - Gel Pads are not symmetric
 - PMT symmetry axis does not align with the pressure vessel normal vector
 - There are two "types" of PMT: Polar and Equatorial

IceCube-Gen2 LOM16 Gel Pad **Polar PMTs** Eq. PMTs **Polar PMTs**

Motivation II: Why Neural Networks?

Challenging to find an analytical parametrization of angular acceptance \rightarrow alternatives:

- 1. Direct Geant4 simulation (might be too slow/challenging to pipe)
- 2. Interpolation tables (e.g. DEgg)
- 3. Neural Network based parametrization of angular acceptance (today's talk):
 - NNs excel at high dimensional problems (LOM needs more degrees of freedom than D-Egg)
 - NNs provide fast inference times using a GPU

PMT assigment of photons with NN: Concept

Neural Networks (NNs) are essentially function approximators

- Train NN on photons generated randomly on a sphere surrounding the LOM:
 - → 30 billion photons simulated
 - → Random uniform wavelength sampling (270 nm 700 nm)
 - \rightarrow Radius of the sphere = 23 cm

Geant4 simulation

Relative Detection Time

LOM16 Geant4 Simulation

- Using Münster's <u>OMSim</u> framework
- Most current and next-gen OMs included
- Did not consider harness / internal components for the first study
 - → Could include in next training iteration
- Ice properties considered:
 - ✓ Refractive index
 - Absorption length
 - Scattering length
- Possible to perform detailed PMT detection probability simulation:
 - → Match simulation with PMT measurements
 - → Main difference with respect to DOUMEKI

LOM Symmetries in NN Design

- Any kind of NN could approximate this task but not with the same accuracy
- All PMTs of a same kind (polar/equatorial) have the same properties
- → Leverage LOM symmetries for best performance

How?

- 1. Describe incoming photon properties based on relative values for each PMT
- 2. Identify symmetries within one PMT for equivalent scenarios:
 - → azimuthal symmetry in XY plane
- 3. Use CNN layers with relative values as input for each PMT \rightarrow [n_features,16]
- 4. One of the features must be a Polar/Eq. PMT identifier
- 5. Combine with linear layers for symmetry breaking properties e.g. penetrator cable

If one PMT sees some relative values:

- \rightarrow CNN with kernel size 1 \times 1 can map the outcome to any other PMT
- → Inspired by Event-Generator

Performance Checks: Effective Area

$$A_{eff}(\lambda, \theta, \phi) = \frac{N_{det}}{N_{emit}} \cdot A_{beam}$$

Interpretation: Area of the module if it were 100% efficient

Effective Area: Comparison at 400 nm

Single PMT Effective Area: Comparison at 400 nm

Geant4 Equatorial $\overline{A}_{eff} = 5.9 \text{ cm}^2$

NN Equatorial $\overline{A}_{eff} = 5.55 \text{ cm}^2$

Geant4 Polar $\overline{A}_{eff} = 6.62 \text{ cm}^2$

NN Polar $\overline{A}_{eff} = 6.23 \text{ cm}^2$

Single PMT Effective Area: Comparison at 550 nm

Geant4 Equatorial $\overline{A}_{eff} = 2.78 \text{ cm}^2$

NN Equatorial $\overline{A}_{eff} = 2.70 cm^2$

Geant4 Polar $\overline{A}_{eff} = 3.18 \text{ cm}^2$

NN Polar $\overline{A}_{eff} = 3.09 \text{ cm}^2$

Mean Effective Area vs Wavelength

- NN underestimates probability
- Still not clear why
- Relative probability seem okay
- Scale NN predictions?

Scaled difference @ 400 nm

- NN underestimates probability
- Still not clear why
- Relative probability seem okay
- Scale NN predictions?
- Differences less than 3%:
- → Within expected module to module variations

Summary & Outlook

Summary

Gen2 OM NN-based simulation seems promising:

- NNs excel at interpolation of high-dimensional problems
- Use CNN with kernel size 1 × 1 to leverage symmetries
- Fast inference times in GPU (0.3 s / 1 million photons \rightarrow expect to reduce at least by 2)

Outlook

- Take Yukiho's PR as a reference for implementation in clsim
- Optimize NN hyperparameters and architecture
- Think how oversize / hole ice could be considered
- Any feedback is very welcome

Back-Up

Scaled difference @ 550 nm

Photon Position (at least 2 values required):

- 1. Revert Z sign for bottom PMTs:
- Orange is to bottom PMT what blue is to top PMT
- Orange is to top PMT what blue is to bottom PMT

Photon Position (at least 2 values required):

- 1. Revert Z sign for bottom PMTs
- 2. Azimuth symmetry with respect to PMT symmetry axis in XY plane:
- Blue and orange are equivalent
- Give cosine of relative azimuth as an input

PMT symmetry axis

Photon Position (at least 2 values required):

- 1. Revert Z sign for bottom PMTs
- 2. Azimuth symmetry with respect to PMT symmetry axis in XY plane

Photon Direction (at least 2 values required):

- 1. Revert cos(zenith) sign for bottom PMTs:
- Orange is to bottom PMT what blue is to top PMT
- Orange is to top PMT what blue is to bottom PMT

Bottom PMT

Photon Position (at least 2 values required):

- 1. Revert Z sign for bottom PMTs
- 2. Azimuth symmetry with respect to PMT symmetry axis in XY plane

Photon Direction (at least 2 values required):

- 1. Revert cos(zenith) sign for bottom PMTs
- 2. Mirror symmetry in azimuth
- 1 and 3 have same azimuth, different from 2 and 4
- 2 and 3 are equivalent, same goes for 1 and 4
- Give cosine of relative azimuth as input
- Identifier telling whether direction points to PMT as input
- → will the photon get closer to PMT's "y" in the next step?

PMT symmetry axis

