UNIVERSAL LIBRARY

UNIVERSAL LIBRARY

HEATING VENTILATING AIR CONDITIONING Guide 1943

An Instrument of Service prepared for the Profession—Containing a

Technical Data Section

of reference material on the design and specification of heating, ventilating and air conditioning systems based on—the Transactions—the Investigations of the Research Laboratory and Cooperating Institutions—and the Practice of the Members and Friends of the Society

TOGETHER WITH A

Manufacturers' Catalog Data Section

CONTAINING ESSENTIAL AND RELIABLE INFORMATION CONCERNING
MODERN EQUIPMENT

ALSO

The Roll of Membership of the Society

WITH

Complete Indexes

TO TECHNICAL AND CATALOG DATA SECTIONS

Vol. 21

\$5.00 per Copy
(With thumb index \$5.50)

Published Annually by

AMERICAN SOCIETY OF HEATING AND VENTILATING ENGINEERS

51 MADISON AVENUE .. NEW YORK, N. Y.

COPYRIGHT 1943

BY THE

American Society of Heating and Ventilating Engineers

and by it

DEDICATED

To the Advancement of The Profession

AND

ITS ALLIED INDUSTRIES

TEXT AND ILLUSTRATIONS ARE FULLY PROTECTED BY COPYRIGHT AND NOTHING THAT APPEARS MAY BE REPRINTED EITHER WHOLLY OR IN PART WITHOUT SPECIAL PERMISSION.

PREFACE TO THE 21st EDITION

THE 21st edition of the Heating, Ventilating, Air Conditioning Guide 1943 has been prepared under the stress of war time conditions. While recognizing the changes which have been made from standard practices, due to these war time conditions, the Guide Publication Committee nevertheless has retained in the various chapters the high standards and basic information that have characterized former editions. Departures from these standard practices and changes in engineering methods and design, brought about by war conditions, are outlined in a new supplement in this edition entitled, Emergency War Practices.

In accordance with the policies adopted for the issuance of a new Guide, approximately two-thirds of the forty-seven former chapters have been reviewed and of these twenty were completely rewritten with minor revisions to eight others.

Chapter 48 has been added, entitled Abbreviations, Symbols, Standards, and includes a new compilation of state laws and codes covering design and installation requirements relating to the heating, ventilating or air conditioning of buildings.

The chapter on Thermodynamics of Air and Water Mixtures has been expanded to include some new information on pressure and temperature relations at various altitudes above or below sea level, as well as some additional examples dealing with the cooling and heating load. The material covered in the chapter on Heat Transmission Coefficients has been enlarged to include some new data on basement floor and basement wall coefficients, which were developed by recent A.S.H.V.E. Research Laboratory investigations.

The Heating Load chapter has been completely rewritten and a new design temperature zone map has been added. Tabular data giving heat gain from various sources are a new feature of the chapter on Cooling Load, and in addition the illustrative example at the end of the chapter has been expanded. Chapter 11 has been given a new title, Estimating Fuel Consumption, and the material in this chapter has been amplified in order to clarify the subject of degree-days in calculating fuel estimates.

The chapter on Radiators and Convectors was completely rewritten and condensed so that recent experimental data could be added. Similarly, the material dealing with Hot Water Heating Systems and Piping is new, with charts, tables and a group of graded examples added to assist the engineer in designing a system of this type. Minor revisions were made

inclusion of standards which were recently adopted by the industry.

Chapters 22 and 23 dealing with unit types of heaters, ventilators, humidifiers, air conditioners, and air coolers, and also attic fans, have received major revisions with emphasis on new developments in the design of such equipment. New data will be found in the chapter on Air Cleaning Devices covering problems encountered where lint is an important factor. All of the material in the chapters dealing with Air Distribution, Air Duct Design and Sound Control has been reviewed, rewritten and correlated to take into consideration the results of recent Society sponsored research investigations. Other chapters which have been completely revised are Motors and Motor Controls, Industrial Air Conditioning, Industrial Exhaust Systems, and Radiant Heating. Some information on the design of solar water heaters has been added to the chapter dealing with Water Supply Piping and Water Heating. In addition to the chapters specifically mentioned all others were reviewed and checked.

Although the present text is largely due to the generous contributions submitted over past years by many individuals, whose work has been previously acknowledged, the following persons have contributed new information and material which appear in this edition:

T. N. Adlam	HAL GIBSON	R. W. KEETON, M.D.
H. L. ALT	F. E. GIESECKE	C.O. MILLER
THOMAS CHESTER	John A. Goff	W. M. Sawdon
R. S. DILL	L. Greenburg, m.d.	W. F. Schuyler
R. C. Edwards	W. B. Harris	C. E. Scott
F. H. FAUST	E. P. HECKEL	C. W. Stewart
J. C. Fitts	O. A. Hougen	CLIFFORD STROCK
•	F. C. HOUGHTEN	

An important part of The Guide is the Catalog Data Section. Much useful design data and information have been supplied by the various manufacturers and Guide readers will be well compensated by a careful examination of this section. Equipment has been grouped in subdivisions for convenience in locating data in reference to a particular type of apparatus.

In submitting the 1943 edition the Guide Publication Committee sincerely hopes that it will be found useful and informative in advancing the art and science of heating, ventilating and air conditioning.

GUIDE PUBLICATION COMMITTEE

Alfred J. Offner, Chairman

P. D. CLOSE

C. S. LEOPOLD

S. Konzo

G. L. Tuve

JOHN JAMES, Technical Secretary

CONIENIS	PAGE
TITLE PAGE.	iii
Preface	
INDEX TO TECHNICAL DATA.	viii ix
Section I. Principles	12.
CHAPTER 1. Thermodynamics of Air and Water Mixtures	-
CHAPTER 1. The inodynamics of Air and water wixtures. CHAPTER 2. Physiological Principles.	1 41
CHAPTER 3. Fundamentals of Heat Transfer	71
SECTION II. HEATING AND COOLING LOAD CALCULATIONS	
CHAPTER 4. Heat Transmission Coefficients	97
CHAPTER 5. Air Leakage.	87 119
CHAPTER 6. Heating Load	127
Chapter 7. Cooling Load	147
SECTION III. COMBUSTION AND CONSUMPTION OF FUELS	
CHAPTER 8. Combustion and Fuels	165
CHAPTER 9. Chimneys and Draft Calculations.	187
CHAPTER 10. Automatic Fuel Burning Equipment.	205
CHAPTER 11. Estimating Fuel Consumption	227
SECTION IV. STEAM AND HOT WATER HEATING	
Chapter 12. Heating Boilers	241
Chapter 13. Radiators and Convectors.	259
CHAPTER 14. Steam Heating Systems	269
CHAPTER 15. Piping for Steam Heating Systems.	287
CHAPTER 16. Hot Water Heating Systems and Piping	311
CHAPTER 18. Pipe, Fittings, Welding.	$\frac{329}{345}$
SECTION V. AIR HEATING, COOLING AND CONDITIONING	040
CHAPTER 19. Gravity Warm Air Furnace Systems	260
CHAPTER 20. Mechanical Warm Air Furnace Systems.	369 383
CHAPTER 21. Central Systems for Comfort Air Conditioning	395
Chapter 22. Unit Heaters, Unit Ventilators, Unit Humidifiers	425
CHAPTER 23. Unit Air Conditioners, Unit Air Coolers, Attic Fans.	441
CHAPTER 24. Cooling, Dehumidification and Dehydration.	457
CHAPTER 25. Refrigeration.	475
CHAPTER 26. Heat Transfer Surface Coils.	503
CHAPTER 28. Air Pollution	531
CHAPTER 28. Air Pollution	555 563
Chapter 30. Fans	575
Chapter 31. Air Distribution	589
Chapter 32. Air Duct Design	605
Chapter 33. Sound Control	625
SECTION VI. AUTOMATIC CONTROLS, INSTRUMENTS AND MOTORS	
CHAPTER 34. Automatic Control	645
CHAPTER 35. Instruments and Test Methods	669
	681
Section VII. Special Applications and Miscellaneous	
CHAPTER 37. Air Conditioning in the Treatment of Disease	699
CHAPTER 38. Industrial Air Conditioning.	711
Chapter 40. Industrial Exhaust Systems.	731
Chapter 41. Drving Systems	747
CHAPTER 42. Natural Ventilation	765
CHAPTER 43. Pipe and Duct Heat Losses	775
CHAPTER 44. Electric Heating	793
CHAPTER 45. Kadiant Heating.	803
CHAPTER 47. Water Supply riping and water fleating	819
CHAPTER 45. Radiant Heating CHAPTER 46. Water Supply Piping and Water Heating CHAPTER 47. Terminology CHAPTER 48. Abbreviations, Symbols, Standards	843 851
EMERGENCY WAR PRACTICES	865
CATALOG DATA SECTION	
Index to Advertisers.	875
Index to Modern Equipment.	1137
ROLL OF MEMBERSHIP	

CODE of ETHICS for ENGINEERS

PNGINEERING work has become an increasingly important factor in the progress of civilization and in the welfare of the community. The engineering profession is held responsible for the planning, construction and operation of such work and is entitled to the position and authority which will enable it to discharge this responsibility and to render effective service to humanity.

That the dignity of their chosen profession may be maintained, it is the duty of all engineers to conduct themselves according to the principles of the following Code of Ethics:

- 1—The engineer will carry on his professional work in a spirit of fairness to employees and contractors, fidelity to clients and employers, loyalty to his country and devotion to high ideals of courtesy and personal honor.
- 2—He will refrain from associating himself with or allowing the use of his name by an enterprise of questionable character.
- 3—He will advertise only in a dignified manner, being careful to avoid misleading statements.
- 4—He will regard as confidential any information obtained by him as to the business affairs and technical methods or processes of a client or employer.
- 5—He will inform a client or employer of any business connections, interests or affiliations which might influence his judgment or impair the disinterested quality of his services.
- 6—He will refrain from using any improper or questionable methods of soliciting professional work and will decline to pay or to accept commissions for securing such work.
- 7—He will accept compensation, financial or otherwise, for a particular service, from one source only, except with the full knowledge and consent of all interested parties.
- 8—He will not use unfair means to win professional advancement or to injure the chances of another engineer to secure and hold employment.
- 9—He will cooperate in upbuilding the engineering profession by exchanging general information and experience with his fellow engineers and students of engineering and also by contributing to work of engineering societies, schools of applied science and the technical press.
- 10—He will interest himself in the public welfare in behalf of which he will be ready to apply his special knowledge, skill and training for the use and benefit of mankind.

INDEX

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

TECHNICAL DATA SECTION
CHAPTERS 1-48 and PAGES 1-864

Cross Reference to Subjects in Chapters 1-48 Alphabetically Listed

21st EDITION

INDEX

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Technical Data Section Chapters 1-48 and Pages 1-864

```
Abatement
air pollution, 560
smoke, 560

Abbreviations, 851

Absolute
humidity, 843
pressure, 843
temperature, 843
temperature, 843
temperature, 942
process, 462
process, 462
temperature, pressure, concentration, 463

Absorbers
duct sound, 631
outlet, 634
planum, 633
Absorption systems, 486
Acceleration, 843
Acclimatization, 56
Activated carbon, 573
Adiabatic, 843
mixing
injected water, 30
two air streams, 29
saturation, 32
Adjustable speed motors, 682
Adsorbents, 459
process, 460
temperature, pressure, concentration, 460
Adsorption, odor, 573
Agitated dryer, 746

Air
change measurements, 674
chemical vitiation of, 41
circulation in drying, 755
classification of impurities, 555
dust, 564
lint, 564
cleaner, 843
viscous implagement type, 566
cleaning devices, 563
classification of, 565
maintenance, 571
performance, 569
safety requirements, 573
```

```
Air, cleaning devices (continued)
                 selection, 571
testing, 569, 570
combustion, 168
                 conditioning processes, 28
                 cooled
                                 condensers, 489
unit conditioning, 444
               unit conditioning, 444
currents, 675
dehumidification, 536
distribution, 385, 589
application of methods, 602
balancing system, 602
definitions, 590
                                 duct approaches to outlets, 594 furnace systems, 385
                                 induction, 59
                              induction, 591 mechanics, 591 operation of ceiling outlets, 596 railway car, 712 room air motion, 593 spread, 591 standards for, 589 throw, 592 vanes, 593 vertical drop and rise, 594 total control of the control of t
               duct design, 605
               dust concentrations, 558
                 excess, 169
              filter, railway car, 713
flow resistance of coils, 513
friction chart, 608
            triction chart, 608 impurities, 555 infiltration, 119 causes of, 119 due to wind pressure, 119 through walls, 120 leakage, 119 line heating systems, 273 moist. 8
        moist, 8
movement, influence of, 68
movement, measurement of, 673
outdoor, 401
physical impurities in, 45
pollution, 555, 558
abatement, 560
quantity, 408
room motion, 593
saturated, 848
secondary, 170
space conductance, 91
standard, 848
               moišt, 8
```

4 9 m /	4444
Air (continued)	Attic
sterilization of, 702	fans, 441, 455
supply opening noise, 601	location, 456
temperature, 69	types, 456
theoretical requirements, 169	temperature, 135
thermodynamics of, 1	
unit cleaning devices, 563	Automatic
washers, 531, 843	controls, 387, 645 (see Controls)
corrosion, 368	purpose of, 645
Air change method	types of, 646
computing infiltration, 125	fuel burning equipment, 205
	viscous filter, 567
Air conditioning, 843	Automobile air conditioning, 716
airplane, 717	Axial flow fans, 575
automobiles in summer, 716	(
central systems, 395	
comfort, 844	
hospitals, 710	В
humidity, table, 720	
humidity, table, 720 industrial, 719	
atmospheric conditions required, 719	Baffle, 843
calculations, 728	Bare pipe heat loss, 776
classification of problems, 723	Barometer, 671
general requirements, 723	Basement
passenger bus in summer, 715	coefficients of transmission, 115
railway passenger car, 713	heat loss, 116, 137
relation to metabolism, 53	temperatures, 136, 137
ship, 718	Bin-feed stoker, 208
State codes, 862	Biochemical reactions
stoker-fired units, 210	control of rate of, 727
storage systems, 499	Bituminous coal, 176
temperature, table, 720	firing methods, 178
transportation, 711	Blast, 843
treatment of disease, 699	Body
high temperature hazards, 706	adaptation to hot conditions, 50
unit, 441, 442	heat loss, 804
Air cooler, 441	odor, 42
cost	thermal interchanges, 46
maintenance, 455	
operation, 455	Boiler, boilers, 843
umts, 452	capacity for unit heaters, 429
control, 662	cast-iron, 241
defrosting, 454	cleaning steam, 256
design, 452	connections, 254, 300
performance, 452	Hartford return, 300
ratings, 454	return, 300
types of, 453	return, 300 sizing, 301
Air supply opening noises, 637	steam, 300
Airfoil fan, 575	efficiency, 248
Airplane air conditioning, 717	electric, 797
Allergic disorders, 707	erection, 255
apparatus, 707	fittings, 254
asthma symptoms, 707	furnace design, 244
hay fever symptoms, 707	gas-fired, 243
limitations of air conditioning methods, 708	selection of, 252
Alternating current motors, 683	gas-fired units, 221
Altitude, pressure and temperature, 39	conversions, 253
Aluminum oxide, 459	selection of, 252
Ammonia, 476	heating, 241
Anemometer, 843	heat transfer rates, 246
deflecting vane, 675	hot water supply, 244
propelling, 676	insulation, 258
revolving vane, 676	maintenance, 255
Anesthetics, 700	oil-fired units, 217
Anthracite coal, 175	operation, 255
firing methods, 176	output, 247
Apparatus dew-point, 33, 164, 405	physical limitations of, 253
Aspect ratio, 590	rating codes, 246
Asthma symptoms, 707 Atomizing oil burner, 215	selection of, 248
	based on heating surface and grate area, 251
Atmosphere, standard, 38	estimated design load, 248
1 4 11 -	estimated maximum load, 248
Atmospheric	gas-fired, 252
conditions for industrial processes, (19	hot water supply load, 249
pressure, 843	performance curves for, 251
water cooling equipment, 537	piping tax, 249 radiation load, 249
make-up water, 553	radiation load, 249
sizes, 541	warming up allowance, 250
winter freezing, 554	soot, 185
Atomizing humidifiers, 535	space limitations, 253
hatin-reston	special heating, 243
Attenuation	steel, 242 stoker-fired units, 209
ducts, 630	testing codes 246
elbows, 630	testing codes, 246 troubles, 256
grilles to room, 631	mounted, woo

```
Booster fan, 382
                                                                                                                                                  Chart (continued)
heat loss
      Boyle's law, 4
British
                                                                                                                                                       coefficients insulated ducts, 790 from body, 55 insulated pipe, 780, 781, 782 humidity, 754 loss of pressure in elbows, 611
     equivalent temperature, 806
thermal unit, 843
Bucket trap, 285
Building, buildings
         fulding, buildings condensation, 116 heat transfer through surfaces, 87 infiltration, 125 intermittently heated, 141 materials, heat transfer through, 679 multi-story, air leakage, 125 state codes, laws and standards, 862 air conditioning, 862 heating 869
                                                                                                                                                        maximum flow plumbing fixtures, 819
                                                                                                                                                      maximum flow plumbing fixtures, 819 Mollier diagram, 23 permissible relative humidities for varior transmission coefficients, 116 pressure drop for rates water flow, 824 psychrometric chart, persons at rest, 60 rectangular equivalents of round ducts, 610 solar intensity, 152 sound attenuation, 635 surface conductances, 87
    heating, 862
ventilating, 862
Burner, oil, 214
Bus air conditioning, 715
                                                                                                                                                      surface conductances, 87
                                                                                                                                                      temperature zone map, 134
thickness pipe insulation prevent sweating, 784
well water temperatures, 538
    By-pass, 844
                                                                                                                                                Chemical
                                                                                                                                                     laboratory hoods, 739
reactions, 727
control of rate of, 727
vitiation of air, 41
                                                                   \mathbf{C}
                                                                                                                                                Chimney, chimneys, 187
   Calcium chloride, 462
Calculated heat loss method, 228
                                                                                                                                                     characteristics of, 190
construction details, 204
                                                                                                                                               construction details, 204
determining sizes, 195
gas heating, 203
general considerations for domestic, 202
Cinders, 561
Circular equivalents of rectangular ducts, 609
Circulators, 312
   Calorie, 844
    Calorific value, 167
   Capacitor motors, 684
   Carbon
         activated, 573
   dioxide, 480
monoxide, 680
Cast-iron boilers, 241
                                                                                                                                               Classification
                                                                                                                                                   coals, 173, 175
cokes, 176
gas, 183
oils, 181
   Ceiling
cooling unit, 452
high, 130
                                                                                                                                              stokers, 208
Cleaning boilers, 256
Climatic conditions, 132
        outlets, 596, 597
        perforated, 597
                                                                                                                                             Closed expansion tank, 315
        unit heater, 427, 795
  Central air conditioning systems, 395
                                                                                                                                              Coal, coals
      entral air conditioning
air quantity, 408
apparatus dew-point, 405
by-pass, 410
classification, 395
control, 650
corrosion, 368
design, 400
                                                                                                                                                   anthracite, 175
bituminous, 176
                                                                                                                                                  classification of, 173, 175
dustless treatment, 181
estimating consumption, 237
firing methods, 176, 178, 180
                                                                                                                                                  lignite, 176
pulverized, 180
       design procedure, 424
      design procedure, 424
equipment arrangement, 421
equipment selection, 419
evaporative cooling, 416
induction units, 415
high pressure type, 416
low pressure type, 416
modifications, 397
outdoor six 400
                                                                                                                                             Coefficients of transmission, 87, 844
                                                                                                                                                basement, 115
floor, 1,15
wall, 115
doors, 115
floors and ceilings, 109, 110
frame construction, 106
glass block walls, 115
      outdoor air, 401
pre-cooling, 417
reheating, 411
run-around, 417
                                                                                                                                                 masonry partitions, 108
masonry walls, 102
over-all, 87
      selection, 398
zoning, 412
                                                                                                                                                 formulas for calculating, 88 roofs, 112, 114 skylights, 115
Centrifugal
     compressors, 480, 481
condensing unit, 483
fan, 575
                                                                                                                                                 windows, 115
Charles' law, 4
                                                                                                                                           Coil, coils
                                                                                                                                                air flow resistance, 513
Chart
    harr
air flow and loudness, 638
apparatus dew-point, 405
area and weight of rectangular ducts, 623
                                                                                                                                                applications, 511
                                                                                                                                               applications, 511
arrangement, 504
construction, 506
direct-expansion, 507
dry cooling, 417
efficiency, 518
flow arrangement, 510
heat transfer surface, 503
performance, 514
    comfort, 57
economical thickness pipe insulation, 788
effective temperature, 61
friction air pipes, 608
friction heads in black iron pipes, 314
heat emission by
convection from panels, 814
radiation from panels, 813
                                                                                                                                                performance, 514
                                                                                                                                                     cooling, 514
dehumidification, 518
                                                                                                                                                     heating, 514
```

Coil, coils (continued)	Control, controls (continued)
selection, 526	central fan systems, 650
cooling, 528	all year system, 657
dehumidifying, 528	cooling cycle, 654 dehydrators, 656
heating, 527 steam, 506	direct dehumidifiers, 656
water, 506	economizer, 659
Coke	heating cycle, 652
classification of, 176	humidification, 653
estimating consumption, 237 firing methods, 180	limit, 660 refrigeration, 656
Cold therapy, 706	ventilating, 650
Collectors, 742	cooling units, 662
dust filters, 743	dehydrating equipment, 471
Column dryer, 746	direct current motor, 694 draft, 187
Combustion, 165, 707	electric heating, 781
analysis, 679	electric systems, 646
gas, 183	equipment for motors, 693
heat of, 167 oil, 181	fan, 587 gas burner, 665
principles of, 165	gas-fired appliances, 221
smokeless, 245	humidity, railway cars, 714 individual room, 647
Comfort	
air conditioning, 844	intermediate, 647
air conditioning systems, 395 chart, 57	modulating, 647 motion of equipment, 646
line, 844	motor, 681
zone, 844	multi-speed motor, 696
Commercial oil burners, 217	odor, 573
Compartment dryer, 746	oil burners, 221, 665
Compound wound motors, 682 Compressor, compressors, 480	pilot, 694 pneumatic systems, 646
centrifugal, 481	positive acting, 647
reciprocating, 480	rate of biochemical reactions, 727
refrigeration, performance of, 525	rate of chemical reactions, 727
steam jet, 483	rate of crystallization, 728
Condensation	refrigeration equipment, 667 compressor type, 667
buildings, 116	ice cooling, 668
interstitial, 117	vacuum refrigeration, 668
return heating systems, 276	well water, 668
return pumps, 281	regain, 723 residential systems, 666
surface, 117 Condensers, 489	self-contained systems, 646
air cooled, 489	service water temperature, 839
design data, 541	single phase motor, 698
evaporative, 491	single thermostat, 648
water cooled, 490 Condition line, 33, 164, 405	slip ring motor, 697 small buildings, 647
Conductance, 87, 844	sound, 625
air space, 91, 92	squirrel-cage motor, 695
building materials, 97	static pressure, 660
insulators, 97 Conduction, 71, 844	stoker, 214, 666 two-position control, 647
drying methods, 749	unit heaters, 661
electric heaters, 794	unit systems, 661
equation, 72	unit ventilators, 662
steady-state solutions, 82	valves, 304 ventilator, 771
Conductivity, 73, 88, 844	wound rotor motor, 697
bat type insulation, 99	zone, 648
building boards, 100	0
building construction, 100	Convection, 71, 844 equation, 73
building materials, 97 homogeneous materials, 89	unit conductances, 76
insulating materials, 783	Convector, convectors, 262, 84
insulation blankets, 99	heat emission, 259
insulators, 97	heating effect, 265
loose-fill insulation, 99	heating-up, 268 ratings, 263
masonry materials, 97 plastering materials, 100	Converging vanes, 593
reflective insulation, 92	Conversion
rigid insulation, 100	burners, 224
roofing construction, 100	equations, 854
semi-rigid insulation, 99 woods, 101	Coolers, 493
Conductor, 844	Cooling, 457
Conduits for piping, 331	air conditioning units, 443
Constant speed motors, 682	coil selection, 526
Control controls	cycle control, 654 definitions and methods, 457
Control, controls all year conditioning units, 663	evaporation, 416, 458
automatic, 387, 645	load, 32, 147, 402, 598
fuel appliances, 664	methods, 393
temperature, 344	performance of coils, 514

Cooling (continued)	District heating (continued)
ponds, 543	piping, 329
residential, 394	conduits for, 331
sensible, 417 surfaces, 92	inside, 335 overhead distribution, 334
systems, 395, 457	sizes, 330
tower design, 546 tower performance, 553	tunnels, 334
units, 452	types of, 332 rates, 341
control, 662	utilization, 343
defrosting, 454	Diverging vanes, 593
design, 452 performance, 452	Domestic oil burners, 214 Door, doors
ratings, 454	coefficients of transmission, 115
types of, 453 Copper	leakage, 124 natural ventilation, 770
elbow equivalents, 317	Down-feed
tubing, radiating surface, 7	one-pipe riser, 845
Core area, 590 Corrosion, 366	steam heating, 275
air washers, 368	system, 845 Draft, drafts, 173
industrial exhaust systems, 746	calculations, 187
pipe, 366 Crack length	control, 189
used for computations, 121, 128	general equation, 197
Crystallization	head, 845 mechanical, 188
control rate of, 728 Cylinder dryer, 746	natural, 187
Cymider dryer, 140	regulation, 173
•	requirements, 173 Drawing symbols, 856
	Drip, drips, 308, 845
	Drum dryer, 746
D	Dry air, 1, 845
	composition, 1
Dairy barn ventilation, 772	density, 1 filters, 568
Dalton's law, 8	specific enthalpy, 5
Damper, dampers, 386, 590	specific volume, 1
back pressure control, 661 Decibel, 625	velocity head, 606 volume, 20
Defrosting, 454	Dry-bulb temperature, 845
Degree day, 230, 796	Dry cooling coils, 417
formula for, method, 234 operating unit, 239	Dry return, 845
unit fuel consumptions, 234	Dryer, dryers agitated, 746
Degree of saturation, 19, 796	compartment, 746
Debending 457 044	cylinder, 746
Dehumidification, 457, 844 air conditioning units, 443	drum, 746 . festoon, 746
control, 656	high temperature, 760
definitions and methods, 457	induction, 746
Dehydrating agents, 459 absorbents, 459, 462	rotary, 740 spray, 746
adsorbents, 459	rotary, 746 spray, 746 tower, 746
Dehydration, 457, 844	tunnel, 746
coil selection, 526 controls, 656	vacuum, 746 Dryer calculations, 755
definitions and methods, 457	Drying, 747
economics, 472	design, 757
economic comparisons, 473 equipment, 470	estimating methods, 763 factors influencing, 752
auxiliaries, 470	general rules for, 753
performance, 471	air circulation, 753
estimating loads, 469 liquid methods, 469	humidity, 753 temperature, 753
location of equipment, 470	humidity, 753
solid methods, 466 Density of air, 1, 845	mechanism of, 751
Dew-point	methods, 747
apparatus temperature, 33, 164, 405	conduction, 749 convection, 749
temperature, 20 Dichlorodifluoromethane, 478	estimating, 763
Dictinorodinatoromechane, 478	radiant heat, 747 omissions in the cycle, 752
Direct	radiant, 800
expansion coils, 507	systems, 747
fired unit heater, 434 indirect heating unit, 845	ventilation phase, 759 Dual duct, 414
radiator, 845	Duct, ducts, 387, 615
return system, 312, 845	air velocities in, 741
Direct current motors, 681 Disc fan, 575	approaches to outlets, 594
Distribution of air, 595 (see Air distribution)	attenuation, 630 construction, 741
District nearing, 529	construction details, 620
glossary of terms, 341	design, 616

Duct, ducts (continued) details, 620 dual, 414 elbow friction losses, 611 friction losses, 606 heat loss coefficients, 790 heat losses, 775, 791 lining, 635 measurement of velocities, 676 noise transmitted, 627 noise transmitted, 627 proportioning the losses, 615 recirculating, 373 rectangular equivalents of round, 610 resistance, 742 sound absorbers, 631 symbols for drawing, 857, 858 symbols for drawin system design, 740 Duct sizes, 615 air velocities, 616 equal friction, 618 general rules, 616 main trunk, 617 velocity method, 617 Dust, 561, 564, 845 concentrations, 558 determination, 678 filters, 743 nature's catcher, 562

F.

Economizer control, 659
Effective temperature, 58, 845 (see Temperature)
chart, 57 index, 58 Ejector nozzles, 597 Elbow attenuation, 630 copper equivalents, 317 friction duct losses, 606 iron equivalents, 317 Electric, electrical boilers, 797 control systems, 646 heaters, 794 heaters, 794
conduction, 794
gravity convection, 795
radiant, 794
heating, 793
auxiliary, 801
calculating capacities, 801
central fan, 796
control, 801
definitions, 793
domestic water, 799
elements, 793
power problems, 801 elements, 793 power problems, 801 resistors, 794 hot water heating, 798 panel heating, 807, 808 precipitators, 568 radiant heating, 808 resistors, 793 resistors, 793 unit heaters, 434, 795 Electricity, static, 728 Emissivity, 93 factors, 79 Enclosed radiator, 268 Enthalpy, 21, 845 free, 846 Entropy, 845 Equipment arrangement, 421 arrangement, 421 selection, 419 vibration, 641 Equivalent evaporation, 845 Estimating fuel consumption, 227 Eupatheoscope, 815 Evaporative condensers, 491 cooled, unit conditioners, 445 cooling, 416, 458

Evaporators, 493 Excess air, 169
Exhaust opening, 590
measurement of velocities, 676 Exhaust systems, 731 classification of, 731 corrosion protection, 746 ducts for, 740 air velocities in, 741 ducts for, 740
air velocities in, 741
construction, 741
design, 740
resistance, 742
efficiency of, 745
hoods, 731
air flow, 733
air velocities, 736
axial velocity formula for, 736
chemical laboratories, 739
design principles, 732
kitchen, 739
large open, 738
lateral exhaust, 738
low velocity systems, 737
spray booths, 739
velocity contours, 736
resistance of, 744
suction requirements, 733
types of fans, 746
velocity requirements, 733
xpansion
of pipe 350 Expansion of pipe, 350 tanks, 315

valves, 488

F

Fan, fans, 385, 575 arrangement of drives, 586 attic, 441, 455 economics, 455 location, 456 types, 456 axial flow, 575 booster, 382 centrifugal, 575 characteristic curves, 578 control, 587 designations, 587 designations, 587
efficiency, 577
furnace system, 391
motive power, 588
noise generated, 629
performance, 576
radial flow, 575
selection of, 584
air conditioning systems, 585
industrial exhaust systems, 746
system characteristics, 582
system characteristics, 582 industrial exhaust systems, 746 system characteristics, 582 volume control, 588 Festoon dryer, 746 Fever therapy, 705 equipment for production of, 705 Film conductance, 88 Filter, filters, 385 air conditioning units, 443 dry air, 568 dust, 743 viscous automatic, 567 viscous impingement type, 566 Fittings, 345 pipe allowance, 292, 317, 823 types of, 354 Flame, 167 Flexible mountings, 641 Float trap, 285 Floor cooling unit, 453 heat transfer coefficients, 115 unit heater, 426

Flow meters, 339 Fluid meters, 338 Force, 846 Forced coefficient of transmission, 115 solar heat transmitted, 154 Glass block walls
coefficient of transmission, 115
solar heat gain, 157
Globe thermometer, 69, 679
Graphical symbols for drawing, 856
duct work, 857, 858
heating, 859
piping, 856
refrigerating, 860
ventilating, 859
Grate area, 846
Gravity air heating system, 388 circulation pipe sizes, 313 convection, 72 Free convection, 72 enthalpy, 846 Fuel, fuels, 165 burning equipment, 205 consumption, 227 load factors, 239 maximum demands, 239 seasonal efficiency, 240 unit consumptions, 234 Gravity ravity circulation pipe sizes, 313 furnace systems, 369, 846 capacity, 375 design procedure, 369 typical design, 379 warm air, 369 Fuel oil carbon residue, 182 classification of, 181 combustion of, 181 combustion of, 181 grade of, 182 maximum carbon dioxide values, 171 theoretical air requirements, 169 viscosity, 182 Fumes, 555, 846 Fundamentals heat transfer, 71 Furnace, furnaces, 383, 846 capacity, 375 casings, 384 design, 214 fan, 846 gas-fired units, 221 gravity systems, 369 steam system, 269 Grille, grilles, 589, 600, 590 (see Regist air supply noises, 637 attenuation, 631, 632 exhaust, 600 locations, 601 door, 601 floor, 601 wall, 601 mechanical furnace systems, 385 mechanical furnace systems, 385 noises, 601 railway car, 712 recirculating, 373 gas-fired units, 221 gravity systems, 369 mechanical warm air systems, 383 cooling methods, 393 cooling system, 394 dampers, 386 ducts, 387 fans, 385, 391 filters, 385 method of designing, 388 motors, 385 oil-fired units, 217 return, 600 selection, 638 Ground temperatures, 136 Guarded hot plate, 679 Gun type oil burners, 216 oil-fired units, 217 stoker-fired units, 209 volume, 180, 846 H Hangers, pipe, 353 Hay fever symptoms, 707 Health, 558 G Heat, 846

Gage, gages draft, 672 pressure, 672, 846

Garage ventilation, 773 Gas, gases

burner controls, 665 chimneys for heating, 203
classification of, 183
combustion of, 183
estimating consumption, 235
specific heat, 861
Gaseous fuels

aseous fuels classification of, 183 combustion of, 183 flame temperature, 184 maximum carbon dioxide values, 171 products of combustion, 184 properties of, 184 specific gravity, 184 theoretical air requirements, 169

Gas-fired appliances, 221

boilers, 221, 243 combustion process, 224 controls, 225 conversion burners, 224 furnaces, 221 measurement of efficiency of combustion, 224 ratings for, 225 sizing heating plants, 225 space heaters, 223

area transmitting surface, 838 auxiliary sources, 139 combustion, 167 emission of appliances, 158 occupants, 52, 158 exchange measurement, 679 extended surface, 845 extended surface, 845 flow resistance, 80 flow through roofs, 153 flow through walls, 154 generated by motors, 159 humid, 846 infiltration equivalent, 128 introduced by outside air, 158 latent, 129, 406 liquid, 846 mechanical equivalent of 847 mechanical equivalent of, 847 mechanical equivalent of, 847 methods of, transfer, 87 production, rate of, 804 removal, natural ventilation, 766 sensible, 128, 406, 846 factor, 406 transfer, 71, 503, 513, 514 boiler rates, 246 over-all coefficients, 88, 514 surface coils, 503 symbols, 87 through building materials, 87, 679

Heat gain, 147 appliances, 158 components of, 147

Heat gain (continued)	Hot water heating systems, 311, 846
electrical heating equipment, 160	direct return evetem 210 207
gas burning equipment, 160	direct return system, 312, 327 elbow equivalents, 317
glass, 154	forced circulation, 321
glass blocks, 157	friction heads, 314
latent, 149, 164	gravity
light, 159	circulation, 324
occupants, 158	pressure heads, 315
outside air, 158	installation details, 319
people, 158	mechanical circulators, 312
roof, 149	one-pipe
sensible, 149, 164	forced circulation, 326
steam heated equipment, 160	gravity airculation 204
various sources, 160	gravity circulation, 324
wall, 149	orifice friction heads, 318
Heat loss	pipe sizes, 313 forced circulation, 313
hare nine 775	gravity circulation, 313
basement, 116, 137	
control of, 804	reversed return system, 312, 327 systems of piping, 311
basement, 116, 137 control of, 804 duct, 775, 791	two-pipe
infiltration, 128	forced, 323
insulated pipe, 779	gravity, 322
latent, 129	Hot-wire anemometer, 67, 675
pipe, 775	Human body
residence problems, 141	adaptation, 47
sensible, 128	cold conditions, 51
through ceilings and roofs, 138	hot conditions, 50
transmission, 127	heat emission, 158
Heater, heaters	odors, 42
direct-fired unit, 434	temperature, 47
electric, 794	ZOTE of arraparative variation 50
solar water, 840	zone of evaporative regulation, 50 Humid heat, 846
unit, 426	Humidification, 533
vertical blow unit, 428	
	control, 653
Heating	mechanical furnace systems, 392 residence requirements, 394
air conditioning units, 442	residence requirements, 594
boilers, 241	Hymidifan hymidifan
surface, 245, 843	Humidifier, humidifiers
coil selection, 527	atomizing, 535
cycle control, 652	high duty, 536
district, 329	spray, 532
domestic water by electricity, 799	units, 440 Humidify, 846
effect, radiator, 265	
electric, 793	air conditioning units, 442 Humidistat, 846
hot water, 798 load, 35, 127, 402, 598	mumustat, 640
load, 35, 127, 402, 598	Unmidien 040
performance of coils, 514	Humidity, 846
physiological objectives of, 65	absolute, 843
radiant, 803 (see Radiant Heating)	drying, 753, 754 influence of, 67
state codes, 862	measurement of, 676
steam systems, 269	
surface, 845	nurseries for premature infants, 704 permissible relative, 116
prime, 848	ratio, 846
square foot of, 848	relative, 19, 848
symbols for drawing, 859	Hydraulic radius, 84
systems, 395	Hygrostat, 846
up the radiator, 268	rrygrostat, 640
vacuum systems, 849	
vapor, 849	
warm air, system, 365, 383, 850	
water, 819, 835	I
Heavy duty fan furnace, 391	*
High duty humidifiers, 536	
Hood, hoods, 732	Ice systems, 497
Horsepower, boiler, 843	Impulse trap, 286
Hospital, hospitals	Inch of water, 847
air conditioning in, 710	Induction dryer, 746
operating rooms, 699	Induction units, 415
air conditions, 701	high pressure types, 416
reducing explosion hazard, 699	low pressure types, 415
sterilization of air, 702	
ventilation requirements, 702	Industrial
	air conditioning, 719
Hot water	exhaust systems, 731 (see Exhaust syste
boiler supply load, 249	humidities, 720
demand per	processes, 721
fixture, 835	temperatures, 720
person, 834	
electric heating, 799	Infiltration
panel heating, 807, 808	causes, 119
radiant heating, 807	due to wind pressure, 119
storage tank, 833	neat equivalent, 128
supply	heat losses, 128
boilers, 244 piping, 831	latent, 129
	sensible, 128

Infiltration (continued) temperature difference, 125 through outside doors, 124 through walls, 120, 122 Inside temperature, 129 Instruments, 669

Inculation

boiler, 258 poiler, 258 economical pipe thickness, 787 low temperature pipe, 783 pipes to prevent freezing, 785 Intermittently heated buildings, 141 Interstitial condensation, 117 Ionization, 45 Iron elbow equivalents, 317 Isobaric, 847 Isothermal, 847

J-K-L

Kata-thermometer, 675

Latent heat, 847 Latent heat, 847
loss, 129
Laws of thermodynamics, 847
Leakage of air, 119
door, 124
window, 121
Light heat gain, 159
Lignite, 176
Lint, 564
Liquid
absorbents, 462
heat of, 846
Lithium chloride, 463
Load cooling, 32, 147, 402, 598 design, 845 heating, 35, 127, 404, 598 maximum, 845

refrigeration, 164

M

Machine vibration, 641 Manometer, 847 Mass, 847 Mean radiant temperature, 69, 810

Mechanical

lechanical
circulators, 312
draft, 188
towers, 546
equivalent of heat, 847
furnace systems, 383
air distribution, 385
cooling methods, 393
dampers, 386
ducts, 387
fans, 385
filters, 385
heavy duty, 389
methods of design, 388
motors, 385
refrigeration, 475 refrigeration, 475 return heating system, 269 stokers, 205

Meter, meters condensation, 339 differential, 338 flow, 339 fluid, 338

Meter, meters (continued)
Nicholl's heat, 679
orifice, 339
plug, 339
positive, 338
pressure loss through meters, 823
vacuum condensation, 340
venturi, 674
Methyl chloride, 470 Methyl chloride, 479 Micromanometers, 673 Micromanometers, 6 Micron, 847 Moist air, 8 saturation, 9 volume, 20 Moisture, 755 content, 725 regain, 725 Mol, 847 Mollier diagram, 23 border scale, 31 Monofluorotrichloro Monofluorotrichloromethane, 482

Motor, motors, 681 adjustable speed, 682 alternating current, 683 capacitor type, 684 compound wound, 682 constant speed, 682 control equipment for, 693 direct current, 681 electric, 140 enclosures, 692 heat generated by, 159 enclosures, 692
heat generated by, 159
polyphase, 686
repulsion induction, 685
series wound, 682
shunt wound, 681
single phase, 684
speed characteristics, 682
split phase, 685, 686
squirrel cage induction, 686
wound rotor, 689
Multiple blade fans, 581

Ν

Natural draft, 187 towers, 545 Natural ventilation, 765 general rules, 771 heat removal, 766

Noise, noises air conditioning system, 601 air supply opening, 637 apparatus for measuring, 626 cross transmission between rooms, 640 design room level, 628 generated by fans, 629 kinds of, 627 through building construction, 641 transmitted through ducts, 627 unit of measurement, 625 Nurseries for premature infants, 703 air conditioning equipment, 704 air conditioning requirements, 703

o

Occlusion of solar radiation, 560 Odors, 42 adsorption, 573 human body, 42 Oil, oils classification of, 181 combustion of, 181 estimating consumption, 235

Oil burners, 214	Pipe, piping (continued)
boiler settings, 218	commercial dimensions, 346
combustion adjustments, 220	conduits for, 331
combustion process, 218	connection to heating units, 304 corrosion, 366
commercial, 217 controls, 221, 665	design, hot water system, 320
domestic, 214	direct return, 327
furnace design, 219	forced circulation, 321
measurement of efficiency of combustion, 220	gravity, 320
mechanical draft, 216	one-pipe forced circulation, 326 one-pipe gravity circulation, 324
operating requirements, 216 One-pipe system, 273	two-pipe forced circulation, 323
gravity air-vent, 296	two-pipe gravity circulation, 322
hot water, 847	reversed return, 327
steam, 847	economical thickness insulation, 787 expansion, 350
supply riser, 847	flexibility, 350
unit heater connection, 432	hangers, 353
Opening, openings	heat losses, 775
air supply noises, 637	hot water heating systems, 311 inside, 335
types of, 770	insulation prevent freezing, 785
doors, 770	leader sizes, 370
roof ventilators, 770, 771	low temperature insulation, 783
skylights, 770 stacks, 771	materials, 345, 822
windows, 770	overhead distribution, 330 proportioning wall stacks, 372
•	radiating surface, 779
Operating rooms, 699	recirculating ducts, 373
conditions, 701	recirculating grilles, 373
reducing explosion hazard, 699 sterilization of air in, 702	refrigerant sizes, 496
Operative temperature, 48	register selections, 373 return connection, 375
Orifice heating systems, 280	sizes, 291
Orsat apparatus, 679	high pressure steam, 301
Outdoor air, 401	hot water forced circulation, 313
Outlet, outlets	hot water gravity circulation, 313 indirect heating units, 307
air supply noises, 637	initial pressure, 291
ceiling, 596, 597	maximum velocity, 291
duct approaches, 594	orifice systems, 299
sound absorbers, 634	pressure drop, 291
Outlet locations, 598 cooling load, 598	sub-atmospheric systems, 299 tables for, 295
heating load, 598	two-pipe gravity air-vent system, 297
Outside temperature, 131	two-pipe vapor systems, 298
Overhead distribution, 334	vacuum systems, 299
Overhead system, 847	water supply systems, 825, 826 steam distribution, 329
Oxygen	steam heating systems, 287
chambers, 709	supports, 353
tents, 709 therapy, 708	symbols for drawing, 856
Ozone, 45	tax, 249 threads, 353
Ozoncy 10	thread connections, 355
	tunnels, 334
	underground insulation, 789
` P	unit heater connections, 429 water supply, 819
	Pitot tubes, 673
	Plate cell, 634
Panel heating, 807, 808	Plenum absorbers, 633
electric, 808	Plenum chamber, 847
hot water, 807	Pneumatic control systems, 646
steam, 807 warm air, 807	Pollution of air, 555
waim air, oor	Polyphase motors, 686
Panel radiator, 847	Ponds, 543
Panel warming, 847	Potentiometer, 847
Particle size chart, 556	Power, 847
Per cent of saturation, 19	Precipitators, 568
Perforated ceilings, 597 Perforated outlets, 596	Pre-cooling, 417
Phon. 625	Premature infant nurseries, 703
Phon, 625 Physical impurities in air, 45	
Physiological principles, 41	Pressure
four vital factors, 69	absolute, 843
Pilot controls, 694 Pipe coils, 262	atmospheric, 843
heat emission, 262	gages, 672, 846 measurement, 671
wall, 262	barometer, 671
	regulators, 301
Pipe, piping, 345	static, 848 total, 849
capacity, 293 coil connections, 305	vapor, 850
con connections, ooo	tapor, doo

Pressure (continued)	Refrigerant, refrigerants, 477, 848
velocity, 850	ammonia, 476
water supply piping, 821	carbon dioxide, 480
Prime surface, 848 (see Heating surface)	dichlorodifluoromethane, 478
Propeller fan, 537	feeds, 508
Properties of saturated steam, 24	methyl chloride, 479
Psychrometer, 848	monofluorotrichloromethane, 482
Psychrometric chart, 60	pipe sizes, 496
Pulverized coal, 180	water, 482
Pump, pumps	
condensation return, 281	Refrigeration, 475
mechanical circulators, 312 vacuum heating, 282	absorption systems, 486
controls, 283	control, 656
piston displacement, 285	equipment selection, 499
Pyrometer, 671	ice systems, 497
optical, 671	load, 164
radiation, 671	mechanical, 475
•	reverse cycle, 800
	storage systems, 499 symbols for drawing, 860
	ton of, 849
Q-R	day of, 849
	types of compressors, 480
Radial flow fan, 575	Regain, 725
Radiant drying, 800	control of, 723
Radiant heating, 803	hygroscopic materials, 724
application methods, 807	
calculation principles, 808	Register, registers, 590, 597 (see Grilles)
detailed computation method, 811	air supply noises, 637
drying methods, 747	mechanical furnace systems, 385
electric, 808	noises, 601
hot water, 807	railway car, 712
measurement of, 815 steam, 807	selections, 373
warm air, 807	Reheat, 413
Radiating	Reheating, 411
surface copper tubing, 779	Relative humidity, 19, 848
surface pipe, 779	measurement of, 678
Radiation, 848	Repulsion induction motors, 685 Residence
angle factor, 78	
equation, 77	control systems, 666 air conditioning, 667
load, 249	coal-fired heating plant, 666
Radiator, radiators, 259, 848	domestic hot water supply, 666
codes, 263, 264	cooling methods, 393
concealed, 262	gravity furnace system, 369
connections, 303	heat loss problems, 141
direct, 845	hot water heating system, 311
effect of paint, 265	humidity requirements, 392
enclosed, 268	mechanical furnace system, 383
gas-fired, 223	steam heating system, 269
heat emission of, 259 heating effect, 265	Resistance thermometers, 671 Resistors, 794
heating up, 268	Return
output of, 264	grille, 600
panel, 847	mains, 848
ratings, 263	openings, 596
recessed, 848	Reverse cycle refrigeration, 501, 800
tube, 849	Reversed return system, 312, 848
types of, 260	Roof, roofs
warm air, 223	heat flow through, 153
Railway air conditioning, 711	time lag of solar radiation, 155
air distribution, 712	ventilators, 770, 848
humidity control, 714	Room
summer systems, 713	air motion, 593
temperature control, 714	control, 647
ventilation, 711	cross transmission, noise, 640 latent heat, 406
winter systems, 713	noise level. 628
Reciprocating compressors, 480	operating, 699
Recooling, 413	sensible heat, 406
Rectangular duct equivalents, 610	Rotary dryer, 746
Reducing valves, 301	Rotary oil burner, 216
Reflective insulation, 92	Run-around system, 417

	- C/
s	Spray (continued) cooling towers, 545
	distribution, 535
Saturated air, 9, 848	dryer, 746
Saturation, 848	equipment, 531
degree of, 19, 844 pressure, 848	generation, 535 humidifiers, 536
Secondary air, 170	type unit, 447
Sectional boiler, 241	unit air conditioner, 447
Self-contained	Spread, air distribution, 591
control systems, 646	Square foot of heating surface, 848
humidifiers, 536 unit conditioner, 441	Squeeze dampers, 387
Sensible cooling, 417	Squirrel-cage induction motor, 686 Stack, stacks, 771
Sensible heat, 848	height, 848
factor, 406	Standard, standards, 851
gain, 149, 164 loss, 128	air distribution, 589
Series wound motors, 682	atmosphere, 38
Sheet metal gages, 621	state air conditioning, 852
Ship air conditioning, 718	heating, 852
Shunt wound motors, 681	ventilating, 852
Silica gel, 459 Silicon dioxide, 459	Standard air, 848
Single phase motors, 684	Static
Slotted outlets, 597	electricity elimination, 728 pressure, 848
Smoke, 848	control, 660
abatement, 560	Steady flow energy equation, 36
density measurements, 680 Smokeless arch, 848	enthalpy, 38
Smokeless combustion, 245	gravitational energy, 37
Solar heat	heat and shaft work, 38 kinetic energy, 36
through shaded windows, 155	macac cacrey, oo
time lag, 155	Steam, 849
transmission of, 149	coils, 506
transmitted through glass, 154	distribution piping, 329
transmitted through walls, 153	estimating consumption, 238 flow, 289
Solar radiation against walls, 150	heated equipment, 160
occlusion of, 560	heating systems, 267, 287, 849
Solar water heater, 840	air line, 273
Soot, 185	condensation return, 276
Sound	corrosion, 366 down-feed two-pipe vapor, 275
absorbers, 631	gravity one-pipe air-vent, 270
attenuation, 635	gravity return, 269
control, 625	gravity two-pipe air-vent, 273
cross transmission between rooms, 640 general problem, 626	mechanical return, 269
duct absorbers, 631	one-pipe vapor, 273 orifice, 280
levels, 629	piping for, 287
outlet absorbers, 634	sub-atmospheric, 278
Space heaters, 223	two-pipe vapor, 274
Specific enthalpy, 848	vacuum, 276 high pressure, 301
dry air, 5, 6	jet type of compressor, 483
water vapor, 8	panel heating, 807
gravity, 848	pipe capacities, 293
gaseous fuels, 184	radiant heating, 807
heat, 848 gases, 861	requirements, 340 runout, 270
liquids, 861	superheated, 849
solids, 861	supply mains, 849
vapors, 861	trap, 849
volume, 848	Steel boilers, 242
air, 1 water vapor, 7	Sterilization of air, 702
Split phase motor, 68	Stoker, stokers, 205
Split system, 848	classification of, 208
Splitter dampers, 387	combustion adjustments, 213 combustion process, 211
Spray	controls, 214, 666
booths, 739	furnace design, 212
cooling ponds 543	

Stoker, stokers (continued)	Table (continued)
overfeed flat grate, 205	heat loss
overfeed inclined grate, 207	bare copper pipe, 777, 778
sizing and ratings, 213	bare steel pipe, 777
underfeed, 849 rear cleaning, 207	heat transmission, 75
side cleaning, 207	coefficients, 92, 97 hot water pipe sizes, 316, 317
Storage refrigeration system, 499	humidities, industrial air conditioning, 720
Straight vanes, 593	infiltration through outside doors, 124
Sub-atmospheric systems, 278	infiltration through windows, 120, 122
Summer air conditioning system, 395	iron elbow equivalents, 317
Summer comfort, 66	minimum outdoor air requirements to remove
Superheated steam, 849	odors, 44
Supply mains, 849	moisture content for materials, 755
Supply openings, 596, 590 measurement of velocities, 676	noise levels, 629
types of, 596	pressure loss refrigerant line, 494
Supports, pipe, 353	water disc meters, 823
Surface	properties of
condensation, 116	ammonia, 476
conductance, 87, 849	carbon dioxide, 480
coefficients, 100	dichlorodifluoromethane, 478
heating, 846	gaseous fuels, 184
extended, 845	methyl chloride, 478
temperature, 522	monofluorotrichloromethane, 482
Suspended unit heater, 428 Symbols, 851	saturated steam, 24
heat transfer, 87	water, 482 radiating surface
Symbols for drawings, 856	copper tubing, 779
ductwork, 857, 858	pipe, 779
heating, 859	radiation factors, 79
piping, 856	radiator sizes, 260, 261
refrigerating, 860	regain of hygroscopic materials, 724
ventilating, 859	relation between metabolic rate and activity, 52
	requirements for fuel oil, 182
	return pipe capacities, 294 sheet metal gages for ducts, 621
	solar radiation, 150, 151
T	specific heat of solids, liquids, gases, 861
1	state codes, standards or laws
	air conditioning, 862
Table	heating, 862
air conditioning temperatures and humidities, 720	ventilating, 862
altitude, pressure and temperature, 39	steady-state conduction problems, 82
areas flanged fittings, 779	steam pipe capacities, 293
attenuation between grille and room, 632	temperatures, industrial air conditioning, 720 theoretical air requirements, 169
average maximum water main temperatures, 539	thermodynamic properties of moist air, 10
capacity constants	toxicity of gases and vapors, 559
blow-through unit heaters, 430	weight of saturated air, 26
draw-through unit heaters, 431 chimney sizes, 198	Tank, tanks
circular equivalents of rectangular ducts, 611	expansion, 315
classification of	Tax, pipe, 249
coals, 173, 175	
motors, 690	Temperature, temperatures
climatic conditions, 133	absolute, 4, 843
combustible elements and compounds, 166	attic, 135
conductivity materials, 74, 97	automatic control, 344
copper elbow equivalents, 317	basement, 137
degree days for cities, 232 design dry- and wet-bulb temperatures, 148	heated, 137 unheated, 137
dryers for evaporation of water, 748	British equivalent, 806
duct attenuation, 630	control for railway passenger cars, 714
elbow attenuation, 630	control service water, 839
emissivity factors, 79	design wet-bulb, 542
explosive properties of anesthetic, 700	design zone map, 134
factors influencing drying, 752	dew-point, 20
flame temperature data, 168	dry-bulb, 845
free convection factors, 75	drying, 753
heat gain appliances, 160	effective, 58, 130, 845
glass blocks, 157	ground, 136 hazards in treatment of disease, 706
insulated cold pipes, 785	humidity, railway cars, 714

Temperature, temperatures (continued)	Transmittance, 88
industrial, 720	Transportation air conditioning, 711
inside, 129	Trap, traps, 285
ceilings, high, 130	automatic return, 286
proper level, 130	bucket, 285
mean radiant, 810 measurement, 669	float, 285
thermocouple, 670	impulse, 286
thermometers, 669	steam, 849
outside, 131	thermostatic, 286 tilting, 286
surface, 522	Traveling-grate stoker, 206
thermodynamic wet-bulb, 21	Treatment of disease, 699
unheated spaces, 135	Tube radiator, 849
water main, 539	Tunnel dryer, 746
wet-bulb, 850	Tunnels, pipe, 334
Terminology, 843	Turning vane, 595
Test methods, 669	
Therapy	
cold, 706	U
fever, 705	· ·
oxygen, 708 Therm, 849	
Thermal	Ultra-violet light, 45 , 560 , 702
conductance, 88	Underfood staling 207 240
conduction equation, 72	Underfeed stoker, 207, 849 Underground pipe insulation, 789
conductivity, 88	Unheated space temperatures, 135
convection, 72	Chicated space temperatures, 100
convection equation, 73	Unit, units, 849
expansion of pipe, 352	air cleaners, 563
interchanges of body, 46	air conditioners, 441, 442
radiation equation, 77	application, 448
resistance, 849	cooling, 443
resistivity, 849	dehumidifying, 443
steady-state conduction problems, 82	filtering, 443
transmittance, 88	heating, 442
unit conductances for convection, 76	humidifying, 442 ratings, 450
Thermocouple, 670	types of, 444
Thermodynamic	ventilating, 443
air and water mixture, 1 laws of, 847	air coolers, 441, 452
wet-bulb temperature, 21	defrosting, 454
wet-buib temperature, 21	design, 452
Thermometers, 669	economics, 455
alcohol, 669	performance, 452
dry-bulb, 69	ratings, 454
globe, 69, 679, 815	types of, 453
Kata, 69, 675	air filters, 563
mercurial, 669	British thermal, 843
resistance, 671	direct-indirect heating, 845
stem correction, 670	fuel consumptions, 234
Thermostat, 849	heaters, 426 application, 433
elements, 646	boiler capacity, 429
room, 648	control, 661
Thermostatic trap, 286	direct-fired, 434
Tilting trap, 286	electric, 795
Time lag through walls and roofs, 155	features, 426
Ton day of refrigeration, 849	piping connections, 429
Ton of refrigeration, 849	ratings, 427
Total heat 849 (see Enthalpy)	suspended, 428
Total pressure, 849	types of, 427
Tower, towers	humidifiers, 440
cooling, design, 546	types of, 440
cooling, performance, 553	induction, 415
mechanical draft, 546	noise measurement, 625
natural draft, 545	systems, 661
performance, 452	ventilators, 435
spray cooling, 545 Tower dryer, 746	air vents, 435 applications, 438
Transmission	control, 662
coefficient, 844	ratings. 435
heat losses, 127	window, 439
normal heat, 149	Unitary equipment, 425
solar heat 149	definitions 425

	Worm oir
${f v}$	Warm air heating systems, 369, 383, 850
	method of cooling, 394
Vacuum	panel heating, 807, 808
cooling unit, 484	radiant heating, 807
heating pumps, 282 control, 283	radiators, 215
control, 283 piston displacement, 284	Washer, washers, 531
heating systems, 276, 849	air, 843
down-feed, 278	Water
unit heater connection, 433	atmospheric cooling equipment, 537
Vacuum dryer, 746	coils, 506
Valve, valves, 365	control temperature service, 839
angle, 366	cooled
automatic, 365 check, 365	condenser, 490
control, 304	unit conditioning, 445
expansion, 488	corrosion treatment, 368 heater
flow, 289 gate, 365	coal-fired, 838
globe, 365	solar, 840
reducing pressure, 301, 365	heating, 819, 835
Vane, vanes, 593	make-up, 553
Vaned outlets, 596	maximum, main temperature, 539
Vapor, vapors	properties of, 482
heating system, 850	supply piping, 819
unit heater connection, 433	allowance for fittings, 823
pressure, 850	factor of usage, 820 maximum flow, 820
Vaporizing oil burner, 216 Velocity, 850	pressure, 821
exhaust grilles, 600	sizing down-feed systems, 827
method duct design, 616	sizing up-feed systems, 825
pressure, 850	thermodynamics of, 1
return grilles, 600	well, temperatures, 538
Ventilation, 850	Water vapor, 6
air conditioning units, 443	saturation pressure, 6
dairy barn, 772	specific enthalpy, 7 specific volume, 7
garage, 773	Welding, 345, 358
hospitals, 702 natural, 765	Wet-bulb temperature, 542, 850 (see Temperature)
general rules, 771	Wet return, 850
passenger bus in summer, 715	Wind, winds
physiological objectives of, 65	forces, 766
railway passenger car, 711	due to stack effect, 766
state codes, 862	natural draft equipment, 545
symbols for drawing, 859	selection of, velocity, 138 Window, windows
systems, 395 wind forces, 765	coefficients of transmission, 115
•	leakage, 121, 123
Ventilator, ventilators	solar radiation through, 154, 155
roof, 770, 847	ventilators, 439
unit, 435 control, 662	Winter
Vertical blow unit heater, 428	air conditioning system, 395
	comfort zone, 59
Vertical openings, 126	freezing, equipment, 537 Wound rotor motor, 689
sealing of, 126 Vibration, machine, 641	Wrought-iron pipe, 345
Viscous filters, 566	Wrought-steel pipe, 345
automatic, 567	
impingement, 566	
Vitiation of air, 41	X-Y-Z
Volume	
control, 414 furnace, 180	77
specific, 848	Year 'round air conditioning system, 395
	Zone control, 648
	evaporative regulation, 50
\mathbf{w}	Zoning, 412
	control, 648
Wall, walls	dual duct, 414
heat flow through, 153	multiple fans, 413
heat transfer coefficients, 115	recooling, 413 reheat. 413
infiltration through, 120	separating equipment, 413
time lag of solar radiation, 155	volume control, 414

separating equipment, 413 volume control, 414

Chapter I

THERMODYNAMICS OF AIR AND WATER MIXTURES

Dry Air, Specific Enthalpy, Water Vapor, Moist Air, Dalton's Law, Humidity Ratio, Relative Humidity, Dew-point, Enthalpy, Thermodynamic Wet-bulb Temperature, Mollier Diagram, Typical Air Conditioning Processes, Adiabatic Saturation, Psychrometric Chart, Steady Flow Energy Equation, U. S. Standard Atmosphere

THE working substance of the air conditioning engineer may be regarded, for the purpose of analysis, as a mixture of only two constitutents, dry air and water. The mixture may consist of two, and possibly three distinct phases, solid, liquid and vapor. The vapor phase is conveniently referred to as *moist air* and is regarded as a mixture of *dry air* and *water vapor*.

DRY AIR

Composition. Dry air is itself a mixture of several gases, but its composition is subject to such slight variation that it may be regarded as fixed. According to International Critical Tables, the mol-fraction composition of dry air is given by the first column of figures in Table 1. Molecular weights are given in the second column; the last figure in the third column is the apparent molecular weight of the mixture; the fourth column of figures gives the ordinary weight-fraction composition.

It is well known that dry air contains other gases besides those listed in Table 1; but these are present in such minute amounts that they can be grouped together as argon. Values in the lower section of Table 1 give the approximate mol-fraction composition of what is called argon in the upper portion of the table.

In physical and chemical thermodynamics, there is a distinct advantage in using a different unit of weight, the mol, for each different substance involved. A mol of oxygen weighs 32.000 lb as a matter of definition; a mol of any other substance is a weight, in pounds, equal to its molecular weight.

Specific Volume and Density

The ratio of total volume to total weight is called *specific volume*, v. In the English system, volume is expressed in cubic feet and weight in pounds; hence, specific volume is expressed in cubic feet per pound. The reciprocal of specific volume, that is, weight per unit volume is called *weight density*, d. The unit of density is the pound per cubic foot.

The earliest investigation into the relation between pressure, specific volume, and temperature for gases was made by Boyle (1661) who was able to confirm the hypothesis that the volume of a given weight of gas should vary inversely as the absolute pressure if temperature is maintained constant. Thus, within the limits of his experimental error Boyle found that at constant temperature the product pv, pressure times specific volume, has a constant value over a considerable range of pressures. These results are best visualized by plotting values of the product pv as ordinate against values of pressure p itself as abscissa. According to Boyle's experimental findings lines of constant temperature (isotherms) of a gas are straight and horizontal on this pv, p-plane.

The first rough experiments of Charles (1787) and the subsequent more refined experiments of Gay-Lussac (1802) suggested the possibility

Gas	Mol per Mol Dry Air	LB PER MOL	LB PER MOL DRY AIR	LB PER LB DRY AIR	
Nitrogen Dxygen Carbon Dioxide Hydrogen Argon	0.7803 0.2099 0.0003 0.0001 0.0094	× 28.016 × 32.000 × 44.003 × 2.016 × 39.944	= 21.861 = 6.717 = 0.013 = 0.000 = 0.376 - 28.967	0.7547 0.2319 0.0004 0.0000 0.0130 1.0000	

TABLE 1. COMPOSITION OF DRY AIR

Composition of Argon	Mol per Mol Dry Air			
Argon Neon Helium Krypton Xenon	0.00933 0.000018 0.000005 0.000001			

of establishing a universal temperature scale such that the product pv for any gas is simply proportional to temperature measured on this scale in accordance with Equation 1.

$$pv = BT \tag{1}$$

where B is a constant characteristic of the given gas. Referring to the graphical representation previously described in which the product pv is plotted as ordinate against pressure p as abscissa, the vertical spacing of the isotherms should be such that the ordinates to any two isotherms are in the ratio of corresponding absolute temperatures and therefore in the same ratio for any gas.

Precise measurements by modern methods have shown that the experimental findings of Boyle, Charles and Gay-Lussac are only approximately correct. In the range of sufficiently low pressures the isotherms of gases are indeed *straight* on the *pv*, *p*-plane; but they are *not horizontal* in accordance with Boyle's Law, being inclined downward to the right at

CHAPTER 1. THERMODYNAMICS OF AIR AND WATER MIXTURES

relatively low temperatures, upward to the right at higher temperatures. Extrapolation of each isotherm to zero pressure has revealed the remarkable fact that the limiting value of the product pv thus obtained is strictly proportional to absolute temperature as suggested by Equation 1, this strict proportionality providing an accurate basis for the establishment of the absolute temperature scale.

The experimental facts of the preceding paragraph are expressed mathematically by Equation 2.

$$pv = BT - A(T) p (2)$$

where

p = absolute pressure, pounds per square foot.

v = specific volume, cubic feet per pound.

B = a constant depending on the molecular weight of the gas.

T = absolute temperature, degrees Fahrenheit.

A(T) = a temperature function called second virial coefficient, cubic feet per pound [2].* The name undoubtedly originated from consideration of Clausius' Virial Theorem according to which the mean kinetic energy of a molecular aggregate is equal to the mean value of a quantity, which Clausius called the virial of the system, depending solely on the forces acting upon the molecules and not upon the motion of the molecules. This name is used extensively. For some gases, the magnitude of the second virial coefficient can be predicted from theory; but at present, direct experimental measurements are more reliable.

It will appear in what follows that the error committed in computing values of specific volume from Equation 1 instead of Equation 2 is extremely small. Thermodynamically, however, the former would deny the effect of pressure on the thermal properties of a gas which experiment shows to be appreciable. Therefore Equation 1 cannot be made the basis of an accurate analysis.

The numerical value of the constant B in Equation 2 is different for every different gas, but can be calculated if the molecular weight m, pounds per mol, is known; for the product mB is a universal gas constant R, namely,

$$R = 1545.4$$

Example 1. Find the value of B for dry air and water vapor. Solution. $B_a = 1545.4 \div 28.967 = 53.351$ $B_w = 1545.4 \div 18.0154 = 85.782$

The temperature function $A\left(T\right)$, the so-called second virial coefficient, expresses the effect of intermolecular forces. It is positive at low temperatures where these forces are predominantly attractive, negative at higher temperatures where they are predominantly repulsive. It is known with satisfactory accuracy for both dry air and water vapor. Values of specific volume are listed in Table 2 for dry air at standard atmospheric pressure (29.921 in. Hg) as computed from Equation 2.

The fact that A(T) is multiplied by pressure in Equation 2 means that intermolecular forces vanish at zero pressure and infinite volume where infinite distances separate the molecules. The finite value of the product pv at zero pressure is due entirely to the translational kinetic

^{*}Bracketed numbers refer to references at end of chapter.

TEMP F t	Cu Ft per Lb va	TEMP F t	Cu Ft per LB va	Темр	Cu FT PER LB va
$ \begin{array}{r} -96 \\ -64 \\ -32 \\ 0 \end{array} $	9.1488	32	12.3888	160	15.6229
	9.9597	64	13.1977	192	16.4310
	10.7699	96	14.0063	224	17.2389
	11.5796	128	14.8147	256	19.0467

Table 2. Specific Volume of Dry Aira at 29.921 In. Hg

energy of the molecules. In ordinary calculations not requiring too great accuracy, the effect of intermolecular forces may be ignored and Equation 2 simplified to

$$pv = BT \tag{1}$$

Example 2. Calculate an approximate value for the specific volume of dry air at $64\ F,\ 29.921\ in.\ Hg.$

Solution.
$$v = \frac{53.351 \times 523.70}{29.921 \times 0.49115 \times 144} = 13.200$$
 cu ft per pound.

Note: This answer may be compared with the value in Table 2. The difference is due to intermolecular forces. It should not be concluded, however, that because the effect of intermolecular forces on the volume is so small these forces can be ignored entirely.

The relationship of Equation 1 expresses certain familiar laws approximately true for gases at not too high pressures. Thus, with temperature constant, the volume of a given weight of gas is inversely proportional to its absolute pressure is a statement of Boyle's Law. If v_1 denotes the specific volume at absolute pressure p_1 , then at the same temperature, the specific volume v_2 at absolute pressure p_2 is approximately,

$$v_2 = v_1 \left(\frac{p_1}{p_2} \right)$$

Also, with pressure constant the volume of a given weight of gas is directly proportional to its absolute temperature is a statement of Charles' Law. If v_1 denotes the specific volume at absolute temperature T_1 , then at the same pressure, the specific volume v_2 at absolute temperature T_2 is approximately,

$$v_2 = v_1 \left(\frac{T_2}{T_1} \right)$$

Absolute Temperature

For the range 0 to 660 C, the standard temperature scale is the International Centigrade Scale, namely, the readings of a platinum resistance thermometer standardized at the ice-point (0 C), the steam-point (100 C) and the sulphur-point (444.60 C). The corresponding Fahrenheit scale t used in scientific work is derived from the International Centigrade Scale by means of the relation,

$$t = 1.8 \text{ (Int. Cent. Temp.)} + 32$$
 (3)

Temperatures on the absolute Fahrenheit scale are then obtained by adding 459.70 according to the equation

$$T = t + 459.70 \tag{4}$$

aPrepared by John A. Goff.

CHAPTER 1. THERMODYNAMICS OF AIR AND WATER MIXTURES

Absolute temperatures computed from Equations 3 and 4 are practically identical with the fundamental thermodynamic temperatures to which the zero-pressure values of the product by for gases are proportional in accordance with Equation 2.

Specific Enthalpy

Most air conditioning processes are of the steady-flow type. In steady flow the energy convected with the fluid crossing a given section is the sum of (a) kinetic energy due to velocity, (b) gravitational energy due to elevation, (c) enthalpy due to the condition of temperature, pressure and composition at a given section. It is clear, therefore, that in order to apply the Law of Conservation of Energy to steady-flow processes, information regarding the enthalpy is needed.

Recent developments in quantum mechanics have made it possible to calculate the zero-pressure specific enthalpy of a gas from spectroscopic measurements, and with a degree of accuracy exceeding that with which this property can be inferred from direct calorimetric measurements. Available data for each gas listed in Table 1 have been assembled and critically examined; and from them have been calculated best values for the specific enthalpy of dry air at zero pressure. These are listed in The unit of energy is the Btu which is related to the footpound as follows:

$$1 \text{ Btu} = 778.18 \text{ ft-lb}^1$$
 (5)

In Table 3 are also listed values of mean zero-pressure specific heat for the range 0 to t F. This is simply the increase of specific enthalpy from 0 to t F, divided by the increase of temperature or, with 0 F as the reference point, by the temperature itself. The numerical values indicate that a rounded figure of 0.24 Btu per pound can be used in ordinary calculations.

Applying well known identical relations of thermodynamics to Equation 2, the following expression for specific enthalpy, valid at not too high pressures, is obtained

 $h = h^0 + \left\lceil T^2 \frac{d \left(A/T \right)}{dT} \right\rceil p$ (6)

where h^0 denotes specific enthalpy at zero pressure. This equation emphasizes that the effect of pressure on specific enthalpy is not so much due to the second virial coefficient A itself as to its variation with tempera-

SPECIFIC MEAN Specific MEAN SPECIFIC MEAN SPECIFIC ENTHALPY Темр Темр ENTHALPY Темр SPECIFIC ENTHALPY SPECIFIC HEAT Btu per Lb HEAT F BTU PER LB HEAT F Btu per Le $\left[C_{\mathbf{p}}^{\mathbf{o}}\right]_{\mathbf{o}}^{\mathbf{t}}$ $\left[C_{\mathbf{p}}^{\mathbf{o}} \right]_{\mathbf{o}}^{\mathbf{t}}$ $\left[C_{\mathbf{p}}^{\circ}\right]_{\mathbf{0}}^{\mathbf{t}}$ + $h_{\mathbf{a}}^{\mathbf{o}}$ 0.2400 -96-22.8390.2393 7.796 0.239538.529 32 160 15.4660.2401-64-15.1860.239364 0.2396192 46.2380.2403-32-7.5290.2394 96 23.1450.2397224 53.962 256 0.2405

Table 3. Specific Enthalpy of Dry Air at Zero Pressure^a

128

+0.131

0.2394

30.831

0.2398

61.702

aPrepared by John A. Goff from published data computed from spectroscopic measurements.

 $^{^1}$ This conversion factor is not exact by definition, but involves an experimental determination of the relation between the absolute and the standard electrical units of energy. The value 1 int. joule = 1.00019 abs joule, recommended by Osborne, Stimson and Ginnings [8] was used.

TEMP F t	Specific Enthalpy Btu per Lb ha	Specific Heat $\begin{bmatrix} C_p \end{bmatrix}_0^t$	Темр F <i>t</i>	SPECIFIC ENTHALPY BTU PER LB ha	Specific Heat $\begin{bmatrix} C_p \end{bmatrix}_0^t$	Темр F <i>t</i>	SPECIFIC ENTHALPY BTU PER LB ha	Specific Heat $\begin{bmatrix} C_p \end{bmatrix}_0^t$
$ \begin{array}{r} -96 \\ -64 \\ -32 \\ 0 \end{array} $	$\begin{array}{r} -23.035 \\ -15.356 \\ -7.678 \\ 0.000 \end{array}$	0.2399 0.2399 0.2399 0.2400	32 64 96 128	7.680 15.363 23.053 30.749	0.2400 0.2400 0.2401 0.2402	160 192 224 256	38.454 46.172 53.903 61.649	0.2403 0.2405 0.2406 0.2408

TABLE 4. SPECIFIC ENTHALPY OF DRY AIR² AT 29,921 IN. HG

aPrepared by John A. Goff.

ture. In other words, the pressure effect may be much more important than the corresponding effect on specific volume. Values of the specific enthalpy of dry air at standard atmospheric pressure (29.921 in. Hg) as computed from Equation 6 are given in Table 4.

Reference Point. It is desired to give some prominence to the choice of reference point. As energy, and therefore enthalpy, is purely relative, any convenient state can be selected at which to assign the value zero to specific enthalpy. The state chosen is 0 F, 29.921 in. Hg. Perhaps the only really valid argument for this particular choice is that, for ordinary calculations at, or near, atmospheric pressure, a very simple equation can be used, namely,

 $h_{\mathbf{a}} = 0.24t \tag{7}$

WATER VAPOR

Saturation Pressure. It is common knowledge that a substance like water can exist in at least three distinct phases, solid (ordinary ice), liquid and vapor; and that under certain conditions two or more phases can co-exist in stable equilibrium. For example, steam having a quality of 98 per cent is a mixture of two co-existing phases, vapor and liquid, 98 per cent by weight being vapor and 2 per cent by weight, liquid. When two phases can co-exist in stable equilibrium, each is said to be saturated with respect to the other.

One of the important problems of thermodynamics is to formulate the conditions for *saturation* in mathematical terms. The answer to the problem can be stated quite generally as equality, between the several co-existing phases, of (a) pressure, (b) temperature, (c) each component chemical potential.

In the case of a pure substance like water, containing a single component, there is only one component chemical potential; and this becomes identical with a thermodynamic property called *specific free enthalpy* denoted by the letter g (Btu per pound) and defined by the equation:

$$g = h - Ts$$

where

h = specific enthalpy, Btu per pound.

T = absolute temperature, degrees Fahrenheit.

s = specific entropy, Btu per pound per degree Fahrenheit.

To illustrate, *liquid* water at 212 F, 14.696 lb per square inch has a specific free enthalpy of $180.07 - 671.70 \times 0.3120 = -25.90$ Btu per pound. At the same temperature and pressure, water *vapor* has a specific

free enthalpy of $1150.4-671.70\times1.7566=-25.90$ Btu per pound. The numerical data used in these calculations are to be found in the steam tables². Since the two specific free enthalpies are equal at the same temperature and the same pressure, the two phases can co-exist in stable equilibrium to form a saturated mixture and are therefore saturated with respect to each other.

But suppose that a different pressure had been assumed, the temperature being 212 F as before; for example, assume a pressure of 14 lb per square inch. The specific free enthalpy of the liquid phase will be practically the same as before, but that of the vapor phase will change from -25.90 to -32.84 Btu per pound, most of this change being due to change of entropy which, in the case of a vapor, depends markedly upon the pressure. Since the specific free enthalpies of the two phases are no longer equal, they cannot co-exist in stable equilibrium and neither is saturated. As a matter of fact the vapor is superheated while the liquid is supersaturated.

From this analysis it will be seen that to a given temperature T there corresponds a definite saturation pressure p_s . This is also called the vapor pressure of the liquid or solid as the case may be. It will also be seen that a working definition of saturation can only be arrived at by application of the fundamental laws of thermodynamics.

Referring specifically to the vapor phase, if the actual pressure is *less* than the saturation pressure corresponding to the actual temperature, the vapor is said to be *superheated*; if it is *greater*, as it may well be under proper circumstances, the vapor is said to be *supersaturated*. Values of the saturation pressure of pure water are given in Table 6³.

Specific Volume

Accurate values of the specific volume of water vapor at pressures equal or near the saturation pressure (for the given temperature) can be computed from Equation 1 since the second virial coefficient A(T) is known with satisfactory accuracy. Usually, however, the desired information can be read directly from the steam tables. Values for the specific volume of the *saturated* vapor, v_g , are also listed in Table 8.

Specific Enthalpy

The zero-pressure specific enthalpy, as calculated by A. R. Gordon from spectroscopic measurements, has recently been corrected for distortion of the water molecules due to centrifugal forces. Best values at present available are listed in Table 5.

From the numerical values of mean specific heat, it is clear that for ordinary calculations the following simple relation may be used:

$$h_{\mathbf{w}}^{\mathbf{o}} = 0.444t + 1061 \tag{8}$$

Reference Point. The reference point for water has been chosen as saturated liquid at $32 \, F$ in conformity with usual steam table practice. In order to refer the zero-pressure values of specific enthalpy to this

Thermodynamic Properties of Steam, by J. H. Keenan and F. G. Keyes, published by John Wiley & Sons, Inc., 1936, of which Table 8 is an abridgment.

Strictly speaking the values listed in Table 6 are not values of p_s as labeled, but of p_s' (Equation 13b) with the Dalton Factor (DF) taken to be unity.

TEMP F t	Specific Enthalpy Btu per Lb $h_{\mathbf{w}}^{\mathbf{o}}$	MEAN SPECIFIC HEAT $\begin{bmatrix} C_p^o \end{bmatrix}^t_o$	TEMP F t	SPECIFIC ENTHALPY BTU PER LB $h_{\mathbf{w}}^{\mathbf{o}}$	MEAN SPECIFIC HEAT $\begin{bmatrix} C_p^o \end{bmatrix}^t$	TEMP F t	Specific Enthalpy Btu per Lb $h_{\mathbf{w}}^{\mathbf{o}}$	MEAN SPECIFIC HEAT $\begin{bmatrix} C_p^o \end{bmatrix}_0^t$
$ \begin{array}{r} -96 \\ -64 \\ -32 \\ 0 \end{array} $	1018.61 1032.76 1046.92 1061.09	0.4425 0.4427 0.4429 0.4431	32 64 96 128	1075.28 1089.51 1103.76 1118.05	0.4435 0.4440 0.4444 0.4450	160 192 224 256	1132.38 1146.76 1161.20 1175.70	0.4455 0.4462 0.4469 0.4477

TABLE 5. SPECIFIC ENTHALPY OF WATER VAPOR AT ZERO PRESSURE²

datum, best available information regarding latent heat, saturation pressure and second virial coefficient at 32 F has been used. The values in Table 5 do not agree exactly with those in the steam tables, but do agree with later information from the National Bureau of Standards [8].

MOIST AIR

Dalton's Law. Having accurate information regarding the thermodynamic properties of dry air and water vapor separately, it is desired to predict the properties of moist air which is regarded as a mixture of these two constitutents. Statistical mechanics furnishes a starting point in the form of a prediction that, at not too high pressures,

$$Pv = RT - \left[A_{aa}x^2 + 2A_{aw} x (1 - x) + A_{ww} (1 - x)^2 \right] P$$
 (9)

where

P = observed pressure, pounds per square foot.

v = specific volume, cubic feet per mol.

 $A_{\rm aa}$ = second virial coefficient for the dry air expressing the effect of forces between air—air molecules, cubic feet per mol.

 $A_{\mathrm{ww}}=\mathrm{second}$ virial coefficient for the water vapor, expressing the effect of forces between water—water molecules, cubic feet per mol.

 $A_{\rm aw} = interaction constant$ expressing the effect of forces between air—water molecules, cubic feet per mol.

x = mol-fraction of dry air in the mixture, mols dry air per mol mixture.

Equation 9 will be recognized as a generalization of Equation 2. Both $A_{\rm aa}$ and $A_{\rm ww}$ are known; but until recently no reliable information on the interaction constant $A_{\rm aw}$ has been available. Preliminary results of a cooperative investigation between the A.S.H.V.E. and the Towne Scientific School, University of Pennsylvania, have indicated that the ratio $2A_{\rm aw}/(A_{\rm aa} + A_{\rm ww})$ has an approximately constant value $\lambda = 0.075$ [10]. However, before attempting to make use of this information it is advisable, in the interest of simplicity, to first ignore the complications arising from intermolecular forces.

Now, in the absence of intermolecular forces, each constituent gas in a mixture such as moist air would behave exactly as if it alone occupied the volume V at the temperature T of the mixture and: (1) the observed pressure P would be the sum of individual partial pressures p; (2) the total enthalpy H would be the sum of the individual enthalpies. This is the essence of Dalton's Law of Partial Pressures.

^{*}Prepared by John A. Goff from published data computed from spectroscopic measurements.

Referring to dry air by the subscript a and, to water vapor by the subscript w, Dalton's Law would predict

$$V = \frac{n_{\rm a}RT}{p_{\rm a}} = \frac{n_{\rm w}RT}{p_{\rm w}} = \frac{(n_{\rm a} + n_{\rm w}) RT}{P}$$
 (10a)

where

$$P = p_{\rm a} + p_{\rm w} \tag{10b}$$

From these equations are easily obtained,

$$\frac{n_{\rm w}}{n_{\rm a}} = \frac{p_{\rm w}}{P - p_{\rm w}} \quad \text{or} \quad \frac{p_{\rm w}}{P} = \frac{n_{\rm w}/n_{\rm a}}{1 + n_{\rm w}/n_{\rm a}}$$
 (10c)

in which,

 p_a = partial pressure of the dry air.

 $p_{\rm w}$ = partial pressure of the water vapor.

P = observed pressure of the mixture.

 n_a = weight of dry air (mols).

 $n_{\rm w}$ = weight of water vapor (mols).

Humidity Ratio

In Equation 10c the ratio by weight of water vapor to dry air, $n_{\rm w}/n_{\rm a}$, is expressed in mols per mol. Most engineers prefer to express it in pounds per pound which can easily be done, since the molecular weights of both water vapor (18.0154 lb per mol) and of dry air (28.967 lb per mol) are known. Thus Equation 10c becomes

$$W = 0.62193 \frac{p_{\rm w}}{P - p_{\rm w}} \quad \text{or} \quad \frac{p_{\rm w}}{P} = \frac{W}{0.62193 + W}$$
 (11)

There is little doubt but that the weight ratio W is the most convenient parameter in terms of which to express the composition of moist air; but to choose a suitable name and one that would have general acceptance has always been a perplexing problem. In previous issues of the Guide, specific humidity was adopted even though it was recognized that the adjective specific should properly refer to weight of water vapor per pound of mixture, and not per pound of dry air. Various other names have been proposed from time to time including: mixing ratio, proportionate humidity, density ratio, absolute humidity. It is believed that the name humidity ratio is most suggestive of the meaning which it is desired to express, that it violates no well established usage as does the name specific humidity and that its adoption will avoid much confusion.

To repeat: in the case of moist air, the ratio by weight (pounds) of water vapor to dry air is called *humidity ratio* and denoted by the letter W.

Saturation

It is often stated that moist air is *saturated* when the water vapor in it is itself in the *dry saturated condition* at the given temperature. This statement would imply that the humidity ratio of saturated moist air is, in accordance with Equation 11,

$$W_{\rm s} = 0.62193 \; \frac{p_{\rm s}}{P - p_{\rm s}}$$
 (12)

where p_s is the saturation pressure of pure water vapor.

Table 6. Thermodynamic Properties of Moist Aira, 29.921 In. HG

	TemP Dec F	4	- 60 - 59 - 57 - 57	- 55 - 53 - 53 - 52	50 49 47 46	- 45 - 44 - 43 - 42 - 41		- 35 - 35 - 32 - 31	- 30 - 29 - 28 - 27 - 26	
	Pressure 106	Lb per Sq In.	49.808 53.443 57.127 61.302 65.526	70 242 75.154 80 311 85.911 91.854	98.191 104 63 111.94 119.41 127.47	135.92 144.90 154.58 164.70 175.65	186.80 199.18 211.81 225.56 239.90	255.18 271.34 288.09 306.36 325.08	344 33 364.57 388.64 413 10 438.20	
	Saturation Pressure $ ho_{ m b} imes 10^{ m i}$	In. of Hg	101.4 108.8 116.3 124.8 133.4	143.0 153.0 163.5 174.9 187.0	199.9 213.0 227.9 243.1 259.5	276.7 295.0 314.7 335.3	380.3 405.5 431.2 459.2 488.4	519.5 552.4 586.5 623.7 661.8	701.0 742.2 791.2 841.0 892.1	
IN. IIG	SPECIFIC ENTHALPY OF SOLID WATER	BTU PER LB h _w	-185.4 -185.0 -184.6 -184.2 -183.8	- 183.4 - 182.9 - 182.5 - 182.1 - 182.1	$\begin{array}{c} -181.3 \\ -180.9 \\ -180.4 \\ -180.0 \\ -179.6 \end{array}$	-179 2 -178 7 -178 7 -177 9 -177 9	-177.0 -176.6 -176.1 -175.7 -174.8	-174.4 -174.0 -173.5 -173.1 -172.6	-1722 -171.7 -171.3 -170.9	
K", 49.341	Air	Saturated Mixture	- 14.46 - 14.21 - 13.97 - 13.72 - 13.47	- 13.23 - 12.99 - 12.74 - 12.49 - 12.25	-12.01 -11.76 -11.52 -11.27	$\begin{array}{c} -10.78 \\ -10.54 \\ -10.28 \\ -10.04 \\ -9.795 \end{array}$	-9.547 -9.300 -9.053 -8.805 -8.557	-8.309 -8.060 -7.812 -7.562 -7.313	-7.064 -6.814 -6.562 -6.310 -6.057	
IN ISIOM	ENTHALPY BTU PER LB DRY AIR	$h_{\mathrm{B}} = h_{\mathrm{B}}$	0.02 .02 .03 .03 .03	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 04 .05 .05 .05	0.06 .06 .07 .07	0.082 .088 .093 .100	0.113 .120 .127 .136	0.152 .161 .172 .183	
EKTIES OF	Bru	Dry Air ha	- 14.48 - 14.23 - 13.99 - 13.75	- 13.26 - 13.02 - 12.78 - 12.53	-12.05 -11.81 -11.57 -11.32 -11.08	$\begin{array}{c} -10.84 \\ -10.60 \\ -10.35 \\ -10.11 \\ -9.872 \end{array}$	-9.629 -9.388 -9.146 -8.905 -8.663	-8.422 -8.180 -7.939 -7.698 -7.457	-7.216 -6.975 -6.734 -6.493 -6.251	
AMIC FROP	Air	Saturated Mixture	10.07 10.09 10.12 10.14 10.17	10.19 10.22 10.24 10.27 10.29	10.32 10.34 10.37 10.40	10.45 10.47 10.50 10.52 10.55	10 57 10 60 10.62 10.65	10.69 10.72 10.75 10.77 10.80	10 82 10.85 10.87 10 90 10.92	
I HERMODYNAMIC FROPERTIES OF MOIST AIR", 29.321 IN. 110	Volume Cu Ft per Le Dry Air	$(v_{\mathbf{s}}-v_{\mathbf{a}})$	99999	000000	o 000000	000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99999	000000	A. Goff.
IABLE 6. II	Cu Fr	Dry Air	10.07 10.09 10.12 10.14 10.17	10.19 10.22 10.24 10.27	10.32 10.34 10.40 10.42	10.45 10.47 10.50 10.52	10.57 10.60 10.62 10.65 10.65	10 69 10.72 10.75 10.77	10.85 10.87 10.90 10.92	ended by John
	ION RATIO F WATER	Grains	0.14756 .15834 .16926 .18165	0.20811 .22267 .23793 .25452	0.29092 .30996 .33166 .35378	0.40271 .42931 .45801 .48797	0.55349 .59017 .62755 .66836 .71120	0.75600 .80430 .85400 .90790	1.0206 1.0801 1.1515 1.2243 1.2985	wdon and ext
	SATURATION HUMDITY RATIO We WEIGHT OF WATER PER LB OF DRY AIR	Pounds × 105	2.108 2.262 2.418 2.595 2.773	2.973 3.181 3.399 3.636 3.888	4.156. 4.428 4.738 5.054 5.395	5.753 6.133 6.543 6.971 7.435	7.907 8 431 8.965 9.548 10.16	10.80 11.49 12.20 12.97 13.76	14.58 15.43 16.45 17.49 18.55	Compiled by W. M. Sawdon and extended by John A. Goff.
	TEMP DEG	±,	- 60 · - 59 · - 57 · - 56	55 53 51 51	- 50 - 49 - 47 - 47	- 44 - 44 - 43 - 42 - 43	40 39 37 - 37	- 35 - 34 - 32 - 31	30 28 28 26	*Compile

a Compiled by W. M. Sawdon and extended by John A. Goff.

	Temp Dec	ኋ	- 25 - 24 - 23 - 22 - 21	-20 -19 -18 -17	- 112 - 113 - 112	-10 -9 -8 -7	 10 4400 11	0	
	PRESSURE 105	Lb per Sq In.	464.87 492.67 522.64 553.09 585.51	619.89 656.73 695.54 734.84 778.06	822.76 870.41 920.51 972.58 1028.1	1085.6 1147.0 1209.8 1229.0 1348.3	1423.5 1500.6 1582.6 1668.6 1758.5	1853.3	
лер)	Saturation Pressure $ ho_{ m b} imes 10^{ m f}$	In. of Hg	946 4 1003. 1064. 1126. 1192.	1262 0 1337. 1416. 1496. 1584.	1675.0 1772. 1874. 1980. 2093.	2210.0 2335. 2463. 2502. 2745.	2898.0 3055. 3222. 3397. 3580.	3773.0	
THERMODYNAMIC PROPERTIES OF MOIST AIR ^a , 29.921 In. HG (CONTINUED)	SPECIFIC ENTHALPY OF SOLID WATER	Bru per La hw	-170.4 -170 0 -169.5 -169.0 -168.6	-168.2 -167.7 -167.2 -166.8 -166.3	- 165.9 - 165.4 - 165.0 - 164.5 - 164.0	-163.6 -163.1 -162.7 -162.2 -161.7		-158.9	
921 In. Ho	7 AIR	Saturated Mixture $h_{\rm B}$	-5.805 -5.551 -5.297 -5.042 -4.787	-4.531 -4.274 -4.015 -3.758	-3.237 -2.975 -2.712 -2.449 -2.183	$\begin{array}{c} -1.917 \\ -1.649 \\ -1.380 \\ -1.111 \\ -0.838 \end{array}$	$\begin{array}{c} -0.564 \\ -0.288 \\ -0.011 \\ +0.268 \\ +0.549 \end{array}$	+0.832	
AIRa, 29.	Enthalpy Btu per Lb Dry Air	$h_{aa} = h_{a}$	0.206 .219 .232 .246 .246	0.276 .292 .310 .327 .347	0.367 .388 .411 .434	0.485 .513 .541 .570	0.637 .672 .709 .748	0.832	
OF MOIST	Bru	Dry Air ha	-6.011 -5.770 -5.529 -5.288 -5.047	-4.807 -4.566 -4.325 -3.844	-3.604 -3.363 -3.123 -2.883	$\begin{array}{c} -2.402 \\ -2.162 \\ -1.921 \\ -1.681 \\ -1.441 \end{array}$	$\begin{array}{c} -1.201 \\ -0.960 \\ -0.720 \\ -0.480 \\ -0.240 \end{array}$	0	
ROPERTIES	Air	Saturated Mixture	10.95 10.97 11.00 11.02 11.05	11.07 11.10 11.13 11.15 11.18	11.21 11.24 11.26 11.29 11.31	11.34 11.36 11.39 11.41	11.46 11.49 11.51 11.54 11.54	11.59	
DYNAMIC F	VOLUME CU FT PER LB DRY AIR	$(v_{\mathbf{a}}-v_{\mathbf{a}})$	98999	96,696	0.0 10.0 10.0 10.0	0. 10. 10. 10. 10.	0.0	0.01	A. Goff.
- 1	Cu Fr	Dry Air ^p a	10.95 10.97 11.00 11.02	11.07 11.10 11.13 11.15 11.16	11.20 11.23 11.25 11.28 11.30	11.33 11.35 11.38 11.40 11.43	11.45 11.48 11.50 11.53 11.55	11.58	ended by John
TABLE 6.	ATION Y RATIO OF WATER DRY AIR	Grains	1.3776 1.4602 1.5491 1.6394 1.7353	1.8375 1.9467 2.0615 2.1784 2.3065	2.4388 2.5802 2.7286 2.8833 3.0478	3.2186 3.4006 3.5875 3.6442 3.9984	4.2210 4.4499 4.6935 4.9483 5.2150	5.5000	wdon and ext
	SATURATION HUMDITY RAT W. WEIGHT OF W PER LB OF DRY	Pounds × 10 ⁵	19.68 20.86 22.13 23.42 24.79	26.25 27.81 29.45 31.12 32.95	34.84 36.86 38.98 41.19 43.54	45.98 48.58 51.25 52.06 57.12	60.30 63.57 67.05 70.69 74.50	78.52	aCompiled by W. M. Sawdon and extended by John A. Goff.
	Temp Deg	•	- 25 - 23 - 23 - 22 - 21	- 20 - 19 - 17 - 16	11. 11. 11. 11. 11.	-10 -9 -7 -6	7.48821	0	aCompile.

Table 6. Thermodynamic Properties of Moist Aira, 29.921 In. Hg (Continued)

										1
	Temp Deg	4	0 1 2 3 4	9840	10 11 12 13 14	15 16 17 18	20 22 23 24 24	25 27 28 29	30 31 32 33 34	
	PRESSURE	Lb per Sq In.	0.01853 .01963 .02056 .02166 .02282	0.02400 .02527 .02658 .02796	0.03092 .03251 .03418 .03590	0.03963 .04160 .04369 .04586	0.05050 .05295 .05560 .05826 .06111	0.06405 .06710 .07034 .07368	0.08080 .08458 .08856 .09230	
(77	Saturation Pressure ps	In. of Hg	0.03773 .03975 .04186 .04409	0.04886 .05144 .05412 .05692	0.06295 .06618 .06958 .07309	0.08067 .08469 .08895 .09337	0.1028 .1078 .1132 .1186	0.1304 .1366 .1432 .1500	0 1645 .1722 .1803 .1879 .1957	
THERMODINAMIC I ROFERILES OF MOISI MIN', 23:321 IN IIG (COMINOSE)	SPECIFIC ENTHALPY OF SOLID WATER	BTU PER LB h	- 158.9 - 158.5 - 158.0 - 157.5 - 157.0	-156.6 -156.1 -155.6 -155.1 -154.7	-154.2 -153.7 -153.2 -152.7 -152.2	-1518 -151.3 -150.8 -150.3 -149.8	-149 3 -148.8 -148.3 -147 8 -147 8	- 146 8 - 146.4 - 145.9 - 145 4 - 144.9	- 144.4 - 143.9 - 143.4 + 1.0 + 2.0	
11. III.	7 AIR	Saturated Mixture hs	0.832 1.117 1.404 1.694 1.986	2.280 2.577 2.877 3.180 3.486	3.795 4.108 4.424 4.742 5.064	5 392 5.722 6.058 6.397 6 741	7.088 7.443 7.802 8.166 8.536	8.912 9.292 9.682 10.075	10 886 11.302 11.726 12.139 12.556	
, MIN.	ENTHALPY BTU PER LB DRY AIR	$h_{\mathbf{s}}$ $(h_{\mathbf{s}} - h_{\mathbf{a}})$	0 832 .877 .924 .974 1.026	1.080 1.137 1.197 1.260 1.336	1.395 1.468 1.544 1.622 1.705	1.793 1.883 1.979 2.078 2 182	2.290 2.405 2.524 2.648 2.778	2.914 3.205 3.205 3.358 3.520	3.689 3.865 4.049 4.399	
OF INTOISI	BTU	Dry Air	0.000 .240 .480 .720	1.200 1.440 1.680 1.920 2.160	2.400 2.640 2.880 3.120 3.359	3.599 3.839 4.079 4.319 4.559	4.798 5.038 5.278 5.518 5.758	5.998 6.237 6.477 6.717 6.957	7 197 7.437 7.677 7.917 8.157	
RUFERITES	Air	Saturated Mixture v _b	11.59 11.62 11.64 11.67 11.70	11.72 11.75 11.77 11.80	11.85 11.88 11.91 11.93	11.99 12.01 12.04 12.07 12.09	12.12 12.15 12.18 12.20 12.23	12 26 12 39 12 32 12 34 12 34	12.40 12.43 12.46 12.49 12.51	
DINAMIC	Volume Cu Ft per Lb Dry Air	$(v_{\mathbf{s}} - v_{\mathbf{a}})$	0.01 .02 .01 .02 .02	0.02 0.02 0.02 0.03 0.03	0.02	0.03 .03 .04 .04	0 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.0 0.0 0.0 0.0 0.0 0.0	0 07 .07 .08 .08	
	Cu Fr	Dry Air "a	11.58 11.60 11.63 11.65 11.65	11.70 11.73 11.75 11.78	11.83 11.86 11.88 11.91 11.93	11.96 11.98 12.00 12.03 12.03	12.08 12.11 12.13 12.16 12.18	12 21 12.23 12 26 12.28 12.38	12.33 12.36 12.38 12.41 12.43	
IABLE O.	TION T RATIO OF WATER DRY AIR	Grains	5 50 5.79 6.10 6.43 6.77	7.12 7.50 7.89 8.30 8.73	9.18 9.65 10.15 10.66 11.20	11.77 12.36 12.99 13.63 14.30	15.01 15.75 16.53 17.33	19.05 19.97 20.94 21.93 22.99	24.07 25.21 26.40 27.52 28.66	,
1	SATURATION HUMIDITY RATIO We WEIGHT OF WAT PER LB OF DRY AI	Pounds	0.0007852 .0008275 .0008714 .0009179 .0009671	0.001017 .001071 .001127 .001186 .001247	0.001311 .001379 .001450 .001523	0.001682 .001766 .001855 .001947 .002043	0.002144 .002250 .002361 .002476 .002596	0.002722 .002853 .002991 .003133	0 003439 .003601 .003771 .003931	
	TEMP DEG	4	01284	98765	10 112 113 14	15 16 17 18 19	20 22 23 24 24	25 27 28 29 29	30 32 33 34	:

a Compiled by W. M. Sawdon and extended by John A Goff.

1ABLE 0. THERMODYNAMIC FROPERTIES OF MOIST AIR^a, 29,921 IN. HG (CONTINUED)

	Temp Deg	<u>.</u>	35 36 37 38 39	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	50 51 53 54	55 57 59 59	60 61 63 64	65 66 68 69	
	PRESSURE	Lb per Sq In	0 1000 .1041 .1083 .1126 .1171	0.1217 .1265 .1315 .1367 .1420	0.1475 .1532 .1591 .1652 .1715	0.1780 .1848 .1918 .1989 .2063	0.2140 .2219 .2300 .2384 .2471	0.2561 .2654 .2749 .2848	0 3054 .3162 .3273 .3388 3506	-
IED)	SATURATION PRESSURE	In of Hg	0.20360 .21195 .22050 .22925 .23842	0.24778 .25755 .26773 .27832 .28911	0.30031 .31191 .32393 .33635	0.36241 .37625 .39051 .40496	0.43570 .45179 .46828 .48538	0.52142 .54035 .55970 .57985	0.62179 .64378 .66638 .68980 .71382	
THERMODYNAMIC FROPERTIES OF MOIST AIRA, 29.921 IN. FIG (CONTINUED)	SPECIFIC ENTHALPY OF LIQUID WATER	BTU PER LB	8 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 9.1 10.1 11.1 12.1	13.1 14.1 15.1 16.1	18.1 19.1 20.1 21.1 22.1	23.1 24.1 25.1 26.1 27.1	28.1 29.1 30.1 31.1	33.1 34.1 35.1 36.0 37.0	
921 IN. HO	/ AIR	Saturated Mixture hs	12 979 13 409 13.845 14.285 14.736	15.191 15.657 16.13 16.62 17.11	17.61 18.12 18.64 19.16 19.70	20.25 20.80 21.38 21.95 22.55	23.15 23.77 24.40 25.05	26.37 27.06 27.76 28.48 29.21	29.96 30.73 31.51 32.31 33.12	
. AIRa, 29.	Enthalpy Btu per Lb Dry Air	$h_{as} = h_{a}$	4 582 4 773 4.969 5.169 5.380	5 595 5.821 6.05 6.30 6.55	6 81 7.08 7.36 7.64 7.94	8.25 8.57 8.91 9.24 9.60	9.96 10.34 10.73 11.14 11.55	11.98 12.43 12.89 13.37 13.86	14.37 14.90 15.44 16.00	
OF MOIST	Bru	Dry Air ha	8.397 8.636 8.876 9.116 9.356	9.596 9.836 10.08 10.32 10.56	10.80 11.04 11.28 11.52 11.52	12.00 12.23 12.47 12.71 12.95	13.19 13.43 13.67 13.91 14.15	14.39 14.63 14.87 15.11	15.59 15.83 16.07 16.31	
KOPEKTIES	Air	Saturated Mixture vs	12.54 12.57 12.60 12.63 12.66	12.69 12.72 12.75 12.78 12.81	12.84 12.87 12.90 12.93	12.99 13.02 13.06 13.09 13.12	13.15 13.19 13.22 13.22 13.29	13.32 13.35 13.39 13.42 13.46	13.49 13.53 13.67 13.60 13.64	
DYNAMIC F	VOLUME CU FT PER LB DRY AIR	$(v_{\mathbf{S}} - v_{\mathbf{B}})$	0 08 09 .09 .10 .10	0 10 .11 .12 .12	0.13 113 14 15	0.15 .16 .17 .18 .18	0.19 .20 .21 .21 .23	0.23 :24 :25 :26 :27	0.28 .29 .31 .33	800
	Cu Fr	Dry Air ″a	12.46 12.48 12.51 12.53	12 59 12.61 12.64 12.66 12 69	12.71 12.74 12.76 12.79 12.81	12.84 12.86 12.89 12.91 12.94	12.96 12.99 13.01 13.04 13.06	13.09 13.11 13.14 13.16 13.19	13.24 13.24 13.26 13.29 13.31	owtonded by Tohn
IABLE O.	ATION Y RATIO OF WATER DRY AIR	Grains	29 83 31 07 32.33 33 62 34.97	36 36 37.80 39.31 40.88 42.48	44.14 45.87 47.66 49.50 51.42	53.38 55.45 57.58 59.74 61.99	64.34 66.75 69.23 71.82 74.48	77.21 80.08 83.02 86.03 89.18	92.40 95.76 99.19 102.8 106.4	Sound on a part out
	SATURATION HUMIDITY RATIO W ₈ WEIGHT OF WAT PER LB OF DRY AI	Pounds	0.004262 004438 .004618 004803 .004996	0 005194 .005401 .005616 .005840	0.006306 .006553 .006808 .007072	0.007626 .007921 .008226 .008534 .008856	0.009192 .009536 .009890 .01026	0 01103 .01144 01186 .01229 .01274	0.01320 .01368 .01417 .01468	X
	TEMP Deg	· .	35 36 37 38 39	44 44 44 44 44 44 44 44 44 44 44 44 44	24 44 44 49 49 49 49 49 49 49 49 49 49 49	50 51 53 54	55 56 58 59	60 61 63 64	65 66 67 69 69	MCompiled by W

a Compiled by W. M. Sawdon and extended by John A. Goff.

THERMODYNAMIC PROPERTIES OF MOIST AIRA, 29.921 IN. HG (CONTINUED) Time

	Temp Deg F		70 72 73 74	75 77 78 79	88888 8888 84888	88888	90 92 93 94	95 96 98 99 99	100 101 102 103 104	
	Pressure	Lb per Sq In.	0 3628 .3754 .3883 .4016	0.4295 .4440 .4590 .4744 .4903	0.5067 .5236 .5409 .5588	0.5960 .6153 .6352 .6555	0.6980 .7201 .7429 .7662 .7902	0.8149 .8403 .8663 .8930	0.9487 .9776 1.0072 1.0689	
(ma	Saturation Pressure ps	In. of Hg	0.73866 .76431 .79058 .81766	0.87448 .90398 .93452 .96588	1.0316 1.0661 1.1013 1.1377 1.1752	1.2135 1.2527 1 2933 1 3346 1.3774	1.4211 1.4661 1.5125 1.5600 1.6088	1.6591 1.7108 1.7638 1.8181 1.8741	1.9316 1.9904 2.0507 2.1128 2.1763	
CONTINO	SPECIFIC ENTHALPY OF LIQUID WATER	Bru per La h	38.0 39.0 40.0 41.0 42.0	43.0 44.0 45.0 46 0 47.0	48.0 49.0 50.0 51.0 52.0	53.0 54.0 55.0 56.0 57.0	58.0 59.0 60.0 61.0 62.0	63 0 64.0 65.0 66.0 67.0	68.0 69.0 70.0 71.0 72.0	
THERMODYNAMIC PROPERTIES OF MOIST AIR', 29.921 IN. 11G (CONTINUED)	Air	Saturated Mixture hs	33.96 34.83 35.70 36.60 37.51	38.46 39.42 40.40 41.42 42.46	43.51 44.61 45.72 46.88 48.05	49 24 50.47 51.74 53 02 54.35	55.70 57.09 58 52 59 99 61.50	63.05 64.62 66.25 67.92 69.63	71.40 73.21 75.06 76.97 78.92	
AIRa, 29.9	ENTHALPY BTU PER LB DRY AIR	h_{as} $(h_{\mathrm{s}} - h_{\mathrm{a}})$	17.17 17.80 18.43 19.09 19.76	20.47 21.19 21.93 22.71 23.51	24 32 25.18 26.05 26.97 27.90	28.85 29.84 30.87 31.91 33.00	34.11 35.26 36.45 37.67 38.94	40 25 41.58 42.97 44.40 45.87	47.40 48.97 50.58 52.25 53.96	
OF MOIST	Bru	Dry Air ha	16.79 17.03 17.27 17.51	17.99 18.23 18.47 18.71	19.19 19.43 19.67 19.91 20.15	20.39 20.63 20.87 21.11 21.35	21.59 21.83 22.07 22.33 22.56	22.80 23.04 23.28 23.52 23.76	24 00 24.24 24.48 24.72 24.96	
OPERTIES	AIR	Saturated Mixture	13.68 13.71 13.75 13.79	13.87 13.91 13.95 13.99 14.03	14.08 14.12 14.16 14.21	14.34 14.39 14.44 14.48	14.53 14.58 14.63 14.69	14.79 14.84 14.90 14.95 15.01	15.07 15.12 15.18 15.25 15.31	
YNAMIC PI	Volume Cu Ft per La Dry Air	vas (vs — va)	0 34 .34 .35 .37 .39	0.40 .42 .43 .45	0.49 .50 .52 .54 .57	0.58 .60 .65 .65	0.69 .71 .74 .79	0.82 .885 .91 .94	0.97 1.00 1.03 1.11	
	Cu Ft	Dry Air ^g a	13.34 13.37 13.40 13.42 13.42	13.47 13.49 13.52 13.54 13.57	13.59 13.62 13.64 13.67 13.69	13.72 13.74 13.77 13.79	13 84 13 87 13.89 13.92 13.94	13.97 13.99 14.02 14.04 14.07	14.10 14.12 14.15 14.17 14.20	
TABLE 6.	SATURATION IUMIDITY RATIO WEIGHT OF WATER R LB OF DRY AIR	Grains	110.2 114.2 118.2 122.4 126.6	131.1 135.7 140 4 145 3	155.5 160 9 166.4 172 1 178.0	184.0 190.3 196.7 203.3 210.1	217.1 224.4 231.8 239.5 247.5	255.6 264 0 272.7 281.7 290.9	300.5 310.3 320.4 330.8 341.5	
	SATURAT HUMIDITY] W ₆ WEIGHT OI PER LB OF D	Pounds	0.01574 .01631 .01688 .01748	0.01873 .020938 .02075 .02147	0 02221 .02298 .02377 .02459	0 02629 .02718 .02810 .02904	0 03102 .03205 .03312 .03421	0.03652 .03772 .03896 .04024	0 04293 .04433 .04577 .04726	
,	TEMP	দ	70 71 72 73 74	77 77 77 79 79	883 843 843 843 843 843 843 843 843 843	8884 884 884 884	90 91 93 94	95 96 97 98	100 101 102 103	-

aCompiled by W. M. Sawdon and extended by John A. Goff.

Table 6. Thermodynamic Properties of Moist Aira, 29.921 In. Hg (Continued)

TEMP DEG	4	105 106 107 108 109	110 111 112 113 114	115 116 117 118 119	120 121 122 123 123	125 126 127 128 129	130 131 132 132 133	135 136 137 138 139
Pressure	Lb per Sq In.	1.1009 1.1338 1.1675 1.2020 1.2375	1.274 1.311 1.350 1.389 1.429	1.470 1.512 1.555 1.600 1.645	1.692 1.739 1.788 1.838 1.889	1.941 1.995 2.049 2.105 2.163	2.221 2.281 2.343 2.406 2.470	2.536 2.603 2.672 2.742 2.814
Saturation Pressure p_{8}	In. of Hg	2.2414 2.3084 2.3770 2.4473 2.5196	2.5939 2.6692 2.7486 2.8280 2.9094	2.9929 3.0784 3.1660 3.2576 3 3492	3,4449 3,5406 3,6404 3,7422 3,8460	3.9519 4.0618 4.1718 4.2858 4.4039	4.5220 4.6441 4.7703 4.8986 5.0289	5.1633 5.2997 5.4402 5.5827 5.7293
SPECIFIC ENTHALPY OF LIQUID WATER	BTU PER LB	73.0 74.0 75.0 76.0 76.9	77.9 78.9 79.9 80.9 81.9	82.9 83.9 84.9 85.9 86.9	87.9 88.9 89.9 90.9 91.9	92.9 93.9 94.9 95.9 96.9	97.9 98.9 99.9 100.9	102.9 103.9 104.9 105.9 106.9
7 Air	Saturated Mixture hs	80.93 83.00 85.13 87.30 89.54	91.86 94.21 96.70 99.20 101.76	104.40 107.13 109.92 112.85 115.80	118.89 122.01 125.27 128.63 132.06	135.59 139.26 143.01 146.87 150.96	154.93 159.26 163.68 168.24 172.89	177.67 182.67 187.80 193.14 198.61
ENTHALPY BTU PER LB DRY AIR	h_{as} $(h_{a}-h_{a})$	55.73 57.56 59.45 61.38 63.38	65.46 67.57 69 82 72.08 74.40	76.80 79.29 81.84 84.53 87.24	90.09 92.97 95.99 99.11 102.30	105.59 109.02 112.53 116 15 120.00	123.73 128.81 131.99 136.31	145.26 150.02 154.91 160.01
Вто	Dry Air ha	25.20 25.44 25.68 25.92 26.16	26.40 26.64 26.88 27.12 27.36	27.60 27.84 28.08 28.32 28.56	28.80 29.04 29.28 29.52 29.52	30.00 30.24 30.48 30.48 30.72	31.20 31.45 31.69 31.93 32.17	32.41 32.65 32.89 33.13
Air	Saturated Mixture	15.37 15.44 15.50 15.57 15.64	15.71 15.78 15.85 15.93	16.08 16.16 16.24 16.32 16.41	16.50 16.58 16.68 16.77 16.87	16.96 17.06 17.17 17.27 17.38	17.49 17.61 17.73 17.85 17.97	18.10 18.23 18.36 18.50 18.65
Volume Cu Ft per Le Dry Air	$(v_{\mathbf{s}} - v_{\mathbf{a}})$	1.15 1.19 1.23 1.27 1.32	1.36 1.41 1.51 1.55	1.61 1.66 1.72 1.77	1.90 1.96 2.03 2.10 2.17	2.24 2.31 2.40 2.55	2.64 2.93 3.02	3.12 3.23 3.45 3.45
Cu Fr	Dry Air ⁹ a	14.25 14.25 14.27 14.30	14.35 14.37 14.39 14.42	14.47 14.50 14.55 14.55 14.55	14.60 14.62 14.65 14.67 14.70	14.72 14.75 14.77 14.80	14.85 14.88 14.90 14.93	14.98 15.00 15.03 15.05 15.08
TON RATIO F WATER DRY AIR	Grains	352.6 364.0 375.8 387.9 400.3	413.3 426.4 440.4 454.5 469.0	483 9 499.4 515.3 532 0 548.8	566.5 584.4 603.1 622.4 642.3	662.6 683.9 705.6 728.0 751.8	774.9 800.1 826.0 852.6 879.9	907.9 937.3 967.4 998.9 1031.1
SATURATION HUMIDITY RATIO W. WEIGHT OF WATER PER LB OF DRY AIR	Pounds	0.06037 .05200 .05368 .05541 .05719	0.05904 .06092 .06292 .06493 .06493	0.06913 .07134 .07361 .07600 .07840	0.08093 0.08348 0.08616 0.08892 0.09175	0 09466 .09770 .1008 .1040	0.1107 .1143 .1180 .1218	0.1297 .1339 .1382 .1427
TemP DEG	4	105 106 107 108	110 111 112 113 114	115 116 117 118 119	120 121 122 123 124	125 126 127 128 129	130 131 132 133 134	135 136 137 138 139

15

LELE 6. THERMODYNAMIC PROPERTIES OF MOIST AIRA, 29.921 IN. HG (CONTINUED)

	Temp Deg F		140 141 142 143 144	145 146 147 148 149	150 151 152 153 154	155 156 157 158 159	160 161 163 163 164	165 166 167 168 169	170 171 172 173 173
	Pressure	Lb per Sq In.	2 887 2 962 3.039 3.118 3.198	3 280 3 363 3.449 3.536 3.625	3.716 3.809 3.904 4.001 4.100	4 201 4.305 4 410 4.518 4.627	4 739 4.853 4 970 5 089 5 210	5.334 5.460 5.589 5.720 5 854	5 990 6.130 6.272 - 6 417 6.565
	SATURATION PRESSURE \$\rho_{9}\$	In of Hg	5 8779 6 0306 6.1874 6 3482 6.5111	6 6781 6.8471 7.0222 7.1993 7.3805	7.5658 7.7551 7.9485 8.1460 8.3476	8 5532 8 7650 8.9788 9.1986 9 4206	9.6486 9.8807 10.119 10.361	10.860 11.117 11.379 11.646 11.919	12.196 12.480 12.770 13.065 13.366
HERMODYNAMIC FROFEKTIES OF MOIST AME, 20,321 AM AND	SPECIFIC ENTHALPY OF LIQUID WATER	BTU PER LB	107 9 108.9 109.9 110.9	112.9 113.9 114.9 115.9	117 9 118 9 119.9 120.9 121.9	122 9 123.9 124.9 125.9	127.9 128.9 129.9 130.9	132.9 133.9 134.9 135.9 136.9	137.9 138.9 139.9 140.9 141.9
	. Air	Saturated Mixture hs	204 30 210.11 216.26 222 53 229.02	235.76 242.71 250.02 257.43 265.20	273 19 281.54 290.21 299.25 308.61	318 34 328.51 339.04 350.02 361.36	373.38 385.76 398.80 412.34 426.42	441.34 456 81 473.11 490.18 508.11	526.91 546.79 567.68 589.76 613.05
tarn 1 mary	Enthalpy Btu per LB Dry Air	$h_{as} = h_{a}$	170.69 176.26 182.17 188.20 194.45	200.95 207 66 214 73 221.90 229 43	237.17 245.28 253.71 262.51 271.63	281.12 291.05 301.24 312.08 323.18	334.95 347.09 359 89 373 19 387.03	401.71 416 94 433.00 449.83 467.52	486.08 505.72 526.36 548.20 571.25
OF INTOTAL	Bru	Dry Air ha	33.61 33.85 34.09 34.57	34 81 35 05 35 29 35 53 35 77	36 02 36.26 36.26 36.74 36.98	37.22 37.46 37.70 37.94 38.18	38.43 38.67 38.91 39.15	39.63 39.87 40.11 40.35 40.59	40 83 41.07 41.56 41.80
KUFEKIJES	Air	Saturated Mixture	18.79 18.94 19.10 19.26 19.43	19.60 19.78 19.96 20.15 20.35	20 55 20.76 20.97 21.20 21.43	21 67 21.93 22.19 22.46 22.74	23.03 23.33 23.65 24.33	24.69 25.07 25.46 25.88 26.31	26.77 27.24 27.74 28.28 28.84
DYNAMIC	Volume Cu Ft per Lb Dry Air	**************************************	3.69 3.81 3.95 4.08 4.23	4 37 4 53 4 68 4 85 5.02	5 20 5 38 5.57 5 77 5 98	6.19 6.43 6.66 6.90 7.16	7.42 7.70 7.99 8.30 8.62	8.96 9.31 9.68 10.07 10.48	10.91 11.36 11.83 12.35 12.88
	Cu FT	Dry Air	15 10 15.13 15.15 15.16 15 20	15.23 15.28 15.28 15.30 15.33	15 35 15.38 15 40 15 43 15.45	15.48 15.50 15.56 15.56	15.61 15.63 15.66 15.68 15.71	15.73 15.76 15.78 15.81 15.83	15 86 15.88 15.91 15.93
I ABLE 0.	TON RATIO F WATER DRY AIR	Grains	1064 7 1099.0 1135 4 1172.5 1211.0	1250.9 1292.2 1335.6 1379.7 1425.9	1473 5 1523.2 1575 0 1628.9 1684.9	1743.0 1803.9 1866.9 1932.7 2000.6	2072 7 2146.9 2225 3 2306 5 2391.2	2480.8 2573.9 2671.9 2774.8 2882.6	2996 0 3115.7 3241 7 3374.7 3515.4
	SATURATION HUMIDITY RATIO W ₈ WEIGHT OF WATER PER LB OF DRY AIR	Pounds	0 1521 .1570 .1622 .1652 .1675	0 1787 1846 1908 1971	0 2105 2176 2176 2250 2327 2407	0.2490 .2577 .2667 .2761 .2858	0.2961 .3067 .3179 .3295 .3416	0.3544 .3677 .3817 .3964 .4118	0.4280 .4451 .4631 .4821
	TemP Deg		140 141 142 143 144	145 146 147 148	150 151 152 153	155 156 157 158 159	160 161 162 163 163	165 166 167 168 169	170 171 172 173 174

a Compiled by W. M. Sawdon and extended by John A. Goff.

THERMODYNAMIC PROPERTIES OF MOIST AIRA, 29.921 IN. HG (CONCLUDED) TABLE 6.

	Temp Dec F	4	175 176 177 178 179	180 181 182 183 183	185 186 187 188 189	190 191 192 193 194	195 196 197 198 199	200	
	PRESSURE	Lb per Sq In.	6 716 6 869 7.025 7.184 7.345	7.510 7.678 7.849 8.024 8.201	8.382 8.566 8.753 8.944 9.138	9.336 9.538 9.744 9.954 10.168	10.385 10 605 10.829 11.057	11.525	
(пя)	SATURATION PRESSURE \$\rho\$	In. of Hg	13.674 13.985 14.303 14.627 14.954	15 290 15.632 15.981 16.337 16.697	17.066 17.440 17.821 18.210	19 008 19.419 19 839 20 266 20 702	21.144 21.592 22.048 22.512 22.984	23.465	
HERMODYNAMIC FROPERTIES OF MOIST AIR ^a , 29.921 IN. FIG (CONCLUDED)	SPECIFIC ENTHALPY OF LIQUID WATER	BTU PER LB	142.9 143.9 144.9 145.9 146.9	147.9 148.9 149.9 150.9	152 9 153.9 154 9 155 9	158.0 159.0 160.0 161.0 162.0	163.0 164.0 165.0 166.0 167.0	168.0	
721 IN. FIG	7 Air	Saturated Mixture hs	637.78 663.73 691.35 720.53 751.39	784.48 819.74 857.45 898.00 941.14	987.93 1038.21 1092.51 1151.58 1216.04	1285 37 1362.88 1448 35 1543 19 1648.28	1766 21 1897.86 2046.98 2217.88 2415.51	2646.41	
AIR ^a , 29.5	ENTHALPY BTU PER LB DRY AIR	$h_{\mathbf{a}\mathbf{s}} = h_{\mathbf{a}\mathbf{s}}$	595.74 621.45 648.83 677.77 708 39	741 24 776 25 813 72 854.03 896.93	943.48 993.52 1047 58 1106.40 1170.62	1239.71 1316.98 1402.21 1496.81 1601.66	1719.35 1850.76 1999.64 2170.29 2367.68	2598.34	
OF MOIST	Bru	Dry Air ha	42.04 42.28 42.52 42.76 43.00	43 24 43 49 43.73 43.97 44.21	44.45 44.69 44.93 45.18 45.42	45.66 45.90 46.14 46.62	46.86 47.10 47.34 47.59 47.83	48 07	
ROPERTIES	Air	Saturated Mixture	29 43 30.05 30.71 31.41 32.15	32.94 33.78 34.68 35.65 36.67	37 78 38.98 40.27 41.67	44.85 46 68 48 70 50.93 53 42	56.20 59.31 62.85 66.88 71.54	76.99	
YNAMIC F	VOLUME CU FT PER LB DRY AIR	$(v_{\mathbf{s}} - v_{\mathbf{a}})$	13 45 14.04 14.68 15 35 16.07	16 83 17 65 18.52 19.47 20.46	21.55 22.72 23.99 25.36 26.70	28.49 30.29 32.29 34.49 36.96	39 71 42.80 46 31 50.32 54.95	60.38	5
	Cu FT	Dry Air	15.98 16.01 16.03 16.06 16.06	16.11 16.13 16.16 16.18 16.21	16.23 16.26 16.28 16.31	16.36 16.39 16.41 16.44 16.44	16.49 16.51 16.54 16.56 16.59	16.61	.,
IABLE 6.	TION 7 RATIO OF WATER DRY AIR	Grains	3664.5 3821.3 3987 9 4164.3 4350 5	4550 7 4763 5 4991.7 5236.7 5497.8	5780 6 6085.1 6413.4 6771.1 7158 9	7581 0 8050 0 8568 0 9142 0 9779 0	10493.0 11291.0 12194.0 13230.0 14427.0	15827.0	
	SATURAT HUMIDITY] [Weight of PER LB OF D	Pounds	0.5235 .5459 .5697 .5949 .6215	0.6501 .6805 .7131 .7481	0 8258 .8693 .9162 .9673 1 0227	1 083 1.150 1 224 1.306 1 397	1.499 1.613 1.742 1.890 2.061	2 261	
	Temp Deg	* 4	175 176 177 178 179	180 181 182 183 184	185 186 187 188 189	190 191 193 194	195 196 197 198	200	

a Compiled by W. M. Sawdon and extended by John A. Goff.

This statement lacks thermodynamic soundness due to actual departures from Dalton's Law, but has real practical merit as an approximation.

Example 3. Calculate the humidity ratio of saturated moist air at 68 F, 30 in. Hg.

Solution. The saturation pressure of pure water at 68 F from Table 6 is 0.68980 in. Hg; hence,

$$W_{\rm s} = \frac{0.62193 \times 0.68980}{29.3102} = 0.01464$$
 (pound per pound of dry air).

It is also frequently stated that moist air is saturated when the space (volume) occupied by it contains the maximum weight of water vapor at the given temperature. This means that any additional water would have to be in the liquid or solid phase. But under proper circumstances the water vapor can be supersaturated, in which case the space occupied by the mixture can contain more than the maximum possible water vapor. The statement is therefore meaningless as a definition of saturation.

A precise definition must necessarily refer to the co-existence of at least two distinct phases, say, liquid and vapor. These can only co-exist in stable equilibrium if evaporation of the liquid or condensation of the vapor under conditions of constant total volume and constant total internal energy would have to involve a decrease of total entropy. This would be the situation if, and only if, the pressure, the temperature, and each component chemical potential has the same value in each phase.

In the case of moist air, the general conditions for saturation previously stated can be deduced from Equation 9 together with available data on the solubility of air in the liquid. They can be reduced to the form,

$$W_{\rm s} = 0.62193 \frac{p_{\rm s}^{'}}{P - p_{\rm s}^{'}} \tag{13a}$$

where

$$p_s' = \frac{(PF) (DF)}{(RF)} p_s$$
 (13b)

The liquid (or solid) phase will contain a small amount of dissolved air and the Raoult factor (RF) expresses the effect of this dissolved air in lowering the vapor pressure in accordance with Raoult's Law. The Poynting factor (PF) accounts for the fact that the very presence of dry air requires the liquid (or solid) to support a higher pressure at saturation than it would if no dry air were present. The Dalton factor (DF) expresses the effect of intermolecular forces in the vapor phase. All three factors depend more or less on pressure as well as on temperature.

The Raoult and Poynting factors are calculable. The order of magnitude of the Dalton factor can now be determined by computing its value at one temperature and pressure using the information previously referred to, namely, $2A_{\rm aw}=0.075~(A_{\rm aa}+A_{\rm ww})$. At 68 F, 29.921 in. Hg, for example,

$$p_{\rm s}^{'} = \frac{1.00073 \times 1.0052}{1.00002} p_{\rm s}$$

This indicates departures from Dalton's Law of the order of 0.5 per cent. The data in Table 6 which are based on an assumed value of unity for the

Dalton factor have not been revised pending final results on the measurement of the interaction constant [10].

Relative Humidity

The ratio of actual humidity ratio W to the saturation humidity ratio W_s corresponding to the actual temperature and the observed pressure is denoted by the symbol μ and may be called alternatively degree of saturation or percent saturation; thus,

$$W = \mu W_{\rm S} \tag{14}$$

Example 4. Air is to be maintained at 70 F, 40 per cent saturation when outside air is at 0 F, 70 per cent. The observed pressure may be taken to be 29.921 in. Hg. Find the weight of water to be added to each pound of dry air using Table 6.

Solution. The desired humidity ratio is $0.40\times0.01574=0.006296$ while that of putside air is $0.70\times0.0007852=0.000550$. Hence the weight of water to be added is 0.006296-0.000550=0.005746 lb per pound dry air.

Under Dalton's Law the water vapor exerts a partial pressure p_w which may be calculated from the given humidity ratio W and the observed pressure P by means of Equation 11. The ratio of this partial pressure p_w to the saturation pressure of pure water p_s corresponding to the actual temperature is called *relative humidity* and may be denoted by the symbol p_s ; thus,

$$\Phi = \frac{p_{\rm w}}{p_{\rm s}} \tag{15}$$

The relation between μ and Φ is obtained directly from Equations 11 and 12 and is

$$\mu = \left(\frac{P - p_{\rm s}}{P - p_{\rm w}}\right) \Phi \tag{15a}$$

whence it is clear that for ordinary temperatures where p_s and therefore b_w are small compared with P, the two are approximately equal.

As an aid in quickly translating degree of saturation μ into relative numidity Φ , the following empirical equation may be substituted for Equation 15a:

 $\Phi = \mu + C \mu (1 - \mu) \tag{15b}$

where C depends upon temperature for standard atmospheric pressure, as shown by the values in Table 7.

Within the limits of accuracy of (15b) this may also be written

$$\mu = \Phi - C \Phi (1 - \Phi)$$
 '15c)

and used to translate relative humidity Φ into degree of saturation

TABLE 7.	Values of the Constant C in Equations 15b and 15c

TEMP F	PER CENT						
5	0.16	30	0.55	55	1.47	80	3.51
10	0.21	35	0.68	60	1.76	85	4.14
15	0.27	40	0.83	65	2.10	90	4.86
20	0.34	45	1.01	70	2.50	95	5.70
25	0.44	50	1.22	75	2.97	100	6.67

For example, corresponding to 40 per cent saturation at 100 F, the relative humidity is $0.40 + 0.0667 \times 0.40 \times 0.60 = 0.416$ or 41.6 per cent (15b). Conversely, corresponding to a relative humidity of 41.6 per cent, the degree of saturation is $0.416 - 0.0667 \times 0.416 \times 0.584 = 0.400$ or 40 per cent (15c).

Dew-point

If moist air is cooled at constant humidity ratio W and constant observed pressure P, a temperature will be reached at which the air just becomes saturated and formation of a liquid (or solid) phase just commences. This temperature is called the dew-point corresponding to the given humidity ratio and observed pressure.

Example 5. Find the dew-point of the humidified air of Example 4.

Solution. The given humidity ratio is 0.006296 which is the saturation value at 44.96 F (Table 6, assuming the total pressure to be 29.921 in. Hg). This is therefore the dewpoint of the humidified air.

Example 6. Find the degree of saturation of air having a temperature of 90 F, a dew-point of 60 F.

Solution. Assuming the total pressure to be 29.921 in. Hg, the humidity ratio is given in Table 6 as 0.01103 lb per pound dry air. The saturation humidity ratio at 90 F is 0.03102 lb per pound dry air; hence the degree of saturation is $0.01103 \div 0.03102 = 0.355$ or 35.5 per cent.

Volume

The volume of moist air per pound of dry air contained in it is a very useful quantity. It should not be called specific volume; for the adjective specific should properly refer to volume per pound of mixture. Using Equations 10a and 14 an expression for the volume per pound of dry air is obtained, namely,

$$v = \frac{B_{a}T}{P} + \mu \left(\frac{W_{s}B_{w}T}{P}\right)$$
 (16)

Example 7. Find the volume (per pound of dry air) of the humidified air of Example 4.

Solution.
$$v = \left(\frac{53.35 \times 529.7}{29.92 \times 0.49115 \times 144}\right) + 0.40 \left(\frac{0.01574 \times 85.78 \times 529.7}{29.92 \times 0.49115 \times 144}\right)$$

= 13.354 + 0.40 × 0.338 = 13.489 cu ft per pound dry air.

Equation 16 is linear in degree of saturation μ and of the form

$$v = v_{\rm a} + \mu v_{\rm as} \tag{17}$$

where v_a denotes specific volume of dry air at temperature T and pressure P; and v_{as} denotes the difference between this and the volume of the saturated mixture per pound of dry air v_s . Strict linearity is, of course, a result of the use of Dalton's Law; but it is expected that it can be retained as a very close approximation even when the abandonment of Dalton's Law becomes possible.

Example 8. Work Example 7 using Table 6.

Solution. $v = 13.34 + (0.40 \times 0.34) = 13.48$ cu ft per pound dry air.

By putting $\mu = 1$ (100 per cent saturation) in Equation 16 an expression for v_s , the volume of saturated air per pound of dry air, is obtained. Values for standard atmospheric pressure (29.921 in. Hg) are listed in Table 6.

Often it is preferred to express this information in terms of *density*, that is, weight of saturated air per unit volume. This can easily be done by dividing v_s (volume of saturated air per pound of dry air) into $(1 + w_s)$ (weight of saturated air per pound of dry air). Thus, at 100 F, 29.921 in. Hg, the density of saturated air is, from Table 6, $1.04293 \div 15.07 = 0.06921$ lb per cubic foot.

Values in Table 9 are intended to aid in determining the density of saturated air at different pressures. Values for temperatures and pressures other than those listed can be obtained by linear interpolation which is aided by the next to last column of figures. Thus, at 100 F, 29.921 in. Hg, the density of saturated air is, from Table 9, $0.06818 + (4.21 \times 0.00024) = 0.06919$ lb per cubic foot, in approximate agreement with Table 6.

A column of figures is included in Table 9 giving the approximate average increase in density per degree wet-bulb depression. This makes it easy to calculate a value for the density of moist air taking into account its moisture content as well as its temperature and pressure.

Volume Chart

A volume chart drawn for a total pressure of 29.921 in. Hg will be found in the envelope attached to the inside back cover of this book. On this chart values of volume per pound of dry air v are plotted as abscissa against values of humidity ratio W as ordinate. The chart is self-explanatory.

Enthalpy

Thermodynamically, Equation 10a implies that the specific enthalpies of dry air and water vapor are independent of pressure and that the enthalpy of moist air (per pound of dry air) is the sum of separate contributions from the dry air and water vapor according to the simple equation

$$h = h_{\rm a} + \mu \left(W_{\rm s} h_{\rm w} \right) \tag{18}$$

Equation 18 is also linear in degree of saturation μ and of the form

$$h = h_{\rm a} + \mu h_{\rm as} \tag{19}$$

where h_a denotes the specific enthalpy of dry air at the given temperature and total pressure; and h_{as} denotes the difference between this and the enthalpy of the saturated mixture per pound of dry air h_s . Provisional values are listed in Table 6.

Example 9. Find the enthalpy (per pound of dry air) of air at 96 F, 60 per cent saturation and 29.921 in. Hg.

Solution. Using Table 6, $h = 23.04 + (0.60 \times 41.58) = 47.99$ Btu per pound dry air.

Thermodynamic Wet-bulb Temperature

If liquid (or solid) water be injected into an air stream it will evaporate and thus increase the humidity ratio of the air. Enough water may be injected to saturate the air. If the process is one of steady flow with observed pressure constant; if it is adiabatic; and if the temperature at which the air reaches saturation coincides with the temperature of the

liquid (or solid) as added; then the common temperature is called *thermodynamic wet-bulb temperature*. This lengthy definition is easily visualized by referring to Fig. 1 in which $h_{\mathbf{w}}$ denotes the specific enthalpy of the liquid (or solid) as injected.

The process being adiabatic, weight and energy accountings give

$$h_1 + (W_s - W_1) h'_w = h_s$$
 (20)

If the temperature of the saturated air at the leaving section coincides with that of the injected liquid (or solid), then W_s , h_w and h_s are functions of a single temperature t' which can therefore be determined by solving (20). This is the thermodynamic wet-bulb temperature corresponding to conditions at the entering section.

Example 10. Find the thermodynamic wet-bulb temperature of dry air at $80~\mathrm{F}$ and $29.921~\mathrm{in}$. Hg.

Solution. Using Table 6, the equation to be solved is $19.19 + (W_s - 0) h'_w = h_s$.

A trial value is obtained by ignoring the small quantity $(W_s - 0) h_w^l$; it is 48 F corresponding to $h_s = 19.19$ Btu per pound dry air. A final value of 48.26 F is then obtained from $h_s = 19.19 + (0.007072 \times 16.1) = 19.30$ Btu per pound dry air.

FIG 1. DIAGRAM ILLUSTRATING THERMODYNAMIC WET-BULB TEMPERATURE

Example 11. Find the degree of saturation of moist air at 90 F dry-bulb, 70 F wetbulb and 29.921 in. Hg.

Solution. Using Table 6, the equation to be solved is (21.59 + 34.11 $\mu)$ + (0.01574 - 0.03102 $\mu)$ \times 38.0 = 33.96 from which

$$\mu = 11.77 \div 32.93 = 0.357$$
 or 35.7 per cent.

It is important to note in connection with Equation 20 that the enthalpy per pound dry air is not constant along a line of constant thermodynamic wet-bulb temperature on account of the term $(W_s - W_1) h'_w$. In rough calculations, however, it is usually legitimate to ignore this term.

Thermodynamic wet-bulb is an important property of moist air because it is approximately the temperature indicated by the wet-bulb psychrometer. This instrument consists of a thermometer with its bulb covered with gauze moistened with clean liquid water. It is whirled through the air until the thermometer reads a steady temperature. At this point, the temperature of the liquid evaporating from the wetted surface has adjusted itself so that the air immediately in contact with the liquid is brought to saturation at the same temperature. Unfortunately, the mixing taking place beyond the liquid surface is not adiabatic; for one reason because the wet-bulb sees objects at dry-bulb temperature

and considerable heat is transferred by radiation. Also there are other reasons why the readings of the psychrometer depend upon the design of the instrument, the velocity of the air stream in which it is placed, and other factors. Therefore wet-bulb temperature as indicated by the psychrometer cannot be regarded as a thermodynamic property; in fact, the approximate agreement with thermodynamic wet-bulb temperature in the case of moist air has been shown to be largely fortuitous [4].

Mollier Diagram

A thermodynamic analysis of any air conditioning process consists in writing: (1) a weight balance for the dry air; (2) a weight balance for the water; (3) an energy balance. The first is reduced to its simplest form by basing all quantities on one pound of dry air. The second is the most simply expressed in terms of humidity ratio, or weight of water per pound of dry air. Since most air conditioning processes are of the steady flow type in which the thermal energy convected with the fluid is its enthalpy, the third is most simply expressed in terms of enthalpy per pound of dry air. It is clear, therefore, that humidity ratio W and enthalpy per pound of dry air h are fundamental coordinates. Their use for the purpose of graphical representation is due to Mollier [3]. A convenient modification of the Mollier diagram devised by Goff is obtained by taking humidity ratio W as ordinate and reduced enthalpy (h-1000W) as abscissa, as shown in the chart enclosed in the envelope attached to the inside back cover of this book.

The reasons for the use of the difference (h-1000W) as abscissa instead of h itself in the Mollier Diagram for Moist Air are the following: (1) it amounts to plotting on oblique coordinates and thus reduces to convenient proportions a diagram which would otherwise take the form of a scroll; (2) by the choice of the factor 1000 the necessary multiplication reduces to shifting the decimal point; (3) the ease with which the ordinate W can be multiplied by 1000 and added to the abscissa to obtain the enthalpy h makes it unnecessary to complicate the chart by a family of isenthalpic lines.

In the Mollier diagram, the lines inclined upward and slightly to the right are lines of constant (dry-bulb) temperature. They are straight under Dalton's Law but actually have slight curvature. The lines inunder Dalton's Law but actually have slight curvature. clined upward to the left are lines of constant thermodynamic wet-bulb and are straight by definition. The dry-bulb and wet-bulb lines meet at the saturation curve and coincide in the region to the left of this curve. This region is divided into three sub-regions by the narrow wedge with apex at the junction of the 32 F wet-bulb and dry-bulb lines. Above the wedge, the mixture consists of two distinct phases, saturated vapor and saturated liquid. At point A, for example, the temperature is 60 F and the vapor phase contains 0.01103 pounds of water vapor per pound of dry air from Table 6. From the Mollier diagram, $W = \hat{0}.01\hat{6}$ lb, leaving 0.00497 lb per pound dry air in the liquid phase. The total enthalpy of the mixture is $10.51 + (1000 \times 0.016) = 26.51$ Btu per pound dry air of which 15.34 + $(1000 \times 0.01103) = 26.37$ Btu per pound dry air is contributed by the vapor phase.

Within the wedge, the mixture consists of three distinct phases, saturated vapor, saturated solid and saturated liquid. The temperature is

Table 8. Properties of Saturated Steam: Pressure Table^a

	TABLE	8. Prop	ERTIES OF	SATURATED STEAM:			M: PRESSURE I ABLE ^a ENTROPY			
		SPECIFIC '	Volume	E	N THALPY	7		ENTROPY		ABS.
ABS. PRESS. IN. HG.	TEMP F	Sat. Liquid V _f	Sat. Vapor V _g	Sat. Liquid h _f	Evap h_{fg}	Sat Vapor h _g	Sat. Liquid S _f	$\overset{\text{Evap.}}{S_{\text{fg}}}$	Sat. Vapor S _g	Press. In. Hg.
0.25 0.50 0.75 1.00 1.5 2 4 6 8	40.23 58.80 70.43 79.03 91.72 101.14 125.43 140.78 152.24 161.49	0 01602 0.01604 0.01606 0.01608 0.01611 0.01614 0.01622 0.01630 0.01635 0.01640	2423.7 1256.4 856.1 652.3 444.9 339.2 176.7 120.72 92.16 74.76	8.28 26.86 38.47 47.05 59.71 69.10 93.34 108.67 120.13 129.38	1071.1 1060.6 1054.0 1049.2 1042.0 1036.6 1022.7 1013.6 1006.9 1001.4	1079 4 1087.5 1092.5 1096.3 1101.7 1105.7 1116.0 1122.3 1127.0 1130.8	0.0166 0.0532 0.0754 0.0914 0.1147 0.1316 0.1738 0.1996 0.2186 0.2335	2.1423 2.0453 1.9881 1.9473 1.8894 1.8481 1.7476 1.6881 1.6454 1.6121	2 1589 2.0986 2.0635 2.0387 2.0041 1.9797 1.9214 1.8877 1 8640 1.8456	0.25 0.50 0.75 1.00 1.5 2 4 6 8
12 14 16 18 20 22 24 26 28 30	169.28 176.05 182.05 187.45 192.37 196.90 201.09 205.00 208.67 212.13	0.01644 0.01648 0 01652 0.01655 0.01658 0 01661 0.01664 0.01667 0.01669 0.01672	63.03 54 55 48.14 43.11 39.07 35.73 32.94 30.56 28.52 26.74	137.18 143.96 149.98 155.39 160.33 164.87 169.09 173.02 176.72 180 19	996.7 992.6 988.9 985.7 982.7 979.8 977.2 974.8 972.5 970.3	1133 9 1136.6 1138.9 1141.1 1143.0 1144.7 1146.3 1147.8 1149.2 1150.5	0.2460 0.2568 0.2662 0.2746 0.2822 0.2891 0.2955 0.3014 0.3069 0.3122	1.5847 1.5613 1.5410 1.5231 1.5069 1.4923 1.4789 1.4789 1.4550 1.4442	1 8307 1.8181 1.8072 1.7977 1.7891 1 7814 1.7744 1.7679 1.7619 1.7564	12 14 16 18 20 22 24 26 28 30
LB/SQ IN. 14.696 16 18 20 22 24 26 28	212 00 216 32 222.41 227.96 233 07 237.82 242.25 246.41	0.01672 0.01674 0.01679 0.01683 0.01687 0.01691 0.01694 0.01698	26 80 24 75 22.17 20 089 18.375 16.938 15.715 14 663	180.07 184.42 190.56 196 16 201.33 206.14 210 62 214 83	970.3 967.6 963.6 960.1 956.8 953.7 950 7 947.9	1150.4 1152.0 1154.2 1156.3 1158.1 1159.8 1161.3 1162.7	0 3120 0.3184 0 3275 0.3356 0.3431 0.3500 0.3564 0.3623	1.4446 1.4313 1.4128 1.3962 1.3811 1.3672 1.3544 1.3425	1.7566 1.7497 1.7403 1.7319 1.7242 1.7172 1.7108 1.7048	LB/SQ IN. 14.696 16 18 20 22 24 26 28
30 32 34 36 38 40 42 44 46 48	250.33 254.05 257.58 260.95 264.16 267.25 270.21 273.05 275.80 278.45	0.01701 0.01704 0.01707 0.01709 0.01712 0.01715 0.01717 0.01720 0 01722 0 01725	13.746 12.940 12.226 11.588 11.015 10.498 10.029 9.601 9.209 8.848	218 82 222.59 226.18 229.60 232 89 236.03 239.04 241.95 244.75 247.47	945.3 942.8 940.3 938.0 935.8 933.7 931.6 929.6 927.7 925.8	1171.6	0.3733 0.3783 0.3831 0.3876 0.3919 0.3960 0.4000 0.4038	1.3313 1.3209 1.3110 1.3017 1.2929 1.2844 1.2764 1.2687 1.2613 1.2542	1 6763 1.6724 1.6687 1.6652	30 32 34 36 38 40 42 44 46 48
50 52 54 56 58 60 62 64 66 68	281 01 283 49 285.90 288.23 290.50 292.71 294.85 298.99 300 98	0.01727 0 01729 0.01731 0.01733 0.01736 0.01738 0.01740 0.01742 0 01744	8.515 8.208 7.922 7 656 7.407 7 175 6.957 6 752 6 560 6 378	250.09 252.63 255.09 257.50 259.82 262.09 264.30 266.45 268.55 270.60	920.5 918.8 917.1 915.5 913.9 912 3 910 8	1174.8 1175.6 1176.9 1177.6 1177.6 1178.8 1178.8	$egin{array}{cccc} 0.4144 \\ 0.4177 \\ 0.4209 \\ 0.4240 \\ 0.4270 \\ 0.4300 \\ 0.4356 \\ 0.4356 \\ \end{array}$	1.2409 1.2346 1.2285 1.2226 1.2168 1.2112 1.2059 1.2006	1.6553 1.6523 1.6494 1.6466 1.6438 1.6412 1.6387 1.6362	50 52 54 56 58 60 62 64 66 68
70 72 74 76 78 80 82 84 86 88	302 92 304.83 306 68 308 50 310.29 312 03 313 74 315 42 317.07 318.68	0.01748 0 01750 0.01752 0.01754 0 0.01755 0 0.01755 0 01759 0 01761 7 0.01762	6.206 6 044 5 890 5.743 5.604 5 472 5.346 5 226 5.111 5.001	272.61 274.57 276.49 278 37 280.21 282.02 283 79 285 58 287 24 288 91	907.9 906.5 905.1 903.7 902.4 901.1 899.7 8 898.5 8 897.5	1181 1181. 1182. 1182. 1183. 1183. 1184. 2 1184.	1 0 4435 6 0.4460 1 0.4484 6 0.4508 1 0 4531 5 0.4554 0 0.4576 4 0 4598	1.1857 1.1810 1.1764 1.1720 1.1676 1.1633 1.1592 1.1551	7 1.6292 1.6270 4 1.6248 0 1.6228 6 1.6207 8 1.6187 2 1.6168 1 1.6149	80 82 84 86
90 92 94 96 98 100 150 200 300 400 500	320.27 321 83 323 36 324.33 326.33 327.83 358 42 381.70 417.33 444.50 467.00	7 0 01766 8 0 01768 9 0.01779 7 0.01771 1 0.01772 1 0.01809 9 0.01839 9 0.01890 9 0.0193	4.896 4.796 4.699 4.606 4.517 4.432 3.015 2.288 1.543 1.161 0.927	330 55 355.36 3 393 84 3 424 0 8 449 4	8 893 892 891 891 891 891 891 891 891 891 801 801 780 785 785 785 801 801 785 785 801 80	5 1185. 1186 1186 1186 1186 1187. 1194. 1198 1194 1202 1204 1204 1204	7 0 4661 1 0.4682 4 0.4703 8 0.472 2 0.474 1 0.5133 8 0.587 5 0.621 4 0.648	1 1433 2 1.139 2 1.135 4 1 132 0 1 128 0 0.055 5 1 001 9 0.922 4 0 863 7 0.814	3 1.6094 4 1.6076 8 1.6060 2 1.6043 3 1.6026 1.5694 8 1.5453 5 1.5104 0 1.4844 7 1.4634	92 94 96 98 100 150 200 300 400

*Reprinted by permission from Thermodynamic Properties of Steam, by J. H. Keenan and F. G. Keyes, published by John Wiley and Sons, Inc., 1936 edition.

TABLE 8. PROPERTIES OF SATURATED STEAM: TEMPERATURE TABLE²

	ABS. PR	ESSURE	SPEC	IFIC VO	UME	I	ENTHALP	 У		ENTROPY		
TEMP F t	Lb per Sq In.	In. Hg	Sat. Liquid v _f	Evap.	Sat. Vapor	Sat. Liquid	Evap. h_{fg}	Sat. Vapor	Sat. Liquid S _f	Evap. S _{fg}	Sat. Vapor S _g	TEMP F t
32 33 34 35 36 37 38 39	0.08854 0.09223 0.09603 0.09995 0.10401 0.10821 0.11256 0.11705	0.1803 0.1878 0.1955 0.2035 0.2118 0.2203 0.2292 0.2383	0.01602 0.01602 0.01602 0.01602 0.01602 0.01602 0.01602 0.01602	3306 3180 3061 2947 2837 2732 2632 2536	3306 3180 3061 2947 2837 2732 2632 2536	0.00 1.01 2.02 3.02 4.03 5.04 6.04 7.04	1075.8 1075.2 1074.7 1074.1 1073.6 1073.0 1072.4 1071.9	1075.8 1076.2 1076.7 1077.1 1077.6 1078.0 1078.4 1078.9	0.0000 0.0020 0.0041 0.0061 0.0081 0.0102 0.0122 0.0142	2.1877 2.1821 2.1764 2.1709 2.1654 2.1598 2.1544 2.1489	2.1877 2.1841 2.1805 2.1770 2.1735 2.1700 2.1666 2.1631	32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49	0.12170 0.12652 0.13150 0.13665 0.14199 0.14752 0.15323 0.15914 0.16525 0.17157	0 2478 0.2576 0.2677 0.2782 0.2891 0.3004 0.3120 0.3240 0.3364 0.3493	0.01602 0.01602 0.01602 0.01602 0.01602 0.01602 0.01603 0.01603 0.01603	2190 2112 2036.4 1964 3 1895.1 1828.6	2444 2356 2271 2190 2112 2036.4 1964.3 1895.1 1828.6 1764.7	8.05 9.05 10.05 11.06 12.06 13.06 14.06 15.07 16.07 17.07	1071.3 1070.7 1070.1 1069.5 1068.9 1068.4 1067.8 1066.7 1066.1	1079.3 1079.7 1080.2 1080.6 1081.0 1081.5 1081.9 1082.4 1082.8 1083.2	0.0162 0.0182 0.0202 0.0222 0.0242 0.0262 0.0282 0.0302 0.0321 0.0341	2.1435 2.1381 2.1327 2.1274 2.1220 2.1167 2.1113 2.1060 2.1008 2.0956	2.1597 2.1563 2.1529 2.1496 2.1462 2.1429 2.1395 2.1362 2.1329 2.1297	40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58	0.17811 0.18486 0 19182 0.19900 0 20642 0 2141 0 2220 0 2302 0.2386 0 2473	0.3626 0.3764 0.3906 0.4052 0.4203 0.4359 0.4520 0 4686 0.4858 0 5035	0.01603 0.01603 0.01603 0.01603 0.01603 0.01603 0.01603 0.01603 0.01604 0.01604	1481 0 1430.7 1382 4 1335.9	1703.2 1644.2 1587.6 1533.3 1481.0 1430.7 1382.4 1335.9 1291.1 1248.1	18.07 19 07 20.07 21.07 22 07 23 07 24.06 25.06 26 06 27.06	1065.6 1065.0 1064.4 1063.9 1063.3 1062.7 1062.2 1061.6 1061.0 1060.5	1083.7 1084.1 1084.5 1085.0 1085.4 1085.8 1086.3 1086.7 1087.1 1087.6	0.0361 0.0380 0.0400 0.0420 0.0439 0.0459 0.0478 2.0497 0.0536	2 0903 2.0852 2.0799 2 0747 2 0697 2 0645 2 0594 2 0544 2 0493 2.0443	2 1264 2.1232 2 1199 2 1167 2 1136 2 1104 2 1072 2 1041 2.1010 2.0979	50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69	0 2563 0 2655 0 2751 0.2850 0 2951 0.3056 0.3164 0 3276 0.3390 0 3509	0 5218 0.5407 0 5601 0.5802 0.6009 0.6222 0 6442 0 6669 0 6903 0.7144	0.01604 0.01604 0.01604 0.01605 0.01605 0.01605 0.01605 0.01605 0.01605	1128.4 1091.4	1206.7 1166.8 1128.4 1091.4 1055.7 1021.4 988.4 956.6 925.9 896.3	28.06 29.06 30.05 31.05 32.05 33.05 34.05 35.05 36.04 37.04	1059.9 1059.3 1058.8 1058.2 1057.6 1057.1 1056.5 1056.0 1055.5 1054.9	1088.0 1088.4 1088.9 1089.3 1089.7 1090.2 1090.6 1091.0 1091.5 1091.9	0.0555 0.0574 0.0593 0.0613 0.0632 0.0651 0.0670 0.0689 0 0708 0 0726	2.0393 2.0343 2.0293 2.0243 2.0194 2.0145 2.0096 2.0047 1.9998 1.9950	2 0948 2 0917 2.0886 2 0856 2.0826 2.0796 2.0766 2.0736 2.0706 2.0766	60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79	0 3631 0 3756 0 3886 0 4019 0 4156 0 4298 0 4443 0 4593 0.4747 0.4906	0.7392 0 7648 0.7912 0 8183 0 8462 0 8750 0 9046 0 9352 0 9666 0.9989	0.01606 0 01606 0 01606 0 01606 0 01606 0 01607 0 01607 0 01607 0 01608	867.8 840 4 813 9 788.3 763.7 740 0 717.1 694 9 673 6 653 0	867.9 840.4 813.9 788.4 763.8 740.0 717.1 694.9 673.6 653.0	38.04 39.04 40.04 41.03 42.03 43.03 44.03 45.02 46.02 47.02	1054.3 1053.8 1053.2 1052.6 1052.1 1051.5 1050.9 1050.4 1049.8 1049.2	1092.8 1092.8 1093.2 1093.6 1094.1 1094.5 1094.9 1095.4 1095.8 1096.2	0.0745 0.0764 0.0783 0.0802 0.0820 0.0839 0.0858 0.0876 0.0895 0.0913	1.9902 1.9854 1.9805 1.9757 1.9710 1.9663 1.9615 1.9569 1.9521 1.9475	2.0647 2.0618 2.0588 2.0559 2.0530 2.0502 2.0443 2.0445 2.0388	70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88	0 5069 0.5237 0 5410 0.5588 0 5771 0 5959 0.6152 0 6351 0 6556 0 6766	1 0321 1 0664 1 1016 1 1378 1.1750 1.2133 1.2527 1 2931 1.3347 1 3775	0 01608 0 01608 0 01608 0.01609 0.01609 0.01609 0.01610 0 01610 0.01610	595 3 577.4 560 1 543 4 527.3 511 7 496.6	633.1 613.9 595.3 577.4 560.2 543.5 527.3 511.7 496.7 482.1	48.02 49 02 50.01 51 01 52.01 53.00 54.00 55 00 56.00 56.99	1048.6 1048.1 1047.5 1046.9 1046.4 1045.8 1045.2 1044.7 1044.1 1043.5	1096 6 1097.1 1097 5 1097.9 1098.4 1098.8 1099 2 1099.7 1100 1 1100.5	0.0932 0.0950 0.0969 0.0987 0.1005 0.1024 0.1042 0.1060 0.1079 0.1097	1.9428 1.9382 1.9335 1.9290 1.9244 1.9198 1.9153 1.9108 1.9062 1.9017	2 0360 2.0332 2.0304 2.0277 2.0249 2.0222 2 0195 2 0168 2 0141 2 0114	80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99	0 6982 0.7204 0 7432 0.7666 0 7906 0 8153 0.8407 0.8668 0 8935 0.9210 0 9492 0 9781	1.4215 1.4667 1.5131 1.5608 1.6097 1.6600 1.7117 1.7647 1.8192 1.8751 1.9325 1.9915	0 01610 0 01611 0.01611 0 01612 0.01612 0.01612 0.01612 0.01613 0 01613 0 01613 0 01614	454 4 441.2 428 5 416.2 404 3 392 8 381 7 370.9 360 4 350 3	468 0 454.4 441.3 428 5 416 2 404.3 392 8 381.7 370 9 360.5 350 4 340.6	57.99 58.99 59.99 60.98 61.98 62.98 63.98 64.97 65.97 66.97 67.97 68.96	1042 9 1042 4 1041.8 1041.2 1040.7 1040.7 1039 5 1038 9 1038 4 1037.8 1036 6	1100 9 1101.4 1101 8 1102 2 1102.6 1103 1 1103 5 1103.9 1104.4 1104 8 1105.2	0 1115 0.1133 0.1151 0.1169 0 1187 0 1205 0.1223 0 1241 0.1259 0.1277 0.1295 0 1313	1 8972 1.8927 1 8883 1.8838 1 8794 1.8750 1.8706 1.8662 1.8618 1.8575 1.8531 1.8488	2.0087 2.0060 2.0034 2.0007 1.9981 1.9955 1.9929 1.9903 1.9877 1.9852 1.9801	90 91 92 93 94 95 96 97 98 99 100

aReprinted by permission from *Thermodynamic Properties of Steam*, by J. H. Keenan and F. G. Keyes, published by John Wiley and Sons, Inc., 1936 edition.

Table 9. Weight of Saturated and Partly Saturated Aira

Dry-Bulb	Weight of Saturated Air for Various Barometric and Hygrometric Conditions—Pounds per Cubic Foot							Approx Average
TEMP DEG F	Parameters Decrees Tools of Marine					Increase In Weight Per 0.1 in.	INCREASE IN WEIGHT PER DEG	
	28 5	29 0	29 5	30 0	30 5	31 0	Rise in Barometer	WET-BULB DEPRESSION
30	0.07703	0.07839	0.07974	0.08110	0.08245	0.08381	0.00027	0.000017
32	0.07671	0.07806	0.07940	0.08075	0.08210	0.08345	0.00027	0.000017
34	0.07638	0.07772	0.07907	0.08041	0.08175	0.08310	0.00027	0.000018
36	0.07605	0.07739	0.07873	0.08007	0.08141	0.08274	0.00027	0.000018
38	0.07573	0.07706	0.07840	0.07973	0.08106	0.08239	0.00027	0.000019
40	0.07541	0.07674	0.07806	0.07939	0.08072	0.08205	0.00027	0.000019
42	0.07509	0.07641	0.07773	0.07905	0.08038	0.08170	0.00026	0.000020
44	0.07477	0.07609	0.07740	0.07872	0.08004	0.08135	0.00026	0.000020
46	0.07445	0.07576	0.07707	0.07838	0.07970	0.08101	0.00026	0.000021
48	0.07413	0.07544	0.07674	0.07805	0.07936	0.08066	0.00026	0.000021
50	0.07381	0.07512	0.07642	0.07772	0.07902	0.08032	0.00026	0.000022
52	0.07350	0.07479	0.07609	0.07739	0.07868	0.07998	0.00026	0.000023
54	0.07318	0.07447	0.07576	0.07706	0.07835	0.07964	0.00026	0.000023
56	0.07287	0.07415	0.07544	0.07673	0.07801	0.07930	0.00026	0.000024
58	0.07255	0.07383	0.07512	0.07640	0.07768	0.07896	0.00026	0.000025
60	0.07224	0.07352	0.07479	0.07607	0.07734	0.07862	0.00026	0.000026
62	0.07193	0.07320	0.07447	0.07574	0.07701	0.07828	0.00026	0.000027
64	0.07161	0.07288	0.07414	0.07541	0.07668	0.07794	0.00026	0.000028
66	0.07130	0.07256	0.07382	0.07508	0.07634	0.07760	0.00026	0.000029
68	0.07098	0.07224	0.07350	0.07475	0.07601	0.07727	0.00026	0.000030
70	0.07067	0.07192	0.07317	0.07442	0.07568	0.07693	0.00026	0.000031
72	0.07035	0.07160	0.07285	0.07410	0.07534	0.07659	0.00025	0.000032
74	0.07004	0.07128	0.07252	0.07377	0.07501	0.07625	0.00025	0.000033
76	0.06972	0.07096	0.07220	0.07343	0.07467	0.07591	0.00025	0.000034
78	0.06940	0.07064	0.07187	0.07310	0.07434	0.07557	0.00025	0.000036
80	0.06909	0.07032	0.07155	0.07277	0.07400	0.07523	0.00025	0.000037
82	0.06877	0.07000	0.07122	0.07244	0.07366	0.07489	0.00024	0.000039
84	0.06845	0.06967	0.07089	0.07211	0.07333	0.07454	0.00024	0.000040
86	0.06812	0.06934	0.07056	0.07177	0.07299	0.07420	0.00024	0.000042
88	0.06780	0.06901	0.07022	0.07143	0.07264	0.07385	0.00024	0.000043
90	0.06748	0.06868	0.06989	0.07109	0.07230	0.07351	0.00024	0.000045
92	0.06715	0.06835	0.06955	0.07075	0.07195	0.07316	0.00024	0.000047
94	0.06682	0.06801	0.06921	0.07041	0.07161	0.07280	0.00024	0.000049
96	0.06648	0.06768	0.06887	0.07006	0.07126	0.07245	0.00024	0.000051
98	0.06615	0.06734	0.06853	0.06972	0.07091	0.07209	0.00024	0.000053
100	0.06581	0.06700	0.06818	0.06937	0.07055	0.07174	0.00024	0.000055

 $^{^{\}rm a}{\rm Approximate}$ average decrease in weight per 0 1 F rise in dry-bulb temperature equals 0.000017 lb per cubic foot.

32 F; and the relative proportions of the three phases depend upon the location of the state point within the wedge. Below the wedge, the mixture consists of saturated vapor and saturated solid.

The curved lines in the single vapor-phase region to the right of the saturation curve are lines of constant per cent saturation. Lines of constant dew-point are, of course, horizontal straight lines of constant humidity ratio. At point B, for example, the dry-bulb temperature is 60 F, the thermodynamic wet-bulb is 50 F, the dew-point is 40.8 F, the degree of saturation is 48.6 per cent, the humidity ratio is 0.00536 lb per pound dry air, and the enthalpy is $14.85 + (1000 \times 0.00536) = 20.21$ Btu per pound dry air.

With the aid of the Mollier diagram, it is easy to throw the definition of thermodynamic wet-bulb, Equation 20, into a more familiar form. Consider the three points 1, 2, 3, Fig. 2. Point 3 is located with respect to points 1 and 2 so that $W_3 = W_1$ and $t_3 = t_2$. Points 1 and 2, being on

Fig. 2. Diagram Illustrating Thermodynamic Wet-Bulb Temperature

a line of constant thermodynamic wet-bulb, satisfy Equation 20; thus,

$$h_1 - h_3 + (W_2 - W_1) h'_{w,2} = h_2 - h_3$$

where h_3 has been subtracted from both sides. Under Dalton's Law, $h_2 - h_3 = (W_2 - W_1) h_{w,2}$; moreover, $h_1 - h_3$ may be replaced by \bar{s}_1 ($t_1 - t_2$) where \bar{s}_1 is often referred to as mean humid heat and may be calculated with good approximation from

$$\overline{s_1} = 0.240 + 0.444 W_1 \tag{21}$$

Finally, introducing latent heat of vaporization at the wet-bulb temperature, namely, $(h_{\rm fg})_2 = (h_{\rm w} - h'_{\rm w})_2$, Equation 20 becomes, after omitting the subscript 2,

$$\frac{t_1 - t'}{W_s - W_1} = \frac{h_{fg}}{\overline{s_1}} \tag{22}$$

it being understood that W_s is the saturation humidity ratio and h_{fg} , the latent heat, at the wet-bulb temperature t^{l} . Equation 22 was derived by Carrier [1].

Example 12. Work Example 10 using Equation 22.

Solution. A trial-by-error method is involved. Taking 48 F as a trial value of t', $(80-48) \div (0.007072-0) = 4520$; but $1066.7 \div 0.240 = 4440$. The trial value must, therefore, be revised upward, the final solution being 48.26 F as in Example 10.

TYPICAL AIR CONDITIONING PROCESSES

Illustrative Examples. The use of Table 6 and the Mollier diagram in analyzing typical air conditioning processes is best explained by the use of illustrative examples. In each of these examples, the observed pressure is assumed to be standard atmospheric pressure (29.921 in. Hg).

Example 13. Heating. Air at 20 F and 80 per cent saturation is to be heated to 120 F. Analyze the process as illustrated in Fig. 3.

Solution. The initial humidity ratio is $0.80 \times 0.002144 = 0.001715$ lb per pound dry air (table). This same value is read directly on the chart. The initial enthalpy is

Fig. 3. Diagram Illustrating Example 13

Fig. 4. Diagram Illustrating Example 14

 $4.798 + (0.80 \times 2.290) = 6.630$ Btu per pound dry air (table) or $4.915 + (1000 \times 0.001715) = 6.630$ (chart).

The final degree of saturation is 0.001715 \div 0.08093 = 0.0212 (table); hence the final enthalpy is 28.80 + (0.0212 \times 90.09) = 30.71 Btu per pound dry air (table) or 28.99 + (1000 \times 0.001715) = 30.71 (chart).

The increase in enthalpy is the quantity of heat to be supplied, namely, 30.71-6.63=24.08 Btu per pound dry air (table). Since humidity ratio W and therefore 1000W is constant, this is also simply the horizontal distance between the representative points on the chart; thus, the heat to be supplied is also 28.99-4.915=24.08 Btu per pound dry air (chart).

The final volume is $14.60+(0.0212\times1.90)=14.64$ cu ft per pound (table); or direct from the volume chart. Therefore, if 20,000 cfm of heated air is to be supplied, the quantity of heat required is $(20,000\div14.64)\times24.08=32,900$ Btu per minute.

Example 14. Cooling and Separating. Air at 95 F and 50 per cent saturation is to be cooled to 70 F and the liquid separated out. Analyze the process as shown in Fig. 4.

Solution. The initial humidity ratio is $0.50\times0.03652=0.01826$ (table). The initial enthalpy is $22.80+(0.50\times40.25)=42.93$ Btu per pound dry air (table) or $24.67+(1000\times0.01826)=42.93$ (chart).

The final state is in the two-phase region and consists of 0.01574 lb water per pound dry air in the vapor phase, and 0.00252 lb water per pound dry air in the liquid phase. The final enthalpy is therefor $33.96 + (0.00252 \times 38.0) = 34.06$ Btu per pound dry air (table) or $15.80 + (1000 \times 0.01826) = 34.06$ (chart).

The decrease of enthalpy is the refrigeration to be supplied and is 42.93 - 34.06 = 8.87 Btu per pound dry air (table). Since the weight of water per pound of dry air is constant, this is also the horizontal distance between the representative points on the chart, namely, 24.67 - 15.80 = 8.87 Btu per pound dry air (chart).

The initial volume is $13.97 + (0.50 \times 0.82) = 14.38$ cu ft per pound (table); or direct from the volume chart. Therefore, if 20,000 cfm of initial air is to be processed, the refrigeration required is $(20,000 \times 8.87) \div (14.38 \times 200) = 61.7$ tons. The weight of water to be removed is $(20,000 \times 0.00252) \div 14.38 = 3.51$ lb per minute.

Example 15. Adiabatic Saturation with Recirculated Spray Water. Air at 75 F and 60 per cent saturation is saturated adiabatically with spray water which is recirculated.

Fig. 5. Diagram Illustrating Example 15

Find the resulting temperature and the weight of water added per pound of dry air as outlined in Fig. 5.

Solution. The recirculated water will assume the thermodynamic wet-bulb temperature of the entering air which will also be the temperature of the resulting saturated mixture. The humidity ratio of the entering air is $0.60\times0.01873=0.01124$ lb water per pound dry air (table); its enthalpy is $17.99+(0.60\times20.47)=30.27$ Btu per pound dry air (table) or $19.03+(1000\times0.01124)=30.27$ Btu per pound dry air (chart). To determine the resulting temperature, the following equation must be solved.

$$30.27 + (W_s - 0.01124) h_w' = h_s$$

A trial value is 65 F corresponding to $h_s=30.27$. The final value is 65.50 F corresponding to $h_s=30.27+(0.01320-0.01124)\times 33.05=30.34$ Btu per pound dry air. The weight of water to be added is 0.01344-0.01124=0.00200 lb per pound dry air.

The volume of the entering air is $13.47 + (0.60 \times 0.40) = 13.71$ cu ft per pound. If 20,000 cfm of entering air is to be saturated, the weight of water to be added per minute is $(20,000 \times 0.00200) \div 13.71 = 2.92$ lb per minute.

Adiabatic Mixing of Two Air Streams

A typical process requiring special discussion is the adiabatic mixing of two air streams. Let stream 1 contain M_1 pounds of dry air per minute and let its enthalpy be h_1 and its humidity ratio W_1 . Using subscripts 2

and 3 in a similar manner to designate stream 2 and the resulting mixture respectively, write:

$$M_1 + M_2 = M_3$$
 (weight balance for the dry air) $M_1W_1 + M_2W_2 = M_3W_3$ (weight balance for the water) $M_1h_1 + M_2h_2 = M_3h_3$ (energy balance, no heat absorbed)

Eliminating M_3 ,

$$\frac{W_2 - W_3}{W_3 - W_1} = \frac{h_2 - h_3}{h_3 - h_1} = \frac{M_1}{M_2}$$
 (23)

according to which: on the Mollier Chart the representative point of the resulting mixture lies on the straight line connecting the representative points of the two streams being mixed, and divides the line into two segments which are in the same ratio as the weights of dry air in the two streams. It must not be forgotten that this analysis assumes adiabatic mixing.

Example 16. Outside air at 0 F and 80 per cent saturation is to be mixed adiabatically with recirculated air at 70 F and 20 per cent saturation in the ratio, one pound of dry

Fig. 6. Diagram Illustrating Example 16

air in the former to seven in the latter. Find the temperature and degree of saturation of the resulting mixture as shown in Fig. 6.

Solution. The humidity ratio and enthalpy of the resulting mixture satisfy

$$\frac{0.003148 - W_3}{W_3 - 0.000628} = \frac{20.23 - h_3}{h_3 - 0.666} = \frac{1}{7}$$

whence.

 $W_{\rm 3} = 0.002833$ lb water per pound dry air.

 $h_8 = 17.78$ Btu per pound dry air.

The corresponding temperature and degree of saturation are 61.3 F and 24.5 per cent as is easily verified by use of Table 6. The numerical solution is somewhat tedious, but the graphical solution is easy.

Adiabatic Mixing with Injected Water

Another typical process is that of injecting water (solid, liquid or vapor) into an air stream to mix adiabatically with it. Let the subscripts 1 and 2 refer to the initial and final conditions, respectively; then write

$$1+0$$
 = 1 (weight balance for the dry air)
 $W_1+(W_2-W_1)=W_2$ (weight balance for the water)
 $h_1+(W_2-W_1)$ $h_W=h_2$ (energy balance, no heat absorbed)

The first two are identities and are incorporated in the third. This may be rewritten as follows:

$$\frac{h_2 - h_1}{W_2 - W_1} = h_{\rm w} \tag{24}$$

and shows that the process is represented by a straight line on the Mollier diagram, the slope of the line being determined by the specific enthalpy of the injected water. It must not be forgotten that the analysis assumes adiabatic mixing. Energy convected with a fluid is not heat.

Example 17. It is desired to increase the humidity ratio of air at 70 F without changing its temperature. Under what conditions may water be injected in order to accomplish the desired result.

Solution. Under Dalton's Law a line of constant (dry-bulb) temperature is straight on the Mollier diagram and its slope is determined by the specific enthalpy of water vapor at the given temperature. At 70 F, $h_{\rm W}=1092.3$ Btu per pound; hence injection of steam having this specific enthalpy will cause the representative point to move in a direction parallel to the 70 F isotherm. Saturated steam at 70 F may not be used because its pressure is only 0.7392 in. Hg and it cannot therefore be injected into air at atmos-

Fig. 7. Diagram Illustrating Example 18

pheric pressure. Saturated steam at $667.4~\mathrm{F}$, $2488~\mathrm{lb}$ per square inch has the right specific enthalpy and can be throttled into a room at $70~\mathrm{F}$ without altering the room temperature.

Border Scale

On the Mollier diagram is placed a border scale to facilitate the graphical solution of problems in which given quantities of energy and water are added (or withdrawn) simultaneously as in the case of adiabatic mixing with injected water. All marks in the upper half of this scale point to the lower left corner of the chart and each shows the *direction* that the representative point will move due to adiabatic mixing with injected water having the indicated specific enthalpy. All marks in the lower half of the scale point to the lower right corner of the chart.

Example 18. If dry saturated steam at 20 lb per square inch absolute is injected into air initially at 60 F and 30 per cent saturation to raise the temperature to 70 F, what is the final degree of saturation and how much water is added per pound dry air? (See Fig. 7.)

Solution. The initial humidity ratio is $0.30 \times 0.01103 = 0.00331$ lb water per pound dry air (or direct from chart). The initial enthalpy is $14.39 + (0.30 \times 11.98) = 17.98$ Btu per pound dry air (table) or $14.67 + (1000 \times 0.00331) = 17.98$ (chart). A pre-

liminary calculation shows that the final mixture contains liquid. The final weight of water per pound of dry air is determined from

$$\frac{33.96 + (W - 0.01574) \times 38.0 - 17.98}{W - 0.00331} = 1156.3$$

where the specific enthalpy of the injected water is 1156.3 Btu per pound. The answer is W = 0.01718 lb water per pound dry air.

Therefore, the weight of water added is 0.01718 - 0.00331 = 0.01387 lb per pound dry air as shown in Fig. 7.

Adiabatic Saturation

Any case of adiabatic mixing in which the resulting mixture is saturated may properly be called *adiabatic saturation*. For example, if enough water at 352 F be sprayed into dry air at 80 F to produce a saturated mixture, the resulting enthalpy will be $h_{\rm s}=19.19+(W_{\rm s}-0)$ 324; and since $h_{\rm s}$ and $W_{\rm s}$ are functions of the same temperature, this temperature is determined by the equation to be 53.0 F. Thus, adiabatic saturation of dry air at 80 F by injecting liquid water at 352 F results in a temperature of 53.0 F when saturation is reached.

But in practice, much more is usually read into the term adiabatic saturation, it being generally understood that saturation is to be produced by injecting liquid water at such a temperature as will coincide with that at which the saturation curve is reached. With this understanding it may be said that thermodynamic wet-bulb temperature is the result of adiabatic saturation. Thus, if liquid water at 48.26 F instead of 352 F be injected into dry air at 80 F a saturated mixture at 48.26 F instead of 53.0 F will be produced. Therefore, 48.26 F is the thermodynamic wet-bulb temperature of dry air at 80 F.

It is possible to produce adiabatic saturation, interpreting the term literally, by mixing two air streams neither of which is itself saturated. In order for this to be possible, the straight line connecting the representative points on the Mollier diagram must cut the saturation curve twice.

Cooling Load

In the calculation of the cooling load for an air conditioned space, the problem usually reduces to determining the quantity of inside air that must be withdrawn and the condition to which it must be brought by cooling, separating and possibly reheating so that return of the conditioned air will have the net effect of removing given amounts of energy and water from the air conditioned space.

Let m denote the weight of dry air withdrawn per hour. With it will be withdrawn energy of amount mh_1 Btu per hour and water of amount mW_1 pounds per hour, where h_1 and W_1 denote enthalpy and humidity ratio, respectively, of inside air. The weight of dry air returned per hour will be the same as that withdrawn but with it must be returned a smaller amount of energy, mh Btu per hour, and a smaller quantity of water, mW pounds per hour, where h and W denote enthalpy and humidity ratio of conditioned air.

With this understanding, the requirements of the cooling load problem are,

$$mh = mh_1 - \Delta Q$$

$$mW = mW_1 - \Delta W$$

where ΔQ and ΔW are the given amounts of energy and water, respectively, to be removed simultaneously. Eliminating m from these equations,

$$\frac{h - h_1}{W - W_1} = \frac{\Delta Q}{\Delta W} = q \tag{25}$$

which says that all possible states for the conditioned air lie on a straight line, on the Mollier Chart, which passes through the state point of the Inside Air with a slope determined by the ratio q (Btu per lb water) of the quantities of energy and water to be removed simultaneously. This straight line is called the *condition line* for the given problem.

If the condition line crosses the saturation curve the intersection is called the *apparatus dew-point* (Chapter 21). For, if the air conditioning

Fig. 8. Diagram Illustrating Example 19

apparatus is set to produce a saturated mixture having the temperature corresponding to this point, the introduction of this saturated mixture into the conditioned space will result in the simultaneous removal of the required amounts of energy and water.

Graphical solution of a cooling load problem is facilitated by the border scale on the Mollier Chart. The numbers around this border scale may be regarded as values of the ratio q (Btu per lb water), each number determining the *direction* of the corresponding condition line.

Example 19. A condition of 80 F dry-bulb, 67 F wet-bulb is to be maintained in a certain clothing store, outside conditions being 95 F dry-bulb, 75 F wet-bulb. The energy gain from normal heat transmission is estimated at 16,000 Btu per hour, that from solar radiation at 48,000 Btu per hour. The energy generated by lights, fans, etc., is estimated at 13,900 Btu per hour. The ventilation requirement is 30,000 cu ft of Outside Air per hour. The number of occupants is 50. Find the apparatus dew-point and the cooling load as analyzed in Fig. 8.

Solution. The thermodynamic properties of Outside Air are: v=14.29 cu ft per pound dry air, h=38.26 Btu per pound dry air, and W=0.01402 lb water per pound dry air. Therefore, the weight of dry air entering with the Ventilating Air is $30,000 \div 14.29 = 2099$ lb dry air per hour. This brings with it energy of amount 2099×38.26

= $80,\!300$ Btu per hour and water of amount $2099 \times 0.01402 = 29.43$ lb per hour. An equal weight of dry air must be displaced from the store.

The thermodynamic properties of Inside Air are: $h_1=31.41$ Btu per pound dry air, and $W_1=0.01115$ lb water per pound dry air. Therefore, the energy leaving the store with the Inside Air displaced by the Ventilating Air is $2099\times31.41=65,900$ Btu per hour; the weight of water leaving is $2099\times0.01115=23.41$ lb per hour.

Each occupant may be regarded as a normal person standing at rest and therefore evaporating 0.198 lb of water per hour at about 79 F (Table 3, Chapter 2). Therefore the energy added to the store by such evaporation is $50 \times 0.198 \times 1096.2$ (enthalpy of saturated vapor at 79 F, Table 8) = 11,000 Btu per hour, the weight of water added being $50 \times 0.198 = 9.90$ lb per hour. In addition each person loses 225 Btu of heat per hour by conduction, convection and radiation, making a total for 50 persons of 11,300 Btu per hour.

An energy balance shows a net gain of 16,000+48,000+13,900+80,300-65,900+11,000+11,300=114,600 Btu per hour. A water balance shows a net gain of 29.43-23.41+9.90=15 92 lb per hour. The slope of the condition line is determined by the ratio $q=114,600\div15.92=7205$ Btu per pound of water. The temperature at which the condition line crosses the saturation curve is 58.02 F which is, therefore, the apparatus dew-point. This temperature is found by solving Equation 25,

$$\frac{31.41 - h_{\rm s}}{0.01115 - W_{\rm s}} = 7205$$

The fact that a trial-by-error solution is required is not a serious complication.

In order to calculate the cooling load it will be assumed that the air conditioning process consists of cooling and separating. The thermodynamic properties entering the calculations are:

	Inside Air	After Cooling	After Separating
<i>t</i>	80.0	58.02	58.02
W	0.01115		0.01027
h	31.41	25.086	25.063

It follows that the refrigeration required is 31.41-25.086=6.324 Btu per pound dry air. But the weight of dry air involved is $114,600\div(31.41-25.063)=18,056$ pounds per hour; hence the total refrigeration required, namely, the cooling load, is $18,056\times6.324=114,185$ Btu per hour, or $114,185\div12,000$ (Btu extracted per hour per ton of refrigeration) = 9.49 tons.

The weight of water removed is $18,056 \times (0.01115 - 0.01027) = 15.92$ lb per hour as required. This water is removed as liquid at 58.02 F and therefore removes energy of amount 15.92×26.1 (specific enthalpy of liquid water at 58.02 F, Table 6) = 415 Btu per hour. This plus the refrigeration accounts for the total removal of 114,600 Btu per hour as required.

In practice the point at which the condition line crosses the saturation curve may dictate an excessive number of air changes. If so, it may be necessary to cool to a lower temperature. But, if the requirements of the problem are to be exactly met both as regards removal of energy and removal of water, the mixture returned to the conditioned space must then contain a certain amount of liquid. In other words, its state point must lie on the condition line.

It may be that the condition line does not cross the saturation curve at all, in which case the apparatus dew-point as defined previously does not exist. In this case the actual dew-point of the apparatus can be set at any temperature provided the air is then reheated to a point on the condition line before being returned to the conditioned space.

In actual practice it is rarely possible to obtain complete saturation at the dew-point temperature at which the apparatus is set. This may be due to insufficient contact; or a portion of the air may be deliberately

by-passed. But either is equivalent to reheating and, if the final condition still lies on the condition line, the requirements of the problem can be exactly met.

Heating Load

The idea of the condition line is also useful in calculating heating load problems. Its use is best illustrated by means of an illustrative example.

Example 20. The clothing store of Example 19 is to be maintained at 70 F dry-bulb, 50 per cent saturation in winter, with outside design conditions being 0 F dry-bulb, 80 per cent saturation. In order to avoid window condensation with the given inside and outside conditions, double doors and windows are provided. Show windows are sealed. The ventilation requirements of 10 cfm per person for 50 persons, or 30,000 cfh, will build up a slight pressure. For these three reasons, infiltration is reduced to a negligible amount. The normal heat transmission through walls, partition, floor, roof, glass, and doors is estimated at 73,750 Btu per hour. Considerable energy is gained from lights and occupants, but only after the store is raised to the proper conditions; hence this item should be disregarded in figuring the maximum heating load. Analyze the problem as shown in Fig. 9.

Fig. 9. Diagram Illustrating Example 20

Solution. The thermodynamic properties of Outside Air are: v=11.59 cu ft per pound of dry air, h=0.67 Btu per pound of dry air, and W=0.00063 lb water per pound of dry air. Accordingly, the Ventilating Air introduces dry air of amount $30,000 \div 11.59 = 2590$ lb per hour, energy of amount $2590 \times 0.67 = 1730$ Btu per hour, and water of amount $2590 \times 0.00063 = 1.63$ lb per hour. Since infiltration is negligible, none of the Ventilating Air will be admitted directly to the store, but will enter with the Supply Air after having been processed in the air conditioning apparatus. Nevertheless, it displaces an equal weight of dry air from the store.

The thermodynamic properties of Inside Air are: v=13.51 cu ft per pound of dry air, h=25.38 Btu per pound of dry air, and W=0.00787 lb water per pound of dry air. Accordingly, the Ventilating Air displaces energy of amount $2590\times 25.38=65,730$ Btu per hour, and water of amount $2590\times 0.00787=20.38$ lb per hour.

Using these data, it appears that the total energy to be added to the store is 73,750 + 65,730 = 139,480 Btu per hour while the total water to be added is 20.38 lb per hour. But it would be a mistake to determine the condition line by the ratio of these two quantities, since the dry air returned with the Supply Air exceeds that recirculated from the store by the amount introduced with the Ventilating Air. It is correct, however, to lump the Recirculated Air and the Displaced Air together, since both leave the store under the conditions of Inside Air. Then the Supply Air must return more energy to the store than both of these remove by an amount equivalent to the normal heat transmission or 73,750 Btu per hour, and more water by amount zero. The ratio of these two quantities determines the condition line. Since the ratio is infinite, the condition line is

horizontal on the Mollier Chart; in other words, the humidity ratio of the Supply Air must be the same as that of Inside Air.

Good practice is to limit the temperature of the Supply Air to 105 F. The condition line crosses the 105 F isotherm at 15.6 per cent saturation. The thermodynamic properties of the Supply Air are: h=33.91 Btu per pound of dry air, and W=0.00787 lb water per pound of dry air. Accordingly, the weight of dry air to be recirculated is $73,750 \div (33.91-25.38)$ minus 2590=6056 lb per hour.

The dew-point temperature of the Supply Air is the same as that of Inside Air, namely, 50.8 F. A suitable conditioning process is to (see Fig. 9): (1-2) preheat the Ventilating Air to temperature t; (2-3) mix it adiabatically with Recirculated Air; (3-4) saturate the resulting mixture adiabatically with recirculated spray; (4-5) reheat to 105 F on the condition line. The temperature t must be chosen so that, after preheating, the wet-bulb of the Ventilating Air is 50.8 F.

The determination of the preheating temperature t using the data of Table 6, though straightforward, is somewhat tedious. Graphical solution using the Mollier Chart is easier. The answer 37.1 F is obtained by drawing the line A+B so that the length of A is in proportion to the length of B as the weight of Recirculated Air 6056 lb is to the weight of Ventilating Air 2590 lb, and where this line crosses (1-2) temperature t results. The data needed to calculate the quantities of heat required for preheating and subsequent reheating may now be assembled.

	Outside Air	$A f ter \ Preheating$	After Mixing	After Adiabatic Saturation	After Reheating
t	0	37.1	60.2	50.8	105.0
h	0.67	9.59	20.65	20.69	33.91
W	0.00063	0.00063	0.00570	0.00787	0.00787

The quantity of heat required for preheating is $2590 \times (9.59 - 0.67) = 23,100$ Btu per hour; and that required for reheating is $8646 \times (33.91 - 20.69) = 114,300$ Btu per hour.

A trial balance for the energy accounting may be made. The Ventilating Air brings in energy 1730 Btu per hour; the heat added by the preheating coil is 23,100 Btu per hour; the energy supplied by the spray is $(6056 + 2590) \times (20.69 - 20.65) = 340$ Btu per hour; the heat added by the reheating coil is 114,300 Btu per hour; and the total is 139,470 Btu per hour. This is in substantial agreement with the stated requirements of the problem.

The Ventilating Air brings in water of amount 1.63 lb per hour; the spray adds $(6056+2590)\times(0.00787-0.00570)=18.76$ lb per hour; and the total is 20.39 lb which is in agreement with the stated requirements.

STEADY FLOW ENERGY EQUATION

It was previously stated that, in steady flow, the energy convected by the fluid at any section is the sum of (a) kinetic energy due to velocity; (b) gravitational energy due to elevation; (c) enthalpy due to the condition of pressure, temperature and composition of the fluid. A more detailed discussion of item (a) is in order.

Kinetic Energy

There are reasons to believe that the so-called *velocity pressure* $h_{\mathbf{v}}$ read by a Pitot tube is simply the kinetic energy per unit volume of the fluid immediately upstream from the tube, as application of Bernoulli's Equation suggests. Thus (see Equation 3, Chapter 35).

$$V = 1097.3 \sqrt{\frac{h_v}{d}} \tag{26}$$

where

V = velocity, feet per minute.

 $h_{\rm v}$ = velocity pressure, inches of water at 60 F.

d =density of fluid, pounds per cubic foot.

In the case of flow through a duct, the velocity pressure is found to vary considerably over the section and a traverse has to be made. The cross-sectional area of the duct is divided into a number of equal concentric areas, and measuring stations are located at centroidal points in each area along two perpendicular diameters. Usually the ultimate object is to determine an average velocity \overline{V} from which the weight of fluid crossing the section per unit time can be obtained on multiplying by the cross-sectional area of the duct and by the density of the fluid. This is obtained by simply averaging the square roots of all measured velocity pressures as follows:

$$\overline{V} = \frac{1097.3}{\sqrt{d}} \left(h_{\nu}^{\frac{1}{2}} \right)_{\text{av}} \tag{27}$$

where

 \overline{V} = average velocity, feet per minute.

 $(h_{\mathbf{v}}^{1/2})_{a\mathbf{v}}$ = arithmetic average of the square roots of all measured velocity pressures, inches of water at 60 F.

But the item of present importance is the average kinetic energy convected with each pound of fluid. Consistently with the previous discussion, this can be shown to be

$$\overline{KE} = 0.006678 \ v \frac{\left(\ h_{\nu}^{3/2} \right)_{av}}{\left(\ h_{\nu}^{1/2} \right)_{av}}$$
 (28)

where

 \overline{KE} = average kinetic energy, Btu per pound.

v = specific volume, cubic feet per pound.

 $(h_{\mathbf{v}}^{3/2})_{\mathbf{a}\mathbf{v}}$ = arithmetic average of the 3/2-powers of all measured velocity pressures, inches of water at 60 F.

If the velocity pressure were uniform over the section, Equations 27 and 28 could be combined to give

$$\overline{KE} = \left(\frac{\overline{V}}{13,430}\right)^2 \tag{29}$$

But, it is interesting to note that if the velocity varies parabolically from zero at the walls to maximum at the center as it does in the case of purely viscous flow in a circular duct, then the average kinetic energy is twice that given by Equation 29.

Example 20. If 2000 cfm of air flows through an 8 in. diameter circular duct, find the average kinetic energy per pound of air.

Solution. The cross-sectional area of the duct is 0.349 sq ft; hence the average flow velocity is 5730 fpm. If the velocity were uniform over the section, the average kinetic energy would be $(5730 \div 13,430)^2 = 0.182$ Btu per pound. But it is more likely that the actual distribution of velocity would approximate that characteristic of viscous flow; hence the average kinetic energy would be more nearly $2 \times 0.182 = 0.364$ Btu per pound.

Gravitational Energy

The potential energy due to elevation Z (feet) above any convenient datum is simply $Z \div 778.3$ Btu per pound of fluid. In the case of moist air,

$$\overline{PE} = \frac{\overline{Z} (1 + W)}{778.3} \tag{30}$$

where

 \overline{PE} = average potential energy, Btu per pound dry air.

 \overline{Z} = average elevation, feet.

W = humidity ratio, pound water per pound dry air.

Enthalpy

No further discussion of enthalpy is required. It may be well to emphasize, however, that enthalpies have been figured on the basis of one pound of dry air.

Heat and Shaft Work

Between any two sections 1 and 2 in an apparatus through which steady flow occurs, there may be heat absorbed from outside, $_1q_2$, Btu per pound of dry air, and shaft work removed to outside, $_1l_2$, Btu per pound of dry air. If heat is actually rejected to outside, $_1q_2$ is intrinsically negative; and if shaft work is actually put in from outside $_1l_2$, is intrinsically negative.

Steady-flow Energy Equation

A complete energy accounting takes the form of Equation 31 which is usually referred to as the steady-flow energy equation.

$$_{1}q_{2} = (h_{2} + \overline{K}\overline{E}_{2} + \overline{P}\overline{E}_{2}) - (h_{1} + \overline{K}\overline{E}_{1} + \overline{P}\overline{E}_{1}) + _{1}l_{2}$$

$$(31)$$

where

 $_{1}g_{2}$ = heat added from outside between sections 1 and 2, Btu per pound dry air.

 h_2 = enthalpy of the mixture at section 2, Btu per pound dry air.

 \overline{KE}_2 = average kinetic energy at section 2, Btu per pound dry air.

 \overline{PE}_2 = average potential energy at section 2, Btu per pound dry air.

 h_1 = enthalpy at section 1, Btu per pound dry air.

 \overline{KE}_1 = average kinetic energy at section 1, Btu per pound dry air.

 \overline{PE}_1 = average potential energy at section 1, Btu per pound dry air.

 $_1l_2$ = shaft work withdrawn between sections 1 and 2, Btu per pound dry air.

In Equation 31 all quantities are per pound of dry air. If Equation 28 is used in computing average kinetic energy, the result will be in Btu per pound of dry air if v is taken as volume per pound of dry air. If Equation 29 is used, multiplication by (1 + W) as in Equation 30 is required though this is a refinement seldom justified.

Properties of saturated steam are given in Table 8 and for additional definitions refer to Chapter 47.

U. S. STANDARD ATMOSPHERE

The so-called U. S. Standard Atmosphere is an essential standard of reference in aeronautics and as such has become important to the air conditioning engineer who frequently has to simulate atmospheric con-

ditions at high altitudes in connection with aeronautical research. In defining this standard it is first assumed that temperature T varies linearly with altitude Z above sea level, at any rate up to the lower limit of the isothermal layer at 35,332 ft. Thus,

$$T = T_0 - 0.0019812 Z \tag{32}$$

or

$$\frac{dT}{dZ} = -0.0019812 \text{ (degree Centigrade per foot)}$$
 (33)

The second assumption is the validity of the perfect gas laws, namely,

$$Pv = BT (34)$$

An horizontal disk of air having unit cross-sectional area (1 sq ft) and vertical thickness dZ (ft) weighs dZ/v (lb). This accounts for the difference of pressure dP (lb per sq ft) between the upper and lower faces of the disk; hence, using Equation 34

$$dZ = \frac{BT \, dP}{P} \tag{35}$$

Equations 33 and 35 can be combined to eliminate Z and then integrated to obtain the relation between pressure and temperature, namely,

$$\frac{T}{T_0} = \left(\frac{P}{P_0}\right)^{0.1903} \tag{36}$$

The values $T_0 = 288 \, K$ and $P_0 = 29.921$ in. Hg are parts of the definition of the standard atmosphere.

Values of pressure and temperature are listed in Table 10 for altitudes in the standard atmosphere from -1000 to 50,000 ft above sea level. Values for altitudes below the lower limit of the isothermal layer conform to Equations 32 and 36. For further explanation, reference (11) should be consulted.

Table 10. Pressure and Temperature for Altitudes in U. S. Standard Atmosphere

ALTITUDE FEET Z	Pressure In. of Hg	TEMP F	
$ \begin{array}{rrr} & -1,000 \\ & -500 \\ & 0 \\ & +500 \\ & +1,000 \end{array} $	31.02 30.47 29.921 29.38 28.86	+62.6 $+60.8$ $+59.0$ $+57.2$ $+55.4$	
+5,000 $10,000$ $15,000$ $20,000$ $25,000$	24.89 20.58 16.88 13.75 11.10	$+41.2 \\ +23.4 \\ +5.5 \\ -12.3 \\ -30.1$	
30,000 35,000 40,000 45,000 50,000	8.88 7.04 5.54 4.36 3.436	-47.9 -65.8 -67.0 -67.0 -67.0	

REFERENCES

- [1] Rational Psychrometric Formulae, by W. H. Carrier (A.S.M.E. Transactions, Vol. 33, 1911, p. 1005).
- [2] Heat and Thermodynamics, by J. K. Roberts (Chapter IV), (Blackie and Son, London, 1928).
 - [3] Das i, x-Diagramm fur Dampfluftgemische, by R. Mollier (ZVDI, 1929).
 - [4] The Theory of the Psychrometer, by J. H. Arnold (Physics, Vol. 4, 1933).
- [5] Thermodynamic Properties of Moist Air, by John A. Goff (A.S.H.V.E. TRANSACTIONS, Vol. 40, 1934, p. 199).
- [6] Thermodynamic Properties of Steam, by J. H. Keenan and F. G. Keyes (John Wiley and Sons, Inc., New York, 1936).
- [7] Notes on Thermodynamics, by John A. Goff (John S. Swift Company, St. Louis, 1939).
- [8] Thermal Properties of Saturated Water and Steam, by N. S. Osborne, H. F. Stimson and D. C. Ginnings (*National Bureau of Standards*, Research Paper No. RP 1229, 1939).
- [9] Psychrometric Chart, Its Application and Theory, by William Goodman (Heating, Piping and Air Conditioning, June, 1939 to August, 1940).
- [10] A S.H.V.E. RESEARCH REPORT No. 1186—The Interaction Constant for Moist Air, by John A. Goff and A. C. Bates (A.S.H.V.E. Transactions, Vol. 47, 1941, p. 373)
 - [11] National Advisory Committee for Aeronautics, Technical Report No. 538, 1935.

Chapter 2

PHYSIOLOGICAL PRINCIPLES

Chemical Vitiation of Air, Physical Impurities in Air, Thermal Interchanges Between the Body and Its Environment, Adaptation to Hot Conditions, Relation of Air Conditioning Needs to Metabolism, Acclimatization, Effective Temperature Index, Physiological Objectives of Heating and Ventilation, Summer Comfort, Influence of Humidity, Influence of Air Movement, The Four Vital Factors

VENTILATION is defined in part as the process of supplying or removing air by natural or mechanical means to or from any space. (See Chapter 47). The word in itself implies quantity but not necessarily quality. From the standpoint of comfort and health, however, the problem is now considered to be one of securing air of the proper quality rather than of supplying only a given quantity.

The term air conditioning in its broadest sense implies control of any or all of the physical or chemical qualities of the air. When applied to comfort air conditioning, however, the A.S.H.V.E. Code of Minimum Requirements of Comfort Air Conditioning defines it "as the process by which simultaneously the temperature, moisture content, movement and quality of the air in enclosed spaces intended for human occupancy may be maintained within required limits. If an installation cannot perform all of these functions, it shall be designated by a name that describes only the function or functions performed."

CHEMICAL VITIATION OF AIR

Under the artificial conditions of indoor life, the air undergoes certain physical and chemical changes which are brought about by the occupants themselves. The oxygen content is somewhat reduced, and the carbon dioxide slightly increased by the respiratory processes. Organic matter, which is usually perceived as odors, comes from the nose, mouth, skin and clothing. The temperature of the air is increased by the metabolic processes, and the humidity raised by the moisture emitted from the skin and lungs.

Contrary to old theories, the usual changes in oxygen and carbon dioxide are of no physiological concern because they are too small to produce appreciable effects even under the worst conditions of normal human occupancy. Only in such unusually air-tight enclosures as submarines need the increase in carbon dioxide and the reduction in oxygen be considered. The amount of carbon dioxide in air is often used as an index of odors of human origin, but the information it affords rarely

justifies the labor involved in making the observation^{1,2}. Little is known of the identity and physiological effects of the organic matter given off in the process of respiration. The former belief that the discomfort experienced in confined spaces was due to some toxic volatile matter in the expired air is now limited, in the light of numerous researches, to the much less dogmatic view that the presence of such a substance has not been demonstrated. The only certain fact is that expired air may be odorous and offensive, and it is capable of producing loss of appetite and a disinclination for physical activity. Objectionable body odors have the same effects. These reasons, whether esthetic or physiological, call for the introduction of a certain minimum amount of clean outdoor air to dilute odors from any source, including cooking and other processes to a concentration which is not objectionable.

In certain industrial processes toxic fumes and gases may be produced, whose removal by local exhaust ventilation is essential for the protection of human health. In the ordinary occupied spaces harmful chemical impurities may be contributed from certain types of cooking and heating appliances including carbon monoxide from imperfect combustion which may be a serious hazard to life and health.

The control of offensive or hazardous concentrations of chemical vitiation in the air is frequently brought about by the ventilating engineer through dilution. This method has found application when the source of contamination is the human occupant and not something of a particularly hazardous character.

In the case of vitiation by a few hazardous gases such as carbon monoxide from heating and cooking and certain industrial processes, no satisfactory chemical treatment for the elimination of the impurity has been found. The only really satisfactory solution is elimination at the source; or if this is impossible reduction to a safe concentration by dilution. In the case of contamination by other forms of material, including volatile vapors and gases, chemical treatment for the removal or chemical reduction of the impurities has been made available through air cleaning methods, which are discussed in Chapter 29 on Air Cleaning Devices. The A.S.H.V.E. Research Technical Advisory Committee on Removal of Atmospheric Impurities has outlined means for the reduction of atmospheric impurities.

When the only source of contamination is the human occupant, the minimum quantity of outdoor air needed appears to be that required to remove objectionable body odors, or tobacco smoke. The concentration of body odor in a room, in turn, depends upon a number of factors, including the dietary and hygienic habits of the occupants (frequently reflecting their socio-economic status), the outdoor air supply, air space allowed per person, odor adsorbing capacity of air conditioning processes, and temperature and relative humidity. Perception of odor, like the perception of most of the other senses, is proportional to the logarithmic function of the intensity of the stimulus; or in the case of odors, the

¹A.S.H.V.E. RESEARCH REPORT No. 959—Indices of Air Changes and Air Distribution, by F. C. Houghten and J. L. Blackshaw (A.S.H.V.E. Transactions, Vol. 39, 1933, p. 261).

²A.S.H.V.E. RESEARCH REPORT No. 1031—Ventilation Requirements, by C. P. Yaglou, E. C. Riley and D J. Coggins (A.S.H.V.E. Transactions, Vol. 42, 1936, p. 133).

³Report of the A.S.H.V.E. Technical Advisory Committee on Removal of Atmospheric Impurities (Programs of the Research Technical Advisory Committees, June, 1941, p. 7). Available in form of booklet.

CHAPTER 2. PHYSIOLOGICAL PRINCIPLES

perception has been found to vary as the logarithmic function of the odor intensity, or inversely with the logarithmic function of the available air determined by the outdoor air supply and the air space per person.

The relation between air supply and occupancy has been reported by the *Harvard School of Public Health*⁴ and the A.S.H.V.E. Research Laboratory⁵. The findings from the Harvard study are given in Table 1. Outdoor air requirements for removal of objectionable tobacco smoke odors are not accurately known but sources of information available and practice indicates the need of 15 cfm per person or more.

The total quantity of outside air to be circulated through an enclosure is governed by both chemical and physical considerations. The physical requirements for controlling temperature, air distribution and air velocity usually predominate. Other factors which must be taken into consideration include the type and usage of the building, locality, climate, height of rooms, floor area, window area, extent of occupancy, and the operation of the system distributing the air supply. Frequently, some of these factors, particularly the need for air movement and good distribution, may be satisfied by recirculation of inside air rather than by outside air.

It will be noted that, with adequate air space, the rate of air change indicated in Table 1 is from 10 to 30 cfm per person. In rooms occupied by only a few persons such a rate of air change will be automatically attained in cold weather by normal leakage around doors and windows while it can easily be secured in warm weather by the opening of windows. With a space allotment of 400 cu ft per person, only $1\frac{1}{2}$ air changes per hour are necessary to provide an air change of 10 cfm per person. This space allotment is essential for other reasons.

Therefore, in the ordinary dwelling with adequate cubic space allotment, no special provision for controlling chemical purity of the air is necessary (aside from removal of fumes from heating appliances). For such conditions, the control of air temperature is the major factor to be considered.

In more crowded rooms (large offices, large workrooms, auditoriums), the whole picture changes. Cubic space per person is less and the size of the room makes it impossible to admit untempered outside air without drafts. Here, mechanical ventilation is essential, but as will be noted in a later paragraph, it is even more essential for thermal than for chemical reasons. It is control of the thermal properties of the air in order to effect the removal of the heat produced by human bodies, rather than dilution of chemical poisons, which must govern practice.

The Code of Minimum Requirements for Comfort Air Conditioning⁶ prescribes definite minimum requirements which should be familiar to the designing engineer. It should be emphasized, however, that the provisions of the code aim to provide *minimum*, rather than *adequate*, requirements.

Notwithstanding the rapid advance in the field of air conditioning

⁴Loc. Cit. Note 2.

⁵Loc. Cit. Note 1.

 $^{^6}$ Code of Minimum Requirements for Comfort Air Conditioning (A.S.H.V E. Transactions. Vol 44, 1938, p 27). Reprints of this code are available at \$.10 a copy.

during the past few years, there still remain those who believe in a superior, stimulating quality of outdoor air (particularly country, mountain and seashore air) under ideal weather conditions, as compared with properly conditioned air. While this point of view is usually held by persons not intimately acquainted with the complicated factors involved they nevertheless carry some weight. It is apparent, however, to anyone acquainted with the factors involved and the conditions effecting comfort that in modern air conditioning, like in most other branches of engineering, modern science makes it possible to control the phenomena of nature for

Table 1. Minimum Outdoor Air Requirements to Remove Objectionable Body Odors

(Provisional values subject to revision upon completion of work)

Type of Occupants	AIR SPACE PER PERSON CU FT	OUTDOOR AIR SUPPLY CFM PER PERSON
Heating season with or without recirculation	ı. Air not condi	tioned.
Sedentary adults of average socio-economic status Sedentary adults of average socio-economic status Sedentary adults of average socio-economic status Sedentary adults of average socio-economic status	200 300	25 16 12 7
Laborers	200	23
Grade school children of average class	200	29 21 17 11
Grade school children of poor class	200	38
Grade school children of better class	200	18
Grade school children of best class	100	22
Heating season. Air humidified by means of cenatomization rate 8 to 10 gph. Total air circu	strifugal humidifi lation 30 cfm pe	er. Water er person.
Sedentary Adults	200	12
Summer season. Air cooled and dehumidified by n Spray water changed daily. Total air circul	reans of a spray d ation 30 cfm per	lehumidifier. person.
Sedentary Adults	200	<4

the service and comfort of man beyond any possibilities found in nature itself. When the requirements for optimum comfort as determined by the atmospheric environment are known (and the comprehensive studies to date lead us to believe that they are known at least to a high degree), the air conditioning engineer can supply these requirements indoors to the same perfection as may accidentally be found at times outdoors and keep them under control. The freedom of movement, action and thought, together with the variability of stimulae experienced by persons under ideal conditions in the country, mountains or seashore, and the psychological effect of these wide open spaces undoubtedly have some stimulating

effect, which when compared with the monotony of confinement indoors even in the most favorable atmospheric environment accounts for the contrast. Ultra-violet light and ionization have been suggested but the evidence so far is inconclusive or negative⁷.

Ozone has been used with success for the destruction of micro-organisms (molds) in meat packing establishments and the like; and where considerable amounts of organic effluvia are present it may be useful as a deodorant. For ordinary ventilation practice, however, neither of these purposes can be usefully attained, since the concentration of ozone necessary for effectiveness would be likely to transcend the limit of comfort in ordinary occupied rooms. While ozone has been used in the treatment of certain diseases, there is no evidence that it has a tendency to increase comfort or to benefit health under conditions of normal human occupancy. The allowable concentrations in the breathing zone are very small, between 0.01 to 0.05 ppm parts of air. These are much too small to influence bacteria. Higher concentrations are associated with a pungent unpleasant odor and considerable discomfort to the occupants. One part per million causes respiratory discomfort, headaches, depression, a lowering of the metabolic rate and may even lead to coma⁸.

PHYSICAL IMPURITIES IN AIR

Dust particles of various types, when present in considerable concentrations, produce an irritant effect upon the mucous membranes of nose and throat and may be associated with high prevalence of acute respiratory diseases such as bronchitis and pneumonia. Dust which contains free silica has special harmful effects, causing a primary disease of the lungs (silicosis) and predisposing the victim in a high degree to tuberculosis. These, however, are special problems of industrial hygiene which will not be discussed in detail in this chapter.

A certain part of the dissemination of disease in confined spaces is caused by the emission of pathogenic organisms from infected persons. Droplets sprayed into the air in talking, coughing, sneezing, etc., do not all fall immediately to the ground within a few feet from the source, as was formerly believed. The large droplets do, of course, but minute droplets less than 0.1 mm in diameter evaporate to dryness before they fall the height of a man. Nuclear residues from such sources, which may contain infective organisms drift long distances with the air currents and the virus may remain alive long enough to be transmitted to other persons in the same room or building. Droplet nuclei have been recovered from cultures of resistant micro-organisms a week after innoculation into a tight chamber of 3000 cu ft capacity, although the majority of disease

⁷A.S.H.V.E. RESEARCH REPORT No. 921—Changes in Ionic Content in Occupied Rooms, Ventilated by Natural and Mechanical Methods, by C. P. Yaglou, L. C. Benjamin and S. P. Choate (A.S.H.V.E. TRANSACTIONS, Vol. 38, 1932, p. 191). A.S.H.V.E. RESEARCH REPORT No. 965—Physiologic Changes During Exposure to Ionized Air, by C. P. Yaglou, A. D. Brandt and L. C. Benjamin (A.S.H.V.E. TRANSACTIONS, Vol. 39, 1933, p. 357). A.S.H.V.E. RESEARCH REPORT NO. 985—Diurnal and Seasonal Variations in the Small Ion Content of Outdoor and Indoor Air, by C. P. Yaglou and L. C. Benjamin (A.S.H.V.E. TRANSACTIONS, Vol. 40, 1934, p. 271). The Nature of Ions in Air and Their Possible Physiological Effects, by L. B. Loeb (A.S.H.V.E. TRANSACTIONS, Vol. 41, 1935, p. 101). The Influence of Ionized Air upon Normal Subjects, by L. P. Herrington (Journal Clinical Investigation, 14, January, 1935). The Effect of High Concentrations of Light Negative Atmospheric Ions on the Growth and Activity of the Albino Rat, by L. P. Herrington and Karl L. Smith (Journal Ind. Hygiene, 17, November, 1935). Subjective Reactions of Human Beings to Certain Outdoor Atmospheric Conditions, by C.-E. A. Winslow and L. P. Herrington (A.S.H.V.E. TRANSACTIONS, Vol. 42, 1936, p. 119).

*The British Medical Journal. Editorial. June 25, 1932, p. 1182. See also Lee Cit. Note 7.

⁸The British Medical Journal, Editorial, June 25, 1932, p. 1182. See also Loc. Cit. Note 7.

germs died out within a few hours. Practical epidemiological evidence indicates that the danger of such atmospheric transmission is slight with the bacterial diseases but may be appreciable with the diseases caused by the much smaller viruses. Avoidance of overcrowding is a major factor in avoiding such dangers. The microbic concentration in the atmosphere may be reduced by air change, but since the rate of contamination may be great at local points over short periods of time the hazardous concentration may not be eliminated quickly enough and may even be spread over larger areas by local drafts. The possibility of sterilizing the air supply at the source, or destroying the micro-organisms at their point of admission to the air by ultra-violet light is being studied and offers considerable promise.¹⁰

While in some instances it may be possible to reduce the physical impurities of the air by dilution from a non-contaminated source, such non-contaminated sources are rarely available. Frequently the outside air contains a higher concentration of physical impurities than that within an enclosure. Therefore, it is usually desirable to reduce the concentration of physical impurities by air cleaning methods, as discussed in Chapter 29.

THERMAL INTERCHANGES BETWEEN THE BODY AND ITS ENVIRONMENT

The importance of the thermal factors arises from the profound influence which they exert upon body temperature, comfort and health. Body temperature depends upon the balance between heat production and heat loss. The heat resulting from the combustion of food within the body (metabolism) maintains the body temperature well above that of the surrounding air. At the same time, heat is constantly lost from the body by radiation, convection and evaporation. Since, under ordinary conditions, the body temperature is maintained at its normal level of about 98.6 F, the heat production must be balanced by the heat loss.

In conditioning air for comfort and health it is necessary to know the rate of sensible and latent heat liberation from the human body, which in conjunction with other heat loads (see Chapters 4, 6 and 7) determines the capacity required for proper conditioning. The data in common use are those of the A.S.H.V.E. Research Laboratory¹¹.

The fundamental thermodynamic processes concerned in heat interchanges between the body and its environment may be described by the equation:

$$M = \pm S + E \pm R \pm C \tag{1}$$

⁹Air-Borne Infection and Sanitary Air Control, by W. F. Wells (Journal Industrial Hygiene, November, 1935).

¹⁶Sanitary Ventilation in Wards, by W. F. Wells (Heating and Venitlating, April, 1939, p. 26). Measurement of Sanitary Ventilation, by W. F. Wells (American Journal of Public Health, Vol. 28, 1938, p. 343).

¹¹A.S.H.V.E. RESEARCH REPORT NO. 830—Heat and Moisture Losses from the Human Body and Their Relation to Air Conditioning Problems, by F. C. Houghten, W. W. Teague, W. E. Miller and W. P. Yant (A.S.H.V.E. Transactions, Vol. 35, 1929, p. 245). Thermal Exchanges Between the Human Body and Its Atmospheric Environment, by F. C. Houghten, W. W. Teague, W. E. Miller and W. P. Yant (American Journal of Physiology, Vol. 88, 1929, p. 386). A.S. H.V.E. RESEARCH REPORT NO. 908—Heat and Moisture Losses from Men at Work and Application to Air Conditioning Problems, by F. C. Houghten, W. W. Teague, W. E. Miller and W. P. Yant (A.S.H.V.E. Transactions, Vol. 37, 1931, p. 541). Thermal Exchanges Between the Bodies of Men Working and the Atmospheric Environment, by F. C. Houghten, W. W. Teague, W. E. Miller and W. P. Yant (American Journal of Hygiene, Vol. XIII, 1931, No. 2, p. 415). A.S.H.V.E. RESEARCH REPORT NO. 1106—Air Conditioning in Industry, by W. L. Fleisher, A. E. Stacey, Jr., F. C. Houghten and M. B. Ferderber (A.S.H.V.E. Transactions, Vol. 45, 1939, p. 59).

where

M = rate of metabolism.

S = rate of storage.

E = rate of evaporative heat loss.

R = rate of radiative heat loss or gain.

C = rate of convective heat loss or gain.

Factor M, the rate of metabolism, is always positive. The storage, S, may be either positive or negative, depending upon whether heat is being stored or given off, accompanied by a rise or fall in body temperature. Under ordinary circumstances (when the dew-point of the air is below the body surface temperature) the evaporation loss, E, is always positive; that is, heat from metabolism supplies this loss. R and C are positive when the surface temperature of the body is above that of the walls and air, and negative when it is cooler.

The human body possesses remarkable powers of adaptation to a narrow range of atmospheric conditions around an ideal optimum where storage is zero, and metabolism and skin and tissue temperature are at optimum values. As skin temperature and body-tissue temperature rise or fall above or below an optimum, complex adaptive mechanisms come into play, chiefly associated with redistribution of blood supply between the skin and deeper tissues (in a cold environment) and with sweat secretion (in a hot environment). Under cold conditions, the need for more heat and shivering or other muscular movements increase metabolism, which is, again, a reaction favorable to temperature regulation; but under very hot conditions metabolism also rises and this reaction is obviously harmful and indicates a balance of purely chemical over phsysiological control¹² resulting from increased chemical reactions with rise in temperature. In other words, it represents a breakdown or failure of the entire regulative processes. These reactions are governed by nervous or chemical stimuli from both skin and internal tissues. Nerves from the skin, for example, carry the sense impressions to the brain and the response comes back over another set of nerves, the motor nerves, to the musculature and to all the active tissues in the body, including the endocrine glands. In this way, a two-sided mechanism controls the body temperature by (1) regulation of internal heat production (chemical regulation), and (2) regulation of heat loss by means of automatic variation in the rate of cutaneous circulation and the operation of the sweat glands (physical regulation). The reactions involved in cold and in hot environments are on the whole radically different in nature. The mechanisms of adjustment involved are extremely complex and while they are receiving considerable study a complete understanding of their operation is still lacking.

In a certain middle range, normal and easy physiological regulation occurs by slight changes in the distribution of blood carrying heat between the skin and the inner organs, resulting in slight changes in the body surface temperature, and hence, in the rate of heat dissipation to the atmosphere. This easy balance gives a sensation of comfort. Above this

¹²Loc. Cit. Note 11

range, the blood capillaries near the surface become dilated, allowing more blood and heat to flow into the skin, and thus increase its temperature and consequently its heat loss. If this method of cooling is not in itself sufficient, the stimulus is extended to the sweat glands which allow water to pass through the surface of the skin. This method of cooling is the most effective of all, as long as the vapor pressure and dew-point temperature of the air are sufficiently low to allow for evaporation. In high humidities, where the difference between the dew-point temperature of the air and body temperature is not sufficient to allow rapid evaporation, increase in heat loss may be had by increasing air movement. The body, under hot conditions, is in the zone of evaporative regulation, and for moderately extreme conditions perfect balance between heat production and heat loss may be attained, although at the cost of considerable discomfort.

In a cold environment, where environmental conditions are such as to remove heat too rapidly, the organism adapts in some degree by constricting the blood vessels leading to the surface, thereby reducing the blood flow and heat available for dissipation to the environmental surroundings. This adaptation is, however, partial and incomplete, and in an environment too cold for the clothing worn the temperature of the body tissues may fall, with accompanying discomfort and ultimate danger of serious chill. The process may go on for hours. The individual may move about and increase metabolism through muscular activity and thus balance the excessive heat demand of the environment, or he may reduce the loss by greater insulation of his body in the form of clothing.

Some of these phenomena which are important are shown graphically in Fig. 1. The dotted curves, from a study at the John B. Pierce Laboratory of Hygiene¹³, are for subjects lightly clothed in a semi-reclining position and give the relation between the dry-bulb temperature of the environment (with about 45 per cent relative humidity) and the metabolic rate, the rate of heat dissipation by radiation and convection combined, and the latent heat loss due to evaporation of, perspiration and moisture from the respiratory tract. The smooth line curves, from the work of the A.S.H.V.E. Research Laboratory14, give the same relationships for healthy, male subjects (18 to 24 years of age), seated at rest and normally clothed for winter-heated and air conditioned occupancy. The data for the semi-reclining subject also include the rate of heat storage (either positive or negative) due to a rise or fall in body temperature. For the normally clothed subjects a curve gives the total heat loss (that is, the sum of the radiation, convection and evaporative losses). Here, storage is given by the difference between the metabolism and total heat loss.

The small difference between the metabolic or heat production rates for the two types of subjects may be accounted for by the difference in activity. Heat exchange between the body and the environment by radiation and convection is greater for the lightly clothed subject, both for cool conditions where there is considerable heat loss, and for very warm conditions where there is a sensible transfer from the atmosphere to the body. The two curves for evaporative loss serve to show how physiological control

¹³A.S.H V.E. RESEARCH REPORT No. 1107—Recent Advances in Physiological Knowledge and Their Bearing on Ventilation Practice, by C.-E. A. Winslow, T. Bedford, E. F. DuBois, R. W. Keeton, A. Missenard, R. R. Sayers and C. Tasker. (A.S.H.V.E. Transactions, Vol. 45, 1939, p. 111).
¹⁴Loc. Cit. Note 11.

uses evaporation of perspiration to maintain equilibrium, particularly at high temperatures. Below about 75 F for the normally clothed subject, and below about 85 F for the lightly clothed subject, evaporation loss is minimal and probably due to uncontrolled evaporation from the relatively dry skin and from the respiratory tract. Above these temperatures control is had by availability of perspiration for evaporation. The difference in the curves above 75 F is probably largely determined by the difference in clothing and activity. Above temperatures from 95 to 100 F (probably that of the average outside surface of the clothed body) radiation and convection combined changes from positive to negative, and slightly above this temperature even the greatly increased latent heat loss ceases to suffice to take care of the rate of heat production and the negative

Fig. 1. Relation Between Metabolism, Storage, Evaporation, Radiation Plus Convection, and Operative Temperature for the Clothed Subject

radiation and convection loss, and storage or a rise in body temperature is the consequence. Above this range, even though there is inability to dissipate heat rapidly enough, metabolism actually increases, which may be accounted for by the predominance of the purely chemical laws of increased chemical reaction with rise in temperature, over physiological control, and indicates the point where a breakdown in thermal equilibrium begins. For higher temperatures life can only survive to the point where these accelerated processes will result in a rise in body temperature to the limiting level of from 106 to 108 F.

Air movement is an important factor in increasing heat loss by either convection or evaporation. The result is accomplished through removal of hot humid air from near the body surface and replacing it with cooler and relatively drier air. This is an important factor in maintaining thermal equilibrium either for persons at rest or at work in hot, humid conditions. For conditions in the comfort zone and below, excessive

velocities (particularly localized drafts) should be avoided since differential cooling of one area of the body may produce surprisingly unpleasant reactions in quite different parts of the body. In a recent experiment is it was shown that the application of an ice pack to an area of 60 sq cm on the back of the neck for 15 min caused a drop of 17 F in the skin temperature of the fingers and that this low temperature of the fingers persisted for one hour after the ice pack was removed.

ADAPTATION TO HOT CONDITIONS

It will be observed from Fig. 1 that a zone ranging from about 70 to 80 F, at 45 per cent relative humidity (or from 66 to 74 deg ET) the body is adequately able to maintain equilibrium through control of radiation and convection losses combined, and evaporative loss. This corresponds to the zone over which the largest percentage of persons find optimum comfort. For higher temperatures, up to an upper limit in the neighbor-

Table 2. Physiological Responses to Heat of Men at Rest and at Worka

	ACTUAL	Men at Rest			Men at Work 90,000 ft-le of Work per Hour					
Effective Temp	CHEEK TEMP (DEG FAHR)	Rise in Rectal Temp (Deg Fahr per Hr)	Increase in Pulse Rate (Beats per Min per Hr)	Approximate Loss in Body Weight by Perspiration (Lb per Hr)	Total Work Accomplished (Ft-Lb)	Rise in Body Temp (Deg Fahr per Hr)	Increase in Pulse Rate (Beats per Min per Hr)	Approximate Loss in Body Wt by Per- spiration (Lb per Hr)		
60					225,000	0.0	6	0.5		
70		0.0	0	0.2	225,000	0.1	7	0.6		
80	96.1	0:0	0	0.3	209,000	0.3	11	0.8		
85	96.6	0.1	1	0.4	190,000	0.6	17	1.1		
90	97.0	0.3	4	0.5	153,000	1.2	31	1.5		
95	97.6	0.9	15	0.9	102,000	2.3	61	2.0		
100	99.6	2.2	40	1.7	67,000	4.0b	103b	2.7b		
105	104.7	4.0	83	2.7	49,000	6.0b	158b	3.5b		
110		5.9b	137b	4.0 ^b	37,000	8.5b	237b	4.4b		

*Data by A S.H.V.E. Research Laboratory. bComputed value from exposures lasting less than one hour.

hood of 100 F, at 45 per cent relative humidity (or approximately 87 deg ET) control is had through availability of perspiration on the body surface for evaporation. While a fair degree of temperature equilibrium is maintained over this range it is nevertheless had with considerable discomfort.

Studies at the John B. Pierce Laboratory of Hygiene¹⁶ have indicated the relation between discomfort and the degree of wetting of the body surface by perspiration for lightly clothed subjects in a semi-reclining position, and the investigators there have designated this as the zone of evaporative regulation. Work of the A.S.H.V.E. Research Laboratory¹⁷

¹⁵The Relative Influence of Radiation and Convection Upon the Temperature Regulation of the Clothed Body, by C.-E. A. Winslow, L. P. Herrington and A. P. Gagge (American Journal of Physiology, Vol. 124, October, 1938, p. 51).

¹⁸Relations Between Atmospheric Conditions, Physiological Reactions, and Sensations of Pleasantness, by C.-E. A. Winslow, L. P. Herrington and A. P. Gagge (American Journal of Hygiene, Vol. 26, July, 1937, p. 102). The Reactions of the Clothed Human Body to Variations in Atmospheric Humidity, by C.-E. A. Winslow, L. P. Herrington and A. P. Gagge (American Journal of Physiology, Vol. 124, December, 1938, p. 692).

¹⁷Loc. Cit. Note 11.

over the past two decades has made available data on the relation between sensible perspiration and the atmospheric environment for normal persons at rest and at work.

For colder conditions below 70 F, with 45 per cent relative humidity (or about 66 deg ET) thermal equilibrium is maintained, first, by the amount of clothing worn; second, and to a smaller extent, by limiting availability of heat at the surface by decreasing peripheral blood circulation, which results in a drop in skin temperature; and third, by an increase in the metabolic rate. Here again, while thermal equilibrium is fairly well maintained, any drop in the skin temperature is accompanied by a certain degree of discomfort.

Studies at the A.S.H.V.E. Research Laboratory¹⁸ and elsewhere¹⁹ during the past two decades have made available a mass of information dealing with the physiological effects of hot atmospheres on workers and means to alleviate the distress and hazards associated therewith. This interest has been termed air conditioning in industry, or the effects of hot atmospheres in industrial hygiene, and is a growing factor in air conditioning applications. Table 2 gives some of the physiological responses of men at rest and at work, to hot environments. Recent physiological studies²⁰ indicate that frequent and continued exposure of workers to hot environments results in not only violent but subtle physiological derangement, affecting the leucocyte count of the blood and other factors dealing with man's mechanism of defense against infection.

Another of the deleterious effects of high temperatures is that the blood is diverted from the internal organs to the surface capillaries, in order to serve in the process of cooling. This affects the stomach, heart, lungs and other vital organs, and it is suggested that the feeling of lassitude and discomfort experienced is due in part to the anaemic condition of the brain. The stomach loses some of its power to act upon the food, owing to a diminished secretion of gastric juice, and there is a corresponding loss in the antiseptic and antifermentive action which favors the growth of bacteria in the intestinal tract²¹. These are considered to be the potent

BA.S.H.V.E. RESEARCH REPORT NO. 654—Some Physiological Reactions to High Temperatures and Humidities, by W. J. McConnell and F. C. Houghten (A.S.H.V.E. Transactions, Vol. 29, 1923, p. 129). A.S.H.V.E. RESEARCH REPORT NO. 672—Further Study of Physiological Reactions, by W. J. McConnell, F. C. Houghten and F. M. Phillips (A.S.H.V.E. Transactions, Vol. 29, 1923, p. 353). A.S.H.V.E. RESEARCH REPORT NO. 690—Air Motion, High Temperatures and Various Humidities—Reactions on Human Beings, by W. J. McConnell, F. C. Houghten and C. P. Vaglou (A.S.H.V.E. Transactions, Vol. 30, 1924, p. 167). A.S.H.V.E. RESEARCH REPORT NO. 718—Work Tests Conducted in Atmospheres of High Temperatures and Various Humidities in Still and Moving Air, by W. J. McConnell and C. P. Vaglou (A.S.H.V.E. Transactions, Vol. 31, 1925, p. 101). A.S.H.V.E. RESEARCH REPORT NO. 719—Basal Metabolism Before and After Exposure to High Temperatures and Various Humidities, by W. J. McConnell, C. P. Vaglou and W. B. Fulton (A.S.H.V.E. Transactions, Vol. 31, 1925, p. 123). A.S.H.V.E. RESEARCH REPORT NO. 908—Heat and Moisture Losses from Men at Work and Application to Air Conditioning Problems, by F. C. Houghten, W. W. Teague, W. E. Miller and W. P. Yant (A.S.H.V.E. Transactions, Vol. 37, 1931, p. 541). A.S.H.V.E. RESEARCH REPORT NO. 1108—Air Conditioning in Industry—Physiological Reactions of Individual Workers to High Effective Temperatures, by W. L. Fleisher, A. E. Stacey, Jr., F. C. Houghten and M. B. Ferderber (A.S.H.V.E. Transactions, Vol. 45, 1939, p. 59). A.S.H.V.E. RESEARCH REPORT NO. 1153—Seasonal Variation in Reactions to Hot Atmospheres, by F. C. Houghten, A. A. Rosenberg and M. B. Ferderber (A.S.H.V.E. Transactions, Vol. 46, 1940, p. 185). Physiologic Effects of Hot Atmospheres, by F. C. Houghten, M. B. Ferderber and A. A. Rosenberg (Industrial Medicine, January, 1940, p. 7).

¹⁹A.S.H.V.E. RESEARCH REPORT NO 1151—The Peripheral Type of Circulatory Failure in Experimental Heat Exhaustion, by R. W. Keeton, F. K. Hick, Nathaniel Glickman and M. M. Montgomery (A.S.H.V.E. Transactions, Vol. 46, 1940, p. 157).

²⁰A S.H V.E. RESEARCH REPORT No. 1153—Seasonal Variation in Reactions to Hot Atmospheres, by F. C. Houghten, A. A. Rosenberg and M. B. Ferderber (A.S.H.V.E. TRANSACTIONS, Vol. 46, 1940, p. 185). ²¹Influence of Effective Temperature upon Bactericidal Action of Gastro-Intestinal Tract, by Arnold and Brody (*Proceedings Society Exp. Biol. Med.*, Vol. 24, 1927, p. 832).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

factors in the increased susceptibility to gastro-intestinal disorders in hot summer weather.

In warm atmospheres, particularly during physical work, a considerable amount of chloride is lost from the system through sweating. The loss of this substance may lead to attacks of cramps, unless the salts are replaced in the drinking water. In order to relieve both cramps and fatigue, it

Table 3. Relation Between Metabolic Rate and Activity^a

Activity	HOURLY METABOLIC RATE FOR AVG PERSON OR	HOURLY SENSIBLE HEAT DIS- SIPATED, AT 79 F.	HOURLY LATENT HEAT DIS- SIPATED, AT 79 F.	Mois Dissi PER H	PATED
	TOTAL HEAT DISSIPATED, BTU PER HOUR	BTU PER HOUR	BTU PER Hour	Grains	Pounds
Basal	291	145	145	978	0.140
Seated at Rest	384	225	159	1072	0.153
Reading Aloud (Seated)	420	225	195	1315	0.188
Standing at Rest	431	225	206	1389	0.198
Hand Sewing (Seated)	441	225	216	1457	0.208
Knitting 23 stitches per minute on Sweater	462	225	237	1598	0.228
Dressing and Undressing	468	225	243	1639	0.234
Tailor	482	225	257	1733	0.248
Singing	486	225	261	1760	0.251
Office Worker Moderately Active	490	225	265	1787	0.255
Light Work Standing	549	225	324	2185	0.312
Typewriting Rapidly	558	225	333	2246	0.321
Ironing with 5 lb iron	570	225	345	2326	0.332
Dishwashing-Plates, Bowls, Cups and Saucers	600	225	375	2529	0.361
Clerk Moderately Active Standing at Counter	600	225	375	2529	0.361
Book Binder	626	225	401	2704	0.386
Shoemaker	661	225	436	2940	0.420
Sweeping Bare Floor 38 Strokes per Minute	672	229	443	2987	0.427
Pool Player	680	230	450	3055	0.434
Pool Player	761	250	511	3446	0.492
Light Metal Worker (at Bench)	862	277	585	3945	0.564
Painter of Furniture (at Bench)	876	280	596	4019	0.574
Carpenter	954	307	647	4363	0.623
Restaurant Serving	1000	325	675	4552	0.650
Pulling Weight	1041	335	708	4774	0.682
Walking 3 mph	1050	339	711	4795	0.685
Walking 4 mph, Active Dancing, Roller Skating	1390	452	938	6325	0.904
Walking Down Stairs	1444	467	977	6588	0.941
Stone Mason	1490	485	1005	6777	0.968
Bowling	1500	490	1010	6811	0.973
Man Sawing Wood	1800	590	1210	8160	1.166
Swimming	1986				
Running 5.3 mph	2268				
Walking 5 mph	2330				
Walking Very Fast 5.3 mph	2580				
walking up Stairs	4365				
Maximum Exertion Different People.	3000-4800				
^					

aThese metabolic rates were compiled by the A.S.H.V.E. Research Laboratory from actual tests, from other authoritative sources, and from estimates based upon various considerations. Division of the total heat dissipation into latent and sensible rates is based on actual test data and on various considerations for metabolic rates up to 1250 Btu per hour, and extrapolated for higher rates. Values for total heat dissipation for a person at rest apply for a dry-bulb temperature range from approximately 60 to 90 F; for other than rest conditions the values apply for a similar but lower temperature range. Below these temperature ranges metabolic rates and total rates of heat dissipation increase, while above these ranges metabolic rates increase slightly and total heat dissipation rates decrease rapidly. Division of total dissipation rates into sensible and latent heat holds only for a dry-bulb temperature of 79 F. For lower temperatures, sensible heat dissipation increases and latent heat decreases, while for higher temperatures the reverse is true

is recommended that 6 g of sodium chloride and 4 g of potassium chloride be added to a gallon of water²².

The deleterious physiologic effects of high temperatures exert a powerful influence upon physical activity, accidents, sickness and mortality. Both laboratory and field data show that physical work in warm atmospheres is a great effort, and that production falls progressively as the temperature rises. The incidence of industrial accidents reaches a minimum at about 68 F, increasing above and below that temperature. Sickness and mortality rates increase progressively as the temperature rises.

The need of air conditioning for workers in hot industries is growing rapidly and this should become an important field for the air conditioning engineer. The hot conditions may be remedied by any of the recognized comfort cooling applications. The choice of the type of system and cycle to be used in a given instance must be determined by the air conditioning engineer after a study of surrounding conditions.

Recently it has been shown that in some hot industries where a small number of workers are engaged in spaces of large volumetric capacity the worker himself, rather than the entire environment, can be cooled by either placing him in a small cooled and ventilated booth, by blowing cooled air over him, or by circulating cooled air through a loose-fitting suit²³.

RELATION OF AIR CONDITIONING NEEDS TO METABOLISM

The major objective of heating and ventilation is to balance heat losses from the human body. The basic factor is metabolism. The desirable environment, from the standpoint of heat loss, depends directly on the heat produced in the body and this heat may be over ten times as great when a man is exercising violently as when he is reclining and at rest. Therefore, there is no absolute optimum of air temperature or other environmental conditions, which will meet all cases. With moderate. (45 per cent) relative humidity and minimum air movement, an air temperature of 80 F has been found ideal for the lightly clothed subject at rest in a semi-reclining position, while normally clothed, healthy persons have been found comfortable at 72 and 77 F with 45 per cent relative humidity (or 67 and 71 deg ET, respectively) for winter and summer conditions. In factories where light work is performed in summer time, the ideal has been found to be about 76 F. For children (who have a high metabolism) at school, in winter clothing, 70 F has been considered correct: while in a gymnasium, 55 F has been recommended.

The wide variations in metabolic activities with which the engineer must be prepared to cope and the influence of such variations in metabolism on the heat load contributed by the human body to the environment are given in Table 3 and in Figs. 2, 3 and 4. It should be noted that metabolism and heat dissipation values are proportional to the body surface areas of the persons considered, and that the data referred to are

33A.S.H.V.E. RESEARCH REPORT NO. 1188—Local Cooling of Workers in Hot Industry, by F. C. Houghten, M. B. Ferderber and Carl Gutberlet (A.S.H V E. TRANSACTIONS, Vol. 47, 1941, p. 403).

²¹Some Effects of High Air Temperatures Upon the Miner, by K. N. Moss (Transactions Institute of Mining Engineers, Vol 66, 1924, p. 284).

only for persons having an average surface area of 19.5 sq ft or that of the average adult American male, 5 ft 8 in. in height and weighing 150 lb, and will therefore not apply to many audiences made up largely of women or younger persons. Fig. 5, taken from the work of Du Bois²⁴ gives the relation of body surface area to height and weight, which may serve to correct the data for other audiences than adult men. The curves in the figures are based on certain averages of test results with different humidities, and are sufficiently accurate for most practical applications. Where

Fig. 2. Relation Between Total Heat Loss from the Human Body and Effective Temperature for Still Air^a

aCurve A—Persons working so as to have a metabolic rate of 1310 Btu per hour. Curve B—Persons working so as to have a metabolic rate of 850 Btu per hour. Curve C—Persons working so as to have a metabolic rate of 660 Btu per hour. Curve D—Persons seated at rest, or with a metabolic rate of 400 Btu per hour. Curves B and D based on test data covering a wide temperature range. Curves A and C based on test data at an Effective Temperature of 70 deg and extrapolation of Curves B and D. All curves are averages of values for high and low relative humidities which apply with satisfactory accuracy for most considerations. For special problems requiring a higher degree of accuracy see more detailed A.S.H.V.E. Research Laboratory reports.

greater precision in the applications of the results is required, or for extreme variations in temperature and humidity, the reports²⁵ covering the A.S.H.V.E. Laboratory work may be consulted.

The curves in Figs. 2, 3 and 4, and proper interpolation between these curves make it possible to apply the data to persons engaged in any type

²⁴DuBois, D. and E. F. (Archives of Internal Medicine, 1916, Vol. 18, p. 865).

²⁵Loc. Cit. Note 11.

Fig. 3. Relation Between Sensible Heat Loss from the Human Body and Dry-Bulb Temperature for Still Aira

Fig. 4. Latent Heat and Moisture Loss from the Human Body by Evaporation, in Relation to Dry-Bulb Temperature for Still Air Conditions^a

aLoc. Cit. See footnote a, Fig. 2.

of work or physical activity, providing the resulting metabolic rate is known. As an example, if it is found that a certain type of work results in a metabolic rate of approximately 760 Btu per hour for an average person working in an atmosphere of 70 ET, then his total rate of heat dissipation to atmospheres of various temperature will be approximately as given by the broken-line curve in Fig. 2. The broken line curves in Figs. 3 and 4 give the rate of sensible and latent heat dissipation of the person for different dry-bulb temperatures.

ACCLIMATIZATION

Acclimatization and the factor of psychology are two important influences in air conditioning which cannot be ignored. The first is man's

Fig. 5. Chart for Determining Surface Area of Individuals for Height and Weight Given

ability to adapt himself to changes in air conditions; the second is an intangible matter of habit and suggestion.

Some persons regard the unnecessary endurance of cold as a virtue. They believe that the human organism can adapt itself to a wide range of air conditions with no apparent discomfort or injury to health. In the light of present knowledge of air conditioning these views are not justified. Acclimatization to extreme conditions involves a strain upon the heat regulating system and interferes with the normal physiologic functions of the human body. Thousands of years in the heat of Africa do not seem to have acclimatized the Negro to a temperature exceeding 80 F. The same holds true of northern races with respect to cold, although the effects are mitigated by artificial control. An environment averaging 64 F for the 24-hour period has been indicated as associated with minimal mortality²⁶.

Within limits, however, there does occur a definite adaptation to ex-

²⁶ Civilization and Climate, by Ellsworth Huntington, Yale University Press, 1928.

ternal temperature level. People and animals raised under conditions of tropical moist heat stand chilling poorly as they are unable quickly to increase internal combustion to keep up the body temperature. For this

Fig. 6. A.S.H.V.E. Comfort Chart for Still Air

Note —Both summer and winter comfort zones apply to inhabitants of the United States only. Application of winter comfort line is further limited to rooms heated by central station systems of the convection type. The line does not apply to rooms heated by radiant methods. Application of summer comfort line is limited to homes, offices and the like, where the occupants become fully adapted to the artificial air conditions. The line does not apply to theaters, department stores, and the like where the exposure is less than 3 hours. The optimum summer comfort line shown pertains to Pittsburgh and to other cities in the northern portion of the United States and Southern Canada, and at elevations not in excess of 1000 ft above sea level. An increase of one deg ET should be made approximately per 5 deg reduction in north latitude.

reason they have trouble standing the cold, stormy weather of the temperate zones, and when exposed to it are very susceptible to respiratory infections. Likewise, people living in cool climates suffer greatly in the moist heat of the tropics until their adaptive mechanism has been adjusted.

Within a few years, however, they find themselves reacting as natives to the new environment.

The adaptive level changes somewhat with the season²⁷. There are also marked differences between the sexes. In the cold zone the thickness of thermal insulating tissues of women is almost double that of men, although the sensory responses to cold are similar. In the hot zone, the threshold of sweating and skin temperature levels are higher for women.

Finally, the thickness and insulating value of the clothing worn is an important factor in the determination of the comfort level.

Fig. 7. Relation Between Effective Temperature and Percentage Observations Indicating Comfort

EFFECTIVE TEMPERATURE INDEX

Sensations of warmth or cold depend, not only on the temperature of the surrounding air as registered by a dry-bulb thermometer, but also upon the temperature indicated by a wet-bulb thermometer, upon air movement and upon radiation effects. Dry air at a relatively high temperature may feel cooler than air of considerably lower temperature with a high moisture content. Air motion makes any moderate condition feel cooler. Radiation to cold or from warm surfaces is another important factor under certain conditions.

Combinations of temperature, humidity, and air movement which induce the same feeling of warmth are called thermo-equivalent condi-

[&]quot;The Reactions of the Clothed Human Body to Variations in Atmospheric Humidity, by C.-E. A. Winslow, L. P. Herrington and A. P. Gagge (American Journal of Physiology, Vol. 124, December, 1938, p. 692).

A series of studies²⁸ at the A.S.H.V.E. Research Laboratory. Pittsburgh, established the equivalent conditions met with in general air conditioning work. This scale of thermo-equivalent conditions not only indicates the sensation of warmth, but also to a considerable degree determines the physiological effects on the body induced by heat or cold. For this reason, it is called the effective temperature scale or index.

Effective temperature is an empirically determined index of the degree of warmth perceived on exposure to different combinations of temperature, humidity, and air movement. It was determined by trained subjects who compared the relative warmth of various air conditions in two adjoining conditioned rooms by passing back and forth from one room to the other.

The numerical value of the index for any given air conditions is fixed by the temperature of slowly moving (15 to 25 fpm air movement) saturated air which induces a like sensation of warmth or cold. Thus, any air condition has an effective temperature of 60 deg, when it induces a sensation of warmth like that experienced in slowly moving air at 60 deg saturated with moisture. The effective temperature index cannot be measured directly but is determined by the dry- and wet-bulb temperature observations and by reference to the Comfort Chart (see Figs. 6, 8 and 9) or tables. The relation of winter and summer sensations of comfort to wet- and dry-bulb temperature at low air movement is shown in Fig. 6. This chart, published by an A.S.H.V.E. Technical Advisory Committee²⁹, is based on research prior to 1932. Later studies by the A.S.H.V.E. Research Laboratory indicate somewhat higher temperatures for winter comfort, while Fig. 7 shows considerable variation in the requirements for comfort in summer cooled and air conditioned space. Relations between moisture content and various dry-bulb temperatures to wet-bulb readings and effective temperatures are depicted in Fig. 8. Effective temperatures for various combinations of wet- and dry-bulb temperatures and air movement are given in Fig. 9.

A long series of studies have been made to determine the optimum effective temperature for comfort of normal persons in both winter and summer air conditioned space, in different geographical regions and for different age groups of men and women. A group of these studies³⁰ was

²⁸A.S.H.V.E. RESEARCH REPORT No. 673—Determination of the Comfort Zone, by F. C. Houghten and C. P. Yaglou (A.S.H.V.E. Transactions, Vol. 29, 1923, p. 361). A S.H.V.E. RESEARCH REPORT No. 691—Cooling Effect on Human Beings by Various Air Velocities, by F. C. Houghten and C. P. Yaglou (A.S.H.V.E. Transactions, Vol. 30, 1924, p. 193). A.S.H.V.E. RESEARCH REPORT No. 717—Effective Temperature with Clothing, by C. P. Yaglou and W. E. Miller (A.S.H.V.E. Transactions, Vol. 31, 1925, p. 89). A.S.H.V.E. RESEARCH REPORT No. 755—Effective Temperature for Persons Lightly Clothed and Working in Still Air, by F. C. Houghten, W. W. Teague and W. E. Miller (A.S.H.V.E. Transactions, Vol. 32, 1926, p. 315).

²⁹How to Use the Effective Temperature Index and Comfort Charts, by C. P. Yaglou, W. H. Carrier, Dr. E. V. Hill, F. C. Houghten and J. H. Walker (A.S.H.V.E. TRANSACTIONS, Vol. 38, 1932, p. 410).

Dr. E. V. Hill, F. C. Houghten and J. H. Walker (A.S.H.V.E. Transactions, Vol. 38, 1932, p. 410).

**A.S.H.V.E. Research Report No. 1035—Comfort Standards for Summer Air Conditioning, by F. C. Houghten and Carl Gutberlet (A.S.H.V.E. Transactions, Vol. 42, 1936, p. 215). A.S.H.V.E. Research Report No. 1055—Cooling Requirements for Summer Comfort Air Conditioning, by F. C. Houghten, F. E. Giesecke, C. Tasker and Carl Gutberlet (A.S.H.V.E. Transactions, Vol. 43, 1937, p. 145). A.S.H.V.E. Research Report No. 1088—Summer Cooling Requirements of 275 Workers in an Air Conditioned Office, by A. B. Newton, F. C. Houghten, Carl Gutberlet and R. W. Qualley (A.S.H.V.E. Transactions, Vol. 44, 1938, p. 337). Cooling Requirements for Summer Comfort Air Conditioning in Toronto, by C. Tasker (A.S.H.V.E. Transactions, Vol. 44, 1938, p. 549). A.S.H.V.E. Research Report No. 1127—Reactions of Office Workers to Air Conditioning in South Texas, by A. J. Rummel, F. E. Giesecke, W. H. Badgett and A. T. Moses (A.S.H.V.E. Transactions, Vol. 45, 1939, p. 459). A.S.H.V.E. Research Report No. 1136—Summer Cooling Requirements in Washington, D. C., and Other Metropolitan Districts, by F. C. Houghten, Carl Gutberlet and Albert A. Rosenberg (A.S.H.V.E. Transactions, Vol. 45, 1939, p. 577). A.S.H.V.E. Research Report No. 1160—Reactions of 745 Clerks to Summer Air Conditioning, by W. J. McConnell and M. Spiegelman (A.S.H.V.E. Transactions, Vol. 46, 1940, p. 291).

made between 1935 and 1940 by the A.S.H.V.E. Laboratory in Pittsburgh, and in several metropolitan districts of the United States in cooperation with the managements of offices employing large numbers of workers. Some of the results are shown in Fig. 7. Taking all of these studies together, women of all age groups studied indicate an average effective temperature for comfort 1.1 deg higher than for men. All men and

women, beyond the age of 40 years, show an average desire for 0.9 deg ET higher than those below this age; while the men and women, respectively, beyond 40 desired effective temperatures of 0.8 and 1.2 deg higher than those below 40. The persons serving in all of these studies were representative of office workers clothed for air conditioned space in the summer season and engaged in the customary sedentary activity of office workers.

The 66 deg ET indicated as giving optimum comfort for winter con-

Fig. 9. Effective Temperature Chart Showing Normal Scale of Effective Temperature. Applicable to Inhabitants of the United States Under Following Conditions:

A. Clothing: Customary indoor clothing B Activity: Sedentary or light muscular work C Heating Methods: Convection type, i.e., warm air, direct steam or hot water radiators, plenum systems

ditions in Fig. 6 and determined prior to 1932, has more recently been checked; first, by occasional observations, and second, by consistent laboratory study³¹, indicating that a higher optimum of 67 deg ET was preferred by a majority of the eight male college students whose opinions were ascertained. This can be checked with larger groups when conditions permit.

On the basis of present knowledge, for different geographical regions and age groups, the total spread in optimum comfort conditions ranges from a low of 66 deg ET for winter heating and air conditioning, to a high of 73 deg ET for summer cooling and air conditioning.

The spread for summer cooling and air conditioning is confined entirely to an effective temperature range of from 69 to 73 deg, and it may be presumed that for winter conditioning a like spread would be had; while for inter-seasonal conditions there will be a fluctuation between these two ranges.

Recent studies³² indicate that for the average individual a temperature change of about 3 deg ET is required to change a person's sensation from *ideally comfortable* to *cool* or *warm*. From this it may be observed that necessary variations in the effective temperature of air conditioned space for optimum comfort for most persons, regardless of age or geographical location, need little differentiation for either the winter season or the summer season, and not more than about 4 deg on the average between seasons.

Acclimatization and habits of clothing and diet account for these variations. As a result of a recent analysis³³ of all of the evidence available by the A.S.H.V.E. Technical Advisory Committee on Sensations of Comfort, a variation of 3 deg spread in optimum effective temperature for summer cooling and air conditioning with geographical location has been proposed. However, it should be recognized that variations in sensation of comfort among individuals may be greater for any given location, as shown in Fig. 7, than for variations due to a difference in geographical location. The available information indicates rather clearly that changes in weather conditions over a period of a few days do not acclimate people to a desire for different indoor conditions, but in general, people experiencing low temperatures over an extended period of time become acclimated to desiring lower indoor temperatures, while those experiencing higher temperatures become acclimated to a desire for higher indoor temperatures. It is obvious that a person spending a considerable portion of his time in space conditioned to his comfort will become acclimated to his indoor environment. While few people enjoy air conditioning for more than a small percentage of the total time, there is some evidence that persons experiencing comfort air conditioning a large part of the time tend to become acclimated to about 70 or 71 deg ET.

The entering shock to occupants of summer cooled and air conditioned space may at times be important, and is due to the rapid evaporation of

³¹A S.H.V E. RESEARCH REPORT NO 1172—Radiation as a Factor in the Sensation of Warmth, by F. C. Houghten, S. B. Gunst and J. Suciu, Jr. (A S.H.V.E. Transactions, Vol 47, 1941, p. 93).
³²Loc. Cat. Note 31.

⁸⁵A.S.H.V.E. RESEARCH PAPER—Comfort with Summer Air Conditioning, by Thomas Chester, N. D. Adams, C. R. Bellamy, G. D. Fife, E. P. Heckel, Dr. W. J. McConnell, F. C. McIntosh, A. B. Newton, B. F. Raber and C. Tasker. (A.S.H.V.E. JOURNAL SECTION, Heating, Priping and Air Conditioning, October, 1941, p. 649).

perspiration accumulated during the occupant's previous stay in the hot outside. While recent studies³⁴ show that for healthy individuals this shock is usually a pleasant experience, for others it may result in unpleasant or even harmful chills. This fact should be taken into consideration in applying summer cooling and air conditioning, particularly to spaces where a large number of the occupants may enter for only a short time, 15 min or less. Such occupants may be satisfied with less cooling. For long occupancy very little deviation from the optimum effective temperature is practical.

Radiation between the occupant of an enclosure and the surfaces of the room itself and objects within the room, including windows, heating and

Fig. 10. Cooling Effect of Three Cold Walls in a Small Experimental Room, as Determined by Comparison with Sensations in a Room of Uniform Wall and Air Temperature

cooling equipment, and other occupants, has an important bearing on the feeling of warmth and may alter to some measurable degree the optimum conditions for comfort indicated previously. Fig. 10^{35} shows the necessary elevation in the dry-bulb temperature of the air to compensate for the lower temperature of three of four side-wall surfaces, which indicates that for this condition each degree reduction in the average of the three wall surface temperatures there must be an elevation of 0.3 deg in the dry-bulb temperature of the air to compensate. Recent studies by the A.S.H.V.E. Research Laboratory³⁶ on the effect of radiation within an enclosure, including the effect of panel heating, indicate that for each degree eleva-

36Loc. Cit. Note 31.

³⁴A S.H.V.E. RESEARCH REPORT No. 1102—Shock Experiences of 275 Workers After Entering and Leaving Cooled and Air Conditioned Offices, by A. B. Newton, F. C. Houghten, Carl Gutberlet, R. W. Qualley and M. C. W. Tomlinson (A.S.H.V E. TRANSACTIONS, Vol. 44, 1938, p. 571).

^{**}SA.S.H.V.E. RESEARCH REPORT NO. 946—Cold Walls and Their Relation to Feeling of Warmth, by F. C. Houghten and Paul McDermott (A S.H.V.E. Transactions, Vol. 39, 1933, p. 83).

tion or depression of the mean radiant temperature above or below the air temperature requires about 0.5 deg counterchange in effective temperature of the air. Since the mean radiant temperature of the surroundings is affected by cold, uninsulated walls and windows, particularly single glazed windows, as well as by heating units placed within the room, including panel heaters, these factors must be compensated. Likewise, in densely occupied spaces, such as classrooms, theaters and auditoriums, somewhat lower temperatures may be necessary than those indicated by the comfort line on account of counter-radiation between the bodies of occupants in close proximity to each other, which also will elevate the mean radiant temperature of the room.

The sensation of comfort, insofar as the physical environment is concerned, is not absolute but varies considerably among certain individuals. Therefore, in applying the air conditions indicated, it should not be expected that all the occupants of a room will feel perfectly comfortable. The curves in Fig. 7 indicate that some persons require temperatures as much as 4 and 6 deg lower and higher than the optimum for the average. In this connection it is of interest to note that from the characteristic shape of the curves that in general people will object more quickly to a few degrees drop in temperature from the average optimum than will be the case for the same number of degrees overheating. However, when optimum comfort temperatures are applied in accordance with foregoing recommendations, the majority of the occupants should be comfortable, and it should be expected that there will be a few too warm and a few too cold. These individual differences among the minority should be counteracted by suitable clothing.

Satisfactory comfort conditions for persons at work³⁷ are found to vary depending upon the rate of work and the amount of clothing worn. In general, the greater the degree of activity, the lower the effective temperature necessary for optimum comfort. However, recent work by the A.S.H.V.E. Research Laboratory³⁸ indicates that under certain conditions moderate activity on the part of a person standing up and moving about may result in a slightly higher optimum effective temperature than for a person seated at rest, because of the larger body surface area exposed to heat elimination and the increase in effective air movement over his body. Where few workers occupy a large space in hot industries, recent work by the A.S.H.V.E. Research Laboratory³⁹ shows that they may be made reasonably comfortable by blowing relatively small volumes of slightly cooled air over them or through their clothing.

For prematurely born infants, the optimum temperature varies from 100 to 75 F, depending upon the stage of development. The optimum relative humidity for these infants is placed at 65 per cent⁴⁰. No data are yet available on the optimum air conditions for full term infants and young children up to school age. Satisfactory air conditions for these age

MAS.H.V.E. RESEARCH REPORT No. 755—Effective Temperature for Persons Lightly Clothed and Working in Still Air, by F. C. Houghten, W. W. Teague and W. E. Miller (A.S.H.V.E. Transactions, Vol. 32, 1926, p. 315).

³⁸A.S.H V E. RESEARCH REPORT NO 1106—Air Conditioning in Industry, by W L. Fleisher, A. E. Stacey, Jr., F. C. Houghten and M. B. Ferderber (A S H.V E. Transactions, Vol. 45, 1939, p. 59).
³⁹Loc. Cit. Note 23.

⁴⁰Application of Air Conditioning to Premature Nurseries in Hospitals, by C. P. Yaglou, Philip Drinker and K. D. Blackfan (A.S.H.V.E. Transactions, Vol. 36, 1930, p. 383).

groups are assumed to vary from 75 to 68 F with natural indoor humidities. For school children, the studies of the New York State Commission on Ventilation place the optimum air conditions at 66 to 68 F temperature with a moderate humidity and a moderate but not excessive amount of air movement⁴¹. A great number of persons seem to be fairly content with a higher plane of indoor temperature, particularly when the matter of first cost and operating cost of a cooling plant is given due consideration. Recent studies by the University of Illinois⁴² in cooperation with the A.S.H.V.E. Committee on Research indicate that effective temperatures as high as 74.5 deg are acceptable in the living quarters of a residence, and while this condition is not representative of optimum comfort it provides sufficient relief in hot weather to be acceptable to the majority of users. It should be emphasized, however, that these high temperatures are borderline cases that may be acceptable largely in the interest of economy. Comprehensive studies by the A.S.H.V.E. Research Laboratory43 in cooperation with office staffs in widely distributed regions, including San Antonio, Texas, Minneapolis, Washington, D. C., and the Metropolitan Life Building, New York City (see Fig. 7), show conclusively that lower effective temperatures are required for optimum comfort, while in a few instances this optimum has been found as high as 73 deg and as low as 69 deg, or an average of about 71 deg.

PHYSIOLOGICAL OBJECTIVES OF HEATING AND VENTILATION

Aside from the removal of toxic fumes and dusts from heating appliances and industrial processes, the chief task of the heating and ventilating engineer is to keep his clients warm in winter and cool in summer.

For the normally vigorous person, normally clothed, and at rest, an air temperature of 65 F should be provided at knee-height, 18 in. in order to prevent chilling of the legs and feet. With some heating systems, this will correspond to 70 F at a 5 ft height. Air temperature may be increased or decreased in order to compensate for deviations of mean radiant temperature above or below air temperature.

In rooms occupied by persons of sub-normal vitality, knee-height temperatures must be higher than 65 F. Since dwellings are designed for occupancy by old people and children, the heating system should be able to provide a temperature of 70 F at knee-height under ordinary winter conditions.

The maintenance of such conditions as these in winter depends on three major factors, the heat produced in the occupied space, the heat absorbed from the sun and the heat loss through the walls, floor and ceiling of the structure to cold air and earth. Taking these up in the order in which they occur, in planning a new structure it is essential to remember the important effect of orientation and fenestration of the building with respect to the absorption of radiant heat from the sun. It has recently been shown that, in the vicinity of New York, effective

[&]quot;Ventilation Report of the New York State Commission on Ventilation (E. P. Dutton Co., N. Y., 1923). "4A.S.H.V.E. RESEARCH REPORT NO. 1012—Study of Summer Cooling in the Research Residence for the Summer of 1934, by A. P. Kratz, S. Konzo, M. K. Fahnestock and E. L. Broderick (A. S.H.V.E. Transactions, Vol. 41, 1935, p. 207).

⁴⁵Loc. Cit. Note 30.

sun-heat on a wall facing south is almost five times as great in winter as in summer, but on a wall facing west-north-west it is six times as great in summer as in winter⁴⁴. The orientation of the same one-story house (in a laboratory model) was changed from a position in which its principal rooms faced northwest to a position in which these rooms (with rearranged and slightly increased fenestration) faced west of south. This change decreased average summer sun-heat to one-ninth and increased average winter sun-heat to fourfold of its value with the original orientation.

The choice between the various methods of heating depends, of course, on many engineering and other factors. From the standpoint of human health and comfort, however, it is important to minimize floor-ceiling differentials as far as possible to avoid hot heads and cold feet. Furthermore, when the problem is a heating one, low air movement is desirable, since air temperature must be raised to balance the cooling effect of air motion.

Where occupants are closely aggregated, a new problem comes in, the removal of the excess heat produced by the human body itself. If the temperature of such a space be correctly adjusted when the occupants enter, it will steadily rise during the period of occupancy as a result of the heat produced by the occupants in the process of metabolism. Of the 400 Btu given off in metabolism 100 would perhaps be lost in evaporation, leaving 300 Btu per person per hour to warm the air. In a room containing many persons, the effects of this body heat can be neutralized by outside air without producing unpleasant and dangerous drafts on those near the windows or other inlets. The supply of air before it reaches the occupant should be so tempered as to avoid drafts but in an amount and at a temperature which will remove the sensible heat produced by metabolism. With no heat loss through walls (as in an interior auditorium) this will require 28 cfm of air per person when admitted at 60 F, and an average temperature of 70 F for air leaving the room. Under practical conditions, with one or more cold walls, and a room containing a moderate number of occupants and ample cubic space, window ventilation with deflectors and a gravity exhaust duct may suffice. With crowded rooms, and with any rooms containing 50 or more occupants, forced ventilation will be essential.

SUMMER COMFORT

The problem of keeping cool in summer is physiologically as important as keeping warm in winter. In summer the relative humidity of the atmosphere is of great importance, along with air temperature, air movement, and wall temperature. There is no very practical method of cooling walls, but summer comfort can be promoted by modifying either one of the other three factors involved.

Increase of comfort by air movement may be had by the promotion of natural circulation by cross or through ventilation; and here the architect is responsible for providing fenestration which will make such natural

⁴⁴Solar Radiation as Related to Winter Heating in Residences, by H. N. Wright (Report of John B. Pierce Foundation, January 20, 1936).

ventilation possible. In the lowest cost housing this should be considered as essential.

The direct control of air temperature and humidity is, of course, the ideal solution where the cost of a complete air conditioning equipment can be met. Where this objective is attained, there are two schools of thought concerning the relation between temperature and humidity to be maintained. For a given effective temperature some engineers favor comparatively low temperature with a high humidity as this results in a reduction of refrigeration requirements. Preliminary experiments at the A.S.H.V.E. Laboratory⁴⁵ would seem to indicate not much impairment of comfort with relative humidities as high as 80 per cent, provided the effective temperature is between 70 and 72 or 73 deg. Until this subject is fully investigated it is desirable not to exceed 70 per cent relative humidity.

The second school favors a higher dry-bulb temperature, according to the prevailing outdoor dry-bulb, with a comparatively low humidity (well below 50 per cent), the main purpose being an assumed reduction in temperature contrasts upon entering and leaving the cooled space and to keep the clothing and skin dry. This second scheme requires more refrigeration with the present conventional type of apparatus.

INFLUENCE OF HUMIDITY

The limitation of the comfort zones in Fig. 6 with respect to humidity is not final but must be adhered to closely. Relative humidities below 30 per cent may prove satisfactory from the standpoint of comfort. In mild weather comparatively high relative humidities seem to be entirely feasible, but in cold weather they are objectionable on account of condensation and frosting on the windows. Information on this subject is given in Chapter 4.

As to the effects of dryness of the air, per se, and irrespective of thermal effects, there is a common belief that dry air in itself exerts a harmful effect upon the skin and mucous membranes; but there is no convincing evidence that the increase of atmospheric moisture which can practically be introduced by humidification into the air of cool occupied rooms has any effect upon health and comfort. All controlled experiments on this point have yielded negative results; and the respiratory membranes of industrial workers exposed to hot moist air are distinctly abnormal compared with those of workers exposed to hot dry air⁴⁶.

For the premature infant, a high relative humidity of about 65 per cent is demonstrably beneficial to health and growth⁴⁷ until the infants reach a weight of about 5 lb. No such clear-cut evidence exists in the case of adults. In the comfort zone experiments of the A.S.H.V.E. Research Laboratory, the relative humidity was varied between the limits of 30 and 70 per cent approximately, but the most comfortable range has not

⁴⁵A.S.H V E. RESEARCH REPORT NO 1035—Comfort Standards for Summer Air Conditioning, by F. C. Houghten and Carl Gutberlet (A.S.H.V E. TRANSACTIONS, Vol. 42, 1936, p 215). A.S.H V.E. RESEARCH REPORT NO, 1055—Cooling Requirements for Summer Air Conditioning, by F. C. Houghten, F. E. Giesecke C. Tasker and Carl Gutberlet (A.S.H.V.E. TRANSACTIONS, Vol. 43, 1937, p. 145).

⁴⁶Loc. Cit. Note 37.

⁴⁷Loc. Cit. Note 40.

been determined. In similar experiments at the *Harvard School of Public Health*, the majority of the subjects were unable to detect sensations of humidity (*i.e.*, too high, too low, or medium) when the relative humidity was between 30 per cent and 60 per cent with ordinary room temperatures which is in accord with other studies^{48,49}.

INFLUENCE OF AIR MOVEMENT

Air movement has a powerful influence on the factors involved in thermal equilibrium of the body. An understanding of the phenomena involved is best had through a consideration of the purely physical factors involved in the effect of air movement on heat dissipation from inanimate surfaces by radiation, convection and evaporation. Thermal equilibrium of the human body is more complex because of the physiological control exercised in permitting the body surface temperature to drop when factors influencing heat loss are unavoidably increased without additional clothing and by the making available of perspiration for evaporation.

Air movement does not affect radiation loss, provided there is no change in the skin temperature. However, if there is excessive cooling and lowering of the skin temperature due to increased convection loss, then radiation loss (which varies as the differences of the fourth power of the absolute temperatures of the radiator and receiver) decreases. It has been shown by the work at the *John B. Pierce Laboratory of Hygiene*⁵⁰ and by the A.S.H.V.E. Research Laboratory⁵¹ that radiation may thus actually descrease due to air movement in relatively cool atmospheres.

Convection loss from any surface, including that of the clothed body, is greatly increased by air movement, provided the surface temperature remains the same. In cool atmospheres, unless increased clothing is worn, heat loss due to air movement may be accompanied by a drop in body surface temperature.

Heat loss by evaporation is greatly increased by air movement, provided surface temperature and moisture available for evaporation (or the wetness of the surface) are constant. However, since in the human body perspiration is only made available when there is need for increased evaporative heat loss due to reduction in convection loss, increased air movement is accompanied by decreased perspiration and evaporative cooling in moderately cool atmospheres. In very hot atmospheres, particularly with low vapor pressure, evaporative cooling may be increased by air movement so as to increase the maximum temperature level at which thermal equilibrium may be maintained. Results of studies at the A.S.H.V.E. Research Laboratory⁵² and at the John B. Pierce Labora-

⁴⁸Humidity and Comfort, by W. H. Howell (The Science Press, April, 1931).

⁴⁹Effect of Variation in Relative Humidity upon Skin Temperature and Sense of Comfort, by U. Miura (American Journal of Hygiene, Vol. 13, 1931, p. 432).

⁵⁰Loc. Cit. Note 13.

⁵¹Loc. Cit. Note 11.

^{**}Loc. Cit. Note 11.

**SA S.H.V.E. RESEARCH REPORT NO. 691—Cooling Effects on Human Beings Produced by Various Air Velocities, by F. C. Houghten and C. P. Yaglou (A S.H.V.E. Transactions, Vol. 30, 1924, p. 193).

A.S.H.V.E. RESEARCH REPORT NO. 717—Effective Temperature with Clothing, by C. P. Yaglou and W. E. Miller (A.S.H.V.E. Transactions, Vol. 31, 1925, p. 89).

A.S.H.V.E. RESEARCH REPORT NO. 690—Air Motion, High Temperatures and Various Humidities-Reactions on Human Beings, by W. J. McConnell, F. C. Houghten and C. P. Yaglou (A S.H.V.E. Transactions, Vol. 30, 1924, p. 167).

A.S.H.V.E. RESEARCH REPORT NO. 718—Work Tests Conducted in Atmospheres of High Temperatures and Various Humidities in Still and Moving Air, by W. J. McConnell and C. P. Yaglou (A S.H.V.E. Transactions, Vol. 31, 1925, p. 101).

tory of Hygiene⁵³ give data on the effect of air movement on heat dissipation for normally clothed, standing and seated subjects, and for lightly clothed and semi-reclining subjects, respectively. Fig. 9, resulting from A.S.H.V.E. research, shows the increase in dry-bulb and wet-bulb temperatures for the same effective temperature with air velocities ranging from 20 to 700 fpm.

Air velocities may be used for effective cooling; however, great care must be exercised to avoid drafts due to uneven cooling of the body surface. During the heating season air velocities in excess of 25 to 30 fpm usually give undesirable effects. With summer cooling and air conditioning higher velocities up to 40 or 50 fpm, if properly controlled, seem to give satisfactory conditions free from sensation of draft, while with higher ambient temperatures even higher air velocities may be used. In this connection it may be emphasized that drafts are interpreted⁵⁴ as local sensations of excessive coolness, and that even while very high air movement in relatively warm air increases the rate of heat loss from local parts of the body, it may improve the comfort of the occupant, so long as that part of his body surface is not excessively cooled.

THE FOUR VITAL FACTORS

From the preceding discussion it is clear that thermal environment cannot properly be adjusted to the requirements of human health and comfort without control of all the four basic factors:

- 1. Air temperature (free from radiation effects).
- 2. Air movement.
- 3. Humidity.
- 4. Mean radiant temperature of surrounding surfaces.

According to the recommendations of the Sub-Committee on the Hygiene of Environmental Conditions in the Dwelling⁵⁵, it is of great importance in all research studies to make an accurate record of each of the four independent factors governing bodily heat exchanges, temperature, movement and humidity of the air, and mean radiant temperature of the surrounding surfaces. For this purpose the committee suggested in the interest of comparability the use of the following four types of instruments or others yielding similar data:

- 1. Silvered dry-bulb thermometers or hair-pin thermometers (Bargeboer).
- 2. Silvered dry Kata-thermometers or the hot-wire anemometer.
- 3. Psychrometer, wet- and dry-bulb, whirling or ventilated.
- 4, Globe thermometer (Vernon) or the dry resultant thermometer (Missenard).

In this country, the shielded thermometer, or a very fine wire thermocouple, has been found more convenient for determining the true drybulb temperature. Fine, hot-wire anemometers are rapidly replacing the use of the Kata thermometer for measuring low air velocities, while some

⁵⁵ The Influence of Air Movement on Heat Losses for the Clothed Human Body, by C.-E. A. Winslow, A. P. Gagge and L. P. Herrington (American Journal of Physiology, October, 1939, Vol. 127, p. 505).

⁵⁴A.S.H.V.E. RESEARCH REPORT No. 1086—Draft Temperatures and Velocities in Relation to Skin Temperature and Feeling of Warmth, by F. C. Houghten, Carl Gutberlet and Edward Witkowski (A.S.H.-V.E. Transactions, Vol. 44, 1938, p. 289).

⁵⁵ Housing Commission of the League of Nations, adopted at Geneva, June 25, 1937.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

adaptations of the Vernon Globe thermometer, incorporating thermocouples rather than mercury thermometers, have been found more satisfactory and convenient.

Such instruments as these, when properly calibrated and their readings are compared, can be used for determining the four basic physical factors concerned separately or in certain combinations. The results of the four physical measurements thus determined can generally be translated into the terms of any special instrument combining two or more of them.

The work of the A.S.H.V.E. Research Laboratory has made available psychrometric charts with effective temperature scale superimposed thereon, including Figs. 8 and 9, and others⁵⁶, while recent studies⁵⁷ have indicated the degree to which mean radiant temperature of the surroundings modify the effective temperature index.

In some instances it may be important to record not only the movement and temperature of the air at various levels, but also the temperature of each wall and window, of the flooring, and of the ceiling, and to measure the total effective radiation of the surroundings in 6 directions; in order to trace the exact causes of defects in the building which have an unfavorable influence on the heat exchanges of its inhabitants. Facts of this type are of great practical importance.

⁵⁶A.S.H.V.E. RESEARCH REPORT NO 691—Cooling Effects on Human Beings Produced by Various Air Velocities, by F. C. Houghten and C. P Yaglou (A.S. H.V.E. Transactions, Vol. 30, 1924, p. 193).
⁵⁷Loc Cit. Note 31

Chapter 3

FUNDAMENTALS OF HEAT TRANSFER

Conduction, Convection, Radiation, Combined Convection and Radiation, Heat-Flow Resistance, Electrical Analogies, Practical Heat Transfer Problems, Unit Conductances for Convection Flow Systems, Radiation Factors or Emissivities, Solutions for Steady-State Conduction Problems

HEAT is that form of energy which is transferred from place to place by virtue of an existing temperature difference. The temperature difference is the potential which causes the transfer, the latter in turn being resisted by the thermal properties of the material combined in a simple term and known as the resistance. Energy exchange associated with mass transfer from place to place (evaporation, condensation, etc.) due to concentration differences will be treated elsewhere such as the section on cooling tower design in Chapter 27. The objectives of this chapter are to:

- 1. Describe the mechanisms and present the rate equations for the different modes of heat transfer.
- 2. Illustrate the application of the basic concepts to steady-state problems (temperature independent of time or a cyclic variable thereof) by means of several typical solutions of heat transfer systems.

Further applications to specific systems will be found throughout the Guide.

CONDUCTION. CONVECTION AND RADIATION

Thermal conduction is the term applied to the mechanism of heat transfer whereby in fluids the molecules of higher random kinetic energies transmit by direct molecular collision part of their energy to adjacent molecules of lower random kinetic energy. Since the temperature is proportional to the random kinetic energy of the molecules, thermal transfer will occur in the direction of decreasing temperature. The molecules oscillate about a mean position at fairly high velocities and frequencies, but there is no net material flow associated with the conduction mechanism.

In solids the significant mechanism of heat transport is thermal conduction and is ascribed to a transfer mechanism associated with the free electrons¹. Even in the case of fluids, thermal conduction is significant in the region very close to a solid boundary or wall, for in this region the flow is laminar, parallel with the wall surface, and there are practically no cross currents in the direction of the heat transfer.

¹The Metallic State, by H. Hume-Rothery (Oxford Press, 1931).

Contrasted to the thermal conduction mechanism, thermal convection involves energy transfer by eddy mixing and diffusion² in addition to conduction. This condition is pictured schematically in Fig. 1 which exhibits transfer from a pipe wall at surface temperature $t_{\rm s}$ to a colder fluid at a bulk temperature $t_{\rm f}$. In the laminar sublayer, immediately adjacent to the wall, the heat transfer is by thermal conduction, in the transition region, which is called the buffer layer, eddy mixing as well as conduction effects are significant, while in the eddy or turbulent region the major fraction of the transfer is by eddy mixing.

In most commercial equipment the main body of the fluid is in turbulent flow, and the laminar film exists at the solid walls only, as shown in Fig. 1. But in cases of low-velocity flow in small tubes, or with viscous liquids such as heavy oil (low Reynolds' numbers), the entire flow may be laminar. In these latter cases there is no transition or eddy region.

When the fluid currents are induced by sources external to the heat transfer region, as for example a pump, the described solid to fluid heat

Fig. 1. Thermal Convection Conditions

transfer is termed *forced convection*. In contrast, if the fluid currents are internally generated, as a result of non-homogeneous densities arising from the temperature variations, the heat transfer is termed *free convection*.

In the conduction and convection mechanisms heat is transferred as internal energy, *i.e.*, the random molecular kinetic energy associated with the material temperature. For radiant heat transfer, however, a change in energy form takes place from internal energy at the source to electromagnetic energy for transmission, then back to internal energy at the receiver. Since visible radiant energy exhibits characteristic wave lengths, the solution of thermal radiation problems is in many respects similar to the solution of problems in the field of illumination.

The rate of thermal current flow (i.e., rate of heat transfer) corresponding to the transfer mechanisms previously described, may be expressed by three rate equations. These are similar to Ohm's Law for electrical flow, the current flow through a resistance being proportional to the potential difference.

Thermal Conduction Equation

Equation 1 states symbolically that the thermal conduction current per unit transfer area normal to the flow, (dq)/(dA), Btu per hour per

²Absorption and Extraction, by T K Sherwood (McGraw-Hill Co., 1937)

CHAPTER 3. FUNDAMENTALS OF HEAT TRANSFER

square foot, is proportional to the temperature gradient (dt)/(dx), degree Fahrenheit per foot. The proportionality factor is termed the *thermal* conductivity, k, Btu per hour per square foot per degree Fahrenheit per foot of thickness.

$$\frac{dq}{dA} = -k \frac{dt}{dx} \tag{1}$$

The minus sign on the right side of the equation is introduced to indicate positive current flow in the direction of decreasing temperature. The physical significance of indicated quantities are illustrated further by the schematic diagram Fig. 2.

It should be emphasized that the thermal conductivity used should be expressed in consistent units; either using the inch or foot throughout.

Expressions of conductivity used in the heating field are usually inconsistent in this sense, in that it is customary to refer to the conductivity per square foot but for one inch of thickness. This custom has

Fig. 2. Thermal Conduction in a Flat Slab

been adopted for the reason that wall thicknesses are usually expressed in inches, whereas if expressed in feet, decimal or fractional thicknesses would result. When dealing with flat walls no complication is involved in using the inconsistent expression of conductivity. However, when curved or spherical walls are considered, considerable complication is Therefore, in this discussion the consistent units of conductivity expressed in Btu per hour per square foot per degree Fahrenheit for one foot of thickness is used throughout. Conductivity values obtained from Chapter 4 or Table 1 in this chapter, which are expressed in inconsistent units, must therefore be converted for use in the calculations of this chapter, by dividing by 12. As an example, the conductivity of brick, expressed in inconsistent units as 5.0 in Table 2 of Chapter 4, becomes 0.42 when used in the calculations of this chapter. Also, it should be emphasized that in order to make the calculations and applications consistent in this chapter, all dimensions of thickness must be expressed in feet.

Thermal Convection Equation

$$\frac{dq}{dA} = h_{\rm c} (t_{\rm s} - t_{\rm f}) \tag{2}$$

This rate equation states that the thermal convection current per unit transfer area (dq)/(dA), Btu per hour per square foot, is proportional to

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 1. Approximate Unit Thermal Conductivities of Miscellaneous Materials^a

Material	Conductivity, k Btu per Hour per SQ Ft per Deg F for One Inch Thickness
Air	0.168 1416.0 720.0 336.0 2640.0 3.6—7.32 240.0 330.0 2.4—12.0 312.0 4.08

aThermal conductivities depend to some extent on temperature. The above magnitudes are approximate only. Refer to Heat Transmission, by W. H. McAdams (McGraw-Hill Co., 1942) for additional values.

the temperature difference, $(t_s - t_f)$ which is the temperature of the surface less that of the fluid³. The proportionality factor is termed the *unit convection conductance* (sometimes called the film coefficient for convection), h_c , Btu per hour per square foot per degree Fahrenheit. These convection conditions are illustrated in Fig. 1.

The heat transmission by free or natural convection can be conveniently expressed as in Equation 2a:

$$q_{\rm c} = C \left(\frac{1}{D}\right)^{0.2} \left(\frac{1}{T \, {\rm av.}}\right)^{0.181} (t_{\rm s} - t_{\rm f})^{1.27}$$
 (2a)

where

qc = heat transmission by convection, Btu per square foot per hour.

C = a constant depending upon the surface shape.

D = diameter of pipe or circular duct or height of vertical wall, inches. (Effect of diameter or height becomes constant at 24 in.)

T av. = average wall surface and surrounding air temperature, degrees Fahrenheit absolute.

 $t_{\rm S}-t_{\rm f}={
m temperature}$ excess between wall surface and surrounding air, degrees Fahrenheit.

For horizontal cylinders, the value of C=1.016 has been well established by various investigations. For vertical plates, the value of C=1.394 has been fairly well established. A value of C=1.79 for horizontal plates warmer than the surrounding air facing upward and 0.89 for horizontal plates warmer than air facing downward is indicated by recent investigations⁴.

The heat transmission by free convection from vertical walls 24 in. or more in height is given in Table 2 as calculated from Equation 2a for ambient air temperature of 80 F. The values in Table 2 will not be changed appreciably by a considerable change in air temperature for a given temperature excess. For instance, a change in air temperature

The particular fluid temperature to use for a given system will be noted under the discussion of that system.

⁴The Transmission of Heat by Radiation and Convection, by Griffith and Davis (Special Report No. 9, 1922, Department of Scientific and Industrial Research, His Majesty's Stationery Office, London, England).

CHAPTER 3. FUNDAMENTALS OF HEAT TRANSFER

from 80 to 40 F will increase the heat transmission given in Table 2 by only 1.3 per cent.

Table 2 can also be used for calculating the free convection rate of transmission for various commercial shapes such as pipes and ducts. These calculations are simplified by the use of the factors in Tables 3 and 4. Table 3 gives factors by which the values in Table 2 must be multiplied to obtain the free convective transfer from various shapes whose characteristic dimensions are 24 in. or over, and Table 4 gives the factors to be used in conjunction with the factors in Table 3 for obtaining the free convection from Table 2 for pipes and ducts whose characteristic dimensions are less than 24 in.

For example, the free convection transfer from a 3 in. o.d. horizontal cylinder for a temperature difference for $40 \text{ F} = 25.0 \times 0.73 \times 1.52 = 27.7 \text{ Btu per square foot per hour.}$

Table 2. Heat Transmission by Free Convection for Large Vertical Surfaces

Expressed in Btu per square foot per hour

130
_
109.8
110.9
112.0
113.0
114.1
115.2
116.3
117.3
118.4
119.5
6.6777.88

Table 3. Free Convection Factors for Various Shapes

Shapes	FACTOR
Horizontal cylinders 24 in. in diam. or over	0.73 0.88 1.00 1.28 0.64 0.64 1.28

Table 4. Free Convection Factors for Various Diameter Pipes or Various Height Plates

Actual o. d., or height, in	1	2	3	4	5	6	7	8
Factor	1.88	1.64	1.52	1.43	1.37	1.32	1.28	1.25
Actual o. d., or height, in	9	10	12	14	16	18	20	22
Factor	1.22	1.19	1.15	1.11	1.09	1.06	1.04	1.02

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

TABLE 5. APPROXIMATE UNIT CONDUCTANCES FOR THERMAL CONVECTION FOR SEVERAL FLOW SYSTEMSa

Expressed in Convenient Empirical Form

CASE	System	Unit Conductance Equationb
	Forced Conve	CTION
1.	Longitudinal flow in cylinders, turbulent region. Fluid being heated.	$\frac{4hr_{\rm H}}{k} = 0.0225 \left(\frac{4r_{\rm H}G}{\mu}\right)^{0.8} \left(\frac{c_{\rm D}\mu}{k}\right)^{0.4}$ For $\left(\frac{4r_{\rm H}G}{\mu}\right) > 3000$
2.	For longitudinal air flow in cylinders case 1 reduces to ^C .	$h = 0.0036 G^{0.8}/(4r_{\rm H})^{0.2}$ For $\left(\frac{4r_{\rm H}G}{\mu}\right) > 3000$
3.	For longitudinal water flow in cylinders case 1 reduces to ^C .	$h = 0.00486 (1 + 0.01t) \frac{G^{0.8}}{4r_{\rm H}^{0.2}}$ For $\left(\frac{4r_{\rm H}G}{\mu}\right) > 3000$
4.	Air flow normal to a single right circular cylinder.	$h = 0.45 \left(\frac{k}{D}\right) + 0.178 G^{0.56} \left(\frac{k}{D}\right)^{0.44}$
5.	Air flow over staggered pipe banks.	$h = 0.061 \left(\frac{k}{D}\right)^{0.51} G^{0.60}$
6.	Air flow over single spheres.	$h = 0 040 \frac{G^{9.52}}{D^{9.48}}$ $0 < t < 250 \text{ F}$
7.	Air flow over plane surfaces.	$\begin{array}{c} h=1+0.22~V_8\\ \text{For }V_8<16~\text{ft per second}\\ \text{or }h=0.53~V_8^{0.8}\\ 16~\text{ft per second}< V_8<100~\text{ft per second} \end{array}$
8.	Air flow normal to finned cylinders.	$h = 6.2 \left(\frac{G}{3600}\right)^{6.8} \frac{s^0}{D^{0.52}}$ $0 < t < 250 \text{ F}$
	Free Convec	TIONd
9.	Single horizontal right circular cylinder ın air.	$h = 0.23 \left(\frac{\Delta t}{D}\right)^{0.25}$
10.	Vertical surfaces in air.	$h = 0.3 \ (\triangle t)^{0.25}$
11.	Top surface of horizontal plates to air.	$h = 0.4 \ (\Delta t)^{0.25}$
12.	Bottom surface of horizontal plates to air.	$h = 0.2 \ (\Delta t)^{0.25}$

aHeat Transmission, by W. H. McAdams. bFluid properties should be evaluated at the arithmetic mean fluid temperature, $t_f = (t_{surface} + t_{fluid})$ divided by 2.

These expressions are applicable to longitudinal flow in other than right circular cylinders provided the hydraulic radius is employed as the conduit dimension parameter. For right circular cylinders $4r_{\rm H}=D$.

dFor low rates of heat transfer by free convection the exponent decreases towards zero, and for higher rates increases towards 0.33. The following equations employing an exponent equal to 0.25 are applicable in the intermediate range.

CHAPTER 3. FUNDAMENTALS OF HEAT TRANSFER

The increased rate of heat transfer due to forced convection can be calculated from Equation 2b:

$$q_{fc} = 1 + 0.225V \tag{2b}$$

where

 q_{fc} = heat transfer by forced convection, Btu per square foot per hour per degree Fahrenheit temperature difference.

V = velocity of air, feet per second.

This equation is approximately correct for large surfaces exposed to air currents at temperatures of approximately 70 to 80 F.

Problems in either forced convection or natural convection may be solved by the simple first-power equation if the convection coefficient is expressed as a unit conductance:

$$q_{\rm c} = h A \left(t_1 - t_2 \right) \tag{2c}$$

where

 q_c = heat transmission by convection, Btu per hour.

A =surface area, square feet.

 $t_1 - t_2$ = temperature difference between the surface and the air, degrees Fahrenheit.

h = unit conductance given in Table 5.

Thermal Radiation Equation

The relation shown in Equation 3 is usually applicable to systems in which radiant exchange takes place between the surfaces of solids, as sche-

$$q_{\rm r} = \sigma A_1 F_{\rm A} F_{\rm E} \left(T_1^4 - T_2^4 \right) \tag{3}$$

matically shown in Fig. 3. Gaseous and luminous radiation are not considered in this discussion. Equation 3 states that the net radiation current per unit transfer area of surface 1, q_r/A Btu per hour per square foot, which sees surface 2 through a non-absorbing medium, is proportional to the

NOMENCLATURE AND DIMENSIONS FOR TABLE 5

 $c_{\rm p}=$ fluid unit heat capacity at constant pressure, Btu per pound per degree Fahrenheit.

D = cylinder diameter, feet.

 $G = V_{s\gamma} =$ fluid mass velocity, pounds per hour per square foot of flow cross section.

 γ = density, pounds per cubic foot.

h = unit conductance for thermal convection, Btu per hour per square foot per degree Fahrenheit.

k= unit thermal conductivity of the fluid, Btu per hour per square foot per degree Fahrenheit for one foot thickness.

 $r_{\rm H}$ = hydraulic radius of the flow cross section^c.

= flow cross section area per wetted perimeter, feet.

s = fin spacing, feet.

t = average fluid film temperature, degree Fahrenheit.

 Δt = temperature difference surface to main fluid, degree Fahrenheit.

 $V_{\rm S}$ = fluid velocity, foot per second.

 μ = fluid viscosity, pounds per hour per foot.

= viscosity in centipoises $\times 2.42$ = viscosity in pounds per hour per foot.

difference of the fourth powers of the absolute surface temperatures $(T_1^4 - T_2^4)$. The proportionality factor $(\sigma F_A F_E)$ may be conveniently separated into three parts:

- σ = the Stefan-Boltzmann radiation constant.
 - = 1730×10^{-12} Btu per hour per square foot per degree Fahrenheit absolute temperature to the fourth power.
- $F_{\mathbf{A}}=$ the angle factor is dimensionless and ≤ 1 . This factor accounts for the relative geometry of the two surfaces, and is called the shape factor. A value of $F_{\mathbf{A}}=1$ may be used in the cases of large parallel planes, long concentric cylinders or small bodies in large enclosures. (For other values see References.)

Fig. 3. Radiation Between Surfaces

- $F_{\rm E}^{'}$ = the emissivity factor is also dimensionless and ≤ 1 . This factor accounts for the absorption and emission characteristics of the surfaces for the radiation which exists. Individual emissivities (e) should be taken from Table 6 and applied, for either radiation or absorption, as follows:
 - a. For a small body in a large enclosure, use the emissivity of the small body only: $F_{\rm E}=e_1$.
 - b. For rectangles or disks, either parallel or perpendicular and with a common side, use the product of the emissivities: $F_E = e_1 \times e_2$.
 - c. For large parallel planes, long concentric cylinders or large enclosed bodies, use both emissivities in the equation:

$$F_{\rm E} = \frac{1}{\frac{1}{e_1} + \frac{1}{e_2} - 1}$$

The radiation under black-body conditions, or for an emissivity of 1.0, is given in Table 7^5 for cold surfaces as low as -39 F to warmer surfaces as high as 139 F. The emissivities of a number of surfaces ordinarily encountered in engineering practice are shown in Table 6. For radiation table at higher temperatures, and further discussion of radiation calculations, see Chapter 45.

Combined Convection and Radiation

It should be noted that the previous equations and tables give the heat transfer by convection and by radiation computed separately. In many

⁵Heat Insulation in Air Conditioning, by R. H. Heilman (Industrial and Engineering Chemistry, Vol. 28, July 1936, p. 782).

CHAPTER 3. FUNDAMENTALS OF HEAT TRANSFER

Table 6. Radiation Factors or Emissivities For the determination of factor $F_{\rm E}$ in Equation 3

		Fraction of Black-Body Radiation					
Class	Surfaces	At 50-100 F	At 1000 F	Solar Radiation			
1	A small hole in a large box sphere, furnace, or enclosure	0.97 to 0.99	0.97 to 0.99	0.97 to 0.99			
2	Black non-metallic surfaces such as asphalt, carbon, slate, paint, paper	0.90 to 0.98	0.90 to 0.98	0.85 to 0.98			
3	Red brick and tile, concrete and stone, rusty steel and iron, dark paints (red, brown, green, etc.)	0.85 to 0.95	0.75 to 0.90	0.65 to 0.80			
4	Yellow and buff brick and stone, firebrick, fire clay	0.85 to 0.95	0.70 to 0.85	0.50 to 0.70			
5	White or light-cream brick, tile, paint or paper, plaster, white-wash	0.85 to 0.95	0.60 to 0.75	0.3 to 0.5			
6	Window glass	0.90 to 0.95		Transparent			
7	Bright aluminum paint; gilt or bronze paint	0.4 to 0.6		0.3 to 0.5			
8	Dull brass, copper, or aluminum; galvanized steel; polished iron	0.2 to 0.3	0.3 to 0.5	0.4 to 0.65			
9	Polished brass, copper, monel metal	0.02 to 0.05	0.05 to 0.15	0.3 to 0.5			
10	Highly polished aluminum, tin plate, nickel, chromium	0.02 to 0.04	0.05 to 0.10	0.10 to 0.40			

practical cases it is desirable to treat convection and radiation as a single combined process, using a first-power equation:

$$q_{\rm rc} = h_{\rm rc} A (t_1 - t_2) \tag{4}$$

where $q_{\rm rc}$ is the total heat flow due to radiation and convection, in Btu per hour. Values of $h_{\rm rc}$, the surface or film conductance for combined radiation and convection are given in Chapter 4, Table 1 and Fig. 1. Complete tables for the combined heat transfer of steam and hot water radiators, pipes, coverings, etc., will be found in the appropriate chapters.

When dealing with the effect of operating temperatures upon the combined heat transfer of a given piece of equipment (as for instance a steam radiator), another form of equation is frequently used:

$$q_{\rm rc} = B A (t_1 - t_2)^{\rm n}$$
 (5)

Values of n in this equation usually range from 1.3 to 1.5 (see Chapter 13). The chief advantage of this equation is the convenience of representing

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

heat transfer performance on logarithmic coordinates, and the factor B should be regarded as a simple constant of proportionality.

HEAT-FLOW RESISTANCE

In most of the steady-state heat transfer problems encountered in air conditioning applications, more than one of the heat transfer mechanisms is effective, and the thermal current flows through several resistances in series or in parallel. In using the resistance concept the calculations involved are analogous to the application of Ohm's Law in electricity, viz.,

Table 7. Heat Transmission by Radiation for Black-Body Conditions^a

Expressed in Btu per square foot per hour

TEMP. DEG F	0	-1	-2	-3	-4	-5	-6	-7	-8	-9
-30 -20 -10 0	59.3 65.2 71.4 78.0	58.7 64.7 70.8 77.4	58.2 64.1 70.1 76.7	57.7 63.5 69.5 76.0	57.2 62.9 68.9 75.4	56.7 62.3 68.3 74.7	56.2 61.7 67.7 74.0	55.7 61.1 67.1 73.4	55.2 60.5 66.4 72.7	54.7 59.9 65.8 72.1
	0	+1	+2	+3	+4	+5	+6	十7	+8	+9
0 10 20 30 40 50 60 70 80 90 100 110 120	78.0 85.0 92.4 100 109 118 127 137 148 159 170 183 196 211	78.7 85.7 93.3 101 110 119 128 138 149 160 171 184 197 212	79.4 86.5 94.0 102 111 120 129 139 150 161 173 185 199 214	80.1 97.2 94.8 103 112 121 130 140 151 162 174 187 200 215	80.8 88.0 95.6 104 1112 122 131 142 152 163 175 188 201 217	81.5 88.7 96.4 105 113 123 132 143 153 164 176 189 203 218	82.2 89.4 97.2 105 114 123 133 144 154 166 178 191 204 220	82.9 90.2 98.0 106 115 124 134 145 155 167 179 192 206 221	83.6 90.9 98.8 107 116 125 135 146 156 168 180 193 207 222	84.3 91.7 99.6 108 117 126 136 147 157 169 182 195 209 224

**Example: Radiation from walls of room at 32 F to surface at -25 F for effective emissivity of 0.95 = (102 - 623) 0.95 = 37.7 Btu per square foot per hour.

the heat flow or thermal current is directly proportional to the thermal potential or temperature difference, and inversely proportional to the thermal resistance:

$$q_{\rm rc} = \frac{t_1 - t_2}{R} \tag{6}$$

Following the electrical analogy, when there is a thermal current flowing through several resistances in series, the resistances are additive:

$$R_{\rm T} = R_1 + R_2 + R_3 + \ldots + R_n$$
 (7)

Similarly, conductance is the reciprocal of resistance, and for heat flow through two resistances in parallel, the conductances are additive:

$$C_{\rm T} = \frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$
 (8)

Practical Heat Transfer Problems

The use of these simple relations for resistance and conductance simplifies many practical heat transfer problems. As discussed in Chapters 4, 26 and 43, the practical analyses of heat transfer in building walls, in fin-tube coils and in pipe coverings, are usually computed by this method.

The same resistance analysis may be applied to complicated steadystate *conduction* problems. Table 8 indicates the solutions in six common cases of steady-state conduction.

A complete analysis by the resistance method is best illustrated by considering the heat transfer from the air outside to the cold water inside of an insulated pipe. The temperature gradients and the nature of the resistance analysis are indicated by the two sketches of Fig. 4.

Since air is sensibly transparent to radiation, there will be some heat transfer by both radiation and convection to the outer insulation surface. The mechanisms act in parallel on the air side. The total current by

Fig. 4. Heat Transfer Conditions in the Insulated Cold Water Line

radiation and convection then passes through the insulating layer and the pipe wall by thermal conduction, and thence by convection into main cold water streams. Radiation is not significant on the water side as liquids are sensibly opaque to radiation, although water transmits energy in the visible region. The contact resistance between the insulation and the pipe wall is presumed to be equal to zero.

Referring to Fig. 4, the thermal current for a given length N of pipe, $q_{\rm rc}$ Btu per hour, may be thought of as flowing through the parallel resistances $R_{\rm r}$ and $R_{\rm c}$, associated with the insulation surface radiation and convection transfer. Then the flow is through the resistance offered to thermal conduction by the insulation, R_3 , through the pipe wall resistance, R_2 , and into the water stream through the convection resistance, R_1 . Note the analogy to the direct current electrical circuit problem. A temperature (potential) drop is required to overcome these resistances to the flow of thermal current. The total resistance to heat transfer, $R_{\rm T}$, hour degrees Fahrenheit per Btu, is the summation of the individual resistances:

$$R_{\rm T} = R_1 + R_2 + R_3 + R_4 \tag{9}$$

TABLE 8. SOLUTIONS FOR SOME STEADY-STATE THERMAL CONDUCTION PROBLEMSab

No.	System	Expressions for the resistance R entering into the equation: $q = \Delta t/R$ (Btu per hour)
1.	Flat wall or curved wall if curvature is small (wall thickness less than 0.1 of inside diameter).	
	Surface area, A	$R = \frac{l}{kA}$
2.	Radial flow through a right circular cylinder. Long cylinder of length, N	$R = \frac{\log_e \frac{r_o}{r_1}}{2\pi k N}$ (See footnote c).
3.	The buried cylinder. ts k	$R \approx \frac{\log_{\theta} \frac{2a}{r}}{2\pi k N}; R = \frac{\cosh^{-1} \frac{a}{r}}{2\pi k N}$ for $\frac{a}{r} \geq 3$ (See footnote c).
4.	Radial flow in a hollow sphere $ \begin{array}{c} \downarrow \\ \downarrow \\$	$R = \frac{\frac{1}{r_i} - \frac{1}{r_o}}{4\pi k}$
5.	The straight fin or rod heated at one end. Conduction cross-section area, A tambient	$R = \frac{m}{h_8 p \tanh ml} \text{ (see footnotes } d \text{ and } \epsilon\text{)}.$ For $ml > 2$ 3, $\tanh ml \approx 1$ $m = \sqrt{h_8 p / kA}$ $A = \text{conduction cross section area.}$ $b = \text{perimeter of cross section } A.$ $h_8 = \text{unit conductance to the surroundings from the fin surface.}$ $k = \text{thermal conductivity fin material.}$ $\Delta t = \text{wall temperature} - \text{ambient temp.}$
6.	Finned surface of area HB. Finned surface of area HB. Surface area. HB	$R = \frac{(s+\delta)}{h_{8} \left(\frac{2}{m} \tanh m \ l + s\right) HB}$ $m = \sqrt{\frac{h_{8}p}{kA}} = \sqrt{\frac{2 h_{8}}{k\delta}}$ $\Delta t \text{ defined as in Case 5 above.}$

a The dimensions to be employed in these solutions are: length of dimension p, l, r = feet; units of k = Btu per hour per square foot per degree Fahrenheit for one foot thickness; units of h, Btu per hour per square foot per degree Fahrenheit; units of area, A = square feet. b The thermal conductivity, k, in these solutions should be taken at the average material temperature (see Table 5). cloge x = 2.303 log10 x. d This expression can also be employed as an approximation for tapered fins or of annular fins by employing average magnitudes of A and p. eTanh is the hyperbolic tangent.

CHAPTER 3. FUNDAMENTALS OF HEAT TRANSFER

where the resultant parallel resistance R_4 is obtained from:

$$\frac{1}{R_4} = \frac{1}{R_r} + \frac{1}{R_c}$$

Provided the individual resistances may be evaluated, the total resistance can be obtained from this relation. Then the heat transfer current for the length of pipe (N, ft) can be established by the relation:

$$q_{\rm rc}$$
 (Btu per hour) = $\frac{t_{\rm o}-t_{\rm f}}{R_{\rm T}}$ (10)

For a unit length of the pipe the heat transfer rate is:

$$\frac{q_{\rm rc}}{N}$$
 (Btu per hour foot) = $\frac{(t_0 - t_{\rm f})}{R_{\rm T}N}$ (11)

The temperature drop, Δt , through an individual resistance may then be calculated from the relation:

$$\Delta t = R q_{rc}$$

where R is the resistance in question.

The problem is now reduced to one of evaluating the individual resistances of the system. This entails suitable integration of the rate Equations 1, 2 and 3 to produce expressions of the form:

$$q = \frac{\Delta t}{R} \tag{12}$$

where q is the heat transfer rate, and Δt is the potential drop or temperature difference through the resistance R. Table 8 lists such solutions for six different conduction systems. Table 2 in Chapter 4 and Table 1 of this chapter indicate the magnitudes of the thermal conductivities, k, to be employed in the expressions of Table 8.

The solution applicable to the problem depicted in Fig. 4, for the calculation of R_2 and R_3 , is case 2 in Table 8. Thus for a 1 ft length of 2 in. nominal size pipe (I. D. = 2.067 in., O. D. = 2.375 in.) insulated with 1 in. of cork:

$$R_2 = rac{\log_{\mathrm{e}} rac{1.188}{1.033}}{2\pi imes 26 imes 1} = 8.5 imes 10^{-4} \ \mathrm{hr} \ \mathrm{degree} \ \mathrm{Fahrenheit} \ \mathrm{per} \ \mathrm{Btu}.$$

$$R_3 = \frac{\log_{\rm e} \frac{2.188}{1.188}}{2\pi \times 0.025 \times 1} = 3.9 \; {\rm hr \; degree \; Fahrenheit \; per \; Btu.}$$

The convection resistances to heat transfer from the pipe wall to the cold water, $R_{\rm I}$, and from the air to the surface of the insulating material, $R_{\rm c}$, are dependent on the flow conditions prevailing at these surfaces, and on the thermal properties of the fluids. The unit conductances for thermal convection, h, Btu per hour per square foot per degree Fahrenheit, have been determined by test for many flow systems. These data may be employed to predict the conductances for similar flow systems. Table 5 summarizes some empirical equations expressing such test results.

For the problem under consideration (Fig. 4) case 3 of Table 5 is applicable for the calculation of the cold water side convection resistance R_1 . Corresponding to the water velocity of 5 ft per second, the mass velocity is:

G=5 (ft per sec) \times 62.4 (lb per cu ft) \times 3600 (sec per hr) = 11.2 \times 10 lb per hour per square foot.

The hydraulic radius for the flow in the 2 in. line is, by definition:

$$r_{\rm H} = \frac{\pi D^2}{\pi D4} = \frac{D}{4} = \frac{2.067}{12 \times 4} = \frac{0.1725}{4} \text{ ft.}$$

The average water film temperature will be estimated as 36 F (mixed mean fluid temperature of 34 F). Then case 3, Table 5 yields:

 $h = 0.00486 (1 + 0.36) \frac{(11.2 \times 10^5)^{0.8}}{(0.1725)^{0.2}} = 650$ Btu per hour per square foot per degree Fahrenheit.

The transfer area on which this conductance is based is the inside tube area. Associated with 1 ft length of pipe there are:

$$\pi \times \frac{2.067}{12} \times 1 = 0.542 \text{ sq ft.}$$

Thus the resistance for 1 ft of tube length is:

$$R_1=rac{1}{h\pi D imes 1}=rac{1}{650 imes 0.542}=2.8 imes 10^{-3}$$
 hr degree Fahrenheit per Btu.

Case 9, Table 5 is applicable for calculating the free thermal convection resistance, $R_{\rm c}$, existing between the surrounding air and the insulation. The air temperature is given as 120 F. As an approximation a 20 F temperature difference between the air and the pipe surface will be assumed. Then case 9 yields:

$$D = \frac{4.375}{12} = 0.364 \text{ ft.}$$

$$h=0.23\left(\frac{20}{0.364}\right)^{\rm 0.25}=0.63$$
 B
tu per hour per square foot per degree Fahrenheit. (13)

This result may not be deemed conservative inasmuch as the expression is for *still* air. If, however, the air is not still, but flows at approximately 5 mph or 7 ft per second the mass velocity corresponds to:

$$G=7\times0.07\times3600=1770$$
 lb air per hour per square foot.

A magnitude of k = 0.014 Btu per hour per square foot per degree Fahrenheit for one foot thickness applied to case 4 yields:

$$h = 0.45 \left(\frac{0.014}{0.364} \right) + 0.178 (1770)^{0.56} \left(\frac{0.014}{0.364} \right)^{0.44}$$

= 0.017 + 2.8 = 2.8 Btu per hour per square foot per degree Fahrenheit.

This conductance is based on 1 sq ft of outside lagging area. Thus, since there are $\pi \times \frac{4.375}{12} = 1.14$ sq ft of outside lagging area associated with 1 ft length of pipe:

CHAPTER 3. FUNDAMENTALS OF HEAT TRANSFER

$$R_{\rm c} = \frac{1}{2.8 \times 1.14} = 0.312 \, \rm hr \, degree \, Fahrenheit \, per \, Btu.$$

The radiation resistance, $R_{\rm r}$, which acts in parallel with the convection resistance, $R_{\rm c}$, for the transfer of heat to the surface of the insulation, may be calculated. For the purposes of this illustrative problem it will be assumed that the insulated pipe is exposed to (sees) surroundings, which exist at 120 F. Then the angle factor, $F_{\rm A}$, is unity and for an estimated surface emissivity of 0.9 (see Table 6), $F_{\rm e}=0.9$. As a first approximation the insulation surface temperature will be estimated as 20 F lower than the surroundings at 120 F. Thus $t_{\rm ave}=110$ F and $T_{\rm ave}=(460+110)$ degree absolute temperature. (Note that even if the assumed temperature difference is in error by 10 F this fact will only affect $T_{\rm ave}$ by 2 per cent.) Then:

 $h_{\rm r}=1730\times 10^{-12}\times 1\times 0.9\times 4~(460+110)^3=1.15$ Btu per hour per square foot per degree Fahrenheit.

The outside surface area of the insulation associated with 1 ft of pipe length was previously calculated as 1.14 sq ft. Thus:

$$R_{\rm r} = \frac{1}{1.15 \times 1.14} = 0.76 \; {\rm hr} \; {\rm degree} \; {\rm Fahrenheit} \; {\rm per} \; {\rm Btu}.$$

The resultant resistance of R_c and R_r acting in parallel (see Fig. 4) can now be evaluated as:

$$\frac{1}{R_4} = \frac{1}{R_c} + \frac{1}{R_r} = \frac{1}{0.312} + \frac{1}{0.76} = 4.51$$
 Btu per hour per degree Fahrenheit.

$$R_4 = 0.222$$
 hr degree Fahrenheit per Btu.

The individual resistances for a 1 ft length of pipe applying to the illustrative problem depicted in Fig. 4 have now been calculated and are summarized as follows:

- R_1 convection from the pipe wall to the cold water = $2.8 \times 10^{-3}\,\mathrm{hr}$ degree Fahrenheit per Btu.
- R_2 conduction through the pipe wall = 8.5×10^{-4} hr degree Fahrenheit per Btu.
- R₃ conduction through the cork insulation = 3.9 hr degree Fahrenheit per Btu.
- R_4 parallel convection and radiation from the surroundings = 0.22 hr per degree Fahrenheit per Btu.

Then:

 $R_{\rm T}=$ the overall resistance surroundings to cold water = $R_1+R_2+R_3+R_4=4.1$ hr degree Fahrenheit per Btu.

Note that the controlling resistances are R_3 and R_4 . That is, the neglect of R_1 and R_2 would not significantly influence the total resistance, R_T .

On the basis of this resistance calculation the heat transfer from the surroundings to the cold water may be evaluated as:

$$\frac{g_{\rm rc}}{N} = \frac{\Delta t}{R_{\rm T}} = \frac{120-34}{4.1} = 21$$
 Btu per hour per foot.

or about 0.175 tons of refrigeration per 100 ft of pipe.

Since the calculation is based on a 1 ft pipe length:

$$q_{\rm rc} = 21$$
 Btu per hour.

The temperature drops through the various resistances are now readily evaluated by Equation 12 as:

- Δt air to insulation surface = $R_4 q_{rc} = 0.22 \times 21 = 4.6 \text{ F}$.
- Δt through the insulation = R_3 q_{rc} = 3.9 \times 21 = 82 F.
- Δt through the pipe wall = R_2 q_{rc} = 8.5 \times 10⁻⁴ \times 21 = 0.02 F.
- Δt pipe wall to cold water = R_1 $q_{rc} = 2.8 \times 10^{-8} \times 21 = 0.06$ F.

The solution was obtained on the assumption that the air temperature and the outside temperature differed by 20 F. In order to obtain a slightly better estimate of the rate of heat transfer the numerical solution should be repeated using the temperatures calculated from the previous listed temperature differences.

The foregoing problem serves to illustrate a general method of solving steady-state heat transfer problems. There are many problems which cannot be approximated by steady-state solutions. For instance, the problem of pipe line insulation in transient service; the behavior of automatically controlled thermoflow circuits; or the periodic absorption of solar energy by roof and wall structures during the day and nocturnal radiation to the *cold* sky at night. The transient heat transfer problem differs from the steady-state in that energy storage rates need to be considered. Thus thermal capacity in addition to resistance effects are significant. The vector sum of the thermal capacitance and resistance is the thermal impedance. It is not within the scope of this chapter to deal with many of these problems. These are, however, solutions available in graphical form for certain special cases. Also a general approximate method may be employed which is analogous to the treatment of capacity-resistance lumped parameter electrical circuits.

REFERENCES

Heat Transmission, by W. H. McAdams (McGraw-Hill Book Co., 1942).

Introduction to Heat Transfer, by A. I. Brown and S. M. Marco (McGraw-Hill Book Co., 1942)

Elements of Heat Transfer and Insulation, by Max Jakob and G. A. Hawkins (John Wiley and Sons, Inc., 1942).

Applied Heat Transmission, by H. J. Stoever (McGraw-Hill Book Co., 1941).

Industrial Heat Transfer, by A. Schack, translated from the German by H. Goldschmidt and E. P. Partridge (John Wiley and Sons, Inc., 1933).

The Calculation of Heat Transmission, by Margaret Fishenden and O. A. Saunders (His Majesty's Stationery Office, London).

Heat and Thermodynamics, by M. W. Zemansky (McGraw-Hill Book Co., 1937).

Chapter 4

HEAT TRANSMISSION COEFFICIENTS

Transfer Through Building Surfaces, Heat Transfer Symbols, Formulas for Calculating Over-all Coefficients, Conductivity of Homogeneous Materials, Surface Conductance Coefficients, Air Space Conductance, Practical Coefficients, Computed Transmission Coefficients, Combined Coefficients of Transmission, Basement Floor and Wall Coefficients, Condensation in Buildings

In order to calculate the heat transfer through walls, ceilings, floors and other parts of a structure it is necessary to know the *rate* of heat transfer through these surfaces. This rate of heat transfer is designated as the coefficient of transmission and can be determined by test in the guarded hot box apparatus, or calculated if certain constants are known. Because of the many possible combinations of materials in building construction, it is impractical to test each individual construction. Instead the overall coefficients of transmission are calculated from the individual or component conductivities and conductances according to the procedure described in this chapter.

TRANSFER THROUGH BUILDING SURFACES

A general discussion of the three methods of heat transfer—conduction, convection and radiation—will be found in Chapter 3. The heat transmission between the air on the two sides of a structure takes place by a combination of the three methods. In a simple wall built up of two layers of homogeneous materials separated to give an air space between them, heat will be received from the high temperature surface by radiation, convection and conduction. It will then be conducted through the homogeneous interior section by conduction and carried across to the opposite surface of the air space by radiation, conduction and convection. From here it will be carried by conduction through to the outer surface and leave the outer surface by radiation, convection and conduction.

HEAT TRANSFER SYMBOLS

The symbols representing the various coefficients of heat transmission and their definitions are:

U= over-all coefficient of heat transmission; the amount of heat expressed in Btu transmitted in one hour per square foot of the wall, floor, roof or ceiling for a difference

in temperature of 1 F between the air on the inside and that on the outside of the wall, floor, roof or ceiling.

k= thermal conductivity; the amount of heat expressed in Btu transmitted in one hour through 1 sq ft of a homogeneous material 1 in. thick for a difference in temperature of 1 F between the two surfaces of the material. The conductivity of any material depends on the structure of the material and its density. Heavy or dense materials, the weight of which per cubic foot is high, usually transmit more heat than light or less dense materials, the weight of which per cubic foot is low.

 $\mathcal{C}=$ thermal conductance; the amount of heat expressed in Btu transmitted in one hour through 1 sq ft of a non-homogeneous material for the thickness or type under consideration for a difference in temperature of 1 F between the two surfaces of the material. Conductance is usually used to designate the heat transmitted through such heterogeneous materials as plasterboard and hollow clay tile.

f= film or surface conductance; the amount of heat expressed in Btu transmitted by radiation, conduction and convection from a surface to the air surrounding it, or vice versa, in one hour per square foot of the surface for a difference in temperature of 1 F between the surface and the surrounding air. To differentiate between inside and outside wall (or floor, roof or ceiling) surfaces, f_1 is used to designate the inside film or surface conductance and f_0 the outside film or surface conductance.

a= thermal conductance of an air space; the amount of heat expressed in Btu transmitted by radiation, conduction and convection in one hour through an area of 1 sq ft of an air space for a temperature difference of 1 F. The conductance of an air space depends on the mean absolute temperature, the width, the position and the character of the materials enclosing it.

R = resistance or resistivity which is the reciprocal of transmission, conductance, or conductivity, *i.e.*:

 $\frac{1}{U} = \text{over-all or air-to-air resistance.}$ $\frac{1}{k} = \text{internal resistivity.}$ $\frac{1}{C} = \text{internal resistance.}$ $\frac{1}{f} = \text{film or surface resistance.}$ $\frac{1}{a} = \text{air space resistance.}$

Examples of the application of the over-all coefficient U for determining the heat transfer by transmission, are given in Chapter 6.

FORMULAS FOR CALCULATING OVER-ALL COEFFICIENTS

The simplest method of combining the coefficients for the individual parts of the wall is to use the reciprocals of the coefficients and treat them as resistance units. The total over-all resistance of a wall is equal numerically to the sum of the resistances of the various parts, and the reciprocal of the over-all resistance is likewise the over-all heat transmission coefficient of the wall. For a wall built up of a single homogeneous material of conductivity k and x inches thick the over-all resistance,

$$R = \frac{1}{U} = \frac{1}{f_1} + \frac{x}{k} + \frac{1}{f_0} \tag{1}$$

If the coefficients f_i , f_o and k, together with the thickness of the material x are known, the over-all coefficient U may be readily calculated as the reciprocal of the total heat resistance.

For a compound wall built up of three homogeneous materials having

conductivities k_1 , k_2 and k_3 and thicknesses x_1 , x_2 and x_3 respectively, and laid together without air spaces, the total resistance,

$$\frac{1}{U} = \frac{1}{f_{\rm i}} + \frac{x_1}{k_1} + \frac{x_2}{k_2} + \frac{x_3}{k_3} + \frac{1}{f_{\rm o}} \tag{2}$$

For a wall with air space construction consisting of two homogeneous materials of thicknesses x_1 and x_2 , and conductivities k_1 and k_2 , respectively, separated to form an air space of conductance a, the over-all resistance,

Likewise any combination of homogeneous materials and air spaces can

$$\frac{1}{U} = \frac{1}{f_1} + \frac{x_1}{k_1} + \frac{1}{a} + \frac{x_2}{k_2} + \frac{1}{f_0}$$
 (3)

be put into the wall and the over-all resistance of the combination may be calculated by adding the resistances of the individual sections of the wall. In certain special forms of construction such as tile with irregular air spaces it is necessary to consider the conductance C of the unit as built instead of the unit conductivity k, and the resistance of the section is equal to $\frac{1}{C}$. The method of calculating the over-all heat transmission coefficient for a given wall is comparatively simple, but the selection of the proper coefficients is often complicated. In some cases the construction of the wall is such that the substituting of coefficients in the accepted formula will give erroneous results. This is the case with irregular cored out air spaces in concrete and tile blocks, and walls in which there are parallel paths for heat flow through materials having different heat resistances. In such cases it is necessary to resort to test methods to check the calculations, and in practically all cases it has been necessary to determine fundamental coefficients by test methods.

Conductivity coefficients for loose fibrous materials which are based on tests in the hot plate apparatus are generally applicable only to horizontal heat flow through walls where the material is confined by the wall surfaces. Such coefficients do not necessarily apply where the material is placed loosely between ceiling joists so that there is a considerable amount of convection through the material, especially during cold weather when the heat flow is upward. In the latter case, the actual rate of heat flow through the loose insulating material will be considerably greater than that indicated by the hot plate test.

Conductivity of Homogeneous Materials

The thermal conductivity of homogeneous materials is affected by several factors. Among these are the density of the material, the amount of moisture present, the mean temperature at which the coefficient is determined, and for fibrous materials the arrangement of fiber in the material. There are many fibrous materials used in building construction and considered as homogeneous for the purpose of calculation, whereas they are not really homogeneous but are merely considered so as a matter of convenience. In general, the thermal conductivity of a material increases directly with the density of the material, increases with the amount of moisture present, and increases with the mean temperature at which the coefficient is determined. The rate of increase for these various

factors is not the same for all materials, and in assigning proper coefficients one should make certain that they apply for the conditions under which the material is to be used in a wall. Failure to do this may result in serious errors in the final coefficients.

Surface Conductance Coefficients

Heat is transmitted to or from the surface of a wall by a combination of radiation, convection and conduction. The coefficient will be affected by any factor which has an influence on any one of these three methods of transfer. The amount of heat by radiation is controlled by the character of the surface and the temperature difference between it and the surrounding objects. The amount of heat by conduction and convection is controlled largely by the roughness of the surface, by the air movement over the surface and by the temperature difference between the air and the surface. Because of these variables the surface coefficients may be subject to wide fluctuations for different materials and different conditions. The inside and outside coefficients f_i and f_o are in general affected to the same extent by these various factors and test coefficients determined for inside surfaces will apply equally well to outside surfaces under like conditions. Values for f_i in still and moving air at different mean temperatures have been determined for various building materials.

The relation obtained between surface conductances for different materials at mean temperatures of 20 F is shown in Fig. 1. These values were obtained with air flow parallel to the surface and from other tests in which the angle of incidence between the direction of air flow and the surface was varied from zero to 90 F it would appear that these values might be lowered approximately 15 per cent for average conditions. While for average building materials there is a difference due to mean temperature, the greatest variation in these coefficients is caused by the character of the surface and the wind velocity. If other surfaces, such as aluminum foil with low emissivity coefficients were substituted, a large part of the radiant heat would be eliminated. This would reduce the total coefficient for all wind velocities by about 0.7 Btu and would make but very little difference for the higher wind velocities. In many cases in building construction the heat resistance of the internal parts of the wall is high as compared with the surface resistance and the surface factors become of small importance. In other cases such as single glass windows the surface resistances constitute practically the entire resistance of the structure, and therefore become important factors. Due to the wide variation in surface coefficients for different conditions their selection for a practical building becomes a matter of judgment. In calculating the over-all coefficients for the walls of Tables 3 to 12, 1.65 has been selected as an average inside coefficient and 6.0 as an average outside coefficient for a 15-mile wind velocity. In special cases where surface coefficients become important factors in the over-all rate of heat transfer more selective coefficients may be required.

The surface conductance values given in Table 1, Section A are based on recent tests and are for still air conditions and emissivities of 0.83 and

¹A.S.H V.E. RESEARCH REPORT No. 869—Surface Conductances as Affected by Air Velocity, Temperature and Character of Surface, by F. B. Rowley, A. B. Algren and J. L. Blackshaw (A.S.H.V.E. Transactions, Vol. 36, 1930, p. 429).

0.05 respectively, and may be used where it is desirable to differentiate between vertical and horizontal surfaces or where coefficients applicable to low-emissivity surfaces are required.

Air Space Conductance

Heat is conducted across an air space by a combination of radiation, conduction and convection. The amount of heat by radiation is governed largely by the nature of the surface and the temperature difference between the boundary surfaces of the air space. Conduction and con-

Fig. 1. Curves Showing Relation Between Surface Conductances for Different Surfaces at 20 F Mean Temperature

vection are controlled largely by the width and shape of the air space and the roughness of the boundary surfaces.

The conductances of vertical air spaces bounded by such materials as paper, wood, plaster, etc., are given in Table 1, Section B, having emissivity coefficients of 0.8 or higher, and with extended parallel surfaces perpendicular to the direction of heat flow. A conductance of 1.10 Btu per hour per square foot per degree Fahrenheit temperature difference (resistance = 0.91) based on this table was used for calculating the over-all coefficients given in Tables 3 to 12 inclusive for air spaces 34 in. or more in width. Air space tests² reported by Wilkes and Peterson

²Radiation and Convection Across Air Spaces in Frame Construction, by G. B. Wilkes and C. M. F. Peterson (A.S.H.V.E Transactions, Vol. 43, 1937, p. 351).

Table 1. Conductances (C) for Surfaces and Air Spaces All conductance values expressed in Biu per hour per square foot per degree Fahrenheit temperature difference

Section A. Surface Conductances for Still Aira

Position	Direction	SURFACE EMISSIVITY			
OF SURFACE	of Heat Flow	e = 0.83	e = 0.05		
Horizontal	Upward Downward	1 95 1.21 1.52*	1.16 0.44 0.74		

Section B. Conductance of Vertical Spaces at Various Mean Temperaturesb

MEAN	CONDUCTANCES OF AIR SPACES FOR VARIOUS WIDTHS IN INCHES									
TEMP DEG FAHR	0 128	0 128 0.250		0.493	0.713	1.00	1.500			
20	2,300	1.370	1.180	1.100	1.040	1 030	1.022			
30	2.385	1.425	1.234	1 148	1 080	1.070	1 065			
40	2.470	1.480	1.288	1.193	1.125	1 112	1 105			
50	2 560	1.535	1.340	1.242	1.168	1.152	1.149			
6Ŏ	2.650	1 590	1.390	1.295	1.210	1.195	1 188			
70	2.730	1.648	1.440	1.340	1 250	1 240	1.228			
8Ŏ	2.819	1.702	1.492	1.390	1 295	1 280	1.270			
90	2 908	1.757	1.547	1.433	1.340	1.320	1 310			
100	2.990	1.813	1.600	1.486	1.380	1.362	1.350			
110	3.078	1.870	1.650	1.534	1.425	1.402	1 392			
120	3.167	1.928	1.700	1.580	1.467	1.445	1 435			
130	3.250	1.980	1 750	1.630	1.510	1.485	1.475			
140	3.340	2.035	1.800	1.680	1.550	1.530	1 5 1 9			
150	3.425	2.090	1.852	1.728	1 592	1 569	1 5 5 9			

Conductances and Resistances of Air Spaces Faced with Reflective Insulations

Faced with Renective institutions										
POSITION OF	DIRECTION	Dr	Temp ^d Diff Deg Fahr		NDUCTAN (C)	CE*	RESISTANCE $\left(\frac{1}{C}\right)$			
AIR SPACE	HEAT FLOW		_	No.	of Air Sp	aces	No.	of Air Sp	aces	
		Winter	Summer	1	2	3	1	2	3	
Rafter Space (8 in.) Horizontal Horizontal	Down Up	45 45			0 10 0 27	0 07 0.17		10 00 3.70	14.29 5 88	
Horizontal Horizontal	Down Up		25 25		0.09 0 24	0 06 0.16		11.11 4.17	16.67 6 25	
30 deg slope 30 deg slope	Down Up	45 45			0.15 0.25	0 10 0.17		6 67 4 00	10 00 5.88	
30 deg slope 30 deg slope	Down Up		25 25		0 13 0 23	0 09 0 14		7.69 4.35	11.11 7.14	
Stud Space (35% in.) Vertical' Vertical		30 40		0.34	0 23	0.13	2.94	4.35	7.69	
Vertical/ Vertical			15 20	0.32	0 18	0.11	3.13	5 56	9.09	
Vertical ^g		30		0.46			2.17			

*Radiation and Convection from Surfaces in Various Positions, by G. B. Wilkes and C. M. F. Peterson

A S H V E. Transactions, Vol 44, 1938, p. 513).

bA S H V E. Transactions, Vol 44, 1938, p. 513).

bA S H V E. Research Report No. 825—Thermal Resistance of Air Spaces, by F. B. Rowley and A. B. Algren (A S H V E. Transactions, Vol. 35, 1929, p. 165).

"Thermal Test Coefficients of Aluminum Insulation for Buildings, by G. B. Wilkes, F. G. Hechler and E. R. Queer (A S H V E. Transactions, Vol. 46, 1940).

"Temperature difference is based on total space between plaster base and sheathing, flooring or roofing.

These air space conductance and resistance values are based on one reflective surface (aluminum) having an emissivity of 0.05 facing each space and are based on total space between plaster base and sheathing, flooring or roofing. The rafter and stud spaces are divided into equal spaces.

/Stud space is lined on plaster base side with loose paper with aluminum on surface facing air space. The resistance of the small air space between the plaster base and paper was 0.43

The resistance of the small air space between the plaster base and paper was 0.43 % Radiation and Convection Across Air Spaces in Frame Construction, by G. B. Wilkes and C. M. F. Peterson (A. S. H.V. E. Transactions, Vol. 43, 1937, p. 351).

*The recommended surface conductance for calculating heat losses for still air for non-reflective surfaces is 1.65 Btu. For a 15 mph wind velocity, the recommended value is 6.0 Btu. These coefficients were derived from Fig. 1 which was based on tests conducted at the University of Minnesota, and apply to vertical surfaces

resulted in comparable values. For 35% in. horizontal air spaces having an effective emissivity of 0.83, the conductance for heat flow upward was 1.32 and for heat flow downward, 0.94. The conductance for a similar vertical air space was 1.17, the resistances of course being the reciprocals of these values in each case.

A large part of the heat transferred across air spaces bounded by ordinary materials is by radiation. Therefore, if such air spaces are faced with metallic surfaces such as aluminum foil, coated sheet steel or other low-emissivity, infra-red reflective metal surfaces, the radiant heat transfer will be substantially reduced, thus causing the major portion of the remaining transmitted heat to be by convection. Table 1, Section C, gives conductances and resistances for air spaces bounded by one reflective surface having an emissivity of 0.05. It will be noted that the conductance values given in this table are a function of the temperature differences across the space rather than mean temperature, the larger the temperature difference, the larger the conductance. The radiant heat transfer is the same regardless of whether the low emissivity surface is on the high or low temperature surface of the space, and is independent of the width of the space. To minimize the convection transfer the vertical air space should be at least 3/4 in. in width. A conductance of 0.46 was used for computing the over-all coefficients in Tables 3 to 12 inclusive for air spaces bounded by aluminum foil applied to plasterboard.

When referring to reflective heat-insulating surfaces, the term brightness which deals with visible light has no specific meaning and should be avoided³. Emissivity and reflectivity definitely define the radiating and reflecting properties and values may be determined directly for long wavelength radiation corresponding to room temperature. As previously stated, the values in Table 1, Section C, are based on an emissivity of the reflective surface of 0.05. Obviously for higher emissivity values the conductances will increase accordingly. For example, non-metallic reflective materials are available having emissivity values approximately midway between those of metallic reflective insulations and ordinary building material surfaces. These materials will have a correspondingly higher radiant heat transfer and where such materials are under consideration, due allowance should be made for the higher emissivity value in arriving at the proper air space conductance.

Where reflective insulating materials are involved the possible increase in the emissivity coefficient due to surface coatings or chemical action should be studied by the engineer in order to satisfy himself as to the permanence of the reflective surface for the conditions under which this material will be used. In making installations of this material the partitions between air spaces should be tight, particularly at the top and bottom so that air cannot circulate between adjacent spaces.

When reflective insulating materials are installed with multiple air spaces, the position (vertical, horizontal or inclined) of the material in the structure must be taken into consideration. For example, the resistance to heat flow upward is about one-third that of downward flow in a hori-

^{*}Some Reflection and Radiation Characteristics of Aluminum, by C. S. Taylor and J. D. Edwards, (A.S.H.V.E. Transactions, Vol. 45, 1939, p. 179).

^{&#}x27;Thermal Test Coefficients of Aluminum Insulation for Buildings, by G B. Wilkes, F. G. Hechler and E. R. Queer (A S.H.V.E. TRANSACTIONS, Vol. 46, 1940).

zontal position in the same construction, as will be apparent from Table 1, Section C. However, the difference between upward heat flow through single horizontal or sloping air spaces and through single vertical air spaces is comparatively small for the same temperature difference. Consequently the same conductance value (0.46) was used for computing the coefficients in Tables 8 and 12, involving horizontal and sloping air spaces bounded on one side by aluminum foil applied to plasterboard, as for similar vertical air spaces in Tables 3, 4, 5 and 6.

As already stated, a conductance value of 1.10 was similarly used in all cases for calculating the coefficients of construction involving vertical, horizontal and sloping air spaces bounded on both sides by ordinary building materials.

PRACTICAL COEFFICIENTS

For practical purposes it is necessary to have average coefficients that may be applied to various materials and types of construction without the necessity of making tests on the individual material or combination of materials. In Table 2 coefficients are given for a group of materials which have been selected from various sources. Wherever possible the properties of material and conditions of tests are given. However, in selecting and applying these values to any construction a reasonable amount of caution is necessary; variations will be found in the coefficients for the same materials, which may be partly due to different test methods used, but which are largely due to variations in materials. The recommended coefficients which have been used for the calculation of over-all coefficients as given in Tables 3 to 12 are marked by an asterisk.

It should be recognized in these tables of calculated coefficients that space limitations will not permit the inclusion of all the combinations of materials that are used in building construction and the varied applications of insulating materials to these constructions. Typical examples are given of combinations frequently used, but any special construction not given in Tables 3 to 12 can generally be computed by using the conductivity values given in Table 2 and the fundamental heat transfer formulae. For example, the tabulation of all of the values for multiple layers of insulating materials would present extensive and detailed problems of calculations for the varied application combinations, but the engineer having the fundamental conductivity values can quickly obtain the proper coefficients.

Attention is called to the fact that the conductivity values per inch of thickness do not afford a true basis for comparison between insulating materials as applied, although they are frequently used for that purpose. The value of an insulating material is measured in terms of the coefficient (U_1) of the insulated construction as compared to the coefficient (U) of the construction without insulation. Certain types of blanket insulations are designed to be installed between the studs of a frame building in such manner as to give two air spaces. In order to get the full value of such materials they should be so installed that each air space is approximately 1 in. or more in thickness and the air spaces should be sealed at the top and bottom to prevent the circulation of air from one space to the other. As previously explained there are certain other types of insulation which are very porous, allowing air circulation (convection) within the material, particularly when installed between ceiling joists so

that the upward rate of heat flow is considerably greater then the horizontal or the downward rate of heat flow. The engineer must carefully evaluate the economic considerations involved in the selection of an insulating material as adapted to various building constructions. Lack of good judgment in the intelligent choice of an insulating material, or its improper installation, frequently represents the difference between good or unsatisfactory results.

Computed Transmission Coefficients

Computed heat transmission coefficients of many common types of building construction are given in Tables 3 to 13, inclusive, each construction being identified by a serial number. For example, the coefficient of transmission (U) of an 8-in. brick wall and $\frac{1}{2}$ in. of plaster is 0.46, and the number assigned to a wall of this construction is I-B, Table 3.

Example 1. Calculate the coefficient of transmission (U) of an 8-in. brick wall with $\frac{1}{2}$ in. of plaster applied directly to the interior surface, based on an outside wind exposure of 15 mph. It is assumed that the outside course is of hard (high density) brick having a conductivity of 9.20, and that the inside course is of common (low density) brick having a conductivity of 5.0, the thicknesses each being 4 in. The conductivity of the plaster is assumed to be 3.3, and the inside and outside surface coefficients are assumed to average 1.65 and 6.00, respectively for still air and a 15 mph wind velocity.

Solution. k (hard high density brick) = 9.20; x = 4.0 in.; k (common low density brick) = 5.0; x = 4.0 in; k (plaster) = 3.3; $x = \frac{1}{2}$ in.; $f_1 = 1.65$; $f_0 = 6.0$. Therefore,

$$U = \frac{1}{\frac{1}{6.0} + \frac{4.0}{9.20} + \frac{4.0}{5.0} + \frac{0.5}{3.3} + \frac{1}{1.65}}$$
$$= \frac{1}{0.167 + 0.435 + 0.80 + 0.152 + 0.606}$$

= 0.46 Btu per hour per square foot per degree Fahrenheit difference in temperature between the air on the two sides.

The coefficients in the tables were determined by calculations similar to those shown in Example 1, using fundamental Formulae 1, 2 and 3 and the values of k (or C), f_i , f_o and a indicated in Table 2 by asterisks. In computing heat transmission coefficients of floors laid directly on the ground, only one surface coefficient (f_i) is generally used. For example, the value of U for a 1-in. yellow pine floor (actual thickness, 25/32 in.) placed directly on 6-in. concrete on the ground, is determined as follows:

$$U = \frac{1}{\frac{1}{1.65} + \frac{0.781}{0.80} + \frac{6.0}{12.0}} = 0.48 \text{ Btu per hour per square foot per degree difference}$$

in temperature between the ground and the air immediately above the floor.

Rigid insulation refers to so-called insulating board which may be used structurally, such as for sheathing. Flexible insulation refers to the blankets, quilts or semi-rigid types of insulation.

Actual thicknesses of lumber are used in the computations rather than nominal thicknesses. The computations for wood shingle roofs applied over wood stripping are based on 1 by 4 in. wood strips, spaced 2 in. apart. Since no reliable figures are available concerning the conductivity of

Spanish and French clay roofing tile, of which there are many varieties, the figures for such types of roofs were taken the same as for slate roofs, as it is probable that the values of U for these two types of roofs will compare favorably.

The thicknesses upon which the coefficients in Tables 3 to 13 inclusive, are based are:

Brick veneer	4	in.
Plaster and metal lath	$\frac{3}{4}$	in
Plaster (on wood lath, plasterboard, rigid insulation, board		
form, or corkboard)	$\frac{1}{2}$	in.
Slate (roofing)	1/2	in.
Stucco on wire mesh reinforcing		
Tar and gravel or slag-surfaced built-up roofing	3/8	in.
1-in. lumber (S-2-S)2	332	in.
1½-in. lumber (S-2-S)1	5/16	in.
2-in. lumber (S-2-S)	15%	in.
2½-in. lumber (S-2-S)		
3-in. lumber (S-2-S)	25%	in.
4-in. lumber (S-2-S)	35%	in.
Finish flooring (maple or oak)1	316	in.

Solid brick walls are based on 4 in. hard brick (high density) and the remainder common brick (low density). Stucco is assumed to be 1 in. thick on masonry walls. Where metal lath and plaster are specified, the metal lath is neglected.

The coefficients of transmission of the pitched roofs in Table 12 apply where the roof is over a heated attic or top floor so the heat passes directly through the roof structure including whatever finish is applied to the underside of the roof rafters.

It is the practice of many engineers in calculating heat losses to use a minimum coefficient of 0.10 to allow for possible defects in workmanship, poor construction and other factors which would increase the heat loss. The lower the theoretical wall or roof coefficient the greater will be the percentage of error due to construction defects or failure of the insulation to perform as rated.

Combined Coefficients of Transmission

If the attic is unheated, the roof structure and ceiling of the top floor must both be taken into consideration, and the combined coefficient of transmission determined. The formula for calculating the combined coefficient of transmission of a top floor ceiling, unheated attic space, and pitched roof per square foot of ceiling area is:

$$U = \frac{U_{\rm r} \times U_{\rm ce}}{U_{\rm r} + \frac{U_{\rm ce}}{n}} \tag{4}$$

where

U = combined coefficient to be used with ceiling area.

 $U_{\rm r} = {\rm coefficient}$ of transmission of the roof.

 U_{ce} = coefficient of transmission of the ceiling.

n = the ratio of the area of the roof to the area of the ceiling.

In selecting the values to be used for U_r and U_{ce} it should be noted

TABLE 2. CONDUCTIVITIES (k) AND CONDUCTANCES (C) OF BUILDING MATERIALS AND INSULATORS^a

The coefficients are expressed in Btu per hour per square foot per degree Fahrenheit per 1 in. thickness unless otherwise indicated.

Material	Description	Density (La per Cu Ft)	Мваи Твмр (Deg Fahr)	CONDUCTIVITY (k) OR CONDUCTANCE (C)	Resistivity $\left(\frac{1}{k}\right)$ or Resistance $\left(\frac{1}{C}\right)$	Аптнович
MASONRY MATERIALS BRICK BRICKWORK CEMENT MORTAR CONCRETE	Low density			5.00* 9.20* 3.56* 5.00° 12.00* 11.35 to	0.20 0.11 0.28 0.20 0.08 0.08	(2)
	Concrete plank	76 40.0 50.0 60.0 70.0	75 75 75 75 75 75	2 5 1.06 1.44 1.80 2.18	4 0 0.94 0.69 0.56 0.46	(3) (3) (3) (3) (3) (3) (4)
STONE STUCCO TILE	hardened clay—1-2-3 mix. Sand and gravel Limestone. Cinder. Blast furnace slag aggregate. Expanded vermiculite aggregate. Typical. Typical hollow clay (4 in). Typical hollow clay (4 in). Typical hollow clay (8 in.)* Typical hollow clay (10 in.)* Typical hollow clay (12 in.)* Typical hollow clay (12 in.)* Typical hollow clay (16 in.)* Hollow clay (2 in.) ½-in. plaster both sides. Hollow clay (4 in.) ½-in. plaster both sides. Hollow clay (4 in.) ½-in. plaster both sides. Hollow clay (4 in.) ½-in. plaster both sides. Hollow clay (6 in.) ½-in. plaster both sides. Hollow clay (6 in.) ½-in. plaster both sides. Hollow gypsum (4 in.)	132 0 97 0 75 0 76 0 20 26 7 35 50 120.0 127.0 124.3 51.8	70 75 75 75 75 70 90 90 90 90 110 100 105 70 76	3.98 12.6 10.8 4.9 4.0 1.6 0.68 0.76 0.86 1.00* 12.50* 1.00* 1.00+ 0.60+ 0.40+ 0.31+ 0.64+ 0.40+	0.25 0.08 0.09 0.22 0.25 0.63 1 47 1 16 0 91 0.08 1.00 1.57 1 67 2.50 3.23 1.00 1.67 2.18 0.34	(3) (4) (4) (4) (3) (3) (3) (3) (3) (3) (3) (3) (3) (2) (2) (2) (2) (4) (4)
TILE OR TERRAZZO	Solid gypsum	13.0		12.00*	0.08	(+)

AUTHORITIES:

- ¹U. S. Bureau of Standards, tests based on samples submitted by manufacturers.

 ²A. C. Willard, L. C. Lichty, and L. A. Harding, tests conducted at the University of Illinois.

 ³J. C. Peebles, tests conducted at Armour Institute of Technology, based on samples submitted by manufacturers.
 - ⁴F. B. Rowley, tests conducted at the University of Minnesota. ⁵A.S.H.V.E. Research Laboratory.

 - ⁶E. A. Allcut, tests conducted at the University of Toronto.
 - 7Lees and Charlton
 - *Recommended conductivities and conductances for computing heat transmission coefficients.
- **Recommended conductivities and conductances for computing near transmission coefficients, iffor thickness stated or used on construction, not per 1 in thickness

 *For additional conductivity data see A.S.R.E. Data Book.

 *If outside surface of block is painted with an impervious coat of paint, add 0.07 to resistance for sand and gravel blocks Add 0 18 to resistance for cinder blocks Add 0 17 to resistance for burned clay aggre-
- gate blocks.

 *Recommended value. See Heating, Ventilating and Air Conditioning, by Harding and Willard, revised
- *Recommended value. See Heating, Ventilating and Air Conditioning, by Harding and Willard, revised edition, 1932.

 *See A S.H.V.E. RESEARCH REPORT NO 915—Conductivity of Concrete, by F. C. Houghten and Carl Gutberlet (A.S.H.V.E. TRANSACTIONS, Vol 38, 1932, p. 47).

 *The 6-in., S-in, and 10-in. hollow tile figures are based on two cells in the direction of heat flow. The 12-in. hollow tile is based on three cells in the direction of heat flow. The 16-in. and one 6-in. tile, each having two cells in the direction of heat flow.

 (Not compressed)
- /Not compressed. /Roofing, 0.15-in. thick (1.34 lb per sq ft), covered with gravel (0.83 lb per sq ft), combined thickness assumed 0.25

Table 2. Conductivities (k) and Conductances (C) of Building Materials and Insulators^a—Continued

The coefficients are expressed in Btu per hour per square foot per degree Fahrenheit per 1 in. thickness unless otherwise indicated.

		Des	scriptio	n		o Fr)	a)	TITY (k) IR NCE (C)	$\mathbf{T}\left(rac{1}{k} ight)$ $\mathbf{E}\left(rac{1}{C} ight)$	
Material	Cement	Fine Aggre- gate 0-No. 4	Coarse Aggre- gate No 4-1/2	Slump	Per Cent	Density (Le per Cu Ft)	Mean Temp (Deg Fahr)	CONDUCTIVITY (k) OR CONDUCTANCE (C)	RESISTIVITY OR RESISTANCE	Аотновит
MASONRY MATERIALS —Continued STEAM TREATED LIMESTONE SLAG	1	7.00			27.1	74.6	74.49	2.27	0.44	(4) (4)
PUMICE MINED IN CALIF	1 1	8.00	Finei Mod	ness ulus	25.5	86.6	74.68	3.19	0.41	(4) (4) (4)
of Phosphates	1	8.00	3.7		21.1	91.1	74.43		0.29	
EXPANDED BURNED CLAYBURNED CLAY AGGREGATE BURNED CLAY AGGREGATE	1 1 1	8 00 8.50 8.50			18.4 21.8 21.8	57.9 67.1 67 1	75.57 75 89 74.60	2.28 2.89 2.82	0.44 0.35 0.35	(4) (4) (4)
	Sand an	d gravel a	iggregate aggregate	used fo	or calcu-	126.4	40	0.90†	1 11	(4)
8 x 8 x 16 3-oval core concrete blocks 1 127	lation Cores fi Crushec Cinder a Cinder a Cores fi Cores fi Cores fi Cores fi Burned Cores fi Expand	Sand and gravel aggregate used for calculations Cress filled with 5 14 lb density cork Crushed limestone aggregate Cinder aggregate used for calculations Cores filled with 69.7 lb density cork Cores filled with 5 12 lb density cork Cores filled with 5 12 lb density cork Cores filled with 5 06 lb density cork Cores filled with 5 06 lb density cork Cores filled with 5 06 lb density cork Aggregate					40 40 40 40 40 40 40 40 40 40	1.00†* 0.56†* 0.86†* 0.58† 0.60†* 0.39† 0.25†* 0.27†* 0.50†* 0.21†	1.00 1.79 1 16 1.73 1.66 2.56 4.00 3.70 2.00 4.76	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
8 x 12 x 16 3 oval core concrete blocks	Sand at lation Cinder Cores fi	ad gravel and gravel as a gregate alled with clay aggrilled with	aggregate 5 24 lb de egate	e used f	or calcu-	124.9 	40 40 40 40 40	0.78† 0.80†* 0.53†* 0.24†* 0.47† 0.17†*	1.28 	(4) (4) (4) (4) (4) (4)
115 115 115 115 115 115 115 115 115 115	Cinder Double 1 in spa	aggregate wall with ice filled w	1 1 in air ith 9 97 lb	space b	etween rock wool	100.0 100.0 100.0	40 40 40	1.00† 0.36† 0.20†	1.00 2.78 5.00	(4) (4) (4)
9	5 x 8 x	5 x 8 x 12 block sand and gravel aggregate					40	0.38†	2.63	(4)
	5 x 8 x	12 block s	sand and	gravel a	ggregate ^b	134.0	40	'0.95†	1.15	(4)

For notes see page 97.

Table 2. Conductivities (k) and Conductances (C) of Building Materials and Insulators²—Continued

The coefficients are expressed in Btu per hour per square foot per degree Fahrenheit per 1 in. thickness unless otherwise indicated.

INSULATION_BLANKET OR FLEXIBLE TYPES There The property Th							
OR FLEXIBLE TYPES Typical Chemically treated wood fibers held between 1	Material	Description	Density (Le per Cu Ft)	Мван Твмр (Деф Ганв)	CONDUCTIVITY (k) OR CONDUCTANCE (C)	\sim	Аптновит
Typical Chemically treated wood fibers held between layers of strong paper?	INSULATION—BLANKET						
Layers of strong paper/		Tymeal			0.27*	3.70	ļ
Flax fibers between strong paper/ Chemically treated log hair between kraft paper / Chemically treated log hair between kraft paper and asbestos paper / 11.00 75 02.5 4.00 (3) Kapok between burlap or paper / 11.00 90 02.4 4.17 (1) Jute fiber / (1)	T IDEM.	Chemically treated wood fibers held between					
Flax fibers between strong paper/ Chemically treated log hair between kraft paper / Chemically treated log hair between kraft paper and asbestos paper / 11.00 75 02.5 4.00 (3) Kapok between burlap or paper / 11.00 90 02.4 4.17 (1) Jute fiber / (1)		layers of strong paper	3.62 4.60		0 25		
Chemically treated hog har between kraft paper/ Chemically treated hog har between kraft paper Chemically treated hog har between kraft paper and asbestos paper 7.70 71 0.28 3.57 (3) 1.50 1.00			3.40	90	0 25	4.00	(1)
paper		Chemically treated hog hair between kraft	4.90	90	0.28	3.57	(1)
Paper and asbestos paper/ 1.00 75 0.25 4.00 (3)		paper/	5.76	71	0.26	3.85	(3)
Rapok between burlap or paper/		paper and aspestos paper	7.70				(3)
State Stat		Hair felt between layers of paper/	11.00	75	0 25		(3)
thick made up of two layers of kraft paper (sample ½-un thick). Stetched and creped expanding fibrous blanket. Paper and asbestos fiber with emulsified asphalt binder (cotton insulating bat.) RIGID TYPE Fiber Felted cattle hair/ 13.00 90 0.26 3.84 (1) Fibrum and 350% jute/ 6.30 90 0.26 3.84 (1) Felted hair and asbestos/ 7.80 90 0.26 3.84 (1) Felted hair and asbestos/ 7.80 90 0.26 3.84 (1) Folded hair and asbestos/ 7.80 90 0.26 3.85 (1) Folded hair and asbestos/ 7.80 90 0.26 3.85 (1) Folded hair and asbestos/ 7.80 90 0.26 3.85 (1) Folded hair and asbestos/ 7.80 90 0.26 3.85 (1) Folded hair and asbestos/ 7.80 90 0.26 3.85 (1) Folded part and 50% jute/ 6.10 90 0.26 3.85 (1) INSULATION—LOOSE Felted jute and asbestos/ 10.00 90 0.37 2.70 (1) Folded jute and asbestos/ 10.00 90 0.37 2.70 (1) Compressed peat moss 1100 70 0.26 3.84 (3) INSULATION—LOOSE Fill OR BAT TYPE Made from ceiba fibers/ 1.90 75 0.23 4.35 (3) Fibrous material made from dolomite and silica. 1.60 75 0.24 4.17 (3) Fibrous material made from slag 9.40 103 0.27 3.70 (3) Redwood bark 3.00 90 0.31 3.22 (3) GLASS WOOL Glass fibers 0.003 in to 0.0006 in. in diameter. 1.50 75 0.27 3.70 (3) GRANULAR Made from combined silicate of lime and alumina 4.20 72 0.24 4.17 (3) GYPSUM Flaked, dry and fluffy/ 34.00 90 0.60 1.67 (1) Filaked, dry and fluffy/ 34.00 90 0.50 3.22 (3) MINERAL WOOL All forms, typical 8.10 90 0.31 3.22 (1) REGRANULATED CORK About ½/6/in. particles is seed of lime and alumina 1.80 90 0.32 3.45 (1) REGRANULATED CORK About ½/6/in. particles 8.10 90 0.31 3.22 (3) REGRANULATED CORK About ½/6/in. particles 8.10 90 0.31 3.22 (3) Rock wool with a binding agent 14.50 75 0.38 3.03 (1) Rock wool wit		Jute fiber	6.70				(3)
Sample \$\frac{\text{statched and creped expanding fibrous} \ \ \text{blanket}. \ \ \text{Paper and asbestos fiber with emulsified asphalt binder.} \ \ \text{Cotton insulating bat.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Cotton insulating bat.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Cotton insulating bat.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Cotton insulating bat.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified asphalt binder.} \ \ \text{Overland to make the mulsified binder.} \ \ Overland to make the muls		Ground paper between two layers, each 3/8-in thick made up of two layers of kraft paper					
Dianket Paper and asbestos fiber with emulsified asphalt binder 4.2 94 0.28 3.57 (1)		(sample 34-in. thick)	12.1	75	0 40†	2.50	(4)
Paper and asbestos her with emissied asphalt binder 4.2 94 0.28 3.57 (1)		blanket	1.50	70	0.27	3.70	(3)
Cotton insulating bat. 0 875 72 0.24 4 17 (3)		Paper and aspestos fiber with emulsified asphalt hinder	4.2	94	0.28	3.57	(1)
Felted cattle hair/		Cotton insulating bat					
Filter Felted cattle harr 13.00 90 0.26 3.84 (1)							
INSULATION—LOOSE		Falted cattle hour	13.00	90	0.26	3.84	(1)
INSULATION—LOOSE	r ibenesse summer a sum a	it it it it	11 00	90	0.26		(1)
INSULATION—LOOSE		75% hair and 25% jute			0 27	3.70	(1)
INSULATION—LOOSE		50% hair and 50% jutes	6 10			3.85	(1)
INSULATION—LOOSE		Felted jute and asbestos	10.00	90	0 37	2.70	(1)
FILL OR BAT TYPE FIBER Made from ceiba fibers 1.90 75 0.23 4.35 (3)		Compressed peat moss	11 00	70	0 26	3.84	(3)
Fiber Made from ceiba fibers 1.90 75 0.23 4.35 (3)	INSULATION—LOOSE						1
Fibrous maternal made from dolomite and silica 1.50 75 0.27 3.70 (3)		Made from ceiba fibers		75		4.35	(3)
Silica	France	Fibrois material made from dolomite and	1.60	75	0.24	4.17	(3)
Redwood bark Redw	T IBER.	silica					
Redwood bark S.00 75 0.26 3.84 (3)		Redwood bark		90			(1)
Made from combined silicate of lime and alumna 1.50 75 0.27 3.70 (3)	O 117	Redwood bark	5.00	75	0.26	3.84	(3)
Made from combined silicate of lime and alumina 4.20 72 0.24 4.17 (3)		meter	1.50	75	0.27	3.70	(3)
Expanded vermiculate, particle size -3+14 6.2	Granular	Made from combined silicate of lime and	4.20	72	0.24	4.17	(3)
MINERAL WOOL		Expanded vermiculity particle size -3-14	6.2				(3)
MINERAL WOOL	GYPSUM	Flaked, dry and nuny	26.00	90	0.52	1.92	(1)
MINERAL WOOL				75			(3)
REGRANULATED CORK		41 41 41			0.34	2.94	(3)
Rock Wool	MINERAL WOOL	All forms, typical	8 10	90	0.27		(1)
" " " 1400 90 0.28 3.57 (1) 1000 90 0.28 3.57 (1) 1000 90 0.28 3.57 (1) 1000 90 0.27* 3.70 (1) 1000 90 0.27* 3.70 (1) 1000 90 0.27* 3.70 (1) 1000 90 0.27* 3.70 (1) 1000 90 0.27* 3.70 (1) 1000 90 0.27* 3.70 (1) 1000 90 0.27* 3.70 (1) 1000 90 0.27* 3.70 (1) 1000 90 0.27* 3.70 (1) 1000 90 0.28* 3.03 (2) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.28* 3.03 (3) 1000 90 0.27* 3.70 (3) 1000 90 0.27* 3.70 (3) 1000 90 90 90 90 90 90 90 90 90 90 90 90		The many make made from mosts	21 00		0.30		
Column C		41 41 41 41	14 00	90	0.28	3 57	(1)
Rock wool with flax, straw pulp, and binder 14.50 75 0.38 2.63 (3)		Rock wool with a hinding agent			0.27*		$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
Rock wool with vegetable fibers		Rock wool with flax, straw pulp, and binder	14.50	75	0.38	2.63	(3)
Various from planer 8.80 90 0.41 2.44 (1) From maple, beech and birch (coarse) 13.20 90 0.36 2.78 (1)	SAWDTIST	Rock wool with vegetable fibers	12.00	90	0.41	2.44	(1)
From maple, beech and birth (coarse)		Various from planer	8.80	90	0 41	2.44	(1)
		From maple, beech and pirch (coarse)	13.20	30	030	2.70	1 (1)

Table 2. Conductivities (k) and Conductances (\mathcal{C}) of Building Materials and Insulatorsa—Continued

The coefficients are expressed in Blu per hour per square foot per degree Fahrenhest per 1 in thickness unless otherwise indicated

	uniess cinerwise indicated					
Material	Description	Density (Le per Cu Ft)	Mean Temp (Deg Fahr)	CONDUCTIVITY (k) OR CONDUCTANGE (C)	Resistivity $\left(\frac{1}{k}\right)$ Or Resistance $\left(\frac{1}{C}\right)$	Аптновит
INSULATION—RIGID						-
CORKBOARD	Typical No added binder	14.00 10.60 7.00 5.40	90 90 90 90	0.30* 0.34 0.30 0.27 0.25	3.33 2.94 3.33 3.70 4.00	(1) (1) (1) (1) (1)
FIBER.	Typical Chemically treated hor hair covered with		90	0.32 0.33*	3.12 3.03	-
	Made from corn stalks " exploded wood fibers " hard wood fibers Insulating plaster 9/10 in thick applied to	10.00 15.00 17.90 15.20	75 71 78 70	0.28 0.33 0.32 0.32	3.57 3.03 3.12 3.12	(3) (3) (4) (3)
	% in plaster board base Made from leorice roots " 85% magnesia and 15% asbestos " shredded wood and cement " sugar cane fiber insulation blocks encased in	54.00 16.10 19.30 24.20 13.50	75 81 86 72 70	1.07† 0.34 0.51 0.46 0.33	0.93 2.94 1.96 2.17 3.03	(3) (3) (1) (3) (3)
	ssphalt membrane Made from wheat straw " wood fiber " " u " " " " " " " " " " " " " " " "	13.80 17.00 15.90 15.00	70 68 72 70 52 72	0.30 0.33 0.33 0.33 0.33 0.29	3.33 3.03 3.03 3.03 3.03 3.45	(3) (3) (3) (6) (3) (3) (1)
INSULATION-REFLECTIVE		8 50 15.20 16.90	90	0.33 0.34	3.03 2.94	(3)
BUILDING BOARDS						
ASBESTOS	Compressed cement and asbestos sheets Corrugated asbestos board Pressed asbestos mill board Gypsum between layers of heavy paper Rigid, gypsum between layers of heavy paper (½ in thick)	123.00 20.40 60 50 62.80	86 110 86 70	2.70 0.48 0.84 1.41	0.37 2.08 1.19 0.71	(1) (2) (1) (3)
Pa	of heavy paper (0.30 in thick)	53.50 60.70	90 90	2.60† 3.60†	0.38 0.28	(1) (1)
PLASTERBOARD	(36 in.)			3.73†* 2.82†*	0.27	
ROOFING CONSTRUCTION	Asphalt, composition or prepared	70.00	75	6.50†*	0.35	(3)
	Built up—3% in thick. Built up, bitumen and felt, gravel or slag surfacedø. Plaster board, gypsum fiber concrete and 3-ply roof covering 2½ in thick		_	3.53†* 1.33	0.28	(2)
Shingles	3-ply roof covering 2½ in thick. Asbestos. Asphalt Slate. Wood.	52.40 65.00 70.00 201.00	76 75 75	0.58† 6.00†* 6.50†* 10.37* 1.28†*	1.72 0.17 0.15 0.10 0.78	(4) (3) (3) (7)
PLASTERING MATERIALS PLASTER	Cement			8.00	0.13	(2)
METAL LATH AND PLASTER	Gypsum, typical. Gypsum and expanded vermiculite mix 4 to 1 Thickness 3/2 in. Total thickness 5/4 in. 3/2 in plaster, total thickness 3/4 in.	39.9	75 73	3.30* 0.85 8.80† 4.40†*	0.30 1.18 0 11 0.23	(3) (4)
Wood Late and Plaster BUILDING CONSTRUCTIONS	3% in plaster, total thickness 34 in		70	2 50†*	0.23	(4)
Frame	1-in. fir sheathing and building paper. 1-in. fir sheathing, building paper, and yellow pine lap siding		30 20	0.86†* 0.50†*	1.16	(4)
	1-in fir sheathing, building paper and stucco Pine lap siding and building paper—siding 4 in, wide		20	0.82	1.22	(4) (4) (4)
-	Yellow pine lap siding			1.28	0.78	(2)
For notes see Page 97.						

Table 2. Conductivities (k) and Conductances (C) of Building Materials and Insulators²—Concluded

The coefficients are expressed in Btu per hour per square foot per degree Fahrenheit per 1 in thickness unless otherwise indicated.

Material	Description	Density (Lb per Cu Ft)	Mean Temp (Deg Fahr)	Conductivity (k) or Conductance (C)	RESISTIVITY $\left(\frac{1}{k}\right)$ OR $\left(\frac{1}{C}\right)$	Аптновитя
BUILDING CONSTRUCTIONS —(Continued) FLOORING	Maple—across grain Battleship linoleum (½ in.)	40.00	75	1.20	0.83	(3)
	Battleship linoleum (¼ in.)			1.36†*	0.74	
WOODS (Across Grain) Balsa				0.50	4 70	
California Redwood	0% moisture	20.0 8.8 7.3 22.0 28.0 22.0	90 90 90 75 75 75	0.58 0.38 0.33 0.66 0.70 0.74	1.72 2.63 3.03 1.53 1.43 1.35	(1) (1) (1) (4) (4) (4)
0	16% "	28.0	75	0.80	1.25	(4)
CTPRESS	0% moisture	28.7	86	0.67	1.49	(1)
EASTERN HEMLOCK	0% moisture	26.0 34.0 26.0 34.0 22.0 30.0	75 75 75 75 75 75 75	0.61 0.67 0.76 0.82 0.60 0.76	1.64 1.49 1.32 1.22 1.67 1.32	(4) (1) (4) (4) (4) (4) (4) (4)
Hard Maple	16% " 16% " 0% moisture	22.0 30.0 40.0 46.0 40.0	75 75 75 75 75 75	0.67 0.85 1.01 1.05 1.15	1.49 1.18 0.99 0.95 0.87	(4) (4) (4)
LONGLEAF YELLOW PINE	16% "	46.0 30.0 40.0 30.0 40.0	75 75 75 75	1.21 0.76 0.86 0.89 1.03	0.83 1.32 1.16 1.12 0.97	(4) (4) (4) (4) (4) (4) (1)
Mahogany		34.3	86	0.90	1.11 0.91	(1)
MAPLE OR OAK		44.3	86	1.10 1.15*	0.91	(1)
NORWAY PINE	0% moisture	22.0 32.0 22.0 32.0	75 75 75 75 75	0.62 0.74 0.74 0.91	1.61 1.35 1.35 1.10	(4) (4) (4) (4)
RED CYPRESS	0% moisture	22.0 32.0 22.0 32.0	75 75 75 75 75	0.67 0.79 0.74 0.90	1.49 1.27 1.35 1.11	(4) (4) (4) (4)
RED OAK	0% " 16% " 0% moisture	38.0 48.0 38.0 48.0 26.0	75 75 75	0.98 1.18 1.07 1.29 0.74	1.02 0.85 0.94 0.78 1.35	(4) (4) (4) (4)
SOFT ELM	16% "	36.0 26.0 36.0 28.0	75 75 75 75 75	0.91 0.84 1.04	1.10 1.19 0.96 1.37	(4) (4) (4)
	0% "	34.0 28.0 34.0	75 75 75	0.73 0.88 0.81 0.97 0.89	1.37 1.14 1.24 1.03 1.12	(4) (4) (4)
SOFT MAPLE	0% moisture	36.0 42.0 36.0 42.0	75 75 75 75	0.95 1.01 1.09	1.05 0.99 0.92	(4) (4) (4)
SUGAR PINE	0% moisture	22.0 28.0 22.0 28.0	75 75 75 75 75	0.54 0.64 0.65 0.78	1.85 1.56 1.54 1.28	(4) (4) (4) (4)
Virginia Pine West Coast Hemlock	0% moisture	34.3 22.0 30.0 22.0	86 75 75 75 75	0.96 0.68 0.79 0.78 0.91	1.04 1.47 1.27 1.28 1.10	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
WHITE PINE YELLOW PINE YELLOW PINE OR FIR		30.0	75 86 	0.91 0.78 1.00 0.80*	1.10 1.28 1.00 1.25	(1) (3)

Table 3. Coefficients of Transmission (U) of Masonry Walls^a

Coefficients are expressed in Blu per nour per square foot per degree Fahrenheit difference in temperature between the air on the two sides, and are based on a wind velocity of 15 mph.

TYPICAL CONSTRUCTION	TYPE OF WALL	Thickness OF Masonry (Inches)	Wall No
	Solid Brick Based on 4-in hard brick and the remainder common brick.	8 12 16	1 2 3
ATUCCO.	Hollow Tile Stucco Exterior Finish. The 8-in. and 10-in. tile figures are based on two cells in the direction of flow of heat. The 12-in. tile is based on three cells in the direction of flow of heat. The 16-in. tile consists of one 10-in tile and one 6-in tile each having two cells in the direction of heat flow.	\$ 10 12 16	4 5 6 7
	Limestone or Sandstone	8 12 16 24	8 9 10 11
	Concrete (Monolithic) These figures may be used with sufficient accuracy for concrete walls with stucco exterior finish.	6 10 16 20	12 13 14 15
	Cinder (Monolithic) Conductivity k = 4.36	6 10 16 20	16 17 18 19
	Burned Clay aggregate (Monolithic) Conductivity $k = 3.96$	6 10 16 20	20 21 22 23
	Cinder Blocks Cores filled with dry cinders, 69.7 lb per cu ft.	8 8	24 25
	Cores filled with granulated cork, 5.12 lb per cu ft. Cores filled with rock wool, 14.2 lb per cu ft. Based on one air cell in direction of heat flow. Cores filled with granulated cork, 5.24 lb per	8 8 12	26 27 28
	eu ft.	12	29
	Concrete Blocks Cores filled with granulated cork, 5.14 lb per cu ft. Based on one air cell in direction of heat flow.	8 8 12	30 31 32
	Burned Clay aggregate Blocks Cores filled with granulated cork, 5.06 lb per	8	33
	cu ft.	8	34
	Burned Clay aggregate Blocks Cores filled with granulated cork, 5.6 lb per cu ft.	12 12	35
4Computed from footors me		1 12	36

^{*}Computed from factors marked by * in Table 2.

Based on the actual thickness of 2 in. furring strips.

	INTERIOR FINISH										
	Un	INSULAT	TED WA	LLS					Insulated Wali	£	
Plain walls—no in- terior finish	Plaster (½ in.) on walls	٥٤١	(1) I	Plaster (72 in) on plasterboard (38 in)—furred	Decorated building board (½ in.) without plaster—furred	Plaster (½ in.) on rigid insulation (½ in.)—furred	rigid maulation (1) n.)—furred	Plaster (½ in) on corkboard (1½ in.) set in cement mortar (½ in)	Plaster (1/2 in) on plasterboard (3/8 in)—arspacefaced on one sade with bright aluminum foil cemented to plasterboard	Plaster on metal lath attached to furring strips (2 in ^b) —rock wool fill (1%)	Phaster (% in) on metal lath attached to furning strips (2 in b) — flexible in-sulation (% in.) between furning strips (one air space)
A	В	С	D	E	F	G	H	I	J	K	L
0.50 0.36 0.28	0.46 0.34 0.27	0.30 0.24 0.20	0.32 0.25 0.21	0.30 0.24 0.20	0.23 0.19 0.17	0.22 0.19 0.16	0.16 0.14 0.13	0.14 0.12 0.11	0.22 0.18 0.16	0.12 0.11 0.10	0.20 0.17 0.15
0.40 0.39 0.30 0.25	0.38 0.37 0.29 0.24	0.26 0.26 0.22 0.19	0.28 0.27 0.22 0.19	0.26 0.26 0.22 0.19	0.20 0.20 0.17 0.16	0.20 0.19 0.17 0.15	0.15 0.15 0.14 0.12	0.13 0.13 0.12 0.11	0.20 0.20 0.17 0.16	0.11 0.11 0.10 0.097	0.18 0.18 0.16 0.14
0.71 0.58 0.49 0.37	0.64 0.53 0.45 0.35	0.37 0.33 0.30 0.25	0.39 0.34 0.31 0.26	0.37 0.33 0.30 0.25	0.26 0.24 0.22 0.20	0.25 0.23 0.22 0.19	0.18 0.17 0.16 0.15	0.15 0.14 0.14 0.13	0.25 0.23 0.22 0.19	0.13 0.13 0.12 0.11	0.23 0.21 0.20 0.18
0.79 0.62 0.48 0.41	0.70 0.57 0.44 0.39	0.39 0.34 0.29 0.27	0.42 0.37 0.31 0.28	0.39 0.34 0.29 0.27	0.27 0.25 0.22 0.21	$\begin{array}{c} 0.26 \\ 0.24 \\ 0.21 \\ 0.20 \end{array}$	0.19 0.18 0.16 0.15	0.15	0.26 0.24 0.21 0.20	0.13 0.13 0.12 0.12	0.23 0.22 0.20 0.18
0.46 0.33 0.22 0.19	$0.43 \\ 0.31 \\ 0.22$	0.29 0.23 0.17	0.30 0.24 0.18 0.15	0.29 0.23 0.17 0.15	0.22 0.18 0.15 0.13	0.21 0.18 0.14 0.13	0.16 0.14 0.12 0.13	0.12	0.21 0.18 0.15 0.13	0.12 0.11 0.09 0.09	0.19 0.16 0.13 0.12
0.44 0.30 0.21 0.17	0.41 0.29 0.20 0.17	$0.22 \\ 0.16$	0.29 0.23 0.17 0.14	0.28 0.22 0.16 0.14	0.21 0.17 0.14 0.12	0.21 0.17 0.14 0.12	0.16 0.16 0.1	0.12	$0.21 \\ 0.17 \\ 0.13 \\ 0.12$	0.12 0.10 0.09 0.08	0.19 0.16 0.13 0.11
0.42	0.39	$0.27 \\ 0.23$	0.28	$0.27 \\ 0.22$	0.21 0.18	0.20 0.17	0.1	$\begin{bmatrix} 0.13 \\ 4 \\ 0.12 \end{bmatrix}$	0.21 0 17	$0.12 \\ 0.11$	0.19 0.16
0.22 0.23 0.37	1	0.17	0.18	0.17	0.14 0.15 0.19	0.14 0.14 0.19	0.1	$\begin{bmatrix} 2 & 0.11 \\ 2 & 0.10 \end{bmatrix}$	0.14 0.15 0 18	0.09 0.09 0.11	0.13 0.14 0.17
0.20		0.17	0.16	0.16	0.13	0.13	0.1	1 0.10	0.14	0.09	0.13
0.5	6 0.52	0.32	0.34	1	1	0.23			0.23	0.12	0.21
$0.49 \\ 0.49$			$0.28 \ 0.32$	$\begin{bmatrix} 0.27 \\ 0.30 \end{bmatrix}$	$0.21 \\ 0.23$	$0.20 \\ 0.22$	$\begin{bmatrix} 0 & 1 \\ 2 & 0.1 \end{bmatrix}$	$\begin{bmatrix} 5 & 0.13 \\ 6 & 0.14 \end{bmatrix}$		$0.12 \\ 0.12$	0.18 0.20
0.3	_	1 0.26	0.26	0.24	0.19	0.19	0.1	5 0.13		0.11	0.17
0.1	8 0.1	7 0.13	0.1	_		0.15	_			0.08	0.12
0.3	4 0.3	2 0.2	0.2			0.1	-	1		0.11	0.17
0.1	5 0 1	4 0.1	3 0.13	3 0 12	0 11	0.1					material and the

^eA waterproof (not vaporproof) membrane should be provided between the outer material and the insulation fill to prevent possible wetting by absorption and a subsequent lowering of efficiency.

Table 4. Coefficients of Transmission (U) of Masonry Walls with Various Types of Veneers²

Coefficients are expressed in Blu per hour per square foot per degree Fahrenheit difference in temperature between the air on the two sides, and are based on a wind velocity of 15 mph

TYPICAL CONSTRUCTION	TYPE (OF WALL	Wall No.
	Facing	Backing	
	4 in. Brick Veneer ^d	6 in. 8 in. Hollow Tile 10 in. 12 in.	37 38 39 40
	4 in. Brick Veneerd	6 in. 10 in. Concrete 16 in	41 42 43
~		8 in. Cinder Blocks 8 in. Cinder Blocks — Cores filled with granulated cork, 5.12 lb per cu ft 12 in. Cinder Blocks 12 in. Cinder Blocks — Cores filled with granulated cork, 5.24 lb per cu ft	44 45 46 47
	4 in. Brick Veneer ^d .	8 in. Concrete Blocks 8 in. Concrete Blocks—Cores filled with granulated cork, 5.14 lb per cu ft 12 in. Concrete Blocks 8 in. Burned Clay aggregate Block 8 in. Burned Clay aggregate Block—Cores filled with gran- ulated cork, 5 06 lb per cu ft 12 in. Burned Clay aggregate Block—Cores filled with gran- ulated cork, 5 06 lb per cu ft 12 in. Burned Clay aggregate Block—Cores filled with gran- ulated cork, 5.6 lb per cu ft	48 49 50 51 52 53
	4 in. Cut-Stone Veneer ^d	8 in. 12 in Common Brick 16 in.	55 56 57
	4 in. Cut-Stone Veneer ⁴	6 in. 8 in. 10 in. Hollow Tile ^o 12 in.	58 59 60 61
	4 in. Cut-Stone Veneer⁴	6 in. 10 in Concrete 16 in.	62 63 64

<sup>Computed from factors marked by * in Table 2.
Based on the actual thickness of 2-in. furring strips.
The 6-in., 8-in. and 10-in. tile figures are based on two cells in the direction of heat flow. The 12-in. tile is based on three cells in the direction of heat flow.</sup>

INTERIOR FINISH

					Ī						
	Uı	NINSULA	TED W	LLS					INSULATED WALL		
Plain walls—no in- terior finish	Plaster (½ in.) on walls	Plaster on wood lath—furred	G 1	Plaster (½ 1n.) on plasterboard (3/8 in.)—furred	No plaster—decorated rigid or building board interior finish (½ in.)—furred	Plaster (½ in) on rigid insulation (½ in.)—furred	Plaster (½ in.) on rigid insulation (1 in.)—furred	Plaster (½ in) on corkboard (1½ in) set in cement mortar (½ in)	Plaster (½ 1n) on plasterboard (¾ in.)—airspacefaced bright aluminum foil cemented to plasterboard	Plaster (34 in.) on metal lath attached to furring strips (2 in.5)—rock wool fill (158 in.5).	Plaster (% in.) on metal lath attached to furning strips (2 in b)—flexible in-sulation (½ in.) between furring strips (one air space)
A	В	С	D	E	F	G	H	I	J	K	L
0.36 0.34 0.34 0.27	0.34 0.33 0.32 0.26	0.24 0.24 0.23 0.20	0.25 0.25 0.24 0.21	$0.24 \\ 0.24 \\ 0.23 \\ 0.20$	0.19 0.19 0.19 0.19 0.16	0.19 0.18 0.18 0.16	0.15 0.14 0.14 0.13	0.13 0.12 0.12 0.11	0.18 0.18 0.18 0.16	0.11 0.11 0.11 0.10	0.17 0.17 0.17 0.15
0.57 0.48 0.39	0.53 0.45 0.37	0.33 0.30 0.26	0.35 0.31 0.27	0.33 0.30 0.26	0.24 0.22 0.20	0 23 0.22 0.19	0.17 0.16 0.15	0.14 0.14 0.13	0.23 0.22 0.20	0.13 0.12 0.11	0.21 0.20 0.18
0.35	0.33	0.24	0.25	0.24	0.19	0.18	0.14	0.12	0.18	0.11	0.17
0.20 0.31	0.19 0.30	$0.16 \\ 0.22$	0.16 0.23	0.16 0.22	0.13 0.18	0.13 0.17	0.11 0.14	0.10 0.12	0.13 0.17	0.09 0.11	0.12 0.16
0.18	0.18	0.15	0.15	0.15	0.13	0.12	0.10	0.09	0.13	0.08	0.12
0.44	0.42	0.28	0.30	0.28	0.21	0.21	0.16	0.13	0.21	0.12	0.19
$0.34 \\ 0.40$	0.32 0.38	0.24 0.26	0.25 0.28	0.23 0.26	0.19 0.20	0.18 0.20	0.14 0.15	0.12	0.18 0.20	0.11 0.11	0.17 0.18
0.31	0.29	0.23	0.23	0.22	0.18	0.17	0.14	0.12	0.17	0.11	0.16
0.17	0.16	0.14	0.14	0.14	0.12	0.12	0.10	0.09	0.12	0.08	0.11
0.29	0.28	0.21	0.22	0.21	0.17	0.17	0.13	0.12	0.17	0.10	0.16
0.14	0.14	0.12	0.12	0.12	0.10	0.10	0.09	0.08	0.10	0.07	0.10
0.37 0.28 0.28	7 0.35 3 0.27 3 0.22	0.25	0.26 0.21 0.18	0.28 0.2 0.18	0.19 0.17 0.15	0.19 0.16 0.14	0.13 0.13 0.13	$3 \mid 0.12$	0.19 0.17 0.15	0.11 0.10 0.095	0.17 0.15 0.14
0.3° 0.3° 0.3° 0.2°	7 0.35 6 0.34 5 0.33 8 0.26	0.24 0.24 0.24 0.24 0.20	5 0.26 4 0.25 4 0.25 0 0.25	5 0.2	$\begin{array}{c c} 4 & 0.19 \\ 4 & 0.19 \end{array}$	0.19 0.19 0.18 0.16	$\frac{9}{3} \begin{array}{c} 0.1 \\ 0.1 \end{array}$	$4 \mid 0.12$	0.10	0.11 0.11 0.11 0.10	0.18 0.17 0.17 0.15
0.6 0.5 0.4	1 0.50 1 0.4 1 0.3	7 0.3	4 0.3 1 0.3 6 0.2	3 0.3 2 0.3 8 0.2	4 0.25 1 0.23 26 0.20	0.24	4 0.1 2 0.1 0 0.1	$7 \mid 0.14$	1 0.22	0.13 0.12 0.11	0.22 0.20 0.18

^{*}Calculations include cement mortar (½ in) between veneer or facing and backing
*Based on one air cell in direction of heat flow.

*A waterproof (not vaporproof) membrane should be provided between the outer material and the insulation fill to prevent possible wetting by absorption and a subsequent lowering of efficiency.

Table 5. Coefficients of Transmission (U) of Various Types of Frame Construction²

These coefficients are expressed in Btu per hour per square fool per degree Fahrenheit difference in temperature between the air on the two sides, and are based on a wind velocity of 15 mph.

TYPICAL CONSTRUCTION	EXTERIOR FINISH	TYPE OF SHEATHING	WALL No.
ALIAN MOOD		1 in. Woodd	65
PLAJTER	Wood Siding or Clapboard	²⁵ ⁄ ₃₂ in. Rigid Insulation	66
MEATHING		1/2 in. Plasterboard	67
ALINGTE AUDA MOOD		1 in. Wood ^d	68
PLA JTER	Wood Shingles	²⁵ %2 in. Rigid Insulation•	69
MEATHING		1/2 in. Plasterboard•	70
STUDY STUCCO		1 in. Woodd	71
PLASTER PLASTER	Stucco	²⁵ / ₃₂ in. Rigid Insulation	72
JHEATHING .		1/2 in. Plasterboard	73
STUDY BRICK		1 in. Wood ^d	74
PLASTER	Brick ^f Veneer	²⁵ %2 in. Rigid Insulation	75
JHEATHING CONTINUES		1/2 in. Plasterboard	76

Computed from factors marked by * in Table 2

^bThese coefficients may also be used with sufficient accuracy for plaster on wood lath or plaster on plasterboard.

Based on the actual width of 2 by 4-in studding, namely, 35% in.

INTERIOR FINISH

		No In	SULATION	Between	n Studdii	1 G -		Iz	NSULATION	Between	n Studdii	₹ G
Plaster on wood lath on studding	Plaster (% in.) on metal lath on studding	Plaster (½ 1n) on plasterboard (3% 1n.) on studding	Plaster (½ in) on rigid insulation (½ in.) on studding	Plaster (½ in.) on rigid insulation (1 in.) on studding	Plaster (1½ in.) on corkboard (1½ in.) on studding	No plaster—decorated rigid or building board interior finish (が in.)	1 in. wood sheathing. ⁴ furring strips, plaster (½ in.) on wood lath	Plaster (½ in.) on plasterboard (½ in.)—arr space faced on one side with bright aluminum foil cemented to plasterboard	Plaster (¾ in.) on metal lath ^b on atualize—flexible insulation (½ in.) between studding and in contact with sheathing	Plaster (¾ in.) on metal lath on studding—flexible insulation (½ in.) between studding—2 air spaces	Plaster (% in.) on metal lath ⁶ on studding—flexible insulation (1 in.) between studding—2 air spaces	Plaster (% in) on metal lath* on studding—rock wool fill (35% in °) between studdinge**
<u>A</u>	В		D	E	F	G	H	I		<u>K</u>	L	M
0.25	0.26	0.25	0.19	0.15	0.11	0.19	0.17	0.19	0.17	0.15	0.12	0.072
0.19	0 20	0.19	0.15	0.13	0.10	0.16	0.14	0.15	0.15	0.13	0.10	0.068
0.31	0 33	0.31	0.22	0.17	0.13	0.23	0.19	0.22	0.20	0 17	0.13	0.076
0.25	0.26	0.25	0.19	0.15	0.11	0.19	0.17	0.20	0 17	0.15	0.12	0.072
0.17	0 17	0.17	0.14	0.11	0.092	0.14	0.14	0.15	0.13	0.11	0.094	0.064
0.24	0.25	0.24	0.19	0.15	0.11	0.19	0.19	0 22	0.17	0.15	0.12	0.071
0.30	0.32	0.30	0.22	0.16	0 12	0.22	0.19	0.23	0.20	0.17	0.13	0.076
0.22	0.23	0.22	0.17	0.14	0.11	0.19	0.15	0.17	0.16	0.14	0.11	0.071
0.40	0.43	0.40	0 26	0.19	0.14	0.28	0.22	0.26	0.24	0.20	0.14	0.081
0.27	0 28	0.27	0.20	0.15	0.12	0.21	0.17	0.21	0.18	0.16	0.12	0.074
0.21	0.21	0.21	0.16	0.14	0.10	0.17	0.15	0.16	0.15	0.13	0.11	0.068
0.35	0.37	0.35	0.24	0.18	0 13	0 25	0.21	0.24	0.22	0.18	0.14	0.079

dYellow pine or fir-actual thickness about 25/2 in.

Furring strips between wood shingles and sheathing.

[/]Small air space and mortar between building paper and brick veneer neglected.

^{*}A waterproof (not vaporproof) membrane should be provided between the outer material and the insulation fill to prevent possible wetting by absorption and a subsequent lowering of efficiency.

AThe coefficients in this column are corrected for the effect of studs.

Table 6. Coefficients of Transmission (U) of Frame Interior Walls and Partitions²

Coefficients are expressed in Blu per hour per square foot per degree Fahrenheit difference in temperature between the air on the two sides, and are based on still air (no wind) conditions on both sides.

TYPICAL CONSTRUCTION (PLASTER ATURA		g			ARTITION Sides of St	
PLASTER BASE-	WALL No.	SINGLE PARTITION (FINISH ON ONE SIDE OF STUDDING)	Air Space Between Studding	Flaked Gypsum Fill ^b Between Studding	Rock Wool Fill ^b Between Studding	1/2 in. Flexible Insulation Between Studding (One Air Space)
Type of Wall		A	В	C	D	E
Wood Lath and Plaster On Studding	77	0 62	0.34	0.11	0 076	0.21
Metal Lath and Plaster On Studding	78	0.69	0.39	0 11	0.078	0.23
Plasterboard (% in.) and Plaster ^d On Studding	79	0.61	0.34	0.10	0.075	0.21
Plasterboard (¾ in.) and Plaster ^d On Studding—bright aluminum foil cemented to plasterboard on surface nailed to studding	80	0.42	0.24			0 16
½ in. Rigid Insulation and Plaster ^d On Studding	81	0.35	0.18	0.083	0.063	0.14
1 in. Rigid Insulation and Plaster ^d On Studding	82	0 23	0.12	0.066	0.054	0.097
1½ in. Corkboard and Plaster ^d On Studding	83	0.16	0.081	0.052	0.044	0.070
2 in. Corkboard and Plaster ^d On Studding	84	0.12	0.063	0.045	0.038	0.057

[•]Computed from factors marked by * in Table 2.

Table 7. Coefficients of Transmission (U) of Masonry Partitions²

Coefficients are expressed in Blu per hour per square foot per degree Fahrenheit difference in temperature between the air on the two sides, and are based on still air (no wind) conditions on both sides.

TYPICAL CONSTRUCTION MAJORRY PLASTER	No	Plain Walls (No Plaster)	WALLS PLASTERED ON ONE SIDE	Walls Plastered on Bote Sides
Type of Wall		A	В	C
4-in. Hollow Clay Tile	85	0.45	0.42	0.40
4-in. Common Brick	86	0.50	0.46	0.43
4-in. Hollow Gypsum Tile	87	0.30	0.28	0.27
2-in. Solid Plaster	88			0.53

Computed from factors marked by * in Table 2.

[•]Plaster on metal lath assumed $\frac{3}{4}$ in. thick.

 $^{^{}f b}$ Thickness assumed $3\frac{5}{8}$ in.

dPlaster assumed ⅓ in. thick.

Coessicients are expressed in Biu per hour per sauare foot per degree Fahrenheit dissernce in temperature between the air on the two sides, and are based on still air (no wind) conditions on both sides. Table 8. Coefficients of Transmission (U) of Frame Construction Floors and Cellings^d

INSULATION BETWEEN JOISTS No Flooring Flooring on Flooring on Joists None	TYPICAL CONSTRUCTION				TY]	TYPE OF FLOORING	ING	
None A B C C	A	INSULATION BETWEEN JOISTS	O	No Flooring	Yellow Pine Flooring ^b on Joists	Yellow Pine Flooring on Rigid Insulation (½ in.) on Joists	Maple or Oak Flooring on Yellow Pine Sub-Flooring on Joista	M in Battleship Linoleum on Yellow Pine Flooring
None None 1 0.46 0.27 None 2 0.69 0.30 0.21 None 4 0.61 0.28 0.20 Ster (½ in.) None 5 0.35 0.21 0.16 Ster (½ in.) Shipht Aluminum Foll 7 0.53 0.21 0.16 Ster (½ in.) Flexible Insulation (1 in.) 8 0.17 0.08 0.076 Flexible Insulation (2 in.) 9 0.10 0.086 0.076 Rock Wool Fill (3½ in.) 10 0.016 0.12 0.10 C (½ in.) None 11 0.16 0.12 0.10 Ster (½ in.) 10 0.079 0.088 0.063 0.063 Ster (½ in.) None 11 0.16 0.12 0.10 Ster (½ in.) 0.12 0.10 0.10 Ster (½				V	В	၁	Q	Œ
None None 2 0.69 0.30 0.21	No Celling	None	-	1	0.46	0.27	0.34	0.34
None None 3 0.62 0.28 0.20	Motal Lath and Plaster (% in.)	None	7	0.69	0.30	0.21	0.25	0.25
and Plaster (½ in.) None 4 0.61 0.28 0.20 n.) and Plaster (½ in.) None 5 0.35 0.21 0.16 .) and Plaster (½ in.) None 6 0.23 0.16 0.13 ter Flexibled Insulation (1 in.) 8 0.17 0.18 0.11 ter Flexibled Insulation (2 in.) 9 0.10 0.086 0.076 ter Rock Wool Fill (35g in.) 10 0.079 0.063 0.063 ter None 11 0.16 0.12 0.10	Wood Lath and Plaster	None	8	0.62	0.28	0.20	0.24	0.24
in.) and Plaster (½ in.) None 5 0.35 0.21 0.16 n.) and Plaster (½ in.) None 6 0.23 0.16 0.13 and Plaster (½ in.) Bright Aluminum Folit 7 0.53 0.21 0.16 ster Flexibled Insulation (1 in.) 8 0.17 0.13 0.11 ster Flexibled Insulation (2 in.) 9 0.10 0.086 0.076 ster Rock Wool Fill (35% in.) 10 0.079 0.063 0.063 and Plaster (½ in.) None 11 0.16 0.12 0.10	Plasterhoard (% in.) and Plaster (½ in.)	None	4	0,61	0.28	0.20	0.24	0.23
and Plaster (½ in.) None 6 0.23 0.16 0.13 and Plaster (½ in.) Bright Aluminum Foil* 7 0.53 0.21 0.16 ter Flexibled Insulation (1 in.) 8 0.17 0.13 0.11 ter Flexibled Insulation (2 in.) 9 0.10 0.086 0.076 ter Rock Wool Fill (3½ in.) 10 0.079 0.068 0.063 nd Plaster (½ in.) None 11 0.16 0.12 0.10		None	ıc	0.35	0.21	0.16	0.18	0.18
and Plaster (½ in.) Bright Aluminum Foli* 7 0.53 0.21 0.16 ter Flexibled Insulation (1 in.) 8 0.17 0.13 0.11 ter Flexibled Insulation (2 in.) 9 0.10 0.086 0.076 ter Rock Wool Fill (35% in.) 10 0.079 0.068 0.063 nd Plaster (½ in.) None 11 0.16 0.12 0.10	Rigid Insulation (1 in.) and Plaster (1/2 in.)	None	9	0,23	0.16	0.13	0.14	0.14
ter Flexibled Insulation (1 in.) 8 0.17 0.13 0.11 ter Flexibled Insulation (2 in.) 9 0.10 0.086 0.076 ter Rock Wool Fill (3½ in.) 10 0.079 0.068 0.063 nd Plaster (½ in.) None 11 0.16 0.12 0.10	Plasterboard (3% in.) and Plaster (1/2 in)	Bright Aluminum Foll	7	0.53	0.21	0.16	0.18	0.18
ter Flexible* Insulation (2 in.) 9 0.10 0.086 0.076 ter Rock Wool Fill (3½ in.) 10 0.079 0.068 0.063 nd Plaster (½ in.) None 11 0.16 0.12 0.10	Metal Lath and Plaster	Flexibled Insulation (1 in.)	∞	0.17	0.13	0.11	0.12	0.12
Rock Wool Fill (35% in) 10 0.079 0.068 0.063	Metal Lath and Plaster	Flexibled Insulation (2 in.)	6	0.10	0.086	0.076	0.081	0,081
None 11 0.16 0.12 0.10	Metal Lath and Plaster	Rock Wool Fill (35% in)	91	0.079	0.068	0,063	0,066	0.066
1000	Corkhoard (11% in.) and Plaster (15 in.)	None	11	0.16	0.12	0.10	0.11	0.11
0.12 0.10 0.087	Corkboard (2 in.) and Plaster (1/2 in.)	None	12	0.12	0.10	0.087	0.094	0.094

«Computed from factors marked by * in Table 2.

Thickness assumed to be 25% in.

Thickness assumed to be 13% in

•Bright aluminum foil cemented to plasterboard

dBased on one air space with no flooring, and two air spaces with flooring. The value of U will be the same if insulation is applied to underside of joists and separated from lath and plaster ceiling by 1 in. furring strips.

Coesficients are expressed in Blu per hour per square foot per degree Fahrenheit disference in temperature detween the aur on the two sides, and are based on still aur (no wind) conditions on both sides. Table 9. Coefficients of Transmission (U) of Concrete Construction Floors and Ceilings⁴

	% in Battleship Linoleum Directly on Concrete	E	0.44 0.41 0.38 0.36	0.41 0.38 0.36 0.34	0.29 0.28 0.27 0.25	0.28 0.26 0.25 0.24	0.21 0.20 0.19 0.19	0.14 0.13 0.13 0.13
IG	The or Terrazzo/ Flooring on Concrete	D	0.61 0.56 0.51 0.47	0.56 0.52 0.47 0.44	$\begin{array}{c} 0.36 \\ 0.34 \\ 0.32 \\ 0.31 \end{array}$	0.34 0.32 0.30 0.29	0.24 0.23 0.22 0.21	0.14 0.14 0.14 0.14
TYPE OF FLOORING	Maple or Oak Flooring on Yellow Pine Sub-Flooring on Wood Sleepers Embedded in Concrete	C	0.31 0.30 0.28 0.27	0.30 0.28 0.27 0.26	0.23 0.22 0.21 0.21	0.22 0.21 0.21 0.20	0.17 0.17 0.16 0.16	0.12 0.12 0.11 0.11
TY	Yellow Pine Flooring on Wood Sleepers Embedded in Concreted	В	0.40 0.37 0.35 0.33	0.38 0.35 0.33 0.32	0.28 0.26 0.25 0.25	0.26 0.25 0.24 0.23	0.20 0.19 0.18 0.18	0.13 0.13 0.12 0.12
	No Flooring (Concrete Bare) ⁶	V	0.65 0.59 0.53 0.49	0.59 0.54 0.50 0.45	0.37 0.35 0.33 0.32	0.35 0.33 0.31 0.30	0.24 0.23 0.22 0.22	0.15 0.14 0.14 0.14
	No		-264	8.76.51	6212	5423	118 119 20	73375
	THICKNESS OF CONCRETE (INCHES)		4 6 8 10	4 6 8 10	4 6 8 10	4 9 8 8 10 10	4 6 8 10	4 6 8 8 10
TYPICAL CONSTRUCTION	FLOORING FLOORING FLOORING FLOORING	TYPE OF CEILING	No Celling	1/2 in Plaster Applied Directly to Underside of Concrete	Suspended or Furred Metal Lath and Plaster (% in.) Ceiling	Suspended or Furred Ceiling of Plasterboard (% in.) and Plaster (½ in.)	Suspended or Furred Ceiling of Rigid Insulation (½ in.) and Plaster (½ in.)	Plaster (½ in.) on Corkboard (1½ in.) Set in . Cement Mortar (½ in.) on Concrete

by the figures in Column A may be used with sufficient accuracy for concrete floors covered with carpet.

"Thickness of yellow pine flooring assumed to be \$\frac{F}{2}\tilde{a}\tilde{ «Computed from factors marked by * in Table 2

that the under surface of the roof and the upper surface of the ceiling are more nearly equivalent to the boundary surfaces of an internal air space than they are to the external surfaces of a wall. It would be more nearly correct to use a value of 2.2 rather than the usual value of 1.65 as coefficients for these surfaces. In most cases this would make only a minor change in U. It should be noted that the over-all coefficient should be multiplied by the ceiling and not the roof area.

If the unheated attic space between the roof and ceiling has no dormers, windows or vertical wall spaces the combined coefficient may be used for

Table 10. Coefficients of Transmission (U) of Concrete Floors on Ground with Various Types of Finish Flooring^a

Coefficients are expressed in Btu per hour per square foot per degree Fahrenheit difference in temperature between the ground and the air over the floor, and are based on still air (no wind) conditions.

TYPICAL CONSTRUCTION CONCRETE FLOORING		TYPE OF FINI	SH FLOORING	3
CONCRETE INJULATION BETWEEN TWO MEMBRANE WATER PROOFING COURJEJ	No Flooring (Concrete Bare)	Wood Flooring on Sleepers on Concrete	Tile or Terrazzo on Concrete	½ in. Battleship Linoleum on Concrete
THICKNESS OF CONCRETE (INCHES)	A	В	C	D
2 4	0.10 0.10	0.10 0.10	0.10 0.10	0.10 0.10
6	0.10	0.10	0.10	0.10
8	0.10	0.10	0.10	0.10
10	0.10	0.10	0.10	0.10

aUntil more complete data are available, based on tests now in progress, it is recommended that a coefficient of 0.10 be used for all types of concrete floors on the ground, with or without insulation. For basement walls below grade, use the same average coefficient (0.10). A lower ground temperature should however be used for walls than floors as explained in Chapter 6. For further data see A S.H.V.E. Research Paper.—Heat Loss Through Basement Walls and Floors, by F. C. Houghten, S. I. Taimuty, Carl Gutberlet and C. J. Brown (A S.H.V.E. Journal Section, Heating, Piping and Air Conditioning, January 1942, p. 69).

determining the heat loss through the roof construction, attic and top floor ceiling. If the unheated attic contains windows and vertical wall spaces these must be taken into consideration in calculating the roof area and also its coefficient U_r . In this case an approximate value of U_r may be obtained as the summation of the coefficient of each individual section such as the roof, vertical walls or windows times its percentage of total area. This coefficient may then be used with reasonable accuracy in Equation 4. If there are large vertical wall areas, the most accurate procedure is to estimate the attic temperature by means of Equation 4. Chapter 6 and to calculate the heat loss by using the ceiling coefficient only, and the attic temperature instead of the outside temperature. Information concerning basement floor and wall coefficients will be found on Page 115.

Table 11. Coefficients of Transmission (U) of Various Types of Flat Roofs Covered with Built-Up Roofing^{\mathfrak{g}}

TYPICAL CON	ISTRUCTION			
WITHOUT CEILINGS	WITH METAL LATH AND PLASTER CEILINGS ^d	TYPE OF ROOF DECK	THICKNESS OF Roor DECK (INCHES)	No
ROOFING, /CAST TILE	ROOFING, CAST THE FOLLOWING CONTINUE CO	Precast Cement Tile	15%	1
ROOFING:	ROOFING COHCRETE	Concrete Concrete Concrete	2 4 6	2 3 4
ROOFLING,	COLLING COLLING	Wood Wood Wood Wood	16 1346 26 46	5 6 7 8
INSULATION, ROOFINGS INTERNATIONAL STATES STATES ELASTER BOARD	INJULATION, ROOFING, HIMMINIMAN SCHOOL PLAYTER BOARD CELLING	Gypsum Fiber Concretes (2 in.) on Plasterboard (3½ in.) Gypsum Fiber Concretes (3 in.) on Plasterboard (½ in.) Gypsum Fiber Concretes (2 in.) on Rigid Insulalation Board (½ in.) Gypsum Fiber Concretes (2 in.) on Rigid Insulalation Board (1 in.)	23% 33% 21/2 3	9 10 11 12
INSULATION, ROOPINGS METAL PECK	INSULATION, ROOFING. METAL PECK CELLING	Flat Metal Roofs Coefficient of transmission of bare corrugated iron (no roofing) is 1.50 Btu per hour per square foot of projected area per degree Fahrenheit difference in temperature, based on an outside wind velocity of 15 mph.		13

[°]Computed from factors marked by * in Table 2.
bNominal thicknesses specified—actual thicknesses used in calculations.
cGypsum fiber concrete—87½ per cent gypsum, 12½ per cent wood fiber.

Coefficients are expressed in Blu per hour per square foot per degree Fahrenheit difference in temperature between the air on the two sides, and are based on an outside wind velocity of 15 mpn.

	WITH			G—UN EXPOSE		IDE O	F			WITH	META ASTER	L LAT	H ANI NGS¢	D	
No Insulation	Rigid Insulation (½ in)	Rigid Insulation (1 in)	Rigid Insulation (1½ ln.)	Rigid Insulation (2 In)	Corkboard (1 ln)	Corkboard (1½ in)	Corkboard (2 ln)	No Insulation	Rigid Insulation (1/2 ln)	Rigid Insulation (1 ln.)	Rigid Insulation (11/2 in)	Rigid Insulation (2 ln)	Corkboard (1 in)	Corkboard (1½ in)	Corkboard (2 ln.)
A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P
0.84	0.37	0.24	0.18	0.14	0.22	0.16	0.13	0.43	0.26	0.19	0.15	0.12	0.18	0.14	0.11
0.82 0.72 0.64	0.37 0.34 0.33	0 24 0.23 0 22	0.17 0.17 0.16	0.14 0.13 0 13	0.22 0.21 0.21	0.16 0.16 0.15	0.13 0.12 0 12	0.42 0.40 0.37	0 26 0.25 0.24	0.19 0.18 0.18	0.15 0.14 0.14	0.12 0.12 0.11	0.18 0.17 0.17	0.14 0.13 0.13	0.11 0.11 0.11
0.49 0.37 0.32 0.23	0.28 0.24 0.22 0.17	0.20 0.18 0.16 0.14	0.15 0.14 0.13 0.11	0.12 0.11 0.11 0.096	0.19 0.17 0.16 0.13	0.14 0.13 0.12 0.11	0.12 0.11 0.10 0.091	0.32 0.26 0.24 0.18	0.21 0.19 0.17 0.14	0.16 0.15 0.14 0.12	0.13 0.12 0.11 0.10	0.11 0.10 0.097 0.087	0.15 0.14 0.13 0.11	0.12 0.11 0.11 0.096	0.10 0.095 0.092 0.082
0.40	0.25	0.18	0.14	0.12	0.17	0.13	0.11	0.27	0.19	0.15	0.12	0.10	0.14	0.12	0.097
0.32	0.22	0.16	0.13	0.11	0.15	0.12	0.10	0.23	0.17	0.14	0.11	0.097	0.13	0.11	0.091
0.26	0.19	0.15	0.12	0.10	0.14	0.11	0.10	0.20	0.16	0.13	0.11	0.09	0.12	0.10	0.087
0.19	0.15	0.12	0.10	0.09	0.12	0.10	0.08	0.16	0.13	0.11	0.09	0.08	0.10	0.09	0.077
0.95	0.39	0.25	0.18	0.14	0.23	0.17	0.13	0.46	0.27	0.19	0.15	0.12	0.18	0.14	0.11

^dThese coefficients may be used with sufficient accuracy for wood lath and plaster, or plasterboard and plaster ceilings. It is assumed that there is an air space between the underside of the roof deck and the upperside of the ceiling.

Coefficients of Transmission (U) of Pitched Roofs^d TABLE 12.

Coefficients are expressed in Biu per hour per square foot per degree Fahrenheit difference in temperature between the air on the two sides, and are based on an outside with a pased on an outside wind velocity of 15 mph.

						(Аррд	туре гер Dire	TYPE OF CEILING DIRECTLY TO ROOF I	TYPE OF CELLING (Applied Directly to Roof Rafters)	ers)		
TYPICAL	TYPE OF ROOFING ROOF SHEATHING	INSULATION BETWEEN ROOF RAFTERS	No	No Celling (Rafters Exposed)	Metal Lath and Plaster (at ½)	Plasterboard (§§ in.) (.n. §§).	Tood Lath and Plaster	(at 34) avitslusal bizeA	(ni ½() noileiuend breist (ni ½() sater (hi)	(.ai 1) aotaulation (bigiR (at 21) aster (12) (at 21)	Corkboard (1½ in) and Plaster (½ in)	Corkboard (2 in.) Plaster (K in.)
				V	m	ပ	a	ы	£	U	н	ı
,		None	1	0.46	0.30	0.29	0.29	0.22	0.21	0.16	0.12	0.10
MAILING STRIPLA		Bright Aluminum Foil	7			0.21						
	Wood Shingles on	1 in. Flexible	3		0.13	0.12	0.12	0.11	0.11	0.092	0.078	0.069
	Wood Strips	2 in, Flexible	4		0.086	0.083	0 083	920 0	0 075	0.068	090.0	0.054
PLASTER BASE		35% 1n. Rock Wool'	5		0.070	0 0 0 0	0 0 0 0	0 064	0.064	0 057	0 052	0.047
PART THE ATRINGES		None	9	0.56	0.34	0.32	0.32	0.24	0.23	0.17	0 13	0.11
RODEING	Asphalt Shingles,	Bright Aluminum Foils	7			0.24						
	Shingles, Composi-	1 in. Flexible	∞		0.13	0.13	0.13	0.11	0.11	0.095	0.080	0 071
A. A.	Slate or Tile	2 in. Flexible	6		0.088	0.087	0.087	620 0	0.078	0 0 0 0	0.062	0.056
PASE R	Sheathing/	35% in. Rock Woole	10		0 073	0.072	0 072	0 067	0 065	0.059	0 053	0.048
			;		1-4-6							

Computed from factors marked by * in Table 2. Nos. 6 to 10, inclusive, based on ½ in. thick slate.

Blassed on 1 in. by 4 in. strips spaced 2 in.

Figures based on we ali spaces. Insulation may also be applied to under side of roof rafters with furring strips between.

Figures based on two ali spaces. Insulation may also be applied to under side of roof rafters with furring strips between.

ARsounds 3½ in. thick based on the actual width of 2 in. by 4 in rafters These coefficients are corrected for the effect of studs. Ali space faced on one side with bright aluminum foil applied to plasterboard.

Table 13. Coefficients of Transmission (U) of Doors, Windows, Skylights AND GLASS BLOCK WALLS

Coefficients are based on a wind velocity of 15 mph, and are expressed in Blu per hour per square foot per degree Fahrenheit difference in temperature between the air inside and outside of the door, window, skylight or wall

Section A. Windows and Skylights

Description	U ,
Single	1.13a, c 0.45a, e 0.281a, e

Section B. Solid Wood Doorsb, c

Nominal Thickness Inches	ACTUAL THICKNESS INCHES	U Exposed Door	Ud With Glass Storm Door
$ \begin{array}{c} 1 \\ 1 \frac{1}{4} \\ 1 \frac{1}{2} \\ 1 \frac{3}{4} \\ 2 \\ 2 \frac{1}{2} \\ 3 \end{array} $	25% 2	0.69	0.42
	1 1/1 6	0.59	0.38
	1 1/1 6	0.52	0.35
	1 1/8	0.51	0.35
	1 1/8	0.46	0.32
	2 1/8	0.38	0.28
	2 1/8	0.33	0.25

Section C. Hollow Glass Block Walls

DESCRIPTION	<i>U</i> STILL AIR BOTH SIDES	U STILL AIR INSIDE, 15 MPH OUTSIDE
Smooth surface glass blocks $7\frac{3}{4} \times 7\frac{3}{4} \times 3\frac{7}{8}$ in. thick Ribbed surface glass blocks $7\frac{3}{4} \times 7\frac{3}{4} \times 3\frac{7}{8}$ in. thick	0.40 0.38	0.49 0.46

between inside and outside air temperatures.

4These values may also be used with sufficient accuracy for wood storm doors. Neglect storm doors follows and use values for exposed doors

4Air spaces assumed to be 34 in. or more in width.

Basement Floor and Wall Coefficients

The dirt in contact with basement floors and walls below grade has an appreciable insulating value. The exact thickness or depth of the dirt which may contribute to the heat resistance of floors and walls in contact therewith is a variable and indeterminate quantity. Tests at the A.S.H.V.E. Research Laboratory indicate that the rate of heat flow through basement floors, even without insulation, does not exceed 0.10 Btu per square foot per degree Fahrenheit temperature difference between the air above the floor and the soil under the floor at the point of maximum diffusion of the heat from the basement. As indicated in the footnote of Table 10, this coefficient is recommended for use whenever it is desirable

^{*}See Heating, Ventilating and Air Conditioning, by Harding and Willard, revised edition, 1932. b Computed using C=1.15 for wood; $f_{1}=1$ 65 and $f_{0}=6.0$. e It is sufficiently accurate to use the same coefficient of transmission for doors containing thin wood panels as that of single panes of glass, namely, 1.13 Btu per hour per square foot per degree difference

⁵A.S. H.V.E. RESEARCH PAPER—Heat Loss Through Basement Walls and Floors, by F. C. Houghten, S. I. Taimuty, Carl Gutberlet and C. J. Brown (A.S.H.V.E. JOURNAL SECTION, Heating, Pring and Air Conditioning, January, 1942, p. 69).

to make allowance for the small basement floor heat loss, as may be the case with heated basements. Using this coefficient (0.10) the total heat loss per square foot of floor area will amount to only 2.0 Btu per square foot per hour, based on a temperature difference of 20 F between the air in the basement above the floor and the minimum soil temperature below the basement.

The same coefficient (0.10) may be used for calculating the heat loss through basement walls below grade but a somewhat higher temperature difference should be used for reasons explained in Chapter 6. Thus the total heat loss through basement walls will be greater than that through

Fig. 2. Permissible Relative Humidities for Various Transmission Coefficients

floors. According to present available data the unit wall heat loss will be approximately twice the floor heat loss under average conditions in northern latitudes or about 4.0 Btu per hour per square foot (total, not per degree temperature difference) between the basement air and the ground at a level corresponding to the mid-height of the basement wall. Until further data are available, this value may be used with reasonable accuracy for calculating heat losses through basement walls of heated basements.

CONDENSATION IN BUILDINGS

The water vapor or moisture mixed with the air in buildings will be transmitted through many types of building construction if there is a difference in the vapor pressures on the two sides of the structure. Such

⁶Methods of Moisture Control and Their Application to Building Construction, by F. B. Rowley, A. B. Algren and C. E. Lund. (University of Minnesota Engineering Experiment Station Bulletin No. 17).

CHAPTER 4. HEAT TRANSMISSION COEFFICIENTS

water vapor will also condense whenever it comes in contact with surfaces or objects at or below the dew-point temperature. Thus two types of condensation problems are encountered in building practice, namely (1) Surface condensation or condensation on the interior building surfaces including the walls, ceiling (or roof) and glass, and (2) Interstitial condensation or the transmittance of the vapor through the building materials and condensation of the moisture on surfaces or voids within the materials of construction.

Condensation within the construction as well as condensation on the interior surfaces does not necessarily occur in all buildings but only in isolated cases when conditions conducive to such condensation exist. The probability of condensation increases with the relative humidity or vapor pressure and with the temperature difference and, in the case of interstitial condensation, decreases with the vapor resistance on the warm side of the wall.

Condensation on interior building surfaces (surface condensation) may be eliminated by either reducing the relative humidity or by maintaining the interior surfaces at or above the dew-point temperature. Permissible relative humidities for various wall, roof or glass coefficients and temperature differences may be determined from Fig. 2. The permissible relative humidity for any specific type of construction may be determined by first ascertaining the coefficient of transmission (U) of the construction and then locating this coefficient on the horizontal scale of Fig. 2. A vertical line drawn to the proper outside temperature curve and then to the left hand scale will indicate the permissible relative humidity for the conditions involved. The dotted line shown in Fig. 2 indicates the permissible relative humidity (64 per cent) if surface condensation is to be avoided, for a frame wall having a coefficient of 0.26 and for an outside temperature of -10 F.

Condensation within the construction may likewise be prevented by eliminating the moisture at the source or by providing a barrier on the warm side of the insulation construction. A good vapor barrier construction may be obtained with a vapor-proof paper properly applied under the plaster or a vapor-proof finish on the interior surface of the wall³. Insulating laths with vapor barriers applied to the back surface, are also available. In the case of attics, the greater the heat resistance in the top floor ceiling, the lower the attic temperature and consequently the greater the tendency for condensation to take place on the underside of the roof boards which moisture will drop on to the ceiling. Thus where thick insulations are installed between ceiling joists, it is desirable to allow openings for outside air circulation through attic space as a precaution against condensation on the underside of the roof even though barriers are used in the ceiling below.

⁷Permissible Relative Humidities in Humidified Buildings, by Paul D Close (A.S.H.V E. JOURNAL SECTION, Heating, Piping and Air Conditioning, December, 1939, p. 766).

Condensation Within Walls, by F B Rowley, A B Algren and C. E. Lund (A.S.H.V.E Transactions, Vol. 44, 1938, p. 95).

REFERENCES

A.S.H.V.E. RESEARCH REPORTS:

- No. 852—Effects of Air Velocities on Surface Coefficients, by F. B. Rowley, A. B. Algren and J. L. Blackshaw (A.S.H.V.E. Transactions, Vol. 36, 1930, p. 123).
- No. 895—Wind Velocity Gradients Near a Surface and Their Effect on Film Conductance, by F. C. Houghten and Paul McDermott (A.S.H.V.E. Transactions, Vol. 37, 1931, p. 301).
- No. 914—Surface Coefficients as Affected by Direction of Wind, by F. B. Rowley and W. A. Eckley (A.S.H.V.E. Transactions, Vol. 38, 1932, p. 33).
- No. 915—Conductivity of Concrete, by F. C. Houghten and Carl Gutberlet (A.S. H.V.E. Transactions, Vol. 38, 1932, p. 47).
- No. 964—The Heat Conductivity of Wood at Climatic Temperature Differences, by F. B. Rowley (A.S.H.V.E. Transactions, Vol. 39, 1933, p. 329).
- No. 996—Insulating Value of Bright Metallic Surfaces, by F. B. Rowley (A.S.H.V.E. Transactions, Vol. 40, 1934, p. 413).
- No. 1026—Thermal Properties of Concrete Construction, by F. B. Rowley, A. B. Algren and Clifford Carlson (A.S.H.V.E. Transactions, Vol. 42, 1936, p. 33).
- No. 1048—Thermal Properties of Concrete Construction, by F. B. Rowley, A. B. Algren and Robert Lander (A.S.H.V.E. Transactions, Vol. 43, 1937, p. 33).

Insulating Effect of Successive Air Spaces Bounded by Bright Metallic Surfaces, by L. W. Schad (A.S.H.V.E Transactions, Vol. 37, 1931, p. 285).

Condensation of Moisture and Its Relation to Building Construction and Operation, by F. B. Rowley, A. B. Algren and C. E. Lund (A.S.H.V.E. TRANSACTIONS, Vol. 45, 1939, p. 231).

A Theory Covering the Transfer of Vapor Through Materials, by F. B. Rowley (A.S.H.V.E. Transactions, Vol. 45, 1939, p. 545).

Thermal Conductivity of Wood, by J. D. MacLean (A.S.H.V.E. TRANSACTIONS, Vol. 47, 1941, p. 323).

The Specific Heat of Thermal Insulating Materials, by G. B. Wilkes and C. O. Wood (A.S.H.V.E. JOURNAL SECTION, *Heating, Piping and Air Conditioning*, June, 1942, p. 370).

Heat Loss Studies in Four Identical Buildings to Determine the Effect of Insulation, by D. B. Anderson (A.S.H.V.E. JOURNAL SECTION, Heating, Piping and Air Conditioning, August, 1942, p. 499).

Simultaneous Heat and Vapor Transfer Characteristics of an Insulating Material, by F. G. Hechler, E. R. McLaughlin and E. R. Queer (A.S.H.V.E. JOURNAL SECTION, Heating, Piping and Air Conditioning, September, 1942, p. 574).

Comparative Resistance to Vapor Transmission of Various Building Materials, by L. V. Teesdale (A.S.H.V.E. JOURNAL SECTION, *Heating, Proping and Air Conditioning*, December, 1942, p. 736).

The Diffusion of Water Vapor Through Various Building Materials, by J. D. Babbitt (Canadian Journal of Research, Vol. 17, February, 1939, p. 15).

Effect of Ceiling Insulation upon Summer Comfort, by T. D. Phillips (National Bureau of Standards, Report BMS52, July 1, 1940).

Moisture Condensation in Building Walls, by H. W. Wooley (National Bureau of Standards, Report BMS63, December 14, 1940).

Heat Transmission Through Building Materials, by F. B. Rowley and A. B. Algren, (University of Minnesota Engineering Experiment Station Bulletin No. 8).

Building Insulation, by P. D. Close (American Technical Society, Chicago, 1941).

Chapter 5

AIR LEAKAGE

Causes of Infiltration, Infiltration Due to Wind Pressure, Infiltration Through Walls, Window and Door Leakage, Crack Method, Air Change Method, Infiltration Due to Temperature Difference, Sealing of Vertical Openings

THE interchange of air which takes place through various apertures in buildings must be considered in heating and cooling calculations, and properly evaluated. This air leakage, or *infiltration* as it is sometimes designated, takes place through cracks around doors and windows, through solid walls and through fireplaces and chimneys. Although the latter sources of leakage may be considerable, they are often neglected on the assumption that dampers would be closed during periods of extreme cold weather or else that the fireplace will be in use at such times and will therefore contribute to the heat supplied and therefore lessen the heating load.

CAUSES OF INFILTRATION

The displacement of heated air in buildings by unheated outside air is due to two causes, namely, (1) the pressure exerted by the wind and (2) the difference in density of outside and inside air because of differences in temperature. The former is generally referred to as *infiltration* and the latter as *stack* or *chimney effect*.

In either case an exact estimate of the amount of infiltration under design conditions is difficult to make. The complicating factors include (1) variations in building construction particularly as to width of crack or size of openings through which air leakage takes place, (2) the variations in wind velocity and direction, (3) the exposure of the building with respect to air leakage openings and with respect to adjoining buildings, (4) the variations in outside temperatures as influencing the chimney effect, (5) the relative area and resistance of openings on the windward and leeward sides and on the lower floors and on the upper floors, and (6) the influence of a planned air supply and the related outlet vents. Tight construction is essential as otherwise unnecessarily large heat losses due to infiltration will result.

INFILTRATION DUE TO WIND PRESSURE

The wind causes a pressure to be exerted on one or two sides of a building. As a result, air comes into the building on the windward side

through cracks or porous construction, and a similar quantity of air leaves on the leeward side through like openings. In general the resistance to air movement is similar on the windward to that on the leeward side. This causes a building up of pressure within the building and a lesser air leakage than that experienced in single wall tests as determined in the laboratory. It is assumed that actual building leakages owing to this building up of pressure will be 80 per cent of laboratory test values. While there are cases where this is not true, tests in actual buildings substantiate the factor for the general case. Mechanical ventilating systems are frequently designed to produce positive or negative pressures in an enclosure which are greater or lower than prevalent wind pressures. In such designs, if the rate at which air is specified to be introduced to or

TABLE 1. INFILTRATION THROUGH WALLS^a

Expressed in cubic feet per square foot per hour

T	Wind Velocity, Miles per Hour						
Type of Wall	5	10	15	20	25	30	
8½ in. Brick Wall{Plain Plastered	1.75 0.017	4.20 0.037	7.85 0.066	12.2 0.107	18.6 0.161	22.9 0.236	
13 in. Brick Wall	1.44 0.005	3.92 0.013	7.48 0.025	11.6 0.043	16.3 0.067	21.2 0.097	
Frame Wall, with lath and plaster ^b	0.03	0.07	0.13	0.18	0.23	0.26	

The values given in this table are 20 per cent less than test values to allow for building up of pressure in rooms and are based on test data reported in the papers listed at the end of this chapter.

removed from the enclosure by positive means exceeds the infiltration rate, it is common practice to use the greater value in determining the heating capacity to warm the outside air.

Infiltration Through Walls

Data on infiltration through brick and frame walls is given in Table 1¹. The brick walls listed in this table are walls which show poor workmanship and which are constructed of porous brick and lime mortar. For good workmanship, the leakage through hard brick walls with cement-lime mortar does not exceed one-third the values given. These tests indicate that plastering reduces the leakage by about 96 per cent; a heavy coat of cold water paint, 50 per cent; and 3 coats of oil paint carefully applied, 28 per cent. The infiltration through walls ranges from 6 to 25 per cent of that through windows and doors in a 10-story office building,

bWall construction: Bevel siding painted or cedar shingles, sheathing, building paper, wood lath and 3 coats gypsum plaster.

¹A.S.H V E. RESEARCH REPORTS No. 786—Infiltration Through Plastered and Unplastered Brick Walls, by F. C. Houghten and Margaret Ingels (A.S.H.V E. Transactions, Vol. 33, 1927, p. 377). No. 826—Air Infiltration Through Various Types of Brick Wall Construction, by G. L. Larson, D. W. Nelson and C. Braatz (A.S.H.V.E. Transactions, Vol. 35, 1929, p. 183). No. 851—Air Infiltration Through Various Types of Wood Frame Construction, by G. L. Larson, D. W. Nelson and C. Braatz (A.S.H.V.E. Transactions, Vol. 36, 1930, p. 99)

with imperfect sealing of plaster at the baseboards of the rooms. With perfect sealing the range is from 0.5 to 2.7 per cent or a practically negligible quantity, which indicates the importance of good workmanship in proper sealing at the baseboard. It will be noted from Table 1, that the infiltration through properly plastered walls can be neglected.

The value of building paper when applied between sheathing and shingles is indicated by Fig. 1, which represents the effect on outside construction only, without lath and plaster. The effectiveness of plaster properly applied is no justification for the use of low grade building paper or of the poor construction of the wall containing it. Not only is it difficult to secure and maintain the full effectiveness of the plaster but also it is highly desirable to have two points of high resistance to air flow

Fig. 1. Infiltration Through Various Types of Shingle Construction

with an air space between them. The infiltration indicated in Fig. 1 is that determined in the laboratory and should be multiplied by the factor 0.80 to give proper working values.

Window and Door Leakage

There are two methods of estimating air leakage through window and door cracks, namely, (1) the crack method and (2) the air change method. The more rational crack method is generally recommended in preference to the purely arbitrary air change method.

Crack Method

The crack method is based on known air leakage factors for various types of windows and widths of crack and clearance. The wind velocity and length of crack are also considered when the crack method is employed. The amount of infiltration for various types of windows is given in

TABLE 2. INFILTRATION THROUGH WINDOWS

Expressed in Cubic Feet per Foot of Crack per Houra

Type of Window	Remarks		WIND VELOCITY, MILES PER HOUR					
TIPE OF WINDOW	REMARAS	5	10	15	20	25	30	
	Around frame in masonry wall—not calkedb	3.3	8.2	14.0	20.2	27.2	34.6	
	Around frame in masonry wall—calkedb	0.5	1.5	2.6	3.8	4.8	5.8	
	Around frame in wood frame constructionb	2.2	6.2	10.8	16.6	23.0	30.3	
Double-Hung Wood Sash Windows	Total for average window, non-weather- stripped, 1/6-in. crack and 3/6-in. clearance c Includes wood frame leakaged	6.6	21.4	39.3	59.3	80.0	103.7	
(Unlocked)	Ditto, weatherstrippedd	4.3	13.0	23.6	35.5	48.6	63.4	
	Total for poorly fitted window, non-weather- stripped, 1/2-in crack and 1/2-in. clearance e Includes wood frame leakaged	26.9	69.0	110.5	153.9	199.2	249.4	
	Ditto, weatherstrippedd	5.9	18.9	34.1	51.4	70.5	91.5	
Double-Hung Metal Windows ^f	Non-weatherstripped, locked Non-weatherstripped, unlocked Weatherstripped, unlocked	20 20 6	45 47 19	70 74 32	96 104 46	125 137 60	154 170 76	
Rolled Section Steel Sash Windowsk Industrial proteed, 1/16-in. cracks Architectural projected, 1/26-in. crackh Residential casement, 1/26-in. cracki Heavy casement section, projected, 1/26-in. cracki Heavy casement section, projected, 1/26-in. cracki Heavy casement section, projected 1/26-in. cracki		52 15 20 6 14 3 8	108 36 52 18 32 10 24	176 62 88 33 52 18	244 86 116 47 76 26 54	304 112 152 60 100 36 72	372 139 182 74 128 48 92	
Hollow Metal	vertically pivoted windowf	30	88	145	186	221	242	

aThe values given in this table, with the exception of those for double-hung and hollow metal windows, are 20 per cent less than test values to allow for building up of pressure in rooms, and are based on test data reported in the papers listed at the end of this chapter.

bThe values given for frame leakage are per foot of sash perimeter as determined for double-hung wood windows. Some of the frame leakage in masonry walls originates in the brick wall itself and cannot be prevented by calking. For the additional reason that calking is not done perfectly and deteriorates with time, it is considered advisable to choose the masonry frame leakage values for calked frames as the average determined by the calked and not-calked tests.

The fit of the average double-hung wood window was determined as \(\frac{1}{2} \). in. crack and \(\frac{1}{2} \)-in. clearance by measurements on approximately 600 windows under heating season conditions.

dThe values given are the totals for the window opening per foot of sash perimeter and include frame leakage and so-called elsewhere leakage. The frame leakage values included are for wood frame construction but apply as well to masonry construction assuming a 50 per cent efficiency of frame calking.

•A 1/2-in. crack and clearance represents a poorly fitted window, much poorer than average.

(Windows tested in place in building.

gIndustrial pivoted window generally used in industrial buildings. Ventilators horizontally pivoted at center or slightly above, lower part swinging out.

hArchitectural projected made of same sections as industrial pivoted except that outside framing member is heavier, and it has refinements in weathering and hardware. Used in semi-monumental buildings such as schools. Ventilators swing in or out and are balanced on side arms. ½-in. crack is obtainable in the best practice of manufacture and installation, ½-in. crack considered to represent average practice.

iOf same design and section shapes as so-called heavy section casement but of lighter weight. %-in. crack is obtainable in the best practice of manufacture and installation, %-in. crack considered to represent average practice.

iMade of heavy sections. Ventilators swing in or out and stay set at any degree of opening. %-in. crack is obtainable in the best practice of manufacture and installation, %-in. crack considered to represent average practice.

kWith reasonable care in installation, leakage at contacts where windows are attached to steel framework and at mullions is negligible. With %-in. crack, representing poor installation, leakage at contact with steel framework is about one-third, and at mullions about one-sixth of that given for industrial pivoted windows in the table.

CHAPTER 5. AIR LEAKAGE

Table 2². The fit of double-hung wood windows is determined by crack and clearance. Crack thickness is equivalent to one-half the difference between the inside window frame dimension and the outside sash width. The difference between the width of the window frame guide and the sash thickness is considered as the clearance. The length of the perimeter opening or crack for a double-hung window is equal to three times the width plus two times the height, or in other words, it is the outer sash perimeter length plus the meeting rail length. Not all the window crack in any given room is necessarily used in estimating the infiltration heat loss by the crack method. The length of crack to be selected in any given case depends on the number of exposed sides as explained in Chapter 6.

Values of leakage shown in Table 2 for the average double-hung wood window were determined by setting the average measured crack and clearance of a large number of windows found in a field survey on nine windows tested in the laboratory. In addition, the table gives figures for a poorly fitted window. All of the figures for double-hung wood windows are for the unlocked condition. Just how a window is closed, or fits when it is closed, has considerable influence on the leakage. The leakage will be high if the sash are short, if the meeting rail members are warped, or if the frame and sash are not fitted squarely to each other. It is possible to have a window with approximately the average crack and clearance that will have a leakage at least double that of the figures shown. Values for the average double-hung wood window in Table 2 are considered to be easily obtainable figures provided the workmanship on the window is good. Should it be known that the windows under consideration are poorly fitted, the larger leakage values should be used. Locking a window generally decreases its leakage, but in some cases may push the meeting rail members apart and increase the leakage. On windows with large clearances, locking will usually reduce the leakage.

Wood casement windows may be assumed to have the same unit leakage as for the average double-hung wood window when properly fitted. Locking, a normal operation in the closing of this type of window, maintains the crack at a low value.

For metal pivoted sash, the length of crack is the total perimeter of the movable or ventilating sections. Frame leakage on steel windows may be neglected when they are properly grouted with cement mortar into brick work or concrete. When they are not properly sealed, the linear feet of sash section in contact with steel work at mullions should be figured at 25 per cent of the values for industrial pivoted windows as given in Table 2.

When storm sash are applied to well fitted windows, very little re-

²A S H V E. RESEARCH REPORTS NO. 686—Air Leakage, by F C. Houghten and C. C. Schrader (A S H. V E. Transactions, Vol. 30, 1924, p. 105). No. 704—Air Leakage Around Window Openings, by C. C. Schrader (A.S H.V E. Transactions, Vol. 30, 1924, p. 313). No. 803—Air Leakage on Metal Windows in a Modern Office Building, by F C. Houghten and M. E. O'Connell (A.S H.V.E. Transactions, Vol. 34, 1928, p. 321). No. 815—Air Leakage Through a Pivoted Metal Window, by F C. Houghten and M. E. O'Connell (A S H.V. E. Transactions, Vol. 34, 1928, p. 519). No. 817—Effect of Frame Calking and Storm Sash on Infiltration Around and Through Windows, by W. M. Richtmann and C. Braatz (A S.H.V.E. Transactions, Vol. 34, 1928, p. 547). No. 909—Air Infiltration Through Double-Hung Wood Windows, by G. L. Larson, D. W. Nelson and R. W. Kubasta (A.S.H.V.E. Transactions, Vol. 37, 1931, p. 571). The Weathertightness of Rolled Section Steel Windows, by J. E. Emswiler and W. C. Randall (A S.H.V.E. Transactions, Vol. 34, 1928, p. 527). Pressure Differences Across Windows in Relation to Wind Velocity, by J. E. Emswiler and W. C. Randall (A S.H.V.E. Transactions, Vol. 36, 1930, p. 83). Air Infiltration Through Steel Framed Windows, by D. O. Rusk, V. H. Cherry and L. Boelter (A S.H.V.E. Journal Section, Heating, Piping and Air Conditioning, October, 1932, p. 696).

duction in infiltration is secured, but the application of the sash does give an air space which reduces the heat transmission and helps prevent the frosting of the windows³. When storm sash are applied to poorly fitted windows, a reduction in leakage of 50 per cent may be secured.

Door Leakage

Doors vary greatly in fit because of their large size and tendency to warp. For a well fitted door, the leakage values for a poorly fitted double-hung wood window may be used. If poorly fitted, twice this figure should be used. If weatherstripped, the values may be reduced one-half. A single door which is frequently opened, such as might be found in a store, should have a value applied which is three times that for a well fitted

Table 3. Infiltration Through Outside Doors for Cooling Loads^a Expressed in Cubic Feet per Minute per Person Entering Room

Application	Pair 36 in. Swinging Doors, Single Entranceb
Bank	7.5
Barber Shop.	4.5
Broker's Office	7 0
Candy and Soda	6.0
Department Store	8.0
Dress Shop	2 5
Drug Store	7.0
Furrier	2 5
Hospital Room	3 5
Lunch Room	5 0
Men's Shop	3 5
Office	3 0
Office Building	2.0
Public Building	2.5
Kestaurant	2.5
Shoe Store	3 5

aFor doors located in only one wall or where doors in other walls are of revolving type.

Infiltration for 72 in revolving doors may be assumed 60 per cent of swinging door values.

door. This extra allowance is for opening and closing losses and is kept from being greater by the fact that doors are not used as much in the coldest and windiest weather.

The infiltration rate through swinging and revolving doors is generally a matter of judgment by the engineer making cooling load determinations and in the absence of adequate research data the values given in Table 3 represent current engineering practice⁴. These values are based on the average number of persons in a room at a specified time, which may also be the same occupancy assumed for determining the outside ventilation requirements outlined in Chapters 2 and 7.

 $^{^{}m b}$ Vestibules with double pair swinging doors, infiltration may be assumed 75 per cent of swinging door values.

³Fuel Saving Resulting from the Use of Storm Windows and Doors, by A. P. Kratz and S. Konzo (A.S.H.V.E. Transactions, Vol. 42, 1936, p. 87).

^{&#}x27;The Infiltration Problem of Multiple Entrances, by A. M. Simpson and K. B. Atkinson (A.S.H V.E. Journal Section, Heating, Piping and Air Conditioning, June, 1936, p. 345). Infiltration Characteristics of Entrance Doors, by A. M. Simpson (Refrigerating Engineering, June, 1936).

CHAPTER 5. AIR LEAKAGE

Air Change Method

The amount of air leakage is sometimes roughly estimated by assuming a certain number of air changes per hour for each room, the number of changes assumed being dependent upon the type, use and location of the room, as indicated in Table 4. This method may be used to advantage as a check on the calculations made in the more exact manner. The air leakage for vestibules due to opening and closing of doors is sometimes based on the air change method, even though the air leakage estimates for other rooms are based on the crack method.

INFILTRATION DUE TO TEMPERATURE DIFFERENCE

The air exchange due to temperature difference, inside to outside, is a chimney effect, causing air to enter through openings at lower levels and

TABLE 4. AIR CHANGES TAKING PLACE UNDER AVERAGE CONDITIONS EXCLUSIVE OF AIR PROVIDED FOR VENTILATION

KIND OF ROOM OR BUILDING	Number of Air Changes Taking Place per Hour
Rooms, 1 side exposed	
Rooms, 2 sides exposed	
Rooms, 3 sides exposed.	2
Rooms, 4 sides exposed] 2
Rooms with no windows or outside doors	½ to ¾
Entrance Halls	2 to 3
Reception Halls	2
Living Rooms	
Dining Rooms	1 to 2
Bath Rooms	1
Drug Stores	2 to 3
Clothing Stores	1
Churches, Factories, Lofts, etc.	

to leave at higher levels. Although it is not appreciable in low buildings, this loss should be considered in tall, single story buildings with openings near the ground level and near the ceiling. Also in tall, multi-story buildings it may be a considerable item unless the sealing between various floors and rooms is quite perfect.

In tall buildings, temperature difference or chimney effect will produce a head that will add to the effect of the wind at lower levels and subtract from it at higher levels. On the other hand, the wind velocity at lower levels may be somewhat abated by surrounding obstructions. Furthermore, the chimney effect is reduced in multi-story buildings by the partial isolation of floors, thereby preventing free upward movement, so that wind and temperature difference may seldom cooperate to the fullest extent. Making the rough assumption that the neutral zone6 is located at

⁵A.S.H.V.E. RESEARCH REPORTS No. 994—Wind Velocities Near a Building and Their Effect on Heat Loss, by F. C. Houghten, J. L. Blackshaw and Carl Gutberlet (A.S.H.V.E. Transactions, Vol. 40, 1934, p. 387). No. 1069—Heating Requirements of an Office Building as Influenced by the Stack Effect, by F. C. Houghten and Carl Gutberlet (A.S.H.V.E. Transactions, Vol. 43, 1937, p. 437). Flue Action in High Buildings, by H. L. Alt (A.S.H.V.E. Journal Section, Heating, Piping and Air Conditioning, May, 1932, p. 376). Influence of Stack Effect on the Heat Loss in Tall Buildings, by Axel Marin (A.S.H.V.E. Transactions, Vol. 40, 1934, p. 377).

Neutral Zone in Ventilating, by J. E. Emswiler (A.S H.V.E Transactions, Vol. 32, 1926, p 59).

mid-height of a building, and that the temperature difference is 70 F, Equations 1 and 2 may be used to determine an equivalent wind velocity to be used in connection with Tables 1 and 2 that will allow for both wind velocity and temperature difference:

$$M_{\rm e} = \sqrt{M^2 - 1.75 \ a} \tag{1}$$

$$M_{\rm e} = \sqrt{M^2 + 1.75 \ b} \tag{2}$$

where

 $M_{\rm e}={
m eq}$ uivalent wind velocity to be used in conjunction with Tables 1 and 2. $M={
m wind}$ velocity upon which infiltration would be determined if temperature difference were disregarded.

a = distance of windows under consideration from mid-height of building if above mid-height, feet.

b = distance if below mid-height, feet.

The coefficient 1.75 allows for about one-half the temperature difference head.

For buildings of unusual height, Equation 1 would indicate negative infiltration at the highest stories, which condition may, at times, actually exist.

Sealing of Vertical Openings

In tall, multi-story buildings, every effort should be made to seal off vertical openings such as stair-wells and elevator shafts from the remainder of the building. Stair-wells should be equipped with self-closing doors, and, in exceptionally high buildings, should be closed off into sections of not over 10 floors each. Plaster cracks should be filled. Elevator enclosures should be tight and solid doors should be used.

If the sealing of the vertical openings is made effective, no allowance need be made for the chimney effect. Instead, the greater wind movement at the greater heights makes it advisable to install additional heating surface on the upper floors above the level of neighboring buildings, this additional surface being increased as the height is increased. One arbitrary rule is to increase the heating surface on floors above neighboring buildings by an amount ranging from 5 per cent to 20 per cent. This extra heating surface is required only on the windward side and on windy days, and hence automatic temperature control is especially desirable with such installations.

In stair-wells that are open through many floor levels although closed off from the remainder of each floor by doors and partitions, the stratification of air makes it advisable to increase the amount of heating surface at the lower levels and to decrease the amount at higher levels even to the point of omitting all heating surface on the top several floor levels. One rule is to calculate the heating surface of the entire stair-well in the usual way and to place 50 per cent of this in the bottom third, the normal amount in the middle third and the balance in the top third.

Chapter 6

HEATING LOAD

Transmission Heat Losses, Infiltration Heat Losses, Inside Temperatures, Outside Temperatures, Attic Temperatures, Temperatures in Unheated Spaces, Ground Temperatures, Basement Temperatures and Heat Losses, Heat Losses Through Ceilings and Roofs, Selection of Wind Velocities, Auxiliary Heat Sources, Intermittently Heated Buildings, Residence Heat Loss Problems

In the design of a heating system, an estimate must be made of the maximum probable heat loss of each room or space to be heated, based on maintaining a specified inside air temperature during periods of minimum selected design weather conditions. The heat losses may be divided into two groups, namely (1) the transmission losses or heat losses through the confining walls, floor, ceiling, glass or other surfaces and (2) the infiltration losses or heat losses due to air leakage through cracks and crevices, around doors and windows, opening of doors and other sources of interchange of air between the inside and outside.

TRANSMISSION HEAT LOSSES

The basic formula for the loss of heat by transmission through any surface is given in Equation 1.

$$H_{t} = AU(t - t_{0}) \tag{1}$$

where

 $H_{\rm t}={
m heat}$ loss transmitted through the wall, roof, ceiling, floor or glass, Btu per hour.

A = area of wall, glass, roof, ceiling, floor or other exposed surfaces, square feet.

 $U={
m coefficient}$ of transmission, air to air, Btu per hour per square foot per degree Fahrenheit temperature difference (Chapter 4).

t = inside temperature near surface involved which may not necessarily be the so-called breathing line temperature, degrees Fahrenheit.

 t_0 = outside temperature, or temperature of adjacent unheated space or of the ground, degrees Fahrenheit.

Example 1. Calculate the transmission loss through an 8 in. brick wall having an area of 150 sq ft if the inside temperature (t) is 70 F and the outside temperature (t_0) is -10 F.

Solution. The coefficient of transmission (U) of a plain 8 in. brick wall is 0.50 (Chapter 4, Table 3). The area (A) is 150 sq ft. Substituting in Equation 1:

$$H_{\rm t} = 150 \times 0.50 \times [70 - (-10)] = 6000$$
 Btu per hour.

INFILTRATION HEAT LOSSES

The infiltration heat losses include (1) the sensible heat loss or the heat required to warm the outside air entering by infiltration and (2) the latent heat loss or the heat equivalent of any moisture which must be added.

Sensible Heat Loss

The formula for the heat required to warm the outside air which enters a room by infiltration, to the temperature of the room, is given in Equation 2.

$$H_{\rm s} = 0.24 \ Qd \ (t - t_{\rm o}) \tag{2}$$

where

 $H_{\rm s}={
m heat}$ required to raise temperature of air leaking into building from $t_{\rm 0}$ to t, Btu per hour.

0.24 = specific heat of air.

Q = volume of outside air entering building, cubic feet per hour (see Chapter 5).

 $d = \text{density of air at temperature } t_0$, pounds per cubic foot.

It is sufficiently accurate to use d=0.075 in which case Equation 2 reduces to

$$H_{\rm S} = 0.018 \, Q \, (t - t_{\rm O})$$
 (2a)

The volume of outside air entering per hour (Q) depends on the wind velocity and direction, the width of crack or size of openings, the type of openings and other factors, as explained in Chapter 5. Where the crack method is used for estimating the amount of air leakage, it is more convenient to express the heat loss due to air leakage in terms of the crack length, as follows:

$$H_s = 0.018 \ Q \ L \ (t - t_0) = B \ L \ (t - t_0)$$
 (2b)

70here

B = air leakage per foot of crack (Chapter 5) for the wind velocity and type of windows or door crack involved multiplied by 0.018.

L = length of window or door crack to be taken into consideration, feet.

Example 2. What is the infiltration heat loss per hour through the crack of a 3×5 ft double-hung wood window, based on an average non-weatherstripped window and a wind velocity of 15 mph? Assume inside and outside temperatures to be 70 F and zero respectively.

Solution. According to Table 2, Chapter 5, the air leakage through a window of this type (based on $\frac{1}{16}$ in. crack and $\frac{3}{16}$ in. clearance) is 39.3 cu ft per foot of crack per hour. Therefore, $B=39.3\times0.018=0.71$. The length of crack (L) is $(2\times5)+(3\times3)$, or 19 ft; t=70 and $t_0=0$. Substituting in Equation 2b,

$$H_{\rm s} = 0.71 \times 19 \times (70 - 0) = 944$$
 Btu per hour.

Crack Length to be Used for Computations

The amount of crack used for computing the infiltration heat loss should not be less than half of the total crack in the outside walls of the

room. For a building having no partitions, whatever wind enters through the cracks on the windward side must leave through the cracks on the leeward side. Therefore, take one-half the total crack for computing each side and end of the building. In a room with one exposed wall, take all the crack; with two exposed walls, take the wall having the most crack; and with three or four exposed walls, take the wall having the most crack; but in no case take less than half the total crack.

The total infiltration loss of a building having partitions will not be equal to the sum of the infiltration losses of the various rooms since at any given time infiltration will take place only on the windward side or sides and not on the leeward side. Therefore, if a building has more than one room which is divided by interior walls or partitions, it is sufficiently accurate to use half of the total infiltration losses for determining the total heat requirements.

Latent Heat Loss

When it is intended to add moisture to air leaking into a room for the maintenance of proper winter comfort conditions, it is necessary to determine the heat equivalent to evaporate the required amount of water vapor, which may be calculated by the equation:

$$H_1 = Q d \left(\frac{m_1 - m_0}{7000} \right) h_{fg} \tag{3}$$

where

 H_1 = heat required to increase moisture content of air leaking into building from m_0 to m_i , Btu per hour.

Q = volume of outside air entering building, cubic feet per hour.

 $d = \text{density of air at temperature } t_1$, pounds per cubic foot.

 m_1 = vapor density of inside air, grains per pound of dry air.

 m_0 = vapor density of outside air, grains per pound of dry air.

 $h_{\text{fg}} = \text{latent heat of vapor at } m_{\text{i}}, \text{ Btu per pound.}$

If the latent heat of vapor (h_{fg}) is assumed to be 1060 Btu per pound, Equation 3 reduces to

$$H_1 = 0.0114 \ O \ (m_i - m_0) \tag{3a}$$

Equations 2a, 2b and 3a may also be used for determining the sensible and latent heat gains due to infiltration in cooling load computations.

INSIDE TEMPERATURES

The inside air temperature which must be maintained within a building is understood to be the dry-bulb temperature at the breathing line, 5 ft above the floor, or the 30-in. line, and not less than 3 ft from the outside walls. Inside air temperatures, usually specified, vary in accordance with the use to which the building is to be put and Table 1 presents values which conform with good practice.

The proper dry-bulb temperature to be maintained depends upon the relative humidity and air motion, as explained in Chapter 2. In other words, a person may feel warm or cool at the same dry-bulb temperature, depending on the relative humidity and air motion. The optimum winter

effective temperature for sedentary persons, as determined at the A.S.H. V.E. Research Laboratory, is 66 deg.

According to Fig. 6, Chapter 2, for so-called still air conditions, a relative humidity of approximately 50 per cent is required to produce an effective temperature of 66 deg when the dry-bulb temperature is 70 F. However, even where provision is made for artificial humidification, the relative humidity is seldom maintained higher than 40 per cent during the extremely cold weather, and where no provision is made for humidification, the relative humidity may be 20 per cent or less. Consequently, in using the figures listed in Table 1, consideration should be given to whether provision is to be made for humidification, and if so, the actual relative humidity to be maintained.

TABLE 1. WINTER INSIDE DRY-BULB TEMPERATURES USUALLY SPECIFIED^a

Type of Building	DEG FAHR	Type of Building	DEG FAHR
Schools— Class rooms	68-72 55-65 70 65-68 66 65-70	THEATERS— Seating space	68–72 68 70
HOSPITALS— Private rooms. Private rooms (surgical) Operating rooms. Wards. Kitchens and laundries. Toilets. Bathrooms.	70–95 68 66	Homes	68-72 120 110 60-65 50-60

aThe most comfortable dry-bulb temperature to be maintained depends on the relative humidity and air motion. These three factors considered together constitute what is termed the effective temperature. (See Chapter 2.)

Temperature at Proper Level: In making the actual heat loss computations, however, for the various rooms in a building it is often necessary to modify the temperatures given in Table 1 so that the air temperature at the proper level will be used. By air temperature at the proper level is meant, in the case of walls, the air temperature at the mean height between floor and ceiling; in the case of glass, the air temperature at the mean height of the glass; in the case of roof or ceiling, the air temperature at the mean height of the roof or ceiling above the floor of the heated room; and in the case of floors, the air temperature at the floor level.

High Ceilings: Research data concerning stratification of air in buildings are lacking, but in general it may be said that where the increase in temperature is due to the natural tendency of the warmer or less dense air to rise, as where a direct radiation system is installed, the temperature

of the air at the ceiling increases with the ceiling height. The relation, however, is not a straight line function, as the amount of increase per foot of height apparently decreases as the height of the ceiling increases, according to present available information.

Where ceiling heights are under 20 ft, it is common engineering practice to consider that the Fahrenheit temperature increases 2 per cent for each foot of height above the breathing line. This rule, sufficiently accurate for most cases, will give the probable air temperature at any given level for a room heated by direct radiation. Thus, the probable temperature in a room at a point 3 ft above the breathing line, if the breathing line temperature is 70 F, will be $[1.00 + (3 \times 0.02)]$ 70 = 74.2 F.

With certain types of heating and ventilating systems, which tend to oppose the natural tendency of warm air to rise, the temperature differential between floor and ceiling can be greatly reduced. These include fan-furnace heaters, unit heaters, and the various types of mechanical ventilating systems. The amount of reduction is problematical in certain instances, as it depends upon many factors such as location of air outlets, the incoming air temperature, and direction and velocity of the air discharge. In some cases it has been possible to reduce the temperature between the floor and ceiling by a few degrees, whereas, in other cases, the temperature at the ceiling has actually been increased because of improper design, installation or operation of equipment. So much depends upon the factors enumerated that it is not advisable to allow less than 1 per cent per foot (and usually more) above the breathing line in arriving at the air temperature at any given level for any of these types of heating and ventilating systems, unless the manufacturers are willing to guarantee that the particular type of equipment under consideration will maintain a smaller temperature differential for the specific conditions involved.

OUTSIDE TEMPERATURES

The outside temperature used in computing the heat loss from a building is seldom taken as the lowest temperature ever recorded in a given locality. Such temperatures are usually of short duration and are rarely repeated in successive years. It is therefore evident that a temperature somewhat higher than the lowest on record may be properly assumed in making the heat loss computations.

The outside temperature to be assumed in the design of any heating system is ordinarily not more than 15 F above the lowest recorded temperature as reported by the Weather Bureau during the preceding 10 years for the locality in which the heating system is to be installed. In the case of massive and well insulated buildings in localities where the minimum does not prevail for more than a few hours, or where the lowest recorded temperature is extremely unusual, more than 15 F above the minimum may be allowed, due primarily to the fly-wheel effect of the heat capacity of the structure. Table 2 lists the coldest dry-bulb temperatures ever recorded by the Weather Bureau at the places listed. Recommended design temperatures are given in Fig. 1.

¹A S.H V.E. RESEARCH REPORT NO. 958—Temperature Gradient Observations in a Large Heated Space, by G. L. Larson, D. W. Nelson and O. C. Cromer (A S.H.V E. Transactions, Vol. 39, 1933, p. 243), A.S.H.V.E. RESEARCH REPORT NO. 1011—Tests of Three Heating Systems in an Industrial Type of Building, by G. L. Larson, D. W. Nelson and John James (A.S.H.V.E. Transactions, Vol. 41, 1935, p. 185).

Table 2. Climatic Conditions Compiled from Weather Bureau Records^a

Col. A	Col. B	Col. C	Cor. D	Col. E	Cor. F
State	City	Average Temperature, Oct. 1- May 1	Lowest Tempera- ture Ever Reported	Average Wind Velocity Dec., Jan., Feb., Miles per Hour	Direction of Prevailing Wind, Dec., Jan., Feb.
Alabama	Birmingham	53.8 58.9	$-10 \\ -1$	8.5 10.4	N N
Arizona	Mobile Flagstaff Phoenix	35.8 59.5	$\begin{array}{c} -25\\12\end{array}$	7.8 6.4	SW E
Arkansas	Fort SmithLittle Rock	50.4 51.6	$-15 \\ -12$	8.1 8.7	E NW
California	Los Angeles	58.5	$\frac{12}{28}$ $\frac{27}{27}$	6.3 7.6	NE N
Colorado	DenverGrand Junction	38.9 38.9	$-\frac{29}{-21}$	7.5 5.3	S NW
Connecticut	New Haven Washington	38.4	$-15 \\ -15$	$9.7 \\ 7.1$	N NW
Florida	Jacksonville		10	9.2	NE
Georgia	Atlanta	51.5	-8	12.1	NW
Georgia	Savannah	58.5	8	9.5	NW
Idaha	Lewiston	42.3	-23°	5.3	E"
Idaho		1	$-28 \\ -28$	9.6	SE
T11	Pocatello		$-23 \\ -23$	12.5	w
Illinois	Chicago		$-25 \\ -24$	10.1	NW
T 11	Springfield		$-24 \\ -16$	9.8	S
Indiana	Evansville				
_	Indianapolis		-25	11.5	SW
Iowa	Dubuque		-32	7.1	NW
	Sioux City		-35	11.6	NW
Kansas	Concordia		-25	8.1	S
	Dodge City	41.4	-26	9.8	NW
Kentucky	Louisville		-20	9.9	ŞW
Louisiana	New Orleans		7	8.8	N
	Shreveport	56.2	-5	8.9	SE
Maine	Eastport		-23	12.0	W
1	Portland		-21	9.2	NW
Maryland	Baltimore		-7	7.8	NW
Massachusetts	Boston	38.1	-18	11.2	W
Michigan	Alpena	29.6	-28	12.4	W
	Detroit	35.8	-24	12.7	SW
	Marquette	28.3	-27	11.1	NW
Minnesota	Duluth	24.3	-41	12.6	SW
	Minnespolis		-33	11.3	NW
Mississippi	Vicksburg	56.8	-1	8.3	SE
Missouri	St. Joseph		-24	9.3	NW
	St. Louis	43.6	-22	11.6	S
	Springfield		-29	10.8	ŠE
Montana	Billings		-49		W
	Havre		-57	9.5	SW
Nebraska	Lincoln		-29	10.5	S
1 1001001001	North Platte	35.4	-35	8.5	w
Nevada	Tonopah		$-33 \\ -10$	10.0	SE
, , aaa	Winnemucca	37.9	$-10 \\ -28$	8.7	NE
New Hampshire	Concord	33.3	-35	6.6	NW
New Jersey	Atlantic City		-55 -9	15.9	NW
	Licianici City	41.0	$-9 \\ -24$	8.1	
New Jersey	Δlhonr				
New York	Albany	35.2			S
New York	Albany Buffalo New York	34.8	$ \begin{array}{c c} -24 \\ -20 \\ -14 \end{array} $	17.2 17.1	W NW

aUnited States data from U.S. Weather Bureau Canadian data from Meteorological Service of Canada.

Table 2. Climatic Conditions Compiled from Weather Bureau Records a (Concluded)

Col. A	Col. B	Col. C	Col. D	Col. E	Col. F
State or Province	City	Average Temperature, Oct. 1- May 1	Lowest Tempera- ture Ever Reported	Average Wind Velocity Dec., Jan., Feb., Miles per Hour	Direction of Prevailing Wind, Dec., Jan., Feb.
New Mexico	Santa Fe	38.3	-13	7.8	NE
North Carolina	Raleigh		-2	8.2	SW
	Wilmington		5	8.5	SW
North Dakota	Bismarck	24.6	-45	9.1	NW
01:	Devils Lake		$^{-44}_{-17}$	10.6 13.0	W SW
Ohio	Cleveland Columbus	1 1 1 1	-20	$13.0 \\ 12.0$	sw
Oklahoma	Oklahoma City	47.9	-17	12.0	N
Oregon	- ·		-24	6.9	SE
0.080	Portland		-2	7.5	S
Pennsylvania			-6	11.0	NW
	Pittsburgh		-20	11.7	W NW
Rhode Island			-17	$12.8 \\ 10.6$	SW
South Carolina	Charleston Columbia		-2	8.1	NE
South Dakota	l		-43^{-1}	10.6	NW
South Dakota	Rapid City		-34	8.2	W
Tennessee		47.9	-16	7.8	SW
	Memphis		-9	9.7	S
Texas	El Paso	53.5	$-5 \\ -8$	$\begin{array}{c c} 10.4 \\ 10.4 \end{array}$	NW NW
	Ft. Worth San Antonio		-8 4	8.0	NE
Utah	Modena		-24^{-1}	8.8	w
Otan	Salt Lake City		-20	6.7	SE
Vermont		31.5	-29	11.8	S
Virginia			-7	7.1	NW
	Norfolk		$-\frac{2}{3}$	$\begin{array}{c c} 12.5 \\ 7.9 \end{array}$	N SW
Washington	Richmond Seattle		3	11.3	SE
washington	Spokane		-30	7.1	SW
West Virginia		1	-28	6.6	W
	Parkersburg	42.6	-27	7.5	SW
Wisconsin			-36	10.4	SW
	LaCrosse		$-43 \\ -25$	7.3 11.5	W
Wyoming	Milwaukee Lander		$-23 \\ -40$	5.0	sw
vv yommig	Sheridan		-41	6.0	NW
Alta	Edmonton	23.0	-57	6.5	SW
B. C	Vancouver	42.0	2	4.5	E
	Victoria		$-1.5 \\ -47$	$12.5 \\ 10.0$	N NW
Man	Winnipeg		$-47 \\ -35$	9.6	NW
N. B N. S			-12	14.2	NW
Ont		1 1 1 -	-27	10.3	SW
O11C1	Ottawa	1 1111	-34	8.4	NW
	Port Arthur	22.4	-37	7.8	NW
	Toronto		-26.5	13.0	SW
P. E. I			$-27 \\ -29$	9.4 14.3	SW SW
Que	Montreal Ouebec		$-29 \\ -34$	13.6	SW
Sask			-70	5.1	W
Yukon			68	3.7	S
_ 41041111111111111111111111111111111111			1	1	

aUnited States data from U. S. Weather Bureau. Canadian data from Meteorological Service of Canada.

Fig. 1. Design Temperature Zone Map

ATTIC TEMPERATURES

Frequently it is necessary to estimate the attic temperature, and in such cases Equation 4 can be used for this purpose.

$$t_{a} = \frac{A_{c}U_{c}t_{1} + t_{o} (A_{r}U_{r} + A_{w}U_{w} + A_{g}U_{g})}{A_{r}U_{r} + A_{w}U_{w} + A_{g}U_{g} + A_{c}U_{c}}$$
(4)

where

ta = attic temperature, degrees Fahrenheit.

t₁ = inside temperature near top floor ceiling, degrees Fahrenheit.

 t_0 = outside temperature, degrees Fahrenheit.

 $A_{\mathbf{c}}$ = area of ceiling, square feet.

 $A_{\rm r}$ = area of roof, square feet.

 $A_{\rm w}$ = area of net vertical wall surface, square feet.

 A_g = area of glass, square feet.

 $U_{\rm c}=$ coefficient of transmission of ceiling, based on surface coefficient of 2.20 (upper surface, see Chapter 4).

 $U_{\rm r}=$ coefficient of transmission of roof, based on surface coefficient of 2.20 (lower surface, see Chapter 4).

 $U_{
m w}=$ coefficient of transmission of vertical wall surface.

 U_{α} = coefficient of transmission of glass.

Example 3. Calculate the temperature in an unheated attic, assuming the following conditions: $t_1=70$; $t_0=10$; $A_c=1000$; $A_r=1200$; $A_w=100$; $A_g=10$; $U_r=0.50$; $U_c=0.40$; $U_w=0.30$; $U_g=1.13$.

Solution: Substituting these values in Equation 4:

$$t_{\rm a} = \frac{(1000 \times 0.40 \times 70) + 10 \left[(1200 \times 0.50) + (100 \times 0.30) + (10 \times 1.13) \right]}{(1200 \times 0.50) + (100 \times 0.30) + (10 \times 1.13) + (1000 \times 0.40)}$$

$$t_{\rm a} = \frac{34,413}{1041} = 33.1 \text{ F}.$$

Equation 4 neglects the effect of any interchange of air such as would take place through attic vents or louvers intended to preclude attic condensation. However, according to tests², such venting of attics by means of louvers or other small openings does not appreciably reduce the attic temperature and may be neglected without serious error. The attic temperature may be calculated in the usual manner by means of Equation 4, allowing the full value of the roof. The error resulting from this assumption will generally be considerably less than if the roof were neglected (as is sometimes the practice) and the attic temperature assumed to be the same as the outside temperature.

TEMPERATURES IN UNHEATED SPACES

The heat loss from heated rooms into unheated rooms or spaces must be based on the estimated or assumed temperature in such unheated spaces. This temperature will generally range between the inside and outside temperatures, depending on the relative areas of the surfaces adjacent to the heated room and exposed to the outside. If the respective surface areas adjacent to the heated room and exposed to the outside are

²Methods of Moisture Control and Their Application to Building Construction, by F. B. Rowley, A. B. Algren and C. E. Lund. (University of Minnesota, Engineering Experiment Station Bulletin, No. 17).

approximately the same, and if the coefficients of transmission are approximately equal, the temperature in the unheated space may be assumed to be the mean of the inside and outside design temperatures. If, however, the surface areas and coefficients are unequal, the temperature in the unheated space should be estimated by means of Equation 5.

$$t_{\rm u} = \frac{t(A_1U_1 + A_2U_2 + A_3U_3 + \text{etc.}) + t_0 (A_2U_2 + A_5U_b + A_cU_c + \text{etc.})}{A_1U_1 + A_2U_2 + A_3U_3 + \text{etc.} + A_2U_a + A_bU_b + A_cU_c + \text{etc.}}$$
(5)

where

tu = temperature in unheated space, degrees Fahrenheit.

t =inside design temperature of heated room, degrees Fahrenheit.

to = outside design temperature, degrees Fahrenheit.

 A_1 , A_2 , A_3 , etc. = areas of surface of unheated space adjacent to heated space, square feet.

 A_a , A_b , A_c , etc. = areas of surface of unheated space exposed to outside, square feet.

 U_1 , U_2 , U_3 , etc. = coefficients of transmission of surfaces of A_1 , A_2 , A_3 , etc.

 U_a , U_b , U_c , etc. = coefficients of transmission of surfaces A_a , A_b , A_c , etc.

Example 4. Calculate the temperature in an unheated space adjacent to a heated room having surface areas $(A_1, A_2, \text{ and } A_3)$ in contact therewith of 100, 120 and 140 sq ft and coefficients $(U_1, U_2, \text{ and } U_3)$ of 0.15, 0.20 and 0.25 respectively. The surface areas of the unheated space exposed to the outside $(A_a \text{ and } A_b)$ are respectively 100 and 140 sq ft and the corresponding coefficients are 0.10 and 0.30. The sixth surface is on the ground and is neglected in this example. Assume t = 70 and $t_0 = -10$.

Solution. Substituting in Equation 5:

$$t_{\rm u} = \frac{70[(100\times0.15) + (120\times0.20) + (140\times0.25)] + -10[(100\times0.10) + (140\times0.30)]}{(100\times0.15) + (120\times0.20) + (140\times0.25) + (100\times0.10) + (140\times0.30)}$$

$$t_{\rm u} = \frac{4660}{126} = 37 \text{ F}.$$

The temperature in unheated spaces having large glass areas and with two or more surfaces exposed to the outside (such as sleeping porches and sun parlors), are generally assumed to be the same as the outside temperature.

GROUND TEMPERATURES

Ground temperatures to be assumed for estimating basement heat losses will usually differ in the case of basement walls and floors, the temperatures under the floors being generally higher than those adjacent to walls.

Temperatures Adjacent to Basement Walls

Ground temperatures near the surface and under open spaces vary with the climate, the season of the year and the depth below the surface. The nearer the surface (during the cold weather) the lower the temperature. Frost will penetrate to a depth of over 4 ft in some localities if not protected by snow. A thick blanket of snow will result in a higher ground temperature near the surface. Consequently ground temperatures near the surface may be higher in cold climates where the snow remains on the ground for a greater length of time than in more moderate climates where the snow melts away periodically during the winter.

Complete data³ for various localities are not as yet available but in estimating heat losses through vertical walls below grade, it is advisable not to assume average ground temperatures above 32 F in northern climates when estimating heat losses from heated basements. This is for the mean height of the basement wall. Since the recommended wall coefficient for basement walls in contact with the soil is only 0.10, any small variation in the assumed ground temperature will not materially affect the calculated heat loss.

Temperatures Under Basement Floors

The temperature under basement floors is influenced by the heat from the basement or protected from the influence of atmospheric conditions by the basement. In computing losses through basement floors the ground temperatures may be assumed the same as the approximate water temperature at depths of 30 to 60 ft given in Fig. 3, Chapter 27. It should be remembered however that the distance of the basement floor below grade may have some effect upon the temperature of the ground under basement floors, the nearer the surface the higher the temperature.

BASEMENT TEMPERATURES AND HEAT LOSSES

The allowance to be made for basement heat losses depends on whether the basement is to be heated or not.

Unheated basements

If a basement is completely below grade and is *not heated*, the temperature in the basement will normally range between that in the rooms above and the ground temperature. Basement windows will of course lower the basement temperature when it is colder outside and any heat given off by the heating plant will increase the basement temperature. In any case, the exact basement temperature is likely to be a somewhat indeterminate quantity, if the basement is not heated. Since the basement temperature will generally be lower than that of the rooms above, an allowance should theoretically be made for the loss from the rooms above through the floor over the basement.

Heated basements

Average

If the basement is *heated* and a specified temperature is to be maintained, the heat loss should be estimated in the usual manner, based on the proper wall and floor coefficients (see Chapter 4) and the outside air and the ground temperatures. Heat losses through windows and walls above grade should be based on outside temperatures and the proper air-

23.2 3 23.5 21 30.0 42 39.4 72 440 32.0

Temperatures listed were obtained on February 11, 1941, in Pittsburgh, Pa., at the depths indicated at a location 21 ft from the walls of a heated basement Depth below surface, In.

Temperature, Deg Fahr
23.2

⁴A S.H.V E. Research Paper—Heat Loss Through Basement Walls and Floors, by F C Houghten, S. I. Taimuty, Carl Gutberlet and C J Brown (ASH.VE JOURNAL SECTION, Heating, Piping and Air Conditioning, January, 1942, p. 69).

to-air coefficients. Heat losses through basement walls below grade should be based on the floor and wall coefficients for surfaces in contact with the soil and on the proper ground temperature.

HEAT LOSSES THROUGH CEILINGS AND ROOFS

The transmission heat loss through top floor ceilings, attics and roofs may be estimated by either of two methods:

- 1. By substituting in Equation 1 the ceiling area (A), the inside-outside temperature difference $(t-t_0)$ and the proper value of (U):
 - a. Flat roofs. Select the coefficient of transmission of the ceiling and roof from Table 11, Chapter 4.
 - b. Pitched roofs. Calculate the combined roof and ceiling coefficient by means of Equation 4, Chapter 4, where this formula is applicable as explained in Chapter 4.
- 2. By estimating the attic temperature (based on the inside and outside design temperature) by means of Equation 4, and substituting for t_0 in Equation 1, the value of t_0 thus obtained, together with the ceiling area (A) and the ceiling coefficient (U). This applies to *pitched roofs*. In the case of *flat roofs* it is not necessary to calculate the attic temperatures as the ceiling-roof heat loss can be determined as per paragraph 1a.

SELECTION OF WIND VELOCITIES

The effect of wind on the heating requirements of any building should be given consideration under two heads:

- 1. Wind movement increases the heat transmission of walls, glass, and roof, affecting poor walls to a much greater extent than good walls.
- 2. Wind movement materially increases the infiltration (inleakage) of cold air through the cracks around doors and windows, and even through the building materials themselves, if such materials are at all porous.

Theoretically as a basis for design, the most unfavorable combination of temperature and wind velocity should be chosen. It is entirely possible that a building might require more heat on a windy day with a moderately low outside temperature than on a quiet day with a much lower outside temperature. However, the combination of wind and temperature which is the worst would differ with different buildings, because wind velocity has a greater effect on buildings which have relatively high infiltration losses. It would be possible to work out the heating load for a building for several different combinations of temperature and wind velocity which records show to have occurred and to select the worst combination; but designers generally do not feel that such a degree of refinement is justified.

It has been the practice for many years in estimating air leakage by the crack method to use the average wind velocity during the months of December, January and February. Although this practice is still followed by some engineers, data are not as yet available to substantiate this assumption. This average wind velocity may not necessarily correspond with that occurring during periods when the outside design temperature prevails, the latter being not an average but rather a near extreme, that is, a specified number of degrees above the lowest temperature recorded in the locality involved. Therefore instead of using the aforementioned average wind velocity, it is the practice of some designers to use in all cases a wind velocity of 15 mph together with the proper design tem-

perature. Although a 15 mph wind velocity is higher than the general average wind velocity during December, January and February in various United States cities, this and higher wind velocities frequently occur during periods of outside temperature corresponding to the design tem-Because of the unpredictable and intangible nature of this variable there appears to be ample justification for this assumption. should be added that this wind velocity also corresponds with that on which the heat loss coefficients in Chapter 4 are based, although the effect of variations in wind velocity on the infiltration losses is generally much greater than the effect of wind velocity on the heat loss by transmission through walls, except in the case of single pane windows or other materials and constructions having a high rate of heat transfer. Therefore, pending further investigation of this subject, either the average during December, January and February or a 15 mph wind velocity may be used at the discretion of the designer, the actual wind velocity used however to be specified in each case.

Exposure Factors

In the past many designers have used empirical exposure factors which were arbitrarily chosen to increase the calculated heat loss on the side or sides of the building exposed to the prevailing winds. It is also possible to differentiate among the various exposures more accurately by calculating the infiltration and transmission losses separately for the different sides of the building, using different assumed wind velocities. Recent investigations show, however, that the wind direction indicated by Weather Bureau instruments does not always correspond with the direction of actual impact on the building walls, due to deflection by surrounding buildings.

The exposure factor, which is still in use by many engineers, is usually taken as 15 per cent, and is added to the calculated heat loss on the side or sides exposed to what is considered the prevailing winter wind. There is a need for actual test data on this point, and pending the time when it can be secured, the question must be left to the judgment of the designing engineer. It should be remembered that the values of U in the tables in Chapter 4 are based on a wind velocity of 15 mph and that the infiltration figures are supposed to be selected from the tables in Chapter 5 to correspond to the wind velocities given in Table 2 of the present chapter.

AUXILIARY HEAT SOURCES

The heat supplied by persons, lights, motors and machinery should always be ascertained in the case of theaters, assembly halls, and industrial plants, but allowances for such heat sources must be made only after careful consideration of all local conditions. In many cases, these heat sources should not be allowed to affect the size of the installation at all, although they may have a marked effect on the operation and control of the system. In general, it is safe to say that where audiences are involved, the heating installation must have sufficient capacity to bring the building up to the stipulated inside temperature before the audience arrives. In industrial plants, quite a different condition exists, and heat sources, if they are always available during the period of human occu-

pancy, may be substituted for a portion of the heating installation. In no case should the actual heating installation (exclusive of heat sources) be reduced below that required to maintain at least 40 F in the building.

Electric Motors and Machinery

Motors and the machinery which they drive, if both are located in the room, convert all of the electrical energy supplied into heat, which is retained in the room if the product being manufactured is not removed until its temperature is the same as the room temperature.

If power is transmitted to the machinery from the outside, then only the heat equivalent of the brake horsepower supplied is used. In the first case the Btu supplied per hour = $\frac{\text{Motor horsepower}}{\text{Efficiency of motor}} \times 2546$, and in the second case Btu per hour = bhp \times 2546, in which 2546 is the Btu equivalent of 1 hp-hr. In some mills this is the chief source of heating and it is frequently sufficient to overheat the building even in zero weather, thus requiring cooling by ventilation the year round.

The heat (in Btu per hour) from electric lamps is obtained by multiplying the watts per lamp by the number of lamps and by 3.413. One cubic foot of producer gas gives off about 150 Btu per hour; one cubic foot of illuminating gas about 535 Btu per hour; and one cubic foot of natural gas about 1000 Btu per hour. A Welsbach burner averages 3 cu ft of gas per hour and a fish-tail burner, 5 cu ft per hour. For information concerning the heat supplied by persons, refer to data given in Chapter 2.

GENERAL PROCEDURE

The eight steps required for calculating heat losses of a structure are.

- 1. Determine on an outside air temperature for design purposes, based on the minimum temperatures recorded in the locality in question, which will provide for all but the most severe weather conditions. Such conditions as may exist for only a few consecutive hours are readily taken care of by the heat capacity of the building itself. (See Fig. 1).
- 2. Determine on the inside air temperature, at the breathing line or the 30-in. line, which is to be maintained in the building during the coldest weather. (See Table 1).
- 3. Estimate temperatures in adjacent unheated spaces and the attic. The attic temperature need not be estimated if the combined roof and ceiling coefficient is used.
- 4. Select or compute the heat transmission coefficients for outside walls and glass; also for inside walls, floors, or top-floor ceilings, if these are next to unheated space; include roof if next to heated space. (See Chapter 4).
- 5. Measure amount of net outside wall, glass and roof next to heated spaces, as well as any cold walls, floors or ceilings next to unheated space. Such measurements are made from building plans, or from the actual building, using inside dimensions.
- 6. Compute the heat transmission losses for each kind of wall, glass, floor, ceiling and roof in the building by multiplying the heat transmission coefficient in each case by the area of the surface in square feet and the temperature difference between the inside and outside air. (See Items 1, 2, and 3).
- 7. Select unit values and compute the heat equivalent of the infiltration of cold air taking place around outside doors and windows. These unit values depend on the kind or width of crack and wind velocity, and when multiplied by the length of crack and the temperature difference between the inside and outside air, the result expresses the heat required to warm up the cold air leaking into the building per hour. (See Chapter 5).

8. The sum of the heat losses by transmission (Item 6) through the outside wall and glass, as well as through any cold floors, ceilings or roof, plus the heat equivalent (Item 7) of the cold air entering by infiltration represents the total heat loss equivalent for any building.

INTERMITTENTLY HEATED BUILDINGS

Item 8 represents the heat losses after the building is heated and under stable operating conditions in coldest weather. In the case of intermittently heated buildings additional heat is required for raising the temperature of the air, the building materials and the material contents of the building to the specified inside temperature. The rate at which this additional heat must be supplied depends upon the heat capacity of the structure and its material contents and upon the time in which these are to be heated⁵.

This additional heat may be figured and allowed for as conditions require, but inasmuch as the heating system proportioned for taking care of the heat losses will usually have a capacity about 100 per cent greater than that required for average winter weather, and inasmuch as most buildings may either be continuously heated or have more time allowed for heating-up during the few minimum temperature days, no allowance is usually made except in the size of boilers or furnaces. For churches, auditoriums and other intermittently heated buildings, additional capacity should be provided.

RESIDENCE HEAT LOSS PROBLEMS

Example 5. Calculate the heat loss of residence shown in Fig. 2 located in the vicinity of Chicago. Assume inside and outside design temperatures to be 70 F and -10 F respectively. The attic is unheated. Assume ground temperature to be 50 F under basement and garage floors and 32 F adjoining basement walls. Estimate infiltration by crack method, assuming average wind velocity to be 12.5 mph during December, January and February. No wall, ceiling or roof insulation is to be figured in this problem, but all first and second floor windows are to have storm sash. The building is constructed as follows (transmission coefficients (U) in parentheses):

Walls: Brick veneer, building paper, wood sheathing, studding, metal lath and plaster (0.28). Walls of dormer over garage, same except wood siding in place of brick veneer (0.26).

Attic Walls: Brick veneer, building paper, wood sheathing on studding (0.42).

Basement Walls: 10 in. concrete (0.10).

Roof: Asphalt shingles on wood sheathing on rafters (0.56).

Ceiling (Second floor): Metal lath and plaster (0.69).

Windows: Double-hung wood windows with storm sash (0.45). Steel casement sash in basement (1.13).

Floor (Bedroom D): Maple finish flooring on yellow pine sub-flooring; metal lath and plaster ceiling below (0.25).

Floor (Basement and Garage): 4 in. stone concrete on 3 in. cinder concrete (0.10).

Solution: The calculations for this problem are given in Table 3, and a summary of the results in Table 4. The values in column F of Table 3 were obtained by multiplying together the figures in columns C, D and E. The heat losses are calculated to the nearest 10 Btu. See reference notes for Table 3 for further explanation of data.

Attention is called to the summary of heat losses (Table 4) of the uninsulated residence (Fig. 2). As storm windows are used in this instance the glass and door trans-

⁵Heat Requirement Tables for Intermittently Heated Buildings, (Engineering Experiment Station Bulletin, No. 60, A. and M. College of Texas, College Station, Texas), contains a set of tables applicable to either intermittent heating or cooling Further information may be found in a paper, A Method of Compiling Tables for Intermittent Heating, by Elmer G Smith (ASHVE. JOURNAL SECTION, Heating, Piping and Air Conditioning, June, 1942, p. 386).

Table 3. Heat Loss Calculation Sheet for Uninsulated Residence (Fig. 2)

A	В	С	D	Е	F	G
Room or Space	Part of Structure	NET AREA OR CRACK LENGTH	COEFFI- CIENT	Temp. Diff.a	HEAT LOSS (Btu per hour)	Totals (Btu per hour)
Bedroom A	Walls Glass Infiltration Ceiling ^d	238 sq ft 40 sq ft 36 lin ft ^b 242 sq ft	0.28 0.45 0.35° 0.69	80 80 80 39.8	5330 1440 1010 6660	14,440
Bedroom B and Closet	Walls Glass Infiltration Ceiling ^d	156 sq ft 40 sq ft 36 lin ft ^e 160 sq ft	0.28 0.45 0.35 0.69	80 80 80 39.8	3490 1440 1010 4400	10,340
Bedroom C	Walls Glass Infiltration Ceiling ^d	114 sq ft 27 sq ft 18 lin ft ^f 120 sq ft	0.28 0.45 0.35 0.69	80 80 80 39.8	2560 970 500 3300	7,330
Bedroom D and Closet	Walls Glass Infiltration Ceiling ^d Floor over Garage	118 sq ft 20 sq ft 18 lin ft 120 sq ft 110 sq ft	0.28 0.45 0.35 0.69 0.25	80 80 80 39.8 35 ^g	2650 720 500 3300 960 ^m	8,130
Bathroom 1	Walls Glass Infiltration Ceiling ^d	30 sq ft 14 sq ft 18 lin ft 55 sq ft	0.28 0.45 0.35 0.69	80 80 80 39.8	670 500 500 1510	3,180
Bathroom 2	Walls Glass Infiltration Ceiling ^d Floor over Garage	79 sq ft 9 sq ft 15 lin ft 35 sq ft 35 sq ft	0.26 0.45 0.35 0.69 0.25	80 80 80 39.8 35	1770 320 420 960 310 ^m	3,780
Living Room	Walls Walls (adjoining garage) Glass Infiltration	267 sq ft 94 sq ft 50 sq ft 40 lin ft	0.28 0.39 ^h 0.45 0.35	80 35 80 80	5980 1280 ^m 1800 1120	10,180
Dining Room	Walls Glass (doors) Glass (window) Infiltration ⁱ	166 sq ft 35 sq ft 20 sq ft 31 lin ft	0.28 1.13 0.45 0.35	80 80 80 80	3720 3160 720 870	8,470
Kitchen and Entrance to Garage	Walls (outside) Walls (adjoining garage) Infiltration Glass Door to garage	96 sq ft 51 sq ft 27 lin ft 18 sq ft 17 sq ft	0.28 0.39 ^h 0.35 0.45 0.51	80 35 80 80 80	2150 700 ^m 760 650 300 ^m	4,560
Lavette and Vestibule	Walls (outside) Walls (adjoining garage) Door Glass Infiltration	82 sq ft 85 sq ft 19 sq ft 9 sq ft 19 lin ft	0.28 0.39h 0.51 0.45 0.35	80 35 80 80 80	1840 1160 ^m 780 320 530	4,630

Table 3. Heat Loss Calculation Sheet for Uninsulated Residence (Fig. 2) (Concluded)

A	В	С	D	E	F	G
Room or Space	PART OF STRUCTURE	NET AREA OR CRACK LENGTH	COEFFI- CIENT	Temp. Diff.a	HEAT LOSS (Btu per hour)	Totals (Btu per hour)
Entrance Hall	Walls Door Infiltration Ceiling ^{d, p}	39 sq ft 21 sq ft 20 lin ft 87 sq ft	0.28 0.38 0.35 0.69	80 80 80 39.8	870 640 560 2490	4,560
Garage	Walls Glass Doors Infiltration Floor (heat gain) Heat gain	167 sq ft 53 sq ft 44 sq ft 37 lin ft 185 sq ft	0.28 1.13 0.51 1.62 ^j 0.10 ^k	45 45 45 45 -15 ^k	2110 2700 1010 2700 -280 -4710 ^m	3,530
Recreation Room ⁿ	Floor Walls Glass Infiltration	287 sq ft 220 sq ft 8 sq ft 8 lin ft	0.10 0.10 1.13 0.76	20 38 80 80	570 840 720 490	2,620
Total						85,750

a The inside-outside temperature difference is 70 - (-10) or 80 F, except where otherwise noted.

bOnly the south windows are used for arriving at the window crack for this room, on the assumption that whatever air enters through the south window cracks will leave through the west window cracks or eleaving the west window cracks or eleaving the south window cracks will be south window cracks will be so that the south window cracks will be so that the south window cracks will be so that the south window cracks or eleaving the south window cracks or eleavi

eDouble-hung wood windows with storm sash are assumed to have the same leakage per foot of crack as weatherstripped windows. The air leakage per foot of crack is about 19.5 cu ft per foot of crack for a wind velocity of 12.5 mph. (See Table 2, Chapter 5.) The heat equivalent of the air leakage per hour per degree temperature difference per foot of crack is obtained by multiplying this value by 0.018, or 19.5 \times 0.018 = 0.35.

dIn this problem the ceiling heat losses are calculated by estimating the attic temperature and then calculating the loss through the ceiling using the proper temperature difference. This unheated attic is not ventilated during the winter months. The attic temperature is estimated from Equation 4 to be 30.2 F when the outside temperature is $-10\ F$ and the room temperature is 70 F. The temperature difference is therefore $70-30.2\ or\ 39.8\ F$

eThe window crack in the west wall having two windows is used.

fOne-half the total crack is used in these rooms.

gTemperature in garage assumed to be 35 F.

bCoefficient for wall adjoining garage calculated on basis of metal lath and plaster on both sides of studs. (U=0.39)

iThe door crack is used for estimating the infiltration in this room and as the French doors are weatherstripped the infiltration coefficient is assumed to be the same as in Note b.

iThe leakage for the garage doors is assumed to be twice that for poorly-fitted double-hung wood windows or about 90 cu ft per foot of crack for a wind velocity of 12.5 mph. The infiltration coefficient is therefore 0.018×90 or 1.62

kThe ground temperature is assumed to be 50 F and, as the garage temperature is 35 F, the heat transfer will be from the ground to the garage, and this heat gain should therefore be subtracted from the heat loss.

mThe heat losses from various rooms into the garage are heat gains for the garage.

nHeat is to be provided for the recreation room and this space is therefore figured on the basis of a 70 F temperature. Heat loss into the basement from recreation room is neglected, the calculations being based only on losses through the outside walls, glass and floor.

pThe upstairs hall ceiling is included with the downstairs entrance hall because these are connected by means of the stairway. The heat should be provided downstairs.

Fig. 2. Elevations and Floor Plans of Residence

Table 4. Summary of Heat Losses of Uninsulated Residence

Heat losses given in Btu per hour

Room or Space	Walls	CEILING AND ROOF	Floor	GLASS AND DOOR	Infiltration	Totals
Bedroom A Bedroom B Bedroom C Bedroom D Bathroom 1 Bathroom 2 Living Room Dining Room Kitchen Lavette Entrance Hall Garage Recreation	5330 3490 2560 2650 670 1770 7260 3720 2850 3000 870 1030* 840	6660 4400 3300 3300 1510 960 2490	960 310 570	1440 1440 970 720 500 320 1800 3880 950 1100 640 3410 720	1010 1010 500 500 420 1120 870 760 530 560 2700 490	14,440 10,340 7,330 8,130 3,180 3,780 10,180 4,560 4,560 4,560 3,530 2,620
Totals	33,980	22,620	290	17,890	10,970	85,750
Percentages	39.6	26.4	0.3	20.9	12.8	100.0

^{*}Wall heat loss of 2110 Btu minus wall heat gain of 3140 Btu.

Table 5. Summary of Heat Losses of Insulated Residence

Heat losses given in Btu per hour

ROOM OR SPACE	Walls	CEILING AND ROOF	FLOOR	GLASS AND DOOR	Infiltration	Totals
Bedroom A Bedroom B Bedroom C Bedroom D Bathroom 1 Bathroom 2 Living Room Dining Room Kitchen Lavette Entrance Hall Garage Recreation	2670 1750 1280 1320 340 820 3580 1860 1400 1460 440 -400* 840	2370 1570 1170 1170 540 340 850	690 220 -1190 † 570	1440 1440 970 720 500 320 1800 3880 950 1100 640 3410 720	1010 1010 500 500 500 420 1120 870 760 530 560 2700 490	7,490 5,770 3,920 4,400 1,880 2,120 6,500 6,610 3,110 3,090 2,490 4,520 2,620
Totals	17,360	8,010	290	17,890	10,970	54,520
Percentages	31.9	14.7	0.5	32.8	20.1	100.0

^{*}Wall heat loss of 1050 Btu minus wall heat gains of 590, 320 and 540 Btu.

[†]Heat gains; 960, 310 and 280 Btu.

[†]Heat gains; 690, 220 and 280 Btu.

mission heat losses of 20.9 per cent are relatively small. The infiltration losses (12.8 per cent) are also comparatively small in this case because the storm windows serve substantially the same purpose as weatherstripping. In this problem, the wall, ceiling and floor transmission losses comprise 66.3 per cent of the total. If the building is insulated, the relative heat loss percentages will materially change. (See Example 6 and Table 5.)

Example 6. Calculate the heat loss of residence shown in Fig. 2 based on the same conditions as in Example 5 but insulated throughout as follows (coefficients in

parentheses):

Walls: Brick veneer, ²⁵%₂ in. insulation board sheathing, studding, 1 in. insulation board lath and plaster (0.14). Walls of dormer over garage same except wood siding in place of brick veneer (0.13).

Attic Walls: Brick veneer, $2\frac{5}{3}$ in. insulation board sheathing on studding (0.28). Walls Adjoining Garage: Plaster on 1 in. insulation board, studding, metal lath and plaster (0.18).

Basement Walls (Recreation Room): 10 in. concrete (0.10).

Roof: Asphalt shingles on wood sheathing on rafters (0.56).

Ceiling (Second floor): 1 in. insulation board and plaster; $\frac{1}{2}$ in. insulation board on top of ceiling joists (0.15).

Windows: Same as Example 5.

Floor (Bedroom D): Maple finish flooring on yellow pine sub-flooring; $\frac{1}{2}$ in. insulation board and plaster ceiling below (0.18).

Solution: The procedure for calculating the heat losses is similar to that for Example 5. A summary of the results is given in Table 5.

Chapter 7

COOLING LOAD

Design Outside Temperatures, Components of Heat Gain, Normal Heat Transmission, Solar Heat Transmission, Solar Radiation Through Glass, Heat Introduced by Outside Air, Heat Emission of Appliances

LOAD calculations for summer air conditioning are more complicated than heating load calculations because there are more factors to be considered. Due to the variable nature of some of the contributing load components and the fact that they do not necessarily impose their maximum effect simultaneously, considerable care must be used in determining their phase relationship so that equipment of proper capacity may be selected to maintain specified indoor conditions.

The conditions to be maintained in an enclosure are variable and depend upon several factors, especially the outside design conditions, duration of occupancy and relationship between air motion, dry-bulb and wet-bulb temperatures. Information concerning the proper indoor effective temperature to be maintained is given in Chapter 2, for different geographical locations and for various age groups of individuals.

Summer dry-bulb and wet-bulb temperatures of various cities are given in Table 1. The temperatures are not the maximums but the design temperatures which should be used in air conditioning calculations. The maximum outside wet-bulb temperatures as given in Weather Bureau reports usually occur only from 1 to 4 per cent of the time, and they are therefore of such short duration that it is not practical to design a cooling system for them. The temperatures shown in Table 1 are based on available design conditions known to be successfully applied.

COMPONENTS OF HEAT GAIN

A cooling load determination is composed of five components which are classified in the following manner:

- 1. Normal heat transfer through windows, walls, partitions, doors, floors, ceilings, etc.
- 2. Transfer of solar radiation through windows, walls, doors, skylights, or roof.
- 3. Heat emission of occupants within enclosures.
- 4. Heat introduced by infiltration of outside air or controlled ventilation.
- 5. Heat emission of mechanical, chemical, gas, steam, hot water and electrical appliances located within enclosures.

Table 1. Design Dry- and Wet-Bulb Temperatures, Wind Velocities, and Wind Directions for June, July, August, and September

State	Сітт	Design Dry-Bulb	Design Wet-Bulb	SUMMER WIND VELOCITY MPH	PREVAILING SUMMER WIND DIRECTION
Ala	Birmingham	95	78	5.2	S
	Mobile	95	80	8.6	SW.
Ariz.	Phoenix	105	76	6.0	W
Ark.	Little Rock	95	78	7.0	NE
Calif	Los Angeles	90	70	6.0	SW.
	San Francisco	90	65	11.0	SW
Colo	Denver	95	64	6.8	S
Conn	New Haven	95	75	7.3	Š
Del	Wilmington	95	78	9.7	SW
D. C	Washington	95	78	6.2	S
Fla	Jacksonville	95	78	8.7	SW.
	Tampa	94	79	7.0	E
Ga	Atlanta	95	76	7.3	NW
	Savannah	95	78	7.8	SW
Idaho	Boise	95	65	5.8	NW
III.	Chicago	95	75	10.2	NE
	Peoria	95	76	8.2	S
Ind	Indianapolis	95	76	9.0	SW
Iowa	Des Moines	95	77	6 6	SW
Kansas	Wichita	100	75	11.0	S
Ky	Louisville	95	76	8.0	SW
La	New Orleans	95	79	7 0	SW
	Shreveport	, 100	78	6.2	S
Maine	Portland	90	73	7.3	S
Md	Baltimore	95	78	6.9	SW
Mass		92	75	9 2	SW.
Mich		95	75	103	SW
Minn	Minneapolis	95	75	8.4	SE
Miss		95	78	6.2	SW
Mo		100	76	9.5	S
	St Louis	95	78	9.4	SW
Mont		95	67	7.3	SW
Nebr	Lincoln	95	75	9.3	S
Nev		95	65	7.4	W
N H		90	73	5.6	NW
N. J	Trenton	95	78	10.0	SW
N. Y	Albany		75	7.1	S
	Buffalo	93	75	12.2	SW.
27.26	New York	95	75	12.9	SW
N. M		90	65	6.5	SE
N. C	Asheville	90	75	5.6	SE
NT D I	Wilmington	95	79	7.8	SW.
N. Dak		95	73	8.8	NW
Ohio	Cincinnati	95	78	6.6	SW
O1-1-	Cleveland		75	9.9	S
Okla		101	76	10.1	
Ore		90	65	6.6	NW
Pa	Philadelphia	95	78	9.7	SW NW
T C	Pittsburgh	95 93	75		NW NW
R. I			75	10 0 9.9	SW
S. C	Charleston	95	80		NE NE
S. Dak			76 75	6.8 7.6	S
Tenn	Sioux Falls	95	75	6.5	SW
I CIIII	Chattanooga	95	78	7.5	SW
	1 1915 1111 11115	. 30	1 10	1.0	

CHAPTER 7. COOLING LOAD

Table 1. Design Dry- and Wet-Bulb Temperatures, Wind Velocities, and Wind Directions for June, July, August, and September (Concluded)

State	Cirr	Design Dry-Bulb	Design Wet-Bulb	SUMMER WIND VELOCITY MPH	PREVAILING SUMMER WIND DIRECTION
Texas	DallasEl PasoGalveston	100 100 95 95	78 69 80 78	9.4 6.9 9.7 7.7	SESS
Utah	San AntonioSalt Lake City	100 92	78 63	7.4 8.2	SE SE
Vt Va	Burlington Norfolk Richmond	95	73 78	8.9 10.9	S
Wash	SeattleSpokane	85	78 65 65	6.2 7.9 6.5	SW S SW
W. Va Wis	Parkersburg Madison	95 95	75 75	5.3 8.1	SE SW
Wyo	Milwaukee Cheyenne	95 95	75 65	9.2	S S

The components of heat gain, classified by source, are further classified as sensible and latent heat gain.

The first two components fall into the classification of sensible heat gain, that is, they tend to raise the temperature of the air within the structure. The last three components not only produce sensible heat gain but they may also tend to increase the moisture content of the air within the structure.

Normal Heat Transmission

By normal heat transmission, as distinguished from solar heat transmission, is meant the transmission of heat through windows, walls, partitions, etc. from without to interior of enclosure by virtue of difference between outside and inside air temperatures. This load is calculated in a manner similar to that described in Chapter 6 (except that flow of heat is reversed) by means of the formula:

$$H_{t} = A U (t_{0} - t) \tag{1}$$

where

Ht = heat transmitted through the material of wall, glass, floor, etc., Btu per hour.

A = net inside area of wall, glass, floor, etc., square feet.

t = inside temperature, degrees Fahrenheit.

to = outside temperature, degrees Fahrenheit.

U = coefficient of transmission of wall, glass, floor, etc., Btu per hour per square foot per degree Fahrenheit difference in temperature (Tables 3 to 13, Chapter 4).

Solar Heat Transmission

Calculations of the solar heat transmitted through walls and roofs are difficult to determine because of periodic character of heat flow and time lag due to heat capacity of construction.

Table 2. Solar Radiation (Direct plus Sky) Impinging Against Walls Having Several Orientations and a Horizontal Surface

For 30 Deg North Latitude on August 1

Sun Time	Intensity of Solar Radiation, Btu per SQ Ft per Hour									
	Northeast	East	Southeast	South	Southwest	West	Northwest	Horizontal Surface		
5:20 6:00 7:00	0 37 119	0 47 145	0 23 91	0 4.5 11	0 4.5 11	0 4.5 11	0 4.5 11	0 11 64		
8:00 9:00 10:00	153 130 86	207 194 152	149 158 143	17 35 63	17 21 23.5	$17 \\ 21 \\ 23.5$	17 21 23.5	147 213 262		
11:00 12:00 1:00	35 26 25.5	$94 \\ 26 \\ 25.5$	85 65 25.5	80 85 80	25.5 65 85	$25.5 \\ 26 \\ 94$	25.5 26 35	290 300 290		
2:00 3:00 4:00	23.5 21 17	$23.5 \\ 21 \\ 17$	$23.5 \\ 21 \\ 17$	63 35 17	143 158 149	$152 \\ 194 \\ 207$	86 130 153	262 213 147		
5:00 6:00 6:40	11 4.5 0	11 4.5 0	11 4.5 0	11 4.5 0	91 23 0	145 47 0	119 37 0	64 11 0		

Table 3. Solar Radiation (Direct plus Sky) Impinging Against Walls Having Several Orientations and a Horizontal Surface

For 35 Deg North Latitude on August 1

Sun Time	Intensity of Solar Radiation, Btu per Sq Ft per Hour									
	Northeast	East	Southeast	South	Southwest	West	Northwest	Horizontal Surface		
5:07 6:00 7:00	0 43 121	0 49 151	0 27 97	0 4.5 11	0 4.5 11	0 4.5 11	0 4.5 11	0 13 72		
8:00 9:00 10:00	147 120 71	$207 \\ 194 \\ 152$	155 169 156	25 49 83	17 21 23.5	17 21 23.5	17 21 23.5	151 213 245		
11:00 12:00 1:00	28 26 25.5	$94 \\ 26 \\ 25.5$	129 84 25.5	103 109 103	25.5 84 129	$25.5 \\ 26 \\ 94$	25.5 26 28	288 298 288		
2:00 3:00 4:00	23.5 21 17	$23.5 \\ 21 \\ 17$	23.5 21 17	83 49 25	156 169 155	$152 \\ 194 \\ 207$	71 120 147	245 21 3 151		
5:00 6:00 6:53	11 4.5 0	$\begin{array}{c} 11 \\ 45 \\ 0 \end{array}$	11 4.5 0	11 4.5 0	97 27 0	151 49 0	121 43 0	72 13 0		

CHAPTER 7. COOLING LOAD

Table 4. Solar Radiation (Direct plus Sky) Impinging Against Walls Having Several Orientations and a Horizontal Surface

For 40 Deg North Latitude on August 1

Sun Time	Intensity of Solar Radiation, Btu per Sq Ft per Hour									
	Northeast	East	Southeast	South	Southwest	West	Northwest	Horizontal Surface		
4:50 5:00 6:00	0 5 49	0 6 56	0 4 32	$0 \\ 2.5 \\ 4.5$	0 2.5 4.5	$0 \\ 2.5 \\ 4.5$	0 2.5 4.5	0 5 20		
7:00 8:00 9:00	123 137 102	$162 \\ 211 \\ 195$	109 166 181	$\frac{11}{29}$	11 17 21	11 17 21	11 17 21	85 160 212		
10:00 11:00 12:00	54 28 26	$152 \\ 94 \\ 26$	171 144 98	103 124 128	23.5 41 98	23.5 25.5 26	23.5 25.5 26	244 281 290		
1:00 2:00 3:00	25.5 23.5 21	$25.5 \\ 23.5 \\ 21$	$\begin{array}{c} 41 \\ 23.5 \\ 21 \end{array}$	124 103 74	144 171 181	94 152 195	28 54 102	281 244 212		
4:00 5:00 6:00	17 11 4.5	17 11 4.5	17 11 4.5	29 11 4.5	166 109 32	211 162 56	137 123 49	160 85 20		
7:00 7:10	2.5 0	2.5 0	2.5	2.5 0	4 0	6 0	5 0	5 0		

Table 5. Solar Radiation (Direct plus Sky) Impinging Against Walls Having Several Orientations and a Horizontal Surface For 45 Deg North Latitude on August 1

Sun Time	Intensity of Solar Radiation, Btu per Sq Ft per Hour									
	Northeast	East	Southeast	South	Southwest	West	Northwest	Horizontal Surface		
4:25	0	0	0	0	0	0	0	0		
5:00	22	20	17	3.5	3.5	3.5	3.5	9		
6:00	87	99	56	5.5	5.5	5.5	5.5	27		
7:00	151	192	134	12	12	$^{12}_{17}_{21}$	12	89		
8:00	144	2 37	188	48	17		17	156		
9:00	100	199	197	93	21		21	205		
10:00	46	153	184	$121 \\ 146 \\ 156$	23.5	23.5	23.5	243		
11:00	28	94	158		63	25.5	25.5	259		
12:00	26	26	116		116	26	26	281		
1:00	25.5	25.5	63	146	158	94	28	259		
2:00	23.5	23.5	23.5	121	184	153	46	243		
3:00	21	21	21	93	197	199	100	205		
4:00	17	17	17	48	188	237	144	156		
5:00	12	12	12	12	134	192	151	89		
6:00	. 5.5	· 5.5	5.5	5.5	56	99	87	27		
7:00	3.5	3.5	3.5	3.5	17	20	22	9		
7:35	0	0	0	0	0	0	0			

The variation in radiation intensity on differently oriented surfaces is given in Fig. 1, and in Tables 2, 3, 4 and 5. The greater part of the radiation intensity is always direct radiation from the sun. However, during the time when the sun is shining, any surface receives radiation of a lower intensity coming from all parts of the sky due to reflection and refraction. This scattered radiation intensity was found to vary from a very low value to values as high as 20 per cent of the total radiation observed on certain days in Pittsburgh. The curves and tables are for combined direct solar and scattered sky radiation, and are given to represent expected design radiation intensity for August 1. They were prepared by the A.S.H.V.E. Laboratory from data¹ obtained by pyrheliometer observations.

A study of these curves discloses the periodic relationship and wide variation in solar intensity on various surfaces. It will be observed that

Fig. 1. Solar Intensity Normal to Sun on Horizontal Surface and on Walls for August 1 at 40 Deg North Latitude

both the roof (horizontal surface) and south wall radiation curves are in exact phase relationship with each other, while those for the east and west walls overlap each other due to scattered sky radiation on the west wall during the forenoon and on the east wall during the afternoon. This phase relationship has an important bearing on the cooling load. Failure to consider the periodic character of heat flow resulting from diurnal movement of the sun and the lag due to heat capacity of the structure, which determine the timing and magnitude of the heat wave flowing through the wall, may result in a large error in load calculations.

The values of solar intensity appearing in Fig. 1 must not be confused with the actual heat transmission through the wall for much of the solar radiation impinging against the outer surface fails to pass through the wall. Instead it is delivered to the outside air by reflection, radiation,

¹A.S.H.V.E. RESEARCH REPORT No. 1147—Heat Gain Through Glass Blocks by Solar Radiation and Transmittance, by F. C. Houghten, David Shore, H. T. Olson and Burt Gunst (A.S.H.V.E. Transactions, Vol. 46, 1940, p. 83).

CHAPTER 7. COOLING LOAD

convection and conduction. A mathematical solution for the determination of solar heat transmission has been developed but the equations involved are too complex for practical application².

The heat flow in summer through various types of roofs and walls has been measured by the A.S.H.V.E. Laboratory. The curves in Fig. 2, give the heat flow through the inside surface of roofs³ with details of the construction of the roofs tested. The condition for which these results are given are: solar radiation for 40 deg north latitude on August 1 as given in Fig. 1 and Table 4; outdoor design temperature reaching a maximum of 95 F as shown by the temperature curve in Fig. 2 and an indoor temperature of 75 F.

Curves in Fig. 3 were prepared by the A.S.H.V.E. Laboratory from

Fig. 2. Relation Between Time and Heat Flow Through Inside Surface of Horizontal Roofs Corrected to Design Day of August 1

recent tests made there and show the heat flow through the inside surface of three types of walls for various orientations. The results are given for the following conditions: 90 per cent of the solar radiation given in Fig. 1 and Table 4 for 40 deg north latitude on August 1; outdoor design tem-

²A.S.H.V.E. RESEARCH REPORT No. 923—Heat Transmission as Influenced by Heat Capacity and Solar Radiation, by F. C. Houghten, J. L. Blackshaw, E. M. Pugh and Paul McDermott (A.S.H.V.E. TRANSACTIONS, Vol. 38, 1932, p. 231). Effect of Heat Storage and Variation in Outdoor Temperature and Solar Intensity on Heat Transfer Through Walls, by J. S. Alford, J. E. Ryan and F. O. Urban (A.S.H.V.E. TRANSACTIONS, Vol. 45, 1939, p. 369). Periodic Heat Flow in Building Walls Determined by Electrical Analogy Method, by Victor Paschkis (A.S.H.V.E. Journal Section, Heating, Piping and An Conditioning, February, 1942, p. 133). Summer Comfort Factors as Influenced by the Thermal Properties of Building Materials, by C. O. Mackey and L. T. Wright, Jr. (A.S.H.V.E. Journal Section, Heating, Piping and Air Conditioning, December, 1942, p. 750).

³A.S.H.V.E. RESEARCH REPORT NO. 1157—Summer Cooling Load as Affected by Heat Gain Through Dry, Sprinkled and Water Covered Roofs, by F. C. Houghten, H. T. Olson and Carl Gutberlet (A.S.H.V.E. Transactions, Vol 46, 1940, p. 231).

¹ RANSACTIONS, Vol. 20, 1970, p. 201).

4A.S.H.V.E. RESEARCH PAPER—Heat Gain Through Walls and Roofs as Affected by Solar Radiation.

by F. C. Houghten, E. C. Hach, S. I. Taimuty and Carl Gutberlet (A.S.H.V.E. JOURNAL SECTION, Heating, Piping and Air Conditioning, May, 1942, p. 306).

perature reaching a maximum of 93 F as shown by the temperature curve in Fig. 3 and an indoor temperature of 78 F and 50 per cent relative humidity.

The heat flow shown in Figs. 2 and 3 is a combination of normal transmission and solar radiation transmission and is the total heat flow through the wall or roof. Due to the heat capacity of walls and roofs there is a time lag⁵ in the transmission of heat through them as shown by the curves. For the types of construction covered in Figs. 2 and 3 and for the conditions indicated, the heat flow through the inside surface at any given time can be read directly. For other types of construction, the curves may be used as a guide in estimating the heat flow. The time lag for

Fig. 3. Relation Between Time and Heat Flow Through the Inside Surface of Walls of Different Construction and Orientation on a 93 F Design Day with 90 per cent of Design Solar Radiation

Walls BE, BS, BW and BN—12 in. solid brick and plaster facing east, south, west and north respectively. Walls TE, TS, TW and TN—4 in. brick veneer, 8 in. tile and plaster facing east, south, west and north respectively. Walls FE, FS and FW—4 in. brick veneer, building paper, $\frac{1}{2}$ in., matched sheathing, 2 x 4 in. studs, metal lath and plaster facing east, south and west respectively.

other types of construction is included in Table 6 which was prepared by the A.S.H.V.E. Laboratory from data collected by it and by other authorities.

Solar Radiation Transmitted Through Glass

Windows present a problem somewhat different from that of opaque walls, because they permit a large percentage of the solar energy to pass through. A small amount is reflected and a portion is absorbed by the glass. The amount absorbed depends upon the character and thickness of the glass and the angle between it and the sun's rays. The temperature of the glass is raised by the absorbed heat and this heat is then delivered

⁵Loc. Cit. Note 2.

CHAPTER 7. COOLING LOAD

Table 6. Time Lag in Transmission of Solar Radiation Through Walls and Roofs

Type and Thickness of Wall or Roof	Time Lag, Hours
1-in. yellow pine horizontal roof, water proofing, smooth black finish	1 134 214 214 214 214 214 214 215 8 2 5 7 1012 12 16

to the air on each side in proportion to the difference between the glass and air temperatures.

The A.S.H.V.E. tests⁷ indicate that a single pane of double strength glass 0.127 in. thick absorbs approximately 11 per cent of the solar radiation passing through it when the impingement is normal. For smaller angles of impingement, the glass retards percentages of the total radiant energy approximately in proportion to the sine of the angle.

The amount of solar radiation delivered to an unshaded glass surface may be obtained from Tables 2, 3, 4 or 5. These values must be used only for the net glass area on which the sun shines and not the entire glass area. Tests at the A.S.H.V.E. Research Laboratory⁸ have determined the percentage of heat from solar radiation actually delivered to a room with various types of outdoor and indoor shading. The data in Table 7 are taken from these tests.

TABLE 7. SOLAR RADIATION TRANSMITTED THROUGH SHADED WINDOWS

Type of Appurtenance	Finish Facing Sun	PER CENT DELIVERED TO ROOM
Canvas awning	Plain Aluminum Aluminum Buff Aluminum Aluminum	28 22 45 68 58 22

⁶Heat Absorbing Glass Windows, by W. W. Shaver (A.S.H.V.E. Transactions, Vol. 41, 1935, p. 287).

⁷A.S.H.V.E. RESEARCH REPORT NO. 974—Radiation of Energy Through Glass, by J. L. Blackshaw and F. C. Houghten (A.S.H.V.E. Transactions, Vol. 40, 1934, p. 93). A S.H.V.E. RESEARCH REPORT NO. 975.

—Studies of Solar Radiation Through Bare and Shaded Windows, by F. C. Houghten, Carl Gutberland J. L. Blackshaw (A.S.H.V.E. Transactions, Vol. 40, 1934, p. 101). A.S.H.V.E. RESEARCH REPORT NO. 1180—Heat Gain Through Western Windows With and Without Shading, by F. C. Houghten and David Shore (A.S.H.V.E. Transactions, Vol. 47, 1941, p. 251).

The percentage values in this table were obtained by dividing the total amount of heat actually entering through the shaded window by the total amount of heat calculated to enter through a bare window (solar radiation plus glass transmission, based on observed outside glass temperature). For bare windows on which the sun shines, the transmission of heat from outside air to glass may be small or negative as the glass temperature is raised by the solar radiation absorbed.

In calculating the total heat gain through windows on the sunny side of buildings, it is sufficiently accurate to proceed as outlined herewith:

Consider the total heat gain as that resulting from solar radiation and neglect the heat transmission through the glass caused by the difference between the temperatures of the inside and outside air. This method should be used except at times when the calculated heat gain per square foot due to normal transmission exceeds the solar intensity. At such times, solar radiation may be neglected and the total heat gain considered as resulting from normal transmission.

The solar heat transmission through windows or skylights may be expressed by the formula:

$$H_{G} = A_{G}fI \tag{2}$$

where

 H_G = solar radiation transmitted through a window, Btu per hour.

 A_G = net area of glass exposed to sun's rays, square feet.

f= percentage of solar radiation (expressed as a decimal) transmitted to the inside (Table 7). For bare windows, f=1.

I = intensity of solar radiation striking surface, Btu per hour per square foot (Tables 2, 3, 4 and 5).

In Equation 2, f = 1 for bare windows because the tests from which Table 7 was obtained showed that approximately all of the solar radiation impinging on a bare window became a part of the heat load in the room. This was because almost all of the heat absorbed by the glass flowed into the room by conduction. Other tests have indicated that in the case of a building having floors of high heat capacity such as concrete floors on which the solar radiation falls, some of the heat entering a bare window is absorbed by the floor and does not immediately become a part of the cooling load, but is delivered back to the air in the building at a slow rate.

The maximum solar intensity on any surface is of limited duration as shown in Fig. 1. In the case of windows the total energy impinging on the glass before and after the time of maximum intensity is further reduced by increased shading of the glass from the frame, or wall. The cooling load due to solar radiation therefore does not have to be calculated as a steady load. Another point which should be noted is that the maximum solar radiation load on the east wall occurs early in the morning when the outside temperature is low.

Tests have been made which indicate that solar radiation through window glass is the most important factor to contend with in the cooling of an office building. At times it was shown to account for as much as 75 per cent of the total cooling necessary. Because of the importance of

⁹A.S.H.V.E. RESEARCH REPORT No 1002—Cooling Requirements of Single Rooms in a Modern Office Building, by F. C. Houghten, Carl Gutberlet, and Albert J. Wahl (A.S.H.V.E. Transactions, Vol. 41, 1935, p. 53).

CHAPTER 7. COOLING LOAD

the sun load, cooling systems should be zoned so that the side of the building on which the sun is shining can be controlled separately from the other sides of the building. If buildings are provided with awnings so that the window glass is shielded from sunshine, the amount of cooling required will be reduced and there will also be less difference in the cooling requirements of different sides of the building. The total cooling load for a building exposed to the sun on more than one side is of course less than the sum of the maximum cooling loads in the individual rooms since the maximum solar radiation load on the different sides occurs at different times. In determining the total cooling load for a building if the time when the maximum load occurs is not obvious, the load should be calcu-

TABLE 8. HEAT GAIN THROUGH GLASS BLOCKS^a

		(D	Radiationic Per Sq F	LUS SK	Y)			Тота	PLUS No	ORMAL '	(Solar Transm Trer l	RADIA IISSION) Hour	TION
Sı	DE	Eastc	WESTC		Sour	H		EASTC	WESTC		Sot	JTH	
N. La DEG	TITUDE REES	40	40	30	35	40	45	40	40	30	35	40	45
	Outside TempF												
7:00 8:00 9:00 10:00	74 76 79 83	65.0 63.0 40.0 24.0	0.0 5.0 6.0	1.0 3.0 5.5 8.5	2.8 4.4 7.1 11.3	3.0 6.5 10.2 14.7	5.0 11.0 13.4 17.1	61.0 77.5 73.5 57.5	5.0 6.5	$-4.5 \\ 0.0 \\ 5.0 \\ 11.0$	$ \begin{array}{c} -20 \\ 2.0 \\ 7.0 \\ 15.0 \end{array} $	-05 40 10.0 18.0	1 0 5.0 12 0 20 8
11:00 12:00 1:00	87 90 93	15.5 10.0 7.0	7.0 10.0 15.5	12.0 14.0 12.0	15.2 17 4 15.2	18.7 21.0 18 7	21.8 24.8 21.8	45 0 36 5 30.0	7 5 10 5 22 0	16.5 21.5 25.0	22 0 28 0 31.8	25.5 33.8 38.5	32 0 40.8 46.0
2:00 3:00 4:00	94 95 95	6 0 5.0 4.5	24.0 40.0 65.0	8.5 5.5 3.0	11 3 7.1 4.4	14.7 10 2 6.5	17.1 13.4 11.0	24.0 19.5 15.5	35.0 55.0 77.0	26.0 24.0 20 0	32.0 29.8 25.5	39.0 36.5 31.5	47.0 45.0 40.5
5:00 6:00 7:00	93 91 89	4.0 2.5 1 5	63.0 23.5 0.0	1 0 0 0	2.8 0.7	3.0 0.7 0.0	5 0 3.0 0.7	12.5 10 5 8 0	85.5 55.0 18 5	15 0 9.5 3.5	20.0 13.5 7.0	25.2 18.0 11.0	33.5 25.5 18.0

aFor August 1.

lated for various times of day to determine the times at which the sum of the loads on the different sides of the building is a maximum.

The direct solar and scattered sky radiation penetration through glass block panels is given in Table 8 for various times of the day for south. east and west exposures for different latitudes on August 1. This table also gives the total heat gain into an air conditioned space when 78 F is maintained indoors, resulting from the effect of both radiation and air to air transmission. These values result from A.S.H.V.E. Laboratory data and apply for expected design radiation intensity, and for a design day having a maximum temperature of 95 F. The resulting heat gains are averages for four typical glass block designs, two having smooth exterior faces, and the other two having exterior ribbed faces.

bInside temperature, 78 F.

cFor east and west walls these values can be applied to all latitudes between 30 and 45 deg N without excessive errors.

¹⁰Loc. Cit. Note 1.

Heat Emission of Occupants

The heat and moisture given off by human beings under different states of activity are shown in various tables and figures of Chapter 2 which covers the physical and physiological principles of air conditioning. It will be observed from these data that the rate of sensible and latent heat emission by human beings varies greatly depending upon state of activity. In many applications this component becomes a large percentage of total load. Metabolic rates are markedly variable for some extreme environmental conditions and this is another important factor which must be considered in cooling load computations.

Heat Introduced by Outside Air

An allowance must be made for the heat and moisture in the outside air introduced for ventilation purposes or entering the building through cracks, doors, and other places where infiltration might occur.

The volume of air entering due to infiltration may be estimated from data given in Chapters 5 and 6. Information on the amount of outside air required for ventilation will be found in Chapter 2.

In the event the volume of air entering an enclosure due to infiltration exceeds that required for ventilation, the former should be used as a basis for determining the portion of the load contributed by outside air. Where volume of air required for ventilation exceeds that due to infiltration it is assumed that a slight positive pressure will exist within the enclosure with a resulting exfiltration instead of infiltration. In this case the air required for ventilation is used in determining outside air load.

The heat gain resulting from outside air introduced may be determined by Equation 3:

 $H = \frac{Q}{\eta} (h_0 - h_1) \tag{3}$

where

H = heat to be removed from outside air entering the building, Btu per hour.

Q = volume of outside air entering building, cubic feet per hour.

v = cubic feet of outside air per pound of dry air.

ho = enthalpy of outside air, Btu per pound of dry air.

 h_i = enthalpy of inside air, Btu per pound of dry air.

The latent heat gain resulting from outside air introduced may be determined by Equation 4:

$$H_1 = \frac{Q}{v} h_{fg} (W_o - W_i)$$
 (4)

where

 H_1 = latent heat to be removed, Btu per hour.

 h_{fg} = latent heat of evaporation at temperature at which water is condensed, Btu per pound.

 W_0 = humidity ratio of outside air, pounds water per pound dry air.

 W_i = humidity ratio of inside air, pounds water per pound dry air.

Heat Emission of Appliances

Heat generating appliances which give off either sensible heat or both sensible and latent heat in an air conditioned enclosure may be divided

CHAPTER 7. COOLING LOAD

into three general classes of equipment or devices: (1) electrical appliances, (2) gas appliances, and (3) steam heating appliances.

In the first group may be found such devices as lights¹¹, fans, motors, toasters, waffle irons, etc. The wattages are usually marked on the name-plates and it is only necessary to multiply the aggregate wattage by 3.413 (Btu per watthour) in order to estimate the heat added to the conditioned space by such devices in Btu per hour.

Electric motors are usually rated in units of horsepower *output*. To determine the corresponding input, which is the rate at which heat is added to the conditioned space by full-load operation of such motors, some idea of motor efficiency is necessary. The aggregate input in horsepower should then be multiplied by 2546 (Btu per horsepower hour). When motor efficiencies are not known, the data in Table 9 may be used.

N	Heat Gain in Btu per	Hour per Horsepower
NAMEPLATE RATING HORSEPOWER	Connected Load in Same Room	Connected Load Outside of Room
½ to ½ ½ to 3 3 to 20	4250 3700 2950	1700 1150 400

Table 9. Heat Generated by Motors

In the second group belong such appliances as coffee urns, gas ranges, steam tables, broilers, hot plates, etc. For heat generating capacities of such appliances refer to Table 10.

Considerable judgment must be followed in the use of data given in Table 10. Consideration must be given to time of day when appliances are used and the heat they contribute at time of peak load. Only those appliances in use at the time of the peak load need be considered. Consideration must also be given to the way appliances are installed, whether products of combustion are vented to a flue, whether they escape into the space to be conditioned, or whether appliances are hooded allowing part of the heat to escape through a stack. There are no generally accepted data available on the effects of venting and shielding heating appliances but it is believed that, when they are properly hooded with a positive fan exhaust system through the hood, 50 per cent of the heat will be carried away and 50 per cent dissipated in the space to be conditioned. Where latent as well as sensible heat is given off, it is usually safe to assume that all latent heat will be removed by a properly designed and operated vent or hood.

ILLUSTRATION

From the foregoing discussion it is obvious that the determination of the maximum cooling load is rather complicated by reason of the variable

¹¹Cooler Footcandles for Air Conditioning, by W. G. Darley (A.S.H.V.E. Transactions, Vol. 46, 1940, p. 367). Lighting and Air Conditioning Design Factors, Report of I. E. S.—A.S.H.V.E. Joint Committee on Lighting in Air Conditioning (A.S.H.V.E. Journal Section, Heating, Pring and Air Conditioning, September, 1941, p. 605). Lighting and Air Conditioning, by Howard M. Sharp (Heating and Ventilating, November, 1942, p. 35)

Table 10 Heat Gain from Various Sources^a

Source	PER CENT NAME- PLATE		ERCENTAGE TU PER HO	E OR DUR
	RATING	Sensible	Latent	Total
Electric Heating Equip	ment			
1 Electric Oven-Baking	70 20 30 50 80 100 75 70	80% 80% 1025 90% 80% 100% 	20°C 20°C 20°C 20°C 20°C 20°C 20°C 20°C	100% 100% 2050 100% 100% 100% 100% 100% 100% 100%
15. Hair Dryer in Beauty Parlor—600 w		2050 2050		2050
10. Fermanent Wave Machine in Beauty Parlot—24-25 w Omes.		2000		2050
Gas Burning Equipme	ntb			
17. Gas Heated Oven—Baking	70 35 50 100 70 60 10 60 42 75 52 70 49 	72% 100% 45% 50% 5000 3000 100% 550% 81% 90% 80% 2250 2250 180	28% 0%, 53%, 50%, 5000 3000 10%, 45%, 19%, 19%, 28%, 20%, 2500 2500 20	100% 100% 100% 100% 100% 1000 1000 1000
Steam Heated Equipme	entc			
31. Steam Heated Surface Not Polished—per Square Foot of Surface. 32. Steam Heated Surface Polished—per Square Foot of Surface. 33. Insulated Surface—per Square Foot. 34. Bare Pipes, Not Polished—per Square Foot of Surface. 35. Bare Pipes, Polished—per Square Foot of Surface. 36. Insulated Pipes—per Square Foot. 37. Coffee Urn—Large, 18 in Diam.—Single Drum. 38. Coffee Urn—Examel, 12 in Diam.—Single Drum. 39. Egg Boiler—per Egg Compartment		330 130 80 400 220 110 2000 1200 2500 300	0 0 0 0 0 0 2000 1200 2500 800	330 130 80 400 220 110 4000 2400 5000 1100
Miscellaneous		!		
41. Heat Liberated By Food per Person, as in a Restaurant		30 100	30 200	60 300

aHeat gain from electric or gas residential ranges or cooking stoves depends on size of the family, socio-economic status of the individual, time of day for principal meal, and whether the equipment is manually or automatically controlled Total heat gain will probably not exceed 40 per cent name-plate rating Per cent sensible and latent heat will depend upon use of equipment; dry heat; baking or boiling.

bName-plate ratings of gas burning equipment can be obtained from a Directory of Approved Gas Appliances and Listed Accessories, January 1, 1942, obtainable from American Gas Association Laboratories, Cleveland, Ohio.

cSteam Requirements of Process Equipment, Report of the Commercial Relations Committee, National District Heating Association (Heating, Piping and Air Conditioning, November, 1942, p. 675).

CHAPTER 7. COOLING LOAD

nature of contributing load components. An illustrative example will explain the method.

Example 1. Determine cooling load requirements for a clothing store illustrated in Fig. 4 and located in Pittsburgh, Pa., Latitude 40 deg. This is a one-story building located on a corner and it faces south and west. Assume building on east and north sides conditioned.

Wall construction, 8 in. hollow tile, 4 in. brick veneer, plaster on walls, U=0.33 (Table 4, Chapter 4, No. 38 B).

Roof construction, 2 in. concrete, $\frac{1}{2}$ in. rigid insulation, metal lath and plaster ceiling, U=0.26 (Table 11, Chapter 4, No. 2 J).

Floor, maple flooring on yellow pine, no ceiling below, U = 0.34 (Table 8, Chapter 4, No. 1 D).

Partition, wood lath and plaster on both sides of studding, U=0.34 (Table 6, Chapter 4, No. 77 B).

Show windows, provided with awnings and thin panel partition at rear.

Front doors, 2 ft 6 in. x 7 ft (glass paneled).

Side door, 3 ft x 7 ft (glass paneled), U = 1.13 (Table 13 A, Chapter 4).

Occupancy, 10 clerks, 40 patrons.

Lights, 4200 w.

Outside design conditions, dry-bulb 95 F; wet-bulb 75 F.

Inside design conditions, dry-bulb 80 F; wet-bulb 67 F.

Basement temperature, 85 F.

Store room temperature, 88 F.

Solution. It is obvious from the shape and exposure of this store and the large glass area on the west side that the maximum cooling load will occur during the afternoon when the sun is shining on the west wall. From Fig. 1, the peak load may be expected at 4:00 p.m.

The combined normal transmission and solar radiation transmission through the roof at 4:00 p. m. is obtained from Fig. 2. While none of the roofs in Fig. 2 is exactly like this one, roof C is similar. A heat flow of 11 Btu per square foot per hour was assumed,

Fig. 4. Plan Diagram of Clothing Store

slightly less than for roof C. The combined normal transmission and solar radiation transmission through the south and west walls at 4:00 p.m. is obtained from curves TS and TW in Fig. 3.

The normal heat transmission through the south glass, floor and partition is determined by application of Formula 1. Solar radiation transmission through the south glass can be neglected. The solar intensity I for the south side at 4:00 p.m. is 29. Applying a shade factor of 0.28, the calculated solar radiation transmission is 29 \times 0.28 = 8 Btu per square foot per hour which is less than the normal transmission; therefore the total heat gain can be taken as that due to normal transmission.

Solar radiation intensity on the west glass at 4:00 p.m. from Table 4 is 211 Btu per square foot per hour. As explained in the text, normal transmission can be neglected because it is small in comparison with solar radiation transmission.

To determine the heat gain from the outside air it is necessary first to determine the volume of the outside air to be introduced. Since the show windows are sealed so as not to permit infiltration and since there are only three doors in this store through which infiltration can take place, it is obvious that infiltration of air will be a negligible quantity. The volume of the store is 21,600 cu ft. Good practice indicates that in a store of this character there should be a minimum of from 1 to $1\frac{1}{2}$ outside air changes per hour. On a basis of $1\frac{1}{2}$ air changes the volume of outside air to be introduced would be 32,400 cfh. The minimum ventilation requirements as given in the CODE OF MINIMUM REQUIREMENTS FOR COMFORT AIR CONDITIONING 12 are 10 cfm per person. On this basis the ventilation requirements would be 30,000 cfh. Since this will produce approximately $1\frac{1}{2}$ outside air changes per hour, 30,000 cfh will be considered in this application.

To determine load imposed by occupants it will be found from Table 3, Chapter 2 that the average person standing at rest will dissipate 431 Btu per hour and that the moisture dissipated is 0.198 lb per hour.

To determine the latent heat load, the sum of the moisture evaporated from occupants and that to be removed from outside air is multiplied by the latent heat of evaporation at the temperature at which the moisture is condensed in the conditioner. Since outside air is positively introduced, a mixture of outside and recirculated air passes through the conditioner. To remove the moisture, the air must be cooled to a temperature below the dew-point of the mixture. To obtain an approximate value of the latent heat of evaporation, assume that the air is cooled to 55 F. At this temperature, $h_{\rm fg}=1062.7$ Btu per hour (steam table).

COMBINED NORMAL AND SOLAR RADIATION TRANSMISSION:

Surface	DIMENSIONS	Area Sq Ft	Btu per Hour per Sq Ft	BTU PER Hou r
S Wall W Wall Roof	(30 ft x 12 ft) - 155 (60 ft x 12 ft) - 321 60 ft x 30 ft	205 399 1800	3 2.5 11	615 998 19,800
Total				21,413

NORMAL TRANSMISSION:

Surface	DIMENSIONS	Area Sq Ft	U	TEMP. DIFF. DEG F	BTU PER HOUR
S Glass Floor N Partition	2 (2 ft 6 in. x 7 ft) + 2 (10 ft x 6 ft) 26 ft x 54 ft 30 ft x 12 ft	155 1404 360	1.13 0.34 0.34	15 5 8	2,627 2,387 979
Total					5,993

¹²Code of Minimum Requirements for Comfort Air Conditioning (A.S.H.V.E. Transactions, Vol. 44, 1938, p. 27). Reprints of this code are available at \$.10 a copy.

CHAPTER 7. COOLING LOAD

SOLAR RADIATION THROUGH GLASS:

W Glass.
$$A_G = 3 (14 \text{ ft} \times 6 \text{ ft}) + (8 \text{ ft} \times 6 \text{ ft}) + (3 \text{ ft} \times 7 \text{ ft}) = 321 \text{ sq ft}$$

 $H_{\rm G} = 321 \times 0.28 \times 211 = 18,965$ Btu per hour (Equation 2).

OUTSIDE AIR:

$$H = \frac{Q}{n} (h_0 - h_i) \text{ (Equation 3)}.$$

 $v = v_a + \mu v_{as}$ (Equation 17, Chapter 1).

 v_a = specific volume of dry air at 95 F = 13.97 cu ft per pound (Table 6, Chapter 1).

 $v_{\rm as}=$ difference between volume of saturated mixture and specific volume of dry air at 95 F = 0.82 cu ft per pound (Table 6, Chapter 1).

μ = per cent saturation at 95 F dry-bulb and 75 F wet-bulb = 38.4 per cent (by calculation, Chapter 1).

 $v = 13.97 + (0.384 \times 0.82) = 14.28$ cu ft per pound dry air.

 $h_0 = h_a + \mu h_{as}$ (Equation 19, Chapter 1).

 $h_a = \text{specific enthalpy of dry air at } 95 \text{ F} = 22.80 \text{ Btu per pound (Table 6, Chapter 1)}.$

 $h_{\rm as}=$ difference between enthalpy of saturated mixture and specific enthalpy of dry air at 95 F = 40.25 Btu per pound (Table 6, Chapter 1).

 $h_0 = 22.80 + (0.384 \times 40.25) = 38.26$ Btu per pound dry air.

 μ at 80 F dry-bulb and 67 F wet-bulb = 50.2 per cent (by calculation, Chapter 1).

 $h_{\rm i} = h_{\rm a} + \mu h_{\rm as} = 19.19 + (0.502 \times 24.32) = 31.40$ Btu per pound dry air (Table 6, Chapter 1).

 $H = \frac{30,000}{14.28}$ (38.26 - 31.40) = 14,410 Btu per hour.

 $W_{\rm o}=$ humidity ratio of outside air at 95 F and 75 F = 0.384 \times 0.03652 = 0.01402 lb water per pound dry air. (Equation 14, Chapter 1).

 W_i = humidity ratio of inside air at 80 F and 67 F = 0.502 \times 0.02221 = 0.01115 lb water per pound dry air. (Equation 14, Chapter 1).

Weight of water to be removed = $\frac{Q}{v}$ ($W_0 - W_i$) = $\frac{30,000}{14.28}$ (0.01402 - 0.01115) = 6.03 lb per hour.

OCCUPANTS:

 $50 \times 431 = 21,550$ Btu per hour.

 $50 \times 0.198 = 9.90$ lb water per hour evaporated.

LIGHTS:

 $4200 \times 3.413 = 14,335$ Btu per hour.

SUMMARY:

COMPONENT OF LOAD	Btu per Hour
Combined Normal and Solar Radiation Transmission	21,413 5,993 18,965 14,410 21,550 14,335
Total (Sensible and Latent Heat Gain)	96,666

LATENT HEAT:

Outside air 6.03 lb water per hour. Occupants 9.90 lb water per hour.

15.93 lb water per hour.

 $15.93 \times h_{\rm fg} = 15.93 \times 1062.7 = 16,929$ Btu per hour.

CONDITION LINE:

The condition line for this application may be determined from Equation 25 in Chapter 1 by taking the ratio of $96,666 \div 15.93 = 6070$ Btu per pound water. In this case, it crosses the saturation curve at a temperature for which the enthalpy h_s and the humidity ratio W_s satisfy the equation,

$$\frac{31.40 - h_{\rm s}}{0.01115 - W_{\rm s}} = 6070.$$

A trial-by-error computation gives a quick solution of 57.4 F, which can also be determined graphically on a Mollier chart. This is the apparatus dew-point as explained in Chapters 1 and 21.

REFRIGERATION LOAD:

Assuming 100 per cent saturation efficiency for the air conditioning apparatus, operation at the apparatus dew-point is possible. The thermodynamic properties involved in calculating the refrigeration required are:

	Inside Air	After Cooling	After Separating
t	80.0	57.4	57.4
lı	31.40	24.678	24.65
		0.01115	

The refrigeration required is 31.4-24.678=6.722 Btu per pound dry air. The total outside and recirculated dry air to be circulated through the air conditioning apparatus is $96,666 \div (31.40-24.65)=14,321$ lb per hour. Hence, the total refrigeration required or the cooling load is $14,321\times6.722=96,265$ Btu per hour, or $96,265\div12,000$ (Btu extracted per hour per ton of refrigeration) =8.02 tons.

The energy removed with the water eliminated is $14,321 \times (24.678 - 24.65) = 401$ Btu per hour. This plus the refrigeration accounts for the total removal of 96,265 + 401 = 96,666 Btu per hour as required.

Chapter 8

COMBUSTION AND FUELS

Principles of Combustion, Classification of Coals, Firing Methods for Coals, Firing Methods for Coke, Dustless Treatment of Coal, Classification of Oils, Combustion of Oil, Classification of Gas, Combustion of Gas

THE data given in the first part of this chapter are of general application to the various fuels used in domestic heating which are coal, coke, oil and gas. The choice of fuel is a question of dependability, cleanliness, fuel availability, economy, operating requirements and control.

FUNDAMENTAL PRINCIPLES OF COMBUSTION

Combustion may be defined as the chemical combination of a substance with oxygen with a resultant evolution of heat. The rate of combustion depends partly upon the specific rate of reaction of the combustible substance with oxygen and partly upon the rate at which oxygen is supplied and the surrounding conditions as they define the temperature.

Complete combustion is obtained when all of the combustible elements in the fuel are oxidized with all of the oxygen with which they can combine. All of the oxygen supplied may not be utilized.

Perfect combustion is defined as the result of supplying the required amount of oxygen for combination with all of the combustible elements of the fuel and utilizing all of the oxygen so supplied.

The oxygen required for the process of combustion is obtained from air which is a mechanical mixture of oxygen, nitrogen and small amounts of carbon dioxide, water vapor and inert gases. These inert gases are generally included with the nitrogen, and for engineering purposes the values given herewith may be used.

	By Volume Per Cent	By Weight Per Cent
Oxygen, O ₂	20.9	23.15
Nitrogen, N ₂	79 1	76.85

The combination of oxygen with the combustible elements and compounds of a fuel is in accordance with fixed laws. In the case of perfect combustion the reactions and resultant combinations are shown in Table 1.

The most important condition governing the process of combustion is temperature. It is necessary to bring a combustible substance to its

Table 1. General Data of Combustible Elements and Compounds

				づ 	CALORIFIC VALUE	LUE	Тнеокет	CAL OXYGEN	Theoretical Oxygen and Air Requirements	UREMENTS
Substance	Mole- cular Symbol	CHEMICAL REACTION OF COMBUSTION	Ignition Temperature ² Deg F	Btu per Lb		Btu per Cubic Foot	Lb per Lb	r Lb	Cubic Ft p	Cubic Ft per Cubic Ft
				Higher	Lower	Higher	02	Air	03	Aır
Carbon (to CO)	1	$2C + O_2 = 2CO$	1	4380	I	I	1.333	5.76	1	1
Carbon (to CO ₂)	ı	$2C + 2O_1 = 2CO_2$	ı	14540	ı	ı	2.667	11.52	1	ı
Sulphur	S	I	ı	ı	ı	1	1.000	4.32	ı	ı
Sulphur (to SO ₂)	ı	$S + O_2 = SO_2$	1	4050	1	1	ı	ı	l	i
Sulphur (to SO ₃)	1	$2S + 30_2 = 250_3$	1	5940	ı	l	ı	ı	!	1
Carbon monoxide	00	$2CO + O_2 = 2CO_2$	1166-1319	4380	i	342	0.572	2.46	0.5	2.391
Methane	$CH_{f 4}$	$CH_4 + 2O_2 = CO_1 + 2H_2O$	1202-1346	23850	21670	1073	4.000	17.28	2.0	9.564
Acetylene	C_2H_2	$2C_2H_2 + 5O_2 = 4CO_2 + 2H_2O$	763-824	21460	21020	1590	3.077	13.29	2.5	11.955
Ethylene	C_2H_4	$C_2H_4 + 3O_2 = 2CO_2 + 2H_2O$	986-1123	21450	20420	1675	3.429	14.81	3.0	14.346
Ethane	$C_2H_{\bf 6}$	$2C_2H_6 + 7O_2 = 4CO_2 + 6H_2O$	986-1123	22230	20500	1883	3.733	16.13	3.5	16.737
Hydrogen	$H_{\mathbf{i}}$	$2H_1 + O_2 = 2H_2O$	1063-1166	62000	52920	348	8.000	34.56	0.5	2.391
Hydrogen sulphide	S_2H	$2H_2S + 3O_2 = 2H_2O + 2SO_2$	299-608	I	ı	ı	1.412	6.10	1.5	7.173

⁴From International Critical Tables, 1927.

ignition temperature before it will unite in chemical combination with oxygen to produce combustion. The ignition temperatures for several of the combustible constituents of fuels are presented in Table 1.

HEAT OF COMBUSTION

As previously stated, the process of combustion results in the evolution of heat. The heat generated by the complete combustion of a unit of fuel is constant for a given combination of combustible elements and compounds, and is known as the *heat of combustion*, calorific value, or heating value of the fuel.

The heat of combustion of the several fuel elements and compounds in their *pure* state is given in Table 1.

The reaction of the carbon in the fuel with oxygen may result in the formation of carbon monoxide or carbon dioxide. In burning to carbon monoxide, the carbon is not completely oxidized and, as shown by the data, the heat produced is considerably less than if it were completely oxidized. This fact is of greatest importance in considering the efficiency of combustion.

The calorific value of a fuel is determined by direct measurement of the heat evolved during combustion in a calorimeter. Although the ash and moisture content of coal from a given mine or locality may vary widely, the heating value of the coal, on a *moisture and ash free* basis, remains relatively constant. It is therefore possible to approximate the heating value of a shipment of coal *as received* if its moisture and ash content are determined, and if the heating value of similar coal on a moisture and ash free basis is known. This may be calculated by Equation 1.

Heating value, as received =
$$\frac{\text{Heating value, moisture and ash free} \times [100 - (\text{Moisture + Ash})]}{100}$$
(1)

where, moisture and ash are expressed in per cent.

The heating values for Illinois coals are published¹ and it is to be expected that values for other coals will be available in the future.

As practically all fuels contain hydrogen they produce a certain amount of water vapor as one of the products of combustion. The amount of water vapor produced increases as the hydrogen content of the fuel increases. When the heating value of a fuel is determined in a calorimeter the water vapor is condensed and the latent heat of vaporization that is given up during the condensation is reported as a portion of the heat value of the fuel. The heat value so determined is termed the gross or higher heat value and this is what is ordinarily meant when the heating value of a fuel is specified. In burning the fuel, however, the products of combustion are not cooled to the dew-point and the higher heating value cannot be obtained.

FLAME

The appearance of the flame or products of combustion may serve as an approximate measure of the temperatures developed in the combustion

¹State Geological Survey Bulletin, No. 62, Classification and Selection of Illinois Coals

TARIF	2	FLAME	TEMPERATURE	DATA

Appearance of Flame	Temperature Deg F
Red, visible in daylight.	975
Light red	1832
Orange-red.	2012
Orange-yellow	2192
Yellow-white.	2372
Bright white	2550

process. The luminosity of a flame is caused by the heating to incandescence of unconsumed particles of combustible matter in the gases, and the higher the temperature of these particles the whiter the flame. Table 2 gives some approximate flame temperature data.

AIR AND COMBUSTION

The weight of air required for the perfect combustion of a pound of fuel may be determined by use of the ultimate analysis of the fuel as applied to Equations 2 to 4. The various elements are expressed in percentages by weight.

Solid and Liquid Fuels:

Pounds air required per pound fuel =
$$34.56 \left[\frac{C}{3} + \left(H - \frac{O}{8} \right) + \frac{S}{8} \right]$$
 (2)

Gaseous Fuels:

Pounds air required per pound fuel =
$$2.46 CO + 34.56 H_2 + 17.28 CH_4 + 13.29 C_2H_2 + 14.81 C_2H_4 + 16.13 C_2H_6 + 6.10 H_2S - 4.32 O_2$$
 (3)

When the analysis is given on a volumetric basis the equation is expressed as follows:

Cubic feet air required per cubic foot gas =
$$2.39 (CO + H_2) + 9.56 CH_4 + 11.98 C_2H_2 + 14.35 C_2H_4 + 16.74 C_2H_6 - 4.78 O_2$$
 (4)

Equations 5 and 6 may be used as approximate methods of determining the theoretical air requirement for any fuel.

Pounds air required per pound fuel =
$$0.755 \times \frac{\text{Heating value (Btu per pound)}}{1000}$$
 (5)

Cubic feet air required per unit fuel =
$$\frac{\text{Heating value (Btu per unit)}}{100}$$
 (6)

Approximate values for the theoretical air required for different fuels are given in Table 3.

It is customary to make use of the analysis of the products of combustion to determine the amount of flue gas produced and the actual amount of air supplied for combustion. The analysis of flue gases has been well described in various publications of the *Bureau of Mines* and in the literature and the details of Orsat manipulation need not be considered in this discussion. (See Chapter 35.)

The weight of dry flue gas per pound of fuel burned is used in combustion loss calculations and may be determined by Equation 7.

Pounds dry flue gas per pound fuel =
$$\frac{11 CO_2 + 8 O_2 + 7 (CO + N_2)}{3 (CO_2 + CO)} \times C$$
 (7)

Values for CO_2 , O_2 , CO and N_2 are percentages by volume from the flue gas analysis and C is the weight of carbon burned per pound of fuel corrected for carbon in the ash.

EXCESS AIR

Because the real measure of the efficiency of combustion is the relation existing between the amount of air theoretically required for *perfect* combustion and the amount of air actually supplied, a method of determining the latter factor is of value. Equation 8 will give reasonably accurate results, for most solid and liquid fuels, for determining the amount of air supplied per pound of fuel.

Pounds dry air supplied per pound of fuel =
$$\frac{3.036 \ N_2}{(CO_2 + CO)} \times C$$
 (8)

Values for CO_2 , CO and N are percentages by volume from the flue gas analysis and C is the weight of carbon burned per pound of fuel corrected for carbon in the ash.

The difference between the air actually supplied for combustion and the theoretical air required is known as excess air.

Per cent excess air =
$$\frac{\text{Air supplied - Theoretical air}}{\text{Theoretical air}}$$
 (9)

Since the calculation is usually made from Orsat readings, Equation 10 will be found to be a convenient statement of this relationship.

TABLE 3. THEORETICAL AIR REQUIREMENTS

Solid Fuel	POUNDS AIR PER POUND FUEL
Anthracite	11.2 10.3

Fuel Oil	Pounds Air Per Gallon Fuel
Commercial Standard No. 1	102.6 104.5 106.5 112.0 114.2

Gaseous Fuels	CUBIC FEET AIR PER CUBIC FOOT GAS
Natural gas	10.0 4.4 4.4 2.1 5.2

Per cent excess air =
$$\frac{100\left(O_2 - \frac{CO}{2}\right)}{N_2 \times 0.264 - \left(O_2 - \frac{CO}{2}\right)}$$
 (10)

In this formula the symbols represent volumetric percentages of the flue gas constituents as determined by analysis.

The amount of excess air in its relation to the percentage of CO_2 is shown by the curves in Fig. 1 for several fuels. These are approximate values. It should be noted that in hand-fired furnaces with long periods between firings the combustion goes through a cycle in each period and the quantity of excess air present varies.

Due to the different carbon-hydrogen ratios of the different fuels the maximum CO_2 attainable varies. Representative values for perfect combustion of several fuels are given in Table 4.

Fig. 1. Relation Between CO2 and Excess Air in Gases of Combustion

In considering the factor of excess air it should be noted that a deficiency of air supply will result in combustible products passing to the stack unburned. An excess of air absorbs heat from the products of combustion and results in a greater loss of sensible heat to the stack. An excess of air is always required, however, to eliminate combustible losses occasioned by poor mixing of the fuel and air. It is considered good practice, under usual operating conditions, to supply from 25 to 50 per cent excess air, dependent upon the fuel utilized.

SECONDARY AIR

When bituminous coal is hand-fired in a furnace the volatile matter in the fuel distills off leaving coke on the grate. The product of combustion of the coke is CO_2 and under certain conditions some CO may arise from the bed. The combustion of the volatile matter and the CO may amount to the liberation of from 40 to 60 per cent of the heat in the fuel in the combustion space over the fuel bed.

TABLE 4. MAXIMUM CO2 VALUES

FUEL	PER CENT CO2
Coke	21.0 20.2 18.2 15.5 12.0 11.0

The air that passes through the fuel bed is called *primary air* and the air that is admitted over the fuel bed in order to burn the volatile matter and *CO* is called *secondary air*.

This process of combustion is illustrated in Fig. 2^2 . The free oxygen of the air passes through the grate and the ash above it and burns the carbon in the lower three or four inches of the fuel bed forming carbon dioxide. This layer noted as the oxidizing zone is indicated by the symbols CO_2 and O_2 . Some of the carbon dioxide of the oxidizing zone is reduced to carbon monoxide in the upper layer of the fuel bed noted as the reducing zone and indicated by the symbols CO_2 and CO. The gases leaving the fuel

Fig 2. Combustion of Fuel in a Hand-Fired Furnace

bed are mainly carbon monoxide, carbon dioxide, nitrogen and very little free oxygen. Free oxygen is admitted through the firing door to burn carbon monoxide and the volatile combustible distilled from the freshly fired fuel.

The division of the total into primary and secondary air necessary to produce the same rate of burning and the same excess air depends on a number of factors which include size and type of fuel, depth of fuel bed, and size of fire-pot. The ratio of the secondary to the primary air increases with decrease in the size of the fuel pieces, with increase in the depth of the fuel bed, and with increase in the area of the fire-pot; the ratio also increases with increase in rate of burning.

Size of the fuel is a very important factor in fixing the quantity of secondary air required for non-caking coals. With caking coals it is not so important because small pieces fuse together and form large lumps. Fortunately a smaller size fuel gives more resistance to air flow through

From Bureau of Mines Technical Paper No. 80.

the fuel bed and thus automatically causes a larger draft above the fuel bed, which draws in more secondary air through the same slot openings. In spite of this, a small size fuel requires a larger opening of the door slots; for a certain size for each fuel no slot opening is required, and for larger sizes too much excess air gets through the fuel bed.

It is impossible to establish a single rule for the correct slot opening for all types and sizes of fuels and for all rates of burning. Furthermore, the effect of slot opening is dependent on whether the ashpit damper is open or closed. It is better to have too much than too little secondary air; the opening is too small if there is a puff of flame when the firing door is opened.

Fig. 3. Relative Amount of Fire Door Slot Opening Required in a Given Furnace to Give Equally Good Combustion for High Temperature Coke of Various Sizes when Burned at Various Rates

The relationship of the slot opening, for a domestic furnace, to the size of coke and the rate of burning is shown in Fig. 33. These openings are with the ashpit damper wide open, and would be less if the available draft permitted the damper to be partly closed. The same openings are satisfactory for anthracite.

Bituminous coals require a large amount of secondary air during the period subsequent to a firing in order to consume the gases and to reduce the smoke. The smoke produced is a good indicator, and that opening is best which reduces the smoke to a minimum. Too much secondary air will cool the gases below the ignition point, and prove harmful instead of beneficial. The following suggestions will be helpful:

- 1. In cold weather, with high combustion rates, the secondary air damper should be half open all the time.
- 2. In very mild weather, with a very low combustion rate, the secondary air damper should be closed all the time.
- 3. For temperatures between very mild and very cold, the secondary air damper should be in an intermediate position.

From Bureau of Mines Report of Investigations, No. 2980.

4. For ordinary house operation, secondary air is needed after each firing for about one hour.

In the field of domestic heating the use of secondary air in the combustion of oil is generally restricted to the larger semi-commercial types of oil burners used in large heating boilers. This factor is discussed in Chapter 10, Automatic Fuel Burning Equipment.

The air that is supplied around the flame in a domestic heating gas burner is considered as secondary air. As it is drawn into the appliance by natural draft action, the need for proper draft control is evident.

Draft Requirements

The draft required to effect a given rate of burning the fuel as measured at the smokehood is dependent on the following factors:

- 1. Kind and size of fuel.
- 2. Combustion rate per square foot of grate area per hour.
- 3. Thickness of fuel bed.
- 4. Type and amount of ash and clinker accumulation.
- 5. Amount of excess air present in the gases.
- 6. Resistance offered by the boiler passes to the flow of the gases.
- 7. Accumulation of soot in the passes.

Insufficient draft will necessitate additional manipulation of the fuel bed and more frequent cleanings to keep its resistance down. Insufficient draft also restricts the control by adjustment of the dampers.

The quantity of excess air present has a marked affect on the draft required to produce a given rate of burning. If the excess is caused by holes in the fuel bed or an extremely thin fuel bed it is often possible to produce a higher rate of burning by increasing the thickness of the bed. The thickness of the fuel bed should not, however, be increased too much because the increased draft resistance will reduce the rate of primary air supply and the rate of burning.

DRAFT REGULATION

Because of the varying heating load demands present in most installations it is necessary to vary the rate of fuel burning. The maintenance of the proper air supply for the various rates of burning is accomplished by regulation of the drafts. Correct and incorrect methods of draft regulation are shown in Fig. 4. The air enters through the ashpit draft door, firing door and by leaks in the setting, whereas the gases leave only through the uptake. By throttling the gases with the damper in the uptake all the air entering by each of the three intakes is reduced in the same proportion. If the ashpit draft door is closed the air admitted through the ashpit is reduced and increased through the other two intake openings.

Methods of control of draft conditions when burning oil or gas are noted in Chapter 10, Automatic Fuel Burning Equipment.

CLASSIFICATION OF COALS

The complex composition of coal makes it difficult to classify it into clear-cut types. Its chemical composition is some indication but coals

having the same chemical analysis may have distinctly different burning characteristics. Users are mainly interested in the available heat per pound of coal, in the handling and storing properties, and in the burning characteristics. A description of the relationship between the qualities of coals and these characteristics requires considerable space; a treatment applicable to heating boilers is given in *Bureau of Mines Bulletin* No. 276.

Coal composition may be expressed by either an *ultimate* or *proximate* analysis. In the ultimate analysis the proportions of carbon, hydrogen, oxygen, nitrogen, sulphur, and ash are determined. This form of analysis is difficult to make and is used only for extremely close studies. The proximate analysis is more easily made and is satisfactory for most purposes. In this analysis, the proportions of moisture, volatile matter, fixed carbon, and ash are determined. Moisture is obtained by noting the loss of weight of a sample of coal when dried at about 220 F. To

Fig. 4. Correct and Incorrect Methods of Draft Regulation in a Hand-Fired Furnace

determine volatile matter, the dried sample is heated to about 1750 F in a closed crucible, and the loss of weight is noted. The sample is then burned in an open crucible, and the accompanying loss of weight represents the fixed carbon. The unburned residue is ash. Although determined separately, the sulphur content is frequently reported with a proximate analysis.

Other important qualities of coals are the screen sizes, ash fusion temperature, friability, caking tendency, and the qualities of the volatile matter. In considering these factors the following points are of interest. The volatile products given off by coals when they are heated differ materially in the ratios by weight of the gases to the oils and tars. No heavy oils or tars are given off by anthracite, and very small quantities are given off by semi-anthracite. As the volatile matter in the coal increases to as much as 40 per cent of ash and moisture-free coal, increasing amounts of oils and tars are released. For coals of higher volatile content, the relative quantity of oils and tars decreases, so it is low in the sub-bituminous coals and in lignite. The percentage of ash and its fusion temperature do not indicate how the ash is distributed or how much of it is less fusible lumps of slate or shale.

A classification of coals is given in Table 5, and a brief description of the kinds of fuels is given in the following paragraphs, but it should be recognized that there are no distinct lines of demarcation between the kinds, and that they graduate into each other.

Anthracite is a clean, dense, hard coal which creates little dust in handling. It is comparatively hard to ignite but it burns freely when well started. It is non-caking, it burns uniformly and smokelessly with a short flame, and it requires no attention to the fuel bed between firings. It is capable of giving a high efficiency in the common types of handired furnaces. A tabulation of the quality of the various anthracite sizes will be found in Bureau of Mines Report of Investigations No. 3283.

Semi-anthracite has a higher volatile content than anthracite. It is not so hard and ignites somewhat more easily; otherwise its properties are similar to those of anthracite.

Semi-bituminous coal is soft and friable, and fines and dust are created by handling it. It ignites somewhat slowly and burns with a medium length of flame. Its caking properties increase as the volatile matter increases, but the coke formed is relatively weak.

Table 5. Classification of Coals by Rank^a
Legend: F.C. = Fixed Carbon. V.M. = Volatile Matter. Btu = British thermal units.

CLASS	Group	Limits of Fixed Carbon or Btu Mineral-Matter-Free Basis	REQUISITE PHYSICAL PROPERTIES
I. Anthracite	Meta-anthracite	Dry F.C., 98 per cent or more (Dry V.M., 2 per cent or less) Dry F.C., 92 per cent or more and less than 98 per cent (Dry V.M., 8 per cent or less and more than 2 per cent) Dry F.C., 86 per cent or more and less than 92 per cent (Dry V.M., 14 per cent or less and more than 8 per cent)	Non-agglomerating ⁵
II. Bituminous ² {	 Low volatile bituminous coal Medium volatile bituminous coal. High volatile A bituminous coal. High volatile B bituminous coal. High volatile C bituminous coal. 	V.M., more than 31 per cent); and moists Btu, 14,000s or more	Either agglomerating ^b or non-weathering ^f
III. Sub-bituminous	Sub-bituminous A coal	Moist Btu, 11,000 or more and less than 13,000. Moist Btu, 9500 or more and less than 11,000. Moist Btu, 8300 or more and less than 9500.	Both weathering and non-agglomerating ^b
IV. Lignitic	1. Lignite 2. Brown coal	Moist Btu less than 8300 Moist Btu less than 8300	Consolidated Unconsolidated

^aThis classification does not include a few coals which have unusual physical and chemical properties and which come within the limits of fixed carbon or Btu of the high-volatile bituminous and sub-bituminous ranks. All of these coals either contain less than 48 per cent dry, mineral-matter-free fixed carbon or have more than 15,500 moist, mineral-matter-free Btu.

bIf agglomerating, classify in low-volatile group of the bituminous class

Moist Btu refers to coal containing its natural bed moisture but not including visible water on the surface of the coal.

dIt is recognized that there may be non-caking varieties in each group of the bituminous class.

^{*}Coals having 69 per cent or more fixed carbon on the dry, mineral-matter-free basis shall be classified according to fixed carbon, regardless of Btu.

There are three varieties of coal in the High-volatile C bituminous coal group, namely, Variety 1, agglomerating and non-weathering; Variety 2, agglomerating and weathering; Variety 3, non-agglomerating and non-weathering.

Adapted from A.S T.M. Standards, 1937, Supplement, p. 145, American Society for Testing Materials Philadelphia.

Having only half the volatile matter content of the more abundant bituminous coals it can be burned with less production of smoke, and it is sometimes called *smokeless coal*.

The term bituminous coal covers a large range of coals and includes many types having distinctly different composition, properties, and burning characteristics. The coals range from the high-grade bituminous coals of the East to the poorer coals of the West. Their caking properties range from coals which completely melt, to those from which the volatiles and tars are distilled without change of form, so that they are classed as non-caking or free-burning. Most bituminous coals are strong and non-friable enough to permit of the screened sizes being delivered free from fines. In general, they ignite easily and burn freely; the length of flame varies with different coals, but it is long. Much smoke and soot are possible especially at low rates of burning.

Sub-bituminous coals occur in the western states; they are high in moisture when mined and tend to break up as they dry or when exposed to the weather; they are liable to ignite spontaneously when piled or stored. They ignite easily and quickly and have a medium length flame, are non-caking and free-burning; the lumps tend to break into small pieces if poked; very little smoke and soot are formed.

Lignite is of woody structure, very high in moisture as mined, and of low heating value; it is clean to handle. It has a greater tendency than the sub-bituminous coals to disintegrate as it dries, and it also is more liable to spontaneous ignition. Freshly mined lignite, because of its high moisture, ignites slowly. It is non-caking. The char left after the moisture and volatile matter are driven off burns very easily, like charcoal. The lumps tend to break up in the fuel bed and pieces of char falling into the ashpit continue to burn. Very little smoke or soot is formed.

It is often desirable to learn about the properties of a coal, such as the various items noted in the discussion of proximate analyses. As a guide for the consumer as to the expected characteristics of coals several commercial publications are available and numerous reports of the *Bureau of Mines* discuss the coals produced in individual state areas.

CLASSIFICATION OF COKES

Coke is produced by the distillation of the volatile matter from coal. The type of coke depends on the coal or mixture of coals used, the temperatures and time of distillation and, to some extent, on the type of retort or oven; coke is also produced as a residue from the destructive distillation of oil.

High-temperature cokes. Coke as usually available is of the high-temperature type, and contains between 1 and 2 per cent volatile matter. High-temperature cokes are subdivided into beehive coke of which comparatively little is now sold for domestic use, by-product coke, which covers the greater part of the coke sold, and gas-house coke. The differences among these three cokes are relatively small; their denseness and hardness decrease and friability increases in the order named. In general, the lighter and more friable cokes ignite and burn the more easily.

Low-temperature cokes are produced at low coking temperatures, and only a portion of the volatile matter is distilled off. Cokes as made by various processes under development have contained from 10 to 15 per cent volatile matter. In general, these cokes ignite and burn more readily than high-temperature cokes. The properties of various low-temperature cokes may differ more than those of the various high-temperature cokes because of the differences in the quantities of volatile matter and because some may be light and others briquetted.

Petroleum cokes, which are obtained by coking the residue left from the distillation of petroleum, vary in the amount of volatile matter they contain, but all have the common property of a very low ash content, which necessitates the use of refractory pieces to protect the grates from being burned.

FIRING METHODS FOR ANTHRACITE 4

An anthracite fire should never be poked or disturbed, as this serves to bring ash to the surface of the fuel bed where it may melt into clinker.

See reports published by Anthracite Industries Laboratory, Primos, Delaware County, Pennsylvania

Egg size is suitable for large fire-pots (grates 24 in. and over) if the fuel can be fired at least 16 in. deep. The air spaces between the pieces of coal are large, and for best results this coal should be fired deeply.

Stove size coal is the proper size of anthracite for many boilers and furnaces used for heating buildings. It burns well on grates at least 16 in. in diameter and 12 in. deep. The only instructions needed for burning this type of fuel are that the grate should be shaken daily, the fire should never be poked or disturbed, and the fuel should be fired deeply and uniformly.

Chestnut size coal is in demand for fire-pots up to 20 in. in diameter, with a depth of from 10 to 15 in.

Pea size coal is often an economical fuel to burn. It is relatively low in price. When fired carefully, pea coal can be burned on standard grates. Care should be taken to shake the grates only until the first bright coals begin to fall through the grates. The fuel bed, after a new fire has been built, should be increased in thickness by the addition of small charges until it is at least level with the sill of the fire-door. This keeps a bed of ignited coal in readiness against the time when a sudden demand for heat shall be made on the heater. A satisfactory method of firing pea coal consists of drawing the red coals toward the front end and piling fresh fuel toward the back of the fire-box.

Pea size coal requires a strong draft and therefore the best results generally will be obtained by keeping the choke damper open and regulating solely by means of the cold air check and the air inlet damper. As a precaution against clinker, it is well to adjust the air inlet damper so that it can never be completely closed under any operating conditions.

Buckwheat size coal for best results requires more attention than pea size coal, and in addition the smaller size of the fuel makes it more difficult to burn on ordinary grates. Greater care must be taken in shaking the grates than with the pea coal on account of the danger of the fuel falling through the grate. In house heating furnaces the coal should be fired lightly and more frequently than pea coal. When banking a buckwheat coal fire it is advisable after coaling to expose a small spot of hot fire by putting a straight poker down through the bed of fresh coal. This will serve to ignite the gas that will be distilled from the fresh coal and prevent delayed ignition within the fire-pot, which in some cases, depending upon the thickness of the bed of fresh coal, is severe enough to blow open the doors and dampers of the furnace. Where frequent attention can be given and care exercised in manipulation of the grates this fuel can be burned satisfactorily without the aid of any special equipment.

In general it will be found more satisfactory with buckwheat coal to maintain a uniform heat output and consequently to keep the system warm all the time, rather than to allow the system to cool off at times and then to attempt to burn the fuel at a high rate while warming up. A uniform low fire will minimize the clinker formation and keep the clinker in an easily broken up condition so that it readily can be shaken through the grate.

Forced draft and small mesh grates are frequently used for burning buckwheat anthracite. For greater convenience, domestic stokers are used.

Buckwheat anthracite No. 2, or rice size, is used principally in stokers of the domestic, commercial and industrial type. No. 3 buckwheat anthracite, or barley, has no application in domestic heating.

The Anthracite Institute Standards of sizing are shown in Table 6 taken from Anthracite Industries Manual, Report No. 2403.

FIRING METHODS FOR BITUMINOUS COAL

Bituminous coal should never be fired over the entire fuel bed at one time. A portion of the glowing fuel should always be left exposed to ignite the gases leaving the fresh charge.

Air should be admitted over the fire through a special secondary air device, or through a slide in the fire-door or by opening the fire-door slightly. If the quantity of air admitted is too great the gases will be cooled below the ignition temperature and will fail to burn. The fireman

Classification	COAL SIZE, INCHES			
Egg	Through 3-14 Through 2-7/6 Through 1-5/8 Through 1-8/16 Through 9/16	Over 2-7/16 Over 1-5/8 Over 13/16 Over 9/16 Over 5/16		

TABLE 6. ANTHRACITE STANDARDS

can judge the quantity of air to admit by noting when the air supplied is just sufficient to make the gases burn rapidly and smokelessly above the fuel bed.

The red fuel in the fire-box, before firing, excepting only a shallow layer of coke on the grate, should be pushed to one side or forward or backward to form a hollow in which to throw the fresh fuel. Some manufacturers recommend that all red fuel be pushed to the rear of the fire-box and that the fresh fuel be fired directly on the grate and allowed to ignite from the top. The object of this is to reduce the early rapid distillation of gases and to reduce the quantity of secondary air required for smokeless combustion.

It is well to have the bright fuel in the fire-box so placed that the gases from the freshly fired fuel, mixed with the air over the fuel bed, pass over the bed of bright fuel on the way to the flues. The bed of bright fuel then supplies the heat to raise the mixture of air and gas to the ignition temperature, thereby causing the gaseous matter to burn and preventing the formation of smoke.

The importance of firing bituminous coal in small quantities at short intervals is discussed in the *U. S. Bureau of Mines Technical Paper*, No. 80. Better combustion is obtained by this method in that the fuel supply is maintained more nearly proportional to the air supply.

This is demonstrated in Fig. 5 where diagram A shows the air supply and the distillation of the volatile combustible when the firings are 5 min apart; and diagram B indicates the same relationships when the firings are 15 min apart. In both cases the amount of coal fired per hour and the

weight of volatile combustible distilled from the coal are the same. This weight of volatile combustible is represented by the shaded area under the saw-tooth curve. The horizontal dotted lines represent the constant air supply sufficient to burn the volatile matter represented by the shaded areas under each line. The shaded areas above each horizontal line represent for each air supply the loss from incomplete combustion of the volatile matter. The clear area under each horizontal line represents the loss from excessive air. As the air supply increases the loss from incomplete combustion decreases but the loss from excessive air becomes larger. The sum of the two losses is the least when the air supply is introduced as noted by the average line. It is evident that the sum of the losses for

Fig. 5. Relation of Rate of Distillation of Volatile Matter and Necessary Air Supply

the average air supply is much larger in diagram B than in A which would indicate that small and frequent firings are better than large firings at long intervals.

If the coal is of the caking kind the fresh charge will fuse into one solid mass which can be broken up with the stoking bar and leveled from 20 min to one hour after firing, depending on the temperature of the fire-box. Care should be exercised when stoking not to bring the bar up to the surface of the fuel as this will tend to bring ash into the high temperature zone at the top of the fire, where it will melt and form clinker. The stoking bar should be kept as near the grate as possible and should be raised only enough to break up the fuel. With fuels requiring stoking it may not be necessary to shake the grates, as the ash is usually dislodged during stoking.

It is acknowledged that it may be difficult to apply the outlined

nethods to domestic heating boilers of small size, especially when frequent attendance is impractical. The adherence to these methods insofar as practical, however, will result in better combustion.

The output obtained from any heater with bituminous coal will usually exceed that obtainable with anthracite, since bituminous coal burns more rapidly than anthracite and with less draft. Bituminous coal, however, will require frequent attention to the fuel bed, because it burns unevenly, even though the fuel bed may be level, forming holes in the fire which admit too much air, chilling the gases over the fuel bed and reducing the available draft.

FIRING METHODS FOR SEMI-BITUMINOUS COAL

The *Pocahontas Operators Association* recommends the central cone method of firing, in which the coal is heaped on to the center of the bed forming a cone the top of which should be level with the middle of the firing door. This allows the larger lumps to fall to the sides, and the fines to remain in the center and be coked. The poking should be limited to breaking down the coke without stirring, and to gently rocking the grates. It is recommended that the slides in the firing door be kept closed, as the thinner fuel bed around the sides allows enough air to get through.

FIRING METHODS FOR COKE

Coke ignites less readily than bituminous coal and more readily than anthracite and burns rapidly with little draft. In order to control the air admitted to the fuel it is very important that all openings or leaks into the ashpit be closed tightly. A coke fire responds rapidly to the opening of the dampers. This is an advantage in warming up the system, but it also makes it necessary to watch the dampers more closely in order to prevent the fire from burning too rapidly. In order to obtain the same interval of attention as with other fuels a deep fuel bed always should be maintained when burning coke. The grates should be shaken only slightly in mild weather and should be shaken only until the first red particles drop from the grates in cold weather. The best size of coke for general use, for small fire-pots where the fuel depth is not over 20 in., is that which passes over a 1 in. screen and through a 1½ in. screen. For large fire-pots where the fuel can be fired over 20 in. deep, coke which passes over a 1 in. screen and through a 3 in. screen can be used, but a coke of uniform size is always more satisfactory. Large sizes of coke should be either mixed with fine sizes or broken up before using.

PULVERIZED COAL

Although several pulverized coal burning units for domestic heating plant firing have been developed, none has attained extended use. Two general methods of adaptation have been employed, one where the coal is pulverized by the unit at the furnace and one where the coal is delivered to the home in pulverized form.

FURNACE VOLUME

The principal requirements for a hand-fired furnace are that it shall have enough grate area and correctly proportioned combustion space. The

amount of grate area required is dependent upon the desired combustion rate.

The furnace volume is influenced by the kind of coal used. Bituminous coals, on account of their long-flaming characteristic, require more space in which to burn the gases of combustion completely than do the coals low in volatile matter. For burning high volatile coals provision should be made for mixing the combustible gases thoroughly, so that combustion is complete before the gases come in contact with the relatively cool heating surfaces. An abrupt change in the direction of flow tends to mix the gases of combustion more thoroughly. Anthracite requires practically no combustion space.

DUSTLESS TREATMENT OF COAL

The practice of treating the more friable coals to allay the dust they create is increasing. The coal is sprayed with petroleum products, particularly the lighter oils, a solution of calcium chloride or a mixture of calcium and magnesium chlorides. The latter salts are very hygroscopic and their moisture under normal atmospheric conditions keeps the surface of the coal damp, thus reducing the dust during delivery in the cellar, and obviating the necessity of sprinkling the coal in the bin.

The coal is usually treated at the mine, but sometimes by the local distributor just before delivery. The salt solutions are sprayed under high pressure, using from 2 to 4 gal or from 5 to 10 lb of the salt per ton of coal, depending on its friability and size. Oil for the dustless treatment of coal is also applied under high pressure, in concentrations of 1 to 8 qt per ton of coal, depending upon the characteristics of the coal and oil.

CLASSIFICATION OF OILS

The Commercial Standard Specifications for Fuel Oils (CS 12-40) of the *U. S. Department of Commerce* are given in Table 7. These specifications conform with *American Society for Testing Materials* Tentative Specifications for Fuel Oils D396-38T.

The specific gravity of oil is of interest in its relationship to the calorific value and these data are given in Table 8.

COMBUSTION OF OIL

With oil, as with any kind of fuel, efficient heat production requires that all combustible matter in the fuel shall be completely consumed and that it shall be done with a minimum of excess air. The combustion of oil is a rather rapid chemical reaction. Excess air provides an over supply of oxygen so that all of the oil, composed of carbon and hydrogen, will be completely oxidized and thus produce all the heat possible. The use of unreasonable quantities of air in excess of theoretical combustion requirements results in lowered efficiencies due to increased stack losses. Such losses, if not accompanied by unburned products of combustion (saturated and unsaturated hydrocarbons, hydrogen, etc.) may be offset somewhat by increasing the secondary heating surfaces of the heat absorbing medium boiler or furnace.

Oil is a highly concentrated fuel composed mainly of hydrogen and

FUEL OILS	
FOR	
REQUIREMENTS	,
DETAILED	
TABLE 7.	
-	•

	TABL		ייייייייייייייייייייייייייייייייייייייי	מארו תה	Abbe to Delained regularies									
	Fias	щ	Pour	WATER	Санвои	ASH	Distr	LLATION T DEC	Distillation Temperatures Deg F	TRES	Vis	Viscosity Seconds	ECONDS	
Grade	Foint Deg F	FÆ.	Point Deg F	Sediment Per Cent	Per Cent		Per Cent Point	90 Per Cent Point	ent 1t	End Point	Saybolt Universal at 100 F	SRal F	Saybolt Furol at 122 F	#_F
,	Mın.	Max.	Max	Max.	Max.	Max	Max.	Max.	Min.	Max	Max	Mın.	Max	Min.
No. 1 Fuel oil—a distillate oil for use in burners requiring a volatile fuel.	or Legal	165	0,	Trace	0.05 on 10% Residuum ⁴		410			560				
No. 2 Fuel oil—a distillate oil for use in burners requiring a moderately volatile fuel.	or Legal	190	10°	0.05	0.25 on 10% Residuum ^f		440	009			İ			
No. 3 Fuel oil—a distillate oil for use in burners requiring a low viscosity fuel.	or Or Legal	230	20°	0.10	0.15 Straight			675	600°		45			
No. 5 Fuel oil—an oil for use in burners requiring a medium viscosity fuel.	130 or Legal			1.00		0.10						20	40	
No. 6 Fuel oil—an oil for use in burners equipped with preheaters permitting a high viscosity fuel.	150		n w av destron n	2.004									300	45
a Baccarizing the necessity for low sulphir fire oils used in connection with heat-	nel orla use	d in conn	ection w	nth heat-	Lower or higher pour points may be specified whenever required by conditions	gher po	ur point	s may be	specifie	d whene	ver req	uired b	y cond	itions

4Recognizing the necessity for low sulphur fuel oils used in connection with heat-treatment, non-ferrous metal, glass and ceramic furnaces and other special uses, a sulphur requirement may be specified in accordance with the following table: GRADE OF FUEL OIL

buyer and seller.

lift is the intent of these classifications that failure to meet any requirement of a lift is the intent of these classifications that given grade does not automatically place an oil in the next lower grade unless in fact it meets all requirements of the lower grade.

Lower or higher pour points may be specified whenever required by conditions of storage or use. However, these specifications shall not require a pour point lower than 0 F under any conditions. The first bear of the constant seeke type blue flame burners carbon residue on 10 per cent residuum may be increased to a maximum of 0.12 per cent. This limit may be

specified by mutual agreement between the buyer and seller.
The maximum end point may be increased to 590 F when used in burners other than sieve type blue flame burners.
To meet certain burner requirements the carbon residue limit may be reduced to 0.15 per cent on 10 per cent residuum.

The minimum distillation temperature of 600 F for 90 per cent may be waived if A.P. I gravity is 26 or lower Awater by distillation, plus sediment by extraction. Sum, maximum 2.0 per cent. The maximum sediment by extraction shall not exceed 0.50 per cent. A deduction in quantity shall be made for all water and sediment in excess of 1.0 per cent.

carbon. In its liquid form oil cannot burn. It must be converted into a gas or vapor by some means. If the excess air is to be kept within efficient limits it means that air must be supplied in carefully regulated quantities. The air and oil vapor must be vigorously mixed to get a rapid and complete chemical reaction. The better the mixing, the less excess air will be needed. The combustion must take place in a space that maintains the temperatures high so the reaction will not be stopped before completion. When equipped with a means of igniting the oil, and safety devices to guard against mishaps, the oil burner becomes efficient and automatic.

CLASSIFICATION OF GAS

Gas is broadly classified as being either natural or manufactured. Natural gas is a mechanical mixture of several combustible and inert gases rather than a chemical compound. Manufactured gas as dis-

Commercial Standard No.	Approximate Gravity, Range Baume	Calorific Value Btu Per Gallon
1	38-40	136,000
2	34-36	138,500
3	28-32	141,000
5	18-22	148,500
6	14-16	152,000

Table 8. Approximate Gravity and Calorific Value of Standard Grades of Fuel Oil

tributed is usually a combination of certain proportions of gases produced by two or more processes. Representative properties of gaseous fuels commonly used in domestic heating are presented in Table 9.

Natural gas is the richest of the gases and contains from 80 to 95 per cent methane, with small percentages of the other combustible hydrocarbons. In addition, it contains from 0.5 to 5.0 per cent of CO_2 , and from 1 to 12 or 14 per cent of nitrogen. The heat value varies from 1000 to 1200 Btu per cubic foot, the majority of natural gases averaging about 1000 Btu per cubic foot. Table 9 shows typical values for the four main oil fields, although values from any one field vary materially.

Table 9 also gives the calorific values of the more common types of manufactured gas. Most states have legislation which controls the distribution of gas and fixes a minimum limit to its heat content. The gross or higher calorific value usually ranges between 520 and 545 Btu per cubic foot, with an average of 535. A given heat value may be maintained and yet leave considerable latitude in the composition of the gas so that as distributed the composition is not necessarily the same in different districts, nor at successive times in the same district. However, in any community the variations in gas composition are held within suitable limits so that the performance of approved gas appliances will not be adversely affected.

COMBUSTION OF GAS

The majority of gas burners utilized in central domestic heating plants are of the Bunsen type and operate with a non-luminous flame. In this

Table 9. Representative Properties of Gaseous Fuels. Based on Gas at 60 F and 30 in. Hg.

Gab	BTU PER	Cu Fr			Pro	DUCTS OF	Сомвиз	TION	THEORETICAL
Val	High	SPECIFIC AIR REQUIRED GRAVITT, FOR COMBUS-		Cubic Feet			ULTI- WATE	FLAME TEM- PERATURE,	
	(Gross)	(Net)	1.00	(Cv Fr)	CO ₂	H ₂ O	Total with No	CO ₂ Dry Basis	(DEG F)
Natural gas— California	1200	1087	0.67	11.26	1.24	2.24	12.4	12.2	3610
Natural gas— Mid-Conti- nental	967	873	0.57	9.17	0.97	1.92	10.2	11.7	3580
Natural gas— Ohio	1130	1025	0.65	10.70	1.17	2.16	11.8	12.1	3600
Natural gas— Pennsylvania	1232	1120	0.71	11.70	1.30	2.29	12.9	12.3	3620
Retort coal gas	575	510	0.42	5.00	0.50	1.21	5.7	11.2	3665
Coke oven gas	588	521	0.42	5.19	0.51	1.25	5.9	11.0	3660
Carbureted water gas	536	496	0.65	4.37	0.74	0.75	5.0	17.2	3815
Blue water gas	308	281	0.53	2.26	0.46	0.51	2.8	22.3	3800
Anthracite pro- ducer gas	134	124	0.85	1.05	0.33	0.19	1.9	19.0	3000
Bituminous producer gas	150	140	0.86	1.24	0.35	0.19	2.0	19.0	3160
Oil gas	575	510	0.35	4.91	0.47	1.21	5.6	10.7	3725

type of burner part of the air required for combustion is mixed with the gas as primary air, the air and gas mixture being fed to the burner ports. Additional secondary air is introduced around the flame by draft inspiration. In the luminous flame burner, which is sometimes used, all of the air for combustion is brought in contact with the flame as secondary air. The importance of bringing the secondary air into intimate contact with the gas is noted.

Some makes of burners use radiants or refractories to convert some of the energy in the gas to radiant heat. The radiants also serve as baffles in directing the flow of the products of combustion.

The quantity of air given in Table 9 is that required for theoretical combustion, but with a properly designed and installed burner the excess air can be kept low. The division of the air into primary and secondary is a matter of burner design and the pressure of gas available, and also of the type of flame desired.

The air gas ratio has a decided effect upon flame propagation. It is necessary that the gas will flow out of the burner ports fast enough so that the flame cannot travel back into the burner head, i.e. flash back, but the velocity must not be so high that it blows the flame away from the port.

The maximum and minimum flow speeds from burner ports which may be permitted are known to be very close together when air-gas mixtures in theoretical proportions are being supplied to the burner. As the air-gas ratio is lowered, and the mixture becomes more gas rich, the limiting speeds become further apart, until with 100 per cent gas, in an all-yellow flame, flash back cannot occur and a much higher velocity is needed to blow off the flames.

SOOT

The deposit of soot on the flue surfaces of a boiler or heater acts as an insulating layer over the surface and reduces the heat transmission to the water or air. The Bureau of Mines Report of Investigations No. 3272 shows that the loss of seasonal efficiency is not as great as has been believed and usually is not over 6 per cent because the greater part of the heat is transmitted through the combustion chamber surfaces. The Bureau of Standards Report BMS 54 points out that, although the decrease in efficiency of an oil fired boiler due to soot deposits is relatively small the attendant increase in stack temperature may become excessive.

The soot accumulation clogs the passages and reduces the draft; the loss of efficiency from this action may be considerably greater than from the reduction in heat transfer.

REFERENCES

Fuels and Their Combustion, Haslam and Russell (McGraw-Hill Co., 1926).

Principles of Combustion in the Steam Boiler Furnace, Arthur D. Pratt, (Babcock and Wilcox Co.).

Smoke-Producing Tendencies in Coals of Various Ranks, by H. J. Rose and F. P. Lasseter (A.S.H.V.E. Transactions, Vol. 45, 1939, p. 329).

Bureau of Mines Publications:

Bulletin No. 97, Sampling and Analyzing Flue Gases, by Henry Kreisinger and F. K. Ovitz.

Report of Investigations (R.I. 2980), Coke as a Domestic Heating Fuel, by P. Nicholls and B. A. Landry.

Bulletin No. 276, Five Hundred Tests of Various Coals in House-heating Boilers, by P. Nicholls, S. B. Flagg and C. E. Augustine.

Report of Investigations (R.I. 3283), Quality of Anthracite as Prepared at Breakers, 1935.

Technical Paper No 80, Hand Firing Soft Coal under Power-Plant Boilers, by Henry Kreisinger.

Technical Paper No. 303, Value of Coke, Anthracite, and Bituminous Coal for Generating Steam in a Low-pressure Cast-iron Boiler, by John Blizard, James Neil and F. C. Houghten.

National Bureau of Standards Publication:

Report BMS 54, Effect of Soot on the Rating of an Oil-Fired Heating Boiler, by R. S. Dill and P. R. Achenbach.

Anthracite Industries Laboratories Publications:

Report 2015, Comparison of Sizes, Egg, Stove and Chestnut Anthracite.

Report 2018, Domestic Survey.

Report 2062, Utilization of Anthracite for Domestic Heating.

Report 2204, The Crater Method of Firing.

Report 2403, Anthracite Industries Manual.

An Experimental Investigation of the Use of Oil for the Treatment of Coal, by Ralph A. Sherman and J. M. Pilcher (A.S.M.E. Transactions, February, 1938).

Handbook of Oil Burning, by Harry F. Tapp, American Oil Burner Association.

Industrial Gas Series, Combustion, American Gas Association.

Comfort Heating, American Gas Association.

Tests of Gas Home-Heating Equipment, by R. B. Leckie and C. H. B. Hotchkiss (Purdue University, Engineering Bulletin Research Series No. 36).

Chapter 9

CHIMNEYS AND DRAFT CALCULATIONS

Natural Draft, Mechanical Draft, Draft Control, Characteristics of Natural Draft Chimneys, Determining Chimney Sizes, General Equation, Domestic Chimneys, Construction Details, Chimneys for Gas Heating

PRAFT, in general, may be defined as the pressure difference between the atmospheric pressure and that at any part of an installation through which the gases flow. Since a pressure difference implies a head, draft is a static force. While no element of motion is inferred, yet motion in the form of circulation of gases throughout an entire boiler plant installation is the direct result of draft. This motion is due to the pressure difference, or unbalanced pressure, which compels the gases to flow. Draft is often classified into two kinds according to whether it is created thermally or artificially, such as, (1) natural or thermal draft, and (2) artificial or mechanical draft.

Natural Draft

Natural draft is the difference in pressure produced by the difference in weight between the relatively hot gases inside a natural draft chimney and an equivalent column of the cooler outside air, or atmosphere. Natural draft, in other words, is an unbalanced pressure produced thermally by a natural draft chimney as the pressure transformer and a temperature difference. The intensity of natural draft depends, for the most part, upon the height of the chimney above the grate bar level and also the temperature difference between the chimney gases and the atmosphere.

A typical natural draft system consists essentially of a relatively tall chimney built of steel, brick, or reinforced concrete, operating with the relatively hot gases which have passed through the boilers and accessories and from which all the heat has not been extracted. Hot gases are an essential element in the operation of a natural draft system, although inherently a heat balance loss.

A natural draft chimney performs the two-fold service of assisting in the creation of draft by aspiration and also of discharging the gases at an elevation sufficient to prevent them from becoming a nuisance.

Natural draft is quite advantageous in installations where the total loss of draft due to resistances is relatively low and also in plants which have practically a constant load and whose boilers are seldom operated above their normal rating. Natural draft systems have been, and are still being,

employed in the operation of large plants during the periods when the boilers are operated only up to their normal rating. When the rate of operation is increased above the normal rating, some form of mechanical draft is employed as an auxiliary to overcome the increased resistances or draft losses. Natural draft systems are used almost exclusively in the smaller size plants where the amount of gases generated is relatively small and it would be expensive to install and operate a mechanical draft system.

The principal advantages of natural draft systems may be summarized as follows: (1) simplicity, (2) reliability, (3) freedom from mechanical parts, (4) low cost of maintenance, (5) relatively long life, (6) relatively low depreciation, and (7) no power required to operate. The principal

Fig. 1. Diagram of Venturi Ejector

disadvantages are: (1) lack of flexibility, (2) irregularity, (3) affected by surroundings, and (4) affected by temperature changes.

Mechanical Draft

Artificial draft, or mechanical draft, as it is more commonly called, is a difference in pressure produced either directly or indirectly by a forced draft fan, an induced draft fan, or a Venturi chimney as the pressure transformer. The intensity of mechanical draft is dependent for the most part upon the size of the fan and the speed at which it is operated. The element of temperature does not enter into the creation of mechanical draft and therefore its intensity, unlike natural draft, is independent of the temperature of the gases and the atmosphere. The purpose of any mechanical draft system is to produce a difference in pressure between the point at which the air for combustion enters the boiler and the point at which the products of combustion leave the boiler. Such systems include the blower or fan type which produces a plenum or pressure above that

of the atmosphere under the fire and the exhaust fan and Venturi types which produce a partial vacuum that is minimum under the fire, and maximum at the point of exit of the products of combustion from the boiler. The latter types are known as induced draft systems. A mechanical draft system called a Venturi ejector¹ is illustrated in Fig. 1, in which the blower forces air, taken from the outside, through a Venturi tube which draws the gases from the furnace, boiler or hood. With this system, the hot or corrosive gases do not come in contact with the blower. A mechanical draft system may be used either in conjunction with, or as an adjunct to, a natural draft system.

Draft Control

To obtain the maximum efficiency of combustion, a definite minimum supply of air to the combustion chamber must be maintained. To pro-

FIG. 2. GENERAL OPERATING CHARACTERISTICS OF TYPICAL INDUCED DRAFT FAN

vide this condition, it is necessary to have some automatic mechanical means of draft control or adjustment, because of variable wind velocities, fluctuations in atmospheric temperatures and barometric pressures, each of which has an effect upon draft.

For this purpose there are various mechanical devices which automatically control the volume of air admitted to the combustion chamber. Mechanical draft regulators designed to control or adjust draft should not be confused with mechanical draft systems that *create* draft mechanically, but which must also be automatically controlled.

The use of such a device, to provide a more uniform and dependable control of draft than could be maintained by manually operated dampers, will produce better combustion of fuel. This higher efficiency of combus-

¹The Venturi Ejector for Handling Air, by F. F. Kravath (Heating and Ventilating, June, p. 17, August, p. 46, 1940).

tion, together with the reduced heat losses up the chimney by reason of decreased gas velocity, results in fuel economy, with consequent lower costs of plant operation.

CHARACTERISTICS OF CHIMNEYS

In order to analyze the performance of a natural draft chimney, it may be advantageous to compare its general operating characteristics with those of a centrifugal pump and also of a centrifugally-induced draft fan, there being a similarity among the three. Figs. 2, 3 and 4 show the general operating characteristics of a typical centrifugally-induced draft fan, a typical centrifugal pump, and a typical natural draft chimney, respectively. The draft-capacity curve of the chimney corresponds to

Fig. 3. Operating Characteristics of Typical Centrifugal Pump

the head-capacity curve of the pump and also to the dynamic-head-capacity curve of the fan.

When the gases in the chimney are stationary, the draft created is termed the *theoretical draft*. When the gases are flowing, the theoretical intensity is diminished by the draft loss due to friction, the difference between the two being termed the total available draft.

If pressures at the bases of a column of air and a column of chimney gas, each of height H feet; and d_0 and d_c represent the respective densities of the air and the gas in pounds per cubic foot, then the theoretical draft D_t in pounds per square foot is:

$$D_{\rm t} = d_{\rm o}H - d_{\rm c}H$$

Expressing the densities under standard conditions of pressure and temperature, and assuming that the absolute pressure of the gas is the same as that of the air, the theoretical draft becomes:

$$D_{\mathsf{t}} = 15.36 \; HB_{\mathsf{o}} \left(\frac{W_{\mathsf{o}}}{T_{\mathsf{o}}} - \frac{W_{\mathsf{c}}}{T_{\mathsf{c}}} \right)$$

Expressed in inches of water this is:

$$D_{\rm t} = 2.96 \; HB_{\rm o} \left(\frac{W_{\rm o}}{T_{\rm o}} - \frac{W_{\rm c}}{T_{\rm c}} \right)$$

The friction loss in the chimney may be determined from the Fanning equation:

Head lost in feet of fluid =
$$\frac{fRL}{A} \times \frac{V^2}{2g}$$

in which R is the inside perimeter of the cross-section in feet, A the cross-section area in square feet, and V the velocity of fluid in feet per second.

Substituting for V its value in terms of W and the cross-section area, and expressing the loss of head in inches of water this becomes:

For cylindrical stacks

$$h_{\rm L} = 0.01936 \; \frac{fLW^2}{D^5 d_{\rm c}}$$

and for a rectangular stack of sides x and y in feet,

$$h_{\rm L} = 0.00597 \frac{fLW^2 (x + y)}{\overline{xy^3} d_{\rm c}}$$

Substituting for d_c its value:

$$\frac{460 \ B_{\rm o} \ W_{\rm c}}{29.92 \ T_{\rm c}}$$

gives for a cylindrical stack,

$$h_{\rm L} = 0.00126 \, \frac{W^2 \, T_{\rm c} \, fL}{D^5 \, B_0 \, W_{\rm c}}$$

and for a rectangular stack,

$$h_{\rm L} = 0.000388 \frac{W^2 T_{\rm c} fL (x + y)}{\overline{x} v^3 B_0 W_{\rm c}}$$

The available draft then is, for a cylindrical stack:

$$D_{a} = 2.96HB_{o} \left(\frac{W_{o}}{T_{o}} - \frac{W_{c}}{T_{c}} \right) - \frac{0.00126W^{2}T_{c}fL}{D^{5}B_{o}W_{c}}$$
 (1)

and for a rectangular stack:

$$D_{\rm a} = 2.96 \ HB_{\rm o} \left(\frac{W_{\rm o}}{T_{\rm o}} - \frac{W_{\rm c}}{T_{\rm c}} \right) - \frac{0.000388 \ W^2 \ T_{\rm c} fL \ (x + y)}{\overline{xy^3} \ B_{\rm o} \ W_{\rm c}}$$
 (2)

where

 $D_{\mathbf{a}}$ = available draft, inches of water.

H = height of chimney above grate bars, feet.

 B_0 = barometric pressure corresponding to altitude, inches of mercury.

 W_0 = unit weight of a cubic foot of air at 0 F and sea level atmospheric pressure, pounds per cubic foot.

We = unit weight of a cubic foot of chimney gases at 0 F and sea level atmospheric pressure, pounds per cubic foot.

 T_0 = absolute temperature of atmosphere, degrees Fahrenheit.

 T_c = absolute temperature of chimney gases, degrees Fahrenheit.

W= weight of gases generated in the combustion chamber of the boiler and passing through the chimney, pounds per second.

f = coefficient of friction.

L = length of friction duct of the chimney, feet.

D = minimum diameter of chimney, feet.

The first term of the right hand expression of Equation 1 represents the theoretical draft intensity, and the second term, the loss due to friction.

Example 1. Determine the available draft of a natural draft chimney 200 ft in height and 10 ft in diameter operating under the following conditions: atmospheric temperature, 62 F; chimney gas temperature, 500 F; sea level atmospheric pressure, $B_0=29.92$ in. of mercury; atmospheric and chimney gas density, 0.0863 and 0.09, respectively; coefficient of friction, 0.016; length of friction duct, 200 ft. The chimney discharges 100 lb of gases per second

Substituting these values in Equation 1 and reducing:

$$D_{a} = 2.96 \times 200 \times 29.92 \times \left(\frac{0.0863}{522} - \frac{0.09}{960}\right) - \frac{0.00126 \times 100^{3} \times 960 \times 0.016 \times 200}{10^{5} \times 29.92 \times 0.09}$$
$$= 1.27 - 0.14 = 1.13 \text{ in.}$$

Fig. 4 shows the variation in the available draft of a typical 200 ft by 10 ft chimney operating under the general conditions noted in Example 1. When the chimney is under static conditions and no gases are flowing, the

Fig. 4 Typical Set of Operating Characteristics of a Natural Draft Chimney

available draft is equal to 1.27 in. of water, the theoretical intensity. As the amount of gases flowing increases, the available intensity decreases until it becomes zero at a gas flow of 297 lb per second, at which point the draft loss due to friction is equal to the theoretical intensity. The draft-capacity curve corresponds to the head-capacity curve of centrifugal pump characteristics and the dynamic-head-capacity curve of a fan. The point of maximum draft and zero capacity is called shut-off draft, or point of impending delivery, and corresponds to the point of shut-off head of a centrifugal pump. The point of zero draft and maximum capacity is called the wide open point and corresponds to the wide open point of a centrifugal pump. A set of operating characteristics may be developed for any size chimney operating under any set of conditions by substituting the proper values in Equation 1 and then plotting the results in the manner shown in Fig. 4.

In substituting the values for the various factors in Equation 1, care should be exercised that the selections be as near the actual conditions as

is practically possible. The following notes will serve as a guide for these selections:

1. The barometric pressure, represented by B_0 , is the actual pressure at the site of the chimney and not the pressure reduced to sea level datum.

In general, the barometric pressure decreases approximately 0.1 in. of mercury per 100 ft increase in elevation.

2. The unit weight of a cubic foot of chimney gases at 0 F and sea level barometric pressure is given by the equation:

$$W_{\rm c} = 0.131 \, CO_2 + 0.095 \, O_2 + 0.083 \, N_2 \tag{3}$$

In this equation CO_2 , O_2 and N_2 represent the percentages of the parts by volume of the carbon dioxide, oxygen and nitrogen content, respectively, of the gas analysis. For ordinary operating conditions, the value of W_c may be assumed at 0.09.

The density effect on the chimney gases due to superheated water vapor resulting from moisture and hydrogen in the fuel, or due to any air infiltrations in the chimney proper are disregarded. Though water vapor content is not disclosed by Orsat analysis, its presence tends to reduce the actual weight per cubic foot of chimney gases.

- 3. The atmospheric temperature is the actual observed temperature of the outside air at the time the analysis of the operating chimney is made. The mean atmospheric temperature in the temperate zone is approximately 62 F.
- 4. The chimney gas temperature decreases from the breeching connection to the top of the stack. This drop in temperature depends upon the material and construction of the stack, its tightness or freedom from leaks, its area, its height, and the velocity of the gases through it. The same chimney will suffer different temperature losses depending upon the capacity under which it is working and the variable atmospheric conditions. No general equation covering all these variables has been suggested, but from observations on chimneys varying in diameter from 3 to 16 ft and in height from 100 to 250 ft the following equation was deduced²;

$$T_{\rm c} = \frac{3.13 \ T_1 \left[\left(\frac{H_{\rm b}}{3} \right)^{0.96} - 1 \right]}{H_{\rm b} - 3} \tag{4}$$

where

 T_1 = absolute temperature at the center of the connection from the breeching, degrees Fahrenheit.

 $H_{\rm b}$ = the height of the stack above center line connection to breeching, feet.

5. The coefficient of friction between the chimney gases and a sooted surface has been taken by many workers in this field as a constant value of 0.016 for the conditions involved. This value, of course, would be less for a new unlined steel stack than for a brick or brick-lined chimney, but in time the inside surface of all chimneys regardless of the materials of construction becomes covered with a layer of soot, and thus the coefficient of friction has been taken the same for all types of chimneys and in general constant for all conditions of operation. For reasons of simplicity and convenience to the reader, this constant value of 0.016 has been employed in the development of the various special equations and charts shown in this chapter.

In important chimney design, especially when the construction or the materials are unusual, it is recommended that use be made of Reynolds number³ in determining the friction factor, f.

- 6. The length of the friction duct is the vertical distance between the bottom of the breeching opening and the top of the chimney. Ordinarily this distance is approximately equal to the height of the chimney above the grate level.
- 7. Assuming no air infiltration the amount of gases flowing and being discharged is, of course, equal to the amount of gases generated in the combustion chamber of the

²Notes on Power Plant Design, by E. F. Miller and James Holt (Massachusetts Institute of Technology, 1930).

^{*}For more complete discussion see Flow of Fluids in Closed Conduits, by R. J. S. Pigott (Mechanical Engineering, August, 1933).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

boiler. The total products of combustion in pounds per second for a grate-fired boiler may be computed from the equation:

$$W = \frac{C_{\rm g}GW_{\rm tp}}{3600} \tag{5}$$

where

 C_g = pounds of fuel burned per square foot of grate surface per hour.

G = total grate surface of boilers, square feet.

 $C_{\mathbf{z}} \times G = \text{total weight of fuel burned per hour.}$

 $W_{\rm tp}$ = total weight of products of combustion per pound of fuel.

A similar computation may be made in the case of gas, oil, or stoker-fired fuel

FIG. 5. CHIMNEY PERFORMANCE CHARTS

a To solve a typical example: Proceed horizontally from a Weight Flow Rate point to intersection with diameter line; from this intersection follow vertically to chimney height line; from this intersection follow horizontally to the right to Available Draft scale. Starting from a point of Available Draft, take steps in reverse order.

Fig. 5 is a typical chimney performance chart giving the available draft intensities for various amounts of gases flowing and sizes of chimney. This chart is based on an atmospheric temperature of 62 F, a chimney gas temperature of 500 F, a unit chimney gas weight of 0.09 lb per cubic foot, sea level atmospheric pressure, a coefficient of friction of 0.016, and a friction duct length equal to the height of the chimney above the grate level. These curves may be used for general operating conditions. For specific conditions, a new chart should be prepared from Equation 1.

It has been the usual custom, and still is to a lamentably great extent, to select the required size of a natural draft chimney from a table of

chimney sizes based only on boiler horsepowers. After the ultimate horsepower of the projected plant had been determined, the chimney size in the table corresponding to this figure was then selected as the proper size required. Generally, no further attempt was made to determine if the height thus selected was sufficient to help create the required draft demanded by the entire installation, or the diameter sufficiently large to enable the chimney quickly, efficiently, and economically to dispose of the gases. Since the operating characteristics of a natural draft chimney are similar in all respects to those of a centrifugal pump, or a centrifugal fan, it is no more possible to select a proper size chimney from such a table, even with correction factors appended, than it is to select the proper size pump from tables based only on the amount of water to be delivered.

DETERMINING CHIMNEY SIZES

The required diameter and height of a natural draft cylindrical chimney are given by the following equations:

$$H = \frac{D_{\rm r}}{2.96B_{\rm o}\left(\frac{W_{\rm o}}{T_{\rm o}} - \frac{W_{\rm c}}{T_{\rm c}}\right) - \frac{0.184fW_{\rm c}B_{\rm o}V^2}{T_{\rm c}D}}$$
(6)

The weight of gas per second,

$$W = 12.075 \frac{D^2 \ VB_0 \ W_c}{T_c}$$

from which

$$D = 0.288 \sqrt{\frac{WT_c}{B_0 W_c V}} \tag{7}$$

where

H = required height of chimney above grate bar level, feet.

D = required minimum diameter of chimney, feet (constant for entire height).

V = chimney gas velocity, feet per second.

 $D_{\rm r}={
m total}\,{
m required}\,{
m draft}\,{
m demanded}\,{
m by}\,{
m the}\,{
m entire}\,{
m installation}\,{
m outside}\,{
m of}\,{
m the}\,{
m chimney},$ inches of water.

Equations 6 and 7 give the required size of a natural draft chimney with all of the operating factors taken into consideration. Values for all of the factors with the exception of the chimney gas velocity may be either observed or computed. It is, of course, necessary to assume an arbitrary value for the velocity in order to arrive at some definite size. For any one set of operating conditions there will be as many sizes of chimney as there are values of reasonable velocities to assume. Of the number of sizes corresponding to the various assumed velocities, there is one size which will be least expensive. Since the cost of a chimney structure, regardless of the kind of material used in the construction, varies as the volume of material in the structure, the cost criterion then may be represented by the approximate equation:

$$Q = \pi t H D \tag{8}$$

where

Q = volume of material, cubic feet.

t =average wall thickness, feet.

For all practical purposes, the value of πt may be taken as a constant regardless of the size of the structure. Hence, in general, the volume, and consequently the cost, of a chimney structure may be based on the factor HD as a criterion. Therefore, the value of the chimney gas velocity which will result in the least value of HD for any one set of operating conditions will produce a structure which will be the most economical to use, because its cost will be least.

The problem is to deduce an equation for the chimney gas velocity which will result in a combination of a height and a diameter whose

FIG. 6. ECONOMICAL CHIMNEY SIZES² *Diameter values also for gas temperatures of 400, 500 and 600 F

product HD will be least. The solution is obtained by equating the product of Equations 6 and 7 to HD, differentiating this product with respect to V and equating the resulting expression to zero. This procedure results in the following expression:

$$V_{e} = \left(\frac{0.772T_{c}\left(\frac{W_{o}}{T_{o}} - \frac{W_{c}}{T_{c}}\right)\sqrt{\frac{WT_{c}}{B_{o}W_{c}}}}\right)^{2/5}$$

$$(9)$$

where V_e = economical chimney gas velocity, feet per second.

Equation 9 gives the economical velocity of the chimney gases for any set of operating conditions, and represents the velocity which will

result in a chimney the size of which will cost less than that of any other size as determined by any other velocity for the same operating conditions. After the value of the economical velocity has been determined, the corresponding height and diameter can then be determined from Equations 6 and 7, respectively, and the economical size will then be attained. Equations 6, 7 and 9 may be simplified considerably for average operating conditions in an average size steam plant by assuming typical conditions.

Average chimney gas temperature, 500 F	$T_{\mathbf{c}} =$	960
Mean atmospheric temperature, 62 F	$T_{\mathbf{o}} =$	522
Average coefficient of friction, 0.016	f =	0.016
Average chimney gas density, 0.09	$V_{c} =$	0.09
Sea level elevation, with barometer of 29.92.	$B_{o} =$	29.92

Substituting these values in Equations 9, 7 and 6, respectively, and reducing, the results are substantially:

$$V_{\rm e} = 13.7W^{1/5} \tag{10}$$

$$D = 1.5W^{2/5} \tag{11}$$

$$H = 190D_{\rm r} \tag{12}$$

Fig. 6 gives the economical chimney sizes for various amounts of gases flowing and for required draft intensities as computed from Equations 10, 11 and 12. They are based on the operating factors used in reducing Equations 6, 7 and 9 to their simpler form. The sizes shown by the curves in the chart should be used for general operating conditions only, or for installations where the required data necessary for an exact determination are difficult or impossible to secure. Whenever it is possible to secure accurate data, or the anticipated operating conditions are fairly well known, the required size should be determined from Equations 6, 7 and 9. The recommended minimum inside dimensions and heights of chimneys for small and medium size installations are given in Table 1.

GENERAL EQUATION

The general draft equation for a steam producing plant may be stated as follows:

$$D_{t} - h_{f} = h_{F} + h_{B} + h_{Bd} + h_{C} + h_{Br} + h_{V} + h_{Q} + h_{E} + h_{R}$$
 (13)

where

 D_{t} = theoretical draft intensity created by pressure transformer, inches of water.

 $h_{\rm f} = {\rm draft}$ loss due to friction in pressure transformer, inches of water.

 $h_{\rm F} = {\rm draft}$ loss through the fuel bed, inches of water.

hB = draft loss through the boiler and setting, inches of water.

 $h_{\rm Br} = {\rm draft}$ loss through the breeching, inches of water.

hy = draft loss due to velocity, inches of water.

 $h_{\rm Bd} = {\rm draft\ loss\ due\ to\ bends,\ inches\ of\ water.}$

hC = draft loss due to contraction of opening, inches of water.

 $h_0 = \text{draft loss due to enlargement of opening, inches of water.}$

hE = draft loss through the economizer, inches of water.

 $h_{\mathbf{R}}$ = draft loss through recuperators, regenerators, or air heaters, inches of water.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

The left hand member of Equation 13 represents the total amount of available draft created by the pressure transformer, that is, the natural draft chimney, Venturi chimney, or fan, and is equal to the theoretical intensity less the internal losses incidental to operation. The right hand member represents the sum of all of the various losses of draft throughout the entire boiler plant installation outside of the pressure transformer itself. The left hand member expresses the available intensity and is analogous to the head developed by a centrifugal pump in a water works system, while the right hand member expresses the required draft in-

Table 1. Recommended Minimum Chimney Sizes for Heating Boilers and Furnaces^a

Warm Air	Steam	Нот	Nominal	RECTANGULA	R FLUE	ROUND FLUE		
Furnace Capacity in Sq In of Leader Pipe	BOILER CAPACITY SQ FT OF RADI- ATION	WATER HEATER CAPACITY SQ FT OF RADI- ATION	DIMENSIONS OF FIRE CLAY LINING IN INCHES	Actual Inside Dimensions of Fire Clay Lining in Inches	Actual Area Sq In.	Inside Diameter of Lining in Inches	Actual Area Sq In	HEIGHT IN FT ABOVE GRATE
790	590	973	8½ x 13	7 x 11½	81			35
1000	690	1,140				10	79	
	900	1,490	13×13	$11\frac{1}{4} \times 11\frac{1}{4}$				
	900	1,490	$8\frac{1}{2} \times 18$	$6\frac{3}{4} \times 16\frac{1}{4}$	110			
	1,100	1,820				12	113	40
	1,700	2,800	13×18	11¼ x 16¼	183			
	1,940	3,200				15	177	
	2,130	3,520	18×18	$15\frac{3}{4} \times 15\frac{3}{4}$				
	2,480	4,090	20×20	$17\frac{1}{4} \times 17\frac{1}{4}$	298			45
	3,150	5,200				18	254	50
	4,300	7,100				20	314	
	4,600	7,590	20×24	17×21	357			
	5,000	8,250	24×24	21×21	441			55
	5,570	9,190		24×24^{b}	576			60
	5,580	9,200				22	380	
	6,980	11,500		_		24	452	65
	7,270	12,000		24×28^{b}	672			
	8,700	14,400		28×28^{b}	784			
	9,380	15,500				27	573	
	10,150	16,750		30×30^{b}	900			
	10,470	17,250		28×32^{b}	896			
			<u> </u>	l				

^aThis table is taken from the A.S.H.V.E. Code of Minimum Requirements for the Heating and Ventilation of Buildings (Edition of 1929).

tensity and is analogous to the total dynamic head in a water works system. For a general circulation of gases

$$D_{a} = D_{r} \tag{14}$$

where

 $D_{\mathbf{a}}$ = available draft intensity, inches of water.

 $D_{\rm r}$ = required draft, inches of water.

The draft loss through the fuel bed $(h_{\rm F})$, or the amount of draft required to effect a given or required rate of combustion, varies between wide limits and represents the greater portion of the required draft. In coal-fired

bDimensions are for unlined rectangular flues.

installations, the draft loss through the fuel bed is dependent upon the following factors: (1) character and condition of the fuel, clean or dirty; (2) percentage of ash in the fuel; (3) volume of interstices in the fuel bed, coarseness of fuel; (4) thickness of the fuel bed, rate of combustion; (5) type of grate or stoker used; (6) efficiency of combustion.

There is a certain intensity of draft with which the best results will be obtained for every kind of coal and rate of combustion. Fig. 7 gives the intensity of draft, or the vacuum in the combustion chamber required to burn various kinds of coal at various rates of combustion. Expressed in other words, these curves represent the amount of draft required to force the necessary amount of air through the fuel bed in order to effect various rates of combustion. It will be noted that the amount of draft increases as the percentage of volatile matter diminishes, being comparatively low

Fig. 7. Draft Required at Different Rates of Combustion for Various Kinds of Coal

for the lower grades of bituminous coals and highest for the high grades and small sizes of anthracites. Also, when the interstices of the coal are large and the particles are not well broken up, as with bituminous coals, much less draft is required than when the particles are small and are well broken up, as with bituminous slack and the small sizes of anthracite. In general, the draft loss through the fuel bed increases as: (1) the percentage of volatile matter diminishes; (2) the percentage of fixed carbon increases; (3) the thickness of the bed increases; (4) the percentage of ash increases; (5) the volume of the interstices diminishes.

In making the preliminary assumptions for the draft loss through the fuel bed, due allowances should be made for a possible future change in the grade of fuel to be burned and also in the rate of combustion. A value should be selected for this loss which will represent not only the highest rate of combustion which will be encountered, but also the grade of coal which has the greatest resistance through the fuel bed and which may be burned at a later date.

In powdered-fuel and oil-fired installations, there will be no draft loss through the fuel bed since there is none and, consequently, this factor becomes zero in the general draft equation. All other factors being constant, the height of the chimney in installations of this character will be less than the height in coal-fired installations, and in the case of mechanical draft installations the driving units need not be as large since the head against which the fan is to operate is not as great in the former as in the latter.

The draft loss through the boiler and setting (h_b) also varies between wide limits and, in general, depends upon the following factors: (1) type of boiler, (2) size of boiler, (3) rate of operation, (4) arrangement of tubes, (5) arrangement of baffles, (6) type of grate, (7) design of brickwork setting, (8) excess air admitted, and (9) location of entrance into breeching.

Curves showing the draft loss through the boiler are usually based on the load or quantity of gases passing through the boiler, expressed in terms of percentage of normal rate of operation. Owing to the great variety of boilers of different designs and the various schemes of baffling, it is impossible to group together a set of curves for the draft loss through the boiler which may even be used generally. It is therefore necessary to secure this information from the manufacturer of the particular type of boiler and baffle arrangement under consideration.

When a boiler is installed and in operation, the draft loss depends upon the amount of gases flowing through it. This, in turn, depends upon the proportion of excess air admitted for combustion. Primarily, the amount of excess air is measured by the CO_2 content; the less the amount of CO_2 , the greater the amount of excess air and hence the greater the draft loss.

The loss of draft through the boiler will vary directly as the size of the boiler and the length of the gas passages within. The loss also varies as the number of tubes high, but not in a direct ratio inasmuch as the loss due to the reversal of flow at the ends of the baffles remains constant regardless of the height of the boiler. The arrangement of the tubes, whether the gases flow parallel to or at right angles to the tubes, has an appreciable effect on the loss. The arrangement of the baffles influences the draft loss greatly, the loss through a boiler with five passes being greater than the loss through one of three or four passes. A poor design and a rough condition of the brickwork will increase the loss greatly, whereas a proper design and a smooth condition will keep the loss at a minimum. The loss through the boiler will be less when the breeching entrance is located at or near the top of the boiler than when it is located at or near the bottom since the gases have a shorter distance to travel in the former instance.

The draft loss through the breeching $(h_{\rm Br})$ may be found by applying the last term on the right, with the sign changed, of Equation 1 or 2 depending upon whether the breeching is cylindrical or rectangular and observing the following changes in the symbols:

 $T_{\rm c}$ = absolute temperature of breeching gases, degrees Fahrenheit.

f = coefficient of friction for the breeching.

L = length of breeching, feet.

D = diameter of cylindrical breeching, feet.

x and y = sides of breeching, if rectangular, feet.

It has been the general custom to *lump off* the intensity of the breeching loss at 0.10 in. of water per 100 ft of breeching length regardless of its size or shape or the amount and temperature of the gases flowing through it. This practice is hazardous and has no more foundation in fact than that of determining the friction head in a water works system without taking into consideration the size of the pipe or the amount of water flowing through it. When the length of the breeching is relatively short, any variation in any one of the factors in the equation will have no appreciable effect on the draft loss. However, when the breeching is relatively long, the draft loss is affected greatly by the various factors, particularly by the size and shape as well as by the weight of gases flowing.

The draft loss due to velocity (hv) is given by the equation

$$h_{\rm V} = \frac{0.000194W^2T_{\rm c}}{A^2B_0W_{\rm c}} \tag{15}$$

where

A =cross-section area at the top of the stack, square feet.

The draft loss due to bends in the breeching (h_{Bd}) is dependent upon the center line radius of curvature of the bends and the form of cross-section. This loss is expressed in terms of velocity head. (See Chapter 32.)

The draft loss due to sudden contraction of an area (h_C) is given by the equation:

$$h_{\rm C} = \frac{0.000194 K_{\rm c} W^2 T_{\rm c}}{A_{\rm c}^2 B_{\rm o} W_{\rm c}} \tag{16}$$

where

 $K_{\rm c}=$ coefficient of sudden contraction based on $\frac{A_{\rm s}}{A_{\rm l}}$, the ratio of the areas of the smaller to the larger section = 0.5 $\left(1-\frac{A_{\rm s}}{A_{\rm l}}\right)$

 A_s = area of the smaller section.

When the flue or passage through which the gases flow is suddenly contracted, a considerable portion of the static head in the larger section is converted into velocity head and a draft loss of some consequence, particularly in a short breeching, takes place. A sudden contraction should always be avoided where possible. Due to obstructions or limited headroom, it is frequently necessary to alter the size of the breeching, but a sudden contraction may be avoided by gradually decreasing the area over a length of several feet.

The draft loss due to a sudden enlargement of an area (h_0) is given by the equation:

$$h_{\rm O} = \frac{0.000194 K_{\rm o} W^2 T_{\rm c}}{A_{\rm s}^2 B_{\rm o} W_{\rm c}} \tag{17}$$

where

 $K_{\rm o}=$ coefficient of sudden enlargement based on $\frac{A_{\rm s}}{A_{\rm l}}$, the ratio of the areas of the smaller to the larger section $=\left(1-\frac{A_{\rm s}}{A_{\rm l}}\right)^2$.

When the flue or passage through which the gases flow is suddenly enlarged, a portion of the velocity head is converted into static head in the larger section and, like the loss due to sudden contraction, a loss of some

consequence, particularly in short breechings, takes place. A sudden enlargement in a breeching may be avoided by gradually increasing the area over a length of several feet. In large masonry chimneys, the area of the flue at the region of the breeching entrance is considerably larger than the area of the breeching at the chimney, and a sudden enlargement exists.

The draft loss through the economizer $(h_{\rm E})$ should be obtained from the manufacturer but for general purposes it may be computed from:

$$h_{\rm E} = \frac{6.6W_{\rm n}^2 NT_{\rm c}}{10^{12}} \tag{18}$$

where

 W_n = pounds of gases flowing per hour per linear foot of pipe in each economizer section.

N = number of economizer sections.

An economizer in a steam plant affects the draft in two ways, (1) it offers a resistance to the flow of gases, and (2) it lowers the average chimney gas temperature, thereby decreasing the available intensity. In the case of a natural draft installation, both of these factors result in a relative increase in the height of the chimney and, in the case of a large plant, they may add as much as 20 or 30 ft to the height. The decrease in the temperature of the gases after they have passed through the economizer has an extremely important effect on the performance of a natural draft chimney and also upon the performance of a fan.

GENERAL CONSIDERATIONS FOR DOMESTIC CHIMNEYS

The draft of domestic chimneys may be subject to a variety of influences not usually encountered in power chimneys. Horizontal winds have an aspirating effect as they cross the chimney and are an aid to draft. However, surrounding objects, such as trees or other buildings, may affect the direction of the wind at the chimney top and may even direct it down the chimney, tending to reduce the draft or even to cause it to be negative. Although the chimney should extend well above the highest part of the roof, it is impracticable to carry it much beyond this point.

It is also important to consider the source of the air supply for proper combustion. Usually the boiler or furnace is located in the basement. When the furnace room has windows or doors opening to the outside on two or more sides of the house, the leakage of air will be sufficient for combustion, even though the windows and doors may be shut. However, if the leakage is not sufficient to prevent an appreciable drop of pressure in the furnace room below that of the air outside, the chimney draft will be reduced by the difference between the atmospheric pressure outside and that inside the boiler room. In case the boiler room is fairly tight and is open to the outside on only one side of the house, then the draft will be affected in windy weather even with windows or doors open. If the wind is blowing toward the boiler room the draft will be increased, but if blowing in the opposite direction the draft may be seriously decreased.

^{*}Chimneys and Draft (Chapter 32 in Winter Air Conditioning, by S. Konzo, published by National Warm Air Healing and Air Conditioning Association, 1939).

It is not to be assumed that increasing the cross-section area of a chimney will always effect a cure for poor draft. The opposite result may be experienced because of the cooling effect of the larger area. This reduces the theoretical draft and the velocity of the gases, and affords a greater opportunity for counter currents in the chimney. The only practical remedy for a chimney with bad draft, when the chimney is of the proper size and is affected by conditions beyond the control, is to resort to mechanical draft. This can usually be done at small expense if only operated when necessary.

Two experimental chimneys of 9 x 9 and 9 x 13 in. nominal size were arranged to operate at 15, 20, 25, 30 and 35 ft heights and were tested at several rates of gas flow and inlet temperature to simulate residential performance. Temperature gradients throughout the height of each chimney were reported, together with draft conditions and friction losses⁵.

CHIMNEYS FOR GAS HEATING

The burning of gas differs from the burning of coal in that the force which supplies the air for combustion comes largely from the pressure of the gas in the supply pipe, whereas air is supplied to a bed of burning coal by the force of the chimney draft. If, with a coal-burning boiler, the draft is poor, or if the chimney is stopped, the fire is smothered and the combustion rate reduced. In a gas boiler or furnace such a condition would interfere with the combustion of the gas, but the gas would continue to pass to the burners and the resulting incomplete combustion would produce a dangerous condition. In order to prevent incomplete combustion from insufficient draft, all gas-fired boilers and furnaces should have a back-draft diverter in the flue connection to the chimney.

A study of a typical back-draft diverter shows that partial or complete chimney stoppage will merely cause some of the products of combustion to be vented out into the boiler room, but will not interfere with combustion. Other functions of the back-draft diverter are to protect the burner and pilot from the effects of down-drafts, and to neutralize the effects of variable chimney drafts, thus maintaining the appliance efficiency at a substantially constant value.

As is the case with the complete combustion of almost all fuels, the

TABLE 2. MINIMUM ROUND CHIMNEY DIAMETERS FOR GAS APPLIANCES (INCHES)

HEIGHT OF	Gas Consumption in Thousands of Btu per Hour								
CHIMNEY FEET	100	200	300	400	500	750	1000	1500	2000
20 40 60 80 100	4.50 4.25 4.10 4.00 3.90	5.70 5.50 5.35 5.20 5.00	6.60 6.40 6.20 6.00 5.90	7.30 7.10 6.90 6.70 6.50	8.00 7.80 7.60 7.35 7.20	9.40 9.15 8.90 8.65 8.40	10.50 10.25 10.00 9.75 9.40	12.35 12.10 11.85 11.50 11.00	13.85 13.55 13.25 12.85 12.40

⁵Observed Performance of Some Experimental Chimneys, by R. S. Dill, P. R. Achenbach and J. T. Duck (A S.H.V.E. JOURNAL SECTION, *Heating, Priping and Air Conditioning*, April. 1942, p. 252).

products of combustion for gas are carbon dioxide (CO_2) and water vapor with just a trace of sulphur trioxide (SO_3) . Sulphur usually burns to the trioxide in the presence of an iron oxide catalyst. The volume of water vapor in the flue products is about twice the volume of the carbon dioxide when coke oven or natural gas is burned. Because of the large quantity of water vapor which is formed by the burning of gas, it is quite important that all gas-fired central heating plants be connected to a chimney having a good draft. Lack of chimney draft causes stagnation of the products of combustion in the chimney and results in the condensation of a large amount of the water vapor. A good chimney draft draws air through the openings in the back-draft diverter, lowers the dew-point of the mixture, and reduces the tendency of the water vapor to condense.

The flue connections from a gas-fired boiler or furnace should be of a non-corrosive material. The material used for the flue connection should not only be resistant to the corrosion of water but should resist the corrosion of dilute solutions of sulphur trioxide. Local practice should be followed in the selection of the most appropriate flue materials.

When condensation in a chimney proves troublesome, it may be necessary to provide a drain to a dry well or sewer. The cause of the excessive condensation should be investigated and remedied if possible. The protection of unlined chimneys has been investigated and the results indicate that after the loose material has been removed, the spraying with a water emulsion of asphalt-chromate provides an excellent protection.

A chimney for a gas-fired boiler or furnace should be constructed similarly to the principles applicable to other boilers. Table 2 gives the minimum cross-sectional diameters of round chimneys for various amounts of heat supplied to the appliance, and for various chimney heights, as recommended by the *American Gas Association*.

CONSTRUCTION DETAILS

For general data on the construction of chimneys reference should be made to the Standard Ordinance for Chimney Construction of the *National Board of Fire Underwriters*. Briefly summarized, these provisions are as follows for heating boilers and furnaces:

The walls of brick chimneys shall be not less than 3¾ in. thick (width of a standard size brick) and shall be lined with fire-clay flue lining meeting the standard specification of the Eastern Clay Products Association. The flue sections shall be set in special mortar, and shall have the joints struck smooth on the inside. The masonry shall be built around each section of lining as it is placed and all spaces between masonry and linings shall be completely filled with mortar. No broken flue lining shall be used. Flue lining shall start at least 4 in. below the bottom of smoke-pipe intakes of flues, and shall be continued the entire heights of the flues and project at least 4 in. above the chimney top to allow for a 2 in. projection of lining.

Flue lining may be omitted in brick chimneys, provided the walls of the chimneys are not less than 8 in. thick, and that the inner course shall be a refractory clay brick All brickwork shall be laid in spread mortar, with all joints push-filled. Exposed joints both inside and outside shall be struck smooth. No plaster lining shall be permitted

Chimneys shall extend at least 3 ft above flat roofs and 2 ft above the ridges of peak roofs when such flat roofs or peaks are within 30 ft of the chimney. The chimney shall be high enough so that the wind from any direction shall not strike the top of the chimney from an angle above the horizontal. The chimney shall be properly capped, but no such cap or coping shall decrease the flue area

Chapter 10

AUTOMATIC FUEL BURNING EQUIPMENT

Classification of Stokers, Combustion Process and Adjustments, Furnace Design, Classification of Oil Burners, Combustion Chamber Design, Classification of Gas-Fired Appliances

A UTOMATIC mechanical equipment for the combustion of solid, liquid and gaseous fuels is considered in this chapter.

MECHANICAL STOKERS

A mechanical stoker is a device that feeds a solid fuel into a combustion chamber, provides a supply of air for burning the fuel under automatic control and, in some cases, incorporates a means of removing the ash and refuse of combustion automatically. Coal can be burned more efficiently by a mechanical stoker than by hand firing because the stoker provides a uniform rate of fuel feed, better distribution in the fuel bed and positive control of the air supplied for combustion.

Stokers may be divided into four types according to their construction, namely, (1) overfeed flat grate, (2) overfeed inclined grate, (3) underfeed side cleaning type, and (4) underfeed rear cleaning type.

Overfeed Flat Grate Stokers

This type is represented by the various chain- or traveling-grate stokers. These stokers receive fuel at the front of the grate in a layer of uniform thickness and move it back horizontally to the rear of the furnace. Air is supplied under the moving grate to carry on combustion at a sufficient rate to complete the burning of the coal near the rear of the furnace. The ash is carried over the back end of the stoker into an ash pit beneath. This type of stoker is suitable for small sizes of anthracite or coke breeze and also for bituminous coals, the characteristics of which make it desirable to burn the fuel without disturbing it. This type of stoker requires an arch over the front of the stoker to maintain ignition of the incoming fuel. Frequently, a rear combustion arch is required to maintain ignition until the fuel is fully consumed. A typical traveling-grate stoker is illustrated in Fig. 1.

Another and distinct type of overfeed flat-grate stoker is the spreader (Figs. 2 and 3) or sprinkler type in which coal is distributed either by

Fig. 1. Overfeed Traveling-Grate Stoker

Fig. 2. Overfeed Spreader Stoker, Pneumatic Type

Fig. 3. Overfeed Spreader Stoker, Rotor Type

rotating paddles or by air over the entire grate surface. This type of stoker has a wide application on small sized fuels and on fuels such as lignites, high-ash coals, and coke breeze.

Overfeed Inclined Grate Stokers

In general the combustion principle is similar to the flat-grate stoker, but this stoker is provided with rocking grates set on an incline to advance the fuel during combustion. Also this type is provided with an ash plate where ash is accumulated and from which it is dumped periodically. This type of stoker is suitable for all types of coking fuels but preferably for those of low volatile content. Its grate action has the tendency to keep the fuel bed well broken up thereby allowing for free passage of air. Because of its agitating effect on the fuel it is not so desirable for badly clinkering coals. Furthermore, it should usually be provided with a front arch to care for the volatile gases.

Fig. 4. Underfeed Side Cleaning Stoker

Underfeed Side Cleaning Stokers

In this type (Fig. 4), the fuel is introduced at the front of the furnace to one or more retorts, and is advanced away from the retort as combustion progresses, while finally the ash is disposed of at the sides. This type of stoker is suitable for all bituminous coals while in the smaller sizes it is suitable for small sizes of anthracite. In this type of stoker the fuel is delivered to a retort beneath the fire and is raised into the fire. During this process the volatile gases are released, are mixed with air, and pass through the fire where they are burned. The ash may be continuously discharged as in the small stoker or may be accumulated and periodically discharged. This stoker requires no arch as it automatically provides for the combustion of the volatile gases.

Underfeed Rear Cleaning Stokers

This type of stoker accomplishes combustion in much the same manner as the side cleaning type, but consists of several retorts placed side by side and filling up the furnace width, while the ash disposal is at the rear. In principle, its operation is the same as the side cleaning underfeed type of stoker.

CLASSIFICATION OF STOKERS ACCORDING TO CAPACITY

Stokers may be classified according to their capacity or coal feeding rates. The following classification has been made by the *U. S. Department of Commerce*, in cooperation with the *Stoker Manufacturers Association*.

- Class 1. Capacity under 61 lb of coal per hour.
- Class 2. Capacity 61 to 100 lb of coal per hour.
- Class 3. Capacity 101 to 300 lb of coal per hour.
- Class 4. Capacity 300 to 1200 lb of coal per hour.
- Class 5. Capacity 1200 lb of coal per hour and over.

Class 1 Stokers

These stokers are used primarily for home heating and are, therefore, designed for quiet, automatic operation. Simple, trouble-free construc-

Fig. 5. Underfeed Stoker, Hopper Type, Class 1

Fig. 6. Underfeed Stoker, Bin Feed Type, Class 1

tion and attractive appearance are very desirable characteristics of these small units. Equipment of this capacity is also used extensively for commercial and industrial applications requiring the burning of small quantities of fuel under automatic control.

A common type of stoker in this class (Fig. 5) consists essentially of a coal reservoir or hopper, a screw for conveying the coal from the reservoir to the burner head or retort, a fan which supplies the air for combustion, a transmission for driving the coal feed worm, and an electric motor or motors for supplying the motive power for both coal feed and air supply.

Air for combustion is admitted to the fuel through tuyeres at the top of the retort and in this class, the tuyeres and retort are usually round, although they may be either round or rectangular. Stokers in this class are made for burning anthracite, bituminous, semi-bituminous, and lignite coals and coke. The *U. S. Department of Commerce* has issued commercial standards for household anthracite stokers¹.

¹Household Anthracite Stoker Standards (U. S. Department of Commerce, National Bureau of Standards, Commercial Standard No. CS48-40).

Units are available in either the hopper type, as shown in Fig. 5, or in the type as shown in Figs. 6 and 7, which feeds the coal directly to the furnace from the coal bin. Some stokers, particularly those designed for use with anthracite coal, have equipment for automatically removing the ash from the ash pit and depositing it in an ash receptacle outside of the furnace, as shown in Fig. 7. Most of the bituminous models, however, operate on the principle of removing the ash from the fuel bed after it is fused into a clinker at the outer periphery of the tuyere.

Most of the stokers in this class feed coal to the furnace intermittently in accordance with temperature or pressure demands. A small amount of heat is also released from the fuel bed during the inoperative period of the stoker. Through the use of automatic controls (see Chapter 34), it is possible to maintain temperatures or pressures within very close limits when using stoker firing equipment.

Fig. 7. Underfeed Anthracite Stoker with Automatic Ash Removal, Bin Type

Stoker-Fired Boiler and Furnace Units

Boilers, air conditioners, and space heaters especially designed for stokers are now available having certain design features closely coordinating the heat absorber and the stoker. Although very efficient and satisfactory performance can be obtained from the application of automatic stokers to existing boilers and furnaces, some of the combination stoker-fired units (Fig. 8) are more compact and attractive in appearance in addition to other design features.

Class 2 and 3 Stokers

Stokers in this class are usually of the screw feed type without auxiliary plungers or other means of distributing the coal. They are used extensively for heating plants in apartments and hotels, also, for industrial plants, such as laundries, bakeries, and creameries.

They are primarily of the underfeed type and are available in both the hopper type, as illustrated in Fig. 9, and also, the bin feed type, which delivers the coal directly to the furnace from the coal bin, as illustrated

in Fig. 10. These units are also built in a plunger feed type and the drive for the coal feed may be an electric motor or a steam or hydraulic cylinder.

Stokers in this class are available for burning all types of anthracite, bituminous and lignite coals. The tuyere and retort design varies widely according to the fuel and load conditions. On the bituminous models, the grates are normally of the stationary type and the ash accumulates on the grates surrounding the retort. With the average bituminous coal, the ash then fuses into a clinker which is removed periodically.

The anthracite stokers in this class are normally equipped with moving grates which discharge the ash into a pit below the grate. This ash pit may be located on one or both sides of the grate and on some installations is made of sufficient capacity to hold the ash for several days or weeks operation.

Class 4 Stokers

Stokers in this group vary widely in details of mechanical design and the several methods of feeding coal previously described are employed.

Fig. 8. Stoker-Fired Winter Air Conditioning Unit

The underfeed stoker is the most widely used, although a number of the overfeed types are also used in the larger sizes of this class. Bin feed, as well as hopper models, are available in both the underfeed and overfeed types.

Class 5 Stokers

The prevalent stokers in this field are: (a) overfeed flat grate, (b) overfeed inclined grate, (c) underfeed side cleaning, and (d) underfeed rear cleaning.

The rear cleaning underfeed stoker is usually of the multiple retort design and is used in some of the largest industrial plants and central power stations. In some instances, zoned air control has been applied on these stokers, both longitudinally and transversely of the grate surface.

Underfeed side cleaning stokers are made in sizes up to approximately 500 boiler horsepower. They are not so varied in design as those in the smaller classes, although the principle of operation is much the same. The overfeed spreader type stoker (Figs. 2 and 3) is adaptable to a wide

variety of coals and is being extensively used in capacities up to 1000 boiler horsepower.

Combustion Process

Due to the marked differences in design and operating characteristics of stokers and the widely different characteristics of stoker coals, it is difficult to generalize on the subject of combustion in automatic stokers.

In anthracite stokers of the small Class 1 overfeed type, burning takes place entirely within the stoker retort and tuyere. The ash and refuse of combustion spills over the edge of the tuyere into an ash pit or receptacle from which it may be removed either manually or automatically.

Fig. 9. Underfeed Screw Stoker, Hopper Type, Class 2, 3 or 4

Fig. 10. Underfeed Screw Stoker, Bin Type, Class 2, 3 or 4

The larger underfeed anthracite stokers operate on the same principle except that the retort is rectangular and the refuse spills over only one or two sides of the grate. Anthracite for stoker firing is usually supplied in the No. 1 buckwheat or No. 2 buckwheat size.

Since the majority of the smaller bituminous coal stokers operate on the underfeed principle, a general description of their operation will be given. When the coal is fed from the hopper or bin into the retort, it moves upward toward the zone of combustion and is heated by conduction and radiation from the burning fuel in the combustion zone. As the temperature of the coal rises, it gives off moisture and occluded gases, which are largely non-combustible. When the temperature increases to

around 700 or 800 F the coal particles become plastic, the degree of plasticity varying with the type of coal.

A rapid evolution of the combustible volatile matter occurs during and directly after the plastic stage of the coal. The distillation of volatile matter continues above the plastic zone where the coal is coked. The strength and porosity of the coke formed will vary according to the size and characteristics of the coal used. While some of the ash fuses into particles in the surface of the coke as it is released, most of it remains on the hearth or grates and as this ash layer becomes thicker with time, that portion exposed to the higher temperatures surrounding the retort normally fuses into a clinker. The temperature attained in the fuel bed, the chemical composition and homogeneity of the ash, and the time of heating are factors which govern the degree of fusion.

Most bituminous coal stokers of Classes 1, 2 and 3 operate on the principle of the removal of the ash in this clinker form. Clinker tongs are provided to facilitate removal of the clinker on the smaller models.

There are a number of factors which materially affect the burning rate and the combustion results obtained with automatic stokers, the most important of these being the type and design of stoker, the characteristics of the fuel, and the manner in which the stoker is installed and operated.

Furnace Design

Due to the wide differences in stoker, boiler and furnace design, and fuel burning characteristics, it has not been found practical to establish fixed rules for the proportioning of furnaces for automatic coal stokers. It is, therefore, essential that an experienced stoker installer give careful consideration to these factors when applying the equipment.

The Stoker Manufacturers Association has published standard recommendations on setting heights for stokers having capacities up to 1200 lb of coal per hour.²

The empirical formula for determining these setting heights are:

For burning rates up to 100 lb coal per hour

$$H = 0.1125B + 15.75 \tag{1}$$

For burning rates from 100 to 1200 lb coal per hour

$$H = 0.03 B + 24 \tag{2}$$

where

H = minimum setting height, inches.

B =burning rate coal per hour, pounds.

In considering these recommendations, it should be clearly understood that they show merely the average recommended minimum. There are many factors affecting the proper application of stokers to various types of boilers and furnaces and in many instances greater or less setting heights may give far better performance than the average values that are shown. They cannot, therefore, be used as arbitrary values in specifying stoker settings, and may be varied considerably by the installer based on

²Minimum Setting Heights. Copies of this standard may be obtained from the Stoker Manufacturers Association, 307 North Michigan Ave., Chicago, Ill.

experience with a particular stoker equipment, the type of coal that is to be used, and the construction of the boiler or furnace.

Combustion Adjustments

The coal feeding rate and air supply to the stoker should be regulated so as to maintain as nearly as possible an ideal balance between the load demand and the heat liberated by the fuel. Under such conditions no manual attention to the fuel bed should be required, other than the removal of clinker in stokers which operate on this principle of ash removal.

As in all combustion processes, the problem of maintaining the correct proportions of air and fuel is of utmost importance. It is desirable to supply a minimum amount of air required to properly burn the fuel at the rate it is being fed to the furnace.

While there may be only slight variations in the specified rate at which the coal is being fed to the furnace, due to variations in the size or density of the coal being used, there may be wide variations in the rate of air supplied as the result of changes in fuel bed resistance. These changes in resistance may be caused by changes in the porosity of the fuel bed due to variations in size or friability of the coal, ash and clinker accumulation, and variations in depth of the fuel bed. Because of this variable fuel bed resistance, many of the bituminous stokers, even in the smaller domestic sizes, incorporate air controls which automatically compensate for these changes in resistance and maintain a constant air fuel ratio.

It is also desirable on most stoker installations to provide automatic draft regulation in order to reduce air infiltration and provide better control during the banking or off periods of the stoker. The efficiency of combustion may be determined by analyzing with an Orsat apparatus the gases formed by the combustion process. With this equipment the percentage by volume of carbon dioxide (CO_2) , oxygen (O_2) , and carbon monoxide (CO) in the flue gases may be obtained. The percentage of CO_2 indicates the amount of excess air supplied. The presence of CO indicates a loss due to incomplete combustion, as the result of a deficiency of air or the improper mixing of air in the gases of combustion.

Sizing Stokers and Stoker Ratings

The capacity or rating of small underfeed stokers is usually stated as the burning rate in pounds of coal per hour. The Stoker Manufacturers Association has adopted a uniform method of rating stokers which is published in convenient tables and charts for selecting the size of stoker required.³ The required capacity of the stoker may be calculated as follows:

Load (Btu per hour)

Heating value of coal (Btu per pound) × overall efficiency of stoker and boiler or furnace

Stoker burning rate required (pounds of coal per hour)

In determining the total load placed on a stoker-fired boiler by a steam or hot water heating system, a piping and pick-up factor of 1.33 is com-

³Uniform Stoker Rating Code Copies of this standard may be obtained from the Stoker Manufacturers Association, 307 North Michigan Ave , Chicago. Ill.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

monly used in sizing the stoker, but this factor may be increased at times due to unusual conditions.

Controls

The heat delivery from the stoker of the smallest household type to the largest industrial unit can be accurately regulated with fully automatic controls. The smaller heating applications are normally controlled by a thermostat placed in the building to be heated. Limit controls are supplied to prevent excessive temperature or pressure being developed in the furnace or boiler and refueling controls are used to maintain ignition during periods of low heat demand. Automatic low water cut-outs are recommended for use with all automatically-fired steam boilers. (See Chapter 34.)

DOMESTIC OIL BURNERS

An oil burner is a mechanical device for producing heat automatically and safely from liquid fuels. This heat is produced in the furnace or firepot of hot water or steam boilers or warm air furnaces and is absorbed by the boiler, and thus made available for distribution to the house through the heating system.

The number of combinations of the characteristic elements of domestic oil burners is rather large and accounts for the variety of burners found in actual practice. Domestic oil burners may be classified as follows:

1. AIR SUPPLY FOR COMBUSTION

- a. Atmospheric-by natural chimney draft.
- b. Mechanical—electric-motor-driven fan or blower.
- c. Combination of (a) and (b)—primary air supply by fan or blower and secondary air supply by natural chimney draft.

2. METHOD OF OIL PREPARATION

- a. Vaporizing—oil distills on hot surface or in hot cracking chamber.
- b. Atomizing—oil broken up into minute globules.
 - (1) Centrifugal—by means of rotating cup or disc.
 - (2) Pressure—by means of forcing oil under pressure through a small nozzle or orifice.
 - (3) Air or steam—by high velocity air or steam jet in a special type of nozzle.
 - (4) Combination air and pressure—by air entrained with oil under pressure and forced through a nozzle.
- c. Combination of (a) and (b).

TYPE OF FLAME

- a. Luminous—a relatively bright flame. An orange-colored flame is usually best
 if no smoke is present.
- b. Non-luminous—Bunsen-type flame (i.e., blue flame).

4. METHODS OF IGNITION

- a. Electric.
 - (1) Spark—by transformer producing high-voltage sparks. Usually shielded to avoid radio interference. May take place continuously while the burner is operating (continuous ignition) or just at the beginning of operation (intermittent ignition).
 - (2) Resistance—by means of hot wires or plates.

b. Gas.

- (1) Continuous—pilot light of constant size.
- (2) Expanding—size of pilot light expanded temporarily at the beginning of burner operation.
- c. Combination—electric sparks light the gas and the gas flame ignites the oil.
- d. Manual—by manually-operated gas torch for continuously operating burners.

5. MANNER OF OPERATION

- a. On and off—burner operates at fixed firing rate for period determined by load demand.
- b. High and low—burner operates continuously but varies from a high to a low flame.
- Graduated—burner operates continuously but flame is graduated according to needs by regulating both air and oil supply.

A trade classification of domestic oil burners consists of the following general types: (a) gun or pressure atomizing, (b) rotary, and (c) pot or

Fig. 11. Gun Type Pressure Atomizing Oil Burner

vaporizing. These are further classified as mechanical draft and natural draft based on method used to supply the air for combustion.

The gun type, illustrated in Fig. 11, is characterized by an air tube, usually horizontal, with oil supply pipe centrally located in the tube and arranged so that a spray of atomized oil is introduced and mixed in the combustion chamber with the air stream emerging from the air tube. A variety of patented shapes are employed at the end of the air tube to influence the direction and speed of the air and thus the effectiveness of the mixing process.

The most distinguishing feature of vertical rotary burners is the principle of flame application. These burners are of two general types: the center flame and wall flame. In the former type (Fig. 12), the oil is atomized by being thrown from the rim of a revolving disc or cup and the flame burns in suspension with a characteristic yellow color. Combustion is supported by means of a bowl-shaped chamber or hearth. The wall flame burner (Fig. 13) differs in that combustion takes place in a ring of refractory material, which is placed around the hearth. These types of burners are further characterized by their installation within the ash pit of the boiler or furnace.

The pot type burner (Fig. 14) can be identified by the presence of a metal structure, called a pot or retort, in which combustion takes place.

When gun type (pressure atomizing) or horizontal rotary burners are used the combustion chamber is usually constructed of firebrick or other suitable refractory material, such as stainless steel, and is part of the installation procedure.

Most oil burners are operated by a small electric motor which pumps the oil and some or all of the air required. The smallest sizes can generally

Fig. 12. Center Flame Vertical Rotary Burner

Fig. 13. Wall Flame Vertical Rotary Burner

FIG. 14. POT TYPE VAPORIZING BURNER

burn not much less than from 0.50 to 0.75 gal of oil per hour. The grade of oil burned ranges from No. 1 to No. 3. No. 3 oil is the heaviest and most viscous of the various grades mentioned. An oil burner satisfactory for No. 3 oil can burn any of the lighter grades easily but an oil burner recommended for No. 2 oil should never be supplied with the heavier grades. While the heavier grades of oil have a smaller heat value per pound, they have, due to greater density, a larger heat value per gallon. The relative economy of the various grades must be based upon price and the amount of excess air required for clean and efficient combustion.

Operating Requirements for Mechanical Draft Oil Burners

The U. S. Department of Commerce in conjunction with the oil burner industry has established commercial standards for automatic mechanical

draft oil burners for domestic installations which cover installation requirements and performance tests4.

Oil-Fired Boiler and Furnace Units

Boilers and furnaces especially designed for oil burners are available. This type of equipment usually has more heating surface than the older coal-burning designs. Flue proportions and gas travel have been changed with beneficial results.

COMMERCIAL OIL BURNERS

Liquid fuels are used for heating apartment buildings, hotels, public and office buildings, schools, churches, hospitals, department stores, as well as industrial plants of all kinds. Contrary to domestic heating, con-

Fig. 15. Horizontal Rotating-Cup Oil Burner

venience seldom is a dominating factor, the actual net cost of heat production usually controlling the selection of fuel. Some of the largest office buildings have been using oil for many years. Many department stores have found that floor space in basements and sub-basements can be used to better advantage for merchandising wares, and credit the heat producing department with this saving.

Wherever possible, the boiler plant should be so arranged that either oil or solid fuel can be used at will, permitting the management to take advantage of changes in fuel costs if any occur. Each case should be considered solely in the light of local conditions and prices.

Burners for commercial heating may be either large models of types used in domestic heating, or special types developed to meet the conditions imposed by the boilers involved. Generally speaking, such burners are of the mechanical or pressure atomizing types, the former using rotating cups which throw the oil from the edge of the cup at high velocity into the surrounding stream of air delivered by the blower (Fig. 15).

⁴Automatic Mechanical Draft Oil Burners Designed for Domestic Installations (U. S. Department of Commerce, National Bureau of Standards Commercial Standard No CS75-42). Flue Connected Oil Burning Space Heaters Equipped with Vaporizing Pot Type Burners (U. S. Department of Commerce, National Bureau of Standards, Commercial Standard No CS101-42).

As much as 350 gal of oil per hour can be burned in these units, and frequently they are arranged in multiple on the boiler face, from two to five burners to each boiler.

The larger installations are nearly always started with a hand torch, and are manually controlled, but the use of automatic control is increasing, and completely automatic burners are now available to burn the two heaviest grades of oil. Nearly all of the smaller installations, in schools, churches, apartment houses and the like, are fully automatic.

Because of the viscosity of the heavier oils, it is customary to heat them before transferring by truck tank. It also has been common practice to preheat the oil between the storage tank and the burner, as an aid to movement of the oil as well as to atomization. This heating is accomplished by heat-transfer coils, using water or steam from the heating boiler.

Unlike the domestic burner, units for large commercial applications frequently consist of atomizing nozzles or cups mounted on the boiler front with the necessary air regulators, the pumps for handling the oil and the blowers for air supply being mounted in sets adjacent to the boilers. In such cases, one pump set can serve several burner units, and common prudence dictates the installation of spare or reserve pump sets. Pre-heaters and other essential auxiliary equipment also should be installed in duplicate.

Boiler Settings

As the volume of space available for combustion is the determining factor in oil consumption, it is general practice to remove grates and extend the combustion chamber downward to include or even exceed the ashpit volume; in new installations the boiler should be raised to make added volume available. Approximately 1 cu ft of combustion volume should be provided for every developed boiler horsepower, and in this volume from 1.5 to 2.5 lb of oil per hour can properly be burned. This corresponds to an average liberation of about 38,000 Btu per cubic foot There are indications that at times much higher fuel rates may be satisfactory. For best results, care should be taken to keep the gas velocity below 40 ft per second. Where checkerwork of brick is used to provide secondary air, good practice calls for about 1 sq in. of opening for each pound of oil fired per hour. Such checkerwork is best adapted to flat flames, or to conical flames that can be spread over the floor of the combustion chamber. The proper bricking of a large or even medium sized boiler for oil firing is important and frequently it is advisable to consult an authority on this subject. The essential in combustion chamber design is to provide against flame impingement upon either metallic or firebrick surfaces. Manufacturers of oil burners usually have available detailed plans for adapting their burners to various types of boilers, and such information should be utilized.

Combustion Process

Efficient combustion must produce a clean flame and must use relatively small excess of air, i.e., between 25 and 50 per cent. This can be done only by vaporizing the oil quickly and completely, and mixing it vigorously with air in a combustion chamber hot enough to support the combustion. A vaporizing burner prepares the oil, for combustion, by transforming the

liquid fuel to the gaseous state through the application of heat. This is accomplished before the oil vapor mixes with air to any extent and if the air and oil vapor temperatures are high and the fire pot hot, a clear blue flame is produced. There may be a deficiency of air or an excessive supply of air, depending upon burner adjustment, without altering the clean, blue appearance of the flame.

An atomizing burner *i.e.*, gun and rotary types is so named because the oil is mechanically separated into very fine particles so that the surface exposure of the liquid to the radiant heat of the combustion chamber is vastly increased and vaporization proceeds quickly. The result of such practice is the ability to burn more and heavier oil within a given combustion space or furnace volume. Since the air enters the fire pot with the liquid fuel particles, it follows that mixing, vaporization and burning are all occurring at once in the same space. This produces a luminous instead of a blue or non-luminous flame. In this case a deficient amount of air is indicated by a dull red or dark orange flame with smoky flame tips.

An excessive supply of air may produce a brilliant white flame in some cases or, in others, a short ragged flame with incandescent sparks flashing through the combustion space. While extreme cases may be easily detected, it is generally not possible to distinguish, by the eye alone, the finer adjustment which competent installation requires.

Tests indicate that there is no difference in economy between a blue flame and a luminous flame if the position, shape and the per cent of excess air of both flames are proper for each type.

Furnace or Combustion Chamber Design

With burners requiring a refractory combustion chamber the size and shape should be in accordance with the manufacturer's instructions. It is important that the chamber shall be as nearly air tight as is possible, except when the particular burner requires a secondary supply of air for combustion.

It is evident that the atomizing burner is dependent upon the surrounding heated refractory or firebrick surfaces to vaporize the oil and support Unsatisfactory combustion may be due to inadequate atomization and mixing. A combustion chamber can only compensate for these things to a limited extent. If liquid fuel continually reaches some part of the firebrick surface, a carbon deposit will result. The combustion chamber should enclose a space having a shape similar to the flame but large enough to avoid flame contact. The nearest approach in practice is to have the bottom of the combustion chamber flat but far enough below the nozzle to avoid flame contact, the sides tapering from the air tube at the same angle as the nozzle spray and the back wall rounded. A plan view of the combustion chamber thus resembles in shape the outline of the flame. In this way as much firebrick as possible is close to the flame so it may be kept quite hot. This insures quick vaporization, rapid combustion and better mixing by eliminating dead or inactive spaces in the combustion chamber. An overhanging arch at the back of the fire pot is sometimes used to increase the flame travel and give more time for mixing and burning and sometimes to prevent the gases from going too directly into the boiler flues. When good atomization and vigorous mixing are achieved by the burner, combustion chamber

design becomes a less critical matter. Where secondary air is used, combustion chamber design is quite important. With some of the vertical rotary burners considerable care must be exercised in definitely following the manufacturer's instructions when installing the hearth as in this class successful performance depends upon this factor.

Combustion Adjustments

Where adjustments of oil and air have been made which give efficient combustion, the problem of maintaining the adjustments constant becomes an important one. Particularly is this true when the change causes the per cent of excess air to decrease below allowable limits of the burner. A decrease in air supply while the oil delivery remains constant or an increase in oil delivery while the air supply remains constant will make the mixture of oil and air too rich for clean combustion. The more efficient the adjustment (i.e., 25 per cent excess air) the more critical it will be of variations. The oil and air supply rates must remain constant.

The following factors may influence the oil delivery rate: (a) changes in oil viscosity due to temperature change or variations in grade of oil delivered, (b) erosion of atomizing nozzle, (c) fluctuations in by-pass relief pressures and (d) possible variations in methods 2b (3) and 2b (4) listed in the previous classification table. Note that any change due to partial stoppage of oil delivery will increase the proportion of excess air. This will result in less heat, reduced economy and possibly a complete interruption of service but usually no soot will form.

The following factors may influence the air supply: (a) changes in combustion draft due to a variety of causes (i.e., changes in chimney draft because of weather changes, seasonal changes, back drafts, failure or inadequacy of automatic draft regulator, use of chimney for other purposes, possible stoppage of the chimney and changes in draft resistance of boiler due to partial stoppage of the flues), and (b) changes in air inlet adjustments to the fan.

It is recognized that a secondary source of air due to leakage in the boiler setting is present in many installations and it is highly desirable that this leakage be reduced to a minimum. Obviously the amount of air leakage will be determined by the draft in the combustion chamber. It is important that this draft should be reduced as low as is consistent with the proper disposal of the gases of combustion. When using mechanical draft burners with average conditions, the combustion chamber draft should not be allowed to exceed 0.02-0.05 in. water. An automatic draft regulator is very helpful in maintaining such values.

Even though a fan is generally used to supply the air for combustion, in most oil burners the importance of a proper chimney should not be overlooked. The chimney should have sufficient height and size to insure that the draft will be uniform within the limits given above if maximum efficiency throughout the whole heating season is to be maintained.

Measurement of the Efficiency of Combustion

Efficient combustion being based upon a clean flame and certain proportions of oil and air employed, it is possible to determine the results by analyzing the gases formed by the combustion process. Except in the case of a non-luminous flame it is usually sufficient to analyze only for carbon dioxide (CO_2). A showing of 10 to 12 per cent indicates the best adjustment if the flame is clean. Most of the good installations at the present time show from 8 to 10 per cent CO_2 . Taking into account the potential hazard of oil or air fluctuations with low excess air (high CO_2) a setting to give 10 per cent CO_2 constitutes a reasonable standard for most oil burners.

Controls

Controls for oil burner operation, including devices for the safety and protection of a boiler or furnace, are fully described in Chapter 34.

GAS-FIRED APPLIANCES

The increased use of gas for house heating purposes has resulted in the production of such a large number of different types of gas heating systems and appliances that today there is probably a greater variety of them than there is for any other kind of fuel.

Gas-fired heating systems may be classified as follows:

- I. Gas-Designed Heating Systems.
 - A. Central Heating Plants.
 - 1. Steam, hot water, and vapor boilers
 - 2. Warm air furnaces.
 - B. Unit Heating Systems.
 - 1. Warm air floor furnaces.
 - 2. Industrial unit heaters.
 - 3. Space heaters.
 - 4. Garage heaters.
- II. Conversion Heating Systems.
 - A. Central Heating Plants.
 - 1. Steam, hot water and vapor boilers.
 - 2. Warm air basement furnaces.

These systems are supplied with either automatic or manual control. Central heating plants, for example, whether gas designed or conversion systems, may be equipped with room temperature control, push-button control, or manual control.

Gas-Fired Boilers and Furnaces

Specially designed boilers are available for gas-firing such as shown in Fig. 16. Additional information on gas-fired boilers will be found in Chapter 12. Either snap action or throttling control is available for gas boiler operation. Throttling control is especially advantageous in steam systems because steam pressures can be maintained at desired points, while at the same time complete cut-off of gas is possible when the thermostat calls for it.

Warm air furnaces are variously constructed of cast-iron, sheet metal and combinations of the two materials. If sheet metal is used, it must be of such a character that it will have the maximum resistance to the corrosive effect of the products of combustion. With some varieties of manufactured gases, this effect is quite pronounced. Warm air furnaces

are obtainable in sizes from those sufficient to heat the largest residence down to sizes applicable to a single room. The practice of installing a number of separate furnaces to heat individual rooms is peculiar to mild climates. Small furnaces, frequently controlled by electrical valves actuated by push-buttons in the room above, are often installed to heat rooms where heat may be desired for an hour or so each day. These furnaces are used also for heating groups of rooms in larger residences. In a system of this type each furnace should supply a group of rooms in which the heating requirements for each room in the group are similar.

The same fundamental principle of design that is followed in the construction of boilers, that is, breaking the hot gas into fine streams so that

Fig. 16. Combination Gas-Fired Boiler

all particles are brought as close as possible to the heating surface, is equally applicable to the design of warm air furnaces.

Codes for proportioning warm air heating plants, such as that formulated by the *National Warm Air Heating and Air Conditioning Association* are equally applicable to gas furnaces and coal furnaces. Recirculation should always be practiced with gas-fired warm air furnaces. It not only aids in heating, but is essential to economy. Where fans are used in connection with warm air furnaces for residence heating, it is well to have the control of the fan and of the gas so coordinated that there will be sufficient delay between the turning on of the gas and the starting of the fan to prevent blasts of cold air being blown into the heated rooms. An additional thermostat in the air duct easily may be arranged to accomplish this.

Warm air floor furnaces are well adapted for heating first floors, or where heat is required in only one or two rooms. A number may be used to provide heat for the entire building where all rooms are on the ground floor, thus giving the heating system flexibility as any number of rooms

may be heated without heating the others. With the usual type the register is installed in the floor, the heating element and gas piping being suspended below.

Space Heaters

Space heaters are generally used for auxiliary heating, but may be, and are in many cases, installed for furnishing heat to entire buildings. With the exception of wall heaters, they are portable, and can be easily removed and stored during the summer season. Although it is generally desirable to connect space heaters with solid piping, use of flexible gas tubing, semirigid tubing, or flexible metal hose is frequently resorted to, particularly in the connection of portable types. Where flexible gas tubing is used, a gas shut-off on the heater is not permitted and only American Gas Association certified tubing should be used.

Parlor furnaces or circulators are usually of the cabinet type. They heat the room entirely by convection, i.e., the cold air of the room is drawn in near the base and passes up inside the jacket around a drum or heating section, and out of the heater at or near the top. These heaters cause a continuous circulation of the air in the room during the time they are in operation. The burner or burners are located in the base at the bottom of an enclosed combustion chamber. The products of combustion pass around baffles within the heating element or drum, and out the flue at the back near the top. They are well adapted not only for residence room heating but also for stores and offices.

Radiant heaters give off considerable portion of their heat in the form of radiant energy emitted by an incandescent refractory that is heated by a Bunsen flame. They are made in numerous shapes and designs and in sizes ranging from two to fourteen or more radiants. Some have sheetiron bodies finished in enamel or brass while others have cast-iron or brass frames with heavy fire-clay bodies. An atmospheric burner is supported near the center of the base, usually by set screws at each end. Others have a group of small atmospheric burners supported on a manifold attached to the base. Most radiant heaters are supported on legs and are portable; however, there are also types which are encased in a jacket which fits into the wall with a grilled front, similar to a wall register.

Gas-fired steam and hot water radiators are popular types of room heating appliances. They provide a form of heating apparatus for intermittently heated spaces such as stores, small churches and some types of offices and apartments. They are made in a large variety of shapes and sizes and are similar in appearance to the ordinary steam or hot water radiator. A separate combustion chamber is provided in the base of each radiator and is usually fitted with a one-piece burner. They may be secured in either the vented or unvented types, and with steam pressure, thermostatic or room temperature controls.

Warm air radiators are similar in appearance to steam or hot water radiators. They are usually constructed of pressed steel or sheet metal hollow sections. The hot products of combustion circulate through the sections and are discharged from a flue or into the room, depending upon whether the radiator is of the vented or unvented type.

Garage heaters are usually similar in construction to the cabinet

circulator space heaters, except that safety screens are provided over all openings into the combustion chamber to prevent any possibility of explosion from gasoline fumes or other gases which might be ignited by an open flame. They are usually provided with automatic room temperature controls and are well suited for heating either residence or commercial garages.

Conversion Burners

Residence heating with gas through the use of conversion burners installed in coal-designed boilers and furnaces represents a common type of gas-fired house heating system. In many conversion burners radiants or refractories are employed to convert some of the energy in the gas to radiant heat. Others are of the blast type, operating without refractories.

Many conversion units are equipped with a sheet metal secondary air duct which is inserted through the ashpit door. The duct is equipped with automatic air controls which open when the burners are operating and close when the gas supply is turned off. This prevents a large part of the circulation of cold air through the combustion space of the appliance when not in operation. With this duct the air necessary for proper combustion is supplied directly to the burner, thereby making it possible to reduce the excess air passing through the combustion chamber.

Conversion units are made in many sizes both round and rectangular to fit different types and makes of boilers and furnaces. They may be secured with manual, push-button, or room temperature control.

Combustion Process and Adjustments

Because of the varying composition of gases used for domestic heating it is difficult to generalize on the subject of gas burner combustion.

Little difficulty should be experienced in maintaining efficient combustion conditions when burning gas. The fuel supply is normally held to close limits of variation in pressure and calorific value and, therefore, the rate of heat supply is nominally constant. Since the force necessary to introduce the fuel into the combustion chamber is an inherent factor of the fuel, no draft by the chimney is required for this purpose. The use of a draft diverter insures the maintenance of constant low draft condition in the combustion chamber with a resultant stability of air supply. A draft diverter is also helpful in controlling the amount of excess air and preventing back drafts which might extinguish the flame. (See Chapter 8.)

Measurement of the Efficiency of Combustion

It is possible to determine the results of combustion by analyzing the gases of combustion with an Orsat apparatus. It is desirable to determine the percentage of carbon dioxide (CO_2) , oxygen (O_2) and carbon monoxide (CO) in the flue gases. While ultimate CO_2 values of 10 to 12 per cent may be obtained from the combustion of gases commonly used for domestic heating, a combustion adjustment which will show from 8 to 10 per cent CO_2 represents a practical value. Under normal conditions no CO will be produced by a gas-fired boiler or furnace. Limitations as to output rating by the A.G.A. are based upon operation with not more than 0.04 per cent CO in the products of combustion. This is too small an amount to be determined by the ordinary flue gas analyzer.

Controls

Temperature controls for gas burners are described in Chapter 34. Some central heating plants are equipped with push-button or other manual control. The main gas valve may be of either the snap action or throttling type.

Sizing Gas-Fired Heating Plants

While gas-burning equipment usually is completely automatic, maintaining the temperature of rooms at a predetermined and set figure, there are in use installations which are manually controlled. Experience has shown that, in order to effectively overcome the starting load and losses in piping, a manually-controlled gas boiler should have an output as much as 100 per cent greater than the equivalent standard cast-iron column radiation which it is expected to serve.

Boilers under thermostatic control, however, are not subject to such severe pick-up or starting loads. Consequently, it is possible to use a much lower selection, or safety factor. A gas-fired boiler under thermostatic control is sensitive to variations in room temperatures so that in most cases a factor of 20 per cent is sufficient for pick-up load.

The factor to be allowed for loss of heat from piping, however, must vary somewhat, the proportionate amount of piping installed being considerably greater for small installations than for large ones. Liberal selection factors to be added to the installed steam radiation under thermostatic control are given in Fig. 1 of Chapter 12.

Appliances used for heating with gas should bear the approval seal of the *American Gas Association* Testing Laboratory. Installations should be made in accordance with the recommendations shown in the publications of that association.

Ratings for Gas Appliances

Since a gas appliance has a heat-generating capacity that can be predicted accurately to within 1 or 2 per cent, and since this capacity is not affected by such things as condition of fuel bed and soot accumulation, makers of these appliances have an opportunity to rate their product in exact terms. Consequently all makers give their product an hourly Btu output rating. This is the amount of heat that is available at the outlet of a boiler in the form of steam or hot water, or at the bonnet of the furnace in the form of warm air. The output rating is in turn based upon the Btu input rating which has been approved by the American Gas Association Testing Laboratory and upon an average efficiency which has been assigned by that association.

In the case of boilers, the rating can be put in terms of square feet of equivalent direct radiation by dividing it by 240 for steam, and 150 for water. This gives what is called the American Gas Association rating, and is the manner in which all appliances approved by the American Gas Association Laboratory are rated. To use these ratings it is only necessary to increase the calculated heat loss or the equivalent direct radiation load by an appropriate amount for starting and piping, and to select the boiler or furnace with the proper rating.

The rating given by the American Gas Association Laboratory is not only a conservative rating when considered from the standpoint of capacity and efficiency, but is also a safe rating when considered from the standpoint of physical safety to the owner or caretaker. The rating that is placed upon an appliance is limited by the amount of gas that can be burned without the production of harmful amounts of carbon monoxide. Gas boilers are available with ratings up to 14,000 sq ft of steam radiation, while furnaces with ratings up to about 500,000 Btu per hour are available.

REFERENCES

Domestic Burners for Pennsylvania Anthracite, Commercial Standard CS48-40, U. S. Department of Commerce.

Uniform Stoker Rating Code, Stoker Manufacturers Association, adopted November 15, 1937.

Recommended Standards Governing Minimum Setting Heights, Stoker Manufacturers Association, adopted March 12, 1940.

Performance Expectancy of Domestic Underfeed Stokers for Anthracite, by Allen J. Johnson (Transactions, A.I.M.E., Coal Division, Vol. 119, 1936).

The Relation of the Size of Bituminous Coals to Their Performance on Small Underfeed Stokers—The Relation of the Size in the Hopper to That Burned in the Retort, by R. A. Sherman and E. R. Kaiser, Technical Report No. 1, Bituminous Coal Research, Inc., (December, 1935) Pt I.

The Relation of the Size of Bituminous Coals to Their Performance on Small Underfeed Stokers—Burning Tests on Four Typical Coals, by R. A. Sherman, E. R. Kaiser and H. R. Limbacher, Technical Report No. 1, Bituminous Coal Research, Inc. (July, 1937) Pt. II.

Stoker Coals, Anonymous, Bulletin of Chesapeake and Ohio Railway Co., 1935.

A.S.H.V.E. RESEARCH REPORT No. 907—Study of Performance Characteristics of Oil Burners and Low Pressure Heating Boilers, by L. E. Seeley and E. J. Tavanlar (A.S.H.V.E. Transactions, Vol. 37, 1931, p. 517).

A.S.H.V.E. RESEARCH REPORT No. 925—A Study of Intermittent Operation of Oil Burners, by L. E. Seeley and J. H. Powers (A.S.H.V.E. Transactions, Vol. 38, 1932, p. 317).

Air Supply and Its Effect on Performance of Oil Burners and Heating Boilers, by L. E. Seeley, J. H. Powers and E. J. Tavanlar (A.S.H.V.E. Transactions, Vol. 39, 1933, p. 75)

Study of Fuel Burning Rates and Power Requirements of Oil Burners in Relation to Excess Air, by L. E. Seeley and E. J. Tavanlar (A.S.H.V.E. Transactions, Vol. 40, 1934, p. 319).

Oil Burning in Residences, by D. W. Nelson (A.S.H.V.E. TRANSACTIONS, Vol. 41, 1935, p. 355).

Domestic Oil Burners, by A. H. Senner (Mechanical Engineering, November, 1936). A Study of Oil-Fired Heating Boilers, by R. C. Cross and W. R. Lyman (Heating and Ventilating, October, 1931).

Value of Oil Burner Installation Surveys, by R. C. Cross and W. R. Lyman (*Heating and Ventilating*, January, 1931).

Comfort Heating, American Gas Association.

Approval Requirements of Central House Heating Gas Appliances, American Gas Association.

A Method for Determining Fuel Burning Rates in Heating Boilers Fired by Automatic Devices, by R. C. Cross (*Heating and Ventilating*, January, 1932)

Heat Losses and Efficiencies of Fuels in Residential Heating, by R. A. Sherman and R. C. Cross (A.S.H.V.E. Transactions, Vol. 43, 1937, p. 185).

Efficiencies and Costs of Various Fuels in Domestic Heating, by R. A. Sherman and R. C. Cross, Technical Report No. 3, Bituminous Coal Research, Inc., (December, 1936).

Automatic Heating Equipment, American Architect Reference Data, No. 7, September, 1933.

Chapter 11

ESTIMATING FUEL CONSUMPTION

Fuel Consumption Records, Calculated Heat Loss Estimation Method, Degree-Day Method, Unit Fuel Consumption per Degree-Day, Degree-Day as an Operating Unit, Maximum Demands and Load Factors

MANY methods are in use for estimating in advance of actual operation the anticipated heat or fuel consumption of heating plants over long or short periods. With suitable modification in procedure these same general methods are frequently useful in checking the degree of effectiveness with which heat or fuel is utilized during plant operation.

In applying any of these estimating methods to the consumption of a particular building plant it should be noted that (a) reliable records of past heat or fuel consumptions of the building under consideration will usually produce more trustworthy estimates of future consumptions than will any data obtained by averages or from other similar buildings; (b) where no past records exist useful data can sometimes be obtained from records of similar buildings with similar plants in the same locality; (c) records of consumption, which are averages from many types of plants in many types of buildings in various localities, can produce no better than an average estimate which may be far from accurate; (d) estimates based on computed heat losses without the benefit of operating data are wholly dependent on how well the computation represents the actual facts.

Where records of past consumptions are available they should be examined for reliability to be sure that the records show fuel or heat for the heating plant only, or else make a suitable allowance for fuel used for other purposes, such as heating water required for the plumbing system. Weights and measures shown on invoices may not always agree with fuel used, for residues left in bins or tanks may represent a considerable fraction of the fuel charged to a building. Generally, plant operating records of fuel used are to be preferred to those obtained from accounting or bookkeeping offices from fuel invoices.

Records from similar buildings even in the same locality should be examined with care before being used as the basis of estimates. The type of heating system, the quality of supervision in manual plants, the kind of control in automatic plants, and the attention given to the plant operation are all factors in fixing the consumption in any building. Many times these factors do not show up in superficial examination and are even difficult to evaluate when known to be present. Records should be

checked to make sure that they do not include fuel or steam used for other purposes than heating the building.

Estimates based on computed heat losses alone are frequently the only ones possible to obtain, especially where new equipment is put into unusual buildings and there is a scarcity of records and an absence of experience data. Such estimates also have to be made where direct information is not obtainable as, for example, if a survey is being made without the assistance or knowledge of the building operator and thus without information as to the actual consumption. Estimates of this kind are also useful in some cases where a *relative* standard of performance is desired to serve as a base of comparisons in a campaign of fuel utilization. In such situations it can be plausibly argued that an estimate based on computed heat quantities is to be preferred to one which is related to operating methods.

In interpreting and evaluating heat or fuel consumption estimates as well as in their preparation, it is well to realize that any estimating method used will produce a more reliable result over a long period operation than over a short period. Nearly all of the methods in common use will give trustworthy results over a full *annual* heating season, and in some cases such estimates will prove consistent within themselves for monthly periods. As the period of the estimate is shortened there is more chance that some factor not allowed for in the estimating method will become controlling and thus give discrepant and even ridiculous results.

Of the various estimating methods in use attention is directed in this discussion to but two as they are illustrative of all, viz: (1) calculated heat loss method, and (2) degree-day method.

CALCULATED HEAT LOSS METHOD

This method is theoretical and assumes constant temperatures for very definite hours each day throughout the entire heating season. It does not take into account factors which are difficult to evaluate such as opening of windows, abnormal heating of the building, poor heating systems, winter heat gains, such as sun effect, and many others.

In order to apply this method the hourly heat loss from the building under maximum load, or design condition, is computed following the principles discussed in Chapters 4 and 5 and the method described and illustrated in Chapter 6.

In some cases, however, depending on the presence of interior partitions, the computed heat loss is modified when used for estimating the heat or fuel consumption. If the building has no interior walls or partitions then, by the method of Chapters 5 and 6, the infiltration losses are calculated by using only half the total window crack. In such a building the calculated loss need not be modified in order to prepare heat or fuel estimates by this method. Where the building does contain interior walls or partitions instead of using as the calculated heat loss (H) which is equal to the sum of the transmission losses (H_t) and the infiltration

losses (H_i) , it is more desirable to let $H = H_t + \frac{H_i}{2}$.

CHAPTER 11. ESTIMATING FUEL CONSUMPTION

In predicting fuel consumption for heating a building by the Calculated Heat Loss Method, the general equation is:

$$F = \frac{H (t - t_a) N}{E (t_d - t_o) C} \tag{1}$$

where

F = quantity of fuel or energy required (in the units in which C is expressed).

H = calculated heat loss, Btu per hour, during the design hour, based on t_0 and t_d (generally $H = H_t + H_i$ but may on occasion equal $H_t + \frac{H_i}{2}$).

t = average inside temperature maintained during heating period, degrees Fahrenheit.

t_a = average outside temperature through estimate period, degrees Fahrenheit (for cities with an Oct. 1-May 1 heating season, see Table 2, Chapter 6).

t_d = inside design temperature, degrees Fahrenheit (usually 70 F).

 t_0 = outside design temperature, degrees Fahrenheit (see Fig. 1 or Table 2 in Chapter 6).

N= number of heating hours in estimate period (for an Oct. 1—May 1 heating season, 212 days \times 24 hr = 5088).

E= efficiency of utilization of the fuel over the period, expressed as a decimal; not the efficiency at peak or rated load condition.

C = heating value of one unit of fuel or energy.

Although the assumption of an Oct. 1-May 1 heating season is reasonably accurate in the well-populated New York-Chicago zone it is not valid as far north as Minneapolis nor farther south than Washington; D. C. and St. Louis. Consequently, it is suggested that allowance be made for this variation, especially in the far north or southern cities.

Example 1. A residence in Chicago is to be heated to 70 F from 6 A.M. to 10 P.M. and 55 F from 10 P.M. to 6 A.M. The calculated hourly heat loss is 120,000 Btu per hour based on 70 F inside at -10 F outside. If the building is to be heated by metered steam, how many pounds would be required during an average heating season?

Solution. The heating value of steam may be taken as 1000 Btu per pound, and since it is purchased steam, the efficiency can be assumed as 100 per cent. From Table 2, Chapter 6, $t_a=36\,4$ F. The average inside temperature is:

$$\frac{(16 \times 70) + (8 \times 55)}{24} = 65 \text{ F}.$$

Substituting in Equation 1:

$$F = \frac{120,000 (65 - 36.4) 5088}{1.00 [70 - (-10)] 1000} = 218,275 \text{ lb.}$$

Example 2. How much would the fuel cost to heat the building in Example 1 during an average heating season with coal at \$8 per ton and with a calorific value of 11,000 Btu per pound, assuming that the seasonal efficiency of the plant was 55 per cent?

Solution. Substituting in Equation 1: $F = \frac{120,000 (65 - 36.4) 5088}{0.55 [70 - (-10)] 11,000} = 36,079 lb = 18 tons, which, at $8 per ton, costs $144.$

Example 3. What will be the estimated fuel cost per year of heating a building with gas, assuming that the calculated hourly heat loss is 92,000 Btu based on 0 F, which includes 26,000 Btu for infiltration? The design temperatures are 0 F and 72 F. The normal heating season is 210 days, and the average outside temperature during the heating season is 36.4 F. The seasonal efficiency will be 75 per cent. The heating plant will be thermostatically controlled, and a temperature of 55 F will be maintained from

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

11 P.M. to 7 A.M. Assume that the price of gas is 7 cents per 100,000 Btu of fuel consumption, and disregard the loss of heat through open windows and doors.

Solution. The average hourly temperature is:

$$t_{\rm a} = \frac{(72 \times 16) + (55 \times 8)}{24} = 66.3 \text{ F}.$$

The maximum hourly heat loss will be:

$$H = 92,000 - \frac{26,000}{2} = 79,000$$
 Btu.

$$M=\frac{79,000~(66.3~-36.4)~\times~24~\times~210}{100,000~\times~0.75~\times~(72~-0)}=2204.6~{\rm hundred~thousand~Btu}.$$

 $2204.6 \times \$0.07 = \$154.32 = \text{estimated fuel cost per year of heating building.}$

In the case of gravity warm air heating installations, the load is usually expressed in square inches of leader pipe. This can be converted into hourly heat loss by multiplying by the factors in Table 1.

Table 1. Heat Carrying Capacity of Gravity Warm Air Furnace Round Leader Pipes

180	F	Register	7	em perature
-----	---	----------	---	-------------

Leader Pipe	BTU PER HOUR AT DESIGN CONDITIONS PER SQ IN. OF LEADER PIPE
First floor	111 167
Third floor	200

Example 4. What would be the total gas consumption over a full heating season of a gas-fired gravity warm air furnace designed according to the Code¹, and with four 12 in. and two 8 in. round leaders to the first floor and six 10 in. leaders to the second floor, if the gas has a heating value of 500 Btu per cubic foot, the plant operates at a 70 per cent seasonal efficiency and is designed to maintain an average inside temperature of 65 F when it is 10 F outside in a city where the average outside temperature is 45 F and the heating season is 5088 hr long?

Solution. The area of the round leaders is: 12 in., 113 sq in.; 10 in., 79 sq in.; and 8 in., 50 sq in. From Table 1 the total Btu transmitted is:

First Floor: $[(4 \times 113) + (2 \times 50)] \times 111 = 61,272$ Btu per hour. Second Floor: $(6 \times 79) \times 167 = 79,158$ Btu per hour.

Total 140,430 Btu per hour.

Substituting this total heat loss value as H in Equation 1 gives:

$$F = \frac{140,430 (65 - 45) 5088}{0.70 (70 - 10) 500} = 680,483 \text{ cu ft gas.}$$

DEGREE-DAY METHOD

This method is based on consumption data which have been taken from buildings in operation, and the results computed on a degree-day basis. While this method may not be as theoretically correct as the Calculated

¹Standard Code Regulating the Installation of Gravity Warm Air Heating Systems in Residences (9th edition), and the Technical Code for the Design and Installation of Mechanical Warm Air Heating Systems, may be obtained from the *National Warm Air Heating and Air Conditioning Association*, 145 Public Square, Cleveland, Ohio.

CHAPTER 11. ESTIMATING FUEL CONSUMPTION

Heat Loss Method, it is considered by many to be of more value for practical use.

The amount of heat required by a building depends upon the outdoor temperature, if other variables are eliminated. Theoretically it is proportional to the difference between the outdoor and indoor temperatures. Some years ago the American Gas Association² determined from experiment in the heating of residences that the gas consumption varied directly as the difference between 65 F and the outside temperature. In other words, on a day when the temperature was 20 deg below 65 F, twice as much gas was consumed as on a day when the temperature was 10 deg

TABLE 2. BASE TEMPERATURE FOR THE DEGREE-DAY²

Type of Building	No. of Buildings Analyzed	Temperature F Cor- responds to Zero Steam Consumption
Office and Bank Bank Office and Telephone Exchange Office and Stores Stores Department Stores Hotels Apartments Residences Clubs Lodges Theaters Churches Garages Auto Sales and Service Newspaper and Printing Warehouse and Loft Manufacturing	60 4 3 2 6 11 12 7 14 8 4 5 3 2 2 4 3 3 2 2 4 3 3 2 4 3 2 2 4 3 2 2 4 3 2 2 4 3 2 2 4 3 2 2 2 4 3 2 2 2 4 3 2 2 2 4 3 2 2 2 4 3 3 2 2 2 2	66.2 65.8 66.2 65.5 67.4 64.0 64.3 66.5 68.8 66.9 65.5 64.9 67.6 65.5 64.9 67.7 65.2 67.7
Average for 163 Buildings	J	66.0 F

*Report of Commercial Relations Committee, Proceedings, National District Heating Association, 1932.

below 65 F. For any one day there exists as many degree-days as there are degrees Fahrenheit difference in temperature between the mean temperature for the day and 65 F when the mean temperature is less than 65 F.

Studies made by the National District Heating Association of the metered steam consumption of 163 buildings located in 22 different cities and served with steam from a district heating company substantiates the fact that the 65 F base originally chosen by the gas industry is approximately correct as shown in Table 2.

If the degree-days occurring each day are totaled for a reasonably long period, the fuel consumption during that period as compared with another period will be in direct proportion to the number of degree-days in the two periods. Consequently, for a given installation, the fuel consumption can be calculated in terms of fuel used per degree-day for any sufficiently

^{*}See Industrial Gas Series, House Heating, (third edition) published by the American Gas Association.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 3. Normal Degree-Days for Cities in the United States and Canada^a

	1		_ 1		. 1		T	T	1	Conn	Ост	Nov.	DEC	Total
STATE	Спт	Jan.	FEB.	Mar	Apr.	MAY	JUNE	JULY	AUG.	SEPT.				
Ala	Birmingham	617	476	298	58						51	333		$\frac{2410}{1473}$
	Mobile	418	288	164							3	$\frac{192}{160}$		1405
Ariz	Phoenix		277	133	4						89	$\frac{100}{420}$		3112
Ark	Fort Smith	790	622	384	97			····			72	387		2863
	Little Rock	732	563	372	92		9				11	123		1472
Calif	Los Angeles		266	232	168	$\begin{array}{ c c c c } & 87 \\ 254 \end{array}$			183	123	140	261		3244
<u> </u>	San Francisco		358 904	335 797	300 537	273			100		428	$75\hat{6}$		
Colo	Denver		899	663	378					1 7 7		771	1162	
Conn	Grand Junction New Haven	1141	1008	905	534		10				347	690		
D. C	Washington		832	694	351	61	١			3	236	594		4631
Fla			196	76	001							88	270	928
Ga	Atlanta			403	120						80	387	629	2865
Oa	Savannah		308	186	15						7	195		1524
Idaho			846		438	245					431	720		5614
III		1237	1053	890	519	202	3			17	307	714	1085	
	Springheld	1194	994	769	369	71				7	285	684		
Ind		976			249						174	552		4228
	Indianapolis	1135	949		387	1						681		
Iowa	Des Moines	1392	1156		447							798		6409
	Sioux City	1463	1232		516						437	894		7052
Kan	Dodge City	1116	890		342						276 248	672 666		$5056 \\ 5103$
**	Topeka										236	606		4600
Ку					321							549		4185
Τ.	Louisville					10	•				110	104		1017
La											24	270		1964
Me	Shreveport			1119	780		297	143	133	276			1200	
WIE	Eastport Portland												1159	
Md	Baltimore									2	211	561		4525
Mass					558	1		1		61	353			6003
Mich.		1259	1112	980						58				6460
	Marquette	1510	1364	1246								951	1314	8721
Minn	. Duluth	. 1770	1501	1280	840		234	32	74	297	648		1522	
	Minneapolis	. 1621	1375	1097	558	226	9			113				7883
Miss	. Vicksburg	. 521	. 370								22			1851
Mo					306									5002
	St. Louis			1							191			4539
36	Springfield									2				4420
Mont.	. Havre						94		22	$\frac{258}{258}$				8635
Neb	Lincoln	1308	1108	852					-	21				6053
Marr	Omaha	1100	1100	868									1197 1085	
Nev N. H.	Winnemucca	1215	882	775					4				1184	
		1005	879				00	2		10				5173
N. J N. M.							30) 		122				6087
N. Y.		1200	11145											6541
11. 1	Buffalo			1051						81				6818
	New York								.,	12				5290
N. C.	Raleigh				1						0.0			3179
	Wilmington	. 574	479								. 31			2304
N. D.		1773	1532	1265	687	326	55	5	- 5	207	628	1095	1559	9127
Ohio	. Cincinnati	1076	902	747	378	7				. 10	288	675	980	5127
	Cleveland	1194	1053	942	564	1 220					353	723	1048	6150
	Columbus									. 18			1011	5421
Okla.		y 887	71.				3	-		-	. 120			3625
Ore												870		7216
n	Portland									-) - :				4442
Pa	. Philadelphia	100-	¥ 87.	750	38	7 7	(-	-	. 3	3 223	3 579	890	4784
	1	ſ	1	!	I	1	1	1	1	1	1	1	!	1

CHAPTER 11. ESTIMATING FUEL CONSUMPTION

Table 3. Normal Degree-Days for Cities in the United States and Canada^a (Concluded)

State	City	Jan.	FEB.	Mar.	APR.	May	June	JULY	AUG.	Sept.	0ст.	Nov.	DEC.	Total
Pa	Pittsburgh	1063	916	787	414	91				15	288	654	955	5183
S. C			353		37						8			1721
	Columbia	589	470	304	63						54	330	552	2362
S. D	Huron	1665	1420	1119	597	267	18			112	536	1005	1435	8174
	Rapid City	1333	1165	1004	621						512	873		7219
Tenn	Knoxville	812	647	505	210	8					160			3621
	Memphis		580	394	98						76			2957
	Nashville	818	655	490	180	3					130			3500
Texas	El Paso		448		59						72			2476
	Fort Worth				25						24			2178
	Houston	381	255	56								122		1143
	San Antonio		269									138		1221
Utah	Modena	1187	952	831	570		62			150	527		1114	
	Salt Lake City		874	722	462		12			54	388			5601
Vt			1277	1113	651		21			140	490			7508
Va		852	692		231	9				1	202			3860
	Norfolk		624	521	246						89	408		3342
	Richmond		711	552	252						167	501		3819
Wash	Seattle		669	623	468		180		59		422	582		5107
	Spokane	1162	944	784			72			174	518			6312
W. Va.		1073	935	775	486		3			71	394		1001	
	Parkersburg									10	276	636		4807
Wis	Green Bay	1528					35			139	512			7896
	LaCrosse				534		1			87	456			7309
	Milwaukee				636		52			80	431			7152
Wyo					723				13		626			7503
	Lander	1448	1190	1011	678	428	135		18	279	666	1041	1383	8277
		l				!								

Pro- vince	Сітч	Jan.	FEB.	Mar.	Apr	May	JUNE	July	Aυα.	Sept	Ocr.	Nov.	DEC.	TOTAL
Alta	Calgary Edmonton			$\frac{1240}{1302}$	750 720	496 434		$\frac{124}{124}$	186 186	450 450			1395 1519	
B. C	Vancouver	899	756	713	510	341	180	62	31	270	496	660	837	5,555
Man N. B	Winnipeg Moncton	$2139 \\ 1519$		1178	810 810	465 465	$\frac{90}{210}$		62 93	270 300	744 620	930	$1829 \\ 1333$	
N. S Ont	Halifax Ottawa	$1302 \\ 1674$			780 690	$\frac{496}{279}$	210 30			210 210			$1147 \\ 1457$	
Ont	Port Arthur	1829	1624	1426	900	558	240		86	360	713	1140	1550	10,588
P.E.I.				$1209 \\ 1209$	720 870	372 529	$\frac{60}{210}$			180 600			$ 1209 \\ 1240$	
Que	Montreal	1581	1428	$1209 \\ 1333$	720 870	310 434			31	180 270			1395 1519	
Sask		2108			810		210						1736	

aFigures for United States cities taken from Degree-Day Normals over the United States, by A. G. Topil (Monthly Weather Review, U. S. Weather Bureau, July, 1937, p. 266). Figures for Canadian Cities abstracted from Heating and Ventilating, October, 1939.

long period and compared with similar ratios for other periods to determine the relative operating efficiencies with the outside temperature variable eliminated.

The average number of degree-days which have occurred over a long period of years, and such averages, by months, on a 65 F basis, are given for various United States and Canadian cities in Table 3. The United States values were computed from daily recorded Weather Bureau tem-

peratures over a 46 year period from 1875 to 1921. Whenever the mean temperature of each day during the month was less than 64.6 F, the degree-days were determined by taking the difference between the mean monthly temperature and then this value was multiplied by the number of days in the month. For months in which the mean temperature of any day exceeded 64.5 F, the degree-days were computed by individual days and totaled to find the monthly amount. Temperatures since July 2, 1921 have not been used in calculating the normal degree-days given in Table 3. In general, attempts to apply the degree-day method to fuel consumptions over a period of less than a month are of questionable value.

Formula for Degree-Day Method

The general equation for calculating the probable fuel consumption by the Degree-Day Method is:

$$F = U \times N \times D \tag{2}$$

where

F =fuel consumption for the estimate period.

U = unit fuel consumption, or quantity of fuel used per degree-day per building load unit.

N= number of building load units (when available use calculated heat loss instead of actual amount of radiation installed).

D = number of degree-days for the estimate period.

Values of N depend on the particular building for which the estimate is being prepared and must be found by surveying plans, by observation, or by measurement of the building. Values of U for use in this equation are the Unit Fuel Consumptions per Degree-Day and are obtained as a result of the collection of operating information. Certain of this information is presented later but before referring to these data attention is directed to the nature of the unit.

Unit Fuel Consumptions per Degree-Day

The quantity of fuel used per degree-day in a given heating plant can be reduced to a unit basis in terms of quantity of fuel or steam per degree-day per square foot of radiation, per cubic foot of heated building space, or per thousand Btu hourly heat loss at design conditions. A less frequently used basis is quantity of fuel per degree-day per square foot of floor area. In fact any convenient unit can be used to relate the consumption to the degree-day and to the building.

The choice of these units requires explanation and some discrimination and judgment. The use of heated space in preference to the gross building cubage is obviously more accurate for this purpose. The gross cubage includes the outer walls and certain percentages of attic and basement space which are usually unheated. The net heated space is usually about 80 per cent of the gross volume and can be calculated from the latter if it cannot be measured. The cubical content is not considered accurate as a basis of comparison due to differences in types of construction, exposure, and ratio of exposed area to cubical contents.

The calculated heat loss or its equivalent square foot of calculated radiator surface may be used as the unit. The use of the unit equivalent direct radiation is of questionable value when referring to heat transfer

CHAPTER 11. ESTIMATING FUEL CONSUMPTION

surfaces as applied to warm air furnace or central air conditioning systems. In view of all these considerations it is believed that the unit based on thousands of Btu of hourly calculated heat loss for the design hour is probably the most desirable although the one most widely used seems to be units of fuel per degree-day per square foot of equivalent direct radiator surface.

Since this unit is the one most widely used at present the unit fuel consumptions given in succeeding paragraphs of this chapter make use of this unit to a considerable extent, although it should be understood that most of these units of consumption can be transposed as desired.

Estimating Gas Consumption

Values of the Unit Fuel Consumption Constant (U) for gas are given in Table 4 for various gas heating values, and different types and sizes of heating plants. They are based on an inside design temperature of 70 F and an outside design temperature of 0 F and apply only to these conditions. For other design conditions corrections must be made as given in Table 7.

The factors in Table 4, as corrected if necessary, are satisfactory for regions having 3500 to 6500 degree-days per heating season. In regions with less than 3500 degree-days the unit gas consumption is higher than given; where over 6500, the unit is less than given. Ten per cent addition or deduction in these cases is recommended by AGA publications. Estimates for industrial buildings where low inside temperatures are maintained cannot be made from this table.

For gas heating values other than those given in Table 4, simply interpolate or extrapolate. It will also be noted that Table 4 applies only to small installations. In general the larger the installation the smaller the unit gas consumption becomes and the values in the table should be used with care, if at all, in large gas-burning installations.

Example 5. Estimate the gas required to heat a building located in Chicago, Ill., which has 6027 degree-days and a gas heating value of 800 Btu per cubic foot. The calculated heating surface requirements are 1000 sq ft of hot water radiation based on design temperature of $-10~\mathrm{F}$ and $70~\mathrm{F}$.

Solution. From Equation 2 and Table 4, the fuel consumption for a design temperature of 0 F with 800 Btu gas is found to be 0.085 cu ft of gas per degree-day per square foot of hot water radiation. From Table 7, the correction factor is 0.875 for -10 F outside design temperature, hence $0.875 \times 0.085 = 0.07438$.

 $0.07438 \times 1000 \times 6027 = 448,288$ cu ft.

Estimating Oil Consumption

Unit fuel consumption factors for oil, similar to those for gas in Table 4 are given in Table 5. The factors in Table 5 apply only to an inside design temperature of 70 F and an outside design temperature of 0 F. For other outside design temperatures, the constants in Table 5 must be multiplied by the values in Table 7 as explained under Estimating Gas Consumption.

Values given in Table 5 assume the use of oil with a heating value of 140,000 Btu per gallon. For other heating values, multiply the values in

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 4. Unit Fuel Consumption Constants (U) for Gasa Based on 0 F Outside Temperature and 70 F Inside Temperature

		Hot Water			Steam	WAR	Warm Air		
Heating Value of Gas Btu per Cu Ft	Cu Ft C	Gas per Degr er Sq Ft Rad	ee-Day hator	Cu Ft Gas per Degree-Day per Sq Ft Radiator			Cu Ft Gas per Degree-Da per 1000 Btu Hourly Design Heat Loss		
	Up to	500 to	Over	Up to	300 to	Over	_		
	500 Sq Ft	1200 Sq Ft	1200 Sq Ft	500 Sq Ft	700 Sq Ft	700 Sq Ft	Gravity	Fan Systems	
500 535 800 1000	0.142 0.132 0.089 0.071	0.135 0.126 0.085 0.068	0.128 0.120 0.081 0.065	0.242 0.226 0.151 0.121	0.231 0.215 0.144 0.115	0.220 0.206 0.137 0.110	0.855 0.800 0.534 0.428	0 820 0.766 0.513 0.410	
1 Therm	Gas Consumption in Therms per Degree-Day								
100,000 Btu	0.000708	0.000675	0.000642	0.00121	0.00115	0.00110	0.00428	0.00409	

Abstracted from Comfort Heating, American Gas Association, 1938.

Table 5. Unit Fuel Consumptiona Constants (U) for Oilb Based on 0 F Outside Temperature and 70 F Inside Temperature

Unit	Efficiency in Per Cent							
	40	50	60	70	80			
Gal Oil per Sq Ft Steam Radiator	0.00172	0.00137	0.00114	0.00098	0.00086			
Gal Oil per Sq Ft Hot Water Radiator	0.00108	0.00086	0.00072	0.00062	0.00054			
Gal Oil per 1000 Btu per Hour Heat Loss.	0.00715	0.00571	0.00476	0.00409	0.00358			

^{*}Based on a heating value of 140,000 Btu per gallon.

bAbstracted by permission from Degree-Day Handbook (Second Edition, 1937), by C. Strock and C. H. B. Hotchkiss.

TABLE 6. Unit Fuel Consumptiona Constants (U) for Coalb Based on 0 F Outside Temperature and 70 F Inside Temperature

Unit	Efficiency in Per Cent							
	40	50	60	70	80			
Lb Coal per Sq Ft Steam Radiator	0.0200	0.0160	0.0133	0.0114	0.0100			
Lb Coal per Sq Ft Hot Water Radiator	0.0125	0.0100	0.0084	0.0072	0.0063			
Lb Coal per 1000 Btu per Hour Heat Loss	0.0825	0.0666	0.0550	0.0471	0.0412			

^{*}Based on a heating value of 12,000 Btu per pound. bAbstracted by permission from *Degree-Day Handbook*, (Second Edition, 1937), by C. Strock and C. H. B. Hotchkiss.

CHAPTER 11. ESTIMATING FUEL CONSUMPTION

Table 5 by the ratio of 140,000 divided by the heating value per gallon of fuel being used.

Example 6. Estimate the seasonal oil consumption of an oil-fired boiler in a building located in Minneapolis having a calculated heat loss of 192,000 Btu per hour, burning 144,000 Btu per gallon oil and operating at a seasonal efficiency of 60 per cent. The outside design temperature for Minneapolis is -20 F, and the inside design temperature is 70 F.

Solution. From Table 5, under 60 per cent efficiency and opposite the bottom column, the value of U is found to be 0.00476 gal per 1000 Btu hourly heat loss for 0 F outside temperature.

The correction factor for -20 F outside design temperature from Table 7 is 0.778. Solving, $0.778 \times 0.00476 = 0.00370$. Making a further correction for the heating value:

 $0.0037 \times \frac{140,000}{144,000} = 0.0036$ gal per 1000 Btu per hour calculated heat loss per degreeday.

From Table 3, the normal degree-days for Minneapolis is 7883. Since U is expressed in 1000 Btu, N is equal to 192. Substituting in Equation 2:

$$F = 0.0036 \times 7883 \times 192 = 5449$$
 gal.

Estimating Coal or Coke Consumption

Coal or coke consumption estimates are made in exactly the same procedure as for oil. Values of U are given in Table 6 which only apply to inside design temperatures of 70 F and an outside design temperature of 0 F. A correction must be made for other conditions by use of the multiplying factors in Table 7. Data in Table 6 are based on 12,000 Btu per pound coal and for other heating values of coal they must be multiplied by the ratio of 12,000 divided by the heating value of fuel used.

Example 7. A building in Marquette, Mich., has an hourly heat loss at design conditions of 240,000 Btu per hour. Based on an inside design temperature of 70 F and an outside design temperature of -20 F, what will be the estimated normal seasonal coal consumption for heating if 12,000 Btu per pound fuel is burned at a 50 per cent seasonal efficiency, and what part of the total will be used during November, December, and January?

Solution. From Table 6, U is 0.0666 lb of coal per 100 \bullet Btu per hour heat loss. Correcting for the outside design temperature of -20 F from Table 7, the value of U is 0.778 \times 0.0666 = 0.0518. From Table 3, D is 8721 and from the problem N is 240.

Substituting in Equation 2:

$$F = 0.0518 \times 240 \times 8721 = 108,419 \text{ lb.}$$

Table 7. Correction Factors for Outside Design Temperatures²

OUTSIDE DESIGN TEMP. DEG F	Inside Design Temp. Deg F	MULTIPLY VALUES IN TABLES 4, 5 AND 6 BY
$ \begin{array}{r} -20 \\ -10 \\ 0 \\ +10 \\ +20 \end{array} $	70 70 70 70 70	0.778 0.875 0.000 1.167 1.400

aThe multipliers in Table 7, which are high for mild climates and low for cold regions are not in error as might appear. The unit figures in Tables 4, 5, and 6 are per square foot of radiator or thousand Btu heat loss per degree-day For equivalent buildings and heating seasons, those in warm climates have lower design heat losses and smaller radiator quantities than those in cold cities Consequently, the unit figure, in quantity of fuel per square foot of radiator per degree-day, is larger for warm localities than for colder regions. Since the northern cities have more radiator surface per given building and a higher seasonal degree-day total than cities in the south, the total fuel per season will be larger for the northern city.

Fuel used over any period is, according to the theory of the degree-day, proportional to the number of degree-days during the period. From Table 3, the average numbers of degree-days for November, December, and January in Marquette are 951, 1314, and 1510, a total of 3775. The yearly total is 8721, so that during these three months the estimated consumption is:

 $\frac{3775}{8721} \times 108,419 = 46,945 \text{ lb.}$

Estimating Steam Consumption

In estimating steam consumption the efficiency is generally assumed at 100 per cent. If for low pressure steam an average heating value of 1000 Btu per pound of steam is used no correction is necessary. In comparing values from different cities, correction should be made for design temperature (see Table 7) when the unit figures are in terms of square foot of radiator or 1000 Btu per hour calculated heat loss, but not when the values are in terms of building volume or floor space.

Consideration has been given to the difference in steam utilization of different types of buildings and Table 8³ shows actual average units for these various types. These figures are obtained from operating results in 196 buildings located in 21 different cities in the United States. Being averages, and for small groups in each type, the figures may need considerable modification to allow for local variations. It should be especially noted that the steam used for heating hot water is included in the values

Table 8. Steam Consumption for Various Classes of Buildings^a (Heating Season Only)

	No. of	Steam Consumption Pounds per Degree-Day—65 F Basisb			
Building Classification	Buildings Listed	Per M Cu Ft of Heated Space	Per M Sq Ft of Radiatorc Surface	Per M Btu per Hour of Heat Lossd	
Apartments	16	1.78	97.5	0.359	
Hotels	10	1.46	80.6	0.371	
Residences	12	1.32	64.2		
Printing	7	1.25	105.5	********	
Clubs and Lodges	10	0.96	77.0		
Retail Stores	18	0.90	80.6	0.268	
Theaters	6	0.90	75.0	0.498	
Loft and Mfg.	16	0.89	72.3	0.283	
Banks	1 7	0.88	45.2		
Auto Sales and Service	8	0.83	62.2		
Churches	6	0.58	49.4		
Department Stores	14	0.57	60.7	0.238	
Garages (Storage)e	6	0.42	72.3		
Offices (Total)	35	1.09	70.0	0.283	
Offices (Heating only)	35	0.975	65.4	0.256	

^{*}Includes steam for heating domestic water for heating season only.

bThe figures are a numerical—not a weighted—average for the several buildings in each class.

eEquivalent steam radiator surface,

dHeat loss calculated for maximum design condition (in most cases 70 F inside, zero outside).

Based on zero consumption at 55 F.

^{*}The Heat Requirements of Buildings, by J. H. Walker and G. H. Tuttle (A S.H.V.E TRANSACTIONS, Vol. 41, 1935, p. 171).

CHAPTER 11. ESTIMATING FUEL CONSUMPTION

Table 9. Building Load Factors and Demands of Some Detroit Buildings

Building Classification	Load Factor	LB OF DEMAND PER HOUR PER SQ FT OF EQUIVALENT INSTALLED RADIATOR SURFACE
Clubs and Lodges	0.318	0.184
Hotels	0.316	0.207
Printing	0.287	0.217
Offices	0.263	0.209
Apartments	0.255	0.225
Retail Stores	0.238	0.182
Auto Sales and Service	0.223	0.248
Banks	0.203	0.158
Churches	0.158	0.152
Department Stores	0.138	0.145
Theaters	0.126	0.151

given in Table 8, but in the case of office buildings, the steam for heating only is also shown. Presentation of the unit consumption in three ways permits making the estimate if either the calculated heat loss or the volume of net heated space in the building is known.

Example 8. A store in Philadelphia with a heating system designed to maintain 70 F inside in 0 F weather has 1700 sq ft of equivalent direct steam radiator surface, and uses only moderate quantities of hot water. What would be the estimated average yearly steam consumption of purchased steam for heating and for hot water during the heating season?

Solution. According to Table 8, a store (0 to 70 F conditions) would use 80.6 lb of steam per thousand square feet of radiation per degree-day, including winter hot water. From Table 3, Philadelphia has 4784 degree-days per normal year. Inserting in Equation 2:

$$F = 80.6 \times 1.7 \times 4784 = 655,504$$
 lb of steam.

Degree-Day as an Operating Unit

The use of the degree-day as a fuel *predicting* unit, explained in the foregoing, is perhaps the lesser of its two most used applications. It is also widely used as a unit for eliminating the weather (temperature) variable for existing plants from month to month or year to year. The degree-days given in Table 3 are *normals* or averages. For operating data the actual number occurring for a given month and year in a city under consideration is recorded. Since fuel consumption is proportional to the number of degree-days, plant operators frequently compute each month, the fuel burned per degree-day by the heating plant. The resulting unit figure, by eliminating the outside temperature variable, indicates whether the operating efficiency of the plant is above or below the previous month or year.

MAXIMUM DEMANDS AND LOAD FACTORS

In one form of district heating rates, a portion of the charge is based upon the maximum demand of the building. The maximum demand may be measured in several different ways. It may be taken as the instantaneous peak or as the rate of use during any specified interval. One method is to take the average of the three highest hours during the

winter. These figures are available for a number of buildings in Detroit, as shown in Table 94.

These maximum demands were measured by an attachment on the condensation meter and therefore represent the amounts of condensation passed through the meter in the highest hours, rather than the true rate at which steam is supplied. There might be slight differences in these two quantities due to time lag and to storage of condensate in the system, but wherever this has been investigated it has been found to be negligible.

The load factor of a building is the ratio of the average load to the maximum load and is an index of the utilization. Thus, in Table 9, the theaters, operating for short hours, have a load factor of 0.126 as compared with the figure of 0.318 for clubs and lodges.

SEASONAL EFFICIENCY

The task of predicting fuel consumption within reasonably accurate limits is a simple one where sufficient experience data are available for the fuel in question. Such data can be analyzed to the point where average unit factors can be determined and expressed in such terms as, for example, average gallons of oil actually burned per square foot of calculated steam radiator surface per degree-day. The unit U can be inserted directly in Equation 2 without reference to efficiency. Such experience factors are available for gas (see Table 4) and for district steam (Table 8), but not for coal or oil.

Since values of U are not available for oil or coal, an assumed seasonal efficiency E must be used. Selection of a value for this E must be made with caution, for its use implies a meaning not commonly associated with the word efficiency and consequently is frequently misleading.

The input of heat to a building consists not only of the energy in the fuel but that from occupants, the sun, appliances, processes, and all other sources. In many cases these make up, over a period, an important percentage of the total heat required, and if they are not taken into account a calculation of *efficiency* can show a figure over 100 per cent.

For this and other reasons the actual seasonal efficiency is a difficult thing to determine. Published data are widely scattered and insufficient. From the available published material it is found that the seasonal efficiency varies over a wide range, depending on the fuel used, and it varies widely even for a given fuel. For example, in a recent survey of 30 houses in one locality there was found a variation of from 45 to 75 per cent in the utilization efficiency depending on the fuel⁵.

Loc. Cit. Note 3.

⁸Heat Losses and Efficiencies of Fuels in Residential Heating, by R. A. Sherman and R. C Cross (A.S.H.V.E Transactions, Vol. 43, 1937, p. 185).

Chapter 12

HEATING BOILERS

Cast-Iron Boilers, Steel Boilers, Special Heating Boilers, Gas-Fired Boilers, Hot Water Supply Boilers, Furnace Design. Heating Surface, Testing and Rating Codes, Output Efficiency, Selection of Boilers, Connections and Fittings, Erection, Operation and Maintenance, Boiler Insulation

STEAM and hot water boilers for low pressure heating work are built in a wide variety of types, many of which are illustrated in the *Catalog Data Section*, and are classified as (1) cast-iron sectional, (2) steel fire tube, (3) steel water tube, and (4) special.

CAST-IRON BOILERS

Cast-iron boilers usually fall into one of two general classifications (1) rectangular pattern with vertical sections and rectangular grate commonly known as sectional boilers, (2) round pattern with horizontal pancake sections and circular grates commonly known as round boilers. A few boilers of the sectional type use outside header construction where each section is independent of the other and the water and steam connections are made externally through these headers. The majority of boilers, however, both sectional and round, are assembled with push nipples and tie rods at the top and bottom of the sections in which case water and steam connections are internal. The present trend in design of sectional boilers is to use a large top push nipple so that in a steam boiler the water line may be carried through the top push nipple thereby permitting circulation of water between adjacent sections at both the top and bottom of the water content of the boiler. The primary purpose of this construction is to eliminate the necessity of connecting the sections below the water line with an external header to permit circulation of the water from one section to the other which is necessary in the case of a steam boiler equipped with an indirect water heater for summer-winter hot water supply.

Round and sectional boilers may be increased in size by the addition of sections which in the case of sectional boilers also increases the grate area. The grate area of round boilers remains the same as additional sections are added.

Cast-iron boilers are usually shipped knocked down. This facilitates handling at the place of installation where assembly is made in that separate sections can be taken into or out of basements and other places more or less inaccessible after the building is constructed. This feature

is of importance in the original installation of the boiler and also in making repairs to or replacing a damaged boiler at a later date.

Cast-iron boilers may be designed to burn efficiently one kind of fuel only or various kinds of fuel. Practical combustion rates for coal-fired boilers are given in Table 1. Many recent designs of oil burning boilers have been designed exclusively for oil fuel and in some cases for both oil and gas. The present trend in the design of boilers for hand firing is, however, to design them so they will be suitable for ready conversion to and efficient operation with oil and stoker firing even after the boiler has been installed and has been operating for a period of time on one type of fuel.

Table 1. Practical Combustion Rates for Coal-Fired Heating Boilers Operating at Maximum Load on Natural Draft of from 1/8 in. to 1/2 in. Watera

KIND OF COAL	SQ FT GRATE	Lb of Coal per Sq Ft Grate per Hour
No. 1 Buckwheat Anthracite	Up to 4 5 to 9 10 to 14 15 to 19 20 to 25	3 3½ 4 4½ 5
Anthracite Pea	Up to 9 10 to 19 20 to 25	5 5½ 6
Anthracite Nut and Larger	Up to 4 5 to 9 10 to 14 15 to 19 20 to 25	8 9 10 11 13
Bituminous	Up to 4 5 to 14 15 and above	9.5 12 15.5

a Steel boilers usually have higher combustion rates for grate areas exceeding $15 \, \mathrm{sq}$ ft than those indicated in this table.

Capacities of cast-iron boilers range from that required for small residences up to about 18,000 sq ft of radiation. For larger loads boilers must be installed in multiple. The maximum allowable working pressure for cast-iron boilers is limited by the A.S.M.E. Code to 15 lb per square inch for steam boilers. Hot water boilers are usually limited to 30 lb per square inch maximum working pressure but may be designed for higher pressures where required for heating purposes or for hot water supply where the boiler must withstand high local water pressures.

STEEL BOILERS

Steel heating boilers may be classified according to (a) position of combustion gas with respect to tube surface, (b) arrangement and construction of furnaces, and (c) type of fuel and method of firing.

Fire tube boilers are those in which the gases of combustion pass through the tubes and the boiler water circulates around them. In water

CHAPTER 12. HEATING BOILERS

tube boilers, the gases circulate around the tubes and the water passes through them.

Steel heating boilers may be furnished with integral water jacketed furnaces or arranged for refractory lined brick or refractory lined jacketed furnaces. Those with integral water jacketed furnaces are called *portable firebox boilers* and are the most commonly used type. They may be either fire tube or water tube and are furnished for any fuel and method of firing used in heating boiler practice. They are usually shipped from the factory in one piece, ready for piping. Bridge-walls and smokeless furnace parts are shipped in place when furnished. Boilers with refractory lined furnaces may be either fire tube or water tube. They also may be arranged for any fuel or method of firing. Refractory furnaces are usually installed in such boilers after they are set.

SPECIAL HEATING BOILERS

A special type of boiler, known as the *magazine feed boiler*, has been developed for the burning of small sizes of anthracite and coke. These are built of both cast-iron and steel, and have a large fuel carrying capacity which results in longer firing periods than would be the case with the standard types using buckwheat sizes of coal. Special attention must be given to insure adequate draft and proper chimney sizes and connections.

Oil-burner boiler units, in which a special boiler has been designed with a furnace shaped to meet the general requirements of oil burners, or are specially adapted to one particular burner, have been developed by a number of manufacturers. These usually are compact units with the burner and all controls enclosed within an insulated steel jacket. Ample furnace volume is provided for efficient combustion, and the heating surfaces are proportioned for effective heat transfer. Consequently, higher efficiencies are obtainable than with the ordinary coal-fired boiler designed primarily for hand firing and converted to oil firing.

GAS-FIRED BOILERS

Gas boilers have assumed a well-defined individuality. The usual boiler is sectional in construction with a number of independent burners placed beneath the sections. In most boilers each section has its own burner. In all cases the sections are placed quite closely together, much closer than would be possible when burning a soot-forming fuel. The effort of the designer is always to break the hot gas up into thin streams, so that all particles of the heat-carrying gases can come as close as possible to the heat-absorbing surfaces. Because there is no fuel bed resistance and because the gas company supplies the motive power to draw in the air necessary for combustion (in the form of the initial gas pressure), draft losses through gas boilers are low. (See Chapter 10.)

Most gas-fired boilers carry the approval of the American Gas Association. In order to obtain this approval the boilers must be submitted to the American Gas Association Testing Laboratory and meet the Approval Requirements for Central Heating Gas Appliances issued by the American Gas Association. The boiler ratings must be such that they meet the limitations as set forth in these Approval Requirements.

HOT WATER SUPPLY BOILERS

Boilers for hot water supply are classified as direct, if the water heated passes through the boiler, and as indirect, if the water heated does not come in contact with the water or steam in the boiler.

Direct heaters are built to operate at the pressures found in city supply mains and are tested at pressures from 200 to 300 lb per square inch. The life of direct heaters depends almost entirely on the scale-making properties of the water supplied. If water temperatures are maintained below 140 F the life of the heater will be much longer than if higher temperatures are used, owing to decreased scale formation and minimized corrosion below 140 F. Direct water heaters in some cases are designed to burn refuse and garbage.

Indirect heaters generally consist of steam boilers in connection with heat exchangers of the coil or tube types which transmit the heat from the steam to the water. This type of installation has the following advantages:

- 1. The boiler operates at low pressure.
- 2. The boiler is protected from scale and corrosion.
- 3. The scale is formed in the heat exchanger in which the parts to which the scale is attached can be cleaned or replaced. The accumulation of scale does not affect efficiency although it will affect the capacity of the heat exchanger.
- 4. Discoloration of water may be prevented if the water supply comes in contact with only non-ferrous metal.

Where a steam heating system is installed, the domestic hot water usually is obtained from an indirect heater placed below the water line of the boiler. Indirect heaters may also be used with hot water heating systems to obtain domestic hot water and should be located as high as possible with respect to the boiler for most satisfactory performance.

FURNACE DESIGN

Good efficiency and proper boiler performance are dependent on correct furnace design embodying sufficient volume for burning the particular fuel at hand, which requires thorough mixing of air and gases at a high temperature with a velocity low enough to permit complete combustion of all the volatiles. On account of the small amount of volatiles contained in coke, anthracite, and semi-bituminous coal, these fuels can be burned efficiently with less furnace volume than is required for bituminous coal, the combustion space being proportioned according to the amount of volatiles present.

Combustion should take place before the gases are cooled by the boiler heating surface, and the volume of the furnace must be sufficient for this purpose. The furnace temperature must be maintained sufficiently high to produce complete combustion, thus resulting in a higher CO_2 content and the absence of CO. Hydrocarbon gases ignite at temperatures varying from 1000 to 1500 F.

The question of furnace proportions, particularly in regard to mechanical stoker installations, has been given some consideration by various manufacturers' associations. Arbitrary values have been recommended for minimum dimensions. A customary rule-of-thumb method of figuring furnace volumes is to allow 1 cu ft of space for a maximum heat release

CHAPTER 12. HEATING BOILERS

of 50,000 Btu per hour. This value is equivalent to allowing approximately 1 cu ft for each developed horsepower, and it is approved by most smoke prevention organizations.

The setting height will vary with the type of stoker. In an overfeed stoker, for instance, all the volatiles must be burned in the combustion chamber and, therefore, a greater distance should be allowed than for an underfeed stoker where a considerable portion of the gas is burned while passing through the incandescent fuel bed. The design of the boiler also may affect the setting height, since in certain types the gas enters the tubes immediately after leaving the combustion chamber, while in others it passes over a bridge wall and toward the rear, thus giving a better opportunity for combustion by obtaining a longer travel before entering the tubes.

To secure suitable furnace volume, especially for mechanical stokers or oil burners, it often is necessary either to pit the stoker or oil burner, or, where water line conditions and headroom permit, to raise the boiler on a brick foundation setting.

Smokeless combustion of the more volatile bituminous coals is furthered by the use of mechanical stokers. (See Chapter 10.) Smokeless combustion in hand-fired boilers burning high volatile solid fuel is aided (1) by the use of double grates with down-draft through the upper grate, (2) by the use of a curtain section through which preheated auxiliary air is introduced over the fire toward the rear of the boiler, and (3) by the introduction of preheated air through passages at the front of the boiler. All three methods depend largely on mixing secondary air with the partially burned volatiles and causing this mixture to pass over an incandescent fuel bed, thus tending to secure more complete combustion than is possible in boilers without such provision.

HEATING SURFACE

Boiler heating surface is that portion of the surface of the heat transfer apparatus in contact with the fluid being heated on one side and the gas or refractory being cooled on the other side. Heating surface on which the fire shines is known as *direct* or radiant surface and that in contact with hot gases only, as *indirect* or convection surface. The amount of heating surface, its distribution and the temperatures on either side thereof influence the capacity of any boiler.

Direct heating surface is more valuable than indirect per square foot because it is subjected to a higher temperature and also, in the case of solid fuel, because it is in position to receive the full radiant energy of the fuel bed. The heat transfer capacity of a radiant heating surface may be as high as 6 to 8 times that of an indirect surface. This is one of the reasons why the water legs of some boilers have been extended, especially in the case of stoker firing where the extra amount of combustion chamber secured by an extension of the water legs is important. For the same reason, care should be exercised in building a refractory combustion chamber in an oil-burning boiler so as not to screen any more of this valuable surface with refractories than is necessary for good combustion.

The effectiveness of the heating surface depends on its cleanliness, its location in the boiler, and the shape of the gas passages. The area of the

gas passages must not be so small as to cause excessive resistance to the flow of gases where natural draft is employed. Inserting baffles so that the heating surface is arranged in series with respect to the gas flow increases boiler efficiency and reduces stack temperature and increases the draft loss through the boiler.

Heat Transfer Rates

Practical rates of heat transfer in heating boilers will average about 3300 Btu per square foot per hour for hand-fired boilers and 4000 Btu per square foot per hour for mechanically fired boilers when operating at design load. When operating at maximum load¹ these values will run between 5000 and 6000 Btu per square foot per hour. Boilers operating under favorable conditions at the above heat transfer rates will give exit gas temperatures that are considered consistent with good practice.

TESTING AND RATING CODES

The Society has adopted four solid fuel testing codes, a solid fuel rating code and an oil fuel testing code. A.S.H.V.E. Standard and Short Form Heat Balance Codes for Testing Low-Pressure Steam Heating Solid Fuel Boilers—Codes 1 and 2—(Revision of June 1929)², are intended to provide a method for conducting and reporting tests to determine heat efficiency and performance characteristics. A.S.H.V.E. Performance Test Code for Steam Heating Solid Fuel Boilers—Code No. 3—(Edition of 1929)2 is intended for use with A.S.H.V.E. Code for Rating Steam Heating Solid Fuel Hand-Fired Boilers. The object of this test code is to specify the tests to be conducted and to provide a method for conducting and reporting tests to determine the efficiencies and performance of the boiler. The A.S.H.V.E. Standard Code for Testing Steam Heating Boilers Burning Oil Fuel4 is intended to provide a standard method for conducting and reporting tests to determine the heating efficiency and performance characteristics when oil fuel is used with steam heating boilers. In 1938 the Society adopted a Standard Code for Testing Stoker-Fired Steam Heating Boilers which is intended to provide a test method for determining the efficiency and performance characteristics of any stoker or boiler combination burning any type of solid fuel such as anthracite or bituminous coal.

The Steel Heating Boiler Institute has adopted a method for the rating of low pressure boilers based on their physical characteristics and expressed in square feet of steam or water radiation or in Btu per hour as given in Table 2. The detailed requirements of this code were outlined in Chapter 13 of The Guide 1939. The Institute of Boiler and Radiator Manufacturers has also adopted a method of rating cast-iron heating boilers based upon performance obtained under tests. This code became effective August 1, 1939 for sectional boilers of 20 in. width grate or less, but the Institute intends eventually to expand the code to apply to all

¹For definitions of design load and maximum load see page 248.

^{*}See A.S.H.V.E. Transactions, Vol. 35, 1929, pp 322 and 332.

⁸See A.S.H.V.E. Transactions, Vol. 36, 1930, p. 42.

See A.S.H.V.E. TRANSACTIONS, Vol. 37, 1931, p. 23.

See A.S.H.V.E. TRANSACTIONS, Vol. 44, 1938, p 366.

CHAPTER 12. HEATING BOILERS

TABLE 2. STEEL HEATING BOILER STANDARD RATINGS²

Hand-Fired Rating					Mechanically-Fired Rating					
Catalog Net Load		TT		Catalog		Net Load	Furnace Vol-			
Steam Radiation Sq Ft	Water Radiation Sq Ft	Btu per Hour in Thou- sands	Steam Radiation Sq Ft	Heating Surface Sq Ft	Grate Area Sq Ft	Steam Raduation Sq Ft	Water Radiation Sq Ft	Btu per Hour in Thousands	Steam Radiation Sq Ft	ume, Oil, Gas or Bituminous Coal Cu Ft
1,800 2,200 2,600 3,000 3,500 4,500 5,000 6,000 7,000 8,500 10,000 12,500 17,500 17,500 20,000 25,000 35,000	2,880 3,520 4,160 4,800 5,600 6,400 7,200 8,000 9,600 11,200 13,600 20,000 24,000 24,000 40,000 48,000 56,000	432 528 624 720 840 960 1,080 1,200 1,440 1,680 2,040 3,000 3,600 4,200 4,800 6,000 7,200 8,400	1,389 1,702 2,020 2,335 2,732 3,135 3,540 3,945 4,770 5,608 6,885 8,197 10,417 12,500 14,584 16,667 20,834 25,000 29,167	129 158 186 215 250 286 322 358 429 500 608 715 893 1,072 1,250 1,429 2,143 2,500	7.9 8.9 9.7 10.5 11.4 12.2 13.4 14.5 16.4 18.1 20.5 22.5 25.6 28.4 30.9 33.2 37.4 41.2 44.7	2,190 2,680 3,160 3,650 4,250 4,860 5,470 6,080 7,290 8,500 10,330 12,150 15,180 18,220 21,250 24,290 30,360 36,430 42,500	3,500 4,280 5,050 5,840 6,800 7,770 8,750 9,720 11,660 13,600 16,520 19,440 24,280 29,150 34,000 38,860 48,570 58,280 68,000	525 643 758 876 1,020 1,166 1,312 1,459 1,749 2,040 2,479 2,916 3,643 4,372 5,100 5,829 7,286 8,743 10,200	1,695 2,089 2,461 2,853 3,335 3,830 4,330 4,834 5,850 6,885 8,490 10,125 12,650 15,183 17,708 20,242 25,300 30,359 35,417	15.7 19.2 22.6 26.1 30.4 34.8 39.1 43.5 52.1 60.8 73.8 86.8 108.5 130.2 151.8 173.5 216.9 260.3 303.6

 $^{
m A}$ Adopted by the Steel Heating Boiler Institute in cooperation with the Bureau of Standards, United States Department of Commerce Simplified Practice Recommendations R 157-35.

sizes of boilers. Methods of testing hand-fired and oil-fired boilers are specified and are referred to as *IBR* testing codes.

BOILER OUTPUT

Boiler output as defined in A.S.H.V.E. Performance Test Code for Steam Heating Solid Fuel Boilers (Code No. 3) is the quantity of heat available at the boiler nozzle with the boiler normally insulated. It should be based on actual tests conducted in accordance with this code. This output is usually stated in Btu and in square feet of equivalent heating surface (radiation). According to the A.S.H.V.E. Standard Code for Rating Steam Heating, Solid Fuel Hand-Fired Boilers, the performance data should be given in tabular or curve form on the following items for at least five outputs ranging from maximum down to 35 per cent of maximum: (1) fuel available, (2) combustion rate, (3) efficiency, (4) draft tension, (5) flue gas temperature. The only definite restriction placed on setting the maximum output is that priming shall not exceed 2 per cent. These curves provide complete data regarding the performance of the boiler under test conditions. Certain other pertinent information, such as grate area, heating surface and chimney dimensions, is desirable also in forming an opinion of how the boiler will perform in actual service.

The output of large heating boilers is frequently stated in terms of boiler horsepower instead of in Btu per hour or square feet of equivalent radiation.

BOILER EFFICIENCY

The term *efficiency* as used for guarantees of boiler performance is usually construed as follows:

- 1. Solid Fuels. The efficiency of the boiler alone is the ratio of the heat absorbed by the water and steam in the boiler per pound of combustible burned on the grate to the calorific value of 1 lb of combustible as fired. The combined efficiency of boiler, furnace and grate is the ratio of the heat absorbed by the water and steam in the boiler per pound of fuel as fired to the calorific value of 1 lb of fuel as fired.
- 2. Liquid and Gaseous Fuels. The combined efficiency of boiler, furnace and burner is the ratio of the heat absorbed by the water and steam in the boiler per pound or cubic foot of fuel to the calorific value of 1 lb or cubic foot of fuel respectively.

Solid fuel boilers usually show an efficiency of 50 to 75 per cent when operated under favorable conditions at their rated capacities. Information on the combined efficiencies of boiler, furnace and burner has resulted from research conducted at Yale University in cooperation with the A.S.H.V.E. Research Laboratory and the American Oil Burner Association⁶.

SELECTION OF BOILERS

Estimated Design Load: The load, stated in Btu per hour or equivalent direct radiation, as estimated by the purchaser for the conditions of inside and outside temperature for which the amount of installed radiation was determined, is equivalent to the sum of the heat emission of the radiation to be actually installed, the allowance for the heat loss of the connecting piping, and the heat requirement for any apparatus requiring heat connected to the system.

The estimated design load is the sum of the following three items⁷:

- 1. The estimated heat emission in Btu per hour of the connected radiation (direct, indirect or central fan) to be installed.
- 2. The estimated maximum heat in Btu per hour required to supply water heaters or other apparatus to be connected to the boiler.
- 3. The estimated heat emission in Btu per hour of the piping connecting the radiation and other apparatus to the boiler.

Estimated Maximum Load: Construed to mean the load stated in Btu per hour or the equivalent direct radiation that has been estimated by the purchaser to be the greatest or maximum load that the boiler will be called upon to carry.

The estimated maximum load is given by8:

4. The estimated increase in the normal load in Btu per hour due to starting up cold radiation. This percentage of increase is to be based on the sum of Items 1, 2 and 3 and the heating-up factors given in Table 3.

Other things to be considered are:

5. Efficiency with hard or soft coal, gas, or oil firing, as the case may be.

⁶ASHVE RESEARCH REPORT NO 907—Study of the Characteristics of Oil Burners and Heating Boilers, by L E Seeley and E J Tavanlar (ASHVE TRANSACTIONS Vol 37, 1931 p 517). ASH.VE. RESEARCH REPORT NO 925—A Study of Intermittent Operation of Oil Burners, by L E Seeley and J H. Powers (ASHVE. TRANSACTIONS, Vol. 38, 1932, p 317)

⁷ASH,VE. Code of Minimum Requirements for the Heating and Ventilation of Buildings (Edition of 1929)

Loc. Cit Note 7

CHAPTER 12. HEATING BOILERS

- 6. Grate area with hand-fired coal, or fuel burning rate with stokers, oil, or gas.
- 7. Combustion space in the furnace.
- 8. Type of heat liberation, whether continuous or intermittent, or a combination of both.
- Miscellaneous items consisting of draft available, character of attendance, possibility of future extension, possibility of breakdown and headroom in the boiler room.

Radiation Load

The connected radiation (Item 1) is determined by calculating the heat losses in accordance with data given in Chapters 4, 5 and 6, and dividing by 240 to change to square feet of equivalent radiation as explained in Chapter 13. For hot water, the emission commonly used is 150 Btu per square foot, but the actual emission depends on the temperature of the medium in the heating units and of the surrounding air. (See Chapter 13.)

Although it is customary to use the actual connected load in equivalent square feet of radiation for selecting the size of boiler, this connected load usually represents a reserve in heating capacity to provide for infiltration

Table 3. Warming-up Allowances for Low Pressure Steam and Hot Water Heating Boilers², b, c

DESIGN LOAD (REPRESENTING S	PERCENTAGE CAPACITY TO AD	
Btu per Hour	Equivalent Square Feet of Radiationd	FOR WARMING-UP
Up to 100,000 100,000 to 200,000 200,000 to 600,000 600,000 to 1,200,000 1,200,000 to 1,800,000 Above 1,800,000	Up to 420 420 to 840 840 to 2500 2500 to 5000 5000 to 7500 Above 7500	65 60 55 50 45 40

aThis table is taken from the A.S.H.V.E. Code of Minimum Requirements for the Heating and Ventilation of Buildings, except that the second column has been added for convenience in interpreting the design load in terms of equivalent square feet of radiation.

bSee also Time Analysis in Starting Heating Apparatus, by Ralph C. Taggart (A.S.H.V.E. Transactions, Vol. 19, 1913, p. 292); Report of A.S.H.V.E. Continuing Committee on Codes for Testing and Rating Steam Heating Solid Fuel Boilers (A.S.H.V.E. Transactions, Vol. 36, 1930, p. 35); Selecting the Right Size Heating Boiler, by Sabin Crocker (Heating, Piping and Air Conditioning, March, 1932).

°This table refers to hand-fired, solid fuel boilers. A factor of 20 per cent over design load is adequate when automatically-fired fuels are used (see Fig. 1).

d240 Btu per square foot.

in the various spaces of the building to be heated, which reserve, however, is not in use at all places at the same time, or in any one place at all times. For a further discussion of this subject see Chapter 5.

Hot Water Supply Load

When the hot water supply (Item 2) is heated by the building heating boiler, this load must be taken into consideration in sizing the boiler. The allowance to be made will depend on the amount of water heated and its temperature rise. A good approximation is to add 4 sq ft of equivalent radiation for each gallon of water heated per hour through a temperature range of 100 F. For more specific information, see Chapter 46.

Piping Tax (Item 3)

It is common practice to add a flat percentage allowance to the equivalent connected radiation to provide for the heat loss from bare and covered pipe in the supply and return lines. The use of a flat allowance of

25 per cent for steam systems and 35 per cent for hot water systems is preferable to ignoring entirely the load due to heat loss from the supply and return lines, but better practice, especially when there is much bare pipe, is to compute the emission from both bare and covered pipe surface in accordance with data in Chapter 43. A chart is shown in Fig. 1 indicating percentage allowances for piping and warming-up which are applicable to automatically-fired heating plants using steam radiation. With direct radiation served by bare supply and return piping the percentages may be higher than those stated, while in the case of unit heaters where the output is concentrated in a few locations, the piping tax may be 10 per cent or less.

Warming-Up Allowance

The warming-up allowance represents the load due to heating the boiler and contents to operating temperature and heating up cold radiation and piping. (See Item 4.) The factors to be used for determining the

Fig. 1. Percentage Allowance for Piping and Warming-up

allowance to be made should be selected from Table 3 and should be applied to the estimated design load as determined by Items 1, 2 and 3. While in every case the estimated maximum load will exceed the design load if adequate heating response is to be achieved, there is, however, no object in over-estimating the allowances, as the only effect would be to reduce the time of warming-up by a few minutes. Otherwise, it might result in firing the boiler unduly and increasing the cost of operation.

Performance Curves for Boiler Selection

In the selection of a boiler to meet the estimated load, the A.S.H.V.E. Standard Code for Rating Steam Heating Solid Fuel Hand-Fired Boilers recommends the use of performance curves based on actual tests conducted in accordance with the A.S.H.V.E. Performance Test Code for Steam Heating Solid Fuel Boilers (Code No. 3), similar to the typical curves shown in Fig. 2. It should be understood that performance data apply to test conditions and that a reasonable allowance should be made for decreased output resulting from soot deposit, poor fuel or inefficient attention.

Selection Based on Heating Surface and Grate Area

Where performance curves are not available, a good general rule for conventionally-designed boilers is to provide 1 sq ft of boiler heating surface for each 14 sq ft of equivalent radiation (240 Btu per square foot) represented by the design load consisting of connected radiation, piping tax and domestic water heating load. As stated in the section on Boiler Output, this is equivalent to allowing 10 sq ft of boiler heating surface per

Fig. 2. Typical Performance Curves for a 36-in. Cast-Iron Sectional Steam Heating Boiler, Based on the A.S.H.V.E. Code for Rating Steam Heating Solid Fuel Hand-Fired Boilers

boiler horsepower. In this case it is assumed that the maximum load including the warming-up allowance will be provided for by operating the boiler in excess of the design load, that is, in excess of the 100 per cent rating on a boiler-horsepower basis.

Due to the wide variation encountered in manufacturers' ratings for boilers of approximately the same capacity, it is advisable to check the grate area required for heating boilers burning solid fuel by means of the following formula:

 $G = \frac{H}{C \times F \times E} \tag{1}$

where

G =grate area, square feet.

H = required total heat output of the boiler, Btu per hour (see Selection of Boilers, p. 248).

C = combustion rate in pounds of dry coal per square foot of grate area per hour, depending on the kind of fuel and size of boiler as given in Table 1.

F = calorific value of fuel, Btu per pound.

E = efficiency of boiler, usually taken as 0.60.

Example 1. Determine the grate area for a required heat output of the boiler of 500,000 Btu per hour, a combustion rate of 6 lb per hour, a calorific value of 13,000 Btu per pound, and an efficiency of 60 per cent.

$$G = \frac{500,000}{6 \times 13,000 \times 0.60} = 10.7 \text{ sq ft}$$

The boiler selected should have a grate area not less than that determined by Formula 4. With small boilers where it is desired to provide sufficient coal capacity for approximately an eight-hour firing period plus a 20 per cent reserve for igniting a new charge, more grate area may be required depending upon the depth of the fuel pot.

Selection of Steel Heating Boilers

Ratings obtained from the previously mentioned Steel Heating Boiler Institute code are intended to correspond with the estimated design load based on the sum of Items 1, 2 and 3 outlined on page 248. Boilers with less than 128 sq ft of heating surface are classified as residence size. An insulated residence boiler for oil or gas, not convertible, may carry a net load expressed in square feet of steam radiation of not more than 17 times the square feet of heating surface in the boiler, provided the boiler manufacturer guarantees it to be capable of operating at a maximum output of not less than 150 per cent of net load rating with overall efficiency of not less than 75 per cent with at least two different makes of each type of standard commercial burner recommended by the boiler manufacturer. If the heat loss from the piping system exceeds 20 per cent of the installed radiation, the excess is to be considered as a part of the net load.

When the estimated heat emission of the piping (connecting radiation, and other apparatus to the boiler) is not known the net load to be considered for the boiler may be determined from Table 2.

Selection of Gas-Fired Boilers

Gas-heating appliances should be selected in accordance with the percentage allowances given in Fig. 1. These factors are for thermostatically-controlled systems; in case manual operation is desired, a warming-up allowance of 100 per cent is recommended by the A.G.A. A gas boiler selected by the use of the A.G.A. factors will be the minimum size boiler which can carry the load. From a fuel economy standpoint, it may be advisable to select a somewhat larger boiler and then throttle the gas and air adjustments as required. This will tend to give a low stack temperature with high efficiency and at the same time provide reserve capacity in case the load is under-estimated or more is added in the future.

Conversions

The conversion of a coal or oil boiler to gas burning is simpler than the reverse since little furnace volume need be provided for the proper combustion of gas. When a solid fuel boiler of 500 sq ft (or less) capacity is converted to gas burning, the necessary gas heat units should be approximately double the connected load. The presumption for a conversion job is that the boiler is installed and probably will not be made larger; therefore, it is a matter of setting a gas-burning rate to obtain best results with the available surface. Assuming a combustion efficiency of 75 per cent for a conversion installation the boiler output would be $2 \times 0.75 = 1.5$ times the connected load, which allows 50 per cent for piping tax and pickup. In converting large boilers, the determination of the required Btu input should not be done by an arbitrary figure or factor but should be based on a detailed consideration of the requirements and characteristics of the connected load.

An efficient conversion installation depends upon the proper size of flue connection. Often the original smoke breeching between the boiler and chimney is too large for gas firing, and in this case, flue orifices can be used. They are discs provided with an opening of the size for the gas input used in this boiler. The size should be based on 1 sq in. of flue area for each 7500 hourly Btu input.

If dampers are found in the breeching they should be locked in position so that they will not interfere with the normal operation of the gas burners at maximum flow. In the case of large boiler conversions, automatic damper regulators proportion the position of the flue dampers to the amount of gas flowing and may be substituted for existing dampers. Generally in residence conversions automatic dampers are not of the proportioning type but close the flue during the off periods of the gas burners. Automatic shut-off dampers should be located between the back draft diverter and the chimney flue. Automatic dampers are usually designed to operate with electric contact mechanism, but frequently an arrangement is utilized which functions with mechanical fluid or gas pressure.

Physical Limitations

As it will usually be found that several boilers will meet the specifications, the final selection may be influenced by other considerations, as:

- 1. Dimensions of boiler.
- 2. Durability under service.
- 3. Convenience in firing and cleaning.
- 4. Adaptability to changes in fuel and kind of attention.
- 5. Height of water line.

In large installations, the use of several smaller boiler units instead of one larger one will obtain greater flexibility and economy by permitting the operation, at the best efficiency, of the required number of units according to the heat requirements.

Space Limitations

Boiler rooms should, if possible, be situated at a central point with respect to the building and should be designed for a maximum of natural

light. The space in front of the boilers should be sufficient for firing, stoking, ash removal and cleaning or renewal of flues, and should be at least 3 ft greater than the length of the boiler firebox.

A space of at least 3 ft should be allowed on at least one side of every boiler for convenience of erection and for accessibility to the various dampers, cleanouts and trimmings. The space at the rear of the boiler should be ample for the chimney connection and for cleanouts. With large boilers the rear clearance should be at least 3 ft in width.

The boiler room height should be sufficient for the location of boiler accessories and for proper installation of piping. In general the ceiling height for small steam boilers should be at least 3 ft above the normal boiler water line. With vapor heating, especially, the height above the boiler water line is of vital importance.

When steel boilers are used, space should be provided for the removal and replacement of tubes.

CONNECTIONS AND FITTINGS

Steam or water outlet connections preferably should be the full size of the manufacturers' tappings in order to keep the velocity of flow through the outlet reasonably low and avoid fluctuation of the water line and undue entrainment of moisture, and should extend vertically to the maximum height available above the boiler.

Particular attention should be given to fitting connections to secure conformity with the A.S.M.E. Boiler Construction Code for Low Pressure Heating Boilers. Attention is called in particular to pressure gage piping, water gage connections and safety valve capacity.

Steam gages should be fitted with a water seal and a shut-off consisting of a cock with either a tee or lever handle which is parallel to the pipe when the cock is open. Steam gage connections should be of copper or brass when smaller than 1 in. I.P.S. if the gage is more than 5 ft from the boiler connection, and also in any case where the connection is less than $\frac{1}{2}$ in. I.P.S.

Each steam or vapor boiler should have at least one water gage glass and two or more gage cocks located within the range of the visible length of the glass. The water gage fittings or gage cocks may be directly connected to the boiler, if so located by the manufacturer, or may be mounted on a separate water column. No connections, except for combustion regulators, drains or steam gages, should be placed on the pipes connecting the water column and the boiler. If the water column or gage glass is connected to the boiler by pipe and fittings, a cross, tee or equivalent, in which a cleanout plug or a drain valve and piping may be attached, should be placed in the water connection at every right-angle turn to facilitate cleaning. The water line in steam boilers should be carried at the level specified by the boiler manufacturer.

Safety valves should be capable of discharging all the steam that can be generated by the boiler without allowing the pressure to rise more than 5 lb above the maximum allowable working pressure of the boiler. This

A.S.M.E. Code, Identification of Piping Systems.

CHAPTER 12. HEATING BOILERS

should be borne in mind particularly in the case of boilers equipped with mechanical stokers or oil burners where the amount of grate area has little significance as to the steam generating capacity of the boiler.

Where a return header is used on a cast-iron sectional boiler to distribute the returns to both rear tappings, it is advisable to provide full size plugged tees instead of elbows where the branch connections enter the return tappings. This facilitates cleaning sludge from the bottom of the boiler sections through the large plugged openings. An equivalent cleanout plug should be provided in the case of a single return connection.

Blow-off or drain connections should be made near the boiler and so arranged that the entire system may be drained of water by opening the drain cock. In the case of two or more boilers separate blow-off connections must be provided for each boiler on the boiler side of the stop valve on the main return connection.

Water service connections must be provided for both steam and water boilers, for refilling and for the addition of make-up water to boilers. This connection is usually of galvanized steel pipe, and is made to the return main near the boiler or boilers.

For further data on pipe connections for steam and hot water heating systems, see Chapters 15 and 16 and the A.S.M.E. Boiler Construction Code for Low Pressure Heating Boilers.

Smoke Breeching and Chimney Connections. The breeching or smoke pipe from the boiler outlet to the chimney should be air-tight and as short and direct as possible, preference being given to long radius and 45-deg instead of 90-deg bends. The breeching entering a brick chimney should not project beyond the flue lining and where practicable it should be grouted from the inside of the chimney. A thimble or sleeve grout usually is provided where the breeching enters a brick chimney.

Where a battery of boilers is connected into a breeching each boiler should be provided with a tight damper. The breeching for a battery of boilers should not be reduced in size as it goes to the more remote boilers. Good connections made to a good chimney will usually result in a rapid response by the boilers to demands for heat.

ERECTION, OPERATION, AND MAINTENANCE

The directions of the boiler manufacturer always should be read before the assembly or installation of any boiler is started, even though the contractor may be familiar with the boiler. All joints requiring boiler putty or cement which cannot be reached after assembly is complete must be finished as the assembly progresses.

The following precautions should be taken in all installations to prevent damage to the boiler:

- 1. There should be provided proper and convenient drainage connections for use if the boiler is not in operation during freezing weather.
- 2. Strains on the boiler due to movement of piping during expansion should be prevented by suitable anchoring of piping and by proper provision for pipe expansion and contraction.
- 3. Direct impingement of too intense local heat upon any part of the boiler surface, as with oil burners, should be avoided by protecting the surface with firebrick or other refractory material.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

- 4. Condensation must flow back to the boiler as rapidly and uniformly as possible. Return connections should prevent the water from backing out of the boiler.
- 5. Automatic boiler feeders and low water cut-off devices which shut off the source of heat if the water in the boiler falls below a safe level are recommended for boilers mechanically fired.

Boiler Troubles

A complaint regarding boiler operation generally will be found to be due to one of the following:

- 1. The boiler fails to deliver enough heat. The cause of this condition may be: (a) poor draft; (b) poor fuel; (c) inferior attention or firing; (d) boiler too small; (e) improper piping; (f) improper arrangement of sections; (g) heating surfaces covered with soot; and (h) insufficient radiation installed.
- 2. The water line is unsteady. The cause of this condition may be: (a) grease and dirt in boiler; (b) water column connected to a very active section and, therefore, not showing actual water level in boiler; and (c) boiler operating at excessive output.
- 3. Water disappears from gage glass. This may be caused by: (a) priming due to grease and dirt in boiler; (b) too great pressure difference between supply and return piping preventing return of condensation; (c) valve closed in return line; (d) connection of bottom of water column into a very active section or thin waterway; and (e) improper connections between boilers in battery permitting boiler with excess pressure to push returning condensation into boiler with lower pressure.
- 4. Water is carried over into steam main. This may be caused by: (a) grease and dirt in boiler; (b) insufficient steam dome or too small steam liberating area; (c) outlet connections of too small area; (d) excessive rate of output; and (e) water level carried higher than specified.
- 5. Boiler is slow in response to operation of dampers. This may be due to: (a) poor draft resulting from air leaks into chimney or breeching; (b) inferior fuel; (c) inferior attention; (d) accumulation of clinker on grate; and (e) boiler too small for the load.
- 6. Boiler requires too frequent cleaning of flues. This may be due to: (a) poor draft; (b) smoky combustion; (c) too low a rate of combustion; and (d) too much excess air in firebox causing chilling of gases.
- 7. Boiler smokes through fire door. This may be due to: (a) defective draft in chimney or incorrect setting of dampers; (b) air leaks into boiler or breeching; (c) gas outlet from firebox plugged with fuel; (d) dirty or clogged flues; and (e) improper reduction in breeching size.
- 8. Low carbon dioxide. This may be due on oil burning boilers to: (a) improper adjustment of the burner; (b) leakage through the boiler setting; (c) improper fire caused by a fouled nozzle; or (d) to an insufficient quantity of oil being burned.

Cleaning Steam Boilers

All boilers are provided with flue clean-out openings through which the heating surface can be reached by means of brushes or scrapers. Flues of solid fuel boilers should be cleaned often to keep the surfaces free of soot or ash. Gas boiler flues and burners should be cleaned at least once a year. Oil burning boiler flues should be examined periodically to determine when cleaning is necessary.

The grease used to lubricate the cutting tools during erection of new piping systems serves as a carrier for sand and dirt, with the result that a scum of fine particles and grease accumulates on the surface of the water in all new boilers, while heavier particles may settle to the bottom

CHAPTER 12. HEATING BOILERS

of the boiler and form sludge. These impurities have a tendency to cause foaming, preventing the generation of steam and causing an unsteady water line.

This unavoidable accumulation of oil and grease should be removed by blowing off the boiler as follows: If not already provided, install a surface blow connection of at least $1\frac{1}{4}$ in. nominal pipe size with outlet extended to within 18 in. of the floor or to sewer, inserting a valve in line close to boiler. Bring the water line to center of outlet, raise steam pressure and while fire is burning briskly open valve in blow-off line. When pressure recedes, close valve and repeat process adding water at intervals to maintain proper level. As a final operation bring the pressure in the boiler to about 10 lb, close blow-off, draw the fire or stop burner, and open drain valve. After boiler has cooled partly, fill and flush out several times before filling it to proper water level for normal service. The use of soda, or any alkali, vinegar or any acid is not recommended for cleaning heating boilers because of the difficulty of complete removal and the possibility of subsequent injury, after the cleaning process has been completed.

Insoluble compounds have been developed which are effective, but special instructions on the proper cleaning compound and directions for its use in a boiler, as given by the boiler manufacturer, should be carefully followed.

It is common practice when starting new installations to discharge heating returns to the sewer during the first week of operation. This prevents the passage of grease, dirt or other foreign matter into the boiler and consequently may avoid the necessity of cleaning the boiler. During the time the returns are being passed to the sewer, the feed valve should be cracked sufficiently to maintain the proper water level in the boiler.

Care of Idle Heating Boilers

Heating boilers are often seriously damaged during summer months due chiefly to corrosion resulting from the combination of sulphur from the fuel with the moisture in the cellar air. At the end of the heating season the following precautions should be taken:

- 1. All heating surfaces should be cleaned thoroughly of soot, ash and residue, and the heating surfaces of steel boilers should be given a coating of lubricating oil on the fire side.
 - 2. All machined surfaces should be coated with oil or grease.
- 3. Connections to the chimney should be cleaned and in case of small boilers the pipe should be placed in a dry place after cleaning.
- 4. If there is much moisture in the boiler room, it is desirable to drain the boiler to prevent atmospheric condensation on the heating surfaces of the boiler when they are below the dew-point temperature. Due to the hazard of some one inadvertently building a fire in a dry boiler, however, it is safer to keep the boiler filled with water. A hot water system usually is left filled to the expansion tank.
 - 5. The grates and ashpit should be cleaned.
 - 6. Clean and repack the gage glass if necessary.
- 7. Remove any rust or other deposit from exposed surfaces by scraping with a wire brush or sandpaper. After boiler is thoroughly cleaned, apply a coat of preservative paint where required to external parts normally painted.
- 8. Inspect all accessories of the boiler carefully to see that they are in good working order. In this connection, oil all door hinges, damper bearings and regulator parts

BOILER INSULATION

Insulation for cast-iron boilers is of two general types: (1) plastic material or blocks wired on, cemented and covered with canvas or duck; and (2) blocks, sheets or plastic material covered with a metal jacket furnished by the boiler manufacturer. Self-contained steel firebox boilers usually are insulated with blocks, cement and canvas, or rock wool blankets; HRT boilers are brick set and do not require insulation beyond that provided in the setting. It is essential that the insulation on a boiler and adjacent piping be of non-combustible material as even slow-burning insulation constitutes a dangerous fire hazard in case of low water in the boiler.

Chapter 13

RADIATORS AND CONVECTORS

Heat Emission of Radiators and Convectors, Types of Radiators, Convectors, Radiator and Convector Ratings, Effect of Operating Conditions, Heating Effect, Heating Up the Radiator and Convector, Enclosed Radiators

THE accepted terms for heating units are: (1) radiators, for direct surface heating units, either exposed, enclosed, or shielded, which emit a large percentage of their heat by radiation; and (2) convectors, for heating units having a large percentage of extended fin surface and which emit heat principally by convection. Convectors are dependent upon enclosures to provide the circulation by gravity of large volumes of air.

HEAT EMISSION OF RADIATORS AND CONVECTORS

Most heating units emit heat by *radiation* and *convection*. The resultant heat from these processes depends upon whether or not the heating unit is exposed or enclosed and upon the contour and surface characteristics of the material in the units.

An exposed radiator emits roughly half of its heat by radiation, the amount depending upon the size and number of sections. When the radiator is enclosed or shielded, the proportion of radiation is further reduced. The balance of the emission is by conduction to the air in contact with the heating surface, and the resulting circulation of the air warms by convection.

A convector emits practically all of its heat by conduction to the air surrounding it and this heated air is in turn transmitted by convection to the rooms or spaces to be warmed, the heat emitted by radiation being negligible.

The output of a radiator can be measured only by the heat it emits. The old standard of comparison used to be square feet of actual surface, but since the advance in radiator design and proportions, the surface area alone is not a true index of output. (The engineering unit of output is the Mbh or 1000 Btu per hour.) However, during the period of transition from the old to the new, radiators may be referred to in terms of equivalent square feet. For steam service this is based on an emission of 240 Btu per hour per square foot and for hot water service 150 Btu per hour per square foot.

TYPES OF RADIATORS

Present day radiators may be classified as tubular, wall, or window types, and are generally made of cast-iron. There are two types of tubular radiators available, that known as large-tube which has a spacing of $2\frac{1}{2}$ in. per section, and that known as small-tube which has a spacing of $1\frac{3}{4}$ in. per section. The tubes in the latter type of radiator are materially

Table 1. Large-Tube Cast-Iron Radiators

Sectional, cast-iron, tubular-type radiators of the large-tube pattern, that is, having tubes approximately 1% in. in diameter, 2½ in. on centers

3—-

^aThe square foot of equivalent direct steam radiation is defined as the ability to emit 240 Btu per hour, with steam at 215 F, in air at 70 F. These ratings apply only to installed radiators exposed in a normal manner; not to radiators installed behind enclosures, grilles, etc. (See A.S.H.V.E. Code for Testing Radiators.)

smaller than those in the large-tube type. Small-tube radiators occupy less space and are particularly suited for installation in recesses.

After a complete study of the demand for various sizes of radiators, the Institute of Boiler and Radiator Manufacturers, acting for the manufacturers, in cooperation with the Division of Simplified Practice, National Bureau of Standards, established Simplified Practice Recommendation R174-41 for large-tube cast-iron radiators. Under this program the number of stock sizes of large-tube radiators was reduced to 13. A program is now in progress for the establishment of a similar recommendation

bMaximum assembly 60 sections. Length equals number of sections times 2½ in.

eWhere greater than standard leg heights are required, this dimension shall be 6 in., except for 7-tube sections, in heights from 13 to 20 in., inclusive for which this dimension shall be 4½ in. Radiators may be furnished without legs.

dAlternate height by 1 producer is 30 in.

eAlternate height by 2 producers is 36 in.; by another, 37 in.

fAlternate height by 1 producer is 13 in.; by 2 producers 131/2 in.; by another, 15 in.

^{*}For 5-tube hospital-type radiation, this dimension is 3 in.

CHAPTER 13. RADIATORS AND CONVECTORS

for small-tube cast-iron radiators. Tables 1 and 2 show the sizes and dimensions of large-tube and small-tube cast-iron radiators which are being manufactured at the present time.

Wall radiators are now rated in terms of equivalent square feet, the same as large-tube and small-tube radiators. Tests have shown that the heat emitted from a wall-type radiator may be reduced from 5 to 10 per cent if the radiator is placed near the ceiling with the bars horizontal and in an air temperature exceeding 70 F. When radiators are placed near the ceiling, there is usually such a large difference in the temperature

Mynenen			SEC	CTION DIMEN	SIONS		
Number of Tubes per Section	CATALOG RATING PER SECTION ²	A Height ^C		3 dth	C Spacingb	D Leg Heightc	-c- -B
SECTION		neight	Minimum	Maximum	Spacingo	Heightc	
	Sq Ft	In.	In.	In.	In.	In.	
3d	1.6	25	31/4	3½	13/4	2½	
4d	1.6 1.8 2.0	19 22 25	47/16 47/16 47/16	$\begin{array}{c} 4^{13} \stackrel{.}{16} \\ 4^{13} \stackrel{.}{16} \\ 4^{13} \stackrel{.}{16} \end{array}$	13/4 13/4 13/4	$\begin{array}{c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	A
5d	2.1 2.4 3.0	22 25 32	5 ⁵ / ₈ 5 ⁵ / ₈ 5 ⁵ / ₈	6 ⁵ / ₁₆ 6 ⁵ / ₁₆ 6 ⁵ / ₁₆	13/4 13/4 13/4	$2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$	
6d	1.6 2.3 3.0 3.7	14 19 25 32	6^{13}_{16} 6^{13}_{16} 6^{13}_{16} 6^{13}_{16}	8 8 8	$1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{3}{4}$	$2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$	

TABLE 2. SMALL-TUBE CAST-IRON RADIATORS

between the floor level and the ceiling that it becomes difficult to heat the living zone of the room satisfactorily.

Pipe coils are assemblies of standard pipe or tubing (1 in. to 2 in.) which are used as radiators. In older practice these coils were commonly used in factory buildings, but now wall type radiators are most frequently used for this service. When coils are used, the miter type assembly is to be preferred as it best cares for expansion in the pipe. Cast manifolds or headers, known as branch tees, are available for this construction.

The heat emission of pipe coils placed vertically on a wall with the pipes horizontal is given in Table 3. This has been developed from available data and does not represent definite results of tests. For such coils the heat emission varies as the height of the coil. The heat emission of

^aThe square foot of equivalent direct steam radiation is defined as the ability to emit 240 Btu per hour, with steam at 215 F, in air of 70 F. These ratings apply only to installed radiators exposed in a normal manner; not to radiators installed behind enclosures, grilles, etc. (See A.S.H.V.E. Code for Testing Radiators.)

bEven number of sections only available. Maximum assembly 60 sections. Length equals number of sections times $1\frac{3}{4}$ in.

Overall height and leg height, as produced by some manufacturers is one inch (1 in.) greater than shown in columns A and D. Radiators may be furnished without legs.
dOr equal.

each pipe of ceiling coils, placed horizontally, is about 126 Btu, 156 Btu, and 175 Btu per linear foot of pipe, respectively, for 1-in., $1\frac{1}{4}$ -in., and $1\frac{1}{2}$ -in. coils.

CONVECTORS

Standard large or small-tube cast-iron radiators may be concealed in a cabinet or other enclosure for appearance. In such cases a greater percentage of heat is conveyed to the room by convection thereby resulting in a form of gravity convector. A typical recessed convector is shown in Fig. 1. The heating element consisting of a large percentage of fin surface is usually shallow in depth and placed low in the enclosure in order to produce maximum chimney effect in the enclosure. The air enters the enclosure near the floor line just below the heating element, is moderately heated in passing through the core and delivered to the room through an opening near the top of enclosure. Since the air can only

Table 3. Heat Emission of Pipe Coils Placed Vertically on a Wall (Pipes Horizontal) Containing Steam at 215 F and Surrounded with Air at 70 F

Blu per linear foot of coil per hour (not linear feet of pipe)

Size of Pipe	1 In.	1¼ In.	1½ In.
Single row	132	162	185
	252	312	348
FourSix	440	545	616
	567	702	793
Eight	651	796	907
	732	907	1020
Twelve	812	1005	1135

enter the enclosure at the floor line, the cooler air in the room which always lies at this level, is constantly being withdrawn and replaced by the warmer air. This air movement accomplishes the desired reduction in temperature differentials and assures maximum comfort in the living zone.

Concealed heaters or convectors are generally available as completely built-in units. The enclosing cabinet should be designed with suitable air inlet and outlet grilles to give the heating element its best performance. Tables of capacities are catalogued for various lengths, depths and heights, and combinations are available in several styles for installations, such as the wall-hung type, free-standing floor type, recess type set flush with wall or offset, and the completely concealed type. Most of these types may be arranged with a top outlet grille in a plane parallel with the floor, although the front outlet is practically standard. In cases where enclosures are to be used but are not furnished by the heater manufacturer, it is important that the proportions of the cabinet and the grilles be so designed that they will not impair the performance of the assembled convector. It is desirable that the enclosure or housing for the convector fit as snugly as possible so that the air to be heated must pass through the convector and cannot be by-passed in the enclosure.

The output of a convector, for any given length and depth, is a function of the height. Published ratings are generally given in terms of equiva-

CHAPTER 13. RADIATORS AND CONVECTORS

lent square feet, corrected for heating effect. However, an extended surface heating unit is entirely different structurally and physically from a direct radiator and, since it has no area measurement corresponding to the heating surface of a radiator, many engineers believe that the performance of convectors should be stated in Btu. For steam convectors, as for radiators, 240 Btu per hour may be taken as an equivalent square foot of radiation. When more than one heating unit is used, one mounted above the other in the same cabinet, the output of the upper unit or units will be materially less than that of the bottom unit.

RADIATOR AND CONVECTOR RATINGS

A standard method of testing radiators was adopted by the A.S.H.V.E. in 1927¹. This Code provides for a standard test room, the temperature

Fig. 1. Typical Recessed Convector

of which is to be maintained at 70 F, measured in the center of the room at an elevation of 5 ft above the floor. The steam temperature in the radiator is to be 215 F, which corresponds to 15.6 lb per square inch absolute. The weight of condensate per hour, under these standard conditions, multiplied by the difference in the enthalpy of the steam entering the radiator and that of the condensate leaving the radiator, gives the radiator output in Btu per hour. This output divided by 240 gives the steam rating of the radiator in square feet.

Similar test methods for convectors are the A.S.H.V.E. Codes for Testing and Rating Concealed Gravity Type Radiation², (Steam Code 1931 and Hot'Water Code 1933). These Codes recognize a different type of test booth, and the air temperature used is that of the air entering the convector casing instead of the temperature in the center of the room.

¹A.S.H.V.E. Code for Testing Radiators (A.S.H.V.E. Transactions, Vol. 33, 1927, p. 18).

²A.S.H.V.E. Standard Code for Testing and Rating Concealed Gravity Type Radiation (Steam), (A.S.H.V.E. Transactions, Vol. 37, 1931, p. 367); (Hot Water), (A.S.H.V.E. Transactions, Vol. 39, 1933, p. 287). (See also A.S.H.V.E. Transactions, Vol. 41, 1935, p. 38, and Vol. 42, 1936, p. 29).

The entering air temperature for standard test conditions is 65 F. For hot water the standard test conditions call for a mean temperature of the water in the convector of 170 F.

The Convector Manufacturers Association has adopted the A.S.H.V.E. standard in the formulation of its ratings and has compiled a tentative standard of heating effect allowances for various enclosure heights to be included in the ratings by its members.

All published ratings bearing the title C.M.C. Ratings (Convector Manufacturers Certified Ratings) indicate that the convectors have been tested in accordance with the A.S.H.V.E. Code by an impartial and disinterested

Table 4. Correction Factors for Direct Cast-Iron Radiators and Convectors^a

Ste Pre Appr	88.	HEATING MEDIUM TEMP. F		Factors for Direct Cast-Iron Radiators						Factors for Convectors							
Gage	Abs	STEAM		R	оом Т	EMPER	ATURE	F		INLET AIR TEMPERATURE F							
Vacuum In Hg.	Lb per Sq In.	OR WATER	80	75	70	65	60	55	50	80	75	70	65	60	55	50	
22.4	3.7	150	2.58	2.36	2.17	2 00	1.86	1.73	1 62	3.14	2.83	2.57	2.35	2.15	1 98	184	
20 3	4.7	160	2.17	2.00	1.86	1.73	1.62	1.52	1.44	2.57	2.35	2.15	1 98	1 84	1.71	1 59	
17.7	6.0	170	1.86	1.73	1 62	1 52	1.44	1.35	1.28	2.15	1.98	1.84	1.71	1 59	1,49	1.40	
14.6	7.5	180	1.62	1.52	1.44	1 35	1.28	1.21	1.15	1 84	1.71	1.59	1.49	1.40	1 32	1.24	
10.9	9.3	190	1.44	1.35	1.28	1.21	1.15	1.10	1.05	1.59	1.49	1 40	1 32	1 24	1 17	1.11	
6.5	11.5	200	1.28	1.21	1.15	1.10	1 05	1 00	0.96	1.40	1.32	1.24	1.17	1 11	1.05	1 00	
LbperSqIn.																	
1	15.6	215	1.10	1.05	1 00	0 96	0.92	0 88	0.85	1.17	1.11	1 05	1 00	0.95	0.91	0.87	
6	21	230	0.96	0.92	0 88	0.85	0.81	0.78	0.76	1 00	0.95	0.91	0 87	0.83	0.79	0.76	
15	30	250	0 81	0.78	0.76	0.73	0 70	0 68	0.66	0 83	0.79	0.76	0.73	0 70	0.68	0 65	
27	42	270	0.70	0 68	0 66	0.64	0.62	0 60	0.58	0.70	0 68	0.65	0 63	0.60	0.58	0 56	
52	67	300	0 58	0.57	0 55	0 53	0 52	0.51	0 49	0 56	0.54	0.53	0.51	0.49	0 48	0.47	

^aTo determine the size of a radiator or a convector for a given space, divide the heat loss in Btu per hour by 240 and multiply the result by the proper factor from the above table.

laboratory and that the ratings have been approved by the Standardization Committee of the *Convector Manufacturers Association*.

Effect of Operating Conditions

The heat output of a radiator is proportional to the 1.3 power of the temperature difference between the air in the room at the 60 in. level and the heating medium in the radiator. The heat output of a convector is proportional to the 1.5 power of the temperature difference between the air entering the convector and the heating medium, steam or hot water, within the convector³. For hot water the arithmetical average between entering and leaving water temperatures is used. These laws may be expressed as correction factors to change from output under standard rating-test conditions to output under other operating conditions. Such factors are given in Table 4.

When it is desired to change the output under any test conditions to the corresponding output under standard Code test conditions, the

To determine the heating capacity of a radiator or a convector under conditions other than the basic ones with the heating medium at a temperature of $215 \, \text{F}$, and the room temperature at $70 \, \text{F}$ in the case of a radiator, and the inlet air temperature at $65 \, \text{F}$ in the case of a convector, divide the heating capacities at the basic conditions by the proper factor from the above table.

^{*}A.S.H.V.E. RESEARCH REPORT No. 998—Factors Affecting the Heat Output of Convectors, by A. P. Kratz, M. K. Fahnestock, and E. L. Broderick (A.S.H.V.E. Transactions, Vol. 40, 1934, p. 443).

reciprocal form of correction factor may be derived. The equations for steam units are:

For radiators:

For convectors:

$$C_{\rm S} = \left(\frac{215 - 70}{t_{\rm S} - t_{\rm r}}\right)^{1.3}$$

$$C_{\rm s} = \left(\frac{215 - 65}{t_{\rm s} - t_{\rm i}}\right)^{1.5}$$
 (3)

The output under standard conditions will be:

$$H_{\rm S} = C_{\rm S} H_{\rm t} \tag{4}$$

where

 C_s = correction factor

ts = steam temperature during test, degrees Fahrenheit.

tr = room temperature during test, degrees Fahrenheit.

ti = inlet air temperature during test, degrees Fahrenheit.

 H_s = heat emission rating under standard conditions, Btu per hour.

Ht = heat output under test conditions, Btu per hour.

The relation between the size of the radiator or convector and the size of the test room will affect the results obtained in a capacity-rating test4. The height and location of the radiator and the insulation of the test room are other important factors that are not specifically regulated by the Code.

For a radiator, the finish coat of paint affects the heat output. Oil paints of any color will give about the same results as unpainted black or rusty surfaces, but an aluminum or a bronze paint will reduce the heat emitted by radiation. The net effect may be a reduction of ten per cent or more in the total heat output of the radiator 5.6.7.

Radiator enclosures and convector casings affect the heat distribution within the room as well as the total amount of heat supplied by the steam or hot water8.

Heating Effect

For several years the term heating effect has been used to designate the relation between the useful output of a radiator, in the comfort zone of a room, and the total input as measured by steam condensation or water temperatures. The application of such a heating effect factor is a recognition that some radiators and convectors use less steam than others for producing equal comfort heating results in the room.

No standard method for evaluating the heating effect of radiators and convectors and correlating it with comfort has yet been accepted. One method, with test data10 on radiators and convectors, and making use of the eupatheoscope for evaluating the environment produced has been

⁴Factors Influencing the Heat Output of Radiators, by A. C. Davis, W. M. Sawdon and David Dropkin (A.S.H.V.E. JOURNAL SECTION, Healing, Piping and Air Conditioning, March, 1942, p. 180) and Cornell University, Engineering Experiment Station Bulletin No. 29, April, 1942.

⁵Heat Emission from Radiators, by K. F. Rubert (Cornell University, Engineering Experiment Station Bulletin No. 24, 1937).

⁶Comparative Tests of Radiator Finishes, by W. H. Severns (A.S.H.V.E. Transactions, Vol. 33, 1927, p. 41).

Heat Loss from Direct Radiation, by J. R. Allen (A S H.V.E. TRANSACTIONS, Vol. 26, 1920, p. 11)

⁸Heat Output of Concealed Radiators, by E. A. Allcut (University of Toronto, School of Engineering Research, Bulletin No. 140, 1933).

The Heating Effect of Radiators, by Dr. Charles Brabbeé (A S.H.V.E. Transactions, Vol. 33, 1927,

Performance of Direct Radiators and Convectors in Terms of Equivalent Temperature, by A. C. Willard, A. P. Kratz and M. K. Fahnestock (A.S.H.V.E. Transactions, Vol. 39, 1933, p. 303).

suggested by the University of Illinois. The principle underlying the eupatheoscope involves the measurement of the heat loss from a sizable body by radiation and convection, when the surface is maintained at some constant temperature. Through the use of this instrument and its calibration curve, non-uniform environments may be referred to uniform

Fig. 2. Temperature Gradients and Equivalent Temperatures for Radiator and Convectors with Common 30 in. Level Temperature

Fig. 3. Temperature Gradients and Equivalent Temperatures for Radiator and Convectors with Common Equivalent Temperature

environments in which the air and all surrounding surfaces are at the same temperature. The temperatures of the uniform environments are referred to as equivalent temperatures.

Data given in Fig. 2 shows that while the air temperature at the 30 in. level is the same for the three convectors and the one large-tube cast-iron

radiator, in position No. 3 in the test room, the equivalent temperature is 1.5 F lower than the air temperature in the case of the three convectors, and the same as the air temperature in the case of the radiator. The difference between the minimum and the maximum amount of heat required to maintain the common air temperature at the 30 in. level is of the order of 13 per cent.

In Fig. 3 are shown the results of tests made with the same three convectors and the one large-tube cast-iron radiator, so adjusted in size that each gave approximately the same equivalent temperature in the No. 3 position in the test room. The difference between the miminum and the maximum amount of heat required to maintain the common equivalent temperature is of the order of 7 per cent.

The Kata thermometer¹¹, the thermo-integrator^{12,13}, and the globe¹⁴

Fig. 4. Steam Consumption of Exposed and Concealed Radiators

thermometer are other instruments which have been used to measure the influence of air temperature, air movement and radiation in an environment.

The following statements applying to the use of radiators are based on experience and test results:

- 1. The heating effect of a radiator cannot be judged solely by the amount of steam condensed within the radiator.
- 2. Smaller floor-to-ceiling temperature differentials can be maintained with long, low, thin, direct radiators, than is possible with high, direct radiators.
- 3. The larger portion of the floor-to-ceiling temperature differential in a room of average ceiling height heated with direct radiators occurs between the floor and the breathing level.

[&]quot;The Kata Thermometer Its Value and Defects, by W. J. McConnell and C. P. Yagloglou. (Reprint No. 953 from U.S. Public Health Service Report, pp. 2293-2337, September 5, 1924).

¹²The Thermo-Integrator—A New Instrument for the Observation of Thermal Interchanges, by C.-E. A. Winslow and Leonard Greenburg (A.S.H V E. TRANSACTIONS, Vol 41, 1935, p. 149).

¹⁸ The Calibration of the Thermo-Integrator, by C-E A. Winslow, A. P. Gagge, Leonard Greenburg, I. M. Moriyama and E. J. Rodee. (The American Journal of Hygiene, Vol. 22, No. 1, July, 1985, pp. 137-156).

14 The Globe Thermometer in Studies of Heating and Ventilation, by T. Bedford and C. G. Warner. (The Journal of Hygiene, Vol. 34, No. 4).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

- 4. The comfort level (approximately 2 ft-6 in. above floor) is below the breathing line level (approximately 5 ft-0 in. above floor), and temperatures taken at the breathing line may not be indicative of the actual heating effect of a radiator in the room. The comfort-indicating temperature should be taken below the breathing line level.
- 5. High column radiators placed at the sides of window openings do not produce as comfortable heating effects as long, low, direct radiators placed beneath window openings.

HEATING UP THE RADIATOR AND CONVECTOR

The maximum condensation occurs in a heating unit when the steam is first turned on. Tests¹⁵ on an old-style column type cast-iron radiator indicated that in the first 10 min the condensation rate reached a peak of 0.95 lb per square foot of radiator per hour and 10 to 15 min later lowered to a rate of 0.24 lb. In practice the rate of steam supply to the heating unit while heating up is frequently retarded by controlled elimination of air through air valves or traps. Automatic control valves may also retard the supply of steam. Vacuum types of air venting valves may be used to reduce the length of the venting periods.

ENCLOSED RADIATORS

The general effect of an enclosure placed about a direct radiator is to restrict the air flow, diminish the radiation and, when properly designed, improve the heating effect. Investigations¹⁶ indicate that in the design of the enclosure three things should be considered:

- 1. There should be better distribution of the heat below the breathing line level to produce greater heating comfort and lowered ceiling temperatures.
- 2. The lessened steam consumption may not materially change the radiator heating performance.
 - 3. The enclosed radiator may inadequately heat the space.

A comparison between a bare or exposed radiator (A) and the same radiator with a well-designed enclosure (B), with a poorly-designed enclosure (C), and with a cloth cover (D) will illustrate the relative heating effects. In Fig. 4 the curve (B) reveals that the enclosed radiator used less steam than the exposed radiator, but gave a satisfactory heating performance. A well-designed shield placed over a radiator gives about the same heating effect. Curve (C) shows the unsatisfactory effects produced by improperly-designed enclosures. Curve (D) shows that the effect of a cloth cover extending downward 6 in. from the top of the radiator was to make the performance unsatisfactory and inadequate.

Some commercial enclosures and shields for use on direct radiators are equipped with water pans for the purpose of adding moisture to the air in the room. Tests¹⁷ show that an average evaporative rate of about 0.235 lb per square foot of water surface per hour may be obtained from such pans, when the radiator is steam hot and the relative humidity in the room is between 25 and 40 per cent. This source of supply of moisture alone is not adequate to maintain a relative humidity above 25 per cent on a zero day.

¹⁵A.S.H.V.E. RESEARCH REPORT No 1067—The Cooling and Heating Rates of a Room with Different Types of Steam Radiators and Convectors, by A. P. Kratz, M. K. Fahnestock and E. L. Broderick (A S.H.V.E. Transactions, Vol 43, 1937, p 389)

Munversity of Illinois, Engineering Experiment Station Bulletins Nos. 192 and 223, and Investigation of Heating Rooms with Direct Steam Radiators Equipped with Enclosures and Shields, by A. C. Willard, A. P. Kratz, M. K. Fahnestock and S. Konzo (A. S. H. V.E. Transactions, Vol. 35, 1929, p. 77).

¹⁷University of Illinois, Engineering Experiment Station Bulletin No. 230, p. 20.

Chapter 14

STEAM HEATING SYSTEMS

Gravity and Mechanical Return, Gravity One-Pipe Air-Vent, Gravity Two-Pipe Air-Vent, Air Line Heating, One-Pipe Vapor, Two-Pipe Vapor, Atmospheric, Condensation Return, Vacuum, Sub-Atmospheric, Orifice, Zone Control, Condensation Return Pumps, Vacuum Heating Pumps, Traps

STEAM heating systems may be classified according to the pipe arrangement, the accessories used, the method of returning the condensate to the boiler, the method of expelling air from the system, or the type of control employed. Information concerning the design and layout of steam heating systems will be found in Chapter 15.

GRAVITY AND MECHANICAL RETURN

Systems are classified as gravity or mechanical according to the method of returning the condensate from the system to the boiler. In gravity systems the condensate is returned by gravity due to the static head of water in the return pipes or mains. The elevation of the boiler water line must be sufficiently below the lowest heating unit, steam pipe or dry return pipe to permit the return by gravity. The water line difference forming the static head must be sufficient to overcome the maximum pressure drop in the system, including the pressure drop due to the condensing effect of the radiation. When radiator and drip traps are used, as in two-pipe vapor systems, the static pressure must also exceed the operating pressure of the boiler. The pressure drop caused by condensing rate of the radiation is especially important during those portions of the operating periods where changing pressure conditions prevail, as for example, when the system is being initially filled with steam. In systems where the condensate is wasted to the sewer, no water line difference is required as is the case with closed systems. However, the waste of condensate may introduce conditions which warrant the use of an appropriate mechanical system. Whenever the conditions of a heating system are such that the returns from the radiation cannot gravitate to the boiler, they must be returned by some mechanical means.

In mechanical systems the condensate flows to a receiver by gravity and is then forced into the boiler against its pressure. In all instances the preferable practice is to provide for gravity flow even where a vacuum pump is used. The lowest parts of the supply side of the system must be kept sufficiently above the water line of the receiver to insure adequate drainage of water from the system.

There are three general types of mechanical return devices in common use, namely, (1) the mechanical return trap, (2) the condensation return pump, and (3) the vacuum return line pump.

Fig. 1. Typical Up-Feed Gravity One-Pipe Air-Vent System

GRAVITY ONE-PIPE AIR-VENT SYSTEM

This system is the most common of all methods of steam heating, especially for small size installations, due largely to its low cost and simplicity.

Fig. 2. Typical Steam Runout where Fig. 3. Typical Steam Runout where Risers are Not Dripped Risers are Dripped

The downward pitch of a one-pipe air-vent system is indicated in Fig. 1. Low points and ends of steam mains pitched down from the boiler should be dripped. All drips should be sealed below water line before connecting together. In the risers and radiator connections, steam and

CHAPTER 14. STEAM HEATING SYSTEMS

condensation flow in opposite directions. In long steam mains it flows in the same direction as the steam and is removed from the main through the drip. Short mains may be arranged for the condensate to flow in a direction opposite the steam by sizing them so the critical velocity is not exceeded. It is customary to drip the heel of each riser in buildings of several stories to avoid counter-flow of the steam and condensate in the riser branch. In buildings of one or two stories the condensate is returned to the steam main instead of being dripped. Both types of risers are shown in Fig. 1, and riser connections are shown in Figs. 2 and 3. A typical overhead down-feed system is illustrated in Fig. 4. While wet return mains need not be pitched toward the boiler to maintain steam circulation, they should be pitched for drainage.

Fig. 4. Typical Down-Feed Gravity One-Pipe Air-Vent System

To improve steam circulation in one-pipe systems quick vent air valves should be provided at the ends and at intermediate points where the steam main is brought to a higher elevation. It is desirable to install the air-vent valves about a foot ahead of the drips, as indicated in Fig. 1, to prevent possible damage to their mechanisms by water.

The radiator valves may be the angle-globe, offset-corner pattern or gate type. Straight-globe and straight-corner type should not be used since the damming effect of the raised valve seat would interfere with the flow of condensation through the valve. Graduated valves cannot be used since the steam valves on this system must be fully open or fully closed to prevent the radiators filling with water and creating a dangerous water line condition. With a one-pipe system the heat cannot be modulated at the radiator, the steam being either all on or all off. Systems and devices are available which make it possible to obtain a partial modulating effect from one-pipe heating systems.

It is important to keep the lowest points of the steam mains and heating units sufficiently above the water line of the boiler to prevent flooding. The minimum water line difference depends on the initial steam pressure and piping pressure drop plus a safety factor for heating up.

Fig. 5. Difference in Steam Pressure on Water in Boiler and at End of Steam Main

Referring to Fig. 5 it will be noted that the water in the wet return is a U-shaped container, with the boiler steam pressure on the top of the water at one end and the steam main pressure on the top of the water at the other end. The difference between these two pressures is the *pressure drop* in the system, *i.e.*, the friction and resistance to the flow of steam in passing from the boiler to the far end of the main and the pressure reduction in consequence of the condensation occurring in the system. The water in the far end will

FIG. 6. TYPICAL UP-FEED GRAVITY TWO-PIPE AIR-VENT SYSTEM

rise sufficiently to overcome this difference in order to balance the pressures, and it will rise far enough to produce a flow through the return pipe and overcome the resistance of check valves if installed.

If a one-pipe steam system is designed, for example, for a total pressure drop of $\frac{1}{8}$ lb, and utilizes an Underwriters' Loop instead of a check valve on the return, the rise in the water level at the far end of the return due to the difference in steam pressure would be $\frac{1}{8}$ of 28 in. (28 in. head being equal to one pound per square inch), or $3\frac{1}{2}$ in. Adding 3 in. to overcome the resistance of the return main and 6 in. as a factor of safety for heating up gives $12\frac{1}{2}$ in. as the distance; the bottom of the lowest part of the steam main and all heating units must be above the boiler water line. The same system, however, installed and sized for a total pressure drop of $\frac{1}{2}$ lb, and with a check in the return,

CHAPTER 14. STEAM HEATING SYSTEMS

would require $\frac{1}{2}$ of 28 in., or 14 in. for the difference in steam pressure, 3 in. for the flow through the return, 4 in. to operate the check, and 6 in. for a factor of safety, making a total of 27 in. as the required distance. Higher pressure drops would increase the distance accordingly.

GRAVITY TWO-PIPE AIR-VENT SYSTEMS

The gravity two-pipe system indicated in Fig. 6 is now considered obsolete although many of these systems are still in use in older buildings. The same general principles governing its piping design are used when connecting radiators as in other types of gravity systems where they must discharge their condensation to the wet return pipe. Separate supply and return mains and connections are required for each heating unit. Radiator valves are required in both the supply and return connection to the radiator, and air valves are installed on the heating units and the mains. Where the return main has to be located high to function as a

Fig. 7. Method of Connecting Two-Pipe Gravity Returns to Dry Return Main

dry return, it is advisable to connect the return risers to the dry return main through water seals, as shown in Fig. 7, to prevent steam from one riser entering another.

The steam main in the down-feed system is carried to the top of the building, and the piping of the steam side is arranged as in the down-feed one-pipe gravity system. On the return side of the system, the piping is arranged in exactly the same manner as the up-feed gravity two-pipe system.

AIR LINE HEATING SYSTEMS

Both one- and two-pipe systems are at times provided with air valves which, instead of venting to the atmosphere direct, vent to a return pipe system of small size, which in turn is vented to atmosphere or connected to a vacuum pump. These are known as one-pipe and two-pipe air line systems. Where the air line is exhausted by a vacuum pump they are termed one-pipe or two-pipe vacuum air line systems.

ONE-PIPE VAPOR SYSTEM

The one-pipe vapor system operates under pressures at or near atmospheric and returns its condensation to the boiler by gravity. In this

system the automatic air valves are of special design to permit the ready release of air and prevent its ready return after it is expelled. The steam radiator valves are a type which, when opened, give a free and unobstructed passageway for water. The piping is the same as for the one-pipe gravity system but sized so as to permit operation at a few ounces pressure.

TWO-PIPE VAPOR SYSTEM

A two-pipe up-feed vapor system using separate supply and return pipes is shown in Fig. 8. The radiators discharge their condensation through thermostatic traps to the dry return pipe. These systems operate at a few ounces pressure and above, but those with mechanical condensate return devices may operate at pressures upward of 10 lb. The simplest

Fig. 8. Typical Up-Feed System with Automatic Return Trapa

aProper piping connections are essential with special appliances for pressure equalizing and air elimination.

method of venting the system consists of a ¾-in. pipe with a check valve opening outward. Most systems employ various forms of vent valves, designed to allow the air to readily pass out of the system and to prevent its return. These systems permit control of the heat in the radiator by varying the opening of the graduated radiator valves. The boiler pressure is maintained at substantially constant pressure slightly above atmospheric pressure.

These systems may be classified as (1) closed systems, consisting of those which have a device to prevent the return of air after it has once been expelled from the system, and which can operate at both super and sub-atmospheric pressures for a period of four to eight hours depending upon the tightness of the system and rate of firing, and (2) open systems, comprising those which have the return line constantly open to the atmosphere without a check or other means to prevent the return of air. The open systems are not so popular because they have the disadvantage of not holding heat when the rate of steam generation is diminishing. Sys-

tems of this design should preferably be equipped with an automatic return trap to prevent water from backing out of the boiler. In installing the return trap a check valve is inserted in the return main at a point near the boiler and a vertical pipe is run up into the bottom of the return trap, which is usually located with the bottom about 18 in. above the boiler water line. Some traps are constructed so that they will operate when they are installed with their bottom as close as 8 in. above the boiler water line. On the other side of this connection a second check valve is installed in the main return just before it enters the boiler. Fig. 9 shows a typical connection for an automatic return trap.

Fig. 9. Typical Connections for Automatic Return Trap

Down-Feed Two-Pipe Vapor System

In the down-feed two-pipe vapor system the steam is carried to the top of the building, the top of the vertical riser constituting the high point of the system, and the horizontal supply main is sloped down from this location to the far ends of each branch. The branches are taken off the main from the bottom or at a 45-deg angle downward, with the runouts sloped toward the drops. Thus each branch from the main forms a drip and no accumulation of water is carried down any one drop.

The steam drops are carried down through the building with suitable reductions as the various radiator connections are taken off until the lowest radiator runout is reached. If the drop is only two or three stories high, the portion feeding the bottom radiator should be increased one pipe size to provide for draining the riser, and if the drop is over three stories high it is well to increase the portion feeding the two lowest radiators one or two pipe sizes, especially if the two lowest radiators are small

and the normal size of drop required is 1 in. or less. The bottom of each steam drop should terminate with a dirt pocket and be dripped as shown in Fig. 10. The returns on a down-feed vapor system are the same as on an up-feed system. The runouts to the radiators and the radiator connections of the down-feed system are the same as those for the up-feed system already described.

CONDENSATION RETURN HEATING SYSTEMS

When automatic condensation return pumps are substituted for the gravity return of a two-pipe vapor system they are known as return systems or return pump heating systems. A typical installation of a motor driven automatic condensation unit is illustrated in Fig. 11. It will be noted that the returns are graded to cause flow by gravity to the vented receiver. As the receiver is filled, the float mechanism operates either a pilot or an across-the-line switch to start the pump and, upon emptying

Fig. 10. Detail of Drip Connections at Bottom of Down-Feed Steam Drop

the tank, to disconnect the power and stop it. The pump may be used to deliver the condensate direct to the boiler, to a feed water heater or to raise the water to any higher elevation or pressure than that of the return line. A useful application is a small condensation unit to handle a remote section of radiation that otherwise would be difficult to grade to the main return.

VACUUM SYSTEMS

In the vacuum system, a vacuum is maintained in the return line practically at all times. The pump is usually controlled by a vacuum regulator which operates the pump to maintain the vacuum within limits and operates in response to a pressure difference between the atmosphere and the return to control the vacuum in the return main, The source of steam supply may be a low pressure boiler as shown in Fig. 12, or a high pressure line through a pressure reducing valve. The piping and other details are the same as for the vapor systems.

The return risers are connected in the basement into a common return main which slopes downward toward the vacuum pump. The vacuum

CHAPTER 14. STEAM HEATING SYSTEMS

nump withdraws the air and water from the system, separates the air rom the water and expells it to atmosphere and pumps the water back to he boiler, or other receiver, which may be a feed-water heater or hot well. It is essential that no connection be made from the supply side to he return side at any point except through a trap. The desirable practice lemands a return flowing to the vacuum pump by an uninterrupted downward slope. In some instances local conditions make it necessary to drop he return below the level of the vacuum pump inlet, before the pump can be reached. In such an event one of the advantages of the vacuum system is the ability to raise the condensate to a considerable height by the suction of the vacuum pump by means of a lift connection or fitting inserted in the return. The height the condensate can be raised depends on the steam pressure and the amount of vacuum maintained. It is

Fig. 11. Typical Installation Using Condensation Pump

preferable to limit lift connections to a single lift at the vacuum pump. A still more preferable arrangement is the use of an accumulator tank, or receiver tank, with a float control for the pump at the low point of the return main located adjacent to the vacuum pump.

When the vertical lift is considerable, several lift fittings should be used in steps as shown in Fig. 13. This permits a given lift to be secured with a somewhat lower vacuum than where the vertical distance is served by a single lift. Where several lifts are present in a given system at different locations, the lifting cannot occur until the entire system is filled with steam. A lift connection for location close to the pump, where the size may be above the commercial stock sizes, is shown in Fig. 14. It is desirable that means be provided for manually draining the low point of the lift fittings to eliminate from the return piping all water in danger of freezing in case the system is shut down for a considerable length of time.

Down-Feed Vacuum System

The piping arrangement for the down-feed vacuum system is similar on the supply side to the down-feed vapor system in that it has similar runouts, radiator valves, drips on the bottom of the steam drops, and enlargement of the drops for the lower radiator connections. The return side of the system is exactly the same as the up-feed system except that the steam riser drips at the bottom are connected into the return line through thermostatic traps. It is preferable to take the runouts for the risers from the bottom or at a 45-deg angle down from the steam main so that they may serve as steam main drips. When this is done it is practical to run the steam main level if a runout is located at every change in pipe size, or if eccentric fittings are used (Fig. 15). A slight pitch in the

Fig. 12. Typical Up-Feed Vacuum Pump System

steam main, however, should be used when possible. An overhead vacuum down-feed system is shown diagrammatically in Fig. 16.

SUB-ATMOSPHERIC SYSTEMS

Sub-atmospheric systems are similar to vacuum systems but, in contrast, provide control of building temperature by variation of the heat output from the radiators. The radiator heat emission is controlled by varying the pressure, temperature and volume of steam in circulation. These systems differ from the ordinary vacuum system in that they maintain a controllable partial vacuum on both the supply and return sides of the system, instead of only on the return side. In the vacuum system, steam pressure above that of the atmosphere exists in the supply mains and radiators practically at all times. In the sub-atmospheric system, atmospheric pressure or higher exists in the steam supply piping and

CHAPTER 14. STEAM HEATING SYSTEMS

radiators only during severe weather. Under average winter temperature the steam is under partial vacuum which in mild weather may reach as high as 25 in. Hg., after which further reduction in heat output is obtained by restricting the quantity of steam.

The rate of steam supply is controlled by a valve in the steam main or by thermostatically controlling the rate of steam production in the boiler. The control valve may be of the automatic modulating or floating type governed thermostatically from selected control points in the building, or it may be a special pressure reducing valve which will maintain the desired sub-atmospheric pressures by continuous flow into the heating main. All radiator supply valves have incorporated adjustable orifices or are equipped with regulating orifice plates. The sizes of orifices used are larger than for orifice systems because for equal radiator sizes the

IS OVER 5 FT

Fig. 15. Method of Changing Size of Steam Main when Runouts ARE TAKEN FROM TOP

volume flowing is larger. These orifices are omitted on some systems, depending upon the type of control. Radiator traps and drips are designed to operate at any pressure from 15 lb gage to 26 in. of Hg. vacuum pump capable of operating at high vacuum is preferable to promote accuracy in the distribution of steam throughout the system, particularly in mild weather. This vacuum is partially self induced by the condensation of the steam in the system under conditions of restricted supply for reduction of the radiator heat emission.

The returns must grade downward constantly and uninterruptedly from the radiator return outlets to the inlet of the receiver of the vacuum pump. One radical difference between this and the ordinary vacuum system is that no lifts should be made in the return line, except at the vacuum The receivers are placed at a lower level than the pump and equipped with float control so the pump may operate as a return pump under night conditions. The system may be operated in the same manner as the ordinary vacuum system when desired.

Steam for heating domestic hot water should be taken from the boiler header back of the control valve so that pressures sufficiently high for heating the water may be maintained on the heater. The sub-atmospheric method of heating can be used for the heating coils of ventilating and air conditioning systems. The flexible control of heat output secured by this method materially reduces the required size of by-pass around the heaters. Sub-atmospheric systems are proprietary.

ORIFICE SYSTEMS

Orifice systems of steam heating may have piping arrangements identical with vacuum systems. Some of these omit the radiator thermostatic

Fig. 16. Typical Down-Feed Vacuum System

traps but use thermostatic or combination float and thermostatic traps on all drip points. A return condensation pump with receiver vented to atmosphere, a return line vacuum pump, or a return trap, is generally used to return the condensation to the boiler or place of similar disposition, such as a feed-water heater or hot well. The heat emission from the radiators is controlled by varying the pressure maintained in the steam supply piping.

The principle on which these systems operate is based on the fact that the steam flow through an orifice will vary when the ratio of the absolute pressures on the two sides of the orifice exceeds 58 per cent. If the absolute pressure on the outlet side is less than 58 per cent of the absolute pressure on the inlet side, no further increase in flow will be obtained as a result of the increased pressure difference. If an orifice is so designed in

CHAPTER 14. STEAM HEATING SYSTEMS

size as to exactly fill a radiator with 2 lb gage on one side and $\frac{1}{4}$ lb gage on the other, the absolute pressure relation is:

$$\frac{14.7 + 0.25}{14.7 + 2.0} = 0.90$$
 or 90 per cent.

Should the steam pressure be dropped to 1/4 lb on the supply pipe, the pressure on each side of the orifice would be balanced and no steam flow would take place. From this it will be apparent that if an orifice of a given diameter will fill a given radiator with steam when there is a given pressure on the main, reducing this steam main pressure will permit filling various desired portions of the radiator down to the point where the main pressure equals the back pressure in the radiator provided the supply pipe pressures may be controlled sufficiently close. If orifices are designed on a similar basis for a given system and proportioned to the heating capacity of the radiators they serve, all radiators will heat proportionately to the steam pressure. The range of pressure variation is limited by the permissible noise level of the steam flowing under the pressure difference required for maximum heat output. The control of the steam supply is obtained by a valve placed in the steam main, which maintains a determined pressure; or by a boiler pressure control. The valves are frequently manually set from a remote location, guided by temperature indicating stations in the building; or thermostatically controlled from a thermostat on the roof, which automatically measures the differential of outside and inside temperatures. Since the range through which the pressures may be varied is usually from 0 to 4.0 lb gage, the control should be capable of maintaining close regulation to maintain the desired space temperatures, particularly in mild weather.

Some systems use orifices not only in radiator inlets but also at different points in the steam supply piping for the purpose of balancing the system to a greater extent. In this manner the difference between the initial and terminal pressure in the steam main may be compensated to a great extent. For example, if the initial pressure was 3 lb gage and the pressure at the end of the main was 2 lb, an orifice could be used in each branch for the purpose of obtaining a more uniform pressure throughout the system. Such a provision may be particularly useful in this system for branches close to the boiler where the drop in the main has not yet been produced. Orifice systems are proprietary.

CONDENSATION RETURN PUMPS

Condensation return pumps are used for gravity systems when the local conditions do not permit the condensation to return to the boiler under the existing static head. The return of the condensate permits the water to repeatedly go through the cycle of vaporization, with subsequent condensation and return to the boiler. During such repeated cycles any incrustants or other substances in solution are precipitated and the water de-activated to a considerable extent so that corrosion of a serious nature is seldom ever encountered where the condensate is repeatedly used. Serious corrosion is more frequently found in systems where the condensation is not repeatedly used but is wasted and fresh make-up water is continually being introduced.

The most generally accepted condensation pump unit for low pressure

heating systems consists of a motor-driven centrifugal pump with receiver and automatic float control. Other types in use include rotary, screw and reciprocating pumps with steam turbine or motor drive, and directacting steam reciprocating pumps.

The receiver capacities of these automatic units should be sized so as not to cause too great a fluctuation of the boiler water line if fed directly to the boiler and at the same time not so small as to cause too frequent operation of the unit. The usual unit provides storage capacity between stops in the receiver of approximately 1.5 times the amount of condensate returned per minute and the pump generally has a delivery rate of 3 to 4 times the normal flow. This relation of receiver and pump size to heating system condensing capacity takes account of the peak condensation rate.

VACUUM HEATING PUMPS

On vacuum systems, where the returns are under a vacuum, and subatmospheric systems, where the supply piping, radiation and the returns are under a vacuum, it is necessary to use a vacuum pump to discharge the air and non-condensable gases to atmosphere and to dispose of the condensation. Direct-acting steam-driven reciprocating vacuum pumps are sometimes used where high pressure steam is available or where the exhaust steam from the pump can be utilized. In general, however, these have been replaced by the automatic motor-driven return line heating pump especially developed for this service. Steam turbine drive is also frequently used where steam at suitable pressures is available, the steam being used afterward for building heating. The usual vacuum pump unit consists of a compact assembly of exhausting unit for withdrawing the air-vapor mixture and discharging the air to atmosphere and a water removal unit which discharges the condensate to the boiler. They are furnished complete with receiver, separating tank and automatic controls mounted as an integrated unit on one base. There are also special steam turbine driven units which are operated by passing the steam to be used in heating the building through the turbine with only a 2 to 3 lb drop across the turbine required for its operation. Under special conditions such as installations where it is necessary to return the condensate to a high pressure boiler, auxiliary water pumps may be supplied. In some instances separate air and water pumps may be used.

Practically all automatic motor-driven return line vacuum heating pumps make use of a portion of the condensate to operate either as a liquid piston pump or as a kinetic exhauster (which operate on a modified ejector principle) to withdraw the air and condensate from the system, discharge the air to atmosphere and return the condensate to the boiler. Some type of hydraulic action is utilized to produce the suction. Such hydraulic evacuating devices may be classified as:

- a. Water ring centrifugal displacement pumps.
- b. Water piston pumps.
- c. Stationary kinetic exhauster pumps.
- d. Rotary kinetic ejector pumps.

The evacuating element is generally combined with a centrifugal water impeller for the delivery of the condensate to the boiler or feedwater heater.

CHAPTER 14. STEAM HEATING SYSTEMS

The assembled units may be further grouped under two general classifications:

- a. Those which perform the function of air separation under atmospheric pressure.
- b. Those which perform the function of air separation under a partial vacuum.

Pumps coming under the first classification remove both the air and condensate from the returns by means of the hydraulic evacuator and deliver both to a separating tank under atmospheric pressure. From this tank the air and non-condensable vapors are vented to atmosphere while the condensate is removed and delivered to the boiler by means of the built-in boiler feed pump impeller.

In the second classification, the air and condensate are first separated under vacuum by means of the receiver which is directly connected to the returns. The hydraulic evacuator withdraws only the air and non-condensable vapors from the top of the receiver and delivers them to atmosphere. The built-in condensate pump impeller removes the condensate from the bottom of the receiver and delivers it direct to the boiler or feed-water heater.

Under special conditions such as returning the condensate to a high pressure boiler or the furnishing of large air removal units for high vacuum systems, it is customary to supply separate motor-driven air and water pumps.

For rating purposes¹ vacuum pumps are classified as *low vacuum* and *high vacuum*. Low vacuum pumps are those rated for maintaining $5\frac{1}{2}$ in. Hg. vacuum on the system, and high vacuum pumps are those rated to maintain vacuums above $5\frac{1}{2}$ in.

The vacuum that can be maintained on a system depends upon the relationship of the air leakage rate into the system to the operating air capacity of the hydraulic evacuator when operating at any given return line temperature. The hotter the returns, the lower will be the possible vacuum for a given air leakage rate into the system. It is particularly essential on high vacuum installations to see that the entire system is tight in order to reduce the amount of inward air leakage and, furthermore, to see that relatively higher temperature steam is prevented from entering the vacuum return lines through leaky traps, high pressure drips, etc. It is for this reason that the condensate from equipment using steam at high pressures should not be connected directly to a vacuum return line but should drain to a receiver through a high pressure trap. The receiver should have an equalizing connection to a low pressure steam main and drain through a low pressure trap to the vacuum return main as indicated in Fig. 17.

Vacuum Pump Controls

In the ordinary vacuum system, the vacuum pump is controlled by a vacuum regulator which cuts in when the vacuum drops to the lowest point desired and cuts out when it has been increased to the highest point, these points being varied to suit the particular system or operating

¹A.S.H.V.E. Standard Code for Testing and Rating Return Line Low Vacuum Heating Pumps, (A.S. H.V.E. Transactions, Vol. 40, 1934, p. 33).

conditions. In addition to this vacuum control, a float control is included which will automatically start the pump whenever sufficient condensation accumulates in the receiver, regardless of the vacuum on the system. A selector switch is usually provided to allow operation at night as a condensation pump only, also to give manual or continuous operation when desired.

There are several variations in the control of the vacuum maintained on the system by the pump. In some sub-atmospheric systems where orifices are used, the vacuum pump control maintains a pressure difference between the supply and the return piping, which is held within relatively close limits. There are other sub-atmospheric systems which utilize special temperature-pressure actuated controls for maintaining the desired conditions in the return lines. Where various zones are connected to the

Fig. 17. Method of Discharging High-Pressure Apparatus into Low-Pressure Heating Mains and Vacuum Return Mains through a Low-Pressure Trap

same return main, the return vacuum must be controlled to meet the requirements of the zone operating at the lowest steam supply pressure.

Piston Displacement Vacuum Pumps

Piston displacement return vacuum heating pumps may be either electric or steam driven. They should be provided with mechanical lubricators and their piston speed in feet per minute should not exceed 20 times the square root of the number of inches in their stroke. They are usually supplied with an air separating tank, open to atmosphere, placed on the discharge side of the pump and at an elevation sufficiently high to allow gravity flow of the condensate to the boiler. If the boiler pressure is too high for such gravity feed then an additional steam pump for feeding the boiler is desirable. The extra pump is sometimes avoided by using a closed separating tank with a float controlled vent. In both arrangements, the air taken from the system must be discharged against the full discharge pressure of the vacuum pump. In the case of high or medium pressure boilers, it is better to use the atmospheric separator and the second pump.

CHAPTER 14. STEAM HEATING SYSTEMS

In figuring the required displacement for such pumps, a value of from 6 to 10 times the volumetric flow of condensation is used for average vacuums and systems.

TRAPS

Traps are generally classified as to function as (a) separating traps, (b) return, lifting or vacuum traps, and (c) air traps. Separating traps may be either float operated, thermostatically operated, or float and thermostatically operated. Return traps for low pressure service are referred to later as alternating receivers in this chapter. Return traps may also operate to receive condensate under a vacuum and return it to atmosphere or a higher pressure. Air traps are generally float operated.

Separating traps are used to release water of condensation but to retain steam. The thermostatic, and float and thermostatic types release both condensate and air but retain steam. Separating traps are used for draining condensate from radiators, indirect air heaters, steam piping systems, kitchen equipment, laundry equipment, hospital equipment, drying equipment and many other kinds of apparatus. Air traps release air but retain water. Devices known as air vents are, in principle, traps which allow the passage of air but prevent the passage of either water or steam.

Return traps are used for returning condensate either by gravity, by steam pressure, or by both, to a boiler or other point of disposal, and for lifting condensate from a lower to a higher elevation, or for handling condensate from a lower to a higher pressure.

The fundamental principle upon which the operation of practically all traps depends is that the pressure within the trap at the time of discharge shall be equal to, or slightly in excess of, the pressure against which the trap must discharge, including the friction head, velocity head and static head on the discharge side of the trap. If the static head is in favor of the trap discharge it is a minus quantity and may be deducted from the other factors of the discharge head.

Traps may also be classified according to the principle of operating device which supplies the power to cause them to function as (1) float, (2) bucket, (3) thermostatic, (4) float and thermostatic, (5) impulse, or (6) tilting traps.

Float Traps. A discharge valve is operated by the rise and fall of a float due to the change of water level in the trap. When the trap is empty the float is in its lowest position, and the discharge valve is closed. A gage glass indicates the height of water in the chamber.

Unless float traps are well made and proportioned there is danger of considerable steam leakage through the discharge valve due to unequal expansion of the valve and seat and the sticking of moving parts. The discharge from a float trap is usually continuous since the height of the float, and consequently the area of the outlet, is proportional to the amount of water present.

Bucket Traps. Bucket traps are of two types, the upright and inverted, and although they are both of the open float construction, their operating principle is entirely different. In the upright bucket trap, the water of condensation enters the trap and fills the space between the bucket and the walls of the trap. This causes the bucket to float and forces the valve against its seat, the valve and its stem usually being fastened to the bucket. When the water rises above the edges of the bucket it flows into it and causes it to sink,

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

thereby withdrawing the valve from its seat. This permits the steam pressure acting on the surface of the water in the bucket to force the water to a discharge opening. When the bucket is emptied it rises and closes the valve and another cycle begins. The discharge from this type of trap is intermittent.

In the *inverted bucket* trap, steam floats the inverted submerged bucket and closes the valve. Water entering the trap fills the bucket, which sinks and through compound leverage opens the valve, and the trap discharges. It is impossible to install a water gage glass on an inverted bucket trap, but if visual inspection is necessary, a gage glass can be placed on the line leading to the trap. No air relief cocks can be used, but this is unnecessary, as the elimination of air is automatically taken care of by air passing through the vent in the top of the inverted bucket regardless of temperature.

Thermostatic Traps. Thermostatic traps are of two types, those in which the discharge valve is operated by the relative expansion of metals, and those in which the action of a volatile liquid is utilized for this purpose. Thermostatic traps of large capacity for draining blast coils or very large radiators are called blast traps.

Float and thermostatic traps have both a thermostatic element to release air and a float element to release the water.

Impulse traps operate with a moving valve actuated by a control cylinder. When the trap is handling condensate, the pressure required to lift the valve is greater than the reduced pressure in the control cylinder and consequently the valve opens allowing a free discharge of condensate. As the remaining condensate approaches steam temperature, flashing results, flow through the valve orifice is choked and the pressure builds up in the control chamber closing the valve.

Automatic Return Traps

In the general heating plant, where thermostatic traps are installed on the heating units, it becomes necessary to provide a means for returning the water of condensation to the boiler, if a condensation or vacuum pump is not used. When the return main can be kept sufficiently high above the boiler water line for all operating conditions, the water of condensation will flow back by gravity, and no mechanical device is required. But actually this does not work out in practice. It follows, therefore, that a direct-return trap is needed for the handling of the condensation even though it may not be called into action except under some operating condition where the pressure differential exceeds the static head provided. The installation of a direct-return trap assures safety for such systems, and guarantees the operation of the plant under varying conditions.

Automatic return traps, sometimes called alternating receivers, may be of the counter-balanced, tilting type, or spring actuated. These consist of a small receiver with an internal float, and when the condensate will not flow into the boiler under pressure, it will feed into the receiver of the trap, and in so doing, raise or tilt the float or mechanism which actuates a steam valve automatically. This admits steam to the receiver, at boiler pressure, and the equalizing of the pressures which follows allows the water to flow into the boiler.

Tilting Traps. With this type of trap, water enters a bowl and rises until its weight overbalances that of a counter-weight, and the bowl sinks to the bottom. As the bowl sinks, a valve is opened thus admitting live steam pressure on the surface of the water and the trap then discharges. After the water is discharged, the counter-weight sinks and raises the bowl, which in turn closes the valve and the cycle begins again. Tilting traps are necessarily intermittent in operation. They are not ordinarily equipped with glass water gages, as the action of the trap shows when it is filling or emptying. The air relief of tilting traps is taken care of by the valves of the trap.

Chapter 15

PIPING FOR STEAM HEATING SYSTEMS

Operating Characteristics, Steam Flow, Pipe Sizes, Tables for Pipe Sizing, One-Pipe Gravity Air-Vent Systems, Two-Pipe Gravity Air-Vent Systems, Two-Pipe Vapor Systems, Vacuum, Orifice, Atmospheric and Sub-Atmospheric Systems, Boiler and Radiator Connections, Piping for Indirect Heating Units, Dripping

IT is important that steam piping systems distribute steam not only at full design load but during excess and partial loads. Usually the average winter steam demand is less than half of the demand at the design outside temperature. Moreover, in rapidly warming up a system even in moderate weather, the load on the steam main and returns may exceed the maximum operating load for severe weather due to the necessity of raising the temperature of the metal in the system to the steam temperature and the building to the design indoor temperature. Investigations of the return of condensation have revealed that as high as 143 per cent of the design condensation rate may exist under conditions of actual operation.

The functions of the piping system are the distribution of the steam, the return of the condensate and in systems where no local air vents are provided, the removal of the air. The distribution of the steam should be rapid, uniform and without noise, and the release of air should be facilitated as much as possible, as an air bound system will not heat readily nor properly. In designing the piping arrangement it is desirable to maintain equivalent resistances in the supply and return piping to and from a radiator. Arranging the piping so the total distance from the boiler to the radiation is the same as the return piping distance from the heating unit back to the boiler tends to obtain such a result. The condensation which occurs in steam piping as well as in radiators must be drained to prevent impeding the ready flow of the steam and air. The effect of back pressure in the returns and excessive revaporization, such as occurs where condensation is released from pressures considerably higher than the vacuum or pressure in the return, must be avoided.

The piping design of a heating system is greatly influenced by its operating characteristics. Heating systems do not operate under constant conditions as they are continually changing due to variation in load. As the system is being filled with steam the pressure existing in various

VENTILATING AIR CONDITIONING GUIDE 1943 HEATING

TABLE 1. FLOW OF STEAM IN PIPES

P = loss in pressure in pounds. D = loss inside diameter of pipe in inches. L = loss for pipe in feet. d = weight of 1 cu ft of steam. W = loss pounds of steam per hour.

$$W = 5220 \sqrt{\frac{PdD^6}{\left(1 + \frac{3.6}{D}\right)L}}$$

$$P = 0.0000000367 \left(1 + \frac{3.6}{D} \right) \frac{W^2 L}{dD^5}$$

Pressure	Col. 1	Pre	e Size	Internal	Col 2	STEAM	Col. 3	Length	Col. 4
Loss IN OUNCES	$5220\sqrt{\frac{P}{100}}$	Nominal	Actual Internal Diameter	AREA OF PIPE SQ INCHES	$\sqrt{\frac{D^5}{1 + \frac{3.6}{D}}}$	Press. BY Gage	√ d	of Pipe in Feet	$\sqrt{\frac{100}{L}}$
0.25	65.28	1	1.049	0.864	0.536	-1.0^a	0.187	20	2.240
0.50	92.28	11/4	1.380	1.496	1.178	-0.5,a	0.190	40	1.580
1.00	130.5	1½	1.610	2.036	1.828	0.0	0.193	60	1.290
2	184.6	2	2.067	3.356	3.710	0.3	0.195	80	1.120
3	226.0	2½	2.469	4.788	6.109	1.3	0.201	100	1.000
4	261.0	3	3.068	7.393	11.183	2.3	0.207	120	0.912
5	291.8	3½	3.548	9.887	16.705	5.3	0.223	140	0.841
6	319.7	4	4.026	12.730	23.631	10.3	0.248	160	0.793
7	345.3	4½	4.506	15.947	32.134	15.3	0.270	180	0.741
8	369.1	5	5.047	20.006	43.719	20.3	0.290	200	0.710
10	412.7	6	6.065	28.886	71.762	30.3	0.326	250	0.632
12	452.0	7	7.023	38.743	106.278	40.3	0.358	300	0.578
14	488.3	8	7.981	50.027	149.382	50.3	0.388	350	0.538
16	522.0	9	8.941	62.786	201.833	60.3	0.415	400	0.500
20	583.6	10	10.020	78.854	272.592	75.3	0.452	450	0.477
24	639.3	12	12.000	113.098	437.503	100.3	0.507	500	0.447
28	690.5	14	13.250	137.880	566.693	125.3	0.557	600	0.407
32	738.2	16	15.250	182.655	816.872	150.3	0.603	700	0.378
40	825.4	Colu	mn 1 × 2 >	(3 × 4 =	lb of steam	175.3	0.645	800	0.354
48	904.1	per hou	ir that will ragiven cor	flow through	a straight	200.3	0.685	900	0.333
80	1167.2	Exam - 1.3 l	nple 1: 1 o b press. — 1	oz drop — 100 ft equiva	2 in. pipe lent length:	I		1000	0.316
160	1650.7	130 97.	0.5×3.710 $2 \times 4b =$	\times 0.201 \times 388.8 sq ft	1 = 97.2 lb equivalent	per hou radiation	r. 1.	1200	0.289
320	2334.5	Table steam.	e 1 does not	allow for en	trained wate pipe and ro	r in low-	pressure	1500	0.258
480	2859.1	mercial	pipe as four	nd in practic	e.			2000	0.224

a Pounds per square inch gage = 2.04 in Vacuum, Mercury Column bThe factor 4 is the approximate equivalent in square feet of steam radiation of 1 lb of steam per hour.

locations may be different than those which exist for appreciable periods at other locations and which under constant pressure may have conditions that are approximately the same. In designing piping it is of especial importance to arrange the system to preclude trouble caused by such pressure differences. The systems which readily release the air permit uniform pressures to be attained in much shorter time intervals than those which are sluggish. Results are given in Fig. 1 from investigations to determine the rate of condensate and air return from a two-pipe gravity heating system. Variations in the steam pressure during the warming up period when the rate of air elimination and condensation is high are clearly indicated in these curves.

It is evident that the condensation flow during the initial warming-up

Fig. 1. Relation Between Elapsed Time, Steam Pressure, Condensate and Air Elimination Rates

period reaches a peak which is greater than the constant condensation rate which is eventually reached when the pressure becomes uniform. Moreover, the peak condensation rate is obtained when the system steam pressure is lower than that existing during a period of constant condensing rate. It will also be noted that the peak rate of air elimination does not coincide with the higher condensing rate.

STEAM FLOW

The rate of flow of dry steam or steam with a small amount of water flowing in the same direction is in accordance with the general laws of gas flow and is a function of the length and diameter of the pipe, the density of the steam, and the pressure drop through the pipe. This relationship has been established by Babcock in the formula given at the top of Table 1. In Columns 1, 2, 3, and 4 of this table, the numerical values of the factors for different pressure losses, pipe diameters, steam densities and lengths of pipe have been worked out in convenient form so that the steam flowing in any pipe may be calculated by multiplying together the proper factors in each column as shown in the example at the bottom of the table.

¹A.S.H.V.E. RESEARCH REPORT No. 954—Condensate and Air Return in Steam Heating Systems, by F. C. Houghten and J. L. Blackshaw (A.S.H.V.E. TRANSACTIONS, Vol. 39, 1933, p. 199).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 2 Maximum Allowable Capacities of Up-Feed Risers for One-Pipe Low Pressure Steam

Based on A. S. H. V. E. Research Laboratory Tests

PIPE SIZE	Velocity	Pressure Drop		Capacity	
INCHES	FEET PER SECOND	Ounces per 100 Ft	Sq Ft Radiation	Btu per Hour	Lb Steam per Hour
A	В	С	D	E	F
1	14.1	0.68	45	10.961	11.3
11/4	17.6	0.66	98	23,765	24.5
1½	20.0	0.66	152	36,860	38.0
2	23.0	0.57	288	69,840	72.0
2½	26.0	0.54	464	112,520	116.0
3	29.0	0.48	799	193,600	199.8
3½	31.0	0.44	1144	277,000	286.0
4	32.0	0.39	1520	368.000	380.0

INSTRUCTIONS FOR USING TABLE 2

- 1. Capacities given in Table 2 should never be exceeded on one-pipe risers.
- 2. Capacities are based on \mathcal{U} -lb condensation per square foot equivalent radiation and actual diameter of standard pipe
 - 3. All pipe should be well reamed and free from constrictions. Fittings should be up to size.

Table 3. Maximum Allowable Capacities of Up-Feed Risers for Two-Pipe Low Pressure Steam

Based on A. S. H. V. E. Research Laboratory Tests

Pipe Size	VELOCITY	PRESSURE DROP		CAPACITY	
Inches	FEET PER SECOND	Ounces per 100 Fr	Sq Ft Radiation	Btu per Hour	Lb Steam per Hour
A	В	С	D	E	F
3⁄4	20		40	9,550	10.0
1	23	1.78	74	17,900	18.45
11/4	27	1.57	151	36,500	37.65
11/2	30	1.48	228	55,200	57.0
2	35	1.33	438	106,100	109.5
21/2	38	1.16	678	164,100	169.4
3	41	. 0.95	1129	273,500	282.2
31/2	42	0.81	1548	375,500	387.0
4	43	0.71	2042	495,000	510.5

INSTRUCTIONS FOR USING TABLE 3

- 1. The capacities given in this table should never be exceeded on two-pipe risers.
- 2. Capacities are based on $\frac{1}{4}$ -lb condensation per square foot equivalent radiation and actual diameter of standard pipe.
 - 3. All pipe should be well reamed and free from constrictions. Fittings should be up to size.

PIPE SIZES

The determination of pipe sizes for a given load in steam heating depends on the following principal factors:

- 1. The initial pressure and the total pressure drop which may be allowed between the source of supply and the end of the return system.
- 2. The maximum velocity of steam allowable for quiet and dependable operation of the system, taking into consideration the direction of condensate flow.
- 3. The equivalent length of the run from the boiler or source of steam supply to the farthest heating unit.

Initial Pressure and Pressure Drop

Theoretically there are several factors to be considered, such as initial pressure and pressure required at the end of the line, but it is most important that (1) the total pressure drop does not exceed the initial pressure of the system; (2) the pressure drop is not so great as to cause excessive velocities; (3) there is a constant initial pressure, except on systems specially designed for varying initial pressures, such as the sub-atmospheric which normally operate under controlled partial vacua, the orifice, and the vapor systems which at times operate under such partial vacua as may be obtained due to the condition of the fire; and (4) the equivalent head due to pressure drop does not exceed the difference in level, for gravity return systems, between the lowest point on the steam main, the heating units, or the dry return, and the boiler water line.

All systems should be designed for a low initial pressure and a reasonably small pressure drop for two reasons: first, the present tendency in steam heating unmistakably points toward a constant lowering of pressures even to those below atmospheric; second, a system designed in this manner will operate under higher pressures without difficulty. When a system designed for a relatively high initial pressure and a relatively high pressure drop is operated at a lower pressure, it is likely to be noisy and have poor circulation.

The total pressure drop should never exceed one-half of the initial pressure when condensate is flowing in the same direction as the steam. Where the condensate must flow counter to the steam, the governing factor is the velocity permissible without interfering with the condensate flow. A.S.H.V.E. Research Laboratory experiments limit this to the capacities given in Tables 2 and 3 for vertical risers and in Table 4 for horizontal pipes at varying grades.

Maximum Velocity

The capacity of a steam pipe in any part of a steam system depends upon the quantity of condensation present, the direction in which the condensate is flowing, and the pressure drop in the pipe. Where the quantity of condensate is limited and is flowing in the same direction as the steam, only the pressure drop need be considered. When the condensate must flow against the steam, even in limited quantity, the velocity of the steam must not exceed limits above which the disturbance between the steam and the counter-flowing water may produce objectionable sounds, such as water hammer, or may result in the retention of

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 4. Comparative Capacity of Steam Lines at Various Pitches for Steam and Condensate Flowing in Opposite Directions^a

Pitch of Pipe in Inches per 10 Ft

PITCH OF PIPE	1 <u>/4</u> 11	N.	⅓ 1	N.	1 n	ı.	11/2 1	IN.	2 D	1	3 m	۲.	4 IN	ī.	5 IN	7.
Pipe Size Inches	Sq Ft Rad. Based on 240 Btu	Max.Vel.	Sq Ft Rad. Based on 240 Btu	Max.Vel.	Sq Ft Rad. Based on 240 Btu	Max Vel.	Sq Ft Rad. Based on 240 Btu	Max.Vel.	Sq Ft Rad. Based on 240 Btu	Max.Vel	Sq Ft Rad. Based on 240 Btu	Max.Vel.	Sq Ft Rad. Based on 240 Btu	Max.Vel.	Sq Ft Rad. Based on 240 Btu	Max.Vel.
3/4 1 11/4 11/2 2	25.0 45.8 104.9 142.6 236.0	12 12 18 18 19	30.3 52.6 117.2 159.0 263.5	14 15 20 21 20	37.3 63.0 133.0 181.0 299.5	18 17 23 23 23	40.4 70.0 144.5 196.5 325.5	19 20 25 25 25 25	42.5 75.2 154.0 209.3 346.5	20 22 27 27 27 27	46.1 83.0 165.0 224.0 371.5	21 23 28 28 28 28	47.5 87.9 172.6 234.8 388.4	22 25 29 30 29	49.3 90.2 178.2 242.6 401.1	23 26 31 31 30

aData from American Society of Heating and Ventilating Engineers Research Laboratory.

water in certain parts of the system until the steam flow is reduced sufficiently to permit the water to pass. The velocity at which such disturbances take place is a function of (1) the pipe size, whether the pipe runs horizontally or vertically, (2) the pitch of the pipe if it runs horizontally

Table 5. Length in Feet of Pipe to be Added to Actual Length of Run—Owing to Fittings—to Obtain Equivalent Length

Size of Pipe		LENGTH IN F	EET TO BE ADDE	o to Run	
Inches	Standard Elbow	Side Outlet Tee	Gate Valveª	Globe Valveª	Angle Valvea
1/2 3/4 1 11/4 11/2 2 21/2 31/2 4 5 6 8 10 12 14	1.3 1.8 2.2 3.0 3.5 4.3 5.0 6.5 8 9 11 13 17 21 27 30	3 4 5 6 7 8 11 13 15 18 22 27 35 45 53 63	0.3 0.4 0.5 0.6 0.8 1.0 1.1 1.4 1.6 1.9 2.2 2.8 3.7 4.6 5.5 6.4	14 18 23 29 34 46 54 66 80 92 112 136 180 230 270 310	7 10 12 15 18 22 27 34 40 45 56 67 92 112 132 152

aValve in full open position.

Example of length in feet of pipe to be added to actual length of run.

CHAPTER 15. PIPING FOR STEAM HEATING SYSTEMS

TABLE 6. STEAM PIPE CAPACITIES

Capacity Expressed in Square Feet of Equivalent Direct Radiation

(Reference to this table will be by column letter A through L)

This table is based on pipe size data developed through the research investigations of the American Society of Heating and Ventilating Engineers.

		CAPAC	CITIES O	F STEAM	MAINS AN	D RISER	3		SPECIAL ONE-PI	L CAPACIT	IES FOR
		D	RECTION (OF CONDENS	ation Flow	' IN PIPE LI	NE				
PIPE	I		eam in On	e-Pipe and T	wo-Pipe Sy		Against t	he Steam	Supply	Radiator Valves	Radiator
Size In.	1/32 lb or	1/24 lb or	1/16 lb or	⅓ lb or	⅓ lb or	½ lb or	Two-Pi	pe Only	Risers Up-	and Vertical	Riser
	1/2 Oz Drop	3∕s Oz Drop	1 Öz Drop	2 Öz Drop	4 Oz Drop	8 Oz Drop	Vertical	Hori- zontal	Feed	Con- nections	Run- outs
A	В	C	D	E	F	G	Ha	Ic	Jb	K	Lc
3/4			30				30		25		
1	39	46			111	157	56	26	45	20	20
$\frac{1\frac{1}{4}}{1\frac{1}{2}}$	87	100		173	245	346	122	58	98	55	55
11/2	134				380	538	190	95	152	81	81
2	273	315	386	546	771	1,091	386	195	288	165	165
$\frac{2\frac{1}{2}}{2}$	449	518	635	898	1,270	1,797	635	395	464		260
3	822	948	1,163	1,645	2,326		1,129	700	799		475
31/2	1,228		1,737	2,457	3,474	4,913	1,548	1,150	1,144		745
4 5	1,738		2,457	3,475	4,914		2,042	1,700	1,520		1,110 2,180
5	3,214 5,276				9,092 14,924	12,858 21,105		3,150			2,100
6		12,682			31,066						
10		23,144			56,689	80,171					
12		37.145			90,985	128,672					
16				121,012	169,698	242,024					
10	00,300	05,071	01,019	121,012	105,096	242,024					
		All Horiz	zontal Ma	ins and Dow	n-Feed Rise	rs	Up- Feed Risers	Mains and Un- dripped Run- outs	Up- Feed Risers	Radiator Con- nections	Run- outs Not Dripped

Note.—All drops shown are in pounds per 100 ft of equivalent run—based on pipe properly reamed. aDo not use Column H for drops of 1/24 or 1/32 lb; substitute Column C or Column B as required.

Copyright { AMERICAN SOCIETY OF HEATING AND VENTILATING ENGINEERS } Not to be Reprinted With-Heating, Piping and Air Conditioning Contractors National Association } out Special Permission

zontally, (3) the quantity of condensate flowing against the steam, and (4) freedom of the piping from water pockets which under certain conditions act as a restriction in pipe size.

Three factors of uncertainty always exist in determining the capacity of any steam pipe. The first is variation in manufacture, which apparently cannot be avoided. The second is the care used in reaming the ends of the pipe after cutting. The effect of both of these factors increases as the pipe size decreases. According to A.S.H.V.E. Research Laboratory tests, either of these factors may affect the capacity of a 1-in. pipe as much as 20 per cent. The third factor is the uniformity in grading the pipe line. All of the capacity tables given in this chapter include a factor of safety. However, the factor of safety referred to does not cover abnormal defects or constrictions nor does it cover pipe not properly reamed.

bDo not use Column J for drop of 1/32 lb except on sizes 3 in. and over; below 3 in. substitute Column B. cOn radiator runouts over 8 ft long increase one pipe size over that shown in Table 6.

TABLE 7. RETURN PIPE CAPACITIES Capacity Expressed in Square Feet of Equivalent Direct Radiation

This table is based on pipe size data developed through the research investigations of the American Society or Heating and Ventuating Engineers. (Reference to this table will be by column letter M through EE) CAPACITY OF RETURN MAINS AND RISERS

	3 Oz 00 Ft	Vac.	BE	1,130 1,977 3,390 5,370 11,300 18,925 30,230 45,200 62,180 109,300
	1/2 Lb or 8 Os Drop per 100 Ft	Dry	aa	
		Wet	ΩΩ	
	t Oz 00 Ft	Vac.	BB	800 1,400 2,400 3,800 8,000 13,400 21,400 32,000 77,400
	14 Lb or 4 Oz Drop per 100 Ft	Dry	AA	460 962 1,512 3,300 5,450 10,000 14,300 21,500
		Wet	2	1,400 2,400 3,800 8,000 113,400 21,400 44,000
)z Ft	Vac.	Y	568 112 994 68 1,704 66 2,696 60 5,696 00 9,510 00 15,190 00 12,710 00 12,710 00 13,720 00 13,72
	14 Lb or 2 Oz Drop per 100 Ft	Dry	X	412 868 1,362 2,960 4,900 9,000 12,900 19,300
NB	Z,G	Wet	W	1,000 1,700 2,700 5,600 9,400 15,000 31,000
MAINB	Oz Ft	Vac	4	400 1,200 1,900 4,000 6,700 10,700 16,000 22,000 62,000
	1/16 Lb or 1 Oz Drop per 100 Ft	Dry	U	320 670 670 2,300 3,800 7,000 110,000
	Dr.	Wet	T	700 1,200 1,900 4,000 6,700 10,700 16,000 22,000
	Š.	Vac.	S	326 570 570 1,547 1,547 1,547 13,020 17,910
	1/24 Lh or 2% Oz Drop per 100 Ft	Dry	R	285 595 943 2,140 3,470 6,250 8,800 13,400
	1/24 Dro	Wet	Ò	580 990 1,570 3,240 5,300 8,500 13,200
	Oz Ft	Vвс	Р	
	1/32 Lb or ½ Oz Drop per 100 Ft	Dry	0	248 520 822 1,880 3,040 5,840 11,700
	1/3 Dro	Wet	N	500 850 1,350 2,800 4,700 7,500 111,000 15,500
Pipe	INCHES		М	% 111122288420 4 1412 12 88

	1.977	3,390	5,370	11,300	18,925	30,230	45,200	62,180	109,300	175,100	
							-				
	1.400	2,400	3,800	8,000	13,400	21,400	32,000	44,000	77,400	124,000	
	190	450	990	1,500	3,000		!				
						ļ					
		1,704	2,696	5,680	9,510	15,910	22,710		54,920		
	190	450	990	1,500	3,000						
RISERS											_
183	0	$\overline{}$		\overline{c}	$\overline{}$)	0))	0	
2	70	1,200	1,90	4,00	6,70	10,70	16,00	22,000	38,70	62,00	
24	190 700	450 1,200	990 1,900	1,500 4,000	3,000 6,700	10,70	16,00	22,000	38,700	62,00	
R	190 700	450 1,200	990 1,900	1,500 4,000	3,000 6,700						_
R	570 190	976 450	,547 990	3,256 1,500	,453 3,000						_
R		976 450	,547 990	3,256 1,500	,453 3,000						_
R	570 190	976 450	,547 990	3,256 1,500	,453 3,000	8,710	13,020	17,910	31,500	50,450	
R	190 570 190	450 976 450 450	990 1,547 990	1,500 3,256 1,500	3,000 5,453 3,000	8,710	13,020	17,910	31,500	50,450	
R	190 570	450 976 450 450	990 1,547 990	1,500 3,256 1,500	3,000 5,453 3,000	8,710	13,020	17,910	31,500	50,450	_
R	190 570 190	450 976 450 450	990 1,547 990	1,500 3,256 1,500	3,000 5,453 3,000	8,710	13,020	17,910	31,500	50,450	

Copyright { American Society of Hearing and Ventilating Engineers | Not to be Reprinted Without Special Permission | Heating, Piping and Air Conditioning Confractors National Association |

Equivalent Length of Run

All tables for the flow of steam in pipes, based on pressure drop, must allow for the friction offered by the pipe as well as for the additional resistance of the fittings and valves. These resistances generally are stated in terms of straight pipe; in other words, a certain fitting will produce a drop in pressure equivalent to so many feet of straight run of the same size of pipe. Table 5 gives the number of feet of straight pipe usually allowed for the more common types of fittings and valves. In all pipe sizing tables in this chapter the length of run refers to the equivalent length of run as distinguished from the actual length of pipe in feet. The length of run is not usually known at the outset; hence it is necessary to assume some pipe size at the start. Such an assumption frequently is considerably in error and a more common and practical method is to assume the length of run and to check this assumption after the pipes are sized. For this purpose the length of run usually is taken as double the actual length of pipe.

TABLES FOR PIPE SIZING²

Factors determining the size of a steam pipe and its allowable limit of capacity are the direction of the flow of condensate, whether against or with the steam.

Tables 6 and 7 are based on the actual inside diameters of the pipe and the condensation of ¼ lb (4 oz) of steam per square foot of equivalent direct radiation³ (abbreviated EDR) per hour. The drops indicated are drops in pressure per 100 ft of equivalent length of run. The pipe is assumed to be well reamed without unusual or noticeable defects.

Table 6 may be used for sizing piping for steam heating systems by determining the allowable or desired pressure drop per 100 equivalent feet of run and reading from the column for that particular pressure drop. This applies to all steam mains on both one-pipe and two-pipe systems, vapor systems, and vacuum systems. Columns B to G, inclusive, are used where the steam and condensation flow in the same direction, while Columns H and I are for cases where the steam and condensation flow in opposite directions, as in risers and runouts that are not dripped. Columns J, K, and L are for one-pipe systems and cover riser, radiator valve, and vertical connection sizes, and radiator and runout sizes, all of which are based on the critical velocities of the steam to permit the counter flow of condensation without noise.

Sizing of return piping may be done with the aid of Table 7 where pipe capacities for wet, dry, and vacuum return lines are shown for the pressure drops per 100 ft corresponding to the drops in Table 6. It is customary to use the same pressure drop on both the steam and return sides of a system.

Pipe size tables if this chapter have been compiled in simplified and condensed form for the convenience of the user; at the same time all of the information contained in previous editions of THE GUIDE has been retained. Values of pressure drops, formerly expressed in ounces, are now expressed in fractions of a pound.

³As steam system design has materially changed in recent years so that 240 Btu no longer expresses the heat of condensation from a square foot of radiator surface per hour, and as present day heating units have different characteristics from older forms of radiation, it is the purpose of The Guide to gradually eliminate the empirical expression square foot of equivalent direct radiation, EDR, and to substitute a logical unit based on the Btu. The new terms to express the equivalent of 1000 Btu (Mb), and 1000 Btu per hour (Mbh), have been approved by the A.S.H.V.E.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Example 2. What pressure drop should be used for the steam piping of a system if the measured length of the longest run is 500 ft and the initial pressure is not to be over 2-lb gage?

Solution. It will be assumed, if the measured length of the longest run is 500 ft, that when the allowance for fittings is added the equivalent length of run will not exceed 1,000 ft. Then, with the pressure drop not over one half of the initial pressure, the drop could be 1 lb or less. With a pressure drop of 1 lb and a length of run of 1,000 ft, the drop per 100 ft would be $\frac{1}{10}$ lb, while if the total drop were $\frac{1}{10}$ lb, the drop per 100 ft would be $\frac{1}{10}$ lb. In the first instance the pipe could be sized according to Column D for $\frac{1}{10}$ lb per 100 ft, and in the second case, the pipe could be sized according to Column C for $\frac{1}{10}$ lb. On completion of the sizing, the drop could be checked by taking the longest line and actually calculating the equivalent length of run from the pipe sizes determined. If the calculated drop is less than that assumed, the pipe size is all right; if it is more, it is probable that there are an unusual number of fittings involved, and either the lines must be straightened or the column for the next lower drop must be used and the lines resized. Ordinarily resizing will be unnecessary.

ONE-PIPE GRAVITY AIR-VENT SYSTEMS

One-pipe gravity air-vent systems in which the equivalent length of run does not exceed 200 ft should be sized as follows:

- 1. For the steam main and dripped runouts to risers where the steam and condensate flow in the same direction, use $\frac{1}{16}$ -lb drop (Column D).
- 2. Where the riser runouts are not dripped and the steam and condensation flow in opposite directions, and also in the radiator runouts where the same condition occurs, use Column L.
 - 3. For up-feed steam risers carrying condensation back from the radiators, use Column J.
- 4. For down-feed systems the main risers of which do not carry any radiator condensation, use Column H.
 - 5. For the radiator valve size and the stub connection, use Column K.
 - 6. For the dry return main, use Column U.
 - 7. For the wet return main use Column T.

On systems exceeding an equivalent length of 200 ft, it is suggested that the total drop be not over $\frac{1}{4}$ lb. The return piping sizes should correspond with the drop used on the steam side of the system. Thus, where $\frac{1}{24}$ -lb drop is being used, the steam main and dripped runouts would be sized from Column C; radiator runouts and undripped riser runouts from Column L; up-feed risers from Column I; the main riser on a down-feed system from Column I (it will be noted that if Column I is used the drop would exceed the limit of $\frac{1}{24}$ lb); the dry return from Column I; and the wet return from Column I.

With a $\frac{1}{32}$ -lb drop the sizing would be the same as for $\frac{1}{24}$ lb except that the steam main and dripped runouts would be sized from Column B, the main riser on a down-feed system from Column B, the dry return from Column O, and the wet return from Column O.

Notes on Gravity One-Pipe Air-Vent Systems

- 1. Pitch of mains should not be less than 1/4 in. in 10 ft.
- 2. Pitch of horizontal runouts to risers and radiators should not be less than $\frac{1}{2}$ in. in 10 ft. Where this pitch cannot be obtained runouts over 8 ft in length should be one size larger than called for in the table.
- 3. In general, it is not desirable to have a main less than 2 in. The diameter of the far end of the supply main should not be less than half its diameter at its largest part.

- 4. Supply mains, branches to risers, or risers, should be dripped where necessary.
- 5. Where supply mains are decreased in size they should be dripped, or be provided with eccentric couplings, flush on bottom.

Example 3. Size the one-pipe gravity steam system shown in Fig. 2 assuming that this is all there is to the system or that the riser and run shown involve the longest run on the system.

Solution. The total length of run actually shown is 215 ft. If the equivalent length of run is taken at double this, it will amount to 430 ft, and with a total drop of $\frac{1}{4}$ lb the drop per 100 ft will be slightly less than $\frac{1}{16}$ lb. It would be well in this case to use $\frac{1}{24}$ lb, and this would result in the theoretical sizes indicated in Table 8. These theoretical sizes, however, should be modified by not using a wet return less than 2 in. while the main supply, g-h, if from the uptake of a boiler, should be made the full size of the main, or 3 in. Also the portion of the main k-m should be made 2 in. if the wet return is made 2 in.

Table 8. Pipe Sizes for One-Pipe Up-feed System Shown in Fig. 2

Part of System	Section of Pipe	RADIATION SUPPLIED (SQ FT)	THEORETICAL PIPE SIZE (INCHES)	Practical Pipe size (Inches)	100 5' a 5 100 5m. R.				
Branches to radiators		100	2	2	6 4m. Ft				
Branches to radiators		50	11/4	$1\frac{1}{4}$	<u>s</u>				
Riser	a to b	200	2	2	50 50 3rd. FL				
Riser	b to c	300	21/2	2^{1} $2\frac{1}{2}$	Riser				
Riser	c to d	400	21/2	$2\frac{1}{2}$					
Riser	d to e	500	3	3	50 d 50 2nd FL				
Riser	e to f	600	3	3	_				
Branch to riser	f to g	600	31/2	$2\frac{1}{2}$ 3 $3\frac{1}{2}$	50 50 lst R				
Supply main	g to h	600	3	3 3 2 2 2 2	ig fi				
Branch to supply main	h to j	600	$2\frac{1}{2}$	3	*1-5-10				
Dry return main	f to k	600	11/4	2	a 100				
Wet return main	k to m	600	1	2	\sum_{m}				
Wet return main	m to n	600	1 1	2	***				
Wet return main	n to p	600	1 1	2					
Supply Mann Supply Mann Resolve Mann									
	MAIN AND	Riser, Su Return I Pipe Syst	MAIN Source	Boiler or of Supply	Return				

TWO-PIPE GRAVITY AIR-VENT SYSTEMS

The method employed in determining pipe sizes for two-pipe gravity air-vent systems is similar to that described for one-pipe systems except that the steam mains never carry radiator condensation. The drop allowable per 100 ft of equivalent run is obtained by taking the equivalent length to the farthest radiator as double the actual distance, and then dividing the allowable or desired total drop by the number of hundreds of feet in the equivalent length. Thus in a system measuring 400 ft from the boiler to the farthest radiator, the approximate equivalent length of run would be 800 ft. With a total drop of $\frac{1}{2}$ lb the drop per 100 ft would be $\frac{1}{8}$ or $\frac{1}{16}$ lb; therefore, Column D would be used for all steam mains where the condensation and steam flow in the same direction. If a total drop of $\frac{1}{4}$ lb is desired, the drop per 100 ft would be $\frac{1}{32}$ lb

and Column B would be used. If the total drop were to be 1 lb, the drop per 100 ft would be $\frac{1}{8}$ lb and Column E would be used.

For mains and riser runouts that are not dripped, and for radiator runouts where in all three cases the condensation and steam flow in opposite directions, Column I should be used, while for the steam risers Column H should be used unless the drop per 100 ft is 1/24 lb or 1/22 lb, when Columns 1/22 or 1/22 should be substituted so as not to exceed the drop permitted.

On an overhead down-feed system the main steam riser should be sized by reference to Column H, but the down-feed steam risers supplying the radiators should be sized by the appropriate Columns B through G, since the condensation flows downward with the steam through them. The riser runouts, if pitched down toward the riser as they should be, are sized the same as the steam mains, and the radiator runouts are made the same as in an up-feed system.

In either up-feed or down-feed systems the returns are sized in the same manner and on the same pressure drop basis as the steam main; the return mains are taken from Columns O, R, U, X, or AA according to the drop used for the steam main; and the risers are sized by reading the lower part of Table 7 under the column used for the mains. The horizontal runouts from the riser to the radiator are not usually increased on the return lines although there is nothing incorrect in this practice. The same notes apply that are given for one-pipe gravity systems.

TWO-PIPE VAPOR SYSTEMS

While many manufacturers of patented vapor heating accessories have their own schedules for pipe sizing, an inspection of these sizing tables indicates that in general as small a drop as possible is recommended. The reasons for this are: (1) to have the condensation return to the boiler by gravity, (2) to obtain a more uniform distribution of steam throughout the system, especially when it is desirable to carry a moderate or low fire, and (3) because with large variation in pressure the value of graduated valves on radiators is destroyed.

For small vapor systems where the equivalent length of run does not exceed 200 ft, it is recommended that the main and any runouts to risers that may be dripped should be sized from Column D, while riser runouts not dripped and radiator runouts should employ Column I. The up-feed steam risers should be taken from Column H. On the returns, the risers should be sized from Column U (lower portion) and the mains from Column U (upper portion). It should again be noted that the pressure drop in the steam side of the system is kept the same as on the return side except where the flow in the riser is concerned.

On a down-feed system the main vertical riser should be sized from Column H, but the down-feed risers can be taken from Column D although it so happens that the values in Columns D and H correspond. This will not hold true in larger systems.

For vapor systems over 200 ft of equivalent length, the drop should not exceed $\frac{1}{8}$ lb to $\frac{1}{4}$ lb, if possible. Thus, for a 400 ft equivalent run the drop per 100 ft should be not over $\frac{1}{8}$ lb divided by 4, or $\frac{1}{32}$ lb. In this case the steam mains would be sized from Column B; the radiator and

undripped riser runouts from Column I; the risers from Column B, because Column H gives a drop in excess of $\frac{1}{2}$ lb. On a down-feed system, Column B would have to be used for both the main riser and the smaller risers feeding the radiators in order not to increase the drop over $\frac{1}{2}$ lb. The return risers would be sized from the lower portion of Column O and the dry return main from the upper portion of the same column, while any wet returns would be sized from Column N. The same pressure drop is applied on both the steam and the return sides of the system.

Notes on Vapor Systems

- Pitch of mains should not be less than ¼ in. in 10 ft.
- 2. Pitch of horizontal runouts to risers and radiators should not be less than $\frac{1}{2}$ in. in 10 ft. Where this pitch cannot be obtained runouts over 8 ft in length should be one size larger than called for in the table.
 - 3. In general it is not desirable to have a supply main smaller than 2 in.
- 4. When necessary, supply main, supply risers, or branches to supply risers should be dripped separately into a wet return, or may be connected into the dry return through a thermostatic drip trap.

VACUUM, ORIFICE, SUB-ATMOSPHERIC SYSTEMS

Vacuum, atmospheric, sub-atmospheric and orifice systems are usually employed in large installations and have total drops varying from $\frac{1}{4}$ to $\frac{1}{2}$ lb. Systems where the maximum equivalent length does not exceed 200 ft preferably employ the smaller pressure drop while systems over 200 ft equivalent length of run more frequently go to the higher drop, owing to the relatively greater saving in pipe sizes. For example, a system with 1200 ft longest equivalent length of run would employ a drop per 100 ft of $\frac{1}{2}$ lb divided by 12, or $\frac{1}{2}$ 4 lb. In this case the steam main would be sized from Column C, and the risers also from Column C (Column C could be used as far as critical velocity is concerned but the drop would exceed the limit of $\frac{1}{2}$ 4 lb). Riser runouts, if dripped, would use Column C but if undripped would use Column C; return runouts, Column C; return risers, lower part of Column C; return runouts to radiators, one pipe size larger than the radiator trap connections.

Notes on Vacuum Systems

- 1. It is not generally considered good practice to exceed $\frac{1}{8}$ lb drop per 100 ft of equivalent run nor to exceed 1 lb total pressure drop in any system.
 - 2. Pitch of mains should not be less than 1/4 in. in 10 ft.
- 3. Pitch of horizontal runouts to risers and radiators should not be less than $\frac{1}{2}$ in. in 10 ft. Where this pitch cannot be obtained runouts over 8 ft in length should be one size larger than called for in the table.
 - 4. In general it is not considered desirable to have a supply main smaller than 2 in.
- 5. When necessary, the supply main, supply riser, or branch to a supply riser should be dripped separately through a trap into the vacuum return. A connection should not be made between the steam and return sides of a vacuum system without interposing a trap to prevent the steam from entering the return line.
- Lifts should be avoided if possible, but when they cannot be eliminated they should be made in the manner described in Chapter 14.
- 7. No lifts can be used in orifice and atmospheric systems. In sub-atmospheric systems the lift must be at the vacuum pump.

BOILER CONNECTIONS

Steam

Cast-iron, sectional heating boilers usually have several outlets in the top. Two or more outlets are sometimes used to reduce the velocity of the steam in the vertical uptakes from the boiler and thus to prevent water being carried over into the steam main.

Return

Cast-iron boilers are generally provided with return tappings on both sides, while steel boilers are generally equipped with only one return tapping. Where two tappings are provided, both should be used to effect proper circulation through the boiler. The return connection should

Fig. 3. The Hartford Return Connection

include either a Hartford Loop or a check valve to prevent the accidental loss of boiler water to the returns with consequent danger of boiler damage. The Hartford Loop connection is to be preferred over the check valve because the latter is apt to stick or not close tightly and, furthermore, because the check valve offers additional resistance to the condensate coming back to the boiler, which in gravity systems would raise the water line in the far end of the wet return several inches⁴.

Hartford Return Connection

In order to prevent the boiler from losing its water under any circumstances, the use of the Hartford connection, or the Underwriters Loop, is recommended. This connection for a one- or two-boiler installation is shown in Fig. 3. The essential features of construction of a Hartford

^{&#}x27;See method of calculating height above water line for gravity one-pipe systems in Chapter 14

Loop connection are: (1) a direct connection (made without valves) between the steam side of the boiler and the return side of the boiler, and (2) a close nipple connection about 2 in. below the normal boiler water line from the return main to the boiler steam and return pressure balance connection. Equalizing pipe connections between the steam and return are given in Fig. 3, based on grate areas, but in no case shall this pipe size be less than the main return piping from the system.

Sizing Boiler Connections

Little information is available on the sizing of boiler runouts and steam headers. Although some engineers prefer an enlarged steam header to serve as additional steam storage space, there ordinarily is no sudden demand for steam in a steam heating system except during the heating-up period, at which time a large steam header is a disadvantage rather than an advantage. The boiler header may be sized by first computing the maximum load that must be carried by any portion of the header under any conceivable method of operation, and then applying the same schedule of pipe sizing to the header as is used on the steam mains for the building. The horizontal runouts from the boiler, or boilers, may be sized by calculating the heaviest load that will be placed on the boiler at any time, and sizing the runout on the same basis as the building mains. The difference in size between the vertical uptakes from the boiler and the horizontal main or runout is compensated for by the use of reducing ells.

Return connections to boilers in gravity systems are made the same size as the return main itself. Where the return is split and connected to two tappings on the same boiler, both connections are made the full size of the return line. Where two or more boilers are in use, the return to each may be sized to carry the full amount of return for the maximum load which that boiler will be required to carry. Where two boilers are used, one of them being a spare, the full size of the return main would be carried to each boiler, but if three boilers are installed, with one spare, the return line to each boiler would require only half of the capacity of the entire system, or, if the boiler capacity were more than one-half the entire system load, the return would be sized on the basis of the maximum boiler capacity. As the return piping around the boiler is usually small and short, it should not be sized to the minimum.

With returns pumped from a vacuum or receiver return pump, the size of the line may be calculated from the water rate on the pump discharge when it is operating, and the line sized for a very small pressure drop, the size being obtained from the Chart for Pressure Drop for Various Rates of Flow of Water, Chapter 46. The relative boiler loads should be considered, as in the case of gravity return connections. Boiler header and piping sizes should be based on the total load.

HIGH PRESSURE STEAM

When high pressure steam is being supplied and lower steam pressures are required for use in heating, domestic hot water, utility services, etc., one or more pressure reducing valves, or pressure regulators, as they are sometimes called, are required.

These are used in two classes of service, one where the steam must be

shut off tight to prevent the low pressure building up at time of no load, and the other where the low pressure lines will condense enough steam to offset normal leaking through the valve. In the latter case, double seated valves may be used in a manner that reduces the work required of the diaphragm in closing the valve and consequently the size of the diaphragm. These valves also control the low pressures more closely under conditions of varying high pressures.

Valves that shut off all steam are called *dead end* type. They are single seated, and some of them have pilot operation that provides close control of the reduced pressure. If a thermostatically controlled valve is installed after, and near, a reducing valve in such a manner as to cut off the passage of steam, the dead end type should be used.

It is common practice when the initial steam pressure is 100 lb or higher to install two-stage reduction. This makes a quieter condition of steam flow, as it is apparent that with one reduction, as for example, from 150 to 2 lb, there is a smaller opening with greater velocity across the reducing valve, and consequently, more noise. A two-stage reduction also introduces a source of safety, since if one reducing valve were to build up its discharge pressure, this excess pressure would not be as great as the case might be in a one-stage reduction.

If an installation requires single seated valves, and the pilot type cannot be used, it is necessary to use two-stage reduction, as single seated valves require sufficient diaphragm area to overcome the unbalanced pressure underneath the single valve. In many cases the large diameter of diaphragm required would make it impractical in construction. With a two-stage reduction the diaphragm diameter required would be reduced. If a one-stage reduction is desired, it is necessary to use a pilot controlled pressure reducing valve, where low pressures are to be maintained closely.

In making two-stage reduction, allowance should be made, by increasing the pipe size, for expansion of steam on the low pressure side of the valve. This also allows steam flow to be at a more nearly uniform velocity. Separating the valves by a distance up to 20 ft is recommended to reduce excessive hunting action of the first valve.

When the reduced pressure is approximately 15 lb or lower, the weight and lever diaphragm valve gives the best results with minimum maintenance. Above 15 lb, spring loaded diaphragm valves should be used, because of the extra weights required on weight and lever type. Equalizing line connections should be made not too close to the valve, and into the bottom of the reduced pressure steam main, to allow maximum condensation to exist in this equalizing line, or the connection is made into the top of the main and a water accumulator used to reduce the variation of the head of water on the diaphragm.

Care should be exercised in selecting the size of a reducing valve. The safest method is to consult the manufacturer. It is essential that sizes of piping to and from the reducing valve be such that they will pass the desired amount of steam with the maximum velocity desired. A common error is to make the size of the reducing valve the same size as that of the service, or outlet pipe size. Generally, this will make the reducing valve oversized, and bring about wire-drawing of valve and seat, due to small lift of the valve seat.

On installations where the steam requirements are relatively large and variable in mild weather or reduced demand periods, wire-drawing may occur. To overcome this condition, two reducing valves are installed in parallel, with the sizes selected on a 70 and 30 per cent proportion of maximum flow. For example, if 50,000 lb of steam per hour are required, the size of one valve is on the basis of 0.7+50,000 lb, or 35,000 lb, and the other on the basis of 0.3+50,000 lb, or 15,000 lb. During the mild or reduced demand periods, steam will flow through the smaller valve only. During the remainder of the season, the larger valve is set to control at whatever low pressure is desired, and the smaller one at a somewhat lower pressure. Thus, when steam flow is not at its maximum, the

Fig. 5. Unit Heater Connected to One-Pipe Air-Vent System

smaller valve is shut, and automatically opens when the maximum steam demand occurs, since this maximum demand of steam creates a slight pressure drop in the service line.

The installation of reducing valves in pipe lines requires detailed planning. They should be installed to give ease of access for inspection and repair, and wherever possible with diaphragm downward, except in cases of pilot operated valves.

There should be a by-pass around each reducing valve of size equal to one half the size of reducing valve. The globe valve in by-pass line should be of a better type of construction, and must shut off absolutely tight. A steam pressure gage, graduated up to the initial pressure should be installed on the low pressure side. Safety valves located on the low pressure side should be set 5 lb higher than the final pressure but may be 10 lb higher than the reduced pressure if this reduced pressure is that of the first stage reduction of a double reduction. Strainers should always be installed on the inlet to the reducing valve but are not required before

a second-stage reduction. If a two-stage reduction is made, it is well to install a pressure gage immediately before the reducing valve of the second-stage reduction also. In sizes 3 in. and above, it is advisable to tap the bodies of the reducing valve on inlet side for purposes of draining condensate accumulation through steam traps.

Control Valves

Gate valves are recommended in all cases where service demands that the valve be either entirely open or entirely closed, but they should never

Fig. 6. Typical Connections for Two-Pipe System

Fig. 7. Top and Bottom Opposite End Radiator Connections

Fig. 8. Connections to Radiator Hung on Wall

be used for throttling. Angle globe valves and straight globe valves should be used for throttling, as done on by-passes around pressure reducing valves or on by-passes around traps.

Connection to Heating Units

Riser, radiator and convector connections must not only be properly pitched at the time they are installed but must be arranged so that the pitch will be maintained under the strains of expansion and contraction. These connections may be made by swing joints which permit the expansion or contraction to occur under heating and cooling without bending of pipes. To take care of expansion in long risers, either expansion joints of commercial construction or pipe swing joints are used. Anchoring of pipes between expansion joints is desirable.

Fig. 9. Typical Pipe Coil Connections

Fig. 10. Typical Piping Connections to Concealed Heating Units with Wet Returns

Fig. 11. Piping Connections to Indirect Radiators

Fig. 12. Supply and Return Connections for Heating Units of Central Fan Systems

Fig. 13. Typical Connections to Central Fan System Heating Units Exceeding 12 Sections

Fig. 14. Typical Piping for Atmospheric and Vacuum Systems with Thermostatic Control (Central Fan System)

Two satisfactory methods of making runouts for one-pipe systems for either the up-feed or the down-feed type are shown in Fig. 4. Where the vertical distance is limited and the runouts must run above the floor the radiator may be set on pedestals or of the high leg type. A method of connecting a unit heater to a one-pipe steam heating system is illustrated in Fig. 5.

Typical two-pipe radiator or convector connections are shown in Figs. 6, 7 and 8. While the top is the preferred location for the control valve, it may be located at the bottom. Short radiators may be top supply and bottom return on same end. With convectors the control valve is sometimes omitted and a damper in outlet grille used for heat control. The typical method of connecting pipe coils is shown in Fig. 9 and is suitable for atmospheric, vapor, vacuum, sub-atmospheric, and orifice systems.

Typical pipe connections for indirect radiators and tempering or heating stacks are shown in Figs. 10, 11, 12 and 13.

Where a building is served by a vacuum system or a sub-atmospheric system the stacks should be piped in the usual manner and traps of large capacity, preferably of the combination float and thermostatic type, should be used. In the orifice and *closed* two-pipe systems, traps should be used on the returns so that a pressure above that of the atmosphere may be secured on the heaters.

Each stack should have a separate steam and return connection. Wide stacks are more evenly heated with two steam connections, one at each end, the stacks being divided and a return connection provided for each steam connection. For stacks of large capacity it is sometimes desirable to run a separate steam main direct from the boiler to the stacks.

PIPE SIZING FOR INDIRECT HEATING UNITS

Pipe connections and mains for indirect heating units are sized in a manner similar to radiators, but the equivalent direct radiation must be ascertained for each row of heating unit stacks and then must be divided into the number of stacks constituting that row and into the number of connections to each stack.

$$EDR = \frac{Q \times 60 \times (t_1 - t_e)}{55.2 \times 240} = \frac{Q \times (t_1 - t_e)}{220.8}$$
(1)

where

EDR = equivalent direct radiation, square feet.

Q =volume of air, cubic feet per minute.

t_e = the temperature of the air entering the row of heating units under consideration, degrees Fahrenheit.

t₁ = the temperature of the air leaving the row of heating units under consideration, degrees Fahrenheit.

60 = the number of minutes in one hour.

55.2 = the number of cubic feet of air heated 1 F by 1 Btu.

240 = the number of Btu in 1 sq ft of EDR.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Example 4. Assume that the heating units shown in Fig. 14 are handling 50,000 cfm of air and that the rise in the first row is from 0 to 40 F, in the second row from 40 to 65 F, and in the third row from 65 to 80 F. What is the load in EDR on each supply and return connection?

Solution. For row 1,
$$R = \frac{50,000 \times (40-0)}{220.8} = 9058 \text{ sq ft.}$$
 For row 2,
$$R = \frac{50,000 \times (65-40)}{220.8} = 5661 \text{ sq ft.}$$
 For row 3,
$$R = \frac{50,000 \times (80-65)}{220.8} = 3397 \text{ sq ft.}$$

Each row of heating units consists of four stacks and each stack has two connections so that the load on each stack and each connection of the stack is as follows:

Row	TOTAL LOAD (EDR)	STACK LOADS (EDR)	Connection Loadb (EDR)
1	9058	2265	2265 or 1132
2	5661	1415	1415 or 708
3	3397	849	849 or 425

aOne quarter of total row load.

bOne half of stack load if two steam connections are made; otherwise, same as stack load.

The pipe sizes would then be based on the length of the run and the pressure drop desired, as in the case of radiators. It generally is considered desirable to place the indirect heating units on a separate system and not on supply or return lines connected to the general heating system.

DRIPS

A steam main in any type of steam heating system may be dropped to a lower level without dripping if the pitch is downward with the direction of steam flow. Any steam main in any heating system can be elevated if dripped. Fig. 15 shows a connection where the steam main is raised and the drain is to a wet return. If the elevation of the low point is above a dry return it may be drained through a trap to the dry return in two-pipe vapor, vacuum and sub-atmospheric systems. Horizontal steam pipes may also be run over obstructions without a change in level if a small pipe is carried below the obstruction to care for the condensation (Fig. 16). Horizontal return pipes may be carried past doorways and other obstructions by using the scheme illustrated in Fig. 17. It will be noted that the large pipe, in this case, runs below the obstruction and the smaller one over it.

Branches from steam mains in one-pipe gravity steam systems should use the *preferred connection* shown in Fig. 18, but where radiator condensation does not flow back into the main the *acceptable* method shown in the same figure may be used. This acceptable method has the advantage of giving a perfect swing joint when connected to the vertical riser or radiator connection, whereas the preferred connection does not give this swing

without distorting the angle of the pipe. Runouts from the steam main are usually made about 5 ft long to provide flexibility for movement in the main.

Offsets in steam and return piping should preferably be made with 90-deg ells but occasionally fittings of other angles are used, and in such cases the length of the diagonal offset will be found as shown in Fig. 19.

Dirt pockets, desirable on all systems employing thermostatic traps, should be so located as to protect the traps from scale and muck which will interfere with their operation. Dirt pockets are usually made 8 in. to 12 in. deep and serve as receivers for foreign matter which otherwise would be carried into the trap. They are constructed as shown in Fig. 20.

On vapor systems where the end of the steam main is dripped down into the wet return, the air venting at the end of the main is accomplished

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

by an air vent passing through a thermostatic trap into the dry return line as shown in Fig. 21. On vacuum systems the ends of the steam mains are dripped and vented into the return through drip traps opening into the return line. The same method may be used in atmospheric systems. A float type trap is preferable to a thermostatic trap for dripping steam mains and large risers. If thermostatic traps are used, a cooling leg (Fig. 22) should always be provided. The cooling leg is for cooling the condensation sufficiently before it reaches the trap so the trap will not be held shut by too high a temperature. On down-feed systems of atmospheric, vapor, and vacuum types, the bottom of the steam risers are dripped in the manner shown in Fig. 23. On large systems it is desirable to install a gate valve in the cooling leg ahead of the trap.

Chapter 16

HOT WATER HEATING SYSTEMS AND PIPING

One- and Two-Pipe Systems, Selecting Pipe Sizes, Forced Circulation, Gravity Circulation, Expansion Tanks, Installation Details, Examples of Piping Design

HOT water heating systems may be divided into two general classes, the gravity systems in which circulation is caused by the difference in density of the water in the supply and return risers, and the forced circulation systems in which circulation is caused by a pump. Water is supplied at temperatures from 150 to 250 F, and the higher temperatures are generally used with the forced system.

Four principal elements of a hot water system may be recognized, and these are discussed in the various chapters as follows:

- 1. The boiler or heat exchanger in which the water is heated is similar to the steam boiler, and is discussed in Chapter 12.
- 2. The radiators, convectors, pipe coils or panels that deliver the heat to the spaces to be heated are covered in Chapters 13 and 45.
- 3. The design of the piping system through which the water flows from the boiler to the radiators and back to the boiler is considered in this chapter.
- 4. The control system by which the temperature in the heated spaces is regulated according to varying requirements is covered in Chapter 34.

SYSTEMS OF PIPING

There are two general systems of piping used for either gravity or forced hot water systems:

- (a) Two-pipe system.(b) One-pipe system.
- With either of these piping systems the distributing mains may be located in the basement with up-feed to the radiators and risers, or the supply main may be located in the attic with the return main located in the basement. For radiators located on the basement floor the mains may be run at the ceiling, as one of the advantages of a forced hot water heating system is that the returns need not be below the radiators as required with a steam system. In some one-pipe systems there is one supply main in the basement with separate flow and return riser connections to the radiators.

In the two-pipe system there are separate supply and return pipes

throughout so that the radiators are connected in parallel, resulting in the same water temperature in all radiators. With the one-pipe system part of the water flows through more than one radiator, so that the water temperature toward the end of the main is not as high as near the boiler. However, with the one-pipe system, by maintaining a rapid circulation and small difference in temperature between the water leaving and returning to the boiler or other heat generator, the variation in the radiator water temperature is reduced.

The two-pipe system for larger buildings should, if possible, be arranged for reversed return. The direct and reversed return systems are shown in Figs. 1 and 2. With the reversed return system, the length of the water circuit for any one radiator is the same as for any other radiator and, therefore, the friction and temperature losses to all radiators should be nearly the same.

In some cases the reversed return system involves no more piping than

Fig. 1. A Direct Return System

Fig. 2. A Reversed Return System

the direct return system. In the case of large buildings, it is often advisable to zone the piping.

Mechanical Circulators

Circulating pumps are usually of the centrifugal type. The capacity of the pump is figured from the Mbh (1000 Btu per hour) required for heating and the drop in temperature selected. For example, for 100 Mbh and 20 F drop a pump having a capacity of 5000 lb water per hour or 10 gpm should be used. The resistance head is based on the system as designed. In large systems the economical size of pump may be determined by comparing the cost of power for operation, with the annual charges on the capital cost of the piping system, as larger pipe sizes mean less pump power. Velocities through piping in excess of 4 fps are likely to cause disturbing noises in buildings other than factories. In large systems the pumps are run continuously while in small ones they are run either continuously or intermittently depending on the type of automatic temperature control selected. Small circulating pumps are usually driven by direct-connected electric motors. Under certain conditions a valved by-pass should be provided and the piping so designed that in case of breakdown of the pump or failure of electric current there will be sufficient gravity circulation to keep the building reasonably warm. In large buildings or groups of buildings, it is often advisable to have two pumps, each of about 70 per cent of the total capacity, to take care of breakdown service. During mild weather, variations in water temperature may be utilized to balance the required heat loss. In the larger

systems steam turbines are sometimes used to drive the pumps, the exhaust steam being used for heating the water, and in such buildings as hospitals this may be the most economical method.

As the average pump used for water circulation is not over 60 per cent efficient, the cost of power on a large installation should be computed and comparisons made between the savings in capital cost of piping and the annual cost of power.

FORCED CIRCULATION PIPE SIZES

The pressure heads available in forced circulation systems are much greater than those in gravity circulation systems, consequently, higher velocities may be used in designing the system, with the result that smaller pipes may be selected and the first cost of the installation reduced. As the pipe sizes of a heating system are reduced, the necessary increase in the velocity of the water increases the friction losses and thus the cost of operation and the initial cost of the circulating equipment. The increased velocity of a forced circulation system offers a number of advantages, such as a much shorter heating-up period and a more flexible control of hot water circulation. This improved performance merits the small increase in operating cost necessary to circulate the water mechanically. The velocities required should be determined by calculation for the particular system under consideration.

Since forced circulation velocities are higher than those in gravity systems, and since the friction heads in a heating system vary almost as the squares of the velocities, a given error in the calculation or assumption of a velocity is less important in a forced circulation system than in a gravity circulation system, and, consequently, it is easier to design a satisfactory forced circulation system than a satisfactory gravity circulation system.

In forced hot water systems, it is customary to use a temperature drop of 20 or 30 F between the water entering and leaving the boiler or other heater. The head against which the system is to operate must then be decided. This varies from 2 to 5 ft for small systems and may rise to 100 ft on large jobs with a group of buildings. For iron pipe, the sizes can be figured using Fig. 3 and Tables 1 and 3. For copper tubing Tables 2 and 3 are to be used. In systems designed with reversed returns, it will generally be found that very little adjustment is necessary to secure even distribution to all radiators. However, orifices may be used to control the flow and the capacities are given in Table 4. buildings provision should be made for quickly draining radiators in case of breakage, and it is often advisable to install a lock shield valve on one end of each radiator and a hand controlled valve on the other. In case of breakage the two valves can be closed and the radiator removed without affecting the rest of the system. The lock shield valve can also be used for balancing the water circulation.

GRAVITY CIRCULATION PIPE SIZES

In gravity hot water heating systems the difference in temperature (density) between the flow and return water produces the required

natural circulation of the water. The design temperature difference is usually assumed from between 20 to 35 F. After having determined the temperature difference and the temperature of the flow water, data given in Fig. 4 can be used to obtain the pressure head. With information obtained concerning the required pressure head the same procedure is

Fig. 3. Friction Heads in Black Iron Pipes for a 20 F Temperature Difference of the Water in the Flow and Return Lines

For other temperature drops the pipe capacities may be changed correspondingly. For example, with a temperature drop of 30 F, the capacities shown in this figure are to be multiplied by 1.5.

followed for computing the necessary data for a gravity circulation system as was previously outlined for a forced hot water system. Radiator heat emission rates from 150 to 200 Btu per square foot are commonly used so that flow temperatures generally range from 180 to 200 F or higher. Assuming a flow temperature of 200 F and a 35 F drop, and with the mains located 4 ft above the top of the boiler, a circulating pressure head of 600 milinches results. This is obtained by following the 200 F floor riser line in Fig. 4 to where it intersects the 165 F return riser line

and reading horizontally a pressure head of 150 milinches per foot or 600 milinches for 4 ft. Assuming first floor radiators are located 3 ft above the mains and second floor radiators 12 ft above the mains, third floor 21 ft and fourth floor 30 ft, the circulating pressure heads are 450, 1800, 3150 and 4500 milinches respectively.

Fig. 4. Gravity Pressure Heads for Various Temperature Differences

EXPANSION TANKS

Expansion tanks may be either of the open or closed type. In the open type, (see Fig. 5) the water is subject to atmospheric pressure only, but in the closed tank (see Fig. 6) the system is under pressure and, therefore, a relief valve should be placed on the tank. Water expands about 4 per cent when being heated from 40 F to 200 F, and the expansion tank should have a volume about twice the actual expansion or about 8 per cent of the total volume of water in the entire system including boiler, radiators, pipes, etc. Open expansion tanks should be at least 3 ft above the

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 1. Heat-carrying Capacity of Standard Black Pipes with Temperature Drop of $20~\mathrm{F}^a$

Nominal Pipe Sizes $\frac{3}{8}$ in. to 12 in., and Friction Heads 4 to 800 milinches per foot (A = Capacity, Mbh. B = Velocity, inches per second) (One milinch equals 0.001 in.)

MILING TION LO	OSS PER					,	N	OMINA	L Pipi	Size,	Inche	is					
Foor o	F PIPE	3∕8	12	34	1	11/4	1½	2	21/2	3	3½	4	5	6	8	10	12
4	$\stackrel{A}{B}$	0.75 1.5	1.35 1.7	2.85 2.1	5.4 2.4	11.3 2.9	17.0 3 2	33.0 3.8	53 1 4.3	95 5 0		197 6 0					
6	$\stackrel{A}{B}$	0 9 1 8	1.7 2.1	3.6 2.6	6.75 3.0	14 0 3.6	21.2 4.0	41.3 4.7	66 4 5 3	119 6.2		248 7.5	456 8.8				
8	A B	1.05 2.1	$\frac{20}{2.5}$	4.2 3 0	7.9 3.5	16.4 4.2	24.8 4.7	48.4 5 6	77.9 6 3	140 73	207 8.0	291 8.8	535 10				
10	A B	1.2 2 4	2 2 2 8	4.7 3.4	8.9 4.0	18.6 4.8	28.0 5.3	54.7 6.3	88 1 7 1	158 8.2	234 9.1	329 9 9	605 12	997 13			
12	A B	$\frac{1.35}{2.7}$	2 45 3 1	5.2 3.7	9.8 4.4	20 5 5 3	31 0 5 9	60.4 6.9	97.4 7.8	175 9 1	259 10	364 11	671 13	1100 15			
14	A B	1 45 2.9	2.65 3 4	5 65 4.1	10.7 4.8	22.3 5 7	33.7 6 4	65 8 7.6	106 8 5	190 9 9	282 11	397 12	731 14	1200 16		4730 23	
16	A B	1 55 3 1	2 85 3.6	6.05 4.4	11.5 5.1	24.0 6.2	36.3 6.9	70.8 8.1	114 9.7	205 11	303 12	428 13	787 15	1300 17	2730 21	5100 25	
20	A B	1.75 3 5	3.25 4 1	6 85 4.9	13 0 5.8	27.1 7 0	41.0 7 7	80.0 9.2	129 10	232 12	344 13	484 15	892 17	1470 20	3100 24	5790 28	
25	A B	2 0 4 0	3 65 4 6	7 75 5.6	14.7 6 5	30.6 7.9	463 88	90 5 10	146 12	263 14	389 15	548 17	1010 19	1670 22	3510 27	6570 32	
30	$\stackrel{A}{B}$	2.2 4.4	4 0 5 1	8.55 6.1	16.2 7.2	33 8 8.7	51 2 9.7	100 11	162 13	290 15	430 17	607 18	1120 22	1850 25	3900 30	7280 35	11710 40
35	A B	2 35 4 7	4 4 5.5	9.3 6 7	17.6 7.9	36 8 9.5	55 7 11	109 13	176 14	316 16	469 18	661 20	1220 23	2010 27	4250 33	7940 39	12780 44
40	A B	2.55 5 1	4 7 5.9	10 0 7.2	18.9 8.4	39 6 10	59.9 11	117 13	189 15	341 18	505 20	712 22	1320 25	2170 29	4580 35	8570 42	13780 47
50	A B	2 85 5 7	5.3 6.7	11 3 8.1	21.4 9.5	44.7 12	67.7 13	133 15	214 17	386 20	572 22	807 24	1490 29	2460 33	5190 40	9720 47	15650 54
60	A B	3.15 6.3	5.85 7 4	12 4 8.9	23.6 11	49 4 13	74 9 14	147 17	238 19	427 22	633 25	893 27	1650 32	2730 36	5760 44	10780 52	17360 60
70	A B	3 45 6 9	6 35 8 0	13 5 9.7	25.7 11	53 8 14	81.4 15	160 18	258 21	465 24	690 27	973 29	1800 35	2970 40	6280 48	11760 57	18950 65
80	A B	3.7 7.4	6.8 8.6	14 5 10	27.6 12	57.9 15	87 6 17	172 20	278 22	500 26	743 29	1050 32	1940 37	3200 43	6770 52	12690 62	20440 70
100	A B	4.15 8 3	7 7 9.7	16 4 12	31 1 14	65.4 17	99 0 19	194 22	$\frac{314}{25}$	566 30	840 33	1190 36	2200 42	3630 48	7680 59	14400 70	23200 80
150	A B	5.2 10	9.6 12	20.4 15	38.8 17	81.6 21	$\frac{124}{23}$	243 28	393 32	709 37	1050 41	1490 45	2760 53	4560 61	9650 74	18120 88	29220 101
200	A B	6 05 12	11 2 14	23.9 17	45 4 20	95.5 25	$\frac{145}{27}$	285 33	461 37	832 43	1240 48	1750 53	3240 62	5360 71	11350 87	21320 104	34400 118
300	A B	7.5 15	13 9 18	29 7 21	56.6 25	119 31	181 34	356 41	577 46	1040 54	1550 60	2190 66	4060 78	6730 90	14270 110	26830 131	43300 149
400	A B	8 75 18	16 2 21	34.7 26	66 2 30	140 36	212 40	417 48	676 54	1220 64	1820 71	2570 78	4780 92	7910 105	16790 129	31580 154	51000 175
500	A B	9 85 20	18.3 23	39 2 29	74 8 33	158 41	239 45	471 54	765 62	1380 72	2060 80	2910 88	5410 104	8970 119	19040 147	35840 174	57880 199
600	A B	10 9 22	20.2 26	43.2 32	82 5 37	174 45	264 50	521 60	846 68	1530 80	2280 89	3220 97	5990 115	9930 132	21100 162	39740 193	64210 221
800	A B	12.7 25	23.6 30	50 5 37	96 5 43	204 52	310 59	610 70	992 80	1790 94	2670 104	3780 114	7030 135	11670 155	24820 191	46780 228	75620 260

a For other temperature drops the pipe capacities may be changed correspondingly. For example, with a temperature drop of 30 F, the capacities shown in this table are to be multiplied by 1.5.

CHAPTER 16. HOT WATER HEATING SYSTEMS AND PIPING

Table 2. Heat-carrying Capacity of Type L Copper Tubing with Temperature Drop of 20 F^a

Nominal Tube Sizes $\frac{3}{8}$ in. to 4 in., and Friction Heads 60 to 720 milinches per foot. (A = Capacity, Mbh. B = Velocity, inches per second) (One milinch equals 0.001 in.)

Nomina	ь Туве				Мп	INCH FR	iction L	oss per	Fоот ог '	Тсве			
Size,	Size, In.		600	480	360	300	240	180	150	120	90	75	60
3/8	$\stackrel{A}{\mathcal{B}}$	10 27	9 24	8 21	6 8 18	6.2 16.5	5.4 14	4 6 13	4 11	3.6 10	3 85	2.8	2 4 7
1/2	$\stackrel{A}{B}$	20 35	18 30	16 25	13.5 21	12 19	10.8 17	9 15	8 13	7 12	6 10	5 4 9	47
5/8	$\stackrel{A}{\mathcal{B}}$	36 37	30 34	26 30	22.1 24	20 21	17.8 19	15 17	13 1 15	11.8 13	9.9 11	9 10	7.9
34	$\stackrel{A}{B}$	51 42	46 38	40 33	34 27	31 24	28 21	23 2 19	20 5 17	18 1 14	15 3 12	13.9 11.5	12 1 10
1	A B	104 48	94 45	82 39	70 34	63 30	56 25	47 22	42 19	37 17	32 14 5	28 13	25 12
114	$\stackrel{A}{B}$	185 55	169 51	149 45	125 39	112 35	100 30	84 25	75 22	66 19	56 17	50 15	44 13
11,2	$\stackrel{A}{\mathcal{B}}$	300 62	270 57	235 51	200 43	180 39	160 35	134 30	120 25	105 22	90 19	81 17	71 15
2	A B	625 76	560 68	495 59	420 51	375 47	335 42	280 36	250 32	200 27	188 22	170 20	150 18
21/2	$\stackrel{A}{\mathcal{B}}$	1130 90	1010 80	890 69	750 58	680 49	600 47	500 42	450 37	395 33	335 26	305 23	270 21
3	$\stackrel{A}{B}$	1840 98	1650 90	1450 80	1210 66	1100 59	980 52	820 47	740 42	650 36	550 30	490 27	420 23
31 2	A B	2750 110	2480 100	2170 89	1840 75	1650 66	1450 57	1210 51	1100 45	980 40	820 35	740 30	650 26
4	A B	3900 120	3505 108	3100 96	2600 83	2350 73	2090 63	1760 55	1580 49	1390 44	1180 37	1080 34	950 29

aFor other temperature drops the pipe capacities may be changed correspondingly. For example, with temperature drop of 30 F, the capacities shown in this table are to be multiplied by 1.5.

TABLE 3. IRON AND COPPER ELBOW EQUIVALENTS²

Fitting	Iron Pipe	Copper Tubing
Elbow, 90-deg Elbow, 45-deg Elbow, 90-deg long turn. Elbow, welded, 90-deg Reducing coupling Open return band. Open gate valve Open globe valve Angle radiator valve Radiator or convector. Boiler or heater.	0.7 0.5 0.5 0.4 1.0 0.5 12.0 2.0 3.0	1.0 0.7 0.5 0.5 0.4 1.0 0.7 17.0 3.0 4.0
Tee, per cent flowing through branch: 100	1.8 4.0 16.0	1.2 4.0 20.0

a The friction head in one 90 deg standard elbow is approximately equal to the friction of a length of straight pipe of the same nominal size and 25 diam long. Hence one elbow equivalent equals 25 D divided by 12 feet of straight pipe or tubing.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 4. Friction Heads (in Milinches) of Central Circular Diaphragm Orifices in Unions

(One milinch equals 0.001 in.)

DIAMETER				VELOCITY O	f Water in	PIPE IN FI	et per Mi	NUTE		
Orifices (Inches)	10	15	20	30	40	50	60	90	120	180
					3/4-1n. I	Pipe				
0.25 0.30 0.35 0.40 0.45 0.50 0.55	1300 650 330 170	2900 1450 740 380 185	5000 2500 1300 660 330 155 75	11,300 5700 2900 1500 740 350 170	20,800 10,400 5200 2600 1300 620 300	32,000 16,000 8000 4000 2000 970 480	45,000 23,000 12,000 6800 2900 1400 700	57,000 26,000 13,000 6500 3200 1600	47,000 24,000 12,000 5700 2800	53,000 27,000 13,000 6400
					1-in. P	іре				
0.35 0.40 0.45 0.50 0.55 0.60 0.65	900 460 270 160	2000 1000 570 330 190	3500 1800 1000 580 330 200 120	7800 4000 2300 1400 750 440 260	14,000 7200 4100 2300 1300 800 460	22,000 12,000 6400 3700 2200 1300 720	32,000 17,000 9300 5400 3000 1800 1100	37,000 21,000 12,000 7000 4200 2400	65,000 37,000 22,000 13,000 7400 4300	50,000 28,000 17,000 10,000
					$1\frac{1}{4}$ -in. I	Pipe				
0.45 0.50 0.55 0.60 0.65 0.70 0.75	1000 660 430 280 190	2250 1450 950 630 420 285 190	4000 2600 1700 1100 750 510 330	8900 5800 3800 2500 1700 1150 750	16,000 10,400 6800 4400 3000 2000 1300	25,000 16,400 10,500 6900 4700 3100 2100	36,000 23,000 15,000 10,000 6700 4500 3000	53,000 34,000 22,000 15,000 10,000 6700	60,000 40,000 27,000 18,000 12,000	60,000 40,000 26,000
					$1\frac{1}{2}$ -in. F	Pipe			1	
0.55 0.60 0.65 0.70 0.75 0.80 0.85	850 600 400 260 180	1900 1300 850 600 400 300 200	3300 2300 1500 1100 760 540 380	7400 5400 3600 2600 1800 1200 860	13,000 8600 7200 4400 3000 2200 1600	21,000 16,800 10,400 7000 5000 3200 2300	30,000 21,000 14,000 10,000 7000 5000 3000	50,000 30,000 21,000 14,000 10,200 7800	53,000 39,000 28,000 19,000 13,000	45,000 30,000
					2-in. Pi	ре				
0.70 0.80 0.90 1.00 1.10 1.20 1.30	890 470 255 160	1850 975 560 340 214	3500 1800 1000 610 375 195	7400 3900 2200 1320 850 460 275	14,000 7400 4200 2520 1600 950 525	22,300 11,700 6500 4000 2500 1360 980	33,000 17,000 9500 5800 3700 1910 1375	37,000 20,500 12,500 7900 4200 3100	38,000 23,000 14,000 8100 4400	49,000 30,000 16,800 8850

Note.—The losses of head for the orifices in the 1½-in. and 2-in. pipe were calculated from those in the smaller pipes, the calculations being based on the assumption that, for any given velocity, the loss of head is a function of the ratio of the diameter of the pipe to that of the orifice. This had been found to be practically true in the tests to determine the losses of head in orifices in ¾-in, 1-in., and 1½-in. pipe, conducted by the Texas Engineering Experiment Station, and also in the tests to determine the losses of head in orifices in 4-in., 6-in., and 12-in. pipe, conducted by the Engineering Experiment Station of the University of Illinois, (Bulletin 109, Table 6, p. 38, Davis and Jordan).

highest radiator and be protected against freezing. Closed tanks are generally placed in the basement over the boiler. A relief valve installed on a closed tank will not operate often provided the tank is of adequate size. It is essential that the relief valve be kept in good condition to eliminate any possible failure when operation is necessary.

INSTALLATION DETAILS

Items that should be considered in the design of this type of system are:

All piping must be so pitched that all air in the system can be vented either through an open expansion tank, radiators or automatic relief valves.

All piping must be arranged so that the entire system can be drained. Sections of piping individually valved shall have corresponding drain valves.

In large buildings, the piping may be zoned according to exposure of building, usage of building, or method of control.

Fig. 5. An Open Expansion Tank

Fig. 6. A Closed Expansion Tank

All piping must be installed so that it is free to expand and contract with changes of temperature without producing undue stresses in the pipes or connections. For this purpose it is generally sufficient to allow for a variation in length of 1 in. for 100 ft of pipe.

The pipe system should be designed so that each circuit has its correct friction head for balanced water distribution. This may be done by change of pipe size or change in piping detail.

The connections from the boiler to the mains should be short and direct, to reduce the friction head and allow for expansion. It is frequently possible to avoid an elbow and to reduce the length of the pipe by running the pipe in a diagonal direction, either in a horizontal or in a vertical plane.

The mains and branches should pitch up and away from the heater, generally not less than 1 in. in 10 ft.

The connections from mains to branches and to risers should be such that circulation through the risers will start in the right direction. Hence, in a one-pipe system the flow connection must be nearer the heater than the return connection. In a correctly-designed two-pipe system, the pressure in the flow main is higher than that in the return main, and a slight variation in the distances of the flow and return connections from the heater is not material; but it is generally best to have the two connections about equally distant from the heater.

Generally connections to risers or radiators are taken out of the top of mains either

45 or 90 deg. In some cases it may be advisable to take the flow connection off the top of the main and the return connection from the side.

With forced circulation and high velocities, it is advisable to let the water enter at the top of the radiator and leave at the bottom of the opposite end. With gravity circulation the flow connection may be either at the top or at the bottom of the radiator. With short radiators both flow and return may be at same end, but top and bottom.

Unless used as heating surface, all piping, both flow and return, should be insulated.

EXAMPLES OF PIPING DESIGN

The following graded series of examples of the design of hot water piping systems will illustrate the fundamental principles and methods. The differences between reversed return and direct return systems are shown, and the methods of balancing the several radiators or circuits are illustrated. A simple gravity system is shown in Fig. 7 and an elementary forced circulation system is diagrammed in Fig. 8.

Elementary Gravity System

Example 1. A simple gravity-circulation system is illustrated in Fig. 7 with one radiator that is giving off heat at the rate of 20,000 Btu per hour or 20 Mbh. The boiler

Fig. 7. Gravity System

Fig. 8. Forced Circulation System

imparts heat to the water at the same rate, and the water circulates at a uniform velocity. The thermal or gravity *pressure head* which produces the circulation is equal to the friction head which resists the circulation. The circuit consists of 1 boiler, 1 radiator, 2 ells, 1 radiator valve and a total of 24 feet of pipe.

Solution. With the average water temperatures of 200 and 180 F in the supply and return risers, respectively, the pressure head will be 90 milinches per foot of water column. This pressure head may be found from Fig. 4. Since the center of the radiator is 10 ft above the center of the boiler, the total pressure head of the circuit is 10×90 , or 900 milinches, or 0.9 inches of $190 \, \mathrm{F}$ water. The friction head of the circuit must then also be 900 milinches. The friction head of 1 ft of 1 in. pipe is found from Fig. 3 to be about 46 milinches at 20 Mbh, and the corresponding velocity 9 in. per second. (Note that all values in Fig. 3 are based on a temperature difference of $20 \, \mathrm{F}$.)

Similarly, if a 1½ in. pipe were to be used, the friction head would be about 12 milinches per foot and the corresponding velocity about 5 in. per second, from Fig. 3.

To find the friction head in the elbows, boiler, radiator and valve, Table 3 is used, and the entire circuit is found to be equal to 10 elbow-equivalents plus 24 ft of pipe. Each elbow-equivalent is equal to a pipe length of 25 times the nominal diameter. Then the equivalent lengths of straight pipe are 45 ft of 1 in. pipe or 50 ft of $1\frac{1}{4}$ in. pipe.

Hence, if 1 in. pipe is used, the fh (friction head) of the circuit will be 45×46 , or 2070 milinches, and if $1\frac{1}{4}$ in. pipe is used, the fh will be 50×12 , or 600 milinches. A 1 in. pipe would, therefore, be too small and a $1\frac{1}{4}$ in. pipe too large to permit the desired circulation with a flow-return temperature difference of 20 F.

If the circuit is of 1 in. pipe, the circulation will take place with a temperature differ-

CHAPTER 16. HOT WATER HEATING SYSTEMS AND PIPING

ence greater than 20 F, and if the circuit is of $1\frac{1}{24}$ in. pipe, the circulation will take place with a temperature difference smaller than 20 F. To find, for example, the temperature difference at which a circuit of 1 in. pipe would transmit the required 20 Mbh, assume the difference to be 40 F. The ph (pressure head) would be (Fig. 4, from 200 to 160) 175 milinches per foot, or 1750 for the system. The fh for the system may be found from Fig. 3; the chart of this figure is based on a temperature difference of 20 F; if the temperature difference were 40 F, the heat conveyed would be twice that shown in the chart. Hence, find 10 Mbh on the lower scale, proceed vertically upward to the intersection with the 1 in. line, and from there to the left scale and read 13 milinches per foot. Note that the velocity would then be only about 5 in. per second. The total fh would then be 45 x 13 or 585 milinches. Since the ph would be 1750, circulation would take place with a temperature difference less than 40 F. The required temperature difference may be determined by constructing the diagram of Fig. 9, from which it appears that the temperature difference with which the 1 in. pipe circuit would function is about 30 F. Hence, if the flow riser temperature is 200, the return riser temperature will be 170, and the average water temperature in the radiator, about 185 F.

Elementary Forced Circulation System

Example 2. Design a system for the piping arrangement shown in Fig. 8, according to one of the outlined procedures. The ph developed by the circulating pump and the

Fig. 9. Determination of Required Temperature Difference

pipe size may be assumed and the flow-return temperature difference found; or, the ph developed by the pump and the flow-return temperature difference may be assumed and the pipe size found; or the pipe size and the flow-return temperature difference may be assumed and the ph found which the circulating pump must develop.

Solution. Assume that the circulating pump will develop a ph of 2 ft or 24,000 milinches and that a 1 in. pipe is to be used. The equivalent length of the circuit will then be 45 ft, as in Fig. 7, and the available ph will be 24,000/45, or 533 milinches per foot. In Fig. 3, find 533 on the left scale, move horizontally to the intersection with the 1 in. pipe line, and read about 77 Mbh delivered by the pipe (with a velocity of about 35 in. per second) for a temperature difference of 20 F. Since the circuit is to deliver only 20 Mbh, the temperature difference will be 20 divided by 77 and multiplied by 20, or 5.2 F. Hence, if the flow riser temperature is 200, the return riser temperature will be about 195, and the average water temperature in the radiator, about 197.5 F.

If a $\frac{1}{2}$ in. pipe were used instead of a 1 in., the equivalent length of circuit would be 35 ft instead of 45; the unit ph, 686 milinches instead of 533; the velocity, 27 in. per second instead of 35; the temperature difference, 19.5 instead of 5.2; and the average water temperature in the radiator, about 190.5 instead of 197.5 F.

If the 1 in. pipe is used for the circuit, the gravity ph will be 22 milinches per foot, or 220 for the circuit (Fig. 4, 200 to 195). Since this is only 1 per cent of the pump ph (24,000 milinches), it may be neglected in the calculation, as was done previously. However, there are cases in which the gravity ph is so large compared with the pump ph, that it should be included in the calculation.

The methods just described for the design of the two elementary systems are fundamental and apply to the design of all hot water heating systems. In every system, however large and complicated, the pipe system must be such that the ph forcing the water from the boiler to any one radiator is equal to the fh in that radiator's circuit when the radiator is receiving its proper quantity of hot water and the system is functioning at a steady rate.

Two-Pipe Gravity Circulation System

Example 3. In the system shown in Fig. 10, water leaving the boiler may flow to any one of the three radiators. If the system is designed correctly, each radiator will receive its proper share of the hot water. Since Radiator 3 has the largest load and is also farthest from the boiler, it is the least favorably located with reference to circulation, and its circuit should be designed first. If the pipes leading to it are large enough, it will be easy to secure sufficient circulation for the other two radiators.

The system is to function with a 40 F flow-return temperature difference. The ph for each radiator is 7 x 175 (Fig. 4), or 1225 milinches; the fh for each radiator circuit must, therefore, also be 1225 milinches.

Fig. 10. Two-Pipe Gravity Circulation System

Solution. In order to design a radiator circuit accurately and systematically, the circuit should be divided into sections. The division points of sections must be where the pipe sizes change or may change, and where the volume of water flowing in the pipe changes. The data relating to the several sections may be recorded as shown in Table 5.

Data recorded in Table 5 show that Circuit 3 consists of 70.4 ft of pipe and 21.5 elbow equivalents. Assuming that the average size of the pipe will be $1\frac{1}{4}$ in., the 21.5 elbow equivalents may be replaced by 21.5×2.6 ($^25/12 \times 1.25 \times 1.0$), or 56 ft of pipe, which would make the total equivalent length of the circuit 70.4 plus 56 or 126.4 ft of pipe, and the average fh, 1225/126.4, or about 10 milinches per foot. For this unit fh and a temperature difference of 40 F (see Fig. 3), a 1 in. pipe will convey 18 Mbh, a $1\frac{1}{4}$ in. pipe, 37 Mbh, and a $1\frac{1}{2}$ in. pipe, 56 Mbh. The pipe sizes for the several sections of Circuit 3 may be selected as indicated in Table 5. Having selected the pipe sizes, the unit friction heads may be found from Fig. 3 and the total friction head calculated and recorded as shown in Table 5. If the grand total, in the present case 1192 milinches, differs materially from the available ph, 1225 milinches, one or more of the pipe sizes must be changed and the calculation repeated until the total fh is practically equal to the available ph of 1225 milinches.

It is not necessary, in the design of hot water heating systems, to be extremely careful to have the fh exactly equal to the available ph, because a hot water heating system has the ability to adjust itself to varying conditions of considerable magnitude. For example, in the present case, the calculated fh is 1192 milinches, or about 3 per cent less than the calculated available ph; the water would, therefore, circulate a little faster than contemplated and the return temperature would be a little higher than 160 F. This would

CHAPTER 16. HOT WATER HEATING SYSTEMS AND PIPING

immediately lower the available ph and the ph and fh would come into balance at a value higher than 1192 and lower than 1225.

Since it is generally not necessary to make extremely refined calculations, Table 1 may often be used instead of the chart of Fig. 3 to determine pipe sizes. For example, in the present case, Table 1 shows that for an fh of 10 milinches a $1\frac{1}{2}$ in. pipe would convey 28 Mbh with a temperature difference of 20 F or 56 Mbh with a temperature difference of 40 F. Since the $1\frac{1}{2}$ in. pipe in Fig. 10 is to convey only 45 Mbh with a temperature difference of 40 F, or only 22.5 with a temperature difference of 20 F, it is evident from the table that the fh will be between 6 and 8 milinches. For 6 milinches the heat conveyed is 21.2 and for 8 milinches, it is 24.8; for 22.5 Mbh, the fh would be estimated to be about 6.5, which would be sufficiently accurate for the present calculation.

TABLE 5. TABULATED DATA FOR EXAMPLE 3

Circuit No. 3. Available th 1225 milinches

Section	Load Meh	Pipe Length Ft	Elbows No.	Pipe Size In.	Equivalent Length, Ft	Unit Friction Milinches PER FT	TOTAL FRICTION, MILINCHES
0-4 4-5 5-6 6-3	45 35 20 20	3.5 10.0 12.0 6.5	2 5 2 0 0.0 5 5	1½ 1¼ 1¼ 1¼ 1	11.3 15.2 12 0 17 5	63 92 3.4 13	71 140 41 228
3-7 7-8 8-9 9-0	20 20 35 45	9 5 12 8 13.8 2.3	5.5 1.0 2.5 2.5	1 1 114 11/2	20 5 14.9 20.3 10 1	13 13 9.2 6 3	267 194 187 64
Total		70.4	21.5		121.8		1192
		Cırcı	ııt No. 2. A	vaılable ph 1	225 milinches	<u> </u>	
0-4 4-5 5-2	45 35 15	6.2	6	1	18.7	7.5	71 140 140
2-8 8-9 9-0	15 35 45	9 5	7	3⁄4	20.4	24.0	490 187 64
Total							1092
<u> </u>		Circi	ııt No. 1. A	railable ph 1	225 milinches		
0-4 4-10 10-1	45 10 10	9.0 5 0	1.5 5.5	3/4 1/2	11 3 10 7	11 46	71 124 434
1-11 11-9 9-0	10 10 45	9.5 11 5	5.5 2 5	34 34	18.1 15.4	11 11	199 169 64
Total							1067

Having completed the design of Circuit 3, it is simple to design Circuit 2 because it has four sections in common with Circuit 3 and it is only necessary to design Sections 5-2 and 2-8, as shown in Table 5, so that the total fh of Circuit 2 will be practically equal to the total fh of Circuit 3.

Having completed the design of Circuit 2, it is necessary to design Circuit 1, as shown in Table 5, so that its total fh will be approximately equal to the total fh of the other two circuits since all three circuits have equal pressure heads.

Two-Pipe Forced Circulation System

Example 4. In the design of a system for Fig. 11, as in the design of Example 2, there are three unknowns—pressure head, pipe size, and flow-return temperature difference, any two of which may be assumed and the third found. In the design of a system for

Fig. 8, the pressure head and the temperature difference were assumed and the pipe sizes found. In this case, the pressure head is to be found.

Solution. In selecting the temperature difference and the pipe sizes, it should be borne in mind that the first cost of the pipe system and of the radiation is reduced by reducing the temperature difference and by reducing the pipe sizes, but the ph and the cost of pumping the water are increased. The choice of temperature difference and pipe sizes which produce the greatest economy in first cost and in cost of operation can be determined after having made two or three trial designs. For the first design, 20 F will be selected as the temperature difference and the pipe sizes will be chosen as shown in Fig. 11. A calculation similar to that of Table 6 will show that the fh of Circuits 1, 2, and 3 will be, respectively, about 9000, 15,300, and 14,300 milinches. To increase the fh of Circuit 1 from 9000 to 15,000 milinches would require the insertion in the circuit of a section of $\frac{3}{8}$ in. pipe, or an orifice resistor, or a regulating valve. However, this would cause unnecessary expense. The system will function well with the pipe system shown in Fig. 11. If the circulator maintains a pressure head of 15,300 milinches, the velocity in Circuit 1 will increase until the fh of the circuit is also 15,300 milinches; i. e., its fh will be increased from the calculated 9000 to the required 15,300, or 6300 milinches.

As calculated, the three radiators are to dissipate 10, 15, and 20 Mbh, respectively, with a temperature difference of 20 F. Consequently, water must flow through these three radiators at the rates of 1, 1.5, and 2 gpm, respectively. When water flows through

Fig. 11. Two-Pipe Forced Circulation System

a $\frac{1}{2}$ in. pipe at the rate of 1 gpm, the velocity in the pipe is (Fig. 3) about 13 in. per second and the unit fh is 165 milinches. The equivalent length of sections 4-10, 10-1, 1-11, and 11-9 of this circuit is 50 ft, and its total fh is 8250. In order that the fh may be increased 6300 milinches, the unit fh must be increased 126 milinches; consequently, the velocity in the $\frac{1}{2}$ in. pipe (Fig. 3) must be increased from 13 to 16 in. per second. Hence, when the fh of Circuit 1 has been increased to 15,300, water will flow through Radiator 1 at the rate of $16 \div 13$, or 1.23 gpm. This increase in volume of water will increase the load on the circulating pump in the proportion of 450 to 473 and will increase the heat dissipation of Radiator 1 slightly (about 3 per cent) but otherwise will not affect the operation of the system.

One-Pipe Gravity Circulation System

Example 5. A one-pipe system is one in which the water flows through more than one radiator before it returns to the boiler to be reheated. A two-pipe system as shown in Figs. 10 and 11 is one in which the water returns to the boiler to be reheated after it has passed through one radiator. Many large heating systems contain some one-pipe and some two-pipe sections. The piping system shown in Fig. 12 functions with a flow-return temperature difference of 40 F.

Solution. Since the four radiators are each to deliver 15 Mbh, and since the water is to leave the boiler at 200 F and return at 160 F, Radiator 1 will receive 200 F water, Radiator 2, 190 F water, Radiator 3, 180 F water, and Radiator 4, 170 F water. Since the system is to supply 60 Mbh with a temperature difference of 40 F and since 1 lb of water liberates 1 Btu when cooled 1 F, it is necessary that water circulate through this

CHAPTER 16. HOT WATER HEATING SYSTEMS AND PIPING

system at the rate of $60,000 \div 40$, or 1,500 lb per hour, or 25 lb per minute. Assuming one gallon of water to weigh 8.33 lb, water must circulate in the system at the rate of 3 gpm. If the temperature difference were 20 F instead of 40, the circulation would be at the rate of 6 gpm. It is well to remember that, with a temperature difference of 20 F, water circulating at the rate of 1 gpm will convey heat at the rate of 10 Mbh. The chart of Fig. 3 shows the rate of circulation in gpm on the upper scale and the corresponding heat conveyance on the lower scale.

The system may be divided into 5 separate systems. Each of the four radiators with its flow and return lines constitutes an elementary heating system (similar to Example 1), and the flow main with its two risers is also a complete elementary system.

If the center of the boiler is 4 ft below the center of the flow main, and if the flow riser contains 200 F water and the return riser, 160 F water, the ph for the main circuit is (Fig. 4) 4 x 175, or 700 milinches. The circuit consists of 110 ft of pipe and 10 elbow equivalents; its equivalent length is about 150 ft if a 2 in. pipe is used as the main. The average ph will be $700 \div 150$, or 47 milinches. According to Fig. 3 or Table 1 for a 4.7 milinch fh, a 2 in. pipe will convey about 70 Mbh. Since the pipe is to convey only 60 Mbh, it is slightly too large but should be used. The fh will, then, be 3.5 milinches instead of the permissible 4.7. The water will circulate with a temperature difference slightly less than 40 F, and the three last radiators would receive water slightly warmer than indicated in Fig. 12.

Fig. 12. One-pipe Gravity Circulation System

As the water flows in the main and arrives at one of the four points marked A, the flow will be divided and a portion of the water will take the short path in the main to the point B, and the remainder will take the long path through the radiator to the point B. Since the two paths together offer less resistance to the flow than the one path alone, the unit fh will be less than 3.5 milinches between the points A and B. If the distance from A to B is 4 ft, and if, for example, the flow in the short path is 2 gpm, the ph forcing the water along the two paths is 4 x 1.6, or about 6 milinches. Since the fh of the long path is much greater than the fh of the short path, only a comparatively small portion of the water would take the long path. However, the gravity head of the radiator supplies an additional ph for the long path. However, the gravity head of the radiator supplies an additional ph for the long path. If the center of the radiator is 4 ft above the main and if the radiator circuit is designed for a temperature difference of 30 F, the radiator ph will be about 4 x 120, or 480 milinches. In that case, the ph is 6 milinches for the short path and 486 milinches for the long path. The radiator circuit consists of 11 ft of pipe and about 14 elbow equivalents. If the circuit is of 1 in. pipe, its equivalent length is about 40 ft and the unit fh should be $486 \div 40$, or 12 milinches. For this fh and 30 F temperature difference, a 1 in. pipe conveys about 15 Mbh (Fig. 3). A 1 in. pipe is, therefore, the correct size, and the water would flow through the radiator with a temperature difference of 30 F.

Since each of the four radiators delivers one fourth of the total heat, and since the total temperature difference is to be 40 F, the water would cool 10 F in every radiator if all the water passed through every radiator. Since the water cools about 30 F in flowing through the radiator only $\frac{1}{3}$ of the water flows through the radiator and $\frac{2}{3}$ flow through the main from point A to point B.

It follows from these calculations that, if the main is of 2 in. pipe and the radiator

branches are of 1 in. pipe, water will circulate through the system at the rate of 3 gpm with a temperature difference somewhat less than 40 F and that, at the radiator connections, water will circulate through the radiators at the rate of 1 gpm and that, consequently, between radiator branch connections the fh is at a lower rate since only 2 gpm flow through in the main between those points.

One-Pipe Forced Circulation System

Example 6. The system shown in Fig. 12 as a gravity circulation system may be changed to a forced circulation system by inserting a circulating pump as shown in Fig. 13. The location of the expansion tank should then be changed as indicated.

Solution. To design this system the pipe sizes and the temperature difference may be assumed; for example, $1\frac{1}{4}$ in. pipe may be selected for the main and $\frac{3}{4}$ in. pipe for the radiator branches and risers, and 20 F as the flow-return temperature difference. Since the system is to deliver 60 Mbh with a temperature difference of 20 F, the pump must circulate $60 \div 10$, or 6 gpm.

For this load, the unit fh for a $1\frac{1}{4}$ in. pipe is 86 milinches. The main circuit consists of 110 ft of pipe and 10 elbow equivalents and may be placed equal to 136 ft of $1\frac{1}{4}$ in. pipe.

Fig. 13. One-pipe Forced Circulation System

The total fh for the main circuit is 136 x 86, or 11,696 milinches, or practically 1 ft for a flow of 6 gpm.

At the points A, a portion of the water will be diverted through the radiator circuit, and as a result less than 6 gpm will flow in the main between the points A and B, and the fh will be slightly less than 86 milinches per foot between these points. But the difference will be so small that it may be neglected and the total fh from A to B assumed to be 4×86 , or 344 milinches. The ph forcing the water through the radiator circuit will then be 344 milinches. The radiator circuit consists of 11 ft of pipe and about 14 elbow equivalents and may be placed equal to 32 ft of pipe and the available ph $344 \div 32$, or about 11 milinches per foot. With this ph, a $\frac{3}{4}$ in. pipe will convey about 5 Mbh (Fig. 3), or 0.5 gpm. Hence, only $5 \div 60$, or about 8 per cent of the water, would flow through the radiator, if the radiator's gravity head is not considered. The water would, then, have to cool 60 F in order to deliver 15 Mbh, and the average radiator temperature would be 170 if the water entered at 200. This would require a large radiator and result in an unsatisfactory installation.

To secure a larger flow of water through the radiator it is necessary to increase the fh of the short path A-B in the main. This may be done by inserting special resistance tees at points A and B, or by inserting an orifice resistor between points A and B, or by reducing the $1\frac{1}{4}$ in. main between the points A and B to the next smaller size, *i.e.* 1 in.

The relative quantity of water flowing through the radiator may then be found by trial calculations. Assume, first, that 1 gpm will flow through the radiator and 5 gpm through the main. The ph for 1 gpm and a 34 in. pipe is 40 milinches per foot, or 32 x 40, or 1280 for the radiator circuit.

The main circuit consists of 4 ft of 1 in. pipe and two reducing tees. The two reducing tees may be placed equal to 0.8 elbow equivalents (Table 3), and the equivalent length of the main circuit equal to 5.7 ft.

CHAPTER 16. HOT WATER HEATING SYSTEMS AND PIPING

The fh for 5 gpm and a 1 in. pipe is 240 millinches per foot, or 5.7 x 240, or 1370 millinches for the main circuit. Since this is only slightly more than the calculated fh for the radiator circuit, it is evident that the flow through the radiator will be slightly more than 1 gpm, and it is not necessary to make a second trial calculation. The quantity of water flowing through the radiator can be varied by varying the distance between the points A and B, where the radiator branches join the main.

In order to deliver 15 Mbh to the radiator with a temperature difference of 20, it is necessary that 1.5 gpm flow through the radiator; since, in this case, the flow through the radiator is only 1 gpm, the temperature difference must be 30 F.

If the water enters the radiator at 190 F, the average water temperature will be 175 F. The quantity of water circulating through the radiator may be varied con-

Fig. 14. Two-Pipe Reversed Return System

siderably without an appreciable effect on the quantity of heat dissipated by the radiator. This is evident from the following calculation.

Assume that Radiator 2 has been designed so that it will dissipate 15 Mbh when its flow of water is at the rate of 1 gpm, and when its average temperature is 175 F. Assume that the flow of water is increased 50 per cent—from 1 gpm to 1.5 gpm. The water will then flow through the radiator in two-thirds the time and will cool two-thirds as much; i.e., it will cool 20 F instead of 30 F, and the average radiator temperature will be 180 F instead of 175 F. If the surrounding temperature is 70 F, the temperature differences, radiator and surroundings, will be 110 and 115 F, respectively. Consequently, the heat dissipation will be increased only about 6 per cent when the quantity of water flowing through the radiator is increased 50 per cent.

Fig. 15. Two-Pipe Direct Return System

By decreasing the main from $1\frac{1}{4}$ to 1 in. between radiator branches while the flow is decreased from 6 to 5 gpm, the fh in that section of the main is increased from 344 to 1370 milinches, or 926 milinches. Hence, for the four radiator sections the increase is 3704 milinches, and the total fh for the circuit will be 11,696 plus 3704, or 15.4 in. instead of 11.7 in. as first calculated. The pump must, therefore, circulate 6 gpm against a head of 1.3 ft.

Reversed and Direct Return Systems

In a reversed return system the radiators are connected so that all circuits are practically of equal length and so that the water flowing through the radiator nearest the boiler must travel practically as far as

CIRCUIT	Load Mbh	Pipe Length Ft	Elbows No.	Equivalent Length Ft	Size In.	Unit Friction Milinches PER FT	TOTAL FRICTION, MILINCHES
0-1 1-2 2-3 3-4	3600 3150 2700 2250	65 130 130 130	1.8 0 0 0	78 130 130 130	6 5 5 5	100 180 150 100	7800 23,900 19,500 13,000
4-5 5-6 6-7 7-8	1800 1350 900 450	130 130 130 130 130	2 0 0 0	142 130 130 130	4 4 3½ 2½	210 125 113 190	29,800 16,200 14,700 24,700
8-16	450		Es	timated Friction	Head	<u> </u>	20,000
16-17 17-18	3600 7200	65 130	1 8 0	78 130	6 8	100 90	7,800 11,670
						Total	188,570

Table 6. Tabulated Data for Example 7

the water flowing through the radiator farthest from the boiler, as illustrated in Fig. 14. In a direct return system the radiators are connected so that all water returns to the boiler along the most direct path after it has passed through its radiator, as illustrated in Fig. 15.

Example 7. In Fig. 14, sixteen air conditioning units, each demanding 450 Mbh, are to be supplied with water from a central plant. The system is divided into two equal parts as shown. Each part supplies eight units and has, therefore, eight circuits. The total length of each of the eight circuits is about 1170 ft.

Solution. If the total fh is to be about 15 ft, the unit fh must be about 150 milinches per foot. With this preliminary estimate, pipe sizes may be selected from Fig. 3 and recorded with corresponding calculations as shown in Table 6 for Circuit 8, from which it appears that the fh of this circuit is 188,570 milinches, or 15.7 ft.

In order that each of the eight air conditioning units may receive an equal supply of water, the fh of each of the remaining circuits must also be 15.7 ft. Since all pipe sizes have been selected as shown in Example 6, any adjustments that may be necessary must be made in the connections from the main through the air conditioning unit and back to the main. For Circuit 8 the friction head through the air conditioning unit was assumed to be 20,000 milinches. For Circuit 4, for example, a tabular calculation like that for Circuit 8 shows that the fh for Section 4-12 must be 19,700 milinches in order that the total fh may be 15.7.

This is practically equal to the 20,000 fh assumed for Circuit 8 and this shows how simple it is to secure well-balanced circuits in a reversed return system.

Example 8. The direct return, forced circulation system shown in Fig. 15 is similar to Fig. 14, except that the water passing through Unit 1 returns directly to the boiler and the total length of this circuit is about 130 ft, whereas, the total length of Circuit 8 is about 1990 ft, or about 15 times as long.

Solution. The design must begin with Circuit 8. The calculations for this circuit if tabulated as shown for Circuit 8 of Fig. 14 will show that the total fh is 318,200 milinches, or 26.5 ft, as compared with 15.7 ft for the reversed return system.

In order that each of the eight units will receive its correct share of the water, the fh of each of the other seven circuits must also be 26.5 ft. For Circuit 1, for example, the total fh for Section 0-1 and 16-17 is 15,600 milinches; hence, the fh in Section 1-16 (through the air conditioning unit) must be 302,600 milinches, or 25.15 ft to prevent Unit 1 having an advantage over Unit 8.

Comparing the reversed return system of Fig. 14 with the direct return system of Fig. 15, it appears that the head against which the pump must deliver the 720 gpm is 15.7 ft as compared with 26.5 ft for the direct return and that the installation of the reversed return would require 130 ft of 8 in. pipe not necessary for the direct return system. The fh in the lines joining the pump to the pipe system shown in Fig. 14 and 15 is not included in this calculation.

Chapter 17

DISTRICT HEATING

Steam Distribution Piping, Selection of Pipe Sizes, Provision for Expansion, Capacity of Returns with Various Grades, Conduits for Piping, Pipe Tunnels, Inside Piping, Steam Requirements, Fluid Meters and Metering, Rates, Utilization, Automatic Temperature Control

THOSE phases of district heating which frequently fall within the province of the heating engineer are outlined here with data and information for solving incidental problems in connection with institutions and factories. Some data are included to cover the piping peculiar to heating systems which are to be supplied with purchased steam. A complete district heating installation should not be attempted without a thorough study of the entire problem by men competent and experienced in that industry.

STEAM DISTRIBUTION PIPING

The methods used in district heating work for the distribution of steam are applicable to any problem involving the supply of steam to a group of buildings. The first step is to establish the route of the pipes, and in this matter the local conditions so fully control the layout that little can be said regarding it.

Having established the route of the pipes, the next step is to calculate the pipe sizes. In district heating work it is common practice to design the piping system on the basis of pressure drop. The initial pressure and the minimum permissible terminal pressure are specified and the pipe sizes are so chosen that the required amount of steam, with suitable allowances for future increases, will be transmitted without exceeding this pressure drop. The steam velocity is therefore almost disregarded and may reach a very high figure. Velocities of 35,000 fpm are not considered high. By the use of this method the pipe sizes are kept to a minimum with consequent savings in investment.

The steam flowing through any section of the piping can be computed from a study of the requirements of the several buildings served. In general a condensation rate of 0.25 lb per hour per square foot of equivalent heating surface is a safe figure. This allows for line condensation which, however, is a small part of the total at times of maximum load. Miscellaneous steam requirements such as laundry, cooking, or process should be individually calculated.

The steam requirements for water heating should be taken into account,

but in most types of buildings this load will be relatively small compared with the heating load and will seldom occur at the time of the heating peak. Unusual features such as large heaters for swimming pools should not be overlooked.

The pressure at which the steam is to be distributed will depend upon (1) boiler pressure, (2) whether exhaust or live steam, (3) pressure requirements of apparatus to be served. If steam has been passed through electrical generating units, the pressure will be considerably lower than if live steam, direct from the boilers, is used.

The advantages of low pressure distribution (2 to 30 lb per square inch) are (1) smaller heat loss from the pipes, (2) less trouble with traps and valves, (3) simpler problems in pressure reduction at the buildings, and (4) general reduction in maintenance costs. With distribution pressures not exceeding 40 lb per square inch there is little danger even if the full distribution pressure should build up in the radiators through the faulty operation of a reducing valve; but with pressures higher than this a second reducing valve or some form of emergency relief is usually desirable to prevent excessive pressures in the radiators.

The advantages of high pressure distribution are (1) smaller pipe sizes and (2) greater adaptability of the steam to various operations other than building heating.

The different kinds of apparatus which frequently must be served require various minimum pressures. Kitchen equipment requires from 5 to 15 lb per square inch, the higher pressures being necessary for apparatus in which water is boiled, such as stock kettles and coffee urns. An increased amount of heating surface, which is easily obtained in some kinds of apparatus, results in quicker and more satisfactory operation at low pressures. For laundry equipment, particularly the mangle, a pressure of 75 lb per square inch is usually demanded although 30 lb per square inch is sufficient if the mangle is equipped with a large number of rolls and if a slow rate of operation is permissible. Pressing machines and hospital sterilizers require about 50 lb per square inch.

PIPE SIZES

The lengths of pipe, steam quantities, and initial and terminal pressures having been chosen, the pipe sizes can readily be calculated by means of the Unwin pressure drop formula. This is one of several formulae which may be used. Unwin's formula, which gives pressure drops slightly larger than actual test results, is as follows:

$$P = \frac{0.0001306 \ W^2 L \left(1 + \frac{3.6}{D}\right)}{dD^5} \tag{1}$$

where

P =pressure drop, pounds per square inch.

W = weight of steam flowing, pounds per minute.

L = length of pipe, feet.

D =inside diameter of pipe, inches.

d = average density of steam, pounds per cubic foot.

This formula is similar to the Babcock formula given in Chapter 15.

CHAPTER 17. DISTRICT HEATING

Information on provision for expansion will be found in Chapter 18. Where steam and return piping are installed in the same conduit, the return piping usually follows the same grade as the steam piping. In general, the condensation is pumped back under pressure. Where the condensation returns by gravity, Table 1 gives the sizes of the return piping. It is evident that at points where the grade is great, smaller pipes can be installed.

CONDUITS FOR PIPING

Conduits for steam pipes buried underground should be reasonably waterproof, able to withstand earth loads and to take care of the expansion and contraction of the piping without strain or stress on the couplings, or without affecting the insulation or conduit. Expansion of the piping must be carefully controlled by means of anchors and expansion joints or bends so that the pipes can never come in contact with the conduit. Anchors can be anchor fittings or U-shaped steel straps which partially encircle the pipes and are firmly bolted to a short length of structural or cast steel set in concrete. In general, cast steel is preferable to structural steel.

Table 1. Capacity of Returns for Underground Distribution Systems in Pounds of Condensate per Hour

Size a		PITCH OF PIPE PER 100 FT												
In.	6"	1'	2'	3'	5′	10'	20'							
1	448	998	1890	2240	3490	5490	7490							
11/4	1740	2490	3990	4880	6480	9480	13500							
11/2	2700	4190	5740	7480	9480	14500	20900							
2	4980	7380	10700	13900	16900	24900	36900							
3	13900	22500	30900	37400	50400	74800	105000							
4	30900	44 800	64800	79700	105000	154000	229000							
5	54800	79800	120000	144800	195000	294000	418000							
6	90000	138000	187000	237000	312000	449000								
8	190000	277000	404000	508000	660000	938000								
10	344000	498000	724000	900000	1190000									
12	555000	798000	1148000	1499000	1990000	**********								
12	333000	7,5000	113000	117,000	1775000	************								

aSize of pipe should be increased if it carries any steam.

In laying out underground conduits the following points should be borne in mind:

- 1. The depth of the buried conduit should be kept at a minimum. Excavation costs are a large factor in the total cost.
 - 2. An expansion joint, offset, or bend should be placed between each two anchors.
- 3. If the distance between buildings is 150 ft or less and the steam line contains high-pressure steam, the line may be anchored in the basement of one building and allowed to expand into the basement of the second building. If the steam line contains low-pressure steam (up to 4-lb pressure), this method may be used if buildings are 250 ft or less apart.
- 4. If the distance between buildings is between 150 ft and 300 ft and the steam line contains high-pressure steam, the lines should be anchored midway between the buildings and allowed to expand into the basements of both buildings. If the steam line contains low-pressure steam this method may be used if buildings are between 250 ft and 600 ft apart. No manhole is required at the anchor, and a blind pit is all that is necessary.
- 5. For longer lines, manholes must be located according to experience, physical conditions and the expansion value of the type of expansion joint or bend that is used. The

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

minimum number of manholes will be required when an expansion bend, or an anchor with double expansion joint, is placed in each manhole and the pipes are anchored midway between manholes.

6. A proper hydrostatic test should be made on the assembled line before the insulation and the top of the conduit are applied. The hydrostatic test pressure should be one and one-half times the maximum allowable pressure and it should be held for a period of at least two hours without evidence of leakage. In any case the pressure should be no less than 100 lb per square inch.

There are many types of conduits, some of which are manufactured products and some of which are built in the field. The styles and construction of conduits commonly used may be classified as follows. Some of the more common forms are illustrated in Fig. 1.

Fig. 1. Construction Details of Conduits Commonly Used

Wood Casing: The pipe is enclosed in a cylindrical casing usually having a wall 4 in. thick and built of segments which are bound together by a wire wrapped spirally around the casing. The casing is lined with bright tin and coated with asphaltum. The pipe is supported on rollers carried in a bracket which fits into the casing. The lengths of casing are tightly fitted together with a male and female joint. This form of conduit is illustrated in Fig. 1 at A. The casing rests on a bed of crushed stone with tile drains laid below. The tile drains are of 4-in. field tile or vitrified sewer tile, laid with open joints.

Filler Type: The pipes are supported on expansion rollers properly supported from the conduit or independent masonry base. The pipes are protected by a split-tile conduit, and the entire space between the pipes and the tile is filled with an insulating filler. Thus the pipes are nested and the insulation between them and the tile effectively prevents circulation of air. The conduit is placed on a bed of gravel or crushed rock from 4 to 6 in. thick, which is extended upward so as to come about 2 in. above the parting lines of the tile. A tile underdrain is placed beneath the conduit throughout the entire length and is connected to sewers or to some other point of free discharge. At B and D in Fig. 1 are shown two forms of tile conduit of the filler type.

Circular Tile or Cast-Iron Conduit: The pipes are carried on expansion rollers supported on a frame which rests entirely on the side shoulders of the base drain foundation. The pipes are protected by a sectional tile conduit, scored for splitting, or a cast-iron conduit, both being of the bell and spigot type. The conduit has a longitudinal side joint

CHAPTER 17. DISTRICT HEATING

for cementing, after the upper half of conduit is in place, so shaped that the cement is keyed in place while locking the top and bottom half of the conduit together with a water-tight vertical side joint. The cast-iron conduit has special side locking clamps in addition to the vertical side joint. The entire space between the conduit and the pipes is filled with a water-proofed asbestos insulation. The conduit is supported on the base drain foundation, each section resting on two sections of the base drain, thus inter-The base drain is so shaped that it provides a cradle for the conduit, resting solidly on the trench bottom and providing adequate drainage area immediately under the conduit. The underdrain is connected to sewers or some other point of free discharge. For tile conduit the base drain is vitrified salt glazed tile and for cast-iron conduit it is either extra heavy tile or cast-iron. A free internal drainage area is also provided to carry away any water that may collect on the inside of the conduit from a leaky pipe or joint in luit. Broken stone is filled in around the base drain and up to the vertical side. The broken stone is covered with an asphalted filter cloth to prevent sand the conduit. from sifting through the broken stone and clogging the drainage area of the base drain. The tile conduit is made in 2-ft lengths and the cast-iron conduit in 4-ft lengths, cast in separate top and bottom halves. Special reinforcing ribs give the cast-iron conduit ample strength with minimum weight.

Insulated Tile Type: The insulating material, diatomaceous earth, is molded to the inside of the sectional tile conduit. The space between the pipes and the insulating conduit lining may also be filled with insulation. The pipes are carried on expansion rollers supported on a frame which rests on the side shoulders of the base drain foundation. This type of conduit has the same mechanical features as those described under the heading Circular Tile or Cast-Iron Conduit.

Sectional Insulation Type (Tile or Cast-Iron): Each pipe is insulated in the usual way with any desired type of sectional pipe insulation over which is placed a standard water-proof jacket with cemented joints. The pipes are enclosed in a sectional tile or cast-iron conduit as described under the heading Circular Tile or Cast-Iron Conduit.

Sectional Insulation Type (Tile or Concrete Trench): A type of construction frequently used in city streets, where service connections are required at frequent intervals, the pipes are insulated as described in the preceding paragraph, and are enclosed in a box or trench made either entirely of concrete, or with concrete bottom and specially constructed tile sides and tops. The pipes are supported on roller frames secured in the concrete. At C and E, Fig. 1, are shown two tile conduits using sectional insulation. In these particular designs the space surrounding the pipe is filled partially or wholly with a loose insulating material. The use of loose material in addition to the sectional insulation is, of course, optional and is only justifiable where high pressure steam is used. The conduit shown at F is of a similar type and has the advantage of being made entirely of concrete and other common materials.

Sectional Insulation Type (Bituminized Fibre Conduit): Each pipe is individually insulated and encased in a bituminized fibre conduit. The insulating material is 85 per cent carbonate of magnesia sectional pipe covering, applied in the usual manner as on overhead pipes, except that bands are omitted. After every fifth section of magnesia covering there is applied a short, hollow section of very hard asbestos material in the bottom portion of which rests a grooved-iron plate carrying ball-bearings upon which the pipe rides when expanding or contracting. This short expansion section is of the same outside diameter as the adjacent 85 per cent magnesia covering. Over the pipe covering and expansion device there are placed two layers of bituminized fibre conduit with all joints staggered, and the surface of each conduit is finished with liquid cement. Conduits are placed on a bed of crushed rock or gravel, approximately 6 in. deep, and this is extended upward to about the center line of the conduit when trench is backfilled. Underdrains leading to points of free discharge are placed in the gravel or crushed rock beds.

Special Water-Tight Designs: It is occasionally necessary to install pipes in a very wet ground, which calls for special construction. The ordinary tile or concrete conduit is not absolutely water tight even when laid with the utmost care. The conduit shown at G, Fig. 1, is of cast-iron with lead-calked joints and is water-tight if properly laid. It is obviously expensive and is justified only in exceptional cases. A reasonably satisfactory construction in wet ground is the concrete or tile conduit with a water-proof jacket enclosing the pipe and its insulation, and with the interior of the conduit carefully drained to a manhole or sump having an automatic pump. It is useless to install external drain tile when the conduit is actually submerged.

Fig. 2. Connections for Reducing Valves of Size Less than 4 In.

PIPE TUNNELS

Where steam heating lines are installed in tunnels large enough to provide walking space, the pipes are supported by means of hangers or roller frames on brackets or frame racks at the side or sides of the tunnel. The pipes are insulated with sectional pipe insulation over which is placed a sewed-on, painted canvas jacket or a jacket of asphalt-saturated asbestos water-proofing felt. The tunnel itself is usually built of concrete or brick and water-proofed on the outside with membrane water-proofing.

On account of their relatively high first cost as compared with smaller conduits, walking tunnels are sometimes not installed where provision for the heating lines is the only consideration, but only where they are required to accommodate miscellaneous other services or provide underground passage between buildings.

OVERHEAD DISTRIBUTION

In some industrial and institutional applications, the distribution piping may be installed, entirely or in part, above ground. This method of construction has the advantage of requiring no excavation and being easily maintained.

Fig. 3. Connections for Reducing Valves of Size 4 In. and Larger, and for Expanded Valves

CHAPTER 17. DISTRICT HEATING

Fig. 4. Steam Supply Connection when Using Two Reducing Valves

INSIDE PIPING

Figs. 2 and 3 show typical service connections used for low pressure steam service. As shown in Fig. 2, no by-pass is used around the reducing valve on sizes less than 4 in. Fig. 3 illustrates the use of a by-pass around reducing valves 4 in. and larger. This latter construction permits the operation of the line in case of failure in the reducing valve. In the smaller sizes, the reducing valve can be removed, a filler installed, and the house valve used to throttle the flow of steam until repairs are made.

Fig. 4 shows a typical installation used for high pressure steam service. The first reducing valve effects the initial pressure reduction. The second reducing valve reduces the steam pressure to that required.

Most district heating companies enforce certain regulations regarding the consumer's installation, partly to safeguard their own interests but principally to insure satisfactory and economical service to the consumer. There are certain fundamental principles that should be followed in the design of a building heating system which is to be supplied from street mains. Although some of these apply to any building, they have been demonstrated to be especially important when steam is purchased.

Fig 5. Return Piping for Condensation Meter

CHAPTER 17. DISTRICT HEATING

1. Provision should be made for conveniently shutting off the steam supply at night and at other times when heat is not needed.

It has been thoroughly demonstrated that a considerable amount of heat can be saved by shutting off steam at night. Although there is, in some cases, an increased consumption of heat when steam is again turned on in the morning, there is a large net saving which may be explained by the fact that the lower inside temperature maintained during the night obviously results in lower heat loss from the building, and less heat need therefore be supplied.

Steam can be entirely shut off at night in most buildings even in very cold weather without endangering plumbing. It is necessary, however, to have an ample amount of heating surface so that the building can be quickly warmed in the morning. Where the hours of occupancy differ in various parts of the building, it is good practice to install separate supply pipes to the different parts. For example, in an office building with stores or restaurants on the first floor which are open in the evening, a separate main supplying the first floor will permit the steam to be shut off from the remainder of the building in the late afternoon. The division of the building into zones each with a separately controlled heat supply is sometimes desirable, as it permits the heat to be adjusted according to variations in sunshine and wind.

2. Residual heat in the condensate should be salvaged.

This heat may be salvaged by means of a cooling coil, or as is more frequently done, by a water heating economizer (see Fig. 5) which preheats the hot water supply to the building. Fig. 6 shows a typical steam service installation for high pressure steam, complete for steam flow metering, water heating, preheating, automatic heating control, and for using steam for other purposes.

The condensation from the heating system, after leaving the trap, passes through the economizer. The supply to the hot water heater passes through the economizer, absorbing heat from the condensate. If the hot water system in the building is of the recirculating type, the recirculating connection should be tied in *between* the economizer and the water heater proper, not at the economizer inlet, because the recirculated hot water is itself at a high temperature. The number of square feet of heating surface in the economizer should be approximately equal to one per cent of the equivalent square feet of heating surface in the building.

Because of the lack of coincidence between the heating system load and the hot water demand, a greater amount of heat can be extracted from the condensate if storage capacity is provided for the preheated water. Frequently a type of economizer is used in which the coils are submerged in a storage tank.

3. Heat supply should be graduated according to variations in the outside temperature.

This may be done in several ways, as by the use of temperature controls of various types or by orifice systems. Another method which is very simple is the use of an ordinary vacuum return line system in which the pressure in the radiators is varied between a high vacuum and a few pounds pressure, thus producing some control over the heat output of the heating system by varying the temperature of the steam in the radiators. Several proprietary systems are on the market which accomplish this automatically, either with outdoor or indoor controls or a combination of both. One form of control which appears to be well suited for controlling district steam service to a building is the weather compensating control. It regulates the steam supply automatically according to the outdoor temperature, and gives frequent short intervals of intermittent steam supply, and at the same time insures delivery of steam to all the radiators. This type of control can be equipped with time clocks and thermostats to provide a warming-up period in the morning.

Another form of regulation, known as the time-limit control, is sometimes employed for regulating the steam supply from the central station main to the building. Such a control provides an intermittent supply of steam to the radiators either throughout the 24 hours of the day or during the daytime hours only. The setting of a switch may provide no service, continuous service, or periodic service. For the latter, by means of several intermittent settings, steam will be supplied during each period in increments of a certain number of minutes for each successive setting of the switch, steam being shut off during the balance of the period. These settings afford from 15 to 80 per cent of the maximum heating effect required on days of zero temperature. A night switch with a variety of settings may be adjusted so as to maintain throughout the night the intermittent supply called for by the day switch setting, or may be set to interrupt the opera-

tion of the day switch and entirely cut off the supply of steam to the radiation at night during certain hours which are selected by the operating engineer.

The maximum in economical operation and satisfactory heating can only be obtained by the use of some automatic temperature control system.

FLUID METERS

The perfection of fluid meters has contributed more to the advancement of district heating than any other one thing. These meters may be classified as follows:

- 1. Positive Meters: The fluid passes in successive isolated quantities—either weights or volumes. These quantities are separated from the steam and isolated by alternately filling and emptying containers of known capacity.
- 2. Differential Meters: In the differential meter, the quantity of flow is not determined by simple counting, as with the positive meter, but is determined from the action of the steam on the primary element.

Additional sub-divisions of these two general classifications can be made as follows:

In selecting a meter for a particular installation, the number of different makes and types of meters suitable for the job is usually limited by one or more of the following considerations:

- 1. Its use in a new or an old installation.
- 2. Method to be used in charging for the service.
- 3. Location of the meter.
- 4. Large or small quantity to be measured.
- 5. Temporary or permanent installation.
- 6. Cleanliness of the fluid to be measured.
- 7. Temperature of the fluid to be measured.
- 8. Accuracy expected.
- 9. Nature of flow: turbulent, pulsating, or steady.
- 10. Cost.
 - (a) Purchase price.
 - (b) Installation cost.
 - (c) Calibration cost.
 - (d) Maintenance cost.
- 11. Servicing facilities of the manufacturer.
- 12. Pressure at which fluid is to be metered.
- 13. Type of record desired as to indicating, recording or totalizing.
- 14. Stocking of repair parts.

CHAPTER 17. DISTRICT HEATING

- 15. Use of open jets where steam is to be metered.
- 16. Metering to be done by one meter or by a combination of meters.
- 17. Use as a check meter.
- 18. Its facilities for determining or recording information other than flow.

Condensation Meters

The majority of the meters used by district heating companies in the sale of steam to their customers are condensation meters.

The condensation meter is a popular type for use on small and medium sized installations, where all of the condensate can be brought to a common point for metering purposes. Its simplicity of design, ease in testing, accuracy at all loads, low cost, and adaptability to low pressure distribution has made it standard equipment with many heating companies.

Two types of condensation meters are in general use: the *tilting bucket* meter and the *revolving drum* or *rotor* meter of which there are several makes on the market. Condensation meters should not be operated under

Fig. 7. Gravity Installation for Condensation Meter Using Vented Receivers

• pressure; they are made for either gravity or vacuum installation. Continuous flow traps are necessary ahead of the meter if a vented receiver is not used. Where bucket traps are used, a vented receiver before the meter is essential. If desirable a receiver may be used with a continuous flow trap, but this is not necessary.

Fig. 7 illustrates a gravity installation using a vented receiver ahead of the meter, while Fig. 8 shows a vacuum installation without a master trap.

Flow Meters

Steam flow meters are available in many types and combinations. The *orifice* and *plug* meter is one in which the steam flow varies directly as the area of the orifice. The vertical lift of the plug, which is proportional to the flow, is transmitted by means of a lever to an indicator and to a pencil arm which records the flow on a strip chart. The total flow over a given period is obtained by measuring the area by using a planimeter on the chart and applying the meter constant.

Fig. 9 shows a typical orifice-type meter connection and indicates typical requirements in the installation of this type of meter.

Flow meters using an orifice, Venturi tube, flow nozzle, or Pitot tube as the primary device are made by a number of manufacturers and can be obtained in either the mechanically or electrically operated type. The electric flow meter makes it possible to locate the instruments at some distance from the primary element.

Flow meters employing the orifice, Venturi tube, flow nozzle or Pitot tube should be so selected as to keep the lower operating range of the load above 20 per cent of the capacity of the meter. This is desirable for accuracy as the differential pressure at light loads is too small to properly actuate the meter. A few general points to be considered in installing a meter of this type are:

1. It is desirable to place the differential medium in a horizontal pipe in preference to a vertical one, where either location is available.

Fig. 8. Vacuum Condensation Meter Installation without Master Trap

- Reservoirs should always be on the same level and installed in accordance with the instructions of the meter company.
- 3. The meter body should be placed at a lower level than that of the pressure differential medium. Special instructions are furnished where the meter body is above.
 - 4. Meter piping should be kept free from leaks.
 - 5. Sludge should not be permitted to collect in the meter body.
 - 6. The meter body and meter piping should be kept above freezing temperatures.
 - 7. It is best not to connect a meter body to more than one service.
 - 8. Special instructions are furnished for metering a turbulent or pulsating flow.

STEAM REQUIREMENTS

Steam requirements for heating various types of buildings are given in Chapter 11.

Steam requirements for water heating can be satisfactorily estimated

CHAPTER 17. DISTRICT HEATING

by using a consumption of 0.0025 lb per day per cubic foot of heated space for office buildings, and 0.0065 lb per day per cubic foot for apartment houses.

Additional data on steam requirements of various types of buildings in a number of cities may be found in the Handbook of the *National District Heating Association*.

RATES

Fundamentally, district heating rates are based upon the same principles as those recognized in the electric light and power industry, the main object being a reasonable return on the investment. However, there are

Fig. 9. Orifice Meter Steam Supply Connection

other requirements to be met; the rate for each class of service should be based upon the cost to the utility company of the service supplied and upon the value of the service to the consumer, and it must be between these two limits. District heating rates should be designed to produce a sufficient return on the investment regardless of weather conditions, although existing rate schedules do not conform with this principle. Lastly, the rate schedule must be reasonably easy for the intelligent layman to comprehend.

Depreciation should be based on a careful estimate of the life of various elements of the property. Appropriations to reserves should be made, with generosity in good years and with discretion in less favorable years.

Glossary of Terms

Load Factor. The ratio, in per cent, of the average hourly load to the

maximum hourly load. This is usually based on a one year period but may be applied to any specified period.

Demand Factor. The relation between the connected radiator surface or required radiator surface and the demand of the particular installation. It varies from 0.25 to 0.3 lb per hour per square foot of surface.

Diversity Factor. The ratio of the sum of the individual demands of a number of buildings to the actual composite demand of the group.

Types of Rates

- A. Flat Rates.
 - 1. Radiator surface charge. Obsolescent
- B. Meter Rates.

 - Straight-line.
 Step. Obsolescent.
 - 3. Block.
 - (a) Class rates.
- C. Demand Rates.

 - 1. Flat demand.
 2. Wright.
 3. Hopkinson.
 4. Doherty (or Three charge)

Straight-Line Meter Rate. The price charged per unit is constant, and the consumer pays in direct proportion to his consumption without regard to the difference in costs of supplying the individual customers.

Block Meter Rate. The pounds of steam consumed by a customer are divided into blocks of thousands of pounds each, and lower rates are charged for each successive block consumed. This type of charge predominates in steam heating rate schedules for it has the advantage of proportioning the bill according to the consumption and the cost of service. It has the disadvantage of not discriminating between customers having a high load factor (relatively low demand) and those having a low load factor (relatively high demand). The utility company must maintain sufficient capacity to serve the high demand customers and the cost of the increased plant investment is divided equally among the users, so the high demand customers are benefited at the expense of the others.

Demand Rates. These refer to any method of charge based on a measured maximum load during a specified period of time.

The flat demand rate is usually expressed in dollars per thousand pounds of demand per month or per annum. It is based on the size of a customer's installation, and is seldom used except where a flow meter is not practicable.

The Wright demand rate is similar in calculation to the block rate except that it is expressed in terms of hours' use of the maximum demand. It is seldom used but forms the basis for other forms of rates.

The Hopkinson demand rate is divided into two elements:

- (a) A charge based upon the demand, either estimated or measured.
- (b) A charge based upon the amount of steam consumed.

This rate may be modified by dividing the quantities of steam demanded and consumed into blocks charged for at different rates.

The *Doherty rate* is divided into three elements:

- (a) A charge based upon demand.
- (b) A charge based upon steam consumed.
- (c) A customer charge.

In the Hopkinson rate, the last two elements are combined into one element.

Demand rates are comparatively new and are not yet widely used; though they are equitable and competitive they are difficult for the average layman to understand.

CHAPTER 17. DISTRICT HEATING

They are of benefit to utility companies and to consumers because the investment and operating costs can be divided to suit the particular circumstances into demand, customer. and consumption groups through the use of some modification of the Hopkinson rate. Demand rates are an advantage to the customer in that the use of such a rate reduces the rate per thousand pounds to the long-hour user.

Fuel Price Surcharge. It is usually desirable to establish a rate upon a specified basic cost of fuel to the utility company. Where there are wide variations in the price of fuel, it is also desirable to add a definite charge per thousand pounds of steam sold for each increment of increase in the price of fuel. This surcharge automatically compensates for the variations without necessitating frequent changing of the whole rate structure.

UTILIZATION

Considerable savings can be made by the proper and intelligent operation of heating systems. It should be borne in mind that a heating system is designed to heat a building to 70 F inside when the outside temperature is at its lowest point for that particular locality. There is a tendency to overheat the building at any time the outside temperature is above the design temperature unless some method of regulation is used, either automatic or manual.

The general rules for economical operation are as follows:

- 1. Weatherstrip all windows, and calk all window frames.
- 2. Provide revolving or vestibule doors on all entrances. Separate shipping and receiving rooms by partitions so that the ever-open large doors will not ventilate the entire building.
 - 3. Keep the radiation near the outside walls, under the windows, if possible.
- 4. Eliminate all unnecessary ventilation. Ventilating equipment is sized to meet extreme requirements. Do not supply ventilation to a theater or auditorium adequate for an audience of 2000 when there are only 200 present.
- 5. Determine the hours that heating is required during the day and see that the steam is shut off for the maximum time at night, on Sundays, and holidays.
- 6. Shut steam off entirely in unoccupied sections of the building, taking care to avoid freezing the water in the plumbing system.
- 7. Shut off steam during the day whenever possible. During the year steam can be shut off about 55 per cent of the total daytime, and the saving is proportional. An automatic control will do it, but it can be done by hand with amazingly good results.
- 8. Determine the temperature required for the occupancy of the building. Do not heat a storage garage or a furniture warehouse to the temperature required in a hospital ward.
 - 9. Provide some good means of temperature control.
- 10. In a hot water heating system keep the temperature of the water down to correspond with existing outdoor temperatures.
- 11. In a vacuum system maintain a high vacuum. If this is not possible, locate and eliminate all leaks.
- 12. Install separate lines for those parts of the building that require long-hour or all-night heating. It is much cheaper than heating the entire building all night.
- 13. See that the entire system responds rapidly when steam is turned on. Locate and eliminate the cause of any sluggish circulation. Balance the radiation, provide adequate air elimination, and correct any trapped run-outs to provide quick system drainage.
- 14. Keep the system in good repair. Worn, damaged, or defective valves and traps will not function properly.
 - 15. Insulate all steam pipes not used as heating surface.
- ' 16. Do not obstruct radiators or prevent the free circulation of air around them; to do so seriously reduces the heating capacity of a radiator.
 - 17. Extract the heat in the condensate for hot water or some other useful purpose.
- 18. Provide thermometers and recording pressure gages so that the engineer can operate the system with full knowledge of what he is accomplishing.

- 19. Make all valves and controls convenient and accessible, either direct or through remote control. It is only human nature to delay and avoid doing that which is inconvenient.
- 20. Keep a daily record consistently, based on weather requirements, and watch it every day.
- 21. Control the heat supplied to water tanks located on or above the roof. Such tanks require heat to prevent freezing. No heat is required when the temperature in the tank is above 32 F.
- 22. Investigate every complaint of *no heat* by tenants; find the cause and correct it. Do not overheat an entire building to correct a local condition in one room.

AUTOMATIC TEMPERATURE CONTROL

As stated in Chapter 34, Automatic Control, properly applied to heating, ventilating and air conditioning systems, makes possible the maintenance of desired conditions with maximum operating economy.

In addition to the large possibilities for economy, the use of adequate temperature control provides more healthful, comfortable, and efficient working conditions in the buildings because through its use the building is uniformly heated with correct temperatures, and drafts from open windows and overheating are eliminated.

There are many types of temperature control available, each adaptable to a particular type of building, but all require uniform distribution of steam and proper venting.

Before the installation of any type of modern temperature control equipment, it is necessary to see that the heating system is put in good operating condition. In general, the heating system in a building is not given the attention that other mechanical equipment is given because it will continue to function, after a fashion, even though changes in piping. location of radiation, settlement of piping, and the normal wear and tear or other changes have taken place. Through all this depreciation of the system, it becomes more and more costly to operate and parts of the building have to be greatly overheated in order to prevent underheating in a small section of the building. Vents, traps, vacuum pumps, and valves should be given a careful inspection and replaced or repaired if required. The piping should be of adequate size and graded properly. The return piping should have a careful inspection, and any pockets or lifts removed and properly vented. These inspections and repairs are not costly and prevent a much greater outlay in future years. In most cities district heating companies will be willing to make a survey of heating systems and offer recommendations as to operation and changes in piping layout.

The selection of control equipment depends upon the type and size of building and the degree of saving possible.

Chapter 18

PIPE, FITTINGS, WELDING

Pipe Material, Types of Pipe Used, Dimensions of Pipe Commercially Available, Expansion and Flexibility of Pipe, Pipe Threads and Hangers, Types of Fittings, Welding as Applied to Erection of Piping, Valves, Corrosion of Piping

IMPORTANT considerations in the selection and installation of pipe and fittings for heating, ventilating, and air conditioning work are dealt with in this chapter.

PIPE MATERIALS

Use of corrosion-resistant materials for pipe, including special alloy steels and irons, wrought-iron, copper and brass, has increased considerably during the past few years. The recent development of copper, brass, and bronze fittings which can be assembled by soldering or sweating permits the use of thin-wall pipe and thereby has reduced the initial cost of such installation. The following brief discussion indicates the variety of pipe materials and the types of pipe available.

Wrought-Steel Pipe. Because of its low price, the great bulk of wrought pipe used for heating and ventilating work at the present time is of wrought steel. The material used for steel pipe is a mild steel made by the acid-bessemer, the open-hearth, or the electric-furnace process. Ordinary wrought-steel pipe is made either by shaping sheets of metal into cylindrical form and welding the edges together, or by forming or drawing from a solid billet. The former is known as welded pipe, the latter as seamless pipe.

Many types of welded pipe are available, although the smaller sizes most frequently used in heating and ventilating work are made by the lap-weld, resistance-weld, or butt-weld process. While the lap-weld and resistance-weld processes produce a better weld than the butt type, lap-weld and resistance-weld pipe are seldom manufactured in nominal pipe sizes less than 2 in. Seamless pipe can be obtained in the small sizes at a somewhat higher cost.

Seamless steel pipe is frequently used for high pressure work or where pipe is desired for close coiling, cold bending, or other forming operation. Its advantages are its somewhat greater strength which permits use of a thinner wall and, in the small sizes, its freedom from the occasional tendency of welded pipe to split at the weld when bent.

Wrought-Iron Pipe. Wrought-iron pipe is claimed to be more corrosion-resisting than ordinary steel pipe and therefore its somewhat higher

first cost is said to be justified on the basis of longer life expectancy. Wrought-iron pipe may be identified by the spiral line marked into each length, either knurled into the metal or painted on it in red or other bright color. Otherwise, there is little difference in the appearance of wrought iron and steel pipe, although microscopic examination of polished and etched specimens will readily disclose the difference.

Cast-Ferrous Pipe. There are now available several types of cast-ferrous metal pipe made of a good grade of cast-iron with or without additions of nickel, chromium, or other alloy. This pipe is available in sizes from $1\frac{1}{2}$ in. to 6 in., and in standard lengths of 5 or 6 ft with external and internal diameters closely approximating those of extra strong wrought pipe. Cast-ferrous pipe may be obtained coupled, beveled for welding, or with ends plain or grooved for the several types of couplings. It is easily cut and threaded as well as welded. The fact that it is readily welded enables the manufacturers to supply the pipe in any lengths practicable for handling.

Alloy Metal Pipe. Steel pipe bearing a small alloy of copper or other alloying element and iron pipe bearing a small alloy of copper and molybdenum have been claimed to possess more resistance to corrosion than plain steel pipe and they are advertised and sold under various trade names.

Copper Pipe and Fittings. Owing to its inherent resistance to corrosion, copper and brass pipe have always been used in heating, ventilating, and water supply installations, but the cost with standard dimensions for threaded connections has been high. The recent introduction of fittings which permit erection by soldering or sweating allows the use of pipe with thinner walls than are possible with threaded connections, thereby reducing the cost of installations.

The initial cost of brass and copper pipe installations generally runs higher than the corresponding job with steel pipe and screwed connections in spite of the use of thin wall pipe, but the corrosive nature of the fluid conveyed or the inaccessibility of some of the piping may warrant use of a more expensive material than plain steel. The advantages of corrosion-resisting pipe and fittings should be weighed against the correspondingly higher initial cost.

COMMERCIAL PIPE DIMENSIONS

The IPS dimensions of commercial pipe universally used at the present time conform to the recommendations made by a Committee of the A.S.M.E. in 1886. Pipe up to 12 in. in diameter is made in certain definite sizes designated by nominal internal diameter which is somewhat different from the actual internal diameter, depending on the wall thickness required. There are three weights of wrought iron and steel pipe commonly used, known as standard-weight, extra-strong, and double extrastrong. Because of the necessity of maintaining the same external diameter in all three weights for the same nominal size, the added wall thickness is obtained by decreasing the internal diameter. The term full-weight, when applied to sizes below 8 in., means that the pipe is up to the nominal weight per foot. When applied to sizes between 8 and 12 in., inclusive, it often indicates that the pipe has the heaviest of several wall

thicknesses listed. In sizes 14 in. and upward, pipe is designated by its outside diameter (O.D.) and the wall thickness is specified.

While the demands for pipe for the heating and ventilating industry are reasonably well served by the *standard-weight* and *extra-strong* pipe, demands for pipe for higher pressures and temperatures in industry resulted in the use of a multiplicity of wall thicknesses for all sizes. Even in heating installations, the erection of piping by welding was deemed to

TABLE 1. DIMENSIONS OF SCHEDULES 30 AND 40 AND STANDARD WEIGHT PIPE2

	DIAMETER IN.			Weigh Ft,			FERE	CIRCUM- FERENCE, IN.		sverse : Sq In.	AREA,	LENG PIPE PER S	. F7	LENGTH OF PIPE.	Weight
1/8 1/8	External	Internal	Thicknessb, In.	Plain Ends	Threads and Couplings	Threads per In.	External	Internal	External	Internal	Metal	External Surface	Internal Surface	FT Con- TAINING 1 Cu FT	WATER, LB PER FT
1/8 1 ₄ 3/8 1/2	0 405 0 540 0 675 0.840	0 364 0 493	0.068 0.088 0.091 0.109	0 567	$0.425 \\ 0.568$	18 18	1 272 1 696 2 121 2 639	0.845 1.144 1.549 1.954	0 129 0 229 0.358 0.554		0.072 0 125 0.167 0.250	9.431 7 073 5.658 4.547	14 199 10 493 7.748 6 141	2533 775 13\3.7\9 754.360 473.906	0 025 0.045 0.083 0 132
34 1 1 ¹ 4 1 ¹ 2	1 050 1 315 1 660 1 900	1 049 1.380	0.113 0.133 0.140 0.145	1.678 2.272	1.684	$\frac{11^{1}}{11^{1}}$	5 215	2.589 3 296 4.335 5 058	0 866 1 358 2 164 2 835	0 S64 1.495	0 333 0 494 0.669 0.799	3 637 2 904 2 301 2 010	4 635 3.641 2 768 2 372	270.034 166.618 96.275 70 733	0.231 0.375 0.65 0.88
$\begin{array}{c} 2 \\ 2\frac{1}{2} \\ 3 \\ 3\frac{1}{2} \end{array}$	2 375 2.875 3 500 4 000	2 469 3 068	0.154 0.203 0.216 0.226	5 793	3 678 5.819 7.616 9.202	8	7 461 9 032 10 996 12.566	6.494 7.757 9 635 11 146		4 755 7 393	1 075. 1.704 2 228 2 680	1 608 1.328 1.091 0.954	1 847 1.547 1 245 1 076	42 913 30.077 19 479 14 565	1.45 2.07 3.20 4.29
4 5 6 8c	4 500 5 563 6 625 8 625	5 047 6 065	0.258 0.280	10 790 14 617 18 974 24.696	14.810 19.185	8	17 477 20.813	12 648 15.856 19.054 25.356	24 306	12 730 20.006 28.591 51 161		0 \$4\$ 0.686 0 576 0.443	0 948 0 756 0 629 0.473	11.312 7.198 4.984 2.815	5 50 8 67 12 51 22.18
8 10 10c 10	8 625 10.750 10.750 10 750	10 192 10.136	$0.279 \\ 0.307$	28 554 31 201 34.240 40.483	32.000 35.000	8	33 772 33 772	25 073 32.019 31.843 31.479	90.763	81.585	\$.399 9 178 10.072 11 908	0 443 0.355 0.355 7 355	0 478 0.374 0 376 0.351	2.878 1.765 1.785 1.826	21 70 35 37 34.95 34.20
12 ^C				43 773 49.562						114 800 113.097	12.876 14 579	0.299 0.299	0 315 0 315		49.70 49.00

aStandard-weight wrought-iron pipe has approximately the same wall thicknesses and weights as contained herein for steel pipe For exact dimensions, see American Standard for Wrought-Iron and Wrought-Steel Pipe, A S.A. B36 10.

warrant the use of pipe lighter than standard weight. For these reasons, a Sectional Committee on Standardization of Wrought-Iron and Wrought-Steel Pipe and Tubing functioning under the procedure of the American Standards Association was appointed to standardize the dimensions and materials of pipe.

The pipe standard recommended by that sectional committee has set up several schedules of pipe including standard-weight and extra-strong thicknesses which are now included in Schedules 40 and 80, respectively. Dimensions and other useful data for standard-weight and extra-strong pipe are given in Tables 1 and 2. Table 3 from A.S.T.M. Specifications

bThicknesses shown in bold face type are identical with thicknesses for Schedule 40 pipe of $A\ S\ A$. B36.10.

cSame as Schedule 30, A S.A. B36 10.

A53 and A120 combines the schedule thicknesses of the American Standard for Wrought-Iron and Wrought-Steel Pipe, A.S.A. B36.10, and the old series designations.

Standard-weight pipe is generally furnished with threaded ends in random lengths of 16 to 22 ft, although when ordered with plain ends. 5 per cent may be in lengths of 12 to 16 ft. Five per cent of the total number of lengths ordered may be *jointers* which are two pieces coupled together. Extra-strong pipe is generally furnished with plain ends in

	PER		Weight per Ft	FT		Trai	vsverse A Sq In	REA,	LENGT PIPE, SQ	n of FT per FT	LENGTH OF PIPE.	WEIGHT OF	
Size	External	Internal	Thicknessb, In.	PLAIN ENDS, LB	External	Internal	External	Internal	Metal	External Surface	Internal Surface	FT CON- TAINING 1 CU FT	WATER, LB PER FT
1/8	0 405	0 215	0.095	0.314	1 272	0.675	0.129	0 036	0.093	9.431	17 766	3966 39	0 016
1/4	0.540	0 302	0.119	0.535	1.696	0 949	0 229	0.072	0 157	7.073	12 648	2010 290	0 031
3/8	0.675	0 423	0.126	0.738	2 121	1 329	0 358	0 141	0 217	5.658	9 030	1024.689	0 061
1/2	0 840	0 546	0.147	1.087	2 639	1.715	0.554	0.234	0 320	4.547	6 995	615.017	0.102
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2$	1 315	0.742 0.957 1.278 1.500	0.154 0.179 0.191 0.200	1.473 2.171 2.996 3.631	3.299 4.131 5 215 5 969	2 331 3 007 4.015 4.712	0.866 1 358 2.164 2.835	0 433 0.719 1.283 1 767	0 433 0 639 0.881 1.068	3.637 2.904 2.301 2.010	5.147 3.991 2 988 2 546	333 016 200.193 112.256 81.487	0 188 0 312 0 56 0.77
$2 \\ \frac{21}{2}$ 3 $3\frac{1}{2}$ 4	2 375	1.939	0.218	5.022	7 461	6.092	4.430	2 953	1 477	1.608	1 969	48 766	1.28
	2 875	2 323	0.276	7 661	9 032	7.298	6 492	4 238	2.254	1.328	1.644	33.976	1.87
	3 500	2 900	0.300	10.252	10 996	9.111	9.621	6.605	3 016	1.091	1 317	21.801	2.86
	4 000	3.364	0.318	12.505	12 566	10.568	12 566	8.888	3 678	0.954	1.135	16 202	3 84
	4 500	3.826	0.337	14.983	14 137	12.020	15.904	11.497	4.407	0.848	0.998	12.525	4 98
5	5 563	4 813	0.375	20.778	17 477	15.120	24.306	18.194	6.112	0.686	0.793	7.915	7 88
6	6 625	5 761	0.432	28.573	20 813	18.099	34.472	26.067	8 405	0.576	0.663	5.524	11.29
8	8 625	7 625	0.500	43.388	27 096	23.955	58.426	45.663	12 763	0.443	0.500	3.154	19 78
10°	10 750	9.750	0.500	54.735	33.772	30.631	90.763	74.662	16.101	0.355	0.391	1 929	32 35
12	12 750	11 750	0.500	65.415	40 055	36.914	127.676	108 434	19 242	0.299	0.325	1.328	46.92

aExtra-strong wrought-iron pipe has approximately the same wall thicknesses and weights as contained herein for steel pipe. For exact dimensions, see American Standard for Wrought-Iron and Wrought-Steel Pipe, A.S.A. B36 10.

random lengths of 12 to 22 ft, although 5 per cent may be in lengths of 6 to 12 ft.

In addition to *IPS* copper pipe, several varieties of copper tubing are in use with either flared or compression couplings or soldered joints. Dimensions of copper water tubing intended for plumbing, underground water service, fuel-oil lines, gas lines, etc., have been standardized by the U. S. Government and the *American Society for Testing Materials*. There are three standard wall-thickness schedules of copper water tubing classified in accordance with their principal uses as follows:

bThicknesses shown in bold face type are identical with thicknesses for Schedule 80 pipe for $A\ S\ A$ B36.10.

cSame as Schedule 60, A S.A. B36.10.

Type K—Designed for underground services and general plumbing service.

Type L—Designed for general plumbing purposes.

Type M—Designed for use with soldered fittings only.

In general, Type K is used where corrosion conditions are severe, and Types L and M where such conditions may be considered normal as, for instance, in heating work. Types K and L are available in both hard and soft tempers; Type M is available only in hard temper. Where flexibility is essential as in hidden replacement work or where as few joints as possible are desired as in fuel-oil lines, the soft temper is commonly used. New or exposed work generally employs copper pipe of a hard temper. All three classes are extensively used with soldered fittings.

TABLE 3. STANDARD WEIGHTS AND DIMENSIONS OF WELDED AND SEAMLESS STEEL PIPE²

			St	randard-V	Veight P	IPE .]	Extra-Sti	RONG PIPE	1		DOUBLE EXTRA- STRONG PIPED	
	Outside	No of	Sched	Schedule 30		ule 40	Schedu	ıle 60	Sched	ule 80			
Size	DIAME- TER, IN	THREADS PER IN.	Wall Thick- ness, In.	Weight per Ft, Lb T & C	Wall Thick- ness, In.	Weight per Ft, Lb T & C	Wall Thick- ness, In.	Weight per Ft, Lb Plain Ends	Wall Thick- ness, In.	Weight per Ft, Lb Plain Ends	Wall Thick- ness, In	Weight per Ft, Lb Plain Ends	
1/8 1/4 3/8 1/2	0.405 0.540 0.675 0.840	27 18 18 18			0.068 0.088 0.091 0.109	0.25 0.43 0.57 0.85			0.095 0 119 0.126 0.147	0.31 0.54 0.74 1.09	0.294	1.71	
3/4 1 11/4 11/2 2 21/2 3 31/2 4	1.050 1.315 1.660 1 900 2.375 2.875 3.500 4.000 4.500	14 11½ 11½ 11½ 11½ 8 8 8 8			0.113 0.133 0.140 0.145 0.154 0.203 0.216 0 226 0.237	1 13 1.68 2 28 2.73 3 68 5 82 7.62 9 20 10.89			0 154 0.179 0.191 0.200 0.218 0.276 0.300 0 318 0 337	1.47 2.17 3.00 3.63 5.02 7.66 10.25 12.51 14.98	0.308 0.358 0.358 0.382 0.400 0.436 0.552 0.600 0.636 0.674	2.44 3.66 5.21 6 41 9 03 13.70 18 58 22.85 27.54	
5 6 8 10° 12°d	5.563 6.625 8.625 10.750 12.750	8 8 8 8	0.277 0 307 0 330	25 00 35 00 45 00	0 258 0.280 0 322 0.365 0 375	14 81 19.19 28 81 41 13 50 71	0 500d 0 500d	54 74 65.41	0.375 0.432 0.500	20.78 28.57 43 39	0 750 0 864 0 875	38.55 53.16 72.42	

From Standard Specifications for Welded and Seamless Steel Pipe of the American Society for Testing Materials, AST.M. Designation A120

Standard dimensions, weights, and diameter and wall-thickness tolerances for these classes of copper tubing are given in Table 4. Copper pipe is also available with dimensions of steel pipe.

Refrigeration lines used in connection with air conditioning equipment also employ copper tubing extensively. For refrigeration use where tubing absolutely free from scale and dirt is required, bright annealed copper tubing that has been deoxidized is used. This tubing is available in a variety of sizes and wall thicknesses.

a Sizes larger than those shown in the table are measured by their outside diameter, such as 14 in outside diameter, etc. These larger sizes will be furnished with plain ends, unless otherwise specified. The weights will correspond to the manufacturers' published standards although it is possible to calculate the theoretical weights for any given size and wall thickness on the basis of 1 cu in. of steel weighing 0 2833 lb.

b
The American Standard for Wrought-Iron and Wrought-Steel Pipe
 A.S.A. B36.10-1939 has assigned no schedule number to
 <code>Double Extra-Strong</code> pipe.

 $^{{\}tt CA}$ 10 in. Standard Weight pipe is also available with 0.279 in. wall thickness, but this wall is not covered by a Schedule Number

dOwing to a departure from the Standard-Weight and Extra-Strong wall thicknesses for the 12 in. nominal size. Schedules 40 and 60. Table 2 of the A.S.A. B36 10-1939, Standard for Wrought-Iron and Wrought-Steel Pipe, the regular Standard and Extra-Strong wall thicknesses (0.375 in. and 0 500 in) have been substituted.

Table 4. Standard Dimensions and Weights, and Tolerances in Diameter and Wall Thickness for Copper Water Tubes^a

(All tolerances in this table are plus and minus except as otherwise indicated)

			ge Out- iameter		7	Wall Tei	ckness, I			THEORETICAL WEIGHT, LB PER FT			
STANDARD WATER	ACTUAL OUTSIDE DIAMETER	Tolerance, In		Туре К		Ty	PE L	Tyl	еΜ	_			
Tube Size, In.	DIAMETER In.	Annealed	Drawn Temper	Nominal	Folerance ±	Nominal	Tolerance ±	Nominal	Tolerance ±	Type K	Type L	Type M	
1/8 1/4 2/8 1/2	0.250 0 375 0 500 0 625	0 002 0.002 0 0025 0 0025	0 001 0 001 0.001 0.001	0 032 0 032 0 049 0 049	0.003 0.004 0.004 0.004	0 025 0 030 0 035 0.040	0.0025 0 0035 0 0035 0 0035	0.025 0 025 0 025 0 025 0.028	0 0025 0 0025 0.0025 0.0025	0 088	0.068 0.126 0.198	0 068 0.107 0.145	
5/8 3/4 1 11/4	0.750 0.875 1.125 1.375	0.0025 0 003 0 0035 0.004	0 001 0.001 0 0015 0 0015	0 049 0 065 0 065 0.065	0.004 0 0045 0.0045 0.0045	0.042 0 045 0 050 0.055	0 0035 0 004 0.004 0 0045	0.030 0.032 0.035 0.042	0.0025 0 003 0.0035 0.0035	0.418 0 641 0.839 1.04	0 455	0.328	
1½ 2 2½ 3	1.625 2.125 2.625 3.125	0.0045 0 005 0.005 0.005	0 002 0 002 0 002 0 002	0.072 0 083 0 095 0.109	0 005 0.007 0 007 0.007	0.060 0.070 0.080 0.090	0 0045 0.006 0.006 0.007	0 049 0.058 0.065 0 072	0.004 0.006 0.006 0.006	1.36 2.06 2.93 4.00	1.14 1.75 2.48 3.33	0.940 1.46 2.03 2 68	
3½ 4 5 6	3 625 4.125 5.125 6.125	0.005 0.005 0.005 0.005	0 002 0 002 0 002 0 002 0.002	0 120 0.134 0.160 0.192	0.008 0 010 0 010 0.012	0.100 0.110 0.125 0.140	0.007 0.009 0.010 0.010	$\begin{array}{c} 0.083 \\ 0.095 \\ 0.109 \\ 0.122 \end{array}$	0.007 0.009 0 009 0 010	5.12 6.51 9 67 13.9	4.29 5.38 7.61 10.2	3 58 4.66 6.66 8.92	
8 10	8.125	0.006	+0 002 -0 004 +0 002	0.271	0 016	0.200	0.014	0 170	0.014	25 9	19.3	165	
12	10.125 12.125	0.008	$ \begin{array}{c c} -0.006 \\ +0.002 \\ -0.006 \end{array} $	0 338 0 405	0 018 0 020	0 250 0 280	0 016 0 018	0.212 0 254	0.015 0.016	40.3 57.8	30.1 40.4	25 6 36.7	

aFrom Standard Specifications for Copper Water Tube of the American Society for Testing Materials, A S T.M. Designation B88-39.

EXPANSION AND FLEXIBILITY

The increase in temperature of a pipe from room temperature to an operating steam or water temperature 100 F or more above room temperature results in an increase in length of the pipe for which provision must be made. The amount of linear expansion (or contraction in the case of refrigeration lines) per unit length of material per degree change in temperature is termed the coefficient of linear expansion of that material, or commonly, the coefficient of expansion. This coefficient varies with the material.

The linear expansion of cast-iron, steel, wrought-iron, and copper pipe, the materials most frequently used in heating and ventilating work, can be determined from Table 5, which was computed from Equation 1.

$$L_{t} = L_{o} \left[1 + a \left(\frac{t - 32}{1000} \right) + b \left(\frac{t - 32}{1000} \right)^{2} \right]$$
 (1)

Note 1:—For copper gas and oil burner tubes, the tolerances shown above for various wall thicknesses (type K) apply irrespective of diameter.

Note 2:—For tubes other than round no standard tolerances are established. These tolerances do not apply to condenser and heat exchanger tubes.

where

 L_t = length at temperature t degrees Fahrenheit, feet.

 $L_0 = \text{length at } 32 \text{ F, feet.}$

t = final temperature, degrees Fahrenheit.

a and b are constants as given in the tabulation following.

Metal	а	ь
Cast-Iron Steel	0.005441 0.006212 0.006503 0.009278	$\begin{array}{c} 0.001747 \\ 0.001623 \\ 0.001622 \\ 0.001244 \end{array}$

The three methods by which the elongation due to thermal expansion may be taken care of are:

- 1. Expansion joints.
- 2. Swivel joints.
- 3. Inherent flexibility of the pipe itself utilized through pipe bends, right-angle turns, or offsets in the line.

Expansion joints of the slip-sleeve, diaphragm, or corrugated types made of copper, rubber, or other gasket material are all used for taking up expansion, but generally only for low pressures or where the inherent flexibility of the pipe cannot readily be used as in underground steam or hot water distribution lines.

Swivel joints are used extensively in low-pressure steam and hot water heating systems and in hot water supply lines. The swivel joints absorb the expansive movement of the pipe by the turning of threaded joints. In many cases the straight pipe in the offset of a swivel joint is sufficiently flexible to take up the expansion without developing enough thrust to produce swiveling in the threaded joint. This is preferable since continued turning in the threaded joint may in time result in a leak, particularly when the pressure is high. The amount of elongation which a swivel joint can take up is controlled by the length of the swing piece employed and by the lateral displacement which is permissible in the long pipe runs.

Probably the most economical method of providing for expansion of piping in a long run is to take advantage of the directional changes which must necessarily occur in the piping and proportion the offsets so that sufficient flexibility is secured. Ninety-degree bends with long, straight tangents in either a horizontal or a vertical plane are an excellent means for securing adequate flexibility with larger sizes of pipe. When flexibility cannot be obtained in this manner, it is necessary to make use of some type of expansion bend. The exact calculation of the size of expansion bends required to take up a given amount of thermal expansion is relatively complicated. The following approximate method, however,

¹See (1) Piping Handbook, by Walker and Crocker (McGraw-Hill Co.); (2) A Manual for The Design of Piping for Flexibility by the Use of Graphs, by E. A. Wert, S. Smith, E. T. Cope, published by The Detroit Edison Company.

Table 5. Thermal Expansion of Pipe in Inches per 100 ft² (For superheated steam and other fluids refer to temperature column)

SAT	URATED SI	EAM	ELO 10	NGATION 00 FT FRO	in Inches m - 20 F	PER UP	SATUE STE		ELC 1	ngation 00 ft fro	in Inches м — 20 F	PER UP
Vacuum Inches of Hg.	Pressure Pounds per Square Inch Gage	Tem- perature Degrees Fahren- heit	Cast- Iron Pipe	Steel Pipe	Wrought- Iron Pipe	Copper Pipe	Pressure Pounds per Square Inch Gage	Tem- perature Degrees Fahren- heit	Cast- Iron Pipe	Steel Pipe	Wrought- Iron Pipe	Copper Pipe
29.39 28.89 27.99 26.48 24.04 20.27 14.63 6.45	2.5 10.3 20.7 34.5 52.3 74.9 103.3 138.3 138.3 232.4 293.7 366.1 451.3 550.3	-20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 400 420 440 460 480	0 0.127 0.255 0.390 0.518 0.649 0.787 0.926 1.051 1.200 1.345 1.495 1.634 1.780 1.931 2.085 2.233 2.395 2.543 2.700 2.859 3.182 3.341 3.683	1.528 1.691 1.852		0.888 1.100 1.338 1.570		500 520 540 560 580 620 640 680 720 740 760 820 840 820 840 860 920 940 960 980 1000	3.847 4.020 4.190 4.365 4.541 4.725 4.896 5.260 5.260 5.260 6.200 6.389 6.587 6.779 6.970 7.176 7.375 7.579 7.795 7.989 8.200 8.406 8.617	4.296 4.487 4.670 4.860 5.051 5.247 5.627 5.831 6.020 6.229 6.425 6.635 6.833 6.833 7.464 7.250 7.464 7.888 8.313 8.545 8.755 8.975 9.196 9.421	9.089 9.300	6.110 6.352 6.614 6.850 7.123 7.388 7.636 7.893 8.153 8.912 9.203 9.400 9.736 9.992 10.272 10.512 11.175 11.360 11.625 11.911 12.180 12.473 12.747

aFrom Piping Handbook, by Walker and Crocker. This table gives the expansion from -20 F to the temperature in question. To obtain the amount of expansion between any two temperatures take the difference between the figures in the table for those temperatures. For example, if a steel pipe is installed at a temperature of 60 F and is to operate at 300 F, the expansion would be 2.519-0.593=1.926 in.

has been found to give reasonably good results and is deemed to be sufficiently accurate for most heating work.

Fig. 1 shows several types of expansion bends commonly used for taking up thermal expansion. The amount of pipe, L, required in each of these bends may be computed from Equation 2.

$$L = 6.16 \sqrt{D\Delta} \tag{2}$$

where

L = length of pipe, feet.

D =outside diameter of the pipe used, inches.

 Δ = the amount of expansion to be taken up, inches

This formula, based on the use of mild-steel pipe with wall thicknesses not heavier than extra-strong, assumes a maximum safe value of fiber stress of 16,000 lb per square inch. When square type bends are used, the width of the bend should not exceed about two times the height. It is

further assumed that the corners are made with screwed or flanged elbows or with arcs of circles having radii five to six times the pipe diameter. Use of welding elbows with radii of 1½ times the pipe diameter will decrease the end thrusts somewhat but will raise the fiber stress correspondingly.

All risers must be anchored and safeguarded so that the difference in length when hot from the length when cold shall not disarrange the normal and orderly provisions for drainage of the branches.

Proper anchoring of piping is especially necessary with light-weight radiators, to allow for freedom of expansion in order that no pipe strain will distort the radiators. When expansion strains from the pipes are

Fig. 1. Measurement of L on Various Pipe Bends

permitted to reach these light metal heaters they usually emit sounds of distress which are exceedingly troublesome.

PIPE THREADS

All threaded pipe for heating and ventilating installations uses the American Standard taper pipe thread which is made with a taper of 1 in 16 measured on the diameter of the pipe so as to secure a tight joint. Threads of fittings are tapped to the same taper. The number of threads per inch varies with the different pipe sizes. All threaded pipe should be made up with a thread paste suitable for the service under which the pipe is to be used.

HANGERS AND SUPPORTS

Heating system piping requires careful and substantial support. Where changes in temperature of the line are not large, such simple methods of support may be utilized as hanging the line by means of rods or perforated strip from the building structure, or supporting it by brackets or on piers.

When fluids are conveyed at temperatures of 150 F or above, however, hangers or supporting equipment must be fabricated and assembled to permit free expansion or contraction of the piping. This can be accomplished by the use of long rod hangers, spring hangers, chains, hangers or supports fitted with rollers, machined blocks, elliptical or circular rings of larger diameter than the pipe giving contact only at the bottom, or trolley hangers. In all cases, allowance should be made for rod clearance to permit swinging without setting up severe bending action in the rods.

For pipes of small size, perforated metal strip is often used. For horizontal mains, the rod or strip usually is attached to the joists or steel work of the floor above. For long runs of vertical pipe subject to considerable thermal expansion, either the hangers should be designed to

prevent excessive load on the bottom support when expansion takes place, or the bottom support should be designed to withstand the entire load.

TYPES OF FITTINGS

Fittings for joining the separate lengths of pipe together are made in a variety of forms, and are either screwed or flanged, the former being generally used for the smaller sizes of pipe up to and including $3\frac{1}{2}$ in., and the latter for the larger sizes, 4 in. and above. Screwed fittings of large size as well as flanged fittings of small size are also made and are used for certain classes of work at the proper pressure.

The material used for fittings is generally cast-iron, but in addition to this, malleable-iron, steel and steel alloys are also used, as well as various grades of brass or bronze. The material to be used depends on the character of the service and the pressure.

As in the case of pipe, there are several weights of fittings manufactured. Recognized American Standards for the various weights are as follows:

Cast-iron pipe flanges and flanged fittings for 25 lb (sizes 4 in. and larger), 125 lb, and 250 lb maximum saturated steam pressure.

Malleable iron screwed fittings for 150 lb maximum saturated steam pressure.

Cast-iron screwed fittings for 125 and 250 lb maximum saturated steam pressure.

Steel flanged fittings for 150 and 300 lb maximum steam service pressure.

The allowable cold water working pressures for these standards vary from 43 lb for the 25 lb standard to 500 lb for the 300 lb steel standard.

Screwed fittings include: nipples or short pieces of pipe of varying lengths; couplings, usually of wrought-iron only; elbows for turning angles of either 45 deg or 90 deg; return bends, which may be of either the close or open pattern, and may be cast with either a back or side outlet; tees; crosses; laterals or Y branches; and a variety of plugs, bushings, caps, lock-nuts, flanges and reducing fittings. Reducing fittings as well as bushings, both of which are used in changing from one pipe size to another, may have the smaller connection tapped eccentrically to permit free drainage of the water of condensation in steam lines or free escape of air in water lines.

Fittings for copper tubing are available in the soldered, flared, or compression types. Illustrations of each of these types are shown in Fig. 2. Fittings for copper pipe of *IPS* dimensions are available in screwed or soldered types of connection.

American Standard A40.3-1941 has been prepared to cover certain dimensions of soldered-joint fittings for copper water tube including (1) detailed dimensions of the bore, (2) minimum specifications for materials, (3) minimum inside diameter of the fittings, (4) metal thickness for both wrought-metal and cast-brass fittings, and (5) general dimensions for cast-brass fittings including center-to-shoulder dimensions for both straight and reducing cast fittings. Table 6 from A.S.A. Standard A40. 3-1941 contains dimensions for soldered joint elbows, tees, crosses, and 45 deg elbows.

The compression type fitting is generally limited to smaller size tubing while the flared and soldered types are used in both large and small sizes.

An American Standard, A.S.A. A40.2-1936 has been prepared to standardize dimensions for brass fittings for flared copper water tubes. Flared tube fittings are widely used in refrigerating work where S.A.E. dimensions and a 45-deg flare render most fittings interchangeable, although for refrigeration use, thread fits and tolerances on thread gages must be maintained within close limits. Brass fittings with S.A.E. dimensions are not interchangeable with the American Standard fittings for water tubes.

Ammonia pipe fittings made of cast-iron were formerly used extensively in handling refrigerants in large installations. Replacement of ammonia by other refrigerants operating at lower pressures has seriously curtailed

Fig. 2. Copper or Brass Tubing Fittings

the market for these fittings. For this reason formulation of an American Standard for these fittings was abandoned by the A.S.A. in 1936.

Thread Connections

Threads used for fittings are the same American Standard taper pipe threads as those used for pipe, and unless otherwise ordered, right-hand threads are used. To facilitate drainage, some elbows have the thread tapped at an angle to provide a pitch of the connecting pipe of ½ in. to the foot. These elbows are known to the trade as pitched elbows and are commercially available. Malleable iron fittings, like brass fittings, are cast with a round instead of a flat band or bead, or with no bead at all. Fittings are designated as male or female, depending on whether the threads are on the outside or inside, respectively.

Flanged fittings are generally used in the best practice for connecting all piping above 4 in. in diameter. While screwed fittings may be used for the larger sizes and are satisfactory under the proper working conditions, it will be found difficult either to make or to break the joints in these large sizes.

A number of different flange facings in common use are plain face, raised face, tongue and groove, and male and female. Cast-iron fittings for 125 lb pressure and below are normally furnished with a plain face, while the 250 lb cast-iron fittings are supplied with a $\frac{1}{16}$ -in. raised face. The standard facing for steel flanged fittings for 150 and 300 lb is a $\frac{1}{16}$ -in. raised face although these fittings are obtainable with a variety of facings. The gasket surface of the raised face may be finished smooth

Table 6. American Standard Dimensions of Elbows, Tees, Crosses, and 45 Deg Elbows, Soldered-Joint Fittings, A.S.A. A40.3-1941

	1		Cas	st Brassb				Wrought Metal
Nominal Sizea	Laying Length, Tee, Ell, and Cross b Laying Length, Ell With External Shoulder		Laying Length, 45 Deg Ell External Shoulder		Inside Diameter of Fittings,C Min.	Metal Thicknessd		Metal Thicknesse Min.f
Programme and the second secon	Н	I	J	Q	0	т	R	T and R
1 4 3 8 1 3 4 1 1 4 2 1 2 2 1 2 2 3 1 2 4 5 6	1.4 57.66 1.56.66 1.1.4.5 1.1.3.4 1.1.3.4 2.1.4.68 3.5.8	3/8 9/16/16 17/8 1 13/8 11/3/8 11/3/8 23/8	3/6/6/4/6/6/6/2/6 8/4/8/6 115/16/8 17/6/8	14 5/66 3/66 3/66 3/66 5/83 1/8 1 1/8 1 1/4	0.31 0.43 0.54 0.78 1.02 1.26 1.50 1.98 2.46 2.94 3.42 3.90 4.87 5.84	0.08 0.09 0.10 0.11 0.12 0.13 0.15 0.17 0.19 0.20 0.22 0.28 0.34	0.048 0.048 0.054 0.060 0.066 0.072 0.078 0.090 0.102 0.114 0.120 0.132 0.168 0.204	0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.070 0.080 0.090 0.110 0.125 0.140

All dimensions given in inches.

aThis size is the nominal bore of the tube

bThese dimensions may be used for wrought-metal fittings as well as for cast-brass fittings at manufacturer's option.

cThis dimension is the same as the inside diameter Class L tubing (American Standard Specifications for Copper Water Tube, A S.A. H23 1-1939 (A.S T M B88).

dPatterns shall be designed to produce body thicknesses given in the table. Metal thickness at no point shall be less than 90 per cent of the thicknesses given in the table.

eThis dimension has the same thickness as Type L tubing.

fThese dimensions are minimum, but in every case the thickness of wrought fittings should be at least as heavy as the tubing with which it is to be used.

Note 1:—Wrought fittings, as well as cast fittings, must be provided with a shoulder or stop at the bottom end of socket.

Note 2:—Street fittings with male ends are for use in connection with other fittings illustrated.

or may be machined with concentric or spiral grooves often referred to as serrated face or phonograph finish, respectively.

The dimensions of elbows, tees and crosses for 125 lb cast-iron screwed fittings are given in Table 7, whereas the dimensions for 125 lb cast-iron flanged fittings are given in Tables 8 and 9.

For low temperature service not to exceed about 220 F, a number of paper or vegetable fiber gasket materials will prove satisfactory; for plain raised face flanges, rubber or rubber inserted gaskets are commonly employed. Asbestos composition gaskets are probably the most widely used, particularly where the temperature exceeds 250 F. Jacketed

Table 7. American Standard Dimensions of Elbows, 45-Deg Elbows, Tees, and Crosses (Straight Sizes) for Class 125 Cast-Iron Screwed Fittings, A.S.A. B16a-1939

	Ŋ	С	В	E	1	7	G	H
Nominal Pipe Size	CENTER TO END, ELBOWS,	CENTER TO END,	LENGTH of Thread,	WIDTH OF BAND,	Inside Diameter of Fitting METAL THICKNESS, 2		OUTSIDE DIAMETER	
	TEES AND CROSSES	45 Deg Elbows	Min. Min.		Min.	Max.	Min.	of Band, Min.
1/4	0.81	0.73	0.32	0.38	0.540	0.584	0.110	0.93
1/4 3/8 1/2 3/4	0.95	0.80	0.36	0.44	0.675	0.719	0.120	1.12
1/2	1.12	0.88	0.43	0.50	0.840	0.897	0.130	1.34
3/4	1.31	0.98	0.50	0.56	1.050	1.107	0.155	1.63
1	1.50	1.12	0.58	0.62	1.315	1.385	0.170	1.95
$1\frac{1}{4}$	1.75	1.29	0.67	0.69	1.660	1.730	0.185	2.39
$1\frac{1}{2}$	1.94	1.43	0.70	0.75	1.900	1.970	0.200	2.68
2	2.25	1.68	0.75	0.84	2.375	2.445	0.220	3.28
$\frac{2\frac{1}{2}}{3}$	2.70	1.95	0.92	0.94	2.875	2.975	0.240	3.86
3	3.08	2.17	0.98	1.00	3.500	3.600	0.260	$\frac{4.62}{5.00}$
31/2	3.42	2.39	1.03	1.06	4.000	4.100	0.280	5.20
4 5 6 8	3.79	2.61	1.08	1.12	4.500	4.600	0.310	5.79
5	4.50	3.05	1.18	1.18	5.563	5.663	0.380	7.05
6	5.13	3.46	1.28	1.28	6.625	6.725	0.430	8.28
8	6.56	4.28	1.47	1.47	8.625	8.725	0.550	10.63
10	8.08b	5.16	1.68	1.68	10.750	10.850	0.690	13.12
12	$9.50^{ m b}$	5.97	1.88	1.88	12.750	12.850	0.800	15.47

All dimensions given in inches.

aPatterns shall be designed to produce castings of metal thickness given in the table. Metal thickness at no point shall be less than 90 per cent of the thickness given in the table.

bApplies to elbows and tees only

asbestos and metallic gaskets may be used for any pressure and temperature conditions, but preferably only with a relatively narrow recessed facing.

WELDING

Erection of piping in heating and ventilating installations by means of fusion welding has been commonly accepted in the past few years as a competitive method to the screwed and flanged joint. Since the question

Table 8. American Standard Dimensions of Tees and Crosses^a (Straight Sizes) FOR CLASS 125 CAST-IRON FLANGED FITTINGS, A.S.A. B16a-1939

Nominal Pipe Size b-c	A CENTER TO FACE TEES AND CROSSES c-d	AA FACE TO FACE TEES AND CROSSES c-d	DIAMETER OF FLANGE	THICKNESS OF FLANGE, MIN.	METALE THICKNESS OF BODY
1 11/4 11/2 21/2 33/2 4 5 6 8 10 12 14 O.D. 16 O.D. 18 O.D. 20 O.D. 24 O.D. 30 O.D. 42 O.D. 48 O.D.	3½ 3¾ 4½ 55 5½ 6½ 7½ 8 9 11 12 14 15 16½ 18 22 25 28 31 34	7 7½ 8 9 10 11 12 13 15 16 18 22 24 28 30 33 36 44 50 56 62 68	4 1/4 4 5/8 5 6 7 7 1/2 8 1/2 9 10 11 13 1/2 16 19 21 23 1/2 25 27 1/2 32 38 3/4 46 53 59 1/2	712 95 10 10 10 10 10 11 10 11 10 10	5166 51166 55166 5717116 571716 571716 571716 571716 571716 571716 571716 571716 5717116 571716 571716 571716 571716 571716 571716 571716 571716 5717116 571716 571716 571716 571716 571716 571716 571716 571716 5717116 571716 57

All dimensions given in inches.

aCrosses both straight and reducing sizes 18 in. and larger shall be reinforced to compensate for the inherent weakness in the casting design.

bSize of all fittings listed indicates nominal inside diameter of port.

cTees, side outlet tees, and crosses, 16 in. and smaller, reducing on the outlet, have the same dimensions center to face, and face to face as straight size fittings corresponding to the size of the larger opening. Sizes 18 in. and larger, reducing on the outlet, are made in two lengths, depending on the size of the outlet.

dTees and crosses, reducing on run only, carry same dimensions center to face and face to face as a straight size fitting of the larger opening.

eBody thickness at no point shall be less than 87½ per cent of the dimensions given in the table.

of economy of welding as against the use of screwed and flanged fittings is dependent on the individual job, the use of welding is generally recommended on the basis of a greatly reduced cost of maintenance and repair, of less weight resulting from the use of a lighter-weight pipe, and of increased economy in pipe insulation, hangers, and supports rather than on the basis of any economy that might be effected in actual erection by welding on low to medium pressure heating jobs.

Table 9. American Standard Dimensions of Elbows for Class 125 Cast-Iron Flanged Fittings, A.S.A. B16a-1939

Nominal Pipe Size a	A CENTER TO FACE ELBOW b-c-d	B CENTER TO FACE LONG RADIUS ELBOW b-c-d	CENTER TO FACE 45 DEG ELBOW C	Diameter of Flange	THICKNESS OF FLANGE, MIN	Metale Thickness of Body
1 11/4 11/2 2 21/2 3 31/2 4 5 6 8 10 12 14 O.D. 16 O.D. 18 O.D. 20 O.D. 24 O.D. 30 O.D. 42 O.D. 48 O.D.	3½ 3¾ 4 4½ 5 5½ 6½ 7½ 8 9 11 12 14 15 16½ 18 22 25 28 31 34	5 5 ¹ / ₂ 6 6 ¹ / ₂ 7 7 ³ / ₄ 8 ¹ / ₂ 9 10 ¹ / ₄ 11 ¹ / ₂ 14 16 ¹ / ₂ 19 21 ¹ / ₂ 24 26 ¹ / ₂ 29 34 41 ¹ / ₂ 49 56 ¹ / ₂ 64	134 214 214 215 3 315 4 415 516 616 716 816 916 11 15 18 21 24	$4\frac{1}{4}$ $4\frac{1}{5}$ 5 6 $7\frac{1}{2}$ 9 10 11 $13\frac{1}{2}$ 16 19 21 $23\frac{1}{2}$ $27\frac{1}{2}$ 32 $38\frac{3}{4}$ 46 53 $59\frac{1}{2}$	7.1.2 9.1.6 6.6 6.6 6.6 6.6 1.3.4 1.3.7 1.4.8 1.3.7 1.4.8 1.4	51666516651665166516611122668343113181113131131131131131131131131131131

All dimensions given in inches.

^{*}Size of all fittings listed indicates nominal inside diameter of port.

bReducing elbows and side outlet elbows carry same dimensions center to face as straight size elbows corresponding to the size of the larger opening.

[•]Special degree elbows, ranging from 1 to 45 deg, inclusive, have the same center to face dimensions as given for 45-deg elbows and those over 45 deg and up to 90 deg, inclusive, shall have the same center to face dimensions as given for 90-deg elbows. The angle designation of an elbow is its deflection from straight line flow and is the angle between the flange faces.

dSide outlet elbows shall have all openings on intersecting center-lines.

[•]Body thickness at no point shall be less than 87½ per cent of the dimensions given in the table.

Fusion welding, commonly used in erection of piping, is defined as the process of joining metal parts in the molten, or molten and vapor states, without the application of mechanical pressure or blows. Fusion welding embraces gas welding and electric arc welding, both of which are commonly used to produce acceptable welds.

Welding application requires the same basic knowledge of design as do the other types of assembly, but in addition, requires a generous knowledge of the sciences involved, particularly as to welding qualities of

Table 10. American Standard Dimensions for Butt-Welding Elbows, Tees, Caps, and Lapped-Joint Stub Ends, A.S.A. B16.9-1940

NOMINAL	Outside		Center-to-En	TD.	CAPS	Lapi	ed-Joint Stui	P-JOINT STUB ENDS Radius of Fillet Lap Gd 1/8 21/2 27/8		
PIPE Size	DIAMETER	90-Deg Elbows A	45-Deg Elbows B	Of Run Tee Ca	Eb-c	Length Fb	Fillet	Lap		
1 11/4 11/2 2 21/2 33/2 4 5 6 8 10 12	1.315 1.660 1.900 2.375 2.875 3.500 4.000 4.500 5.563 6.625 8.625 10.750 12.750	11/2 17/8 21/4 3 33/4 41/2 51/4 6 71/2 9 12 15 18	7/8 1 1/6 13/8 13/4 2 21/4 21/2 31/8 61/4 71/2	11/2 17/8 21/4 21/2 33/8 41/8 47/8 47/8 7 81/2 10	1½ 1½ 1½ 1½ 1½ 2 2½ 2½ 3 3½ 4 5	4 4 6 6 6 6 6 8 8 8 10	1/8/16/16/16/16/16/16/16/16/16/16/16/16/16/	_		

All dimensions given in inches.

metal, their reaction to extremely high temperatures, and the ability to determine and use only the best quality welding rods. This requirement applies equally to employer and employee with the employer accepting all of the responsibility. Thus the employer should select his welding mechanics with good judgment, provide them with first-class equipment and tools, arrange for their training and use of acceptable workmanship standards, and at regular intervals subject their work to prescribed tests. Industry will not accept the employment of mechanics of undetermined

The dimensions of welding tees cover those which have side outlets from one size less than half the size of the run-way opening of the tees to full size.

bDimensions E and F are applicable only to these fittings in schedules up to and including Schedule 80, A.S.A. Standard B36.10-1939.

The shape of these caps shall be ellipsoidal and shall conform to the requirements of the A S.M.E. advantage of the shape
dThis dimension is for standard machined facings in accordance with American Standard for Steel Pipe Flanges and Flanged Fittings $(A.S.A.\ B16e-1939)$. The back face of the lap shall be machined to conform to the surface of the flange on which it seats. Where ring joint facings are to be applied, use dimension K as given in $A.S.A.\ B16e-1939$.

ability nor on the basis of past experience. Neither does industry accept the statement that a weld is only as good as the workman who makes it. The control Codes now in process of adoption will be the law governing the use of the welding process. These Codes prohibit individual practices contrary to their specified procedure and rules of control, and this is

Table 11. American Standard Dimensions of Steel Welding Neck Flanges for Steam Service Pressure Rating of 150 Lb per Sq In. (Gage) at a Temperature of 500 F, and 100 Lb per Sq In. (Gage) at 750 F, A.S.A. B16e-1939

Nominal Pipe Size	DIAMETER OF FLANGE	THICKNESS OF FLG a MIN.	DIAMETER OF HUB	HUB DIAM. BEGINNING OF CHAMFERD-C	LENGTE THRU HUB®	Inside Diam. of Pipe Schedule 40c	DIAM. OF BOLT CIRCLE	No. of Bolts	Size Of Bolts
1/2 3/4 1 1/4 1 1/2 2 2/2 3 3/2 4 5 6 8 10 12 14 O.D. 16 O.D. 18 O.D. 20 O.D. 24 O.D.	31/2 31/3 41/4 45/8 5 6 7 71/2 81/2 9 10 11 131/2 16 19 21 231/2 25 271/2 32	716 122 916 1516 1516 1516 1516 11316 11316 1116 1116 1116	13/16 11/26 11/26/16 29/16 33/16 39/16 41/3/16 67/16 67/16 67/16 91/16 12 14/3/3/4 18 197/8 22 26/18	0.84 1.05 1.32 1.66 1.90 2.38 2.88 3.50 4.00 4.50 5.56 6.63 8.63 10.75 12.75 14.00 16.00 18.00 20.00 24.00	17/8 21/16 21/16 21/4 21/4 21/4 21/4 21/4 21/3 31/2 31/2 4 41/2 5 5 51/2 51/16 6	0.62* 0.82* 1.05* 1.38* 1.61* 2.07* 2.47* 3.07* 3.55* 4.03* 5.05* 6.07* 7.98* 10.02* ————————————————————————————————————	$\begin{array}{c} 23 \\ 43 \\ 23 \\ 44 \\ 31 \\ 84 \\ 43 \\ 44 \\ 45 \\ 66 \\ 71 \\ 24 \\ 25 \\ 29 \\ 22 \\ 25 \\ 29 \\ 22 \\ 25 \\ 29 \\ 22 \\ 25 \\ 29 \\ 22 \\ 25 \\ 29 \\ 22 \\ 25 \\ 29 \\ 22 \\ 25 \\ 29 \\ 22 \\ 25 \\ 29 \\ 22 \\ 25 \\ 29 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20$	4 4 4 4 4 4 4 8 8 8 8 12 12 12 16 16 20 20	1/2/2/2/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/

All dimensions given in inches.

predicated upon the sound requirement that the employer must assume full responsibility for the deposited weld.

It is advisable that this management responsibility be included in all welding specifications and that authoritative standards of workmanship also be specified. The standards of workmanship for this industry are as

aA raised face of 1/16 in. is included in thickness of flange minimum and in length through hub.

bThe outside surface of the welding end of the hub shall be straight or tapered at not more than 6 deg. eDimensions H and J correspond to the outside and inside diameters of pipe as given in A.S.A. B36.10-1939, Schedule 40.

^{*}These diameters are identical with the diameters of what was formerly designated as Standard Weight Pipe of the corresponding sizes

set forth in the Standard Manual on Pipe Welding of the Heating, Piping and Air Conditioning Contractors National Association.

A complete line of manufactured steel welding fittings is now available

Table 12. American Standard Dimensions of Steel Welding Neck Flanges for STEAM SERVICE PRESSURE RATING OF 300 LB PER SQ IN. (GAGE) AT A TEMPERATURE of 750 F, A.S.A. B16e-1939

Nominal Pipe Size	DIAM. OF FLANGE	THICK- NESS OF FLG & MIN.	DIAM OF HUB	HUB DIAM. BEGINNING OF CHAM- FERD-c-d	LENGTH THRU HUBS	Inside Diam. of Pipe Schedule 40c-d	Inside Diam. of Pipe Schedule 80e-d	DIAM. OF BOLT CIRCLE	No. or Borts	Size of Bolts
1/2 1/4 1 1/4 1 1/2 2 2 1/2 3 3 1/2 4 5 6 8 10 12 14 O.D. 16 O.D.	0 3344 458 458 458 618 618 618 618 618 10 11 1212 2012 23	9/16 5/8/16 11/16 3/4 11/3/16 11/3/16 11/3/8 11/3/8 11/4 11/8 11/4 22/8	235/15/16 315/16 45/4 51/4 51/4 101/4 125/4 114/8 116/3/4	H 0.84 1.05 1.32 1.66 1.90 2.38 2.88 3.50 4.00 4.50 5.56 6.63 8.63 10.75 12.75 14.00	Y 21/16 6 6 6 6 22 1 1 1 8 6 6 6 8 3 3 3 3 5 7 8 8 4 5 5 5 5 3 1 4 5 5 5 5 6 1 4	J 0.62* 0.82* 1.05* 1.38* 1.61* 2.07* 2.47* 3.55* 4.03* 5.05* 6.07* 7.98* 10.02* To Be	J 0.55† 0.74† 0.96† 1.28† 1.50† 1.94† 2.32† 2.90† 3.36† 3.83† 4.81† 5.76† 7.63† To Be	25/8/4/2/8/2 33/1/2/8/2 45 55/8/4/8 10/5/8/4/8 13/1/20/4/8	4 4 4 4 4 8 8 8 8 8 12 12 16 16 20	1\5\5\5\5\5\5\5\5\5\5\5\5\5\5\5\5\5\5\5
18 O.D. 20 O.D. 24 O.D.	25½ 28 30½ 36	214 23/8 21/2 23/4	19 21 23½ 275/8	16.00 18.00 20.00 24.00	534 614 638 658	Speci- fied by Pur- chaser	Speci- fied by Pur- chaser	22 ½ 24 ¾ 27 32	20 24 24 24	114 114 114 112

All dimensions given in inches.

and a dimensional standard has been prepared under the procedure of the American Standards Association to unify heretofore divergent dimensions for the same type welding fittings as produced by different manufacturers. Standard dimensions for elbows, tees, caps, and lapped-joint stub ends

A raised face of 1/6 in. is included in thickness of flange minimum and in length through hub.

bThis outside surface of the welding end of the hub shall be straight or tapered at not more than 6 deg. eDimensions H and J correspond to the outside and inside diameters of pipe as given in A.S.A. B36.10-1939, Schedules 40 and 80. Purchaser's order must specify which of these two inside diameters is desired.

dThese flanges are regularly bored to match inside diameter of Schedule 40 pipe, but are bored to Schedule 80 pipe when so ordered.

^{*}These diameters are identical with the diameters of what was formerly designated as Standard-Weight Pipe of the corresponding sizes.

These diameters are identical with the diameters of what was formerly designated as Extra-Strong Pipe of the corresponding sizes.

are given in Table 10. Dimensions for eccentric and concentric reducers, and 180-deg return bends are not shown in Table 10 but are included in the American Standard. Larger sizes also are available in some types of fittings. The welding bevel which is a straight $37\frac{1}{2}$ -deg V for wall thicknesses $\frac{3}{4}$ in. and below, and a U-bevel for thicknesses heavier than $\frac{3}{4}$ in., conforms to the recommended practice of A.S.A. Standard B16e-1939, American Standard for Steel Pipe Flanges and Flanged Fittings. The latter also contains dimensions for steel welding neck flanges for pressures

Table 13. Proposed American Standard Dimensions of Socket-Welding Elbows, Tees, Crosses, 45-Deg Elbows, and Couplings

Nominal Pipe Size	MINIMUM DEPTH OF SOCKET	CENTER TO BOTTOM OF SOCKET				Couplings	Bore	Minimum Socket Wall Thickness			Bore Diameter of Fittings		
		90-Deg Ells, Tees, Crosses		45-Deg Ells		DISTANCE BETWEEN BOTTOM	DIAMETER OF SOCKET,	Sched.	Sched.	Sched.	Sched.	Sched.	Sched
		Sched. 40 & 80	Sched. 160	Sched. 40 & 80	Sched. 160	Sockets	MINIMUM	40	80	160	40	80	160
		A		A		Е	В	Ca		D			
14 3/8 1/2 3/4 1 11/4 11/2 2 21/2 3	8/8/8/8/2/2/2/2/8/8/8/8/	17.52 5/8 8/4 7/8 11/4 11/4 11/4 11/4 21/4	34 7/8 11/6 11/4 11/2 15/8 21/4 21/2	5/6 5/6 7/6 1/2 9/6 11/6 13/6 1 11/8 11/4	1/2 9/6 11/16 13/16 1 11/8 11/4 13/8	14 b b 14 8 8 8 14 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18	0.555b 0.690b 0.855 1.065 1.330 1.675 1 915 2 406 2 906 3 535	0 156 0.156 0.156 0.156 0.166 0.175 0.181 0.193 0.254 0.270	0 156 0.158 0.184 0.193 0 224 0.239 0.250 0.273 0.345 0.375	0.234 0.273 0.313 0.313 0.351 0.429 0.469 0.546	0.364 0.493 0.622 0.824 1.049 1.380 1.610 2.067 2.469 3.068	0.302 0.423 0.546 0.742 0.957 1.278 1.500 1.939 2.323 2.900	0 466 0.614 0 815 1.160 1 338 1.689 2.125 2 626

All dimensions are given in inches.

up to 2500 lb per square inch. Tables 11 and 12 give these dimensions for welding neck flanges suitable for 150 and 300 lb per square inch gage pressure.

Socket welding fittings are also commercially available. These fittings have a machined recess into which the pipe slips. A fillet weld between the pipe and socket edge provides a pressure-tight joint. This type of fitting has gained rapid acceptance due to its ease of installation, low cost, and ability to make a pressure tight joint without weakening the pipe as is the case with threading. Standard dimensions for socket welding fittings are being formulated under the procedure of the American Standards Association.

a Dimension C is $1\frac{1}{4}$ times the nominal pipe thickness, minimum, but not less than $\frac{5}{2}$ in.

bThis dimension applies to Schedules 40 and 80 only.

Reducing sizes have same center to bottom of socket dimension as the largest size of reducing fittting.

Use of socket welding fittings generally is restricted to nominal pipe size 3 in. and smaller in which range commercial fittings are available. For pipe sizes above 3 in., butt welding fittings of the type shown in Table 10 customarily are used. Proposed American Standard dimensions for socket-welding elbows, tees, crosses, 45-deg elbows, and couplings, which are being formulated under the procedure of the American Standards Association, are given in Table 13.

Table 14. American Standard Contact Surface to Contact Surface Dimensions of Cast-Iron and Steel Flanged Wedge Gate Valves, A.S.A. B16.10-1939

	Contact Surface to Contact Surface Dimensions, (2 $ imes$ AA)										
Nominal Pipe Size		Cast-Irona	Steel								
	125	175bc	250b	150b	300p						
1 111/4 111/2 2 211/2 3 31/2 4 5 6 8 10 12 14 O.D. 16 O.D. 18 O.D. 20 O.D. 24 O.D.	7 7 ¹ / ₂ 8 8 8 ¹ / ₂ 9 10 10 ¹ / ₂ 11 ¹ / ₂ 13 14 15 16 17 18 20	7]4 8 914 10 10½ 11½ 13 14¼ 16¾ 17½	8½ 9½ 11½ 11½ 11½ 15 15 15½ 16½ 18 19¾ 22½ 24 26 28 31	7 71/2 8 81/2 9 10 10/2 11/2 13 14 15 16 17 18 20	7½ 8½ 9½ 9½ 11½ 11½ 15 15 15½ 16½ 18 19¾ 30 33 36 39 45						

All dimensions given in inches.

aThese dimensions are the same for Cast-Iron Double Disc Flanged Gate Valves.

bThese are pressure designations which refer to the primary service ratings in pounds per square inch of the connecting end flanges.

cThe connecting end flanges of 175 lb valves are the same as those on 250 lb valves.

Note 1:—Where dimensions are not given, the sizes either are not made or there is insufficient demand to warrant the expense of unification.

[•] NOTE 2:—Female and groove joint facings have bottom of groove in same plane as flange edge, and center to contact surface dimensions for these facings are reduced by the amount of the raised face

VALVES

Valves are made with both threaded and flanged ends for screwed and bolted connections just as are pipe fittings.

The material used for valves of small size is generally brass or bronze for low pressures and forged steel for high pressures, while in the larger sizes either cast-iron, cast-steel or some of the steel alloys are employed. Practically all iron or steel valves intended for steam or water work are bronze-mounted or trimmed.

Brass, bronze, and iron valves are generally designed for standard or extra heavy service, the former being used up to 125 lb and the latter up to 250 lb saturated steam working pressure, although most manufacturers also make valves for medium pressure up to 175 lb steam working pressure. The more common types are gate valves or straightway valves, globe valves, angle valves, check valves and automatic valves, such as reducing and back-pressure valves.

Gate valves are the most frequently used of all valves since in their open position the resistance to flow is a minimum, but they should not be used where it is desired to throttle the flow; globe valves should be used for this purpose. These valves may be secured with either a rising or a nonrising stem, although in the smaller sizes the rising stem is more commonly used. The rising stem valve is desirable because the positions of the handle and stem indicate whether the valve is open or closed, although space limitations may prevent its use. The globe valve is less expensive to manufacture than the gate valve, but its peculiar construction offers a high resistance to flow and may prevent complete drainage of the pipe line. These objections are of particular importance in heating work.

An American Standard, A.S.A. B16.10-1939, has been prepared giving the face-to-face dimensions of ferrous flanged and welding end valves. The following types are covered: wedge gate, double disc gate, globe and angle, and swing check. One purpose of establishing these dimensions is to insure that gate valves of a given rating and flange dimension of either the wedge or double disc design will be interchangeable in a pipe line. Contact surface to contact surface dimensions of cast-iron and steel flanged wedge gate valves are given in Table 14. End-to-end dimensions for steel butt-welding valves in sizes up to 8 in., inclusive, are the same as those given in Table 14 for steel valves.

Check valves are automatic in operation and permit flow in only one direction, depending for operation on the difference in pressure between the two sides of the valve. The two principal kinds of check valves are the swing check in which a flapper is hinged to swing back and forth, and the lift check in which a dead weight disc moves vertically from its seat.

Valves commonly used for controlling steam or water supply to radiators constitute a special class since they are manufactured to meet heating system requirements. These valves are generally of the angle type and are usually made of brass. Graduations on the heads or lever handles are often supplied to indicate the relative opening of the valve in any position.

Automatic control of steam supply to individual radiators can be effected by use of direct-acting radiator valves having a thermostatic

element at the valve, or near to it. The direct-acting valve is usually an angle-type valve containing a thermostatic element which permits the flow of steam in accordance with room temperature requirements. These valves usually are capable of adjustment to permit variation in room temperature to suit individual taste.

Ordinary steam valves may be used for hot water service by drilling a \mathcal{H}_6 -in. hole through the web forming the seat to insure sufficient circulation to prevent freezing when the valve is closed. Valves made particularly for use in hot water heating systems are of less complex design, one type consisting of a simple butterfly valve, and another of a quick opening type in which a part in the valve mechanism matches up with an opening in the valve body.

In one-pipe steam-heating systems, automatic air valves are required at the radiators. Two common types of air valves available are the vacuum type and the straight-pressure type. Vacuum valves permit the expulsion of air from the radiators when the steam pressure rises and, in addition, act as checks to prevent the return of air into the radiator when a vacuum is formed by the condensation of steam after the supply pressure has dropped. Ordinary air valves permit the expulsion of air from the radiator when steam is supplied under pressure, but when the pressure dies down and a vacuum tends to be formed the air is drawn back into the radiator.

CORROSION²

Corrosion is sometimes encountered in heating work on the outside of buried pipes or the inside of steam heating systems; it is seldom experienced in hot water heating systems unless the water is frequently renewed. Piping buried in the ground is quite successfully protected by coatings of the asphaltic type which are usually applied hot and often reinforced with fabric wrappings. Galvanizing by the hot-dip process and painting with specially prepared mixtures also afford some protection.

Internal corrosion in steam heating systems occurs principally in the condensate return pipes and is nearly always caused by oxygen or carbon dioxide, or both, in solution in the condensate. Oxygen may enter the heating system with the steam, owing to its presence in the boiler-feed water, or it may enter as air through small leaks, particularly in systems which operate at sub-atmospheric pressures. When a steam heating system is operated intermittently, air rushes in during each shutdown period and oxygen is absorbed by the condensate which clings to the interior surfaces of the pipes and radiators. The rate of corrosion depends upon the amounts of oxygen and carbon dioxide present in solution, upon the operating temperature, and upon the length of time that the pipe surfaces are in contact with gas-laden condensate.

²New Light on Heating System Corrosion, by J. H. Walker (Heating and Ventilating, May, 1933). A.S.H.V.E. RESEARCH REPORT No. 983—Corrosion Studies in Steam Heating Systems, by R. R. Seeber, F. A. Rohrman and G. E. Smedberg, (A.S.H.V.E. Transactions, Vol. 40, 1934, p. 253). A.S.H.V.E. RESEARCH REPORT No. 1037—Corrosion Studies in Steam Heating Systems, by R. R. Seeber, F. A. Rohrman and G. E. Smedberg, (A.S.H.V.E. Transactions, Vol. 42, 1936, p. 263). A S.H.V.E. RESEARCH REPORT No. 1071—Corrosion Studies in Steam Heating Systems, by R. R. Seeber and Margaret R. Holley (A.S.H.V.E. Transactions, Vol. 43, 1937, p. 461). Corrosion in Steam Heating Systems, by L. F. Collins and E. L. Henderson, (Heating, Piping and Air Conditioning, September, 1939 to May, 1940)

Another possible cause of corrosion is a flow of electric current sometimes resulting from faulty electrical circuits which should be corrected. Electrolytic corrosion also may occur because of the presence of two dissimilar metals, such as brass and iron, but the condensate in practically all steam heating systems is such a weak electrolyte that this cause of corrosion is very infrequent.

If trouble is experienced from corrosion, oxygen should be eliminated from the feed water by proper deaeration with commercial apparatus. The elimination of the oxygen due to air leakage is more difficult because of the multitude of small leaks which exist around valve stems and in pipe joints. In vacuum systems, however, an attempt should be made to minimize such leakage.

Carbon dioxide in varying amounts is contained in steam produced from the majority of water supplies. It is formed from the breaking down of carbonates and bicarbonates which are present in nearly all natural waters. It can be partly removed by chemical treatment and deaeration, but there is no simple method whereby it can be entirely eliminated.

These gases cause corrosion only when in solution in the condensate; when they are mixed with dry steam their corrosive effect is negligible. The amount of gas in solution depends upon the partial pressure of that gas in the atmosphere above the surface of the solution, in accordance with the well known physical law of Henry and Dalton³. The correct application of this law, however, requires equilibrium conditions which do not always exist under the flow conditions prevailing in a heating system.

There is a distinction between corrosion in heating systems proper and in the condensate discharge lines from other apparatus using steam at relatively high rates, particularly at the times of the cycle when the steam consumption is at its heaviest. In such equipment the gases tend to accumulate in the steam space and to become dissolved in the condensate in appreciable concentrations, thus greatly increasing the possibilities of corrosion. The condensate will more nearly approach in composition the composition of the steam than will the normal condensate from low rating apparatus such as room radiators, and will, therefore, normally include in solution more contaminants. It is possible that careful venting of such equipment would reduce the amount of contaminants dissolved in the condensate, thus giving less corrosion. There is evidence that the partial pressures of the gases are much lower in heating systems than in high usage equipment, and therefore the corrosion possibilities of the two are not comparable. Hence, corrosion observed in the condensate discharge lines from high usage equipment does not necessarily indicate that equally serious corrosion is taking place in the heating system.

The seriousness of corrosive conditions is best determined by actual measurement rather than by inference from isolated instances of pipe failures. The *National District Heating Association* has perfected a corrosion tester for measuring the inherent corrosiveness of existing conditions. This corrosion tester consists of a frame supporting three coils of wire which are carefully weighed. After the tester has been inserted in the pipe line for a definite length of time, the loss of weight of the coils,

¹Some Fundamental Considerations of Corrosion in Steam and Condensate Lines, by R. E. Hall and A. R. Mumford (A.S.H.V.E. Transactions, Vol. 38, 1932, p. 121).

referred to an established scale, indicates the relative corrosivensss of the condensate. Accompanying such corrosion measurements, a careful chemical analysis should be made of the condensate, and the findings will serve as a basis for an intelligent study of the problem.

There are some indications that after a condensate containing carbon dioxide has dissolved some iron and thereby raised its pH value, its corrosive action is greatly reduced and the solution will remain comparatively inactive until admission of oxygen permits the precipitation of the dissolved iron as ferric oxide. The pH value of the condensate may be buffered to a fairly high value by the solution of iron and not correspond to the pH value to be expected in the unbuffered solution containing the same amount of carbon dioxide.

Corrosion, if found to exist, can be lessened or overcome by several means. If the steam supply is found to be definitely contaminated, proper chemical treatment of the water, followed by deaeration, is an obvious remedy. The leaks in the piping system, particularly in vacuum systems, should be stopped so far as is practicable.

Although inhibitors of various types have had considerable trial and experimentation and successes have been reported, the information as yet requires considerable study to be made satisfactorily useful. Among these inhibitors are oil, sodium silicate, sodium hydroxide, tannin, and various other organic compounds, some of which release ammonia gas. The best guidance to date in the use of such inhibitors is to compare the results found over a period of years in a similar installation operating under the same conditions.

In view of the fact that corrosion is most frequently found in the return lines from special equipment, which constitute a relatively small part of the total piping in a building, a simple solution of the corrosion problem may be to use non-corroding materials in those certain portions of the piping system, since the higher cost will usually be an unappreciable portion of the total. Brass and copper are undoubtedly less subject to this type of corrosion than the ferrous metals, and considerable attention is now being given to corrosion-resistant linings for ferrous pipe. Cast-iron pipe, sometimes alloyed with other metals, also deserves consideration.

Eighteen ferrous and non-ferrous metals and alloys were recently tested in a large air conditioning installation⁴. Observations were made in the wash water of the dehumidifier and in the air stream beyond the eliminator plates. The corrosion rates of all metals and alloys utilizing a dichromated-treated wash water were extremely low. Localized attack in the form of pitting was found to occur on steel in crevices or under solid accumulations. Just beyond the dehumidifier eliminator plates corrosive conditions were observed to be particularly severe and in such locations non-ferrous metals and alloys and stainless steels were most resistant. Alloy steels were found to be superior to mild steel.

⁴A S.H.V.E. RESEARCH PAPER—Corrosion Tests in a Water-Recirculating Air Conditioning System, by W. Z. Friend (A.S.H.V.E. JOURNAL SECTION, Healing, Psping and Air Conditioning, March, 1942, p. 187).

Chapter 19

GRAVITY WARM AIR FURNACE SYSTEMS

Design Procedure, Estimating Heating Requirements, Leader Pipe Sizes, Proportioning Wall Stacks, Register Selections, Recirculating Ducts and Grilles, Furnace Return Connection, Furnace Capacity, Examples, Booster Fans

WARM air heating systems of the gravity type are described in this chapter¹, and those of the mechanical type are described in Chapter 20. In the gravity type, the motive head producing flow depends upon the difference in weight between the heated air leaving the top of the casing and the cooled air entering the bottom of the casing, while in the mechanical type a fan may supply all or part of the motive head. Booster fans are often used in conjunction with gravity-designed systems to increase air circulation.

In general, a warm-air furnace heating plant consists of a fuel-burning furnace or heater, enclosed in a casing of sheet metal or brick, which is placed in the basement of the building. The heated air, taken from the top or sides near the top of the furnace casing, is distributed to the various rooms of the building through sheet metal warm-air pipes. The warm-air pipes in the basement are known as leaders, and the vertical warm-air pipes which are run in the inside partitions of the building are called stacks. The heated air is finally discharged into the rooms through registers which are set in register boxes placed either in the floor or in the side wall, usually at or near the baseboard.

The air supply to the furnace may be taken (1) entirely from inside the building through one or more recirculating ducts, (2) entirely from outside the building, in which case no air is recirculated, or (3) through a combination of the inside and the outside air supply systems.

DESIGN PROCEDURE

The design of a furnace heating system involves the determination of the following items:

- 1. Heat loss in Btu from each room in the building.
- 2. Area and diameter in inches of warm-air pipes in basement (known as leaders).
- 3. Area and dimensions in inches of vertical pipes (known as wall stacks).
- 4. Free and gross area and dimensions in inches of warm-air registers.
- 5. Area and dimensions of recirculating or outside air ducts, in inches.
- 6. Free and gross area and dimensions in inches of recirculating registers.

¹All figures and much of the engineering data which follow are from University of Illinois, Engineering Experiment Station Bulletins Nos. 141. 188. 189 and 246; Warm Air Furnaces and Heating Systems, by A. C. Willard, A P Kratz, V S. Day, and S. Konzo. See also Standard Code Application Manual for Gravity Warm Air Heating Systems, published by the National Warm Air Heating and Air Conditioning Association, 145 Public Square, Cleveland, Ohio.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

- 7. Size of furnace necessary to supply the warm air required to overcome the heat loss from the building. This size should include square inches of leader pipe area which the furnace must supply. It is also desirable to call for a minimum bottom fire-pot diameter in inches, which is the nominal grate diameter.
- 8. Area and dimensions in inches of chimney and smoke pipe. If an unlined chimney is to be used, that fact should be made clear.

The heat loss calculations should be made in accordance with the procedure outlined in Chapter 6, taking into consideration the transmission losses as well as the infiltration losses.

LEADER PIPE SIZES

In a gravity circulating warm-air furnace system the size of the leader to a given room depends upon the temperature of the warm air entering the room at the register. A reasonable air temperature at the registers must, therefore, be chosen before the system can be designed. The National Warm Air Heating and Air Conditioning Association has approved an air temperature of 175 F at the registers as satisfactory for design purposes. At this temperature, the heat-carrying capacity (heat available above 70 F) per square inch of leader pipe per hour for first, second or third floors is shown by Fig. 1 at 175 F to be 105, 170 and 208 Btu, respectively. For average calculations, the values 111, 166 and 200 will simplify the work and may be satisfactorily substituted for these heat-carrying capacities. If H represents the total heat to be supplied any room, the resulting equations are:

Leader areas for first floor, square inches =
$$\frac{H}{111}$$
 = approximately 0.009 H (1)

Leader areas for second floor, square inches =
$$\frac{H}{166}$$
 = approximately 0.006 H (2)

Leader areas for third floor, square inches =
$$\frac{H}{200}$$
 = approximately 0.005 H (3)

In designing for a lower warm-air register temperature, say 160 F, the factors 111, 166 and 200 become 80, 140 and 166 (Fig. 1 at 160 F), and the resulting equations are:

Leader areas for first floor, square inches =
$$\frac{H}{80}$$
 = approximately 0.012 H (4)

Leader areas for second floor, square inches =
$$\frac{H}{140}$$
 = approximately 0.007 H (5)

Leader areas for third floor, square inches =
$$\frac{H}{166}$$
 = approximately 0.006 H (6)

These equations are applicable to straight leaders from 6 to 8 ft in length. Longer leaders must be thoroughly insulated or the vertical stacks must be increased in area as discussed under wall stacks. If some provision is not made for these longer leaders, the air temperature may be much lower than anticipated and the room will not be properly heated.

The values shown in Fig. 1 apply only to the case where the straight, leader pipe is 8 ft in length and is connected to stacks whose cross-sectional area is approximately 75 per cent of that of the leader pipe.

CHAPTER 19. GRAVITY WARM AIR FURNACE SYSTEMS

Any deviation from these conditions requires a modification of the constants used in Equations 1, 2, and 3. The temperature drop in leaders of various lengths at three different register temperatures is shown in Fig. 2, and should be used to obtain new register temperatures, lower than 175 F, on which to base selections from the curves of Fig. 1, and thereby new constants for Equations 1, 2 and 3.

Leader sizes should in general be not less than those obtained by Equations 1 to 3 nor should leaders less than 8 in. in diameter be used. In residences requiring a leader pipe area of 650 sq in. or less, it is advisable

Fig. 1. Value of Square Inch of Leader Pipe Area for First, Second, and Third Floors for Simple System having Leaders 8 Ft in Length

to use two or more leader pipes to rooms requiring more than the capacity of a 12 in. round pipe. It is not considered good commercial practice to specify diameters except in whole inches. The tops of all leaders should be at the same elevation as they leave the furnace bonnet, and from this point there should be a uniform up-grade of 1 in. per foot of run in all cases. Leaders over 12 ft in length should be avoided if possible. In cases where such leaders are required, the use of a larger size pipe, than is required by the application of the equations, smooth transition fittings, and duct insulation are recommended.

PROPORTIONING WALL STACKS

The wall stack for an upper floor should be made not less than 70 per cent of the area of the leader. In cases where the leader is short and straight as was the case for Fig. 1, such a practice is probably justified, since the loss (Fig. 3) in capacity occasioned by the smaller stack is not serious for stacks having areas in excess of 70 per cent of the leader area. For leaders over 8 ft in length or for leaders which are not straight, the ratio of stack area to leader area should be greater than 70 per cent in

Fig. 2. Influence of Leader Pipe Length on Temperature Loss in Air Flowing through Pipe

order to offset the greater temperature losses (Fig. 2) in the longer leader. In gravity circulating systems, this ratio of stack to leader area is a very important matter.

The curves in Figs. 4 and 5 indicate that for rooms having a heat requirement exceeding approximately 9000 Btu per hour, exceedingly high register temperatures are required for stacks whose width is less than $3\frac{1}{2}$ in. For such requirements either multiple stacks, or stacks having larger cross-sectional area (placed in 6 in. studding spaces) will be required.

REGISTER SELECTIONS

The registers used for discharging warm air into the rooms should have a free or net area not less than the area of the leader in the same run of piping. The free area should be at least 70 per cent of the gross area of the register. No upper floor register should be wider horizontally than the wall stack, and it should be placed either in the baseboard or side wall, if this can be done without the use of offsets. First floor registers may be of the baseboard or floor type, with the former location preferred. High

Fig. 3. Relative Heating Effect of Stacks at Constant Heat Input to Furnace

side wall locations for warm air registers in gravity circulating systems are not recommended on account of the tendency for stratification of the air in the room, resulting in high temperatures at the ceiling.

RECIRCULATING DUCTS AND GRILLES

The ducts through which air is returned to the furnace should be designed to minimize friction and turbulence. They should be of ample area, equal to or slightly in excess of the total area of warm-air pipes, and

at all points where the air stream must change direction or shape, streamline fittings should be employed. Horizontal ducts should pitch at least ½ in. per foot upward from the furnace.

The recirculating grilles (or registers) should have a free area at least equal to the ducts to which they connect, and their free area should never be less than 50 per cent of their gross area.

The location and number of return grilles will depend on the size, details and exposure of the house. Small compactly built houses may frequently be adequately served by a single return effectively placed in a central hall. More often it is desirable to have two or more returns, provided, however, that in two-story residences one return is placed to effectively receive the cold air returning by way of the stairs.

Fig. 4. Heating Effect at Registers for Various Stacks with 10-in. Leader

Where a divided system of two or more returns is used, the grilles must be placed to serve the maximum area of cold wall or windows. Thus in rooms having only small windows the grille should be brought as close to the furnace as possible, but if the room has a bay window, French doors, or other large sources of cooling or leakage of cold air, the grille should be placed close by, so as to collect the cool air and prevent drafts. When long ducts of this type are employed they must be made oversize. This precaution is particularly important when long ducts and short ducts are used in the same system. The long ducts must be oversize, if they are to operate satisfactorily in parallel with short ducts.

Return ducts from upstairs rooms may be necessary in apartments or other spaces which are closed off or badly exposed. Metal linings are

advisable in such ducts. It is important that these ducts be free from unnecessary friction and turbulence, and that they be located to prevent preheating of the air before it reaches the furnace.

Furnace Return Connection

Circulation of the air is accelerated if the return connection to the furnace is through a round inclined pipe connected to two 45 deg elbows rather than through a vertical pipe connected to two 90 deg elbows. The top of the return shoe should enter the casing below the level of the grate in the furnace. In order to accomplish this the shoe must be wide as is indicated in Fig. 6, No. 1 arrangement.

Tests of six different systems of cold air returns, Fig. 6, made at the University of Illinois², resulted in the following conclusions:

FIG. 5. HEATING EFFECT AT REGISTERS FOR VARIOUS STACKS WITH 8-IN. LEADER

- 1. In general, somewhat better room temperature conditions may be obtained by returning the air from positions near the cold walls.
- 2. Friction and turbulence in elaborate return duct systems retard the flow of air, and may seriously reduce furnace efficiency, and lessen the advantages of such a design.
- 3. The cross-sectional duct area is not the only measure of effectiveness. Friction and turbulence may operate to make the air flow out of all proportion to the various duct areas.

FURNACE CAPACITY

The size of furnace should, of course, be such as will provide the necessary air heating capacity, usually expressed in square inches of leader pipe area, and at the same time provide a grate of the proper area to burn the necessary fuel at a reasonable chimney draft. The total leader pipe area required is obtained by finding the sum of the leader pipe areas as already designated.

Investigation of Warm Air Furnaces and Heating Systems, Part IV, by A. C. Willard, A. P. Kratz, and V. S. Day (University of Illinois, Engineering Experiment Station Bulletin No. 189).

The grate area will depend on several factors of which four are very important. First of all, the air temperature at the register for which the plant has been designed must be determined. Usually, this temperature is taken at 175 F. Second in importance is the combustion rate, which must always correspond with the register air temperature, as is shown by a set of typical furnace performance curves (Fig. 7) for a cast-iron, circular radiator furnace with a 23 in. diameter grate and 50 in. diameter casing. The third factor is efficiency, which is a function of the combustion rate, and varies with it as shown by the efficiency curve of Fig. 7. The fourth factor is the heat value per pound of fuel burned, which was 12,790 Btu. This is not shown on the curves since it was constant for all combustion rates.

Fig. 6. Arrangement of Cold Air Returns for Six Installations

It may be noted from Fig. 7 that for this particular furnace a register temperature of 175 F was accompanied by a combustion rate of approximately 7.5 lb per square foot per hour, a capacity at the bonnet of 152,000 Btu per hour and a furnace efficiency of 58 per cent. Under these conditions the capacity at the bonnet per square foot of grate was equivalent to a value of 52,800 Btu per hour and per square inch of grate was equivalent to 367 Btu per hour. If it is desired to use these curves to select a furnace to deliver air at 175 F register temperature in a house where the total heat loss is H Btu per hour and the loss between the furnace and the registers is 0.25 H Btu per hour, the area of the grate in square inches will be $\frac{1.25 H}{367} = 0.0034 H$.

If, on the other hand, it is desired to select a furnace to deliver air at 160 F register temperature, the combustion rate is 5.5 lb and the efficiency

of the furnace is 62 per cent. Under this condition the capacity at the furnace bonnet per square foot of grate is 43,200 Btu per hour and per square inch of grate is 300 Btu per hour, the required area of the grate in square inches in this case will be $\frac{1.25\ H}{300}=0.0042\ H$. It should be noted that a larger grate area is required if the furnace is to deliver air at a lower register temperature.

The typical performance curves shown in Fig. 7 are not applicable to

Fig. 7. Typical Performance Curves for a Warm-Air Furnace and Installation in a Three-Story Ten Leader Plant, Operating on Recirculated Air

all furnaces and hence for ordinary design purposes the values recommended in the Standard Code³ should be used. The equation for a furnace having a ratio of heating surface to grate area of 20 to 1 is equal to:

$$H = \frac{G \times p \times f \times E_1 \times E_2 \times 0.866}{144} \tag{7}$$

^{*}Standard Gravity Code for the Design and Installation of Gravity Warm Air Heating Systems in Residences This code has been sponsored by the National Warm Air Heating and Air Conditioning Association, the National Association of Sheet Metal Contractors, and the American Society of Heating And Ventilating Engineers. It is recommended that the installation of all gravity warm-air heating systems in residences be governed by the provisions of this code, the eleventh edition of which may be obtained from the National Warm Air Heating and Air Conditioning Association, 145 Public Square, Cleveland, Ohio.

Fig. 8. Basement Plan, Research Residence

Fig. 9. First Floor Plan, Research Residence

CHAPTER 19. GRAVITY WARM AIR FURNACE SYSTEMS

where

G = grate area, square inch.

p =combustion rate, pound coal per square foot of grate per hour.

f = heating value of the coal, Btu per pound.

 E_1 = efficiency at bonnet, ratio of heat delivered at bonnet to heat developed in furnace.

 E_2 = efficiency of duct transmission, ratio of heat delivered at register to heat delivered at bonnet.

0.866 = factor of safety to allow for contingencies under service conditions such as accumulations of soot and ashes, ineffective firing methods, etc.

H = total heat loss from structure.

An addition of 2 per cent of the furnace capacity is proposed for each unit when the ratio of heating surface to grate area exceeds 20. This addition is based on tests⁴ conducted at the University of Illinois on seven types of furnaces having varying ratios of heating surface to grate area. This correction does not, however, apply to values of the ratio less than 15 nor greater than 30.

By transposing the terms in Equation 7 and adding the correction term for ratios of heating surface to grate area other than 20 to 1, the following equation is obtained:

$$G = \frac{144 \times H}{p \times f \times E_1 \times E_2 \times 0.866 \ [1 + 0.02 \ (R-20)]}$$
(8)

in which R = ratio of heating surface to grate area.

In the case of the Standard Code⁵ the numerical values used in Equation 8 were based on those determined from the tests conducted on the different types of furnaces.

$$G = \frac{144 \times H}{7.5 \times 12,790 \times 0.55 \times 0.75 \times 0.866 [1 + 0.02 (R-20)]}$$
(9)

$$G = 0.004205 \frac{H}{[1 + 0.02 (R-20)]}$$
 (10)

As used in these calculations, H=Btu heat loss from the entire house per hour = summation of all room losses H_1+H_2+ etc. + the Btu necessary to heat the outside air, if any, at intake. This outside air loss in Btu per hour will be approximately 1.27 times the cubic feet of air admitted through the intake per hour on a zero day. For systems which recirculate all the air this value will be zero. For systems which have an outside air intake, controlled by damper, this value might well be approximated, since this loss will probably be reduced to a minimum on a zero day. Assume for such cases that the building loss is increased by 25 per cent, and that there is the usual 25 per cent loss between furnace and registers.

TYPICAL DESIGN

The application of the preceding data to an actual example may be of assistance to the designer. Figs. 8, 9, 10 and 11 represent the plans of

5Loc. Cit. Note 3.

⁴University of Illinois, Engineering Experiment Station Bulletin No. 246, by A. C. Willard, A. P. Kratz, and S. Konzo, Chapter X, pp. 126-146.

Fig. 10. Second Floor Plan, Research Residence

Fig. 11. Third Floor Plan, Research Residence

CHAPTER 19. GRAVITY WARM AIR FURNACE SYSTEMS

the Warm Air Research Residence of the National Warm Air Heating and Air Conditioning Association erected at the University of Illinois⁶.

Leaders, Stacks and Registers. (Direct Method)

Living Room, 1st floor:

 $17,250 \div 111 = 155$ sq in. leader area. See summary Table 1; also see Art. 3, Sec. 1 of the Standard Gravity Code⁷.

Leader diameter = 14 in.

Register size = 155 sq in. net area. Gross area = net area \div 0.7 = 14 in. \times 16 in

Owner's Room, 2nd floor:

 $15{,}030 \div 167 = 90$ sq in. leader area. See summary Table 1; also see Art. 3, Sec. 2 of the Standard Gravity Code 7.

Leader diameter = 11.4, say 12 in.

Stack area = $0.7 \times 90 = 63$ sq in. = say 5 in. \times 12 in.

Register area = 90 sq in. net area. Gross area = net area \div 0.7 = 12 \times 12 or 12 in. \times 14 in.

In like manner the leaders, stacks and registers are calculated for each room in the house.

Leaders, Stacks and Registers. (Code Method. See Art. 3, Sec. 1, 2, 3)

Living Room (Glass = 90, Net wall = 405, Cubic contents = 2405)

Leader =
$$\left(\frac{90}{12.6} + \frac{405}{57} + \frac{2405}{800}\right)$$
 9 = 155 sq in.

Register, same as Direct Method.

Owner's Room (Glass = 68, Net wall = 394, Cubic contents = 2275)

Leader =
$$\left(\frac{68}{12.6} + \frac{394}{57} + \frac{2275}{800}\right) 6 = 91 \text{ sq in.}$$

Stack and Register, same as Direct Method.

Assuming all air recirculated, the minimum furnace for the plant will be:

Grate area = $0.0042 \times 132,370 = 556$ sq in.

Use 27 in. diameter grate. (Equation 10.)

If provision should be made for certain outside air circulation, then increase the building heat loss by, say, 25 per cent and obtain by Equation 10 a 30 in. grate.

Experiments at the University of Illinois⁸ have shown that the capacity of a furnace may be increased nearly three times by an adequate fan, with a constant register or delivery temperature maintained, provided that the rate of fuel consumption can be increased to provide the necessary heat. In other words, the capacity of a forced circulation system is limited by the ability of the chimney to produce a sufficient draft, and the ability of the fan to deliver an adequate amount of air.

⁶Plans used with permission. Bathroom on third floor not heated.

Loc. Cit. Note 3.

⁸University of Illinois, Engineering Experiment Station Bulletin No. 120, p 129.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

TABLE 1. SUMMARY OF DATA APPLIED TO WARM AIR RESEARCH RESIDENCE

Rooms	From Chapter 6 Estimating Heat Losses Btu Heat Losses	Leader Area Sq In.	Stack Area Sq In. 0.7 × LA	Leader Diameter Inches	Stack Size Net	Register Size Gross
First Floor Living	17250 6810 2300 9210 25710 12570 15030 9800 2450 14800 8220 8220	= 0.009H 155 61 21 83 230 113 $= 0.006H$ 90 59 15 89 $= 0.005H$ 41	63 41 10 62 29	14 9 8 11 or 12 Two 12 12 11 or 12 9 8 11 or 12	5 × 12 3½ × 12 3 × 10 5 × 12 3 × 10	$14 \times 16 \\ 8 \times 12 \\ 8 \times 10 \\ 12 \times 14 \\ \text{Two } 12 \times 14 \\ 12 \times 14 \\ 12 \times 14 \\ 8 \times 12 \\ 8 \times 10 \\ 12 \times 14 \\ 8 \times 10 \\ 12 \times 1$

BOOSTER FANS

Booster fans often may be arranged to operate when gas or oil burners are running and to stop automatically when the burners shut down. The booster equipment is most effective in increasing output at low operating temperatures. According to tests, efficiencies may be advanced from 60 per cent for gravity to 70 per cent with boosters at low operating temperatures, but at high operating temperatures gravity and booster efficiencies are almost identical.

University of Illinois, Engineering Experiment Station Bulletin No. 141 p 79, and No. 246.

Chapter 20

MECHANICAL WARM AIR FURNACE SYSTEMS

Furnaces, Fans and Motors, Filters, Air Distribution, Automatic Controls, Design of Heating System, Selecting the Furnace, Selecting the Fan, Heavy Duty Fan Furnaces, Humidification, Cooling Methods, Cooling System Design

In mechanical warm air or fan furnace heating systems¹, the air circulation is effected by motor-driven fans instead of by the difference in weight between the heated air leaving the top of the casing and the cooled air entering the bottom, as in gravity systems described in Chapter 19. The advantages of mechanical systems, as compared with gravity systems are:

- 1. The furnace need not be centrally located but may be placed in any part of the basement.
- 2. Basement distribution piping can be made smaller and can be so installed as to give full head room in all parts of the average basement, or be completely concealed from view where desired.
- 3. Circulation of air is positive, and in a properly designed system can be balanced in such a way as to give a greater uniformity of temperature distribution.
 - 4. Humidity control is more readily attained.
 - 5. The air may be cleaned by sprays or filters, or both.
- 6. The fan and duct equipment may be utilized for a complete cooling and dehumidifying system for summer, using either ice, mechanical refrigeration, or low temperature water for cooling and dehumidifying, or adsorbers for dehumidifying.
- 7. The use of the fan increases the volume of air which can be handled, thereby increasing the rate of heat extraction from a given amount of heating surface and insuring sufficient air volume to obtain proper distribution in a large room.
 - 8. Ventilation air may be positively introduced and heated.

FURNACES

Furnaces for mechanical warm air systems may be made of cast-iron, steel, or alloy. Cast-iron furnaces are usually made in sections and are assembled and cemented or bolted together on the job. Steel furnaces are

¹University of Illinois Engineering Experiment Station Bulletins Nos 266 and 318 by A. P. Kratz and S. Konzo for details of tests conducted in Warm Air Research Residence.

Complete specifications for the furnace unit and the installed duct system are shown in The Yardstick for the Evaluation of a Forced Warm Air Heating System, obtainable from the National Warm Air Heating and Air Conditioning Association, 145 Public Square, Cleveland, Ohio.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

made with welded or riveted seams. The proper design of the furnace depends largely on the kind of fuel to be burned, and special units are being made for the use of coal, oil and gas. Each type of fuel requires a distinct type of furnace for highest efficiency and economy, substantially as listed herewith:

Coal Burning:

- a. Bituminous—Large combustion space with easily accessible secondary radiator or flue travel.
- Anthracite or coke—Large fire box capacity and liberal secondary heating surfaces.

2. Oil Burning:

- a. Liberal combustion space.
- b. Long fire travel and extensive heating surface.

3. Gas Burning:

- a. Extensive heating surface.
- b. Close contact between flame and heating surface.

A combustion rate of from 5 to 8 lb of coal per square foot of grate per hour is recommended for residential furnaces. A higher combustion rate is permissible with larger furnaces for buildings other than residences, depending upon the ratio of grate surface to heating surface, firing period, and available draft.

Where oil fuel is used, care must be exercised in selecting the proper size and type of burner for the particular size and type of furnace used. It is recommended that the system be designed for blow-through installations, so that the furnace shall be under external pressure in order to minimize the possibility of leakage of the products of combustion into the air circulating system. The National Warm Air Heating and Air Conditioning Association has adopted a Tentative Code for Testing and Rating of Oil-Fired Furnaces.

In residential furnaces for coal burning, the ratio of heating surface to grate area will average about 20 to 1; in commercial sizes it may run as high as 50 to 1, depending on fuel and draft. Furnaces may be installed singly, each furnace with its own fan, or in batteries of any number of furnaces, using one or more fans.

Furnace Casings

Casings are usually constructed of galvanized iron, 26-gage or heavier, but they may also be constructed of brick. Galvanized iron casings should be lined with sheet iron liners, extending from the grate level to the top of the furnace and spaced from 1 in. to $1\frac{1}{2}$ in. from the outer casing. Casings for commercial or heavy duty furnaces, if built of galvanized iron, should be insulated with fireproof insulating material at least 2 in. thick. In general, either brick or sheet metal casing should be equipped with baffles to secure impingement of the air to be heated against the heating surfaces. Brick furnace casings should be supplied with access doors for inspection.

For furnace casings sized for gravity flow of air, where a fan is to be

used, some form of baffling must be employed if the desired results are to be expected. Many manufacturers recommend the use of special baffles to restrict the free area within the casing and to force impingement of the air against the heating surfaces. Either square or round casings may be used. Where square casings are used, the corners must be baffled to reduce the net free area and to force impingement of air against the heating surfaces.

The hood or bonnet of the casing above the furnace should be as high as basement conditions will allow, to form a plenum chamber over the top of the furnace. This tends to equalize the pressure and temperature of the air leaving the bonnet through the various openings. It is generally considered advisable to take off the warm air pipes from the side of the bonnet near the top, as this method of take-off allows the use of a higher bonnet and thus provides a larger plenum chamber.

FANS AND MOTORS

Centrifugal fans are the type most commonly used, and these may be equipped with either backward or forward curved blades. Motors may be mounted on the fan shaft or outside of the fan for belt drive. Adjustable pulleys are-desirable to provide a factor of safety and to allow for increased air circulation, provided the motor is adequate to carry the load imposed at maximum fan speed. Two-speed motors have given successful operating results.

Special attention should be given to the problem of noise elimination. The metal duct connection to and from the furnace casing and fan housing should be broken by strips of canvas. Motors and their mountings must be carefully selected for quiet operation. Electrical conduit and water piping must not be fastened to, nor make contact with fan housing. The installation of a fan directly under a cold air grille is usually not recommended. (See also Chapter 33.)

FILTERS

Several types of filters are available for mechanical warm air furnace-applications and are discussed in Chapter 29. For maximum efficiency and life under operating conditions, filters should not be subjected to a temperature in excess of 150 F. Filters should have at least 80 per cent average efficiency on an 8 hr test made in accordance with the standard code². Filter resistance rises rapidly with the accumulation of dirt, and as a result additional motive power is required to circulate the air through the system. For domestic furnaces, the maximum velocity should not exceed 300 fpm based on nominal filter area.

AIR DISTRIBUTION

The conditions of comfort obtained in a room are greatly influenced by the type of register used and the locations of the supply registers and

²A S H.V.E. Standard Code for Testing and Rating Air Cleaning Devices Used in General Ventilation Work (A.S.H.V.E. Transactions, Vol. 39, 1933, p 225).

return grilles. In general it has been found that changes in the type, air velocity, and location of the supply register affect the room conditions much more than the changes in the location of the return grilles. One method is to locate the supply register near the floor so that the warm air from the register blankets a cold wall, and mixes with the cold air dropping off from the exposed walls and glass. Another method is to locate the supply openings near the floor on the inside wall and the return openings near the greatest outside exposure. Tests in the Warm Air Research Residence³ have indicated that continuous fan operation provided better results than intermittent fan operation.

Register and Grille Openings

Supply registers located in the floor are effective, but as they require attention to keep them clean they should be avoided where they can be placed in walls. Tests conducted in the Warm Air Research Residence⁴ have indicated that comparable results are obtainable with either high side wall or baseboard registers, providing proper registers and air velocities are selected. Baseboard registers should be of a deflecting-diffuser type which throws the air downward toward the floor and diffuses it at the same time. For baseboard registers air temperatures under 125 F and air velocities over 500 fpm should be avoided as they may cause drafts.

High side wall registers must be of such type that the air is delivered horizontally or in a slightly downward direction, and must be so located as to avoid impingement of air on ceiling or wall. Directional flow diffusing type should be used to insure best results. Register air velocities should be such that the air stream carries to the opposite exposure. Velocities under 500 fpm are not recommended. In general better air and temperature distribution is obtainable by using baseboard registers for heating and high side wall registers for cooling.

Registers should be well proportioned and decorated to harmonize with the trim. Air supply registers should be equipped with dampers and all registers should be sealed against leakage around the borders or margins. The register sizes shown in Table 1 have been recommended as standard by the National Warm Air Heating and Air Conditioning Association.

Velocities through registers may be reduced by the use of registers larger than the connecting ducts. Merely to use a larger register may not result in materially reduced velocities unless diffusers are used which spread the air uniformly over the register face.

Return air grilles may be located in hallways, near entrance doors, under windows, in exposed corners, or inside walls, depending on location of supply registers. Baseboard returns are preferable to floor grilles.

Dampers

Suitable dampers for air direction or volume control are essential to any trunk or individual duct system. Special care must be used in the design

^{*}Performance of a Forced Warm-Air Heating System as Affected by Changes in Volume and Temperature of Air Recirculated, by A. P. Kratz and S. Konzo (A.S.H V.E. JOURNAL SECTION, Heating, Piping and *Loc. Cit. Note 3.

CHAPTER 20. MECHANICAL WARM AIR FURNACE SYSTEMS

TABLE 1. RECOMMENDED REGISTER SIZES

W Sidev	VARM AIR RE	GISTERS, IN. SEBOARD TY	PES			S OR INTAKE SEBOARD TY	
8 x 4 10 x 4	10 x 5	8 x 6 10 x 6	10 x 8	8 x 4 10 x 4	10 x 5	8 x 6 10 x 6	10 x 8
12 x 4 14 x 4	12 x 5 14 x 5	12 x 6 14 x 6	12 x 8 14 x 8	12 x 4 14 x 4	12 x 5 14 x 5	12 x 6 14 x 6	12 x 8 14 x 8
				24 x 4 · 30 x 4	24 x 5 30 x 5	24 x 6 30 x 6	

of any system to avoid turbulence and to minimize resistance. Sharp elbows, angles, and offsets should be avoided. Three types of dampers are commonly used. *Volume dampers* are used to completely cut off or reduce the flow through pipes. *Splitter dampers* are used where a branch is taken off from a main trunk. *Squeeze dampers* are used for adjusting the volume of air flow and resistance through a given duct. It is essential that a damper with positive locking device be provided for each main or duct branch. Labels placed on ducts should indicate the room being served. Damper positions should be marked for summer and winter operation, and to avoid tampering.

Ducts

The ducts may be either round or rectangular in cross section. The radii of elbows should preferably be not less than one and one-half times the pipe diameter for round pipes, or the equivalent round pipe size in the case of rectangular ducts. Warm air ducts passing through cold spaces, or where located in exposed walls, should have ½ to 2 in. of insulation.

AUTOMATIC CONTROLS

Air stratification, high bonnet temperatures, excessive flue gas temperatures, and heat overrun or lag in a properly designed system can be largely eliminated through proper care in the planning and installation of the control system⁵. The essential requirements of the control are:

- 1. To keep the fire burning when using solid fuel regardless of the weather.
- 2. To avoid excessive bonnet temperatures with resultant radiant heat losses into the basement.
- 3. To avoid the overheating of certain rooms through gravity action during off periods of blower operation.
- 4. To have a sufficient supply of heat available at all times to avoid lag when the room thermostat calls for heat.
 - 5. To prevent cold air delivery when heat supply is insufficient.
 - 6. To avoid heat loss through the chimney by keeping stack temperatures low.
 - 7. To provide quick response to the thermostat, with protection against overrun.

⁵Automatic Controls for Forced-Air Heating Systems, by S. Konzo and A. F. Hubbard (A S.H.V E. Transactions, Vol. 40, 1934, p. 37).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

- 8. To provide for humidity control.
- 9. To provide a means of summer control of cooling.
- 10. To protect against failure of ignition.

Controls which are considered desirable for this system are:

- 1. A thermostat located in a living room where maximum fluctuation in temperature can be expected, in order to secure frequent operation of fans, drafts, and burners. The thermostat location should not be on an outside wall, in a bed room, bath room or sun room, or in a location where it will be affected by direct radiant heat from the sun or from a fireplace, or by direct heat from any warm air duct, register or chimney.
- 2. A thermostatic blower low-high limit control located in the bonnet to permit blower operation only between the temperatures of 100 F and 150 F. In certain extreme cases it may be necessary, or weather conditions may make it advisable, to adjust the high limit to a higher temperature than that stated.
- 3. A protective high limit control located in the bonnet to stop the system independently of the thermostat if the bonnet temperature exceeds 200 F.
- 4. On oil and gas burner installations, a protective control should be included which will stop the system if the fire is extinguished or if there is a failure of the ignition system.
- 5. On automatic stoker installations, a control is usually included which will start the operation regardless of thermostat settings whenever the bonnet temperature indicates that the fire is dying, or a time interval contactor is used that will start the stoker to run a predetermined length of time at predetermined intervals.
- 6. A humidistat to regulate the moisture supplied to the rooms, located either in one of the rooms or in the main return duct near the furnace.
 - 7. A windowstat to reduce the humidity as the outdoor temperature drops.

METHOD OF DESIGNING FORCED-AIR HEATING SYSTEMS

- 1. Determine heat loss from each room in Btu per hour. (See Chapter 6.)
- 2. Locate warm air registers and return registers on plans of house, beginning with the upper story rooms.
 - 3. Sketch in duct layout to connect all registers and grilles with the central unit.
- 4. Determine equivalent length of duct for each register, allowing at least 10 diameters of straight pipe as equivalent to each 90 deg elbow having an inner radius not less than the diameter of the round pipe or the depth of the rectangular pipe.
- 5. Select a value for temperature of the air at the furnace bonnet. It is customary to use some value between 145 to 165 F. Use lower value if larger number of air recircu-

Table 2. Factors Corresponding to Register Temperature for Equation 2

REGISTER TEMPERATURE DEG F	Factor	
110 120 130 140 150 160	0.0221 0.0184 0.0158 0.0140 0.0125 0.0114 0.0105	

⁶Technical Code, Second Edition, January 1, 1939, published by the National Warm Air Healing and Air Conditioning Association, 145 Public Square, Cleveland, Ohio

CHAPTER 20. MECHANICAL WARM AIR FURNACE SYSTEMS

lations is desired. The number of air recirculations should range from three to eight per hour.

- 6. Determine approximate value of temperature reduction in each duct caused by heat loss from the ducts. A value of from 0.3 to 0.6 F per foot of duct has been obtained from tests conducted in the Research Residence installation for uninsulated duct lengths up to approximately 60 ft.
- 7. Subtract this temperature reduction from the assumed bonnet air temperature to obtain an approximate value of the register air temperature for each register.
- 8. Determine the required air volume for each room from Equation 1, or from the values listed in Table 2:

$$Q = \frac{H}{60 \times 0.24 \times d \ (t_r - 65)} \tag{1}$$

where

Q = required air volume, cubic feet per minute.

H = heat loss of room, Btu per hour.

d =density of air at register temperature, pounds per cubic foot.

 $t_{\rm T}$ = register temperature, degrees Fahrenheit.

0.24 = specific heat of air.

65 = return air temperature, degrees Fahrenheit.

For any given register temperature the solution of this equation simplifies to:

$$Q = H \times \text{Factor}$$
 (2)

in which the values of the Factor may be obtained from Table 2.

9. Determine register size from the air volume delivered to each room:

Free area of register, square feet
$$=\frac{Q}{V}$$
 (3)

Gross area of register, square feet
$$=\frac{\text{Free Area}}{R}$$
 (4)

where

Q = required air volume, cubic feet per minute.

V = velocity at register face, feet per minute.

R = ratio of free area to gross area of register.

Allowable register velocities to be used in Equation 3 are approximately as follows:

Baseboard, non-deflecting type, maximum = 300 fpm.

Baseboard, deflecting toward floor, maximum = 500 fpm.

Baseboard, deflecting and diffusing = up to 800 fpm.

High side wall = not less than 500 fpm.

In residential applications it is not advisable to handle more than 150 cfm through any single register.

10. Duct systems for forced-air installations may consist of either trunk systems or individual duct systems.

Trunk Systems. Determine duct sizes and friction losses as outlined in Chapter 32, except that for residence applications the velocities in the main duct and in the various parts of the system should approximate the values recommended in Table 3.

Individual Duct Systems. An individual duct system is one having separate ducts extending from the heating unit to each register. In designing such a system select first the duct having the greatest equivalent length. Select a reasonable velocity using Table 3 as a guide. From friction chart in Chapter 32 determine unit friction loss per 100 ft of run, and from this the total friction loss in the duct selected. If this total friction loss exceeds a reasonable value a lower velocity should be used.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

The remaining ducts are proportioned so that the total pressure in each duct is the same as that calculated for the longest duct. The added resistance necessary in the shorter ducts is accomplished by increasing the velocity in these ducts. No duct should be less than 6 in in diameter, nor should the velocity in any duct exceed approximately 1200 fpm. The final adjustment in a duct system may be made by employing dampers.

Instead of proportioning the ducts as outlined in the preceding paragraph it is more usual in practice to proportion all the ducts so that they have the same velocity as that used in the longest duct and to balance the system by employing dampers in the shorter ducts.

Return duct systems are designed making use of the same principles as those used in the design of supply duct systems. In this case the design may be based on the volume of air corresponding to the density of air existing in the return ducts, or in order to provide a factor for air leakage, it may be based on the same volume as used for the supply ducts.

- 11. Determine frictional resistance in:
- a. Supply side of system as outlined in Item 10.
- b. Return side of system as outlined in Item 10.
- c. Furnace units, casing or hood, which is usually considered as equivalent to 0.03 to 0.10 in. of water.
- d. Accessories such as washers or air filters, from manufacturer's data.
- e. Inlet and outlet registers and grilles, from manufacturer's data.
- f. Other accessory equipment such as cooling coils, from manufacturer's data.

The requirements in the Tentative Code for Testing Oil-Fired Fan-Furnace Units give static pressure loss requirements, external to the units as:

0 to
$$800 \text{ cfm} = 0.12 \text{ in.}$$

 $800 \text{ to } 1600 \text{ cfm} = 0.20 \text{ in.}$
 $1600 \text{ to } 3000 \text{ cfm} = 0.24 \text{ in.}$
 $3000 \text{ to } 6000 \text{ cfm} = 0.30 \text{ in.}$

Choose a fan which, according to its manufacturer's rating, is capable of delivering a volume of air, expressed in cubic feet per minute, against a frictional resistance, expressed in inches of water, computed by adding together the items listed in the preceding discussion. In practice it is recommended that liberal allowances should be made so that the fan will be capable of delivering air against pressures that may not have been foreseen during the design of the duct system.

12. Select a furnace capable of delivering heat at the register outlets equal to the total heat loss of the structure to be heated. Equation 5 may be used for coal burning furnaces:

$$G = \frac{H}{f \times p \times E_1 \times E_2 [1 + 0.02 (R - 20)]}$$
 (5)

where

G =required grate area, square feet.

H = total heat loss from building, Btu per hour.

f = calorific value of coal, Btu per pound.

p =combustion rate, pounds of fuel per square foot of grate per hour.

 E_1 = furnace efficiency based on heat available at bonnet.

 E_2 = efficiency of transmission based on ratio of heat delivered at register to heat available at bonnet.

R = ratio of heating surface to grate area.

Equation 5 is not applicable to ratios less than 15 to 1. Higher ratios as a rule provide lower flue gas temperatures and higher efficiencies. In practice it is customary to use

CHAPTER 20. MECHANICAL WARM AIR FURNACE SYSTEMS

TABLE 3. APPROXIMATE DESIGN VELOCITIES THROUGH DUCTS AND REGISTERS

Description	Low Velocity	Medium Velocity	High Velocity
	System	System	System
	(fpm)	(fpm)	(fpm)
Main ducts	500	750	1000
	450	600	750
	350	500	600
	300	350	400
	500	550	600

these constants: f = 12,000 (for specific values, see Table 5, Chapter 8); p = 7.5 lb; $E_1 = 0.65$ (lower efficiency must be used with highly volatile solid fuel); and $E_2 = 0.85$.

The foregoing procedure for determining the size of the furnace to be used applies to continuously heated buildings.

- 13. Although intermittently heated buildings usually have their heat losses computed according to the standard rules for determining such losses, these rules do not take into account the heat which will be absorbed by the cold material of the building after the air is raised in temperature. This heat absorption must be added to the normal heat loss of the building to determine the load which the heating plant must carry through the warming-up process. It is customary to increase the normal heat loss figure by from 50 to 150 per cent depending upon the heat capacity of the construction material, the higher percentage applying to materials of high heat capacity such as concrete and brick.
- 14. Follow the same methods for an oil furnace as for coal where a conversion unit is to be used, making sure that the ratio of heating surface to grate area exceeds 20 to 1. If it does not, a size larger furnace should be selected. Use the manufacturer's Btu ratings of furnaces designed for exclusive use with oil.
- 15. The selection of the proper size gas furnace for a constantly heated building can be easily made by using Equation 6:

$$R = \frac{H}{0.85} \tag{6}$$

where

H = total heat loss from building, Btu per hour.

R =output rating of the furnace, Btu per hour.

In the case of converted warm air furnaces a slightly different procedure is necessary, as the Btu input to the conversion burner must be selected rather than the furnace output. The proper sizing may be done by means of Equation 7:

$$I = 1.68 H \tag{7}$$

where

I = Btu per hour input.

The factor 1.68 is the multiplier necessary to care for a 15 per cent heat loss in the distributing ducts and an efficiency of 70 per cent in the conversion burner.

16. Specify location and type of all dampers in both supply air and return air sides of system. Specify controls including location of all thermostats. Arrange for proper control of humidifying equipment.

HEAVY DUTY FAN FURNACES

Fan furnaces for large commercial and industrial buildings, churches, schools, etc., are available in sizes ranging from 400,000 to 3,000,000 Btu

per hour per unit. Heavy duty furnace heaters may be arranged in battery combinations of one or more units.

Most manufacturers of heavy duty furnaces rate their furnaces in Btu per hour and also in the number of square feet of heating surface. Conservative practice indicates that at no time in the heating-up period should the furnace surface be required to emit more than an average of 3500 Btu per square foot. A higher rate of heat emission tends to increase the heat loss up the chimney, and raise fuel consumption, to shorten the life of the furnace, and to overheat the air. The ratio of heating surface to grate area on furnaces for this type of work should never be less than 30 to 1 and as indicated previously may run as high as 50 to 1.

Control of temperature is secured through (1) controlling the quantity of heated air entering the room, (2) using mixing dampers, or (3) regulating the fuel supply.

The design of heavy duty fan furnace heating systems is in many respects similar to that of the central fan heating systems described in Chapter 21. Ducts are designed by the method outlined in Chapter 32.

HUMIDIFICATION

During the winter months mechanical warm air systems offer a means of humidifying the air being supplied to the various rooms, with increased comfort to the occupants and longer life for household furnishings. Temperatures and relative humidities should be governed within the limits of the generally accepted standards. See Chapters 2 and 27 for more detailed information on this point.

Water evaporating pans are usually located in air which has been heated by contact with the heating surfaces. To change water into vapor capable of being carried in an air stream as part of the mixture, about 1000 Btu per pound are required. There is a trend in present practice toward heating the water in addition to heating the air. Equipment for doing this may make use of sprays, or it may take the form of water circulating coils placed within the combustion chamber and connected by pipes to the humidifier pans where a constant water level is maintained by some separate float device. (See Chapter 27.)

Sprays for residence systems may be provided in separate housings to be installed on the inlet or outlet side of the fan, or they may be integral with the fan construction. They operate at water pressures of from 10 to 30 lb and use two or more spray nozzles for washing and humidification. The sprays should be adjusted to completely cover the air passages.

Sprays are usually controlled by solenoid valves wired in parallel with the fan motor. The water supply may, in turn, be controlled by a humidity-controlling device located in one of the living rooms, so that the washer will operate at all times when the fan is in operation, unless the relative humidity should rise beyond a desirable percentage. Sprays used in connection with commercial or heavy duty plants should be a regulation type of commercial spray. In all cases provision must be made to flush out accumulation of lime and dirt.

Principles underlying humidity requirements and limitations for resi-

CHAPTER 20. MECHANICAL WARM AIR FURNACE SYSTEMS

dences have been summarized in a bulletin⁷ and are enumerated herewith:

- 1. Optimum comfort is the most tangible criterion for determining the air conditions within a residence.
- 2. An effective temperature of 65 deg⁸ represents the optimum comfort for the majority of people. Under the conditions in the average residence a dry-bulb temperature of 69.5 F with relative humidity of 40 per cent is the most practical for the attainment of 65 deg effective temperature.
- 3. Evaporation requirements to maintain a relative humidity of 40 per cent in zero weather depend on the amount of air inleakage to the average residence, and vary from practically nothing to 24 gal of water per 24 hours.
- 4. Relative humidity of 40 per cent indoors cannot be maintained in rigorous climates without excessive condensation on the windows unless tight-fitting storm sash or the equivalent is installed.
- 5. The problems of humidity requirements and limitations cannot be separated from condensations of good building construction, and the latter should receive serious attention in the installation of humidifying apparatus.
- 6. None of the types of gravity warm air furnace water pans tested proved adequate to evaporate sufficient water to maintain 40 per cent relative humidity in the Research Residence except only in moderately cold weather.
- 7. The water pans used in the radiator shields tested did not prove adequate to maintain 40 per cent relative humidity in a residence similar to the Research Residence when the outdoor temperature approximated zero degrees Fahrenheit.

COOLING METHODS

A slight cooling effect may be obtained under certain conditions by the use of the cooler basement air. A more positive cooling effect may be obtained by the use of an air washer where the temperature of the city or well water is sufficiently low (55 F or lower), and where a sufficient volume of water can be provided. Unless the temperature of the leaving water is below the dew-point temperature of the indoor air at the time the washer is started, both the relative and absolute humidities will be somewhat increased.

Coils of copper finned tubing through which cold water is pumped are available for cooling. They require less space than air washers and have the advantage that no moisture is added to the air when the temperature of the water rises above the dew-point. Ample coil surface and fan capacity are necessary with this type of cooling.

It is thoroughly feasible to use ice or mechanical refrigeration in connection with a warm air system and to cool the building by this method, provided the building is reasonably well constructed and insulated. Windows and doors should be tight, and awnings should be supplied on the sunny side of the building. (See also Chapters 21, 24 and 25.)

Conclusions that may be drawn from studies⁹ thus far completed in the Research Residence, subject to the limitations of the test are:

1. An uninsulated building of ordinary residential type may require the equivalent of three tons of ice in 24 hours on days when the maximum outdoor temperature reaches 100 F if an effective temperature of approximately 72 deg is maintained indoors.

⁷Humidification for Residences, by A. P. Kratz (University of Illinois, Engineering Experiment Station Bulletin No 230).

⁸The optimum winter effective temperature is 66 deg as recommended by the A.S.H.V.E. Committee on Ventilation Standards. (See Chapter 2).

⁹University of Illinois Engineering Experiment Station Bulletins Nos. 290 and 321 by A. P. Kratz, S. Konzo, M. K. Fahnestock and E. L. Broderick. A.S.H.V.E. RESEARCH REPORT No. 1177—Summer Cooling in the Research Residence with a Gas-Fired Dehydration Cooling Unit by A. P. Kratz, S. Konzo / and E. L. Broderick (A.S.H.V.E. Transactions, Vol. 47, 1941, p. 203).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

- 2. The use of awnings at all windows in east, south, and west exposures may result in savings of from 20 to 30 per cent in the required cooling load.
- 3. The cooling load per degree difference in temperature is not constant but increases as the outdoor temperature increases.
- 4. The heat lag of the building complicates the estimation of the cooling load under any specified conditions and makes such estimates, based on the usual methods of computation, of doubtful value.
- 5. The seasonal cooling requirements are extremely variable from year to year, and the ratio between the degree-hours of any two seasons occurring within a 10-year period may be as high as 7.5 to 1. Hence an average value of the degree-hours cooling per season is comparatively meaningless.
- 6. The duct system in a forced-air heating installation can be successfully converted to a system for conveying cool air for the purpose of cooling the structure. No condensation of moisture was observed when the duct temperatures were not less than 65 F.
- 7. Cooling by means of water at a temperature of 60 F is not satisfactory unless an indoor temperature of less than 80 F is maintained.
- 8. In the selection of cooling coils, the additional frictional resistance of the coil to flow of air must be given consideration.
- 9. Cooling the structure by introducing large quantities of air from outdoors at night tended to reduce the amount of cooling required on the following day and was a practical means of providing more comfortable conditions in those homes where cooling systems were not available.

METHOD OF DESIGNING COOLING SYSTEM

The general procedure which may be used for the design of a summer cooling system in a forced-air installation is:

- 1. Calculate heat gain for each room or space to be conditioned. (See Chapters 4 and 7.) Allowance for addition of outside air must be included in this calculation.
- 2. Select a temperature of air leaving supply inlets. In Research Residence tests a value of from 65 to 70 F was found satisfactory.
- 3. Determine indoor conditions to be maintained. In Research Residence 80 F drybulb and 45 per cent relative humidity were found satisfactory.
 - 4. Determine the quantity of air to be introduced into each room. (See Chapter 21.)
 - 5. Estimate heat loss in duct system between cooling unit and supply registers.
- 6. Calculate the heat to be removed by the cooling unit, in the form of sensible heat and latent heat.
- 7. Determine size of ducts in duct system and size of registers, as explained in this chapter under the heading of Method of Designing Forced-Air Heating Systems.
- 8. Determine pressure loss in duct system and select fan as also explained in the same section.
- Select cooling unit from manufacturer's data. Specify temperature and pressure
 of available cooling water, voltage and characteristics of electrical supply, and method
 of control of apparatus.
- 10. Select cooling coils from manufacturer's data to take care of latent heat load and to give required drop in air temperature with the weight of air flowing. (See Chapter 26.)
- 11. If system is to be used for both winter heating and summer cooling, duct sizes must be checked to insure that velocities and friction losses are reasonable for both conditions of operation. Adjustable dampers will be necessary to make changes in air distribution for the two seasons. Provision must also be made for changing fan speeds for summer and winter operation.

Chapter 21

CENTRAL SYSTEMS FOR COMFORT AIR CONDITIONING

Types of Systems for Ventilating, Heating, Air Conditioning, Factors Involved in Use and Design of Systems, Design Procedure

THE purpose of this chapter is to present a discussion of types of central systems usually encountered, together with a discussion of the factors involved in use and design and an outline of design procedure.

Insofar as this chapter is concerned, a central system is defined as a field assembled apparatus, comprising such elements of equipment as are necessary to fulfill the purpose for which it is designed, and serving one or more conditioned spaces. It may be argued with justification that a factory produced unit, including all the essential items of equipment can be employed as a central system. Unitary equipment is discussed in Chapter 23. Further, this chapter is confined to comfort air conditioning systems as such, and ventilating systems, warm air heating systems, together with central systems of a special nature, are excluded from the discussion.

This chapter assumes a knowledge of all the component parts of a system and the reader is referred specifically to other chapters covering design conditions and physiological principles, cooling and heating load; spray equipment, heat transfer surface coils, cooling dehumidification and dehydration, fans, air cleaning devices, refrigeration, air distribution and air duct design, automatic controls and instruments. In addition, the engineer should refer to the Code of Minimum Requirements for Comfort Air Conditioning¹ prepared by the joint committee of the American Society of Heating and Ventilating Engineers and the American Society of Refrigerating Engineers, and to national, state or local codes that may apply.

CLASSIFICATION OF SYSTEMS

The generally accepted method of classifying systems is with regard to their function. A given type of system may be changed by the omission of certain of its functions or by the inclusion of others. As an example, a winter air conditioning system, by the omission of humidifying sprays, air cleaning devices, etc., will become a simple warm air heating system,

 $^{^1}$ Code of Minimum Requirements for Comfort Air Conditioning (A.S.H.V.E. Transactions, Vol. 44, 1938. p 27). Reprints of this code are available at \$ 10 a copy.

Fig 1. Central System for Winter Air Conditioning

Fig. 2. Central System for Summer Air Conditioning

Fig. 3. Central System for Year 'Round Air Conditioning

CHAPTER 21. CENTRAL SYSTEMS FOR COMFORT AIR CONDITIONING

and by further omissions will become a simple ventilating system. On the other hand, with the inclusion of a dehumidifier with its source of cooling, the system can become a year 'round air conditioning system. The three major types of systems are:

- 1. Winter Air Conditioning Systems. The function is to ventilate, heat and humidify in winter the spaces under consideration, and provide the desired degree of air motion and air cleanliness. The equipment required normally consists of a preheater, filters, humidifying sprays or air washer, reheater, fan, distributing ducts, and the necessary manual or automatic means of control. See Fig. 1.
- 2. Summer Air Conditioning Systems. The function is to ventilate, cool and dehumidify the spaces under consideration and to provide the desired degree of air motion and cleanliness. The normal complement of equipment includes filters, dehumidifier with its source of cooling, reheaters or by-pass if required, fan, distributing ducts, and the necessary manual or automatic means of control. See Fig. 2.
- 3. Year 'Round Air Conditioning Systems. The function is to ventilate, heat and humidify in winter and cool and dehumidify in summer the spaces under consideration, and to provide the desired degree of air motion and cleanliness. The equipment usually comprises preheater, filters, spray or surface dehumidifier, reheaters and by-pass if required, fan, system of distributing ducts, and necessary means of manual or automatic control. See Fig. 3.

Items of equipment in the foregoing may, of course, be replaced with others fulfilling the same purpose. As an example, an absorption type dehydrator with an aftercooler may replace a dehumidifier.

Modifications

All of the general types of central systems may be modified in various ways. These modifications do not affect the functions of the system. In general, these consist of changes in or additions to the normal complement of equipment, or variations in arrangement and design of equipment and distributing ductwork in order to provide better control of conditions, greater flexibility, or improve the overall economy and performance of the system. Some of these are applicable to certain systems only, while others are applicable to all types. The most commonly encountered modifications are:

- 1. Zoning.
 - a. Separate equipment.
 - b. Reheating or recooling. (See Figs. 4 and 5).
 - c. Multiple fans with individual by-pass or reheat. (See Figs. 6 and 7).
 - d. Volume control. (See Fig. 8).
 - e. Dual duct system. (See Fig. 9).
- 2. Induction units. (Low pressure type). (See Fig. 10).
- 3. Induction units. (High pressure type). (See Fig. 11).
- 4. Evaporative cooling.
- 5. Precooling.
- 6. Sensible cooling with dry coils.
- 7. The run-around system.

There are many other possible modifications and the special requirements of some installations may warrant consideration of these, but space limitations prevent a discussion of all. The modifications mentioned are discussed further in this chapter.

USE OF CENTRAL SYSTEMS

Several factors must be considered in deciding on whether or not to use a central system and in deciding on the type of central system and modifications required. These factors are:

- 1. Comparative effectiveness.
- 2. Characteristics and requirements of the load.
- 3. Space requirements.
- 4. Initial cost.
- 5. Operating costs and maintenance.

The comparative effectiveness of the type of system and modification plays a major part in the choice and is to a large extent affected by the other factors. One great advantage provided by the central system lies

Fig. 4. Central System with Zoning by Reheating

in its ability to diffuse odors and smoke which may occur in parts of the system, so that the outside air is determined by the average instead of the sum of the peak requirements. However, caution must be used where odors are apt to be objectionable even if greatly diluted. In such cases a positive exhaust to the outdoors or a separate treatment for the particular locality is recommended. The averaging ability both as to odors and thermal effects of the system is one item to be considered in studying the comparative effectiveness, particularly where adequate zoning is to be provided. Full advantage of diversity and non-simultaneous peak load requirements can be taken in determining the dehumidified air quantity where adequate zoning is provided.

The characteristics and requirements of the load frequently are the deciding factors. Wide, non-simultaneous variations in load between spaces or parts of the same space, indicate the necessity of zoning. Isolated spaces having a short time occupancy or brief load duration may be handled by units advantageously at times. The occurrence of simultaneous heating and cooling requirements in spaces having the same exposure or

on the same zone presents a problem to be studied. Ability to maintain conditions during the intermediate seasons without the use of refrigeration must be considered at all times, particularly in those applications where a high internal load exists.

The matter of space requirements may rule out one type of system or another. The avoidance of the use of rentable and usable space for equipment and ductwork, in office buildings, stores, etc., is most important since the loss of revenue is directly chargeable to the operating cost of the system. Consideration of the spaces available with respect to the type of system and method of distribution used and their effect on overall cost is essential.

Initial cost is given first consideration all too frequently. While elaborately designed installations are seldom justifiable, proper consideration must be given to operating costs and maintenance, performance required, and the life of the system. The increase in cost incurred by

Fig. 5. Summer Central System with Zoning by Recooling

suitable zoning can be offset partially by reduced quantities of dehumidified air with smaller air handling apparatus, and partially by reduced refrigeration requirements. In the end it may prove less expensive than an unsatisfactory single zone system. A small increase in initial cost to provide better access to equipment, better airflow and distribution, and better zoning, usually will pay for itself.

Operating costs often receive too little attention. Proper relationship between equipment selected and the load to be carried must be obtained. Cooling systems in general operate at maximum capacity less than 20 per cent of the time and heating systems operate under design conditions but a few days in the year. Good partial load performance is essential for low operation costs. Proper zoning, good arrangement and selection of equipment and type of system all tend to reduce operation costs. Central systems having the bulk of equipment in a central location properly arranged, and having only the equipment required for zoning distributed through the conditioned space or spaces, will have relatively low maintenance costs. Care must be used to provide ease of access to important equipment and those items requiring servicing.

DESIGN OF SYSTEMS

Various factors are to be considered in the design of a central system, some of which have been touched upon in the foregoing as a modification or economic factor, while others are a part of the normal design procedure. These, in the order of usual occurrence are discussed herewith. For practical purposes these factors cover *Year 'Round Air Conditioning Systems*. Those directly applicable to summer only or winter only systems are to be viewed accordingly.

Design Conditions

Physiological principles and design conditions are covered in Chapter 2. A detailed study of these is beyond the scope of this chapter other than certain recommendations with regard to their application.

Where extreme or unusual outdoor conditions prevail for long periods of time, such as in the tropics, at high altitudes, in regions of extremely

FIG. 6. CENTRAL SYSTEM USING MULTIPLE FANS WITH BY-PASSES AND REHEATING FOR ZONING

low humidities, etc., due allowance must be made for the fact that the people have become acclimatized, to a certain degree at least, to these conditions and the inside conditions should be selected accordingly.

A change in the inside conditions from a set standard sometimes is warranted from an economic standpoint. It is possible at times to make substantial savings in initial and operating costs by maintaining a lower temperature and higher humidity in the conditioned space while maintaining the same effective temperature.

In winter, the matter of condensation on windows, walls, etc., is of extreme importance. Humidities low enough to avoid this should be maintained, and when it is necessary to carry the higher humidities, double glass should be used or suitable means of handling the condensation should be provided.

During intermediate seasons the use of refrigeration as a source of cooling may be undesirable from an operating cost standpoint depending on the local energy rate structure and demand charges. As a result the

use of outdoor air, either directly or indirectly, as a source of cooling will be required and the system may have to operate on an unusual basis with regard to the temperatures and humidities that can be maintained. This situation should be carefully investigated. As a rule, provision should be made for introducing all outdoor air into the system during intermediate seasons as described later.

With regard to outside conditions it must be noted that where systems are to operate at certain hours of the day only, the outside conditions that occur during these times can be used provided the cumulative effect or heat gain lag is taken into consideration in the estimate.

Outdoor Air

Standards affecting the quantity of outdoor air have been established in Chapter 2. These standards relate the minimum amount of outside

Fig. 7. Central System with Central Fan and Conditioner and with Individual Zone Fans

air to be introduced into the conditioned space for both the number of occupants and the type of occupancy, *i.e.*, people smoking, etc. This, of course, is the common-sense approach to the problem, but there are some cases, such as those spaces having a very low occupancy with regard to the cubical content where mustiness may develop unless a sufficient air change is provided. Where such a condition exists in a few spaces out of several which are being handled by a central system, the *averaging* ability of the central system may cope with the situation satisfactorily. This is due to the fact that the return air from the particular space is mixed thoroughly with the return air from all the other spaces, and all the outside air supplied to all the other spaces.

It should be noted that the minimum quantity of outdoor air is affected by infiltration and leakage. Infiltration will reduce the quantity to be introduced by the system while leakage may have to be offset by an increase in the quantity of outdoor air. Most summer and year 'round air conditioning systems should be so designed and arranged that a quantity of outside air at least equal to the quantity of cooled or dehumidified air can be taken in when desired. In the intermediate seasons and in the cooling season it is more economical to take all outside air into the dehumidifier when the outdoor air wetbulb temperature is lower than the inside wet-bulb temperature to be maintained. Also, where using a spray type dehumidifier or air washer, whenever the outdoor wet-bulb temperature is below the apparatus dewpoint temperature required, the system can be operated on an evaporative cooling basis, dispensing with the need for refrigeration though cooling may be required. Automatic controls are available for accomplishing this and on reasonably large systems are justifiable from an economic standpoint.

Fig. 8. Central System with Zoning by Volume Control

Cooling Load

The method of determining the cooling load for a conditioned space or spaces is outlined in Chapter 7. As pointed out therein, many of the items of heat gain are variable and do not reach their maximum values simultaneously. Proper consideration of these *peaks* and the avoidance of pyramiding these peaks in the cooling load calculations is stressed. Maximum solar heat gain on an east exposure is seldom coincident with the maximum outdoor wet-bulb.

A large difference in the incidence of the peaks between various spaces or parts of the same space indicates the necessity for zoning. In a building having an east and west exposure where solar heat gain forms a fair share of the cooling load, the times of their individual peaks are apt to be hours apart, and the peak load of one plus the off peak load of the other will be substantially less than their combined peak loads. Proper zoning will permit taking full advantage of this condition or similar conditions of non-simultaneous peaks and will result in a lower total load, reflecting itself in savings in equipment.

A factor, similar in effect and closely related to the non-simultaneous occurrence of peak loads is diversity. Typical of this is the case of a large department store where the air handling equipment serving a certain space must be sufficient to handle the load created by the throngs of people attending sales in that space. Under such a condition the number of people in other spaces is usually normal or below. While this means that the air handling equipment for certain departments must be large enough to cope with the situation, the refrigeration equipment must be only large enough to handle the average maximum. If a system employing zone recirculating fans and a single central fan and dehumidifier were used, the saving would be reflected in the capacity of the central fan and dehumidifier. Another example of this diversity is found in an office building having restaurants and stores of certain types on the first floor

Fig. 9. Central System Using Dual Duct Method of Zoning

and basement. At noon, when the restaurants and stores are crowded, the offices are below normal occupancy.

Heat lag should be carefully considered in the cooling load calculations. In certain types of building construction the effect of solar radiation is still apparent hours after the sun has shifted from that exposure. In other types having a much lighter construction, the heat gain due to solar radiation decreases markedly with the passing of the sun. Some walls, having been warmed by the sun, may radiate heat long after the incidence of the sun, requiring lower inside temperatures to offset the radiant energy.

Storage effect is usually present in some degree. Often it can be utilized to great advantage and it has more than once provided an unknown safety factor. If a space is kept below the design inside temperature for a period of time, the interior walls, floors, furniture and fixtures begin to assume the temperature of the space. If the period of time is sufficient, the entire mass may reach the room temperature, rather than just the skin or surface of the item. If the space has been precooled below the design maximum

temperature for a period of time prior to the advent of the peak load, when the heat gain begins to increase to peak conditions, some of the increase is used in raising the temperature of the furniture, fixtures, etc., to the design conditions and the cooling load can be reduced accordingly. However, unless very accurate data with regard to the mass, surface, specific heat, etc., of the items within the space are available, due caution must be used in discounting the cooling load for this storage effect. In the absence of reliable data it is often a matter of experience rather than calculation.

Where air conditioning supply and return ducts pass through unconditioned spaces there will be a transfer of heat from these spaces to the air in the ducts, even though these ducts are well insulated. An allowance

Fig. 10. Induction Unit (Low Pressure Type)

FIG. 11. INDUCTION UNIT (HIGH PRESSURE TYPE)

should be made for this heat gain and included in the heat estimate so that air can be supplied at a temperature low enough to offset the rise caused by this heat gain (see Chapter 43). There will also be some heat gain to the air in ducts passing through conditioned spaces, but since a cooling effect is produced in the space through which the duct passes, this is not a loss and usually can be compensated for by adjustment of air quantities between the various spaces.

Heating Load

Methods of calculating the heating load are shown in Chapter 6. Many of the factors outlined previously under Cooling Load, such as zoning, non-simultaneous peaks, and diversity, apply in the reverse manner due to the heating requirement instead of the cooling requirement. However, these factors enter into the heating load picture from a standpoint of control of inside conditions, overall performance and economy of operation more than from a capacity of equipment standpoint.

Where heating is concerned it is not only necessary to heat a building or space to its design conditions when there is but the merest fraction of normal occupancy, practically no lights, internal heat, or solar radiation, but it is also necessary to provide capacity to heat the building quickly after a shut-down such as when a sudden cold snap follows relatively warm weather, or after a week-end or holiday. However, in normal operation during week-ends and holidays, buildings are usually kept at a holding temperature to prevent the freezing of services and conserve fuel. In many cases it requires less fuel to keep a building or space at a temperature of 50 to 65 F for some time than to shut the system down and then bring the temperature up again.

Apparatus Dew-Point

The method of locating the condition line for a given air conditioning problem has been explained in Chapter 1, Examples 19 and 20. Briefly, the method consists in estimating the net energy gain (or loss) per hour and the net moisture gain (or loss) per hour from data on location, exposure, construction, appliances, occupants, ventilation requirements, inside and outside design conditions. In computing the quantities of energy and moisture introduced and displaced by the ventilating air, only that portion of the ventilating air admitted directly to the conditioned space is considered. With this understanding, the ratio of the net energy gain (or loss) to the net moisture gain (or loss) determines the slope of the condition line through the state point of the inside air on the Mollier Chart.

The condition line may or may not cross the saturation curve. If it does, the intersection is called the *apparatus dew-point*, with application to summer cooling in mind. Thus, if the air conditioning apparatus can be set to take inside air, process it, and return it to the conditioned space completely saturated at the apparatus dew-point, the cooling load requirements can be exactly met both as to removal of energy and simultaneous removal of moisture.

In actual practice with commercial apparatus, it is rarely possible to obtain complete saturation and there may be several degrees difference between the dry-bulb and wet-bulb temperatures of the air returned to the conditioned space. This causes no difficulty. In fact, the only special significance of the apparatus dew-point is that, when it exists, it provides a convenient control point at which to regulate the operation of the apparatus, provided complete saturation is attainable.

In order to illustrate the effect of incomplete saturation in the conditioning apparatus, consider the cooling load problem of Chapter 1, Example 19. In this problem, 114,600 Btu of energy and 15.92 lb of moisture per hour are to be removed simultaneously. The slope of the condition line is determined by the ratio $q=114,600\div15.92=7205$ Btu per pound of water and the apparatus dew-point is 58.02 F, as shown in Fig. 12. (Point B).

But suppose that the saturation efficiency of the apparatus is only 95 per cent, by which is meant that the air delivered by the apparatus is only 95 per cent saturated. Then the temperature at which the condition line crosses the 95 per cent saturation curve is the proper temperature at which to regulate the apparatus. This temperature is easily found to be 59.6 F dry-bulb temperature (Point A in Fig. 12). Of course, a somewhat larger quantity of air will have to be recirculated, namely $114,600 \div (31.41 - 25.51) = 19,400$ lb of dry air per hour, where the enthalpy of the air at 95 per cent saturation on the condition line is 25.51 Btu per pound of dry air and h = 31.41 for the

HEATING VENTILATING AIR CONDITIONING GUIDE 1948

inside air. Only 18,056 lb of dry air had to be recirculated per hour with complete saturation.

Many practicing engineers prefer an approximate method of calculating apparatus dew-point which employs what is called the *sensible heat factor*, SHF. The so-called *room sensible heat*, H_s , which is proportional to the quantity of supply air, Q is first estimated:

$$H_{\rm s} = Q \times d \times C_{\rm p} \times 60 \ (t_{\rm r} - t_{\rm e}) \tag{1}$$

where

Q =quantity of supply air, cubic feet per minute.

d =density of air, pounds per cubic foot.

 C_{p} = constant pressure specific heat of air.

 t_r = room dry-bulb temperature, degrees Fahrenheit.

te = apparatus dew-point or supply air temperature, degrees Fahrenheit.

The so-called *room latent heat*, H_1 , which is also proportional to the quantity of supply air, Q, is estimated:

$$H_1 = Q \times d \times h_{fg} \times 60 \ (W_r - W_e) \tag{2}$$

where

Q =quantity of supply air, cubic feet per minute.

d = density of air, pounds per cubic foot.

 h_{tg} = an appropriate value of the latent heat of vaporization, Btu per pound.

 $W_{\rm r}$ = room humidity ratio, pounds water per pound dry air.

We = apparatus dew-point or supply air humidity ratio, pounds water per pound dry air.

Finally the ratio

$$SHF = \frac{H_{\rm s}}{H_{\rm s} + H_{\rm l}} \tag{3}$$

is computed. But, from Equations 1, 2 and 3

$$SHF = \frac{0.241 (t_{\rm r} - t_{\rm a})}{h_{\rm r} - h_{\rm e}} \tag{4}$$

where

 $0.241 = \text{an appropriate value of } C_p$, Btu per pound.

tr = room dry-bulb, degrees Fahrenheit.

te = apparatus dew-point, degrees Fahrenheit.

 h_r = enthalpy at room conditions, Btu per pound dry air. h_e = enthalpy at apparatus dew-point, Btu per pound dry air.

Thus, having estimated the value of the sensible heat factor, SHF, the problem of finding the apparatus dew-point reduces to solving Equation 4. Since the relation between $h_{\rm e}$ and $t_{\rm e}$ is only available in tabular or graphical form, a trial-by-error or graphical solution is required. Special charts have been devised for this purpose, but these are really unnecessary since the Mollier Chart of Chapter 1 is adaptable. Thus the quantity

$$q = \frac{h_{\rm fg}}{1 - SHF} \tag{5}$$

where h_{fg} is an appropriate value of the latent heat of vaporization,

CHAPTER 21. CENTRAL SYSTEMS FOR COMFORT AIR CONDITIONING

determines, on the border scale of the Mollier Chart, the direction of the condition line which intersects the saturation curve at the apparatus dew-point.

Example 1. From a cooling load analysis of the room as determined in Example 19, Chapter 1, the net energy gain of 114,600 Btu per hour would be called room total heat; the net moisture gain of 15.92 lb per hour, multiplied by an appropriate value of the latent heat, say 1065 Btu per pound, would be called the room latent heat, namely, 16,950 Btu per hour; and 114,600 — 16,950 = 97,650 Btu per hour is the room sensible heat. Determine the apparatus dew-point, if the room conditions to be maintained are 80 F dry-bulb and 67 F wet-bulb temperature.

Solution. From Equation 3 the sensible heat factor is $SHF = 97,650 \div 114,600 = 0.852$. Using the latent heat of vaporization at 51 F, namely 1065 Btu per pound as an appropriate value in Equation 5, $q = 1065 \div (1 - 0.852) = 7205$ Btu per pound water.

The state point of the inside air is easily located on the Mollier Chart, as shown in Fig. 12. Through this point draw a line having a slope q=7205 Btu per pound water as determined from the border scale. This line crosses the saturation curve at 58.02 F which is the apparatus dew-point temperature (Point B in Fig. 12).

Fig. 12. Diagram of Mollier Chart Illustrating Example 1

From the point of view of satisfying the given cooling or heating load requirements, the effect of air passing through the apparatus without being contacted is merely to increase the quantity to be passed through. Thus, if 20 per cent of the air admitted is uncontacted, then 25 per cent more air must be admitted than would be necessary if all of it were contacted. The failure to achieve complete saturation in commercial apparatus may be explained as failure to contact all the air admitted. Or, some of the air may be deliberately by-passed. But whatever the explanation, the only thing of importance is the end result. Of course, a low saturation efficiency or a large proportion of uncontacted air means higher capacity for the conditioning apparatus and, perhaps, an excessive number of air changes for comfort.

In winter, a degree of saturation in excess of 30 per cent is seldom required and a low saturation efficiency may be desirable or even necessary where the full summer circulation air through the conditioner is maintained. With a spray type dehumidifier the main sprays may be shut off and an eliminator flooding pump provided which may give

sufficient saturation. In other cases, such as where cooling coils are sprayed, the spray water may be throttled.

When it does become necessary to increase the saturation efficiency of the sprays, the spray water may be heated. The amount of heat put into the spray water by open or closed water heaters will be equal to that required to bring the dew-point temperature of the air entering the sprays up to that required before entering the reheater. It is possible where clean steam is available, to introduce the steam directly into the air stream to produce the desired dew-point temperature of supply air. However, the steam must be exceptionally clean or objectionable odors will result. This precaution should be observed also where open water heaters or ejector water heaters are used.

Present day practice, for spray type dehumidifiers of good design, assumes that the air leaves the dehumidifier at 1 to 2 F higher than the temperature of the spray water leaving the dehumidifier. A spray dehumidifier having sufficient length of spray chamber and density of spray together with a proper arrangement of nozzles may closely approach complete saturation.

Air Quantity and Effective Temperature Difference

The difference between the room air temperature and the supply air temperature at the outlet to the room is known as the effective temperature difference. In the theoretical case of a dehumidifier having a 100 per cent saturating efficiency and where this air is delivered directly to the room without temperature increases due to heat gain, then the effective temperature difference is the difference between room temperature and apparatus dew-point temperature. If duct heat gains are considered a part of the room load, this still holds true. The apparatus dew-point, as outlined previously, is fixed by the latent and sensible loads of the space, but in many cases, it is desirable to deliver more air to the spaces than is determined by the solution of Equations 2 and 3, with 4 or by the charts.

It has been indicated that where a percentage of air is passed through the dehumidifier without being treated that the relationship was modified in direct proportion, and that if room air passed through untreated no effect on the heat balance resulted. Similarly, if room air is passed around the dehumidifier and mixed with the treated air the heat balance is not adversely affected. Therefore, if the quantity of air passed through the dehumidifier is determined by the usual methods, room air can be passed around the dehumidifier and mixed with the dehumidified air, increasing the supply air quantity and temperature and decreasing the effective temperature difference. Thus if a solution of Equations 2 and 3 in conjunction with Equation 4 indicates that 10,000 cfm at 30 F below room temperature will be required to hold conditions, that quantity can be passed through the dehumidifier and cooled to 30 F below the room, then mixed with 10,000 cfm of room air resulting in a supply air quantity of 20,000 cfm and an effective temperature difference of 15 F instead of 30 F. Supply air outlets and grilles that have a high induction ratio (that is, a large amount of room air is mixed with the air leaving the outlet within

a short distance of the outlet through the induction effect of the air stream) are available as well as induction units. A proper selection of outlets or units may make it possible to introduce air at low temperatures and high velocities without causing objectionable drafts or cold spots, but care must be used to see that too little air motion is not a result. Lower effective temperature differences may be required for this reason. While the use of a high effective temperature difference results in a saving in initial cost of fans and ducts and in the operating cost of fans, this difference should be carefully considered. If the sensible heat load of a space is subjected to substantial variations, lower effective temperature differences should be considered, since systems employing a low effective temperature difference will be less exacting in control requirements.

Assume that a space has a sensible heat load so that 10,000 cfm of air supplied at a 30 F effective temperature difference is required to maintain a room temperature of 80 F. If the load is suddenly reduced 50 per cent with the air supplied at the same temperature, the resultant room temperature would become 65 F. On the other hand, if 20,000 cfm were supplied at an effective temperature difference of 15 F and the load suddenly reduced 50 per cent the resultant room temperature would be This, while a rather extreme example, indicates the less exacting demand on the controls brought about by the use of the lower effective tem perature difference. Of even greater importance is the case where two or more spaces are controlled from an average condition such as by a thermostat located in the return air stream of all the spaces. From the previous example, it can be seen that a large variation in the load in one of the spaces will not reflect itself in such a large change in room temperature. Thus in the long run the larger effective temperature difference may not be the most economical.

The analysis in the foregoing applies largely to summer air conditioning. The same analysis will apply to some extent in winter. The mathematical relationship is revised due to a heating requirement rather than cooling. Present practice indicates a high temperature difference in winter in comparison to that for summer. It is due to the fact that the heat losses in winter in Btu per hour far exceed the summer heat gains in Btu per hour, and particularly to the fact that in winter, reheating the air to produce desired room conditions is not reflected as a load on the system as it is in the summer, but merely accomplishes the necessary work.

In line with the latter, reduction of air quantity by slowing down the fans for the winter season and increasing the temperature difference often is feasible, creating a saving in fan horsepower at no expense to the final heat balance, providing the air distribution is not seriously affected.

Extremes should be avoided in all cases. For summer air conditioning low supply air temperatures will result in larger heat gains to the air passing through the ducts, poor control, etc. Too high a supply air temperature may result in excessive initial and operating costs. Suggested limits for the effective temperature difference are from 12 to 25 F, the actual selection being based on the requirements of the particular case. For winter air conditioning too high supply air temperatures result in excessive heat losses from the ducts and stratification within the room unless thorough mixture is insured, while too low supply air temperature may

cause drafts, high operating costs, etc. Suggested limits are from 15 to 35 F. Basically there is no set rule and each case should be judged according to its particular requirements.

By-Pass

The by-pass, in its accepted form, consists of an arrangement of ducts and apparatus connections with the necessary dampers which will permit air to pass around the dehumidifier or conditioner without being treated. It has two functions which may be employed separately or simultaneously.

The first of these is to provide a means of temperature control at a substantially constant total air quantity. If in summer, the load within the conditioned space is reduced and the temperature begins to fall, this drop in temperature can be offset by passing some of the air around the conditioner instead of through it, while the total quantity of air in circulation remains unchanged. When used for this purpose, it is termed an adjustable or automatic by-pass. The second function is to maintain a lower effective temperature difference between the air supplied to the room and the room temperature than could be obtained if air at the apparatus dew-point were supplied, and when so used is called a fixed by-pass. As discussed previously, if return air from the conditioned space is passed around the conditioner and mixed with the conditioned air, the effect on the heat balance is the same as if the air were removed from the space and immediately reintroduced. This is not strictly true, due to the fact that when ducts pass through unconditioned spaces, there is a heat gain by this air, and an additional gain is imposed by the heat of compression of the circulating fan in moving the air against the resistance of the system. However, the heat gain, where the by-pass is used to lower the effective temperature difference, usually favors its use due to the fact that the increased volume and the resultant higher temperature of the mixture of conditioned air and room air may show a lower net duct heat gain with a smaller temperature increase per unit of volume of supply air. The advantages thus obtained may offset the increased fan power.

The adjustable or automatic by-pass can be made to serve the purpose of the fixed by-pass by providing a stop on the by-pass damper so that it can not close completely. In some cases this stop is unnecessary since commercial dampers will permit an air quantity of 10 to 20 per cent of the dehumidifier capacity, depending on the resistance of the conditioner, to leak through even when fully closed.

Where a reduction in room sensible heat is not accompanied by a reduction in room latent heat, the by-pass is to be used with care. When the dew-point temperature of the air leaving the dehumidifier is controlled at a fixed value the reduced quantity passed through the conditioner may be sufficient to handle the sensible heat load but insufficient to handle the latent heat load, resulting in humidities that are too high. If the dew-point is not controlled, as when cold water is supplied at a constant temperature or where direct expansion cooling coils are used, the reduced loading on the conditioner brought about by the reduced air quantity, will result in a lower dew-point temperature which usually is entirely adequate. This condition should be investigated in each case.

The by-passing of outdoor air is to be avoided in general. While the sensible heat requirements of the space may be such that the by-passing of high temperature outdoor air will aid in controlling room temperature, high moisture content air introduced to the space may raise the humidity to an objectionable amount. If return ducts from which the by-pass air is taken run through unconditioned spaces and there is an inward leakage of outdoor or moist air, the effect, in a lesser degree, is that of by-passing outdoor air. Therefore the location of such return ducts and the points from which such air is taken is of importance. Exceptions to this are where the moisture content of the outdoor air is lower than that of the room, and where the sensible heat to latent ratio increases at partial loads.

The foregoing applies largely to summer air conditioning. In winter the by-pass usually is kept closed and room temperature control obtained by means of regulating the amount of heat supplied to the air. In some instances when the by-pass is located after the reheaters, the operation of the by-pass damper may be reversed and the by-pass still used as a means of control with the reheaters full on or operated in sequence with the by-pass. In other cases the reheater may be located in the by-pass as described further in this chapter.

The principle of the by-pass may be applied to items of equipment other than conditioners, such as humidifiers, dehydrators, heaters, etc., in much the same manner. Where a heater has a capacity such that the temperature rise of the air is higher than desired, a smaller heater may be used and a portion of the air by-passed around the heater. Throttling of the sprays in a humidifier is, in effect, a by-pass since it increases the portion of air passing through without being contacted.

Reheating

Reheating the supply air is necessary in winter where this air is used to offset heat losses. Tempering of the supply air (merely reheating to a lesser degree) is required where other means of heating, such as direct radiation or panel heating is used to carry the main heating load. Supply air at the required apparatus dew-point would add to the load to be carried by the direct radiation and in addition may create a movement of cold air that while desirable in summer may be undesirable in winter. Modulation of the amount of steam supplied to the coils can be used to control temperature, or air can be by-passed around these heating or tempering coils.

Since reheating or tempering coils are required for winter and year 'round air conditioning, their use as a means of summer as well as winter temperature control is indicated. Where heat is available in summer, as the room sensible heat falls off the low temperature of the supply air can be raised by means of these coils to maintain the desired room temperature while still providing adequate air at the proper dew-point.

Reheating presents an excellent method of accurate temperature control since the quantity of air passed through the conditioner is not changed as in the case of the by-pass, and since the distribution and circulation is not affected as when the volume of supply is reduced. However, reheating in summer has one disadvantage. It has the effect of maintaining a constant internal sensible heat load on the system. This means that when an

effective temperature difference of 15 F is being maintained at the maximum room sensible heat load, this temperature difference must be reduced by means of heating to 7.5 F at half of the sensible heat load. The room sensible heat usually is about 35 to 45 per cent of the total cooling load and thus the penalty imposed on the refrigeration cycle is not extremely large. When the outdoor wet-bulb temperature is less than the desired room wet-bulb temperature, all outdoor air should be passed through the conditioner and under these circumstances reheating does not impose a load on the refrigeration cycle since the heated air is not returned to the conditioner. Further, where the volume of outdoor air introduced to the system, which for all practical purposes is wasted after its work has been done, is sufficiently large in relation to the amount of reheat used (that is, if the heat required does not exceed that necessary to raise the outdoor air only from dew-point to room temperature) the use of reheat does not impose a load on the refrigeration cycle. This, of course, assumes that there is no economic penalty involved in the use of heat itself.

One of the best applications of reheating for summer purposes is in combination with other means of temperature control for the purpose of levelling off accentuated demands for temperature control. As an example, the by-pass can be applied to a certain extent, or the volume of supply air throttled to a limited degree, or both of these used in sequence, and reheating can be used as the final step in temperature control.

In the foregoing it has been assumed that summer reheating is derived from an extraneous source of heat such as steam, electric heaters or hot water. The economics of reheating as outlined may be improved by the use of sources of heat that are available within the equipment used.

Where certain types of refrigeration cycles are used, auxiliary refrigerant condensing coils can be placed in the air stream. At partial loads these can be used as additional refrigerant condensing surface and improve the performance of the refrigeration plant. This is generally known as hot gas reheating. Less effective is the use of coils in the air stream through which liquid refrigerant from the condenser is passed before being delivered to the evaporator, sub-cooling the liquid refrigerant and improving the performance of the refrigeration cycle. The use of refrigeration condenser water as a source of reheating provides definite economies. If the condenser water is passed through coils in the air stream before being used for refrigerant condensing purposes, the lowering of the condenser water temperature accomplished by reheating the air will result in savings in the refrigeration plant power consumption and increased refrigeration capacity. The latter two methods usually are at some disadvantage in that the amount of reheat available decreases as the need for reheating increases, particularly where evaporative condensers or cooling towers are used.

Zoning

Zoning consists of an arrangement of equipment or a division of equipment into sections that will permit individual control of the temperature and humidity of those spaces or groups of spaces that do not have simultaneous variations in sensible or latent heat load. The equipment is so arranged or divided that air can be supplied to spaces or groups of spaces

in accordance with the individual load requirements of that space or group of spaces.

Solar heat gain is one of the major causes of the zoning requirement since its effect and amount vary with the season, time of day and exposure. Other sources of heat gain, subject to variations, such as large changes in the number of occupants in one space with a constant occupancy in another indicate the necessity of zoning. Some of the various methods of zoning are:

- 1. Separate equipment.
- 2. Reheating or recooling. (See Figs. 4 and 5.)
- 3. Multiple fans with individual by-pass. (See Figs. 6 and 7.)
- 4. Volume control. (See Fig. 8.)
- 5. Dual duct system. (See Fig. 9.)
- 6. Combinations of the above methods.

Zoning by separate equipment represents the extreme in zoning. Individual conditioners, fans, heaters, controls, distributing duct work, etc., are provided for each zone and are separate from those of other zones. Each assembly of equipment is arranged to operate at full or partial load according to the requirements of that zone. In extreme cases an individual refrigeration plant may be provided for each zone. In general, this method of zoning is uneconomical since each piece of equipment is large enough to handle the full load requirements of that zone and no advantage can be taken of the fact that while one zone is at its full load others may be operating at considerably less than load capacity. This applies both to the initial cost of a system and the operating cost. There are, however, many cases where this method of zoning when used to a limited degree or combined with other methods is most desirable.

Zoning by reheat is one of the more simple methods of approaching the problem of differing variations in load. Reheating has been discussed in the foregoing. Heating coils located in the distributing duct work or apparatus connections which supply only those spaces having substantially the same load variations will, by adding heat when the cooling load falls off (or the reverse in the case of a heating load), maintain the desired temperature conditions. It has been shown previously that where the amount of reheating required is not excessive and that heat for this purpose is available from an economic standpoint this method of zoning may be entirely practical and even highly desirable.

Zoning by recooling is literally the reverse of zoning by reheating. It is not used often but there are many cases where it is desirable. Its most practical application is limited to a sensible heat removal function where the latent heat requirements are handled by another source such as a dehumidifier or dehydrator, and where the recooling equipment (usually cold water cooling coils) can be utilized for reheating (usually with hot water) in the heating season. In using this method of zoning, when the cooling load of a given space is reduced, the cooling effect produced by the recooler is also reduced.

The use of *multiple fans with individual by-passes* presents a simple and sometimes inexpensive method of zoning. Two or more fans may be arranged so that each draws its treated air from the same conditioner.

The connections between the conditioner and fans is divided or partitioned in such a manner that a by-pass connection can be made to each fan. See Fig. 6. In this way the amount of by-pass air can be regulated according to the requirements of the zone served by that fan. In this application a face damper must be used for each segment of the conditioner, arranged to close as the individual by-passes open or an unbalanced system may result. A much better adaptation of this principle, though slightly higher in initial cost, is obtained by using a single conditioner or dehumidifier. having a central conditioned air fan delivering the treated air to the necessary zone fans where the conditioned air is mixed with return air according to the requirements of the zone. See Fig. 7. With this method of zoning, the zone fans are provided with casings to which both return air and conditioned air are delivered, their proportions being regulated by dampers working in opposite directions. If conditioned air is delivered to the casing at slight positive pressure the return air damper may be omitted. Reheating can be effectively combined with either of these for year 'round use or for winter use only. The reheater is usually located in the air stream to the zone fan. Where a central conditioned air fan is used to deliver conditioned air to a number of zones a static pressure regulator controlling a volume damper or inlet vanes on this fan should be installed to prevent unbalancing the system when one or more zone fan conditioned air dampers are throttling. This is one of the better methods of zoning and is particularly effective when used in combination with reheating for winter or year 'round conditioning as previously outlined.

Volume control is the least expensive and most frequently used method of zoning. It is usually obtained by placing a throttling damper in the supply duct feeding a particular zone and operating the damper to restrict a flow of air as the heating or cooling load is reduced. The damper may be operated manually or automatically. Volume control, however, has two serious disadvantages. The first of these is that any large reduction in the quantity of air supplied may impair the ventilation. The second is that a large reduction of the air supply may entirely upset the distribution from the room outlets causing dead pockets, stratification, lack of air motion, or the reverse—undesirable drafts. Where the degree of volume control is large or the system extensive and where volume control is applied to one portion of a system and not to another, the use of a static pressure regulator controlling a fan discharge damper or fan inlet vanes is indicated. Its best application is in combination with some other method of zoning such as reheat or by-pass where it is used as one step in a control sequence, and the reduction in volume limited to a proper

The dual duct method of zoning, sometimes referred to as the school-house system, can be successfully applied to comfort air conditioning though certain precautions must be observed. Essentially this method employs a source of warm air and a source of cold air both of which are delivered to a common point where either or a mixture of both are delivered to a particular zone according to the requirements of that zone. See Fig. 9. Several variations of this method are possible, some of which do not employ dual ducts as denoted by the name but which utilize the principle. An example of this is found in a blow-through system where the fan is located on the entering side of the conditioner and the con-

ditioned air passes from the conditioner into a plenum from which distributing ducts for the various zones are taken. A by-pass connection around the conditioner from the fan to the zone duct is made and dampers provided so that conditioned or untreated air, or a mixture of both is passed into the zone supply duct. In this method of zoning and in most of the variations of this method, the matter of by-passing untreated or outdoor air presents itself. This has been discussed earlier in this chapter. If a return air fan is used and the by-pass connection made from the return fan to the zone supply duct, then the by-passing of outdoor air does not need to be considered. Complication of ducts and connections should be avoided since it may result in difficult sheet metal work with accompanying leakage of air and waste of cooling or heating effect.

Combinations of these several methods of zoning usually provide the most effective zoning. It is then possible to use each method to its greatest advantage without incurring operative or economic penalties which may be inflicted by the exclusive use of any one. Thus, where wide variations in load occur, volume control can be used to reduce the air quantity a limited amount, then as the load continues to fall off reheat or the by-pass or both can be used. By-pass and reheat can be used in series very effectively. Many combinations are possible and each case should be considered with regard to its particular requirements when deciding on the method of zoning.

Induction Units-Low pressure type

Induction units are essentially induction type convectors. These units utilize a jet of conditioned air (or primary air) to induce into the unit a flow of room or secondary air which mixes with the primary air. The mixture is discharged into the room through a grille at the top of the unit. Heating coils are located in the secondary air stream for use in heating. Control is obtained by either manually or automatically throttling the jet, and in addition, heat may be supplied to the secondary coils in summer as well as winter to provide control by reheating. The use of these induction units presents several advantages. Since the secondary air stream is thoroughly mixed with the high velocity low temperature air stream before leaving the discharge of the unit, the resultant temperature of the mixture is satisfactory even though the primary air is introduced at a temperature too low for ordinary methods of distribution. A unit is usually provided under each window in place of the customary direct radiation, and combines the air distribution system with the heating system. With a conventional system it may be necessary to provide supplementary heating in the form of direct radiation. These induction units may be selected so that their heating coils will have sufficient capacity under gravity conditions (that is, with the fan system off and no primary air entering the unit) to maintain the building or spaces at a reasonable temperature. The use of low temperature dehumidified air which has not been reheated or mixed with room air before delivery to the room results in a reduction in fan capacity and smaller sized duct work. In some cases the use of the by-pass may be desirable in order to keep the primary air volume up and provide additional control. This system can provide a degree of zoning that is usually impossible with conventional systems since each unit can be put under manual or automatic volume control and reheat control. The selection of units should be made with regard to noise level when related to the noise level of the spaces. The inductive capacity of the unit increases with the jet velocity but too high jet velocities result in a high noise level.

Induction Units-High pressure type

A recent development of the induction unit as previously outlined is the high pressure type of unit. This unit employs nozzles which produce a high velocity jet quietly. The term, high pressure type of unit, is to some extent inaccurate since the pressure at the nozzles, while several times that of the low pressure unit, is still less than the total resistance pressure of a conventional central system. The high velocity jet of primary air induces a flow of secondary room air through coils located in the secondary air stream. The coil in the secondary air stream is supplied with chilled water in summer and hot water in winter and thus handles a large portion of the room sensible heat gain in summer and of the room sensible heat loss in winter. The primary air is supplied at a sufficiently low dew-point to take care of room latent heat gain in summer. In winter, it is supplied at a sufficiently high dew-point to take care of room latent heat losses. Control of temperature is obtained by throttling the water quantity supplied to the secondary coils. The quantity of primary air is greatly reduced due to the fact that a portion of the room sensible heat load is carried by the secondary air stream coil. Since the primary quantity is small, very high velocities can be carried in the supply ducts without requiring fan power in excess of that required for a conventional system. This means that the supply ducts or pipes can be very small and can be run in chases, or furred in at columns with the water pipes. The primary air is treated in the usual manner to provide air at the required dew-point and either a surface or spray dehumidifier or a dehydrator may be used. The primary air quantity is sufficient for ventilation purposes, and frequently consists entirely of outdoor air. The water piping for the units can be so arranged and valved that hot water can be supplied to one zone that may require heating while cold water may be supplied to a zone that requires cooling.

This system is usually limited in application to hotels, apartments, office buildings and other multi-room installations having a large perimeter with relation to the floor area. The units are usually installed beneath the windows, replacing direct radiation or convectors. Where the spaces to be conditioned extend a large distance from the outer wall into the interior of the building, a separate system or zone for the conditioning of the interior portions may be required.

Evaporative Cooling

In climates where on design maximum days, the outdoor wet-bulb depression is relatively high it may be possible to dispense with refrigeration or other cooling sources by use of the evaporative cooling effect. A well designed air washer using recirculating sprays will reduce the entering dry-bulb temperature to within a degree or two of the entering wet-bulb condition. Thus, it may be possible that with air entering at 100 F dry-bulb and 60 F wet-bulb temperature a leaving condition of

62 F dry-bulb, nearly saturated can be obtained. Under some conditions of latent and sensible heat load the results may be entirely satisfactory.

Under those conditions when the outdoor wet-bulb temperature is not quite low enough to permit the use of straight evaporative cooling it is possible to use precooling coils with refrigeration, well water or a cooling tower as the basic source of cooling to lower the wet-bulb temperature (by sensible heat removal) of the air before it enters the air washer. Where internal heat loads are high, this may be more economical than using return air. Under other conditions where the required supply air dewpoint is too low to permit straight evaporative cooling and the sensible heat load not too great, intentional partial saturation may be employed. That is, the low dew-point of the outdoor air is utilized by permitting some of it to pass through the humidifying sprays untreated or pass around the humidifier. All of these remarks with regard to evaporative cooling are based, as indicated, on the assumption that the supply air will consist entirely of outside air. Provision should be made for the return of air from the conditioned spaces for control purposes as well as for winter use in all cases.

Precooling

Where sufficiently cold water from wells or streams is available a saving in the refrigeration cycle may be obtained by the use of precooling. Cooling coils are placed ahead of the dehumidifier or conditioner and the cold water from a well or stream circulated through the coils. The resultant cooling of the air decreases the load to be carried by the dehumidifier and refrigeration plant. In normal practice the water after passing through the precooling coils is delivered to the refrigeration plant for condensing purposes. The economic advantages of this scheme are apparent and it is frequently used.

Sensible Cooling with Dry Cooling Coils

Under certain atmospheric conditions where a large wet-bulb depression exists and the dew-point of the outdoor air is sufficiently low at all times, proper inside conditions may be obtained by removing sensible heat only from the outdoor air and supplying it to the spaces. Under this condition of a high wet-bulb depression a cooling coil may be located in the air stream and this coil supplied with water from a cooling tower of one type or another. When humidity control is desired sprays to saturate or partially saturate the air may be used after the dry cooling coil. Saturation or partial saturation after the dry air cooler will further reduce the dry-bulb temperature of the supply air and reduce the supply air quantity required. This system has very definite application in hot dry climates and in general is most economical.

Run-Around System

An interesting method of control is found in the use of combined reheating and precooling usually termed the *run-around system*. Coils are placed in the air stream before and after the conditioner and water or brine is circulated around the conditioner from one coil to the other. The water passing through the reheating coil is cooled by the air leaving the dehumidifier and the air is heated by the water. The cooled water is then

circulated through the precooling coil where the entering air is cooled by the water and the heated water sent back to the reheating coil. The runaround has the advantage of permitting a higher supply air dew-point temperature than would be possible otherwise. This is due to the fact that continual reheating is available which is not a large penalty on the refrigeration plant since it provides precooling at the same time. This reheating at peak load creates an artificial sensible heat gain which increases the ratio of room sensible heat to room total heat and for a given room temperature results in a higher apparatus dew-point. See Equations 2, 3 and 4. Thus, while the volume of supply air is increased, the low side temperature level of the refrigeration plant is raised and this may effect savings in initial and operating costs. This system has the disadvantage of providing a decreasing amount of heat for reheating as the demand for reheating increases.

RELATION TO BUILDING TYPE

Few buildings or spaces are physically identical and those that are similar in this respect may have marked differences in internal loading, zoning requirements, and economic limitations. Consequently it is virtually impossible to establish fixed rules governing the type of system to be used. Each case must be considered on its own merits with due regard to all engineering and economic factors. However, some generalizations are possible.

In small single spaces the use of an elaborate system is undesirable from an initial cost standpoint. Zoning may be often eliminated. This also applies to large single spaces except that in very large spaces the necessity of providing adequate zoning is encountered more frequently. If the spaces are extremely large, physical and economic limitations such as the size of equipment, size and length of ducts, may require the division of the space into sections. Whether these sections are to be made according to zones or whether each section is to be zoned will depend on the particular case.

Where groups of spaces or small buildings are encountered, simple systems still prove the most economical. A single central station with zoning by means of volume control and reheat combined may be entirely satisfactory. If the perimeter of the building is large with regard to the area, induction units of the low or high pressure type may be employed, particularly if it is a multi-room application. Occasionally the dual duct system may be considered, but is infrequently used due to its complications.

Low buildings with large floor areas, such as large department stores and large general offices, may have to be divided into sections for treatment. In the case of large department stores it may be possible to provide a single conditioner with a fan delivering the conditioned air to recirculating fans which supply the various departments or spaces. This application is limited by practicability of running the large conditioned air ducts to the various recirculating fans. In some cases the use of separate systems for each section will be indicated with the added necessity of dividing into horizontal as well as vertical sections. If the latter is required, each vertical section may be handled by a separate system consisting of a single conditioner and fan delivering conditioned air to recircu-

lating fans supplying the horizontal sections. Zoning is obtained by proper allocation of the recirculating fans or other conventional methods used in conjunction with the recirculating fans. For general offices in particular, or types of buildings having a large perimeter, the use of one of the induction type units for perimeter treatment, combined with a conventional system for the treatment of the interior portions, offers possibilities.

High buildings having large floor areas may be successfully handled in many ways. Horizontal or vertical sectionalizing or both may be required, as determined by economic factors and physical limitations. Where vertical sections only are required, the use of a single conditioner and fan for each section delivering conditioned air to zone fans at various floors may be used. These zone fans can be so arranged that one recirculating fan can handle similar zones on several floors, thus reducing the number of fans required and providing a degree of vertical zoning. Where vertical sectionalizing is not indicated, the building may be divided into horizontal groups, each group handled by a central system and adequately zoned. In some extremely large buildings apparatus rooms for the systems may be located in the basement and in the attic and on intermediate floors.

In high buildings having small floor areas the treatment required may be the same as for that of a vertical section of one having a large floor area. A single conditioner and fan can be used to deliver conditioned air to recirculating fans located at various floors.

In all cases of high buildings the necessity for horizontal sectionalizing is indicated by the economical size of air supply and return risers and by the extent to which they encroach upon usable space. In all buildings the necessity for vertical sectionalizing is indicated by the economical size of horizontal supply and return ducts and the space requirements of these ducts.

Usually the most simple systems are best adapted to theatres, auditoriums, and similar applications. Zoning is seldom required other than in connection with auxiliary spaces served by the same system. A conventional central system with by-pass control possibly augmented by reheat usually will suffice. The auxiliary spaces may be supplied with air from the same system controlled by volume reduction and reheat. Balconies and large lobbies frequently justify the use of separate zoning fans.

The foregoing are merely generalizations and suggestions. It is the responsibility of the engineer to explore thoroughly the possibilities of all types of systems and employ that best suited to the purpose from a standpoint of maintained economy, maintenance, life, operation and physical applicability.

EQUIPMENT SELECTION

Other chapters cover in detail most of the items of equipment used in a central system. Each item must be selected not only on its own merits, but in relation to all the other items that go to make up the complete central system. Each item should be considered from the standpoint of both initial cost and operating costs. Consideration must be given to performance at partial loads since most systems operate at full load but

a small percentage of time. Many items of equipment have been well standardized and are manufactured in certain definite sizes. The fullest advantage of this should be taken. One item that may be oversized of necessity may permit the use of a smaller piece elsewhere.

Fans operate at full capacity continually in many systems and therefore should be selected for good efficiencies. In winter where higher temperature differentials are used it is possible to use lower air quantities and a two-speed motor may be provided for the fan, resulting in a power saving. In such cases the air distribution under the reduced volume should be investigated before providing this feature.

In selection of the dehumidifier or conditioner the relation of this item to the refrigeration plant is to be given careful consideration. Frequently, it is possible to make a saving in the refrigeration plant by providing more surface in the dehumidifier or conditioner. On the other hand, an excess of capacity in the refrigeration plant can be used to lower the apparatus dew-point (if the lower room humidity is satisfactory) resulting in a reduced quantity of dehumidified air and smaller dehumidifier.

In winter, where preheating coils in outside air intakes are required and subjected to entering air temperatures below freezing, the coils should be selected for operation at full capacity whenever the entering air temperature is below 35 F or where throttling of the steam supply to the coils is desirable, a type of coil that is designed especially for this must be used. In many cases the use of preheaters is not justified since the temperature of the mixture of outside and return air may be entirely satisfactory.

Where reheating coils are used after the supply fan, either as zone control reheaters or boosters, and are relatively near outlets, care is to be used to install these coils so that any stratification of temperature produced by the throttling of the steam or water supply does not result in cold air being delivered to one outlet and warm air to another. Some types of coils that do not produce stratification under throttled conditions are commercially available.

The selection of the refrigerating plant is in itself an economic study. The availability, consumption, and costs of condenser water are to be compared to the initial costs involved and water savings produced by the use of cooling towers or evaporative condensers. Whether or not a direct expansion or flooded system, cold water or brine type of plant will be used is not only a matter of initial cost but one of overall performance, operating economy, compactness, and in some cases, one of safety. Where water or brine is used as a cooling medium, the possibilities of using lower temperatures and decreased quantities of water or brine, with resultant savings in pumping power and line sizes, are to be considered with relation to the increased power consumption and probable increased cost of the refrigeration machine.

Air cleaning devices are to be selected according to the particular requirements of the project as well as to existing atmospheric conditions. In some applications such as certain types of stores or departments in large stores, lint screens should be provided for the return air as well as filters. Whether or not return air is to be filtered will depend upon the individual case and will be related to the amount of dirt or dust generated in or brought into the conditioned space from various sources. The type

of filter or cleaning device to be used depends largely on economic considerations. Obviously an expensive high efficiency cleaning device is not warranted where atmospheric dust or dirt is of such a nature that a less expensive, less efficient device will remove the more objectionable matter. Interior cleaning costs, dust and dirt damage, and hazard due to an accumulation of inflammable dust or dirt within the system are most important factors.

Automatic instruments are nearly always used in present practice for the control of temperature and humidity and to an increasing extent in the control of large refrigerating plants as well as small ones. Whether electric or pneumatic controls are to be used is a function of the particular requirements of the application and with certain exceptions a function of economy. Either electrically or pneumatically operated controls can be made to serve the same purpose though the individual case may favor one or the other. A detailed discussion of automatic controls may be found in Chapter 34. One point is to be emphasized. In general, the simpler the control system the better it will perform. Control systems seldom receive the maintenance they deserve and the fewer the instruments and devices the better the care. Further, it is poor policy to provide, at additional expense, instruments of extreme sensitivity to devices incapable of responding to the control demands.

Insulation is an important factor in air conditioning systems. Its economics with regard to steam and water or brine piping are well known and need no comment. The insulation of duct work is not merely a matter of economics but sometimes is a necessity from the standpoint of limiting the temperature rise of the air even when the ducts are in conditioned spaces. This temperature rise of the air should always be taken into account when apportioning the air and sizing the ducts and will indicate the necessity for insulation. In some cases, leakage of air from the duct where the duct is in a furred space or chase will eliminate the need for insulation by maintaining a reasonable temperature surrounding the duct.

There are practically no items of equipment associated with central air conditioning systems that are not subject to economic limitations as well as those of performance and duty and all of them should be considered in the selection.

ARRANGEMENT OF EQUIPMENT

A proper arrangement of equipment is essential for the proper functioning of any system. Where systems are to be installed in existing buildings the arrangement of equipment may be limited by structural or space considerations, but no compromises that may prevent satisfactory operation or maintenance should be considered.

The location of the apparatus room is often determined by building construction or available space. The closer the apparatus room to the conditioned space, the less expensive is the duct-work. On the other hand if the equipment generates noises it may be necessary to locate the room some distance from the spaces or provide adequate sound and vibration treatment. The scattering of wet apparatus throughout a building is to be avoided unless suitable precautions are taken. It must

be remembered that encroachment on spaces that are otherwise usable can be charged against the system as an operating cost.

In general the apparatus should be arranged to have straight line air flow. This is desirable but not always possible. Each change in direction is the source of air resistance, and in addition may cause eddy currents resulting in stratification. The usual order of equipment, beginning at the outside air intake is: outside air screen, outside air louvers, maximum and minimum outside air dampers, preheaters, return air connection, filters, conditioner, by-pass connection with or without reheaters, reheaters, fan and distributing ductwork. See Figs. 1, 2 and 3 for typical arrangements. Use of one or more of the methods of zoning may require a modification of this order but usually only after the dehumidifier or conditioner.

Outside air screens prevent the entry of large foreign matter, birds, etc. The use of louvers or a hood at the outside air intake prevents the entry of rain and snow. Both of these should be used on all systems. As pointed out earlier, the louvers and screens should be of sufficient size to permit the passage of the entire conditioned air quantity.

The minimum outside air damper usually covers the entire face of the preheater, which in turn is selected for the minimum outside air quantity. The maximum outside air damper is designed for the difference between the dehumidified air quantity and the minimum outside air. Its size can be such that its air resistance when open will equal the air resistance of the open minimum outside air damper plus that of the preheater if used. Where the spaces conditioned are very tight against air leakage, some type of relief or positive exhaust may be necessary when all outdoor air is introduced to the system to provide some means of egress for the air. Such reliefs require back-draft dampers to prevent infiltration when all outdoor air is not being used. A return fan properly dampered as indicated later is sometimes used.

The return air from the conditioned spaces usually is brought into the apparatus between the preheater and the filter. Just as it is necessary to make provision for using all outdoor air it is necessary to make provision for using all return air. Heating an unoccupied building or cooling it after a shut-down is easier if all the air used is return air. Consequently the return connections should be ample for this. In many cases higher velocities can be carried in the return ducts during such times, since the fan will exert a pull at the return connection nearly equal to the resistance of the outside air connection and the return ducts need not be larger than for normal return air quantities at normal velocities. In other cases it is possible that a reduced quantity of air due to the increased resistance of the return duct system may be satisfactory during the starting period. Where the return air system is extensive or complicated a return air fan is desirable. This fan can serve as a combination exhaust and return fan by arranging dampers in its discharge so that the necessary return air can be delivered back into the system and the remainder discharged outdoors. When all outdoor air is passed through the conditioner the entire return air quantity is discharged outdoors.

The by-pass connection normally connects the return air duct system into the apparatus casing between the conditioner and fan. Usually it is sized to handle about 50 per cent of the fan capacity where a variable

by-pass is used though extreme load variations may require a greater amount. It is at times good design to locate the reheater in the by-pass connection using a certain amount of by-pass air when heating is required. Since the relatively high resistance of the conditioner is to be balanced by the heating coil and by-pass connection, enough heating surface can be provided to raise the temperature of the by-pass air to the point where the mixture of by-pass air and conditioned air will have the required When a variable by-pass is used a damper working in opposition to the by-pass damper should be placed across the face of the dehumidifier, for unless the resistances of the two are most carefully balanced at all operating points the proper mixtures of air will not be obtained. The avoidance of by-passing outside air is again stressed. Where the by-pass is made a part of the dehumidifier or conditioner and located on the top or side of it, the return air connection should be made in such a way that stratification of return air is insured, baffles being provided to accomplish this purpose if necessary. Where return air and by-pass air connections are taken off a return duct system it may be necessary to install a back-draft damper between the return air connection and the by-pass connection, if the return duct system is extensive and the connections simple. In this instance, when the by-pass damper is at maximum opening it may be much easier for outside air to pass through the return damper, into the return duct connection and through the by-pass than for return air to pass through the by-pass connection into the fan. Air always takes the easiest path and if the dehumidifier resistance is high, and the return duct resistances low, this situation is apt to occur unless precautions are taken. A return fan instead of a back-draft damper may be required for this case if the failure of return air to reach the dehumidifier or conditioner is a serious matter under reduced load conditions.

The location and arrangement of the dehumidifier, humidifier, or conditioner with reference to each apparatus assembly is more or less standardized. In general, the outside air intake, preheaters, and return air connections precede the conditioner while the by-pass, reheaters and fan follow the dehumidifier. In the cases of the blow through system, where the fan is located ahead of the conditioner, the leakage of air at the conditioner is outward instead of inward and may be accompanied by water leakage unless the proper precautions are taken.

The location of the complete apparatus assembly including the dehumidifier will be dependent on the type of building, spaces available, structural characteristics, etc. The type of conditioner used may limit the location under certain conditions. Where cooling coils employing chilled water or brine as the cooling agent are used there are few restrictions with regard to location other than those of pumping power, working pressures, line costs, etc. Where open spray dehumidifiers are used very definite limitations present themselves, and these may require certain extraneous equipment to make the system workable. If several spray type dehumidifiers are located on different levels, a surge or storage tank to which the return water from each dehumidifier can be taken is required. Should the water level in the pan of the dehumidifiers be low in relation to that of the surge tank, return water pumps will be required, and these pumps will have to be operated until the water supply lines are drained in

order to prevent flooding of the lower dehumidifiers. Where spray dehumidifiers are on the same level, equalizing lines between the pans may be required if a storage tank is not provided.

All of the various pieces of equipment from the outdoor air intake through the fan usually are connected together by sheet metal casings. Frequently the building structure or specially constructed walls or partitions may be used to form all or portion of the casing. In any case the casing or connection must be sufficiently sturdy for the required duty. Sheet metal work must be well braced not only to prevent bellying or vibration under pulsations in air flow but to withstand the abuse of normal usage. Casings should be adequately braced wherever access doors are installed and all large panels should be adequately reinforced by angle iron.

Each apparatus layout is to be made with accessibility in mind. Where cooling coils are used space for removing and repairing or replacing the coils should be provided. Adequate space is to be provided for the servicing and replacement of eliminators. Filters must be so located that the proper cleaning, replacement or routine servicing can be accomplished without difficulty. Free access to the bearings of all moving machinery is a necessity. Provisions should be made for the complete removal and replacement of any part of the system that is subject to wear, deterioration or damage, whether it may be filter, fan wheel, motor, rotor, pump impeller or heat transfer surface.

DESIGN PROCEDURE

The customary design procedure is outlined herewith. For simplification the procedure is set up on the basis of a year 'round system. For summer only or winter only systems, the unrelated parts are to be omitted.

- Selection of design conditions (inside and outside).
 - a. Summer.b. Winter.
- 2. Determination of outside air requirements.
- 3. Determination of cooling load.
 - a. Room sensible heat gain.
 - b. Room latent heat gain.
 - c. Room total heat gain.
 - d. Grand total heat gain.
- 4. Determination of heating load
 - Room sensible heat loss.
 - Room moisture loss.
 - c. Humidification requirement.d. Total heating requirement.
- 5. Determination of apparatus dew-point and dehumidified or humidified air quantity. a. Summer (full load and part load).b. Winter.
- 6. Supply air temperature difference and quantity.
 - a. Summer.b. Winter.
- 7. Equipment selection.
- 8. Equipment layout.

The foregoing steps are merely typical. Many applications will require at least a preliminary investigation of some of the latter steps before proceeding with the earlier steps.

Chapter 22

UNIT HEATERS, UNIT VENTILATORS, UNIT HUMIDIFIERS

Unit Heaters, Centrifugal Housed Fan Type, Propeller Fan Type, Ratings, Boiler Capacity, Piping Connections, Unit Ventilators, Ratings, Applications, Air Vents, Window Ventilators, Unit Humidifiers, Types of Units

DESCRIPTIONS of heating, cooling, ventilating, humidifying, and dehumidifying systems are given in other chapters. This chapter deals with unit heaters, unit ventilators, and unit humidifiers. Cooling units, unit air conditioners, and attic fans are described in Chapter 23.

In general a *unit* may be defined as a factory-made encased assembly of the functional elements indicated by its name, such as unit heater, unit ventilator, etc. These units are shipped substantially complete or built and shipped in sections so that the only field work necessary is the assembling together of the sections, without resorting to any field fabrication.

A unit may be complete in itself, employing its own direct means of air distribution and source of heating, in which case it thus represents a complete self-contained unit. Or it may be coupled with separate means of air distribution such as duct work and outlets, in which case it will still be considered as a unit system, as contrasted with the generally accepted term of a central station system constructed and assembled in the field.

Some advantages of unit equipment are lower cost per unit capacity, lower cost of installation, and flexibility and ease of installation. These units are also available in small capacities.

Definitions¹

- 1. A *Heating Unit* is a specific air treating combination consisting of means for air circulation and heating within prescribed temperature limits.
- 2. A Heating Air Conditioning Unit is a specific air treating combination consisting of means for ventilation, air circulation, air cleaning and heat transfer with control means for heating and maintaining humidity within prescribed limits.
- 3. A Humidifying Unit adds water vapor to and circulates air in a space to be humidified.

^{&#}x27;Standard Method of Rating and Testing Air Conditioning Equipment, prepared by a Joint Committee of the American Society of Refrigerating Engineers, American Society of Heating and Ventilating Engineers, Refrigerating Machinery Association, National Electrical Manufacturers' Association and Air Conditioning Manufacturers' Association.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

- 4. A Free Delivery Type Unit takes in air and discharges it directly to the space to be treated without external elements which impose air resistance.
- 5. A Pressure Type Unit is for use with one or more external elements which impose air resistance.

UNIT HEATERS

A unit heater consists of the combination of a heating element and fan or blower having a common enclosure and placed within or adjacent to the space to be heated. Generally no ducts are attached to inlets or outlets, although it is common practice with many unit heater applications to equip the heaters with directional outlets or adjustable louvers.

Fig. 1. Floor Mounted Unit Heater, Housed Type Fan

While unit heaters are designed primarily to handle all recirculated air, they may be installed to handle either partial or total outdoor air.

The heating surface may be in the form of non-ferrous or steel pipe coils, non-ferrous or steel pipe with extended surfaces, cast-iron, or pressed or built-up sections of the cartridge or automotive type. heating medium may be steam, hot water, gas or electricity. always forced over or drawn through the heat transfer surface by a fan of either the propeller or centrifugal type. Direct fired units using coal, oil or gas for fuel are available. A properly designed and applied unit heater should:

- 1. Circulate air in the building at a rapid rate but without objectionable draft.
- 2. Reduce the temperature differential between the floor and ceiling.
- 3. Direct the heated air so that uniform temperature distribution will be obtained throughout the heated space.
- 4. Prevent or remove the cold stratum of air commonly found at the floor level. 5. Maintain a closer control of room temperature either manually or by means of simple thermostats.
- 6. Provide a means of saving floor area or room space due to the compactness of the equipment and flexibility of application.

Types of Units

There are two major types of unit heaters, centrifugal housed fan type and propeller fan type. The housed fan type, as illustrated by Figs. 1 and 2, delivers air at high velocity (1500 to 2500 fpm) and is equipped with outlets adjustable to deliver air in several directions. They are able to project their heating effect over distances of from 30 ft to as much as 200 ft from the unit. However, they are more suited to long than short blow, except where the units are mounted high above the floor and discharge at a sharp angle downward. As a rule these units can be located at considerable distances from each other, thus reducing the piping and conserving floor space usually allotted to heating equipment.

The propeller fan type is divided into two classes of horizontal and verti-

Fig. 2. Suspended Type Unit Heater, Housed Type Fan

cal blow. The horizontal blow type, illustrated by Fig. 3, discharges air at from 400 to 1000 fpm. It takes care of medium distances of blow, up to approximately 100 ft where mounting height is not too great and where other conditions are favorable such as final temperature and mass of air handled by the unit.

The vertical blow unit, illustrated by Fig. 4, discharges air at from 1200 to 2200 fpm. These are mounted on ceilings of rooms or up in the roof trusses and blow vertically downward. Various diffusers are available to take care of the height and space conditions. These units are applied to elevations of from approximately 10 ft to around 50 ft above the floor. Where mounted in roof trusses, as in industrial buildings, they do not interfere with traveling cranes and therefore permit application with overhead piping. A code² governing the number of sizes of propeller fan units as well as standardization of fan motors and the method of specifying outlet velocities has been adopted.

Ratings

Standard practice is to rate unit heaters in Btu per hour at a given temperature of air entering the heater and at a given steam pressure

²Standards for Propeller Type Unit Heaters prepared and adopted by the *Industrial Unit Heater Association*, June, 1938.

maintained in the heating element. Steam at 2 lb pressure and air entering at 60 F are used as the standard basis of rating³. The capacity of a heater increases as the steam pressure increases, and decreases as the entering air temperature increases. The heating capacity for any condition of steam pressure and entering air temperature other than standard may be calculated approximately from any given rating by the use of factors in Tables 1 and 2. Table 1 is used for the blow-through type and Table 2 for the draw-through type of unit. The formulae given under unit ventilators for calculating capacities also apply to unit heaters.

Temperature differences per foot of elevation when using unit heaters are generally less than corresponding variations for spaces heated with direct radiation⁴. The temperature to be maintained in the room, for recirculating heaters with intakes at the floor level, should be considered

Fig. 3. Suspended Unit Heater

Fig. 4. Vertical Blow Unit Heater

as the temperature of the air entering the heater. Where outside air is introduced, the temperature of the mixture must be calculated and used as the entering air temperature to the heater. Unit heaters taking in recirculated air at the floor level should maintain temperature differentials of less than 0.5 F per foot of elevation when the maximum capacity of the heaters is required.

The temperature variation from floor to ceiling with recirculating unit heaters taking air at some distance above the floor may reach as much as one degree per foot of elevation during the periods when the maximum capacity of heaters is required. Suitable allowance for this temperature variation should be made when calculating the capacity of unit heaters. Generally speaking, high velocity discharge units will maintain slightly lower temperature differences than low velocity discharge units. Correspondingly, units with lower air discharge temperatures will maintain slightly lower temperature differences than units with higher discharge temperatures. Suspended type of units, illustrated by Figs. 2, 3 and 4,

A.S.H.V.E. Standard Code for Testing and Rating Steam Unit Heaters (A.S.H.V.E. Transactions, Vol. 36, 1930, p. 165).

A.S.H.V.E. RESEARCH REPORT NO. 958—Temperature Gradient Observations in a Large Heated Space, by G. L. Larson, D. W. Nelson and O. C. Cromer (A.S.H.V.E. Transactions, Vol. 39, 1933, p. 243) A.S.H.V.E. RESEARCH REPORT NO. 1011—Tests of Three Heating Systems in an Industrial Type of Building, by G. L. Larson, D. W. Nelson and John James (A.S.H.V.E. Transactions, Vol. 41, 1935, p. 185)

being located in an elevated position above the floor will withdraw air from this higher level and discharge the heated air down into the working zone.

Unit heaters are customarily rated as free delivery type units. If outside air intakes, air filters, or ducts on the discharge side are used with the unit a reduction in air and heating capacity will result because of this added resistance. The percentage of this reduction in capacity will depend upon the characteristics of the heater and on the type, design and speed of the fans so that no specific percentage reduction can be assigned for all heaters at a given added resistance. In general, however, disc or propeller fan type units will experience a larger reduction in capacity than housed centrifugal fan units for a given added resistance and a given heater will have a larger reduction in capacity as the fan speed is lowered. The ratings to be expected under such conditions should be secured from the manufacturer.

Boiler Capacity

The capacity of the boiler should be based on the rated capacity of the unit heaters at the lowest entering air temperature and highest fan speed that will occur, plus an allowance for pipe line losses. It is unwise to install a single unit heater as the sole load on any boiler, particularly if the unit heater motor is started and stopped by thermostatic control. The wide and sudden fluctuations of load that occur under such conditions would require closer attention to the boiler than is usually possible in a small installation. Where oil or gas is used to fire the boiler, it is possible by means of a pressurestat to control the boiler, in response to this rapid fluctuation. In most cases, and particularly where the boiler is coal-fired, it is advisable to use two or more smaller unit heaters instead of one large unit.

Steam pressures below 5 lb can be used with safety for recirculating unit heaters when their heating surfaces are designed for those pressures, and when proper provision is made for returning the condensate. If units admit air that may be at a temperature below freezing, a steam pressure of not less than 5 lb should be maintained on the heating element, or a corresponding differential in pressure between the supply and returns should be maintained by means of a vacuum.

Piping Connections

Piping connections for unit heaters are similar to those for other types of fan blast heaters. The piping of unit heaters must strictly conform to the system requirements while at the same time permitting the heaters themselves to function as intended. The basic piping principles for steam systems are discussed in Chapter 15.

Rapid condensation of steam, especially during heating-up periods, is characteristic of this type of equipment. The return piping must be planned to keep the heating surfaces free of rapid condensation, while the steam piping must be ample to carry a full supply of steam to the surfaces to take the place of that condensed. An adequate size of pipe is therefore essential for all heating surfaces over which there is a flow of forced air. Especially is this true where the fan is operated under start-and-stop

Table 1. Constants for Determining the Capacity of Blow-Through Type Unit Heaters for Various Steam Pressures and Temperatures of Entering Air

(Based on Steam Pressure of 28 lb Gage and Entering Air Temperature of 60 F)

STEAM PRESSURE					Tail	MPERATURE OF	TEMPERATURE OF ENTERING AIR					
The First Od IN.	-10	0	100	20°	30°	*0 1	200	.09	700	80°	.06	100
0	1.538	1.446	1.369	1.273	1.191	1.110	1.034	0.956	0.881	0.80	0.739	0.671
2	1.585	1.495	1.405	1.320	1.237	1.155	1.078	1.000	0.926	0.853	0.782	0.713
ις	1.640	1.550	1.456	1.370	1.289	1.206	1.127	1.050	0.974	0.901	0.829	0.760
10	1.730	1.639	1.545	1.460	1.375	1.290	1.211	1.131	1.056	0.982	0.908	0.838
15	1.799	1.708	1.614	1.525	1.441	1.335	1.275	1.194	1.117	1.043	0.970	0.897
20	1.861	1.769	1.675	1.584	1.498	1.416	1.333	1.251	1.174	1.097	1.024	0.952
30	1.966	1.871	1.775	1.684	1.597	1.509	1.429	1.346	1.266	1.190	1.115	1.042
40	2.058	1.959	1.862	1.771	1.683	1.596	1.511	1.430	1.349	1.270	1.194	1.119
20	2.134	2.035	1.936	1.845	1.755	1.666	1.582	1.498	1.416	1.338	1.262	1.187
99	2.196	2.094	1.997	1.902	1.811	1.725	1.640	1.555	1.472	1.393	1.314	1.239
70	2.256	2.157	2.057	1.961	1.872	1.782	1.696	1.610	1.527	1.447	1.368	1.293
75	2.283	2.183	2.085	1.990	1.896	1.808	1.721	1.635	1.552	1.472	1.392	1.316
08	2.312	2.211	2.112	2.015	1.925	1.836	1.748	1.660	1.577	1.497	1.418	1.342
8	2.361	2.258	2.159	2.063	1.968	1.880	1.792	1.705	1.621	1.541	1.461	1.383
100	2.409	2.307	2.204	2.108	2.015	1.927	1.836	1.749	1.663	1.581	1.502	1.424
								_				

Note: To determine capacity at any steam pressure and entering temperature, multiply constant from table by rated capacity at 60 F entering and 2 lb pressure.

CONSTANTS FOR DETERMINING THE CAPACITY OF Draw-Through Type Unit Heaters for Various Steam Pressures \mathcal{F} AND TEMPERATURES OF ENTERING AIR TABLE 2.

(Based on Steam Pressure of 2 lb Gage and Entering Air Temperature of 60

STEAM PRESSURE					Тви	TEMPERATURE OF ENTERING AIR	Entering Air	-				
ī	-10°	0	10.		30°	40°	.20°	,09	.02	80°	06°	100
1.	1.483	1.405	1.329	1.253	1.178	1.105	1.032	0.962	0.892	0.822	0.754	0.688
÷	1.520	1.442	1.363	1.290	1.215	1.141	1.069	1.000	0.930	0.861	0.792	0.728
÷.	1.565	1.485	1.410	1.334	1.260	1.187	1.114	1.045	0.975	906.0	0.838	0.771
-	1.637	1.558	1.480	1.403	1.328	1.253	1:182	1.112	1.042	0.973	0.903	0.838
1	1.688	1.610	1.533	1.458	1.382	1.310	1.239	1.168	1.099	1.028	096.0	0.895
7	1.728	1.649	1.572	1.498	1.421	1.350	1.278	1.208	1.138	1.070	1.002	0.936
1	1.803	1.725	1.648	1.572	1.497	1.423	1.352	1.281	1.212	1.145	1.078	1.010
-	1.864	1.787	1.710	1.637	1.563	1.491	1.420	1.350	1.282	1.215	1.148	1.081
	1.927	1.850	1.773	1.700	1.628	1.554	1.483	1.416	1.347	1.278	1.211	1.145
-	1.973	1.897	1.820	1.748	1.673	1.601	1.531	1.463	1.394	1.325	1.260	1.194
7	2.018	1.943	1.869	1.795	1.722	1.651	1.582	1.512	1.443	1.377	1.310	1.243
7	2.043	1.970	1.895	1.822	1.750	1.680	1.609	1.540	1.471	1.402	1.333	1.268
7	2.064	1.988	1.914	1.841	1.770	1.698	1.629	1.560	1.491	1.422	1.354	1.288
2	2.102	2.028	1.951	1.878	1.804	1.732	1.661	1.590	1.523	1.457	1.387	1.321
2	2.150	2.071	1.994	1.919	1.845	1.770	1.700	1.630	1.560	1.492	1.425	1.359
						1						-

Note: To determine capacity at any steam pressure and entering temperature, multiply constant from table by rated capacity at 60 F entering and 2 lb pressure.

control and where all or part of the air is from the outside. In such installations the condensation rate may vary rapidly and the necessity for ample pipe capacity is particularly important.

A method of connecting a unit heater to a one-pipe gravity system is illustrated in Fig. 5. In cases where the return main is located above the boiler water line, an artificial water line must be created by providing an equalizing loop to prevent steam passing into the return and thus into other units.

Where there is a wet and dry return, a method of pipe connection is shown in Fig. 6. In this case the condensate from the heater and the drip from the supply main drop to the wet return by gravity, while the

One-pipe Gravity Steam System

Fig. 6. Unit Heater Connection to Gravity System with Wet and Dry Returns

air passes upward through traps to the dry return and is vented from the entire system by a master trap in any suitable location.

A piping arrangement where both the air and condensate pass through a common return to a boiler, with vent trap or condensate pump and receiver, is shown in Fig. 7. The traps must pass air and condensate rapidly to keep the return piping partially full of water.

Since unit heaters are often constructed with sufficient strength to resist high pressures, use of high pressure steam in them is a common practice. In Fig. 8 the condensate and air reach the return overhead through traps, and check valves are located in the return piping.

For two-pipe closed gravity return systems, the return from each unit should be fitted with a heavy duty or blast trap, and an automatic air valve should be connected into the return header of each unit heater. Provisions must be made for compensating for the pressure drop by elevating the unit heater above the water line of the boiler or of the receiver.

In pump and receiver systems the air may be eliminated by individual air valves on the heaters, or it may be carried into the returns the same as for vacuum systems and the entire return system be free-vented to the atmosphere, provided all units, drip points, and radiation are properly trapped to prevent steam entering the returns.

On vacuum or open vented systems the return from each unit should be fitted with a large capacity trap to discharge the water of condensation and with a thermostatic air valve for eliminating the air, or with a heavyduty trap for handling both the condensation and the air, provided the air finally can be eliminated at some other point in the return system.

For high pressure systems the same kind of traps may be used as with vacuum systems, except that they must be constructed for the pressure

Fig. 7. Unit Heater Connection for Vacuum or Vapor System Discharging Condensation into Dry Return

Fig. 8. Method of Connecting Unit Heater to High Pressure Return

used. If the air is to be eliminated at the return header of the unit, a high pressure air valve can be used; otherwise the air may be passed with the condensate through the high-pressure return trap, with its elimination at some other point in the system.

Application

Unit heaters are used principally for commercial and industrial applications such as garages, factories, laboratories, etc. They may also be used for heating finished rooms if properly applied and concealed, and if some consideration is given to the problem of noise.

Unit heaters may also be adapted to a number of industrial processes, such as drying and curing, with which the use of heated air in rapid circulation with uniform distribution is of particular advantage. They may be used for moisture absorption, such as fog removal in dye houses, or for the prevention of condensation on ceilings or other cold surfaces of buildings in which process moisture is released. When such conditions are severe,

it is necessary that the unit heaters draw air from outside in enough volume to provide a rapid air change and that they operate in conjunction with ventilators or fans for exhausting the moisture-laden air. See discussion of condensation in Chapter 4.

There are three major factors to consider in the application of unit heaters, namely: (1) location of unit, (2) air distribution, and (3) heating medium.

Heaters may be distributed through the central portions of a room discharging toward exposed surfaces, or may be spaced around the walls, discharging along the walls and inward as well, especially when there are considerable roof losses. In general, it is better to direct the discharge from the unit heaters in such fashion that rotational circulation of the entire room content is set up by the system rather than to have the heaters discharge at random and in counter-directions.

Various types and makes of unit heaters are illustrated in the Catalog Data Section of this edition. As hot blasts of air in working zones are usually objectionable, heaters mounted on the floor should have their discharge outlets above the head line and suspended heaters should be placed in such manner and turned in such direction that the heated air stream will not be objectionable in the working zone. In the interest of economy, however, the elevation of the heater outlet and the direction of discharge should be so arranged that the heated air shall be brought as close above the head line as possible, yet not into the working zone. In general, the higher the elevation of the unit, the greater the volume and velocity required to bring the warm air down to the working zone, and consequently, the lower the required temperature of the air leaving the unit.

Direct-Fired Units

The previous discussion related generally to units in which steam or hot water is used as the heating medium. Electric unit heaters are used where electric power is abundant and cheap or where other forms of fuel are scarce and expensive. The low first cost, easy control, and inexpensive installation of this type of unit permits their use where heating is required for short periods of time (see Chapter 44).

A development in gas burning equipment is the direct-fired industrial unit air heater. Direct-fired oil and coal units are also available. These heaters are of the warm-air type and are equipped with fans which cause the air to pass over the heating surfaces at a fairly high velocity and then direct the warm air into the space to be heated. Partial or complete automatic control also may be secured on appliances of this type. This type of heater is often used for temporary heat during building construction or where the installation of a steam or hot water plant is for some reason not justified. For permanent installations, it is usually advisable to provide an exhaust duct from the gas-fired unit heaters to remove products of combustion from the occupied space. While this is not necessary in large open industrial plants, in smaller closed rooms, it becomes essential.

Where high pressure steam is available it is sometimes used to drive a steam turbine direct-connected to the unit heater. The exhaust from this

turbine, reduced in pressure, is then passed into the heating coil where it is condensed and returned to the boiler.

UNIT VENTILATORS

Unit ventilators are similar in principle and design to unit heaters. They are used to supply air with a discharge temperature at or slightly higher than room temperature. Also they are provided with an arrangement for introducing outdoor and recirculated air in varying quantities. If the unit is only used for circulating air, then radiators or some other equipment must be provided for heating the room. Unit ventilators are intended primarily for schools, offices, and semi-commercial establishments. A typical unit ventilator is illustrated in Fig. 9. A roof ventilator

Fig. 9. Typical Unit Ventilator Showing One of Many Arrangements of Dampers and Heating Coils

used for exhausting air is sometimes termed a unit ventilator. For information on roof ventilators, see Chapter 42.

Ratings

Unit ventilators are customarily furnished with two ratings, one established by measuring the air quantities with an anemometer and the other by condensation. The latter is determined on the basis of standard air. For the former, capacities vary from 750 to 10,000 cfm. Each size may be equipped with radiators for various rates of condensation, to give different final temperatures for a given air capacity and entering temperature, thus enabling the engineer to select the unit best adapted to the heating and ventilating load. Relatively low final temperatures are conducive to the smallest temperature variation throughout a room. Table 35 shows the air handling capacities by the two methods of rating and also approximate heating data.

⁵A S.H.V.E. Standard Code for Testing and Rating Steam Unit Ventilators (A.S.H.V.E. TRANSACTIONS, Vol. 38, 1932, p. 25).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

TABLE 3.	TYPICAL	CAPACITII	ES OF	Unit	Ventilatof	٤S
FOR AN	ENTERIN	G AIR TE	MPERA	TURE	of Zero	

CUBIC FEET OF A	IR PER MINUTE	TOTAL CAPACITY IN SQUARE FEET, EQUIV-	Capacity Available for Heating the Room, Square	FINAL AIR TEMPERATURE
Anemometer	Condensate	ALENT DIRECT	FEET EQUIVALENT DIRECT	DEG F
Rating	Rating	RADIATION	RADIATION	
750	500	214	56	95
1000	750	320	84	95
1260	1000	427	112	95
1560	1250	534	141	95

If no direct heating surface (radiation) is installed to take care of the normal heat transfer losses, and the unit ventilator is to be used for both heating and ventilation, then the combined requirements must be taken care of by the unit ventilator. When all of the air handled by the unit is taken from the outside, the total heat to be supplied is obtained by means of Equations 1, 2 and 3.

$$H_{\rm t} = 0.24 \ W \left(t_{\rm y} - t_{\rm o} \right) \tag{1}$$

$$W = d 60 Q \tag{2}$$

$$t_{y} = \frac{H}{0.24W} + t \tag{3}$$

where

d = density of air, pounds per cubic foot.

H = heat loss of room, Btu per hour.

 $H_{\rm v}$ = heat required to warm air for ventilation, Btu per hour.

 $H_{\rm t}=$ total heat requirements for both heating and ventilation, Btu per hour $=H+H_{\rm v}.$

Q = volume of air handled by the ventilating equipment, cubic feet per minute.

t = temperature to be maintained in the room, degrees Fahrenheit.

to = outside temperature, degrees Fahrenheit.

 t_y = temperature of the air leaving the unit, degrees Fahrenheit.

W = weight of air circulated, pounds per hour.

0.24 = specific heat of air at constant pressure.

From Equations 1, 2 and 3:

$$H_{t} = H + 0.24 d 60 Q (t - t_{0}). \tag{4}$$

Example 1. The heat loss of a certain room is 24,000 Btu per hour, and the ventilating requirements are 1000 cfm. If the room temperature is to be 70 F and all air is taken from the outside at zero, what will be the total heat demand on the unit if it is required to provide for both the heating and ventilating requirements (combined system)?

Solution. Substituting in Equation 4:

$$H_{\rm t} = 24,000 + 0.24 \times 0.075 \times 60 \times 1000 \, (70 - 0) = 99,600 \, {\rm Btu} \, {\rm per \ hour}$$

$$t_{\rm y} = \frac{24,000}{0.24 \times 0.075 \times 60 \times 1000} + 70 = 92 \, {\rm 2 \ F}.$$

When part of the air handled by the unit is taken from the room and the remainder from the outside,

CHAPTER 22. UNIT HEATERS, UNIT VENTILATORS, UNIT HUMIDIFIERS

$$H_{\rm t} = 0.24 \, W_{\rm o} \, (t_{\rm y} - t_{\rm o}) + 0.24 \, W_{\rm I} \, (t_{\rm v} - t) \tag{5}$$

where

 W_0 = weight of air, pounds per hour taken from out-of-doors. W_1 = weight of air, pounds per hour taken from the room.

$$W_{0} = d_{0} 60 Q_{0} \tag{6}$$

$$W_1 = d_1 \, 60 \, Q_1 \tag{7}$$

where

 d_0 = density of air, pounds per cubic foot at temperature t_0 .

 d_1 = density of air, pounds per cubic foot at temperature t.

 Q_0 = volume of air taken in from the outside, cubic feet per minute.

Qi = volume of air taken in from the room, cubic feet per minute.

$$t_{y} = \frac{H}{0.24 (W_{0} + W_{1})} + t \tag{8}$$

$$H_{\rm t} = H + 0.24 \, d_0 \, 60 \, Q_0 \, (t - t_0) \tag{9}$$

Equations 5, 6, 7, 8 and 9 may be used in the same manner as is illustrated previously for Equations 1, 2, 3 and 4. It may be noted in Equation 9, representing the total heat requirements, that as the quantity Q_0 is diminished the heat requirements for the unit diminish very materially.

In Example 1, if the quantity of air taken in from the outside is reduced to zero, or all of the air handled by the unit is recirculated, the total heat requirements H_t reduce from 99,600 to 24,000 Btu per hour, or to about one fourth. Such a unit handling one third of its air volume from the outside and two thirds from the room would show a total heat require-

ment of 24,000 +
$$\frac{99,600 - 24,000}{3}$$
 = 59,200 Btu per hour. Units

designed and operated on this principle show an average heat requirement and, therefore, a boiler capacity requirement of less than 50 per cent of that required for units taking all their air from the outside.

If all of the air is recirculated, the total heat required is the same as the heat loss of the room, or

$$H_{\rm t} = H = 0.24 \ W (t_{\rm v} - t)$$
 (10)

If the heat loss of the room is to be taken care of by the direct heating surface, the unit ventilators will be required to warm the air introduced for the ventilating requirements. Therefore:

$$H_{\rm v} = 0.24 \ W (t_{\rm y} - t_{\rm o})$$
 (11)

In this case t_y should be equal to or slightly higher than t. If the unit ventilator were of such capacity as to exactly provide for the ventilating requirements, the direct radiation would be selected on the usual basis. However, it is necessary to employ a unit which may not exactly meet the ventilating requirements, since standard units are usually rated in terms of the volume of air that will be delivered at a certain temperature t_y for an initial temperature of t_0 . Therefore a certain amount of heat (H_h) may be available from the unit ventilator for heating purposes, as previously stated, and the amount of equivalent direct heating surface may, if desired, be deducted from the amount required for heating the room.

Applications

Items to be considered in the application of unit ventilators are: (1) combination with other means of heating, (2) location of units, and (3) method of venting or exhausting.

In a *split* system the unit is used primarily for ventilation. Air is delivered to the room at or slightly above room temperature, and enough radiation is installed in the room to take care of the normal heat transfer losses. Where the unit ventilator selected has a capacity more than sufficient to warm the air needed to meet the ventilating requirements, a corresponding reduction may be made in the amount of direct radiation installed. The greater the amount of excess capacity of the unit, the more efficient will be the temperature regulation of the room. The split system permits the heating of the room during failure of electric current, since the direct radiators will furnish heat, but it permits a careless operator to avoid operating the ventilating equipment.

The combined system employs a unit ventilator with sufficient capacity for both ventilation and the normal heat transfer losses. In such a case no direct radiation is required. It then becomes necessary for the fan to be running whenever the room is heated, but this also gives assurance of ventilation, especially if automatic dampers are used in the air intake from out-of-doors and in the recirculating intake arranged so as to give a certain quantity of air from the outside (commensurate with weather conditions) whenever the unit is operating and after the room is heated. The cost of installation of a combined system is usually less than that of a split system and there is less danger of overheating, but if the electric energy fails there will be practically no heating.

The location of the unit ventilator in a room is important. Wherever possible it should be placed against an outside wall. It is difficult to obtain proper air distribution if the unit is erected either on an inside wall or in a corner of the room. Standard units discharge the air stream upward, but for special cases units may be installed to discharge air horizontally. Units may be set away from the wall or partially recessed into the wall to save space without materially affecting the results. The air inlet may enter the cabinet at the back at any point from top to bottom.

Air Vents

The size and location of the air exhaust vent⁶ outlet is important. In many cases the sizes for public buildings are regulated by law, but the location of the vents generally is left to the discretion of the engineer. See table of state codes and standards in Chapter 48.

Best results have been obtained with a velocity through the vent openings nearly equal to that at which the air is introduced into the room, thus maintaining a slight pressure in the room. Calculated velocities at the vent openings of from 600 to 800 fpm produce the best diffusion results from this system.

⁶A.S.H.V.E. RESEARCH REPORT NO. 936—Investigation of Air Outlets in Class Room Ventilation, by G. L. Larson, D. W. Nelson and R. W. Kubasta (A.S.H.V.E. Transactions, Vol. 38, 1932, p. 463). A.S.H.V.E. RESEARCH REPORT NO. 1017—Air Supply to Classrooms in Relation to Vent Flue Openings, by F. C. Houghten, Carl Gutberlet and M. F. Lichtenfels (A.S. H.V.E. Transactions, Vol. 41, 1935, p. 279).

The cross-sectional area of the vent flue itself may be figured on the basis of 15 sq in. of flue for each 100 cfm. Thus the vent flue area of a flue for a room equipped with one 1200 cfm unit ventilating machine would be 180 sq in. The area of vent flue opening from the room may be figured on the basis of 25 sq in. per 100 cfm.

In school buildings provided with wardrobes or cloakrooms the vents may be so located that the air shall pass through these spaces, ventilating them with air which otherwise would be passed to the outside without

Fig. 10. Typical Window Ventilator

Fig. 11. Typical Unit Humidifier of the Spray Type with Steam Coll to Preheat the Air for Residences

being used to the best advantage. Many state codes for ventilation of public buildings make this arrangement mandatory.

Much controversy exists regarding the use of corridor ventilation in school building practice, one group holding the view that when each classroom has a separate vent flue there is a minimum fire risk and less likelihood of cross-contamination, while others emphasize the economy features of the corridor discharge and minimize the fire contamination, and other hazards.

WINDOW VENTILATORS

A window ventilator illustrated in Fig. 10 consists of filters and motor driven fans enclosed in a cabinet to be mounted on the window sill. These units accomplish ventilation, air cleaning, and air circulation, but have

no means of heating the air. The direction of air discharge is manually adjustable for seasonal operation. Their operation is controlled by an electric switch.

UNIT HUMIDIFIERS

A unit humidifier consists essentially of some type of equipment for adding moisture to the air, usually a fan to draw the air through the humidifier, and in some cases tempering coils and filters, all encased in a single cabinet. These units are generally used in conjunction with heating systems which do not provide the necessary humidification during winter operation. In any type of unit humidifier, the process of adding moisture to the air requires heat from a heating coil, water, or air itself.

Types of Units

Small unit humidifiers in decorative casings are made for applications where it is desired to place the unit directly in the room to be humidified. These units are usually of the atomizing type and are completely self-contained. The humidifier water is either supplied by a reservoir which must be refilled at intervals or may be supplied from a water main by means of a float control. In most units the fine spray of water is mixed with some room air and the mixture is discharged directly into the room. Since these units have no heating element the heat required for humidification in this method is obtained by transforming some of the sensible heat of the air to latent heat.

Another type of small unit humidifier employs the principle of vaporizing the water by the direct application of heat. One method commonly used is to immerse an electric heating element in a reservoir of water to heat it until some of the water is vaporized into the air stream.

A third type of unit humidifier used extensively is the larger spray type of unit to deliver enough humidifying capacity for a residence or small building. In this type of unit either the water or air is heated. Fig. 11 illustrates a typical unit of this type. These units usually include air filters and in some cases provide ventilation air by means of an outside air duct connection to the unit. The units are available for either floor or ceiling mounting and are usually placed in a central location in the basement with short supply and return duct connections from the first floor. Room air is brought into the unit through the return duct connection and first passes over a tempering coil heated by steam or hot water, then is humidified by passing through some type of spray humidifier. Surplus moisture is removed by an eliminator and the humidified air is delivered to the room through a duct connection. Since a large percentage of the tempering coil capacity is transformed into latent heat during the humidifying process, the unit does not generally eliminate any existing steam radiation but does tend to improve comfort conditions by supplying heating during the off-period of furnace operation.

For a complete discussion of the principles of the various methods of humdification, refer to Chapter 27.

⁷Estimating the Humidification Requirements of Residences, by W. H. Severns (Papers Presented at the First Annual Conference on Air Conditioning, University of Illinois, Engineering Experiment Station Circular, No. 26, October, 1936).

Chapter 23

UNIT AIR CONDITIONERS, UNIT AIR COOLERS, ATTIC FANS

Definition of Types, Unit Air Conditioners, Heating, Ventilating, Humidifying, Cooling and Dehumidifying, Filtering, Ventilating, Types of Units, Application, Ratings, Unit Air Coolers, Design and Performance, Types of Units, Ratings, Defrosting, Economics, Attic Fans

A N assembly of functional elements, as indicated by the name, comprises the unit air conditioner or unit air cooler. Such a unit when complete in itself, employing its own direct means of air distribution and source of refrigeration is known as a self-contained unit. When used in various combinations with remote sources of refrigeration, heat or air supply, it is termed a remote unit, indicating that the source of refrigeration is not contained within the unit cabinet. Either the self-contained or remote type units may be located within or without the conditioned area, and are a separate classification from the central plant type of system, as described in Chapter 21.

The code, Standard Method of Rating and Testing Air Conditioning Equipment, defines the various types of unitary equipment:

- 1. A Cooling Unit is a specific air treating combination consisting of means for air circulation and cooling within prescribed temperature limits.
- 2. An Air Conditioning Unit is a specific air treating combination consisting of means for ventilation, air circulation, air cleaning and heat transfer with control means for maintaining temperature and humidity within prescribed limits.
- 3. A Cooling Air Conditioning Unit is a specific air treating combination consisting of means for ventilation, air circulation, air cleaning and heat transfer with control means for cooling and maintaining temperature and humidity within prescribed limits.
- 4. A Self-Contained Air Conditioning or Cooling Unit is one in which a condensing unit is combined in the same cabinet with the other functional elements. Self-contained air conditioning units are classified according to the method of rejecting condenser heat (water cooled, air cooled, and evaporatively cooled), method of introducing ventilation air (no ventilation, ventilation by drawing air from outside, ventilation by exhausting room air to the outside, or ventilation by a combination of the last two methods), and method of discharging air to the room (free delivery or pressure type).
- 5. A Free Delivery Type Unit takes in air and discharges it directly to the space to be treated without external elements which impose air resistance.

Prepared by a Joint Committee of the American Society of Refrigerating Engineers, American Society of Heating and Ventilating Engineers, Refrigerating Machinery Association, National Electrical Manufacturers' Association, and Air Conditioning Manufacturers' Association.

Standard Method of Rating and Testing Self-Contained Air Conditioning Units for Comfort Cooling prepared by a Joint Committee of the American Society of Refrigerating Engineers, American Society of Heating and Ventilating Engineers, Refrigerating Machinery Association, National Electrical Manufacturers' Association, and Air Conditioning Manufacturers' Association.

- 6. A Pressure Type Unit is for use with one or more external elements which impose air resistance.
- 7. A Forced-Circulation Air Cooler is a factory encased assembly of elements by which heat is transferred from air to evaporating refrigerant³.

UNIT AIR CONDITIONERS

This equipment takes the form of an encased assembly including the apparatus necessary to perform either some or all of the functions of cooling, dehumidifying, filtering, ventilation, air circulation, heating, and humidifying. Control of air conditions is provided by manual switches, manual dampers, and automatic devices, in combination. The controls are either mounted on the units, or in some suitable location in the conditioned area. See Chapter 34 for a discussion of controls.

The various conditioning elements and their functions, which produce the required effects on air, are discussed under separate headings.

Heating

Heating is usually accomplished by means of a heating coil in the unit, supplied with steam or hot water from an external source. Electric strip heaters may also be considered, where installation and operating costs justify their use. They are often used in special control applications. Reverse cycle heating as described in Chapter 25 has been developed as a feature in some unit air conditioning equipment, but this form of heating has not yet been generally adopted.

Humidifying

Adding moisture to the air involves the absorption of heat, by the humidifying water, for conversion to water vapor. Heat may be supplied by heating the humidifying water, or supplied from the air to be humidified. In the latter case the air may be warmed or the water finely divided to present a large evaporating surface to the existing air. The source of heat may be from electricity, steam or hot water coils, or from a heat transfer surface as in a direct-fired unit. Occasionally vapor is added directly by means of steam jets but this is usually confined to industrial applications because of the presence of some odor from the steam. Methods and types of humidifying apparatus are dealt with in detail in Chapter 27.

For unit application, some of the available methods are the spray nozzle, or the atomizing nozzle, the impact-jet, the drip screen and the evaporating pan. The first method is usually employed where humidification on a large scale is desired, as with large remote industrial units. Eliminator plates are necessary and the water supply may be recirculated with a pump or wasted to the drain. The drip screen, impact-jet, evaporator pan or small atomizing jets are used when humidification is desired in the smaller remote and self-contained units.

Wetted surfaces exposed to the air stream and utilizing the capillary action of water on porous substances such as fabrics and ceramics, are used for adding moisture to air. Frequent cleaning or replacement is

 $^{^3}$ Defined in Proposed A.S.R.E. Standard Methods of Rating and Testing Forced-Circulation Air Coolers for Commercial and Industrial Refrigeration.

necessary to avoid closing of the pores and to maintain freedom from odors or growths on the humidifying element.

Cooling and Dehumidifying

These two functions of air conditioning are usually performed simultaneously, although both may be done separately. For example, air may be dehumidified or dehydrated without sensible cooling by the process of adsorption. Sensible cooling of air may be accomplished without dehumidifying by maintaining the cooling surface temperature above the dew-point temperature of the air to be treated. Chapter 24 explains these fundamentals in detail.

Unit equipment commonly utilizes heat transfer surface such as pipes or coils, through which a cooling medium as cold water or a refrigerant, is circulated. Types and methods of generating cooling mediums are covered in Chapter 25. Brine or water sprays may be used if desirable, either separately or in combination with coil or pipe surface. However, these methods find their best application in the larger, remote type units. Surface temperature and area of the coil or pipe, air volume and velocity, and spray temperature and volume are some of the controlling factors in unit air conditioner design and application. Ice as a cooling medium is practical but is seldom used in connection with units.

Filtering

Cleaning of outside or recirculated air discharged to the conditioned area is one of the important functions of air conditioning, and air filters should be included on all units which condition air for comfort. Protection is also afforded the cooling and heating coils as well as the condenser coil in the case of the air cooled type.

Means of filtering may vary from the lint screen to the electrostatic filter, with the degree of efficiency covering a wide range. Inexpensive throwaway type filters lend themselves well to the compact design of the unit conditioner. Air cleaning devices form the subject of Chapter 29.

Ventilating

Provision for the introduction of outside air should be an essential part of unit conditioner design. Odors and air vitiation are avoided and better load control is possible when a positive means of introducing outside air is available.

On the small, air cooled room units, it has been found practical to control the air in such a way as to permit variation from all recirculated air to 100 per cent outside air. An added feature is a dampering arrangement whereby it is possible to exhaust air from the room to remove smoke and generally ventilate the space.

A code⁴ sponsored by a Joint Committee of the A.S.H.V.E. and the *American Society of Refrigerating Engineers* may be consulted, although it should be realized that individual applications may often show a need for ventilation in excess of these minimum requirements.

 $^{^4}$ Code of Minimum Requirements for Comfort Air Conditioning (A.S.H.V.E. Transactions, Vol. 44, 1938, p. 27). Reprints of this code are available at \$0.10 a copy.

Types of Units

Unit air conditioners fall into two general classifications, depending on the location of the refrigeration source. Those units having the condensing unit completely enclosed in the same cabinet as the evaporator are known as self-contained types, while those units having the condensing unit remotely located from the evaporator and requiring piping of refrigerant from the condensing unit to the evaporator and return are known as remote types.

Self-contained units are further divided into two groups in accordance with their condensing mediums, being either air-cooled or water-cooled. Evaporative cooled types are included in this latter class.

The air-cooled types are small in capacity, ranging from $\frac{1}{3}$ to $1\frac{1}{2}$ hp. Their principal application is for conditioning such spaces as hotel rooms, offices and residential living quarters. A duct connection between the

Fig. 1. Self-Contained Air-Cooled Unit Air Conditioner

unit and an outside window or ventilated air shaft is required to permit disposal of the heat extracted from the conditioned area. The unit may stand in front of the window or be mounted on the window sill. Various styles and types of windows are encountered which increase the difficulty of making the window connections. The evaporation of condensate on the condenser coils, as a means of disposing of this moisture, tends to increase the condensing capacity and reduce the operating head pressure. Some units add supplementary water so that increased capacity may be obtained from constantly wetted condenser coil surface. Connections to an electrical outlet may be by means of a conventional cord and plug or a permanent electrical connection, depending on local code rulings pertaining to the installation of small motors. The exterior finish of the unit in metal, wood or fabric is decorated to harmonize with office or bedroom furnishings.

A unit of the air-cooled condenser type for floor mounting is shown in Fig. 1. Of the two fans shown, the lower one acts as condenser air fan, and in some units this fan is arranged with slingers for discharging condensate on the condenser coil while the upper fan discharges air into the conditioned area. A feature of the design shown in Fig. 1 is that the

condensate from the cooling coil is sprayed over the condenser surface and vaporized, thus eliminating the need for drain connections. A simple dampering arrangement is generally provided for exhausting some air from the room, in addition to introducing outside air and recirculating required amounts of air. It is possible to remove the equipment for winter storage or utilize the ventilating features for winter operation.

Water or evaporative-cooled units start at 1 hp in size and may be as large as 30 hp. Condensers requiring water use either city water, well water or recirculating water from a cooling tower. Evaporative condensers are seldom used on units under 5 hp.

The heat generated by the compression of refrigerant gases and that given off by the electric motor is removed from the compressor compart-

Fig. 2. Self-Contained Water-Cooled Air Conditioner

ment in four ways: by the use of a water coil in the compressor compartment; by means of utilizing the cold suction gases; by drawing part of the return air through the compressor compartment and finally by circulating room air through the compressor compartment by means of a fan attached to the motor shaft.

The smaller water-cooled units have somewhat the same application as the air-cooled units. Water and drain facilities must be available and, although window connections are not required for heat disposal, it is desirable to have an outside air connection for ventilation purposes. Electrical wiring is generally permanently connected.

Up to $7\frac{1}{2}$ or 10 hp in size the units are usually styled for locating directly in the conditioned area. Above this size the tendency is to locate the equipment adjacent to the conditioned area, with supply and return duct connections. Compressor compartment heat is removed by the same methods described previously.

On water units of the vertical type of 5 hp and under, use is made of

air distributor headers, equipped with directional louvers, on one or more sides, for discharging the air directly into the conditioned space in which the unit is located. Above 5 hp this method usually becomes impractical and a system of ducts is employed. Arrangements for outside air supply are similar to those in central plant design, although simpler, hand operated dampers are usually employed.

FIG. 3. VERTICAL REMOTE TYPE UNIT AIR CONDITIONER

Fig. 4. Horizontal Remote Type Unit Air Conditioner

Accessory equipment for the self-contained unit conditioners include heating coils, humidifiers, and controls for utilizing the unit for winter heating and ventilating. Refinements of dust and odor control and constant temperature and humidity regulation are considered to be special application problems with this type of equipment.

A typical unit with water-cooled condenser is illustrated in Fig. 2. The header arrangement permits air distribution in several directions, and

in such a way as not to fall on the room occupants. All side panels are removable for complete access to equipment. It is only necessary to bring water, drain and electrical service to the unit, and a source of heat if desired.

Remote type units cover a much broader range of size and application and generally are used in connection with or in lieu of a central plant system. They may be used individually or in groups in the place of self-contained equipment.

Without the weight of the refrigerating equipment, these units may be located almost any place space permits, such as suspending from ceilings, on roofs and in basements, or in the conditioned area itself. All combinations of filtering, humidification, cooling and heating may be employed, with control as elaborate or as simple as is required. The

Fig. 5. Spray Type Remote Unit Air Conditioner

remote unit is particularly adaptable where a variety of application conditions is to be met from a single source of refrigeration, such as the modern industrial plant which may have a laboratory, executive offices, a cafeteria, together with various processing departments.

The cooling and heating mediums, consisting of a refrigerant, chilled water or brine, and steam or hot water, are piped to the units, and transfer takes place by means of coils, or in the case of air washers, by means of water or brine sprays in the air stream, or a combination of the two.

The floor mounted or vertical type and the suspended or horizontal type of remote units are respectively shown in Figs. 3 and 4. The cabinets are generally of sheet steel, insulated to prevent heat transfer, finished to prevent corrosion and suitable for applying additional decoration if desired.

A spray type remote unit is illustrated by Fig. 5. Many designers prefer the air washing and coil wetting features. Air is circulated by

means of attached or built-in fans, delivering the conditioned air through a system of ducts which include outside air connections if desired.

Some types of units, mostly those suitable for suspension, employ a propeller fan such as in Fig. 6. These are located in the conditioned area, are without ducts and seldom do more than cool and dehumidify, due to the design of the propellor fan for moving air against low resistance. Generally these units are provided with a lint screen instead of filters to limit resistance to air flow.

Individual floor mounted type remote units are available for use in offices or hotel rooms. Similar in appearance but somewhat smaller in size than the self-contained room unit, this form of equipment may be grouped:

- 1. Mechanical, year 'round type containing blowers, filters, humidifiers and coils, with outside air connection. Manual or automatic controls provided with each unit.
- 2. Mechanical, semi-year 'round type with no outside air connection, containing blowers (filters optional), and coils. Usually used where there is an existing radiation or ventilating system. Controls provided with each unit.
- 3. Non-mechanical type containing coils, using air ejected under pressure from a remote source for inducing circulation over coils (see Chapter 21). Manual or automatic control of air temperature only is provided. Both summer and winter air conditioning functions may be performed by the one unit.

One coil for cooling and heating may be provided or a single coil used, through which hot water in winter and cold water in summer is circulated. All three types of systems require remote sources of refrigeration, with the first group obtaining outside air from the window, the second group having no outside air unless used in connection with a central plant or ventilating system and in the case of the third group, all air delivered under pressure is outside air.

Various combinations or alterations of these room units are available. Different filtering, humidifying and air delivery methods are employed to achieve the desired conditions. A typical remote floor type room unit air conditioner is shown in Fig. 7.

Application

In the application of unit air conditioners it is important to consider several factors:

- 1. Location of equipment.
- 2. Air distribution.
- 3. Multiple units versus central station system.
- 4. Multiple remote unit system versus a self-contained unit system.
- 5. Methods of control.
- 6. Methods of conserving water.
- 7. Code limitations.

In choosing locations for air conditioning units, consideration must be given to the characteristics and use of the conditioned space; type of system contemplated; duct locations; sources of power, water, refrigeration, heating and drainage; and accessibility of equipment and system for maintenance.

Where units are placed within the conditioned area, particular attention must be given to air distribution, sources of outside air and con-

venience to service sources and facilities previously noted. Skill and ingenuity are required to produce a neat appearing, inconspicuous job without sacrificing quality from an engineering point of view. Furring in of duct work, and building in and refinishing to match existing furniture and fixtures are ways this may be accomplished. Where location of equipment outside of conditioned space is possible, use may be made of storage rooms, halls, basements or any space less valuable than that to be

Fig. 6. Suspended Propeller Fan Type Unit Air Conditioner

Fig. 7. Remote Floor Type Room Unit Air Conditioner

conditioned. Less emphasis need be placed on the appearance of equipment.

However, choices of equipment location are frequently influenced by such economic factors as long runs of insulated ducts in order to locate units near refrigeration sources, versus short duct runs but long extensions of service facilities. Care must be taken that equipment will not be damaged by climatic conditions.

Air distribution from units located within the conditioned area is by means of grilles, either fixed or adjustable and mounted in air distribution headers, either furnished with the unit or constructed at the installation to meet the needs of the application under consideration. A system of ducts and distribution grilles may also be used, *similar* to the arrangement used when equipment is outside of the conditioned area. The problem of securing a supply of outside air is often a difficult one. The proper design of ducts is of major importance for good air distribution. Chapters 31 and 32 are devoted to these subjects.

In the analysis of any large structure to be air conditioned which is divided into small spaces, such as an office building or hotel, a comparison should be drawn between the use of units and a central plant system. This study is one of economics, and should include such factors as first cost, installation costs, obsolescence, depreciation, maintenance costs, return on investment, flexibility, time of installation and possible loss of useful space during installation.

This same analysis should be extended to include a comparison of remote units with self-contained units. Self-contained units are possible where short term leases are involved, or where wiring can readily be brought to location or where existing water and drain facilities are adequate to handle the increased demand of water-cooled models. On the other hand, remote type room units contain less mechanical machinery, avoid the operating cost penalty of an air-cooled condenser, as in the case of the self-contained, air-cooled room units, and seldom require heavy wiring to handle the fan load. In general, the smaller remote units are more suitable for use with new construction, where the units will probably remain during their useful life. This condition may change where larger, ceiling mounted units are compared with the floor mounted self-contained units. Controls are essential in unit application and range from the simple snap switch of a room unit to elaborate means of controlling temperature, humidity and air movement in laboratory and testing room application. The criterion of a well controlled installation is one which has neither too few nor too many controls. (See Chapter 34).

With the expansion of cities during the past decade, the problem of water supply has become a costly and ever present problem. Consequently, laws are appearing designed to restrict the usage of water wherever possible, particularly when substitute means are available. Evaporative condensers and cooling towers (described in Chapters 25 and 27) are means devised to save large quantities of water in this connection. Most manufacturers furnish equipment designed for use in combination with these water savers.

Municipal plumbing, heating, electrical and refrigeration codes, as well as fire underwriter restrictions, are likewise having their effects on the application of unit air conditioners. Meeting municipal and national code requirements should be an important item in connection with the installation of any unit equipment.

Ratings

There are two codes governing the rating and testing of unit air conditioners. The first code, Standard Method of Rating and Testing Air

Concerning Conservation of Underground Water with Suggestions for Control, by Noel E Porter (A.S.H V.E. Transactions, Vol. 47, 1941, p. 309).

Conditioning Equipment⁶, covers all types of air conditioning units except the self-contained type. The latter is covered by the second code, The Standard Method of Rating and Testing Self-Contained Air Conditioning Units for Comfort Cooling⁷. The two codes are necessary because of the basic difference caused by the heat given up by the self-contained units. The standard rating conditions for self-contained unit air conditioners, as given in the code, are set forth in Table 1.

The standard rating of a self-contained unit for the conditions specified in Table 1 include all items which apply to the function of a unit as: (1) name of unit, (2) functions which unit performs, (3) data on cooling, (4) data on heating, (5) data on air flow, and (6) data on humidification.

TABLE 1. STANDARD RATING BASIS FOR SELF-CONTAINED AIR CONDITIONING UNITS

Functions	Types of Units		RATING CONDITION						
	1 YPES OF UNITS	Item	Description	Value					
All	All	a	Barometric Pressure	29.92 in. Hg.					
	Water-Cooled, Air-Cooled and Evapora- tively Cooled	Ъ	Unit Ambient and Air Entering Room—Air Inlet (1) Dry-Bulb (2) Wet-Bulb	80 F 67 F					
	Condensers	С	Ventilation Air	See Note					
Cooling	Water-Cooled Condensers	d	Water Temperature Entering Unit	75 F					
	Condensers	е	Water Temperature Leaving Unit	95 F					
	Air-Cooled and Evapora- tively Cooled Condensers	f	Air Entering Outside Air Inlet (1) Dry-Bulb (2) Wet-Bulb	95 F 75 F					
	A 1.1 T	g	Unit Ambient and Total Air Entering Unit	70 F					
Heating	All Types Provided with Heating Function	h	Heating Medium, Pressure or Temperature (1) Dry Saturated Steam (2) Water In (3) Water Out	16.7 lb per sq in. abs. 180 F 160 F					
	All Types	i	Unit Ambient	70 F					
Humidifying	Provided with Humidifying Function	j	Total Air Entering Unit (1) Dry-Bulb (2) Wet-Bulb	70 F 53 F					
Air Circulation	All	k	Filters	New and Clean					

Note: Rating shall be based on both ventilation and recirculated room air entering at 80 F dry-bulb and 67 F wet-bulb temperature. (The Note as given in the code has been condensed in order to remove material not pertinent to this chapter).

⁶Loc. Cit. Note 1.

⁷Loc Cit. Note 2.

The standard rating conditions for unit air conditioners, other than the self-contained type are identical to those in Table 1 except the entering wet-bulb temperature for cooling is expressed as 50 per cent relative humidity (66.7 F wet-bulb) instead of 67 F wet-bulb temperature. In addition, the saturated suction refrigerant temperature for comfort cooling is specified at 40 F. This condition is omitted from Table 1 for self-contained units as immaterial in the rating of a unit that includes the evaporator and condensing unit.

UNIT AIR COOLERS

This type of unit is primarily intended to perform the main function of cooling air, with humidity control a secondary function within the limitations of the design. The main application of this equipment is in process and product refrigeration such as cold storage warehousing, fruit and vegetable packing, in breweries, and in wholesale and retail food markets; although some comfort cooling may be obtained by the use of a unit

FIG. 8. CEILING TYPE UNIT AIR COOLER

similar in design to this type of unit as previously explained and as illustrated by Fig. 6.

Application of the unit method of air cooling with mechanical circulation is comparatively recent, being an improvement over the pipe or named coil, which depended on gravity for circulation. Bunkers were sometimes constructed around the coils to direct the air flow and sometimes fans were used for forcing air over the coils. The location of the unit air cooler is usually within the refrigerated area, but the larger, blower type models may be remotely located.

Design and Performance

Greater application and use of commercial refrigeration has resulted from the development of the unit air cooler. Flexibility of design has permitted almost any condition to be met. By varying such physical features as the method of introducing the refrigerant into the coils, the depth of coil rows and area of their surfaces, and the air volume over the coils, the designer is able to produce a wide range of performances and to offer many desirable features not obtainable with the coil and bunker method. More uniform temperatures, high relative humidity, moderate

first cost and a minimum of installation expense are likewise factors in their development.

New uses have appeared for unit air cooler application in industrial and commercial processes involving both the raw materials and finished product, where the maintenance of low temperatures is a necessary part of these processes. Of particular interest is the new field of extreme low temperature application where many new uses for refrigeration are being found.

Types of Units

The two standard types are the suspended or ceiling type, and the vertical or floor mounted type. There are variations of this such as the

Fig. 9. Surface Type Cooling Unit Fig. 10. Brine Spray Type Cooling Unit

panel type which is wall mounted and arranged to take in air from the lower section and discharge it from the upper section.

The ceiling type has the appearance of a unit heater, with its propeller type fan blowing air through a bank of coils as shown in Fig. 8. Singly or in combination, they are easily installed and occupy little or no useful space. Alterations may be accomplished with little cost by relocating units or adding additional ones for increased capacity.

The floor mounted types employ blower type fans, as their air deliveries are higher and their locations may be remote from the space to be refrigerated. This type of unit is illustrated by Fig. 9. Air velocities and volumes must be designed for the individual application. This type of unit may employ a pump to spray a eutectic solution over the coils for the purpose of avoiding frosting as shown in Fig. 10.

TABLE 2.	STANDARD	RATING	CONDITIONS FOR	Air	Coolers
----------	----------	--------	----------------	-----	---------

GROUP NO.	Entering Dry-Bulb	ENTERING RELATIVE	Evaporating
	Temperature,	HUMIDITY,	Temperature,
	Deg F	PER CENT	Deg F
I	45	85	30
II	35	85	25
III	35	85	15
IV	0	85	-10
V	0	85	-20

Ratings

In order to rate and test equipment of this kind which normally operates below the frost line, a proposed code, Standard Methods of Rating and Testing Forced-Circulation Air Coolers for Commercial and Industrial Refrigeration⁸, has been issued. This proposed standard covers only the modifications of the Standard Method of Rating and Testing Air Conditioning Equipment⁹, as it is related to the different application of unit air coolers. In this standard, the gross cooling effects are taken since the motor power input equivalent is to be computed as part of the load.

From this code Table 2 is abstracted to show standard rating conditions for forced-circulation air coolers. Other modifications take into consideration the effect of frost formation on the coils and the time of the test runs are adjusted to meet these conditions.

Defrosting

Unit air coolers are often required to operate in rooms where air and refrigerant temperatures are below the freezing point. This results in the freezing of the condensation on the coils and this accumulation of frost builds up to such an extent that there is a loss of capacity. This deposit is removed from the coils by the process known as defrosting which may be accomplished by several methods:

- 1. Where the room temperature is above the freezing point, the flow of refrigeration to the coils is halted and the fan continued in operation until the coils are defrosted.
- 2. The hot gas defrosting method is accomplished by a valving arrangement whereby hot compressed gases from the compressor are pumped directly into the evaporator. This operation is continued until defrosting is complete, when the system is returned to normal operation.
 - 3. Where brine is used as a refrigerant, hot brine may be circulated through the coils.

Where the frosting is particularly heavy it is sometimes more advisable to apply the source of heat externally. This principle of defrosting is accomplished by:

- 4. Defrosting by warm air is accomplished by dampering arrangements which permit the cooler fan to draw warm air from a source outside of the refrigerated space, pass it over the coils and discharge it outside of the refrigerated space.
- 5. Constant wetting of the coils with a brine or eutectic solution prevents the formation of frost. This is accomplished on a vertical unit air cooler as shown in Fig. 10.

⁸Loc. Cit. Note 3.

Loc. Cit. Note 1.

- 6. Electric heating elements, placed in such a manner that the fan forces the heated air over the coils.
- 7. A simple means of defrosting is by means of water sprays placed so the coil is thoroughly wetted during the defrosting process. City water at ordinary pressures is used. The fan is not running during this operation.

Those systems using method 5 have the problem of removing condensation from the eutectic solution. One way is to waste the entire charge when dilution has rendered it ineffective. Another method employs a device which boils off the water and returns the eutectic solution to the system for further use.

ECONOMICS

In the planning and designing of a unit system or in comparing units with central plant application, a systematic approach to the problem should be made from the economic viewpoint.

First Costs. The question of first cost is but one factor in the economic approach of a skillful designer or an intelligent buyer.

- 1. Equipment. The use of a large percentage of factory fabricated equipment to maintain installation costs at a minimum, as represented by self-contained units, should be contrasted with the use of systems with a large percentage of installation labor and material, such as a central station system. The remote unit offers a compromise between these two.
- 2. Installation costs. The influence of existing codes and ordinances, and installation conditions, involving new construction or treating an existing structure deserve careful consideration. Methods which are suitable for new construction often may not be applied on buildings erected in the past. Sprinkler system rearrangements, fire doors and dampers, restrictions on multiple direct expansion units, rewiring or increasing service, cutting or reinforcing of ceilings and roofs are some items which should receive attention in this respect.

Operation and Maintenance. Tenants or occupants usually operate the self-contained equipment, which also lends itself readily to contract service for maintenance. Central plants require operating engineers in attendance who also frequently service the equipment. The remote units require a combination of these two methods of operation with maintenance by building personnel.

Water and power costs per season can be tabulated and compared for the various systems and an estimate of the costs of replacement material such as filters, belts, oil, refrigerant and wearing parts should be included on an annual basis.

Such questions as obsolescence, depreciation and return on investment are subjects for special study and investigation. Due consideration should be given to the value of resale of equipment and its portability in the event of removal to new locations.

ATTIC FANS

Attic fans are used during the warm months of the year to draw large volumes of outside air through a house and offer a means of using the comparative coolness of outside evening and night air to lower the inside temperature.

Because the low static pressures involved are usually less than $\frac{1}{8}$ in.

of water, disc or propeller fans are generally used instead of the blower types. The fans should have quiet operating characteristics, and they should be capable of giving about 20 to 30 air changes per hour in northern areas. In the South the usual specification requires one air change per minute which provides appreciable air movement in addition to lowering the inside air temperatures.¹⁰.

Types

Open attic fans are units in which the fan is installed in a gable or dormer of the attic and one or more grilles are provided in the floor of the attic, permitting air to flow from the hall below. Outdoor air, which enters the house through open windows, is drawn into the attic through the grilles, and is discharged outside by the fan. An attic stairway may be used in place of the grilles. It is essential that the roof and the attic walls be free from air leaks.

Boxed-in fans are units in which the fan is installed within the attic in a box or housing directly over a central ceiling grille, or in a bulkhead enclosing an attic stair. The fan may be connected by a duct system to the grilles in individual rooms. Outdoor air entering through the windows of the rooms below is discharged into the attic space and escapes to the outside through louvers, dormer windows, or screened openings under the eaves.

Another version of the attic fan is the *window fan* for use when attic application is not feasible or no attic is available. Supplied with a perforated or expanded metal enclosure and mounted in either the upper or lower window section, this fan is easy to install or move to another location.

The locations of the fan, the outlet openings, and grilles should be selected after consideration of the room and attic arrangements in order to give uniform air distribution in the individual rooms served. If the outlet for the air is not on the side away from the direction of the prevailing wind as in the case of the boxed-in fan, openings should be provided on all sides. Kitchens should be separately ventilated because of the fire hazard, and to prevent the spread of cooking odors.

The window fan may be located in a hall or an unused bedroom. Noise of operation is more of a problem with the window fan than with the attic type, although care should be taken to locate either type of fan so that possible complaints are not forthcoming.

These fans range in capacity from 3000 to 30,000 cfm. The window type usually does not exceed 8000 cfm, while the most generally used attic type ranges from 8000 to 16,000 cfm. Power consumption is under 50 watts an hour per 1000 cfm of rated output for the 8000 cfm fan and larger while the watts input for smaller fans is greater than this figure. Improved results can be secured with the window fan by closing off parts of the house where ventilation is not desired.

¹⁸Comfort Cooling with Attic Ventilating Fans, by G. B. Helmrich and G. H. Tuttle (A.S.H.V.E. Transactions, Vol. 40, 1934, p. 155). A.S.H.V.E. Research Report No. 979—Study of Summer Cooling in the Research Residence for the Summer of 1933, by A. P. Kratz and S. Konzo (A.S.H.V.E. Transactions, Vol. 40, 1934, p. 167). A.S.H.V.E. Research Paper—The Effect of Attic Fan Operation on the Cooling of a Structure, by W. A. Hinton and A. F. Poor (A.S.H.V.E. Journal Section, Heating, Piping and Air Conditioning, April, 1942, p. 244). The Installation and Use of Attic Fans, by W. H. Badgett (Agricultural and Mechanical College of Texas, Bulletin, No. 52, 1940).

Chapter 24

COOLING, DEHUMIDIFICATION AND DEHYDRATION

Definitions and Methods, Adsorbents, Absorbents, Nature of Processes, Temperature—Pressure—Concentration Relations, Dehydration Methods, Auxiliaries, Controls, Performance, Economics

THE addition or abstraction of heat to or from air, whether sensible or latent, requires (a) a medium held at the necessary temperature or vapor pressure to produce a flow of heat or moisture and (b) sufficient contact between the air and the medium to achieve the desired final condition. The medium may be solid or liquid. It may be used (a) directly, as in a water or brine spray, or (b) indirectly, as with a steam radiator or direct expansion cooling coil.

The contact is obtained through the use of exposed surface, to which the molecules of air are brought into direct physical proximity, thereby producing the heat interchange. These molecules then re-mix with uncontacted molecules in the air stream. The completeness of the interchange is a function of the number of such successive contacts, and is a measure of the efficiency of the surface. The contacting surface may be that of the medium directly, such as a finely atomized spray or the bed of a solid dehydrating agent; or a chilled or warmed metal surface, as a coil; or a combination of medium and surface, such as a packed tower, where the medium produces the interchange and the surface provides the necessary contact area.

DEFINITIONS AND METHODS

There are several basic methods of producing the necessary difference in temperature or vapor pressure between air and the medium employed to achieve cooling or dehumidification, or both simultaneously:

Cooling of air involves its reduction in temperature due to the abstraction of sensible heat. It is always a result of contact with a medium held at a temperature lower than that of the air. Cooling may be accompanied by moisture addition (evaporation), by moisture extraction (dehumidification), or by no change of moisture content whatever. Such moisture change, if present, is considered as a secondary or by-product effect. As

¹The Contact Mixture Analogy Applied to Heat Transfer with Mixtures of Air and Water Vapor, by W. H. Carrier (A.S.M.E. Transactions, Vol. 59, 1937).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

previously stated, the medium may be directly in contact with the air (as water, brine, or ice), or indirectly through a barrier wall (as cooling surface). When the latter method is used, and the surface temperature is held above the air dew-point, only cooling occurs without moisture interchange.

Evaporative Cooling involves the adiabatic exchange of heat between air and a water spray or wetted surface. The water assumes the wet-bulb temperature of the air, which remains constant during its traverse of the exchanger. No heat is added or abstracted from the medium (water), which is continually recirculated. Cooling of the air occurs due to the temperature difference between entering air, and water at the wet-bulb temperature. Humidification occurs as a result of the vapor pressure exerted by the water which is higher than that corresponding to the entering air dew-point. Since this is an adiabatic exchange, the enthalpy of the air remains constant, while the dew-point rises and the dry-bulb falls, and the loss of sensible heat exactly equals the gain in latent heat (neglecting radiation losses). The maximum available temperature reduction is the total difference between entering dry- and wet-bulbs (wet-bulb depression). Equipment achieving the complete reduction is termed completely saturating or 100 per cent efficient, since the air leaves in a saturated state. Equipment utilizing only a portion of the wet-bulb depression is termed partially saturating

Evaporative cooling is being used advantageously in many parts of the country. It is particularly applicable (1) in districts where the relative humidity is normally low during the cooling season, and (2) in applications where the cooling load is principally a sensible load.

Dehumidification of air, in its broadest connotation, means simply the removal of moisture. Usage in the art has restricted the application of the term, so that the former broad meaning is now properly covered by the complementary names dehumidification and dehydration. Dehumidification usually refers to the condensation of water vapor from air due to its contact with a chilled medium (see Cooling). This type of heat exchange invariably includes temperature reduction due to removal of sensible heat, which reduction may be considered a by-product effect.

Dehydration refers specifically to the removal of water vapor from air due to its contact with a dehydrating agent. The primary distinction between dehumidification and dehydration is the vapor pressure exerted at the surface of the contacting medium. In the case of dehumidification, this surface vapor pressure is always the same as that which would be exerted by a body of water (or ice) at that same surface temperature. In the case of a dehydrating agent, the surface vapor pressure is always lower than that exerted by water at the same temperature, and the effectiveness of the medium as a dessicant is largely a function of the amount by which this vapor pressure can be lowered at the working temperature involved.

Thus it is evident that the primary function of a dehydrating agent is to establish a vapor pressure difference between the air and the medium in order to secure thereby a removal of moisture (latent heat) from the air. In the simplest type of process, no heat is abstracted from the medium itself, and the process is essentially an adiabatic one in which the latent heat lost by the air is converted to sensible heat which raises the air temperature by an equivalent amount. This process is therefore an energy exchange, similar to, but the reverse of, adiabatic saturation.

Combination Methods. It is evident that two or more of the above processes—cooling, evaporative cooling, dehumidification and dehydration—may be combined by the proper application of interchangers in sequence. Such combinations are dictated by the availability of prime sources of energy and the economic justification of each.

This chapter discusses in detail the engineering and economic principles involved in the application of dehydration. For similar discussion of the other processes, refer to the following material: Cooling and dehumidification by the use of surface interchangers (cooling coils), see Chapter 26. Cooling, dehumidification and evaporative cooling with air washers, see Chapter 27. For sources of cooling involving city and well water and cooling towers, see Chapter 27, while for mechanical refrigeration and ice, refer to Chapter 25. For the thermodynamics of evaporative cooling, see Chapter 1.

DEHYDRATING AGENTS

Dehydrating agents may be divided into two general classifications:

- 1. Adsorbent—A material which has the ability to condense water vapor on its surface without itself being changed physically or chemically. Certain solid materials, such as silica gel, activated alumina and activated carbon have this property.
- 2. Absorbent—A material which has the ability to take up water vapor but which changes physically, chemically, or both, during the cycle. Calcium chloride is an example of a solid material while liquid materials include lithium chloride, calcium chloride, lithium bromide and ethylene glycol.

Adsorbents

These substances are characterized by a physical structure containing a great number of extremely small pores but still retaining sufficient mechanical strength to resist the wear and handling to which they are subjected. To be suitable for dehydration purposes such substances must fulfill the following requirements:

- 1. Possess suitable vapor pressure characteristics.
- 2. Be available at an economical cost.
- 3. Adsorb sufficient moisture per pound of material to avoid excessive bed dimensions.
- 4. Be chemically stable, resisting contamination from impurities.
- 5. Physically rugged to resist breakdown from handling, abrasion, etc.
- 6. Withstand breakdown from indefinitely repeated reactivation cycles.
- 7. Possess practical and efficient reactivation temperatures.

Aluminum Oxide (Alumina), in a porous, amorphous form is a solid adsorbent frequently called by the common name activated alumina. It contains small amounts of hydrated aluminum oxide, very small amounts of soda, and various metallic oxides. A good grade of activated alumina will show 92 per cent of Al_2O_3 , and its soda content will be combined with silica and alumina into an insoluble compound. substance also has the property of adsorbing certain gases and certain vapors other than water vapor—a property which is sometimes useful in air conditioning installations. It is available commercially in granules ranging from a fine powder to pieces approximately 1.5 in. in diameter. It has high adsorptive capacity per unit of weight and is non-toxic. may be repeatedly re-activated after becoming saturated with adsorbed moisture without practical loss of its adsorptive ability. In the grade frequently used for air drying the re-activation may be accomplished at temperatures under 350 F. Specific gravity is 3.25 and the pores are reported to occupy 58 per cent of the volume of each particle. For most estimating purposes the volume-weight relation on a dry basis may be taken as 50 lb per cubic foot although in the smaller sizes the packed weight may be as much as 64 lb per cubic foot.

Silicon Dioxide (Silica), in a special form obtained by suitably mixing sulphuric acid with sodium silicate, is another solid adsorbent and is commonly called silica gel. Its capillary structure is exceedingly small, so small that its exact structure has to be deduced rather than observed. The gel is available commercially in a wide variety of sizes of granules ranging from 4 to 300 mesh. It has high adsorptive capacity per unit of weight; it is non-toxic, and may be repeatedly re-activated without

practical deterioration. Re-activation may be accomplished at temperatures of air up to 600 F although it is frequently accomplished with air or other gases at temperatures not over 300 F. Volume of the capillary pores is reported to be from 50 to 70 per cent of the total solid volume. For most estimating purposes the volume-weight relation can be assumed as from 38 to 40 lb per cubic foot on a dry basis. It also has the property of absorbing certain gas and vapors other than water vapor.

Other substances having properties which make them available as solid adsorbents include lamisilate and charcoal but details of their physical properties are not available.

Nature of Adsorption Process

The adsorbent does not go into solution but water vapor is extracted from the air-vapor stream passing through the bed of adsorbent material and is caught and retained in the capillary pores. The exact nature of the process which goes on during adsorption is not known but it is stated that the action is brought about by surface condensation, and also by a difference between the vapor pressure of the water condensing inside the pores and the partial pressure of the water vapor in the air-vapor mixture. The adsorbing process in the bed can continue until the vapor pressures come into equilibrium. The amount of vapor adsorbed will depend on the adsorbent substances being used, but for any single substance the amount depends on the temperature of the bed as well as on the partial pressure of the air-vapor mixture being passed over it.

As the bed of material adsorbs moisture, its vapor pressure approaches that of the contacting air and the rate of adsorption gradually slows down so that equilibrium may not be reached for 24 to 48 hours. Because of this diminishing rate of adsorption, commercially designed systems do not permit the state of equilibrium to be reached but generally operate on a 10 to 30 min contact time—the period of most rapid adsorption.

As the process of adsorption goes on heat is liberated in the bed. The heat so liberated is the latent heat of the water vapor condensed together with the so-called heat of wetting. For a pound of water vapor at 60 F the latent heat released by condensation is approximately 1057 Btu. The heat of wetting for silica gel, for example, is about 200 Btu, making a total heat of adsorption of approximately 1257 Btu per pound of water adsorbed from the air-vapor mixture passing through the silica gel bed. The heat of wetting varies with the substance being used as the adsorbent while the latent heat of condensation depends only on the temperature and pressure of the water vapor.

Temperature—Pressure—Concentration Relations

Since the adsorptive ability of an adsorbent depends on the temperature of the bed and on the partial pressure difference between the pores and the air-vapor mixture, it is important to know the pressures and temperatures at which pressure equilibrium is reached.

Evidently the equilibrium conditions represent the limits beyond which adsorption of vapor cannot continue. The relationship can be shown graphically and Fig. 1 is such a chart for silica gel. Charts of like nature can be plotted for other adsorbent materials.

CHAPTER 24. COOLING, DEHUMIDIFICATION AND DEHYDRATION

The equilibrium conditions for a gel bed maintained at constant temperature while the water vapor adsorption is allowed to continue until pressure equilibrium is reached is shown in Fig. 1. Each curve on the chart shows a certain dew-point temperature, and therefore a certain pressure of the saturated water vapor.

As an example in the interpretation of the chart consider the case when moist air at a temperature of 80 F and a partial vapor pressure of 0.5 in. of mercury flows through a bed of silica gel which is at a temperature of 80 F. The chart indicates that the equilibrium of pressure between the

Fig. 1. Temperature—Vapor Pressure—Concentration Relation for a Silica Gel Bed at Constant Temperature

air-vapor mixture and the bed is reached when the dry bed has adsorbed moisture to the extent of 30 per cent of the weight when dry. When this happens the bed can adsorb no more moisture unless its temperature is changed.

While charts of this kind can show the limiting properties of the substances they are seldom directly applicable to the solution of air conditioning problems unless considerable additional information is available. This takes the form of performance data covering the characteristics of the equipment in which the adsorbent bed is placed. Such performance data are presented later in this discussion.

Absorbents

Any absorbent substance may be used as an air drying agent if it has a vapor pressure lower than the vapor pressure in the air-vapor mixture from which the moisture is to be removed.

Solid Absorbents. The substances used are in general the solid forms of the liquid absorbents, more commonly calcium chloride due to its low cost. At present they are used principally in small dessicating chambers, and in small dryers of the cartridge type, through which air is forced under pressure.

Liquid Absorbents. These are characteristically water solutions of materials in which the vapor pressure is reduced to a suitable level by governing the concentration of the solution. In addition to having suitable vapor pressure characteristics a practical absorbent must also be widely available at economical cost, be non-corrosive, odorless, non-toxic, non-inflammable, chemically inert against any impurities in the air stream, stable over the range of use and especially it must not precipitate out at the lowest temperature to which the apparatus is exposed. It must have low viscosity and be capable of being economically regenerated or concentrated after having been diluted by absorbing moisture.

Water solutions, or brines, of the chlorides or bromides of various inorganic elements such as lithium chloride and calcium chloride are the absorbents most frequently used in connection with air conditioning applications and detailed attention is confined to these two in this chapter.

Nature of Absorption Process

The application consists of bringing the air-vapor stream into intimate contact with the absorbent, permissibly by passing the air stream through a finely divided spray of the brine but more generally by passing the air over a contacting pack where the liquid absorbent presents a large surface to the air stream. The difference in vapor pressure causes some of the vapor in the air-vapor mixture to migrate into the brine. Here it condenses into liquid water and decreases the concentration of the absorbent.

As the water vapor is added to the absorbent and condenses, it gives up its latent heat of condensation which tends to raise the temperature of both the absorbent and the moist air stream. For every pound of water absorbed and condensed the heat added to the air stream and the brine combined is obtainable from steam tables. For instance, at 60 F the amount of this heat is about 1057 Btu. In addition to this heat there is involved also the so-called heat of mixing which is frequently considerable.

A more complicated cycle involves heat removal from the contacting medium, either within or external to the interchanger. Thus the temperature of the medium may be higher than, equal to, or lower than that of the air, depending on the agent used and the function to be performed. In such a cycle, the dehydration process may be accompanied by cooling or heating, or neither, and such effect, if present, may be either a necessary by-product of the process, or for the specific purpose of obtaining both latent and sensible heat removal simultaneously. The heat thus produced in the bed is to a large extent transferred to the air being dried, and in the average air conditioning installation must be removed by passing the air through an aftercooler.

Temperature—Pressure—Concentration Relations

Since the absorption process can continue only as long as there is a difference in vapor pressure between the absorbent and the air-vapor mixture and since at a given temperature of the absorbent the vapor pressure depends on the concentration of the solution, evidently there must be a relation between these quantities which if known would state the limits of the process. The relationship would also depend on the absorbent being used, and would have to be determined for each substance used as an absorbent. This relationship is shown graphically in

Fig. 2. Temperature—Pressure—Concentrations for Lithium Chloride

Fig. 2 for lithium chloride, and Fig. 3 presents similar data for calcium chloride. These charts are essentially similar to Fig. 1, and their direct usefulness is limited by much the same considerations. Other physical properties of lithium chloride are shown in Tables 1, 2 and 3.

In Fig. 2 and Table 1 the unit of concentration is the *mol*. A M molal solution is defined as a solution containing $M \times 42.37$ grains of anhydrous lithium chloride per 1000 grains of water. The formula connecting concentration in mols with weight in per cent is equivalent to: $(100 \times M \times 42.37) \div [1000 + (M \times 42.37)]$.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 1. Properties of Lithium Chloride Solutions

CONCENTRATION POUND MOLS (42.4 LB) LiCl PER 1000 LB	CONCENTRATION PER CENT BY WEIGHT	SPECIFIC GRAVITY AT 100 F			PARTIAL HEAT OF MIXING AT 0 F, BTU PER	TEMP. COEFF. OF PARTIAL HEAT OF MIXING BTU PER	Specific Heat at 70 F	Boiling Point F AT (760 MM Hg)	FREEZING POINT, F
WATER			80 F	180 F	LB	LB PER F			
0 2 4 6 8 10	0.0 7.8 14.5 20.2 25.3 29.7	1.000 1.037 1.076 1.111 1.143 1.172	8.61 11 19 14.42 18.62 24.32 32.28	3.48 4.56 6.01 7.78 10.00 12.91	0.00 2.04 7.24 16.70 31.90 51.10	$\begin{array}{c} 0.000 \\ -0.014 \\ -0.036 \\ -0.069 \\ -0.109 \\ -0.143 \end{array}$	0.998 0.901 0.831 0.778 0.739 0.710	212.0 215.8 221.5 228.9 238.1 248.4	32.0 16.3 - 5.8 -34.2 -69.0 -90.0
12 14 16 18 20	33.7 37.4 40.4 43.3 46.0	1.199 1.225 1.248 1.270 1.291	43.45 60.26 82.04 113.80	16.56 21.28 27.10 35.48 46.45	75.70 90.80 124.80 145.00 162.00	$\begin{array}{c} -0.160 \\ -0.167 \\ -0.176 \\ -0.186 \\ -0.194 \end{array}$	0.687 0.666 0.647 0.631	258.8 268.9 277.9 285.8 293.2	-40.0 1.0 36.5 58.1 86.4
22 24 26 28 30 32	48.4 50.3 52.4 54.3 56.1 57.5			60.67 84.33	171.00 177.00 182.00 191.00 194.00 198.00	$\begin{array}{c} -0.200 \\ -0.200 \\ -0.210 \\ -0.210 \\ -0.210 \\ -0.220 \end{array}$		300.2 307.0 313.0 318.0 323.0 328.0	133.0 156.0 180.0 190.0 195.0 280.0

Table 2. Dew-Point of Air in Equilibrium with Lithium Chloride Solutions Concentration in Pound Mols (42.4 lb) Lithium Chloride per 1000 lb Water

Dew- Point at Zero Conc		 			Co	ONCENTRA	TION OF	LITHIUM	и Снго	RIDE					
	20	40	60	80	10.0	12.0	14.0	16.0	18.0	20 0	22.0	24.0	26.0	28.0	30.0
300 280 260 240 220 200 180 160 140 100 90 80 70	295.4 275.6 255.8 236.0 216.2 196.4 176.6 156.8 137.0 117.2 107.3 97.4 87.5 77.6 67.7 57.8 38.0	289.1 269.5 250.0 230.4 210.8 191.2 171.6 152.1 132.6 113.0 103.2 93.4 83.6 73.8 64.0 54.3 34.7 15.1	241.9 222.5 203.2 183.9 164.7 145.4 126.1 106.8 97.2 87.5 77.9 68.4 58.7 49.1 29.9	290.2 270.9 251.7 232.6 213.5 194.4 175.4 137.4 118.4 199.4 89.9 80.5 71.0 61.6 52.2 42.7 23.9 5.0	279.7 260.6 241.5 222.7 203.8 184.9 166.1 147.3 128.6 109.9 91.1 81.9 72.7 63.3 54.0 44.8 35.5 16.9 -1.7 -20.2	250.5 231.6 212.8 194.2 175.5 156.7 138.1 119.7 101.3 82.7 73.5 64.4 55.2 46.1 37.0 27.9 9.6 9.8,7	240.8 222.2 203.5 185.0 166.4 148.0 129.6 111.3 93.1 74.7 65.6 47.6 38.5 29.5 20.5	232.6 214.0 195.5 177.1 158.6 140.3 122.1 103.9 85.9 67.8 58.8 49.8 40.8 31.8	225.4 206.7 188.4 170.0 151.6 133.5 115.5 97.4 79.5	218.0 199.7 181.7 163.6 145.3 127.3 109.4 91.6 73.8 56.0	211.8 193.5 175.4 157.5 139.6 121.9 104.2 86.6	205.8 187.8 170.0 152.2 134.6 117.0	200.8 183.2 165.6 148.3 130.7	196.9 179.3 162.0 144.6 127.3	175.2 158.4

Example 1. Determine the dew-point, wet-bulb, relative humidity and absolute humidity of air in equilibrium at 100 F with pure lithium chloride solution of density 1.270.

Solution. From Table 1 the concentration of a solution of density 1.270 at 100 F is 18.0 M. From Fig. 2 the dew-point of 18 M lithium chloride at 100 F is 43.7 F. From Table 6, Chapter 1, the partial pressure of water over the solution is 0.2858 in. of Hg, and the absolute humidity is 42.00 grains per pound dry air. From the psychrometric chart, the wet-bulb is 66.3 F, and the relative humidity is 15 per cent.

Example 2. Determine the boiling point, and freezing point of $18\ M$ lithium chloride solutions.

Solution. From Table 1, boiling point (standard) is 285.8 F, freezing point is 58.1 F.

Fig. 3. Temperature—Pressure—Concentrations for Calcium Chloride

Example 3. Calculate the heat of vaporization of 1 lb of water from a large amount of 18 M lithium chloride solution at the boiling point.

Solution. The heat of boiling is equal to the heat of mixing plus the heat of boiling pure water at the same temperature. The heat of mixing from Table 1 at 18 M and 285.8 F is $145-(0.186\times285.8)=92$ Btu per pound. The heat of vaporization of water from steam tables at 285.8 F is 920 Btu per pound. Therefore the heat of vaporization of water from the solution is 920+92=1012 Btu per pound.

Example 4. One thousand pounds of air per minute at 100 F dry-bulb with a dewpoint of 70 F and a relative humidity of 39 per cent are passed over 18 M lithium chloride solution. The rate of flow of the solution is 200 gpm and the entering temperature is 80 F. The air leaves the absorber at 85 F dry-bulb and dew-point of 35 F. Calculate

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

(a) the heat to be removed from the lithium chloride solution to maintain these conditions, and (b) the temperature rise of the solution in passing through the absorber.

Solution. (a) The enthalpy of the entering air at 100 F dry-bulb and 39 per cent relative humidity = $h_a + \mu h_{as} = 24.00 + (0.39 \times 47.40) = 42.49$ Btu per pound (Table 6, Chapter 1).

The relative humidity of the air leaving at 85 F dry-bulb and 35 F dew-point is 16.7 per cent (psychrometric chart). Enthalpy of leaving air = $20.39 + (0.167 \times 28.85)$ = 25.21 Btu per pound (Table 6, Chapter 1).

Heat to be extracted from air = 1000 (42.49 - 25.21) = 17,280 Btu per minute. Heat of mixing = $145 - (0.186 \times 80) = 130$ Btu per pound of moisture removed. From Table 6, Chapter 1, the moisture removal per pound of air = 0.01574 - 0.00426 = 0.01148 lb. Heat of mixing for 1000 lb of air = $1000 \times 0.01148 \times 130 = 1492$ Btu. Total heat extraction = 17,280 + 1492 = 18,772 Btu per minute.

(b) The weight of solution circulated is 200×1.27 (Table 1) $\times 8.33 = 2116$ lb per minute. Its heat capacity = 2116×0.631 (Table 1) = 1335 Btu per minute per degree Fahrenheit. The temperature rise = $18,772 \div 1335 = 14.1$ F.

Concentration Pound Mols	Temperature Deg F									
(42.4 LB) <i>LiCI</i> PER 1000 LB WATER	0	50	100	150	200	250	300			
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32	1.090 1.124 1.156 1.188 1.217 1.242	1.045 1.085 1.119 1.150 1.181 1.209 1.235 1.257 1.279	1.037 1.076 1.111 1.143 1.172 1.199 1.225 1.248 1.270 1.291	1.026 1.064 1.100 1.132 1.162 1.188 1.214 1.236 1.259 1.280 1.310 1.317	1.012 1.052 1.087 1.122 1.152 1.178 1.203 1.226 1.248 1.279 1.289 1.307 1.313 1.338	1.142 1.168 1.192 1.215 1.237 1.568 1.278 1.296 1.312 1.327 1.34	1.267 1.286 1.302 1.318 1.33 1.35			

TABLE 3. DENSITY OF LITHIUM CHLORIDE SOLUTIONS

SOLID DEHYDRATION METHODS

One type of equipment suitable for producing dehydration with solid drying agents utilizes an apparatus with continuous operating rotating beds or dampers as illustrated in Fig. 4. The apparatus consists essentially of a cylinder or drum filled with dehydrating material. Air flow through the drum is directed by baffles which permit three independent air streams to flow through the adsorbing material. One air stream consists of the wet air which is to be dehydrated. The second is heated activation air used for drying that part of the dehydrating material which has become saturated. The third air stream purges away the products of combustion left in the bed from the activation cycle (when direct fired) and cools the bed to a temperature low enough to permit pickup of moisture when that part of the bed returns to the dehydration cycle.

In the rotating bed apparatus, the baffle sheets are stationary and the screened bed rotates at a definite speed to permit the proper time of

contact in the activation, purge and dehydration cycles. In the rotating damper apparatus, the bed remains stationary and a sectionalized damper rotates. This rotating damper produces the same effect as if the stationary baffles previously mentioned rotated.

Clean heated air for activation is supplied at temperatures normally ranging from 300 to 450 F. Any source of heat such as high pressure steam coils, electric heaters or oil or coal-fired air heat interchangers can, therefore, be used for heating the air. Direct-fired heaters are limited to gas since there must be no combustion products to contaminate the adsorbent.

Another type of solid dehydrating equipment uses two complete sets of stationary adsorbing beds, arranged so that one set is dehydrating the air while the other set is being activated. With the dampers in the position shown in Fig. 5, air to be dried flows through one set of beds and is dehydrated, while activation air is heated and circulated through the

Fig. 4. Solid Adsorbent Dehydrator—Rotating Bed Type

other set. After activation is complete, the beds are purged by shutting off the activation air heaters and allowing unheated air to circulate through them.

After the beds which are dehydrating have adsorbed moisture to a degree which begins to impair performance, a timer-controller causes the dampers to rotate to the opposite side. Thus the beds which on the previous cycle were adsorbing have activation air circulated through them, and vice versa. Activation air is heated in the same manner as with continuous equipment.

LIQUID DEHYDRATING METHODS

One type of system utilizing liquid dehydrating agents includes an external interchanger having essential parts consisting of a dehydration contactor, a solution concentrator, a solution heater and a solution cooler, all as shown in Fig. 6. The dehydrator contactor is located in the wet air stream. The air to be conditioned is brought into contact with an aqueous brine solution having a vapor pressure below that of the entering air, resulting in a transfer of moisture (latent heat). As previously described, this results in a conversion of latent to sensible heat, raising both air and solution temperatures. This temperature rise is kept down

by precooling the brine in the solution cooler to a predetermined temperature, which is usually below that of the air, by city, well or chilled water.

The excess water of condensation, which dilutes the brine, is removed in the solution concentrator. This is a low pressure steam heat exchanger which over-concentrates a portion of the weak liquor and returns it to the main brine reservoir for re-pumping. The concentrator operates in the manner of an evaporative condenser, whereby moisture is evaporated from the brine by the heating coils into a stream of regeneration air, taken

FIG 5. SOLID ADSORBENT DEHYDRATOR—STATIONARY BED TYPE

from and rejected to the outside atmosphere. Low pressure steam is normally used for heating the brine. When it is desirable or necessary to use gas or electricity, an auxiliary low pressure steam boiler is usually added to the equipment. Concentrators operating on a simple boiler principle have not as yet been commercially practical.

It should be noted that the solution concentration phase is the reverse of the dehydration process. During concentration the aqueous vapor pressure of the solution is greater than that of the surrounding air, while during dehydration, the reverse is the case. Utilization of this principle permits winter humidification, by heating (instead of cooling) the solution pumped to the contactor. Water is thereby evaporated into, instead of

condensed out of, the conditioned air stream. This requires dilution of the brine externally to the contactor, rather than concentration.

Another type of liquid dehydrator utilizes an integral interchanger which employs the same type of solution concentrator as described for the system with the external interchanger. However, the dehydration contactor and solution cooler are combined by placing a cooling coil directly in the wet air stream. This coil provides the contacting surface between air and the warm concentrated solution which is sprayed over the cooling surface. By circulating a cooling medium through this coil, control of solution temperature (hence its vapor pressure) is accomplished directly in the air stream.

ESTIMATING OF LOADS

Where equipment is used which removes sensible and latent heat simultaneously such as a chilled water or direct expansion dehumidifier,

Fig. 6. Liquid Absorbent Dehydrator in Which Solution Cooler and Contactor are Combined

the basis of selection is usually the maximum total heat load. The operating characteristics of such equipment normally produce satisfactory dewpoints with adequate capacity at other loads, including the maximum latent load which occurs at a less-than-maximum total load. With dehydration equipment in which moisture removal is achieved independently of sensible cooling, it is necessary that equipment be chosen for the maximum load of each functional element. The sensible cooler should be selected for the maximum sensible load; the dehydrator for the maximum latent load. These loads need not occur simultaneously, and in fact, rarely do.

In estimating the maximum latent heat load for comfort applications, it is considered good practice to select an outside design dew-point for the locality which is exceeded on not more than 5 per cent of the days during the season. A smaller percentage, or even the maximum dew-point recorded, may be advisable for rigorous industrial applications.

Due consideration should also be given to moisture seepage through building materials and vapor infiltration through openings. These items become important at dew-points below 50 F and have an extreme effect upon load and equipment selection at dew-points below 35 F.

LOCATION OF EQUIPMENT

All types of dehydration equipment are, in general, applicable in one of several possible locations in the system air flow diagram. The choice of the type of equipment and its location is dependent upon the work to be performed, the capacity of the dehydration equipment to remove moisture and the type of energy available for activation or regeneration.

Fig. 7. Silica Gel Dehydrator Performance Data

Dehydration apparatus may be located: (a) to treat outside air only, (b) to treat return air only, or (c) to treat a mixture of outside and return air.

EQUIPMENT AUXILIARIES

Precoolers. When cold water is available, it is generally economical to use this water in a precooling coil in the outside air stream. The dehumidifying accomplished by this coil reduces the load on the dehydrator; and moreover, lowering the temperature of the inlet air to the dehydrator results in a higher dehydrator moisture removal efficiency.

Dry Air Coolers. Particularly with the solid adsorbent process, and to a lesser extent with liquid absorbents, a dry air cooler is employed to remove sensible heat from the dehydrated air whenever it leaves the dehydrator at an elevated temperature. A cooling coil using city water is usual practice, and is considered economical whenever the difference between effluent air and entering water temperatures is greater than 15 F.

Sensible Heat Coolers. Since the normal conditioning system requires sensible heat removal, auxiliary equipment may be needed for this function. This is almost always in the form of cooling surface using water, brine or direct expansion refrigerant. It is located on the leaving side of the dehydrator, but frequently treats in addition a large volume of room air which is not circulated through the dehydrator for moisture reduction.

CONTROLS

The use of dehydration equipment makes possible the use of a relatively simple control system with a humidistat or, alternatively, a wet-bulb controller, to regulate the operation of the dehydrator, and a thermostat

Fig. 8. Activated Alumina Dehydrator Performance Data

to control the sensible cooling apparatus. Functionally, the relative humidity control may consist of one of the following:

- 1. Stop—Start—Where the humidistat starts the dehydrator on rising humidity and stops it on falling humidity.
- 2. By-pass—Where the humidistat modulates face and by-pass dampers located at the wet air inlet of the dehydrator. Thus the quantity of air passing through the dehydrator is proportioned in accordance with the change in latent heat load.
- 3. Vapor Pressure Control (used with liquid absorbents)—Where the humidistat directly controls the temperature or concentration of the contacting solution, thereby matching the latent heat removal to the load requirement.

EQUIPMENT PERFORMANCE

It is recognized that, whereas the curves relating temperature and vapor pressure of the several dehydration agents (Figs. 1, 2 and 3) accurately define the equilibrium limits for these materials, these curves cannot be used for predicting performance of available equipment. This is because (a) the materials themselves can only be utilized efficiently within certain ranges of moisture concentration, and (b) the degree to

which the vapor pressure of the air being treated approaches that at the surface of the material depends upon the completeness of the contact. For this reason, actual moisture removing capacity is determined from performance curves of the several materials under practical conditions of temperature, concentration and contacting efficiency as shown in Figs. 7, 8 and 9. While these curves by no means explore all the performance possibilities, they may be considered to be representative of sound design

Fig. 9. Lithium Chloride Contactor Performance Data

and application practice. Representative data on heat input and water consumption are given in Table 4.

ECONOMICS OF DEHYDRATION

Almost all summer comfort air conditioning, as well as much industrial and commercial air conditioning, requires both of the functions of sensible and latent heat removal from air. Each of the methods of cooling and dehumidification has as its objective either the removal of sensible or latent heat, or both simultaneously. Choice of method and

medium therefore depends solely on whether (a) method and medium are physically able to accomplish the desired result with practical equipment, and (b) method and medium are justifiable economically.

Referring particularly to the problem of moisture removal, it may be stated that either dehumidification using chilled water, brine or direct expansion refrigerant, or dehydration using solid or liquid agents, is equally practical from the viewpoint of engineering performance for the vast majority of comfort and for a great many industrial applications;

Table 4. Performance Coefficients and Water Requirements of Solid and Liquid Dehydration Processes

Mois Grains		Tempe: De	RATURE G F	THERMAL	Cooling Water Consumptionb					
In	Out	In	Out	PERFORMANCE - RATIO ²	Temp. Deg F	Gpm per 1000 Btu per Hr of Latent Heat				
	Solid Adsorbent ^c									
130 130 65 45	65 45 30 12	85 85 85 85	138 154 118 115	0.39 0.35 0.28 0.23						
			Liquid Abso	rbent ^d						
130 130 130 65	65 45 45 30	85 85 85 85	99 101 87 83	0.45 0.45 0.41 0.41	85 85 60 60	0.23 0.44 0.26 0.64				

aThermal performance ratio is defined as latent heat removed from entering air divided by the heat input into the regenerator. Latent heat may be actually abstracted from system or converted to sensible heat, depending on process. No credit is given in the performance ratio for abstraction of sensible heat; where it occurs, it is considered a by-product effect. Values are approximate and, while they can be construed as typical, may vary considerably with design and economic application.

that is, their fields of application overlap. It cannot properly be stated that one method or material is superior *functionally* to another, since all have the same objective, and each is capable of attaining that objective.

For this reason, the choice of method and agent can normally be considered strictly on its economic merits. The choice of dehydration, mechanical refrigeration, natural cold water or ice, must be justified by the initial investment of available equipment, the availability and cost of prime energy sources, and the charges properly allocable to space occupied, labor of operation, maintenance, etc.

ECONOMIC COMPARISONS

It is evident that it is not possible to set forth definite rules governing the choice of dehydration equipment in preference to other methods of

bCooling water shown is that required solely to produce the latent heat removal. Additional water is required by both processes for reducing effluent temperatures below those listed. Gallons per minute shown are necessarily an economic approximation, weighing amount of surface against water consumption.

cSolid adsorbent based on the use of gas for activation.

dLiquid absorbent based on the use of steam at 12 lb per square inch gage for regeneration.

dehumidification. It is only possible to state certain general conditions which tend to make dehydration favorable or unfavorable.

Dehydration tends to be favorable where:

- 1. Steam or gas is available at a cost substantially lower than electricity.
- 2. Required dry-bulb temperature is high or unimportant in comparison to maintenance of proper relative humidity.
- 3. Sensible cooling can be supplied by low cost city, well, or river water available at the proper temperature. For comfort conditioning, this temperature cannot normally be higher than 65 F.
- 4. An abnormally high room latent heat load or a large outside air latent load is encountered (such as in a dance hall, theater, restaurant, etc.).
- 5. Abnormally low room dew-points are required (such as 40 F or lower for some manufacturing operations).
 - 6. Low temperature water is available but high in cost or limited in quantity.
- 7. In low temperature driers a complementary heat exchange can be utilized. In such cases, the sensible heat of the dry air from the dehydrator is reduced by the evaporation of moisture within the drier.

Of the factors just enumerated Item 1 is the most important influence, and if favorable, it indicates the desirability of considering dehydration. The other items are of lesser importance as criteria, but each has a direct influence in the economic considerations.

Dehydration tends to be unfavorable where:

- 1. Electricity is low in cost.
- 2. Normal comfort dew-points are required with a preponderantly sensible heat load.
- 3. Mechanical refrigeration is required for sensible heat removal.
- 4. Water temperature is too high for sensible heat removal. For comfort conditioning, this usually means water above 65 F.
- 5. Water is available in adequate quantity and at such temperature that it can be used directly for both sensible and latent removal, or can be further chilled more cheaply by mechanical refrigeration. For comfort conditioning, this normally means water below 55 F.

No single item just mentioned will necessarily disqualify dehydration, but will tend to require several favorable factors to make it a possibility for selection.

The previously outlined criteria are general and inclusive. When analyzed with respect to the possible fields of application, it is evident that dehydration equipment can be used, within its legitimate economic limits, for: air conditioning for human comfort, commercial cooling for food products requiring low humidities, industrial air conditioning for processes, and industrial drying. Attention is called to those particularly favorable industrial conditioning and drying applications in which the dried air can be used at effluent temperature without further treatment.

REFERENCES

Direct Evaporative Cooling for Homes in the Southwest, by A. J. Rummel (A.S.H.V.E. Transactions, Vol. 46, 1940, p. 381).

Chemical Dehumidification Agents, by F. R. Bichowsky (A.S.H.V.E. JOURNAL SECTION, *Heating*, *Piping and Air Conditioning*, October, 1940, p. 627).

Chapter 25

REFRIGERATION

Mechanical Refrigeration, Characteristics of Compression System, Absorption Systems, Expansion Values, Condensers, Evaporators and Coolers, Refrigerant Pipe Sizes, Ice Systems, Storage Systems, Equipment Selection, Reverse Cycle

COOLING and dehumidification in air conditioning work usually requires refrigeration equipment. The localities where cold water from a natural source is at a sufficiently low temperature for comfort air conditioning are rare, and evaporative cooling is generally restricted to sections of the country where humidities are naturally low.

The important difference between the refrigeration equipment used for comfort air conditioning and that used for commercial refrigeration is the use of a relatively higher evaporator temperature. This temperature is usually above freezing in air conditioning refrigeration equipment. The higher evaporator temperature (that is high suction pressure) affects the design of the system used, and makes possible the use of systems that are not always practical for commercial refrigeration.

MECHANICAL REFRIGERATION

The fundamentals of mechanical refrigeration systems are similar, although they differ in the methods used for compression of the refrigerant vapor.

Refrigerant vapor, usually saturated or slightly superheated, is drawn into the compressor as diagrammed in Fig. 1. It is then compressed and discharged at a higher pressure to a condenser. The vapor is condensed as it contacts a heat transfer surface over which is flowing a cooling medium such as water, air or a combination of the two. The liquid refrigerant flows to the evaporator through an expansion valve which reduces its pressure and regulates its flow. In the evaporator, the refrigerant absorbs heat from the medium which is to be cooled. When this medium is water or brine, the evaporator is known as a water or brine cooler and the refrigeration system, if used for air cooling, is known as an indirect system. When the medium cooled is air, the evaporator is known as a direct expansion cooler and the system is known as a direct expansion system.

Fundamentally, the function of the system is to absorb heat at one temperature and pump it to a higher temperature, where it may be

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

TABLE 1. PROPERTIES OF AMMONIA

	1			Неат	r Content and Entropy Taken From -40 F						
Sat. Temp F	ABS. PRESS.	Vor	UME	Heat C			тору		uperheat		perheat
F	LB PER SQ IN.	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Ht. Ct	Entropy	Ht. Ct.	Entropy
0	30.42	0.02419	9.116	42.9	611.8	0.0975	1.3352	666 8	1 4439	720.3	1.5317
2	31.92	0.02424	8.714	45.1	612.4	0.1022	1 3312	667 6	1.4400	721.2	1.5277
4	33.47	0.02430	8.333	47.2	613.0	0.1069	1.3273	668 4	1.4360	722.2	1.5236
5	34.27	0.02432	8.150	48.3	613.3	0.1092	1 3253	668.8	1 4340	722.6	1.5216
6	35.09	0.02432	7.971	49.4	613.6	0.1115	1.3234	669.3	1.4321	723.1	1.5196
8	36 77	0 02440	7.629	51.6	614.3	0.1162	1.3195	670 1	1 4281	724.1	1 5155
10	38.51	0 02446	7.304	53.8	614.9	0.1208	1 3157	670 9	1 4242	725.0	1.5115
12	40.31	0.02451	6.996	56.0	615.5	0.1254	1.3118	671 7	1.4205	725.9	1.5077
14	42.18	0.02457	6.703	58.2	616.1	0.1300	1.3081	672.5	1.4168	726.8	1.5039
16	44.12	0 02462	6.425	60.3	616.6	0.1346	1.3043	673.4	1.4130	727.8	1 5001
18	46.13	0.02468	6.161	62.5	617.2	0.1392	1.3006	674 2	1.4093	728.7	1.4963
20	48 21	0.02474	5.910	64.7	617.8	0.1437	1.2969	675 0	1.4056	729 6	1.4925
22	50.36	0.02479	5.671	66.9	618.3	0.1483	1.2933	675 8	1.4021	730.5	1.4889
24	52.59	0.02485	5.443	69.1	618.9	0.1528	1.2897	676.6	1.3985	731.4	1.4853
26	54.90	0.02491	5.227	71.3	619.4	0.1573	1.2861	677 3	1.3950	732 4	1 4816
28	57.28	0 02497	5.021	73.5	619.9	0.1618	1.2825	678 1	1.3914	733 3	1.4780
30	59.74	0.02503	4.825	75.7	620.5	0.1663	1.2790	678 9	1.3879	734.2	1.4744
32	62.29	0.02508	4.637	77.9	621.0	0.1708	1.2755	679 7	1 3846	735.1	1 4710
34	64.91	0 02514	4.459	80.1	621.5	0.1753	1.2721	680 4	1.3812	736.0	1.4676
36	67.63	0.02521	4.289	82.3	622.0	0.1797	1.2686	681.2	1 3779	736.8	1 4643
38	70 43	0 02527	4.126	84.6	622.5	0.1841	1.2652	681.9	1 3745	737.7	1.4609
39	71 87	0 02530	4.048	85.7	622.7	0.1863	1 2635	682.3	1 3729	738.2	1.4592
40	73.32	0 02533	3 971	86.8	623.0	0.1885	1 2618	682.7	1.3712	738.6	1.4575
41	74.80	0 02536	3.897	87.9	623.2	0.1908	1.2602	683 1	1.3696	739.0	1.4559
42	76.31	0.02539	3.823	89.0	623.4	0.1930	1.2585	683 4	1.3680	739.5	1.4542
44	79.38	0 02545	3.682	91.2	623.9	0.1974	1.2552	684.2	1.3648	740 4	1.4510
46	82.55	0.02551	3.547	93.5	624.4	0.2018	1.2519	684.9	1 3616	741.3	1.4477
48	85 82	0 02558	3.418	95.7	624.8	0.2062	1.2486	685.6	1.3584	742.2	1.4445
50	89.19	0 02564	3.294	97.9	625.2	0 2105	1 2453	686.4	1.3552	743.1	1.4412
52	92.66	0 02571	3.176	100.2	625.7	0 2149	1.2421	687.1	1.3521	744 0	1.4382
54	96.23	0 02577	3 063	102.4	626.1	0.2192	1.2389	687 8	1.3491	744.8	1 4351
56	99.91	0 02584	2.954	104.7	626.5	0.2236	1.2357	688 5	1 3460	745 7	1.4321
58	103.7	0 02590	2.851	106.9	626.9	0.2279	1.2325	689 2	1.3430	746 5	1.4290
60	107.6	0 02597	2.751	109.2	627.3	0.2322	1.2294	689.9	1 3399	747.4	1 4260
62	111.6	0.02604	2.656	111.5	627.7	0.2365	1.2262	690 6	1.3370	748.2	1.4231
64	115.7	0 02611	2 565	113.7	628.0	0.2408	1.2231	691.3	1.3341	749.1	1.4202
66	120.0	0.02618	2 477	116.0	628.4	0 2451	1.2201	691 9	1.3312	749.9	1.4172
68	124.3	0 02625	2 393	118.3	628.8	0.2494	1.2170	692 6	1.3283	750.8	1.4143
70	128.8	0 02632	2.312	120.5	629.1	0.2537	1.2140	693 3	1.3254	751.6	1.4114
72	133.4	0 02639	2.235	122.8	629.4	0.2579	1.2110	694 0	1.3226	752.4	1.4086
74	138.1	0 02646	2.161	125.1	629.8	0.2622	1 2080	694.6	1.3199	753.3	1.4059
76	143.0	0 02653	2.089	127.4	630.1	0.2664	1 2050	695.3	1.3171	754.1	1.4031
78	147.9	0 02661	2.021	129.7	630.4	0.2706	1 2020	695.9	1.3144	755.0	1.4004
80	153.0	0 02668	1.955	132.0	630.7	0 2749	1 1991	696 6	1.3116	755.8	1.3976
82	158.3	0.02675	1.892	134.3	631.0	0 2791	1.1962	697.2	1.3089	756.6	1.3949
84	163.7	0 02684	1.831	136.6	631.3	0 2833	1.1933	697.8	1.3063	757.4	1.3923
86	169.2	0 02691	1.772	138.9	631.5	0.2875	1.1904	698.5	1.3040	758.3	1.3896
88	174.8	0 02699	1.716	141.2	631.8	0.2917	1.1875	699.1	1.3010	759.1	1 3870
90	180 6	0 02707	1.661	143.5	632.0	0 2958	1.1846	699.7	1.2983	759.9	1.3843
92	186 6	0 02715	1.609	145.8	632.2	0.3000	1.1818	700 3	1.2957	760.7	1.3818
94	192.7	0 02723	1.559	148.2	632.5	0.3041	1.1789	700.9	1.2932	761 5	1 3793
96	198.9	0 02731	1.510	150.5	632.6	0.3083	1.1761	701 5	1.2906	762.2	1 3768
98	205.3	0.02739	1.464	152.9	632.9	0.3125	1.1733	702 1	1.2881	763.0	1.3743
100	211.9	0 02747	1.419	155.2	633.0	0.3166	1.1705	702 7	1.2855	763.8	1 3718
102	218.6	0 02756	1.375	157.6	633.2	0.3207	1.1677	703.3	1.2830	764 6	1.3693
104	225.4	0 02764	1.334	159.9	633.4	0.3248	1.1649	703.8	1.2805	765 3	1.3668
106	232.5	0 02773	1.293	162.3	633.5	0.3289	1.1621	704.3	1 2780	766.1	1 3643
108	239.7	0.02782	1.254	164.6	633.6	0.3330	1.1593	705 0	1.2755	766 9	1.3619
110	247.0	0 02790	1.217	167.0	633.7	0.3372	1 1566	705 5	1.2731	767.6	1 3596
112	254.5	0.02799	1.180	169.4	633.8	0.3413	1.1538	706.1	1.2708	768.3	1.3573
114 116 118 120 122	262.2 270.1 278.2 286.4 294.8	0 02808 0.02817 0.02827 0.02836 0 02846	1.145 1.112 1.079 1.047	171.8 174.2 176.6 179.0	633.9 634.0 634.0 634.0	0 3453 0 3495 0.3535 0.3576	1.1510 1.1483 1.1455 1.1427	706.6 707.2 707.7 708 2	1 2684 1.2661 1.2636 1.2612	769.1 769 8 770 5 771 3	1.3550 1.3527 1 3503 1 3479
124 126 128	303.4 312.2 321.2	0 02846 0 02855 0 02865 0 02875	1.017 0.987 0.958 0 931	181.4 183.9 186.3 188.8	634.0 634.0 633.9 633.9	0.3618 0 3659 0.3700 0 3741	1.1400 1.1372 1.1344 1.1316	708.6 709 1 709.6 710 0	1.2587 1.2563 1 2538 1 2513	772.0 772.8 773.5 774.2	1.3455 1.3431 1 3407 1.3383

removed by an available cooling medium. In order to conserve refrigerant, virtually all refrigeration systems are completely closed and the same refrigerant is recirculated.

The fundamental heat equations (disregarding losses) which should be kept in mind are: (1) the heat absorbed in the evaporator plus the heat added to the refrigerant during compression equals the heat rejected by the condenser; (2) the heat added to the refrigerant during compression is equal to the input to the compressor shaft less the heat dissipated from the compressor to the surroundings.

In the case where the compressor is driven by an electric motor, the heat due to compression is equal to the motor input less the electrical motor losses, less the power transmission losses and less the heat dissipated from the compressor to the surroundings.

Fig. 1. Mechanical Refrigeration System

Refrigerants

There are many substances which might be used as refrigerants in mechanical refrigeration systems, but in practice the choice is limited by a wide variety of considerations including availability, cost, safety, chemical stability and adaptability to the type of refrigerating system to be used.

In this chapter detailed consideration is limited to six substances, viz: ammonia, dichlorodifluoromethane (F_{12}), methyl chloride, carbon dioxide, monofluorotrichloromethane (F_{11}), and water, properties for each of which are given in Tables 1, 2, 3, 4, 5 and 6. Each table gives the principal physical properties of the saturated substance, and all are arranged in uniform fashion. In all except the water table, columns are included which give the heat content and entropy of the superheated vapor at two selected points. The first four refrigerants named are used in reciprocating and rotary compressors. The last two are used in centrifugal compressors. Water is also used in steam jet equipment.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 2. Properties of Dichlorodifluoromethane (F_{12})

	1.	ī		HEAT	AND ENT	nd Entropy Taken From -40 F					
Sat. Temp. F	ABS. PRESS. LB PER	1	LUME	Heat	Content		tropy		Superheat		Superheat
F	SQ IN.	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Ht Ct	Entropy	Ht. Ct	Entropy
0 2	23.87	0 0110 0.0110	1.637	8.25 8.67	78.21 78.44	0 01869	0.17091	81.71 81.94	0.17829	85.26 85.51	0.18547 0.18529
4	24 89 25.96	0 0111	1.574 1.514	9.10	78.67	0.0196	0.17075 0.17060	82.17	0.17812 0 17795	85.51 85.76	0 18511
5 6	26 51 27.05	0.0111	1.485 1.457	9.32 9.53	78.79 78.90	0.02097	0.17045	82.29 82.41	0.17786 0.17778	85.89 86 01	0.18502 0.18494
8 10	28.18	0 0111	1.403	9.96 10.39 10.82	79.13	0.02235	0.17030 0.17015 0.17001 0.16987	82.66 82.90 83.14	0.17763 0.17747	86 26	0.18477
12	29 35 30.56	0 0112 0 0112	1.403 1.351 1.301 1.253	10.39	79.36 79.59	0.02233 0.02328 0.02419	0.17013	83.14	0.17733 0.17720	86.51 86.76	0.18460 0.18444
14 16	31.80 33.08	0.0112 0.0112	1.253 1.207	11.26 11.70	79.82 80.05	0.02510	0.16987	83 38 83 61	0.17720	87.01 87.26	0 18429 0.18413
	34.40 35.75	0.0113	1.163	12.12	80.27	0 02692	0.16961	83 85	0.17693	87.51	0.18397
18 20 22	37.15	0.0113	1.121 1.081	12.55 13.00	80.49 80.72	0.02783	0.16938	84 09 84 32	0.17679	87.76 88.00	0.18382 0.18369
24 26	38.58 40 07	0.0113	1.043 1.007	13.44 13.88	80.95 81.17	0.03053	0.16926 0.16913	84.55 84.79	0.17652 0 17639	88 24 88.49	0 18355 0.18342
	41.59	0.0114	0.072	14.32	81.39 81.61	0 03143 0 03233		85.02	0 17625 0 17612	88.73	0.18328
30 32	43.16 44.77	0.0115 0.0115	0.939	14.76	81.61 81.83	0.03233	0.16887 0.16876	85.02 85.25 85.48	0.17612	88.97 89.21	0.18315 0.18303
28 30 32 34 36	46.42 48.13	0 0115 0.0116	0.973 0.939 0.908 0.877 0.848	14.32 14.76 15.21 15.65 16.10	82.05 82.27	0.03413 0 03502	0.16865	85.71	0.17600 0.17589	89.45	0 18291
	49.88 50.78	0.0116	0.819	16.55	82.40	0 03591	0.16843	85.95 86.18	0.17577	89.68 89.92	0.18280 0.18268
38 39 40	50.78 51.68	0.0116 0.0116	0.806 0.792 0.779	16 77	82.60	0 03635 0.03680	0 16838 0.16833	86.29	0.17560	90.04	0.18262
41 42	51.68 52.70 53.51	0.0116 0.0116	0.779	17.00 17.23 17.46	82.60 82.71 82.82 82.93	0.03725 0.03770	0.16828 0.16823	86.29 86 41 86 52 86.64	0.17560 0.17554 0.17549 0.17544	90.16 90.28	0.18256 0 18251
44	55.40	0.0117	0 767 0.742	17.91	83.15	0.03770	0.16823	8686	0.17544	90.40 90.65	0.18245 0.18235
46 48	55.40 57.35 59.35	0.0117 0.0117	0.718 0.695 0.673 0.652	18.36 18.82	83.15 83.36 83.57 83.78	0.03948 0.04037	0 16803 0 16794	87 09 87.31 87 54 87.76	0.17525 0.17515	90.89 91.14	0 18224
48 50 52	61.39 63.49	0.0118	0.673	19.27 19.72	83.78	0 04126	0.16785	87 54	0.17505	91.38	0 18214 0.18203
	65.63	0 0118	0.632	20.18	83.99 84.20	0.04215 0.04304	0.16776	87.76 87.98	0.17496 0.17486	91.61 91.83	0.18193
54 56 58 60 62	67.84 70.10 72.41 74.77	0.0119	0.632 0.612 0.593 0.575	20 64 21.11	84.41 84.62	0.04392 0.04480	0.16758	88.20	0.17477	92.06	0.18174
60	72.41	0.0119	0.575	21.57	84.82	0.04568	0.16749 0.16741	88.42 88.64	0.17467 0 17458	92 28 92.51	0.18165 0.18155 0.18147
64	77.20	0.0120 0.0120	0.557 0.540	22.03 22.49	85.02 85.22	0.04657 0.04745	0.16733 0 16725	88.86 89.07	0.17450 0.17442	92 74	
66 68 70	79.67 82.24	0.0120 0.0121	0.524 0.508	22 95	85 42	0.04833	0.16717	89 29	0 17433	92.97 93.20	0.18139 0.18130
70 72	84.82 87.50	0.0121 0.0121	0.493 0.479	23.42 23.90 24.37	85.22 85 42 85.62 85.82 86.02	0.04921	0 16709 0.16701	89.50 89.72	0 17425 0.17417	93.43 93 66	0.18122 0 18114
	90.20	0 0122	0.464	24.84	86.02 86.22	0.05097 0 05185	0.16693 0.16685	89.93 90.14	0.17409	93.99 94.12	0.18106
74 76 78 80 82	93.00 95.85	0.0122 0 0123	0.451 0.438	25 32 25.80	86.42 86.61	0.05272 0.05359 0.05446 0.05534	0.16677	90.36	0.17402 0.17394	94.34	0.18098 0 18091
80 82	98.76 101.70	0.0123 0.0123	0.425 0.413	26.28	86.80	0.05446	0.16677 0.16669 0.16662	90.57 90.78	0.17387 0.17379	94 57 94 80	0.18083 0.18075
84	104.8	0.0124		26.76 27 24	86.99 87.18	0.05534	0.16655 0.16648	90 98 91.18	0.17372	95.01	0.18068
86 88	107.9 111.1	0.0124 0.0124	0.401 0.389 0.378	27.72 28.21	87.37	0.05621 0.05708 0.05795	0 16640	91.37	0.17365 0.17358 0.17351 0.17344 0.17337	95.22 95.44	0.18061 0 18054
88 90 92	114.3 117.7	0.0125 0.0125	0.368 0.357	28.70	87.56 87.74	0.05882	0.16632 0.16624	91.57 91.77	0.17351 0.17344	95.65 95.86	0.18047 0.18040
94	121.0	0.0126	0.347	29.19 29.68	87.92 88.10	0.05969 0.06056	0.16616 0.16608	91.97 92.16	0.17337	96.07	0.18033
96 98	124.5 128.0	0.0126 0 0126	0.338 0.328 0.319	30.18 30.67	88.10 88.28 88.45	0.06143	0.16600	92.36	0.17330 0 17322	96.28 96.50 96.71 96 92 97.12	0.18026 0.18018
100 102	131.6 135.3	0.0127 0.0127	0.319 0.310	31.16 31.65	88.62 88.79	0.06230 0.06316	0.16592 0.16584 0.16576	92.55 92.75	0 17315 0.17308	96.71 96 92	0.18011 0 18004
104	139.0 142.8	0 0128	0.302	32.15	88.95	0.06403	0.16576	92.93 93.11	0.17301	97.12	0.17998
106 108	146.8	0.0128 0.0129	0.293 0.285	32.65 33.15	89.11	0.06490 0 06577 0.06663 0.06749	0.16560	93.30	0.17294 0.17288	97.32 97.53 97.73	0.17993 0.17987
110 112	150.7 154.8	0.0129 0.0130	0.285 0.277 0.269	33.65	89.27 89.43	0.06749	0.16551 0.16542	93.48 93.66	0.17288 0.17281 0.17274 0.17266	97.73 97.93	0 17982 0.17976
114	158.9	0 0130	0.262	34.15 34.65	89.58 89.73	0.06836	0.16533	93.82 93.98	0.17266	97.93 98.11	0.17976 0.17969
116 118	163.1 167.4	0.0131 0 0131	0.262 0.254 0.247	35.15 35.65	89.87 90.01	0.07008	0.16515	94.15	0.17258 0.17249	98.29 98.48	0 17961 0 17954
120 122	171.8 176.2	0 0132 0 0132	0.240	36.16	90.15	0.07094 0.07180	0 16505 0.16495	94.31 94.47	0.17241	98.66 98.84	0 17946 0 17939
124	180.8	0.0133	0.233 0.227	36.66 37.16	90 28 90.40	0.07266	0.16484	94.63	0.17224	99.01	0.17931
126 128	185.4 190.1	0 0133 0 0134	0.220 0 214	37.67 38 18	90.52	0.07437	0.16462	94.78 94.94	0.17215 0.17206	99.18 99.35	0 17922 0 17914
130 132	194.9 199.8	0 0134 0.0135	0.208	38 69	90 64 90.76	0.07522 0.07607	0.16450 0.16438	95.09 95.25 95.41	0.17196 0.17186	99.53 99.70	0 17906 0 17897
134	2048	0.0135	0.202 0.196	39 19 39 70	90 86 90.96	0.07691	0.16425		0 17176	99.87	0.17889
136 138	209.9 215.0	0.0136 0 0137	0.191 0.185	40 21 40 72	91.06	0 07858	0.16396	95.56 95.72	0.17166 0.17156	100.04 100 22	0.17881 0 17873
140	220.2	0.0138	0.180	41 24	91.15 91.24	0.07941 0.08024	0.16380 0.16363	95.87 96.03	0.17145 0.17134	100.39 100.56	0.17864 0 17856
										-00.00	~ 11030

TABLE 3. PROPERTIES OF METHYL CHLORIDE

	ABS.	Vor-			HEAT	CONTENT .	AND ENTR	OPY TAKE	и Гвом -	-40 F	
Sat. Temp. F	Press. Le per	Volt	MUE	Heat C	ontent	Entr	ору	100 F Su	perheat	200 F St	perheat
	SQ IN.	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Ht. Ct.	Entropy	Ht. Ct.	Entropy
0	18.73	0.0162	5.052	14.4	192.4	0.0328	0.4197	215.6	0.467	237.2	0.507
2	19.60	0.0162	4.856	15.1	193.1	0.0344	0.4196	216.2	0.466	237.7	0.505
4	20.47	0.0163	4.661	15.8	193.8	0.0360	0.4195	216.7	0.465	238.2	0.504
5	20.91	0.0163	4.563	16.2	194.1	0.0368	0.4195	217.0	0.464	238.5	0.503
6	21.39	0.0163	4.476	16.6	194.4	0.0376	0.4194	217.3	0.464	238.8	0.502
8	22.34	0.0164	4.303	17.3	195.1	0.0391	0.4193	217.9	0.463	239.4	0.501
10	23.30	0.0164	4.129	18.1	195.8	0.0407	0.4192	218.5	0.463	240.0	0.500
12	24.38	0.0164	3.984	18.8	196.3	0.0423	0.4184	219.0	0.462	240.5	0.499
14	25.46	0.0164	3.839	19.6	196.7	0.0439	0.4176	219.5	0.462	241.0	0.498
16	26.55	0.0165	3.693	20.3	197.2	0.0454	0.4168	220.0	0.461	241.5	0.498
18	27.63	0.0165	3.548	21.1	197.6	0.0472	0.4160	220.5	0.461	242.0	0.497
20	28.71	0.0166	3.403	21.8	198.1	0.0486	0.4152	221.0	0.460	242.5	0.496
22	29.98	0.0166	3.288	22.5	198.5	0.0501	0.4148	221.5	0.459	243.0	0.495
24	31.25	0.0166	3.172	23.3	198.9	0.0516	0.4143	222.0	0.459	243.6	0.495
26	32.53	0.0167	3.057	24.0	199.3	0.0532	0.4139	222.4	0.458	244.1	0.494
28	33.80	0.0167	2.941	24.8	199.7	0.0547	0.4134	222.9	0.458	244.7	0.494
30	35.07	0.0168	2.826	25.5	200.1	0.0562	0.4130	223.4	0.457	245.2	0.493
32	36.55	0.0168	2.734	26.2	200.5	0.0577	0.4124	223.9	0.456	245.7	0.492
34	38.03	0.0169	2.642	27.0	200.9	0.0592	0.4118	224.3	0.455	246.2	0.492
36	39.51	0.0169	2.549	27.7	201.4	0.0607	0.4111	224.8	0.455	246.7	0.491
38	40.99	0 0169	2.457	28.5	201.8	0.0622	0.4105	225.2	0.454	247.2	0.491
39	41.73	0.0170	2.411	28.8	202.0	0.0629	0.4102	225.5	0.453	247.4	0.490
40	42.47	0.0170	2.365	29.2	202.2	0.0637	0.4099	225.7	0.453	247.7	0.490
41	43.33	0.0170	2.328	29.6	202.4	0.0644	0.4096	225.9	0.453	248.0	0.490
42	44.18	0.0171	2.290	29.9	202.6	0.0651	0.4093	226.1	0.452	248.3	0.489
44	45.89	0.0171	2.216	30.7	203 0	0.0666	0.4087	226.6	0.451	248.8	0.489
46	47.61	0.0171	2.141	31.4	203.3	0.0680	0.4081	227.0	0.451	249.4	0.488
48	49.32	0.0172	2.067	32.2	203.7	0.0695	0.4075	227.5	0.450	249.9	0.488
50	51.03	0.0172	1.992	32.9	204.1	0.0709	0.4069	227.9	0.449	250.5	0.487
52	53.00	0.0172	1.931	33.7	204.4	0.0724	0.4063	228.2	0.448	251.0	0.486
54	54.97	0.0173	1.870	34.4	204.7	0.0739	0.4056	228.6	0.448	251.5	0.486
56	56.94	0.0173	1.810	35.2	205.1	0.0754	0.4050	228.9	0.447	252.0	0.485
58	58.91	0.0173	1.749	35.9	205.4	0.0769	0.4043	229.3	0.447	252.5	0.485
60	60.88	0.0174	1.688	36.7	205.7	0.0784	0.4037	229.6	0.446	253.0	0.484
62	63.13	0.0174	1.638	37.4	206.0	0.0798	0.4030	229.9	0.445	253.5	0.483
64	65 37	0.0174	1.588	38.2	206.3	0.0812	0.4024	230.3	0.444	254.0	0.483
66	67.62	0.0175	1.539	38.9	206.6	0.0827	0.4017	230.6	0.443	254.5	0.482
68	69.86	0.0175	1.489	39.7	206.9	0.0841	0.4011	231.0	0.442	255.0	0.482
70	72.11	0.0176	1.439	40.4	207.2	0.0855	0.4004	231.3	0.441	255.5	0.481
72	74.66	0.0176	1.398	41.1	207.5	0.0869	0.3998	231.6	0.440	256.0	0.480
74	77.21	0.0177	1.357	41.9	207.7	0.0883	0.3992	232.0	0.439	256.5	0.480
76	79.76	0.0177	1.315	42.6	208.0	0.0898	0.3985	232.3	0.439	256.9	0.479
78	82.31	0.0178	1.274	43.4	208.2	0.0912	0.3979	232.7	0.438	257.4	0.479
80	84.86	0.0178	1.233	44.1	208.5	0.0926	0.3973	233.0	0.437	257.9	0.478
82	87.74	0.0178	1.199	44.8	208.7	0.0940	0.3967	233.3	0.436	258.4	0.478
84	90.62	0.0179	1.165	45.6	209.0	0.0953	0.3960	233 6	0.435	258.9	0.477
86	93.50	0.0179	1.130	46.3	209.2	0.0967	0.3954	233.9	0.435	259.4	0.477
88	96.38	0.0180	1.096	47.1	209.5	0.0980	0.3947	234.2	0.434	259.9	0.476
90	99.26	0.0180	1.062	47.8	209.7	0.0994	0.3941	234.5	0 433	260.4	0.476
92	102.49	0.0180	1.033	48.6	209.9	0.1008	0.3935	234.8	0.433	260.8	0.476
94	105.72	0.0181	1.005	49.3	210.2	0.1022	0.3929	235.1	0.432	261.2	0.475
96	108.94	0.0181	0 9764	50.1	210.4	0.1035	0.3922	235.4	0.432	261.6	0.475
98	112.17	0.0182	0.9478	50.8	210.7	0.1049	0.3916	235.7	0.431	262.0	0.474
100	115.40	0.0182	0.9193	51.6	210.9	0.1063	0.3910	236.0	0.431	262.4	0.474
102	119.00	0 0183	0.8952	52.3	211.1	0.1076	0.3903	236.4	0.430	262.8	0.474
104	122.60	0.0183	0.8712	53.1	211.3	0.1090	0.3897	236.8	0.430	263.2	0.473
106	126.20	0.0184	0.8471	53.8	211.4	0.1103	0.3890	237.1	0.429	263.5	0.473
108	129.80	0.0184	0.8231	54.6	211.6	0.1117	0.3884	237.5	0.429	263.9	0.472
110	133.40	0.0185	0.7990	55.3	211.8	0.1130	0.3877	237.9	0.428	264.3	0.472
112	137.42	0.0185	0.7786	56.1	212.0	0.1144	0.3871	238.1	0.427	264.6	0.471
114	141.44	0.0185	0.7583	56.8	212.2	0.1157	0.3864	238.3	0.427	264.8	0.470
116	145.46	0.0186	0.7379	57.6	212.4	0.1171	0.3858	238.6	0.426	265.1	0.470
118	149.48	0.0186	0.7176	58.3	212.6	0.1184	0.3851	238.8	0.426	265.3	0.469
120	153.50	0.0187	0.6972	59.1	212.8	0.1198	0.3845	239.0	0.425	265.6	0.468

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

TABLE 4. PROPERTIES OF CARBON DIOXIDE

	1	<u> </u>		l	HEAT	Content	AND ENTE	OPY TAKE	n From -	-40 F	
Sat. Temp. F	ARS. PRESS. LR PER	Vol	CME	Heat C	ontent	Ent	ropy	50 F S	uperheat	100 F St	perheat
F	SQ IN.	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Ht. Ct.	Entropy	Ht. Ct.	Entropy
0 2 4 5 6	305.5 315.9 326.5 332.0 337.4	0.01570 0.01579 0.01588 0.01592 0.01596	0.29040 0 28030 0.27070 0.26610 0.26140	18.8 19.8 20.8 21.3 21.8	138 9 138.8 138.8 138.8 138.7	0.0418 0.0440 0.0461 0.0472 0.0483	0.3024 0 3014 0.3005 0.3000 0.2994	153.7 153.7 153.7 153.7 153.7 153.7	0.3342 0.3330 0.3318 0.3312 0 3306	167.5 167.6 167.7 167.7 167.8	0 3612 0.3600 0.3588 0.3582 0.3576
8	348.7	0.01605	0.25260	22.9	138.7	0.0504	0.2982	153.7	0.3293	167.9	0.3563
10	360.2	0.01614	0.24370	24.0	138.7	0.0526	0.2970	153.7	0.3281	168.0	0.3550
12	371.9	0.01623	0.23540	25 0	138.6	0.0548	0 2958	153.7	0.3270	168.1	0.3538
14	383.9	0.01632	0.22740	26.1	138.6	0.0571	0.2946	153.7	0.3259	168.2	0.3526
16	396 2	0 01642	0.21970	27.2	138.5	0.0593	0.2933	153.7	0.3249	168.3	0.3513
18	408.9	0.01652	0.21210	28 3	138.4	0.0616	0.2921	153.7	0.3238	168.5	0.3501
20	421 8	0 01663	0.20490	29.4	138.3	0.0638	0.2909	153.7	0.3227	168.6	0.3489
22	434.0	0.01673	0 19790	30.5	138.2	0 0662	0.2897	153.7	0.3214	168.7	0.3479
24	448.4	0 01684	0 19120	31.7	138.1	0.0686	0.2885	153.7	0.3202	168.8	0.3470
26	462.2	0.01695	0.18460	32.9	138.0	0.0710	0.2873	153.7	0.3189	168.9	0.3460
28	476.3	0.01707	0.17830	34.1	137.9	0.0734	0 2861	153.7	0.3177	169 0	0 3451
30	490.8	0 01719	0.17220	35.4	137.8	0.0758	0.2849	153.7	0.3164	169.1	0 3441
32	505.5	0 01731	0.16630	36 7	137.7	0.0781	0.2834	153.7	0.3158	169.2	0.3431
34	522 6	0 01744	0.16030	37.9	137.4	0.0804	0.2820	153.7	0.3151	169.3	0.3421
36	536.0	0.01759	0.15500	39.1	137.2	0.0828	0.2805	153.7	0.3145	169.4	0.3411
38	551.7	0.01773	0.14960	40.4	136.9	0.0851	0 2791	153.7	0.3138	169.5	0 3401
39	559.7	0 01780	0.14700	41.0	136.8	0.0862	0.2783	153.7	0.3135	169.5	0 3396
40	567.8	0 01787	0.14440	41.7	136.7	0.0874	0.2776	153.7	0.3132	169.6	0 3391
41	576.0	0.01794	0.14185	42.3	136.5	0.0887	0.2768	153.7	0.3127	169.6	0.3386
42	584.3	0.01801	0.13930	42.9	136.3	0.0899	0.2761	153.7	0.3122	169.7	0.3381
44	601.1	0.01817	0.13440	44.3	136.1	0.0924	0.2745	153.7	0.3112	169.8	0.3371
46	618.2	0.01834	0.12970	45.6	135.7	0.0950	0.2730	153.7	0.3101	169.9	0.3362
48	635 7	0.01851	0.12500	47 0	135 4	0.0975	0.2714	153.7	0.3091	170.0	0.3352
50	653.6	0.01868	0.12050	48.4	135.0	0.1000	0.2699	153.7	0.3081	170.1	0.3342
52	671.9	0.01887	0.11610	49 8	134.5	0.1027	0.2681	153.7	0.3069	170.2	0.3333
54	690 6	0.01906	0.11170	51.2	133.9	0.1054	0 2663	153.7	0.3057	170.3	0 3324
56	709.5	0.01927	0.10750	52 6	133.4	0.1081	0.2644	153.7	0.3046	170.5	0 3315
58	728 8	0.01948	0.10340	54.0	132.7	0.1108	0.2626	153.7	0.3034	170.6	0 3306
60	748.6	0.01970	0.09940	55.5	132.1	0.1135	0 2608	153.7	0.3022	170.7	0 3297
62	769.0	0.01995	0.09545	57.0	131.3	0.1164	0.2584	153.7	0.3012	170.8	0.3289
64	789.4	0.02020	0 09180	58.6	130.6	0.1194	0.2560	153.7	0 3002	170.9	0 3281
66	810.3	0.02048	0.08800	60.2	129.7	0.1223	0.2535	153.7	0.2991	171.0	0.3273
68	831.6	0.02079	0.08422	61.9	128.7	0.1253	0.2511	153.7	0.2981	171.1	0 3265
70	853 4	0.02112	0.08040	63.7	127.5	0.1282	0.2487	153.7	0.2971	171.2	0.3257
72	875.8	0.02152	0 07654	65.5	126.0	0.1321	0.2450	153.7	0.2962	171.3	0 3250
74	898.2	0.02192	0.07269	67.3	124.5	0.1360	0.2414	153 7	0.2953	171.4	0 3242
76	921.3	0.02242	0 06875	69.4	122.8	0 1398	0.2377	153 7	0.2945	171.5	0.3235
78	944.8	0.02300	0.06473	71.6	120.9	0.1437	0 2341	153.7	0.2936	171.6	0 3227
80	968.7	0 02370	0.06064	73.9	118.7	0.1476	0.2304	153.7	0.2927	171.7	0 3220
82	993.0	0.02456	0.05648	76.4	116.6	0.1578	0.2195	153.7	0.2920	173.8	0 3215
84	1017.7	0.02553	0.05223	79.4	113.9	0.1679	0.2087	153.7	0.2914	176.0	0 3209
86	1043.0	0 02686	0 04789	83 3	110.4	0.1781	0.1978	153.7	0.2907	178.2	0 3204
87.8	1069 9	0.03454	0 03454	97.0	97.0	0.1880	0.1880	153.7	0 2901	180.1	0 3199

Types of Compressors

There are many different types of compressors, using various refrigerants. Each type has its advantages for its particular application, and those generally used for air conditioning are of the following types:

- 1. Reciprocating compressors (commonly refer ed to as piston type).
- 2. Centrifugal compressors.
- 3. Steam jet.

Reciprocating compressors are available in a wide range of sizes and types. Any of a number of refrigerants, including dichlorodifluoromethane

(F₁₂), methyl chloride, ammonia, carbon dioxide, and sulphur dioxide may be used in reciprocating machines. The first of these is used extensively in direct expansion systems of comfort air conditioning.

Compressors may be classified into two general types, (a) open type, (b) enclosed type. If the driving mechanism is external to the compressor, then the shaft must be brought out through the crankcase and a shaft seal or stuffing box must be used to prevent escape of the refrigerant. This type of compressor is known as an open-type compressor. When the driving mechanism is located within the crankcase of the compressor in such a way as to avoid the necessity of a shaft seal, the compressor is known as the completely enclosed or hermetically sealed type.

Open type compressors may be further classified as belt driven and directly connected. A great number of direct-driven units are now being used which generally operate at higher rotational speeds than the belt-driven type.

The present tendency is toward forced lubrication of the bearings of compressors by means of an oil pump driven from the crankshaft, although there are many splash lubricated compressors on the market. The chief advantages of the forced lubricated compressor are that the lubrication system requires less energy for its operation than the splash type, the oil can be easily filtered before it enters the bearings, and less oil is usually required.

The compressor capacity must be selected for and matched to the maximum load for the installation on which it is to be used. Air-conditioning loads, however, vary over a wide range, and a wide fluctuation in air conditions may result during periods of light load if on-and-off control of full compressor capacity is used. To prevent such undesirable fluctuation, several methods are employed to vary the capacity of reciprocating compressors, such as:

- 1. By-passing one or more cylinders, of a multi-cylinder compressor, from discharge to suction.
- 2. Rendering the suction valves of one or more cylinders of a multi-cylinder compressor inoperative. This is usually accomplished by depressing the suction valves.
- 3. Varying the speed of the compressor, usually by using variable speed or two-speed electric motors.
 - 4. Using clearance pockets to control the quantity of refrigerant pumped.
- 5. Restricting the suction inlet to one or more of the cylinders of a multi-cylinder compressor either by an automatic modulating valve or by an on and off valve.

All of these methods, with the exception of variable speed, result in a slightly lowered overall compressor efficiency when in use, since the mechanical losses remain constant whereas the quantity of refrigerant pumped is lowered.

Centrifugal compressors are used with very low pressure refrigerants; usually both evaporator and condenser work below atmospheric pressure. Water and monofluorotrichloromethane (F_{11}) are the refrigerants commonly used in centrifugal machines.

Compression of the refrigerant is accomplished by means of centrifugal force; therefore, this type of compressor is inherently suitable for large volumes of refrigerant at low pressure differentials. Two or more stages are usually required and high speeds are necessary to obtain good efficiency.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 5. Properties of Monofluorotrichloromethane (F_{11})

SAT.	ABS.	Vol			Неат	Content	AND ENT	ropy Tak	EN FROM	-40 F	
TEMP. F	Press. Le per	102	U ALLE	Heat C	ontent	Entr	ору	25 F Su	perheat	50 F S	uperheat
•	Sq In.	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Ht. Ct.	Entropy	Ht. Ct.	Entropy
0 5 10 15 20 25	2.59 2.96 3.38 3.85 4.36 4.94	0.01020 0.01024 0.01028 0.01032 0.01036 0.01040	12.100 10.700 9.530	7.81 8.81 9.82 10.80 11.90 12.90	91.2 92.0 92.8 93.7	0.0178 0.0200 0.0222 0.0243 0.0264 0.0286	0.1974 0.1973 0 1971 0.1970	94.7 95.5 96.3 97.2	0.2049 0.2047 0.2045 0.2043 0.2041 0.2039	98.2 99.0 99.8 100.7	0.2120 0.2117 0.2114 0.2111 0.2109 0.2107
30 35 40 45 50	5.57 6.27 7.03 7.88 8.79	0.01045 0.01049 0.01053 0.01057 0.01062		13.90 14.90 16.00 17.00 18.10	96.1 96.8 97.6	0.0307 0.0328 0.0349 0.0370 0.0391	0.1968 0.1968 0.1967	99.6 100.3 101.1	0.2038 0.2037 0.2036 0.2035 0.2034	103.1 103.8 104.6	0.2105 0.2103 0.2101 0.2099 0.2098
55 60 65 70 75	9.80 10.90 12.10 13.40 14.80	0.01066 0.01071 0.01076 0.01081 0.01086	3.000	19.10 20.20 21.30 22.40 23.50	100.0 100.8 101.5	0.0412 0.0432 0.0453 0.0473 0.0493	0.1967 0.1967 0.1967	103.5 104.3 105.0	0.2033 0.2033 0.2032 0.2032 0.2031	107.0 107.8 108.5	0.2097 0.2096 0.2094 0.2093 0.2092
80 85 90 95 100 105	16.30 17.90 19.70 21.60 23.60 25.90	0.01091 0.01096 0.01101 0.01106 0.01111 0.01116	2.500 2.280 2.090 1.918 1.761 1.620	24.50 25.60 26.70 27.80 28.90 30.10	103.6 104.4 105.1 105.7	0.0513 0.0533 0.0553 0.0573 0.0593 0.0613	0.1966 0.1966 0.1966 0.1965	107.1 107.9 108.6 109.2	0.2030 0.2029 0.2028 0.2028 0.2027 0.2026	110.6 111.4 112.1 112.7	0.2090 0.2089 0.2088 0.2087 0.2085 0.2084

TABLE 6. PROPERTIES OF WATER

Sat	ABS. Press			Heat Content and Entropy Taken From +32 F								
Temp. F	LB PER SQ IN.				Heat Content		ору	50 F Su	perheat	100 F S	uperheat	
	OQ 1111.	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Ht. Ct	Entropy	Ht. Ct.	Entropy	
45 50 55 60 65 70 75	0.1000 0.1217 0.1475 0.1780 0.2140 0.2561 0.3054 0.3628	0.01602 0.01602 0.01602 0.01602 0.01602 0.01603 0.01603 0.01604 0.01605 0.01606	2941.0 2441.0 2034.0 1702.0 1430.0 1206.0 1021.0 868.0	3.02 8.05 13.07 18.08 23.08 28.08 33.08 38.07 43.06	1074.4 1076.8 1079.2 1081.5 1083.9 1086.2 1088.6 1090.9 1093.2	0.0062 0.0163 0.0262 0.0361 0.0459 0.0556 0.0652 0.0746 0.0840	2.1724 2.1555 2.1390 2.1230 2.1073 2.0920 2.0771 2.0625 2.0483	1098.3 1100.6 1102.9 1105.2 1107.5 1109.8 1112.2 1114.5 1116.7	2.2172 2.2000 2.1832 2.1667 2.1506 2.1349 2.1196 2.1046 2.0900	1122.2 1124.5 1126.7 1129.0 1131.3 1133.5 1135.8 1138.1 1140.3	2.2406 2.2234 2.2066 2.1902 2.1742 2.1585 2.1432 2.1283	
85 90 95	0.596 0.698 0.815 0.949 1.101	0.01609 0.01610 0.01612 0.01613 0.01615	543.3 467.9 404.2 350.3	58.03 63.01 68.00	1097.8 1100.0 1102.3 1104.6	0.1025 0.1116 0.1206 0.1296	2.0208 2.0075 1.9946 1.9819	1121.2 1123.4 1125.6 1127 9	2.0619 2.0483 2.0350 2.0220	1144.7 1146.8 1148.9	2 0721	

For properties of steam at high temperatures, see Table 8, Chapter 1.

The evaporator is usually constructed as an integral part of the centrifugal type condensing unit, to chill water which is then circulated to the air conditioning system. This is done because it would not be economical to pipe these large volumes of refrigerant any distance.

Centrifugal compressors like reciprocating compressors can be divided into two general types, open and enclosed. In general, the open type compressor is geared to the driving mechanism, and operates at higher speed than the driving motor or turbine. A modern completely enclosed direct-driven, centrifugal compressor is illustrated in Fig. 2.

The compressor capacity can be varied by controlling the condensing pressure. This is accomplished by regulating the quantity and temperature of the condenser cooling water. The capacity falls off with increasing condensing pressure. Centrifugal compressors are seldom

Fig. 2. Enclosed Type Centrifugal Condensing Unit

built for less than 50 tons capacity, since it is not practical to make impellers which pump much less than the volume of refrigerant required for this tonnage.

The steam jet type of compressor, under certain circumstances, is desirable for use in air conditioning. Steam supplies directly the power used for compressing the refrigerant, thus eliminating the losses connected with other methods of supplying energy. As the compression ratio between the evaporator and condenser under normal circumstances is large, the mechanical efficiency of the equipment is somewhat lower than that of the positive mechanical type compressor. The condensing water requirements are considerably greater, as both the refrigerant and the impelling steam must be condensed.

The steam jet system functions on the principle that water under high vacuum will vaporize at low temperatures. Steam jet boosters or compressors of the type commonly used in power plants for various processes will produce the necessary low absolute pressure to cause evaporation of the water.

¹Application and Economy of Steam Jet Refrigeration to Air Conditioning, by A. R. Mumford and A. A. Markson (A.S.H.V.E. Transactions, Vol. 44, 1938, p. 33).

A diagrammatic representation of a typical steam ejector water cooling system is shown in Fig. 3. The figures correspond to an average representative system. The water to be cooled enters the evaporator and is cooled to a temperature corresponding to the vacuum maintained. Because of the high vacuum, a small amount of the water introduced in the evaporator is flashed into steam. As this requires heat, and the only source of heat is the rest of the water in the evaporator tank, this other water is almost instantly cooled to a temperature corresponding to the boiling point determined by the vacuum maintained. The amount of water flashed into steam is a small percentage of the total water circulated through the evaporator, amounting to approximately 11 lb per hour per ton of refrigeration developed. The remainder of the water at the

Fig. 3. Diagrammatic Arrangement of Steam Jet Vacuum Cooling Unit

desired low temperature is pumped out of the evaporator and used at the point where it is required.

The ejector compresses the vapor which has been flashed in the evaporator, plus any entrained air taken from the circulated water, to a somewhat higher absolute pressure and the vapor and air mix with the impelling steam on the discharge side of the jet. The total mixture then passes from the ejector into the condenser.

The slight amount of air which may be entrained in the cooled water is removed by a small secondary ejector which raises the pressure sufficiently so that the air can be discharged to the atmosphere. A secondary condenser is necessary to condense the steam in the secondary jet.

Although steam jet vacuum cooling units have been built for as small as 5 to 6 tons capacity, a single booster of smaller than 15 tons capacity is difficult to build. They can readily be built for steam pressures of from

5 to 200 lb per square inch and condenser water temperatures as high as 90 F. The steam consumption in pounds per hour per ton of refrigeration increases rapidly as the booster steam pressure is lowered. For example, the lowering of the booster steam pressure from 200 to 90 lb per square inch results in an increase in steam consumption of approximately 5 per cent whereas a further decrease in booster steam pressure to 10 lb per square inch increases the steam consumption by approximately 72 per cent over that required at 200 lb per square inch.

The capacity of a steam jet system is usually controlled by controlling the number of boosters in use since the unit usually has several boosters operating on the same evaporator. Usually one booster is automatically

Fig. 4. Performance Characteristics of Compression Refrigeration Machines at Constant Speed

controlled whereas the others are manually operated. The capacity is dependent, as for all compressors, upon the evaporator temperature, or in other words, the suction pressure. For example, the capacity is lowered approximately 17 per cent if the evaporator or chilled water temperature is lowered from 50 to 45 F. The capacity therefore can be controlled to some extent by regulating the evaporator temperature.

CHARACTERISTICS OF COMPRESSION SYSTEMS

The various types of compression systems have quite different characteristics of capacity and power with varying evaporator and condenser temperatures, as may be noted from curves in Figs. 4 and 5.

From Fig. 5 it may be observed that power requirements for the centrifugal compressor increase much more rapidly than for the reciprocating compressor with increase in evaporator temperature. Similarly, the capacities of the steam ejector and centrifugal compressors increase more rapidly than those of the reciprocating compressor with increase in evaporator temperature. Thus, both the steam jet and centrifugal machines tend to be more self-regulating than the reciprocating. It is also evident from Fig. 5 that the steam jet equipment is best suited for operation at high evaporator temperatures.

The effect of condenser temperature upon the power and capacity of the different types of compressors is shown in Fig. 6. It may be noted that the power required by the reciprocating compressor increases rapidly

Fig. 5. Performance Characteristics of Compression Refrigeration Machines at Constant Speed

with increase in condenser temperature, while the power curve for the centrifugal compressor is relatively flat. It is also evident that the capacity of the steam jet compressor is independent of condenser temperature until a certain point is reached where it drops to zero. As previously stated, steam jet equipment requires more condensing water than other types of compression systems. Consequently, steam jet systems are well suited to those applications where condensing water is cheap, or where condensing water is rather high in temperature.

ABSORPTION SYSTEMS

The fundamental rule governing the absorption (in a closed system) of a gas by a liquid is Raoult's Law, which states that at any given temperature the ratio of the partial pressure of a volatile component in a solution to the vapor pressure of the pure component at the same temperature is equal to its mol fraction in the solution. The mol fraction in turn is equal to the number of mols of substance divided by the total number of mols present. The number of mols in a given weight of a compound is equal to the weight divided by the molecular weight.

This law applies strictly, only to what is known as an ideal solution, that is, one in which the inter-molecular forces between the substances present in the solution are equal. Actually, no such solutions exist, so that deviations from Raoult's Law are always found in practice. The deviation is called positive when the observed pressure is greater than that calculated from Raoult's Law, while the term negative deviation refers to the opposite case. Negative deviations are found wherever chemical attraction exists between the solvent and the solute. Positive

Fig. 6. Closed Absorption System

deviation occurs when there is a difference in the internal pressure of the components, chemical attraction between them being absent.

In order to make an effective absorption machine, large negative deviations from Raoult's Law must be shown by solutions of the refrigerant in the liquid absorbent, because the larger the negative deviation, the greater is the amount of refrigerant that can be cycled, using a given weight of absorbent. Cycling a large amount of refrigerant for a given weight of absorbent is important because of the heat required to raise the temperature of the mixture and disassociate the refrigerant and the absorbent. Only the latent heat of the refrigerant can be recovered for useful work.

Many refrigerant-absorbent combinations have been proposed and quite a number have been tested. A diagrammatic representation of a typical closed absorption system is outlined in Fig. 6. In this system a mixture of refrigerant and absorbent is evaporated in the generator, passes to an analyzer and rectifier where it is purified, and then to a condenser where the refrigerant and remaining absorbent is condensed. It

then passes through an expansion valve to an evaporator, where heat is absorbed from a cooling load. From the evaporator the vapor and residual absorbent passes to an absorber where it meets absorbent which is initially low (weak) in refrigerant concentration. The absorbent absorbs the vapor and the strong absorbent liquor is transferred to the generator through an interchanger with the weak liquor returning from the generator.

A cooling medium, ordinarily water, is used in the absorber to remove the heat of absorption and maintain the absorptive power of the absorber at a maximum.

Like the steam jet system, the absorption system compares most favorably when a cheap source of cooling water and steam or other heat is available. Unlike the steam jet system, the comparative performance is usually best with a wide range of temperature between the evaporator and absorber, since with a good refrigerant-absorbent combination, the amount of heat and water required for a given refrigerating effect increases slowly with an increase of evaporator-condenser temperature range.

At the present time the most used refrigerant-absorbent combinations are: (1) water and ammonia, and (2) dichloromonofluoromethane and dimethyl ether of tetraethylene glycol. With the latter combination the boiling points of the refrigerant and absorbent are sufficiently wide apart that almost pure refrigerant is obtained without the use of a rectifier.

EXPANSION VALVES

The thermostatic expansion valve is a device to regulate the flow of liquid refrigerant so that the evaporator will always be used to best advantage. The evaporator coil must be kept as full as possible without any chance of liquid refrigerant entering the suction line. The expansion valve accomplishes this by regulating the supply of refrigerant, so that the temperature of the gas leaving the evaporator is always slightly higher than the temperature of the boiling refrigerant inside of it. This difference in temperature between the outgoing (suction) gas and the liquid refrigerant in the evaporator is called the superheat of the gas.

The operation of the thermostatic expansion valve can best be explained by means of a diagram, Fig. 7. A small refrigerant charge in the control bulb exerts a pressure through the tube to the upper side of the diaphragm, which tends to open the valve.

The magnitude of this pressure is determined by the temperature of the suction gas leaving the evaporator, as the control bulb is attached to the suction line at this point and is at approximately the same temperature. The suction pressure in the evaporator is transmitted through the equalizer tap and exerts an opposing force on the other side of the diaphragm in the direction to close the valve. This pressure corresponds to the temperature of the boiling refrigerant. The resulting force on the diaphragm is determined by the differential between the temperature of the suction gas and the boiling point of the refrigerant, which is the amount of superheat in the gas. If this temperature differential becomes greater (superheat increases), the resultant force on the diaphragm opens the valve and admits more refrigerant. The reverse is true if the superheat decreases,

and the valve partly closes, thus admitting less refrigerant. The spring keeps the valve closed until the resultant force on the diaphragm corresponds to the desired superheat. The adjustment of the spring will change the amount of superheat to be maintained in the suction gas.

The selection of the expansion valve is, of course, determined by the capacity of the valve. The capacity of a valve with a given orifice is determined by the refrigerant used, the differential of pressure across the valve and the amount the liquid is sub-cooled as it enters the valve. The expansion valves are usually rated at zero sub-cooling of the liquid, or 100 per cent liquid. Oftentimes special devices are used to properly distribute the refrigerant among the parallel paths of the evaporator. These distributing devices usually have considerable pressure drop. Where they are used, the pressure drop across the expansion valve is not the difference between suction and discharge pressures, as allowance must be made for the pressure drop across the distributing device. An equal-

FIG. 7. TYPICAL THERMOSTATIC EXPANSION VALVE

izer connection from the evaporator suction line must be made to the underside of the diaphragm (see Fig. 7) whenever the valve outlet is not at the evaporator pressure so as to insure suction pressure at this point. When distributing devices are used, this equalizer connection is essential for proper operation of the valve. Another pressure drop allowance must be made for the liquid line, particularly when the liquid line has an appreciable vertical rise.

CONDENSERS

Condensers used for liquifying the refrigerant are of three general designs: (1) air, (2) water, and (3) evaporative (combination air and water).

Air Cooled

Air cooled condensers are seldom used for capacities above 3 tons of refrigeration, unless an adequate water supply is extremely difficult to

obtain, as, for instance, in railway air conditioning. Even on fractional tonnage installations, air is used as the condensing medium only where water is expensive or where simplicity of installation warrants the higher condensing pressure, and consequent higher power costs than would be obtained using water as the condensing medium.

The conventional air cooled condenser consists of an extended surface coil across which air is blown by a fan. The hot discharge gas enters the coil at the top and, as it is condensed, flows to a receiver located below the condenser. Air cooled condensers should always be located in a well ventilated space so that the heated air may escape and be replaced by cooled air.

The principal disadvantages of air cooled condensers are the power required to move the air and the reduction of capacity on hot days. This loss of capacity due to high condensing pressures on hot days requires that equipment of increased capacity be selected to meet the peak load. Thus at normal loads the equipment is oversized.

Water Cooled

Water cooled condensers are of the double pipe type, the shell and tube type, or the shell and coil type. Double pipe condensers are arranged so that water passes through the inner of two concentric pipes and refrigerant circulates through the annular space between the pipes. Where possible, there should be counter-flow of the refrigerant and the condensing water to obtain maximum temperature differences. This type is usually used only with small condensing units.

The amount and temperature of the condensing water determine the condensing temperature and pressure, and indirectly the power required for compression. It is therefore necessary to determine a balance so that the quantity of water insures economical compressor operation.

Because there is a decided tendency to conserve the water in city mains and because most large cities are restricting the use of water for air conditioning and refrigeration equipment, it is often necessary to install cooling towers or evaporative condensers. Cooling towers, unfortunately, produce the warmest condensing water at the time when the load on the system is greatest, so that the refrigeration equipment must be designed to meet the maximum load at abnormal condensing water temperatures. If properly designed, this makes little difference in the efficiency of operation throughout the year except at those times when the condensing water temperature is highest. As this occurs only for 5 per cent of the entire cooling period it can be disregarded as a factor in establishing yearly operating costs.

The cooling tower has a certain advantage over the use of water from the city mains. Economies are possible when a cooling tower is used, which cannot be achieved by the use of condensing water from city mains. In certain localities, the lowest city water temperature met during the summer months is from 65 to 70 F. This temperature range takes place for the entire cooling period, regardless of the outdoor temperature. With a cooling tower, the temperature of the condensing water may rise to 80 or 85 F under maximum conditions, but under less than maximum conditions the temperature of the water leaving the cooling tower drops

considerably. It has been established that in these localities during 50 per cent of the time, the outdoor wet-bulb temperature varies from 60 to 70 F and the cooling tower water, for the same periods, varies from 65 to 75 F. When the outdoor wet-bulb temperature drops below 60 F, which occurs approximately 30 per cent of the time, the condensing water temperature is still lower. The cost of water used for condensing is small as the only water required is that used to make up the loss by evaporation

Fig. 8. Schematic View of an Evaporative Condenser

in the cooling tower itself. Refer to the section on Cooling Towers in Chapter 27.

Shell and coil condensers are in general use for medium sized condensing units, and consist of a coil of tubing mounted inside a shell. The cooling water passes through the coil.

Evaporative Condensers

Due to the high cost of city water for condenser purposes, and due to ordinances in some localities prohibiting the discharge of large quantities of such water into the sewage systems, there has been developed a condenser which uses a minimum amount of water on a finned surface, cooling

it to approximately the wet-bulb temperature of the surrounding atmosphere.

The end view of a typical evaporative condenser is shown in Fig. 8. The fan draws the air over a finned tube condenser which is kept wet by a water spray. The discharge refrigerant gas from the compressor enters the top of the condenser coil and the liquid refrigerant is drained from the bottom of the coil into a liquid receiver and then circulates through the remaining portion of the system in the usual way.

The water is circulated through the spray nozzles and the level is maintained in the sump by means of a float valve. The eliminator plates

Table 7. Pressure Losses in Dichlorodifluoromethane Discharge or Hot Gas Lines²

	Pressure Drop in Pounds per Square Inch per 100 Ftb										
CAPACITY BTU PER HOUR	Line Sizes, Inches										
	28	34	7/8	118	13/8	15/8	21/8	25/8	31/8	35/9	
10,000 15,000 20,000 25,000 30,000	2 3 4.9 8.5	1 0 2.0 3 4 5 3 7 5	0.6 1 0 1 7 2 6 3 6	0 6 0 9 1 2	0 5						
40,000 50,000 60,000 70,000 80,000			6.4 9 8	2 1 3 1 4 4 6 0 8 0	0 7 1.0 1 3 1 9 2 5	0.5 0.7 0.9 1.1					
90,000 100,000 125,000 150,000 175,000				10 2	3.1 3.8 6.0 8.5 11.6	1.4 1 7 2.6 3.8 5.1	0 5 0.7 1 0 1.3				
200,000 250,000 300,000 400,000 500,000						6.7	1 7 2.6 3 7 6 7 10 5	0.6 0 9 1 2 2 2 3 5	0 5 0.9 1 5	0 7	
600,000 800,000 1,000,000 1,250,000 1,500,000 2,000,000								5.0 9 0	2 1 3 8 5 8 9.5	1.0 1.8 2.9 4.4 6.4 11.3	

*Soft annealed copper tubing up to and including % in. outside diameter. Hard copper pipe % in. outside diameter and larger.

bLength of tubing includes the average number of fittings.

are placed in the path of the water-air mixture so as to remove the entrained water. The air leaving the unit is almost completely saturated, so that care must be taken in locating discharge ducts to prevent condensation.

Evaporative condensers are available in sizes up to 100 tons or more. These units use only a small portion of the water required for a water cooled condenser. The water is vaporized by the heat of the refrigerant so that each pound of water used extracts approximately 1000 Btu from the refrigerant, whereas, under standard rating conditions where the water temperature rise is 20 F, each pound of water extracts only 20 Btu

from the refrigerant. Including the water lost by entrainment in the discharge air, by overflow and stand-by evaporation, the water used is about 3 to 5 per cent of the amount that would be required for a water cooled condenser.

The evaporative condenser requires more maintenance, occupies greater space (must be located where air is available), and has a higher first cost than the water cooled condenser, but where the use of water is restricted or expensive, the evaporative condenser has become widely accepted. Compared with a water cooled condenser and cooling tower, which com-

Table 8. Pressure Losses in Dichlorodifluoromethane Liquid Refrigerant Lines

# # #	PRESSURE DROP IN POUNDS PER SQUARE INCH PER 100 Fta								
Capacity Btu per Hour	Pipe Sizes, Inches								
	₹8	11,	13 ₈	15%					
100,000 125,000 150,000 175,000 200,000	0 6 0 9 1 3 1 8 2.3	0.6		1					
225,000 250,000 275,000 300,000 325,000	2 9 3.6 4.3 5 I 5.9	0 8 1 0 1.2 1.4 1 6	1	1					
350,000 375,000 400,000 450,000 500,000	6.9 7.9 9 0	1 8 2 1 2 3 2.9 3.5	0 3 1 0 1.3	1					
550,000 600,000 700,000 800,000 900,000		4 3 5 0 6.7 8 7	1 5 1.8 2 4 3 1 3 9	0.8 1.1 1.4 1.7					
1,000,000 1,200,000 1,400,000 1,600,000			4 7 6 7 9 0	$\begin{array}{c} 2.1 \\ 3.0 \\ 4.0 \\ 5.1 \end{array}$					
1,800,000 2,000,000 2,200,000				6.3 7.9 9.2					

^{*}Length of tubing includes the average number of fittings.

bination uses about the same quantity of water, the evaporative condenser has the advantage of lower cost and smaller space requirements.

EVAPORATORS AND COOLERS

The types of coolers used in connection with air conditioning work fall into three general groups. The *first*, is the direct cooling of water; the *second*, direct cooling of air; and the *third*, cooling of brine for circulation in a closed system, which can cool either water or air. One method of the direct cooling of water is to install direct expansion coils in the spray chamber so that the water sprayed into the air comes in direct contact

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 9. Pressure Losses in Dichlorodifluoromethane Suction Refrigerant Lines

****		Pr	essure D	ROP IN PO	unds per \$	Square In	CH PER 100) Fra
COPPER PIPE ACTUAL O.D. INCHES	Capacity Btu per Hour		R	EFRIGERAN	TEMPER	ATURE DE	g F	
		-10	0	10	20	30	40	50
•	2,000 4,000 6,000 8,000 10,000	0.3 1.3 2.8 4.8 7.4	0.3 1.0 2.2 3.8 5.8	0.2 0.8 1.8 3.1 4.8	0.2 0.7 1.5 2.6 3.9	0.2 0.6 1.2 2.1 3.3	0 1 0.5 1.0 1.8 2.8	0.1 0.4 0.9 1.5 2.3
34	12,000 14,000 16,000 18,000 20,000	10.5 14.0	8.4 11.0 14.5	6.8 9.1 12.0 15.0	5.6 7.6 9.8 12.3 15.0	4.7 6.4 8.3 10.4 12.7	4 0 5.4 7.0 8.7 10 7	3.3 4.5 5.8 7.2 8.9
11/8	7,000 10,000 15,000 20,000 25,000	0.4 1.0 1.9 3 3 5 0	0.3 0.7 1.5 2.6 4.0	0.3 0.5 1.2 2 1 3.2	0.2 0.5 1.0 1.7 2.7	0.2 0.4 0.8 1.4 2 2	0.2 0.3 0.7 1.2 1.9	0.1 0.3 0.6 1.0 1.6
-/8	35,000 45,000 60,000 70,000	9.7 15.8	7.7 12.6	6.2 10.0	5.1 8.4 14.8	4 3 7.0 12 2	3 6 5.9 10.2 14.0	3.0 4.9 8.6 11.7
13%	10,000 15,000 20,000 30,000 40,000	0.3 0.7 1.2 2.6 4.6	0.2 0.5 0.9 2.1 3.6	0.2 0.4 0.7 1.6 2.8	0.2 0.3 0.6 1.3 2.3	0 1 0 3 0 5 1.1 1.9	0 1 0 2 0.4 0 9 1.6	0.1 0.2 0.4 0.8 1.4
•	50,000 60,000 80,000 100,000	7.0 10.0	5.5 7 8 14 0	4.4 6.2 11.0	3.5 5.0 8.7 13.5	2 9 4.2 7.3 11.3	2.5 3.5 6.2 9.5	2.1 3.0 5.2 8.2
15 ₆	30,000 40,000 50,000 60,000 70,000	1.6 2.7 4.2 6.1 8.7	1 3 2.1 3.2 4.5 6.3	1.0 1.7 2.5 3.6 4.8	0.8 1.4 2.1 2.9 3.8	0 7 1 1 1.7 2 4 3 1	0.6 0.9 1.4 2.0 2.6	0.5 0.8 1.2 1.7 2.2
178	80,000 90,000 100,000 120,000 140,000		8.4	6 3 8.0 10.0	4.9 6.2 7.6	4 0 4 9 6 1 8 6	3.3 4 1 5.0 7 0 9 5	2.8 3.5 4.2 5.9 7.9
21/6	50,000 100,000 150,000 200,000	0.7 2.6 5.6 9.8	0.5 1.8 3.9 6 7	0.4 1.4 3.0 5.2	0.3 1.1 2.4 4.1	0.3 0 9 2 0 3 4	0.2 0.8 1.6 2.8	0.2 0.7 1.4 2.4
-70	250,000 300,000 350,000 400,000	14 8	10.3 14.5 19.5	8.0 11.3 15.3 19 6	6.3 9.0 12.0 15.3	5.1 7.2 9.7 12.5	4.2 6.0 7.8 10.0	3.6 5.0 6.7 8.5

aLength of tubing includes the average number of fittings.

with the cooling coils. Another common and efficient method of cooling spray water is to use a Baudelot type of heat absorber where the water flows over direct expansion coils at a rate sufficiently high to give efficient heat transfer from water to refrigerant.

Another type of spray water cooler is the shell and tube heat exchanger in which the refrigerant is expanded into a shell enclosing the tubes through which the water flows. The velocity of the water in the tubes affects the rate of heat transfer, and as the refrigerant is in the shell com-

Table 9. Pressure Losses in Dichlorodifluoromethane Suction Refrigerant Lines (Concluded)

O D	1	PR	essure Di	OP IN POU	NDS PER S	QUARE INC	H PER 100	FTa
COPPER PIPE ACTUAL O.D. INCHES	CAPACITY BTU PER HOUR		Ri	EFRIGERAN	TEMPERA	TURE DEC	F	
25% 31%		-10	0	10	20	30	40	- 50
	50,000 100,000 150,000 200,000	0.2 0.7 1.6 2.8	0 2 0.6 1.2 2 1	0.1 0.5 1.0 1.7	0 1 0 4 0.8 1.4	0 1 0 3 0 6 1.1	0 1 0.2 0.5 0.9	0.1 0.2 0.4 0.7
25/8	250,000 300,000 350,000 400,000	4 3 6.1 8 2	3.4 4.5 6.0 7.8	2.6 3.7 5 0 6 5	$\begin{array}{c} 21 \\ 30 \\ 40 \\ 5.1 \end{array}$	1.7 2.4 3.2 4.2	1.3 1.9 2.5 3.3	1.1 1.5 2.0 2.7
	450,000 500,000 550,000 600,000			7.7	6.4 78	5.3 6.4 7.7	4 0 5 0 6.2 7.4	3.5 4.2 5.1 6.2
3⅓	200,000 300,000 400,000 500,000 600,000	1 2 2.6 4.5 7.3	1.0 20 3.4 5.4 8 1	0.8 1 6 2.6 4.1 6.0	0.6 1.3 2 1 3.3 4.7	0.5 1 0 1 7 2 7 3.8	0 4 0.8 1 4 2.2 3.1	0.4 0.7 1 3 1.9 2.7
	700,000 800,000 900,000 1,000,000			8.4	6.5 8.6	5.2 6.8 8.7	4.2 5.5 7.0 8.9	3.5 4.6 5.9 7.3
	300,000 400,000 500,000 600,000	1 2 2 0 3 2 4.6	0.9 1.6 2.5 3 6	0.7 1.3 1.9 2.8	0.6 1 0 1.6 2.2	0.5 0.8 1.3 1.8	0 4 0.7 1 0 1 5	0 3 0 6 0.9 1.3
35/8	700,000 800,000 900,000 1,000,000	6.4 8.7	4.9 6.4 8.2	3.8 4.9 6.2 7.7	3.0 3.9 4.9 6.1	2.5 3.2 3.9 4.9	2.0 2.5 3.2 4.0	1.7 2.2 2.7 3.3
	1,100,000 1,200,000 1,300,000 1,400,000			9.4	7.3 8.7	5.8 6.9 8.0 9 3	4.8 5.6 6 6 7 6	4.0 4.8 5.6 6.4
	400,000 600,000 800,000 1,000,000 1,200,000	1.0 2.4 4.1 6.6 10.0	0.8 1.8 3.1 4.8 7.1	0.6 1.4 2.4 3.7 5.4	0 4 1.1 2 0 3 0 4.4	0.4 0.9 1.6 2.5 3.5	03 07 13 20 29	0.3 0.6 11 16 24
41/8	1,400,000 1,600,000 1,800,000 2,000,000 2,200,000		10.0	7.5 10.0	5 9 7 7 10 0	4 8 6 2 7.9 9.7	3 9 5.1 6.4 7 9 9.5	3 3 4 2 5.3 6 6 7 9

aLength of tubing includes the average number of fittings.

pletely surrounding the tubes at all times, good contact and a high rate of heat transfer are insured. The disadvantage of such a system is that with the falling off of load on the compressor the suction temperature or the temperature in the evaporator drops and there is a possibility of freezing the water in the tubes, which, of course, might split the tubes and allow the refrigerant to escape into the water passage. This danger can be eliminated by automatic safety devices.

Another system of cooling spray water is to submerge coils in the spray

collecting tank, or in a separate tank used for storage. The heat transmission through the walls of the coils, however, is low and a great deal more surface is required than for any other type of cooler. However, with large storage tanks this type of cooling can be utilized to advantage.

When direct cooling of air is employed, the refrigerant is inside the coil and the air passes over it. Cooling depends upon convection and conduction for removing the heat from the air. The type of coil used can be either smooth or finned, the finned coil being more economical in space requirement than the smooth coil. The fins, however, must be far enough apart so as not to retain the moisture which condenses out of the air.

The indirect cooler, where brine is cooled by the refrigerant and the resulting cold brine is used to cool either air or water, introduces several other considerations. It is not the most economical from a power consumption standpoint, as it is necessary to cool the brine to a temperature sufficiently low so that there is an appreciable difference between the average brine temperature and that of the substance being cooled. This requires that the temperature of the refrigerant must be still lower, and consequently the amount of power required to produce a given amount of refrigeration increases due to the higher compression ratio. There are other considerations which make such a system desirable. In the first place, where a toxic refrigerant is undesirable or cannot be used because of fire or other risks, especially in densely populated areas, the brine can be cooled in an isolated room or building and can then be circulated through the air conditioning equipment. This arrangement eliminates any possibility of direct contact between the air and refrigerant.

REFRIGERANT PIPE SIZES

The selection of proper pipe sizes and frictional pressure losses varies with the installation and the capacity of the system. Generally the suction piping should be selected so that the pressure loss is between 2 and 3 lb per square inch. The pressure drop in liquid lines should be maintained so as to permit no vaporization in the pipes with limiting pressure drops not to exceed 5 lb per square inch. Hot or discharge gas lines should be limited to approximately 4 lb per square inch pressure drop. All pressure drops mentioned are total system losses and include not only the piping losses, but also the pressure losses in the valves, fittings and coils.

Pressure drops for discharge or hot gas lines may be determined from Table 7. Pressure losses in liquid refrigerant lines of various sizes and capacities are given in Table 8. Pressure drops of suction refrigerant pipe lines at varying capacities and refrigerant temperatures are given in Table 9. Oil circulating with the refrigerant appreciably increases the pressure losses in both suction and discharge lines from that given in these tables. All tables are for 100 ft of pipe, including an average number of fittings, and for other lengths the losses are proportionate. Losses through control and regulating valves must be added to the other pipe losses to determine the total drop. All copper pipe referred to in these tables is of type L wall thickness and is designated by outside diameter.

The effect of the sizes of refrigerant lines on the system may be studied by referring to the preceding discussion on Characteristics of Compression

Systems. It will be noted that any lowering of the suction pressure at the compressor lowers the capacity. Therefore, excessive pressure drop through the suction piping should be avoided. On the other hand, the suction line must not be made too large when using refrigerants which are soluble in oil, because under such circumstances the velocity of the returning refrigerant may become too low to carry back the entrained oil. Pressure drop in the discharge line also lowers the capacity of the system but not to the same extent as does the pressure drop in the suction line. The velocities of the refrigerant in either suction or discharge lines must not be excessive or noise will result. Velocities of 1000 to 2000 fpm are common in suction lines, and from 2000 to 3500 fpm are used in discharge lines. Velocities in the discharge lines as high as 5000 fpm can only be used where the fittings and bends are all stream-lined as noise will otherwise result.

The pressure drop in the liquid line affects the capacity of the expansion valve as the pressure drop across the valve is reduced by the amount of

Fig. 9. Typical Ice System Showing Bunker Details

the pipe line drop. If the liquid line drop is sufficient to cause flashing (i.e. vaporizing) of some of the liquid refrigerant, a hissing noise in the lines and valves usually develops.

ICE SYSTEMS

Cold water systems using ice as the cooling agent have been installed in many theaters, restaurants, funeral homes, churches and other places where short hours of operation and high peaks of cooling demand make this type of system desirable. A comparatively small quantity of ice in the water cooling tank of such a system can release refrigeration at a relatively rapid rate. For instance, neighborhood theaters having a peak demand of 1,200,000 Btu per hour (100 tons refrigeration) have found 8 ton capacity ice bunkers satisfactory.

In operation, the water in the air conditioning system is circulated over ice placed in an insulated box and is cooled to the 38 or 40 F range or higher if desired. This cold water is pumped from the ice bunker to air cooling coils or spray type air washers. The blowers, coils, air washer or

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 10. Basis of Equipment Selection

Capacity Tons	Majority Used	Some Used	Few Used
0 to 5	Unit systems in conditioned space.	Unit central systems using duct distribution.	Built up central systems.
5 to 25	Built up central systems using reciprocating compressors.	Unit central systems using duct distribution.	Unit systems in conditioned space. Built up systems using absorption and adsorption systems.
25 to 50	Built up central systems using reciprocating compressors.	Built up central systems using centrifugal compressors.	Central systems using adsorption systems.
50 to 400	Built up central systems using reciprocating compressors.	Built up central systems using steam jet and centrifugal compressors.	
400 and Over	Built up central systems using centrifugal compressors.	Built up central systems using steam jet.	

air handling sections are the same as those parts in any system employing cold water as a refrigerant.

The ice water cooler or ice bunker is usually built at the installation in a location where it can easily be iced. It can be constructed of any desired material such as concrete, steel, or wood with an adequate amount of insulation to save the ice from one period of use to the next. The basic requirement is that the tank be durable and water tight. A typical bunker with connections to a coil type air conditioning system is shown in Fig. 9. About 60 cu ft of gross bunker volume is allowed per ton of ice capacity.

The shape of the bunker usually conforms to the available space. The one illustrated has overhead sprays, but if head-room is lacking the ice is placed on the floor of the bunker with the water returned around the lower part of the blocks from a perforated distribution pipe run along one side of the bunker. To secure good circulation the supply water is extracted from a similar perforated pipe on the opposite side of the bunker.

Table 11. Typical Operating Conditions for Two Types of Load

Tipe of	LOAI	o, Bru per l	Hour	RATIO SENSIBLE	AIR ENTERING OPERATING BALAN			ING BALANC	E Point	
Enclosure	Sensible	Latent	Total	TO TOTAL	$\operatorname*{Deg}_{F}$	Per Cent R.H.	Evaporator Temp Deg F	Condenser Pressure Lb per Sq In.	Per Cent Sensible Heat	
Restaurant	103,000	45,000	148,000	0.695	82	45	34.4	123	69.9	
Office	121,000	27,000	148,000	0.820	82	45	42.2	100	82.1	

The temperature of the water is controlled at a predetermined point by a thermostat in the supply line. If the temperature drops too low, a part of the return water is by-passed directly to the sump and is not cooled over the ice. In the larger systems it is customary to install an overflow control which, as the ice melts, discards the excess water through an economizer coil. The surface of the economizer is large in relation to the flow so that the water is warmed to 60 F or more as it is discharged from the system.

STORAGE SYSTEMS

In an attempt to lower initial equipment cost and operating expense, or increase the refrigeration capacity of an existing air conditioning system, storage refrigeration has been utilized in a few applications. Some of the methods which have been adopted include the storage of refrigeration in the form of chilled water, chilled brine, ice on evaporator coils² and the accumulation of thin sheets of ice on copper plates in a steel tank³. If the peak load factor is low as compared with a long period of operation, such as in a restaurant, or if the hours of operation are short but the usage factor high as in a church, then it is possible to consider storage refrigeration. This method of accumulating refrigeration frequently makes it possible to use low cost off-peak electric power. Power costs may also be reduced by installing a smaller refrigeration plant, augmented by a storage system, and by operating it for longer periods.

EQUIPMENT SELECTION

The selection of proper refrigeration equipment for any air conditioning job is of utmost importance for satisfactory results. The most important factors in the selection of the equipment are:

- 1. Loads (as determined by the conditions of the space to be cooled).
- 2. Economics (both initial and operating costs).
- 3. Codes (local safety codes must be adhered to and influence the type of system to be used).

A broad division of equipment to be used for a particular installation or application may be made on the basis of the magnitude of the load. Current general practice is outlined in Table 10.

Unit or packaged systems, consisting of a reciprocating compressor, condenser, evaporator and fans, are generally used in the smaller sized jobs where electric power is available, as they are manufactured complete, ready to install and are the most economical (see Chapter 23).

The reciprocating compressor in the built-up central system (see Chapter 21) covers the widest range of application since it is applicable to either the direct expansion or indirect systems and can be driven by steam or gas engines, or by electric motors. The quantity of condensing

²The Application of Storage Refrigeration to Air Conditioning, by C. F. Boester (A.S.H V.E. Transactions, Vol. 45, 1939, p. 675).

^{*}Use of Cold Accumulators in the Air Conditioning Field, by R. W. Evans and C J. Otterholm (A.S.H.V.E. JOURNAL SECTION, Heating, Proping and Air Conditioning, September, 1941, p. 582).

cooling medium required is also less than for any other system with the exception of the centrifugal compressor, which uses the same amount.

Centrifugal compressors are used for large installations, and usually where the indirect system is required. The driving mechanism can be steam turbine or electric motor. The steam jet system is used where steam is available and cooling water can be had in large quantities.

It will be noted by referring to Fig. 4 that all systems using compressors have a common characteristic and that is, that the capacity varies with the evaporating temperature. Not only can the equipment be selected to produce a given result but the performance can be predicted under varying load conditions by the simple expedient of using the variable of

Fig. 10. Compressor and Coil Performance

evaporating temperature as the abscissa and the load or capacity as the ordinate in a series of curves.

Manufacturers of compressors and cooling coils furnish performance data for apparatus that can be plotted in the form of curves similar to those shown in Fig. 10. The performance of a compressor is plotted as a series of curves, each curve being drawn for a given condensing pressure. The performance of a direct expansion coil at two different air velocities is plotted on the same graph. The operating point will be, of course, where the two curves cross.

Data given in Table 11 illustrate two types of conditioned enclosures having the same total load of 148,000 Btu per hour, but with two different ratios of sensible to total heat. In the case of the office with a ratio of 82 per cent sensible to total heat, the operating point A in Fig. 10 is found to be 42.2 F evaporating temperature with a face velocity of 500 fpm. In the case of the restaurant, with a ratio of 69.5 per cent sensible to total heat, the air velocity is lowered to 300 fpm and the evaporating temperature is lowered to 34.4 F as shown in point B of Fig. 10. In order to

obtain the same capacity, a larger condensing unit is used. This illustration assumes zero pressure drop through the suction line. The pressure drop can be taken into account by shifting the compressor performance curves by the amount of pressure drop expressed in degrees Fahrenheit.

THE REVERSE CYCLE

In heating by the reverse refrigeration cycle energy is absorbed in an evaporator from some available source of heat, pumped to a higher temperature and delivered to a condenser. The heat from the condenser is used for heating purposes. The compressor acts as a heat pump whose fundamental function is to raise the potential of the heat. The theoretical

Fig. 11. Schematic Operation of Reversed Cycle Conditioning System

ratio of the heat delivered to the work of compression is given in Equation 1.

$$\frac{T_2}{T_2 - T_1} \tag{1}$$

where

 T_1 = absolute temperature of evaporator.

 T_2 = absolute temperature of condenser.

Thus, with a small spread of temperature between the evaporator and the condenser, 6 or 8 times as much heat may be obtained theoretically, and 3 to 5 times practically, as the work introduced. There are a number

⁴Cooling Homes, A Field for Refrigeration, by A R Stevenson, presented at the symposium of the Refingeration with Gas Committee of the American Gas Association, April 20, 1926. The Heat Pump, An Economical Method of Producing Low-grade Heat from Electricity, by T G N. Haldane (Electric Review, Vol. 105, p. 1161-1162, December 27, 1929, and I. E. Journal, Vol. 68, p. 666-675, June, 1930). Edison Building Heated and Cooled by Electricity, by H. L. Doolittle (Power, Vol. 74, p. 384, September 8, 1931). House Heating by Pump with 5 to 1 Pick-up Ratio, by Gilbert Wilkes and R E. Marbury (Electrical World, Vol. 100, p. 828, December 17, 1932). An All Electric Heating, Cooling and Air Conditioning System, by Philip Sporn and D. W. McLenegan (A.S. H.V. E. Transactions, Vol. 41, 1935, p. 307). Using the Reversed Cycle Refingerating Principle for a Self-Contained Heating and Cooling Unit, by Henry L. Galson (A.S. H.V. E. Journal, Section, Heating, Priping and Air Conditioning, October, 1935, p. 497). Heating by Reversed Refingeration, by A. J. Lawless (Heating, Priping and Air Conditioning, August, p. 473, September, p. 519, 1940).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

of limitations, however, the most serious of which is the lack of ready availability of a practical source of heat.

- 1. Well water is the most desirable since its temperature is higher than other sources even in the winter, and thus a large amount of heat may be removed in relation to the weight of water handled.
- 2. Air may be used but its specific heat is low and its temperature uncertain. When the most heat is needed, the temperature of the air is lowest, thus resulting in the least favorable temperature combination.
- 3. It has been proposed to obtain heat by freezing water but this is still in the experimental stage.

Some of the other factors which act as limitations are: the large temperature spread when using air as a source of heat and when attempting to cool with even moderately low outside temperatures, the frequent disparity between the size of the cooling load and heating load requiring extra equipment for a complete heating load, and the relatively high initial cost of equipment as compared to that at present available for heating by conventional means.

Because of these limitations, the present application of the system is largely limited to temperate climates, such as Florida and Southern California, or to heating only for intermediate seasons, or to other localities which have peculiar advantages as, for instance, the ready availability of well water. In these locations it is frequently possible to do all of the heating necessary with the refrigeration equipment so that the extra cost is only that of reversing the functions of the condenser and evaporator.

There are a number of reversed systems now in operation, particularly among utility companies, using well water as the source of heat. These systems range in size up to 320 hp. In the case of the largest system in operation at present, the cost of the electrical energy would have to be approximately 0.7 cents per kilowatthour in order to compete with oil at 6 cents per gallon.

A typical arrangement of a reversed cycle conditioning system where air is used as a source of heat is shown in Fig. 11. If the air seldom drops below freezing, heat is often required in the morning and cooling during the afternoon in order to maintain comfortable conditions in such a system. The arrangement as shown lends itself to automatically changing over as required.

Chapter 26

HEAT TRANSFER SURFACE COILS

Coil Applications, Construction and Arrangement, Steam Coils, Water Coils, Direct-Expansion Coils, Flow Arrangements, Applications, Calculation of Heat Transfer, Air Flow Resistance, Coil Performance, Selection

THE coils described in this chapter are used in air conditioning systems for heating or cooling an air stream under forced convection. The surface coil equipment may be made up of a number of banks assembled in the field, or the entire assembly may be factory constructed. The applications of each type of coil are limited to the field within which it is rated. Other limitations are imposed by code regulations, by proper choice of materials for the refrigerants used and the condition of the air handled, or by an economic analysis of the possible alternates on each installation.

For heating service, these coils are used as preheaters, reheaters or booster heaters, (see Chapters 21 and 22). The function of the coils is air heating only, but the apparatus assembly may include means for humidification and air cleaning. Steam or hot water are the usual heating media, although others are used in special cases, such as reheating by means of discharge gas from a refrigerating system.

Coils are used for air cooling with or without accompanying dehumidification. Examples of cooling applications without dehumidification are precooling coils using well water or other relatively high temperature water to reduce the load on the refrigerating machinery, or water cooled coils to remove sensible heat in connection with chemical moisture-absorption apparatus. By proper coil selection it is possible to handle both sensible cooling and dehumidification together as further explained later. The apparatus assembly usually includes an air cleaning means to protect the coil from accumulation of dirt and to keep dust and foreign matter out of the conditioned space. Although cooling and dehumidification are the usual functions, there are cases of cooling coils purposely wetted as an aid to air cleaning and odor absorption.

The usual cooling media used in surface coils are cold water and volatile refrigerants such as dichlorodifluoromethane and methyl chloride, but others are used in special cases. Brines are seldom required for the range of applications covered by this chapter, although there are cases where low entering air temperatures with large latent heat loads require a refrigerant temperature so low that water becomes impractical. Some-

times, also, brine from an industrial system already installed is the only convenient source of refrigeration.

For combined cooling and dehumidifying, surface coils present an alternate to spray dehumidifiers. For many applications it is possible, by proper selection of apparatus, choice of air velocities, refrigerant temperatures, etc., to perform the same duty with either. In a few cases both sprays and coils are used. The coils may then be installed within the spray chamber, either in series with the sprays or below them. In making the selection between spray and surface dehumidifiers, certain advantages of each should be considered. The fact that a spray dehumidifier is usually designed to deliver nearly saturated air tends to simplify the control problem. In this case the dry-bulb temperature is also the dew-point, and hence a dew-point control can be arranged by using a simple duct thermostat. Spray dehumidifiers have the advantage over unwetted coils of a certain degree of air cleaning and odor absorption. On the other hand, coils make possible a closed and balanced cooling water circuit, obviating the unbalanced pumping head, the complication of water level control, and danger from possible floods incidental to multiple-spray dehumidifiers, especially if located on different levels. The use of coils often makes it possible for the same surface to serve for summer cooling and winter heating by circulating cold water in the one season and hot water in the other, with consequent saving in apparatus and piping. Surface-coil dehumidifiers seldom deliver saturated air, and wet-bulb depression of 0.5 to 4 F (or more) is usual. Another advantage is that where the surface coil system can be used with direct expansion of refrigerant, it is comparatively low in initial and operating costs. Of course the safety of the occupant must be kept in mind in comfort conditioning applications. Some localities have refrigeration codes which restrict the use of direct-expansion coils in the air stream, and hence local codes should be consulted by the engineer before a system employing direct expansion methods is designed. The choice between spray dehumidifiers and coils depends upon the necessities and the economic aspects of each case and no general rule can be given. There are many installations in which either can be used.

COIL CONSTRUCTION AND ARRANGEMENT

Coils are basically of two types, those consisting of bare tubes or pipe and those of *extended* surface construction. The former are little used for the applications covered by this chapter, but are often employed where conditions cause frost accumulation, and for cooling surface within spray dehumidifiers.

The heat transmission from air passing over a tube to a refrigerant flowing within it is impeded by three resistances. The same is true when the air is being heated by steam or hot water in the tube. The first resistance is from the air to the surface of the tube, usually called the outside surface resistance or air-film resistance. Second is the resistance to the flow of heat by conduction through the metal itself. Finally there is another surface or film resistance to the flow of heat between the inside surface of the metal and the fluid in the tube. For the applications under consideration both the resistance of the metal wall to heat conduction, and the inside surface or film resistance are usually low as compared with the air-side surface resistance. This is especially the case where sensible

CHAPTER 26. HEAT TRANSFER SURFACE COILS

heating or cooling only is accomplished. Where dehumidification accompanies sensible cooling, or where the external surface of the tube is sprayed with large quantities of water, the resistance to heat flow between the tube and the air flowing over it is much decreased. In the case of the water spray, the surface resistance depends on the amount and the method of application of the water. Economy in space, weight and cost make it advantageous to decrease the external surface resistance, where it is proportionately large, to approach that of the tube wall, and that from tube to refrigerant. This is accomplished by increasing the external surface by means of fins. With water spray the external resistance is already low, and the fins are less useful for increasing the overall heat transfer. Sometimes water spray is applied to the same type surface as would have been used without it. The overall heat transfer is not necessarily increased much by such an arrangement, but the water spray may serve other purposes than to increase the flow of heat, such as air and coil cleaning.

In fin or extended surface coils the external surface of the tubes is known as primary and the fin surface is called secondary. The primary

Fig. 1. Types of Fin Coil Arrangement

surface consists generally of round tubes or pipes. In some cases these are staggered and in others in line with respect to the air flow. staggered arrangement gives a somewhat higher heat transfer value but also a higher resistance to air flow and in some cases makes the header and return bend arrangement more complicated. A number of types of fin arrangement are used, the most common of which are spiral, flat and flat-crinkled or corrugated, all as shown in Fig. 1. While the spiral fin surrounds each tube individually in all cases, the flat types may be continuous (including several rows of tubes), or they may be round or square, with individual fins for each tube. All of these, as well as other less common types, are in use, the selection for a particular installation being based on economic considerations, space requirements and resistances of individual designs of coils. A most important factor in the performance of extended surface coils is the bond between the fin and the tube. An intimate contact is assured in a number of ways. The assembled coil may be coated with tin, zinc, etc., after fabrication. The spiral type fin may be knurled into a shallow groove on the exterior of the tube. The tube may be expanded after the fins are assembled, or the tube hole flanges of a flat or corrugated fin may be made to override those in the preceding

fin and so compress them upon the tube. There are also types of construction where the fin is formed out of the material of the tube itself. In any case the successful performance of a fin surface depends upon the bond between fin and tube being secure and remaining so in service.

For heating coils the materials most generally used are copper, steel and aluminum. Sometimes aluminum or brass fins are used on copper tubes. Steel is uncommon except in special cases. Some types of heating coils are made of cast-iron. There are sufficient practical installations of each of these to demonstrate that they can all give good service. However for equal performances brass and aluminum fins must be of greater thickness than copper fins on account of their lower coefficients of conduction. The copper coils are frequently tin-dipped and steel coils galvanized to protect them from corrosion and to assure a bond between fin and tube.

Cooling coils for water or for volatile refrigerants are most frequently of copper, both fin and tube. Aluminum fins on copper tubes are also used. For brines such as sodium or calcium chloride and for ammonia, steel fins and tubes are common.

Although there are many variations for special cases, tube and fin sizes and spacings for air conditioning coils, both heating and cooling, fall within fairly narrow limits. The tubes are usually 3/8, 1/2, 5/8, or 3/4 in. OD, and the fins spaced from 4 to 8 per inch, 6 per inch being a common The tube spacing generally varies from about $1\frac{1}{8}$ to 2 in. on centers. Small tube size and close fin spacing give large capacity with small space demand, but the resistance, both over the surface and through the tubes, is higher than with larger tubes and more widely spaced fins. Moreover, too close a fin spacing may result in trouble from dirt accumulation, especially on dehumidifying coils, and may also cause trouble from water hold-up between the fins, particularly with air flow vertically upward. This condition increases the air resistance and decreases the capacity of the coil. Water hold-up sometimes causes flooding trouble in vertical air flow units by accumulating too much water for the drain to handle all at once when the fan is stopped.

Steam Coils

For proper performance of steam heating coils, condensate and air must be continually eliminated and the steam must be evenly distributed to the individual tubes. This distribution is usually accomplished by individual orifices in the tubes, by distributing plates and orifice in the steam header, or by perforated internal steam-distributing pipes extending into the individual tubes. The latter arrangement has the advantage of distributing the steam throughout the length of each tube, and is conducive to uniform delivered air temperatures. The tendency for freezing of condensate at the bottom of the coil with cold entering air and light heating loads is also minimized. This is especially valuable for outside air preheaters. Methods of air and condensate elimination are discussed in detail in Chapters 14, 15 and 22.

Water Coils

The performance of water coils, for heating or cooling, depends on the elimination of air from the system and proper distribution of water. Air elimination is taken care of in the system piping as described in Chapter

CHAPTER 26. HEAT TRANSFER SURFACE COILS

16. To assure a pressure drop sufficient for adequate distribution but at the same time to provide against excessive pumping head where large water quantities are handled, water coils are provided with various water circuit arrangements. For instance, a typical coil 18 tubes high and 6 tubes deep in the direction of air flow can be arranged for 6, 9, 18 or 36 parallel water circuits as conditions may require. Orifices in individual tubes are occasionally employed but are usually unnecessary as the resistance of individual water circuits is generally sufficient to effect a satisfactory distribution. In cases such as well water precooling coils, where there may be considerable sand and other foreign matter in the water, provision for cleaning of individual tubes is of advantage. It is important to arrange water coils for drainage if located where they will be

Fig. 2. Various Water Circuit Arrangements

exposed to freezing. For this reason the circuits should be so laid out that there are no pockets to hold water. Fig. 2 shows such construction. The drains may be provided in the water piping although they are often arranged in the coil headers.

Direct-Expansion Coils

Coils for volatile refrigerants present more complex problems of fluid distribution than do water, brine or steam. It is desirable that the coil be effectively and uniformly cooled throughout, and necessary that the compressor be protected from entrained, unevaporated refrigerant. There are two types; namely, flooded systems, and thermal expansion valve systems, as shown in Figs. 3 and 4. With flooded control the coils are supplied with liquid by the same type of circulation that exists in a water tube boiler, while the level in the surge drum is maintained by the action

of the float regulator, or by properly charging the plant in the case of the high pressure float drainer. The thermal expansion valve system depends upon the thermal valve automatically feeding just as much liquid to the coils as is required to maintain the superheat at the coil suction outlet within predetermined limits which vary from about 6 to 10 F. The

thermal valve arrangement is in common use for the type of coils covered by this chapter, while the flooded system is comparatively rare.

With the flooded system the refrigerant distribution through the tubes depends on properly selecting the length of the feeds and the head of liquid imposed upon the liquid inlets. No auxiliary distributing devices

Fig. 5. Types of Refrigerant Feed Distributing Heads

are required. With the thermal valve system there are two factors to consider. There must be, generally, more than one refrigerant feed through the coil per thermal valve to keep the pressure drop through the refrigerant circuit within practical limits and to reduce the corresponding penalty in increased evaporating temperature. At the same time the

CHAPTER 26. HEAT TRANSFER SURFACE COILS

coil must be so arranged that the required suction superheat can be attained with a minimum sacrifice in the performance of the coil as a whole. It is general practice to attain this superheat within the coil itself and not by the use of external heat exchangers or other auxiliary devices.

With thermal expansion valves it is advantageous to keep the pressure drop through the refrigerant feeds as low as possible. The feeds are laid out to expose each to the same mean temperature difference so that it handles the same refrigerating load. A distributing means is imposed between valve and coil liquid inlets to divide the refrigerant equally among the feeds. Such a distributor shall be effective for distributing both liquid and vapor, since the entering refrigerant is a mixture of the

Fig. 6. Arrangement for Face Control

Fig. 7. Arrangement for Depth Control

two. Fig. 5 shows three typical types of distributors. In distributor A the liquid and gas mixture from the thermal valve is led tangentially into a chamber. The coil feed connections extend outward radially at the top of this chamber. In distributor B the refrigerant is discharged at a high velocity through a central jet against the end plate, forming a uniform mixture of gas and liquid within the distributor, from which individual connections are led as shown. In type C the refrigerant enters at high velocity from the thermal valve and is discharged against the end plug in which the individual liquid feeds are closely arranged. These distributors can be used in either vertical or horizontal position. Although there are other forms of distributors the ones mentioned are typical examples. The individual liquid connections from the distributor to the coil inlet are commonly made of small diameter tubing and are all of the same length

and diameter in order to impose the same friction between the distributor and the coil. Since the thermal valves act in response to the superheat at the coil outlet, this superheat should be produced with the least possible sacrifice of active evaporating surface. Sometimes a single thermal valve is used per coil. In other cases multiple valves are used, with the coil divided across the air flow or parallel to the air flow as shown in Fig. 6. The arrangement of Fig. 7 should be avoided since it offers the disadvantage of unequal load on the two parallel circuits.

Flow Arrangement

The relative direction of flow of the air outside the tubes and the medium within them influences the performance of the surface. There are three types of relative flow in common use. Fig. 8A shows parallel-flow in which the air and the medium in the tubes proceed through the coil in the same direction. Fig. 8B shows counter-flow in which the

Fig. 8. Flow of Media in Tubes in Relation to Air Flow

medium in the tubes proceeds in a direction opposite to the flow of air. Fig. 8C shows cross-flow in which the air and the medium in the tubes pass at right angles to each other. Parallel flow is seldom used for the reason that a lesser mean temperature difference results than with counter-The counter-flow arrangement is almost universally used in brine or water coils to take advantage of the highest possible mean temperature difference for given entering water and air temperatures. It is also invariably used in coils fed with volatile refrigerant to take advantage of the higher air temperature for superheating the leaving gas. arrangement assists complete evaporation and superheating of the refrigerant which is essential to proper operation of the thermal expansion valve. Cross-flow is common in steam heating coils, the temperature within the tubes being substantially uniform and the mean temperature difference the same whatever the direction of flow, relative to the air. Cross-flow is to be avoided in coils with volatile refrigerants on account of unequal loading of parallel circuits and danger of short circuiting of liquid refrigerant which will disturb proper functioning of the thermal expansion valve.

Applications

Heating coils in field assembled banks are used for a number of purposes as described in Chapter 21. They may be arranged with the air flow vertical or horizontal, although the latter is more common. For steam heating the coils may be set with the tubes vertical or horizontal. In the latter case the coil should be sloped to provide for condensate drainage. Because of the multi-circuit feed arrangement and the necessity for avoiding air and water pockets, water heating coils are generally arranged with the tubes horizontal. Certain precautions must be taken against freezing. Where steam coils are used with entering air below freezing temperature, throttling the steam supply may result in freezing the condensate in the bottom of the coil if the tubes are of the variety not provided with internal distributing pipes, or an equivalent arrangement.

Fig. 9. Typical Arrangement of Cooling Coils in a Central System

If these are used, there is little danger of freezing the condensate as long as the leaving air temperature is not allowed to fall below about 40 F. As an added precaution with both steam and water coils the outside air inlet dampers are often closed automatically when the fan is stopped to avoid trouble caused by very cold outside air drifting in during off periods.

A typical arrangement of water cooling coils is shown in Fig. 9. Some means should be provided to filter all the entering air to keep dirt and foreign matter from accumulating on the coils. The assembly is provided with a drip-pan to catch the condensate during summer dehumidifying duty and to collect the non-evaporated water from the humidifying sprays in winter. The drip connection should be made ample in size and liberally provided with plugged tees and crosses for cleaning. It should not be exposed to freezing temperatures in winter if the apparatus is used on winter humidifying duty. Access doors should be provided for servicing filters, humidifying nozzles, and fan bearings and for cleaning the coils. With certain designs of coils when used for dehumidifying, eliminators must

be used beyond the coil to catch any water which may be blown into the air stream. It is customary to include these eliminators when the air velocity exceeds about 450 fpm with the individual fins and about 600 fpm for the continuous flat fin type. Where a number of coil sections are stacked one upon another, and where the velocities are low, so that eliminators need not be used, occasional trouble results when water splashes down from one coil to the next and blows out into the air stream. In such cases drip troughs as shown in Fig. 10 are used to collect this water and conduct it to the condensate pan.

Sometimes finned surface coils on summer cooling and dehumidifying duty are provided with water sprays. These sprays are of two types. In the first type a set of spray nozzles is arranged for intermittent cleaning. The operator can wash the coils off as frequently as necessary. These

Fig. 10. Coil Arranged with Drip Trough

Fig. 11. Recirculating Spray System for Cleaning Coils

sprays are not operative when the system is in use and no recirculating pump is provided. The second arrangement requires a collecting tank and a recirculating pump. The water is in circulation whenever the apparatus is in operation, and assists in keeping the coil clean and in absorbing odors. Fig. 11 illustrates such an arrangement. Wherever air by-passes are used around a coil on summer duty for control purposes, it is of advantage to direct only return air through the by-pass rather than a mixture of return and outside air. The casing should be arranged accordingly. To maintain the air quantity handled by the fan reasonably constant, and to assure the required design quantity of by-passed air when the by-pass damper is open, cooling coil banks are frequently furnished with both face and by-pass dampers as shown in Fig. 9.

Although both heating and cooling coils are made of sufficient strength to take up expansion and contraction arising within themselves, care should be taken to avoid imposing strains from the piping on to the coil connections. (See Chapters 15 and 16).

HEAT TRANSFER AND AIR FLOW RESISTANCE

The transfer of heat between the heating or cooling medium and the air stream is influenced by several variables:

- 1. The temperature difference.
- 2. The design and surface arrangement of the coil.
- 3. The velocity and character of the air stream.
- 4. The velocity and character of the medium in the tubes.

The driving force is usually taken as the logarithmic mean temperature difference for heating or cooling without dehumidification. For combined cooling and dehumidification, a special measure of the propelling force is used as described later. Logarithmic differences are generally employed in practice although there are special flow relationships used, such as cross-flow, where they do not strictly apply. With volatile refrigerants there is often an appreciable pressure drop and corresponding change in evaporating temperature through the refrigerant circuit. The problem is further complicated by the fact that the refrigerant is evaporating in part of the circuit and superheating in the remainder. In spite of this, heat transfers and ratings for coils using volatile refrigerants are usually based in practice on a refrigerant temperature corresponding to the average pressure in the coil.

The design and surface arrangement of the coil includes such items as materials, type, thickness, height and spacing of the fins, and the ratio of this surface to that of the tube, the use of the staggered or in-line tube arrangement, and provisions to increase the air turbulence such as the use of corrugated as against flat fins. Staggered tubes increase the total heat transfer as against the in-line arrangement and corrugated fins are more effective than flat. Of especial importance is the bond between fin and tube.

The velocity of the air usually considered is the coil face velocity. This bears a varied relation to the actual velocity over the surface, depending upon the individual coil design. As long as a fixed design of coil is under consideration face velocities may be used, but they may be unsatisfactory in comparing different designs, as it is the actual surface velocity that is significant. The air volume is often based on standard air at 70 F and a barometric pressure of 29.92 in. Hg. The use of air volume in coil rating information may be misleading. The significant value is mass velocity in pounds per minute and not cubic feet per minute, because for a fixed volume the corresponding weight may vary widely, depending upon the temperature and barometric pressure under consideration.

At the same mass air velocity, varying performance can be obtained depending upon the turbulence of the air flow into the coil and upon the uniformity of distribution of air over the coil face. The latter is very important in obtaining reliable test ratings and in realizing rated performance in practical installations. The resistance through the coils will assist in properly distributing the air, but where the inlet duct connections are brought in at sharp angles to the coil face, the effect is frequently bad and there may even be reverse air currents through the coils. This

reduces the capacity, but can be largely avoided by proper layout or by the use of directing baffles.

The heat transfer depends also upon the velocity of the medium in the tubes and upon its character, whether flowing water, condensing steam or evaporating volatile refrigerant. Heat transfer rates expressed as Btu per square foot of internal surface per degree logarithmic mean effective temperature difference between the fluid and tube wall are, for example, about 150 to 300 for evaporating dichlorodifluoromethane, about 350 to 1200 for water at 2 and 6 fps and about 1200 for condensing steam. The influence of the medium in the tubes on the overall heat transfer rate is, therefore, apparent.

Because of these variables, reliable rating and performance information for any design of coil must be based on actual tests on that coil under the expected conditions of operation. A comparison between the performance of two designs, unless based on such tests on each, may lead to entirely erroneous conclusions.

PERFORMANCE OF HEATING AND COOLING COILS

Heating and cooling coils are essentially heat exchangers and as such their performance depends in general upon:

- 1. The overall coefficient of heat transfer from the fluid within the coil to the air it heats or cools.
- 2. The mean temperature difference between the fluid within the coil and the air flowing over the coil.
 - 3. The physical dimensions of the coil.

Thus, for any one definite operating condition, the heating or cooling capacity of a given coil is expressed by the following basic formula:

$$Q = U \times MTD \times A \tag{1}$$

where

Q = total heat transferred by the coil, Btu per hour.

U= overall coefficient of heat transfer, Btu per hour per square foot of external coil surface per degree Fahrenheit temperature difference between the fluid within the coil and the air flowing over the coil.

MTD = mean temperature difference, degrees Fahrenheit between the fluid within the coil and the air passing over it. (This is commonly taken as the logarithmic mean temperature difference.)

A =external surface area of the given coil, square feet.

The performances of heating and cooling coils are influenced by the same factors in all but one very important exception, that is, when cooling coils operate wet or act as dehumidifying coils. For this reason, in the later discussion, heating and dry cooling coils are treated as one group and dehumidifying coils as another.

OVERALL COEFFICIENT OF HEAT TRANSFER

Of all factors affecting the performance of heating or cooling coils, the overall coefficient of heat transfer is the most difficult to determine as it is influenced by several factors which depend upon coil design and conditions of operation.

CHAPTER 26. HEAT TRANSFER SURFACE COILS

Considering any coil, whether of bare pipe or of finned type, the overall heat transfer coefficient for a given size and design of coil can always be considered as a combined effect of three individual heat transfer coefficients, namely:

- 1. The film coefficient of heat transfer between air and the external surface of the coil, usually given in Btu per hour per square foot external surface per degree Fahrenheit mean temperature difference.
 - 2. The coefficient of heat transfer through the coil material—tube wall, fins, ribs, etc.
- 3. The film coefficient of heat transfer between the internal surface of the coil and the fluid flowing within the coil, usually given in Btu per hour per square foot internal surface per degree Fahrenheit mean temperature difference.

These three individual coefficients acting in series result in an overall coefficient of heat transfer in accordance with the basic laws. For a bare pipe coil the overall coefficient of heat transfer, whether for heating or for cooling (dry), can be expressed by a simplified basic formula as follows:

$$U = \frac{1}{\frac{R}{f_r} + \frac{X}{k} + \frac{1}{f_o}} \tag{2}$$

where

- U = overall coefficient of heat transfer, Btu per hour per square foot external surface per degree Fahrenheit mean temperature difference between air and fluid within the coil.
- $f_{\rm r}=$ film coefficient of heat transfer between the internal surface of the coil and the fluid flowing within the coil, Btu per hour per square foot internal surface per degree Fahrenheit mean temperature difference between that surface and the average fluid temperature.
- $f_{\rm a}=$ film coefficient of heat transfer between air and the external surface of the coil, Btu per hour per square foot external surface per degree Fahrenheit mean temperature difference between the mass of air and the external surface.
- k =conductivity of material from which the bare pipe is constructed, Btu per hour per square foot per degree Fahrenheit per inch thickness.
- X = thickness of tube wall, inches.
- R= ratio between external and internal surface of the bare tube, usually varying from 1.03 to 1.15 for the tube used in typical heating or cooling coils. This ratio R is inserted in the formula in order to place internal fluid coefficient of heat transfer on the basis of external surface.

Frequently, when pipe or tube walls are thin and of material having high conductivity (as is the case in construction of typical heating and cooling coils) the term X in Equation 2 becomes negligible and is generally disregarded. (The effect of the term X in typical bare pipe heating or cooling coils seldom exceeds 1 to 2 per cent of the overall coefficient). Thus, in its simplest form, for bare pipe:

$$U = \frac{1}{\frac{R}{f_{\rm r}} + \frac{1}{f_{\rm a}}} \tag{3}$$

For finned coils the formula for the overall coefficient of heat transfer can be conveniently written:

$$U = \frac{1}{\frac{R}{f_{\rm r}} + \frac{1}{zf_{\rm a}}} \tag{4}$$

¹Rational Development and Rating of Extended Air Cooling Surface, by H. B. Pownall (Refrigerating Engineering, October, 1935, p. 211).

in which the term z, called the fin efficiency, is introduced to allow for the resistance to heat flow encountered in the fins.

The term R, in this case, is the ratio of total external surface to internal surface. For typical designs of finned coils for heating or cooling, this ratio varies from 10 to 30. Term R is again introduced to place the internal surface coefficient of heat transfer on a basis of external surface. In the discussions which follow, coefficients f_r and zf_a will be considered separately, and also various ways of combining them will be outlined.

External Film Coefficient

While formulae have been developed expressing the film coefficient f_a for air passing parallel to a plane surface, they cannot be used directly for fins on tubes because of air turbulence and because of the temperature gradient prevalent from the edge of a fin to its center. It is therefore necessary to make tests to evaluate the combined term zf_a . The term, zf_a , will be written merely f_a in this discussion as there is no necessity for separately evaluating z and because values of f_a are usually applied only to the particular coils for which tests are made.

Transfer of heat from a fluid to a solid is accomplished by the contacting of the molecules of the fluid with the solid. When a molecule strikes a solid, its energy level equalizes with the energy level of the solid. The total amount of heat exchanged between the molecules of a fluid and a solid is determined by the number of contacts per unit of surface per unit of time, and by the energy change of the fluid.² The energy change, in the case of air, is measured by the temperature change times the specific heat of the air. The number of contacts is measured by a percentage of the weight of air flowing per unit of time.

In the case where water vapor is mixed with air, and the water vapor is cooled but not condensed, the amount of heat transferred is increased by the energy change of the vapor particles. The additional energy is measured by the temperature change, by the specific heat of the water vapor, and by the weight of vapor contacting the surface per unit of time. In a mixture of air and vapor there is a definite ratio between the weight of the vapor and of the air per cubic foot of the mixture. Therefore, as the temperature of the mixture is lowered, the amount of heat lost by the vapor always bears a definite ratio to the amount of heat lost by the air. The amount of energy involved in the temperature change of the vapor is small, however, and it is usually included with that of the air by using a value of 0.245 for the specific heat of humid air.

Dehumidification of air by a cooling coil occurs whenever the surface temperature of the fins and tubes is below the dew-point temperature of the air. Enough molecules of water vapor are condensed on the coil to create a state of equilibrium between the vapor pressure of the moisture on the coil surface and the vapor pressure of the moisture in that part of the air stream which is in immediate contact with the coil surface. Because of the good contact between the condensed film of water and the coil surface, the water film attains a temperature approaching that of the coil surface. Therefore, those particles of air which actually contact the

²Graphical Method of Determining Finned Coil Capacities Described, by E P. Wells (*Heating, Piping and Air Conditioning*, December, 1936, p. 665).

water film leave the film with a dew-point temperature equal to the outer surface film temperature. However, many air particles, with their attendant water vapor particles, never contact the coil surface, but are by-passed between the fins. These air particles have the same dew-point temperature when they leave the coil as they had when they entered, but after leaving the coil they mix with the air particles which did contact the surface, producing a mixture of air which has a dew-point temperature that lies between the original dew-point temperature and the film surface temperature. This process explains why air seldom leaves a coil in a saturated condition.

The foregoing contact-mixture concept of heat transfer has been found by several independent investigators to be consistent with experimental data. The concept has been used successfully in analyzing the performance of evaporative condensers, cooling towers, condensers and evaporators. A relation has been found between heat transfer and pressure drop of flowing fluids, by assuming that molecules of a fluid lose their momentum upon contact with a solid.³

The fact that a coil starts to condense moisture when the surface temperature drops below the dew-point temperature of the entering air makes it possible to measure the surface temperature of a coil, an otherwise practically impossible task. After the surface temperature has been determined, it is possible to analyze completely the surface film coefficient of both the air side and refrigerant side of a coil.

The air side coefficient, f_a , of a dry coil of particular dimensions is an exponential function of the mass velocity of the air:

$$f_{\mathbf{a}} = C \, w^{\mathbf{n}} \tag{5}$$

where

fa = film coefficient of heat transfer, Btu per hour per square foot external surface per degree Fahrenheit mean temperature difference between air and average surface temperature.

w = air mass velocity, pounds per hour per square foot of coil face area.

C and n = constants which depend upon air turbulence, the number of square feet of external surface per square foot of coil face area, and the depth of the coil.

The difficulty of obtaining sufficient tests to evaluate the constants C and n for all conditions of coil design and operation makes it desirable to use Equation 6 for determining the air side coefficient:

$$f_{\rm a} = 0.245 \times \frac{w}{a} \times 2.3 \times \log_{10} \left(\frac{1}{1-E}\right) \tag{6}$$

where

0.245 = specific heat of humid air, Btu per pound per degree Fahrenheit.

2.3 = the constant which converts logarithms from base e to base 10.

a =external surface area, square feet per square foot of coil face area.

E = coil efficiency, a decimal less than 1.0.

This formula gives values of f_a after tests have been made to evaluate the coil efficiency. Equation 6 can be derived by combining the basic

³The Contact-Mixture Analogy Applied to Heat Transfer with Mixtures of Air and Water Vapor, by W. H. Carrier (A.S.M.E Transactions, January, 1937, Vol. 59, No. 1, p. 49).

⁴Loc Cit. Note 2.

equations of heat transfer, mean temperature difference and coil efficiency:

$$Q_{\rm s} = f_{\rm a} \times a \times MTD_{\rm a} \tag{7}$$

$$MTD_{a} = \frac{t_{1} - t_{2}}{2.3 \log_{10} \left(\frac{t_{1} - t_{8}}{t_{2} - t_{6}}\right)}$$
(8)

$$E = \frac{t_1 - t_2}{t_1 - t_8} \text{ (by definition)} \tag{9}$$

$$Q_{\rm S} = 0.245 \times w \times (t_1 - t_2) \tag{10}$$

where

 Q_s = sensible heat transferred, Btu per hour per square foot of coil face area.

t₁ = temperature of air entering coil, degrees Fahrenheit.

t₂ = temperature of air leaving coil, degrees Fahrenheit.

t₈ = average temperature of coil external surface, degrees Fahrenheit.

MTDa = logarithmic mean temperature difference between air and coil surface.

Coil Efficiency

One method of expressing air-coil contact efficiency is the ratio between the weight of air that actually contacts the coil surface and the total weight of air passing through the coil. Due to the fact that the specific heat of air is fairly constant over a wide range of temperature, coil efficiency⁵ can be expressed as equal to the number of degrees that the entire amount of air is cooled, divided by the number of degrees between the entering air temperature and the coil surface temperature.

For a particular heat transfer surface, coil efficiency is only a function of the mass velocity of the air, which may be observed by equating Formulae 5 and 6 and combining all constants into D and u:

$$\log_{10}\left(\frac{1}{1-E}\right) = \frac{D}{w^{\mathrm{u}}}\tag{11}$$

This equation can be used in graphical form by plotting coil efficiency against mass velocity as shown in Fig. 12. The significance of coil efficiency can be visualized in Fig. 13, where the length of the line *C-D*, divided by the length of line *C-E*, measures the coil efficiency. The relation between coil capacity and coil efficiency is given by:

$$Q = Ew (h_1 - h_s) \tag{12}$$

where

h1 = specific enthalpy of air entering coil, Btu per pound.

 h_8 = specific enthalpy of saturated air at surface temperature, Btu per pound.

When no latent heat is being removed from air, the change in enthalpy is equal to the change in temperature times the specific heat, so Equation 12 can be changed to:

$$Q = Ew (t_1 - t_s) 0.245 (13)$$

Dehumidification of Air

When moisture is being condensed on the coil surface Equation 12 can be used. If a coil has an efficiency of 0.8 (80 per cent) for the removal

⁵When coil efficiency is used herein it is intended to express air-coil contact efficiency and does not express total performance efficiency.

CHAPTER 26. HEAT TRANSFER SURFACE COILS

of sensible heat, it will at the same time remove 80 per cent of the difference in moisture content between the entering air and saturated air at the surface temperature. This is due to the fact that 80 per cent of the air particles contact the surface and attain a dew-point temperature equal to the surface temperature. This condition is expressed graphically in Fig. 13.

This psychrometric chart is constructed so that equal increments along the horizontal axis represent equal changes in sensible heat content, and

Fig. 12. Relation of Coil Efficiency to Mass Velocity

equal increments along the vertical axis represent equal changes in latent heat content of air. Point A represents the condition of return or recirculated air, point B that of outside air, point C the mixture of two-thirds recirculated air and one-third outside air, and point E the average surface temperature. Point D, which represents the air leaving the coil, lies on a line which connects points C and E, and its distance from point C is equal to the length of the line C-E times the coil efficiency. The ratio between the vertical distance from C to D and the horizontal distance from C to D, expressed in heat units, is the ratio between latent heat and sensible heat removed. It can be shown by trigonometric relations that the slope of

the line *C-D* is a measure of the ratio of latent to total heat removed, and that any line parallel to *C-D* gives the same heat ratio.

To enhance the practical usefulness of the psychrometric chart illustrated in Fig. 13, a set of marked master slope lines is included. The value of this arrangement is easily illustrated by the graphical example shown.

Example 1. To determine the required average effective external coil surface temperature. Given: (1) Air entering cooling coil at temperature of 83 F dry-bulb and 69 F wet-bulb. (2) Ratio of latent to total heat that must be removed from air is 35 per cent. Required: To find the average external coil surface temperature.

Solution. (1) Draw through point N, at the origin of the heat load ratio lines, a line N-O with a slope of 35 per cent in accordance with scale S. (2) Mark in the body of the

Fig. 13. Psychrometric Chart Showing Straight-Line Method for Representing Coil Performance

chart, point P representing the condition of air entering the cooling coil at 83 F dry-bulb and 69 F wet-bulb. (3) Through point P draw a line P-Q parallel to line N-Q. (4) The line P-Q intersects the saturation curve at 51 F, which means that the effective external coil surface temperature must be maintained at 51 F in order to obtain the desired 35 per cent latent to total ratio of heat removal from the air passing over the given cooling coil.

Inspection of Equation 12 reveals that the total capacity of a coil is dependent on the entering and leaving wet-bulb temperatures. The entering dry-bulb temperature is unimportant.

The amount of latent heat of condensation of a coil can be calculated from:

$$Q_1 = 1060 Ew (W_1 - W_s) (14)$$

where

 Q_1 = latent heat removed, Btu per hour per square foot of coil face area.

 W_1 = pounds of moisture per pound of dry air entering the coil.

 W_2 = pounds of moisture per pound of dry air saturated at the average surface temperature.

1060 = average value of latent heat of water vapor, Btu per pound of vapor.

The amount of sensible heat removed can be obtained by subtracting the value of Q_1 from the value of Q in Equation 12.

Equation 12 gives accurate results when it is used for coils having a small change of temperature of the fluid in the tubes, as for example with evaporating refrigerants and with water having a small temperature rise. In cases where water in the tubes has a large temperature rise, the effective surface temperature changes throughout the depth of the coil, and in extreme cases moisture may be condensed on only a portion of the coil. In such cases it is possible to estimate the wet and dry portions of the coil separately, using cut-and-try methods.⁶

Internal Film Coefficient

The internal film coefficient, f_r , which appears in Equation 3, is evaluated in various ways, depending upon the nature of the fluid, and whether the fluid is changing state.

When evaporating refrigerants are being used in tubes, the temperature of the fluid is fairly constant, being affected principally by pressure drop through the tubes, by superheat of the evaporated refrigerant, and by the presence of oil in solution. To obtain maximum coil capacity it is necessary to keep the pressure drop through the tubes at a minimum (1/4 lb per square inch), to keep the superheat as low as possible without carrying liquid back to the compressor, and to arrange for good separation and return of oil to the compressor. An additional important factor is the removal of gas so that the tube surface may be flooded with liquid as much as possible. The internal film coefficient is markedly increased by heavy heat loads, because the increased turbulence and gas velocity cause good contact of the liquid with the tubes. Values of f_{r} usually lie between 150 and 450. For accurate rating of dehumidifying coils, good results are obtainable by first determining the average external surface temperature as previously described, and then using the difference between the external film temperature and the refrigerant for evaluating $f_{\rm r}$ in Equation 15.

$$f_{\rm r} = \frac{Q}{\frac{a}{R} (t_{\rm s} - t_{\rm r})} \tag{15}$$

The term $(t_{\rm s}-t_{\rm r})$ is commonly written Δt . The usefulness of the foregoing equation is impaired by the fact that both $f_{\rm r}$ and Δt must be evaluated experimentally. More direct results can be obtained by ignoring $f_{\rm r}$ and determining the relation between Δt and total coil capacity:

$$\Delta t = t_{\rm S} - t_{\rm r} = mQ^{\rm n} \tag{16}$$

where

m and n = constants determined by tests.

When water is used as a cooling medium in tubes, the rate of heat transfer is a function of water velocity, because this results in an increase in the number of contacts of the water molecules with the tube surface, per unit of time. Thus increased water velocity and reduced tube diameter cause increased heat transfer. Heat transfer is also greater at

⁶Calculation of Coil Surface Areas for Air Cooling and Dehumidification, by John McElgin and D. C. Wiley (A.S.H.V.E. Transactions, Vol. 46, 1940, p. 139).

higher temperatures of the water. The basic formula for the film coefficient of heat transfer for flow of water is as follows:

$$f_{\rm w} = 1.5 \ (t - 100) \ \frac{V \ 0.8}{D^{0.2}}$$
 (17)

where

 $f_{\mathbf{w}}$ = internal film coefficient of heat transfer, Btu per hour per square foot of internal tube surface per degree Fahrenheit.

V = water velocity, feet per second.

D = internal diameter of tube, inches.

t = average water temperature, degrees Fahrenheit.

Fig. 14. Determination of Surface Temperature

In the case of finned tubes, values of f_w may be lower than those obtained by use of Equation 17. Accurate results can be obtained by using Equation 15, if the logarithmic mean temperature difference between surface and water is used in place of Δt .

When saturated steam is condensed in the tubes of coils, the film coefficient f_r varies from 1000 to 2000, depending on freedom from air in the steam, and upon good drainage of the tubes. The coefficient is fairly constant for a particular coil, giving values of Δt that are directly proportional to Q.

GRAPHICAL ANALYSIS OF COIL PERFORMANCE

In testing coils, determination of surface temperatures is most important. A convenient way of determining surface temperatures is

illustrated in Fig. 14. Test points A and B are made without varying the wet-bulb temperature of entering air, the air velocity, the refrigerant temperature, and the total capacity of the coil. Only the dry-bulb and dew-point temperatures of the entering air are varied. A straight line is drawn between points A and B, and is extended to the ordinate of zero moisture removal, giving point C which represents the moisture content of saturated air that corresponds to the surface temperature. Points D and E are similarly plotted, the only difference being that another total coil capacity and entering air wet-bulb temperature are chosen.

The saturation temperatures of points C and F are then used in Equation 16, in conjunction with the test values of t_r and Q, so as to evaluate the constants m and n by solving two simultaneous equations. The

Fig. 15. Typical Curves Showing Relation Between Total Capacity and Temperature Difference for Refrigerants

resulting equation is plotted as shown in Fig. 15, or can be plotted as a straight line on logarithmic paper.

Having determined the surface temperature, the test data can be used to evaluate coil efficiency, from the ratio $(t_1 - t_2) \div (t_1 - t_3)$. Then constants of Equation 11 can be evaluated and a group of curves constructed as in Fig. 12.

Use of Graphs for Predicting Performance

Coil performance under any dehumidifying condition can be predicted as shown in the following example, using Figs. 12, 13 and 15.

Example 2. Given: Total heat to be removed, 18,000 Btu per hour per square foot of coil face area; ratio of latent to total heat, 35 per cent; dry-bulb temperature of air entering coil, 83 F; dew-point temperature of air entering coil, 65 F. Required: Coil depth, air velocity and refrigerant temperature.

Solution. (1) Plot the entering air conditions at point C on Fig. 13. (2) Draw line C-E, parallel to the 35 per cent line N-O of the index chart, and obtain the required surface temperature, 55 F. (3) In Fig. 15, assume a coil depth of 4 rows, and obtain

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

 $\Delta t = 16$ F. Subtracting 16 deg from 55 deg gives a required refrigerant temperature of 39 F. (4) In Fig. 12, assume an air velocity of 2000 lb per hour and obtain a coil efficiency of 0.8. (5) Solving for Q in Equation 12, a capacity of 17,400 Btu per hour is obtained, which is not the required capacity. It is necessary to try a higher air velocity until a balanced condition is found at an air velocity of 2080 pounds per hour. (6) By assuming a coil depth of 6 rows and repeating the same procedure, another solution can be obtained at a refrigerant temperature of 43.5 F and an air velocity of 1760.

The foregoing cut-and-try calculations can be eliminated by the use of the type of graph shown in Fig. 16, which may be constructed as outlined herewith:

1. The three axes of the nomogram on the left side of the chart are drawn in such a manner that the C axis represents the differences in total heat content between the air at wet-bulb temperature along B axis and air at wet-bulb temperature along A axis. Thus, the C axis represents the total heat (Btu per pound of air, sensible and latent) which could be removed from the air at some inlet wet-bulb temperature on B axis if

Fig. 16. Typical Coil Performance Chart

the coil heat transfer efficiency were 100 per cent and the wet-bulb temperature of the air could be reduced to some average (effective) external coil temperature on A axis. For example if a straight line is drawn through 72 F wet-bulb temperature of entering air on axis B and the 55 F average effective coil (external surface) temperature on axis B, then this straight line will intersect the C axis at 12.6, which figure represents the difference in total heat content of air between 72 and 55 F wet-bulb temperature.

- 2. Next scale Q is drawn to cover the range of the likely practical loading for the given coil in Btu per hour per square foot coil face area.
- 3. Lastly, the diagonal mass air velocity lines are drawn in at the intersection of various values on C axis and the corresponding values on the Q scale. The values on the Q scale corresponding to various values on C axis are obtained by multiplying the values on C axis by mass air velocity and coil efficiency. In this way the calculations required by Equation 12 are performed.
- 4. Parallel to the Q scale is drawn the Δt scale, so that the difference between average surface temperature and refrigerant temperature can be read directly, eliminating the use of Equation 16.

CHAPTER 26. HEAT TRANSFER SURFACE COILS

For coils using water as a cooling medium, the chart shown in Fig. 17 can be used for the purpose of eliminating calculations. Such a chart can embrace all sizes of coils of a particular design, but requires an index which gives the *coil design factor* for each size. The coil design factor is the number of square feet of internal tube surface of the entire coil. The curves shown in the lower right hand quarter of the chart perform the calculations of Equation 17, by using an average water temperature and the actual tube diameter.

Performance of Coils and Refrigeration Compressor

Practically all data published by various makers of direct expansion cooling coils are based upon maintaining a predetermined refrigerant

Fig. 17. Water Coil Performance Chart

temperature within the coils. While it is often possible to maintain a definite refrigerant temperature within a given cooling coil, for the greater part it is either impossible or impractical. This is due to the fact that the capacity of standard refrigeration compressors is usually fixed and in matching a given cooling coil with a standard compressor the capacity of the latter is often somewhat smaller or greater than that of the former. Consequently, very often the refrigerant temperature resulting within a cooling coil and correspondingly the capacity of the coil-compressor combination are not what they were originally calculated to be.

In order to determine the actual performance of a given coil-compressor combination under varying conditions of operation, a graphical solution of the balance point is highly desirable. A typical method of graphical

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

analysis of a coil-compressor combination performance is shown in Fig. 18, which is constructed in a manner described herewith:

- 1. On a piece of graph paper (with a uniform scale), the equipment capacity scale, total Btu per hour, is laid out along the vertical axis while the refrigerant suction temperature scale is laid out along the horizontal axis.
- 2. The performance curve of a given compressor with a definite condenser (combination usually called a *condensing unit*) is plotted as a function of suction temperature corresponding to the saturation suction pressure at the compressor suction service valve for a given inlet water temperature and quantity supplied to the condenser.
- 3. The performance curve of the given cooling coil is next plotted as a function of mean suction temperature within the coil, the mass air velocity over the coil and the wet-bulb temperature of air entering the coil.
- 4. The refrigerant pressure drop between the center of the cooling coil and the compressor suction service valve is computed and converted into the terms of temperature-

Fig. 18. Graphical Analysis of Coil-Compressor Performance

difference. This temperature difference is then fitted in horizontally between the performance curves of the cooling coil and the compressor, as shown, and the total capacity of the coil-compressor combination is read along the horizontal line upon which the above mentioned temperature-difference segment falls.

COIL SELECTION

In the selection of a coil it is necessary to consider several factors:

- 1. The duty required—heating, cooling, dehumidifying.
- 2. Temperature of entering air—dry-bulb only if there is no dehumidification, dry-and wet-bulb if moisture is to be removed.
 - 3. Available heating and cooling media.
 - 4. Space and dimensional limitations.
 - 5. Air quantity limitations.
 - 6. Allowable resistances in air circuit and through tubes.
 - 7. Peculiarities of individual designs of coils.

CHAPTER 26. HEAT TRANSFER SURFACE COILS

8. Individual installation requirements, such, for example, as type of automatic control to be used.

The duties required may be determined from information in Chapters 4, 5, 6 and 7. There may or may not be a choice of cooling and heating media, as well as temperatures available, depending upon whether the installation is new or is in combination with present sources of heating or cooling. Space limitations are dictated by the requirements of individual cases. The air quantity is influenced by a number of considerations. The air quantity through heating coils is often made the same as that necessary to handle the summer cooling load. The air handled may be fixed by the use of old ventilating ducts as an air distribution system for new air conditioning apparatus, or may be dictated by requirements of satisfactory air distribution or ventilation. The resistance through the air circuit influences the fan horsepower and speed. This resistance may be limited to allow the use of a given size of fan motor, or to keep the operating expense low, or it may be limited by the maximum fan peripheral velocity which requirements of quietness may permit. The friction through the water or brine circuit may be dictated by the head available from a given size of pump and pump motor. As the fan and pump motor inputs represent a refrigerating load on cooling installations, it is economical to keep them low.

Proper performance of a surface heating or cooling coil depends upon correct choice of the original equipment and upon certain other factors. The usual coil ratings are based on a uniform face velocity of air. If the air is brought in at odd angles or if the fan is located so as to block part of the air flow, the performance as given in the manufacturer's ratings cannot usually be obtained. To obtain this performance it is necessary also that the air quantity be adjusted on the job to that used in determining the coil selection, and must also be kept at this value. The most common causes for a reduction of air quantity are the fouling of the filters and collection of dirt in the coils. These difficulties can be avoided by proper design and proper servicing. There are a number of ways in which coils may be cleaned. A common method is to wash them off with water. They can sometimes be brushed and cleaned with a vacuum cleaner. In bad cases of neglect, especially on restaurant jobs where grease and dirt have accumulated, it is sometimes necessary to remove the coils and wash off the accumulation with steam, compressed air and water, or hot water. The most satisfactory solution, however, is to keep the filters serviced, and thus make the cleaning of the coils unnecessary.

The proper selection of coils requires an understanding of the necessities of each case and should be based on an economic analysis of the plant design as a whole. No general rule can, therefore, be laid down for the selection of heating or cooling coils. It is possible, however, to point out the limits of usual practice and to indicate the influence of the variables involved in the coil selection.

Heating Coils

Steam and hot water heating coils are usually rated within these limits:

Air Face Velocity—200 to 1200 fpm, sometimes up to 1500 fpm. Steam Pressure—2 to 200 lb, sometimes up to 350 lb per square inch. Hot Water Temperature—150 to 225 F.

Water Velocity-2 to 6 fps.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Individual cases may deviate widely, but the tabulation given herewith will serve as a guide to usual heating practice:

Air Face Velocity-500 to 800 fpm face, 500 being a common figure.

Delivered Air Temperature—varies from about $\overline{72}~\mathrm{F}$ for ventilation only to about 150 F for complete heating.

Steam Pressure—2 to 10 lb, 5 lb being common.

Hot Water Temperature-150 to 225 F.

Water Velocity-2 to 6 fps.

Water Quantity—Based on about 20 F temperature drop through a hot-water coil. Air Resistance—The total resistance through heating coils is usually limited to from to $\frac{3}{6}$ in. of water gage for public buildings, to about 1 in. for factories.

The selection of heating coils is relatively simple as it involves dry-bulb temperatures and sensible heat only, without the complication of simultaneous latent heat loads, as in cooling coils. For a given duty, entering air temperature, and steam pressure, it is possible to select several arrangements of the same design of coil depending upon the relative importance of space, cross-sectional area, and air resistance.

Cooling Coils

The usual range of ratings for cooling and dehumidifying coils is enumerated herewith:

Entering Air Dry-Bulb—60 to 100 F.

Entering Air Wet-Bulb-50 to 80 F.

Air Face Velocifies—300 to 800 fpm, (sometimes as low as 200 and as high as 1200). Volatile Refrigerant Temperatures—25 to 55 F, at coil suction outlet.

Water Temperatures-40 to 65 F.

Water Quantities—2 to 6 gpm per ton, or equivalent to a water temperature range of from 4 to 12 F.

Water Velocity-2 to 6 fps.

The ratio of total to sensible heat removed varies in practice from 1.00 to about 1.65, *i.e.*, sensible heat is from 60 to 100 per cent of total, depending on the application. (See Chapter 21.) Required ratios may demand wide variations in air velocities, refrigerant temperatures, and coil depth, so that general rules as to these values may be misleading. On usual comfort installations air face velocities between 400 and 600 fpm are frequent, 500 being a common value. Refrigerant temperatures will ordinarily vary between 40 and 50 F where cooling is accompanied with dehumidification. Water velocities will range from 2 to about 6 fps.

When no dehumidification is desired, for which condition the dew-point of the entering air will be equal to or lower than the cooling coil temperature, the coil selection is made on the basis of dry-bulb temperatures and sensible heat transfers only, the same as with heating coils. It is possible also to choose various arrangements of face area, depth, air velocity, etc., for the same duty.

Dehumidifying Coils

The selection of coils for combined cooling and dehumidifying duty is more involved than for heating or sensible cooling and requires consideration of both dry- and wet-bulb air temperatures. It is further complicated by the fact that the proportional amount of dehumidification

CHAPTER 26. HEAT TRANSFER SURFACE COILS

TABLE 1. VARIOUS COOLING COIL ARRANGEMENTS

SELECTION	1	2	3	4
Total cooling capacity, tons Sensible cooling capacity, tons Latent cooling capacity, tons Ratio total to sensible heat Air quantity, cfm Cfm per total ton Face velocity, fpm Resistance, in. water Coil face area, sq ft Coil rows deep Coil evaporator temp. deg F	69 31 1.45 47,800 478 325 0.11 147 4	100 69 31 1.45 41,700 417 423 0.27 99.0 6 45	100 69 31 1.45 37,100 371 500 0.51 74.2 8 45	100 69 31 1.45 46,800 468 600 0.37 78.1 4 38

required is also highly variable. The methods outlined previously under Heat Transfer and Resistance may be used to determine whether it is possible for a coil to perform the duty required. If entering and leaving air conditions are arbitrarily specified, the corresponding duty sometimes cannot be obtained at all without the use of reheat. As with heating and sensible cooling coils, there are combinations of face areas, depth, air velocity and refrigerant temperatures which will give the required performance. This is illustrated in Table 1.

It is possible as shown in Table 1 to perform approximately the same duty at a given refrigerant temperature with small face area and large thickness or vice versa. The large face area coil will give low air velocity and resistance but high air quantities per ton. The coil of small face area and great depth will require small air quantities per ton of refrigeration, high resistance and high air velocities. As shown also in Table 1 the same sensible, latent and total cooling capacity may be obtained with various refrigerant temperatures by proper choice of coil. This makes it possible to keep the evaporating temperature high enough to carry the load with a chosen size of condensing unit. High evaporating temperatures with correspondingly small compressor operating expense can be attained but at the expense of coil surface, air quantity or both. The choice will be determined by the necessities of individual installations.

For a given quantity and condition of entering air the evaporating temperature of a volatile refrigerant coil will be determined by a balance between the condensing unit and the coil. The total, sensible and latent cooling capacity can then be determined from the coil rating information.

Table 2. Capacity Balances for Maximum and Minimum Load Conditions

Conditions		PACITY IN T	RATIO TOTAL SENSIBLE	
	Total	Sensible	Latent	SENSIBLE
Required at peak load conditions Required at minimum load conditions	10.90	7.90	3.00	1.38
Peak load equipment balance.	$\frac{6.62}{10.90}$	3.36 7.90	$\frac{3.26}{3.00}$	1.98 1.38
Same equipment balanced at minimum load conditions	9.85	6.58	3.26	1.50
conditions with 40 per cent by-pass	8.38	5.05	3.33	1.66
Same equipment balanced at minimum load conditions with 38,800 Btu per hour reheat	6.62	3.36	3.26	1.98

If the condensing unit and cooling coil have been properly balanced for the required load and, due to miscalculated duct resistance or improper choice of fan speed, the air quantity is reduced, the total cooling capacity will also be reduced. The decrease is generally in the sensible capacity. This is the effect also when the air by-pass or volume control is used.

It is necessary that not only the total capacity but also the sensible and latent cooling requirements both be met. The installation of an excess of coil will result in an increase in total capacity, but not a proportional gain in latent heat capacity. On installations controlled from dry-bulb temperature the operating time will be shortened because of the added sensible cooling capacity. The result will be less moisture pick-up than calculated, and higher relative humidity. If an oversize condensing unit is installed the opposite situation will take place. The relative humidity will be lower than estimated. This is not generally a disadvantage except that it results in a greater load from outside air than calculated, as well as in increased power consumption. If oversize equipment is furnished, a balance should be made to assure that the ratio of total to sensible capacity is the same as in the estimated load.

Sometimes arbitrary air quantities are specified for ventilation or other reasons independent of the selection of the cooling coil. As shown in Table 1, the coil selection can be altered to take care of various air quantities for the same duty.

Where coil and condensing unit are selected for the peak load condition, and the sensible load partially disappears due to fall of outside temperature or other cause, the condensing unit and coil rebalance. This may result in more sensible capacity than required at the light load condition and less latent in proportion, with an increased relative humidity in the conditioned space. Such a condition is shown in Table 2. If approximately 40 per cent of the total air is by-passed, the condition will be improved as indicated. The situation could be entirely avoided by using reheat, where it is possible to handle any ratio of sensible and latent loads and maintain the design temperature and humidity⁷.

Care should be taken to avoid freezing at light loads. In general, freezing occurs when the coil surface temperature falls to 32 F. With usual coils for comfort installations, this will not occur unless the evaporating temperature at the coil outlet is about 20 to 25 F. The exact value depends on the design of coil and the amount of loading. Although it is not customary to choose coil and condensing units to balance at low temperatures at peak loads, there is danger of this occurring when the load decreases. This is further aggravated if a by-pass is used so that less air is passed through the coil at light loads. It may be even worse if the control is arranged for decrease of inside temperature with fall of that outside. Freezing can be avoided by making the full load balance a high evaporating temperature and checking the balance at the minimum load.

Care should be exercised in the design of humidity control to minimize the cycling of the refrigerating compressor because of re-evaporation of moisture from the fins. It is sometimes necessary to by-pass air around a coil when the compressor is not operating.

^{&#}x27;Reheating by Means of Refrigerant Compressor Discharge Gas, by S. F. Nicoll (A.S.H.V.E. Transactions, Vol. 47, 1941, p. 239).

Chapter 27

SPRAY EQUIPMENT

Air Washers, Apparatus for Direct Humidification, Spray Generation and Distribution, Air Dehumidification with Washers, Water Main Temperatures, Atmospheric Water Cooling Equipment, Design Wet-bulb Temperatures for Water Cooling, Cooling Ponds, Winter Freezing

A IR humidification is effected by the vaporization of water and always requires heat from some source. This heat may be added to the water prior to the time vaporization occurs or it may be secured by a transformation of sensible heat of the air being humidified to latent heat as the vapor is added to the air. The thermodynamics of the process are discussed in Chapter 1. The removal of moisture from air may or may not involve the removal of heat from the air-vapor mixture. With spray equipment dehumidification of air always necessitates the removal of heat.

AIR WASHERS

Air washers may be used as either humidifiers or dehumidifiers depending upon the method of operation and the temperature of the spray water. The functions of an air washer are to regulate the moisture and heat content of air passing through it and to remove dust and dirt from the air. Air washers are not as effective as air filters in the removal of dust and dirt.

The construction of commercial air washers is indicated in Figs. 1 and 2. Any air washer consists essentially of a chamber through which the air passes in intimate contact with water. The lower portion of the washer chamber serves as a sump for the spray water.

Contact between the air and the washer water is secured: (1) by breaking the water into a very fine mist, (2) by passing the air over surfaces which are continuously wetted by water, or (3) by a combination of water sprays and wetted plates. Scrubber-plate types of washers are used largely to wash heavy reclaimable products from the air, and are generally composed of one to three eliminator-type baffle scrubber plates across the air stream. Water is supplied at the tops of the scrubber plates by flooding nozzles placed across the top of the washer. Spray washers have one or more banks of water atomizing nozzles placed in the air stream above the level of the water in the sump. The direction of the water sprays may be against the air stream, with the air stream, or with

one bank spraying with the air stream and one against it. The number of nozzles required depends upon their design, the quantity of air handled, and the arrangement of the nozzles.

Scrubbers generally consist of eliminator-type baffle plates placed in the air stream to cause several reversals of the direction of air flow. The scrubber plates are more effective as air cleaners than as humidifiers. All washer chambers should have inlet diffuser plates to aid in producing more uniform air flow through the washer spray chamber. These inlet vanes also aid in preventing spray water from being thrown into the air duct ahead of the washer. However, if the water spray is against the air flow, the ordinary perforated diffuser plate is not sufficient, and specially designed eliminator baffles must be used to prevent spray from passing

FIG. 1. TYPICAL SINGLE BANK AIR WASHER FIG. 2. TYPICAL TWO BANK AIR WASHER

into the air inlet duct. At the outlet end of the washer suitable flooded eliminator plates, which will cause from 4 to 6 reversals of the direction of air flow, should be installed for the purpose of removing drops of unvaporized water from the leaving air. When the air carries certain substances mixed with it, the spray water may become acidulated and special consideration must be given to the materials used, to reduce the corrosive action.

Essential items in air washer operation are: uniform distribution of the air across the chamber section above the level of the water in the sump; moderate velocities of air flow, 300 to 600 fpm in the spray chamber; an adequate amount of spray water broken up into a fine mist throughout the air stream; sufficient length of air travel through the water spray and over thoroughly wetted surfaces; and the elimination of free moisture from the air as it leaves the unit.

Washers are sometimes arranged in two or more stages to cool through long ranges or to increase the overall efficiency of heat transfer between the air and the heating or cooling medium. A multi-stage washer is equivalent to a number of washers in a series arrangement. Each stage is in effect a separate washer.

Usually the catalog capacity of a washer is expressed in cubic feet of air per minute and is based upon an air velocity of 500 fpm through the gross inlet area of the unit. At this rating spray type washers handle about $2\frac{1}{2}$ gpm of water per bank per square foot of area, that is, about 5 gpm per bank per 1000 cfm. These proportions of air, water, area, and velocity may be departed from to meet the needs of some particular job, but certain limiting relationships should be observed.

For a single stage air washer, a 15 F drop in dry-bulb temperature of the air passing through the washer is about the maximum that should be anticipated. For greater decrease in dry-bulb temperature, multi-stage washers should be utilized. A rise of 6 F should be the calculated maximum for the spray water.

The width and height of a washer may be dictated by space limitations outside the washer, such as headroom, or by the inside space requirements, such as face area needed by a bank of cooling coils. The length of a washer is determined by the number of spray banks, or scrubber plates, and if cooling coils are installed in the unit, by the number of banks of coils. Roughly, a spray space of about 2 ft 6 in. in length is required for each bank of sprays; leaving eliminators require about 1 ft 6 in., and entering eliminators about 1 ft.

The resistance to air flow through an air washer varies with the type of eliminators, number of banks of sprays, direction of spray, air velocity, type of scrubber plates, and size and type of cooling coils if located in the washer. Manufacturers should be consulted to obtain the resistance for a particular installation.

HUMIDIFICATION WITH AIR WASHER

Air humidification can be accomplished in three ways with an air washer. These are: (1) use of recirculated spray water without prior treatment of the air, (2) preheating the air and washing it with recirculated spray water, and (3) using heated spray water. In any problem of air washing the air should not enter the washer with a dry-bulb temperature less than 35 F so that there will be no danger of freezing the spray water.

Method 1. Except for the small amount of energy added from outside by the recirculating pump in the form of shaft work, and for the small amount of heat leak from outside into the apparatus, including the pump and its connecting piping, the process would be strictly adiabatic. Evaporation from the liquid spray would therefore be expected to bring the air immediately in contact with it to saturation adiabatically; and, since the liquid is recirculated, its temperature would be expected to adjust to the thermodynamic wet-bulb temperature of the entering air.

It does not follow from the above reasoning that the whole air stream is brought to complete saturation, but merely that its state point should move along a line of constant thermodynamic wet-bulb temperature as

explained in Chapter 1. The extent to which the final temperature approaches the thermodynamic wet-bulb temperature of the entering air, or the extent to which complete saturation is approached is conveniently expressed by a ratio known as *humidifying efficiency* or saturating efficiency and is defined:

$$e_{\rm h} = \frac{t_1 - t_2}{t_1 - t'} \tag{1}$$

where

eh = humidifying efficiency, per cent.

 $t_1 = dry$ -bulb temperature of the entering air, degrees Fahrenheit.

 t_2 = dry-bulb temperature of the leaving air, degrees Fahrenheit.

 t^{\dagger} = thermodynamic wet-bulb temperature of the entering air, degrees Fahrenheit.

The humidifying or saturating efficiency of a washer is dependent upon the number of spray banks and nozzles, the effectiveness of the nozzles in breaking an adequate quantity of water into a fine spray, the velocity of air flow through the water sprays, and the time of the contact of the air with the spray water. Other conditions being the same, low velocities of air flow are more conducive to higher humidifying efficiencies. The following may be taken as representative humidifying or saturating efficiencies of air washers for the conditions stated:

1 bank—downstream	60-70 per cent
1 hank—unstream	65-75 per cent
2 hanks—downstream	85-90 per cent
2 hanks—1 upstream and 1 downstream	90-95 per cent
2 banks—upstream.	90-95 per cent

The air leaving the washer may require reheating to produce the required dry-bulb temperature and relative humidity.

Method 2. The preheating of the air increases both the dry and wetbulb temperatures, lowers the relative humidity, but does not alter the humidity ratio (pound water vapor per pound dry air). At a higher wetbulb temperature but the same humidity ratio, more water can be absorbed per pound of dry air in passing through the washer, assuming that the humidifying efficiency of the washer is not adversely affected by operation at the higher wet-bulb temperature. The analysis of the process occurring in the washer itself is the same as that explained under Method 1. The final desired conditions are secured by adjusting the amount of preheating to give the required wet-bulb temperature at entrance to the washer and then reheating when necessary after passage through the washer.

Method 3. Even if heat is added to the spray water, the mixing occurring in the washer itself may still be regarded as adiabatic. The state point of the mixture should move in a direction determined by the specific enthalpy of the heated spray as explained in Chapter 1. By sufficiently elevating the spray water temperature it should be possible to completely saturate the air and even raise its temperature above the dry-bulb temperature of the entering air.

APPARATUS FOR DIRECT HUMIDIFICATION

Humidifiers may be divided into the following general types, according to the method of operation: (1) indirect, such as the air washer, which

introduces moistened air; and (2) direct, which sprays moisture into the room or introduces moisture by means of steam jets.

As in the cases of humidification by use of an air washer, the heat necessary for the vaporization of the moisture added to the air by direct humidification is secured either from heat stored in the spray water or by a transformation of sensible to latent heat in the air humidified. In the latter case the enthalpy of the air remains constant but the dry-bulb temperature of the air is reduced.

Direct humidification is usually preferable where high relative humidities must be maintained, but where there is little cooling or ventilation required. In comfort air conditioning, where both humidification and ventilation are required, the indirect humidifier is preferable. In industrial applications, where the cooling or ventilation load is large and where very high relative humidities must be maintained, a combined system employing both direct and indirect humidifiers is sometimes used.

Spray Generation

Spray generation is obtained by (1) atomization, (2) impact, (3) hydraulic separation, and (4) mechanical separation.

Atomization involves the use of a compressed air jet to reduce the water particles to a fine spray. With the *impact* method, a jet of water under pressure impinges directly on the end of a small round wire. Where hydraulic separation is employed, a jet of water enters a cylindrical chamber and escapes through an axial port with a rapid rotation which causes it immediately to separate in a fine cone-shaped spray. In the mechanical separation process, water is thrown by centrifugal force from the surface of a rapidly revolving disc and separates into particles sufficiently small to be utilized in certain types of mechanical humidifiers.

Spray Distribution

Spray distribution is obtained by (1) air jet, (2) induction, and (3) fan propulsion.

The air jet which generates the spray in atomizers also carries the spray through a space sufficient for its distribution and evaporation, and this method of distribution is termed air jet. Where distribution is obtained by induction, the aspirating effect of an impact or centrifugal spray jet is utilized to induce a current of air to flow through a duct or casing, and this air current distributes the spray. Fan propulsion obviously consists of the utilization of fans to entrain and distribute the spray.

Industrial type direct humidifiers are commonly classified as (1) atomizing, (2) high-duty, (3) spray and (4) self-contained or centrifugal.

Atomizing Humidifiers

There are several types of atomizing humidifiers, all of which rely upon compressed air as the atomizing and distributing agency, similar to the familiar method used in ordinary nasal atomizers. Compressed air (ordinarily about 30 lb per square inch) is supplied from a centrally-located air compressor through pipe lines to the atomizing units. The air lines are usually horizontal and parallel to water lines which supply water by gravity from a float tank. The water in the tank is maintained

at a constant level slightly lower than the outlets of the atomizers themselves and is drawn constantly to the atomizer by aspiration when compressed air is supplied. This aspiration ceases and the flow of water stops when the air supply is cut off. The water should not be supplied under pressure to atomizers because of the possibility of leakage, drip, or coarse spray. These cannot occur when water is supplied by aspiration.

High-Duty Humidifiers

Water is supplied to high-duty humidifiers under high pressure (usually about 150 lb per square inch) through pipe lines from a centrally-located pumping unit. The spray-generating nozzle which is of the impact type is located in a cylindrical casing. A drainage pan provides for the collection and return of unevaporated water which flows through a return pipe to a filter tank, from which it is recirculated. A powerful air current is forced through the humidifier by means of a fan mounted above the unit.

The air enters from above, is drawn through the head, charged with moisture, and cooled. It then escapes from the opening below at a high velocity in a complete and nearly horizontal circle. The spray is evaporated and the resulting vapor diffused. This distribution of fine spray over the maximum possible area promotes complete and rapid vaporization even at high humidities.

Spray Humidifiers

This type of humidifier consists of an impact spray nozzle in a cylindrical casing with a drainage pan below it. The aspirating effect of the spray nozzle induces a moderate air current through the casing which distributes the entrained spray. The general method of circulating and returning the water is similar to that employed for high-duty humidifiers. A suitable pump and centrally-located filter tank are required.

Self-Contained Humidifiers

The self-contained or centrifugal humidifier has the ability to generate and distribute spray without the use of air compressors, pumps, or other auxiliaries. These may be used either singly or in groups. In large installations, where suitable connections are provided to permit the cleaning and servicing of individual units without affecting the room as a whole, group control of the water and power may be employed.

AIR DEHUMIDIFICATION WITH WASHERS

Moisture removal from an air-vapor mixture can be accomplished by use of an air washer so long as the temperature of the spray medium is lower than the dew-point of the air passing through the unit. The final dry-bulb temperature and the relative humidity of the air leaving a dehumidifier washer are dependent upon: the air velocity, the length of air travel through the sprays, the dry- and wet-bulb temperatures of the entering air, the spray temperature, the number of spray banks and nozzles, the quantity of spray medium handled, and the effectiveness of the nozzles in breaking the spray into a fine mist.

Both sensible and latent heat are removed in the process of dehumidification by cooling. Abstraction of sensible heat occurs during the entire time that the air is in contact with the spray medium. Latent heat

removal takes place as condensation occurs. Therefore, the lower the spray temperature the greater the amount of moisture removal per pound of dry air, all other conditions remaining the same. Washers with two or more banks of sprays are usually selected for comfort air conditioning installations. Such washers will cool the air to within 1 or 2 F of the leaving spray water temperature.

Where a limited supply of cold water is available multiple stage washers may be used to an advantage. The cool water is pumped through the multiple spray systems in series. By this arrangement the entering air is cooled first by the warmer water and finally by the cooler water which gives the maximum amount of cooling with the minimum amount of water. The approximate temperatures of water from wells at depths of 30 to 60 ft are given in Fig 3¹. Frequently the temperature of the city water main supply is low enough during the summer to permit an appreciable cooling effect. Table 1 lists the maximum city water main temperatures for various localities in the United States and Canada.

Air washers using refrigerated spray generally have their own recirculating pumps. These pumps deliver to the sprays a mixture of water from the washer sump, which has not been re-cooled, and refrigerated water. The quantities of each are controlled by a three-way or mixing valve actuated by a dew-point thermostat located in the washer air outlet or by humidity controllers located in the conditioned space.

ATMOSPHERIC WATER COOLING EQUIPMENT

In the operation of a refrigerating plant or a condensing turbine, one of the main problems is the removal and dissipation of heat from the compressed refrigerant or the discharged steam. This is accomplished ordinarily by first transferring the heat of the gas to water in a heat exchanger, from which water it may then be dissipated in a number of ways. If the plant is situated on the banks of a river or lake, an intake may be taken up-stream or at a considerable distance from the discharge, to prevent mixing of the heated discharged water with the inlet water. If the source of cooling water is a city supply or a well, the discharge water may be run into the nearest sewer or open waterway. Lacking an unlimited water supply, or in cases where city water is too expensive or where the water available contains dissolved salts which would form scale on the heat-exchanging apparatus, it is necessary to recirculate the water, and to cool it after each passage through the heat-exchanger by exposure to air in an atmospheric water cooling apparatus.

Air has a capacity for absorbing heat from water when the wet-bulb temperature of the air is lower than the temperature of the water with which it is in contact. The rapidity with which this transfer of heat occurs depends upon (1) the area of water in contact with the air, (2) the relative velocity of the air and water, and (3) the difference between the wet-bulb temperature of the air and the temperature of the water. Because the changes in rate do not occur in direct proportion to changes in the governing factors, data on the performance of atmospheric water cooling equipment are largely empirical.

 $^{^1}$ Temperature of Water Available for Industrial Use in the United States, by W. D. Collins (*U. S. Geological Survey*, Water Supply Paper No. 520 F).

538

TABLE 1. AVERAGE MAXIMUM WATER MAIN TEMPERATURES²

State	Стт	TEMP. F	STATE	Cirr	TEMP.
Ala	Birmingham	84	Mass	Boston	80
	Mobile	73	11	Cambridge	70
Ariz	Phoenix	81	II	Fall River.	76
	Tucson	80		Lowell	50
Calif	Anaheim	60		T	68
Jan	Parisolar			Lynn	
	Berkeley	69 70	li .	New Bedford	70
	Fresno	72		Salem	68
	Fullerton	75	11	Worcester	76
	Glendale	68	Mich	Detroit	77
	Los Angeles	75		Flint	70
	Oakland	69		Grand Rapids	84
	Ontario	70	11	Highland Park	77
	Pasadena	82			56
	Pomone			Jackson	
	Ротопа	75		Kalamazoo	53
	Riverside	78		Lansing	64
	Sacramento	72		Saginaw	82
	San Bernardino	65	Minn	Duluth	55
	San Diego	82	11	Minneapolis	80
	San Francisco	$6\overline{2}$	11	St. Paul.	77
	Whittier	75	Мо	Jefferson City	82
`olo	Donver		W10		
Colo	Denver	75		Kansas City	84
Conn	Bridgeport	66		St. Joseph	84
	Hartford	73		St. Louis	85
	New Haven	76	! [Springfield	70
	Waterbury	72	Nebr	Lincoln	87
). C	Washington	84	12.002	Omaha	87
Del	Wilmington	83	Nev	Reno	61
`la	Jacksonville	80	N. H	Manchester	76
	Miami	80	N. J	Jersey City	63
_	Tampa	77		Newark	74
} a	Atlanta	87		Paterson	78
	Macon	80		Trenton	79
11	Chicago	76	N. Y	Albany	68
	Cicero	76		Buffalo	75
		73	1	Tomaine	56
	Evanston		1	Jamaica	
	Peoria	67		Mt. Vernon	74
	Rockford	59		New Rochelle	75
	Springfield	82	1	New York	72
nd	Evansville	86		Rochester	70
	Gary	75		Schenectady	60
	Indianapolis	80		Syracuse	74
	South Bend	61		Utica	69
	Torro Houte	82		Vonkere	70
	Terre Haute		N C	Yonkers	
owa	Cedar Rapids	78	N. C	Asheville	74
	Des Moines	77		Charlotte	85
	Sioux City	62	11	Winston-Salem	82
ans	Concordia	57	N. M	Albuquerque	65
	Kansas City	86	Ohio	Akron	76
•	Topeka	88		Canton	5 0
		72		Cincinnati	84
r	Wichita		11		
Су		85		Cleveland	74
a	Baton Rouge	85		Columbus	82
	New Orleans	85		Dayton	60
Ле		60		Lakewood	82
/Id		75	11	Springfield	72
	2010111010	. 5		Toledo	83
			11		00

aThese averages taken from various city water main locations, with some actual values slightly higher and some lower than values shown.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

TABLE 1. AVERAGE MAXIMUM WATER MAIN TEMPERATURES^a (Concluded)

STATE	Сітч	Темр. F	STATE	Спт	Темр. F
Okla	Oklahoma City	82	Utah	Logan	44
	Tulsa	85		Salt Lake City	60
Ore		60	Va	Fredericksburg	75
	Portland	64		Lynchburg	73
Pa	Altoona	74		Norfolk	80
	Erie	75	Wash	Olympia	58
	Johnstown			Seattle	
	McKeesport	82		Spokane	
	Philadelphia	83		Tacoma	57
	Pittsburgh	81	W. Va	Charleston	85
R. I	Providence	68		Huntington	
S. C	Charleston	80		Wheeling	78
	Greenville	81	Wis	LaCrosse	54
	Spartanburg	78		Madison	58
S Dak	Rapid City	55		Milwaukee	70
Tenn	Chattanooga	84		Racine	68
	Knoxville	8 9			
	Memphis	70			
	Nashville	90			
Texas	Amarillo	65	PROVINCE		
	Austin	90			
	Beaumont	86			
	Dallas	86	Alta	Calgary	64
	Fort Worth	84	B. C	Vancouver	60
	Galveston	90	Ont	London	50
	Houston	84	_	Toronto	63
	Port Arthur	83	P. E. I	Charlottetown	48
	San Antonio		Que	Montreal	78
	Wichita Falls	85		Quebec	68
				-	-

aThese averages taken from various city water main locations, with some actual values slightly higher and some lower than values shown.

As the heat content of the air increases, its wet-bulb temperature rises. (See Chapter 1.) Because it is impractical to leave the air in contact with water for a long enough time to permit the wet-bulb temperature of the air and the temperature of the water to reach equilibrium, atmospheric water cooling equipment aims to circulate only enough air to cool the water to the desired temperature with the least possible expenditure of power.

In an air washer, humidifier or dehumidifier, the air is first conditioned by water to change its moisture and temperature, and it is then sent to the place where it is to be used. In water cooling equipment the temperature of the water is reduced by air, and the cooled water is carried to its point of usage. In the air washer, an excess of water is used to condition a fixed quantity of air, while in water cooling equipment, an excess of air is used to cool a fixed quantity of water.

Both types of equipment have a common basis of design, however, in that the size of the equipment is determined by the quantity of air that must be handled. With the air washer, the size of the equipment is fixed by the quantity of air to be conditioned, and the amount of conditioning is controlled by the quantity and temperature of the water supplied and its method of application. With water cooling apparatus, its size and the

quantity of air required bear no direct relation to the quantity of water being cooled, but vary through a wide range for different services and conditions.

Sizes of Equipment

fluoromethane

Assuming a definite quantity of water to be cooled, the size and design of atmospheric cooling equipment are affected by the following factors:

- 1. Temperature range through which the water must be cooled.
- 2. Number of degrees above the wet-bulb temperature of the entering air to which the water temperature must be reduced.
- 3. Temperature of the atmospheric wet-bulb at which the required cooling must be performed.
- 4. Time of contact of the air with the water. (This involves height or length of the apparatus and velocity of air.)
 - 5. Surface of water exposed to each unit quantity of air.
 - 6. Relative velocity of air and water.

Items 1, 2, and 3 are established by the type of service and geographical location, while items 4, 5, and 6 depend upon the design of the equipment. The establishment of a proper cooling range depends upon:

- 1. Type of service (refrigerating, internal combustion engine and steam condensing).
- 2. Wet-bulb temperature at which the equipment must operate satisfactorily.
- 3. Type of condenser or heat-exchanger used.

Because the design of an entire plant is usually affected by the quantity and temperature of the cooling water supply, plants should be designed for cooling water conditions which can be most efficiently attained. first consideration is usually the limiting temperature of the plant. For example, if an ammonia compressor refrigerating plant is to be designed for 185 lb head pressure as a normal maximum, the limiting temperature of the ammonia in the condenser is 96 F. Should the ammonia temperature go above this figure the head pressure will exceed 185 lb and power consumption increases. To obtain this head pressure, the temperature of the circulating water leaving the condenser must always be less than 96 F by an amount depending upon the size and design of the condenser, the

LEAVING HOT WATER TEMPERATURE MAXIMUM PRESSURE GAS TEMPERATURE DEG F GAS DESIRED IN IN CONDENSER CONDENSER Average Condenser Design Best Condenser Design 97 93 101.2 Steam... 28 in. vacuum...... 27 in. vacuum...... 110 105Steam..... 115.126 in. vacuum...... 125.9120 114 Steam..... Ammonia..... 185 lb gage 96.0 92 88 head pressure.... 1030 lb gage Carbon dioxide... 83 81 86.0 head pressure.... Methyl 102 lb gage 100.0 96 92 chloride... head pressure... Dichlorodi-117 lb gage head pressure.... 100.0 96 93

Table 2 Condenser Design Data

quantity of water being circulated, and the refrigerating tonnage being produced. A condenser having a large surface per ton of refrigeration may be designed to operate satisfactorily with the leaving hot water temperature within 3 or 4 F of the ammonia temperature corresponding to the head pressure, while a small condenser might require a 10 F difference.

Table 2 lists several gases with data as to the temperatures and pressures for which commercial condensers are designed. Internal combustion engines have limiting hot water temperatures of 125 F to 140 F. The cooling of such fluids as milk or wort has variable requirements and is usually done in counter-flow heat-exchangers in which the leaving circulating water is at a much higher temperature than is the leaving fluid.

The temperature range, once the hot water temperature is approximately known, depends upon:

- Maximum wet-bulb temperature at which the full quantity of heat must be dissipated.
 - 2. Efficiency of the atmospheric cooling equipment considered.

Design Wet-Bulb Temperatures

The maximum wet-bulb temperature at which the full quantity of water must be cooled through the entire range is never, in commercial design, the maximum wet-bulb temperature ever known to exist at the location nor the average wet-bulb temperature over any period. former basis would require atmospheric cooling equipment several times greater than normal size, and the latter would result during a large part of the time, in higher condenser water temperatures than those for which the plant was designed. For instance, the maximum wet-bulb temperature recorded in New York City is 88 F, and the July noon average for 64 years is close to 68 F. Yet in the years 1925 to 1934, inclusive, there were but 8 hours per year when the wet-bulb temperature reached 80 F or more, and there were 975 hours in the average summer (June to September inclusive) when the wet-bulb temperature was 68 F or above. As these 975 hours represent a third of the summer period, cooling equipment based upon the noon average July wet-bulb of 68 F would be inadequate. Commercial practice is to choose a wet-bulb temperature for refrigeration design purposes which is not exceeded during more than 5 to 8 per cent of the summer hours (75 F for New York City) with somewhat lower requirements for steam turbines and internal combustion engines. This difference is made because the heaviest load on a refrigerating plant is coincident with high wet-bulb temperatures, whereas the heaviest electric power demand occurs either in the winter or after nightfall in summer, when the wet-bulb temperature is low. Table 1, Chapter 7, shows design wet-bulb temperatures which will not be exceeded more than 8 per cent of the time in an average summer.

Knowing the hot water temperature and the wet-bulb temperature for which the equipment must be designed, the cold water temperature must be chosen to place the requirement within the efficiency range of the type of atmospheric water cooling apparatus to be used. Efficiency of atmospheric water cooling apparatus is expressed as the percentage ratio of the actual cooling range to the possible cooling range. Since the wet-bulb

temperature of the entering air is the lowest temperature to which the water could possibly be cooled this is:

Percentage cooling efficiency of atmospheric water cooling equipment =

(hot water temperature — cold water temperature) × 100 hot water temperature — wet-bulb temperature of entering air

Efficiencies of various types of atmospheric water cooling apparatus vary through wide limits, depending upon air velocity, concentration of water per square foot of area, and the type of equipment. The commercial range of efficiencies is given in Table 3 although unusual designs may operate outside these ranges.

From consideration of the factors which include the cooling range and design wet-bulb temperature, the quantity of water required can be calculated from the amount of heat to be dissipated. The normal amounts of heat to be removed from various processes of the cooling equipment are:

Compressor refrigeration	220	to	270	Btu	per i	minute per ton.
Condenser turbine	950	to	980	Btu	per p	cound of steam.
Steam jet refrigerating apparatus	1030	to	1150	Btu	per i	ound of steam.
Diesel engine	2800	to	4500	Btu	per I	norsepower.

Cooling Ponds

A natural pond is often used as a source of condensing water. The hot water should be discharged close to the surface at the shore line. Natural air movement over the surface of the water will cause evaporation and carry away heat. Because increased density due to the loss of heat causes the cooled water to sink to the bottom of the pond, the suction connection for intake water should be placed as far below the surface as possible, and at as great a distance from the discharge as practicable.

Spray Cooling Ponds

The spray pond consists of a basin, above which nozzles are located to spray water up into the air. Properly designed spray nozzles break up the water into small drops, but not into a mist because the individual drops must be heavy enough to fall back into the basin and not drift away with the air movement. The water surface exposed to the air for cooling is the combined area of all the small drops. Since the rate of heat removal by atmospheric water cooling is a function of the area of water exposed to the air, the difference in temperature between the water and the wetbulb temperature of the air, the relative velocity of air and water, and the duration of contact of the air with the water, a much larger quantity

EQUIPMENT	Cooling Efficiency—Per Cent						
Eddbark	Minimum	Usual	Maximum				
Spray Ponds	30	40 to 50	60				
Spray Towers	40	45 to 55	60				
Natural Draft Deck or Atmospheric Towers	35	50 to 70	90				
Mechanical Draft	35	55 to 75	90				

TABLE 3. EFFICIENCY OF ATMOSPHERIC WATER COOLING EQUIPMENT

of heat may be dissipated in a given area with the spray pond than with the cooling pond, because of (1) the speed with which the drops travel as they are propelled into the air and fall back into the water basin, (2) the increased wind velocity at a point above the surrounding structures or terrain, (3) the increased volume of air used, and (4) the vastly increased area of contact between air and water².

Spray pond efficiencies are increased by (1) elevating the nozzles to a higher point above the surface of the water in the basin, (2) increasing the spacing between nozzles of any one capacity, (3) using smaller capacity nozzles to decrease the concentration of water per unit area, and (4) using smaller nozzles and increasing the pressure to maintain the same concentration of water per unit area. Usual practice is to locate the nozzles from 3 to 7 ft above the edge of the basin, to supply from 5 to 12 lb pressure at the nozzles, using nozzles spraying from 20 gpm to 60 gpm each and spacing them so the average water delivered to the surface of the pond is from 0.1 gpm per square foot in a small pond to 0.8 gpm per square foot in a large pond.

Increasing the pressure, spacing the nozzles farther apart, or increasing the elevation of the nozzles will increase the cross-section of spray cloud exposed to the air, and therefore increase the quantity of air coming in contact with the water. Best results are obtained by placing the nozzles in a long relatively narrow area located broadside to the wind.

Spray ponds may be located on the ground, or they may be placed on roofs. To prevent excessive drift loss, or the carrying of entrained water beyond the edge of the pond by the air on the leeward side, louver fences are required for roof locations and for those ground locations where space is so restricted that the outer nozzles cannot be located at least 20 ft to 25 ft from the edge of the basin. Such fences usually are constructed of horizontal louvers overlapping so the air is forced to turn a corner in passing through the fence, and the heavier drops of water are thrown back, owing to their inertia. The louvers also restrict the flow of air, particularly at the higher wind velocities, and thus further reduce the possibility of water being carried off. The height of an effective fence should be equal to the height of the spray cloud. Louver boards are preferably of red gulf cypress or California redwood supported on castiron, steel or wood posts. Where building ordinances forbid the use of combustible materials, sheet metal is customarily used.

Algae growths, during warm weather, in cooling towers and spray ponds may be eliminated while the plant is in operation by the use of potassium permanganate. This chemical can be dissolved at the rate of 1 lb in $1\frac{1}{4}$ to $1\frac{1}{2}$ gal of hot water. About 10 parts of permanganate should be used per million parts of cooling water.

The permanganate attacks the algae, forms a brown covering over it, and causes it to settle. Enough of the permanganate solution should be added periodically to cause the water to have a pink color for a period of from 15 to 20 min. Small additions of the permanganate daily do not give concentrations which are effective. The best results are obtained when sufficient quantities are added periodically at intervals of several

²A S.H.V.E. RESEARCH PAPER—Design of Spray Cooling Ponds, by S. Hori, U. A. Patchett and L. M. Boelter (A.S.H.V.E. JOURNAL SECTION, *Heating, Piping and Air Conditioning*, October, 1942, p. 624).

weeks, the time intervals being dependent upon local operating conditions. The chemical is non-poisonous and is non-corrosive when used as directed.

Spray Cooling Towers

Where not more than 30,000 Btu per minute are to be dissipated, the spray cooling tower is a satisfactory apparatus. The word tower in this connection is somewhat of a misnomer as the apparatus is essentially a narrow spray pond with a high louver fence. As usually built, the nozzles spray down from the top of the structure and the distance from the center of the nozzle system to the fence on either side is not more than half the distance that the nozzles are elevated above the water basin. Heights range from 6 ft to 15 ft and the total width of a structure is not usually greater than its height. Spray cooling towers occupy less space on small jobs than spray ponds of equivalent capacities because the towers have a capacity of from 0.6 gpm to 1.5 gpm per square foot of tower area. The louvers are continually wet, and so add to the surface of water exposed to the cooling air.

Natural Draft Deck Type Towers

In past years most of the atmospheric water cooling on refrigeration work has been done with natural draft deck type towers, which are also referred to as wind or atmospheric towers. These towers consist of heavy wooden or steel framework from 15 to 80 ft high and from 6 to 30 ft wide, having open horizontal lattice-work platforms or decks at regular intervals from top to bottom, and a catch basin at the foot. The hot water is distributed over the upper part of the structure by means of troughs, splash heads, or nozzles, and it drips from deck to deck down to the basin. The object of the decks is to arrest the fall of the water so as to present efficient cooling surfaces to the air, which passes through the tower parallel to the decks. The decks also add to the area of water surface exposed to the air, but since they furnish a resistance to air flow, too many decks are a detriment.

To prevent the loss of water on the leeward side of the tower, wide splash boards are attached at regular intervals from top to bottom. These boards or louvers extend outward and upward, and in most designs the top edge of each louver extends above the bottom edge of the one above it.

Efficiency of a deck tower is improved, within limits, by increased height, increased length, or increased width. The first two increase the area of water exposed to the wind, and the latter increases the time of contact of the air with the water.

Wind Velocities on Natural Draft Equipment

Since natural air movement is the prime requirement for a deck type tower, spray cooling tower, or spray pond, the apparatus must be designed to produce the desired cooling on days when the wind velocity is below average when the wet-bulb temperature is at the maximum chosen for design, and when the plant is operating at full load. The apparatus must also, for best results, be located with its longest axis at right angles to the direction of the prevailing hot weather breeze. Table 1, Chapter 7, gives the average summer wind velocities and directions in representative cities. Natural draft cooling equipment should be designed to operate properly with not more than one-half of the average wind velocity, and in

no case for a wind velocity of more than 5 mph. It is obvious that natural draft towers and other natural draft equipment must be so located that they are not obstructed by trees, buildings, or other wind deflectors.

Mechanical Draft Towers

Mechanical draft towers usually consist of vertical shells, constructed of wood, metal, or masonry, in which water is distributed uniformly at the top and falls to a collecting basin at the bottom. The inside of the tower may be filled with wood checker-work over which the water drips, or the water surface may be presented to the air by filling the entire inside of the structure with spray from nozzles. Air is circulated through the tower from bottom to top by forced or induced draft fans. Since the air flows counter to the water, the air is in contact with the hottest of the water just before leaving the top of the tower, and each unit of air picks up more heat than a similar unit would on natural draft equipment, so the mechanical draft tower cools water by using less air than the other types of equipment need. As movement of the air through the towers is obtained by power-consuming fans, it is essential that the air used be reduced to a minimum so as to secure the lowest possible operating cost.

The efficiency of a mechanical draft tower is increased by increasing height, area, or air quantity. Increasing the height increases the length of time the air is in contact with the water without affecting seriously the fan power required, but it increases the pumping power needed. Increasing the area while maintaining constant fan power increases the air quantity somewhat and because of lowered velocities it increases the time this air is in contact with the water. The surface area of water in contact with the air is increased in both cases. Increasing the air quantity decreases the time the air is in contact with the water, but, since a greater quantity is passing through, the average differential between the water temperature and the wet-bulb temperature of the air is increased, and this speeds up the heat transfer rate. Increased air quantities are obtained only at the expense of increased fan power, which increases approximately as the cube of the air quantity. Air velocities through mechanical draft towers vary from 250 to 600 fpm over the gross area of the structure.

Mechanical draft water cooling equipment may be set up inside buildings, where it usually draws its air supply from the general space in which it is installed, and discharges its exhaust air through a duct to the outside. Indoor cooling towers may be either of the wood-filled or the spray-filled type. In many cases where little height but considerable area is available, water is cooled in a spray-filled structure similar to an air washer, with the air passing horizontally through the apparatus and being discharged through a duct to the outside. Such apparatus does not have the counterflow advantage of the vertical mechanical draft water cooling equipment, and therefore requires a much larger excess of air for proper operation. Air velocities and operating powers are considerably above those required by vertical mechanical draft water cooling equipment.

Cooling Tower Design

The method of design of equipment for energy transfer from water to an air-water vapor mixture is similar to that used for absorption equip-

ment. Details of this procedure are available^{3, 4, 5} and its application to the problem of the cooling tower operating at atmospheric pressure is illustrated by the following development. The nomenclature used is as follows:

a = overall average wetted area, square feet per cubic foot of tower volume.

c = specific heat of liquid water, Btu per (pound) (degree Fahrenheit).

e = effectiveness.

ε = natural base.

G =weight rate of flow of air, pounds of dry air per hour.

h = enthalpy, Btu per pound of dry air.

ha = enthalpy of air-vapor mixture, Btu per pound of dry air.

 $h^{\parallel}=$ enthalpy of saturated air-vapor mixture at water temperature, Btu per pound of dry air.

K = overall energy unit conductance, Btu per (hour) (square feet) (Btu per pound).

Ka = overall rate coefficient, Btu per (hour) (cubic feet) (Btu per pound).

L = water rate, pounds per hour.

lm = logarithmic mean.

S = average cross-sectional area of cooling tower for air flow, square feet.

t = water-main body temperature, degrees Fahrenheit.

twb = wet-bulb temperature, degrees Fahrenheit.

V = tower volume, cubic foot.

Subscripts 1 and 2 refer to water entrance and exit sections respectively, for the counter-flow tower.

A section of a typical counter-flow tower is shown in Fig. 4. If the reduction in water rate due to evaporation within the volume is neglected, the energy balance for this differential section of the exchanger volume may be written as:

$$L c dt = G dh (2)$$

The potential for net energy transfer due to heat and mass transfer from the water to the mixture in contact with it may be expressed with reasonable accuracy as the difference between the enthalpy of saturated air at the water temperature, h^{\parallel} , and the enthalpy of the main stream air vapor mixture⁶, h_a . The rate of energy transfer is given by the expression:

$$Ka (h^{\dagger} - h_a) dV \tag{3}$$

which equation defines the overall rate coefficient, Ka; the latter being the product of the overall energy unit conductance, K, and the ratio of the transfer surface to the exchanger volume, a.

Equations 2 and 3 are conveniently illustrated by means of the temperature-enthalpy diagram of Fig. 5. Equation 2 indicates that the succession of air and water states existing in the exchanger sections must combine to form a straight line (for L = constant) on the temperature enthalpy diagram. The slope of this operating line is $\frac{dh}{dt} = \frac{Lc}{C}$. Since

³Principles of Chemical Engineering, by W. H. Walker, W. K. Lewis, W. H. McAdams and E. R. Gilliland (McGraw-Hill Co., New York City, 1937, p. 480).

⁴Absorption and Extraction, by T. K. Sherwood (McGraw-Hill Co., New York City, 1937, p. 91).

⁵Performance Characteristics of a Mechanically Induced Draft, Counterflow, Packed Cooling Tower, by A. L. London, W. E. Mason and L. M. K. Boelter (A.S.M.B. Transactions, January, 1940, Vol. 62, p. 41).

^{*}Determination of Unit Conductances for Heat and Mass Transfer by the Transient Method, by A. L. London, H. B. Nottage and L. M. K. Boelter (*Industrial and Engineering Chemistry*, April, 1941, Vol. 33, p. 467).

the heat capacity of water is approximately unity, this slope is the ratio of the water to the air rate. Equation 3 indicates that the potential for energy transfer at any section is the difference between the enthalpy of saturated air at the main-body water temperature at that section and the enthalpy of the air stream in contact with that water. This potential is the difference in the ordinates of the saturation and operating lines for the water temperature at the plane in the tower which is under consideration.

Combination of Equations 2 and 3 results in the expression:

$$Gdh = Ka (h'' - h_a) dV (4)$$

Integrating this equation over the length of the exchanger:

Fig. 4. Section of Typical Counter-Flow Tower

The integration of the left side of Equation 5 determines the tower volume required to achieve the desired energy exchange. This summation is readily accomplished for counter and parallel flow arrangements. G and Ka are usually independent of the tower volume and Equation 5 then becomes:

$$NTU = \int_{2}^{1} \frac{dh}{h^{\parallel} - h_{a}} = \frac{KaV}{G} \tag{6}$$

Where NTU is defined as the Number of Transfer Units and is a measure of the difficulty of the cooling process.

The integration is made numerically or graphically. In the graphical integration $\frac{1}{h^{\parallel}-h_{\rm a}}$ is evaluated as a function of $h_{\rm a}$. This determination involves the use of the energy balance equation integrated from one section to the section in question. The area under the curve between any two abscissae is the number of transfer units required to change the air state from h_2 to h_1 .

An approximate value for the number of transfer units can also be determined by a simple graphical method of direct construction on the

CHAPTER 27. SPRAY EQUIPMENT

temperature enthalpy diagram⁷. This method cannot be applied very satisfactorily to cooling towers as the operating range is small and the value of the NTU is near unity.

When the relationship between the enthalpy of the saturated air and the temperature is linear over the range of water temperatures involved, it can be shown⁸ that the logarithmic mean of the terminal potentials, k_{lm} , is the correct driving force. This is true to a good approximation when the water cooling does not exceed 15 F. The approximation to linearity may be determined by inspection of Table 6, Chapter 1, or the temperature enthalpy diagram of Fig. 5. If the logarithmic mean is a valid potential, Equation 6 may be written:

$$\frac{h_1 - h_2}{\Delta h_{\rm lm}} = \frac{KaV}{G} \tag{7}$$

Fig. 5. Temperature Enthalpy Diagram for Air Water Vapor Mixture Showing the Operating Line for Example 1

and the need for the numerical integration for the determination of the tower volume is eliminated.

The overall rate coefficient, Ka, must be known if the tower volume is to be determined. Experiments conducted on towers containing different packing construction have yielded some magnitudes of this coefficient, evaluated on an overall basis. These data are presented in Fig. 6 as a function of the gas mass velocity through the packing, and apply only to the particular packing structure for which they were obtained. The overall rate coefficient (Ka) may also be a function of the water rate, since a reduction of the water rate may reduce the wetted area within the exchanger. The results included in Fig. 6 probably represent magnitudes

Graphical Method of Determining Number Transfer Units, by T. Baker (Industrial and Engineering Chemistry, August, 1935, Vol. 27, p 977).

⁸Loc. Cit. Note 4, p 79.

Loc. Cit. Note 5.

of Ka which were obtained for complete wetting. Within the cooling tower operating range the overall rate coefficient for energy transfer is nearly the same numerically as the overall rate coefficient for mass transfer. The conditions of test corresponding to the data presented in Fig. 6 are not well enough known in most cases to warrant recomputation of Ka. Therefore the magnitudes of the overall rate coefficient for mass transfer presented in Fig. 6 may be used directly in Equations 5 and 6, the units of Ka in these equations being Btu per (hour) (cubic foot) (Btu per pound).

A typical design procedure is outlined in an illustrative example:

Example 1. The rate of air flow, arbitrarily assumed in the data given, is related to the tower volume by economic considerations. A balance between air rate and tower volume rests on consideration of the costs of producing air flow and of the tower construction. A counter-flow forced draft cooling tower is to cool 36,000 lb of water per hour from en initial temperature of 110 F to a final temperature of 80 F. Air having an initial condition of 65 F dry-bulb and 58 F wet-bulb temperature will be forced through the tower counter to the direction of water flow at the rate of 30,000 lb of dry air per hour.

The cross-section of the tower is to be 8 ft x 8 ft and the packing is to be of the type producing a rate coefficient as indicated in curve No. 2 of Fig. 6. For this type of packing the average cross-sectional area for air flow will be 36 sq ft.

Solution:

Initial air enthalpy = 25.1 Btu per pound.

Final air enthalpy:

$$(h_1 - h_2) = \frac{Lc}{G} (t_1 - t_2)$$

$$(h_1 - 25.1) = \frac{36,000 \times 1}{30,000} (110 - 80)$$

 $h_1 = 61.1$ Btu per pound dry air.

Table 4. Numerical Integration for the Number of Transfer Units

WATER TEMPERATURE INTERVAL DEG F	Mean Water Temperature Deg F	Mean Air Enthalpy, ha Btu per Lb Dry Air	SATURATED AIR ENTHALPY, h" BTU PER LB DRY AIR	ENTHALPY POTENTIAL h" - ha	$\frac{\Delta h}{h^{11}-h_{\mathbf{a}}}$
80-82	81	26.3	44.6	18.3	0.131
82-84	83	28.7	46.9	18.2	0.132
84-86	85	31.1	49.2	18.1	0.133
86-88	87	33.5	51.7	18.2	0.132
88-90	89	35.9	54.4	18.5	0.130
90-92	91	38.3	57.1	18.8	0.128
92-94	93	40.7	60.0	19.3	0.124
94-96	95	43.1	63.0	19.9	0.121
96-98	97	45.5	66.2	20.7	0.116
98-100	99	47.9	69.6	21.7	0.111
100-102	101	50.3	73.2	22.9	0.105
102-104	103	52.7	77.0	24.3	0.099
104-106	105	55.1	80.9	25.8	0.093
106-108	107	57.5	85.1	27.6	0.087
108-110	109	59.9	89.5	29.6	0.081
Part of the second seco					1.723

¹⁰ Loc. Cit. Note 3, p. 142.

CHAPTER 27. SPRAY EQUIPMENT

A numerical integration (Table 4) is employed to determine the Number of Transfer Units (NTU) required. Temperature increments of 2 F are used between successive determinations of the quantity $\frac{1}{h^{\parallel}-h_a}$. The energy balance indicates that the enthalpy increments corresponding to these temperature increments are:

$$\Delta h = \frac{Lc}{G} \Delta t = \frac{36,000}{30,000} \times 2 = 2.4 \text{ Btu per pound.}$$

The result of the integration is that the Number of Transfer Units required (NTU) = 1.72.

Unit gas mass velocity, $\frac{G}{S} = \frac{30,000}{36} = 830 \text{ lb per (hour) (square foot)}.$

Fig. 6. Unit Conductances for Various Types of Packing Construction

From Fig. 6, Ka = 138 Btu per (hour) (cubic foot) (Btu per pound). The tower volume required is:

$$V = \frac{G}{Ka} (NTU) = \frac{30,000}{138} \times 1.72 = 217 \times 1.72 = 374 \text{ cu ft.}$$

Height of the packed section is:

$$\frac{374}{8 \times 8} = 5.9 \text{ ft.}$$

The graphical solution for the Number of Transfer Units required for the desired performance is plotted in Fig. 7. $\frac{1}{h^{\parallel} - h_a}$ is plotted as a function of h, and the area under the curve from the initial enthalpy of the air, 25.1 Btu per pound, to the final enthalpy of the air, 61.1 Btu per pound is 1.72, the Number of Transfer Units required. The effect of the rapid decrease in potential due to the cooling of the water is indicated

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

by comparison of area A_1 , A_2 , and A_3 of Fig. 7. Each represents the Number of Transfer Units required to achieve a water temperature reduction of about 10 F.

$$\begin{array}{l} A_1 = 0.471 \; NTU \; (110 \; \text{to} \; 100 \; \text{F}) \\ A_2 = 0.595 \; NTU \; (100 \; \text{to} \; \; 90 \; \text{F}) \\ A_3 = 0.657 \; NTU \; (\; 90 \; \text{to} \; \; 80 \; \text{F}) \end{array}$$

The use of the logarithmic mean driving potential is illustrated by applying Equation 7 to example 1:

$$NTU = \frac{(Ka) \ V}{G} = \frac{h_1 - h_2}{\Delta h_{\rm lm}}$$

$$\Delta h_{\rm lm} = \frac{(h_1'' - h_1) - (h_2'' - h_2)}{ln_{\varepsilon} \frac{h_1'' - h_1}{h_2'' - h_2}} = \frac{30.7 - 184}{ln_{\varepsilon} \frac{307}{18.4}} = 24$$

Fig. 7. Graphical Integration to Determine Number of Transfer Units Required for Desired Operating Conditions of Example 1

$$NTU = \frac{61.1 - 251}{24} = 1.5$$

The Number of Transfer Units required as determined by use of the logarithmic mean driving potential equals 1.5 which compares favorably with the correct magnitude, 1.72.

The application of the foregoing design method to atmospheric towers is difficult because rate coefficients and flow conditions are not yet well defined for such equipment. If these are known, application of Equation 7 to sections of the tower small enough to justify use of the logarithmic mean potential will yield the tower volume required for each section. The sections must be taken perpendicular to the path of water flow. A correction to adjust the logarithmic mean potential, evaluated as for counter-flow, to the reduced effectiveness of cross-flow, has been derived for heat transfer and may be applied to this case¹¹.

¹¹Heat Transmission, by W. H. McAdams (McGraw-Hill Co., New York City, 1933, p. 157).

CHAPTER 27. SPRAY EQUIPMENT

Atmospheric towers operate with natural draft, produced in a vertical direction by the stack action of the tower structure, at zero velocity of the approach wind. Approach wind of sufficient magnitude (the magnitude depending on the baffle arrangement which is designed to reduce drift) will cause cross-flow augmenting the natural draft. An adequate design requires the consideration of both flow conditions.

Expression for Cooling Tower Performance

The performance of a cooling tower is described in terms of its effectiveness as an energy exchanger. The effectiveness is defined as the ratio of the energy actually exchanged to the energy available for exchange.

Effectiveness expressions:

Case 1. The slope of the operating line on the t-h diagram exceeds the slope of the saturation line in the region of water temperatures considered.

$$e = \frac{h_1 - h_2}{h_1^{"} - h_2} \tag{8}$$

Case 2. The slope of the saturation line exceeds that of the operating line.

$$e = \frac{h_1 - h_2}{\frac{Lc}{C} (t_1 - t_{\text{wb}})} = \frac{t_1 - t_2}{t_1 - t_{\text{wb}}}$$
(9)

This equation represents the approach to wet-bulb.

Usual tower operating conditions conform to Case 1. Because of the curvature of the saturation line, operating conditions may present themselves to which neither Case 1 nor 2 applies. Since a simple expression for the intermediate case is not available, the expression of Case 1 may be utilized for the small number of operating conditions falling into the intermediate classification.

Make-Up Water

Since the atmospheric water cooling equipment performs its functions chiefly by evaporating a portion of the water in order to cool the re-

Table 5. Comparison of Various Types of Atmospheric Water Cooling Equipment
Figures indicate order of desirability

	Cooling Pond	Spray Pond	Spray Tower	Deck Tower	Mechanical Draft	Indoor Tower
Cost	x	$\frac{}{2}$	1	3	4	5
Area	5	4	3	2	1	x
Height	1	2	3	4-5	4–5	x
Weight per square foot	х	x	1	3	4	2
Independence of wind velocity		3	4	5	1-2	1-2
Drift nuisance	1	6	5	4	2-3	2-3
Make-up water required	1	6	5	4	2–3	2-3
Pumping head		2	1	5	3	6
Maintenance		1	3	4	5	b
Suitability for congested districts	x	5	4	3	1	2
Water quantity required for definite result	6	5	4	1-2	1-2	3

xNot comparable

mainder, there is a continual drain on the quantity of water in the system, and this loss must be replaced. Approximately 1 gal of water is lost for every 1000 gal of water cooled per degree of cooling range; so if 1000 gpm of water are cooled through a 10 F range, 10 gpm of water will be required to replace evaporated water. Replacement supply is usually regulated by a float control valve. Because the evaporation of the water leaves behind the salts which the water contained, high concentration of salts may make chemical treatment of the make-up water necessary to avoid excessive deposits in the condensers. An additional amount of make-up water must be added to replace windage, or drift loss. This additional amount of water varies from 0.1 to 3 per cent of the quantity of water being circulated, this percentage depending upon the type of equipment and the wind velocity.

Winter Freezing

If atmospheric water cooling equipment is operated in freezing weather, the water may be cooled below freezing temperature so ice forms and collects until its weight causes damage. To obviate freezing during continued operation, the efficiency of the apparatus may be lowered. This is done on the spray pond and the spray cooling tower by reducing the quantity of water fed to the apparatus, thereby lowering the pressure at the nozzles and increasing the size of the drops produced. On the deck tower the upper system may be shut off and a secondary distribution system put in service midway down the height of the tower. The water will be kept above freezing because it will have shorter contact with the air. The mechanical draft tower can be protected by reducing the air flow through the tower, by stopping or reducing the speed of the fans, or by partially closing dampers.

If the system is operated intermittently in freezing weather, water in the basin may freeze and the expansion of the ice may do harm. Freezing during intermittent operation can be prevented only by draining the water basin when it is out of service. On small roof installations, a tank large enough to hold all the water in the system is often installed inside the building and the basin is drained into this by gravity, the pump suction being taken from this inside tank.

A comparison of various types of water cooling equipment is given in Table 5.

Chapter 28

AIR POLLUTION

Classification of Air Impurities, Dust Concentrations, Air Pollution and Health, Occlusion of Solar Radiation, Smoke and Air Pollution Abatement, Dust and Cinders, Nature's Dust Catcher

THE particulate impurities which contribute to atmospheric pollution include carbon from the combustion of fuels, particles of earth, sand, ash, rubber tires, leather, animal excretion, stone, wood, rust, paper, threads of cotton, wool, and silks, bits of animal and vegetable matter, and pollen. Microscopic examination of the impurities in city air shows that a large percentage of the particles are carbon.

CLASSIFICATION OF AIR IMPURITIES

The most conspicuous sources of atmospheric pollution may be classified in various ways, as dusts, fumes and smoke. In Fig. 1, the classification is by particle size, but recent practice favors differentiation by method of formation. Thus, dusts are composed of particles produced by disintegration of larger material, as by crushing or grinding, whereas fumes are produced by condensation, and smoke consists of the finer carbon particles resulting from incomplete combustion. Similarly, mists are formed by the breaking up of liquids and fogs by condensation of vapors. There is as yet, however, no general agreement on these terms.

Dusts tend to settle without agglomeration, fumes to aggregate and smoke to diffuse. Particles which approach the common bacteria in size—from 1 to 10 microns—are difficult to remove from air and are apt to remain in suspension unless they can be agglomerated by artificial means. The term fly-ash is applied to solid ashy material, usually finely divided, that is a constituent of the effluent gases from coal-fired furnaces. Cinders denote the larger solid constituents which may be entrained by furnace gases.

Particles larger than 10 microns are unlikely to remain suspended in air currents of moderate strength, but settle out by gravity at speeds dependent upon the shape, size and specific gravity of the particle and upon the wind velocity. These larger particles are of major interest to the engineer in the solution of nuisance problems; on the other hand, it is mainly the smaller particles that are of hygienic significance. A notable exception to this size limitation in the latter case is the common hay-fever producing pollen such as that from ragweed. Pollen grains may be anything from fragments 15 microns or less in diameter to whole pollens 25 microns or more in size.

The lower limit of size of particle visible to the naked eye cannot be stated definitely. It depends not only upon the individual, but also upon the shape and color of the particle and upon the intensity of light. Under

DIAM	1				RATE OF	NUMBE	RSURFAC	E		
OF	SCALE OF			SETTLIN	SETTLING OF PAR- AREA IN IN F P M. TICLES IN SQUARE			LAWS OF SETTLING		
PAR-					FOR ONE CUFT INCHES			IN RELATION TO		
TICLES	ATMOSPHERIC					NTAINING				
IN	1 18	4PURI	TIES		OF	.0006	RAINS OF	1.	PARTICLE	SIZE
MICRONS	*				DENSITY	IMPURI	TIES PER	1(1	INES OF DEMARC	ATION APPROX)
<u> </u>					AT 70° F	CU FT (D	EHSITY =1)			
8000			*		‡				PARTICLES	FALL WITH
6000					1750	1	1		7 INCREASING	VELOCITY
4000			. #		1			1		
l			-	\rightarrow	4	1	j	1	İ	a . \/alo a.t., a /a
2000	JST			S	i	1		l	2 ads.	c=Velocity cm/sec
	_ 3		<u>_</u>	ANER	7	1		ı	$c = \sqrt{\frac{2gds_1}{3Ks_2}}$	C-1/2/2014 64 /
1000	7 7	'	6	ANE	790	.075	.000365		V 3/132	C=Velocity ft./min
800	2 2			\$ III U	-	10.0		١.		
500		3	2]	1_		E	6-040/5	d=Diam of par-
400	5		-	ر "و	555	.6	.00073	ΙŽ	C=24.9√Ds,	ticle in cm
1 200	. ↑ ≥	- 6	4	- G &	1			VELOCIT	1	D=Diam of par-
	ZZ L E	1	It	THAN NAKED RIFUGA	1		I	١٣	1	1
200	RIZZ	12		FF	1		1	ľ		ticle in Microns
	DRIZ HEA		ı,	E Z	l			۲	STOKES	r=Radius of par-
100	- I		ž	E T E	59.2	75	.00365≅	STAN	LAW	ticle in cm.
80 60	2 2		3 g	33	1		T IN SQ	F		licie in cm.
	4 5		3 ±	nZ n	14.8	600	.0073	2		g=981 cm/sec 2
40	ş		S F		1		1	NOO	c = 2r2g 5,-52	acceleration
	. 1₹		그 -	EST ST	1			۲	c = 2r-9 51-52	acceler at 10h
50	S 0 2		<u> </u>		1		1	I	- "	S = Density of
	FOC PHERI	- 1			1			۲	İ	particle
10				- + -	.592	75000	.0365 ≌	3	_	
8	0 2				1		3 IN SQ	١	FOR AIR AT 70°F.	sz=Density of Air
6	17	- 10	(D) (d) (d)		.148	600,000	.073	FE	c = 300,460s,d2	
4		3	N E					-	•	relative to s.)
1	3		22.5	W 97	1		1 1	ET	C =.00592s,D2	1 1000000
2	EMPORAR	OSPHERI AL PL		 				S		7=Viscosity of
1	Σ	ă ,	NG PAC	8 7						air in poises
1	- 1 - F 1	<u>-ĕ ₹</u>			.007 = 5"	75×106	.365 ≅	S		=1814×10 ⁻⁷ for
8		E E	-23.	= =	PER HR.		5 IN SQ	ב	CUNNINGHAM'S	air at 70° F.
.6			, 4	- 4	-002=1 4"	60×10 ⁷	.73	PARTICLE	FACTOR	
4	N .	불이를	z		PER HR		-	~	1/. 21	λ= 10 ⁻⁵ cm
ŀ	₹ 12°	MOSE IRBE	<u>_</u>	1-1				A	c=c'(۱+K \\ \})	(Mean free
2	F.G.		φ Σ	-+					C'= C OF STOKES LAW	path ofgas
- 1	PURI	STU		0						molecules)
	+ =	5 6		SRS.	_0000T= 3"	75×109	365 ≌		K≈.8 TO.86	
E		9	-3-		PER HR.		1.9 IN 5Q		PARTICLES I	MOVE LIKE
E		W N	Ē		٥	60×1010	73			ECULES
F	보	H ~문호	Ž		_	22710	1,3		3 INUL	1
- 1		PELLER PRESENTANT PRES	_	PREC					BROWNIAN	A = Distance of
L	MOKES	SELER	OKE						MOVEMENT	motion in time t
ì	MOK		Σg	CAL						B-6
.01	A A	PEN ST	<u>ι.</u>		0	75 ×1012	96 5 0			R = Gas constant
.°'E		2500	-0-	Σ			1 5Q FT			= 8.316 x 10 ⁷
F	돌	N-Z-	-	A D		C0 1013				T = Absolute
	- Z	12 - Z	-	R -	-	60 x 10 13	73.0	Α:	-7 / RTt	Temperature
L	₩ ¥	PAR	m	2	. 1		l		V N 3πηr	7 S PC. G. (0) E
- 1		S 45	AG				- 1		•	N=Number of Gas
Г	а	TTT	AVERAG			İ	l			molecules in
.001	1 1	1 1 1	≩	1 , 1	0	75×10 ¹⁵	365 ≅			one moi=6.06x1023
						12X10.2	4.535Q.FT			22.27/10
Compiled by W. C. Freehand C.										

Compiled by W. G. Frank and Copyrighted Fig. 1. Sizes and Characteristics of Air-Borne Solids

ideal conditions a particle 10 microns, or even less, may be recognized, while under less favorable conditions it may be difficult or even impossible to recognize a particle of 50 microns. The lower limit of visibility should, therefore, be considered as within a range (as above) or optimum conditions stated.

CHAPTER 28. AIR POLLUTION

Mineral particles, such as grains of sand, bits of rock, volcanic ash, or fly-ash, can be transported long distances under unusual circumstances. Thus, the dust storms of 1935 in the Kansas district resulted in vast amounts of fine top soil being thrown high into the air. Solar illumination

Table 1. Approximate Limits of Inflammability of Single Gases and Vapors in Air at Ordinary Temperatures and Pressures^a

GAS OR VAPOR	LOWER LIMIT HIGHER LIMIT VOLUME IN VOLUME IN PER CENT PER CENT		Gas or Vapor	Lower Limit Volume in Per Cent	Higher Limit Volume in Per Cent	
Acetaldehyde	4.0	57.0	Hexane	1.2	6.9	
Acetone		13.0	Hydrocyanic acid	5.6	40.0	
Acetoneb			Hydrogen	4.1	74.0	
Acetylene		80.0	Hydrogen sulphide	4.3	45.5	
Acetyleneb			Illuminating gas	5.3	31.0	
Allyl alcohol	2.4		Iso-amyl alcohol	1.2		
Ammonia	16.0	27.0	Iso-butane	1.8	8.4	
Amyl alcohol	1.2		Iso-butyl alcohol	1.8		
Amyl chloride	1.4		Iso-pentane	1.3		
Amylene			Iso-propyl acetate	1.8	7.8	
Benzene		6.7	Iso-propyl alcohol		•••	
Benzine		0	Methane	5.3	14.0	
Blast-furnace gas		74.0	Methaneb	5.0	15.0	
Butane		8.4	Methyl acetate	3.1	15.5	
Butvl acetate (30 C)		7.6	Methyl alcohol	6.7	36.0	
Butyl alcohol			Methyl bromide	13.5	14.5	
Butylene		9.0	Methylbutyl ketone	1.2	8.0	
Carbon disulphide		50.0	Methyl chloride	8.0	19.0	
Carbon monoxide		74.0	Methyl cyclohexane		10.0	
Croton aldehyde		15.5	Methyl ethyl ether		10.1	
Cyclohexane		8.3	Methyl ethyl ketone	1.8	10.0	
Cyclopropane		10.3	Methyl formate		23.0	
Decane			Methyl propyl ketone	1.5	8.5	
Dichlorethylene		12.8	Natural gas	4.8	13.5	
Diethyl selenide		12.0	Nonane	0.8	10.0	
Dioxan		22.0	Octane	0.9		
Ethane		12.5	O-Xylene	1.0	6.0	
Ethyl acetate		11.5	Paraldehyde		0.0	
Ethyl alcohol		19.0	Pentane		7.8	
Ethyl bromide	6.7	11.2	Propane		9.5	
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14.8	Propyl acetate		8.0	
Ethyl chloride		15.9	Propyl alcohol	2.5	6.0	
Ethylene dichloride		29.0	Propylene	2.0	11.1	
Ethylene	1	36.5	Propylene dichloride	3.4	14.5	
Ethyl ether		16.5	Propylene oxide		21.5	
Ethyl formate	1	10.5	Pyridine (70 C)		12.4	
Ethyl nitrite		80.0	Toluene		6.7	
Ethylene oxide	1	00.0	Vinvl ether		27.0	
Furfural (125 C)		6.5	Vinyl chloride		$\frac{27.0}{22.0}$	
Gasoline	1	0.0			55 to 70	
Heptane	. 10		Water gas	0109	00 10 70	

^aLimits of Inflammability of Gases and Vapors, by H. F. Coward and G. W. Jones ($U.\ S.\ Bureau$ of Mines, Bulletin No. 279, 1939).

as far east as Boston was affected noticeably and particles as large as 40 to 50 microns were actually carried half way across the continent before they settled out. In similar manner volcanic ash has been carried even further. It is not surprising, therefore, that fly-ash from furnace gases, cement dust and the like, can be carried for considerable distances and

bTurbulent mixture.

occasionally the engineer is confronted with the problem of removing such material before the air in question is suitable for use in building ventilation.

The physical properties of the particulate impurities of air are summarized conveniently in the chart of Fig. 1.

In the case of gases, the objectionable features are the injurious physiological effects and the danger from inflammability. (See Table 1.)

Dust Concentrations

It is customary to report dust concentrations as grains per 1000 cu ft or milligrams per cubic meter (except for dusts that may cause pneumoconiosis, which are reported as so many particles per cubic foot of air). Gas concentrations are commonly recorded as milligrams per cubic meter or as parts per million or as per cent by volume. Typical ranges in dust concentrations as now found in practical applications are given in Table 2.

Table 2. Dust Concentration Ranges in Practical Applications²

Application	GRAINS PER 1000 CU FT	Mgs Per Cu M
Rural and suburban districts Metropolitan districts Industrial districts Dusty factories or mines Explosive concentrations (as of flour or soft coal)	0.2 to 0.4 0.4 to 0.8 0.8 to 1.5 4.0 to 80 0 4000 to 8000	0.4 to 0.8 0.9 to 1.8 1.8 to 3.5 10 to 200 10,000 to 20,000

al grain per 1000 cu ft = 2.3 mgs per cubic meter; 1 oz per cubic foot = 1 g per liter.

The engineer frequently desires information regarding the effects of various concentrations of gases or dusts upon man, as the success of a particular installation may depend upon the maintenance of air which is adequately clean. At the present time there are several organizations working on this problem all of them publishing literature of various kinds.¹ References to books covering the hygienic significance, determination and control of dust are listed at the end of this chapter.

AIR POLLUTION AND HEALTH

The prevention of various diseases which result from exposure to atmospheric impurities is an engineering problem. It is important for the engineer to insure, by proper ventilation, suitable environments for working or for general living. If the equipment used is to be successful, it must operate automatically as in the modern air conditioned theater or railroad train.

In Table 3 are given data on permissible accepted standards for toxicity of gases and vapors which occur in industry. The prudent engineer will design equipment using these bench marks as the upper limits of pollution. In general it is good practice to avoid recirculation of air which originally contains toxic substances. Obviously there may be

¹National Institute for Health, U. S. Public Health Service; Division of Labor Standards, U. S. Department of Labor; University of Toronto Medical School, Canada; Saranac Laboratories, Saranac Lake, N. Y.; Industrial Hygiene Foundation, Inc., Pittsburgh, Pa.; Harvard School of Public Health, Boston, Mass.; Haskell Laboratory, Wilmington, Del.; and the Departments of Health and of Labor in the United States and in various provinces of Canada

CHAPTER 28. AIR POLLUTION

exceptions to this rule, but it is one which is generally being followed in current practice.

Affections of the respiratory tract are associated with exposure to thick dust, and may follow inhalation of practically any kind of insoluble and non-colloidal dust. Atmospheric dust in itself cannot be blamed for

TABLE 3. ACCEPTED STANDARDS FOR TOXICITY OF GASES AND VAPORS2

		Max. Allowable Average		
SUBSTANCE	Rapidly	Dangerous for	Max. Safe	CONCENTRATION
	Fatal	from ⅓ to 1 Hour	Concentration for ½ to 1 Hour	FOR REPEATED EXPOSURES
	(ppm)	(ppm)	(ppm)	(ppm)
Ammonia		2500	300	100
Amyl acetate				400
Aniline			105-160	5
Arsine	250	15	6	1
Benzene	190		31-47	100
Butyl acetate				400
Carbon bisulfide	4800	3200-3850	960-1600	20
Carbon dioxide	80,000-100,000			
Carbon monoxide	4000	1500-2000	400	100
Carbon tetrachloride	10,000		1000	100
Chlorine	900	14-21	3.5	1
Dichlorbenzene		** **	0.0	75
Dichlorethyeher				15
Ether				400
Ethylene dichloride				100
Formaldehyde				20
Gasoline	***************************************	••• ••• •		1000
Hydrochloric acid				10
Hydrogen cyanide	270	110–135	45-54	20
Hydrogen chloride	1250-1750	1000-1350	40-90	10
Hydrogen fluoride	660	50-250	10	3
Hydrogen sulfide	1000-2000	360-500	200-300	20
Methanol	1000-2000	200-200	200-300	200
	20,000-40,000	2000-4000	1000	200
Methyl bromide Methyl chloride		20,000-40,000	7000	
	150,000-300,000	20,000-40,000	200	5
Nitrobenzene	200 500	117-154		10
Oxides of nitrogen				
Phosgene	90	12.5	700 000	1
Phosphine	2000	400-600	100-200	2
Sulfur dioxide	400-500	150–190	50-100	10
Tetrachlorethane	7300			10
Tetrachlorethylene				200
Toluene and xylene				200
Trichlorethylene			3700	200
Turpentine			1	200

^aAdapted from The Prevention of Occupational Diseases, by R. R. Sayers and J. M. Dalla Valle (Mechanical Engineering, Vol. 57, No. 4, April, 1935); Safe Concentrations of Certain Common Toxic Substances used in Industry, by M. Bowditch, C. K. Drinker, P. Drinker, H. A. Haggard and H. Hamilton (Journal of Industrial Hygiene and Toxicology, Vol. 22, No. 6, June, 1940); and other authoritative source...

causing tuberculosis, but it may aggravate the disease once it has started.2

The sulphurous fumes and tarry matter in smoke are more dangerous than the carbon. In foggy weather the accumulation of these substances in the lower strata may be such as to cause irritation of the eyes, nose, and respiratory passages. The Meuse Valley fog disaster will probably become

³Physiological Response of the Peritoneal Tissue to Dusts Introduced as Foreign Bodies, by Miller and Sayers (U. S. Public Health Reports, 49:80, 1934).

a classic example in the history of gaseous air pollution. Released in a rare combination of atmospheric calm and dense fog, it is believed that sulphur dioxide and other toxic gases from the industrial region of the valley caused 63 sudden deaths, and injuries to several hundred persons.

Carbon monoxide from automobiles and from chimney gases constitutes another important source of aerial pollution in busy cities. During heavy traffic hours and under atmospheric conditions favorable to concentration, the air of congested streets may contain enough CO to affect those exposed over a period of several hours, particularly if their activities call for deep and rapid breathing. In open air under ordinary conditions the concentration of CO in city air is insufficient to affect the average city dweller or pedestrian.

Occlusion of Solar Radiation

The loss of light, particularly the occlusion of solar ultra-violet light due to smoke and soot, is beginning to be recognized as a health problem in many industrial cities. Measurements of solar radiation in Baltimore³ by actinic methods show that the ultra-violet light in the country was 50 per cent greater than in the city. In New York City⁴ a loss as great as 50 per cent in visible light was found by the photo-electric cell method.

The aesthetic and economic objections to air pollution are so definite, and the effect of air-borne pollen can be shown so readily as the cause of hay-fever and other allergic diseases, that means and expenses of prevention or elimination of this pollution are justified.

SMOKE AND AIR POLLUTION ABATEMENT

Successful abatement of atmospheric pollution requires the combined efforts of the combustion engineer, the public health officer, and the public itself. The complete electrification of industry and railroads, and the separation of industrial and residential communities would aid materially in the effective solution of the problem.

In the large cities where the nuisance from smoke, dust and cinders is the most serious, limited areas obtain some relief by the use of district heating. The boilers in these plants are of large size designed and operated to burn the fuel without smoke, and some of them are equipped with dust catching devices. The gases of combustion are usually discharged at a much higher level than is possible in the case of buildings that operate their own boiler plants.

In general, time, temperature and turbulence are the essential requirements for smokeless combustion. Anything that can be done to increase any one of these factors will reduce the quantity of smoke discharged. Especial care must be taken in hand-firing bituminous coals. (See Chapter 8.)

Checker or alternate firing, in which the fuel is fired alternately on separate parts of the grate, maintains a higher furnace temperature and thereby decreases the amount of smoke.

Studies in Illumination, by J. E. Ives (U. S. Public Health Service Bulletin No. 197, 1930).

¹Effects of Atmospheric Pollution Upon Incidence of Solar Ultra-Violet Light, by J. H. Shrader, M. H. Coblentz and F. A. Korff (American Journal of Public Health, p. 7, Vol. 19, 1929).

CHAPTER 28. AIR POLLUTION

Coking and firing, in which the fuel is first fired close to the firing door and the coke pushed back into the furnace just before firing again, produces the same effect. The volatiles as they are distilled thus have to pass over the hot fuel bed where they will be burned if they are mixed with sufficient air and are not cooled too quickly by the heat-absorbing surfaces of the boiler.

Steam or compressed air jets, admitted over the fire, create turbulence in the furnace and bring the volatiles of the fuel more quickly into contact with the air required for combustion. These jets are especially helpful for the first few minutes after each firing. Frequent firings of small charges shorten the smoking period and reduce the density. Thinner fuel beds on the grate increase the effective combustion space in the furnace, supply more air for combustion, and are sometimes effective in reducing the smoke emitted, but care should be taken that holes are not formed in the fire. A lower volatile coal or a higher gravity oil always produces less smoke than a high volatile coal or low gravity oil used in the same furnace and fired in the same manner.

The installation of more modern or better designed fuel burning equipment, or a change in the construction of the furnace, will often reduce smoke. The installation of a Dutch oven which will increase the furnace volume and raise the furnace temperature often produces satisfactory results.

In the case of new installations, the problem of smoke abatement can be solved by the selection of the proper fuel-burning equipment and furnace design for the particular fuel to be burned and by the proper operation of that equipment. Constant vigilance is necessary to make certain that the equipment is properly operated. In old installations the solution of the problem presents many difficulties, and a considerable investment in special apparatus is often necessary.

Legislative measures at the present time are largely concerned with the smoke discharged from the chimneys of boiler plants. Practically all of the ordinances limit the number of minutes in any one hour that smoke of a specified density, as measured by comparison with a Ringelmann Chart (Chapter 35), may be discharged.

These ordinances do not cover the smoke discharged at low levels by automobiles, and, although they have been instrumental in reducing the smoke emitted by boiler plants, they have, in many instances, increased the output of chimney dust and cinders due to the use of more excess air and to greater turbulence in the furnaces.

Legislative measures in general have not as yet covered the noxious gases, such as sulphur dioxide, nor sulphuric acid fog, which are discharged with the gases of combustion. Where high sulphur coals are burned, these sulphur gases present a serious problem.

DUST AND CINDERS

The impurities in the air other than smoke come from so many sources that they are difficult to control. Only those which are produced in large quantities at a comparatively few points, such as the dust, cinders and fly-ash discharged to the atmosphere along with the gases of combustion from burning solid fuel, can be readily controlled.

Dusts and cinders in flue gas may be caught by various devices on the market, such as fabric filters, dust traps, settling chambers, centrifugal separators, electrical precipitators, and gas scrubbers, described in Chapter 29.

The cinder particles are usually larger in size than the dust particles; they are gray or black in color, and are abrasive. Being of a larger size, the range within which they may annoy is limited.

The dust particles are usually extremely fine; they are light gray or yellow in color, and are not as abrasive as cinder particles. Being extremely fine, they are readily distributed over a large area by air currents.

The nuisance created by the solid particles in the air is dependent on the size and physical characteristics of the individual particles. The difficulty of catching the dust and cinder particles is principally a function of the size and specific gravity of the particles.

Lower rates of combustion per square foot of grate area will reduce the quantity of solid matter discharged from the chimney with the gases of combustion. The burning of coke, coking coal, and sized coal from which the extremely fine coal has been removed will not as a general rule produce as much dust and cinders as will result from the burning of non-coking coals and slack coals when they are burned on a grate.

Modern boiler installations are usually designed for high capacity per square foot of ground area because such designs give the lowest cost of construction per unit of capacity. Designs of this type discharge a large quantity of dust and cinders with the gases of combustion, and if pollution of the atmosphere is to be prevented, some type of catcher must be installed.

NATURE'S DUST CATCHER

Nature has provided means for catching solid particles in the air and depositing them upon the earth. A dust particle forms the nucleus for each rain drop and the rain picks up dust as it falls from the clouds to the earth. However, it was found in recent studies that rain was not a good air cleaner of the material below about 0.7 micron.

REFERENCES

Bulletins, Industrial Hygiene Foundation, Inc., Pittsburgh, Pa.

Determination and Control of Industrial Dust, by J. J. Bloomfield and J. M. Dalla Valle (U. S. Public Health Bulletin, No. 217, 1935).

Journal of Industrial Hygiene and Toxicology, Harvard School of Public Health, Boston, Mass.

Reports of the National Silicosis Conference, Washington, D. C. (To be published by the U. S. Department of Labor.)

Symposiums on Silicosis, 1937 and 1939, Saranac Laboratories, Saranac Lake, N. Y. Symposium on Tuberculosis, 1941, Saranac Laboratory, Saranac, N. Y.

Industrial Dust, by Philip Drinker and Theodore Hatch, McGraw-Hill Co., N. Y.

Noxious Gases, by Y. Henderson and H. Haggard, Chemical Catalog Co., N. Y. Occupation and Health, International Labour Office.

Preventive Medicine and Hygiene, by Milton J. Rosenau, D. Appleton-Century Co., N. Y.

⁵Atmospheric Pollution of American Cities for the years 1931-1933, by J. E. Ives et al (*U. S. Public Health Bulletin* No. 224, March, 1936).

Chapter 29

AIR CLEANING DEVICES

Air Cleaners, Dust and Lint, Classification of Air Cleaning Media, Viscous Impingement Type Cleaners, Automatic Viscous Filters, Dry Air Filters, Electric Precipitators, Performance and Testing, Selection and Maintenance, Safety Requirements, Odor Adsorption

FOR the purposes of this discussion, an air cleaner is defined as a device for capturing and removing solid matter from a stream of air. This solid matter includes fibrous material such as lint as well as particulate matter such as dust, fumes, smoke, cinders, etc. Air cleaning is distinct from air purification in that the latter consists of removing harmful or unpleasant gases, vapors, or bacteria from an occupied space. Air purification is discussed in Chapters 2 and 28.

In general, air cleaners are not installed in buildings for the specific purpose of improving the health of the occupants. However, in some cases air borne solid matter does affect health and the removal of such matter from the air by means of cleaners is beneficial, such as pollen, house dust, and similar allergens which motivate attacks on persons having allergeric sensitivity. The toxic elements in some war gases are in reality fine particles capable of air flotation.

It is known by experience that air cleaners greatly reduce the rate of dirt accumulation in buildings, but, in the present state of knowledge, an exact numerical expression for the cleaning effect of the filter cannot be given on account of the many unknown or variable factors involved. For this reason air cleaners are usually selected on a basis of experience or judgment, guided by the results of various test procedures.

AIR CLEANERS

A typical air cleaner consists of a frame, which may be metal, wood, cardboard, etc., and a filtering medium. The frame is designed to support the medium in a duct or chamber forming part of the air conditioning or ventilating system, so that the air passes through the medium while en route to spaces to be ventilated.

Unit Air Cleaners or Filters

Many air cleaners are available in the form of units of convenient size for handling during installation, cleaning or replacement, where required.

¹Bronchial Asthma and Allied Allergic Disorders, by S. S. Leopold, and C. S. Leopold (Journal of the American Medical Association, March 7, 1925, Vol. 84, p. 731-734).

Such units are usually designated as filters or unit filters. A typical unit filter may be 20 in. square and from one to several inches thick, depending on the manufacture and proposed use. In large systems, a number of such units are installed adjacent to each other and collectively are called a bank of filters.

Air cleaners are commonly installed in the outdoor air intake ducts of buildings and, often, in the recirculating air ducts as well. The cleaner is logically placed ahead of heating or cooling coils and other air conditioning equipment in the system to protect them from dust. The character of the dust arrested by the filters in an air intake duct is commonly quite different from the dust removed by filters located in the recirculation ducts. The dust from outside is likely to be mostly particulate matter of a greasy nature, while lint may predominate in that from within the building.

Settling chambers, air washers and electrostatic precipitators are also air cleaners. Settling chambers are used in boiler plants for capturing cinders, but they occupy too much space for general use in heating, air conditioning or ventilating systems. Unless they are inordinately large, they are not effective in capturing small particles, since the air velocity is not sufficiently reduced to permit such particles to settle.

Air washers have generally become recognized for the purpose of adjusting the temperature and humidity of the air, and not so much for cleaning air. It happens that insofar as dirtiness is concerned, carbon is the most troublesome dust. Carbon particles are likely to be greasy and since there is a natural repulsion between grease and water, the water spray in an air washer is not effective to a desirable degree in capturing them. However, air washers do capture considerable amounts of dust and lint which become sludge in the sump. Much of the cleaning action occurs at the eliminator plates where the dust particles are thrown against the film of water on the plates by their momentum.

The electrostatic precipitator is considered at present an effective available means of capturing the finer dust particles. This device does not entirely displace other types of air cleaners at the present time because of its relatively high cost, large space requirements, and due to the fact that the air must enter and leave the apparatus in substantially parallel and straight flow.

Dust and Lint

Air-borne solid matter may fall into two classifications, namely, lint and dust or particulate matter. Some lint originates outdoors, as animal hair, vegetable fibers, etc., but much is generated within buildings by the wear and brushing of fabrics in the form of clothes, draperies, carpets, etc. Lint is comparatively easy to capture in an air filter on account of its comparatively great length. So far as air filter performance and testing are concerned, lint is chiefly important on account of its tendency to impede or stop the flow of air through the filter. In general, lint, if not captured, will accumulate in corners and under furniture in a building in areas of slight air motion and in some cases may seriously obstruct heating and cooling coils. Dust settles, or is precipitated by heat or air motion, upon furniture, fixtures and walls and the only satisfactory treat-

CHAPTER 29. AIR CLEANING DEVICES

ment is washing or re-painting. Dust is more difficult to capture than lint, and obviously, small particles are more difficult to capture than large ones. The air cleaning problem is complicated by the vast difference in size of dust particles, the range of which is shown in Fig. 1, Chapter 28.

Even if the discussion is limited to the range from 0.1 micron to 50 microns, that is between the smallest particle observable in the microscope and the smallest particle distinguishable to the naked eye, this range is so far outside the usual experience that it is difficult to visualize. If particles could be examined through a super microscope having a magnification of 250,000 diameters, a tobacco smoke particle of 0.1 micron would appear to be 1 in. in diameter, or approximately the size of a golf ball; a soft coal smoke particle 0.3 micron in diameter would appear like a baseball; a ragweed pollen grain 20 microns in diameter would appear 16.5 ft in diameter, while the 50 micron particle, just visible to the naked eye and able to pass through a 270 mesh screen, would appear to be 50 ft in diameter. Picturing this range in particle size from a golf ball to a sphere 50 ft in diameter may aid in appreciating the problem of cleaning air and the difficulty of devising any single test to adequately measure the performance of air cleaning devices under all conditions of service.

It may be contended that the removal of the finer particles from ventilating air is relatively unimportant insofar as cleanliness in a house or building is concerned, since it is possible that such particles may remain suspended in the air and in large part be removed from the building without settling by the circulating air. However, the fact that some of the particles are undoubtedly deposited by contact and by the phenomenon of thermal precipitation makes the ability to remove small particles desirable in an air cleaner.

The fact that dust particles migrate from a warm region toward a cool surface, to which they will adhere, is called thermal precipitation². This fact is responsible for the *lath marks* often observed on walls or ceilings. The laths form barriers to the passage of heat so that the surface of the plaster in front of them is warmer than the surface between them. Dust is therefore deposited more rapidly between joists or laths than it is in front of them, resulting in the streaks observed. If the entire ceiling or wall is insulated, the differences in temperature across the surfaces cease to exist. Under this condition the lath marks do not form and the deposition of dust is much slower.

A laboratory apparatus has been designed in which thermal precipitation is employed to capture dust particles for microscopic examination³. So far as is known thermal precipitation has not yet been used as a practical means of cleaning air.

CLASSIFICATION OF AIR CLEANING MEDIA

Air cleaners of such a variety of types have been used in the past that a single classification is difficult. Considering the wide diversification of materials and particle sizes to be removed and the varying requirements

²Dirt Patterns on Walls, by R. A. Nielsen (A.S H.V.E. Transactions, Vol. 46, 1941, p. 247).

Industrial Dust, by Philip Drinker and Theodore Hatch (McGraw-Hill Co , New York, N. Y.).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

which have to be met in the field, it is natural that many kinds of air cleaning devices are used which cannot be shown satisfactorily in a simple outline. Classifications on three different bases are enumerated herewith:

- 1. Principle of air cleaning.
 - a. Viscous-impingement filters.
 - b. Dry filters.
 - c. Washers.
 - d. Centrifugal devices.
 - e. Electrical precipitators.
- 2. Methods of servicing.
 - Automatic.
 - b. Non-automatic.

 - Throw-away (replaceable elements).
 Manually cleaned in place (including one type of electrostatic).
 - (3) Removable for cleaning.
- 3. Classification according to application.
 - General air conditioning.
 - Central cleaning system.
 Unit ventilator.
 Window installation.

 - (4) Warm air furnace.
 - Removal of smoke and fumes from stack gases.
 - c. Collection of dusts from exhaust systems.

VISCOUS IMPINGEMENT TYPE CLEANERS

The medium in a viscous impingement type filter is usually a fiber pack for non-automatic types or a series of metal plates for automatic selfcleaning types. In either case, the medium is treated with a viscous substance, often an oil or grease, called the adhesive or the saturant, intended to retain dust particles which come in contact with it. Also, in either case, the arrangement is such that the air stream is broken up into many small air streams and these are caused to abruptly change direction a number of times in order to throw the dust particles, by momentum, against the adhesive. Several desirable characteristics of an adhesive for air cleaners of this type are:

- 1. Its surface tension should be such as to produce a homogeneous film or coating on the filter medium.
 - 2. The viscosity should vary only slightly with normal changes of temperature.
- 3. It should prevent the development of mold spores and bacteria on the filter medium.
- 4. The liquid should have high capillarity, or ability to wet and retain the dust at all operating temperatures.
 - 5. Evaporation should be slight.
 - 6. It should be fire resistant.
 - It should be odorless.

Various fibrous materials have been used as filtering media in unit filters of the viscous impingement type. This includes glass fiber, steel wool, similar wool of non-ferrous metals, wire screen, animal hair, hemp fibers, and other materials. In such filters, the medium is often packed more densely on the discharge than on the approach-side in order to increase the dust holding capacity. This results in a selective arrestance

CHAPTER 29. AIR CLEANING DEVICES

of dust with the larger particles nearer the approach face. The arrangement also permits some penetration of lint into (but not through) the filter, so that the amount of lint which can be tolerated on the filter is also increased. Due to plane surface area the viscous impingement type filter, however, may be inferior to some dry types where the air carries a high percentage of lint.

The resistance of air filters obviously increases with the air flow through them. For this type filter, face velocities of about 300 fpm and resistances in the range from 0.1 to 0.2 in. W. G., when the device is new and clean, are usual for ventilation system filters. Special filters with low resistances are available for use with gravity warm air furnaces and for other uses where only low pressure is available.

The resistance of these filters increases with dust or lint loading and it is the resistance due to this cause which ordinarily necessitates servicing. The rate of loading obviously depends upon the amount as well as the kind of dust in the air and for this reason, periods between servicing cannot be predicted. Manometers are often installed to indicate the pressure drop across filter banks and they serve to indicate when the filter requires cleaning. The pressure drop tolerated differs between operators and system designs. The resistance of a filter bank can be kept desirably low by periodically servicing some but not all of the units in the bank at one time, providing the difference in resistance between the clean and dirty filters is small.

The method of cleaning viscous impingement unit filters differs for different types of filters and kinds of dust. Much dry dust or lint can often be removed by rapping the filter.

Throw-away filters are constructed of inexpensive materials and are designed to be discarded after one use. The frame is frequently a combination of cardboard and wire.

Cleanable types usually have metal frames. Various cleaning methods have been recommended including: air jet, water jet, steam jet, washing in kerosene, and dipping in an oil. The latter may serve both to clean the filter and add the necessary adhesive.

Automatic Viscous Filters

In an automatic air filter, means are provided to remove the dust from the medium mechanically. Automatic filters with moving cloth media have been constructed. The media is supported on rollers and moves slowing and continuously across the air stream and then through some cleaning mechanism, such as a beater, a vacuum cleaner, or a brushing arrangement. Such filters, however, are not now in wide use, possibly on account of mechanical difficulties, and because of the rapid and sometimes permanent increase of resistance when oily matter is present.

The medium in a typical automatic filter at present consists of a series of specially formed metal plates mounted on a pair of chains. The chains are mounted on sprockets located at the top and bottom of the filter housing, so that the filtering medium can be moved as a continuous curtain up one side and down the other side of the sprockets. The arrangement is such that, at the bottom, the medium passes through a bath of special oil which both serves to remove the dirt from the plates

and acts as an adhesive when the cleaned plates next pass through the air stream. The plates forming the filtering medium or curtain usually overlap each other and due to their special shape many small air passages are formed between them. These air passages turn abruptly one or more times in order to give the impingement effect.

An electrically driven rotating device is usually supplied with an automatic filter. The device may be set to move the curtain periodically or a special switch, actuated by pressure drop, may be used to govern its motion. Such a switch will cause the gear to move the curtain when the resistance of the filter to air flow becomes excessive and will stop it when the resistance becomes sufficiently low.

In operation, the resistance of an automatic filter will remain approximately constant as long as proper operation is obtained. A resistance of $\frac{3}{6}$ in. W. G. at a face velocity of 500 fpm is typical of this class.

DRY AIR FILTERS

As the name implies, adhesives are not used on dry air filters. The media in such filters are usually fabrics or fabric-like materials. Media of wool felt, cotton batting (both glazed and unglazed), celulose fiber and other materials have been used commercially.

The medium in a filter of this class is usually supported by a wire frame in the form of pockets or V-shaped pleats in order to increase the area exposed to the passage of air. A 2 ft square unit may contain from 15 to 30 sq ft of medium.

Dry air filters are likely to have a comparatively high lint-holding capacity on account of the large area of medium used. Wool felt media are troublesome to clean when impregnated with greasy dust and they are too expensive to discard frequently. Both vacuum cleaning and dry cleaning have been used for reconditioning wool felt filters.

ELECTRIC PRECIPITATORS

The fact that a particle exposed to an electric field will assume a charge and migrate toward one of the electrodes has been utilized for some years in boiler plants as a means of smoke abatement. More recently, means were developed whereby the phenomenon could be employed in air cleaning in connection with air conditioning without generating ozone in intolerable quantities. The air stream in a precipitator passes first through a relatively high-tension electric field, known as the ionizing field and then through a secondary field where the precipitation of the dust occurs. The arrangement is as shown in Fig. 1.

In a typical case, a potential of 12,000 volts may be used to create the ionizing field, and some 5000 volts between the plates upon which the precipitation of dust occurs. These voltages, which are capable of shock to personnel similar to that of a spark plug, necessitate some safety measures. A typical arrangement provides means for automatically making the unit inoperative when a door to the precipitator is opened. To resume operation the procedure necessitates closing the door and turning an electric switch, the latter of which should be located at a reasonable distance from the equipment. The voltages necessary for the

CHAPTER 29. AIR CLEANING DEVICES

operation of the precipitator are usually obtained from an alternating current building service line by means of a step-up transformer. Precipitation with alternating current is possible but is not nearly as effective; so the current is usually rectified by means of vacuum tubes. The transformer and tubes are collectively termed the power pack.

Electric precipitators are available in both automatic and non-automatic types. The plates of non-automatic precipitators are commonly coated with a light oil as an adhesive. Cleaning is accomplished with a water hose and, for this reason, the bottom of the equipment is made water tight and provided with a drain. In one automatic type, precipitation units are mounted on chains and are alternately dipped in oil and exposed to the air stream with an action similar to that of an automatic

Fig. 1. Diagrammatic Cross-Section of Electrostatic Precipitator

impingement filter. An arrangement of sliding contacts maintains the necessary electric circuits.

Only a very small amount of electric energy is necessary to operate an electric precipitator and the resistance to air flow through the device is practically negligible. Some care is necessary in arranging the duct approaches on the entering and leaving sides of precipitators to assure that the air flow is distributed uniformly over the cross-sectional area. The efficiency of the precipitator is sensitive to air velocity and the device itself has much less tendency to rectify the air stream than filters, which have much higher resistances.

PERFORMANCE AND TESTING

The rating of an air cleaner is the air flow for which it is designed expressed in cubic feet per minute. Face velocity is defined as the average velocity of the air entering the cleaner, and it is determined by taking the air flow and dividing it by the area of the duct connection to the cleaner in square feet. Cleaners are often rated at a face velocity in the range

from 250 to 500 fpm. The resistance of an air cleaner to air flow is usually measured in inches water gage. The resistance of filters when new and clean and when operated at rated capacity are generally available from the manufacturer (see *Catalog Data Section*).

The ability of air cleaners to clean air is called the efficiency or the arrestance, and may be denoted by the symbol E. The efficiency of an air cleaner differs with the size and nature of the dust on which the cleaner operates. Obviously, large particles and lint are more easily captured than minute particles which are small in all dimensions. The efficiency of an air cleaner, algebraically expressed, is:

$$E = \frac{D_1 - D_2}{D_1} \tag{1}$$

where

 D_1 = amount of dust per unit volume in uncleaned air.

 D_2 = amount of dust per unit volume in cleaned air.

Several methods have been investigated for evaluating D_1 and D_2 . The particle count method is no longer used for efficiency evaluations except in rough field measurements or in investigation of filter performance on specific and comparatively large particles such as pollen. Dust particles can be captured on microscope slides by means of one of the various kinds of impingement devices. The process is useful if an inspection and analysis of dust is desired, but particle counting is not sufficiently precise for evaluating the efficiency of a cleaner operating on a heterogeneous dust.

The weight method of evaluating efficiency has found wide utility and was recognized by the AMERICAN SOCIETY OF HEATING AND VENTILATING ENGINEERS and incorporated in a code⁴. For this test, a known weight of a prepared dust is injected into air supplied to the filter and the quantity of dust in the cleaned air is determined by extracting and weighing the dust from a known volume of the cleaned air. Dust extraction from the air is accomplished by drawing the air through a porous crucible or thimble by means of a high vacuum.

The dust-spot or blackness test for cleaner efficiency was developed at the National Bureau of Standards. The test consists of drawing samples of cleaned air and of uncleaned air through filter papers simultaneously. The ratio of the areas of paper through which the air samples are drawn and the ratio of the amount of air drawn through the papers are adjusted during successive trials to yield spots of approximately equal blackness on the papers. The ratios of the areas and of the volumes of the air samples are then indicators of the filters effectiveness. A special photometer is provided for comparing the blackness or opacity of the papers by transmitted light. For tests of ordinary air filters by this method, a dust is injected into the air stream. The dust consists of precipitated smoke particles from a Cottrell precipitator used in a local power plant for smoke abatement. For tests of electrostatic air cleaners, no dust is

⁴A.S.H.V.E. Standard Code for Testing and Rating Air Cleaning Devices Used in General Ventilation Work (A.S.H.V.E. Transactions, Vol. 39, 1933, p. 225).

A Test Method for Air Filters, by Richard S. Dill (A.S.H.V.E. TRANSACTIONS, Vol. 44, 1938, p. 379).

added to the air. Tests are commonly made with the dust existing in the air at the location of the installation on a clear day. Some specifications for this type cleaner have required that dust spots of equal area shall be taken, and that the downstream spot shall not be any dirtier than the upstream spot when 10 times as much air is drawn through it as is drawn through the upstream spot. When this condition is met the cleaner is said to have an efficiency or arrestance of 90 per cent or better on atmospheric air.

Dust-holding capacity is defined as the amount of dust which a filter can retain and have a resistance less than some arbitrary value. The term applies only to non-automatic air cleaners. Determination of dust-holding capacity is an objective of each test under the A.S.H.V.E. Standard Code⁶. Curves are obtained during such tests to show the relation between dust load and resistance. Typical curves are shown in Fig. 2. Type A is a dense pack used in bacterium control; Type B is a

Fig. 2. Resistance to Air Flow of Typical Unit Air Filters

medium pack used for general ventilation work; and Type C is a low resistance unit, for use where low resistance is the important factor and maximum cleaning efficiencies are not essential.

At the National Bureau of Standards two injectors are provided on the air cleaner testing apparatus. One injector is used to contaminate the air stream with Cottrell precipitate, previously described. This dust is used to make both efficiency determination and dust-holding capacity tests. The other injector contaminates the air stream with cotton linters with which lint-holding capacity tests are made. The curves in Fig. 3 illustrate the difference in the characteristics of two filters, one a viscous-impingement type and the other a dry filter with a celulose fiber medium. The two injectors can be operated either separately or simultaneously. A total dust deposit of 4 per cent cotton linters and 96 per cent Cottrell precipitate gives a deposit on a filter closely resembling those that occur in Washington, D. C.

SELECTION AND MAINTENANCE

If effectiveness in arresting dust were always the primary consideration, an electrostatic cleaner might be used for all air cleaner installations.

Loc. Cit. Note 4.

Where the dust load is heavy, a filter bank may be installed ahead of the precipitator. At the present time electrostatic equipment is comparatively expensive and bulky and is therefore only used when the expense is justified by the need for the cleanest air possible.

The advantage of the automatic impingement type filter consists in the small amount of attention which it requires. Such devices are therefore to be recommended where labor is scarce or where reliable and frequent attention to filters cannot be assumed. This type of equipment is not any better in dust arrestance than some unit filters, and it ranks next to precipitators in first cost.

Unit filters constitute the majority of air cleaners now is use, and some choice is possible between the types available. Where lint in an eminently dry state predominates, a dry filter obviously may be preferable to other types on account of its lint-holding capacity. If the lint is greasy or if

Fig 3. Dust and Lint Holding Capacity of Two Filters

oil vapor exists in the air, the dry filter may be troublesome, since grease tends to plug such filters and makes them difficult to clean, if they are of the cleanable type. The cleaning difficulty is avoided if a throw-away type of medium is used. Some dry filters are capable of high efficiencies, compared to other unit filters on fine particles, but their dust-holding capacity for such dust may be inferior to that of the viscous impingement type.

Viscous impingement unit filters represent the general type of air cleaner now in use. They have approached standards in size and their over-all dimensions are small when compared with their ratings.

Throw-away units are often installed in series so that the one in front, which usually becomes plugged with lint, can be discarded. The one located downstream is then moved to the front and is replaced by a new unit.

Viscous impingement unit filters do not have efficiencies as high as can be expected with some other types of unit filters, but their first cost and upkeep are generally lower, whether of the cleanable or the throw-away type. The viscous impingement unit filter requires more careful attention than the automatic oil type if the resistance is to be maintained within reasonable limits.

Safety Requirements

An investigation of safety ordinances should be made by the engineer when the installation of an air cleaner of any considerable size is contemplated. It is possible that a combustible filtering media may not be permitted in accordance with some existing local regulations. Combustion of dust and lint on a filtering medium is possible, though the medium itself may not burn.

Fig. 4. Resistance Curves for 6-14 Mesh Activated Carbon

ODOR ADSORPTION

Activated carbon is sometimes used to remove malodorous substances from air in connection with air conditioning. Cocoanut shell carbon is usually employed for the purpose. This is a hard, granular and very porous substance with the power of adsorbing vapors and minute droplets from air. It will under favorable conditions adsorb some substances to the extent of 60 per cent of its own weight.

The carbon is spread from $\frac{3}{4}$ in. thick in trays through which air is circulated at a rate of from 30 to 50 fpm. The resistance of the bed varies with the velocity as shown in Fig. 4.

Eventually, the carbon approaches saturation and must be reactivated or revivified by heating to drive out the captured impurities. For this

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

purpose, the carbon must be removed from the air conditioning equipment and baked at a fairly high temperature. This operation must be carefully conducted if damage to the carbon by burning or otherwise is to be avoided.

REFERENCES

Design and Application of Oil-Coated Air Filters, by H. C. Murphy (A.S.H.V.E. Transactions, Vol. 33, 1927, p. 73).

Operation and Maintenance of Air Filters, by W. G. Frank (Heating, Piping and Air Conditioning, May, 1931, p. 378).

Size and Characteristics of Air-Borne Impurities, by W. G. Frank (*Heating*, *Piping* and Air Conditioning, January, 1932, p. 35).

Fundamental Principles in the Design of Dry Air Filters, by Otto Wechsberg (A.S.H.V.E. JOURNAL SECTION, Heating, Piping and Air Conditioning, April, 1933, p. 217).

Operation, Maintenance of Cloth-Screened Dust Collectors, by W. F. Terry (*Heating*, *Piping and Air Conditioning*, May, p. 259, June, p. 304, 1933).

Testing and Rating of Air Cleaning Devices Used in General Ventilation Work, by Samuel R. Lewis (A.S.H.V.E. Transactions, Vol. 39, 1933, p. 277).

A.S.H.V.E. RESEARCH REPORT No. 1094—Air Filter Performance as Affected by Kind of Dust, Rate of Dust Feed, and Air Velocity Through Filter, by F. B. Rowley and R. C. Jordan (A.S.H.V.E. Transactions, Vol. 44, 1938, p. 415).

A.S.H.V.E. RESEARCH REPORT No. 1122—Air Filter Performance as Affected by Low Rate of Dust Feed, Various Types of Carbon, and Dust Particle Size and Density, by F. B. Rowley and R. C. Jordan (A.S.H.V.E. Transactions, Vol. 45, 1939, p. 339).

A.S.H.V.E. RESEARCH REPORT No. 1145—The Effect of Lint on Air Filter Performance, by F. B. Rowley and R. C. Jordan (A.S.H.V.E. Transactions, Vol. 46, 1940, p. 25).

A.S.H.V.E. RESEARCH REPORT No. 1169—Comparison of the Weight, Particle Count and Discoloration Methods of Testing Air Filters, by F. B. Rowley and R. C. Jordan (A.S.H.V.E. Transactions, Vol. 47, 1941, p. 29).

A.S.H.V.E. RESEARCH REPORT No. 1187—Economical Air Velocities for Mechanical Air Filtration, by F. B. Rowley and R. C. Jordan (A.S.H.V.E. Transactions, Vol. 47, 1941, p. 391).

A.S.H.V.E. RESEARCH PAPER—Overloading of Viscous Air Filters During Accelerated Tests, by F. B. Rowley and R. C. Jordan (A.S.H.V.E. JOURNAL SECTION, *Heating*, *Piping and Air Conditioning*, July, 1942, p. 432).

The Dust-Free Space Surrounding Hot Bodies, by H. H. Watson (Transactions of the Faraday Society, Vol. 32, 1936, Pt. 2, p. 1073).

A New Electrostatic Precipitator, by G. W. Penney (*Electrical Engineering*, January, 1937, p. 159).

Chapter 30

FANS

Classification, Performance, Fan Efficiency, Characteristic Curves, System Characteristics, Selection of Fans, Fan Designations, Control, Motive Power

In heating and ventilating practice, fans are used to produce air flow except where positive displacement is required, in which case compressors or rotary blowers are used. All fans or blowers are classified according to the direction of air flow through the fan with relation to the axis of rotation and are either of the (1) axial flow or propeller type, in which the flow is parallel to the axis or (2) radial flow or centrifugal type, in which the flow is parallel to the radius of rotation.

Axial flow fans are made with various numbers of blades, the latter varying widely in form. The blades may be of uniform thickness and made of cast or sheet metal, and either flat or cambered or of screw form; or they may vary in thickness, in the latter case usually being designed to conform to so-called airfoil sections of known characteristics, similar to those which have been developed for airplane propellers. Likewise, blade angle, or the angular relation of the blades to the plane of rotation, varies over a wide range. For operation against comparatively high pressures, it is customary to resort to enlarged hubs in proportion to fan diameter (large hub ratio) and correspondingly short blade length. The term disc fan has sometimes been loosely applied to such large hub fans, though it has long been generally used in connection with any propeller fan of comparatively short axial length whose blades are relatively flat; in other words, for fan wheels which occupy a space which is more or less disc-shaped.

Radial flow or centrifugal fans include steel plate fans, pressure blowers, cone fans, and the so-called multiblade fans. All the foregoing types have variations which may be obtained by modification of the proportions or change in the curvature and angularity of the blades. The angularity of the blades determines the operating characteristics of a fan; a forward curved blade is found in a fan having slow speed operating characteristics, while a backward curved blade is found in a fan having high speed operating characteristics.

A wide variation exists in the demands which have to be met by fan installations. A fan may be required to move large quantities of air against little or no resistance or it may be required to move small quantities against high resistances. Between these two extremes innumerable specific requirements must be met. In general, fans of all types in each

general class can be made to perform the same duty, although mechanical difficulties, noise or lack of efficiency may limit the use to one or another type. Until a few years ago, the most common field of service for fans of the propeller type was in moving air against moderate pressures, where no long ducts were involved, or no heavy frictional resistance had to be overcome. However, recent developments in the design of axial flow fans based on the application of aero-dynamic principles, and furthermore, the use of multi-stage fans, have greatly increased the range of pressures against which the modern propeller fan can be applied. Single stage axial flow fans of moderate diameter are now available to operate against static pressures of 3 and 4 in. of water, while maintaining moderate noise levels. These pressures are readily doubled by the simple device of double staging. In multi-stage units, intermediate guide vanes are employed to properly redirect the air discharged by the first stage into the second stage wheel. In the most common form of two-stage axial flow fan, the motor is provided with shaft extensions on each end, one carrying the first stage fan, and the other the second stage. The motor is supported radially from a cylindrical casing and the intermediate guide vanes are mounted in the annular space around the motor.

FAN PERFORMANCE

Fans of all types follow certain laws of performance which are useful in determining the effect of changes in the conditions of operation. These laws apply to installations comprising any type of fan, any given piping system and constant air density, and are as follows:

- 1. The air capacity varies directly as the fan speed.
- 2. The pressure (static, velocity, and total) varies as the square of the fan speed.
- 3. The power demand varies as the cube of the fan speed.

Example 1. A certain fan delivers 12,000 cfm at a static pressure of 1 in. of water when operating at a speed of 400 rpm and requires an input of 4 hp. If in the same installation 15,000 cfm are desired, what will be the speed, static pressure, and power?

Speed =
$$400 \times \frac{15,000}{12,000} = 500 \text{ rpm}$$

Static pressure = $1 \times \left(\frac{500}{400}\right)^2 = 1.56 \text{ in.}$
Power = $4 \times \left(\frac{500}{400}\right)^3 = 7.81 \text{ hp}$

When the density of the air varies the following laws apply:

4. At constant speed and capacity the pressure and power vary directly as the density.

Example 2. A certain fan delivers 12,000 cfm at 70 F and normal barometric pressure (density 0.075 lb per cubic foot) at a static pressure of 1 in. of water when operating at 400 rpm, and requires 4 hp. If the air temperature is increased to 200 F (density 0.0602 lb) and the speed of the fan remains the same, what will be the static pressure and power?

Static pressure =
$$1 \times \frac{0.0602}{0.075} = 0.80$$
 in
Power = $4 \times \frac{0.0602}{0.075} = 3.20$ hp

5. At constant pressure the speed, capacity and power vary inversely as the square root of the density.

Example 3. If the speed of the fan of Example 2 is increased so as to produce a static pressure of 1 in. of water at the 200 F temperature, what will be the speed, capacity, and power?

Speed =
$$400 \times \sqrt{\frac{0.075}{0.0602}} = 446 \text{ rpm}$$

Capacity = $12,000 \times \sqrt{\frac{0.075}{0.0602}} = 13,392 \text{ cfm (measured at 200 F)}$
Power = $4 \times \sqrt{\frac{0.075}{0.0602}} = 4.46 \text{ hp}$

- 6. For a constant weight of air:
 - (a) The speed, capacity, and pressure vary inversely as the density.
 - (b) The horsepower varies inversely as the square of the density.

Example 4. If the speed of the fan of the previous examples is increased so as to deliver the same weight of air at 200 F as at 70 F, what will be the speed, capacity, static pressure, and power?

Speed =
$$400 \times \frac{0.075}{0.0602} = 498 \text{ rpm}$$

Capacity = $12,000 \times \frac{0.075}{0.0602} = 14,945 \text{ cfm}$ (measured at 200 F)
Static pressure = $1 \times \frac{0.075}{0.0602} = 1.25 \text{ in}$.
Power = $4 \times \left(\frac{0.075}{0.0602}\right)^2 = 6.20 \text{ hp}$

FAN EFFICIENCY

The efficiency of a fan may be defined as the ratio of the horsepower output to the horsepower input.

The horsepower output is expressed by the formula:

Air Horsepower¹ =
$$\frac{\text{cfm} \times \text{total pressure in inches of water}}{6356}$$
 (1)

When the static pressure is used in the computation in place of total pressure it is assumed that this represents the useful pressure and that the velocity pressure is lost in the piping system and in the air which leaves the system. Since in most installations a higher velocity exists at the fan outlet than at the point of delivery into the atmosphere, some of the velocity pressure at the fan outlet may be utilized by conversion to static pressure within the system, but, owing to the uncertainty of friction losses which occur at the places where changes in velocity take place, the amount of velocity pressure which is actually utilized is seldom known, and the static pressure alone may best represent the useful pressure. In the standards for published capacity tables as adopted by the National Association of Fan Manufacturers, the term static pressure refers to the

¹See Standard Test Code for Centrifugal and Axial Fans, Third Edition of 1938.

true resistance to air flow. Such tables charge both the inlet and outlet velocity of the fan, to the fan performance, and may be used directly where the static pressure of the system as calculated represents only the actual resistance to flow of the air.

The efficiency based upon static pressure is known as the static efficiency and may be expressed as follows:

Static efficiency¹ =
$$\frac{\text{cfm} \times \text{static pressure in inches of water}}{6356 \times \text{Horsepower input}}$$
 (2)

Different fans may develop the same capacity against the same static pressure and with the same power input, and therefore operate at the same static efficiency, while maintaining different outlet velocities. Where a high outlet velocity is desirable or can be utilized effectively, the static

Fig. 1. Typical Fan Performance Curve

efficiency fails to be a satisfactory measurement of the performance. In many applications of propeller fans, air is circulated without encountering resistance and no static pressure is developed. The static efficiency is zero and its calculation is meaningless. Because of such situations where the static efficiency fails to indicate the true performance, many engineers prefer to base the calculation of efficiency upon the total pressure. This efficiency is variously known as the total, or mechanical efficiency, and may be expressed as follows:

Mechanical or Total efficiency¹ =
$$\frac{\text{cfm} \times \text{total pressure in inches of water}}{6356 \times \text{Horsepower input}}$$
 (3)

CHARACTERISTIC CURVES

In the operation of a fan at a fixed speed the static and total efficiencies vary with any change in the resistance which is imposed. With different designs the peak of efficiency occurs when the fans deliver different percentages of their wide-open capacity. Variations in efficiency accompany

variations in pressures and power consumption which are characteristic of the individual designs and which are influenced particularly by the shape and angularity of the blades. Such variations in pressure, power, and efficiency are shown by characteristic curves.

Characteristic curves of fans are determined by tests performed in accordance with the Standard Test Code for Centrifugal and Axial Fans² prepared jointly by the AMERICAN SOCIETY OF HEATING AND VENTILATING ENGINEERS and the National Association of Fan Manufacturers. The results of tests are plotted in different ways: the abscissae may be the ratio of delivery, assuming full open discharge as 100 per cent, and the ordinates may be static pressure, total pressure, horsepower and efficiency. A typical fan performance curve is shown in Fig. 1.

Fig. 2. Operating Characteristics of an Axial Flow Fan With Blades of Uniform Thickness

In the selection of all but very small fans, power consumption is usually a major consideration. It must be borne in mind that the horsepower at peak efficiency alone may be misleading, as actual operation is apt to occur at some point on the pressure-volume curve varying considerably from that specified, due to inaccuracies of the estimated system resistance or to fluctuating resistance caused by damper or louver adjustments. To cope with such variations a fan should be selected having a high efficiency over a wide range, that is, a *flat* or broad efficiency curve is more desirable than a sharp or narrow curve which, though reaching a high peak, falls off rapidly to either side of a narrow range. When the point of operation varies only within narrow limits and both volume and pressure requirements are accurately known in advance, the designer can select a fan operating at maximum efficiency, irrespective of performance over the entire range.

Generally fans are selected either at the peak of the static efficiency or to the right of the peak depending on the requirements of the particular

²A.S.H.V.E. Transactions, Vol. 29, 1923, p. 407. Amended in A.S.H.V.E. Transactions, Vol. 37 1931, p. 363. Third Edition of 1938.

selection. Fans selected to the right of the peak will be smaller but will require more power, run at higher speeds and have a higher sound rating. Where first cost is important and added horsepower and noise are not important, smaller fans may be used. Where efficient and quiet operation are most important, fans are selected at or near the peak of the static efficiency curve. Fans are not ordinarily selected to the left of the peak of the static efficiency curve as this results in larger, more costly fans, requiring more power and in some cases producing objectionable noise.

The curves shown in Figs. 2, 3, 4 and 5 show operating characteristics for various types including the backwardly inclined blade design for comparison purposes. These curves are not applicable for rigid comparison or actual selection and are shown to indicate the variations in operating characteristics.

Fig. 3. Operating Characteristics of Axial Flow Airfoil Type Fan

Axial flow fans having blades of uniform thickness at any given radius are characterized by rapid rise in power consumed as the resistance increases, as illustrated in Fig. 2. When operating against high resistance, this type of blade permits some of the air to pass back between the blades near the hub, where blade speed is much lower than near the tip or periphery. Obviously, a fan of such characteristics should only be used against low resistance.

The curves in Fig. 3 show the characteristics of typical axial flow fans with airfoil design. This type of fan shows characteristics of non-overloading horsepower and high efficiency at relatively high static pressure, as contrasted with a fan blade of uniform thickness. These results are obtained by more uniform pressure throughout the blade annulus, so that back flow does not occur until high pressures are reached. This reduction in turbulence also has a tendency to reduce noise. Fans of this type are now available, operating against static pressures up to 3 and 4 in. water, single stage and 6 to 8 in. water, double stage. The capacity and efficiency of axial fans can be improved, particularly when operating against considerable pressure, by the use of either inlet or outlet guide

vanes or both. Generally, the effect of such vanes is to increase the level of the pressure-volume curve, and properly designed vanes on the discharge side of the fan have the advantage of eliminating the rotational component of the air stream, thus quickly restoring uniform axial flow. As high pressures usually require large hubs in proportion to the fan diameter, performance is improved by the use of round-nosed or conical forms mounted coaxially with the direct-connected fan (sometimes partly or wholly enclosing the motor) so as to make the changes in velocity to and from the fan blade annulus as space conditions permit. When axial flow fans are installed in ducts, provisions may also be made to install the driving motor outside the duct, by employing slots in the duct to permit a belt drive from the motor to the fan sheave.

Fig. 4. Operating Characteristics of a Fan with Blades Curved Forward

The straight blade (paddle-wheel) or partially backward curved blade type of fan is seldom used for ventilation. Its use is largely confined to such applications as conveyors for material, or for gases containing foreign material, fumes and vapors. The open construction and the few large flat blades of these wheels render them resistant to corrosion and tend to prevent material from collecting on the blades. This type of fan has a good efficiency, but the power steadily increases as the static pressure falls off, which requires that the motor be selected with a moderate reserve in power to take care of possible error in calculation of duct resistance.

The forward curve multiblade fan and the backward curve types are used extensively in heating and ventilating work. The forward curve type has a low peripheral speed and a large capacity, and is quiet in operation. (See Fig. 4.) The point of maximum efficiency for this fan occurs near the point of maximum static pressure. The static pressure drops consistently from the point of maximum efficiency to full open operation. The power curve rises continually from low to peak capacity and if reasonable care is exercised in calculating resistance, a moderate reserve in power in the motor selection will prevent overloading.

The backward curve types would include the full backward curve blade and the double curve blade having a forward curve heel and a backward curve tip. These types have steep pressure curves and non-overloading power characteristics and relatively high speed. (See Fig. 5.) These fans operate at a peripheral speed approximately 175 per cent of the forward curve multiblade types for like results. Pressure curves begin to drop at very low capacity and continue to fall consistently to full outlet opening. The steep pressure curves tend to produce nearly constant capacity under changing pressures. Where wide fluctuations in demand occur, this type of fan is desirable to prevent overloading of motors. The maximum power requirement occurs at about the maximum efficiency. Consequently a motor selected to carry the load at this point will be of sufficient capacity to drive the fan over its full range of capa-

Fig. 5. Operating Characteristics of a Fan with Blades Curved Backward

cities at a given speed. The high speed of this type makes it adaptable for direct connected electric motor drives. The dimensional bulk of this type of fan is usually greater than that of the forward curve multiblade type. The newer designs of these backward curve types have proven to be extremely quiet.

Between the extremes of the forward and backward curve blade type centrifugal fans, a number of modified designs exists, differing in angularity and in the shape of the blades. Characteristic curves of these types show varying degrees of resemblance to the curves of Figs. 4 and 5.

SYSTEM CHARACTERISTICS

Any ventilating system consisting of duct work, heaters, air washers, filters, etc., has a system characteristic which is individual to that system and is independent of any fan which may be applied to the system. This characteristic may be expressed in curve form in exactly the same manner that fan characteristics may be shown. Typical system characteristic

curves are shown as A, B and C in Fig. 6. These curves are drawn to follow the simple parabolic law in which the static pressure or resistance to flow of air varies as the square of the volume flowing through the system. Heating and ventilating systems follow this law very closely and no serious error is introduced by its use.

When a constant speed fan curve for a given size fan is super-imposed upon a system characteristic curve, the relation between the two is at once apparent. The only point common to the two curves is the point at the intersection of the system characteristic curve and the fan characteristic curve, and it is at this point that the combination will operate. In Fig. 6, curves A, B and C cross the fan characteristic curve at points X, Y and Z. This means that when the fan whose curve is shown is applied

Fig. 6. Parabolic System Characteristic Curves

to system A, 10,000 cfm will flow through the system. If it is applied to system B, 13,000 cfm will flow, and applied to system C, 16,400 cfm will flow through that system.

The curves in Fig. 6 also illustrate the effect of errors which may be determined by calculating the resistance of a ventilating system. For instance, a given system requires 13,000 cfm and the resistance to flow of the system has been computed as 1.25 in. static pressure. Such a system may be represented by curve B in Fig. 6. Assume that 100 per cent error has been made and the resistance calculated should have been 2.5 in. instead of 1.25 in. Then the system would be as shown in curve A. This new system curve crosses the fan curve at 10,000 cfm. Such an error would result in the flow of air being decreased from a design volume of 13,000 cfm to 10,000 cfm. In case the resistance to flow had been over estimated and instead of 1.25 in. being required, actually the resistance

should have been 0.625 in., this would correspond with a system curve as shown at \mathcal{C} and on this curve the fan would deliver 16,400 cfm to the system instead of the design volume of 13,000 cfm.

In this example extreme errors have been selected to emphasize the effect the square function of the system characteristic has in maintaining the fan performance within comparatively narrow limits. In the first example a system estimated at half what it should have been, resulted in a drop of 23 per cent in volume; and in the second example, a system estimated at twice what it should have been resulted in an increase of 26 per cent in volume.

In some instances fans may be applied to variable flow systems. In such cases the limiting systems may be plotted and the effect on fan performance examined. For instance, a system might vary between system A, shown in Fig. 6 as one limit; and system B as the other limit. The fan performance will then fall between points B and B on the fan curve at a point determined by the system characteristics at that particular time. If curves B and B are the limiting systems, the fan performance will never be outside the points B or B.

SELECTION OF FANS

The following information is required to select the proper type of fan:

- 1. Cubic feet of air per minute to be moved.
- 2. Static pressure required to move the air through the system.
- 3. Type of motive power available.
- 4. Whether fans are to operate singly or in parallel on any one duct.
- 5. What degree of noise is permissible.
- 6. Nature of the load, such as variable air quantities or pressures.

In order to facilitate the choice of apparatus, the various fan manufacturers supply fan tables or curves which usually show the following factors for each size of fan operating against a wide range of static pressures: (1) volume of air in cubic feet per minute (68 F, 50 per cent relative humidity, 0.075 lb per cubic foot), (2) outlet velocity, (3) revolutions per minute, (4) brake horsepower, (5) tip or peripheral speed, and (6) static pressure. The most efficient operating point of the fan is usually shown by either bold-face or italicized figures in the capacity tables.

Other important factors to be considered in selecting fans are: (1) efficiency, (2) space occupied, (3) sound emission, (4) first cost, and (5) speed (both peripheral and revolutions per minute). These factors are not necessarily shown in the order of importance. In some installations space occupied may be of first importance. In others lowest power consumption is desirable. In many cases quietness of operation of the entire system is essential. Practically all fans operate at their lowest sound level when selected at or near the peak of the static efficiency so that in selecting a fan for highest static efficiency the quietest operating range of the fan will also be obtained. Tables 1 and 2 show desirable outlet velocities and tip speeds, or peripheral velocities, for various static pressures. Fans selected accordingly will operate at or near the peak of the static efficiency with resulting low power consumption and noise

 Cable 1. Good Operating Velocities and Tip Speeds for Forward Curved

 Multiblade Ventilating Fans

STATIC PRESSURE INCHES OF WATER	OUTLET VELOCITY FEET PER MINUTE	TIP SPEED FEET PER MINUTE
1/4	1000-1100	1520-1700
3/8	1000-1100	1760-1900
1/2	1000-1200	1970-2150
5/8	1200-1400	2225-2450
5/8 3/4 7/8	1300-1500	2480-2700
7 /8	1400-1700	2660-2910
1	1500-1800	2820-3120
$1\frac{1}{4}$	1600-1900	3162-3450
$1\frac{1}{2}$ $1\frac{3}{4}$	1800-2100	3480-3810
$1\sqrt[3]{4}$	1900-2200	3760-4205
2	2000-2400	4000-4500
$\frac{2\frac{1}{4}}{2\frac{1}{2}}$	2200-2600	4250-4740
$2\frac{1}{2}$	2300-2600	4475-4970
3´-	2500-2800	4900-5365

levels. Smaller fans with higher outlet velocities may be used if the installation requirements are such as to warrant the additional power and increased sound level. When space for duct expansion from a fan outlet is not available there may be advantages in selecting a larger fan for reducing duct noises, although lower outlet velocities generally results in lower fan efficiencies which cannot always be justified on the basis of increased cost and space requirements.

Having selected a fan for its quietest operating point consistent with the requirements of the installation, it must be recognized that ventilating fans, even so selected, emit noise and precautions must be taken in the installation of the fans to prevent this noise from being transmitted to occupied portions of the building. Fans operating against high static pressures produce more noise than fans operating against low static pressures. Consequently, from a noise standpoint, the system should be designed to operate against the lowest static pressure possible. In many modern air conditioning systems it is necessary to introduce devices into the air stream for conditioning the air in various ways, the result of which

Table 2. Good Operating Velocities and Tip Speeds for Multiblade Ventilating Fans with Backward Tipped and Double Curved Blades

For direct drive. Arr 7.

Similar to Arr. 6, but with two bearings on fan, and flexible instead of rigid coupling.

Three-bearing arrangement with fan bearing at inlet side. Includes housing, wheel, shaft, one bearing (in inlet), rigd coupling, and pedestal only for motor or engine

Wheel overhung. Includes housing, wheel, shaft, one intermediate bearing, flanged coupling and pedestal only for motor or engine.

For direct drive. Arr. 5.

For direct drive.

Arr. 6.

FIG. 7. ARRANGEMENT OF FAN DRIVES

is to set up a rather high static pressure against which the fan must operate. In such cases the sound level at the fan may be too high to be neglected and special sound treatment of the installation must be considered. When a fan is operating against higher pressures it should be located in a room either removed from the occupied areas, or in a room which has been acoustically treated to prevent sound being carried through the walls to adjoining spaces. The fan should be mounted on a resilient base along with its driving motor to absorb any noise or vibration which might be transmitted to the floor and thence to the building structure. All ducts should be connected to fans with unpainted canvas, or other flexible material, to prevent any vibrations being transmitted to the duct work. Ducts leading into the fan room or from the fan, should be acoustically treated on the interior and in special cases, should be provided with sound traps or filters. Many ventilating systems encounter noises which are connected with the fan in no way. Noises due to high duct velocities, abrupt turns, grilles, etc., may be present. Treatment of such problems is covered in Chapter 33.

FAN DESIGNATIONS

Facing the driving side of the fan, blower, or blast wheel, if the proper direction of rotation is clockwise, the fan, blower, or blast wheel will be designated as *clockwise*. If the proper direction of rotation is counter-clockwise, the designation will be *counter-laborated*. clockwise. (The driving side of a single inlet fan is considered to be the side opposite the inlet regardless of the actual location of the drive.)

This method of designation will apply to all centrifugal fans, single or double width, and single or double inlet. Do not use the word hand but specify clockwise or counter-

clockwise.

The discharge of a fan will be determined by the direction of the line of air discharge and its relation to the fan shaft, as follows:

Bottom horizontal: If the line of air discharge is horizontal and below the shaft.

Top horizontal: If the line of air discharge is horizontal and above the shaft.

Up blast: If the line of air discharge is vertically up.

Down blast: If the line of air discharge is vertically down.

All intermediate discharges will be indicated as angular discharge as follows:

Either top or bottom angular up discharge or top or bottom angular down discharge, the smallest angle made by the line of air discharge with the horizontal being specified.

In order to prevent misunderstandings, which cause delays and losses, the arrangements of fan drives adopted by the National Association of Fan Manufacturers and indicated in Fig. 7 are suggested.

If double width, double inlet fans are selected, care must be taken that both inlets have the same free area. If one inlet of a fan is obstructed more than the other, the fan will not operate properly, as one half of the wheel will deliver more air than the other half. The backward curved and double curved types with backward tip operate satisfactorily in double or in parallel operation.

FAN CONTROL

In some heating and ventilating systems it is desirable to vary the volume of air handled by the fan, which may be accomplished by a number of methods. Where the change is made infrequently, the pulley or sheave

³Recommendations adopted by the National Association of Fan Manufacturers.

on the driving motor, or fan, may be changed to vary the speed of the fan thus altering the air volume. Dampers may be placed in the duct system to vary the volume. Variable speed pulleys or transmissions, such as fan belt change boxes or hydraulic couplings, may be used to vary the fan speed. Variable speed motors and variable fan inlet vanes may also be used to adjust the fan volume. All of these methods will give control. From a power consumption standpoint, a reduction of the fan speed is most efficient. Inlet vanes save some power and dampers save the least. From the standpoint of first cost, dampers usually are the lowest in cost. In some installations adjustments of volume are desirable at various times during the day or continuously. In others an increased supply of air in summer over that needed in winter is demanded. The demands of each case will dictate which type of control is most desirable. Where noise is a factor, lowering the fan speed if possible is preferred as a control means, because of the resulting reduction in sound level.

MOTIVE POWER

Heating and ventilating fans are usually driven by electric motors, although they may be driven by gasoline or oil engines, steam engines or turbines. Fans may be direct-connected to the operating unit, but it is the usual practice to use belt driven fans for large units.

In selecting the size motor to be used, it is general practice to provide a rather liberal allowance over the actual fan power required when fan has a rising horsepower characteristic. Actual static pressures may vary from those estimated and if less than estimated, the fan may deliver more air than required and take more power. Justification for liberal power provision exists also in the possibility of varying demand, due to change in ventilation requirement, intensity of occupation and weather conditions. The degree of allowance may vary with fan types due to their inherent characteristics. The backward curved blade type fan requires maximum power at or near the peak of the efficiency, hence this fan would require less allowance in driving power than other types not having this characteristic. Reference to Fig. 5 indicates that there is no justification for allowing large spare motor capacity, and it is generally more economical to operate motors well loaded.

REFERENCES

Mine Ventilation, by J. J. Walsh (A.S.H.V.E. Transactions, Vol. 23, 1917, p. 659). Fan Blower Design, by H. F. Hagen (A.S.H.V.E. Transactions, Vol. 28, 1922, p. 175).

The Specific Characteristics of Fans, by M. C. Stuart and J. B. Lusk (A.S.H.V.E JOURNAL SECTION, Heating, Piping and Air Conditioning, September, 1936, p. 507).

Non-Dimensional Fan Characteristics, by H. Carlton Moore (A.S.H.V.E. JOURNAL SECTION, Heating, Piping and Air Conditioning, September, 1937, p. 580).

Constructive Mechanism and the Centrifugal Fan, by George D. Beals.

Fans, by Theodore Baumeister, Jr.

Fan Engineering, Buffalo Forge Company.

Heating, Ventilating and Air Conditioning, by Harding and Willard, Revised Edition, 1932.

The Centrifugal Fan, by Frank L. Busey.

The Fan, by Charles H. Innes.

The Theory and Performance of Axial-Flow Fans, by L. S. Marks and J. R. Weske.

Chapter 31

AIR DISTRIBUTION

Standards for Satisfactory Conditions, Definitions, Mechanics of Air Distribution, Types of Supply and Return Openings, Outlet Locations, Return and Exhaust Grilles, Specific Applications, Balancing the System

CORRECT air distribution contributes as much or more to the success of a forced air heating, ventilating, cooling or air conditioning system as does any other single factor. The scope of the chapter is limited to the air distribution within the conditioned space. Reference is made to the distributing duct system only insofar as it affects the performance of the air distribution outlet. See Chapter 32 for information on air duct design.

STANDARDS FOR SATISFACTORY CONDITIONS

The air distribution problem consists of distributing air as a cooling, heating, drying, moistening or ventilating medium in a designated space within accepted limits of air motion, temperature variation, temperature fluctuation, direction, humidity and noise. Reference should be made to Chapter 2, Physiological Principles, for the accepted standards on room temperature, humidity, air motion and direction. Material in Chapter 33, Sound Control, covers acceptable room noise levels and noise generated by air outlets.

Variations from accepted standard limits of each element may result in discomfort to the occupants. Neglecting noise, discomfort complaints usually arise from draftiness, or stuffiness. A draft may be defined as an air current which, due to its temperature, humidity, or motion, removes more heat from a body surface than is usually dissipated. Although stuffiness may be attributed to odors, the complaint of stuffiness usually results from a person feeling too warm. Outside of localized sensation, such as caused by a single down draft, draftiness and stuffiness may be considered functions of effective temperature, which of course takes in the factors of air temperature, motion and humidity. Draftiness can be associated with too low an effective temperature, and stuffiness with too high an effective temperature. Therefore, satisfactory comfort conditions are the result of minimizing the factors of temperature variation, temperature fluctuation, gusts, air motion and noise.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Definitions

- 1. Supply Otening or Outlet: Any opening through which air is delivered into a space which is being heated, or cooled, or humidified, or dehumidified, or ventilated.
- 2. Exhaust Opening: Any opening through which air is removed from a space which is being heated, or cooled, or humidified, or dehumidified, or ventilated.
 - 3. Outside Air Opening: Any opening used as an entry for air from outdoors.
 - 4. Grille: A covering for any opening and through which air passes.
- 5. Damper: A device used to vary the volume of air passing through a confined cross-section by varying the cross-sectional area.
 - 6. Multiple Louver Damper: A damper having a number of adjustable blades.
 - 7. Single Louver Damper: A damper having one adjustable blade.
 - 8. Face: A grille with provision for attaching a damper.
 - 9. Register: A face with a damper attached.
- 10. Flange: The portion (either integral or separate) of a grille, face, or register extending into the duct opening for the purpose of mounting.
- 11. Frame: The portion (either integral or separate) of a grille, face, or register extending around the duct opening for the purpose of mounting.
- 12. Margin: The margin of a grille, face, or register is one-half of the difference between the duct dimension and overall dimension measured either horizontally or vertically.
 - 13. Fret: The member separating the openings of a grille, face, or register.
- 14. Free Area: The total minimum area of the openings in the grille, face, or register through which air can pass.
- 15. Core Area: The total plane area of the portion of a grille, face, or register bounded by a line tangent to the outer edges of the outer openings through which air can pass.
 - 16. Mean Area: The total of the core and free areas divided by two.
- 17. Duct Area: The area of a cross-section of the duct based on the inside dimensions at the point where the grille, face or register is mounted.
- 18. Percentage Free Area: The ratio of the free area to the core area expressed in percentage.
- 19. Aspect Ratio: The ratio of length of the core of a grille, face or register to the width.
- 20. Throw: The distance air will carry measured along the axis of an air stream from the supply opening to the position in the stream at which air motion reduces to 50 fpm.
 - 21. Envelope: The outer boundary of an air stream.
- 22. Drop: The vertical distance the lower edge of the air stream drops between the time it leaves the outlet and reaches the end of its throw (h in ft).
 - 23. Rise: The converse of drop.
 - 24. Induction: The entrainment of room air by the air ejected from the outlet.
 - 25. Primary Air: The air leaving an outlet $(Q_1 \text{ in cfm})$.
- 26. Secondary Air: The room air picked up by the primary air through induction $(Q_2$ in cfm).
 - 27. Total Air: The mixture of primary and secondary air $(Q_3 \text{ in cfm})$.
 - 28. Induction Ratio: The total air divided by the primary air equals r, or Q_3/Q_1 .
- 29. Outlet Velocity: The average air velocity emerging from the outlet (V_1 in fpm) measured at the plane of the opening.
- 30. Terminal Velocity: The average air stream velocity at the end of the throw (V_T in fpm).
- 31. Horizontal Spread: The divergence of the air stream in the horizontal plane after it leaves the outlet (Degrees).
 - 32. Vertical Spread: The divergence in the vertical plane (Degrees).
- 33. Temperature Differential: Temperature difference between primary and room air $(t_r t_{as})$.
- $34.\ {\it Vane\ Ratio}\colon$ The ratio of depth of vane to shortest opening width between two adjacent grille bars.

MECHANICS OF AIR DISTRIBUTION

In the mechanics of air distribution, two major problems are involved: (1) complete mixing of the primary air and room air outside of the zone of occupancy and (2) counteraction of the natural convection and radiation effects within the room.

Induction

When air is discharged from an outlet into a free open space, the primary air stream entrains room air as it traverses the space. This entraining effect increases the cross-sectional area and reduces the velocity of the resulting air stream. Induction takes place with the conservation of linear momentum; this has been confirmed by tests which indicate that the momentum remains almost constant throughout the entire measureable length of the air stream. This relationship may be expressed by the Equation 1:

$$M_1 V_1 + M_2 V_2 = (M_1 + M_2) V_3$$
 (1)

where

 $M_1 = \text{mass of primary air.}$

 M_2 = mass of secondary air.

 V_1 = velocity of primary air.

 V_2 = velocity of secondary air (normally = 0).

 V_3 = velocity of the mixture.

Substituting zero for V_2 and the volume rate Q for the mass (M), and solving for the induction ratio (r):

$$r = \frac{V_1}{V_3} = \frac{Q_1 + Q_2}{Q_1} \tag{2}$$

The total air entrained by an air stream is in direct proportion to the distance from the discharge of the outlet. For a given blow from a wall in which a number of outlets are located, the induction ratio may be increased by increasing the aspect ratio, diverging the vanes of the outlet, or by simultaneously increasing the number of outlets, reducing their size, and increasing the velocity but maintaining a constant blow. The aspect ratio must be increased considerably from that of a rectangle to a slot before marked changes in the entrainment ratio take place.

Spread

The induction effect results in the spreading of the air stream. Equation 3 derived from induction Equation 1 gives spread or cross-sectional area of the stream as a function of induction ratio, volume of primary air, and primary air velocity.

$$A = \frac{r^2 Q_1}{V_1} = \frac{V_1 Q_1}{(V_3)^2}$$

where

 Q_1 = primary air quantity, cubic feet per minute.

 V_1 = primary air velocity, feet per minute.

 V_3 = air velocity of mixture, feet per minute.

r = induction ratio.

The average jet angle (included angle in both planes, see Fig. 1) for an air stream as it emerges from a rectangular outlet of any shape without spreading vanes is about 19 deg, plus or minus 5 deg, depending on the type of approach, type of outlet and velocity. The spread increases slightly with velocity. A vaned outlet discharging air uniformly forward will result in a spread of about 14 deg. This is equivalent to a spread in any direction of about one foot in every 8 ft of blow.

Throw

The distance air will carry measured along the axis of an air stream from the supply opening to the position in the stream at which the average frontal air velocity reduces to 50 fpm is termed the *throw*. The throw distance is based on an assumed terminal velocity, which can be assigned any arbitrary value. Since air striking a wall at too high a velocity may bring the air stream down within the occupied zone, the terminal velocity should be limited to 50 fpm. The maximum transverse velocity of the air stream is usually from 2.5 to 3.5 times the average frontal velocity. Assuming no obstructions, the blow is affected by face velocity, core area,

FIG. 1. SPREAD OF AIR STREAM WITH VARIOUS VANES

aspect ratio and included angle of effluent stream as determined by vanes. For low aspect ratios, the major variables of velocity, area and effluent angle are related approximately as given in Equation 4 when the air stream is unaffected by obstructions of any kind.

$$X_{\mathbf{a}} = \frac{kQ}{\sqrt{a_{\mathbf{o}}b_{\mathbf{o}}}} \tag{4}$$

where

 $X_{\mathbf{a}} = \text{throw, feet.}$

Q = air volume flow rate, cubic feet per minute.

 a_0 and b_0 = grille width and height, inches.

k = dimensionless constant with the following approximate empirical values:

Vanes set straight ahead..... = 0.77

Vanes causing a spread on each horizontal side of $15 \deg = 0.66$

 $30 \deg = 0.45$

 $45 \deg = 0.34$

¹The Rationale of Air Distribution and Grille Performance, by C. O. Mackey (Refrigerating Engineering, Vol. 35, No. 6, June, 1938, p. 417).

Vanes

For vanes to be mechanically satisfactory, the depth of the vane should be between one and two times the spacing between the vanes. If the ratio of vane depth to spacing is less than one, effective turning by means of the vanes cannot be obtained. Little improvement is obtained by increasing the ratio beyond two.

Straight Vanes. As mentioned previously, the included angle between both planes will be in the neighborhood of 14 deg, for a straight setting of the vanes as shown in Fig. 1.

Diverging Vanes. Such vanes set for an angular spread will have a marked effect on the direction and distance of travel of an air stream. An outlet having vertical vanes set straight forward in the center, with uniformly increasing angular deflection to a maximum at each end of 45 deg, will produce an air stream with a horizontal included angle of approximately 60 deg as shown in Fig. 1. The throw will be reduced one-half for such a vane setting. Increasing the divergence of the vanes reduces the air quantity handled by an outlet for a given duct static pressure. The primary function of the vanes is to spread the air horizontally. Little is gained by spreading the air vertically.

Converging Vanes. The blow of an outlet may be somewhat increased by converging the vanes of an outlet as illustrated in Fig. 1. Even with converging vanes, the resultant angle of spread of an air stream will not be less than 14 deg. The air converges for a few feet in front of the outlet, and then diverges more than if the vanes had been set straight.

Both the horizontal and vertical vanes of an outlet are important. After an installation has been made, many conditions of draftiness or stuffiness can be alleviated by some vane adjustment, provided an independent means for regulation of static pressure behind the vanes is included.

Room Air Motion

The air motion in the occupied zone is usually traveling across the room in reverse direction to the blow of the outlet. The cross-sectional area of this stream is equal to the outlet wall area less the stream area and the area obstructed by furnishings. Equation 5 gives the average room velocity in the occupied zone as a function of the air volume supplied per square foot of outlet wall area and the outlet velocity.

$$V_{\rm r} = \frac{Q_3}{4Z} \tag{5}$$

where

 V_r = average room velocity, feet per minute.

A =outlet wall area, square feet.

Z=0.6 (reduction factor to allow for supply air stream 20 per cent, furniture obstruction 20 per cent, at point where supply air stream occupies 20 per cent of the room cross section).

Since $Q_3 = Q_1 r$ by definition, and $r = \frac{V_1}{V_3}$ from Equation 2, and V_3 is assumed to be about 200 fpm for total induction in actual practice, then Equation 5 results in:

$$V_{\rm r} = \frac{Q_1}{A} \times \frac{V_1}{V_3} \times \frac{1}{Z} = \frac{FV_1}{120}$$

$$F = \frac{120 V_{\rm r}}{V_1} \tag{6}$$

or

OUTLET VELOCITY	Av	erage Ro	OM VELOC	TTY FPM,	$V_{\mathbf{r}}$	OUTLET VELOCITY	Av	erage Ro	OM VELO	иту Грм,	$V_{\mathbf{r}}$
FPM V1	10	20	30	40	50	FPM V1	10	20	30	40	50
200 300 400 500 600 700 800	6.0 4.0 3.0 2.4 2.0 1.7 1.5	12.0 8.0 6.0 4.8 4.0 3.4 3.0	18.0 12.0 9.0 7.2 6.0 5.1 4.5	24.0 16.0 12.0 9.6 8.0 6.8 6.0	30.0 20.0 15.0 12.0 10.0 8.5 7.5	900 1000 1200 1400 1600 1800 2000	1.3 1.2 1.0 0.9 0.8 0.7 0.6	2.7 2.4 2.0 1.7 1.5 1.4 1.2	4.0 3.6 3.0 2.6 2.3 2.0 1.8	5.3 4.8 4.0 3.4 3.0 2.7 2.4	6.7 6.0 5.0 4.3 3.8 3.4 3.0

Table 1. Values of Room Circulation Factor (F) in Equation 6

where F is the room circulation factor expressed in cubic feet per minute per square foot of outlet wall area. Thus room air motion is directly a function of outlet velocity and air volume per square foot of outlet wall area. Hence Equation 6 and Table 1 can be used to determine the acceptability of a particular installation from the standpoint of proposed air volume, outlet wall area, and outlet velocity.

Vertical Drop and Rise

The vertical distance the lower edge of an air stream moves between the outlet and the end of the blow is termed the drop or rise (H). This drop or rise is influenced by the difference in density between the air stream and the room air, resulting from the temperature difference and the spread of the air stream. For air emerging at room temperature, the drop or rise will be a function of the spread only and will be equivalent to:

$$H = L \times \tan \left(\frac{\text{Spread Angle}}{2} \right) \tag{7}$$

where

H = drop due to spread, feet.

L = throw, feet.

When there is a temperature difference between the air stream and the room, the additional drop or rise is approximately given by Equation 8:

$$H = \frac{n_1 (t_r - t_{as}) L n_2}{V_1}$$
 (8)

where

 n_1 and n_2 = constants (tentative suggested values n_1 = 5, n_2 = 1.2).

 t_r = room temperature, degrees Fahrenheit.

 t_{as} = supply air temperature, degrees Fahrenheit.

For cooling application H is subtracted from the outlet height, for heating H is added.

Duct Approaches to Outlets

Assuming that proper supply openings for a given installation have been selected, unsatisfactory performance may still result due to the con-

CHAPTER 31. AIR DISTRIBUTION

struction of the duct work immediately back of the supply openings. Performance data on the grilles and registers of various manufacturers are based upon results obtained with the air approaching the grille perpendicularly and at uniform velocity over the entire duct cross-section. Where this condition does not exist in practice, performance predictions based on published data cannot be realized. Every precaution should be taken to secure as nearly ideal conditions in the approaching air stream as are possible.

In addition to disturbances due to the construction of the duct work itself are those which may be created by dampers immediately behind the grille. Where either multiple louver or single blade dampers are used for throttling, considerable deflection of the air stream may result. This is particularly true when the fins of the register core are perpendicular to the damper blades. If the core has sufficient depth and the fins are parallel to the blades, there is a marked tendency to straighten the air stream, although some deflection may still result.

Any attempt to secure a low face velocity and high duct velocity by

Fig. 2. Effects of Expanding Duct

Fig. 3. Unequal Face Velocities

Fig. 4. Effect of Turning Member

the construction of any expanding chamber immediately behind the grille is likely to be unsuccessful. In order to expand from a small duct to a larger one, and have the air stream fill the duct at the end of the diverging section without turbulence, angle A in Fig. 2 should be about 7 deg. From this it is apparent that an attempt to secure equivalent results with a short connection would be futile. What actually happens when this is attempted is illustrated by the arrows in Fig. 2. When localized high velocities through the supply opening exist from this cause or any other, the noise produced will naturally exceed that which the supply opening area and average face velocity would lead one to expect. This fact should be remembered in considering the use of register dampers, particularly in those cases where there must be considerable throttling with the damper to balance a poorly designed system. Where reduction of noise is important, it is recommended that balancing dampers be placed in the duct ahead of the acoustic duct lining.

Similar unequal face velocities, aggravated by a deflection of the air stream, are obtained with the arrangement shown in Fig. 3. The latter may be corrected by inserting a turning member in the elbow back of the outlet face as shown in Fig. 4. The importance of straightening the air

stream and effecting uniform distribution over the entire face of the supply opening cannot be over-emphasized².

Dampers of special construction, as illustrated in Fig. 5, may be used to maintain a constant direction of blow, approximate distance of blow, and constant outlet velocity regardless of the damper's position. The capacity of dampers diagrammed as A and B will be roughly in proportion to the position of the operating lever and are particularly effective for cooling work with oversized grilles. The single leaf damper shown as C in Fig. 5 is objectionable in that it frequently results in a condition whereby two high velocity jets are created along the sides of the duct, or the air spills immediately downward on the occupants below the outlet.

Operation of Ceiling Outlets

The relationships presented for sidewall outlets will apply with the proper modification to the operation of ceiling outlets. With the ceiling outlets, the angle of distribution may be a full 360 deg. This extreme angle of distribution results in a high rate of induction and short blow,

Fig. 5. Effect of Various Damper Arrangements Designed for Straight Blow

and also permits air to be introduced into a space satisfactorily at a relatively high temperature differential and high velocity. Ceiling outlets may handle greater quantities of air than a comparable sidewall outlet without the creation of excessive air motion. In contrast to wall outlets, the ceiling outlet does not necessarily have to be equipped with adjustable features, other than means to regulate air quantity. Frequently sections of ceiling outlets are blanked off to avoid having the air stream strike wall or column obstructions.

TYPES OF SUPPLY AND RETURN OPENINGS

Perforated Outlets. Due to the non-adjustability and small vane ratio of perforated sheet metal outlets, they have not met with favor as supply openings. They are useful primarily where directional air control is unnecessary, and for return air openings.

Vaned Outlets. Outlets equipped with both vertical and horizontal adjustable vanes are particularly suited to sidewall distribution. For proper control over the air flow, the vane ratio should be from 1 to 2. Outlets with non-adjustable vanes may be employed; however, they

²A.S.H.V.E. RESEARCH REPORT No. 1155—The Performance of Stack Heads, by D. W. Nelson, D. H. Krans and A. F. Tuthill (A.S. H.V.E. Transactions, Vol. 46, 1940, p. 205). A.S.H.V.E. RESEARCH PAPER—Performance of Side Outlets on Horizontal Ducts, by D. W. Nelson and G. E. Smedberg (A.S. H.V.E. JOURNAL SECTION, Heating, Prining and Air Conditioning, November, 1942, p. 686).

CHAPTER 31. AIR DISTRIBUTION

should only be used where the performance is not critical or can be adequately predicted.

Registers. Fixed vanes or perforated grilles equipped with a single blade damper are termed registers. They are primarily used for residential heating systems, where the outlet distribution is not critical and low cost is of importance.

Slotted Outlets. Slotted outlets essentially consist of either flat steel plates containing a number of long narrow slots or a single long narrow slot, with a free area of approximately 10 per cent. In order to give a good conversion from static pressure to velocity pressure, the sides of the slots are rounded to give a venturi effect. Due to their high aspect ratio, the slotted outlets have a greater induction effect than the comparable vaned outlets of equal area; thus, the throw of the slot is slightly less. They are primarily useful where an unobtrusive means of distribution is desired, and where it is desirable to submerge the outlets into the room decoration. Since these outlets offer greater induction at a given noise level, they are useful in obtaining proper air motion when otherwise limited by design.

Ejector Nozzles refer to outlets which operate at high static pressures, and which are constructed to give a high conversion from static in the duct to velocity pressure in the outlet, and have a high induction effect due to their high outlet velocity. The ejector is chiefly used for long throws and industrial process installations, such as drying, freezing, cooking, etc. Another type of ejector is sometimes referred to as a louver nozzle having a 45 to 90 deg elbow, which can be rotated similarly to a universal joint about an axis perpendicular to the surface to which it is fastened. These outlets give a considerable degree of adjustability and are, therefore, desirable for use in confined spaces where spot cooling is employed.

Ceiling Outlets. There are two general classifications of ceiling outlets, one the simple ceiling plaque, usually with limited induction effect, and the other a concentrically vaned ceiling outlet with high induction effect. Plaque outlets, although cheap and simple in construction, are difficult to control and are not generally satisfactory for comfort cooling where the entering air is more than 12 F below the room temperature. The vaned ceiling outlet with marked induction will distribute air uniformly over an entire half sphere. The induction effect is greatest in the direction of the axis of the outlet, and least in the plane perpendicular to the axis and located at the ceiling level. Thus the induction is greatest in the vertical direction where the least blow can be tolerated, and least in the horizontal plane at the ceiling where the greatest blow is both desired and permissible.

Perforated Ceilings. Such outlets consist of metal or composition board ceiling with small perforations through which air may be supplied to a room. The free area of the ceiling is about 10 to 15 per cent. The perforated ceiling can be designed to give a lower rate of room air motion for a given air supply than any other type of outlet. For this reason, the perforated ceiling is particularly applicable in installations requiring a low room air motion and having a high heat or ventilation load necessitating a high rate of air change.

OUTLET LOCATIONS

In selecting the location of outlets, consideration must be given to the factors of physical construction, physical appearance, location of heating or cooling loads, and outlet performance. Final outlet location will be a compromise between these factors.

- 1. The physical construction of a building, particularly of old buildings, immediately places limitations on the type of distribution system which can be employed. Therefore, the first factor in the selection of outlet locations is a consideration of the possible locations of the supply duct, that is, whether it is above the ceiling, within the walls, through furred spaces above corridors, or in the conditioned space, etc. A particular method of distribution may be highly desirable but its execution, due to the location of beams and masonry walls, may be an impossibility.
- .2. The *physical appearance* of the outlets should conform to the esthetic appearance of the room. In factories, warehouses, etc., the esthetic demand may not be high; however, in department stores, clubs, theatres, etc., the location of the grilles may be entirely dictated by such demands. In carefully decorated rooms, it may even be necessary to completely conceal the method of distribution by the use of slots located in recesses in the walls or ceilings.
- 3. The location of heating or cooling loads in a room dictate to a great extent the general location of the outlets. The outlets should be located to neutralize any undesirable cold drafts or radiation effects set up by a concentration of the heating or cooling load. The problem can be divided into natural loads due to outside weather and internal heat loads.

Natural Heating or Cooling Loads

Winter. In winter the primary heating load is from exposed walls, windows and skylights. Heat is lost primarily through convection to these exposed surfaces. The convection currents or cold drafts drop down the exposed surfaces and seriously impair the comfort conditions in the room, and particularly at the floor level near the exposed surfaces. The outlet should be located to counteract these down drafts. Two methods may be employed:

- 1. Direct counteraction of the convection current can be accomplished by locating the outlets beneath windows or exposed walls and blowing upward or on the wall blowing across the exposed wall. This method is desirable in small offices or bedrooms, or any location where people are seated or working near exposed surfaces. In northern climates, where the outside temperature may be constantly below 40 F, and the construction consists of uninsulated walls and single glass this method of distribution is particularly useful for the maintenance of comfort requirements.
- 2. High induction by ceiling or wall outlets may be employed to nulify the convection currents from exposed surfaces. If outside temperatures are consistently below 40 F, and the exposed surfaces are poorly insulated, the induction effect required for neutralization of the down drafts is so great that the air motion in the room will exceed comfort limits. Therefore, in northern latitudes, this method can only be recommended for use in factories, warehouses, etc., where comfort conditions are not critical. The wide use of ceiling suspended heat diffusers in cold climates and in factory spaces illustrates the results to be obtained by such distribution. If the exposed walls are well insulated or the windows are equipped with double glass, ceiling distribution may prove reasonably satisfactory even in the coldest of climates. In mild climates, where the outside temperature seldom drops below 40 F, offices and bedrooms may be satisfactorily heated by ceiling or wall outlets.

Summer. The primary discomforting effect to be experienced in summer is the radiation from sun exposed walls or windows. Radiation from a wall is a function of the surface temperature of the wall which is related to the amount of wall insulation. Radiation from well insulated

CHAPTER 31. AIR DISTRIBUTION

walls is negligible compared to that from uninsulated walls. Radiation may be countered by blowing the air supply from an inner wall towards the exposed surface, or by discharging the air vertically upward along the exposed surface. If vertical distribution is employed, the outlet air should be fanned out at an angle of 15 to 20 deg with the vertical and in a plane parallel to the wall. Directing the air parallel to the wall minimizes the formation of a cold spot directly in front of the outlet when low velocities are used.

Internal Heat Load

If a concentrated source of heat is located at the occupancy level of the room, the heating or radiation effect may be countered by blowing the supply air toward the heat source or by locating an exhaust or return grille adjacent to the heat source. The latter method will prove more economical, as heat will be withdrawn at its source rather than be dissipated into the conditioned space. Where a lighting load is particularly heavy (five watts per square foot), and located high in a conditioned space, it may be economically desirable to locate the outlets below the

lighting load. Warm air from the lights will stratify near the ceiling and can be removed by an exhaust fan.

Outlet Performance

The factors of outlet performance, throw, drop, capacity, noise, dirt and room air motion place considerable limitations on the design of a satisfactory distribution system.

1. Blow. The blow of wall or ceiling outlets should be selected to cover three-quarters of the distance toward an exposed wall or window as shown in A of Fig. 6. Overblowing is considerably more serious than underblowing, as an overblow will create objectionable down drafts from any surface it strikes; although underblowing in the case of heated air may be serious in that the warm air may rise too rapidly and thus cause stratification in the occupied zone. In spaces with beamed ceilings, the outlets should be located below the bottom of the lowest beam level, and preferably low enough so that an upward or arched blow may be employed. The blow should be arched sufficiently to miss the beams and, at the same time, in such a manner as to prevent the primary or induced air stream from striking furniture and obstacles producing objectionable drafts. If an outlet is adjusted downward to avoid a beam, cold air may enter the zone of occupancy long before the desired induction has taken place, thus causing serious complaints.

2. Drop. The outlets should be located so that the air stream at the termination of the blow is not less than 5 or 6 ft above the floor level. As illustrated in B of Fig. 6 the maximum permissible blow for a given ceiling height may be obtained by locating the outlet low on the wall, arching the blow, and sweeping the air across the flat ceiling. The air, as it traverses the room, will adhere to the ceiling. The objection to this method is the possible streaking of the ceiling with dirt.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

TABLE 2. RECOMMENDED RETURN GRILLE FACE VELOCITIES

GRILLE LOCATION	Velocity Over Gross Area Fpm
Above occupied zone	800 up 600-800 400-600 500-700 600

- 3. Capacity. The Catalog Data Section or manufacturers rating sheets may be consulted for selection of the proper number of outlets for a given air quantity. Due to their high induction ratio, ceiling outlets will in general handle more air per outlet than either comparable sidewall or floor outlets.
- 4. Noise. The noise of an outlet is primarily the function of the outlet velocity and size, and secondarily of the outlet construction. The maximum acceptable noise level in a space may completely dictate the permissible outlet velocities that may be employed. (See Chapter 33 for discussion of permissible room noise levels and noise generated by outlets.)
- 5. Room Air Motion. The factors leading to high air motion are excessive velocity, high air volume per square foot of outlet wall area, overblow, striking of beams causing a spilling of the air into the zone of occupancy, and heating in severe climates by means of ceiling outlets which are directed downward.
- 6. Dirt. Although the primary air may be carefully filtered, dirt from the conditioned space may be deposited on the walls or ceiling wherever there is considerable secondary air motion. With ceiling outlets, dirt streaking may be minimized by carefully streamlining the discharge of the outlets. With wall outlets, dirt streaking may be minimized by not directly impinging the air on any ceiling or room surface. Floor outlets may offer objection as dirt collectors.

RETURN AND EXHAUST GRILLES

Where the air supply causes a relatively large induction effect, only three factors govern the selection and application of return and exhaust grilles: (1) velocity in occupied zone adjacent to grille, (2) permissible pressure drop through grille, and (3) noise.

Velocity

Air handled by an exhaust or return grille is drawn from all directions, the velocity dropping off rapidly in every direction. The only locality where drafts may prove objectionable is adjacent to the grille. To prevent excessive air motion in the occupied space due to the return system, it is

Table 3. Approximate Pressure Drops for Lattice Return Grilles

Inches Water Gage—Standard Air

PER CENT FREE AREA			FAC	e Velocity,	Fрм		
	400	500	600	700	800	900	1000
50 60 70 80	0.06 0.04 0.03 0.02	0 09 0.06 0.05 0.03	0.13 0.09 0.07 0.05	0.17 0.12 0.09 0.07	0.22 0.16 0.12 0.09	0.28 0.20 0.15 0.11	0.35 0.24 0.18 0.14

advisable to compute the total air motion toward the exhaust opening as outlined in Equation 5 where A is the exhaust wall area in square feet. Recommended return grille face velocities are given in Table 2.

The withdrawal of air from a space through a return grille is a minor factor in control of the room air motion. The control of the room air motion for the maintenance of comfort conditions depends on the proper selection of the supply outlets. Thus the location of the return grille is not critical, nor the use of an elaborate return system necessary, provided the air motion in the occupied zone adjacent to the grille does not exceed comfort limits. A single return grille or a few large grilles will prove satisfactory provided no local high velocity zones are created.

The permissible pressure drop will depend on the choice of the designer. Table 3 gives pressure drop through plain lattice grilles as a function of free area and face velocity.

Noise

The problem of noise generated by return exhaust grilles is the same as that generated by supply outlets. In computing resultant room noise levels from the operation of an air conditioning system, the return grille

Rear wall distribution

Ceiling distribution

Fig. 7. Air Distribution Methods for Theaters, Churches, and Auditoriums

must be included as a part of the total grille area. The only difference between the supply and return grilles is in their frequent installation at the ear level. When located at ear level, it is recommended that the return grille velocity be 75 per cent of the maximum permissible outlet velocity.

Ceiling locations are recommended for bars, kitchens, lavatories, dining rooms, club rooms, etc., where warm air will gravitate to the ceiling level. Ceiling returns are less desirable in spaces with severe winter exposure, and where stratification of cold air may take place at the floor level. During the heating season the air will tend to short circuit between the supply and the ceiling exhaust or return grilles.

Floor Location

Where ceiling or high sidewall distribution is used for winter heating, floor returns along the exposed wall will tend to improve the heating performance of the system. In general floor locations are collectors of dirt and refuse.

Wall and Door Locations

Depending on their elevation, wall returns have the characteristics of either floor or ceiling returns. In large buildings with many small rooms,

the return air may be brought through door grilles or door undercuts into the corridors and then to a common return or exhaust. The pressure drop through door returns should not be excessive (50 per cent of supply grille pressure); otherwise the air distribution to the room may be seriously unbalanced with the opening or closing of the doors. Outward leakage through doors or windows cannot be counted upon for dependable results. In many cases, particularly in buildings with double glass or hollow glass block walls, forced return and relief systems are essential.

SPECIFIC APPLICATIONS

The two methods shown in Fig. 7 are suitable for application to theaters, churches, and auditoriums. In small or medium size theaters, it is sometimes practical to use sidewall or front wall distribution. For the satisfactory operation of such a system during the winter heating period, the returns should be preferably located at the floor level and near

Fig. 8. Distribution Methods for Small Rooms

- A. Satisfactory for cooling Unsatisfactory for heating in severe climates where the outside temperature is consistently below 40 F, and single glass and uninsulated walls are prevalent.
 - B. Performance slightly poorer than A, unless supplemented by circular diffusers in bottom of the duct.
 - C. Satisfactory for cooling Satisfactory for heating if direct radiation is properly controlled.
- D. Satisfactory for both cooling and heating. The air should be discharged in a vertical plane parallel to the wall, and should be fanned out in this plane at an angle of 10 to 20 deg with the vertical.

the front of the theater to prevent cold spots which may result from exposed wall convection or infiltration from exits. Return grilles may be located higher where the exits and stage have separate means of heating.

Diagrams shown in Fig. 8 illustrate distribution methods for small rooms with exposed walls, such as for offices, hospital rooms, hotel rooms, apartments, etc. The cooling performance of various distribution methods as applied to a small store are shown in Fig. 9.

BALANCING SYSTEM

In designing an air conditioning system, it should be the aim of the engineer to so proportion the duct system that proper distribution of air to every supply opening will be obtained. Since this is almost impossible to accomplish in practice, it becomes necessary to have means of balancing the system to secure the desired amount of air in each space. There are a number of ways in which this may be accomplished, some of which are:

CHAPTER 31. AIR DISTRIBUTION

- 1. Dampers on the supply and return grilles.
- 2. Dampers in the supply and return ducts.
- 3. Reducing the effective area of some supply openings by blank-offs.
- 4. Combinations of dampers in both supply and return air.

Dampers on the supply grilles themselves are objectionable unless of special design (see Fig. 5), because of their effect on the air stream and noise. Dampers on the return grilles are frequently objectionable because of noise. A damper in the supply duct some distance back of the supply opening forms a very satisfactory means of regulating the flow without disturbing distribution across the supply opening face. A damper in the return air duct has the advantage over one immediately behind the grille

Fig. 9. Small Store Cooling Distribution

- A. Rear Wall. High outlet velocity, possibility of excessive air motion and drafts.
- B. Front Wall. High outlet velocity, possibility of excessive air motion and drafts. May cause excessive infiltration of outside air.
- C. Front and Rear Walls. Moderate room air motion, outlet blows should not impinge giving rise to down drafts in center of store.
 - D. Center. Moderate air motion, no impingement of air streams. Good results.
 - E. One Side. Moderate room air motion, should blow toward exposed wall. Good results.
 - F. Ceiling. Low room air motion. Good results.

in that it does not tend to create high localized velocities through the grille as the latter might do if nearly closed. Blank-offs consisting of pieces of sheet metal covering a portion of the supply opening face can frequently be used satisfactorily, although determination of just what is required is a matter of experiment, and the balancing of the system is not nearly so conveniently accomplished as with dampers. Blank-offs have the further objection that as the area is reduced, pressure builds up and air motion tends to remain constant. Dampers in both supply and return air form the most flexible means of controlling the supply to the room and the static pressure within the room. When feasible, these dampers, particularly those in the supply ducts, should be a substantial distance from the supply opening, and ahead of the acoustic duct lining if used. Due consideration should also be given to the use of the several volume control and uniform distribution devices now available. See Catalog Data Section.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

REFERENCES

A.S.H.V.E. RESEARCH REPORT NO. 1076—Air Distribution from Side Wall Outlets, by D. W. Nelson and D. J. Stewart (A.S.H.V.E. Transactions, Vol. 44, 1938, p. 77).

A.S.H.V.E. RESEARCH REPORT NO. 1140—The Use of Air Velocity Meters, by Prof. G. L. Tuve, D. K. Wright, Jr. and L. J. Seigel (A.S.H.V. E. Transactions, Vol. 45, 1939, p. 645).

A.S.H.V.E. RESEARCH REPORT No. 1162—Air Flow Measurements at Intake and Discharge Openings and Grilles, by G. L. Tuve and D. K. Wright, Jr. (A.S.H.V.E. Transactions, Vol. 46, 1940, p. 313).

A.S.H.V.E. RESEARCH REPORT No. 1165—Development of Instruments for the Study of Air Distribution in Rooms, by A. P. Kratz, A. E. Hershey and R. B. Engdahl (A.S.H.V.E. Transactions, Vol. 46, 1940, p. 351).

A.S.H.V.E. RESEARCH PAPER—Entrainment and Jet-Pump Action of Air Streams, by G. L. Tuve, G. B. Priester and D. K. Wright, Jr. (A.S.H.V.E. JOURNAL SECTION, Heating, Piping and Air Conditioning, November, 1941, p. 708).

Modern Air Conditioning, Heating and Ventilating, by W. H. Carrier, R. E. Cherne, and W. A. Grant (Pitman Publishing Corp., New York, N. Y., 1940).

Chapter 32

AIR DUCT DESIGN

Pressure Losses, Friction Losses, Friction Loss Chart, Elbow Friction Losses, Proportioning the Losses, Duct Sizes, Procedure for Duct Design, Velocities, Main Trunk Ducts, Proportioning the Size for Friction, Velocity Method, Equal Friction Method, Duct Construction Details

THE resistance of an air handling system can be computed from the methods and data given in this chapter. The actual resistance for any given installation, however, may vary considerably from the calculated resistance because of variation in the smoothness of materials, the type of joints used and the ability of the mechanics to fabricate in accordance with the design. It is best to select fans and motors of sufficient size to allow a factor of safety. Volume dampers should be installed in each branch outlet to balance the system. It is improbable that the required quantities of air will be delivered at each outlet without adjustment of the dampers, which usually results in a total pressure exceeding that of the design, unless a liberal factor of safety is allowed.

The flow of air due to large pressure differences is most accurately stated by thermodynamic formulae for air discharge under conditions of adiabatic flow, but such formulae are complicated, and the error occasioned by the assumption that the gas density remains constant throughout the flow may be considered negligible when only such pressure differences are involved as occur in ordinary heating and ventilating practice.

In the development of the formulae, diagrams, and tables for the flow of air, use is made of the following basic equation for the flow of fluids:

If H_v be the velocity head in feet of a fluid, and the velocity, V, be expressed in feet per minute, the fundamental equation is

$$V = 60 \sqrt{2g H_{\rm v}}$$

The factor g is the acceleration due to gravity, or 32.16 ft per second per second.

It is usual to express the head in inches of water for ventilating work and, since the heads are inversely proportional to the densities of the fluids,

$$\frac{H_{\rm v}}{h_{\rm v}} = \frac{62.4}{d}$$

or

$$H_{\rm v} = 5.2 \, \frac{h_{\rm v}}{d}$$

therefore,

$$V = 1096.5 \sqrt{\frac{h_{\rm v}}{d}} \tag{1}$$

where

V = velocity, feet per minute.

 $h_{\rm v}$ = velocity head or pressure, inches of water.

d = weight of air, pounds per cubic foot.

For dry air (70 F and 29.921 in. Hg barometer) d=0.075 lb per cubic foot¹. Substituting this value in Equation 1:

$$V = 1096.5 \sqrt{\frac{h_{\rm v}}{0.075}} = 4005 \sqrt{h_{\rm v}} \tag{2}$$

The relation of air velocity and velocity head expressed in Equation 2 is shown diagrammatically in Fig. 1 for air at 70 F and 29.92 in. Hg barometer.

The drop in pressure in air distributing systems is due to the dynamic

Fig. 1. Relation Between Velocity and Velocity Head for Dry Air

losses and the *friction* losses. The friction losses for turbulent flow (which occur in all practical air flow problems) are due to the friction of air against the sides of the duct and to internal friction between air molecules. The dynamic losses are those due to the change in the direction or in the velocity of air flow.

Dynamic losses occur principally at the entrance to the piping, in the elbows, and wherever a change in velocity occurs. The entrance loss is the difference between the actual pressure required to produce flow and the pressure corresponding to the flow produced; it may vary from 0.1 to 0.5 times the velocity head. The pressure loss in elbows must also be allowed for in the design.

FRICTION LOSSES

A study of the frictional resistance to the flow of air in ducts was begun by the A.S.H.V.E. Research Laboratory in 1938. This study

See Chapter 47 for definition of standard air.

resulted in modifications of the Fanning friction loss formula, for 100 ft of round galvanized iron duct and for air at standard conditions²:

For round duct with no joints,

$$H_{\rm S} = \frac{1.157}{D^{1.212}} \left(\frac{V}{4000} \right)^{1.83} \tag{3}$$

For round duct with 40 joints per 100 ft,

$$H_{\rm S} = \frac{1.48}{D^{1.287}} \left(\frac{V}{4000}\right)^{1.83} \tag{4}$$

where

 H_s = friction loss, inches of water at standard conditions.

V = velocity of air, feet per minute.

D = diameter of duct, feet.

The chart shown in Fig. 2 was constructed from Equation 4 and therefore applies only for round galvanized iron duct of good construction with 40 joints per 100 ft, and for air at standard conditions. No factor of safety has been applied. In view of the many variations that may occur in duct construction and application, it is recommended that a factor of safety be used, which in the judgment of the engineer, will make due allowance for these variations. In the Laboratory tests the variation found in pressure loss between the best joints and the worst joints was approximately 10 per cent. This would suggest a minimum factor of safety of 10 per cent.

The friction loss varies with the surface characteristics of a duct and in case a rough conduit of tile, brick or concrete is used, a factor of about 35 per cent should be added to the friction values obtained from Fig. 2.

Since the friction chart applies only for standard conditions, it is necessary to apply correction factors for other than standard conditions. These corrections are:

$$H_{\rm A} = H_{\rm S} \times S \left(\frac{\gamma_{\rm A}}{\gamma_{\rm S}}\right)^{0.17} \tag{5}$$

where

 $H_{\rm A}$ = friction loss, inches of water at actual conditions.

S = ratio of density of air at actual conditions to density of air at standard conditions.

YA = kinematic viscosity at actual conditions.

 γ_s = kinematic viscosity at standard conditions.

Kinematic Viscosity =
$$\frac{\mu}{c}$$

where

 μ = absolute viscosity, pounds per foot second (see Fig. 3).

 ρ = density, pounds per cubic foot (see Chapter 1).

The absolute viscosity of dry air at various temperatures is given in Fig. 3. It is assumed that the viscosity is not appreciably affected by the moisture content.

²A.S.H.V.E. REPORT No. 1105—Frictional Resistance to the Flow of Air in Straight Ducts, by F. C. Houghten, J. B. Schmieler, J. A. Zalovick and N. Ivanovic (A.S.H.V.E. Transactions, Vol. 45, 1939, p. 35). A.S.H.V.E. REPORT No. 1154—Analysis of Factors Affecting Duct Friction, by J. B. Schmieler, F. C. Houghten and H. T. Olson (A.S.H.V.E. Transactions, Vol. 46, 1940, p. 193).

Fig. 2. Friction of Air in Pipes

CHAPTER 32. AIR DUCT DESIGN

For temperatures ordinarily used in heating, ventilating and air conditioning work, the correction for viscosity may be neglected without serious error. The correction equation would then be simplified to:

$$H_{\Lambda} = H_{S} \times S \tag{6}$$

Example 1. Assume that it is desired to circulate 10,000 cfm of air through 75 ft of 24 in. diameter pipe. Find 10,000 cfm on the left scale of Fig. 2 and move horizontally right to the diagonal line marked 24 in. The other intersecting diagonal shows that the velocity in the pipe is 3200 fpm. Directly below the intersection it is found that the friction per 100 ft is 0.41 in.; then for 75 ft the friction will be $0.75 \times 0.41 = 0.31$ in. In a like manner any two variables may be determined by the intersection of the lines representing the other two variables.

Fig. 3. Temperature—Viscosity Curve for Dry Air

Circular Equivalents of Rectangular Ducts

Where rectangular ducts are used it is frequently desirable to know the equivalent diameter of round pipe to carry the same capacity and have the same friction per foot of length. Table 1 gives directly the circular equivalents of rectangular ducts for equal friction and capacity, which are based on values determined from Equation 7:

$$d = 1.265 \sqrt[5]{\frac{(a\ b)^3}{a+b}} \tag{7}$$

where

a =one side of rectangular pipe, feet or inches.

b = other side of rectangular pipe, feet or inches.

d = equivalent diameter of round pipe for equal friction per foot of length to carry the same capacity, feet or inches.

Rectangular equivalents of round ducts are also given in the curves of Fig. 4 which are plotted from data based on Equation 7. To use the

chart, locate the diagonal curve giving the diameter of the round duct. The width and height of an equivalent rectangular or square duct may then be read as the abscissa and the ordinate of any point of the curve.

Fig. 4. Rectangular Equivalents of Round Ducts

Multiplying or dividing the length of each side of a pipe by a constant is the same as multiplying or dividing the equivalent round size by the same constant. Thus, if the circular equivalent of an 80×24 -in. duct is required, it will be twice that of a 40×12 -in. duct, or $2 \times 23.3 = 46.6$ in.

Elbow Friction Losses

It is customary to express the dynamic and friction losses in elbows as equal to a number of diameters of round pipe, or a number of widths of rectangular pipe, or equivalent length of duct³. The curves in Fig. 5 are arranged to read the number of diameters or widths for determining the lineal feet of pipe having a frictional resistance equivalent to the pressure drop in the elbows. Curves B and C are based on tests of round and square elbows⁴ of ordinary good sheet metal construction.

Values obtained from Curve A should be used when there is any doubt as to quality of duct construction. It is suggested that this curve be used

Fig. 5. Loss of Pressure in Elbows

for rectangular elbows and five piece elbows as it will thus allow an additional factor of safety without seriously affecting the design.

As indicated on the chart, long radius elbows will offer much less resistance to the flow of air than short radius elbows. Experience has

TABLE 1. CIRCULAR EQUIVALENTS OF RECTANGULAR DUCTS FOR EQUAL FRICTION

Side Rectangular Duct	8	8.5	9	9.5	10	10.5	11	11.5	12	12.5	13	13.5	14	14.5	15	15.5	16
3	5.2	5.4	5.5	5.7	5.8	5.9	6.0	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	7.0	7.1
3.5	5.7	5.9	6.0	6.2	6.3	6.5	6.6	6.7	6.9	7.0	7.1	7.3	7.4	7.5	7.6	7.7	7.8
4	6.1	6.3	6.5	6.7	6.8	7.0	7.1	7.2	7.4	7.5	7.7	7.8	7.9	8.1	8.2	8.3	8.4
4.5	6.5	6.7	6.9	7.1	7.2	7.4	7.6	7.7	7.9	8.0	8.2	8.4	8.5	8.6	8.7	8.9	9.0
5	6.9	7.1	7.3	7.5	7.7	7.8	8.0	8.2	8.3	8.5	8.7	8.8	8.9	9.1	9.2	9.4	9.5
5.5	7.3	7.5	7.7	7.8	8.1	8.3	8.5	8.6	8.8	9.0	9.2	9.4	9.5	9.6	9.8	9.9	10.1

³A.S.H.V.E. RESEARCH PAPER—Pressure Loss Caused by Elbows in 8-Inch Round Ventilating Duct, by M. C. Stuart, C. F. Warner and W. C. Roberts (A.S.H.V.E. JOURNAL SECTION, *Heating*, *Piping* and *Air Conditioning*, October, 1941, p. 642).

^{*}Loss of Pressure Due to Elbows in the Transmission of Air Through Pipes or Ducts, by F. L. Busey (A.S.H.V.E. Transactions, Vol. 19, 1913, p. 366).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

ij ť

1	ļ				4,10	ກໍກໍກໍລ	4-02	6.0.00	38.3 38.9 39.6 40.3	40.9 41.6 42.2 42.8
	24				26.4	28.5 30.5 31.3	32.2 33.1 33.9 34.5	35.3 36.2 37.0 37.6		
	22				24.2 25.2 26.3	27.3 28.2 29.1 30.0	30.8 31.5 32.4 33.0	33.7 34.6 35.2 35.9	36.5 37.2 37.8 38.4	39.1 39.6 40.2 40.8
æ	21				23.6 24.7 25.7	26.6 27.5 28.4 29.2	30.0 30.8 31.6 32.2	32.9 33.8 34.3 35.0	35.6 36.3 36.9 37.4	38.1 38.7 39.2 39.8
-(Continued)	20				22.0 23.1 24.0 25.1	26.0 26.8 27.7 28.5	29.3 30.0 30.8 31.4	32.1 32.8 33.4 34.1	34.7 35.3 35.9 36.4	37.1 37.7 38.2 38.7
-(Co	61			20.9	21.5 22.5 23.5 24.4	25.3 26.2 27.0	28.5 29.2 29.9 30.7	31.2 31.9 32.5 33.1	33.8 34.4 34.9 35.4	36.1 36.6 37.1 37.6
FRICTIONA	18	:		19.8	20.9 21.9 22.8 23.8	24.6 25.4 26.9	27.7 28.4 29.1 29.8	30.3 31.0 31.6 32.2	32.9 33.4 33.9 34.4	34.9 35.4 35.9 36.4
FRIC	17			18.7 19.2 19.8	20.3 21.3 22.2 23.0	23.9 24.7 25.4 26.2	26.8 27.5 28.2 28.8	29.5 30.1 30.5 31.3	31.8 32.3 32.8 33.3	33.8 34.3 34.8 35.3
EQUAL	16			17.6 18.2 18.7 19.2	19.7 20.6 21.5 22.3	23.1 24.6 25.3	26.0 26.7 27.3	28.5 29.1 29.6 30.3	30.7 31.2 31.7 32.2	32.7 33.2 33.7 34.2
	15		16.5	17.1 17.6 18.1 18.6	19.0 19.9 20.8 21.6	22.4 23.1 24.4	25.1 25.8 26.9	27.5 28.1 28.6 29.2	29.6 30.1 30.6 31.1	31.6 32.1 32.6 33.0
DUCTS FOR	14		15.4 16.0	16.5 17.0 17.4 17.9	18.4 19.2 20.0 20.8	21.5 22.2 22.9 23.5	24.2 24.8 25.4 25.9	26.5 27.0 27.5 28.0	28.5 29.0 29.5 30.0	30.5 30.9 31.3 31.7
	13		14.3 14.9 15.3	15.8 16.3 16.8 17.2	17.6 18.5 19.3 20.0	20.7 21.4 22.0 22.6	23.2 24.8 24.9	25.4 25.9 26.9	27.4 27.8 28.3 28.7	29.5 29.9 30.3
RECTANGULAR	12		13.2 13.7 14.3	15.2 15.7 16.1 16.5	17.0 17.8 18.5 19.2	19.8 20.5 21.1 21.6	22.2 23.8 23.8 23.8	24.3 24.8 25.2 25.7	26.2 26.6 27.0 27.4	27.8 28.2 28.6 29.0
OF RE	=	12.1	12.6 13.1 13.6 14.1	14.5 15.0 15.4 15.8	16.2 16.9 17.6 18.3	19.0 19.5 20.1	21.2 21.7 22.2 22.7	23.1 23.6 24.1 24.5	24.9 25.3 25.7 26.1	26.5 26.9 27.3 27.7
	01	11.0	12.0 12.5 12.9 13.4	13.8 14.2 14.6 15.0	15.4 16.1 16.8 17.3	18.0 18.5 19.1	20.1 20.6 21.1 21.6	22.0 22.4 22.8 23.2	23.6 24.0 24.4 24.7	25.1 25.5 25.9 26.2
Equivalents	6	9.9 10.4 10.9	11.4 11.8 12.3	13.1 13.5 13.8 14.2	14.5 15.2 15.8 16.4	17.0 17.5 18.0 18.5	19.0 19.4 19.8 20.3	20.7 21.1 21.5 21.5	22.2 22.6 22.9 23.3	23.6 24.0 24.3 24.6
AR EQ	∞	8.8 9.3 9.8 10.2	10.7 11.1 11.5 11.9	12.3 12.6 13.0 13.3	13.6 14.2 14.8 15.4	15.9 16.4 16.9 17.3	17.7 18.2 18.6 19.0	19.4 20.1 20.4	20.8 21.1 21.5 21.8	22.1 22.4 22.7 23.0
CIRCULAR	-	8.2 7.2 9.2 6.0	10.0 10.4 10.8 11.1	11.4 11.8 12.1 12.1	13.2 13.2 13.8 14.3	14.8 15.2 15.6 16.1	16.4 16.8 17.2 17.6	18.0 18.4 18.7 19.0	19.2 19.6 19.9 20.2	20.4 20.7 21.0 21.2
1.	9	7.6 8.0 8.8 8.8	9.2 9.6 9.9	10.8 10.8 11.1	11.6 12.1 12.6 13.1	13.5 13.9 14.3	15.1 15.4 15.7 16.1	16.4 16.7 17.0 17.3	17.6 17.9 18.2 18.4	18.7 19.0 19.2 19.5
ABLE	ro.	6.9 7.7 8.0	88.3 9.9 2.2	9.5 9.8 10.0 10.3	10.5 11.0 11.4 11.8	12.2 12.6 12.9 13.2	13.6 13.9 14.3 14.5	14.8 15.1 15.4 15.7	15.9 16.1 16.3 16.6	16.8 17.0 17.3 17.5
1	+	6.5 6.8 7.1	7.6 7.6 8.2	8.6 8.6 9.9	9.3 9.7 10.0	10.8 11.0 11.3	11.9 12.2 12.5 12.7	13.0 13.3 13.5 13.7	13.9 14.1 14.3 14.6	14.7 15.0 15.1 15.3
	SIDE RECTANGULAR DUCT	8 0 11	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 17 18 19 19	20 24 24 26	28 32 34 34	36 38 40 42	44 46 48 50	52 54 58 58	66 64 64 64

CHAPTER 32. AIR DUCT DESIGN

OR PRETANGILAR DUCTS FOR EQUAL FRICTION—(Concluded) Ċ

1500	56	78	30	32	34	36	38	40	42	44	46	- 1 1 1	Side Rectangular Duct	20	54	99	99	72	7.8	84	88
1	28.6								<u> </u>	<u> </u>	<u> </u>		50	55.0							
	70.7	30.8									_		52	56.1							
30	30.7	31.9	33.0										54	57.2	59.4						
	7	23 0	14.1	35.2	-								26	58.3	60.5						
	22.7	13.0	35.1	36.3	37.4				_,				28	59.3	9.19						
36	33.7	34.9	36.1	37.3	38.5	39.6						-	96	60.3	62.7	0.99					
ç	7 72	26.0	22	78 7	30.5	40.7	41.8						62	61.3	63.7	67.1					
8 6	35.3	36.7	38.0	39.3	40.5	41.7		44.0					64	62.2	64.7	68.2					
42	36.0	37.6	39.0	40.3	41.5	_	44.0	45.1	46.2				99	63.2	65.7	69.3	72.6				
:	,	ì	ç		2	13.7	_		47.2	48.4			89	64.1	9.99	70.3	73.7				
44	30.9	38.5	6.00	7.1.4	43.5	44.8		47.2			9.0		70	65.0	67.6	71.3	74.8				
6 84	38.5	40.0	41.5	43.0	44.4	45.6	46.9			50.5	51.6	52.8	72	62.9	68.5	72.3	75.9	79.2			
		9	9	2	,	3 97	67.0				52.9 5	54.0	74	8.99	69.4	73.3	76.9	80.3			
25	39.7	0.0	6.24	0.54	7:57	7 2						5.0	16	9.79	70.3	74.2	6.77	81.4			
52	40.0	41.0	44.0	45.5	47.0	48.4	49.9	51.1	52.3	53.5	54.8 5	56.0	78	68.4	71.2	75.2	78.9	82.5	82.8		
÷							_						S	,	, ,,	1 7/2	70 0	83.6	0 98		
99	41.3	43.0	44.6	46.2	47.7	49.1	20.6	_				0.0	2 6	7.60	1.7.	1 2		9 78	. 88		
228	42.1	43.8	45.4	47.0	48.5	50.0	51.5	52.9	54.2	55.5	56.8	58.0	87	1.07	0.67	1	61.0	0.10	2.00	D 4	
09	42.7	44.5	46.1	47.8	49.3	50.9	52.3					٠. در	84	 	S.0	0.0	61.9	2.00	 è	7.7.	
			0 27		5	7	23 0					59.7	98	711.7	74.6	78.9	82 9	9.98	90.2	93.5	
70	4.5	45.1	2.0.5	40 7	20.05	52.4	53.9			58.1	59.4	9.09	88	72.5	75.5	8.64	83.9	87.5	91.2	94.6	8.96
40.4	0.44	46.5	48.2	20.05	51.6	53.1	54.7	56.2	57.6			9.19	8	73.3	76.3	90.08	84.7	88.5	92.2	95.7	97.9
3			:	}									;	_;		ž	ì	5	2	,	9
89	45.3	47.2	48.9	50.7	52.2	53.8	55.5	56.9	58.4	59.9		62.6	2 6	74.1	77.1	81.4	85.0	8 8	2.50	0,70	2.6
20	46.0	47.8	49.5	51.3	52.9	54.5	26.2			_	1.70	3 :	* 8	2 2 2 2		2.70	87.4	100	95.7		101.2
72	46.5	48.4	50.1	51.9	53.7	55.4	27.0		 o. o.			.	2	3:5		3		::	•		

shown that good results may be expected when the radius to the center of the elbow is 1.5 times the pipe diameter or duct width parallel to the radius. Examination of the curve will indicate that little advantage is to be gained by selecting elbows having a centerline radius of more than two diameters. Elbows having a radius of more than three diameters show a slightly increased resistance due to the increased length of pipe but, when used, they reduce the overall resistance of the system and therefore should not be avoided.

Where space conditions necessitate the use of short radius or miter

Table 2. Effect of Vanes on Pressure Loss of 7-inch Square Ventilating Ducta Expressed in feet of total equivalent length of duct (ELD)

	SQUARE M	ITER	ELBO	w				STAN	DARD EL	BOWS	WITH	VAR	ious	RAD	1	
RIA .	Radius R1	0	.2	.4	.6	Ą	1.0	ar ar	Radius Ratio	R1 W	0	.2	4	.6	.8	1.0
	ELD, ft	1	30 5	27.5	30 1	37.7	38 5	W	ELD			23.3	22.0	25 7	28.9	39.7
	Radius R1	0	2	.3					Radius	R ₁	0	.2	.3	.4	.5	.6
R1 7	Ratio R2	0	.4	.5				R1 72	Ratio	R2 W	0	.4	.5	.6	.7	.8
R ₂	ELD, ft		23.5	23.3				R ₂	ELD	, ft	39.7	20.0	22.0	23.0	23.8	25 7
	Radius R2 Ratio	0	.4	.3 .5				Zer)	Radius Ratio	R ₁	0	.4	.6	.8	1.0	1.2
R2 R3	ELD, ft	0 41.1	.6 20 7	.7 22.2				1 ½ I. R.	ELD), ft	25.3	177	16 5	18.7	23.5	25.6
(man)	2		ووق	7	Ę	2		Sail	Radius Ratio	R1 W	0	.7	.8	.9	1.0	1.2
VANE A ELD, ft 21.8	B 170		C 179			D 17.8		4" I R	ELD	, ft	14.2	13.3	13.0	127	125	12.7

aFor more complete data see A.S.H V.E. RESEARCH PAPER—Effect of Vanes in Reducing Pressure Loss in Elbows in 7-Inch Square Ventilating Duct, by M. C. Stuart, C. F. Warner and W. C. Roberts (A.S.H. V.E. JOURNAL SECTION, Heating, Priping and Air Conditioning, September, 1942, p. 566).

Note A: Vane A made up of a large number of small splitters; B made up of a small number of large splitters bent on a large radius; C hollow vanes having different outside and inside curvature; and D four splitters with R/W=0 4. Elbow same as D except 2 in trailing edge on the end of each splitter, ELD in feet = 17.0.

Note B: The air velocity has no effect on the loss of elbows when the loss is expressed as equivalent length of duct.

elbows in square or rectangular duct work, turning vanes should be used to reduce the pressure losses. Rough or raw edges on the vanes should be avoided to prevent objectionable noise. Typical types of vanes are shown in Table 2 with the total equivalent length of duct that may be used in estimating the resistance of each type.

The pressure loss through elbows of less than 90 deg may be assumed to be directly proportional to the ratio of the angle through which the turn is made. The resistance will vary widely for the large degree turns

^{*}Pressure Losses in Rectangular Elbows, by R. D. Madison and J. R. Parker (Healing, Piping and Air Conditioning, July, p. 365, August, p. 427, September, p. 483, 1936).

CHAPTER 32. AIR DUCT DESIGN

depending upon the aspect ratio and the length of straight pipe between the elbows, but for practical purposes, it may be assumed that the ratio remains proportional to the angle through which the turn is made. Reverse 90 deg elbow turns should be avoided wherever possible but, where used, the friction of the elbows indicated in Fig. 5 should be doubled for the second elbow.

PROPORTIONING THE LOSSES

The entrance loss through the outside air intake louvers will vary with the design of the louvers and method of connection to the system. The louvers and connecting duct will have a friction resistance of from 0.25 to 1.00 times the velocity pressure. Therefore, the total entrance loss will vary from 1.25 to 2.00 $h_{\rm v}$. Common practice is to use 1.5 $h_{\rm v}$ for a 75 per cent free area louver with connecting duct having 15 deg tapered sides. Wherever air passes through a plenum space having a negligible velocity, allowance must be made for the loss in velocity head. This may be taken as the velocity head corresponding to the difference in velocities in the plenum and the duct. Where the ducts are very smooth with long transformation fittings, a regain in static pressure is sometimes allowed, but generally ordinary construction does not warrant a consideration of this factor, and it is customary to neglect it. When it is allowed, the regain is estimated at one-half the difference between the velocity pressure at the fan outlet and at the last run of pipe.

Other losses of pressure occur through the heating units, at the air washer and at air filters. In ordinary practice in ventilation work it is usual to keep the sum of the duct losses one-third to one-half and the loss through the other units at less than one-half of the static pressure. The remainder is then available for producing velocity. In the design of an ideal duct system, all factors should be taken into consideration and the air velocities proportioned so that the resistance will be practically equal in all ducts regardless of length.

DUCT SIZES

Ducts and flues for gravity circulation must be sized so that the friction loss will not exceed 50 per cent of the available aspirating effect due to the temperature and height of the column of heated air. Duct systems for mechanical circulation may be sized so as to have much higher pressure losses than gravity systems. The total pressure of these systems is limited to the available pressure from the fan used.

The general rules to be followed in the design of a duct system are enumerated herewith:

- 1. The air should be conveyed as directly as possible at reasonable velocities to obtain the results desired with greatest economy of power, material and space.
 - 2. Sharp elbows and bends should be avoided unless turning vanes are used.
- 3. Transformation pieces should be made as long as possible. The angle between the sides and axis of the duct should never exceed 30 deg and where possible, 15 deg should be made the maximum.
- 4. Especial care should be taken to maintain a true cross-section and not to restrict the air flow either in transformation pieces or in elbows.
 - 5. Rectangular ducts or flues should be made as nearly square as possible. Good

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

practice-limits the ratio between the long side and the short side to 3 to 1. In no case should this ratio exceed 10 to 1.

- 6. Wherever possible, ducts should be constructed of smooth material such as sheet metal. Where masonry ducts are used, proper allowance for the surface coefficient should be made.
- 7. The use of furred spaces, spaces between joists, etc., should be avoided unless lined with sheet metal.

Procedure for Duct Design

The general procedure for designing a duct system is outlined in the several items listed herewith:

- 1. Study the plan of the building and draw in roughly the most convenient system of ducts, taking cognizance of the building construction, avoiding all obstructions in steel work and equipment, and at the same time maintaining a simple design.
 - 2. Arrange the positions of duct outlets to insure the proper distribution of air.
- 3. Divide the building into zones and proportion the volume of air necessary for each zone.
- 4. Determine the size of each outlet, based on the volume as obtained in the preceding paragraph, for the proper outlet velocity and throw.
- 5. Calculate the sizes of all main and branch ducts by either of the following two methods:
 - a. Velocity Method. Arbitrarily fix the velocity in the various sections, reducing the velocity from the point of leaving the fan to the point of discharge to the room. In this case the pressure loss of each section of the duct is calculated separately and the total loss found by adding together the losses of the various sections of the continuous run.
 - b. Friction Pressure Loss Method. Proportion the duct for equal friction pressure loss per foot of length.
- 6. Calculate the friction for the duct offering the greatest resistance to the flow of air, which resistance represents the static pressure which must be maintained in the fan outlet or in the plenum space to insure distribution of air in the duct system. The duct having the greatest resistance will usually be that having the longest run, although not necessarily so.

Air Velocities

The air velocities given in Table 3 have been found to give satisfactory results in engineering practice. Where the higher velocities are used, the ducts should be cross-braced to prevent breathing, buckling or vibration. High velocities at one point in the system offset the effect of proper design in all other parts of the system; hence the importance of air velocities, elbow design, location of dampers, fan connections, grille and register approach connections, and similar attention to details. industrial buildings, noise is seldom given much consideration, and main duct velocities as high as 2800 or 3000 fpm are sometimes used but, when these velocities are used, due consideration should be given to duct design, resistance pressure, fan efficiencies and motor horsepower. For department stores and similar buildings, 2000 to 2200 fpm are sometimes used in main ducts where noise is not objectionable and space conditions warrant it. Wherever velocities higher than those shown in Table 3 are used, it is essential that the ducts should be of heavier gages, have additional bracing and be carefully constructed for a minimum resistance.

Where the high velocity diffusing outlets are used, the duct velocity should not be less than the throat velocity of the diffusers, as dynamic losses occur wherever velocities are stepped up or down. One recent

CHAPTER 32. AIR DUCT DESIGN

trend in grille design is toward the use of much higher grille and branch duct velocities. Some installations have been made with velocities as high as 1600 fpm in branches and through the net area of grilles, but many of these have proven unsatisfactory because of noise and drafts.

Grille manufacturers publish selection tables which size the grilles for volume of air, temperature differential and distance of throw. In following these tables, maximums should be avoided and the manner in which the duct connects to the grille should be given careful consideration. Most of the selection tables are based on straight approach to the grille. Elbow connections to supply grilles should be provided with turning vanes to equalize the face velocity. See Chapter 31 for a discussion of grilles.

Fan outlet velocities are discussed in Chapter 30 and will not be dealt with here except to indicate that fan noises should be given proper consideration.

Main Trunk Ducts

Main trunk ducts with branches are commonly used to convey the air from the fan to the grille or register outlets in preference to individual ducts from the fan to these outlets. The velocities in these ducts and branches vary according to the nature of the installation and the degree of quietness desired. The recommended velocities in Table 3, with good construction, should give satisfactory results. The maximum velocities indicated should not be used except in areas where noise is not a deciding factor.

Velocity Method

The velocity method of designing a duct system involves arbitrarily selecting velocities at various sections of the duct system with the highest velocities generally chosen at the fan and progressive lower velocities

	RECOMMI	ended Veloci	ries, fpm	Maxin	4UM VELOCITIE	S, FPM
DESIGNATION	Residences	Schools, Theaters, Public Buildings	Industrial Buildings	Residences	Schools, Theaters, Public Buildings	Industrial Buildings
Outside Air Intakes ^a Filters ^a Heating Coils ^a	700 250 450	800 300 500	1000 350 600	800 300 500	900 350 600	1200 350 700
Air Washers Suction Connections Fan Outlets	500 700 1000–1600	500 800 1300–2000	500 1000 1600–2400	500 900 1700	500 1000 1500–2200	500 1400 1700–2800
Main Ducts Branch Ducts Branch Risers	700–900 600 500	1000-1300 600-900 600-700	1200-1800 800-1000 800	800-1000 700 650	1100-1400 800-1000 800-900	1300–2000 1000–1200 1000

TABLE 3. RECOMMENDED AND MAXIMUM DUCT VELOCITIES

aThese velocities are for total face area, not the net free area.

toward the duct openings to the room. To find the total static pressure against which the fan must operate, the static pressure loss of each section must be calculated separately and the total loss found by adding the individual losses of the various sections of the run having the highest resistance. Usually this is the longest run but in some cases a shorter run may have more elbows, transformations, booster heaters, etc., which will cause it to have a higher resistance pressure. This method requires judgment and experience in choosing the proper velocities to approach equal friction for all lengths of run but many engineers believe that the velocity method is handier to use than other methods and will give satisfactory results for most practical applications. The air velocities given earlier in this chapter are helpful in choosing proper velocities. Adjustable dampers or splitters are used to regulate air quantities delivered.

Equal Friction Method

The equal friction method of design is sometimes preferred because it does not require nearly so much judgment and experience in selecting the proper velocities in the various sections of a system. The usual procedure in this method of design is to select the main duct velocity to be consistent with good practice from a standpoint of noise for a particular type of building. This velocity should be less than the fan outlet velocity. All main ducts and branch ducts are sized for equal friction by the use of Fig. 2 and Table 1 or Fig. 4.

In cases where the fan or factory assembled air conditioning unit has a limited external resistance, it is necessary to divide the available resistance by the total equivalent length of the longest or most complicated run of duct to determine the resistance per 100 ft and then to size all ducts at this resistance value, which will automatically determine the duct velocities and give the desired total duct resistance. A further refinement which is sometimes used in large systems is to size each branch duct so that it has a resistance equal to the resistance of the main system at the point of juncture. Even when this refinement is added, regulating dampers are recommended in each branch.

After the duct system is designed the frictional resistance is calculated and tabulated together with the resistance of all component parts. The fan is then selected for the required volume of air, static pressure and outlet velocity.

Example 2. Fig. 6 shows a typical layout of an air distribution system which is applicable for ventilation of hotel dining rooms and offices. The volume of air in cubic feet per minute for the room is determined on the basis of the number of air changes per hour required. In the example shown, the room ventilated is a hotel dining room 135 ft x 85 ft x 15 ft. A $7\frac{1}{2}$ -min air change (8 air changes per hour) is assumed for proper ventilation, giving 22,935 cfm as the air required.

The free area of the outdoor air inlet is based on a velocity of 1000 fpm or 22,935 \div 1000 = 22.94 sq ft. The main duct velocity selected from Table 3 is 1250 fpm which gives a main duct area of 22,935 \div 1250 = 18.354 sq ft (60 \times 44 in.). From Table 1 a 60 \times 44 in. duct is approximately equivalent to 56 in. diameter.

Referring to Fig. 2, a volume of 22,935 cfm through a 56 in. diameter duct gives a resistance of 0.028 in. per 100 ft. The amount of air to be handled by each section of pipe is shown in Fig. 6, and by locating each of these values on the 0.028 in. friction line, the round pipe sizes are obtained and then, referring to Table 1, the equivalent rectangular sizes are selected as shown in Table 4.

CHAPTER 32. AIR DUCT DESIGN

TABLE 4. PIPE SIZES FOR EXAMPLE 2a

EQUIVALENT SIZE OF RE TANGULAR DUCT (INCHE	DIAMETER OF PIPE (INCHES)	Volume of Air (CFM)
60 x 44	56	22,935
58 x 30	45	12,510
50×30	42	10,425
42×30	39	8,340
42×24	35	6,255
30 x 24	29.5	4,170
30×15	23	2,085

aVelocity through grilles (not shown) to be approximately 300 fpm.

The pressure at the outlets nearest the fan will be greater than at the pipes farther along the run so that the former will tend to deliver more than the calculated amount of air. To remedy this condition, volume regulating dampers should be located at the base of each riser, or in each branch duct, and adjusted for proper distribution. At points where branches leave the main it may be advisable, depending upon the nature of the installation, to install adjustable splitters similar to that shown in Fig. 6 where the main duct divides into the 58×30 in. and 50×30 in. branches.

Resistance Losses for the System

(1)	Outdoor air intake, 1000 fpm velocity (1.5 heads \times 0.0625)		0.094 in.
(2)	Filters (from manufacturer's tables)		0.250 in.
(3)	Tempering coil loss (from manufacturer's tables)		0.074 in.
(4)	Air washer loss (from manufacturer's tables)		0.250 in.
(5)	Reheating coil loss (from manufacturer's tables)		0.083 in.
(6)	Duct resistance:		
	The longest run is	150 ft	
	Two, 58 x 30 in. elbows (150% ratio) $\frac{2 \times 13 \times 58}{12}$		
	Two, 30 x 15 in. elbows (150% ratio) $\frac{2 \times 13 \times 30}{12}$		
	Three, 15 x 30 in. elbows (75% ratio) $\frac{3 \times 35 \times 15}{12}$	131 ft	
	Total equivalent run	472 ft	
	472 ft at 0.028 in. per 100 ft		0.132 in.
(7)	Allowance for damper adjustment, 25% of 0.132		0.033 in.
(8)	Supply grille resistance (from manufacturer's tables)		0.036 in.
	Total static pressure loss of system		0.952 in.

The fan is selected from the manufacturer's ratings to deliver 22,935 cfm at a static pressure of 0.952 in. as outlined in Chapter 30.

Example 3. If the rooms and offices of the hotel building of Example 2 are to be served from a manufactured unit with a capacity of 22,935 cfm against an external resistance of 0.35 in., the known resistances are calculated as:

(1)	Outdoor air inlet	0.094 in.
	Allowance for damper adjustment	
(3)	Supply grille resistance (from manufacturer's tables)	0.036 in.
(0)		
	Total known resistance	0.163 in.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Subtracting this from the total available resistance: 0.35 in. -0.163 in. =0.187 in. available for duct resistance.

Known length of run. 150 ft

The duct width is then estimated for the following elbow calculations:

The duct friction per 100 ft is then $0.187 \div 4.90 = 0.0382$ in. and the mains and branches are sized from the 0.038 in. friction line in Fig. 2.

FIG. 6. TYPICAL LAYOUT OF AIR DISTRIBUTION SYSTEM

If it is desired to size each branch for equal resistance, the total resistance back to the point of juncture is calculated and the branch is then sized in a manner similar to that outlined in Example 3.

DUCT CONSTRUCTION DETAILS

Straight sections of round duct are usually formed by rolling the sheets to the proper radius and grooving the longitudinal seam. Rectangular ducts are generally constructed by breaking the corners and grooving the longitudinal seam, although some fabricators still use the standing seam due to lack of equipment. Elbows and transformation sections are generally formed with *Pittsburgh* corner seams because this seam is easier to lock in place than the double seam, but complicated fittings such as double compounded elbows are usually constructed with double seam corners.

CHAPTER 32. AIR DUCT DESIGN

The construction of these various seams as well as the types of girth connections are shown in Fig. 7. The application of the various slips and connections are outlined in Table 5. The end slip may be used wherever S slips are recommended. Where drive slips are used the end slip may be applied on the narrow side of the duct and only the drive slips on the maximum side. Ducts 25 to 30 in. in size should be reinforced between the joints, but not necessarily at the joint. Ducts 31 in. and up should be reinforced at the joint and between the joints; if drive slips are used the

Table 5. Recommended Sheet Metal Gages for Rectangular Duct Construction^a

U. S. Std. GAGE	Maximum Side, Inches	Type of Transverse Joint Connectionsb	Bracing
26	Up to 12	S, Drive, Pocket or Bar Slips, on 7 ft 10 in. centers	None
24	13 to 24	S, Drive, Pocket or Bar Slips, on 7 ft 10 in. centers	None
24	25 to 30	S, Drive, 1 in. Pocket or 1 in. Bar Slips, on 7 ft 10 in. centers ^c	1 x 1 x ½ in. angles 4 ft from joint
31 to 40		Drive, 1 in. Pocket or 1 in. Bar Slips, on 7 ft 10 in. centers ^c	1 x 1 x ½ in. angles 4 ft from joint
	41 to 60	1½ in. Angle Connections, or 1½ in. Pocket or 1½ in. Bar Slips with 1¾ in. x ⅓ in. bar reinforcing on 7 ft 10 in. centers	$1\frac{1}{2} \times 1\frac{1}{2} \times \frac{1}{2}$ in. angles 4 ft from joint
20	61 to 90	1½ in. Angle Connections, or 1½ in. Pocket or 1½ in. Bar Slips 3 ft 9 in. maximum centers with 13% x ½ in. bar reinforcing	1½ x 1½ x ½ in. diagonal angles, or 1½ x 1½ x ½ in. angles 2 ft from joint
18	91 and up	2 in. Angle Connections or 1½ in. Pocket or 1½ in. Bar Slips 3 ft 9 in. maximum centers with 1¾ x ½ in. bar reinforcingd	$1\frac{1}{2} \times 1\frac{1}{2} \times 1\frac{1}{8}$ in. diagonal angles, or $1\frac{1}{2} \times 1\frac{1}{2} \times \frac{1}{8}$ in. angles 2 ft from joint

^aFor normal pressures and velocities (see Table 3) utilized in typical ventilating and air conditioning systems. Where special rigidity or stiffness is required, ducts should be constructed of metal two gages heavier. All uninsulated ducts 18 in. and larger should be cross-broken. Cross-breaking may be omitted on uninsulated ducts if two gages of heavier metal is used.

angles are usually riveted to the duct about 2 in. from the slips. It is good practice to cross-break or kink all flat surfaces to prevent vibration or buckling due to the air flow and accompanying variations in internal pressure. Round ducts are sometimes swedged 1.5 in. from the ends so that the larger end will butt against the swedge and are held in place with sheet metal screws. Where swedges are not used it is general practice to paste the joint with asbestos paper to insure a tight joint.

The construction of elbows and changes of shape cannot be definitely outlined because of the varied conditions encountered in the field, but in

bOther joint connections of equivalent mechanical strength and air tightness may be used.

 $^{^{\}rm c} \rm Duct$ sections of 3 ft 9 in. may be used with bracing angles omitted, instead of 7 ft 10 in. lengths with joints indicated.

dDucts 91 in. and larger require special field study for hanging and supporting methods.

general long radius elbows and gradual changes in shape tend to maintain uniform velocities accompanied by decreased turbulence, lower resistance and a minimum of noise.

Heavy canvas connections are recommended on both the inlet and outlet to all fans. The fan discharge connections shown in Fig. 7 are

Fig. 7. Sheet Metal Duct and Arrangement Details

marked good, fair, and poor in the order of the amount of turbulence produced. An inspection of the heater connections shown in Fig. 7 will readily show that uniform velocity through the heater cannot be expected in the diagram noted poor. When obstructions cannot be avoided, the duct area should never be decreased more than 10 per cent and then a streamlined collar should be used. Larger obstructions require an increase

CHAPTER 32. AIR DUCT DESIGN

in the duct size in order to maintain as nearly uniform velocity as possible. Branch take-offs should always be arranged to cut or slice into the air stream in order to reduce as far as possible the losses in velocity head.

The recommended gages for sheet metal duct construction are given in Table 5. Weights of sheet metal per square foot of surface for different gages are given in Table 6. The weights of various gages and the areas

Fig. 8. Area and Weight of Rectangular Sheet Metal Ducts

for any length of run of rectangular sheet metal ducts may also be determined from Fig. 8. The bottom scale represents the sum of the two sides of the duct and the oblique lines give the length of run in feet. Proceeding horizontally to the right from the intersection of vertical and oblique lines on the chart, the area of the duct may be determined in the first vertical scale. The scales to the right give the weights of the duct run for different gages of metal. In calculating the weights of duct, it

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 6. Weights of Sheet Metal Used for Duct Construction

	BLACK SHEETS			GALVANIZED SHEETSb					
U.S. Std. Gage		Approximate Thickness, In.		Weight Per Square Foot		Approximate Thickness, In.		Weight Per Square Foot	
	Steel	Iron	Ounces	Pounds	Steel	Iron	Ounces	Pounds	
30	0.0123	0.0125	8	0.500	$\begin{array}{c} 0.0163 \\ 0.0193 \\ 0.0224 \end{array}$	0.0165	10.5	0.656	
28	0.0153	0.0156	10	0.625		0.0196	12.5	0.781	
26	0.0184	0.0188	12	0.750		0.0228	14.5	0.906	
24	0.0245	0.0250	16	1.000	0.0285	0.0290	18.5	1.156 1.406 1.656 2.156	
22	0.0306	0.0313	20	1.250	0.0346	0.0353	22.5		
20	0.0368	0.0375	24	1.500	0.0408	0.0415	26.5		
18	0.0490	0.0500	32	2.000	0.0530	0.0540	34.5		
16	0.0613	0.0625	40	2.500	0.0653	0.0665	42.5	2.656	
14	0.0766	0.0781	50	3.125	0.0806	0.0821	52.5	3.281	
12	0.1072	0.1094	70	4.375	0.1112	0.1134	72.5	4.531	
11	0.1225	0.1250	80	5.000	0.1265	0.1290	82.5	5.156	
10	0.1379	0.1406	90	5.625	0.1419	0.1446	92.5	5.781	

bGalvanized sheets are gaged before galvanizing and are therefore approximately 0.004 in. thicker.

Table 7. Weights and Thicknesses of Standard Copper Sheetsc Rolled to Weight

Weight per Square Foot		THICKNES	s, Inches	S NEAREST GAGE NO		No
Ounces	Pounds	Decimal Equivalent	Nearest Fraction	B. & S.	Stubs	U S STD
10	0.625	0.0135	1/64	27	29	29
12	0.750	0.0162	1/64	26	27	28
14	0.875	0.0189	1/64	25	26	26
16 18 20 24	1.000 1.125 1.250 1.500	0.0216 0.0243 0.0270 0.0324	1/32 1/32 1/32 1/32 1/32	23 22 21 20	24 23 22 21	25 24 23 22
28	1.750	0.0378	1/32	19	20	20
32	2.000	0.0432	3/64	17	19	19
36	2.250	0.0486	3/64	16	18	18
40	2.500	0.0540	3/64	15	17	17
44	2.750	0.0594	1/1 6	15	17	17
48	3.000	0.0648	1/1 6	14	16	16
56	3.500	0.0756	5/6 4	13	15	14
64	4.000	0.0864	5/6 4	11	14	13

eVariations from these weights must be expected in practice.

is considered good practice to allow 20 per cent additional for weights of joints and bracings. Various weights and thicknesses of standard copper sheets will be found in Table 7.

REFERENCES

Method of Determining Rectangular Equivalents and Weights of Ducts, by Peter Franck (A.S.H.V.E. JOURNAL SECTION, *Heating*, *Piping* and *Air Conditioning*, December, 1940).

The Flow of Liquids, by W. H. McAdams (Refrigerating Engineering, February, 1925, p. 279).

A Study of the Data on the Flow of Fluids in Pipes, by Emory Kemler (A.S.M.E. Transactions, Hydraulics Section, August 31, 1933, p. 7).

Air Conditioning and Engineering, American Blower Corp.

Fan Engineering, Buffalo Forge Co.

Heat Power Engineering, by Barnard, Ellenwood, and Hirshfeld, Part III. Mechanical Engineers' Handbook, by Lionel S. Marks, McGraw-Hill Book Co.

Chapter 33

SOUND CONTROL

Unit of Noise Measurement, Apparatus for Measuring Noise, General Problem, Kinds of Noise, Noise Transmitted Through Ducts, Design Room Noise Level, Noise Generated by Fan, Natural Attenuation of Duct System, Duct Sound Absorbers, Air Supply Noises, Grille Selection, Cross Transmission Between Rooms, Controlling Vibration from Machine Mountings

In ventilating and air conditioning a building or a room, the effect of the mechanical system employed must be considered on the acoustics of the space conditioned. It is important to consider also that the use of air conditioning often permits keeping the windows closed, thus giving relief from certain external noises, but at the same time increasing the necessity of providing adequate sound control.

It is not assumed that the ventilating and air conditioning engineer will attempt to improve the acoustics of the space that is being conditioned, but the designer should have at least enough fundamental knowledge of the acoustical effects of the system which is being designed to be sure that no damaging effects occur to the existing acoustical properties. It is assumed that in a given space the architect and acoustical engineer have produced a room or rooms which are satisfactory for speech, music, or other uses. The ventilating engineer's sole function is to ventilate and air condition these rooms properly so that they will be physically comfortable without adding any acoustical hazards.

UNIT OF NOISE MEASUREMENT

By a recently adopted international standard, two terms are used for noise measurement. The *decibel* (db) is the physical unit for expressing intensity or pressure levels. The *phon* is the unit of loudness level. The loudness level, in phons, of any sound is by definition equal to the intensity level in decibels of a thousand cycle tone which sounds equally loud.

The decibel is defined by the relation $N=10\log_{10}\frac{I_{\rm i}}{I_{\rm o}}$, where N is the number of decibels by which the intensity flux $I_{\rm i}$ exceeds the intensity flux $I_{\rm o}$. The intensity flux is the measure of the energy contained in a sound wave and is defined in terms of micro-watts per square centimeter of wave front in a freely traveling plane wave. It is usually more convenient to select an arbitrary reference intensity for $I_{\rm o}$ and express all

other intensities in terms of decibels above that level. For this purpose a reference intensity of 10^{-16} watts per square centimeter has been selected. This intensity is slightly less than the threshold of audibility for the average ear at a frequency of 1,000 cycles per second. This reference level also corresponds to a pressure of 0.0002 dynes per square centimeter.

A stated sound level in decibels, unless otherwise defined, will thus be related to a threshold of 10^{-16} watts. For example, a level of 60 db above this reference threshold is 10^{-10} watts. In a similar manner, when sound measurements are given in actual intensity or energy units, they can be converted to decibels by this relation.

Since the decibel is a ratio, it can only be employed when related to a reference threshold level as given. Noise levels, which vary with frequency as well as intensity, must not only be related to this reference threshold level, but also to a reference frequency, which is taken as 1000 cycles. These terms and procedures may be found in Tentative Standards¹ published by the American Standards Association.

APPARATUS FOR MEASURING NOISE

Since the relative loudness to the ear, rather than the actual physical intensity, is the quantity in which engineers are usually interested, it has been found necessary to allow for the varying sensitivity of the ear at different frequencies in designing noise measuring equipment. The most satisfactory method of measuring noise is by means of a sound level meter which usually consists of a microphone, a high gain audio-amplifier, and a rectifying milliammeter which will read directly in decibels. This meter is calibrated to give readings above the standard reference level and usually contains a weighing network to make it less sensitive at those frequencies where the ear is less sensitive. For complete specifications relative to the approved type of sound level meters refer to the information² published by the *American Standards Association*.

GENERAL PROBLEM OF SOUND CONTROL

As previously stated, the problem confronting the air conditioning engineer is that of designing a system which will operate without increasing the noise level in the conditioned space. To be sure that this is accomplished, it is necessary:

- a. To determine the noise level existing without the equipment.
- b. To ascertain the noise level which would exist if the equipment were installed without sound control.
- c. To provide as a part of the installation sufficient sound control appliances to reduce the noise level substantially to that found in (a).

To accomplish this the engineer should have information of three kinds:

1. A knowledge of the noise levels currently considered acceptable in various rooms in order that he may have a basis on which to proceed.

¹American Tentative Standards for Noise Measurement, American Standards Association.

²American Tentative Standards for Sound Level Meters for Measurement of Noise and Other Sounds, American Standards Association.

CHAPTER 33. SOUND CONTROL

- 2. A knowledge of the nature and intensity of the noise created by the various parts of the equipment.
- 3. A knowledge of how, when necessary, to vary and control the noise level between the equipment and the conditioned space.

In addition, the engineer should have information to analyze noises which may be transmitted by the duct system from one conditioned space to another, or from an outside space to the conditioned space.

While the general problem may be logically outlined and the items of knowledge necessary to its solution can be listed, the available information at present is lacking in certain respects. However, attention may be directed to that information which is currently available, and a solution of the noise problem, based on these data, may be outlined.

Information concerning the noise levels created by ventilating and air conditioning equipment such as fans, motors, air washers, and similar items is not yet on a basis which permits tabular presentation, although certain manufacturers are prepared to offer such data and do state the noise producing properties of their products. Absence of this information makes it necessary to resort to indirect means in solving certain problems and also prevents a direct, logical solution.

KINDS OF NOISE

To solve a sound problem of this type it is desirable to consider separately the several means by which noise reaches the room. This avoids to some extent the necessity of knowing the noise level at the source, and instead, places the emphasis on ascertaining the level at the point where the sound enters the room.

The noise introduced into a room or building by ventilating or air conditioning equipment may be divided into two general kinds depending on how it reaches the room with various sub-divisions:

- 1. Noise transmitted through the ducts.
 - a. From equipment such as sprays, fans, etc.
 - b. From outside, and transmitted through duct walls into air stream.
 - c. From air current, including eddying noises.
 - d. Cross talk and cross noises between rooms connected by the same duct system.
 - e. Noise produced by the grilles.
- 2. Noise transmitted through the building construction.
 - a. From machine mountings as vibration.
 - b. From equipment through room wall surfaces.

The next step in the solution of this problem is to present data and discuss methods whereby solutions to the noise problem can be obtained when the allowable room noise level and the path through which the noise reaches the room are known.

NOISE TRANSMITTED THROUGH DUCTS

Operation of an air distribution system results in the generation of noise which may be transmitted through the ducts to the ventilated or conditioned room. The transmission of this noise may be controlled by

the proper application of sound absorptive material within the ducts. The application of the absorptive material is a problem in balancing the room noise level requirements against the intensity of the noise generated. The four steps in the problem are:

- 1. Determination of acceptable room noise level resulting from the operation of the equipment.
 - 2. Determination of noise level generated by the equipment.

The difference between steps 1 and 2 in decibels is the overall noise reduction required between the equipment and the room. In the discussion which follows reduction of noise will be referred to as *attenuation* of noise.

- 3. Determination of the natural attenuation of the duct system.
- 4. Selection of the proper sound treatment for the duct system.

The difference in decibels between the overall attenuation required and the natural attenuation (3) is the additional sound attenuation to be obtained by absorptive materials installed in the duct system.

DESIGN ROOM NOISE LEVEL

Measurements of noise levels have been observed by several investigators in various rooms and locations and are listed in Table 1. The values given were determined with the air conditioning or ventilation equipment not in operation, and with all windows and doors closed simulating the conditions of an actual installation.

This is an important consideration, for in offices or stores adjacent to busy thoroughfares the difference between the typical noise level in the space with the windows and doors open and closed may be as high as 10 db. Minimum, representative, and maximum levels are given for each type of space. The values are intended to give the variation with respect to location and not to time, and may be roughly classified by the following:

Minimum loudness refers to: Spaces of expensive construction, typified by double windows, carpeted floors, heavy upholstered furniture, or accoustically treated walls and ceilings.

Representative loudness refers to: Spaces of average construction and furnishings which are exposed to external noises typical of the locality in which the space is usually found.

Maximum loudness refers to: (1) Any space of inexpensive construction, and bare furnishings where noise is not an important factor. (2) Spaces in close proximity to very intense street traffic or to intense factory noise. (3) Any space containing machinery which is a constant source of noise, typewriters, adding machines, printing presses, etc.

In general, if the noise level in the space resulting only from the operation of the air conditioning equipment is equivalent to or less than the typical level given in Table 1, the installation will prove satisfactory. If the typical level and the equipment level are heard together the resultant level will be 3 db higher than either of them.

In some cases it is desirable to keep the equipment noise level in the ventilated or conditioned room at such a value that it actually will not increase the noise level in the room to any measureable degree. This can be accomplished if the equipment noise at the room can be kept 10 db below the noise levels shown in Table 1.

CHAPTER 33. SOUND CONTROL

TABLE 1. TYPICAL NOISE LEVELS

Rooms		SE LEVEL IN DECI TO BE ANTICIPATED	
	Min.	Representative	Max.
Sound Film Studios	10 15 33 25 30 25 25 30 35 50 25 30 45 40	14 14 20 40 30 35 30 38 43 60 40 55 50	20 20 25 48 35 40 35 45 50 55 45 60 55
Stores, General, Including Main Floor Dept. Stores Hotel Dining Rooms	50 · 40 50 50	50 60 50 60 55 77 70	70 60 70 60 90 80
Vehicles			
Railroad Coach. Pullman Car	60 ^a 55 ^a 50 75 80	70 65 65 85 85	80 75 80 95 100

aFor train standing in station a level of about 45 db is the maximum which can ordinarily be tolerated.

NOISE GENERATED BY FANS

Noise generated by fan wheels may be divided into two classifications, rotational noise and vortex noise. In ventilation and air conditioning work, where the maximum ratio between the fan tip speed and the velocity of sound is not greater than 0.12, vortex noise is by far the most important. The rotational noise may be described as that due to the thrust and torque implied to the air. Vortex noise is that due to the shedding of vortices from the blade and is dependent on the angle of attack, velocity, air turbulence, and blade shape. Vortex noise is due to pressure variations on the blade as a result of variations of air circulation. Given the noise level at the outlet or inlet of one type of fan construction under specific conditions of size, tip speed, and total pressure, noise levels at other values of tip speed, total pressure, and size may be approximated by the relationships:

1. With total pressure and size constant.

$$db \text{ (change)} = 10 \text{ Log}_{10} \left[\frac{\text{(Tip Speed)}_{\text{new}}}{\text{(Tip Speed)}_{\text{old}}} \right]^6$$
 (1)

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 2. Attenuation in Straight Sheet Metal Duct Runs

Ducт	Size, In	ATTENUATION PER FT, db
Small	6 x 6	0.10
Medium	24×24	0.05
Large	72×72	0.01

2. With total pressure and tip speed constant.

$$db \text{ (change)} = 10 \text{ Log}_{10} \left(\frac{\text{Size}_{\text{new}}}{\text{Size}_{\text{old}}} \right)^2$$
 (2)

3. With size and tip speed constant.

$$db$$
 (change) = f (Total Pressure_{old} - Total Pressure_{new}) (3)

The factor f is a function of the fan type. For a centrifugal fan with backward curved blades f=9.6. For a single inlet single width type of ventilating fan with backward curved blades, the noise level at the fan discharge or intake operating at 4000 fpm tip speed and total pressure of 1 in. may be approximately 65 db. The noise level of a double inlet width fan may be 3 db higher than a single width fan at similar conditions of tip speed, total pressure, and size. For the same tip speed and size the noise level of a fan with forward curved blades is higher than for one with backward curved blades, however, the capacity of the fan with the forward curved blades will be greater.

NATURAL ATTENUATION OF DUCT SYSTEM

Straight Sheet Metal Ducts. The attenuation of sound in straight sheet metal ducts is a function of the length, shape, and size of the duct. Attenuation values are given in Table 2. In general, this attenuation is so negligible except for long runs that it may be disregarded for all practical purposes.

Elbows and Transformations. Due to reflective interference, attenuation will take place at elbows and transformations. The magnitude of the attenuation will depend on the size and abruptness of the elbow or transformation as shown in Table 3.

Table 3. Attenuation of Elbows^a

Elbow	Size, In.	ATTENUATION PER ELBOW, db
Very small	2 wide 3 to 15 15 to 36 36 plus	3 2 1.5 1

aThe attenuation in vaned elbows should be considered the same as in elbows having the same dimensions as the radius of curvature of the vanes. If the vanes are lined for the purpose of damping any vibrations in them, one third may be added to the attenuation values listed.

¹A.S.H.V.E RESEARCH PAPER—Determining Sound Attenuation in Air Conditioning Systems, by D. A. Wilbur and R. F. Simons (A.S.H.V.E. JOURNAL SECTION, *Heating, Piping and Air Conditioning*, May, 1942, p. 317).

CHAPTER 33. SOUND CONTROL

When the area of a duct increases, an attenuation of noise level takes place in the duct. In duct design practice the total area of the branch ducts is greater than the supply duct. Similarly with outlets, the area of the outlet plus the area of the duct after the outlet is greater than the duct area before the outlet. Therefore in an outlet run, attenuation occurs in the duct as it passes each outlet. Table 4 gives the *db* reduction for various ratios of total branch duct and outlet area to supply duct area.

Grilles to Room. The large abrupt change in area between the grilles and the surfaces within a room results in an appreciable noise attenuation. This attenuation is a function of the total grille area (supply and return) and the total sound absorption of the room in sabines. (The sound absorption of a room in sabines is the summation of the products of each surface of the room measured in square feet multiplied by its corresponding absorption coefficient). The attenuation is given in Equation 4 as:

$$db$$
 (Attenuation between) = $10 \log_{10} \frac{\text{Total Room Absorption in Sabines}}{\text{Total Grille Area}}$ (4)

Values in Table 5 approximate the attenuation for various rates of air change, and general types of room surfaces.

DUCT SOUND ABSORBERS

The difference between the required sound attenuation and the natural attenuation is that which must be supplied by the proper sound treatment of the ducts.

Selection of the Absorptive Material

When a sound wave impinges on the surface of a porous material, a vibrating motion is set up within the small pores of the material by the alternating sound waves. As the ratio of the cross sectional area of the pores to their interior surface is small, the resistance to the movement of air in the pores is large. This viscous resistance within the pores of the material converts a portion of the sound energy into heat. The decimal fraction representing the absorbed portion of the incident sound wave is called the absorption coefficient. Considerable absorption may also result, particularly in the low frequency range, from the flexural vibrations of the duct. In the selection and application of the absorptive material, several points should be considered.

- 1. For the absorption of the low frequencies the material should be at least 1 to 2 in thick. Thin materials, particularly when mounted on hard solid surfaces, will absorb the high frequencies and reflect the low.
- 2. In order to take advantage of low frequency noise absorption by panel vibration, it is advisable to fasten the absorptive sheets to stripping so that the panels themselves may vibrate. However, the exact resonance characteristics of the panels and thus their absorption is so unpredictable that panel resonance cannot be relied upon for a specific value of attenuation.

Requirements for a good sound absorption material are: (1) high absorption at low frequencies⁴, (2) adequate strength to avoid breakage, (3) fire resistant and comply with national and local code requirements,

⁴For coefficients of commercial sound absorbent materials see Bulletin Acoustical Materials Association, 919 No. Michigan Ave., Chicago, Ill.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 4. Attenuation at Duct Branches or Outlets

Branch Duct + Outlet Area Supply Duct Area OR Supply Duct Area Supply Duct Area	ATTENUATION PER TRANSFORMATION, db
1.00	0.0
1.20	0.8
1.35	1.3
1.50	1.8
1.75	2.5
2.00	3.0

(4) low moisture absorption, (5) freedom from attack by bacteria and algae, (6) low surface coefficient of friction, (7) particles should not fray off at the higher design velocities, and (8) odor free when either dry or wet.

For each absorber discussed an attenuation equation or table is given which will give results as accurate as predictable under the present status of engineering knowledge. With every application the use of sound absorptive material should be considered in the dual function of insulation and sound absorption. It has been shown theoretically that the reduction, in decibels per linear foot, of sound transmitted through a duct lined with sound absorbing material is related in a rather complicated manner

Table 5. Approximate Attenuation Between Grilles and Room

				410011
OUTLET VELOCITY FPM	Air Change Min,	LIVE ROOMb $a^{a} = 0.05$ db	MEDIUM ROOMC a = 015 db	$ DEAD \\ ROOMd \\ a = 0.25 \\ db $
500	5	11	16	13
	10	14	19	21
	15	16	21	23
	20	17	22	24
750	5	13	18	20
	10	16	21	23
	15	18	23	25
	20	19	24	26
1000	5	14	19	21
	10	17	22	24
	15	19	24	26
	20	20	25	28
1250	5	15	20	22
	10	18	23	25
	15	20	25	27
	20	21	26	28

aAverage absorption coefficient for the room.

bLive room average absorption coefficient 0.05. Bare wood or concrete floor—hard plaster walls and ceiling—minimum of furniture.

cMedium room average absorption coefficient 015. Carpeted floor, upholstered furniture, hard plaster walls and ceiling or bare room with acoustically treated ceiling.

dDead room average absorption coefficient 0.25. Heavy carpeted floor. Walls and ceiling acoustically treated. Upholstered furniture.

^{*}Sound Propagation in Ducts Lined with Absorbing Materials, by L. J. Sivian (Journal Acoustical Society of America, Vol. 9, p. 1937).

to the size and shape of the duct, to the frequency of the sound, and to the sound absorbing characteristics of the lining. Experimental evidence likwise indicates that there is no simple formula involving the variables which will apply accurately to all cases.

The noise reduction varies to a considerable extent with the frequency of the sound. In calculating noise reduction, consideration should be given both to the comparative efficiency of the duct lining material at different frequencies, and to the frequency distribution of the noise to be quieted. In the case of fan noise, it is recommended that calculations be based on the frequency 256 cycles, since most of the noise energy is in

Fig. 1. Absorption Plenums With and Without Sound Cells

Fig. 2. Outlet Cells for Pan Outlets or Grilles

the region of this frequency. In quieting noise due to air turbulence and eddy currents, in which the high frequencies predominate, the frequency 1024 cycles should be used.

Plenum Absorption

In systems, where individual ducts are directed to a number of rooms and sound treatment is required in every duct, a sound absorption plenum on the fan discharge as shown in Fig. 1, will often prove the most economical arrangement. The absorption in the plenum may be approximated by Equation 5.

Equation 5.

$$db$$
 (attenuation) = $10 \log_{10} \frac{\text{Plenum Absorption in Sabines}}{\text{Area Fan Discharge}}$ (5)

The area of the plenum should be at least ten times as great as the fan discharge area. The plenum should be lined with 2 in. of muslin covered

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 6. End Reflection of Plate Absorbers

PERCENTAGE FREE AREA OF ABSORBER	Attenuation, db
50	1
40	2
30	4
25	5
20	6
	The state of the s

rock wool blanket or 1 in. sound absorbing board preferably nailed to wood strips on the inside of the plenum. With such a lining the plenum is particularly effective in reducing low frequency fan noise. The absorption of the plenum in sabines is the sum of the products of each interior area of the plenum measured in square feet multiplied by its corresponding absorption coefficient.

Plate Cells

One of the most economical methods of applying sound absorbent material from the standpoint of both labor and material is the plate cell. The plate cell consists of ½ or 1 in. sound absorbent board, spaced on 2,3 or 4 in. centers. The attenuation given in Table 6 depends on the spacing, depth, and the absorption of the material. At each end of the cell further attenuation results from the reflection of sound from the face of the cell. An important objection to the plate cell is the increase in duct cross sectional area required. Often on the fan discharge, particularly with unitary equipment, where a number of branch ducts take off, the plate cell may be installed with little or no difficulty. The attenuation per foot of length for 1 in. board neglecting the end effect is given approximately by Equation 6.

$$R = \frac{7La^{14}}{S} \tag{6}$$

where

R =attenuation, decibels.

L = linear length of duct, feet.

S =spacing between plates up to 3 inches.

a = absorption coefficient of plates. For value of a see Table 7.

Outlet Sound Absorbers

Outlet sound absorbers are rectangular or plate cells installed directly behind an outlet or they may be the lining of a pan or plaque outlet.

Table 7. Decibel Attenuation Formulae for Typical Duct Lining Material

FREQUENCY	ABSORPTION COEFFICIENT	Attenuation Reduction, db
256	0.37	3.0 L P/A
512	0.69	7.5 L P/A
1024	0.78	9.5 L P/A
2048	0.78	9.5 L P/A

They are particularly effective in the elimination of high frequency whistles which are generated by air flow in the ducts. They are also employed in large systems with long runs where only a few outlets near the fan require treatment. Frequently outlet cells are the only means of correcting existing noisy installations, as the duct sections directly behind the outlets may be the only sections accessible for treatment. (See Fig. 2.)

Duct Lining or Rectangular Cells

One series of experiments made on a commonly used type of duct lining material (1 in. rock wool sheet) has shown that, subject to certain restrictions, the attenuation of single-frequency sounds may be expressed by the approximate Equation 7. This equation is accurate within plus or minus 10 per cent for duct sizes ranging from 9×9 in. to 18×18 in., for

Fig. 3. Sound Attenuation for Various Absorbing Duct Liners

cross-sectional dimension ratios of 1:1 to 2:1, for frequencies between 256 and 2048 cycles, and for absorption coefficients between 0.20 and 0.80.

$$R = 12.6 L \frac{P}{A} a^{1.4} \tag{7}$$

where

R =attenuation, decibels.

L = length of lined duct, feet.

P = perimeter of duct, inches.

A =cross-sectional area of duct, square inches.

a = absorption coefficient of lining.

In Table 7, the absorption coefficients at different frequencies of a material of the previously mentioned type are listed, together with the corresponding values for Equation 7.

Results of other experiments indicate, however, that Equation 7 may be in error when applied to other types of duct lining material and to duct

⁶The Absorption of Noise in Ventilating Ducts, by Hale J. Sabine (*Journal Acoustical Society of America*, Vol. 12, p. 53, 1940).

sizes and shapes outside of the range specified. An empirically derived chart⁷ representing the average experimental data on a number of different types of materials including the rock wool sheet mentioned as applicable to Equation 7 is shown in Fig. 3. Since individual materials vary, the curves in Fig. 3 are given only as representing the best available averages for duct sizes of square cross-sections from 6 x 6 in. to 48 x 48 in. As an illustration, the dotted lines in the chart show values calculated from Equation 7 which indicate that the slope for this particular material is somewhat different than from the average curves. The curves in Fig. 3, as well as Equation 7, show that the attenuation in decibels is directly proportional to the length of duct lined, and that the larger the duct the greater will be the length which must be lined in order to obtain a given noise reduction.

If the length of duct from the main duct to a grille is shorter than the length of lining indicated by the calculations, this duct may be sub-

Fig. 4. Diagram of Branch Duct Treatment Where Length is Insufficient for Adequate Absorption

divided into smaller ducts, as shown in Fig. 4. The increase in noise reduction thus obtained may be calculated from Equation 8, providing the splitters are installed parallel to the long side of the duct:

$$R_{\rm s} = R_{\rm o} \, \frac{a+bn}{a+b} \tag{8}$$

where

 R_s = reduction with splitters, decibels.

 R_0 = reduction in same length of duct, without splitters, decibels.

a =dimension of short side of duct, inches or feet.

b =dimension of long side of duct, inches or feet.

n = number of channels formed by splitters.

Example 1. An air conditioning installation is to be installed in a small theater Determine the necessary sound treatment for the air distribution system to provide a satisfactory noise level in the theater utilizing these conditions:

Fan tip speed 4000 fpm, total pressure 1.25 in	77 40	db db
Required attenuation	37	db.

⁷The Prediction of Noise Levels from Mechanical Equipment, by J S Parkinson (Heating and Ventilating, March, 1939, pp. 23-26). Methods of Rating the Noise from Air Conditioning Equipment, by J. S. Parkinson (ASH.V.E. JOURNAL SECTION, Heating, Piping and Air Conditioning, July, 1940, p. 447).

CHAPTER 33. SOUND CONTROL

Solution: Natural attenuation of supply duct.

Sheet metal duct 50 ft long 48 in.	x 36 in. (Table 2) 50 x 0.01 0.5 db
Elbows, two size 48 in. x 36 in. (Table 3) 2 x 1
Attenuation grilles to theater ai	r change 10 min (Table 5) outlet.
velocity 1000 fpm	22.0 db
Total natural attenuation	24 5 db

Difference between required and natural attenuation, 37 minus 24.5, is 12.5 db. This attenuation must be supplied by sound treatment in the duct, either in the form of duct lining or plate cells.

A similar analysis of the return duct system, shows that 15 db attenuation are to be furnished by absorptive material. An inspection of the installation shows that the lining of the plenum on the suction side of the fan would prove the most economical, where it would secure the dual function of heat insulation and sound absorption.

Example 2. A 10 x 20 in. duct is connected to a private office space in a quiet location. Determine the length of lining necessary to attenuate average fan noise satisfactorily, using a lining material of a type to which Equation 7 applies, and having an absorption coefficient of 0.40 at 256 cycles. Assume that the duct is only 12 ft long as shown in Fig. 4, and that a 30 db reduction is required in this length.

Solution:

Case 1. (No splitters), From Equation 7,

$$R_{\rm o} = 12.6 \times 12 \times \frac{60}{200} \times 0.40^{1.4} = 12.6 \text{ db}$$

Case 2. (Two splitters, three channels), From Equation 8.

$$R_s = 12.6 \times \frac{10 + (20 \times 3)}{10 + 20} = 29.6 \,\mathrm{db}$$

AIR SUPPLY OPENING NOISES

When air is introduced into a room through a grille or register at a constant velocity, sound energy is being introduced into the enclosure at a constant rate⁸. Due to partial reflection at the boundaries of the enclosure, the intensity of sound at any point in the space builds up to some maximum value. In a large room at a point remote from the source of sound (the supply opening) the intensity can be shown to be substantially proportional to the rate at which sound energy is generated and inversely proportional to the number of sound absorption units (sabines) in the room. It would thus appear that doubling the sound absorption of the room would halve the intensity and result in a noise level decrease of 3 db. However, it is not satisfactory to consider the grille noise on this basis (wherein the sound power received directly from the source is small compared with that received by reflection) since in practice the occupants of the room may be quite close to the grille. The nearer the listener is to the sound source, the greater the proportion of the sound intensity which is due to direct transmission.

In the preceding discussion it is presupposed that the noise level generated at the face of the grille is less than the noise level of the fan minus the attenuation of the duct system up to the face of the grille.

 $^{^8} The$ Noise Characteristics of Air Supply Outlets, by D. J. Stewart and G. F. Drake (A.S.H V.E. Transactions, Vol. 43, 1937, p. 81).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

If this is not true the grille noise rather than fan noise then becomes the governing factor in room noise. Grille noise is similar in character to fan vortex noise. Knowing the noise level at the face of a grille for a given grille blade setting the noise will vary as given in Equation 9 where V is the velocity of the air through the grille.

$$db \text{ (change)} = 10 \log_{10} \left(\frac{V_{\text{new}}}{V_{\text{given}}} \right)^{5.5}$$
 (9)

For a change in blade setting Equation 10 applies and in this case the total pressure is measured directly behind the face of the grille. For a typical air conditioning grille the noise level at the grille face may be approximately 48 db with a total pressure behind the grille of 0.1 in.

$$db$$
 (change) = 10 $\log_{10} \left[\frac{(\text{Total Pressure})_{\text{new}}}{(\text{Total Pressure})_{\text{given}}} \right]^{2.75}$ (10)

If the noise at the face of the grille is more predominant than fan noise,

Fig. 5. Air Flow and Loudness Chart

then the resultant room noise level can be approximated by Equation 11.

$$Room Level = \begin{bmatrix} Noise Level at Face \\ of Grille \end{bmatrix} - 10 Log_{10} \frac{Total Room Absorption in Sabines}{Total Grille Area} (11)$$

Grille Selection

In practice the allowable total sound and the required air flow are usually known, and it is desired to determine the maximum allowable velocity. In comparing sound ratings of various grilles several factors must be known if the information is to be properly applied:

- 1. The threshold intensity on which the decibel ratings are based.
- 2. The distance from the grille at which data were taken.
- 3. If stated as loudness level versus velocity for a given grille, the core area (not nominal area) must be known.
 - 4. The sound absorbing characteristics of the test room.
- 5. Whether or not corrected for test room loudness level: if not, the room level (without grille noise) must be known.
 - 6. Methods used for recording data. (Characteristics of sound meter).

CHAPTER 33. SOUND CONTROL

Since total loudness and air flow are both functions of velocity and area, the solution of the problem implies a trial and error method. It has been found possible to present these data with sufficient practical accuracy as a family of uniform curves, as illustrated in Fig. 5, which are based on these assumptions:

- 1. Threshold intensity = 10^{-16} watts per square centimeter⁹.
- 2. Microphone location 5 ft from lower edge of supply opening on a line downward at 45 deg and in a plane bisecting the supply opening perpendicularly.
- 3. Where data are given as loudness level versus velocity, the rating is per square foot of core area.
 - 4. The room is assumed to have 100 sabines absorption.
- 5. Plotted data are loudness levels of supply openings only, correction having been made for test room level.
- 6. Data taken with a direct reading sound-level meter with frequency weighing network intended to approximate the response of the human ear.

If the published ratings are in terms of decibles per square foot, correction must be made for area to secure the total sound level of supply openings of more or less than one square foot area from Equation 12.

Decible Addition =
$$10 \log_{10} A$$
 (12)

where

A = core area, square feet.

With Fig. 5 it is possible to find directly the velocity in feet per minute which will give a predetermined total loudness at a predetermined rate of flow expressed in cubic feet per minute. The values used are arbitrarily chosen for the purpose of discussion and do not necessarily represent data referring to any particular design of air supply opening. A correction chart is shown in Fig. 6 for a room having a sound absorption other than 100 sabines.

Example 3. Determine the core area (see Chapter 31) of an air supply grille which will maintain a noise level of not more than 40 db in a room having 100 sabines of sound absorption, if an air volume of 2400 cfm is required to maintain the proper air conditioning.

Solution. Assuming a grille noise rating of at least 5 db below the noise level of the room, Fig. 5 shows that the limiting grille velocity for a total loudness of 35 db is about 725 fpm and the core area becomes fixed at $2400 \div 725$ or 3.31 sq ft.

If the room absorption had been greater, the previously selected velocity of 725 fpm would be safe, since the loudness reduces. If the room absorption had been 200 sabines a correction of plus 1.3 should be made by reference to Fig. 6, and the permissible velocity becomes that corresponding to a total loudness of 36.3 or approximately 800 fpm.

If the room had been highly reflective with an absorption of less than 100, the correction would be much more important. For instance, for a room of 35 sabines a correction of minus 3 db should be made and the maximum velocity corresponding to the 32 db total loudness would be approximately 600 fpm.

Where more than one supply opening must be considered, the problem is more complicated. If a similar supply opening is added in a far corner of a highly absorbent room, the change in noise level at the 5 ft station at the first supply opening is small; however, if the room is small, or highly reverberant or both, the intensity at the 5 ft station may be almost

Loc. Cit. Note 1.

doubled and the noise level increased nearly 3 db thereby. The simplest method of handling this problem is to treat the room as though all the air were being supplied by one supply opening. Thus, if two outlets, each supplying 1000 cfm are used, the value 2000 cfm should be used with Fig. 5. Although this method may place an unwarranted limit on velocity when used in a large room, it is seldom that such a room has a noise level low enough to justify a more complicated though more exact procedure.

In general, return grilles are selected for velocities about half the supply velocity, and when this is done, they may be neglected in sound computa-

Fig. 6. Room Absorption Correction Chart

tions. However, if supply and return grilles are the same size, resulting in the same face velocity, they must be treated as two supply openings. That is, if 1000 cfm are supplied and exhausted through grilles of the same area, 2000 cfm must be used in the solution with Fig. 5.

CROSS TRANSMISSION BETWEEN ROOMS

Ducts serving more than one room permit cross talk between the rooms and should be lined with acoustical material. Where the rooms are close together and the ducts short, the ducts should be sub-divided to provide ample acoustical treatment. Lagging material similar in character to acoustical board, when placed on the outside of ducts serves to prevent

CHAPTER 33. SOUND CONTROL

noise originating outside the ducts being carried inside the ducts and into the air stream.

A case where outside lagging is desirable occurs when ducts originate at the fan in the equipment room and pass through this room on the way to the room being conditioned or ventilated. Unless the ducts are lined some of the mechanical noise from the equipment room air may be transmitted through the wall of the duct, thus reaching the air stream and be carried into the room. In such cases, that portion of the duct which is exposed to the sounds in the equipment room should be lagged with material such as cork, pipe covering or other sound damping material to prevent the sound from entering the duct at this point. Numerical data are not available to permit a simple and practical calculating procedure to determine thickness of covering which should be used for this purpose.

Laboratory measurements have shown that the loss through a sheet of No. 22 gage metal is 24 db. When a sheet of rock wool insulation 1 in. thick and weighing 1.4 lb per square foot is added to this, the insulation value is increased to 29 db. In general, however, adding a layer of insulation or pipe covering does not materially increase the sound insulation value unless the material is dense, or unless it is surfaced with another sound impervious layer such as metal or board. Inside lining material used in the case previously mentioned would serve as an absorber of the sound transmitted through the duct walls, and thus act as a means of preventing the transfer of noise into the air stream. Inside lining may also be used in ducts to absorb noise which reaches the air stream from equipment such as fans, sprays and coils; noise due to eddying currents set up by elbows, dampers and similar obstructions; and noise transmitted from room to room where there is a common duct system.

NOISE THROUGH BUILDING CONSTRUCTION

It is impossible to select equipment which will operate without producing some mechanical noise, and since the equipment must be mounted in a building, it is probable that a part of this noise will be transmitted to the building to such a degree as to make noisy conditions in the rooms which are to be air conditioned.

Much of this noise may be transmitted by the duct if it is rigidly connected to the fan outlet. It is common practice to make the connection between the fan and the duct with a canvas sleeve which effectively restricts noise at this point. Noise may also enter the building through the mounting of the motor and the fan. Flexible mountings should be provided in all installations but these mountings must be carefully designed so that they will actually reduce the contact between the machinery and the supporting floor. If a flexible material is used, it is desirable to investigate the installation so that it is not short-circuited by through bolts which are improperly insulated and by electrical conduit which is not properly broken and is attached both to the equipment and to the building. The flexible mounting, if improperly engineered, may actually increase the contact between the equipment and the floor upon which it is supported.

In the proper isolation of vibration, which is the lower range of frequencies and does not include the air borne vibrations known as sound,

there is one basic law which is important in the solution of the problem. That is the law of transmissibility as governed by the equation:

$$T = \frac{1}{1 - \left(\frac{w}{w_n}\right)^2} \tag{13}$$

where

T = transmissibility of the support.

w = frequency of the vibratory force.

 w_n = natural frequency of the machine unit on its support (Damping = 0).

Equation 13 shows that the transmissibility approaches unity for disturbing frequencies considerably lower than the natural frequency of the mounting. As the disturbing frequency is increased the transmissibility is also increased until at the resonant frequency, where $w = w_n$ the transmissibility becomes infinite. This is not true in practice because all materials have some internal damping effect. However, operating at or very close to the resonant frequency is always serious as forces and stresses may be multiplied 10 to 100 times. As the disturbing frequency becomes greater than the natural frequency the transmissibility becomes a smaller quantity and at the value of $w/w_n = \sqrt{2}$ it again has the value of unity. Beyond this point true isolation is first accomplished. At a ratio of 3 to 1 for w to w_n the isolation is effective enough for practical application, and experience and economical design has shown that a ratio of 5 to 1 is good. For high speeds, higher ratios for w to w_n are easily attained and give better results for effective vibration control but for the lower speeds as experienced with compressor work the higher ratios become uneconomical.

For a given installation the speed of the compressor is fixed by the specifications, therefore the value of w is fixed. That leaves only w_n to be determined and that is accomplished by the choice of mounting material and design for the support of the machine. It is well to keep in mind that when trying to isolate vibration, no attempt should be made to isolate the driving and driven piece of equipment separately. The two should be mounted on a rigid frame and then the entire assembly isolated according to the rules presented in this chapter.

The value of w_n can be controlled by the flexibility of the machine support, and when the deflection of the machine support is proportional to the load applied (such as springs or nearly so with rubber in shear) the value of w_n can be determined by Equation 14.

$$w_{\rm n} = \sqrt{\frac{g}{d}} \tag{14}$$

where

g = gravitational constant.

d = static deflection of supporting material.

w = radiams per second and may be converted to frequency (f) expressed in cycles per second by Equation 15.

$$f = \frac{w}{2} = \frac{1}{2} \sqrt{\frac{g}{d}} \tag{15}$$

By the use of Equation 14 a set of curves may be plotted as shown in Fig. 7. The first line AB plotted as the critical frequencies for the various static deflections, is a curve showing the worst possible conditions or resonant conditions.

Plotting another curve CD, which is $\sqrt{2}$ times curve AB, shows the area MCDN in which the resilient material or mounting does more harm than good. Plotting two more curves EF, 3 times curve AB, and GH, 5 times curve AB, shows area EGHF which represents efficient and economical isolation. Area GPOH is excellent isolation but for all except the

Fig. 7. Static Deflection for Various Frequencies

highest speeds becomes rather uneconomical because of the large deflections required.

Example 3. An electric motor driven compressor unit is to be isolated. The compressor is partially balanced and operates at a speed of 360 rpm. The speed of the motor is 1160 rpm and is belt connected to the compressor. Total weight of the compressor and motor is 4500 lb.

Solution: The minimum disturbing frequency to be isolated is 360 cycles per minute. Assume that the desired ratio of forced to natural frequency is 3 as a minimum and that 5 is desired. The desired natural frequency of the mounting is $360 \div 5 = 72$ cycles per minute.

From Fig. 7 a deflection of 7 in. is required to attain a natural frequency of 72 cycles per minute. This value may be obtained from critical curve AB for 72 cycles or from curve GH (5 times critical) for 360 cycles. For the minimum ratio of 3 the deflection would be 2.5 in.

The next step is to determine the total weight to be supported by the springs. For

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

low speed partially balanced compressors, it has been found necessary to add a foundation weighing 2 to 3 times the weight of the motor and compressor, in order to maintain the machine movement below 0.03 in.

Compressor and motor	4,500 lb 9,000 lb
Total	13,500 lb

Practical application dictates the number of springs to be used, which is based on the design of the machine foundation and the supporting floor structure. However, it is desirable to design for at least 8 springs and one or two spares for cases of unknown weights. As many as 50 springs have been used on one installation. The distribution of the springs must be balanced against the masses to be supported, otherwise the foundation design and supporting structure determine the location of the springs.

The choice of the material used in the design of the resilient mounting is also important. For the slow-speed type compressor a common speed found in practice is 360 rpm. For speeds below this, isolation should not be attempted except under careful supervision. Referring to Fig. 7, it is found that for 360 rpm the static deflection required for a ratio of w/w_n of 3 to 1 (line EF) is 2.5 in. and for a ratio of 5 to 1 (line GH) it is 7 in. For these values of deflection the only choice of material is the coil spring. This is also true for speeds up to about 700 rpm. In consideration of the transverse spring constant (so as to maintain good ratios among the various degrees of freedom) experience has shown that the spring should be designed with a working height equal to 1.0 to 1.5 times the outside diameter. A long spring of small outside diameter has very low transverse rigidity and therefore requires some additional means of preventing side drift of the unit and on very sensitive applications this may tend to destroy the isolation efficiency. For speeds of 700 to 1200 rpm the required deflections range from 0.22 in. to 1.75 in. For these conditions rubber in shear serves as a rather satisfactory material if protected from oil. For speeds higher than 1200 rpm cork specially made for vibration damping can be applied with good results. These limitations are by no means absolute because with careful and well engineered installations, especially, in consideration of all six degrees of freedom, certain liberties may be taken and still good results accomplished.

When a machine unit is properly isolated it will have a definite amount of movement which is determined by the ratio of the unbalanced forces to the total mass of the machine. If this resultant machine movement is too great for the necessary connections or the satisfaction of the customer it can be reduced only in two ways without destroying the quality of the isolation; first, adding mass or dead weight to the machine (such as concrete) common in the application of low speed, partially balanced machinery; second, accurately balancing (both statically and dynamically) all moving parts so as to eliminate the vibration at the source. This latter method is the best engineering practice and is the modern trend. However, even with well balanced machinery, installed in the vicinity of quiet offices it is usually necessary to properly isolate the equipment to prevent the transmission of vibration likely to cause complaints.

Where limitation of machine movement is desired during the starting and stopping periods, the application of friction or hydraulic damping will serve without seriously interfering with the efficiency of the isolation.

Chapter 34

AUTOMATIC CONTROL

Purpose of Automatic Control, Types of Control, Central Fan Systems, Limit Controls, Static Pressure Control, Unit Systems, Control of Automatic Fuel Appliances, Residential Control Systems, Control of Refrigeration Equipment

THIS chapter is prepared with the purpose of acquainting the engineer with the principles underlying the use of automatic control, the general types and varieties of control equipment available and their application.

Automatic control, properly applied to heating, ventilating and air conditioning systems, makes possible the maintenance of desired conditions with maximum operating economy. A properly designed and complete control system has the ability to interlock and coordinate the various functions of heating, ventilating and air conditioning in a manner impossible to accomplish with manual regulation.

Automatic control is an integral and essential part of a heating, ventilating or air conditioning installation and cannot be regarded as an accessory. In order to insure satisfactory results, the control should be designed with and incorporated in the heating, ventilating or air conditioning system. The control equipment should be given careful consideration in the planning of any installation in order that the entire system may operate together with satisfactory results.

In order that proper selection and application of controlling devices may be made it is important that a broad understanding exist as to the types of control available and their principles of operation. Improper selection and application of control equipment will result in unsatisfactory and inefficient operation. Specific control devices and systems are described in the *Catalog Data Section*.

PURPOSE OF AUTOMATIC CONTROL

Automatic control is normally applied to heating, ventilating or air conditioning systems:

- 1. To insure the maintenance of certain desired or required conditions of temperature, pressure, humidity, air motion or air distribution.
- 2. To serve a safety function, limiting pressures or temperatures within predetermined points, or preventing the operation of mechanical equipment unless it may function without hazard.
- 3. To produce economical results and thereby insure operation of the system at a minimum of expense.

TYPES OF AUTOMATIC CONTROL

Operating Medium or Source of Power Supply

Automatic control systems may be classified in three broad groups based upon their primary operating media or sources of power, as follows:

- 1. Electric Control Systems. In such control systems the primary medium utilized to provide for the operation is electricity, and the basic function of these controls consists of switching or otherwise adjusting electric circuits to govern electric motors, relays or solenoids. The individual units of this type of system are interconnected by line voltage or low voltage wiring, and this wiring serves to complete the circuits carrying the commands of the controllers to the controlled valves or damper motors.
- 2. Pneumatic Control Systems. In these systems the source of power for operation is compressed air, furnished by one or more centrally located

FIG. 1. TYPICAL THERMOSTATIC ELEMENTS

compressors, and distributed in special piping to the controlling and controlled devices. The pressure is varied by the controlling instruments and this variation operates the controlled devices, which may be valves, damper motors, relays or electric switches.

3. Self-Contained Control Systems. In self-contained control systems, the primary source of operation is the vapor pressure of a volatile liquid in the closed thermal system of the controller, which is increased or decreased in direct proportion to variation of the temperature in the controlled medium. These pressure changes are transmitted directly to the control valve or damper motor. Applications consist of valves or dampers to regulate the flow of heating or cooling media to coils, radiators, or liquid tanks, as determined by the controller element.

Typical thermostatic elements are shown in Fig. 1.

Motion of Controlled Equipment

Automatic control equipment can also be classified into two general types with respect to the characteristics of the motion imparted by the controls to the controlled equipment, such as two position or positive-acting control and modulating or graduated-action control.

CHAPTER 34. AUTOMATIC CONTROL

In any control system it is necessary to choose the type of equipment of which the characteristics permit the type of control operation desired and in many cases both types of control are used in the same system to best meet various requirements.

1. Two Position or Positive-acting Control. This type of control operates positively between two positions such as on and off or open and closed with no intermediate positions or degrees of motion between the two extremes of operation. A simple thermostat which starts and stops an oil burner or a unit heater motor is an example of this type. As applied to a valve or a damper, the action of the controlling device would serve to fully open or fully close the valve or damper.

In some applications of this type of control, artificial heat is applied to the sensitive element of the room thermostat at the same time that heat is being added to the space under the control of the thermostat in order to produce more frequent operation. This usually results in more accurate control of the heat source.

2. Modulating or Intermediate Control. This type of control causes motion in the controlled device in proportion to motion caused in the controller by fractional degree variations in the medium to which the controller is responsive. After a fractional change has been measured at the controller and has effected a new position of the valve or damper in proportion to the amount of such change, the system stands by awaiting further change at the controller before any additional motion occurs. The extent of the motion is limited only by the limits of the controller and by the intensity of the change of conditions as measured. With this type of control, the damper or control valve may be operated in intermediate positions between its extreme limits in order to properly modulate or proportion the flow of air, steam or water, reacting with changes of conditions at the controller. Various modifications of this type of control are available, designed to meet special requirements and conditions, all based on operation of the controlled equipment in intermediate positions.

These controlling devices may be made to operate relatively faster or slower for any change in condition of the fluid being controlled. For example, a thermostat modulating a damper may move it from one extreme to the other in one degree temperature change, or many degrees change may be required to produce this same action. This characteristic is sometimes called the *sensitivity* of an instrument. The sensitivity may be fixed, or adjustable.

This type of control motion cannot be used on valves of one-pipe steam systems as the partial opening of the valves will not permit the condensate to escape against the flow of incoming steam. Where this type of control is used to control the flow of steam to a heater coil of a fan system which is in the direct path of untempered outdoor air at temperatures below freezing, care should be taken that the control point and operating characteristics of the regulator are such that the valve is open far enough, at air temperatures below freezing, to prevent the freezing of condensate in any part of the coil.

Control for Individual Rooms and Small Buildings

Control systems vary considerably with the type, size and occupancy of the building, and with the heating or cooling system, humidity supplying equipment and ventilating means available for control. In the following paragraphs the general requirements of two types of control are discussed.

1. Individual Room Control. The most accurate and flexible form of control for any structure is that calling for the regulation of each individual room by control equipment reacting to conditions in that room only. Such control necessitates a thermostat in each room, located to properly measure the conditions of the room, controlling the radiator, unit heater, damper, unit air conditioner or other heating or cooling source, for that room. This arrangement permits the maintenance of any desired conditions in any room, entirely independent of any other room. In the case of large rooms, where one thermostat location will not serve to properly measure the conditions throughout the room, and where two or more sources of heating or cooling are provided in the room, additional thermostats may be used, each controlling its respective section. form of control, due primarily to the number of control devices required over the entire building, normally is the most expensive. However, where maximum flexibility and the most accurate control are desired, individual room control should be used.

Room thermostats are available for various functions. *Dual* thermostats operate heating devices at normal temperatures during periods of normal occupancy but at lower temperatures, for economy, at other times. The change-over may be by clock or manual switches, and one or any number of thermostats may be on a single switch. *Summer-Winter* thermostats, as described for All Year Central Fan Systems, are used for reversing the operation of certain dampers or valves to make them function for both heating and cooling.

One precaution to be observed in the location of room instruments is to make sure that each is in control of all the heating and cooling devices that affect its temperature, except where two thermostats are used to operate at different temperatures.

2. Single Thermostat Control. A great majority of the buildings under automatic control have the comfort temperature maintained by a single thermostat operating directly on the source of heat or cooling for the entire building. In average size residences and in other small buildings, it is possible to select a thermostat location which will give entirely satisfactory results throughout the structure. This location must be one which truly represents average conditions and one which will not have unusual temperature effects. For example, a thermostat near an outside door may function improperly when the door is open. After the proper location is selected, the system is balanced to provide the proper temperature distribution.

Details of control by single thermostats will be found under the heading, Control of Automatic Fuel Appliances, in this chapter.

Zone Control

As the size of buildings increases, it becomes increasingly difficult to provide proper regulation for the entire structure from a single thermostat control. In such instances, where the advantages of individual room control are not obtainable by reason of its cost, an intermediate form of control system is available, commonly described as zone control. In this

CHAPTER 34. AUTOMATIC CONTROL

form of control system a building is divided into areas or zones such that the general requirements and the general conditions through the areas are relatively constant as to exposure and occupancy, and then each zone is provided with control equipment which functions to regulate the conditions in that particular zone. As in the case of individual room control, each zone may be regulated to its own needs which may vary from the needs of other zones within the same structure.

The number of zones to be used is determined by several factors, such as:

- 1. Size of building.
- 2. Number and character of exposures.
- 3. Variation in occupancy or other inside conditions.
- 4. Cost of additional zones.

The greater the number of zones, the closer is the approach to the results and cost of individual room control. However, zone control has advantages even where individual room control is installed as it lightens the work of the room control. With room control, fewer zones are needed. In buildings of large floor area, it is usually desirable to have a separate zone for each exposure. If one wall is protected by an abutting building for half its height, two zones may be necessary. First floor conditions may vary enough from those of the rest of the building to justify a separate zone. In large buildings with several exposures toward any compass point, as occurs in wings and courts, all the northern exposures, for example, may be put on one zone control, or each north wall may have its own control. Court exposures are apt to be affected by surrounding walls and thus to require separate treatment.

In high buildings it is often important to consider zoning for stack or chimney effect in winter, caused by the difference in density between the warm air on the inside of a building and the colder air on the outside. Where the lower eight or ten stories are protected from winds by surrounding buildings, it may accentuate the need for zoning to correct the chimney effect, and on windy days there will be a marked difference in the heat requirements for the different horizontal sections at different elevations. An arrangement to provide for difference in heat requirement for exposure and chimney effect would give 12 zones; namely, north, east, south, and west, lower, middle and top zones.

For steam heating systems the automatic control arrangement varies with the means of obtaining reduced temperatures. Some of the methods in common use are described in Chapter 14. From the control standpoint they are classified as follows:

- 1. Throttling steam to allow flow in proportion to the needs for heating.
- 2. Turning the steam on and off, leaving it on for longer or shorter periods as required.
- 3. Varying the pressure differential between supply and return lines, and varying the absolute pressures in both, so as to change the amount of steam passing through the radiators, due to the differences in pressure drop and due to the differences in volume per pound of steam.

The controlling thermostats may be inside or outside instruments or a combination of the two. Ordinary inside thermostats alone are likely to give disappointing results because an unusual condition at the thermostat upsets the whole zone, and because a slight temperature drop may allow

too much steam to pass before its heating effect reaches the thermostat. Therefore some device is needed to vary the flow in accordance with the weather. This may be a simple long range thermostat that restricts the flow as the weather moderates, or one that turns the steam off and on, on oftener and for longer periods in cold weather. One device is designed to directly control radiator temperatures at progressively lower points as the weather becomes warmer. Most outside thermostats have provision for sun and wind effect. They do not produce close control of indoor temperature, and are usually accompanied by hand switching devices for raising and lowering the control point, where individual room control is not included. They are, as stated previously, valuable adjuncts of room control.

For a hot water heating system, zone control consists of an outdoor thermostat varying the temperature of the water in accordance with the weather. This may be done by changing the amount of heat applied to the water, or by mixing hot water with recirculated water so as to produce the proper temperature. Inside zone thermostats may be used to correct improper action of weather thermostats, or, where only one outside instrument is used for a number of zones, to start and stop circulating pumps in accordance with the demand for heat in the various zones.

For both steam and hot water systems, zone control is primarily to reduce the general heating effect in moderate weather. Thus the term is used to describe a type of control system, though a building may have but a single zone.

In air conditioning systems, zone control may be applied to separate fan systems in different parts of a building or to two or more sections of the air distributing system from a single fan. The zone thermostat may be room type, or insertion type located in the return air duct from the zone. Where each zone has its own fan, the control may be the same as for an independent system. If one fan serves more than one zone, there will be heating and cooling coils for each, or a damper to mix air volumes of two temperatures to provide the proper conditions for the zone.

Zone control for an all-year air conditioning system presents problems that do not arise in either the heating or the cooling cycle alone. As a zone is normally selected for similarity of conditions, and the distribution of temperature effect to the various rooms adjusted so that one control point is sufficient, it is important that the similarity of conditions applies equally to heating and cooling. Two rooms that have like heating loads and that work well together in the heating season, may have entirely different cooling loads. This difficulty can be overcome by the use of sub-zones or individual room control where necessary.

CENTRAL FAN SYSTEMS

Central systems for air conditioning are described in Chapter 21. For explanation of the control problems for such systems, the various functions, such as heating, humidification, and cooling, are treated independently.

Ventilating Systems

A control system for a central fan ventilating system using all outdoor air and discharging air at a predetermined temperature is illustrated in

CHAPTER 34. AUTOMATIC CONTROL

Fig. 2. Thermostat T_1 located in the outdoor air intake is set just above freezing, and controls valve V_1 on the first heating coil. This arrangement, where the valve is held completely open or closed to avoid danger of freezing, must be used where the coil is not specially designed for uniform steam distribution across its face. The by-pass damper around the heaters and the other two valves V_2 and V_3 are controlled by thermostat T_2 located in the discharge duct from the fan. When the temperature of the discharge air is too high, T_2 closes V_3 and V_2 , gradually and in sequence, then if V_1 is open and supplying too much heat, T_2 opens the by-pass damper. The control of the damper and valves V_2 and V_3 must be gradual to prevent wide fluctuation in temperature.

In ventilating systems it is customary to supply air to the ventilated spaces at an inlet temperature approximately equal to the temperature maintained in the rooms. The radiators therefore are designed to take care of all the heat losses from the rooms and in order to maintain controlled room temperatures it is necessary to control the radiators independently of the ventilation control.

Fig. 2. Control of a Central System for Ventilation

In central fan systems, air washers are sometimes used and in such cases, due to the effect of temperatures on humidity, additional control is required. The heating coils are then divided, one or two at the inlet and usually two at the outlet, generally called preheaters and reheaters. There should be no by-pass under the former, because of the danger of a stratum of cold air freezing the water. To maintain relative humidity at a constant point a dew-point thermostat is inserted into the air stream between the two sets of coils, to control the preheaters. Cold air control of preheaters cannot be used because at temperatures just below freezing a standard heating coil, which will protect an air washer against freezing in zero weather, will give a too high dew-point temperature. Therefore, the one or two preheater coils must be controlled from the dew-point thermostat. This is preferably placed at the discharge side of the washer and set for about 40 or 45 F. As there is some cooling effect from the water, this provides a slightly higher temperature leaving the coils. such cases, the throttled steam must be fairly uniformly distributed across the face of the coil, to prevent a stratum of cold air that would freeze water in the coil or in the washer.

Heating Cycle

Similar fan systems are used for heating, as well as for ventilating occupied spaces, by increasing the number of coils to four or five. Where they are all installed together the control remains the same as shown in Fig. 2, and the additional coils are controlled directly from a room thermostat which also causes T_2 to turn on full heat while the room is cool, but to function as described previously while the room is warm. This facilitates rapid heating of the room, after a vacant period.

An alternate plan is the use of a fan discharge thermostat whose control point can be automatically varied, and a room thermostat to reset it. Thus when the room is cold, air is delivered at a maximum temperature designed for rapid heating, and when the room is too warm, the air is kept as cool as can be safely introduced, or as the weather permits. The discharge temperature varies between these two extremes at the command of the room thermostat, until it finds the proper point for the existing conditions. This makes it unnecessary to vary the fan discharge thermostat manually to prevent overheating in moderate weather, or chilling in cold weather.

The heating coils are often separated into two groups, one at the suction side of the fan, controlled as shown in Fig. 2, and the other on the down stream side of T_2 , controlled from the room. Control T_2 is then called the *tempered air* thermostat.

In all types of fan heating systems it is desirable to have the tempered air thermostat in the fan discharge where stratification has been broken up by the fan.

Where a fan system supplies heat to several rooms or zones that require separate treatment, the tempered air control can remain as in Fig. 2, and the variation can be supplied in any of the following ways:

- 1. By installing a separate duct to each zone, and using individual heating coils, each under control of its respective room thermostat.
- 2. By installing double chambers at the fan discharge, only one of which is supplied with additional heating coils. Individual room or zone ducts have mixing dampers which allow air to be taken from the warm air chamber, the tempered air chamber, or both, as demanded by their respective room thermostats. With this arrangement, precautions must be taken to prevent the warm air from being churned back and into the tempered air while a number of the mixing dampers are calling for the latter. If the warm air is controlled at a constant temperature under all conditions, the coils should be placed not less than 8 ft from the fan discharge and the dividing plate extended back several feet toward the fan. A good solution for the problem is to use an automatically adjusted thermostat in the warm air chamber, controlled by an outdoor thermostat so as to carry maximum warm air temperatures in the coldest weather and minimum in moderate weather.
- 3. By using a trunk duct, and varying the amounts of air delivered, by dampers at individual outlets or for the various zones. If a minimum amount of air is required for ventilation, the dampers must not close entirely. Thus to prevent over-heating, the trunk duct temperature must be varied according to the weather, as previously described. Also static pressure control may be needed. See a subsequent sub-head for a more detailed discussion of this subject.

Case 1 is illustrated in Fig. 3. Thermostat T in the fan discharge controls outside and return air through damper motors D_1 and D_2 , face and by-pass dampers through damper motor D_3 and the steam supply to a heating coil through valve V_1 . By having the face damper closed, and

CHAPTER 34. AUTOMATIC CONTROL

the by-pass open, before steam is throttled, there can be no danger of freezing the coil. Thus the D_3 operation is completed before V_1 starts. However, the relationship between D_1 and D_2 controlling the amount of recirculation, and D_3 regulating the amount of steam heat added, depends on the design of the ventilation system. If the maximum amount of outside air is desired for ventilation, and return air is used only when insufficient steam is available, D_1 and D_2 operate to bring in all outside air before D_3 starts. On the other hand if greatest heating economy is desired and full outside air is to be used only to prevent overheating, D_3 completes its motion to close the face damper, before D_1 and D_2 start. Any relationship can be attained between these two extremes. Relay R prevents T from closing the outside damper completely, when a minimum of outdoor air is required during operation. Valves V_2 and V_3 control the steam supplied to booster coils for two zones, in accordance with the

Fig. 3. Control of a Central System for Heating and Humidification

requirements of room type zone thermostats, not shown in the diagram. Humidistat H, in the return air, regulates the amount of water supplied through V_4 to the spray heads.

Humidification

Humidification with air washers has been mentioned in connection with control of ventilating systems. Where ample room air change is provided, it is generally assumed that the dew-point of the conditioned space will soon equal that of the delivered air. This is due to exterior walls, especially glass, being less pervious to vapor flow than to heat transmission. With partial recirculation, dew-point control prevents over- as well as under-humidification, for ordinary installations.

Where air washers are not used, humidification may be accomplished by water sprays, preferably with heated water; by steam heated water in pans; or by steam jets, if their odors are not objectionable. Sub-atmospheric steam cannot be used, of course, for jets, and is not of much more value in coil heated pans. In all these cases the control is obtained by humidistats, usually placed in rooms or in return air ducts. In ventilating systems the controlling instruments may be put in the fan discharge for results comparable with dew-point control. However, as hygroscopic elements are actuated by relative humidity they cannot be used with discharge temperatures that have been raised to supply heating effect.

Humidity control in cold weather is complicated by the danger of causing condensation or frost on windows and exterior walls, when otherwise desirable relative humidities are obtained. For satisfactory results in buildings that are not specially designed to prevent cold interior wall and glass surfaces, it is necessary to maintain lower humidities in very cold weather. This is done automatically either by an auxiliary humidistat mounted at a window to prevent condensation at that point, or by using a type of room or duct humidistat that is reset by an outdoor thermostat to maintain gradually drier conditions as the weather gets colder.

Cooling Cycle

Although central systems are occasionally used for cooling and dehumidifying only, the control features are essentially the same as for complete air conditioning systems. Where control of room conditions is obtained by varying the quantity of cooled air, as in a trunk duct system, individual room or zone thermostats operate volume dampers. It is customary to have these installed with a stop to prevent shutting off the air supply entirely, the reduction being from 40 to 60 per cent of the maximum delivery, depending on the design of the system. Later described control of the temperature of the air prevents over-cooling with the minimum supply, and the damper variation is normally sufficient to handle the distribution of the cooling effect throughout the area supplied by the fan or trunk duct.

In cases where systems and outlets are designed for particular velocities for proper room diffusion, volume dampers tend to produce undesirable results, by changing these velocities. Partially closed dampers reduce volumes in their ducts and increase volumes elsewhere. Trouble from too little air can be reduced by having the dampers close off, in one way or another, a part of the grille openings, thus maintaining approximately the same velocity through a smaller grille area. Trouble from increase of static pressure, due to reducing air volumes delivered, can be corrected by static pressure control, as described under a separate subheading in this chapter.

In installations where constant volumes of air are desired, and individual ducts are run to each room or zone, as shown in Figs. 3 and 5, of Chapter 21, air temperatures are varied as for the heating cycle, by room thermostats operating (1) mixing dampers which take air from either or both of two chambers, one of which has been cooled to the minimum temperature ever required; (2) booster cooling coils, one for each duct, in which the refrigerating medium can be turned on or off, or modulated; (3) individual by-pass dampers around booster cooling coils which are kept at a constant temperature; or (4) reheating coils which in times of light cooling load add heat to air that has been cooled to the minimum temperature required.

All these arrangements apply where one fan supplies more than one

CHAPTER 34. AUTOMATIC CONTROL

room, or zone, and consequently the temperature-varying devices are downstream from the fan. The remainder of the control for the system is concerned with maintenance of conditions at the fan and is similar to what is used where a fan system is treated as a single zone.

Air washer cooling and dehumidification is commonly controlled by pumping the spray water through, or around a water cooler, with a dewpoint thermostat operating a mixing valve which regulates the amount of water by-passing the cooler. An alternate scheme is to put cooling coils in the air washer spray or the pan, and to control the temperature of the coil. In both cases control of relative humidity is obtained by maintaining a constant dew-point temperature and thus a constant amount of water vapor per cubic foot of air handled. On account of this humidity factor, air leaving the washer must be reheated. As explained in Chapter 21, this is done, (1) by passing uncooled air around the washer¹ with thermostatic control of the proportion of uncooled air; (2) by adding heat by means of an automatically controlled coil; or (3) by allowing the room air to provide the heat by diffusion, in which case, still assuming a constant volume of air, the only means of dry-bulb control is the raising and lowering of the dew-point temperature, and hence the relative humidity.

Heat transfer surface coils, now more frequently used for cooling and dehumidification, are of either the direct expansion or cold water type. The former may be controlled by starting and stopping or unloading the compressor, by opening and closing a valve in the liquid line, by throttling the expansion valve, by throttling the suction line, or by raising and lowering the coil pressure, and temperature, through operation of a back pressure valve. The cold water type coils are controlled by valves to regulate the flow of water. They may throttle the flow, or they may be of the three-way type that allows a uniform flow but by-passes any necessary amount around the coil. Where well water pumps are operated only for cooling coils, control is added to stop them while cooling is not needed, but if they serve other purposes, they continue to run and the water is controlled by throttling valves.

The control with all types of coils may include a damper in an air by-pass² around the coils, with or without one over the face of the coils. If the installation is large enough to justify the use of two or more coils, side by side, the special air by-pass may be omitted and similar results obtained by closing the coils in sequence. The controlling instrument in all these cases is a thermostat in the room, return air, or fan discharge, whether the system serves one zone or several. In the latter case, a thermostat in the return air or in the fan discharge serves as a primary control, and the final control of room conditions is obtained with the zone thermostats.

Room or zone control in the cooling cycle is commonly provided by thermostats which operate at varying points depending on the weather. This takes care of the difference in optimum temperatures for the heating and cooling seasons and also of the objection to maintaining too high a differential between indoor and outdoor temperatures in hot weather.

¹Patents exist covering the by-pass method.

²Loc. Cit. Note 1.

A thermostat sensing outdoor conditions is used to reset inside temperatures, raising them gradually to a point from 5 to 15 F below the highest outside temperature. This differential depends on the type of occupancy. Temperatures should be maintained so as to avoid too great a change for anyone entering or leaving. In large buildings, gradually lower temperatures at increasing distances from entrances and exits can be arranged. See Chapter 2 for general remarks about proper temperatures.

Except in the case of dehydrating systems, independent humidistatic control of dehumidification is seldom provided. Air washer systems as already described, are provided with dew-point thermostats. Cooling coils may be designed for proper proportion of sensible and latent heat removal so as to give satisfactory relative humidity when only the temperature is controlled. For a small installation, without by-pass or other reheat, a room thermostat and humidistat are sometimes arranged to provide cooling until both the temperature and humidity requirements

Fig. 4. Control for a Dehydrating and Cooling System

have been satisfied, and a second thermostat is used to prevent excessive cooling by the humidistat. The cooling may be regulated by a combination of temperature and humidity that approaches *effective* temperature, by causing the relative humidity to gradually readjust the temperature control point, higher for dry air.

Control of Refrigeration. Room or duct conditions may start, stop and unload the refrigerant compressors directly, or may operate only at the evaporators. In either case other controlling instruments are used for the refrigeration, as described under the general heading, Control of Refrigeration Equipment.

Control of Direct Dehumidifiers—Dehydrators. Absorbent and adsorbent types of conditioning systems have the dehumidification controlled by room or return air humidistats. Since these processes are capable of producing relative humidities much below the desired point, only a portion of the air may be treated and a by-pass damper, controlled by the humidistat, used to vary this portion. The control of water cooling coils is similar to that previously described, except that the additional coil, used to extract

CHAPTER 34. AUTOMATIC CONTROL

the sensible heat transformed from latent by the process, can use cooling water leaving another coil. That is, water leaves the main cooling coils at a low enough temperature to do the requisite cooling for the high temperature air. In order to have water available at both coils, the control valves at each are of the three-way type. As this allows free flow of water at all times, a normally closed valve can be installed in the water line and controlled by a thermostat varying the flow to maintain a suitable temperature. By connection to the fan motor circuit the valve can be kept closed while the system is not in use.

Some of these features are shown in Fig. 4. Humidistat H, on rising humidity, simultaneously starts the dehydrator and its fan through relay R, positions three-way valve V_1 to permit water to flow through the aftercooler, and closes damper D to increase the resistance in the main duct so as to reduce any tendency of the dehydrated air to short-circuit. Outside air and return air dampers, commonly used, are not shown. Their operation is as described for Fig. 3, except that for the summer cycle, the outside air is fully opened before V_2 turns on the main cooling

Fig. 5. Control for an All Year Central System

coil, and a wet-bulb or similar thermostat in the intake cuts the outdoor air to a minimum when its wet-bulb temperature is greater than that of the return air.

All Year Systems

All year systems combine the features described for heating and cooling cycles, and have provisions for spring and fall conditions. Complete automatic control of all year systems incorporates an automatic change-over between the cooling and heating cycles. If the installation necessitates operation of a manual switch or other change-over device between the heating and cooling cycles, then the control system is semi-automatic. The full automatic change-over between cycles becomes particularly desirable in the early and late portions of the cooling and heating seasons, when heating and cooling may be required alternately.

For all year systems, a single thermostat may be used for both heating and cooling cycles, as shown in Fig. 5. In this diagram, T_2 regulates the amount of recirculation through damper motor D, the amount of steam by valve V_1 and the amount of chilled water by V_2 . As the temperature rises, V_1 first operates completely to close off the steam; next, outdoor air

quantities are increased from a minimum, if the outdoor temperature as sensed by T_3 is low enough to provide cooling; and finally chilled water valve V_2 opens. Control T_2 , however, operates, not at a constant temperature, but at a point varying from the minimum required in warm weather to the maximum required for heating. The variation is effected by T_1 in the return air, which raises and lowers the control point of T_2 until the proper return air temperature is obtained. During the heating and intermediate seasons, T_1 operates at a constant point, but in the cooling season it is readjusted by outdoor air thermostat T_4 to provide higher indoor temperatures. Room humidistat H opens valve V_3 on falling humidity to turn on the water sprays. As inside humidities in summer are normally higher than required in winter, the sprays are automatically kept closed.

Several diagrams of large central systems are shown in Chapter 21. The arrangement of cooling coils diagrammed in Fig. 2 requires control similar to that just described, except that if the cooling coil is of the direct expansion type, the refrigeration is controlled as explained in this chapter under

Fig. 6. All Year Zone Control with Booster Heating Coils and Volume Dampers

Cooling Cycle. In Fig. 3, a dew-point thermostat near the eliminator plates, on a rising temperature first turns off the preheater and then turns on the water cooler. A return air or fan discharge thermostat controls the reheater coil, and the return air and by-pass dampers. Assuming that the coil is not heated in summer, the by-pass damper is opened and the return air damper closed to provide reheat. In winter, provision must be made to keep the by-pass damper closed, or to reverse its operation to prevent by-passing the coil when heat is required.

The temperature at the primary fan in Fig. 7 is maintained 10 F or more below desired zone temperatures throughout the year, to allow correction of overheating in winter. In summer this setting is further reduced, to cut down the amount of outside air required for cooling and to provide sufficient dehumidification. The zone thermostats thus call for more return air for reheat.

Where the internal cooling load is great, an arrangement as shown in Fig. 6, of this chapter, has some advantages. Air entering the fan is controlled at about 55 F by operation of a steam valve and outside and return air dampers, so long as weather permits. In summer the refrigeration is turned on at a somewhat higher temperature, as required. Booster heating coils, low limit thermostats, volume dampers and room,

CHAPTER 34. AUTOMATIC CONTROL

or return air, thermostats are installed for all zones, as shown. Volume dampers are adjusted with a minimum position that will supply sufficient air quantities for heating. While a zone is too cold, T_1 holds D in minimum position and steam valve V wide open. On rising zone temperature, the steam is first gradually turned off, and if internal heat sources cause the temperature to build up, D gradually opens to increase the amount of cool air delivered. Control T_2 is set for the minimum temperature at which air can be introduced into its zone.

If heating as well as cooling is supplied only by the fan system, and zone control is by volume dampers, special instruments known as *summerwinter* thermostats are required to open the dampers on falling temperature in winter and on rising temperature in summer. Such instruments are also used similarly to operate valves which supply hot water in winter and chilled water in summer.

Economizer Controls. Although the saving of fuel or power is one of the reasons for using any automatic control equipment, there are some applications where this is the sole reason. For example, central fan systems are usually designed to use all outdoor air, or as much as required, while it has suitable characteristics, for economical operation. Except for cases such as chemical laboratories where return air cannot be economically used, dampers are placed in both the return air and outdoor air ducts to regulate the amount of air used from each. These may or may not be mechanically interconnected but are arranged so that as one opens the Where a minimum amount of outdoor air is needed for other closes. ventilation requirements, the control of dampers may include a relay to prevent closing the outdoor damper beyond a certain adjustable point or this damper may be divided into two sections, only one of which operates with the return air damper. Another relay connected to the fan motor circuit operates the minimum outdoor opening, in either case, as the fan is started and stopped. Usually it also places the remainder of the dampers in recirculating position when the fan stops and leaves them under control of their thermostats while the fan is running.

The control of recirculation is from thermostats. Since the outdoor air, in excess of the minimum required for ventilation, is used for cooling, the dampers are commonly interconnected with other cooling devices, so as to gradually increase the amount of outdoor air, and no refrigeration is turned on until the possibilities of natural cooling are exhausted. So long as the wet-bulb temperature outside is lower than that inside the more outdoor air used during the cooling cycle, the lower the operating cost. However, as soon as the wet-bulb temperature of the outdoor air exceeds that inside, its use should be reduced to the minimum. This is done automatically by the conditions of the outdoor air as sensed by:

- 1. A wet-bulb thermostat.
- 2. A dry-bulb thermostat readjusted by a humidistat to produce operation approaching wet-bulb control.
- 3. A dry-bulb thermostat and a humidistat working together, either one of which may throw the dampers to recirculating position.
 - 4. A dry-bulb thermostat, alone.

These items are listed in order of importance, from a theoretical standpoint, but practical considerations reverse the order. A wet-bulb thermostat must be removed, or protected from damage, in sub-freezing weather. A dry-bulb thermostat is the most dependable under all conditions, and is generally sufficient for small installations. However, the considerably greater economy of wet-bulb or similar control justifies its use for the larger installations.

Limit Controls. There are certain limiting devices which are not concerned primarily with final room conditions but are necessary safety features. High and low limits for refrigeration pressures are described under Control of Refrigeration Equipment. Limit temperature controls are often used with heating coils exposed to sub-freezing air, to prevent freezing the condensate. Where there is danger of lack of steam pressure, a thermostat should be placed in the system to stop the fan or close the outdoor air damper when heat is not available.

The tempered air thermostat described under the Heating Cycle serves as a low limit for air introduced in winter. When cold outside air is used for cooling, this same thermostat is used to restrict the amount, while inside conditions call for full cooling. A low limit fan discharge thermostat is sometimes operated in conjunction with the refrigerating cycle, although this is usually unnecessary.

A thermostat can also be placed in the fan discharge to stop the fan in case of fire. The maximum temperature setting is often determined by local regulations, but the most protection comes from the lowest feasible setting and a point is recommended only a few degrees higher than the highest temperature of normal operation. Safety measures to prevent gravity as well as forced flow of air, in case of fire, often require various dampers throughout the fan distribution system to be closed by fusible links or by thermostats.

Static Pressure Control

As described and illustrated in Chapter 31, the discharge of air through outlets must be carefully studied for proper results. Control systems that depend upon varying the air quantities are apt to upset the design conditions. Even where the dampers are located so as to maintain proper outlet velocities, as well as possible, by closing off portions of the grilles, there is a general increase in static pressures when most of the dampers reach their minimum positions. This tends to defeat the operation of the damper and magnify the danger of noise.

Air filters, commonly used in central fan systems, vary the operating static pressure in two ways. Reduction of air quantity tends to reduce the static drop through them as through all other resistances to air flow, but accumulation of dust increases this static drop. Thus filters add to the need for static pressure control.

This control consists generally of a device operating one or more dampers. If filters are not used and the only function of the controller is to reduce high pressures caused by reduction in amounts of air delivered, the dampers may be in the side of the main duct downstream from the fan, and arranged for opening enough to relieve the excess pressure. In this case, if the controller is of the differential type, affected by ambient pressures, care must be used to prevent distortion due to slight building up of pressure in the room outside the duct.

CHAPTER 34. AUTOMATIC CONTROL

Whether or not filters are used, dampers may be installed across the area of the duct on either side of the fan. One type is of special design for attachment to the fan intake. Closing such dampers reduces the pressure in the distribution ducts. When filters are used, the systems may be designed for operation with the dampers partially closed while the filters are clean, so the pressure controller can automatically open them to correct for the gradually increasing resistance caused by dust accumulation.

Air distribution systems designed for high velocities and consequent high pressure drops are not entirely corrected for action of volume dampers by static pressure control at the fan, because varying pressure drops through the ducts follow changes in quantities of air delivered. Therefore, where relatively constant pressures are important it may be necessary to use controllers at several carefully selected points.

Back pressure dampers, commonly used to prevent down drafts through vent flues, may be employed to relieve objectionable pressures in rooms or other spaces, under certain conditions.

UNIT SYSTEMS

A unit system provides for the same functions as a central fan system except that the actual conditioning is usually done within the space being conditioned instead of at some central location outside of the space. The automatic control problems, therefore, become exactly the same as for central fan conditioning systems except that compactness, ease of installation and control cost often assume somewhat more importance.

Because of the usual segregated location of unit equipment throughout a building and its consequent lack of competent supervision, complete automatic control is essential to its satisfactory operation.

Unit Heaters

In its simplest form, unit heater control consists of a room thermostat to start the unit heater motor when heat is required and shut it off when the demand is satisfied. With this limited control, it is possible in some instances that, with no steam available at the heater, the operation of the fan would cause objectionable drafts. To avoid this, limit controls are available which will prevent the operation of the fan at the command of the room thermostat except when steam is available, as determined by the temperature of the steam or return pipe or the pressure of the steam supply.

Where several unit heaters serve a limited area, they may be grouped for purposes of automatic control, and several heaters placed in operation at the command of one thermostat. By properly grouping the units which will operate together, the benefit of zone control can often be obtained with a minimum of control equipment. Where such group operation is utilized, the thermostat and limit control usually function through a relay, as the combined load of the several motors may exceed the current capacity of the thermostatic control device.

In some cases where cold drafts will not result, it is desirable to operate the unit heaters continuously for circulation of air. In such instances the room thermostat regulates the supply of steam to the unit through a control valve in the steam supply line and the unit heater motor operation is manually controlled.

Unit heaters equipped with dampers arranged for by-passing air around the heating coils are controlled by room thermostats operating modulating damper motors attached to these dampers so that as the temperatures rise, a decreasing amount of air is heated. When the by-pass is wide open the heating effect is so much reduced that control of the steam supplied to the coil is not generally important. If valve control is added, the throttling of the steam may be concurrent with, or subsequent to, the opening of the by-pass.

Cooling Units

The recommended form of temperature control for a cooling unit contemplates the continuous operation of the fan, with automatic regulation of the compressor or cooling coil, or both, as determined by a thermostat in the room, or in the return air to the cooling unit. Such operation insures continuous circulation of air in the room, and in addition to providing the cooling effect of moving air, overcomes the tendency of the air to stratify. As the temperature begins to rise, the controller opens the valve to a cold water cooling coil, or for direct expansion coils, opens a valve in the refrigerant line, closes a by-pass around the coil or starts a compressor.

Cooling units may also be controlled by arranging the room thermostats to start and stop the fan motors or by a combination of motor and refrigerant control.

Unit Ventilators

There are various types of unit ventilators available but in general all types are designed to draw air from the outside or to mix outside and recirculated air, heat it and introduce it into the room under control of a thermostat.

The design of unit ventilators has to an extent been based on the requirements for automatic temperature control and the cycles of control have been developed to include other heating devices in the rooms with unit ventilators. Unit ventilators are frequently used in schools and other types of buildings where many states have laws or regulations governing the minimum amount of ventilation to be provided. The control of the amount of outdoor and recirculated air is designed to conform to the various laws. Usually the device circulates a constant amount of air and the amount automatically taken in from outdoors is controlled in one of these ways:

- 1. Full recirculation until the room temperature reaches a certain point, generally two degrees, below the desired room temperature; then a minimum amount of outdoor air for ventilation while the temperature is maintained by throttling steam; and if the room temperature rises with all steam shut off, the gradual increase in amount of outdoor air up to 100 per cent.
- 2. Full recirculation until the room reaches a set point below room temperature, after which all air is taken from outside.
- 3. Gravity recirculation while the fan motor is not running, with full outside air as soon as the fan starts, obtained by a relay in the motor circuit.

CHAPTER 34. AUTOMATIC CONTROL

4. Full recirculation or all outdoor air as determined by a manual switch which can be operated at any time whether or not the fan is running. All the unit ventilators in a single building may be operated by one or many switches.

With arrangements 1 or 2, it is desirable to include a relay to prevent the intake dampers from opening while the fan is not running, regardless of room temperatures. With a dual system of control this is essential to prevent the thermostat keeping the outside damper open until the temperature falls to the reduced setting.

The intake and recirculated air quantities are determined by a single damper or by a pair of dampers working together, and operated by a damper motor. Although this affects the temperature of the air delivered, the main heat control comes from the throttling of the steam supplied to the heating coil, with or without by-pass damper control. To prevent air being delivered at too low a temperature, a low limit thermostat is commonly installed in the air stream and set at some point between 55 and 70 F. The lower settings may cause discomfort, the higher ones overheating, depending on circumstances. The air stream thermostat can be used to turn on steam, reduce the amount of outside air, or both.

Rooms with unit ventilators frequently have auxiliary heating devices, such as direct radiators, convectors or unit heaters, all under control of a single room thermostat. A common control cycle for such rooms is composed of the following functions, assuming that 72 F is the desired temperature:

- 1. Below 70 F the unit ventilator intake damper is in full recirculating position and all heat is turned on.
- 2. At 70 F the intake damper moves to a position that will admit a predetermined minimum amount of air from outdoors.
 - 3. At 71 F the auxiliary heating devices are shut off.
 - 4. From 71 to 72.5 F, the heating effect of the unit ventilator is throttled.
- 5. From 72.5 to 74 F, the intake damper is gradually moved to increase the amount of outside air from the set minimum to 100 per cent.
- 6. If the room thermostat calls for too much cooling, the air stream thermostat holds the delivery temperature at a proper minimum.

Other similar cycles may be used. One additional feature is the use of an air stream thermostat that has its control point reset by the room thermostat. Then as the room temperature rises, the delivery temperature is gradually reduced from a maximum to a minimum.

All Year Conditioning Units

It is desirable to provide for automatic change-over between the heating and cooling cycles in the control system for all year conditioning units because of the probable necessity of a change several times a year. In the fall season a period requiring cooling often follows one requiring heating, and the reverse is true in the spring. The automatic change-over is especially valuable where a large number of units is used.

A control system for an all year conditioning unit providing for the automatic change-over is shown in Fig. 7. Operation of the control equipment is as follows:

1. During the Heating Cycle. Combination controller T_1 measures the temperature in the space being conditioned and opens control valve V_2

so as to admit steam to the heating coil whenever heat is required so as to maintain a fixed temperature in the space. Combination controller T_1 also measures the relative humidity in the conditioned space and opens control valve V_1 so as to admit water to the sprays whenever moisture is required in the space.

2. During the Cooling Cycle. Combination controller T_2 measures the temperature and humidity in the conditioned space and opens refrigerant control valve V_3 , thereby admitting refrigerant to the cooling coil whenever cooling is required to maintain the temperature or relative humidity within predetermined maximum limits.

The temperature control point of controller T_1 must be set at a lower point than that of controller T_2 in order to provide for the automatic change-over between the cooling and heating cycles. As an example, controller T_1 might be set at 72 F and 35 per cent and T_2 at 76 F and 60 per cent. As the room conditions rise above the settings of T_1 , the

Fig. 7. All Year Air Conditioning Unit with Complete Automatic Control

heat and humidification are shut off and when they rise above the settings of T_2 the cooling and dehumidification are turned on.

CONTROL OF AUTOMATIC FUEL APPLIANCES

It is essential that automatic controls be used with oil burners, gas burners, and stokers in order to maintain even temperatures and provide safe and economical operation of the heating plant. There are many types of burners and many types of automatic control, and it is essential that the proper type of control equipment be selected to fulfill the requirements of the burner equipment and its application.

Combustion regulation equipment should be used on the larger commercial and industrial applications to control the secondary air supply and thereby provide for economical operation. This type of control will usually consist of a pressure regulator which measures and controls the pressure over the fire and which thereby indirectly regulates the carbon dioxide percentage in the flue gas.

On all automatically-fired steam boilers it is advisable to provide

CHAPTER 34. AUTOMATIC CONTROL

control equipment which will stop the supply of fuel in case the boiler water line falls below a predetermined level of safety.

For hot water and warm air systems, control devices can be arranged to vary the water and air temperatures from outdoor thermostats. As the weather moderates, lower temperatures are maintained. Inside thermostats are usually installed to correct any improper results from the outside controls.

Thermostats used to control automatic fuel appliances may be supplied with clock mechanisms which will automatically shut off the heat or maintain lower temperatures during night hours for economy of fuel. For buildings that are not used every day of the week, clocks may be supplied to provide *night* conditions from Saturday noon or night to Monday morning.

Oil Burner Controls

In the normal oil burner installation as encountered in residential and small commercial installations, the burner operation is frequently regulated by electric controls and primarily governed by a room thermostat. It is essential that a limiting control be incorporated in the control system to prevent the temperature of the heating medium from exceeding any predetermined safe maximum. The type of limit control selected will depend on the type of the heating system. In a warm air furnace installation, a limit control would be used, reacting to the temperature of the heated air in the bonnet of the furnace; in a hot water system a control reacting to the temperature of the water in the boiler; and in a steam system a control reacting to the pressure of the steam in the boiler.

In addition to the normal control of the burner from the room thermostat and limit control, it is necessary that a combustion safety device be used to prevent operation of the burner under hazardous conditions. The oil fire is automatically ignited by means of gas, electric spark or incandescent element and the combustion safety control acting through a sequence device permits the burner operation only when the fire is properly established as the burner starts up. A further function of the combustion safety control is to react to any major disturbance in the flame during the running operation, shutting down the burner and preventing the discharge of unburned fuel if for any reason the flame is extinguished.

Gas Burner Controls

In the case of the domestic burner, full automatic operation is the normal requirement and the burner is started and stopped at the command of a room thermostat which, in turn, opens and closes a control valve in the gas supply line. Modulating controls and controls providing a high and low fire are also available for gas burners. For purposes of preventing abnormally high temperatures in the bonnet of gas-fired furnaces or in the temperature of the water in gas-fired hot water heating boilers or excessive pressures in gas-fired steam boilers, temperature and pressure limit controls are used. Ignition is normally secured through the use of a gas pilot flame and a safety device is provided, utilizing the heat of the pilot flame in such a manner that if the pilot light is extinguished for any reason, the main gas valve cannot be opened. For satisfactory

and economical operation, all automatically-fired gas burners should be equipped with pressure regulators on the gas supply line.

Stoker Controls

Domestic stokers are normally placed under command of a room thermostat for primary operation subject also to the command of a limit control to prevent their operation when conditions in the boiler or furnace exceed predetermined safe maximums. Utilizing coal as fuel, automatic ignition is not provided and the stokers, once ignited, maintain their fire, merely changing the rate of combustion by changing the draft and the rate at which the coal is fed. Thus, at the command of the room thermostat the stoker motor is started, driving a forced draft fan and fuel feeding mechanism. The rate of combustion is thus increased and this operation continues until the thermostat has been satisfied when the motor is stopped and the fuel in the combustion chamber continues to burn at a slow rate with reduced draft.

At certain seasons of the year, the operation of the stoker under the requirements of the thermostat may be so infrequent that there is a possibility of the fuel in the combustion chamber burning out or the fire going out between operations. To prevent this occurrence, automatic controls may be utilized to operate the stoker independently of thermostat requirements, sufficiently to sustain the fire either through a timing device functioning for short periods at predetermined intervals or through a temperature control device reacting to minimum stack or boiler temperatures. Control may also be utilized to prevent stoker operation and the delivery of coal into the combustion chamber in the event that the fire has gone completely out. This control is governed normally by the stack temperature and shuts down the stoker after a predetermined minimum stack temperature is reached.

RESIDENTIAL CONTROL SYSTEMS

The control installation in a residence may vary from the simple regulation of a coal-fired heating plant to the completely automatic all year air conditioning system. Residential installations with automatic fuel burning appliances, such as oil burners, gas burners or stokers, are normally equipped with single room thermostat, limit and safety controls as outlined previously under Control of Automatic Fuel Appliances.

Coal-Fired Heating Plant

Control in the normal coal-fired domestic heating plant consists of regulating the combustion rate in accordance with requirements. This function is accomplished by a spring or electric-driven damper motor which, under the command of a room thermostat and through chain linkage, operates the draft and check dampers of a boiler or warm air furnace. Such installation should be protected against excessive temperature or pressure by means of a limit control serving to check the fire when conditions at the boiler or furnace reach a predetermined maximum.

All Year Domestic Hot Water Supply

Hot water or steam heating boilers with automatic fuel burning appliances can be used for all year heating of domestic water supply. The

CHAPTER 34. AUTOMATIC CONTROL

fuel burning appliance in this case is controlled from the temperature of water or pressure of steam in the boiler to maintain uniform boiler conditions and domestic hot water is heated by means of an indirect heater. The heating of the residence is normally governed by means of a thermostat which operates a control valve in the flow line of a gravity hot water or a steam system.

Air Conditioning Systems

Residential air conditioning systems normally include a heating source and a motor-driven fan for circulating air. In addition, such installations may involve spray-head equipment to supply humidity. Such installations distribute suitably heated and humidified air during the heating cycle, and during the summer or cooling cycle may be used effectively as conditioners if equipped with refrigeration means.

Regulation of the humidity during the heating cycle is normally accomplished by opening and closing a solenoid water valve supplying water to the spray-heads, the solenoid valve being under control of a room type humidity control. In the average installation the fan is permitted to run only during such intervals as the thermostat is calling for heat or at the command of a limit control to prevent the overheating of the bonnet of a warm air furnace. The limit control should also prevent the operation of the fan at the command of the thermostat until the circulating air temperature has increased to a predetermined point.

For the cooling equipment provided in such installations, control during the cooling cycle will be an adaptation of the control principles described for central fan systems selected for the type of cooling equipment utilized.

The selection of automatic control equipment for residential air conditioning systems is just as important as for commercial installations. Fewer controls are generally used and systems are usually less complicated except in the case of a very large residence installation when the control system may become as complete as the commercial installation.

CONTROL OF REFRIGERATION EQUIPMENT

The most common means of providing cooling for air conditioning may be divided into four general classifications as follows:

Compressor Type Refrigeration

Refrigeration compressors may furnish refrigerant to direct expansion cooling coils through which air is being passed, or to coils in cooling tanks through which water is passed which is then pumped to air washers or cooling coils through which the air is passed.

In either case the compressor motor may be started and stopped in order to meet the demand for refrigeration or a pressure controller may be used to regulate the low side or suction pressure of the compressor. When the latter method is used, the flow of refrigerant to cooling coils may be regulated by the opening and closing of a solenoid refrigerant valve at the command of a temperature controller or thermostat.

A high pressure cutout as an individual unit or in combination with

either a temperature or pressure controller provides a safety feature against excessive pressures on the high side of the compressor.

Many compressors may be *unloaded* by instruments sensing room or duct conditions, or by refrigerant pressures, thus reducing the frequency of starting and stopping. If two or more compressors are used for a single cooling system, *step controllers* are used to start them in sequence at intervals of a few seconds to avoid the large momentary electric input that simultaneous starting would demand.

When condensers are water cooled, thermostatic control to vary the quantity of water is needed for economical operation. Mechanical air condensers may be started and stopped with temperature demands.

Chilled water may be stored in tanks at temperatures slightly lower than required for air cooling coils. The control of temperature for the water distribution system is as described for Ice Cooling.

Ice Cooling

When ice is used for the cooling or dehumidification of air, it is usually placed in bunkers and water is sprayed over it. This water, after being cooled, may be used in air washers or surface cooling coils and is usually returned to the bunker for additional cooling after being used.

Control of the water temperature leaving the cold water tank may be maintained by a temperature controller, which measures the temperature of the water in the tank and modulates a control valve in a by-pass which permits a portion of the return water to return directly to the tank instead of passing through the sprays.

Vacuum Refrigeration

A vacuum refrigerating system consists of an evaporator, compressor, condenser and auxiliaries. The refrigerant used is water, and water vapor (steam) is the power medium.

Water which has been passed through an air washer or cooling coil is sprayed directly into the evaporator or water cooler where it is cooled by its own evaporation. A condenser is attached directly to the compressor discharge and its function is to recondense the water vapor drawn from the evaporator, plus the steam which supplies the energy for compression.

The temperature of the cold water leaving the flash chamber should be measured by a temperature controller which will in turn operate a two-position or positive-control valve installed in the steam line to the jet so as to permit steam to flow only when cooling is required. If city water is used in the condenser, the amount of water should be modulated according to the demand as measured at the condenser outlet by means of a temperature controller and control valve.

Cooling by Well Water

When well water is available in sufficient quantities at low temperatures during the cooling season, it may be pumped directly to air washers or cooling coils. Control is usually effected through control valves on the water supply to the cooling unit actuated by temperature or humidity controllers, or both, located either at the outlet of the conditioner or in the conditioned space.

Chapter 35

INSTRUMENTS AND TEST METHODS

Temperature Measurement, Pressure Measurement, Measurement of Air Movement, Air Change Measurements, Measurement of Relative Humidity, Dust Determination, Heat Transfer Through Building Materials, Measurement of Heat Exchange for Comfort Conditions, Combustion Analysis, Smoke Density Measurements, Carbon Monoxide Measurements

IN previous chapters, data from many tests and from much research on various divisions of heating, ventilating and air conditioning have been given. References have also been cited to a number of test codes adopted by the Society for the testing and rating of various types of equipment. This chapter presents a description of many test instruments, and discusses their use.

TEMPERATURE MEASUREMENT

Changes in the intensity of heat may be determined by several methods such as measuring the change in volume of a liquid, the change in internal pressure of a confined gas, the current set-up between dissimilar metals joined in a circuit, or the change in resistance of an electrical circuit.

Thermometers

The most common method used is the change in volume of a liquid such as mercury or alcohol enclosed in glass. Mercurial thermometers may be used for measuring temperatures from $-40~\mathrm{F}$ to approximately $1000~\mathrm{F}$. The lower limit is set by the freezing point of mercury. Since the boiling point of mercury is only about 675 F, the space above the mercury in thermometers designed for higher temperatures must be filled with an inert gas under pressure. Alcohol thermometers may be used for temperatures from $-94~\mathrm{F}$ to $+248~\mathrm{F}$.

The more accurate thermometers are individually calibrated and have divisions etched on the stem. The two most common reference points are the freezing and boiling points of water. On the Fahrenheit scale, which is most commonly used in engineering work, there are 180 divisions between these points. On the Centigrade scale which is used by chemists and physicists, there are 100 divisions in this range. The temperature in degrees Fahrenheit equals $^9/_5$ of the temperature in degrees Centigrade, plus 32.

For permanent installations, glass thermometers are often protected by metal jackets and equipped with metal scales. Due to the heat capacity and heat conductance of the jacket, it is more difficult to obtain the true temperature at a point with these than with the exposed etched stem type. The latter is usually preferred for test purposes. Where used to measure temperatures in a duct, it may be inserted through a cork or rubber plug. Care must be taken to locate the bulb at the point where the temperature is desired and in many cases several must be used to get a correct average.

Most mercury thermometers are calibrated for complete stem immersion. When incompletely immersed, a stem correction should be made for the most accurate determination. At ordinary atmospheric temperatures the correction is negligibly small, but it usually is important when measuring high temperatures such as those of steam and flue gas. The emergent stem correction may be calculated by the equation:

$$K = 0.00009 D (t_1 - t_2)$$
 (1)

where

K =correction to be added, degrees Fahrenheit

D = number of degrees on the thermometer scale which are not immersed.

t₁ = temperature indicated on the thermometer, degrees Fahrenheit.

t₂ = temperature of the non-immersed mercury column, degrees Fahrenheit.

0.00009 = difference in the coefficient of expansion of the mercury and glass.

In some cases, thermometers are calibrated for a certain depth of immersion indicated by an etched mark on the stem. Should such a thermometer be used for full immersion, a negative stem correction would be in order. In selecting a set of thermometers for a test, it is well to compare the group by immersion in a common bath and note variations. The more accurate ones can thus be selected for the more important positions. The interchanging of thermometers at inlet and outlet tends to cancel variations and therefore may result in greater accuracy. In extreme cases of small temperature differences involving large quantities of heat, it may be advisable to use thermometers graduated in tenths of degrees and mount magnifying glasses on them for accurate reading.

Since the bulb has considerable area, radiant energy may affect temperature readings¹. In measuring room temperatures, care must be taken to locate thermometers away from hot surfaces such as radiators or cold surfaces such as walls or windows. Where this is impractical, shields should be used to screen the bulb from the radiant energy.

Thermocouple

When two dissimilar metals are joined at two points and a temperature difference exists between these junctions, an electromotive force will be developed. Its magnitude depends upon the metals used and the temperature difference of the two junctions. Often the cold junction is kept at 32 F by immersion in an ice bath. In other instances, a higher temperature such as that of the atmosphere is used for this junction. By proper selection of metals, any temperature up to 2900 F may be measured. Readings are obtained by means of a potentiometer or sensitive

¹Errors in the Measurement of the Temperature of Flue Gases, by P. Nicholls and W. E. Rice (A.S.H.V.E. Transactions, Vol. 35, 1929, p. 473).

galvanometer which may be calibrated directly in degrees. A potentiometer balances the electromotive force against a known electromotive force with no current flowing, hence this method is independent of length and variations in resistance of leads. Calibration of thermocouples for high temperatures may be made against known melting points of metals. Radiation effects may be minimized by using the smallest size of wires consistent with mechanical strength. The use of small wires also makes the thermocouple sensitive to minute fluctuations in temperature.

Other advantages of thermocouples are: they are readable at remote points, they may be made recording, and an average temperature may be readily obtained by connecting several couples in series.

Resistance thermometers depend for their operation upon the change of resistance of wire with change in temperature. Their use largely parallels that of thermocouples. Various metals may be used and the range is about the same as for thermocouples.

For measuring high temperatures, such as in furnaces, pyrometers are often used. Radiation pyrometers concentrate the radiant energy on a thermopile, and the reading is obtained on a galvanometer or potentiometer. Optical pyrometers match a narrow spectral band, usually red, emitted by the object with that from a standard electric lamp supplied with electric current.

PRESSURE MEASUREMENT

Barometer

The most accurate barometer for determining the atmospheric pressure is the mercurial type, consisting of a tube over 30 in. long closed at the top and standing in a mercury well. The barometric pressure is expressed as the height of the mercury column above the level of the mercury in the well. Such barometers are equipped with an adjustment to compensate for change in level of mercury in the well. The reading at the tube meniscus is obtained on a vernier scale. When extreme accuracy is required, as in determining the thermodynamic properties of vapors at very low absolute pressures, corrections for the variation of density of the mercury column with temperature should be made. Standard density of mercury is taken at 32 F and the conversion factor from inches of mercury to pounds per square inch is 0.491.

Equation 2 may be used to make corrections for temperature variations from 32 F for mercury columns:

$$h = h_1 \left[1 - 0.000101 \left(t_1 - 32 \right) \right] \tag{2}$$

where

h =corrected column at 32 F, inches mercury.

 h_1 = measured height of the column, inches mercury.

 t_1 = observed temperature of the column, degrees Fahrenheit.

Standard atmospheric pressure at sea level is 29.921 in. mercury. Since normal atmospheric pressure decreases about 0.01 in. mercury for each 10 ft increase in elevation, it is important to make a correction if the elevation of the barometer is not that of the test apparatus. In many cases the barometric reading may be obtained from a nearby weather

bureau station. Inquiry should be made as to whether the value is as observed or corrected to sea level.

Atmospheric pressure may also be measured by an aneroid barometer which is easily portable. In this type, variations in atmospheric pressure bend the thin surface of a box or tube which contains a reduced pressure. The aneroid type is not as accurate as the mercurial and needs frequent calibration against one of the latter type. Most of the pressure gages used in engineering work indicate the difference between the pressure being measured and the atmospheric pressure. Pressures as measured are called gage pressures. Absolute pressure may be obtained by adding barometric pressure and gage pressure algebraically.

Pressure Gages

The Bourdon type gage is a widely used device for measuring pressures. The Bourdon tube is elliptical in cross-section and circular in form, and is connected by suitable linkage to a hand which moves over a dial. An increase in pressure tends to straighten the tube and a decrease has the opposite effect. When used with high temperature steam, the tube must be protected by a water seal. When used with ammonia it must be made of steel or other material not attacked by this substance. When used for sub-atmospheric pressure, the gage is known as a vacuum gage. and is usually graduated in inches of mercury. For pressures above atmospheric, it is termed a pressure gage and is graduated in pounds per square inch. Some are made to read in both directions and are termed compound gages. Calibration is usually made with a dead weight tester. consisting of a platform and weights resting on a piston floating on oil. From the area of the piston and the total weight resting on the oil, the pressure at all points in the fluid is determined. Adjustments are provided in the gage linkage to make necessary corrections. A correction chart may also be made and used for accurate work.

For comparatively low gage pressures above and below atmospheric, the vertical U tube is a simple and accurate gage and is often used for test work with various fluids such as mercury, water, kerosene, or alcohol. Readings may be in inches of any of these fluids.

For measuring pressures within a few inches of water of atmospheric pressure, U gages are often made sloping for greater magnification of scale. In commercial gages of this type, commonly termed draft gages, only one tube of small bore is used and the other leg is replaced by a reservoir. Although the scale is calibrated to read in inches of water, a fluid having the density and characteristics of kerosene is often used. It is important, of course, to use a fluid having the same gravity as that for which the gage was originally calibrated, or to use a correction chart with some other fluid. Such gages may be checked one against another to detect errors in gravity of fluid. For more accurate calibration the gage may be checked against a calibrating device working on the U gage principle which uses hook gages and a micrometer screw. It is not considered desirable to use a slope of less than 1 to 10 in the design of these gages. The accuracy of a draft gage is very dependent on the slope which is usually fixed by a built-in spirit level. If one side of a U gage is open to the atmosphere, the gage indicates pressure above or below atmospheric pressure. If both sides are connected, it indicates the difference in pressure existing between the two points of connection.

For measuring extremely low pressures accurately, very sensitive *micromanometers* of several types are available, such as the Chatelier, the Illinois or Wahlen and the Emswiler^{2,3}. Calibration of these by a hook gage is impossible, and recourse must be made to fundamental calculations involving gravity of fluids and the principles involved. When proved accurate, a micromanometer is very useful for calibrating draft or slant gages.

MEASUREMENT OF AIR MOVEMENT

The problem of measuring air movement may be divided into three main parts: when confined in ducts, when circulating in free spaces, and when entering or leaving such space through openings such as grilles. Other gases might be measured by the same methods, but emphasis here will be on air measurements⁴.

For determining the velocity, and therefore the volume of air flowing in a duct, such as in the test of a fan or a complete ventilating system, the Pitot tube as described in the A.S.H.V.E. Code⁵ is probably most often used. The tube is a double tube 1/16 in. outside diameter with a rounded end up-stream. The inner tube is 1/8 in. inside diameter at the up-stream end, and the pressure in it is the sum of the velocity pressure and static pressure at its location in the duct. The outer tube, otherwise sealed, has 8 holes 0.04 in. in diameter and equally spaced around the circumference, and located eight diameters down-stream. A connection to this tube gives the static pressure. If both tubes are connected to opposite ends of a U gage, the gage indicates velocity pressure. At low velocities the resulting pressure head is so low that it becomes difficult to get accurate gage readings. The velocities used in many ducts are below the lower limit of determination with gages available. The relation between velocity and velocity pressure may be used to determine the range of gage required.

$$V = 1096.2 \sqrt{\frac{h_{\rm v}}{d}} \tag{3}$$

where

V =velocity, feet per minute.

 $h_{\rm v}$ = velocity pressure, inches of water.

d =density of air, pounds per cubic foot.

Air flow in a round duct is seldom uniform. In general, the velocity is lowest near the edges, and maximum at or near the center. In order to obtain higher velocities and more uniform flow across the measuring section, it is sometimes possible to reduce the duct to a smaller cross

4For technical data refer to Fluid Meter Reports, Parts 1—1937, 2—1931, and 3—1933 (American Society of Mechanical Engineers).

²Illinois Micromanometer (University of Illinois, Engineering Experiment Station Bulletin No. 120, p. 91). ³The Weathertightness of Rolled Steel Windows, by J. E. Emswiler and W. C. Randall (A.S.H.V.E. Transactions, Vol. 34, 1928, p. 527).

^{*}Standard Test Code for Centrifugal and Axial Fans, Edition of 1938. See also Standard Code for the Testing of Centrifugal and Disc Fans (A.S.H.V.E. Transactions, Vol. 29, 1923, p. 407; Vol. 37, 1931, p. 363).

section at the Pitot station by use of a long transition piece. In any case, a large number of readings in two traverses should be taken, with 20 being quite desirable. These should be taken at the centers of equal areas for correct determination of volumes. For round pipe, these would be located from the center by multiplying the radius by the following factors: 0.316, 0.548, 0.707, 0.837 and 0.961. A fundamentally correct method of measurement is obtained with a Pitot tube and therefore it can be used without calibration. For small pipes it is sometimes necessary to construct a Pitot tube smaller than the standard size. Such a small Pitot tube should be geometrically similar to the standard tube. Pulsating or disturbed flow will give erroneous results and every effort should be made to remove disturbances in the Pitot tube section.

Many forms of Pitot tubes other than the one described have been used and calibrated. A double-ended tube, one end pointing down-stream, and one up-stream, is sometimes used for low velocities, but it should be carefully calibrated for accurate results. A special form of this tube design consists of two straight $\frac{1}{8}$ in. tubes soldered together, closed at the end, and with a 0.04 in. hole in each tube opposite the line of contact. This tube is useful in exploring velocities on exhaust inlets, such as on hoods placed around grinding wheels.

The rounded approach orifice or nozzle of the general type described in the A.S.H.V.E. Unit Heater⁷ and Unit Ventilator⁸ Codes is an accurate air measuring device. When it is well made, the coefficient closely approaches unity. The velocity at the mouth is increased over that in the duct, and the resulting increased velocity pressures may be measured accurately. The discharge from such a nozzle is uniform⁹ and provides a good location for calibration of air velocity instruments¹⁰.

The Venturi meter is like the nozzle except for the addition of a downstream transition section that reduces the friction drop through the measuring apparatus. Since a good one is expensive, the Venturi meter is seldom used with gases, although it is often used to measure liquids.

The thin-plate square-edged orifice has a decided advantage over the rounded approach orifice in cost. Its coefficient is approximately 0.60. The exact value depends on the location of the connections, the pressure drop, the diameter ratio of orifice to pipe, and the sharpness of the edge¹¹.

Another method of air measurement uses the thermal electric principle where by means of a measured amount of current, heat is put into the air stream. The temperature rise is measured, and with the specific heat of the air mixture known, the weight of air flowing may be calculated. Heat should be applied uniformly to the mass of air passing, and the small temperature difference must be determined accurately.

⁶Technical Notes No. 546, (National Advisory Committee for Aeronautics, November, 1935).

^{&#}x27;Standard Code for Testing and Rating Steam Unit Heaters (A.S.H.V.E. TRANSACTIONS, Vol. 36, 1930, p. 165).

^{*}Standard Code for Testing and Rating Steam Unit Ventilators (ASH.VE. TRANSACTIONS, Vol. 38, 1932, p. 25).

⁹Discharge Coefficients of Square Edged Orifices for Measuring the Flow of Air, by H. S. Bean, E. Buckingham and P. S. Murphy (*Bureau of Standards Journal Researcn*, Vol. 2, 1929, p. 561).

¹⁹A.S.H V.E. RESEARCH REPORT NO 1140—The Use of Air Velocity Meters, by G. L. Tuve, D. K. Wright, Jr., and L. J. Seigel (A.S. H.V.E. Transactions, Vol. 45, 1939, p. 645).

 $^{^{11}\}mbox{Flow}$ Measurement by Nozzles and Orifice Plates (A.S M E $\,$ Power Test Codes, Chapter 4 of Part 5, 1940).

Air Currents in Free Spaces

One of the instruments useful in determining the velocity of air currents in free spaces is the Kata-thermometer. It is essentially an alcohol thermometer with a large bulb. The stem has two marks, one corresponding to 95 F, and the other 100 F. The instrument is heated above 100 F, and the time in seconds required for it to cool from 100 to 93 when placed in the air current gives a measure of the non-directional velocity. The usual way of heating the bulb is in a water bath, and it is important to wipe the Kata-thermometer dry before taking the reading. A thermostatically controlled water bath is very convenient to use along with two instruments so one may be heating while the other is in use. For high atmospheric temperatures the high temperature Kata with a range of 130 to 135 F may be used. Usually several readings are taken in a given location and the average used. Each Kata has its own factor etched on the stem, and this factor must be used with the cooling formula or chart for obtaining the velocity. The Kata-thermometer is useful in exploring ventilated spaces to determine whether the proper air movement and distribution is being maintained. The Kata-thermometer also finds use in determining the cooling power of the atmosphere, since it loses heat by radiation and convection when dry, and by radiation, convection, and evaporation when the bulb is equipped with a wetted cloth covering¹².

Another instrument for measuring low velocity air currents is the heated thermometer anemometer¹³. This consists of an ordinary mercurial glass thermometer with a resistance winding on the bulb. Current is supplied from an external source in a measured amount. The temperature rise shown on this heated thermometer over that shown by an ordinary thermometer at the same location, and the current supplied, make it possible to calculate the non-directional velocity of the air stream. Since a smaller bulb is used than that on the Kata-thermometer, it is less affected by radiant heat sources.

Another instrument is the hot wire anemometer which is available in several patterns. In general, a measured current is supplied to raise the temperature of a fine bare wire above the temperature of the surrounding air. With the use of a very fine wire, minute fluctuations in velocity may be measured, and the area exposed to radiant exchange with heated or cooled surfaces is at a minimum. This instrument is easily made remote reading or recording. A group of them may be connected together to give the average velocity in a space, or the velocity at individual points within a test space, by suitable switching arrangements^{14,15}.

Deflecting Vane Anemometer

The deflecting vane anemometer consists of a pivoted vane enclosed in a case, against which air exerts a pressure as it passes through the instrument from an up-stream to a down-stream opening. The movement of the vane is resisted by a hair spring and a damping magnet.

¹² Temperature, Humidity and Air Motion Effects in Ventilation, by O. W. Armspach and Margaret Ingels (A.S. H.V.E. Transactions, Vol. 28, 1922, p. 103)

¹³The Heated Thermometer Anemometer, by C. P. Yaglou (Journal Industrial Hygiene and Toxicology, Vol. 20, October 1938, No. 8)

¹⁴Development of Testing Apparatus for Thermostats, by D. D. Wile (A S.H.V.E. Transactions, Vol 42, 1936, p 349)

¹⁵ Linear Hot Wire Anemometer, Its Application to Technical Physics, by L. V. King (Journal Franklin Institute 1916)

The instrument gives instantaneous readings of directional velocities on an indicating scale. When used in fluctuating velocities, it is necessary to average visually the swings of the needle to obtain average velocities. This instrument is very useful in locating and measuring peak velocities that may be objectionable in air conditioned spaces. Various attachments are available, such as a double tube arrangement for obtaining velocities in ducts, and a device to measure static pressures. Another attachment will be mentioned later under the measuring of velocities at inlets and outlets. Each instrument and the attachments for it must receive individual calibration.

The deflecting vane anemometer is useful for studying the mixing of air in a room with the conditioned air from a supply outlet. Effects of air velocity, size and shape of outlet and angle of stream may be evaluated, using the principle of conservation of momentum¹⁶.

Propeller or Revolving Vane Anemometer

The propeller or revolving vane anemometer consists of a light revolving wheel connected through a gear train to a set of recording dials that read the linear feet of air passing in a measured length of time. It is made in various sizes, 3 in., 4 in., and 6 in. being most common. Each instrument requires individual calibration. At low velocities the friction drag of the mechanism is considerable. In order to compensate for this, a gear train that overspeeds is commonly used. For this reason the correction is often additive at the lower range and subtractive at the upper range with the least correction in the middle range of velocities. Most of these are not sensitive enough for use below 200 fpm; therefore, they are not commercially available for the low velocity range met with in air conditioned spaces.

Measurement of Velocities at Inlets and Outlets of Ducts

In the field it is often advisable to make volume measurements at the face of the supply openings. Often it is hard to get into the duct system, or it is difficult to find sections where the flow would be sufficiently uniform. The many types of approaches and grilles used make a high degree of accuracy almost impossible. For accuracy the instrument and its application should be checked on a similar approach and grille in the laboratory before use in the field. Where extreme accuracy is not required, as in balancing a system, various instruments may be used.

Tests have shown that the propeller type anemometer can be used successfully on most of the common types of supply grilles^{17,18}. The core area is divided into equal squares, and the anemometer is held against the face of the grille for the same length of time in each. To get the air volume in cubic feet per minute, the average corrected velocity in feet per minute thus obtained is multiplied by the average of the gross and net free area of the grille (core) in square feet.

¹⁶A.S.H.V.E. RESEARCH PAPER—Entrainment and Jet-Pump Action of Air Streams, by G. L. Tuve, G. B. Priester and D. K. Wright, Jr. (A.S.H.V.E. JOURNAL SECTION, Heating, Piping and Air Conditioning, November, 1941, p. 708).

¹⁷A.S.H.V.E. RESEARCH REPORTS Nos 857, 911 and 966—Measurement of the Flow of Air Through Registers and Grilles, by L. E. Davies (A.S.H.V.E. Transactions, Vol. 36, 1930, p. 201, Vol. 37, 1931, p. 619, and Vol. 39, 1933, p. 373).

¹⁸A.S. H.V.E. RESEARCH REPORT No. 1162—Air Flow Measurements at Intake and Discharge Openings and Grilles, by G. L. Tuve and D. K. Wright, Jr. (A S.H.V.E. Transactions, Vol. 46, 1940, p. 313).

On exhaust grilles, the anemometer traverse is made as described previously. The air volume may be determined by multiplying the corrected velocity in feet per minute by the gross core area of the grille in square feet and by a coefficient for average conditions of 0.85. This coefficient allows for the interference of the grille bars and the effect on the anemometer of the air entering an exhaust grille through 180 deg¹⁹.

When a propeller type anemometer is held in a stream of varying velocities, it tends to indicate higher than the true average. that is, the speed of the propeller is nearer to the top velocity in its area than it is to the minimum velocity. This is the main reason for the large difference in ratings of unit ventilators by the anemometer method and by air

volume measurements in a duct approach to the inlet²⁰.

Any of the other anemometers described can be used within their range at the face of supply grilles when properly applied. In principle it is a case of finding the velocity at many points and using the average thus found with the correct discharge area at that cross-section. The deflecting vane anemometer equipped with a jet on the end of a rubber tube has been found especially convenient and accurate on supply grilles²¹. On modern air conditioning grilles the core area is used without a correction coefficient when the jet is held one inch away from the face of the grille. At this distance the constriction due to the thin bars has disappeared since the small air jets have reunited, and the air stream has not yet spread beyond the core dimensions. With deflecting grilles the exploring jet should be turned to the angle giving a maximum reading. This method of using this instrument is only applicable to supply grilles and cannot be used on exhaust grilles because of static pressure differences at the location of the jet and the instrument case.

While hardly a quantitative instrument, smoke is very useful in studying air streams and currents. The application of a more accurate instrument is often made more exact by a preliminary exploration with smoke. A mixture of potassium chlorate and powdered sugar in equal portions gives a very satisfactory non-irritating smoke. It is fired by a match, and since considerable heat is evolved, it should be placed in a pan away from inflammable objects.

AIR CHANGE MEASUREMENTS

Atmospheric air contains a certain amount of carbon dioxide. Its concentration is increased within enclosures by the carbon dioxide given off by occupants. The air changes through all means: open windows, infiltration, and mechanical ventilation, may be measured by the carbon dioxide concentration²². The Petterson-Palmquist apparatus has been accepted as the standard device for the determination of carbon dioxide in air. The principle used is absorption by caustic potash solution of the carbon dioxide in a known volume of air, and a remeasurement of the volume in a finely graduated capillary tube. Since the concentrations

2A.S.H.V.E. RESEARCH REPORT No. 959—Indices of Air Change and Air Distribution, by F. C. Houghten and J. L. Blackshaw (A.S.H.V.E. Transactions, Vol. 39, 1933, p. 261).

¹⁹A.S.H.V.E. RESEARCH REPORT No. 1092—The Flow of Air Through Exhaust Grilles, by A. M. Greene, Jr., and M. H. Dean (A.S.H.V.E. TRANSACTIONS, Vol. 44, 1938, p. 387).

²⁰A.S.H.V.E. RESEARCH REPORT No. 936—Investigation of Air Outlets in Class Room Ventilation, by G. L. Larson, D. W. Nelson and R. W. Kubasta (A.S.H.V.E. Transactions, Vol. 38, 1932, p. 463).

²¹A.S.H.V.E. RESEARCH REPORT No. 1076—Air Distribution From Side Wall Outlets, by D. W. Nelson and D. J. Stewart (A.S.H.V.E. TRANSACTIONS, Vol. 44, 1938, p. 77).

are in the order of 3 to 10 parts in 10,000, extreme care must be used to obtain accurate determinations. Since occupants also give off moisture, the increase in humidity may also be used as an index of ventilation within a space. Humidity determinations are much simpler to make, but the accuracy may be affected slightly by absorption of moisture by hygroscopic materials such as fabrics and wood within the space. Measured amounts of either carbon dioxide or water vapor may be added for test purposes. Neither method is used at the present time, and more direct methods of measuring air supply and air distribution are in favor.

MEASUREMENT OF RELATIVE HUMIDITY

Wet- and dry-bulb mercurial thermometers are usually used to determine relative humidity. The sling psychrometer is a common mounting of the thermometers to permit swinging. The wet-bulb wick and water for wetting it must be clean, and the temperature of the water should preferably be slightly above the wet-bulb temperature. An air stream velocity of 900 fpm is recommended, although velocities from 300 fpm to 1000 fpm have been found satisfactory for passage over the wet-bulb wick. The velocity may be obtained by whirling the thermometer or by aspirating air over the wet-bulb. In ducts, the air flow itself gives the proper evaporating conditions. Several observations should be made until the minimum temperature is reached. Relative humidity may be obtained from tables or psychrometric charts²³. Although it is common practice to use the charts which are based on a barometric pressure of 29.92 in. mercury, a correction for barometric pressure is necessary for extreme accuracy. This correction is made by multiplying the relative humidity as determined from the chart by the ratio of the observed barometric pressure and the standard barometric pressure.

For temperatures below 32 F, the water on the wick is allowed to freeze, during which time the temperature will drop below the true wetbulb. A thin film of ice is more desirable than a thick one, and it is satisfactory to remove the wick and freeze a thin film directly on the bulb. Care must be taken to read the temperatures accurately due to the slight wet-bulb depressions. Tables for ice conditions must be used²⁴.

The dew-point apparatus for humidity measurements consists of a polished plated container cooled by the evaporation of a volatile liquid within. The temperature at which the first slight water vapor forms is the dew-point. If the temperature is below 32 F, the deposit will appear as frost. Another method of determining humidity is by chemical means in which the water vapor is removed by a drying agent and weighed on a chemical balance. A thermal conductivity method is available for temperatures above 212 F or for extremely low humidities²⁵.

DUST DETERMINATION

The measurement of dust is complicated by the many kinds involved. Some of the collecting methods are impingement on viscous surfaces,

²³Psychrometric Tables for Vapor Pressure, Relative Humidity and Temperatures of the Dew-Point, (U. S. Department of Agriculture, Weather Bureau, Washington, D. C.).

²¹A Review of Existing Psychrometric Data in Relation to Practical Engineering Problems, by W. H. Carrier and C. O. Mackey (A.S. M. E. Transactions, January, 1937, p. 33; Discussion, A.S. M. E. Transactions, August, 1937, p. 528).

²⁵Gas Analysis by Measurement of Thermal Conductivity, by H. A. Daynes (Cambridge Press, 1933).

impingement at high velocity under water, collection on porous crucibles through which air passes, and electric precipitation. Determination may be by direct weighing of samples or by microscopic counting. The most commonly used methods are the modified Hill dust counter using microscopic count, the Smith-Greenburg impinger which collects samples in water and which are counted under a microscope in a Sedgwick cell²⁶, and the Lewis sampling tube with the analytical determination of the increase in weight of a porous crucible. All reports should state the method of sampling and counting. The A.S.H.V.E. Code for Testing and Rating Air Cleaning Devices Used in General Ventilation Work specifies the porous crucible method²⁷.

HEAT TRANSFER THROUGH BUILDING MATERIALS

The A.S.H.V.E. Standard Test Code for Heat Transmission Through Walls²⁸ describes the construction and use of the guarded hot box for determining overall heat transmission coefficients of built-up sections. The standard temperature range through the test section is specified as 80 F and the mean temperature of the wall as 40 F.

In June, 1942, the A.S.H.V.E. adopted a standard test procedure for determining the conductivity of materials by the use of a guarded hot plate²⁹. The Nicholls heat meter is very useful for determining the heat flow through walls of buildings³⁰.

MEASUREMENT OF HEAT EXCHANGE FOR COMFORT CONDITIONS

Several instruments have been devised to measure the effect of various factors as they relate to the comfort of the body³¹. The principal ones are the Kata-thermometer, Dufton's eupatheoscope, Vernon's globe thermometer, Winslow and Greenburg's thermo-integrator, and Yaglou's heated globe^{32,33}. These instruments are attempts to stimulate and measure the heat exchanges between the human body and its environment. In order to stimulate conditions of hard physical labor, the entire surface of the device is covered with a wet cloth. At present special attention is being given the thermo-integrator as a means of measuring radiant effects of environmental conditions.

COMBUSTION ANALYSIS

The analysis of flue gases to determine completeness and efficiency of combustion is usually made chemically with the Orsat apparatus. This

²⁶ Public Health Bulletin, No. 144, 1925, (U. S. Public Health Service).

[&]quot;Testing and Rating of Air Cleaning Devices Used for General Ventilation Work, by S. R. Lewis (A S.H.V.E. Transactions, Vol 39, 1933, p. 277)

²⁸A.S.H.V.E. Standard Test Code for Heat Transmission Through Walls (ASH.VE. Transactions, Vol. 34, 1928, p. 253).

²⁸ Standard Method of Test for Thermal Conductivity of Materials by Means of the Guarded Hot Plate (Tentative). Reprints of this code are available at \$ 10 a copy.

MA.S.H.V.E RESEARCH REPORT No. 685—Measuring Heat Transmission in Building Structures and a Heat Transmission Meter, by P. Nicholls (A.S.H.V.E. Transactions, Vol. 30, 1924, p. 65).

³¹Measurement of the Physical Properties of the Thermal Environment, by D. W. Nelson, F. R. Bichowsky, L. M. K. Boelter, R. S. Dill, A. P. Gagge, John A. Goff, A. E. Hershey, F. C. McIntosh, F. W. Reichelderfer, G. L. Tuve and C. P. Yaglou (A. S. H. V. E. Journal Section, *Heating*, *Piping and Air Conditioning*, June, 1942, p. 382).

³²Instruments and Methods for Recording Thermal Factors Affecting Human Comfort, by C. P. Yaglou, A. P. Kratz and C-E. A. Winslow (Year Book, American Journal Public Health, 36-37).

[™]The Thermo-Integrator—A New Instrument for the Observation of Thermal Interchanges, by C.-E. A. Winslow and Leonard Greenburg (A.S.H.V.E. TRANSACTIONS, Vol. 41, 1935, p. 149).

consists of a measuring burette, a leveling bottle, and three pipettes. Carbon dioxide is absorbed in the first pipette by potassium hydroxide, oxygen in the second by potassium pyrogallate, and carbon monoxide in the third by cuprous chloride. A known volume of gas is drawn in, and after each of the three absorptions the reduced volume is again measured in the burette. Pressure and temperature of the gas sample are kept constant while measuring. Several passes are made through each pipette which contains tubes or glass beads to increase the wetted surface. It is essential that each reaction be completed before the next reaction is started. Since the life of the reagents is limited, it is well to keep a record of the number of samples tested. Care is needed in operation to prevent the pulling of reagents out of the pipettes into the capillary tubing and burette. Many recording gas analyzers are available and are usually found in the larger plants.

SMOKE DENSITY MEASUREMENTS

A common method of determining the relative density of smoke issuing from chimneys is by visual comparison with the Ringelmann Smoke Charts. A sheet of four ruled charts with varying weights of black lines is used. The sheet is 12 by 26 in. overall on which are four charts, each consisting of 294 squares, 14 wide and 21 high. The width of line and spacings are given in Table 1.

NUMBER OF CARD	THICKNESS OF LINES, MM	DISTANCE IN CLEAR BETWEEN LINES, MM	
1	1.0	9.0	
$ar{2}$	2.3	7.7	
3	3.7	6.3	
4	5.5	4.5	

TABLE 1. RINGELMANN SMOKE CHART SPACINGS

The charts are placed 50 ft from the observer and in line with the stack to be observed. At this distance the lines disappear and the charts appear as varying shades of gray. At times a white chart is added as No. 0 to the left of the four charts 1 to 4, and a black chart to the right as No. 5.

Apparatus using the photo-electric cell has been devised for recording smoke densities in large plants.

CARBON MONOXIDE MEASUREMENT

In garages and vehicular tunnels carbon monoxide is a constant potential danger. In small amounts it causes headaches and inefficiency, and in larger concentrations it causes collapse and death in rather short periods of exposure. A method of analyzing for carbon monoxide concentrations completes the oxidation of the carbon monoxide in a known volume of sample, in the presence of a catalyst. The heat resulting is measured by a thermocouple calibrated in parts per 10,000 of carbon monoxide³⁴.

¹⁴A Carbon Monoxide Recorder, by S. H. Katz, D. A. Reynolds, H. W. Frevert and J. J. Bloomfield (U. S. Bureau of Mines, Technical Paper No. 355, 1926).

Chapter 36

MOTORS AND MOTOR CONTROLS

Direct Current Motors, Alterating Current Motors for Single Phase and Polyphase, Special Applications, Classification of Motors, Manual Control, Automatic Control, Pilot Controls, Direct Current Motor Control, Squirrel-Cage Motor Control, Multispeed Motor Control, Wound Rotor Motor Control, Single Phase Motor Control

THE electric motor, available in many different types suitable for various services, is now the most widely used form of prime mover. The equipment for starting, controlling and protecting these motors varies with the type and with the functions it is desired to attain. Motors used for heating, ventilating and air conditioning applications may be divided into two general classifications: (1) for use with direct current, and (2) for use with alternating current.

All driven machinery has certain torque characteristics which may vary with the speed, such as fans, which have sharply increasing torques with increasing speed. Others, such as reciprocating compressors, have a constant torque characteristic with changing speed, while still others such as stokers, may have rising torque with decreasing speed. Motors with suitable torque characteristics should be applied to the driven load.

All electric motors, as with nearly all machines, are rated on the basis of the total temperature which the motor attains under operating conditions as well as other characteristics. The motor temperature is a result of both the ambient temperature and temperature rise of the motor. The motor temperature rise is in turn determined by motor construction and motor losses. In selecting motors careful attention should be given to the ambient temperature, and rated motor rise in order that the resulting motor temperature does not exceed allowable total temperature, otherwise greatly shortened motor life will result. Consult motor manufacturers for allowable temperatures.

DIRECT CURRENT MOTORS

The three types of direct current motors available are: (1) shunt wound, (2) compound wound, and (3) series wound.

Shunt Wound motors, being suitable for application to fans, centrifugal pumps, or similar equipment, where the amount of starting torque required is relatively small, are used for the majority of applications in the field of heating, ventilating and air conditioning. They may be used on reciprocating pumps and compressors, if started under unloaded conditions.

Compound Wound motors are required for application to reciprocating compressors, stokers, reciprocating pumps when started under loaded conditions, and also when applied to similar equipment where high starting torque is required. Whenever frequent starting makes high starting and accelerating torque desirable, or where sudden changes of load are encountered, compound wound motors are used.

Series Wound motors find only limited application in a few special cases and are available in only a limited range of sizes.

Speed Characteristics

Direct current motors are available with speed characteristics of four types:

- 1. Constant speed.
- 2. Adjustable speed.
- 3. Adjustable varying speed.
- 4. Varying speed.

Constant Speed motors may be shunt wound or compound wound. Shunt wound motors have a nearly flat speed-load characteristic, with a speed regulation, when hot, from full load to no load of 15 per cent for up to 34 hp, 12 per cent for one to 5 hp and 10 per cent for 7½ hp and larger, based on full load speed. Compound wound motors have a speed regulation over the range from full load to no load of not more than 25 per cent, based on full load speed.

Adjustable Speed motors are usually shunt wound since it is impractical to maintain the proper relation between the shunt and series fields of compound wound motors when wide variations of the field strength are required to obtain the speed adjustment.

Adjustment of the speed of shunt wound motors is obtained by field control on motors rated at $\frac{3}{4}$ hp and larger, with the minimum or base speed at full field strength and higher speeds at reduced field strength (obtained by adding resistance in the field circuit). The speed regulation from no load to full load will not exceed 22 per cent for 2 to 5 hp; nor 15 per cent for $7\frac{1}{2}$ hp and larger. Below 2 hp, the regulation may exceed 22 per cent. If closer speed regulation is required, specially wound motors must be obtained.

Motors with a speed range by field control of 3 to 1 or more are considered as adjustable speed, with less than 3 to 1 as constant speed. These motors can be rated on the basis of: (1) tapered continuous horsepower output with constant minimum rated output up to a speed ratio of $1\frac{1}{2}$ to 1 and increasing horsepower up to 3:1 and constant maximum horsepower (next horsepower rating above minimum rated horsepower) above 3:1; with variable motor temperature rise; (2) constant minimum horsepower from 1:1 to 4:1 with variable temperature rise; and (3) constant maximum horsepower from 1:1 to 4:1 with constant temperature rise for one hour operation and then the motor allowed to cool before further operation. High efficiency is maintained over the entire speed range.

Adjustable Varying Speed motors may be either shunt or compound wound and speed adjustment is obtained by adding resistance in series

with the armature. The speed thus obtained is always below the rated full field speed. Any standard shunt or compound wound constant speed motor may be used in conjunction with the proper armature resistor. The usual range of speed reduction is 50 per cent. The speed obtained for any setting of the resistor depends on the load of the motor and will vary with this load.

The speed regulation at high speed is comparable to a constant speed motor, but becomes poorer as the speed is decreased. When operating at reduced speed, an increased torque requirement which the motor could easily handle at rated speed is easily sufficient to stall the motor; for example, a motor operating at two-thirds speed would be stalled by a torque about 50 per cent in excess of the normal requirement.

The efficiency of the motor is reduced as the speed is reduced, since the loss in the resistor is greater at lower speeds. Speed reduction by armature control is usually selected where:

- 1. A wide speed range is not required.
- 2. Close speed regulation is not necessary.
- 3. Operating time at reduced speed is short.
- 4. Operating load at reduced speed is small so that the reduced efficiency can be ignored.
 - 5. The rating is less than 1 hp.

By proper field, and armature voltage control, motors are available for speed ranges of 8:1 to 16:1 in sizes up to 30 hp. Below basic speed the motors are rated at constant torque and speed control is obtained by armature voltage control. Above basic speed, speed variation is obtained by field control and the motors are rated at constant horsepower. The motors will operate continuously, without injurious temperature rise, in normal ambient, to a speed of one-sixth of basic speed. Below one-sixth basic speed, motor should be operated intermittently only, because of reduced ventilation at the lower speed.

Varying Speed motors are series wound and the speed varies with the load on the motor. They should be used where: (1) the load is practically constant or increases with speed, and (2) the motor can easily be controlled by hand. They should not be used where there is a possibility of operation without load or at a reduced load, as the speed of the motor may become dangerously high.

For shunt wound motors with full field strength, the starting torque varies almost directly with the starting current, which is dependent on the resistance in the armature circuit. With varying positions of the starting rheostat, it is possible to obtain a wide range of starting torque, within the limits of starting current permitted by the power company.

A compound wound motor requires somewhat less current for the same starting torque. The maximum torque of shunt, series, and compound wound motors is limited by commutation.

ALTERNATING CURRENT MOTORS

Alternating current motors may be divided into two principal classifications, namely, (1) those motors which may operate on single phase

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

current, and (2) those motors which may operate on polyphase current.

- 1. Single phase motors are available in four common types:
 - a. Capacitor motors.
 - (1) Capacitor start, capacitor run.
 - (2) Capacitor start, induction run.
 - b. Repulsion induction motors.
 - c. Repulsion start, induction run motors.
 - d. Split phase motors.
- 2. Polyphase (2 or 3 phase) motors are available in three common types:
 - a. Squirrel-cage induction motor.
 - b. Wound rotor induction motor.
 - c. Synchronous motor.

Where the public utility supplying the current determines that a particular installation should be served with polyphase current, it is generally understood that the major portion of the motors will be for polyphase current, although it is commonly acceptable for the smaller motors to be single phase. This will in general limit the use of single phase current to the smaller motor ratings and the polyphase to the larger motors. Domestic and semi-commercial installations will usually be single phase.

Single Phase Motors

Capacitor type motors are available in ratings up to 5 hp for general purposes. These motors are recommended for pumps, compressors and fan duty including housed centrifugal fans and propeller fans. The general purpose motor is commonly known as a high torque capacitor motor having approximately 300 per cent starting torque with normal current and having a different value of capacitance for starting and running which is automatically changed over by a mechanical or electrical means.

Capacitor motors for fan duty are usually divided into the open high torque type for belted fans and the totally inclosed non-ventilated low torque type for propeller fans mounted directly on the motor shaft. The open low torque capacitor motor may be used with small centrifugal fans mounted on the motor shaft.

Although the motors for belted fans are called high torque, the available starting torque is somewhat less than the torque of the general purpose motor and the slip at full load is approximately 8 per cent. With this larger amount of slip, adjustable speed down to 60 or 70 per cent of rated speed may be obtained by line voltage variation. Motors for propeller fan drive may be supplied with sleeve bearings to obtain greater quietness in the smaller sizes where the fan thrust does not exceed approximately 25 lb. For larger fans, thrust ball bearing motors should be used. Low torque capacitor motors have approximately 50 to 60 per cent starting torque and do not change the value of capacitance from start to run. Two of the curves in Fig. 1 show the relation of torque and speed for the low and high torque capacitor motors.

Capacitor motors with high slip may have taps brought out from the main winding which, when connected to the line, give a second speed of

from 65 to 70 per cent of the normal speed. This type of motor must be specially designed for the individual fan, otherwise the correct low speed will not be obtained. Care should be exercised in applying it to centrifugal fans where restriction to the air flow through the use of adjustable dampers changes the motor load and consequently the speed. This same effect is also found in transformer speed controllers, however, a series of transformer taps allows for a selection which partially overcomes the effect of change in motor load.

Capacitor start-induction run motors are usually confined to the smaller horsepower ratings and differ from the capacitor motors by having no running capacitor. The value of starting capacitance used may vary with the different types of applications involved. These motors may be used for practically any of the applications met in air conditioning. However,

Fig. 1. Typical Speed-Torque Curves for Small Motors

consideration should be given to the fact that they are not as quiet as a capacitor motor.

Repulsion induction motors start as repulsion motors and operate under full speed as combined repulsion and induction motors through the inherent characteristics of the motor which has, in addition to the wire winding with commutator, a buried squirrel-cage winding. No additional switching devices are required to change over from start to run. This and the repulsion motor described later may be used for constant speed drives where high starting torque is required and where commutator and brush noise is not a factor.

The repulsion start-induction run motor starts as a repulsion motor, has a switching means for transferring from start to run which short circuits the commutator and permits operation under full speed as a wound induction motor. This motor is suitable for applications similar to those for which the repulsion induction motor is used.

The split phase motor has a high resistance auxiliary winding in the

circuit during starting which is disconnected through the action of a centrifugal switch as the motor comes up to speed. Under running conditions, it operates as a single phase induction motor with one winding in the circuit. These units are available for the lower horsepower ratings and when equipped with a high slip rotor may be used for adjustable varying speed through line voltage control.

Polyphase Motors

Squirrel-cage induction motors are available in four types, three of

Fig. 2. Comparative Curves of Squirrel-Cage Induction Motors

which are normally used in heating, ventilating, and air conditioning applications, and in a full range of sizes:

- 1. The normal torque, normal starting current squirrel-cage motor has close speed regulation, high efficiency, high power factor, medium starting torque, high pull-out torque, and is suitable for general purpose applications. This motor has a large current inrush and a low starting power factor. When central stations require current limiting starting equipment on such motors, the starting torque is less.
- 2. The normal torque, low starting current squirrel-cage motor has approximately the same torque as the normal current motor, but the starting current is about 20 per cent less than the normal torque motor on full voltage and ordinarily within most power companies locked rotor current limits on sizes up to 30 hp.

This motor lends itself to automatic or remote control because no current limiting starting equipment is necessary up to and including 30 hp. A magnetic starter with low voltage and thermal relay overload protection gives the most satisfactory service.

CHAPTER 36. MOTORS AND MOTOR CONTROLS

3. The high torque, low current squirrel-cage motor has a starting torque approximately 25 to 50 per cent greater than the normal torque motor on full voltage with starting current approximately equal to the normal torque low starting current motor started on full voltage and within the required limits on 30 hp sizes and smaller. These motors are also started directly across-the-line on full voltage through a magnetic starter or other approved starting device.

Typical speed torque and speed current curves for the three types of motors in the integral horsepower size are shown in Fig. 2. A speed torque curve for a fractional horsepower size motor of the polyphase

Fig. 3. Efficiencies and Power Factors for Squirrel-Cage Induction Motors

type is given in Fig. 1. Some of the motor manufacturers have taken definite steps to combine the normal torque, normal starting current motor, with the normal torque low-starting current motor, and supplying one type of motor with normal torques and a starting current between the normal and low-starting current values now used.

These three types of motors are also available in two, three, or four speed designs with variable torque, constant torque, or constant horse-power characteristics. Two speed motors may be either single, or two winding; three speed motors are two winding; and four speed motors are two winding. When a motor can be wound with a winding for each speed, better operating characteristics may be obtained because no

sacrifice is made for the other speed and operating characteristics approaching single winding motors may be expected.

Frequently, multispeed motors lend flexibility to an installation that cannot be obtained in any other way.

Multispeed motors are started directly across the line through magnetic starting equipment with overload and low voltage protection and may have compelling relays to insure starting on low speed regardless of the ultimate running speed. Starting on low speed limits the starting current to the starting current of the low speed winding and consequently lowers the maximum demand.

Often where the central station requires current limiting starting equipment for the normal torque, normal starting current motor, it is advisable to use the normal torque low starting current multispeed, or the wound rotor motor. High slip polyphase motors may be used for adjustable varying speed drives in a manner similar to that described for

Fig. 4. Variation of Efficiency and Power Factor with Load for Squirrel-Cage Induction Motors

capacitor motors, with either a transformer speed regulator or tapped motor windings.

The approximate full load efficiencies and power factors for general purpose normal torque, normal starting current squirrel-cage induction motors are shown in Fig. 3. The change of efficiency and power factor of a typical normal torque, normal starting current squirrel-cage induction motor with load is illustrated in Fig. 4. The efficiency of a normal torque, low starting current motor is essentially the same as shown in Fig. 3 and the power factor slightly lower. For the high torque low starting current motor the efficiency is considerably lower than Fig. 3 and the power factor slightly lower than shown. It is apparent from these motor characteristics that a squirrel-cage motor may be selected for operating any air conditioning and allied equipment.

Some polyphase induction motors are constructed with two windings on the rotor, one of which is a high resistance, squirrel-cage winding used in starting and gives a high starting torque approximately the same as the high torque, squirrel-cage. A centrifugal mechanism within the motor switches to the second low resistance winding when the motor

CHAPTER 36. MOTORS AND MOTOR CONTROLS

comes up to speed, thus obtaining running characteristics equal to the normal torque, normal current squirrel-cage motor. The starting power factor of the motor is high.

Wound rotor motors are built for two classes of service, constant speed and adjustable variable speed. The motors are identical in each case and use the same primary control, the only difference being in the secondary control. Wound rotor motors for constant speed service are used where high starting torque with low starting current is required for bringing heavy loads up to speed. The resistance is in the secondary or rotor circuit, only when starting, and is short circuited when the motor is up to speed.

For adjustable varying speed service, part or all of the secondary

Fig. 5. Performance Curves for Wound Rotor Motor with Different External Resistances

controller resistance is in the circuit whenever the motor is operating below full speed. The speed obtained with a given resistance in the secondary circuit is dependent on, and changes within limits, with the load on the motor. The horsepower developed by the motor driving a load requiring constant torque, such as a reciprocating compressor, is approximately proportional to the speed, whereas the power input required by the motor is practically the same at reduced speed as at full speed. Hence the efficiency at reduced speed is much lower than at full speed. For such a motor the minimum speed is approximately 50 per cent of the full load speed. For loads whose torques decrease with speed, such as fans and blowers the horsepower developed is approximately proportional to the cube of the speed and the power input to the motor is reduced with decreased speed. However, the efficiency is lower than full

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 1. Classification of Motors

CURRENT	Турв	SPEED CHARAC- TERISTICS	Full Voltage		T Y_	Type of	
			STARTING TORQUE	STARTING CURRENT	HP RANGE	Application See Footnote*	
Constant Speed Drives							
Direct	1. Shunt	Constant	Normal	Normal	All	(a) Fans and (c) centrifugal pumps and centrifugal compressors	
	2. Compound	Constant or Variable	High	Normal	All	(b) (c) (e) Reciprocat- ing pumps and fre- quent or hand starting	
	3. Series	Variable	High	Normal	Small	(d) Fans direct con- nected	
Poly- Phase	4. Squirrel-Cage General Purpose Normal Torque	Constant	Normal 0.8-1.5 times	High 6-8 times	All	(a) Fans and (c) centrifugal pumps and centrifugal compressors	
	5. Squirrel-Cage Normal Torque	Constant	Normal 0.8-1 5 times	Normal 5-6 times	Medium Small	(a) Fans and centri- fugal pumps and centrifugal com- pressors	
	6. Squirel-Cage · High Torque	Constant	High 2-2.6 times	Normal 5-6 times	Medium Small	(b) Reciprocating pumps (e) and compressors started loaded	
	7. Wound Rotor	Constant or Variable	High 1-2.5 times	Low 1-3 times with sec- ondary control	All	(a) Hoists (b) reciprocating pumps and compressors (c) and frequent (e) or hand start	
	8. Synchronous High Speed	Constant	Normal 0.75–1.75 times	Normal 5-7 times	Medium Large	(s) Fans and cen- trifugal pumps and centrifugal com- pressors	
	9. Synchronous Low Speed	Constant	Low 0.3–0 4 times	Low 3-4 times	Medium Large	(a) Reciprocating compressors starting unloaded	
Single PHASE	10. Capacitor	Constant	High	Normal	Small	(b) Pumps and compressors	
	11. Capacitor Fan	Constant	Normal	Normal	Small	(a) Fans, centrifugal pumps	

^{*}Applications:

a. Drives having medium or low starting torque and inertia (WR^2) such as fans and centrifugal pumps or reciprocating pumps and compressors started unloaded.

b. Drives having high starting torques, such as reciprocating pumps and compressors started loaded.

[.] c. Similar to (a) except where frequent or hand starting (large WR^2) requires a higher starting and accelerating torque.

d. Fans direct connected.

e. Stoker drives.

CHAPTER 36. MOTORS AND MOTOR CONTROLS

Table 1. Classification of Motors—(Concluded)

Current		SPEED CHARAC- TERISTICS	Full Voltage		11-	Type of
	Түре		STARTING TORQUE	STARTING CURRENT	HP RANGE	Application See Footnote*
	12. Capacitor Start Induction Run	Constant	High	Normal	Small Fractional	(a) Fans (b) pumps and compressors
SINGLE PHASE	13 Repulsion Induction	Constant	High	Normal	Medium Small	(a) Fans (b) pumps and compressors
	14. Split Phase	Constant and Adjust- able	Normal	Normal	Fractional	(a) Fans (b) pumps and compressors (d) fans—direct

Adjustable Speed Drives

	'					
DIRECT	 15. Shunt Field Adjustment 16 Shunt Armature Resistor 17. Variable Voltage Control 		Normal Normal	Normal Normal	All All	(a) Fans and (e) centrifugal pumps (a) Fans and (e) centrifugal pumps (d) Fans and centrifugal pumps
	18. Squirrel-Cage High Slip, Transformer	Variable	Normal	Normal	Medium Small	(a) Fans
POLY- PHASE	Adjustment 19. Squirrel-Cage Separate Wind- ing or Regrouped Poles	Constant Multi- Speed	Normal or High	Normal or Low	Ail	(a) Fans (b) pumps and (c) compressors
	20. Wound Rotor, External Secondary Resistance	Variable	High	Low	All	(a) Fans (b) centrifugal pumps and compressors
Single Ph ase	21. Repulsion	Variable	High	Normal	Low and Fractional	(a) Fans—centrifugal pumps (b) compressors
	22. Capacitor Low Torque Tapped Winding	Variable Two Speed	Low	Normal	Fractional	(d) Fans, direct
	23. Capacitor Low Torque Trans- former Adjust- ment	Variable	Low	Low	Fractional	(d) Fans
	24. Split Phase Regrouped Poles	Constant	Normal	Normal	Fractional	(d) Fans

load efficiency. For loads with greatly lower horsepower requirements at reduced speed motors can be furnished with minimum speeds of 25 per cent of maximum speed.

The curves of Fig. 5 indicate the performance of a typical wound rotor motor with various values of secondary or external resistance. With various values of resistance the motor will operate with different speeds below full load speed, depending on the load torque. By use of a suitable resistor the motor can be operated continuously at reduced speed.

Synchronous motors are ordinarily used where there is a need for or advantage in obtaining power factor correction and high efficiency, or where constant speed is necessary or where they have a lower first cost than other types of motors. They are especially applicable for large low speed reciprocating compressor drive in view of their lower first cost. It is necessary to consider each application as a special case, which must be individually engineered to correctly establish the combined moment of inertia of the compressor, compressor flywheel and motor rotor. Otherwise due to the torque pulsations of the compressor unsatisfactory operation will result.

Synchronous motors are frequently used for driving large direct connected, medium speed fans where continuous operation makes high efficiency and power factor of some value. Similarly they are being used for driving large high speed centrifugal compressors through speed increasing gears. On this type of compressor, the torque characteristics are the same as for a fan and each application is not a special case as is true for reciprocating compressors.

Other means of obtaining adjustable speed drives is by using a constant speed motor either induction or synchronous type, and an adjustable speed coupling. These couplings are available in both hydraulic and magnetic types, both of which are easily adjustable over a wide speed range with a variable torque load and a more moderate speed range with a constant torque load.

Enclosures

Motors are built in several types of frames depending on the particular application. Usually the open type of motor, meaning one with an open frame so that the windings are not too closely protected from ambient conditions such as dirt, dust, moisture, abrasive material, etc. is used. In case the motor is to be installed under dripping pipes, for instance, a drip-proof frame motor should be used and in case the motor is to be exposed to splashing water a splash-proof frame motor should be used. These types of frames offer more protection to the motor winding and consequently the winding experiences a reasonable life. Similarly if the motor is to be exposed to abrasive dust or explosive gases special enclosed or explosion proof frames should be considered. Such requirements as these are frequently encountered in certain industrial applications in which cases, it is necessary to select the motors from the viewpoint of service conditions as well as the required operating and temperature characteristics to meet the demands of the machines being driven and the surrounding ambient.

The general classification of motors used for heating, ventilation and air conditioning is shown in Table 1.

CHAPTER 36. MOTORS AND MOTOR CONTROLS

CONTROL EQUIPMENT FOR MOTORS

In selecting control for alternating and direct current motors it is necessary to determine whether the installation is to be operated by manual or automatic control. The available controls and the function of each group of apparatus may be outlined as follows:

1. Manual Control:

- a. To establish current.
 - (1) Snap switch.
 - (2) Knife switch.
 - (3) Manually operated contactor.
 - (4) Drum switch.
- b. Establish current and provide overload protection.
 - (1) Snap switch with overload element.
 - (2) Knife switch with fuse or thermal cutout.
 - (3) Manual contactor with overload protective device; also reduced voltage starting compensator.
 - (4) Drum switch with overload protection.
- c. Establish current and provide overload and low voltage protection.
 - (1) Not used.
 - (2) Not used.
 - (3) Manual contractor or reduced voltage compensator with overload and low voltage release.
 - (4) Drum switch equipped with latch coil to give low voltage release.

2. Automatic Control:

- a. To start on full voltage.
 - (1) Without overload device (used only on small fractional horsepower motors).
 - (2) With overload device.
 - (3) With combination overload device and disconnect switch.
 - (4) With combination overload device, disconnect switch and short circuit protection.
- b. Reduced voltage starting with options, 2, 3 and 4, under full voltage control.
 - (1) Primary resistance type starter.
 - (2) Auto transformer type.
 - (3) Reactor type.

The present trend in practice is to include short circuit protection for the motor feeder and controller in the automatic starter either by means of fuses or breakers depending on the size and voltage of the motors, and the short circuit capacity of the feeders and source of power to which the motors are connected.

Most motors are mechanically and electrically designed for full voltage starting. Power companies have set up certain restrictions on starting motors on full voltage due to the necessity of maintaining voltage on their distribution lines within certain limits. Large motors on low voltage systems may cause serious voltage dips on starting, due to the high value of the inrush current. However, certain types of motors such as those with switches for changing the motor circuit during the starting period, may draw other high peaks of current as large or larger than the initial inrush, during the accelerating period which will also cause voltage dips. These voltage dips may cause light flickering, shortening of lamp

life and other objectionable results. To avoid these effects reduced voltage starters are used. However, the starting limitations vary with the various power companies and the starting requirements should be checked in each locality.

PILOT CONTROLS

In selecting pilot control devices to operate in conjunction with either manual or automatic motor control, it is necessary that they be classified as follows:

- 1. Two Wire Control. Some thermostats, float switches, and pressure regulators provide two wire control which gives low voltage release. A three position off-on automatic pilot switch can be used in connection with this method and thus provide manual control. With a low voltage (12 or 20 volt) control circuit it is desirable to use a low voltage thermostat. When this type of thermostat is used it will be found that a saving in the wiring cost results. When using the low voltage thermostat on a control circuit a relay and transformer panel should be used instead of the low voltage coil on the starter.
- 2. Three Wire Control. Other types of thermostats, float switches and pressure regulators are of the three wire, low voltage type and are used in conjunction with a control circuit relay for controlling the operation of motors. Momentary contact start and stop push button stations are usually furnished as standard accessories with automatic starters, which give low voltage protection. This control cannot be used in combination with two wire pilot devices.

In selecting manual control for an alternating or a direct current motor, the common practice is to locate the control near the motor. When the control is installed at the motor, an operator must be present to start and stop or change the speed of the motor by operating the control mechanism. Sometimes manual control is employed only as a device to give overload protection and another device is employed to start and stop the motor. Manual control is used particularly on small motors which operate unit heaters, small blowers, and room coolers in an air conditioning system. In other cases manual control in the form of drums, when used with multispeed motors, is only used as a speed setting device with the starting and stopping functions operated automatically through thermostats, and pressure switches.

Because of the increasing complexity of air conditioning systems, heating, ventilating and air conditioning equipment is being operated on automatic control with less dependence on manual operation and regulation.

Automatic control of motor starters may be accomplished by the use of remote push button stations, by a thermostat, float switch, pressure regulator or other similar pilot devices. An added advantage of automatic control is that the main wiring for the starter may be installed near the motor, while the starter may be operated by a control device located elsewhere. In the majority of air conditioning installations, requiring motors 1 hp and larger, two or three phase alternating current is usually supplied.

DIRECT CURRENT MOTOR CONTROLS

Air conditioning installations using direct current power now are used only where alternating current is not available. Direct current motors

CHAPTER 36. MOTORS AND MOTOR CONTROLS

are always started through starters, which are devices using a resistance to be put in series with the armature circuit during starting only, the resistance being gradually cut out as the motor comes up to speed. The starting current is held within safe limits by the use of the resistance. The speed of a direct current motor may be regulated by several methods:

- 1. Speed adjustment by field control—by using a device with resistance to be put in series with the field winding. After the motor has been started to be used to increase the speed of the motor above full field speed.
- 2. Speed adjustment by armature control—by using devices with resistance to be put in series with the armature circuit to beused to reduce the speed of the motor below full field or normal speed.
- 3. Combinations of field and armature control, so that the starting, field control, or armature control may be combined in a single unit.
- 4. Speed adjustment by variable voltage control—by using a source of variable voltage a wide speed range from 16:1 and less can be obtained. Speed above basic motor speed is obtained by field control and below by reduced armature voltage. In the smaller range of motor sizes complete equipments are available for this type of control. In the ranges up to 30 hp this is accomplished by a small motor generator set. Below 7½ hp variable voltage speed control can be obtained through the use of electronic tubes for rectification and control functions.

Field control is usually preferred, depending on the size of the installation. For example, if a direct current motor were required with speed regulation between 1200 and 600 rpm, a choice of supplying a 1200 rpm motor with armature control or a 600 rpm motor with field control, both giving the same speed variation would be possible. While the 1200 rpm motor with armature control is lower in first cost than the 600 rpm motor with field control, the cost of operating the 600 rpm motor with field control is less and will save the difference in first cost over a period of time depending on the size of installation. A wide speed variation can be easily obtained in a direct current motor by using a combination of field and armature control.

SQUIRREL-CAGE MOTOR CONTROL

To meet the requirements of various drives of an air conditioning system, three types of squirrel-cage, two or three phase motors may be used: (1) normal torque, normal starting current, (2) normal torque, low starting current, and (3) high torque, low starting current.

Because of the large current inrush of the normal torque, normal starting current motor, some central stations usually require current limiting starting equipment on such motors above $7\frac{1}{2}$ hp. To meet the starting current requirements, manual or automatic current limiting reduced voltage controllers are used. These controllers are equipped with voltage taps, the 65 per cent tap being regularly furnished when the starter leaves the factory. Motors $7\frac{1}{2}$ hp and smaller have starting currents within the requirements of central stations and manual or magnetic, full voltage control may be used in all cases.

The normal torque, low starting current motor has a starting current which is approximately 20 per cent less than the normal current motor on full voltage and within the required current limits on 30 hp sizes and smaller. This motor, therefore, lends itself to across-the-line control because no current limiting equipment is necessary.

A magnetic starter with low voltage and thermal overload protection gives the most satisfactory service. These starters may be controlled by remote push button stations, thermostats, or pressure switches to meet the requirements of any particular installation.

The high torque, low starting current motor has a starting current approximately the same as the normal torque, low starting current motor when started on full voltage. These motors, most commonly used on compressor drive, can be started directly across-the-line with manual or magnetic starters.

MULTISPEED MOTOR CONTROL

To make an installation more flexible, multispeed motors are available with two, three or four speed designs, with variable torque, constant torque or constant horsepower characteristics. Multispeed motors may be started by means of manual or magnetic starting equipment.

When using automatic magnetic control with two, three, and four speed separate winding or consequent pole motors, control is obtained from a remote point by means of a push button master switch. The various speeds of the motor are obtained from the master switch by simply depressing the correct push button, which is known as selective speed control. It is commonly used in the smaller theater installations where the fan and motor are located backstage and the speed control is located in the lobby.

Magnetic multispeed motor controllers may also be provided with a compelling relay which makes it necessary that the operator press the first speed button before regulating the motor to the desired speed. This assures the operator that the motor is always started at low speed before the motor is adjusted to one of the higher speeds. Starting on low speed limits the starting current to the starting current of the low speed winding, and therefore, permits the use of motors in sizes larger than ordinarily permitted by central stations for full voltage starting.

Timing relays, which provide for automatic acceleration, may be used for control. With the automatic acceleration feature, it is only necessary to press the button for the desired speed. The motor will always start in low speed and automatically step up to the desired speed. Decelerating relays are used on multispeed compressor motors, in order to reduce the effect of the braking action and shock to the motor, compressor and drive, when the speed is to be reduced from a higher to a lower speed.

Where the change of speeds does not occur at regular intervals, and where it is only necessary to change from one speed to another to take care of seasonal requirements, a manual drum speed selector may be used. This drum is used to select the proper motor speed while an automatic starter is used to start and stop the motor.

The smaller size speed selector drums rated 10 hp at 220 volts and smaller may also be used as a motor starter to make and break the current, as well as serving as a speed selector device. Reversible or non-reversible drums may be supplied depending on the requirements of the installation.

In the large size drums, a separate contactor must be provided to make and break the current. The contactor may be any approved starter,

CHAPTER 36. MOTORS AND MOTOR CONTROLS

Overload and low voltage protection may be accomplished by using a magnetic starter. No push button station is required, the handle switch on the drum having the same characteristics as a three wire push button station.

In selecting two speed motors for fan, pump, blower, or compressor drive it will be found that the two winding motors are more expensive than the single winding. The control for two speed, two winding motors is more economical and the combined price of the motor and contactor is only slightly higher. Because of the better performance of the two speed motor and the factor of safety in having two independent motor windings, the increased cost is considered worth the difference.

WOUND ROTOR MOTOR CONTROL

When close speed regulation and low starting current are required slip ring or wound rotor motors are used. Wound rotor induction motors are built for two classes of service, constant speed and adjustable varying speed. The motors for the two classes of service are identical, the only difference being in the secondary control used with the motors. Control for both primary and secondary of a slip ring motor is required.

The primary control for a constant or adjustable speed is the same type as used with squirrel-cage motors. Manual or magnetic starters, across-the-line type, may be used depending on the installation.

The starting current and starting torque of a slip ring motor are almost entirely dependent on the amount of resistance in the secondary control and in the manner in which the secondary control is operated. The resistance for the secondary control is usually of the cast-iron grid construction and the amount of the resistance in the circuit is controlled by a multi-point drum or cam switch which can be manually or automatically positioned. The National Electric Manufacturers Association has adopted service classifications which allow a selection of resistors permitting a starting current on the first contact of resistance varying from approximately 25 per cent of full load current to approximately 200 per cent of full load current or more, and permitting the resistor to remain in the secondary circuit of the motor for a period varying from not more than 15 seconds during an interval of operation from 4 minutes to continuous.

Speed adjustment of a wound rotor induction motor is obtained by inserting resistance in the secondary circuit and usually provides for a 50 per cent speed reduction when the motor is selected for constant torque service for full load at maximum speed. For variable torque duty, such as fans drives, wound rotor motors and control are suitable for speed reduction to 25 or 30 per cent of full load speed. As resistors are supplied for both fan duty and constant torque duty, care should be taken in selecting the proper resistors.

Wound rotor induction motors when used with centrifugal pumps and fans should have fan duty resistors. Because of the low current inrush of the fan and pump load a starting resistor NEMA classification No. 15 may be used. For speed regulation resistor, classification No. 93 should be selected. On a compressor drive using an unloader, a constant torque resistor classification No. 15 should be used. If the compressor is started

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

under load, *NEMA* classification No. 56 or 76 is used. For constant torque speed regulation, resistor No. 95 is used.

Liquid rheostats for secondary control, suitable for starting and speed variation are available where an infinite member of speeds are required. The cost of the liquid rheostat are comparable to the conventional cast grid and cam switch construction in the larger sizes but more expensive in the smaller. The liquid rheostats are suitable for either constant or variable torque drives but are not satisfactory for cold ambient conditions, where the electrolyte could freeze during periods of non-operation. The amount of resistance in the circuit can be manually or automatically controlled.

SINGLE PHASE MOTOR CONTROL

Where three phase current is not available or where single phase operation is preferred, then single phase repulsion induction, capacitor type or multispeed single phase motors may be used. Since the starting currents of all single phase motors are required to be within the starting-current limits established by the local power supply company, a suitable type of starter may be chosen from the following selection:

- 1. Enclosed two pole manually operated motor starters with thermal overload protection.
- 2. Enclosed two pole automatic motor starter operated by a push button, thermostat or similar device, with thermal overload relay and low voltage protection.
 - 3. A manual or magnetic resistance type starter with low voltage protection.
- 4. A manual or magnetic control for pole changing motors and for adjustable varying speed motors using an auto-transformer or resistance in the primary circuit to obtain line (or terminal) voltage drop.

In selecting across-the-line control for single phase capacitor type motors it is usually very desirable to use three pole across-the-line starters. Control for multispeed, single phase capacitor motors may be selected from tables on three phase rating when consideration is given to the increased current and the necessary switching of connections.

Chapter 37

AIR CONDITIONING IN THE TREATMENT OF DISEASE

Operating Rooms, Reducing Explosion Hazards, Nurseries for Premature Infants, Fever Therapy, Cold Therapy, High Temperature Hazards, Control of Allergic Disorders, Oxygen Therapy, General Hospital Air Conditioning

In the past few years air conditioning has made considerable progress as an adjunct in the treatment of various diseases. Among the important applications are those in operating rooms, nurseries for premature infants, maternity and delivery rooms, children's wards, clinics for arthritic patients, heat therapy, cold therapy, oxygen therapy, X-ray rooms, the control of allergic disorders, and for the physiological effects in industry.

OPERATING ROOMS

The widest application of air conditioning in hospitals is in operating rooms. Complete air conditioning of operating wards is important because winter humidification helps reduce the danger of anesthetic gases; summer cooling with some dehumidification is needed to eliminate excessive fatigue and to protect the patient and operating personnel; and finally, filtering for the removal of allergens from the operating room air.

Reducing Explosion Hazard

Explosion hazards in operating rooms began with the introduction of modern anesthetic gases and apparatus. Ether administered by the old drop method is still regarded as comparatively safe; but when mixed with pure oxygen or with nitrous oxide in certain concentrations the explosion hazard may be as great as with ethylene-oxygen, or cyclopropane-oxygen mixtures¹. (See Table 1.)

During the course of ethylene anesthesia, the mixture, usually 80 per cent ethylene and 20 per cent oxygen, is so rich that the danger of explosion is slight in the immediate vicinity of the face mask, but leakage of ethylene into the air may accumulate to any lower concentration, and thus introduce a serious hazard. The most dangerous period is at the end of the operation when the patient's lungs and the anesthesia apparatus are customarily washed out with oxygen with or without the addition of

¹Safeguarding the Operating Room Against Explosions, by Victor B. Phillips (*Modern Hospital*, **46**, April and May, 1936)

carbon dioxide. Even when this procedure is omitted, it is difficult in practice to avoid dilution of the anesthetic gas with air during the normal course of breathing following the administration. In either case the mixture would pass through the explosion range and extraordinary precaution is necessary for the safety of the patient and operating personnel.

Copious ventilation from 6 to 12 air changes per hour reduces to some extent the danger from the open drop method but is of little value in the closed system type of anesthetic machine now in common use. However, this abundant circulation reduces the concentration of anesthetic gases to below the physiologic threshold so that the surgeon and his personnel will not be affected.

The most important cause of accidents is probably static sparks which may result from accumulation of frictional charges on the rubber surfaces of the anesthesia apparatus, on woolen blankets, and on the bodies of the operators as they walk on insulated floors, when the humidity is low. Grounding the various parts of the anesthesia apparatus is not entirely

	Formula	Density Air = 1	Limits of Inflammability							
ANESTHETIC			In	Am	In Oxygen					
			Lower	Upper	Lower	Upper				
Ethylene	thylene C_2H_4 0.97		2.75	28.6	2.90	79.9				
Propylene			2.00	11.1	2.10	52.8				
Cyclopropane	C_3H_6	1.45	2.40	10.3	2.45	63.1				
Nitrous Oxide	N_2O	1.52			Not Inflammable					
Ethyl Chloride	C_2H_5Cl	2.23	4.00	14.8						
Ether-divinyL	$(C_2H_3)_2O$	2.42	1.70	27.0	1.85	85.5				
Ether-diethyl	$(C_2H_5)_2O$	2.56	1.85	36.5	2.10	82.0				
Chloroform	$CHCl_3$	4.12		Not Inflam						

TABLE 1. EXPLOSIVE PROPERTIES OF ANESTHETICS^a

^aExplosion and Fire Hazards of Combustible Anesthetics (U. S. Bureau of Mines, Report of Investigations No. 3443, April, 1939).

effective, so long as rubber remains in use in the conventional equipment. Some form of protective grounding within the apparatus may be a partial solution.

A comprehensive study of the explosion problem and of the general causes and prevention of operating room hazards is being conducted by the *University of Pittsburgh*, the A.S.H.V.E. Research Laboratory, and the *U. S. Bureau of Mines*. The first result of this investigation has been a fruitful attempt to eliminate the explosive range of cyclopropane, one of the best but most difficult gases to handle. The use of helium as a diluent in the total gaseous mixture controls the oxygen concentration by replacement and since its flame quenching qualities are known it is the ideal gas for this purpose. In addition, a gaseous mixture containing helium is more difficult to ignite by electric discharges and this quality also increases the safety factor of anesthetic administration. A more general idea of the mixtures containing cyclopropane, oxygen and helium necessary to produce satisfactory anesthesia is given in Table 2. Clinically and with slight variation, the non-inflammable mixtures of Table 2

have produced satisfactory results and samples of gas taken during operation show no tendencies to explosion.

In the absence of more understanding, no single safeguard can be given, but desirable precautions may be classed as follows: (1) to limit the region of the explosive gas mixtures; (2) to make all electric contacts explosion-proof; (3) to avoid building up static charges; (4) to ground those surfaces where charges may be built up; and (5) to discourage accumulation of static electrical charges by humidity control.

Operating Room Conditions

Little is known about optimum air conditions for maintaining normal body temperatures during anesthesia and the immediate post-operative period. An anesthetized patient displays dilatation of blood vessels in the skin resulting in profuse sweating and (it has been believed) inability to regulate body temperature. From this it was concluded that all anesthetized patients suffered considerable heat loss. In spite of this a recent paper² reports little more than 0.8 F variation in the rectal temperature during the course of the operation. The severe physiological

COMPOSITION, PER CENT BY VOLUME MIXTURE No. Cyclopropane Oxygen Helium 20 65 15 $\frac{\hat{2}}{3}$ 20 60 20 25 50 25 40

TABLE 2. Non-inflammable Mixtures for Anesthetic Use²

aExplosive Properties of Cyclopropane: Prevention of Explosions by Dilution with Inert Gases (U. S. Bureau of Mines, Report of Investigations No. 3511, May, 1940).

effects, such as excessive sweating and rapid pulse, of high operating room temperatures on attendants and patients during the hot months signify the need for proper cooling. A comparison of surgeons' statements who operate in both air conditioned and non air conditioned rooms strongly indicates lesser fatigue; and the greater recuperative power of the patient is confirmed by the previously referred to study³.

Although the comfortable air conditions for the operatives are not identical with those for the patient a compromise is as a rule not difficult; with a relative humidity of 55 to 60 per cent, temperatures from 72 to 80 F are used. The work just cited, reported that 68 to 70 deg effective temperature not only furnished comfort for the operating room workers but apparently prevented exhaustion of the patient as evidenced by rapid convalescence in the recovery ward. Additional heat may be furnished to the patient locally or by suitable covering according to body temperature in individual cases.

²A.S.H.V.E. RESEARCH REPORT No. 1111—Air Conditioning Requirements of an Operating Room and Recovery Ward, by F. C. Houghten and W. Leigh Cook, Jr. (A.S.H.V.E. Transactions, Vol. 45, 1939, p 161).

Loc. Cit. Note 2.

In an investigation recently conducted at the University of Pittsburgh, in a cooperative research program with the Society, comparative studies were made on the bacterial content of conditioned and non-conditioned operating rooms. From these studies it was concluded that the bacterial content of conditioned operating rooms was considerably less than that of non-conditioned rooms. Although this difference may not be great it is sufficient to demonstrate that properly conditioned spaces with adequate filtration can definitely reduce the bacterial and other foreign substance content in an enclosure.

Operations may be postponed on allergic patients during asthmatic manifestations through fear of complications. The removal of air borne allergens, therefore, is in some cases an important function of the air conditioning system in preparing patients for operation.

Central system air conditioning plants and unit air conditioners prove satisfactory in operating rooms when producing between 8 and 15 air changes per hour of filtered and properly conditioned air without recirculation during the course of anesthesia. A separate exhaust fan system is as a rule necessary to confine and remove the gases and odors. Double windows are desirable and often necessary to prevent condensation and frosting on the glass in cold weather and to minimize drafts. The high air flow of 8 to 15 air changes in operating rooms is desirable for three reasons: (1) to reduce the concentration of the anesthetic to well below the physiologic threshold in the vicinity of the operating personnel, (2) to remove the great amounts of heat and sometimes moisture, from sterilizing equipment if inside the operating room, from the powerful surgical lights, from solar heat, and from the bodies of the operatives. and (3) to provide extra capacity for quickly preparing the room for emergency operations. Much can be gained by careful insulation of sterilizing equipment and by thorough exhaust ventilation of sterilizing rooms adjoining the operating rooms.

A very common complication presumably traceable to operations is pneumonia. The difference in conditions between the operating room and the final hospital destination of the patient, including corridors and elevators, is conducive to post-operative pneumonia. A suggested remedy is a recovery ward where conditions closely approximate those of the operating room and in which the patients remain from one to four days. Satisfactory conditions in the recovery ward not only hasten convalescence, but dispel the fear frequently found in patients who must undergo operations during the hot seasons⁵.

Sterilization of Air in Operating Room

Of considerable significance to operating rooms and contagious wards is the use of ultra-violet radiation for sterilizing the air⁶. Results reported⁷ would indicate that the post-operative temperature rise of patients

⁴Report on Air Conditioning in Surgery, by W. Leigh Cook, Jr. (Department of Industrial Hygiene, School of Medicine, University of Pittsburgh, 1940)

^{*}Report of the Committee on Air Conditioning (*The American Hospital Association*, 1937, p. 2).

*Air-Borne Infection and Sanitary Air Control, by W. F. Wells (*Journal Industrial Hygiene*, 17:253

^{&#}x27;Sterilization of the Air in the Operating Room by Special Bactericidal Radiant Energy, by Deryl Hart (Journal Thoracic Surgery, 6:45, 1936).

during the first few days is in most instances caused more by bacterial contamination of the operative wound than by the absorption of blood and traumatized tissues. Operating room infections, which were quite frequent before the installation of special ultra-violet lamps, are apparently being reduced.

Direct ultra-violet radiation is distinctly advantageous in sterilizing not only the site of operation but also wounds to prevent the spread of infection. In infants' wards, contagious disease wards, and even in school rooms, the sterilizing effects are definitely known. Whether an air conditioning system with ultra-violet installations in the ducts is a feasible procedure is controversial; but it would appear that this indirect method is not as satisfactory as the direct in the light of present reported knowledge.

Table 3. Net Mortality of Premature Infants According to Humiditya Infants Hospital, Boston, Mass.

	Unconditioned Nurseries (1923-1925)	Conditioned Nurseries (1926-1929)					
Cause of Death		RELATIVE HUMIDITY					
	Natural Humidity	25-49 Per Cent	50-75 Per Cent				
	Per Cent Mortality	Per Cent Mortality					
Acute and chronic infections	26.5 1.2 1.2	9.7 0.0 4.8	0.0 0.7 0.0				
All causes	28.9	14.5	0.7				

^{*}Excluding cases with multiple congenital anomalies incompatible with life, and also deaths occurring within 48 hours after admission to the hospital.

NURSERIES FOR PREMATURE INFANTS

One of the most important requirements in the care of premature infants is the stabilization of body temperature. This is because their heat regulating systems are not fully developed; the metabolism is low and the infants generally exhibit marked inability to maintain normal body temperatures. The resistance to infection is low and mortality rate high.

Air Conditioning Requirements

The optimum air conditions for the growth and development of these infants were determined by extensive research⁸ at the Infants Hospital, Boston, Mass., using four valid criteria, namely, stability of body temperature, gain in weight, incidence of digestive syndromes, and mortality. Individual temperature requirements varied widely (from 72 to

⁸The Premature Infant: A Study of the Effects of Atmospheric Conditions on Growth and on Development, by K. D. Blackfan, C. P. Yaglou and K. McKenzie (American Journal Diseases of Children, 46: 1175, 1933)

100 F) according to the constitutional state of the infants and body weights. The optimum relative humidity was about 65 per cent, and the air movement less than 20 fpm.

A single nursery conditioned to 77 F and 65 per cent relative humidity was found to fulfill satisfactorily the requirements of the majority of premature infants. Additional heat for weak (or debilitated) infants may be furnished in the cribs or by means of electric incubators placed inside the conditioned nursery, and the temperature adjusted according to individual requirements. In this way multiplicity of chambers and of air conditioning apparatus is obviated; the infants in the heated beds derive the benefit of breathing cool humid air, and the nurses and doctors need not expose themselves to extreme conditions.

Importance of Humidity: Although external heat is an important factor in the maintenance of normal body temperature, humidity appears to be of equal or greater importance. When the premature nurseries at the Infants Hospital were kept at relative humidity between 25 and 50 per cent for two weeks or longer, the body temperature became unstable. gain in weight diminished, the incidence of gastro-intestinal disturbances increased, and the mortality rose. On the other hand, continuous exposure to air conditions with 55 to 65 per cent relative humidity gave satisfactory results over a period of years. The effect of humidity on mortality is shown in Table 3. The initial physiologic loss of body weight (loss occurring within first four days of life) was found to vary inversely with the humidity. In the old nurseries with natural humidity it averaged 12.4 per cent of the birth weight; in the conditioned nurseries it was 8.9 per cent with 25 to 49 per cent relative humidity, and 6.0 per cent with 50 to 75 per cent relative humidity. The number of days required to regain the birth weight was correspondingly maximum in the old nursery and minimum in the conditioned nurseries under high humidity.

Maximum gains in body weight occurred in the conditioned nurseries under high humidity (55 to 65 per cent) in infants weighing less than 5 lb. The gains were less under low humidity (25 to 50 per cent) in the same nurseries, and in the old nurseries prior to the installation of air conditioning apparatus.

The incidence and severity of digestive syndromes, with diarrhea, persistent vomiting, diminishing gain or loss of body weight, and other symptoms, were generally from two to three times as high under low than under high humidity.

Summarizing, the best chances for life in premature infants are created by maintaining a relative humidity of 65 per cent in the nursery and by providing a uniform environmental temperature just sufficiently high to keep the body temperature within normal limits. Medical and nursing care are, of course, factors of equal and sometimes of greater importance.

Air Conditioning Equipment

Most of the installations now in use are of the central system type providing for filtration, for humidification and heating in cold weather, and for cooling and dehumidification in hot weather. A high ventilation rate, between 15 and 25 air changes, is desirable to remove odors and

maintain uniformity of temperatures in extremes of weather. Recirculation is not used extensively in these wards owing to odors and the possibility of infection.

FEVER THERAPY

Artificial production of fever in man is an imitation of nature's way of overcoming invading pathogenic organisms. The action may be direct and specific by destruction of the invading organism within the safe limit of human temperatures, or indirect in the case of heat resistant organisms, by general mobilization of the defensive mechanisms of the body, which retard or neutralize the activity of pathogenic bacteria and their toxins.

The limits of induced systemic fever are usually between 104 and 107 F (rectal), and the duration from 3 to 8 hours at a time. The total period of fever treatment varies with the type of the organism involved from a few hours to 50 or more.

The diseases which respond favorably to artificial fever therapy are gonorrhea and its complications, (which include arthritis, pelvic infections in women, and involvement of the eye), syphilis, chorea, infectious arthritis (non-gonorrheal), encephalitis, and some forms of asthma. There are other conditions which show promise under this treatment; but the most striking results are seen in gonorrhea and syphilis, since the causative organisms can be destroyed at temperatures compatible with human life.

Equipment for Production of Fever

Various means have been tried for producing artificial fever, including injections of various crystalloid or colloid substances, bacterial products of typhoid and malarial organisms; a number of physical methods, such as hot baths, radiant heat, diathermy, radiothermy, and in the last few years, air conditioned chambers. The relative advantages and disadvantages of various methods have been discussed in a paper¹⁰. The results by the use of air conditioned cabinets have not been fully explored, and it is therefore difficult to determine all the advantages and disadvantages of the value of air conditioning at this time.

In the earlier studies of the Society¹¹, temperatures were elevated more easily using saturated atmospheres. A fever therapy apparatus¹² using these same principles has proved efficient as a means of inducing and maintaining fever in a body with small likelihood of burns because of the comparatively low dry-bulb temperatures. This saturation factor is in great use today where fever is created by induction currents by placing the body in an electrical field. When the optimum body temperature has been reached by electrical induction, the atmosphere of the

^{*}Report of the First Year of Fever Therapy Research by the Department of Industrial Hygiene, School of Medicine, University of Pittsburgh, 1938.

¹⁰Fever Therapy by Physical Means, by Frank H. Krusen and E. C. Elkins (Journal American Medical Association, 112. 1689-1696, April 29, 1939).

¹¹A S H.V.E. RESEARCH REPORT No 654—Some Physiological Reactions of High Temperatures and Humidities, by W. J. McConnell and F. C. Houghten (A.S H.V.E Transactions, Vol. 29, 1923, p. 129).

¹²A S.H.V.E RESEARCH REPORT No. 1054—Fever Therapy Induced by Conditioned Air, by F. C. Houghten, M. B. Ferderber and Carl Gutberlet (A.S.H.V.E. Transactions, Vol. 43, 1937, p. 131). A.S.H.V.E RESEARCH REPORT No. 1162—Fever Therapy Locally Induced by Conditioned Air, by M. B. Ferderber, F. C. Houghten and Carl Gutberlet (A.S.H.V.E. Transactions, Vol. 46, 1940).

enclosure is kept at saturation to prevent heat loss, thus maintaining the patient's temperature at the desired point. Other apparatus¹³ which uses electric heaters, centrifugal fans, and a water container for humidification has been used in the past, but the more recent trend is toward saturation with a lower dry-bulb temperature.

When heat is necessary in treating legs or arms, such media as short or long wave diathermy, infra-red, water baths, etc. have been used extensively. A recent development, a saturated atmosphere heating unit, similar to one previously described¹⁴ has proven satisfactory, because heat may be administered over longer periods which render deep heating possible without fear of burns or shocks¹⁵. Local heating has been somewhat satisfactory in relieving the painful symptoms of peripheral vascular disease.

The final criteria for the use of fever therapy may be changed because of the introduction of certain drugs which appear prominent in the experimental treatment of some diseases for which fever therapy has been efficacious.

COLD THERAPY

In contrast to fever therapy the use of cold as a means of treatment is being investigated. From the available literature the chief virtues of cold therapy (cryotherapy) are the reduction of pain due to extensive cancer and the possibility that the process may be arrested. For a localized lesion, ice water between 36 to 48 F is circulated through tubing at the site of the disease for periods ranging from 4 to 48 hours. A later development was the principle of hibernation during which time the patient is kept in an air conditioned space with an environmental temperature between 50 to 60 F for five days. The body temperature is reduced below the critical level of 95 F to as low as 80 F. Most of the vital processes of life are at very low ebb and this period simulates the hibernation of the wild animals. Although relief of pain is reported it remains to be seen to what extent this form of treatment will be used.

More recently the principles of refrigeration have been applied to limbs which have been traumatized or in which the blood supply has been hopelessly damaged¹⁷. Lowering of the temperature of the extremity may prevent shock and allow the patient to be transported safely to the hospital. When an amputation is to be undertaken, the limb is frozen and is thus anesthetized. This eliminates the necessity of further anesthesia.

HIGH TEMPERATURE HAZARDS

Heat disease is now classified as heat exhaustion, heat cramps, and heat stroke¹⁸. Heat exhaustion is due to circulatory failure; heat cramps to

¹³Artificial Fever Therapy of Syphilis, by W. M. Simpson (Journal American Medical Association, 105: 2132, 1935).

¹⁴Loc. Cit. Note 11.

¹⁵Saturated Atmospheres in the Treatment of Injuries, by M. B. Ferderber (Industrial Medicine, 8: 256-259, June, 1939).

¹⁸Temperature Factors in Cancer and Embryonal Cell Growth, by L. W. Smith, and Temple Fay (Journal American Medical Association, Vol. 113: 653-660, August, 1939).

¹⁷Reduced Temperatures in Surgery, by F. M. Allen (American Journal of Surgery, 52:225, 1941).

¹⁸Heat Disease: Clinical and Laboratory Studies, by M. W. Heilman and E. S. Montgomery (*Journal of Industrial Hygiene and Toxicology*, 18: 651-666, November, 1936).

excessive loss of body chlorides and heat stroke to an inadequacy of the heat dissipating mechanism which results in heat retention. If the hyperthermia becomes excessive, the liver and the central nervous system may be seriously damaged and this damage may prove fatal. The hazards of high temperatures are not easily understood. It is difficult to say whether a repeated rise of 1 or 2 deg of body temperature is dangerous or whether short exposures at high temperatures are more harmful than longer exposures at lower temperatures. A new concept is evident in finding an increase in leucocytes (white cells) of the blood in workers subjected to high temperatures. These leucocytes are defensive factors which are increased when infection invades a body. A rise in temperature and leucocyte count indicates body defense in the presence of disease. Since a recent study¹⁹ showed that both temperature and cell count were increased, the question arises whether long exposures to very high temperatures might not cause exhaustion of these defense mechanisms.

ALLERGIC DISORDERS

Although there is some division of opinion over the ultimate cause of allergy, the prevailing belief is that it is due to an inherited or acquired hypersensitiveness to pollen or other foreign proteins in certain individuals who react abnormally to the offending substance. The reaction may be induced by inhalation, eating, or absorption (through the skin) of the allergens. Some of the clinical manifestations are hay fever, asthma, eczema, and contact dermatitis.

Symptoms of Hay Fever and Asthma

The respiratory tract is the site of probably the most usual allergic manifestations, the so-called hay fevers and asthma. In hay fevers, the nose and eyes are red and itchy, and there is considerable discharge. Nasal obstruction is the most common and most distressing symptom. The severity of the symptoms varies widely from day to day depending chiefly on the amount of pollen in the air.

Seasonal asthma comes in attacks. The most popular theory concerning the mechanism of action is that the offending substance irritates the nerve endings in mucous membranes of the respiratory tract, causing spasmodic contraction of the small bronchioles of the lungs, which interferes with breathing, particularly with expiration. Non-seasonal allergic disturbances are sometimes attributed to house or street dusts, fungi, odors, animal dander, irritating gases, and heat or cold, particularly sudden temperature changes. It is often stated in the literature that heat regulation in asthmatic individuals is likely unstable, with a tendency toward the subnormal. Many allergic cases who are apparently well, develop their attacks when cold weather appears, or upon changing from warm to cool outdoor air.

Air Conditioning Apparatus

In recent years considerable effort has been directed toward the elimination of the principal cause of allergy from the air of enclosures by filtration or other air conditioning processes capable of removing pollens,

¹⁹A.S.H.V.E. RESEARCH REPORT No. 1106—Air Conditioning in Industry, by W. L. Fleisher, A. E. Stacey, Jr., F. C. Houghten and M. B. Ferderber (A.S.H.V.E. Transactions, Vol. 45, 1939, p. 59).

in the hope of providing relief to individuals who fail to respond to medical treatment (desensitization or immunization).

Paper or cloth filters, mounted in inexpensive window or floor units, prove quite satisfactory, but since dust and smoke frequently cause asthmatic attacks, it is necessary that an air filter, to be of full value in the treatment of asthma, must remove all dusts and pollens regardless of size or amount. An electrostatic cleaner has proved extremely efficient in removing particles of 15 to 20 microns and smaller, besides dusts and smoke²⁰.

Although the chief remedial factor in the treatment by conditioned air is the filtration of pollen, a certain amount of cooling and dehumidification appears to be desirable. A comfortable temperature between 70 and 75 F and a relative humidity well below 50 per cent proved satisfactory²¹. Direct drafts, overcooling or overheating are apt to initiate or aggrevate the symptoms.

Limitations of Air Conditioning Methods

The results obtained with air filtration or other air conditioning processes in the control of allergic conditions are fairly comparable to those obtained by desensitization treatment so long as the patients remain in the pollen free atmosphere. But while specific desensitization is preventive and in a few instances curative, for all practical purposes filtration gives only temporary relief. With rare exceptions, the symptoms recur on exposure to pollen laden air. Moreover the usefulness of air conditioning methods is limited because all cases are not caused by air-borne substances. Cases of bacterial asthma do not respond at all to the treatment with filtered air.

Despite these limitations air conditioning methods possess definite advantages in the simplicity of treatment, convenience, and under certain conditions almost immediate relief. Pollen cases are usually relieved of most of their symptoms within 1 to 3 hours after exposure to properly filtered air.

A pollen-free atmosphere is especially valuable in cases where desensitization has given little or no relief, and where desensitization is not advisable owing to intercurrent illness. On the whole, conditioning methods are considered to be a valuable adjunct in medical diagnosis and treatment of allergic disorders.

OXYGEN THERAPY

Oxygen therapy is the principal measure employed for preventing and relieving the distressing symptoms of anoxemia, which is a deficiency in the oxygen content of the blood. Some of the more important conditions in which oxygen treatment is believed to be beneficial are pneumonias, anemia, heart affections, post-operative pulmonary disturbances, certain mental disturbances, asphyxia, asthma and atelectasis in new-born infants.

The necessity of air conditioning in oxygen therapy arises from the fact

²¹The Effect of Low Relative Humidity and Constant Temperature on Pollen Asthma, by B. Z. Rappaport, T. Nelson and W. H. Welker (*Journal of Allergy*, 6: 111, 1935).

²⁶Air Cleaning as an Aid in the Treatment of Hay Fever and Bronchial Asthma, by Leo H. Criep and M. A. Green (*Journal of Allergy*, 7. 120, January, 1936).

that oxygen is too expensive a gas to waste in the ventilation of oxygen tents and oxygen chambers. The oxygen rich atmosphere in these enclosures is therefore reconditioned in a closed circuit by removal of excess heat, moisture, and carbon dioxide given off from the occupants being treated.

Oxygen Tents

In oxygen tents the air enriched with oxygen is usually circulated by means of a small motor blower which sends the air over soda lime to remove carbon dioxide and then over ice to remove excess heat and moisture. The concentration of oxygen in the tent is regulated by means of a pressure reducing valve and flow meter. In an inadequately cooled tent, high temperatures and humidities are inevitable, increasing the discomfort of the patient and imposing an added strain on an already overburdened heart. Oxygen therapy under such conditions may do more harm than good. An ice melting rate of approximately 10 lb per hour gives satisfactory results in patients with fever in a medium size oxygen tent.

Oxygen tents are somewhat confining to the patient; the restless type of person is difficult to control, and the delirious, impossible to control. Medical and nursing care is complicated, as the tent must be opened or removed with attendant loss of oxygen. Oxygen concentrations of 50 per cent or more are difficult to maintain, and it is a problem to keep the temperature and humidity low enough in hot weather. The direct advantages are portability and low cost.

Oxygen Chambers

The conventional oxygen chamber is an air-tight sheet metal enclosure of fire-proof construction, large enough to accommodate one or two patients. Trap doors or curtains are provided for the personnel, food and service, to avoid loss of oxygen. Glass windows in the ceiling and walls admit light from outside the chamber.

The air conditioning system may be of the gravity type, or of the fan type using mechanical refrigeration or air drying agents. The gravity system includes a bank of cooling coils controlled thermostatically, which dehumidify and cool the air. The cool air falls over trays of soda lime at the bottom of the coils, to remove the carbon dioxide given off by the occupants. A heater at the base of the opposite wall warms the air to the desired temperature. Ordinary industrial oxygen is introduced from storage tanks outside the chamber and the concentration is regulated according to the prescription of the physician. The only change of air in the chamber is that taking place by air leakage through the trap doors.

The chief objections to the gravity circulation system are stratification of cold air near the floor and accumulation of odors, which may require the use of activated charcoal, or an excess of oxygen for dilution of the air in the chamber.

The fan circulation systems include compact extended surface coolers, heaters, and sometimes air-drying beds installed outside the chamber for the removal of moisture.

The temperature and humidity requirement in oxygen therapy depend primarily upon the physical condition of the patient, and secondarily

upon the type of disease. In pneumonias²² prescribed conditions should be an effective temperature of 66 to 68 deg, humidity of 50 per cent, air movement of not less than 50 linear feet per minute, oxygen concentration of 50 per cent, and carbon dioxide of less than 1 per cent.

Oxygen chambers are more comfortable than oxygen tents. The patients receive unhampered medical and nursing care, and the oxygen concentration, the temperature and humidity can be adequately controlled at any desired level. The chief disadvantages are high initial and operating costs in comparison with oxygen tents, the nasal catheter or face mask method of oxygen administration. The nasal catheter method is the simplest and most inexpensive of all but it may cause considerable discomfort to the patient and it is not satisfactory for continuous administration for restless or delirious patients. Moreover, oxygen concentrations greater than 40 per cent in the inspired air are difficult to maintain, although concentrations as high as 48 per cent have been obtained. The face mask is a convenient portable method and permits the administration of oxygen concentrations up to 95–100 per cent in the inspired air. It is economical and convenient and helium-oxygen mixtures may be easily administered.

GENERAL HOSPITAL AIR CONDITIONING

Complete conditioning of a large hospital involves a capital investment and running expense which may not be justified. In clean and quiet districts, the requirements of almost all general and private wards during the cool season of the year can be satisfactorily fulfilled by the use of usual heating in conjunction with window air supply and gravity or mechanical exhaust. Insulation against heat and sound is much more important than humidification in winter; it will also help in keeping the building cool in warm weather. Excessive outside noise and dust may require the use of silencers and air filters in the window openings.

Cooling and dehumidification in warm weather are important. In new hospitals particularly, the desirability of cooling certain sections of the building should be given serious consideration. Financial reasons may preclude the cooling of the entire building, but the needs of the average hospital can be met by the use of built-in room coolers and a few portable units which can be wheeled from ward to ward when needed.

In the North and certain sections of the Pacific Coast, cooling is needed but a few days during summer, while in the South, it can be used to advantage from May to October, and in tropical climates almost continuously throughout the year.

Aside from comfort and recuperative power of the patients, cooling is of great assistance in the treatment of fevers in the new-born and in post-operative cases, in enteric disorders, fevers, heat stroke, heart failure, and in a variety of other ailments which often accompany summer heat waves.

Considerable research is in progress on the influence of air conditioning upon a wide variety of diseases such as pneumonia, upper respiratory diseases, tuberculosis, arthritis, nervous instability, hyper-thyroidism, essential hypertension, skin diseases, and vascular disorders.

The Management of Pneumonias, by J. G. M. Bullowa, 1937, p. 260.

Chapter 38

TRANSPORTATION AIR CONDITIONING

Railway Passenger Car Ventilation, Method of Air Distribution, Air Cleaning, Winter and Summer Air Conditioning, Humidity and Temperature Control, Summer Air Conditioning for Buses and Automobiles

THE principles of air conditioning used in connection with stationary applications such as stores, restaurants, hospitals, theaters, and homes are in general applicable to such mobile applications as railway passenger cars, passenger buses, automobiles, and ships. However, the equipment used for these mobile applications, with the possible exception of those on board ship, differs from that used for stationary purposes in that it must meet additional requirements. Especially important are the features of compactness with the retention of ready accessibility for quick inspection and servicing, and low weight. Freedom from vibration which could be transmitted to the supporting vehicle and thus to the passengers is essential.

RAILWAY PASSENGER CAR VENTILATION

In non air-conditioned cars, ventilation is accomplished by exhaust fans, roof ventilators, and open doors and windows. This practice provides an ample supply of outside air but does not prevent the entrance of smoke, cinders, and dirt.

An average passenger car contains approximately 5000 cu ft of air and may seat as many as 80 passengers. The occupants are continually liberating heat, carbon dioxide, moisture, odors, and some organic matter from their breath, skin and clothing. The heat and moisture can be removed by cooling and dehumidification, but the other constituents can be successfully handled only by proper ventilation and air cleansing. In the average car from 2000 to 2500 cfm should be circulated by the air conditioning unit. Some of this air may be recirculated, but a portion of it should always be brought in from the outside. The amount of outside air required depends upon the type of car, number of passengers, air temperature, humidity, odors, and whether or not occupants are smoking, and will vary from 15 to 90 per cent of the total air circulated.

Careful attention must be exercised in specifying the rate of outside air taken in so as to fit the type of service adequately and yet not to supply more ventilation than is necessary. Conditioning this outside air is a major factor in determining the size of both summer and winter conditioning equipment. With present average ventilation requirements, about 30 per cent of the cooling equipment and sometimes as high as 50

per cent of the heating equipment is necessary to handle only the outside air load.

For normal conditions, 10 cfm of outside air per passenger is sufficient. When smoking is permitted, at least 15 cfm should be admitted. In some of the dining cars and deluxe sleeping cars, outside air rates as high as 20 and 30 cfm per occupant are used.

Method of Air Distribution

The fact that the amount of space devoted to railway passengers may be as low as 60 cu ft per person (ranging as high as 190 cu ft per person), coupled with the high air flow rates made necessary by severe ventilation and sun loads, makes the problems of air distribution and air delivery in railway cars critical ones.

Various methods may be used to distribute the air delivered to the interior of the car by the circulating fan or blower. The methods commonly used are:

- 1. A duct lengthwise along the center of the car.
- 2. One or two side ducts built on the outside of monitor-roofed cars, or on the inside of turtle-backed or arched-roofed cars.
- 3. Free discharge at the end bulkheads, or by free discharge from a unit placed overhead in the center of the car, discharging toward the ends. This bulkhead delivery system, while inexpensive, is apt to cause complaints due to drafts, and, accordingly, is not being favored.

Delivery grilles and plaques are used, and are often designed to give considerable entrainment and mixing to avoid cool drafts.

Smoking rooms present a special problem. The cloud of smoke that usually hangs near the ceiling can be broken up by having the incoming air directed along the ceiling in all directions at a velocity somewhat higher than that used for the rest of the car. The air should be exhausted from the room by a fan or through a grille to the washroom or lavatory, and then outside by a fan in a ventilator.

For compartments an adjustable supply duct outlet grille of suitable size and design should be provided and provisions made in the door or partition for the removal of the air to be recirculated.

Lower berths in sleeping cars and office cars should be provided with an adjustable air outlet which will discharge the amount of air desired at low velocity in any direction so that the occupant can regulate the ventilation to meet his own requirements.

In cars containing but one or two rooms or compartments, satisfactory results may be obtained by discharging the air directly from the conditioning unit into the upper part of the car. Care must be taken to have a proper discharge velocity. If the velocity is too low, the air will drop before reaching the end of the car and if too high it will discharge against the end bulkhead and be reflected back. Care must be exercised to secure proper circulation, otherwise objectionable drafts will be experienced.

The recirculating air grilles are usually of the straight flow type, and should be located so that objectionable drafts will not be created by the return air. The outside air intakes, located in the car vestibule, on the side of the car, or on the roof of the car, depending upon the location of the cooling coils, should be of ample size to permit the entrance of suf-

CHAPTER 38. TRANSPORTATION AIR CONDITIONING

ficient outside air. On many of the recently air-conditioned cars, there are no dampers or shutters at the outside air intakes, the percentage of outside air being controlled by blocking the flow through the recirculating grille.

Air Cleaning

All of the air circulated by the blower is filtered before passing over the cooling coils. In some cars the outside and recirculated air are filtered separately before mixing, while on others the air from the two sources is mixed before passing through a common filter. Filters in use are made of metal, wool, cloth, spun glass, hemp, paper, hair, and wire screen. Most filters have a viscous coating of oil for greater cleaning efficiency. Some types may be cleaned, retreated, and returned to service while other types are discarded when dirty.

RAILWAY PASSENGER CAR WINTER AIR CONDITIONING

The majority of cars in service use steam from the locomotive or from a head-end, oil-fired boiler as a source of energy for winter heating. In some instances electrical energy from either a head-end generating set or motive power supply is utilized for resistance heating. In still other cases electrical energy and waste heat from individual car engine-generator sets is employed. The peak heating loads which depend largely upon the amount of insulation used in the car, the type of windows (whether single or double glazed), and the ventilation rate, may vary from 150,000 to 250,000 Btu per hour.

In order to temper the cold outside air, about 30 to 50 per cent of the total heat energy required is distributed by means of finned coils or resistance heaters located in the outside air duct. The remainder is usually transmitted to the car air by finned tubing located along the sides of the car near the floor, thus preventing cold convection currents falling from the car windows from reaching the feet of the passengers.

RAILWAY PASSENGER CAR SUMMER AIR CONDITIONING

Three general types of cooling or refrigerating equipment are being used in the 11,700 railway cars which are now air conditioned in the United States. Of these 3,900 are ice-activated, 1,900 use steam jet systems, and 5,900 employ mechanical compression schemes. These systems which functionally are identical with those used for stationary applications (see Chapter 25) are modified in design to meet the requirements of mobile service. Contrasted with stationary applications of summer conditioning equipment, the use of water as a final means of heat disposal from condensers cannot be resorted to because water in such quantities cannot be transported economically. Accordingly, air cooled or evaporative condensers are always used, with the result that mobile cooling equipments operate at higher temperature, pressure, and power requirement levels than stationary equipment.

The maximum cooling and dehumidifying load which depends largely upon the amount of insulation, the type of windows, the ventilation rate, the sun intensity, and the number of passengers may vary from 60,000 to 96,000 Btu per hour.

An average ice-activated system for such capacities uses about 500 lb of ice and 1.2 kw per hour. The increase in car weight due to such a system is approximately 8500 lb.

The same service from a steam jet system is obtained with the expenditure of 230 lb of steam and 3.3 kw per hour, with an added weight per car of 11,000 lb.

The mechanical compression systems, all of which use dichlorodifluoromethane as a refrigerant, may be classified by several types depending on the method of driving the compressor. The source of power for driving the compressor (approximately 10 hp) is complicated by the necessity of obtaining this power at all times whether the car is in motion or standing still on the right-of-way or in a terminal where auxiliary power plug-ins are available. In those cases where compressors are driven from car axles, additional refinements in the drive are necessary in order that a nearly constant cooling capacity may be obtained from a variable speed power Numerous combinations of electrical generating schemes for generating sufficient electrical energy from the car axle for lighting, ventilation, and summer air conditioning are in use, and their operation is closely interlocked with compressor demands, need for pre-cooling. battery charging, etc. It is difficult therefore to state the additional weight imposed on a car because of such a compression air conditioning system, but it is probably in the vicinity of 6000 lb. These systems, depending mostly upon the locomotive for supplying power for operation, impose a load which may amount to 10 per cent of the capacity of the locomotive.

Several schemes for relieving the locomotive of this compression load are used. Some of the articulated trains, which run as unit equipment—the same cars always in the same train—employ a head-end, enginegenerator combination for supplying power to compressor motors. In other cases engine-alternators on individual cars are used to supply alternating current power to compressor motors, as well as to supply all power for car lighting and auxiliaries. Engine-compressor combinations on individual cars provide attractive low weight equipment where continuous engine operation is permissible under all circumstances. Diesel engines and propane engines are used for these purposes, and such enginedriven units have the additional advantage of being able to use waste engine heat either for modulating refrigeration with a reheat cycle or for car heating purposes.

RAILWAY PASSENGER CAR HUMIDITY AND TEMPERATURE CONTROL

The temperature to be maintained in a car depends upon the outside temperature and the humidity desired inside the car. With a low humidity it is necessary to maintain a higher temperature to establish a desirable comfort condition. Little humidity control has been attempted on cars up to the present time. A certain degree of automatic humidity control is secured with cooling, but the relative humidity obtained depends largely upon the temperature of the evaporator, which should be below the dew-point temperature of the air. With certain outside atmospheric conditions it may not be possible to operate the conventional equipment with a sufficiently low evaporator temperature to reduce the humidity

without dropping the temperature too low. One method has been developed whereby the evaporator temperature is carried below the dewpoint a sufficient amount to insure dehumidification and then the cold air is heated to the proper temperature by passing it over coils through which part of the high temperature liquid from the condenser is by-passed. Such a system is costly and has not been generally applied. The reheat cycle obtainable from waste engine heat may be used to good advantage in reducing the humidity without reducing the dry-bulb temperature.

During the heating season humidification is desirable from a comfort standpoint, but unless properly controlled, condensation will appear on the windows. A steam or water spray controlled by a humidistat will provide the necessary moisture for humidification. There are several cars with this feature now in use.

Temperature control for the most part obtained by rugged thermostats and relays capable of withstanding vibrations attendant with mobile service is usual equipment.

Manual zone control for varying outdoor conditions, as well as controls which regulate the car temperature automatically in accordance with outdoor conditions, are employed.

Simplified controls from the standpoint of operation by train crews and especially from the servicing viewpoint are very desirable. The control of summer temperatures is accomplished mainly by cycling the complete cooling system; however, modulation is being effected by using multiple evaporators in which a fixed portion may be cut out of the system. In the engine-driven equipments, modulation is obtained by changing engine speed.

For further information on controls, see Chapter 34.

PASSENGER BUS SUMMER AIR CONDITIONING AND VENTILATION

The highways in the United States are now traveled by about 1000 summer air conditioned passenger buses. Many of the facts stressed in connection with the design and installation of summer conditioning equipment in railway cars are even more important in these newer vehicles. Weight and space limitations are more stringent, and the problem of circulating from 900 to 1200 cfm of air in coaches carrying from 25 to 40 passengers with about 35 cu ft of space per passenger without drafts is no easy one.

Some bulkhead delivery systems have been used, and while the overhead package racks have served to break up drafts to some extent, these installations are not gaining in popularity. Longitudinal ducts in the corners above the package racks are sometimes used to carry conditioned air to a series of outlet louvers along the top of the windows. Other designs provide for false spaces below the package racks which serve as ducts to distribute air to either entrainment grilles in the bottom of the racks or distributing slots at the edges of the package racks. Some coaches employ a false ceiling to provide a duct, with delivery taking place from numerous perforations in the ceiling.

Return air grilles and filters are usually located near the rear ceiling where the evaporator is placed. Outside air intakes and filters are located

preferably near the front of the vehicle so as not to contaminate this supply with exhaust fumes and road dust. Of the 30 cfm circulated per person, about 8 to 10 cfm are outside air and the remainder is recirculated. Power for the motor driving the centrifugal fans is obtained from the bus battery.

More recently a coach design has been brought out which provides for a number of return air outlets below the seats; these permit return air to enter a longitudinal duct below the floor. The filters and evaporator are located in this duct near the front of the vehicle. In this instance a central heating coil utilizing waste heat from the coach engine is also located in this duct. Conditioned air is delivered through a pair of vertical ducts to a package rack distribution scheme.

Summer conditioning systems for these vehicles range in cooling capacity from 36,000 to 48,000 Btu per hour. Mechanical compression systems using dichlorodifluoromethane are used, and are powered by water cooled, gasoline engines of approximately 14 hp.

Complete systems add from 800 to 1300 lb to the weight of a coach. Sometimes an auxiliary generator driven by the air conditioning engine is used which serves to help charge the bus battery and thus offsets the power drain imposed by the ventilating blower. Belted reciprocating compressors and direct driven V-type and rotary compressors are used, with engine speeds up to about 1800 rpm. Air cooled condensers for this service require about 5000 cfm of outdoor air, and this is provided by either centrifugal or propellor type fans belted or direct driven by the air conditioning engine. Preventing noise and vibration from affecting passengers is of vital importance. Installations must be made so that quick daily servicing of the engine is possible. In all cases fuel is obtained from the main bus tanks, and in some cases the main engine jacket water cooling system is used to cool the air conditioning engine.

In the more deluxe equipment after the driver has started the air conditioning engine by means of its own cranking motor, the engine speed is modulated automatically as the refrigeration demand is partially met, and if this demand is then fully met, the engine is stopped thermostatically. Restarting when the cooling thermostat is no longer satisfied is accomplished either automatically or manually. The various protective and automatic devices on the refrigerant and engine systems make some of the bus air conditioning control systems quite complicated.

AUTOMOBILE SUMMER AIR CONDITIONING

Recently summer air conditioning has been applied to automobiles. The average present day automobile with little insulation, large, single glazed window areas, and high infiltration and exfiltration losses requires about 15,000 Btu per hour of cooling capacity. One system utilizes a reciprocating compressor belted from the main engine fan shaft thus operating at varying speeds up to 3000 rpm. The resulting refrigeration capacity varies from about 6000 Btu per hour at idling speed to 24,000 Btu per hour at maximum car speed.

A dry air condenser is placed in front of the engine radiator, and the liquid and suction refrigerant lines run back under the car floor to the

CHAPTER 38. TRANSPORTATION AIR CONDITIONING

evaporator which is located in back of the rear seat. Conditioned air is delivered into the car just above the shelf near the back of the rear seat. A return grille is provided under the rear seat, and the recirculated air is filtered. Outdoor air is provided by infiltration. Power for the air circulating blowers is obtained from the car storage battery. Equipment of this nature increases the car weight approximately 200 lb.

REFERENCES

RAILWAY PASSENGER CARS

Summary Report on Air Conditioning of Railroad Passenger Cars, by Division of Equipment Research, Association of American Railroads, November 24, 1936.

Engineering Report on Air Conditioning of Railroad Passenger Cars, by Division of Equipment Research, Association of American Railroads, April 15, 1937.

Report on Performance and Cost of Operation of 1937 Internal Combustion Engine Mechanical Compression Equipment for Air Conditioning Railroad Passenger Cars, by Division of Equipment Research, Association of American Railroads, May 1, 1937.

Report on Relative Performance of Air Filters, by Mechanical Division, Association of American Railroads, January 15, 1938.

Air Conditioning of Railroad Passenger Cars, by L. W. Wallace and G. G. Early, Jr. (A.S.M.E. Transactions, November, 1937).

Improved Methods of Railroad Air Conditioning, by A. E. Voigt (Refrigerating Engineering, July, 1940, p. 16).

BUSES AND AUTOMOBILES

Iso-Thermal Manifold and the Conditioned-Air Unit Used on Nash Cars, by E. Monson (Society of Automotive Engineers Journal, January, 1938).

Summer and Winter Air Conditioning of Automobiles and Buses, by L. W. Child (Heating and Ventilating, March, 1938, p. 38).

Air Conditioning Takes to the Highways (Heating, Piping and Air Conditioning, May, 1938, p. 314).

Fleet of Air Conditioned Buses West Carries Demountable Units (Heating and Ventilating, May, 1938, p. 30).

Conditioned Air for Automobiles (Heating and Ventilating, May, 1938, p. 44).

Air Conditioning of Automobiles and Buses, by L. W. Child (Society of Automotive Engineers Journal, June, 1938).

Bus Air Conditioning, by Jerry Hicke (*Heating*, *Piping and Air Conditioning*, October, 1938, p. 639).

Bus Air Conditioning, by A. J Mallinckrodt and Lars Hanson (Refrigerating Engineering, June, 1939, p. 388).

Problems in Air Conditioning Automobiles, by F. J. Linsenmeyer (Society of Automotive Engineers Journal, July, 1939).

Packard Offers Automobile Air Conditioning System (Heating, Piping and Air Conditioning, December, 1939, p. 756).

AIRPLANES

Flight in the Sub-stratosphere, by J. C. Edgerton (Society of Automotive Engineers Journal, 39:484-6 December, 1936).

Steam Heating for Modern Air Transports, by Jack McGuire (Heating and Ventilating, February, 1937, p. 37).

Comfort Aloft (Heating and Ventilating, October, 1937, p. 40).

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Portable Climate, American Buys 12 Plane Air Conditioning Units (Aviation, 36:59, September, 1937).

Steam Heating in the Sky (Heating, Piping and Air Conditioning, October, 1938, p. 631).

Altitude Conditioning (Heating and Ventilating, August, 1940, p. 16).

Comfort in High Altitude Flying, by D. W. Tomlinson (A.S.H.V.E. TRANSACTIONS, Vol. 47, 1941, p. 57).

SHIPS

Ventilation and Air Conditioning of the S. S. Panama (Heating and Ventilating, September, 1939, p. 47).

Air Conditioning the New Mauretania (Heating, Piping and Air Conditioning, July, 1939, p. 431).

Heating, Ventilating and Air Conditioning on Shipboard, by J. H. Clarke (Heating, Piping and Air Conditioning, August, p. 467; September, p. 529; October, p. 610, 1940).

Care of Cargo at Sea, by O. D. Colvin, W. H. E. Hahne and M. R. Colby (Transactions of the Society of Naval Architects and Marine Engineers: Part I, Vol. 46, 1938, p. 109; Part II, Vol. 49, 1941, p. 208).

Ventilation of Ships, by J. Dawson (Journal of The Institution of Heating and Ventilating Engineers, London, Vol. 10, June-July, 1942, No. 111, p. 89).

Chapter 39

INDUSTRIAL AIR CONDITIONING

Atmospheric Conditions Required, General Requirements, Classification of Problems, Control of Regain, Moisture Content and Regain, Conditioning and Drying, Control of Rate of Chemical Reaction, Control of Rate of Biochemical Reactions, Control Rate of Crystallization, Elimination of Static Electricity

A COMPLETE knowledge of the problems involved is necessary before a satisfactory solution can be made of industrial air conditioning problems. Individual processes and machines are changing rapidly and air conditions must be constantly revised to meet the new conditions.

ATMOSPHERIC CONDITIONS REQUIRED

The most desirable relative humidity for processing depends upon the product and the nature of the process. As far as the behavior of the material and its desired final condition are concerned, each material and process presents a different problem. The desirable relative humidity may range from a low of 5 per cent, as in certain industrial applications, such as insulation winding processes, up to a condition approaching saturation, as in processes relating to textiles, tobacco and baking industries.

Similarly, the most favorable temperature will vary according to the specific material and particular process. Frequently a compromise between the known optimum condition for processing and that required for reasonable worker comfort is desirable. This is particularly true where unconfined processes are required in departments where people are working and their health, comfort and productive efficiency must be considered.

It is generally recognized that relative humidities of 50 per cent or less are on the dry side. Such conditions are conducive to low regains in hygroscopic materials, drying out, increased brittleness of fibrous materials, prevalence of increased static electricity and tendencies toward increased dust liberation from the product. Relative humidities higher than 50 per cent are considered to be on the damp side. These conditions are conducive to high regain, promote softness and pliability in materials, decrease static electricity and tendencies toward reduced generation of product dust which represents a loss in weight of the material in process.

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 1. Temperatures and Humidities Applicable to Industrial Air Conditioning

INDUSTRY	Process	TEMPERATURE DEGREES FAHRENHEIT	RELATIVE HUMIDITY PER CENT	
AUTOMOBILE	Assembly linePrecision parts—honing—machining	65 to 80 75 to 80	40 to 55 40 to 55	
	Cake icing Cake mixing Dough fermentation room Loaf cooling	70 75 80 70	50 65 76 to 80 60 to 70	
Baking	Make-up room	75 to 80 75 to 80 80 80 to 90	55 to 70 55 to 70 55 80 to 95	
	Storage of flourStorage of yeast	70 to 80 28 to 40	60 60 to 75	
BIOLOGICAL PRODUCTS	Vaccines	below 32 38 to 42 38 to 42	60 to 65	
Brewing	Fermentation in vat room	44 to 50	50 30 to 45	
CERAMIC	Drying of auger machine brick Drying of refractory shapes Molding room	180 to 200 110 to 150 80	50 to 60 60	
CHEMICAL	Storage of clay	60 to 80 60 to 80	35 to 65 35 to 50	
Confectionery	Chewing gum rolling	75 70 62 to 65 70 to 80 65 75 to 85 60 to 68	50 45 50 to 55 30 to 50 50 50	
DISTILLERY	General manufacture Storage of grains	60 to 75 60	50 to 65 45 to 65 30 to 45	
Drug	Deliquescent powder Effervescent granulations Liver extracts (powdered) Storage of powders and tablets Tablet compressing Packaging	75 80 70 70 to 80 70 to 80 80	35 40 20 to 30 30 to 35 40 40	
ELECTRICAL	Insulation winding Manufacture of cotton covered wire Manufacture of electrical windings. Storage of electrical goods	104 60 to 80 60 to 80 60 to 80	5 60 to 70 35 to 50 35 to 50	
F ood	Butter making Dairy chill room Preparation of cereals Preparation of macaroni Ripening of meats Slicing of bacon Storage of apples Storage of citrus fruit Storage of eyes in shell	60 to 70 70 to 80 40 60 to 70 71 to 34 32 30	60 60 38 38 80 45 75 to 85 80	
Frip	Storage of meats	0 to 10 80	80 50 35	
FurINCUBATORS	Storage of furs	110 28 to 40 99 to 102	25 to 40	

CHAPTER 39. INDUSTRIAL AIR CONDITIONING

Table 1. Temperatures and Humidities Applicable to Industrial Air Conditioning—(Concluded)

Industry	INDUSTRY PROCESS					
Laboratory	General analytical and physical Storage of materials	60 to 70 60 to 70	60 to 70 35 to 50			
LEATHER	Drying of hides	90 95 to 100	95			
LIBRARY	Book storage (see discussion in this chapter)	65 to 70	38 to 50			
LINOLEUM.	Printing	80	40			
MATCHES	Manufacturing	72 to 74 60	50			
Munitions	Fuse loading	70	55			
PAINT	Air drying lacquers Baking lacquers Air drying of oil paints	70 to 90 180 to 300 60 to 90	25 to 50 25 to 50			
PAPER	Binding, cutting, drying, folding, gluing. Storage of paper. Testing Laboratory.	60 to 80 75 to 80 60 to 80	40 to 60 40 to 60 55 to 65			
PHOTOGRAPHIC	Development of film	70 to 75 75 to 80 70 72	60 50 70 65			
Printing	Binding Folding Press room (general) Press room (lithographic) Storage of rollers	70 77 75 75 to 80 70 to 90	45 65 60 to 78 50 to 60 50 to 55			
RUBBER	Manufacturing	90 75 to 80 80 to 84 80	25 to 30 42 to 48 25 to 30			
SOAP	Drying	110	70			
Textile	Cotton— carding	75 to 80	50 to 55 60 to 65 50 to 70 85 85 60 60 to 75 60 to 65 65 to 70 65 to 70			
	throwing	75 to 80 75 to 80 75 to 80 75 to 80	60 to 70 65 to 70 55 to 60 50 to 55 65			
Товассо	Cigar and cigarette making Softening Stemming or stripping	90	55 to 75 85 70			

In many processes, the optimum desired air conditions are a variable according to the stage and progress of the processing cycle, from the raw material to the finished product. Some materials, such as cotton textiles, begin with a low relative humidity in the carding and picking rooms, and after passing through the various intermediate steps with a gradual increase of relative humidity, the product is subjected to relative humidities of from 75 to 85 per cent in the final stage of weaving. Other processes are encountered that require the reverse of this procedure, starting with a high relative humidity and finishing with a low relative humidity, as is the case with gelatine capsule making, glue and gelatinous materials.

In some cases the temperatures listed in the Table 1 have no direct influence upon the product itself, except as it affects the efficiency of the employees and thus the quality of workmanship, uniformity and the cost of production. In this category may be included the automobile assembly line. The time necessary to assemble the many parts into a complete unit is a factor recognized and associated with the worker's comfort, and the avoidance of fatigue with subsequent loss of efficiency.

Air conditioning contributes an important role during the processing, machining and honing of precision metal parts, instruments, tools, engines, guns, etc., which demand micrometric accuracy of dimensions, and which are affected by small temperature variations. Hence, some uniform condition is usually selected, both as to temperature and humidity to serve the demands of the worker's comfort and the exacting requirements of the process.

The temperatures and relative humidities listed in Table 1 should be analyzed with consideration in relation to the qualified requirements of the process. Conditions generally acceptable for *industrial processing* and for *general storage* are listed in these tables. While it is true that many storage requirements demand the control of some fixed air temperature and relative humidity condition, to hold and preserve the contents, it is not generally referred to as *processing*.

Logically many phases of drying may be included in the category of air conditioning for industrial processing, especially where temperature and humidity, by direct influence to product, bring about some definite change in physical characteristics as well as in weight. (See also Chapter As an illustration, refer to the conditions that are required to control the rate of crystallization in coating pans in which sugar syrup is applied to various forms of pills, nuts, gum, etc., in consecutive liquid doses, until a crystallized coating or jacket is built up to the required size and thickness. Here, the primary problem is one of drying which requires the supply of air at some fixed volume and velocity along with regulated control of both dry- and wet-bulb temperatures. The wet-bulb depression determines the rate of moisture pick-up or drying by the air and may be termed the drying head. Of equal importance is the uniformity at which the wet-bulb is maintained. If this is allowed to vary, poor results will follow due to checking and cracking of the unfinished coating. This is obvious when it is realized that continuous evaporation of moisture is taking place during the process and also that the temperature of the material corresponds to the air wet-bulb temperature and will vary accordingly. With undue expansion and contraction, with every tem-

CHAPTER 39. INDUSTRIAL AIR CONDITIONING

perature change, the thin crystallized coatings which are not elastic will check and crack before the process is completed.

GENERAL REQUIREMENTS

Air conditioning apparatus for industrial purposes must be capable of absorbing heat from various sources such as machinery power, electric lights, people, sunlight and chemical reactions; of warming or cooling to any desired temperature; and of providing ample air supply. Refrigeration may or may not be required, depending upon natural conditions, the required relative humidity and the maximum permissible temperature. Washing, purifying and treating the air may be desirable. Good distribution is essential for the control of air motion and for the prevention of uneven conditions. Accurate, sensitive and reliable automatic control of humidity or temperature is vital in most cases.

Outside weather conditions and the ventilation required for workers are of secondary importance in relation to the total work to be done by the air conditioning system. In extreme cases of high concentration of industrial heat from machinery and ovens the error of entirely omitting the heat gain through the building structure would not be serious. At the other extreme, where low temperatures must be produced with refrigeration and where comparatively little power is required by the machinery, the heat gain through the building structure will become the major factor in determining the size of equipment and in this case the ventilation requirement assumes importance.

Buildings which are to be air conditioned should therefore be designed with careful consideration of overall cost and efficiency. Condensation resulting from high humidities must be prevented by suitable materials and construction, or else collected and drained to prevent loss of product or quick deterioration of the structure. Air leakage or filtration may add greatly to operating costs or make the maintenance of low humidities (relative or absolute) wholly impossible. Low temperatures require good insulation.

It is apparent that the subject of air conditioning for industrial processes is extensive and greatly involved, and that a detailed treatment is therefore beyond the scope of this chapter.

CLASSIFICATION OF PROBLEMS

Any industrial air conditioning problem may be listed under one or more of the following five classifications: 1. Control of regain, 2. Control of rate of chemical reactions, 3. Control of rate of biochemical reactions, 4. Control of rate of crystallization, and 5. Elimination of static electricity.

Control of Regain

In the manufacture or processing of hygroscopic materials such as textiles, paper, wood, leather, tobacco and foodstuffs, the temperature and relative humidity of the air have a marked influence upon the rate of production and upon the weight, strength, appearance and general quality of the product. This influence is due to the fact that the moisture

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

Table 2. Regain of Hygroscopic Materials

Moisture Content Expressed in Per Cent of Dry Weight of the Substance at
Various Relative Humidities—Temperature, 75 F

CLASSI- FICATION		Description		RELATIVE HUMIDITY—PER CENT								AUTHORITY
FICATION			10	20	30	40	50	60	70	80	90	1202208111
Natural Textile Fibers	Cotton	Sea island—roving	2.5	3.1	7 4.0	5.	6.6	7.9	9.5	11.5	14.1	Hartshorne
	Cotton	American—cloth	2.6	3.1	7 4.4	1 5.:	2 5.9	6.8	8.1	10.0	14.3	Schloesing
	Cotton	Absorbent	4.8	9.0	12.	15.	18.5	20.8	22.8	24.3	25.8	Fuwa
	₩ool	Australian merino-skein	4.7	7.0	8.9	10.8	128	14.9	17.2	19.9	23.4	Hartshorne
	Sılk	Raw chevennes—skein	3.2	5.5	6.9	8.0	89	10 2	11 9	14.3	18.8	Schloesing
	Linen	Table cloth	1.9	2.9	3.6	4.3	5.1	61	7.0	8.4	10.2	Atkinson
	Linen	Dry spun—yarn	3.6	5.4	6.5	7.3	8.1	89	9.8	11.2	13 8	Sommer
	Jute	Average of several grades	3.1	5.2	6.9	8.5	10.2	12.2	14 4	17.1	20 2	Storch
	Hemp	Manila and sisal—rope	2.7	4.7	6.0	7.2	8.5	9.9	11.6	13.6	15.7	Fuwa
Rayons	Viscose Nitrocellu- lose Cupramonium	Average skein	4.0	5.7	6.8	7.9	9.2	10.8	12.4	14.2	16.0	Robertson
	Cellulose Acetate	Fibre	0.8	1.1	1.4	19	2.4	30	3.6	43	5.3	Robertson
	M. F. Newsprint	Wood pulp-24% ash	2.1	3.2	4.0	4.7	5.3	61	7 2	87	10.6	U. S B. of S
	H. M. F. Writing	Wood pulp—3% ash	3.0	4.2	5.2	6.2	7.2	83	99	119	14 2	U. S. B. of S
Paper	White Bond	Rag—1% ash	2.4	3.7	4.7	5.5	6.5	7.5	88	10.8	13.2	U. S. B. of S
	Com. Ledger	75% rag—1% ash	3.2	4.2	5.0	5.6	6.2	6.9	8.1	103	13.9	U. S B. of S
	Kraft Wrapping	Coniferous	3.2	4.6	5.7	6.6	7.6	8.9	10.5	126	14.9	U. S. B of S
	Leather	Sole oak—tanned	5.0	8.5	11.2	13.6	16.0	18.3	20.6	24.0	29.2	Phelps
	Catgut	Racquet strings	46	7.2	8.6	10.2	12.0	14 3	17 3	198	21.7	Fuwa
Misc.	Glue	Hide	3.4	48	5.8	6.6	76	9.0	10.7	11.8	12.5	Fuwa
Organic Materials	Rubber	Solid tire	0.11	0.21	0 32	0.4	0.54	0.66	0.76	0 88	0 99	Fuwa
	Wood	Timber (average)	30	4.4	5.9	76	9.3	11.3	14.0	17 5	22.0	Forest P. Lab
	Soap	White	1.9	3.8	5.7	7.6	10.0	12.9	16.1	19.8	23 8	Fuwa
	Tobacco	Cigarette	54	8.6	11 0	13.3	16.0	19.5	25 0	33.5	50.0	Ford
	White Bread		0.5	1.7	3.1	4.5	6.2	8.5	11.1	14.5	19.0	Atkinson
	Crackers		2.1	2.8	3.3	3.9	5.0	6.5	83	109	14.9	Atkinson
Food-	Macaroni		5.1	7.4	8.8	10.2	11.7	13.7	16 2	19.0	22.1	Atkinson
stuffs	Flour		2.6	4.1	5.3	6.5	8.0	9.9	12 4	15.4	191	Bailey
	Starch		2.2	3.8	5.2	6.4	7.4	83	9,2	10 6	12.7	Atkinson
	Gelatin		07	1.6	2.8	3.8	4.9	6.1	7.6	9.3	11 4	Atkinson
Misc Inorganic Materials	Asbestos Fiber	Finely divided	0.16	0 24	0.26	0.32	0.41	0.51	0.62	0.73	0.84	Fuwa
	Silıca Gel		5.7	9.8	12.7	15 2	17.2	18.8	20.2	21.5	22 6	Fuwa
	Domestic Coke		0 20	0 40	0 61	0.81	1.03	1.24	1.46	1.67		Selvig
	Activated Charcoal	Steam activated	7.1	14.3	22.8	26 2	28.3	29 2	30.0		32 7	Fuwa.
	Sulphuric Acid	H ₂ SO ₄	33 0	41.0	47 5	52 5	57 O		67.0			Mason

CHAPTER 39. INDUSTRIAL AIR CONDITIONING

content of materials having a vegetable or animal origin, and to a lesser extent minerals in certain forms, comes to equilibrium with the moisture of the surrounding air.

In industries where the physical properties of a product affect its value, the percentage of moisture is of special importance. With increase in moisture content, hygroscopic materials ordinarily become softer and more pliable. Standards of regain are firmly fixed in trade with fair penalties for excesses. Deficiencies result in loss of revenue to seller and loss of desirable quality to buyer.

Manufacturing economy therefore requires that the moisture content be maintained at a percentage favorable to rapid and satisfactory manipulation and to a minimum loss of material through breakage. A uniform condition is desirable in order that high speed machinery may be adjusted permanently for the desired production with a minimum loss from delays, wastage of raw material and defective product.

In the processing of hygroscopic materials, it is usually necessary to secure a final moisture content suitable for the goods as shipped. Where the goods are sold by weight, it is proper that they contain a normal or standard moisture content.

Moisture Content and Regain

The terms moisture content and regain refer to the amount of moisture in hygroscopic materials. Moisture content is the more general term and refers either to free moisture (as in a sponge) or to hygroscopic moisture (which varies with atmospheric conditions). It is usually expressed as a percentage of the total weight of material. Regain is more specific and refers only to hygroscopic moisture. It is expressed as a percentage of the bone-dry weight of material. For example, if a sample of cloth weighing 100.0 grains is dried to a bone-dry weight of 93.0 grains, the loss in weight, or 7.0 grains, represents the weight of moisture originally contained. This expressed as a percentage of the total weight (100.0 grains) gives the moisture content or 7 per cent. The regain, which is expressed as a percentage of the bone-dry weight, is $\frac{7.0}{93.0}$ or 7.5 per cent.

The use of the term regain does not imply that the material as a whole has been completely dried out and has re-absorbed moisture. During the processing of certain textiles, for instance, complete drying during manufacturing is avoided as it might appreciably reduce the ability of the material to re-absorb moisture. A basis for calcularing the regain of textiles is obtained by drying under standard conditions a sample from the lot and the dry weight thus obtained is used as a basis in the calculations to determine the regain.

The moisture content of an hygroscopic material at any time depends upon the nature of the material and upon the temperature and especially the relative humidity of the air to which it has been exposed. Not only do different materials acquire various percentages of moisture after prolonged exposure to a given atmosphere, but the rate of absorption or drying varies with the nature of the material, its thickness and density.

Table 2 shows the regain or hygroscopic moisture content of several

organic and inorganic materials when in equilibrium at a dry-bulb temperature of 75 F and various relative humidities. The effect of relative humidity on regain of hygroscopic substances is clearly indicated. The effect of temperature is comparatively unimportant. In the case of cotton, for instance, an increase in temperature of 10 F has the same effect on regain as a decrease in relative humidity of one per cent. Changes in temperature do, however, affect the rate of absorption or drying. Sudden changes in temperature cause temporary fluctuations in regain even when the relative humidity remains stationary.

The regain or moisture content affects the physical properties of textiles to a marked degree, changing the strength, pliability and elasticity.

The fact that the regain of textiles will come into equilibrium with the conditions of the surrounding air and vary with its temperature and relative humidity is the fundamental basis for the control of physical qualities during manufacture. During the preparation processes in a cotton mill, the cotton fibers should be in a condition to be easily carded.

These preliminary processes are carried out best in a relative humidity of 50 to 55 per cent. As the cotton fiber comes to the spinning operation, more flexibility is needed and the relative humidity is increased in this department. For many years, 65 per cent relative humidity was considered the optimum. To offset the extra work performed on the fiber as the spindle speed is increased, many cotton mills now carry 70 per cent relative humidity in the spinning rooms. Winding, warping and weaving are all processes calling for great flexibility and a consequent need for higher humidity.

Other textile fibers, due to their different natural characteristics, are processed under relative humidities and temperatures applicable to each.

Rayons, on account of great loss of strength with the higher regains, should be processed in a relative humidity of 55 to 70 per cent. Acetate silk, another chemical fiber, with approximately 50 per cent of the regain of rayon, may be processed between 60 and 65 per cent relative humidity.

All hygroscopic materials when in the state of absorbing moisture from the surrounding air produce a sensible heat rise to the air equivalent to the latent heat released by air to the material. This adiabatic conversion may account for a small percentage of the total heat load of the conditioned space.

Conditioning and Drying

In general, the exposure of materials to desirable conditions for treatment may be coincidental with the manufacture or processing of the materials, or they may be treated separately in special enclosures. This latter treatment may be classified as conditioning or drying. The purpose of conditioning or drying is usually to establish a desired condition of moisture content and to regulate the physical properties of the material.

When the final moisture content is lower than the initial one, the term drying is applied. If the final moisture content is to be higher, the process

¹The Present Status of Textile Regain Data, by A. E. Stacey, Jr. (National Association of Cotton Manufacturers, 1927).

CHAPTER 39. INDUSTRIAL AIR CONDITIONING

is termed *conditioning*. In the case of some textile products and tobacco, for example, drying and conditioning may be combined in one process for the dual purpose of removing undesirable moisture and accurately regulating the final moisture content. Either conditioning or drying are frequently made continuous processes in which the material is conveyed through an elongated compartment by suitable means and subjected to controlled atmospheric conditions.

Control of Rate of Chemical Reactions

A typical example of the second general classification, that is the control of the rate of chemical reactions, occurs in the manufacture of rayon. The pulp sheets are conditioned, cut to size, and passed through a mercerizing process. It is essential that during this process close control of both temperature and relative humidity should be maintained. Temperature controls the rate of reaction directly, while the relative humidity maintains a constant rate of evaporation from the surface of the solution and gives a solution of known strength throughout the mercerizing period.

Another well-known example of this class is the *drying* of varnish which is an oxidizing process dependent upon temperature. High relative humidities have a retarding effect on the rate of oxidization at the surface and allow the internal gases to escape freely as the chemical oxidizers *cure* the varnish from within. This produces a surface free from bubbles and a film homogeneous throughout. Desirable temperatures for *drying* varnish vary with the quality. A relative humidity of 65 per cent is beneficial for obtaining the best processing results.

Control of Rate of Biochemical Reactions

In the field of biochemical control, industrial air conditioning has been applied to many different and well-known products. All problems involving fermentation are classed under this heading. As biochemistry is a subdivision of chemistry, subject to the same laws, the rate of reaction may be controlled by temperature. An example of this is the dough room of the modern bakery. Yeast develops best at a temperature of 80 F. A relative humidity of 65 per cent is maintained so as to hold the surface of the dough open to allow the carbon dioxide gases formed by the fermentation to pass through and produce a loaf of bread, when baked, of even, fine texture without large voids.

Another example of a similar process is found in the curing of macaroni. The flour and water mixture is fermented and dried. As it is necessary to have a definite amount of water present to carry on a fermentation process, the moisture must be removed in a relatively short period to stop fermentation and prevent souring and in such a manner as to avoid setting up internal strains in the mixture. Best results are obtained with the correct cycles of both temperature and humidity.

The curing of fruits, such as bananas and lemons, also comes under this classification. Bananas are treated somewhat differently and to accomplish the required results, a cycle of temperatures and relative humidities is used. The starches in the pulp of the fruit must be changed and the skin cured and colored, after which the fruit is cooled to maintain as low

a rate of metabolism as possible. Ideal conditions range between 55 to 57 F and in no case should the temperature go below 49 F, as the starches then become fixed and are indigestible.

The curing of lemons is an entirely different problem. Bananas are cured for a quick market, while lemons are held for a future market. The process, therefore, varies in the temperature used. Temperatures from 54 to 59 F have been found to be best suited for this process. A high relative humidity of 88 to 90 per cent is necessary to hold shrinkage to a minimum and, at the same time, develop the rind so it will be sufficiently tough to permit handling.

Tobacco from the field to the finished cigar, cigarette, plug or pipe tobacco, offers another interesting example of what may be done by industrial air conditioning in the control of color, texture and flavor. In the processing of tobacco, the first three classifications of air conditioning are involved, and only through close atmospheric control can the best quality of the leaf be developed.

Control Rate of Crystallization

The rate of cooling of a saturated solution determines the size of the crystals formed. Both dry- and wet-bulb temperatures are of importance, as the one controls the rate of cooling, while the other, through evaporation, changes the density of the solution.

In the coating pans for pills, gum and nuts, a heavy sugar solution is added to the tumbling mass. As the water evaporates, each separate piece is covered with crystals of sugar. A smooth, opaque coating is only accomplished by blowing into the kettle the proper amount of air at the right dry- and wet-bulb temperatures.

Elimination of Static Electricity

The presence of static electricity is very detatental to the satisfactory and economical processing of many light materials, such as textile fibers, paper, etc. It is also extremely dangerous where explosive atmospheres or materials are present. Fortunately, this hazard is easily eliminated by increasing the relative humidity.

In attempting to eliminate static electricity, it must be borne in mind that for successful elimination the air that actually comes in contact with the material in the machine must be at a relative humidity of 50 per cent or more. As some machines consume a great deal of power which is converted directly into heat, the temperature in the machine may be considerably higher than the temperature adjacent to the machine where the relative humidity is normally measured. In such cases, the relative humidity in the machine will be appreciably lower than that elsewhere in the room, and it may be necessary to maintain a room relative humidity of 65 per cent, or even more, before the desired results can be obtained.

CALCULATIONS

The methods for determining the proper heating and cooling loads for the various industrial processes are similar to those outlined in Chapters 6 and 7. Because of the large number of motors and heat producing units

CHAPTER 39. INDUSTRIAL AIR CONDITIONING

usually prevalent in an industrial application, it is particularly important that operating allowances for the latent and sensible heat loads be definitely ascertained and used in the calculations to determine the total design load.

REFERENCES

FOOD

Air Conditioning for Sausage Manufacturing Plants, by M. G. Harbula (A.S.H.V.E. Transactions, Vol. 28, 1922, p. 343).

Air Conditioning in the Bakery, by W. L. Fleisher (A.S.H.V.E. JOURNAL SECTION, Heating, Piping and Air Conditioning, February, 1931, p. 158).

Proper Air Conditions for the Manufacturing of Confections, by A. E. Stacey, Jr. (A.S.H.V.E. JOURNAL SECTION, *Heating, Piping and Air Conditioning*, October, 1937, p. 640).

Air Conditioning and Refrigerating Large Bakeries, by W. L. Fleisher (Heating, Piping and Air Conditioning, December, 1929, p. 621; January, 1930, p. 24).

Pre-Cooling Fruits and Vegetables with Circulating Air, by C. E. Baker (Heating, Piping and Air Conditioning, January, 1932, p. 42).

Air Conditioning Maintains Quality of Fruits and Vegetables, by C. E. Baker (*Heating*, *Piping and Air Conditioning*, August, 1935, p. 369).

Air Condition the Bakery Throughout, by W. W. Reece (Heating, Piping and Air Conditioning, August, 1936, p. 149).

Banana Ripening Manual, Circular No. 14, Equipment Department, Fruit Dispatch Co., New York, N. Y.

The Commercial Storage of Fruits, Vegetables and Florists' Stocks, by D. H. Rose, R. C. Wright and T. M. Whiteman (U. S. Department of Agriculture, Circular No. 278).

Temperature Studies of Some Tomato Pathogens, by Alice A. Nightingale and G. W. Ramsey (U. S. Department of Agriculture Technical Bulletin No. 520, August, 1936).

PRINTING

Hygro-Xylometric Control of Air Conditioning, by H. H. Tunis (A.S.H.V.E. JOURNAL SECTION, *Heating, Piping and Air Conditioning*, November, 1937, p. 637).

Air Conditioning of Press Rooms, by I. C. Baker (Heating, Piping and Air Conditioning, July, 1931, p. 553).

Newspaper Plant Air Conditioned for Efficient Production, by J. A. Osborn (*Heating*, *Piping and Air Conditioning*, January, 1932, p. 40).

Air Conditioning Frees Rotogravure Plant from Weather Hazards, by H. E. Jacobsen (Heating, Piping and Air Conditioning, September, 1935, p. 423).

Bureau of Standards Studies Determine Press Room Conditioning Requirements, by C. G. Weber (*Heating, Piping and Air Conditioning*, March, 1936, p. 137).

Silica Gel Air Conditioning System Serves Rotogravure Printing Plant, by H. E. Ryerson (Heating, Piping and Air Conditioning, August, 1937, p. 497).

Moisture Control by Liquid Absorption Offers a Useful Air Conditioning Tool, by F. M. Johnson (*Heating*, *Piping and Air Conditioning*, December, 1938, p. 782).

Meeting the Air Requirements in a Bindery and Printing Plant, by N. W. Downes (Heating and Ventilating, February, 1921, p. 25).

Heating and Ventilating the Bureau of Engraving and Printing (Heating and Ventilating, February, 1923, p. 55).

Humidity in the Pressroom (Heating and Ventilating, May, 1932, p. 35).

Dehumidifying with Gas in a Printing Plant (Heating and Ventilating, May, 1935, p. 31).

Air Conditioning in the Paper Industry (*Heating and Ventilating*, October, 1935, p. 23).

Air Conditioning the Newspaper Plant, by R. T. Williams (*Heating and Ventilating*, September, 1937, p. 63).

Air Conditioning Requirements of Multicolor Offset Printing, by C. G. Weber (Refrigerating Engineering, December, 1936, p. 6).

A Study of the Removal of Sulphur Dioxide from Library Air, by A. E. Kimberly and A. L. Emley (U. S. Bureau of Standards Miscellaneous Publication, No. 142, October 17, 1933).

Reactions of Lithographic Papers to Variations in Humidity and Temperature, by C. G. Weber and L. W. Snyder (U. S. Bureau Standards Journal Research, January, 1934).

The Treatment of Offset Papers for Optimum Register, by C. G. Weber and M. N. V. Geib (U. S. Bureau Standards Journal Research, February, 1936).

Summary Report of National Bureau of Standards Research on Preservation of Records, by A. E. Kimberly and B. W. Scribner (U. S. Bureau of Standards Miscellaneous Publication, No. 154, March 16, 1937).

MISCELLANEOUS

Effect of Air Conditioning upon Munitions, by J. I. Lyle (A.S.H.V.E. Transactions, Vol. 23, 1917, p. 383).

Air Conditioning in Industrial Processes (Match Factory), by W. L. Fleisher (Heating, Piping and Air Conditioning, March, 1931, p. 196).

Air Conditioning as Applied in Theatres and Film Laboratories, by D. C. Lindsay (Transactions Society of Motion Picture Engineers, April, 1927, Vol. XI, No. 30, p. 335-365).

Air Conditioning for Textile Plants Making and Using Synthetic Yarns, by L. L. Lewis (Rayon Textile Monthly, July, August, September, 1930).

Relation of Air Conditions to Tobacco Curing, by J. Johnson and W. B. Ogden (Wisconsin Agricultural Research Bureau 110: 1-48, 1931).

An Investigation of the Bacterial Contamination of the Air of Textile Mills with Special Reference to the Influence of Artificial Humidification, by W. F. Wells and E. C. Riley (*The Journal of Industrial Hygiene and Toxicology*, Vol. 19, No. 10, December, 1937).

Chapter 40

INDUSTRIAL EXHAUST SYSTEMS

Classification of Systems, Hood Design Principles, Requirements for Suction and Velocity, Duct System Design, Collectors, Resistance of System, Efficiency of Exhaust Systems, Types of Fans, Protection Against Corrosion

In many industries some type of exhaust system designed to collect and remove dusts and fumes is essential to the efficiency, economy, and safety of operation. General design information is included in this chapter which is intended to relate primarily to industrial exhaust systems.

CLASSIFICATION OF SYSTEMS

In general there are two basic layouts of exhaust systems, the central and the multiple unit system. In the central system a fan is located near the center of operations with a piping system radiating to the various machines to be served. In the multiple unit system, which is sometimes employed where the machines to be served are widely scattered, or where the operations are apt to be independent or intermittent, small individual exhaust fans are located at the center of the machine groups or at each machine. The unit arrangement has the advantage of flexibility.

Exhaust systems are also classified by the means employed to collect the material. The dust or refuse may be collected and controlled by enclosing hoods or open hoods with positive inward air movement or by exhausting the general air of the room. With some classes of machinery it is not feasible to hood the machines closely and in these cases open hoods over or adjacent to the machines are provided to collect as much as possible of the dust and fumes. This class includes such machines as rubber mills, package filling machinery, sand blast, crushers, forges, pickling tanks, melting furnaces, and the unloading points of various types of conveyors.

The open hoods should be placed as close to the source of dust or fumes as possible, with due regard to the movements of the operator and should be placed so that the operator is in no case in the path of the exhausted material. When the hood must be placed at some distance above the machine it should be large enough to cover a large area as diffusion is usually quite rapid.

Some consideration should be given to the natural movement of the fumes. For those that are lighter than air, the hood may be over or above

the machine; and where a heavy vapor, or dust-laden air at ordinary temperature is to be removed, horizontal or floor connections are sometimes preferable. In many cases there are convection currents and other atmospheric disturbances in the work room which should be given consideration. These disturbances diminish the tendency of dusts and fumes to settle from the room air because of their density.

In another class of operation the main objective is to prevent the escape of dust into the surrounding atmosphere, the removal of some dust from the machine or enclosure being merely incidental. The dust-creating apparatus is enclosed within a housing which is made as tight as practicable, and sufficient suction is applied to the enclosure to maintain an inward air leakage, thus preventing escape of the dust. While the exhaust system is required to handle only the air which leaks in through the crevices and openings in the enclosure, yet in many installations leakages are very high and great care is required to obtain satisfactory results with a system of this kind. The inward-leakage principle is utilized for controlling dust in the operating of tumbling barrels, grinding, screening, elevating, and similar processes.

Certain dust and fume producing operations are best carried on by isolating the process in a separate compartment or room and then applying general ventilation to this space. The compartment or room in which the work is performed should be as small as is consistent with convenience in handling the work. The ventilating system should be designed so that a current of clean air is drawn across the work in such a manner as to carry the dust or fume away from the operator and out of the work space. Another method of accomplishing the control of this type of installation is the dilution method. In this case sufficient clean air is introduced generally into the work space to dilute the contamination to a safe level.

HOOD DESIGN PRINCIPLES

The first step in the design of an exhaust system is to determine the number and size of the hoods and their connections. No general rules, however, can be given since hood and duct dimensions are determined by the characteristics of the operations to which they are applied. When a tentative decision regarding the set-up has been made, it is then necessary to obtain the suction and air velocities required to effect control. At this point the designer must rely upon the prevailing practice and on such physical data relating to hoods, duct systems and collectors as are available. The fan speed must be sufficient to maintain the estimated suction and air velocities in the system. In general, the most important requirements of an efficient exhaust and collecting system are¹:

- 1. Hoods, ducts, fans, motors and collectors should be of adequate size and type.
- 2. The air velocities should be sufficient to control and convey the materials collected.
- 3. The hoods and ducts should be placed so as not to interfere with the operation of a machine or any working part.
 - 4. The system should do the required work with a minimum power consumption.

¹For more detailed requirements refer to Fundamentals Relating to the Design and Operation of Exhaust Systems, Z9-1936 (American Standards Association). Industrial Code Bulletin Nos 10 and 12 (New York State Labor Department). Principles of Exhaust Hood Design, by J M DallaValle (U. S. Public Health Service, 1939)

CHAPTER 40. INDUSTRIAL EXHAUST SYSTEMS

- 5. When inflammable dusts and fumes are conveyed, the piping should be provided with an automatic damper in passing through a fire-wall.
- 6. Ducts and all metal parts should be grounded to reduce the danger of dust explosions by static electricity.
- 7. The design of an exhaust system should afford easy access to parts for inspection and care.

REQUIREMENTS FOR SUCTION AND VELOCITY

The removal of dust or waste by means of an exhaust hood requires a movement of air at the point of origin sufficient to carry it into a collecting system. The air velocities necessary to accomplish this depend upon the physical properties of the material to be eliminated and the direction and speed with which it is thrown off. If the dust to be removed is already in motion, as is the case with high-speed grinding wheels, the hood must be installed in the path of the particles so that a minimum air volume may be used effectively. It is always desirable to design and locate a hood so that the volume of air necessary to produce results is as small as possible. This will reduce the size of equipment and power required by the system and also the heating load requirements in the winter.

Air Flow from Static Readings

The static suction at the throat of a hood is frequently used in practice as a measure of the effectiveness of control. Where the hood coefficient is known the volume of air flow through any hood may be determined from the equation:

$$Q = 4005 f A \sqrt{h_t} \tag{1}$$

where

O = volume of air flow, cubic feet per minute.

A =area of connecting duct, square feet.

 h_{t} = static suction measured 3 diameters from throat of hood, inches of water.

f= orifice or restriction coefficient which varies from 0.6 to 0.9 depending on the shape of the hood.

An average value of f is 0.71, although for a well-shaped opening a value of 0.8 may be used. The factor f is determined from the equation:

$$f = \sqrt{\frac{h_{\rm v}}{h_{\rm t}}} \tag{2}$$

where h_{v} is the velocity head in the connecting duct.

The static suction is not a good measure of the effectiveness of a hood

TABLE 1. RATES OF FLOW THROUGH BRANCH PIPES WOODWORKING MACHINES

PIPE DIAMETER, IN.	AIR VOLUME, CFM	
3 4 5 6 7 8	200 350 550 800 1100 1400	
	t .	

unless the area of the opening and the location of the operation with respect to the hood are known. This is clearly indicated by Equation 3 which shows that the velocity at any point along the axis varies approximately inversely as the square of the distance. However, this formula coupled with Equation 1 should serve to indicate the velocity conditions to be expected when operations are conducted external to the hood opening.

TABLE 2. BRANCH PIPE SIZE FOR WOODWORKING MACHINE HOODS

	Size	, In.	No. of	MINIMUM DIAMETER, IN.			
Type of Machine	Mın.	Max.	BRANCHES	BOTTOM BRANCH	Top Branch	OTHERS	
Self feed table saw			2	5	4		
Other single saws	18	18	1		4 5		
Saws with Dado Head			1		5		
Band saws	2 3	2 3 6	2 2 2	4 5 5	4 4 5		
Disc sanders	18 26 32 38	18 28 32 38 48	1 1 2 2 2 3	4 5 4 5 5	4 4 4	4	
Triple drum sanders	30 36 42	30 36 42 48	1 1 1 1	7 8 9 10			
Single drum sanders: (area in sq in.)	350 700 1400	350 700 1400 2800	1	4 ^a 5 6 7			
Horizontal belt sanders	9	9 14	2 2	5 6	4 4		
Vertical belt sanders	6 9	6 9 14	1 1 1	4 5 6			
Jointers	8	8 20	1 1	4 5			
Single planers	20 26	20 26 36	1 1 1	5 6 7	`		
Tenoner			2	5	5		

aNot over 10 in. diameter.

CHAPTER 40. INDUSTRIAL EXHAUST SYSTEMS

TABLE 3. RATES OF FLOW THROUGH BRANCH PIPES GRINDING AND BUFFING WHEELS

Pipe Diameter, In.	Air Volume, Cfm
3	225
4	400
5	600
6	900
7	1200

Design Based on Total Air Flow

Where the foregoing factors are not known, the usual method of designing an exhaust system is to base the air flow through the system on rates of flow through each hood which have been found by experience to provide adequate control. For woodworking systems the rates of flow given in Table 1, calculated on the basis of a branch velocity of 4000 fpm, are adequate for control. Using these air flow rates, Table 2 gives the size of pipe connections to be used with the more common woodworking machines. Properly designed grinding and buffing wheel hoods have been found to be adequately controlled when the rates of air flow given in Table 3, calculated on the basis of a branch velocity of 4500 fpm, are used. Table 4 gives the minimum branch pipe sizes to be used on the more common sizes of grinding and buffing wheels.

In some states grinding, polishing and buffing wheels are subject to regulation by codes. (See Standards Chapter 48.) The static suction requirements, which range from $1\frac{1}{2}$ to 5 in. water displacement in a U-tube, must be followed in such states although in several instances they may appear to be excessive. Frequently, in these operations, a large part of the wheel must be exposed and the dust-laden air within the hood is thrown outward by the centrifugal action of the wheel, thus counteracting useful inward draft. This tendency may be diminished by locating the connecting duct so as to create an air flow of not less than 200 fpm past the lower edge of the wheel.

TABLE 4. BRANCH PIPE SIZES FOR GRINDING AND BUFFING HOODS

Type of Wheel	Wheel Size Diameter, In.		Maxi	IMUM	Branch Pipe Minimum Diameter,
TYPE OF WHEEL	Min.	Max.	Width In.	Area Sq In.	In.
Grinding	9 18 24 30	9 18 24 30 36	1 3 4 5 6	30 175 300 500 700	3 4 5 6 7
Disc Grinding	20	20 30		300	4 5
Buffing, Polishing and Scratch Brushing	8 16 24	8 16 24 30	2 3 4 6	50 150 300 600	3½ 4 5 6

Controlling Air Velocities

Exact determinations of hood control velocities are not available, but it is safe to assume that for most dusty operations they should not be less than 200 fpm at the point of origin. For granite dust generated by pneumatic devices, velocities from 150 to 200 fpm, depending on the type of hood used, are recommended as sufficient for safe control². Considering the character of the industry, air velocities of this order may be extended to similar dusty operations. The method for approximately determining these velocities in terms of the velocity at the hood opening is given in Equation 3.

No set rule can be given regarding the shape of a hood for a particular operation, but it is well to remember that its essential function is to create an adequate velocity distribution. The fact that the zone of greatest effectiveness does not extend laterally from the edges of the opening may frequently be utilized in estimating the size of hood required. Where complete enclosure of a dusty operation is contemplated, it is desirable to leave enough free space to equal the area of the connecting duct. Hoods for grinding, polishing and buffing should fit closely, but at the same time should provide an easy means for changing the wheels. It is advisable to design these hoods with a removable hopper at the base to capture the heavy dust and articles dropped by the operator. Such provisions are of assistance in keeping the ducts clear. Air volumes used to control many dust discharges may often be reduced by effective baffling or partial enclosure of an operation. This procedure is strongly urged where dusts are directed beyond the zone of influence of the hood.

Axial Velocity Formula for Hoods

When the normal flow of air into a hood is unobstructed, Equation 3 may be used to determine the air velocity at any point along the axis³:

$$V = \frac{0.1 \ Q}{x^2 + 0.1 \ A} \tag{3}$$

where

V = velocity at point, feet per minute.

Q = volume of air handled, cubic feet per minute.

x = distance along axis, feet.

A =area of opening, square feet.

Velocity Contours

It is possible by use of a specially constructed Pitot tube⁴ to map contours of equal velocity in any axial plane located in the field of influence. It has been found that the positions of these contours for any hood can be expressed as percentages of the velocity at the hood opening and are purely functions of the shape of the hood⁵.

³The Control of Industrial Dust, by J. M Dalla Valle (Mechanical Engineering, Vol. 55, No. 10, October, 1933).

⁵Velocity Characteristics of Hoods under Suction, by J. M. DallaValle (A.S.H.V.E. Transactions, Vol 38, 1932, p. 387).

²Control of the Silicosis Hazard in the Hard Rock Industries. I. A Laboratory Study of the Design of Dust Control Systems for Use with Pneumatic Granite Cutting Tools, by Theodore Hatch, Philip Drinker and Sarah P. Choate. (Journal of Industrial Hygiene, Vol. XII, No. 3, March, 1930).

^{&#}x27;Studies in the Design of Local Exhaust Hoods, by J. M. Dalla Valle and Theodore Hatch (A.S.M.E. Transactions, Vol. 54, 1932)

Further, the velocity contours are identical for similar hood shapes when the hoods are reduced to the same basis of comparison. These facts are applicable to all hood problems so that when the velocity contour distribution is known, the air flow required can be determined. Fig. 1 shows the contour distribution in two axial planes perpendicular to the sides of a rectangular hood with a side ratio of one-half. The distribution shown is identical for all openings with a similar side ratio provided the mapping is as shown in the figure. The contours, of course, are expressed as percentages of the velocity at the opening.

Fig. 1. Velocity Contours for a Rectangular Opening with a Side Ratio of One-Half. Contours are Expressed as Percentages of the Velocity at the Opening

Low Velocity Systems

On multiple installations of the same operation it is often possible to institute a great saving in power cost by designing an exhaust system using low velocities in the main ducts. Such a system for use in grinding and shaping porcelain has been described. In these operations, the separate machines are grouped around a central plenum chamber and exhausted by means of a low pressure fan connected to the plenum. In this case a power saving of over 90 per cent was obtained. A similar design technique has been described for use in ventilating plating tanks.

⁶Low Velocity Exhaust Systems, by Theodore Hatch (Heating and Ventilating, October, 1940, p. 27).
⁷Tank Ventilating Power Costs Cut by Low Velocity Systems, by William B Harris (Heating and Ventilating, July, 1942, p. 42).

Large Open Hoods

Large hoods, such as may be used for electroplating and pickling tanks. should be sub-divided so the area of the connecting duct is not less than one-fifteenth of the open area of the hood. Frequently, it will be found necessary to branch the main duct in order to obtain a uniform distribution of flow. Canopy hoods should extend 6 in. laterally from the tank for every 12 in. elevation, and wherever possible they should have side and rear aprons so as to prevent short circuiting of air from spaces not directly over the vats or tanks. In most cases, hoods of this type take advantage of the natural tendency of the vapors to rise, and air velocities may be kept low. Cross drafts from open doors or windows disturb the rise of the vapors and therefore provision must be made for them. air velocities required also depend upon the character of the vapors given off, cyanide fumes, for example, requiring an air velocity of approximately 75 fpm on the surface of the tank and acid and steam vapors requiring velocities as low as 25 to 50 fpm. The total volume of air flow necessary to obtain these velocities may be approximately determined from the equation:

$$Q = 1.4 PDV \tag{4}$$

where

Q = total volume of air handled by hood, cubic feet per minute.

P = perimeter of the tank, feet.

D = distance between tank and hood opening, feet.

V = air velocity desired along edges and surface of tank, feet per minute.

Lateral Exhaust Systems

The lateral exhaust method, as developed for chromium plating⁸, is applicable in many instances in preference to the canopy type hoods. The method makes use of drawing air and fumes laterally across the top of vats or tanks into slotted ducts at the top and extending fully along one or more sides of the tanks. The slots are 1 in. wide and for effective ventilation a 2000 fpm exhaust air velocity at the slot face is advisable. In addition, the duct should not be required to draw the air laterally for a distance of more than 18 in. and the level of the solution should be kept 6 to 8 in. below the top of the tanks.

It has also been determined that a similar control may be used for tanks wider than 3 ft when the same velocity (2000 fpm) is maintained through a slot which is increased ½ in. for every foot of width greater than 3 ft. When these slots must be extended more than 6 ft in length some method of spreading the flow is necessary to provide even air flow distribution through the entire slot length. This can be accomplished by tapering the slot, which incidentally will add to the resistance of the system. A more economical approach is to place properly spaced vanes in the side ducts, or to branch the side ducts.

The flexible exhaust tube method may be advantageously used for

⁸Health Hazards in Chromium Plating, by J. J. Bloomfield and William Blum (U. S. Public Health Report, Vol. 43, No. 26, September 7, 1928).

⁸New Data for Fractical Design of Ventilation for Electroplating, by W. P. Battista, Theodore Hatch and Leonard Greenburg (*Healing, Piping and Air Conditioning*, February, 1941, p. 81). Ventilation of Plating Tanks, by Allen D. Brandt (*Healing, Piping and Air Conditioning*, July, 1941, p. 434).

CHAPTER 40. INDUSTRIAL EXHAUST SYSTEMS

removing dust or fumes. Flexible tubes having one end connected to an exhaust system and a slotted hood attached to the other end may be shaped at will to fit in with industrial processes without affecting the ease of operation. Efficient dust or fume removal may be had with use of relatively small exhaust volumes. This type of system may be used on swing grinders, portable grinding wheels, soldering operations, stone cutting, rock drilling, etc.

Spray Booths

In the design of an efficient spray booth, it is essential to maintain an even distribution of air flow through the opening and about the object being sprayed. While in many instances spraying operations can be performed mechanically in wholly enclosed booths, the volatile vapors may reach injurious or explosive concentrations. At all times the concentrations of these vapors, and particularly those containing benzol, should be kept well below 100 parts per million in the breathing zone of the worker. Spray booth vapors are dangerous to the health of the worker and care should be taken to minimize exposure to them.

It is recommended in the design of spray booths that the exhaust duct be located at the end of the booth opposite the opening. In front of this duct should be placed baffle plates which will cause a uniform air velocity distribution across the frontal area. The air volume should be sufficient to maintain a velocity of not less than 100 fpm over the open area of the booth (150 fpm is preferable where benzol or lead is present in the paint) and the vapors should be discharged through a suitable stack to permit dilution. It is good practice to pass the fumes or vapors through baffle type washers or scrubbers designed for efficient spray removal.

Hoods for Chemical Laboratories

Hoods used in chemical laboratories are generally provided with sliding windows which permit positive control of the fumes and vapors evolved by the apparatus. Their design should offer easy access for the installation of chemical equipment and should be well lighted. Air velocities should exceed 50 fpm when the window is opened to its maximum height.

Kitchen Hoods

The length and width of kitchen hoods should be such as to extend beyond the extreme projection of the ranges, broilers, etc., over which they are installed. The minimum projection or overlap should be 12 in. Where space conditions permit, range hoods should be about 2 ft high so as to provide a reservoir to confine momentary bursts of smoke and steam until the exhaust system can evacuate the hood. As in the case of industrial hoods, range hoods should be located as low as possible to increase their effectiveness.

In general the amount of air to be exhausted from restaurant range hoods is at the rate of 100 fpm per square foot of face area. Thus, a hood 4.5 ft wide by 30 ft long has a face area of 135 sq ft, which multiplied by 100 fpm velocity results in a total air quantity to be exhausted of 13,500 cfm. In some cases where the application is principally frying and where

it is not practical to install a hood 2 ft high it is recommended that the face velocity be increased from 100 to 150 fpm, depending on peak load conditions in the kitchen. Exhaust connections to range hoods should always be made at the top and back of hoods, and should be spaced preferably not more than 6 ft apart and be rectangular in shape with the long side parallel to the back of the hood. Exhaust openings into range hoods should be designed to maintain a velocity of 1500 to 1800 fpm.

An approved fire damper with fusible link should be (and is required by code in many states) installed in the main exhaust duct or branch adjacent to the range hood. Should there be more than one hood connected to a common duct, then the branch duct to each hood should be provided with a fire damper. Access doors should be provided at the fire damper for purpose of inspection, cleaning or for renewal of fusible link. All exhaust piping to range hoods, commonly called grease ducts, should be provided with tight fitting cleanout doors of adequate size to permit easy removal of grease.

Hoods over steam tables should be of similar construction to range hoods. In determining the necessary amount of air to be exhausted it is considered good practice to design such hoods with a face velocity of 60 to 70 fpm. Hoods over dishwashing machines are usually relatively small and generally 1500 to 2000 cfm per hood is allowed, which is equivalent to a velocity of approximately 100 fpm per square foot of face area. Range hoods in diet kitchens are constructed the same as restaurant range hoods but with less exhaust air per square foot of face area, depending upon the nature of the food cooked.

Hoods are not often used in private residences unless they are quite large and the consideration of expense is not important. For such residences the hoods should be designed on the same basis as diet kitchens. Most all residence kitchens can be effectively and economically ventilated by the installation of a built-in kitchen ventilator, which should be located in an outside wall and in close proximity to the kitchen range. It has been found that the capacity of the built-in kitchen ventilator should be at least 350 cfm regardless of the size of kitchen. This can be justified on the basis that the smaller the kitchen the more concentrated the heat will be thus requiring a more rapid rate of air change. Standard size built-in kitchen ventilators are generally available in three sizes, namely 350, 500 and 800 cfm. The proper size to use will depend on design conditions and available wall space.

DUCT SYSTEM DESIGN

In designing a duct system it is necessary to recognize a few fundamental principles (see also Chapter 32). Knowing the quantity of air required, the size of the duct may be computed from Equation 5:

$$A = \frac{Q}{V} \tag{5}$$

A =cross-section area of duct, square feet.

Q = air quantity to be handled by the duct, cubic feet per minute.

V = velocity of air, feet per minute.

CHAPTER 40. INDUSTRIAL EXHAUST SYSTEMS

TABLE 5. GAGES OF METALS FOR EXHAUST SYSTEM

DUCI DIAMETER,	GAGE OF METAL			
In	Dust	Non-Corrosive Fumes, Vapors and Gases		
8 or less	20 18 16 14	24 22 20 18		

Air Velocities in Ducts

Where it is necessary to transport the particulate material collected in an exhaust system, minimum carrying velocities must be maintained in the ducts preceding the collector. It has been found that good design results when air velocities in horizontal runs are not less than 3000 fpm or not greater than 5000 fpm. When the dust being carried is organic and other than wood flour, or similar material, a velocity of 2500 fpm is adequate. The velocity in vertical piping should be increased 25 per cent over the minimum required for transport in horizontal ducts.

For duct systems wherein the air has no dust or solid load, a lower velocity is desirable, which may range from 1200 to 2000 fpm. In view of the fact that the horsepower required by a system depends directly on the resistance and the resistance is a function of the velocity, economical design requires velocities of this magnitude.

The equal friction method is generally used for designing a duct system as this insures equal resistance to air flow in all branches throughout the system (see Chapter 32). Long main ducts do not generally provide the most economical layout. Where it is necessary to ventilate a large number of machines, or machines which are widely separated, it is desirable to locate the fan at approximately the center of the system. With this arrangement it is possible to choose a fan which will deliver the required air quantity against a lower resistance pressure, and this will generally result in a horsepower saving.

When a system carrying dust is designed with an oversize main duct to allow for future extension, the air velocity may be found to be too low to carry the dust, and serious plugging may occur. In this case it is desirable to install an orifice in the end of the pipe to allow for the lower air quantity.

Construction

The ducts leading from the hoods to the exhaust fan should be constructed of sheet metal not lighter than is shown in Table 5. The piping should be free from dents, fins and projections on which refuse might catch.

All permanent circular joints should be lap-jointed, riveted and soldered, and all longitudinal joints either grooved and locked or riveted and soldered. Circular laps should be in the direction of the flow, and piping installed out-of-doors should not have the longitudinal laps at the bottom. Every change in pipe size should be made with an eccentric taper flat on the bottom, the taper to be at least 4 in. long for each inch

change in diameter. All pipes passing through roofs should be equipped with collars so arranged as to prevent water leaking into the building.

The main trunks and branch pipes should be as short and straight as possible, strongly supported, and with the dead ends capped to permit inspection and cleaning. All branch pipes should join the main at an angle of not greater than 45 deg, the junction being at the side or top of the larger end of a transformation piece. Branch pipes should not join the main pipes at points where the material from one branch would tend to enter the branch on the opposite side of the main.

Cleanout openings having suitable covers should be placed in the main and branch pipes so that every part of the system can be easily reached in case the system clogs. Either a large cleanout door should be placed in the main suction pipe near the fan inlet, or a detachable section of pipe, held in place by lug bands, may be provided.

Elbows and hoods should be made at least two gages heavier than straight pipe of the same diameter, in order to enable them to withstand the additional wear caused by changing the direction of flow. Elbows should preferably have a throat radius of at least one and one-half times the diameter of the pipe.

Every pipe should be kept open and unobstructed throughout its entire length, and no fixed screen should be placed in it, although the use of a trap at the junction of the hood and branch pipe is permissible, provided it is not allowed to fill up completely. The passing of pipes through firewalls should be avoided wherever possible, and floor sweep connections should be so arranged that foreign material cannot be easily introduced into them.

At the point of entrance of a branch pipe with the main duct, there should be an increase in the latter equal to their sum. Some state codes specify that the combined area be increased by 25 per cent. While this is not always good practice and is frequently done at the expense of a reduced air velocity, it is often done where future expansion of the exhaust system is contemplated.

Duct Resistance

The resistance to flow in any galvanized duct riveted and soldered at the joints may be obtained from Fig. 2, Chapter 32. The pressure drop through elbows depends upon the radius of the bend. For elbows whose centerline radii vary from 50 to 300 per cent of pipe diameter, the loss may be estimated from Table 6. It is sometimes convenient to express the resistance of an elbow in terms of an equivalent length of duct of the same diameter. Thus with a throat radius equal to the pipe diameter the resistance is equivalent to a section of straight pipe approximately 10 diameters long, while with a throat diameter radius $1\frac{1}{2}$ times the diameter, the resistance is apparently the same as that of seven diameters of straight pipe.

COLLECTORS

The most common method of separating the dust and other materials from the air is to pass the mixture through a centrifugal or cyclone col-

CHAPTER 40. INDUSTRIAL EXHAUST SYSTEMS

TABLE 6. Loss Through 90-Deg Elbows

ELBOW CENTER LINE RADIUS IN PER CENT OF PIPE DIAMETER	Loss in Per Cent of Velocity Head
50	75
100	26
150	17
200 to 300	14

lector. In this type of collector the mixture of the air and material is introduced on a tangent, near the cylindrical top of the collector, and the whirling motion sets up a centrifugal action causing the comparatively heavy materials suspended in the air to be thrown against the side of the separator, from which position they spiral down to the tail piece, while the air escapes through the stack at the center of the collector.

The diameter of the cyclone should be at least 3.5 times the diameter of the fan discharge duct. When two or more separate ducts enter a cyclone, gates should be provided to prevent any back draft through a system which may not be operating. Cyclones working in conjunction with two or more fans should be designed to operate efficiently at two-thirds capacity rating.

If a cyclone is used to collect light dusts such as buffing wheel dusts, feathers and lint, the exhaust vent should be large enough to permit an air velocity of 200 to 500 fpm. This will require a cyclone of larger dimensions than given for the foregoing general case.

When a high collection efficiency is desired, or the material is very fine, multi-cyclones may be used. These are merely small cyclones arranged in parallel which utilize the principle of high centrifugal velocity to attain separation. The capacities and characteristics of this type of separator should be obtained from the manufacturers.

Dust Filters

Filters are used when the material collected by an exhaust system is valuable or cannot be separated efficiently from the air with an ordinary cyclone. They are also employed when it is desirable to recirculate the air drawn from a room by the exhaust system, which otherwise might entail considerable loss in heat. Bag filters which are properly housed should be operated under suction. Bag houses used in the manufacture of zinc oxide and other chemical products are operated on the positive side of the fan.

Wool, cotton and asbestos cloths, and paper are commonly used as filtering mediums. When woolen cloths are employed, the filtering capacities vary from ½ to 10 cfm per square foot of filtering surface, depending on the character of the material collected. The rates for cotton and asbestos cloths are lower. The type of filter cloth and the rates of filtration depend, of course, on the material to be collected and the fan capacity. The time increase of resistance varies with the amount of material permitted to build up on the surface of the filter and can be determined only by experiment. The limits of the increase may be regulated by adjustment of the shaking or cleaning mechanism. These

limits may be regulated further according to the capacity of the fan and the effective performance of the hoods and the duct system.

For additional information on dust and cinders, see Chapter 29, Air Cleaning Devices.

RESISTANCE OF SYSTEM

The maintained resistance of the exhaust system is composed of three factors: (1) loss through the hoods, (2) collector drop, and (3) friction drop in the duct system.

The loss through the hoods is usually assumed to be equal to the suction maintained at the hoods. Where possible the resistance of the particular collector to be used should be ascertained from the manufacturer.

Friction drop in the pipes must be computed for each section where there is a change in area or in velocity. Find the velocities in each section of pipe starting with the branch most remote from the fan. The friction drop for these sections can be determined by reference to Table 6 and Fig. 2, Chapter 32. Total friction loss in the piping system is the friction

Table 7. Accepted Standards for Toxic Concentration of Fumes, Dusts and Mists^a

Fumes	MILLIGRAMS PER CUBIC METER
Cadmium oxide	0.1 1.0 0.15 0.1 0.5 5.0
Dusts	Million Particles per Cubic Footb
Asbestos. Cement. Gypsum. Lead or compounds of lead. Manganese. Marble. Silica (more than 70 per cent free silicon-dioxide). Silica (less than 10 per cent free silicon-dioxide).	5 100 100 0.15° 6° 100 5 10
Mists ·	MILLIGRAMS PER CUBIC METER
Chromic acid	0.1 5.0

aAdapted from Safe Concentrations of Certain Common Toxic Substances Used in Industry, by M. Bowditch, C. K. Drinker, P. Drinker, H. A. Haggard, and H. Hamilton (Journal of Industrial Hygiene and Toxicology, Vol, 22, No. 6, June, 1940). Industrial Code Bulletin No. 35 (New York State Labor Department). Study of Asbestosis in Asbestos Textile Industry (U. S. Public Health Bulletin No. 241, 1938). Chronic Manganese Poisoning in an Ore Crushing Mill (U. S. Public Health Bulletin No. 247, 1940).

bDetermined by light field or equivalent technique.

CMilligrams per cubic meter.

CHAPTER 40. INDUSTRIAL EXHAUST SYSTEMS

TABLE 8. CORROSION RESISTING MATERIALS FOR EXHAUST SYSTEMS²

					AC	IDp			
MATERIAL	Aceti	2	Снгоміс	Hydro- chloric	Hydro- FLUORIC	Nitric	PHOS- PHORIC	SUL- PHUROUS	Sul- Phuric
Metals	Dıl. Co	nc	Dil Conc	Dil. Conc	Dil. Conc.	Dil Con	Dil. Conc.	Dil Conc	Dil. Cone
Aluminum	Good		Fair	Poor	No Data	Poor Goo	d Poor	Poor	Poor
Magnesium and Alloys	No Dat	a	Good Poo	No Data	Poor Good	No Data	No Data	No Data	No Data
Lead and Lead-Coated	Poor		Good	Poor	Poor	Poor	Poor	Good	Good Poor
Moly Alloy (60 Ni-20Mo -20 Fe)	Good		No Data	Fair	No Data	Poor	Poor	No Data	Good
Monel Metal	Fair		Poor	Fair Poor	Goodd	Fair Po	r Fair	Poor	Goode Poor
Bronze.	Poor							Good	
Silicon Iron	Fair G	ood	No Data	Fair	Poor	Good	Good	No Data	Good
Stainless Steel ^C (18 Cr- 8 Ni).	Good		Good	Poor	No Data	Good	Poor	Good	Poor Goode
Enameled Steel	No Da	ta	No Data	Good	Poor	Good	Poor	No Data	Good
Miscellaneous		_							
Asbestos Comp				Good exce	ept against s	trong acids	and alkalies		
Wood			Some wood	ls are decom	posed or soft	ened faster	than others.	<u> </u>	
Rubber						Poor			Poor
Plastics		In	general pla	stics resist we	eak acids and	are decom	posed by conc	entrated acr	d.

aStandard Practice Sheet No. 115 (Division of Industrial Hygiene, New York State Labor Department) bAcid mists in air are more corrosive than as liquid in storage tank. Galvanized iron not resistant to acid.

drop in the most remote branch plus the drop in the various sections of the main, plus the drop in the discharge pipe.

EFFICIENCY OF EXHAUST SYSTEMS

The efficiency of an exhaust system depends upon its effectiveness in reducing the concentration of dusts, fumes, vapors and gases below the safe or threshold limits¹⁰.

Too much emphasis cannot be placed on the necessity of testing exhaust systems frequently by determining the concentration of atmospheric contamination at the worker's breathing level. Commonly accepted values of threshold limits for usual atmospheric contaminants, such as fumes, dusts and mists are given in Table 7. Similar data covering gases and vapor will be found in Chapter 28.

cStainless steel of (24 Cr-10 Ni) fairly resistant at low temperature for HCl and H3 PO4.

dUnder most conditions.

eAt room temperatures.

¹⁰Criteria for Industrial Exhaust Systems, by J. J. Bloomfield (A.S.H V.E Transactions, Vol. 40, 1934, p. 353).

TYPES OF FANS

Manufacturers generally provide special fans for the collection of various industrial wastes. These are available for the collection of coal dust, wood shavings, wool, cotton and many other substances. When substances having an abrasive character are conveyed, the fan blades and housing should be protected from wear. This may be accomplished by placing a collector on the negative side of the fan or by lining the housing and blades with rubber.

PROTECTION AGAINST CORROSION

The removal of gases and fumes in many chemical plants requires that metals used in the construction of the exhaust system be resistant to chemical corrosion. A list of the materials which may be used to resist the action of certain fumes is given in Table 8. Hoods and ducts, when short, may frequently be constructed of wood and be quite effective. Rubberized paints are available and may be applied as protective coatings in handling such gases and fumes as chlorine and hydrochloric acid.

Chapter 41

DRYING SYSTEMS

Drying Methods, Radiant-Heat Drying, Conduction or Direct Contact Drying, Convection or Air Drying, Mechanism of Drying, Omissions in the Cycle, General Rules for Drying, Humidity Chart, Dryer Calculations, Design, Estimating Methods

PRYING, in its broader sense, refers to the removal of water, or other volatile liquid from either a gaseous, liquid, or solid material. In practice, the process of direct drying gaseous material is referred to generally as dehumidifying, or condensing, and in some cases chemicals are used in the adsorption or absorption of moisture. The subjects of dehumidification and dehydration are treated in Chapter 24. Drying a liquid is called evaporation or distillation. The common usage of the word drying refers to the removal of water or other liquid, such as a solvent, by evaporation from a solid material.

When the solid to be dried contains large amounts of free water, the actual drying process is frequently preceded by the removal of part of the water by some mechanical means, such as filtration, settling, pressing or centrifuging. Removal of as much water as possible by such methods is usually advisable, as the cost of these operations, per pound of water removed, is generally much less than by evaporation. In some drying processes the evaporation of the liquid is accompanied by a chemical change, as in the drying of paint and varnish.

DRYING METHODS

Heat must be supplied in order to dry a solid by evaporation. Since this latent heat is large compared with the specific heat of the materials, drying becomes largely a problem in heat transfer. Hence drying methods are often classified according to the method of heat transfer used, as follows:

- 1. Radiant-heat drying.
- 2. Drying by direct contact, and conduction.
- 3. Convection or air drying.

Radiant-Heat Drying

Drying by sun heat is still practiced where danger of rain is slight, atmospheric pollution is negligible and sufficient time can be allowed.

Radiating surfaces, (heated by steam, electricity or other means), afford a good method of heat distribution and control. Radiant heating sets up

WATER
OF
EVAPORATION (
FOR
DRYERS
TABLE 1.

		LABLE 1.	TABLE I. DRYERS FOR EVAPORATION OF WATER	rion of	WATER	
TYPE	Kind	MATERIALS HANDLED	Means of Handling	Temp. Range Deg F	Нват Ѕоррия	Uses and Remarks
	Com- partment	Paper, Leather, Yarns, Lumber, Foodstuffs	Suspended, Truck, Tray	80 to 180	Steam Coils, Air, Electricity	When production does not warrant continuous drier
Batch or Intermittent	Agitated	Chemicals too sticky for Rotary Drier	Shoveled into Drum or Pan	100 to 330	Water, Steam Jacketed, may have Vacuum on top	Where dust must be saved
	Vacuum	Chemicals, Explosives, Pharmaceuticals, Food Products	Tray, Basket, Tumbling Drum	80 to 300	Water, Steam	Cost of operation high, for expensive materials
	Tunnel	Ceramics, Chemicals, Lumber, Food Products	Truck, Tray, Belt	100 to 350	Steam Coils, Air, Electricity, Products of Combustion	For high production
	Rotary	Bulk	Cascades through	80 500	Air, Steam, Products of Combustion	Where material will stand rough handling and is not subject to balling up
	Drum	Liquids, Slurries	Flowed on Drum, Dry Material Scraped off	to 310	Steam, may have Vacuum on Top	Hygroscopic materials dried with vacuum, and packed immediately
Continuous	Cylinder	Paper, Textiles, Chemicals	Continuous Sheets, Endless Chain Belt	to 350	Steam inside of Drum	Where material comes in sheets or rolls, and will stand direct contact with heating surface
	Festoon	Paper, Chemicals	Continuous Sheets, Suspended on Metal Screens	to 200	Air, Steam Coils	Where one side cannot come in contact with supports until dry
	Tower or Column	Grains, Sand	Falls through by Gravity	125 to 250	Air, Steam Coils	Where headroom is available
	Spray	Solutions over 30% Solids	Sprayed into Chamber	120 to 350	Air, Products of Combustion	Drying is almost instantaneous
	Induction	Metals, for removal of traces of Water	Placed in High Frequency Field	to 400	Electricity	Where heating of metal from inside out is important

CHAPTER 41. DRYING SYSTEMS

convection currents, and in low-temperature dryers only about one-third to one-half of the total heat for evaporation is actually supplied to the material by radiation. At high temperatures the radiation output increases rapidly, according to the *fourth-power law*. The total radiation may be computed by the equations and tables given in Chapter 3. In general, fins and irregular surfaces do not increase radiation, hence the area to be used in calculations is the area of a smooth-surface envelope enclosing the radiating elements.

A certain amount of air circulation is required through a radiant dryer, in order to carry off the vapor.

Conduction or Direct Contact Drying

Drying rolls or drums, flat surfaces, open kettles and immersion heaters are examples of the direct-contact method. Intimate contact of the material with the heating surface is important, and in some cases agitation

Fig. 2. Section of Continuous Dryer, Blow-Through Type

Fig. 1. Section of Rotary Dryer

is desirable to increase the uniformity of heating or to prevent overheating.

Greatest resistance to heat transfer occurs on the air side of the material being dried. The rate of heat transfer from the surface of the heated material to the air, and hence the rate of drying, may be increased by: (a) forced convection or air circulation and (b) vacuum operation to lower the boiling point of the liquid being evaporated.

Convection or Air Drying

The circulation of heated air or other gases over the material being dried is termed convection drying. Some convection drying occurs in practically all types of dryers, but if the main source of heat is from the air or gases, the dryer may be called a convection dryer. Typical forms or examples may be enumerated:

- 1. Rotary drum dryers, (Fig. 1).
- 2. Tunnel or oven dryers, batch type.
- 3. Tunnel dryers, conveyor type, (Figs. 3 and 4).
- 4. Tower or column dryers.
- 5. Through-circulation dryers, (Fig. 2).

In any type of convection dryer the heat transfer and hence the drying depends primarily upon the surface area of material exposed to the air and the velocity of the air over the surfaces (see Dryer Calculations, later).

A general classification of several types of dryers is given in Table 1. The chief basis of classification in this table is that of intermittent or batch operation as opposed to continuous operation. Another important basis of classification would be the method of handling the material to be dried. In an effort to secure maximum contact of the air with the product, as well as uniformity of heating, the effectiveness of cascading the material in an inclined drum or of blowing heated air through a bed of granular or pre-formed material is at once apparent, and where continuous drying at high capacity is required, these types are preferred. Extensive experimental studies on both types are available, (see References).

Simple drying ovens are often used for drying smaller quantities of material.

Fig. 3. Small Part Multiple Pass Oven Fig. 4. Inclined End Enameling Oven

The heat and humidity supply for low temperature work up to 250 F is often steam; steam coils either in the oven or outside, heat the air used for drying. Circulation of heated oil is used to a limited extent, but the danger of leaks is serious, for if the oil is hotter than the flash point, a fire may start if the oil is released to the atmosphere. In many cases where steam is not available, direct or indirect-fired heaters are used with gas or oil as fuel. Indirect heaters should be carefully selected from a standpoint of long life and efficiency. The heat exchange surface should be adequate in area and easily accessible for cleaning and removal. For extremely high temperatures, alloy surface may be used. With direct-fired equipment care must be used in the selection of burners and sufficient combustion space allowed to insure complete combustion of fuel. Humidity can be obtained in dryers by the use of steam spray, humidifiers, or recirculation.

For low temperature work up to 200 F ovens and dryers are commonly built of two thicknesses of insulating board (fireproof preferred), with air space between. As the temperature increases materials better able to withstand the heat must be used. Metal lined ovens are easy to keep clean, and many high temperature dryers up to 1000 F are made of metal

CHAPTER 41. DRYING SYSTEMS

panels with insulation between. Care should be taken to avoid through metal (metal extending through the oven wall from inside to out). Batch type ovens are entirely closed while in use and control of air leakage is easily taken care of. In the continuous dryer where the ends are open, heat and air leakage becomes important. Warm air leaking out of the ends of ovens means a heat loss, and often the temperature and humidity outside the oven becomes unbearable. For this reason, inclined or bottom entry ovens are used, as the warm air leakage can be more easily controlled. See Figs. 3 and 4.

MECHANISM OF DRYING

The modern theory of drying may be summed up as follows: Assuming uniform velocity and distribution of air at a constant temperature and

Fig. 5. Rate of Drying of Whiting Slab

humidity over the surface to be dried, the drying cycle will be divided into two distinct stages:

- 1. Constant rate period.
- 2. Falling rate period.

The constant rate period occurs while the material being dried is still very wet, and continues as long as the water in the material comes to the surface so rapidly that the surface remains thoroughly wet, and evaporation proceeds at a constant rate, precisely as from a free water surface. The material tends to assume a temperature corresponding to the wetbulb temperature of the surrounding air. But the actual temperature is often slightly higher, due to radiation and conduction from dry surfaces adjoining the material. The constant rate period continues until a time is reached when the moisture no longer comes to the surface as fast as it is evaporated. This point is called the *critical moisture content* in the drying process.

As the drying proceeds, a period of uniform falling rate is entered. During this period, the surface of the material is gradually drying out, and

the rate of drying falls as the remaining wet surface decreases in area. This period is also known as unsaturated surface drying.

As drying continues, the surface is completely dry and the water from the interior evaporates and comes through the surface as vapor. As the plane of water recedes, the diffusion of the vapor becomes more difficult and hence the period is known as varying falling rate period, or sub-surface drying.

Drying ceases when the *equilibrium moisture content* has been reached. The final moisture content of the product depends on the relative humidity of the air in contact with it. Equilibrium is established when the vapor pressure of the moisture in the air and the vapor pressure of the moisture

FACTOR	Drying Pa	HOD			
1 201011	Constant Rate, Unsaturated Surface	Sub-Surface			
Temperature	Increase in temperature increases drying rate	Increase in temperature in- creases drying rate, because with decreased viscosity, capil- lary flow is increased.			
Humidity	Drying rate increases as humidity is decreased	No effect until equilibrium content is reached; drying then ceases			
Air Velocity	Drying rate varies approximately as the 0.6 power of the velocity	No effect			
Air Direction	Drying rate increases, the more nearly the air blows perpendicular to surface; for dead air film becomes thinner	No effect			
Thickness of Material	Drying rate is not affected by the thickness	Drying rate varies inversely as the square of the thickness			

TABLE 2. FACTORS INFLUENCING DRYING

in the material are equal. The equilibrium moisture content varies with the hygroscopic properties of the material, (see table of Regain of Hygroscopic Materials, Chapter 39).

The drying of a slab of whiting is shown in Fig. 5 and illustrates the principles referred to previously. The factors affecting the variations of drying rates during the periods mentioned are outlined in Table 2.

Omissions in the Cycle

Many solids, such as lumber, are so dry at the beginning of the drying operation that the constant rate period of free surface evaporation does not occur. Frequently the surface of the material is dry enough so that no surface drying can take place, in which case only the final stage of subsurface drying is involved. In other instances, the critical moisture content of a wet solid is sufficiently low that sub-surface drying starts almost immediately after the conclusion of the constant rate period. Thus the intermediate state of unsaturated surface drying does not occur and the

CHAPTER 41. DRYING SYSTEMS

drying is of the sub-surface type during practically the whole of the falling rate period. With other kinds of material, particularly thin sheets, such as newsprint paper, sub-surface drying may occur at such a low moisture content that it is not encountered in commercial work, the falling rate period being confined solely in practice, to unsaturated surface drying.

GENERAL RULES FOR DRYING

Temperature

The highest temperature possible should be used because of faster drying and smaller requirements for ventilation. The amount of moisture that can be carried by a pound of air increases rapidly with rise in temperature as shown in the humidity chart of Fig. 6. Too high a temperature may cause spoilage of materials; many materials calcine or change their chemical properties if heated too hot; gypsum and glauber salts lose some of the chemically combined water, fall apart, and change their chemical properties. Too high or rapid rise in temperatures in drying lumber or ceramics may create a liquid vapor tension within the material so high that the cells explode, causing permanent injury to the fiber. If too high a temperature is used on some chemicals, they begin to react exothermally; a temperature rise and chemical action from within will burn the materials, e.g., bakelite products, gunpowder, etc. During the constant rate period of drying, the material heats only to the wet-bulb temperature of the surrounding air, consequently high temperatures will not injure the material in this stage.

Humidity

Moisture in the drying air may be very important. Many materials tend to case-harden, dry on the outside, forming a skin which retards the moisture flow from the inside to the surface, or stops it completely, and so increases the drying time very much or causes a change of the physical properties of the material. It is often necessary to add humidity to the air in the initial stage of drying. Lumber case-hardens, cracks, and warps if the outside is dried too fast. Ceramics crack if not heated through before drying commences. Elastic materials warp while others crack if not evenly dried. Many paints case-harden if not dried under high humidity.

On the other hand, in the case of those materials whose physical or chemical properties require that they be dried at relatively low temperatures, high humidity tends to retard drying in the first stage and may even stop it altogether in the final stage. Where drying temperatures below 120 to 140 F are used, the drying rate may be highly dependent on atmospheric humidity conditions. In such instances it is often desirable to dehumidify the air entering the dryer during periods of high atmospheric humidity; where a high degree of uniformity is required, it is often possible to secure complete independence of atmospheric conditions by recirculating the air in a closed system which includes a suitable dehumidifier. For this purpose absorptive dehumidifying systems have the advantage of accomplishing the desired reduction of humidity without appreciably elevating or lowering the dry-bulb temperature of the air;

754

CHAPTER 41. DRYING SYSTEMS

for this reason after-cooling is not required, and reheating is reduced to a minimum. Complete descriptions of such dehumidifying systems are given in Chapter 24 on cooling and dehumidification methods.

Air Circulation

As noted under Mechanism of Drying, air velocity is more important in the first two stages of drying than in the last, and for this reason zone drying in continuous dryers is frequently considered. It permits accurate regulation of temperature, humidity, and velocity in the different zones. High velocity results in more rapid drying, more even distribution of temperature and consequently more even drying in the first period. Too high a velocity may be detrimental because of excessive power needed for creating it, or because the material may blow away if it is light and fluffy. In the drying of paints, varnishes, and enamels, high velocity or improper distribution of the air even with the use of filters, may cause dust already in the dryer to be blown against the material, ruining the finish.

DRYER CALCULATIONS

The fundamental calculations for the design and performance of dryers are based on the thermodynamics of air and water mixtures treated in Chapter 1, and the fundamentals of heat transfer treated in Chapter 3. For the humidity calculations a high-temperature psychrometric chart is given in Fig. 6. In addition to the fundamental heat transfer calculations of radiation, conduction and convection, the heat losses through the walls of the dryer will be computed by the methods illustrated in Chapter 4 and Chapter 43. Additional data on radiation calculations are given in Chapter 45.

Where products of combustion are used directly in a dryer, a knowledge of the properties of fuels and combustion products is important. Data on fuels and combustion are given in Chapter 8. For determining the heat available in products of combustion, a specific heat of 0.25 Btu per pound per degree Fahrenheit may be used.

The calculations for drying during the constant-rate period are different from those applying to the falling-rate period.

Constant-Rate Period

The rate of drying by air passing over a wet surface is directly proportional to the vapor pressure difference, and also proportional to the

Table 3. Critical Moisture Content for Various Materials^a

Ma ferial	CRITICAL MOISTURE CONTENT, PER CENT
Sand	30 to 40 60 to 70 75 to 150

aThe critical moisture content is expressed as weight of water in per cent of weight of dry material.

0.8 power of the air velocity. For practical calculations the wet surface is assumed to attain the wet-bulb temperature of the air passing over it, and evaporation takes place at constant rate under equilibrium conditions. The equation may then be expressed in three forms:

$$R = C.1 \ V^{0.8} (\Delta P) \tag{1}$$

$$R = C! \Lambda V^{0.8} (\Delta H)$$
 (2)

$$R = C^{\dagger\dagger} A \, \mathcal{V}^{0.8} (\Delta T) \tag{3}$$

where

R = rate of drying during constant-rate period, pounds of moisture per hour.

 Λ = area of bed or material in contact with air, square feet.

V = air velocity over material, feet per minute.

 $\Delta P =$ difference between vapor pressure at wet-bulb (surface) temperature and at dew-point of air.

 ΔH = difference between humidity ratio of saturated air, at the surface temperature, and the actual humidity ratio of the air stream, pounds of water per pound of dry air.

 $\Delta T=$ difference between dry-bulb and wet-bulb temperatures of air, i.e., the wet-bulb depression.

C, C', C'' = proportionality constants (for numerical values consult references).

These equations are useful mainly for computing the effects of changes in operating conditions, such as changes in air velocity, air temperature, humidity and surface area. The equations assume that the material is in equilibrium at the wet-bulb temperature of the air. If equilibrium has not been reached, or if heat is being added to the charge by radiation or conduction, such conditions must be taken into account. For large tray dryers or continuous surfaces, the logarithmic mean difference should be substituted for the simple difference in $\Delta P, \Delta II$ and ΔT .

When the constant of proportionality is known for a given set of conditions, Equations 1, 2 or 3 may be applied for basic design, as illustrated in Example 1.

Example 1. Compute the rate of drying of a granular material initially 35 per cent moisture (dry basis), if the material is spread in trays and is to be dried by blowing air horizontally over the surface at 1000 fpm. The air is 140 F dry-bulb, 90 F wet-bulb. Density of the dry material is 85 lb per cubic foot, and the drying constant C^{11} , in Equation 3, has been found to be about 1/25,000. Find the size of dryer for a capacity of one ton per hour (dry basis), and the time required for drying each batch from 35 to 10 per cent moisture content, if the material is spread in trays, in a layer one inch thick. (The critical moisture content of the material is below 10 per cent, hence the drying is at constant rate.)

Solution: Assume that the surface of the material attains the wet-bulb temperature of the air, then $\Delta T = 140 - 90 = 50$ F. The rate of drying by Equation 3 is:

$$R = C^{11} A V^{0.8} \Delta T = \frac{1000^{0.8} \times 50}{25,000} = 0.50$$
 lb of water per hour per square foot of surface.

The total water evaporated per square foot of surface is:

$$W = \frac{85}{12} (0.35 - 0.10) = 1.77 \text{ lb (per batch)}.$$

Then the time required per batch is:

$$T = \frac{1.77}{0.50} = 3.54 \text{ hr.}$$

CHAPTER 41. DRYING SYSTEMS

The size of dryer required to dry the material at the rate of one ton of dried material per operating hour will be:

$$A = \frac{2000 \times 3.54}{85/12} = 1000$$
 sq ft, total area of trays.

Falling-Rate Period

The critical moisture content marks the end of the constant rate period and the beginning of the falling-rate period. This falling rate may be due to the fact that the surface is no longer completely wetted, or it may result from a condition in which the moisture cannot reach the surface as fast as it can be evaporated. When this high resistance to capillary flow and diffusion is the governing factor in the drying process, the time of drying increases rapidly with the thickness of the material. During constant-rate drying the time required is directly proportional to the thickness of the bed (see Example 1), while the time required for drying during the falling-rate period is often proportional to the square of the thickness of the material.

Actual calculations of drying during the falling-rate period are not highly satisfactory because of the number of variables. It has been demonstrated empirically that the rate of drying is approximately proportional to the free water content of the material.

An approximate value of the critical moisture content which marks the beginning of the falling-rate period may be obtained from Table 3.

DESIGN

In all drying problems, data regarding temperatures, time, and humidity must be obtained by experiment or previous experience. Experiments are best performed at the temperatures, humidities, and velocities to be actually used in the full sized dryer, and with full size samples.

The following nomenclature and explanation of terms will be used in the discussion of design calculations:

H = humidity ratio of air, pounds of water vapor per pound of dry air.

G =pounds of dry air supplied to the dryer per unit of time.

S =pounds of stock dried per unit of time in a continuous dryer.

 S^1 = pounds of stock charged per batch to a discontinuous dryer.

 $\Theta = time.$

Q =total heat supplied to the dryer.

t = air temperature.

t' = stock temperature.

 $t^{||}$ = average stock temperature over short time interval, in a batch dryer.

 $t_{\rm w}$ = wet-bulb temperature.

 s^{\dagger} = specific heat of the stock. B = total radiation and conduction losses per unit time.

w = pounds of water per pound of dry stock.

r = heat of evaporation of water.

s = humid heat of air, i.e., heat necessary to raise 1 lb of dry air + H lb of steam 1 F.

Subscript (1) designates conditions at the point where the material in question (air or stock) enters and (2) where it leaves the dryer.

Air dryers may be divided into two classes, those in which all moisture evaporated from the stock leaves the dryer as vapor in the effluent air, and those in which part or all of the moisture is condensed from the air in the drying equipment itself. In any continuously operating dryer of the first type the relation between moisture content of the stock and quantity of air required for the drying operation is given by the equation:

$$G(H_2 - H_1) = S(w_1 - w_2) (4)$$

In discontinuous dryers, e.g., compartment dryers, the drying operation is given by the equation:

$$G(H_2 - H_1) = S' \frac{dw}{d\Theta}$$
 (4a)

In the continuous dryer, the heat consumption per unit time is:

$$\frac{Q}{\Theta} = Gs_1(t_2 - t_1) + G(r_2 + t_2 - t_2) (H_2 - H_1) + S(t_2 - t_1) (s_1 + w_1) + B$$
 (5)

Equation 5 assumes continuity of operation. For charge or batch operations, the total time of the drying cycle may be broken up into a number of periods, sufficiently short so that over each period average values of t, t^{l} and H may be employed provided the third term of the right hand member of the equation is modified to read:

$$S^{1}(t^{11}_{2}-t^{11}_{1})(s^{1}-w_{1})$$

and in the second term t_2 be replaced by

$$\frac{t'_1+t''_2}{2}$$

Theoretically these periods should be very short and the equation integrated. Practically the error introduced by using a small number of long periods and employing average values of the variables over each, rarely introduces serious error. The evaluation of Equation 4a may be approximated in a similar manner.

The first term of the right hand member of Equation 5 represents heat lost as sensible heat in the effluent air. In many drying operations this becomes excessive. Each pound of air supplied should remove the maximum amount of moisture. This is best accomplished by bringing the air into contact with the stock with sufficient intimacy so that the air leaving the dryer is saturated, or nearly so. Counter-current as against parallel flow of air and stock gives rise to optimum operating conditions, resulting in a minimum quantity of air required (G), and a corresponding minimum loss, as sensible heat, in the exit air. Similarly, continuous operation is superior to intermittent operation.

Despite the fact that the sensible heat loss increases with the rise in temperature of the air, the percentage of heat lost from this source decreases, provided the increase in moisture carrying capacity of the air, due to high temperature, is actually utilized. To secure maximum thermal efficiency in drying, a high drying temperature and high saturation of the outlet air is imperative.

Ventilation Phase

The technique of attack of the *ventilation phase* of a drying problem is best made clear by an illustration. Assume that a material containing 40 per cent moisture is to be dried until this quantity of moisture is reduced to 5 per cent by weight. The material will stand an air temperature of 150 F and it is possible to provide sufficiently good contact between the material and the drying air so that the effluent air can be brought up to 50 per cent humidity at 150 F. The dryer is to use room air, the temperature and humidity of which may be assumed to average 70 F and 50 per cent. A counter-current dryer will be employed and the air in this dryer will be kept at a substantially constant temperature of 150 F by heaters thermostatically controlled. The stock enters at 70 F, rises quickly to the wet-bulb temperature of the air, with which it is in contact, and is found experimentally to maintain wet-bulb temperature until the moisture content has fallen to 20 per cent. From this point its

Fig. 7. Temperature Humidity Relations in a Dryer

temperature rises progressively as it dries. In this range the difference in temperature between stock and air, divided by the wet-bulb depression, may be assumed proportional to the moisture content.

The moisture content of the entering stock, in the units here employed, is:

$$w_1 = \frac{40 \text{ per cent water}}{60 \text{ per cent dry stock}} = 0.6667$$
: $w_2 = \frac{5 \text{ per cent water}}{95 \text{ per cent dry stock}} = 0.0527$

 $w_1-w_2=\Delta\,w=0.614$ lb water evaporated per pound of dry stock. Since the air eaving the dryer is 50 per cent saturated at 150 F from Fig. 6, $H_2=0.105$. Similarly, $H_1=0.008$, corresponding to 50 per cent humidity at 70 F. Consequently $H_2-H_1=\Delta\,H=0.097$ lb water evaporated per pound dry air.

An analysis of Equation 4 shows that (H) is linear in w. Hence, one can construct on Fig. 7, the line marked (H) being drawn connecting the initial and final points just computed.

Since the air leaving the dryer has a temperature of 150 F and a humidity of 0.105, Fig. 6 shows that its wet-bulb temperature is 129 F. This is plotted at the right hand side of Fig. 7. Since the stock maintains

a wet-bulb temperature down to 20 per cent moisture, where w=0.25, the corresponding humidity can be computed by the use of Equation 4 or by reading directly from the diagram, the value being 0.0392. Fig. 6 shows that the corresponding wet-bulb temperature is 105 F. Any intermediate point on the wet-bulb temperature curve can be calculated similarly. The points for w=0.5 are shown in Fig. 7.

Below the point, w=0.25, the temperature of the stock begins to rise appreciably above the wet-bulb temperature. Its temperature at any given point in this range, for example at w=0.15, may be computed as follows: At this point, H=0.0234 (from Equation 4) and from Fig. 6, $t_w=95$ F. Hence the wet-bulb depression, $t-t_w=150-95=55$ F. The assumption made regarding the relation between stock temperature and moisture content in this range may be formulated:

$$\frac{\Delta t'}{t - t_w} = \frac{w}{0.25}$$

At the point w = 0.15, $\Delta t' = 33$ F, t' = 117 F. The temperature of the stock leaving the dryer, similarly computed, is 136 F.

Fig. 8. Core Drying Time Temperature Relations

Fig. 7 thus computed gives in graphical form the information as to the temperature humidity relationships in the dryer. The air requirements can be computed by Equation 4. Thus, per 100 lb of dry stock, it is necessary to supply 633 lb of dry air. Furthermore, since from Fig. 6 it is seen that the volume of 50 per cent saturated air at 70 F, is 13.55 cu ft per pound; 8580 cu ft of room air must be supplied per 100 lb dry stock. Similarly, since the volume of 50 per cent saturated air at 150 F is 18.0 cu ft per pound, the volume of hot wet air discharged from the dryer is 11,400 cu ft per 100 lb of dry stock. Finally, the heat necessary to supply to the dryer, as a whole, or to any section of it, may be computed from Equation 5.

High Temperature Dryer

In the design of a high temperature dryer unit a method of approach to the necessary calculations involved is outlined as follows:

Example 2. Cores 4 and 5 in. thick are to be dried by heating to a temperature at 400 F. An intermittent type box oven is to be used, size $12 \times 14 \times 10$ ft with 856 sq ft surface having an average heat transfer of 0.3 Btu per square foot per degree per hour. Drying time as determined by test is 2 hr (Fig. 8). Cores weighing 6 tons, and 15-ton steel plates, trucks etc. are delivered to the dryer at 70 F. The oven is heated by an

CHAPTER 41. DRYING SYSTEMS

external heater; the products of combustion and 66% per cent recirculated air will be delivered to the oven at 825 F. Fuel oil of 19,980 Btu gross and 18,830 Btu per pound net heating value, weighing 6.75 lb per gallon and having 15 lb product per pound fuel for perfect combustion. Cores consist of 91 per cent sand, 3 per cent oil binder, and 6 per cent water.

Solution. Heat required per ton of cores:

I	Lb Material	× Temp.	Rise X Sp	. Ht. =	$_{ m Btu}$
Sand 0	$0.91 \times 2,000$	× (400 ~	$-70) \times 0.2$	=	120,120
Binder ($0.03 \times 2{,}000$	× (400 -	$-70) \times 0.4$: =	7,920
Water heating ($0.06 \times 2{,}000$	× (212 -	$-70) \times 1.0$	=	17,040
Water evaporation 0	$0.06 \times 2,000$	X !	970 (Fig. 6)	=	116,520
Water superheating (approx. 50	per cent read	ches 575 F)		
$= 0.5 \times 0.0$	$06 \times 2,000 >$	< (575 − 1	$(212) \times 0.4$	5 =	9,800
Total Heat	***************************************			. 271	,400 Btu
Heat in 1 lb fuel oil =		18,830 H	Btu		
Heater Loss (10 per cent) = 1883	3				
Duct Loss (5 per cent) = 942	?	2,825 E	Btu		

Vent 33 ger cent at 422 F

Recurculation 66 ger cent
at 422 F-Y lb

15 lb product of perfect
combustion per pound fuel

Oven 825 F

Excess air for combustion

X ib at 70 F

Fig. 9. Core Drying Diagram of Combustion Products and Air

Heat content of gases in 1 lb fuel oil at 825 F is 205 Btu

15 lb
$$\times$$
 205 = 3,075 Btu sensible heat in products of perfect combustion.

12,930 Btu to heat air X and Y (Fig. 9).

$$Y(S_{825} - S_{422}) + X(S_{825} - S_{70}) = 12,930$$
 (6)
 $Y = 2(X + 15)$ for 66.7 per cent recirculation

where

S = heat content of air at temperature noted taken from Fig. 6.

(Recirculation and exhaust contains water vapor, products of combustion, and a greater portion of air. Heat capacities of all vary so little that they have all been assumed to be air).

$$S_{825} - S_{422} = 190 - 91 = 99$$

 $S_{825} - S_{70} = 190 - 8.6 = 181.4$

Substituting values of Y, H, etc. in Equation 6,

(2 X + 30) 99 + 181.4 X = 12,930

X = 26.3 lb excess air.

Y = 82.6 lb recirculating air.

Total = 26.3 + 82.6 + 15 = 123.9 lb air and products of combustion circulated per pound fuel burned.

Heat in air exhausted from oven at 422 F per pound fuel burned = $0.333 \times 123.9 \times (S_{422} - S_{70}) = 41.3 (91 - 8.6) = 3,400 Btu.$

Btu available for heating material = 16,005 - 3,400 = 12,605 Btu per pound fuel. Fuel used in first hour = $2,180,470 \div 12,605 = 173$ lb = 25.6 gal.

During the second hour the heater capacity will be much greater than required. If an automatic oven temperature control operates on the oil supply, the delivery temperature of the air entering the oven and the quantity of oil burned will decrease, the air supply being constant.

Heat in air exhausted = $41.3 (S_{875} - S_{70}) = 41.3 (127 - 8.6) = 4,880$ Btu per pound fuel.

Heat available for heating material = 16,005 - 4,880 = 11,125 Btu.

Fuel used in second hour = $1,072,008 \div 11,125 = 96.5$ lb oil = 14.3 gal.

Total oil used per load = 25.6 + 14.3 = 39.9 gal.

HEATING LOAD FIRST HOUR

	HEATED TO			Bru
Sand	212 F	$\frac{142}{330} \times 120,120$	==	51,68
Binder ^a	212 F	$\frac{142}{330} \times 7,920$	=	3,40
Water	212 F		==	17,04
Evaporation	66.7%	$0.667 \times 116,520$	==	77,68
Superheat	66.7%	$0.667 \times 9,800$	==	6,53
Total Per Ton			•••••	156,34
For 6 ton		6 × 156,346		938,07
Steel plates	390 F	$320 \times 30,000 \times 0$		1,152,00
Radiation ^b	422 F Avg	352 × 856 × 0	0.30 =	90,39
Total				2,180,47
Sand	HEATING LOAD	SECOND HOUR $\frac{188}{330} \times 120,120$		68,43
				00,40
Binder ^a	400 F	$\frac{188}{330} \times 7,920$	1072	4,51
Water		330		,
Evaporation	33.3%	$0.333 \times 116,520$		38,84
Superheat	33.3%	0.333 × 9,800	==	3,27
Total Per Ton				. 115,05
For 6 ton		6 × 115 054	·	600.20
Steel plates	460			252,000
Radiation ^b	575	505 × 856 × 0		129,68
For 6 ton	460 575	$\begin{array}{c} 6 \times 115,054 \\ 70 \times 30,000 \times 0 \\ 505 \times 856 \times 0 \end{array}$.12 = .30 =	690, 252,

aBinder oxidizes and liberates heat, which is neglected in this calculation.

bAverage value of coefficient is less than 0.3 because oven is not up to 575 F. This is neglected. 422 F is arrived at by taking area under curve as compared to area under 575 F ordinate.

ESTIMATING METHODS

Values based on practical experience are available for rough estimating The temperature will drop approximately 8.5 F per of drying problems. grain of water evaporated per cubic foot of air (measured at 70 F) or approximately 0.62 F per pound of air at any temperature. Air will drop 55 F per cubic foot for each Btu extracted. Generally air will absorb from 2 grains to 5 grains per cubic foot of air in one passage through an air dryer, depending on the temperature and the degree of contact with the material. The amount of steam required to evaporate a pound of water will vary from 1.5 lb to a more usual figure of from 2.5 to 3 lb of steam per pound of water evaporated.

REFERENCES

Drying Apparatus, by H. C. Russell (A.S.H.V.E. Transactions, Vol. 18, 1912, p. 76). Commercial Drying Apparatus, by L. P. Dwyer (A.S.H.V.E. Transactions, Vol. 22,

Artificial Drying with Special Reference to the Use of Gas, by G. C. Shadwell (A.S.H. V.E. Transactions, Vol. 23, 1917, p. 231). 1916, p. 479).

Drying by Evaporation, by F. R. Still (A.S.H.V.E. Transactions, Vol. 23, 1917, p. 255).

High Temperature Drying, by Burt S. Harrison (A.S H.V.E. TRANSACTIONS, Vol. 24, 1918, p. 7).

The Temperature of Evaporation, by W. H. Carrier (A.S.H.V.E. TRANSACTIONS, Vol. 24, 1918, p. 25).

Address on Dehydration, by H. C. Gore (A.S.H.V.E. TRANSACTIONS, Vol. 24, 1918,

Food Dryers and the Use of School Houses for Drying, by W. L. Fleisher (A.S.H.V.E. Transactions, Vol. 24, 1918, p. 339).

Memorandum Concerning Fruit and Vegetable Dryers, by Alfred S. Kellogg (A.S.H. V.E. Transactions, Vol. 24, 1918, p. 359).

Progress in the Dehydration Industry, by C. E. Mangels (A.S H.V.E. Transactions, Vol. 26, 1920, p. 99).

Dehydration, by Ralph H. McKee (A.S.H.V.E. Transactions, Vol. 26, 1920, p. 105).

Commercial Dehydration, by J. E. Whitley (A.S.H.V.E. TRANSACTIONS, Vol. 26, 1920, p. 551).

Drying of Fruits and Vegetables, by Ray Powers (A.S.H.V.E. TRANSACTIONS, Vol.

Drying as an Air Conditioning Problem, by A. W. Lissauer (A.S.H.V.E. Transactions, Vol. 27, 1921, p. 251). A Chronological Survey of Drying and Driers, by J. E. Bolling (A.S.H.V.E. JOURNAL,

Vol. 27, October, 1921, p. 715).

Dehydration and Freshening of Codfish, by Henry W. Banks, 3D (AS.H.V.E. Transactions, Vol. 28, 1922, p. 143).

Construction of Farm Dehydrators in California, by A. W. Christie and G. B. Ridley (A.S.H.V.E. JOURNAL, Vol. 29, 1923, p. 687).

Study of Air Velocity and Temperature in Vegetable Dehydration, by A. W. Christie and K. Matsumoto (A.S.H.V.E. JOURNAL, Vol. 33, June, 1927, p. 381).

Air Conditioning and Food Dehydration (Heating and Ventilating, December, 1942,

Adiabatic Drying of Hygroscopic Solids, by A. M. McCready and W. L. McCale (Transactions, American Institute Chemical Engineers, 1933).

Limitations of Diffusion Equations in Drying, by O. A. Hougen, H. J. McCauley and W. R. Marshall (Transactions, American Institute of Chemical Engineers, 1940).

Factors Influencing the Performance of Rotary Dryers, by C. F. Prutton and C. O. Miller (*Transactions, American Institute of Chemical Engineers*, Part 1, February, 1942; Part 2, August, 1942).

Drying of Solids by Through Circulation, by W. R. Marshall and O. A. Hougen (Transactions, American Institute of Chemical Engineers, 1942).

Factors that Influence Drier Performance, by A. Weisselberg (Chemical and Metallurgical Engineering, August, 1932).

Typical Dryer Calculations, by O. A. Hougen (Chemical and Metallurgical Engineering, January and March, 1940).

Symposium on Drying, Articles by W. K. Lewis, W. H. Carrier, A. E. Stacey, Jr. and R. S. Fleming, R. G. Metz, G. B. Ridley, C. O. Lavett, D. J. Van Marle (Journal Industrial Engineering Chemistry, May, 1921).

Principles of Drying Lumber and Humidity Diagram, by H. D. Tiemann (Forest Service Bulletin 104, 1912).

The Drying of Solids, by T. K. Sherwood (Bulletin Massachusetts Institute of Technology, Nos. 237, 247 and 258).

Air Conditioning and Engineering, American Blower Co., 1935.

Drying in Industrial Plants, by J. O. Ross.

Elements of Chemical Engineering, by Badger and McCabe (McGraw Hill Co., 1931).

Fan Engineering, Buffalo Forge Co.

Die Trockentechnik, by M. Hirsch (Julius Springer, Berlin, 1932).

Drying (Kent's Mechanical Engineers Handbook).

Drying, by W. H. Carrier (Marks' Mechanical Engineers Handbook).

Drying (Perry's Chemical Engineers Handbook, 1941).

Kiln Drying of Lumber, by A. Koehler and R. Thelen, New York, 1926.

Kiln Drying of Lumber, by H. D. Tiemann (Lippencott, 1920). Modern Drying Machinery, by H. B. Grenshaw, London, 1926.

Principles of Chemical Engineering, by Walker, Lewis, McAdams (Chapters on Evaporation, Humidity and Drying, McGraw Hill Co.).

Chapter 42

NATURAL VENTILATION

Wind Forces, Stack Effect, Openings, Windows, Doors, Skylights, Roof Ventilators, Stacks, Principles of Control, General Rules, Measurements, Dairy Barn Ventilation, Garage Ventilation

VENTILATION by natural forces, finds application in industrial plants, public buildings, schools, dwellings, garages, and in farm buildings.

The natural forces available for moving air into, through and out of buildings are: (a) wind forces, and (b) the difference in temperature between the air inside and outside a building. The air movement may be caused by either of these forces acting alone or by a combination of the two, depending upon atmospheric conditions, building design and location. The ventilating results obtained will vary, from time to time, due to variation in the velocity and direction of the wind and the heat generated in the building. The arrangement, location, and control of the ventilating openings should be such that the two forces act cooperatively rather than in opposition.

WIND FORCES

In considering the use of natural wind forces for producing ventilation, account must be taken of: (1) average wind velocity, (2) prevailing wind direction, (3) seasonal and daily variations in velocity and direction, and (4) local wind interference by nearby buildings, hills or other obstructions of similar nature.

Values are given in Table 1, Chapter 7 for the average summer wind velocities and the prevailing wind directions in various localities throughout the United States, while Table 2, Chapter 6, lists similar values for the winter. In almost all localities the summer wind velocities are lower than those in the winter, and in about two-thirds of the localities the prevailing direction is different during the summer and winter. While the tables give no average velocities below 5 mph, there will be times when the velocity is lower, even in localities where the seasonal average is considerably above 5 mph. There are relatively few places where the velocity falls below one half of the average for many hours per month. Consequently, if the natural ventilating system is designed for wind velocities of one-half of the average seasonal velocity, it should prove satisfactory in almost every case.

Equation 1 may be used for calculating the quantity of air forced through ventilation openings by the wind, or for determining the proper size of such openings to produce given results:

$$Q = EAV (1)$$

where

Q = air flow, cubic feet per minute.

A = free area of inlet openings, square feet.

 $V = \text{wind velocity, feet per minute,} = \text{miles per hour} \times 88.$

E= effectiveness of openings. (E should be taken at 0.50 to 0.60 for perpendicular winds and 0.25 to 0.35 for diagonal winds¹.)

The accuracy of the results obtained by the use of Equation 1 depends upon the placing of the openings, as the formula assumes that ventilating openings have a flow coefficient slightly greater than that of a square-edged orifice. If the openings are not advantageously placed with respect to the wind, the flow per unit area of the openings will be less and, if unusually well placed, the flow will be slightly more than that given by the formula. Inlets should be placed to face directly into the prevailing wind, while outlets should be placed in one of the five places listed:

- 1. On the side of the building directly opposite the direction of the prevailing wind.
- 2. On the roof in the low pressure area caused by the jump of the wind (see Fig. 1).
- 3. On the sides adjacent to the windward face where low pressure areas occur.
- 4. In a monitor on the side opposite from the wind.
- 5. In roof ventilators or stacks.

TEMPERATURE DIFFERENCE FORCES²

The stack effect produced within a building when the outdoor temperature is lower is due to the difference in weight of the warm column of air within the building and the cooler air outside. The flow due to stack effect is proportional to the square root of the draft head, or approximately:

$$Q = 9.4 A \sqrt{II (t - t_0)}$$
 (2)

where

Q = air flow, cubic feet per minute.

A = free area of inlets or outlets (assumed equal), square feet.

H = height from inlets to outlets, feet.

t = average temperature of indoor air in height H, degrees Fahrenheit.

to = temperature of outdoor air, degrees Fahrenheit.

9.4 = constant of proportionality, including a value of 65 per cent for effectiveness of openings. This should be reduced to 50 per cent (constant = 7.2) if conditions are not favorable.

HEAT REMOVAL

In problems of heat removal, knowing the amount of heat to be remeved and having selected a desirable temperature difference, the amount

¹Predetermining Airation of Industrial Buildings, by W. C. Randall and E. W. Conover (A.S.H.V.E. Property of the Property of

²Neutral Zone in Ventilation, by J. E. Emswiler (A.S.H.V.E Transactions, Vol. 32, 1926, p. 59).

CHAPTER 42. NATURAL VENTILATION

of air to be passed through the building per minute to maintain this temperature difference can be determined by means of Equation 3.

$$H = 0.0175 Q (t - t_0) (3)$$

where

H = heat removed, Btu per minute.

Q = air flow, cubic feet per minute.

 $t-t_0$ = inside-outside temperature difference, degrees Fahrenheit.

Fig. 1. The Jump of Wind from Windward Face of Building. (A—Length of Suction Area; B—Point of Maximum Intensity of Suction; C—Point of Maximum Pressure)

EFFECT OF UNEQUAL OPENINGS

The largest flow per unit area of openings is obtained when inlets and outlets are equal, and the equations given previously are based on this condition. Increasing outlets over inlets, or vice-versa, will increase the air flow, but not in proportion to the added area. When solving problems having an unequal distribution of openings, use the smaller area, either inlet or outlet, in the equations and add the increase as determined from Fig. 2.

COMBINED FORCES OF WIND AND TEMPERATURE

Equations for determining the air flow due to temperature difference and wind have already been given. It must be remembered that when both forces are acting together, even without interference, the resulting air flow is not equal to the sum of the two estimated quantities. The flow through any opening is proportional to the square root of the sum of the forces acting on that opening.

When the two forces are about equal in intensity and the ventilating openings are operated so as to coordinate them, the total air flow through the building is about 10 per cent greater than that produced by either force acting independently under conditions ideal to that force. This

Fig. 2. Increase in Flow Caused by Excess of One Opening Over Another

percentage decreases rapidly as one force increases over the other and the larger force will predominate.

The wind velocity and direction, the outdoor temperature, or the indoor distribution, cannot be predicted with certainty, and refinement in calculations is not justified; consequently, a simplified method can be used. This may be done by using the equations and calculating the flows produced by each force separately under conditions of openings best suited for coordination of the forces. Then by determining as a percentage, the ratio of the flow produced by temperature difference to the sum of the two flows, the actual flow due to the combined forces can be approximated from Fig. 3.

Example 1. Assume a drop forge shop, 200 ft long, 100 ft wide, and 30 ft high. The cubical content is 600,000 cu ft, and the height of the air outlet over that of the inlet is 30 ft. Oil fuel of 18,000 Btu per pound is used in this shop at the rate of 15 gal per hour (7.75 lb per gal). Desired summer temperature difference is 10 F and the prevailing wind is 8 mph perpendicular to the long dimension. What is the necessary area for the inlets and outlets, and what is the rate of air flow through the building?

CHAPTER 42. NATURAL VENTILATION

Solution for Temperature Difference Only. The heat $H = \frac{15 \times 7.75 \times 18,000}{60} = 34,875$ Btu per minute.

By Equation 3, the air flow required to remove this heat with an average temperature difference of 10 F is:

$$Q = \frac{H}{0.0175 (t - t_0)} = \frac{34,875}{0.0175 \times 10} = 199,286 \text{ cfm}.$$

This is equal to about 20 air changes per hour. From Equation 2 the inlet (or outlet) opening area should be:

$$A = \frac{Q}{9.4 \sqrt{H (t - t_0)}} = \frac{199,286}{9.4 \sqrt{30 \times 10}} = 1224 \text{ sq ft.}$$

Fig. 3. Determination of Flow Caused by Combined Forces of Wind and Temperature Difference

The flow per square foot of inlet or outlet would be $199,286 \div 1224 = 163$ cfm with all windows open.

Solution for Wind Only. With 1,224 sq ft of inlet openings distributed around the sidewalls, there would be about 410 sq ft in each long side and 202 sq ft in each end. The outlet area will be equally distributed on the two sides of the monitor, or 612 sq ft on each side. With the wind perpendicular to the long side, there will be 410 sq ft of opening in its path for inflow and 612 in the lee side of the monitor for outflow with the windward side closed. The air flow, as calculated by Equation 1, will be:

$$O = 0.60 \times 410 \times 704 = 173,200$$
 cfm.

This gives 17.3 air changes per hour, which should be more than ample when there is no heat to be removed.

Solution for Combined Forces. Since the windward side of the monitor is closed when the wind is blowing, the flow due to temperature difference must be calculated for this condition, using Fig. 2. This chart shows that when inlets are twice the size of the outlets, in this case 1,224 sq ft in the sidewalls and 612 sq ft in the monitor, the flow will be increased 26.5 per cent over that produced by equal openings. Using the smaller

opening and the flow per square foot obtained previously, the calculated amount for this condition will be:

$$612 \times 163 \times 1.265 = 126,200$$
 cfm.

Adding the two computed flows:

```
Temperature Difference = 126,200 = 42 per cent. Wind = 173,200 = 58 per cent.

Total 299,400 = 100 per cent.
```

From Fig. 3, it is determined that when the flow, due to temperature difference, is 42 per cent of the total, the actual flow, due to the combined forces, will be about 1.6 times that calculated for temperature difference alone, or 201,920 cfm.

The original flow, due to temperature difference alone, was 199,286 cfm with all openings in use. The effect of the wind is to increase this to 201,920 cfm even though half of the outlets are closed.

A factor of judgment is necessary in the location of the openings in a building, especially those in the roof, where heat, smoke and fumes are to be removed. Usually windward monitor openings should be closed, but if the wind is low enough for the temperature head to overcome it, all windows may be opened.

TYPES OF OPENINGS

Types of openings may be classified as: (1) windows, doors, monitor openings and skylights, (2) roof ventilators, (3) stacks connecting to registers, and (4) specially designed inlet or outlet openings.

Windows, Doors and Skylights

Windows have the advantage of transmitting light, as well as providing ventilating area when open. Their movable parts are arranged to open in various ways; they may open by sliding either vertically or horizontally, by tilting on horizontal pivots at or near the center, or by swinging on pivots at the top, bottom or side. Regardless of their design, the air flow per square foot of opening will be the same under the same conditions. The type of pivoting should receive consideration from the standpoint of weather protection, and certain types may be advantageous in controlling the distribution of incoming air. Deflectors are sometimes used for the same purpose, and these devices should be considered a part of the ventilation system.

Roof Ventilators

The function of a roof ventilator is to provide a storm and weather proof air outlet. These are actuated by the same forces of wind and temperature head, which create flow through other types of openings. The capacity of a ventilator depends upon four things: (1) its location on the roof, (2) the resistance it and the duct work offers to air flow, (3) the height of draft, and (4) the efficiency of the ventilator in utilizing the kinetic energy of the wind for inducing flow by centrifugal or ejector action.

For maximum flow induction, a ventilator should be located on that part of the roof where it will receive the full wind without interference. If ventilators are installed within the suction region created by the wind

CHAPTER 42. NATURAL VENTILATION

passing over the building, or in a light court, or on a low building between two high buildings, their performance will be the same there as for any other type of opening of the same area. Their normal ejector action, if any, will be of no value in such a location.

The base of the ventilator should be of a taper-cone design to produce the effect of a bell-mouth nozzle whose coefficient of flow is considerably higher than that of a square-entrance orifice. If a grille is provided at the base, additional resistance is introduced, and it should be increased in size accordingly.

Air inlet openings located at lower levels in the building should be at least equal to, and preferably larger than the combined throat areas of all roof ventilators. The air discharged by a roof ventilator depends on wind velocity and temperature difference, and, in general, their performance will be the same as any monitor opening located in the same place, but due to the four capacity factors already mentioned, no simple formula can be devised for expressing ventilator capacity.

Roof ventilators may be classified as stationary, pivoting or oscillating, and rotating. Generally, these have a round throat, but the continuous-ridge ventilator, or so-called heat valve, would fall in the stationary classification. When selecting roof ventilators, some attention should be given to ruggedness of construction, storm proofing features, dampers and damper operating mechanisms, possibility of noise, original cost and maintenance.

Natural ventilation units may be used to supplement power-driven supply fans, and under favorable weather conditions it may be possible to stop the power-driven units.

Controls

Gravity ventilators may have dampers controlled by (1) hand, (2) thermostat, and (3) wind velocity, in combination with a fan. The thermostat station may be located anywhere in the building, or it may be located within the ventilator itself. The purpose of wind velocity control is to obtain a definite volume of exhaust regardless of the natural forces, the fan motor being energized when the natural exhaust capacity falls below a certain minimum, and again shut off when the wind velocity rises to the point where this minimum volume can be supplied by natural forces.

Stacks

Stacks or vertical flues are really chimneys and utilize both the inductive effect of the wind and the force of temperature difference. Like the roof ventilator, the stack outlet should be located so that the wind may act upon it from any direction. With little or no wind, chimney effect depends on temperature difference to produce a removal of air from the rooms where the inlet openings are located.

GENERAL RULES

A few of the important requirements in addition to those already outlined are:

1. Inlet openings in the building should be well distributed, and should be located on

the windward side near the bottom, while outlet openings are located on the leeward side near the top. Outside air will then be supplied to the zone to be ventilated.

- 2. Inlet openings should not be obstructed by buildings, trees, sign boards, etc., outside nor by partitions inside.
- 3. Greatest flow per square foot of total opening is obtained by using inlet and outlet openings of nearly equal areas.
- 4. In the design of window ventilated buildings, where the direction of the wind is quite constant and dependable, the orientation of the building together with amount and grouping of ventilation openings can be readily arranged to take full advantage of the force of the wind. Where the wind's direction is quite variable, the openings should be arranged in sidewalls and monitors so that, as far as possible, there will be approximately equal areas on all sides. Thus, no matter what the wind's direction, there will always be some openings directly exposed to the pressure force and others to a suction force, and effective movement through the building will be assured.
- 5. Direct short circuits between openings on two sides at a high level may clear the air at that level without producing any appreciable ventilation at the level of occupancy.
- 6. In order that temperature difference may produce a motive force, there must be vertical distance between openings. That is, if there are a number of openings available in a building, but all are at the same level, there will be no motive head produced by temperature difference, no matter how great that difference might be.
- 7. In order that the force of temperature difference may operate to maximum advantage, the vertical distance between inlet and outlet openings should be as great as possible. Openings in the vicinity of the neutral zone are less effective for ventilation.
- 8. In the use of monitors, windows on the windward side should usually be kept closed, since, if they are open, the inflow tendency of the wind counteracts the outflow tendency of temperature difference. Openings on the leeward side of the monitor result in cooperation of wind and temperature difference.
- 9. In an industrial building where furnaces that give off heat and fumes are to be installed, it is better to locate them in the end of the building exposed to the prevailing wind. The strong suction effect of the wind at the roof near the windward end will then cooperate with temperature difference, to provide for the most active and satisfactory removal of the heat and gas laden air.
- 10. In case it is impossible to locate furnaces in the windward end, that part of the building in which they are to be located should be built higher than the rest, so that the wind, in splashing therefrom will create a suction. The additional height also increases the effect of temperature difference to cooperate with the wind.
- 11. The intensity of suction or the vacuum produced by the jump of the wind is greatest just back of the building face. The area of suction does not vary with the wind velocity, but the flow due to suction is directly proportional to wind velocity.
- 12. Openings much larger than the calculated areas are sometimes desirable, especially when changes in occupancy are possible, or to provide for extremely hot days. In the former case, free openings should be located at the level of occupancy for psychological reasons.
- 13. In single story industrial buildings, particularly those covering large areas, natural ventilation must be accomplished by taking air in and out of the roof openings. Openings in the pressure zones can be used for inflow and openings in the suction zone, or openings in zones of less pressure, can be used for outflow. The ventilation is accomplished by the manipulation of openings to get air flow through the zones to be ventilated.

DAIRY BARN VENTILATION 8

A successful barn ventilating system is one which continuously supplies the proper amount of air required by the stock, with proper distribution and without drafts, and one which removes the excessive heat, moisture,

³Dairy Barn Ventilation, by F. L. Fairbanks (A.S.H.V.E. TRANSACTIONS, Vol. 31, 1928, p. 181). Cow Barn Ventilation, by Alfred J. Offner (A.S.H.V.E. TRANSACTIONS, Vol. 39, 1933, p. 149). For additional information on this subject refer to *Technical Bulletin*. U. S. Department of Agriculture (1930), by M. \(\chi \) R. Kelley. Also see Air Conditioning of Farm Buildings, by F. L. Fairbanks (Agricultural Engineering, November, 1937, p. 485).

CHAPTER 42. NATURAL VENTILATION

and odors, and maintains the air at a proper temperature, relative humidity, and degree of cleanliness.

Barn temperatures below freezing and above 80 F affect milk production. Milk producing stock should be kept in a barn temperature between 45 and 50 F. Dry stock, at reduced feeding, may be kept in a barn 5 to 10 deg higher. Calf barns are generally kept at 60 F, while hospital and maternity barns usually have a temperature of 60 F or somewhat higher.

The heat produced by a cow of an average weight of 1000 lb may be taken as 3000 Btu per hour. The average rate of moisture production by a cow giving 20 lb of milk per day is 15 lb of water per day, or 4375 grains per hour. To set a standard of permissible relative humidity for cow barns is difficult. For 45 F an average relative humidity of 80 per cent is satisfactory, with 85 per cent as a limit.

Where the barn volume is within the limit that can be heated by the stabled animals, the air supply need not be heated. The air should be supplied through or near the ceiling. It is better to have the exhaust openings near the floor as larger volumes of warm air are then held in the barn and there is better temperature control with less likelihood of sudden change in barn temperature.

If a cow weighs 1000 lb and produces 3000 Btu of heat per hour, and if a barn for the cow has 600 cu ft of air space with 130 sq ft of building exposure, one cow will require 2600 to 3550 cu ft per hour of ventilation, depending on the temperature zone in which the barn is located. The permissible heat losses through the structure, based on one cow and depending on the temperature zone, vary between 0.043 and 0.066 Btu per hour per cubic foot of barn space, and 0.197 to 0.305 Btu per hour per square foot of barn exposure.

GARAGE VENTILATION

On account of the hazards resulting from carbon monoxide and other physiologically harmful or combustible gases or vapors in garages, the importance of proper ventilation of these buildings cannot be overemphasized. During the warm months of the year, garages are usually ventilated adequately because the doors and windows are kept open. As cold weather sets in, more and more of the ventilation openings are closed and consequently on extremely cold days the carbon monoxide concentration runs high.

Many garages can be satisfactorily ventilated by natural means particularly during the mild weather when doors and windows can be kept open. However, the A.S.H.V.E. Code for Heating and Ventilating Garages, adopted in 1929 and revised in 1935, states that natural ventilation may be employed for the ventilation of storage sections where it is practical to maintain open windows or other openings at all times. The code specifies that such openings shall be distributed as uniformly as possible in at least two outside walls, and that the total area of such openings shall be equivalent to at least 5 per cent of the floor area. The code further states that where it is impractical to operate such a system of natural ventilation, a mechanical system shall be used which shall provide for either the supply of 1 cu ft of air per minute from out-of-doors

for each square foot of floor area, or for removing the same amount and discharging it to the outside as a means of flushing the garage.⁴

Research

Research on garage ventilation, undertaken by the A.S.H.V.E. Committee on Research at Washington University, St. Louis, Mo., and at the University of Kansas, Lawrence, Kans., in cooperation with the A.S.H. V.E. Research Laboratory, and at the A.S.H.V.E. Research Laboratory, has resulted in authoritative papers on the subject.

Some of the conclusions from work at the Laboratory are listed in the following statements:

- 1. Upward ventilation results in a lower concentration of carbon monoxide at the breathing line and a lower temperature above the breathing line than does downward ventilation, for the same rate of carbon monoxide production, air change and the same temperature at the 30-in. level.
- 2. A lower rate of air change and a smaller heating load are required with upward than with downward ventilation.
- 3. In the average case upward ventilation results in a lower concentration of carbon monoxide in the occupied portion of a garage than is had with complete mixing of the exhaust gases and the air supplied. However, the variations in concentration from point to point, together with the possible failure of the advantages of upward ventilation to accrue, suggest the basing of garage ventilation on complete mixing and an air change sufficient to dilute the exhaust gases to the allowable concentration of carbon monoxide.
- 4. The rate of carbon monoxide production by an idling car is shown to vary from 25 to 50 cu ft per hour, with an average rate of 35 cu ft per hour.
- 5. An air change of 350,000 cu ft per hour per idling car is required to keep the carbon monoxide concentration down to one part in 10,000 parts of air.

⁴Code for Heating and Ventilating Garages (A.S.H.V.E. Transactions, Vol. 35, 1929, p. 355), (A.S. H.V.E. Reprint, January, 1935).

Airation Study of Garages by W. C. Randall and L. W. Leonhard (A.S.H.V.E. Transactions, Vol. 36, 1930, p. 233).

A.S.H.V.E. RESEARCH REPORT No. 874—Carbon Monoxide Concentration in Garages, by A.S. Langsdorf and R. R. Tucker (A.S.H.V.E. Transactions, Vol. 36, 1930, p. 511).

A S.H.V.E. RESEARCH REPORT No. 935—Carbon Monoxide Distribution in Relation to the Ventilation of an Underground Ramp Garage, by F. C. Houghten and Paul McDermott (A.S.H.V.E. Transactions, Vol. 38, 1932, p 439).

A.S.H.V.E. RESEARCH REPORT No. 934—Carbon Monoxide Distribution in Relation to the Ventilation of a One-Floor Garage, by F. C. Houghten and Paul McDermott (A.S.H.V.E. TRANSACTIONS, Vol. 38, 1932, p. 424).

A.S.H.V.E. RESEARCH REPORT No. 967—Carbon Monoxide Distribution in Relation to the Heating and Ventilation of a One-Floor Garage, by F. C. Houghten and Paul McDermott (A.S.H.V.E. Transactions, Vol. 39, 1933, p. 395).

Carbon Monoxide Surveys of Two Garages, by A. H. Sluss, E. K. Campbell and Louis M. Farber (A.S.H.V.E. Transactions, Vol. 40, 1934, p. 263).

Chapter 43

PIPE AND DUCT HEAT LOSSES

Heat Losses from Bare and Insulated Pipes, Low Temperature Pipe Insulation, Insulation of Pipes to Prevent Freezing, Economical Thickness of Pipe Insulation, Underground Pipe Insulation, Heat Losses from Ducts

THE heat transfer through uninsulated pipes and ducts may be of considerable magnitude if the temperature of the surrounding medium differs appreciably from that of the fluid conveyed. Careful consideration must, therefore, be given to this factor in a properly designed system and adequate insulation provided, if necessary.

HEAT LOSSES FROM BARE PIPES

Heat losses from horizontal bare steel pipes, based on tests at *Mellon Institute* and calculated from the fundamental radiation and convection equations (Chapter 3), are given in Table 1. Heat losses from horizontal copper tubes and pipes with bright, lacquered and tarnished surfaces, are given in Tables 2, 3 and 4¹.

The monetary values of the heat losses given in Tables 1, 2, 3 and 4 may be obtained by means of Fig. 1 for various heating system efficiencies, temperature differences, and calorific values, and costs of coal. This chart, however, is intended for heat losses greater than 2 Btu per linear foot per hour per degree Fahrenheit temperature difference. To solve a problem, select the proper heat loss coefficient from Tables 1, 2, 3 or 4 and locate this value on the upper left-hand margin of the chart. Then draw lines in the order indicated by the dotted lines, the dollar value of the heat loss per 100 linear feet of pipe per 1000 hours being given on the upper right-hand scale. In using the chart, the cost of coal should also include the labor for handling it, boiler room expense, etc.

The area in square feet per linear foot of pipe is given in Table 5 for various standard pipe sizes, and Table 6 for copper tubing, while Table 7 gives the area in square feet of flanges and fittings for various standard pipe sizes. These tables can be used to advantage in estimating the amount of insulating cement required for various equipment.

Very often, when pipes are insulated, flanges and fittings are left bare so as to allow for easy access to the fittings in case of repairs. The fact that a pair of 8-in. standard flanges having an area of 2.41 sq ft would

¹Heat Loss from Copper Piping, by R. H. Heilman (Heating, Piping and Air Conditioning, September, 1933, p. 458).

Fig. 1. Chart for Estimating Dollar Value of Heat Loss from Bare Pipes. (See Tables 1, 2, 3 and 4)^a

 $^{\rm a}{\rm This}$ chart is based on 100 linear feet per 1000 hours. For fractions or multiples of these factors, multiply by proper percentage.

lose, at 100 lb steam pressure, an amount of heat equivalent to more than a ton of coal per year shows the necessity for insulating such surfaces.

Example 1. Compute the total annual heat loss from 165 ft of 2 in. bare pipe in service 4000 hours per year. The pipe is carrying steam at 10 lb pressure and is exposed to an average air temperature of 70 F.

Solution. The pipe temperature is taken as the steam temperature, which is 239.4 F, obtained by interpolation from Table 8, Chapter 1. The temperature difference between the pipe and air = 239.4 - 70 = 169.4 F. By interpolation of Table 1 between temperature differences of 157.1 and 227.7 F, the heat loss from a 2 in. pipe at a temperature difference of 169.4 F is found to be 1.624 Btu per hour per linear foot per degree temperature difference. The total annual heat loss from the entire line = 1.624 \times 169.4 \times 165 (linear feet) \times 4000 (hours) = 181,600 Mb.

CHAPTER 43. PIPE AND DUCT HEAT LOSSES

Example 2. Coal costing \$11.50 per ton and having a calorific value of 13,000 Btu per pound is being burned in the furnace supplying steam to the pipe line given in the previous example. If the system is operating at an overall efficiency of 55 per cent, determine the monetary value of the annual heat loss from the line.

Solution. The cost of heat per 1000 Mb supplied to the system = $1,000,000 \times 11.5$

Table 1. Heat Losses from Horizontal Bare Steel Pipes
Expressed in Btu per hour per linear foot per degree Fahrenheit difference
in temperature between the pipe and surrounding still air at 70 F

		Нот V	Vater		Steam			
Nominal Pipe Size (Inches)	120 F	150 F	180 F	210 F	227.1 F (5 Lb)	299 7 F (50 Lb)	337 9 F (100 Lb)	
(Inclide)			Темрен	rature Diff	ERENCE			
	50 F	80 F	110 F	140 F	157.1 F	227.7 F	267.9 F	
1/2 3/4 1 1/4 1/2 2 2/2 3 31/2 4 5 6 8 10 12	0.455 0.555 0.684 0.847 0.958 1.180 1.400 1.680 1.900 2.118 2.580 3.036 3.880 4.760 5.590	0.495 0.605 0.743 0.919 1.041 1.281 1.532 1.825 2.064 2.302 2.804 3.294 4.215 5.180 6.070	0.546 0.666 0.819 1.014 1.148 1.412 1.683 2.010 2.221 2.534 3.084 3.626 4.638 5.680 6.670	0.584 0.715 0.877 1.086 1.230 1.512 1.796 2.153 2.433 2.717 3.303 3.886 4.960 6.090 7.145	0.612 0.748 0.919 1.138 1.288 1.578 1.883 2.260 2.552 2.850 3.470 4.074 5.210 6.410 7.500	0.706 0.866 1.065 1.324 1.492 1.840 2.190 2.630 2.974 3.320 4.050 4.765 6.100 7.490 8.800	0.760 0.933 1.147 1.425 1.633 1.987 2.363 2.840 3.215 3.590 4.385 5.160 6.610 8.115 9.530	

Table 2. Heat Loss from Horizontal Bare Bright Copper Pipe Expressed in Btu per hour per linear foot per degree Fahrenheit between the pipe and surrounding still air at 70 F

	Нот	Water (Type	K Copper Tu	be)	STEAM (Standard Pipe Size Pipe)			
Nominal Pipe	120 F	150 F	180 F	210 F	227 1 F (5 Lb)	297.7 F (50 Lb)	337 9 F (100 Lb)	
Size (Inches)			Темре	RATURE DIFFE	RENCE			
	50 F	80 F	110 F	140 F	157 1 F	227 7 F	267.9 F	
1/2 3/4 1 11/4 11/2 2 21/2 3 31/2 4 41/2 5 6 8	0 180 0.236 0.290 0 340 0 390 0.490 0.580 0.680 0 760 0 940 	0.210 0.275 0.338 0.400 0.463 0.525 0.788 0.888 1.000 1.200 1.375 1.725	0.218 0.291 0.354 0.418 0.473 0.600 0.709 0.848 0.946 1.045 1.255 1.410 1.820	0.229 0.307 0.373 0.443 0.507 0.628 0.750 0.871 1.000 1.107 1.320 1.500 1.890	0.299 0 357 0.440 0.510 0 598 0.719 0 840 0 987 1.114 1 210 1.335 1.465 1 685 2 100	0.338 0.408 0.492 0.571 0.671 0.813 0.953 1.107 1.235 1.361 1.495 1.670 1.890 2.373	0 355 0.418 0.523 0.598 0.710 0 851 1 008 1.165 1.307 1.456 1.488 1.755 1.942 2.510	

(dollars) \div 13,000 (Btu) \times 2000 (lb) \times 0.55 (efficiency) = \$0.804. The total cost of heat lost per year = 0.804 \times 181.6 (thousand Btu) = \$146.00. (A closely approximate solution of such a problem may be made quickly by the use of the estimating chart given in Fig. 1.)

Table 3. Heat Loss from Bright Copper Pipe Given One Thin Coat of Clear Lacquer

Expressed in Btu per hour per linear foot per degree Fahrenheit between the pipe and surrounding still air at 70 F

	Нот	WATER (Typ	e K Copper T	ube)	STEAM (Standard Pipe Size Pipe)			
Nominal Pipe	120 F	150 F	180 F	210 F	227.1 F (5 Lb)	297 7 F (50 Lb)	337.9 F (100 Lb)	
Size (Inches)			Темре	RATURE DIFFI	ERENCE			
	50 F	80 F	110 F	140 F	157.1 F	227.7 F	267.9 F	
1/2 3/4 1 1/4 1/2 2 2/2 3 3/2 4 4/2 5 6 8	0.240 0.320 0.390 0.470 0.540 0.690 0.840 0.960 1.100 1.241 1.480 1.700	0.265 0.356 0.437 0.537 0.612 0.762 0.937 1.025 1.250 1.400	0.282 0.373 0.463 0.554 0.645 0.818 0.991 1.135 1.318 1.480	0.307 0.414 0.507 0.614 0.714 0.892 1.085 1.270 1 442 1.556 1.965 2.272	0.401 0.477 0.598 0.700 0.830 1.005 1.178 1.400 1.580 1.750 1.910 2.130 2.450	0.461 0.571 0.681 0.812 0.966 1.164 1.361 1.625 1.845 2.040 2.240 2.415 2.810	0.478 0.578 0.710 0.840 0.990 1.201 1.420 1.700 1.905 2.130 2.350 2.610	
8	2.200	2.500	2.630	2.854	3.120	3.425	2.990 3.730	

Table 4. Heat Loss from Horizontal Tarnished Copper Pipe Expressed in Btu per hour per linear foot per degree Fahrenheit between the pipe and surrounding still air at 70 F

	Hon	WATER (Typ	e K Copper I	ube)	STEAM (Standard Pipe Size Pipe)						
NOMINAL PIPE	120 F	150 F	180 F	210 F	227.1 F (5 Lb)	297.7 F (50 Lb)	337.9 F (100 Lb)				
Size (Inches)	Temperature Difference										
	50 F	80 F	110 F	140 F	157.1 F	227.7 F	267 9 F				
1/2 3/4	0.250	0 287	0.300	0.321	0.433	0.500	0.530				
3/4	0.340	0.381	0.409	0.429	0.533	0.543	0.654				
1	0.440	0.475	0.509	0.536	0.636	0.746	0.803				
11/4	0 500	0.559	0.618	0.622	0.764	0.878	0.934				
11/2	0.580	0.656	0.710	0.750	0.904	1.053	1.120				
2	0 730	0 825	0.890	0.957	1.101	1.273	1.364				
$\frac{2\frac{1}{2}}{3}$	0 880	1.000	1.091	1.143	1.305	1.490	1.605				
3	1.040	1.175	1.272	1.343	1.560	1.800	1.940				
$3\frac{1}{2}$	1.180	1.350	1.454	1.535	1.750	2.020	2.170				
4	1.460	1.500	1.635	1.715	1.941	2.240	2.430				
$\frac{4^{1}}{2}$					2.131	2.465	2.650				
5	1.600	1.812	1.980	2.071	2.387	2.770	2.990				
41/2 5 6 8	1.840	2.125	2.270	2.430	2.740	3,210	3.440				
8	2.400	2.685	2.910	3.110	3.310	4.050	4.370				

CHAPTER 43. PIPE AND DUCT HEAT LOSSES

HEAT LOSSES FROM INSULATED PIPES

The conductivities of various materials used for insulating steam and hot water systems are given in Table 8. They are given as functions of the mean temperatures or the mean of the inner and outer surface tem-

TABLE 5	RADIATING	SURFACE	PER LIN	FARF	OOT O	E PIPE
IADDE O.	ICADIATING	COKPACE	LEK LIN	CAK I	OO1 C	10 I II I

Nominal Pipe Size (Inches)	SURFACE AREA (SQ FT)	Nominal Pipe Size (Inches)	SURFACE AREA (SQ FT)	Nominal Pipe Size (Inches)	SURFACE AREA (SQ FT)
1/2	0.22	2	0.622	5	1 456
3/4	0.275	2½	0.753	6	1.734
1	0.344	3	0 917	8	2.257
11/4	0.435	3½	1.047	10	2.817
11/2	0.498	4	1.178	12	3.338

Table 6. Radiating Surface per Linear Foot of Copper Tubing
Outside diameter 1/8 in. greater than nominal size

Tube Size	SURFACE AREA	Tube Size	SURFACE AREA	Tube Size	SURFACE AREA
(Inches)	(SQ FT)	(Inches)	(SQ FT)	(Inches)	(SQ FT)
1/2 3/4 1 1/4 1/2	0.164 0.229 0 295 0.360 0 426	2 2½ 3 3½ 4	0.556 0.687 0.818 0.949 1.080	5 6 8 	1.342 1.604 2.128

TABLE 7. AREAS OF FLANGED FITTINGS, SQUARE FEET^a

Nominal Pipe Size		FLANGED COUPLING		90 Deg Ell		Long Radius Ell		Tee		Cross	
(Inches)	Standard	Extra Heavy	Standard	Extra Heavy	Standard	Extra Heavy	Standard	Extra Heavy	Standard	Extra Heavy	
1	0.320	0.438	0.795	1.015	0.892	1.083	1.235	1.575	1.622	2.07	
$\bar{1}\frac{1}{4}$	0.383	0.510	0.957	1.098	1.084	1.340	1.481	1.925	1.943	2.53	
$1\frac{1}{2}$	0.477	0.727	1.174	1.332	1.337	1.874	1.815	2.68	2.38	3.54	
$\tilde{2}^{\prime}$	0.672	0.848		2.01	1.84	2.16	2.54	3.09	3.32	4.06	
$\bar{2}\frac{1}{2}$	0.841	1.107	2.09	2.57	2.32	2.76	3.21	4.05	4.19	5.17	
3 ~	0.945	1.484	2.38	3.49	2.68	3.74	3.66	5.33	4.77	6.95	
31/2	1.122	1.644	2.98	3.96	3.28	4.28	4.48	6.04	5.83	7.89	
4	1.344	1.914	3.53	4.64	3.96	4.99	5.41	7.07	7.03	9.24	
41/2	1.474	2.04	3.95	5.02	4.43	5.46	6.07	7.72	7.87	10.07	
5 -	1.622	2.18	4.44	5.47	5.00	6.02	6.81	8.52	8.82	10.97	
	1.82	2.78	5.13	6.99	5.99	7.76	7.84	10.64	10.08	13.75	
6 8	2.41	3.77	6.98	9.76	8.56	11.09	10.55	14.74	13.44	18.97	
10	3.43	5.20	10.18	13.58	12.35	15.60	15.41	20.41	19.58	26.26	
12	4.41	6.71	13.08	17.73	16.35	18.76	19.67	26.65	24.87	34.11	
			<u> </u>	<u> </u>	<u> </u>		<u> </u>	1	<u> </u>	<u> </u>	

^{*}Including areas of accompanying flanges bolted to the fitting.

peratures of the insulations. It should be emphasized that they are the average values obtained from a number of tests made on each type of material, also that all variables due to differences in thickness, pipe sizes, and air conditions are eliminated. Individual manufacturer's materials will, of course, vary in conductivity to some extent from these values.

Fig. 2. Heat Loss Through 1 In. Thick 85 per cent Magnesia Type Covering

The heat losses through 1, 1½, and 2-in. thick 85 per cent Magnesia type of insulation for temperature differences between the pipe and the surrounding atmosphere up to 280 F are shown in Figs. 2, 3, and 4. Standard thicknesses of 85 per cent Magnesia pipe covering are not exactly 1 in. However, the loss through any given thickness of insulation can be obtained by interpolation. Also, the losses through any of the

Fig. 3. Heat Loss Through 1½ In. Thick 85 per cent Magnesia Type Covering

insulations given in Table 8 can be obtained by multiplying the losses obtained from Figs. 2, 3, or 4 by the factors given in Table 9.

The rate of heat loss from a surface maintained at constant temperature is greatly increased by air circulation over the surface. In the case of well-insulated surfaces, the increases in losses due to air velocity are very small as compared with increases from bare surfaces, because of the fact that air flowing over the surface of the insulation can increase only the rate of heat transfer from surface to air, and cannot change the internal

resistance to heat flow inherent in the insulation itself. The maximum increase in heat loss due to air velocity ranges from about 30 per cent in the case of 1-in. thick insulation, to about 10 per cent in the case of 3-in. thick insulation, provided that the insulation is thoroughly sealed so that air can flow only over the surface.

If the conditions are such that the air may circulate through cracks and crevices in the insulation, the increases may be far greater than those given. Therefore, it is essential that insulation be sealed as tightly as

Fig. 4. Heat Loss Through 2 In. Thick 85 per cent Magnesia Type Covering

possible. Pipe insulation exposed to the elements should be thoroughly waterproofed.

Example 3. If the steam line given in Examples 1 and 2 is covered with 1 in. thick 85 per cent magnesia, determine the resulting total annual loss through the insulation. Also compute the monetary value of the annual saving and the percentage of saving over the heat loss from the bare pipe.

Solution. By referring to Fig. 2, the coefficient for 1 in. magnesia on a 2 in. pipe is found to be 0.285 Btu per hour per linear foot of pipe per degree temperature difference at a temperature difference of 169.4 F. The total hourly loss per linear foot of pipe will then be $0.285 \times 169.4 = 48.3$ Btu. The total annual loss through the insulation = 48.3×165 (linear feet) $\times 4000$ (hours) = 31,900 Mb. The annual bare pipe loss as

CHAPTER 43. PIPE AND DUCT HEAT LOSSES

determined in the solution of Example 1 was found to be 181,600 Mb. The saving due to insulation is then 181,600 - 31,900 = 149,700 Mb per year.

From the solution of Example 2, it was found that the heat supplied to the system cost \$0.804 per thousand Mb. Therefore, the monetary value of the saving = 0.804 (dollars) \times 149.7 (thousand Mb) = \$120.36, or 82.4 per cent of the cost when using uninsulated pipe.

Table 8. Conductivity (k) of Various Types of Insulating Materials for Medium and High Temperature Pipes^a

Types of Insulating Materials	Mean Temperature, Deg F						
	100	200	300	400	500		
85 per cent Magnesia Type	$0.359 \\ 0.495$	0.403 0.618	0.448 0.741	0.493 0.864	0.539		
Corrugated Asbestos Type	0.505	0.598	0.692	0.786			
Laminated Asbestos Type	0.326	0.380	0.434	0.488	0.543		
Laminated Asbestos Type(14-20 Laminations per 1 in, thick)	0.374	0.445	0.518	0.589	0.662		
Mineral Wool Type	$0.350 \\ 0.576$	0.410 0.614	$0.470 \\ 0.652$	0.530 0.689	0.590 0.726		
Brown Asbestos Type(Felted Fiber)	0.338	0.396	0.453	0.510	0.568		

aFrom tests conducted at Mellon Institute.

TABLE 9. PIPE COVERING FACTORS

Types of Insulating Materials	Ter	MPERATU	re Differ	ENCE, PIPI	e to Air, I	Deg F	
	100	200	300	400	500	600	
85 per cent Magnesia Type	1.050 1.425	1.024 1.465	0.997 1.505	0.971 1.545	0.944	0.918	
Corrugated Asbestos Type	1.435	1.437	1.438	1.440			
Laminated Asbestos Type(30-40 Laminations per 1 in. thick)	0.969	0.960	0.951	0.942	0.933	0.924	
Laminated Asbestos Type(14-20 Laminations per 1 in. thick)	1.103	1.104	1.105	1.106	1.107	1.108	
Mineral Wool Type High Temperature Type(Diatomaceous Earth and Asbestos)	1.023 1.560	1.028 1.489	1.033 1.418	1.038 1.347	$1.043 \\ 1.276$	1.048 1.205	
Brown Asbestos Type(Felted Fiber)	1.003	0.997	0.990	0.984	0.977	0.971	

LOW TEMPERATURE PIPE INSULATION

Surfaces maintained at temperatures lower than the surrounding air are insulated to reduce the flow of heat and to prevent condensation and frost. The insulating material should absorb a minimum amount of moisture, because the absorption of moisture substantially increases the conductivity of the material. This property is particularly important in the insulation of surfaces that are below the dew-point of the surrounding

air. In such cases, due to vapor pressure difference, it is necessary to seal the surface of the insulating material against the penetration of water vapor which would condense within the material, causing a serious increase in heat flow, possible breakdown of the material, and corrosion of metal surfaces. An insulating material with a high degree of moisture absorption might pick up moisture before application and then, when

FIG. 5. THICKNESS OF PIPE INSULATION TO PREVENT SWEATING^a
*Solve problems by drawing lines as indicated by dotted line, entering chart at lower left hand scale.

the seal is in place and the temperature of the insulated surface reduced, release that moisture to the cold surface.

The thickness of insulation required to prevent sweating is that thickness which will raise the temperature of the outer surface of the insulation to a point slightly higher than the dew-point for the corresponding air temperature and relative humidity. The difference in temperature between the air and the dew-point for various humidities can be readily ascertained from a psychrometric chart.

The approximate required thickness of insulation to prevent conden-

CHAPTER 43. PIPE AND DUCT HEAT LOSSES

sation on pipes and flat metallic surfaces may be obtained from Fig. 5. The maximum permissible temperature drop is indicated at the point where the guide line passes through the horizontal scale at the left center of the chart. This temperature drop represents the difference between the dry-bulb temperature and the dew-point temperature for the conditions involved. (See discussion of Condensation in Chapter 4.) The surface resistances used for calculating the family of curves in Fig. 5 are based on tests made on canvas covered pipe insulation surfaces at *Mellon Institute*. However, it has been found that the resistance for asphaltic and roofing surfaces is practically the same as for canvas surfaces, so that the curves may be followed with no alteration for surfaces commonly used.

Heat gains for pipes insulated with a material having a conductivity of

TABLE 10. HEAT GAINS FOR INSULATED COLD PIPES

Rates of heat transmission given in Btu per hour per degree Fahrenheit temperature difference between fluid in pipe and surrounding still air

Based on materials having conductivity, k = 0.30

Nominal	Ice Wa	ICE WATER THICKNESS			E THICKN	ESS	Heavy Brine Thickness		
Pipe Size (Inches)	Thickness of Insulation (Inches)	Btu Per Linear Foot	Btu Per Sq Ft Pipe Surface	Thickness of Insulation (Inches)	Btu Per Linear Foot	Btu Per Sq Ft Pipe Surface	Thickness of Insulation (Inches)	Btu Per Linear Foot	Btu Per Sq Ft Pipe Surface
1/2 3/4 1 11/4 11/2 2 21/2 3 31/2 4 5 6 8 10 12	1.5 1 6 1.6 1.6 1 5 1 5 1 5 1 5 1 7 1.7 1.7 1.7 1 9 1 9	0.110 0.119 0.139 0.155 0.174 0.200 0.228 0.269 0.295 0.294 0.349 0.404 0.455 0.559 0.648	. 0 502 0 431 0 403 0 .357 0 .351 0 322 0 303 0 293 0 282 0 248 0 239 0 233 0 201 0 198 0 194	2 0 2 0 2 0 2 .4 2 5 2 5 2 6 2 7 2 9 3 0 3 .0 3 .0 3 .0	0 098 0 111 0 124 0 131 0 134 0 .151 0 170 0 .186 0 .191 0 209 0 241 0 259 0 .318 0 383 0 438	0.446 0.405 0.352 0.300 0.270 0.244 0.226 0.202 0.183 0.176 0.155 0.150 0.140 0.135 0.131	2.8 2.9 3.0 3.1 3.2 3.3 3.3 3.5 3.7 3.9 4.0 4.0 4.0	0 087 0 094 0 104 0 113 0 118 0 134 0 147 0 162 0 176 0 182 0 202 0 228 0 263 0 309 0 364	0.394 0.340 0.294 0.260 0.238 0.214 0.197 0.176 0.167 0.154 0.138 0.130 0.116 0.110

0.30 Btu per square foot per hour per degree Fahrenheit difference per inch thickness are given in Table 10.

INSULATION OF PIPES TO PREVENT FREEZING

If the surrounding air temperature remains sufficiently low for an ample period of time, insulation cannot prevent the freezing of still water, or of water flowing at such a velocity that the quantity of heat carried in the water is not sufficient to take care of the heat losses which will result and cause the temperature of the water to be lowered to the freezing point. Insulation can materially prolong the time required for the water to give up its heat, and if the velocity of the water flowing in the pipe is maintained at a sufficiently high rate, freezing may be prevented.

Table 11 may be used for making estimates of the thickness of insulation necessary to take care of still water in pipes at various water and

surrounding air temperature conditions. Because of the damage and service interruptions which may result from frozen water in pipes, it is essential that an efficient insulation be utilized. This table is based on the use of a material having a conductivity of 0.30. The initial water temperature is assumed to be 10 F above, and the surrounding air temperature 50 F below the freezing point of water (temperature difference, 60 F).

The last column of Table 11 gives the minimum quantity of water at initial temperature of 42 F which should be supplied every hour for each linear foot of pipe, in order to prevent the temperature of the water from being lowered to the freezing point. The weights given in this column should be multiplied by the total length of the exposed pipe line expressed in feet. As an additional factor of safety, and in order to provide against

Table 11. Data for Estimating Requirements to Prevent Freezing of Water in Pipes with Surrounding Air at $-18~\mathrm{F}$

Nominal Pipe Size (Inches)		Hours to Cool 4		WATER FLOW REQUIRED AT 42 F TO PREVENT FREEZING, POUNDS PER LINEAR FOOT OF PIPE FER HOUR			
		Thickness	of Insulation in Inc	ches (Conductivity,	k = 0.30		
	2	3	4	2	3	4	
1/2 1 11/2 2 . 3 . 4 . 5 . 6 . 8 . 10 . 12	0.42 0.83 1.40 1.94 3.25 4.55 5.92 7.35 10.05 13.00 15.80	0.50 1.02 1.74 2.48 4.27 6.02 7.96 9.88 13.90 18.10 22.20	0.57 1.16 2.02 2.90 5.08 7.20 9.69 12.20 17.25 22.70 28.10	0.54 0.68 0.84 0.95 1.24 1.73 1.98 2.46 2.96 3.43	0.45 0.55 0.68 0.75 0.94 1.11 1.29 1.46 1.78 2.12 2.45	0.40 0.48 0.58 0.64 0.79 0.93 1.06 1.19 1.43 1.70 1.93	

temporary reductions in flow occasioned by reduced pressure, it is advisable to double the rates of flow listed in the table. It must be emphasized that the flow rates and periods of time designated apply only for the conditions stated. To estimate for other service conditions the following method of procedure may be used.

If water enters the pipe at 52 F instead of 42 F, the time required to cool it to the freezing point will be prolonged to twice that given in the table, or the rate of flow of water may be reduced so that the quantity required will be one-half that shown in the last column of Table 11. However, if the water enters the pipe at 34 F it will be cooled to 32 F in one-fifth of the time given in the table. It will then be necessary to increase the rate of flow so that five times the specified quantity of water will have to be supplied in order to prevent freezing.

If the minimum air temperature is $-38 \,\mathrm{F}$ (temperature difference 80 F) instead of $-18 \,\mathrm{F}$, the time required to cool the water to the freezing point will be 60/80 of the time given in the table, or the necessary quantity of water to be supplied will be 80/60 of that given.

In making calculations to arrive at the values given in Table 11, the loss of heat stored in the insulation, the effect of a varying temperature

CHAPTER 43. PIPE AND DUCT HEAT LOSSES

difference due to the cooling of pipe and water, and the resistance of the outer surface of the insulation to the transfer of heat to the air have all been neglected. When these factors enter into the computations it is necessary to enlarge the factor of safety. Also as stated, the time shown in the table is that required to lower the water to the freezing point. A longer period would be required to freeze the water but the danger point is reached when freezing starts. The flow of water will stop and the entire line will be in danger as soon as the water freezes across the section of the pipe at any point.

When water must remain stationary longer than the times designated in Table 11, the only safe way to insure against freezing is to install a steam or hot water line or to place an electric resistance heater along the side of the exposed water line. The heating system and the water line are then insulated so that the heat losses from the heating system are not

I ABLE 12.	THICKNESSES OF	PIPE	INSULATION	Ordinarily	USED	INDOORS a	

STEAM PRESSURES	STEAM TEMPERATURES	THICKNESS OF INSULATION			
(Le Gage) or Conditions	Degrees Fahrenheit	Pipes Larger Than 4 In.	Pipes 2 In. to 4 In.	Pipes ½ In. to 1½ In.	
0 to 25 25 to 100 100 to 200 Low Superheat Medium Superheat High Superheat	212 to 267 267 to 338 338 to 388 388 to 500 500 to 600 600 to 700	1 in. 1½ in. 2 in. 2½ in. 3 in. 3½ in.	1 in. 1 in. 1½ in. 2 in. 2½ in. 3 in.	1 in. 1 in. 1 in. 1½ in. 2 in. 2 in.	

aAll piping located outdoors or exposed to weather is ordinarily insulated to a thickness $\frac{1}{2}$ in. greater than shown in this table, and covered with a waterproof jacket.

excessive, and the heating effect is concentrated against the water pipe where it is needed. For this form of protection 2 in. of an efficient insulation may be applied.

ECONOMICAL THICKNESS OF PIPE INSULATION

The thicknesses of insulation which ordinarily are used for various temperature conditions are given in Table 12. Where a thorough analysis of economic thickness is desired this may be accomplished through the use of the chart, Fig. 6.

The dotted line on the chart illustrates its use in solving a typical example. In using the chart, start with the scale at the left bottom margin representing the given number of hours of operation per year; then proceed vertically to the line representing the given value of heat; thence horizontally to the right, to the line representing the given temperature difference; thence vertically to the line representing the conductivity of the given material; thence horizontally, to the left, to the line representing the given discount on that material; thence vertically to the curve representing the required per cent return on the investment; thence horizontally to the right, to the curve representing the given pipe size; thence vertically to the scale at the top right margin where the economical thickness may be read off directly.

(L. B. McMillan, Proc. National Dist. Heating Assn., Vol. 18, p. 138).

Fig. 6. Chart for Determining Economical Thickness of Pipe Insulation

UNDERGROUND PIPE INSULATION

Underground steam distribution lines are carried in protective structures of various types, sizes and shapes. (See Chapter 17.) Detailed data on commonly used forms of tunnels and conduit systems have been published by the National District Heating Association².

Pipes in tunnels are covered with sectional insulation to provide maximum thermal efficiency and are also finished with good mechanical protection in the form of metal or waterproofing membrane outer jackets. Conduit systems are in more general use than tunnels. Pipes carried in conduits may be insulated with sectional insulation; however, the more usual practice is to fill the entire section of the conduit around the pipes with high quality, loose insulating material. The insulation must be kept dry at all times, and for this purpose effective waterproofing membranes enclose the insulation. A drainage system is also provided to divert water which may tend to enter the conduit.

The economical thickness of insulation for underground work is difficult to determine accurately due to the many variables which have to be

STEAM PRESSURES (LB GACE) OR CONDITIONS	STEAM TEMPERATURES DEGREES FAHRENHEIT	M	Minimum Distance				
		STEAM LINES			RETURN LINES		Between Steam
		Pipes Less than 4 In	Pipes 4 In to 10 In.	Pipes Larger than 12 In	Pipes Less than 4 In	Pipes 4 In and Larger	AND RETURN
Hot Water, or 0 to 25 25 to 125 Above 125, or superheat	212 to 267 267 to 352 352 to 500	1½ 2 2½	2 2½ 3	2½ 3 3½	1½ 1¼ 1¼	1½ 1½ 1½	1 1½ 1½

TABLE 13. THICKNESS OF LOOSE INSULATION FOR USE AS FILL IN UNDERGROUND CONDUIT SYSTEMS

considered. As a result of theories3 previously developed, together with other experimental data which have been presented, the usual endeavor is to secure not less than 90 per cent efficiency for underground piping. Table 13 can be used as a guide in arriving at the minimum thickness of loose insulation fills to use for laying out conduit systems. Other factors such as the number of pipes and their combination of sizes, as well as the standard conduit sizes, are primary controlling factors in the amount and thickness of insulation for use.

When sectional insulation is applied to lines in tunnels or conduits, usual practice is to apply the most efficient materials 1/2 in. less in thickness than that determined by the use of Fig. 6. The data in Fig. 6 are based on conditions of insulation exposed to the air, whereas normal ground temperature is substituted for air temperature in determining the temperature difference for use with the chart when applying it for underground pipe line estimates.

²Handbook of the National District Heating Association, Second Edition, 1932.

Theory of Heat Losses from Pipes Buried in the Ground, by J R. Allen (A.S.H V.E Transactions, Vol. 26, 1920, p. 335).

Fig. 7. Heat Loss Coefficients for Insulated Ductsa

 ${\tt aFor}$ round ducts less than 30 in. diameter, increase heat transmission values by the following percentages:

THICKNESS OF INSULATION (Inches)	12	1	136	2
21 to 30 in. Duct Diameter	1%	2% 5%	3% 7%	4% 9%

HEAT LOSSES FROM DUCTS

The thermal transmission coefficient U for an uninsulated metal duct can be obtained from the equation:

$$U = \frac{1}{\frac{1}{f_1} + \frac{1}{f_0}} \tag{1}$$

where

U = thermal transmittance, Btu per square foot per hour per degree Fahrenheit difference in temperature between the average temperature inside the duct and the air outside the duct.

 f_i = film conductance inside the duct, Btu per hour per square foot per degree Fahrenheit.

 f_0 = film conductance outside the duct, Btu per hour per square foot per degree Fahrenheit.

Film conductance f_i for air flowing in ducts apparently depends only on the velocity of the air and the diameter of the duct. A fairly reliable inside coefficient can be calculated from Schultz's modified equation:

$$f_{\rm i} = \frac{0.32 \, V_{\rm o}^{0.8}}{D^{0.25}} \tag{2}$$

where

 V_0 = velocity of air in duct, feet per second.

D = diameter of duct, feet.

Film conductance f_0 depends on a number of variables including temperature, diameter, and emissivity of the outer surface and can readily be calculated from data in Chapter 3. From this explanation, it is seen that it is unwise to recommend a given value of U-for all uninsulated metal ducts.

The heat loss from a given length of duct can be expressed by:

$$Q = UPL\left[\left(\frac{t_1 + t_2}{2}\right) - t_3\right] \tag{3}$$

The heat given up by the air in the duct is:

$$O = 0.24 \ M (t_1 - t_2) = 14.4 \ A \ Vd (t_1 - t_2) \tag{4}$$

Equating 3 and 4 enables the determination of the temperature drop in the duct:

$$\frac{t_1 + t_2 - 2t_3}{t_1 - t_2} = \frac{28.8 \ A \ Vd}{UPL}$$

Let $x = \frac{28.8 \text{ A} Vd}{UPL}$ for rectangular ducts, $= \frac{7.2 \text{ D} Vd}{UL}$ for round ducts, solving for t_1 and t_2 :

$$t_1 = \frac{t_2 (x+1) - 2t_3}{(x-1)} \tag{5}$$

$$t_2 = \frac{t_1 (x - 1) + 2t_3}{(x + 1)} \tag{6}$$

For low velocities and long ducts of small cross-section, a somewhat more accurate formula may be used as follows:

$$t_2 = \frac{t_1 - t_3}{c \left(\frac{UPL}{14.4 \text{ } AdV} \right)} + t_3 \tag{7}$$

In these equations

Q = heat loss through duct walls, Btu per hour.

U = thermal transmission coefficient, Btu per square foot per hour per degree Fahrenheit.

P = perimeter of duct, feet.

L = length of duct, feet.

t₁ = temperature of air entering duct, degree Fahrenheit.

t2 = temperature of air leaving duct, degree Fahrenheit.

t₃ = temperature of air surrounding duct, degree Fahrenheit.

M = weight of air per hour, through the duct, pounds.

A =cross-sectional area of duct, feet.

D = diameter of round ducts, feet.

V = velocity of air in the duct, feet per minute, at specified temperature.

d = density of air, pounds per cubic foot, at the specified temperature at which V is measured.

e = naperian base of logarithms = 2.718.

In using Equations 5, 6 and 7, one of the duct air temperatures will be unknown and will be solved for by substitution of the other known or assumed values.

Heat loss coefficients for insulated ducts with various conductivities are given in Fig. 7. The conductivities of various materials, which are based on mean temperatures, ranging from about 70 to 90 F, will be found in Table 2 of Chapter 4. For cases where the mean temperature is other than that on which the test was conducted, a correction should be made. However, in most cases the effect of this factor will be small and may be neglected.

Example 4. Determine the entering air temperature and heat loss for a duct 24×36 in. cross-section and 70 ft in length, insulated with $\frac{1}{2}$ in. of a material having a conductivity of 0.35 Btu at 86 F mean temperature, carrying air at a velocity of 1200 fpm, measured at 70 F, to deliver air at 120 F with air surrounding the duct at 40 F.

Solution. Referring to Fig. 7, the overall heat transmission coefficient is found to be 0.49 Btu. From Table 6, Chapter 1 the density of air at 70 F and 29.92 in. Hg. is found to be 0.0749 lb per cubic foot. Substituting these and the other given values in Equation 5.

$$x = \frac{28.8 \times 6 \times 0.0749 \times 1200}{0.49 \times 10 \times 70} = 44.4$$

$$t_1 = \frac{120 (44.4 + 1) - 80}{44.4 - 1} = 123.7$$

Substituting in Equation 3:

$$Q = 0.49 \times 10 \times 70 \left[\left(\frac{123.7 + 120}{2} \right) - 40 \right]$$

 $Q = 28.010$ Btu per hour.

Chapter 44

ELECTRIC HEATING

Resistors, Heating Elements, Electric Heaters, Unit Heaters, Central Fan Heating, Electric Boilers, Electric Hot Water Heating, Heating Domestic Water Supply, Radiant Drying, Reversed Cycle Refrigeration, Auxiliary Electric Heating, Control, Calculating Capacities, Power Problems

ELECTRIC heating is steadily assuming a more important place in heating, ventilating and air conditioning installations, encouraged in many localities by reduced electric rates. Electric heating is flexible, clean, safe, convenient and easy to control. It has many basic principles in common with fuel heating, but there are also important differences. When heat is delivered by wire, no combustion process is necessary, either at a central plant or at the individual room units. The output of an electric heater is a fixed constant, unaffected by the temperature of the surrounding air and it follows that the total load on an electric heating system is the total wattage of connected electric heaters, regardless of weather conditions. The main obstacle to the more general adoption of electric heating for buildings is the cost of the electricity itself.

All heat is a form of energy. Fuels hold stored chemical energy which is released into heat by combustion. Electrical power is a form of energy which can be released into heat by passing it through a resisting material. Both fuel and electric heating have two divisions: *first*, the conversion of energy into heat; *second*, the distribution and practical use of the heat after it is produced.

In converting the chemical energy of fuels into heat by combustion, there is necessarily a considerable variation in thermal efficiency. This is not true, however, when converting electric power into heat, as 100 per cent of the energy applied to the resistor is always transformed into heat. In electric heating practice no concern need be given to efficiencies of heat production, but rather to efficiencies of heat utilization. The problem is to distribute the electrically produced heat units in such manner as to obtain conditions of maximum comfort with the minimum consumption of electricity.

DEFINITIONS

Definitions of general terms used in fuel heating are given in Chapter 47. Terms which apply particularly to electric heating are:

Electric Resistor: A material used to produce heat by passing an electric current through it.

Electric Heating Element: A unit assembly consisting of a resistor, insulated supports, and terminals for connecting the resistor to electric power.

Electric Heater: A complete assembly of heating elements with their enclosure, ready for installation in service.

RESISTORS AND HEATING ELEMENTS

Solids, liquids, and gases may be used as resistors, but most commercial electric heating elements have solid resistors, such as metal alloys, and non-metallic compounds containing carbon. In some types of electric boilers, water forms the resistor which is heated by an alternating current of electricity passing through it. One of the more common resistors is nickel-chromium wire or ribbon which, in order to avoid oxidation, contains practically no iron.

Commercial electric heating elements are made in many types. Some have resistors exposed to the air being heated. The resistors may be coils of wire or metal ribbon, supported by refractory insulation, or they may be non-metallic rods, mounted on insulators. This type of element is used extensively for operation at high temperatures when radiant heat is desired, also at low temperatures for convection and fan circulation heating, especially in large installations.

Some elements have metallic resistors embedded in a refractory insulating material, encased in a protective sheath of metal. Fins or extended surfaces may be used to add heat-dissipating area. Elements are made in many forms, such as strips, rings, plates and tubes. Strip elements are used for clamping to surfaces requiring heat by conduction, and in some types of convection air heaters. Ring and plate elements are used in electric ranges, waffle irons, and in many small air heaters. Tubular elements may be immersed in liquids, cast into metal, and, when formed into coils, used in electric ranges and air heaters. Cloth fabrics woven from flexible resistor wires and asbestos thread, are used for many low temperature purposes such as heating pads and aviators' clothing.

Special incandescent lamps are used as heating elements in certain applications where radiant heat is desired. These use carbon or tungsten filaments as resistors, and are designed to produce maximum energy in the infra-red portion of the spectrum.

ELECTRIC HEATERS

Electric heaters may be divided into three groups: conduction, radiant and convection.

Conduction electric heaters, which deliver most of their heat by actual contact with the object to be heated, are used in such applications as aviators' clothing, hot pads, foot warmers, soil heaters, ice melters, and water heaters. Conduction heaters are useful in conserving and localizing heat delivery at definite points. They are not suitable for general air heating.

Radiant electric heaters, which deliver most of their heat by radiation, have high temperature heating elements and reflectors to concentrate the heat rays in the desired directions. The immediate and pleasant

CHAPTER 44. ELECTRIC HEATING

sensation of warmth which is caused by radiant heat makes this type desirable for temporary use where the heat rays can fall directly upon the body. They are not satisfactory for general air heating, as radiant heat rays do not warm the air through which they pass. They must first be absorbed by walls, furniture, or other solid objects which then give up the heat to the air. For a discussion of electrically heated panels as applied to radiant heating, see Chapter 45.

Gravity convection electric heaters, designed to induce thermal air circulation, deliver heat largely by convection, and should be located and used in much the same manner as steam and hot water radiators or convectors. They generally have heating elements of large area, with moderate surface temperature, enclosed to give proper stack effect to draw cold air from the floor line. The flexibility possible with electric heating elements should discourage the use of secondary mediums for heat transfer. Water

Fig. 1. Ceiling Mounted Unit Heater Fig. 2. Wall Mounted Unit Heater

and steam add nothing to the efficiency of an electric heater and entail expensive construction and maintenance.

UNIT HEATERS

Electric unit heaters include a built-in fan unit which circulates room air over the heating elements. Heaters of this type are manufactured in many designs and sizes, and can be located in the same manner as steam unit heaters.

Electric unit heaters are used in industrial plants, sub-stations, power houses, pumping stations, etc., where the power rate for electric heating is found to be favorable. In many large plants, such as flour mills, grain elevators, etc., in which there are a number of small offices, locker rooms, etc., scattered over wide areas, electric unit heaters are frequently economical in such locations. In small unattended stations, where freezing temperatures cannot be permitted, thermostatically-controlled electric unit heaters are frequently used to maintain a temperature above freezing. The best location for the heaters depends upon local circumstances as they can be mounted either on the ceiling to direct the air

downward, on the side wall about 7 ft from the floor, or near the floor line. Variations in design are necessary for different locations, but typical arrangements are indicated in Figs. 1 and 2.

The arrangement of the wiring circuits is very important for electric unit heaters. In principle they are all the same and include as essential elements an automatic control panel, a thermostat, and a master hand switch. All heaters should be designed with a safety thermal trip wired in series with the magnet coil of the control panel and with the hand switch and thermostat. A typical wiring diagram is shown in Fig. 3. This applies to a single phase power supply, but for 3-phase the only difference is to have a 3-pole panel and a heater arrangement for 3-phase connection.

Portable unit heaters are useful for temporary work, such as drying out damp rooms, or for warming rooms during construction.

CENTRAL FAN HEATING

Electric heating elements can be used for the prime source of heat in a central fan electric heating system or in the heating phase of a complete

Fig. 3. Wiring Diagram for Unit Heater

air conditioning system. They can be used in the same manner as steam heating units for tempering, preheating or reheating the air at the main supply fan location and as booster heaters at the delivery terminals of the duct system. In the humidification phase of air conditioning electric heating elements can be used to provide moisture by the evaporation of water, or for controlling air washer dew-point temperatures when mounted as preheating units on the intake side of the air washer. (See Chapter 21.)

In coordinating the input of heat energy and the volume of air circulation, a basic difference between electric heating and steam heating enters into the problem. Steam is approximately a constant-temperature source of heat for any given pressure and a change in air volume flowing over steam coils does not greatly affect the temperatures of the delivered air. The amount of steam condensed (heat input) varies in proportion to the air volume, but the surface temperature of the steam coils remains about the same. Electric heat is quite different, having a constant input of energy. If the volume of air flow over electric heating elements is changed, and no change is made in the electrical power connections, there will be a corresponding change in the temperature of the air delivered.

CHAPTER 44. ELECTRIC HEATING

This occurs because the electrical energy input remains constant and the surface temperature of the heating elements will vary as is necessary to force the air to accept all the heat. With electric heat the total heat is constant unless some compensating action is performed by control. Automatic variation of the electrical heat input synchronized properly with the air flow can be successfully accomplished by various special methods of control.

Electric heaters are useful in balancing the heat distribution in central fan heating systems. Even in those instances where steam is the principal heat source, the temperature of individual rooms can be controlled locally by separate electric booster heaters. These heaters can be installed in branch ducts or behind the air outlet grilles in each room. With this arrangement, the central heating unit distributes air at an average temperature, controlled from a thermostat centrally located, such as in the main return duct. The electric booster heaters may be controlled by thermo-

Fig. 4. Resistance Type Boiler for Steam or Hot Water

stats mounted in each individual room which permit the occupant to maintain any desired temperature independent of the rest of the building.

ELECTRIC BOILERS

Steam or hot water generating boilers using electric energy are entirely automatic and are well adapted to intermittent operation. Small electric boilers usually have heating elements of the enclosed metal resistor type immersed in the water. Boilers of this construction may be used either with direct or alternating current since the heat is delivered to the water by contact with the hot surfaces. To lessen the likelihood of the heating elements burning out, they should be of substantial construction, with a low heat density per unit of surface area and provision should be made for cleaning off desposits of scale which restrict the heat flow. A typical resistance type of steam or hot water boiler is shown in Fig. 4.

Large electric boilers are usually of the type employing water as the resistor, using immersed electrodes. With this type only alternating current can be used, as direct current would cause electrolytic deterioration. Such a type of electrode boiler is shown in Fig. 5.

Electric steam boilers are useful in industrial plants which require limited amounts of steam for local processes, and also for sterilizers, jacketed vessels and pressing machines which need a ready supply of steam. It sometimes is economical to shut down the main plant fuel burning boilers when the heating season ends, and to supply steam for summer needs with small electric steam boilers located close to the operation. In general, electric steam heating is confined to auxiliary or other limited applications. If the heating system is designed to use electricity exclusively, steam generating or distributing equipment is superfluous.

ELECTRIC HOT WATER HEATING

Electric water heating, using an electric boiler in place of a fuel burning boiler, like electric steam heating, is generally confined to auxiliary or

Fig. 5. Diagrammatic Arrangement of an Electrode Boiler

other limited applications. The use of insulated water storage tanks, in which to store heat generated by electricity during off-peak hours at extremely low rates, is a development which has some special applications.

In this system of heating, the primary storage tank is simply a large, well-insulated, pressure type steel tank, equipped with electric heating elements and automatic time switches, which also have automatic limit controls for temperature and pressure. The heating system installed in the building may be of any standard individual radiator or fan-served indirect type or with provisions for the heating and humidification phases of an air conditioning system. A system of this kind requires very careful design to avoid excessive over-all radiation losses during periods of low heat demand. It is also important to provide for sudden changes in heat demand. A typical hot water heating boiler is illustrated in Fig. 4.

HEATING DOMESTIC WATER BY ELECTRICITY 1

Electric water heaters of the automatic storage type for domestic hot water supply are simple and reliable. In many sections of the country low electric rates have been established by the electric utilities to secure this load. In some localities, electric rate schedules divide the current used for water heating into two classifications, regular and off-peak. A time switch automatically limits use of the off-peak heating element to the hours of off-peak load, while the regular heating element is a stand-by at all times. Storage of this two-element type of water heater is larger than average to carry over the periods when the off-peak element is timed out, without too frequent demands on the regular heating element which takes the higher domestic lighting service rate. Some utilities now offer

Fig. 6. Piping Arrangement for Connecting Electric Water Heater to Fire-Box Coil

Fig. 7. Domestic Hot Water Heater for Off-Peak Service

a schedule which, beyond a stipulated minimum, lowers the rate for all electric service if an electric water heater is installed.

Competition with other fuels, especially gas, seems to be the major controlling factor in the use of electricity. The first cost of electric storage heaters is also greater than for gas, owing to the need for larger tank storage due to off-peak service and slower recuperating capacity.

In residential work, to effect a saving in the cost of operation, it is sometimes desirable to use a furnace coil or indirect heater in connection with an electric water heater. In this case it is important to make the proper connections in order to benefit by any heat obtained from the furnace and at the same time to prevent dangerous overheating. The proper piping connections are shown in Fig. 6, and in this case the electric heater will only furnish heat when insufficient heat is supplied from the furnace. This arrangement has a further advantage in the summertime in that the bare tank through which the cold water passes on its way to

¹Test Results of Electric Water Heaters, by C. G. Hillier (A.S.H.V.E. JOURNAL SECTION, *Heating, Piping and Air Conditioning*, November, 1936, p. 632). Fourteenth Range and Water Heater Survey (*Electric Light and Power*, August, 1940).

the electric heater serves as a tempering tank, absorbing heat from the basement air and requiring the use of less energy in the electric heater.

A typical domestic hot water heater as shown in Fig. 7 is arranged with upper and lower heating elements for the usual type of off-peak heating service. The lower heating element is under the control of the off-peak time switch. However, the upper heating element is usually connected to the line so that in case the supply of hot water in the tank becomes exhausted the top thermostat can turn on the top heater and heat a small supply of water. The top heater will not heat the water in the tank below its location, but when the off-peak period arrives the lower heater is turned on and the entire tank becomes heated.

RADIANT DRYING

Lacquers and similar surface films can be very effectively dried by radiation. Special electric lamp bulbs have been developed which give off a high percentage of infra-red and similar heat rays². These are mounted in very efficient reflectors. For continuous manufacturing processes these reflectors are mounted in tunnels through which conveyors pass. For local applications, as for example paint drying in automobile repair shops, they may be mounted on portable racks.

In the application of this type of drying the composition of the paint or lacquer is important. In general, lacquers and those enamels using synthetic resins react most favorably. Other applications include the drying of ink, glue, and water, the softening of celluloid and bakelite for punching or shearing, and a wide variety of other uses.

REVERSED CYCLE REFRIGERATION

Reversed refrigeration is frequently referred to as a *heat pump* since the electric motor driving the refrigerating compressor furnishes the motive power to transfer heat from one temperature to a higher temperature level. The compressor acts as a reversible refrigerating unit to extract heat from the outdoor air in winter and deliver it indoors for heating purposes, and, by a reversal, to extract heat from the indoor air in summer and discharge it outdoors.

In normal use a refrigerating machine is arranged to remove heat and the heat removed is dissipated to the condenser cooling water. The driving energy is converted into heat, most of which is added to the heat removed and extracted. In so-called reversed refrigeration the heat removed together with the heat converted from the driving energy is utilized to heat the building. This conservation of the heat converted from the driving energy enables the reversed refrigeration to show a better performance in heating service than straight refrigeration can show in cooling service. In order to overcome the drop in capacity and in efficiency with lower outside temperatures, it is often desirable to use well-water instead of air as the source of heat. For a detailed description of this cycle see Chapter 25.

²Infra-Red Lamps Speed Up Drying Operations (Automotive Industries 82:376-7; April 15, 1940). Invisible Rays Build Visible Profits, by H. M. Archer (Electric Light and Power, May, 1940). Radiant Energy Drying and Baking for Organic Finishing (Metal Industry 38:294-6; May, 1940).

CHAPTER 44. ELECTRIC HEATING

AUXILIARY ELECTRIC HEATING

In conjunction with heating systems of other types, an auxiliary electric heating arrangement is a convenient means of caring for mild days in the spring and fall which require little heat to make a building comfortable. Likewise, such electric heating might be used on abnormally cold days to help out the main heating system and by this means reduce the necessary size of the system.

A few installations have been made using electric heating cable buried in the floors of bathrooms, etc., to provide auxiliary electric heating. At least one airplane hangar is heated in this manner.

Because of the feeling of comfort that a radiant type heater gives, bathrooms may be heated electrically with this type of heater while the rest of the house is cared for by some other system. Offices and rooms which require heat at periods when the main heating plant is shut down can be conveniently heated electrically.

CONTROL

Because the efficiency of electric heat production is the same for small and large units, it is possible to reduce heat waste to a minimum by applying local heating, locally controlled. Heaters are often controlled manually but thermostatic control is essential for economical operation. For duct systems having a variable volume of air flow the electric heater control must automatically vary the heat input in coordination with the changes in air volume and demand for heat.

CALCULATING CAPACITIES

The electric heating capacity required can be calculated from the heat requirement in Btu per hour by using the equation:

$$\frac{\text{Btu per hour}}{3413} = \text{kw rating of required electric heating}$$
 (1)

For comparison with steam radiation:

$$1 \text{ kw} = \frac{3413 \text{ Btu}}{240} = 14.2 \text{ sq ft of steam radiation}$$
 (2)

POWER PROBLEMS

The cost of electric energy varies because of several factors. Distribution costs differ for large and small users. The fact that electricity cannot be economically stored, but must be used as fast as it is generated, makes it impossible to operate electric plants at uniform loads; hence, even the time of use may affect the cost of electricity. Special low rates are sometimes available during certain prescribed hours of use.

Since the cost of production and distribution depends not only upon the quantity of energy used but also upon the maximum rate at which it is used, electric energy is often sold on a demand rate basis. In some

cases, the demand charge is based upon the rated connected load, in other cases, upon the maximum demand as indicated by a demand meter.

Homes are almost universally supplied with lighting current of 115 volts, which can only be used economically for small heaters. Usually the service lines will not permit more than plug-in devices. The Underwriters permit approved heaters of 1320 watts or less to be plugged into approved baseboard receptacles, but such heaters cannot be served on a circuit supplying much other load without overloading the fuses. There is an increasing trend toward supplying homes with three wire 115/230 volt service. Where homes have such service, larger heaters can be installed. For industrial purposes, heaters should be designed to use polyphase power, which is usually supplied at 220, 440 or 550 volts. All polyphase heaters should be balanced between phases.

REFERENCES

Electric Elements Well Adapted to the Air Conditioning Heating Cycle, by L. P. Hynes (Heating, Piping and Air Conditioning, January, 1940, p. 29).

Electric Air Heating Market (Electrical West 82:113; June, 1939).

Seven Jobs for Electric Heat (Factory Management 97:80-1; September, 1939).

Electric Heat for the Bathroom Floor (Heating and Ventilating 36:41; December, 1939).

Electric Heat Spreads in Sunny Climes (Barron's National Financial Weekly 20:5; January 8, 1940).

Electric Heating for Los Angeles Building (Heating and Ventilating 37:50-1; June, 1940).

Dracker Apartments, West Los Angeles, Calif. (Heating and Ventilating 37:32; July,

Electric Radiant Heat vs. Steam Convection (*Electrical World* 114:395-6; August 10 1940).

Chapter 45

RADIANT HEATING

Physical and Physiological Factors, Control of Heat Losses, Rate of Heat Production, British Equivalent Temperature, Application Methods, Calculation Principles, Mean Radiant Temperature, Measurement and Control of Radiant Heating

FOR health and comfort, it is necessary for the rate of heat loss from the human body to be controlled by the aggregate effect of the conditions surrounding the body, so that the physiological reactions result in a feeling of comfort. No heating system serves the purpose of adding heat to the individual, but only reduces the net rate at which the body loses heat in cold weather by radiation, convection and evaporation. In convection methods of heating, the medium serves to maintain such an air temperature as will give comfort under existing conditions of humidity and of surrounding surface temperatures. The object of radiant heating, on the other hand, is to maintain an average temperature of the surrounding surfaces which will prevent too much heat loss from the human body by radiation, and thereby give comfort without needlessly heating the air. The difference between convection heating and radiant heating is therefore partly physical and partly physiological.

On a cold day, with no wind blowing, while standing in the sunshine, one may feel perfectly comfortable but, when a cloud passes over the sun, one will instantly feel much cooler. A shielded thermometer will show no immediate reduction in air temperature, so that one actually feels a cooling effect which an ordinary thermometer cannot register. This is because light and heat waves travel at the same speed and are both interrupted by the cloud, or other shield. This proves that heat rays affect the comfort of the body more quickly and more definitely than does air temperature.

It also proves that an ordinary thermometer registering the temperature of the air is not a criterion of comfort conditions. Healthful comfort requires that heat shall escape from the body at the same rate as it is generated by the oxidation of food in the body, and in a manner suitable to physiological requirements.

Furthermore, the ambient conditions will often cause changes both in the rate of heat generation in the body, and in the operation of the several methods by which the body loses heat. The feeling of heat or cold results not only from the rate at which the body loses heat, but also from the manner in which the heat is abstracted from the body, and the ease with which the body's heat regulating mechanisms can operate. If the conditions of the environment and the state of the body are not perfectly correlated, a person is vaguely conscious of a strain in the thermostatic body mechanism.

CONTROL OF HEAT LOSSES

Heat is transferred from any warm dry surface to cooler surroundings principally by convection and by radiation; the total loss is substantially the sum of these two. Where the surface is moist, as with the human body, heat is also lost through evaporation from both the body surface and the respiratory tract.

The rate of heat loss by convection depends upon the average temperature difference between the surface of the body and the surrounding air, the shape and size of the body, and the rate of air motion over the body.

The rate of heat loss by radiation depends upon the exposed surface area of the body, and upon the difference between the mean surface temperature of the body and the mean surface temperature of the surrounding walls or other objects. This latter temperature is called the mean radiant temperature (MRT).

Because these two types of heat loss supplement each other, a required rate of total heat loss can result either from a relatively low air temperature and a relatively high MRT, or vice versa. It must be clearly understood, however, that while some conditions stimulate the production of heat in the body, others merely dissipate the heat without controlling the generation of heat.

A heating installation should provide comfort for those individuals doing the least physical work, without causing undesirable changes either in the rate of heat generation, or in the body's heat regulating mechanism.

Rate of Heat Production

The normal rate of heat production in an average sized sedentary individual is about 400 Btu per hour. The heat production for persons subjected to various rates of activity is given in Chapter 2. When considering radiant heating, one must study separately the evaporation, radiation and convection losses. The human body is of complicated shape, and radiation takes place freely only from the exposed outer surfaces; there are considerable portions of the body such as the legs, arms, lower part of head, etc., which radiate most of their heat to other portions. It is necessary to determine the equivalent surface of the body from which heat is radiated and a similar value for convection. The total surface may be assumed as approximately 19.5 sq ft for convection and 15.5 sq ft for radiation, in an average sized individual.

The loss by evaporation and respiration depends on the temperature and area of the moist surfaces (outside and respiratory) of the body, the air temperature, air movement and humidity. In air at a temperature of 70 F, this loss for a sedentary individual of average size will be approximately 90 Btu per hour; and at 60 F, about 70 Btu per hour. These values are relative, because the total will vary materially with change of position, bodily activity, age, sex, race, etc.

The balance of the heat generated in the average human body, approximately 300 to 320 Btu per hour at about 70 F room temperature, is the approximate amount of heat given off by radiation and convection. It is difficult to determine the exact proportions of these two; but it appears that if the body losses are about 190 Btu per hour by radiation, or 12.25 Btu per hour per square foot of radiating body surface, the greatest comfort will result. This leaves about 120 Btu per hour to be lost by convection, or 6.01 Btu per hour per square foot of convecting body surface.

The mean surface temperature of the human body, including the whole area not only of exposed skin but also of clothing and hair, has been estimated variously at from 75 F, particularly in England up to as high as 83 F in America. It is, however, conceded that further research and experience will be needed to finally derive the most suitable value for the American climate. The final figures will vary with sex, age, clothing, etc., but will probably come between these extremes. From installations already in use in America an average surface temperature of 80 F appears to be more nearly correct.

The mean surface temperature of an inert body, which will cause given rates of heat loss by radiation and by convection in a uniform environment, having a given air temperature and a given mean wall temperature, may be calculated from fundamental equations for radiation and natural convection, with substitution of comparable cylinders for the irregular human body.

$$q_{\rm r} = 0.1730 \ e \left[\left(\frac{T_{\rm s}}{100} \right)^4 - \left(\frac{T_{\rm w}}{100} \right)^4 \right] \tag{1}$$

$$q_c = 1.235 \left(\frac{1}{D}\right)^{0.2} \times \left(\frac{1}{T_m}\right)^{0.181} \times \left(T_s - T_a\right)^{1.266}$$
 (2)

where

 q_r = heat loss by radiation, Btu per square foot per hour.

 q_c = heat loss by convection, Btu per square foot per hour.

 T_s = absolute temperature of the body surface, degrees Fahrenheit.

Tw = absolute temperature of the walls, degrees Fahrenheit.

Ta = absolute temperature of the air, degrees Fahrenheit.

$$T_{\rm m} = \frac{T_{\rm s} + T_{\rm a}}{2}$$

D = diameter of cylinder, inches.

e = the ratio of actual emission to black body emission.

If it is assumed that an average adult has a height of 5 ft 8 in. a body surface of 19.5 sq ft for convection, and 15.5 sq ft for radiation, an equivalent effect can be worked out for two cylinders, 5 ft 8 in. high by 13.15 in. diameter and 10.45 in. diameter, respectively. However, while the effects on a cylinder, of a particular size and shape may be used to estimate average similar effects on the human body, it should be remembered that the heat loss from the body varies greatly. Every movement alters not only its shape, but also the heat generated by the body and the velocity of the air passing over it and the surface exposed to radiation. This fact renders the results of any such computation only approximate.

Surface Heat Transmission, by R. H. Heilman (A.S M.E. Transations, Fuels and Steam Power Section, Vol. 51, No. 22, September-December, 1929).

BRITISH EQUIVALENT TEMPERATURE

The British Equivalent Temperature (BET) is the mean temperature of the entire environment which is effective in controlling the rate of sensible heat loss from a *black body* in still air when this body has a surface temperature equal to that of the human body, and a size comparable to

Slide adjusting inlet damper

First floor air duct

Air ducts in floor space
PLAN

Fig. 1. Coils in Wall Surfaces

Fig. 2. Air Ducts for Floor Heating

Fig. 3. Continuous Coil in Floor

Fig. 4. Coils Embedded in Floors

the human body. The BET is, therefore, a function of both the air temperature and the mean radiant temperature of the surrounding objects. Its numerical value in a uniform environment with the walls and air at the same temperature is equal to the temperature of the walls and air. In a non-uniform environment, with the walls and air at different temperature, the BET for America is at present considered to be equivalent to that of a uniform environment in which a body with an 80 F surface

CHAPTER 45. RADIANT HEATING

temperature will lose sensible heat at the same rate as in the given non-uniform environment. As originally defined in England, the BET was based on an average body surface temperature of 75 F, while 80 F seems to be more nearly conforming with American conditions. The most suitable temperature to assume will depend in part on the clothes worn by the individual. This explains why ladies in evening dress require a higher BET for comfort, than a man having only hands and head uncovered. The higher the BET, the less the heat loss from the body, as the rate of heat loss in still air is approximately proportional to the difference between the BET and the mean body surface temperature.

If the BET were 80 F, there could be no sensible heat loss from a surface at that temperature; so the temperature of a normal body surface would have to rise to a point where the heat generated in the tissues could be dissipated. Broadly speaking, it may be stated that with a BET of about 65 to 70 F, the sensible heat losses from the assumed average individual will approximate those previously stated.

APPLICATION METHODS

The several methods of applying radiant heating to a structure are:

- 1. By warming the interior wall and ceiling surface of the building. Pipe coils are embedded in the concrete or plaster of the walls or ceilings, the heating medium being hot water circulating through the pipe coils. These coils are generally constructed of small pipe $\frac{1}{2}$ or $\frac{3}{2}$ in. I.D. and spaced about 6 to 9 in. apart. See Fig. 1. This has the effect of warming the entire concrete or plaster surface in which the pipes are embedded. Since the temperature of the heating medium should never exceed about 130 F, due to the possibility of cracking the plaster the area of the warmed surface must be sufficient to supply the requisite quantity of heat at this low temperature. When carefully designed, this method produces very comfortable results and great operating economy, but offers some slight obstacles when alterations or additions to the building are desirable. Normally the hot water circulation is maintained by means of a circulating pump and facilities have to be provided to eliminate all air at the top of the system. All coils and circulating pipes are welded together and tested after erection to a hydraulic pressure of 300 lb per square inch.
- 2. By circulating warm air through shallow ducts under the floor. In this design the entire floor surface of a room is heated as in Fig. 2. This method was used 2000 years ago in many parts of the Roman Empire. While this method is more expensive in construction, it is effective and quite suitable for cathedrals and large public buildings. To provide a uniform floor temperature, one should give special consideration to the design of the air ducts so that equal heat distribution is obtained.
- 3. By placing hot water or steam pipes under the floor. With this arrangement the whole floor surface of a room is raised to a temperature sufficient to give comfortable conditions. Floor heating is recommended for schools and hospitals where large quantities of outside air are desirable. The floor surface may be of concrete, wood blocks, marble or any other material unaffected by heat, and while it is true that heat will be conducted through all materials used in floor construction, it is important that due consideration be given to the emissivity of the floor surface. In some cases where pipe coils are installed in the air space under the floor, special floors are constructed in sections so that the whole floor can be lifted to examine the coils. See Fig. 3. Pipes supported thus may be larger and the heating medium maintained at a higher temperature than when pipes are actually embedded in the floor. Pipes may be $1\frac{1}{2}$ or 2 in. in the former, but for the latter $\frac{3}{2}$ or 1 in. pipes are recommended. See Fig. 4. Where the heat losses from a room are exceptionally high it may be necessary to supplement the warm floor by either adding some coils in the ceiling or forming heated panels in the side walls.
- 4. By attaching separate heated metal plates or panels to the interior surfaces. These plates or panels are placed either in an insulated recess so that the surface of the panel is

flush with the surface of the walls or ceilings, or they may be secured to the face of the wall. They may be covered with wood veneers and decorated to harmonize with other parts of the room, or they may be cast into panels to imitate oak or other wood designs. With flat plate panels it is common practice to use a frame of plaster, wood, metal or composition to allow for expansion. These plates may be heated with either hot water or steam and connected as an ordinary radiator system. See Figs. 5 and 6.

- 5. By electric heated metal plates or panels. These plates or panels are either placed in insulated recesses of walls or ceilings or fastened to the construction, as found desirable. They should not have a surface temperature much above 200 F. Some have a much higher surface temperature but a lower temperature gives a more comfortable condition and is more efficient.
 - 6. By electrically heated tapestry mounted on screens and on the wall. For this purpose

FIG. 5. PILLAR TYPE RADIANT HEAT PANEL

FIG. 6. FLAT TYPE PANEL INSTALLED IN WALL RECESS

the screen is woven with an electric continuous conductor. Such screens are useful to plug in at any position for emergency local heating without taking care of a large room or office.

Note. If all of a heating panel is installed at one end of a large room there may be a marked difference between the BET on the two sides of the body. It is usually desirable, therefore, that the heat be distributed at different parts of the walls and ceilings so that no uncomfortable effect will be felt from unequal heating.

CALCULATION PRINCIPLES

The calculations for radiant heating are entirely different from those for convective heating. The purpose of the latter is to determine and compensate for the rate of heat loss from the room, when the air tempera-

CHAPTER 45. RADIANT HEATING

ture is maintained at the desired conditions. Radiant heating, however, involves the regulation of the rate of heat loss from the human body in its several forms.

The first step in the calculations for radiant heating of a given room is to determine the desired mean radiant temperature, MRT; the second, to

TABLE 1. TOTAL RADIATION TO SURROUNDINGS AT ABSOLUTE ZERO²

Body or Mean Radiant Temper-	emitted t	in Btu per o surround: osolute zero ires and wit	ngs with a by bodies a	tempera- t various	Body or Mean Radiant Temper-	Radiation in Btu per square foot per hour emitted to surroundings with a temperature of absolute zero by bodies at various temperatures and with emissivity factor e						
ATURE Deg Fahr	1 00	0.95	0.90	0.80	Deg Fahr	1 00	0 95	0.90	0.80			
30	99.3	94.3	89.4	79.4	71	136.5	129.6	122.9	109.3			
35	103.5	98.3	93.2	82.8	72	137.4	130.5	123.6	109.9			
40	107.6	102.4	96.8	86.1	73	138.4	131.5	124.5	110.6			
45	112.1	106.5	100.9	89.7	74	139.6	132.6	125.6	111.7			
46	112.9	107.3	101.6	90.4	75	141.0	133.9	126.9	112.8			
47	113.9	108.2	102.5	91.1	80	146.6	139.4	132.0	117.4			
48	114.8	109.1	103.4	91.9	85	152.3	144.6	137.1	121.9			
49	115.6	109.9	104.1	92.4	90	157.9	149.9	142.1	126.4			
50	116.5	110.6	104.9	93.2	100	169.6	161.1	152.6	135.7			
51	117.5	111.6	105.8	94.0	110	181.6	172.5	163.5	145.4			
52	118.4	112.5	106.5	94.7	120	194.8	185.0	175.4	155.9			
53	119.4	113.4	107.4	95.5	130	210.1	199.6	189.1	168.1			
54	120.2	114.2	108.2	96.2	140	223.2	212.1	201.0	178.5			
55	121.1	115.1	109.0	96.9	150	237.1	225.2	213.5	189.7			
56	122.1	116.0	109.9	97.7	160	251.1	238.8	226.0	201.0			
57	123.1	117.0	110.9	98.5	170	270.5	257.0	243.5	216.4			
58	124.0	117.8	111.6	99.2	180	288.0	273.8	259.1	230.4			
59	124.9	118.6	112.4	99.9	190	306.5	291.0	275.8	245.1			
60	125.8	119.5	113.4	100.7	200	325.2	309.0	292.8	260.3			
61	126.6	120.3	114.0	101.4	210	348.0	330.6	313.1	278.4			
62	127.7	121.4	114.9	102.2	220	371.5	353.0	334.4	297.1			
63	128.6	122.2	115.8	102.9	250	437.8	415.9	394.0	350.2			
64	129.6	123.1	116.7	103.7	300	575.0	546.1	517.5	460.0			
65	130.5	124.0	117.5	104.4	350	740.0	703.0	666.0	592.0			
66	131.6	125.0	118.4	105.4	400	942.1	895.0	847.5	753.5			
67	132.5	125.9	119.3	106.0	450	1176.0	1117.0	1059.0	941.0			
68	133.5	126.8	120.1	106.8	500	1464.0	1390.0	1318.0	1171.0			
69	134.5	127.8	121.1	107.6	550	1791.0	1701.0	1613.0	1434.0			
70	135.5	128.8	121.9	108.4	600	2405.0	2284.0	2165.0	1925.0			

aThese factors are calculated from the formula

 $q = e \left(\frac{0.1723 \times T^4}{100,000,000} \right)$

where

decide on the location of the heated surfaces; the third, to establish the temperature at which the heating surface shall operate; the fourth, to compute the size of the heating surfaces required to produce this MRT; the fifth, to calculate the actual heat loss from the room and to provide, if necessary, any additional convected heat beyond that given off by the radiant surfaces for the required number of air changes. If humidification

q = total radiation, Btu per square foot per hour.

e = emissivity.
 T = absolute temperature, degrees Fahrenheit.

is required, this must be considered similarly to a conventional air conditioning system, except that the air temperature of the room will be much lower and will therefore require less moisture.

Mean Radiant Temperature

If the entire interior surface of a room were at the same temperature, this would be the MRT. Such a condition seldom exists, because in different parts of a room, some surfaces are exposed to the outer air while others are adjacent to heated rooms. The actual surface temperature varies with the construction and exposure of different sides of the enclosures. It is therefore necessary to calculate the thermal mean of these interior surface temperatures.

This is not the same as the arithmetic average of the various actual

Fig. 7. Chart for Estimating Inner Surface Temperatures of Outside Vertical Walls

surface temperatures, but the radiant temperature which corresponds to the average of the several rates of heat emission (Btu per square foot) from the several surfaces. The emission at any given surface temperature, for any stated emissivity factor can be obtained directly from Table 1, while the emissivity factors for many materials may be found in Table 6 of Chapter 3. For example, from Table 1 it can be determined that if the emissivity of the surface is 0.90 then 1 sq ft of surface at 50 F will emit 104.9 Btu per square foot per hour to surroundings at absolute zero.

Such a determination of the amount of radiant heating surface needed in a room, to maintain a desired MRT, requires knowledge of the type of heating, and the temperatures of the unheated surfaces. The latter can be estimated from Fig. 7 which is based on an inside air temperature of 65 F and an MRT of 71 F. There will be some variation in surface

CHAPTER 45. RADIANT HEATING

temperature with emissivity, but except in the case of reflective materials this may be neglected, as the variation due to ordinary building surfaces will be small.

Detailed Computation Method

Assuming the mean surface temperature of the exposed part of the human body and clothing to be 80 F and the emissivity factor to be 0.95, from Table 1 it can be determined that the body surface will give off 139.4 Btu per square foot per hour to absolute zero surroundings. Since the average human body releases approximately 12.25 Btu per square foot per hour by radiation, the mean radiant emission from the surroundings must be 127.15 Btu per hour with an average emissivity factor of 0.93 which requires an MRT of approximately 71 F. If the body is covered less so that the mean surface temperature of the body is 85 F with an emissivity factor of 0.95, the correct MRT for the room should be 74 F. Consequently, for baths and similar rooms the MRT should be slightly higher than for offices, etc. The mean radiant emission from walls, etc.,

TABLE 2. HIGHEST SAFE SURFACE TEMPERATURES FOR HEATING PANEL

Type of Panel	Surface Temperature Deg F
Plastered Ceiling (Pipes Embedded)	115 120
Floor, Any Method	85 120
Iron, Hot Water Medium ^a Iron, Steam Vapor ^a	160 180
Electrically Heated Panelsa	200

aLow surface temperature radiation is recommended regardless of the heating medium employed.

to give this desired rate can be determined from Table 1. Multiplying by the total surrounding area will give the desired total radiant heat effect. Therefore the MRT for an ordinary living room, office, or similar room to give comfort conditions is 71 F.

The location of the surfaces is generally decided according to the type of building and its use. For high ceilings it is advisable to select floor heating or install heated panels in the walls at low level. For exposed rooms it may be necessary to have some wall or ceiling panels in addition to floor heating.

The temperature of the surface is controlled somewhat by the location. If the floor is chosen, then hot water pipes should be used as the medium; and the surface temperature should never be more than 85 F unless border heating is used. The latter comprises strips of heated surfaces where occupants will not usually rest their feet, such as portions of the floor adjacent to walls or windows, aisles of churches, halls, etc. If iron panels are used on side walls, etc., a surface temperature up to 160 F may be used with hot water as the heating medium. Vapor or low pressure steam may also be used with a maximum surface temperature of 180 F. For ceiling or other plaster heating, hot water pipes should be used with a

maximum water temperature of 130 F giving a surface temperature of about 115 F.

The area in square feet of each type or different surface temperature, horizontal or vertical, is multiplied by the emission value corresponding to its actual surface temperature. These products are added together to give the total radiant heat effect inside the room from all surfaces.

The difference between the desired and the actual total radiant emission represents the additional heating effect which must be supplied by the hot surfaces to be installed. The temperature of the proposed hot surface must then be selected from Table 2, and its emission per square foot at that temperature determined from Table 1. The difference between this emission and that of the unheated surface replaced by the panel is divided into the total amount of additional heat needed, and the quotient will be the area of the required heating surfaces.

These calculations depend on the accuracy of estimating the ultimate surface temperatures of the walls, windows, ceiling and floor surfaces

Surface	Area Sq Ft	U	ESTIMATED INSIDE SURFACE TEMP DEG F	EMISSIVITY	HEAT EMISSION BTU PER SQ FT PER HOUR	TOTAL HEAT EMISSION FROM AREA BTU PER HOUR	
Outside Wall	297 279 480 480 480	0.25 1.13 0.20 0.10	55.0 33.6 60.0° 60.4 60.0	0 95 0.92 0.95 0.95 0.93	115.1 94.3 119.5 119.8 117.0	34,200 26,300 57,300 57,500 56,200	
Total	2,016			Avg. 0.93		231,500	

TABLE 3. ROOM DATA FOR SOLVING EXAMPLE

aNo heat loss through inside wall; assume wall surface temperature 60 F.

under comfort conditions. Some unheated surfaces will absorb a large number of heat rays from the heated panels and thereby become warmer, giving off rays of longer wave length, while other surfaces will reflect a large percentage of rays and become simple reflectors of heat. Windows will be affected largely by curtains, shades or venetian blinds and floors will be affected by rugs and carpets.

Example 1. The surface areas and over-all heat transmission coefficient for a residence room having a volume of 5760 cu ft are given in Table 3. Determine the amount of radiating surface to maintain a room air temperature of 65 F and an MRT of 71 F, with an outside temperature of zero, utilizing ceiling panels with circulating hot water at 130 F which will maintain a surface temperature of approximately 115 F as given in Table 2.

Solution. From Fig. 7 determine the estimated inside surface temperature for the various surfaces. In the case of the outside wall having a U=0.25, it is found from the chart, that the intersection of this line with the zero outside temperature, that the surface temperature is 55 F.

Since the glass temperature will depend on whether or not shades or curtains are provided, it may be assumed in offices and similar rooms that the whole glass surface will be exposed, whereas in residences, curtains may cover all or part of the window thus increasing the room MRT and reducing the human body heat loss. For this example it is assumed that the windows are partly covered with side curtains to the extent of about

CHAPTER 45. RADIANT HEATING

one-third. From Fig. 7 the surface temperature of the exposed glass corresponding to a U=1.13, is 19 F. Assuming about a 2 F differential between the room air temperature and curtain surface temperature or 63 F, then one-third the difference between this value and the glass temperature results in a calculated average of 33.6 F.

With a ceiling U=0.20, the surface temperature for an unheated ceiling from Fig. 7 is 57 F; multiplied by a factor $1.06\times57=60.4$ F. The surface temperature of the floor with a U=0.10 is from Fig. 7 a value of 62 F; multiplied by a factor $0.968\times62=60$ F.

The emissivities are selected from Table 6, Chapter 3. The glass emissivity of 0.92 in Table 3 was determined by taking one-third of 0.95 (curtain) and two-thirds of 0.90 (glass). The heat emission in Btu per square foot per hour are taken from Table 1.

The approximate natural mean radiant emission of the room from data in Table 3 is $231,500 \div 2016 = 114.8$ Btu per square foot per hour which from Table 1 corresponds

Fig. 8. Heat Emission by Radiation from Panels when Surrounded by Surfaces of Various Temperatures Giving an Average MRT According to Curves

to an MRT of 57 F for an average emissivity of 0.93. With a ceiling surface temperature of 115 F and an emissivity of 0.95 from Table 1 the emission is 179.0 Btu per square foot per hour. The difference between 179 and 119 8 used in Table 3 is the additional heat emitted per square foot of warmed ceiling.

For an MRT of 71 F having a heat emission of 127 Btu corresponding to an average emissivity of 0.93, the total emission for all the room surfaces is $2016 \times 127 = 256,000$ Btu per hour. Or an additional (256,000 - 231,500) = 24,500 Btu per hour will be required. The heated ceiling at 115 F and 0.95 emissivity releases 179 Btu or (179 - 119.8) = 59.2 Btu per square foot per hour more heat than that allowed for an unheated ceiling. Therefore the surface required to be heated is approximately $24,500 \div 59.2 = 415$ sq ft.

Since the total ceiling area is 480 sq ft it is only necessary to utilize 415 sq ft to satisfy the necessary heating requirements. An alternative would be to heat the whole ceiling

surface using a lower temperature circulating water. Also with the entire ceiling heated a slight margin of safety will be provided which is an advantage.

Example 2. Using the data in Example 1 calculated directly the required surface temperature if the entire ceiling area is utilized and the design room conditions are identical.

Solution. From Example 1 it was shown that 256,000 Btu per hour were required to maintain the desired MRT in the room having a surface area of 2016 sq ft, and that 24,500 Btu of additional heat per square foot of ceiling was required above the natural heat emission of the room as shown in Table 3. Dividing 24,500 by 480 = 51.0 Btu per square foot per hour plus 119.8 Btu per square foot per hour which is the heat emission of the unheated ceiling gives 170.8 Btu. From Table 1 and for an emissivity of 0.95

Fig. 9. Heat Emission by Convection from Radiant Heat Panels with Still Air at Various Temperatures

it is found that this amount of heat will be emitted from a surface at approximately 108.5 F.

This surface temperature may be obtained by using circulating water at about 125 F instead of 130 F, or the embedded pipes may be spaced wide apart and the water temperature maintained at 130 F.

Example 3. Determine the total heat emitted from the ceiling surface in Example 1 if it is maintained at a temperature to provide a room MRT of 71 F using the data in Figs. 8 and 9.

Solution. The calculated heat losses of the room as outlined in Chapter 6 are given in Table 4. The MRT for all unheated surfaces in the room may be determined from Table 3, by adding the total heat emission from walls, floors and windows and dividing by the total surface, or $174,000 \div 1536 = 113.5$ Btu per square foot per hour. From Table 1 this emission from a surface having an emissivity of 0.93 corresponds to about 55 F.

Utilizing the entire ceiling area with a heat emission corresponding to a surface tem-

CHAPTER 45. RADIANT HEATING

perature of 108.5 F as determined in Example 2, and with a surrounding average MRT of the unheated surfaces of 55 F as previously calculated, it will be found from Fig. 8 that the ceiling surface will emit 50 Btu per square foot per hour by radiation. With an air temperature of 65 F this same surface will emit $(42 \times 0.48) = 20.2$ Btu per square foot per hour by convection according to Fig. 9. Then the,

The difference between 33,696 and 33,460 Btu in Table 4 results in a safety factor of 236 Btu per hour.

In case the ventilation rate of the room had been increased, more heat could be furnished by either adding wall panels or by introducing a positive source of ventilation air which could be externally heated to the correct temperature.

Surface	Area Sq Ft	U	HEAT LOSS CALCULATION	TOTAL HEAT LOSS BTU PER HOUR
Outside Wall	297 186 93 480 480 480	0.25 1.13 ^a 0.57 ^b 0.10	$\begin{array}{ c c c c c }\hline 297 \times 0.25 \times (65 - 0) \\ 186 \times 1.13 \times (65 - 0) \\ 93 \times 0.57 \times (65 - 0) \\ \text{No heat loss next to heated room} \\ \text{Heated surface} \\ 480 \times 0.10 \times (65 - 0) \\\hline \end{array}$	4,820 13,650 3,440
Infiltration	5760 cu f	t × 1.25 a	ir changes \times (65 $-$ 0) \times 0.018	8,430

TABLE 4. CALCULATED HEAT LOSSES FOR EXAMPLE

MEASUREMENT OF RADIANT HEATING

Convection heating, intended to maintain a given air temperature, is best measured by thermometric methods, which indicate the air temperature, and not the rate of heat loss from the human body. Radiant heating aims to control this rate of heat loss and can be measured only by calorimetric methods.

The apparatus for this purpose consists essentially of a cylinder, maintained at the accepted mean surface temperature of the human body, together with an accurate (usually electrical) measuring of the varying rate of heat supply required to maintain this exact temperature. This instrument, the *eupatheoscope*, is readily adapted to function like a thermostat so as to turn heat on or off, when the desired temperature of 80 F, or any other predetermined surface temperature of the cylinder, decreases or increases as a result of changes in the BET.

For testing work, the globe thermometer is a useful instrument. It consists of an ordinary mercury thermometer, with its bulb placed in the center of a sphere from 6 to 9 in. in diameter, usually made of thin copper and painted black and sometimes covered with cloth. The temperature

a Two-thirds window area assumed to be fully exposed with a U=1.13.

bOne-third window area protected by side curtains with a reduction $U\,=\,0.57$.

recorded by thermometer with its bulb in the center of the sphere is termed the radiation-convection temperature. See Chapter 35.

CONTROL OF RADIANT HEATING

The effectiveness of any type of control will largely depend on the time lag of the system. With warm air passing through floor ducts the time lag is usually too long for any kind of room thermostat, in fact this type of thermostat will not prove suitable with any system if the building is constructed with massive brickwork and masonry, unless it operates in conjunction with a time control responsive to changes in outside conditions.

The heat emitted by hot water pipes embedded in the plaster of the

FIG. 10. TYPICAL RADIANT HEAT CONTROL SYSTEM

ceiling and walls or in the concrete base of a floor can be effectively controlled by an instrument designed to modulate the temperature of the water circulating in the system according to the outside conditions. Metal panels which can be installed in the ceiling or side walls may be either controlled by an instrument responsive to outside weather conditions or by a specially designed instrument responsive to both air temperature and radiation. Any purely on or off control system is not recommended for radiant heating.

A typical control system operated from an outside thermostat, and supplemented with a room heat control instrument is illustrated in Fig. 10. The outside thermostat modulates the temperature of the circulating water in the coils by introducing some of the hot water leaving the boiler with a proportionate amount of return water which is diverted to the three-way valve.

One type of room instrument consists of a blackened copper sphere of

CHAPTER 45. RADIANT HEATING

6 or 8 in. in diameter, in which a cylindrical sump contains a volatile liquid. A small electric heating coil creates in the sphere a vapor pressure which remains constant as long as the total heat loss from the sphere is at the desired rate. If the BET becomes too high for comfort, a greater vapor pressure results from the smaller heat loss from the sphere. This acts on a diaphragm and reduces the supply of heat to the room. With too low a BET the reverse action occurs. A similar instrument which has an electric heating element for warming the air inside the sphere and thermostat operated switch is also used for controlling room conditions.

In addition to a thermostatically controlled device for modulating the temperature of the circulating water, it is an advantage to insert in each coil a locked flow control or adjustable resistence to give uniform conditions throughout all rooms. Owing to unforeseen difficulties with varying frictional losses in pipes, emission factors and exposures it is an advantage to be able to permanently regulate the flow through each circuit by means of a key operated valve as indicated in Fig. 4.

FUEL CONSUMPTION

Because of the lower air temperature desired with radiant heating, there is a possible saving in fuel consumption. This saving depends very largely on the method employed to heat the surfaces and the provision made to prevent heat passing from the coils to the earth or outside air.

REFERENCES

Panel Warming, by L. J. Fowler (A.S.H.V.E. Transactions, Vol. 36, 1930, p. 287). Room Warming by Radiation, by A. H. Barker (A.S.H.V.E. Transactions, Vol. 38, 1932, p. 331).

Operating Results of a Residence Radiant Wall Heating System, by E. J. Rodee (ASH.V.E. Transactions, Vol. 47, 1941, p. 123).

Panel Heating and Cooling Analysis, by B. F. Raber and F. W. Hutchinson (A.S.H.V.E. Transactions, Vol. 47, 1941, p. 285):

A.S.H.V.E. Research Paper—Radiation as a Factor in the Feeling of Warmth in Convection, Radiator and Panel Heated Rooms, by F. C. Houghten, Carl Gutberlet and E. C. Hach (A.S.H.V.E. JOURNAL SECTION, *Heating*, *Piping and Air Conditioning*, December, 1941, p. 778).

A.S.H.V.E. Research Paper—Panel Heating and Cooling Performance Studies, by B. F. Raber and F. W. Hutchinson (A.S.H.V.E. JOURNAL SECTION, *Heating*, *Piping and Air Conditioning*, February, 1942, p. 125).

Trend Curves for Estimating Performance of Panel Heating Systems, by B. F. Raber and F. W. Hutchinson (A.S.H.V.E. JOURNAL SECTION, *Heating, Piping and Air Conditioning*, July, 1942, p. 432).

What Will be the Future Development of Heating and Air Conditioning, by W. H. Carrier (Heating, Piping and Air Conditioning, January, 1933, p. 16).

American Practice in Panel Heating, by L. L. Munier (Heating, Piping and Air Conditioning, June, 1937, p. 424).

Radiant Heating and Cooling, by F. E. Giesecke (Heating, Piping and Air Conditioning, June, July, August, September and October, 1940).

Panel Heating in the British Embassy, by Alfred L. Jaros, Jr. and Richard A. Wolff (Heating and Ventilating, May and June, 1930).

Calculations for Radiant Heating, by T. Napier Adlam (Heating and Ventilating, October, 1931).

Radiant Heating (Heating and Ventilating, March, 1941, p. 35).

Notes on Electric Warming with Special Reference to Low Temperature Panel Systems, by R. Grierson (*Proceedings of The Institution of Heating and Ventilating Engineers*, London, Vol. 28, 1929).

Notes on the Theory of Radiant Heating, by C. G. Heys Hallett (Proceedings of The Institution of Heating and Ventilating Engineers, London, Vol. 29, 1930).

Radiant Heat, by A. F. Dufton (Proceedings of The Institution of Heating and Ventilating Engineers, London, Vol. 30, 1931).

Panel Heating, by C. M. Oates (Proceedings of The Institution of Heating and Ventilating Engineers, London, Vol. 30, 1931).

Principles of Calculation of Low Temperature Radiant Heating, by A. H. Barker (Proceedings of The Institution of Heating and Ventilating Engineers, London, Vol. 30, 1931).

Radiant Heat, by A. F. Dufton (Proceedings of The Institution of Heating and Ventilating Engineers, London, Vol. 31, 1932).

Chapter 46

WATER SUPPLY PIPING AND WATER HEATING

Maximum Flow, Factor of Usage, Water Pressure, Pipe Material, Allowance for Fittings, Sizing Up-Feed Systems, Sizing Down-Feed Systems, Hot Water Supply, Storage Capacity and Heating Loads, Methods of Heating Water, Computing Grate and Coil Surface Area, Controls, Solar Water Heaters

THIS chapter deals only with problems of providing adequate facilities for delivering cold and heated water for domestic purposes in buildings.

The amount of cold or warm water used in any building is a variable depending on type of building, usage, occupancy and time of day. The problem is to provide the piping and the water heating and storage facilities of sufficient capacity to meet the peak demand without wasteful excess in equipment of cost¹. For example, in two office buildings of similar type the metered water consumption has shown as much as 300 per cent difference per outlet. The rate of use in such buildings also fluctuates tremendously with the hour of day.

Residences present a comparatively easy problem since long established custom has evolved reliable factors for water consumption per installed fixture. Tests have been made repeatedly of the amount of water required by standard fixtures in normal use with water at ordinary pressures so that this information gives a fairly correct basis of design.

For the purpose of this chapter the following terms will be used and should be clearly distinguished from one another:

Maximum Flow: The flow which would occur if the outlets on all fixtures were opened simultaneously. This condition is seldom obtained in actual practice except in cases of gang showers controlled from one common valve.

Probable Flow: The maximum flow which any pipe is likely to carry under the peak conditions. This is the most important amount to be considered in pipe sizing.

Average Flow: The flow likely to be required through the line under normal conditions.

¹See also Methods of Estimating Loads in Plumbing Systems, by R. B. Hunter (National Bureau of Standards, Report BMS65, 1940). Plumbing Manual, Report of the Subcommittee on Plumbing, Central Housing Committee on Research, Design and Construction (National Bureau of Standards, Report BMS66, 1940). Water-Distributing Systems for Buildings, by R. B. Hunter (National Bureau of Standards, Report BMS79, 1941). Water Consumption, Cost and Savings, by G. C. St. Laurent (American Hotel Association, Ilotel Engineering, Vol. 1, 1940) Laundry, Kitchen and Hospital Equipment, by H. C. Russell (A.S. H.V.E. Transactions, Vol. 35, 1929, p. 45).

It is evident that any pipe size adequate to take care of the *probable flow* will also be more than ample to take care of the *average flow*, and hence the latter has no bearing on the pipe size.

MAXIMUM FLOW

An estimate of maximum flow for various fixtures regardless of type of building with the water at about 35 lb pressure is given in Table 1.

To obtain the probable flow from Table 1, it is necessary to multiply the maximum flow by a factor of usage, and this factor varies with the

Table 1. Approximate Maximum Flow from Fixtures under Normal Water Pressures

	(Gallons per Minute)	HOT WATER (GALLONS PER MINUTE)
Water-closets, flush valve	45a	0
Water-closets, flush tank	10	Ů,
Urinals, flush valve	30a	Ŭ
Urinals, flush tank	10	ŭ
Urinals, automatic tank	1	Ŏ.
Urinals, perforated pipe per foot	10	Ü
Lavatories	3	3
Showers, 4 in. heads, ½ in. inlets		3
Showers, 6 in. heads or larger	6	6
Needle bath	30	30
Shampoo spray	1	1
Liver spray.	2	2
Manicure table	1 ½	11/2
Baths, tub	5	5
Kitchen sink		4
Pantry sink, ordinary		2
Pantry sink, large bibb	6	6
Slop sinks		6
Wash trays		3
Laundry tray		6
Garden hose bibb.	10	0

Actual tests on water-closet flush valves indicate 40 gpm as the maximum rate of flow with 30 lb pressure at the valve; this would increase to 60 gpm (about 50 per cent) at 90 lb pressure. The 45 gpm has been taken as an average flow; possibly, with very low pressures just sufficient to operate the flush valve, 30 gpm could be allowed with safety. Urinal flush valves would vary proportionately in the same manner.

type of occupancy and with the number of fixtures in the installation. With only two fixtures it is possible that both will at some time be in operation simultaneously. With 200 fixtures, however, it is unlikely that the entire 200 would ever operate at the same time. Consequently, the factor of usage becomes smaller as the number of fixtures becomes greater, all other things being equal.

The maximum flow per fixture for cold water should be totaled independently of that for hot water, and the sum of the two may be used in computing the probable flow through the incoming cold water supply main.

FACTOR OF USAGE

The principal plumbing fixtures subject to wide variation in water demand is a flush valve closet, and also shower baths, especially those in

CHAPTER 46. WATER SUPPLY PIPING AND WATER HEATING

gymnasiums, and buildings of that type, and also in manufacturing plants where the outgoing shifts create a heavy peak.

The curves of Fig. 1 suggest a method of selecting a factor of usage. The curve at the left should be followed for hot water piping and for cold water if the system has gravity tank closets, while the curve to the right allows amply for the influence of flush valve closets.

For example, if the product of the number of plumbing fixtures in a building multiplied by the proper values in Table 1 totals say 620 gal of water as the maximum flow, when using flush tank closets, the factor of usage from Fig. 1 will be about 23 per cent, and the probable flow will be $620 \times 0.23 = 143$ gpm. This is the first item to be determined in the design of a water supply system. In a building using 143 gpm no serious difference in the size of the main supply pipe would be occasioned by use of flush valves, since the factor of usage with the latter would be increased only to about 25 per cent or 155 gpm.

The curves of Fig. 1 are believed conservative for toilet rooms in large office buildings which have early business hour peaks, especially in the men's toilets, but may not be conservative enough for plants such as gymnasiums and manufacturing plants where heavy peak demands occur during certain hours. The proper usage percentage for such cases must be a matter of judgment and might properly approach 100 per cent. The average flow will usually be considerably smaller.

Example 1. Assume that in a normal building, such as a residential hotel or an apartment house, there are 50 flush valve water-closets, 50 lavatories, 50 sinks and 50 baths, and that it is desired to determine the probable flow in a line supplying all of these fixtures with both cold and hot water.

Hot Water 50 Lavs. x 3 gpm
Maximum flow
Total for main supplying cold and hot water (2850 + 600) × 0.08 276 gpm
It should be noted that this is a rate of flow or an instantaneous demand.

WATER PRESSURE

The usual practice in buildings of moderate height is to place the water supply mains near the basement ceiling, with up-feed risers feeding the various fixtures on the upper floors. In tall buildings the pressure due to the weight of the water becomes so great as to limit the service to vertical sections not exceeding about 20 stories in height. Beyond this approximate limit the valves on the lower stories will be noisy.

For these reasons, the considerations of this chapter are limited to horizontal mains and to risers which serve not more than 20 stories. In taller buildings it is usual to install separate horizontal mains for each superimposed zone.

The minimum practicable size of piping for any water system is

governed by the amount of pressure which can be spared in overcoming resistance to flow of a given volume of water per unit of time. After the approximate amount of water required has been computed, a minimum delivery pressure at the highest fixture may be determined, which should be approximately 15 lb per square inch. It should be remembered that for every foot in height there will be a hydrostatic loss of head of 0.433 lb.

The pressure loss through a water meter may be significant as may be seen from Table 2. The pressure losses through filters or other water-conditioning apparatus also must be considered. After evaluating the previously mentioned factors, the total allowable friction loss for the

Fig. 1. Chart Showing Relation Between Maximum Flow and Probable Usage

system may be determined by subtracting from the street main pressure, the sum of the following four items:

- 1. Minimum allowable pressure at top fixture.
- 2. Meter loss.
- 3. 0.433 × height in feet from main to top fixture.
- 4. Loss for filters, softener, etc.

PIPE MATERIAL

The material used in the water piping affects its carrying capacity. For example, copper or brass pipe is not as likely to retain interior incrustation as is ferrous pipe, and galvanized pipe will not rust as quickly as uncoated pipe. Some waters tend to deposit salts, rust, and the like on the interior surfaces of pipes, greatly reducing their capacity. In some cities it has been found necessary to allow for as much as 50 per cent reduction in carrying capacity after 15 years of service.

The data given in this chapter are based on use of galvanized steel piping and on water which is not notoriously inclined to leave deposit. If the building is in a zone having untreated water known to carry precipitable solids, the pipe sizes should be increased at least one size and no water pipe should be smaller than $\frac{3}{4}$ in.

CHAPTER 46. WATER SUPPLY PIPING AND WATER HEATING

Table 2. Pressure Loss Through Water Disc Meters^a
A. W. W. A. Standards

A. W. W. A. Signatus										
RATE OF FLOW GPM	Approx Pressure Loss Through Meters, Lb per Sq In. Pipe Size (In.)									
	5/8	34	1	1½	2	3	4	6		
5 10 15 20	1.5 6 0 14.0 25 0	0 5 2 0 5.0 9.0	0.2 1.0 2.0 3.5	0.2 0 6 1.0	0 2 0.4					
25 30 35 , 40		13 5 19.5	5.5 8 0 11.0 14 0	1 5 2.0 3.0 4.0	0.6 0.9 1.0 1.5					
45 50 75 100			18 0 22.0	5 0 6.0 14 0 25 0	2.0 2.5 5.5 10.0	0.7 1.5 2.8	1.0			
125 150 175 200					15 0 22 0	4.0 6.0 8.0 10.4	1.5 2.2 3.0 4.0	1.0		
250 300 350 400						16.0 23.0	6.0 9.0 12.0 16.0	1.5 2.2 3.0 4.0		
500 600 800 1000							25.0	6.5 9.0 16 0 25 0		

MINIMUM SIZE OF SERVICE RECOMMENDED					SAFE MAXIMUM DELIVERY OF METERS			
	MAIN TO	METER	(IN)	RVICE,	Meter Size In.	Capacity, Gpm Based on 25 Lb Loss Through Meter		
30	75	100	150	200				
3/4	3/4	1	1	1	5/8 3/4	20 34 53		
3⁄4	1	1	1	1½	1	100		
1	1½	1½	1½	11/2	2	160		
1½	1½	2	2	2	3	315 500		
1½	2	2	21/2	21/2	6	1000		
	30 34 34 1 1½	Approx. Minimum Main 16 Maximum 30 75 34 34 1 1 1 1½ 1½ 1½ 1½	APPROX. MINIMUM PIPE S MAIN TO METER MAXIMUM LENGT 30 75 100 34 34 1 34 1 1 1 1½ 1½ 1½ 1½ 2	Approx. Minimum Pipe Size of Se Main to Meter (In) Maximum Length (Ft) 30 75 100 150 34 34 1 1 34 1 1 1 1 1½ 1½ 1½ 1½ 1½ 1½ 2 2	APPROX. MINIMUM PIPE SIZE OF SERVICE, MAIN TO METER (IN) MAXIMUM LENGTH (FT) 30	APPROX. MINIMUM PIPE SIZE OF SERVICE, MAIN TO METER (IN) MAXIMUM LENGTH (FT) 30 75 100 150 200 34 34 1 1 1 1 1 58 34 1 1 1 1 1½ 1 1 1½ 1 1½ 1 1½ 1 1½ 1 1		

aPressure loss through compound and current meters is less than shown in table. For exact information consult manufacturers.

ALLOWANCE FOR FITTINGS

Before applying charts for pipe friction, the resistance due to fittings and valves should be evaluated. Table 3 gives this resistance expressed in equivalent feet of straight pipe. To use Table 3, the size of the valve or fitting must be known. Table 3 is therefore of little use in the original design of a system, since the valve and fitting allowances must be made before the pipe size is known. Experience indicates, however, that an average increase of 50 per cent in the length of the longest measured pipe will account for the fittings, and thus a tentative length can be assumed for computing the pressure drop per 100 ft of run. The values of Table 3

Fig. 2. Chart Giving Pressure Drop for Various Rates of Flow of Water

should always be used to recheck the exact equivalent length of the pipe after an approximate diameter has been selected and after the number of fittings has been determined. The allowable pressure drop per 100 ft of

CHAPTER 46. WATER SUPPLY PIPING AND WATER HEATING

pipe may be determined by dividing the total allowable drop for the system by the equivalent length of the system in hundreds of feet.

The pressure drop for various rates of water flow for standard size pipes is given in Fig. 2. This chart carries an allowance for reasonable roughness of the interior surface and for the effect of many years of service. The Saph and Schoder formulae have been proved conservative not only by the *American Water Works Association* but also by various tests conducted by the A.S.H.V.E. Committee on Research.

Example 2. Assume a street pressure of 70 lb, the height of the highest fixture 50 ft, the length of the longest run 200 ft, the pressure at the top fixture 15 lb, and the pressure loss through the meter 10 lb. Without knowing the additional length of pipe to be added for the fittings it will be assumed that this is about 100 ft. The surplus pressure

TABLE 3.	APPROXIMATE ALLOWANCES FOR FITTINGS AND VALVES IN
	FEET OF STRAIGHT PIPE

Size of Pipe	Type of Fitting or Valve									
(Inches)	90 DEG ELBOW	45 Deg Elbow	TEE IN RUN OF MAIN	Gate Valve	GLOBE VALVE	Angle Valve				
1/2 3/4 1 1/4 1/2 2 2/2 2/2 3/4 5 6	2 3 4 5 5 7 8 11 14	1 1 2 2 3 3 4 5 6 8	1 2 3 3 3 5 6 7 9	1 1 1 1 1 2 2 2 2 3 4	17 21 29 38 45 58 68 82 115 140 160	9 12 15 19 22 28 34 42 56 70 85				

which will be available for pressure drop will then be 70 lb - (15 lb + 10 lb + 50 ft \times 0.43 lb) = 70 lb - (15 lb + 10 lb + 21.5 lb) = 23.5 lb.

To change this into drop per 100 ft: $\frac{23.5 \text{ lb} \times 100}{200 \text{ ft} + 100 \text{ ft}} = 7.8 \text{ lb per 100 ft}.$

The pipe may then be sized from the probable flow by selecting a size that does not give a drop in excess of 7.8 lb per 100 ft.

METHOD OF SIZING UP-FEED SYSTEMS

Example 3. A typical layout of cold water lines for a 3-story, nine-family apartment house is shown in Fig. 3. The branch to each apartment supplies 1 lavatory, 1 bath tub, 1 flush valve closet, and 1 kitchen sink. Pressure in the street main is 70 lb per square inch and a minimum pressure of 15 lb per square inch must be maintained on the top floor. Find the sizes of all parts of the system.

Solution: The first step toward the solution of such a problem is the determination of the probable flow in the various parts of the system. In Section A, which supplies cold water to a single apartment, the maximum flow would be as follows:

1 water closet	45 8	gpm
1 lavatory	3 8	gpm
1 tub	5 9	gpm
1 sink		

57 gpm

From Fig. 1, the probable usage for 57 gpm maximum flow in a mixed system is 100 per cent. Therefore, Section A should be sized for 57 gpm.

Section B, which supplies two apartments will have a maximum flow of 2×57 gpm = 114 gpm. From Fig. 1, the probable usage for 114 gpm is approximately 75 per cent and the probable flow in Section $B = 114 \times 0.75 = 86$ gpm.

Similarly, the probable flow in Section C is found to be 98 gpm. Since all risers in this particular example are supplying the same number of fixtures, the probable flow in risers 1 and 2 is the same as determined for riser 3.

To determine the probable flow in Section E, add the maximum flow in risers 2 and 3, and multiply the sum by the probable usage for the sum, thus: $(171+171)\times0.35=120$ gpm probable flow in E. Similarly, the probable flow in Section F is determined.

Fig. 3. Up-Feed Cold Water System with Flush Valves

It should be noted that the probable flow in E cannot be determined by adding the probable flow in risers 2 and 3.

To determine the maximum flow in line G to the water heater, the total hot water requirements are determined as follows:

9 lavoratories		9 >	<5	==	45 gpm
				-	THE R. P. LEWIS CO., LANSING MICH.
Maximum flow	 			**	108 gpm

The probable flow in all sections of the system are determined as described previously, and tabulated in Table 4.

The next step in the solution is the determination of the allowable pressure drop:

Loss in a 2 in. meter for 149 gpm, from Table 2	=	13 1	o pe	square	inch
Total	=	50 ll 20 ll	pe pe	square	inch inch

To determine the allowable pressure loss per 100 ft of pipe, the longest run to the highest fixture must be used. In Fig. 3 this would be the length to the top fixtures on riser No. 3. The developed length from the meter to the top of riser 3 is 120 ft, and the

CHAPTER 46. WATER SUPPLY PIPING AND WATER HEATING

equivalent length, allowing 50 per cent for fittings is 180 ft. The service line is 40 ft long, making a total equivalent length of 220 ft from the main to the farthest fixture. Since the service line is usually straight, no allowance has been made for fittings.

The total allowable loss is 20 lb per square inch, and the developed length of piping is 220 ft. Therefore, the allowable loss per 100 ft of pipe is $\frac{20 \times 100}{220} = 9.1$ lb.

Knowing the probable flow in all lines and the allowable loss per 100 ft of pipe, it is possible to determine the pipe sizes from Fig. 2 by reading the pipe size indicated at the intersection of the two known factors. Pipe sizes for all parts of the system are given in Table 4.

Ordinarily the size above the intersection on the chart is selected. However, it is permissible to select a pipe slightly undersize if the next section of the line is oversize. This is illustrated in the sizing of sections A and B. The pipe size of $1\frac{1}{2}$ in. is slightly small for A, but 2 in. is enough oversize for B, so that the average loss in the two is less than 9.1 lb per 100 ft.

In this example, all risers have been sized for the same loss per 100 ft of pipe. Where the main is long it is frequently possible to increase the pressure drop per 100 ft of pipe in the risers near the meter, and thus reduce their size. For example, the total friction

Section	Maximum	Probable	Probable	Allowable	Pipe
	Flow	Usage	Flow	Loss	Size
	Gpm	Per Cent	Gpm	Lb per 100 Ft	In.
A B C-D E F G H	57 114 171 342 513 108 621	100 75 57 36 28 43 ^a 24	57 86 98 123 144 46 149	9.1 9.1 9.1 9.1 9.1 9.1	$1\frac{1}{2}$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

TABLE 4. SUMMARY OF RESULTS FOR EXAMPLE 3

loss from the meter to the top of riser 1 in Fig. 3, could be as great as the total loss from the meter to the top of riser 3. However, all parts of the main must always be sized to assure sufficient pressure at the last riser. In a small system, such as shown in Fig. 3, no appreciable reduction in pipe sizes can be made by taking advantage of the possibility just described.

PIPE SIZES FOR DOWN-FEED COLD WATER SYSTEM

The risers for down-feed systems may be reduced considerably in size compared with those for up-feed systems because of the 0.43 lb per foot gain in pressure due to increasing hydrostatic head as the lowest story is approached. It has proved practicable to select down-feed riser sizes on the basis of a pressure drop of 30 lb per 100 ft. The 13 lb difference between 43 lb per 100 ft and 30 lb per 100 ft will usually take care of the friction in the fittings.

The overhead mains, however, must be selected conservatively, as the pressure at the top will be low and the pressure drop available for friction will necessarily be small. In nearly all tall buildings the pressure is limited to that due to the hydrostatic head between the house tank and the main, though sometimes this is increased by the use of a pneumatic house tank.

Where flush valves are used on top story closets the minimum practic-

aFrom curve for fixtures having no flush valves.

able difference in elevation between the overhead mains and the bottom of an open type house tank is 20 ft, and flush valves specially adapted to operate on about 7 lb pressure must be used. In many installations gravity tank closets are used on the top story.

Example 4. Suppose an installation has a house tank in which the water line is 20 ft above the level of the top fixtures to be supplied and that the length of run to the farthest fixtures on this level is 400 ft with the pipe fittings adding another 200 ft, making an

equivalent length of 600 ft. What would be the size of main coming out of the tank where a probable flow rate of 400 gpm may be expected, of the horizontal main where a probable flow rate of 200 gpm may be expected, and of the riser down to the fixture level where the probable flow rate is approximately 100 gpm?

Here the level of the water in the house tank is 20 ft above the faucet of the highest fixture and the gravity pressure will be 0.43 lb \times 20 ft = 8.6 lb and, if a total pressure drop of 1 lb is assumed, the pressure on the farthest fixture under times of peak load will be 8.6 lb - 1 lb = 7.6 lb while the drop per 100 ft of equivalent run will have to be $\frac{1b \times 100}{600} = 0.1667 \text{ lb}.$

CHAPTER 46. WATER SUPPLY PIPING AND WATER HEATING

Referring to Fig. 2 it will be noted that where the flow through the main is 400 gpm, an 8-in. pipe would be required; that where the flow is reduced to 200 gpm, a 6-in. pipe would be sufficient; and that where the flow is 100 gpm in the riser branch and riser, a 5-in. size would be correct. Of course these are somewhat excessive flows and the head from the tank is small so that large sizes are to be expected. It would be necessary to carry a 5-in. riser down to the branch of the top floor, then reduce to 4 in. for the branch to the floor below the top, and below this the pipes could be sized for a 30 lb drop per 100 ft. In such a case, tank closets should doubtless be used on the top floor.

Had the tank been set 10 ft higher, the head available for friction, while still giving the same pressure at the top fixtures, would have been 0.43 lb \times 10 ft or 4.3 lb greater and this, with the 1 lb drop used previously, would give a total allowable drop of 1 lb

Table 5. Typical Calculation of Pipe Sizes on Down-Feed Riser with Flush Valve Water-Closets and Urinals

1	Riser	N_0	1	Fig.	۲.)
١.	1113er	TAO.	1.	rug.	4)

FLOOR OF BLDG.	Fixtures on Floor	GPM PER FIXTURE	Maximum Gpm on Floor	Maximum Gpm on Riser	USAGE (PER CENT)	PROBABLE FLOW IN RISER GPM	Allowable Drop Lb per 100 Ft	Pipe Size In.
lst	1 S. S.	4	4	4	100	4	30	3/4
2nd	1 S. S.	4	4	8	100	8	30	3/4
3rd	1 S. S.	4	4	12	92	11	30	3/4
4th	10 Lav.	3	30	42	58	25	30	1
5th	4 W. C. 2 U. 3 Lav.	45 30 3	180 60 9					
			249	291	40	117	30	2
6th	4 W. C. 2 U. 3 Lav.	45 30 3	180 60 9					
			249	540	27	145	30	2
7th	4 W. C. 2 U. 3 Lav.	45 30 3	180 60 9					
			249	789	21	166	30	2
8th	4 W. C. 2 U. 3 Lav.	45 30 3	180 60 9					
			249	1038	19	197	2	4

+ 4.3 lb = 5.3 lb which, divided by the 600 ft equivalent run gives a drop per 100 ft of $\frac{5.3 \times 100}{600}$ = 0.9 lb.

With this drop, the sizes according to the chart (Fig. 2) are 6 in., 5 in., and 4 in., respectively. If the run is reduced to 200 ft instead of 600 ft, the allowable drop will be $\frac{5.3 \text{ lb} \times 100}{200} = 2.7 \text{ lb}$ per 100 ft. This gives 5 in., 4 in., and 3 in., respectively, for the flows of 400, 200, and 100 gpm.

From Example 4 it is evident that, while the down-feed system possesses certain economies in size for the riser portion, it is quite likely to involve large distribution main sizes, especially when the tank is not elevated to a considerable degree.

Example 5. Fig. 4 shows a typical down-feed layout with three risers extending eight stories and with the fixtures noted on each floor. This will be solved assuming that the level of the water in the house tank is 30 ft above the fixtures on the top floor, that the length of run from the tank to the farthest fixture is 200 ft, equivalent length of fittings 100 ft, and the pressure required at the fixture is 7 lb.

The 30-ft head is equal to a static pressure of 0.43×30 or 12.9 lb per square inch and to maintain a pressure of 7 lb at the highest fixtures the drop allowable in pressure is 12.9 - 7.0 lb or 5.9 lb. As the total equivalent run is 300 ft, this is a drop per 100 ft of 1.97 lb, or practically 2 lb. Therefore, all risers and mains from the top floor back to the tank must be sized on the basis of a drop of 2 lb per 100 ft. Tables 5, 6, 7 and 8 show the schedule for Risers Nos. 1, 2 and 3 with the maximum flow taken from Table 1, the percentage of use at the peak taken from Fig. 1, and the probable flow at the peak worked out for each portion of the riser. Riser sizes are taken from Fig. 2, using a drop of 30 lb per 100 ft except on the riser from the top story back to the tank where 2 lb per 100 ft is the allowable limit.

Since down-feed risers are nearly always sized for a pressure loss of 30 lb per 100 ft, it is possible to arrange useful sizing data in tabular form. Fig. 5 shows a typical down-feed riser for a 20 story building. Table 9 may be used for sizing such a riser of any height and for any probable flow up to 250 gpm.

Table 6. Typical Calculation of Pipe Sizes on Down-Feed Riser with Flush Valve Water-Closets and Urinals

(Riser	No.	₽.	Fig.	4)
--------	-----	----	------	----

FLOOR OF BLDG.	FIXTURES ON FLOOR	GPM PER FIXTURE	Maximum Gpm on Floor	Maximum Gpm on Riser	Usage (per cent)	PROBABLE FLOW IN RISER GPM	ALLOWABLE DROP LB PER 100 FT	Pipe Size In.
1st	1 W. C.	45	45	45	100	45	30	134
2nd	2 W. C. 1 U. 1 Lav.	45 30 3	90 30 3					
			123	168	58	98	30	13/5
3rd	4 W. C. 2 U. 3 Lav.	45 30 3	180 60 9					
			249	417	31	130	30	2
4th	4 W. C. 2 U. 3 Lav.	45 30 3	180 60 9					
			249	666	24	160	30	2
5th	6 W. C. 4 Lav.	45 3	270 12				M. J	
			282	948	19	180	30	2
6th	6 W. C. 4 Lav.	45 3	270 12					
			282	1230	16	196	30	21/2
7th	6 W. C. 4 Lav.	45 3	270 12		·			
			282	1512	14	211	30	21/2
8th	6 W. C. 4 Lav.	45 3	270 12					
			282	1794	12	215	2	4

CHAPTER 46. WATER SUPPLY PIPING AND WATER HEATING

Table 7. Typical Calculation of Pipe Sizes on Down-Feed Riser with Flush Valve Water-Closets and Urinals

(Riser No. 3. Fig.	. 4)
--------------------	------

FLOOR OF BLDG.	FIXTURES ON FLOOR	GPM PER FIXTURE	MAXIMUM GPM ON FLOOR	GPM USAGE FLOW IN DROP ON (PER CENT) RISER LB PER			LB PER	Pipe Size In.
1st ·	1 S. S.	4	4	4	100	4	30	3/4
2nd	3 W. C. 1 Lav.	45 3	135 3					
			138	142	63	89	30	1½
3rd	2 Lav.	3	6	148	61	90	30	11/2
4th	3 W. C. 1 Lav. 1 S. S.	45 3 4	135 3 4					
			142	290	41	119	30	2
5th	1 S. S.	4	4	294	41	120	30	2
6th	1 S. S.	4	4	298	40	120	30	2
7th	1 S. S.	4	4	302	40	121	30	2
8th	1 S. S.	4	4	306	40	122	2	3

Table 8. Size of Distribution Main for Down-Feed Systems (See Fig. 4)

Riser No.	Maximum Gpm Riser	Maximum Gpm Main	USAGE (PER CENT)	Probable Gpm	Allowable Drop Lb per 100 Ft	Size of Main In.
1 2 3	1038 1794 306	1038 2832 3138	18 9 9	187 255 282	2 2 2 2	4 4 5

It should be noted that the two top floors in Fig. 5 are sized for less than 30 lb per 100 ft. Regardless of the height of the riser being sized, the two top floors of it should be sized from values given for the top floors of Fig. 5.

HOT WATER SUPPLY PIPING

The same basic principles used in the design of cold water piping are also applicable to hot water systems. Hot water, like cold water, may be distributed by either up-feed or down-feed systems.

It is common practice to provide circulation in a hot water supply system so that hot water may be quickly available when the faucet is opened. If this is not done, it is necessary to drain all of the cold water from the lines between the faucet and the heater, before hot water can be obtained.

Three common methods of arranging hot water circulating lines are illustrated in Fig. 6. Although the diagrams are for multi-story buildings, arrangements a and b are also used frequently in residences.

A check valve should be provided in the runout from each return riser to prevent temporary reversal of flow in the line when a faucet is opened.

Proper air venting of a circulated system is extremely important, particularly if gravity circulation is employed. In Fig. 6a and 6b this is

250 37.7 272 272 2,7 272 2,7 2,7 8 23% 23/2 21/2 $\frac{51}{2}$ 21/2 2,72 $3\frac{1}{2}$ 27% 2,2 272 23% 272 23% 21/2 27.2 2,2 2,2 27.2 5 20 8 c) C) 7 C) SCHEDULE OF SIZES FOR DOWN-FEED RISER (SEE FIG. 125 C3 cv. N c) 8 0 \sim O. ~ c) Q Q 2 cv. O) 2 03 a C1 C) 100 C) N Q Ø 0 7 N Q a C) a Q 8 ø ø 8 C) a PER MINUTE 57,2 1,72 172 172 $\frac{1}{2}$ \overline{z} 72 \bar{z} 1,72 \vec{z} Z $\frac{7}{2}$ $\frac{1}{2}$ \overline{x} 90 $\frac{5}{2}$ 172 $1\frac{1}{2}$ 1,72 1,7% 1,7 72 72 $\frac{\pi}{2}$ 1,72 72 72 \overline{x} 7 8 PROBABLE FLOW, GALLONS 172 172 12 1,72 Z $\frac{1}{2}$ \overline{x} Z \overline{x} Z 1,2% 1,72 7,7 1,72 172 1,72 2 \overline{z} $1\frac{\chi}{\chi}$ 174 11/4 17% 1,7 17% χ 17% 1,7 17% \vec{x} \vec{x} × 8 7, \ddot{x} 7, Z, × \vec{x} × 11% Ϊ 1,7 \vec{x} × 7, \vec{z} \vec{x} \vec{x} \vec{x} X ï, S 1,7 1,4 7, 40 \vec{z} \vec{x} 7,7 7, 17% 17% 1,7 7, \ddot{x} \vec{x} 17 Ϊ, $\vec{\chi}$ 1,7 8 13% 25 1,7 7. 74 × % × × × × X X X 15 2 % 74 14 74 % 1/4 74 × X % X X × × × × × × X TABLE 9. × % 74 X X X X XX X X X X × × X X X X X ALLOW-ABLE DROP PER LB 3.5 8 30 8 30 30 8 8 8 8 8 30 30 ಜ 8 8 8 င္က 8 OF TION

accomplished by connecting the circulating line below the top fixture supply. Air is thus eliminated from the system each time the top fixture is opened. Where an overhead main is located above the highest fixture,

as in Fig. 6c an automatic float type air vent is installed at the highest point of the system or a fixture branch is taken off the top of the main where air venting is desired and then dropped down to the fixture outlet.

The supply riser in Fig. 6a would be sized exactly the same as an upfeed cold water riser. The sizing of Fig. 6b and 6c would involve calculations for both up-feed and down-feed risers. Pressure loss in the overhead main would have to be considered in sizing the up-feed risers.

The return line for a gravity circulating system should never be less than $\frac{3}{4}$ in. Where supply risers are large or lines are long, larger circulating lines may be indicated. Pumps are frequently used in large systems to provide positive circulation.

It is sometimes necessary to make an allowance for pressure drop in the

Fig. 6. Methods of Arranging Hot Water Circulation Lines

heater when sizing hot water lines. This is particularly true where instantaneous heaters are used.

STORAGE CAPACITY AND HEATING LOAD

In estimating the size of hot water storage tank required and the heating capacity to be provided either from the boiler or from an independent domestic hot water heater, it is necessary to know the total quantity of water to be heated per day, and the maximum amount which will be used in any one hour, as well as the duration of the peak load.

In cases where the requirements for hot water are reasonably uniform, as in residences, apartment buildings, hotels, and the like, smaller storage capacity is required than in the case of factories, schools, office buildings, etc., where practically the entire day's usage of hot water occurs during a very short period. Correspondingly, the heating capacity must be proportionately greater with uniform usage of hot water than with intermittent usage where there may be several hours between peak demands during which the water in the storage tank can be brought up to temperature. As a general rule it is desirable to have a large storage capacity in

order that the heating capacity and consequently the size of the heater, or the load on the heating boiler may be as small as possible.

In estimating the hot water which can be drawn from a storage tank it should be borne in mind that only about 75 per cent of the volume of the tank is available, as by the time this quantity has been drawn off the incoming cold water has cooled the remainder down to a point where it can no longer be considered hot water.

Where steam from the heating boiler is used to heat domestic hot water, the computed load on the boiler should be increased by 4 sq ft EDR (equivalent direct radiation) for every gallon of water per hour heated through a 100 F rise. The actual requirement is $\frac{100 \times 8.33}{240} = 3.48$ sq ft per gallon of water heated 100 F. The value of 4 allows for transmission losses, etc.

There are two ways in common use of estimating the hot water requirements of a building; first, by the number of people and second, by the number of plumbing fixtures installed. Where the number of people to be served is known or can be reasonably estimated, the data in Table 10 may be used.

Example 6. From Table 10, a residence housing five people would have a daily requirement of $5\times40=200$ gal per day, and a maximum hourly demand of $200\times\frac{1}{12}$ = 28.5 gal. The heater should have a storage capacity of $200\times\frac{1}{12}$ = 40 gal and a heating capacity of $200\times\frac{1}{12}$ = 28.5 gal per hour.

The conditions given in Example 6 may be cited as average. It is possible to vary the storage and heating capacity by increasing and

Table 10. Estimated Hot Water Demand per Person for Various Types of Buildings

Type of Building	Hot Water Required at 140 F	Max. Hourly Demand in Relation to Day's Use	DURATION OF PEAK LOAD HOURS	STORAGE CAPACITY IN RELATION TO DAY'S USE	Heating Capacity in Relation to Day's Use
Res., apts., hotels, etc.	40 gal per person per day	34	4 ·	⅓	34
Office buildings	2 gal per person per day	1/5	2	3/8	3/6
Factory buildings	5 gal per person per day	1/8	1	<u>²</u> ∕₅	⅓ .
Restaurants \$0.50 meals \$1.00 meals \$1.50 meals	1.5 gal per meal 2.5 gal per meal 4.5 gal per meal			3ío	<u>≯</u> í0
Restaurants 3 meals per day		½í o	8	<u>1</u> 5	<u>¹</u> √10
Restaurants 1 meal per day		½ś	2	35	1∕6

CHAPTER 46. WATER SUPPLY PIPING AND WATER HEATING

Table 11. Hot Water Demand per Fixture for Various Types of Buildings Gallons of water per hour per fixture, calculated at a final temperature of 140 F

	APART- MENT House	Стпв	Gym- nasium	Hos- PITAL	Hotel	INDUS- TRIAL PLANT	OFFICE BUILD- ING	PRIVATE RESI- DENCE	School	Y.M. C.A.
Basıns, private lavatory	2	2	2	2	2	2	2	2	2	2
Basins, public lavatory .	4	6	8	6	8	12	6		15	8
Bathtubs	20	20	30	20	20	30		20		30
Dishwashers	15	50-150		50-150	50-200	20-100		15	20-100	20-100
Foot basins	3	3	12	3	3	12		3	3	12
Kitchen sink	10	20		20	20	20		10	10	20
Laundry, stationary tubs	20	28		28	28		·	20		28
Pantry sink	5	10		10	10			5	10	10
Showers	75	150	225	75	75	225		75	225	225
Slop sink	20	20		20	30	20	15	15	20	20
Hourly heating capacity factor	30%	30%	40%	25%	25%	40%	30%	30%	40%	40%
Storage capacity factor	125%	90%	100%	60%	80%	100%	200%	70%	100%	100%

decreasing one over the other. Such a condition is illustrated in Example 7.

Example 7. Assume an apartment house housing 200 people. From the data in Table 10: Daily requirements = $200 \times 40 = 8000$ gal. Maximum hours demand = $8000 \times \frac{1}{1} = 1140$ gal. Duration of peak load = 4 hours. Water required for 4-hour peak = $4 \times 1140 = 4560$.

If a 1000 gal storage tank is used, hot water available from the tank = 1000×0.75 = 750. Water to be heated in 4 hours = 4560 - 750 = 3710 gal. Heating capacity per hour = $\frac{3710}{4}$ = 930 gal.

If instead of a 1000 gal tank, a 2500 gal tank had been installed, the required heating capacity per hour would be $\frac{4560-(2500\times0.75)}{4}=671$ gal.

In cases where the number of fixtures only are known, the data in Table 11 have been found satisfactory.

Example 8. An apartment building has a hot water requirement as follows:

60 lavatories	× ×	20 75 10	=	600 gal ; 2250 gal ; 600 gal ;	per hour per hour per hour
Maximum hourly requirement	0×0).30	=	3870 gal 1161 gal 1450 gal	per hour

METHODS OF HEATING WATER

Hot water may be heated either by the direct combustion of fuel, by an intermediate carrier such as steam or hot water, or by electrically heated

surfaces. The simplest method is to have the fire on one side of a metal barrier and water on the other. In such a method if the water surfaces of heat transfer are small, and if the water carries a heavy proportion of precipitable salts, the water passages may soon clog and then burn out. A familiar example of such trouble is the water back of the firebox in the kitchen stove or the pipe coil inserted into the firebox of a warm air furnace or small boiler. The critical water temperature at which the lime, magnesia, etc. collect on hot surfaces, varies with the character and proportions of the solids, but generally such deposits are not a serious trouble with water temperatures lower than 140 F.

Coal burning direct-fired water heaters are either of cored-out cast-iron, with water entirely surrounding the combustion chamber, or of steel with water tubes which in some cases form racks to suspend garbage above the fire. These heaters are generally so small that low temperature com-

FIG. 7. INDIRECT WATER HEATER

bustion at poor efficiency ensues. Mud and scale may eventually close the water ways.

Oil burning direct-fired water heaters usually are of steel and operate with higher flame temperature and better efficiency then commensurate sized coal burning heaters. They have the same tendency as coal boilers to *lime up*, and the water passages should be large in cross-section and accessible for periodic cleaning.

Gas burning water heaters may be of the water-tube type having spiral copper tubes or of the instantaneous type used without a storage tank.

In the indirect method either steam or hot water is used for heating the water. With steam the water to be heated is preferably circulated around the outside of the steam tubes which are submerged within a tank. A typical indirect heater using steam is shown in Fig. 7. The coils usually are of copper and are U shaped to permit expansion and contraction. The shell may be of steel, copper or with a special inside protective lining. Where straight heating tubes are used, one end of the tube is usually expanded into a floating head to take care of expansion. The coils should be capable of easy withdrawal for inspection and for removal of scale. Instead of steam the heating medium may also be hot water inside the tubes.

Another method of transferring heat from a heating boiler to the

domestic water is illustrated in Fig. 8. The water heater is generally a cast-iron shell within which there is located a spiral copper coil. Hot water from the boiler circulates inside the shell and around the coil and returns to the boiler, while domestic water from the storage tank circulates inside the coil. The storage tank should be installed with the bottom of the tank as far above the boiler as possible. Horizontal storage tanks smaller than 18 or 20 in. diameter are not recommended because of the difficulty of preventing the hot and cold water from mixing, and especially is this an important consideration when large quantities of water are withdrawn. In Fig. 9 the heat transfer surface is placed inside the boiler instead of in a separate vessel, but otherwise the operation is similar to that of Fig. 8. This arrangement with vertical tank is commonly used for small domestic installations.

Sometimes the heating element is located inside of the larger type fire tube boilers. In this case the heat transfer surface is in the form of a

Fig. 8. Indirect Water Heater Mounted on Side of Boiler

Fig. 9. Indirect Water Heater Placed in Boiler

number of straight copper tubes with rear U bends or a floating head, inserted through the front head of the boiler. While the coil may be located in the steam space above the water line of a steam boiler, it operates more satisfactorily when below the water line since clogging of the water tubes may thereby be delayed. This method is widely used without storage tanks since the intimate contact and efficient circulation of the water in this arrangement permits the utilization of the heat stored in the water of the boiler. A thermostatic three-way mixing valve is used to maintain a uniform temperature of the hot water going to the plumbing fixtures.

In order to reduce clogging by precipitated solids, water heating plants sometimes develop steam in a closed circuit, transferring the heat through a tubular heater to the domestic water. The water in the primary heater, exposed to the high temperature of the fire is repeatedly used and hence has no appreciable tendency to deposit scale, while the domestic water, heated by steam at a much lower temperature than that of the fire, also exhibits a much reduced tendency to separate its dissolved salts.

COMPUTING AREA OF HEAT TRANSMITTING SURFACE

The area of the inside surface of a heating coil may be determined from Equation 1.

$$\Lambda = \frac{Q \times 8.33 \ (t_2 - t_1)}{K_0 \times t_{\rm m}} \tag{1}$$

where

A =surface area of coil, square feet.

Q = quantity of water heated, gallons per hour.

t2 = hot water outlet temperature, degrees Fahrenheit.

 $t_1 = \text{cold water inlet temperature, degrees Fahrenheit.}$

 K_0 = coefficient of heat transmission, Btu per hour per square foot surface. For copper or brass coils K_0 = 240 (steam) and 100 (hot water). For iron coils K_0 = 160 (steam) and 67 (hot water).

 $t_{\rm m}=$ logarithmic mean of the difference between the temperature of the heating medium and the average water temperature. $t_{\rm m}$ is approximately = $t_{\rm s}-\left\lceil\frac{(t_{\rm o}+t_{\rm i})}{2}\right\rceil$

ts = temperature of the coil surface, degrees Fahrenheit.

Equation 1 may be used to check the heating coil ratings under temperature conditions differing from those stated in the manufacturer's published ratings.

Example 9. What area of copper transfer surface will be required to heat 70 gal per hour from 40 to 180 F with boiler water at 220 F?

$$t_{\rm m} = \left[220 - \frac{(180 + 40)}{2}\right] = 110$$

$$A = \frac{70 \times 8.33 (180 - 40)}{100 \times 110} = 7.39 \text{ sq ft.}$$

The rate of heat transfer between steam or water as the carrier and the domestic water is influenced by the rate of movement of both the carrier and the water which receives the heat. For this reason, where the transfer is from heating system water to domestic water, it is good practice to install a circulating pump to insure rapid movement of the boiler water.

In view of the high condensation rates when steam is used with gravity circulation from the boiler and when there is a sudden demand followed by an inflow of cold water, the bottom of a steam heating transfer element always should be at least 30 in. above the boiler water line, and the steam and condensate return pipes should be of liberal size. Otherwise water hammer and reduced capacity may result due to imperfect drainage of condensate.

When connecting a transfer-type hot water heater below the water line of a cast-iron steam boiler having vertical sections, there should be a separate tapping for water circulation into every section of the boiler, as shown in Fig. 8. Ordinarily in steam boilers of this type the top connecting nipples between the sections are in the steam space and thus no full internal circulation of water can occur. If a connection to any section is omitted, steaming may take place in that section during summer opera-

CHAPTER 46. WATER SUPPLY PIPING AND WATER HEATING

tion when steam generation is undesirable. Water heating capacity would also be reduced.

COMPUTING GRATE AREA FOR COAL-FIRED HEATER

The grate area required for a small coal-fired water heater may be calculated by Equation 2.

$$G = \frac{W(t_2 - t_1) \times 100}{H \times E \times C} \tag{2}$$

where

G =grate area, square feet.

W =weight of water, pounds per hour.

 t_2-t_1 = temperature difference between entering and leaving water, degrees Fahrenheit.

H = heating value of coal, Btu per pound.

C = weight of coal burned, pounds per hour per square foot of grate.

E = efficiency, per cent.

In a small heater 4.5 lb is a conservative value for C, and an efficiency of 60 per cent would represent excellent performance.

Example 10. What grate area is required for a coal-burning water heater warming 100 gal per hour of water from 50 to 180 F, when the combustion rate is 4.5 lb per hour per square foot of grate, if the heating value of the fuel is 12,500 Btu per pound, and the efficiency is 60 per cent?

Substituting:
$$G = \frac{100 \times 8.3 \times (180 - 50) \times 100}{12,500 \times 60 \times 4.5} = 3.2 \text{ sq ft.}$$

The quantity of gas, oil, or other fuel required per hour for water heating may be calculated by Equation 3.

$$F = \frac{W(t_2 - t_1) \times 100}{H \times E} \tag{3}$$

where

F = units of fuel (lb, cu ft, gal, etc).

H =heating value of fuel, Btu per unit.

W =weight of water, pounds per hour.

 t_2-t_1 = temperature difference between entering and leaving water, degrees Fahrenheit.

E = efficiency, per cent.

Efficiencies for oil and gas may be taken as 75 and 80 per cent respectively. The heating value of the fuel and the temperature rise should be determined to suit local conditions.

CONTROL OF SERVICE WATER TEMPERATURE

Coal-fired boilers are usually controlled by an aquastat located in the heated water, which opens or closes draft dampers at the boiler to adjust the rate of fuel combustion. With oil- or gas-fired boilers the aquastat controls the oil burner motor or the magnetic gas valve. The gas pilot flame usually burns continuously. With electric heaters the aquastat operates a switch on the source of energy.

When steam or hot water is the medium for heating the water in the

tank, the aquastat controls a valve in the steam or hot water supply line. In small residence installations using water as the carrier a combined aquastat and butterfly valve all in one simple fitting may be installed in the transmitting circuit to prevent overheating of the service water.

In residences heated by pump circulated hot water, the house temperature is controlled by operating the circulating pump intermittently, while domestic hot water is warmed by transfer from the house boiler, independent of the pump operation. The domestic water is heated from the heating boiler the year around. Under such an arrangement, to prevent overheating the house by thermal circulation when the pump is not running, it is usual to insert a weighted check-valve in the house heating main, so that no circulation to the house heating system can occur unless the pump operates. In summer the fire may be controlled to maintain a lower water temperature than when heating generally about 20 F warmer than that desired in the domestic hot water system.

In buildings which have restaurants it is generally desirable to install two separate service hot water systems so that water at about 180 F minimum may be available for dish washing, while water at 140 F maximum may be used for lavatory and bath purposes.

The temperature-controlling aquastat in a hot water storage tank should be no higher than the center of the tank, and possibly should be even closer to the bottom since water in a tank stratifies proportionally to the temperature. When hot water is removed, the cold water entering to replace it quickly reduces the temperature in the lower parts of the tank.

SOLAR WATER HEATERS

Solar heaters utilize the energy of the sun for heating hot water. The successful operation of such heaters require the availability of sunshine practically every day in the year, which has limited their use to Florida and the southern portions of California. When supplemented with some other means of gas, coal or oil water heating, solar heaters may be used in climates where sunshine may be more or less intermittent. They have been used in summer homes as far north as Chicago. When properly installed and proportioned solar water heaters render satisfactory service especially in climates where the outside temperatures are high and extremely hot water is not necessarily desirable. Such installations consist essentially of a storage tank, heating coil and hot box. The coil is installed in the hot box and is arranged to circulate water to and from the storage tank. The advantage in the use of this type of heater is the fact that it requires no fuel. The same materials should be used for the coil, circulation lines and tank. A copper coil is more efficient in absorbing heat in the box but galvanized iron or steel may be substituted depending on the local water conditions, cost and other considerations.

The storage tank must be able to store sufficient heated water for the night period of about 16 hr when the coil is not functioning or is operating under such poor sun conditions as to make its heating effect negligible. Due to the fact that the no sun period includes the night period when little or no hot water is used, an available storage of 50 per cent of the average daily usage is considered adequate. Since about 25 per cent of stored hot water cannot be drawn out of a storage tank before the in-

CHAPTER 46. WATER SUPPLY PIPING AND WATER HEATING

coming cold water reduces the temperature of all of the water in the tank to an unsatisfactory point for usage, the equation for calculating the storage capacity of the tank becomes:

$$S = \frac{Q \times 0.50}{0.75} = 0.666Q \tag{4}$$

where

S = storage capacity of tank, gallons.

Q = average daily usage, gallons.

Thus for a family of four persons using an average of 40 gal of hot water per person per day the size of the tank would be 4 persons x 40 gal x 0.666 or 106 gal, and the nearest standard size of tank to this theoretical

capacity would be used. The tank should be well insulated to prevent undue loss of heat during the 16 hr period when the coil is inoperative and it should be located as high as possible in the building (under the peak of the roof if such exists) so as to secure a maximum circulation head from the coil. The hot water supply to the house, as shown in Fig. 10, is located at the top of the tank, which serves to air vent the tank by blowing air out through the hot water faucets in small bubbles as fast as it accumulates.

The coil should be of the return bend type, square or slightly rectangular in form, and should have the pipes running east and west, with the coil on the south side of the building where it can receive the full sun effect all day long without shadows from the building itself or from adjacent obstructions such as trees or other structures. The coil should be placed as low as possible in relation to the storage tank level, such as on a porch roof, the roof of a one-story extension or, if necessary, even on the ground. Both the coil and the circulation lines should be designed to facilitate the circulation flow as much as possible using long radius copper fittings or recessed galvanized iron fittings to match the materials of the

TABLE 12. SUGGESTED SOLAR HEATER DESIGN DATA^a

Design Item	Based on Rate of 30 Gal per Day per Person			Based on Rate of 40 Gal per Day per Person												
No Occupants in Residence	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
Hot Water Used at Night, gal per person	15	15	15	15	15	15	15	15	20	20	20	20	20	20	20	20
Hot Water Used at Night, gal total .	15	30	45	60	75	90	105	120	20	4()	60	80	100	120	140	160
Retained in Tank, 25 per cent, gal	4	8	11	15	19	23	27	30	5	10	15	20	23	30	35	40
Tank Capacity Required, gal	20	40	59	75	94	113	130	150	25	50	75	100	125	150	175	200
Hot Water Used During Day, gal	15	30	45	60	75	90	105	120	20	40	60	80	100	120	140	160
Total Water to be Heated: Gal per 8 hr period	35 4.5	70 9	104 13		169 21	203 26	235 29	270 34		90 12		180 23	225 28			
Copper Coil Required: Surface area, sq ft Equivalent length 1 in. coil, ft.	25 100	50 200	75 300			145 580	168 664	192 768	32 128	64 256	96 384	128 512	160 640		224 896	256 1024
Box Size: Area, sq ft Width, ft Length, ft	25 4 6	50 6 8	75 7 11	8	121 9 13.5	10	168 10 16.5	192 11 17.5	4	64 6 10	96 8 12	128 9 14	160 10 16	192 11 18	224 12 19	12

aSun Effect and the Design of Solar Heaters, by H. L. Alt (A.S.H.V.E. TRANSACTIONS, Vol. 41, 1935, p. 131).

coil, circulation lines and tank. The coil should be inclined as shown in Fig. 11 so that the north end is raised above the south end to secure an angle with the horizontal of about 53 deg. This will result in the inlet end of the coil being on the south side (or bottom) and the outlet end being on the north side (or top). This will satisfy conditions along the 30 deg N latitude which includes the portions of Florida and Southern California where these heaters are most frequently used.

The hot box is usually constructed of wood on the four sides and bottom and is insulated. Over the top of the box glass sash are placed and the box should be constructed as near air tight as possible. The interior surfaces should be painted white to reflect the heat while the coil should be painted black to absorb the heat. The box need not be deeper than necessary to house the coil and to protect it from the weather.

The addition of a light gage copper plate on the bottom of the box to which the pipe of the coil is soldered, for good metallic contact, will add to the amount of heat received by the coil due to the fact that this plate will receive all of the sun rays which fail to directly strike the coil. The heat from this source is transmitted to the coil through the plate instead of by heating the air surrounding the coil and from which only part of the heat enters the coil, the balance being transmitted through the glass sash.

Design data given in Table 12 may be used with some judgment in selecting the size of solar heater coil and box for a particular application. These data are based on consumptions of 30 and 40 gal of hot water per day per person.

Chapter 47

TERMINOLOGY

Glossary of Physical and Heating, Ventilating, Refrigerating and Air Conditioning Terms Used in the Text

Absolute Humidity: See Humidity.

Absolute Pressure: The pressure referred to that of a perfect vacuum. It is the sum of gage pressure and barometric pressure.

Absolute Temperature: A reading on the absolute temperature scale. Absolute temperature is obtained by adding 459.70 degrees to the Fahrenheit temperature.

Absolute Zero: The zero point on the absolute scale 459.70 F below the zero of the

Fahrenheit scale.

Acceleration: The rate of change of velocity. In the fps system this is expressed

Acceleration Due to Gravity: The rate of charge of velocity. In the tps system this is expressed in units of one foot per second. $a = V \div t$.

Acceleration Due to Gravity: The rate of gain in velocity of a freely falling body, the value of which varies with latitude and elevation. The international gravity standard has the value of 980.665 cm per second per second or 32.174 ft per second per second, which is the actual value of this acceleration at sea level and about 45 deg latitude.

Adiabatic: An adjective descriptive of a process in which no heat is added to or

extracted from the system executing the process.

Air Cleaner: A device designed for the purpose of removing air-borne impurities such as dusts, fumes and smokes. (Air cleaners include air washers and air filters.)

The simultaneous control of all or at least the first three of those Air Conditioning: factors affecting both the physical and chemical conditions of the atmosphere within any structure. These factors include temperature, humidity, motion, distribution, dust, bacteria, odors and toxic gases, most of which affect in greater or lesser degree human health or comfort. (See Comfort Air Conditioning.)

Air Washer: An enclosure in which air is forced through a spray of water in order

to cleanse, humidify, or dehumidify the air.

Anemometer: An instrument for measuring the velocity of moving air.

Atmospheric Pressure: The pressure indicated by a barometer. Standard atmospheric pressure is a pressure of 76 cm mercury (density 13.5951 grams per cubic centimeter, gravity 980.665 cm per second per second). It is equivalent to 14.6959 lb per square inch or 29.921 in. of mercury at 32 F.

Baffle: A plate or wall for deflecting gases or fluids.
Blest: This word was formerly used to denote forced air circulation, particularly in connection with central fan systems using steam or hot water as the heating medium. As applied in this sense, the word blast is now obsolete.

Boiler: A closed vessel in which steam is generated or in which water is heated.

Boiler Heating Surface: That portion of the surface of the heat-transfer apparatus in contact with the fluid being heated on one side and the gas or refractory being cooled

on the other, in which the fluid being heated forms part of the circulating system; this surface shall be measured on the side receiving heat. This includes the boiler, water walls, water screens, and water floor. (A.S.M.E. Power Test Codes, Series 1929.)

Boiler Horsepower: The equivalent evaporation of 34.5 lb of water per hour from and at 212 F. This is equal to a heat output of 970.3 × 34.5 = 33,475 Btu per hour.

British Thermal Unit: A unit of energy defined in terms of the international steam-table colorie through the convenient relation 1 Bru per pound per degree Fabracheit table calorie through the convenient relation 1 Btu per pound per degree Fahrenheit = 1 cal per gram per degree Centigrade. It is approximately the quantity of heat required to raise the temperature of 1 lb of liquid water from 63 to 64 F.

By-pass: A pipe or duct, usually controlled by valve or damper, for short-circuiting fluid flow.

Calorie: (large calorie or kilogram calorie) is equal to 1000 international steam-table calories = 1/860 international kilowatthour. For practical purposes it may be considered as 1/100 of the heat required to raise the temperature of I kilogram of water

Central Fan System: A mechanical indirect system of heating, ventilating, or air conditioning, in which the air is treated or handled by equipment located outside the rooms served, usually at a central location, and is conveyed to and from the rooms by

means of a fan and a system of distributing ducts. (See Chapter 21.)

Chimney Effect: The tendency in a duct or other vertical air passage for air to rise

when heated, owing to its decrease in density.

Coefficient of Transmission: The amount of heat (Btu) transmitted from air to air in one hour per square foot of the wall, floor, roof or ceiling for a difference in temperature of 1 F between the air on the inside and that on the outside of the wall, floor, roof or ceiling.

Comfort Air Conditioning: The process by which simultaneously the temperature,

moisture content, movement and quality of the air in enclosed spaces intended for human occupancy may be maintained within required limits. (See Air Conditioning.)

Comfort Line: The effective temperature at which the largest percentage of adults

feels comfortable.

Comfort Zone (Average): The range of effective temperatures over which the majority (50 per cent or more) of adults feel comfortable. Comfort Zone (Extreme): The range of effective temperatures over which one or more adults feel comfortable. (See Chapter 2.)

Concealed Radiator: A heating device located within, adjacent to, or exterior to the room being heated but so covered or enclosed or concealed that the heat transfer surface of the device, which may be either a radiator or a convector, does not see the room. Such a device transfers its heat to the room largely by convection air currents.

Conductance: The amount of heat (Btu) transmitted from surface to surface in one hour through one square foot of a material or construction, whatever its thickness, when the temperature difference is 1 F between the two surfaces.

Conduction: The transmission of heat through and by means of matter unaccom-

panied by any obvious motion of the matter.

Conductivity: The amount of heat (Btu) transmitted in one hour through one square foot of a homogeneous material 1 in. thick for a difference in temperature of 1 F between the two surfaces of the material.

Conductor (Heat): A material capable of readily conducting heat. The opposite of an insulator or insulation.

Constant Relative Humidity Line: Any line on the psychrometric chart representing a series of conditions which may be evaluated by one percentage of relative humidity; there are also constant dry-bulb lines, wet-bulb lines, effective temperature lines, vapor pressure lines, and lines showing other physical properties of air mixed with water vapor.

Convection: The transmission of heat by the circulation of a liquid or a gas such as air. Convection may be natural or forced.

Convector: A heat transfer surface designed to transfer its heat to surrounding air largely or wholly by convection. Such a surface may or may not be enclosed or concealed. When concealed and enclosed the resulting device is sometimes referred to as a concealed radiator. (See also definition of Radiator.) (See also Chapter 13.)

Decibel: A unit commonly used for expressing sound or noise intensities referred to an arbitrary reference level. It is defined by the relation db = $10 \log_{10} \frac{P_1}{P_0}$, where P_1 is the unknown intensity, and P_0 is the reference level which is commonly taken as 10^{-18} watts per square centimeter.

Degree-Day: A unit, based upon temperature difference and time, used in specifying the nominal heating load in winter. For any one day there exists as many degree-days as there are degrees Fahrenheit difference in temperature between the mean temperature

for the day and 65 F.

Degree of Saturation or Per Cent Saturation: The ratio of actual humidity ratio W to the saturation humidity ratio W_8 corresponding to the actual temperature and the observed pressure. $\mu = \frac{W}{W_8}$ (Approximately the same as but not identical with relative humidity. See Chapter 1).

Dehumidification: The condensation of water vapor from air by cooling below the

dew-point.

CHAPTER 47. TERMINOLOGY

Dehydration: The removal of water vapor from air by the use of adsorbing or absorbing materials.

Density: The weight of a unit volume, expressed in pounds per cubic foot. $d = W \div V$. Dew-Point Temperature: The temperature corresponding to saturation (100 per cent

relative humidity) for a given moisture content.

Direct-Indirect Heating Unit: A heating unit located in the room or space to be heated and partially enclosed, the enclosed portion being used to heat air which enters from outside the room.

Direct Radiator: Same as Radiator.

Direct-Return System (Hot Water): A hot water system in which the water, after it has passed through a heating unit, is returned to the boiler along a direct path so that the total distance traveled by the water is the shortest feasible, and so that there are considerable differences in the lengths of the several circuits composing the system.

Down-Feed One-Pipe Riser (Steam): A pipe which carries steam downward to the

heating units and into which the condensation from the heating units drain.

Down-Feed System (Steam): A steam heating system in which the supply mains are

above the level of the heating units which they serve.

Draft Head (Side Outlet Enclosure): The height of a gravity convector between the bottom of the heating unit and the bottom of the air outlet opening. (Top Outlet Enclosure): The height of a gravity convector between the bottom of the heating unit and the top of the enclosure.

Drip: A pipe, or a steam trap and a pipe, considered as a unit, which conducts condensation from the steam side of a piping system to the water or return side of the system.

Dry Air: In psychrometric work, dry air is defined as air without water vapor. This state, though not obtained practically, is used as the basis of calculations.

Dry-Bulb Temperature: The temperature indicated by a standardized thermometer

after correction for radiation, etc.

Dry Return: A return pipe in a steam heating system which carries both water of condensation and air. The dry return is above the level of the water line in the boiler

in a gravity system. (See Wet Return.) Dust: Solid material in a finely divided state, the particles of which are large and heavy enough to fall with increasing velocity, due to gravity in still air. For instance,

particles of fine sand or grit, the average diameter of which is approximately 0.01 centimeter, such as are blown on a windy day, may be called dust.

Dynamic Head or Pressure: Same as Total Pressure.

Effective Temperature: An arbitrary index which combines into a single value the effect of temperature, humidity, and movement of air on the degree of warmth or cold felt by the human body. The numerical value is that of the temperature of still, saturated air which would induce an identical sensation of warmth.

Enthalpy: A thermodynamic property which serves as a measure of the quantity of thermal energy convected by a fluid in steady flow. In a non-flow process the increase of enthalpy equals the quantity of heat absorbed provided pressure is constant. Enthalpy was formerly called heat content, sometimes total heat. Specific enthalpy is the ratio of total enthalpy to total weight, that is, enthalpy per unit weight of substance, Btu per pound.

Entropy: A thermodynamic property which, for practical purposes, is best defined by stating its principal functions: (1) during a reversible adiabatic change of state, entropy is constant; (2) during a reversible isothermal change of state, the heat absorbed is equal to absolute temperature times change of entropy. Specific entropy is the ratio of total entropy to total weight, that is, entropy per unit weight, Btu per degree Fahrenheit per pound.

Equivalent Evaporation: The amount of water a boiler would evaporate, in pounds per hour, if it received feed water at 212 F and vaporized it at the same temperature

and atmospheric pressure.

The sum of the heat emission of the equivalent direct radia-Estimated Design Load: tion to be installed plus the allowance for heat loss of the connecting piping plus the heat requirements of any auxiliary apparatus connected with the system.

Estimated Maximum Load: The load stated in Btu per hour or equivalent direct radiation that has been estimated to be the greatest or maximum load that the boiler will be called upon to carry.

Extended Heating Surface: See Heating Surface.

Extended Surface Heating Unit: A heating unit having a relatively large amount of extended surface which may be integral with the core containing the heating medium or assembled over such a core, making good thermal contact by pressure or by being

soldered to the core or by both pressure and soldering. An extended surface heating unit is usually placed within an enclosure and therefore functions as a convector.

Fan Furnace System: See Warm Air Heating System.

Force: The action on a body which tends to change its relative condition as to rest or motion. $F = (WV) \div (gt)$.

Free Enthalpy: A thermodynamic property which serves as a measure of the available energy of a system with respect to surroundings at the same temperature and same pressure as that of the system. No process involving an increase in available energy can occur spontaneously. (See example on Free Enthalpy in Chapter 1.)

Fumes: Particles of solid matter resulting from such chemical processes as combus-

tion, explosion, and distillation, ranging from 0.1 to 1.0 micron in size.

Furnace: That part of a boiler or warm air heating plant in which combustion takes

place. Also, a fire-pot.

Furnace Volume (Total): The total furnace volume for horizontal-return tubular boilers and water-tube boilers is the cubical contents of the furnace between the grate and the first plane of entry into or between tubes. It therefore includes the volume behind the bridge wall as in ordinary horizontal-return tubular boiler settings, unless manifestly ineffective (i.e., no gas flow taking place through it), as in the case of wasteheat boilers with auxiliary coal furnaces, where one part of the furnace is out of action when the other is being used. For Scotch or other internally fired boilers it is the cubical contents of the furnace, flues and combustion chamber, up to the plane of first entry into the tubes. (A.S.M.E. Power Test Codes, Series 1929.)

Gage Pressure: Pressure measured from atmospheric pressure as a base. Gage pressure may be indicated by a manometer which has one leg connected to the pressure source and the other exposed to atmospheric pressure.

Grate Area: The area of the grate surface, measured in square feet, to be used in estimating the rate of burning fuel. This area is construed to mean the area measured in the plane of the top surface of the grate, except that with special furnaces, such as those having magazine feed, or special shapes, the grate area shall be the mean area of the active part of the fuel bed taken perpendicular to the path of the gases through it. For furnaces having a secondary grate, such as those in double-grate down draft boilers, the effective area shall be taken as the area of the upper grate plus one-eighth of the area of the lower grate, both areas being estimated as previously defined.

Gravity Warm Air Heating System: See Warm Air Heating System.

Heat: Heat is that form of energy which transfers from one system to a second system at lower temperature by virtue of the temperature difference, when the two are brought into communication.

Heating Medium: A substance such as water, steam, air, or furnace gas used to convey heat from the boiler, furnace or other source of heat or energy to the heating

unit from which the heat is dissipated.

Heating Surface: The exterior surface of a heating unit. Extended heating surface (or extended surface): Heating surface having air on both sides and heated by conduction from the prime surface. Prime Surface: Heating surface having the heating medium on one side and air (or extended surface) on the other. (See also Boiler Heating Surface.)

Heat of the Liquid: This can usually be interpreted as the specific enthalpy of

saturated liquid.

Hot Water Heating System: A heating system in which water is used as the medium by which heat is carried through pipes from the boiler to the heating units.

Humid Heat: Ratio of increase of enthalpy per pound of dry air to rise of temperature under conditions of constant pressure and constant humidity ratio.

Humidify: To add water vapor to the atmosphere; to add water vapor or moisture to any material.

Humidistat: A regulatory device, actuated by changes in humidity, used for the auto-

matic control of relative humidity.

Humidity: Water vapor when mixed with dry air or other dilutent gases. Absolute humidity is the weight of water vapor per unit volume of moist air, pounds per cubic foot. It can be calculated by dividing the humidity ratio, weight of water vapor per pound of dry air, by the volume of the mixture per pound of dry air. Relative humidity is the ratio of the partial pressure of the water vapor in the air to the saturation pressure of pure water corresponding to the actual temperature. (See Chapter 1.)

Humidity Ratio: Weight of water vapor per pound of dry air. (Formerly called

specific humidity.)

Hygrostat: Same as Humidistat.

CHAPTER 47. TERMINOLOGY

Inch of Water: The pressure due to a column of liquid water one inch high at a temperature of 60 F.

Insulation (Heat): A material having a relatively high heat-resistance per unit of thickness.

Isobaric: An adjective used to indicate a change taking place at constant pressure. Isothermal: An adjective used to indicate a change taking place at constant temperature.

Latent Heat: The most general interpretation is heat absorbed at constant temperature. More specifically the latent heat of vaporization is the difference between the specific enthalpies of saturated vapor and saturated liquid at the same temperature (and, for a pure substance, the same pressure). Latent heat of sublimation is the difference between the specific enthalpies of saturated vapor and saturated solid at the same temperature. Latent heat of fusion is the difference between the specific enthalpies of saturated liquid and saturated solid at the same temperature.

Laws of Thermodynamics: The Law of Conservation of Energy states that energy, in any of its forms, can neither be created nor destroyed. As a corollary to this, the First Law of Thermodynamics states that in any power cycle or refrigeration cycle the net heat absorbed by the working substance is exactly equal to the net work done. Second Law of Thermodynamics states that a power cycle which absorbs heat at a single temperature and converts it wholly into work, as required by the First Law, is impossible; hence it is absolutely necessary to reject heat at some lower temperature if any work is to be done. The Second Law further prescribes the least possible quantity of heat that must be so rejected depending on the two temperatures involved.

Manometer: An instrument for measuring pressures; essentially a U-tube partially filled with a liquid, usually water, mercury, or a light oil, so the amount of displacement

of the liquid indicates the pressure being exerted on the instrument.

Mass: The quantity of matter, in pounds, to which the unit of force (one pound) will give an acceleration of one foot per second per second. $m = W \div g$.

Symbols which represent, respectively, 1000 Btu and 1000 Btu per hour. Mb, Mbh: Mechanical Equivalent of Heat: The conversion factor from Btu to foot pounds; J = 778.26 foot pounds per Btu. This is also referred to as Joule's Equivalent.

Micron: A unit of length, the thousandth part of one millimeter or the millionth of a meter.

Mol (Pound Mol): A weight in pounds numerically equal to the molecular weight of a substance. In the case of gases, and at not too high pressures, the volume of 1 mol is approximately the same for any gas at the same temperature and pressure. At 32 F and standard atmospheric pressure this volume is 358.65 cu ft.

One-Pipe Supply Riser (Steam): A pipe which carries steam upward to a heating unit and which also carries the condensation from the heating unit in a direction opposite

to the steam flow.

One-Pipe System (Hot Water): A hot water system in which the water flows through more than one heating unit before it returns to the boiler; consequently, the heating units farthest from the boiler are supplied with cooler water than those near the boiler in the same circuit.

One-Pipe System (Steam): A steam heating system consisting of a main circuit in which the steam and condensate flow in the same pipe, usually in opposite directions. Ordinarily to each heating unit there is but one connection which must serve as both the supply and the return, although separate supply and return connections may be used.

Overhead System: Any steam or hot water system in which the supply main is above the heating units. With a steam system the return must be below the heating units; with a water system, the return may be above the heating units.

Panel Radiator: A heating unit placed on or flush with a flat wall surface and in-

tended to function essentially as a radiator.

Panel Warming: A method of heating involving the installation of the heating units (pipe coils) within the wall, floor or ceiling of the room, so that the heating process takes place mainly by radiation from the wall, floor or ceiling surfaces to the objects in the room.

Plenum Chamber: An air compartment maintained under pressure and connected to

one or more distributing ducts.

Potentiometer: An instrument for measuring or comparing small electromotive forces. Power: The rate of performing work; usually expressed in units of horsepower, Btu per hour, or watts.

Prime Surface: See Heating Surface.

Psychrometer: An instrument for ascertaining the humidity or hygrometric state of the atmosphere. *Psychrometric:* Pertaining to psychrometry or the state of the atmosphere as to moisture. *Psychrometry:* The branch of physics that treats of the measurement of degree of moisture, especially the moisture mixed with the air.

Pyrometer: An instrument for measuring high temperatures.

Radiation: The transmission of heat through space by wave motion.

Radiator: A heating unit exposed to view within the room or space to be heated. A radiator transfers heat by radiation to objects *it can see* and by conduction to the surrounding air which in turn is circulated by natural convection; a so-called *radiator* is also a *convector* but the single term *radiator* has been established by long usage.

Recessed Radiator: A heating unit set back into a wall recess but not enclosed.

Refrigerant: A substance which produces a refrigerating effect by its absorption of heat while expanding or vaporizing.

Relative Humidity: See Humidity; also discussion relative humidity, Chapter 1.

Return Mains: The pipes which return the heating medium from the heating units to the source of heat supply.

Reversed-Return System (Hot Water): A hot water heating system in which the water from several heating units is returned along paths arranged so that all circuits composing the system or composing a major sub-division of the system are practically of equal length.

Roof Ventilator: A device placed on the roof of a building to facilitate egress of air.

Saturated Air: A mixture of dry air and saturated water vapor, all at the same drybulb temperature. It may also be considered as air containing the maximum possible amount of water vapor at a given temperature without becoming supersaturated.

Saturation: The condition for coexistence in stable equilibrium of two or more distinct phases, such as steam over the water from which it is being generated.

Saturation Pressure: The saturation pressure for a pure substance for any given temperature is that pressure at which vapor and liquid or vapor and solid can coexist in stable equilibrium.

Sensible Heat: Heat which manifests itself by temperature change.

Smoke: Carbon or soot particles less than 0.1 micron in size which result from the incomplete combustion of carbonaceous materials such as coal, oil, tar, and tobacco.

Smokeless Arch: An inverted baffle placed in an up-draft furnace toward the rear to aid in mixing the gases of combustion and thereby to reduce the smoke produced.

Specific Enthalpy: The ratio of total enthalpy to total weight. The specific enthalpy of air is its enthalpy, Btu per pound, measured above 0 F and 29.921 in. Hg as a reference point. The specific enthalpy of water is its enthalpy, Btu per pound, measured from the reference point of saturated liquid at 32 F. (See *Enthalpy*.)

Specific Gravity: The ratio of the weight of a body to the weight of an equal volume of water at some standard temperature, usually 39.2 F.

Specific Heat: The ratio of heat absorbed per unit weight of substance to temperature rise. For gases, both specific heat at constant pressure, c_p , and specific heat at constant volume, c_v , are frequently given. In air conditioning, c_p is usually used.

Specific Volume: The volume, expressed in cubic feet, of one pound of a substance. $v = 1 \div d = V \div W$.

Split System: A system in which the heating and ventilating are accomplished by means of radiators or convectors supplemented by mechanical circulation of air (heated or unheated) from a central point.

Square Foot of Heating Surface (Equivalent): Equivalent Direct Radiation (EDR). That amount of heating surface which will give off 240 Btu per hour. The equivalent square feet of heating surface may have no direct relation to the actual surface area.

Stack Height: The height of a gravity convector between the bottom of the heating unit and the top of the outlet opening.

Standard Air: Air weighing 0.075 lb per cubic foot. (The density of air at 29.921 in. of mercury barometric pressure, 68 F dry-bulb and 50 per cent relative humidity is 0.07497; and dry air at 70 F dry-bulb is 0.07496.)

Static Pressure: The normal force per unit area that would be exerted by a moving fluid on a small body immersed in it if the body were carried along with the fluid. Practi-

CHAPTER 47. TERMINOLOGY

cally, it is the normal force per unit area at a small hole in a wall of the duct through which the fluid flows (piezometer) or on the surface of a stationary tube at a point where the disturbances created by inserting the tube cancel. It is supposed that the thermodynamic properties of a moving fluid depend on static pressure in exactly the same manner as those of the same fluid at rest depend upon its uniform hydrostatic pressure.

Steam: Water in the vapor phase. Dry Saturated Steam is steam at the saturation temperature corresponding to the pressure, and containing no water in suspension. Wet Saturated Steam is steam at the saturation temperature corresponding to the pressure, and containing water particles in suspension. Superheated Steam is steam at a temperature higher than the saturation temperature corresponding to the pressure.

Steam Heating System: A heating system in which heat is transferred from the boiler or other source of steam to the heating units by means of steam at, above, or below

atmospheric pressure.

Steam Trap: A device for allowing the passage of condensate and preventing the passage of steam, or for allowing the passage of air as well as condensate.

Superheated Steam: See Steam.

Supply Mains (Steam): The pipes through which the steam flows from the boiler or

source of supply to the run-outs and risers leading to the heating units.

Surface Conductance: The amount of heat (Btu) transmitted by radiation, conduction, and convection from a surface to the air or liquid surrounding it, or vice versa, in one hour per square foot of surface for a difference in temperature of 1 deg between the surface and the surrounding air or liquid.

Therm: 100,000 Btu. (Used in the gas industry.)
Thermal Resistance: The reciprocal of conductance.
Thermal Resistivity: The reciprocal of conductivity.

Thermostat: An instrument which responds to changes in temperature and which

directly or indirectly controls the source of heat supply.

Ton of Refrigeration: The removal of 12,000 Btu of heat per hour at a low temperature. Ton Day of Refrigeration: The removal of 288,000 Btu of heat at a low temperature. Total Heat: This can usually be interpreted as increase of enthalpy at constant pressure. It is often regarded as synonymous with enthalpy.

Total Pressure: In the theory of the flow of fluids; the sum of the static pressure

and the velocity pressure at the point of measurement.

Tube (or Tubular) Radiator: A cast-iron heating unit used as a radiator and having

small vertical tubes.

Two-Pipe System (Steam or Water): A heating system in which one pipe is used for the supply of the heating medium to the heating unit and another for the return of the heating medium to the source of heat supply. The essential feature of a two-pipe system is that each heating unit receives a direct supply of the heating medium which medium cannot have served a preceding heating unit.

Underfeed Distribution System (Hot Water): A hot water heating system in which the

main flow pipe is below the heating unit.

Underfeed Stoker: A stoker which feeds the coal underneath the fuel bed.

Unit: As applied to heating, ventilating and air conditioning equipment this word means a factory-built and assembled equipment with apparatus for accomplishing some specified function or combination of functions. (See Chapters 22 and 23.)

It is loosely applied to a great variety of equipment. Usually the function is included in the name, and hence come terms like Unit Heater, Unit Ventilator, Humidifying

Unit, and Air Conditioning Unit.

Units are said to be direct or room, when intended for location, or located in, the treated space; indirect or remote, when outside or adjacent to the treated space. They are ceiling units when suspended from above, and floor when supported from below. Other descriptive words include free delivery when the unit is not intended to be attached to ducts or similar resistance-producing devices, and pressure when for use with such ducts. Complete description requires the use of several of these qualifying words or phrases. (See Chapter 23.)

Up-Feed System (Steam): A steam heating system in which the supply mains are

below the level of the heating units which they serve.

Vacuum Heating System: A two-pipe steam heating system equipped with the necessary accessory apparatus which will permit operating the system below atmospheric pressure when desired.

Vapor: Any substance in the gaseous state.

Vapor Heating System: A steam heating system which operates under pressures at or near atmospheric and which returns the condensation to the boiler or receiver by gravity. Vapor systems have thermostatic traps or other means of resistance on the return ends of the heating units for preventing steam from entering the return mains; they also have a pressure-equalizing and air-eliminating device at the end of the dry return. Direct Vent Vapor System: A vapor heating system with air valves which do not permit re-entry of air.

Vapor Pressure: Synonymous with saturation pressure in the case of a pure substance. Velocity: The time rate of motion of a body in a fixed direction. In the fps system it is expressed in units of one foot per second. $V = \frac{s}{L}$.

Velocity Pressure: The difference due to velocity between total pressure and static pressure. It is supposed to equal the kinetic energy per unit volume of the fluid at the point of measurement.

Ventilation: The process of supplying or removing air by natural or mechanical means, to or from any space. Such air may or may not have been conditioned. (See *Air Conditioning*.)

Warm Air Heating System: A warm air heating plant consists of a heating unit (fuel-burning furnace) enclosed in a casing, from which the heated air is distributed to the various rooms of the building through ducts. If the motive head producing flow depends on the difference in weight between the heated air leaving the casing and the cooler air entering the bottom of the casing, it is termed a gravity system. A booster fan may, however, be used in conjunction with a gravity-designed system. If a fan is used to produce circulation and the system is designed especially for fan circulation, it is termed a fan furnace system or a central fan furnace system. A fan furnace system may include air washers and filters.

Wet-Bulb Temperature: Thermodynamic wet-bulb temperature is the temperature at which liquid or solid water, by evaporating into air, can bring the air to saturation adiabatically at the same temperature. Wet-bulb temperature (without qualification) is the temperature indicated by a wet-bulb psychrometer constructed and used according to specifications. (A.S.M.E. Power Test Codes, Series 1932, Instruments and Apparatus, Part 18.)

Wet Return: That part of a return main of a steam heating system which is filled with water of condensation. The wet return usually is below the level of the water line in the boiler, although not necessarily so. (See Dry Return.)

Chapter 48

ABBREVIATIONS, SYMBOLS, STANDARDS

Standard Abbreviations, Conversion Equations, Graphical Symbols for Piping, Ductwork, Heating and Ventilating, Refrigerating, Specific Heat Table, State Codes or Standards

THE abbreviations outlined herewith pertaining to heating, ventilating, and air conditioning have been compiled from a selected list of approved standards¹. In general the period has been omitted in all these abbreviations except where the omission results in the formation of an English word. Grouped together in this chapter will be found a few conveniently arranged conversion equations. The graphical symbols for drawings have been abstracted from a recently approved standard².

The specific heats of a selected list of solids, liquids, gases and vapors are given in Tables 1, 2 and 3.

An outline of available state codes, standards or laws relating to the heating, ventilating, or air conditioning of various types of buildings is given in Table 4. This material was compiled by the A.S.H.V.E. and is based on information furnished by the individual states through a comprehensive survey conducted in 1942. References are given to the titles of all codes, standards or laws which relate to this field of engineering and where copies of these standards may be obtained.

Absolute	abs
Acceleration, due to gravity	g
Acceleration, linear	
Air horsepower	air hp
Alternating-current (as adjective)	a-c
Ampere	
Ampere-hour	1.
Area	- 4
Atmosphere	
Average	
Average	avdp
Avoirdupois	
Barometer	
Boiler pressure	bp
Boiling point	11
Brake horsepower	
Brake horsepower-hour	
British thermal unit	
Calorie	cal
Centigram	cg
Centimeter	

¹Abbreviations for Scientific and Engineering Terms, Z10 1-1941; Letter Symbols for Mechanics of Solid Bodies, Z10 3-1942, and Symbols for Heat and Thermodynamics, Z10c-1931 (American Standards Association).

² Graphical Symbols for Use on Drawings in Mechanical Engineering, Z32.2-1941 (American Standards Association).

Centimeter-gram-second (system)	cgs
Change in specific volume during vaporization.	v _{f g}
Cubic	CU
Cubic foot	CU ff
Cubic foot por minute	CI m
Cubic feet per second	cfs
Decibel	dh
Decidel	der or °
Degree ³	deg of
Degree centigrade	<u>E</u>
Degree Fahrenheit	
Degree Kelvin	K
Degree Réaumur	K
Degree Réaumur. Density, Weight per unit volume, Specific weight.	.d or p (rho)
_ 1	
$d=\frac{1}{n}$	

Diameter Direct-current (as adjective)	$\dots D$ or diam
Direct-current (as adjective)	d-c
Dry saturated vapor. Dry saturated gas at saturation pressure and tempera	ature,
Dry saturated vapor, Dry saturated gas at saturation pressure and tempers vapor in contact with liquid	Subscript .
Fatrony (The copital should be used for any weight, and the small letter f	or unit
Entropy. (The capital should be used for any weight, and the officer leaves	Sore
Feet per minute	fnm
Feet per second	foo
Feet per second	
Foot.	It
Foot-pound.	t-1D
Foot-pound-second (system)	p <u>s</u>
Force, total load	F
Freezing point	tp
Gallon	gal
Gallons per minute	gpm
Gallons per second	gps
Gram	g
Gram-calorie	g-cal
Head	H or h
Heat content, Total heat, Enthalpy. (The capital should be used for any v	veight
and the small letter for unit weight)	Horh
and the small letter for unit weight). Heat content of saturated liquid, Total heat of saturated liquid, Enthal	ny of
saturated liquid, sometimes called heat of the liquid	py or
saturated liquid, sometimes called near of the liquid.	h - 1
Heat content of dry saturated vapor, Total heat of dry saturated vapor, Ent of dry saturated vapor.	naipy
of dry saturated vapor	n _g
Heat of vaporization at constant pressure.	L or n_{fg}
Horsepower	hp
Horsepower-hour	np-nr
Hour	
Inch	in.
Inch-pound	inlb
Indicated horsenower	ihn
Indicated horsepower-hour Internal energy, Intrinsic energy. (The capital should be used for any weight the small letter for unit weight)	ihp-hr
Internal energy. Intrinsic energy. (The capital should be used for any weigh	nt and
the small letter for unit weight)	II or u
Kilogram	ŀα
Kilowatt	
Kilowatthour	KWIII
Length of path of heat flow, thickness.	L
Load, total	
Mass	
Mechanical efficiency.	em_
Mechanical equivalent of heat	J
Melting point	mp
Meter	
promotive and resources.	

^{*}It is recommended that the abbreviation for the temperature scale, F, C, K, be included in expressions for numerical temperatures but, wherever feasible, the abbreviations for degree be omitted; as 68 F.

CHAPTER 48. ABBREVIATIONS, SYMBOLS, STANDARDS

Miles per hour mph

Millimeter	mm
Minute	min
Molecular weight	nol. wt
Mol	mol
Qunce	OZ
Pound	lb
Power, Horsepower, Work per unit time	P
Pressure, Absolute pressure, Gage pressure, Force per unit area	b
Quantity (total) of fluid, water, gas, heat; Quantity by volume; Total quantity	
of heat transferred	٧
Revolutions per minute	
Saturated liquid at saturation pressure and temperature, Liquid in contact	Pin
with vapor	scribt e
Second.	sec
Specific gravity	sp gr
Specific heatsp	ht or c
Specific heat at constant pressure	c _p
Specific heat at constant volume	c _v
Specific heat at constant volume. Specific volume, Volume per unit weight, Volume per unit mass	v
Square 100t	sa tt
Square inch	sq in.
Square inch	(thata)
Time in the same discussion). t or θ Temperature (absolute) F abs or K. (Capital theta is used preferably only when	(mem)
small theta, is used for ordinary temperature)	1 theta
small theta is used for ordinary temperature). Tor Θ (capita Thermal conductance (heat transferred per unit time per degree).	C
$C = \frac{1}{R} = \frac{kA}{L} = \frac{q}{t_1 - t_2}$	
Thermal conductance per unit area, Unit conductance (heat transferred per unit time per unit area per degree)	
$C_{a} = \frac{C}{A} = \frac{1}{RA} = \frac{q}{A(t_{1} - t_{2})} = \frac{k}{L}$	
Thermal conductivity (heat transferred per unit time per unit area, and per degree per unit length)	
q	
$\frac{\overline{A}}{A}$	
$k = \frac{1}{(1 + 1)^2}$	
$k = \frac{\frac{q}{A}}{\frac{(t_1 - t_2)}{L}}$	
Surface coefficient of heat transfer, Film coefficient of heat transfer, Individual coefficient of heat transfer (heat transferred per unit time per unit area per degree)	
0	-
<u>-4</u>	
$f = \frac{\frac{q}{A}}{t_1 - t_2}$	
(In general f is not equal to k/L , where L is the actual thickness of the fluid	film.)
Over-all coefficient of heat transfer, Thermal transmittance per unit area (heat transferred per unit time per unit area per degree over-all)	77
transferred per unit time per unit area per degree over-an,	

⁴Terms ending wity designate properties independent of size or shape, sometimes called specific properties. Examples: conductivity, resistivity. Terms ending ance designate quantities depending not only on the material, but also upon size and shape, sometimes called total quantities. Examples: conductance, transmittance. Terms ending ion designate rate of heat transfer. Examples. conduction, transmission

Thermal transmission (heat transferred	per unit time)q
	$q = \frac{Q}{t}$
Thermal resistance (degrees per unit of	heat transferred per unit time)R
R =	$\frac{t_1-t_2}{q}=\frac{L}{kA}$
Thermal resistivityVaporization values at constant pressure	q kA $1/k$ e. Differences between values for saturated same pressure. Subscript $_{\mathrm{fg}}$ V
Velocity Volume (total)	
Volume per unit time, Rate at which machine. Quantity of heat per unit	quantity of material passes through a
Watt	
Weight of a major item, Total weight Weight rate. Weight per unit of power.	Weight per unit of time
Work (total)	
CONVERSI	ON EQUATIONS
Heat, Power and Work	ION EQUATIONS
1 ton refrigeration	$= \left\{ \begin{array}{l} 12,000 \text{ Btu per hour} \\ 200 \text{ Btu per minute} \end{array} \right.$
Latent heat of ice	1200 Btu per minute = 143.4 Btu per pound
I Btu	(778.26 ft-lb
r ptn	$= \begin{cases} 0.293 \text{ whr} \\ 252 \text{ mean calories} \end{cases}$
1	2,655 ft-lb 3.413 Btu
1 watthour	= 3.413 Btu 3600 joules 860 mean calories
	3.413 Btu
1 kilowatthour	= 3.517 lb water evaporated from and at 212 F
1 kilowatt (1000 watts)	(1.341 hp
1 knowatt (1000 watts)	$= \begin{cases} 56.88 \text{ Btu per minute} \\ 44,253 \text{ ft-lb per minute} \end{cases}$
1000 mean calorie	$= \begin{cases} 3.969 \text{ Btu} \\ 3087 \text{ ft-lb} \end{cases}$
1 kilogram calorie ∫	(1.1627 whr
1 horsepower	(0.746 kw _) 42.42 Btu per minute
2 No. Sepower	42.42 Btu per minute 33,000 ft-lb per minute 550 ft-lb per second
1 boiler horsepower	$= \begin{cases} 33,475 \text{ Btu per hour} \\ 9.808 \text{ kw} \end{cases}$
Weight and Volume	(9.808 kw
1 gal (U. S.)	$= \begin{cases} 231 \text{ cu in.} \\ 0.1337 \text{ cu ft} \end{cases}$
1 British or Imperial gallon	(0.1337 cu ft = 277.42 cu in.
1 cu ft	_ \ 7.48 gal
1 cu ft water at 60 F	1728 cu in. = 62.37 lb
1 cu ft water at 212 F	= 59.83 lb
l gal water at 60 F l gal water at 212 F	= 8.34 lb = 7.998 lb
l lb (avdp)	_ ∫ 16 oz
l bushel	7000 grains = 1.244 cu ft
l short ton	- 1.244 Cu It

Pressure

Pressure	
1 lb per square inch	= 144 lb per square foot 2.0421 in. mercury at 62 F 2.309 ft water at 62 F 27.71 in. water at 62 F
1 oz per square inch	= { 0.1276 in. mercury at 62 F 1.732 in. water at 62 F (14.6959 lb per square inch
1 atmosphere	2117 lb per square foot 33.9 ft water at 62 F 30 in. mercury at 62 F 29.921 in. mercury at 32 F
1 in. water at 62 F	$= \left\{ \begin{array}{l} 0.03609 \text{ lb per square inch} \\ 0.5774 \text{ oz per square inch} \\ 5.196 \text{ lb per square foot} \end{array} \right.$
1 ft water at 62 F	$= \begin{cases} 0.433 \text{ lb per square inch} \\ 62.35 \text{ lb per square foot} \\ 0.491 \text{ lb per square inch} \end{cases}$
1 in. mercury at 62 F	1.31 ft water at 62 F 1.358-in. water at 62 F
Metric Units	(20100 1111 114101 117 017 1
1 cm	= 0.3937 in.
1 in.	= 2.540 cm
1 m	= 3.281 ft
1 ft	= 0.3048 m
1 sq cm	= 0.155 sq in.
1 sq in.	= 6.452 sq cm
1 sq m	= 10.76 sq ft
1 sq ft	= 0.0929 sq m
1 cu cm	= 0.06102 cu in.
1 cu in.	= 16.39 cu cm
1 cu m	= 35.31 cu ft
1 cu ft	= 0.02831 cu m
1 liter	= 1000 cu cm = 0.2642 gal = 2.205 lb (avdp)
l kg l lb	= 0.4536 kg
1 metric ton	= 2205 lb (avdp)
1 gram	= 0.002205 lb (avdp)
1 kilometer per hour	= 0.6214 mph
1 gram per square centimeter	$= \begin{cases} 0.02905 \text{ in. mercury at } 62 \text{ F} \\ 0.3944 \text{ in. water at } 62 \text{ F} \end{cases}$
1 kg per sq cm (metric atmosphere)	= 14.22 lb per square inch
1 gram per cubic centimeter	$= \left\{ egin{array}{ll} 0.03613 ext{ lb per cubic inch} \\ 62.43 ext{ lb per cubic foot} \end{array} ight.$
1 dyne	= 0.00007233 poundals
1 joule	$= \begin{cases} 10,000,000 \text{ ergs} \\ 0.7376 \text{ ft-lb} \end{cases}$
1 metric horsepower	$= \begin{cases} 75 \text{ kg-m per second} \\ 0.986 \text{ hp (U. S.)} \end{cases}$
1 kilogram-calorie per kilogram	= 1.8 Btu per pound
1 gram-calorie per square centimeter	= 3.687 Btu per square foot
1 gram-calorie per square centimeter per centimete	
1 gram-calorie per second per square centimeter for a temperature gradient of 1 deg C per centimeter.	(2903 Btu per hour per square

GRAPHICAL SYMBOLS FOR DRAWINGS	Piping
HEATING	
1. High Pressure Steam	
2. Medium Pressure Steam	
3. Low Pressure Steam	
4. High Pressure Return	
5. Medium Pressure Return	
6. Low Pressure Return	
7. Boiler Blow Off	
8. Condensate or Vacuum Pump Discharge	
9. Feedwater Pump Discharge	
10. Make Up Water	
11. Air Relief Line	
12. Fuel Oil Flow	FOF
13. Fuel Oil Return	———FOR———
14. Fuel Oil Tank Vent	———FOV———
15. Compressed Air	A
16. Hot Water Heating Supply	
17. Hot Water Heating Return	
Air Conditioning	
18. Refrigerant Discharge	R D
19. Refrigerant Suction	RS
20. Condenser Water Flow	
21. Condenser Water Return	
22. Circulating Chilled or Hot Water Flow	
23. Circulating Chilled or Hot Water Return	
24. Make Up Water	
25. Humidification Line	H
26. Drain	D
27. Brine Supply	8
28. Brine Return	BR
PLUMBING	
29. Soil, Waste or Leader (Above Grade)	
30. Soil, Waste or Leader (Below Grade)	
31. Vent	
32. Cold Water	
33. Hot Water	management of the forest or the forest of th
34. Hot Water Return	*
35. Fire Line	F
36. Gas	•
37. Acid Waste	G
38. Drinking Water Flow	
39. Drinking Water Return	Minimum production this sent correspondents that data decompositions are
40. Vacuum Cleaning	
41. Compressed Air	A
Canada	
SPRINKLERS Constitution	
42. Main Supplies	S
43. Branch and Head 44. Drain	
TT. DIAM	5 S

CHAPTER 48. ABBREVIATIONS, SYMBOLS, STANDARDS

GRAPHICAL SYMBOLS FOR DRAWINGS

Ductwork

- 45. Duct (1st Figure, Width; 2nd, Depth)
- 46. Direction of Flow
- 47. Inclined Drop in Respect to Air Flow
- 48. Inclined Rise in Respect to Air Flow
- 49. Supply Duct Section
- 50. Exhaust Duct Section
- 51. Recirculation Duct Section
- 52. Fresh Air Duct Section
- 53. Other Duct Sections
- 54. Register
- 55. Grille
- 56. Supply Outlet
- 57. Exhaust Inlet
- 58. Top Register or Grille
- 59. Center Register or Grille
- 60. Bottom Register or Grille
- 61. Top and Bottom Register or Grille
- 62. Ceiling Register or Grille
- 63. Louver Opening
- 64. Adjustable Plaque

E ← 12×20

R ← 12×20

FA 12×20

KE (Label) Kitchen Exh

R

G

 $\frac{11}{16} \frac{20 \times 12 - 700 \, cfm}{20 \times 12 - 700 \, cfm}$

 $\frac{CR}{CG} \frac{20 \times 12 - 700 \, cfm}{20 \times 12 - 700 \, cfm}$

BR 20×12 - 700 cfm BG 20×12 - 700 cfm

T&BR 20×12-ea.700 cfm T&BG 20×12-ea.700 cfm

CR 20 × /2 - 700 cfm CG 20 × /2 - 700 cfm

P-20×12-700 cfm

P-20×12-700 cfm

P-20"φ-700 cfm

GRAPHICAL SYMBOLS FOR DRAWINGS

Ductwork

- 65. Volume Damper
- 66. Deflecting Damper
- 67. Deflecting Damper, Up
- 68. Deflecting Damper, Down
- 69. Adjustable Blank Off
- 70. Turning Vanes
- 71. Automatic Dampers
- 72. Canvas Connections
- 73. Fan and Motor With Guard
- 74. Intake Louvers and Screen

CHAPTER 48. ABBREVIATIONS, SYMBOLS, STANDARDS

GRAPHICAL SYMBOLS FOR DRAWINGS	Heating and Ventilating
75. Heat Transfer Surface, Plan	
76. Wall Radiator, Plan	
77. Wall Radiator on Ceiling, Plan	
78. Unit Heater (Propeller), Plan	
79. Unit Heater (Centrifugal Fan), Plan	
80. Unit Ventilator, Plan	
Traps	
81. Thermostatic	<u></u> — ⊗
82. Blast Thermostatic	
83. Float and Thermostatic	
84. Float	
85. Boiler Return	
Valves	Ь
86. Reducing Pressure	
87. Air Line	
88. Lock and Shield	
89. Diaphragm	
90. Air Eliminator	
91. Strainer	
92. Thermometer	
93. Thermostat	T

VENTILATING AIR CONDITIONING GUIDE 1943 HEATING

Refrigerating

GRAPHICAL SYMBOLS FOR DRAWINGS 94. Thermostat 110. Low Side Float (Self Contained) 95. Thermostat (Remote Bulb) 111. Gage 96. Pressurestat 112. Finned Type Cooling Unit, Natural Convection 97. Hand Expansion Valve 113. Pipe Coil 98. Automatic Expansion Valve 114. Forced Convection Cooling Unit 99. Thermostatic Expansion Valve 115. Immersion Cooling Unit 100. Evaporator Press. Regulating Valve, Throttling Type 116. Ice Making Unit 101. Evaporator Press. Regulating Valve, Thermostatic Throttling Type 117. Heat Interchanger 102. Evaporator Press. Regulating Valve, Snap-Action Valve 118. Condensing Unit, Air Cooled 103. Compressor Suction Pressure Limiting Valve, 119. Condensing Unit, Throttling Type Water Cooled 104. Hand Shut Off Valve 120. Compressor 105. Thermal Bulb 106. Scale Trap 121. Cooling Tower 107. Dryer 122. Evaporative Condenser 108. Strainer 123. Solenoid Valve 109. High Side Float 124. Pressurestat With High Pressure Cut-Out

CHAPTER 48. ABBREVIATIONS, SYMBOLS, STANDARDS

TABLE 1. SPECIFIC HEAT OF SOLIDS

Materials	Temperature F	Specific Heat	Authority
Alloys			
Brass, Red	32	0.0899	S
Brass Vellow	32	0.0883	S
Bronze (80Cu 20.5n)	57-208	0.0862	S
Brass, Yellow Bronze (80 <i>Cu</i> , 20 <i>Sn</i>) Monel Metal	68-2370	0.127	s
Aluminum	80-212	0.212	Š
Asbestos		0.195	888888 8888 8
		0.195	ŭ
Brickwork	104-1637	0.155	Ï
Carbon (Graphite)		0.278	Ĥ
Coal		0.278	Ħ
Coke			Ħ
Concrete		0.270	S
Copper	64-212	0.0928) j
Fire Clay Brick	77–1832	0.258	1
Glass			
Crown		0.161	S S S H
Flint	50-122	0.117) <u>S</u>
Gold	64	0.0312	<u> </u>
Gypsum		0.259	l Ĥ
Ice		0.487	l S
Ice		0.434	S S S
Iron, Pure		0.1043	S
Iron, Pure		0.127	M
Iron, Cast		0.1189	H
Iron, Wrought		0 1152	H
Lead		0.0297	S
Nickel		0.1032	S S H
Masonry		0.2159	H
		02	H
Plaster		ŏ ō319	S
Platinum	30-212	0 0013	1
Rocks Gneiss	63-210	0.196	S
Gneiss		0.192	l š
Granite		0.132	Š
Limestone		0.21	3
Marble		0.21	3
Sandstone			1
Silver		0 0536	급
Steel		0 1175	ововононово
Sulphur	240-320	0 220	٦
Silica Brick	77–1832	0.263	1 2
Tin	. 77	0 0548	1 00
Woods (Average)	. 68	0 327) S
Zinc	32	0 0913	

TABLE 2 SPECIFIC HEAT OF LIQUIDS

Liquid	Temperature F	Specific Heat	Authority
Alcohol, Ethyl	32 59-68 59-122 360 68 70-136 64 64 59	0.548 0.601 0.576 0.041 0.03325 0.511 0.980 0.903 1.000	ава ванава

TABLE 3. SPECIFIC HEAT OF GASES AND VAPORS

TABLE 3. SPECIFIC TIEAT OF CASES AND VALUE						
Substance	Temperature F	Specific Heat at Constant Pressure	Ratio of Specific Heat $C_{\mathbf{p}}/C_{\mathbf{v}}$	SPECIFIC HEAT AT CONSTANT VOLUME (COMPUTED)	Authority	
Air	79–388 68–1900 70–212 32–392 55–404 212	0.2375 0.5356 0.2169 0.2426 0.3145 0.24 (Approx.) 3.41 0.2438 0.2175 0.421	1.405 1.277 1.3003 1.395 1.419 1.41 1.3977 1.305	0.169 0.419 0.1668 0.1736 	<i>овово</i> новово	

Notes: When one temperature is given the true specific heat is given, otherwise the value is the mean specific heat between the given limits.

AUTHORITIES: S—Smithsonian Physical Tables, 1933; I—International Critical Tables; H— Heating, Ventilation and Air Conditioning, by L A. Harding and A. C. Willard; M—Engineers' Handbook, by Lionel S. Marks

Table 4. State Codes, Standards or Laws Relating to the Heating, Ventilating or Air Conditioning of Buildings

STATE	Codes, Standards or Laws	WHERE MATERIAL CAN BE OBTAINED
ALABAMA	None.	
ARIZONA	Law 56-117. Laundry—hours of labor—venti- lation—penalty; Law 65-218. Ventilation (with reference to mines).	Secretary of State, State House, Phoenix.
ARKANSAS	Installation of power boilers of 15 lb steam pressure or over.	Dept. of Labor, State Capitol, Little Rock.
CALIFORNIA	Reference to the ventilation laws may be found in the California Health and Safety Code under the following sections: Sec. 16800—Construction Requirements, Air Ducts. Sec. 16820-16835—Vent Shafts. Sec. 16900-16905—Gas Appliance Vents. Sec. 17080-17088—Garages. Sec. 16233-16235, 16270-16271—Rooms. Sec. 16300-16305—Stairways.	Supervisor of Documents, 214 State Capitol, Sacramento.
COLORADO	None.	
CONNECTICUT	School Building Code (1941); Chapter 6—Structural and Mechanical, D. Heating and Ventilation.	State Dept. of Education, Div. of Instruction, Hartford.
	Sanitary Code: Section 2566 specifies the number of cubic feet of air for children and adults in tenement and boarding houses; Regulation 280 and 281 is concerned with ventilation to be provided for industrial processes.	State Dept. of Health, Hartford.
	Labor Laws (1939): VII. Industrial Safety, A. General, Sec. 2355—Lighting and sanitary condution of factories and round houses; VIII. Industrial Health and Sanitation, Legislation, Sec. 2355—Lighting and sanitary condition of factories and round houses.	Dept. of Labor and Factory Inspection, Hartford.
DELAWARE	Minimum Standards for School Buildings and Sites (1931).	State Board of Education, Dover.
DISTRICT OF COLUMBIA	Building Code (1941), Section 505—Mechanical Ventilation; Section 702, Article 702-04—Construction of Air Conditioning Ducts.	Engineering Dept., Dept. of Inspection, Govt. District of Columbia.
FLORIDA	School Code Law; Laws Relating to Construction Hotels, Apartment Houses, and Public Eating Places.	Secy. of State, Tallahassee.
GEORGIA	None.	
IDAHO	None.	
ILLINOIS	Laws Relating to Labor and Employment (1941) Health and Safety Act; Occupational Diseases; Compressed Air Employment.	Dept. of Labor. Capitol Bldg., Springfield.
	Illinois School Law, Section 15, paragraph 20 is amplified in April, 1940, Educational Press Bulletin with sections on Ventilating and Heating.	Superintendent of Public Instruction, Springfield.
INDIANA	Rules and Regulations of the State Board of Health Governing the Construction, Equipment and Main- tenance of Sanitary Features of Public and Paro- chial School Buildings (1936).	Bureau Sanitary Engineering, State Board of Health, 1098 W. Michigan St., Indianapolis.
	Rules and Regulations of the Administrative Building Council—Article VIII, Sections 19-8-1, 19-8-2 and 19-8-3 Pertaining to Ventilation of Rooms and Plumbing Fixtures.	
IOWA	Code of Iowa, Chapter 323, Requirements for Sanitation and Ventilation of Single Family and Multiple Dwellings.	Dept. of Health, Div. Public Health Engrand Industrial Hygiene, Des Moines.
	Code of Iowa, Chapter 73, Ventilation Requirements in Industrial Establishments Pertaining to Health and Safety.	Des montes.
	Department of Public Instruction Rules Relating to Heating and Ventilating of School Buildings.	

CHAPTER 48. ABBREVIATIONS, SYMBOLS, STANDARDS

Table 4. State Codes, Standards or Laws Relating to the Heating, Ventilating or Air Conditioning of Buildings—(Continued)

7 2511 1 1 2 2 2 2	TING OR THE CONDITIONING OF DUILDINGS	-(Continued)	
State	Codes, Standards or Laws	Where Material Can be Obtained	
KANSAS	Matter is left to judgment of safety engineer inspector. See Labor Laws of Kansas (1940), G. S. 1935, 44-636.	Labor Department, 801 Harnson, Topeka.	
KENTUCKY	Statutes of Kentucky: Section 2060b-1 provides for the proper ventilation of food establishments; Sections 2739-19, 2739-24, 2739-37, and 2739-42 provide for the proper ventilation of mines.	Secy. of State, Frankfort.	
LOUISIANA	None.		
MAINE	Regulations bearing on this subject in reference to the installation of plumbing fixtures in closed rooms are outlined in Sections 101 and 102 of the State Plumbing Code.	Division of Sanitary Engineering, Dept. of Health and Welfare, State House, Augusta.	
	Rules and Requiations Relating to Sanitation of Factories and Mercantile Establishments include Sections on Ventilation.		
MARYLAND	Standards for Maryland School Buildings, Revised, 1941.	State Dept. of Education, Annapolis.	
MASSACHUSETTS	Laws Relating to the Erection, Alteration, Inspection and Use of Buildings (Form A); Regulations Relative to the Inspection of Buildings Which Are Subject to the Provisions of Chapter 143, General Laws (Form B-1).	Dept. of Public Safety, Division of Inspection, 3 Hancock St., Boston.	
MICHIGAN	Housing Law of Michigan (1939).	Secretary of State, Capitol Bldg., Lansing.	
MINNESOTA	Laws Relating to Sanitation, Ventilation and Toilets in Factories, etc. Also requirements in regard to garages, spray rooms and spray booths.	Industrial Commission, State Office Bldg., St. Paul.	
MISSISSIPPI	None.		
MISSOURI	State Labor and Industrial Inspection Laws (1941).	Dept. of Labor and Industrial Inspection, State Office Bldg., Jefferson City.	
MONTANA	Revised Codes of Montana (1935), Section 1175 refers to ventilation of school buildings.	Secretary of State, Helena.	
NEBRASKA	Safety Codes (1937) and Labor Laws (1941).	Dept. of Labor, Lincoln.	
NEVADA .	Nevada Compiled Laws (1929), Sections 5894 and 5715 pertain to School Buildings. Compiled Labor Laws (1937), Part 14. Section 4241 Ventilation of Mines; Part 8, Sec. 2817 Ventilation Bunk Houses.	Secretary of State, Carson City.	
NEW HAMPSHIRE	Under the provisions of Chapter 177 of the Public Laws, Safety and Health of Employees, recommendations are made in mills, factories, workshops, commercial and mercantile establishments for proper ventilation.	Bureau of Labor, Concord.	
NEW JERSEY	Industrial Code Bulletins and Labor Laws.	State Dept. of Labor, Wallach Bldg., Trenton.	
NEW MEXICO	Regulations Governing the Heating and Ventilation of Tourist Courts, Tourist Camps, Hotels and Lodging Houses (1939).	Dept. of Public Health, Santa Fe.	
NEW YORK	Commissioner of Education is authorized to determine the requirements for proper ventilation of school buildings.	Commissioner of Education, Albany.	
	Codes are enforced by the Department of Labor which contain sections on ventilation requirements pertaining to a number of industrial processes, such as: No. 10 Foundry Code; No. 12 Dust, Fumes and Gases; No. 32 Automobile Spray; No. 33 Rock Drilling; No. 34 Stone Crushing; No. 35 Stone Cutting and Finishing.	Secretary, Labor Dept., 80 Centre St., New York.	
NORTH CAROLINA	Building Code (1936) Chapter 14, Heating and Mechanical Ventilation, Experiment Station Bulletin No. 10.	North Carolina State College, Raleigh.	

Table 4. State Codes, Standards or Laws Relating to the Heating, Ventilating or Air Conditioning of Buildings—(Concluded)

VERTIES	THIS OR THE COMPITIONING OF PORDINGS	(contracted)	
State	Codes, Standards or Laws	WHERE MATERIAL CAN RE ORTAINED	
NORTH DAKOTA	None.		
оню	Ohio State Building Codes: No. 102 Theaters and Assembly Halls (1940); No. 103 School Buildings (1938); No. 105 Churches (1938); No. 106 Hospitals and Homes (1936); No. 107 Hotels and Apartments (1940); No. 108 Public Garages (1938); No. 109 (1941); Workshops, Factories, Mercantiles and Office Buildings.	Dept. of Industrial Relations, Div. of Factory and Building Inspection, Columbus.	
OKLAHOMA	KLAHOMA Bureau of Factory Inspection Bulletin No. 7-A, containing the laws governing the inspection and regulation of factories or other places where labor is employed. Bureau of Factory Inspection Book No. 11-A—Petroleum Industry Safety Standards.		
OREGON	None.		
PENNSYLVANIA	Regulations For: Abrasive and Polishing Wheels; Brewing and Bottling; Canneries; Cereal Mills, Malt Houses and Grain Elevators; Construction and Repairs; Dry Color Industry; The Storage, Handling and Use of Explosives; Foundries; Industrial Sanitation; Regulations for Labor Camps; Laundries; Lead Corroding and Lead Oxidizing; Logging, Sawmill, Woodworking, Veneer and Cooperage Operations; Mines Other Than Coal Mines; Miscellaneous Hazards and Conditions of Employment; the Manufacture of Nitro and Amido Compounds; Plants Manufacturing or Using Explosives; Printing and Allied Industries; Spray Coating; Tunnel Construction and Work in Compressed Air.	Dept. of Labor and Industry. Harrisburg.	
RHODE ISLAND	Law Governing Safety and Health in Buildings and Factories (1940).	Dept. of Labor, State House, Providence.	
SOUTH CAROLINA	None.	Self-regression to the self-regression to the	
SOUTH DAKOTA	State Code, Chapter 13.2018 Care of Steam Boilers; Chapter 27.1711 Ventilation of Hotels, Rooming Houses, Restaurants, Tourist Camps.	Office of State Engineer, Pierre.	
TENNESSEE	Williams Code of Tennessee, Sections 5341-5343, which deal with the ventilation of workshops and factories, places of amusement, etc.	Secy, of State, Nashville.	
TEXAS	School Building Law, Bulletin 382, February, 1938.	Dept. of Education, Austin.	
UTAH	None.	Since Anniagonalistic particles have a proper account component or secure	
VERMONT	Public Laws Rules and Regulations Relating to Public Buildings, Sanitation, Plumbing, Heating and Ventilation (1941).	State Board of Health, Burlington.	
VIRGINIA	Mining Laws of State of Virginia have provisions regarding ventilation in mines.	Dept. of Labor and In- dustry, Finance Bldg., Richmond.	
WASHINGTON	General Safety Standards: Standard No. 45 Blower and Exhaust Systems; No. 46 Respirators, Helmets, etc.; No. 47 Carbon Monoxide Gas; No. 202 Ventilation; No. 210 Laundry Ventilation; No. 218 Dry Cleaning with Volatile, Inflammable or Explosive Liquids. Coal Mining Laws; Occupational Disease Code; Metal Mine Standards; Safety of Persons Employed in Tunnels, Quarnes, Caissons or Subways; Construction Code.	Dept. of Labor and Industries. Olympia.	
WEST VIRGINIA	Installation Regulations for Power Boilers.	Dept. of Labor, Charleston.	
WISCONSIN	Heating, Ventilation and Air Conditioning Code (1939). Applies to public buildings and places of employment.	Industrial Commission of Wisconsin, Madison.	
	General Orders on Dusts, Fumes, Vapors and Gases		
WYOMING	(1941).		

EMERGENCY WAR PRACTICES

INFORMATION given in the Technical Data Section of the Guide is based on standard and commonly accepted good practices. Due to war conditions and in order to save critical materials for war service, many substitutions in materials and changes in methods have been necessary. The purpose of this supplement is to indicate some of these practices used during 1942 to meet the conditions imposed by war.

Regulations by the U. S. War Production Board have banned the manufacture, installation and sale of heating, ventilating, air conditioning and refrigeration equipment of almost all kinds except for essential war and civilian use. Interpretation of the regulations discloses that all air conditioning for personal comfort is eliminated, and equipment for supplying preference orders only can be made available. In this way, the most essential needs of the war program, by virtue of their high priority rating, have first access to whatever equipment is available. Provision has been made for securing materials to permit emergency repair services to be rendered on existing equipment.

Physiological Principles

1. Due to the necessity of conserving fuel, attention has been directed toward the possibility of relaxing the A.S.H.V.E. winter optimum comfort standards of 66 deg effective temperature during the emergency. In a report² submitted to the Fuel Rationing Division of the U. S. Office of Price Administration, in September, 1942, a group of medical and public health authorities suggested minimum temperatures for emergency requirements, subject to local, state and municipal regulations or codes, as listed herewith in dry-bulb temperatures:

a. For the average private home, 60 to 68 F (majority opinion 65 F).

- b. For the average apartment house, 60 to 68 F (majority opinion 65 F).
- c. For hospitals and sanatoriums, 68 to 80 F (majority opinion 70 F, except operating rooms 80 F).
- d. For schools, 60 to 70 F (majority opinion 65 F).
- e. For department stores, office buildings, etc., 60 to 68 F (majority opinion 65 F).
- 2. Ventilation standards that have been recognized for many years are not being observed. In the case of schools, auditoriums and other places of public assemblage, where design standards of not less than 10 cfm per person of outside air have been previously used, it has been common practice to reduce this outside ventilation rate to 5 cfm per person. Air changes for toilets, locker rooms, rest rooms and kitchens have been reduced. The use of exhaust fans has been curtailed in favor of gravity or window ventilation wherever possible.

¹Compiled from information furnished by consulting engineers, manufacturers and trade association representatives.

³Medical and Public Health Aspects of Heating Oil Rationing, by L. D. Bristol, M.D. (A.S.H.V.E. JOURNAL SECTION, Heating, Priping and Air Conditioning, October, 1942, p. 627).

Heating Load

In the spring of 1942, the War Service Committee of the Society was appointed and immediately focused attention upon the importance of fuel conservation as a war measure³ and recommended a program which included Ten Ways to Save Fuel and Improve Heating Plant Efficiency which are enumerated herewith:

Fuel saving percentages are based on the total heat loss of a typical two-story detached residence without storm windows, insulation, or other fuel conservation measures, and are not necessarily cumulative but will often total 60 per cent in practice if all precautions outlined are adopted.

1. INSTALL STORM WINDOWS AND DOORS

 a. Application of storm windows and doors will save from 20 to 25 per cent.

Tightly-fitting storm sash enables the maintenance of higher indoor relative humidities without window condensation. Reduces down-draft of cold air at windows and together with increased glass surface temperature improves comfort of the occupant. The addition of humidity permits a reduction in dry-bulb temperature for equivalent comfort conditions, but this condition does not result in fuel saving.

If you want to install storm windows and doors, call your builder, lumberman, hardware dealer, or window manufacturer, who will give you an estimate of the cost. Some dealers maintain a stock of standard sized windows, which can be fitted to your window with a minimum of work. It is advisable to have the storm windows installed with hinges so that they can be partially opened during mild weather, and also to facilitate cleaning. However, when the storm windows are closed they must fit tightly against the window frame to be effective. A strip of felt placed in this joint will prevent air leakage.

The locks on the inside windows should be closed, as these tend to pull the windows tighter. If condensation appears on the

³War on Fuel Waste Week—Fuel Conservation (A.S.H.V.E. JOURNAL SECTION, Heating, Piping and Air Conditioning, September, 1942, p. 558). War on Fuel Waste, by B. M. Woods (A.S.H.V.E. JOURNAL SECTION, Heating, Piping and Air Conditioning, November, 1942, p. 699). See also War on Fuel Waste—How To Do It published by A.S.H.V.E. and available in pamphlet form.

'The heat losses through a typical two-story residence will be distributed approximately as follows: 30 per cent through the side walls of the house, 26 per cent through the windows and doors, 20 per cent through air leakage, 15 per cent through ceilings and roof, and 9 per cent through the floors. Percentage values abstracted from paper—Automatic Gas Burners, by C. G. Segeler (A.S.H.V.E. Transactions, Vol. 38, 1932, p. 548).

inside of storm windows it may be necessary to bore a small hole in the bottom of the sash to allow for the entrance of a small quantity of air between the windows.

In the case of those windows where the introduction of light is not important, it is possible to nail panels of rigid insulation board to the window sash, or make such panels easily removable. A cloth window shade fully drawn at a window, or the pulling of window length drapes across the window, will also materially reduce the heat loss through a window.

2. INSULATE YOUR HOME

- a. Ceiling insulation will save from 10 to 15 per cent.
- b. Wall insulation will save from 12 to 20 per cent, Application of insulation will improve inside wall surface temperatures, thus increasing the comfort conditions.

Call an insulating contractor and have him prescribe the proper treatment and give you an estimate of the cost. One method of insulating an accessible attic is to blow loose fill insulation evenly spread to a depth of several inches into the space between the rafters; another is to apply batts or blanket insulation; and another is to apply rigid insulation boards.

To apply wall insulation to an existing structure, it is generally necessary to use a loose fill insulation, which may be poured or blown into the outside walls by removing sections of clapboards, brick, or other exterior materials.

3. ADD WINDOW AND DOOR WEATHERSTRIPPING

a. Installation of weatherstripping will save from 5 to 10 per cent. Savings are greater when applied to loose-fitting windows and doors.

There are weatherstripping contractors and dealers who are equipped to make proper installations. Partial results can be obtained by the use of felt strips tacked on the upper and lower sash, where they come in contact with the window frame.

In case there may be some windows in the house that can be permanently closed for the winter, it is possible to calk the openings with strips of heavy cotton cord or similar material. Also, inexpensive tape can be applied as a seal around all the cracks of the window to prevent infiltration.

Air leakage can also be reduced by calking cracks around windows and door frames, which have been caused by the gradual shrinkage of the wood frame from the exterior building materials or concrete foundation. This is an important item in your fuel saving program.

4. AVOID OVERHEATING

a. Install thermostatic control for the maintenance of uniform temperatures between 65 and 70 F, and adapt suitable clothing for comfort at these temperatures.

EMERGENCY WAR PRACTICES

If you have a thermostat, be sure that it is functioning properly and that it is located at some place in the house, where it is not subjected to unusual cold drafts. Good controls can be adjusted to operate automatic firing equipment, so as to maintain room temperatures within one degree above or below the thermostat setting. If you convert your heating plant from oil to coal, have your thermostat arranged so that it will operate the draft dampers on the boiler or furnace.

5. Lower Temperatures

 Reduce temperatures at night to about 60 F and fuel savings will range from 5 to 10 per cent.

If the thermostat setting is lower than 60 F, fuel savings will dimmish due to the necessity of reheating the house from an abnormally cold condition. Reducing the temperature from 72 F at 10:00 p.m. to 66 F and bringing temperature back to higher level at 5:30 a.m. made a saving of 10 per cent of the total fuel used in a test house.

b. When away for a weekend or several days set the thermostat at about 50 F which will prevent damage from freezing.

6. Do Not Heat Unused Rooms

- a. Disconnect or turn off the heat in the garage for the duration of the war. In the case of steam, this can be done by merely turning the valve to the radiator. With hot water heating systems, there is still a small circulation of water through the radiator even though the valve is closed and it is therefore necessary to disconnect the radiator and plug the pipe branches at some place within a heated space to avoid freezing. Drain radiator carefully.
- b. Most sun rooms have an excessive amount of heat loss due to the number of windows and for that reason it is recommended that the radiators in these rooms be disconnected. Then, tightly seal this room from the rest of the house by the use of doors or the application of panels of insulating board.
- c. As all warm air tends to rise, it is important to keep all doors and hatches tightly closed to attic spaces and unused rooms. If you are in the habit of opening bedroom windows for sleeping, be sure and turn off the heat and close the doors to the warm portions of the house. In most cases, a window raised from 6 to 10 in. will provide all the cooling and outside air needed at night in a bedroom.
- d. All fireplaces burn fuel inefficiently, but during the mild seasons of the year they can be used for necessary warmth instead of turning on the principal heating plant for the residence. When a fireplace is not in use, it

⁵Operation of the Research Home with Reduced Room Temperatures at Night, by A. P. Kratz, W. S. Harris and M. K. Fahnestock (A.S.H.V.E. JOURNAL SECTION, *Heating, Priping and Air Conditioning*, December, 1942, p. 743). should be properly sealed, or the dampers should be closed tightly to prevent the loss of heat up the chimney from other sources in the house. Many fireplaces have no dampers.

e. Avoid keeping all outside doors open or standing and talking in an open doorway.

7. INSULATE HOT WATER HEATER

- a. If your hot water storage tank is bare, call your local heating contractor and have an adequate amount of insulation applied to conserve heat. This should be done even though an auxiliary heater such as electricity or gas is used to heat the hot water.
- b. Call the plumber immediately and have him repair all leaky hot water faucets, because this wastes both water and fuel.

8. IMPROVE RADIATOR EFFICIENCY

- a. Purchase an inexpensive long handled brush and remove all the dirt collections in the pockets of the radiators. If possible, remove the fronts or cabinets of all convectors and clean all the dirt deposits in the radiator unit. With closely spaced fins in the radiator section of some convectors, obstructions such as dirt will reduce the air circulation to the extent that the efficiency is seriously impaired.
- b. It is important to keep heavy drapes and curtains away from all radiators and the outlet grilles of convectors, because they restrict the free circulation of air over the unit. Homemade wooden shelves and grilles surrounding or partially enclosing radiators act in some cases like dampers and should be removed or replaced with a correctly designed radiator shield or enclosure. A properly designed cover or shelf over the top of a radiator will deflect the heated air and prevent it from immediately rising.
- c. Many radiators have been painted with bronze and aluminum finishes. The application of ordinary oil paints to such radiators will improve their efficiency as much as 10 per cent.
- d. Place a surface having a high reflectivity behind each radiator which will reflect the heat back into the room that is normally absorbed in the wall at this point.

9. CHECK FURNACE COMBUSTION EFFICIENCY

a. Removal of soot from inside surfaces of furnace or boiler will save about 5 per cent. Soot accumulation clogs the passages and reduces the draft. The soot and fly-ash located on the inside of a furnace or boiler can be removed with a long handled stiff wire brush. Also the smoke pipe connection between the furnace or boiler and the chimney should be taken down and the soot removed. It is a good plan to clean the chimney if this has not been done for some time and be sure and remove the soot dislodged from the chimney through the cleanout door at the chimney base.

b. The furnace combustion efficiency should be checked with scientific instruments by your heating contractor or burner dealer. The three important indicators of good combustion are chimney draft, stack temperature in degrees Fahrenheit, and percentage of carbon dioxide in the flue gas. A poor operating oil burner unit may have a stack temperature as high as 800 F with the carbon dioxide around 5 per cent. A good operating oil burner should have a stack temperature of approximately 450 F with a carbon dioxide content of 10 per cent.

10. RECONDITION HEATING PLANT

- a. Many home owners are unknowingly wasting fuel in their heating plants at the present time and for that, reason a competent heating contractor should be obtained to survey and test the installation. Frequently an inefficient apparatus can be repaired or adjusted at a small charge with resulting fuel savings that will more than compensate for the expenditure within a short time.
- b. The thermostatic control equipment including the room thermostat, limit controls, water temperature regulator, safety devices, low water cut-out, etc., should be carefully inspected and adjusted for efficient operation.
- c. If there are cracks or pieces of insulation loose on the boiler or piping, they should be repaired or replaced. Have the radiator air valves either cleaned, repaired or replaced, as the contractor recommends. It is also a good idea to have all of the steam radiator traps checked for efficient operation and the radiator valves packed in case it is necessary. Some radiators become air bound from operation and these should have the air purged from them.
- d. In a warm air furnace system it is important to have the air filter in the proper condition, as a dirty unit will increase the air resistance. To alleviate this condition the filter should be removed and inspected. In some cases a vacuum cleaner may be used to remove the superfluous dirt from the outside surface of the filter. Make sure that all of the air supply and return grilles are open and unobstructed, so that the air will be circulated to all of the intended portions of the house. In case there is an outside air intake, it should be closed off for the duration.

Combustion and Fuels

To supplement the Ten Ways to Save Fuel and Improve Heating Plant Efficiency, the A.S.H.V.E. War Service Committee also outlined several suggestions for the hand firing of coal in those residential heating plants which could be converted from automatically fired oil or gas:

 The furnace grate area and the depth to which the coal is fired are the two governing factors

- in the selection of size of coal. Consult the directions provided by the manufacturer of the boiler or furnace, or your coal dealer for the proper size and kind of fuel to be used. Do not wet the coal before burning it. Garbage or rubbish should not be burned in the heating system.
- 2. Leave from two to three inches of ashes on the grate at all times for protection against excessive heat and to prevent unburned coal falling through. Coal should be heaped as much as possible against the rear or side walls of the firebox so that a portion of the glowing fuel is always left exposed to ignite the gases. Keep the firebox filled to a level with the bottom of the firing door. Avoid poking or punching holes in the fire.
- 3. After fire is started the turn damper in the smoke pipe should be nearly shut at all times. Control the fire with the check damper in the smoke pipe and the ash-pit damper. For moderate heating requirements, open check damper wide and close ash-pit damper. As additional heat is required close check damper partially or fully and open ash-pit damper similarly. The damper in the fire door should be slightly open at all times. Do not leave fire door open as this wastes coal. The ash-pit doors and draft slide should fit tightly.
- 4. Do not shake the fire unnecessarily. Stop shaking when the first red glow appears in the ash-pit. Wet ashes thoroughly and remove just before next shaking. Do not allow ashes to accumulate excessively in the ash-pit, as this shuts off the draft and may burn out the grates.

Automatic Fuel Burning Equipment

- 1. No automatic coal stokers having a capacity of 60 lb or less can be manufactured during the emergency. Larger stokers have been made available for converting big users of fuel oil to coal, when approved by the War Production Board.
- 2. The shortage of fuel oil has restricted the manufacture of oil burners, except on government preference order. It is possible to replace an existing oil burner in a residence, in case the need arises, providing the installation cannot be converted to coal.
- 3. The manufacture of automatic gas heating equipment has been restricted for the emergency. In case there is a need to replace an existing unit, the new installation may be the equivalent, but not a substantial improvement over the old installation.

Heating Boilers

1. Boilers of 10,000 sq ft of equivalent steam radiation and less have been con-

structed of cast-iron to conserve on critical materials, and above this capacity steel has been permitted.

- 2. Due to the advent of the airplane, it has been found necessary to shorten the boiler stacks nearer the roof line, and use axial flow propeller type induced draft fans. These induced draft fans have been inter-connected to the automatic fuel burning control equipment.
- 3. Induced draft has been used more frequently on boilers to eliminate steel stacks and radial brick chimneys.
- 4. Smoke breechings of masonry have been used wherever possible instead of steel.
- 5. Some previous central boiler plants have been designed with units generating steam at 100 lb per square inch. Steam at this pressure has been distributed to the several buildings on the system, with reducing pressure valves located at each building to take care of individual requirements. Instead of this design, it has been the practice in some cases, to use relatively low pressure cast-iron boilers for heating in the central plant and two or more 50 lb boilers for providing the necessary sterilizing and process steam supply. latter arrangement has necessitated a duplicate distribution system of piping with a consequent increase in poundage of metal for the whole installation, but an important saving has been made in critical boiler plate and reducing valves.

Radiators and Convectors

- 1. Cast-iron convectors or steel fin type radiation, instead of non-ferrous units, have been used.
- Radiator and convector cabinets and enclosures of substitute materials, such as wood, plastic and rigid fiberboard have been fabricated.
- 3. Large-tube cast-iron radiators are not available during the emergency, and the manufacturers have limited the production of small-tube cast-iron radiators to the ten sizes listed:

No. of Tubes Per Section	CATALOG RATING PER SECTION SQ FT EDR	Height Inches
3 or equal	1.6	25
4 or equal	1.6 1.8 2.0	19 22 25
5 or equal	2.1 2.4	22 25
6 or equal	1.6 2.3 3.0 3.7	14 19 25 32

Steam Heating Systems

- Radiator valve and trap bodies have been made of cast-iron instead of brass.
- 2. Plastic floor and ceiling plates have been used instead of metal plates.

Piping for Steam Heating Systems

1. Whereas steam supply mains for vacuum systems have been previously designed on the basis of a pressure loss of ½ lb per 100 ft of equivalent run and an initial pressure of 1 lb or less, some designers have used a pressure drop of 1 lb per 100 ft and an initial pressure of 5 lb per square inch.

Pipe, Fittings, Welding

- 1. All valves 2 in. and larger have been made of iron throughout, without bronze seats, seat rings and spindles.
- 2. Uncoated wrought iron or steel pipe has been used in lieu of brass or galvanized iron wherever practicable.
- 3. Expansion loops have been used in distribution systems instead of expansion joints.

Gravity Warm Air Furnace Systems

1. Standardization of the sizes and shapes of ducts, boots, stackheads, registers, and return air grilles has been voluntarily effected by the manufacturers in which about 75 to 80 per cent of former listed

catalog items have been eliminated, with no detriment to the industry.

- 2. The design of heating plants for defense housing units has favored the use of a small number of short, large-sized return air ducts.
- 3. Furnace sizes have been limited to a top capacity of about 80,000 Btu per hour. Steel furnace production has been severely limited. Attempts are being made to reduce the number of sizes of furnaces manufactured by any company.

Mechanical Warm Air Furnace Systems

- 1. Trends toward simplification have eliminated entirely return ducts from the second floor. Returns from the first floor in a two-story building have been reduced, and in some cases are limited to one in the living room and one in the stair hall to return the air from the second floor.
- 2. Both supply and return ducts are fabricated from asbestos products and fiber boards or other substitute materials with metal clips to hold them together.

Central Systems for Comfort Air Conditioning

- 1. Brick and tile coil supports instead of channel irons have been advocated.
- 2. Columns and beams for the support of heating and ventilating equipment have been made of wood rather than of structural steel.
- 3. In view of the curtailment of refrigeration for cooling, a practice has been followed of arranging the outdoor air supply so that the percentage of outside ventilation air can be increased in summer weather. With this arrangement dampered relief openings are provided to allow the excess supply air to discharge outside the building.

Unit Heaters, Unit Ventilators

1. With the exception of the motor, fans, heating element and damper, unit ventilators have been made with the outer

casing and other parts constructed of wood and processed wood materials. As a result of this substitution, such units have used about one-third of the steel required in the same unit of all steel construction; or the equivalent of approximately one-half a pound of vital metal per square foot of delivered direct radiation.

- 2. The casings of unit heaters have been constructed of fiber board sheets instead of steel. Likewise steel has been substituted for the heating element instead of copper and aluminum which were formerly used.
- 3. Large direct-fired unit heaters burning coal, oil or gas with capacities in excess of 1,000,000 Btu per hour have been made available for heating large spaces. In some instances, the outer casings of these units have been constructed of $\frac{3}{2}$ in. asbestos cement board.

Unit Air Conditioners, Unit Air Coolers

1. The manufacture of small self-contained type air conditioners has been prohibited. Where government orders require such equipment substitute materials have been used in the fabrication of the casings and other parts.

Refrigeration

1. Welded steel refrigerant piping has been used instead of copper.

Heat Transfer Surface Coils

1. Instead of using copper or brass for heating and cooling coils, steel pipe either plain or with steel fins has been used.

Spray Equipment

- 1. Evaporative cooling has been used where indoor conditions can be maintained within the desired specifications.
- 2. The tanks of air washers have been constructed of wood and other substitute products.
- 3. Spray nozzles for air washers and other spray equipment have been made partially or completely of plastics.

EMERGENCY WAR PRACTICES

Air Cleaning Devices

1. Wood frames have been used for air filters.

Fans

1. Inlet vane control with a single speed motor on fans has replaced the variable speed fan motor, and a control has been added for air volume adjustment.

Air Duct Design

- 1. Asbestos and processed wood board in lieu of galvanized or black iron and copper for ducts has been utilized.
- 2. Air ducts have been constructed of tongued and grooved wood, and intentionally oversized, so that at some future date it will be possible to line them with sheet metal.
- 3. A rigid insulation board faced on each side with a layer of at least 3/6 in. thick cement asbestos has served the dual purpose of providing a fireproof as well as an insulated duct construction.
- 4. Blue annealed steel sheets have been used instead of galvanized steel for ducts.
- 5. There has been a trend toward the use of higher duct velocities in design.
- 6. Wooden trusses and hangers have been used for supporting the duct work.
- Painted steel screens instead of brass or copper screens for air intakes is another substitute application that has been utilized.
- 8. A terra cotta tile flue set on an angle in the wall and wood have been used instead of metal louvers for air intakes. Roof intakes of wood have been constructed.
- 9. All nickel or chromium plating has been eliminated.
- 10. Felt has been used instead of sponge rubber for damper blades.

11. Paint has been used as a substitute for galvanizing on ferrous surfaces.

Sound Control

 Felt has been substituted instead of cork for isolating coil casings, motors, etc.

Instruments and Test Methods

1. Gage boards have been constructed of wood rather than of steel.

Industrial Exhaust Systems

- 1. Instead of using scarce materials in acid resisting fans, plain steel has been used with a baked plastic coating.
- 2. Wherever possible, masonry housings have been built for acid proof fans to save high grade alloys previously employed.

Natural Ventilation

1. The housings for roof ventilators have been constructed of wood.

Pipe and Duct Heat Losses

- 1. Steel lacquered bands on pipe covering have been used in lieu of brass bands.
- 2. Asbestos, glass wool, expanded vermiculite, etc., have been used instead of 85 per cent magnesia type pipe covering.
- 3. Rock cork insulation has been utilized for cold air ducts or pipes instead of natural cork.

Water Supply Piping and Water Heating

- 1. Cement lined steel pipe has been used for cold water instead of brass or galvanized iron.
- 2. Wood pipe ranging in sizes up to 12 in. has been used for carrying water under pressures of 100 lb per square inch-

INDEX TO U.S. WAR PRODUCTION ORDERS

AFFECTING

HEATING, VENTILATING AND AIR CONDITIONING

Revised to January 15, 1943.

Product Limitation Orders	Order No.	Fuel Conservation Orders	Order No
Coal Stokers	L-75		
Commercial Cooking and Food		Coal and Coke	M-97
and Plate Warming Equip- ment	L-182	Fuel Oil	L-56
Domestic Cooking Appliances		Liquified Petroleum Gas	L-86
and Heating Stoves	L-23-b & c & d	Manufactured Gas	L-174
Extended Surface Heating Equipment	L-107	Natural Gas	L-31
Farm Machinery and Equip- ment	L-170		
Furnaces	L-22 & L-22-a	Raw Material Conservation	
General Industrial Equipment	L-123	Orders	
Heat Exchangers	L-172	41 1	
Household Articles	L-30 & L-30-d	Aluminum	M-1-d, h & i
Instruments, Valves, and	D-00 & D-00-4	Asbestos	M-79 & M-123
Regulators	L-134	Cadmium	M-65 & M-65-a
Laboratory Equipment	L-144	Chromium	M-18-a & b
Low Pressure Cast-Iron Boilers	L-187	Cobalt	М-39 & М-39-ь
Metal Household Furniture		Copper	*
(Includes Radiator Covers and Under-sink Cabinets)	L-62	Copper	M-9-a
Oil and Gas Burning Domestic	15-02	Copper Products	M-9-c
Space Heaters	L-173	Copper Scrap	M-9-b
Oil Burners	L-74	Copper Usage	M-9-c-4
Power, Steam, and Water		Cork	M-8-a
Equipment	L-154	Cotton Duck	M-91
Simplification of Plumbing and Heating Products	L-42	Iron and Steel	
Water Heaters and Tanks	L-185	Alloy Iron and Steel	M-21-a
The state of the s	2-100	Chrome Steel	M-21-d
Distribution Orders		Heat Resistant Alloy Iron and Steel	M-21-g
Plumbing and Heating	T WA	Iron and Steel, general	M-126
Distribution	L-79	Iron and Steel Scrap	M-24.
Suppliers' Inventories Used Electric Generating	L-63		M-24-b & c
Equipment and Steam		Pig Iron	M-17
Boilers	L-102	Steel Plates	M-21-c
Compton of an Oalon		Tin Plate and Terne Plate	M-21-e
Construction Orders		Iron and Steel Warehouses	M-21 & M-21-b
Defense Projects	P-19-h	Istle and Istle Products	M-138
Defense Housing Projects	P-55	Jute	M-70
Limitation on Construction	L-41, L-41-a &	Lead	M-38 & M-38-c
Remodeling for Defense	L-41-b	Nickel	M-6-a, b & c
Housing	P-110	Rubber	M-15-b &
			M-15-b-1
Repair and Maintenance		Synthetic Resins	M-25
Orders		Thermoplastics	M-154
Farm Machinery and Equip-		Tin	M-43 &
ment	P-95	Vanadium	M-43-a
Industrial, Institutional, Governmental	P-100	Vanadium Zinc	M-23-a
Plumbing and Heating	P-84	Dine	M-11,
Utilities	P-46.		M-11-a & b & M-11-1
	P-46-a & b & c	Copper	M-11-1 M-9-c-3
	070		111-0-C-9
	סקט		

In this Catalog Data Section of The Guide 167 manufacturers present detailed descriptions of modern heating, ventilating and air conditioning equipment—235 pages of valuable data, profusely illustrated.

Alphabetical listing of advertisers—on pages 875-880—permits ready reference to the products of a specific manufacturer.

For convenience in locating manufacturers' data on various types of apparatus and materials, the equipment shown in the Catalog Data Section has been grouped as follows:

Air Conditioning	881- 928
Air System Equipment	929- 994
Controls and Instruments	995-1018
Heating Systems	1019-1092
Insulation	1093-1122

A classified Index to Modern Equipment -on pages 1137-1160—contains complete listings of manufacturers whose products are described in the Catalog Data Section.

ALPHABETICAL INDEX TO ADVERTISERS

HEATING VENTILATING AIR CONDITIONING GUIDE, 1943

A	
A	Page
Acme Industries, Incorporated, Jackson, Michigan	
Aerofin Corporation, 410 S. Geddes St., Syracuse, N. Y.	
Air & Refrigeration Corporation, 475 Fifth Ave., New York, N. Y	
Air-Maze Corporation, 5202 Harvard Ave., Cleveland, Ohio	
Airtemp, Division of Chrysler Corporation, Dayton, Ohio	
Airtherm Manufacturing Co., 710 S. Spring Ave., St. Louis, Mo	
Alco Valve Company, Inc., 2638 Big Bend Blvd., St. Louis, Mo	996
Alfol Insulation Co., Inc., 155 East 44th St., New York, N. Y	
American Air Filter Co., Inc., 673 Central Ave., Louisville, Ky	932–933
American Artisan (a pub.), 6 N. Michigan Ave., Chicago, Ill	1128
American Blower Corporation, Detroit, Mich.	884–885
American Brass Co., The, Waterbury, Conn.	1090–1091
American Coolair Corporation, 3606 Mayflower St., Jacksonville, Fla	962–963
American District Steam Company, North Tonawanda, N. Y	1076, 1116
American Moistening Company, Providence, R. I	944
American Radiator & Standard Sanitary Corporation, Pittsburgh, Pa	1042-1043
American Rolling Mill Co., The, Middletown, Ohio	991
American Society of Refrigerating Engineers, 50 West 40th St., New York,	N. Y 1126
Anderson Products, Inc., Cambridge, Mass.	1086
Anemostat Corp. of America, 10 East 39th St., New York City, N. Y	
April Showers Company, 4126 Eighth St., N. W., Washington, D. C	945
Armstrong Cork Company, Lancaster, Pa	1095
Armstrong Machine Works, 851 Maple St., Three Rivers, Mich.	1078-1079
Ashcroft Guage Div., American Schaeffer & Budenberg Instrument Div., Manning, Maxwell & Moore, Inc., Bridgeport, Conn	
Automatic Products Company, 2450 North 32nd St., Milwaukee, Wis	
Autovent Fan & Blower Co., Div., Herman Nelson Corp., The, Moline, I	
ridiovent I an & blower co., biv., rierman rieson corp., riic, monne, r	<i>02</i> 1

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

-	В	
_		Page
Babcock & Wilcox Com	pany, The, 85 Liberty St., New York, N. Y.	1044
E. B. Badger & Sons Co	o., 75 Pitts St., Boston, Mass	1077
	· · · · · · · · · · · · · · · · · · ·	953
	ny, Rockford, Ill	980, 998
	orated, 129 Brookside Ave., Boston, Mass	1021
	y, 1817 South 66th St., Milwaukee, Wis	964
	y, Morton Grove, Ill	1022-1023
Bethlehem Steel Compa	iny, Bethlehem, Pa	992
Brownell Company, Th	e, Dayton, Ohio	1066
Brunner Manufacturing	Co., Utica, N. Y	954
	y, 17825 St. Clair Ave., Cleveland, Ohio.	897
Buffalo Forge Company	y, 450 Broadway, Buffalo, N. Y	965
Buffalo Pumps, Inc., 45	0 Broadway, Buffalo, N. Y	1072
Burnham Boiler Corpor	ation, Irvington-on-Hudson, N. Y	
_		
_	С	
E. K. Campbell Heatin	g Co., 2441-3-5 Charlotte, Kansas City, Mo.	000
Carey Philip Co. The	Lockland, Cincinnati, Ohio	900
Carnegie Illinois Steel	Corporation, Pittsburgh, Pa	1096
Carrier Corporation Su	racuse, N. Y	994
Celeter Corporation Ti	he, 120 S. LaSalle St., Chicago, Ill.	886-887
Champion Blower & Fo	rge Co., Lancaster, Pa	1097
Chicago Pump Compan	y, 2330 Wolfram St., Chicago, Ill.	966
Clarage Fan Company	Kalamazoo, Mich	1073
Coal-Heat (a pub) 20	W. Joshan Dland Chinama III	888
Cochrane Corporation	2120 North 17th Ct. Diff. Little Tr	. 1127
Combustion Engineering	3130 North 17th St., Philadelphia, Pa.	1080
W B Copper Engineer	g Company, Inc., 200 Madison Ave., New York, N	. Y 1067
Coppus Engineering Co	ing Corp., 114 East 32nd St., New York, N. Y	934-935, 981
Croppus Engineering Co	rporation, 339 Park Ave., Worcester, Mass	
Curtis Refrigerating Ma	igan Ave., Chicago, Ill	. 1046–1047
1959 Kienlen Ave	chine Division of Curtis Manufacturing Co., St. Louis, Mo	055
	St. Bouls, Monania	955
-	D	
-		
DeBothezat Division, A	merican Machine & Metals, Inc.,	
Detroit Lubricate: Co	, East Moline, Ill.	967
Detroit Stoless Com	apany, Detroit, Mich	. 1000-1001
Detroit Stoker Compan	1068-1069	
Dole Valve Company, 1	1087	
Drave Commercial 200	a pub.), 1900 Prairie Ave., Chicago, Ill.	1130–1131
C A Dunh C	Penn Ave., Pittsburgh, Pa	908–909
C. A. Dunnam Compan	y, 450 E. Ohio St., Chicago, Ill.	1024-1025

INDEX TO ADVERTISERS

E	
	Page
Eagle-Picher Lead Company, The, American Bldg., Cincinnati, C	Ohio 1100
Ehret Magnesia Manufacturing Co., Valley Forge, Pa	
Electric Air Heater Co., Mishawaka, Ind	907
F	
Farrar & Trefts, Incorporated, 20 Milburn St., Buffalo, N. Y	
Fedders Manufacturing Co., Inc., 85 Tonawanda St., Buffalo, N.	
Fitzgibbons Boiler Company, Inc., 101 Park Ave., New York, N	
Frick Company (Incorporated), Waynesboro, Pa.	
Fueloil and Oil Heat (a pub.), 232 Madison Ave., New York, N.	
Fulton Sylphon Company, The, Knoxville, Tenn	1002–1003
G	
G & O Manufacturing Company, The, 138 Winchester Ave., New	Haven, Conn 952
Gar Wood Industries, Inc., 7924 Riopelle St., Detroit, Mich	·
General Electric Company, Bloomfield, N. J.	
General Electric Company, Schenectady, N. Y	
Grinnell Company, Inc., Providence, R. I	
21	,
Н	
MATTER C. II	-d-1-h:- Do 1090
William S. Haines & Company, 12th and Buttonwood Sts., Phila	
Arthur Harris & Co., 210-218 N. Aberdeen St., Chicago, Ill	
Hastings Air Cond. Co., Inc., Hastings, Nebr	
Heating & Ventilating (a pub.), 140-148 Lafayette St., New Yor	
Heating, Piping and Air Conditioning (a pub.), 6 N. Michigan Av	e. Chicago, III. 1129
Hendrick Manufacturing Co., 48 Dundaff St., Carbondale, Pa	984
Henry Valve Co., 1001-19 N. Spaulding Ave., Chicago, Ill	
Hoffman Specialty Co., Inc., 1001 York St., Indianapolis, Ind	
	<u>-</u>
I	_
Illinois Engineering Company, Chicago, Ill.	1032–1033
Illinois Testing Laboratories, Inc., 422 N. LaSalle St., Chicago,	
Independent Register Co., The, 3747 East 93rd St., Cleveland, Co., The Co.,	Jhio 985
Insulation Industries, Inc., 10807 Lyndon at Meyers Road, Det	roit, Mich 1101
Insulite Division of Minnesota and Ontario Paper Co., 500 Baker Arcade Bldg., Minneapolis, Minn	1109_1109
International Boiler Works Co., East Stroudsburg, Pa	104-1106
International Exposition Co., Grand Central Palace, New York,	. N. Y. 1124
Iron Fireman Manufacturing Company, Portland, Oregon	

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

J
Jenkins Bros., 80 White St., New York, N. Y
K
Kewanee Boiler Corporation, Kewanee, Ill.1052–1055Kieley & Mueller, Inc., 2013-2033 43rd St., North Bergen, N. J.1082Kimberly-Clark Corp., Neenah, Wisconsin.1106–1107Kramer Trenton Company, Trenton, N. J.912–913
L
Lau Blower Company, The, 2007 Home Ave., Dayton, Ohio
M
Manning, Maxwell & Moore, Inc., Bridgeport, Conn
N
Nash Engineering Company, The, 234 Wilson Road, South Norwalk, Conn 1074–1075 Herman Nelson Corp., The, Moline, Ill

INDEX TO ADVERTISERS

О	
	Page
Owens-Corning Fiberglas Corp., Toledo, Ohio	
Owens-Illinois Glass Company, Ohio Bldg., Toledo, Ohio	1121
P	
Pacific Lumber Company, The, 100 Bush St., San Francisco, Calif	1109
Pacific Steel Boiler, Div., U. S. Radiator Corp., Detroit, Mich	1060
Palmer Company, The, 2506 Norwood Ave., Cincinnati (Norwood), Ohio	
Parks-Cramer Company, Fitchburg, Mass	892
Penn Electric Switch Co., Goshen, Ind.	
Pittsburgh Corning Corp., Grant Bldg., Pittsburgh, Pa	
Plumbing and Heating Journal (a pub.), 45 West 45th St., New York, N. Y	1134
H. W. Porter & Co., Newark, N. J.	
Powers Regulator Co., The, 2719 Greenview Ave., Chicago, Ill	1014
Q	
Quincy Stove Manufacturing Co., The, Quincy, Ill.	905
Refrigeration Economics Co., Inc., Canton, Ohio	
Register & Grille Manufacturing Co., Inc., 70 Berry St., Brooklyn, N. Y	
Research Products Corporation, Madison, Wisconsin	
Reynolds Metals Co., Inc., Federal Reserve Bank Bldg., Richmond, Va	
Ric-wiL Company, The, Union Commerce Building, Cleveland, Ohio	1118
Ruberoid Co., The, 500 Fifth Ave., New York, N. Y	1110–1111
S	
Sarco Company, Inc., 475 Fifth Ave., New York, N. Y	1034-1035
Sheet Metal Worker (a pub.), 45 West 45th St., New York, N. Y	1135
H. J. Somers, Inc., 6063 Wabash Ave., Detroit, Mich.	942
Spence Engineering Co., Inc., 28 Grant St., Walden, N. Y	1015
Spencer Heater, Division—The Aviation Corp., Williamsport, Pa	1056-1057
Staynew Filter Corporation, 6 Centre Pk., Rochester, N. Y	940-941
B. F. Sturtevant Co., Hyde Park, Boston, Mass	973–975
T	
T	
Taylor Instrument Companies, Rochester, N. Y	1016
H. A. Thrush & Company, Peru, Ind.	1031
Todd Combustion Equipment, Inc., 601 West 26th St., New York, N. Y	1065
Torrington Mfg. Co., The, 50 Franklin St., Torrington, Conn.	970-972
Trane Company, The, 2021 Cameron Ave., LaCrosse, Wis	922-923
Tuttle & Bailey, Inc., New Britain, Conn.	988–989

HEATING VENTILATING AIR CONDITIONING GUIDE 1943

	U	
	ditioning Corp., Northwestern Terminal,	Page 893
• •	Co., 44 Beaver St., New York, N. Y	1017
_	Company, 300 W. Adams St., Chicago, III.	. 1114–1115
	or Corporation, Detroit, Mich	1058-1059
	r Co., Battle Creek, Mich	987
	The state of the s	
	orp. Subsidiaries, Pittsburgh, Pa	994
	poration, Marion, Ohio	958
	v	
Vilter Manufacturing	Company, The, Milwaukee, Wis	959
	The, 305 East 45th St., New York, N. Y.	. 1062–1063
	W	
Wagner Electric Corp	., 6403 Plymouth Ave., St. Louis, Mo	978
Warren Webster & Co	ompany, Camden, N. J	1036-1039
Waterloo Register Con	mpany, The, Waterloo, Iowa	990
Webster Engineering	Co., 419 W. Second St., Tulsa, Okla	1064
Weil-McLain Compan	ıy, 641 W. Lake St., Chicago, Ill	1061
Westinghouse Electric	: & Manufacturing Co., Edgewater Park, Clevel	land, Ohio 943
	& Manufacturing Co., 653 Page Blvd., Springfie	ld, Mass. 894–895
	ic Co., 1293 Cass Ave., St. Louis, Mo	1018
	59 Seventh Ave., New York, N. Y	925-927
Wolverine Tube Comp	pany, 1435 Central Ave., Detroit, Mich	1092
Wood Conversion Co.	, First National Bank Bldg., St. Paul, Minn.	1113
Worthington Pump &	Machinery Corp., Harrison, N. J	960-961
Wright-Austin Co., 30	9 W. Woodbridge St., Detroit, Mich	1084
	Y	
	7600 Queen St., Philadelphia, Pa	1085
Young Radiator Com	pany, 709 Marquette St., Racine, Wis	928

AIR CONDITIONING

Equipment for complete air conditioning systems, consisting of an assembly of apparatus for air circulation, air cleaning and heat transfer, with control apparatus for maintaining temperature and humidity within prescribed limits, has many commercial, comfort, and industrial applications. Systems for all-year, winter and summer service, and special processing work are presented in four divisions . . . Pages 883-928.

CENTRAL SYSTEMS (p. 883-896)

Complete assembly of supply and return ducts serving one or more spaces, connected with some or all of the following equipment: fans, motors, heat transfer surfaces, humidifiers, dehumidifiers, refrigeration machinery, air cleaning devices and control equipment.

An outline of the design procedure generally used to create a modern central air conditioning system is given in Chapter 21 of the Technical Data Section.

DIRECT FIRED UNITS (p. 897-905)

Automatic heating and comfort air conditioning apparatus suitable for residential and small commercial applications designed to give results similar to the larger central systems provide direct fired oil, gas or coal heating units, filtration, fan controls, etc.

The Technical Data Section, Chapters 12, 19 and 20 cover this type of equipment.

FAN-FURNACE SYSTEMS (p. 897-905)

Winter air conditioning and summer ventilation for residences are provided by Automatic fired fan-furnace systems. As in the larger central systems these installations clean, heat and humidify the air, and if desired, auxiliary units will provide cooling.

In Chapter 20 on Mechanical Warm Air Furnace Systems will be found details of the design of this type of system.

UNIT HEATERS, COOLERS (p. 906-928)

For complete or partial air conditioning there are a variety of self-contained units. Such units may be complete in themselves, employing their own direct means of air cleaning, heating distribution and source of refrigeration.

The various functional elements of unitary equipment are given in Chapters 22 and 23, for Unit Heaters, Ventilators, Humidifiers, Conditioning and Cooling Units and Attic Fans.

Manufacturer's products shown in this division are designed for specific applications. Consult the Index to Modern Equipment for additional products of these manufacturers.

Air & Refrigeration Corporation

475 Fifth Avenue, New York City

Atlanta, Ga.

Detroit, Mich.

CAPILLARY AIR CONDITIONERS

A standard Capillary cell with cut-away section showing oriented glass filaments.

Size: 20 in. x 20 in x 8 in

Every Air Conditioning Engineer and all Industrial Engineers responsible for air conditioning should be familiar with the uses of this advanced

equipment.

The standard Capillary cell is the basic element in all Capillary conditioners. The patented arrangement of glass filaments, essentially parallel to the flow of air and water through the cell, accounts for the highly efficient heat transfer between air and water. At the same time, the cells act as an efficient air cleaner and the arrested dirt is continuously flushed from the cell

As a simple air washer, humidifier or evaporative cooler, Class I Capillary conditioners call for the recirculation of only 3 gpm per 1000 cfm distributed over the cells at 6 lbs nozzle pressure. The saturation efficiency is 97 per cent. Less efficient spray washers require 15 gpm or more at 20 lbs nozzle pressure.

A single stage of Capillary cells equals or exceeds in cooling and dehumidifying capacity a 2 bank spray type dehumidifier.

Increased cleaning efficiency and an approach of less than 1 deg F between leaving air and leaving water is obtained through a Class II Capillary wherein the water flows counter to the air through the cell.

A 2-stage Capillary Class I-II offers true counterflow performance with leaving cooling water temperature exceeding that of leaving air.

Where a closed system for the cooling medium is required (direct expansion,

A standard Size 6-5 Class I Capillary Central Station Installation.

brine or cold water), a Class III Capillary is offered with suitable coils after the Capillary cells. No filters are required. Coils are kept clean and evaporative cooling is available whenever entering wetbulb conditions permit.

Capillary conditioners of all classes are made in central station units ranging from 2200 cfm to 132,000 cfm or larger. Assembled units including fans, heaters, coils, pump, insulated casing, etc., suitable for suspension or floor mounting range from 4000 to 16,000 cfm.

A standard Size 3-4 Capillary unit air conditioner complete in insulated casing Capacity 16,000 cfm.

Capillary conditioners used for cooling and dehumidifying save stragetic materials.

Submit design and capacity for specific recommendations or write for catalog and engineering data.

American Blower Corporation

Division of American Radiator and Standard Sanitary Corporation

General Offices and Factory

Detroit, Mich.

Branches in All Principal Cities

AIR CONDITIONING — HUMIDIFYING — DEHUMIDIFYING — COOLING — VENTILATING — HEATING — VAPOR-ABSORPTION — DRYING — AIR WASHING AND PURIFICATION — EXHAUSTING EQUIPMENT AND MECHANICAL DRAFT APPARATUS

Double Inlet "ABC" Multiblade Fan—above, is a heavy duty ventilating fan. Its wheel has narrow, forward pitched blades. Low tip speeds assure quiet operation. Request Bulletin A-701. Write for Bulletin A-403 for backwardly inclined, nonoverloading H. S. Fan.

"ABC" Utility Sets right, complete packaged units, direct connected or V-Belt short coupled drive, for duct applications. Famous "ABC" Multiblade Wheel operates at low tip speeds. Quiet, compact. Bulletin B-2529.

American Blower Air Washer—above, cleans, purifies and freshens the air, removes dust, odors and bacteria, cools if desired and provides an effective method of controlling humidity. Bulletin 3623.

American Blower Capillary Air Washers—above, for high efficiency in cleaning, humidification, cooling and dehumidification of air. A highly efficient surface contact mechanism, the capillary cell, is used. Air is forced at low resistance through long, irregular passages of small size formed by a large amount of thoroughly wetted glass surface. Unit includes a substantial metal casing and tank of air washer design, capillary cells, improved low head sprays, metal or glass fibre low resistance moisture eliminators, non-ferrous, extended surface cooling or heating coils. Write for Bulletin 3723.

TYPES OF AMERICAN BLOWER CORPORATION AIR HANDLING AND CONDITIONING EQUIPMENT

All types of air handling and air conditioning equipment for industrial applications, process work, drying, cooling; also equipment for stores, offices, shops, public buildings, power plants, etc., and attic ventilation for homes.

"ABC" Vertical Heaters—for ceiling applications, give an even, wide floor area distribution of heat. For either steam or hot water heating systems. Variable speed, 2-speed and constant speed models. Write for Bulletin A-9418.

Venturafin Unit Heaters—for many general purpose heating jobs. Wall or ceiling mounting. Streamline construction, rugged heating elements. Steam or hot water. Write for Bulletin A-8218.

Air Conditioning Central Systems—provide an effective way of cooling, heating, humidifying, dehumidifying and purifying air in all classes of business and public buildings where a dust system is desirable. Write for Special Data.

"HV" General Purpose Units—with air filters and Aileron control. Ideal wherever attractive, quiet and economical heating and ventilating units are required. Wall, floor or ceiling mounting. Offer great flexibility of design and arrangement to meet specific needs. Write for Bulletin 5927.

American Blower Series "H" Air Conditioners with Sprayed Coils—are usually applied for industrial uses where air washing and evaporative cooling are required. Sprayed coils give cleaner air, cut coil maintenance and refrigeration costs, reduce necessary air volumes, permit use of smaller ducts and grilles. Horizontal or floor types (as shown). Aileron control provides simple method of regulating flow of air from the fans. Write for Bulletin 6027.

Carrier Corporation

HOME OFFICE AND FACTORIES: SYRACUSE, N. Y.

MARINE DIVISION-405 LEXINGTON AVE. NEW YORK CITY INTERNATIONAL DIVISION: SYRACUSE, N. Y.

DEALERS IN PRINCIPAL CITIES

BRANCH SALES OFFICES:

ATLANTA
BOSTON
CHICAGO
CINCINNATI
CLEVELAND

DALLAS
DETROIT
KANSAS CITY
LOS ANGELES
MEMPHIS

NEW YORK CITY PHILADELPHIA ST. LOUIS SAN FRANCISCO WASHINGTON

AIR CONDITIONING

Room Air Conditioning and Refrigerating Unit-Self Contained.

Commercial Air Conditioning and Refrigerating Unit -Self Contained.

Air Conditioning and Refrigerating Assembly-With ducts

Room Air Conditioning Unit-for Central Station System -Normal Ducts.

Room Air Conditioning Unit—for Central Station System - Conduit air Distribution.

Cooling range 4 to 1.3 tons. Heating range 2000 to 34,500 Btn per hour.

Room Outlet—for exposed or concealed ducts.

Air capacity 40 to 4900 cfm per outlet.

Commercial Air Conditioning Units—Suspension No Ducts.

Cooling range 5 to 5.5 tons. Air capacity 310 to 1850 ctm.

Commercial Air Conditioning Units—Floor Mounted With Ducts.

Cooling range 2 to 45 tons. Heating range 100,000 and up Btu per hour.

Air capacity 700 to 8000 cfm.

Commercial Air Conditioning Units—Suspension - With ducts.

Cooling range 2 to 45 tons. Heating range 100,000 and up Btu per hour.

Air capacity 700 to 8000 ctm.

Industrial Air Conditioning Unit. May be installed with or without ducts.

Cooling range 2 to 45 tons. Heating range 30,000 to 750,000 Btu per hour

Air capacity 2000 to 8000 ctm.

Industrial Humidifier-humidifiers, filters, distributes air.

Dehydration—silica gel. For either residential or industrial applications. Four sizes: Moisture removal capacity 23 to 125 lb per hour.

Heat Interchangers—air-to-water heating or cooling.

Two Types Available. Continuous tube and narrow width type.

Cold Diffusing Unit-Suspended -Disc Type Fan. Adjustable louvers.

Cold Diffusing Unit-Floor Mounted--Centrifugal Fan. Top or side discharge.

Cold Diffusing Unit—Floor Mounted—Centrifugal Fan Brine Spray.

AIR CONDITIONING'S First Name Carrier

REFRIGERATION

Centrifugal Refrigerating Machine. Self-contained—cooler, compressor, condenser.
Wide range of sizes Cooling range 100 to 1200 tons.

Reciprocating Refrigerating Machine. Air-cooled, water-cooled, evaporative cooled.

Evaporative Condenser—Floor Mounted. For economical heat disposal. Nominal range 10 to 75 tons.

Non-Freeze Coil—Available in sections, wide range of capacities.

Commercial Refrigeration—Storage refrigerators, display cases, milk coolers, ice makers, bakers refrigerators, and drinking water coolers in wide ranges of sizes and capacities.

UNIT HEATERS and WAR PLANT VENTILATORS

Unit Heater—Suspended—Disc Fan. For commercial or industrial buildings. Heating range 19,450 to 106,000 Btu per hour. Air capacity 595 to 1395 cfm.

Five-Way Unit Heater—Suspended. For industrial heating. Heating range 69,100 to 484,000 Btu per hour. Air capacity 1345 to 9245 cfm.

Heat Diffusing Unit—Suspended—Centrifugal Fan. For industrial service.

Heating range 280,000 to 950,000 Btu per hour. Air capacity 9000 to 16,000 cfm.

Heat Diffusing Unit—Floor Mounted—Centrifugal Fan.

Heating range 280,000 to 950,000 Btu per hour. Air capacity 9000 to 16,000 cfm.

Ventilators for War Plants—Roof Type for exhausting, supplying and tempering air in war plants. Capacities 10,000, 15,000 and 20,000 cfm.

NOTE: Air conditioning has gone to war. Equipment is available only for those installations that are necessary in winning the war.

Clarage Fan Company Kalamazoo, Michigan

Application Engineering Offices

In Principal American Cities

(Consult Telephone Directory)
CLARAGE AIR-HANDLING AND CONDITIONING EQUIPMENT

For Over a Quarter-Century Charage has been a leading manufacturer of air-handling and conditioning equipment. There is a Charage fan or blower, conditioning unit or system to meet every need, from the simplest ventilating or cooling job to the most exacting temperature and humidity control installation.

Whatever your ventilating, unit heating, cooling, drying, air cleaning, humiditying, dehumidifying, complete air conditioning or mechanical draft problem we can meet your requirements.

Clarage Experience covers every conceivable type of installation, commercial, industrial, public building and marine. Clarage equipment is used in the largest industrial plants, power plants, offices, theatres, hotels, restaurants, retail stores, hospitals, churches, schools and on thousands of ships.

Help on War Problems: We're trying hard to maintain a prompt, intelligent war-time service—all the way through from initial recommendation to delivery. Write or phone for any desired information

Clarage Systems for complete air conditioning in industrial plants and other buildings.

Multitherm Units for complete conditioning, cooling or heating.

Uniced Units used in conditioning systems for air cleaning, cooling, heating and humidity control.

Clarage Fan with Vortex (constant speed) Volume Control for ventilation and air conditioning

Unitherm Unit Heaters
with Syncrotherm Temperature
Control for factory heating.

Unitherm Unit Coolers for product cooling and refrigeration.

Niagara Blower Company

General Sales Office: 6 East 45th Street. New York City

CHICAGO 37 W Van Buren St.

BUFFALO: 673 Ontario St.

SEATTLE Fourth and Cherry Bldg.

District Engineers in Principal Cities

Over 25 Years' Experience in Industrial Air Conditioning, Liquid Cooling and Air Drying

NIAGARA AIR CONDITIONING SYSTEMS

For human comfort and for all industrial applications requiring controlled conditions of temperature, relative humidity, air purity and air movement.

NIAGARA AIR CONDITIONER, TYPE A

High precision apparatus using saturation to obtain control of R.H. to 1 per cent for laboratory work and control of hygroscopic materials. Ask for Bulletin 58.

NIAGARA AIR CONDITIONER, TYPE C

A year around air conditioning unit providing heating and humidifying Ask for Bulletin 80. or dehumidifying

NIAGARA FAN COOLER AND DISK FAN COOLER

For comfort cooling, process cooling, low temperature storage for dairies, fruits, meats, food products, fur storage vaults, etc. Bulletins 72 and 78

NIAGARA SPRAY COOLER

For all cooling applications requiring high humidity or high capacity in small space. Ask for Bulletins 72 and 78.

NIAGARA "NO FROST" SYSTEM

Using Niagara "No Frost" Liquid in spray coolers, prevents frosting of cooling coils, automatically keeps spray solution at proper concentration, gives freedom from brine troubles, corrosion. Constant, efficient operation. Temperature to -50 F. Ask for Bulletin 83.

NIAGARA EXTENDED SURFACE COILS

Encased for use with heating, cooling or air conditioning systems. Full range of sizes. Ask for Bulletin 92.

NIAGARA DUO-PASS AERO CONDENSER (Illustrated)

Saves power and water cost utilizing atmospheric air to remove heat of condensation. Patented Duo Pass prevents scaling, saves power. Ask for Bulletins 91 and 93.

NIAGARA "DUAL" COOLERS

Simultaneously cools a room and furnishes chilled water as a refrigerant. Saves equipment cost, operating expense. Patented. Ask for Bulletin 70.

for use with Niagara No-Frost'' System

For heating and ventilating large areas. Units of the highest

quality in engineering, material and workmanship. Ask for Bulletin 73.

NIAGARA AIR SUPPLY HEATER

Balances exhausted air in factories when exhaust systems are operating, saves steam and power, gives more effective heating. Patent pending. Ask for Bulletin 74.

NIAGARA MOTOR BLOWERS

One, two and three-fan units. High and low static pressure models. Ask for Bulletin 89.

NIAGARA AERO HEAT EXCHANGER

For cooling industrial liquids, water, oils, solutions, chemicals. Ask for Bulletin 90. Patented.

Niagara Aero Condenser with Duo Pass

GENERAL ELECTRIC

AIR CONDITIONING AND COMMERCIAL REFRIGERATION DEPARTMENT Bloomfield, New Jersey

District Offices

ATLANIA, GA
609 Red Rock Building
BOSTON, MASS
700 Commonwealth Avenue
CHICAGO, ILL.
840 South Canal Street
CLEVELAND, OHIO
4966 Woodland Avenue
DALLAS, TEXAS
1801 North Lamar Street
DETROIT, MICH.
700 Antonnette Street

Minneapolis, Minn 12 South 6th Street New York, N. Y. 570 Lexington Avenue Phil Adelphia, Pa. 1105 Locust Street Portland, Orl. Terminal Sales Building

1220 Southwest Morrison SAN FRANCISCO, CALIF. 235 Montgomery Street

A COMPLETE LINE OF STANDARD REFRIGERATION PRODUCTS WHICH ARE AVAILABLE FOR ARMY, NAVY, INDUSTRIAL AND OTHER ESSENTIAL USES

CONDENSING UNITS

Applications: Low temperature refrigeration for food preservation in military cantonments, at advance bases and aboard ship. Also for applications in war industry where refrigeration is required for the processing and testing of war materials.

Product Data: G-E condensing units are available in a full range of standard sizes rated from $\frac{1}{4}$ to 125 horsepower. Modified units are available which permit multiple stage operation at temperatures as low as -140 F.

EVAPORATIVE CONDENSERS

Applications: Condensation of vapors, such as Freon 12 and steam; cooling of liquids . . industrial or coolant oils, water, non-freeze mixtures, and other fluids used in industry.

Product Data: Available in standard sizes which provide condensing capacities up to 60 tons of refrigeration with Freon 12. New nested coil assembly simplifies installation and also permits quick and easy disassembly for cleaning of scale and algae.

HEATING AND COOLING COILS

Applications: Ventilating systems, blast heating, industrial air conditioning, dehumidifying, refrigeration and cooling systems; special Army and Navy applications.

Product Data: Available in wide range of sizes to meet requirements of installation. Standard units of steel construction. Copper construction available where permitted by WPB regulations.

INDUSTRIAL CONDITIONERS

Applications: Industrial dehumidifying, cooling, heating; Army and Navy cantonments, storage, maintenance and special applications.

Product Data: Available in sizes ranging from 5 to 30 tons of refrigeration, with comparable capacities for heating

service. Furnished for direct expansion of Freon 12 refrigerant, or for chilled water or cold well water. Heating coils use steam or hot water.

Parks-Cramer Company

Fitchburg, Mass.

Charlotte, N. C.

CERTIFIED CLIMATE

Complete Air Conditioning Systems including Heating, Cooling, Humidifying or De-humidifying, Air Changing, Refrigeration, Air Filtering, Air Washing

AUTOMATIC REGULATION

Merrill Process System of Hot Oil Circulation for Heating Industrial Materials

Central Station

Central Station Air Conditioning

Centrally located AIR WASHER. Proper moisture. Positive, pre-determined an removal or re-circulation. Heating coils and retrigeration optional. Helps such industries as Celluloid; Cement; Ceramics; Cereals; Cigars, Cigarettes and Tobacco; Clothing; Confectionery; Glassine; Leather; Paper and Envelopes; Printing and Lithographing; Shoes; Statch and Dextrine; Storage of Perishables; Textiles; Wood Products. Similar installations effective in Hospitals, Art Galleries, Auditoriums, Restaurants.

Air Washer or Central Station Units. Nozzles for Central Station Air Washers.

High Duty Humidifier

High Duty Humidifier

Water under pressure generates spray. Excess water returns to filter tank and re-circulates. Evaporation per unt high; two sizes of heads each with three sizes of nozzles give flexible capacity for varying conditions. Circulation increased by individual motor-driven fan. Spray thoroughly diffused and distributed over wide area.

Turbomatic Humidifier

(not illustrated)

Efficient humidifier of the atomizer type. For direct humidification, as humidity boosters for Central Station systems of all makes. Self-cleaning.

Automatic Regulation

The Psychrostat for accuracy, durability, sensitivity. Employs the principle of the Sling Psychrometer, used in all U. S. Weather Bureau Stations. Hygrostat (not illustrated) where requirements are not so exacting. An Air Conditioning System is no better than its Regulation.

Psychrostat

The Pettifogger

A compact humidifier for offices, stores, storerooms, laboratories, or other isolated departments. Self-contained in lacquered copper casing. Permanently though flexibly connected to water and electrical supplies. Automatic control. Adjustable capacity. Reduces dust. Neutralizes drying effect of heating.

Pettifogger

United States Air Conditioning Corporation

Heating, Cooling, Ventilating and Air Conditioning Equipment

For Industrial, Commercial and Residential Applications

General Offices and Factory: Northwestern Terminal, Minneapolis, Minn.

USAirCo Blowers

Heavy and light duty blowers, single or double inlet, in sizes and capacities for any heating, cooling, ventilating and air conditioning application.

Single, double or triple stage 2,500 to 100,000 cfm for cleansing, cooling by cold water or refrigerant, humidifying or dehumidifying.

Suspended types with Deflecto diffusing grilles. Floor or wall type blower heaters. Sizes and types for every heating need.

USAirCo Cooling or

Heating Cores
Five standard series for central station heating or cooling applications.

USAirCo Cooling Units
Suspended type for cold water or

direct expansion applications.

USAirCo Blower Filters

Complete assembles for warm-air furnace applications.

Complete self-contained units for refrigerative, cold water and evaporative cooling. Also room coolers and humidifiers.

USAirCo Deflecto Grilles

Patented diffusing grilles for controlled directional distribution of air.

Westinghouse Electric & Manufacturing Co.

653 Page Blvd., Springfield, Mass.

Sales, engineering and service available through Authorized Engineering Contractors in all principal cities

Matched Equipment for Process Air Conditioning and Industrial Refrigeration Applications

.1ir Conditioning Units

Heating Surfaces

Humiditiers

Cooling

Filters

Electrical Equipment

Evaporative Condensers

Each essential Westinghouse unit is designed and specified to operate most efficiently with all other units in the system.

The result is the MATCHED system, expertly engineered and co-ordinated to fit the exact requirements.

THE BASICALLY DIFFERENT WESTINGHOUSE HERMETICALLY-SEALED COMPRESSOR

The HEART of every Westinghouse Air Conditioning and Industrial Retrigeration System is the famous Westinghouse Hermetically-sealed Compressor. basically different principle has been user-proved over a period of 12 years by more than 2,000,000 Hermetically-sealed units in service. It results in important advantages, including Less Weight, Less Space, Less Maintenance, Lower Operating Costs, Greater Efficiency, Less Wear, Longer Life.

THE AQUAMISER is a self-contained evaporative type condenser which combines the best features of a watercooled condenser, an air-cooled condenser and a cooling tower. Westinghouse Aquamisers are built in eleven sizes, from approximately 5 tons to 100 tons capacity each, net refrigeration effect.

In addition to use as condensers, Aquamisers are used as process liquid coolers. Temperatures to which liquid can be thus cooled depend upon Wet Bulb air temperature, kind of liquid and its entering temperature. liquid passes through pipe coils; there is no possibility of its contamination.

Aquamiser

Air Conditioning Units

Westinghouse Types AH (horizontal) and AV (vertical) Air Conditioning Units are factory-built, for installation on central-plant-type air conditioning systems. The compact cabinet contains quiet blower-type fans and provides facilities for installation of cooling and heating coils, filters, and humidifiers. Thus, they eliminate expensive construction work, save space, assure satisfactory performance and low maintenance.

They are available in capacities for Air Conditioning systems of approximately $7\frac{1}{2}$ to 35 tons refrigeration. The fans, included as standard equipment, range in capacity from approximately 1,600 cfm to 12,000 cfm. Thus, either singly or in multiple, practically any system can be satisfactorily served by these units.

Refrigeration Units

Westinghouse Type AVL Industrial Refrigeration Units are factory built, for installation in product refrigeration rooms. The compact cabinet contains quiet, blower type fans and provides facilities for installation of cooling coils.

Westinghouse Type AVL Units are

westinghouse Type AVL Units are available in three sizes of approximately $2\frac{1}{2}$ to 15 tons refrigeration. The fans included as standard equipment in the unit range in capacity from approximately 3,000 cfm to 13,000 cfm.

HEAT TRANSFER SURFACES

Coils for Freon, water and steam are available in a wide range of sizes to meet practically any operating conditions.

FACTORY BUILT "PACKAGED" EQUIPMENT

Type LU-850 (25 hp) Central Plant Type. Available in sizes 7½, 10, 15, 20 and 25 hp.

Model SU-50 (5 hp)
Within-the-space
Type. Available in sizes 2, 3 and 5 hp.

York Ice Machinery Corporation

York, Pennsylvania

Factory Branches and Distributor Engineering and Sales Offices throughout the World,

Air Conditioning and Refrigeration for maintaining proper atmospheric conditions for industrial processes essential to the war. Installations of unit and central systems in a complete range of capacities and types for every design requirement.

York Turbo Compressor

York V-W Condensing Unit

York Sectional Economizer

Yorkaire 550 Unit Air Conditioner

Condensing and Water Cooling Systems Centrifugal brine and water cooling systems available over wide range of capacities up to 1500 tons refrigeration, steam turbine or motor drive.

Self-contained dynamically balanced, non-vibrating V/W type reciprocating compressors available in capacities up to 350 tons retrigeration in a single unit, with water cooled or economizer type condensers.

Efficient automatic capacity reduction available for economical operation at reduced load.

The York Economizer—A combined forced-draft cooling tower and refrigerant condenser, is available for installations where prohibitive water costs or inadequate drainage facilities preclude the use of a water cooled condenser. Standard factory constructed and built-up units may be used singly or in multiple for applications of any specified capacity. Economizers for use with Freon as the refrigerant are furnished, as standard, with a liquid sub-cooling coil. Economizers also designed for cooling of quench oil and other liquid coolants.

Air Conditioning Units: A complete line of finned coil, dry coil, wetted surface and spray type sectional air conditioners for horizontal or vertical applications, designed to facilitate installation and the distribution of air. Standard units can be equipped with by pass feature and arranged for cooling and dehumidifying, heating and humidifying, for year-round processing.

Yorkaire 550 Unit Air Conditioner—A compact, self-contained model occupying but 21 x 42 inches of floor space and requiring only water, drain and electrical connections to operate. Special features provide utmost flexibility to meet varying conditions. Temperature dial control provides both automatic and manual temperature control. Air volume and motion may also be adjusted by a special control and the directional grille provides directed air flow—up, down or from side to side. May be used with ducts if desired.

The Yorkaire 550 is ruggedly built, quiet in operation, equipped with standard fan and compressor motors for AC or DC.

Dehumidifiers For central station systems where a large volume of air is to be handled and where control of humidity is an essential requirement, the York dehumidifier is especially applicable. Construction features insure a minimum space demand and maximum performance conditions. Standard washers are available in a full range of capacities for industrial installation.

Let the pup be your furnaceman and weatherman too.

THE BRYANT HEATER COMPANY

17825 St. Clair Avenue - - - Cleveland, Ohio

Engineering, Sales and Installation information on Bryant Equipment available through Bryant Distributors, Dealers and Gas Companies in principal cities.

Vertical Winter Air Conditioner

Suspended Type Gas-Fired Unit Heater

Bryant Gas designed boilers include tubular cast iron sections, ribbed lower tubes, large steam liberating areas, all heating surfaces readily accessible for cleaning. Insulated metal jacketed covers and Bryant gas controls. Complete range of AGA inputs from 45,000 to 3,996,000 Btu/hr for steam and hot water heating systems, volume water heating and industrial process.

Bryant Vertical Winter Air Conditioners complete with blowers, humidifier and filters are compactly designed for small housing, office and industrial use. Bryant tubular cast iron section design and quality controls are standard equipment. Capacities range from 55,000 to 115,000 Btu/hr AGA inputs.

Complete line of forced Warm Air Gas-Fired equipment from 60,000 to 750,000 Btu/hr AGA inputs. Efficient cast iron heating sections of vertical tubular construction and large capacity blowers are featured. Humidifiers, filters and Bryant Automatic controls are standard equipment.

Bryant suspended type Gas-Fired Unit Heaters available in five sizes ranging from 65,000 to 255,000 Btu/hr AGA inputs. Efficient heat exchange of staggered vertical tube construction. Available in both cast iron combustion chamber, alloy steel tube and all steel types. Quick, clean, efficient heat for all types of industrial and commercial space. Flexible, automatic control and large volume air circulation produce ideal space heating results.

Bryant Dehumidifiers with rotary silica gel bed and completely automatic control find new demands for food dehydration, powder drying, in the manufacturing of airplane

valves, telescopic sights and signal flares—in the testing of airplane engines—and the storage of engine parts, bomb sights and submarine parts. Especially adaptable to industrial requirements and all types of air drying installation.

See your local Bryant Distributor or write for complete details and specifications.

Gas-Fired Boiler

Forced Warm Air Gas-Fired Equipment

CHRYSLER

AHHAMP F

AIRTEMP

ORPORATION, DAYTON, OHIO

AIRTEMP DIVISION OF CHRYSLER

14 CYLINDER MODEL AIRTEMP RADIAL CONDENSING UNITS -Available in 10 to 75 Horsepower Capacities

This heavy-duty radial compressor for use with Freon is especially adapted for refrigeration, for industrial processes or air conditioning. Airtemp radial compressors are directly connected and have force-feed lubrication. The automatic starting unloader and automatic capacity-

- AUTOMATIC CAPACITY REGULATION
- UNLOADED STARTING
- DIRECT CONNECTED

reduction unloader give high operating efficiency. Light in weight and economical to operate, these compressors are shipped ready to run. They are especially easy to install since vibration is practically eliminated and no special foundations are necessary.

- SIMPLIFIED INSTALLATION
- COMPACT DESIGN
- PRACTICALLY NO VIBRATION
- NO SPECIAL FOUNDATIONS NEEDED
- INTERCHANGEABLE PARTS
- LONG LIFE
- ECONOMY

AUTOMATIC UNLOADER

This automatic cylinder unloading device permits starting the compressor under no load and keeps the compressor automatically adjusted to varying loads with no stopping and starting during operation.

THE CHRYSLER AIRTEMP AUTO-BALANCE SYSTEM

This system, perfected by Chrysler Airtemp engineers, gives proper indoor humidity and temperature regardless of load or outside weather variations.

PROPER DEHUMIDIFYING TEMPERATURE—is maintained in the active cooling coils because the Chrysler Airtemp Radial Compressor with its automatic cylinder unloader, maintains practically constant refrigerant temperatures under wide load variations.

THUS THE CHRYSLER AIRTEMP AUTO-BALANCE SYSTEM—maintains ideal air conditions at all times under widely varying loads, efficiently and automatically.

THE CHRYSLER AIRTEMP STAFF—of air-conditioning field engineers, will be glad to show you how this simplest of all air-conditioning systems can aid in solving your problems.

THE CHRYSLER CORPORATION HAS PURCHASED THE CHESTER PATENTS, NO. 1,791,751 AND NO. RE.20,650, IN ORDER TO ASSURE ITS CUSTOMERS OF THE FREE USE OF THE AUTO-BALANCE SYSTEM.

A NEW TOOL FOR INDUSTRY

Accurate production depends not only on skilled workers and modern machines, but on temperature control as well. The Chrysler Airtemp 3 H.P. and 5 H.P. "Packaged" units—with radial compressor hermetically sealed in a bath of oil—are ideal for over 80 per cent of industrial air conditioning requirements.

Standard Airtemp Radial Compressors and Condensing Units are available in 3, 5, 7, 10, 12, and 14-cyclinder designs—from 10 to 75 H.P. Airtemp also manufactures Boilers, Furnaces, Oil Burners, and Commercial Refrigeration Units.

E. K. Campbell Heating Co.

Kansas City, Mo.

MANUFACTURERS - ENGINEERS

FURNACE-FAN SYSTEMS--THERMIDAIRE EQUIPMENT "EKCCO" BLOWERS

FOR: Industrials—Schools—Churches—Municipal Buildings
Theatres—Hangars—Auditoriums etc.

Developed exclusively for heavy-duty use, the E. K. CAMPPELL FURNACE-FAN SYSTEM represents 33 years of engineering design and field experience. Standard single units burning any type fuel range from 300,000 Btu per hour to 5,000,000 Btu per hr., with special units available on request for larger loads or processing work. Small units in residential sizes are not available.

Design features which contribute to the remarkable performance records established include—counter-flow heat transfer—plunge draft—heavy all welded steel construction of locomotive firebox plate and "Toncan" alloy—large combustion space for complete burning of fuel—variable ratio of Btu to cfm available depending on individual requirements of heat loss and cubic space involved rather than on a predetermined inflexible ratio—maximum heat transfer rating of 3,500 Btu per sq ft of heating surface and ratios of heating surface to grate area between 30 to 1 and 50 to 1 as recommended in Heavy Duty Fan-Furnace Section of Guide—other general conservative design features based on experience, aimed at trouble free operation, long life, and low operating cost.

Many hundreds of outstanding installations in operation in churches, theatres, schools, municipal buildings, auditoriums, industrials, hangars, etc. Extreme flexibility of equipment, conservative design and individual engineering of jobs, have produced installations whose operating characteristics are superior results, low operating cost, minimum maintenance, and long life. Inquiries on special heating problems and on standard steam or warm air equipment will receive prompt attention

Like all leading metal products that are American, our equipment has gone to war, and will not be available for the duration except for urgent detense work and direct war use. Inquiries for providing postwar planning are welcome.

Gar Wood Industries, Inc.

7924 Riopelle Street **Detroit**, **Michigan**

TEMPERED-AIRE UNIT

A high efficiency, direct fired heating unit incorporating a large-volume firebox, an integral economizer, a coordinated oil burner combustion chamber firing unit, a flash-type humidifier, washable cloth filters, and a low speed, resilient-mounted blower.

The primary transfer of heat occurs in the large firebox, having its outlet at the bottom, through which the hot gases pass down into the economizer. Here the gases divide into long

through which the hot gases pass down into the economizer. Here the gases divide into long thin slices, within the economizer tubes. Each tube is swept at high velocity by cold return air from the blower. The

rapidly flowing cool air

absorbs a maximum of heat from the economizer surfaces.

The burner and fire bowl combustion chamber are built together

The burner and fire bowl combustion chamber are built together as an actual unit, with the back end of the fire bowl forming a windbox containing air for combustion at sufficient pressure to offset the effect of draft variations Air from the windbox passes through metering chutes, set at an angle to cause rotation. Both air and oil rotate and intermingle in a conical spray, resulting in a definitely controlled flame entirely contained within the fire bowl.

GAS-FIRED HEATING UNIT

Gas-Fired Vertical Unit

High efficiency heat exchanger sections are used singly, and in multiple to produce various size units. The horizontal types are ideal for basements with low ceilings. The vertical types occupy small floor space, and are particularly suitable for installation in heater utility rooms located on the first floor, where space is limited.

located on the first floor, where space is limited.

The horizontal units feature the Gar Wood washable cloth filters for economy and collection of fine dust. An exclusive built-in diverter protects against varying and erratic drafts. The humidifier provides adequate humidity. Canvas couplings for the air bonnets prevent sound telegraphing to the duct work. The large sized slow speed, ball bearing, resilient-mounted and canvas connected blower is driven by a hinge mounted motor with an adjustable speed pulley and built-in overload protection. These features assure adequate delivery of warm air throughout the house, and silent operation.

OIL-FIRED BOILER-BURNER UNIT

An internally fired, downdraft, high efficiency Boiler-Burner unit employing the same firing unit used in the Tempered-Aire Furnace-Burner Unit.

Made in two types, an obround design having a steam chest for steam systems and a cylindrical design for hot water systems. The steam type is available with a built-in tankless water heater. The hot water type can be supplied with a domestic water storage tank having an integral water heater all contained within the boiler jacket.

ST. LOUIS
MEMPHIS
OMAHA
SALT LAKE CITY
CHICAGO

L. J. Mueller Furnace Co.

ESTABLISHED 1857

2009 W. Oklahoma Ave., Milwaukee, Wis.

LOS ANGELES
KANSAS CITY
BALTIMORE
PHILADELPHIA
WASHINGTON

SERIES 50 OIL-FIRED WINTER AIR CONDITIONING UNIT

Designed and constructed to meet the needs and purse of the moderate-sized home, this unit automatically heats, filters, humidifies and circulates the air within the home-refliciently and economically. The heating drum and radiator are made of heavy gauge steel, all electric welded, with no joints. Uniform distribution of the conditioned air is secured by the quiet, efficient Mueller fan. Filters furnished are of ample area, and with large dirt-holding capacity. Series 50 unit is available with a Mueller Vaporizing or Pressure Atomizing type oil burner. If desired, any standard burner may be used. Three sizes, from 100,000 to 225,000 Btu per hour.

SERIES "EPS" GAS-FIRED WINTER AIR CONDITIONING UNIT

Designed and styled for the modern home, this Mueller unit meets every requirement for an automatic Winter air conditioning unit. Provides balanced distribution of filtered, humidified warm air in ample volume to every room. Heating unit consists of Mueller steel Heatspeeder sections, providing quick heat in desired volume. The fan operates quietly and efficiently, with ample capacity for any requirement. Filters thoroughly clean the air. Humidity is supplied automatically. Available in three sizes with AGA input ratings from 90,000 to 180,000 Btu per hour.

SERIES "FB" COAL-FIRED WINTER AIR CONDITIONING UNIT

The smart, new, straight-line styling and unified design of this unit provides the same smartness, compactness and trim lines usually identified only with automatic heating equipment. The heating unit is of all-cast-iron construction, assuring a lifetime of dependable, economical heat. The heating unit, blower, and filters are enclosed within the crinkle-lacquered, insulated housing. Filters are replaceable type, and are of ample area. The blower provides uniform distribution of the conditioned air to all rooms. Available in six sizes, with hand-fired ratings from 68,000 to 199,000 Btu at register.

Mueller Heaters For All Fuels A Complete Line for All Purposes

Return Flue all-cast Furnace. 18 in. to 30 in. firepots, single and double firedoor styles. Available in round, galvanized or square, lacquered casings.

Series P-400 Steel coal-fired fan-filter-furnace unit. Also available with round casing for gravity operation. Four sizes, 20 in. to 27 in. drums.

Series OVP oil-fired winter air conditioner—steel construction. Equipped with Mueller vaporizing burner. One size, 80,000 Btu at bonnet.

Series CVP gas-fired winter air conditioner. All-cast-iron heating unit. A.G.A. input ratings from 125,000 to 200,000 Btu per hour.

Gas-fired air conditioning furnace. A.G.A. input ratings from 60,000 to 100,000 Btu per hour. Wide range of air deliveries.

Series G gas-fired gravity furnace. A.G.A. input rating, 90,000 Btu per hour. Available with square or round casing.

Series "AE" Gas Boiler. AGA ratings, 180 to 1,260 sq ft steam; 290 to 2,015 sq ft hot water.

Gas-fired unit heater. Sizes from 4 to 48 sections. A.G.A. input ratings, 180,000 to 2,160,000 Btu per hour.

Series "SA" stoker-fired furnace, with fan-filter unit. Any stoker may be used. Capacities, 110,000 and 175,000 Btu.

Horizontal Tubular Heaters, for schools, churches and other large buildings. Three sizes, with capacity range from 1,188,000 to 1,390,000 Btu per hour.

Complete catalogs on each of above units available upon request.

Lee Engineering Company

Union National Bank Bldg., Youngstown, Ohio

LEE DIRECT WARM AIR HEATING

The Lee System of warm air heating generally costs less to install than steam or hot water; utilizes fuel with a high degree of efficiency; distributes the heat exactly where needed; responds promptly without lag; requires little or no maintenance; and needs no licensed attendant. Heaters for use with the Lee System are made in the three types illustrated and described briefly below.

Lee Central System-Bruk-Set Tubular Heater

Lee Central System-Steel-Encased Tubular Heater

Lee Unit Heater

LEE BRICK-SET CENTRAL SYSTEM

The Lee Brick-Set Heater is generally turnished in sizes of from 3,000,000 to 8,000,000 Btu per hour, for use as a centrally located heater connected by duct work to the space being heated. As can be seen from the cut-away view at the left, the air to be heated passes through the heater tubes countercurrent to the hot gases surrounding the tubes.

LEE STEEL-ENCASED HEATER

The operation of this heater is similar to that of the Brick-Set Heater shown above. This type of heater is usually furnished in sizes of from 1,500,000 to 6,000,000 Btu per hour.

LEE UNIT HEATER

The Lee Unit Heater differs from Lee Central System Heaters in that the Unit Heater is made in relatively small, standardized, self - contained, steel - encased models of up to 1,500,000 Btu per hour capacity for operation either as a unit heater without connecting ducts; or as a central heater with ducts.

All three systems can be operated with any type of fuel.

For further information write for catalog.

The Ouincy Stove Manufacturing Co. Quincy, Illinois-U.S.A.

MONOGRAM Automatic Oil Burning Furnaces

MONOGRAM Turbulent-Flame Vaporizing Oil Burner

An important factor in the high efficiency of all MONOGRAM Heating Equipment is the MONOGRAM Turbulent-Flame Vaporizing Oil Burner-a new method of oil burning. No moving parts, nor frequent Products of comcleaning or servicing. bustion are confined to the heating drum, and oil vapors, gas, or products of combustion can not escape into the building. burner is continuously in operation—either

on low or high flame, and maintains sufficient burner temperature to completely vaporize

oil so that combustion occurs immediately when oil enters the burner—quick, efficient.

The cycle of operation from low fire to high fire and again reducing to low fire is gradual and without puff or explosion. In case of electric power failure the burner operates on low fire without danger of flooding, and can be operated manually by adjusting the oil flow and the draft regulator as required. Burner approved by the Underwriters' Laboratories. Inc.

Ten Furnace Models

Three sizes of Booster Gravity Units for quick and inexpensive change from coal to automatic oil heating, equipped with limit control, mechanical draft, and thermostat—these three models may be equipped with blowers for Full-Forced Circulation. Three sizes of Full-Forced Winter Air Conditioning units complete with air filters, automatic humidifiers, blowers, economizers, mechanical draft, limit control, blower switch and thermostat. An upright Full-Forced Winter Air Conditioner for basement or utility room installation equipped with separate blower for draft and air, limit control, blower switch and thermostat. Heating drum 12 to 14 gauge-all cabinets insulated with one inch

fibreglas. Mechanical draft only on high fire. Low fire operates on .02 inch draft. Special oil service station models from 50,000 to 72,000 Btu at bonnet—efficiency obtainable 80 to 81.7 per cent cfm 550 to 850.

Specifications for MONOGRAM Oilfire Furnaces

Type of Furnace	ace Booster Gravity			Full-Forced Warm Air			Full-Forced Winter Air Conditioner			Upright
Model No.	75	100	200	76	103	203	125	150	250	102
Btu Rating at Bonnet	75,000	90,000	125,000	75,000	90,000	125,000	90,000	120,000	150,000	75,000
Per Cent Efficiency Obtainable	80	82	82	80	82	82	84	84	84	80
Air Delivery—cfm				400-700	800-1400	1000-1600	800-1400	800-1400	1000-1600	800-1400
Cabinet Floor Size-In.	26 ¹ / ₄ ×26 ¹ / ₄	30x30	36x36	26 ¹ / ₄ x52 ¹ / ₄	30x56	36x66	26 ¹ / ₄ ×49 ¹ / ₂	30x56 ¹ / ₂	36x681/2	27×27
Cabinet Height—In.	501/4	60	60	501/4	60	60	501/4	60	60	71
Height With Bonnet	641/2	741/4	741/4							
Max Gal. Oil per Hr.	0.69	0 81	1.12	0.69	0.81	1.12	0.80	1.05	1 32	.69
Min Gal. Oil per 24 Hr.	1 50	1 00	1.50	1.50	1.00	1.50	1 50	1.00	1 50	1.50

New MONOGRAM Patented Burner vaporizes oil quicker-more completely, then induces both primary and secondary air in proper relation to oil, producing the highest known operating efficiency. Double baffle heat unit made possible by shorter, wider flame, stops rush of heat out the flue, creates a lower heating zone which combined with the clean, perfect combustion produces unheard of operating efficiencies.

Airtherm Manufacturing Company

710 S. Spring Ave., St. Louis, Mo.

THE ENGINEERED LINE OF UNIT HEATERS

DIRECTHERM WARM AIR HEAT-ERS FOR OIL, GAS OR COAL are available in six standard sizes with capacity from 300,000 to 1,500,000 Btu. They are made of heavy gage steel plate, with major sections all welded and flue gas headers are readily cleanable.

VENTILATION AND AIR RE-CIR-CULATION. The Directherm can be easily hooked up for outside air intake. Air filters may be used in the intake box when desired.

INSTALLATION. These units, when assembled, require nothing more than a stack and an electrical connection (plus a gas or oil fuel hook-up) and can be made fully automatic in operation when using oil, gas or stoker.

PORTABILITY. Directherm Heaters may be readily removed from one location to another or from one plant to another.

DUCT WORK. While the Directherm Heater will provide thorough heat distribution without duct work, where necessity requires it may be hooked up with a system for further heat distribution. The fan equipment is of ample capacity to overcome duct resistances.

ENGINEERING SERVICE

The Airtherm Mfg. Co. Engineering Department and District Representatives are at all times available for consultation. At your request we will place experienced engineering aid at your disposal. Representatives in all principal cities.

AIRTHERM LINE OF UNIT HEAT-ERS represent a full range of capacities in all types.

THE AIRBLANKET. A revolutionary type of heating unit which holds the heat in the working zone through the use of the over-riding cold air blanket. This unit is available either in the centritugal fan type as illustrated above or in the propeller fan type. They are designed for wall or ceiling mounting and are especially recommended for high ceiling jobs. Bulletin No. 210 contains complete details of the Airblanket method of heating.

THE AIRHEATOR. A highly efficient, large capacity, centrifugal tan heater for all types of installations, available for floor wall or ceiling mounting.

THE AIRVECTOR. A newly redesigned propeller fan type unit heater backed by 30 years of manufacturing experience. The Airvector is available for ceiling suspension or mounting from the floor on a recirculating stack.

AIRTHERM EXHAUST FANS have been expressly designed to meet industrial and general requirements for rugged, heavy duty type fan of simplified construction that would minimize both installation and maintenance problems. Capacity charts and literature will be forwarded immediately on request.

ELECTRIC AIR HEATER CO.

DIVISION OF AMERICAN FOUNDRY EQUIPMENT CO

MISHAWAKA, INDIANA

Manufacturers of

Cross-section Views of Electromode Heater Grids—Circular and Rectangular Types

HOME & OFFICE HEATERS

Model PJ-15—A package of comfort for chilly bathrooms, nursery, den, office, workshop, etc. Can be used in average baseboard receptacle on 115 volts.

Model WJ-15
Bilt-In-Wall Electromode—Rated
1500 watts, 115 volt,
60 cycle, 1 phase
(5123 Btu per hour). Ideal for bathrooms
or auxiliary heating
anywhere. Designed
for standard 2 in. x 4
in. wall construction—approximate wall
opening required:
101/4 in. wide x 113/4
in. high.

Cast aluminum grids in electric heaters are a radically different innovation from the popular conception of electric heating units. Aluminum, a metal of highest thermal conductivity, is cast on a tubular element. This process seals the heating element, preventing all oxidation.

Circular Grid—Made in capacities from 2 KW (6830 Btu) to 9 KW (30,735 Btu). Each heater is provided with eye bolts and adjustable louvers. The cabinets are made of heavy furniture steel.

Industrial Unit—Made in capacities from 10 KW (34,150 Btu) to 90 KW (307,350 Btu). The cabinet is made of heavy steel and furnished with eye bolts and adjustable louvers.

Middle

Industrial
Portable—A heavy
duty portable Electromode made in
capacities from 1
KW (3415 Btu) to
9 KW (30,735 Btu).
Each heater is a
self-contained unit
complete with cable
and with a suitable
plug cap.

Send to the factory for literature and complete details on any or all Electromode models. Our Engineers will be glad to estimate heater sizes for your application and submit full recommendations. Qualified engineering representatives are located in the principal cities for prompt service. A wide variety of models and capacities are available for any kind of a space heating job.

DRAVO CORPORATION

HEATER DEPARTMENT

300 Penn Avenue, PITTSBURGH, PA.

Sales Offices in Principal Cities

Cut away view showing combustion chamber principles as applied to gas, oil, or combination gas and oil burning units. Note corrugated combustion chamber with fins and deflectors welded thereto for maximum heat transfer efficiency. Economizer tubes utilize part of the heat of the flue gases. Heated air is discharged at top, return air taken in at floor level, a practice that concentrates heated air at working levels.

Savings of scarce metals, fuel, cost of maintenance and cost of labor in operation are factors influencing favorable acceptance of Dravo Heaters.

War conditions demand speed of installation and curtailment in the use of critical materials. Dravo Heaters are shipped with refractory and firewall in place, are installed by simply connecting to fuel and power supply, and their construction represents a saving in critical metals of 30 to 40 per cent over conventional steam plants with distributing systems.

Each heater is a self-contained unit, operated individually. A heating system for any size structure may be formed with a combination of one or more heaters. Dravo Direct-Fired Heating Systems save man-hours, money, transportation—all essential to the war effort.

Dravo Direct-Fired Heaters are used for permanent installation and also often used to supply temporary heat in new construction or plant expansion.

The exceptionally high heat transfer efficiency is the result of two fundamental design features—first, accurately controlled combustion of fuel and air, and second, highly effective transfer of heat to air. Standard stock sizes are obtainable for production of 650,000 to 4,000,000 Btu output per hour. Dravo Bulletin No. 505 with detailed description mailed on request.

Specification Data Sheets for any type or capacity are furnished on request.

GAS-OIL COMBINATION . . . Floor Set . . . Top Discharge . . . Rear Fired . . . Standard V-Belt Drive—This series of heaters is equipped to burn either Heavy or Light oil with alternate gas burner. Equipment consists of a complete, separate burner for each

burner for each fuel, each burner having a complete set of controls. The controls and wiring are so arranged that either burner can be put into operation by simply throwing a switch.

GAS...Floor Set...Top Discharge...Rear Fired...Standard V-Belt Drive—This series as well as all others is designed to deliver the maximum output per square foot of floor space occupied.

Because of their unique design they fit into the heated space and are dependable and efficient. They readily lend themselves to a wide variety of applications, using either natural or manufactured gas.

There are 47 Branch and Sales offices stragetically located to extend quick cooperation on heating problems.

Right. Hopper fed model, capacties 1,000,000 to 4,000,000 Biu output per hour. Also available for bin-feed, Anthracite or Bituminous coal.

COAL FIRED SERIES

—the Dravo coal-fired, self-contained Heater is particularly adaptable in areas where coal is the cheapest or easiest fuel to obtain. Coal fired heaters may be converted to either gas or oil firing should conditions change. The entire series of Dravo Direct-Fired Heaters has

the utmost flexibility. Enough applications, combinations, and adaptations are available to meet any set of reasonable conditions. The same unique principle of corrugated welded combustion chamber, with its multiplicity of welded fins and deflectors, is employed. The entire series has the DRAVO non-clinkering air-cooled setting incorporated in the design. Available for either bituminous or anthracite coal; equipped with either hopper feed or

bin-feed stoker, installed under either end of the heater. Capacities: 1,000.000 to 4,000,000 Btu per hour output.

There are two models of Dravo Direct-Fired Coal Heaters specially designed for large unit applications which can be used as central heating plants. Overhead or underground duct systems may be installed when necessary. These large models are available in ratings from 4½ to 8 million Btu output per hour.

Specification Data Sheets for any type or capacity are furnished on request.

OIL, Floor Set, Top Discharge, Front Fired Standard V-Belt Drive—This series obtainable in light oil or heavy oil fired models in all Dravo Direct-Fired

Heaters. Economy of fuel consumption is the result of careful over-all designing and constant improvement over many years. In summer they may be used for air circulation.

COAL . . . Hand Fired Model—Available for bituminous coal or coke. Equipped with full set of rocking and dumping grates, supporting frame and lugs; under-

grates, supporting framgrate blower assembly; shaker bar and handle; lower ashpit front; door and frame. Available in ratings of 1,000,000 to 4,000,000 Btu per hour output capacity. Convertable at any time to bin or stoker feed, gas or oil consumption.

FEDDER:

MANUFACTURING COMPANY, INC. 85 TONAWANDA ST.

BUFFALO, NEW YORK

Series 8 Unit Heaters-150 to 1800 EDR

FEDDERS UNIT HEATERS Horizontal Type

Provide directional control of heated air. Maximum heat transfer per pound of metal-75 to 1200 EDR.

FEDDERS UNIT HEATERS Vertical Type

Designed for high ceiling installations where supply and return piping will not interfere with overhead equipment such as craneways, shafting, tall machinery. High velocity fan delivers heated air down to the working zone where draftless diffusion is accomplished by using suitable directional outlet to fit conditions.

FEDDERS TYPE K HEATING COILS

Strong, rigid casings . . . large cylindrical headers . . . full-floating protection against overall expansion . . . top header tri-point supported by center anchorage brackets and drop forged bronze trunnions . . . knee action relief of differential expansion among tubes . . scale breaker-tube orifices . . . floating type tube supports . . . permanently bonded fins and tubes.

7 Standard Face Widths 123/4 in. to

36 1/8 in. 18 Standard Face Lengths 1 1/2 ft. to 10 ft.

Hastings Air Conditioning Co., Inc.

Hastings, Nebr.

Manufacturers of

Air Conditioners. Unit Heaters. Utility and Package Blowers.

Dealers and Representatives in Principal Cities

A Complete Line of Highly Successful COLD WATER Air Conditioners. Capacities listed depend on entering air and water temperatures.

All equipment available for combination heating and cooling.

FLOOR MODELS

Floormasters-Unusual design and special features permit maximum installation possibilities with minimum floor

space and installation costs.

Air Delivery-2240 cfm. Cooling Capacity—3 to 6 tons. Dimensions— Height 93 in., Width 48 in. Depth 25 in. Motor— ½ hp. Filters—3 16 in. x 25 in.

Roval—For offices. homes, hospitals, etc.

Air Delivery-590 cfm. Cooling Capacity-1 to 2 tons. Motor—1/6 hp. Filter—1 16 in. x 25 in. Dimensions—Height 40 in., Width 28

in., Depth 20½ in.

CENTRAL PLANTS

Sectional construction for ease of handling. Motors inside mounted to provide very neat appearing compact units.

SPECIFICATIONS

Size	CFM	Motor Hp	Filters	Capacity Tons
CP 30	3,000	1	5	4- 9
CP 40	4,000	1	8	6-12
CP 60	6,000	2	10	9-18
CP 80	8,000	3	12	12-24
CP120	12,000	5	20	18-36

GENERAL UTILITY MODELS

Master-Singly or in multiple are suitable for any business or space size. Large jobs handled without duct work by proper location of units.

Air Delivery—2,240 cfm. Cooling Capacity—3 to 6 tons. Dimensions—Height 29 in., Width 49 in., Depth 50 in. Motor—½ hp. Filters—4 16 in. x 23 in.

Majestic-Similar to Master except size. Air Delivery—1120 cfm. Cooling Capacity—1½ to 3 tons. Motor—¼ hp. Filters—2 16 in. x 25 in. Dimensions—Height 26 in., Width 28 in., Depth 40 in.

Zephyr—Same capacity, motor and filter as the Royal. For use where suspended or concealed units are desired. Dimensions—Height 26 in., Width 24 in., Depth 28 in.

UNIT HEATERS

Centrifugal Type for extreme quietness and

efficiency.

Steam pressureto 150 lbs per sq in. Finish-Brown wrinkle enamel and

stainless steel louvers.

PACKAGE AND OPEN TYPE BLOWERS

May be knocked down for narrow doorways. Finished in attractive green wrinkle.

Utility type blowers are available with or without motors and in any discharge desired.

All sizes from 9 in. to twin 21 in. Air deliveries from 1000 cfm to 16,000 cfm.

Write for Catalogues, Literature, or Information

Kramer Trenton Co.

Manufacturers of
HEATING, COOLING AND REFRIGERATION DEVICES
Trenton, New Jersey

KRAMER UNIT HEATERS

All-copper heating element. Oval-section tubes with hair-pin bends. High discharge air velocity insures proper heat distribution. For pressures up to 150 lb.

Send for Bulletin H-141

KRAMER COPPER CONVECTORS

All-copper heating element. Oval tubes with fins metallically fused to tubes. Noiseless operation-Guaranteed for operating steam pressures up to 50 lb

Send for Bulletin H-240

HEATING and AIR CONDITIONING UNITS for Residential Use

Designed for split-system installations. A range of sizes adaptable to residential requirements. Rubber mountings and flexible connections minimize noise.

Send for Bulletin SS-341

KRAMER COMFORT COOLERS

Suspended type for small tonnages—1 to 3 tons—and for remote compressor operation. All-copper coils. Specially designed grille for proper diffusion.

Send for Bulletin R-142

KRAMER TURBO-FIN

For blast heating and cooling. All-copper blast surfaces; fins metallically fused to tubes. Air side flow-disturbers. Coil finished in electro tin plate for permanence.

Send for Bulletin A C-540

KRAMER AIR CONDITIONING UNITS Ceiling and Floor Type

Wide variety of sizes and capacities—2 to 30 tons in cooling; 65,000 to 1,280,000 Btu per hour in heating. Accurately rated. All-copper Turbo-fin coils; fiberglas air filters. Complete cabinet types for either floor or ceiling mounting.

Kramer Trenton Co.

Manufacturers of
HEATING, COOLING AND REFRIGERATION DEVICES
Trenton. New Jersey

HEAT TRANSFER PRODUCTS

BLAST COOLING COILS • BLAST HEATING COILS • AIR CONDITIONING UNITS COMFORT COOLERS • UNIT HEATERS • COPPER CONVECTORS • FINNED COILS • BARE TUBE COILS • PLATE COILS • CONDENSERS • HEAT INTERCHANGERS • WATER COOLING EVAPORATORS • ICE MAKERS • UNIT HEATERS;—Coolmaster Panel Type—Floor Type—Freezing Oven—Freezing Shower—COMBUSTION ENGINE

RADIATORS • OIL COOLERS

KRAMER Balance Loader SYSTEM

he KRAMER Balance Loader SYS-EM—(Patented) is a modulating refrigration system capable of varying from per cent to 100 per cent of full load, and naintaining a fixed minimum back presure in the suction line and in the compressor crank case. The KRAMER SYSTEM will automatically compensate or varying evaporator loads, resulting in n infinite number of compressor capacity nodulation.

The KRAMER SYSTEM gives a full ange of modulation at a fixed minimum back pressure throughout the entire low ide.

Referring to the diagram—the Balance Loader is fundamentally a heat exhanger consisting of a direct expansion oil (a) within a cylinder shell (b). The expansion coil is controlled by an autonatic expansion valve (c) set to operate that a predetermined pressure. The hot gas rom the compressor is passed through the shell of the Balance Loader before going to the main condenser.

As the heat load at the evaporator is reduced, the resulting reduction in suction pressure opens the automatic expansion valve at the Balance Loader which will

automatically maintain the suction pressure at a constant predetermined level.

Among the Advantages achieved by the use of the KRAMER SYSTEM are a constant back pressure in suction line and crank case, elimination of lubricating and seal troubles due to unusually low crank case pressures, prevention of icing of air conditioning coils, partial flooding of the evaporator is made possible, close control is achieved, complicated and excessive control instrumentation is eliminated.

The KRAMER SYSTEM can be applied to new or existing refrigeration systems. It can be used in conjunction with air conditioning, industrial cooling, liquid cooling and commercial refrigeration. It is particularly adaptable to systems having wide heat load fluctuations and where precision control is required.

McQuay, Inc.

1602 Broadway, N.E., Minneapolis, Minn. MANUFACTURERS OF AIR CONDITIONING EQUIPMENT

Sales Offices in all Principal Cities

- Air Conditioners
- Air Conditioning Coils
- Blast Heating Coils
- Refrigeration Coils
- Convection Radiation
- Unit Heaters
- Unit Coolers

- Comfort Coolers
- **Blower Coolers**
 - (Suspended & Floor Type)
 - Room Coolers
 - (Cabinet Type) Ice Cube Makers
 - **Icy-Flo Accumulators**
 - Zeropak Low Temp. Units

THE EXCLUSIVE McQUAY FRICTIONAL BOND FIN-AND-TUBE COIL ASSEMBLY

The McQuay Fin and Tube assembly in all Mc-Quay coils and cores is one of the reasons McQuay products are considered "Tops in Over-All Efficienby many heating and refrigeration authorities.

Heat transfer efficiency primarily depends on three elements in coil construction. First, "Area of Contact," Second, "Contact Pressure" and finally "Quality of Contact" between collar and tube.

In McQuay coils all three necessary elements are found developed to their highest degree. The famous McQuay "Wide Fin Collar" plus Exclusive Hydraulic Expansion together with the polished surface, secured by "spinning" the fin collar, truly provides the last word in Heat Transfer.

McQUAY STANDARD CONVECTORS

The Standard all purpose Convector has been designed to meet all heating requirements. They are available for free standing, partially recessed, fully recessed and wall mounting applications.

All enclosures are constructed from high grade steel, properly reinforced to make a sturdy cabinet.

The heating element is constructed of a series of round tubes to which are attached die formed radiating fins, which are STANDARD CONVECTOR bonded to the tubes by an exclusive process.

We offer the services of our Engineering and design department to help solve your heating problems.

COMBINATION COOLING COIL

WATER COIL

STEAM BLAST COIL

MORE THAN 1,000,000 STANDARD COIL TYPES AND SIZES

McQuay manufactures the most complete line of Standard Coils in the Industry. Coils for Heating—1 to 10 rows deep using low or high pressure steam or hot water. Non-Freeze—(steam distributing tube) type coils 1 and 2 rows deep.

Removable Plug—(cleanable tube) type coils 1 to 12 rows deep. Water Coils for Cooling—1 to 12 rows deep. Direct Expansion Coils—for cooling 1 to 10 rows deep.

Refrigeration Coils—all types and sizes.

Special Coils—of various materials furnished on order for special applications.

STANDARD UNIT

RADIAL UNIT HEATER

CABINET TYPE UNIT HEATER

COMFORT COOLER

COMFORT COOLER

AIR CONDITIONER (YEAR-ROUND)

UNIT HEATERS

Critical materials must be conserved. McQuay Unit Heaters having a steel core of highest heat transfer efficiency, now have a sturdy but simple cabinet of non-metallic material. Truly it can be said that McQuay construction provides "greatest Btu per pound of metal used."

All McQuay Unit Heaters are furnished in a wide range of sizes with motors to meet all electrical current characteristics, making it convenient to select the proper size heater for every installation.

Made in two types—one for use with water or brine; another for Freon or methyl chloride. Eight sizes in each type—all with 4-speed motors.

Choice of recirculation of indoor air, entire intake of outside air, or a combination of both. Cold water or brine used in one type; Freon or methyl chloride in another. Modern "sound isolated" construction assures quiet operation. Capacities to 6 tons.

CENTRAL SYSTEM AIR CONDITIONING UNITS

Suspended and floor types, cools, dehumidifies, filters, and circulates air in summer, heats, humidifies, filters and circulates air in winter. Extreme flexibility and accessibility "built-in." Cooling capacities from 5 to 50 tons in both Suspended and Floor Type.

McQUAY ICY-FLO ACCUMULATORS

The new practical "Storage-Battery" for refrigeration effect is now available for handling heavy loads of short duration.

All McQuay Units are available in a large range of sizes, under WPB Order L-107 for Army, Navy, Maritime Commission, Coast Guard and essential industries. Write for Descriptive Bulletins. McQuay, Inc., 1602 Broadway St. N.E., Minneapolis, Minnesota.

DOWN FLOW UNIT

BLOWER TYPE UNIT HEATER

BLOWER TYPE UNIT

AIR CONDITIONER

AIR CONDITIONER (YEAR-ROUND)

ACCUMULATOR

Modine Manufacturing Company

Heating and Air Conditioning Division

General Offices: 17th and Holburn Sts., Racine, Wis.

Factories at Racine, Wis. and La Porte, Ind.

Branches in all Principal Cities

MODINE UNIT HEATERS

Front View

Back View

Horizontal Delivery Models—Differing only in condenser design, these unit heaters are available with either steel or copper condensers, the latter being limited primarily to shipboard application.

Steel Condenser—Heavy cylindrical steel or iron tubes and headers are brazed into integral, pressure-resisting units. Steel fins permanently bonded to tubes with metal. Entire condenser assembly is given protective lead-alloy coating to reduce corrosion hazard. Expansion provided for by floating lower header, heavy tubes and parallel heavy brazing.

Direct - Pipe - Suspension — Modine patented feature permits suspending unit directly from supply line without additional time and labor wasting supports; also permits complete rotation of unit for redirection of air stream.

Bonderized Casing—Casing protected from rust by Parker Bonderizing.

Safety Fan Guard—Staunch, steel safeguard built into unit protects against danger of unshielded fan.

CAPACITIES AND DIMENSIONS (For Steel-Condenser Units)

Model No.	Btu/ hr*	Cfm	Rpm	Over- all Height	Width	Depth Less Motor
H- 140 S/S H- 170 S/S H- 250 S/S H- 350 S/S H- 490 S/S H- 580 S/S H- 660 S/S H- 715 S/S H- 820 S/S H-1000 S/S	33,600 40,800 60,000 84,000 117,600 139,200 158,400 171,600 196,800 240,000	550 600 1060 1510 2300 2440 2660 2970 3640 4350	1635 1530 1145 1120 1110 1125 1120 1115 1130 1115	173/4" 201/8" 221/2" 24" 271/2" 271/2" 291/2" 333/4" 333/4"	141/4" 141/4" 19" 19" 23" 241/2" 261/2" 261/2"	9" 9" 11" 11"/2" 111/2" 111/2" 111/2" 13"

^{*}Btu based on 2 lb steam, 60 deg. ent air and Rpm as indicated. Above models available with variable speed motors.

VERTICAL DELIVERY MODELS

Available with steel and copper condensers.

Steel Condenser— Heavy, cylindrical steel or iron tubes and

Bottom View

headers brazed into a rugged unit of steam-carrying passages. Steel fins metallically bonded to tubes. Entire condenser coated with lead alloy for protection against external corrosion. Square shape of condenser provides uniform distribution of expansion stresses and absence of strain at joints where injury might result. Parallel alignment of fins eliminates possibility of dirt lodging between fins (as in pie-shaped alignment of round condenser) and clogging condenser.

Cone-Jet Deflectors—Verticals are regularly equipped with radial or spokelike deflector assemblies illustrated above. Individually adjustable deflector blades make possible delivery of high, narrow jetlike cone of heated air from high elevation . . . or low, broad, softened-velocity cone from low elevation.

TrunCone Deflectors—Verticals can be furnished with special deflectors for use on units mounted at heights lower than recommended for Cone-Jet Deflectors.

CAPACITIES AND DIMENSIONS (For Steel-Condenser Units)

Model No.	Btu/hr*	Cfm	Rpm	Overall Dimensions (Square)
V- 200 S/S V- 290 S/S V- 380 S/S V- 540 S/S V- 760 S/S V- 760 S/S V- 1030 S/S V-1430 S/S V-2000 S/S V-2510 S/S	48,000 69,600 91,200 129,500 167,900 182,200 227,600 247,300 343,000 480,000 602,000	820 1220 1830 2570 3810 3540 5120 5000 6120 9450 11000	1580 1130 1720 1130 1700 1120 1720 1120 1130 1120 1120	171/2" 22" 313/4" 313/4" 313/4" 313/4" 313/4" 431/2" 431/2" 421/8"

^{*}Btu based on 2 lb steam, 60 deg. ent air and Rpm as indicated. All but two largest of above models available with variable speed motors

STANDARD BLAST HEATERS

Modine Standard Blast Heaters for heating, ventilating, air conditioning and drying systems are available with steel or copper coils, depending upon application. Modine design features provide great structural strength, light weight and highly effective heat transfer capacity with the ability to handle large volumes of air at lower-than-average static pressure

losses Wide range of sizes and types to meet practically any temperature, air movement and size requirement.

STEAM DISTRIBUTION TYPE BLAST HEATERS

Cross section of steel supply header and tubes

Cross section of copper supply header and tubes

This line of coils is characterized by the uniform distribution of steam throughout the entire heating surface . . . even when steam is partially throttled to meet system temperature demands. Inserted in each condenser tube is a steam-distributing tube having small, accurately sized and spaced orifices along its entire length. Steam entering the distributing tube is uniformly rationed through the orifices into the external or condenser tube . . . then flows as condensate into the return header.

Uniform steam distribution provides a safeguard against freezing of condensate and tube damage, eliminating the need for preheaters or tempering coils. In addition to thus simplifying system design and control, uniform steam distribution solves the problem of stratification in the heated air stream.

Steam distribution type coils can be furnished with copper or ferrous condensers as required by wartime regulations.

VENTILATION HEATERS

For marine use. Made in Preheater and Reheater types with or without humidifiers. Patented design features permithigh heat transfer with small

fer with small face area. Casing design reduces weight to minimum without sacrificing strength.

MODINE COOLING COILS

For use in central system cooling and air conditioning plants, Modine Cooling Coils, Cold Water Type, are installed with a blower fan and duct work. Adaptable where cold water or noncorrosive brine is used as the cooling medium.

used as the cooling medium. Coils are available in Cleanable and Continuous Tube types.

CONVECTORS

Widely used in offices, laboratories, first aid rooms, corridors and aboard Navy and

merchant ships. Their popularity over cast iron radiation is due to attractive appearance, saving of floor and wall space, uniform temperatures and adaptability to automatic

control. Furnished with copper or steel heating units in a variety of types and sizes.

CABINET UNIT HEATERS

Modine Cabinet Unit Heaters are designed for the heating of offices, lobbies, corridors, auditoriums, etc. Used in conjunction with a steam or hot water system, they eliminate the need for un-

sightly obsolete radiators. Models include the Floor Cabinet, Wall Cabinet, Ceiling and Recessed types—each available in three capacities: 105, 310 and 450 E.D R.

D. J. Murray Mfg. Co.

Wausau, Wisconsin

Offices in Principal Cities

MANUFACTURERS OF THE GRID UNIT

Now made of high test cast iron instead of aluminum heating sections, to cooperate with the war effort in conservation of vital materials. Patent applied for.

Overall dimensions for installation of Cast Iron GRID Unit Heater

Designed and tested to operate with steam or hot water systems—for steam pressures from 2 lbs to 250 lbs. Engineered along the same lines as the standard GRID Unit which had aluminum heating sections and has been on the market since 1929.

CI (CAST IRON) SERIES GRID UNIT HEATER DATA

Model No.		Dimensions Motor		tor	Vol. Fan	Capacities 5 lb Steam 60° Air		Approx. Shipping	Pipe Sizes				
	A	В	С	D	E	Нр	Rpm		Btu/Hr	Final TMP	Weight	Supply	Ret.
CI 1500	171/2	153/8	111/2	16	233/8	1/10	1750	1500	76500	107	275	11/2"	11/4"
CI 2000	221/8	215/8	117/8	211/4	283/8	1/6	1150	2600	143000	110	440	2"	11/4"
CI 2504	271/2	26	13	26	351/4	1/4	1150	3300	206000	117	660	*2"	11/4"
CI 2500	271/2	26	13	26	351/4	1/2	1150	4350	224000	107	675	*2"	11/4"
CI 3000	325/8	311/8	13	311/8	391/8	1/2	850	6300	332000	108	1050	*21/2"	11/4"
CI 3000	325/8	311/8	13	311/8	391/8	11/2	1150	8000	380000	103	1050	*21/2"	11/4"

^{*}Furnished also with 2 in. top supply connection inlet.

NO ELECTROLYSIS TO CAUSE CORROSION

Low maintenance expense. More air changes per hour. Positive "directed" heat. No leaks—no breakdowns. Lower outlet temperature. Larger air volume. No soldered, brazed or expanded joints. Open design that keeps units clean.

Send for complete catalog information

John J. Nesbitt, Inc.

Holmesburg, Philadelphia, Pa.

11 Park Place, New York City

205 W. Wacker Drive, Chicago, Ill.

Manufacturers of

THE NESBITT SYNCRETIZER Heating and Ventilating Unit, sold by John J. Nesbitt, Inc., and American Blower Corporation; NESBITT HEATING SURFACE with Dual Steam-distributing Tubes, NESBITT SERIES H HEATING SURFACE, and NESBITT SERIES W COOLING SURFACE,

sold by leading manufacturers of fan-system apparatus;
WEBSTER-NESBITT UNIT HEATERS and AIR CONDITIONERS
(See page 1039), distributed in U.S. A. by Warren Webster & Company.

All products listed are now available with all-steel coils.

Interior Vienn

NESBITT SYNCRETIZER—Series 400

The last word in heating and ventilating units for schoolrooms, offices, etc., where the continuous introduction of outdoor air is desired. For engineering data, get Publication No. 225-1; for "The Story of Syncretized Air," Publication No. 231-1. The Nesbitt Syncretizer is available with non-metallic casing Complete details will be supplied on request.

Nesbitt Series B Thermovent

For heating and ventilating auditoriums, gymnasiums, assembly halls, and similar gathering places. Publication No. 227-1.

NESBITT COOLING SURFACE

Series W (Water) Surface with exclusive drain feature

For air cooling and cooling and dehumidifying (with cold water) or air heating (with hot water). Constructed of copper tubes and plate-type aluminum fins. Available in either continuous or cleanable tube type, in single sections having one to eight rows of

Uncased Surface Showing Drain Header

tubes deep, in three fin spacings, in eleven fin widths, and up to sixteen finned tube lengths. Sturdy galvanized casings. For particulars and engineering data send for Publications No. 233 and 233-1.

NESBITT HEATING SURFACES With Dual Steam-distributing Tubes

Copper tube-and-fin surface for lowpressure applications. Perfectly adapted to close, continuous automatic control with modulating steam valves. Steam-distributing tubes within the condensing tubes carry the steam equally to the full section assuring UNIFORM discharge temperatures even under a throttled steam supply; eliminating temperature strati-fication; preventing tube freezing without preheaters; giving ideal system results.

Cased or uncased units of many sizes and capacities. For full particulars and engineering data, send for Publication No. 237.

For above advantages plus uniform distribution in extended fin lengths from 80 to 128 ins., specify Nesbitt

Duplex Heating Surface with Dual Steamdistributing Tubes. Publication No 237.

Nesbitt Series H Heating Surface

A lightweight, enduring, highly efficient blast-coil heating surface designed for use with steam pressures up to 200 lb gauge. Well suited to high-pressure as well as lowpressure applications. Seven types, each in eight fin widths and up to sixteen finned lengths—a total of 784 sizes from which to select. Send for Publication No. 238 for complete engineering data.

THE HERMAN NELSON CORPORATION

General Offices and Factories at Moline, Illinois

Sales and Service Offices in the Following Cities:

PORTLAND, MAINE
BOSTON, MASS.
WESTFIELD, MASS
SPRINGFIELD, MASS
NEW YORK CITY, N. Y.
WATERVLIET, N. Y.
SYRACUSE, N. Y.
BUFFALO, N. Y.
PHILADELPHIA, PA
HARRISBURG, PA
SCRANTON, PA.
PITTSBURGH, PA.
JOHNSTOWN, PA
DETROIT, MICH.

SAGINAW, MICH.
GRAND RAPIDS, MICH
TOLEDO, OHIO
CLEVELAND, OHIO
CINCINNATI, OHIO
COLUMBUS, OHIO
WASHINGTON, D C.
BALTIMORE, MD
RICHMOND, VA
ROANOKE, VA
CHARLOTTE, N C
BIRMINGHAM, ALA.
MIAMI, FLA
ATLANTA, GA.

NASHVILLE, TENN MEMPHIS, TENN MEMPHIS, TENN NEW ORLEANS, LA INDIANAPOLIS, IND LOUISVILLE, KY. CHICAGO, ILL. NILES, MICH MILWAUKEE, WIS. APPLETON, WIS. PEORIA, ILL. DES MOINES, IOWA ST LOUIS, MO. KANSAS CITY, MO OMAHA, NEB

Tulsa, Okla
Emporia, Kans
Minneapolis, Minn.
Dallas, Texas
Houston, Texas
El Paso, Texas
Albuquerque, N. M.
Tucson, Ariz
Missoula, Mont.
Denver, Colo
Salt Lake City, Utah
Spokane, Wash.
Los Angeles, Calif.
San Francisco, Calif.

HERMAN HELSON HORIZONTAL SHAFT PROPEL-LER-FAN TYPE hiJet HEATER

Designed for ceiling suspension, this hiJet Heater projects warm air downward in the

desired direction. Incorporates patented stay tube which maintains proper relationship between headers without increasing strain on loops and prolongs life of unit. 48 models, sizes and arrangements.

HERMAN NELSON VERTICAL SHAFT PROPELLER-FAN TYPE hiJet HEATER

This hiJet Heater discharges air vertically downward, or at an angle to vertical in various directions. Long life

heating element incorporates Herman Nelson's patented stay tube. Unit can be secured with either high or low velocity discharge. 33 models, sizes and arrangements.

HERMAN NELSON DE LUXE hiJet HEATER

This attractive unit heater is unusually compact and provides excellent distribution

and large heating coverage. Incorporates patented stay tube in heating element and light-weight aluminum fan. Her-Nel-Co motor is mounted in end compartment out of air stream. Unit may be placed on floor, wall or suspended from ceiling. 18 models, sizes and arrangements.

HERMAN NELSON BLOWER-FAN TYPE hiJet HEATER

Provides efficient heating of large areas. Can be supplied with by-pass damper if desired. Streamline discharge outlets maintain large air delivery with high

velocity. Design of heating element assures durability and contributes to high velocity discharge. For floor, wall, ceiling, or inverted wall mounting. 150 models, sizes and arrangements.

HERMAN NELSON UNIT VENTILATOR

Maintains desired air conditions for school classrooms and rooms in public buildings. Both classroom and auditorium type units have either damper or radiator control. Exclusive "draw-through" design prevents drafts and eliminates overheating. Locating motor in end compartment provides additional space for fan assembly and use of larger fans running at slower tip speeds.

Herman Nelson Unit Heaters and Unit Ventilators are tested and rated in accordance with the Standard Test Code adopted jointly by the Industrial Unit Heater Association and the American Society of Heating and Ventilating Engineers.

THE HERMAN NELSON CORPORATION

Autovent Fan & Blower Division 1809-23 N. Kostner Ave., Chicago, Illinois

AUTOVENT DIRECT DRIVE PROPELLER FANS

Ruggedly constructed for economical operation under severe conditions in in-

dustrial applications. Available in wheel diameters from 9 to 72 inches; capacities 450 to 45,000 cfm. Write for literature.

VAPOR-EXPLOSION PROOF PROPELLER FANS

Designed for explosive dust or hazardous fume conditions. Non-ferrous fan

Chemical coatings furnished to requirements. Underwriters Label Class 1, Group D, totally enclosed motors. 12 to 36 in. wheels, 800 to 12,500 cfm. "31 Series" fan construction features.

ACID-MOISTURE PROOF PROPELLER FANS

For use where corrosive acid fumes or excess moisture exists. Wheels treated with protective coating for average or severe conditions. From 750 to 12,500 cfm in wheel sizes 12 to 36 inches.

AUTOVENT BELT DRIVE PROPELLER FANS

Developed for use in com-

mercial, industrial and public buildings . . . stock motor with "V" belt drive provides maximum efficiency. Mounted on steel panel for easy installation Six sizes, 24 to 54 inch wheel diameters with capacities from 5,000 to 23,000 cfm. Commercially quiet operation. All steel construction.

AUTOVENT BELT DRIVE UNIT BLOWERS

Fully self - contained unit including motor, drives and

housing; forwardly curved blades; adjustable motor pedestal with vibration dampeners; universal discharge; eight sizes having wheels with diameters of from 12½ to 30 inches; capacities 1,200 to 8,000 cfm. Compact and sturdy.

AUTOVENT DIRECT DRIVE UNIT BLOWERS

Compact, direct connected, motor driven unit blowers for general ventilating applications, fume hoods, chemical labs, processing, drying, forced draft, toilet ventilation.

etc. Universal discharge. Mount on floor. wall or ceiling. Forwardly curved and backwardly curved blade wheels. Can be furnished with special coatings for acid fume conditions. Available in nine sizes: Wheels 6 to $24\frac{1}{2}$ inches in diameter; capacities from 300 to 6,000 cfm.

AUTOVENT TYPE "H" and TYPE "HB" BLOWERS

For heavy duty ventilating and air conditioning installations.

air conditioning installations. Type "H"—forwardly curved blade wheels; Type "HB"—backwardly curved blade wheels incorporating non-overloading power characteristics Single or double width, Class I or Class II construction; 17 sizes having wheel diameters from 121/4 to 73 inches. Can be furnished to any speed or discharge requirement. Write for new catalog.

The Complete Line of Autovent Propeller Fans and Blowers is tested and rated in accordance with the Standard Test Code adopted jointly by the National Association of Fan Manufacturers and the American Society of Heating and Ventilating Engineers.

The Trane Company

2021 Cameron Avenue, La Crosse, Wisconsin

MANUFACTURERS OF HEATING, COOLING AND AIR CONDITIONING EQUIPMENT

Branch Offices:

Branch Offices:

Albany, N. Y., Allentown, Pa., Amarillo, Tx., Appleton, Wis., Atlanta, Ga, Baltimore, Md., Birmingham, Ala., Boston, Mass., Buffalo, N. Y., Canton, Ohio, Chatkanooga, Tenn., Chicago, Ill., Cincinnati, Ohio, Clarksburg, W. Va., Cleveland, Ohio, Dallas, Tex., Davenport, Ia., Dayton, Ohio, Denver, Col., Des Moines, Ia, Detroit, Mich., Fint., Mich., Fort Wayne, Ind., Gannesville, Fla., Grand Rapids, Mich., Greensboro, N. C., Greenville, S. C., Harrisburg, Pa., Hartford, Conn. Houston, Tex., Indianapolis, Ind., Kalamazoo, Mich., Kansas City, Mo., La Crosse, Wis., Lake Charles, La., Little Rock, Ark., Los Angeles, Calif., Louisville, Ky., Memphis, Tenn., Milwaukee, Wis., New Orleans, La., Newark, N. J., New York, N. Y., Oceanside, L. I., N. Y., Oklahoma City, Okla., Omaha, Neb. Philadelphia, Pa., Phoenix, Ariz., Pittsburgh, Pa., Portland, Ore., Providence, R. I., Richmond, Va., Rochester, N. Y., Salt Lake City, Utah, San Francisco, Calif., Seattle, Wash., South Bend, Ind., Spokane, Wash., St. Louis, Mo., St. Paul, Minn., Syracuse, N. Y., Trumbull, Conn., Washington, D. C., West Haven, Conn., White Plains, N. Y., Wilkes-Barre, Pa., Wilmington, Del.

Sales Connections All Over The World

Export Dept.: 75 West St., New York, N. Y.

In Canada: Trane Company of Canada, Ltd., Mowat and King Sts, W., Toronto, Ont. (12 Branches)

TRANE EDUCATIONAL MATERIALS

Trane Air Conditioning Manual (New, Enlarged Edition)

Trane offers the engineering profession a comprehensive, straight-forward and unbiased textbook covering the fundamentals of air conditioning. Trane engineers have gathered all available material, sifted and analyzed it carefully to produce in one volume the essence of air conditioning practice. The Trane Air Conditioning practice. The Trane Air Conditioning Manual not only shows how to design every type of air conditioning system, but also clarifies underlying principles enabling both the student and the engineer to reason out their own problems rather than to blindly follow complicated formulas. Price-\$5.00.

Trane Air Conditioning Ruler and Psychrometric Chart

To solve air conditioning problems with speed and accuracy, The Trane Company has developed the Air Conditioning Ruler and Psychrometric Chart. It eliminates the laborious calculation entailed by outmoded methods-saves two-thirds of your time in figuring air conditioning problems.

TRANE PRODUCTS

The facilities of the Trane Design Engineering Department are at the disposal of government and industry in the design of new and refined equipment to meet the many demands created by present day needs. Because standard Trane heating, cooling, drying, air handling and related products are used in so many fields of industry, Trane engineers have a thorough knowledge of the equipment requirements of industry.

THE TRANE REPRESENTATIVE

The Trane representative in the field is an equipment expert who functions as a collaborator with professional groups in his territory. He has a complete knowledge of comfort and process applications and is trained to work in conjunction with the consulting engineer, plant engineer, architect, contractor, and governmental agency.

TRANE LITERATURE

A post card to The Trane Company at La Crosse, Wisconsin, or to any of the many Trane Branch Offices will bring you information on the particular Trane product in which you may be interested. Complete engineering application data on all Trane products is available to qualified persons. The list of products across the page suggests the comprehensiveness of the Trane line and also indicates the ability of this organization to design as well as fabricate the exact equipment you need to meet your heating, cooling, drying or air handling requirements.

TRANE PRODUCT GUIDE

AIR CONDITIONERS

(Climate Changers)

Ceiling Type Units Floor Type Units Wall Type Units Process Conditioners Product Coolers Spot Coolers Industrial Units Sprayed Coil Units Air Washers

BLACKOUT VENTILATORS

Exhaust Units Summer Supply Units Winter Supply Units

CENTRIFUGAL COMPRESSORS

(Turbo-Vacuum Compressors)

50, 70, 100 and 200 Ton Centrifugal Type, Hermetically Sealed Water Chillers

CONVECTORS

Non-Metallic Cabinet
Convectors
Non-Ferrous Convectors
(For Shipbuilding Field)
Recessed Convectors
Semi-Recessed
Convectors
Wall Type Convectors
Sloping Top Convectors
Floor Type Convectors
Force-Flo Convectors
(Power Driven)

COOLING COILS

Direct Expansion Coils
Water Cooling Coils
Encased Coils
Generator Cooling Coils
Transformer Oil Cooling
Coils
Gas Cooling Coils
Oil Cooling Coils
Drainable Tube Coils
Air Condenser Coils
Special Coils

SYSTEMS

- Heating Systems
- Cooling Systems
- Air Conditioning Systems

-0----

- Refrigeration Systems
- Drying Systems
- Ventilating Systems
- Dry Blast Systems

EVAPORATIVE CONDENSERS

Series J Units (Small Capacity) Series K Units (Large Capacity)

EVAPORATIVE COOLERS

Diesel Engine Coolers Quenching Oil Coolers Dehumidifying Liquid Coolers

FANS

Propeller Type Fans Blower Type Fans Utility Blowers

HEATING COILS

Steam Coils
Hot Water Coils
Process Coils
Booster Coils
Ventilation Heaters
Special Coils for inclusion
in Processing Equipment

HEATING SYSTEMS

Vapor Heating Systems Vacuum Heating Systems Steam Heating Systems Warm Water Heating Systems

Heating Systems Industrial Systems

HEATING SPECIALTIES

Float Traps
Bucket Traps
Bucket Traps
Thermostatic Traps
(for low, medium
and high pressures)
Direct Return Traps
Lightweight Thermostatic Traps for
Aircraft
Radiator Valves
Temperature
Control Valves
Strainers
Float Vents
Ouick Vents

PUMPS

Circulating Pumps Booster Pumps Condensation Pumps Circulators

RAILROAD AIR CONDITIONERS

Electro-Mechanical
Systems
Evaporative Condensers
Ceiling Type
Conditioners
Floor Type Conditioners
Sub-Coolers

RECIPROCATING COMPRESSORS

Freon Condensing Units Freon Compressor Units

UNIT HEATERS

Projection Type Units Propeller Type Units Blower Type Units Cabinet Type Units

UNIT VENTILATORS

Ceiling Type Units Floor Type Units

Refrigeration Economics Co., Inc. Canton, Ohio

RECOY PRODUCTS

RECOY AIR CONDITIONING UNITS of the suspended type as shown, or vertical floor type, are made for all season purposes, also for summer cooling or winter heating and humidifying.

Capacities range from one ton up to any size required. Cooling and heating surface, and filter area are liberally proportioned and blowers are of moderate speed, all to insure the highest efficiency and quiet, satisfactory performance. Bulletin "E".

RECOY

RECOY CONTINUOUS FIN BLAST COILS

for cooling or heating are constructed of copper tubing with aluminum fins, or all steel hot dip galvanized after fabrication and are suitable for use with any cooling or heating medium. Bulletin "F".

AIR CONDITIONING STEEL MILL UNITS are for those hot spots with ambient temperatures around 200 degrees such as crane cabs. They

are complete package units including all regular air conditioning equipment and controls and in addition evaporative condensers so they may be mounted on traveling cranes where a water cooled unit is impossible. Quotations and data on request.

RECOY BLAST HEATERS have all welded coils and headers so will stand any steam pressure and remain tight for years. Coils are copper tubing with aluminum fins or all steel hot dipped galvanized after fabrication. The entire unit is suspended on the top header and coil is free to expand.

Fan motors are oversize to insure continuous service and fans are guarded.

The casings have liberally rounded corners and are beautifully finished in baked crinkle enamel. Quotations and data on request.

RECOY LIQUID COOLING UNITS were developed for the war effort to cool coolant oil for machine tools in arsenals and engine factories. They increase tool productivity as much as 300 per cent and insure greater accuracy of machined parts.

However, they are equally suited for cooling any liquid such as water and brine.

Standard sizes are from 1/3 hp to 10 hp inclusive, but other sizes are made to specified requirements.

The units are complete, including controls and charge of refrigerant, ready for electrical and liquid connections Ask for Bulletin H-42.

Factory: NEWARK, N. J.

L. J. Wing Mfg. Co.

59 Seventh Avenue, New York, N. Y.

Canadian Factory: MONTREAL

Branch Offices in

Principal Cities

WING REVOLVING UNIT HEATERS

This innovation in the method of distributing heat produces a sensation in heating comfort never before attained—a sensation of fresh, live, invigorating air.

The fact that the outlets revolve assures uniform and thorough distribution of comfortably warmed air throughout the entire working area, without drafts, hot spots or cold spots.

Such an unprecedented high efficiency in distributing heat is the result of nearly 20 years of constant study by Wing engineers to improve on the Floodlight System of heating originated by WING in 1920. This method projects the heated air vertically downward by means of light-weight, ceiling-suspended unit heaters.

It has needed only this latest refinement of slowly revolving discharge outlets to bring that method to perfection.

The WING Revolving Discharge type supplements the WING line of standard fixed discharge outlets, illustrated and described on the following page.

Bulletin HR-1.

The latest type of WING Unit Heater—with Revolving Discharge Outlets—is just as great a contribution to the art of industrial heating as was the Ceiling-Suspended Unit Heater, originated by WING in 1921.

The area covered by a WING Revolving Unit Heater is slowly swept by the heated air discharged by the outlets which move through an arc of 360 deg. covering every direction of the compass successively.

By maintaining an active, constant circulation of air throughout an industrial plant at all times, a new sensation of refreshing, invigorating comfort to workers is produced.

Top View

Elevation

WING FEATHERWEIGHT UNIT HEATERS

Type "HC" Fixed Discharge

The first light-weight, ceiling-suspended, unit heater. Eight different designs of outlets meet the requirements of every type, size and height of building or occupancy. Located near ceiling or roof, the accumulation of hot air in the upper spaces, with the accompanying costly waste of heat, is prevented. They project the air, comfortably warmed, downward to the working area. Bulletin H-9.

Design No. 3

Design No. 4

Design No. 8

VARIABLE TEMPERATURE SECTIONS

Invaluable in supplying fresh air for space heating or process work. Close control of the delivered air temperature is obtained without danger of freezing.

Manual or automatic control. Bulletin HS-2.

hot or cold water or refrigerant. heating element is extremely light and, for equal heat trans-

fer, offers little resistance to air flow. Available for any desired final air temperature. Bulletin HS-2.

DOOR HEATERS GARAGE HEATERS

WING originated the vertical conedischarge heater in 1921 and today it is

still applicable for heating the inrush of cold air at large doorways and for garage heating. Often cuts heating costs in half. Bulletins D-1 and G-1.

FOR LOW CEILINGS

In this type of WING Unit Heater the position of fan and motor are reversed to meet conditions of ceiling or roof height, form and shape of building, coverage, etc. Bulletins HR-1 and H-9.

Type "LC"

WING INDUSTRIAL FOG ELIMINATORS

Eliminate fog, odor and fumes in dyeing, bleaching and finishing plants, creameries, pasteurizing, bottling, canning and packing plants, chemical works, paper mills, steel pickling plants, etc. No ducts are required. Bulletin FE-12.

TURBINE-DRIVEN HEATERS

Any WING Unit Heater can be furnished with steam turbine-driven fan for locations where high-pressure steam is avail-Photo able.

shows turbine-driven revolving unit heater. Can also be supplied for fixed discharge or utility type heater. Bulletin HR-1 and H-9.

WING UTILITY UNIT HEATERS

A lightweight suspended unit heater for delivering heated air in one general direction. Has the same powerful fan and rugged heating element as WING Featherweight Unit Heaters. This is the latest re-

finement of the original horizontal lightweight heater which was developed by WING. Bulletin U-5.

WING-SCRUPLEX SAFETY VENTILATING FANS

A propeller type fan that will deliver air against static pressure, quietly and efficiently.

Moves the air forward in straight lines with minimum eddy. Capacities to 100,000 cfm. Bulletin F-8.

WING FEATHERFIN PROCESS HEATING UNITS

For manufacturing processes such as drying, aging, etc., re-

quiring the recirculation of the heated air. Motor or turbine located outside air current. Bulletin P-2.

WING-SCRUPLEX EXHAUSTERS

For economically moving air wherever ducts are used. It combines the efficient WING-Scruplex Propeller Fan with a housing which places the motor entirely outside the air duct. Motor and drive remain cool and clean and are easily accessible.

The powerful WING-Scruplex Fan delivers high air volume with low power consumption against any pressures for which duct systems should be designed. V-belt or direct drive.

Light, compact and easy to install. Bulletin

WING SYSTEM OF CONTROLLED COMBUSTION

For low pressure heating boilers and small power boilers. Increases capacity and permits use of lowest cost fuel. Includes Type EM Blower equipped with fully enclosed dustproof motor with speed regulating rheostat and automatic control. Eliminates necessity of frequent firing, allowing intervals as great as 24 hours even in zero weather. Bulletin M-96.

West News

Installation of Wing System of Controlled Combustion in a large school

WING TURBINE-DRIVEN BLOWERS

Applied to hand, stoker, oil or pulverized fuel fired boilers, increase boiler capacity, maintain constant steam pressure and

permit complete combustion of low-cost fuels. The exhaust steam, free from oil, can be used for heating or processes. Bulletin T-98.

WING DRAFT INDUCERS

Installed in breeching or flue, or on chimney top; provide positive, exact draft regardless of weather conditions or inade-

Chimney-Top Installation

or breeching construction. Suitable for coal, oil, or gas-fired boilers; industrial furnaces and kilns. Bulletin I-10.

WING MOTOR-DRIVEN BLOWERS

Type COM for static pressures up to 10 in. W. G. and volumes up to 50,000 cfm. Type EMD for moderate static pressures up to $2\frac{1}{2}$

Type COM

Type EMD

Young Radiator Co.

Plant and Executive Offices 709 Marquette St., Racine, Wis. Sales and Engineering Offices in Principal Cities

Vertiflow Unit Heaters.

A complete line of heating, cooling and airconditioning units. Steel heating elements available. Write for complete information

and engineering data.
VERTIFLOW UNIT HEATERS—Propeller Fan Vertical Discharge Type units for ceiling suspension. Heating element split and pitched for proper draining. Eight types of diffusers. 12 models, capacities 30,000 to 480,000 Btu per hour.

HORIZONTAL DISCHARGE UNIT HEATERS-32 sizes of single and twin propeller fan units. Capacities from 18,000 to 658,000 Btu per hour.

Floor model unit heater in attractive cabinet for offices, corridors, etc. Two
fans—operates on steam or hot water.

DUCTLESS AIR CONDITIONING

UNITS—Recessed room unit for use with steam or forced hot water systems. Heats, filters, humidifies and circulates air. "STREAMAIRE" AIR CO

AIR CONDI-TIONING UNITS-For complete yearround air conditioning. Also available for winter or summer conditioning only. Eight horizontal and eight vertical models. Capacities from 400 to 16,600 CFM. "STREAMAIRE" CONVECTORS

Seven types of steel and non-metallic cabinets, high efficiency heating element. Designed for any type of steam or hot water system.

COMMERCIAL HEAT TRANSFER UNITS-Extended heating or cooling surface for air conditioning units, dryers, etc.

WATER COILS—Continuous tube Type "FC" Heating Units coils for heating or cooling with water. Cleanable and Drainable types available. BLAST UNITS—An encased surface

for forced air heating or cooling systems.

EVAPORATOR COILS—For mechanical refrigeration systems using Freon or methyl chloride.

"Streamaire" Air Conditioning Units.

"Streamaire" Convectors.

Units.

Coils

Blast Units

Evaporator Coils

Unit Heaters.

Blower Fan Type Unit Heaters.

Ductless Air Conditioning Units

AIR SYSTEM EQUIPMENT

Air systems for heating, cooling and ventilating services are produced by grouping various machines and accessories, each performing a function in the complete cycle of the desired operation. The essential parts and accessories described by the manufacturers are contained in the following groups:

AIR FILTERS AND CLEANERS (p. 930-943)

Mechanical and electrical methods of filtering, also air washing and purifying apparatus and their applications.

Technical data on this subject will be found in Chapter 29.

HUMIDIFYING UNITS (p. 944-947)

For supplying moisture to air and controlling its volume as desired for industrial and commercial uses, or for comfort requirements.

Technical data is contained in Chapter 24.

COOLING TOWERS AND SPRAY EQUIPMENT (p. 945-947)

For cooling and reclaiming water used in industrial processes and air conditioning. Technical data will be found in Chapter 27.

HEAT TRANSFER SURFACES (p. 948-952)

As parts of heating and cooling units, and for separate use in industrial and commercial heating and cooling systems.

Technical data is contained in Chapter 26.

CONDENSING UNITS AND REFRIGERATING MACHINERY (p. 953-961)

For refrigerating processes and for cooling purposes in industrial, commercial and comfort air conditioning service.

Technical data will be found in Chapter 24.

FANS AND BLOWERS (p. 962-975)

For use as separate air circulating equipment, or as parts of heating and air conditioning units.

Technical data is contained in Chapters 23 and 30.

MOTORS (p. 976-977)

Used in conjunction with blowers, fans, stokers, oil burners and other heating, cooling and air conditioning apparatus.

Technical data on motors will be found in Chapter 36.

REGISTERS AND GRILLES (p. 978-990)

Air diffusion equipment for use with heating, ventilating and air conditioning

Technical data relating to this equipment is contained in Chapters 31 and 32.

SHEET METAL AND TUBULAR PRODUCTS (p. 991-994)

Sheets for air ducts and enclosures; pipes for gas, refrigerants, steam, water, etc. Technical data on pipe and piping is contained in Chapters 15 and 18.

Manufacturer's products shown in this division are designed for specific applications. Consult the Index to Modern Equipment for additional products of these manufacturers.

The Air-Maze Corporation

5202 Harvard Avenue, Cleveland, Ohio

ENGINEERS AND MANUFACTURERS OF AIR FILTERS EXCLUSIVELY

DIRECT FACTORY REPRESENTATIVES IN ALL INDUSTRIAL AREAS.

DISTRIBUTORS IN PRINCIPAL CITIES AND TOWNS THROUGHOUT THE UNITED STATES.

During more than 17 years devoted exclusively to air filter engineering and manufacturing, a great deal about the control and elimination of dust, pollens and grit has been learned by AIR-MAZE engineers. Their design and development of a highly efficient type of filter element construction, embodying distinctive advantages, has been considered a worthy contribution to the air filtering science and has resulted in wide acceptance of AIR-MAZE air filters in all fields of application.

2 in Thick Panel

4 in. Thick Panel

AIR-MAZE Permanent Cleanable Panel Filters

Note Advantages Made Possible by Air-Maze Scientific Construction:

Washable—Need no Replacements—Rigid all-metal baffles of "open" construction permits quick, thorough and economical cleaning. After each cleaning and charging operation, characteristics are same as new filters.

Great Dust Capacity—Unique design of the AIR-MAZE screen wire element provides a vast area of baffles on which collected material can become impinged; thus great capacity is assured.

Vibration Proof—Vibrations in service cannot shake filter media out of position—the uniform density remains *permanently* perfect.

AIR-MAZE Are Listed by Underwriters' Laboratories—When serviced according to the methods approved by the Underwriters' Laboratories, AIR-MAZE panel filters are approved as fire resistant air filters

Efficiency—Tests under varying conditions, both in laboratories and field operations, show air filtering efficiency of from 98.00 to 99.83 per cent with practical dust.

No Clogging—Scientific and exact progressive density stops larger particles of foreign matter on outer baffles. This, plus "open" type of construction, prevents openings from becoming clogged.

Adaptibility—In addition to air conditioning and power equipment installations, AIR-MAZE panel filters are effectively used in humidifiers, water eliminator units, paint spray-booths, oil separators, range canopies in kitchens, and other applications where specific problems and unusual requirements are easily handled by adaptations of the panels. AIR-MAZE panels will be made to fit frames of existing installations and can be furnished with locking handles and latches, snap catches, or with flanged edges and lift handles.

Special frames with new locking clamps are also available.

Magnified Section of "Loaded" AIR-MAZE Air Filter Element. Note that dust has been quite evenly impinged on the wires. No obstructed spaces can be seen. This feature accounts for the Low Pressure Drop and Non-clogging characteristics of AIR-MAZE

TECHNICAL INFORMATION

Sizes—All sizes and thicknesses are available; two and four inch thick panels are the accepted standard. Installations using large sizes of these permanent panels are surprisingly low in cost.

Capacity—Recommended air capacity is $1\frac{1}{2}$ to $2\frac{1}{2}$ cfm per square inch. Thus, the capacity of a 20 x 20 in. panel is 600 to 1000 cfm. Normally, 2 cfm per square inch should be used.

The Air-Maze Corporation

5202 Harvard Avenue, Cleveland, Ohio

Resistance—For 2 in. thick panels the resistance varies from 0.08 in. to 0.10 in. H_2O when handling 2 cfm per square inch of filter area (288 fpm velocity); and for 4 in. thick filters the resistance varies from 0.11 in. to 0.140 in. H_2O at 2 cfm per square inch (288 fpm velocity); the variation being in accordance with the different types of filter media construction available. To obtain specific restriction data write for graphs.

Construction—AIR-MAZE filters are of patented construction consisting of a maze of alternately placed and exactly spaced crimped galvanized wire screens of selected meshes; these are arranged with precision so as to create graduated and progressive density, employing the baffle impingement principle in its highest degree. The filter element is enclosed in a heavy gauge enameled steel frame having two drain holes, to simplify servicing.

EASY TO CLEAN AND CHARGE

Wash out filtered matter in a pan of hot water or under a stream of hot water.

From a flat surface raise one end and let it drop sharply several times. This facilitates drainage.

Cut-away View
After cleaning and also after charg-

ing, set panel on edge, with open end down, to drain.

Cleaning—Simply tap panel a few times on a hard surface to remove heavy accumulations and then wash under a stream of hot water or in a pan of hot water. Steam also cleans the panels quickly and effectively. Be sure filter is dry before charging.

Charging—(For general applications) Spray both front and back of panel with just enough oil to coat the wires Any inexpensive oil of S.A.E. 40 or 50 viscosity is suitable. An ordinary hand spray gun will do the work splendidly. Or, if desired, panel may be immersed in oil and then thoroughly drained.

AIR-MAZE INSTALLATION FRAMES

frames assure efficient, attractive installations.

AIR-MAZE panel holding frames are constructed of enameled heavy gage steel having ¾ inch flanged back edge. A thick felt lining on inside of flange insures against air leakage when panels are in place. One frame may be used alone in single panel installations, or a group of frames may be supplied, fixed together; thus a large bank of filter panels may be provided. Every 2 in. frame section is fitted with spring clips as standard equipment; a lift handle is installed on each panel; 4 in. panels and frames have locking clamps which may also be used with 2 in. panels at extra cost.

In determining frame sizes, ½ inch is allowed over the EXACT width, and ½ inch over the EXACT height dimensions of the panels. These dimensions include frame edge, clearance and felt edge seals.

Specify AIR-MAZE—for all air filter installations and you will be assured of efficient, economical performance. Write for specification bulletin CCC-69.

Engineering Service Available—The Air-Maze Engineering Department will gladly offer installation suggestions for special air filter applications.

Other AIR-MAZE Products—A complete line of circular shaped air filters for use in various Industrial and Automotive Marine and Aircraft applications.

Literature Available—Catalog GPC-740 describing industrial types "A," "B," Greastop, and Kleenflo panel filters. Catalog describing Air-Maze Oil Bath type, Multimaze and Unimaze filters for internal combustion engine, air compressor and blower applications.

AMERICAN AIR FILTER COMPANY INC.

673 Central Avenue, Louisville, Ky.

Representatives in Principal Cities

Dust Engineering—Dust Engineering is that branch of applied science which deals with the origin, nature and characteristics of the small solid air-borne particles called "dust," and the development of methods, processes and apparatus for its control or elimination.

The American Air Filter Company, Inc., has had an important part in advancing the science of Dust Engineering. The efforts of its Research and Engineering Staff for the past twelve years have been devoted exclusively to the study of dust problems and the development of a complete line of air cleaning equipment for modern air conditioning, building ventilation and the control of process dust in industry.

cess dust in industry.

American Air Filter products, therefore, not only embody the knowledge accumulated from years of constant research and the experience gained from designing, building and applying thousands of air filters, but are backed by ample technical and financial resources to insure their outstanding position in the Dust Engineering field.

Products—American Air Filters are available for every condition, with operating characteristics and efficiencies to suit specific problems. In general, there are two distinct types based upon the "viscous

Renu-Vent Filter

Airmat Type PL-24 Filter

M/W 2 Filter

Throway Air Filter

film" and "dry mat" principles. Each type is made in several styles which differ in method of operation, servicing, space required and initial cost to meet the various conditions encountered in air cleaning problems. A discussion of various filter types will be found in the Technical Data Section under "Air Cleaners."

Air filters are generally

used for the removal of dust, dirt, bacteria and other foreign matter from the air and are applied to general ventilation, modern air conditioning, process dust control; for air compressors and Diesel Engines; mill motors, turbo-generators and other electrical applications; and for air or gas under pressure to remove entrained oil, moisture and dirt.

Air Filters In Air Conditioning—Filtered air is today recognized as essential in modern air conditioning. There are other important factors which contribute to our comfort such as temperature, air movement and humidity, but science today emphasizes the prime necessity of pure air for health and efficiency.

Air cleaners have, of course, always been considered an integral part of large central systems. These are usually of the fully automatic type such as the American Automatic Self-cleaning filter or the self-cleaning Electro-Matic.

There are now available to manufacturers of unit air conditioners moderate priced unit filters such as the Renu filter, the Throway filter, and other types of filters illustrated on this page.

The Renu filter is an entirely new departure in air filter construction. It con-

sists of a permanent metal frame provided with a removable cover and renewable filter pad. The cover

Standard Viscous Unit Filter

is easily removed without the use of tools, and filter pad can be lifted out and replaced with a new one at very small expense.

The Throway filter, as the name implies, is designed to be discarded after it has served its maximum period of usefulness and replaced with a new filter unit. The Filter pad is enclosed in a perforated cardboard container which makes it possible to readily dispose of the dirty filter by burning it.

There is probably no single item which costs as little and may mean as much in the design of an air conditioner as air filtration. These units are furnished in any dimensions or shapes desired—usually in units handling 400 cfm and from 2 in. to 4 in. thick. They are usually made in the following sizes—20 x 20 in., 16 x 25 in. and 16 x 20 in. High cleaning efficiencies can be secured, with a resistance to air flow ranging from $\frac{1}{16}$ in. to $\frac{3}{8}$ in. water gauge.

Automatic Self-Cleaning Air Filters—The American line of automatic air filters is among the most complete ever offered. Proved in principle and performance by years of actual service.

The more general use of thermoplastic finishes for refrigerators, stoves, automobiles, and other metal products has created the need for clean air in finishing rooms. This type of finish is hardened by baking, so the product on which it is used must be protected from contamination by dust and dirt from the time it is sprayed until it leaves the oven.

Spray booths exhaust large quantities of air, and if this air is drawn from other parts of the plant, it will contain considerable dust and dirt. If dirt and dust particles are permitted to settle upon freshly sprayed surfaces, they will be

American Automatic Self-Cleaning Filter

Electro-Matic Air Filter

trapped in the semi-tacky coating and cause blemishes in the finished product.

This trouble can be eliminated only by enclosing the finishing room and installing a filtered air supply system with sufficient capacity to provide a constant supply of clean air in excess of the volume exhausted by the spray booths.

High efficiency air filters are needed for this service to minimize rejects and doovers. The automatic selfcleaning filter has proved the most practical type and is widely used for this application because of its ability to maintain a constant, uniform air volume with the minimum of attention.

American Automatic Filters can be furnished with either Multi-Panel, Type "MS," or Double Duty Type "DD" panels, depending upon the service which they are to perform. Complete engineering data is available.

Electro-Matic Air Filter-Incorporates electrical precipitation as an integral function of an automatic self-cleaning viscous filter to obtain a higher over-all efficiency in dust removal. Its higher efficiency as an air cleaning unit, is due principally to the collection of the finer dust particles and smoke, by electrical precipitation. In combination, these two methods of cleaning air not only give the highest efficiency in dust removal but offer operating advantages found only in the automatic self-cleaning filter.

Standard Viscous Unit
—The American Unit Air
Filter incorporates the time
tested unit principle of construction. Each unit consists of a standard steel
frame and interchangeable
cell equipped with automatic latches to facilitate
removal for cleaning and
recharging.

Airmat Filter Dry Type —The filtering media in this type is the Airmat sheet, a dry filter mat composed of thin sheets of gauzy, cellu-lose tissue The Airmat sheets are supported in screen pockets mounted in a unit frame of box-like construction. These unit frames can be set up to meet any capacity requirement or space condition. Airmat sheets are renewable—their life depending on dust conditions and hours of service.

Airmat filters are used both for comfort and industrial air conditioning. In the latter field they are particularly well adapted for the recovery of valuable dusts and for abating the dust nuisance prevalent in so many industrial plants.

W. B. CONNOR ENGINEERING CORP.

114 East 32nd Street New York, N. Y.

Representatives in All Principal Cities

Canadian Representative: Arthur S. Leitch Co., Ltd., Toronto, Ont.

Manufacturers of a Complete Line of Air Recovery Equipment

Wherever More Outside Air is Used Than Necessary for Oxygen—CO₂ Balance, Critical Materials, Vital Resources and Energy are Wasted.

Outside Air is Not Free!

However simple or complex a ventilating system, it represents a considerable capital investment in equipment, a decided operating charge in energy and a vital drain upon natural resources—all expended for the sole purpose of obtaining the kind of air desired and delivering it when and where it is required.

What outside air costs in material and energy—in fans, ducts, dampers, grilles and registers; in boilers, compressors, tempering and cooling coils, filters, air washers and pumps; in thermostats and regulators, steam, water and refrigerant piping, valves and fittings; in electric power, steam, fuel and water; in labor and in operation, maintenance and repair, is prodigious—and it is determinate.

Contrary to being free, air is a valuable commodity whose conservation is imperative. This is why a portion of all conditioned air is usually recirculated. One obstacle alone has heretofore limited the percentage of air that can be recirculated indefinitely—the accumulation of gaseous impurities. These impurities are *not* removable by washers, filters, precipitators or sterilization.

The practical development and application of activated carbon gas adsorption has eliminated this single restriction to the full recovery of heated or conditioned air and only the inclusion of adequate gas adsorption makes such Air Recovery possible.

Air Recovery

Ventilation no longer means outside air because all but the new air necessary for metabolism can be obtained by decontaminating recirculated air with activated carbon, thus recovering and conserving the heating and cooling energy already expended upon it. Ventilation is *not* curtailed but new outside air *is reduced*—resulting in a direct saving in conditioning equipment and operation.

Every air conditioning engineer knows the capital cost of equipment and the operating cost in energy demanded by the outside air load. In the average temperature zone in the United States it is 3 tons of installed refrigeration and 100,000 Btu per hour of installed boiler capacity and radiation for each 1000 cfm of outside air made-up. It means, in these days of 24 hour plant operation, the expenditure of 2500 KW hours and 1500 gallons of fuel oil or 9 tons of coal per season for each 1000 cfm.

The curtailment of critical materials and vital resources imposed by our national war emergency has only emphasized the gravity of the waste of conditioned air. The W. B. Connor Engineering Corporation's cooperation with both Federal Agencies and Industry has resulted in the recovery of enormous volumes of conditioned air and has contributed coincidental conservation of materials, power, fuel and labor.

W. B. Connor Engineering Corp. Gas Adsorption Air Recovery Equipment consists of light-weight, removable, perforated fibre, activated carbon filled, adsorption These are mounted in multiple on one or more supporting manifold plates in such manner that all air to be treated will pass uniformly through

the granular carbon media. The assembly arrangement is flexible The resistance to air flow averages to suit the space limitations.

only .15 in. wg.

The highly active, specially processed carbon employed will remove from the air passed through it and retain 95 per cent of all entrained gaseous impurities and maintain approximately this efficiency for from 6 months to 2 years depending upon the air contamination. Upon exhaustion the carbon may be reactived

Figure 1 shows a typical canister. It is closed at the top and the inner cylinder is open at the bottom, which opening registers with a corresponding hole in the supporting manifold plate. Figure 2 is a cross-section diagram showing a typical arrangement of canisters for a large system. In this instance, four manifold plates each support 9 rows of canisters, the number of canisters in width, or per row, depending on the total number required. Figure 3 is a photograph of this same arrangement installed. Each canister decontaminates between 25 and 30 cfm of air.

Fig. 1

Fig. 2

Fig 3

W. B. Connor Engineering Corp. Gas Adsorbing Air Recovery Systems are covered by U. S. Patents Numbers 2,214,737; 2,303,331; 2,303,332; 2,303,333 and 2,303,334, and others pending.

Among thousands of users—Anheuser-Busch, Consolidated Edison Co. of New York, Coty, Dodge-Chrysler Corp., DuPont Film Mfg. Co., Linde Air Products Co., Merck & Co., Metropolitan Life Ins. Co., Pratt & Whitney Aircraft Corp., Remington-

Rand Co., Sperry Gyroscope Co., Standard Oil Companies of N. Y. and N. J., Union Carbide and Carbon Corp., Western Union Telegraph Co., Westinghouse Electric & Mfg. Co., F. W. Woolworth Co.

At the left is an illustration of the Type A-100 F, smallest of the self-contained "package" recirculating air decontaminating units. In its attractive enameled metal cabinet are contained a dust filter, four carbon gas adsorbing canisters, circulating fan and motor. It has a host of practical uses-in homes, offices, doctor's rooms, walk-in refrigerators, etc.

Complete engineering information, surveys or consultation are available without obligation by applying to local representatives or direct to the Home Office.

Coppus Engineering Corporation

339 Park Avenue, Worcester Mass.

MANUFACTURERS OF AIR FILTERS, STEAM TURBINES. GAS BURNERS, FORCED DRAFT BLOWERS, COOLING FANS

"COPPUS AIR FILTERS PASS CLEAN AIR"

The Coppus Unit Air Filter (patent No. 2050508 and other patents pending) is of the dry type using as filter material allwool felt. It consists of a distender frame (C, Fig. 2), a filter "glove" (E, Figs. 1 and 2) and a retainer grid (B, Fig. 1). The edges of the retainer grid form a reenforced sheet metal box (A, Fig. 1) for protection of the filter element.

The edges of the filter glove are reenforced on all four sides assuring an air tight seal against by-passing of dirty air. By tightening the wing studs which hold the distender frame and the retainer grid together, the filter glove is stretched and held tautly inside of the filter box, giving the pockets a tapered shape so essential for an even air flow.

This design has the advantage of providing an effective filter area entirely unobstructed by wire or screen supports. Cut, Fig. 3 shows the tapered filter pockets on the clean air side. The filter glove can be readily replaced without removing the unit filter from the installation. No auxiliary frames for insertion of the filter cells are required as the completely assembled unit filters can be bolted together to a filter bank of any desired size.

All metallic parts are rust-proofed and Duco Painted.

Fig. 1

Fig. 2

Fig. 3

Specifications

Normal Rating: 800 cfm.

Resistance when clean: 0.2 in. W.G.

Dust Arrestance (cleaning efficiency): 99.61 per cent (Tested in accordance with A.S.H.V.E. Standard Code for Testing and Rating Air Cleaning Devices Used in General Ventilation Work).

Dimensions: 20 by 20 in. by $5\frac{3}{4}$ in.

Weight per unit: 25 lb.

ANOTHER COPPUS BLUE RIBBON PRODUCT

Outstanding Advantages

- 1. It has an exceptionally high dust arrestance.
- 2. It maintains a high dust arrestance even under diverse conditions of neglect.
- Its operation is not impaired by atmospheric conditions.
 It is a Medium Air Resistance Type (Class C) according to the A.S.H.V.E. Code for Air Cleaning Devices.
- 5. It is easily and quickly cleaned without removing the filter element. 6. Its cost of upkeep is very low because the permanent filter element
- is reconditioned periodically with a vacuum cleaner.
- 7. It combines scientific knowledge and practical engineering methods with highest quality of material and workmanship.

Write for Complete Bulletins

Elements with Portable Vacuum Cleaner

Research Products Corporation

Madison, Wisconsin

RESEARCH AIR FILTERS FOR HEATING AND AIR CONDITIONING SILICA GEL MOISTURE ABSORBING MATERIAL

U. S Patent 2070073

No. 100 Series

U S. Patent 2070073

RESEARCH Air Filter

Research Air Filters are made of 20 flameproofed fiber layers expanded into a honeycomb pattern especially treated to catch dust.

When air restriction. due to lint, dirt and dust, hampers air flow, simply tear off two top lav-This removes surface dirt . . . and can be repeated 5 times, thus tripling the useful life of the filter, without interfering with efficiency.

Research RiP-CLEAN Filter Banks

Send for Research Filter Bank Data Sheets

Filters Easily Changed Write For New Data Sheets

This new Research Air Filter is ideal for use in filter banks as well as in warm air furnaces and air conditioning units. It is adaptable to both flat and V type banks, providing 25 square feet of dust holding area for every square foot of frontal area.

A Research Air Filter 20 x 20 x 2 in... when tested according to the test code of the American Society of Heating and Ventilating Engineers has an efficiency of 91 per cent, tested with standard code dust. The dust holding capacity with standard code dust is 150 grams per sq ft of filter area, the restriction at this dust load being .2 in. of water.

RESEARCH "100" SERIES 2-INCH RIP-CLEAN AIR FILTERS Dimensions, Ratings and Manufacturing Tolerances

Nominal Sizes	Ratings	Actual Dimensions					
These dimensions are used by the trade to	Volume of Air Cleaned at	A Width	B C Height Thickness		D Border		
order filters and refer primarily to the size of holder into which the filter fits.	Velocity 300 F.P M.	Tolerances					
	C.F.M.	Plus 0.00 In. Minus ½ In.	Plus ¼6 In. Minus ¼6 In.				
20 x 25 x 2 20 x 20 x 2 16 x 25 x 2 16 x 20 x 2	1000 800 800 640	19 ⁵ /8 19 ⁵ /8 15 ¹³ / ₁₆	249/i6 195/8 24 ¹³ /i6 195/8	13 ₁₆ 13 ₁₆ 13 ₁₆ 13 ₁₆	3/4 3/4 3/4 3/4		

Owens-Corning Fiberglas Corporation

Toledo, Ohio

AIR FILTERS FOR USE IN RESIDENTIAL, COMMERCIAL and INDUSTRIAL AND FRAMES HEATING, VENTILATING and AIR-CONDITIONING SYSTEMS

FIBERGLAS*

*Trademark Reg. U. S. Pat. Off.

TO SAVE CRITICAL MATERIALS

In the new Dust-Stop "War" filter, a square grill of Kraft cardboard replaces the familiar metal grill with round openings. Special dust adhesive previously used is replaced with a standard type filter oil. Properties, except fire resistance remain substantially unchanged

FIBERGLAS DUST-STOP AIR FILTERS will clean air streams of nuisance dirt, dust, and lint . . and will do it economically and efficiently. Dust-Stops are made from compressed mats of glass fibers, sprayed with binder to hold the fibers in place. The fibers are then coated with a Standard dust-catching filter oil (used on "War" type filters, replacing former special adhesives)

suitable for air streams not exceed-

ing 175 F.
Available in Two
Standard Types—
Fiberglas Dust-Stop
No. 1 (1 in. thick) is
designed for greatest
operating economy
in commercial and industrial applications.
No. 2 (2 in. thick) is
recommended for use
in unsupervised installations. It per-

Standard Sizes for Equipment*

Standard Sizes	Rati	ngs	Average** Resistance Inches		
(Nominal)	Cfm	Fpm	Water Gauge Clean		
20" x 25" x 1"	1000	300	.062		
20" x 20" x 1"	800	300	062		
16" x 25" x 1"	800	300	.062		
16" x 20" x 1"	640	300	062		
20" x 25" x 2"	1000	300	.13		
20" x 20" x 2"	800	300	.13		
16" x 25" x 2"	800	300	.13		
16" x 20" x 2"	640	300	.13		

*Other standard and any special sizes available.
**Based on standard filters, subjected to minor
variations in "war" filters.

mits longer intervals between replacements. Both may be used in domestic applications.

Economical — Dust - Stop filters cost only 1¢ per CFM as original equipment, and less than ½0th of 1¢ per CFM to replace. Further maintenance savings can be made by reusing filters after gently rapping out or vacuum cleaning excessive surface dirt accumulations. This practice

may be repeated once or twice before the filter is discarded.

Engineering Service—Owens-Corning Fiberglas Corporation maintains offices in several metropolitan centers where representatives, qualified to assist in the planning of filter installations, are available for consultation.

Literature—Data sheets on all standard Fiberglas products and applications will be furnished to engineers and manufacturers on request.

Owens-Corning Fiberglas Corp. Branches

ATLANTA, GA. BOSTON, MASS. BUFFALO, N. Y CHICAGO, ILL.

CINCINNATI, OHIO DALLAS, TEXAS DETROIT, MICHIGAN LOS ANGELES, CALIF. WASHINGTON, D. C.

NEW YORK, N. Y. PHILADELPHIA, PA. PITTSBURGH, PA. ST. LOUIS, MO.

FIBERGLAS*

Retaining Member Double Flange

R 2 Retaining Member Single Flange R 3 Retaining Member Notched Angle

FILTER FRAMES

*Trademark Reg. U. S. Pat. Off.

Fiberglas Dust-Stop "L" and "V" Filter Frame Assemblies are installed by engineers of commercial and industrial heating, ventilating and air conditioning. Frame members of heavy steel are assembled vertically in combinations to satisfy any CFM and space requirement.

Both types of frames are designed for the convenient and correct handling of Dust-Stop filters. They meet all Fire Underwriters' and local Fire Ordinance requirements, as well as the requirements

of Federal Specifications for filter frames.

The choice between the "L" type and "V" type frames is determined wholly by

the space available for the filter frames. The "L" type filter frame takes less depth duct or plenum chamber but requires a larger face area for the same CFM capacity. The "V" type frame requires a face area approximately the same as the cross-sectional area of a duct which will handle the volume of air for which the filters are rated.

Two Depths of "L" Frames-The "L" frame, two filters deep, is designed to hold two Dust-Stop No. 1 filters in each cell. The "L" frame, four filters deep, holds four Dust-Stop No. 1 filters in each cell. The frame that is four filters deep is identical in every way to the frame two filters deep except that the depth of all parts is 2 in. more. When specifying "L" type frames indicate two-filter or four-filter depth. "V" frame is available, four 1-inch filters deep per cell, only.

The "L" frame uses 20 x 20 in. filters only. The "V" frame uses 20 x 25 in. filters only. Filters are always used two or more in series in each cell.

LEFT-Dust-Stop "L" Type Filter Frame.

When priorities cannot be secured for steel frames-plans and specifications for wood frame assemblies are available. Consult the nearest branch office for complete information.

Staynew Filter Corporation

Air Filters for Every Purpose Representatives in Principal Cities

6 Centre Pk.

Rochester, N. Y.

AUTOMATIC FILTER

(For Efficiently Filtering Large Volumes of Air at Low Cost)

This latest model Automatic Filter removes dust from the air stream by the impingement principle. Two endless, oil-moistened Filter Curtains of special copper mesh provide four separate stages of filtration. No other filter has the Double Filter Curtain feature—double assurance of clean air delivery.

Both Endless Filter Curtains move intermittently at predetermined intervals. One Curtain moves through an oil reservoir. This Curtain removes most dust particles from the air stream. The second Curtain, running dry except for traces of oil from the first Curtain, removes whatever finer dust particles may still be in the air stream.

All excess oil (in which dust particles are trapped), is completely removed from both Curtains by a double series of low pressure compressed air jets. Cleaner feature is another exclusive Stavnew development.

Direction of Curtain travel is an important, exclusive feature. Both Endless Curtains travel counter-clockwise (air flow from the left). This means that air passes last through the cleaned side of each Curtain-that is, the final stage of filtration in each Curtain has been cleaned either by oil bath, air jets, or both.

Two Endless

Specifications:

Two standard widths are built—2 ft 9 in, and 4 ft 3 in., in 41 heights from a 4 ft minimum to 14 ft. Combinations of standard sizes will fit almost any required capacity or installation space. Special sizes are built to order.

Motive power for the Endless Curtains is sup-Speed reduction is accomplished through a standard reducer. Curtain travel is from 7 to 30 seconds each ½ hour, depending on Curtain height. Each Curtain makes one complete revolution every 24 hours.

 $A \frac{1}{2}$ in. standard fitting is provided at the rear of each section for connection to user's source of air supply. Flow of air to Air Jet Cleaners occurs simultaneously with Curtain movement and is controlled by a Solenoid valve. A pressure reducing orifice lowers any conventional air line pressure to the required pressure of approx. 1 lb. ussc—Air Flow pressure to the required pressure of approx. 1 lb.

Air Jet Cleaners

Curtains Travel Counter-clock-Diagram

Automatic Filter

STAYNEW DRY TYPE FILTERS

(For removing foreign matter from the air at atmospheric or other pressures, with various types for building ventilation, dust recovery, oxygen chamber and all air cleaning purposes.)

The fin or V-type construction is used in all Staynew dry filters This basic principle permits: (1) a large area of filtering medium to occupy the smallest possible space, and (2) the intake currents to move parallel to the filtering surface at low velocity. Staynew Dry Filters require no adhesive material to catch dust-odorless air is assured. Authorities agree that the positive dry filter is most efficient in stopping the smaller air-borne particles. Staynew dry filters actually prevent the passage of bacteria.

Any filter can be supplied with fire-proofed medium if desirable.

Cross of 2 Multi-V-

EASY TO CLEAN-LONG LASTING

Staynew dry-type filters provide maximum length of life without cleaning or other service due to their extremely rugged construction and fin or V-type design.

Cleaning, when required, is easily effected by use of any vacuum cleaner (See illustration with special nozzle. below.)

Panel Units: Consist of Panel Insert and Frame. The Insert is composed of two rows of 60 hollow loops or fins 6 in. deep, formed of rust-resisting embossed wire mesh, supported by a retaining grate of steel or aluminum and similar spacing grate. Each row of fins is covered with a single piece of Feltex Filtering Medium, a felt-like material specially made for the application. Staynew Panel Filters are designed for the very finest installations where highest possible efficiency is required.

Panel Insert, Frame and Cleaning Attachment

Wire-Klad Filter

Wire-Klad Units: Unique method of construction permits a high efficiency filter at low cost. Fins are reinforced on both sides with screen cloth, producing a rigid, long wearing, flame-resisting filter that may be repeatedly cleaned with vacuum or compressed air, or flushed with water or liquid solvents. Made in 2 in. and 4 in. deep units.

Multi-V-Type Units: Filtering medium (closely pressed cotton fibres between two sheets of cotton gauze), is arranged in patented V-shaped pockets in a fibre-board and pressed metal frame. These patented cells can be quickly and inexpensively replaced when worn out. Their arrangement makes possible an active filtering surface of 27 times face area. In certain installations, the Multi-V-Type is more desirable than the Panel Unit because its construction fits the space better, or because it is lighter in weight per square foot of filtering area, or for reasons of economy. Complete specifications mailed promptly on request.

Single Multi-V-Type Filter

Write for Catalog Mentioning Special Interests

PROTECTOMOTORS ALSO MADE FOR INTERNAL COMBUSTION ENGINES, COMPRESSORS, TURBO-GENERATORS, AIR TRANSMISSION LINES, ETC.

H. J. Somers, Incorporated

Factory and General Office

6063 Wabash Avenue

Detroit, Mich.

All Welded Vee Type

Somers Washable Air Filter

Somers Hair Glass Filters provide everything required in an efficient aircleaning system. Consider these features: High rating for dust, soot and bacteria separation. Require no adhesive, coating or impregnation. Indestructible in normal service. Minimum Low Pressure Drop. Odorless and non-absorptive. Fireproof; Washable; Do not rot nor disintegrate; Permanent.

Somers Hair Glass Filters consist of a hot galvanized frame holding galvanized wire cloth packed with hair-spun glass strands. The glass strands are flexible, do not break up and cannot be drawn into air stream.

Hair-Glass, being chemically inert, has no facility of absorption; it cannot rust and lasts indefinitely in service. Water either hot or cold may be used to clean it, without impairing its efficiency.

These filters eliminate the necessity, the expense and the inconvenience of periodic replacement.

Somers Washable Air Filter—All Welded Vee Type—Stock Sizes (Partial List)

Frame Size Height and Length In.	Frame Depth In.	Filter Surface Sq In.	For Average Dry Filter Installations CFM	Wet Application where water sprays are applied against filter for hu- midifying CFM
15½ x 24½ 155/8 x 245/8 16 x 21½	3 1/4 3 1/4	1023 1110 816	1023 1110 816	511 555 408
16 x 25 16 x 25	31/4 31/8 31/8 31/4 31/4 33/4 33/6 33/6 33/6	1056 1632	1056 1632	528 816
16 x 25 16 x 25 16 x 25	31/ ₄ 31/ ₄ 31/ ₄	1344 1440 864	1344 1440 864	672 720
$16\frac{1}{2} \times 24\frac{1}{2}$ 18 × 18	31/8	800 864	800 864	432 400 432
19 x 20 19 ¹ / ₄ x 19 ⁵ / ₈	3½ 3¼	1482 1039	1482 1039	741 519
19 ¹ / ₄ x 20 19 ³ / ₈ x 19 ¹ / ₂ 19 ¹ / ₂ x 19 ¹ / ₂	3 31/4	1039 936 1053	1039 936 1053	519 468 526
19½ x 19½ 19½ x 19½ 19½ x 19½ 19½ x 19½ 19½ x 19½	2,7	480 936	480 936	240 468
191/2 x 191/2 20 x 25 20 x 30	31/4 31/6 31/6	1170 1800 1800	1170 1800 1800	585 900 900
20 x 20 20 x 30	31/4 3 31/4 2 3 31/4 33/6 3 31/4 2 3 31/4 2 3 31/4 3 3 31/4 2 3 3 31/4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1040 1560	1040 1560	520 780
20 x 20 20 x 20 20 x 20 20 x 20	2 3 3	1200 480 840	1200 480 840	600 240 420
20 x 20 20 x 20	3 3!/ ₄	960 1320	960 1320	480 660
20 x 25 20 ³ / ₈ x 20 ¹ / ₄	31/4	1560 550	1560 550	780 275

Other sizes from $9\frac{1}{2} \times 30$ to and inclusive of 31 in. $\times 23\frac{1}{2}$ also available. Send for complete stock size list. Frames zinc plated for 100 hour salt water spray test. Refill may be inserted if necessary.

Quotations and further engineering data, including master holding frame drawings will be sent on request.

Westinghouse Electric & Manufacturing Co.

Edgewater Park Precipitron Department

Cleveland, Ohio

THE PRECIPITRONst

First Commercially Practical Electrostatic Air Cleaner

The Westinghouse PRECIPITRON is the first commercially practical electrostatic method of removing dirt, dust and other air-borne impurities in ventilating and air conditioning systems. The PRECIPITRON—being more efficient than mechanical filters—removes microscopic foreign matter as small as 1/250,000 of an inch in diameter—even freeing the air of tobacco smoke.

The PRECIPITRON provides a complete answer to mass air cleaning jobs in all Commercial, Industrial, and Public Buildings using forced ventilation or air conditioning duct systems.

ditioning duct systems.

Applications—Used in industry and production work. PRECIPITRON is serving many manufacturing processes in blackout, air-conditioned plants. Removal of smoke and welding fumes makes possible a considerable reduction in fresh air requirements with consequent savings in cooling and heating costs.

In steel mills and power plants PRE-CIPITRON is cleaning the ventilating air for rotating electrical machinery. Precision tools, dies and gauges are stored in spaces supplied with PRECIPITRON cleaned air to protect them from abrasive and corrosive dust or dirt. Optical instruments such as bomb sights, binoculars and telescopes are being assembled and maintained to a higher degree of precision with electrostatically cleaned air. PRECIPITRON cleaned air is being supplied to paint spray booths, air cooled radio transmitters, food and drug processing and packaging areas and for the processing and molding of plastic materials. Other fields in which the PRECIPITRON is a proved component of the ventilating or air con-

ditioning system are textile mills, telephone exchanges, hospital operating rooms and commercial and public buildings.

and commercial and public buildings.

Sizes—The PRECIPITRON is available, complete for installation, to accommodate from 300 cfm (for a single 18 in. cell) to any desired volume through multiple cell arrangements. Cells come in two sizes—18 in. x 8½ in. x 23¾ in. and 36 in. x 8½ in. x 23¾ in. For a 90 per cent efficiency, the 18 in. and 36 in. cells are rated at 300 and 600 cfm respectively. For 85 per cent efficiency, ratings are 375 and 750 cfm. Two sizes of Power Packs: Type S for installation up to 12 36-in. cells and Type L for 12 to 50 36-in. cells.

Advantages—More efficient than mechanical filters. Safe. Easily installed. Nonclogging, and non-varying resistance. Easily cleaned. Passed by Underwriters' Laboratories on standard flame tests for fire hazard on duct installation. Once each month accumulated dirt is washed away.

Information—Westinghouse will gladly provide complete information about the PRECIPITRON. Address your requests to Section G, Precipitron Department, Westinghouse Electric & Manufacturing Company, Edgewater Park, Cleveland, Ohio.

*Trade-mark Registered in U.S.A.

American Moistening Company

ESTABLISHED 1888

Providence, R. I.

Atlanta, Ga.

BOSTON MASS.

CHARLOTTE, N. C.

UNIT HUMIDIFYING AND AIR CONDITIONING EQUIPMENT

A few of many AMCO products with a Long Record of Dependable Performance

Sectional Humidifiers.
Amtex Humidifiers.
Hand Sprayers.
Mine Sprays.
Fabric and Paper Dampeners.

Mechanical Psychrometers. Electro Psychrometers. Sling Psychrometers. Hygrometers.

The Amco line of devices for the supply, maintenance and control of humidity is complete in its ability to meet any presented problem of applied humidification. Used independently or as an adjunct to Central Station equipment, these devices automatically maintain any required humidity condition in a capable uniform performance.

IDEAL HUMIDIFIERS—Senior Type

A high capacity unit for use where conditions require a great amount and good distribution of moisture. Motor driven fan gives wide distribution of atomized spray. Amon heads serve the triple purpose of humidifying, air washing and cooling.

IDEAL HUMIDIFIERS—Junior Type

Similar in construction to Senior Type. Used where medium capacities are required.

AMCO ATOMIZER-No. 4

Quality and quantity of spray are maintained even under adverse conditions because this atomizer is automatically self-cleaning. When the compressed air supply is shut off, either manually or in response to a humidity control, both air and water nozzles are thoroughly cleaned.

AMCO HUMIDITY CONTROLS

Compressed Air Operated

An extremely accurate and active device operated by compressed air which assures a regulation of humidity within exceedingly close ranges.

AMCO HUMIDITY CONTROL

Electrically Operated

Similar in principle to the Compressed Air Type except that the hydroscopic element operates electrical contacts which control the units.

April Showers Company

4126 Eighth Street, N. W.

Washington, D. C.

(Trade Mark Reg. U. S. Pat. Office)

AUTOMATIC EVAPORATIVE ROOF COOLING

FIRE PREVENTION (from external sources) SYSTEM

AN EFFECTIVE WATER INSULATOR for all KINDS of ROOFS

Distributors and Dealers in Principal Cities

- Solar radiation is converted to cooling effect, reducing normal heat transmission 70 per cent upward. Entire roof surface temperature is normally held at wet bulb temperature when evaporative factors are favorable. Transmission of solar heat through glass skylights is reduced as much as 85 per cent.
- Fire Prevention from external sources is obtained through installation of manual emergency switch. Roof is quickly and completely sprinkled at will, putting out fire-brands, sparks, embers, and maintaining a water covered roof.
- For Cooling Automatically upper level, floors, lofts, rooms of buildings. For giant stores, theatres, amusement palaces, stadiums. APRIL SHOWERS is self operating by use of an electric thermal control placed upon the surface of the roof in the SUN. Evaporative cooling effect of liquid applied turns system off. Operating cycles repeat as roof temperature calls for cooling. Water

- may be used from city mains, wells, or waste water from condenser units.
- High Temperature in lofts, attics, space below roof, or roofing materials is abolished. Roofs of built-up composition, waterproofed with pitch, will remain firm and intact. LIFE of roof is lengthened; disintegration lessened; expansion and contraction which destroys is completely eliminated.
- Literature Available. Lists of installations in groups, residences, factories, theatres and amusement places, stores, apartments and hotels. Also circulars: General Description 1940, Residence circular 1941, Industrial Circular 1942. Literature giving engineering data, flow charts, testimonial letters, water consumption figures may be had without charge.
- Water Consumption can be adjusted to approximately twenty gallons per day for 1,000 sq ft.

PORT OF EMBARKATION, WAR DEPT ..

NATION WIDE RECOGNITION GIVEN TO APRIL SHOWERS

ALLIED AVIATION CORP,
Glider Plant, North Carolina
BOLLING FIELD Engineering Bldg.
Douglas Aircraft PlantCalifornia
GOODYEAR AIRPLANE PLANTArizona
LOCKHEED AIRCRAFT CORP
NICARO NICKEL COMPANY,
(Defense Plant Corp) Cuba
COLUMBIA BROADCASTING CO
R. K. O. PICTURES, INCHollywood, Calif.
20th Century Fox Film Corp,
Los Angeles, Calif.
UNITED ARTISTS BLDGLos Angeles, Calif.
AMBASSADOR HOTEL California
THE BROADMOORWashington BROOKINGS INSTITUTEWashington
Longwood Towers Massachusetts
PICATINNY ARSENAL New Jersey
U. S. NAVAL ORDNANCE PLANTIndiana
O. D. 111111 O.D. 11111 D. 20111 I. I. I. I. I. I. I. I. I. I. I. I. I.

1 Old Of Didding Tille Did in
South Carolina
SELECTIVE SERVICE HEADQUARTERS BLDG.,
U. S. FEDERAL TEMPO No. 2. BLDG.,
U. S. Treasury Annex
United Drug CoBoston, Mass.
E. F. HAUSERMAN CoCleveland, Ohio
HENRY R. HASSE, INCRichmond, Va.
S. S. Kresge (several stores),
Chicago, Detroit, White Plains
Energetic Worsted Mills,
near Philadelphia, Pa.
HANES HOSIERY MILLSWinston-Salem, N. C.
CROWN CORK & SEAL COMaryland
EVANS PRODUCTS Co. Michigan
HOOD RUBBER CO
LINK-BELT COPhiladelphia and Chicago
Westinghouse, IncPennsylvania

Hundreds of installations, from Boston to Los Angeles have been made. Write for information and address of nearest distributor.

Inquiries will be answered promptly. Estimates free upon request.

The Marley Company

(Fairfax and Marley Roads,) Kansas City, Kansas Branches or Agents in Principal Cities Spray Nozzles and a Complete Line of Water Cooling Equipment

MARLEY NATURAL DRAFT TOWERS

Practically unlimited range of closely graduated sizes, entirely shop fabricated. Minimum initial, maintenance and operating costs. Many exclusive MARLEY advantages. Bulletins 201 and 202.

SMALL INDUCED DRAFT TOWERS

Small, self-contained, steel units for 2 to 170 ton service, to go indoors or out. Smaller sizes (horizontal air flow) shipped all assembled, larger ones (vertical air flow) all shop fabricated for fast, easy assembly at location.

Bulletins 503 and 505.

MARLEY Ice-MARLEY Small 2-Piece Noz-zles for Brine Spraying, Air Washing and Similar uses using ice.

Melting Nozzle for cooling systems

MARLEY Humidifying Nozzleadds moisture to air in open rooms or duct system.

Also Water Cooling Nozzles for Cooling Towers, Spray Ponds, etc.

MARLEY PATENTED NON-CLOG SPRAY NOZZLES Made in scores of types and sizes. Practically any metal or alloy the purpose may demand. Bulletins 101 and 102.

LARGE MARLEY MECHANICAL DRAFT TOWERS

Both Forced and Induced Draft Towers, for heavy duty water cooling services of all kinds. Any capacity, with one fan or many, individually engineered to the exact requirements of each installation. MARLEY patents cover a variety of important features for extreme operating flexi-

bility, high efficiency and economy Redwood or Steel are standard materials, Transite and

other materials on special order.
"Double-Flow" Induced Draft (below left) for largest capacities. Bulletin 602.

"Standard" Induced Draft (above) for usual largecapacity service. Bulletin 601.

Forced Draft (below right) for suitable applications in large-capacity service. Bulletin 600.

Also Many Other Types of Towers, Spray Ponds and Related Equipment

Jos. A. Martocello & Company

229-31 North 13th Street, Philadelphia, Pa.

ATOMIZING SPRAY NOZZLES

Types of Martocello Spray Nozzles

For maximum efficiency we recommend Nozzle orifices as indicated in table below. Any reasonable range of capacity for various pressures can be provided.

Martocello Spray Nozzles are broadly used for all types of installations. Manufactured with precision and of a design which has been thoroughly tested for results and durability, they are guaranteed to give you satisfaction.

Successful-Efficient results depend largely upon selecting the proper number and type of Nozzle suitable for your installation. Consult with us.

Martocello Spray Nozzles produce a uniform fine wide spray with minimum friction and at lowest pressure requirements.

Send us your specifications as we have types other than shown and we would gladly aid you to make the best selection.

Sizes and Capacities

Pipe Size	Part No.	Diam Orifice			Capa	aty, Gallo	ns per Mi	nute		
Inches	Fart No.	Inches	5 lb	10 1Ъ	15 lb	20 lb	25 lb	30 lb	35 lb	40 lb
1/8	1930	7/64	.22	.29	.34	.39	.44	.49	.54	.59
1/4	1910	13/64	.54	.77	.96	1.13	1.29	1.44	1.58	1.71
1/4	1910 Double	5/32	.86	1 18	1.48	1.76	2 02	2.24	2.44	2.63
3/8	1920	17/64	1.48	1.96	2.38	2.75	3.08	3.36	3.60	3.82
3/8	2300	7/32	1.98	2.63	3.15	3.62	4.05	4.44	4.80	5.13
1/2	2304	5/16	2 66	3.77	4.71	5.52	6.24	6.87	7.47	8.04
3/4	2308	11/32	3.59	4.87	5.92	6.83	7.62	8.33	8.98	9.60

Nozzles illustrated above are made in Brass Forging and machined brass bar stock. Cast Red Brass Nozzles in 1 in. to 2 in. pipe sizes also available. All sizes carried in stock for prompt shipment.

Satisfaction Guaranteed

Acme Industries

Jackson

Michigan

Offices in 30 Principal Cities

REFRIGERATION AND AIR CONDITIONING EOUIPMENT

Ask for Catalog on units in which you are interested

May we be of service through our Engineering Department

EVAPORATIVE CONDENSERS

All Prime Surface Cooling Coils-Copper or Steel

AMMONIA_CONDENSERS—Shell and Tube—Horizontal and Vertical

FREONICONDENSERS—Shell and Tube—Steel or Copper Tubes

DIRECT EXPANSION WATER CHILLERS

Indirect Air Conditioning and Processing Water

FLOODED WATER COOLERS—Drinking and Ingredient Water

BRINE COOLERS-Steel Tubing or Pipe

HI-PEAK WATER COOLERS-Storage Type, Direct Expansion

CASCADE WATER COOLERS—Aerator Type, Bottling Plants

FINNED COILS—Air Conditioning—Low Temperature

PIPE COILS—Steel ½ in. to 2 in.

HEAT INTERCHANGERS-Refrigerant Suction Line-Liquid to Gas

OIL SEPARATORS-Separators, not Traps

LIQUID RECEIVERS—Refrigerants

ACCUMULATORS—Refrigerants

SURGE DRUMS—Refrigerants

FORCED CONVECTION UNITS—Cold Dispensers

SHELL AND TUBE HEAT EXCHANGERS

Liquid to Liquid-Liquid to Gas, etc.

You don't have to choose between quality and price—BUY ACME

AEROFIN CORPORATION

410 So. Geddes Street

Syracuse, N.Y.

Aerofin

Standardized Light-weight Heat Exchange Surface

Branch Offices

CLEVELAND, CHICAGO, NEW YORK, PHILADELPHIA, DETROIT, DALLAS, TORONTO

Aerofin is the modern Standardized Light-Weight Encased Fan System Heating and Cooling Surface originated by Fan Engineers to meet the present and future requirements of this highly specialized field. All Standard Aerofin Units are furnished as completely encased Units, ready for pipe and duct connections. The patented casings are built of pressed steel and are exceptionally strong and rigid, protecting the Unit from all the strains of pipe connections and expansion or contraction in service. The casings are flanged on both faces, top and bottom, and template punched for bolting together adjacent Units, or for duct connection

Aerofin Non-freeze heater (Fig. 1) is non-freeze, non-stratifying spiral fin coil built into casing for air conditioning units or for installing in ducts. May be installed horizontally or vertically. Used on any two-pipe steam system for preheating or reheating. Modulating control on preheaters.

Available in 13 lengths and 3 widths, from net face area of 2.76 sq ft to 26.28

sq ft.
Tubing 1 in. O.D. Innertube 5% in. O.D.
Headers—Cast Brass.

Fins-spiral, turned copper.

Fig. 2

Flexitube Aerofin (Fig. 2) is distinguished from all other developments by its off-set tubes, so arranged as to absorb all expansion and contraction strains.

Headers—Cast bronze or aluminum. Tubing—5% in. O.D. copper, admiralty

or aluminum.

Joints—Where admiralty or copper tubes are used together with bronze headers tubes are brazed to headers using Mueller patented joint. Where both aluminum tubes and headers are used tubing is welded to headers.

Casings-Copper, aluminum or galvan-

ized iron.

Design—Constructed with headers on opposite ends making possible installation of units with tubes horizontal or vertical.

Fig 3

Universal Aerofin (Fig. 3) is distinguished by its "S" bend construction of

tubing, units designed with steel headers on opposite ends, the ends of the "S" bends being connected thereto by compression nuts, the bends taking care of the expansion and contraction of the tubing.

Recommended where close control is desired.

Headers-Pressed steel.

Tubing-1 in. O.D. Copper, admiralty or aluminum.

Casings-Copper, aluminum or galvanized iron.

Fig. 4

High Pressure Aerofin (Fig. 4) is of continuous tube design, being recommended where extremely high pressures of steam are used.

Headers—Pressed steel. Tubing—1 in. O.D. Copper, aluminum or admiralty.

Casings-Copper, aluminum or galvanized iron.

Fig. 5

Booster Aerofin-straight tube type, single pass construction for pressures from 1 to 200 lb gauge.

Headers-cast bronze. Tubing—5/8 in. O.D. copper Casings—copper, aluminum or galvanized iron. Recommended where small coils are needed or to raise the air temperatures in branch ducts.

Fig 6

Narrow Width Aerofin: (Fig. 6) recommended for water cooling or for flooded Freon systems. Made in straight tubes only with headers on opposite ends, ioints between headers and tubing being brazed. Construction similar to Flexitube AEROFIN.

Aerofin Continuous Tube Water Coils (Fig. 7) are designed for air cooling by circulating cold water through the AEROFIN and air over extended fin surface. Made for either horizontal or vertical air flow.

Tubes and fins are copper, completely tinned with permanent metallic bond between fin and tubes. Headers are made of one-piece cast bronze and casings of heavy galvanized iron or copper.

Units tested to 1000 lb hydrostatic

pressure.

Fig 8

Aerofin Cleanable Tube Units (Fig. 8) for cooling only and all made with headers removable to permit cleaning out tubes. Recommended for use where sediment or scale forming chemicals are present in the cooling water.

Headers—Cast iron.
Tubing—Copper or admiralty.
Casings—Copper or galvanized iron.

Fig. 9

End plate removed showing distributing and suction headers.

Aerofin Direct Expansion Units: (Fig. 9) Row Control Type—Recommended for use where cutting on or off rows of tubes in direction of air flow is desired. Suitable for use with Freon or Methyl-Chloride.

Fig. 10

Aerofin Direct Expansion Units: (Fig. 10) Centrifugal Header Type—Recommended where control of rows in direction of air flow is not required.

Advantages: Weighs but 9 to 16 per cent of same equivalent cast iron surface and occupies one-third of the space. Eliminates expensive foundations and building re-inforcement. Can be suspended from roof beams or trusses if necessary.

AEROFIN Sizes

Flexitube: 13 standard lengths, three widths, one and two rows deep.

Narrow: same as Flexitube.

Universal: 17 standard lengths, two widths, one and two rows deep.

Continuous Tube: 13standard lengths, three widths, 2-3-4-5 and 6 rows deep.

Cleanable Tube: 17 standard lengths, one width, 2 and 4 rows deep.

Direct Expansion: Row Control—11 standard lengths, 3 widths, 1-2-3 rows deep. Face Control—11 standard lengths, 3 widths, 2-3-4-5-6 rows deep. Centrifugal Header—11 standard lengths, three widths, 2-3-4-5-6 rows deep.

Steel Supporting Legs: 18 in. and 24 in. high. Punched same bolt hole centers as standard casings. Quickly attached. No other foundation required.

Sale: Aerofin is sold only by manufacturers of nationally advertised Fan System Apparatus. List upon request.

System Apparatus. List upon request.
Write Syracuse for Heating Bulletin
G-32; Direct Expansion Bulletin DE-34
on refrigeration type units; Continuous
Tube Bulletin C. T. 34 for Water Cooling
Coils; or phamplet on Cleanable Type
AEROFIN for cooling.

The G & O Manufacturing Company

138 Winchester Avenue

New Haven, Connecticut

GgO

SOUARE FIN TUBING

STRAIGHT LENGTHS-U-BENDS-CONTINUOUS COILS

RADIATING ELEMENTS FOR ALL HEAT TRANSFER PURPOSES

G&O Finned Radiation Coils for industrial applications are available in a wide range of sizes. Made of steel in compliance with conservation regulations.

Universal U-102

Standard No 10

Send for Catalog and Price List

THE use of INDIVIDUAL fins results in high efficiency in heat transfer from primary tube surface to secondary fin surface.

Fins of any size or shape may be obtained giving any desired proportion of primary and secondary surface.

A square fin has about 30 per cent greater surface than a round fin of a diameter equal to one side of the square.

Individual fins permit of any fin spacing; also, of using fins in groups at intervals along tubes.

A—Generous Fin Collar provides large contact area between Tube and Fin.
 B—Tube expanded against Fin Collar; insures mechanically tight joint, made permanent by bond of high temperature alloy—complete thermal contact.
 C—Free air-flow passages; non-clogging.

STANDARD SIZES

O D. of Tube	Fin Size	Fin Spacing per Inch	Surface per Linear Foot
3/8"	7/8" sq.	6	0 80 sq. ft.
3/8"	7/8″ r'd.	6	0.60 sq. ft.
5/8"	11/8" r'd.	6	0 87 sq. ft.
3/4"	11/2" r'd.	6	1.55 sq. ft.
3/4"	15/8" sq	6	2.40 sq. ft.
1"	21/8" sq.	6	4.00 sg. ft.
13/8"	2³/8″ r'd.	4	2.33 sq. ft.

Baker Ice Machine Co., Inc.

Omaha, Nebr.

MANUFACTURERS OF INDUSTRIAL AND COMMERCIAL REFRIGERATION AND AIR CONDITIONING

Sales and Service in Principal Cities

Cable Address. BAKERICE

AUTHORITY ON MECHANICAL COOLING FOR 38 YEARS

Ammonia

Compressors (3 to 100 hp)

· Vertical en-

closed, single-

acting type.

Can be install-

ed in multiple

installations.

V-belt drive or direct connec-

Units

(3 to 15 hp)

BAKER builds compressors and units for every industrial and commercial application, using either "Freon-12" or ammonia as the refrigerant. The name "BAKER" is your assurance of refrigeration equipment that will operate in these critical times with maximum efficiency and freedom from costly, time-consuming, production-delaying break-downs.

"Freon-12" Compressors

• Four-cylinder type, available in sizes from 3 hp to 60 hp. Semisteel cylinders and pistons. Counter-balanced crankshaft, precision ground. Nickel-

lite connecting rod bearings.

tion to motors or engines. Double suction and capacity reduction in larger sizes.

"Freon-12" Water-Cooled Condensing Units

 Complete line of self-contained, automatic units. Sizes range from 3 hp to

20 hp capacity Two- and four-cylinder types. Shell and tube condenser-receiver.

"Freon-12" Units

use with evaporative type condenser or water cooling tower. Sizes range from

3 hp to 20 hp. Two- and four-cylinder types. Automatic controls.

type condensers with pressure-operated water control valve. Compact design economizes floor space.

rately mounted shell and tube type condenser. Full enclosed automatic motor control with overload and low-voltage protection. Two- or four-cylinder compressor, V-belt drive.

Baker Shell and Tube Condensers and Liquid Coolers for Use with Ammonia or "Freon-12" (1 to 250 tons capacity)

• Made in sizes up to 2500 square feet of cooling surface in single shells. Available for multi-unit installation with special stands to allow compact installation. Supplied in either horizontal multi-pass or vertical type. Heads may be removed quickly and easily for complete

cleaning. Tubes are spaced to provide even gas distribution throughout the shell. All valves of maximum size for greatest efficiency.

Baker Also Manufactures a Complete Line of Industrial-Type Cooling Units, Capped Valves, and Flanged-Type Fittings SPECIFICATIONS AND SIZES SUBJECT TO CHANGE AS REQUIRED BY GOVERNMENT REGULATIONS

BRUNNER MANUFACTURING COMPANY

UTICA, N. Y., U. S. A.

The Brunner Line of Refrigeration Equipment includes Air Conditioning models up to and including 25 hp for all types of high temperature applications within their capacity, using either "Freon-

12" or Methyl Chloride as refrigerant.

BRUNNER DEPENDABILITY is based on time-proven features of design and manufacture . . . all parts are precision machined with extremely close tolerances . . . bronze bearings throughout . . . extra large fin surface on cylinders and heads . . . bellows seal . . . silent eccentric drive (except on 20 hp and 25 hp models, which employ crankshaft) . . . suction and discharge valves in "all-in-one" plate assembly . . . heavy-duty motor with high starting torque . . . adjustable motor base . . . multiple V-belt drive. Throughout, Brunner Refrigeration Units are geared to the demands of heavy-duty service.

S	PECIF	ICAT	TONS	CAPACITIES Air Conditioning Units Based on 75° F Water Temperature "Freon-12" Refrigerant	DIMENSIONS		
Model No.	н. Р.	Cyls.	Bore and Stroke	R P.M	B.T U per Hr 40° Evap Temp	L W. H.	
W 300-FH	3	4	31/4 x 21/4	260	38547	50" 24" 28¾"	
W 500-FH	5	4	3¼ x 2¼	420	62270	50" 24" 28¾"	
W 750-FH	71/2	4	4¼ x 3	260	91526	71" 29½" 38½"	
W 1000-FH	10	4	4¼ x 3	350	123211	71" 29½" 38½"	
W 1500-FH	15	4	4¼ x 3	525	184815	71" 29½" 38½"	
W20000-FH	20	4	4¼ x 5	435	255046	73" 33¼" 48¾"	
W25000-FH	25	4	4¼ x 5	540	316652	73" 33¼" 48¾"	

Additional air and water cooled models from ¼ h p for commercial and industrial applications.

The Brunner Field Sales Organization is available in all parts of the country, backed by outstanding achievements in engineering, and adoption of modern methods and design of air conditioning equipment.

Installation of Brunner refrigerating units is insurance of the finest quality materials and workmanship—plus the highest efficiency possible in modern design and manufacture.

FREE...COMPLETE ILLUSTRATED CATALOG

with large section devoted to ways of selecting the proper units for any application.

Curtis Refrigerating Machine Division

of Curtis Manufacturing Company

1959 Kienlen Ave., St. Louis, Mo., U. S. A.

ESTABLISHED 1854

93 Condensing Units from 1/6 to 50 hp

Unit Coolers and Evaporator Coils

PRODUCTS: Refrigerating Machinery; Forced Draft Cooling Units; Cooling Coils, Condensers, Shell and Tube Coolers, Valves, Fittings and Accessories, Complete Refrigerating Equipment for Dairies, Creameries, Ice Cream Cabinets, Ice Cream Making Plants, Cold Storage Locker Systems, Walk-in Coolers, Drinking Water Systems, Commercial and Low Temperature Cooling, Processing and Air Conditioning Installation, Packaged and Remote Types.

1/6 to ½ hp Self-Contained Condensing Unit.

1½ hp Air Cooled Condensing Unit Other sizes from ¼ to 5 hp

5 hp Water Cooled (Counterflow) Condensing Unit Other sizes from 1/8 to 5 hp.

7½-10-15 ton Remote or Central Type Air Conditioner.

Commercial Refrigeration

45 air cooled condensing units from ½ to 5 hp, inclusive, and 48 water cooled units from ⅓ to 50 hp, inclusive. All models available for either Freon (F-12) or Methyl Chloride. Mechanical advantages include Timken Bearings, Centro-Ring Positive Pressure lubrication.

Special models are available for ice cream, frozen food cabinets and for the dairy industry.

For condensing refrigerant vapors economically and efficiently. Saves approximately 95 per cent water cost. Used for air conditioning or commercial refrigeration installations up to 5 ton Capacity.

Air Conditioning

For today's essential Air Conditioning requirements Curtis offers complete packaged, refrigerated air conditioning units, requiring only water and electrical connections to install. Cools, dehumidifies, circulates and filters the air. Eliminates costly installation expense. Adaptable for heating.

15 hp Cleanable Shell and Tube Condensing Unit. Other sizes from 3 to 30 hp.

3 and 5 ton Packaged Type Air Conditioner.

ALBANY
ATLANTA
BALTIMORE
BOSTON
BUFFALO
CHARLOTTE
CHICAGO
CINCINNATI
DALLAS
DETROIT
KANSAS CITY

Frick Company

(Incorporated)

Air Conditioning, Refrigerating and Ice-Making Equipment
Waynesboro, Penna.

Los Angeles
Memphis
New Orleans
New York
Oklahoma City
PALATKA
PHILADELPHIA
PITTSBURGH
ST. LOUIS
SEATTLE
WASHINGTON

Distributors in 150

Principal Cities

AIR CONDITIONING

Ask for Frick Bulletins 503, 504, 505 and 520 on Air Conditioning

Complete Frick systems; also refrigeration for use with equipment supplied by others. Over 1000 installations attest the value of Frick air conditioning systems and those using the Auditorium patents. Successful experience with important Government and industrial war jobs enable us to solve your problems.

AMMONIA REFRIGERATION

Combined units and vertical enclosed compressors. with two or four cylinders, in sizes from ½-ton up. Widely used for air conditioning, with material savings. Ask for Bul. 503 on this subject.

Pratt and Whitney use Frick Ammonia Refrigeration for World's Most Accurate Large Air Conditioning System

FREON-12 REFRIGERATION

Frick "Eclipse" and larger F-12 compressors form the most complete and efficient line built. Coils, coolers, condensers and controls to suit. Patented Flexo-Seal at shaft, pressure lubrication from submerged pump, capacity controls, and other superior features made Frick machines your logical choice

Three 6-Cylinder "Eclipse" Compressors in operation See Bulletin 100

LOW-PRESSURE REFRIGERATION

Commercial and industrial units in sizes from 14 hp. up. Charged with either Freon-12 or methyl chloride. Air and water cooled condensers. Coils, coolers, and air conditioners. Get in touch with your Frick Distributor; ask for Bul. 97. Our service includes estimates, layouts, manufacture, installation, maintenance.

Large 4-Cylinder Compressor Bul 651

Enclosed Freon-12 Machine Bul, 508

Enclosed Ammonia Compressor Bul. 112

Low Pressure Refrigerating Unit Bul. 97

Marlo Coil Co.

6135 Manchester Ave., St. Louis, Mo.

Manufacturers of Heat Transfer Equipment

Brine Spray Units—Unit Coolers—Evaporative Condensers—Low Temperature Units—Air Conditioning Units—Heating and Cooling Coils.

Evaporative Condenser

A combination forceddraft Cooling Tower and Condenser for indoor or outdoor installations. Exclusive Marlo features are "Unidrive", pumpblower motor; all prime surface coils; internal surface covered

surface covered with corrosion resistant mastic; frame electric welded and galvanized after fabrication. See Bulletin No. 404.

Unit Coolers

In this new model, air is pulled instead of forced through coils, thus utilizing complete coil surface and obtaining greater efficiency. Available in eight sizes, for all common refrigerants. Request Bulletin No. 402.

Brine Spray Units

Specially designed to maintain temperature below freezing, and yet eliminate all defrosting problems. Write for Bulletin No. 403.

Air Conditioning Coils— Blast Coils

Durably built; conservatively rated; available in materials suitable for any cooling or heating medium. All coils thoroughly dehydrated and tested at 1,000-pound pressure under water. Ask for Bulletin No. 396.

Low Temperature Unit

Designed for sub-zero temperature application. Equipped with the original Marlo electric-heating element for manual or automatic defrosting. Available for any refrigerant. Full details in Bulletin No. 407.

Air Conditioning Units

Air Conditioning Units in either ceiling suspended or floor type. Capacities from 900 cu ft to 12,000 cu ft. Sturdily built on angle welded iron frames of sectional design for easy installation. Bulletin No. 409 gives complete details.

1/3 HP Self-Contained Type

5 HP Condensing Unit, Remote Type

RESEARCH EXPANDED

• Research and engineering facilities have been greatly expanded. Universal Cooler Corporation's largest and finest corps of engineers now occupy their own building which is an integral part of the 15½-acre plant layout. These engineers are available for discussion or collaboration on special refrigerating problems and correspondence is invited.

PRODUCTION MOBILIZED

• Experience and facilities acquired during 20 years devoted exclusively to the design and manufacture of automatic refrigerating equipment is fully mobilized for production of precision-built war materials. The additional "know how" gained in manufacturing lubricating pumps for bombers, hydraulic mechanisms for aiming artillery, cooling equipment for machine guns, as well as refrigerating units for the Army, Navy and Marines is more reason than ever why manufacturers of refrigeration and air conditioning equipment will want to include Universal Cooler Units in their post-war planning.

• FROM 1/6 TO 20 HP: Regular production covers a complete line (1/6 to 20 HP) of commercial condensing units that meet the requirements of a wide range of commercial installations. Design of new units keeps pace with new applications. Efficient, dependable, economical performance of UCC Units is proved by thousands of applications . . . is continuing to win high praise from manufacturers, architects, contractors . . . and users.

Complete Product Data is Available on Request

Automatic Refrigeration Since 1922

The Vilter Manufacturing Company

Since 1867

Milwaukee, Wisconsin

AIR CONDITIONING EQUIPMENT FOR INDUSTRIAL OR COMFORT COOLING

COMPRESSORS OF MODERN DESIGN

Ammonia Compressors Freon or Methyl Chloride Condensing Unit Freon Compressors for Large Installations

Ammonia Compressors—The result of over seventy years of research development and experience gained through thousands of installations of all types, in all industries. Famous for high tonnage capacity at low hp and low operating costs. Built in a wide range of capacities from 2 to 100 tons standard A.S.R.E. rating in Vertical Types; up to 750 tons in Horizontal Type.

Freon Compressors—Embody many outstanding new features that prevent leakage and minimize friction—resulting in extremely low relative hp per ton. Made in capacities up to 150 tons. Capacitrols available at slight additional cost provide flexibility of operation.

Freon Condensing and Methyl Chloride Units—Self-contained units made in sizes from ¼ hp to 30 tons capacity. Embody latest engineering features.

Unit Air Coolers—Available in a wide range of sizes and types for any air conditioning requirement—product coolers, dry coil coolers, spray type coolers, low temperature electric defrosting coolers, and floor or ceiling central system air conditioners.

Water Coolers and Condensers—A complete line of shell and tube water coolers, brine coolers and condensers for Freon or ammonia.

UNIT AIR CONDITIONERS

Dry Coil Type

Shell and Tube Equipment

Vilter also builds a complete line of air conditioning coils, evaporative condensers and air washers—and special units for central station comfort cooling systems.

Worthington Pump and Machinery Corporation Air Conditioning and Refrigeration Division

General Offices: HARRISON, NEW JERSEY

ALBANY ATLANTA BALTIMORE BIRMINGHAM BOSTON

BUEFALO CHICAGO CINCINNATI CLEVELAND DALLAS DENVER

DETROIT EL PASO FORT WORTH GALVESTON HOUSTON Kansas City

Los Angeles New Orleans New York PHILADELPHIA PITTSBURGH PORTLAND, ORE. SEATTLE Representatives in all Principal Cities

PROVIDENCE St. Louis ST. PAUL SALT LAKE CITY SAN FRANCISCO

SPRINGFIELD, MASS. SYRACUSE TULSA Washington, D.C. Wilmington, Del.

CA3-1

REFRIGERATION SYSTEMS FOR AIR CONDITIONING

Complete refrigerating systems for use with Freon-11, Freon-12, Methyl Chloride, Ammonia, or Carbon Dioxide, either directexpansion or water cooling applications. A complete line of refrigeration compressors, permitting impartial recommendations. A nation-wide organization of Distributors in major cities to provide sales and engineering service and plan complete air conditioning systems of the central or unit type. Architects, Engineers, and Contractors are invited to consult with us. Write to Harrison, N. J., or any branch office, for bulletins on these products.

Small Self-contained Units

Freon-12 or methyl chloride condensing units; motors¼ to 2 hp. with air or water-cooled condensers. Used in small air condition-

ing systems, and in commercial refrigeration. Capacities up to 2 tons.

Medium Self-contained Units

Freon-12 or methyl chloride compressor units for use with shower' condensers or water-cooled

condensers. FEATHER (Pat'd) Valves; automatic capacity control. 3 to 30 tons.

Large Self-contained Units

Freon-12 methyl chloride compressor units for use with 'shower'' condensers or water-cooled condensers.

Features: Worthington FEATHER (Pat'd.) Valves; automatic capacity control. Capacities 25 to 100 tons.

Centrifugal Refrigeration Water Cooling Systems

Freon-11 centrifugal compressor, water cooler and water-cooled condenser in compact unit assembly Electric motor or steam turbine drive 56 unit sizes . . . 150 to 1200 tons.

Evaporative Type Jacket-Water Cooler

(With By-Pass Section For Automatic Temperature Control.)

Cooling jacket water for diesel and gas engines, air compressors, etc. Ideal for the cooling of quenching oil for tempering steel products. Also for cooling transformer oil to reduce core loss.

Miscellaneous

High and low side equipment for every purpose.

Worthington Pump and Machinery Corporation

Air Conditioning Units

For Direct Expansion Freon-12 or Chilled Water Circulation

Vertical and horizontal; 500 to 12,000 cfm; large air passages; slow speed, quiet rugged fans; separable sections; readily accessible. The design permits flexibility in installation arrangements.

Shower Condensers

A combined condenser, receiver, and modified cooling tower, in one assembly, for Freon-12 or methyl chloride systems; 2 to 130 tons refrigeration; built in separable sections; all parts easily accessible. Saves 90 to 95 per cent in cost of water.

Horizontal Condensers

Atmospheric drip type, for warm corrosive waters. Double-pipe for closed systems, can be retubed without shutting down. Multi-pass, as illustrated above, for closed systems and space saving.

Vertical Ammonia Compressors

Pressurelubricated; roller main bearings; safety heads; patented Feather Valves; belt drive, or direct-connected to electric motor, diesel

or gas engine; ratings from 2 to 160 tons in one unit.

Horizontal Ammonia Compressors

Single and duplex; single-stage and twostage; belt drive, or direct-connected to electric motor, diesel, gas or steam engine; patented Feather Valves; ratings from 60 to 750 tons. Automatic capacity control features are easily applied. Space requirements vary depending upon type and drive.

Carbon Dioxide Compressors

A series of convenient types and sizes for every requirement is available.

Liquid Cooling Equipment

Various designs of horizontal single and multi-pass types, for a wide range of services; also vertical types. Chillers for

oil dewaxing. Single and double-pipe for milk, wort, chemicals, etc. Cold liquid circulating systems.

American Coolair Corporation

3606 Mayflower Street, Jacksonville, Florida Manufacturer of COOLAIR Ventilating and Exhaust Fans A Pioneer Manufacturer of V-Belt Drive Exhaust Fans

Charter Member: Propeller Fan Manufacturers Association

TYPE S-6 TO 9 FEET

Especially designed for ventilating and cooling in industrial plants and and cooling in industrial plants and shops, power stations, warehouses and other large buildings—the Type S fan has a heavily braced double frame, special pillow-block ball bearings on each side of fan wheel, 8 to 12 reinforced fan blades and up to 10 heavy duty V-belts depending on size of fan and motor. The fan is usually instelled in reof This fan is usually installed in roof bay or gable, penthouse or outside wall.

COOLING BY AIR MOVEMENT

Construction engineers and architects as well as production superintendents know that proper ventilation is necessary for top efficiency in employees to insure maximum production. Not so well known is the fact that when heat and humidity induce high body temperatures and perspiration among workers-it takes from four to eight times the volume of moving air to correct this condition than it does for simple ventilation. Satisfactory cooling requires a complete change of air at least once a minute.

The American Coolair Corporation pioneered in the manufacture of Exhaust Fans for ventilating and cooling. During the past 14 years, Coolair engineers have been directly responsible for many of the developments in this growing field.

In planning a Coolair installation determine the cubic content of the space to be cooled or ventilated and select a fan of ample capacity Tables of performance data and fan sizes are shown on the facing page—and Coolair's Catalog Pages, sent FREE on request, contain

recommended air changes and suggestions for industrial and commercial installations.

QUALITY FEATURES OF COOLAIR EXHAUST FANS

TYPE OT-TWIN UNIT

"spill-off" at end of blades, reduces power consumption.

This unique Coolair Twin-Unit is two fans of Type O speci-Inis unique Coolair Twin-Unit is two fans of Type O specifications mounted side by side in one frame and operated by a single motor. Widely used where limited headroom or vertical wall space will not permit the use of a single fan large enough for the job. Especially adapted for installation in partitions, outside wall and on end can be fitted into existing window and door openings. Covered by U. S. Patents 1992112, 2108738 and 219418.

Dimensions in Inches

Fan Size	Overall Height	Overall Wıdth	Overall Depth (Approx)
28-W 2-O 21/2-O 3-O 31/2-O 4-O 41/2-O 5-O 6-S 7-S 8-S 9-S 2-OT 21/2-OT	31 305/8 365/8 425/8 49 551/8 611/8 675/8 751/4 867/8 99 1111/8 305/8	33 305/8 365/8 425/8 49 551/8 611/8 675/8 751/4 867/8 99 1111/8 611/4 731/4	15 18 18 18 19 19 19 19 28 34 38 38 18
3-OT	425/8	851/4	19
31/2-OT	49	98	19
4-OT	551/8	1101/4	22

28-W FAN WITH SAFETY GUARD

Coolair's lowest priced beltdrive fan is equipped with built-in springs, adjustable diameter motor pulley and safety guard. This fan can be easily and quickly installed in upper or lower half of any standard window of work rooms or offices where proper ventilation is necessary for health, com-fort and efficiency of work-See tables for data.

DIRECT DRIVE FANS

Four sizes 16 to 24 inches in diameter. General purpose exhaust fan for most commercial and industrial uses. Data on sizes, performance and dimension furnished on request.

COOLAIR AUTOMATIC CEILING & WALL SHUTTERS Precision-built all-steel shutters that open and close automatically when fan is turned on or off. Ceiling shutters eliminate need of ceiling grille and trap door. Wall shutters give weather protection for fans discharging

directly to open air. Performance Data—Coolair V-Belt Drive Fans

			11101100	Data 00		JUIC DI	110 1 444		
Fan Size		Horse Power	Fan R P M.	Cubic Ft. Air Per Min.	Fan Size		Horse Power	Fan R P. M	Cubic Ft. Air Per Min.
28-W	L	1/4	515	6000		В	1,	155	35000
2-O	L D	1/4 1/3	570 630	6200 6800	6-S	B C C D D	1 ¹ / ₂ 2 3 5	155 177 195 224	40000 45000 50000
2½-O	B C D	1/4 1/3 1/2 3/4	411 454 522 600	8000 8800 10100 11700		B C D	5 2 3 5 7½	224 270 163 176 227	49500 53500
			312	10000	7-S	D	5 7½	227 262	69000 80000
3-O	B C C D D	1/4 1/3 1/2 3/4	345 398 450 500	11000 12700 14400 16000	8-S	B C D	3 5 71/ ₂ 10	147 176 220 259	66500 80000 100000 117000
31/2-0	B C C D	1/8 1/2 3/4 1 11/2	261 300 345 380 440	13000 15000 17000 19000 22000	9-S	B C D	5 7 ¹ / ₂ 10 15	144 165 182 220	93000 106000 117000 142000
4-0	L C D	1/2 3/4 1	258 317 353 405	19000 22000 25000 28000	2-OT Twin	B C C	1/4 1/8 1/2	455 500 570 359	9800 10800 12400 14000
4¹/ ₂ -O	B C C	1½ 1½ 3¼ 1 1½ 2	224 255 276 319	22000 25000 27000 32000	21/2-OT Twin 3-OT Twin	B C C B C	1/3 1/2 3/4 1/2 3/4	411 470 312 360	16000 18200 20000 23000
5-O	B C C C D	1/2 3/4 1 11/2 2 3	355 200 225 245 282 310 355	35000 27000 30000 33000 38000 42000 48000	31/2-OT Twin 4-OT Twin	B C C C	3/4 1 3/4 1 11/2	272 300 235 258 317	27800 30700 36000 38000 44000

⁻Very Quiet (Homes, Theatres, Hospitals, etc.). -Quiet (Stores, Offices, Restaurants, Barber Shops, etc.).

⁻Industrial (Laundries, Factories, Canneries, Bakeries, Pressing Clubs, Garages, etc.). -Has adjustable diameter motor pulley for Very Quiet and Quiet performance

Bayley Blower Company

1817 S. Sixty-Sixth Street Branches in Principal Cities Milwaukee, Wis.

Builders of Heating, Ventilating, Cooling, Purifying, Humidifying and Air Washing Equipment; Exhaust and Drying Apparatus, Mechanical Draft and Blast, Fans and Blowers of all Types

Bayley Plexiform Fan:

Is a multi-blade fan for supplying air for heating and ventilating systems, manufacturing processes, drying systems, forced and induced draft sys-

and induced draft systems. It is suitable for handling high or low temperature gases at medium or low pressure. Will deliver maximum quantities requiring minimum space with great

economy.

This is a distinct Bayley product, high class material and workmanship, properly designed to avoid excessive vibration and overstressing of parts. Inlets and outlets are properly sized for maximum delivery and maximum efficiency. Fans are furnished in single or double width of any required arrangement and with sleeve or anti-friction bearings.

Aeroplex Fan:

Is of high speed design with self limiting power characteristics. Application parallel to the Plexiform Fan. Highly efficient and quiet in operation.

Bayley Exhausters and Pressure Blowers:

Type "B" exhaust fan is for heavy duty, handling refuse from industrial and textile plants. Type "EX" is used in handling smoke, fumes and dustladen gases. Type "H" for high-pressure work.

These units are highly efficient and of high class design and workmanship.

Bayley Turbo Air Washers, Humidifiers and De-Humidifiers:

The Turbo Atomizer used in the Bayley Washer produces a steady, fine spray. Water at low pressure is delivered to the center of a rapidly re-

The Bayley Turbo Air Washer Showing Turbo Atomizer and Eliminator

volving cone-shaped rotor provided with atomizing pins set in its periphery. This

atomizer requires very little attention, and will operate successfully under low water pressure. The orifices are large and this atomizer, unlike high pressure nozzles, cannot clog.

Bayley Chinook Heating Sections:

The Chinook section is used with blast heating, ventilating and drying systems, and is suitable for high or low pressure steam circulation. The base is divided into two chambers. Steam enters (see cut) the lower chamber, ris-

ing through ½-in. pipes located within the 1¼-in. pipes leading from the upper chamber. Condensation takes place in the larger pipes, the water falling into the upper chamber and draining away through the return outlet. The Chinook can be repaired in the middle of the bank without breaking steam connections or taking down a section.

Shipped assembled in smaller sizes, and knocked down in the larger units. May be installed in horizontal or vertical

position.

Bayley Chinookfin Heating Sections:

Are the same design as the Chinook Heaters, using heavy gauge copper fin tubes. As compared with Chinook it is much lighter and occupies less space.

Bayley Plexfin Unit Heaters:

This unit incorporates Chinookfin radiation and Plexiform or Aeroplex fans. The lan assembly including top plate and motor is removable as a unit for maintenance and

inspection. The heating element is a removable unit. Casing all welded extra heavy gauge. This is an exceptionally high grade unit at a moderate price.

Buffalo Forge Company

450 Broadway, Buffalo, N. Y. Branch Offices

Brune
ALBANY, N. Y
ATLANTA, GA 305 Techwood Drive
Baltimore, Md 508 St. Paul St.
Boston, Mass, Melrose Sta
CHICAGO, ILL 20 North Wacker Drive
CINCINNATI, OHIO. 626 Broadway
CLEVELAND, OHIO 418 Rockefeller Bldg.
Dallas, Texas
DAVENPORT, IOWA—D C Murphy Co, 305 Security Bldg.
DENVER, Colo.—Hendrie & Bolthoff Mfg & Supply Co,
1635 Seventeenth St
DES MOINES, IOWA-D. C Murphy Co, 214 Old Colony Bldg.
Detroit, Mich.—Coon DeVisser Co.
2051 W Lafayette Blvd.
GREENVILLE, S. C
HOUSTON, TEXAS 505 Rusk Bldg.
KITCHENER, ONT., CANADA—
Canadian Blower & Forge Co., Ltd.
KNOXVILLE, TENN.—C. F. Sexton702 Empire Bldg.
Los Angeles, Calif

MIAMI, FLA —Southern Air Conditioning Corp.
149 N. E. 20th Terrace
MINNEAPOLIS, MINN
NASHVILLE, TENN -Southern Sales Co 117 Fifth Ave., North
NEWARK
NEW ORLEANS, LA - Devlin Bros 1003 Maritime Bldg.
NEW YORK, N Y 39 Cortlandt Bldg , Room 1110
OMAHA, NEBRASKA 660 North 18th St.
PHILADELPHIA, PA
PITTSBURGH, PA. 431 Fulton Bldg.
RICHMOND, VA —Williamson & Wilmer, Inc., Mutual Bldg.
SAN FRANCISCO, CALIF — Moore Machinery Co,
1699 Van Ness Ave.

WILKES-BARRE, PA.—Power Engineering Co., 517 Brooks Bldg

Buffalo Limit-Load Fans

PRODUCTS: Heating and Ventilating Equipment including: Unit Heaters, Multiblade Fans, Pipe Coil Heaters, Buffalo Air Washers, Buffalo Unit Air Washers, Buffalo Unit Coolers, Drying Equipment, Mechanical Draft Fans, Air Preheaters, Exhaust Fans, Blowers, Dust Collectors, Disc Fans, Spray Nozzles.

Buffalo Air Washers

Buffalo Air Washers and Humidifiers are built for the most efficient washing, purifying and tempering of air under varying atmospheric conditions. Designed and constructed for low cost installation and maintenance. Careful attention to structural details insures long service-ability with a minimum of attention. Several types and models to meet specific plant requirements.

Fans for Every Ventilating Need

Buffalo Fans represent over 60 years of specialization in the design and construction of fans for practically every ventilating and air-handling application from small kitchen fans to rugged fans for boiler draft. For complete information state the type of fan you are interested in and a catalog will be sent.

Buffalo Limit-Load Fans for ventilating embody several improvements to deliver stepped-up efficiency under practical conditions. Durably built for years of service. Dynamically balanced. Quiet, economical to operate. Non-overloading characteristic prevents motor from overloading and burning out, regardless of fan load.

Buf-flow Axial Flow Fans

This specially designed high pressure fan-with directional guide vanespropels the air stream in a true axial direction. Energy losses, are reduced to a mini-

mum with a resulting increase in fan efficiency and marked power savings. What's more, this fan cannot overload and burn out the motor.

(See also Page 1072)

Champion Blower & Forge Co.

Manufacturers and Engineers

Plant and Offices: Lancaster, Pa.

Address Correspondence to Div. 9

Manufacturers of Blowers, Ventilating Fans and Exhaust Fans for Air and Material; and Blast Gates

Representatives in Principal Cities

Type S Forward curve ventilating fans, single and double width, as well as direct motor drive.

Super Ventilating fans, direct motor drive up to 36 in. diameter. Motor belt drive up to 48 in. size.

Type BC Backward curve ventilating and exhaust fans, single and double width; belt driven and direct connected electric.

Ventilating Fans—For air conditioning systems and mechanical draft. Manufactured in the forward curved type for slow speed, and extremely quiet operation; also in the backward curved type with its flat horsepower curve characteristics and higher speeds suitable in the smaller sizes for direct connecting to synchronous speed motors. Ventilating Blowers manufactured in sizes up to 60 in. diameter wheel, in single and double width. Belt driven blowers equipped with either ball or high-grade babbit bearing. Direct motor drive can be equipped with any type or characteristic motor desired, in any arrangement.

Disc Fans—Super Ventilating Fans made in direct connected type up to 36 in. diameter, totally enclosed, ball thrust type motors. Slow speed motor belt driven type manufactured in sizes up to 48 in. for attic exhaust work and wherever large volumes of air are to be moved against low static pressures. All disc fans are quiet in operation. Decibel ratings on all fans are available.

Forced Draft Fans—All sizes for use on the smallest to largest boilers. Fans can be furnished with inlet or outlet adjustable louvers for controlling air volume.

Blast Wheels—We are well equipped to manufacture single and double width blast wheels in forward or backward curve type for oil burner and stoker manufacturers, as well as manufacturers of air conditioning units and other ventilating equipment.

Vibration Dampener Sub-Bases—For blower and ventilating equipment. Made with heavy channel iron and rubber vibration eliminator pads to suit size and weight of fan or blower.

Special Fan Equipment—We are in position to engineer and build fans, blowers, or exhausting equipment to meet customers' special needs. A card addressed to Div. 9 will bring you complete catalog data or information on any particular problem confronting you.

DeBothezat Ventilating Equipment Division

American Machine and Metals, Inc.

(Main Office and Factory)

902 DeBothezat St., East Moline, Illinois

Branches

ATLANTA Boston CINCINNATI CLEVELAND DALLAS DES MOINES DETROIT FORT WAYNE HARTFORD

District Offices Chicago

New York

San Francisco

Branches

INDIANAPOLIS Los Angeles Milwaukee MINNEAPOLIS NEW ORLEANS PITTSBURGH PROVIDENCE Saginaw ST LOUIS

AXIAL FLOW PRESSURE FANS

NON-OVERLOADING POWER CHARACTERISTICS CERTIFIED RATINGS-GUARANTEED PERFORMANCE

Axial Flow Ventilating Sets

A complete series of volume and pressure axial-flow fans of high mechanical and static efficiencies with a non-overloading power characteristic. These fans offer savings in space, weight and power. Axial-Flow Ventilating Sets are available in a wide range of capacities in sizes 8 in. through 10 ft in diameter, and may be had arranged for direct motor drive or belt drive.

Ventilating Fan Axial Flow

Bifurcators

Designed for handling corrosive or high temperature vapors with direct motor driven fan. Motor is located in chamber open to atmosphere but isolated from gases handled by fan. Installed as integral part of duct system, in any position.

Multi-Stage Impeller Blowers

Units can be furnished in 2, 4, 6 or 8 stages. Direct motor or belt driven, producing high capacities and static pressures, with non-overloading power characteristics.

"Power-Flow" Roof Ventilators

Designed to provide positive ventilation at all times regardless of temperature, humidity and wind velocity. Guaranteed performance ratings. Equipped with high-efficiency Axial-Flow Pressure Fan, these "Power-Flow" Roof Ventilators possess the greatest air moving capacity per horse power! Low fan tip speeds permit unusual quietness of operation. Work efficiently against resistance of duct systems. Have non-overloading power characteristic available in a wide range of sizes, speeds, and for all standard electric current. Hinged top gives easy access to motor, fan and shutter.

The above is only a partial list of the ventilating units DeBothezat builds. Our engineers will be glad to give you expert assistance in your ventilating problems—offering you a solution in space, weight and power saving equipment. Catalog on all products sent on request.

Bifurcator

"Power-Flow" Roof Ventilator

The Lau Blower Company

2007 Home Avenue, Dayton, Ohio

Manufacturers of Air Handling Equipment LAU Blowers • Fans • Wheels • Pillow Blocks

BLOWERS for Various

Applications in the War Effort

—for ventilation in ships; ventilation applications in camps; ventilation of enclosed armor equipment; ventilation of portable, temporary, and permanent laboratories; for airplane heaters and coolers; for portable and stationary refrigeration units; forced draft boiler units; heating and drying units; special workrooms; in fact for any place where it is necessary or desirable to bring air to or take air away from any given point.

Catalogs, performance data, specifications, and prices available on above and other air handling equipment. Inquiries solicited for any application. Our engineers will help you. Write us regarding your requirements.

Self-Aligning Pillow Blocks
(Below)

Variable and Constant Speed Pulleys (BELOW)

GENERAL OFFICES 32nd STREET & SHIELDS AVENUE

FACTORIES OF LAPOPIE, IND and CHICAGO

Experienced Air Engineers Representatives in Principal Cities

 for all industrial processes, ventilation and heating. Specify them for every industrial, commercial and institutional requirement. Check these nine classifications which give thumb nail specifications:

- CENTRIFUGAL FANS AND BLOWERS
 Type ME Housed Centrifugal Wheels—Quiet
 Operating, Slow Speed Type and/or High
 Speed Wheels with Non-overloading Horsepower Characteristics Range of Standard
 Wheel Sizes 15 in. to 80 in. Wheel Diameter.
 Sizes 15 inch to 80 inch Wheel Diameter.
- JUNIOR CENTRIFUGAL BLOWERS Type ME Junior Fans, direct connected Motor Driven Range of Sizes 6 inch to 12 inch Wheel Diameter.
- DISC TYPE (or PROPELLER) PANEL FANS
 Comet EXHAUSTAIR Ventilating Fans,
 Automatic Shutters, Power Roof Ventilators,
 direct connected Motor Driven Size 10 inch
 to 30 inch Wheel Diameter. Heavy Duty
 Type, Pulley Driven, GIANT Disc Type Fans,
 Regular Sizes 36 inch to 108 inch Wheel
 Diameter with Round Body Frames.
- INDUSTRIAL UNIT HEATERS
 Disc or Propeller Fan, Ceiling Suspension
 Type, NYBCo COMET Unit Heaters with
 Molybdenum Alloy Corrosion-Proof and
 Freeze-Proof, Extra Heavy Welded, Longlife
 Ferrous Heating Element Suitable for low or
 high-pressure (unlimited) Steam Pressures.
 Capacities 24,000 to 300,000 BTU's per Hour.
 Excel AIR-FLOW Centrifugal Type Factory
 Unit Heaters. Blower-Type Unit Heaters with
 Encased Centrifugal Fans with NYBCo Molybdenum Alloy Welded Steel Heating Element
 (either Blow-through or Draw-through Type).
 Floor Type, Side-wall or Ceiling Suspension.
 Capacities 169,000 to 1,000,000 BTU's per
 Hour. INDUSTRIAL UNIT HEATERS
- MECHANOVENT UNIT VENTILATORS CLASSROOM Unit Ventilators, highly refined in design and appearance. A De-Luxe Product in every sense. Suited for fully Automatic Temperature and Humidity Regulation. Capacities 750 CFM to 1560 CFM for Classroom Duty.

MECHANOVENT UNIT VENTILATORS (Continued)

AUDITORIUM Unit Ventilators, Fully Encased Centrifugal Type Units, with or without Fresh Air and/or Recirculation Damper Assemblies, for use in Auditoriums or other places of large public gatherings. Capacities 2,000 CFM to 10,000 CFM.

AIR WASHERS

A completely engineered line of PEERLESS Air Washers, Air Cleansing, Air-Conditioning and Cooling. Complete with Single- and Double-bank Atomizing Spray Systems, Marine Type Doors, Eliminators, Entering and Backspray Louvres, Water Strainers, Pumps and Motors, and with or without Humidity Flooding Provisions. Sizes and Capacities ranging from 3,600 CFM to 76,000 CFM.

From 3,600 CFM to 76,000 CFM.

HOT BLAST HEATING SURFACE
NYBCO "STEELFIN" Longlife High Pressure Molybdenum Alloy Steel, All Welded,
Extra Heavy Duty, Homogeneous Fin-andOval-Tube Hot-Blast Heating Surface Hotdip Overall Metallic Coating, Including Headers. A Super-quality Product—proof against
faults common to Surfaces constructed of Nonferrous and Cast Iron Materials. An Engineered Product of Sizes and Capacities for
Steam Pressures (or Hot Water Equivalents)
from 2 lbs to 150 lbs. duty, High Temperature
or Low Temperature Fin Spacings, and a
Range of Air Velocities from 400 to 1000 Ft.
per Min.

VENTO, AEROFIN, and OTHER HEATING AND COOLING SURFACES

The various types and makes of Heat Transfer or Heat Exchange Surface, as regularly sold through the outlets of manufacturers of Fan-system Apparatus. These types of Surface are offered in various combinations and sizes, together with full and complete engineering recommendations.

MISCELLANEOUS

Dust and Shavings Exhausters and Material Conveyor Blowers (Centrifugal Fans with Special Housings and Wheels); Engines, Motors, and V-Belt and Other Drives; Air Filters—Automatic and Cartridge or Renewable Types; Control Devices, including Pressurestats, Thermostats, Humidistats; Turbine Ventilators; Gas-fired Unit Heaters; Specialties; and Other Apparatus for use in conjunction with Complete Blower Systems. Complete data and descriptive matter furnished on specific request.

Write for Catalogues

Full Catalog Matter, Descriptive Bulletins, Performance Tables, Engineering Data and Technical Presentation, Prices, and Complete Information with Illustrations will be furnished upon request of District Representative or by Home Office.

Since 1889

The Torrington Mfg. Co.

50 Franklin Street, Torrington, Conn.

Manufacturers of Blower Wheels and Propellor Type Fan Blades.

AIRISTORAT Quiet Propellet Fan Blades AII Blower Wheels

AUTORAT Blades

Single Inlet Aluminum Blower Wheel

Airotor Blower Wheel—Single Width—Single Inlet Patents 2, 231,062; 2,231,063; Des 126,043; 2,272,695

Airotor Blower Wheel—Double Width—Double Inlet Spider End Plates Patents 2,231,062, 2,231,063, 2,272,695

Cup Type Blower Wheel. Pats. 1,513,763; 1,648,060

Torrington Aluminum Blower Wheels produce the smooth, quiet performance which is essential in modern heating and air conditioning units because the unique patented construction breaks up resonance and minimizes noise. Made of aluminum, they resist corrosion and their light weight facilitates quick starting—saves power. Every wheel is statically balanced.

Bulletin lists 34 sizes of single inlet single width and 34 sizes of double inlet double width wheels, including guaranteed capacities for each. Also gives detailed dimensions for all wheels and table of dimensions for housing scrolls. We do not manufacture housings.

Sizes 3 in. to 15 in. diameter in all standard widths.

Torrington Airotor Blower Wheels are light, sturdy and inexpensive—incorporate new principles of design and construction, which insure rigidity and concentricity. Single Width—Single Inlet wheel is of simple four-piece construction. No rivets or welds are used; concentric rib serving as backing for blade strip is formed at same time as hub socket, insuring trueness of wheel. Rigid radial ribs prevent deflection by thrust. Three thicknesses of metal in rims make for maximum strength. Manufactured in both aluminum and steel in 3½ in., 4½ in., 5 in., 6 in., 7½ in., 9 in. and 10½ in. diameters. Same sizes available in DA type double width, double inlet wheels.

Torrington Airotor Blower Wheel—Double Width—Double Inlet—Spider End Plates, has blades punched and formed in a single strip, rigidly held by flanged single piece end rings. Hubs are rigidly mounted by peening. Wheels of 35% in., $10\frac{1}{2}$ in., 12 in. and 16 in. diameter are available at present; $4\frac{1}{2}$ in., 5 in., 6 in., $7\frac{1}{2}$ in., 9 in. and 20 in. sizes are being developed.

Torrington Cup Type Wheels—Used for automobile heaters, gun type oil burners, windshield defrosters, small hair dryers, hand dryers, ice box and refrigerator circulators, window ventilators, exhausters, etc. Made for either clockwise or counter clockwise rotation, of steel, in sizes: 3 in. to 9 in, inclusive

AIRISTOCRAT Quiet Propel-

ler Fan Blades are widely recognized for their all-around excellent performance. The unique, patented construction embodies entirely new principles in the art of fan design-produces a blade unsurpassed for quiet operation, rugged construction and attractive appearance. Every Air-istocrat unit is carefully built and the blades are hand gauged for correct contour and alignment. Statically balanced, these blades deliver full air volume with a minimum of noise. Aluminum alloy blades and steel spiders are standard except where otherwise noted. Rotation is clockwise only (facing air delivery side).

Available in the following finishes: 1. Plain-no finish on blades, spiders or hubs. 2. Blades with no finish; spider and hub with cadmium plate or black lacquer.
3. All black lacquered, with or without center button.
4. Buff and lacquered blades, black lacquered spider and hub, with or without center button. Catalog gives detailed dimensions and guaranteed performance curves recorded under NEMA and NAFM code tests at various speeds for each of the Airistocrat models described below.

"Standard" Series-Has blades mounted on a steel spider. Sturdy, attractive steel or aluminum blades which have withstood extreme laboratory breakdown tests. Sizes 8 in., 10 in., 12 in., 14 in., 16 in., 18 in. and 20 in. diameters in a variety of pitches to meet every need.

Three Blade "Y" Series-The design of this blade is the result of two years of laboratory experiment to produce a better air circulator blade. At recommended speed these blades produce a high velocity air stream effecting deep penetration with unusual quietness. Sizes 10, 12, 14, 16, 18, 20, 24 in. and 30 in. diameters, steel or aluminum blades

Pressure "P" Series—Similar in construction to "Standard" Series but with blades especially designed for higher pressures. Sizes 10 in., 12 in., 14 in., 16 in. and 18 in. diameters.

Pressure "U" Series-Two and four blade models of steel designed for pressure operation. Sizes 20 in., 22 in., 24 in., 26 in., 28 in. and 30 in. diameters. 24 in. and 30 in. sizes suitable for attic fans. Bulletin gives complete specifications and ratings.

Airistocrat "Standard" Series Pats 2,072,322 and 2,021,707

3-Blade Airistocrat "Y" Series

4-Blade Airistocrat Pressure Fan "P" Series

4-Blade Airistocrat Pressure Fan "U' Series (also made in two blade model)

4-Blade Airistocrat Attic Fan 'A" Series (also made in 2 and 3 blade models)

Airistocrat 3-Blade "One Prece" Series

4-Blade "One Piece" Airistocrat Fan

Autocrat Fan Blade

AIRISTOCRAT "A" Series Attic Fan Blades are the result of extensive study and experiment to produce blades having extraordinary efficiency, to sell at lower than average prices. LOW COST is possible because tools are interchangeable for production of either 2, 3 or 4 blade models in any diameters from 24 in. to 48 in. inclusive (sizes 24 in., 30 in., 36 in., 42 in. and 48 in. are standard). Construction approved only after severe breakdown tests. The extremely high EFFICIENCY is attained by the application of correct principles of design. Blades, spiders and hubs are of steel. Available in the following finishes: 1 Plain. 2. Aluminum lacquered blades, black lacquered spider and hub. 3. All one color lacquer. Bulletin gives detailed dimensions and specifications; also performance data.

3-Blade "One-Piece" Series Propellor Fan—An attractive, inexpensive one-piece blade incorporating the Airistocrat features for quiet operation. Available in both steel and aluminum. Sizes 8 in. and 10 in. diameters.

4-Blade "One-Piece" Series Propellor Fan—An exceptionally rigid model blanked from one piece of metal with four wide blades. Quieter than narrow blade types. Made in both steel and aluminum. Clockwise rotation only (viewing air delivery side). Sizes 8 in., 9 in , 10 in , 12 in., and 16 in. diameters Available in the following finishes: 1 Plain. 2. Lacquered. 3. Nickel or cadmium plated (steel only).

AUTOCRAT Fan Blades—For auto heaters, windshield defrosters, electric heaters, etc. Have been standard ever since these devices were first marketed. Made in sizes 3 in., 4 in., 4½ in., 5 in., 5¼ in., 5½ in., 6½ in., 6½ in., 6½ in., all four blades, also 7 in. 5-blade, in one piece of cold rolled steel or aluminum with brass hubs, complete with set screw. ¼ in. bore is standard. Either clockwise or counter clockwise rotation (expressed when looking at air delivery side of fan). White nickel is standard finish for steel blades. Bulletin gives complete specifications an ratings.

B. F. STURTEVANT COMPANY

Air Conditioning, Heating, Ventilating, Dust Control and Fume Removal Equipment, Vacuum Cleaners, Dryers, Compressors, Motors, Turbines, Mechanical Draft Equipment

Main Office and Works

Arron, Ohio ALBANY, N. Y. ATLANTA, GA. BALTIMORE, MD. BOSTON, MASS. Buffalo, N. Y. Camden, N. J. CHICAGO, ILL. CINCINNATI, OHIO CLEVELAND, OHIO

Hyde Park, Boston, Mass. Sales Engineering Offices

COLUMBUS, OHIO DENVER, COLO DES MOINES, IOWA DETROIT, MICH. GREENSBORO, N. C. HARTFORD, CONN Indianapolis, Ind Jacksonville, Fla. Kansas City, Mo LITTLE ROCK, ARK. LOS ANGELES, CALIF MEMPHIS, TENN.

MILWAUKEE, WIS MINNEAPOLIS, MINN. NEWARK, N. J. NEW YORK, N. Y. NORTH HERO, VT. North Hero, V Pittsburgh, Pa

PORTLAND ORE. ST LOUIS, MO SALT LAKE CITY, UTAH SAN FRANCISCO, CALIF. SEATTLE, WASH. SPOKANE, WASH. SPRINGFIELD, MASS. SYRACUSE, N Y TOLEDO, ORIO WASHINGTON, D C.

PLANTS Located at HYDE PARK, BOSTON, MASS.; LASALLE, ILL.; CAMDEN. N. J.; BERKELEY, CALIF, and GALT, ONT.

B. F. STURTEVANT COMPANY OF CANADA, LTD., GALT, ONT, Sales Offices in Toronto and Montreal, and representatives in principal Canadian Cities.

COOLING & AIR CONDITIONING DIV. of B. F. Sturtevant Co. is Organized to Engineer and Install Complete Industrial Air Conditioning Systems.

OFFICES: Atlanta, Ga; Hyde Park, Boston, Mass; Camden, N. J; Cleveland, Ohio; Greensboro, N. C.; Los Angeles, Calif; New York, N. Y.

HOW STURTEVANT ENGINEERING SERVICE CAN HELP YOU

As the world's largest concern engaged in the manufacture of Air Handling Equipment, backed by more than 80 years' experience, B. F. STURTEVANT COM-PANY is exceptionally qualified to help you attain the most efficient and economical solution of any air handling problem. Skilled Sturtevant engineering experts, located in many leading cities are prepared to render the following 5-point service: (1) Analyze your problem. (2) Recommend the solution. (3) Specify the equipment. (4) Supervise the installation. (5) Check the operation.

Whether requirements call for a single unit of apparatus or a complete engineered system, Sturtevant engineers can recommend the solution best suited to fulfill your individual needs. Do not hesitate to call the Sturtevant representative nearest you for assistance. Needless to say, no obligation is incurred.

As a preliminary aid, we list on the following two pages the major types of equipment manufactured by us, together with their general applications and the reference numbers of catalogs available.

ILLUSTRATIONS OF SOME OF THE MAJOR LINES OF STURTEVANT EQUIPMENT

Axiflo Fan (25)

Propeller Fan Design 7 (29)

Multivane Fan Design 6 (30)

Speed Heater (40)

Centrifugal Compressor Design 14 (14)

Filterwasher Showing Filter Spray Nozzles (6)

Planorane Fan Design 3 (32)

Centrifugal Compressor Design 9 (12)

STURTEVANT EQUIPMENT INDEX AND OTHER ILLUSTRATIONS ON NEXT PAGE

B. F. STURTEVANT COMPANY

TABULAR VIEW OF STURTEVANT EQUIPMENT AND APPLICATIONS

This table shows at a glance types of equipment manufactured by B. F. Sturtevant Company and their general application, together with catalog numbers on specific equipment. The numbers shown under "General Application," in the left

column refer to the Index of Products. If no catalog number is given, write to B. F. STURTEVANT COMPANY, main office, or to the nearest branch office, stating specific requirements, and complete information will be sent immediately.

General Catalog No. 463 gives brief descriptions, Capacities, etc. of all Sturtevant Products

GENERAL Applications		STURTEVANT EQUIPMENT INDEX	TRADE NAME OR DESIGN NO.	CAT. NO.
AIR CONDITIONING	1	Air Blerders Air Conditioning Apparatus	"Air Blenders" Sturtevant	425-2
1, 2, 3, 4, 6, 7, 15, 25, 30, 31, 33, 39, 43, 45, 47, 51, 57	3 4 5 6	Air Conditioning Apparatus Air Conditioning Systems, Industrial Air Conditioning, Railway Air Heaters Air Washers	Sturtevant "Railvane" Sturtevant "Filterwasher"	401-1 450 453
DUST AND FUME REMOVAL	7 8 9	Blowers, Ventilating Blowers, Small Portable Blowers, Pressure	"Rexvane Vent Sets" "Big Midget" "Steel Pressure"	400-9 F1266 297-1
7, 8, 9, 10, 11, 12, 13, 14,18, 25, 27, 31, 32, 45, 52, 53, 54, 55, 56	10 11 12	Collecting and Conveying Systems Compressors, Centrifugal —vols, 35-75 c f m., 12-20 oz press. —vols to 5,500 c f m 1/2-3 lbs press.	Sturtevant Design 7 Design 9	291-2A 408-2 386-1
HEATING	13	—vols 35-650 c f m , press. to 5 lbs. —vols to 60,000 c.f m press. to 5 lbs.	Design I Design 14	431 458
7, 25, 30, 31, 33, 40, 41, 42, 43, 49, 50, 57	16 17 18	Cooling Coils (Extended Surface) Water and Direct Expansion Drying Systems Dry Kilns, Lumber Dust Collectors	Sturtevant Sturtevant Sturtevant Sturtevant	461
INDUSTRIAL DRYING 9, 16, 17, 25, 28, 30, 31, 32, 42, 43, 45	19 20 21 22 23	Economizers, Cast Iron Engines, Vertical Steam Engine Generator Sets Exhausters (Material Handling) Exhausters, Slasher (Textile) Fans—Attic Ventilating —Axial Flow, Pressure Type	Sturtevant Sturtevant Sturtevant "Planovane," Des 3 Sturtevant "Attievane" "Axiflo"	405 410-3 432-1 400-9 444-1
	26	-Engine Cooling	Engine Cooler	418-5

CONTINUED ON NEXT PAGE

Air Heater (5)

Steel Pressure Blower (9)

Engine Generator Set

Engine Cooler for Gas, Diesel Engines, etc. (26)

Silentvane Fan Design 8

Silentvane Fan Design 7
(32)

Rexiane Fan Design 3

Atticvane Fan (24)

B. F. STURTEVANT COMPANY

B. F. STURTEVANT EQUIPMENT—Continued

GENERAL APPLICATIONS	STURTEVANT EQUIPMENT INDEX	TRADE NAME OR DESIGN NO.	CAT. NO.
MECHANICAL DRAFT 5, 9, 12, 13, 14, 19, 25, 32, 34, 35, 36, 37, 38, 45, 48, 57 PNEUMATIC CONVEYING 9, 10, 11, 12, 13, 14, 22, 27, 44, 45 PRIME MOVERS 20, 45, 48	27 —Fume and Dust Removal, Materials Handling 28 —High Temperature 29 —Propeller, Motor Driven 30 —Low Speed, General Purpose —Medium Speed, Industrial 31 —High Speed, Industrial 32 —High Speed, Heating and Ventilating —Mechanical Draft, Duplex type (Combined Forced and Induced) 35 —Mechanical Draft, Low Speed, Induced Draft, Abrasion-resistant 36 —Mechanical Draft, Hedium Speed, Large Volume, Forced and Induced —Mechanical Draft, High Speed, Forced Draft 37 —Mechanical Draft, High Speed, Forced Draft 38 —Mechanical Draft, High Speed, Induced Draft 39 —Theatre Ventilating 40 Heaters, Unit, Directional Flow Type for Wall and ceiling mounting 41 Heaters, Unit, Downblast Type, for ceiling mounting	"Planovane," Des. 3 Design 7 "Multivane," Des. 6 "Rexvane," Des. 3 "Silentvane," Des. 7 "Silentvane," Des. 8 Duplex S.P.I.D., Des. 2 M.V.M.D., Des 6 T.V.F.D., Des. 9 T.V.I.D., Des. 2 Theatre Fans "Speed Heater" "Downblast"	410-3 400-9 271-4 414-4 449 437 436 447 409 448 448 445 424-1 396-9 454
VACUUM CLEANING 12, 13, 18, 45, 52, 53, 54, 55, 56 VENTILATING 7, 24, 25, 26, 29, 30, 31, 33, 45, 46, 49, 50, 51	Heaters, Unit, Large Capacity, for floor, wall, ceiling mounting Heating Coils (Extended surface) Melt-Recovery Units (Welding) Motors, Electric Roof Ventilators Surface Dehumidifiers Turbines, Steam, Helical Flow Type Unit Ventilators, Aditorium Type Unit Ventilators, Aditorium Type Vacuum Cleaners, Portable Vacuum Cleaners, Portable Furnace type Vacuum Cleaning Systems, Commercial Buildings Vacuum Cleaning Systems, Industrial Vacuum Cleaning Systems, Industrial Vacuum Cleaning Systems, Industrial Vacuum Cleaning Systems, Industrial Vacuum Cleaning Systems, Industrial Vacuum Cleaning Systems, Industrial Vacuum Cleaning Systems, Industrial	"Multivane" Sturtevant Sturtevant Sturtevant "Roofvane" Sturtevant Sturtevant Sturtevant Sturtevant "Rexvane" Vent Sets "Vortex" "Vortex" Sturtevant Sturtevant Sturtevant Sturtevant Sturtevant Sturtevant Sturtevant Sturtevant	452 462 438-1 433-1 422 426 377-1 5377-1 406 413-2 373-6 397-2 368-3 387-1 446

Downblast Heater (41)

Multivane Heater (42)

Extended Surface Heating Coil (43)

Sturtevant Electric Motor (45)

Sturtevant Steam Turbine Design 12 (48)

Melt Recovery Unit Portable Type (44)

Reavane Vent Set (51)

Vortex Portable Vacuum Cleaner (52)

GENERAL @ ELECTRIC

Schenectady, N. Y.

Sales Offices, Warehouses, Service Shops and Distributors in Principal Cities

MOTORS FOR HEATING, VENTILATING, AND AIR CONDITIONING

General Electric offers a complete line of motors for compressors, fans, and pumps from which you can select easily the motors with electrical and mechanical characteristics best adapted to your equipment. Many of the most common applications are listed below. Complete information on other types of motors—vertical, enclosed, etc., with various electrical and mechanical modifications—can be obtained at a G-E office near you.

For additional information, ask for Motor Catalog GEA-623.

Tri-Clad* induction motor, Type K, polyphase

Fractional-horse-power capacitor motor. Type KC

SOME G-E MOTORS AND THEIR USES

Application	Speed	Type Winding	Туре	Horsepower Range	Classification
Fans and Centrifugal Pumps	Constant or	Shunt	B & CD	1/8-200	Direct-
Reciprocating Pumps	Adjustable	Compound	B & CD	1/8-200	current
and Compressors	Constant	High Torque Capacitor	KC & KCJ	1/4-3	
	Constant	Resistance Split-phase	KH	1/40 1/2	Single-phase
Small Direct Connected Fans	Constant	Shaded-pole	KSP	1/40-1/3	
rans	Constant or 3-speed	Low-torque Capacitor	KCP	1/50-1	Alternating - current
	Constant	General-purpose	KC	1/4-3	
Belted Fans, Centrifugal Pumps		Capacitor	KC	1/8-3	
rumps		Repulsion-induction	SCR	5-10	
Reciprocating Pumps	Constant or	Squirrel-cage	K or KB	1/4-1000	
and Compressors	Multispeed	High-starting-torque	K & KG	1/4-5 5-100	Polyphase, Alternating-
Pumps, Compressors,	Constant or Adjustable	Wound-rotor	M & MB	1/2-1000	current
1.9112	Constant	Synchronous	TS	25-2000	

Types of Enclosures: Open—protected from falling objects or dripping liquids. Splashproof—where wetness is a factor. Totally enclosed—for complete protection. Explosion-proof—where explosive fumes or dusts are encountered.

For code wire, conduit products, wiring material, insulating materials, etc., address APPLIANCE & MERCHANDISE DEPARTMENT, BRIDGEPORT, CONN.

^{*}Reg. U. S. Pat. Off.

GENERAL ELECTRIC

Schenectady, N. Y.

Sales Offices, Warehouses, Service Shops and Distributors in Principal Cities

CONTROL FOR HEATING, VENTILATING, AND AIR-CONDITIONING MOTORS

The General Electric line of standard control offers manual or automatic equipment for compressors, fans, or pumps driven by any type motor which you require, providing full protection for your motor, especially those listed on the preceding page.

For special applications, General Electric controllers can be designed to meet your exact requirements.

For additional information, ask for Control Catalog GEA-606.

CR7107 a-c magnetic controller for use with multi-speed squirrel-cage motors driving pumps, fans, or blowers

CR1062 manual full-voltage tarter for small polyphase motors. Available in 2-or 8-pole forms, with emperature overload protection

CR2940 indicating-light pushbutton station. Used with magnetic controllers to indicate speed of fan or blower

CR1061 manual starter for fractionalhorsepower motors, a-c or d-c Available in 1- or 2-pole forms, with temperature overload protection

CR7006-D51FS quiet magnetic switch. For full-voltage starting of squirrel-cage motors up to 5 hp, 220 volts. For applications where quiet operation is required, such is on fans or domestic airconditioning systems.

CR7896 throwover panels. To transfer motor or lighting load to emergency source of power of normal source fails Retransfers load when power returns to normal source

CR7764 a-c speed-regulating controller for wound-rotor induction motors. For controlling the speed of motors drwing ventilating fans and blowers. Provides undervoltage and overload protection

A complete line of accessories, including pressure governors, pressure switches, float switches, electrically operated valves, and indicating Selsyns, is available.

This Company will gladly assist in the solution of any electrical problem in relation to heating and ventilation.

Wagner Electric Corporation

6403 Plymouth Avenue, Saint Louis, Mo., U. S. A.

No matter what type of air-conditioning equipment is involved . . . whether large or small . . . regardless of the torque, speed or current requirements . . . you can choose a motor from the Wagner line that is correctly engineered for the job. Each motor illustrated below has special electrical and mechanical characteristics that make it the ideal motor for certain applications.

Type RA, Repulsion-Start-Induction Motors

RA Rebulsion-Start-Induction Motor -1/8 to 15-hb.

are single-phase brush-lifting motors having high starting-torque and low starting-current. The ideal motor for heavy-duty applications such as stokers. compressors, pumps, etc. Obtainable in various speeds, frequencies, and voltages; rigid or resilient mounted; 1/8 to 15-hp.

Type RP. Polyphase Squirrel-Cage Motors are made in 5 electrical types varied as to torque and current characteristics to take care of a wide variety of applications. 2- and 3-phase; 1/6 to 400-hp.

1 ype RP Polyphase Squirrel-Cage Motor 1/6 to 400-hp.

Type RK Capacitor-Start Induction-Run Motor 1/8 to 3/4-hp.

Type RK, Capacitor-Start - Induction - Run Motors are single-phase motors suitable for driving refrigerators, household air-conditioners, and other appliances. Drip-proof or totally-enclosed endplates; rigid or resilient mounted; 1/8 to 3/4-hp.

Type RT, Special Compressor Motors were developed to meet the demand for a polydemand for a polyphase motor with high starting-torque and very low starting-cur-rent. The RT motor is ideal for large com-pressors. The very low starting-current permits across-the-line starting. 2- and 3-phase; 40 to 100-hp.

Type RT Special Com-Motor--40 100-hb

Type TB Split-Phase Unit-Heater Motor (Single-Phase) 1/20 to 1/4-hp.

Type TB, Split-Phase Unit - Heater Motors (Single-Phase) are totally-enclosed to prevent entrance of dust or moisture: ball-thrust bearings on front end to take care of end-thrusts imposed by fans; rubber mounted for ultra-quiet operation. 1/20 to 1/4-hp.

Type RS, Wound-Rotor (Slip-Ring) Polyphase

Type RS Wound Kolor (Slip-Ring) Polyphase Motor—1 to 250-hp. RS Wound Rotor

Type M, Shaded-Pole Fan Motors are single-

Type M Shaded-Pole Fan Motor 25, 1/80, 1 and 1/30-hp. 1/125 1/40

phase induction motors of simple construction. Ideal for fan and blower drives in which the fans are mounted directly on the motor shaft. Totally-enclosed and open-type; rigid or resilient mounted: 1/125. 1/80, 1/40 and 1/30-hp.

Type RD, Direct-Current Motors may be used

for direct-current service wherever repulsion-startinduction, split-phase, capacitor, or squirrelcage motors would be used for alternating current service. Built in two types: Appliance Type up to 11/2-hp; Industrial Type RD Direct-Current Type, 1/20 to 3-hp.

resistors. 1 to 250-hp.

Motor-1/20 to 3-hp.

Anemostat Corporation of America

10 East 39th Street, New York City, N. Y.

THE ANEMOSTAT HIGH VELOCITY AIR DIFFUSER

Anemostat Type "A"

Anemostat Type "B"

Anemostat Type "C"

THE ANEMOSTAT PRINCIPLE

ANEMOSTATS produce unparalleled results because they are the only air diffusers which operate on the following interdependent principles:

1. Air expansion within the device, which reduces velocity

Air expansion which causes room air equal to 30 to 35 per cent of the supply air to be drawn into the device where it is mixed with the supply air. The percentage of aspiration depends on the type of Anemostat used.

ration depends on the type of Anemostat used.

3. Creation of a multiplicity of air currents and countercurrents at low velocities, which causes slow but adequate

secondary air motion.

Type "A" Anemostat is a combination device for supplying air and either extracting it or returning it to the conditioner or heater. Designed to extract or return 75 cfm of room air for every 100 cfm of supply air. This percentage of extract or return may be increased or decreased by varying the extract velocities. It furthermore has an aspiration effect of 30 per cent. May be used with velocities up to 2500 fpm, and wherever both supply and return, or extract are required through the same unit. Should not be used with ceiling heights exceeding 16 ft.

Type "B" Anemostat is a diffusion device for supply air only. It has 35 per cent aspiration. May be used with velocities up to 4000 fpm and is suitable for industrial and commercial installations. Can be used on either exposed or concelaed duct

work.

Type "C" Anemostat is a diffusion device for supply air only. It has 35 per cent aspiration. May be used with velocities up to 2500 fpm. Must be installed flush with ceiling and cannot be used on

exposed duct work.

Type "W" Anemostat is a device for the diffusion of supply air from the wall. It has an aspiration effect of 35 per cent. Excessive air motion from the floor up to and including the breathing level is eliminated and the temperature differential, both horizontally and vertically between points in the occupied zone is reduced to a minimum. The effective diffusion covers an area within a radius of 180 deg. This result cannot be obtained by any other method which introduces air from a wall.

Type "HU-3" and "HU-4" Anemostats have been developed to obtain draftless, economical heat distribution from vertical discharge unit heaters, and uniform heat coverage of floor areas. Type "HU-3" and "HU-4" Anemostats may be combined with practically all sizes and types of Vertical Discharge Heaters on the market. A number of unit heater manufacturers now supply "HU" Anemostats as a part of their equipment. The complete and effective heat distribution produced by an Anemostat attached to a unit heater is a distinctive exclusive feature of the device

Barber-Colman Company

Rockford, Illinois

ENGINEERED AIR DISTRIBUTION OUTLETS

Venturi-Flo

Venturi-Flo is a spun-steel overhead type air diffuser with flow characteristics similar to those of the well known fluid flow measuring device—the Venturi-Meter. The relationship between the neck area of the unit proper and the venturi throat area is so proportioned as to create a slight back pressure in the neck at all times, thereby automatically insuring uniform distribution around the entire periphery of the unit.

Three types of units are available, the recessed, the flush and the surface types. A wide range of sizes permits handling air volumes up to 15,000 cfm per unit.

Fittings for attaching any standard light fixtures to the outlets may be obtained for all three designs. They can also be furnished as combination supply and exhaust units, and with adjustable dampers.

Uni-Flo grilles and registers are especially designed for air conditioning applications. They are engineered and prefabricated with directional flow aspirating fins for each individual installation. Proper air distribution is assured and the necessity of adjustment after installation obviated.

Uni-Flo grilles can be furnished in various shapes and sizes and for plane and curved surfaces.

Registers are similar in construction to grilles, but with the addition of spring loaded, positive closing chain or key operated dampers.

Electro plated finishes: Gunmetal, brushed bronze, plain zinc, buffed zinc, brushed zinc, satin copper. Also available in plain metal, grey prime coat, clear lacquer, and satin aluminum.

Uni-Fin

Uni-Fin grilles and registers are designed especially for residential warm air installations, and are available in standard sizes with prime coat or electroplated finishes.

(See also Page 998)

Venturi-Flo-Recessed Type

Venturi-Flo-Flush Type

Venturi-Flo-Surface Type

Uni-Flo Grille

Uni-Flo Register

Uni-Fin Register

SEE OUR COMPLETE CATALOG IN SWEET'S

W. B. CONNOR ENGINEERING CORP.

114 East 32nd Street, New York, N. Y.

Offices in All Principal Cities

Canadian Representative: D & D Air Conditioning Co., Montreal, Canada Manufacturers of KNO-DRAFT Adjustable Ceiling Air Diffusers

KNO-DRAFT Type W-A-R Adjustable Air Diffusers insure efficient air distribution, adequate aspiration, noiseless and draftless diffusion, and uniform temperature throughout the occupied zone, regardless of season or ventilation requirements. Every KNO-DRAFT unit is easily and quickly adjustable for system balancing or seasonal regulation. During the heating season warm air can be forced downward to obtain proper mixture of room and supply air-a highly advantageous feature.

(Patents Pending)

Model F KNO-DRAFT Diffuser - For Supply Air—attractive—light, yet sturdy—for high or low ceilings or attachment to exposed duct work. Anti-smudge rim prevents streaked ceilings Sizes $2\frac{1}{2}$ in to 42 in in neck diameter for capacities from 10 cfm to 20,000 cfm per unit

(Patents Pending)

Model SR KNO-DRAFT Diffuser—For Combination Supply and Return air to simplify duct work. Sizes 6 in. to 42 in, supply air neck diameter for supply capacities from 10 cfm to 9,000 cfm per unit, with central return air throat for 75 per cent of supply capacity.

The KNO-DRAFT Diffuser will effectively handle large volumes of air, pre-mixing room and supply air. It permits the use of higher duct velocities—resulting in smaller ducts and lower costs. Duct designs are simplified and fewer outlets are required. KNO-DRAFT Diffusers blend well with any architectural treatment—classical or modern. They are simple in construction, light in weight, and easily installed.

This New KNO-DRAFT Type W-A-R Diffuser has been so re-designed as to retain all of its superior features without wasting critical war materials. Now consequently the superior of the superior features without wasting critical war materials.

structed of steel instead of aluminum, even this less critical material has been conserved, but without sacrificing durability, appearance, or efficiency.

THE TYPE DEE AIR VOLUME CONTROL is designed for application exclusively to KNO-DRAFT ADJUSTABLE CEILING AIR DIFFUSERS.

It is furnished already assembled within the diffuser and requires neither field assembly nor attachment to ducts, angle rings or other external appurtenances.

Type DEE Air Volume Control is adjusted and tested before shipment and ready to function when the diffuser is installed.

Its operation is entirely independent of the air direction adjustment which is part of all standard KNO-DRAFT Air Diffusers.

Type DEE Air Volume Control complements the function of the air diffuser.

It varies only the quantity, not the characteristic of the air distribution. With it, a series of diffusers may be balanced without affecting the air diffusion efficiency.

With KNO-DRAFT ADJUSTABLE CEILING AIR DIFFUSERS equipped with TYPE DEE AIR VOLUME CONTROL, the desired air pattern of any room or zone is AT YOUR FINGER TIP.

Hart & Cooley Manufacturing Co.

Established 1901

Air Conditioning Registers and Grilles - Warm Air Registers Damper Regulators - Furnace Regulators - Pulleys - Chain Holland, Mich.

NO. 75 DESIGN—FLEXIBLE FIN TYPE with TURNING BLADE VALVE to provide DOUBLE DEFLECTION. Also without Valve as Grille or Intake

CONTROL OF AIR FLOW IN TWO PLANES

Instant Adjustment of Air Flow (Up, Straight or Down)

Is obtained by turning the regulator on the register face to the proper setting with a key furnished with each register. When the vaive is opened, as shown at the left, the individual valve louvres automatically stop in position to provide the proper air flow—Up (Fig. 1) for cooling systems to avoid drafts; Straight (Fig. 2) for ventilating systems; Down (Fig. 3) for heating systems to prevent stratification. When the valve is closed, as shown at the left below, it completely stops the flow of air.

Air Flow Can be Quickly Adjusted Sideways No. 75 Design has a flexible fin-type face. Each fin may

be twisted individually with a wrench furnished with each register or grille to provide any desired sideway deflection of the air flow.

Figs. 1, 2, and 3 show the air flow with No. 75 Design; Fig. 4, with the conventional register. Compare the turbulence in the stackhead of the latter with the smooth flow obtained with No. 75 Design. So efficient is No. 75 Design that there is actually less resistance with this register, using a standard stackhead, than if no register at all were used.

VALVE OPEN

Velocities with No 75 Design

Velocities with Conventional Register

EVEN DISTRIBUTION OF AIR OVER ENTIRE FACE

The turning blade valve distributes the air evenly with a uniform velocity over the entire face, as shown in Figs. 1, 2, and 3 on the preceding page. Note how the air rushes through the upper part of the face with a conventional register, as shown in Fig. 4. Since the entire face of No 75 Design register is utilized for discharge of air, smaller and

in some cases fewer registers can be used without causing excessive velocities.

Prevention of Streaked Ceilings—With either UP, STRAIGHT, OR DOWN deflections the air does not strike the ceiling immediately in front of the register, streaked ceilings are thus avoided.

Excellent Concealment of Duct—The depth and close spacing of the vertical bars, combined with the valve, provide almost complete concealment of the duct, adding

considerably to the pleasing appearance of the register face.

Special Settings—No. 75 Design functions equally well when located at the end of a horizontal duct or, by installing it upside down, when the air is delivered to it from above.

AVAILABLE IN FOUR TYPES

With Turning Blade Valve—No 751 Register (Left) has Sponge Rubber Gasket and 3/16 in. turndown No. 754 Register (Right) is similar except has 1/8 in projection.

Without Valve—No. 750 Grille (Left) has Sponge Rubber Gasket and ¾ in. turnwn. No. 757 Intake (Right) has ⅓ in. projection.

FOUR TYPES OF INSTALLATION FRAMES AVAILABLE

No. 75 Design items can be used with or without installation frames No. 3 Sidewall Stud Frame (illustrated), fastens directly to stud, forming a solid, streak-proof foundation for register. No. 8 Frame is similar for baseboard use. No. 5 Baseboard Stack Frame provides inexpensive, streak-proof installation. No. 2 Band Iron Frame provides for connecting register to stackhead.

CATALOG 42 showing the complete H & C line, available upon request.

Hendrick Manufacturing Company

Hendrick Perforated Metal Grilles

48 Dundaff Street, Carbondale, Pa.

SALES OFFICES IN PRINCIPAL CITIES—CONSULT TELEPHONE DIRECTORY

PRODUCTS—Hendrick Perforated Metal Grilles; Mitco Open Steel Flooring; Mitco Armorgrids; Mitco Shur-Site Treads.

HENDRICK PERFORATED METAL GRILLES

To architects, engineers, contractors and others who buy or specify grilles, Hendrick offers literally bundreds of designs from which to select the pattern or patterns best suited to specific applications.

In addition to those popular designs which have been specified so consistently that they are today regarded as standard patterns, Hendrick offers a number of exclusive designs, many of them covered

Musak

M No, 9

La Crosse

by design patents. Originally designed to meet specific requirements, these Hendrick patterns are available, without premium, to those who seek something that is distinctive as well as different. All Hendrick Grilles are characterized by clean-cut perforations and fine finish. In addition, Hendrick grilles are put through a special flattening operation which insures easy installation.

HENDRICK FIXED LOUVRE GRILLE

One of the most popular grilles in the Hendrick line is a door grille, developed originally for hotels and hospitals but equally ideal for bathroom doors in residences.

Hendrick Fixed Louvre Grille is built up of a series of strips bent to a fixed angle and rigidly fastened into a band frame, a construction permitting free circulation of air but preventing vision through the grille from any angle. Easily installed in any door.

Hendrick Fixed Louvre Grille

Regularly furnished in No. 18 U. S. Gauge Steel; also obtainable in other commercially available metals.

Write on your letterhead for a copy of 194-page handbook, "Hendrick Grilles."

The Independent Register Co.

3747 East 93rd Street, Cleveland, Ohio AIR CONDITIONING REGISTERS AND GRILLES

A Complete Line for Either Residential or Commercial Installations

Janahan Janahan

No. 311A "Fabrikated"-Grille Bars individually adjustable for upward or downward directed air flow.

No. 321A "Fabrikated"-Grille bars individually adjustable for right or left directed air flow.

No. 238 Wrought Steel—4-way adjustable direction of air flow. Flexible vertical grille bars, multiple valves.

No. 139 Wrought Steel-Flexible horizontal grille bars, bendable for up, down or straight air flow. Single valves.

No. 136 Wrought Steel-Of fine appearance. Can be used to advantage on low priced installations. Single valves.

No. 137 Wrought Steel-A popular design, moderately priced. Single valves.

We manufacture many other types and styles of Registers and Grilles; a complete line.

You should have the Independent Register Catalogues-Yours for the Asking.

REGISTER & GRILLE MFG. CO.

Incorporated

70 Berry Street, Brooklyn, N. Y.

Headquarters for all types of Registers and Grilles

RESIDENTIAL AND COMMERCIAL

Register shutters of different types can be furnished with all types of Register Faces or Grilles.

All Register Shutters have our exclusive feature of brass collars inserted in the ends of the shutter to minimize rusting.

REGISTERS FOR VENTILATION

Style 3370 lock type Register allows directional flow of 135 deg either right and left or up and down Will open 45 deg beyond 90 deg

The Arrowtrol, line cut shown above, gives straight throw in connection with volume control

FOUR-WAY DEFLECTION TO AIR FLOWS

I Mullingungungung

Style 3320 Grille and HMV deflecting vane

Front bars vertically adjustable, rear vanes horizontally adjustable; or Front bars horizontally adjustable, rear vanes vertically adjustable.

R & G ADJUSTABLE DIRECTED AIR FLOW TWO-WAY DEFLECTION

Use No. 3320 Grille for adjustable right and left deflection. Style 3310 has horizontal adjustable bars for up and down deflection.

THE "THIN MAN" REGISTER FOR RESIDENTIAL USE

Style 1108, shown, allows right and left deflection and up or down control at the back.

Other designs of faces are available.

Ask for our catalog which shows other types of air controls; also 81 different Stamped Metal designs and over 100 designs in Cast Metals—Iron, Brass or Bronze.

United States Register Company

General Offices: Battle Creek, Mich., U.S.A.

Branches: Minneapolis, Minn, Kansas City, Mo., Alpany, N. Y., New York, N. Y., San Francisco, Calif.

Air Conditioning Registers, Vents and Grilles

Style 153LF—Louver-Type Air Conditioning Register-Bars ¼ in. deep—Spaced 4 openings to the inch affords Non-Vision. Can be supplied in Directional Flow in either Horizontal or Vertical Bar Styles. Can be furnished with all styles of Setting Frames.

Style 249LF—Duo-Deflection Air Conditioning Register. Gives complete Air Control. Vertical Front bars—Key-pin adjusted to provide 45 deg Right and Left or Two-way Side Flow. Lever operated Horizontal Back-valves give from Full Closed to any degree of Upflow and to 45 deg Down-flow FULL FACE COVERAGE. Can be supplied with any style of Setting Frame. Fits all Stack Heads of Standard Size Dimensions.

Style 256LF—Flex-bar Air Conditioning Register. Vertical Front Bars set 22 deg Right and Left. Side Flow Deflection attained by setting of Grille Bars with bending wrench to accommodate room condition. Back-valves give same Up and Down control of air flow as 249LF above. FULL FACE COVERAGE. Can be supplied with any style of Setting Frame. Fits all Stack Heads of Standard Size Dimensions.

All of above Styles can be supplied with either Lever or Individually adjusted Multiple Valves or Louvers. I. E. 153VVI—Vertical Valves Individually adjusted. 145VVL—Lever operated Vertical Valves.

Grilles and Vents in Matching designs are available.

For Complete Information Write for Latest Catalogs with Engineering Data.

Style 103LF—Horizontal Lattice Perforated Register for Forced Air Systems. Not directional flow.

In Canada, United States registers, vents and grilles are manufactured and distributed by the CANADA REGISTER & GRILLE CO., Ltd., Toronto, Ontario

Tuttle & Bailey, Inc.

New Britain, Connecticut

Branch Offices: CHICAGO, PHILADELPHIA, HOUSTON

PRODUCTS: Ceiling Diffusers—Grilles—Registers— Intakes—Air Control Devices—Ornamental Grilles, Cast or Wrought Metals—Copper Convector Heaters

Type S1

Type E2

Type R1

AEROFUSE@outleT

FOR HEATING

VENTILATING AND

AIR CONDITIONING

TYPE S

Flush-type diffuser for installation on ceiling. Perfect combination of real beauty and functional superiority. Provides (1) Maximum Air Mixture (2) Rapid Temperature Equalization (3) Perfect Air Distribution (4) Total Elimination of Drafts.

TYPE E

Type E Outlets are designed for installation on exposed ductwork and provide the same efficient performance as the S Type. The rings of Types E2 and E3 are stepped down, which greatly increases the capacity of a given size of outlet, resulting in an appreciable saving in the cost of the outlet and the ductwork.

TYPE R

Combination supply and return (or exhaust) unit. Designed particularly for use on installations where simplification of the duct layout is of primary importance since the return (exhaust) duct can be run to the same location as the supply duct.

Send for complete engineering data and descriptive catalog

Tuttle & Bailey, Inc.

New Britain, Connecticut

PLIAVANE ADJUSTIBLADE REGISTER

An inexpensive register suitable for war housing installations. The air flow may be directed sideways by the individually adjustable face vanes and up or down by the back blades which can be "set" from the face of the register itself.

AIR CONDITIONING GRILLES

Furnished in both the fixed deflection (Airline Design) and the sectionally adjustable deflection (Flexair Design) types with bars running either horizontally or vertically. The Tuttle & Bailey Air Conditioning Grille is scientifically and sturdily constructed to perform efficiently under all operating conditions.

DOUBLE DEFLECTION GRILLES

Furnished with face bars of fixed (Airline) or adjustable (Flexair) deflection types and equipped with individually adjustable back blades. Also available with horizontal face bars and vertical back blades.

McKNIGHT VOLUME CONTROL REGISTER

Provides positive control of air volume at the outlet and eliminates necessity of duct dampers and diffusers. Scientifically designed louvres are easily and accurately adjusted by means of a special key furnished with each register.

REMOTE CONTROL

Ideal for hotels, office buildings, large manufacturing plants and public buildings. Provides an economical means of individual control of air volume at each outlet.

Waterloo Register Company

Waterloo, Iowa

Seattle, Wash.

Incorporated 1902
Representatives in Principal Cities

Wire Mesh Grille especially designed for vessels, industrial plants, and Army barracks. Made of ½ in. square mesh heavy wire with rugged frame.

FH-100 Forced Air Register for residential application. Simple operation, quick shutoff. Easy to clean.

Adjustable Wood Louvre Grille to replace critical steel in Defense Plant installations. Available in three styles. Wood louvres are spaced on 1 in. centers with steel border and duct flange.

Return Grille G-2 with close mesh fixed directional fins. Fins set on 1/4 in. centers in deflection desired. Also available with vertical fins.

Supply Grille E-1 with both front and rear louvres streamlined and individually adjustable. 3/4 in. blade spacing.

Zeph-O-Cone Marine Air Diffuser diffuses high entrance velocities rapidly and quietly. Sizes for 100, 150, 200 and 300 cfm at 2000 fpm inlet velocity.

Techni-trol Air Volume Damper all louvres operate by linkage arrangement to reduce air volume without changing direction. Lever or key controls.

Techni-Louvre Air Control Device provides uniform distribution of air for entire outlet. Each vane is composed of two separate leaves independently adjustable. Dull Black finish.

Blackout Louvre is lightproof, sightproof, and weatherproof. Allows maximum passage of air while preventing escape of light rays. A convenient inside handle provides easy adjustment. It is made of steel, bonderized, and painted dull black. Available for vessels and industrial application.

Marine Supply Register with multi-louvre damper and ring loop for pole operation. Extra screwholes provided for stronger attachment needed on vessels. Friction points made of non-ferrous materials.

All products made of steel receive Parker "Bonderizing" process prior to painting.

Engineering Data for horizontal diffusion of cool air is available for selection of proper velocities, number and size of outlets.

The American Rolling Mill Company

Executive Offices, Middletown, Ohio

Atlanta, Ga.
1437 Citizens & Southern Natl. Bank Bldg.
BERKELEY, CALIF Seventh and Parker Sts.
Boston, Mass
Buffalo, N. Y504 Seventeen Court St. Bldg.
CHATTANOOGA, TENN., 712 Chattanooga Bank Bldg.
CHICAGO, ILL310 S. Michigan Bldg.
CINCINNATI, OHIO24 Cooper Bldg., Hyde Park
CLEVELAND, OHIO
COLUMBUS, OHIO
Dallas, Texas
DAYTON, OHIO
DES MOINES, IOWARoom 703 Old Colony Bldg.
DETROIT, MICH 5-261 General Motors Bldg.

HOUSTON, TEXAS,P. O. Box 2303
INDIANAPOLIS, IND 1106 Fletcher Trust Bldg.
KANSAS CITY, Mo7100 Roberts St.
Los Angeles, Calif329 Petroleum Bldg.
MILWAUKEE, WIS.,
627 First Wisconsin National Bank Bldg.
MINNEAPOLIS, MINN171-27th Ave., S. E.
NEW YORK, N. Y. 120 Broadway
PHILADELPHIA, PA1808 Lincoln-Liberty Bldg.
PITTSBURGH, PA
St. Louis, Mo
Washington, D C,
311 Defense Bldg , 1026-17th St., N. W.

D O D-- 0202

Choose the Correct ARMCO Grade

These grades of Armco sheet metal are recommended for the air conditioning applications shown. For detailed information get in touch with the nearest district office or write direct to The American Rolling Mill Company, Middletown, Ohio.

ARMCO Ingot Iron (Galvanized)

Ducts
Washer Chambers
Plenum Chambers
Steam Line Casings
Furnace Casings
Spray Towers
Drip Pans
Housings
Machine Guards
Unit Conditioners
Roof Ventilators
Eliminator Blades

ARMCO PAINTGRIP

(Galvanized)

A special mill-bonderized galvanized sheet that can be painted without pretreatment. Preserves life and beauty of paint.

Hot Rolled (Sheets and Strip)

Fan Blades
Blower Casings
Fuel Oil Tanks
Unit Conditioners
Stoker Hoppers

ARMCO ZINCGRIP

A special zinc-coated sheet that can be severely formed without peeling or flaking of the tightly adherent zinc coating.

Cold Rolled

(Sheets and Strip)
Furnace Casings
Room Unit Casings

Plates

(ARMCO Ingot Iron)
Smoke Stacks
Coal Hoppers
Breeching
Unfired Pressure Vessels
Low-fired Boilers
Tanks

ARMCO High Tensile

A low alloy, high tensile steel possessing great strength. Used with proper design it results in weight reduction of framework, tanks and similar items. Under atmospheric service conditions it has four to six times the endurance of regular steel.

Stainless Steel

(Sheets, Strip and Plate)
Combustion Chambers
Heat Flues and Tubes
Humidifier Pans
Pre-heaters
Furnace Parts and Supports
Fan and Blower Blades

Special grades have excellent resistance to destructive heat-scaling up to 2000 F.

Other ARMCO Products

The grades for these applications are only a few that Armco makes. Others include copper-bearing sheets and plates and open-hearth steel, either galvanized or uncoated.

BETHLEHEM STEEL COMPANY

GENERAL OFFICES: BETHLEHEM, PA.

DISTRICT OFFICES. AKRON, ALBANY, ATLANTA, BALTIMORE, BOSTON, BUFFALO, CHATTANOOGA, CHICAGO, CINCINNATI, CLEVELAND, COLUMBUS, DALLAS, DETROIT, HONOLIU, HOUSTON, INDIANAPOLIS, JOHNSTOWN, PA., KANSAS CITY, MO, LOS ANGELES, MILWAUKEE, NEW HAVEN, NEW ORLEANS, NEW YORK, PHILADELPHIA, PITTSBURCH, PORTLAND, ORE, ST LOUIS, ST. PAUL, SALT LAKE CITY, SAN ANTONIO, SAN FRANCISCO, SAVANNAH, SEATTLE, SPRINGFIELD, MASS, SYRACUSE, TOLEDO, TULSA, WASHINGTON, WILKES-BARRE, YORK. EXPORT DISTRIBUTORS' BETHLEHEM STEEL EXPORT CORPORATION, NEW YORK

BETHLEHEM PRODUCTS FOR HEATING, VENTILATING AND AIR CONDITIONING

For the thousands of new men who are now moving into the sheet metal business to handle direct or indirect war jobs, we are listing the products which Bethlehem manufactures for heating, ventilating and air-conditioning. These products are, of course, subject to government priorities in all cases

Steel Sheets—Bethlehem manufactures a line of sheet steel to handle all types of heating, ventilating and air-conditioning jobs. Sheets are produced in the general classifications of hot-rolled (black), cold-rolled, and galvanized. Hot-rolled sheets are made in thicknesses from No 18 gage to No. 2 gage, in widths varying with the thicknesses. Cold-rolled sheets are made in widths over 12 in. and in gages No. 11 to 30 inclusive. Galvanized sheets are made in gages 8 to 31 inclusive in widths of 24, 30, 36, 42 and 48 inches.

Bethlehem also produces galvanized steel roofing, siding and accessories. The designs include $2\frac{1}{2}$ -inch and $1\frac{1}{4}$ -inch corrugated; 2-, 3- and 5-V crimp; Stormproof and Weatherproof patented designs; roll roofing and "plain brick" or "rock-faced stone siding." Accessories include valleys; corrugated end-wall and side-wall flashing; Stormproof starter, finisher and flashing; and ridge roll to fit all types of Bethlehem galvanized steel roofing sheets

Steel from this giant mill will eventually become Bethlehem sheets.

Steel Pipe—Bethlehem now produces the new continuous-weld pipe, known as Beth-Co-Weld, in sizes from ½-inch diameter to 3-inch inclusive and in uniform 21-foot lengths, plus or minus one inch This pipe is uniform in size, length, and physical characteristics. It will do a consistently good job wherever used.

Ammonoduct, a steel pipe which can be bent cold without annealing or danger of fracture, has long been a Bethlehem specialty. In peacetime it was used extensively for ammonia piping, heater coils, water legs in furnaces and similar uses where pipe must be bent. Will be available in quantity after the war emergency is over.

Boiler tubes, both lap-weld steel and charcoal iron are made by Bethlehem These tubes are one of our oldest and most dependable products

If you have a contract for heating, ventilating or air-conditioning, use dependable Bethlehem materials.

Here's how the rolls of our continuous mill form Beth-Co-Weld Pipe

Jones & Laughlin Steel Corporation

Jones & Laughlin Building, Pittsburgh, Pa.

WELDED and SEAMLESS STEEL TUBULAR PRODUCTS

J & L Welded Pipe

Jones & Laughlin manufactures Standard Weight, Extra Strong, and Double Extra Strong Welded Pipe, Black and Galvanized, for steam,

gas, air, water, refrigeration and sprinkler work. Sizes: 1/8 in. to 16 in.

O.D inclusive.

I & L Copper-bearing Steel Pipe, when specified, can be supplied in standard weight, or extra strong, black or galvanized. Use of this product is recommended for long life, where piping is to be exposed to the atmosphere or other

alternate wet and dry conditions.

Jones & Laughlin Steel Pipe is made of soft, weldable steel rolled from solid ingots made to a special analysis. The steel pipe produced is soft and ductile, free cutting, strong at the welds, and free from excess scale J & L Pipe is commercially straight and free from blisters, cracks or other

injurious defects.

Careful attention is given the threading of the pipe with good clean-cut threads fitted with sound couplings correctly tapped to give a tight joint. Soft, ductile steel of free cutting quality enables the contractor to cut clean, sound threads on the job.

The Jones & Laughlin process of galvanizing assures a thorough coating and nsures against pipe being clogged with spelter. The galvanized coating adheres strongly and does not tend to flake off.

J & L Seamless Pipe

J & L Seamless Pipe is made in three weights; standard, extra strong and double extra strong. Sizes: ½ in. nominal

to 14 in O.D. inclusive.

J & L Seamless Steel Pipe is pierced from a solid billet—there are no welds. The result is dependable and uniform wall The method of manufacture, strength. and the use of only specially selected steel, assure exceptional ductility, a quality that is essential to successful coiling and bending, and flanging for Van Stone joints.

J & L Seamless Pipe can be used with full satisfaction in either threaded joint or completely welded installations.

Ductility, strength and safetymake this product especially adaptable for air, steam, gas and gasoline lines, boilers, refineries, dry kilns, refrigerating systems and other exacting applications.

J & L Hot Rolled Seamless Steel Boiler Tubes

I & L Seamless Boiler Tubes are manufactured in accordance with the A.S.M.E. Boiler Code and comply with the A.S.T.M. Specifications and the rules and regulations of the Bureau of Marine Inspection and Navigation of the U. S. Department of Commerce. They are supplied in a full range of standard sizes, from 1 in. O.D. to 6 in. O.D. inclusive.

The process by which Jones & Laughlin manufactures seamless boiler tubes is largely responsible for the unusually high ductility of the product. It is a process in which a forging action is predominant, and produces a desirable combination of strength with a highly ductile nature. J & L tubes therefore are installed with

ease and safety.

Other J & L Tubular Products

J & L also manufactures Reamed and Drifted Pipe in sizes 1 in. to 6 in. inclusive, Dry Kiln Pipe, Pipe for Refrigeration Service, Water Well and Irrigation Casing, Line Pipe and a complete line of Oil Country Tubular Products in welded and seamless.

Handbook on Standard Pipe

Available without charge or obligation, to heating and piping contractors and heating and ventilating engineers, is the J & L tubular products handbook SP5. In addition to containing catalog information of J & L Standard Pipe this book includes helpful engineering design data for contractors and engineers. Write on your letterhead for a copy of this convenient handbook.

United States Steel Corporation Subsidiaries

Carnegie-Illinois Steel Corporation, Pittsburgh and Chicago Columbia Steel Company, San Francisco Tennessee Coal, Iron & Railroad Company, Birmingham United States Steel Export Company, New York

District Offices in all Principal Cities

U·S·S COPPER STEEL

For Superior Rust Resistance at Low Cost

Corrosion resistance and cost are two determining factors of the type of metal to be used for various air conditioning jobs.

Copper Steel has 2 to 3 times the atmospheric corrosion resistance of plain steel or pure iron as shown in the results of unbiased tests made at Pittsburgh, Ft. Sheridan and Annapolis by the American Society for Testing Metals

Society for Testing Metals.

The cost of U.S.S Copper Steel is less than that of pure iron or copper-bearing pure iron and only slightly more than plain steel. Thus there often is a dividend of 200 per cent to 300 per cent longer life and a saving in the first cost as well

a saving in the first cost as well.

When galvanized, U.S.S Copper Steel produces a sheet that is rust resistant all the way through—not just on the surface. It should be used for all ducts carrying humidified air or placed in damp locations such as basements, shower rooms, etc.

U·S·S PAINTBOND

U·S·S Paintbond should be used whenever galvanized steel is to be painted. This special Bonderized sheet can be painted immediately, offers a much better surface for painting, lessens danger of the paint flaking and retards corrosion. It is used for ductwork, furnace housings and outdoor metal work.

Send for our Paintbond booklet.

U·S·S DUL-KOTE

U·S·S Dul-Kote is a specially treated non-spangled galvanized sheet which also can be painted immediately without ageing or otherwise preparing the surface. It is available in the South and in the West. Send for our Dul-Kote booklet.

Corrosion test of A S.T.M. on 22 gage black sheets exposed at Annapolis, Md, October, 1916. The copper steel sheets outlasted all others in the test.

OTHER U·S·S PRODUCTS INCLUDE:

Black Sheets—All grades, hot rolled, cold rolled in a number of different finishes.

Stainless—Heat resisting steel for various uses where temperatures are high and corrosion severe.

Cor-Ten—High Tensile steel—greater strength, greater atmospheric corrosion resistance for smokestacks, hoods, etc.

For more information on U·S·S Galvanized, Copper, Black and Stainless Sheets, send for our Guide for Sheet Metal Workers.

CONTROLS AND INSTRUMENTS

Automatic controls form an essential part of modern heating, ventilating and air conditioning equipment, and for the refrigerating equipment which performs important functions in many air conditioning operations. Their use makes possible accurate maintenance of desired physical conditions, with an operating efficiency and economy which are not obtainable with manually operated controls.

Instruments of many types and for many uses are available for determining the capacity and operating efficiency of apparatus. These instruments are designed to obtain results in conformity with adopted test methods and operating standards.

CONTROLS (p. 996-1018)

Thermostats—room, immersion, insertion and surface types; humidity controls, pressure controllers, damper motors, control valves, solenoid valves, relays, etc.

For control of air, gases, temperatures, humidity and liquids; for automatic fuel burning apparatus; for all types of heating, ventilating and air conditioning apparatus operating as separate units, or as integral parts of central systems.

The various types of automatic controls include electric, pnuematic, and self-contained control systems—two-position, or on-and-off, and the modulating or graduated control. They are adaptable for individual room control, or for zone control in large buildings, and also for industrial process control.

Technical data on automatic controls will be found in Chapter 34.

INSTRUMENTS (p. 996-1018)

For measuring, indicating and recording air velocity, temperature, humidity, pressure, flow and liquid levels; and for testing and rating heating, ventilating and air conditioning equipment.

They include gauges, meters, recorders and indicators, hygrometers, pyrometers, psychrometers, thermometers, velometers.

Technical data on instruments is contained in Chapter 35.

Manufacturer's products shown in this division are designed for specific applications. Consult the Index to Modern Equipment for additional products of these manufacturers.

Alco Valve Company

ENGINEERED REFRIGERANT CONTROLS

2638 Big Bend Blvd., St. Louis, Mo.

New York Office 381 Fourth Ave

A complete line of Engineered Refrigerant Controls

THERMO **EXPANSION** VALVES

For automatic control of liquid refrigerant on all types of air conditioning and refrigeration systems.

Type TK

Type TJL

Type THL

CAPACITIES—From fractional tonnage to 100 tons Methyl Chloride, 50 tons Freon-12.

MAGNETIC STOP VALVES

For all types of service

Magnetic Liquid Stop Valves

Freon—up to 75 tons, Methyl Chloride—up to 150 tons.

Freon—up to 11/2" or 8.8 tons Methyl Chloride—up to 11/2" or 17 tons

Type S1

Type M3

Type R2

AMMONIA CONTROLS

Magnetic Liquid Stop Valves up to 172 tons.

Magnetic Suction Stop Valvesup to $1\frac{1}{2}$ " or 28 tons.

Thermo Expansion Valves from fractional tonnage to 60 tons.

EVAPORATOR PRESSURE REGULATORS

For Freon, Methyl Chloride and Ammonia, with port sizes up to 2 in., and a wide variety of connection sizes.

Туре М5

Type TGS

ALCO also offers Magnetic Stop Valves for brine, water, gas, air and steam; specially designed Magnetic Compressor Discharge Valves and Magnetic Pilot Check Suction Stop Valves (for lines subject to reverse Flow).

In addition, the Alco line of Engineered Refrigerant Controls includes Float Valves, Float Switches, High Pressure Float Valves, Constant Pressure Expansion Valves and liquid and suction line Filters.

AUTOMATIC PRODUCTS COMPANY

2450

NORTH

THIRTY - SECOND

STREET

MILIIIAUKCC

wisconsin

A-P DEPENDABLE CONTROLS

For Heating, Refrigeration and Air Conditioning

• A-P Thermostatic Expansion Valves. Several models and sizes, for capacities up to 16 tons Freon or 32 tons Methyl Chloride.

A-P Solenoid •
O perated
Water Valve.
Made especially
for Deep Well
Cooling.

A-P Thermostats. For Cooling or Heating

• A-PSolenoid Refrigerant Valves. Capacities up to 50 tons Freon.

A-P Water • Regulating Valves. Capacities up to 1440 Gallonsper hour.

A-P "Trap-It."
Traps dirt, scale, moisture in refrigeration systems.

A-P Controls for Oil Burning, Gravity-Feed Heating Plants.

A-P Constant Level Oil Control Valve— With Fuel Compensator. Used on Gravity Oil Burning Appliances.

A-P Complete Furnace Control Set— Made in variety of types for Gravity-Feed Oil Burning Furnaces.

A-P Fuel Oil "Trap-It"—Traps dirt and water in fuel systems. Improves operation of all oil burning devices.

A-P Valve DEPENDABILITY

is widely recognized in Refrigeration, Air Conditioning and Heating. This reputation is born of close adherence to a rigid standard of perfection—in materials used, careful testing and inspection, simplicity of construction, and many unusual features.

Barber-Colman Company

Rockford, Illinois

Automatic Control Systems for Heating, Ventilating, Air Conditioning

Motor-operated

Proportioning Valve

Proportioning Type Control Motor

Barber-Colman Controls are all electric; precision built to insure long, continuous and dependable service; easy to install in either new or existing buildings; and ready for instant service, even after long shut-down periods.

Thermostats. All types—room, duct, immersion, air stream and remote bulb. For 2-position. floating, and proportioning control.

Hygrostats. Room and duct types.

Motor-Operated Valves. Packless, packed single-seat, pilot piston, V-ported, balanced, 3-way, and butterfly. For 2-position, floating, or proportioning control. Also Solenoid Valves for air, oil, water and gas. Motor-operated valves are powered with Barcol motors which have only one moving part and require no attention except oiling; oil submerged operators require no attention.

Control Motors. Uni-directional, or reversible fixed or adjustable speed. For 2-position, floating or proportioning operation of dampers in heating, ventilating or air conditioning applications. Oil submerged models have the motor and gear train entirely submerged in oil.

Program Switches. Automatic contact making mechanism for multi-compressor control or similar applications.

Econostat (not illustrated), a complete selfcontained thermostatic unit for automatic regulation of the heat supplied to a building in accordance with outdoor temperatures.

Write for descriptive literature.

LISTED AS STANDARD BY UNDERWRITERS LABORATORIES

(See also Page 980)

Remote Bulb Thermostat

Stall Type Control Motor

Program Switch

Heavy Duty Industrial Type Control Motor

Henry Valve Company

1001-19 North Spaulding Ave., Chicago, Ill.

Manufacturers of

PACKLESS AND PACKED VALVES • DRYERS FOR REFRIGERATION AND AIR CONDITIONING • STRAINERS • AMMONIA VALVES • FORGED STEEL VALVES AND FITTINGS FOR OIL, STEAM AND OTHER FLUIDS.

Balanced-Action Diaphragm Packless Valves

VALUE OF BALANCED-ACTION

Regardless of operating conditions or the differential in the pressure above and below the valve seat, balanced-action assures positive and instantaneous opening. The balancing action is really the equalizing of the pressures on the two sides of the valve seat at the instant of opening. accomplished by a channel in the axis of the valve stem. When the valve is closed, the upper port of this channel is sealed by the diaphragm assembly itself. At the instant of opening, the pressure above the seat forces the diaphragm assembly upward, exposing the upper port of the balancing channel. The pressure is released through the channel to the region below the seat, equalizing the pressures, thus assuring positive opening A springtensioned ball check seals the channel for diaphragm inspection.

Other Important Features are: Oval hand-wheel, ports-in-line, non-rotating bearing plate to protect diaphragm from rotating friction of stem, and use of multiple puncture and fracture-proof diaphragms designed to resist wear and corrosion. Available in a complete range of sizes with flare and solder connections.

WING CAP VALVES

Designed especially for Freon and Methyl Chloride. Have patented rotating self-aligning stem disc. Special resilient packing. May be repacked under pressure. Wing cap can be inverted and socket used for operating valve.

Made of non-ferrous alloy to meet government specifications. Solder connections machined directly in valve body.

ABSO-DRY PRESSURE SEALED DRYERS
For Refrigeration and Air Conditioning
The exclusive Henry vacuum process first
removes every trace of moisture, then the

dryer is charged with dehydrated air. Loosening a seal cap prior to installation produces hissing sound, a guarantee of original factory dryness and freedom from leaks

OTHER FEATURES OF HENRY DRYERS—Perforated Dispersion tube is connected to inlet port and exposes entire volume of dehydrant to penetration by refrigerant. Minimum pressure drop No channelling Compression Spring maintains uniform tension on dehydrant at all times and compensates for changes in volume. Soldered or Flanged Shells—models are available with either soldered cap or flanged end shells. Flange is distortion-proof Shells not exceeding 5½ in in length are drawn in dies, so that they have only one joint.

TWO DEHYDRANTS—Choice of the two most popular dehydrants at same price: Activated Alumina or Silica gel.

Type 757 Cartridge Dehydrator

A flanged shell

dehydrator with replaceable cartridge.

Type 712 Dehydrator

Soldered brass shell dehydrator with dispersion tube.

HENRY STRAINERS

There is a size and type of Henry Strainer for every installation requirement.

Type 895 "Y" Strainer

With solder fittings for use with copper pipe. Exceptional design. Welded steel construction. Negligible pressure drop. Screen can be taken

out for cleaning without removing strainer from line. Very large screen area. Light weight. Baffle prevents heavy particles injuring screen.

APPROVED FOR ARMY AND NAVY USE

Detroit Lubricator Company

Detroit, Michigan, U.S. A.

NEW YORK, N Y . 40 West 40th Street

CHICAGO, ILL., 816 S Michigan Avenue

Los Angeles, Calif., 320 Crocker Street

Canadian Representative:

RAILWAY AND ENGINEERING SPECIALTIES LIMITED, Montreal, Toronto, Winnipeg

Air and Vent Valves

The "DL" line of air and vent valves is one of the broadest on the market. The Ideal Fast Venting System, using the No 300 Multiport and the No. 861 Hurivent (illustrated) is particularly advantageous on one pipe steam jobs fired automatically and makes possible complete venting of the system in the shortest time, together with even heat distribution to

all radiators. The No 300 valve is limited to systems operating at less than 3 pounds pressure. The No. 5000 Airid Variport is an adjustable valve for systems which must operate at more than 3 pounds pressure. The No 841 Ideal Quick Vent is an inexpensive fast venting main vent. For hand-fired coal jobs operating on vacuum, there is the No. 510 Vac-Airid Air Valve; the No. 862 Vac-Hurivent, and the No. 842 Vac-Vent for mains. Write for Bulletin No. 197.

Radiator Valves and Balancing **Fittings**

The broad line of "DL" radiator valves. both packed and packless, covers many types and sizes. All valves are sturdily built and have clean-cut threads and accurate dimensions Hot water valves feature the patented "swinging plate" design, which eliminates restriction to flow and always turns freely.

A line of specially designed valves and balancing fittings for forced circulation hot water systems is also available. With "DL" balancing elbows or straightway fittings, the heat output from each radiator may be controlled by a screw driver adjustment without the necessity of drain-

ing the system. "DL" special circulator type valves are designed to close off tight enough to prevent heating of radiators when so desired, but allow a small leakage to avoid freezing. Write for Bulletins 56 and 85.

Automatic Controls

Detroit Lubricator Company manufactures a very complete line of electrical controls, designed to open or close an electrical circuit with changes of temperature or pressure. The No 411 Thermostat (illustrated) is a low voltage model and is made in plain and Day and Night types. All No. 411 Thermostats are available with heat compensation to provide

smooth, accurate temperature No 411 control. The No. 855 Mercoid Room Thermostat (illustrated) is a line voltage type—available in heating, air conditioning and refrigeration ranges.

For industrial use the No. 250 and No. 450 line of pressure and temperature controls is available, in pressure ranges from

No 855

20 in vac. to 350 lbs, and in temperature ranges from -30°F. to 495°F.

Also available is a full line of blower controls, combination blower and limit controls, such as the CA-815 illustrated, and a special line of water-tight equipment for use in wet locations.
There is a "DL" con-

trol available for practically every application where a dependable device is required to open or close an electrical circuit with changes of pressure or temperature Write for complete information. Our Engineering Department is always ready to make recommendations on any specific problem.

No CA815

Gas Valves

No. V-570

The No. V-570 Electric Gas Valve is an electrically operated valve for control of gas lines from ½ to 1½ in. It provides partial opening upon initial operation, permitting

quiet ignition of gas Inexpensive, compact, and attractive in appearance, it employs an easily serviceable bimetal strip motor for actuating force Write for Bulletin 201.

The No. 566 Valve combines in one compact unit all of the functions of a control system for gas heating. All safety functions are mechanical and operate independent of electric current. Adjustable for full snap or any degree of throttling action Limit control closes valve with a snap action. Valve may be

manually operated in case of current failure. Applicable to all gases, natural, manufactured, or mixed. Write for Bulletin No 80.

Solenoid Valves

"DL" Solenoid Valves for control of water, air, oil, gas, or refrigerant, embody many desirable features They are free from A.C. hum and will open against high pressures Available in all standard voltages and cycles A.C. or D.C. No. 683-3 is a small size valve with 3% in. connections. No. 681 (illustrated) is a pilot operated, intermediate size valve, and the No. 686 is a large pilot operated valve with capacity up to 17 tons Freon. No. 686 valve avail-

No 681

able with flanged connections. No. 681 and 686 are furnished with manual opening feature to permit opening in case of current failure. All models may be taken apart and cleaned in the field without removing from pipe lines. Write for Bulletin No. 199.

No. 673

Expansion Valves

"DL" Thermostatic Expansion Valves are designed to keep the evaporator in a refrigerating system completely refrigerated. All power elements are "gas charged" to a definite pressure, preventing motor overload and providing quicker response and more sensitive control. Capacities from ½ ton to 30 tons Freon. The No 673 valve employs a double bellows as the actuating means, while the Durafram line is constructed with a single diaphragm power element. All needles and seats are made of Delubaloy, a very hard, corrosion resistant alloy to insure long, trouble-free service. Write for Catalog No. 200 on refrigeration equipment.

Air Filters

Detroit Air Filters are of the replacement type. They are highly efficient and have a very low initial resistance. The entire depth of filter is used in cleaning the air.

The adhesive used remains tacky at 0°, will not drip at 180° and will not vaporize at 300°, is odorless, and will not become rancid. Filters may be returned to factory for cleaning and renewing at a substantial saving Write for Bulletin 187.

Standard Filter Sizes*

STANDARD SIZES NOMINAL 20" x 25" x 1"

20" x 25" x 1" 20" x 20" x 1" 16" x 25" x 1" 16" x 20" x 1"

20" x 25" x 2" 20" x 20" x 2" 16" x 25" x 2" 16" x 20" x 2"

*Special sizes also available.

Detroit Air Filter

The Fulton Sylphon Company

Manufacturers of Sylphon Automatic Temperature Controlling Instruments and Packless Expansion Joints

Sales Representatives in Principal Cities

Knoxville, Tenn.

HOT WATER SUPPLY

No. 923 Temperature Regulator-For controlling water temperature in heaters, open or

No 923 Temperature Regulator

closed tanks and other equipment. Operation unaffected by temperature fluctuations at the valve, either above or below bulb temperature. All parts, except steel adjustment spring, made of non-ferrous metals. May be installed in any position. Ranges from 40 -80 F to 290 -330 F. Bulletin HVG-20.

Sylphon Thermostatic Water Mixers Utilize hot water from any storage tank or instantaneous heater, and effectively

No. 902 Sylphon Thermostatic Water Mixer-14 to 131 gpm depending on water pressure

regulate the amount of cold water required to temper it to the desired degree, actually mixing the hot and cold water together before delivery.

Temperature remains constant in spite

of fluctuations in supply water temperatures or pressures.

Four sizes with capacities ranging from 5 to 131 gpm. Bulletin HVG-40.

REFRIGERATION CONTROLS

Adaptable wherever brine is used as the refrigerant. Latest development is a "freeze-proof" valve (illustrated at left on the No. 945-Z popular Sylphon No. 945-Z Reg-

ulator). Bulletin HVG-20. Regulator PACKLESS

EXPANSION JOINTS The Sylphon Packless Expansion Joint eliminates useless building height, expensive construction and non-revenue producing space. No costly leaks and repairs, no repacking, always tight, allows heating system to operate at full efficiency. Write for Bulletin HVG-140.

Sylphon rpansion Joint

SPACE HEATING CONTROL

No. 885 Automatic Radiator Valve—For exposed radiation. Small, neat, finely finished, adjust-

able to room temperature desired. Simply replace ordinary radiator valves with these Sylphon Automatic Regulators—no wiring, piping or auxiliary equipment are required. These valves answer the demand for an inexpensive means of providing accurate, dependable space temperature control in

Sylphon No 885 Automatic Radiator Valve

rooms, sections or throughout large buildings, new or old. Similar type valves for concealed radiation - get Bulletin HVG-80.

No. 890 Electric Radiator Control Valve—For either exposed or concealed radiation. Similar in appearance and radiation. action to Sylphon Automatic Valves, but operated by an electric wall thermostat. The closing of the thermostat circuit ener-

gizes a low voltage electric heater coil surrounding a bulb containing a volatile This liquid expanliquid. sion causes pressure on a bellows in the valve head operating the valve. This provides radiator valve con-

Sylphon No Control Valve

trol from a remote location, permits regulation of several radiators from a single thermostat, enables a time switch to be installed, if desired, offers effective zone control of large areas at a fraction of the cost of conventional motor-operated valve systems. Bulletin HVG-70.

No. 7 Temperature Control—A selfcontained, self-powered regulator for controlling unit heaters, wall or ceiling type

Sylphon No 7 Temperature Control (Self-operating)

radiators, heating coils in duct-type heating systems, etc. Quickly installed, holds temperatures within close limits. Valve placed in steam line to one or a battery of heaters,

thermostat mounted on wall or column. For use on regular heating pressures up to 15 lb. Similar regulators, Nos. 7-2 and 7-3 for 50 and 75 lb pressure and temperatures up to 170 F. Bulletin HVG-50.

HEATING AND AIR CONDITIONING CONTROL

Almost any type of heating, ventilating or air conditioning system can be advantageously controlled wholly or in part by Sylphon Regulators. Basic advantages of Sylphon Controls are:

Modulating-Maintains ideal conditions -not continually correcting too hot, too cold, too humid or too dry conditions.

Compensating-Many Sylphon Regulators offer compensating control, automatically raising their low limit setting at

a predetermined rate as outside temperatures fall.

Sensitive—Close operating temperature differentials. Quick response.

Simble—in design.

Rugged Construction—To give years of satisfactory service.

Adaptable—Any one of many combina-tions of Sylphon Instruments can be arranged to control any air conditioning system and to provide exactly the conditions desired. Write for Bulletin SAC—820.

Regulator 928-C

The No. 928-C Regulator—Simple, compact yet highly sensitive. Suitable for modulating control of air temperatures in ducts. Bulb is constructed of numerous coils of copper tubing giving sensitivity to the slightest temperature variation. Packless valve eliminates service problem and makes this regulator ideal for installation in inaccessible locations. Suitable for steam pressures up to 15 lb; other types available for pressures up to 75 lb.

The No. 928-ECC Sylphon Instrument—Room control and low-limit control in a single valve regulator for modulating control of ventilating systems. Main control from an electric room thermostat operating through the electric head "E" on the valve. Low-limit control by Bulb "A" located in discharge duct from the heater. Bulb "D", located in inlet side of the duct to the limit control to the limit and the

"A". Compensating thermostat can be furnished to raise low-limit setting at predetermined rate with falling outside temperature. Suitable for steam pressures up to 15 lb.

Sylphon No. 971 Differential Regulator—For controlling room temperature on the cooling cycle, where chilled water or brine is used as cooling medium and where it is desired to have a gradual increase in room temperature as outside temperature increases. regulator is modulating in action, thereby affords better control over humidity than is procured when usual onand-off type control is employed.

Regulator 971

Control 889-C

The Sylphon No. 889-C Control—A modulating, dual-function regulator for control of duct heating and ventilating systems—two independent valves in a single

Adjustable Thermostat "A" governing Valve "E" functions to maintain room temperature from temperature of recirculated air. Adjustable Thermostat

acts as a low-limit ductstat controlling Valve "F" to maintain minimum discharge air temperature. Bulb "D" compensates Bulb "B" to maintain even discharge air temperature international "D" compensates Bulb "B" to maintain even discharge air temperature irrespective of demand. Compensated Thermostat "B" can also be furnished to raise its setting at a predetermined rate with falling fresh air temperatures, if desired. Suitable for steam pressures up to 15 lb.

Sylphon No. 371 Positive Type Damper Motor—On-and-off control of dampers. Operation controlled by room thermostat, by handoperated switch, by motor starting switch, etc. Advantages include: (a) motor returns to closed or safety position in event of current failure; (b) heat-motor bulb and motor separate enhances convenience of installation; (c) damper motor lever adjustable; (d) positive, powerful operation.

Damper Motor 371

Johnson Service Company

AUTOMATIC TEMPERATURE AND AIR CONDITIONING CONTROL

General Offices and Factory

Milwaukee, Wis.

Branch Offices in all Large Cities

Johnson Temperature Regulating Co of Canada, Ltd., 113 Simcoe St , Toronto, Ont. Halifax, N S. Montreal, Que. Winnifeg, Man. Calgary, Alta. Vancouver, B. C.

PRODUCTS AND SERVICES

Manufacturers, Engineers, and Contractors—For automatic temperature and humidity control systems applied to all types of heating, cooling, ventilating, and air conditioning installations

Space Control—Automatic control of room temperatures and humidities, applied to radiators, unit ventilators, unit heaters, and heat delivery ducts. Johnson "Duo-Stats" to maintain the proper relationship between outdoor and heating system temperatures for groups of radiators, or "heating zones." A complete line of devices for automatic control of air conditioning systems, heating, cooling, humidifying, dehumidifying.

Process Control—Automatic temperature and humidity control devices for manufacturing and industrial processing, applied to tanks, dryers, vats, kettles, curing rooms, coolers, kilns, etc

Nation-wide Service—Johnson sales engineers, technicians, and trained installation men are available at all branch offices. None of the men in the nation-wide Johnson organization are agents, jobbers, or part-time representatives. All are salaried employees, devoting their entire efforts to the interests of the Johnson Service Company and its customers.

Send for Bulletins describing the detailed characteristics of any of the Johnson devices.

JOHNSON THERMOSTATS

Room Thermostats—Intermediate (gradual) or positive (snap) action, maintaining temperatures accurately within one degree above or below point of setting. "Dual" (two-temperature) and "Summer-Winter" types, as well as standard instruments. Various types of covers allow wide selection of adjusting features, guards, and method of mounting. Red-reading thermometers with magnifying tube attached to each cover.

Insertion and Immersion Thermostats—Control temperatures in ducts, tanks, and similar locations. High grade insertion or immersion thermometers for mounting adjacent to the thermostats, including the distinctive Johnson "Sunrise" insertion thermometer, with redreading mercury column in heavy lens glass tube and 9-in. scale with patented adjustable tilting feature

patented adjustable tilting feature

Extended Tube Thermostats—Mercury or vapor tension type, to sense temperatures at a point remote from the location of the operating mechanism. Various types of bulbs. Connecting tubing up to 50 ft in length for vapor tension, 75 ft for mercury actuated systems.

Special Thermostats—For applications encountered in industrial control, including the "Record-O-Stat," combination extended-tube temperature controller and recorder. Full 10-in chart and vapor tension or mercury actuated systems. Single or duplex type, the latter controlling and recording both wet and dry bulb temperatures.

Remotely Adjusted Thermostats—A distinctive Johnson feature, applied to various types of instruments where readjustment must be accomplished from a remote point, such as another thermostat or a manual switch.

Johnson Sensitivity Adjustment—An important development in automatic temperature and humidity control for air conditioning. A unique and convenient means of adjusting the sensitivity of Johnson thermostats and humidostats, on the job, balancing "time-lag" with respect to the capacity of conditioning apparatus. "Hunting" and temperature fluctuation prevented. Available on all Johnson gradual action insertion and immersion thermostats, insertion humidostats, and certain room type thermostats and humidostats.

Single Room Thermostat

Dual Room Thermostat

Room Humidostat

"Sylphon" Radiator Valve

Extended Tube Thermostat

Remotely Adjusted Duct Thermostat

Modulating Attachment for Expansion Valves

Johnson Humidostats—Automatically control the supply of moisture delivered by a humidifier or by other means, maintaining a constant percentage of relative humidity. Available in both room and insertion patterns and with various types of elements as determined by requirements, the most sensitive controlling within 1 per cent at relative humidities as high as 95 per cent at 100 F. Humidostatic elements are wood-strip, human hair, animal membrane, or other suitable substances as selected.

100 F. Humidostatic elements are wood-strip, human hair animal membrane, or other suitable substances as selected.

Johnson Humidifiers—"Steam grid" type (perforated pipe supplied with low pressure steam) or pan type with copper evaporating pan, brass heating coils, and float control.

JOHNSON VALVES

Johnson Diaphragm Valves—Simple and rugged. Seamless metal bellows and heavy spring operate the valve stem. Available, if desired, with diaphragms of special molded rubber, resistant to aging, heat deterioration and oxidation. No complicated moving parts. Made in all standard sizes and patterns. Direct acting (normally open) or reverse acting (normally closed). Also, three-way mixing and by-pass valves. For steam, water, brine, and freon.

Johnson "Streamline" Diaphragm Valves—Modulating

Johnson "Streamline" Diaphragm Valves—Modulating discs and special internal construction, insure superior gradual control... Where maximum power is required for repositioning at the slightest demand of controlling instruments, Johnson molded rubber diaphragm valves are fitted with Johnson's dependable pilot feature, for smooth gradual operation, inde-

pendent of friction and pressure variations.

JOHNSON DAMPERS AND SWITCHES

Standard Johnson Dampers—Steel blades in flat steel frames with adequate bracing to form a rigid assembly. Finished in two coats of black lacquer. Special corrosion-resisting finishes on order. Angle iron frames optional. Special Dampers—Galvanized iron, monel metal, aluminum, copper, rust-resisting steel, etc. Brass pins in steel bearings or ball bearings.

Johnson Damper Motors—In principle, similar to valves. Seamless metal or specially molded rubber diaphragm operates damper through suitable linkage. Various types of brackets. Distinctive Johnson "Piston-type" damper motors afford long travel at full power, a feature not found in other such devices. With or without pilot mechanism, as described above under "Valves."

Johnson Pneumatic Switches—Various patterns for operation of dampers and for placing thermostats and other devices in and out of service, as required, from remote points. Standard switchboards are oiled slate. Ebony asbestos, polished oak, and genuine or imitation marble on order.

Rubber Diaphragm Coil Valve

Piston Type Damper Motor

Louvered Damper

Johnson "Duo-Stat"

Illinois Testing Laboratories, Inc.

422 North LaSalle Street, Chicago, Illinois

Manufacturers of

Pyrometers, Thermometers, Temperature Controllers
Air Velocity Meters.

Velometer with averaging jet used for checking velocity from supply grille. Tube is attached to left side.

"ALNOR" VELOMETERS

This instrument measures directly and instantaneously air velocities without the use of stop watches or mathematical calculations. It will help you to locate drafts and leaks around windows and doors, or in duct systems. This instrument is manufactured in a variety of ranges for many different applications, such as for static pressure and total pressure measurement, as well as velocities within ducts or the face of a grille.

For accurate velocity readings at exhaust grilles, a new type of jet is now offered for use with the Velometer. This jet compensates for the change from static pressure to velocity pressure at or near the face of the grille.

"ALNOR" DISTANT READING ELECTRIC THERMOMETERS

This type of Thermometer is used in air conditioning installations, as well as heating and refrigeration installations. The instrument is mounted in the engine room or in the office of the building, and the temperature measuring elements are located in various remote points around the building or on the roof, and merely by slipping the switch into various positions, the temperatures at these remote points are instantly measured.

"Alnor" round type multi-point resistance thermometer with built-in switch.

"ALNOR" PYROMETERS

A wide variety of portable and wall mounting Pyrometers is available in the "Alnor" line. Temperatures of molten metals or temperatures of heat treating furnaces or any surface temperatures can be obtained swiftly, surely and simply by using "Alnor" Pyrometers.

Regardless of what your temperature measuring application may be, there is an "Alnor" instrument to take care of it for you.

Ask for an "ALNOR" Catalog
The Products of 42 Years Experience

Leeds & Northrup Company

General Office and Works: 4941 Stenton Avenue, Philadelphia, Pa.

Branch Offices:

BOSTON
BUFFALO
CHICAGO
CINCINNATI

CLEVELAND DETROIT HARTFORD

Houston Los Angeles New York Pittsburgh St. Louis San Francisco Tulsa

RUGGED, ELECTRICAL-BALANCE INSTRUMENTS

Model S Micromax Recorder

Records from 1 to 16 points on a single stripchart. Extremely open record Can operate
signals. (About 1/15th size)

Model R Micromax Recorder
Records 1 or 2 points on a round-chart
Has extremely readable dial Can operate
signals. (About 1/15th size)

Panel Inducator
Hand-operated Can be connected through selector switches to any number of points (About 1/12th size)

Electrical Thermometers for Air Conditioning

No method for measuring temperatures fits the specific needs of air conditioning as does the three-lead, null-type resistance thermometer method. It is independent of distance and disregards all temperatures except those right at points of measurement. Thermohms (electrical resistance thermometers) can be placed anywhere—in rooms, air ducts or water lines. They are connected by simple electrical wiring to instruments at a central location. Instruments may be: Micromax Recorders, Model S for up to sixteen Thermohms, Model R, for related pairs such as wet and dry bulb; indicators with switches for any number of Thermohms; or indicating and recording combinations.

Sound in principle, this equipment is reliable in operation. Instruments and Thermohms are highly responsive, yet rugged in construction. A complete system is easy and economical to install, regardless of distances. It is easy to operate and demands minimum maintenance. Thermohms and instruments are interchangeable, and can be replaced without disturbing wiring or returning anything to the factory.

L&N Resistance Thermometers make it possible to operate efficiently; to maintain comfort or correct process atmosphere constantly . . . so that maximum return is realized on the conditioning investment. Jrl Ad N-225(2)

Electrical Instruments for the Steam Plant

The facts needed to operate a modern heating plant so as to save fuel, to protect equipment, and to operate efficiently at varying loads are provided reliably by rugged L&N instruments. Readings can be indicated or recorded or both. Recorders can be equipped to operate signals or alarms that warn the operator of extreme conditions. In some cases the instruments control automatically.

Micromax Model S provides a permanent record of conditions at from 1 to 16 points on one wide-scale chart. Micromax Model R concentrates on conditions at one point, provides a permanent record, has a giant indicating dial that can be read at a glance. A Panel Indicator provides intermittent checks on conditions at one or several points.

In the heating plant, L&N measuring, signalling or controlling equipment is used for:

Metermax Combustion Control Furnace Pressure Control Smoke Density Analysis Flue Gas Analysis (Per Cent CO₂) Flue Gas Temperatures Steam and Water Temperatures Boiler-Furnace Temperatures Condenser Leakage

ASHCROFT GAUGE DIVISION

AMERICAN SCHAEFFER & BUDENBERG INSTRUMENT DIVISION

Manning, Maxwell & Moore, Inc.

Bridgeport. Conn.—BRANCHES IN PRINCIPAL CITIES

Makers of AMERICAN INDUSTRIAL INSTRUMENTS—Since 1851

Manufacturers of Indicating and Recording Gauges; Gauge Testers; "U" Gauges; Draft Gauges; Indicating and Recording Thermometers; Tachometers; Dial Thermometers; Pressure and Temperature Controllers; Electric Temperature Controllers; Pop Safety and Water Relief Valves; Steam Traps; Absolute Pressure Gauges.

Also manufacturers of Bronze, Cast Steel and Forged Steel Valves, Engine Room Clocks; Barometers; Mercury Column Gauges; Gauge Boards.

Ashcroft Gauges-Ashcroft Gauges are made in all sizes from 2½ to 12 in., for pressures from 8 oz to 25,000 lb and also

for vacuum. Cases are cast-iron or cast brass. The movements are heavy duty and all bearings are Monel Metal. Write for Catalog No. A-59.

Also Duragauges -accurate to with-

in ½ of 1 per cent. Stainless steel movement. In Phenol Cases in 41/2 in., 6 in. and $8\frac{1}{2}$ in. dial sizes

For Mercury Pressure and Vacuum Gauges, "U" Gauges, Draft Gauges and Mercurial Barometers, write for Catalog B-59.

Recording Duragauges-Recording Duragauges are made for all pressures from 15 in. of water to 10,000 lb and for vacuum. They are

made in one size only to accommodate a 10 in. chart, having an effective scale width of 35% in. The case is die cast with a dull black hardrubber finish and with either bottom or

back connection. The pen-arm is made of non-corrosive monel metal and is of the inverted type. Operating instructions are lithographed on the chart plate so that they cannot be lost. Write for Catalog E-59.

American Air Duct Thermometer-Designed especially for both warm and cold air ducts. Fitted with chromium plated frame, glass front. Furnished with 9-in. or 12-in. scale graduated 0-160 F. Write for Catalog F-59.

American Recording Thermometers-Made for recording temperatures from

minus 40 to plus 1000 F or equivalent C. Very flexible connecting tubing up to 200 ft. One size to accommodate 10 in. chart, with an effective scale width of 35% in.

Same case as for the American Recording Gauge, so that all instruments are uniform in appearance when mounted on Gauge Boards. Write for Catalog H-59.

American Dial Thermometers—American Dial Thermometer (mercury-filled) has the accuracy of the standard glass tube

thermometer and the reading convenience of a dial face. Entire working mechanism is made of steel, meaning long life.

Six sizes, ranging from $4\frac{1}{2}$ in. to 12 in. diameter dials. Furnished with rigid connection or flexible capillary tubing up to 200 ft. For temperature ranges from minus 40 to plus 1000 F. Write for Catalog G-59.

American Precision Temperature Controllers-Self-operated. For regulating temperatures from 20 to 325 F. For hot water service tanks, water heaters, etc. Size of valve must be specified. Write for R-59 Bulletin.

The Mercoid Corporation

COMPLETE LINE OF AUTOMATIC CONTROLS

Main Office and Factory 4201 BELMONT AVE., CHICAGO, ILL. Distributors and Jobbers in all Principal Cities

Branch Offices

New York, N. Y., 393-7th Avenue PHILADELPHIA, PA., 3137 N. Broad St. BOSTON, MASS., 839 Beacon St.

Mercoid Controls are equipped exclusively with Mercoid hermetically sealed mercury switches.

Switch

They are not affected by dust, dirt or corrosion and are noted for their dependable performance and long life.

MERCOID SENSATHERMS

Mercoid room thermostats known as Sensatherms operate on a total differential of 1 deg F (plus or minus ½ deg F). Type H is the standard thermostat for heating, etc. Type DNH (illustrated) is a hand wound day-night thermostat for maintaining lowered temperatures for any

period up to 12 hours. At a set time in the morning, it automatically reverts back to the day setting. Type HBH is a two-stage thermostat for control of high-low gas or oil burners. Prevents overshooting on stoker systems, etc. Type HH is a dual thermostat for heating and cooling operations.

PRESSURE AND TEMPERATURE LIMIT CONTROLS

These instruments are of proven reliability and long life. The outside double adjustment with calibrated dial is a time saving feature when making adjustments. Available for steam, hot water and warm air.

VISAFLAME The Mechanical Eve Actuated by Light

A control system for direct burner mounting. It represents a decided improvement in oil burner safety control. Operates direct from the light of the flame instead of from the heat in the stack. Used in conjunction with the K-2-I panel unit for intermittent burners and the K-2 for constant

ignition burners.

COMBINED PRESSURE AND LOW WATER CONTROL

Type DA-131Q prevents firing into dry boilers and guards against building up excess steam pressure. Has quick hook-up fittings designed in accord with the A. S. M. E. Code. Instead of a packing gland, a flexible diaphragm is used which eliminates stick-

ing or erratic operation. Has outside double adjustments. Other types of low water and boiler water feed pump controls available.

OIL BURNER SAFETY AND IGNITION CONTROL

Type JMI provides positive protection against flame or ignition failure on intermittent ignition oil burners. This control insures having ignition circuit closed before every starting operation of burner. Type JM is used for constant ignition burners.

STOKER TIMER CONTROLS

Type TV2 Stok-A-Timer combines a Mercoid Transformer-Relay and a synchronous motor timer mechanism for maintaining the stoker fire during periods when thermostat is not calling for heat Interval adjustment can be set for 1/2 hr. or 1 hr merely by moving a lever. No change of cams required.

Minneapolis-Honeywell Regulator Company

2711 Fourth Ave., So., Minneapolis, Minn. Cable Address: Minnreg, Minneapolis

Electric or Pneumatic Control Systems for Heating, Ventilating, Air Conditioning

BROWN INSTRUMENTS for Indicating, Recording, Controlling

Factories: MINNEAPOLIS, MINN, PHILADELPHIA, PA., WABASH, IND, CHICAGO, ILL.

Branch Offices or Distributors are located in all principal cities.

ALBANY, N. Y.
ALBUQUERQUE
ALLENTOWN
ATLANTA
BALTIMORE
BIRMINGHAM
BOSTON
BRIDGEPORT, CONN.
BUFFALO
BUTTE
CHARLOTTE, N. C.
CHICAGO

CINCINNATI
CLEVELAND
COLUMBUS
DALLAS
DAVENPORT, IA.
DENVER
DES MOINES
DETROIT
EL PASO, TEXAS
FAIRHAVEN, MASS.
HARTFORD
HOUSTON

Indianapolis
Jackson, Mich.
Kalamazoo
Kansas City
Los Angeles
Louisville, Ky.
Lowell, Mass
Mason City, Iowa
Memphis
Milwaukee
Minneapolis
New Orleans

NEW YORK
OKLAHOMA CITY
OMAHA
PEORIA
PHILADELPHIA
PITTSBURGH
PORTLAND, ME.
PORTLAND, ORE.
PROVIDENCE
RICHMOND, VA.
ROCHESTER, N. Y.
ST. LOUIS

SALT LAKE CITY
SAN ANTONIO
SAN FRANCISCO
SCRANTON
SEATTLE
SPRINGFIELD, MASS.
SYRACUSE
TOLEDO
TULSA
WASHINGTON, D C.
WICHITA
WORCESTER, MASS.

In Canada: Montreal, Toronto, Calgary, Vancouver, London, Winnipeg In Europe: Amsterdam, Holland; London, England; Stockholm, Sweden

Electric Duct Type Temperature Controller

AUTOMATIC CONTROLS FOR EVERY APPLICATION

Minneapolis-Honeywell manufactures a complete line of electric, pneumatic, and self-contained controls and regulators for every type of heating, ventilating, and air conditioning installation. In addition, the Brown Instrument Division of Minneapolis-Honeywell manufactures a complete line of indicators, recorders, and controllers for Industrial Process applications.

Each of the branch offices of Minneapolis-Honeywell maintains a staff of experienced engineers who are qualified to give unbiased advice on any type of control application and to install and service control equipment of any type. They are prepared to assist in the writing of specifications and to furnish control layouts and cost estimates without charge.

Minneapolis-Honeywell, with 55 years of experience in the control field, is the only company which is prepared to furnish every type of control, whether electric, pneumatic, or self-contained for any type of installation. This eliminates the necessity of purchasing controls from more than one company, which often results in split responsibility and unsatisfactory results.

THE MODUTROL SYSTEM OF ELECTRIC CONTROL

The Modutrol System designation is applied to any combination of Minneapolis-Honeywell Automatic Electric Controls or Self-contained Automatic Valves used to govern the operation of air conditioning or heating systems other than the small domestic installations. A wide variety of both modulating and two position motors, controllers and valves are available thus making the Modutrol System extremely flexible as to the selection of control equipment to produce the desired results.

"Modutrol Valve" Electric Control Valve

"Gradusiat" Pneumatic Thermostat

"Grad-U-Valve" Pneumatic Control Valve

PNEUMATIC CONTROL

The Gradutrol System designation is applied to any combination of Minneapolis-Honeywell Automatic Pneumatic Controls used to govern the operation of air conditioning or heating systems. Such features as infinite positioning with the Gradutrol Relay and accurate graduation of valve and damper motors makes the Gradutrol System a truly remarkable advance in pneumatic control of commercial air conditioning and space heating installations.

THE GRADUTROL SYSTEM OF

COMBINATION ELECTRIC AND PNEUMATIC SYSTEMS

The outstanding advantages of both the electric Modutrol System and pneumatic Gradutrol System of control may be combined in a single installation. Thus maximum flexibility and low installation cost are obtained. Minneapolis-Honeywell can offer either an electric or pneumatic system, or a combination of the two. This is your guarantee of an unprejudiced recommendation.

BROWN INSTRUMENTS

The extent to which air conditioning equipment is being used in office buildings, theatres, stores, industrial buildings, etc., has opened up a wide demand for indicating and recording resistance thermometers because the temperatures throughout these air conditioning systems should be checked periodically in order to obtain the best results at minimum operating cost. To obtain uniform conditions from modern equipment, it is necessary that the engineer in charge of operation have a visual picture of actual conditions.

Brown Resistance thermometers are available for indicating, recording, and controlling service and are applicable to all types of air conditioning and space heating installations.

Thermometers Hygrometers Pressure Gauges Vacuum Gauges Potentiometer Pyrometers

Flow Meters CO₂ Meters Tachometers Liquid Level Gauges Protectoglo System

"Grad-U-Motor" Pneumatic Damper Motor

Brown Recording Resistance Thermometer

RESPONSIBILITY FOR ENTIRE CONTROL SYSTEM

Minneapolis-Honeywell Regulator Co. is equipped to assume the entire responsibility for any control installation, thereby eliminating the difficulties and misunderstandings which division of responsibility may create.

The Palmer Company

Main Plant: 2506 Norwood Ave., Cincinnati (Norwood), Ohio Canadian Factory: King and George Sts., Toronto

Manufacturers and Originators—"Red-Reading-Mercury" Thermometers

RECORDING THERMOMETERS

Mercury Actu-12 in. dieated. cast aluminum case. Wrinkle or Satin finish. All parts are rustproof. Flexible armoured tubing and bulb of stainless-steel. Fittings: Plain, Union, Separablesocket and adjustable or union flange. All ranges up to 1000 F or

550 C. Guaranteed extremely accurate and sensitive. Every part strengthened for long and satisfactory service. Write for Bulletin No. 1300.

DIAL THERMOMETER

Mercury Actuated. 8 in. case. Black rubberized finish. Flexible armoured tubing and bulb of stainless-steel. All parts are rust-proof. Fittings: Plain, Union, Separable-socket and Adjustable or Union flange. All ranges up to 1000 F or 550 C. Guaranteed sensitive and accurate accurate and accurate and accurate ac

100 120 143

accurate and to give long and satisfactory service. Write for Bulletin No. 1500.

WALL HYGROMETER and SLING PSYCHROMETER

Wet and Dry bulb; Mercury tube, with RED column. Chart furnished. Guaranteed sensitive and accurate. Send for Bulletin No. 500.

"RED-READING-MERCURY"

Industrial Thermometers—These mercury tubes will show a bright RED color, visible at a great distance. The color is reflected and cannot fade. (Patented by Palmer). Thoroughly annealed and guaranteed permanently accurate. Costs no more. STRAIGHT, ANGLE, SIDE - ANGLE, RECLINING AND INCLINING Case, OBLIQUE STEM, etc. 7, 9 and 12 in. case, with or without glass front Standard 3½ in. stem and longer lengths. Fittings: Fixed Thread, Union, Separable-socket and Adjustable or Union Flange All ranges up to 750 F or 400 C. For ranges up to 1000 F or 550 C,

with plain mercury tube, borosilicate glass. Write for Catalog No. 200-F.

REPAIRS—To all makes of Industrial Mercury Thermometers, furnishing "Red-Reading-Mercury" tube, at no extra cost and replacing all worn or broken parts, making the thermometer as good as new. Guaranteed accurate. A trial order will convince you.

LABORATORY THERMOMETERS

Glass engraved mercury tube; show bright RED column . . . so easy to see. With or without metal armour; Round

POCKET THER-MOMETERS . . . for quick tests. Reliable and accurate. With RED column.

-20 + 120 F.0 + 220 F.

Write for Catalog No. 300-D.

Penn Electric Switch Co.

Goshen, Indiana

Offices

NEW YORK, BOSTON, WATERTOWN, MASS, PHILADELPHIA, DETROIT, DAYTON, CHICAGO, MOLINE (ILL), ST. LOUIS, ATLANTA

Export-100 Varick St , New York City

Representatives—Garland-Affolter Engrg Corp., San Francisco, Los Angeles, Seattle, Portland; Speciality Sales Co., Salt Lake City; Forslund Pump and Machinery Co., Kansas City; Vincent Brass and Copper Co., Inc., Minneapolis; D. J. Bowen, Dallas; H. M. Olmstead, Denver. IN CANADA—POWERLITE DEVICES LTD, PENN ELECTRIC SWITCH DIV., TORONTO, ONT.

Distributors and Jobbers in All Principal Cities

Automatic Controls for Heating, Refrigeration, Air Conditioning, Pumps, Air Compressors

Tem-Clock

Temtrols

Temperature and Humidity Controls

For control of temperatures and humidity in heating, cooling and air conditioning equipment.

Humidistat

Heavy Duly Thermostats

Oil Burner Stack Switches

Solenoid Gas Valves

Combustion Controls for all Fuels

For automatic fuel burning equipment, and for stack combustion control.

Damper Motors

Stober Timer Relays

Cut-offs and Feeders

Steam Pressure Controls

Boiler and Furnace Controls

For feedwater, steam pressure, liquids and warm air.

Liquid Immersion Tempera-ture Controls

Warm Air Bonnet Controls

Refrigeration Compressor Controls

Water and Refrigerant Solenoids

Many Others

For control of refrigerants, water and air; and for pumps and compressors.

Water Valves

Pump and Air Compressor Controls

Write for catalog on Penn Controls to cover your particular applications, or phone the nearest Penn office or repre-

sentative. Penn engineers always are available for consulation on control problems, without obligation, of course.

Penn control engineers have simplified design and production problems for others! Let them assist you.

THE POWERS REGULATOR CO.

Over 50 Years of Temperature and Humidity Control-Offices in 47 Cities

New York City, 231 East 46th St.—Chicago, 2719 Greenview Ave —Los Angeles, 1808 W. Eighth St. Boston, 125 St. Botolph St.—Philadelphia, 2240 N. Broad St.—Greensboro, Jefferson-Standard Bldg, Atlanta, Bona Allen Bldg — Detroit, Boulevard Bldg.—Cincinnati, American Bldg.—New Orleans, Balter Bldg.

St. Louis, 2726 Locust St.—Cleveland, 2012 West 25th St.—Kansas City, 409 East 13th St.—Seattle, 500 First Ave, St. Dallas, 602 N. Akard St.

A very complete line of compressed air operated and self-operating temperature, humidity and air flow controls for automatically regulating heating, cooling, ventilating and air conditioning systems and industrial processes.

Over 50 years of experience in furnishing and installing temperature and humidity control for every conceivable purpose in all types of buildings have given us a wealth of experience from which you can draw in selecting the proper type of control for any purpose.

Catalogs and Bulletins describing any or all of our products furnished upon request. Phone or write our nearest office. See your phone directory.

Spence Engineering Company, Inc.

28 Grant Street, Walden, N. Y.

SPENCE METAL DIAPHRAGM "DEAD END" REGULATORS Advantages of Spence Regulators

Dead-end Shutoff—Spence Regulators are guaranteed to hold a dead-end

Single Seat—Spence design makes possible a balanced single seat even in large sizes.

Metal Diaphragms—Under normal conditions never require replacement.

Accurate Regulation—Regardless of fluctuations in either load or initial pressure.

SECO Metal—Guaranteed to resist the wiredrawing action of steam.

Interchangeable Pilots—Any type of pilot will fit any size main valve.

Accessibility—Pilot is connected to main valve with unions.

No Stuffing Boxes—All main valves and most pilots are packless.

Spence Weather Compensator and Orifice Zone Control System

This simple, dependable Control, when installed on a properly designed orificed heating system, will show a substantial degree-day steam saving, at a low maintenance cost.

The delivery pressure of the Regulator is automatically adjusted in direct proportion to the building heat losses. In other words, as the losses become greater, steam pressure on the system is automatically increased.

Any number of zones can be controlled by one automatic Signatrol, automatic Wind Loss Compensator (Anemometer) Time Switch and Master Control Panel equipped with Manual and Automatic Dials for each zone. In this way each zone

can be set individually and at the same time be under the Master Control.

Pressure Regulator— Type ED

Designed to regulate a steady or varying initial pressure so as to maintain a constant, adjustable, delivery pressure. Applicable to heating systems, power plant operations, or manufacturing processes.

Combined Temperature and Pressure Regulator —Type ETD

Self-contained, pilot operated, dead-end. Designed to control flow of fluid to a heating or cooling element, so as to maintain a constant, adjustable temperature, and protect the element against excessive pressure.

Electrically Operated Valve—Type EM

Can be opened or closed independently by an electrical switch.

Type ET—Same as ETD except pressure control is omitted.

Order a SPENCE Regulator for 40 days' free trial.

Fall-O-Matic Universal Pipe Intersection Cutter.

Taylor Instrument Companies

Rochester, N. Y., U. S. A.

IN CANADA—TAYLOR INSTRUMENT COMPANIES OF CANADA, LTD, TORONTO

NEW YORK CHICAGO BOSTON PHILADELPHIA

PITTSBURĞH CLEVELAND

LOS ANGELES
GH BALTIMORE SAN FRANCISCO

ST LOUIS CINCINNATI ISCO TULSA Manufacturing Distributors in Great Britain, Short & Mason, Ltd London DETROIT ATLANTA MINNEAPOLIS WILMINGTON

Taylor Instruments for Indicating, Recording and Controlling Temperature, Pressure, Humidity, Flow and Liquid Level

readings can be made. Because of the patented Triplelens construction its broad mercury column can be read

easily and accurately with both eyes. Bore reflection is absent.

Taylor "BINOC" Pocket Test Thermometer—Ideal for frequent testing of important temperatures. Taylor patented "BINOC" Tubing eliminates juggling and guesswork. High accuracy—Easier to Read.

The New Taylor "Fulscope" Recording Controller-An air-operated controller that gives practically any character of process control regardless of time lag in apparatus.

Available for controlling temperature, pressure, humidity, rate of flow, liquid Where extreme load changes or

badly balanced operating conditions exist, precision control can be maintained by the automatic reset feature. For applications where a record is not needed, Taylor supplies an Indicating "Fulscope" Controller.

Taylor Biram's Anemometer-Ideal for measuring air velocities with the fan revolutions indicated on the Various models for a wide range of air speeds and registration limits

Taylor Recording Hygrometer-Records both wet- and drybulb temperatures on the same chart in different colored inks. making comparison very easy.

driven fan for conditioned rooms or passages where circulation is poor. Furnished without fan for installations where circulation across bulb is good.

Taylor Sling Psychrometer—The advantage of this form of Wet- and Dry-Bulb Hygrometer over the stationary form is the facility with which tests can be made and the accuracy of the readings obtainable, as the whirling bulbs are subjected to perfect circulation. Two accurate etched stem thermometers are mounted on a die-cast frame, with the bulb of one covered with a wick to be moistened.

These thermometers have scales of 20 to 120 degree F, graduated in ½-deg divisions. A copper case protects the tubes when not in use

Taylor also offers a complete line of the famous Taylor Recording and Dial Thermometers, Self-Acting and Type "P" Controllers, the 10-BG Hygrometer and many types of Humidiguides.

UNITED STATES GAUGE COMPANY

Indicating and Recording Pressure Gauges

44 BEAVER STREET . NEW YORK

FACTORY SELLERSVILLE PENNSYLVANIA
BRANCHES NEW YORK CHICAGO PHILADELPHIA
BOSTON CLEVELAND DETROIT ST LOUIS
HOUSTON SEATLE LOS ANGELES MONTREAL

U. S. GAUGES—U. S. Gauges are made in all standard sizes from 2 in. to 12 in. dial inclusive for pressures up to 50,000 lb and for vacuum. Gauges may be supplied with cast-iron, cast-brass, drawn steel, or drawn brass cases for wall mounting or flush mounting. For severe service requirements we can supply long wearing hardened steel movements or bushed movements.

For service on Steam Heating Systems the following gauges may be supplied—

Steam Gauges . . . Compound Pressure and Vacuum Gauges . . . Retard Gauges . . . Compound Retard Gauges . . . Steam Gauges with Internal Siphons

For service on Hot Water Heating Systems the following instruments and gauges may be supplied—Altitude Gauges . . . Tank-in-Basement Gauges . . . Altitude and Pressure Gauges . . . Combination Altitude Gauges, and (a) Bimetal Thermometers, (b) Glass Tube Thermometers, (c) Vapor Tension Distance Type Thermometers . . . Glass Tube Hot Water Thermometers.

U. S. RECORDING GAUGES—U. S Recording Gauges are supplied in $8\frac{1}{2}$ in., 10 in. and 12 in. sizes for pressures up to 50,000 lb and for vacuum. These Recording Gauges can be supplied with either cast-iron or cast-brass cases for wall mounting or flush mounting. Pen arms are made of non-corrosive metal. Especially designed clock movements are used. Charts can be furnished for customary time periods.

U. S. DIAL THERMOMETERS—U. S. Dial Thermometers are of the vapor tension type with open scale reading in the center and upper portion of the scale, or of the glass filled type with even scale reading. Cases may be cast-iron, cast-brass, drawn steel, or drawn brass for either wall or flush mounting. Supplied in all standard sizes from 2 in. to 12 in. dial inclusive, for temperature ranges from minus 40 deg F to 800 deg F. Furnished with rigid connection bulb or with bulb at end of flexible capillary tubing up to 100 ft long.

White-Rodgers Electric Company

1293 Cass Avenue, St.Louis, Mo.

NEW YORK CITY SAN ANTONIO CHICAGO PHILADELPHIA CLEVELAND COLUMBUS
ATLANTA LOS ANGELES SAN FRANCISCO SEATTLE

Distributors in Principal Cities

Line voltage Thermostat for Unit Heater and Air-Conditioning Installations.

Low Voltage Room Thermostat—anlicipaling type.

PUT "HYDRAULIC ACTION" TO WORK FOR YOU

The powerful, uniform expansion and contraction of a solid liquid charge against a stainless steel diaphragm, combined with the mechanical simplicity of White-Rodgers Controls contributes these important features to the field of automatic temperature control:

- 2. Easily set differential adjustor.
- 3. Fast acting thermal elements.
- 4. Combination controls with independently adjustable switches.

High capacity switch—the tremendous force available with Hydraulic Action has resulted in a sturdy switch with Underwriters' approved rating of 1½ hp 240 v AC, 1 hp 120 v AC.

Take advantage of Hydraulic Action on your next installation. Specify White-Rodgers Controls. The latest condensed control catalog is awaiting your request. Write for it today!

Explosion-Proof Thermostat for hazardous locations —remote type.

Dual Immersion Control—Limit-Circulator or Summer-Winter

Single speed fan control-cover removed showing visible dial.

Steam Pressure Control—for safety limit service.

Solenoid Gas Valve—High plunger torque and silent operation.

Diaphragm Gas Valve with puff bleed and built-in mechanical limit control.

HEATING SYSTEMS

Steam and hot water heating systems with their many parts and accessories are classified according to their specific type of design and the service required. These systems and their component parts include:

HEATING SYSTEMS (p. 1021-1092)

Combinations of parts forming steam vapor and vacuum systems and hot water systems.

Technical data on steam heating systems are contained in Chapter 14; hot water systems in Chapter 16. Other references to heating systems will be found in the Index to the Technical Data Section.

BOILERS (p. 1042-1066)

Water tube, fire tube and firebox types; cast iron and steel construction; for coal, coke, gas or oil firing.

Technical data on heating boilers are given in Chapter 12.

In connection with steam and hot water heating systems various types of radiators and convectors are required. Complete manufacturers references will be found in the Index to Modern Equipment—pages 1137-1160. Technical data is contained in Chapter 13.

BURNERS (p. 1067-1071)

Automatic fuel burning equipment suitable for use as an integral part of heating boilers and furnaces, and also for conversion of hand-fired heaters to automatic operation. Gas burners, oil burners, stokers.

Technical data are given in Chapter 10.

PUMPS (p. 1072-1075)

For use in conjunction with heating systems, and other purposes in heating, ventilating and air conditioning service; and for handling air, gases, ammonia, brine and

References to technical data on pumps will be found in the Index to the Technical

Data Section.

SPECIALTIES (p. 1076-1088)

Feed water devices, pressure and draft regulators, combustion controls, strainers, traps, valves, etc .- all essential for efficient operation of heating equipment.

References to technical data on heating specialties may be found in the Index to the Technical Data Section, each indexed under its respective title.

PIPE AND FITTINGS (p. 1089-1092)

Iron, steel, wrought iron, copper, brass-seamless or welded. Technical data will be found in Chapter 18.

Manufacturer's products shown in this division are designed for specific applications. Consult the Index to Modern Equipment for additional products of these manufacturers.

Barnes & Jones

129 Brookside Avenue

Boston, Mass.

New York Office: 101 Park Avenue

Barnes & Jones Vapor and Vacuum Systems of Steam Heating; Modulation Valves; Adjustable-Orifice Radiator Valves; Packless Quick-Opening Radiator Valves; Thermostatic Radiator Traps; Thermostatic Trap Replacement Units; Condensators (Boiler Return Traps); Float and Thermostatic Traps; Strainers; Damper Regulators; Gages; Systems of Zone Control for Steam Heating.

Complete Catalog on Request

Modulation Valves, Type K—Packless Quick Opening Valves, Type F

Types K and F Valves have nontarnishable indicating dial, non-rising stem, renewable disc seat. Tail piece extra heavy. Extra long to facilitate installation. Three models: lever

models: lever handle, wheel handle, lock shield. Type F Valve furnished with wheel handle only.

Type K Valve								
Size	1/2"	3/4"	1"	11/4"				
Cap. Sq Ft Rad.*	30	60	100	180				
	m 1	T Malma	!					

Type F Valve									
	1/2"								
Cap. Sq Ft Rad *	30	60	100	180	270	400			

^{*}Based on 2 oz pressure differential.

Adjustable Orifice Valves, Type H

May be adjusted for different capacities after installation. At all times provides indication of the adjustment. Operation is quiet. Unauthorized tampering with adjustment is virtually impossible.

Condensators

For returning water of condensation to boiler from open return line systems independently of boiler pressure, without change in operating conditions of the condensation of the condensati

operating conditions, air binding, or admitting steam to the return side.

No.	•						35	
Cap. Sq F	t Rad	•	700	1600	3500	6000	10,000	16,000

Thermostatic Radiator Traps

Sturdily made to precision standards. Sensitive in operation. Provide instant discharge of air and water, prevents passage of steam. Contains unique Cage Type Thermostatic Unit,

which carries its own thermostatic element, valve piece and valve seat, factory calibrated and locked in correct adjustment.

Trap No.	120	12	123	124	134	13	14
Inlet Tapping	1/2"	1/2"	1/2"	1/2"	3/4"	3/4"	1″
Outlet Tapping	1/2"	3/4"	1/2"	3/4"	3/4"	3/4"	1″
Cap. Sq Ft Rad * .	200	200	400	400	400	700	1200

*Based on 1½ lb pressure differential.

Thermostatic Radiator Cage Replacement Units

Offer complete and reliable trap renewal in practically every make of thermostatic trap. You simply (1) remove the old cover and unit, (2) insert the new Barnes & Jones Cage Unit, (3) replace the cover, and

place the cover, and the old trap will operate with its original efficiency.

Float and Thermostatic Traps

Handle large and sudden condensation loads. Large air and water capacity. Large float assures instant opening of the discharge valve. Cage Type Thermostatic Unit assures quick elimination of air.

011111111111111111111111111111111111111						
Trap No	41	42	43	43A	44B	45B
Inlet Tapping Outlet Tapping Cap. Lb. Water per Hour*	3/4" 3/4"	1" 1"	11/4"	11/2"	11/2"	2" 2"
	200	700	1200	1200	2400	5000

*Based on 2 lb pressure differential.

Bell and Gossett Company

Morton Grove, Illinois (Suburb of Chicago)

HOT WATER SYSTEMS AND SPECIALTIES

B & G MONOFLO HEATING SYSTEMS

B & G Monoflo Fitting

A genuine advance in controlled and economical heating is offered by the B & G Monoflo System. In conjunction with forced circulation, the B & G Monoflo Fitting makes possible a thoroughly practical, well balanced single main hot water installation. In over 100,000 installations, the B & G Monoflo System has demonstrated its desirability in homes, apartments, factories and institutional build-The equipment lends itself ideally to zoning,

EQUIPMENT REQUIRED

B & G Booster

An electricallydriven centrifugal pump, which mechanically circulates hot water through the system - distinguished by genuine oil

lubrication, patented water-tight seal and precision manufacture throughout.

B & G Indirect Water Heater

Any one of five B & G Heater types can be installed to furnish year around domestic hot water at smallest possible cost.

B & G Angle Flo-Control Valve

This valve, installed in the main, controls circulation of hot water to radiators, permitting summer operation of the Indirect Water Heater. It also helps maintain a uniform room temperature during the heating season

B & G Motor-Valves are ized ideal for control-

ling boiler water flow through the individual circuits of zoned heating systems.

B & G Universal Pump

THE B & G UNIVERSAL PUMP is designed primarily for large warm water heating systems in apartment buildings, office buildings, factories, schools, etc. The installation can be operated as one large single zone or divided into several zones by controlling the circulation of the pumped water through each circuit with a B & G Motorized Valve, operated by a zone thermostat; the pump being either operated continuously or until all valves are in the closed position.

See the B & G Handbook for Complete Engineering Data

HEAT TRANSFER EQUIPMENT

B & G Steel Tube Indirect Water Heaters

These steel tube heaters are offered as equally efficient substitutes for copper tube units now prohibited by war conditions. Available in a wide range of capacities for both tank and tankless operation.

B & G Steam Convertors

Extensively used where steam is required in the factory for power or process work but where the benefits of mechanically circulated hot water are desired for the

heating system. Steam is passed through the convertor shell, thereby heating water circulated through the tubing. The water is then pumped through the heating system.

Typical Tube Bundle as Used in B & G Heat Transfer Unit

The Bell & Gossett Company offers a complete line of heat transfer equipment for either heating or cooling liquids and gases. Illustration above shows a tube bundle with baffles directing the water flow so as to obtain maximum cooling effect.

B & G Rapid Oil Coolers

B & G Oil Coolers utilize city water to cool quenching oil and maintain the quench tank constantly at the desired degree. Furnished either as a separate unit or as part of a complete B & G Oil Cooling System, including Quench Tank, Pump, Temperature Regulator, Motorized and Relief Valves, Electrical Controls, Strainer, etc.

B & G Diesel Engine Coolers

Heated water from engine jacket is circulated through tubes of unit and is cooled by cold water circulating through the shell. Eliminates corrosion and deposits within the engine which occur unless the same cooling water is used over and over.

B & G Wash Tanks

For industrial processes where washing is necessary, B & G builds wash tanks to exactly meet the requirements. Illustration shows a three compartment tank especially designed for washing castings in a large defense plant.

B & G Quench Tanks

It is important that the quench tank be fitted to the product. B & G

services, therefore, include the designing and manufacture of quench tanks to suit your specific requirements. Tanks can be constructed to automatically lift out the quenched pieces after the proper time interval.

C. A. Dunham Company

Administrative and General Offices

450 E. Ohio Street, Chicago, Ill.

Factories: Marshalltown, Iowa; Michigan City, Ind; Toronto, Canada; London, England TORONTO, 1523 DAVENPORT ROAD. LONDON, MORDEN ROAD, S.W.19

THE DUNHAM DIFFERENTIAL HEATING SYSTEM

The Dunham Differential Heating System, circulating sub-atmospheric steam, maintains desirable temperatures throughout a building by automatic control of both steam temperature and steam volume.

The system is a simple two-pipe system in which all the essentials of circulation, distribution and control are co-ordinated. Control of the temperature of the steam is accomplished by controlling the pressure or vacuum of the steam in the supply piping and radiators to balance exactly the heat input with building-heat-loss.

THE DUNHAM "Victory Line" VAPOR AND VACUUM HEATING SPECIALTIES

DUNHAM "VICTORY" RADIATOR TRAP For Operating Pressures Up to 15 Lbs. Gage

Cast iron body and cap Thermostatic element is phosphor bronze valve and valve seat are cuprous alloys. Thermostatic elements are interchangeable in covers without gages. "Victory Line" covers and disc assem-

blies are interchangeable with standard traps.

Type No	Sıze In.	Patt. No.	Tap- ping In	Cap Sq Ft EDR	Net Wgt. Lbs	Dimensions in Inches			
	1				2.50	A	B	C	ש
VIA V2B V3A	1/2 3/4 3/4	AP AP AP	1/2 3/4 3/4	200 400 700	1½ 2½ 2½ 2½	21/4 23/4 23/4	1 ¹ / ₄ 1 ³ / ₈ 1 ³ / ₈	2° 32 25/8 25/8	27 16 31 16 31 16

DUNHAM "VICTORY" RADIATOR VALVE (SPRING PACKED)

Non-rising handle and low bonnet. The body and bonnet are cast iron, handle is non-breakable, heat resisting composition. Other construction features: Quick opening with less than one turn of handle; heat-resisting graphited asbestos ring with metal core. Held under compression by heavy coil spring to maintain tight seal around valve stem; ball joint insures perfect seating when valve is closed on rounded valve seat; high quality renewable composition disc.

Made in 3/4 and 1-in. sizes angle pattern only with tapped right-hand female inlet, left-hand female outlet

Type No.	Sıze Inches	Dimer	Net Weight		
	inches	A	В	С	ın Lbs
V740 V740	1 3/4	15/ ₈ 17/ ₈	11/4 17/6	3% 317,52	1 ³ / ₄ 2 ³ / ₈

Type C

DUNHAM UNIT HEATERS

Type C-A specially designed unit heater for industrial and commercial applications Designed for discharging large volumes of heated air downward to working levels, distributing heat evenly over large Built in various sizes up to 2000 sq ft EDR. Four types of diffusers.

Type V

Type R—Blower type unit for instrial and commercial applications.

Available in standard sizes, each with various combinations of Btu and cfm output. Floor, wall and suspended types, with and without by-pass or mixing dampers. All sizes and types either direct connected or belt drive.

Type V—Horizontal propeller fan type. Built in various sizes up to 1200 sq ft EDR.

Tested and Rated with ASH.V.E. Code and Code of Vacuum Return Line Heating Pump Manufacturers' Section of Hydraulic Institute.

Vacuum Pumps Type VRD—Capable of maintaining whole systems under vacuums as high as 25 in. Built in 9 sizes. Capacities 2500 to 65,000 sq ft EDR.

Type VR-Meets all code tests for air and simultaneous air and water handling capacities. No moving parts or close clearances in exhauster unit. Built in 11 sizes. Capacities 2500 to 150,000 sq ft EDR.

Pump and motor assembled on rigid cast iron base. Bronze fitted centrifugal pump has non-corrosive shaft. Liberal size ball bearings. Enclosed type Impeller.

Type CH-Model B, Single and Duplex-66 sizes of varying capacities and discharge pressures. Capacities 2000 to 50,000 sq ft EDR; 60 cycle d c or a.c. 1750 rpm, 25 or 50 cycle a c., 1450 rpm.

Type CHH-Model B, Single and Duplex-49 sizes of varying capacities and discharge pressures. Capacities 2000 to 50,000 sq ft EDR; 60 cycle d.c. or a.c. 3450 rpm; 25 or 50 cycle a.c., 2850 rpm.

Type VRD

Type DV

Type CH, Model B, Single Type CH, Model B, Duplex Type CHH, Model B Similar Construction to CH Model B Available in Both Single and Duplex

Type CH, Model A Available in Both Single and Duplex

OTHER "VICTORY" LINE SPECIALTIES

Float and Thermostatic Traps 8 sizes, 800 sq ft to 20,000 sq ft. Closed Float Traps 8 sizes, 800 sq ft to 20,000 sq ft. High Pressure Traps (Inverted Bucket) 1/2 in. and 3/4 in. sizes, up to 150 lb. Return Traps 5 sizes, 1500 sq ft to 13,000 sq ft. Pressure Reducing Valves Single seated (Type 340) 3/4 in. to 3 in. Double seated (Type 300) 11/2 in. to 10 in. Standard Flanged. Strainers 1/2 in to 2 in.

GRINNELL COMPANYING

Heating, Industrial and Power Plant Piping, Fittings, Hangers, Valves, Pipe Bending, Welding, Piping Supplies, Etc.

Executive Offices: Providence, R. I.

Offices, Plants and Branches

Albany, N. Y.
Atlanta, Ga. (Plant and Foundry)
Adbunn, R. I. (Plant and Foundry)
Baltimore, Md.
Boston, Mass.
Buffalo, N. Y.
Charlotte, N. C (Branch)
Chicago, Liu. (Branch)
Cincinnati, Ohio (Branch)
CLEVELAD, OHIO (Branch)
COLUMBIA, PENNA. (Plant)

COLUMBUS, OHIO
DALLAS, TEXAS (Branch)
DETROIT, MICH.
HOUSTON, TEXAS
KANSAS CITY, MO
LONG ISLAND CITY, N. Y. (Branch)
MEMPHIS, TENN.
MINWAUKEE, WIS.
MINNEAPOLIS, MINN. (Branch)
NEWARK, N. J.

New Orleans, La.
New York, N. Y.
PHILADELPHA, PENNA. (Branch)
PITTSBURGH, PENNA.
PROVIDENCE R. I. (Plant and Foundry)
RICHMOND, VA.
ROCHESTER, N. Y
ST. LOUIS, MO (Branch)
ST. PAUL, MINN. (Branch)
WARREN, OHIO (Plant and Foundry)

SEATTLE, WASH (Branch)

GRINNELL COMPANY OF THE PACIFIC

Los Angeles, Cal (Branch)

MONTREAL, QUE (Branch)

OAKLAND, CAL. (Branch) SAN FRANCISCO, CAL (Branch)

GRINNELL COMPANY OF CANADA, LTD.

Vancouver, B. C (Branch) Toronto, Ont (Plant and Foundry) Winnipeg, Man. Ostawa, Ont (Foundry)

PRODUCTS AND SERVICES-

Complete Service on materials to Specification on Power Plant Piping, Industrial Piping, and Industrial Heating Systems; Prefabricated Piping including Pipe Cutting and Threading, Pipe Bends, Welded Headers, Welded and Welding Fittings, Lap Joints and the Grinnell line of products for Super Power.

Grinnell Equific Valves for forced hot water heating systems; Grinnell Adjustable Pipe Hangers and Supports; Grinnell Cast Iron and Malleable Iron Pipe Fittings; Grinnell Malleable Iron Unions; Grinnell Welding Fittings; Thermoflex Traps and Heating Specialties.

Also Humidifying Systems; Piping for acids and other special materials.

Malleable Iron, Brass, Bronze and other Castings; Brass, Cast Iron, Wrought Iron and Steel Pipe; Seamless Steel Tubing in Iron Pipe Sizes.

Valves: Check, Globe, Pressure Reducing and Regulating, Quick Opening, Safety and Y.

Automatic Sprinkler Systems; Stand Pipes; Underground Supply Mains; Hydrants; Fire Pumps; Pressure and Gravity Tanks.

Grinnell Equiflo Valves For Forced Hot Water Heating

Equiflo Valve

The designing of forced circulation hot water heating systems is so simplified by the Grinnell Equiflo Valve that they can be laid out and installed as easily as vapor or steam systems. This valve consists of a regular type packless radiator valve with a cartridge or tube made up of a series of orifices and baffles capable of setting up any required frictional resistance. This method of establishing any desired resistance does away with elaborate calculation of pipe sizes. Grinnell guarantees perfectly balanced circulation to each and every radiator where these valves are installed throughout the system.

Equiflo Data Book sent to interested parties.

For Data On Thermoflex Traps and Heating Specialties, see page 1081

GRINNELL ADJUSTABLE PIPE HANGERS AND SUPPORTS

One of the chief advantages of Grinnell Adjustable Hangers is that they permit adjustment of pipe lines after installation, thus obviating the necessity of turnbuckles or the removal of hangers. Their time and trouble-saving qualities during installation are equally exceptional. Below are shown a few Grinnell Hangers and Supports of particular interest to heating engineers. Send for Hanger Catalogue showing complete line.

Adjustable Swivel Rings (Patented)

Fig No 101 Solid Ring

These Malleable Iron Adjustable Swivel Rings can be used with Coach Screw Rod or Machine

Threaded Rod in connection with practically any type of Ceiling Flange, Expansion Case, Insert, etc. Adjustment of at least 1½ in. is secured by turning Swivel Shank. Swivel Shank automatically locks, preventing loosening due to vibration in the pipe

The Split Ring permits adjustment either before or after Ring is closed. A wedge type pin is loosely but inseparably cast into the hinged section for fastening this section after pipe is in place.

Fig. No. 104 Split Ring

Adjustable Swivel Pipe Rolls (Patented)

Made of air furnace malleable iron, in one body size, to take a special removable nut, tapped for $\frac{3}{8}$ in., $\frac{1}{2}$ in., $\frac{5}{8}$ in. or $\frac{3}{4}$ in. rod as required. Nuts automatically lock by means of V-type teeth on both insert and nuts.

Fig No 282 CB-Universal Insert

GRINNELL WELDING FITTINGS

Fig. No. 174 Swivel Pipe Roll

90° Elbow, Long Turn

Grinnell Welding Fittings are made from Seamless Steel Pipe or tubing and possess the same physical characteristics as standard, extra strong and o.d. steel pipe or seamless steel pipe of comparable size. They can be used under the same conditions, pressures and temperatures as the pipe itself.

All Grinnell Welding Fittings have welding faces for all plain circumferential butt welds scarfed or beveled as follows: For wall thicknesses $\frac{3}{16}$ to $\frac{3}{4}$ inch inclusive, $\frac{37}{2}$ deg. $\frac{1}{2}$ deg, straight bevel. Angles of bevel other than $\frac{37}{2}$ deg. can be furnished on special order.

Welding Outlet

Welding Tee

Lap-Joint Stub End with Lap Flange attached

Threaded Outlet

Hoffman Specialty Co., Inc.

General Office and Factory

1001 York Street, Indianapolis, Ind.

Sales Representatives in Principal Cities

Manufacturers of Adjustable Port Radiator Venting Valves, Quick Vents and Air Eliminators for One and Two Pipe Steam and Vacuum Systems; Hoffman Supply Valves, Traps and Basement Specialties for Controlled Heat Systems, Air Conditioner Hoffman-Economy Vacuum and Condensation Pumps, and Hot Water Controlled Heat Equipment.

AIR VALVES

The Nos. 1A and 40 are used for venting radiators on One and Two Pipe oil or gas automatic fired Steam Systems, and the Nos 4, 4A, 75 and 75A are used in conjunction with these valves for venting steam mains, risers and other quick venting service.

VACUUM VALVES

The Nos. 2, 2A Vacuum Air Valves feature the Hoffman Double Air Lock consisting of the vacuum check and vacuum diaphragm. These valves are for use on coal burning hand or stoker fired One Pipe Vacuum Systems; and for venting ends of steam mains or heating risers, where it is also desired to prevent the return of air into the system, the Nos. 16A, 76 and 76A vents are used

Hoffman No. 2.1 Vacuum Valre

HOT WATER CONTROLLED HEAT EQUIPMENT

The Hoffman Temperature Controller is connected by capillary tubing to the Outdoor Temperature Bulb, and to the Water Temperature Bulb installed in the supply main. Variations in outdoor and circulating water temperatures are instantly transmitted by these two Bulbs to the Temperature Controller which electrically opens or closes the Control Valve.

Temperature

The Hoffman Control Valve. Admission of hot water from the boiler into the circulating system is con-trolled by this valve It is opened

and closed electrically when actuated by demands for more or less heat from the Hoffman Temperature Controller.

Control Valve

Available in sizes to correspond with Hoff-man Curculator.

Outdoor Temperature Bulb located on exterior of building

Water Temperature Bulb

The Hoffman Circulator is a centrifugal pump of large capacity, low power consumption and furnished in all standard sizes. It is installed in the return main and operates continuously except when outdoor temperature rises above 65 deg.

SUPPLY VALVES

Hoffman No 80 Supply Valve

The Nos. 80 and 85 Packless Radiator Valves are of unique construction and proven performance.

The Reinforced Packless Feature, formed by metal cones of unequal degrees between the upper and lower members, giving a metal to metal hairline bearing and effecting a perfect seal. This short sharp bearing is further reinforced by a spring tension, and liberal gland of high quality

Another feature is provided in the cone disc and beveled seat. This construction, as proven by test, affords protection against cracked discs.

This cone disc is reversible and its beveled seat is low in the valve body, giving perfect drainage.

Modulation in the No. 85 valve is accomplished by a cone disc nut, regulating volume of steam, according to pressure until the

valve is about two thirds open.

These valves are made with brass body union nut and tailpiece in angle and straight-

way patterns only in sizes from $\frac{1}{2}$ to $1\frac{1}{2}$ in.

The No. 90 is a single union gate valve embodying the same packless features as Nos. 80 and 85. This valve has a driving nut on the body for screwing it in to the radiator. The No. 90 is made in sizes $\frac{1}{2}$ to $1\frac{1}{4}$ in.

THERMOSTATIC TRAPS

Complying with the War Production Board's Limitation Order L-42 of April 23, 1942, the Hoffman line of low pressure thermostatic traps consists of the Nos. 17-D, 8-D and 9-D. These traps have a diaphragm type of thermostat, cast-iron bodies, left hand female inlets and right hand female outlets.

No. 17-D capacity 200 sq ft $\frac{1}{2}$ in. connections No. 8-D capacity 400 sq ft $\frac{3}{4}$ in. connections No. 9-D capacity 700 sq ft $\frac{3}{4}$ in. connections

The Nos. 8 and 9, medium pressure traps (50 pounds) have brass bodies with union nut and tailpiece. The No. 8 has a capacity of 200 sq ft and is made in $\frac{3}{2}$ in. angle pattern only, $\frac{1}{2}$ in. size in angle, R. H., L. H., and straightway pattern. The No. 9 is made in $\frac{3}{4}$ in. and 1 in sizes, angle pattern only, capacity 600 sq ft.

Hoffman No. 17-D Casi-Iron Body Trap

The Nos. 8-H and 9-H, high pressure traps (125 pounds) have brass bodies with union nut and tailpiece. The No. 8-H is made in $\frac{3}{8}$ in angle pattern only, and $\frac{1}{2}$ in. size in angle, R. H., L. H, and straightway pattern. The No. 9-H is made in $\frac{3}{4}$ in. and 1 in. sizes angle pattern only.

No. 50 Series Trap

DRIP AND HEAVY DUTY TRAPS

Where large amounts of condensation are encountered, it is recommended to use one of the float and thermostatic traps, which are available with or without the thermostatic element. These traps are available in large capacities and are mainly used for venting and dripping risers, steam mains, unit heaters, blast coils, etc. These traps are made in four different pressure ranges 15 lb, 30 lb, 60 lb, and 125 lb.

VACUUM AND CONDENSATION PUMPS

The Hoffman-Economy line of Vacuum and Condensation Pumps offers a dependable method of economically returning the condensation from larger heating systems to the boiler. These pumps are made in single and duplex units, for varying capacities and pressures.

HOFFMAN SALES AND SERVICE

Hoffman Products are sold and stocked by leading wholesalers of heating and plumbing supplies everywhere. Hoffman representatives are available to assist in selection of suitable equipment for various services.

William S. Haines & Company

12th and Buttonwood Sts., Philadelphia, Pa.

Manufacturers of

EQUIPMENT FOR VAPOR AND VACUUM HEATING SYSTEMS

PRODUCTS—Haines Vento Radiator Traps, Medium Pressure and Blast Type Traps, Combined Float and Thermostatic Traps, Air Eliminators, High Pressure Thermostatic Traps, Boiler Return Traps, Radiator Valves.

HAINES F & T TRAPS

Designed to handle large quantities of condensation. For driping steam mains, unit heaters, hot water generators. etc. Cannot become air bound as it has a thermostatically controlled air by pass. Sizes 34 in., 1 in., 11/4 in., 11/2 in.

HAINES MEDIUM PRESSURE TRAPS

A ruggedly constructed bolted case trap. Ideal for hospital and kitchen equipment and all process work

operating on pressure up to 60 pounds.

HAINES MODULATING VALVES

A packless valve assuring positive and leak proof performance. Completely opens or closes on less than a full turn of handle. Can be furnished with wheel or lever handle or lockshield.

HAINES RADIATOR TRAPS

The thermostatic element in all Haines Traps is a Bourdon tube, charged with a volatile fluid and hermetically sealed The expansion and contraction of the fluid, under varying temperatures, furnishes the operating power.

The vertical seat of this trap prevents it from becoming inoperative from scale or other foreign matter.

HAINES HIGH PRESSURE TRAPS

For dripping high pressure mains, laundry equipment and all process fixtures

with working pressures up to 125 pounds.

HAINES BOILER RETURN TRAPS

For vapor and atmospheric heating systems. Assures positive circulation by venting the air and returning the water of condensation to the boiler. Has no stuffing boxes or packed joints to leak air or water.

Each device is individually tested, factory adjusted and guaranteed.

H. A. Thrush & Company

Peru, Indiana

Service and Sales Offices in Principal Cities

FORCED CIRCULATING THRUSH FLOW CONTROL SYSTEM OF HOT WATER HEATING AND HEATING SPECIALTIES

Flexible, economical of fuel, Thrush Flow Control System of Hot Water Heat is the most satisfactory way to heat buildings. Thrush Systems, Water Circulators, Water Heaters, Pressure Relief and Pressure Reducing Valves and other fuel-saving heating specialties can be furnished where Government regulations permit. Write today for information or engineering assistance.

THRUSH WATER CIRCULATORS

Five sizes, 1 in., 1¼ in., 1½ in., 2 in., and 3 in., for circulating water in Heating or Domestic Water Systems. Save fuel, insure uniform heating.

THRUSH PRESSURE REDUCING VALVES Types for High and Low Pressures

Sizes ¼ in., ¾ in., ½ in., ¾ in., and 1 in. High pressure reducing valves are used for protecting house plumbing and heating equipment from excessive city line pressures. Low pressure reducing valves are used to reduce pressure of water entering heating system and maintain water supply in system automatically.

THRUSH WATER HEATERS

Highly efficient heat exchangers or converters. Sixteen sizes, for Hot Water or Steam. Pressure up to 150 lb. Straight tubes readily cleanable. Provide Domestic Hot Water at low cost. Also used industrially for heating or cooling liquids.

THRUSH HIGH PRESSURE RELIEF VALVES

Protect water supply boilers from excess pressure. Made in angle or straight types, of iron or brass, sizes ½ in., ¾ in., and 1 in., for pressure relief only or combination pressure and temperature relief.

THRUSH LOW PRESSURE RELIEF VALVES

Protect heating boilers from excess pressure. Made in angle or straight types, of iron or brass, sizes ½ in., ¾ in and lin

in., and 1 in.

Unfailing dependability has been proved by over a quarter of a century of successful operation. Approved by Underwriters' Laboratories and comply with the A.S.M.E. Code.

Number 4 Illustrated

ILLINOIS ENGINEERING COMPANY

General Offices and Factory: Chicago

Branches and Representatives In Principal Cities

Illinois Steam Trap

Valve and stem are separate from the bucket and operated only by the bucket at the extreme top and bottom of travelresult—valve is always either full open or tight closed. No

wire drawing or cutting of valve and seat.

Illinois Thermostatic Traps for High Pressures

Maximum working pressure 150 pounds. where neat appearance and compactness are desirable, as for trapping sterilizers or water stills in hospitals;

Series HG steam jacketed kettles, coffee urns, warming tables and for process work. Also used extensively for air vents on blast type drying heaters. Multi-diaphragm of phosphor bronze Heavy duty body. Made in three sizes.

These traps are also furnished for medium pressures.

Steam and Oil Separators

Vertical Standard Separators

Eclipse steam separators are made in both horizontal and vertical type, and also the special receiver separators for standard or

extra heavy pressures. Eclipse oil separators are furnished in the horizontal type and have a removable baffle plate to facilitate cleaning of baffle and keeping the separator's effi-

ciency at the highest point.

Illinois Motorized Valves (on and off)

For automatic control of steam temperatures and pressures to prevent overheating and conserve steam; to control fluid levels; and to regulate flow in hot water heating systems. May be operated by any automatic contact device or by manual switches.

Furnished in three types.

Spring Controlled Regulating Valve

Furnished in either single seated or double seated type as the service conditions require, for the control of steam, air or gas. Controlling spring is completely enclosed, protecting it from dirt and rust. Valves are furnished with the proper size diaphragm and the proper length spring to give satisfactory service under all operating conditions. Furnished also in weight loaded type, Fig. 71.

Fig. 121

Master Type Pressure Regulator

Used wherever high pressure steam must be accurately reduced in varying amount to any steady lower pressure, in service such as hospital, laundry, cooking, process, dry kilns and railway steam control. It will reduce initial pressure up to 250 pounds down to any lower pressure. Does not build up pressure on a closed or dead end line.

Fig. 142

ILLINOIS ENGINEERING COMPANY

General Offices and Factory: Chicago

Branches and Representatives In Principal Cities

Illinois Thermostatic Radiator Traps

For Vacuum and Vapor Heating Systems

Designed to conserve critical metals. the new Series GW Traps have castiron bodies, while the same efficient, dependable Illinois features of the internal construction

are retained. Female inlet and outlet connections with left hand thread at inlet. Furnished in three sizes, all angle pattern in, ½ inch for 200 sq ft, ¾ inch for 400 sq ft and ¾ inch for 750 sq ft nominal rating.

Boiler Return Trap

Vapair Vent Trap

Vapor Gauge

Damper Regulator

Illinois Selective Pressure Control Systems

An entirely new and unique method of Steam Circulation Control . . . Heating Systems that set new standards in comfort, economy, simplicity and convenience of operation. Each system is individually engineered to meet the exact requirements. Recorded fuel savings, without sacrifice of comfort, warrant your investunois Selective Controller tigation. Ask for Bulletin 16.

Illinois Radiator Valves

Quick Opening, Spring Loaded, Packless Type. Cast-iron body and bonnet conserve critical metals. The internal construction retains all of the same efficient, dependable Illinois features of the Series 40 valve.

Made in two sizes 3/4 inch and 1 inch, angle pattern only. Left hand thread at inlet.

Series 40 W

Illinois Vapor System

A two pipe low pressure steam circulating system which may be installed in any type of building, where the condensate can return to the boiler by gravity.

A sensitive damper regulator or other

means of automatic control is used to control initial steam pressure above, at or below atmospheric pressure. Steam is regulated at the radiators by Illinois Modulating Supply Valves. Condensate and air are discharged from the radiator through Illinois Thermostatic Radiator Traps. In the boiler room a Vapair Vent Trap and Boiler Return Trap are installed near the boiler. The vent trap eliminates air from the system and the Return Trap insures return of condensate to the boiler.

The system and the piping arrangement are simple. No metering orifices or vacuum pumps are needed. This system will be found suitable for many installations where low first cost and low operating cost are of prime importance. May be used with unit heaters or any type of radiation.

Illinois Combination F & T Traps

Series 7G

Unsurpassed for draining ventilating units, unit heaters, and for dripping mains and riserswherever it is desirable quickly to vent air from the main as well as handle the water of condensation in quantity, whether hot or cold.

Sarco Company, Inc.

475 Fifth Ave., New York, N. Y.

Branches in Principal Cities SARCO CANADA LIMITED, 85 RICHMOND ST, W., TORONTO, ONT.

PRODUCTS—A complete line of Specialities for Vapor, Vacuum and Gravity Steam Heating Systems and Control combined with a competent Engineering Service to architects and heating engineers to assist them in providing modern heating.

Bellows-Packless Valve

N-100 Medium Pressure Trap

Float-Thermostatic Trap

Inverted Bucket Trap

SARCO RADIATOR TRAPS

Sarco Heating Systems are "prestige Systems." The traps and valves are the system as far as maintenance and cost are concerned.

Sarco Type H Traps—Are available in angle, straightway, and corner patterns. The Sarco Thermostatic Bellows—made by special machinery, has not been duplicated or even imitated with success. It works efficiently, repeatedly and persistently. It has worked that way for a quarter of a century. Sizes $\frac{1}{2}$ in. to 1 in. Catalog HV-45.

SARCO RADIATOR VALVES

Sarco Packless Valves-Used for one and two pipe heating systems and are truly packless. Steam leaks are impossible. Furnished with round or lever handles or lock shield in angle, straightway, or corner patterns. Sizes ½ in. to 1½ in. Catalog HV-45. For Hot Water Heating Systems, Catalog HV-175.

SARCO N-100 TRAP

For high pressure radiators and heating coils in stationary and marine service, and for hospital and kitchen equipment. Has full length protecting shield and stainless steel valve head and seat. Sizes 3/8 in. to 1 in. Catalog HV-46.

SARCO FLOAT-THERMOSTATIC TRAPS

For dripping ends of mains and risers, and for stack or blast heaters, large unit heaters and hot water generators. Automatic thermostatic air vents built in. Available in six sizes with connections $\frac{3}{4}$ in. to 2 in. Catalog HV-450.

SARCO INVERTED BUCKET TRAPS

Are recommended for high pressure unit heaters and sometimes preferred for kitchen and laundry equipment. Strainers are built right into these sturdy traps. Seats and valves are stainless steel and renewable. Automatic air vents can be furnished for extra rapid removal of air. Available in sizes ½ in. to 2 in. for pressures up to 900 lb. Catalog HV-350.

SARCO ALTERNATING RECEIVER

A complete line of boiler return traps for vapor systems.

Returns water of condensation to boiler automatically, thereby assuring positive return of water under all pressure conditions.

Made in five sizes for from 1,500 to 25,000 so ft of radiation. Catalog HV-45.

SARCO AIR ELIMINATORS

For venting air from vapor systems at one central point in the basement. Available in two sizes: No. 6 for systems up to 3,000 sq ft and No. 12-A for 15,000 sq ft. Both are equipped with float valves to stop water escaping through the vent and with check valves to prevent ingress of air when system is under

vacuum. Catalog HV-45.

Sarco Temperature Regulators are simple, selfoperated valves-the only self-contained units that use the irresistible force of liquid expansion. No stuffing boxes to leak, no auxiliary "power" required; all moving parts are *inside* the equipment. Here again a type and size for every purpose—for steam, gas, oil, water or brine for temperatures ranging from 0 to 400° F. Catalog HV-600.

Alternating Receiver

Type MB

SELF-CLEANING STRAINERS

For use in pipe lines carrying brine steam, oil, gas, water, ammonia or air. Have large free screening area with minimum resistance to flow. Steam or air strainers can be cleaned by blowing through without disassembling. Made in cast iron, bronze or cast steel for pressures up to 500 lbs, with

brass, iron or monel screens. Available in sizes 1/4 to 8 in. Catalog No. HV-1200.

SARCO WATER BLENDERS AND TEMPERING VALVES

For mixing hot and cold water to deliver automatically water at any desired temperature. Two models are available, type MB for showers, wash basins, etc., and type DB, a tempering valve for use with submerged heating coils or tankless heaters. Catalog HV-800.

Sarcotherm Weather Control Valve

SARCOTHERM HOT WATER HEATING SYSTEM

A simple, all-mechanical system for the control of radiator temperatures in direct relation to outside temperatures. Radiation is balanced by Sarcoflow fittings in the radiator outlets.

The Sarcotherm three-way valve recirculates a varying proportion of water around the boiler and back to the system as dictated by the thermostatic bulb outside the building. Catalog No. HV-175.

Balancing Fitting.

WARREN WEBSTER & COMPANY

Pioneers of the Vacuum System of Steam Heating

Main Office and Factory:

Camden, New Jersey

Representatives in Principal Cities-Consult Your Local Phone Directory

NOTICE—The availability of Webster Equipment described on these pages is subject to restrictions resulting from war and priority regulations and conditions. We reserve the right to change prices, materials, and designs without notice. The low pressure steam heating specialties listed comply with WPB Limitation Order L-42, Schedule VIII.

PRODUCTS AND SERVICES

Webster Systems of Steam Heating including Vacuum and Type "R" (vapor).

Webster Central Control Systems including HYLO and MODERATOR. Modernization of Obsolete and

Faulty Heating Systems.

Webster System Equipment including Light-Weight Concealed Radiation (Gravity Convection Heaters), Radiator Supply Valves, Metering Orifices, Thermostatic Traps, Drip Traps, Heavy Duty Traps, Dirt Strainers, Dirt Pockets, Boiler Return Traps, Vent Traps, Damper Regulators, Boiler Protectors, Lift Fittings, Ex-pansion Joints, Separating Tanks, Steam and Oil Separators, Steam Vacuum Pump Governors, Air Separating and Receiving Tanks, Gages, Water Accumulators.

Webster Series "78" and Series "79" Traps for use at process pressures (10

to 150 lb per sq in.)

Webster-Nesbitt Unit Heaters and Residential Conditioners.

Fig 1. Conventional arrangement of piping around Webster Basement Equipment for the Webster Type "R" System

WEBSTER SYSTEMS

Webster Systems are low pressure, twopipe systems of steam circulation with the addition of accurately-sized metering orifices at radiator supply connections and. when required, intermediate metering orifices at points in branch mains. Metering orifices effect even distribution of steam to all parts of the heating system and permit the successful application of a centralized control. Webster Valves are used at supply of radiators. Webster Thermostatic Traps prevent flow of steam into return mains when radiators are filled. Webster Drip Traps and Dirt Strainers are used where needed on steam mains. Webster Systems are available for vacuum, open return or "vapor" operation. The Type "R" System corresponds to the so-called Vapor type. Fig. 1 illustrates a typical arrangement of Boiler Return Trap, Vent Trap, etc., when low pressure boiler is the source of steam.

WEBSTER CENTRAL CONTROLS

These are patented systems for varying the amount of steam to all radiators according to outside temperature. They provide continuous heat delivery with effective fractional filling of radiators. Hylo Systems may be provided for manual control, or if desired, may be semi-automatic by incorporation of inside thermostat or thermostat and schedule clock. The Moderator Systems employ an automatic Outdoor Thermostat sup-plemented by a manual Variator.

The latter is used for quick heating-up, night load, and unusual weather or occupancy conditions. Use of Webster Central Control Systems results in (1) increased comfort because over-heating and underheating are minimized and (2)

lower fuel or steam costs.

WEBSTER SYSTEM RADIATION

Discontinued for the Duration

Concealed, non-ferrous type for use exclusively with Improved Webster Systems. Is unique in that it combines in a single unit, a light-weight heating element of high efficiency with an orificed radiator supply valve, a radiator trap and supply and return piping connections.

enclosures for installation within the wall and exposed metal cabinets are available. Webster System Radiation and enclosures are so designed that the entire heating element can be quickly removed without damage to plaster or paint. Space requirements reduced to a minimum and installation greatly simplified.

IRON RADIATOR VALVES

Fig 2 Webster Type "WB-P" Iron Radiator Valve

The Webster Type WB-P Supply Valve (Series 600P) with iron body has been designed to conserve critical metals. Elimination of union nut and nipple releases machine tool hours for war work. Outlet connection has female lefthand threads. Installation to radiator is by right and lefthand pipe nip-ple. This valve is made in 3/4 and 1-in. sizes with angle body

only. Furnished with wheel (mushroom) handle. Lockshield type is available to certain institutions which require it.

The Type WB-P Valve meets fully specifications calling for a "spring packless" valve A heavy spring automatically maintains pressure on die-molded metallic ring packing. Although packing seldom requires renewing, this valve is so designed that old packing ring can be removed and new installed while pressure is on the heating system.

While primarily for low pressure steam heating service, the Type WB-P Valves are entirely suitable for hot water heating. Furnished with or without leak hole as desired.

Pressures—For low pressure vapor and vacuum steam heating service. Maximum pressure is 75 lb per sq in.

Metering Orifices—Accurately sized and made of metal to resist erosion and corrosion, amply thick to be free from vibration and shaped for quiet operation.

IRON RADIATOR TRAPS

Fig 4. Webster 702 HF Iron Radiator Trap

"Old Ironsides," the war-time Webster Radiator Trap, not only effects maximum saving in critical metals but saves, in addition, needed machine tool hours through elimination of nut and nipple. Iron trap construction is not new to Webster. Experience in manufacturing iron body traps for more than 25 years has resulted in a successful design giving operating efficiency equal to earlier Webster Traps.

Construction Features—Body and cap are high quality gray cast iron assembled with steam-type gasket. Double thermostatic diaphragm is phosphor bronze, individually factory adjusted and tested. Diaphragms are compensated for pressure which means that they function efficiently at all pressures within their operating range. They do not close too quickly at certain pressures to hold up condensate while remaining open at other pressures to pass steam.

Brass valve piece is 60° cone type, factory adjusted. Flush installation of brass seat makes trap practically self-draining.

Pressures—Webster Series 7-HF Traps with iron body are designed for low pressure vapor and vacuum steam heating service. Maximum pressure is 25 lb per sq in.

Table 1. Recommended Ratings in Sq Ft E. D. R.*

The ratings below are conservative and not full-flooded capacities. Applications requiring use of higher ratings should be referred to the Company or its Representatives. When writing give full details of proposed use. Select trap by rating, not by pipe size.

Symbol	Size	Pressure Difference Across Trap in Lb per Sq In.					
		1	11/2	2	5	10	15
702HF 713HF 723HF	1/2" 3/4" 3/4"	165 330 580	200 400 700	235 465 810	370 730 1280	530 1050 1840	640 1300 2300

^{*}Based on 240 Btu per sq ft per hour.

FLOAT-AND-THERMOSTATIC TRAPS

Fig 5. Webster Size 0026-T Drip Trap will handle 1100 lb Water per Hour at 2 lb Pressure Difference

Series "26"—A heavy duty trap for drips of mains, blast radiation, unit heaters, hot water generators and similar applications. A rugged float-type trap available with and without thermostatic air vent. Made in six sizes: 400, 1100, 1600, 3000, 5000 and 11,700 lb water per hour at 2 lb pressure difference. Maximum working pressure is 15 lb per sq in.

PROCESS STEAM TRAPS

Series "78" — thermostatic trap built for process steam pressures (10 to 150 lb per sq in.). Monel Metal diaphragm. Stainless Steel valve

Fig. 6. Webster Size 782 Trap

piece and seat insert. Angle model only. Sizes: $\frac{3}{8}$, $\frac{1}{2}$, $\frac{3}{4}$ and 1 in. Extensively used with laundry, cooking, sterilizing and other process-steam uses.

Series "79"—For use where large volumes of very hot condensate form more quickly than can be discharged by thermostatic traps alone. Float and thermostatic traps designed for normal working pressures between 15 and 150 lb per sq in. Water of condensation is passed through a float-controlled seat opening while air is discharged into the return piping by a thermostatically controlled vent. Compact and light in weight. Can be readily mounted in a pipe line without other support. Available with either 34 in. or 1 in. inlet and outlet.

Cast iron body, composition gasket and cover bolted together with steel cap screws. Monel Metal valve piece and stem. Stainless steel seat. Air vent unit is Monel Metal diaphragm with Stainless Steel valve piece and brass seat with Stainless Steel insert.

DIRT STRAINERS AND POCKETS

Placed in return lines of steam heating systems to prevent dirt, rust and scale from impairing tightness of traps.

Fig. 7. Size 34C-1 Webster Boiler Protector with Low Water Electrical Cut-out Switch. Size 34 has no Cut-out Switch

BOILER PROTECTOR

Prevents breakage in low pressure heating boilers when water level becomes inadequate. Automatically supplies raw water to boiler when water level drops to 1 in. above bottom of gage glass.

For maximum boiler pressure of 15 lb per sq in. Maximum cold water main pressure should not exceed 150 lb per sq in.: minimum must not be less than 25 lb per sq in.

Made with ¾ in. connections, with or without electrical cut-out switch.

WEBSTER-NESBITT UNIT HEATERS

Are manufactured by John J. Nesbitt, Inc., Holmesburg, Philadelphia, Pa., and are distributed solely through Warren Webster & Company, Camden, New Jersey. Designed to circulate large volumes of air at comparatively low temperatures, assuring quick heating.
Ratings of Webster-Nesbitt Unit Heaters

are based on tests made in accordance with standard test code of Industrial Unit Heater Association and A.S.H.V.E.

All Products Listed are Now Available with All-Steel Coils

Fig. 11. Standard Propeller-Fan Type

PROPELLER FAN UNIT HEATERS

Designed to incorporate four characteristics proved by wide experience to be essential to both proper application and

satisfactory performance:

1.) Selective range of sizes. There are eight distinct casing sizes, and these are further subdivided by variation in heating elements or fan design to produce a total of 21 basic capacities. Heating capacities at basic conditions vary from 22,300 to 338,000 Btu per hour; air deliveries from 540 to 4800 cfm.

2.) Quiet Operation. All fans have blades of exceptionally large areas and of a shape to impart a gradual acceleration to the air stream. Ample spacing is maintained between the fan and heating element. Motors are of sleeve bearing type and

equipped with isolators.

3.) Durable lightweight Heating Elements. Extended fin-and-tube type, constructed of steel condensing tubes and plate-type steel fins (copper when permitted by government regulation).

4.) Modern Casing Design.

Single, two-speed, or multi-speed motors. Compact suspended type. Catalog W-N 115.

GIANT UNIT HEATERS

Sturdy blower-fan units for the economical heating of large areas.

Standard (Non-Thermadjust) Type. Used principally where heating is by recirculation only, and where constant heat output is desired during period of operation.

Thermadjust Type. Employs dampers in front of casing and over face of heating

Fig. 12 Blower-Fan Type

element to provide mixing of unheated and heated air, producing heat output in accordance with requirements and continuous

circulation of air volume.

Valve Controlled Type. Unit is of standard casing arrangement but equipped with Nesbitt Heating Surface with Steamdistributing Tubes which allows for automatic control of heat output.

Floor mounted, wall mounted, ceiling suspended, from 125,000 Btu, 3330 cfm, to 1,008,000 Btu, 16,000 cfm. Available with Non-metallic casings. Write for details. Catalog W-N 116.

LITTLE GIANT UNIT HEATERS

Fig 14. Horizontal Blow Fig 13
"Little Giant" Down Blow Type

New, light compact drawn-through high velocity units in down blow and horizontal blow models. 39,000 Btu, 710 cfm to 530,000 Btu, 11,000 cfm at basic rating of 2 lb steam and 60 deg entering air.

Down Blow Type. In general indicated when the presence of cranes and other machinery requires that the unit and piping be located well above floor level.

Horizontal Blow Type. Application follows principles of heat distribution regularly employed in suspended blower fan type heater. Units are located closer to working zone than Down Blow type.

Available with Non-metallic casings. Write for details. Catalog W-N 114.

SERIES F UNIT HEATERS With Non-Metallic Casings

Floor type, centrifugal fan units in two casing sizes. For lobbies, corridors and offices. Complete information on request.

M°DONNELL&MILLER

Safety Devices for Steam and Hot Water Boilers and Liquid Level Controls
General Offices: Wrigley Building, Chicago, Ill.

Doing one thing well "

PRODUCTS:

Boiler Water Feeders; Feeder-Cutoff Combinations; Low Water Fuel Cut-offs; Pump Controls, Low Water Alarms; Humidifier Water Level Controls; Safety Relief Valves for hot water heating boilers and storage tanks; Liquid Level Controls for a wide range of services.

Boiler Water Feeders—McDonnell boiler feeders protect steam boilers from low water by automatically supplying water to the boiler when and as needed. See illustrations and service data opposite.

Feeder Cut-off Combinations—For automatically fired boilers the No. 2 Low Water Cut-off Switch is added to form a feeder-cut-off combination, like the No. 47-2, No. 51-2, etc. In such a combination the feeder takes care of the normal water requirements. In case of an emergency, such as excessive priming and foaming or failure of the pump, the low water cut-off switch stops the burner until emergency is passed. Electrical ratings of No. 2 Cut-off Switch: A.C.—¾ hp, 110-220 V.; D.C.—10 amp, 125 V.

Low Water Fuel Cut-offs—If the feeder-cut-off combination is not desired, the No. 67 alone can be installed to dependably stop the burner when low water threatens. Has two switches—one operates alarm or controls No. 101 Electric Feeder, other acts as low water cut-off. Rating (each switch): A.C.—¾ hp, 115-230 V; D.C.—¼ hp, 115 V.

For high pressure jobs the No. 150 will serve not only as a low water fuel cut-off but also as a pump control and low water alarm—for pressures as high as 150 lbs. Electrical ratings, Cut-off and Pump Control: A.C.—I hp, 110-220 V; D.C.—½ hp, 115-230 V. Alarm: A.C. or D.C.—1 amp, 110 V. Specify 150-M for manual reset low water cut-off.

Advanced Features—A notable advance in No. 47 and 67 is the deep sediment chamber, with large capacity, straight-through (A.S.M.E Standard) blow-off valve. Other features of feeders and cut-offs include: Quick-Hook-Up; Cool feed valve; finer stainless steel valves; large area built-in strainers; double switch construction of the No. 67; electric boiler water feeders; self-cleaning built-ins.

No. 51-2 Feeder-Cutoff Combination. For automatically freed boilers above 5000 sq ft-maximum steam pressure 35 lbs. No 51 (without switch) for hand fired boilers. For pressures from 35 to 75 lbs use the No 53 (Hand Firing) No 53-2 (Automatic

Firing)
"Built-in" Low
Water Fuel Cut-offs—
chosen as standard
equipment on modern
jacketed boilers

self cleaning to insure dependable operation. Should be specified with the boiler.

No 47-2 Feeder Cut-off Combination For automatically fired boilers up to 5000 sq ficapacity—maximum steam pressure 25 lbs No 47 is for hand fired boilers—same service range, without switch For process boilers up to 5000 sq ft, with pressures up to 35 lbs use No. 147 (Hand Firing) or No 147-2 (Automatic Firing)

No. 101 Electric Water Feeder for use with No. 67 or Built-in cut-offs—converts into Feeder-Cut-off Combinations

No 150 Combination Pump Control, Low Water Fuel Cut-oh and Alarm, for steam pressures up to 150 lbs. Has two switches; one controls pump—other stops burner and a com pletes alarm circuit when water level falls to danger zone.

McDonnell Snap Action Safety Relief Valves

McDonnell Safety Relief Valves are the first to be rated in Btu capacity—in ability to dissipate heat at their set relief pressure. Their "snap action" design was inspired by exhaustive research which proved that the only proper solution to the problem of preventing explosions and losses of hot water boilers, domestic hot water heaters, and hot water tanks was to be found in a valve that would have sufficient discharge capacity at relief pressure to prevent further pressure rise when the boiler or domestic water heater is operated at parts; many other refinements.

maximum gross Btu output.

The series includes Nos. 29 and 129 for hot water heating boilers and the Nos. 229, 329 and 429 for domestic hot water heaters The snap action mechanism and tanks. (Pat. No. 2,248,807) provides, for the first time, a precision-built means of opening the valve wide at set pressure. Revolutionary features are hardened stainless steel cone instead of composition disc; long lived bellows diaphragm; remarkable ease of testing; complete protection of working

No. 29 and No. 129 Safety Relief Valves for Hot Water Heating Boilers

No 29-129

—are rated in Btu capacity so that they can be matched to the gross Btu output of the boilers on which they are used:

No. 29 for heating boilers with gross heat output up to 156,000 per hour. No 129 for heating boilers with gross heat output up to 350,000 per hour.

Set relief pressure of both No. 29 and 129 is 29 lbs. When used in accordance with their ratings they will prevent pressures over 29 lbs under all conditionseven such an emergency as a bottled up system with

all temperature-limiting devices inoperative and heat input at maxi-This is "safety the McDonnell Way."

No. 229-329-429 Safety Relief Valves for Domestic Hot Water Heaters and Tanks

329-429

Engineering fundamentals, confirmed by practical tests prove that there is just one simple rule to observe in protecting domestic hot water heaters and tanks: Keep the pressure below the maximum allowed by the manufacturer of the tank or heater and there will be no failures or explosions.

To accomplish this, a relief valve must have capacity to dissipate the maximum heat to which the tank can be subjected. This means that it must be Btu-rated, just as for a hot water boiler, so that it can

be matched to the service condition. Nos. 229, 329 and 429 are so rated:

No 229 is for water supply pressure up to 50 lbs; handles approximate Btu output of 316,720. Inlet tapping 1 in; outlet tapping 3 in No 329 is for supply pressure up to 75 lbs; handles Btu output of 380,896. Inlet tapping 1 in; outlet tapping 3 in No 429 is for supply pressures up to 100 lbs; handles Btu output of 432,590. Inlet tapping 1 in; outlet tapping 3 in.

Never forget the pressure control-not temperature control-is the fundamental safety measure. You can have pressure and breakage without excess temperature, but you can't have an explosion at any temperature, unless you have excess pressure. No. 229, 329 and 429 are the first valves to be built and rated in such a way that they will prevent excess pressure under all conditions—assuming, of course, that their Btu rating is properly observed.

On Direct

On Storage Tank

McDonnell No. 217 Humidifier Water Control

• No. 217 Complete with float chamber, tubing and saddle valve.

• No. 117. Same as 217, omitting tubing and saddle valve

No 17. Float and valve only

-automatically maintains proper water levels in evaporation pans of warm air New snap action eliminates furnaces. tendency of former controls to become stopped up by foreign matter or to stick and become inoperative. This valve has only two positions-tight closed and wide open. When water falls 1/4 in. in pan it snaps wide open feeding a full stream that flushes orifice. Closes leak-tight against any water pressure up to 150 lbs.

AMERICAN & Standard RADIATOR & Sanitary

New York CORPORATION Pittsburgh

OUR TWO-FOLD WAR PRODUCTION PROGRAM

From the outset we have supplied large quantities of peacetime products for cantonments, hospitals, housing, airports, battleships, submarines and other Army and Navy requirements. We will continue to supply this demand on authorized orders.

Vital parts for Guns, Tanks, Planes and Ships are also being produced in considerable variety with adaptable peacetime equipment, and conversion of facilities to meet other specialized war needs is being prosecuted vigorously.

We pledge our all to Victory.

SEVERN BOILER FOR COAL (stoker or hand-fired), or OIL

An exceptionally efficient Boiler with many new features for convenience and economy. Ratings: Steam—350 to 780 sq ft, Water—560 to 1250 sq ft, installed radiation.

A R C O L I N E R FOR COAL (stoker or hand-fired) or OIL

An attractive boiler of advanced design for heating smaller homes inexpensively and well. Ratings: Steam—180 to 460 sq ft, Water—290 to 740 sq ft, installed radiation.

OAKMONT OIL BOILER

A highly efficient moderate priced Boiler for small homes. Also supplied as complete boiler-burner unit with Arcoflame Burner. Ratings: Steam—390 to 810 sq ft, Water—625 to 1295 sq ft, installed radiation.

IDEAL ARCOFIRE STOKER-BOILER

Extra efficient, extra economical—especially designed for automatic stoker operation only. Ratings: Steam—900 to 1,775 sq ft, Water—1,440 to 2,840 sq ft, installed radiation.

"EMPIRE" GAS BOILER

Designed by experts to burn gas efficiently, economically. All controls concealed. Ratings: Steam—163 to 1097 sq ft, Water— 135 to 1755 sq ft, installed radiation.

STANDARD GAS BOILER

Basically the same as the "Empire" Gas Boiler shown at left, but without jacket. Ratings: Steam — 400 to 11,905 sq ft, Water — 135 to 19,050 sq ft, installed radiation.

MERICAN & Standard Sanitary

New York CORPORATION Pittsburgh

Our ability to furnish products shown herein is subject to War Time regulations.

IDEAL REDFLASH BOILERS (All Fuels)

Economical heat for any size or kind of building. Attractive red jacket, fully in-sulated. Ratings: sulated. Ratings: Steam—770 to 11,085 sq ft, Water—1230 to 17,736 sq ft, installed radiation.

ARCO RADIATOR

The modern, slim type radiator that occupies less space and gives more heat. It comes in four narrow widths and in four heights -19, 22, 25 and 32 inches.

Arco Radiator

VENTO CAST-IRON BLAST SURFACE

For blower heating, ventilating, cooling. Vento possesses an unusually large area of effective surface for maximum efficiency. Cast-iron construction assures dependability and permanence.

Vento

ARCOFLAME OIL BURNERS

The Model "C" Arcoflame has a capacity of up to 3 gallons per hour. The Model "L" (not shown) from 3 to 7 gallons per hour. Both embody unusual and highly efficient features.

IDEAL WATER TUBE BOILERS (Oil or Stoker Fired)

For medium to large size buildings. Noted for efficient performance and economy. Ratings: Steam-650 to 4600 sq ft, Water -1040 to 7360 sq ft, installed radiation.

ARCO CONVECTOR

For convection heating at its best. Ävailable in four widths and in virtually any desired length.

Arco Convector

ARCO MULTIFIN CONVECTOR

Non-ferrous. Highly effi-cient. For all systems except one-pipe steam. Available in five widths.

Arco Multifin

No. 861 Arco Detroit Hurrvent Valve (for main)

No. 300 Arco-Detroit Multiport Valve (for radiators)

No. 999 Arco Packless Steam Radiator Valve

THE BABCOCK & WILCOX COMPANY

Manufacturers of

85 Liberty Street

New York, N. Y.

Water-Tube Boilers
Oil Burners

Chain-Grate Stokers Seamless Steel Tubing and Pipe

Branch Offices and Representatives in all Principal Cities

Type H Stirling Boiler

The Babcock & Wilcox Type H Stirling Boiler is a highly efficient unit built for moderate pressures at moderate prices... and is designed to occupy minimum floor space and head room for the heating surface required.

This boiler is built in four classes and 36 sizes ranging from 691 to 6225 sq ft of heating surface, and can be designed for operation with any fuel and every method of firing.

The moderate price is due only to the simplicity of design, efficient production methods and superior shop equipment.

Type H Stirling Boiler with Babcock & Wilcox Chain-Grate Sloker

Advantages of the Babcock & Wilcox Type H Stirling Boiler:

Unusual steaming capacity for the floor space and head-room required.

The choice of three locations for gas exit reduces cost of flues and breeching.

Distribution baffles make effective all of the heating surface.

Tube renewal is facilitated by correct tube spacing, and a tube removal door.

The boiler is supported by a structuralsteel framework entirely independent of the brickwork.

A complete table of sizes and dimensions will be sent upon request. Simply ask for Bulletin G-8-C.

B&W Integral-Furnace Boiler, Type FF

Many of the advantageous features incorporated in large B&W central-station boilers are now available for the first time in the B&W Integral-Furnace Boiler, Type FF, which is offered in sizes ranging from 1353 to 6506 sq ft heating surface.

Distinguishing features include:

A completely water-cooled furnace. The construction provides water cooling for front and rear (or bridge) walls, as well as side walls and roof.

A furnace arrangement in which the primary combustion zone is followed by an open pass, thus making use of a principle of combustion that was first developed and used successfully in the B&W Open-Pass Boiler for central stations. This design insures mixing of the gases while at high temperatures, thereby aiding efficient and smokeless combustion.

Cyclone Steam Separators, which provide dry steam at high boiler-water concentrations independently of normal variations in water level, and increase circulation by eliminating steam from the water.

These, with related features, result in a boiler that is outstanding for economy of fuel and maintenance and for ease of operation. Write for Bulletin G-34

Burnham Boiler Corporation

Irvington-on-Hudson, N. Y.—Zanesville, Ohio
There's a Burnham for Every Purpose—Catalogs Sent on Request

Yellow Jacket Boiler—All Fuel Convertible. 305 to 935 sq ft for steam and 490 to 1495 for water.

Welded Steel Boiler — Residence type with jackets. Capacities from 400 to 1750 sq ft steam and 640 to 2800 for water. Commercial type. Capacities from 1800 to 42,500.

Junior Yello-Jacket
—For Oil Only. 360
sq ft steam and 580
sq ft for water.

DeLuxe Gas or Oil Boiler—250 to 960 sq ft steam and 415 to 1540 for water.

50 Inch Twin Section—4500 to 14,600 sq ft steam and 7200 to 23,360 for water.

Round Sectional, All Fuel—275 to 830 sq ft steam and 440 to 1330 for water.

No. 1, 2, 3 and 36 in. Series—All Fuel. 230 to 4920 sq ft steam and 370 to 7880 for water.

Cabinet Type Radiant Radiator — Two heights. 20 and 23 inches.

Burnham Slenderized Radiator—Made in 3 to 7 tubes in heights of 14 to 32 inches.

Crane Co.

BOILERS, RADIATORS, VALVES, FITTINGS, PIPE, STEAM SPECIALTIES, PLUMBING AND HEATING MATERIALS

General Offices: 836 South Michigan Avenue, Chicago, Illinois Nation-Wide Service Through Branches, Wholesalers, Plumbing and Heating Contractors

A complete line of heating equipment—boilers and furnaces for coal, coke, oil, or gas burning—for steam, hot water, or

warm air systems. Full descriptions and specifications are given in your Crane Catalog—or supplied on request.

BOILERS FOR SMALL HOMES

SERIES FOURTEEN

Wet base, low return inlet. Patented controlled water travel. Large ceiling heating surface. Internal heater and jacket optional. For steam or hot water. Capacities: manual firing, up to 90,000 Btu., oil or stoker up to 119,000 Btu. (IBR).

CONSERVOIL UNIT

Low-priced boiler-burner unit in 4 sizes up to 131,000 Btu. (IBR) Controlled water travel, large ceiling surface, and flue inserts assure fuel economy. Includes burner, draft regulator and 3 controls. For steam or hot water.

No. 2WG BASMOR GAS BOILER

New hot water boiler for smallest homes. Sections are cast-iron with water-jacketed combustion chamber. Fully automatic. Shipped completely assembled; housing, controls in position. Up to 110,800 Btu. net capacity.

BOILERS FOR AVERAGE-SIZE HOMES

No. 10 ALL-FUEL BOILER
Can be installed for manual firing—easily converted for stoker, oil or gas firing. High base and removable grate lugs give ample space for stoker or oil burner. Provision for internal heater. For steam or hot water. Net capacity up to 207,000 Btu. (IBR).

No. 16 SUSTAINED HEAT BOILER-BURNER UNIT

Application of Crane sustained heat principle extracts more heat from fuel. Down-draft flue construction prevents escape of combustion gases before heat has been absorbed. Net capacity up to 216,000 Btu. (IBR). Steam or water.

No. 25 BASMOR GAS BOILER

Unusual efficiency obtained with staggered fin construction and improved Bunsentype burners. Safe, can't back-fire. Simple controls. Many sizes; for manufactured and natural gas. Net capacity to 177,400 Btu. Steam or hot water.

CRANE HEATING CALCULATOR FREE

With this accurate calculator, employing the A.S.H.&V.E. method of determining heat losses, you can quickly select the right boiler and radiator requirements for any job. Easy to use—slide rule type. Free on request. Please write on your letterhead to address at top of this page.

BOILERS FOR LARGER BUILDINGS

No. 4 SECTIONAL BOILER

For manual, oil, and stoker firing. Up to 1,756,800 Btu. net capacity-steam or hot water.

SERIES 60 BASMOR GAS BOILER

AUTOMATIC HEAT-CONVERSION UNITS

AUTOCOAL STOKER

For even, controlled room temperature with minimum attention. Hopper models: 20 to 350 lb. per hour ca-pacity. 35 and 50 lb. bin-feed models.

CONSERVOIL BURNER

Will burn lower grades of fuel oil. Only one moving part. Quiet; can-Models not foul. up to 25 gal. per hour capacity.

CONTROLS

Low Voltage Relay-Transformer

RoomThermostat

Draft Tender

A full line of precision-built Crane controls including room thermostats, night set-back clocks, oil and stoker controls, limit switches for steam, hot water, and furnace systems.

The Crane line includes valves, fittings, and pipe for all boiler and radiator systems; a selection of furnaces for coal, oil, and gas; also split-system equipment and well-water cooling for year 'round air conditioning.

HEATING ELEMENTS—ALL TYPES

COMPAC SLIM-TUBE RADIATORS

Cast-iron; space-saving. Modern slender design. For free-standing or recessed installation with or without attractive front panel. Maximum delivery of radiant, infra-red ray heat. Further spacesaving with bottom connections.

End Connection

Bottom Connection

CAST-IRON CONVECTORS

Enclosures of heavy steel, smartly styled Models for fully or partially recessed, free standing, wall-hung, and plaster-front in stallations. Convectors of sturdy cast-iror with large integral fins designed to stimu late air flow. For all systems.

DUCTLESS WINTER AIR-CONDITION. ING UNIT

Recessed in wall and floor: no sheet metal work. Provides heat, humidification, filtering and circulation.

FOR LARGE SPACE HEATING REQUIREMENTS, SPECIFY CRANE SPEED HEATERS.

Made in a Complete Line. HEATING SPECIALTIES

Circulating Pump

Crane supplies a complete range of hot water specialties including circulators, flow

controls, monoflo fittings, pressure tank systems, indirect heat-Also, air valves, traps,

Venlin

condensation and vacuum pumps, water cut-offs, and other steam specialtie

Fitzgibbons Boiler Company.Inc.

Established 1886

General Offices: Architects Bldg., 101 Park Avenue

New York, N. Y.

Works: OSWEGO, N.Y.

Branches and Representatives in Principal Cities

PRODUCTS—STEEL HEATING and POWER BOILERS for all fuels and all heating systems. Capacities to meet requirements of any building. Built and rated according to S. H. B. I. Code. —AIR CONDITIONERS for "Split-Systems" and for Direct-Fired installations in residences of all sizes.

WARM AIR FURNACE 80 FWA

For hand firing with coal. Automatically controlled blower provides forced circulation of warmed air. Designed in accordance with the specifications of Procurement Division of the U. S. Treasury Department and of FWA, USHA, PBA and FSA for Defense housing. Fitzgibbons "Weldseal" construction positively insures against leakage of flue

Bonnet capacity, 80,000 Btu based on Standard Code of National Warm and Air Conditioning Asso.

DIRECT-FIRED AIR CONDITIONERS

FITZGIBBONS 400 SERIES STEEL BOILERS

The choice of architects and builders wherever low cost heating in small homes is needed. Beautifully adapted to defense housing using radiator heat with oil, gas or stoker firing, or with coal hand firing. Built-in coil provides domestic hot water. All the advantages of Fitzgibbons steel boiler construction in an attractively jacketed unit, priced for the field it serves. Five sizes—260 sq ft (steam or vapor, hand fired) to 1440 sq ft (Hot water system, mechanically

The OIL-EIGHTY AUTOMATIC*—An outstanding residential steel boiler that teams up with any good rotary or gun type burner to form a highly efficient unit. Provides room for burner inside the jacket. Year-'round tankless domestic hot water optional Ratings, Steam-12 sizes-425 to 2680 sq ft

The GAS-EIGHTY—For gas. Jacketed. Ratings, Steam—12 sizes -425 to 2680 sq ft. FITZGIBBONS R-Z-U- JUNIOR—For oil, stoker, coal hand firing. Auxiliary grate (optional) for refuse disposal and stand-by service. Tanksaver of Tankheater (optional) provides year-'round domestic hot water supply with or without storage tank. Ratings, Steam, hand fired type, 900 to 3200 sq ft. Oil or stoker fired, 1100 to 3900 sq ft. *Reg. U. S Pat Office.

"D" Туре

FITZGIBBONS "D" TYPE

Steel Firebox Boilers

The "D" Type arranged for rear smoke outlet. Built for 15 lb w.s.p.—A.S.M.E. Code. Up-Draft Type........1800 to 35,000 sq ft steam Oil, Gas, Stoker......2190 to 42,500 sq ft steam Smokeless Type.......1800 to 35,000 sq ft steam

500 Series

FITZGIBBONS 500 SERIES

Portable Welded Firebox Boilers— Return Tubular

Built for 15 lb s.s.p.—A.S.M.E. Code. Ratings, steam....3500 to 35,000 sq ft hand fired. 4250 to 42,500 sq ft mech. fired. Oil, Gas, Stoker, and hand-fired types.

700 and "P" Series

FITZGIBBONS 700 AND "P" SERIES Portable Riveted Firebox Boilers

700 Series for 15 lb w.s.p.—*A.S.M.E.* Code. Ratings, steam—3500 to 35,000 sq ft hand fired. 4250 to 42,500 sq ft mech. fired.

"P" Series for 100 and 125 lb w.s.p.—A.S.M.E. Code.

Ratings, horsepower—25 to 250 hand fired.
30 to 261 mech. fired.

Oil, Gas, Stoker, and hand-fired types.

000 and 800 Series

FITZGIBBONS 600 AND 800 SERIES

Smokeless Down-Draft Riveted Firebox Boilers

600 Series for 15 lb w.s.p.—A.S.M.E. Code. Ratings; steam—3500 to 35,000 sq ft hand fired. 4250 to 42,500 sq ft mech. fired.

800 Series for 100 and 125 lb w.s.p.—*A.S.M.E.* Code.

Oil, Gas, Stoker and hand-fired types.
Ratings, horsepower—25 to 250 hand fired.
30 to 261 mech. fired.

When this catalog went to press, all products and accessories described herein were available for sale. Government priorities or other circumstances beyond our control may now affect delivery. Consult the nearest Fitzgibbons Sales Engineer for up-to-date information. Descriptive Bulletins on any or all of above boilers will be mailed on request.

Farrar & Trefts

Incorporated

20 Milburn Street, Buffalo, N. Y.

Atlanta, Ga Auburn, N. Y. Batavia, N. Y. Buenos Aires, S. A. BUTTE, MONT Cambridge, Mass. Charlotte, N. C. Chattanooga, Tenn. Cheveland, Ohio Dallas, Texas Detroit, Mich Grand Rapids, Mich. HUTCHINSON, KAN. INDIANAPOLIS, IND. JAMESTOWN, N. Y.

Kingston, Pa Los Angeles, Calif. LOUISVILLE KY.
MINNEAPOLES, MINN.
NASHVILLE, TENN.
NEW YORK, N. Y.
NUTLEY, N. J. PITTSBURGH, PA.

RICHMOND, VA. ROCHESTER, N. Y. St. Louis, Mo SAN ANTONIO, TEXAS SAN FRANCISCO, CALIF. Seattle, Wash. Toledo, Ohio Washington, D. C.

The Bison Compact

The F&T Bison Compact Welded Heating Boiler is more than just another boiler. It has been designed carefully so as to have a large furnace volume, the proper volume of water, just the right amount of steam liberating surface, the correct volume for steam storage and a balanced circulation. The result is a remarkably steady water line—A Balanced Boiler.

This boiler requires a minimum amount of floor space and is easy and inexpensive to install. It is reasonable as to first cost and economical in operation. Construction is in accordance with the A.S.M.E. Code for 15 lb working pressure and boilers are designed for hand firing with anthracite or bituminous coal or for mechanical firing with oil, gas or stoker. There are various sizes available from 1800 to 35,000 sq ft of steam radiation, all ratings as required by the Steel Heating Boiler Institute.

The Bisonette Compact Boiler has the same characteristics as the larger Bison Compact Boiler. It has been designed for installation in large residences and small business establishments where the advantages inherent in a Steel boiler are desired.

Firebox Return Tubular Heating Boilers are Quality Boilers. They are constructed to measure up to the high standards set by Heating Engineers and will give unfailing service under all conditions. Being economical to install and operate, they are highly favored by Architects and Engineers for heating Schools, Hospitals, etc.

There are two types of Firebox Boilers, the Up-Draft Type and the Down-Draft Type. Both types are made of welded or riveted construction for heating purposes at 15 lb working pressure and riveted, or, Class 1 fusion welded x-rayed and stress-relieved for power purposes at 100, 125 and 150 lb working pressure in accordance

Firebox Return Tubular Bouer

with the A.S.M.E. Code. Sizes from 1800 to 35,000 sq ft of steam radiation, as rated by the Steel Heating Boiler Institute, are designed for hand firing with coal or for mechanical firing with oil, gas or stoker.

The Bison Low Pressure Scotch Wet-Back Top Boilers are carefully proportioned and balanced. They are designed for hand, oil, gas or stoker firing, for ratings from 15 to 250 hp. These boilers operate efficiently and carry sustained overloads. The Front Smokebox Door Open Sideways giving easy access to the tubes.

The Wet-Back Top increases the heating surface and steam disengaging area, thus adding to the capacity of these boilers. F & T boilers are designed so that the round furnace is always longer than the tube length which increases the furnace volume. This gives a large

combustion volume in proportion to horsepower rating which makes the boilers very economical to operate and exceedingly "Quick Steamers."

The International Boiler Works Company East Stroudsburg, Pa.

"Fuel Saver" Water Tube Steel Heating Boilers
SALES OFFICES IN PRINCIPAL CITIES

International "FUEL SAVER" Water Tube Steel Heating Boilers offer the same quick steaming and economy that have long been accepted as most efficient in marine and industrial service. "FUEL SAVER" Water Tube Boilers are available for large and small heating requirements in a wide range of types and capacities.

TYPE C "FUEL-SAVER" WATER TUBE STEEL HEATING BOILERS

For Office and Apartment Buildings, Schools, Hotels, Theaters, Institutions and Industrial Plants

Built in a complete range of standardized sizes and provide highly efficient performance for heating large buildings.

Up-to-date water tube design permits absorbing the intense heat released by modern methods of firing and they will operate efficiently under loads considerably in excess of ratings.

18 sizes { from 2680 to 42,500 sq ft mechanically fired rating from 2200 to 35,000 sq ft hand fired rating.

TYPE KD "FUEL-SAVER" WATER TUBE STEEL HEATING BOILERS

For Replacement Installations in Large Buildings Eliminates Costly Cutting and Patching

Especially designed for renovation and replacement work. Shipped knocked down in standardized parts that can be taken through existing doors or openings to basement and boiler room.

INTERNATIONAL erects or assumes full responsibility for erection work of knocked down boilers.

15 sizes $\frac{1}{7}$ 5850 to 56,470 sq ft mechanically fired rating 4810 to 46,510 sq ft hand fired rating.

TYPE FR STEAM GENERATOR UNIT Scotch Type with Forced Recirculation

For Military, Marine, and Civil-Power, Processing, or Heating

The TYPE FR Steam Generator is a compact and completely coordinated self-contained unit, with an exceedingly low space, weight, and horsepower ratio.

Standard construction and equipment has been stressed in the design and manufacture of Type FR Steam Generators.

Operators quickly recognize that the familiar features and extreme simplicity of these units guarantee easy maintenance and trouble-free operation.

TYPE FR Steam Generators are mounted on rigid steel chassis, with all auxiliary equipment necessary for self-contained

Licensed under LaMont Patents

equipment necessary for self-contained and automatic operation when connected with electrical, fuel oil, and feed water supply lines.

TYPE FR Steam Generators are furnished in all standard working pressures, from 15 to 200 pounds per square inch, and from 20 to 300 boiler horsepower.

ADVANTAGES

- Portability—Type FR Steam Generators are complete package units.
- Minimum Installation Time—Every unit is adjusted and tested before shipment, for efficient performance at rated capacity.
- No Stack—Primary and secondary air for efficient and smokeless combustion are furnished by forced draft fan. A small exhaust vent is all that is required.
- 4. FUEL SAVER-Overall efficiency 80 per cent +.

KEWANEE BOILER CORPORATION Kewanee, Illinois

BRANCHES IN 64 PRINCIPAL CITIES

Steel Heating and Power Boilers, Water Heating Garbage Burners, Tabasco Heaters and Tanks.

KEWANEE STEEL HEATING BOILERS

Kewanee offers a dependable line of Steel Boilers built for heating every size building, with high efficiency, burning any kind of fuel. There are 380 standard sizes and 33 types of Kewanee Boilers most of which are kept in stock, ready for immediate delivery.

Seventy-five years of intensive study and effort are back of Kewanee Boiler designs. They are all constructed in our extensively equipped factory at Kewanee, Illinois, in conformity with these Codes: American Society of Mechanical Engineers for construction, and for rating with the Steel Heating Boiler Institute Simplified Practice.

The Kewanee series include:

HEAVY DUTY RIVETED FIREBOX TYPES: 1,240 ft to 42,500 ft. Brickset and portable settings, Updraft and Downdraft Smokeless Furnace, Single-pass tubes for rear smoke outlet; Twopass tubes for front smoke outlet.

Welder Bollers: 2,200 ft to 42,500 ft. Direct Draft or Smokeless Arch with Corngated Crown Sheet. Rear Smoke outlet and Weld + Rivet for front Smoke outlet.

Residence Steel Boilers: 790 ft to 2,924 ft. Square Type "R" with and without Jackets and Hot Water Heating Coils for Storage Tank or Instantaneous flow.

Firebox Boiler for Stoker "400" and "500" Series

Firebox Bouler Portable Up-draft Type "400" and "500" Series

589 489 588 488 587 487 586 486 \$32 \$32 SPECIFICATIONS—PORTABLE UP-DRAFT BOILER 584 484 £83 582 482 581 $\frac{580}{480}$ 579 578 577 576 Boller No..... Coal. Sq Ft Oil, Gas or Stoker Sq Ft Width and Length In, x Ft In. Approximate Weight: Coal Lb Rated Steam Capacity: Height of Water Line

Rated Capacity for Water Boiler is 60 per cent greater than Capacity for Steam Boile

Table for two sertes of Botlers lists maximum dimensions only

				1		A	١.			N. Jacks	and a				Ì
OKELESS	DOWN-DRAFT	RAFT	BOILER												
:	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390
Rated Steam Capacity: Sq Fr Coal Gas or Stoker Sq Fr Width and Length In x Ft In. Overall Height Shell In Height of Water Line Approximate Weight; Coal Lb	3500 4250 428-3 80 70 6800 6200	4000 4860 42x9-3 80 70 70 7500 6900	4500 5470 48x8-7 86 73 8100 7400	5000 6080 48x9-5 86 73 8800 8800	6000 7290 54x11-2½ 94 78 10000 9100	7000 8500 54x12-11 94 78 11100	8500 10330 60x12-8 1 101 85 13600 12500	10000 12150 60x14-9 101 85 15300 14100	12500 15180 66x14-11 107 881/2 18000 16500	15000 18220 66x17-4 107 881/2 20500 18900	17500 21250 72x16-5 113 941/2 22900 21200	20000 24290 78x17-04 115 95 25100 23200	25000 30360 78x20-7 1 115 95 29500 27500	30000 36430 84x19-11 125 1071/2 33600 31500	35000 42500 84x22-8 125 1071/2 37500 35200
CDECTETCATIONS TYPE "C" WE	LDED 1	SOILER													

8 789 790 18 2789 2790	60 36430 35000 60 36430 42500 84x14-23 84x15-113 2 135 3 114 114	00 25200 28400 00 24400 27500 00 20900 23400	790 for Antl	38 7L89 7L90	60 36430 42500 4.9½ 84x14.2½ 84x15-11½ 157 161 1 136 140 00 23200 26100
787 788 2787 2788	20000 25000 24290 30360 72x13-44 78x14-99 118 122 101 103	18400 22000 17900 21200 15400 18100	Series 2778	7L87 7L88	24290 30360 72x13-4½ 78x14-9 134 140 117 121 17000 20100
786 2786	17500 21250 72x12-13 118 101	16600 16100 13800	as, Stoker	7L86	21250 72x12-1½ 131 114 15300
785 2785	15000 18220 66x12-34 112 95	14900 14400 12300	or Oil, G	7L85	18220 66x12-3 1 123 106 13600
784 2784	12500 15180 60x11-64 1081/2 94	12900 12500 10700	3-1790 fe	7L84	15180 60x11-63 1191/2 105 11800
783 2783	10000 12150 54x11-23 99 85	11000 10600 9100	eries 177	7L83	12150 54x11-2 \frac{1}{2} 108 94 10000
782 2782	8500 10330 54x9-11 99 85	9700 8000	Boiler St	7L82	10330 54x9-11 108 94 8800
781 2781	7000 8500 48x10-7 86 ¹ / ₂ 73	8400 8100 6900	*	7L81	8500 48×10-7 941/2 81 7600
780 2780	6000 7290 48x9-44 861/2 73	7500 7200 6100		7L78 7L79 7L80	2 48x9-44 941/2 81 6700
2779	5000 6080 42x9-2 831/2 72	6500 6300 5400	LER	71.79	6080 42x9-2 881/2 77 5800
778 2778	4500 5470 42x8-6 1 831/ ₂	5000 5000 5000	D BOL	11 1	5470 42x8-69 881/2 77 5400
777	4000 4860 42x7-109 831/2 72	5300 5300 4600	₹	71.77	4860 42x7-10 ³ 88 ³ /2 77 4900
776 2776	3500 4250 36x7-9 771/2 69	2000 4 1000 1000	BOX	7L76	4250 36x7-9 821/2 74 4400
775 2775	3000 3650 36x6-10 777/ ₂ 69	4400 4300 3700	VPE. "C" HI-FIREBOX	7L74 7L75	3650 36x6-10 821/2 74 3900
774	2600 3160 36x6-4 777/2	3800	H E	7L74	3160 36x6-4 821/2 74 3500
2773	2200 2680 36x5-10 777/ ₂ 69	3400	VPE.	71.73	2680 36x5-10 821/2 74 3100
*Boiler No	Rated Steam Capacity: Eal September	Approximate Weight: 700 Series, Coal Lb 2700 Series, Coal Lb	AT-SNOTA ATIONS	Boiler No.	Rated steam capacity. Stoker Stoker Wddhx-Length, In.xFtIn. Soverall Height Height Height Height Height Height Height

rres Up-draft. vn-draft	
kivet Furebox Boder ''5000'' Serves l o ''6000'' Serves Smokeless Down-dr	
+ Rivet Furebo	

•	20	20000
100	19	17500
T BOILERS	18 20K	15000
OW C 231	17 18K	12500
er ser	15 16K	10000
BOIL	14 15K	8500 10330
" RAFT	13 14K	7000
E UP-I	12 13K	6000
RTABL	10 11 12 13 14 15 17 18 19 20 11K 12K 13K 14K 15K 16K 18K 20K 19 20	5000
Editor K., PO	10 11K	4500 5470
YPE "	9 10K	4000
SPECIFICATIONS—BRICK-SET AND TYPE "K" PORTABLE UP-DRAFT BOILERS	6 K 8 9 K	Sq. Ft 1770 2020 2199 2689 3650 4250 4860 5470 6080 7299 8500 10300 12500 1580 18220 2159 24290 24800 5470 6080 7299 8500 10330 12150 15180 18220 21250 24290
L 24 K-SET	8K	3000
-BRIC	6K	2200
TIONS	5K	1800
HFICA	4 _K	1380
SPEC	3K	1240 1770
(n.m/, 0	3K 4K	Sq Ft Sq Ft
SPE		Capacity: r Stoker,

Boiler No.

KEWANEE TYPE "R" RESIDENCE BOILERS

Kewanee Type "R" Boilers are especially designed and constructed to meet all heating and hot water requirements for homes Every kind of solid fuel, coke, all grades of hard or soft coals and their briquette or treated forms are burned with excellent results. Also, any liquid fuel, oil, and natural or and small buildings.

Standard snug fitting jackets, or Regal style for completely enclosing burners are available for 83R. Capacities up to 720 may be ordered commercial gas can be used with high efficiency. Hot Water Copper Coil. for Square and 83R Boilers.

KEWANEE STORAGE WATER HEATERS

Kewanee Storage Heaters-use exhaust or live steam. 15 Standard Coil Elements in 29 standard size storage tanks. Capacities 95 to 2240 gals.

KEWANEE SCOTCH MARINE BOILERS

in small industrial usage. 5 sizes, 9.9 to 30 hp at Kewanee Scottie Junior for High Pressure Steam 100 lbs steam pressure.

Kewanee Welded Scotch Marine, Low Pressure Steam. 18 sizes, 2680 to 42500 sq ft, mechanically

KEWANEE HI-TEST BOILER

Kewanee Hi-Test Fusion Welded Series for High Pressure Steam in power or industrial process. hp, 125 and 150 lbs steam All A.S.M.E. Code. 6 stock sizes, 50 to 150 working pressure.

Square Type "R" Residence Bouler Jack	Square Type "R' Jacketed Boiler	π,			36	R Oil icketed	83R Oil or Gas Jacketed Boiler	
SPECIFICATIONS—RESIDENCE SQUARE TYPE "R" BOILER	ENCE SO	DUAR	E TY	PE "R	., B0	ILER		
*Boiler No	:	:	742	743	745	746	747	748
Rated Steam Capacity: Coal Oil, Gas or Stoker Width and Length Overall Height Shell Top. Height of Water Line Approximate Weight: Coal Standard Jacket, Crated	Ē.	%% . : . : . : . : . : . : . : . : . : .	790 32x394 591/2 48 2150 1900	1000 1120 32x45 \$ 59% 48 2360 2060 225	1350 1470 32x454 701/4 581/2 2800 2500 175	1600 1900 32x51 701/4 581/2 3050 2730 190	1780 2160 32x574 70 ¹ / ₄ 58 ¹ / ₂ 3300 2920 200	1960 2380 2380 2380 2380 2380 2380 380 380 380 380 380 380 380 380 380
Boiler No., Square "R" Oil or Gas	83R1	83R2	83R3	83R4	83R6	83R7	83R1 83R2 83R3 83R4 83R6 83R7 83R8 83R	83R
Rated Steam Capacity. Sq Ft Approximate Weight with JacketLb	189	20 <u>8</u>	1326	1513	2091	2363 2900	2652 3100	3300

*Boller Series 1742-1748 for Oil, Gas or Stoker; 2742-2748 for Anthracite. Kewanee Indirect Hot Water Heating Coils for Type C and Square "R" Boilers; 55 sizes, 90 to 1520 Gal.

1055

Spencer Heater

Division—The Aviation Corporation

Williamsport, Pa.

Sales Representatives in Principal Cities

Spencer Automatic Magazine Feed Heaters are furnished in cast iron sectional types—and steel tubular types for larger buildings—for steam, vapor and hot water heating. There is a size and capacity for every type of building, to provide economical and convenient heat—safe, dependable, sure.

COMFORTABLE HEAT AT LOW COST

Spencer Jacketed Heater L-1 Series

Why Spencer Heaters perform so satisfactorily can best be explained by an inspection of their design and construction. The Spencer principle, illustrated in the cross-sectional view, is simple:

Once a day fuel (No. 1 Buckwheat Anthracite or small size by-product coke) is put into the magazine. It fills the sloping grate to the level of the magazine mouth. The fire bed always stays at the proper level, for as fast as fuel burns to ash, it shrinks and settles on the sloping grate; and more fuel rolls down automatically over the top of the fire bed. Fuel feed is by gravity alone, in just the right amount to keep the fire always burning at its most efficient combustion point.

This explains why a Spencer Automatic Magazine Feed Heater always gives the same uniform, satisfying heat, and burns less fuel. These exclusive Spencer advantages are available in all types of the magazine feed heaters and boilers.

Coal — Coke — Gas — Oil — Spencer J and L series heaters and M series boilers are primarily designed to burn low cost No. 1 Buckwheat Anthracite or small size coke.

If at any time a property owner desires to burn more expensive fuels—oil or gas—his Spencer Heater can be readily converted and will show a high efficiency.

Thermostats—Thermostats and electric damper motors are furnished as optional equipment.

Jacketed Covering—Illustrated in the attractive metallic jacket of the deluxe enclosing type for 'Spencer Cast Iron Heaters, either with or without the enclosing jacket doors.

Spencer Heavy Duty Tank Heaters—With the automatic magazine feed construction, they provide ample domestic hot water at lowest cost, and with a minimum of tank heater attention.

Culaway sectional view Spencer Cast Iron Heater

SPENCER ALL YEAR SYSTEM

In addition to the excellent heating facilities afforded by Spencer Magazine Feed Heaters, Year Round Domestic Hot Water Service can also be provided and

assures at all times an ample supply of domestic hot water at lowest cost. Complete data for installation and operation upon request.

SPENCER STEEL TUBULAR MAGAZINE FEED BOILERS

For large buildings we recommend Spencer Steel Tubular Magazine Feed Boilers, burning low cost No. 1 Buckwheat Anthracite or coke.

In the cross-section diagram, part of the fire bed is cut away to show the sloping grates and the two magazines filled with fresh coal, ready to feed down automatically by gravity to the fire. These boilers are built in two vertical sections for ease in handling and installation-a great advantage on replacement jobs, eliminating the necessity of costly tearing out of walls or partitions. Combination water and fire tube construction; built to A.S.M.E. standards.

Steel Tubular Magazine Feed Boiler

SPENCER STEEL TUBULAR BOILERS For Oil, Stoker, Gas or Hand-Firing

For more than 55 years, Spencer has been building, in the opinion of experts, one of the most efficient, economical and dependable automatic coal burning boilers on the market. With this background of experience, Spencer Engineers developed the Spencer Steel Tubular Boiler for oil, gas, stoker and hand-firing—the "K" and "C" series for residential use, and the Type "A" for larger buildings. They are better boilers both for the property owner and for the architect or engineer who specifies them.

The high sustained efficiency of these boilers means adequate heat for a lower fuel cost. Design is of the three pass type. Combustion chamber is amply large. Built of best quality open hearth steel boiler plate, and steel tubes. Can be furnished with domestic hot water heating coils, storage tank or instantaneous type.

A complete range of sizes from 400 sq ft SHBI net steam rating up. meet or exceed in

> every particular the requirements of the A.S.M.E. and S. H. B. I.

Codes.

"C" Series Steel Boiler

"K" Series

Type "A" Steel Boiler

Every Spencer Boiler is guaranteed to carry more than its full rated load giving the installer a definite factor of safety.

These boilers have all the advantages of the Spencer exclusive design and are readily adapted to mechanical oil or stoker firing-or hand-fired coal or coke.

United States Radiator Grporation

General Offices: Detroit, Michigan

Branches and Sales Offices in Principal Cities

Detroit, Michigan

CAPITOL RED TOP BOILERS

"B" Series Unjacketed Boıler

"A" Series-All Fuels

Boiler No.	Capa Square		I-B-R Direct Iron Ra	
	Steam	Water	Steam	Water
A-7 A-8 A-9 A-10 A-11	770 980 1190 1395 1605	1235 1565 1900 2235 2565	340 440 540 640 740	545 705 865 1025 1185

"B" Series-All Fuels

B-8	1875	3000	920	1470
B-9	2210	3535	1110	1770
B-10	2520	4035	1275	2040
B-11	2790	4460	1440	2300
B-12	3035	4855	1580	2530
B-13	3280	5245	1730	2770
B-14	3525	5640	1880	3000

"C" Series-All Fuels

Boiler No.		acity e Feet	Iron R	t Cast adiator Sq Ft
	Steam	Water	Steam	Water
C-12 C-14 C-16 C-18 C-20 C-22 C-22 C-24 C-26 C-28 C-30	4700 5600 6500 7300 8000 8700 9300 9900 10,500 11,000	7760 9240 10,730 12,050 13,200 14,360 15,350 16,335 17,325 18,225	2250 2715 3180 3645 4110 4575 5040 5450 5800 6110	- 3600 4345 5090 5830 6575 7320 8065 8720 9280 9775

CAPITOL SQUARE SECTIONAL BOILERS

"ō0" Series (All Fuels)

"50" Series-All Fuels

Boiler No.	Capa Squar		Direct Iron R Loads	adiator
	Steam	Water	Steam	Water
950	8800	14.080	5640	9025
1050	10.235	16,380	6560	10,500
1150	11,600	18,555	7435	11,895
1250	12,950	20,715	8300	13,280
1350	14,260	22,815	9140	14,625
1450	15,600	24,960	10,000	16,000
15 5 0	16,910	27,060	10,840	17,345
1650	18,190	29,100	11,660	18,655
1750	19,435	31,100	12,460	19,935
1850	20,655	33,050	13,240	21,185

"WN" Series-All Fuels

WN-277 6060 9695 3885 WN-278 7435 11,895 4765	6215
WN-279 8800 14,080 5640 WN-280 10,235 16,380 6560 WN-281 11,600 18,555 7435 WN-282 12,950 20,715 8300 WN-283 14,260 22,815 9140 WN-284 15,600 24,960 110,000	7625 9025 10,500 11,895 13,280 14,625 16,000

"WNO" Series—For Oil Firing

United States Radiator (Orporation

General Offices: Detroit, Michigan

Branches and Sales Offices in Principal Cities

Detroit, Michigan

CAPITOL SUNRAY No. 9 SERIES BOILERS For Automatic Firing

Boiler No.	Capa Square		I-B-R Direct Iron Ra	Cast
	Steam	Water	Steam	Water
9-4 9-5 9-6 9-7 9-8 9-9	1360 1785 2210 2630 3055 3480	2175 2855 3535 4205 4885 5565	925 1245 1565 1885 2205 2525	1480 1990 2500 3020 3530 4040

"DEEPFIRE" HOT WATER SUPPLY BOILERS

D 1	Ča	pacity—Gallor	18
Boiler	100° Rise	85° Rise	100° Rise
No.	6 Hours	I Hour	1 Hour
30	792	155	132
40	1512	297	252
50	2160	423	360
60	2700	529	450

*CAPITOL THINTUBE RADIATORS

3	3-Tube							
Heights	Per Section Heating Surface							
25"	1.6 Sq Ft							
4	-Tube							
19" 22" 25"	1.6 Sq Ft 1.8 Sq Ft 2 0 Sq Ft							
5	5-Tube							
22″ 25″	2.1 Sq Ft 2 4 Sq Ft							
6	6-Tube							
19" 25" 32"	2.3 Sq Ft 3.0 Sq Ft 3.7 Sq Ft							
*137 in Centers.								

40 per cent less space needed for these graceful, efficient Capitol ThinTube Radiators

U. S. THINTUBE WALL RADIATOR

This Thintube Radiator has been designed for wall hung application. The narrow width of $3\frac{1}{4}$ in. and over-all height of 24 in. readily permits substitution for the heavier type conventional wall radiator, the production of which has been restricted by the War Production Board.

Pacific Steel Boiler Division United States Radiator Corporation

General Offices: **Detroit, Michigan**Sales Offices in Principal Cities
A Complete Line of Low Pressure Steel Heating Boilers

All Pacific Boilers are built using the A.S.M.E. Boiler Code Standards as minimums.

LOW WATER LINE SERIES

Built in the following capacities for steam: Coal Burning Sizes—1800 to 35,000 sq ft. Mechanically Fired Sizes—2680 to 42,500 sq ft.

High Fire Box for Stoker Firing—Sizes—2680 to 42,500 sq ft.

All Pacific Boilers are built, inspected, and tested under the supervision of the Hartford Steam Boiler Inspection and Insurance Company.

TWO-PASS FRONT SMOKE OUTLET

Built in the following capacities for steam: Coal Burning Sizes—4000 to 30,000 sq ft. Mechanically Fired Sizes—4860 to 42,500 sq ft.

All Pacific Boilers are made of steel with each joint and seam electrically arc-welded—built to last a life-time.

SINGLE-PASS REAR SMOKE OUTLET

Built in the following capacities for steam: Coal Burning Sizes—1800 to 6000 sq ft. Mechanically Fired Sizes—2190 to 7290 sq ft.

PACIFIC THREE-PIECE CONSTRUCTION

Made up of three parts, shell, firebox and base, Pacific Boilers are particularly adaptable to replacement work. Where necessary Pacific fireboxes can be split (as illustrated) allowing the boiler to be taken into the building in four pieces and erected without welding on the job.

Descriptive Bulletins on Pacific Steel Boilers will be mailed on request.

Weil-McLain Company

Manufacturing Division: Michigan City, Ind. and Erie, Pa.

General Offices: 641 W. Lake Street, Chicago

NEW YORK OFFICES. 501 Fifth Avenue

Prompt Weil-McLain Boiler and Radiator service is made conveniently available through local stocks carried by Weil-McLain Distributors in most of the important distributing centers.

No. 68 Boiler for Automatic Firing

Boiler is completely jacketed and insulated. Has an integral front burner extension. I-B-R Ratings: Steam 390 to 690 sq ft, Water 625 to 1,100 sq ft.

No. 78 Boiler for Automatic Firing

Boiler has insulated enameled de luxe jacket. Front or rear jacket extension available. I-B-R Ratings: Net Steam 530 to 1,130 sq ft, Water 850 to 1,810 sq ft.

New No. 57 All-Fuel Boiler

Jacketed and insulated square boiler for small Net I-B-R Rathomes. Steam 210 to 430 ings: Water 340 to 690 sq ft, sq ft.

No. 67-No. 77 All-Fuel Boilers

Conversion type boilers with insulated enameled jacket. For hand or automatic firing. Net I-B-R Ratings: Steam 290 to 620 sq ft, Water 465 to 990 sq ft.

Round-Type Boiler

Unjacketed Round Boiler with corrugated heating surfaces for economical home heating. Connected Load Ratings: Steam 275 to 1,000 sq ft, Water 440 to 1,600 sq ft.

Square-Type Boilers

Sectional boilers for larger installations. Complete range of sizes. Connected Load Ratings: Steam 1,790 to 11,300 sq ft, Water 2,870 to 17,900 sq ft.

Raydiant "Concealed"

A Raydiant convector type all cast-iron Radi-ator. Made in "Concealed," also Partially Recessed, Cabinet and Humidifying types.

Solray Radiator

Free standing Cabinet type Radiator in a lower price range than Raydiant Cabinet Radiators. Available in three depths in 21, 24 and 27 in. heights.

Junior Radiator

Smaller Tubular type Radiation which conserves space. Available in 134 in. centers in 3, 4, 5 and 6 tube widths and 13 to 32 in. heights.

The Vinco Company, Inc.

305 East 45th Street

New York, N. Y.

Boiler Cleanser 3, 5 and 10 lb cans

In peace or war, only a clean boiler can be an efficient boiler. Every pound of fuel saved by more efficient economical operation contributes to shortening and winning the war. A clean boiler means fuel saving—and fuel saving is now a patriotic duty.

VINCO BOILER CLEANSER

A positively harmless insoluble powder cleaner for new, remodeled and old heating systems. A unique, scientifically processed compound on a special formula not to be confused with other powder boiler cleaners.

What Vinco Boiler Cleanser Does

VINCO removes oil, grease, scale, rust and dirt from the internal surfaces and from the boiler water without the labor, expense, and uncertain results of blowing boilers over the top or of wasting returns.

By this thorough cleaning Vinco prevents or cures foaming, priming, surging, and slow steaming.

How Vinco Boiler Cleanser Works

Each minute grain of VINCO powder adsorbs several times its own weight of oil, rust and dirt. These larger grains of adsorbed impurities then settle and are drained through the bottom according to directions on each can.

Our Guarantees

- VINCO contains no potash, lye, soda of any kind, oil, acid, or other harmful ingredients.
- Purchase price is refunded if results are not as claimed when VINCO has been used according to directions.

VINCO RUST PREVENTER

When used after VINCO Boiler Cleanser has removed oil, grease, rust, scale and dirt, it will keep the rust inhibiting factors at the optimal constant for a year or more. (Testing kit below has complete instructions and chart.)

VINCO TESTING KIT No. 10

for Testing Heating Boiler Waters

The kit enables the layman to make simple, rapid tests todiagnose and prescribe correct treatment of boiler waters right on the job.

A new time saving method that permits valid conclusions heretofore requiring complicated and often lengthy laboratory analysis and technique.

Each kit has sufficient material for complete tests on 100 jobs. Refills cost about 2 cents per test.

Help Win the War by Fuel Saving.

Rust Preventer
1 qt cans only

Vinco Testing Kıt No. 10 (Patent applied for)

VINCO SOOT-OFF

Safely and thoroughly removes the insulating blanket of soot on fire pot, flues and chimney. It also insures against external corrosion (caused by dampness and soot forming sulphuric acid during summer layoff.) No dangerous chemicals.

VINCO SUPERFINE LIQUID BOILER SEAL

A different liquid seal. Unique in that it does not induce priming and foaming. It has no unpleasant smell. Makes speedy and permanent repairs of boiler and heating system leaks. Fine to tighten up new jobs. Directions simple.

Ouantities

Steam and Vapor Systems-Use 1 quart VINCO Liquid Boiler Seal to each 6 sq. ft. grate area.

Hot Water Systems—Use 2 quarts VINCO Liquid Boiler Seal to each 6 sq ft grate area.

SPECIFICATIONS FOR COMPLETE VINCO Treatment of New or Remodeled Steam or Vapor Heating Systems

(Note that quantities are based on actual installed radiation, not on boiler capacity.)

And the second s	remarked the second remarked the second	
Sq Ft of Radiation	For Steam or Vapor Systems, to prevent or cure priming or foaming Also for Hot W Heating Systems and at approx 200 F or above.	Annually, to re- move ru:t scale, dirt and for Hot Wate Systems below 200 F.
up to 350 351 " 600. 601 " 1100 1101 " 1400. 1401 " 1800. 1801 " 2100 2101 " 2700 2701 " 3100 3701 " 4200. 4201 " 4600 4601 " 5000 5301 " 5500 5301 " 5500 5301 " 5500 6201 " 5900 5201 " 6200 6201 " 6500 6201 " 6500 6201 " 6800 6201 " 6800 6301 " 7100 7701 " 8000 8001 " 8000 8001 " 8000 8001 " 8000 8001 " 8000 8001 " 9200 9201 " 9500 9201 " 9500 9201 " 9500 9801 " 9800	3 5 8 10 13 15 18 20 23 26 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	11/2 21/2 4 4 5 61/2 71/2 9 10 111/2 13 14 15 15/2 16/2 17/2 18 18/2 19 19/2 20 201/2 211/2 221/2 233/2

^{*}Above 10100 sq ft use an additional pound Vinco for each additional 300 sq ft of actual installed

-1 lb cans 50 and 100 lb drums

Liquid Boiler Seal 1 qt. cans only

Do not use as a cleaning agent soda or any alkali, vinegar or any acid. Vinco.

- 1. After the system is tested and tight, use the proper quantity of Vinco listed. After this first clean-out of any new or remodeled heating system, Vinco Boiler Cleaner need be used only if more piping, radiation, or another boiler is added to the original installation.
- 2. After using Vinco Boiler Cleaner, Vinco Field Test Kit should be used to determine and apply the proper quantity of Vinco Rust Preventer. Vinco Rust Preventer should be applied annually or whenever the boiler water is drained for necessary repairs to the system.

SPECIFICATION FOR OLD HEATING SYSTEMS THAT DO NOT PERFORM PROPERLY

Diagnose and treat according to Vinco Field Test Kit.

SPECIFICATION FOR HOT WATER SYSTEMS

Use half quantities listed for treatment of steam systems to remove impurities. Then use test kit to determine proper quantity of Vinco Rust Preventer.

The Webster Engineering Co.

419 West 2nd St., Tulsa, Oklahoma

Division of SURFACE COMBUSTION, TOLEDO, OHIO

WECO-N.G.E. SERIES F600 GAS BURNERS

Improved venturi and greater port area insure much higher capacities at lower pressures.

Unique baffles at the outlet of the mixing tube make possible perfectly even distribution of flame completely around the baffle brick. As a result the maximum flame length is greatly reduced.

Interchangeable grills with multiple ports can be varied to suit the combustion characteristics of various gases. The proper sizing of these grills prevents any possibility of flash back.

In addition to the above major improvements the F600 possesses the same desirable features that made the 600 so popular.

1. Simple installation requiring no expensive insulated combustion chamber and having no furnace radiation loss.

2. Extreme quietness due to low rate of

combustion over a large area

3. Flexibility from infinite number of possible combinations varying both size and shape to meet load and firebox conditions at various gas pressures.

4. High radiant transmission rate due to radiant temperature of the standard firebrick baffles on the top of the burner tubes.

5. Low draft loss because of ample secondary air openings.

6. Plain gas pilots of heat resistant material and of a design that will not allow flame to pull off.

7. Safety pilot applied in a cool zone in a manner that insures perfect direct ignition of the burner yet allowing the the thermal element to cool quickly upon flame failure.

8. Guaranteed vibrationless under all conditions.

CAPACITY OF SINGLE F600 VENTURI TUBE-No. 17 MTD ORIFICE

								0.112.		
Manifold Gas Pressure	0.5″ W.C.	10″ W.C.	20″ W C.	3 0″ W.C.	4.0" W.C.	5.0″ W.C.	6.0″ W.C.	4 oz. W.C.	6 oz. W.C.	8 oz W.C.
Input-Cu Ft, 1 hr	24.5	38.5	58.0	72 0	84.0	94.5	104.0	112.0	138.0	159.5
Output-Sq Ft, St. Rad.	75	117	178	222	258	289	318	343	423	488
Output-Boiler H.P	.54	.84	1.28	1 59	1.85	2.07	2 28	2.46	3.04	3.4

TODD COMBUSTION EQUIPMENT, INC.

(Division of Todd Shipyards Corporation)

601 West 26th Street, New York City

New York

MOBILE

NEW ORLEANS

GALVESTON

SEATTLE

BUENOS AIRES

LONDON

The TODD HEX-PRESS REGISTER in combination with the TODD "VEE-CEE" VARIABLE CAPACITY BURNER

Makes possible increased combustion efficiency under almost any type of boiler of 100 H.P. capacity or larger, operating at 50 pounds steam pressure or higher.

It provides equal efficiency under either forced or natural draft conditions. Hex-Press Register assures the most intimate mixture of oil and air as well as quicker, more complete combustion. with minimum draft loss at high capacity . . . effecting great economy in maintenance and materially reducing fuel costs-Through the exclusive "variable range" feature of the "Vee-Cee" Burner, practically unlimited firing range is assured . . . without change of burner tips, oil delivery

pressure or angle of spray.

Constant steam pressure can be maintained regardless of demand . . . changing load requirements are met instantly under manual or fully automatic control.

COMBINATION GAS and OIL BURNERS

For Natural or Refinery Gas and/or Fuel Oil. Available in wide range of capacities. Quickly adjustable for the combustion of either fuel alone, or both in combination. Of special value where fluctuating comparative costs of these fuels call for equipment suited to changeover without time-consuming structural changes.

Maintenance and operation are reduced to a minimum by compactness and simplicity of design . . . accessibility of all parts . . . rugged construction and positive overall efficiency.

Design features eliminate possibility of escaping gas due to structural distortion ... prevent stratified combustion resulting from improper air distribution and high

gas pressure.

Providing sufficient flexibility to care for varying loads, these units assure high furnace temperature and radiant heat transfer with low stack temperature . . thorough mixture and optimum air-fuel ratio with utmost ease of adjustment.

ROTARY FUEL OIL BURNERS

For firing high or low pressure steam or hot water boilers of all types . . . in smaller factories and industrial plants, laundries, dryers and cleaners, office buildings, hotels, apartment houses. Also applicable to industrial ovens, kilns, etc., where furnace and general physical conditions permit.

Available with manual, semi-automatic or fully automatic control . . . in varying sizes and types . . . for burning light or

heavy oil.

Horizontal atomizing cup is rotated by direct-connected electric motor, assuring constant firing as long as motor is in operation. Motors are of extra large frame size, air-cooled and built to withstand long, hard service. Positive air-oil interlocking device automatically shuts off oil supply following any burner stoppage.

Of rugged construction . . . with all parts easily accessible for cleaning or renewing . . . these burners provide a flexible capacity range, with complete and efficient combustion under widely fluctu-

ating loads.

TODD MANUFACTURES: Mechanical Pressure Atomizing Oil Burners-VEE-CEE Variable Capacity Burners—Horizontal Rotary Oil Burners—Oil Burning Air Registers for Natural, Assisted, Induced or Forced Draft—Inside Mixing Steam Atomizing Oil Burners - Combination Gas and Oil Burners—Furnace Doors and Interior Castings for converting Howden Type Furnace Fronts to oil firing-Oil Burning Galley Ranges-Oil Heating, Pumping and Straining Equipment.

All installations of Todd Equipment are always individually engineered to fulfill specific requirements. Send for descriptive literature.

> Todd engineers are always available for consultation and analysis of combustion problems-without obligation.

The Brownell Company

ESTABLISHED 1855

Dayton, Ohio

Manufacturers of

BROWNELL BOILERS AND STOKERS

Representatives in All Principal Cities

FIRE TUBE BOILERS of various types. HEATING BOILERS riveted and welded. UNDERFEED STOKERS from 5 Horse Power upwards STEEL STACKS, TANKS AND SPECIAL PLATE WORK.

Type L R (Low Set) Underfeed Ram Type Stoker with automatic air volume control. Can be furnished with Brownell exclusive, fully automatic coal feed control. Sizes up to 300 horse power. An ideal stoker for firebox boiler or other installations where height of setting is limited.

Type C Screw Feed Stoker, proved by years of service to be sturdy, reliable and efficient. Illustration shows dead plates can also be furnished with dump plates in the larger sizes. 30-300 HP.

Welded Triple Pass Heating Boilers built in either high leg or low water line types. Hand fired ratings 500 to 35,500 sq. ft. steam, 800 to 56,800 sq. ft. water radiation. Stoker, Oil or Gas fired up to 43,100 sq. ft. steam or 69,000 sq. ft. water radiation. A.S.M.E. Code construction.

High or Low Pressure Double Pass Boiler with Type L R Stoker. Designed and manufactured as a matched unit steam generating plant. Furnished in working pressures from 15 to 150 pounds and sizes up to 300 horse power. For power, heating and process steam. Steam ratings 3,600 to 42,500 sq. ft. Water rating 5,800 to 68,000 sq. ft. when used with stoker, oil or gas. A.S.M.E. Code construction.

The illustrations above show only a part of the complete Brownell line. We shall gladly send literature describing BROWNELL BOILERS and STOKERS. Our nation wide field organization is ready to assist in problems of steam generation.

Combustion Engineering Company, Inc.

All Types of Fire Tube and Water Tube Boilers Mechanical Stokers

Complete Steam Generating Units Pulverized Fuel Systems

200 Madison Avenue, New York, N. Y. Offices in all principal cities of the United States and Canada

More than 17,000 C-E Stokers purchased to date

C-E Skelly Stoker Unit

Type E Stoker

C-E Low Ram Stoker

C-E Spreader Stoker

C-E Skelly Stoker Unit—A compact, self-contained unit with integral forceddraft fan, adapted to burn either anthracite or bituminous coal. Alternate fixed and moving grate bars assure lateral distribution of fuel. Automatic control is standard equipment. Approximate application range—20 to 200 rated boiler hp.

Type E Stoker—A single-retort, underfeed stoker with an established reputation of many years' standing for dependable service. Designed to burn a variety of bituminous coals under boilers up to about 600 rated hp. Available with steam, electric or hydraulic drive.

C-E Low Ram Stoker—A single-retort, stationary-grate underfeed stoker for burning bituminous coals under boilers in the upper size range of the C-E Skelly Stoker.

C-E Spreader Stoker—A simple, rugged overfeed stoker designed to burn a wide variety of coals. Fines are burned in suspension and the coarser coal on a grate which may be of either stationary or dumping type. Rate of coal feed and air supply may be regulated over a wide range and are readily adaptable to automatic control. Applicable to boilers from about 100 boiler hp up.

C-E Multiple Retort Stoker—For burning bituminous and semi-bituminous coats under boilers up to the largest sizes.

C-E Traveling Grate and Chain Grate Stokers—Including both Coxe and Green types. Available with grate surfaces suitable for anthracite, coke breeze, lignite or bituminous coal, as required. Traveling grates are all forced-draft types; chain grates are either forced or natural draft types.

C-E Boilers—All fire tube and water tube types in sizes ranging from 25 hp up to the largest. Standard and special designs to suit all conditions of fuel, load and space. Included are all types formerly known by the trade names "Heine," "Walsh & Weidner," "Casey-Hedges," "Ladd" and "Nuway".

Separate Catalogs describing each of these stokers are available. A-531-B

Detroit Stoker Company

Sales and Engineering Offices General Motors Bldg., Detroit, Mich.

Main Offices and Works at Monroe, Mich.

Since 1898

District Offices in Principal Cities

Built in Canada at London, Ont.

Detroit Stokers are unsurpassed for economy and dependability. They include Underfeed and Overfeed Stokers of many sizes and capacities for all types of boilers, 30 Horse Power and upwards. All grades of Bituminous Coal successfully burned. Operating costs are low. Substantial, heavy designs represent over forty years' experience in Stoker manufacture. Catalogs of various types, furnished on request.

Detroit C-D Stoker is a Single Retort, Moving Grate Stoker with Continuous Ash Discharge.

Deirost Double Retort Stoker, a multiple retort side cleaning stoker for medium size boilers.

Detroit RotoStoker, (Stationary Grate Type). Ash removed through doors at grate level successfully burns a wide range of fuels.

Detroit UniStoker with Detroit Adjustable Feed (Coal Feed Control) insures accurate fuel and air supply for best economy. Single Retort, Side Cleaning, for boilers approximately 125 to 250 horsepower.

C-D Stoker—Single Retort, Moving Grate Stoker. Continuous Ash Discharge Sections at each side have a rocking movement. Rate of ash discharge, controlled at the front. Ash pit losses are low. Motor or steam ram driven. Forboilers of approximately 300 to 500 Horse Power.

Detroit Double Retort Stoker, a Multiple Retort Stoker having two retorts with the side cleaning feature. For medium sized boilers having wide furnaces. Used to advantage where limited space conditions prevent the use of the rear cleaning Multiple Retort Stoker.

Detroit Roto-Stokers are Overfeed Spreader Type Stokers, having an Overthrow Rotor action, which insures uniform fuel distribution over the entire area. Offers advantages over other firing methods for burning inferior fuels and efficiently handling extremely fluctuating loads.

Detroit UniStoker with Detroit Adjustable Feed provides a wide range of coal feed control.

Detroit C-D Stokers. C-D stands for Continuous Discharge of Ashes

Detroit Multiple Retort Stoker for large boilers and high capacities. An inclined fuel bed Stoker, possessing all outstanding modern features

Detroit RotoStoker (Dumping Grate Type) (Either Power or Hand Operated) for large boilers. Particularly suited to fluctuating loads

DETROIT LOSTOKER

Detroit LoStoker is a complete mechanical firing unit in many grate area sizes and capacities for application to all types of boilers from approximately 30 to 150 hp. Burns various grades of Bituminous Coal with high efficiency. Fuel is fed only when needed-none wasted. Single Retort, Side Cleaning, Adjustable Plunger Feed Type, mechanically driven from electric motor, requires little power for operation. Automatically controlled from steam pressure, water temperature or room thermostat. Compact, easily installed, responsive and automatic. A great coal saver.

ADVANTAGES:

Continuous Adjustable Plunger Feed with control of the quantity of coal fed and its distribution

Heavy Mechanical Drive of simple design, requires little power.

Side Cleaning with dumping grates, ashes removed through doors provided in the Stoker front. No hand cleaning.

Agitator in coal hopper for continuous coal feed, cannot stick or jam with wet coal.

Automatically Controlled. Motor or steam turbine driven, controlled from steam pressure, water temperature or thermostat.

Many grate area sizes and capacities to fit the furnace and provide the proper grate area to readily handle heavy loads and also to operate efficiently under light load conditions.

Detroit LoStoker (brickset type) for application to horizontal return tubular or water tube boilers.

Detroit LoStoker readily applied to Firebox Boilers—built to fit the Furnace or Firebox. Coal Hopper with Agitator designed to clear Boiler Doors. Plunger Feed-side cleaning feature eliminates arduous hand cleaning of fires

Detroit LoStoker (Side elevation in brick setting) for horizontal return tubular or water tube boilers.

Detroit LoStoker showing adjustable plunger feed

Front Elevation of Detroit LoStsker (brickset type) built to fit the furnace For use with ho izon'al tubular, firebox boi'ers on brick foundations or water tube boilers Arrows and cate flow of air to fuel bed

Iron Fireman Manufacturing Company

Automatic Coal Stokers

Portland, Oregon

Cleveland, Ohio

Address inquiries to 3369 West 106 St., Cleveland, Ohio

Retail Branches or Subsidiaries: Chicago, Ill.; Milwaukee, Wis; St Louis, Mo.; New York, N. Y.; Brooklyn, N. Y.; Toronto, Canada; Montreal, Canada

Dealers in Principal Cities and Towns in the United States and Canada Representation in numerous foreign countries

COMMERCIAL AND INDUSTRIAL STOKERS

STANDARD HOPPER MODELS

Commercial Installation-Hopper Model

This series of stokers is the standard of value in equipment for automatically firing boilers ranging in size up to 350 horsepower. Available in a wide range of coal teeding capacities, lengths and grate arrangements, to fit varied requirements.

Hopper Model Iron Fireman in Operation in Horizontal Return Tubular Boiler

STANDARD COAL FLOW MODELS

Commercial—Industrial Installation—Coal Flow model that carries coal direct from bunker to fire

A heavy duty stoker which combines Iron Fireman's well known firing efficiency with the automatic conveying of coal direct from bunker to fire. An integral coal conveying mechanism eliminates the labor and expense of manual coal handling. The Iron Fireman Commercial-Industrial Coal Flow stoker fires boilers developing up to 350 horsepower. Pneumatic Spreader stokers also available in Coal Flow models.

	OUTPUT RANGE					
MODEL	Boiler Horsepower	Equivalent Direct Radiation				
	1 totacpowet	Steam (240 Btu)	Hot Water (150 Btu)			
Coal Flow (available in all models) Commercial and Industrial Standard Underfeed Commercial and Industrial Poweram Underfeed Commercial Anthracite Pneumatic Spreader	3 to 500* 3 to 350 30 to 400 30 to 130 50 to 1,000*	400 to 70,000 400 to 50,000 4,000 to 56,000 4,000 to 18,000 7,000 to 140,000	650 to 110,000 650 to 75,000 6,000 to 90,000 6,000 to 29,000 11,000 to 225,000			

^{*}Multiple units available for larger boilers.

POWERAM STOKERS

Combines ram-type coal distributor system in retort with free-running worm conveyor from coal supply, and has these advantages: Delivers the fuel to the fire bed in a loose, easily aerated condition; the reciprocating pusher blocks insure proper fuel distribution, and make possible the successful and efficient burning of many types of coal which otherwise are impractical to fire automatically. Designed for boilers developing up to 400 horse-power.

PNEUMATIC SPREADER STOKERS

As shown in the illustration above, the Iron Fireman Pneumatic Spreader stoker conveys coal from the hopper or main coal bunker to a transfer housing, where it is picked up by a stream of air and carried to the furnace and grates. The fines burn in suspension, and the larger pieces form a shallow fuel bed on the grate. By means of an adjustable nozzle, the coal is distributed uniformly over the entire grate surface. The conveying air provides the overfire air which is essential for efficient combustion. Entering at right angles to the flow of burning gases from the fuel bed, the conveying air produces maximum turbulence; another requisite of efficient and smokeless combustion. The Iron Fireman

Pneumatic Spreader stoker was designed to burn efficiently such economical fuels as the lower rank bituminous, and subbituminous coals and also lignite. It provides reliability of operation, physical adaptability, ease of operation, and low maintenance which is not afforded by other types of automatic coal burning systems. Pneumatic Spreader stokers are particularly adaptable to operation at high ratings, and as a result are greatly stepping up steam output in many plants throughout the United States and Canada. Iron Fireman Pneumatic Spreader stokers are made in both hopper and Coal Flow models; the latter carry coal direct from the bunker to the fire.

Buffalo Pumps, Inc.

450 Broadway, Buffalo, N. Y.

Branch Offices

ALBANY, N. Y, 1303 Standard Bldg, R. B. Taylor
ATLANTA, GA., 305 Techwood Drive, J. J. O'Shea
BALTIMORE, MD, 508 St. Paul St., E. E. Thompson
BOSTON, MASS, 507 Main St., Melrose Station, E. D. Johnson
CHICAGO, LL, 20 N. Wacker Drive, L. D. Emmert
CINCINNATI, OHIO, Building Industries Bldg, F. W. Twombly
CLEVELAND, OHIO, 418 Rockefeller Bldg, T. A. Weager
DALLAS, TEXAS, 1801 Tower Petroleum Bldg,
T. H. Anspacher

DAVENPORT IOWA, 305 Security Bldg,
D C. Murphy Co., Inc
DENVER, Colo, 1718 California St., Stearins Roger Mfg. Co. DEN MOINES, IOWA, 214 Old Colony Bldg,
D. C. Murphy Co., Inc.
DETROIT, MICH, 2051 W Lafayette Blvd.
Coon-De Visser Co., T. E. Coon

GREENVILLE, S C., 21 Blue Bldg Los Angeles, Calif., 708 Pershing Sq. Bldg., P. R. Adrianse MINNEAPOLIS, MINN, 2102 Foshay Tower, E F. Bell NEW ORLEANS, La., Devlin Bros, 1003 Maritime Bldg. NEW YORK, N. Y, 39 Cortlandt St, W S Koithan Omaha, Nebr., 660 N. 8th St., Russell Harris PHILADELPHIA, PA., 702 Cunard Bldg, Davidson & Hunger RICHMOND, VA, Williamson & Wilmer, Inc. .. Mutual Bldg. SEATTLE, WASH., 500 First Ave, So., A. T. Forsyth ST LOUIS, Mo, 1598 Arcade Bldg, J W Cooper TOLEDO, OHIO, 1922 Linwood Ave, C. M. Eyster WASHINGTON, D. C. 512 Woodward Bldg, G. S. Franke COMPLETE LINE MANUFACTURED IN CANADA BY CANADA PUMPS, LTD., KITCHENER, ONT

PRODUCTS—A complete line of Single and Multi-stage Centrifugal Pumps and Special Pumps for use in all types of heating and air conditioning installations.

Buffalo Self-Priming Single and Double Suction Centrifugal Pumps

Now available with positive self-priming device built with the pump. This primer is built under license from the Nash Engineering Company and is fully covered

by patent.

Buffalo Self-Priming Pumps offer these advantages: (1) All working parts are above the liquid to be pumped. (2) There is complete access to all parts of installation. (3) Rotors are balanced—vibrationless. (4) Buffalo Self-Priming Pumps are very quiet—no long shafts to vibrate and fewer bearings. (5) Constant positive prime obtained without foot valves.

Buffalo Automatic Sump Pumps

Buffalo Sump Pumps are selfcontained and have unusually high efficiencies thus permitting the use of small motors. Ball bearing thrust and enclosed shaft especially adapt

these pumps for their service.

Buffalo Double Suction Single Stage Centrifugal Pumps

For general service where clear water is handled you will get top performance with these pumps. They embody all of the accepted modern features of centrifugal pump design. Capacities range from 10 to 50 thousand U.S. gallons per minute.

Buffalo Single Suction Closed-Coupled Pumps

This pump is close-coupled to electric motor, eliminating the necessity for bearings. The impeller is overhung on the motor shaft, providing a compact, easilyserviced unit. Permanent alignment is assured and the pump mounted in this manner requires very little space.

Buffalo Close - Coupled Pumps are suitable for handling hot water with low submergence on suction, or for operating

with suction lift as high as 25 ft.

These pumps are also available in special alloys.

Chicago Pump Company

2330 Wolfram Street

BRUnswick 4110

Chicago

PRODUCTS—Return Line Vacuum Heating and Boiler Feed Pumps, Condensation, House, Booster, Fire Pumps, Circulating, Brine, Sewage, Bilge, Sludge, Pneumatic and Tankless Water Supply Systems and Automatic Alternator for Duplex Sets of Pumps.

"CONDO-VAC"

Return Line Vacuum and Boiler Feed Pump for Heating Systems

Fig 2102—Duplex "Condo-Vacs" with Duplex Double Automatic Control

No vacuum on stuffing boxes, ample clearance in rotating member. It costs less to operate a "Condo-Vac." "Condo-Vac reduces corrosion in piping and boiler to minimum—because pump does not take in air from atmosphere and entirely eliminates all air coming back from system. "Condo-Vac" is quiet, has a low inlet, entirely automatic, fool-proof, easy to maintain. Ask for bulletin 270.

Close-Coupled Pumps

Boiler Feed, Circulating, Tank Filling, Water Supply

Fig. 2130—Close-Coupled, side suction pump Capacties range from 3 to 600 Gpm against heads up to 189 ft. Motors from 1/6 to 20 Hp. Discharge 1 to 3 m. Closed and open type impellers. Bulletin 108

"Sure-Return" Condensation Pump

for Low and Medium Pressure, and Systems up to 75,000 Sq Ft Radiation

Fig. 1946

"Sure Return" Condensation Pumps and Receivers are built for systems up to 75,000 sq ft of direct radiation and for low and medium pressures. Built in either single or duplex units. Duplex units are alternated in their operation by the Automatic Alternator. Complete data in Bulletin 250.

Vertical Condensation Pumps

for Low and Medium Pressure for Systems from 500 to 100,000 Sq Ft Radiation

Fig. 1940 Vertical Condensation Pump

The vertical condensation pump is designed to receive returns from lowest radiation. The receiver is placed underground-an ordinary hole sufficing if necessary — and requires very little floor space. Unit is shipped complete, easy to install, assembled so as to prevent steam leaks. Special bearings will stand up under hot water for several years. A special float mechanism is guaranteed not to leak or stick in stuffing box. Complete data and description in Bulletins 245, 253 and 255.

The Nash Engineering Company

234 Wilson Road

South Norwalk, Conn., U. S. A.

Sales and Service Offices in all Principal Cities

Return Line Vacuum Heating Pump

Standard with the heating industry for over seventeen years. Removes air and condensation from return lines of vacuum steam heating systems, discharging air to atmosphere and returning water to the boiler.

Two independent units are combined in a single casing—an air unit and a water unit. Impellers of both are mounted on the same shaft. Pump is bronze fitted throughout.

Supplied direct connected to standard electric motors, for belt drive, or for steam turbine drive. For continuous or automatic operation. Standard in capacities up to 300,000 sq ft E.D.R. Larger units special. Bulletins Nos. 307, 308, 309, and 310 on request.

Vapor Turbine Vacuum Heating Pump

Jennings Vapor Turbine Heating Pumps combine all advantages of the standard return line heating pump with a new type of drive, a specially designed low pressure turbine which operates directly on steam from the heating mains on any system, requiring a differential of only 5 in. of mercury, and returns that steam to the heating system with practically no heat loss.

This pump affords the safety and economy which goes with continuous condensation return and steady vacuum, and at no cost for electric current. Furnished standard in capacities up to 65,000 sq ft E.D.R. Larger units special. Bulletin No. 290 on request.

Condensation Pump and Receiver

Removes the condensation from radiators in return line steam heating systems, particularly radiators set below the boiler water line level, and pumps the condensation back to the boiler. Pump is bronze fitted with enclosed centrifugal impeller of improved design. By making the pump casing a part of the return tank, and bolting the motor base to the tank, floor space is conserved. The rectangular construction permits installation in a corner against the wall.

These pumps are furnished in standard sizes with capacities ranging from 1½ to 225 gpm of water. For serving up to 150,000 sq ft of equivalent direct radiation. Bulletin No. 319 on request

The Nash Engineering Company

234 Wilson Road

South Norwalk, Conn., U. S. A.

Sales and Service Offices in all Principal Cities

Centrifugal Pump

Made in standard and suction (self-priming) types. For circulating hot and cold water; boosting city water pressure; handling water in air washing and conditioning; handling ash sluicing water, etc.

Compact—motor armature and pump impeller are mounted on the same shaft. Simplified—no bearings in pump casing, one stuffing box. Accessible—impeller removable without disturbing piping or shaft alignment.

Self-priming types will handle air or gas continuously with liquid being pumped, and can be operated intermittently without foot valve.

be operated intermittently without foot valve. Supplied in 1, 1½, 1½, 2, 3, 4, 6, and 8 in. sizes, with capacity up to 2000 gpm. Heads up to 300 ft. Bulletin No. 322 on request.

Suction Sump and Sewage Pumps

Jennings Sump Pumps are self-priming centrifugals for handling seepage water and liquids reasonably free from solids. Sewage Pumps are equipped with non-clog type impeller for liquids containing solids. Suction piping only is submerged. Centrifugal impeller and vacuum priming rotor are mounted on same shaft that carries rotor of the driving motor, forming a single moving element, rotating without metallic contact.

Will handle air or gas with liquid being pumped, and because of self-priming feature are installed entirely outside of pit, affording perfect accessibility for inspection or cleaning. Capacities to meet all requirements. Bulletins Nos. 159, 161, and 338 on request.

Air Compressor and Vacuum Pump

Nash Air Compressors operate on a unique and different principle. The one moving part rotates in casing without metallic contact. There is nothing to wear, and no internal lubrication.

Nash Compressors deliver absolutely clean air; ideal for agitation of liquids, pressure displacement, and handling gases. Vacuum pumps ideal for priming pumps, blood sucking pumps in hospitals, and wherever non-pulsating vacuum is required.

Pressure 75 lb or vacuum 27 in. of mercury. Furnished for any capacity; special for higher vacuums and pressures. Bulletins Nos. 282, 325, 331 and 337 on request.

PRODUCTS for STEAM SERVICE

AMERICAN DISTRICT STEAM COMPANY

NORTH TONAWANDA, N.Y.

IN BUSINESS OVER SIXTY YEARS

Branches and Agents in Principal Cities

For Data on ADSCO Expansion Joints, refer to Insulation, Underground, page 1117.

ADSCO FLOW METER—ORIFICE TYPE

Exceptionally accurate at all rates of flow and will meter steam, water, gas or air. It is a compact unit for indicating, recording and integrating the flow and can be furnished in other combinations of these three devices. Easily installed and maintained by the purchaser. Frictionless meter mechanism, records on evenly-divided, direct-reading chart, giving a daily record from which to determine heating or processing costs. Write for Bulletin No. 35-83G.

ROTARY CONDENSATION METER

Measures steam consumption by metering condensate from heating systems or industrial equipment. Accurate within 1 per cent and factory tested to 150 per cent of rated capacity. Compact, easily cleaned, tamper-proof and equipped with non-fogging counter mechanism. Counter reads directly in pounds. Suitable for vacuum or gravity service. Available in 7 sizes from 250-12,000 lb per hour capacity. Write for Bulletin No. 35-80AG.

Rotary Condensation Meter

ADSCO VERTICAL STEAM TRAP

A float type steam trap with or without thermostatic air by-pass for vacuum service to 15 lb pressure and gravity service to 125 lb pressure. The cover with all working parts can be removed without disturbing the piping connections. The trap is equipped with a reversible valve and reversible seat of stainless alloy steel. Write for Bulletin No. 35-86G.

ADSCO Vertical Steam Trap

ADSCO HEAT EXCHANGERS

Made in various sizes and capacities to heat or cool water, oils, other liquids or gases according to expert engineering specifications. Simple in design, sturdy in construction, dependable and economical in operation. Available in U-tube or straight tube types of heaters, economizers, condensate coolers or special units. Write for Bulletin No. 35-75BG, 35-76G.

ADSCO Instantaneous Water Heater

E. B. Badger & Sons Co.

General Office: 75 Pitts Street, Boston, Mass.

Representatives

Atlanta, Ga		140 Edgwood Ave.	Kansas City, Mo
BIRMINGHAM, ALA	-	435-7 Brown-Marx Bldg	LONDON, ENGLAND
Buffalo, N Y		361 Delaware Ave	Los Angeles, Calif
CHARLOTTE, N C		1408 Independence Bldg	MINNEAPOLIS, MINN
CHICAGO, ILL		1307 S Michigan Ave	MONTREAL, QUEBEC
CINCINNATI, OHIO		831 Temple Bar Bldg	NEW ORLEANS, LA
CLEVELAND, OHIO		Guardian Bldg	PITTSBURGH, PA,
Denver, Colo,			SALT LAKE CITY, UT.
601 Denver	Natio	onal Bldg., P. O Box 591	
DES MOINES, IOWA		414 Twelfth St.	SAN FRANCISCO, CAL
Detroit, Mich		424 Book Bldg	Seattle, Wash
Houston, Texas.		5646 Navigation Blvd	St Louis, Mo
Indianapolis, Ind.		825 Occidental Bldg	Vancouver, B C.

KANSAS CITY, MO	
LONDON, ENGLAND	153 Moorgate
Los Angeles, Calif	
	Builders Exchange Bldg.
Montreal, Quebec	. 1411 Crescent St.
New Orleans, La	628 S Peters St.
PITTSBURGH, PA	409 Magee Bldg.
SALT LAKE CITY, UTAH	
SAN FRANCISCO, CALIF	Sharon Bldg.
Seattle, Wash	Smith Tower, P O 1555
St Louis, Mo	4060 W. Pine Blvd.
VANCOUVER, B C	1396 Richards St.

ENGINEERS AND MANUFACTURERS

Manufacturers of Copper and Stainless Steel Badger Corrugated Expansion Joints; Engineers and Manufacturers of Chemical Apparatus; Engineers on Process Work; Designers of Complete Plants.

More than forty years' experience in design, manufacture and application are back of BADGER EXPANSION JOINTS. Most recent developments emphasize the constant study Badger engineers are giving to expansion joint development:

- 1... Application of Heat Treatment . . . scientific heat treatment is applied throughout the fabrication of Badger Expansion Joints with the result that the buyer gets all the benefits of this important metallurgical step.
- 2... Directed Flexing... involving a new design corrugation and equalizing ring, resulting in much longer joint life. The all-curve Directed Flexing corrugation distributes flexing stresses which, with straight-sided corrugations, tend to localize.
- 3... Stainless Steel Joints... perfected after years of study and testing with this useful metal... now practicable to use the packless type of joint for high temperatures and high pressure conditions.

The BADGER Expansion Joint is the packless type. Requires no servicing throughout its long life. Ideal particularly for underground use or in cramped quarters. Wide range of traverse.

BADGER Self-Equalizing, Directed Flexing, Expansion Joint

Designed for traverses from small fractions of an inch up to 6 inches single some joints available for double amount of

traverse; for pressures ranging from high vacuum to 300 pounds (copper); special joints for higher pressures. Standard joints will withstand temperatures up to 500 F (copper); stainless steel for higher temperatures. List prices, installation and other data in Bulletin 100.

BADGER Non-Equalizing Expansion Joint

Designed principally for traverses up to ½ inch and for pressures up to 25 pounds; also good as the connecting element between adjacent equipment to absorb vibrations or limited lateral displacements; standard shapes: round, oval, square or rectangular; special shapes to order. Bulletin No. 200.

Welding End and Flanged End, Directed Flexing, Self-Equalizing Expansion Joints.

BADGER Flexible Pipe Line Seal

Designed to be used on pipe passing through walls, foundations or bulkheads, the purpose being to allow expansion and contraction but to seal the opening against seepage of ground or other waters.

Bulletin No. 300.

Armstrong Machine Works

851 Maple Street Three Rivers, Mich.

Representatives in All Principal Cities

Armstrong offers two types of traps for heating, air conditioning, and steam distribution service.

Standard Inverted Bucket Traps, the type originated by Armstrong, are nonairbinding and self-scrubbing. They are used for low, medium, and high pressure service where relatively little air must be handled along with the condensate. Their free-floating lever design makes it possible to open very large discharge orifices compared with the size of the trap itself.

Armstrong Blast Traps are used where large amounts of air must be vented quickly when steam is first turned on. Thev have several advantages over the conventional float and thermostatic trap.

1. The Armstrong Blast Trap has but a single orifice to be maintained tight against the full pressure differential.

2. Positive action. The discharge valve in an Armstrong Blast Trap is either wide open or tight shut. Fast opening and fast closing prevent wire-drawing.

3. Handles dirt. There are no dead spots in an Armstrong Trap in which dirt can settle and interfere with the operation of the trap.

Cross-section of No. 800, 811, 812 and 813 traps for straightthrough pipe connections.

Cross-section of No. 801 trap for standard angle pipe connections.

No. 211-216, Bottom inlet Type

Side Inlet Trans

Side Timet Traps								
Trap Size		No. 800	No. 811	No. 812	No. 813	No. 801		
Pipe Connections List Price (Regular) List Price (Blast Trap) Telegraph Code (Regul Telegraph Code (Blast Dimension A	ar) Trap)	1/2" or 3/4" \$7.00 \$8.50 Aloe Aloette 33/4" 51/8"	1/2" or 3/4" \$10.00 \$11.50 Brown Brownette 33/4" 62/4" 5" 6 1/4" 51/2 lbs.	1/2" or 3/4" \$16.00 \$18.00 Cherry Cherette 55/8" 811/6" 61/2"	3/4" or 1" \$22.00 \$24.00 Dawn Dawnette 7" 111/4" 73/4"	1/2" or 3/4" \$7.00 \$8.50 Arrow Arrowette 33/4" 6" 21/16" 6 1/4" 41/2 lbs.		
Continuous discharge capacity in lb of water per hour at pressure indicated. For more complete information see the Capacity Chart in Armstrong Steam Trap Book.	5 10 15 20 20 30 47 125 150 200 250	125 450 560 640 690 500 580 660 640 680 *See Note at right	830 950 1060 880 1000 840 950 860 950 810 720 760	250 1600 1900 2100 1800 2050 1900 2200 1800 2000 1500 1300	250 2900 3500 3500 4000 4100 3800 3600 3900 3500 3500	725 450 560 640 690 500 580 660 640 680 *See Note at right		

No 801

*No. 800 and 801 Traps are not regu-larly furnished for pressures above 125 lb to avoid small orifices that might plug up with dirt.

4. The wearing parts in all Armstrong Traps are identical in design, material, and precision workmanship with parts used in Armstrong Forged Steel Traps for pressures up to 1500 lb gage and total temperatures of 850 F.

Armstrong Steam Trap Book. This 36 page book gives complete information on all sizes and types of Armstrong Traps. It also contains 17 pages of data on the subject of trap selection, installation, and maintenance. A free copy will be mailed on request.

FOR BLAST TRAP JOBS

ALL Armstrong traps are readily convertible into "Blast" type traps merely by using buckets equipped with the patented auxiliary thermic air vent. As shown in the above sketches, the mechanism for this vent consists of a stainless steel disc slotted to receive the end of a bi-metal strip. Different coefficients of expansion in the bi-metal cause it to bend down when cold and up when hot. Normally, it is set to close at 212 deg, but it can be set to close at higher temperatures. Capacity, 50 to 100 times the air-venting capacity of a standard trap.

No. 211-216, Blast Type

Dottom iniet maps								
Trap Size			No. 211	No. 212	No. 213	No. 214	No. 215	No. 216
Pipe Connections List Price (Regular) List Price (Blast Trap) Telegraph Code (Regul Telegraph Code (Blast Height. Dimens Diameter. " Wall Thickness Diameter of Bolts Number of Bolts Maximum Pressure, lb	ar) Trap) sion B A . C .		1/2 n \$ 9.25 \$10.75 Aspen Aspette 63/8 n 41/4 n 6 51/2 lb 250	1/2" or 3/4" \$15.00 \$17.00 Birch Birch 5" 1/4" 1/4" 8 101/2 lb 250	1/2" or 3/4" \$20.75 \$22.75 \$Walnut Walette 101/4" 63/6" 9/2" 3/6" 19 lb 250	1 " \$29.00 \$31.50 Hemlock Hemlette 12!/2" 7!/2" 3/6" 8 8 32.1b 250	1" or 11/4" \$38.00 \$40.50 Larch Larette 14" 81/2" 3/6" 1/2" 8 47 lb 250	11/2" or 2" \$55.00 \$60.00 Tamarack Tamrette 163/4" 105/6" 1/2" 12 80 lb 250
Continuous discharge capacity in lb of water per hour at pressure indicated. For more complete information, see the Capacity Chart in the Armstrong Steam Trap Book.	<u> </u>	5 10 15 20 30 50 70 100 125 150 200 250	830 950 1060 880 1000 840 950 860 950 810 860 760	1600 1900 2100 1800 2050 1900 2200 4800 2000 1500 1600 1300	2900 3500 3900 3500 4000 4100 3800 3600 3900 3500 3500	4800 5800 6500 6000 6800 6300 6000 6200 6700 5700 5300 5700	7600 9000 10000 8500 9800 9200 10400 10900 9500 9200 7000	14500 17300 19200 18500 18500 18200 18300 20000 20000 18500 17500 19000

Cochrane Corporation

3130 North 17th Street, Philadelphia, Pa. Branch Offices in 40 Principal Cities

COCHRANE HEAVY-DUTY STEAM TRAPS

A high pressure unit for condensate drainage of steam lines, separators, coils, evaporators, etc., and for conditions involving relatively high drainage rates.

Recommended for pressures up to 400 lb.

Simple construction. No levers, constricted passages or stufing boxes to become clogged with sediment or scale. All parts are readily accessible. Action is quick and positive, avoiding wire dray

avoiding wire drawing and erosion. Write for publication No 2850.

MULTIPORT DRAINERS

Of the multiport type, they afford unusual capacity for removing condensate or drips from purifiers, separators, jackets, radiators, pressure heating or drying coils, etc. Eliminating condensate delivers maximum.

etc. Eliminating condens
mum heat from
steam production
at lower cost.
Tremendous capacity assured by
large port areas.
Provides continuous discharge Instantly responsive.
Compact and light
in weight. For
pressures up to 150 lb.

Multiport Drainer

COCHRANE MULTIPORT RELIEF VALVES

For back pressure, atmospheric relief, flow or check valve service on air, gas, steam or water lines. Positive protection against stuck, jammed or "frozen" valves as a number of small disks are

Multiport Back Pressure Valve

used instead of one large disk. Write for publication No. 2870.

COCHRANE FLOW METERS

Flow meters of both mechanical and electrical types for measurement of steam,

liquids and gases. Mechanical meter uses no working parts in the pressure chambers and no stuffing boxes. The electric meter measures flow by the extremely accurate galvanometer null principle. The new "Linameter" measures

corrosive or viscous fluids. Publication 3010.

ALL-SERVICE SEPARATORS

Cochrane Separators purity steam by separating out oil, slugs of water and con-

densate. Complete removal of entrainment is accomplished by vertical battle ribs which guide it into a direct unrestricted fall, and a battle area which extends far beyond the flow from the inlet pipe. Ports at the sides of the baffle prevent the purified steam from passing over the drip area and coming into contact with the

All-Service Separator

entrainment The steam flow is uninterrupted and pressure loss is minimized.

COCHRANE-BECKER HIGH PRESSURE CONDENSATE RETURN SYSTEM

In unit heaters, coil radiation, blast heaters, etc, this system will reduce fuel

costs by returning condensate direct to boilers at high temperatures and pressures. Advantages are:

1. Faster Heating. 2. Higher Temperatures. 3. More Uniform Heating. 4. Lower Maintenance.

Plus 5 to 28 per cent fuel saving. Write for Publication 3025.

GRINNELL COMPANY

Heating, Industrial and Power Plant Piping, Fittings, Hangers, Valves, Pipe Bending, Welding, Piping Supplies, Etc.

Executive Offices: Providence, R. I.

National Distributors of Thermoflex Traps and Heating Specialties For data on other Grinnell Products, see pages 1026-1027

Thermoflex Specialties

The heart of all Thermoflex Traps is the

Hydron Bellows.

The Hydron Bellows is formed under hydraulic pressure. This powerful internal pressure locates any weakness of any nature in the tubing. Such hydraulic pressure is many times more severe than any pressure the Trap will ever be called upon to control. Every Thermoflex Trap, therefore, is practically indestructible.

Thermoflex Traps have an exceptionally large orifice. This large orifice combined with high lift, insures fast action and freedom from clogging.

We supply Thermoflex Traps guaranteed for steam pressures of 25 lb, to 50 lb and to 125 lb. Complete information and details of typical installations will be gladly sent on your request. Ask for Catalogue on Thermoflex Heating Specialties.

Thermoflex Low Pressure Line

The entire Thermoflex line of low pressure specialties, designed for maximum steam pressure of 25 lbs, has been simplified to meet wartime needs with respect to critical materials. This simplification has been accomplished without sacrifice of quality or performance—only the appearance has been altered by the change from bronze to cast iron for the structural parts.

The new low pressure victory line includes thermostatic traps in angle pattern only, with cast iron bodies without unions,

in the following sizes:

1/2 inch--200 sq ft rad. capacity. 34 inch-400 sq ft rad. capacity. 34 inch-700 sq ft rad. capacity.

A complete range of sizes of Combination Float and Thermostatic type traps continues to be available, as well as the Thermoflex Vapor Specialties for small and medium size installations.

Thermoflex Medium Pressure Traps

Thermostatic type traps, and Combination Float and Thermostatic type traps are furnished for working steam pressures in the range from 25 to 50 lbs.

Thermoflex High Pressure Traps

The No. 100A Thermoflex Trap is guaranteed for steam pressures from 50-125 lb. Must not be used where the steam

temperature exceeds 400 F.

For use with all types of process work, Laundry Machinery, Kitchen Equipment, Hospital Sterilizers, Vulcanizers, Dry Kilns, Unit Heaters, Street Steam Service, etc., in fact any place that a trap is desired for service at the above pressures.

Small, compact and inexpensive. Extra heavy body. Renewable nickel steel seat and disc. Bellows made from special bronze tubing and encased in brass sleeve to prevent distortion due to pressure.

Regularly furnished without unions.

Thermoflex Streamlined Strainers

Pipe line strainers of the self-cleaning Y-type are furnished for pressures up to 250 lbs, and in sizes 3% in. to 2 in. These are heavy duty strainers with semi-stee body and brass screen, which are suited to a wide field of use in removing harmfu substances from pipe lines carrying steam air and fluids.

Kieley & Mueller, Inc.

Since 1879

PRESSURE AND FLOW CONTROL VALVES AND EQUIPMENT

General Offices and Factory: 2013-2033 43rd Street, North Bergen, N.J.

Representatives in All Principal Cities

Producing in America's most modern specialty factory, all types of Pressure Reducing Valves, Liquid Level Controls, Steam Traps, Basket and Y Type Stramers, Pump Governors, Back Pressure Valves, Exhaust Heads, Steam and Oil Separators, Damper Regulators, etc.

Your problems and applications are welcomed in our Engineering Department.

Catalogs and data on request.

Spring and Lever Weighted Valves for all services and initial pressures up to 600 lb. Single and double seated design for steam, water, air, oil, gas. Pilot Type, Remote Control Type.

Liquid Level Controller

For the control of liquid in tanks or other vessels. Pilot operated designs for remote control. Ball bear-Pack Easy Stuffing Box.

ing Spindle, Pack Easy Stuffing Box.
Twenty other types of Level Controls
available.

For either condensing or non-condensing Engines or other back pressure types of controls. Noiseless in operation. Maintains back pressure from 0 to 25 lb. Horizontal and Vertical lever and weight or spring operated design.

"I" Type Strainer

"Y" Type Strainers from 14 m. to 6 in. Pressures up to 600 lb. Bronze, Cast Iron and Steel. Also Basket Strainers 12 in. to 16 m. Bolted and Clamped Cover designs.

Float Value

Float Valves in all sizes from ½ in. to 12 in. in Globe and Angle Design. Pilot Operated and Direct Operated. Special design for cold water.

For the duration of the War, Kieley & Mueller must naturally concentrate on fulfilling the Government requirements, particularly for shipboard regulators, strainers, etc. Deliveries are therefore subordinated depending on priority. Our customers will be given our continued best cooperation on their requirements so far as it is possible.

Mueller Steam Specialty Co., Inc.

40-20 22nd Street, Long Island City, N. Y.

Steam, Water, Air, Oil and Gas Specialties for Heating and Power Plants

Pressure Reducing Valves-Straight Pattern and With Increased Outle

No. 11-For Vacuum, Vapor and Low Pressure Heating Systems. Initial Pressu

up to 200 lb; Reduced Pressures, 0 to 10 lb.

No. 17 and 21—For automatic control of reduced pressures on dead-end serv requiring a tight closing valve, such as tank heaters, kitchen utensils, sterilizing paratus, laundry equipment, kettles, cookers, driers, etc. Initial Pressures up to 200 Reduced Pressures 0 to 150 lb.

Constructed with full globe bodies. Center guide eliminates the wings on discs, increases efficiency, assures minimum noise and prolongs the life of the seats and d. Lever and weight operates on a steel roller bolt, assuring a most sensitive valve. Sp type furnished with special long springs for sensitive operation and wide range.

reduced pressures.

Automatic Water Feeders

With a powerful leverage to control the water line in steam boilers, etc. They supply make-up water to compensate for evaporation, leaks, steam utilized in process work and condensation wasted. Where condensation held up in the system eventually returns in large quantities, our Duplex type protects the baller against flooding. All working

the boiler against flooding. All working parts of non-corrosive metal, are accessible without breaking pipe connections. Proving with an integral strainer. For steam pressures up to 100 lb, water pressures up to 12 Equipped with single and double contact mercury Tube Switches for all services.

Steam Traps

Simple, Sturdy and Compact Ball Float and Inverted Bucket Steam Traps for draining water of condensation from steam apparatus and steam mains.

Powerful leverage enables them to take care of large quantities of condensation. Ball Float Steam Traps

Ball Float Steam Traps equipped with integral strainer, water gages, air cocks, blow-off and integral by-pass valve, when desired.

All working parts are accessible without disturbing any pipes.

Valves are sealed with several inches of water, making the escape of steam impossible.

Inverted Bucket No. 211—For Pressure Up to 250 lb. Sizes ½ to 8 in.

CATALOGUE and BULLETINS covering our Complete Line gladly furnished on application.

Wright-Austin Co.

309 West Woodbridge St., Detroit, Mich.

PRODUCTS—Steam Traps, Strainers, Air Traps, Steam and Oil Separators, Compressed Air Purifiers, Exhaust Heads, Boiler Feeders and Controllers, Alarm Water Columns, Water Gauges, Trycocks.

"Airxpel" Bucket Type Steam Traps

Are "double duty" traps, because they automatically discharge both air and condensate.

Union connections make them easy

to connect up. Also, furnished with screw connections when desired. They save money for fittings and installation labor, by having straight through horizontal pipe connections.

The Cub sizes are made in ½ in., ¾ m., 1 m Especially suitable for individual unit drainage on heating and process equipment.

Also three "Master" sizes ½ in. to 2 in., for general service.

"Combination" Steam Traps

Float Type with internal thermostatic air bypass and strainer for pressures 0 to 40 lb. A modernly designed and very successful trap for vacuum and pressure heating.

"Victor" Low Pressure Steam Traps

A heavy duty trap for large volumes of condensation at low pressures.

"Emergency" Float Type Steam Trap

Three valve trap with large capacity at high pressures. An exceptionally reliable trap for use in inaccessible places.

Air Relief Traps

For relieving air from forced circulation hot water heating systems, water supply lines, closed tanks, receivers, pumps, etc.

"Tuway" Strainer

May be used two ways - as a straight-way or angle strainer, in either horizontal or vertical pipe line, because it has the choice of two inlets at right angles to one another.

For cleaning, flush through blow-off connection, or remove screen by unscrewing bottom plug.

Separators-Steam and Oil

Type "A" Vertical Steam

We make separators of every type and all sizes for all pressures.

Exhaust Heads

Designed to eliminate noise and spray. Three types to select from the "Cyclone" Heavy Duty, and Standard Galvanized Steel- also, the cast iron type, to remedy all conditions. Sizes 1 in. to 48 in

Send for descriptive Bulletins on any of the items listed on this page.

Yarnall-Waring Company

Manufacturers of

YAR WAY

Steam Specialties

7600 Queen Street, Philadelphia, Pa.

YARWAY IMPULSE STEAM TRAPS

Construction The Yarway Impulse Steam Trap is unique in that there is only one moving part, the simple valve F. This trap is made of bar stock throughout, no castings used. Body and bonnet of cold rolled steel, cadmium plated; cap of tobin bronze, valve and seat of heat treated stainless steel. For pressures 400 to 600 lb, bonnet and cap are stainless steel

Operation Movement of valve (F) is governed by changes in pressure in control chamber (K). When handling ordinary condensate, tiny control flow bypassing continuously through orifice in center of valve reduces chamber pressure below inlet pressure and valve opens, allowing free discharge through seat. As condensate approaches steam temperature, low chamber pressure causes vaporizing of control flow. The increased volume builds up pressure in control chamber, closing valve (F).

Advantages

Light Weight Yarway traps need no support $^{-1}2$ in, trap weighs only 13% lb. 2 in, trap weighs 85% lb.

2 in, trap weighs 8\(^5_8\) lb.

2 in, trap weighs 8\(^5_8\) lb.

2 in, trap weighs 8\(^5_8\) lb.

2 in, trap measures 1\(^2_1\) in, trap measures 2\(^1_4\) in, long 2 in, trap, 4\(^3_4\) in, long.

Will not air bind.

wiw not air oind. Require no priming. Insure quick heating.

Operate on exclusive Impulse principle (U.S. Patents No. 2,051 732 and 2,127,649.)
Low Price Often cheaper than re-

pairing old traps.

Factory set to operate at all pressures up to $400~\mathrm{lb}$ (or $600~\mathrm{lb}$) without change of valve seat.

List Prices, Weights and Dimensions

No. 60 Series—up to 400 lbs. and No. 70 Series—up to 600 lbs.

Size	Trap	Weight	Length
	Complete	Pounds	Inches
1/2" Nos. 60 or 70	\$15.00	11/4	25/8
3/4" Nos. 61 or 71	22.00	2	3
1" Nos. 63 or 73	31.00	21/2	33/8
11/4" Nos. 64 or 74	48.00	4	33/4
11/2" Nos. 66 or 76	68.00	53/4	41/4
2" Nos. 67 or 77	90.00	81/2	43/4

For further information send for descriptive bulletin T-1737.

YARWAY GUN-PAKT EXPANSION JOINTS

All-steel welded construction; light but strong. Chromium covered sliding sleeves.

Cylinder guide and stuffing box integral, assuring perfect alignment. Internal

limit stops. Gun-pakt and Gland-pakt types; Gun-pakt (illustrated) fitted with screw guns which permit insertion of plastic packing while joint is under pressure. Sizes 2 in. to 24 in., single end or double end, flanged or welding ends; 150, 300 and 400 lb pressures. For additional details send for bulletin EJ-1908.

Anderson Products, Incorporated

Cambridge, Massachusetts

Vent-Rite Controlled-Venting Radiator Valves . . . Vent-Rite No. 66 Control Valves . . . Vent-Rite Balancer . . . Vent-Rite Unit Heater Valve. Originators of "Balanced Radiation by Controlled Venting," "The Vent-Vac Method" and "Vacuum Limitation."

Most important under present conditions is the fact that all Vent-Rite Valves are repairable. They may be taken apart, cleaned, and reassembled, and in addition they may be submitted to the factory for the replacement of damaged parts. This result of Anderson foresight has been a real contribution to the extension of heating facilities under material shortages.

THE VENT-VAC METHOD

The Vent-Vac Method provides more even room temperatures. This is accomplished by continuing the distribution of steam between firing periods. The steam is available through the use of heat left in the boiler, and it is distributed to the points of greatest heat loss. To insure fast, uniform distribution of steam during the firing periods, it breaks the vacuum used between firing periods for this purpose. This "breaking" of the vacuum occurs as soon as firing starts, restoring the system to atmospheric pressure. Vent-Rite Vacuum Valves, and a Vent-Rite Control Unit are used. The system is simple, economical, and amazingly effective. Vent-Rite Control Units not only create vacuum in the system between firing periods, but also limit the amount of vacuum that can be created to the point beyond which the distribution of excessively expanded vapor would be inefficient. This is another feature developed and pioneered by Vent-Rite and offered only in Vent-Rite Units.

VENT-RITE CONTROL VALVES

Vent-Rite Control Valve No. 66 is the heart of the Vent-Vac Method of steam control for automatically-fired, one-pipe systems. It takes the place of a main line vent, limits the amount of vacuum created and breaks the vacuum at the beginning of the firing period. It is entirely mechanical. With the Vent-Vac Method, using a No. 66 Control Valve, a system is "Vacuum" between Firing periods, "Non-Vacuum" during Firing, combining the best of both systems assuring "Balanced Radiation."

VENT-RITE RADIATOR VALVES

Vent-Rite Controlled-Venting Radiator Valves are made in a wide variety of types, sizes, outlets, and venting capacities. Both Vacuum and Non-Vacuum. All are noiseless in operation, positive in action, close thermostatically under temperature. They may be taken apart for examination and cleaning. Venting is through an adequate straight-line venting orifice, accurately set by a newly designed inconspicious steam-lined Adjusting Disc. For 1942 Vent-Rite also offers a new Siphon Tongue for use especially with small-tube radiation.

The Vent-Rite Line includes Nos. 1, 51, 3, 5A and 55 (Non-Vacuum); 2, 62, 4, 6A, 66, 68 and the Balancer (Vacuum).

No. 2

The Dole Valve Company

1901-1941 Carroll Avenue, Chicago, Ill. Main Offices and Factory:

THE ALL STAR LINE

AIR AND VACUUM VALVES

Selecting the right vent for a particular purpose is your assurance of the utmost efficiency and economy from one pipe steam heating systems. The Dole line covers every venting need and offers a complete choice for every purpose.

Dole No. 1A Vari-Vent Air Valve

Modern gas, oil or stoker fired one pipe steam systems require QUICK venting. This radiator valve lets air escape twice as fast as ordinary valves and balances the flow of steam at the first "breath" of boiler pressure. Adjustable vari-vent feature gets air out of those "far away"

radiators as quickly as those close to the boder.

Dole No. 3 Air Valve

Vents radiators of hand fired gravity steam heating systems. Double shell construction provides separate passages for air and condensation -- extra large float defeats spitting or water leakage. Complete venting assured at pressures up to 10 lbs.

Dole No. 2B Vari-Vent Vacuum Valve

Adiustable radiator valve for "vacuumizing" and balancing gravity steam heating systems. Patented Dole bellows vacuum seal locks out air after it has been once expelled from the sys-Easily adjusted tem. vari-vent feature assists

in equalizing steam flow to all radiators.

Dole No. 1933 Air Valve

Low cost valve for venting radiators of hand fired systems. Large float provides a seal against condensation to stop spitting.

Dole No. 1B Vari-Vent Air Valve

Balances the flow of steam to convectors, either cast iron or copper, of automatically fired systems.

Dole No. 1C Quick Vent Float Valve Vents mains and speeds flow of steam to radiaators of automatically fired systems. Extra

Dole No. 5 Quick Vent Float Valve

Vents steam mains on hand fired systems. Positive seal against water.

Dole No. 4 Quick Vent Valve

large venting port.

Dole No. 103 Vacuum Valve For venting convectors, ceiling radiators and pipe coils of "vacuumized" gravity steam

systems.

Dole No. 6B Vacuum Valve

Vents, the mains of "vacuumized" one pipe Presteam systems. vents the return of air. Closes against water.

Dole No. 14 Key Valve

Write The Dole Valve Company for complete catalog and handy selector chart which indicates the Dole Air or Vacuum Valve most suited for a particular need.

Jenkins Bros.

BRONZE - IRON - STEEL VALVES

Mechanical Rubber Goods

80 White St., New York, N. Y.; 524 Atlantic St., Boston, Mass; 376 Spring St., N. W., Atlanta, Ga.; 133 N Seventh St., Philadelphia, Pa; 1514 Fulton St., Chicago, Ill.;

BRIDGEPORT, CONN. (Office and Factory)

JENKINS BROS, LTD . MONTREAL; Factory, LACHINE, CANADA . LONDON, ENG.

Fig. 762
Bronze Regrinding Swing Check

Fig. 106A Bronze Globe, Renewable Comp. Disc

Fig 613 Iron Body Regrinding Globe

Fig 370 Bronze Gate

Fig 325 Iron Body Gate

Fig 624
Iron Body Regrinding Swing Check

OVER 500 DIFFERENT JENKINS VALVES COVER EVERY HEATING AND AIR CONDITIONING NEED

To adequately describe the complete Jenkins line of valves requires a Catalog of more than 400 pages. There are over 500 different types and patterns of valves that bear the trusted "Diamond" trade mark. Practically speaking, Jenkins can furnish any valve that you may require for plumbing, heating, air conditioning, general industrial or engineering service.

General Classifications of Jenkins Valves Include—Bronze Valves fitted with Jenkins renewable composition disc. Bronze Regrind-Renew Valves with bevel and plug type seats. Bronze Gate Valves. Iron Body Valves fitted with Jenkins renewable composition disc. Iron Body Regrinding Valves. Iron Body Gate Valves with solid wedge and double disc parallel seats. All-Iron Valves. Cast Steel Gate, Globe and Swing Check

Valves. Electrically and Hydraulically Operated Valves. Radiator Valves. Fire Line Valves. Quick-opening and Selfclosing Valves, Needle Valves, Y Valves, Solder-End Valves. Stainless Steel Valves.

Other Jenkins Products Are—Colored Valve Wheels with or without service markings molded in relief letters. Composition Valve Discs exactly suited to service conditions. Sheet Packing. Gaskets.

JENKINS VALVES ARE SOLD BY GOOD SUPPLY HOUSES EVERYWHERE

Arthur Harris & Co.

210-218 N. Aberdeen Street

Chicago, Ill.

ENGINEERS — FABRICATORS OF NON-FERROUS METALS AND STAINLESS STEEL

Metals Fabricated -Aluminum, Block Tin, Brass, Bronze, Copper, Everdur, Monel, Nickel, Inconel, Stainless Steel and KA2 SMO. Bulletin on request.

Coils

For heating, cooling and condensing. All shapes made from any size pipe or tube—standard or special connections, of copper, brass, aluminum, stainless steel, KA2 SMO, monel, inconel, nickel, block tin, and Everdur.

Metal Floats

Cylindrical

Flat Cylindrical

Column

Made of copper, plain steel, stainless steel, KA2 SMO, aluminum, brass, Monel, pure nickel, Admiralty and Everdur, for open tank and all pressures.

Seamless copper ball floats carried in stock in diameters of 3 in., 4 in., 5 in., 6 in., 7 in., 8 in., 10 in., 12 in. for open tank and pressures of 25, 50, 100 and 150 lb. Floats in special sizes and pressures made to order. Stainless steel ball floats 2½ in. to 12 in. for high pressure and corrosion carried in stock—special stainless steel floats made to order - stainless steel ball floats larger than 12 in. diameter can be made up specially. Float catalog sent on request.

Copper Expansion Joints

For low pressure and vacuum, Made in two styles -convex and concave. Sizes 4 in. to 60 in. diameter. Cast iron or steel flanges. Flanges drilled to American standard unless otherwise ordered: B-290 available only in sizes 4 in. to 15 in. inclusive.

B-200 Convex

B-281 Concave

B-280 Convex

Bends

We make bends in every shape from all sizes of copper water tube, pipe and tubing in copper, brass, aluminum, stainless steel, monel, tin and nickel. Standard or special connections. U-bends for storage water heaters.

Also special pipe work for industrial installations, plumbing, heating and brewing.

Perforated pipe, double pipe coolers, etc.

Non-Ferrous Castings-"Dairywhite" nickel silver for Process Industries Equipment. Suitable for milk and food products machinery. Castings also of 88-10-2. 80-10-10, 85-5-5-5 and special mixtures. Many patterns available without charge.

The American Brass Company

General Offices: Waterbury, Conn.

Offices and Agencies in Principal Cities

CANADIAN ASSOCIATE: ANACONDA AMERICAN BRASS LIMITED, New Toronto, Ontario

PRODUCTS—Anaconda Deoxidized Copper Tubes and Fittings; Anaconda "85" Red-Brass Pipe; Everdur Metal for storage heaters, storage tanks, ducts and air conditioning equipment

ANACONDA COPPER TUBES AND FITTINGS

For Heating, Plumbing and Air Conditioning

Anaconda Deoxidized Copper Water Tubes assembled with Anaconda Fittings offer an unusual combination of advantages in hot water heating systems at a cost only slightly higher than black iron and approximately the same as wrought iron pipe. These advantages may briefly be summarized as follows:

Low Friction Loss—Because the inside surfaces of copper tubes are inherently smoother than those of pipe and tubes made of ferrous materials and also because they do not become roughened by the formation of rust, these tubes offer a lower resistance to flow. In addition, the long radius turns of Anaconda Elbows and the smooth inside surface of Anaconda Wrought Copper Fittings further reduce friction losses.

These factors naturally increase the efficiency of the system, particularly when it includes a forced pressure circulator.

Ease of Installation—In many places the flexibility of copper tubes simplifies connections that ordinarily would be awkward and expensive to make with rigid pipe and threaded fittings. Anaconda Solder Fittings are compact. They can be installed in constricted space where the use of a wrench would be impossible.

Architects and builders naturally object to large holes and notches cut in the framing members of a building for the passage of piping. Anaconda Copper Tubes can be installed with a minimum of cutting in the structure—although holes should be large enough to permit movement of tubes due to expansion and contraction.

Appearance—Anaconda Deoxidized Copper Water Tubes assembled with Anaconda Solder Fittings present an attractive appearance. It is a frequent practice to clean the tubes after they are installed and apply a coat of clear lacquer or similar substance. This keeps the tubes bright and makes an installation of which both plumber and owner can be proud.

Temper and Gauges—Anaconda Copper Tubes are made in both hard and soft temper and in standard wall thicknesses.

They meet the requirements for these types of tubes in U. S. Government Specification WW-T-799 and A.S.T.M. Specification B-88-41. Type K, the heaviest, is recommended for heating lines and general piping.

Accuracy of Dimensions - Anaconda Deoxidized Copper Water Tubes are all finished to the close tolerances required by the A.S.T.M. and Federal Specifications, which have been found essential for efficient assembly with solder fittings.

Permanent Identification -For permanent identification, the name "Anaconda" and the letter designating the type of tube is stamped in the metal at intervals of approximately 18 in., throughout every coil or straight length of tube

The American Brass Company

Anaconda Copper Tubes, in all standard sizes, up to and including 1^{1}_{4} in. are furnished soft in 30, 45 and 60-ft coils; also hard and soft in 20-ft straight lengths. Sizes over 1^{1}_{4} in. are furnished, hard or soft, in straight lengths only.

ANACONDA "85" RED BRASS PIPE

Anaconda "85" Red Brass Pipe, in standard pipe sizes, is considered the highest quality corrosion-resistant pipe commercially obtainable at a moderate price and is recommended for steam return lines.

Anaconda "85" Red Brass Pipe contains 85 per cent copper and conforms to government specifications for Grade "A" water pipe. The words "Anaconda 85" are stamped in the metal at one-foot intervals throughout each length.

EVERDUR*

Everdur Metal is the original coppersilicon alloy. It is manufactured by The American Brass Company in four standard compositions and in practically all commercial forms.

This high strength engineering metal is immune to a wide range of corroding agents. Because of a versatile combination of useful properties, Everdur has become standard as a material for equipment in many fields of engineering and industry.

In addition to their non-rusting properties and high strength, Everdur alloys possess many qualities not usually found in metals of this character. They are unusually resistant to general atmospheric conditions and other normally corrosive factors. Everdur alloys have excellent machining and working characteristics and can be fabricated into a variety of forms and shapes. They also weld readily by any of the commercial methods.

CORROSION RESISTANCE

The corrosion resistance of Everdur is equal to that of pure copper and in some cases, slightly superior.

*"Everdur" is a trademark of The American Brass Company registered at the U. S. Patent Office. However, like copper and all copper alloys, Everdur is not equally resistant to all corroding agents, nor to the same corroding agents under all conditions. As with copper, the resistance to corrosion may be substantially reduced in some instances by the presence of oxidizing agents. Nevertheless, Everdur does offer excellent resistance to the corrosive action of many solutions and atmospheres.

Everdur Tanks—Everdur copper-silicon alloy is an ideal material for durable, rustless water tanks of every description—from domestic range boilers to large storage heaters for hotels, laundries, hospitals, textile plants, schools or breweries.

Everdur is made in all commercial shapes including tank plates which have physical properties as given in A.S.T.M. Specification B96-42.

Minimum specification requirements for hot rolled and annealed tank plates are: Tensile Strength, 50,000 psi.; Yield Strength (at 0.5 per cent elongation under load) 18,000 psi.; Elongation, 40 per cent in 2 inches.

Sound, double welded butt joints made on annealed Everdur tank plates have a minimum tensile strength of 47,500 psi. and single welded butt joints have a minimum tensile strength of 42,500 psi. after the beads have been removed.

For additional data and names of fabricators address our nearest office or agency.

EVERDUR FOR AIR CONDITIONING EQUIPMENT

Because of its strength and welding properties, Everdur may be substituted for steel and fabricated by substantially the same methods and with the same equipment as steel.

Everdur metal has been used with marked success for fans and blowers, ducts, humidifiers, cast and wrought parts of other equipment items subject to corrosive influences.

EVERDUR LITERATURE

Descriptive literature containing much pertinent tabular data will be sent upon request.

Wolverine Tube Division

Calumet & Hecla Consolidated Copper Company 1435 Central Avenue, **Detroit**, **Michigan** SEAMLESS TUBE

COPPER - BRASS - ALUMINUM Sales Offices:

	Out
ATLANIA, GA . 3777 Peach	
	121 S Gay St
WELLESLEY HILLS, MASS	. 37 Fiske Rd
BUFFALO, N Y	. 416 Jackson Bldg
CHICAGO, ILL	3348 S. Pulaski Rd
CLEVELAND, OHIO.	1740 East 12th St
DAYTON, OHIO .	. P. O Box 1041
Los Angeles, Calif	1015 East 16th St
Louisville, Ky	. 319 W Main St.
MILWAUKEE, WIS	647 W Virginia St.
MINNEAPOLIS, MINN	. 100 N Second St

Newark, N J	604-608 Market St.
NEW YORK, N Y .	420 Lexington Ave.
NEW YORK, N. Y (Expor	
Philadelphia, Pa 954	Broad St Station Bldg.
Pittsburgh, Pa.	1214 Laverpool St.
PORTLAND, ORE	116 N.W 11th Ave.
RICHMOND, VA	Mutual Bldg.
St Louis, Mo .	4565 McRee Ave.
SAN FRANCISCO, CALIF	. 7 Front St.
Washington, D. C	808 Investment Bldg.

COPPER WATER TUBE

TYPE K—Recommended for Air Conditioning, Refrigeration, Oil Burner, and Plumbing and Heating installations.

TYPE L—For Oil Burner, Air Conditioning, Refrigeration and general plumbing uses.

TYPE M—Suitable for Air Conditioning and Refrigeration installations and for interior plumbing and heating purposes.

Types K and L furnished in hard or soft temper; Type M, hard only.

Wolverine Water Tube is made according to U. S. Government and A S.T.M. specifications. For a complete list of these data, write Detroit for Form 575

REFRIGERATION TUBE

Wolverine refrigeration tube has long been the standard of the industry. Dehydrated, sealed, paper-wrapped; uniform soft temper and moisture content well below minimum specified by A.S.R.E. Available from stock in standard coils.

ACCUMULATOR SHELLS

A new accumulator shell developed by Wolverine and produced to customers' specifications in a variety of shapes and sizes up to $3\frac{1}{2}$ in, diameter.

It combines many advantages including one-piece construction and is especially adaptable to refrigeration problems. Send your blueprints or inquiries to Detroit.

WROUGHT FITTINGS

Wolverine-Nibco Solder Fittings are of the straight-line design ends not expanded. They make strong, neat joints; give trouble-free service, and longer life. A complete range of sizes is available. Write to Detroit or your nearest warehouse for Catalog D.

The experience of 27 years of seamless tube manufacture, the use of the latest equipment, and adherence to Government and customer specifications, are responsible for the uniform, high quality of Wolverine products. And now, backed by the 76-year experience and large resources of Calumet & Hecla, Wolverine quality is controlled from ore to finished product.

INSULATION

•

Many different materials are used for insulating purposes—in their natural state or processed and fabricated into various forms. They include: Vegetable fibers, wood, tree bark, cork—processed into wools or other fibrous forms, and used in loose bulk or fabricated into boards, paper, blankets or batts. Natural wools, jute, hair—felted into blankets, pads, mats, etc., or used in loose bulk forms. Glass in block, sheet, or wool forms.

Mineral products such as natural rocks and furnace slags—processed into granulated form, or into wool form and used in loose bulk or fabricated into blankets, batts, or pads; and asbestos, asphalt, gypsum and magnesia—used in board form, blankets, felts, or in loose bulk. Many of these types of insulation are also used in plastic form. Metallic insulation, such as aluminum and steel are fabricated into sheet form and used separately or in conjunction with other insulating materials.

INSULATION, Building (p. 1094-1115)

Aluminum sheets, paper in sheets and fabricated forms, felts, cork, glass, glass and rock wools, cane fibre boards, wood products in board form and fibrous blankets and pads, or used in loose fibre form—all are utilized as insulation against heat or cold. Technical data on this type of insulation will be found in Chapter 4.

Insulating materials, in board or slab form are adapted for use in walls as a plastic base, and thus serve as both a heat or cold insulation and a fire-retarding material.

INSULATION, Sound Deadening (p. 1094-1119)

Many of the insulating materials utilized in building construction are also suitable for sound deadening or acoustical control. Some of them are also adapted for use on machinery and in building to counteract or absorb vibration.

Technical data on Sound Control will be found in Chapter 33.

INSULATION, Underground (p. 1099, 1116-1119)

Asbestos, asphalt, mineral wools, magnesia—used in conjunction with underground piping and conduits of concrete, tile or cast iron.

Technical data is contained in Chapter 43.

INSULATION, Pipes and Surfaces (p. 1094-1119)

Asbestos, magnesia, and mineral wools in loose fibrous forms, blankets, or in plastic forms and suitable for use in extremes of high or low temperature service; also hair and felts, and cork in loose bulk or in molded or plastic forms.

Technical data will be found in Chapter 43.

Some of these insulating materials are also used as refractory materials.

INSULATION, Duct (p. 1092-1115)

Various of the insulating materials which may be fabricated into board or slab forms, and various felts and fibrous materials have been adapted for use as duct insulation—as a duct liner or applied to the outer surfaces. Some have been utilized to construct the walls of the duct itself, serving the dual purpose of duct and insulation.

Technical data is contained in Chapter 43.

INSULATION, Window, Glass Block (p. 1120-1122)

Single-pane and double-pane insulating window sash, metal fabric insulating window screens, weather stripping for windows and for interior and exterior doors. Glass blocks for outside walls and partitions.

Manufacturer's products shown in this division are designed for specific applications. Consult the Index to Modern Equipment for additional products of these manufacturers.

Alfol Insulation Company

Incorporated

155 East 44th St., New York, N. Y.

Agents in Principal Cities
HEAT INSULATION for ALL PURPOSES

ALFOL PRE-FABRICATED INSULATION PANELS FOR TANKS, TOWERS, AND ALL TYPES OF HEATED EQUIPMENT

Prefabricated
Panel.
At Right—
Applied to Tower

- Metal Jacketed Panels containing insulation best suited for each particular condition.
- Removable and Replaceable by means of Lock-Joint construction.
- Shop Fabricated with Cutouts for manholes and pipe connections.
- Easily and Rapidly Applied by any type of labor.
- Trim Appearance with minimum of up-keep.

FOR MORE DETAILED INFORMATION WRITE FOR ALFOL PANEL DATA BOOK

ALFOL HOUSE INSULATION BLANKET

99.4 per cent Pure Aluminum Foil spaced on three-ply thick paper vapor barrier sheet. Single and Double Layers insure spaced sheet to reduce conduction and convection. Applied between structural members or furring, Alfol Blankets give high insulation value at low cost.

Specifications

Description	Widths	Net Area per Roll	Net Weight per Roll
Type I.—1 Layer ALFOL	16"-24"	250 sq ft.	17 lbs.
Type II.—2 Layer ALFOL	16"-20"-24"	200 sq. ft.	19 lbs.

See technical data on Table 1, Section C, Pages 91-94, this volume.

ALFOL RADIATOR REFLECTORS

ALFOL REFLECTORS behind radiators reduce heat loss through walls, save fuel. Temperature gradient to outside reduced 50 per cent.

TWELVE YEARS' SERVICE PROVES LASTING VALUE OF ALFOL

Armstrong Cork Company

Building Materials Division

Lancaster, Pennsylvania

Offices

ALBANI	Chicago	Indianapolis	New Orleans	SEATTLE
ATLANTA	Cincinnati	Jacksonville	New York	Washington, D. C.
Baltimore	CLEVELAND	Kansas City	Philadelphia	In Canada
Birmingham	COLUMBUS	Los Angeles	Pittsburgh	
Boston	Dallas	Louisville	Richmond	Montreal, Que
Buffalo	Detroit	Memphis	Rochester	Toronto, Ont
Charlotte	Hartford Houston	Milwaukee Minneapolis	St Louib San Francisco	Winnipeg, Man.

Distributors

APPLETON, WIS.
Northwestern Asbestos and Cork Insulation Co.
CHARLESTON, W. VA.
Capital City Supply Company
DENVER, COLO.
Stearns-Roger Manufacturing Company
EAU CLAHER, WIS.
Horel-George Company
EVANSVILLE, IND The General Asbestos and Insulation Co.
FORT WAINE, IND Asbestos & Asphalt Products Co.
GLENDALE, N. Charles M. Trojahn
GRAND RAPIDS, MICH.
TONY Batenburg Insulation Co.
JAMESTOWN, N. Y.
Laco Roofing & Asbestos Company
JOPLIN, MO.
Joplin Cement Company
LITTLE ROCK, ARK. Fischer Cement & Roofing Company

Manitowoc, Wis.
New Orleans, La.
Portland, Oregon
San Antonio, Tex.
Seattle, Wash
South Bend, Ind.
Springfield, Mas
Springfield, Mo
Tacoma, Wash
Terrier Haute, Ind
Tulsa, Okla.

New Orlewestern Asbestos and Cork Insulation Co.
H. T. Steffee
Asbestos Supply Company
General Supply Company, Inc.
Asbestos Supply Company
Asbestos & Asphalt Products Co.
Asbestos Supply Company
Johnson Asbestos Company
Southwestern Insulation Company
Therrier Haute, Ind
The Hartmann Company
Kelley Asbestos Products Company

For detailed technical information, samples, and descriptive literature, ask any office or distributor. Specifications appear in Sweet's Catalogs for Architects and for Engineers and Contractors.

PRODUCTS—Armstrong's Corkboard, Cork Covering, Mineral Wool Board, Foamglas, Vibracork, Corkoustic, Cushiontone, Temlok, Insulation Sundries.

Corkboard

Insulating Efficiency

The thermal conductivity of Armstrong's Corkboard is 0.27 Btu per hour, per degree temperature difference, per inch thickness at 60 F mean temperature.

Armstrong's Corkboard conforms in all details to Federal Specification HII-C-561a,
March 9, 1939

Sizes and Thicknesses

Armstrong's Corkboard is furnished in rigid boards 12 in. \times 36 in., 18 in. \times 36 in., and 24 in. \times 36 in., in several thicknesses: 1 in., $1\frac{1}{2}$ in., 2 in., 3 in., 4 in., and 6 in.

Cork Covering

Armstrong's Cork Covering is made of pure cork in sizes to fit all standard pipe sizes. The inside surfaces of each piece are machined to assure an accurate fit, free from moisture-catching air pockets. Cork covering is rigid and will not sag. Thicknesses are. Ice Water (1.20 in. to 1 93 in.); Brine (1.70 in. to 3.00 in.); and Special Thick Brine (2.63 in. to 4.00 in.).

Armstrong's Fitting Covers are rigid and

Armstrong's Fitting Covers are rigid and are designed to fit accurately all types of standard ammonia and extra heavy fittings, screwed, flanged, and welded.

Mineral Wool Board

Armstrong's Mineral Wool Board is a new permanent addition to the Armstrong line. It equals or exceeds Federal Specification HH-M-371 for board or block form insulation; has low thermal conductivity; is moisture-resistant, odorless; is easily handled and erected; possesses structural strength. Standard size 12 in. x 36 in.; thicknesses 1 in., $1\frac{1}{2}$ in., 2 in., 3 in., 4 in.

Foamglas

Armstrong's Foamglas has a closed cellular structure which will not permit passage of air or moisture. It is efficient, moistureproof, fireproof, and offers effective, lasting insulation. This new type of insulation is made in standard 12 in. x 18 in. blocks; thicknesses 2 in., 3 in., $4\frac{1}{2}$ in., 6 in. It may be used to insulate refrigerated storage rooms and equipment.

Engineering Service

For aid in the solution of any technical problems involving insulation, isolation, or acoustical treatment, and for literature and prices, get in touch with an Armstrong district office or distributor or the Armstrong Cork Company, Building Materials Division, Lancaster, Pennsylvania.

The Philip Carey Company

Manufacturers of Heat Insulation and Asbestos Products

Lockland

Cincinnati, Ohio

ATLANTA, GA.
BALTIMORE, MD.
BOSTON, MASS.
BUFFALO, N Y
CHARLOTTE, N C.
CHATTANOOGA, TENN.
CHICAGO, ILL.

CINCINNATI, OHIO CLEVELAND, OHIO COLUMBUS, OHIO DALLAS, TEX. DAYTON, OHIO DENVER, COLO.

DETROIT, MICH.
INDIANAPOLIS, IND.
KANSAS CITY, MO.
LOS ANGELES, CAL.
LOUISVILLE, KY.
MINNEAPOLIS. MINN.

Offices

NEW YORK, N Y. PHILADELPHIA, PA. PITTSBURGH, PA. RICHMOND, VA SC. LOUIS, MO. SEATTLE, WASH. WHEELING, W. VA.

Standard 90 deg Elbow assembly. Left: Core opened to show duct vanes Right: The completed fitting

Two standard 90 deg Elbows nested in a larger standard section to form a tee

Standard 1 in. and ½ in thick Careyduct sections with core extended.

Careyduct is a new prefabricated insulated duct built entirely of asbestos The double layer construction consists of an inner core of hard, rigid asbestos, and the outer jacket is made of multiple layers of a fine corrugated asbestos structure. The combination results in great strength, is an excellent insulator, and has a definite sound deadening effect.

Careyduct fittings are made from standard sections of duct, and may be made in the field with comparative ease by men without special training. A simple mitre cut plus a few standard accessories make a complete fitting thus keeping costs at a minimum. Prefabricated fittings may be ordered from the factory if desired.

The telescopic assembly method practically eliminates leaks that are commonly found in other construction.

The standard sizes of Careyduct are designed so that a combination of smaller sizes will exactly nest in a larger size. All tees and take-offs are a combination of ells and straight duct.

Grilles and dampers are installed according to the accepted standard practice. Careyduct gives high insulating value. It materially reduces the transmission of extraneous and equipment noises. Careyduct costs decidedly less than properly insulated metal duct and compares very favorably with sheet metal duct of standard quality.

For more detailed information write for Catalog and Erection Manual.

The Celotex Corporation

General Offices

120 South LaSalle Street, Chicago

CELOTEX

Celotex Cane Fibre Insulation products are made by felting the long, tough fibres of bagasse into strong, rigid boards. They are manufactured under the Ferox Process (patented) which effectively protects them from destruction by termites, fungus growth, and dry rot. They are integrally water-proofed which insures a non-hygroscopic insulation of low capillarity and enduring insulating efficiency

Celotex Vapor-Seal Sheathing

An insulating, weather-resisting sheathing for use under any type of exterior. Surfaces and edges are moisture-proofed with a surface impregnation of asphalt.

Sizes: ²⁵½ in. thick: 4 ft wide: 8 ft, 8 ½ ft, 9 ft, 9 ½ ft, 10 ft and 12 ft long. Center Matched—Available in the

same thickness, in 2 ft x 8 ft T & G units for horizontal application.

Celotex Insulating Lath

Regular Insulating Lath—A cane fibre plaster base of high insulating efficiency. Surface provides a strong bond tor plaster and the bevelled edges and shiplap joint provide additional reinforcement.

Size: 18 in. x 48 in.; thicknesses: ½ in.

and 1 in.

Vapor-seal Insulating Lath—Same as above except for an asphalt vapor barrier on the back to prevent the penetration of moisture to the stud space.

Size: 18 in x 48 in.; thicknesses: 12 in.

and 1 in.

Celotex Roof Insulation

Regular Roof Insulation-A cane fibre product possessing superior insulating properties. It prevents condensation; reduces roof heat transmission as shown by coefficients established in THE GUIDE; reduces roof movement due to contraction and expansion.

Size: 23 in. x 47 in.; thicknesses: ½ in., 1 in., 1½ in. and 2 in.
Vapor-seal Roof Insulation—Same as above except coated on all edges and surfaces with waterproof asphalt and made with an offset on all bottom edges to provide a network of channels which equalize air pressure to reduce roof blisters and buckling.

Size: 23 in. x 47 in.; thicknesses: 1 in.,

11/2 in. and 2 in.

Cemesto

A completely fabricated fire and moisture resistant insulating composite wall unit. Consists of a Celotex cane fibre core of 22 Person a Centex came nore core of 22 Person as a Centex came nore nore nor of the Celotex came nore of 22 Person of the Celotex came of 22 Person of the Celotex came of 22 Person of the Celotex came of 22 Person of the Celotex came of 22 Person of the Celotex came of 22 Person of the Celotex came of the celotex ca core, 0.33 Btu is maintained in the manutacture of Cemesto.

Sizes: 4 ft x 4 ft, 4 ft x 6 ft, 4 ft x 8 ft, 4 ft x 10 ft, 4 ft x 12 ft; thicknesses: 1 in.,

119 in and 2 in.

Celo-Siding

A weather-resistant, insulating, structural siding Replaces wood or other sheathing materials and provides the exterior finish as well Made of a Celotex cane fibre core that has been asphalt coated on all sides and edges The weather side is additionally coated with a high grade asphalt into which mineral granules

are firmly embedded.

Sizes: 2 ft x 8 ft, tongue and groove (long edges only); and 4 ft x 8 ft, 4 ft x 9 ft, 4 ft x 10 ft, 4 ft x 12 ft square edge,

thickness: 7/8 in.

Celo-Roof

An insulating roofing unit that combines efficient roof insulation with positive weather protection. Each unit consists of a specially formed vapor-sealed core of Celotex cane fibre encased in a heavy asphalt roofing telt surfaced with selected mineral granules.

Size: $15\frac{1}{2}$ in. wide by 7 ft $11\frac{1}{6}$ in. long, thickness: $\frac{7}{8}$ in.

Celotex Rock Wool Products

Available in the following forms—Loose, Granulated, Plain Batts, Paper-backed Batts, and Blankets Celotex Rock Wool is made from the clean fibres of molten rock. It is incombustible and integrally waterproofed.

O-T Ductliner

An acoustical material designed especially for duct lining in air conditioning systems. Absorbs duct noises. Made of rock wool and a special binder. Designed to withstand air duct humidity conditions. Is fire resistant and will not smoulder or support combustion. Thermal conductivity of 0.30

Ehret Magnesia Manufacturing Co.

Valley Forge, Pa.

85% Magnesia Pipe Coverings

A FULL RANGE OF INSULATIONS FOR HEATING AND VENTULATING

The Ehret Company furnishes a broad range of thermal insulations for practically every industrial and architectural requirement. For full details of Ehret products, see the Ehret Insulation Manual.

Ehret's 85 Per Cent Magnesia

Known for nearly half a century in the industrial field, Ehret's 85 per cent Magnesia Pipe Coverings and Blocks are efficient, economical and they last indefinitely. Pipe coverings are available in a full range of sizes and thicknesses, and blocks can be furnished in thicknesses up to 4 in. An ideal material for use on heated pipes or surfaces whose temperatures do not exceed 600 F.

OTHER HEAT INSULATIONS

In addition to 85% Magnesia insulation, the Ehret Company furnishes a full line of other heat insulating materials, in the forms of pipe coverings, flat and curved blocks, sheets, lagging, blankets, cements and loose fills. These materials include Enduro (high temperature), asbestos cellular, asbestos sponge felt, mineral wool and many other products for use on heated pipes and surfaces.

COLD INSULATIONS

Ehret insulations for use on cold pipes and surfaces are made in a variety of forms and materials Pipe coverings include cork, wool felt. frostproof and anti-sweat. Standard Hair Felt, Punched Hair Felt and Insulfelt, in roll form are used to insulate both curved and flat surfaces. Ehret's Eroduct is a special material in ½ in. thickness that is applied to air conditioning and cold air ducts. Cork blocks, sheets and discs, as well as granulated cork are also furnished.

BUILDING INSULATIONS

For insulating the walls, floors and ceilings of buildings, Ehret's Heat Seal Wool is made in batts, strips, loose and granular forms. This material is high in insulating efficiency, is easy to install or apply and it will last indefinitely. Batts can be furnished with or without paper backing, as desired.

OTHER EHRET PRODUCTS

In addition to the insulations themselves, the Ehret Company can furnish insulation accessories such as water-proofing compounds, weathertight jackets, bands, wires, adhesives, sewing canvas, asbestos paper, wallboard and many other materials required for the application of insulations. Ehret packings and asbestos products as well as Durant Insulated Pipe (which is briefly described on the opposite page) are fully treated in the Ehret Insulation Manual. Write today for your copy of this 280 page handbook.

Ehret's Heat-Seal Wool Building Insulations

Two 3 in. steam lines of Durant Insulated Pipe, being installed one above the other in a narrow trench.

EHRET'S DURANT INSULATED PIPE

. . . for Underground and Outdoor Service

This unique system of pipe line protection consists of pipe that is insulated, sealed and protected at our factory, and shipped to the job ready for installation. Pipe lengths can be joined with screwed, flanged or welded fittings, and the system provides protection for expansion bends, joints, valves and similar pipeline appurtenances.

Field joints in Durant Insulated Pipe

are easy to make, and once made the backfill can be begun and the trench flooded for tamping.

Ehret's Durant Insulated Pipe will not crack or leak and moisture or water is permanently excluded by the thick, time-defying layer of high-melting-point asphalt that encloses all parts of the system. Write for the special Ehret D.I.P. folder—it gives full details.

Some Outstanding Advantages of Durant Insulated Pipe:

- 1. Permanently waterproof.
- 2. Elimination of electrolysis and corrosion.
- 3. Requires no sub-drains as even complete water submersion does no harm.
- In multiple lines, individual Durant pipes can be added, removed or replaced without disturbing others.
- 5. Minimum trenching and field work.

- 6 No rollers or pipe supports required.
- 7. No breakage or waste of material during installation.
- 8. Tile or masonry protection not required.
- 9. Field costs are much lower than those of tile, tunnel and similar systems.
- 10. Insulation protection is absolutely dependable.

The Eagle-Picher Lead Company

General Offices: American Building, Cincinnati, Ohio

Offices in Principal Cities

A Remarkable Insulating Wool Made From Minerals

Years ago Eagle-Picher pioneered a method of fusing and fiberizing carefully selected minerals into a dark gray insulating wool. This mineral wool is chemically inert. Fibers are mechanically strong, extremely resilient and flexible. They withstand expansion and contraction without loss of efficiency even at elevated temperatures.

From this mineral wool, Eagle-Picher has fabricated a long list of insulating products to meet a wide range of temperatures and operating requirements.

Eagle H-2 Loose Wool

A clean fill insulation that is highly efficient for temperatures to 1200 F. Averages considerably lighter in weight than many rock and slag wools—goes farther. Fibers are soft and flexible. Approved by Underwriters Laboratories as fireproof and a non-conductor of electricity. Retains physical and chemical stability in presence of water. Packed in 40-lb. bags.

Eagle 7-B Granulated Wool

Another grade of fill insulation that has all the advantageous properties of Eagle H-2 Loose Wool. It consists of small pellets averaging ½ to ½ in. in size. For all fill jobs in irregular spaces. May be poured. Packed in 40-lb. bags.

Eagle Low Temperature Felt

A highly efficient insulating material for subzero and low temperatures (to 400 F). Available in densities 6-lb to 8-lb per cu ft. Recommended for refrigerator rooms, trucks, refrigerators, stoves, etc. Sheds water. Extensively used in marine field

Paper Encased Batts and Blankets

These light-weight, sturdily constructed batts and blankets are easy to apply. Enclosed on four sides with paper, one

side of which is an approved vapor barrier. Strong tacking flanges. Quickly cut with knile or shears. Three thicknesses—FulThik, Semi-Thik and 1-in. For home use.

Eagle Super "66" Cement

A high-temperature plastic insulation. Easy to apply and trowels to a smooth finish. Actively inhibits rust. Will stick on any clean, heated surface. Dry coverage 50-55 sq ft per 100 lbs. 100 per cent reclaimable up to 1200 F. Packed in 50-lb bags.

Eagle Supertemp Blocks

An all-purpose high-temperature block insulation which will withstand elevated temperatures up to 1700 F without loss of efficiency or structural strength. Fibers are water-repellent. Light weight. Easily cut to fit irregularly shaped surfaces. Blocks withstand all normal vibration and abrasion encountered in use for which they are recommended. Available in all standard sizes.

Eagle Insulseal

A protective coating for Industrial Insulation Blankets, Supertemp, "66" Cement and other kinds of heat insulation. Provides a permanent seal that safeguards insulation against air infiltration, moisture, water, fumes; also against vibration and abrasion. Does not support combustion.

For more complete specifications and technical data on these and other Eagle Insulating Products, see Sweet's Engineering or Power Plant catalogs.

10807 Lyndon at Meyers Road

SULATION DUSTRIES CORPORATED DETROIT

Detroit Michigan

ROCK WOOL INSULATION PRODUCTS

BUILDING INSULATION PRODUCTS Loose Rock Wool (paper bags) Granulated Rock Wool (paper bags)

Rock Wool in Rolls (any length or thickness)

Rock Wool Batts (cartons)
(with or without paper backs)
Rock Wool Batts (bags)
(without paper backs)

Insulation Industries Incorporated owns and operates one of the most modern, up to data Rock Wood plants

up-to-date Rock Wool plants.
Rock Wool is manufactured by a patented, precision process that produces a superior grade of Rock Wool. It is light in weight, has long, silky and resilient fibers. It is clean and free from foreign particles.

Rock Wool is indestructible and will last as long as the building itself. It is fire-proof, vermin and rodent-proof and is resistent to moisture.

BUILDING INSULATION

Rock Wool is suitable for all types of building insulation requirements.

It can be applied in the granulated form by the pneumatic method to existing homes or buildings.

For new construction or for unfinished attic or wall spaces, Batts are furnished either 15 x 23 in. or 15 x 48 in. and 2 or 4 in. thick and with or without paper backs, packed in cartons.

Long fiber Rock Wool in loose form is available packed in 35-lb paper bags.

RESULTS

Results obtained in all types of buildings, both old and new, show substantial

INDUSTRIAL INSULATION PRODUCTS

For

Stoves and Ranges Water Heaters Industrial Ovens Bakery Ovens Large Diameter Pipes Boiler Settings, etc.

savings in fuel consumption with elimination of drafts and variation of temperatures between rooms and floors.

BLANKETS

Long fibered, especially treated Rock Wool, felted and secured between metal fabrics of different types. These blankets are made in standard sizes 24 in. x 96 in. and 24 in. x 48 in. and special sizes as required and any thickness from 1 in. to 8 in. Applicable to flat or curved surfaces.

INSULATING BLOCK

Rock Wool fabricated into sheet or board form from ½ in. to 4 in. thick, 24 in. x 36 in. or special sizes, as required. This block is widely used for insulating boilers, ducts, tanks, stills, etc., and for domestic furnaces, boilers, ranges and hotwater tanks.

INSULATING CEMENT

For finishing block and blanket insulation. For temperature conditions from 100 to 2000 deg. Is very plastic and is quickly and easily applied.

SPECIFICATIONS

Write for complete information and details on Insulation Industries products.

A new type Rock Wool Batt, strong and durable yet flexible enough to meet any installation requirement

INSULITE

Division of

MINNESOTA AND ONTARIO PAPER COMPANY

General Offices

500 Baker Arcade Bldg., Minneapolis, Minnesota
TWENTY-NINE YEARS PROVEN DURABILITY

For 29 years engineers and architects have specified Insulite materials for structural uses, interior finish, duct lining, and for other thermal insulation and sound control work. Insulite materials have proved themselves practical through their performance on the job.

STRUCTURAL MATERIALS

Lok-Joint Lath—An insulating plaster base, fabricated from Ins-Lite or from Graylite. Patented "Lok" firmly locks the sheets between supporting members. Thickness: ½ in. Size: 18 x 48 in.

Sealed Graylite Lok-Joint Lath—An insulating plaster base of Graylite, sealed on stud space side with an effective vapor barrier Has patented "Lok" on long edges. Furnished in same thickness and size as Ins-Lite and Graylite Lok-Joint Lath.

Bildrite Sheathing is an asphalt-containing wood fiber insulating board manufactured under an exclusive process which provides increased strength and moisture resistance. It is $^{25}3_2$ in. thick and has a distinctive gray-brown color. Thermal conductivity: 0.36 Btu per inch thickness. Each sheet is marked to indicate proper nail spacing. Available in sizes 4×8 ft up to 4×12 ft with all edges square. Also available in 2×8 ft size with interlocking joint on long edges. Used as a structural sheathing board and as a roof boarding.

Condensation Control—Where low outside temperatures and high inside humidities may occur, authorities recommend "sealing the warm side and venting the cold side" of the wall to prevent condensation. An adequate vapor barrier, Sealed Graylite Lok-Joint Lath, should be used on the warm (room) side of the wall thereby effectively reducing vapor transmission into the stud space. Bildrite Sheathing is designed to allow any surplus

vapor in the stud space to "breathe" or be vented to the exterior air. If vapor is trapped within the stud space and cannot escape through the sheathing, destructive condensation may occur.

INSULITE WALL OF PROTECTION

This construction consists of Bildrite Sheathing on the exterior of the frame work and either Lok-Joint Lath or Insulite Interior Finish Materials on the interior. Transmission coefficients (U) are shown below.

	Interior Finish		
	No Insulation Between Studding		
Exterior Finish and Sheathing	No plaster—Insulte Bulding Board, In- terior Board, Tile Board, or Plank (1/2 in.)	Plaster (1/2 m.) on Lok- Joint Lath (1/2 m.)	
Wood Siding, 25/12 in. Bildrite Sheathing	0.16	0.15	

The above values are typical of results which can be obtained by utilizing Insulite materials in frame construction. For further (U) values refer to Chapter 4, pages 106 and 107.

Applying Bildrite Sheathing

Applying Lok-Joint Lath

INTERIOR FINISH MATERIALS

Ins-Lite Building Board-A wood fiber board with the light color of natural wood-burlap and linen textured surfaces. Thermal conductivity: 0.33 Btu/hr/sq ft/in./F; density: 16 lb/cu ft. Furnished in thicknesses of ½ and ¾ inch and sizes of 4×7 ft to 4×12 ft. Also available in 6×8 ft, 6×12 ft and 8×12 ft sizes.

Graylite Building Board-An integrally treated asphalt containing wood fiber board of grayish brown color-burlap and linen textured surfaces. Thermal conductivity 0.35 Btu per inch thickness. Furnished in same thicknesses and sizes as

Ins-Lite Building Board.

Smoothcote Interior Board—Coated Insulating Board with smooth, hard surface one side, having 68 per cent light reflection. Furnished in $\frac{1}{2}$ inch thickness only and in sizes of 4×7 ft to 4×12 ft.

Satincote Interior Board-Factory finished Insulating Board in colors buff, gray, coral and green. Light reflection from 64 per cent for green to 80 per cent for the buff color. Requires no further decoration. Highly resistant to abrasion and easily washable. In $\frac{1}{2}$ inch thickness and in sizes of 4×7 ft to 4×12 ft.

TileBoard—Available in Smoothcote d Satincote. TileBoard is furnished and Satincote. with the Lok-Grip Joint that permits concealed nailing and which together with the Lok-Pin (a flat diamond shaped metal dowel) definitely and mechanically safeguards against any falling units even though no face nailing is used.

Smoothcote and Satincote TileBoard available in 1/2 inch thickness and sizes of

12 x 12 inches to 16 x 32 inches.

Plank— Available in Smoothcote and Satincote. Plank has the Lok-Grip joint which permits concealed nailing and is beveled and beaded both long edges. Smoothcote and Satincote Plank furnished in $\frac{1}{2}$ inch thickness, widths of 8 to 16 inches and lengths of 8 to 12 ft.

Acoustilite or Fiberlite effectively quiet and control sound

Acoustilite—A high efficiency acoustical material for sound control. Coefficient of sound absorption, at 512 cycles, is 0.79 when mounted on solid background and 080 when on furring strips. Noise reduction coefficient is 0.65 when mounted on solid background and 0.75 when on furring strips. Factory painted in buff, (light reflection 77 per cent) and in white (light reflection 80 per cent). Units have a butt joint and are beveled on four edges. Thickness, $\frac{3}{4}$ in.; sizes, 12x12 in. to 16x32 in.

Fiberlite—An efficient sound absorptive and decorative material. Coefficient of sound absorption, at 512 cycles, is 0.53 when mounted on a solid background and 0.72 when on furring strips. Noise reduction coefficient is 0.55 when mounted on solid background and 0.65 when on furring strips. Factory painted in buff (light reflection 77 per cent) and in white (light reflection 80 per cent). Units have a butt joint and are beveled on four edges. Thickness, $\frac{1}{2}$ in.; sizes, 12x12 in. to 16x32 in.

HardBoard Products

HardBoard materials are tough, durable, grainless, pressed wood fiber boards with a hard, smooth surface. Available in a range of densities from 55 to 68 lb/cu ft. Thicknesses are from $\frac{1}{10}$ to $\frac{5}{16}$ in. and sizes of 4×2 ft to 4×12 ft.

Industrial Insulation

Industrial Insulation is a wood fiber board for use in all types of manufacturing industries producing items such as refrigerators, coolers, showcases, brooders, partitions and cabinets.

It can be cut-to-size and fabricated to customer's specifications. Three types of

industrial board are available.

Lowdensite Industrial Board—A 10 to 14 lb density board with an average tensile strength of 100 lb/sq in. and an average conductivity of 0.30 Btu/hour /sq ft/F/inch thickness.

Ins-Lite Industrial Board—A 14 to 18 lb density board with an average tensile strength of 250 lb/sq in. and an average conductivity of 0.33 Btu/hour/sq ft/F /ınch thickness.

Graylite Industrial Board—Differs from two above products in that it has an integral asphalt treatment which provides increased strength and moisture resistance as well as minimum thickness and linear expansion. A 16 to 20 lb density board with an average tensile strength of 350 lb/sq in. and an average conductivity of 035 Btu/hour/sq ft/F/inch thickness.

Johns-Manville

Executive Offices: 22 East 40th Street. New York, N. Y.

Offices in All Large Cities

Johns-Manville Home Insulation

Johns - Manville Rock Wool Home Insulation is a light, fluffy mineral wool, highly efficient in heat-proofing practically any building, old or new. It is durable, rot-proof, fire-proof and odorless, and will not corrode or settle. Full stud thickness of this material will cut fuel costs up to 30 per cent in winter and help keep rooms up to 15 deg cooler in hottest weather. J-M Rock Wool Home Insulation is furnished in two forms: for new construction.

Applying J-M Super-Felt Type B batts in new home

in easily handled batts, for existing buildings, in nodulated form to be installed pneumatically.

For New Construction J-M Super-Felt Type B Batts

Super-Felt Type B Home Insulation is furnished in pre-fabricated batts of uniform thickness and density, in both full stud thickness and semi-thick, in sizes 15×23 in. and 15×48 in., designed to fill completely the space between studs, joists and rafters on the usual 16 in. centers. The sturdy felted "wool" is strong enough to be handled rapidly without damage. The batts are backed with waterproof, vapor-resistant paper, extending on both the long sides in $1\frac{1}{2}$ in, wide flanges, by which the batt is fastened in place and which also aid in sealing the joints. This backing protects against penetration of moisture from wet plaster and also resists infiltration of moisture vapor from the house into the wall.

As a further protection against moisture, the felted wool is also waterproofed.

Super-Felt may also be obtained in blanket form, in Thick, Medium and 1 in. thicknesses. The blankets have a water-proof vapor barner paper on one side and a permeable kraft paper on the opposite side, cemented together along the long edges to form a strong nailing flange.

For Existing Homes and Buildings Type A "Blown" Rock Wool

Type A Rock Wool is blown pneumatically into the spaces between studs in outer walls and between rafters or joists in roofs or attic floors. Insulation thickness in walls corresponds to stud depth, approximately $3\frac{5}{8}$ in.; the density, approximately 5 to 8 lb per cu ft, assures maximum thermal efficiency. This type of insulation is installed only by Approved J-M Home Insulation Contractors, who are equipped with the necessary apparatus and trained crews.

Write for Details

Complete information on all types of J-M Rock Wool Home Insulation will be turnished on request.

J-M Airacoustic Sheets for lining Air-Conditioning Ducts

J-M Airacoustic Sheets, for duct linings | of air conditioning systems, are flame-

ture-resistant, with a surface which will not materially increase friction losses in proof, highly sound-absorbent and mois- | the duct system. Write for Bulletin AC-23A.

Johns-Manville Pipe and Boiler Insulation

J-M 85% Magnesia Pipe Insulation

J-M Pre-Shrunk Asbestocel Pipe Insulation

I-M Pre-Shrunk Asbestocel is a radically improved insulating material for hot water or low pressure steam piping, which, since it is made of moisture-proofed asbestos paper, minimizes objectionable shrinkage.

Supplied in canvas or asbestos paper finishes. All types furnished in 3-ft section in standard thicknesses of 2 to 8 plies, each ply approximately 1, in. thick, for all commercial pipe sizes.*

J-M 85% Magnesia

Recommended as the most widely used insulation of the molded type for temperatures up to 600 F. Pipe insulation is furnished in sectional or segmental form for all commercial pipe sizes,* in thicknesses up to 3 in. Blocks are 3 in. by 18 in. and 6 in. by 36 in., flat or curved, from 1 in. to 4 in. thick. Minimum thickness for curved blocks, 114 in.

J-M Pre-Shrunk Wool Felt Pipe Insulation

Due to its Dual-Service Liner -an asphalt-saturated felt -J-M Pre-Shrunk Wool Felt is equally effective and durable on either hot or cold water service piping. By the use of moisture proofed felts, shrinkage troubles have been minimized.

Supplied in the regular canvas finish, it is turnished in 3-ft sections in thicknesses of $\frac{1}{2}$ in , $\frac{3}{4}$ in , 1 in., Double $\frac{1}{2}$ in , and Double $\frac{3}{4}$ in., for all commercial pipe sizes.*

J-M Asbesto-Sponge Felted Pipe Insulation

Recommended on all high pressure steam piping at temperatures up to 700 F where insulation may be subjected to rough usage or where maximum efficiency and durability are desired. Furnished in 3-ft sections up to 3 in. thick, for all commercial pipe sizes.

J-M Superex Combination

Superex Combination Insulation (an inner layer of high temperature Superex and an outer layer of 85% Magnesia) is recommended where temperatures exceed 600 F. Superex and Magnesia are both furnished in sectional and segmental pipe covering, and in block forms.

J-M Asbestocel Sheets and Blocks

Asbestocel Sheets and Blocks are used for insulating warm-air ducts, flues, heater casings and fan housings in the ventilating system. Temperature limit 300 F. Furnished 6, 9, 12, 18 and 36 in. wide by 36, 48, 72 and 96 in. long, from $\frac{1}{4}$ in. to 2 in. thick

J-M Rock Cork Sheets and Pipe Insulation

J-M Rock Cork is made of mineral wool and a moisture-proof binding ingredient molded into sheets for insulating refrigerated rooms and air conditioning ducts; and into sectional pipe insulation with an integral waterproof jacket, for all low temperature service. It is strong, durable, and will not support vermin. Because of its unusual moisture resistance, its high insulating efficiency is maintained in service.

Furnished in sheets 18 in. by 36 in., in 1, $1\frac{1}{2}$, 2, 3 and 4 in thicknesses; also 18 in. by 18 in. by 1 in. thick In lagging form, for curved surfaces, supplied 18 in. long by 1½, 2, 3 and 4 in. thick, 2 to 6 in. wide, depending on diameter. In pipe covering form, in ice water, brine and heavy brine thicknesses, for all commercial pipe sizes.

Details on Request

Write for complete information on any Johns-Manville insulating material.

*Can also be supplied in sections to fit straight runs of copper pipe or tubing with outside diameter 3/8 in. and larger.

KIMBERLY-CLARK CORPORATION

ESTABLISHED 1872 (Building Insulation Division) NEENAH, WISCONSIN

KIMSUL* is a trade-mark of Kimberly-Clark Corp. for its brand of laminated and asphalted, compressed insulation.

High in Thermal Efficiency ... Easy to Install ... Long-Lasting ... Moisture Resistant ... Clean ... Light in Weight ... and Low in Cost!

KIMSUL*, is a wood fibre product, made in long, flexible blankets composed of many creped layers or plies, providing a maximum number of dead air cells for efficient insulation. Being flexible and extremely light in weight, it is easy to install. Each

blanket is stitched with rows of strong twine running the length of the blanket. This unique feature holds the installed KIMSUL blanket securely in place—prevents sagging or "packing down" inside the walls.

KIMSUL comes compressed, packaged as at left... is expanded on job to about 5½ times packaged length (right), saving on handling time, storage space and transportation cost

Strong stitching keeps KIM-SUL at its proper density, prevents it from sagging, sifting and settling. Once in place, KIMSUL stays "put."

KIMSUL Insulation is easy to cut to exact size, fits out-of-the-ordinary spaces as neatly and as easily as it fits standard spacings.

Sloping roofs present difficultinsulation problems, but even in spots like this, one man can usually install KIMSUL quickly and easily. Manufactured by the Kimberly-Clark Corporation, makers of wood fiber products since 1872, KIMSUL* Insulation is one of the most efficient insulating materials ever developed.

Thermal Insulation: For walls, floors, ceilings and roofs. "k" Factor is .27 Btu/hr/sq ft/degrees F/inch—J. C. Peebles.

Acoustical Insulation: For walls and ceilings. Average coefficients of absorption: Commercial thickness—.41. Standard thickness—.59. Double-thick—.67.

Sound-Deadening Insulation: For partitions and floors.

Physical Characteristics: KIMSUL Insulation is a laminated and asphalted wood fiber flexible blanket insulation . . . resistant to water . . . extremely light in weight (1.5 lbs per cu ft) . . . taced with a tough waterproof cover.

Available in 3 Thicknesses: Commercial Thick (nominally one-half inch)... Standard Thick (nominally one inch)... Double Thick (nominally two inches)... Furnished in correct widths for standard stud spacings.

Vapor Seal: Separate sealing recommended wherever vapor seal is required.

Graph shows how effectively KIMSUL reduces heat flow through typical frame structures. Note that greatest proportion of heat losses are stopped by the first inch of KIMSUL.

*Reg. U. S. & Can. Pat. Off.

Pipes and conduits don't interfere with the insulating efficiency of KIMSUL. It works around corners, tucks snugly into "tight" places.

Used for caulking around window frames and doorways, odd pieces of KIMSUL add to effectiveness of insulation job, eliminate waste.

When a Vapor Seal is needed to guard against condensation within walls, it should be installed as shown, separate from the insulation.

Mundet Cork Corporation

65 S. Eleventh St.

INSULATION DIVISION

Brooklyn, N. Y.

Manufacturers of Corkboard, Cork Pipe Covering, Compressed Machinery Isolation Cork, Natural Cork Isolation Mats, and all kinds and varieties of Cork Specialties.

Authorized contractors for high temperature insulation

Mundet Branches

Albany, N. Y. ATLANTA, GA BROOKLYN, N. Y BOSTON (NO. CAMBRIDGE), MASS CHICAGO, ILL. CINCINNATI, OHIO DALLAS, TEXAS DETROIT, MICH.

HOUSTON, TEXAS KANSAS CITY, MO LOS ANGELES, CM IF NEW ORLEANS LA

Рип абегрига, Ра. St. Louis, Mo. SAN FRANCISCO, CALIF. SYRACUSE, N. Y.

Mundet Distributors are Located in the Following Cities-Names and Addresses on Request

AMANA IOWA BALTIMORE, MD.
BUFFALO, N Y.
CHARLOTTE, N. C.
CLEVELAND, OHIO DENVER, COLO.

Hartford, Conn Johnson Cify, Tenn. Memphis, Tenn. MINNEAPOLIS, MINN. NASHVILLE, TENN. NASHVILLE, T. NORFOLK, VA.

OKLAHOMA CITY, OKLA PORTLAND, OREGON PROVIDENCE, R I RICHMOND, VA ROCHESTER, N. Y. SALT LAKE CITY, UTAIL

SEATTLE, WASH TUCSON, ARIZ TULSA, OKLA, UTICA, N. Y Youngstown, Ohio

Mundet "Jointite" Corkboard

--for all low temperature insulation and for acoustical correction. 100 per cent pure cork, fabricated in accordance with U.S. Government Master Specifications and unsurpassed in its field. Sold in standard 12 in. x 36 in. sheet. Standard thicknesses, $\frac{1}{2}$ in., 1 in., $\frac{1}{2}$ in., 2 in., 3 in., 4 in., 6 in.

Mundet "Jointite" Cork Pipe Covering

Shown below, with fitting cover. Procarrying sub-zero to 50 F temperature. paper applied with hot asphalt top and bottom. Mundet steel bound mats are usually used under exposed mounts; asphalt paper bound mats under concrete foundations of the envelope type. Mats are made to fit under any type of machine foundation. For loads exceeding 2000 lb per square foot, we manufacture Mundet Machinery Isolation Cork, which is a board form of compressed granulated cork, available in 3 densities All types of isolation are furnished in 1 in., 112 in., 2 in., 3 in., 4 in., and 6 in. thicknesses, depending on class of service

Above close-up of Mundet Natural Cork Isolation Mat shows how the blocks of cork are held together within a steel frame.

tects all types of low temperature lines. Made in 3 thicknesses, with complete line of standard covers, suitable for pipes

Section of Mundet Moulded Cork Pipe Covering, with Filting. The pipe covering is made in sections 36 in. long, to fit all sizes of pipes.

Mundet Cork Vibration Isolation

Machinery vibration encountered in heating and ventilating work is effectively controlled by the use of Mundet Natural Cork Isolation Mats. These consist of blocks of pure cork, held together within a rigid steel frame or bound with asphalt

Engineering and Specification Service

Our engineering department is at the service of Architects and Engineers, to assist and advise in the preparation of specifications pertaining to cork. This service is also available without obligation to any one who has a low temperature insulation or a vibration isolation problem. Our complete catalogue will be sent on request. It is replete with information and data of value to every specification writer whose field touches our products.

Mundet Contract Service

Covers the complete installation of our products, in accordance with best established practice. Divided responsibility is avoided. Materials and workmanship are guaranteed.

The Pacific Lumber Company

PALCO WOOL INSULATION

100 Rush Street SAN FRANCISCO 35 E. Wacker Drive CHICAGO

5225 Wilshire Blvd. Los Angeles

122 East 42nd St. New York

HOUSE INSULATION

INSTALLED IN CEILINGS AND WALLS

COLD STORAGE INSULATION

TRADE MARK REG U S PAT OFFICE

ınsulation-insurance against partially insulated homes

Quickly and easily installed by hand-pack methods

Flame Proof SAFERIZED Process

- Frozen Food Plants.
- Warehouses.
- Refrigerators.
- Pre-cooling
- Plants.
- Ice Plants. Fur Vaults.
- Fruit and Pro-
- duce Storage, etc.

EIGHT POINTS OF PALCO WOOL SUPERIORITY

- 1. Thermal Efficiency: The established conductivity of PALCO WOOL is .26 Btu per hour per sq ft per inch of thickness per degree F difference in temperature by the Flat Plate Method.
- Non-Settling: The fibres of PALCO WOOL possess such resilience that no settlement in a wall can occur under the most severe conditions of vibration.
- Moisture Resistant: The fibres of PALCO WOOL are entirely lacking in capillarity and have little attraction for moisture, enabling it to remain dry and efficient when in use.
- 4. Permanent: The inherent antiseptic qualities of PALCO WOOL make the existence of fungus impossible. The fibres retain their resilience indefinitely.
- 5. Vermin Repellent: PALCO WOOL is distasteful and repellent to rodents and insects.

- 6. Fire Resistant: PALCO WOOL, like the Redwood bark it comes from, is inherently fire resistant. As an additional protection it is Saferized to make it flameproof.
- 7. Odor Proof: PALCO WOOL is odorless itself and does not absorb or give off odors.
- PALCO WOOL is 8. Economical: light in weight and low in density, offering exceptional thermal efficiency per dollar invested.

WRITE FOR INSULATION MANUALS

- House Insulation Manual.
- Cold Storage Manual.
- Frozen Food Locker Plant Manual.
- · How to Build a Plant Manual.

Get your copies today.

The Ruberoid Co.

INSULATING PRODUCTS

Executive Offices 500 Fifth Avenue, New York, N. Y.

Divisional Offices

New York

CHICAGO

BOSTON (Millis)

ERIE

BALTIMORE

MINNEAPOLIS

MORILE

Today, Ruberoid materials for heating and power equipment are safe-guarding insulation efficiency in hundreds of plants, factories and buildings—giving maximum results with minimum cost.

The Ruberoid line of insulation products is complete. These products are of proved merit, high efficiency and of a type to meet every need economically. They include pipe coverings and blocks for temperatures

from 350° F to 2100° F; Woolfelt pipe covering for hot or cold water conduits; asbestos papers for wrapping furnace pipes, protecting air conditioning; specialties such as high temperature cements, millboard, rollboard, rock wool bats and blankets. A complete Insulation Guide, which will enable you to choose the proper product for the job quickly, will be gladly forwarded upon request.

Product	Temp. Limit	Suggested Use
"48" Copr-Fibre Block Hi-Temp Sponge felt 85 per cent Magnesia Imperial WatcoCell Air Cell Woolfelt Anti-Sweat Frost-proof	to 2100° F to 1900 F to 700 F to 600 F to 600 F to 300 F to 300 F to 200 F to 120 F 30 F to 100 F	Mineral Wool blocks having unusually high insulating properties. Protective inner layer for high temperature insulations For vibrating pipes and underground insulation—excellent efficiency. Combines efficiency and reasonable cost—General use in industrial work Rugged, efficient—wide range of applications For a low-cost medium pressure industrial steam line Standard insulation for residential pipes For cold and hot water lines. Recommended especially for air conditioning work. For cold water lines to prevent condensation To assist in the prevention of freezing in circulating water pipes exposed to cold.

In addition to "48" Copr-Fibre Blocks all the above products are also made in sheet and block form for insulating flat or irregular surfaces such as tanks, breechings, turnaces, etc.

"48" Copr-Fibre Blocks

Copr-Fibre Blocks are processed from minerals having unusual insulating properties and high temperature inorganic binding materials. There are two major blocks: No. 18 for indirect temperature service up to 1800° F, and No. 20 for high temperature service to 2100° F and high compressive loads. Both are available in

standard sizes and in thicknesses up to 4 in Most popular of standard sizes are 6×12 in., 6×24 in., 6×36 in., 12×18 in., 12×24 in, 12×24 in., 18×24 in. A comparison of compressive strength, modulous of rupture, weights per board teet and linear shrinkage follows.

	THE COUNTY OF SALES		,	э
	Strength per Sq In.	Modulous of Rupture		Linear Shrinkage
No. 18 No. 20	20 83	55 lbs 52 lbs	1 85 2 35	2 50%

Both No 18 and No 20 blocks are also available with a retractory surface.

Imperial Pipe Covering

This is a laminated asbestos paper insulation that has been indented to use 22 laminations of asbestos paper per inch thickness efficiency makes it satisfactory for most medium pressure steam work in industrial plants. Its construction makes it ideal for vibrating conditions. It is recommended for temperatures to 600° F. Being an asbestos felt laminated material it is used on vibrating pipes or where hard service is expected. Will withstand water conditions for underground piping. Excellent as an industrial, oil refinery and synthetic rubber plant insulation.

Air Cell Pipe Covering-A low-cost insulation for residential use.

Woolfelt Pipe Covering—For the insulation of pipes carrying hot or cold water—also prevents condensation under normal operating conditions.

Ruberoid Insulating Cements

For the finishing of sheet and block insulation and the insulating of irregular surfaces, such as valves, unions, flanges, etc., the Ruberoid line of insulating cements is complete. This group of cements not only uses as its base asbestos, but also takes advantage of such excellent natural products as magnesia, mineral wool and Vermiculite

Asbestos Cements—Factory Prepared

Grades AA, A, HF.
Asbestos Cements—Mine Run— Grades 115, 214.

Magnesia Cement—85 per cent Mag-

High Temperature Cement—Grade H.T.

Mineral Wool Cement-"48" High Temperature. Vermiculite Cement—Grade A-11.

Ruberoid Asbestos Insulating Papers and Millboard

Asbestos Paper

Made of pure asbestos, fire-resisting. May be obtained in 6, 8, 10, 12, 14, 16 and 32 lb weights.

Asbestos Corrugated Paper

Efficient for insulating warm air pipes and ducts. 36 in. wide. Rolls contain 250 sq ft.

Asbestos Millboard

A rigid board of exceptional strength and whiteness. Cuts and drills easily For temperatures to 1000° F. Sheets 42 x 48 in.

Reynolds Metals Company

Federal Reserve Bank Building

Richmond, Virginia

New York

CHICAGO

Louisville

SAN FRANCISCO

Reyno-Cell

CELLULAR FIBRE INSULATION

"Reyn-O-Cell is incombustible. Even an acetylene torch (approximately 1500 P temperature) will not cause flaming. Reyn-O-Cell meets all fire test requirements of Federal Specifications."

Reyn-O-Cell stops up to 73 per cent heat flow and permits complete air circulation around framing. Thermal conductivity is .24 Btu per hour, per square foot, per 1 F, per inch thinkness. (Authority—Prof. J C. Peebles, Armour Institute of Technology).

Reyn-O-Cell is one of the most efficient barriers to the passage of heat that is commercially available today. It consists of heat retarding dead air cells. There are myriads of minute and hollow cellulose fibres, entwined and interlocked into a flexible, clean, resilient and light-weight mass.

AIR CIRCULATES FREELY

Reyn-O-Cell permits free circulation of air on both sides of the insulation, thus allowing rapid evaporation of any moisture which may occur. Possible damp-rot, decay or other damage to structural materials is thereby minimized.

RODENT AND VERMIN PROOF

Reyn-O-Cell blanket type insulation insures utmost cleanliness, not only during installation, but during the lifetime of the structure. It is not subject to attack by rodents, and does not harbor vernin or other insects. It is odorless, and will not decay.

WATER-REPELLENT AND FLAME PROOF

Reyn-O-Cell will not absorb water or moisture. It has successfully withstood flame tests up to 1500 F.

REYN-O-CELL is one of the most effective sound absorption materials

APPROVED AND ACCEPTED

Reyn-O-Cell is manufactured under constant United States Government inspection and in strict accordance with Department of Agriculture specifications. It is approved for home and industrial insulating purposes by Federal, State and Municipal bureaus, builders, architects, and heating engineers throughout the United States.

Reyn-O-Cell is ideally suited for equipment insulation. It can be furnished cut to size and in special widths up to 60 inches.

COSTS LITTLE TO INSTALL

Furnished in convenient blankets, or rolls, Reyn-O-Cell is adaptable to all constructions without expensive cutting or waste. REYN-O-CELL does not settle, sag or pack. For existing homes, as well as for walls, ceilings or roots of new structures it provides maximum insulating efficiency. Labor costs for installation are exceptionally low.

REYN-O-CELL Is Easily Installed

Send for A.I.A. folder 37-a-1 describing Reyn-O-Cell; also 20-D-1 describing Reyn-O-Lath Plaster Reinforcement and Plaster Base; and 14M describing Reyn-O-Wall System of 2 in. Non-Load Bearing Partitions.

Wood Conversion Company

First National Bank Building, St. Paul, Minn.

New York

CHICAGO

Тасома

DALLAS

BALSAM-WOOL AND NU-WOOD INSULATIONS

BALSAM-WOOL

Sealed Insulation
Acoustical Blanket
Sound Deadening
Industrial Insulation
Refrigerator Insulation

NU-WOOD

Kolor-Fast Tile Kolor-Fast Plank Kolor-Fast Board Kolor-Fast Wainscot Kolor-Fast Sheathing NU-WOOD

Lath
Roof Insulation
Industrial Insulation
Refrigerator Insulation
KOLOR-TRIM Pre-decorated Moldings

BALSAM-WOOL—The Double Value Sealed Insulation

The basic rightness of Balsam-Wool insulation principles has been recognized for 20 years. Constant improvement has made this insulation an acknowledged leader. Today, the new DOUBLE-VALUE BALSAM-WOOL offers greater moisture protection, increased efficiency, and increased thickness. In addition, Balsam-Wool SEALED insulation provides such outstanding Double Advantages as Double Scaling, Double Moisture Barriers, Double Wind Barriers, Double Air Spaces, Double Bonding, Double Fastening.

Balsam-Wool is an insulating mat of fleecy wood fibers, enclosed between a protective covering of double layers of asphalted craft, chemically treated to resist fire, rot, termites and vermin—92 per cent

of the mat volume is dead air.

Balsam-Wool SEALED Insulation is fabricated at the factory to a controlled density of 2.2 lb per cubic toot. The mat has a coefficient of 0 246 Btu per hour, per square toot, per 1 degree F difference in temperature, per 1 in thickness.

As applied, factory efficiency is assured. The Spacer Flange on each edge folds over and is fastened to framing members with a staple hammer, assuring

important air space front and back.

Double-Value Balsam-Wool is available in two new increased thicknesses—STANDARD and DOUBLE-THICK, in widths of 16, 20, 24 and 33 inches. Wallthick Balsam-Wool is available in widths of 16, 20 and 24 inches

Balsam-Wool Spacer Flange

Application is quick and easy

NU-WOOD INTERIOR FINISH—STRUCTURAL INSULATION

Nu-Wood Kolor-Fast and Sta-Lite Interior Finish (Tile, Plank, Board and Wainscot) is applicable either to new construction or to existing buildings. It offers varied and pleasing decoration, also insulation and acoustical value

Nu-Wood Insulating Lath has several times the bonding strength of wood lath—continuous surface eliminates dirty lath

marks, reduces cracks, V-joint resists trowel pressure in both directions—assures unbroken insulation value.

Nu-Wood Insulating Sheathing is surfaced on both sides with double coats of special moisture proofing compound. Large board—speed erection—stronger, windproof, insulated construction.

United States Gypsum Company

General Offices: 300 W. Adams Street, Chicago, Ill.

INSULATION PRODUCTS

Blanket

Decorative

Structural

Red Top Insulating Blanket

RED TOP INSULATING BLANKETS

—Made in three thicknesses: one inch, medium and thick, in rolls of 125, 75 and 50 square feet (net area), respectively Also available in bats 3 feet long in same thicknesses. Light-weight *RED TOP INSULATING WOOL blanket is wrapped in an efficient asphalt-type vapor barrier toward warm side and a tough, perforated, vapor permeable paper on cold side, which prevents possible accumulation of moisture within blanket.

*Red Top Insulating Wool is a Fiberglas product Patent No. 345156.

Decorative

Decorative

WEATHERWOOD PLANK—Manufactured in widths of 8, 10, 12 and 16 inches and in lengths 6, 8, 10 and 12 feet, ½ inch thick. "Ogee" edge on long edges (see cut) conceals nails and fully compensates for movement in the board because of expansion or contraction. Shipped in a blend of gray and tan shades in bundles of one size. When combined in variations in shade and width, Weatherwood Plank produce maximum values in both insulation and decoration.

WEATHERWOOD THE Available in the following sizes: 12 x 12 inches, 12×24 inches, 16×16 inches and 16×32 inches in $^{4}_{2}$ inch, $^{3}_{4}$ inch and 1 inch thicknesses and 12×48 inches, 24×48 inches, 24×96 inches, 48×48 inches and 48×96 inches in $^{3}_{4}$ inch only. The "Ogee" design on all edges enhances the decorative effect. Applied by either nailing or through use of adhesives.

Structural

WEATHERWOOD SHEATHING-- 2 teet x 8 teet x 25 ₃₂ mches thick, asphalt coated tongued and grooved for horizontal application, also available in 4 x 8, 4 x 9, 4 x 10 and 4 x 12 teet in either 4 ₂ inch or 25 ₃₂ inches thickness.

WEATHERWOOD BUILDING BOARD 4 feet wide, made in lengths 6, 7, 8, 9, 10 and 12 feet, ½ inch thick in either Ivory or Tan shades. Nailed to studs and joists, effectively insulates and decorates.

WEATHERWOOD INSULATING LATH-18 x 48 inches, with "V" edge joint. The excellent bond between the fibrous board face and the plaster eliminate necessity for plaster keys.

ROOF INSULATION - In sheets 22×47 inches - $\frac{1}{2}$, 1, $\frac{1}{2}$ and 2 inches thick. All but the $\frac{1}{2}$ inch size are supplied laminated with either square or "ship-lapped" edges.

Heat Loss Factors

The heat loss factors shown on the opposite page indicate the comparative insulation value of various insulating treatments included in common construction systems.

NOTE: These figures apply to 1 story buildings. To get figures for 2 story homes add 20 per cent to the values below for the wall constructions and divide by one-half for floor and ceiling constructions. It is important to use correct factor due to variations in the ratio of wall and window areas.

r				
4" Brick Wood Sh 2 x 4's		-Br	ick V	eneer
	No Wool Between Studs		ding For Wo	
Basic Construction Substituting in Above Basic Const.		125		065
a. 25/2" WW Sheathing b. 1/2" WW Plaster Base	. 202		.077	.060
c. 3/4" WW Plaster Base d. 1" WW Plaster Base e. 25/6" WW Sheathing and	.178 .157		.073 .070	
1/2" WW Plaster Base f. 1/2" WW Bldg, Bd., Tile or	. 162	.095	.070	.055
Plank g. 3/4" WW Bldg. Bd. or Tile	.215 .187	. 104	.079 .075	.059
h. Gyplap Sheathing i. 1/2" Sheetrock	.350 .288		.087 .088	
1. Gyplap Sheathing and 1/2" Sheetrock	.368	. 142	.093	.069

	WA	LLS		
	c Constru			
	rick Wall-			
	4" Comr	non i	3rıck-	No
inter	rior finish			
	No Wool	Add	ling F	Red
^ /	Between		Woo	
	Studs*	1//	2"	3"
		1"	2	
Basic Construction	.500			
Adding to Above Basic Const.	.500			•
a. 1/2" Plaster	. 480			
b. Rocklath and Plaster (Furred)	.300	143	093	069
c. 1/2" WW Plaster Base and Pl	220		004	0/4
(Furred)	220	121	084	.064
d 3/4" WW Plaster Base and Pl. (Furred)	. 190	.112	079	.061
e. 1" WW Plaster Base and Pl.	.170	2	0.7	.001
(Furred)	.160	101	073	.058
f. 1/2" WW Bldg Bd., Tile or				
Plank	. 230	124	.085	065
g. 3/4" WW Bldg Bd., Tile or	200		001	043
Plank	200 .170			.062
h. I" WW Bd., Plank or Tile	320			.070
*Based on 1/8" Furring Strip **	Based on I			
Dusca on 78 1 dring barp	20000 011			

WALLS Basic Construction—Plywood Plywood on Wood Studs 3/8" Outside—1/4" Inside with one Air Space Over 3/4"					
No Wool Between Top Studs					
Basic Construction	. 431	. 151	. 095	. 074	
Substituting in Above Ba sic Const.					
a. ½" WW Bldg. Bd., Tıle <u>"</u> or Plank	. 275	. 126	. 087	.065	
b 3/4" WW Bldg. Bd. or Tile	. 230	.115	.081	.062	
c. 1" WW Bldg. Bd. or Tile	. 196	. 106	076	.060	
d. 3/8" Sheetrock	. 430	. 151	. 095	.074	
e. 1/2" Sheetrock	.413	. 148	.095	.074	
f. Adding to basic construction 25%" WW Sheathing	.218	. 113	.080	.061	

I IA IA	C Basic Con ³ /8" Rock Plaster		tion	<u>′</u> 2″
	No Wool Between Joists		ding I op Wo	
Basic Construction	.610	. 169	.116	080
Substituting in Above Basic Const. a. 1/2" WW Plaster Base & Plaster b. 3/4" WW Plaster Base & Plaster c. 1" WW Plaster Base & Plaster	329 .290 .213	.128	.091 .087 .079	.066
d. 1/2" WW Bldg. Bd., Tile or Plank. No Plaster e. 3/4" WW Bldg. Bd. or Tile f. 1/2" WW Bldg. Bd. or Tile	356 268 . 220	.113	.086	.062
g. 3/8" Sheetrock h. 1/2" Sheetrock	.670 635	174		.089 .079

- Company of the Comp	≖ [LOO	RS	
	Basic Construction Maple or Oak Flooring on Yellow Pine Sub- Flooring			
	No Wool Between		ling F p Wo	
	Joists	1"	2"	3″
Basic Construction	.340	. 138	091	068
Adding to Above Basic Const.				
a. 1/2" WW Bd. on bottom of joists b. 3/4" WW Bd. on bottom of	.180	. 102	.0 7 5	.059
joists	.158	.094	070	. 055
c. I" WW Bd. on bottom of joists	.141	.088	.066	.053

PRODUCTS for STEAM SERVICE

AMERICAN DISTRICT STEAM COMPANY

NORTH TONAWANDA, N.Y.

IN BUSINESS OVER SIXTY YEARS

Branches and Agents in Principal Cities

Tile Conduit with ADSCO Filler Insulation a "Fiberglas" Product

Red Diamond Brand Wood Casing

Internally Guided Joint

Internally-Externally Guided Joint

Piston-Ring Type Joint

OVER SIXTY YEARS EXPERIENCE IS BUILT INTO THE DESIGN AND MANUFACTURE OF DEPENDABLE ADSCOPRODUCTS FOR PIPE LINES

For over sixty years ADSCO engineers have specialized in the design and application of pipe fittings and accessory equipment for underground and surface steam, water, oil and other piping systems. An extensive, modern plant including toundry, machine shop, casing mill, shipping and storage facilities enable ADSCO to produce high grade products by skilled workmen under expert supervision.

LEADING MAKERS OF EXPANSION JOINTS

As pioneer manufacturers of expansion joints for pipe lines, ADSCO is the largest single producer of such equipment in the world. We offer the most extensive line of packless and slip type joints in various types to meet the requirements of any pipe line expansion and contraction problem. In addition, ADSCO produces all of the related equipment necessary to the permanent installation of efficient pipe lines, including tile conduit and wood casing for underground lines, pipe supports, saddle plates, alignment guides, steam traps, condensation and flow meters, storage and instantaneous water heaters, strainers, manhole frames, and vapor heating specialties.

ENGINEERING ASSISTANCE

ADSCO engineers welcome the opportunity of working with industrial plants, utility companies, colleges, institutions, and government departments in the solution of their pipe line expansion and contraction problems and correspondence is invited giving the details of any proposed piping installation.

WRITE FOR ADSCO CATALOG No. 35

All ADSCO products are illustrated and described in the latest ADSCO Catalog No. 35 containing over 136 pages of informative data for the specification and purchase of dependable products for underground or surface pipe line distribution systems. Write for your copy today to the American District Steam Company, 65 Bryant St., North Tonawanda, New York.

H. W. Porter & Co.

Newark, New Jersey

Permanent Protection and Insulation for Underground Pipe Lines BALTIMORE, MD. CHARLOTTE, N. C. RICHMOND, VA.

CONDUIT SYSTEMS

For Central Heating—A complete conduit system for the permanent support. protection, and insulation of underground mains of central heating systems.

5 different size base tiles they produce 27 different conduit cross sections.

Foundation—Base is a thick concrete slab poured directly in the trench bottom, steel reinforced when installed over filled or boggy ground. Figs. 1, 4, 6 and 7.

Drainage-Drainage is entirely internal, accurately and permanently sloped. Condensate pockets cannot form. to inspection at manholes. Of ample capacity to keep pipe space dry at all times. No possibility of clogging with silt or vegetation. Figs. 6 and 7.

Fig. 2- Pipe Support for Single Pipe.

Fig. 3—Pipe Support for Three Pipes.

Pipe Support -All pipes rest on castiron adjustable supports directly on base independent of tile envelope. Figs. 2, 3, 4. 6 and 7.

Accessibility -All piping is installed before tile is placed, giving complete accessibility for welding, testing and insulation. No interference of tile or other trades working in trench at same time. Pipe fitters work on convenient concrete slab "walkway." Figs. 1 and 4.

Strength - Due to immovable concrete base and arch of extra heavy tile greater loads can be carried on top of conduit without extra reinforcement.

Metal Saving-Pipe supports and saddlesare the only metal used in Therm-O-Tile. Practically 100 per cent non-metallic.

Insulation—Either sectional pipe covering or Thermobestos waterproof fibre filling may be used

for insulation. For single or double pipe lines, sectional insulation is recommended; for multiple pipe lines, a filler type of insulation is usually

-Pipe Saddle, Permits Fig. 4—Pipe Saddle. Permi full thickness of insulation between pipe and roller.

Figs. 6 and 7. cal.

more economi-

Waterproofing - Under normal soil conditions, this conduit is waterproof. If marshy or extremely wet, conduit may be completely waterproofed by use of membrane waterproofing applied under slab on sub-base and carried completely over tile envelope.

Fig. 5—Anchor Block. Fits directly in line with Base Tiles.

Efficiency—Thermal efficiency depends largely upon type and thickness of insulation used. Due to sealed air chambers in Therm-O-Tile and dry insulation space, normal efficiency of insulating material on pipe lines is increased.

Miscellaneous—Quicker installation. More easily repaired. Cave-ins and storms cause less damage and expense.

Representatives—Therm-O-Tile is sold and installed by Johns-Manville Construction Units in all principal cities.

Fig 6—Single or Double Pipe Lines Using Sec-tional Pipe Insulation.

Fig. 7-Multiple Pipe Lines Using Filler Type Insulation.

The Ric-wil Company

Agents in Principal Cities

Ric-wiL

ESTABLISHED IN 1910

CONDUIT SYSTEMS FOR UNDERGROUND STEAM PIPES
Union Commerce Bldg., Cleveland, Ohio

Ric-wil Insulated Pipe Units—Prefabricated, pre-sealed, ready-to-install units, ideal for speed and economy. Armco Ingot Iron Conduit is coated with special asphalt ½ in. thick over corrugations—a permanent housing for the insulated pipe which is surrounded with a protective airspace. Ample structural strength, lightweight and watertight. Furnished in any lengths, for single or multiple pipes, with any kind of steam pipe or insulation, for underground or overhead steam lines. Connections between units may be welded, as shown, or made with split conduit couplings. Write for latest Unit Bulletin.

Types of Sectional Conduit—Ric-wiL SuperTile Conduit, shown below, with DrypaC Insulation, is an extra weight, heavy duty system designed for use under highway traffic or in especially wide or deep trenches. Vitrified tile, split on the job, with Loc-liP Side Joints, interlocking construction throughout. Same design also furnished in standard weight tile (Type F). Tile is bell and spigot design, lined or unlined, and comes in 24 in. sections, 4 in. to 27 in. inside diameter. For extra heavy duty under railways, Ric-wiL is made of cast iron in 2 or 4 foot sections. Where continuous concrete base, poured on job, is desired, and reduced labor cost not essential, Ric-wiL Universal Type System is recommended. Each system supplied complete with proper pipe supports, accessories, and insulation as specified. Separate bulletin on any one of these Ric-wiL types supplied on request.

Base Drain—Standard Base Drain is vitrified salt glazed tile for tile conduit and extra heavy tile or cast iron for the cast iron conduit, in 24 in. lengths. Made in three sizes to support and drain properly all conduit sizes.

Insulation -- Ric-wil. Dry-paC Waterproof Insulation is high-grade asbestos, specially processed. Any grade of commercial hand packed insulation can be furnished, also sectional pipe covering. For lined conduit, diateomaceous earth mixture is molded and keyed inside the tile.

Engineering Service—Full cooperation with architects and engineers. Installation supervision if desired. Write for Catalog Bulletin with valuable underground data.

Universal Zonolite Insulation Co.

135 South LaSalle Street, Chicago, Illinois

SYSTEM FOR INSULATING UNDERGROUND PIPES

Typical straight run with pipes side by side.

Straight run with pipes one above the other.

Perspective_of Complete System.

DESCRIPTION OF ZONOLITE SYSTEM

The Zonolite System is the modern, superior method of insulating underground pipes with Zonolite Concrete. The operations involved are as follows:

1. A structural concrete base or pad is placed in the bottom of a properly graded trench to support the pipes.

2. The base is waterproofed on top.
3. Precast Zonolite Concrete blocks are placed on the waterproofed base at intervals and the

pipes are placed on them.

4. When the pipes are placed, they are wrapped with corrugated cardboard to provide a cushion

tor pipe expansion.

5. Reinforcing mesh is placed around the pipes, and forms are set to provide a minimum thickness of 6 inches of concrete around and over the pipes.
6. Zonolite Concrete is poured monolithically

around the pipes in a continuous mass between loops or manholes.
7. When the Zonolite Concrete has set, the forms are removed and the exposed sections of concrete are waterproofed. After this, backfllling may begin.

DESCRIPTION OF ZONOLITE CONCRETE

Zonolite Insulating Concrete is formed by mixing Zonolite Concrete Aggregate with Portland cement, Zonolite Waterproofing Admix and water.

Zonolite Concrete Aggregate is made by exploding an unusual mica ore which forms a featherweight, all-mineral, inert, rotproof, fireproof, granular material with

high insulating properties.

Zonolite Waterproofing Admix is a specially prepared liquid waterproofing medium which is added to Zonolite Con-

crete during mixing.

ADVANTAGES OF ZONOLITE SYSTEM

1 It increases efficiency by creating a continuous, unbroken covering of insulation around

the pipes.

2. It forms a solid covering of water-repellent insulation eliminating joints or hollow spaces which could fill with water should the waterproofing leak.

3. It provides a permanent type insulation not subject to disintegration upon wetting, fireproof, chemically inert and rotproof.

4. It minimizes danger of damage to insulation or waterproofing due to handling.

5 It simplifies the installing and insulating of underground pipe lines.

ENGINEERING SERVICE AND SPECIFICATIONS

For engineering service and specifications write to the Universal Zonolite Insulation Co., 135 S. LaSalle Street, Chicago, Illinois.

Libbey · Owens · Ford Glass Company

Nicholas Building, Toledo, Ohio

WINDOW CONDITIONING (Storm Sash) FOR FUEL CONSERVATION

If every home in the United States was fitted with window conditioning, enough coal and fuel oil would be saved to fill a train of carriers 2,500 miles long. Every heating, ventilating and air conditioning engineer occupies a front line position in the war on wasted fuel for he knows the enormous savings possible with double glass insulation. By recommending storm sash and storm doors on every job, he is doing the patriotic thing and assuring greater satisfaction from equipment he specifies.

U S. Bureau of Standards figures reveal that up to 30 per cent of a heating unit's output of warm air can be saved by window conditioning. This means can be saved by window conditioning. This means a saving of three out of every ten shovelsful of coal, three in every ten gallons of oil, and proportionate savings if heating is done with gas.

savings it heating is done with gas.

By letting heat escape unchecked, many home owners use much more fuel than is necessary. The savings which result through double glazing will pay for its cost in three or four years

Storm sash, however, do more than reduce tuel consumption. They eliminate cold drafts, permit

satisfactory winter air conditioning with its higher satisfactory winter air conditioning with its higher healthful humidity, and minimize the likelihood of window fogging. The captive air space between the permanent window and the storm sash keeps the inner pane relatively warm while the outside glass so foutdoor temperature—reducing to a minimum the condensation on the inner glass.

It is possible to match practically every style of window sash without sacrificing visability. Types range from ordinary low-cost, single pane, hook-on second sash to more elaborate ones having removable glass sections for easy cleaning inside.

This chart shows fuel savings and comparative heating costs of four types of houses, with and without window conditioning and insulation, in relatively mild, fairly severe, and cold areas.

WITH WINTER WINDOW CONDITIONING THE FIRST SMALL COST IS THE LAST . . . BUT YOU STILL SAVE FUEL YEAR AFTER YEAR

			Time i pila	
Attic area ventilated above insulation	1488.5 sq. ft.	770 sq ft.	1143 sq. ft	995 sq ft.
Sidewalls net	2447.7 sq ft.	1634 sq. ft.	1332 sq. ft.	1197.5 sq. ft.
Window area	540.3 sq. ft.	326 sq ft	363 sq. ft.	285 sq. ft.
Crack length	590.4 lin. ft.	389 lm ft.	422 lin. ft.	365 lin. ft.
Unheated floor	None	None	None	None
HTG. COST—NO INSULATION— COAL \$10 PER TON Heating cost if attic is insulated Heating cost with window conditioning Savings due to insulation 35/8 in. minimum wool in attic floor only Savings due to window conditioning only	\$225.35	\$136 14	\$150.71	\$124.14
	181 80	113 93	117.64	95.64
	172.32	103 25	113.93	94.21
	43.55 19.3%	12.21 16.3° 6	33.07 21.9°7	28.50 23.0°;
	53 03 23.5%	32.89 24 2° 6	36.78 24.4°7	29.93 24.1°;
Savings with both . TOTAL	\$ 96.58 42.8%	\$ 45.10 40.5°°	\$ 69.85 46.3°°	\$ 58.43 47.117
HTG. COST—NO INSULATION— COAL \$10 PER TON. Heating cost if attic is insulated Heating cost with window conditioning 13 Savings due to insulation 35% in. mini-	\$175.00	\$106.64	\$115.00	\$ 97.14
	141.43	89.21	89.29	74.57
	133.04	80.57	87.86	74.14
Savings due to insulation 3½ in. mini- mum wool in attic floor only Savings due to window conditioning only	33.57 19.2% 41.96 24.0%	17.43 16.30% 26.07 24.40%	25.71 22.4% 27.14 23.6%	22.57 23.3°° 23.7°°° 23.7°° 23.7°°° 23.7°°° 23.7°°° 23.7°°° 23.7°°° 23.7°°° 23.7°°°° 23.7°°°° 23.7°°°° 23.7°°°° 23.7°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
Savings with both TOTAL	\$ 75.53 43.2%	\$ 43.50 40.7%	\$ 52.85 46.0%	\$ 45.57 47.0°%
HTG COST—NO INSULATION— COAL \$10 PER TON [Heating cost if attic is insulated Heating cost with window conditioning Savings due to insulation 35% in mini-	\$125 71	\$ 75.96	\$ 83.07	\$ 68.79
	101.79	63.54	65.14	52.86
	95 89	57.71	63.14	52.61
Savings due to insulation 3% in mini-	23.92 19.0%	12.42 16.4%	17.93 21.9%	15.93 23.2%
mum wool in attic floor only	29.82 23.7%	18.25 24.0%	19.93 24.3%	16.18 23.5%
	\$ 53.74 42.7%	\$ 30 67 40.4%	\$ 37.86 46.27	\$ 32.11 46.7%

Map above shows country divided into progressively colder zones extending from east-to-west. Savings shown in the table are for coal-burning homes in three typical zones - relatively mild, fairly severe, and extremely cold areas. Comparable savings may be obtained in homes heating with gas or oil.

Ask your nearest Libbey • Owens • Ford distributor or dealer for complete information on window conditioning, or write direct to Libbey • Owens • Ford Glass Company, Nicholas Building, Toledo, Ohio.

Owens-Illinois Glass Company

INSULUX PRODUCTS DIVISION

Toledo, Ohio

Dealers in All Principal Cities

Insulux Glass Block Give Better Control of Interior Conditions

Insulux Glass Block are hollow, partially evacuated block, 3½ inches thick, with ribbed or smooth faces. Laid up in mortar in solid panels, they form a light-transmitting area that also offers high insulation value. Proper use of Insulux Glass Block results in better control of interior conditions, and therefore greater efficiency and lower initial and operating costs for cooling and heating plants.

Better Insulation

The cross-section drawing above shows why Insulux Glass Block panels give higher insulation than ordinary light-transmitting areas. The glass block, partially evacuated and with thick faces, lower the conductivity and solar heat transmission of the light-transmitting area. Air infiltration is eliminated. The better insulation provided by Insulux is a factor in planning air conditioning and heating equipment and operating costs.

Lower Heat Transmission

Tests on conductivity of Insulux Glass Block show that the heat transmission of Insulux is approximately the same as for a concrete wall 16 inches thick or a brick wall 8 inches thick. The U factor for smooth face block is .49 Btu per sq ft per hour per degree difference in temperature. For ribbed block, the U factor is .46. This test data is available for inspection by engineers.

Reduction of Solar Heat

In a comparative test of solar heat transmission, a single glazed steel sash transmitted 94 per cent more heat than an Insulux panel. As with sash, however, Insulux panels transmit less solar heat if properly oriented and well shaded. There is variation in the solar heat transmission of different designs of Insulux—data will be furnished on request.

Designs, Sizes, Erection

There are 11 designs of Insulux for both residential and industrial use. Block available in three sizes. Panels are easily and quickly erected by bricklayers. We will gladly supply any technical information and advice on installations on request.

Pittsburgh Corning Corporation

Grant Building, Pittsburgh, Pa.

Distribution through Pittsburgh Plate Glass Company warehouses in principal cities and by the W. P. Fuller Company on the West Coast.

Glass Blocks allow the economical use of large glass areas, reduce heat loss in cold weather and materially aid air-conditioning. This is because each PC Glass Block contains a sealed-in deadair space that is an effective retardant to heat transfer.

Thermal Insulation

Tests run by nationally recognized laboratories have established the value of glass blocks for insulation of light-transmitting areas. These tests have proved that with glass block panels, heat loss is slightly less than half that experienced with single-glazed windows. In computing heat losses through panels for most design purposes, it is recommended that a "U" value of 0.46 to 0.49 be used for all block sizes and face patterns. For complete data on heat transfer values see the section on heat transfer elsewhere in this Guide—page 115.

Surface Condensation

Due to high insulating value, condensation will not start forming on the room side of glass block panels until outside air has reached a temperature much lower than that necessary to produce condensation on single-glazed windows. The accompanying chart shows at what temperatures condensation will form.

Outdoor temperature required to produce condensation on the room side surface of PC Glass Block panels.

For example, with inside air at 70 F and relative humidity at 40 per cent, condensation will not begin to form on the interior surfaces of a glass block panel until an out-

door temperature of -14 deg is reached. Under similar conditions with single-glazed sash, moisture will begin to form when the outdoor temperature reaches +33 F.

Solar Heat Gain

The use of glass blocks for light-transmitting areas results in a marked reduction in total solar heat gain as compared with ordinary windows. This factor is of considerable advantage in buildings that are properly air conditioned, but does not eliminate the need for adequate ventilation or shading in non-air-conditioned rooms.

For data on solar heat gain through glass blocks see the table in the solar radiation section of this Guide—page 157. This table is for standard pattern glass blocks.

PC Glass Blocks Aid Air-Conditioning

The three chief aims of air-conditioning—temperature control, humidity control and cleansing of air are all aided by the use of PC Glass Blocks. Heat loss is less in winter—heat gain is less in summer. Ideal humidity conditions are much more easily maintained without undue condensation. Solar heat transmission and radiation are reduced. Dirt can't filter in, for each panel is a tightly sealed unit.

Sizes and Shapes Available

PC Glass Blocks are available in eight attractive patterns, some of the patterns being designed for special control and direction of transmitted daylight. For complete information on the sizes and shapes of PC Glass

Blocks, and for illustrations of the many patterns available, write the Pittsburgh Corning Corporation, Pittsburgh, Pa., or call the nearest Pittsburgh Plate Glass Company warehouse.

Additional technical data, including detailed figures on thermal insulation, solar heat gain, surface condensation, light transmission and construction data, will be furnished on request.

International Heating & Ventilating Exposition THE AIR CONDITIONING EXPOSITION

Permanent Address-Grand Central Palace, New York, N. Y.

EXPOSITIONS HELD

The first in Philadelphia, 1930. The second in Cleveland, 1932. The third in New York, 1934. The fourth in Chicago, 1936. The fifth in New York, 1938. The sixth in Cleveland, 1940.

The Seventh planned for Philadelphia in 1942, was postponed The conclusion of war activities will mark the resumption of manufacture of air conditioning equipment for civilian use. At that time the Exposition will unfold tremendous opportunities for the industry and manufacturers

These expositions have been and will be held coincident with the Annual meetings of the American Society of Heating and Ventilating Engineers and are directed by the International Exposition Company, under the auspices of the ASHV.E.

EXHIBITORS

Comprise leading firms in each phase of the industry; number has varied from 150 to 327 exhibitors.

EXHIBITS

These range from and comprise all the types of articles discussed or advertised in this copy of THE A.S.H.V.E. GUIDE.

- 1. The Combustion Group: Furnaces, burners (coal, oil and gas), grates, stokers, boilers, radiators (various types), refractories and auxiliaries.
- 2. The Oil Burner Group. 3. The Hydraulic Group:

Water feeders, water heaters, pumps, traps, valves, piping, fittings, expansion joints, pipe hangers, etc.
4. The STEAM HEATING Group:

Vapor heating and steam specialties.

5. The HOT WATER HEATING Group.

6. The AIR Group: Warm Air furnaces and stoves, registers and grilles, cooling towers, air filters, motors, fans, blowers, conditioning equipment, ventilators (room and industrial types), unit heaters, etc.

7. The AIR CONDITIONING Group: Equipment which circulates and filters the air, in summer dehumidifies and cools; in winter heats and humidifies, and does all these in proper season for complete, all year-round air conditioning.

8. The Control Group: Instruments of precision for indicating, controlling or recording temperature, pressure, volume, time, flow, draft or any other function to be measured. 9. *The* REFRIGERATING *Group*:

Compressors, condensers, cooling apparatus, contingent apparatus and refrigerants.

10. The CENTRAL HEATING Group: Apparatus and materials especially designed or adapted to the uses of central heating and central heating station supplies.

11. The Insulating Group:

Structural insulators (refractory and cellulose materials), asbestos, magnesia clays and combinations thereof, pipe and conduit covering, etc., weather-stripping, etc.

12. The MISCELLANEOUS Group: Electric Heaters, boiler and pipe repair alloys, liquids and compounds, tools of all kinds, and equipment not specifically included in the above groups, but related thereto.

13. The MACHINEEY AND GENERAL

EQUIPMENT Group.

14. Books and Publications

VISITOR ATTENDANCE

Comprises a registered attendance invited to the exposition and includes:

(Figures are 1940 analysis)

INDUSTRIES

Governmental	401
Distribution Channels	
Contractors, Dealers, Johbers, Supply	
Houses	7,031
Home Owners	333
Industrial Users	9,371
Professional and Service Organizations	689
Public Utilities .	900
Real Estate Management and Operation .	630
Educational Institutions,	500
Miscellaneous	797
TOTAL	20,652

OCCUPATIONS

Executive	11.433
Construction	2,632
Operation	2,353
Technical	. 2,688
Not Classified including Educators, lishers, Home Owners, etc	Pub- 1,546
TOTAL	20,652

Industrial Expositions in America lead the expositions of the world in style, business effectiveness, industrial influence This Exposition and educational value. stands among the leaders in Industrial Expositions in America. It is an educational institution which brings together the research developments and improvements in equipment and materials for use in heating, ventilating and air conditioning all types of buildings.

PUBLICATIONS

Important to the field of heating, ventilating and air conditioning are the technical journals, trade papers and business publications serving these industries. They include regular monthly editions, special annual numbers and trade catalogs issued by commercial publishers; and many periodical and annual editions published by engineering societies and trade associations.

These publications are a year-round source of information on the many problems involved in the design, production, distribution, operation and maintenance of heating, ventilating and air conditioning equipment, and related problems in refrigeration.

In editorial content and in their advertising pages are given a comprehensive review of developments in their respective branches of the industry. By means of scientific and technical articles they disseminate information of value—they provide valuable data for the engineer, practical helps for the production man, and also serve the distributor, dealer, contractor, and the operating and maintenance man.

PUBLICATIONS (p. 1126-1135)

Specialized trade papers serving a specific branch of the industry; general publications serving the broader field of the entire industry and profession; and technical publications providing the data necessary for scientific development of the industry.

Many publications compile market statistics and provide merchandising suggestions for their readers. These services are of value not only to their readers, but are important to manufacturers who advertise their products in the pages of these publications.

Consistently read—and their contents correlated with private and governmental data on development and distribution of heating, ventilating and air conditioning equipment—these publications afford a comprehensive understanding of the problems and progress of the industry as a whole.

American Society of Refrigerating Engineers 50 West 40th Street, New York, N. Y.

REFRIGERATING ENGINEERING

The most rapidly growing magazine in the refrigeration field

REFRIGERATING ENGINEERING

REFRIGERATION and air conditioning have been found even more necessary during wartime than in times of peace—every man engaged in these industries knows of the rapid developments

made during the past year.

Long acknowledged the most authoritative periodical in the field, Refrigerating Engineering has added steadily to the practical value of its contents, and its number of readers has grown in proportion. A wide variety of material is presented, all from the viewpoint of its usefulness to the reader in his own business. This magazine is a must for men who keep in touch with all that is new and important in refrigeration and air conditioning.

THE REFRIGERATING DATA BOOK

THE REFRIGERATING DATA BOOK is now an essential tool in the refrigeration and air conditioning industries. Editions have been published in 1932, 1934, 1936 and 1938. The 1940 Edition (Volume II) is entirely different from any preceding volume. It consists wholly of practical, how-it-is-done chapters on all the known applications of air conditioning and refrigeration. This Applications Edition carries information of a scientific and popular nature to the scores

of industries using refrigeration processes. The 1942 (Fifth Edition) of the Data Book is just off the press. This new book, replacing Volume 1, has been rewritten in new sections have been added to make the Data Book the most comprehensive authority available on refrigeration problems.

APPLICATION DATA BULLETINS

AN outstanding addition to REFRIGERATING ENGINEERING since 1939 is the APPLICATION DATA Bulletins which have appeared in each issue. These bulletins are also available separately at reasonable prices for single copies

or quantity orders.

The APPLICATION DATA Bulletins tell precisely how refrigeration is used in various fields, giving examples and specific information on the best practice up to date. Some of the subjects covered to date are: refrigeration of locker plants, of fur storage, of restaurants, of liquids, of apples and pears, humidity in refrigeration, refrigeration service charts, refrigeration for skating rinks, butter and cheese making. milk plants, citrus fruits, beer dispensing, retail stores, wine making, load calculations, operation of ammonia machines. how to figure air conditioning, refrigeration of ships' stores, etc.

CODES AND STANDARDS

THE A.S.R.E. further contributes to refrigeration progress by its participation in establishing codes and standards in the industry. Among the recent codes made available are: No. 21—Testing and Rating Milk Coolers; No. 22—Rating and Testing Water-cooled Refrigerant Condensers (Tentative—1942); No. 23—Rating densers (Tentative—1942); No. 25—Rating and Testing Refrigerant Compressors (Tentative—1942); No. 24—Rating and Testing Water and Brine Coolers (Tentative—1942); No. 25—Rating and Testing Forced-circulation Air Coolers for Commercial and Industrial Refrign. (Tentative—1942) (Symplometric Circulation Air Coolers for Commercial and Industrial Refrign. tive—1942), (Supplement to Cir. No. 13, not sold separately.)

MEMBERSHIP ACTIVITIES

IT is the policy of the A.S.R.E. to treat in its meetings current subjects touching upon all phases of the art of refrigeration. Membership is in two grades with dues from \$10.00 to \$15.00. Sections hold meetings in the following cities: Boston, New York, Philadelphia, Detroit, Chicago, Milwaukee, St. Louis, Los Angeles, Baltimore-Washington, Richmond, Pittsburgh, Cinreplacing Volume 1, has been rewritten in cinnati, Cleveland, Kansas City, and line with 1942 practice, and many valuable Utica, N. Y. (Central New York State).

To keep apace with progress in refrigeration and air conditioning, read the publications and follow the activities of THE AMERICAN SOCIETY OF REFRIGERATING ENGINEERS, 50 West 40th St., New York, N. Y.

Coal-Heat

Published at

20 W. Jackson Blvd., Chicago, Illinois

FOR information on the sale and use of stokers, coal and coal heating equipment, you can turn to COAL-HEAT with complete confidence.

Here is a magazine that appeals to every man concerned with the use and sale of solid fuel and coalburning equip-ment. Having long since recognized the extreme importance of properly designed and efficiently operated equipment to the successful use of coal, and therefore to the welfare of the

coal industry, COAL-HEAT constantly emphasizes and reiterates the significance of the "equipment factor" in solid fuel merchandising. It is only natural that COAL-HEAT

It is only natural that COAL-HEAT was the first trade magazine to recognize and promote the small stoker; to introduce many new developments in coal-burning equipment to the coal industry; to support the widespread use of dustless treatment in coal preparation; and to urge the sale of

equipment by coal men.

COAL-IIEAT has at its disposal an almost unlimited number of sources of authentic information on the topics it covers; its articles are written by the best informed men in the coal, stoker and heating industries. It enjoys quite a following, not only among the most progressive merchants in these industries, but among the industry's leading combustion and heating engineers. For years COAL-HEAT has championed the importance of the fuel engineer to the coal and stoker industries, and each year prints many articles for and by fuel engineers.

COAL-HEAT's fundamental editorial

policy is "to further the more satisfactory use and increased sale of coal and modern coal-burning equipment."
Therefore it follows that COAL-HEAT actively supports the application of scientific and engineering knowledge to the burning of coal and the use of coal-burning equipment. It has directed its editorial program to both the merchandising and utilization of the coal, stoker and heating industries, believing that the are int w o separable.

With a million stokers in use today, the importance of COAL-HEAT's field is clearly evident. Each stoker installation involves both a sales and an engineering problem. It has been and is COAL-HEAT's job to supply coal and stoker men with all of the information they need to insure satisfaction for stoker users. The same is true with hand-fired heating plants and all kinds of household and commercial

coal heating equipment.

In addition to providing its readers with an authentic and diversified editorial program, COAL-HEAT also publishes a number of books and booklets, manuals and reprints covering a wide range of subjects of interest to coal, stoker and heating men. Its series of heating guides for the consumer have proved particularly popular. These are available at small cost.

Subscription rates—\$2.00 a year; \$3.00 for two years. Rates apply for both United States and Canada. Foreign rates—\$2.00 a year; \$4.00 for three years.

Advertising rates and other information

will be furnished upon request.

American Artisan

Published by

KEENEY PUBLISHING COMPANY

6 North Michigan Avenue, Chicago, Ill.

MERICAN ARTISAN, now in its 64th year of publication, covers the field of warm air heating, residential air conditioning, and sheet metal contracting. A special section of each issue has been devoted to air conditioning since 1932, when it first became apparent that air conditioning for homes was to be along the lines of the central, forced warm air heating system.

Its readers are warm air heating and sheet metal contractors, dealers, jobbers and

manufacturers, and also architects, engineers, and public utility companies who take it for its thorough coverage of air conditioning for the home field.

To answer the industry's need for a dependable guide to equipment purchases, it publishes in each January issue a complete and up-to-the-minute directory of warm air heating, air conditioning and sheet metal products and equipment. This directory lists all products used in the field, their trade names, and the full names and addresses of all manufacturers. It is used by readers as a buying reference throughout the year.

throughout the year.

Almost from the day interest in residential air conditioning began to develop, the advantages of the warm air type of heating system, with its duct distribution of air, were plain to see. It was adapted to all air conditioning factors, either through a self-contained central unit or through a central furnace to which could be added step-by-step or as a whole, fan, washer, humidifier, filters, controls, cooling, and automatic firing.

Today, as a result of this ready adaptability as well as economy, tens of thousands of homes have winter air conditioning—

supplied through forced warm air heating with air cleaning and humidification. Cooling apparatus can be attached to these systems readily whenever complete, year-'round air conditioning is desired.

This trend in residential air conditioning has placed a premium on air handling knowledge, and has brought to the fore the one man experienced in "treating" air at a central place and getting it properly distributed—the warm air heating and sheet metal con-

tractor. The warm air heating industry has, furthermore, undertaken and made notable progress toward the solution of the many new engineering problems involved. All this has helped to put warm air heating in the center of residential air conditioning.

In aiding to develop this trend and assist in the solution of new problems, AMERICAN ARTISAN has provided a service to its field which has made it the recognized authority on residential air conditioning practice.

To manufacturers whose products are used in residential air conditioning, AMERICAN ARTISAN offers full coverage of the leading buying factors. Such manufacturers are invited to write for complete information about this expanding market.

AMERICAN ARTISAN is published monthly. It is a member of the Audit Bureau of Circulations and Associated Business Papers.

Subscription rates—\$2.00 per year, \$3.00 for two years in U. S., Canada, Mexico, Central and South America. Foreign \$4.00 per year.

Advertising rates furnished upon request.

Heating, Piping and Air Conditioning

Published by

KEENEY PUBLISHING COMPANY

6 North Michigan Avenue, Chicago, Ill.

HEATING, PIPING AND AIR CONDITIONING is the publication which carries in each issue the official JOURNAL OF THE AMERICAN SOCIETY OF HEATING AND VENTILATING ENGINEERS in addition to its own regular editorial section.

Its field is that of industry and large buildings. Editorially, it gives specialized attention to the design, installation, operation, and maintenance of heating, piping, and air conditioning systems in such plants

and buildings.

In addition, there is published in each January issue a complete Directory of Commercial and Industrial Heating, Piping and Air Conditioning Equipment, which lists all products used in the field, their trade names, and the full names and addresses of all manufacturers. This directory has been established as the industry's buying and specifying guide, and is consulted by readers throughout the year, whenever equipment purchases are up for consideration.

H. P. & A. C. is read by consulting engineers and architects . . . contractors . . . and engineers in charge of heating, piping, and air conditioning in industrial plants, large commercial and public buildings, federal, state, and city governments, school boards and public utilities. Among its subscribers are numbered all members of the A.S.H.V.E., who represent about 30 per cent of its total circulation.

Such a coverage means, for the advertiser, consideration at all points in the selling of a heating, piping, or air conditioning product . . . consideration in the selection of a product during the preparation of plans and specifications; consideration in the actual purchase of a product for installation; consideration in

the year 'round buying of a product for operating and maintenance requirements.

It has been evident for some time that the air conditioning field is made up of two distinct markets: (1) Industrial and Commercial; (2) Residential.

These two markets are different in equipment used; different in engineering problems involved, different in engineering, distributing, and consuming personnel . . . require, therefore, different selling jobs.

To sell the industrial and large building

field for air conditioning, the manufacturer must win acceptance from the engineers who design, specify, install, operate, and select the system to meet the particular requirements of the plant or building. The system may be central, unit, or "split," but it is these engineers who are the influencing or purchasing factors.

It is to such groups that HEATING, PIPING AND AIR CONDITIONING editorially caters—exclusively in the industrial and large building field. Without waste, the manufacturer of air conditioning products and accessory equipment, such as motors, drives, controls, etc., can reach through its pages those from whom he is seeking the necessary engineering acceptance.

Manufacturers interested in this field can obtain complete information by writing to the address given above.

HEATING, PIPING AND AIR CONDITIONING is a member of the Audit Bureau of Circulations and Associated Business Papers.

Subscription rates—\$2.00 per year; \$3.00 for two years in U. S., Canada, Mexico, Central and South America. Foreign, \$4.00 per year.

Advertising rates furnished upon request

Domestic Engineering Magazine

Published Monthly by
DOMESTIC ENGINEERING PUBLICATIONS

1900 Prairie Avenue

Chicago, Illinois

In WAR As In Peace . . . the heating, plumbing and air conditioning industry has proven itself an essential industry. It is an industry which offers an annual market of over one billion dollars. The transition of American life, from a peacetime to a war-time basis, has found heating, plumbing and air conditioning even more essential to maximum war production than it was to the peace-time standards for which we are fighting.

The performance of the heating, plumbing and air conditioning industry during the past months stands as evidence of its vitality and its adaptability to new conditions. This performance is suggestive of the possibilities inherent in the heating, plumbing and air conditioning industry, not only for today, but in the coming postwar period.

New materials such as plastics, plywoods, and alloys, which have been developed for war; hitherto limited but common materials such as aluminum and magnesium, which will be available on a vastly expanded basis; new concepts in living standards and building construction... these, and other vital factors to be found in the post-war period will meet a ready application and a fertile market in

For more than 53 years, Domestic Engineering has served the heating and plumbing industry. The quality of this service and the leadership exhibited by Domestic Engineering is indicated by the award recently presented to this publication for editorial achievement in 1942. The honor was conferred in recognition of a major editorial program carried on during 1942 designed to be of maximum benefit to the industry and to the war effort under 1942 conditions.

the heating, plumbing and air conditioning industry. Domestic Engineering Magazine and Domestic Engineering Catalog Directory

For complete data concerning *Domestic Engineering*, the field it serves, advertising rates, circulation, etc., write to Advertising Department, 1900 Prairie Avenue, Chicago, Illinois.

Domestic Engineering Catalog Directory

Published Annually by
DOMESTIC ENGINEERING PUBLICATIONS

1900 Prairie Avenue

Chicago, Illinois

In addition to its regular circulation Domestic Engineering Catalog Directory is distributed to War Buyers and Specifiers in Navy Yards, Ordnance Plants, Industrial Plants engaged in war and essential civilian work, Coast Guard Stations, Air Fields, Ship Yards, Cantonments, etc. Basic circulation covers the buyers and specifiers among the top ranking wholesalers, consulting engineers and contractor-dealers who have the high priorities in the heating and plumbing field.

constitute your first and most important approach to this market. These publications are not only the leading peace-time

media in this industry . . . they have maintained and increased their positions of leadership under rapidly changing war conditions.

What Domestic Engineering Magazine and Domestic Engineering Catalog Directory have done in converting to a war basis... that same job will be done in leading the heating, plumbing and air conditioning industry back to a sound and vital postwar program.

Your planning for today under war conditions and your planning for the peace, in connection with this market, will not be complete unless it includes full use of the services, reader acceptance, and other facilities available through *Domestic Engineering Publications*.

In PEACE As In War . . . Domestic Engineering Magazine and Domestic Engineering Catalog Directory are your first and most important approach to the heating, plumbing and air conditioning market.

For full details to assist you in your post-war planning . . . as well as to assist you under present war conditions . . . write to Domestic Engineering Co., 1900 Prairie Avenue, Chicago, Illinois.

For details of the many services available to manufacturers through *Domestic Engineering Catalog Directory*, write Manufacturers' Catalog Service Department, 1900 Prairie Avenue, Chicago, Illinois.

Fueloil & Oil Heat

232 Madison Ave.

Lex. 2-4566-7

New York, N. Y.

Los Angeles DON HARWAY & CO. 816 W 5th St .- Mutual 8512

Raltimore c/o FLEET-McGINLEY, INC. Candler Bldg —Lexington 7065

Informative Dependable for all Fueloil. Oilburner, Heating and Airconditioning. Men

A E. COBURN, Editor ARTHUR G. WINKLER, Advertising Manager

ROBERT GRAY, Business Manager LEOD D. BECKER. Chairman of Board

Fueloil Journal (20 years old) and AIR CONDITIONING & OIL HEAT (14 years old) were merged and the present paper issued commencing with the May, 1942,

This move was made necessary by the War and though it entailed sacrifices, was made with the best interest of readers, advertisers, the industry generally, and

the publishers, in mind.

The Oilheating Industry is surviving during Wartime due to the intelligence and hard work of its members who are doing a creditable job taking care of the heating needs of the Home Front, and producing materials of war for the Fighting Front. Fueloil & Oil Heat is leading the industry, attacking its problems, instructing and advising on technical matters, Governmental orders, facts and influences behind the news.

A growing list of responsible advertisers are sharing in this work; keeping their names before the field; obtaining the priorities and parts business from our readers; and co-operating with this pub-

lication in the industry's work.

Reader interest in Fueloil & Oil Heat is at a high level. Letters and calls pour in, on all phases of wartime operations. Responses to advertising which requests inquiries, are surprisingly high.

THE MANUFACTURERS

Most oilheating manufacturers have warwork. They had shop facilities which could be used for direct war manufacturing; or they are producing their regular equipment for military use. The extent of this military use is surprising, and is too much of a military secret to list here, but it is largely responsible for the average of 5000 oilheating units made per month and shipped by manufacturers during the last quarter of 1942.

THE DEALERS

Our surveys show that up to January, 1943, about 4000 of the original 13,000 oilheating dealers have gone out of business for any of the excellent reasons found in wartime. The remaining 9000 are the better ones, made stronger by inheriting the business volume of the departing minority. 55 per cent of these remaining have oil income to sustain them during the War; 36 per cent operate their own oil trucks; all derive income from selling service and parts to home owners.

The average oilheating user spent \$14.30 for service in 1942. Repair parts needed for each 1000 burners in operation in 1942, compared with 1941, are shown in this table:

	1941	1942
Nozzles	47	60
Strainers , ,		56
Combustion chambers	27	22
Pumps .	19	17
Transformers .	10	17
Baffles	12	13
Motors	10	13
Pressure valves .	7	11
Safety controls.	22	10
Pipe insulation .	5	3
Circulators	7	2

When these figures are applied to the 2,386,000 burners in operation after one year of War, it is evident a sizable market

for parts exists.

Installation of oil heating units during the last quarter of 1942 averaged between a high of 4000 and a low of 2400, mostly replacement sales made under P-84, by dealers, practically all from their own

For highly interesting and useful data on the Oil Heating Industry in Wartime, send \$1.00 for a copy of the January (1943) Statistical Issue (Yearbook). \$1.25 if sent C. O. D. Widely

acclaimed for its accuracy.

HEATING VENTILATING

The Air Conditioning Monthly

THE INDUSTRIAL PRESS... Publisher 140-148 Lafayette St. New York, N. Y.

HEATING AND VENTILATING is edited for engineers, contractors, and equipment manufacturers who have the final word in the specification, installation, production and maintenance of mechanical equipment for heating, air conditioning and ventilating.

The editorial content is designed to be of practical use to engineers engaged in the design, installation or operating of heating, ventilating or air conditioning equipment, and is prepared under the

direction of field-experienced professional engineers. A maximum amount of space is given each month to articles showing how specific problems have been met, authoritative discussions of timely sub-

jects, compilations of useful data, and descriptions of the latest practice, techniques and equipment.

Generally speaking, the emphasis is on practical rather than on technical considerations.

Each month an original Reference Data sheet is included for permanent use in a standard binder (back copies are available).

Special issues or special sections are published from time to time. A comprehensive Buyers Guide (directory of manufacturers) is published early each fall. Special

Reference Sections are published several times throughout the year on subjects of timely interest, such as Radiant Heating, Food Dehydration, Fuel Conservation, etc.

CIRCULATION

CIK	u
HEATING AND VENTILATING	'S
total distribution (May, 1942)—11,45	0
classified as follows:	
Consulting Engineers (350) and Ar-	
chitects (184) Engineers Employed	
by them (282) 8	16
Contractors (1,396) and Engineers	
Employed by Contractors (278) 1,6'	74
Governments and School Boards,	
and their Engineers 6	97
	94
Industrial Firms, their Executives,	
Engineers and other Employees2,8	97
Buildings, Real Estate Management	
	61
Manufacturers of Air Conditioning,	
Heating, Piping and Ventilating	

Equipment, Their Officials and	
Employees (666) and Designing	
Engineers (215)	881
Manufacturers' Agents and Sales-	
Engineering Firms (156) Sales	
Engineers and Salesmen (830)	986
Wholesalers (93) and Dealers (372)	465
Educational Institutions, Libraries,	
Technical Associations	654
Miscellaneous and Unclassified	562
*****	0.887
	,001
Field Staff, Correspondents, Ex-	F69
changes and Advertising Agencies	503
TOTAL13	.450
Subscriptions to HEATING A	ND
VENTILATING are \$2.00 a year.	
VISITIANIZATION CON PERSON CONTRACTOR	

Plumbing and Heating Journal

Published by PLUMBING AND HEATING JOURNAL, INC.

45 West 45th Street, New York City

PLUMBING and Heating Journal is edited to furnish a well-rounded, efficient service to the men engaged in the plumbing, heating, ventilating and air conditioning fields. It covers both the technical and business phases of their work.

It gives free technical service through a staff of practical engineers; expert merchandising assistance, and its technical and business articles are by men of recognized com-

petence.

Many readers come to THE JOURNAL each year for solutions to their technical problems. While some of the questions and answers are published in the Readers' Technical Service section in each issue of the magazine, the vast majority of them—having to do with practically every phase of heating, ventilating and air conditioning as well as plumbing—are answered by mail, because most of the requests for help are urgent and a delay in answering would, in some cases, entail actual monetary loss to the contractor.

The Readers' Technical Service Department of THE JOURNAL is staffed by editors who have spent their lives in the business; men who were successful plumbing, heating, ventilating and air conditioning engineers who devote their entire time to keeping abreast of the field's technical developments and using their knowledge and experience for benefit of JOURNAL subscribers.

The "Comfort Heating" department, devoted to equipment for automatic heating with coal, gas or oil, is an exclusive JOURNAL feature.

A department "With the Water Systems," informs the trade of the latest developments in the rural plumbing field and its increasing potentialities for the plumbing—heating contractor, especially with the recent extensions of rural electric lines throughout the country. Special emphasis is now also given to the necessity of increased farm production for National

Defense. Such increased production is possible, of course, largely by augmenting water systems in rural areas.

Washington Currents— THE JOURNAL, through its competent staff correspondent, Mr. Arnold Kruckman, whose head-quarters are in Washington, and who is well-known among Government officials in various departments, presents in each issue first-hand story happenings of vital interest to the plumbing-heating-air

conditioning industry. Last minute news is received right up to our final press date, so as to give fresh information.

New and Improved Products—New Trade Literature — This is a regular monthly section where manufacturers' latest products and promotional material are reviewed.

Supplementing the business and technical articles and departmental material is a large amount of exclusive, staff-gathered news that highlights the background of the trade's activities.

This news background is vital. It completes the industrial picture for the reader. It keeps him in intimate touch with what the various important associations and his fellow members of the craft are doing throughout the nation and it charts the trends that are likely to have a very definite influence on the future operation of his business.

THE JOURNAL editorial department draws its news from scores of trained correspondents located at strategic points throughout the country.

This combination of the technical, business, news and other aspects of the industry enables THE JOURNAL to achieve a finely balanced magazine that gives the reader the type of information he wants and needs, in brief, compact form.

THE JOURNAL subscription price is: 1 year \$2.00, special offer, 2 years \$3.00; 3 years \$4.00.

Sheet Metal Worker

Published by Edwin A. Scott Publishing Company

45 West 45th Street

New York

HE January 1943 issue of SHEET METAL WORKER will be its Sixty-Ninth Anniversary and Directory Number. It is the oldest publication in its field and is of vital importance to men interested in sheet metal work-air conditioning -warm-air heating and ventilation. Founded and published to 1909 by David Williams Company; 1909 to 1920 by United Publishers

Corp.; since 1920 by the present publisher, the Edwin A. Scott Publishing Co.

SHEET METAL WORKER is today a monthly merchandising, business and technical journal basic to the use of sheet metal. It serves the various unified merchandising and installing branches of the industry, consuming sheet metal for the erection, maintenance and operating equipment of homes and buildings, including central air conditioning equipment, warmair heating, ventilating, dust and refuse removal, and systems for handling material by air; kitchen and restaurant work; a wide variety of interior and exterior work for commercial, industrial, institutional, and residential buildings.

Subscribers are mainly merchandising contractors purchasing practically all products and equipment which they fabricate, erect or install. Manufacturers, jobbers and distributors also subscribe

The market has three main divisions:

- (1) Equipment for resale in connection with erection or installation work.
- (2) Materials for fabrication.
- (3) Shop equipment and supplies.

CIRCULATION

SHEET METAL Worker is a member of the Audit Bureau of Circulations and the Associated Business Papers. It has a uniform distribution, with the greater part of its circulation centered in states showing the greatest industrial activity. Readers of SHEET METAL WORKER are made up of warmair heating, air conditioning and sheet metal contractors and dealers.

Also wholesalers, manufacturers, branch offices and salesmen. For further details send for ABC statement.

EDITORIAL

SHEET METAL WORKER has been outstanding in the editorial service it has rendered the trade and is noted for the practical usefulness of its articles and the timeliness of its editorials. Its editor is a noted author in this field and the author of several well-known books.

SHEET METAL WORKER also publishes books on heating, ventilating, sheet metal

work, air conditioning, etc.

The Annual Issue published in January, contains a comprehensive and valuable Directory Section.

ADVERTISING

SHEET METAL WORKER has an enviable record of long term advertising and is proud of its long list of regular advertisers.

Because of its intimate contact with this field, Sheet Metal Worker is well qualified to cooperate with manufacturers in their sales and advertising programs.

Subscription rates—\$2.00 per year, U.S., and Mexico. Canada \$2.50; Foreign \$3.00.

Advertising rates on request.

In the Index to Modern Equipment are complete detailed listings of heating, ventilating and air conditioning equipment and materials.

Arranged alphabetically according to names of products are more than 300 items listing not only those products shown in the Catalog Data Section but also many other products made by the manufacturers represented in The Guide.

On pages 1137-1160, under each index heading—Air Cleaning Equipment, Fans, Humidifiers, Ventilators, etc.—will be found, fully cross-indexed, a complete list of manufacturers of any desired products and page numbers in the Catalog Data Section where the products are described. By reference to these index headings, the manufacturers names and the page numbers, any item of equipment or materials may be located quickly.

On page 874 are page references to the various sub-divisions of manufacturers catalog data, and on pages 875-880 will be found an alphabetical list of manufacturers whose products are shown in the Catalog Data Section.

HEATING VENTILATING AIR CONDITIONING GUIDE, 1943

ADSORBER, Odor

W. B. Connor Engineering Corp., 934-935, 981

AIR CLEANING EQUIPMENT (See also Filters, Air)

Air-Maze Corporation, 930-931 Air Refrigeration Corp., 883 American Air Filter Co., Inc., 932-933

933
American Blower Corp., 884-885
American Moistening Co., 944
American Radiator & Standard
Sanitary Corp., 1042-1043
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Buffalo Forge Company, 965
Clarage Fan Company, 888
W. B. Connor Engineering Corp.,
934-935, 981
Coppus Engineering Corp., 936
C. A. Dunham Co., 1024-1025
Fitzgibbons Boiler Co., 1048-1049
General Electric Company, 889-891,

General Electric Company, 890-891, 976-977

Martocello, Jos. A. & Co., 947 D. J. Murray Mfg. Co., 918 Owens-Corning Fiberglas Corp., 938-939

Parks-Cramer Company, 892
Research Products Corp., 937
H. J. Somers, Inc., 942
Staynew Filter Corp., 940-941
B. F. Sturtevant Co., 973-975
United States Air Conditioning Corp., 893 Westinghouse Elec. & Mfg. Co.,

York Ice Machinery Corp., 896 AIR COMPRESSORS (See Com-

pressors, Air) CON-AIR

IR CONDITIONING CO TROLS (See Controllers Control Equipment, Humidity and Controls)

AIR CONDITIONING COILS

Acme Industries, Inc., 948
Aerofin Corporation, 949-951
Carrier Corporation, 886-887
Curtis Refrigerating Machine Co.,
Div. Curtis Mfg. Co., 955
Electric Air Heater Div. of American Foundry Equipment Co., 907
Feddlare Manufacturing Co., 910 Fedders Manufacturing Co., 910 G. & O. Manufacturing Co., 952 General Electric Company, 890-891, 976-977

976-977
Arthur Harris & Co., 1089
Kramer Trenton Co., 912-913
Marlo Coil Company, 957
McQuay, Incorporated, 914-915
Modine Manufacturing Co., 916-917
D. J. Murray Mfg. Co., 918
J. J. Nesbitt, Inc., 919
Niagara Blower Company, 889
Refrigeration Economics Co., 924
B. F. Sturtevant Co., 973-975
Trane Company, 922-923
United States Air Conditioning
Corp., 893 Corp., 893 Vilter Manufacturing Co., 959 Westinghouse Elec. Mfg. Co., 894-Young Radiator Company, 928

899
American Blower Corp., 884-885
American Radiator & Standard
Sanitary Corp., 1042-1043
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Baker Ice Machine Co., 953
Brunner Manufacturing Co., 954
Bryant Heater Co., 897
Buffalo Forge Company, 965
Burnham Boiler Corp., 1045
Carrier Corporation, 886-887
Clarage Fan Company, 888 Carrier Corporation, 880-897 Clarage Fan Company, 888 Crane Company, 1046-1047 Curtis Refrigerating Machine Co., Div. Curtis Mfg. Co., 955 C. A. Dunham Co., 1024-1025 Fedders Manufacturing Co., 910 Firzgibbons Boiler Co., Inc., 1048-

Frick Company, Inc., 956 Gar Wood Industries, Inc., 901 General Electric Company, 890-891,

976-977 Grinnell Co., Inc., 1026-1027, 1081 Hastings Air Conditioning Co., 911 Kewanee Boiler Corp., 1052-1055 Kramer Trenton Co., 912-913

Kramer Trenton Co., 912-913
Lau Blower Co., 908
Marlo Coil Company, 957
McQuay, Incorporated, 914-915
Modine Mfg. Co., 916-917
L. J. Mueller Furnace Co., 902-903
D. J. Murray Mfg. Co., 918
Herman Nelson Corp., 920-921
J. J. Nesbitt, Inc., 919
Niagara Blower Company, 889
Parks-Cramer Co., 892
Parks-Cramer Co., 892
Parks-Cramer Co., 924

Refrigeration Economics Co., 924 H. J. Somers, Inc., 942 Spencer Heater Division, 1056-1057 B. F. Sturtevant Co., 973-975 Trane Company, The, 922-923 United States Air Conditioning

Corp., 893 United States Radiator Corp., 1058-1059

1059 Universal Cooler Corp., 958 Vilter Manufacturing Co., 959 Warren Webster & Co., 1036-1039 Webster Engineering Co., 1064 Westinghouse Elec. & Mfg. Co., 894-895, 943 York Ice Machinery Corp., 896

Young Radiator Company, 928

AIR COOLING, HUMIDIFYING AND DEHUMIDIFYING APPARATUS

Aerofin Corporation, 949-951 Air & Refrigeration Corp., 883 Airtemp Div., Chrysler Corp., 898-

American Blower Corp., 884-885 American Radiator & Standa Sanitary Corp., 1042-1043 American Moistening Co., 944 Standard April Showers Company, 945

AIR CONDITIONING GRILLES (See Grilles, Registers)

AIR CONDITIONING REGISTERS AND GRILLES (See Grilles, Registers)

AIR CONDITIONING UNITS

AIR CONDITIONING UNITS

AIR CONDITIONING UNITS

Air & Refrigeration Corp., 883
Airtemp Div., Chrysler Corp., 898-885

American Blower Corp., 884-885

Autovent Fan & Blower Div., Herman Nelson Corp., 921
Baker Ice Machine Co., 953
Bayley Blower Company, 965
Carrier Corporation, 886-887
Clarage Fan Company, 888
Curtis Refrigerating Machine Co.
Div. of Curtis Mfg. Co., 955
Gedders Manufacturing Co., 910
Frick Company, Inc., 956
General Electric Company, 890-891, 976-977

Grinnell Co., Inc., 1026-1027, 1081 Kramer Trenton Co., 912-913 Marley Company, 946 Marlo Coil Company, 957 Marlo Coil Company, 957
McQuay, Incorporated, 914-915
Modline Mfg. Co., 916-917
D. J. Murray Mfg. Co., 918
Herman Nelson Corp., 920-921
J. J. Nesbitt, Inc., 919
Niagara Blower Company, 889
Parks-Cramer Company, 892
Refrugeration Economics Co., 924
H. J. Somers, Inc., 942
B. F. Sturtevant Co., 973-975
Trane Company, The, 922-923
United States Air Conditioning
Corp., 893
Universal Cooler Corp., 958
Vilter Manufacturing Co., 959
Westinghouse Elec. & Mfg. Co., 894-895, 943

894-895, 943
L. J. Wing Mfg. Co., 925-927
York Ice Machinery Corp., 896
Young Radiator Company, 928

AIR DIFFUSERS

American Blower Corp., 884-885 American Blower Corp., 884-885 Anemostat Corp. of America, 979 Barber-Colman Co., 980, 998 E. K. Campbell Heating Co., 900 W. B. Connor Engineering Corp., 934-935, 981 Hart & Cooley Mfg. Co., 982-983 Independent Register Co., 985 Tuttle & Bailey, Inc., 988-989 United States Register Co., 987 Waterloo Register Co., 990

AIR DUCTS (See Ducts)

AIR ELIMINATORS

American Radiator & Standard Sanitary Corp., 1042-1043 Armstrong Machine Works, 1078-1079

Young Radiator Company, 928

1079
Bell & Gossett Co., 1022-1023
W. B. Connor Engineering Corp., 934-935, 981
Dole Valve Company, 1087
C. A. Dunham Co., 1024-1025
Hoffman Specialty Co., Inc., 1028-

1029 Illinois Engineering Co., 1032-1033 Kieley & Mueller, Inc., 1082 Mueller Steam Specialty Co., Inc.,

1083 Sarco Company, Inc., 1034-1035 Trane Company, The, 922-923 Warren Webster & Co., 1036-1039 Wright-Austin Co., 1084

AIR FILTERS (See Filters, also Air Cleaning Equipment)

Martocello, Jos. A. & Sons, 947

AIR FITTINGS, Brass

Numerals following Manufacturers' Names refer to pages in the Catalog Data Section

AIR FILTER CLEANING COM-POUNDS

Air-Maze Corporation, 930-931 American Air Filter Co., 932-933 Staynew Filter Corp., 940-941

AIR FILTER GAUGE

American Air Filter Co., 932-933

IR MEASURING AND RI CORDING INSTRUMENTS

American Blower Corp., 884-885 American Moistening Co., 944 Grinnell Co., Inc., 1026-1027, 1081 Illinois Testing Laboratories, Inc.,

Johnson Service Co., 1004-1005 Minneapolis-Honeywell Regulator Company, 1010-1011 Palmer Company, 1012 Parks-Cramer Company, 892 Powers Regulator Co., 1014 Taylor Instrument Companies, 1016

MOISTENING APPARA-TUS (See Humidifiers)

AIR PURIFYING APPARATUS

Air-Maze Corp., 930-931 Air & Refrigeration Corp., 883 American Air Filter Company, Inc., 932-933

932-933
American Blower Corp., 884-885
Buffalo Forge Co., 965
Burnham Boiler Corp., 1045
Carrier Corporation, 886-887
W. B. Connor Engineering Corp., 934-935, 981

Coppus Engineering Corp., 936
DeBothezat Division American
Machine & Metals, Inc., 967
Owens-Corning Fiberglas Corp., 938-939

Staynew Filter Corp., 940-941 B. F. Sturtevant Co., 973-975 Westinghouse Elec. & Mfg. Co., 894-895, 943 L. J. Wing Mfg. Co., 925-927 Wright-Austin Co., 1084

AIR RECEIVERS (See Receivers,

AIR RECOVERY, Method of, W. B. Connor Engineering Corp., 934-935, 981

AIR TUBING, Flexible Metal (See Tubing, Flexible Metallic)

Meters, Air Velocity)

AIR VELOCITY REGULATORS

Anemostat Corp. of America, 979 Barber-Colman Co., 980, 998 Johnson Service Co., 1004-1005 Minneapolis-Honeywell Regulator Co., 1010-1011 Powers Regulator Co., 1014 United States Register Co., 987

AIR WASHERS

'Air & Refrigeration Corp., 883 American Blower Corp., 884-885 American Coolair Corp., 962-963 Autovent Fan & Blower Di-Herman Nelson Corp., 921 Herman Neison Corp., 921 Baker Ice Machine Co., 953 Bayley Blower Company, 964 Buffalo Forge Company, 965 Clarage Fan Company, 888 W. B. Connor Engineering Corp., 024 025 021 W. B. Conne. 934-935, 981

D. J. Murray Co., 918
New York Blower Co., 969
Parks-Cramer Company, 892
H. J. Somers, Inc., 942
B. F. Sturtevant Co., 973-975
Trane Company, The, 922-923
United States Air Conditioning
Corp. 802

Parks-Cramer Co., 89
Vilter Manufacturing
York Ice Machinery (See Bends)

BENDS, Return (See Bends)

BLOCKS, Asbestos

Corp., 893 Vilter Manufacturing Co., 959 York Ice Machinery Corp., 896

ALARMS, Water Level

Illinois Engineering Co., 1032-1033 Kieley & Mueller, Inc., 1082 McDonnell & Miller, 1040-1041 McDonnell & Miller, 1040-1041 Mercoid Corporation, 1009 Minneapolis-Honeywell Regulator Co., 1010-1011 Mueller Steam Specialty Co., 1083 Warren Webster & Co., 1036-1039 Wright-Austin Company, 1085

ALGAE PREVENTION (See also Slime Prevention)

Staynew Filter Corp., 940-941

ALUMINUM FOIL, Insulation

Alfol Insulation Co., 1094 Reynolds Metals Co., Inc., 1112 Ruberoid Co., The, 1110-1111 United States Gypsum Co., 1114-

ALUMINUM FOIL VAPOR BARRIER (See Aluminum Foil)

AMMONIA COILS (See Coils.

ANEMOMETERS

Illinois Testing Laboratories, Inc., Taylor Instrument Companies, 1016

ASBESTOS PRODUCTS (See also Insulation)

Institution)
Carey, Philip, Co., 1096
Ehret Magnesia Manufacturing Co., 1098-1099
Johns-Manville, 1104-1105
Mundet Cork Corp., 1108
H. W. Porter & Co., 1117
Ric-wil Company, The, 1118
Ruberoid Co., The, 1110-1111
United States Gypsum Co., 1114-1115 1115

ATTIC FAN COOLERS (See Fans, Attic; Ventilators, Attic)

AIR VELOCITY METERS (See AUTOMATIC FUEL BURNING Meters, Air Velocity) EQUIPMENT (See Burners, Automatic; Coal Burners, Automatic; Furnace Burners; Gas Burners; Oil Burners, Stokers)

AUTOMATIC SHUTTERS (See Shutters, Automatic)

AUTOMOBILE HEATER FANS Torrington Mfg. Co., The, 970-972

BEARING, Bronze

Arthur Harris Co., 1089 Hastings Air Conditioning Co., 911 Lau Blower Company, 968

BENDS, Pipe, Ferrous and Non-Ferrous

Baker Ice Machine Co., 953 Crane Co., 1046-1047 Eagle-Picher Lead Co., 1100 Frick Company, 956 Grinnell Co., Inc., 1026-1027, 1081 Arthur Harris & Co., 1089

BLOWER MOTORS (See Motors, Electric)

Parks-Cramer Co., 892 Vilter Manufacturing Co., 959 York Ice Machinery Corp., 896

BENDS, Return (See Pipe, Return

Carey, Philip, Co., 1096 Ehret Magnesia Manufacturing Co., 1098-1099 Johns-Manville, 1104-1105 Ruberoid Co., The, 1110-1111

BLOCKS, Glass

Owens-Illinois Glass Co., 1121 Pittsburgh Corning Corp., 1122

BLOWERS, Fan (See Fans, Supply and Exhaust)

BLOWERS, Forced Draft

American Blower Corp., 884-885 American Coolair Corp., 962-963 Autovent Fan & Blower Div., Herman Nelson Corp., 921 Bayley Blower Company, 964 Buffalo Forge Company, 965 Champion Blower & Forge Co., 966 Clarage Fan Company, 888 Coppus Engineering Corp., 936 Curtis Refrigerating Machine Co., Div. of Curtis Manufacturing Co.,

955
DeBothezat Division American
Machine & Metals, Inc., 967
Herman Nelson Corp., 920-921
Lau Blower Company, 968
Marlo Coil Company, 967
New York Blower Co., 969
B. F. Sturtevant Co., 973-975
Westinghouse Elec. & Mfg. Co., 894-895, 943
L. J. Wing Mfg. Co., 925-927

BLOWERS, Heating and Ventilating

American Blower Corp., 884-885 American Coolair Corp., 962-963 Autovent Fan & Blower Di Herman Nelson Corp., 921 Herman Neison Corp., 921
Bayley Blower Company, 964
Buffalo Forge Company, 965
E. K. Campbell Heating Co., 960
Champion Blower & Forge Co., 966
Clarage Fan Company, 888
W. B. Connor Engineering Corp., 934-935, 981
DeBothezat Division American

Machine & Metals, Inc., 967 C. A. Dunham Co., 1024-1025 Hastings Air Conditioning Co., 911 Kramer Trenton Co., 912-913 Lau Blower Co., 968 McQuay Incorporated, 914-915 L. J. Mueller Furnace Co., 902-903 Herman Nelson Corp., 920-921 J. J. Nesbitt, Inc., 919 New York Blower Co., 969 Niagara Blower Co., 889
B. F. Sturtevant Co., 973-975
Trane Company, The, 922-923
United States Air Conditioning Corp., 893 Westinghouse Elec. & Mfg 894-895, 943 L. J. Wing Mfg. Co., 925-927 Elec. & Mfg. Co.,

BLOWER HOUSINGS

Hastings Air Conditioning Co., 911 Lau Blower Co., 968 B. F. Sturtevant Co., 973-975

BLOWERS, Pressure

American Blower Corp., 884-885 American Coolair Corp., 962-963 Autovent Fan & Blower Div., Herman Nelson Corp., 921 Bayley Blower Company, 964 Buffalo Forge Company, 965 Champion Blower & Forge Co., 966 Clarage Fan Company, 888 eBothezat Division Amer Machine & Metals, Inc., 967 American DeBothezat Machine & Metals, Inc., 907 Lau Blower Co., 968 Martocello, Jos. A. & Co., 947 Herman Nelson Corp., 920-921 New York Blower Co., 969 B. F. Sturtevant Co., 973-975 L. J. Wing Mfg. Co., 925-927

BLOWERS, Turbine

Coppus Engineering Corp., 936 General Electric Co., 890-891, 976 977

977 B. F. Sturtevant Co., 973-975 L. J. Wing Mfg. Co., 925-927

BLOWERS, Warm Air Furnace

American Blower Corp., 884-885 American Coolair Corp., 962-963 American Radiator & Sta Sanitary Corp., 1042-1043 Autovent Fan & Blower Herman Nelson Corp., 921 Buffalo Forge Company, 965 Standard Champion Blower & Forge Co., 966 Clarage Fan Company, 888
DeBothezat Division American
Machine & Metals, Inc., 967
General Electric Company, 890-891, 976-977 Hastings Air Conditioning Co., 911 Lau Blower Co., 968 L. J. Mueller Furnace Company, Date 1 Nucler Furnace Company, 902-903
New York Blower Co., 969
Torrington Mfg. Co., 970-972
Trane Company, The, 922-923
United States Air Conditioning Corp., 893
Westinghouse Elec. & Mfg. Co., 894-895, 943
L. J. Wing Mfg. Co., 925-927

BOILER-BURNER

Airtemp Div., Chrysler Corp., 898-American Radiator Sanitary Corp., 1042-1043 Carrier Corporation, 886-887 Crane Co., 1046-1047 Gar Wood Industries, Inc., 901 General Electric Co., 890-891, 976-Herman Nelson Corp., 920-921 International Boiler Works Co., 1051 Quincy Stove Mfg. Co., 905

Webster Engineering Co., 1064 Westinghouse Elec. & Mfg. Co., 894-895, 943 York Ice Machinery Corp., 896 BOILER COMPOUNDS (See Com-

pounds, Boiler) BOILER COVERING (See Cover-

ing, Pipe and Surfaces) FEED PUMPS (See BOILER

Pumps, Boiler Feed)

BOILER FEEDERS (See Feeders, Boiler)

BOILER WATER FIELD KIT, for Testing and Treating Vinco Company, 1062-1063

BOILER WATER TREATMENT

Cochrane Corp., 1080 Research Products Corp., 937 Vinco Company, Inc., 1062-1063

BOILERS, Cast-Iron

American Radiator & St. Sanıtary Corp., 1042-1043 Burnham Boiler Corp., 1045 Standard Grane Company, 1046-1047 L. J. Mueller Furnace Co., 902-903 Spencer Heater Division, 1056-1057 United States Radiator Corp., 1058-

Weil-McLain Company, 1061 Westinghouse Elec. & Mfg. Co., 894-895, 943

BOILERS, Down Draft

Brownell Company, 1066 Farrar & Trefts, 1050 Fitzgibbons Boiler Co., 1048-1049 Gar Wood Industries, Inc., 901 International Boiler Works Co

Kewance Boiler Corp., 1052-1055 Pacific Steel Boiler Div., U. S. Radiator Corp., 1060 Westinghouse Elec. & Mfg. Co., 894-895, 943

BOILERS, Forced Recirculation—Oil Burning International Boiler Works Co., 1051

BOILERS, Gas Burning

Airtemp Div., Chrysler Corp., 898-899 899
American Radiator & Standard Sanitary Corp., 1042-1043
Brownell Company, 1066
Bryant Heater Co., 897
Burnham Boiler Corp., 1045
Crane Company, 1046-1047
C. A. Dunham Co., 1024-1025
Fitzgibbons Boiler Co., 1048-1049
General Electric Company, 890-891, 976-977
International Boiler Works Co., International Boiler Works Co.,

1051 1051 Kewanee Boiler Corp., 1052-1055 L. J. Mueller Furnace Co., 902-903 Pacific Steel Boiler Div., U. S. Radiator Corp., 1060 Spencer Heater Division, 1056-1057 United States Radiator Corp., 1058-

Westinghouse Elec. & Mfg. Co., 894-895, 943

BOILERS, Heating

Airtemp Div., Chrysler Corp., 898-Standard

American Radiator & Sta Sanitary Corp., 1042-1043 Brownell Company, 1066 Brownell Company, 1066
Bryant Heater Co., 897
Burnham Boiler Corp., 1045
E. K. Campbell Heating Co., 900
Carrier Corporation, 886-887
Crane Company, 1046-1047
Farrar & Trefts, Inc., 1050
Fitzgibbons Boiler Co., Inc., 1048-

1049
Gar Wood Industries, 901
General Electric Company, 890-891, 976-977 International Boiler Works Co.,

1051 Kewanee Boiler Corp., 1052-1055 L. J. Mueller Furnace Co., 902-903 Pacific Steel Boiler Div., U. S. Radiator Corp., 1060 Spencer Heater Division, 1056-1057 United States Radiator Corp., 1058-1059

Weil-McLain Company, 1061 Westinghouse Elec. & Mfg. Co., 894-895, 943

BOILERS, Magazine Feed

Burnham Boiler Corp., 1045 Kewanee Boiler Corp., 1052-1055 Spencer Heater Division, 1056-1057 Weil-McLain Company, 1061

BOILERS, Oil Burning

Airtemp Div., Chrysler Corp., 898-899 American Radiator & Standard American Radiator & Stant Sanitary Corp., 1042-1043 Babcock & Wilcox Co., 1044 Brownell Company, The, 1066 Burnham Boiler Corp., 1045 Crane Company, 1046-1047 Farrar & Trefts, Inc., 1050 Fitzgibbons Boiler Co., Inc., 1048-

1049
Gar Wood Industries, Inc., 901
General Electric Company, 890-891, 976-977 International Boiler Works Co., 1051

1051 Kewanse Boiler Corp., 1052-1055 L. J. Mueller Furnace Co., 902-903 Herman Nelson Corp., 920-921 Pacific Steel Boiler Div., U. S. Radiator Corp., 1060 Spencer Heater Division, 1056-1057 United States Radiator Corp., 1058-1059

Weil-McLain Company, 1061 Westinghouse Elec & Mfg. Co., 894-895, 943

BOILERS, Steel

Babcock & Wilcox Co., 1044 Brownell Company, The, 1066 Burnham Boiler Corp., 1045 Combustion Engineering Co., 1067 Farrar & Trefts, Inc., 1050 Fitzgibbons Boiler Co., Inc., 1048-

1049 Gar Wood Industries, 901 International Boiler Works Co.,

Kewanee Boiler Corp., 1052-1055 Pacific Steel Boiler Div., U. S. Radiator Corp., 1060 Spencer Heater Division, 1056-1057

BOILERS, Water Tube

Babcock & Wilcox Co., 1044 Babcock & Wilcox Co., 1044 Burnham Boiler Corp., 1045 Combustion Engineering Co., 1067 Fitzgibbons Boiler Co., 1048-1049 Frick Company, 956 International Boiler Works Co., 1051 Spencer Heater Division, 1056-1057

BREECHINGS AND CHIMNEYS

Bethlehem Steel Co., 992 Farrar & Trefts, 1050 International Boiler Works Co., 1051 Kewance Boiler Corp., 1052-1055

BURNERS, Automatic (See also

Coal Burners, Stokers) American Radiator & Standard Sanitary Corp., 1042-1043 Crane Company, 1046-1047 Combustion Engineering Co., 1087 Detroit Stoker Company, 1068-1069 Gar Wood Industries, Inc., 901

891, 976-977
Iron Fireman Mfg. Co., 1070-1071
Herman Nelson Corp., 920-921
Quincy Stove Mfg. Co., 995
Spencer Heater Division, 1056-1057
Webster Engineering Co., 1064
Westinghouse Elec. & Mfg. Co.,
894-895, 943

BURNERS, Coal (See Coal Burners)

BURNERS, Combination Gas and Oil Combustion Engineering Co., 1067 Coppus Engineering Co., 936 Todd Combustion Equipment, Inc.,

1065 Webster Engineering Co., 1064

BURNERS, Gas (See Gas Burners)

BURNERS, Oil (See Oil Burners)

CALKING, Building

Johns-Manville, 1104-1105 Kimberly-Clark Corp., 1106-1107

CASTINGS, Bronze and Dairy Nickel Silver Metal

Grinnell Co., Inc., 1026-1027, 1081 Arthur Harris & Co., 1089 D. J. Murray Mfg. Company, 918

CEMENT, Asbestos

Carey, Philip, Co., 1096 Eagle-Picher Lead Co., 1100 Ehret Magnesia Manufacturing Co., 1098-1099 Johns-Manville, 1104-1105 Mundet Cork Corp., 1108 Ruberoid Co., The, 1110-1111 United States Register Co., 987

CEMENT, Insulating

Carey, Philip, Co., 1096 Eagle-Picher Lead Co., 1100 Ehret Magnesia Manufacturing Co., 1098-1099

Insulation Industries, Inc., 1101 Johns-Manville, 1104-1105 Mundet Cork Corp., 1108 Owens-Corning Fiberglas Cor Corp., 938-939 Ruberoid Co., The, 1110-1111 United States Register Co., 987

CEMENT, Refractory (See Refractories)

CEMENT, Rock Wool

Carey, Philip, Co., 1096 Eagle-Picher Lead Co., 1100 Ehret Magnesia Manufacturing Co., 1098-1099

Insulation Industries, Inc., 1101 Johns-Manville, 1104-1105 Mundet Cork Corp., 1108 Ruberoid Co., The, 1110-1111

CEMENT, Vermiculite

Universal Zonolite Insulation Co., 1119

CHAIN, Furnace Pulleys (See also Pulleys, Chain)

Barber-Colman Co., 980, 998 Hart & Cooley Manufacturing Co., 982-983

982-983 Hendrick Mfg. Co., 984 Independent Register Co., 985 L. J. Mueller Furnace Co., 902-903 Trane Company, The, 922-923 Tuttle & Bailey, Inc., 988-989 United States Register Co., 987 Waterloo Register Co., 990

General Electric Company, 890- CIRCULATORS, Hot Water 891, 976-977

Bell and Gossett Co., 1022-1023 Crane Company, 1046-1047 General Electric Company, 890-891,

General Electric Company, 890-891, 976-977 H. A. Thrush & Co., 1031 Trane Company, 922-923 Westinghouse Elec. & Mfg. Co., 894-895, 943

CLEANERS, Air (See Air Cleaning Equipment)

COAL BURNERS, Automatic, Anthracite

Buffalo Forge Company, 965 Crane Company, 1046-1047 Combustion Engineering Co., 1067 Iron Fireman Mfg. Co., 1070-1071 Spencer Heater Division, 1056-1057

COAL BURNERS, Automatic, Bituminous

Brownell Company, 1066 Crane Company, 1046-1047 Combustion Engineering Co., 1067 Detroit Stoker Company, 1068-1069 Iron Fireman Mfg. Co., 1070-1071 Spencer Heater Division, 1056-1057

COILS, Aluminum

Aerofin Corporation, 949-951 Baker Ice Machine Co., 953 Arthur Harris & Co., 1089
Kramer Trenton Co., 912-913
McQuay, Incorporated, 914-915
D. J. Murray Mfg. Company, 918
J. J. Nesbitt, Inc., 919 Refrigeration Economics Co., B. F. Sturtevant Co., 973-975 Trane Company, The, 922-923 Young Radiator Company, 928

COILS, Ammonia

Baker Ice Machine Co., 953 Carrier Corporation, 886-887 Crane Company, 1046-1047 Frick Company, 956 G & O Manufacturing Co., 952 Kramer Trenton Co., 912-913 Marlo Coil Company, 957 McQuay, Incorporated, 914-915 Refrigeration Economics Co., 924 Refrigeration Economics Co., 924 Trane Company, The, 922-923 Vilter Manufacturing Co., 959 Worthington Pump & Machinery Corp., 960-961 Yarnall-Waring Co., 1085 York Ice Machinery Corp., 896 Young Radiator Company, 928

COILS. Blast

Aerofin Corporation, 949-951
American Blower Corp., 884-885
American Radiator & Standard
Sanitary Corp., 1042-1043
Autovent Fan & Blower Co., Div.,
Herman Nelson Corp., 921
Bayley Blower Company, 964
Buffalo Forge Company, 965
E. K. Campbell Heating Co., 900
Carrier Corporation, 886-887
Clarage Fan Company, 888
C. A. Dunham Co., 1024-1025
Electric Air Heater Div. of American Foundry Equipment Co., 907 can Foundry Equipment Co., 907 Fedders Manufacturing Co., 910 G & O Manufacturing Co., 952 General Electric Company, 890-891,

Kramer Trenton Co., 912-913 McQuay, Incorporated, 914-915 Modine Mfg. Co., 916-917 D. J. Murray Mfg. Company, 918

John J. Nesbitt, Inc., 919 Refrigeration Economics Co., 924 Reingeration Economics Co., 923-975

B. F. Sturtevant Co., 973-975

Trane Company, The, 922-923

United States Air Conditioning Corp., 893 Westinghouse Elec. & Mfg. Co., 894-895, 943 Young Radiator Co., 928

COILS, Brass

Aerofin Corporation, 949-951 E. B. Badger & Sons Co., 1077 E. B. Badger & Sons Co., 1077 Carrier Corporation, 886-887 Crane Company, 1046-1047 Grinnell Co., Inc., 1026-1027, 1081 Arthur Harris & Co., 1089 McQuay, Incorporated, 914-915 B. F. Sturtevant Co., 973-975

COILS, Cooling

Aerofin Corporation, 949-951
Baker Ice Machine Co., 953
Carrier Corporation, 886-887
Crane Company, 1046-1047
Curtis Refrigerating Machine Co.,
Division of Curtis Manufacturing

Co., 955 Fedders Manufacturing Co., 910 Frick Company, 956 G & O Manufacturing Co., 952 General Electric Company, 890-891,

976-977 Arthur Harris & Co., 1089 Kramer Trenton Co., 912-913 Marlo Coil Company, 957 Modine Manufacturing Co., 916-McQuay, Incorporated, 914-915 D. J. Murray Mfg. Co., 918 J. J. Nesbitt, Inc., 919 Niagara Blower Co., 889

Refrigeration Economics Co., 924 Refrigeration Economics Co., 924 B. F. Sturtevant Co., 973-975 Trane Company, The, 922-923 United States Air Conditioning Corp., 893 Vilter Manufacturing Co., 959 Westinghouse Elec. & Mfg. Co.,

Westinghouse Elec. & Mrg. Co., 894-895, 943 Worthington Pump & Machinery Corp., 960-961 York Ice Machinery Corp., 896 Young Radiator Company, 928

COILS, Pipe, Copper

American Radiator & Standar Sanitary Corp., 1042-1043 E. B. Badger & Son Co., 1077 Baker Ice Machine Co., Inc., 953 Standard Bayley Blower Company, 964
Bell and Gossett Co., 1022-1023
Crane Company, 1046-1047
Cutts Refrigerating Machine Co.,
Division of Curtis Manufacturing

Co., 955 Fedders Manufacturing Co., 910 Frick Company, 956 Grinnell Co., Inc., 1026-1027, 1081 Arthur Harris & Co., 1089 Kewanee Boiler Corp., 1052-1055 Marlo Coil Company, 957 Modine Manufacturing Company, 916-917

Kramer Trenton Co., 912-913 McQuay, Incorporated, 914-915 J. J. Nesbitt, Inc., 919 Refrigeration Economics Co., 924

Westinghouse Elec. & Mfg. Co., 894-895, 943 Wolverine Tube Div., Calumet and Hecla Consolidated Copper Co.,

York Ice Machinery Corp., 896 Young Radiator Company, 928

COILS, Pipe and Tube, Non-

Aerofin Corporation, 949-951 American Brass Company, 1090-1091 1091 Fedders Manufacturing Co., 910 Arthur Harris & Co., 1089 Kramer Trenton Co., 912-913 Marlo Coil Company, 957 McQuay, Incorporated, 914-915 Modine Manufacturing Co., 916-Modine 3017
917
J. J. Nesbitt, Inc., 919
Wolverine Tube Div., Calumet and
Hecla Consolidated Copper Co.,

COILS, Pipe, Iron

Acme Industries, Inc., 948 Aerofin Corporation, 949-951 Baker Ice Machine Co., Inc., 953 Baker Ice Machine Co., Inc., 953
Bayley Blower Company, 964
Clarage Fan Company, 888
Crane Company, 1046-1047
Frick Company, 956
Grinnell Co., Inc., 1026-1027, 1081
Arthur Harris & Co., 1089
Kramer Trenton Co., 912-913
Marlo Coil Company, 957
Refrigeration Economics Co., 924
Vilter Manufacturing Co., 959
Worthington Pump & Machinery
Co., 960-961 Co., 960-961 York Ice Machinery Corp., 896

COILS, Stainless Steel Arthur Harris & Co., 1089

COILS, Tank

American District Steam Co., 1076, 1116 1116
American Radiator & Standar Sanıtary Corp., 1042-1043
Baker Ice Machine Co., 953
Bell and Gossett Co., 1022-1023
Clarage Fan Company, 888
Crane Company, 1046-1047
Frick Company, Inc., 956
Arthur Harris & Co., 1089
Kewanee Boiler Corp., 1052-1055
Kramer Trenton Co., 912-913
Marlo Coil Company, 957
McQuay, Incorporated, 914-915 Standard McQuay, Incorporated, 914-915 Refrigeration Economics Co., 924 Vilter Manufacturing Co., 959 York Ice Machinery Corp., 896

COLUMNS, Water

Brownell Company, 1066 Crane Company, 1046-1047 Detroit Lubricator Co., 1000-1001 Mueller Steam Specialty Co., 1082 Mueller Steam Specialty Co., 10 Wright-Austin Company, 1084 Yarnall-Waring Company, 1085

COMBUSTION CHAMBERS

Babcock & Wilcox Co., 1044 Combustion Engineering Co., 1067

COMPOUNDS, Asphalt, for Conduits

Ruberoid Co., 1110-1111

COMPOUNDS, Boiler Vinco Co., Inc., 1062-1063

COMPOUNDS, Boiler and Radiator Sealing

Dole Valve Company, 1087 Johns-Manville, 1104-1105 Vinco Co., Inc., 1062-1063

COMPOUNDS, Cleaning

Staynew Filter Corp., 940-941 Vinco Co., Inc., 1062-1063

COMPOUNDS, Soot Destroyer Vinco Co., Inc., 1062-1063

COMPRESSORS, Air

Baker Ice Machine Co., 953 Brunner Manufacturing Co., 954 W. B. Connor Engineering Corp., 934-935, 981 Curtis Refrigerating Machine Co., Division of Curtis Manufacturing Company, 955 General Electric Company, 890-891, 976-977

Nash Engineering Co., 1074-1075 Powers Regulator Co., 1014 B. F. Sturtevant Co., 973-975 Worthington Pump and Machinery Corp , 960-961

COMPRESSOR MOTORS (See Motors, Electric)

COMPRESSORS, Refrigeration Airtemp Div., Chrysler Corp., 898-

899 Baker Ice Machine Co., 953
Brunner Manufacturing Co., 954
Carrier Corporation, 886-887
Curtis Refrigerating Machine Co.,
Division Curtis Manufacturing
Company, 955
Frick Company, 956
General Electric Company, 890891, 976-977
Trane Company, The 699-692 Baker Ice Machine Co., 953 Trane Company, The, 922-923 Universal Cooler Corp., 958 Vilter Manufacturing Co., 959 Westinghouse Elec. & Mfg. Co.,

westinghouse Elec. & Mrg. Co., 894-895, 943 Worthington Pump & Machinery Corp., 960-961 York Ice Machinery Corp., 896

COMPRESSOR TUBING Flexible (See Tubing, Flexible Metal-

CONDENSERS

Acme Industries, Inc., 948 Aerofin Corporation, 949-951 Airtemp Div., Chrysler Corp., 898-899 Baker Ice Machine Co., 953 Brunner Manufacturing Co., 954 Carrier Corporation, 886-887 Curtis Refrigerating Machine Co., Div., Curtis Manufacturing Co., 955 Fedders Manufacturing Co., 910

Frick Company, 956 G & O Manufacturing Co., 952 General Electric Company, 890-891, 976-977 Marlo Coil Company, 957 McQuay, Incorporated, 914-915 Modine Mfg. Co., 916-917 D. J. Murray Mfg. Company, 918 Niagara Blower Co., 889 Refrigeration Economics Co., 924 B. F. Sturtevant Co., 973-975 Trane Company, 922-923 Universal Cooler Corp., 958 Vilter Manufacturing Co., 959

Westinghouse Elec. & Mfg. Co., 894-895, 943 Worthington Pump & Machinery Co., 960-961

York Ice Machinery Corp., 896 Young Radiator Company, 928

CONDUIT, Flexible Metallic American Brass Company, 1090-1091

Trane Company, The, 922-923

CONDUITS, Underground Fittings

American District Steam Co., 1076, American District Steam Co., 2019, 1116

E. B. Badger & Sons Co., 1077

General Electric Company, 890-891, 976-977

H. W. Porter & Co., 1117

Ric-wil Company, The, 1118

CONDUITS, Underground Pipe American Brass Company, 1090-1091

American District Steam Co., 1076. 1116 1116
American Rolling Mill Co., 991
E. B. Badger & Sons Co., 1077
Carey, Philip, Co., 1096
Ehret Magnesia Manufacturing Co., 1098-1099
Johns-Manville, 1104-1105
Jones & Laughlin Steel Corp., 993
H. W. Porter & Co., 1117
Ric-will Company, The, 1118

CONNECTIONS, Flexible Charging

Henry Valve Company, 999

CONTROL, Air Volume Damper

Anemostat Corp. of America, 979
Barber-Colman Co., 980, 998
W. B. Connor Engineering Corp.,
934-935, 981
Fulton Sylphon Co., 1002-1003
Hart & Cooley Mfg Co., 982-983
Illinois Engineering Co, 1032-1033
Independent Register Co., 985
Johnson Service Co., 1004-1005
Minnerolls, Morequell Perulator Minneapolis-Honeywell Regulator Co., 1010-1011

Register & Grille Mfg. Co., 986 Tuttle & Bailey, Inc., 988-989 United States Register Co., 987 Waterloo Register Co., 990

CONTROL, Boiler Water Level

Crane Company, 1046-1047 Kieley & Mueller, Inc., 1082 Leeds & Northrup Co., 1007 McDonnell & Miller, 1040-1041 Mercoid Corporation, 1009
Mueller Steam Specialty Co., 1083
Spence Engineering Co., 1015
Warren Webster & Co., 1036-1039
Wright-Austin Co., 1084

CONTROL EQUIPMENT, Combustion

Combustion
Bryant Heater Co., 897
Detroit Lubricator Co., 1000-1001
Fulton Sylphon Co., 1002-1003
Illinois Engineering Co., 1032-1033
Johnson Service Co., 1004-1005
Leeds & Northrup Co., 1007
Mercoid Corporation, 1009
Minneapolis-Honeywell Regulator
Co., 1010-1011
Penn Electric Switch Co., 1013
Spence Engineering Co., 1015
Webster Enguneering Co., 1004
Westinghouse Elec. & Mfg. Co., 894-895, 943
White-Rodgers Elec. Co., 1018

White-Rodgers Elec. Co., 1018 L. J. Wing Mfg. Co., 925-927

CONTROLLERS AND CONTROL EQUIPMENT (See also Humidity and Temperature Control)

Hot)
Alco Valve Company, 996
American Moistening Co., 944
American Radiator & Standard
Sanitary Corp., 1042-1043
Barber-Colman Co., 980, 998
Detroit Lubricator Co., 1000-1001
C. A. Dunham Co., 1024-1025
Fulton Sylphon Co., 1002-1003
General Electric Company, 890-891, 976-977
Hoffman Secondry Co., pp. 1028 Hoffman Specialty Co., Inc., 1028-

1029 Illinois Engineering Co., 1032-1033 Illinois Testing Laboratories, Inc.,

Johnson Service Co., 1004-1005 Kieley & Mueller, Inc., 1082 Leeds & Northrup Co., 1007 Manning, Maxwell & Moore, Inc., 1008

Manning, Matwell & Moore, Inc., 1008
Mercoid Corporation, 1009
Minneapolis-Honeywell Regulator
Co., 1010-1011
Parks-Cramer Company, 892
Penn Electric Switch Co., 1013
Powers Regulator Co., 1014
Sarco Company, Inc., 1034-1035
Spence Engineering Co., 1015
Taylor Instrument Companies, 1016
Warren Webster & Co., 1036-1039
Webster Engineering Co., 1064
Westinghouse Elec. & Mfg. Co., 894-895, 943
White-Rodgers Elec. Co., 1018
Young Radiator Co., 928

CONVECTION HEATERS

CONVECTION HEATERS

American Radiator & Standard Sanitary Corp., 1042-1043

Crane Company, 1046-1047

C. A. Dunham Co., 1024-1025

Grinnell Co., Inc., 1026-1027, 1081

Kramer Trenton Co., 912-913

McQuay, Incorporated, 914-915

Modine Mfg. Co., 916-917

John J. Nesbitt, Inc., 919

Trane Company, The, 922-923

Tuttle & Bailey, Inc., 988-989

United States Air Conditioning Corp., 893 Corp., 893 United States Radiator Corp., 1058-

1059
1059
Warren Webster & Co., 1036-1039
Weil-McLain Company, 1061
L. J. Wing Mfg. Co., 925-927
Young Radiator Co., 928

COOLING EQUIPMENT, Air

Acme Industries, Inc., 948 Aerofin Corporation, 949-951 Air & Refrigeration Corp., 883 Airtemp Div., Chrysler Corp., 898-

899
American Blower Corp., 884-885
April Showers Co., 945
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Baker Ice Machine Co., Inc., 953
Buffalo Forge Company, 965
Carrier Corporation, 886-887
Champion Blower & Forge Co., 966
Clarage Fan Company, 888
Curtis Refrigerating Machine Co.,
Div. of Curtis Manufacturing
Co., 955 Div. of Co., 955

DeBothezat Division, America Machine & Metals, Inc., 967 C. A. Dunham Co., 1024-1025 Fedders Manufacturing Co., 910 Fitzgibbons Boiler Co., 1048-1049

Frick Company, 956 G & O Manufacturing Co., 952 General Electric Company, 890-891,

976-977

Lau Blower Co., 968

Kramer Trenton Co., 912-913

Marlo Coil Company, 957

McQuay, Incorporated, 914-915

Modine Mfg. Co., 916-917

D. J. Murray Mfg. Co., 918

J. Nesbitt, Inc., 919

Herman Nelson Corp., 920-921

Niagara Blower Co., 889

Refrigeration Economics Co., 924

B. F. Sturtevant Co., 973-975

Trane Company, The, 922-923

United States Air Conditioning

Corp., 893

United States Air Conditioning Corp., 893
Universal Cooler Corp., 958
Vilter Manufacturing Co., 959
Westinghouse Elec. & Mfg. Co., 894-895, 943
L. J. Wing Mfg. Co., 925-927
Worthington Pump & Machinery Corp., 960-961
York Ice Machinery Corp., 896
Young Redictor Company, 928

Young Radiator Company, 928

COOLING EQUIPMENT, Oil

Aerofin Corporation, 949-951 Bell & Gossett Co., 1022-1023 Carrier Corporation, 886-887 Frick Company, 956 G & O Manufacturing Co., 952 General Electric Company, 890-891,

Kramer Trenton Co., 912-913 Marlo Coil Company, 957 Modine Manufacturing Co., 916-917

D. J. Murray Mfg. Company, 918 Niagara Blower Co., 889 Anagara Blower Co., 859
Refrigeration Economics Co., 924
Trane Company, 922-923
Universal Cooler Corp., 958
Westinghouse Elec. & Mfg. Co.,
894-895, 943
Westinghouse Steeler.

894-890, 943 Worthington Pump & Machinery Co., 960-961 York Ice Machinery Corp., 896 Young Radiator Company, 928

COOLING EQUIPMENT, Water (See also Water Cooling)

(See also Water Cooling)

Acme Industries, Inc., 948

Air & Refrigeration Corp., 883

American Blower Corp., 884-885

April Showers Company, 945

Baker Ice Machine Co., 953

Bell & Gossett Co., 1022-1023

Buffalo Forge Company, 965

Carrier Corporation, 886-887

Fedders Manufacturing Co., 910

Frick Company, 956

General Electric Company, 890-891, 976-977

General Electric Company, 890-891, 976-977
Kramer Trenton Co., 912-913
Marley Co., The, 946
McQuay, Incorporated, 914-915
Modline Mfg. Co., 916-917
D. J. Murray Mfg. Company, 918
J. J. Nesbitt, Inc., 919
Reirigeration Economics Co., 924
B. F. Sturtevant Co., 973-975
Trane Company, 7he, 922-923
Universal Cooler Corp., 958
Vilter Manufacturing Co., 950
Westinghouse Elec. & Mfg. Co., 894-895, 943

Westinghouse Elec. & Mig. Co., 894-895, 943 Worthington Pump & Machinery Corp., 960-961 Yarnall-Waring Co., 1085 York Ice Machinery Corp., 896 Young Radiator Company, 928

COOLING TOWERS, Atmospheric, Mechanical Draft, Forced Draft, Induced Draft (See also Cooling Equipment, Water)

Air & Refrigeration Corp., 883 American Blower Corp., 884-885 Baker Ice Machine Co., 953 Buffalo Forge Company, 965
Marley Company, 946
Marlo Coil Company, 957
McQuay, Incorporated, 914-915
York Ice Machinery Corp., 896 Young Radiator Company, 928

COOLING TOWER FANS

American Blower Corp., 884-885 American Coolair Corp., 962-963 Baker Ice Machine Co., 953 Buffalo Forge Company, 965 DeBothezat Division, America Machine & Metals, Inc., 967 American Marley Company, 946 Marlo Coil Company, 957 McQuay, Incorporated, 914-915

CORROSION, Treatment of

Cochrane Corporation, 1080 Research Products Corp., 937 Vinco Company, Inc., 1062-1063

COVERING, Pipe

Alfol Insulation Co., 1094 Armstrong Cork Company, Baker Ice Machine Co., 953 Carey, Philip, Co., 1096 Eagle-Picher Lead Co., 1100 1095 Ehret Magnesia Manufacturing Co., of the Magness Manufacturing C 1098-1099 Grinnell Co., Inc., 1026-1027, 10 Insulation Industries, Inc., 1101 Johns-Manville, 1104-1105 Mundet Cork Corp., 1108 Owens-Corning Fiberglas Cor 938-939 938-939
Pacific Lumber Co., 1109
H. W. Porter & Co., 1117
Ric-wil. Company, The, 1118
Ruberoid Company, The, 1110-1111
United States Gypsum Co., 1114-1115

COVERING, Surfaces

Alfol Insulation Co., 1094 Armstrong Cork Company, 1095 Baker Ice Machine Co., 953 Carey, Philip, Co., 1096 Bagle-Picher Lead Co., 1100 Ehret Magnesia Manufacturing Co., 1098-1099 Insulation Industries, Inc., 1101 Johns-Manville, 1104-1105 Libby-Owens-Ford Glass Co., 1120 Mundet Cork Corp., 1108 Owens-Corning Fiberglas Corp., 938-939 Pacific Lumber Co., 1109 Reynolds Metals Co., Inc., 1112 Ruberoid Co., The, 1110-1111 United States Gypsum Co., 1114-1115 Wood Conversion Company, 1 York Ice Machinery Corp., 896

CUT-OFFS, Low Water

Detroit Lubricator Co., 1000-1001 Iron Fireman Mfg. Co., 1070-1071 McDonnell & Miller, 1040-1041 Mercoid Corporation, 1009 Minneapolis-Honeywell Regulator Co., 1010-1011 Penn Electric Switch Co., 1013 Wright-Austin Co. 1084 Wright-Austin Co., 1084

DAMPER REGULATORS, Boiler DEHUMIDIFIERS (See also Regulators)

GSe also Regulators)

American Radiator & Standard Santary Corp., 1042-1043

Barber-Colman Co., 980, 998

Barnes & Jones, Inc., 1021

Detroit Lubricator Co., 1000-1001

C. A. Dunham Co., 1024-1025

Fulton Sylphon Co., 1002-1003

Kieley & Mueller, Inc., 1082

Leeds & Northrup Co., 1007

Minneapolis-Honeywell Regulator Co., 1010-1011

Penn Electric Switch Co., 1013

Powers Regulator Co., 1014

Sarco Company, Inc., 1034-1035

Spence Engineering Co., 1015

Taylor Instrument Companies, 1016

H. A. Thrush & Co., 1031

Trane Company, The, 922-923

Warren Webster & Co., 1036-1039

Webster Engineering Co., 1064

Westinghouse Elec. & Mfg. Co., 894-895, 943

DAMPER REGULATORS,

DAMPER REGULATORS, **Furnace**

Automatic Products Corp., 997
Barber-Colman Co., 980, 998
Detroit Lubricator Co., 1000-1001
Fulton Sylphon Co., 1002-1003
Hart & Cooley Mig. Co., 982-983
Iron Fireman Mig. Co., 1070-1071
Kieley & Mueller, Inc., 1082
Leeds & Northrup Co., 1007
Manning, Maxwell & Moore, Inc., 1008 1008

Minneapolis-Honeywell Regulator Co., 1010-1011 Penn Electric Switch Co., 1013 Penn Electric Switch Co., 1013 Powers Regulator Co., 1014 Sarco Company, Inc., 1034-1035 Tuttle & Bailey, Inc., 988-989 United States Register Co., 987 Webster Engineering Co., 1064 White-Rodgers Electric Co., 1018

MPERS, Air Volume Control

Anemostat Corp. of America, 979 Barber-Colman Co., 980, 989 Champion Blower & Forge Co., 966 7. B. Connor Engineering Corp., 934-935, 981 Hart & Cooley Mfg. Co., 982-983 Hendrick Mfg. Co., 984 Independent Register Co., 985 Johnson Service Company, 1004-1005

Minneapolis-Honeywell Regulator Co., 1010-1011 Register & Grille Mfg. Co., 986 Spence Engineering Co., 1015 Tuttle & Bailey, Inc., 988-989 United States Register Co., 987 Waterloo Register Co., 990

DAMPERS, Flue

United States Register Co., 987 Tuttle & Bailey, Inc., 988-989

DAMPERS, Mechanical

Barber-Colman Co., 980, 998 Barber-Colman Co., 980, 998 Buffalo Forge Company, 965 Clarage Fan Company, 888 Fulton Sylphon Co., 1002-1003 Hart & Cooley Mfg. Co., 982-983 Johnson Service Co., 1004-1005 Minneapolis-Honeywell Regulator Co., 1010-1011 Powers Regulator Co., 1014 United States Register Co., 987

DAMPERS,

Dampers, Air Volume Control)

Air & Refrigeration Corp., 883 American Blower Corp., 884-885 Bayley Blower Company, 964 Bryant Heater Co., 897 Buffalo Forge Company, 965 Carrier Corporation, 886-887 Clarage Fan Company, 888 General Electric Company, 890-891, 976.077 976-977 Grinnell Co., Inc., 1026-1027, 1081 McQuay, Incorporated, 914-915 J. J. Nesbitt, Inc., 919 Parks-Cramer Co., 892

Parks-Cramer Co., 892 Refrigeration Economics Co., 924 H. J. Somers, Inc., 942 B. F. Sturtevant Co., 973-975 Trane Company, The, 922-923 United States Air Conditioning Corp., 893 Westinghouse Elec. & Mfg. Co.,

Westingholder Elect & Mig. Co., 894-895, 943 Worthington Pump & Machinery Corp., 960-961 York Ice Machinery Corp., 896

DEHYDRATORS, Refrigerant Automatic Products Corp., 997 Henry Valve Co., 999 Kramer Trenton Co., 912-913

DEHYDRA-TECTORS, Refrigerant

Henry Valve Co., 999

DEHYDRANTS

Henry Valve Co., 999 Research Products Corp., 937

DEODORANTS

7. B. Connor Engineering Corp., 934-935, 981

DESTROYERS, Soot (See Soot Destroyer)

DIFFUSERS, Air (See Air Diffusers, and Ventilators, Floor and Wall)

DISTRICT HEATING (See also Corrosion Treatment of—Expansion Joints—Insulation, Underground-Meters, Pipe)

American District Steam Co., 1076, 1116 Ehret Magnesia Manufacturing Co.,

1098-1099 H. W. Porter & Co., 1117 Ric-wil Company, The, 1118

DRAFT APPARATUS (See Blowers, Forced Draft)

DRYERS, Refrigerant

Automatic Products Corp., 997 Henry Valve Company, 999

DRYING EQUIPMENT

American Blower Corp., 884-885 American Coolair Corp., 962-963 American Radiator & Standard American Coolair Corp., 962-963
American Radiator & Standard
Sanitary Corp., 1042-1043
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Bryant Heater Co., 897
Buffalo Forge Co., 965
Carrier Corporation, 886-887
Champion Blower & Forge Co., 966
Clarage Fan Company, 888
Electric Air Heater Co., Div. of
American Foundry Equipment American Foundry Equipment Co., 907 G & O Manufacturing Co., The, 952 McQuay, Incorporated, 914-915

D. J. Murray Mfg. Company, 918 New York Blower Co., 969 Niagara Blower Co., 889 Refrigeration Economics Co. Refrigeration Economics Co., 973-975 B. F. Sturtevant Co., 973-975 Trane Company, The, 922-923 L. J. Wing Mfg. Co., 925-927 Worthington Pump & Machinery Co., 960-961 York Ice Machinery Corp., 896

DUCT INSULATION (See Insulation, Duct)

DUCTS, Prefabricated (See also Fittings, Air Ducts, Furnace) Carey, Philip, Co., 1096 Gar Wood Industries, Inc., 901 L. J. Mueller Furnace Co., 902-903 United States Register Co., 987

DUST COLLECTING EQUIPMENT

American Air Filter Co., 932-933 American Blower Corp., 884-885 Buffalo Forge Company, 965 Clarage Fan Company, 888 D. J. Murray Míg. Company, 918 Owens-Corning Fiberglas Corp., 938-939

Staynew Filter Corp., 940-941 B. F. Sturtevant Co., 973-975 Westinghouse Elec. & Mfg. Co., 894-895, 943

DUST COLLECTORS, Cloth Type

American Air Filter Co., 932-933 American Blower Corp., 884-885 Staynew Filter Corp., 940-941

EJECTORS, Sewage

Chicago Pump Co., 1073 Nash Engineering Co., 1074-1075

ELECTROSTATIC AIR **CLEANERS**

American Air Filter Co., 932-933 Westinghouse Elec. & Mfg. Co., 894-895, 943

ENGINES, Diesel

Worthington Pump & Machinery Corp., 960-961

ENGINES, Steam

B. F. Sturtevant Co., 973-975

EVAPORATIVE CONDENSERS (See Condensers and Evaporators)

Acme Industries, Inc., 948
Baker Ice Machine Co., Inc., 953
Buffalo Forge Co., 965
Carrier Corporation, 886-887
Curtus Refrigerating Machine Co.,
Div., Curtis Manufacturing Co.,
055

Fedders Manufacturing Co., 910 Frick Company, 956 General Electric Company, 890-891, 976-977 Marlo Coil Company, 957 Marlo Coil Company, 957
McQuay, Incorporated, 914-915
J. J. Nesbitt, Inc., 919
Refrigeration Economics Co., 924
B. F. Sturtevant Co., 973-975
Trane Company, The, 922-923
Vitter Manufacturing Co., 959
Westinghouse Elec. & Mfg. Co., 904-905, 943 894-895, 943

Worthington Pump & Machinery Corp., 960-961 York Ice Machinery Corp., 896 Young Radiator Company, 928

EXHAUSTERS

American Blower Corp., 884-885 Autovent Fan & Blower Div., Herman Nelson Corp., 921 Champion Blower & Forge Co., 966 DeBothezat Division, American Machine & Metals, Inc., 967 7. B. Connor Engineering Corp., 934-935, 981 Coppus Engineering Corp., 936 New York Blower Co., 969 B. F. Sturtevant Co., 973-975 L. J. Wing Mfg. Co., 925-927

EXHAUST HEADS (See Heads. Exhaust)

EXHAUST TUBING, Flexi (See Tubing, Flexible, Metallic) Flexible

EXPANSION JOINTS American District Steam Co., 1076, 1116
E. B. Badger & Sons Co., 1077
Baker Ice Machine Co., 953
Crane Company, 1046-1047
Fulton Sylphon Co., 1002-1003
Grinnell Co., Inc., 1026-1027, 1081
Arthur Harris & Co., 1089
Illinois Engineering Co., 1032-1033
Ric-wil Company, 118
Warren Webster & Co., 1036-1039
Yarnall-Waring Co., 1085

EXPOSITIONS

International Exposition Co., 1124

FANS, Attic

Airtherm Manufacturing Co., 906
American Blower Corp., 84-885
American Coolar Corp., 962-963
Autovent Fan & Blower Div.,
Herman Nelson Corp., 961
Bayley Blower Company, 964
Buffalo Forge Company, 965
Burnham Boiler Corp., 1045
Champion Blower & Forge Co., 966
Clarage Fan Company, 889
DeBothezat Division, American
Machine & Metals, Inc., 967
Gar Wood Industries, Inc., 901
General Electric Company, 890-891, 976-977
Lau Blower Co., 968
L. J. Mueller Furnace Co., 902-903
John J. Nesbitt, Inc., 919 Airtherm Manufacturing Co., 906 L. J. Mueller Furnace Co., 902-903
John J. Nesbitt, Inc, 919
H. J. Somers, Inc., 942
B. F. Sturtevant Co., 973-975
Torrington Mfg. Co., 970-972
Trane Company, The, 922-923
United States Air Conditioning
Corp., 893
Wagner Electric Corp., 978
Westinghouse Elec. & Mfg. Co.,
894-895, 943
L. J. Wing Mfg. Co., 925-927

FAN BLADES

American Blower Corp., 884-885 American Coolair Corp., 962-963 Buffalo Forge Company, 965 Champion Blower & Forge Co., 966 Champion Blower & Forge Co., 966 Clarage Fan Company, 888 DeBothezat Division, American Machine & Metals, Inc., 967 Torrington Mfg. Co., 970-972 Westinghouse Elec. & Mfg. Co., 894-895, 943 L. J. Wing Mfg. Co., 925-927

FANS, Centrifugal

American Blower Corp., 884-885 American Coolair Corp., 962-963 Autovent Fan & Blower Div., Herman Nelson Corp., 921 Bayley Blower Company, 964

Buffalo Forge Company, 965 E. K. Campbell Heating Co., 900 Champion Blower & Forge Co., 966 Clarage Fan Company, 888 Coppus Engineering Corp., 936 General Electric Company, 890-891, 976-977 Hastings Air Conditioning Co., 911 Lau Blower Co., 968 L. J. Mueller Furnace Co., 902-903 Herman Nelson Corp., 920-921 Herman Nelson Corp., 920-921 New York Blower Co., 969 Niagara Blower Co., 889 B. F. Sturtevant Co., 973-975 Torrington Mfg. Co., 970-972 Trane Company, The, 922-923 United States Air Conditioning

Corp., 893 L. J. Wing Mfg. Co., 925-927

FANS, Electric

Airtherm Manufacturing Co., 906 American Coolair Corp., 962-963 Autovent Fan & Blower Div., Herman Nelson Corp., 921 Buffalo Forge Company, 965 Champion Blower & Forge Co., 966 Champion Blower & Forge Co., 966 Clarage Fan Company, 888 Coppus Engineering Corp., 936 DeBothezat Division, American Machine & Metals, Inc., 967 Electric Air Heater Co., Div. of American Foundry Equipment Co., 907 General Electric Company, 890-891, 976-977

976-977
Lau Blower Co., 968
B. F. Sturtevant Co., 973-975
Torrington Mfg. Co., 970-972
Wagner Electric Corp., 978
Westinghouse Elec. & Mfg. Co., 894-895, 943
L. J. Wing Mfg. Co., 925-927

FANS, Furnace

FANS, Furnace
American Blower Corp., 884-885
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Buffalo Forge Company, 965
Champion Blower & Forge Co., 966
Clarage Fan Company, 888
DeBothezat Division, American
Machine & Metals, Inc., 967
Hastings Air Conditioning Co., 911
Lau Blower Co., 968 Lau Blower Co., 908 L. J. Mueller Furnace Co., 902-903 B. F. Sturtevant Co., 973-975 Torrington Mfg. Co., 970-972 Trane Company, The, 922-923 United States Air Conditioning Corp., 893
Westinghouse Elec. & Mfg. Co., 894-895, 943
L. J. Wing Mfg. Co., 925-927 FAN MOTORS (See Motors, Electric) FANS, Portable

FANS, Portable

American Blower Corp., 884-885

American Coolair Corp., 962-963

Autovent Fan & Blower Div.,

Herman Nelson Corp., 921

Bayley Blower Company, 964

Buffalo Forge Company, 965

Champion Blower & Forge Co., 966

Coppus Engineering Corp., 936

General Electric Company, 890-891, 976-977 976-977 Lau Blower Company, 968 New York Blower Co., 969 B. F. Sturtevant Co., 973-975 Torrington Mfg. Co., 970-972 United States Air Conditioning Corp., 893 Wagner Electric Corp., 978 Westinghouse Elec. & Mfg. Co., 894-895, 943 L. J. Wing Mfg. Co., 925-927

FANS, Propeller

Airtherm Manufacturing Co., 906 American Blower Corp., 884-885 American Coolair Corp., 962-963 Autovent Fan & Blower Div Autovent Fan & Blower Div., Herman Nelson Corp., 921 Buffalo Forge Company, 965 E. K. Campbell Heating Co., 900 Champion Blower & Forge Co., 966 Clarage Fan Company, 888 W. B. Connor Engineering Corp., 934-935, 981 Div., 934-939, 961 Coppus Engineering Corp., 936 DeBothezat Division, American Machine & Metals, Inc., 967 General Electric Company, 890-891, Lau Blower Company, 968 Marley Co., The, 946 Herman Nelson Corp., 920-921 New York Blower Co., 969
B. F. Sturtevant Co., 973-975
Torrington Mig. Co., 970-972
Trane Company, The, 922-923
United States Air Conditioning Corp., 893
Westinghouse Elec. & Mfg
894-895, 943
L. J. Wing Mfg. Co., 925-927 Elec. & Mfg. Co.,

FANS, Supply and Exhaust Airtherm Manufacturing Co., 906

Airtherm Manufacturing Co., 906
American Blower Corp., 884-885
American Coolair Corp., 962-963
American Radiator & Standard
Sanitary Corp., 1042-1043
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Royley Blower Corp., 921 Herman Nelson Corp., 921 Bayley Blower Company, 964 Buffalo Forge Company, 965 Champion Blower & Forge Co., 966 Clarage Fan Company, 888 Coppus Engineering Co., 936 DeBothezat Division. American Machine & Metals, Inc., 967 General Electric Company, 890-891, 976-977 976-977

976-977
Hastings Air Conditioning Co., 911
Lau Blower Co., 968
L. J. Mueller Furnace Co., 902-903
Herman Nelson Corp., 920-921
New York Blower Co., 969
H. J. Somers, Inc., 942
B. F. Sturtevant Co., 973-975
Torrington Mfg. Co., 970-972
Trane Company, The, 922-923
United States Air Conditioning
Corp., 893
Wagner Electric Corp., 978
Westinghouse Elec., & Mfg. Co., 894-895, 943
L. J. Wing Mfg. Co., 925-927

FEED WATER HEATERS (See Heaters, Feed Water)

FEED WATER REGULATORS (See Regulators, Feed Water)

FEEDERS, Boiler Water

Crane Company, 1046-1047
Kieley & Mueller, Inc., 1082
McDonnell & Miller, 1040-1041
Mueller Steam Specialty Co., 1083
Penn Electric Switch Co., 1013
Spence Engineering Co., 1015
Warren Webster & Co., 1036-1039
Westinghouse Elec. & Mfg. Co., 894-895, 943 Wright-Austin Co., 1084

FEEDERS, Water

Kieley & Mueller, Inc., 1082 McDonnell & Miller, 1040-1041 Mueller Steam Specialty Co., 1083 Wright-Austin Co., 1084

FELT, Sound Deadening

Carey, Philip, Co., 1096 Ehret Magnesia Manufacturing Co., 1098-1099 Tohns-Manyille, 1104-1105 Ruberoid Company, 1110-1111

FELT, Insulating (See Insulation, Felt)

FILTERS, Air (See also Air Cleaning Equipment)

Air-Maze Corporation, 930-931 American Air Filter Co., Inc., 932-B. Connor Engineering Corp.,

W. B. Connor 934-935, 981 934-939, 901 Coppus Engineering Corp., 936 Detroit Lubricator Co., 1000-1001 Kimberly-Clark Corp., 1106-1107 Martocello, Jos. A. & Sons, 947 Owens-Corning Fiberglas Corp., 938-939

938-939 Research Products Corp., 937 H. J. Somers, Inc., 942 Staynew Filter Corp., 940-941 Westinghouse Elec. & Mfg. Co., 894-895, 943

FIREBRICK, Insulating

Armstrong Cork Company, 1095 Babcock & Wilcox, 1044 Johns-Manville, 1104-1105 Universal Zonolite Insulation Co.,

FITTINGS, Air Ducts, Furnace Carey, Philip, Co., 1096 Gar Wood Industries, Inc., 901 L. J. Mueller Furnace Co., 902-903 United States Register Co., 987

FITTINGS, Pipe, Flanged

American Brass Company, 1090-American Rolling Mill Co., 991 American Rolling Mill Co., 991 Baker Ice Machine Co., Inc., 953 Crane Company, 1046-1047 Frick Company, 956 Grinnell Co., Inc., 1026-1027, 1081 Arthur Harris & Co., 1089 Henry Valve Co., 999 Vilter Manufacturing Co., 959 Worthington Pump & Machinery Co., 960-961 York Ice Machinery Corp., 896

FITTINGS, Pipe, Screwed

Baker Ice Machine Co., 953 Crane Company, 1046-1047 Frick Company, 956 Grinnell Co., Inc., 1026-1027, 1081 Henry Valve Company, 999 Vitter Manufacturing Co., 959 Worthington Pump & Machinery Co., 960-961 York Ice Machinery Corp., 896

FITTINGS, Pipe, Solder American Brass Company, 1090-1091

Crane Company, 1046-1047 Eagle-Picher Lead Co., 1100

FITTINGS, Pipe, for Underground Conduit American District Steam Company,

1076, 1116

Ehret Magnesia Manufacturing Co., 1098-1099 H. W. Porter Co., 1117 Ric-wil Company, The, 1118

FITTINGS, Pipe, Sweat American Brass Company, 1090-

American Radiator & St. Sanitary Corp., 1042-1043 Crane Company, 1046-1047 Standard Eagle-Picher Lead Co., 1100

FITTINGS, Welded

American Brass Company, 1090-1091

Crane Company, 1046-1047 Grinnell Co., Inc., 1026-1027, 1081 York Ice Machinery Corp., 896

FLOATS, Metal (See Trap and Valve)

Arthur Harris & Co., 1089 Kieley & Mueller, Inc., 1082 McDonnell & Miller, 1040-1041 Wright-Austin Co., 1084

FLOOR AND CEILING PLATES

American Radiator &z American Radiator & Standard Sanitary Corp., 1042-1043 Carnegie-Illinois Steel Corp., 994 Grinnell Co., Inc., 1026-1027, 1081 Tuttle & Bailey, Inc., 988-989

FLOOR PLATES

Jones & Laughlin Steel Corp., 993

FLUE GAS ANALYSIS

Leeds & Northrup Co., 1007 Minneapolis-Honeywell Regulator Co., 1010-1011

FOG ELIMINATOR

L. J. Wing Mfg. Co., 925-927

FORCED-AIR DUCTS and FIT-TINGS (See Ducts, Fittings)

ORCED DRAFT COOLING TOWERS (See also Fans, Cooling Towers, Induced Draft, Mechan-

cal Draft) Air & Refrigeration Corp., 883 Baker Ice Machine Co., 953 Buffalo Forge Company, 965 Marley Company, 946 York Ice Machinery Corp., 896

FURNACE-BURNER, Oil-fired, Stoker-fired

Airtemp Div., Chrysler Corp., 898-899

American Radiator & Standard Sanitary Corp., 1042-1043 Crane Company, 1046-1047 Gar Wood Industries, Inc., 901 General Electric Company, 890-891, 976-977

Iron Fireman Mfg. Co., 1070-1071 L. J. Mueller Furnace Co., 902-903 Herman Nelson Corp., 920-921 Quincy Stove Mfg. Co., 905 Webster Engineering Co., 1064

FUEL BURNING EQUIPMENT, Automatic (See Burners, Automatic; Coal Burners, Automatic; Furnace Burners; Gas Burners; Oil Burners; Stokers)

FURNACE PIPE

Johns-Manville, 1104-1105 L. J. Mueller Furnace Co., 902-903 United States Register Co., 987

FURNACES, Electric

General Electric Company, 890-891, 976-977 eeds & Northrup Co., 1007 Westinghouse Elec. & Mfg. Co., 894-895, 943

FURNACES, Warm Air

Airtemp Div., Chrysler Corp., 898-Airtherm Manufacturing Co., 906 American Radiator & Standard Sanitary Corp., 1042-1043 Bryant Heater Co., 897 E. K. Campbell Heating Co., 900 Carrier Corporation, 886-887 Crane Company, 1046-1047 Dravo Corporation, 908-909 Fitzgibbons Boiler Co., Inc., 1048-

Fitzgibbons Boiler Co., Inc., 1048-1049
Gar Wood Industries, 901
General Electric Company, 890-891, 976-977
Iron Fireman Mfg. Co., 1070-1071
Lee Engineering Co., 904
L. J. Mueller Furnace Co., 902-903
Herman Nelson Corp., 920-921
Quincy Stove Mfg. Co., 905
Spencer Heater Division, 1056-1057
United States Radiator Corp., 10581059 1059

Westinghouse Elec. & Mfg. Co., 894-895, 943

GAGE BOARDS

Baker Ice Machine Co., 953 Frick Company, 956 Manning, Maxwell & Moore, Inc., 1008 Minneapolis-Honeywell Regulator Co., 1010-1011 Spence Engineering Co., 1015
Taylor Instrument Companies, Taylor 1016 United States Gauge Co., 987

GAGE GLASSES

American Radiator & Standard Sanitary Corp., 1042-1043 Crane Company, 1046-1047 Jenkins Bros., 1088 Libby-Owens-Ford Glass Co., 1007 Yarnall-Waring Co., 1085

GAGES, Altitude

American Radiator & Standard Sanitary Corp., 1042-1043 Bell & Gossett Company, 1022-1023 Crane Company, 1046-1047 Mercoid Corporation, 1009 Taylor Instrument Companies, 1016 United States Gauge Co., 1017

GAGES, Ammonia

GACES, Ammonia
Baker Ice Machine Co., 953
Crane Company, 1046-1047
Frick Company, 956
Manning, Maxwell & Moore, 1008
Martocello, Jos. A. & Co., 947
Mercoid Corporation, 1009
United States Gauge Co., 1017
Vilter Manufacturing Co., 959
York Ice Machinery Corp., 896

GAGES, Compound

GAOLS, Compound American Radiator & Standard Sanutary Corp., 1042-1043 Crane Company, 1046-1047 Dole Valve Company, 1087 C. A. Dunham Co., 1024-1025 Hoffman Specialty Co., Inc., 1028 Standard 1029 Illinois Engineering Co., 1032-1033

Numerals following Manufacturers' Names refer to pages in the Catalog Data Section

Mercoid Corporation, 1009 Sarco Company, Inc., 1034-1035 Spence Engineering Co., 1015 United States Gauge Co., 1017 Warren Webster & Co., 1036-1039

GAGES, Liquid Level

Detroit Lubricator Co., 1000-1001 Henry Valve Company, 999 Manning, Maxwell & Moore, 1008 Minneapolis-Honeywell Regulator Co., 1010-1011 Taylor Instrument Companies, 1016 United States Gauge Co., 1017 Yarnall-Waring Company, 1085

GAGES, Pressure

GACES, Fresstre
American Radiator & Standard
Sanitary Corp., 1042-1043
Anderson Products, Inc., 1086
Baker Ice Machine Co., Inc., 953
Crane Company, 1046-1047
C. A. Dunham Co., 1024-1025
Manning, Maxwell & Moore, Inc.,

Mercoid Corporation, 1009 Minneapolis-Honeywell Regulator Co., 1010-1011 Co., 1010-1011 Spence Engineering Co., 1015 Taylor Instrument Companies, 1016 Trane Company, The, 922-923 United States Gauge Co., 1017 Webster Engineering Co., 1064

GAGES, Steam

American Radiator & Standard Sanitary Corp., 1042-1043 Anderson Products, Inc., 1086 Crane Company, 1046-1047 Dole Valve Company, 1087 C. A. Dunham Co., 1024-1025 Hoffman Specialty Co., Inc., 1028-Standard Illinois Engineering Co., 1032-1033 Manning, Maxwell & Moore, Inc., Mercoid Corporation, 1009
Minneapolis-Honeywell Regulator
Co., 1010-1011
Spence Engineering Co., 1015
Taylor Instrument Companies, 1016
United States Course Co., 1017 United States Gauge Co., 1017 Warren Webster & Co., 1036-1039

GAGES. Tank

Detroit Lubricator Co., 1000-1001 Frick Company, 956 Minneapolis-Honeywell Regulator Co., 1010-1011 Taylor Instrument Companies, 1016 Wright-Austin Co., 1084

GAGES, Vacuum

Anderson Products, Inc., 1086 Crane Company, 1046-1047 Dole Valve Company, 1087 C.A. Dunham Company, 1024-1025 Hoffman Specialty Co, Inc., 1928-1029 Illinois Engineering Co., 1032-1033 Manning, Maxwell & Moore, Inc., 1008
Mercoid Corporation, 1009
Minneapolis-Honeywell Regulator
Co., 1010-1011
Spence Engineering Co., 1015
Taylor Instrument Companies, 1016
Trane Company, The, 922-923
United States Gauge Co., 1017
Warren Webster & Co., 1036-1039

GAGES, Vapor

Crane Company, 1046-1047 C. A. Dunham Co., 1024-1025

Hoffman Specialty Co., Inc., 1028-1029 Illinois Engineering Co., 1032-1033 Manning, Maxwell & Moore, Inc.,

Mercoid Corporation, 1009 Minneapolis-Honeywell Regulator Co., 1010-1011

Spence Engineering Co., 1015 Trane Company, 922-923 United States Gauge Co., 1017 Warren Webster & Co., 1036-1039

GAGES, Water

American Radiator & St. Sanitary Corp., 1042-1043 Baker Ice Machine Co., 953 Crane Company, 1046-1047 Detroit Lubricator Co., 1000-1001 Frick Company, 956 Manning, Maxwell & Moore, Inc., Mercoid Corporation, 1009
Minneapolis-Honeywell Regulator
Co., 1010-1011
Taylor Instrument Companies, 1016

Standard

United States Gauge Co., 1017 Wright-Austin Co., 1084 Yarnall-Waring Company, 1085

GAS BURNERS

American Radiator & Standard Sanitary Corp., 1042-1043 Bryant Heater Co., 897 Coppus Engineering Corp., 936 Crane Company, 1046-1047 Todd Combustion Equipment, Inc., 1065 Webster Engineering Co., 1064 Westinghouse Elec. & Mfg. Co., 894-895, 943

GASKETS, Asbestos

Crane Company, 1046-1047 Ehret Magnesia Manufacturing Co., 1098-1099 Frick Company, 956 Johns-Manville, 1104-1105 Ruberoid Co., The, 1110-1111

GASKETS, Cork

Armstrong Cork Company, 1095 Mundet Cork Corp., 1108

GASKETS, Rubber

Ehret Magnesia Manufacturing Co., 1098-1099 Frick Company, 956 Jenkins Bros., 1088 Johns-Manville, 1104-1105

GLASS (See Insulation, Double

GLASS BLOCKS

Owens-Illinois Glass Co., 1121 Pittsburgh Corning Corp., 1122

GOVERNORS, Pump

Crane Company, 1046-1047 Kieley & Mueller, Inc., 1082 McDonnell & Miller, 1040-1041 Mueller Steam Specialty Co., Inc., 1083 Spence Engineering Co., 1015 Warren Webster & Co., 1036-1039 Wright-Austin Co., 1084

GRATES FOR BOILERS AND FURNACES

Brownell Company, 1066 Combustion Engineering Co., 1067 Detroit Stoker Company, 1068-1069

Fitzgibbons Boiler Co., Inc., 1048-1049

Iron Fireman Mfg. Co., 1070-1071 International Boiler Works Co., 1051

Kewanee Boiler Corp., 1052-1055 L. J. Mueller Furnace Co., 902-903 D. J. Murray Mfg. Company, 918 United States Radiator Corp., 1058-1059

GRILLES, REGISTERS AND ORNAMENTAL METAL WORK (See also Registers)

American Blower Corp., 884-885 American Coolair Corp., 962-963 Anemostat Corp. of America, 979 Barber-Colman Co., 980, 998 Hart & Cooley Manufacturing Co., 982-983 982-983
Hendrick Mfg. Co., 984
Independent Register Co., 985
L. J. Mueller Furnace Co., 902-903
Register & Grille Mfg. Co., 987
Trane Company, The, 922-923
Tuttle & Bailey, Inc., 988-989
United States Air Conditioning Corp., 893 United States Register Co., 987 Waterloo Register Co., 990

HANGERS, Pipe

American Radiator & Standard Sanitary Corp., 1042-1043 Baker Ice Machine Co., 953 Frick Company, 956 Grinnell Co., Inc., 1026-1027, 1081 Ric-will Company, The, 1118 Vilter Manufacturing Co., 959

HANGERS, Radiator

American Radiator & Standard Sanitary Corp., 1042-1043 Bell & Gossett Co., 1022-1023 Burnham Boiler Corp., 1045 Crane Company, 1046-1047 Grinnell Co., Inc., 1026-1027, 1081 United States Radiator Corp., 1058-

HEADS, Exhaust

Cochrane Corporation, 1080 Crane Company, 1046-1047 Kieley & Mueller, Inc., 1082 Wright-Austin Co., 1084

HEADS. Sprinkler (Fire Protec-Grinnell Co., Inc., 1026-1027, 1081

HEAT SURFACE

Aerofin Corporation, 949-951
Airtherm Manufacturing Co., 906
American Blower Corp., 884-885
Buffalo Forge Company, 965
C. A. Dunham Co., 1024-1025
Electric Air Heater Co., Div. of
American Foundry Equipment Co., 907 Fedders Manufacturing Co., 910 G & O Manufacturing Co., 952 General Electric Company, 890-891, 976-977 Kramer Trenton Co., 912-913 McQuay, Incorporated, 914-915 Modine Manufacturing Co., 916-917
D. J. Murray Mfg. Company, 918
John J. Nesbitt, Inc., 969
Niagara Blower Co., 889 Refrigeration Economics Co., 924 B. F. Sturtevant Co., 973-975 Trane Company, The, 922-923

Westinghouse Elec. & Mfg. Co., Westingnouse Elec. & Mils. S94-895, 943
L. J. Wing Mfg. Co., 925-927
York Ice Machinery Corp., 896
Young Radiator Company, 928

HEATERS, Air

Aerofin Corporation, 949-951 Airtemp Div., Chrysler Corp., 898-899 Autherm Manufacturing Co., 906
Airtherm Manufacturing Co., 906
American Blower Corp., 884-885
American Radiator & Standard
Sanitary Corp., 1042-1043
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Baker Ice Machine Co., 953
Bryant Heater Co., 897
Buffalo Forge Company, 965
Carrier Corporation, 886-887
Clarage Fan Company, 888
Combustion Engineering Co., 1067
Dravo Corporation, 908-909
C. A. Dunham Co., 1024-1025
Electric Air Heater Co., Div. of
American Foundry Equipment
Co., 907
Fedders Manufacturing Co., 910
Gar Wood Industries, Inc., 901
General Electric Company, 890891, 976-977
Grinnell Co., Inc., 1026-1027, 1031 Airtherm Manufacturing Co., 906

891, 970-977 Grinnell Co., Inc., 1026-1027, 1081 Iron Fireman Mfg. Co., 1070-1071 Lee Engineering Co., 904 Marlo Coil Company, 957 Marlo Coil Company, 987
McQuay, Incorporated, 914-915
Modine Mfg. Co., 916-917
D. J. Murray Mfg. Co., 918
Herman Nelson Corp., 920-921
John J. Nesbitt. Inc., 919
Quincy Stove Mfg. Co., 905
Refrigeration Economics Co., 924
B. F. Sturtevant Co., 973-975
Trane Company, The, 922-923
United States Air Conditioning
Corp., 893 Corp., 893 Corp., 893 Westinghouse Elec. & Mfg. Co., 894-895, 943 L. J. Wing Mfg. Co., 925-927 York Ice Machinery Corp., 896 Young Radiator Company, 928

HEATERS, Automatic Hot Water, Domestic

Airtemp Div., Chrysler Corp., 898-American Radiator & Standard Sanitary Corp., 1042-1043 Crane Company, 1046-1047 C. A. Dunham Co., 1024-1025 Fitzgibbons Boiler Co., Inc., 1048-1049

1049
Gar Wood Industries, Inc., 901
Iron Fireman Mfg. Co., 1070-1071
Kewance Boiler Corp., 1052-1055
Quincy Stove Mfg. Co., 905
Spencer Heater Division, 1056-1057
United States Radiator Corp., 1058-1059 Westinghouse Elec. & Mfg. Co., 894-895, 943

Young Radiator Company, 928

HEATERS, Blast

ARATEKS, Blast
Aerofin Corporation, 949-951
Airtherm Manufacturing Co., 906
American Blower Corp., 884-885
American Radiator & Standard
Sanitary Corp., 1042-1043
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Bayley Blower Company, 964
Buffalo Forge Company, 965
Carrier Corporation, 886-887

Clarage Fan Company, 888 C. A. Dunham Co., 1024-1025 Electric Air Heater Co., Div. of American Foundry Equipment Co., 907 Fedders Manufacturing Co., 910 G & O Manufacturing Co., 952 General Electric Company, 890-891, 976-977
Mario Coil Company, 957
McQuay, Incorporated, 914-915
Modine Mfg. Co., 916-917
D. J. Murray Mfg. Company, 918
John J. Nesbitt, Inc., 919
New York Blower Co., 969
Refrigeration Economics Co., 924
B. F. Sturtevant Co., 973-975
Trane Company, The, 922-923
Westinghouse Elec. & Mfg. Co., 894-895, 943
L. J. Wing Mfg. Co., 925-927
Young Radiator Co., 928 976-977

HEATERS, Cabinet

C. A. Dunham Co., 1024-1025 Electric Air Heater Co., Div. of American Foundry Equipment Co., 907 Fedders Manufacturing Co., 910 General Electric Company, 890-891, 976-977 891, 976-977
McQuay, Incorporated, 914-915
Modine Mfg. Co., 916-917
Herman Nelson Corp., 920-921
John J. Nesbitt, Inc., 919
Quincy Stove Mfg. Co., 905
B. F. Sturtevant Co., 973-975
Trane Company, The, 922-923
Weil-McLain Company, 1061
L. J. Wing Mfg. Co., 925-927
Young Radiator Co, 928

HEATERS, Electric

Autovent Fan & Blower Div., Herman Nelson Corp., 921 Burnham Boiler Corp., 1045
Crane Company, 1046-1047
Electric Air Heater Co., Div. of
American Foundry Equipment Co., 907 Co., 907 General Electric Company, 890-891, 976-977 Grinnell Co., Inc., 1026-1027, 1081 B. F. Sturtevant Co., 973-975 Westinghouse Elec. & Mfg. Co., 894-895, 943 L. J. Wing Mfg. Co., 925-927 Young Radiator Company, 928

HEATERS, Feed Water

Bell & Gossett Co., 1022-1023 Bell & Gossett Co., 1022-1023 Brownell Company, 1066 Cochrane Corp., 1080 W. B. Connor Engineering Corp., 934-935, 981 General Electric Company, 890-891, 976-977 Westinghouse Elec & Mfg. Co., 894-895, 943 Worthington Pump & Machinery Corp., 960-961

HEATERS, Fuel Oil Airtherm Manufacturing Co., 906 American District Steam Co., 1076, 1116 Bell & Gossett Co., 1022-1023 W. B. Connor Engineering Corp., 934-935, 981 Dravo Corporation, 908-909
General Electric Company, 890-891, 976-977 Kewance Boiler Corp., 1052-1055

Lee Engineering Co., 904 Quincy Stove Mfg. Co., 905 Todd Combustion Equipment, Inc., 1065 Weil-McLain Company, 1061

HEATERS, Gas

Airtherm Manufacturing Co., 906 American Radiator & Standard American Radiator & Star Samtary Corp., 1042-1043 Bryant Heater Company, 897 oryant rieater Company, 897 Crane Company, 1046-1047 Burnham Boiler Corp., 1045 Dravo Corporation, 908-909 C. A. Dunham Co., 1024-1025 General Electric Company, 890-891, 976-977 Kewanee Boiler Corp., 1052-1055 Lee Engineering Co., 904

HEATERS. Hot Water Service American District Steam Co., 1076, 1116

American Radiator & Star Sanitary Corp., 1042-1043 Bell & Gossett Co., 1022-1023 Brownell Company, 1066 Burnham Boiler Corp., 1045 Standard W. B. Connor Engineering Corp., 934-935, 981
Crane Company, 1046-1047
Fitzgibbons Boiler Co., Inc., 1048-Gar Wood Industries, Inc., 901 International Boiler Works 1051
Kewanee Boiler Corp., 1052-1055
L. J. Mueller Furnace Co., 902-903
J. J. Nesbitt, Inc., 919
Pacific Steel Boiler Div., U. S.
Radiator Corp., 1060
Quincy Stove Mfg. Co., 905
Spencer Heater Division, 1056-1057
Trane Company, The, 922-923
Westinghouse Elec. & Mfg. Co., 894-895, 943 1051

HEATERS, Indirect

Aerofin Corporation, 949-951 American District Steam Co., 1076. 1116 American Radiator & Standard Sanitary Corp., 1042-1043 Bell & Gossett Co., 1022-1023 W. B. Connor Engineering Corp., 934-935, 981 Crane Company, 1046-1047 Fedders Manufacturing Co., 910 Fitzgibbons Boiler Co., Inc., 1048-1049 Kewanee Boiler Corp., 1052-1055 Lee Engineering Co., 904 H. A. Thrush & Co., 1031 L. J. Wing Mfg. Co., 925-927

HEATERS, Refuse Burning Kewanee Boiler Corp., 1052-1055 L. J. Mueller Furnace Co., 902-903

HEATERS, Storage

American District Steam Co., 1076, 1116 1116 American Radiator & Standard Sanitary Corp., 1042-1043 Bell & Gossett Co., 1022-1023 Brownell Company, 1066 Burnham Boiler Corp., 1045 W. B. Connor Engineering Corp., 934-935, 981 Crane Company, 1046-1047 General Electric Company, 890-891, 976-977 Kewance Boiler Corp., 1052-1055

HEATERS, Tank

American District Steam Co., 1076, Airtemp Div., Chrysler Corp., 898-1116 American Radiator & Standard Sanitary Corp., 1042-1043 Bell & Gossett Co., 1022-1023 Burnham Boiler Corp., 1045 7. B. Connor Engineering Corp., 934-935, 981 Crane Company, 1046-1047 Fitzgibbons Boiler Co., Inc., 1048-1049 Gar Wood Industries, Inc., 901 Grinnell Co., Inc., 1026-1027, 1081 International Boiler Works Co., 1124 1124 Kewanee Boiler Corp., 1052-1055 L. J. Mueller Furnace Co., 902-903 Pacific Steel Boiler Div., U. S. Radiator Corp., 1060 Spencer Heater Division, 1056-1057 United States Radiator Corp., 1058-

Weil-McLain Company, 1061 Westinghouse Elec. & Mfg. Co., 894-895, 943

HEATERS, Unit

1059

AEATERS, Unit

Airtherm Manufacturing Co., 906
American Blower Corp., 884-885
Bayley Blower Company, 964
Bryant Heater Co., 897
Buffalo Forge Company, 965
Burnham Boiler Corp., 1045
E. K. Campbell Heating Co., 900
Carrier Corporation, 886-887
Clarage Fan Company, 888
Crane Company, 1046-1047
Dravo Corporation, 908-909
C. A. Dunham Co., 1024-1025
Electric Air Heater Co., Div. of
American Foundry Equipment
Co., 907
Fedders Manufacturing Co., 910 Co., 907
Fedders Manufacturing Co., 910
Grinnell Co., Inc., 1026-1027, 1081
Hastings Air Conditioning Co., 911
Iron Fireman Mfg. Co., 1070-1071
Kramer Trenton Co., 912-913
Lee Engineering Co., 904
McQuay, Incorporated, 914-915
Modine Mfg. Co., 916-917
D. J. Murray Mfg. Company, 918
Herman Nelson Corp., 920-921
John J. Nesbitt, Inc., 919
New York Blower Co., 969
Niagara Blower Co., 889 New York Blower Co., 909
Niagara Blower Co., 889
Quincy Stove Mfg. Co., 905
Refrigeration Economics Co., 924
B. F. Sturtevant Co., 973-975
Trane Company, The, 922-923
United States Air Conditioning Corp., 893 United States Radiator Corp., 1058-Warren Webster & Co., 1036-1039 L. J. Wing Mfg. Co., 925-927 Young Radiator Company, 928

HEATERS, Unit, Gas Fired

Aurtherm Manufacturing Co., 906
American Radiator & Standard
Santary Corp., 1042-1043
Bryant Heater Co., 897
Buffalo Forge Company, 965
E. K. Campbell Heating Co., 900
Crane Company, 1046-1047
Dravo Corporation, 908-909
C. A. Dunham Co., 1024-1025
Lee Engineering Co., 904
McQuay, Incorporated, 914-915
L. J. Mueller Furnace Co., 902-903
Trane Company, The, 922-923 Airtherm Manufacturing Co., 906

HEATING SYSTEMS, Air

Airtherm Manufacturing Co., Airtherm Manufacturing Co., 906
American Blower Corp., 884-885
American Radiator & Standard
Sanitary Corp., 1042-1043
Bryant Heater Co., 897
Buffalo Forge Company, 965
Burnham Boiler Corp., 1045 Buffalo Forge Company, 965 Burnham Boiler Corp., 1045 Carner Corporation, 886-887 Clarage Fan Company, 888 Crane Company, 1046-1047 Dravo Corporation, 908-909 C. A. Dunham Co., 1024-1025 Fedders Manufacturing Co., 910 Gar Wood Industries, Inc., 901 General Electric Company, 890-891, 976-977 ee Engineering Co., 904 Lee Engineering Co., 904
McQuay, Incorporated, 914-915
Modine Mfg. Co., 916-917
L. J. Mueller Furnace Co., 902-903
Herman Nelson Corp., 920-921
John J. Nesbitt, Inc., 919
Quincy Stove Mfg. Co., 905
Spencer Heater Division, 1056-1057
B. F. Sturtevant Co., 973-975
Trane Company, The, 922-923
United States Radiator Corp., 1058-Westinghouse Elec. & Mfg. Co., 894-895, 943 L. J. Wing Mfg. Co., 925-927 York Ice Machinery Corp., 896 Young Radiator Company, 928 HEATING SYSTEMS, Automatic Airtemp Div., Chrysler Corp., 898-American Radiator & Standard Sanitary Corp., 1042-1043
Anderson Products, Inc., 1086
Bryant Heater Co., 897
Burnham Boiler Corp., 1045
Carrier Corporation, 886-887
Crane Company, 1046-1047
Dravo Corporation, 908-909
C. A. Dunham Co., 1024-1025
Electric Air Heater Div. of American Foundry Equipment Co., 907
Gar Wood Industries, Inc., 901
General Electric Company, 890-891, 976-977
Hoffman Specialty Co., Inc., 1028-Hoffman Specialty Co., Inc., 1028-1029
Illinois Engineering Co., 1032-1033
Iron Fireman Mfg. Co., 1070-1071
L. J. Mueller Furnace Co., 902-903
Herman Nelson Corp., 920-923
Quincy Stove Mfg. Co., 905
Sarco Co., Inc., 1034-1035
Spence Engineering Co., 1015
Spencer Heater Division, 1058-1057
Trane Company, The, 922-923
United States Radiator Corp., 1058-Westinghouse Elec. & Mfg. Co., 894-895, 943
Warren Webster & Co., 1036-1039
L. J. Wing Mfg. Co., 925-927
York Ice Machinery Corp., 896

Bryant Heater Co., 897
E. K. Campbell Heating Co., 900
Carrier Corporation, 886-887
Crane Company, 1046-1047
Gar Wood Industries, Inc., 901
General Electric Company, 890-891, 976-977
Lee Engineering Co., 904
L. J. Mueller Furnace Co., 902-903
Harman Nelson Corp. 920, 901 D. J. Mitcher Furnace Co., 302-903 Herman Nelson Corp., 920-921 Quincy Stove Mig. Co., 905 Spencer Heater Division, 1056-1057 United States Radiator Corp., 1058-Westinghouse Elec. & Mfg. Co., 894-895, 943 L. J. Wing Mfg. Co., 925-927 HEATING SYSTEMS, Gas Fired Airtemp Div., Chrysler Corp., 898-899 Airtherm Manufacturing Co., 906
American Blower Corp., 884-885
American Radiator & Standard
Sanitary Corp., 1042-1043
Barnes & Jones, Inc., 1021
Bryant Heater Co., 897
Burnham Boiler Corp., 1045
Carrier Corporation, 886-887
Crane Company, 1042-1043
Dravo Corporation, 908-909
C. A. Dunham Co., 1024-1025
Gar Wood Industries, Inc., 901
General Electric Company, 890-891, 976-977
Kewanee Boiler Corp., 1052-1055
Lee Engineering Co., 904
L. J. Mueller Furnace Co., 902-903
Herman Nelson Corp., 920-921
Spencer Heater Division, 1056-1057
Trane Company, The, 922-923
United States Radiator Corp., 1058-1059 Airtherm Manufacturing Co., 906 Westinghouse Elec. & Mfg. Co., 894-895, 943

HEATING SYSTEMS, Hot Water

Airtemp Div., Chrysler Corp., 898-

Supplementary Supplementary Sanitary Corp., 1042-1043
Bell & Gossett Co., 1022-1023
Bryant Heater Co., 897 Bryant neater Co., 897
Burnham Boiler Corp., 1045
Crane Company, 1046-1047
Gar Wood Industries, Inc., 901
General Electric Company, 890-891, 976-977 Hoffman Specialty Co., Inc., 1028-1029 Kewanee Boiler Corp., 1052-1055 McQuay, Incorporated, 914-915 Modine Mfg. Co., 916-917 L. J. Mueller Furnace Co., 902-903 Herman Nelson Corp., 920-923 Herman Nelson Corp., 920-923 Spencer Heater Division, 1056-1057 Trane Company, The, 922-923 H. A. Thrush & Co., 1031 United States Radiator Corp., 1058-1059 Westinghouse Elec. & Mfg. Co., 894-895, 943 L. J. Wing Mfg. Co., 925-927

HEATING SYSTEMS, Oil Fired Airtemp Div., Chrysler Corp., 898-899

Airtherm Manufacturing Co., 906 American Radiator & Standard Sanitary Corp., 1042-1043 Barnes & Jones, Inc., 1021 Burnham Boiler Corp., 1045

Please mention THE GUIDE 1943 when writing to Advertisers

Standard

HEATING SYSTEMS, Furnace

Airtemp Div., Chrysler Corp., 898-

Airtherm Manufacturing Co., 906 American Radiator & Sta Sanitary Corp., 1042-1043

HEATING SYSTEMS, Coal

Lee Engineering Co., 904

Fired

Carrier Corporation, 886-887 Crane Company, 1046-1047 Dravo Corporation, 908-909 Gar Wood Industries, Inc., 901 General Electric Company, 890-891, 976-977 891, 976-977
Kewanee Boiler Corp., 1052-1055
Lee Engineering Co., 904
L. J. Mueller Furnace Co., 902-903
Herman Nelson Corp., 920-921
Quincy Stove Mfg. Co., 905
Spencer Heater Division, 1056-1057
Trane Company, The, 922-923
United States Radiator Corp., 1058-Westinghouse Elec. & Mfg. Co., 894-895, 943

HEATING SYSTEMS, Steam Airtemp Div., Chrysler Corp., 898-

Airtherm Manufacturing Co., 906 Airtherm Manufacturing Co., 906
American Radiator & Standard
Sanitary Corp., 1042-1043
Anderson Products, Inc., 1086
Barnes & Jones, Inc., 1021
Bell & Gossett Co., 1022-1023
Bryant Heater Co., 897
Burnham Boiler Corp., 1045
Carrier Corporation, 886-887
Crane Company, 1046-1047
C. A. Dunham Co., 1024-1025
Gar Wood Industries, Inc., 901
General Electric Company, 890-General Electric Company, 890-891, 976-977
William S. Haines & Co., 1030
Hoffman Specialty Co., Inc., 1028-Illinois Engineering Co., 1032-1033 Kewanee Boiler Corp., 1052-1055 Modine Manufacturing Co., 916-917 L. I. Mueller Furnace Co., 902-903 HUMIDIFIERS L. J. Mueller Furnace Co., 902-903 Herman Nelson Corp., 920-921 Ric-wil. Company, The., 1118 Sarco Company, Inc., 1034-1035 Spence Engineering Co., 1015 Spencer Heater Division, 1056-1057 Tranc Co., The, 922-923 United States Radiator Corp., 1058-

HEATING SYSTEMS, Vacuum Airtemp Div., Chrysler Corp., 898-

Warren Webster & Co., 1036-1039 Westinghouse Elec. & Mfg. Co., 894-895, 943 L. J. Wing Mfg. Co., 925-927

899 American District Steam Co., 1076, 1116
American Radiator & Standard Sanitary Corp., 1042-1043
Anderson Products, Inc., 1086
Barnes & Jones, Inc., 1021
Burnham Boiler Corp., 1045
Crane Company, 1046-1047
C. A. Dunham Co., 1024-1025
Gar Wood Industries, Inc., 901
General Electric Company, 890-891, 976-977
William S. Haines & Co., 1030 1116

William S. Haines & Co., 1030 Hoffman Specialty Co., Inc., 1028-

Illinois Engineering Co., 1032-1033 Modine Manufacturing Co., 916-

917 L. J. Mueller Furnace Co., 902-903 Sarco Company, Inc., 1034-1035 Spencer Heater Division, 1056-1057 Trane Company, The, 922-923 United States Radiator Corp., 1058-1059

Warren Webster & Co., 1036-1039 Westinghouse Elec. & Mfg. Co., 894-895, 943

HEATING SYSTEMS, Vapor Airtemp Div., Chrysler Corp., 898-

American District Steam Co., 1076, 1116

1116
American Radiator & Standard Sanitary Corp., 1042-1043
Barnes & Jones, Inc., 1021
Burnham Boiler Corp., 1045
Crane Company, 1046-1047
C. A. Dunham Co., 1024-1025
Gar Wood Industries, Inc., 901
General Electric Company, 890-891, 976-977
William S. Hajnes & Co., 1030

William S. Haines & Co., 1030 Hoffman Specialty Co., Inc., 1028-

Illinois Engineering Co., 1032-1033 Modine Manufacturing Co., 916-

L. J. Mueller Furnace Co., 902-903 Herman Nelson Corp., 920-921 Sarco Company, Inc., 1034-1035 Sarco Company, Inc., 1034-1035 Spencer Heater Division. 1056-1057 Trane Company, The, 922-923 United States Radiator Corp., 1058-

Warren Webster & Co., 1036-1039 Westinghouse Elec. & Mfg. Co., 894-895, 943

HOSE, Refrigerant Charging Henry Valve Company, 999

HOT WATER HEATING SYS-TEMS (See Heating Systems, Hot Water)

Air & Refrigeration Corp., 883 Air & Retrigeration Corp., 883 American Blower Corp., 884-885 American Moistening Co., 944 American Radiator & Standard Sanitary Corp., 1042-1043 Armstrong Machine Works, 1078-1079

1079
Baker Ice Machine Co., 953
Barber-Colman Co., 980, 998
Buffalo Forge Company, 965
Burnham Boiler Corp., 1045
Carner Corporation, 886-887 Carrier Corporation, 886-887 Clarage Fan Company, 888 General Electric Company, 890-891, 976-977 Grinnell Co., Inc., 1026-1027, 1081 Johnson Service Co., 1004-1005 McDonnell & Miller, 1040-1041

McDonnell & Miller, 1040-1041
McQuay, Incorporated, 914-915
L. J. Mueller Furnace Co., 902-903
D. J. Murray Mfg. Company, 918
Parks-Cramer Company, 892
H. J. Somers, Inc., 942
B. F. Sturtevant Co., 973-975
Trane Company, The, 922-923
United States Air Conditioning Corp., 893
Weil-McLain Company, 1061
Westinghouse Elec. & Mfg. Co., 894-895, 943
L. J. Wing Mfg. Co., 925-927

HUMIDIFIERS, Central Plant

Air & Refrigeration Corp., 883 American Blower Corp., 884-885 Armstrong Machine Works, 1078-

Baker Ice Machine Co., 953 Barber-Colman Co., 980, 998 Bayley Blower Company, 964

Buffalo Forge Company, 965 Carrier Corporation, 886-887 Clarage Fan Company, 888 Gar Wood Industries, Inc., 901 General Electric Company, 890-891, 976-977 Johnson Service Company, 1004-1005 Niagara Blower Co., 889 Parks-Cramer Company, 892 Powers Regulator Co., 1014 H. J. Somers, Inc., 942 B. F. Sturtevant Co., 973-975 Trane Company, The, 922-923 United States Air Conditioning Corp., 893 Westinghouse Elec. & Mfg. Co., 894-895, 943 York Ice Machinery Corp., 896

HUMIDIFIERS, Unit

Air & Refrigeration Corp., 883 American Blower Corp., 884-885 American Moistening Co., 944 Armstrong Machine Works, 1078-1079 1079
Buffalo Forge Company, 965
Burnham Boiler Corp., 1045
Carrier Corporation, 886-887
Clarage Fan Company, 888
Dravo Corporation, 908-909
General Electric Company,

891, 976-977 891, 976-977
Grinnell Co., Inc., 1026-1027, 1081
Marley Company, The, 946
McQuay, Incorporated, 914-915
D. J. Murray Mfg. Company, 918
Parks-Cramer Company, 892
H. J. Somers, Inc., 942
B. F. Sturtevant Co., 973-975
Trane Company, The, 922-923
United States Air Conditioning Corp., 893
L. J. Wing Mfg. Co., 925-927

HUMIDITY CONTROL

American Moistening Co , 944 Anemostat Corp. of America, 979 Armstrong Machine Works, 1078-1079

1079
Barber-Colman Co., 980, 998
Carrier Corporation, 886-887
Detroit Lubricator Co., 1000-1001
Fulton Sylphon Co., 1002-1003
General Electric Company, 890891, 976-977
Grinnell Co., 1nc., 1026-1027, 1081
Johnson Service Co., 1004-1005
Leeds & Northrup Co., 1007
Manning, Maxwell & Moore, Inc., 1008

1008 1008
Mercoid Corporation, The, 1009
Minneapolis-Honeywell Regulator
Co., 1010-1011
Parks-Cramer Company, 892
Penn Electric Switch Co., 1013
Powers Regulator Co., 1014
H. J. Somers, Inc., 942
Taylor Instrument Companies, 1016
White Parkers Flortic Co., 1018

White-Rodgers Electric Co., 1018

HUMIDITY RECORDERS and INDICATORS

American Moistening Co., 944
Grinnell Co., Inc., 1026-1027, 1081
Johnson Service Co., 1004-1005
Leeds & Northrup Co., 1007
Minneapolis-Honeywell Regulator
Co., 1010-1011
Palmer Company, 1012
Powers Regulator Co., 1014
Taylor Instrument Companies, 1016

Taylor Instrument Companies, 1016

HYGROMETERS (See also Humidity Recorders and Indicators)

American Moistening Co., 944
Detroit Lubricator Co., 1000-1001
Grinnell Co., Inc., 1026-1027, 1081
Johnson Service Co., 1004-1005
Minneapolis-Honeywell Regulator

Minneapolis-noneywen Regulator
Co., 1010-1011
Palmer Company, 1012
Parks-Cramer Company, 892
Taylor Instrument Companies, 1016

INDUCED DRAFT COOLING TOWERS (See also Cooling Towers, Forced Draft, Mechanical Draft)

Baker Ice Machine Co., 953 Buffalo Forge Company, 965 Marley Company, 946 D. J. Murray Mfg. Company, 918 York Ice Machinery Co., 896

INSTRUMENTS, Indicating, Controlling and Recording

Barber-Colman Co., 980, 998 Cochrane Corp., 1080 Detroit Lubricator Co., 1000-1001 General Electric Company, 890-891, 976-977

Illinois Testing Laboratories, Inc., 1006 Johnson Service Company, 1004

1005 Leeds & Northrup Co., 1007 Minneapolis-Honeywell Regulator Co., 1010-1011

Palmer Company, 1012
Powers Regulator Co., 1014
Taylor Instrument Companies, 1016
United States Gauge Co., 1017
Westinghouse Elec. & Mfg. Co., 894-895, 943

INSULATION, Building

Alfol Insulation Co., 1094
April Showers Company, 945
Armstrong Cork Company, 1095
Carey, Philip, Co., 1096
Celotex Corporation, The, 1097
Eagle-Picher Lead Co., 1100
Ehret Magnesia Manufacturing Co.,

Ehret Magnesia Manual 1098-1099
Insulite Company, The, 1102-1103
Insulation Industries, Inc., 1101
Johns-Manville, 1104-1105
Kimberly-Clark Corp., 1106-1107
Libby-Owens-Ford Glass Co., 1120
Mundet Cork Corp., 1108
Owens-Corning Fiberglas Corp.,

Pacific Lumber Co., The, 1109 Pittsburgh Corning Corp., 1122 Reynolds Metals Co., 1112 Ruberoid Co., The, 1110-1111 United States Gypsum Co., 1114-1115

Universal Zonolite Insulation Co., 1119 Wood Conversion Co., 1113

INSULATION, Cork

Armstrong Cork Company, 1095 Johns-Manville, 1104-1105 Mundet Cork Corp., 1108

INSULATION, Double Glass

Libby-Owens-Ford Glass Co., 1120 Owens-Illinois Glass Co., 1121 Pittsburgh Corning Corp., 1122

INSULATION, Ducts, Ventilating, Air Conditioning

Armstrong Cork Company, 1095 Carey, Philip, Co., 1096

Celotex Corporation, 1097 Eagle-Picher Lead Co., 1100 Ehret Magnesia Manufacturing Co., 1098-1099

Insulation Industries, Inc., 1101 Insulate Company, The, 1102-1103 Johns-Manville, 1104-1105 Mundet Cork Corp., 1108 Owens-Corning Fiberglas Corp., 938-939

Pacific Lumber Co., 1109
Pittsburgh Corning Corp., 1122
Reynolds Metal Co., Inc., 1112
Ruberoid Co., The, 1110-1111
United States Gypsum Co., 1114-1115

INSULATION, Felt

Carey, Philip, Co., 1096 Eagle-Picher Lead Co., 1100 Ehret Magnesia Manufacturing Co., 1098-1099 1098-1099 Insulation Industries, Inc., 1101 Johns-Manville, 1104-1105 Kimberly-Clark Corp., 1106-1107 Ruberoid Co., 1110-1111 Wood Conversion Company, 1113

INSULATION, Glass Block Owens-Illinois Glass Co., 1121 Pittsburgh Corning Corp., 1122

INSULATION, Magnesia

Carey, Philip, Co., 1096 Ehret Magnesia Manufacturing Co., Johns-Manville, 1104-1105 Mundet Cork Corp., 1108 Ruberoid Co., The, 1110-1111

INSULATION, Pipes and Surfaces (See Coverings, Pipes and Surfaces)

INSULATION, Plastic

1119

Eagle-Picher Lead Co., 1100 Ehret Magnesia Manufacturing Co., 1098-1099 Johns-Manville, 1104-1105 Ruberoid Co., The, 1110-1111 United States Gypsum Co., 1114-1115 Universal Zonolite Insulation Co.,

INSULATION, Reflective

Alfol Insulation Co., 1094 Reynolds Metals Co., Inc., 1112

INSULATION, Refractory

Armstrong Cork Co., 1095 Babcock & Wilcox, 1044 Carey, Philip, Co., 1096 Eagle-Picher Lead Co., 1100 Ehret Magnesia Manufacturing Co., 1098-1099 Johns-Manville, 1104-1105 Ruberoid Co., The, 1110-1111 Universal Zonolite Insulation Co.,

INSULATION, Sound Deaden-ing (See also Felt, Sound Deadening)

Alfol Insulation Co., 1094
Armstrong Cork Company, 1095
Carey, Philip, Co., 1096
Celotex Corporation, 1097
Eagle-Picher Lead Co., 1100
Ehret Magnesia Manufacturing Co., 1098-1099

Insulation Industries, Inc., 1101 Insulite Company, 1102-1103 Johns-Manville, 1104-1105

Kimberly-Clark Corp., 1106-1107 Libby-Owens-Ford Glass Co., 1120 Mundet Cork Corp., 1108 Owens-Corning Fiberglas Corp., 938-939 People Limber Co.

938-939
Pacific Lumber Co., The, 1109
H. W. Porter & Co., 1117
Reynolds Metals Co., Inc., 1112
Ruberoid Co., The, 1110-1111
United States Gypsum Co., 1114-1115

Universal Zonolite Insulation Co., 1119 Wood Conversion Company, 1113

INSULATION, Structural

Alfol Insulation Co., 1094 Armstrong Cork Company, 1095 Celotex Corporation, 1097 Ehret Magnesia Manufacturing Co., 1098-1099 1098-1099 Insulite Company, 1102-1103 Johns-Manville, 1104-1105 Libby-Owens-Ford Glass Co., 1120 Pittsburgh Corning Corp., 1122 Reynolds Metals Co., Inc., 1112 United States Gypsum Co., 1114-

1115 Universal Zonolite Insulation Co.,

1119 Wood Conversion Company, 1113

INSULATION, Underground Steam Pipe

American District Steam Co., 1076. 1116

E. B. Badger & Sons Co., 1077 E. B. Bauger & Sons Co., 1077 Carey, Philip, Co., 1096 Eagle-Picher Lead Co., 1100 Ehret Magnesia Manufacturing Co., 1098-1099

1098-1099
Insulation Industries, Inc., 1101
Johns-Manville, 1104-1105
Owens-Corning Fiberglas Corp.,
938-939
H. W. Porter & Co., 1117
Ric-wil Company, The, 1118
Ruberoid Co., The, 1110-1111
Universal Zonolite Insulation Co.,
1110 1119 Wood Conversion Company, 1113

INSULATION, Window, Double Glazing, Screens

Libby-Owens-Ford Glass Co., 1120

INSULATOR, Water

April Showers, Inc., 945

LATH, Insulative (See Plaster Base, Insulation)

LIME SCALE CONTROL Research Products Corp., 937

LIQUID LEVEL CONTROLS

Alco Valve Co., 996
Cochrane Corp., 1080
Detroit Lubricator Co., 1000-1001
Frick Company, 956
Johnson Service Co., 1004-1005
Kieley & Mueller, Inc., 1082
Leeds & Northrup Co., 1007
McDonnell & Miller, 1040-1041
Mercoid Corporation, 1009
Minneapolis-Honeywell Regulator
Co., 1010-1011
Mueller Steam Specialty Co., Inc., Mueller Steam Specialty Co., Inc.,

1083 Penn Electric Switch Co., 1013 Sarco Company, Inc., 1034-1035 Spence Engineering Co., 1015 Taylor Instrument Companies, 1016 Wright-Austin Co., 1084

Please mention THE GUIDE 1943 when writing to Advertisers

LIQUID LEVEL GAGES (See METERS, Flow Gages, Liquid Level)

American Coolair Corp., 962-963 American Coolair Corp., 962-963
Anemostat Corp. of America, 979
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Barber-Colman Co., 980, 998
Buffalo Forge Company, 965
Champion Blower & Forge Co., 966
Clarage Fan Company, 888
Hart & Cooley Mfg. Co., 982-983
Hendrick Mfg. Co., 984
Independent Register Co., 985
Johnson Service Company, 1004-Johnson Service Company, 1004-1005 Register & Grille Mfg. Co., 989 B. F. Sturtevant Co., 973-975 Trane Company, The, 922-923 Tuttle & Bailey, Inc., 988-989 United States Register Co., 987 Waterloo Register Co., 990

MANHOLE COVERS, For Underground Systems

American Coolair Corp., 962-963 American District Steam Co., 1076, 1116 Grinnell Co., Inc., 1026-1027, 1081 D. J. Murray Mfg. Co., 918 H. W. Porter & Co., 1117 Ric-will Company, The, 1118

MECHANICAL DRAFT APPA-RATUS (See also Blowers, Forced Draft)

American Blower Corp., 884-885 Buffalo Forge Company, 965 B. F. Sturtevant Co., 973-975

MECHANICAL DRAFT COOL-ING TOWERS (See also Cooling Towers, Forced Draft, Induced Draft)

Baker Ice Machine Co., 953 Buffalo Forge Company, 965 DeBothezat Division, Am American Machine & Metals, Inc., 967 Marley Company, 946 Marlo Coil Company, 957 York Ice Machinery Corp., 896

METALS, Perforated (See Perforated Metals)

METERS, Air

American District Steam Co., 1076, 1116 Illinois Testing Laboratories, 1006 Minneapolis-Honeywell Regulator Co., 1010-1011 Taylor Instrument Companies, 1016

METERS, Air Velocity

Anderson Products, Inc., 1086 Illinois Testing Laboratories, 1006 Minneapolis-Honeywell Regulator Co., 1010-1011 Powers Regulator Co., 1014 Taylor Instrument Companies, 1016

METERS. Condensation

American District Steam Co., 1076,

METERS, Feed Water

Cochrane Corp., 1080 Leeds & Northrup Co., 1007 Minneapolis-Honeywell Regulator Co., 1010-1011

American District Steam Co., 1076, 1116 Cochrane Corp., 1080
Leeds & Northrup Co., 1007
Minneapolis-Honeywell Regulator
Co., 1010-1011
Taylor Instrument Companies, 1016

METERS, Steam

American District Steam Co., 1076. 1116 Cochrane Corp , 1080 Minneapolis-Honeywell Regulator Co., 1010-1011

MOTORS, Damper

Barber-Colman Co., 980, 998 Fulton Sylphon Co., 1002-1003 Johnson Service Co., 1004-1005 Minneapolis-Honeywell Regulator Co., 1010-1011 Penn Electric Switch Co., 1013 Powers Regulator Co., 1014 White-Rodgers Elec. Co., 1018

MOTORS, Electric

Barber-Colman Co., 980, 998
DeBothezat Division, American Machine & Metals, Inc., 967
General Electric Company, 890-891, 976-977
B. F. Sturtevant Co., 973-975
Wagner Electric Corp., 978
Westinghouse Elec. & Mfg. Co., 894-895, 943

NOISE ELIMINATORS (See Tubing, flexible; Sound Deadeners; Vibration Absorbers)

NOZZLES, Spray (See Spray Nozzles)

ODOR CONTROL

W. B. Connor Engineering Corp., 934-935, 981

OIL BURNER EQUIPMENT

Airtemp Div., Chrysler Corp., 898-899 899
American Radiator & Standard Sanitary Corp., 1042-1043
Automatic Products Corp., 997
Crane Company, 1046-1047
Detroit Lubricator Co., 1000-1001
General Electric Company, 890-891, 976-977
Herone Nelson Corp., 2020, 2021 891, 976-977 Herman Nelson Corp., 920-921 Iron Fireman Mfg. Co., 1070-1071 Quincy Stove Mfg. Co., 905 Spencer Heater Division, 1056-1057 Todd Combustion Equipment, Inc., Webster Engineering Co., 1064 Westinghouse Elec. & Mfg. Co., 894-895, 943

BURNER MOTORS (See Motors, Electric)

OIL BURNERS

Airtemp Div., Chrysler Corp., 898-899 American Radiator & Standard Sanıtary Corp., 1042-1043 Babcock & Wilcox Co., 1044 Carrier Corporation, 886-887 Combustion Engineering Co., 1067 Grane Company, 1046-1047
Gar Wood Industries, Inc., 901
General Electric Company, 890-891, 976-977 Iron Fireman Mfg. Co., 1070-1071 Wood Conversion Company, 1113

L. J. Mueller Furnace Co., 902-903 Herman Nelson Corp., 920-921 Quincy Stove Mfg. Co., 905 Spencer Heater Division, 1056-1057 Todd Combustion Equipment, Inc., 1065

Webster Engineering Co., 1064 Westinghouse Elec. & Mfg. Co., 894-895, 943

OIL BURNERS, Pressure Atomizing

Airtemp Div., Chrysler Corp., 898-Gar Wood Industries, Inc., 901 L. J. Mueller Furnace Co., 902-903 Todd Combustion Equipment, Inc., 1065 Webster Engineering Co., 1064 Westinghouse Elec. & Mfg. Co., 894-895, 943

OIL BURNERS, Rotary Todd Combustion Equipment, Inc.,

OIL BURNERS, Steam Atomizing

Todd Combustion Equipment, Inc., 1065 Webster Engineering Co., 1064

OIL BURNERS, Variable Capacity

Todd Combustion Equipment, Inc., 1065

OIL BURNER TUBING, Flexible (See Tubing, Flexible Metallic)

OIL TANK GAGES (See Gages, Tank)

ORIFICES, Flow Meter

Cochrane Corp., 1080 Leeds & Northrup Co, 1007 Taylor Instrument Companies, 1016

ORIFICES, Radiator

Barnes & Jones, Inc., 1021 Detroit Lubricator Co., 1000-1001 C. A. Dunham Co., 1024-1025 Hoffman Specialty Co., Inc., 1028-1029 Illinois Engineering Co., 1032-1033 Johnson Service Company, 1004-1005 Sarco Co., Inc., 1034-1035 Spence Engineering Co., 1015 Trane Company, The, 922-923 Warren Webster & Co., 1036-1039

PACKING, Asbestos

Carey, Philip, Co., 1096 Crane Company, 1046-1047 Ehret Magnesia Manufacturing Co., 1098-1099 Jenkins Bros., 1088 Johns-Manville, 1104-1105 Ruberoid Company, 1110-1111

PANELS, Insulative

PANELS, INSULATOR
Alfol Insulation Co., 1094
Carey, Philip, Co., 1096
Celotex Corporation, 1097
Insulate Company, The, 1102-1103
Libby-Owens-Ford Glass Co., 1120
Owens-Corning Fiberglas Corp., 938-939 United States Gypsum Co., 1114-1115

Numerals following Manufacturers' Names refer to pages in the Catalog Data Section

PERFORATED METALS

Hendrick Mfg. Co., 984 Tuttle & Bailey, Inc., 988-989 United States Register Co., 987

PILLOW BLOCKS

Lau Blower Co., 968

PIPE, Asbestos

Eagle-Picher Lead Co., 1100 Ehret Magnesia Manufacturing Co., 1098-1099 Johns-Manville, 1104-1105 Ruberoid Company, 1110-1111

PIPE, Brass

American Brass Company, 1090-1091 Grane Company, 1046-1047 Grinnell Co., Inc., 1026-1027, 1081 Wolverine Tube Div., Calumet and Hecla Consolidated Copper Co., 1092

PIPE, Cement

Johns-Manville, 1104-1105 Ruberoid Co., The, 1110-1111

PIPE, Copper

American Brass Company, 1090-American Radiator & Standard Sanıtary Corp., 1042-1043 Crane Company, 1046-1047 Wolverine Tube Div., Calumet and Hecla Consolidated Copper Co.,

PIPE, Copper Bearing Steel Bethlehem Steel Co., 992 Crane Company, 1046-1047 Jones & Laughlin Steel Corp., 993

PIPE, Furnace (See Furnace Pipe)

PIPE, Return Bends

Frick Company, 956 Grinnell Co., Inc., 1026-1027, 1081 Arthur Harris & Co., 1089 Henry Valve Company, 999 Vilter Manufacturing Co., 959

PIPE, Steel

Acme Industries, Inc., 948
American Rolling Mill Co., 991
Bethlehem Steel Co., 992
Carnegie-Illinois Steel Corp., 994
Crane Company, 1046-1047
Grinnell Co., Inc., 1026-1027, 1081
Jones & Laughlin Steel Corp., 993
Vilter Manufacturing Co., 959

PIPE, Wrought Iron

Bethlehem Steel Co., 992 Crane Company, 1046-1047 Grinnell Co., Inc., 1026-1027, 1081 Vilter Manufacturing Co., 959

PIPE ANCHORS

American District Steam Co., 1076, 1116 1110 E. B. Badger & Sons Co., 1077 Grinnell Co., Inc., 1026-1027, 1081 H. W. Porter & Co., 1117 Ric-wil Company, 1118

PIPE BENDING

Baker Ice Machine Co., Inc., 953 Frick Company, 956 Grinnell Co., Inc., 1026-1027, 1081 Arthur Harris & Co., 1089 Parks-Cramer Co., 892 Vilter Manufacturing Co., 959

PIPE CLEANING

Cochrane Corporation, 1080 Research Products Corp., 937

PIPE CONDUITS (See Conduits, Underground Pipe)

PIPE COVERING (See Covering, Pipe)

PIPE FITTINGS (See Fittings, Pipe)

PIPE GUIDES

American District Steam Co., 1076. E. B. Badger & Sons Co., 1077 H. W. Porter & Co., 1117 Ric-wil Company, The, 1118

PIPE HANGERS (See Hangers, Pipe)

PIPE SUPPORTS, For Underground Conduit

American District Steam Co., 1076, 1116 E. B. Badger & Sons Co., 1077 Grinnell Co., Inc., 1026-1027, 1081 H. W. Porter & Co., 1117 Ric-will Company, The, 1118

PITOT TUBES (See Air Measuring and Recording Instruments)

PLASTER BASE, Fire Retarding

Armstrong Cork Company, 1095 Celotex Corporation, 1097 Johns-Manville, 1104-1105 Reynolds Metals Co., Inc., 1112 United States Gypsum Co., 1114-1115

PLASTER BASE, Insulative

Armstrong Cork Company, 1095 Celotex Corporation, 1097 Insulte Company, The, 1102-1103 Johns-Manville, 1104-1105 Reynolds Metals Co., Inc., 1112 United States Gypsum Co., 1114-1115 Wood Conversion Company, 1113

PLASTER BASE, Sound Deadening

Armstrong Cork Company, 1095 Celotex Corporation, 1097 Insulite Company, The, 1102-1103 Johns-Manville, 1104-1105 Reynolds Metals Co., Inc., 1112 United States Gypsum Co., 1114-1115

Wood Conversion Company, 1113

PLATES, Iron

American Rolling Mill Co., 991 Carnegie-Illinois Steel Corp., 994 Columbia Steel Co., 994 Tennessee Coal & Iron Railroad Co., 994 United States Steel Export Co., 994

PLATES, Stainless Steel

American Rolling Mill Co., 991 Carnegie-Illinois Steel Corp., 994 Columbia Steel Co., 994

PLATES, Steel

American Rolling Mill Co., 991
Bethlehem Steel Co., 992
Carnegie-Illinois Steel Corp., 994
Columbia Steel Co., 994
Jones & Laughlin Steel Corp., 993
Tennessee Coal & Iron Railroad
Co., 994 United States Steel Export Co., 994

POWDER AND PASTE, Aluminum

Reynolds Metals Co., Inc., 1112

PRECIPITATING EQUIPMENT Westinghouse Elec. & Mfg. Co., 894-895, 943

PRESSURE REDUCING VALVES (See Regulators, Pressure)

PROPELLER FANS (See Fans. Propeller)

PSYCHROMETERS (See also Air Measuring, Indicating and Re-cording Instruments)

American Moistening Co., 944
Grinnell Co., Inc., 1026-1027, 1081
Johnson Service Co., 1004-1005
Leeds & Northrup Co., 1007
Palmer Company, The, 1012
Parks-Cramer Company, 892
Taylor Instrument Companies, 1016

PUBLICATIONS

American Artisan, 1128 American Society of Refrigerating Engineers, 1126 Coal-Heat 1127 Domestic Engineering, 1130-1131
Fueloil & Oil Heat, 1132
Heating & Ventilating, 1133
Heating, Piping and Air Conditioning, 1129 Plumbing and Heating Journal, 1134 Sheet Metal Worker, 1135

PULLEYS, Chain (See also Chain) Hart & Cooley Mfg. Co., 982-983 United States Register Co., 987

PULLEYS, Speed Types

Lau Blower Co., 968 Westinghouse Elec. & Mfg. Co., 894-895, 943

PUMPS, Air and Gas

Curtis Refrigerating Machine Co., Div. of Curtis Mfg. Co., 955 Nash Engineering Co., 1074-1075

PUMPS, Ammonia

Chicago Pump Co., 1073 Frick Company, Inc., 956 Vilter Manufacturing Co., 959 Worthington Pump & Machinery Corp., 960-961 York Ice Machinery Corp., 896

PUMPS, Boiler Feed

Buffalo Pumps, Inc., 1072 Chicago Pump Co., 1073 W. B. Connor Engineering Corp., 934-935, 981 Nash Engineering Co., 1074-1075 Trane Company, The, 922-923 Westinghouse Elec. & Mfg. Co., Westington Pump & Machinery Corp., 960-961

PUMPS, Brine

American Coolair Corp., 962-963
Baker Ice Machine Co., 953
Bell & Gossett Co., 1022-1023
Chicago Pump Co., 1073
Frick Company, 956
Nash Engineering Co., 1074-1075
Trane Company, The, 922-923
Worthington Pump & Machinery
Corp., 960-961 Corp., 960-961

PUMPS, Centrifugal

Bell & Gossett Co., 1022-1023 Buffalo Pumps, Inc., 1072 Chicago Pump Co., 1073 Crane Company, 1046-1047 W. B. Connor Engineering Corp., 934-935, 981 C. A. Dunham Co., 1024-1025 Frick Company, 956 Nash Engineering Co., 1074-1075 Trane Company, The, 922-923 Worthington Pump & Machinery Corp., 960-961

PUMPS, Circulating (See also Circulators)

Bell and Gossett Co., 1022-1023 Buffalo Pumps, Inc., 1072 Chicago Pump Co., 1073 W. B. Connor Engineering Corp., 934-935, 981 934-935, 981
Crane Company, 1046-1047
Hoffman Specialty Co., 1028-1029
Minneapolis-Honeywell Regulator
Co., 1010-1011
Nash Engineering Co., 1074-1075
Trane Company, The, 922-923
H. A. Thrush & Co., 1031
Worthington Pump & Machinery
Corp., 960-961

PUMPS, Condensation

American Radiator & Standard Sanitary Corp., 1042-1043 Buffalo Pumps, Inc., 1072 Chicago Pump Co., 1073 W. B. Connor Engineering Corp., 934-935, 981 C. A. Dunham Company, 1024-1025 Hoffman Specialty Co., Inc., 1028-1029 1029 Nash Engineering Co., 1074-1075 Trane Company, The, 922-923 Worthington Pump & Machinery Co., 960-961

PUMP MOTORS (See Motors, Electric)

PUMPS, Steam

Buffalo Pumps, Inc., 1072 Trane Company, The, 922-923 Worthington Pump & Machinery Corp., 960-961

PUMPS, Sump

Buffalo Pumps, Inc., 1072 Chicago Pump Co., 1073 W. B. Connor Engineering Corp., 934-935, 981 Nash Engineering Co., 1074-1075 Worthington Pump & Machinery Corp., 960-961

PUMPS, Turbine

Chicago Pump Co., 1073 C. A. Dunham Co., 1024-1025 W. B. Connor Engineering Corp., 934-935, 981 Nash Engineering Co., 1074-1075 Worthington Pump & Machinery Co., 960-961

PUMPS, Vacuum

Chicago Pump Co., 1073 Curtis Refrigerating Machine Co., Div. of Curtis Mfg. Co., 955 W. B. Connor Engineering Corp., 934-935, 981 C. A. Dunham Co., 1024-1025

Hoffman Specialty Co., Inc., 1028-1029 Nash Engineering Co., 1074-1075 Worthington Pump & Machinery Co., 960-961

PURGERS, Refrigeration Armstrong Machine Works, 1078-

Frick Company, 956

PYROMETERS, Portable and Stationary

American Moistening Co., 944 Illinois Testing Laboratories, Inc., 1006 Leeds & Northrup Co., 1007 Minneapolis-Honeywell Regulator Co., 1010-1011 Taylor Instrument Companies, 1016

RADIATION, Aluminum

Actofin Corporation, 949-951
Electric Air Heater Co., Div. of
American Foundry Equipment
Co. 907
Marlo Coil Company, 957
McQuay, Incorporated, 914-915
D. J. Murray Mfg. Company, 918
John J. Nesbitt, Inc., 919
Refrigeration Economics Co., 924
Trane Company, The, 922-923
Warren Webster & Co., 1036-1039

RADIATION, Brass

Aerofin Corporation, 949-951 G & O Manufacturing Co., 952 McQuay, Incorporated, 914-915

RADIATION, Cast-Iron

American Radiator & Standard Sanitary Corp., 1042-1043 Burnham Boiler Corp., 1045 Crane Company, 1046-1047 D. J. Murray Mfg. Co., 918 United States Radiator Corp., 1058-1059 Weil-McLain Company, 1061

RADIATION, Copper

Aerofin Corporation, 949-951
American Radiator & Standard
Sanitary Corp., 1042-1043
C. A. Dunham Co., 1024-1025
G & O Manufacturing Co., 952
Kramer Trenton Co., 912-913 Kramer Trenton Co., 912-913 McQuay, Incorporated, 914-915 Modine Mfg. Co., 916-917 John J. Nesbitt, Inc., 919 Refrigeration Economics Co., 924 B. F. Sturtevant Co., 973-975 Trane Company, The, 922-923 Tuttle & Bailey, Inc., 988-989 Warren Webster & Co., 1036-1039 Young Radiator Company, 928

RADIATION, Plain and Extended Surface

Aerofin Corporation, 949-951
American Radiator & Standard
Sanıtary Corp., 1042-1043
Buffalo Forge Company, 965
Burnham Boiler Corp., 1045
G & O Manufacturing Co., 952 G&O Manutacturing Co., 952 General Electric Company, 890-891, 976-977 Grinnell Co., Inc., 1026-1027, 1081 Marlo Coil Company, 957 McQuay, Incorporated, 914-915 Modine Mfg. Co., 916-917 D. J. Murray Mfg. Co., 918 John J. Nesbitt, Inc., 919 Refrigeration Economics Co., 924 B. F. Sturtevant Co., 973-975 Trane Company, The, 922-923 Weil-McLain Company, 1061 Young Radiator Company, 928

RADIATOR ENCLOSURES AND SHIELDS

Alfol Insulation Co., 1094
American Radiator & Standard
Sanitary Corp., 1042-1043
Crane Company, 1046-1047
Modine Mfg. Co., 916-917
Register & Grille Mfg. Co., 986
Reynolds Metals Co., Inc., 1112
H. J. Somers, Inc., 942
United States Radiator Corp., 1058-1059 United States Register Co., 987

RADIATORS, Cabinet

RADIATORS, Cabinet
American Radiator & Standard
Sanitary Company, 1042-1043
Burnham Boiler Corp., 1045
Crane Company, 1046-1047
C. A. Dunham Co., 1024-1025
Grinnell Co., Inc., 1026-1027, 1081
McQuay, Incorporated, 914-915
Modine Mfg. Co., 916-917
John J. Nesbitt, Inc., 919
Trane Company, The, 922-923
Tuttle & Bailey, Inc., 988-989
Warren Webster & Co., 1036-1039
Weil-McLain Company, 1061
Young Radiator Company, 928 Young Radiator Company, 928

RADIATORS, Concealed

RADIATORS, Concealed
American Radiator & Standard
Sanitary Corp., 1042-1043
Burnham Boiler Corp., 1045
Crane Company, 1046-1047
C. A. Dunham Co., 1024-1025
Grinnell Co., Inc., 1026-1027, 1081
McQuay, Incorporated, 914-915
McQuay, Incorporated, 914-915
Modine Mfg. Co., 916-917
D. J. Murray Mfg. Company, 918
John J. Nesbitt, Inc., 919
Trane Company, The, 922-923
Tuttle & Bailey, Inc., 988-989
United States Radiator Corp., 10581059

Warren Webster & Co., 1036-1039 Weil-McLain Company, 1061 Young Radiator Company, 928

RECEIVERS, Air

Baker Ice Machine Co., 953 Brownell Company, The, 1066 W. B. Connor Engineering Corp., 934-935, 981 934-935, 981 Crane Company, 1046-1047 Curtis Refrigerating Machine Co., Div. of Curtis Mfg. Co., 955 Farrar & Tretts, Inc., 1050 Illinois Engineering Co., 1032-1033 Kewanee Boiler Corp., 1052-1055 Parks-Cramer Company, 892 Warren Webster & Co., 1036-1037

RECEIVERS, Refrigerants

Acme Industries, Inc., 948
Baker Ice Machine Co., 953
Frick Company, Inc., 956
Marlo Coil Company, 957
Vitter Manufacturing Co., 959
Worthington Pure & Machine Worthington Pump & Machinery Corp., 960-961 York Ice Machinery Corp., 896

RECEIVERS, Condensation

Baker Ice Machine Co., Inc., 953 Chicago Pump Co., 1073 Crane Company, 1046-1047

C. A. Dunham Co., 1024-1025 Illinois Engineering Co., 1032-1033 Nash Engineering Co., 1074-1075 Sarco Company, Inc., 1034-1035 Trane Company, The, 922-923 Warren Webster & Co., 1036-1039 Westinghouse Elec. & Mfg. Co., 894-895, 943

RECEIVERS, Water Vapor

American Blower Corp., 884-885 Illinois Engineering Co., 1032-1033 Warren Webster & Co., 1036-1039

RECORDERS, Humidity, Temperature

American Moistening Co , 944 Cochrane Corporation, 1080 Johnson Service Co., 1004-1005 Leeds & Northrup Co., 1007 Manning, Maxwell & Moore, Inc., Minneapolis-Honeywell Regulator Co., 1010-1011 Powers Regulator Co., 1014 Taylor Instrument Companies, 1016

REFRACTORIES, Cement, Materials

Babcock & Wilcox Co., 1044 Carey, Philip, Co., 1096 Eagle-Picher Lead Co., 1100 Ehret Magnesia Manufacturing Co., 1098-1099 Johns-Manville, 1104-1105 Ric-wiL Company, 1118 Ruberoid Co., The, 1110-1111

REFRIGERATION CONTROLS (See also Controls)

Alco Valve Company, 996 American Blower Corp., 884-885 Armstrong Machine Works, 1078-1079
Automatic Products Corp., 997
Barber-Colman Co., 980, 998
Carner Corporation, 880-887
Cochrane Corp., 1080
Detroit Lubricator Co., 1000-1001
Fedders Manufacturing Co., 910
Frick Company, Inc., 956
Fulton Sylphon Co., 1002-1003
General Electric Company, 890-891, 976-977
Illinois Engineering Co., 1032-1033 Illinois Engineering Co., 1032-1033 Illinois Testing Laboratories, Inc.,

Johnson Service Co., 1004-1005 Leeds & Northrup Co., 1007 Manning, Maxwell & Moore, Inc.,

Mercoid Corporation, 1009 Minneapolis-Honeywell Regulator Co., 1010-1011

Minneapons-roncy war.
Co., 1010-1011
Penn Electric Switch Co., 1013
Powers Regulator Co., 1014
Sarco Company, Inc., 1034-1035
Taylor Instrument Companies, 1016
Westinghouse Elec. & Mig. Co., 894-895, 943
White-Rodgers Elec. Co., 1018

REFRIGERATING EQUIP-MENT, Centrifugal

Carrier Corporation, 886-887 McQuay, Incorporated, 914-915
Trane Company, 922-923
Worthington Pump & Machinery
Corp., 960-961
York Ice Machinery Corp., 896

REFRIGERATING EQUIP-MENT, Steam Jet

American Blower Corp., 884-885 Carrier Corporation, 886-887 Universal Cooler Corp., 958 Worthington Pump & Machinery Corp., 960-961

REFRIGERATING MACHINERY

Airtemp Div., Chrysler Corp., 898-899
Baker Ice Machine Co., 953
Brunner Manufacturing Co., 954
Carrier Corporation, 886-887
Curtis Refrigerating Machine Co.,
Div. of Curtis Mfg. Co., 955
Frick Company, Inc., 956
General Electric Company, 890891, 976-977
Marlo Coil Company, 957
Refrigeration Economics Co., 924
Trane Company, The, 922-923
Universal Cooler Corp., 958
Vilter Manufacturing Co., 959
Westinghouse Elec. & Mfg. Co.,
894-895, 943
Worthington Pump & Machinery 899

Worthington Pump & Machinery Corp., 960-961 York Ice Machinery Corp., 896

REGISTERS (See also Grilles Registers, etc.)

American Blower Corp., 884-885 American Coolair Corp., 962-963 Anemostat Corp. of America, 979 Barber-Colman Co., 980, 998 Hart & Cooley Manufacturing Co., 982-983

982-983
Hendrick Mfg. Co., 984
Independent Register Co., 985
L. J. Mueller Furnace Co., 902-903
Register & Grille Mfg. Co., 986
Trane Company, The, 922-923
Tuttle & Bailey, Inc., 988-989
United States Air Conditioning
Corp. 803 Corp., 893 United States Register Co., 987 Waterloo Register Co., 990

REGISTERS, Oil Burning Todd Combustion Equipment, Inc., United States Register Co., 987

REGULATORS, Air Volume

Anemostat Corp. of America, 979 Barber-Colman Co., 980, 998 W. B. Connor Engineering Corp., 934-935, 981 934-935, 981 Hart & Cooley Mfg. Co., 982-983 Kieley & Mueller, Inc., 1082 Minneapolis-Honeywell Regulator Co., 1010-1011 Tuttle & Bailey, Inc., 988-989 United States Register Co., 987 Waterloo Register Co., 990

REGULATORS, Damper

AEGULATORS, Damper
American Radiator & Standard
Sanitary Corp., 1042-1043
Anemostat Corp. of America, 979
Automatic Products Corp., 997
Barber-Colman Co., 980, 998
Barnes & Jones, Inc., 1021
Detroit Lubricator Co., 1000-1001
Fulton Sylphon Co., 1002-1003
General Electric Company, 890891, 976-977
William S. Haines & Co., 1022 William S. Haines & Co., 1030 Hart & Cooley Mfg. Co., 982-983 Hoffman Specialty Co., Inc., 1028Illinois Engineering Co., 1032-1033 Iron Fireman Mfg. Co., 1070-1071 Johnson Service Co., 1004-1005 Kieley & Mueller, Inc., 1082 Leeds & Northrup Co., 1007 Manning, Maxwell & Moore, Inc.,

Mercoid Corporation, 1009
Mercoid Corporation, 1009
Minncapolis-Honeywell Regulator
Co., 1010-1011
Penn Electric Switch Co., 1013
Powers Regulator Co., 1014
Sarco Company, Inc., 1034-1035
Spence Engineering Co., 1015
Taylor Instrument Companies, 1016
Trane Company, The, 922-923
Tuttle & Bailey, Inc., 988-989
United States Register Co., 987
Warren Webster & Co., 1038-1039
Webster Engineering Co., 1064
White-Rodgers Elec. Co., 1018.
Young Radiator Co., 928

REGULATORS, Feed Water

Cochrane Corporation, 1080 Fulton Sylphon Co., 1002-1003 Kieley & Mueller, Inc., 1082 McDonnell & Miller, 1040-1041 Mueller Steam Specialty Co., Inc., 1083 Powers Regulator Co., 1014
Spence Engineering Co., 1015
Westinghouse Elec. & Mfg. Co., 894-895, 943 Wright-Austin Co., 1018

REGULATORS, Furnace

REGULATORS, Furnace
Automatic Products Corp., 997
Barber-Colman Co., 980, 998
Detroit Lubricator Co., 1000-1001
Fulton Sylphon Co., 1002-1003
Hart & Cooley Mig. Co., 982-983
Kieley & Mueller, Inc., 1082
Mercoid Corporation, 1009
Minneapolis-Honeywell Regulator
Co., 1010-1011
Penn Electric Switch Co., 1013
Spence Engineering Co., 1015
Tuttle & Bailey, Inc., 988-989
Webster Engineering Co., 1064
White Rodgers Elec. Co., 1018

REGULATORS, Gas

American Radiator & Standard Sanitary Corp., 1042-1043 Crane Company, 1046-1047 Detroit Lubricator Co., 1000-1001 Jenkins Bros., 1088 Mercoid Corp., 1008 Minneapolis-Honeywell Regulator Co., 1010-1011 Mueller Steam Specialty Co., 100 Mueller Steam Specialty Co., Inc., 1083 Penn Electric Switch Co., 1013 Spence Engineering Co., 1015 Webster Engineering Co., 1064 White-Rodgers Elec. Co., 1018

REGULATORS, Humidity (See Humidity Control)

REGULATORS, Pressure

Alco Valve Company, 996
American Radiator & Standard
Sanitary Corp., 1042-1043
Automatic Products Corp., 997
Barber-Colman Co., 980, 998
Crane Company, 1046-1047
Detroit Lubricator Co., 1000-1001
C. A. Dunham Co., 1024-1025
Fedders Manufacturing Co., 910
Fulton Sylphon Co., 1002-1003

General Electric Company, 890-891, 976-977 891, 970-97. Illinois Engineering Co., 1032-1033 Johnson Service Co., 1004-1005 Kieley & Mueller, Inc., 1082 McDonnell & Miller, 1040-1041 Minneapolis-Honeywell Regulator Co., 1010-1011

Mueller Steam Specialty Co., Inc., 1083

Penn Electric Switch Co., 1013 Powers Regulator Co., 1014 Spence Engineering Co., 1015 Taylor Instrument Companies, 1016 Warren Webster & Co., 1036-1039 White-Rodgers Elec. Co., 1018

REGULATORS, Temperature (See Temperature Control)

RELIEF VALVES (See Valves, Relief)

ROOF COOLER

April Showers Company, 945 Marley Company, 946

RUST INHIBITOR

Research Products Corp., 937 Vinco Company, 1062-1063

RUST AND SCALE REMOVER Vinco Company, 1062-1063

SAFETY VALVES (See Valves, Safety)

SCREENS, Window Insulation, Libby-Owens-Ford Glass Co., 1120 United States Register Co., 987

SEALS, Flexible Pipe Line E. B. Badger & Sons Co., 1077

SEALS. Shaft for Compressor Fulton Sylphon Co., 1002-1003

SEPARATORS, Dust

American Air Filter Co., 932-933 American Blower Corp., 884-885 Buffalo Forge Company, 965 Coppus Engineering Corp., 936 Staynew Filter Corp., 940-941 B. F. Sturtevant Co., 973-975 Westinghouse Elec. & Mfg. Co., 894-895, 943

SEPARATORS, Oil

Acme Industries, Inc., 948
Baker Ice Machine Co., Inc., 953
Cochrane Corp., 1080 Cochrane Corp., 1080
Crane Company, 1046-1047
Frick Company, 956
Henry Valve Company, 999
Illinois Engineering Co., 1032-1033
Kieley & Mucller, Inc., 1082
Staynew Filter Corp., 940-941
Warren Webster & Co., 1036-1039
Westinghouse Elec. & Mfg. Co., 894-895, 943
Wright-Austin Co., 1084

SEPARATORS, Steam

Cochrane Corp., 1080
Crane Corp., 1080
Crane Company, 1046-1047
Illinois Engineering Co., 1032-1033
Kieley & Mueller, Inc., 1082
Staynew Filter Corp., 940-941
Warren Webster & Co., 1036-1039
Worthington Pump & Machinery
Corp., 960-961
Wright-Austin Co., 1084

SHEETS, Aluminum Foil

Alfol Insulation Co., 1094 Reynolds Metals Co., Inc., 1112 Ruberoid Co., The, 1110-1111 United States Gypsum Co., 1114-

SHEETS, Aluminized Steel American Rolling Mill Co., 991 Reynolds Metals Co., Inc., 1112

SHEETS, Asbestos, Flat and Corrugated

Carey, Philip, Co., 1096 Ehret Magnesia Manufacturing Co., 1098-1099 Johns-Manville, 1104-1105 Ruberoid Co., The, 1110-1111

SHEETS, Copper Alloy

American Brass Company, 1090-Carnegie-Illinois Steel Corp., 994

SHEETS, Copper Bearing Steel

American Rolling Mill Co., 991 Bethlehem Steel Co., 992 Carnegie-Illinois Steel Corp., 994 Columbia Steel Co., 994 Jones & Laughlin Steel Corp., 993 Tennessee Coal, Iron & Railroad Co., 994 United States Export Co., 994

SHEETS, Felt

Ehret Magnesia Manufacturing Co., 1098-1099 Johns-Manville, 1104-1105 Ruberoid Co., 1110-1111

SHEETS, Galvanized

American Rolling Mill Co., 991 Bethlehem Steel Co., 992 Carnegie-Illinos Steel Corp., 994 Columbia Steel Co., 994 Jones & Laughlin Steel Corp., 993 Tennessee Coal, Iron & Railroad Co., 994 United States Export Co., 994

SHEETS, Pure Iron

American Rolling Mill Co., 991 Carnegie-Illinois Steel Corp., 994 Columbia Steel Co., 994 Tennessee Coal, Iron & Railroad Co., 994 United States Export Co., 994

SHEETS, High Tensile

American Rolling Mill Co., 991 Bethlehem Steel Co., 992 Carnegie-Illinois Steel Co., 994 Jones & Laughlin Steel Corp., 993

SHEETS, Special Finish

American Rolling Mill Co., 991 Bethlehem Steel Co., 992 Carnegic-Illinois Steel Corp., 994 Columbia Steel Co., 994 Tennessee Coal, Iron & Railroad Co., 994 United States Export Co., 994

SHEETS, Stainless Steel

American Rolling Mill Co., 991 Carnegie-Illinois Steel Corp., 994 Columbia Steel Co., 994

SHEETS, Steel

American Rolling Mill Co., 991 Bethlehem Steel Co., 992 Carnegie-Illinois Steel Corp., 994

Columbia Steel Co., 994 Jones & Laughlin Steel Corp., 993 Tennessee Coal, Iron & Railroad Co., 994 United States Export Co., 994

SHUTTERS, Automatic

American Coolair Corp., 962-963
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Barber-Colman Co., 980, 998
Champion Blower & Forge Co., 966
Minneapolis-Honeywell Regulator
Co., 1010-1011
New York Blower Co., 969
B. F. Sturtevant Co., 973-975
United States Register Co., 987
L. J. Wing Mfg. Co., 925-927

SLIME PREVENTION (See also Algae Prevention) Staynew Filter Corp., 940-941

SMOKE DENSITY RECORDING

Leeds & Northrup Co., 1007 Westinghouse Elec. & Mfg. Co., 894-895, 943

SOOT DESTROYER

Vinco Company, Inc., 1062-1063

SOUND DEADENING, Insulation

Armstrong Cork Company, 1095 Celotex Corporation, The, 1097 Eagle-Picher Lead Co., 1100 Ehret Magnesia Manufacturing Co., Ehret Magnesia Manufacturing Co., 1098-1099
Insulite Company, The, 1102-1103
Johns-Manville, 1104-1105
Libby-Owens-Ford Glass Co., 1120
Kimberly-Clark Corp., 1106-1107
Mundet Cork Corp., 1108
Owens-Corning Fiberglas Corp., 038,039 938-939 Reynolds Metals Co., Inc., 1112 Ruberoid Co., The, 1110-1111 United States Gypsum Co., 1114-1115 Universal Zonolite Insulation Co., 1119 Wood Conversion Co., 1113

SPRAY DRYER (See Spray Equipment)

SPRAY EQUIPMENT

April Showers Company, 945 Brunner Manufacturing Co., 954 Marley Company, 946 Martocelle, Jos. A. & Co., 947 D. J. Murray Mfg. Company, 918 Yarnell-Waring Co., 1085

SPRAY NOZZLES

SPRAY NOZZLES

American Mostening Co., 944

American Blower Corp., 884-885

April Showers Company, 945

Baker Ice Machine Co., 933

Bayley Blower Company, 964

Buffalo Forge Company, 965

Clarage Fan Company, 888

Detroit Lubricator Co., 1000-1001

Marley Co., The, 946

Marlo Coil Company, 957

Martocello, Jos. A. & Co., 947

D. J. Murray Mfg. Company, 918

Parks-Cramer Co., 802

B. F. Sturtevant Co., 973-975

Trane Company, The, 922-923

Numerals following Manufacturers' Names refer to pages in the Catalog Data Section

Westinghouse Elec. & Mfg. Co., 894-895, 943 Yarnell-Waring Co., 1085 York Ice Machinery Corp., 896

NOZZLE COOLING SYSTEM

American Blower Corp., 884-885 April Showers Company, 945 Baker Ice Machine Co., 953 Bayley Blower Co., 964 Bayley Blower Co., 904 Clarage Fan Company, 888 Marley Company, 946 B. F. Sturtevant Co., 973-975 Trane Company, The, 922-923 Yarnell-Waring Co., 1085 York Ice Machinery Corp., 896

STACKS, Steel

Bethlehem Steel Co., 992 Brownell Co., 1066 Farrar & Trefts, Inc., 1050 Hendrick Mfg. Co., 984 Kewanee Boiler Corp., 1052-1055

STAINLESS STEEL COILS (See Coils, Stainless Steel)

STEAM HEATING SYSTEMS (See Heating Systems, Steam)

STEAM GENERATORS (See Boilers, Forced Recirculation)

STOKERS, Mechanical, Anthracite

Babcock & Wilcox Co., 1044 Combustion Engineering Co., 1067 Crane Company, 1046-1047 Iron Fireman Mfg. Co., 1070-1071

STOKERS, Mechanical, Bituminous

Babcock & Wilcox Co., 1044 Brownell Company, 1066 Combustion Engineering Co., 1067 Crane Company, 1046-1047 Detroit Stoker Co., 1068-1069 Iron Fireman Mfg. Co., 1070-1071

STOKER MOTORS (See Motors,

Armstrong Machine Works, 1078-

STRAINERS, Dirt

Barnes & Jones, Inc., 1021 C. A. Dunham Co., 1024-1025 Grinnell Co., Inc., 1026-1027, 1081 Henry Valve Company, 999 Hoffman Specialty Co., Inc., 1028-1029

Kicley & Mueller, Inc., 1082 Mueller Steam Specialty Co., Inc.,

1083 Sarco Company, Inc., 1034-1035 Spence Engineering Co., 1015 Staynew Filter Corp., 940-941 Trane Company, The, 922-923 Warren Webster & Co., 1036-1039 Wright-Austin Co., 1084

STRAINERS, Oil

STRAINERS, Oil
Automatic Products Corp., 997
Bell & Gossett Co., 1022-1023
Crane Company, 1046-1047
Detroit Lubricator Co., 1000-1001
General Electric Company, 890891, 976-977
Henry Valve Company, 999
Kieley & Mueller, Inc., 1082
Mueller Steam Specialty Co., Inc., 1083 1083

Sarco Company, Inc., 1034-1035 Spence Engineering Co., 1015 Staynew Filter Corp., 940-941 Todd Combustion Equipment, Inc., 1065

Wright-Austin Co., 1084

STRAINERS, Refrigerant

Alco Valve Company, 996 Automatic Products Corp., 997 Detroit Lubricator Co., 1000-1001 Detroit Lubricator Co., 1000-1001 Frick Company, Inc., 956 Henry Valve Company, 999 Sarco Company, Inc., 1034-1035 Staynew Filter Corp., 940-941 Westinghouse Elec. & Mfg. Co., 894-895, 943

STRAINERS, Steam

American District Steam Co., 1076, 1116 Armstrong Machine Works, 1078-1079 Crane Company, 1046-1047 C. A. Dunham Co., 1024-1025 Grinnell Co., Inc., 1026-1027, 1081 Hoffman Specialty Co., Inc., 1028-

1029 Illinois Engineering Co., 1032-1033 Kieley & Mueller, Inc., 1082 Mueller Steam Specialty Co., Inc., 1083

Powers Regulator Co., 1014 Sarco Company, Inc., 1034-1035 Spence Engineering Co., 1015 Staynew Filter Corp., 940-941 Trane Company, The, 922-923 Wright-Austin Co., 1084

STRAINERS, Water

Armstrong Machine Works, 1078-1079 1079 Crane Company, 1046-1047 Detroit Lubricator Co., 1000-1001 Grinnell Co., Inc., 1026-1027, 1081 Illinois Engineering Co., 1032-1033 Kieley & Mueller, Inc., 1082 McDonnell & Miller, 1040-1041 Mueller Steam Specialty Co., Inc., 1083

1083 Powers Regulator Co., 1014 Sarco Company, Inc., 1034-1035 Spence Engineering Co., 1015 Staynew Company, Inc., 940-941 Wright-Austin Co., 1084 Yarnall-Waring Co., 1085

SWITCHES, Float

Alco Valve Company, 996 Detroit Lubricator Co., 1000-1001 General Electric Company, 890-891, 976-977 McDonnell & Miller, 1040-1041 Mercoid Corporation, 1009

SWITCHES, Flow Control

Iron Fireman Mfg. Co., 1070-1071 McDonnell & Miller, 1040-1041

TANK COILS (See Coils, Tank)

TANK COVERING (See Covering, Pipes and Surfaces)

TANK HEATERS (See Heaters, Tank)

TANKS, Blow-off

Brownell Company, The, 1066 Farrar & Trefts, Inc., 1050 Kewanee Boiler Corp., 1052-1055

TANKS, Pressure

HANKS, Pressure
Baker Ice Machine Co., 953
Bell and Gossett Co., 1022-1023
Bethlehem Steel Co., 992
Brownell Company, The, 1066
Burnham Boiler Corp., 1045
Farrar & Trefts, Inc., 1050
Frick Company, 956
Kewanee Boiler Corp., 1052-1055
H. A. Thrush & Co., 1031

TANKS, Storage

American Radiator & Standard Sanitary Corp., 1042-1043 E. B. Badger & Sons Co., 1077 Bethlehem Steel Co., 992 Brownell Company, The, 1066 Burnham Boiler Corp., 1045 W. B. Connor Engineering Corp., 934-935, 981 Farrar & Trefts, Inc., 1050 Frick Company, 956 Kewanee Boiler Corp., 1052-1055

TEMPERATURE CONTROL

TEMPERATURE CONTROL
American Moistening Co., 944
American Radiator & Standard
Sanitary Corp., 1042-1043
Barber-Colman Co., 980, 998
Barnes & Jones, Inc., 1021
Bell & Gossett Co., 1022-1023
Crane Company, 1046-1047
Detroit Lubricator Co., 1000-1001
C. A. Dunham Co., 1024-1025
Fulton Sylphon Co., 1002-1003
General Electric Company, 890-891, 976-977
Hoffman Specialty Co., Inc., 1028-

Hoffman Specialty Co., Inc., 1028-1029

Illinois Engineering Co., 1032-1033 Illinois Testing Laboratories, Inc., 1006

1006 Iron Fireman Mfg. Co., 1070-1071 Johnson Service Co., 1004-1005 Kieley & Mueller, Inc., 1082 Leeds & Northrup Co., 1007 Manning-Maxwell & Moore, Inc.,

Mercoid Corporation, The, 1009 Minneapolis-Honeywell Regulator Minneapolis-Honeywell Regulator Co., 1010-1011 Penn Electric Switch Co., 1013 Powers Regulator Co., 1014 Sarco Company, Inc., 1034-1035 Spence Engineering Co., 1015 B. F. Sturtevant Co., 973-975 Taylor Instrument Companies, 1016 Trane Company, The, 922-923 Warren Webster & Co., 1036-1039 White-Roduers Elec. Co., 1018 White-Rodgers Elec. Co., 101 L. J. Wing Mfg. Co., 925-927 Yarnall-Waring Co., 1085

THERMOMETERS, Distance Type

Illinois Testing Laboratories, Inc., 1006 Johnson Service Co., 1004-1005 Leeds & Northrup Co., 1007 Manning, Maxwell & Moore, Inc., 1008 Minneapolis-Honeywell Regulator Co., 1010-1011 Palmer Company, 1012
Powers Regulator Co., 1014
Sarco Co., Inc., 1034-1035
Taylor Instrument Companies, 1016 United States Gauge Co., 1017

THERMOMETERS, Indicating

Bell and Gossett Co., 1022-1023 Illinois Testing Laboratories, Inc.,

Johnson Service Co., 1004-1005 Leeds & Northrup Co., 1007 Manning, Maxwell & Moore, Inc., Martocello, Jos. A. & Co., 947 Minneapolis-Honeywell Regulator Co., 1010-1011 Palmer Company, The, 1012
Powers Regulator Co., 1014
Sarco Company, Inc., 1034-1035
Taylor Instrument Companies, 1016 United States Gauge Co., 1017

THERMOMETERS, Recording Leeds & Northrup Co., 1007 Manning, Maxwell & Moore, Inc., Minneapolis-Honeywell Regulator Co., 1010-1011 Palmer Company, 1012 Powers Regulator Co., 1014

Taylor Instrument Companies, 1016

THERMOSTATS

American Radiator & Standard Sanitary Corp., 1042-1043
Automatic Products Corp., 997
Barber-Colman Co., 980, 998
Crane Company, 1046-1047
Detroit Lubricator Co., 1000-1001
Fulton Sylphon Co., 1002-1003
General Electric Company, 890-891, 976-977
Illinois Engineering C Illinois Engineering Co., 1032-1033 Johnson Service Co., 1004-1005 Manning, Maxwell & Moore, Inc., Mercoid Corporation, The, 1009 Minneapolis-Honeywell Regulator Co., 1010-1011 Co., 1010-1011
Penn Electric Switch Co., 1013
Powers Regulator Co., 1014
Sarco Company, Inc., 1034-1035
H. A. Thrush & Co., 1031
White Endown Electric 1018 White-Rodgers Elec., 1018

TIN PLATE

Bethlehem Steel Co., 992 Carnegie-Illinois Steel Corp., 994 Jones & Laughlin Steel Corp., 993

TOWERS, Cooling (See Cooling Towers)

TRANSFORMERS

General Electric Company, 890-891, 976-977 Mercoid Corporation, 1009 Wagner Electric Corp., 978

TRAPS, Bucket

Armstrong Machine Works, 1078-1079
Cochrane Corp., 1080
Crane Company, 1046-1047
C. A. Dunham Co., 1024-1025
Illinois Engineering Co., 1032-1033
Kieley & Mueller, Inc., 1082
Mueller Steam Specialty Co., Inc.,
TRAPS, Steam
TRAPS, Steam Sarco Company, Inc., 1034-1035 Trane Company, The, 922-923 Wright-Austin Co., 1084

TRAPS, Float

American District Steam Co., 1076, 1116 Armstrong Machine Works, 1078-Barnes & Jones, Inc., 1021 Cochrane Corporation, 1080 W. B. Connor Engineering Corp., 934-935, 981

Crane Company, 1046-1047 C. A. Dunham Co., 1024-1025 Grinnell Co., Inc., 1026-1027, 1081 William S. Haines & Co., 1030 Hoffman Specialty Co., Inc., 1028-1029 1029 Illinois Engineering Co., 1032-1033 Kieley & Mueller, Inc., 1082 Mueller Steam Specialty Co., 1083 Sarco Company, Inc., 1034-1035 Trane Company, The, 922-923 Warren Webster & Co., 1036-1039 Wright-Austin Co., 1084

TRAPS, Float and Thermostatic American District Steam Co., 1076, 1116

Armstrong Machine Works, 1078-

1079 1079 Barnes & Jones, Inc., 1021 C. A. Dunham Co., 1024-1025 Grinnell Co., Inc., 1026-1027, 1081 William S. Haines & Co., 1030 Hoffman Specialty Co., Inc., 1028-1029 Illinois Engineering Co., 1032-1033 Mueller Steam Specialty Co., Inc.,

Powers Regulator Co., 1014 Sarco Company, Inc., 1034-1035 Trane Company, The, 922-923 Warren Webster & Co., 1036-1039 Wright-Austin Co., 1084

TRAPS, Radiator

Armstrong Machine Works, 1078-1079 1079 Barnes & Jones, Inc., 1021 C. A. Dunham Co., 1024-1025 Grinnell Co., Inc., 1026-1027, 1081 William S. Haines & Co., 1030 Hoffman Specialty Co., Inc., 1028-1029

Illinois Engineering Co., 1032-1033 Sarco Company, Inc., 1034-1035 Trane Company, The, 922-923 Warren Webster & Co., 1036-1039

TRAPS, Return

Barnes & Jones, Inc., 1021 W. B. Connor Engineering Corp., 934-935, 981 934-930, 937 Crane Company, 1046-1047 C. A. Dunham Co., 1024-1025 Grinnell Co., Inc., 1026-1027, 1081 William S. Haines & Co., 1030 Hoffman Specialty Co., Inc., 1028-1029 Illinois Engineering Co., 1032-1033 Kieley & Mueller, Inc., 1082 Mueller Steam Specialty Co., Inc.,

1083 Sarco Company, Inc., 1034,1035 Trane Company, The, 922-923 Warren Webster & Co., 1036-1039

1116 Armstrong Machine Works, 1078-1079
Barnes & Jones, Inc., 1021
Cochrane Corp., 1080
W. B. Connor Engineering Corp., 934-935, 981
Crane Company, 1046-1047
C. A. Dunham Co., 1024-1025
Grinnell Co., Inc., 1026-1027, 1081
William, S. Haines & Co., 1030
Hoffman Specialty Co., Inc., 1028-1029 1079

American District Steam Co., 1076,

Illinois Engineering Co., 1032-1033 Kieley & Mueller, Inc., 1082 Mueller Steam Specialty Co., Inc., 1083 1083 Sarco Company, Inc., 1034-1035 Powers Regulator Co., 1014 Trane Company, The, 922-923 Warren Webster & Co., 1036-1039 Wright-Austin Co., 1084 Yarnall-Waring Co., 1085

TRAPS, Thermostatic

1116 Barnes & Jones, Inc., 1021 C. A. Dunham Co., 1024-1025 Grinnell Co., Inc., 1026-1027, 1081 William S. Haines & Co., 1030 Hoffman Specialty Co., Inc., 1028-1029 Illinois Engineering Co., 1032-1033 Powers Regulator Co., 1014 Sarco Company, Inc., 1034-1035 Trane Company, The, 922-923

American District Steam Co., 1076,

TRAPS, Vacuum

Armstrong Machine Works, 1078-1079 10/9 Barnes & Jones, Inc., 1021 C. A. Dunham Co., 1024-1025 Grinnell Co., Inc., 1026-1027, 1081 William S. Haines & Co., 1030 Hoffman Specialty Co., Inc., 1028-1029

Warren Webster & Co., 1036-1039

Illinois Engineering Co., 1032-1033 Kieley & Mueller, Inc., 1082 Mueller Steam Specialty Co., Inc., 1083

Trane Company, Inc., 1034-1035 Trane Company, The, 922-923 Warren Webster & Co., 1036-1039 Wright-Austin Co., 1084

TUBE CLEANERS

Martocello, Jos. A. & Sons, 947

TUBES, Boiler

Babcock & Wilcox Co., 1044 Bethlehem Steel Co., 992 Carnegie-Illinois Steel Corp., 994 Jones & Laughlin Steel Corp., 993

TUBES, Copper

American Brass Company, 1090-1091 Wolverine Tube Div., Calumet and Hecla Consolidated Copper Co.,

TUBES, Pitot (See Air Measuriag and Recording Instruments)

TUBING, Aluminum

Reynolds Metals Co., Inc., 1112 Wolverine Tube Div., Calumet and Hecla Consolidated Copper Co., 1092

TUBING, Copper

American Brass Company, 1090-1091 Wolverine Tube Div., Calumet and Hecla Consolidated Copper Co.,

TUBING, Fabricated

American Brass Company, 1090-1091 Bethlehem Steel Co., 992 Arthur Harris & Co., 1089 Wolverine Tube Div., Calumet and Hecla Consolidated Copper Co.,

TUBING, Flexible Metallic (See VALVES, Automatic also Conduit, flexible)

American Brass Company, 1090-1091

American Radiator & Standard Sanitary Corp., 1042-1043

TUBING, Steel

Babcock & Wilcox Co., 1044 Bethlehem Steel Co., 992 Jones & Laughlin Steel Corp., 993

TURBINES

Coppus Engineering Corp., 936 General Electric Company, 890-891, 976-977 B. F. Sturtevant Co., 973-975 Westinghouse Elec. & Mfg. Co., 894-895, 943 L. J. Wing Mfg. Co., 925-927 Worthington Pump & Machinery Co., 960-961

UNDERGROUND PIPE CON-DUITS (See Conduits, Under-ground Pipe)

UNIT HEATERS (See Heaters, Unit)

UNIT VENTILATORS (See Ventilators, Unit)

UNITS, Air Conditioning (See Air Conditioning Units)

V-BELT DRIVES

American Coolair Corp , 962-963 Frick Company, 956 Worthington Pump & Machinery Corp., 960-961

VACUUM HEATING SYSTEMS (See Heating Systems, Vacuum)

VALVES, Air

American Radiator & Standard Sanitary Corp., 1042-1043 Anderson Products, Inc., 1086 Armstrong Machine Works, 1078-Burnham Boiler Corp., 1045

Burnham Boiler Corp., 1045 Crane Company, 1046-1047 Curtis Refrigerating Machine Co., Div. of Curtis Mfg. Co., 955 Detroit Lubricator Co., 1000-1001 Dole Valve Company, 1087 Hoffman Specialty Co., Inc., 1028-1029

Jenkins Bros., 1088 Kieley & Mueller, Inc., 1082 Manning, Maxwell & Moore, Inc.,

Spence Engineering Co., 1015 Trane Company, The, 922-923 Wright-Austin Co., 1084

VALVES, Angle, Globe and Cross

American Brass Company, 1090-1091 Baker Ice Machine Co., 953 Baker Ice Machine Co., 953
Burnham Boiler Corp., 1045
Crane Company, 1046-1047
Detroit Lubricator Co., 1000-1001
Frick Company, 956
Grinnell Co., Inc., 1026-1027, 1081
Henry Valve Company, 999
Jenkins Bros., 1088
Vilter Manufacturing Co., 959
Worthington Pump & Machinery
Co., 960-961
York Ice Machinery Corp., 896 York Ice Machinery Corp., 896

Alco Valve Company, Inc., 996
American Radiator & Standard
Sanıtary Corp., 1042-1043
Anderson Products, Inc., 1086
Automatic Products Corp., 997
Baker Ice Machine Co., 953 Baker Ice Machine Co., 953
Barber-Colman Co., 980, 998
Crane Company, 1046-1047
Detroit Lubricator Co., 1000-1001
Dole Valve Company, 1087
Fedders Manufacturing Co., 910
Frick Company, 956
Fulton Sylphon Co., 1002-1003
Johnson Service Co., 1004-1005
Kieley & Mueller, Inc., 1082
Manning, Maxwell & Moore, Inc., 1008 1002

McDonnell & Miller, 1040-1041 Minneapolis-Honeywell Regulator Co., 1010-1011

Co., 1010-1011
Penn Electric Switch Co., 1013
Powers Regulator Co., 1014
Sarco Company, Inc., 1034-1035
Spence Engineering Co., 1015
Trane Company, The, 922-923
Warren Webster & Co., 1036-1039 Webster Engineering Co., 1064

VALVES, Back Pressure

Alco Valve Company, 996
Baker Ice Machine Co., 953
Cochrane Corp., 1080
Crane Company, 1046-1047
Illinois Engineering Co., 1032-1033
Jenkins Bros., 1088 Jenkins Bros., 1988 Kieley & Mueller, Inc., 1982 Mueller Steam Specialty Co., 1983 Register & Grille Mfg. Co., 986 Spence Engineering Co., 1915 Taylor Instrument Companies, 1016 York Ice Machinery Corp., 896

VALVES, Balanced

Crane Company, 1046-1047 Henry Valve Company, 999 Illinois Engineering Co., 1032-1033 Jenkins Bros., 1088 Mueller Steam Specialty Co., 1083 Spence Engineering Co., 1015

VALVES, Blow-off

Cochrane Corp., 1080
Crane Company, 1046-1047
Detroit Lubricator Co., 1000-1001
Henry Valve Company, 999
Jenkins Bros., 1088
Kieley & Mueller, Inc., 1082
Manning, Maxwell & Moore, Inc., 1088 McDonnell & Miller, 1040-1041 Yarnall-Waring Co., 1085

VALVES, By-Pass

Crane Company, 1046-1047 Henry Valve Company, 999 Jenkins Bros., 1088 Johnson Service Co., 1004-1005 Manning, Maxwell & Moore, Inc., 1008

VALVES, Check

Cochrane Corporation, 1080 Crane Company, 1046-1047 Fedders Manufacturing Co., 910 Frick Company, 956 Grinnell Co., Inc., 1026-1027, 1081 Henry Valve Company, 999 Illinois Engineering Co., 1032-1033 Jenkins Bros., 1088

Manning, Maxwell & Moore, Inc., 1008 Warren Webster & Co., 1036-1039 York Ice Machinery Corp., 896

VALVES, Diaphragm

Alco Valve Company, 996 Grinnell Co., Inc., 1026-1027, 1081 Henry Valve Company, 999 Illinois Engineering Co., 1032-1033 Johnson Service Co., 1004-1005 Kieley & Mueller, Inc., 1082 Manning, Maxwell & Moore, Inc.,

Minneapolis-Honeywell Regulator Co., 1010-1011
Mueller Steam Specialty Co., 1083
Parks-Cramer Co., 892
Powers Regulator Co., 1014 Taylor Instrument Companies, 1016 White-Rodgers Electric Co., 1018

VALVES, Expansion

Alco Valve Company, Inc., 996 Automatic Products Corp., 997 Crane Company, 1046-1047 Detroit Lubricator Co., 1000-1001 Fedders Manufacturing Co., 910 Krick Company, 036 Frick Company, 956
Fulton Sylphon Co., 1002-1003
Henry Valve Company, 999
Spence Engineering Co., 1015 York Ice Machinery Corp., 896

VALVES, Float

VALVES, Float
Alco Valve Company, Inc., 996
Anderson Products, Inc., 1086
Baker Ice Machine Co., 953
Cochrane Corp., 1080
Crane Company, 1046-1047
Detroit Lubricator Co., 1000-1001
Dole Valve Company, 1087
Frick Company, 956
General Electric Company, 890801, 976-977
Ulinois Engineering Co., 1032-1033 891, 976-977
Illinois Engineering Co., 1032-1033
Kieley & Mueller, Inc., 1082
McDonnell & Miller, 1040-1041
Mueller Steam Specialty Co., 1083
Spence Engineering Co., 1015
Trane Company, The, 922-923
Vilter Manufacturing Co., 959
York Ice Machinery Corp., 896

VALVES, Flow Control

Bell & Gossett Co., 1022-1023 Crane Company, 1048-1047 Detroit Lubricator Co., 1000-1001 C. A. Dunham Co., 1024-1025 Frick Company, Inc., 956 General Electric Company, 890-891, 976-977 Hoffman Specialty Co., Inc., 1028-1020

Illinois Engineering Co., 1032-1033 Kieley & Mueller, Inc., 1082 Manning, Maxwell & Moore, Inc., 1008

McDonnell & Miller, 1040-1041 Minneapolis-Honeywell Regulator Co., 1010-1011 Mueller Steam Specialty ('o., Inc., 1083

1083 Powers Regulator Co., 1014 Spence Engineering Co., 1015 Taylor Instrument Companies, 1016 H. A. Thrush & Co., 1031 Warren Webster & Co., 1036-1039

VALVES, Gate

American Brass Company, 1090-Crane Company, 1046-1047

Detroit Lubricator Co., 1000-1001 Grinnell Co., Inc., 1026-1027, 1081 Jenkins Bros., 1088 Manning, Maxwell & Moore, Inc.,

VALVES, Hydraulic

Crane Company, 1046-1047 Jenkins Bros., 1088 Manning, Maxwell & Moore, Ind., Yarnall-Waring Co., 1085

VALVES, Magnetic

Alco Valve Company, Inc., 996 Automatic Products Corp., 997 Barber-Colman Co., 980, 998 Detroit Lubricator Co., 1000-1001 Frick Company, 956 General Electric Company, 890-891, 976-977 891, 9/0-9/7
McDonnell & Miller, 1040-1041
Mercoid Corporation, 1009
Minneapolis-Honeywell Regulator
Co., 1010-1011
Penn Electric Switch Co., 1013
Spence Engineering Co., 1015

VALVES, Mixing, Thermostatic

Barber-Colman Co., 980, 998
Dole Valve Company, 1087
Fulton Sylphon Co., 1002-1003
Johnson Service Co., 1004-1005
Minneapolis-Honeywell Regulator Co., 1010-1011 Powers Regulator Co., 1014 Sarco Company, Inc., 1034-1035 H. A. Thrush & Co., 1031

VALVES, Non-Return

Crane Company, 1046-1047 Fedders Manufacturing Co., 910 Frick Company, 956 Illinois Engineering Co., 1032-1033 Jenkins Bros., 1088 Kieley & Mueller, Inc., 1082 Manning, Maxwell & Moore, Inc., 1008

VALVES, Packless

Alco Valve Company, 996
Detroit Lubricator Co., 1000-1001
C. A. Dunham Co., 1024-1025
Fulton Sylphon Co., 1002-1003
Henry Valve Company, 999
Hoffman Specialty Co., Inc., 1028-1029 Trane Company, 922-923

VALVES, Pressure Reducing (See Regulators, Pressure)

VALVES, Pump

Crane Company, 1046-1047 Jenkins Bros., 1088 Trane Company, The, 922-923

VALVES, Purge

Henry Valve Company, 999

VALVES, Radiator

American District Steam Co., 1076, 1116 American American Radiator & Standard Sanitary Corp., 1042-1043 Anderson Products, Inc., 1086 Barnes & Jones, Inc., 1021 Bell and Gossett Co., 1022-1023 Burnham Boiler Corp., 1045 Crane Company, 1046-1047 Detroit Lubricator Co., 1000-1001 Radiator & Standard

Dole Valve Company, 1087 C. A. Dunham Co., 1024-1025 Fulton Sylphon Co., 1002-1003 Grianell Co., Inc., 1026-1027, 1081 William S. Haines & Co., 1030 Hoffman Specialty Co., Inc., 1028-

Illinois Engineering Co., 1032-1033 Jenkins Bros., 1088 Minneapolis-Honeywell Regulator

Co., 1010-1011 Powers Regulator Co., 1014 Sarco Company, Inc., 1034-1035 Trane Company, The, 622-923 Warren Webster & Co., 1036-1039

VALVES, Radiator, Electric Motor Operated

Barber-Colman Co., 980, 998 Fulton Sylphon Co., 1002-1003 General Electric Company, 890-891, 976-977 891, 976-977 Illinois Enguneering Co., 1032-1033 Jenkins Bros., 1088 Minneapolis-Honeywell Regulator Co., 1010-1011 Sarco Company, Inc., 1034-1035

VALVES, Radiator Orifice American District Steam Co., 1076,

1116 1116
American Radiator & Standard Sanıtary Corp., 1042-1043
Barnes & Jones, Inc., 1021
Detroit Lubricator Co., 1000-1001
C. A. Dunham Co., 1024-1025
Grinnell Co., Inc., 1026-1027, 1081
William S. Haines & Co., 1030
Hoffman Specialty Co., Inc., 1028-

Illinois Engineering Co., 1032-1033 Sarco Company, Inc., 1034-1035 Trane Company, The, 922-923 Warren Webster & Co., 1036-1039

VALVES, Radiator, Pneumatic Diaphragm

Bell and Gossett Co., 1022-1023 Johnson Service Co., 1004-1005 Minneapolis-Honeywell Regulator Co., 1010-1011 Powers Regulator Co., 1014 Taylor Instrument Companies, 1016

VALVES, Refrigerant Line

Alco Valve Company, Inc., 996 Armstrong Machine Works, 1078-1079 1079
Baker Ice Machine Co., Inc., 953
Frick Company, Inc., 956
Henry Valve Company, 999
Vilter Manufacturing Co., 959
Worthington Pump & Machinery
Co., 960-961

VALVES, Relief

Baker Ice Machine Co., 953
Bell and Gossett Co., 1022-1023
Cochrane Corp., 1080
Crane Company, 1046-1047
Frick Company, 956
Grinnell Co., Inc., 1026-1027, 1081
Henry Valve Company, 999
Illinois Engineering Co., 1032-1033
Kieley & Mueller, Inc., 1082
Manning Maywell & Moore Inc. Baker Ice Machine Co., 953 Manning, Maxwell & Moore, Inc., 1008 McDonnell & Miller, 1040-1041

Mueller Steam Specialty Co., 1 Trane Company, The, 922-923 H. A. Thrush & Co., 1031 York Ice Machinery Corp., 896

VALVES, Safety

American Radiator & Standard Sanitary Corp., 1042-1043 Baker Ice Machine Co., 953 Crane Company, 1046-1047 Detroit Lubricator Co., 1068-1069 Frick Company, Inc., 956 Henry Valve Company, 999 Jenkins Bros., 1088 Manning, Maxwell & Moore, Inc., 1008 McDonnell & Miller, 1040-1041 D. J. Murray Mfg. Company, 918 Spence Engineering Co., 1015

VALVES, Solenoid

VALVES, SOLERIOR
Alco Valve Company, Inc., 996
Anderson Products, Inc., 1086
Automatic Products Corp., 997
Barber-Colman Co., 980, 998
Detroit Lubricator Co., 1000-1001
Frick Company, Inc., 956
Fulton Sylphon Co., 1002-1003
General Electric Company, 890-891, 976-977
WCDownell & Miller, 1040-1041

891, 976-977

McDonnell & Miller, 1040-1041

Minneapolis-Honeywell Regulator
Co., 1010-1011

Penn Electric Switch Co., 1013

Spence Engineering Co., 1015

Trane Company, The, 922-923

White-Rodgers Electric Co., 1018

VALVES, Stop and Check (See Valves, Non-Return)

VALVES, Thermostatic

Alco Valve Company, Inc., 996 Automatic Products Corp., 997 Barber-Colman Co., 980, 998 Barber-Colman Co., 980, 998
Barnes & Jones, Inc., 1021
Bell and Gossett Co., 1022-1023
Detroit Lubricator Co., 1000-1001
Dole Vale Company, 1087
Fedders Manufacturing Co., 910
Fulton Sylphon Co., 1002-1003
General Electric Company, 890-891, 976-977
Crippell Co. Inc., 1026-1027, 1081

Grinnell Co., Inc., 1026-1027, 1081 Illinois Engineering Co., 1032-1033 Johnson Service Co., 1004-1005 Manning, Maxwell & Moore, Inc., 1008

1008
Minneapolis-Honeywell Regulator Co., 1010-1011
Penn Electric Switch Co., 1013
Powers Regulator Co., 1014
Sarco Company, Inc., 1034-1035
Spence Engineering Co., 1015
Taylor Instrument Companies, 1016
Trane Company, The, 922-923
White-Rodgers Elec. Co., 1018
Yarnall-Waring Co., 1085

VALVES, Water Regulating

VALVES, Water Regulating
Automatic Products Corp., 997
Bell and Gossett Co., 1022-1023
Cochrane Corporation, 1080
Crane Company, 1046-1047
Detroit Lubricator Co., 1000-1001
Fulton Sylphon Co., 1002-1003
Jenkins Bros., 1088
Johnson Service Co., 1004-1005
Kieley & Mueller, Inc., 1082
Manning, Maxwell & Moore, Inc., 1008
McDonnell & Miller, 1040-1044

1008
McDonnell & Miller, 1040-1041
Mnneapolis-Honeywell Regulator
Co. 1010-1011
Mueller Steam Specialty Co., 1083
Penn Electric Switch Co., 1013
Powers Regulator Co., 1014
Spence Engineering Co., 1015
H. A. Thrush & Co., 1031
York Ice Machinery Corp., 896

VAPOR HEATING SYSTEMS (See Heating Systems, Vapor)

VENTILATORS, Attic (See also Fans, Electric, Propeller and Exhaust) American Blower Corp., 884-885
American Coolair Corp., 962-963
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Buffalo Forge Co., 965
Burnham Boiler Corp., 1045
Champion Blower & Forge Co., 966
Clarage Fan Co., 888
DeBothezat Division, American Machine & Metals, Inc., 907
Gar Wood Industries, Inc., 901
General Electric Company, 890-891, 976-977
Lau Blower Company, 968
H. J. Somers, Inc., 942
B. F. Sturtevant Co., 973-975
Torrington Mfg. Co., 970-972
United States Air Conditioning Corp., 893
United States Register Co., 987
Wagner Electric Corp., 978
Waterloo Register Company, 900
Westinghouse Elec. & Mfg. Co., 804-806, 943

Westinghouse Elec. & Mfg. Co., 894-895, 943 L. J. Wing Mfg. Co., 925-927 VENTILATORS, Floor and Wall

VENTILATORS, Floor and Wall
American Blower Corp., 884-885
American Coolair Corp., 962-963
Anemostat Corp. of America, 979
Barber-Colman Co., 980, 998
Coppus Engineering Corp., 936
DeBothezat Division, American
Machine & Metals, Inc., 967
Hart & Cooley Mfg. Co., 982-983
Hendrick Mfg. Co., 984
Hndependent Register Co., 985
L. J. Mueller Furnace Co., 902-903
Register & Grille Mfg. Co., 986
B. F. Sturtevant & Co., 973-975
Tuttle & Bailey, Inc., 988-989
United States Register Co., 987
Wagner Electric Corp., 978
Waterloo Register Co., 990

VENTILATORS, Mushroom

American Blower Corp., 884-885 Clarage Fan Company, 888 Coppus Engineering Co., 936 L. J. Mueller Furnace Co., 902-903 Tuttle & Bailey, Inc., 988-989 L. J. Wing Mfg. Co., 925-927

VENTILATORS, Roof

VENTILATORS, Roof
Airtherm Mfg. Co., 906
American Coolair Corp., 962-963
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Carrier Corporation, 886, 887
DeBothezat Division, American
Machine & Metals, Inc., 967
General Electric Company, 890891, 976-977
Johns-Manville, 1104-1105
New York Blower Co., 969
B. F. Sturtevant Co., 973-975
Trane Company, 922-923
Waterloo Register Co., 990
L. J. Wing Mfg. Co., 925-927
Young Radiator Company, 928

VENTILATORS, Ship

Airtherm Mfg. Co., 906 American Coolair Corp., 962-963 Autovent Fan & Blower Div Herman Nelson Corp., 921 Div.,

Carrier Corporation, 886-887 DeBothezat Division, American Machine & Metals, Inc., 967 Machine & Metals, Inc., 967 General Electric Company, 890-891, 976-977 Johns-Manville, 1104-1105 New York Blower Co., 969 B. F. Sturtevant Co., 973-975 Trane Company, 922-923 Waterloo Register Co., 990 L. J. Wing Mfg. Co., 925-927 Young Radiator Company, 928

VENTILATORS, Unit

American Blower Corp., 884-885 American Coolair Corp., 962-963 Buffalo Forge Company, 965 W. B. Connor Engineering Corp., W. B. Connor Engineering Co 934-935, 981 Herman Nelson Corp., 920-921 John J. Nesbitt, Inc., 919 New York Blower Co., 969 Staynew Filter Corp., 940-941 B. F. Sturtevant Co., 973-975 Trane Company, The, 922-923 L. J. Wing Mfg. Co., 925-927 Young Radiator Company, 928

VENTILATORS, Window

VENTILATORS, Window
American Air Filter Co., 932-933
American Blower Corp., 884-885
American Coolair Corp., 962-963
Autovent Fan & Blower Div.,
Herman Nelson Corp., 921
Buffalo Forge Company, 965
Carrier Corporation, 886-887
Coppus Engineering Corp., 936
Libby-Owens-Ford Glass Co., 1120
Pittsburgh Corning Corp., 1122
H. J. Somers, Inc., 942
Staynew Filter Corp., 940-941
B. F. Sturtevant Co., 973-975
Wagner Electric Corp., 979

VIBRATION ABSORBERS (See also Sound Deadening)

American Brass Company, 1090 1091 Armstrong Cork Company, 1095 Celotex Corporation, 1097 Johns-Manville, 1104-1105 Mundet Cork Company, 1108 United States Gypsum Co., 1114-1115

WALLBOARD, Insulating

Armstrong Cork Company, 1095 Celotex Corporation, 1097 Insulite Company, 1102-1103 Johns-Manville, 1104-1105 United States Gypsum, 1114-1115 Wood Conversion Company, 1113

WARM AIR FURNACES (See Furnaces, Warm Air)

ARM AIR HEATING SYSTEMS (See Heating Systems, Furnace)

WASHERS, Air (See Air Washers)

WATER COOLING (See also Cooling Equipment, Water; Cooling Towers)

Acme Industries, Inc., 948
Airtemp Div., Chrysler Corp., 898-Baker Ice Machine Co., 953 Carrier Corporation, 886-887 Curtis Refrigerating Machine Co.,

Division, American DeBothezat Machine & Metals, Inc., 967 Machine & Metals, Inc., 967
Frick Company, Inc., 956
Marley Co., Inc., 946
McQuay, Incorporated, 914-915
McQuay, Incorporated, 914-915
Refrigeration Economics Co., 924
Trane Company, The, 922-923
United States Air Conditioning Corp., 893
Universal Coolair Corp., 958
Vilter Manufacturing Co., 959
Westinghouse Elec. & Mfg. Co.,
894-895, 943 Worthington Pump & Machinery Corp., 960-961 York Ice Machinery Corp., 896 Young Radiator Company, 928

WATER COOLING TOV (See Cooling Towers, Water) TOWERS

WATER FEEDERS (See Feeders, Water)

WATER HEATERS (See Heaters, Hot Water Service)

WATER MIXERS, Thermostatic

Dole Valve Company, 1087 Fulton Sylphon Co., 1002-1003 Powers Regulator Co., 1014 Sarco Company, Inc., 1034-1035

WATER TREATMENT

American Blower Corp., 884-885 Cochrane Corp., 1080 Research Products Corp., 937 Vinco Company, Inc., 1062-1063

WEATHER INSTRUMENTS, Indicating and Recording

Johnson Service Co., 1004-1005 Leeds & Northrup Co., 1007 Palmer Company, The, 1012 Powers Regulator Co., 1014 Taylor Instrument Companies, 1016

WELDING, FITTINGS (See Fittings, Welding)

WELDING ROD

American Brass Company, 1090-Carnegie-Illinois Steel Corp., 994 General Electric Company, 890-891, 976-977

WHEELS, Blower

American Blower Corp., 884-885 Autovent Fan & Blower Di-Herman Nelson Corp., 921 Herman Newson Corp., 921
Bayley Blower Company, 964
Buffalo Forge Company, 965
Champion Blower & Forge Co., 966
Clarage Fan Company, 888
Hastings Air Conditioning Co., 911
Lau Blower Co., 968 Lau Blower Co., 908 L. J. Mueller Furnace Co., 902-903 B. F. Sturtevant Co., 973-975 Torrington Mfg. Co., 970-972 United States Air Conditioning Corp., 898

WHEELS, Equipment) (See Spray Spray

WINDOWS, Supplementary Sash

Libby-Owens-Ford Glass Co., 1120 Pittsburgh Corning Corp., 1122

Div. of Curtis Mfg. Co., 955 Please mention THE GUIDE 1943 when writing to Advertisers

Roll of Membership

AMERICAN SOCIETY of HEATING and VENTILATING ENGINEERS

1943

Contains Lists of Members Arranged Alphabetically and Geographically, also Lists of Officers and Committees, Past Officers and Local Chapter Officers

Corrected to January 15, 1943

Published at the Headquarters of the Society
51 Madison Avenue, New York, N. Y.

ENGINEERS OF HUMAN COMFORT

THE Heating, Ventilating and Air Conditioning Engineer through his work and research brings to our homes, our offices and our factories, in both summer and winter, that climate best suited to our comfort and health. He is truly an Engineer of Human Comfort.

In September 1894, a little group of engineers, educators and manufacturers gathered in New York and agreed that the great art of heating and ventilating deserved and required recognition as an essential, distinctive and highly specialized division of modern engineering. These men realized the basic importance of heating and ventilating as the primary element in the well-being of civilized mankind, living and working mostly indoors.

They foresaw the need for research and one of the first acts of the organized body was to establish a Committee on Standards. That the Charter Members had great faith in their enterprise is evident, although little did they dream that progress would be so rapid in their profession.

During the intervening years since that little group of 75 pioneers unfurled the banner of The American Society of Heating and Ventillating Engineers—3006 of the real leaders of thought and action in heating, ventilating, and air conditioning have gathered about that standard and carried it proudly before them far along the way of real accomplishment. They may be identified among engineering groups by the distinctive emblem which was adopted by the Charter Members.

The first Annual Meeting was held in New York, N. Y., January 22-24, 1895, and the organization was incorporated under the laws of the State.

The Society now has 3006 members on its rolls, including engineers, educators, scientists, physicians, architects, contractors, and leaders of industry. There are four classes of active members, namely: Member, Associate, Junior and Student.

The management of the Society is entrusted to 4 Officers and a Council of 12 elected members with the retiring President who serves for 1 year as well as the Chairman of the Committee on Research who is ex-officio. Research work is in charge of the Committee on Research consisting of 15 members, 5 being elected annually for a period of 3 years.

The three major activities of the Society are: Membership Service, Publication and Research, the record of its accomplishments being permanently recorded in the annual TRANSACTIONS.

Headquarters of the Society are maintained in The New York Life Building, 51 Madison Avenue, New York, N. Y.

Officers and Council

AMERICAN SOCIETY of HEATING and VENTILATING ENGINEERS 51 Madison Ave., New York, N. Y.

1942-43

President	E. O. EASTWOOD
First Vice-President	
Second Vice-President	S, H, Downs
Treasurer	E. K. Campbell
Secretary	A. V. Hutchinson
Technical Secretary	

Council

E. O. EASTWOOD, Chairman

M. F. BLANKIN, Vice-Chairman

One Year	Two Years	Three Years
J. F. COLLINS, JR.	A. P. Kratz	L. G. MILLER
J. F. Collins, Jr. W. L. Fleisher	W. A. Russell	A. J. Offner
E. N. McDonnell	L. P. Saunders	A. E. STACEY, JR.
T. H. URDAHL	C. Tasker	B. M. Woods
CE. A. WINSLOW		

F. C. McIntosh, Ex-Officio

Committees of the Council

Executive: W. L. Fleisher, Chairman; A. J. Offner, A. E. Stacey, Jr. Finance: E. N. McDonnell, Chairman; J. F. Collins, Jr., C.-E. A. Winslow. Membership: W. A. Russell, Chairman; M. F. Blankin, B. M. Woods.

Meetings: A. P. Kratz, Chairman; L. P. Saunders, T. H. Urdahl. Standards: S. H. Downs, Chairman; L. G. Miller, C. Tasker.

Advisory Council

W. L. Fleisher, Chairman; Homer Addams, D. S. Boyden, W. H. Carrier, S. E. Dibble, W. H. Driscoll, F. E. Giesecke, H. P. Gant, E. Holt Gurney, L. A. Harding, H. M. Hart, C. V. Haynes, E. Vernon Hill, John Howatt, W. T. Jones, D. D. Kimball, G. L. Larson, S. R. Lewis, Thornton Lewis, J. F. McIntire, F. B. Rowley and A. C. Willard.

Special Committees

- Admission and Advancement: Earle W. Gray, Chairman (one year); E. P. Heckel (two years), T. T. Tucker (three years).
- A.S.H.V.E.—A.S.T.M.—A.S.R.E.—N.R.C. Committee on Thermal Conductivity: F. C. Houghten, Chairman; C. B. Bradley, H. C. Dickinson, R. H. Heilman, E. R. Queer, F. B. Rowley, T. S. Taylor and G. B. Wilkes,
- A.S.H.V.E.—I.E.S. Joint Committee on Lighting and Air Conditioning: H. M. Sharp, Chairman; W. R. Beach, B. C. Candee, W. G. Darley, C. L. Kribs, Jr., P. M. Rutherford, Jr.

- Chapter Relations: J. F. Collins, Jr., Chairman; Lincoln Bouillon, M. M. Rivard.
- Constitution and By-Laws: Albert Buenger, Chairman; L. T. Avery, R. H. Carpenter.
- Committee on Code for Testing Surface Coils for Heating and Cooling: C. A. McKeeman, Chairman; Tom Brown, E. L. Hogan, H. F. Hutzel, L. E. Moody, A. F. Nass, S. F. Nicoll, M. Noble, L. P. Saunders and D. C. Wiley.
- Committee on Safety Regulations for Heating, Ventilating and Air Conditioning Systems: N. A. Hollister, Chairman; F. H. Buzzard, B. F. McLouth, G. P. Nachman and C. H. Randolph.
- Committee on A.S.H.V.E. Code for Testing Air Cleaning Devices: John Howatt, Chairman; O. W. Armspach, J. L. Blackshaw, R. S. Dill, S. P. Eagleton, S. R. Lewis, Arthur Nutting, G. W. Penney, F. B. Rowley, J. H. Waggoner and Dr. Leonard Greenburg, Ex-Officio.
- Guide Publication: A. J. Offner, Chairman; P. D. Close, S. Konzo, C. S. Leopold and G. L. Tuve.
- F. Paul Anderson Award: M. F. Blankin, Chairman; W. H. Carrier, J. D. Kroeker, J. F. McIntire and F. B. Rowley.
- Joint Committee on Standards for Residence Heating: L. E. Seeley, Chairman; R. S. Dill, S. H. Downs, H. L. Dryden, J. G. Eadie, H. C. Meyer, Jr., R. K. Thulman, T. H. Urdahl and H. Vermillyea.
- Joint Committee to Study Uniform Methods of Heat Loss Calculation: P. D. Close, Chairman; A. P. Kratz, J. P. Magos, G. P. Nachman and A. F. Nass.
- Joint Committee on Weather Statistics: J. F. Collins, Jr., N.D.H.A., Chairman; F. H. Dewey, O.B.I.; C. M. Humphreys, A.S.H.V.E.; S. Konzo, N.W.A.H.A.C.A.; Raymond Little, A.G.A.; Dr. E. Dillen Smith, U. S. Weather Bureau.
- Publication: James Holt, Chairman (one year); C. H. B. Hotchkiss (two years); J. H. Walker (three years).
- War Service Committee: B. M. Woods, Chairman; W. A. Danielson, W. L. Fleisher, E. Holt Gurney, Thornton Lewis and A. C. Willard.

Nominating Committee

Chapter Atlanta Cincinnati Connecticut Delta Golden Gate Illinois Iowa Kansas City Manitoba Massachusetts Michigan Minnesota Montreal Nebraska New York North Carolina North Texas Northern Ohio
Oklahoma Ontario
Oregon Pacific Northwest Philadelphia Pittsburgh St. Louis South Texas Southern California Washington, D. C. Western Michigan Western New York Wisconsin

Representative
-
T. T. Tucker
C. E. Hust
L. E. SEELEY
L. E. SEELET
L. V. CRESSY
C. E. BENTLEY
E. M. MITTENDORFF
Perry LaRue
M. M. RIVARD
R. L. Kent
J. W. Brinton
T C Version
J. S. Kilner
R. E. Backstrom
A. M. PEART
HENRY KLEINKAUF
Joseph Wheeler, Jr.
JUSEPH WHEELER, JR.
W. M. WALLACE, II
R. K. WERNER
C. A. McKeeman
J. H. CARNAHAN
J. II. CARNAHAN
D. O. PRICE E. E. CARROLL H. T. GRIFFITH
E. E. Carroll
H. T. GRIFFITH
H. H. MATHER
C M Hanner
C. M. Humphreys
C. F. BOESTER
A. M. Chase, Jr.
A. J. HESS
7x J. 11200
F. A. Leser
L.G. MILLER
W. R. HEATH
W. A. OUWENEEL
W. A. OUWEREEL

Albert Buenger Stanley Hart J. S. Adair
C. E. PRICE F. E. TRIGGS W. A. RUSSELL I. McDonald EARL G. CARRIER M. B. SHEA N. D. ADAMS E. W. TWIZELL W. R. WHITE H. H. BOND F. J. REED J. A. BISHOP C. M. H. KAERCHER E. F. DAWSON H. R. ROTH B. W. FARNES M. J. HAUAN
H. LEE MOORE J. H. CARTER R. M. SPENCER H. H. BULLOCK T. H. URDAHL T. D. STAFFORD
D. W. Nelson

Alternate A. H. Koch

COMMITTEE ON RESEARCH

F. C. McIntosh, Chairman

C.-E. A. WINSLOW, Vice-Chairman C. M. Humphreys, Acting Director

J. H. WALKER, Technical Adviser A. C. FIELDNER, Ex-Officio Member

One Year Two Years Three Years

PHILIP DRINKER C. M. ASHLEY C. F. BOESTER

AXEL MARIN M. K. FAHNESTOCK J. A. GOFF

A. E. STACEY, JR. H. KING MCCAIN W. E. HEIBEL

J. H. VAN ALSBURG F. C. McIntosh C. A. McKeeman

J. H. Walker T. H. Urdahl C.-E. A. Winslow

Executive Committee

F. C. McIntosh, Chairman

C. M. ASHLEY

M. K. FAHNESTOCK

T. H. URDAHL

C.-E. A. WINSLOW

Finance Committee

C. F. Boester, Chairman

Technical Advisory Committees

- Sensations of Comfort: Thomas Chester, Chairman; N. D. Adams, C. R. Bellamy, G. D. Fife, W. F. Friend, E. P. Heckel, Dr. W. J. McConnell, F. C. McIntosh*, A. B. Newton, B. F. Raber and C. Tasker
- Physiological Reactions: C.-E. A. Winslow*, Chairman; Dr. Thomas Bedford, Thomas Chester, Dr. E. F. DuBois, Dr. M. B. Ferderber, E. P. Heckel, John Howatt, Dr. R. W. Keeton, C. S. Leopold, André Missenard, Dr. R. R. Sayers, Charles Sheard and C. Tasker.
- Removal Atmospheric Impurities: Dr. Leonard Greenburg, Chairman; J. J. Burke, J. M. Dalla Valle, R. S. Dill, Theodore Hatch, L. R. Koller, C. A. McKeeman*, F. H. Munkelt, H. C. Murphy, G. W. Penney, Dr. E. B. Phelps, F. B. Rowley, W. O. Vedder, J. H. Waggoner, R. P. Warren and W. F. Wells.
- Radiation and Comfort: J. C. Fitts, Chairman; A. H. Barker, L. M. K. Boelter, E. L. Broderick, R. E. Daly, J. B. Fullman, E. R. Gurney, L. N. Hunter, A. P. Kratz, C. S. Leopold, L. L. Munier, D. W. Nelson, W. J. Olvany, G. W. Penney, W. R. Rhoton, C. J. Stermer and C.-E. A. Winslow*.
- Instruments: D. W. Nelson, Chairman; L. M. K. Boelter, R. S. Dill, A. P. Gagge, J. A. Goff*, A. E. Hershey, F. W. Reichelderfer, G. L. Tuve and C. P. Yaglou.
- Weather Design Conditions: T. H. Urdahl*, Chairman; J. C. Albright, H. S. Birkett, P. D. Close, John Everetts, Jr., C. M. Humphreys, O. A. Kinzer, H. H. Koster, J. W. O'Neill and F. W. Reichelderfer.
- Radiation with Gravity Air Circulation: M. K. Fahnestock*, Chairman; R. E. Daly, R. S. Dill, A. G. Dixon, H. F. Hutzel, J. P. Magos, J. W. McElgin, J. F. McIntire, T. A. Novotney and W. A. Rowe.
- Heat Transfer of Finned Tubes with Forced Air Circulation: W. E. Heibel*, Chairman; C. M. Ashley*, William Goodman, H. F. Hutzel, Ferdinand Jehle, S. F. Nicoll, R. H. Norris, L. P. Saunders, R. J. Tenkonohy, G. L. Tuve and D. C. Wiley.
- Cooling Load in Summer Air Conditioning: C. M. Ashley*, Chairman; J. H. Carter, John Everetts, Jr., F. C. Houghten, E. H. Hyde, C. S. Leopold, C. O. Mackey, R. M. Stikeleather, J. H. Walker* and W. E. Zieber.
- Air Distribution and Air Friction: J. H. Van Alsburg*, Chairman; S. H. Downs, A. E. Hershey, W. W. Kennedy, A. P. Kratz, R. D. Madison, L. G. Miller, D. W. Nelson, C. H. Randolph, M. C. Stuart, Ernest Szekely, R. J. Tenkonohy and G. L. Tuve.
- Heat Requirements of Buildings: P. D. Close, Chairman; E. K. Campbell, J. F. Collins, Jr., E. F. Dawson, W. H. Driscoll, H. M. Hart, E. C. Lloyd, H. H. Mather, H. King McCain*, M. W. McRae, C. H. Pesterfield, F. B. Rowley and R. K. Thulman.
- Air Conditioning Requirements of Glass: R. A. Miller, Chairman; C. M. Ashley*, L. T. Avery, F. L. Bishop, D. A. Bridges, W. A. Danielson, H. C. Dickinson, J. D. Edwards, J. E. Frazier, E. H. Hobbie, C. L. Kribs, Jr., Axel Marin*, F. W. Parkinson, W. C. Randall, L. T. Sherwood, J. T. Staples, G. B. Watkins and F. C. Weinert.

^{*}Member of Committee on Research.

Sound Control: J. S. Parkinson, Chairman; C. M. Ashley*, W. W. Kennedy, A. L. Kimball, V. O. Knudsen, R. D. Madison, C. H. Randolph, A. E. Stacey, Jr.*, A. G. Sutcliffe, Thomas A. Walters and R. M. Watt, Jr.

Cooling Towers, Evaporative Condensers and Spray Ponds: B. M. Woods, Chairman; C. F. Boester*, W. W. Cockins, S. C. Coey, E. H. Kendall, S. R. Lewis, H. B. Nottage, J. F. Park, E. T. Selig, Jr., E. W. Simons and E. H. Taze.

Psychrometry: J. A. Goff*, Chairman; F. R. Bichowsky, W. H. Carrier, H. C. Dickinson, R. S. Dill, A. W. Gauger, William Goodman, A. M. Greene, Jr., L. P. Harrison, F. G. Keyes, A. P. Kratz, D. M. Little, Axel Marin*, D. W. Nelson and W. M. Sawdon.

Flow of Fluids Through Pipes and Fittings: S. R. Lewis, Chairman; L. A. Cherry, G. C. Davis, T. M. Dugan, Earle W. Gray, R. T. Kern, H. A. Lockhart, Axel Marin*, R. F. Taylor and E. L. Weber.

Fuels: R. A. Sherman, Chairman; R. M. Conner, R. S. Dill, R. B. Engdahl, A. C. Fieldner, L. N. Hunter, S. Konzo, W. M. Myler, Jr., H. J. Rose, C. E. Shaffer, T. H. Smoot, R. K. Thulman, T. H. Urdahl* and E. C. Webb.

Corrosion: L. F. Collins, Chairman; H. E. Adams, N. D. Adams, J. F. Barkley, W. H. Driscoll, T. J. Finnegan, W. Z. Friend, E. W. Guernsey, W. E. Heibel*, A. R. Mumford, R. R. Seeber, E. T. Selig, Jr., F. N. Speller and C. M. Sterne.

Air Conditioning in Industry: W. L. Fleisher, Chairman; L. T. Avery, Dr. A. R. Behnke, Dr. Leonard Greenburg, W. E. Heibel*, L. L. Lewis, Dr. W. J. McConnell, Dr. C. P. McCord, P. A. McKittrick, Dr. R. R. Sayers, C. Tasker, R. M. Watt, Jr. and H. E.

Summer Air Conditioning for Residences: M. K. Fahnestock*, Chairman; Emerson Brandt, E. D. Milener and F. G. Sedgwick.

Sorbents: F. R. Bichowsky, Chairman; John Everetts, Jr., Ralph Fehr, John A. Goff*, W. R. Hainsworth, C. H. B. Hotchkiss, J. C. Patterson and G. L. Simpson.

Insulation: E. C. Lloyd, Chairman; H. King McCain*, J. D. Edwards, Paul McDermott, W. T. Miller, E. R. Queer, F. B. Rowley, G. L. Tuve and J. H. Waggoner.

Officers of Local Chapters, 1942-43

Headquarters, Atlanta, Ga. Meets:, First Monday in Month President, L. F. KENT P. O. Box 1673 Secretary, L. F. LAWRENCE, JR. 304-101 Marietta St.

Cincinnati

Headquarters, Cincinnati, Ohio Meets: Second Tuesday in Month Honorary President, CAPT. C. E. HUST President, A. L. HARD 910 Kreis Lane

Secretary, G. V. Sutfin 1005-6 American Bldg.

Connecticut Headquarters, New Haven, Conn. President, C. J. Lyons Wilson Ave., S. Norwalk

Secretary, E. L. BRODERICK 290 Congress St., New Haven

Delta

Headquarters, New Orleans, La. Meets: Second Tuesday in Month President, G. C. KERR 1401 Tchoupitoulas St.

Secretary, L. V. CRESSY 916 Union St.

Golden Gate Headquarters, San Francisco, Calif. Meets: First Wednesday in Month President, J. F. KOOISTRA 625 Market St.

Secretary, C. L. PETERSON 2 Indian Rock Path, Berkeley

Headquarters, Chicago, Ill. Meets: Second Monday in Month President, E. M. MITTENDORFF Room 975 Merchandise Mart Bldg. Secretary, A. O. MAY Room 925, 53 W. Jackson Blvd., Chicago

Iowa

Headquarters, Des Moines, Iowa Meets: Second Tuesday in Month President, F. E. TRIGGS 3901 Second St. Secretary, W. W. STUART \$417 Ninth St.

Kansas City Headquarters, Kansas City, Mo. Meets: Second Monday in Month President, M. M. RIVARD 4550 Main St. Secretary, D. M. ALLEN 310 Board of Trade Bldg.

Manitoba Headquarters, Winnipeg, Man. Meets: Third Thursday in Month President, IVAN McDonald 44 Princess St.

Secretary, EINAR ANDERSON 152 Bannerman Ave.

Massachusetts Headquarters, Boston, Mass. Meets: Third Tuesday in Month President, E. G. CARRIER 704 Statler Bldg. Secretary, R. T. KERN 51 Claffin St., Leominster

^{*}Member of Committee on Research.

Officers and List of Chapters, 1942-43—(Continued)

Michigan

Headquarters, Detroit, Mich. Meets: First Monday After 10th of Month President, M. B. Shea 8019 Jos Campau Secretary, W. H. Old 1761 Forest Ave., W.

Minnesota

Headquarters, Minneapolis, Minn. Meets: First Monday in Month President, WILLIAM MCNAMARA 850 Cromwell Ave., St. Paul Secretary, A. W. Schultz 240 Seventh Ave., S., Minneapolis

Montreal

Headquarters, Montreal, Que. Meets: Third Monday in Month President, F. A. HAMLET 1010 St. Catherine St. W.

Secretary, A. M. DART 637 Craig St. W.

Nebraska

Headquarters, Omaha Meets: Second Tuesday in Month President, H. W. STANTON 2100 Ryons St., Lincoln Secretary, G. E. MERWIN 5012 Parker St., Omaha

New York

Headquarters, New York, N. Y. Meets: Third Monday in Month President, H. H. BOND 10 East 40th St.
Secretary, C. R. Hiers
19 Westminster Rd., Great Neck, L. I.

North Carolina

Headquarters, Durham, N. C.

Meets: Quarterly
President, E. R. HARDING
BOX 356, Greensboro
Secretary, F. J. REED
263 College Station, Durham

North Texas Headquarters, Dallas, Texas Meets: Second Monday in Month President, T. H. ANSPACHER Tower Petroleum Bldg. Secretary, L. C. McClanahan 603 Great National Life Bldg.

Northern Ohio

Headquarters, Cleveland, Ohio Meets: Second Monday in Month President, C. M. H. KAERCHER 3030 Euclid Ave. Secretary, G. B. PRIESTER
Case School of Applied Science

Oklahoma

' Headquarters, Oklahoma City, Okla. Meets: Second Monday in Month President, E. F. DAWSON University of Oklahoma, Norman Secretary, E. T. P. ELLINGSON 314 Savings Bldg., Oklahoma City

Ontario

Headquarters, Toronto, Ont. Meets: First Monday in Month President, D. O. PRICE 131 St. Germain Ave. Secretary, H. R. ROTH 57 Bloor St. W.

Oregon

Headquarters, Portland, Ore. Meets: Thursday After First Tuesday in Month President, B. W. FARNES 3019 Northeast 26th Ave. Secretary, G. H. RISLEY 801 S. W. Stark St.

Pacific Northwest

Headquarters, Seattle, Wash. Meets: Second Tuesday in Month President, H. T. GRIFFITH

1411 Fourth Avenue Bldg. Secretary, R. E. LERICHE 6345-39th, S.W., Seattle

Philadelphia

Headquarters, Philadelphia, Pa. Meets: Second Thursday in Month President, H. H. MATHER 611 S. Front St.

Secretary, M. G. KERSHAW du Pont Bldg., Wilmington, Del.

Pittsburgh

Headquarters, Pittsburgh, Pa. Meets: Second Monday in Month President, C. M. HUMPHREYS Carnegie Institute of Technology Secretary, E. H. RIESMEYER, JR. 231-33 Water St.

St. Louis

Headquarters, St. Louis, Mo. Meets: First Tuesday in Month President, M. F. CARLOCK 7008 Amherst, University City, Mo. Secretary, W. J. Oonk 4548 Red Bud Ave., St. Louis

South Texas

Headquarters, Houston, Texas Meets: Third Friday in Month President, D. S. COOPER 216 E. Cowan Dr. Secretary, A. M. CHASE, JR. Box 359

> Southern California Headquarters, Los Angeles, Calif. Meets: First Wednesday in Month

President, H. H. BULLOCK 212 N. Vignes St. Secretary, LEO HUNGERFORD 4851 S. Alameda St.

Washington, D. C.

Headquarters, Washington, D. C. Meets: Second Wednesday in Month

President, R. S. DILL 1603 S. Springwood Dr., Silver Spring, Md. Secretary, J. W. MARKERT 8506 Garfield St., Bethesda, Md.

Western Michigan

Headquarters, Grand Rapids, Mich. Meets: Second Monday in Month

President, F. C. WARREN 200 Division Ave. N.

Secretary, H. D. BRATT 228 Ottawa Ave. N.W.

Western New York Headquarters, Buffalo, N. Y.

Meets: Second Monday in Month President, H. C. SCHAFER 197 Union St., Hamburg

Secretary, HERMAN SEELBACH, JR. 45 Allen St.

Wisconsin Headquarters, Milwaukee, Wis. Meets: Third Monday in Month

President, H. W. SCHREIBER 507 E. Michigan St. Secretary, I. J. HAUS 5410 W. Center St.

7

HOW TO APPLY FOR MEMBERSHIP

The real accomplishments of life are usually measured by the service one has rendered to his fellows and the true cultural refinement of mind, the finest sense of personal and professional ethics, factors transcending all material elements in what man calls "success," are developed through association with those of high ideals and cherished ambitions in the same field of activity. THE AMERICAN SOCIETY OF HEATING AND VENTILATING ENGINEERS offers to him whose work is definitely within its province an opportunity for such association and an opportunity for real service to his profession.

Every man in the heating, ventilating and air conditioning profession needs the Society—

- 1—Because of the contacts that it brings through national and local meetings.
- 2—Because of the information supplied by Society Publications.
- 3—Because of the opportunities that research reveals in new applications for engineering services and equipment.
- 4—Because of the satisfaction to be derived in contributing to human comfort and well being.

A Candidate must make application on the printed form "Membership Application" which is available at the head-quarters office or from Chapter Officers and members. A statement of qualifications and engineering experience is required and four members must act as sponsors except under certain conditions noted in Article B-III of the By-Laws.

Initiation Fees for 1943 are: Members and Associate Members \$10.00; Junior Members \$5.00. The Initiation Fee must accompany application.

For 1943 the annual dues of the Society are: Members and Associate Members

\$18.00; Junior Members \$10.00; and Student Members \$3.00. Dues of new members are pro-rated on a quarterly basis.

ARTICLE C-II-MEMBERSHIP

Section 1. Persons connected with the arts and sciences related to heating, ventilating or air conditioning are eligible for admission into the Society.

Section 4. A Member shall be over thirty (30) years of age and shall have more than eight (8) years' experience in the sciences relating to the arts of heating, ventilating or air conditioning. He shall have been in active practice of his profession and in responsible charge of important work for four (4) years, consisting of design, construction, research, development or teaching, and shall be qualified to design or direct such engineering work.

Section 5. A Junior Member shall be a person over twenty (20) years and under thirty (30) years of age, who has had three (3) years experience in the sciences relating to the arts of heating, ventilating or air conditioning. Each successfully completed year in an engineering school may be considered equivalent to one (1) year of such work.

Section 6. An Associate Member shall be twenty-five (25) years of age or over. He need not be an engineer, but must have been so connected with some branch of engineering or the art of heating, ventilating, air conditioning or the industries relating thereto, that he may be considered as qualified to co-operate with heating and ventilating engineers in the advancement of professional knowledge.

Section 7. A Student Member shall be a person between the ages of 18 and 25 years, who is regularly attending courses in an engineering college or technical school at the time of applying for membership.

Roll of Membership

AMERICAN SOCIETY of HEATING and VENTILATING ENGINEERS 1943

(Corrected to January 15, 1943)

HONORARY MEMBERS

BALDWIN, WM. J. (1915), New York, N. Y. (Deceased May 7, 1924). BILLINGS, DR. J. S. (1896), New York, N. Y. (Deceased March 10, 1913.) BOLTON, REGINALD PELHAM (1897), New York, N. Y. (Deceased February 18, 1942.)

BRECKENRIDGE, L. P. (1920), North Ferrisburg, Vt. (Deceased August 22, 1940.)
GORMLY, JOHN (Charter Member), Norristown, Pa. (Deceased January 31, 1929.)
NEWTON, C. W. (Charter Member), Baltimore, Md. (Deceased August 6, 1920.)
HOOD, O. P. (1929), Washington, D. C. (Deceased April 22, 1937.)
JELLETT, STEWART A. (Charter Member), (Presidential Member), Philadelphia, Pa.

(Deceased April 5, 1935.)

LIST OF MEMBERS Arranged Alphabetically

(*Asterisk indicates authorship of papers; • indicates address for mail)

(M 1923; A 1918; J 1916) indicates, Election as Member 1923; Associate 1918; Junior 1916. (Pres, 1923) indicates, Elected President in 1923 and is now a Presidential Member.

ADAM, Ray W. (A 1938) Owner, W. A. Adam Co., 8810 Grinnell Ave., and 5911 Courville

Co., 8810 Grinnell Ave., and 5911 Courville Ave., Detroit, Mich.

ADAMS, Bruce P. (A 1936) Gen. Mgr., • McDonnell & Miller, 400 N. Michigan Ave., Chicago, and 2211 Greenwood Ave., Wilmette, III.

ADAMS, Ghester Z. (M 1939) Branch Mgr.,
• Ilg Electric Ventilating Co., 312 Piedmont Bldg., Box 1356, and 207 E. Avondale Dr., Greensboro, N. C.

ADAMS, Eugene E. (A 1938) Sales Engr., • Garden City Fan Co., 55 West 42nd St., Room 1508A, New York, and 35-46-79th St., Jackson Heights, L. I., N. Y.

ADAMS, Eugene F. (M 1941) Architectural Engr., Daly-Nixon & Adams, Archt. Engrs., 536 Insurance Bldg., and • 1227 South 52nd St., Omaha, Nebr. Omaha, Nebr.

ADAMS, Frank L. (M 1939) Htg.-Air Cond. Engr., • Public Service Co. of Colorado, 900-15th St., and 1185 Grape St., Denver, Colo.

ADAMS, Harold E. (M 1930) Chief Engr., • The Nash Engineering Co., Wilson Rd., South Norwalk, and Merrill Heights, Norwalk, Conn. ADAMS, Neil D. (M 1929; A 1925; J 1922), (Council 1938-40), Supt., • Franklin Heating Station, 220 Second Ave. S.W., and 836 Eighth Ave. S.W., Rochester, Minn.

AVE. S.W., Rochester, Minn.
ADDAMS, Homer (Charter Member; Life Member),
(Pressdential Member), (Pres., 1924; 1st VicePres., 1923; Treas., 1915-22; Council, 1915-25),
Pres., Kewanee Boiler Co., Inc., and Fitzgibons
Boiler Co., Inc., 101 Park Ave., New York, N. Y. ADDINGTON, Harold M. (M 1939) Wiedeman & Singleton, Greenwood, Miss.

ADDINGTON, Herbert B. (M 1938) Consulting Engr., • 13 East 37th St., New York, and 25 Lafayette Ave., Brooklyn, N. Y.
ADEMA, George E. (M 1939) Pres., • N. M. Adema & Son, 39 W. Balcom St., and 260 Warren Rd., Buffalo, N. Y.

ADLAM, T. Napier (M 1932) Vice-Pres., Sarco Manufacturing Corp., 475 Fifth Ave., New York, N. Y., and • 124 Forest Hill Rd., West Orange, N. J.

N. J.
AEBERLY, John J.* (M 1928), (Council, 1937-39), Chief of Div. of Htg., Vtg. & Industrial Sanitation, Chicago Board of Health, 54 W. Hubbard St., and •6225 N. Newcastle Ave., Norwood Park, P. O., Chicago. III.
AHEARN, William J. (M 1929) •791 Tremont St., Boston, and 131 Windermere Rd., Auburndale, Mass.

AHRENS, Clarence F. (A 1940) Sales Engr., R. A. Dubuque Supply Co., 3960 Duncan Ave., and •4151 Toenges Ave., St. Louis, Mo.

AHRENS, Richard H. (A 1941) Sales Engr., Green Colonial Furnace Co., 1929 Pershing, Davenport, Iowa.

AHLFF, Albert A. (M 1923; A 1918) Special Repr., Marine Div., Hajoca Corp., Box 7319, Philadelphia, and •1521 Powder Mill Rd., Overbrook Park. Upper Darby, Pa.

AINSWORTH, Samuel E. (A 1939) Sales Engr., Roche Newton & Co., 1316 Texas Ave., and •1524-25th St., Lubbock, Texas.

AKERS, Arthur W. (A 1940) Dir., • Technician Institute. 244 West 14th St., New York, N. Y., and 264 Palisade Ave., Jersey City, N. J.

AKERS, George W. (M 1929) Lt. Comdr., U. S. N. R., • U. S. S. Markab, c/o Fleet Post Office, San Francisco, Calif., and R. F. D. 4, Birmingham, Mich.

Office, San Francisco, Calit., and R. F. D. 4, Birmingham, Mich.

ALBRIGHT, C. Barton (A 1942; J 1938) Industrial Services Associates, Consulting Engrs., 51 East 42nd St., New York, N. Y., and •30 Normal Ave., Upper Montclair, N. J.

ALEXANDER, Samuel W. (M 1935) Pres.-Mgr., S. W. Alexander Co., Ltd., 182 Main St., and •124 Kingsmount Park Rd., Toronto, Ont., Consider Canada.

Canada.

ALFRY, H. F. (M 1938) Engr., Michael Yundt Co., 225 N. Grand Ave., Waukesha, and •1819 W. Center St., Milwaukee, Wis.

ALGREN, Axel B.* (M 1930) Asst. Dist. Repr., Training within Industry, War Manpower Comm., 516 Midland Bank Bldg., and •5109 17th Ave. S., Minneapolis, Minn.

ALLAN, William (A 1938) Pres., •Allan Engineering Co., 724 E. Mason St., and 2735 N. Farwell Ave., Milwaukee, Wis.

ALLEN, A. Walter (M 1936) Sales Engr., • Pease Foundry Co., Ltd., 151 Glen Ave., Ottawa, Ont., Canada.

ALLEN, A. Waiter (M. 1936); Ales Engr., • rease Foundry Co., Ltd., 151 Glen Ave., Ottawa, Ont., Canada.

ALLEN, DeWitt M. (M. 1936; J. 1922) Dist. Mgr.,

• Ilg Electric Ventilating Co., 310 Board of Trade Bidg., Kansas City, Kan.

ALLEN, William A. (A. 1938) Vice-Pres., • Sprague & Sprague, Inc., 6230 Penn Ave., Pittsburgh, Pa., and 216 Hilands Ave., Ben Avon, Pa.

ALLEN, William W. (A. 1938) Pres., American Coolair Corp., Box 2300, Jacksonville, Fla.

ALLISON, Robert E. (A. 1941) Owner, • American Sheet Metal Co., 601 First Ave., and 7069 Fairdale, Dallas, Texas.

ALLONIER, Howard R. (A. 1936) Dist. Mgr.,

• J. J. Nesbitt, Inc., 243 N. High St., Columbus, and R. D. No. 1, Powell, Ohio.

ALLSOP, Rowland P. (A. 1940; J. 1934) Consulting Engr., • 1221 Bay St., and 168 Coursellette Rd., Toronto, Ont., Canada.

ALT, Harold L.* (M. 1913) Mech. Engr., Voorhees, Walker, Foley & Smith, 101 Park Ave., New York, and • 115-27-225th St., St. Albans, L. I., Y.

N. Y.
ALTEMUELLER, George F. (A 1940) Mech.
Engrg. Dept. (Htg. & Refrig.), Aero Engineers.
Corps of Engrs., U. S. Army, Camp Butner, and
2601 Highland Ave., Durham, N. C.
ALVAREZ, Joaquin (J 1942) Testing and Field
Engr., Pittsburgh Lectrodryer Corp., Foot of
32nd St., and • 125 Stratford Ave., East Liberty,
Pittsburgh 20.

32nd St., and • 125 Stratford Ave., East Liberty, Pittsburgh, Pa. AMBROSE, Alfred H. (J 1943; S 1941) Junior Engr., Curtiss-Wright Corp., Buffalo, N. Y., and • 15 River St., Woodstock, Vt. AMBROSE, Eugene R. (M 1940) Air Cond. Engr., • American Gas & Electric Service Corp., 30 Church St., New York, N. Y., and 615 Springfield Ave., Cranford, N. J. AMMERMAN, Andrew S., Jr. (A 1941; J 1937) Dist. Mgr., • Aerofin Corp., 111 W. Washington St., Room 558, Chicago, and 132 N. Wolf Rd., Des Plaines, Ill.
AMMERMAN, Charles R. (M 1916) Consulting Engr., • R. F. D. No. 1, Box 119, Wellington Villa, Alexandria, Va., and 3908 Guilford Ave., Indianapolis, Ind.

Villa, Alexandria, va., and 5500 Guinote Ave., Indianapolis, Ind.
ANDEREGG, R. H. (M 1920) Vice-Pres. and Chief Engr., The Trane Co., and ●450 Losey Court, LaCrosse, Wis.
ANDERSON, Carl G. (M 1942) Mech. Engr., Armour Research Foundation, 35 W. 33rd St., and ●5712 W. Race Ave., Chicago, Ill.

ANDÉRSON, Carroll S. (M 1920) Mgr., American Blower Corp., 1105 Architects Bldg., Los Angeles,

Blower Corp., 1105 Architects Bidg., Los Angeles, Calif.

ANDERSON, David B.* (A 1939; J 1936; S 1933)
Asst. Director, Naval Training School, University Farm, and •1999 Pinehurst Ave., St. Paul, Minn.

ANDERSON, Edwin J. (A 1939) Mfrs. Agent, •14 Smith, and 274 Lenox, Detroit, Mich.

ANDERSON, Edwin L. (M 1941; J 1930) Industrial Engr., Wright Aeronautical Co., Paterson, and •63 Oakridge Rd., Verona, N. J.

ANDERSON, Einar (A 1940) Sales Engr., Vulcan Iron Works, Ltd., and •152 Bannerman Ave., Winnipeg. Man., Canada.

ANDERSON, George A. M. (A 1939; J 1936) Pres., • King Ventilating Co., and 717 S. Cedar, Owatonna, Minn.

ANDERSON, John W. (J 1937) Engrg. Dept., The Conditioning Co., 368 Broad St., Newark, and •621 Westminster Ave., Elizabeth, N. J.

ANDREWS, William G. (A 1941) Warrant Officer, Mach. A-V (S) U. S. N. R., Power Plant Superintendent, II. S. Naval Air Station, Miami, Fla.

ANDREWS, William M. (M 1941) Partner

Lockwood & Andrews, 904 Union National
Bank Bldg., and 2254 Shakespeare, Houston,

Texas.

ANDREWS, William R. (M 1942) Asst. Mgr.,

Ross Engineering of Canada, Ltd., 920
Dominion Square Bldg., and 3770 Cote St.,
Catherine Rd., Montreal, Que., Canada.

ANGERMEYER, Albert H. (A 1936) Owner,
A. H. Angermeyer, Plumbing & Heating, 119
N. Commercial St., and 245 Webster St., Neenah,

N. Commercial St., and 245 Webster St., Neenah, Wis.

ANGUS, Frank M. (M 1937) Sales Engr., Hussmann-Ligonier Co., 2401 N. Leffingwell, St. Louis, and •7428 Stanford, University City, Mo. ANGUS, Harry H.* (M 1918), (Council, 1927-29), Consulting Engr., 1221 Bay St., and •34 Farnham Ave., Toronto, Ont., Canada.

ANOFF, Seymour M. (J 1940) Junior Mech. Engr., Army Air Corps, Materiel Div., Wright Field, and •109 Five Oaks Ave., Dayton, Ohio. ANSPACHER, Thomas H. (M 1939; J 1936) Dist. Mgr., •Buffalo Forge Co., Tower Petroleum Bldg., and 4512 Arcady, Dallas, Texas.

ANTHES, Lawrence L. (A 1935) Pres., • Imperial Iron Corp., Ltd., 30 Jefferson Ave., and 119 Dowling Ave., Toronto, Ont., Canada.

APT, Sanford R. (M 1935) Mech. Engr., Parsons, Klapp, Brinckerhoff & Douglas, 142 Maiden Lane, New York, and •36-39-205th St., Bayside, L. I., N. Y.

ARCHAMBAULT, Joseph A. (A 1939) Branch

L. I., N. Y.

ARCHAMBAULT, Joseph A. (A 1939) Branch
Sales Office Mgr., •C. A. Dunham Co., Ltd., 22
Wellington St. N., Room 17, and 55A Council
St., Sherbrooke, Que., Canada.

ARCHER, David M. (M 1934) Sales Repr.,
•Young Radiator Co., 143 Federal St., Boston,
and 10 Harding Ave., Braintree, Mass.

ARENBERG, Milton K. (A 1920) Pres., •Robert
Barclay, Inc., 122 N. Peoria St., Chicago, and
Wildwood Lane, Highland Park, Ill.

ARCHE. Eddar J. (A 1935) Sales Engr., Anthes

Barchy, Inc., 122 N. Febria St., Chicago, and Wildwood Lane, Highland Park, III.

ARGUE, Edgar J. (A 1935) Sales Engr., Anthes Foundry, Ltd., Saskatchewan Ave., and •778 MacMillan Ave., Winnipeg, Man., Canada, ARKLEY, Lorne M. (M 1922) Retired •107 Lascells Blvd., Toronto, Ont., Canada, ARMBRUSTER, Frank T. W. (M 1936) Sales Engr., American Radiator & Standard Sanitary Corp., 73 E. Naghten St., Columbus, and •105 First Ave., Waverly, Ohio.

ARMISTEAD, William C. (M 1937) Sales Engr., •205 Church St., Nashville, and Granny White Pike, Brentwood, Tenn.

ARMOUR, Edson G. (J 1940; S 1939) • Royal Canadian Air Force, No. 1 Air Navigation School, Rivers, Man., and 55 Sheridan St., Brantford, Ont., Canada.

ARMSPACH, Otto W.* (M 1919) Consulting Engr., 221 N. LaSalle St., Chicago, and •205 S. Summit Ave., Villa Park, III.

ARMSTRONG, Charles E. (M 1939) Chief Engr.,

• Armstrong Heat Control Co., 1626 N. E. Union
Ave., and 624 N. E. Hazelfurn Ave., Portland, Ore.

Ore.

ARMSTRONG, Clyde C. (A 1941) Mgr., • Commercial and Air Cond. Dept., Frigidaire Div., General Motors Sales Corp., 824 Mulberry St., and 803 Douglas Ave., Des Moines, Iowa.

ARMSTRONG, Walter J. (M 1938) Consulting Engr., • 1010 St. Catherine St. W., Montreal, and 15 Willow Ave., Westmount, Que., Canada.

ARNDT, Heinrich W. (A 1935) Inspector, Plumbing and Heating, U. S. Engineering Dept., Danial Field Airbase, and • 2034 Wrightsboro Rd., Augusta, Ga.

ARNOLD Robert S. (A 1928: I 1922) Owner.

ARNOLD, Robert S. (A 1926; J 1922) Owner, Robt. Arnold Sales & Engineering Co., 409 Otis Bldg., Philadelphia, and • Haverford Mansions,

Haverford, Pa.

ARONSON, Henry H. (A 1939; J 1929) Combustion Engr., Petroleum Administration for War, 624 S. Michigan Ave., and •6145 Winthrop Ave., Chicago, Ill.

Ave., Chicago, III.

ARROWSMITH, John O. (M 1934) Asst. Supt.
of Works, • Canadian Kodak Co., Ltd., and 9
Humberview Rd., Toronto 9, Ont., Canada.

ARTHUR, John M., Jr. (M 1923) Div. Mgr.,
Lighting, Steam and Comm. Service, • Kansas
City Power & Light Co., 1330 Baltimore Ave.,
Kansas City, Mo., and 3311 State Ave., Kansas
City Kan. City, Kan.

ASH, Robert S. (J 1940) Ensign, U. S. N. R., Public Works Dept., Great Lakes Naval Training Station, Great Lakes, Ill.

ASHLEY, Carlyle M.* (M 1931) Dir. of Development. • Carrier Corporation, S. Geddes St., Syracuse, and 22 Lynacres Blvd., Fayetteville,

ASHLEY, Edward E. (M 1912) Member of Firm,
• Edward E. Ashley, Consulting Engr., 10 East
40th St., New York, N. Y., and Middlesex Rd.,
Noroton Heights, Conn.

ATHERTON, Alfred E. (A 1937) Dir., • A. E. Atherton & Sons Pty., Ltd., 383 Latrobe St., Melbourne, and 39 Esplanade, Elwood, Victoria,

ATHERTON, George R. (M 1930) Exec. Dept., The Trane Co., LaCrosse, Wis., and • 177 N. Illinois Ave., Batavia, Ill.

ATKINS, George E. (M 1941) Consulting Engr., Hobart Bldg., San Francisco, and 64 Oak Ridge Rd., Berkeley, Calif.

AUER, George G. (4 1939) Pres., • The Auer Register Co., 3608 Payne Ave., Cleveland, and 1021 Homewood Dr., Lakewood, Ohio. AUSTIN, William H. (A 1943; J 1940; S 1937) 65 Chapman Ave., Greenwood, R. I.

65 Chapman Ave., Greenwood, R. I.

AVERY, Lester T. (M 1934) Pres., Avery Engineering Co., 1906 Euclid Ave., Cleveland, and

•21149 Colby Rd., Shaker Heights, Ohio

AXEMAN, James E. (M 1932; A 1931; J 1925)

Gen. Sales Mgr., • Spencer Heater Div., The

Aviation Corp., Box 660, and 1328 Woodmont

Ave., Williamsport, Pa.

AV. Edward I. (4 1943; J 1940) Asst. Air Cond.

AY, Edward L. (A 1943; J 1940) Asst. Air Cond. Engr., Library of Congress, Second and Pennsylvania Ave. S.E., Washington, D. C., and •17 Mallow Hill Ave., Baltimore, Md.

BABCOCK, Paul R. (M 1941) Consulting Engr., G. M. Simonson, 625 Market St., San Francisco, • 328-24th St., Oakland, Calif.
BABER, John E. (A 1940) Lt. U.S.N.R., U.S.S. Bainbridge, c/o Postmaster, New York, N. Y., and Charlotte, N. C.
BACHMAN, Fred (M 1936) Contractor, • Fred Bachman, 1608 N. Carlisle St., Philadelphia, and 906 Bell Ave., Yeadon, Pa.
BACHMANN, Arthur J. (J 1940; S 1939) U. S. Army, and • 59-38-69th Ave., Ridgewood, L. I., N. Y.

BACHOFER, Henry A., Jr. (A 1942; J 1938)
Sgt. •87th Base Hq. and Air Base Squadron,
V. A. F. S. Army Air Base, Victorville, Calif.,
and 534 S. Eighth St., Salina, Kan.
BACKSTROM, Russell E.* (A 1931; J 1928)
Mgr., •Ind. Sales Dept., Wood Conversion Co.,
First National Bank Bldg., and 1655 Hillcrest
St., St. Paul, Minn.
BACKUS, Theodore H. L. (M 1916) Schumacher
& Backus, 200-208 Hill St., and •1018 Vaughn
St., Ann Arbor, Mich.
BACON, William H., Jr. (A 1942) Automotive
Engr., Tide Water Associated Oil Co., Bayonne,
N. J., and •149 Willow St., Brocklyn, N. Y.
BADGETT, W. Howard* (M 1937; J 1932) Major,
Infantry, Post Adjutant, Camp Hood, Texas,
BADHE, Jaikrishna M. (A 1940) Asst. Engr.,
•Volkart Bros., Ballard Estate, Bombay, and
Flat No. 11, "Palm View," Gokhale Rd., Dadar,
Bombay, India.

Volkart Bros., Ballard Estate, Bombay, and Flat No. 11. "Palm View," Gokhale Rd., Dadar, Bombay, India.
BAECHLIN, Alfred C., Jr. (M 1942) Engr., Western Electric Co., 717 Avenue A, and €715 Avenue C, Bayonne, N. J.
BAGGALEY, Walter (M 1938) Mech. Engr., ●The Austin Co., 16112 Euclid Ave., Cleveland, and 3390 Glencairn Rd., Shaker Heights, Ohio.
BAHNSON, Frederic F.* (M 1917) Consulting Engr., The Bahnson Co., Pres., Southern Steel Stampings, Inc., and €28 Cascade Ave., Winston-Salem, N. C.
BAILEY, Albert E., Jr. (A 1938) Sales Engr., Frigidaire Div., General Motors Corp., 29 Franklin Rd., and €200 Westover Ave., Roanoke, Va. BAILEY, Charles F. (J 1939) Newport News Shipbuilding & Drydock Co., Newport News, and €Windsor, Va.
BAILEY, Frederick A., Jr. (A 1939) Prop.
Bailey's, 130 King St., and 70 Warren St., Charleston, S. C.
BAILEY, James L. (A 1940; J 1930) Asst. Chief

Charleston, S. C.

BAILEY, James L. (A 1940; J 1930) Asst. Chief Engr., Parks-Cramer Co., Charlotte, N. C.

BAILEY, W. Mumford (M 1930) Managing Dir., British Trane Co., Ltd., Vectair House, Clerkenwell Close, London, E. C. 1., England.

BAIRD, Floyd E. (M 1929) Atlanta Dist. Mgr.,

• The Trane Co., 314 Palmer Bidg., Atlanta, and 400 Campbell Hill, Marietta, Ga.

BAKER, Donald L. (A 1940) Engr., • Martinez & Marquez (Carrier Distributors), San Juan, Puerto Rico, and 1931 Chapel St., New Haven, Conn.

BAKER, Harold S. (A 1937) Sales Engr., Bakers-field Hardware Co., 2015 Chester Ave., Bakers-

field Hardware Co., 2015 Chester Ave., Bakersfield, Calif.

BAKER, Harry L., Jr. (A 1943; J 1935) Lt. (j.g.)
U.S.N.R., Hollis S-10, Harvard University,
Cambridge, Mass., and 9948 Oakdale Rd.,
Atlanta, Ga.

BAKER, Irving C. (M 1921) Vice-Pres. in Charge
of Sales, Chrysler Corp., Airtemp Div., 1119
Leo St., and Box 242, Route 7, Dayton, Chio.

BAKER, Roland H. (M 1928; A 1924) Lt. Comdr.,
U. S. N. R., &U. S. S. American Legion, c/o
Postmaster, New York, N. Y., and Elkins, N. H.
BAKER, Thomas (M 1938) Chief Engr., Suburban
Air Conditioning Corp., 10 Brookdale Pl., Mt.
Vernon, and \$600 East 242nd St., New York,
N. Y.

Vernon, and •600 East 242nd St., New York, N. Y.

BAKER, Thomas A. (M 1942) Vice-Pres., • Baker Specialty & Supply Co., 701 Erie Ave., and 2205 Broadway, Logansport, Ind.

BAKER, William H., Jr. (A 1935) Gen. Sales Dept., • American Radiator & Standard Sanitary Corp., P. O. Box 1226, and 221 Buchanan Pl., Pittsburgh, Pa.

BALDWIN, Karl F., Jr. (A 1941; J 1938) Engr., W. D. Peugh & Associates, Box 396, Pleasanton, and • 1508 Arch St., Berkeley, Calif.

BALL, Frederick T. (A 1940) Mgr. Stoker-Refrigeration Appliance Dept., The Canadian Fairbanks Morse Co., Ltd., 324 Main St., and • 374 Brock St., Winnipeg, Man., Canada.

BALL, William (A 1930) Pres., • Interstate Heating & Plumbing Co., 521 Southwest Blvd., Kansas City, Mo., and 1026 Shawnee Rd., Kansas City, Kan.

BALLANTYNE, George L. (A 1936) Royal Canadian Air Force, © Crane, Ltd., 1170 Beaver Hall Sq., and 140 Ballantyne Ave. S., Montreal W., Que., Canada.
BALLMAN, William H. (M 1937) Chief Engr., John A. Connelly Co., Engrs. and Contrs., 1419 N. Broad St., Philadelphia, Pa.
BALSAM, Charles P. (M 1932) Gen. Mgr., National Home Equipment Co., 50 Church St., New York, and © 324 Fourth St., Brooklyn, N. Y.
BAMOND, Manuel J. (M 1936) Sales Engineer, © Barber-Colman Co., 221 N. LaSalle St., and 5848 Kenmore Ave., Chicago, Ill.
BANACH, Casimer J. (J 1939) Chief Draftsman, Johnson Fan & Blower Corp., 1319 W. Lake St., and © 2346 W. Thomas St., Chicago, Ill.
BANKS, John B. (A 1937) North Coast Branch Mgr., © Minneapolis-Honeywell Regulator Co., 122 N. E. Broadway, and 4030 N. E. Wistaria Ave., Portland, Ore.

Portland, Ore.

BANOWSKY, Aubra B. (M 1938) Commercial and Industrial Sales Mgr., United Gas Corp., P. O. Box 2628, and •3735 Ingold, Houston,

Texas.

BARBIERI, Patrick J. (A 1943; J 1936; S 1933)

Air Cond. Engr., Armo Cooling & Ventilating Co., 30 West 15th St., and •2237 Belmont Ave., New York, N. Y.

BARNARD, M. Everett (A 1931; J 1929) Sales Engr., • Carrier Corp., 12 South 12th St., and 380 Vernon Rd., Philadelphia, Pa.

BARNES, Arthur F. (M 1920) Owner, Sales Repr. and Mech. Engr., • Texas Engineering Co., 602 Kirby Bldg., and 3015 Jarrard St., Houston, Texas.

Kirby Bldg., and 3015 Jarrard St., Houston, Texas.

BARNES, Arthur R. (M 1924) Engr., • U. S. Supply Co., 1315 West 12th St., and 326 East 70th Terrace, Kansas City, Mo.

BARNES, Hugh S. (J 1940) Capt. • 99th C. A. (aa) A. P. O. 899, c/o Postmaster, New York, N. Y., and 2152 Sherwood Ave., Charlotte, N. C. BARNES, Lewis L. (A 1942; J 1937) Air Cond. Engr., Carrier Atlanta Corp., 348 Peachtree St., and • 3995 N. Stratford Rd., Atlanta, Ga.

BARNES, N. W. (A 1940) Sales Repr., • The Fulton Sylphon Co., 568 Wrigley Bldg., and 505 N. Michigan Blvd., Chicago, Ill.

BARNES, Raymond W. (M 1939) Htg., Vtg. and Air Cond. Contractor, 1208 N. Main Ave., San Antonio. Texas.

BARNES, Walter E. (M 1933) Pres., Barnes & Jones, Inc., 128 Brookside Ave., Jamaica Plain (Boston), and • 7 Woodlawn Ave., Wellesley Hills, Mass.

BARNETT, Harry (M 1942) Chief Engr., The Powers Regulator Co., 2720 Greenview Ave., Chicago, and • 923 Vernon Ave., Glencoe, Ill.

BARNEY, William E. (M 1936) Mgr. and Consulting Engr., • Hydraulic-Press Brick Co., Ohio and Michigan Div., South Park, and 4929 East 108th St., Cleveland, Ohio.

BARNEY, William J. (J 1941) Hoffman Specialty Co., 1001 York St., and • 2049 N. Meridian St., Indianapolis, Ind., BARNIW, Willis E., Jr. (M 1933; J 1930) 4660

BARNEY, William J. (/ 1941) Hoffman Specialty Co., 1001 York St., and e-2049 N. Meridian St., Indianapohs, Ind.
BARNUM, Willis E., Jr. (M. 1933; J. 1930) 4660 E. Marginal Way, Seattle, Wash.
BARR, George W. (Life Member; M. 1905) (Board of Governors, 1910), Dist. Mgr., e-Aerofin Corp., 2030 Land Title Bidg., Philadelphia, and Woods End. Villa Nova, Pa.
BARRETT, Campbell M. (A. 1941) Canadian Active Service, and e-Newton, Ont., Canada.
BARRY, Patrick I. (M. 1920) Managing Dir., M. Barry, Ltd., e-4 Marlboro St., and 8 Sidney Park, Cork, Ireland.
BARTELS, Cork, Ireland.
BARTELS, Charles J. (M. 1942) Owner, e-Automatic Stoker & Engineering Co., 207-8 Richardson Bidg., and 1416 Washington Ave., Parkersburg, W. Va.
BARTELS, Everett M. (A. 1941; J. 1939) Mech. Engr., U. S. Army Ordnance., and e-1708 N. Quebec St., Arlington, Va.
BARTH, Herbert E. (M. 1920) Vice-Pres., e-American Blower Corp., P. O. Box 58, Roosevelt Annex, and 418 Wardell Apts., 15 E. Kirby, Detroit, Mich.

Detroit, Mich.

BARTH, John W. (A 1943; J 1939) Douglas Aircraft Corp., and •340 Olive Ave., Long Beach, Calif.
BARTLETT, Amos C. (M 1919) Mgr. Htg. and Vtg. Dept., • B. F. Sturtevant Co., Hyde Park, Boston, and 22 Weston Ave., Braintree, Mass.
BARTLETT, C. Edwin (M 1922) Pres., • Bartlett & Co., Inc., 3112 North 17th St., and 3111 W. Coulter St., Philadelphia, Pa.
BARTLEY, Henry E. (M 1938) Dir. and Works Mgr., Matthews & Yates, Ltd., Cyclone Works, Swinton, and • The "Grange," Hospital Rd., Pendlebury, Lancs, England.
BARTON, Jay (M 1937) Owner, Barton Engineering Co., 416 Stephenson Bldg., Detroit, Mich.

Mich

Mich.

BASSETT, James W. (A 1938) Sales Engr.,

McQuay Inc., 2832 E. Grand Blvd., Detroit,
and 123 Merrill St., Birmingham, Mich.

BASTEDO, Albert E. (M 1919) Vice-Pres., and
Treas., • Burnham Boiler Corp., Irvington, and
55 Burnside Dr., Hastings-on-Hudson, N. Y.

BASTEDO, George R. (A 1942; J 1937) Htg. and
Vtg. Engr., George A. Fuller Co. and MerrittChapman & Scott Corp., Quonset Point, R. I.,
and • 102-36-86th Rd., Richmond Hill, L. I.,
N. Y.

and • 102-36-86th Rd., Richmond Hill, L. 1., N. Y.

BATES, John H. (J 1941; S 1939) U. S. Army, and 1313 W. Lehigh, Philadelphia, Pa.

BATTAN, Stuart W. (M 1940) Owner, • Battan's, Avondale, and Kennett Square, Pa.

BAUER, Albert E. (M 1935) Chief Engr., Stainless & Steel Products Co., 1000 Berry Ave., and • 59 S. Victoria St., St. Paul, Minn.

BAUM, Albert L. (M 1916) Member of Firm, • Jaros, Baum & Bolles, 415 Lexington Ave., and 600 West 111th St., New York, N. Y.

BAUMGARDNER, C. M. (M 1928) Branch Mgr., • U. S. Radiator Corp., 3254 N. Kilbourn Ave., Chicago, and 416 Cumnor Rd., Kenilworth, Ill.

BAXTER, Julian F. (M 1942) Pres., • Automatic Coal Burning Corp., 499 Peachtree St., and 102 Wakefield Dr., Atlanta, Ga.

BAXTER, Julian F., Jr. (A 1941) Vice-Pres. and

BAXTER, Julian F., Jr. (A 1941) Vice-Pres. and Sales Mgr., Automatic Coal Burning Corp., 499 Peachtree St., and 197 Brighten Rd. N.E., Atlanta, Ga.

Atlanta, Ga.

BAXTER, William E. (A 1939) Pres., • W. E.
Baxter, Ltd., 2200 Hingston Ave., Montreal, and
89-51st Ave., Lachine, Que., Canada.
BAY, Charles H. (A 1938) In charge of Steam
Sales, • Detroit Edison Co., 2000 Second Ave.,
and 17322 Wildemere, Detroit, Mich.

and 17322 windemere, Detroit, Mich.
BAYLES, Robert W. (A 1940) Mgr., Htg. Div.,
James Morrison Brass Manufacturing Co., Ltd.,
276 King St. W., and 34 Gormley Ave.,
Toronto, Ont., Canada.
BAYSE, Harry V. (Life Member; M1923) Chairman of Board, & American Furnace Co., 2719-31
Delmar Blvd., and 6959 Hancock Ave., St.

Deimar Bivd., and 0909 Gancock Ive., S., Louis, Mo. BAZZONI, Joseph P. (A 1942) Mech. Engr., G. P. Rice Co., Keesler Field, Miss., and Route 2, Ottawa, Ill.

BEACH, Ralph L. (M 1942) Branch Chief Engr.,

• York Ice Machinery Corp., P. O. Box 2210,
and 2035 McLandon Ave. N.E., Atlanta, Ga.

BEACH, Walter R. (A 1936) Sales Engr., • Cleveland Electric Illuminating Co., 75 Public Sq., Cleveland, and 1185 Vellowstone Rd., Cleveland Heights, Ohio.

BEALS, Dowell E. (M 1941; J 1940) Gen. Mgr., Mechanical Contractors, Associated, Oklahoma Aircraft Assembly Plant Site, and • 1224 South-west 26th St., Oklahoma City, Okla.

BEAN, George S. (A 1935) Mgr. Stoker Div.,

North Western Fuel Co., 2196 University
Ave., St. Paul, and 4949-16th Ave. S., Minneapolis, Minn.

BEARMAN, Alexander A. (M 1937) Engr., • 20th Century-Fox Film Corp., 444 W. 56th St., New York, and 47 Edward St., Baldwin, N. Y.

BEATTIE, James (A 1940) Htg. Contr., James Beattie, 17215 Greenlawn Ave., Detroit, Mich.

BEVINGTON, Warren

• Bevington-Williams, Inc., Engineers, 730
Indiana Pythian Bldg., and 5921 Washington Blvd., Indianapolis, Ind.

Indiana Pythan Bidg., and 5921 Washington Blyd., Indianapolis, Ind.

BIBER, Herbert A. (A 1937) Engr., Mellon National Bank, 514 Smithfield St., Pittsburgh, and \$\circ*32\$ Barnes St., Wilkinsburg, Pa.

BIBLE, Hollis U. (M 1940) **Taylor & Bible, Consulting Engineers, 908-10 Bankers Mortgage Bldg., and 1609 Marshall, Houston, Texas.

BICHOWSKY, F. Russell* (M 1935) Prof. of Chem. Engrg., **Catholic University, and 4200 13th Place N E., Washington, D. C.

BIGGERS, Richmond H. (A 1939) Mfrs. Agent, **2217 E. Jefferson Ave., and 2237 E. Jefferson Ave., Detroit, Mich.

BILLINGSLEY, Oliver F. H., II (J 1937) **2172 West 20th St., Long Beach, and 218-39th St., Manhattan Beach, Calif.

BINDER, Charles G. (M 1920) Mgr., Htg. Dept., Warren Webster & Co., 17th and Federal St., Camden, and **115 Oak Terrace, Merchantville, N. J.

BIRD, Charles (A 1934) Treas. and Gen. Mgr., The Doermann Roehrer Co., 450 E. Pearl St., Cincinnati, Ohio.

Cincinnati, Ohio.

BIRKETT, Harold S. (M 1940) Engr. Commercial
Gas Utilization, The Brooklyn Union Gas Co.,
176 Remsen St., Brooklyn, and •87 Deepwood
Rd., Roslyn Heights, L. I., N. Y.

BISHOP, Charles R. (Life Member; M 1901)
(Council, 1916) 22 Sagamore Rd., Bronxville,
N. Y.

(Council, 1916) 22 Sagamore Rd., Bronxville, N. Y.

BISHOP, Frederick R. (M 1921) Mgr. of Sales, The Brundage Co., Kalamazoo, and •8011 Dexter Blvd., Detroit, Mich.

BISHOP, Jacob A. (M 1939) Dist. Mgr., •American Blower Corp., 619 Texas Bank Bldg., and 1115 N. Windomere St., Dallas, Texas.

BISHOP, Joseph W. (M 1939) Lt. Col., Asst. Dir. Ordnance Services, Hq., •5th Can. Armored Div., c/o Base P. O. Ottawa, and 62 Highland Crescent, R. R. No. 2, York Mille, Ont., Canada. BISHOP, M. W. (M 1942; A 1939; J 1935) Branch Mgr., •American Blower Corp., Room 1011, Majestic Bldg., Milwaukee, and 4453 N. Mariborough Dr., Shorewood, Wis.

BISPALA, John T. (A 1940) Mgr., Bispala Bros., 2328 First Ave., Hibbing, Minn.

BJERKEN, Maurice H. (M 1937; A 1927) Repr., • Hoffman Specialty Co., 533 S. Seventh St., and 4952-17th Ave. S., Minneapolis, Minn.

BLACK, Edgar N., III (M 1922) Philadelphia Mgr., •Fitzgibbons Boiler Co., Inc., 1717 Sansom St., Philadelphia, and 111 Woodside Rd. Haverford, Pa.

BLACK, F. G. (Life Member; M 1919) Pres.-Treas., • F. C. Black Co., 622 W. Randolph St., and 4535 N. Ashland Ave., Chicago, Ill.

BLACK, Harry G. (M 1917) Prop., • P. Gormly Co., 155 N. Tenth St., and 927 North 65th St., Philadelphia, Pa.

BLACK, James M. (J 1940; S 1939) Sales Engr., Avery Engineering Co., 533 Mutual Home Bldg., and •605 Oakwood Ave., Dayton, Ohio.

BLACKHALL, W. R. (M 1922) Partner, • McKellar & Blackhall, 1104 Bay St., and 332 Waverley

BLACKHALL, W. R. (M 1922) Partner, • McKellar & Blackhall, 1104 Bay St., and 332 Waverley Rd., Toronto, Ont., Canada.

BLACKMAN, Alfred O. (Life Member; M 1911)

Robert & Co., Bona Allen Bldg., and 1263
Peachtree St., Atlanta, Ga.

BLACKMORE, F. H. (M 1923) Vice-Pres. in charge Mfg., & U. S. Radiator Corp., 1500 United Artists Bldg., Detroit, and 515 Tooting Lane, Birmingham, Mich.

Birmingham, Mich.

Błackmore, Joseph J. (A 1939; J 1937) Mfrs.
Agent, • 4030 Chouteau Ave., St. Louis, Mo.,
and 312 S. Fillmore, Edwardsville, Ill.

Blackshaw, J. L.* (M 1937; J 1929) Engr.,
Air & Refrigeration Corp., 475 Fifth Ave., New
York, N. Y., and • 247 W. Mercer Ave., College
Park, Ga.

Blair, Donald W. (A 1940) Engr., • Thomas G.
Gallagher, 80 Boylston St., Boston, and 1
Chauncy St., Cambridge, Mass.

BLAIR, Ernest L. (M 1941) Industrial Engr., Stone & Webster Engineering Corp., 49 Federal St., Boston, and • 108 Willow Ave., Wollaston

BLAIR, Ernest L. (M 1941) Industrial Engr.,
Stone & Webster Engineering Corp., 49 Federal
St., Boston, and • 108 Willow Ave., Wollaston
(Quincy), Mass.
BLAKELEY, Hugh J. (M 1935) Partner, • Hubbard, Rickerd & Blakeley, 275 Orange St., New
Haven, and 14 Edward St., East Haven, Conn.
BLAKER, Alfred H. (A 1939) Secy.-Treas.,
• National Korectaire Co., 1619 Cortland St.,
and 6018 N. Francisco Ave., Chicago, Ill.
BLANCHARD, Norris M. (M 1942) Western
Sales Mgr., • L. J. Mueller Furnace Co., 681
J. E. George Blvd., Omaha, Nebr.
BLANDING, Robert L. (M 1938) Vice-Pres.,
• Taco Heaters, Inc., 123 South St., and 1385
Smith St., Providence, R. I.
BLANKIN, Merrill F. (M 1927; A 1926; J 1919)
(1st Vice-Pres., 1942; Treas., 1939-41; Council,
1939-42) Pres., • Haynes Selling Co., Inc., S.E.
Cor. Ridge Ave. and Spring Garden St., and 528
E. Gates St., Roxboro, Philadelphia, Pa.
BLAS, Romualdo J. (M 1936) Mgr., Chief Engr.,
• Blas & Co., Apartado Postal 1006, Caracas,
Venezuela, South America.
BLAYNEY, W. Ronald (A 1939) Secy.-Treas.,
W. B. Graves Heating Co., 162 N. Desplaines
St., and • 4327 Monticello Ave., Chicago, Ill.
BLAZER, Benjamin V. (A 1940) Owner, • M.
Blazer & Son, 173 Market St., Passaic, and 48
13th Ave., Paterson, N. J.
BLOOM, Louis (M 1935) Co-Partner, Freeport
Plumbing and Heating Engineers, 34-A Broadway, Freeport, L. I., N. Y.
BLUM, Herman, Jr. (J 1936) Engr., C. Wallace
Plumbing Co., Box 1209, and • 4438 Emerson
St., Dallas, Texas.
BLUM, Richard J., Jr. (A 1940) Sales Engr.,
• The Kirk & Blum Manufacturing Co., 2850
Spring Grove Ave., and 3909 Vine St., Cincinnati, Ohio.
BUMENTHAL, Moritz I. (M 1936) Mech.
Engr., U. S. Maritime Commission, Regional

• The KIRK & Blum Manufacturing Co., 2800
Spring Grove Ave., and 3909 Vine St., Cincinnati, Ohio.

BLUMENTHAL, Moritz I. (M 1936) Mech.
Engr., U. S. Maritime Commission, Regional Construction Office, Oakland, Calif.

BOALES, William G. (M 1936; A 1923) Owner,
• Wm. G. Boales & Associates, 6429 Hamilton Ave., Detroit, and 43 Edgemere Rd., Grosse Pointe Farms, Mich.

BODEN, Walter F. (A 1937) Branch Mgr.,
• Modine Manufacturing Co., 424 E. Wells St., Milwaukee, and 606 Milwaukee Ave., South Milwaukee, Wis.

BODINGER, Jacob H. (M 1931) Pres., • J. H. Bodinger Co., inc., 530 Tenth Ave., New York, and Valley Cottage, N. Y.

BODMER, Emmanuel (M 1937) Address Unknown—Mail Returned.

BOESTER, Carl F.* (M 1939; A 1936) Dir., Housing Research, Purdue Research Foundation, Purdue University, Lafayette, Ind., and • 101 E. Essex, Kirkwood, St. Louis, Mo.

BOGATY, Hermann S. (M 1921) 735 E. Phil-Ellena St., Philadelphia, Pa.

BOLAND, L. C., Jr. (M 1941) Consulting Engr., 774 Spring St. N.W., and • 1140 Roseedale Dr. N.E., Atlanta, Ga.

BOLAND, Roy O. (A 1938) Mgr., Insulation Div., • Alexander Murray & Co., Ltd., 4035 Richelieu St., Montreal, and 348 Kensington Ave., Westmount, Que., Canada.

BOND, Harry H. (M 1938) Partner, • Edward E. Ashley, Consulting Engr., 10 East 40th St., New York, and 137-81 Belknap St., Springfield, L.I., N. Y.

BOND, Horace A. (M 1930) Prof. Engr., 152 Washington Ave., and • 12 Ramsey Pl., Albany, Notes.

L. I., N. Y.

BOND, Horace A. (M 1930) Prof. Engr., 152
Washington Ave., and •12 Ramsey Pl., Albany,

N. Y.

BONTHRON, Robert C. (A 1935) Application
Engr., Westinghouse International Co., 40 Wall
St., New York, and •44 Ingraham Blvd.,
Hempstead, L. I., N. Y.

BOOTH, Charles A. (M 1917) Vice-Pres., • Buffalo
Forge Co., 490 Broadway, and 142 Summit Ave.,
Buffalo, N. Y.

BOOTH, Clifford A. (A 1942) Sales Engr., • Fiberglas Canada, Ltd., 1025 Confederation Eldg., and
4523 Kensington Ave., Montreal, Que., Canada.

BORAK, Eugene (M 1937) Engr., • Buensod Stacey Air Conditioning, Inc., 60 East 42nd St., New York, N. Y., and 1322 Seventh St., Port

New York, N. Y., and 1822 Seventh St., Port Huron, Mich.

BORG, Elmer H. (M 1938) Partner, Proudfoot Rawson-Brooks & Borg, 815 Hubbell Bldg., and 3101 Easton Blvd., Des Moines, Iowa.

BORKAT, Philip (A 1943; J 1936) Chief Engr., Viking Air Conditioning Corp., 5600 Walworth Ave., and •869 East 128th St., Cleveland, Ohio.

BORNEMANN, Walter A. (M 1924; J 1923) Sales Engr., • Carrier Corp., 12 South 12th St., Philadelphia, and 123 W. Wharton Ave., Glenside, Pa.

BORNSTEIN, Alfred B. (A 1942) Partner, • William Bornstein & Son, 2209 Channing St. N.E., Washington, D. C., and 7414 Piney Branch Rd., Takoma Park, Md.

BORNSTEIN, William (A 1937) Partner, • William Bornstein & Son, 720 New Jersey

N.E., Washington, D. C., and (*12 1 10.0)
Rd., Takoma Park, Md.
BORNSTEIN, William (A 1937) Partner,
• William Bornstein & Son, 720 New Jersey
Ave. N.W., Washington, D. C., and 7414 Piney
Branch Rd., Takoma Park, Md.
BORTON, A. Robert (A 1943; J 1939) Engrg.
Dept., John J. Nesbitt, Inc., • State Rd. and
Rhawn St., Philadelphia, and 3332 Decatur St.,
Holmesburg, Philadelphia, Pa.
BOTELHO, Nanto J. (A 1937) Chief Engr., and
Mgr., Ceibrasil Representacoes, Ltda., Rua
General Camera 64-7° Andar, Rio de Janeiro,
Brazil, South America.
BOTTUM, Edward W. (A 1942; J 1938) Chief
Engr., • Skuttle Manufacturing Co., 12989
Greeley Ave., and 13220 Woodward Ave.

Engr., • Skuttle Manufacturing Co., 12989
Greeley Ave., and 13220 Woodward Ave.,
Detroit, Mich.
BOUEY, Angus J. (A 1937; J 1930) Sales Engr.,
• The B. F. Sturtevant Co., 681 Market St., and
4810 Fulton St., San Francisco, Calif.
BOUILLON, Lincoln (M 1933) Consulting Engr.,
• Room 426, 1411 Fourth Ave. Bldg., and 3220
Sierra Dr., Seattle, Wash.
BOWEN, Leroy F. (A 1942) Mech. Engr., Federal
Public Housing Authority, 1700 Dierks Blvd.,
and • 5645 Highland, Kansas City, Mo.
BOWERMAN, E. L. (A 1937) Flight Lt., Engr.
Officer, Royal Canadian Air Force, Officers Mess,
R. C. A. F., Station, Rockcliffe, Ont., and • 274
Belsize Dr., Toronto, Ont., Canada.
BOWERS, Arthur F. (A 1919) Pres., • Industrial

BOWERS, Arthur F. (A 1919) Pres., • Industrial Heating & Engineering Co., 828 N. Broadway, and 2853 N. Hackett Ave., Milwaukee, Wis. BOWLES, Potter (A 1928) Pres., • Hoffman Specialty Co., 1001 York St., Indianapolis, and West Newton, Ind.

West Newton, Ind.

BOXALL, Frederick (M 1937) Export-Air Cond.

and Refrig. Eng., Worthington Pump & Machinery Corp., Worthington Ave., Harrison, and

•38 Kenwood Ave., Verona, N. J.

BOYAR, Sidney L. (J 1938) Merchandise Development (Plbg. and Htg.), Sears, Roebuck & Co.,

Dept. 642, 925 S. Homan Ave., Chicago, Ill.,

and •711 W. Chicago Ave., East Chicago, Ill.,

BOYD, Lyle E. (A 1941) Htg. and Vtg. Engr., Remington Arms Co., Lake City Ordnance Plant, Independence, Mo., and •5144 Roesland Lane, Kansas City, Kan.

BOYD, Robert Lee, Jr. (J 1941) Sales Engr.,

• Houston Lighting & Power Co., P. O. Box
1700, and 4017 Coleridge Ave., Houston, Texas.

BOYD, Spencer W. (M 1937; J 1931) Consulting
Engr., • Newcomb & Boyd, 615 Trust Co. of
Georgia Bldg., and 1505 Fairview Rd., Atlanta,

Ga.

BOYD, Thomas D. (M 1937) Sales Engr., • Johnson Service Co., 1905 Duniap St., and 3320 N. Sterling Way, Cincinnati, Ohio.

BOYDEN, Davis S.* (Life Member; M 1909) (Presidential Member) (Pres., 1937; 1st Vice-Pres., 1936; Treas., 1933-34; Council, 1917, 1930-38) Sr. Administration Assist. (Engr.) Signal Corps, U. S. A., 730 Commonwealth Ave., Boston, and • 1496 Commonwealth Ave., Brighton, Mass.

BOYKER Robert O. (A 1942: J 1935) Contrac-

BOYKER, Robert O. (A 1942; J 1935) Contrac-tor, • Mac Boyker & Son, 220 First Ave., and 100 Kennebeck Ave., Kent, Wash.

BOYLE, John R. (M 1936) Asst. Chief Engr., Westerlin & Campbell Co., 1113 Cornelia Ave., and •6858 Oscola Ave., Chicago, III. BRAATZ, Chester J.* (M 1930) Sales Mgr., Barber-Colman Co., and •1819 Clinton St.,

BRAALL, Chester J.* (M. 1900) Saics Magi.,
Barber-Colman Co., and • 1819 Clinton St.,
Rockford, Ill.

BRACKEN, John H. (M. 1927) Mgr., Industrial
Uses Dept., • The Celotex Corp., 120 S. LaSalle
St., and 455 Oakdale Ave., Chicago, Ill.

BRADFIELD, William W. (Life Member: M. 1926)
Mech. Engr., • 341 Michigan Trust Bldg., and
1352 Franklin St. S.E., Grand Rapids, Mich.
BRADLEY, Eugene P. (M. 1906) No. 4 Yale
Ave., St. Louis, Mo.

BRANDIT, Allen D. (M. 1940) P. A. Sanitary
Engr., U. S. Public Health Service, Office of Chief
of Ordnance, 333 N. Michigan Ave., Chicago,
and • 414 Merrill Ave., Park Ridge, Ill.

BRANDIT, E. H., Jr. (M. 1928) Pres., • Reliance
Engineering Co., Inc., P. O. Box 1292, and 1101
Providence Rd., Charlotte, N. C.

BRANIFF, Paul R. (A. 1939) Secy.-Treas.,
• Braniff Engineering Co., 817 N. Broadway, and
2004 Northwest 16th, Oklahoma City, Okla.

BRATT, Hero D. (M. 1937) Sales Engr., Warren

BRATT, Hero D. (M. 1937) Sales Engr., Warren Webster & Co., 228 Ottawa Ave. N.W., and •2259 Stafford Ave. S.W., Grand Rapids, Mich.

BRAUER, Roy (M 1926) Dist. Mgr., • The Trane Co., Magee Bldg., and 576 Austin Ave., Mt. Lebanon, Pittsburgh, Pa.

BRAUN, Charles R., Jr. (J 1943; S 1939) Engr., War Dept., • Pittsburgh Ordnance Dist., Chamber of Commerce Bldg., and 4903 Forbes St., Pittsburgh, Pa.

Pittsburgh, Pa.

BRAUN, Louis T. (M 1921) Exec. Secy. • Chicago Master Steamfitters Assn., 228 N. LaSalle St., and 1548 Pratt Blvd., Chicago, Ill.

BRAYMAN, Albert I. (J 1937) Mech. Designer, Jackson & Moreland, Consulting Engrs., Room 608, Park Sq. Bldg., 31 St. James Ave., Boston, and • 340 Boulevard, Revere, Mass.

BREDESEN, Bernhard P. (A 1931) Engr., • Reese & Bredesen, 403 Essex Bldg., and 3623 Knox Ave. N., Minneapolis, Minn.

BENEMAN Robert B. (4 1931, 1927) Branch

R. NOX Ave. N., Minneapoiis, Minn.

BRENEMAN, Robert B. (A 1931; J 1927) Branch
Mgr., Armstrong Cork Co., 50 E. Broad St.,
and 358 Arden Rd., Columbus, Ohio.

BREWER, Frank M. (J 1941) Associate Naval
Archt., Norfolk Navy Yard, Portsmouth, and
407 W. 30th St., Norfolk, Va.

BREYER, Frederick (S 1940) Student • Carnegie Institute of Technology, 5931 Walnut St., Pittsburgh, Pa., and 4219 Richton, Detroit,

BREX, Irving E. (A 1939) Asst. Mgr., Brex & Bieler Div., The Excelsior Steel Furnace Co., 960-60th St., and •7200 Ridge Blvd., Brooklyn, N. Y.

BRIDE, William T. (M 1928; J 1925) • P. O. Box 777, Lawrence, and 28 Albion St., Methuen, Mass.

BRIGHAM, Clare M. (M 1935) Vice-Pres. in charge of Sales, • C. A. Dunham Co., 450 E. Ohio St., Chicago, and 420 Maple Ave., Winnetka, 111.

BRINKER, Harry A. (M 1934) 2521 University, Kalamazoo, Mich.

BRINTON, Joseph W. (M 1920) Mgr., Boston Dist., • American Blower Corp., 1003 Statler Bldg., Boston, and 42 Gleason St., West Medford,

BRISSENDEN, Carroll W. (J 1939) Lt. (j.g.) U.S.N.R., and •8443 S.W. 56th Ave., Rt. 6, Portland, Ore.

BRISSETTE, Leo A. (M 1930) Treas., • Trask Heating Co., 4 Merrimac St., Boston, and 168 Florence St., Melrose, Mass.

BRITTAIN, Alfred, Jr. (M 1938) Engr., Weather-makers (Canada), Ltd., 593 Adelaide St., and • 138 Wheeler Ave., Toronto, Ont., Canada. BROCHA, John F. (M 1936) Buyer, Plbg. and Htg., Montgomery Ward & Co., 619 W. Chicago Ave., and • 5475 Hirsch St., Chicago, Ill.

BROD, Bernard M. (J 1941) Engr., Suburban Air Conditioning Corp., 10 Brookdale Pl., and • 669 N. Terrace Ave., Fleetwood, Mt. Vernon,

BROD, Bernard M. (/ 1941) Engr., Suburbain Air Conditioning Corp., 10 Brookade Pl., and •669 N. Terrace Ave., Fleetwood, Mt. Vernon, N. Y.

BRODERICK, Edwin L.* (M 1933) Mech. Engr., The Engineer Board, Ft. Belvoir, and •P. O. Box 1153, Alexandria, Va.

BRODIE, Aaron H. (M 1942) Pres., •J. Brodie & Son, Inc., 1329 E. Fort St., and 2324 Chicago Blvd., Detroit, Mich.

BRODNAX, George H., Jr. (M 1938) Sales Engr., •Georgia Power Co., Electric Bldg., and 1564 Westwood Ave. S.W., Atlanta, Ga.

BROKAW, George K. (A 1942; J 1939; S 1938) Htg. and Vtg. Engr., U. S. Naval Supply Depot, Clearfield, and •52 Ambasador Village, Salt Lake City, Utah.

BRONSON, Carlos E.* (M 1919) Chief Mech. Engr., Kewanee Boiler Corp., Kewanee, Ill.

BROOKE, Irving E. (M 1938) Consulting Engr., •189 W. Madison St., Chicago, and 830 Keystone Ave., River Forest, Ill.

BROOM, Benjamin A. (M 1914) Office Engr. and Specification Writer, Gary Armor Plate Plant, Gary, Ind., and •1639 Fargo Ave., Chicago, Ill BROOME, Joseph H. (A 1936) Sales Engr., Minneapolis-Honeywell Regulator Co., 221 Fourth Ave., New York, N. Y., and •180 Walnut St., Montclair, N. J.

BROWN, Alfred P. (M 1927) Vice-Pres., • Reynolds Corp., 4224 S. Lowe Ave., Chicago, and 1097 Merrill St., Winnetka, Ill.

BROWN, Aubrey I.* (M 1923) Prof. of Htg. and Vtg., • Ohio State University, and 169 Richards Rd., Columbus, Ohio.

BROWN, David (M 1936) Owner, Plbg. & Htg. Business, • 67 Cooper Sq., and 54 West 174th St., New York, N. Y.

BROWN, Foskett* (M 1926) Pres., • Gray & Dudley Co., 222 Third Ave. N., and Hillsboro Rd., Nashville, Tenn.

BROWN, Harper J. (J 1940) 1st Lt., Ordnance Dept., Instructor, Gunnery, Armored Force School, Ft. Knox, Ky.

BROWN, Johns, Jr. (J 1937) Equipment Engr., Frigidaire Div., General Motors Corp., Plant No. 2, Moraine City, and •428 Hadley Ave., Dayton, Ohio.

BROWN, Leland S., Jr. (S 1940) Student, Catholic University of America, and •15 Bryant

No. 2, Moraine City, and •428 Hadley Ave., Dayton, Ohio.

ROWN, Leland S., Jr. (S 1940) Student, Catholic University of America, and •15 Bryant St. N.W., Washington, D. C.

BROWN, Mack D. (M 1938; J 1936) Engr., •The Bahnson Co., 1001 S. Marshall St., and 2914 Bon Air Ave., Winston-Salem, N. C.

BROWN, Marvin L. (M 1939) Vice-Pres., Dallas Air Conditioning Co., Inc., 3500 Commerce St., and •3461 Potomac St., Dallas, Texas.

BROWN, Maurice W. (A 1943; J 1938) Asst.

Branch Mgr., •American Blower Corp., 619 Texas Bank Bldg., and 2523 W. Tenth St., Dallas, Texas.

Texas Bank Bldg., and 2023 W. Tentin St., Dallas, Texas.

BROWN, Sterling D. (J. 1939) Sales Engr., Neil
H. Peterson Co., 1129 Folsom St., and • 235
Greenwich, San Francisco, Calif.

BROWN, Tom (M. 1930) • Ward 24, Veterans
Hospitals, Dayton, Ohio, and 22151 Gratiot Ave.,
East Detroit, Mich.

BROWN, William H. (A 1923) Mgr., Brown
Bros., Inc., 3015 North 22nd St., Milwaukee,
Wis

Wis.

BROWN, William L., Jr. (A 1942) Co-Owner,
Brown Bros. Plumbing & Heating Co., 1418
Woodland Dr., Durham, N. C.

BROWN, Winfred E. (S 1941) Student, Iowa
State College, and •2026 Country Club, Ames,

Jowa.

BROWN, W. Maynard (A 1930) Warren Webster & Co., 17th and Federal Sts., Camden, N. J.

BROWNE, Alfred L. (M1923) Illinois Engineering Co., 253 Highland Rd., South Orange, N. J.

BRUCE, Marshall (A 1942) Asst. Secy., ● George W. Akers Co., 16525 Woodward, and 4184 Bishop, Detroit, Mich.

BRUNDAGE, F. Ward (J 1940) 1st Lt., 0-339311, Battery E., 4237d C. A., A. P. O. 856, c/o Postmaster, New York, N. Y.

BRUNETT, Adrian L. (M 1923) Mech. Engr., U. S. Supervising Architects Office, Procurement Bldg., Washington, D. C., and •P. O. Box 36, Rockville, Md.
BRUNNER, Emanuel G. (A 1940) Burner Sales, Dome Oil Co., Inc., and •707-20th St. N.W., Washington, D. C.
BRYANN, Wm. L., Jr. (J 1942) Research Engr., York Ice Machinery Corp., Research Dept., and •Vorkco Club, York. Pa.
BRYANT, Percy J. (M 1915) Chief Engr., ePrudential Insurance Co. of America, 763
Broad St., Newark, and 754 Belvidere Ave., Westfield, N. J.
BRYNER, John J. (M 1942) Chief Engr., Roosevelt Hotel, 121 Baronne St., and •5701 Canal Blvd., New Orleans, La.
BUCK, David T. (M 1940; A 1936) Pres., • Buck Engineering Co., 37-41 Marcy St., and 116 W. Main St., Freehold, N. J.
BUCK, Lucien (M 1928) Engr., Proctor & Schwartz, Inc., Seventh St. and Tabor Rd., Philadelphia, and •105 Jericho Manor, Jenkintown, Pa.

town, Pa.

BUCKERIDGE, Victor L. (A 1938) Owner, • H.

Buckeridge & Son, 15108 Kercheval Ave.,

Grosse Pointe Park, and 601 Fisher Rd., Grosse

Grosse Pointe Park, and 601 Fisher RG., Grosse Pointe, Mich.

BUENGER, Albert* (M 1920; J 1917) (Council, 1934-37) Bldg. Supt., Gibson Hotel, and •1204 Herschel Woods Lane, Cincinnati, Ohio.

BUENSOD, Alfred C. (M 1918) Pres., Buensod-stacey Air Conditioning, Inc., 60 East 42nd St., and •33 Fifth Ave., New York, N. Y.

BULL, Frederick W. (M 1942) Engr., •Newcomb & Boyd, and 2554 Peachtree Rd., N.W., Atlanta,

BULLOCK, Howard H. (A 1933) Commercial Engr., • General Electric Co., 212 N. Vignes St., Los Angeles, and 2442 Cudahy St., Huntington Park, Calif.

Park, Calif.
BURCH, Laurence A. (M 1934) Sales Mgr., R. L.
Deppmann Co., 5853 Hamilton Ave., Detroit, and ●78 Amherst Rd., Pleasant Ridge, Royal Oak, Mich.
BURGES, Joseph H. M. (J 1939) Draftsman, Air & Refrigeration Corp., 475 Fifth Ave., New York, N. Y., and ●20 Orchard St., Bloomfield, N. V.

BURKE, J. J. (M 1939; A 1937; J 1930) Engr. in charge of Air Cond. and Refrig., American Viscose Corp., Delaware Trust Bldg., Wilmington, Del.

ton, Del.

BURKE, John S. (M 1942) Dealer Coordinator,

New Orleans Public Service, Inc., 317 Baronne
St., and 3817 Gen. Taylor St., New Orleans, La.

BURNAM, C. M., Jr. (M 1938; A 1937) Editor,

Heating, Piping & Air Conditioning, 6 N.

Michigan Ave., and 10565 Hale Ave., Chicago,

III.

BURNAP, Charles H. (M 1941) Sales Engr.,

A. K. Howell Co., 1302 Syndicate Trust Bldg.,
and 4987 Tholozan St., St. Louis, Mo.
BURNETT, Earle S. (M 1920) Senior Mech.
Engr., Petroleum and Natural Gas Div., U. S.
Bureau of Mines, Amarillo Heilum Plant, P. O.
Box 2250, and 4223 West 11th Ave., Amarillo, Texas.

BURNS, Edward J. (M 1923) Reuben L. Anderson, 519 Cleveland Ave. N., St. Paul, and 4716 Aldrich Ave. S., Minneapolis, Minn.
BURNS, Frank G. (M 1940) Major, Infantry,

•U. S. Army, Staging Area No. 2, C. P. E.,
Charleston, S. C., and 317 Baronnest, New Orleans, La.

Orieans, La.

Or

BURR, Griffith C. (M 1937) Senior Mech. Engr. U. S. Engineers, Wilmington, and ●823 S Lumina Ave., Wrightsville Beach, N. C.

BURRITT, Charles G. (A 1916) Mgr., Minneapolis Office, • Johnson Service Co., 922 Second Ave. S., and Learnington Hotel, Minneapolis, Minn

Ave. S., and Leamington Hotel, Minneapolis, Minn.

BURRITT, Edward E., Jr. (A 1941) Field Engr., General Electric Co., 1405 Locust St., and Apt. 302, 200 W. Sedgwick St., Philadelphia, Pa. BURTCHAELL, James T. (A 1941) Pres., Rushlight's, Inc., 407 S. E. Morrison St., and 2308 N.E. 31st Ave., Portland, Ore.

BURTON, W. Russell (A 1939) Sales Engr., H. J. Sandberg Co., 500 N.E. Union Ave., and 2816 N.E. 19th St., Portland, Ore.

BUSHNELL, Carl D. (A 1921) Pres., The Bushnell Machinery Co., 311 Ross St., Pittsburgh, and Rosslyn Farms, Carnegie, Pa.

BUSSE, Herbert (M 1936) Chief Engr., Fisher Bldg., Div., Fisher & Co., 417 Fisher Bldg., and 16760 Greenview Rd., Detroit, Mich.

BUTLER, Peter D. (M 1922) Sales, U. S. Radiator Corp., Detroit, Mich., and 127 Edgewater Rd., Cliffside Park, N. J.

BUTT, Roderick E. W. (A 1936), J 1930) 605 Beatty House, Dolphin Sq., London, S. W. 1, England.

Beatty House, Dolphin Sq., London, S. W. 1, England.

BUZZARD, Francis H. (M. 1939) Asst., Charles S. Leopold, Consulting Engr., 213 S. Broad St., Philadelphia, Pa., and •624 Wood Lane, Haddonfield, N. J.

BYERS, Robert L. (M. 1942) Engr., • John Paul Jones, Cary & Millar, 448 Terminal Tower Bldg., Cleveland, and 2261 Woodward Ave., Lakewood Obio.

Bldg., Cleveland, and 2261 Woodward Ave., Lakewood, Ohio.

YRD, T. I. (A 1936) Mgr., Bldg. Markets Dept.,

The American Rolling Mill Co., and 2311 S. Sutphin St., Middletown, Ohio.

BYRNE, Joseph J. (A 1939) Htg. Engr., • Kleenair Furnace Co., 5329 N.E. Sandy Blvd., and 6416 N.E. Rodney Ave., Portland, Ore.

BYSOM, Leslie L. (M 1915) Mech. Engr., Design Section, Puget Sound Navy Yard, Public Works Dept., and • 1214 Eighth St., Bremerton, Wash.

- CADY, Edward F. (A 1943; J 1937) Mech. Engr., The Austin Co., 16112 Euclid Ave., Cleveland, and •2240 Rexwood Rd., Cleveland Heights,

and • 2240 Rexwood Rd., Cleveland Aleignes, Ohio.

CAIN, William J. (S 1940) Student, 9111 Delphine Ave., Overland, Mo.

CALDWELL, Arthur C. (M 1930) 550 South 48th St. Philadelphia, Pa.

CALDWELL, Robert J. S. (M 1941) • Carrier Engineering S. A., Ltd., Box 7821, Johannesburg, and 15 Natal St., Bellevue, Johannesburg, South

Africa.

CALEB, David (M 1923) Engr.. • Kansas City
Power & Light Co., 1330 Baltimore Ave., and
141 Spruce St., Kansas City, Mo.

CALHOON, Floyd N. (M 1942) Asst. Prof. of
Mech. Engrg.. • University of Michigan, 237
W. Engineering Bidg., and 2536 W. Liberty Rd.,
Ann Arbor, Mich.

CALL, Joseph (M 1938; J 1936) Mgr., Air Cond. Div., Elliott-Lewis Co., 2518 N. Broad St., Philadelphia, and •50 Fairfield Rd., Brookline Park, Delaware Co., Pa.

CALLAHAN, Peter J. (M 1934) Inspecting Engr., Central Hanover Bank & Trust Co., 60 Broad-way, New York, and •4057 Amboy Rd., Great Kills, S. I., N. Y.

CALNAN, Daniel J. (A 1942) Field Engr., Electric Furnace-Man, Inc., 101 Park Ave., New York, and •6 Homewood Ave., Yonkers, N Y.

CALNAN, Edward J. (M1941) Power Engr.,

The Ontario Paper Co., Ltd., Thorold, and 208 Russell Ave., St. Catherines, Ont., Canada.

CAMERON, Robert T. (J. 1941; S. 1938) Htg. Engr., Sanderson & Porter, Engineers & Constructors, U. S. Rubber Co. Plant, and •917 Bromley Rd., Charlotte, N. C.

CAMPAU, W. R. (M. 1940) Secy. and Gen. Mgr.,

• Kendall Heating Co., 1636 N.W. Lovejoy St., and 4418 Northeast 11th, Portland, Ore.

CAMPBELL, Alfred Q., Jr. (A 1940, J 1933)
Capt., Field Artillery, U. S. Army, and ●1678
York St., Memphis, Tenn.
CAMPBELL, Everett K.* (M 1920) (Treas, 1942;
Council, 1931-33; 1939-42) Pres., ●E. K.
Campbell Heating Co., 2441-3-5 Charlotte St.,
and 3717 Harrison, Kansas City, Mo.
CAMPBELL, George S. (A 1941; J 1937) Consulting Engr., ●Geo. S. Campbell, Mech. Engr.,
1018 Cotton States Bldg., Nashville, and 306
Sunnyside Dr., Highland Park Station, Chattanooga. Tenn.

Sunnyside Dr., riighiand Tala Coaton, continuous, Tenn.

CAMPBELL, George W. (J 1939) Capt., Air Corps, 25th Service Group, Municipal Airport, Greenville, S. C., and \$25 A St. S.E., Washington, D. C.

CAMPBELL, Roger P. (J 1939) Secy., E. K. Campbell Heating Co., \$903 Third National Bank Bldg., and 4014 Aberdeen Rd., Nashville, Tenn.

CAMPBELL, Thomas F. (M 1928) • T. F. Campbell Co., 1013 Penn Ave., and 101 Evernia Dr., Wilkinsburg, Pa.
CANDEE, Bertram C. (M 1933) Partner, Beman

CANDEE, Bertram C. (M 1933) Partner, Beman & @andee, Consulting Engrs., 374 Delaware Ave., Buffalo, and •19 Tremont Ave., Kenmore, N. Y. CAPLE, Ira (J 1941; S 1938) Engr., • Super Radiator Corp., and 715 University Ave. S.E., Minneapolis, Minn.

CARBONE, James H. (M 1937) Htg. Vtg. Inspector, City of New York, Municipal Bldg., New York, and •121-13-198th St., St. Albans. L. I., N. Y.

CAREY, Paul C. (M 1930) Member of Firm, • Runyon & Carey, Consulting Engrs., 33 Fulton St., Newark, and 31 Claremont Dr., Maplewood, N. J.

N. J.

CARLE, William E. (M 1926) Pres., • Carle-Boehling Co., Inc., 1641 W. Broad St., and 4015.

W. Franklin St., Richmond, Va.

CARLOCK, Marion F. (M 1936) Capt., Corps of Engineers, Office of the Area Engr., Staley Bildg., and • 802 W. Division, Decatur, Ill.

CARLSON, C. O. (A 1937) Owner, • C. O. Carlson Heating Co., 1627 Washington Ave. N., and 3526 Humboldt Ave. N., Minneapolis, Minn.

CARLSON, Everett E. (M 1932; A 1929) Branch Mgr., • The Powers Regulator Co., 2726 Locust St., and 6675 Washington Ave., St. Louis, Mo.

CARNAHAN, John H. (A 1940; J 1937) Mech. Engr., Chemical Warfare Service. • Pine Bluff Arsenal, and R. R. No. 2, Box 704, Pine Bluff, Ark.

CARON, Hector (A 1938) Mgr., Hector Caron, 324 Lincoln Highway, and • 421 S. Third St., Rochelle, Ill.

324 Lincoin Highway, and 421 S. Inird St., Rochelle, Ill.

CARPENTER, Randolph H. (M 1921) (Council, 1930-35) Mgr. New York Office, • Nash Engineering Co., Graybar Bldg., 420 Lexington Ave., New York, and 20 Jefferson Ave., White Plains, N. Y.

New York, and 20 Jefferson Ave., White Plains, N. Y.

CARRIER, Earl G. (M 1936; J 1929) Branch Mgr., Carrier Corp., 1200 Statler Bldg., Boston, and • 326 Highland Ave., Winchester, Mass.

CARRIER, Willis H.* (Life Member; M 1913) (Presidential Member) (Pres. 1931; 1st Vice-Pres., 1930; 2nd Vice-Pres., 1929; Council, 1923-32) Chairman of the Board, • Carrier Corp., 302: S. Geddes St., and 2570 Valley Dr., Syracuse, N. Y.

S. Getides St., and 2870 Valuey Dr., Syracuse, N. Y. CARROLL, Daniel E. (A 1941) Pres., Carroll. Sheet Metal Works, Inc., 46-10-70th St., and •37-22-68th St., Woodside, L. I., N. Y. CARROLL, Edgar E. (A 1939) Owner, e. Kleenair Furnace Co., 5329 N. E. Sandy Blvd., and 2434 Northeast 43rd Ave., Portland, Ore. CARROLL, William M. (A 1943; J 1938) Sales Engr., Pines Engineering Co., 2413 N. Pearl, and •4108 Vincient, Dallas, Texas. CARSON, Clifford C. (M 1930) Equipment Development & Design, U. S. Navy, Sec. 638, Bureau of Ships, Navy Dept., and •Potomac Dr., Friendship Sta., Washington, D. C. CARTER, Alexander W. (M 1940; J 1938) •c/o Chatham Malleable & Steel Products, Ltd., 518 C. P. R. Bldg., and 117 Elmer Ave., Toronto, Ont., Canada.

CARTER, Doctor (M 1934) Consulting Engr., 50
 Nevill Rd., Hove, Sussex, England.
 CARTER, John H.* (M 1936) Lt., U. S. N. R.,
 and ◦ 504 Tuxedo Blvd., Webster Groves, Mo.
 CARY, Edward B. (M 1935) ○ Comdr. (CEC)
 U. S. N. R., ○ Public Works Officer, U. S. Naval
 Training Station, Great Lakes, and 1534 Henry
 Pl. Workscan, U.

U. S. N. K., • Public Works Officer, U. S. Navai Training Station, Great Lakes, and 1534 Henry Pl., Waukegan, Ill.

CASE, Delbert V. (M 1937) Engr., • Edward W. Lochman P. & H. Co., 1421 Cherry St., Kansas City, and R. R. No. 1, Hickman Mills, Mo. CASE, Walter G. (A 1930) Mgr., Ideal Boilers & Radiators, Ltd., Ideal House, Great Marlborough St., London, W. 1, and • 66, The Ridgeway, Kenton, Harrow, Middlesex, England.

CASEY, Byron L. (M 1921) Mgr. Northern Dist., • Ilg Electric Ventilating Co., 222 N. LaSalle St., Chicago, and 404 Vine Ave., Park Ridge, Ill.

CASKEY, Luther H., Jr. (J 1941; S 1938) First Lt., • Co. F., 38th Engrs., A. P. O. 1257, c/o Postmaster, Miami, Fla., and 513 N. Queen St., Martinsburg, W. Va.

CASSELL, John D.* (Life Member; M 1913) (Council, 1930-35) Retired. 740 Garfield Ave., Palmyra, N. J.

CASSELL, William L. (M 1936) Principal, • William L. Cassell, Mech. Engr., 912 Baltimore Ave., Kansas City, and R. F. D. No. 6, Independence, Mo.

Independence, Mo.

•CHALMERS, Charles H. (Life Member; M 1925)
Gen. Mgr., • Chalmers Oil Burner Co., 318 First
Ave. N., and 523 Seventh St. S.E., Minneapolis,
Minn.

Ave. N., and 020 Seventil St. 5.E., Minicapous, Minn.

CHAMBERS, Fred W. (M 1936) Pres., • F. W. Chambers & Co., Ltd., 96 Bloor St. W., and 55 Glengowan Rd., Toronto, Ont., Canada.

CHAMPLIN, Robert C. (A 1938) Mgr., Air Cond. Engrg. Dept., • Timken Silent Automatic Div., 100-400 Clark Ave., and 13640 Mendota Ave., Detroit, Mich.

CHAPIN, C. Graham (M 1933) Treas., • Hopson & Chapin Manufacturing Co., 231 State St., and 66 Faire Harbor Pl., New London, Conn.

CHAPIN, Harvey G. (M 1935) 1st Lt., • U. S. Army Air Corps., 8505 Warren Ave., Detroit, Mich., and 8352 Maryland Ave., Chicago, Ill.

CHAPMAN, D. Bascom (M 1941) Dist. Office Mgr., Clarage Fan Co., 323 Curtis Bldg., 2842 W. Grand Blvd., Detroit, Mich.

CHAPMAN, William A., Jr. (M 1936) Lt.,

CHAPMAN, William A., Jr. (M 1936) Lt., U. S. N. R. • c/o Navy Recruiting Station, Phoenix, Ariz., and 574 Daytona Pkwy., Dayton,

CHAPPELL, Henry D. (M 1931) Mech. and Elec. Engr., • Burroughs Adding Machine Co., 6071 Second Blvd., and 15493 Whitcomb Ave., Detroit, Mich.

CHARLES, Paul L. (M 1938) Mgr. and Sole Owner, • Walsh & Charles, Ltd., 206 Tribune Bldg., and 145 Ash St., Winnipeg, Man., Canada.

•CHASE, Arthur M., Jr. (M 1938) Sales Engr., •Vork Ice Machinery Corp., Box 359, 2201 Texas Ave., and 3333 Ozark St., Houston, Texas. •CHASE, Chauncey L. (M 1931) 222 Chapel Rd., Manhasset, L. I., N. Y.

Manhasset, L. I., N. Y.

CHASE, L. Richard (M 1938; J 1931) Coordinator,

Johnson & Johnson, 4949 West 65th St.,
Chicago, and 420 Leonard, Park Ridge, Ill.

CHASE, Peter S. (A 1940) Owner, Chase Co.,
936 Oak St., and 1167 Ferry St., Eugene, Ore.

CHASE, Roger E. (A 1939) Pres., R. E. Chase &
Co., Inc., Tacoma Bldg., and 117 N. Tacoma
Ave., Tacoma, Wash.

CHASE, Roger E., Jr. (J 1941) Private, 417
Ordnance Dept. A. V. N., Geiger Field, Spokane,
Wash., and 831 S.W. Sixth Ave., Portland, Ore.

CHEESEMAN, Evans W. (J 1937; S 1934) Capt.,
Personnel Officer, Engr. Hq. 1004th Communication Zone Section, Camp Claiborne, La., and

1503 Willow St., Coffeyville, Kan.

CHENEVERT, J. Georges (M 1938) Consulting
Engr., Arthur Surveyer & Co., Room 1203,
1010 St. Catherine St. W., Montreal, and 536
Outremont, Que., Canada.

CHERNE, Realto E. (M 1938; J 1929) Branch Mgr., Carrier Corp., 1235 Carew Tower, Cincinnati, and •1 Albert Pl., Station M, Mariemont. Ohio.

CHERRY, Lester A.* (M 1921) Consulting Engr., • Cherry. Cushing and Preble, Consulting Engrs., 271 Delaware Ave., Buffalo, and 151 Euclid Ave., Kenmore, N. Y.

CHESTER, Frank L.* (A 1940) Mgr., •W. G. Chester & Son, 179 Bannatyne Ave., and 219 Kingston Row, Winnipeg, Man., Canada.

CHESTER, Thomas* (M 1917) Consulting Engr., Newcomb-Detroit Co., 5741 Russell St., and •700 Seward Ave., Detroit, Mich.

CHEYNEY, Charles C. (A 1913) Asst. Sales Mgr., • Buffalo Forge Co., 490 Broadway, and 255 Lincoln Pkwy., Buffalo, N. Y.

CHILDS, Lewis A. (M 1938) Dist. Sales Mgr., • Clarage Fan Co., 520 Commercial Trust Bldg., Philadelphia, and 330 Harrison Ave., Glenside, Pa.

CHRISTENSON, Harry (A 1931) Co-Partner,

• Hunter-Prell Co., 15-19 E. Jackson St., and
121 Sunset Blvd., Battle Creek, Mich.

CHRISTIERSON, Carl A. (A 1939; J 1937) Mgr.,

• Carrier Engineering S. A., Ltd., Box 2421, and
407 Buckingham Court, 91 Smith St., Durban,

South Africa.

CHRISTMANN, William F. (A 1931) Engr.,

Kroeschell Engineering Co., 215 W. Ontario
St., and 6551 N. Maplewood Ave., Chicago, Ill.

CHRISTOPHERSEN, Andrew E. (M 1935)
Board of Education, Spalding School, 1628
Washington Blvd., and 2923 N. Kilpatrick Ave.,

Washington Blvd., and 2923 N. Kilpatrick Ave., Chicago, III.
CHURCH, H. J. (M. 1922) Mgr., • Darling Brothers, Ltd., 137 Wellington St. W., Toronto, and 358 Main St. N., Weston, Ont., Canada.
CLAPPERTON, Robert (J. 1942) Engr. • Canadian Industrics, Ltd., 1155 Beaver Hall Sq., Montreal, and 1070 Laird Blvd., Town of Mt. Royal, Que., Canada.
CLARE, Fulton W. (M. 1927) 935 Plymouth Rd. N.E., Atlanta, Ga.
CLARK, Albert C. (A. 1939) Capt., U. S. Army, A. P. O. 947, Seattle, Wash.
CLARK, Allan M. (J. 1942) Sales Engr., • Canadian Blower & Forge Co., Ltd., Room 301, 1221 Bay St., Toronto, and 11 Langton Ave., Toronto (12), Ont., Canada.

Bay St., Toronto, and 11 Langton Ave., Toronto (12), Ont., Canada.

CLARK, E. Harold (M 1922) Mfrs. Agent, 600 Michigan Theatre Bldg., and • 2539 Lakewood, Detroit, Mich.

CLARK, James R. (J 1942) Pvt., • U. S. Army, Air Depot Supply Sqdn., A. P. O. 695, c/o Postmaster, New York, and 1501 Pecan Ave., Charlotte, N. C.

CLARK, Lynn W. (A 1938) Engr. and Salesman, • Hall-Neal Furnace Co., 1324 N. Capitol Ave., and 737 West 32nd St., Indianapolis, Ind.

CLARK, Robert L. (A 1918) Pres., The Clark Asbestos Co., 1893 East 55th St., Cleveland, and •927 Caledonia Ave., Cleveland Heights, Ohio.

Chio.

CLARKE, John H. (M 1942; A 1941) Head, Htg.. Vtg. and Refrig. Branch. Engrg. Plan Approval Section, U. S. Maritime Commission, 310 S. Michigan Ave., Chicago, and ●829 Forest Ave., Evanston, Ill.

CLAY, Wharton (M1939; A1938) Secy., ● National Mineral Wool Assn., 1270 Sixth Ave., New York, and 127 S. Broadway, Nyack, N. Y.

CLAUSEN, Arnold H. (M 1939) Engr., c/o U. S. Army Engrs., Seattle Dist., Wenatchee, Wash. CLEGG. Carl (M 1922) Dist. Mar. ● American

CLEGG, Carl (M 1922) Dist. Mgr., • American Blower Corp., 711 Mutual Bldg., and 3513 Gillham Rd., Kansas City, Mo.

CLEMENS, Joseph D. (J 1942; S 1940) 1st Lt., U. S. Army, A. C., Gulfport Field, Miss.

CLEMENT, Eugene R., Sr. (A 1924) Pres., E. R. Clement, Inc., 3925 Main St., and •72 Griffen Ave., Bridgeport, Conn.

CLIFTON, John A. (A 1938) Mgr. • Renown Plumbing Supplies, Ltd., 236 Parliament St., and 369 Belsize Dr., Toronto, Ont., Canada.

CLO, Harry E. (A 1943; J 1939) Ind. Specialist, Office of Industry Operations, Gen. Ind. Equip. Div., Room 1612, Temporary Bldg. 5, War Production Board, and 1700 Webster St. N.W., Washington. D C. CLOSE, Paul D.* (M 1928) Tech. Secy., • Insulation Board Institute, 111 W. Washington St., Chicago, and 757 Maclean Ave., Kenilworth, Ill. CLOSE, Robert (M 1938) Chief Air Cond. Engr., National Broadcasting Co., 30 Rockefeller Plaza, New York, N. Y., and •185 Glenwood Ave., Leonia, N. J.
CLOW, Sherwood A. (J 1942) 2nd Lt., • Signal Corps, Signal Officer, Camp Wolters, Texas, and 109 N. Chatsworth Ave., Larchmont, N. Y.
COCHRAN, L. H. (M 1934) Dist. Mgr., • American Blower Corp., 625 Market St., and 130 Camino Del Mar, San Francisco, Calif. COCKINS, William W. (4 1941; J 1937) Engr., Scott Co., 243 Minna St., San Francisco, and • 1700 Madera St., Berkeley, Calif.
CODY, Henry C. (M 1936) Sales Engr., B. H. Deacon Co., Inc., American and Huntingdon Sts., and • 7336 North 21st St., Philadelphia, Pa. COE, Seymour A. (S 1942) Student, • Pratt Institute, 291 Ryerson St., Brooklyn, N. Y., and 54 Waverly St., New Haven, Conn.
COGHLAN, Sherman F. (A 1937) Mech. Engr., J. M. Montgomery & Co., 306 W. Third St., Los Angeles, and • 414, Ninth St., Santa Monica, Calif.

Colif.

COHAGEN, Chandler C. (M 1919) Archt.

Chandler & Cohagen, Box 2100, and 235'
Avenue G. Billings, Mont.

COHEN, Philip (M 1932) Dist. Mgr., • B. F.
Sturtevant Co., 401 E. Ohio Gas Bidg., and 7100
Euclid Ave., Suite No. 6, Cleveland, Ohio.

COHN, Henry (J 1942) Air Cond. Engr., Giffell &
Vallett, Inc., Marquette Bidg., and • 3410
Chicago Blvd., Detroit, Mich.

COLBY, John H. (J 1939) Sales Engr., • Johnson
Service Co., 20 Winchester St., Boston, and 25
Jefferson Rd., Wellesley Hills, Mass.

COLCLOUGH, Otho T. (A 1933) Custodian,

• American Foreign Service, American Legation,
and 399 Hamilton Ave., Ottawa, Ont., Canada
COLE, C. Boynton (M 1940; J 1937) Owner,
Boynton Cole, Contracting Engr., 1873 Piedmont
Rd. N.E., and • 1843 Flagler Ave. N.E., Atlanta,
Ga.

Goa., Grant E. (A 1925) Vice-Pres. and Gen. Mgr., Trane Co. of Canada, Ltd., 4 Mowat Ave., and 112 Tyndall Ave., Toronto, Ont., Canada.

Mgi., with all Col. of Canada.

Ave., and 112 Tyndall Ave., Toronto, Ont., Canada.

COLEMAN, John B. (M 1920) Chief Engr.,
Grinnell Co., Inc., 275 W. Exchange St., and 237 Cole Ave., Providence, R. I.

COLFORD, John (A 1937) Pres., John Colford, Ltd., 2007 Guy St., Montreal, and 51 Upper Bellevue Ave., Westmount, Que., Canada.

COLLE, S. S. (A 1938) Engr., eAir Conditioning Engineering Co., 361 Youville Sq., and 4968 Fulton St., Montreal, Que., Canada.

COLLIER, William I. (M 1921) Mech. Engr., eW. I. Collier & Co., 3414 Duvall Ave., Baltimore, and Ellicott St., Ellicott City, Md.

COLLINS, John F. S., Jr. (M 1933) (Council, 1940-42) Secy.-Treas., National District Heating Assn., 827 N. Euclid Ave., Pittsburgh, Pa.

COLLINS, Leo F. (M 1941) Chemist e The Detroit Edison Co., 2000 Second Ave., and 14615 Prevost, Detroit, Mich.

COLMENA, Robert C. (A 1940) Vice-Pres., McQuay Inc., 1600 Broadway N.E., Minneapolis, and e 102 Exeter Pl., St. Paul, Minn.

COLMENARES, Gaspar Vizoso (A 1938) Vice-Pres. and Gen. Mgr., eCastel-Vizo, Refrigeracion y Aire Acondicionado, S. A., Obrapia 407, P. O. Box 210, and Calle 10 No. 34, Miramar, Havana, Cuba.

COMO, Jack A. (M 1939) Mech. Engr., e Independent Plumbing Co., 171 Luckie St. N.W., and 2865 Elliot Circle N.E., Atlanta, Ga.

COMSTOCK, Glen M. (A 1926) Sales Engr., e. L. J. Wing Manufacturing Co., 1319 Murdock Rd., (17), Pittsburgh, Pa.

CONATY, Bernard M. (M 1935) Vice-Pres.,
• American District Steam Co., North Tonawanda, and P. O. Box 342. Eden. N. Y.
CONKLIN, Robert N. (J 1940) Engr., 848 South 14th St., Newark, N. J.
CONNELL, Richard F. (M 1916) Mgr., • Capitol Testung Lab., U. S. Radiator Corp., 1056 National Bank Bldg., and 2970 Burlingame, Detroit, Mich.

Bank Bldg., and 2970 Burlingame, Detroit, Mich.

CONNER, Raymond M. (M 1931) Dir. A. G. A. Labs., • American Gas Assn., 1032 East 62nd St., and 2459 Dysart Rd., Cleveland, Ohio.

CONNORS, Edward C. (A 1940) Engr. Custodian, Chicago Board of Education, 5500 Madison St., and • 6556 Ponchartrain Blvd., Chicago, Ill.

CONRAD, Roy (M 1935) Sales Engr., Carrier Corp., 1500 S. Santa Fe., Los Angeles, Calif., and • 3421 Bella Vista Ave., Seattle, Wash.

CONSTANT, Earl S. (A 1942; J 1935) Engr., Buffalo Forge Co., 490 Broadway, and • 242 N. Park Ave., Buffalo, N. Y.

CONVERSE, Thornton J. (M 1941) Engr., • Office of Douglas Orr, Archt., 96 Grove St., New Haven, and Stoney Creek, Conn.

COOK, Benjamin F. (M 1920) Prop., Benjamin F. Cook, Consulting Engr., 114 W. Tenth St. Bldg., Kansas City, and • 1720 Overton Ave., Independence, Mo.

COOK, Henry D. (A 1938) Field Engr., • General Controls Co., 450 E. Ohio St., Chicago, Ill., and 73 E. Tenth St., Holland, Mich.

COOK, Ralph P. (M 1930) Asst. Supt., Engrg. and Maintenance Dept. in charge of Engrg. Div., • Eastman Kodak Co., Kodak Park, and 663 Seneca Pkwy., Rochester, N. Y.

COOLEY, Edgerton C. (M 1938) Mfrs. Agent., • E. C. Cooley Co., 625 Market St., San Francisco, and P. O. Box 789 B, Route 1, Los Altos, Calif.

COOMBE, James (A 1932) Pres., • William

Calif.

Calif.

COOMBE, James (A 1932) Pres., • William Powell Co., 2525 Spring Grove Ave., and 2363 Grandin Rd., Cincinnati, Ohio.

COON, Thurlow E. (M 1916) Pres., • The Coon-DeVisser Co., Inc., 2051 W. Lafayette, and 826 Edison Ave., Detroit, Mich.

COOPER, Dale S. (M 1938; A 1937) Consulting Engr., 216 E. Cowan Dr., Houston, Texas.

COOPER, Donald E. (J 1939) Partner, • D. E. Cooper & Son, 540 Hood St., Salem, and 1010 Southeast 54th, Portland, Ore.

COOPER, John W. (M 1932; A 1925; J 1921) Repr., • Buffalo Forge Co., 1598 Arcade Bldg., St. Louis, and 612 Hawbrook Dr., Kirkwood, Mo.

M٥

COOPERMAN, Edward (J 1943; S 1940) U. S. Navy, and •3120 Avalon St., Pittsburgh, Pa.

COPPERUD, Edmund R. (A 1942; J 1933) Asst. Mgr., Minneapolis Plumbing Co., 1420 Nicollet Ave., and • 17 West 25th St., Minneapolis, Minn.

Ave., and •17 West 25th St., Minneapolis, Minn.
CORNWALL, George I. (Lafe Member; M 1919)
Sales Engr., Burnham Boiler Corp., 701 Spring
St., Elizabeth, N. J.
CORRIGAN, James A. (A 1940; J 1935; S 1930)
Treas., and Chief Engr., • Corrigan Co., 2501 W.
St. Louis Ave., and 7128 Washington Ave., St.
Louis, Mo.
COST. George W. (1998)

Louis, Mo.

COST, George W. (J 1939; S 1938) U. S. Army, Pennsylvania Ave. Extension, Irwin, Pa.

COVER, E. B. (M 1937) Mech. Engr., Consulting Engineering, First National Bank Bldg., and •3252 Waverly, East St. Louis, Ill.

COVER, Richard R. (A 1936) U. S. Navy, Warrant Officer, E. V. (s) U. S. N. R., and 1914 N. Upton St., Arlington, Va.

COWARD, Charles W. (M 1935) Pres., • Coward Engineering Co., 411 Cooper St., Camden, and Cherry Lane, Riverton, N. J.

COX, Samuel F. (M 1939) Tech. Dir., • Double Glazing Div., Pittsburgh Plate Glass Co., 2200 Grant Bldg., and 6049 Bunkerhill St., Pittsburgh, Pa.

COX, Vernon G. (A 1939) Major C. A. C., • Hdq. 29, C. A. T. Bn., Camp Wallace, and 207 Yarmouth St., Dallas, Texas.

COX, William W. (Life Member; M 1923) Pres. and Mgr., • Heating Service Co., Inc., 326 Columbia St., and 6232-31st Ave. N.E., Seattle,

Wasn.

CRAIG, Joseph A. (J 1940) Sales • The Trane
Co., 850 Cromwell Ave., St. Paul, and 829 Eighth
St. S., Minneapolls, Minn.

CRANE, Robert S. (M 1938) Asst. Sales Mgr.,
Economy Pumps, Inc., 1000 Weller St., Hamilton, Ohio

- CRAWFORD, Arthur C. (A 1938) Capt. Q. M. C., Hqg. S. O. S., A. P. O. 871, c/o Postmaster, New York, N. Y., and 429 Butternut St. N.W., Washington, D. C. CRAWFORD, John H., Jr. (A 1936; J 1930) 289 Reynolds Terrace, Orange, N. J. CRESSY, L. Villere (M 1940) Partner, L. Villere Cressy & Lewis S. Alcus, 3217 De Soto St., New Orleans, La. CREW, F. D. (J 1941) Pres., The F. D. Crew Co., Schaff Bilg., Philadelphia, and 6 Abrahams Rd., Ithan, Pa. CRIOUI, Albert A.* (M 1919) Chief Engr., Htg. and Vtg. Dept., Buffalo Forge Co., 490 Broadway, Buffalo, and 39 St. Johns Ave., Kenmore, N. Y. CROFT, Huber O. (M 1941) Head, Dept. Mech.

way, Buffalo, and • 39 St. Johns Ave., Remove, N. Y.

CROFT, Huber O. (M 1941) Head, Dept. Mech. Engrg., University of Iowa, 107 Engrg. Bldg., Iowa City, Iowa.

CROLEY, Jack G. (J 1940) 1st Lt., • 76th Coast Artillery, U. S. Army, Fort Bragg, N. C., and 406 E. Temple Ave., College Park, Ga.

CRONE, Charles E. (M 1922) Pres., • Charles E. Crone Co., 1656 N. Ogden Ave., Chicago, and R. R. 2. Prairie View, Ill.

CRONE, Thomas E. (Life Member; M 1920) Retired, 164th and Chapin Pkwy., Jamaica, L. I., N. Y.

CRONEY, P. Alfred (M 1938) Senior Mech. Engr., Federal Public Housing Authority, 24 School St., Boston, and • 72 Arlington St., Newton, Mass.

School St., Boston, and 72 Arlington St., Newton, Mass.

CROPPER, Robert O. (M 1938) 1st Lt., Q.M.C., 12th Q. M. Regt., Camp Lee, Va., and 300 River Rd., Matoaca, Va.

CROSBY, Edward L. (M 1936) Pres., Henry Adams, Inc., 403-407 Calvert Bldg., and 700 Brookwood Rd., Baltimore, Md.

CROSS, Freeman G. (M 1936) General Sales Mgr., Fulton Sylphon Co., and 31 Nokomis Circle, Knoxville, Tenn.

CROSS, Robert C.* (M 1937) Sears, Roebuck & Co., Dept. 817, 925 S. Homan Ave., Chicago, and 334 Northwood Rd., Riverside, Ill.

CROSS, Robert E. (M 1938; A 1931) Dist. Mgr., Minneapolis-Honeywell Regulator Co., 172 Chestnut St., and 68 Kimberly Ave., Springfield, Mass.

chestant S., and so kimberly Ave., Springfield, Mass.

CROUT, Marvin M. (M 1939; A 1938) Southeastern Mgr., Syork Ice Machinery Corp., 412 Houston St., P. O. Box 2210, and 22 Brighton Rd., Atlanta, Ga.

CRUMLEY, Mearl T. (M 1941) Asst. Mgr., Mech. Engrg. Dept., Robert & Co., and •4722 Polaris St., Jacksonville, Fla.

CRUMP, Alvin L. (M 1937) Sales Engr., • Powers Regulator Co., 2720 Greenview Ave., Chicago, and 2701 Payne St., Evanston, Ill.

CUCCI, Victor J. (M 1930) Consulting Engr.,

•30 Church St., New York, and 451–55th St.,
Brooklyn, N. Y.

CULBERT, William P. (A 1929) Partner,

• Culbert-Whitby Co., 2019 Rittenhouse St.,
Philadelphia, and 929 Alexander Ave., Drexel

Hill, Pa.

CULLEN, A. G. (M 1939; A 1936) Executive,

Cullen Co., 20 L St. S.W., Washington, D. C.,
and 6826 North 19th Rd., East Falls Church, Va.

CULLIN, William W. (M 1938) Chief Engr.,
Home Insulating Div., Johns-Manville Sales
Corp., 22 East 40th St., New York, and •35
Wildwood Ave., Mt. Vernon, N. Y.

CUMMING, Robert W. (M 1928) Sales Executive, Sarco Co., Inc., 475 Fifth Ave., New York,
and •81 Alkamont Ave., Scarsdale, N. Y.

CUMMINGS, Carl H. (A 1927; J 1926) Pres...

• Industrial Appliance Co. of New England, 110
Arlington St., Boston, and 41 Edgehill Rd.,
Chestnut Hill, Mass.

CUMMINGS, G. J. (M 1923) Executive VicePres. and Secy., • The Scott Co., 113 Tenth St.,
and 851 Trestle Glen Rd., Oakland, Calif.

CUMMINGS, Robert J. (J 1940) Engr. and
Estimator, • Franck & Fric Co., 9334 Kinsman
Rd., Cleveland, and 18109 Mapleboro Ave.,
Bedford, Ohio.

CUMMINGS, Thomas P. (A 1942) Engineering
Dept., North American Aviation Co., Inglewood,
and • 5145 Seventh Ave., Los Angeles, Calif.

CUMMINS, George H. (M 1919) Dist. Mgr.,
• Aerofin Corp., 1116 United Artists Bldg., and
16210 Ashton Rd., Detrot, Mich.

CUMMISKEY, Jerome F. (A 1940) Sales, Minneapolis-Honeywell Regulator Co., 2405 N. Maryland, and • 4433 N. Cramer St., Milwaukee, Wis.

CUMNOCK, H. (A 1938) Pres., Little Rock
Refrigeration Co., 417 W. Capitol Ave., Little
Rock, Ark.

CUNNICHAM. John S. (A 1941: J 1937.

Refrigeration Co., 417 W. Capitol Ave., Lattie Rock, Ark.
CUNNINGHAM, John S. (A 1941; J 1937; S 1935) Chief Engr., Dowagiac Steel Furnace Co., and • 205 Spruce St., Dowagiac, Mich., CUNNINGHAM, Thomas M. (M 1931; J 1930) Production Mgr., Carrier Corp., Room 2200, 20 N. Wacker Dr., Chicago, Ill.
CURL, Robert S. (A 1941) Engr., Austin Co., Cleveland, and • 3242 Sycamore Rd., Cleveland, Heights, Ohio.
CURLEY, Ellis I. (A 1941) • U. S. N. R., Lehigh University, Bethlehem, and 69 E. Lancaster Ave., Ardmore, Pa.

CURLEY, Ellis I. (A 1941) • U. S. N. R., Lehigh University, Bethlehem, and 69 E. Lancaster Ave., Ardmore, Pa.

CURRY, Roger F. (J 1940; S 1938) Curtiss Wright Corp., Buffalo, and • 294 Crosby Ave., Kenmore, N. Y.

CURTICE, Jean M. (A1936) Dist. Mgr., • Citizens Utilities Co., 15 W. Fourth St., and 906 Lincoln Ave., La Junta, Colo.

CURTIS, Herbert F. (A 1934) Sales Mgr., • Auer Register Co., 3608 Payne Ave., Cleveland, and 59 Fourth Ave., Berea, Ohio.

CUSHING, C. F. (M 1938) Sales Promotion Mgr., • The Bryant Heater Co., 17825 St. Clair Ave., and 13415 S. Woodland Ave., Cleveland, Ohio.

CUSHING, R. C. (A 1940) Sales Engr., • Minneapolis-Honeywell Regulator Co., 1136 Howard St., San Francisco, and 3014 Benvenue Ave., Berkeley, Calif.

CUTLER, Joseph A. (M 1916) (Council, 1920-26) Pres., • Johnson Service Co., 507 E. Michigan St., and 4811 N. Lake Dr., Milwaukee, Wis.

CUTTING, Richard H. (M 1942) Archt. Engr., Architecture & Engrg., 915 National City Bank Bldg., Cleveland, and • 3795 Glenwood Rd., Cleveland Heights, Ohio.

DABBS, John T. (A 1940) 1st Lt., C. A. C., c/o
Postmaster, A. P. O. 937, Seattle, Wash., and
•330 N. Green St., Tupelo, Miss.
DADDARIO, Frank T. (J 1939) Chief Air Cond.
Engr., • Carolina Engineering Co., 220 Trust
Bidg., and 104 Briar-Cliff Rd., Durham, N. C.
AETTED Educit H. (M 1028) Selae Engr.

DAFTER, Edwin H. (M 1938) Sales Engr.,

• Carrier Corp., 12 South 12th St., and 117

Crosshill Rd., Overbrook Hills, Philadelphia, Pa.

Crosshill Rd., Overbrook Hills, Philadelphia, Pa. DAHLGREN, Gustave E. (A. 1940) Insulation Mgr., • Thorkelsson, Ltd., 1321 Spruce St., and 492 Sprague St., Winnipeg, Man., Canada. DAHLSTROM, Godfrey A. (A. 1927) Asst. Engr., Smith, Hinchman & Grylls, Inc., and Toltz, King & Day, Inc., Twin City Ordnance Plant, St., Paul, and • 3721–47th Ave. S., Minneapolis, Minn.

DAITSH, Abe (J 1938) Air Cond. and Refrig. Engr., • General Assurance Bldg., 86 St. George's St., Cape Town, South Africa.

DALY, Robert E. (M 1931) • American Radiator & Standard Sanitary Corp., P. O. Box 1226, Pittsburgh, and 271 Kenforest Dr., Mt. Lebanon, Pe.

D'AMBLY, A. Ernest (M 1924; J 1921) Owner,

• A. Ernest D'Ambly, 2101 Architects Bldg.,
and 1835 DeLancey St., Philadelphia, Pa.

DANIEL, William E. (A 1941; J 1939) Junior
Partner, • E. Ashby & Co., 20 Upper Ground,
Black Friars, London, and 91 Dudley House,
Westmoreland St., London, W. 1, England.

DANIELSON, Wilmot A.* (M 1935) Brig.
General, Memphis Quartermaster Depot, Memphis Tenn.

General, Memphis Quartermaster Depot, Memphis, Tenn.

DANOWITZ, Chester J. (J 1942) Asst. Naval Archt., Supervisor of Shipbuilding, U. S. N., Camden, N. J. and • 106 Knight Ave., Collingswood, N. J.

DARLING, A. B. (A 1929) Comptroller, • Darling Brothers, Ltd., 140 Prince St., and 4009 Grey Ave., Montreal, Que., Canada.

DARLINGTON, Allan P. (M 1930) Mgr., Power Equip. Div., • American Blower Corp., 8111 Tireman Ave., Dearborn, and 17511 Santa Rosa Dr., Detroit, Mich.

DARTS, John A. (M 1919) Kewanee Boiler Co., Inc., 101 Park Ave., New York, N. Y.

DASING, Emil (M 1937) Design Engr., Sears, Roebuck & Co., 925 S. Homan Ave., and • 4729 N. Talman Ave., Chicago, Ill.

DAUBER, Oscar W. (M 1937) Consulting Engr., • 224 S. Michigan Ave., Chicago, and 532 Greenwood Ave., Kenilworth, Ill.

DAUCH, Emil O. (M 1921) Pres., • McCormick Plumbing Supply Co., 1675 Bagley Ave., and 729 Bedford Rd., Grosse Point Park, Detroit, Mich.

DAVEY, Geoffrey I. (M 1937) Consulting Engr., • Haskins, Davey & A. G. Gutteridge, 60 Hunter St., and "Letherby," Bangalla St., Warrawee, Sydney, Australia.

DAVIDSON. John C. (M 1940; J 1936) Lt. (jg)

Manter St., and Letherby, Bangana St., Warrawee, Sydney, Australia.

DAVIDSON, John C. (M 1940; J 1936) Lt. (jg)
U. S. N. R., Sr. Asst. Personnel Officer, Norfolk
Navy Yard, Personnel Dept., and •8274 Gygax

DAVIDSON, John C. (M 1940; J 1936) Lt. (jg)
U. S. N. R., Sr. Asst. Personnel Officer, Norfolk
Navy Yard. Personnel Dept., and • 8274 Gygax
Rd., Norfolk, Va.

DAVIDSON, L. Clifford (M 1927) Assoc. Dist.
Mgr., • Buffalo Forge Co., 220 South 16th St.,
Philadelphia, and 322 Winding Way, Merion, Pa.
DAVIDSON, Philip L. (M 1924; J 1921) Consulting Engr., New Hope, Pa.
DAVIES, George W. (M 1918) Mgr., • G. W.
Davies & Co., 19 Maclaggan St., Dunedin, C. 1,
and P. O. Box 390, Dunedin, N. 2, Colinswood,
Macandrew Bay, New Zealand.

DAVIS, Bert C. (Life Member; M 1904) (Council,
1917) Pres.-Treas, American Warming & Ventilating Co., 317 Pennsylvania Ave., Elmira, and
• Big Flats, N. Y.
DAVIS, Calvin R. (M 1927) Branch Mgr.,
• Johnson Service Co., 2328 Locust St., and
7534 Westmoreland Dr., St. Louis, Mo.
DAVIS, Charles (M 1938) Engr., James H.
Merritt & Co., Inc., 396 Broadway, and • 245
East 180th St., New York, N. Y.
DAVIS, Clemant A. L. (A 1942) Mgr., H. F.
Dept., John H. Kitchen & Co., 1016 Baltimore,
and • 5441 Jackson, Kansas City, Mo.
DAVIS, Donald W., Jr. (J 1939) Dist. Mgr.,
• B. F. Sturtevant Co., 832 Empire Bldg., and
840 E. Henry Clay St., Milwaukee, Wis.
DAVIS, Edward J. (A 1943; J 1938) Sales Engr.,
Gurney Foundry Co., Ltd., 4 Junction Rd., and
• 224 St. Clements Ave., Toronto, Ont., Canada.
DAVIS, George C. (M 1939) J 1936 Vice-Pres.,
• Northern Public Service Corp., Ltd., 307
Power Bldg., and 366 Ash St., Winnipeg, Man.,
Canada.
DAVIS, George L., Jr. (A 1938) Estimator, R. L.

DAVIS, George L., Jr. (A 1938) Estimator, R. L. Spitzley Heating Co., 1200 W. Fort St., Detroit, and • 1220 Beaconsfield St., Grosse Point Park,

Mich.

DAVIS, Joseph (M 1927; A 1926) Owner, Engr. and Contractor, and Pres. and Treas. • Davis Refrigeration Co., Inc., 70 W. Chippews St., and 166 Huntington Ave., Buffalo, N. Y.

DAVIS, Keith T. (M 1937) Chief Engr., • L. J. Mueller Furnace Co., Milwaukee, and 1500 E. Marion, Shorewood, Wis.

DAVIS, Otis E. (M 1929; A 1925) Sales Engr., • Hoffman Specialty Co., Box 98, and 1502 Fourth Ave., Scottsbluff, Nebr.

DAVIS, Telford R. (M 1942) Mech. Engr., Indianapolis Power & Light Co., 1230 W. Morris St., and • 1311 N. Drexel, Indianapolis, Ind.
DAVISON, Robert L. (M 1934) Din of Research, • John B. Pierce Foundation, 40 West 40th St., New York, and Meadow Glen Rd., Fort Salonga, L. I. N. V.
DAWSON, Eugene F. (M 1934) Prof. of Mech. Engrg., • University of Oklahoma, and 701 N. Porter St., Norman, Okla.
DAY, Harold C. (A 1934) Mgr., American Radiator & Standard Sanitary Corp., 1807 Elmwood Ave., Buffalo, N. Y.
DAY, Irving M. (A 1936) Sales Engr., • Binks Manufacturing Co., 718 Mills Bildg., Washington, D. C., and 405 Cumberland Ave., Chevy Chase, My.

D. C., and 400 Canada.
Md.
DAY, V. S.* (M 1924) Asst. to Vice-Pres., • Carrier Corp., S. Geddes St., and 316 Highland Ave., Syracuse, N. Y.
DEAN, Carl H. (M 1936) Htg. Engr., • Oklahoma Natural Gas Co., Box 871, and 1532 East 35th St. Tulsa, Okla.

DEAN, Charles L. (M 1932) Assoc. Prof. Mech. Engrg., University of Wisconsin, 305 University Extension Bldg., and •102 Grand Ave., Madison,

EAN, David (M 1937) 171 Radford St., Yonkers, N. Y. DEAN,

DEAN, David (M 1937) 171 Radford St., Yonkers, N. Y.

DEAN, Frank J., Jr. (A 1942; J 1935; S 1934)

Pres., Dean-Hagny Corp., 14th and Magee St., and • 6028 Walnut St., Kansas City, Mo.

DEAN, Marshall H. (J 1938; S 1936) Secy.-Treas., Temperature Engineering Co., 1338 McGee St., and • 2029 East 46th St., Kansas City, Mo.

DeBERARD, Phillip E. (A 1939) Pres., • Conditioned Air Systems, Inc., 1209 Washington Ave., and 1609 Tenth St., Wilmette, Ill.

DEEVES, Edward W. (J 1940) Partner • Fred Deeves & Sons, 1422A-17th Ave. W., and 2403 33rd St. W., Calgary, Alta., Canada.

DeFLON, James G. (J 1942) Cooling Tower Engr., The Fluor Corp., 2500 S. Atlantic Blyd., and • 6209 Northside Dr., Los Angeles, Calif.

Del.AUR, Charles W. (M 1924; J 1923) Secy.-Treas., • C. W. Johnson, Inc., 211 N. Desplaines St., and 2021 Estes Ave., Chicago, Ill.

Del.AUREAL, William D. (J 1940) Mgr. Air Cond. Dept., Gulf Engineering Co., 916 S. Peters St., and • 4821 Pitt St., New Orleans, La.

DEMAREST, Richard T. (J 1938) Engr., Government Dept., • Fitzgibbons Boiler Co., Inc., 101 Park Ave., and 1-11 Marble Hill Ave., New York, N. Y.

deMENA, L. Isabel (A 1942) Student, National School, and • 1287½ Plymouth Blvd., Los Angeles, Calif.

DEMETER, Julius (A 1939) c/o Julio Donoso D., Calle Catedral 1472, Santiago, Chile, South America.

DEMING, Roy E. (M 1941; A 1929) Chief Engr.,

America.

DEMING, Roy E. (M 1941; A 1939) Chief Engr.,
Premier Furnace Co., and • 107 Jay St., Dowagiac, Mich.

DEMPSEY, Stephen J. (A 1938) • Stephen J.
Dempsey Co., 79 Harvard St., Battle Creek,
Mich.

Dempsey Co., 19 Harvard St., Battle Creek, Mich.

DENHAM, Howard S. (M 1939) Mech. Checker, Stone & Webster, 149 Federal St., Boston, and •80 Dexter St., Malden, Mass.

DENNY, Harold R. (A1934) Eastern Merchandise Mgr., & American Blower Corp., 50 West 40th St., New York, N. Y., and 429 Edgewood Ave., Westfield, N. J.

DEPPMANN, Ray L. (A 1937) Owner, • R. L. Deppmann.Co., 5853 Hamilton Ave., and 13201 Cloverlawn Ave., Detroit, Mich.

DERER, Bernard (A 1940) Designer and Estimator, New Brunswick Roofing & Cornice Works, 8-10 Jelin St., New Brunswick, N. J., and •1212 Ocean Ave., Brooklyn, N. Y., and •1212 Ocean Ave., Brooklyn, N. Y.

South America.

DeSOMMA, A. Edward (A 1943; J 1937) Assoc. Engr., Navy Dept., Bureau of Ships, Washington, D. C., and •619 Greenwood Ave., Takoma

ton, D. C., and •619 Greenwood Ave., Takoma Park, Md.

Des REIS, John F. (M 1936) Regional Mgr.,

•Latin America Carrier Corp., and 103 Huntleigh Park Dr., Fayetteville, N. Y.

DETERLING, W. C. (A 1937) Section Head, Industrial Dept., •General Electric Co., 570 Lexington Ave., New York, and 32 W. Milton St., Freeport, L. I., N. Y.

DEVER, Henry F. (M 1936; A 1935) Vice-Pres. in charge of Engrg., Minneapolis-Honeywell Regulator Co., and •4609 Edina Blvd., Minneapolis, Minn.

Regulator Co., and •4609 Edina Blvd., Mınneapolis, Minn.

DEVLIN, John (M 1940) Partner, • Devlin Bros., 1003 Maritime Bldg., and 5100 Pitt St., New Orleans, La.

DEVORE, Angus B. (A 1937) Sales Engr., • James A. Messer Co., Inc., 1206 K St. N.W., and 4817-36th St. N.W., Washington, D. C.

DeWITT, Earl S. (A 1936) • American Blower Corp., 1211 Commercial Bank Bldg., and 2323 Briarwood Rd., Charlotte, N. C.

DIAMOND, David D. (A 1942; J 1937) Pvt., 801st S. S. R. Bks. 151, Co. H., Camp Murphy, Fla.

DIBBLE, Samuel E.* (M 1917) (Presidential Member) (Pres., 1925; 1st Vice-Pres., 1924; 2nd Vice-Pres., 1922; Council, 1921-26) Supt., Thomas Ranken Patton School, Elizabethtown,

Thomas Ranken Patton School, Elizabethtown, Pa.

DICK, Harold S. (J 1942; S 1940) Air Cond. Engr., Keystone Sheet Metal Works, 319
Academy St., Newark, and •1235 Park Ave., Hoboken, N. J.
DICKASON, Gray D. (M 1938) Pres.-Treas.,
• Genesee Heating Service, Inc., 950 Mercantile Bldg., and 140 Windemere Rd., Rochester, N. Y.
DICKENS, Lester A. (A 1941) Treas. • Dickens Scheuffer Burens, Inc., 3959 Mayfield Rd., and 3710 Grosvenor Rd., Cleveland Heights, Ohio.
DICKENSON, Malcolm E. (M 1936) Pres. and Gen. Mgr., • Livingston Stoker Co., Ltd., 33 Sanford Ave. S., and 964 Cumberland Ave., Hamilton, Ont., Canada.
DICKEY, Arthur J. (M 1921) Vice-Pres., Gen. Mgr., C. A. Dunham Co., Ltd., 1523 Davenport Rd., and • 9Mossom Pl., Toronto, Ont., Canada.
DICKINSON, Robert P., Jr. (J 1938) Sales Engr., • Burnham Boler Corp. of Ohio, 301 Brushton Ave., and 521 S. Lang Ave., Pittsburgh, Pa.

Pa.

DICKSON, Donald R. (S 1941) Student, • Purdue
University, 268 Littleton St., W. Lafayette, and
44 East 37th St., Indianapolis, Ind.

DICKSON, George P. (M 1919) B. F. Sturtevant
Co., Camden, N. J.

DICKSON, Robert B. (M 1919) Pres., • Kewanee
Boiler Corp., and 145 E. Division St., Kewanee,
III

DICKSON, Robert W., Jr. (A 1943; J 1938) Lt., U. S. Army, • 40th Bombardment Group, Borin-quen Field, Puerto Rico, and 1841 Oliver Bldg., Pittsburgh, Pa.

DIETER, George H. (M 1941) Engrg. Dept., The Fluor Corp., Ltd., P. O. Box 7030, E. Los Angeles Branch, Los Angeles, Calif.

DIETZ, C. Fred (M 1938) Sales Engr., • Haynes Selling Co., Inc., 1124 Spring Garden St., and 1215 Allengrove St., Philadelphia, Pa.

DILL, Richard S.* (M 1939) Chief, Heat Transfer Section, National Bureau of Standards, Washington, D. C., and • 1603 S. Springwood Dr., Silver Spring, Md.

DILLENDIER Endern A (M 1939) From Market

Silver Spring, Md.

DILLENDER, Eugene A. (M 1939) Engr., United States Engineer Office, and •1152 Menlo Ave., Los Angeles, Calif.

DION, Alfred M. (M 1937) Sales Engr., • Trane Co. of Canada, King and Mowat Sts., and 540 Russell Hill Rd., Toronto, Ont., Canada.

DISNEY, Melvin A. (M 1942; A 1934) Plbg., Htg., Vent., and Refrig. Engr., War Dept., U. S. Engr. Corps., and •4905Q½. Galveston, Texas.

DISTEL, Robert E. (M 1941; J 1938) Gen. Mgr., Distel Heating Equipment Co., 404-406 Kalamazoo Plaza, Lansing, and 547 Bailey St., East Lansing, and •P. O. Box 133, Lansing, Mich. DIVER, M. L. (M 1925) Consulting Engr., P. O. Box 1016, San Antonio, Texas.

DIXON, Arthur G. (M 1928) Mgr. Htg. Div., • Modine Manufacturing Co., and 442 Wolff St., Racine, Wis.

DODDS, Forrest F. (M 1920) Mgr., • American Radiator & Standard Sanitary Corp., 503-6 National Fidelity Life Bldg., 1002 Walnut St., and 4600 Mill Creek Pkwy., Kansas City, Mo. DODGE, Harry A. (M 1936) Elec. Engr., S. H. Kress & Co., 114 Fifth Ave., and • 514 West End Ave., New York, N. Y.

DOERING, Frank L. (M 1919) Sales Repr., American Radiator & Standard Sanitary Corp., 238 Boston Ave., Lynchburg, Va.

DOHERTY, John J. (4 1942) Treas., • Fells Plumbing & Heating Co., Inc., 654 Main St., and 194 Forest St., Winchester, Mass.

DOLAN, Raymond G. (M 1926; J 1922) Secy-Treas., • Tom Dolan Heating Co., Inc., 614-16 W. Grand, and 708 N.W. 40th., Oklahoma City, Okla.

DOLAN, William H. (A 1941: J 1927) Pres., • The

W. Grand, and 708 N.W. 40th., Oklahoma City, Okla.

DOLAN, William H. (A 1941; J 1927) Pres., • The Jennison Co., 17 Putnam St., and 65 Highland Ave., Fitchburg, Mass.

DOME, Alan G. (A 1938; J 1936) Air Cond. Engr., Bryant Air Conditioning Corp., 915 N. Front St., and •314 E. Allen's Lane, Philadelphia De

delphia, Pa.

DOMINY, Charles B. (J. 1942) Asst. Engr.,
Puget Sound Navy Yard, Bremerton, and P.O.
Box 556, Castle Apts. No. 102, Bremerton, Wash. DONELSON.

Wash.

DONELSON, William N. (A 1943; J 1937)
Engr., Modine Manufacturing Co., and Route
3, Box 89, Racine, Wis.

DONNELLY, James A.* (Life Member; M 1904)
(Treas., 1912-14; Board of Governors, 1913;
Council, 1914) Largent, W. Va.

DONNELLY, Russell (M 1923) Sales Engr.,
Nash Engineering Co., Graybar Bldg., 420
Lexington Ave., New York, N. Y.

DONOHOE, Charles F. (M 1941) Engr., Central
Heating Dept., The Detroit Edison Co., 2000
Second Ave., Detroit, and 10065 Lincoln Dr.,
Huntington Woods, Mich.

DONOHOE, John B. (A 1937; J 1935) Engr., and
Estimator, B. F. Donohoe & Co., 51 Albany
St., Boston, and 23 Primrose St., Roslindale,
Mass.

Mass

Mass.
DONOVAN, William J. (A 1930) 2239 North 27th
St., Philadelphia, Pa.
DORFAN, Morton I. (M 1929) Consulting Engr.,
Room 200, 336 Fourth Ave., Pittsburgh, and
Vice-Pres. and Gen. Mgr., Coated Products
Corp., Verona, and 1217 Malvern Ave., Pittsburgh, Pa.

burgh, Pa.

DORNHEIM, G. A. (M 1912; J 1906) Buensod-Stacey Air Conditioning, Inc., 60 East 42nd St., New York, and •15 Hamilton Ave., Bronxville, N. Y.

N. Y.

DORSEY, Francis C. (M 1920) Pres., • Francis
C. Dorsey, Inc., 4520 Schenley Rd., and 212
Gittings Ave., Baltimore, Md.

DOSTER, Alexis (A 1934) Vice-Pres., and Secy.,
• The Torrington Manufacturing Co., 70 Franklin St., Torrington, and Litchfield, Conn.

DOUGHTY, Charles J. (M 1925) Asst. Project
Mech. Engr., • The Austin Co., Box 1928, and
2516 N. Hudson, Apt. 202, Oklahoma City,
Okla.

Okla.

DOVENER, Robert F. (A 1941) Engr., • Atchison & Keller, 1416 Irving St. N.W., Washington, D. C., and 5012 Yorktown Rd., Greenacres, Md., and P. O. Friendship Station, D. C.

DOWDELL, J. R. (A 1941) Owner, • J. R. Dowdell & Co., 1008 Southwestern Life Bidg., and 4400 Windsor Pkwy., Dallas, Texas.

DOWDY, Rufus B. (M1939) Sales Engr., • Haydn Myer Co., Inc., P. O. Box 746, and 203 Capitol Pkwy., Montgomery, Ala.

DOWLER, Edward A. (M 1937) 1st Lt., Canadian Army, Royal Canadian Engineers, and ●9 Prince Arthur Ave., Toronto, Ont., Canada. DOWNE, Edward R. (M 1927) Chief Engr., Titan Valve & Manufacturing Co., Elk Ave., Cleveland, and ● Bell Rd., R. F. D. No. 2, Chagrin Falls,

Ohio.

DOWNES, Alfred H. (A 1937) Draftsman, Gay Engineering Corp., 2730 East 11th St., and • 1342½ Bond St., Los Angeles, Calif.

DOWNES, H. H. (M 1923) Dist. Mgr., • American Blower Corp., 438 Woodward Bldg., and Lee Sheraton Hotel, Washington, D. C.

DOWNES, Nate W. (M 1917) (Council, 1928-30) Asst. Supt. in charge Bldgs. and Grounds, School Dist. of Kansas City, • 317 Finance Bldg., and 2119 East 68th St., Kansas City, Mo.

DOWNING, Clarence B. (A 1938) Secy.-Treas., • N. B. Downing Co., Jefferson Ave., and Clark Ave., Milford, Del.

DOWNS, Charles R. (M 1936) Consulting Chemical Engineer, Weiss & Downs, Inc., 50 East 41st St., New York, N. Y., and • 5 Sylvan Lane, Old Greenwich, Conn.

DOWNS, Charles R. (M 1936) Consulting Chemical Engineer, Weiss & Downs, Inc., 50 East 41st St., New York, N. Y., and •5 Sylvan Lane, Old Greenwich, Conn.

DOWNS, Sewell H. (M 1931) (Council, 1936-42; 2nd Vice-Pres., 1942) Chief Engr., Clarage Fan Co., and •1562 Spruce Dr., Kalamazoo, Mich. DRAKE, George M. (A 1940; J 1936) Vice-Pres., • George H. Drake, Inc., 218 Lexington Ave., Buffalo, and 163 Renwood Ave., Kenmore, N. Y. DRESSELL, Russell E. (M 1942; A 1938) Mech. Engr., Riggs, Distler Co., Inc., 216 N. Calvert St., and •920 E. Preston St., Baltimore, Md. DRIEMEYER, Ray C. (A 1942; J 1937) Engr., Airtherm Manufacturing Co., 700 S. Spring Ave., and •5410 Vernon Ave., St. Louis, Mo. DRINKER, Philip* (M 1992) Prof. of Industrial Hygiene, • Harvard University, School of Public Health, 55 Shattuck St., Boston, and Puddingstone Lane, Newton Center, Mass.

DRISCOLL, William H.* (M 1904) (Presidential Member) (Pres., 1926; 1st Vice-Pres., 1925; 2nd Vice-Pres., • Carrier Corp., Syracuse, N. Y., and 50 Glenwood Ave., Jersey City, N. J.

DROPKIN, David* (M 1942) Instructor of Experimental Engrg. and Westinghouse Research Associate, • College of Engineering, Cornell University, Ithaca, and Slaterville Rd., Ithaca, N. Y.

DRUM, Leo J., Jr. (J 1939) Lt., Engineer Service, Hdq. S. O. S., U. S. Army, A. P. O. No. 871, c/o Postmaster, New York, N. Y., and • 7 Gilmer Ave., Montgomery, Ala.

DUBOIS, Louis J. (M 1931) York Ice Machinery Corp., and • 454 Linden Ave., York, Pa.

DUBRY, Ernest E. (M 1924) Asst. Supt., Central Htg., Detroit Edison Co., 2000 Second Ave., and • 9116 Dexter Blvd., Detroit, Mich.

DUCHATEAU, Manuel F. (A 1942; J 1938) Mgr. Htg. Dept., • Crane Co., Washington St. Viaduct, and 737 Barnett N.E., Atlanta, Ga.

DUDLEY, William H., Jr. (A 1940) Dist. Mgr., The Trane Co., 340 Audubon Blvd., New

DUDLEY, William H., Jr. (A 1940) Dist. Mgr., The Trane Co., 340 Audubon Blvd., New Orleans, La.

DUFAULT, Felix H. (A 1936) Mgr., Furnace Div.,

• General Steel Wares, Ltd., 2355 Dehsle St.,
and 5115 Bordeaux St., Apt. 6, Montreal, Que., Canada.

DUGAN, Thomas M. (M 1920) Sanitary-Htg. Engr., National Tube Co., Fourth Ave. and Locust St., and •1308 Freemont St., McKeesport, Pa.

WKEHART, Morton McI. (M 1942) Prop., Morton McI. Dukehart & Co., Whitaker Bidg., Baltimore, Md.; Bond Bidg., Washington, D. C., and •419 Woodlawn Rd., Roland Park, Balti-DUKEHART, more, Md.

DULLE, Willfred L. (A 1942; J 1936) Asst. Secy., E. E. Southern Iron Co., 1952 Kienlen Ave., St. Louis, and •2910 Lincoln Ave., Normandy, Mο.

DUNCAN, William A. (A 1930) Mgr. Process Service, Dominion Oxygen Co., Ltd., 159 Bay St., and 71 Jackson Ave., Toronto, Ont., Canada.

DUNHAM, Clayton A.* (Life Member; M 1911)
Pres.-Treas., • C. A. Dunham Co., 450 E. Ohio
St., Chicago, and 150 Maple Hill Rd., Glencoe, III.

St., Chicago, and 150 Maple Hill Rd., Glencoe, Ill.

DUNNE, Russell V. D. (M 1937) Chief Engr.,

• International Div., Carrier Corp., S. Geddes St., and 216 Robineau Rd., Syracuse, N. Y.

DUPLANT, Jean L. (A 1940) Regional Engr.,

• Westinghouse Electric Co. of India, 294 A Bazargate St., Bombay, India, and 137-43-219th St., Springfield Gardens, L. I., N. Y.

DUPUIS, Joseph E. R. (M 1942; A 1936) Branch Mgr., • Trane Co. of Canada, Ltd., 660 St. Catherine St. W., Montreal, and 5642 Queen Mary Rd., Hampstead, Que., Canada.

DWYER, Thomas F. (M 1923) Chief, Htg. and Vtg. Div., • Board of Education, 49 Flatbush Ave. Ext., Brooklyn, and 82 Iris Ave., Floral Park, L. I., N. Y.

DYER, Wilfrid S. (A 1939) U. S. Army, and Partner, H. W. Dyer & Sons, 92 Byron St., Battle Creek, Mich.

DYKES, James B. (A 1939; J 1936) Vice-Pres.,

• T. A. Morrison & Co., Ltd., 1070 Bleury St., and 42 Dobie Ave., Montreal, Que., Canada.

EADIE, J. G. (Life Member; M 1909) Consulting Engr., • Eadie, Freund & Campbell, 110 West 40th St., New York, N. Y., and 11 Blackburn Rd. Summit. N. J.

EAGLETON, Sterling P. (M 1936) Chief Engr. and Bldg. Supt., National Gallery of Art. Seventh and Constitution Ave., and • 3522 S. St. N.W., Washington, D. C.

EARLE, Frederic E. (M 1937) Owner, • Frederic E. Earle Co., 898 Norman St., Bridgeport, and 1536 Main St., Stratford, Conn.

EASTMAN, Carl B. (M 1932; J 1929) Htg. Engr., William A. Goff, Consulting Engineer, Broad St. Station Bldg., Philadelphia, and • 530 Brookview Lane, Brookline, Delaware Co., Pa.

Lane, Brookline, Delaware Co., Pa.

EASTWOOD, E. O. (M 1921) (Presidential Member) (Pres., 1942; 1st Vice-Pres., 1941; 2nd Vice-Pres., 1940; Council, 1931-33; 1937-42) Prof. Mech. Engrg., © University of Washington, and 4702-12th Ave. N.E., Seattle, Wash.

EASTWOOD, Harry F. (M 1925) Mgr., Anthracite Industries Exhibit, Anthracite Industries, Inc., 101 Park Ave., and Chrysler Bldg., New York, and •157 Frankel Blvd., Merrick, L. I., N. Y.

EATON, Byron K. (M 1920) Mgr., Delco Heat Div., Omaha Appliance Co., 18 and St. Mary's Ave., and •817 South 38th St., Omaha, Nebr. EATON, William G. M. (M 1942; A 1934) Sales Engr., Pease Foundry Co., Ltd., 227 Victoria St., and •300 Wellesley St., Toronto, Ont.,

Canada.

EBERT, William A. (M 1920) Partner, • Ebert Air Conditioning, 1026 W. Ashby Pl., and 2151 W. Kings Highway, San Antonio, Texas.

EDGE, Alfred J. (M 1938) Engr. in charge Htg. and Air Cond., • Reynolds, Brewton, Smith & Hills, Roberts Bldg., and 2864 Olga Pl., Jackson-ville, Fla.

ville, Fla.

EDWARDS, Arthur W. (M 1936) Dist. Mgr.,
The Trane Co., 626 Broadway, and •3423
Paxton Ave., Cincinnati, Ohio.

EDWARDS, C. Eugene (M 1942) Design Engr.,
Wyatt C. Hedrick, First National Bank Bldg.,
and •111 Samuels Ave., Ft. Worth, Texas.

EDWARDS, Don J. (A 1933) Vice-Pres., • General
Heat & Appliance Co., 1265 Boylston St.,
Boston, and 8 Devon Terrace, Newton Centre,
Mass.

EDWARDS, Junius D.* (M 1936) Asst. Dir. of Research, Aluminum Company of America, P. O. Box 772, New Kensington, and 536 Sixth St., Oakmont, Pa.

EDWARDS, P. A. (M 1919) Pres., • G. F. Higgins Co., 608 Wabash Bldg., and 3074 Pinehurst Ave., Pittsburgh (16), Pa.

EGGERS, William K. (S 1941) Ensign, Inspector of Naval Material, Teletype Corp., 1400 Wrighwood Ave., and •4536 Magnolia Ave., Chicago,

EGGLESTON, Herbert L. (M 1938) Mgr., Gas and Refining Depts., Gilmore Oil Co., 2423 East 28th St., Los Angeles, and •1017 Cumberland Rd., Glendale, Calif.

EHLERS, Jacob (A 1939; J 1937) Acting Chief Engr., • Carrier Engineering S. A., Ltd., P. O. Box 7821, and 112-12th St., Patkhurst, Johannesburg, South Africa.

Box 7821, and 112-12th St., Patkhurst, Johannesburg, South Africa.

EHRENZELLER, Adolph (M 1924) Consulting Htg. Engr., Owner, • A. Ehrenzeller, 329 Washington St., Dorchester, and 23 Parklawn Rd., West Roxbury. Mass.

EHRLICH, M. William (M 1916) Ryan Construction, Curtiss Wright Plant, and • Hotel Lincoln, Indianapolis, Ind.

EICHER, Hubert C. (M 1922) Chief School Plant Div., Dept. of Public Instruction, and • 207 North 30th St., Harrisburg, Pa.

EICHOLTZ, Meryl V. (A 1942) Dist. Mgr., Ilg Electric Ventilating Co., 1012 N. Third St., Milwaukee, and • 2045 Pleasant St., Wauwatosa, Wis.

EISS, Robert M. (M 1933; J 1930) Mech. Engr.,

Minwatkee, and • 2048 Fleasant St., Wattwatosa, Wis.

EISS, Robert M. (M 1933; J 1930) Mech. Engr., Kimberly-Clark Corp., P. O. Box 31, and • Rte. 1, Adella Beach, Neenah. Wis.

EKINGS, Robert M., Jr. (M 1938) Engr., General Electric Co., 5 Lawrence St., Bloomfield, and • Old Chester Rd., Essex Fells, N. J.

EKLUND, Karl G. (M 1938) Consulting Engr., • Karl G. Eklunds Ingeniorsbyra, A. B., Brunkebergstorg 15, Stockholm, and Storangen, Parkgäven 19, Sweden.

ELIZARDI, Ralph (A 1943; J 1940) Engr. in charge of Pressure Cabin Tests, Consolidated Aircraft Corp., and • 1867 Fort Stockton Dr., San Diego, Calif.

ELLINGSON, E. T. Palmer (M 1942) Consulting Architectural Engr., • 314 Savings Bidg., and 231 Northwest 27th St., Oklahoma City, Okla.

ELLIOT, Edwin (M 1929) • Edwin Elliot & Co., 560 North 16th St., and 403 W. Price St., Germantown, Philadelphia, Pa.

ELLIOTT, Norton B. (A 1934) Field Engr., American Blower Corp., 632 Fisher Bldg., American Blo Detroit, Mich.

ELLIS, Frederick E. (M 1923) Sales Mgr.,

• Imperial Iron Corp., Ltd., 30 Jefferson Ave.,
and 9 Princeton Rd., Kingsway P. O., Toronto,
Ont., Canada.

ELLIS, Frederick R. (M 1913) Asst. Supt. of Engrg., Harvard University, Lehman Hall, Cambridge, and •131 Beacon St., Hyde Park,

ELLIS, G. P. (M 1935) Apt. 520, 3130 Wisconsin Ave., Washington, D. C. ELLIS, George W. (J 1940) Engr., 1905 Tremont, Fort Worth, Texas.

ELLIS, Harry W. (Life Member; M 1923; A 1909)
Chairman of the Board, Johnson Service Co.,
507 E. Michigan St., and •2317 E. Wyoming
Pl., Milwaukee, Wis.

ELWOOD, Willis H. (M 1936) Heating Engineer, 209 King St., Ithaca, N. Y.
ELY, Roland S. (S 1940) Student, Michigan State College, and 525 Charles St., East Lansing,

EMANUELS, Mason (A 1943; J 1939) Sales Engr., Pacific Scientific Co., 25 Stillman St., San Francisco, and • 2516 Stockbridge Dr., Oakland, Calif.

EMERSON, Raiph R. (M 1922) Pres., Emerson Swan Goodyer Co., 712 Beacon St., Boston, and 44 Whitney Rd., Newtonville, Mass.

EMMERT, Luther D. (M 1919) Sales Repr.,

Buffalo Forge Co., 20 N. Wacker Dr., Chicago, and 1704 Himan Ave., Evanston. III.

ENCOLAM. Pichard R* (J 1938) Research

ENGDAHL, Richard B.* (1938) Research Engr., • Battelle Memorial Institute, 505 King Ave., and 1243 Glenn Ave., Columbus, Ohio.

ENGLE, Alfred (A 1923) Secy., Jenkins Bros., 80 White St., New York, and 1 Edgewood Rd., Scarsdale, N. Y.
ENGLISH, Harrold (M 1935; A 1930) Pres., English & Lauer, Inc., 1978 S. Los Angeles St., and 515 S. Norton Ave., Los Angeles, Calif.
ENSIGN, Willis A. (M 1935) Vice-Pres., Frontier Fuel Oil Corp., 886 Ellicott Square Bldg., Buffalo, and Shadagee Rd., Eden, N. Y.
ERICKSON, Harry H. (A 1929) Sales Engr., Haynes Selling Co., Inc., 1124 Spring Garden St., Philadelphia, and 25 Eagle School Rd., Strafford, Pa.

• Haynes Selling Co., Inc., 112* Spring Garden St., Philadelphia, and 25 Eagle School Rd., Strafford, Pa. ERICSSON, Eric B. (M 1933) Engr., Custodian, Board of Education, and • 6720 Cregier Ave., Chicago, Ill. ERIKSON, Harald A. (M 1939) Vice-Pres., A. B. Svenska Flaktfabriken, Kungsgatan 16-18, Stockholm, and • Nockebyvagen 61, Nockeby, Smaden

Stockholm, and Nockebyvagen 61, Nockeby, Sweden.

ERISMAN, Percival H., Jr. (M 1936) Vice-Pres.,

Washington Refrigeration Co., 1733-14th St.

N.W., Washington, D. C., and 4 Waltonway

Rd., Belle Haven, Alexandria, Va.

ESCHENBACH, Samuel P. (A 1943; J 1935)

1st Lt., 62nd C. A. (AA), Fort Totten, Bayside,

L. I., N. Y.

L. I., N. Y.
ESPENSCHIED, Frederic F. (M 1940) Engr.,
Mfrs. Agent, 410 Hill Bldg., 17th and I St. N.W.,
and 3373 Stuyvesant Pl. N.W., Washington,

and •33/3 Stuyvesant Fl. N.w., Wasnington, D. C.
ESSLEY, Hubert A. (M 1941) Taco Heaters, Inc.,
•123 South St., Providence, R. I., and 102 W.
Cliveden St., Philadelphia, Pa.
ESTEP, L. G. (M 1938) Chief Engr., United Wall
Paper Factories, Inc., 3330 W. Fillmore St.,
Chicago, and •115 S. Catherine Ave., LaGrange,

ESTES, Edwin C. (A 1936) Asst. Chief Draftsman, Northern Pacific Railway Co., St. Paul, and Victoria Rd., Mendota, Minn.

man, Northern Pacine Railway Co., St. Paul, and Victoria Rd., Mendota, Minn.

EUTSLER, Eugene E., Jr. (J 1938) Lt., U.S.N.R., C./o Industrial Manager, Eighth Naval Dist., New Federal Bidg., and 631 Toulouse St., New Orleans, La.

EVANS, Bruce L. (M 1938; A 1937) Htg. Engr., Secy.—Treas., • Becker Marsden Co., 3818 Lindell Bivd., and 6334 Waterman Ave., St. Louis, Mo. EVANS, Edwin C. (M 1919) Mgr., Buffalo Office.

• B. F. Sturtevant Co.; 602 Jackson Bidg., 220 Delaware Ave., and Mayflower Apts., Apt. 2J, 66 Summer St., Buffalo, N. Y.

EVANS, Richard W.* (M 1940) Consulting Engr., 1912 Emerson Ave. S., Minneapolis, Minn.

EVANS, William A. (M 1918) Dist. Mgr., • Aerofin Corp., 1121 Fidelity Bidg., and 3642 Winchell Rd., Shaker Heights, Cleveland, Ohio.

EVELETH, Charles F.* (Life Member; M 1911) Wilbur Watson & Associates, 4614 Prospect Ave., and • 2030 East 115th St., Cleveland, Ohio.

EVEREST, R. Harry (M 1935) Engrg. and Sales,

EVEREST, R. Harry (M 1935) Engrg. and Sales, Sheldons, Ltd., Galt, and •235 Waterloo St. S., Preston, Ont., Canada.

EVERETTS, John, Jr.* (M 1938; A 1935; J 1929)
Lt., E-V (R), U. S. Navy, and • 1006 East 36th
St., Brooklyn, N. Y.
EWENS, Frank G.* (M 1937) Htg. Engr., Defense
Industries, Ltd., 1155 Beaver Hall Sq., and • Apt.
14, 4800 Cote Des Neiges Rd., Montreal, Que.,

EZZ-EL-DIN, Kamal (A 1941; J 1938) Air Cond. Engr., Mechanical and Electrical Department, and •78 Helwan St., Mounirah, Cairo, Egypt.

FABLING, Walter D. (A 1937) Sales Mgr.,
• Sterling Electric Motors, Inc., 5401 Telegraph
Rd., Los Angeles, and 1950 Del Mar Ave., San
Marino, Calif.

FAGIN, Daniel J. (M 1932) Sales Engr., • The Laclede Gas Light Co., 1017 Olive St., and 3364 Lawn Ave., St. Louis, Mo.

FAGAN, Lawrence E. (A 1942) Sales Engr., Chatham Malleable & Steel Products, Ltd., 513 C. P. R. Bldg., and ●1229 Dufferin St., Toronto, Ont., Canada.

FAHNESTOCK, Maurice K.* (M 1927) Research Assoc. Prof., • University of Illinois, 214 M. E. Laboratory, and 702 W. Vermont St., Urbana,

Laboratory, and 702 W. Vermont St., Urbana, Ill.

FAILE, E. H. (M 1934) Consulting Engr., Retired, R. F. D. 1. Westport, Conn.

FALK, David S. (A 1943; J 1937) Asst. Industrial Hygiene Engr. (R), U. S. Public Health Service, National Institute of Health, Bethesda, Md., and •111 S. Revena Blvd., Ann Arbor, Mich.

FALTENBACHER, Harry J. (M 1930) Owner, Harry J. Faltenbacher, 235 E. Wister St., Philadelphia, Pa.

FALVEY, John D. (M 1922) Consulting Engr., •316 N. Eighth St., St. Louis, and 6636 Pershing Ave., University City, Mo.

FANNING, Erroll C. (M 1941) Engr., •Atlas Heating & Ventilating Co., Ltd., 557 Fourth St., San Francisco, and 24 Oval Rd., Oakland, Calif.

FARBMAN, Leonard (A 1942; J 1935) Engr., •M. Farbman & Sons, Inc., 331 West 59th St., and 114 West 70th St., New York, N. Y.

FARLEY, W. F. (M 1930) Sales Repr., American Radiator & Standard Santary Corp., 50 West 40th St., New York, and •28 Elm St., New Rochelle, N. Y.

FARLEY, Willoughby S. (A 1941; J 1934) Capt., and Contract of Market 2015.

ANALIALON O. SIAHUARU SAHIVARY COPP., 50 West 40th St., New York, and •28 Elm St., New Rochelle, N. Y.

FARLEY, Willoughby S. (A 1941; J 1934) Capt., 104th Q. M. Regt., 29th Inf. Div., and Owner, •W. S. Farley, Contractor & Engr., 865 Paxton Ave., Danville, Va.

FARNES, Bert W. (A 1938) Mgr., B. W. Farnes Co., 3019 Northeast 28th Ave., Portland, Ore FARNHAM, Roswell (M 1920) (Council, 1927-33) Dist. Mgr. Engrg. Sales, Buffalo Forge Co., P. O. Box 985, and •5 Clarendon Pl., Buffalo, N. Y.

FARRAR, Cecil W. (M 1920; A 1918) (Treas., 1930; Council, 1930), Sales, Washington, D. C., and •29 Oakland Pl., Buffalo, N. Y.

FARRINGTON, S. Edward (M 1940) Designer, •Moody & Hutchison, 1701 Architects Bidg., and 3123 Rawle St., Philadelphia, Pa.

FARROW, E. E. (A 1938) Pres., E. E. Farrow, Inc., 2808 Inwood Rd., and •1518 Kings Highway, Dallas, Texas.

FARROW Hollis I. (A 1042, 71027) Service and FARROW Hollis I. (A 1042, 71027) Service and FAROW on, D. C.

FEDER, Nathan (J 1938) Engr., Chemical Construction Corp., 30 Rockefeller Plaza, and • 1319

Morrison Ave., New York, N. Y.

FEEHAN, John B. (Life Member; M 1923) Pres.,
Treas., • John B. Feehan, Inc., 58 Spring St.,
Lynn, and 4 Long View Dr., Marblehead, Mass.
FEELY, Frank J. (M 1935; A 1929) Mgr. of Sales,
Taylor Supply Co., 700 Monroe Ave., and • 950

Trombley Rd., Grosse Pointe Park, Detroit,
Mich

FEHLIG, John B. (Life Member; M 1918) Mgr.,

• Excelsior Furnace Co., 528 Delaware Ave.,
and 2927 Brooklyn Ave., Kansas City, Mo.

FEHLIG, John B., Jr. (A 1941) Asst. Mgr.,

• Excelsior Heating Supply Div., 528 Delaware,
and 6412 Paseo, Kansas City, Mo.

FEINBERG, Emanuel (J 1937) Gen. Mgr.,

• Thermalair Engineering Co., 321 Stephenson
Bldg., and 3359 Cortland Ave., Apt. 407,

• Thermalair Engineering Co., 321 Stephenson
Bldg., and 3359 Cortland Ave., Apt. 407,
Detroit, Mich.

FEIRN, William H. (M 1938) Engr., C. A.
Hooper Co., 453 W. Gilman, and • Shorewood
Hills, Madison, Wis.

FELDERMANN, William (A 1937) Pres.,

ELDERMANN, William (A 1937) Pres.,

• Walton Laboratories, Inc., 1186 Grove St.,
Irvington, and 357 Irving Ave., South Orange,

N. J. FELDMAN, A. M.* (Life Member; M 1903) Consulting Engr., 320 Central Park W., New York,

N. Y.
FELDSTEIN, Harold (J 1938) Captain, U. S.
Army Ordnance, San Antonio Arsenal, and
Engr., •941 W. Summit Ave., San Antonio, and

Engr., •941 W. Summit Ave., San Antonio, and Box 3866, Odessa, Texas.

FELS, Arthur B. (M 1919) Pres., • The Fels Co., 42 Union St., Portland, and Yarmouth, Me.

FELTWELL, Robert H. (Life Member; M 1905)

Hig. Engr., 1347 Michigan Ave. N.B., Washington, D. C.

rigs. Engr., 1941 Michigan Ave. N.B., Washington, D. C.

FENSTERMAKER, S. E. (M. 1909) Partner, S. E. Fenstermaker & Co., 937 Architects and Builders Bidg., Indianapolis, and Carmel, Ind.

FERDERBER, Murray B., M.D.* (M. 1938) Capt., M. C., e-Station Hospital, Westover Field, Chicopee Falls, Mass., and 5722 Fifth Ave., Pittsburgh, Pa.

FERGESTAD, Marvin L. (M. 1938; J. 1935) Sales Engr., • The Pacific Lumber Co., 35 E. Wacker Dr., and 5044 Marine Dr., Chicago, Ill.

FERGUSON, Ralph R. (M. 1934; A. 1927; J. 1925) Mgr. Air Cond. Dept., American Blower Corp., 50 West. 40th St., New York, N. Y., and •35 Benvenue Ave., West. Orange. N. J.

FERRIS, Arthur L. (A. 1941) Repr., Hart & Cooley Manufacturing Co., 103 Douglas Ave., Toronto, Ont., Canada.

FIDELIUS, Walter R. (M. 1936) Pontiac Hotel,

Toronto, Ont., Canada.
FIDELIUS, Walter R. (M 1936) Pontiac Hotel,
Oswego, N. Y.
FIEDLER, Harry W. (M 1923) Owner, • Air Conditioning Utilities, 8 West 40th St., New York,
and 16 Dobbs Terrace, Scarsdale, N. Y.
FIFF, G. Donald (M 1937; A 1931; J 1929) Air
Cond. Engr., Architect of the Capitol, Washington, D. C., and • 4137 N. Henderson Rd.,
Arlington, Value of N. (A 1941) Mgr. Merchan-

ington, D. C., and •4137 N. Henderson Rd., Arlington, Va.

FINDLEY, Howard N. (A 1941) Mgr., Merchandise Sales, • Avery Engineering Co., 1906 Euclid Ave., and 1762 East 89th St., Cleveland, Ohio.

FINLAY, Alvin E. (M 1942) Htg. Engr., Portland Gas & Coke Co., 132 NW. Flanders St., and •4919 Northeast 13th Ave., Portland, Ore.

FINNEY, Brandon (M 1937) Assoc. Engr., U. S. Engineers, and •721 Via de La Paz, Pacific Palisades, Calif.

FINNIGAN, William T. (M 1939) Mgr. and Engr., • Finnigan Bros., 1421 Southeast 20th Ave., and 1634 Southeast 29th Ave., Portland, Ore.

FIRESTONE, Maurice T. (M 1939) Mgr. of Dealers Northeastern Dist., • Carrier Corp., 405 Lexington Ave., and 65 Park Terrace E., New York, N. Y.

FISCHER, Frank P. (A 1940) Prop., Frank P. Fischer Engineering Co., 412 Dryades St., New Orleans, La.

Orleans, La.

FISCHER, Lawrence W. (J 1937) Plant Mgr., Anemostat Corp. of America, 1031 New Britain Ave., Elmwood, Conn.

FITTS, Joseph C. (M 1930) Secy., Heating, Piping & Air Conditioning Contractors National Assn., 1250 Sixth Ave., New York, N. Y., and •215 Kenilworth Rd., Ridgewood, N. J.

FITZ, Jean C. (M 1924) 405 Webster Ave., New Rochelle, N. Y.

FITZGERALD Marthaw J (M 1924) 7

FITZGERALD, Matthew J. (M 1934) Pres., Standard Asbestos Manufacturing Co., 820 W. Lake St., Chicago, and •1117 N. Linden Ave., Oak Park, Ill.

FITZGERALD, William E. (A 1943; J 1936; S 1935) 1st Lt., • 99th Inf. Div., Artillery Hdq., Camp Van Dorn, Miss., and Fitzgerald Plumbing & Heating Co., Inc., 939-41 Louisiana Ave., Shreveport, La.
FITZSIMONS, J. Patrick (M 1941; A 1940; J 1934; S 1932) Mgr. Air Cond. Dept., • Trane Co. of Canada, Ltd., 4 Mowat Ave., and 61 Burnaby Blvd., Toronto, Ont., Canada. FLANAGAN, James B. (A 1939) Sales Mgr., • Warden-King, Ltd., 2104 Bennett Ave., and 4244 Westhill Ave., Montreal, Que., Cahada. FLARSHEIM, C. A. (A 1940; J 1933) 2nd Lt., Air Corps., • A. A. F. S. A. T.-Training Aids Dept., Orlando, Fla., and 3720 Holmes St., Kansas City, Mo.

Corps. • A. A. F. S. A. T.-Training Aids Dept., Orlando, Fla., and 3720 Holmes St., Kansas City, Mo.

FLEAK, W. Donald (A 1938) Lab. Engr., Industrial Training Inst., 2141 Lawrence Ave., and • 4535 N. Mozart St., Chicago, Ill.

FLEISHER, Walter L.* (M 1914) (Presidential Member) (Pres., 1941; lst Vice-Pres., 1940; 2nd Vice-Pres., 1939; Council, 1936-42) Pres., • Air & Refrigeration Corp., 475 Fifth Ave., New York, and New City, N. Y.

FLEMING, Paul B. (M 1941) Consulting Engr., • Paul B. Fleming, 708 Rockefeller Bildg., Cleveland, and 20859 Erie Rd., Rocky River, Ohio.

FLINK, Carl H. (M 1923) Senior Engr., • American Radiator & Standard Sanitary Corp., 675 Bronx River Rd., Yonkers, and 111 Magnolia Ave., Mt. Vernon, N. Y.

FLINT, Coll T. (M 1919) 8 Searle Ave., Brookline, Mass.

FLORETH, John J. (M 1939) Lt. (g) U. S. N. R., Naval Air Corps., and • 5718 N. Richmond Ave., Chicago, Ill.

FLUCKEY, Kenneth N. (J 1940) Asst. Sanitary Engr. (R) U. S. P. H. S., Industrial Hygiene Service, • California State Dept. of Public Health, 2002 Acton St., and 689 Santa Rosa Ave., Berkeley, Calif.

FLY E. Paul (J 1942) Supt. Geo. M. Fly & Son.

Service, California State Dept. of Public Health, 2002 Acton St., and 689 Santa Rosa Ave., Berkeley, Calif.

FLY, E. Paul (/ 1942) Supt., Geo. M. Fly & Son, 1419 Cinton St., and •3504 Grayswood Ave., Nashville, Tenn.

FOGG, Joseph H. (A 1942; J 1940) Assoc. Naval Archt. (Vent. Unit), U. S. Maritime Commission, Technical Div., Washington, D. C., and •217 E. Bellefonte Ave., Alexandria, Va.

FOLEY, John J. (A 1938) Pres., • Weathermakers (Canada) Ltd., 593 Adelaide St. W., and 176 Cortleigh Blvd., Toronto, Ont., Canada.

FOLEY, John L. (M 1938) Precipitron Specialist, Westinghouse Electric & Manufacturing Co., 306 Fourth Ave., Pittsburgh, Pa., and •3567 Riedham Rd., Shaker Heights, Ohio.

FOLSOM, Roife A. (M 1938) Vice-Pres., • W. R. Ames Co., 150 Hooper St., San Francisco, and 2411 Easton Dr., Burlingame, Calif.

FOOTE, Earle E. (M 1936) Gen. Supt., Consumers Central Heating Co., 108 East 11th St., and •3412 North 28th St., Tacoma, Wash.

FORBES, Homer B., Jr. (J 1941; S 1938) Sales Engr., • Niagara Blower Co., 37 W. Van Buren St., Chicago, and 1108 Davis St., Evanston, Ill.

FORDERBRUGGEN, Kevin J. (A 1941; J 1938)

Major, U. S. Army, 65th CA (aa), Camp Haan, Riverside, Calif., and Engr., • Minnesota Valley Natural Cas Co., 222 S. Front St., Mankato, Minn.

• Grinnell Co., Inc., 240 Seventh Ave. S., and

Minn.

FORFAR, Donald M. (M 1917) Mech. Engr.,

Grinnell Co., Inc., 240 Seventh Ave. S., and
4817 Emerson Ave. S., Minneapolis, Minn.

FORRESTER, Norman J. (A 1938) Mgr., Contract Div., The Garth Co., 750 Belair Ave., and

4800 Westmore Ave., Montreal, Que., Canada.

FORSBERG, William (M 1919) Secy., The

Hopson & Chapin Manufacturing Co., 231 State

St., New London, and Old Colchester Rd.,

Quaker Hill, Conn.

FORSLUND. Oliver A. (M 1936) Gen. Mgr.,

Forslund Pump & Machinery Co., 1717-19 Main

St., and • 108th St. and State Line, Kansas City,

Mo.

POSS, Edwin R. (A 1936) Dist. Mgr., • The Powers Regulator Co., 407 Bona Allen Bldg., and 257 Bolling Rd., Atlanta, Ga.

FOSTER, Charles (M 1923) Owner, • Charles Foster, Consulting Engr., 316 Medical Arts Bldg., and 2831 First St., Duluth, Minn.
FOSTER, John G. (J 1938) Lt., 0-439, 706, 8th Photo Squadron, A. P. O. 929, c/o Postmaster, San Francisco, Calif., and • 2635 Sedgwick Ave., New York, N. Y.
FOULDS, P. A. L. (M 1916) Consulting Engr. (Partner), • 110 State St., Boston, and 72 Whitin Ave., Revere, Mass.
FOWLES, Harry H. (A 1940: J 1934) Engr. and

FOWLES, Harry H. (A 1940; J 1934) Engr., and Estimator, V. J. Kenneally Co., 104 Hanover St., Boston, Mass., and •4 Haskell St., Auburn,

Me.

FOX, Ernest (M 1935) Asst. Engr., • C. A.
Dunham Co., Ltd., 1523 Davenport Rd., and
531 Rushton Rd., Toronto, Ont., Canada.

FOX, John H. (M 1935) Major, 2 Cdn. Army
Tank Ordnance Company, Canadian Army, and
• 37 Macdonell Ave., Toronto, Ont., Canada.

FRANCK, Peter* (J 1938) Secy., Tiltz Air Conditioning Corp., 230 Park Ave., New York, and
• 3311A-69th St., Jackson Heights, L. I., N. Y.

FRANK, John M. (M 1918; A 1912) Pres., • Ilg
Electric Ventilating Co., 2850 N. Crawford Ave.,
Chicago, and 1152 Chatfield Rd., Hubbard
Woods, Ill.

FRANK, Olive E.* (M 1919) Pres., • Frank

Electric Ventilating Co., 2850 N. Crawford Ave., Chicago, and 1152 Chatfield Rd., Hubbard Woods, Ill.

FRANK, Olive E.* (M 1919) Pres., Frank Heaters, Inc., 521 East 40th St., Paterson, and Algonquin Trail, Pines Lake, N. J.

FRANKEL, Gilbert S. (M 1926) Mgr., Federal and Marine Dept., Buffalo Forge Co., 512 Woodward Bldg., Washington, D. C., and 5800 Kirkside Dr., Chevy Chase, Md.

FRANKLE, Harry R. (M 1941) Mgr., Midwest Air Control, 725 Grand Ave., and 547-44th St., Des Moines, Iowa.

FRANKLIN, Raiph S. (M 1919) 320 Grove St., Melrose, Mass.

FRANKLIN, Sam H., Jr. (A 1938) Major, 1011 Mutual Bldg., Richmond, and 204 Colonial Court, Lynchburg, Va.

FRASER, Jarnes J. (A 1936) Managing Dir., Honeywell-Brown, Ltd., Wadsworth Rd., Perivale, Greenford, Middlesex, and 29 Wellesley Rd., Twickenham, England.

FRAZER, J. Earl (A 1936) Vice-Pres., Treas., Frazier-Simplex, Inc., 438 E. Beau St., and 7 Wilmont Ave., Washington, Pa.

FREDERICK, Holmes W. (M 1937) Asst. Htg. Engr., Cornell University, Morrill Hall, and 103 Harvard Pl., Ithaca, N. Y.

FREEMAN, Alfred W. (J 1940; S 1939) Lt., 313 Fighter Sqdn., Leesburg, Fla., and 21-05 88th St., Jackson Heights, L. L. N. Y.

FREEMAN, Edwin M. (A 1937) Vice-Pres., Canadian Asbestos Co., 322 Youville Sq., and 66 Courcelette Ave., Montreal, Que., Canada.

FREEMAN, J. Albert (A 1940; J 1938) Partner, Engr., Western Engineering Co., 1623 Southeast 11th Ave., and 4436 S.W. Dosch Rd., Portland, Ore.

FREESTROM, Arthur (A 1941) Sales Engr., O. Freiert Co., Alpene, Mich.

FREESTROM, Arthur (A 1941) Sales Engr., O. Freiert Co., Alpena, Mich.

FREITAG, Frederic G. (M 1932) 9 Harrison St., Mt. Vernon, N. Y.

FRENCH, Donald (M 1926) Vice-Pres., • Carrier Corp., 302 S. Geddes St., Syracuse, and Box 238, Cazenovia, N. Y.

FRENTZEL, Herman C. (M 1936) Chief Engr, and Works Mgr., The Heil Co., 8000 W. Montana St., and •4363 N. Wildwood Ave., Milwaukee. Wis.

FRIEDLER, Joseph J., Jr. (M 1940) Southern Dist. Mgr., • Ilg Electric Ventilating Co., 304 Natchez Bldg., and 5411 Fontainbleau Dr., New Orleans, La.

New Orleans, La.

FRIEDLIEB, Morton J. (J 1942) Mech. Designer,
Madigan-Hyland Co., Ltd., 2804—41st Ave.,
Long Island City, and 6560 Booth St., Forest
Hills, L. I., N. Y.

FRIEDLINE, James M. (A 1942; J 1937) 1st Lt., U. S. Army Engineers, and •c/o R. L. Dixson, Plymouth, Iowa.

FRIEDMAN, Arthur (A 1936) • Air Controls, Inc., 2310 Superior Ave., Cleveland, and 15700 S. Moreland Blvd., Shaker Heights, Ohio. FRIEDMAN, D. Harry, Jr. (M 1936) Capt. C. E., • Post Engineer, A. A. F. C. C. S., Smyrna, Tenn., and 531 Whitney Ave., New Haven, Comm.

reinin, and sof withdey Ave., New Haven, Conn.

FRIEDMAN, Ferdinand J.* (M 1921) • McDougall & Friedman, 1221 Osborne St., Montreal, Que., Canada, and 31 Union Square, New York, N. Y.

FRIEDMAN, Milton (A 1939; J 1935; S 1933)

H. F. Klawuhn, General Contractor, 34-24

82nd St., Jackson Heights, L. I., and • 833 West
End Ave., Apt. 14C, New York, N. Y.

FRIEND, Walter F. (M 1941) Mech. Engr.,
• Ebasco Services, Inc., 2 Rector St., and 9

West 68th St., New York, N. Y.

FRITZBERG, Lawrence H. (M 1941; J 1931)

Engr., Aerofin Corp., 410 S. Geddes St., and • 143

Dorwin Ave., Syracuse, N. Y.

FROELICH, H. Allen (A 1939) Gen. Mgr., • The
Glen'Aire Cooler Co., 110 W. Seventh St., Box
190, and 133½ W. Seventh St., Junction City,
Kan.

FULLER, Charles A. (M 1913) (Council, 1917)
Partner, • Slocum & Fuller, 18 East 41st St.,
New York, and 501 E. Fifth St., Mt. Vernon,
N. Y.

New York, and 501 E. Fifth St., Mt. Vernon, N. Y.
FULLER, Elbridge W. (M 1938) 8425-88th St., Woodhaven, L. I., N. Y.
FULLER, Roger A. (M 1941) Industrial Engrg. Dept., General Electric Co., 920 Western Ave., Lynn, and • 14 Mugford St., Marblehead, Mass. FULLMAN, James B. (J 1941) U. S. Navy, and • 904 Beaver St., Sewickley, Pa.
FULMOR, Ira P. (M 1942) Owner, • Air Conditioning Co. of Southern California, 1003 Santa Fe Ave., Los Angeles, and 2085 E. Foothill Blvd., Altadena, Calif.
FURBER, Stanley L. (A 1941) 1156 East 66th St., Kansas City, Mo.

GABLE, Harold Raymond (A 1939) Design Engr., Union Steel Products Co., and • 917 N.

Engr., Union Steel Products Co., and •917 N. Clinton, Albion, Mich.

GAIR, Kenneth B. (A 1943; J 1939) Supervisor, Aircraft School, Briggs Indiana Corp., and •1712 E. Gum St., Evansville, Ind.

GALLOWAY, David (M 1941) Sales Engr., •Bowen Refrigeration Supplies, 311 Peachtree, Atlanta, and 1015 E. Lake Dr., Decatur, Ga.

GAMBLE, Cary B. (M 1940; A 1935) Gen. Mgr., Associated Mechanical Contractors, Bluebonne Ordnance Plant, McGregor, and •2704 Herring Ave., Waco, Texas.

GAMMIL, O. Elbridge, Jr. (M 1940; A 1937; J 1930) Sales Engr., •Carrier Corp., 710 N. Harwood St., and 4421 Glenwood St., Dallas, Texas.

GANNON, Russell R. (M 1939) Owner, • Russell R. Gannon Co., 223 Gwynne Bldg., and 6442 Grand Vista Ave., Pleasant Ridge, Cincinnati,

ANT, H. P.* (M 1915) (Presidential Member) (Pres., 1923; 1st Vice-Pres., 1922; 2nd Vice-Pres., 1921; Council, 1918; 1921-24) Director of Planning, Philadelphia Ordnance District, 150 S. Broad St., Philadelphia, and R. D. No. 1, Glenmoore, Pa. GANT, H.

GARBER, William E., Jr. (J 1938) Sales Mgr., Farquar Heating Service Co., 3406 E. Tenth St., Indianapolis, and • Rural Route 1, Fairland, Ind.

GARDNER, C. Rollins (A 1937) Vice-Pres.

• Martyn Brothers, Inc., 911 Camp St., Dallas, and 4417 E. Lancaster Ave., Forth Worth, Texas.

GARDNER, William (A 1921) Garden City Fan.
Co., 332 S. Michigan Ave., and •7836 Loomis Blvd., Chicago, Ill.

GARNEAU, Leo (M 1938; J 1930) Sales Engr.,

• C. A. Dunham, Ltd., 832 Dominion Square
Bldg., Montreal, and 34 Coolbreeze Ave., Lakeside, Que., Canada.

Ala.

GAUSEWITZ, William H. (A 1937) Pres., • Yale Engineers, Inc., 2919 Fremont S., and 1321 W. Minnehaha Pkwy., Minneapolis, Minn.

GAUSMAN, Carl E. (M 1923) Partner, Gausman & Moore, 1026 First National Bank Bldg., and • 2360 Chilcombe Ave., St. Paul, Minn.

GAYLORD, Frank H. (M 1921) Vice-Pres., • Hoffman Specialty Co., Inc., 130 N. Wells St., Chicago, and 362 N. York St., Elmhurst. Ill.

GAYMAN, Paul D. (M 1938) Branch Mgr., • Johnson Service Co., 2142 East 19th St., and 20875 Endsley Ave., Rocky River, Cleveland, Ohio.

o Johnson Service Co., 2142 East 19th St., and 20875 Endsley Ave., Rocky River, Cleveland, Ohio. GAYNER, James (M 1937) Consulting Engr., ●260 California St., San Francisco, and 327 Magnolia Ave., Piedmont, Calif. GEBEL, Kurt M. (S 1940) Draftsman, Anderson & Coffey, Inc., Student, Northeastern University, Boston, Mass., and ●229–120th St., Rockaway Beach, L. I., N. Y. GEHRS, William (A 1939) Branch Mgr., ●Johnson Service Co., 320 American Bank Bldg., and 3801 S.E. Woodward St., Portland, Ore. GEIGER, Irvin H. (M 1919) Registered Professional Engr. and Mfrs. Repr., ●410 Telegraph Bldg., and 240 Maclay St., Harrisburg, Pa. GEIGER, Raymond L. (M 1939) Engr., The Austin Co., Cleveland, Ohio. GELTZ, R. W. (A 1943; J 1936) Air Cond. Engr., York Ice Machinery Corp., 2700 Washington Ave. N.W., and ●14213 Glenside Rd., Cleveland, Ohio. GELTZ, R. W. (A 1943; J 1936) Air Cond. Engr., York Ice Machinery Corp., 2700 Washington Ave. N.W., and ●14213 Glenside Rd., Cleveland, Ohio. GENONE, Henry W. (M 1941) Vice-Pres., ●Dinkler Hotels Co., Inc., Ansley Hotel, and 1898 Wycliff Rd. N.E., Atlanta, Ga. GERMAIN, Oscar (M 1935) Htg. Expert, 1343 St. Louis Blvd., Trois-Rivieres, Que., Canada. GERRISH, Grenville B. (A 1936; J 1930) Repr., Fitzgibbons Boiler Co., Inc., 31 Main St., Cambridge, and 263 Standish Rd., Melrose, Mass. GERRISH, Harry E. (M 1910) (Council, 1919) Pres., ●Morgan-Gerrish Co., 307 Essex Bldg., and 4534 S. Fremont Ave., Minneapolis, Minn. GERSTENBERGER, Edgar J. (A 1938) Sales Engr., Glendale Supply Co., 1819 W. Glendale Ave., and ●3824 North 17th St., Milwaukee, Wis. epsilos., Genomerator of the search Dir., Industrial Device Corp., 202 East 44th St., and €10 West 65th St., New York, N. Y., and €38 Ramkanta Bose St., Bagh Bazar, Calcutta, India.
GHOSH, Bidhu Bhuñan (J 1939) Ind. Planning Officer, War Supply Board, Government of

India. GHOSH, Bidhu Bhusan (J 1939) Ind. Planning Officer, War Supply Board, Government of India, 6, Esplanade East, and 15, bansdowne Terrace. Calcutta, British India. GIANNINI, Mario C. (M 1935) Asst. Prof. and Dir. of War Training New York University, University Heights, New York, and 322 Rear Ave., Crestwood, N. Y.

GIBBONS, Michael J. (M. 1914) Gen. Mgr., M. J. Gibbons Supply Co., 601-631 E. Monu-ment Ave., and •116 Thruston Blvd., Dayton,

GIBBS, Edward W. (Life Member; M 1919) Pres.,

The Smith-Gibbs Co., 201 S. Main St., and 39

• The Smith-Gibbs Co., 2015. Main St., and 39 President Ave., Providence, R. I.

GIESECKE, F. E.* (Lafe Member; M 1913) (Presidential Member) (Pres., 1940; 1st Vice-Pres., 1939; 2nd Vice-Pres., 1938; Council, 1932-41)

Prof. Emeritus, Texas A. & M. College, College Station, Texas, and • Urbana-Lincoln Hotel, Urbane III Station, T Urbana, Ill.

Urbana, Ill.
GIFFORD, Clarence A. (A 1934) Sales, American
Radiator & Standard Sanitary Corp., 1807
Elmwood Ave., Buffalo, and • 78 Roycroft Blvd.,
Snyder, N. Y.
GIFFORD, Edmund W. (M 1938) Branch Mgr.,
Himelblau, Byfeld & Co., •611 N. Broadway,
Milwaukee, and 2431 North 85th St., Wauwatosa,
Wi

Milwaukee, and 2431 North 85th St., Wauwatosa, Wis.
GIFFORD, Robert L. (Life Member; M 1908)
Pres., Illinois Engineering Co., Cor. 21st St. and Racine Ave., Chicago, Ill., and •1231 S. El Molino Ave., Pasadena, Callif.
GIGUERE, George H. (M 1920) Mech. Engr., • Smith, Hinchman & Grylls, 800 Marquette Bidg., and 2253 Burns, Detroit, Mich.
GILBERT, Leslie S. (M 1937) Owner, • Gilbert Engineering Co., 1305 Liberty Bank Bldg., and 3713 Southwestern Blvd., Dallas, Texas.
GILBERT, Thomas (A 1940) Repr., Empire Brass Manufacturing Co., Ltd., and •216 Raymond Ave., London, Ont., Canada.
GILBOY, John P. (M 1924) Sr. Member, • John P. Gilboy Co., 503 Scranton Electric Bldg., and 521 Arthur Ave., Scranton, Pa.
GILLETT, M. C. (M 1916) Dist. Sales Mgr., Hoffman Specialty Co., Inc., and •3444 N. Pennsylvania, Indianapolis, Ind.
GILLILAND, Lesley (A 1942) Operating Engr., Gadsden Ordnance Plant, Gadsden, and • Route No. 1, Attalla, Ala.

GILLILAND, Lesley (A 1942) Operating Engr., Gadsden Ordnance Plant, Gadsden, and • Route No. 1, Attalla, Ala.

GILMAN, Franklin W. (M 1935) Plant Engr.,
• Loft Candy Corp., 38-38 Ninth St., Long Island City, L. I., N. Y., and The Chatham, 20th and Walnut Sts., Philadelphia, Pa.

GILMORE, John L. (A 1938) Owner, • John L. Gilmore, Htg.-Vtg., 1525 Cochran Ave., and 1804 Union St., Brunswick, Ga.

GILMORE, Louis A. (A 1940; J 1935; S 1930) Vice-Pres., John Gilmore & Co., 115 South 11th St., and • 7256 Pershing Ave., St. Louis, Mo.

GINN, Tony M. (M 1935) Gen. Mgr., Tony M.

Ginn Co., 214-24 Fifth St. S., Great Falls, Mont.

GINZBURG, Nicola (M 1942) Marine Ventilation Design Engr., The Pusey & Jones Corp., Front and Poplar Sts., Wilmington, and • 5 Maple Ave., Claymont, Del.

GITTERMAN, Henry (A 1937) Precipitron Specialist, Westinghouse Electric & Manufacturing Co., 40 Wall St., New York, and • Yorktown Heights, N. Y.

GITTLESON, Harold (A 1936) Sales Mgr., Lariviere, Inc., 3715 St. Lawrence Blvd., Montreal, and • 1125 Lajoie Ave., Outremont, Que., Canada.

Que., Canada. GIVIN, Albert W. (A 1925) Vice-Pres. in charge of Sales, The Gurney Foundry Co., Ltd., 4 Junction Rd., Toronto, and • R. R. 2, Freeman,

Ont., Canada. GJERTSEN, George (S 1940) Social Security Board, and • 4509 Arabia Ave., Baltimore, Md.

GLASS, William (M 1934) Pres. and Mgr.,

Partridge-Halliday, Ltd., 144 Lombard St.,
Winnipeg, and 190 Braemar Ave., Norwood,
Man., Canada.

GODFREY, J. E. (J. 1938) General Foreman, Saginaw Steering Gear Div., General Motors Corp., and 1711 Cornell Rd. N.E., Atlanta, Ga. GOEHLER, Elmer E. (A. 1939) 1921 S.E. Grand Ave., Portland, Ofc.

GOELZ, Arnold H. (M. 1931) Pres., • Kroeschell Engineering Co., 215 W. Ontario St., Chicago, and 827 Greenwood Ave., Wilmette, Ill.

GOERG, B. (M 1928) American Radiator & -Standard Sanitary Corp., 675 Bronx River Rd.,

Standard Sanitary Corp., 675 Bronx River Rd., Yonkers, N. Y.

GOERGENS, Albert G. (A. 1938) Engr., U. S.
War Dept., Munitions Bldg., Washington, D. C., and •817 Chalfonte Dr., Alexandria, Va.

GOFF, John A.* (M. 1939) Dean, • Towne Scientific School, University of Pennsylvania, Philadelphia, and 623 Righters Mill Rd., Narattee

berth, Pa.

GOINS, Edgar H. (M 1941) Mfrs. Repr., •420 Market St., Room 204, and 2353 Laguna St., San Francisco, Calif.

GOLDBERG, Moses (A 1934) Pres., Electric Motors Corp., 168 Centre St., New York, and •885 E. Eighth St., Brooklyn, N. Y.

GOLDMANN, Philipp (J 1942; S 1940) Junior Engr., Carrier Corp., S. Geddes St., and •238 Fellows Ave., Syracuse, N. Y.

GOLDSMITH, Elliot (A 1942; J 1939) Engr., •Anemostat Corp. of America, 10 East 39th St., and 133 West 93rd St., New York, N. Y.

GOLDSMITH, F. Willius (M 1936) Pres., •The W. Clasmann Co., 513 E. Day Ave., and 629 E. Day Ave., Milwaukee, Wis.

GOLL, Willard A. (A 1937) U. S. Army Engr.,

GOLL, Willard A. (A 1937) U. S. Army Engr., 1709 Jackson, and 4353 Dodge St., Omaha, Nebr

GONZALEZ, Rafael A. (M 1936) Capt., Ordnance Dept., U. S. Army, Tank Automotive Center, Union Guardian Bldg., and Apt. 305, 300 Whitmore Rd., Detroit, Mich.

GOOD, Charles S. (J 1941; S 1939) Partner, A. C. Good & Sons, Plbg. & Htg., 620 Rebecca Ave., and • 102 Cascade Rd., Wilkinsburg, Pa. GOODMAN, C. E. (M 1940) Mgr., R. P. Allsop (Consulting Engr.) 1221 Bay St., Toronto, and •519 Cassells St., North Bay, Ont., Canada.

GOODMAN, William (M 1941) The Trane Co., and •211 North 23rd St., LaCrosse, Wis.

GOODRAM, W. E. (M 1939; A 1936) Partner and Mgr., Goodram Bros., 88 King St., W., Hamilton, and • R. R. 2, Freeman, Ont., Canada. GOODRICH, Charles F. (M 1919) Andrews & Goodrich, Inc., Boston, and • 336 Adams St.,

Dorchester, Mass.

Dorchester, Mass.

GOODWIN, Eugene W. (M 1936) Principal Mech. Engr., Public Buildings Administration, F. W. A., Washington, D. C., and •7024 Hampden Lane, Bethesda, Md.

GOODWIN, Samuel L. (Life Member; M 1924) Consulting Engr., John & Drew Eberson, 2 West 47th St., New York, N. Y., and •247 Madison Ave., Hasbrouck Heights, N. J.

CORBANDT. Everett T. (M 1941) Partner.

GORBANDT, Everett T. (M 1941) Partner,

• Crawley-Gorbandt Co., 118 W. Peachtree Pl.

N.W., and 2288 N. Decatur Rd. N.E., Atlanta,

GORDON, Colin W. (A 1938) Vice-Pres., A. G. Baird, Ltd., 286 Lisgar St., and •962 Shaw St.,

Baird, Ltd., 286 Lisgar St., and •962 Shaw St., Toronto, Ont., Canada.

GORDON, Peter B. (A. 1938; J. 1935) Treas.,
•Wolff & Munier, Inc., 222 East 41st St., New York, N. V., and 35 Park Ave., Bloomfield, N. J.

GORDON, William D. (A. 1935) Vice-Pres.,
•Canada Register & Grille Co., Ltd., 196
George St., and 174 Glen Cedar Rd., Toronto, Ont., Canada.

Ont., Canada.

GORGEN, Roy E. (A 1940) Owner, •Roy E. Gorgen Co., Wesley Temple Bldg., Minneapolis, and 2901 Raleigh Ave., St. Louis Park, Minn.

GORNSTON, Michael H. (Ltje Member; A 1923)

90-11-149th St., Jamaica, L. I., N. Y.

GOSS, Matthew H. (M 1921) Partner, •M. H.

Goss Co., 3409 Ludden St., and 1476 Seyburn Ave., Detroit, Mich.

GOSSETT, Earl J. (M 1923) Pres., • Bell & Gossett Co., Morton Grove, and 314 Woodland Ave., Winnetka, Ill.

GOTHARD, William W. (A 1936) Editorial Director, Domestic Engineering, 1900 Prairie Ave., Chicago, and 1027 Arlington Ave., La Grange, Ill.

GOTSCHALL, Harry C. (M 1935) Instructor in Air Cond., Lane Technical High School, 2501 Addison St., and ●2953 Eastwood Ave., Chicago,

lill.

GOTTWALD, C. (A 1916) Pres., • The Ric-will
Co., 1562 Union Commerce Bldg., Cleveland,
and 2225 Stillman Rd., Cleveland Heights, Ohio
GOULD, Henry E. (M 1940; J 1936) Member of
Firm, Natkin & Co., 1800 Baltimore, Kansas

Firm, Natkin & Co., 1800 Baltimore, Kansas City, Mo.
GOULD, James L. (J 1942) Erection Supt. of Air Cond. Equipment, Cooke-Bain Air Cond. & Sheet Metal Contractors, Bomber Assembly Plant, Tulsa, Okla., and 1701 Poyntz Ave.,

Sheet Metal Contractors, someer Assembly Plant, Tulsa, Okla., and •1701 Poyntz Ave., Manhattan, Kan.

GOULDING, William (A 1933) Air Cond. Engr., World Broadcasting System, Inc., 711 Fifth Ave., New York, and •42 Highview Ave., Tuckahoe, N. Y.

GOUNDIE, Joseph K. (M 1938) Sales Engr., Fritch Coal Co., 116 River St., Bethlehem, and •1426 Walnut St., Allentown, Pa.

GOWDY, Allen C. (A 1941; J 1939) Contract Engr., The Huffman-Wolfe Co., 1800 U. B. Bldg., and •925 Meredith St., Dayton, Ohio.

GRABER, Ernst (A 1942; J 1936) Engr., Minneapolis-Honeywell Regulator Co., 221 Fourth Ave., New York, and •222 Hollywood Ave., Douglaston, L. I., N. Y.

GRABMAN, Henry B. (J 1942; S 1938) Lt., •95th Engr. Regt., A. P. O. 998, c/o Postmaster, Seattle, Wash., and 355 E. Spring St., Zelienople, Pa.

GRÄHAM, F. D. (M 1940) Local Mgr., • York Ice Machinery Corp., 222 Union Bldg., and 4204 S. Broad, New Orleans, La. GRAHAM, William D. (M 1929; A 1925; J 1923)

Mgr., Unit Heater Dept., Carrier Corp., and •533 Allen St., Syracuse, N. Y. GRANKE, Arnold A. (M. 1939) Sales Engr., Speakman Co., and •28 West 41st St., Wil-

Speakman Co., and •28 West 41st St., Wilmington, Del.
GRANSTON, Ray O. (A 1939; J 1935; S 1930)
Secy., • University Plumbing & Heating Co.,
3939 University Way, and 1533 East 76th St.,
Seattle, Wash.
GRANT, Walter A.* (A 1933; J 1929) Regional
Chief Engr., Carrier Corp., 12 South 12th St.,
Philadelphia, and •2 Langdon Lane, Narberth,
De

Pa. CRANT, Walter H., Jr. (M 1949) Dist. Repr.,

•Warren Webster & Co., 209 Vincent Bldg.,
and 5632 Elysian Fields Ave., New Orleans, La.

GRAVES, Willard B. (Life Member; M 1906)

Pres., •W. B. Graves Heating Co., 162 N.
Desplaines St., and 5920 Addison St., Chicago,

GRAVES, Vernon (A 1941; J 1940) Engr., Frank A. Leon Co., 901 Girard St. N.W., Washington, D. C. GRAY, Earle W. (M 1938; A 1934) Div. Sales Mgr., • Oklahoma Gas & Electric Co., P. O. Box 1498, and 2125 Northwest 18th St., Okla-

homa City, Okla.

GRAY, Everett W. (M 1936) Dist. Repr., • The
Trane Co., 1900 Euclid Ave., Cleveland, and
17545 Madison Ave., Lakewood, Ohio.

GRAY, G. A. (M 1924) Mgr., • C. A. Dunham Co., Ltd., 404 Plaza Bldg., 45 Rideau St., and 114 Belmont Ave., Ottawa, Ont., Canada. GRAY, Hamilton E. (A 1943; J 1940) 612 Colonial Dr., High Point, N. C.

Colonial Dr., High Point, N. C.

GRAY, John W. (M 1938) Owner, The Gray Heating Co., 614 N. Water St., Bay City, Mich.

GRAY, William E. (M 1922) Dehydration Engr.,
U. S. Dept. of Agriculture, Beltsville Research
Center, Beltsville, and Apt. 1-A, 4100 Russell
Ave., Kaywood Gardens, Mt. Rainier, Md.

GREEN, Everett W. (J 1938) Pvt., Co. A. 87th
Battalion, 3rd Platoon, U. S. Army, and 2747
North 48th, Lincoln, Nebr.

GREEN, Sydney H. (J 1939) Design Engr.,

GREEN, Sydney H. (J. 1939) Design Engr., Dallas Air Conditioning Co., 3500 Commerce St., Dallas, Texas, and •626 E. Washington, McAlester, Okla.

GREEN, William C. (Life Member; M 1906)
Retired, • 704 Race St., Room 605, and 244
Erkenbrecher Ave., Cincinnati, Ohio.
GREENBURG, Leonard, M.D., * (M 1932) Exec.
Dir., Div. of Industrial Hygiene, • New York
State Dept. of Labor, 80 Centre St., and 44 West
77th St., New York, N. Y.
GREENLAND, Sidney F. (M 1934) Htg. and
Vtg. Engr., Messrs. J. Brockhouse & Co., Ltd.,
Victoria Works, West Bromwich, Staffs., and • 75
Grestone Ave., Handsworth Wood, Birmingham
20, England. 20, England.

GREGG, Stephen L. (A 1939; J 1936) Lt., U. S. N. R., and 4828 Edgemoor Lane, Bethesda, Md.

Austin Co., c/o Chemical Warfare Plant, Midland, and •941 Collingwood Ave., Detroit,

Mcn.
 GRIBBON, J. Harry (A 1941) Gen. Mgr.,
 Northwest Stove & Furnace Works, Inc., 2345
 S.E. Gladstone St., and 3024 S.E. Gladstone St.,

Northwest Stove & Furnace Works, Inc., 2345
S.E. Gladstone St., and 3024 S.E. Gladstone St., Portland, Ore.
GRIESS, Philip G. (M 1937) Mech. Engr., Voorhees, Walker, Foley & Smith, 101 Park Ave., New York, N. Y., and ●189 Walnut Ave., Begota, N. J.
GRIEST, Kermit C. (A 1940; J 1936) Warrant Officer, Public Works Bldg. 136, U. S. N. Air Station, Jacksonville, Fla.
GRIEWISCH, Alfred H. (A 1938) Pres., ● Bayley Heating Supply Co., 2045 W. St. Paul Ave., and 2557 North 47th St., Milwaukee, Wis.
GRIFFIN, Charles J. (M 1940) Engr.-Custodian, Chicago Board of Education, 10354 Charles St., and ●8231 S. Loomis Blvd., Chicago, Ill.
GRIFFITH, Claude A. (A 1938) Htg. and Vtg. Engr., Griffith Air Conditioning Service, 16 Altamont Terrace, Cumberland, Md.
GRIFFITH, Herbert T. (M 1938) Design Engr., ● Lincoln Bouillon, Consulting Engr., 1411 Fourth Ave. Bldg., and 1909 Third Ave. W., Seattle, Wash.
GRIFFITH, Joseph B. (A 1942; J 1938) Sales
Erner Utility For Corp. 4851 S Alameda Ave.

GRIFFITH, Joseph B. (A 1942; J 1938) Sales Engr., Utility Fan Corp., 4851 S. Alameda Ave., and • 529 N. Gerona Ave., San Gabriel, Calif.

and • 529 N. Gerona Ave., San Gabriei, Calir. GRIMES, Fenner M. (A 1942; J 1935) Assoc. Engr., War Dept., O.C.E. (Constr. Div.) Fort Myer, and • 849 S. Ivy St., Arlington, Va. GRITSCHKE, Elmer R. (M 1940) Consulting Engr., • E. R. Gritschke, Consulting Engrs., 123 W. Madison St., Chicago, and 1432 Gregory Ave., Wilmette, III.

Ave., Wilmette, III.

GRITZAN, L. LeRoy (M 1939) 208 Edgewood
Ave., Silver Spring, Md.

GROOT, Harry W. (M 1937) Assoc. Engr., U. S.
Navy Dept., Office of Asst. Supvr. of Shipbuilding, Evansville, Ind., and •3728 N. Western
Pkwy., Louisville, Ky.

GROSS, Lester (J 1942) Constr. Supt., General
Installation Co., 2234 Olive and •1368 Shawmut
Pl., St. Louis, Mo.

CROSS, Lympa C. (M 1931) Sales Engr. Minne-

GROSS, Lyman C. (M 1931) Sales Engr., Minne-apolis-Honeywell Regulator Co., 2727 Fourth Ave. S., and © 5324 Oaklawn Ave., Linden Hills Station, Minneapolis, Minn.

GROSSENBACHER, Henry E. (A 1938) Pres.,
Grossenbacher Furnace Co., Inc., 9416 W.
Milton St., St. Louis Co., and 9741 Lackland
Rd., Overland, Mo.

GROSSMAN, F. Arthur (J 1938; S 1937) Process Engr., Servel, Inc., and •867 S. Harlan Ave., Evansville, Ind.

GROSSMANN, Harry A. (M 1931) Owner, H. A. Grossmann Co., 3138 Case Ave., St. Louis, and •16 Huntleigh Downs, Route 5, Kirkwood, Mo.

GROVES, Samuel A. (A 1940; J 1935) Sales Supvr., American Radiator & Standard Sanitary Corp., 32-04 Northern Blvd., Long Island City, L. I., and •36 Cross St., Bronxville, N. Y.

GUEST, P. L., Jr. (A 1939) Mgr., P. L. Guest Sales Co., 311 Piedmont Bldg., and 716 Dover Rd., Greensboro, N. C.

GUEST, Ross B. (A 1940) Estimator and Engr.,
Guest & Viviano Sheet Metal Works, Inc., 82737 Dryades St., and 1043 Peniston St., New Orleans, La.

Orleans, La.

GUILBERT, Stanley R. (A 1940) Air Cond.
Engr., The Riester & Thesmacher Co., 1526
West 25th St., Cleveland, and R. F. D. 3,
Chagrin Falls, Ohio.

GULER, George D. (A 1937) Eastern Supvr.,
A. C. C. Div., Minneapolis-Honeywell Regulator
Co., 221 Fourth Ave., New York, and 6 6McBride
Ave., White Plains, N. Y.

GUMAER, P. Wilcox (M 1937) Industrial
Hygiene Engr., 6 The Barrett Co., 40 Rector St.,
New York, N. Y., and 25 Garden St., West
Englewood, N. J.

GUNTHORPE, Charles E. (A 1941) Mgr., Htg.
Dept., Campbell Coal Co., 240 Marietta St.
N.W., and 6766 Flat Shoals Ave. S.E., Atlanta,
Ga.

GUNTON, Charles (A 1941) Vice-Pres., Service Heating Equipment Co., 1913 Ingersoll, and •1339-64th St., Windsor Heights, Des Moines,

• 1539-Oath St., Windsof Heights, Des Moines, Iowa.

GUNZEL, R. M. (M 1930) Mfrs. Repr., • R. M. Gunzel & Co., 320 Crocker St., Los Angeles, and 375 La Mirada Ave., San Marino, Calif.

GURNEY, E. Holt (M 1929) (Presidential Member) (Pres., 1938; 1st Vice-Pres., 1937; 2nd Vice-Pres., 1936; Council, 1931-39) Pres., • The Gurney Foundry Co., Ltd., 4 Junction Rd., and 347 Walmer Rd., Toronto, Ont., Canada.

GURNEY, Edward R. (A 1940; J 1937) Asst. to Plant Supt., • The Gurney Foundry Co., Ltd., 4 Junction Rd., Toronto, Ont., and 2425 Fifth Ave., Three Rivers, Que., Canada.

GUSTAFSON, Carl A. (M 1938) Sales Engr., • The Powers Regulator Co., 2720 Greenview Ave., and 6231 Fairfield Ave., Chicago, Ill.

GUTKNECHT, Fritz (M 1940) Engr., • Blattmann Weeser Sheet Metal Works, Inc., 1001 Toulouse St., New Orleans, La., and R. F. D. No. 2, Gulfport, Miss.

No. 2, Gulfport, Miss.

HAAS, Samuel L. (M 1923) Pres.-Treas., Advance Heating & Air Conditioning Corp., 117-119 N. Desplaines, St., 4300 Lake Shore Dr.,

The state of the s

Lebanon, Pa.

HACKETT, Frank C. (A 1940) Resident Mgr.,
Bell & Gossett Co., 4855 North 16th St., Arling-Va.

Bell & Gossett Co., 4855 North 16th St., Arlington, Va.

HADEN, G. Nelson (M 1934; A 1928; J 1922)
Chairman and Managing Dir., • G. N. Haden & Sons., Ltd., 19-29 Woburn Pl., and 36 Wildwood Rd., London, W. C. 1, England.

HADEN, William N. (Life Member; M 1902)
Retired Chairman, G. N. Haden & Sons, Ltd., 19-29 Woburn Pl., London, W. C. 1, and • Arnolds Hill, Trowbridge, England.

HADJISKY, Joseph N. (M 1930) Consulting Engr., 744 Bates St., Birmingham, Mich.

HAERLE, Robert A. (A 1938) Design Engr., Bayley Blower Co., 1817 South 66th St., and • 1438 N. Humboldt Ave., Milwaukee, Wis.

HAGAN, William V. (M 1938; A 1933; J 1926) Secy., V. J. Hagan Co., 506 Pearl St., and • 1811 Jones St., Sioux City, Iowa.

HAGEDON, Charles H. (M 1919) Partner, • S. E. Fenstermsker & Co., 937 Architect and Builders, Bldg., and 945 West 58th St., Indianapolis, Ind.

HAHN, Roy F. (A 1941; J 1936) Air Cond. Engr., Advance Refrigeration, Inc., 274 Eighth St., N.E., Atlanta, Ga.

HANES, John E. (M 1940) Mgr. Air Cond. Controls Div., • Minneapolis-Honeywell Regulator Co., 2747 Fourth Ave. S., and 2119 Humboldt Ave. S., Minneapolis, Minn.

HAINES, John J. (M 1915) Pres., • The Haines Co., 1931 W. Lake St., Chicago, and 623-17th Ave., Maywood, Ill.

HAITMANEK, Louis M. (A 1938) Htg. and Vtg.

Engr., 217 Rose St., Newark, N. J. HAKES, Leon M. (M. 1932; J. 1929) Resident Repr., • Warren Webster & Co., 210 Reynolds Arcade Bldg., and 144 Inglewood Dr., Rochester,

Repr., • Warren Webster & Co., 210 Reynolds Arcade Bldg., and 144 Inglewood Dr., Rochester, N. Y.

HALE, Frederick J. (M 1936) Mgr., • Empire Sheet Metal Works, Ltd., 1606 W. First Ave., Vancouver, and 995 Mathers Ave., W. Vancouver, B. C., Canada.

HALEY, Harry S.* (M 1914) Consulting Engr., and Partner, • Leland & Haley, 58 Sutter St., and 735-21st Ave., San Francisco, Calif.

HALL, Cortice H. (M 1927) Chief Engr., 5toker Div., • Fairbanks, Morse & Co., and 1004 N. Main St., Three Rivers, Mich.

HALL, George (A 1937) Secy.-Treas. and Mgr., • Hyland, Hall & Co., 218 N. Bassett St., 4201 Wanetah Trail, Nakoma, Madison, Wis. HALL, John R. (M 1937; J 1932) Chief Engr., • Morrison Engineering Corp., 5005 Euclid Ave., Cleveland, and 17700 Fries Ave., Lakewood, Ohio. HALL, Mora S. (M 1934) • Paul Rosenthal & Associates, 600 Newton Pl. N.W., Washington, D. C., and 38 and Utah, Brentwood, Md.

HALL, Norman H. (A 1939) Supvr. House Htg., • East Ohio Gas Co., East 62nd St., North of St. Clair, Cleveland, and 147 Beachview Rd., Willoughby, Ohio.

HALLER, Arthur L. (M 1920) Pres.-Treas.

St. Clair, Cleveland, and 147 Beachview Rd., Willoughby, Ohio.

HALLER, Arthur L. (M 1920) Pres.-Treas.

Hafter Appliance Sales Co., Inc., 3903 Olive St., St., Louis, and 7485 Drexel Dr., University City, Mo.

HAMACHER, K. F. (M 1938) Partner Hamacher & Williams, 2540 W. Wells St., and 4387 S. Austin Ave., Milwaukee, Wis.

HAMIG, Louis L. (M 1941; A 1940; J 1935) Engr., John D. Falvey, Consulting Engr., 316 N. Eighth St., and •3514 Utah St., St. Louis, Mo.

HAMILTON, Howard S. (A 1940) Owner, Air Comfort Co., 1214 N. Astor St., Milwaukee, Wis.

HAMILTON, M. S. (M 1942) Dist. Mgr., Minneapolis-Honeywell Regulator Co., 405 Penn Ave., Pittsburgh, and •80 Altadena Dr., Pittsburgh, [16], Pa.

(16) Pa.

HAMLET, F. Aylmer (A 1936) Branch Mgr.
Sales Office, • C. A. Dunham Co., Ltd., Dominion
Square Bldg., Room 832, 1010 St. Catherine St.,
and 3550 Shuter St., Montreal, Que., Canada.

HAMLIN, James B., Jr. (A 1937) 1st Lt., Corps
of Engrs., U. S. Engineers Office, and 914 East
40th St., Savannah, Ga.

HANBURGER, Fred W. (M 1930) Consulting
Engr., 252 West 76th St., New York, N. Y.
HANLEIN, Joseph H. (M 1937) Vice-Pres. and
Treas., • Wilberding Co., Inc., 1822 Eye St.
N.W., and 5420 Connecticut Ave. N.W., Washington, D. C.

Treas. • Wilberding Co., Inc., 1822 Lye St. N.W., and 5420 Connecticut Ave. N.W., Washington, D. C.

HANLEY, Edward V. (A 1933) Pres., • S. V. Hanley Co., 1653 N. Farwell Ave., Milwaukee, and 844 E. Birch Ave., Whitefish Bay, Wis.

HANLEY, T. F., 17. (M 1933) Pres., • Hanley & Co., 1503 S. Michigan Ave., and 1640 East 50th St., Chicago, Ill.

HANNIGAN, William (M 1940) Bldg., Supt., • Acacia Mutual Life Insurance Co., 51 Louisiana Ave., Washington, D. C., and Route 2, Silver Spring, Md.

HANSEN, John T. (A 1941) The Herman Nelson Corp., and • 1126-14th St., Moline, Ill.

HANSLER, John E. (M 1937) 723 Glen Ave., Westfield, N. J.

HANSON, Leon C. (A 1918) Secy.-Mgr., • Bjorkman Bros. Co., 712 Tenth St. S., and 4713 Townes Rd., Minneapolis, Minn.

HANSON, Leslie P. (M 1937; A 1936; J 1935; S 1933) Engr., U. S. Air Conditioning Corp., 2101 Kennedy N.E., and • 5027 Nokomis Ave. S., Minneapolis, Minn.

HANTHORN, Walter (A 1942; J 1939) Mech. Engr., Anacortes Shipways, Inc., and • 412-34th St. Anacortes, Wash.

Engr., Anacortes Shipways, Inc., and •412–34th St., Anacortes, Wash.

HARBERGER, G. L. (A 1939) Mgr., Peerless Heating Div., The Eastern Foundry Co., Spring and Schaeffer Sts., Boyertown, and •641 King St. Pottstown Des St., Pottstown, Pa.

HARBIN, Frank, Jr. (M 1941) Htg. Engr.,

• Home Furnace Co., Sixth St. and P. M. Ry.,
and 181 West 21st St., Holland, Mich.

HARBORDT, Otto E. (A 1936) Sales Mgr.,
• U. S. Supply Co., 1315 West 12th St., and
4600 Mill Creek Pkwy., Kansas City, Mo.
HARD, Amos L. (A 1938) Chief Engr., Thos.
Emery & Sons Co., Carew Tower, and • 910
Kreis Lane, Cincinnati, Ohio.

HARE, W. Almon (M 1930) Executive Partner,
Sawyer-Hare Furnace Co., 5736 Twelfth St.,
Detroit, Mich., and • 833 Kildare Crescent,
Windsor, Ont., Canada.

HARDEN, J. Clinton (M 1938) Engr., Round Oak
Co., and • 106 Courtland St., Dowagiac, Mich.
HARDING, Edward R. (M 1936) N. C. State
Sales Engr., • Kewanee Boiler Corp., P. O. Box
536, 1003 Jefferson St. Bidg., Greensboro, and
Guilford College, N. C.
HARDING, Louis A.* (Life Member; M 1911)
(Presidential Member) (Pres., 1930; 1st VicePres., 1929; 2nd Vice-Pres., 1928; Council, 192231) 85 Cleveland Ave., Buffalo, N. Y.

HARDING, Walter (M 1941) Supt. Engr., Air
Ministry, N. E. Wing, Bush House, Kingsway,
London, and • Danesfield House, 33 Bute
Gardens, Wallington, Surrey, England.
HARMONAY, William L. (A 1935) Pres.,
• Michael Harmonay Corp., 124 Elm St., and
1346 Midland Ave., Yonkers, N. Y.

HARRIGAN, Edward M. (M 1915) Gen. Mgr.,
• Harrigan & Reid Co., 1365 Bagley Ave., and
7450 LaSalle Blvd., Detroit, Mich.
HARRIGAN, Edward R. (M 1939; J 1930) Sales
Engr., Dist. Repr., • General Electric Co., 570
Lexington Ave., New York, N. Y. and 19 Erwin
Pl., Caldwell, N. J.

HARRINGTON, Elliott* (M 1932; A 1930) In
charge of Induction Sales, Industrial Dept.,
General Electric Co., Bldg., 2, Schenectady,
N. Y.

HARRINGTON, Larry J. (M 1941) Partner,
• Otto Schulz Plumbing & Heating Co., 2269

HARRINGTON, Larry J. (M 1941) Partner,
Otto Schulz Plumbing & Heating Co., 2269
N.W. Northrup St., and 3530 S.E. Lambert St.,

N.W. Northrup St., and 3530 S.E. Lambert St., Portland, Ore.
HARRIS, Jesse B. (M 1918) Co-Partner, • Rose & Harris, Engineers, 416 Essex Bldg., and 3620 Colfax Ave. S., Minneapolis, Minn.
HARRIS, Warren S.* (M 1942) Special Research Assoc., • University of Illinois, I-B-R. Research Home, 801 W. Green St., Urbana, and 1405 W. Park Ave., Champaign, Ill.
HART, Harry M.* (Life Member; M 1912) (Presidential Member) (Pres., 1916; 1st Vice-Pres., 1915; Council, 1914-17) Pres., • L. H. Prentice Co., 1048 Van Buren St., and 3730 Lakeshore Dr., Chicago, Ill.
HART, John H. (M 1942) Lt. (jg) U. S. N. R., • Naval Training School, Naval Architecture, M.I.T., Cambridge, and 365 Beacon St., Boston, Mass.

Mass. Stanley (M 1938) Vice-Pres., Tuttle & Bailey, Inc., New Britain, Conn.

HART, Theodore S. (M 1938) Sales Mgr., Convector Div., Tuttle & Bailey, Inc., and •530 Lincoln St., New Britain, Conn.

HARTIN, William R., Jr. (J 1935) Asst. State Fuel Oil Director, O. P. A., Liberty Life Bldg.; Vice-Pres., Secy., W. R. Hartin & Son, Inc., and •2744 Trenholm Rd., Columbia, S. C.

HARTIMAN, John M. (M 1927) Engr., • Kewanee Boiler Corp., and 618 Elliott St., Kewanee, Ill. HARTON, A. J. (A 1935) Sales Engr., St. Joseph Railway, Light, Heat & Power Co., 520 Francis St., and •730 E. Hyde Park Ave., St. Joseph, Mo.

Mo.

HARTWEIN, C. E. (M 1933) Supvr., House Heating and Service Div., •St. Louis County Gas Co., 231 W. Lockwood Ave., Webster Groves, and 135 Peeke Ave., Kirkwood, Mo.

HARTWELL, Joseph C. (M 1922) Pres. and Treas, • Hartwell Co., Inc., 87 Weybosset St., and 16 Freeman Parkway, Providence, R. I.

HARVEY, Alexander D. (A 1928; J 1925) Sales Mgr., •Kimberly-Clark Corp., and 819 E. Forest Ave., Neenah, Wis.

HARVEY, John W. (M 1942) Sales and Design Engr., York Shipley, Ltd., London, N. W. 2, and •64 Crowshott Ave., Stanmore, Middlesex,

England.

HARVEY, Lyle C. (M 1928) Pres., The Bryant
Heater Co., 17825 St. Clair Ave., Cleveland,

Ohio.

HASHAGEN, John B. (M 1930) Supt. of Production. Kingsbury Ordnance Plant, and • P. O. Box 274. La Porte. Ind.

HASTINGS, Addison (M 1942) Asst. Secy., Sales Engr., Burnham-Boiler Corp., and • Lewis Rd., Irvington, N. Y.

HATCH, George (A 1941) Pres., Air Conditioning Engineering Co., 1104 Bay St., and • Clarkson P. O., Ont., Canada.

HATCH, Oscar J. (A 1941) Mgr., • Clare Bros. Western, Ltd., 179 Notre Dame Ave. E., Winnipeg, and 114 Chestnut St., Winnipeg, Man., Canada.

Canada.

HATTIS, Robert E. (M 1926) Consulting Engr.,

Board of Trade Bidg., and 1454 W. Fargo Ave.,
Chicago, Ill.

HAUAN, Merlin J. (M 1933) Consulting Engr.,
3412-16th St., Seattle, Wash.

HAUER, Fred (A 1938) Owner, Fred Hauer & Co.,
315 Elmhurst Ave., Peoria, Ill.

HAUS, Irvin J. (A 1937; J 1935) Elec. Engr.,
Nash Kelvinator Corp., 3880 N. Richards St.,
and • 5410 W. Center St., Milwaukee, Wis.

HAUSMAN, Louis M. (M 1935) Address Unknown—Mail Returned.

HAUSS, Charles F* (Life Member; M 1922) Ball

HAUSS, Charles F.* (Life Member; M 1922) Ball Heights, California, Ky.

HAWES, Harold D. (J 1942; S 1940) Lt., U. S. Army • Instructor A. A. School, A. A. S. O. C. D., Searchlight Dept., Camp Davis, N. C., and 454 Toilsome Hill Rd., Bridgeport, Conn.

HAWISHER, Harold H. (A 1938) Mech. Engr.,

• Automatic Heating & Engineering Co., 416
N. Main St., and 411 S. Jamison Ave., Lima, Ohio.

Ohio.

HAYES, James J. (M 1920) Vice-Pres., • Stannard Power Equipment Co., 53 W. Jackson Blyd., and 7443 Jeffery Ave., Chicago, Ill.

HAYES, Joseph G. (Life Member; M 1908) Pres. and Engr., • Hayes Brothers, Inc., 236 W. Vermont St., and 2849 N. Capital Ave., Indianapolis, Ind.

HAYES, Orris J. (S 1941) Student, University of Minnesota, and • 2630 Irving Ave. N., Minnegapolis, Minn.

Minnesota, and • 2630 Írving Ave. N., Minneapolis, Minn.

HAYMAN, A. Eugene, Jr. (A 1941; J 1935; S 1930) Draftsman, Moody & Hutchison, Consulting Engrs., 1701 Architects Bldg., Philadelphia, Pa., and • 2715 Washington St., Wilmington, Del.

HAYNES, Charles V. (Life Member; M 1917) (Presidential Member) (Pres., 1934; 1st Vice-Pres., 1933; 2nd Vice-Pres., 1932; Council, 1926-29; 1932-35) P. O. Box 26, Ardmore, Montgomery County, Pa.

HAZLEHURST, H. D. (A 1939) Serviceman, Southern California Gas Co., 810 S. Flower St., Los Angeles, and • 130 E. Garvey Ave., El Monte, Calif.

HAZLETT, T. Lyle, M.D. (M 1938) Medical

HAZLETT, T. Lyle, M.D. (M 1938) Medical Dir., Westinghouse Electric & Manufacturing Dir., Westinghouse Elec Co., East Pittsburgh, Pa.

HEAGERTY, William H. (A 1923) Sales Engr., • 1427 Eye St. N.W., and 5100 N. Capitol St., Washington, D. C.

HEATH, William R. (M 1931) Asst. Chief Engr., Buffalo Forge Co., 490 Broadway, and • 119 Wingate Ave., Buffalo, N. Y.

Wingate Ave., Buffalo, N. Y.

HEBLEY, Henry F. (M 1934) Prod. Control Mgr.,

Pittsburgh Coal Co., Office No. 3, Library, and
210 Jefferson Dr., Mt. Lebanon, Pittsburgh, Pa.

HECHT, Frank H. (M 1930) Sales Engr., • B. F.

Sturtevant Co., 2635 Koppers Bldg., and 1467

Barnesdale St., Pittsburgh, Pa.

HECKEL, Edmund P. (M 1918) E. P. Heckel &

Associates, 407 S. Dearborn St., Chicago, and

• 314 Cuttriss Pl., Park Ridge, Ill.

HECKEL, Edmund P., Jr. (J 1941) Engr.,

• Buffalo Forge Co., 490 Broadway, and 226
Linwood Ave., Buffalo, N. Y.

HEDEEN, Laurel E. (M 1942; A 1941; J 1938)
Consulting Engr., M. L. Todd & Associates,
1111 Independence Ave., and • 817 Kingsley,
Waterloo, Iowa.

HEDGES, H. Berkley (M 1919) Mgr. Industrial
Sales, • John J. Nesbitt, Inc., Holmesburg,
Philadelphia, and 114 Waverly Rd., Wyncote,
Pa

- Pa.
 HEDLEY, Park S. (M 1923) Park S. Hedley Co.,
 361 Delaware Ave., Buffalo, and 31 Westgate
 Rd., Kenmore, N. Y.
 HEEBNER, Walter M. (M 1922) Sales Engr.,
 Warren Webster & Co., 20 Washington Pl.,
 Newark, and 282 Highwood Ave., Teaneck,
- N. J. HEIBEL, Walter E. (M1917) Dist. Mgr., Aerofin Corp., 11 West 42nd St., New York, N. Y., and Old Greenwich, Conn.
 HEILMAN, Russell H.* (M 1923) Sr. Industrial Fellow, Mellon Institute, and 2303 Beechwood Blvd., Pittsburgh, Pa.

- Fellow, Mellon Institute, and 2303 Beechwood Blvd., Pittsburgh, Pa.

 HEINKEL, Charles E. (J 1938) Branch Mgr.,

 Trane Co., 310 Postal Bldg., and 1956 N.W.
 Raleigh, Portland, Ore.

 HEISTERKAMP, Herbert W. (A 1940; J 1937)

 Mgr., Dehumidifier Div., Bryant Heater Co.,
 17825 St. Clair Ave., Cleveland, and 175 East
 207th St., Euclid, Ohio.

 HELBURN, I. B. (M 1929; J 1927) Junior Assoc.,

 Wyman Engineering, 1306 Chamber of Commerce Bldg., and 781 Clinton Springs, Cincinnati,
 Ohio.

Ohio.

HELLER, Joseph A. (A 1938) Sales, •Air Conditioning Utilities Co., 8 West 40th St., and 150 West 79th St., New York, N. Y.

HELLMERS, Charles C., Jr. (A 1942; J 1937) Engrg. Designer, Htg., Vtg., Air Cond., Sanderson and Porter, c/o Pine Bluff, Ars., and • Box 303 (215 Beech), Pine Bluff, Ark.

HELLSTROM, John (A 1929) Vice-Pres., •American Air Filter Co., Inc., 215 Central Ave., and 423 Lightfoot Rd., Louisville, Ky.

HELSTROM, Clifford W. (M 1938) Sales Mgr., Globe Machinery & Supply Co., E. First and Court Ave., and •1614 Thompson, Des Moines, Iowa.

- HELSTROM, Herman G. (M 1928) Firebox
 Boiler and Stoker Div., William Bros. Boiler &
 Manufacturing Co., Nicollet Island, and •4608
 Arden Ave. S., Minneapolis, Minn.
 HELWICK, Numa John (M 1940) Secy. and
 Mech. Engr., •American Heating & Plumbing
 Co., Inc., 829 Baronne St., and 809 Greenwood
 St., New Orleans, La.
 HENDERSON, Alexander S. (J 1940; S 1938)
 Designing Engr., •S. F. (Australia) Pty. Ltd.,
 Oswald Lane, Darlinghurst, N. S. W., and 65
 Eastwood Ave., Eastwood, N. S. W., Australia.
 HENDRICKSON, Harold M. (M 1934) Asst.
 Branch Engr., •York Ice Machinery Corp.,
 5051 Santa Fe Ave., Los Angeles, and 3901
 Liberty Blvd., South Gate, Calif.
 HENDRICKSON, Ralph L. (M 1938) 6125

Liberty Blvd., South Gate, Calif.

HENDRICKSON, Ralph L. (M 1938) 6125

Kenwood Ave., Chicago, Ill.

HENDRICKSON, W. B. (A 1940) Staff Sgt.,

Harlingen Army Gunnery School, Harlingen,

Texas, and •c/o Miss Anna M. Hendrickson,

340 Carteret St., Camden, and 5 Sheffield Ave.,

Englewood, N. J.

HENDRIKSEN. Leonard (A 1938) Prop.

Englewood, N. J.

HENDRIKSEN, Leonard (A 1938) Prop.,
Hendriksen Sheet Metal & Heating Service,
1919 Vernon Ave., Filnt, Mich.

HENION, Hudson D. (A 1923) Sales Mgr., • C. A.
Dunham Co., Ltd., 1523 Davenport Rd., and 45
Ridge Dr., Toronto, Ont., Canada.

HENNESSY, William J. (M 1938) Air Cond.
Operation, U. S. Rubber Co., Munition Div.,
Des Moines Ordnance Plant, and • 1238–47th St.,
Des Moines, Iowa. Des Moines, Iowa.

HENRY, Alexander S., Jr. (M 1930) Mech. Engr., R. K. O., 1270 Sixth Ave., and ● 300 Central Park W., New York, N. Y.

HENRY, Ernest C. (M 1938) Owner, E. C. Henry Co., 1317 S. Water St., and 1115 Park Ave., Bay City, Mich.
HEPBURN, E. M. (A1940) Branch Mgr., • Empire Brass Manufacturing Co., Ltd., 74 Princess St., and 954 McMillan Ave., Winnipeg, Man.,

HERBERT, James S. (J 1940) Sales Engr., • Blue Ridge Glass Corp., and 165 W. Sevier, Kingsport,

Ridge Glass Corp., and 165 W. Sevier, Kingsport, Tenn.

HERBERT, Richard M. (J 1938) Lt., • U. S. Army Air Corps, Lubbock Army Flying School, and 2314 Sixth St., Lubbock, Texas.

HERING, Alfred (M 1935) Pres., Hering Heating Co., Inc., 1830 Tenbroeck Ave., New York, N. Y. HERLIHY, Jeremiah J. (Life Member; M 1914) 3751 Eddy St., Chicago, Ill.

HERMAN, Neil B. (A 1943; J 1937; S 1936) Engr., Riggs Distler & Co., Inc., 516 Fifth Ave., New York, N. Y., and • 4217 Garfield Ave. S., Minneapolis, Minn.

HERMANN, Harold N. (M 1942) Pres., • Carl J. Kiefer Associates, Inc., 26 E. Sixth St., and 3946 Ledgewood Dr., Cincunnati, Ohio.

HERO, George A., Jr. (M 1940) Lt.-Comdr., U. S. N. R., and • P. O. Box 13, Gretna, La.

HERRE, Harold A. (J 1941; S 1940) Ensign, Engineering Officer, U. S. S. Humphreys, Fleet Post Office, San Francisco, Calif.

HERRING, Edgar (Life Member; M 1919) Chairman and Governing Dir., • J. Jeffreys & Co., St. George's House, 195-203 Waterloo Rd., London, S. E. 1, and "Kenia," Keswick Rd., Putney, London, S.W., England.

HERSH, Franklin C. (M 1939; A 1933; J 1930) Tech. Engr., Pennsylvania Power & Light Co., 901 Hamilton St., and • 317 South 16th St., Allentown, Pa.

Allentown, Pa. HERSHEY, Albert E.* (M 1940) Research Engr.,

HERSHEY, Albert E.* (M 1940) Research Engr., Westinghouse Electric & Manufacturing Co., Research Laboratories, E. Pittsburgh, and •10806 Frankstown Rd., Wilkinsburg, Pa. HERSKE, Arthur R. (M 1926) Pres., Herske & Timmis, Inc., 33 West 60th St., New York, and •101 Brookfield Rd., Mt. Vernon, N. Y. HERTY, Frank B. (M 1933) Assoc. Engr., Office of District Engineer, U. S. Engr., and •294 Congress St., Charleston, S. C. HERTZLER, John R. (M 1936; J 1928) Lt., U. S. N. R., Army and Navy Munitions Board, Resources Division, Office of Procurement and Material, and •1109-16th St., N.W., Washington, D. C.

HESS, Arthur J. (M 1937) Engr., • English & Lauer, Inc., 1978 S. Los Angeles St., Los Angeles, and 897 Linda Vista, Pasadena, Calif.

HESSELSCHWERDT, August L., Jr. (M 1940; J 1937) Asst. Prof., • Dept. of Mech. Engrg., Massachusetts Institute of Technology, Cambridge, and 28 Hillcrest Rd., East Milton, Mass.

HESSLER, Leater W. (M. 1936) Mgr., The Trane Co., 1835 N. Third St., and • 6034 N. Bayridge Ave., Milwaukee, Wis.

HESTER, Thomas J. (M 1919) Pres., • Hester Bradley Co., 2835 Washington Ave., and 405 Washington Ave., St. Louis, Mo.

HEWETT, John B. (M 1937; A 1935) Sales Mgr., Anemostat Corp. of America, 10 East 39th St., New York, and •130 Cochrane Ave., Hastings-on-Hudson, N. Y.

HEYDON, Charles G. (A 1923) Mgr., Sales of Western Div., Wright Austin Co., 315 W. Woodbridge St., and • 2681 Nebraska, Detroit,

Mich.

HEYMSFIELD, Herbert (M 1941; A 1926) Automatic Htg. Instructor, Brooklyn Technical Htgh School, and 478 Third St., Brooklyn, N. Y.

HICKEY, Daniel W. (A 1931) Pres., D. W. Hickey & Co., Inc., 1841 University Ave., and 1874 Highland Pkwy., St. Paul, Minn.

HICKMAN, Herbert V. (A 1938) Htg. Engr., Nell H. Peterson Co., Mfrs. Repr., 1129
Folsom St., San Francisco, and 433 San Diego Ave., Daly City, Calif.

HIERS, Charles R. (M 1929; J 1927) Modine Manufacturing Co., 101 Park Ave., New York, and •19 Westminster Rd., Great Neck, L. I., N. Y.

HIGH, John M. (M 1940; A 1938) Mgr. Insulation Div., • The Ruberoid Co., 500 Fifth Ave., and 305 Lexington Ave., New York, N. Y.

HILDER, Frederick L. (M 1937) Chief Engr., Electric Furnace-Man, Inc., Emmaus, and • 2604 Walnut St., Allentown, Pa.

HILL, Charles F. (A 1942; J 1936) 52 Grace St., Malden, Mass.
HILL, Edward, Jr. (A 1942; J 1939) Capt, U. S. Army, Camp Roberts, and • 345-12th St., Paso Robles, Calif.

Army, Camp Roberts, and •640-1211 St., raso Robles, Calif.

HILL, E. Vernon, M.D.* (M 1914; A 1912) (Presidential Member) (Pres., 1920; 1st Vice-Pres., 1919; 2nd Vice-Pres., 1918; Council, 1915-21) 6826 Newell Ave., Chicago, Ill.

HILL, H. G. (J 1938) Mgr., Furnace and Air Cond.

Div., The Gurney Foundry Co., Ltd., 4 Junction Rd., and •7 Armadale Ave., Toronto, Ont, Canada

Div., The Gurney Foundry Co., Ltd., 4 Junction Rd., and •7 Armadale Ave., Toronto, Ont, Canada.

HILL, Harold H. (M 1935) Asst. Mgr., Navy Equipment Div., •American Blower Corp., 438 Woodward Bldg., and 3002 Rodman St. N.W., Washington, D. C.

HILL, Jared A. (M 1938) Htg. and Air Cond. Engr., Pacific Gas & Electric Co., 245 Market St., San Francisco, and •715 Laurel Ave., Burlingame, Calif.

HILL, Vaughn H. (A 1943; J 1938) Mech. Engr., Board of Water & Electric Light Commissioners, and •2111 Colvin Court, Lansing, Mich. HILL, Walter W. (J 1940) Engr., United Clay Products Co., 931 Investment Bldg., and •3415 Fessenden St. W., Washington, D. C.

HILLS, Arthur H. (M 1924) Mgr., •Sarco Canada, Ltd., 85 Richmond St. W., and 21 Nealon Ave., Toronto, Ont., Canada.

HIMSEL, Stanley R. (A 1942) Mgr., of Htg. and Vig. Dept., Lloyd L. Felker Co., 102 W. Aronald St., and •903A W. Fifth St., Marshfield, Wis. HINNANT, C. H., Jr. (J 1938) Capt., Corps of Engineer Acet Poot Engr.

HINNANT, C. H., Jr. (J 1938) Capt., Corps of Engineers, Asst. Post Engr., Fort George G. Meade, and Arbutus Ave., Eden Terrace, Meade, and •A Catonsville, Md.

HINRICHSEN, Arthur F. (M 1928) Pres., • A. F. Hinrichsen, Inc., 50 Church St., New York, N. Y., and Mountain Lakes, N. J.

HIRSCH, Martin H. (M 1938) Asst. Supvr., Cox & Stevens, Naval Archts., 11 Broadway, New York, and • 104-21-68th Dr., Forest Hills, L. I.,

IN. X.

HIRSCHMAN, William F. (M 1929) Pres. and Chief Engr., W. F. Hirschman Co., Inc., 1245 McKinley Pl., and • 165 Le Brun Circle, Buffalo, N. Y.

N. Y. HITCHCOCK, Paul C. (M 1931) Pres., • Hitchcock & Estabrook, Inc., 521 Sexton Bldg., and 5130 Harriet Ave., Minneapolis, Minn.

HOBBIE, E. H. (A 1937) Mgr., Sales Promotion,
• Mississippi Glass Co., 220 Fifth Ave., New York, N. Y., and Ridgedale Ave., Florham Park,

HOBBS, J. C. (M 1920) Vice-Pres. Diamond Alkali Co., P. O. Box 430, and 60 Wood St., Painesville, Ohio.

HOBBS, William S. (A 1936) • P. O. Box 269, and 327 Park Ave., Swarthmore, Pa.

HOCKENSMITH, Francis E. (M 1936) Chief Engr., • Lennox Furnace Co., Inc., 400 N. Midler Ave., and 458 Plymouth Dr., Syracuse,

HODGE, William B. (M1934) Vice-Pres., • Parks-Cramer Co., P. O. Box 23, and 2600 Roswell Ave., Charlotte, N. C.

HOECKER, George F., Jr. (A 1941) Asst. Mgr., Sears, Roebuck & Co., Hud Blvd. at 32nd St., Union City, and •520 Burton Ave., Hasbrouck Heights, N. J.

HOEY, James K. (A 1938) Mech. Engr., Repairs and Utilities Div., Hq. Camp White, and ●119 Lincoln St., Medford, Ore.

HOFFMAN, Charles S. (M 1924) Pres., • Baker, Smith & Co., Inc., 40 West 40th St., and 77 Park Ave., New York. N. Y.

HOFFMAN, Harry (M 1939) Branch Mgr., • Johnson Service Co., 105 Piedmont Bidg., Greensboro, and Route 1. Guilford College, N. C.

HOFFMANN, Angelo (A 1938) Vice-Pres., • Louis Hoffmann Co., 117 W. Pittsburgh Ave., and 4850 N. Oakland Ave., Milwaukee, Wis.

HOGAN, Edward L. (M 1911) Gen. Consulting Engr., • American Blower Corp., P. O. Box 58, Roosevelt Park Station, and Alden Park Manor, 8100 E. Jeffesson Ave., Detroit, Mich.

HOKANSON, Carl G. (M 1941) Owner, • C. G. Hokanson Co., 8373 Melrose Ave., and 1100 Casiano Rd., Bel-Air, Los Angeles, Calif.

HOLDEN, Robert G. (A 1942) Mech. Supt. Scioto Ordnance Plant, c/o Holobird & Root, and • 155 Forest Lawn Blvd., Marion, Ohio.

HOLDER, Leonard H. (A 1941) Owner and Mgr., • April Showers Co., 4126 Eighth St. N.W., Washington, D. C.

HOLE, William G. (M 1942) Mgr., Air Filter Div., • Darling Bros., Ltd., 140 Prince St., Montreal, and 1765 Graham Blvd., Mt. Royal, Que., Canada.

Div., • Daring Divs., 2022.

Montreal, and 1765 Graham Blvd., Mt. Royal, Que., Canada.

HOLLAND, George R. (J 1941; S 1938) Chief Draftsman, • c/o John Connelly, 1419 N. Broad St., and Aronimink Arms, Bldg. E., City Line and Childs Ave., Drexel Hill, Philadelphia, Pa. HOLLAND, Robert B. (M 1938) Application Engr., • York Ice Machinery Corp., 1275 Folsom St., San Francisco, and 607 Sausalito Blvd., Sausalito, Calif.

HOLLAND, William T. (A 1942; J 1941; S 1940) Engr., • Thomas E. Hoye Heating Co., 1906 W. St. Paul Ave., and 2338 North 71st St., Milwaukee, Wis.

HOLLISTER, Norman A.* (M 1933) 7101 Colonal Rd., Brooklyn, N. Y.

HOLMES, Arthur D. (M 1935) Vice-Pres.

• Plumber Supply Co., 323 West First, and 1848 East 18th St., Tulsa, Okla.

HOLMES, Paul B. (A 1936) Branch Mgr.,

East 18th St., Tulsa, Okla.

HOLMES, Paul B. (A 1936) Branch Mgr.,
National Radiator Corp., 600 W St., N.E., and
4525 Fessenden St. N.W., Washington, D. C.

HOLMES, Richard E. (A 1938; J 1934) 1st
Lt., Ordnance Dept., U.S. Army, Engineering
Offices, Tank Automotive Center, Fisher Bldg.,
and • 1410 Atkinson St., Detroit, Mich.

HOLSWORTH, Robert C. (M 1940) Consulting Engr., P. O. Box 1981, Corpus Christi, Texas.

HOLT, James (M 1933) Assoc. Prof. of Mech. Engrg., • Massachusetts Institute of Technology, Cambridge, and 1062 Massachusetts Ave., Lexington, Mass.

HOLUBA, H. J. (J 1938) Mgr. Order Dept.,

• Herman Nelson Corp., and 1215-15th St., Moline, Ill.

HOLZER, Rudolph J., Jr. (A 1942; J 1940) Engr. and Estimator, Holzer Sheet Metal Works, 317 Burgundy St., and • 3738 Octavia St., New Orleans, La.

HONERKAMP, Fritz (M 1937) Chief Engr.,

• Anemostat Corp. of America, 10 East 39th St.,

New York, and 42-05-48th Ave., Woodside,

L. I., N. Y.

L. I., N. Y.

HOOD, Leslie A. (M 1941; A 1929) Asst. Sales Mgr., • Trane Co. of Canada, Ltd., 660 St. Catherine St. W., and 6210 Somerled Ave., Montreal, Que., Canada.

HOOK, Frank W. (M 1938) Branch Mgr., • Johnson Service Co., 814 Rialto Bldg., and 2444 Larkin St., San Francisco, Calif.

HOOPER, Frederick W. (A 1942) Vice-Pres., • Ross Engineering of Canada, Ltd., 920 Dominion Square Bldg., and 4418 Earnscliffe Ave., Montreal, Que., Canada.

HOOVER, William L. (A 1943; J 1940) 2nd Lt., Corps of Engrs., U. S. Army, and • 1220 Cedar St., Owensboro, Ky.

HOPPE, Marcel F. (M 1938) Consulting Engr., • 1021–20th St. N.W., Washington, D. C., and 5205 Glenwood Rd., Bethesda, Md.

HOPPER, Garnet H. (M 1923) Engr., Taylor Forbes, Ltd., 1088 King St. W., and • 19 Brummel Ave., Toronto, Ont., Canada.

HOPPER, John S.* (M 1938) Asst. to Dean of Engrg., • A. & M. College of Texas, and 106 W. Dexter, College Station, Texas.

HOPSON, William T. (Ltfe Member; M 1915) Pres., • The Hopson & Chapin Manufacturing Co., and 217 Ocean Ave., New London, Conn. HORNE, Herbert F. (A 1940) Sales Engr., Johnsmanville Co., 826 Woodward Bldg., Washington, D. C., and • 1721 Queens Lane, Arlington, Va. HORNUNG, J. C. (Life Member; M 1914) Retired, 854 Bluff St., Glencoe, Ill.

HORSBURGH, Balfour J. (A 1942) Dist. Mgr., Johnson Temperature Regulator Co. of Canada, 637 Craig St. W., and • 4341 Melrose Ave., Montreal, Que., Canada.

HOSHALL, Robert H. (M 1930) Partner, • Allen & Hoshall, Consulting Engrs., 65 McCall Pl., and 1844 Cowden Ave., Memphis, Tenn.

HOSTERMAN, Charles O. (M 1924) Supt., The McMurrer Co., 303 Congress St., Boston, and • 25 Bateswell Rd., Dorchester, Mass.

HOTCHKISS, Charles H. B. (M 1927) Vice-Pres. and Dir., Amersco, Inc., 50 Church St., New York, N. Y.

HOUGHTEN, Ferry C.* (M 1921) Lt.-Comdr., Research Div., e Bureau of Medicine and Surgery, Navy Dept., Potomac Annex, 2300 E St. N.W., Washington, D. C., and 1136 Murrayhill Ave., Pittsburgh, Pa.

HOUCK, Robert C. (J 1941) Engr., Kimble Glass Co., Crystal Ave., and • R.F.D. 4, Delsea Dr., Vineland, N. J.

HOULIS, Louis D. (M 1935) Chef Engr., Master Baker Ovens, 558 Pedrett Rd., West Price Hill, Cincinnati, Ohio, and 57 Chalfonte Pl., Ft. Thomas, Ky.

HOWATT, John* (M 1915) (Presidential Member) (Pres., 1935; 1st Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1934; 2nd Vire-Pres., 1935; 1st Vire-Pres., 1934; 2nd Vire-Pres., 1935; 1st Vire-Pres., 1934; 2nd Vire-Pres., 1935; 1st Vire-Pres., 1934

HOWATT, John* (M 1915) (Presidential Member) (Pres., 1935; 1st Vice-Pres., 1934; 2nd Vice-Pres., 1933; Council, 1927-36) Chief Engr., ● Board of Education, 228 N. LaSalle St., and 4815 Kenwood Ave., Chicago, Ill.

Ave., Chicago, Ill.

HOWELL, Lloyd (M 1915) Engr., • Engineering
Service & Supply Co., 235 Frio St., and 2610
Talbot St., Houston, Texas.

HOWES, Bradford B. (J 1941) Sales Engr.,
• Johnson Service Co., 20 Winchester St.,
Boston, and 23 Vine St., Reading, Mass.

HOWES, Edward W. (M 1941) Dist. Repr.,
• General Electric Co., 235 Montgomery St.,
San Francisco, and 138 Monte Cresta, Oakland,
Calif. Calif.

HOYT, Leroy W. (M 1930) Libby & Blynn, and •1133 Farmington Ave., West Hartford, Conn.

HUBBARD, George W. (Life Member; M 1911)
Consulting Engr., • 630 Railway Exchange, 80
E. Jackson Blvd., Chicago, and 710 Bonnie Brae, River Forest, Ill.

HUBBARD, Nelson B. (M 1919) Engr., 220 Bagley Ave., and •2985 Blaine Ave., Detroit, Mich.

HUBBUCH, Nicholas J., Jr. (J 1943; S 1939) Student, Communications Div., A/C Detachment, Scott Field, Ill., and •422 Breckenridge Lane, Louisville, Ky.

Huber, Enrique (M 1938) Mgr., Productos Mecanicos S. A., Calzada de Tlalpam No. 2073, Μεκιco City, Churubusco, Mexico.

HUCH, A. J. (M 1919) Branch Mgr., • American Radiator & Standard Sanitary Corp., 312 S. Third St., and 4037 Harriet Ave., Minneapolis, Minneapolis, Minn.

HUCKER, Joseph H. (M 1921) Partner, • Hucker-Pryibil Co., 1700 Walnut St., Philadelphia, and 58 N. Highland Ave., Norristown, Pa. HUDEPOHL, Louis F. (M 1936) Pres., T. J. Conner, Inc., • 3290 Spring Grove Ave., and 4395 Haight Ave, Cincinnati, Ohio.

HUDSON, Robert A. (M 1934) Partner, Hudson & Grady, Engrs., 525 Market St., San Francisco, and ● Route 2, Box 51, Cordilleras Rd., Redwood

and Cloud A. C. (A 1941) Sales Engr., The Powers Regulator Co., 702 American Bldg., and R.R. 4, Box 189, Wynnburne Ave., Cincinnati,

Ohio.

HUFF, James M. (M 1936) Asst. Mgr., Mech. Dept., •c/o Robert & Co., Assocs., Marietta Aircraft Assembly Plant, P. O. Box 362, and 1410

Roswell St., Marietta, Ga.

HUGGINS, L. Gale (M 1939) Asst. Mgr., Air
Cond. Dept., Westinghouse Electric & Manufacturing Co., and •176 Springfield St., Springfield. Mass.

Furnace & Manufacturing Co., Ltd., 881 Yonge St., and •3 Don Valley Dr., Toronto, Ont.,

Furnace & Manufacturing Co., Ltd., 881 Yonge St., and 3 Don Valley Dr., Toronto, Ont., Canada.

HUGHES, Samuel (J 1940) Sales, Minneapolis Gas Light Co., Minneapolis, Minn., and •514 W. Lee St., Weatherford, Texas.

HUGHES, William U. (M 1936) Pres., • The Lewis-Brown Co., Ltd., 1570 Bishop St., and 1610 Sherbrooke St., Montreal, Que., Canada. HUGHEY, Thomas M. (A 1935) Dist. Mgr., • Westerlin & Campbell Co., 906 N. 4th St., and 2439 N. 63rd St., Milwaukee, Wis.

HUGHSON, Harry H. (M 1927) Sales Engr., • The Coon-DeVisser Co., 2051 W. Lafayette St., and 58 Florence Ave., Detroit, Mich.

HUMES, W. Earl (M 1941) Contractor, Plumbing and Heating, • 124 Washington St., and Morgan Hotel, Reno, Nev.

HUMMEL, George W. (M 1937) Mech. Engr., • The Trane Co., P. O. Drawer 679, and 1424 N. Third St., Phoenix, Ariz.

HUMPHREY, D. E. (M 1921) Htg. and Vtg. Engr., Goodyear Tire and Rubber Co., Akron, and • 2499 Sixth St., Cuyahoga Falls, Ohio.

HUMPHREY, Leonard G., Jr. (A 1942; J 1938) Asst. to Mgr., Federal and Marine Dept., Buffalo Forge Co., and Buffalo Pumps, Inc., 512 Woodward Bldg., Washington, D. C., and • 4023 Oliver St., Chevy Chase, Md.

HUMPHREYS, Clark M. (M 1931) Asst. Prof. of Mech. Engrg., • Carnegie Institute of Technology, Schenley Park, and 1934 Remington Dr., Pittsburgh, Pa.

HUNGER, Robert F. (M 1927) Assoc. Dist. Mgr., • Buffalo Forge Co., 220 South 18th St., Philadelphia, and 239 Cheswald Lane, Haverford, Pa. HUNGER, Robert F. (M 1936) Vace. Calif. HUNTER, Louis N. (M 1936) Vace-Pres., Mgr. of Research, • The National Radiator Co., 221 Central Ave., and 304 Thoburn St., Johnstown, • 41 Sutter. Room 710. and 3026 Clay. San

HUNTER, Thomas B. (M 1941) Consulting Engr., •41 Sutter, Room 710, and 3026 Clay, San Francisco, Calif.

HUNZIKER, Chester E. (A 1934) Branch Mgr.,

• American Blower Corp., 511 State St., and
1552 Dean St., Schenectady, N. Y.

1552 Dean St., Schenectady, N. V.
HURWICH, Sidney B. (A 1939) Engr., ◆American Lubricants, Inc., 1575 Clinton St., and 177
Wyoming Ave., Buffalo, N. V.
HUST, Carl E. (M 1932) Capt., Ord. Dept.,
Production Service, Cincinnati Ordnance Dist.,
Big Four Bldg., and ◆Hillcrest Apts., Mason
St., Cincinnati, Ohio.
HUSTOEL, Arnold M. (A 1930) 2414 N. Kedzie
Blvd., Chicago, Ill.
HUTCHEON, Clifford R. (J 1938) Engr., W. B.

BIVG., CHICAGO, III.

HUTCHEON, Clifford R. (J 1938) Engr., W. B.
Connor Engineering Corp., 114 East 32nd St.,
New York, N. Y., and •114 Ayers Court, West
Englewood, N. J.

HUTCHINS, William H. (M 1934) Works Mgr.,
Delco Appliance Div., General Motors Corp.,
391 Lyell Ave., and •600 Seneca Pkwy., Rochester. N. Y.

HUTCHINSON, B. Lee, Jr. (J 1939) 2nd Lt., U.S.A.A.F., Engineering Officer, and • 2216 Bedford Terrace, Cincinnati, Ohio.

HUTCHINSON, Frank W.* (M 1940; A 1937) Asst. Prof. Mech. Engrg., • University of California, 114 Engineering Bldg., and 1192 Laurel St., Berkeley, Calif.

HUTCHINSON, Frederick A. (A 1942; J 1939) Address Unknown—Mail Returned.

HUTCHISON, John E. (M 1921) Partner, • Moody & Hutchison, 1701 Architects Bldg., and 6723 Emlen St., Philadelphia, Pa.

HVOSLEF, Fredrik W. (M 1931; A 1921) Supt., Heating Div., • Kohler Co., and 523 Audubon Rd., Kohler, Wis.

HYDE, Dayton F. (M 1941) Vice-Pres., D. F. Edwards Heating Co., 2340 Pine St., St. Louis, and • 7831 Weil Ave., Webster Groves, Mo.

HYDE, Elmer H. (A 1937) Tech. Repr., Koppers Co., Tar and Chemical Div., Koppers Bldg., and • 442 Sulgrave Rd., Pittsburgh, Pa.

HYDE, Eric F. (M 1937) Mech. Engr., Giffels & Vallet, Inc., 1000 Marquette Bldg., Detroit, and • 708 Oakland Ave., Birmingham, Mich.

HYDE, L. Lyman (M 1940; J 1934) Supt., Healy Plumbing and Heating, 278 W. Kellogg Blvd. St. Paul, and • 4031 France Ave. N., Robbinsdale, Minn.

HYNES, Lee P. (M 1919) Pres., Chief Engr.,

dale, Minn.

HYNES, Lee P. (M 1919) Pres., Chief Engr.,

Hynes Electric Heating Co., West and Clinton
Sts., Camden, and 36 West End Ave., Haddonfield, N. J.

1

IBISON, James L. (A 1943; J 1938) Capt...

Post Engr., U. S. Army, Fort Eustis, and Waller Mill Rd., Williamsburg, Va.

ICKERINGILL, John C. (M 1923) Sales, Spencer Heater Div., and 477 Flamingo St., Roxborough, Philadelphia, Pa.

ILLIG, Ernest E. (J 1938) Sales Engr., Walter R. Illig, 1 Cushing St., and 185 Blossom St., Fitchburg, Mass.

ILLIG Walter R. (M 1935, A 1927) Curper ILLIG Walter R.

Hitchburg, Mass.

ILLIG, Walter R. (M 1935; A 1927) Owner,
Walter R. Illig, 1 Cushing St., and • 185 Blossom
St., Fitchburg, Mass.

INGALLS, Frederick D. B. (Life Member; M
1906) Consulting Htg. and Air Cond. Engr.,
1 Hopkins St., Reading, Mass.

1800) Consulting Heg. and Air Cond. Engr., 1 Hopkins St., Reading, Mass.

INGELS, Margaret* (M 1923; J 1918) Engrg. Editor. • Carrier Corp., S. Geddes St., and 412 University Pl., Syracuse, N. Y.

INGHAM, John F. (M 1941) Pres.-Treas., • John F. Ingham, Inc., 382 Sound Beach Ave., Old Greenwich, Conn.

INMAN, C. M. (M 1940) Supt. of Engrs., • Cafritz Construction Co., 1494 K St. N.W., and 1445 Ogden St. N.W., Washington, D. C.

ISAACS, Harry A., Jr. (A 1939) Pres., • Oil Delivery, Inc., 3 Herbert St., Red Bank, and Point Rd., Little Silver, N. J.

d'ISSERTELLE, Henry G.* (Life Member; M 1913; A 1912) Consulting Engr., • 300 S. Broadway, Tarrytown, N. Y.

IVERSON, H. R. (M 1936) Office Mgr., • The Trane Co., 2701 Ontario Rd. N.W., and 1601 Argonne Pl. N.W., Washington, D. C.

IVERSTROM, Carl (A 1940; J 1939) Engr. of Htg. and Vtg., War Dept. Bldg., Arlington, Va.

JACKSON, Charles H. (M 1923) Vice-Pres.,

• Blower Application Co., 918 N. Fourth St.,
and 2706 N. Farwell Ave., Mılwaukee, Wis.
JACKSON, Gilbert R. (M 1938) Mgr., Boiler
and Radiator Dept., • Crane, Ltd., 45-51 Leman
St., London, E. I, England.
JACKSON, Marshall S. (M 1919) Mfrs. Repr.,
• 250 Delaware Ave., and 108 Larchmont Rd.,
Buffalo, N. Y.
JACKSON, Walter F. (A 1943; J 1939) Project
Engr., • American Stove Co., 1200 Long Ave.,
Lorain, and 116 Bell Ave., Elyria, Ohio.

JACOBI, Bruce A. (J 1939; S 1936) Chief Engineer, Lerner Stores, Inc., 354 Fourth Ave., New York, and •1731 East 17th St., Brooklyn,

neer, Lerner Stores, Inc., 354 Fourth Ave., New York, and •1731 East 17th St., Brooklyn, N. Y.

JACOBSEN, K. C. S. (A 1939) Mgr., •The Imperial Electric Co., 46 South 40th St., Philadelphia, and 17 Aldwyn Lane, Villanova, Pa.

JACOBUS, David S. (Life Member; M 1916) Retired, 93 Harrison Ave., Montclair, N. J.

JAKOBY, Albert C. (A 1938) Estimator, Sears, Roebuck & Co., 4640 Roosevelt Blvd., and •1913

E. Clearfield St., Philadelphia, Pa.

JALONACK, Irwin G. (M 1940; A 1933; S 1930) Vice-Pres. Levitt & Sons of Virginia, Inc., Sewalls Point Rd., and •79-17 Simons Dr., Oakdale Farms, Norfolk, Va.

JAMES, Hamilton R. (M 1931) Service Equip. Engr., Day & Zimmerman, Inc., Packard Bldg., Philadelphia, and •55 W. Drexel Ave., Lansdowne, Pa.

Philadelphia, and •55 W. Drexel Ave., Lansdowne, Pa.

JAMES, John W.* (M 1937; J 1933) Iron Fireman Manufacturing Co., 3170 West 106th St., Cleveland, Ohio.

JANET, Harry L. (M 1920) Engr., Buensod-Stacey Air Conditioning, Inc., 60 East 42nd St., New York, and •688 Decatur St., Brooklyn, N. Y.

LANOS, William A. (M 1940) Senior Mech.

Stacey Air Conditioning, Inc., 60 East 42nd St., New York, and •688 Decatur St., Brooklyn, N. Y.

JANOS, William A. (M 1940) Senior Mech. Engr., •Western Electric Co., 195 Broadway, New York, and 21-11-23rd Terrace, Astoria, L. I., N. Y.

JARCHO, Martin D. (A 1939; J 1936) Vice-Pres., •Jarcho Bros., Inc., 304 East 45th St., New York, and 110-55-72nd Rd., Forest Hills, L. I., N. Y.

JARDINE, Douglas C. (M 1929; A 1926) Owner, •Douglas Jardine, 516 S. Tejon St., and 1216 N. Cascade Ave., Colorado Springs, Colo. JARVIS, George E. (M 1923) Vice-Pres., and Secy., •A. E. Holmes & Bro. Co., 911 Banks Ave., and 2628 Hughitt Ave., Superior, Wis. JEHLE, Ferdinand (M 1938; A 1937) Dir. of Engineering, •Hoffman Specialty Co., 1001 York St., and 3055 N. Meridian St., Apt. 9, Indianpolis, Ind.

JELINEK, Frank R. (A 1941; J 1937) Branch Mgr., •Johnson Service Co., 2505 Commerce St., and 4335 Emmerson, Dallas, Texas.

JENKINS, Sydney D. (M 1940) Mfrs. Agent, 2212-33rd Ave. S.W., Calgary, Alta., Canada. JENKINSON, V. Jack (A 1940) Sales Engr., •Minneapolis-Honeywell Regulator Co., Ltd., 117 Peter St., and 1135 Gerrard St. E., Toronto, Ont., Canada.

JENNEY, Hugh B. (A 1933) Sales Mgr., Htg. Div., •Standard Sanitary & Dominion Radiator Co., Ltd., 17, Royce and Lansdowne Aves., and 96 Dawlish Ave., Toronto, Ont., Canada.

JENNINGS, Burgess H. (M 1942) Prof. of Mechanical Engrg. and Chairman of Dept., Northwestern Technological Institute, Northwestern University, and •2049 Hawthorne Lane, Evanston. Ill.

JENNINGS, Irving C. (M 1924) Pres., •The Nash

western University, and • 2049 Hawthorne Lane, Evanston. Ill.
JENNINGS, Irving C. (M 1924) Pres., • The Nash Engineering Co., and 138 Flax Hill Rd., South Norwalk, Conn.
JENNINGS, Stanley A. (M 1935) Asst. Chief Engr., Trane Co. of Canada, Ltd., 4 Mowat Ave., and • 7 Glen Oak N., Toronto, Ont.,

JENNINGS, W. G. (A 1930) Vice-Pres., • Minne-apolis-Honeywell Regulator Co., 797 Beacon St., Boston, and 1970 Commonwealth Ave., Suite 55,

Boston, and 1970 Commonwealth Ave., Suite 55, Brighton, Mass.
JENNINS, Henry H. (Life Member; M 1901) Retired, 29 Greyshiels Ave., Leeds, 6, England, JESSUP, Benjamin H. (M 1937) Pres., • Richards & Jessup Co., Inc., 615 Main St., Stamford, and 48 Field St., Glenbrook, Conn.
JOHNS, Charles F. (M 1939; A 1931) Squadron Leader, Royal Canadian Air Force, Air Force Headquarters, Jackson Bidg., and • 120 Wurtemburg St., Ottawa, Ont., Canada.
JOHNS, Harold B.* (M 1928; J 1927) Bell & Gossett Co., Morton Grove, and • 543 N. Elmwood Ave., Oak Park, Ill.

JOHNSON, Allen J.* (M 1935) • Anthracite Industries Laboratory, Primos, Del. Co., and 344

Industries Laboratory, Primos, Del. Co., and 344 Congress Ave., Lansdowne, Pa.

JOHNSON, Carl E. (A 1939; J 1930) Pres.,

Sunbeam Heating & Air Conditioning Co., 752 Spring St. N.W., and 1154 Ridgewood Dr. N.E., Atlanta, Ga.

JOHNSON, Carl W. (M 1912) Pres., • C. W. Johnson, Inc., 211 N. Desplaines St., and 1809 Morse Ave., Chicago, Ill.

JOHNSON, C. W. (M 1933; J 1931) Dist. Mgr.,

Canadian Sirocco Co., Ltd., 630 Dorchester St. W., and 123 Dobie Ave., Town of Mt. Royal, Montreal, Que., Canada.

JOHNSON, Edward B. (M 1919) Hull Draftsman, Bethlehem Steel Co., Mariners Harbor, and • 154 Wardwell Ave., Port Richmond, S. I., N. Y.

JOHNSON, Fred W. (M 1916) Pres., • Johnson

man, Bethlehem Steel Co., Mariners Harbor, and • 154 Wardwell Ave., Port Richmond, S. I., N. Y.

JOHNSON, Fred W. (M 1916) Pres., • Johnson Larsen Co., 6530 Beaubien St., Detroit, and Adams Rd. R. F. D. 2, Birmingham, Mich.

JOHNSON, Helge. S. (A 1933; J 1927) Assoc. Mgr., • Buffalo Forge Co., 39 Cortlandt St., and 15 Tunstall Rd., Scarsdale, N. Y.

JOHNSON, Leslie O. (M 1938; J 1930) U.S.N.R., and • 624-14th St., Huntington, W. Va.

JOHNSON, Oliver W. (M 1938) Chem. Engr., Standard Oil Co. of California, 225 Bush St., San Francisco, and • 1831 Waverly St., Palo Alto, Calif.

JOHNSON, Ralph B. (M 1922) • Ralph B. Johnson & Co., 201 Petroleum Bildg., and 2111 W. Main St., Houston, Texas.

JOHNSON, Raymond L. (A 1943; J 1942) Research Engr., Young Radiator Co., 709 S. Marquette St., and • 3719-16th St., Racine, Wis. JOHNSON, Russell A. (J 1942; S 1941) Research Mech. Engr., Anthony Co., Inc., and • 1104 E. Main, Streator, Ill.

JOHNSON, Tracy R. (M 1924) Branch Mgr., The Trane Co., 6510 Forest Ave., Des Moines, Iowa.

JOHNSTON. Arthur K. (A 1942) Local Mgr., JOHNSTON.

lowa.

JOHNSTON, Arthur K. (A 1942) Local Mgr.,

Norman S. Wright & Co., 1238 N.W. Glisan,
and 1822 N. Webster, Portland, Ore.

JOHNSTON, J. Ambler (M 1912) Partner,

Carneal, Johnston & Wright, 1000 Atlantic
Life Bldg., and 2616 Hanover Ave., Richmond,

Va.

JOHNSTON, Marriott T. (M 1939) Engr.,
Bankers-Life Co., 711 High St., and •5715
Pleasant Dr., Des Moines, Iowa.
JOHNSTON, Robert E. (M 1929; A 1926) Pres.,
• R. E. Johnston Co., Ltd., 1070 Homer St., and
3342 West 33rd Ave., Vancouver, B. C., Canada.
JOHNSTON, Robert M. (A 1942; J 1937)
Hercules Powder Co., and •37 Hillside Ave.,
Kenvil, N. J.
JONES, Alfred (M 1988)

JONES, Alfred (M. 1928) Consulting Engr., Armstrong Cork Co., Box 540, Lancaster, Pa. JONES, Alfred L. (M. 1928) Owner, e-431 Green-wich Ave., Greenwich, and Box 121, Breezemont

wich Ave., Greenwich, and Box 121, Breezemont Ave., Riverside, Conn.

JONES, Allan T. (M 1937; J 1935) Chief Engr., S. A. Armstrong, Ltd., 115 Dupont St., and • 264 Westwood Ave., Toronto, Ont., Canada.

JONES, Bernard G. (M 1928) Acme Fan & Blower Co., 868 Arlington St., Winnipeg, Man., Canada.

Canada.

JONES, Donald R. A. (A 1942) Htg. and Air Cond. Engr., Southern California Gas Co., 810 S. Flower St., Los Angeles, and \$2107-B S. Huntington Dr., S. Pasadena, Calif.

JONES, Edwin (M 1933; J 1924) Engr. and Estimator, *Watt Plumbing, Heating & Supply Co., 608 S. Cincinnati, and 1436 East 17th Pl.,

JONES, Edwin A. (M 1919) 211 Gray Ave.,

JUNES, Edwin A. (M 1919) 211 Gray Ave., Webster Groves, Mo. Webster Groves, Mo. JONES, Harold L. (M 1920) Supt., • W. W. Farrier Co., 44 Montgomery St., Jersey City, and 11 Cambridge Rd., Glen Ridge, N. J. JONES, Harold S. (J 1942; S 1940) 1st Lt., Inf., U. S. Army, 909th Air Base Security Battalion, Camp Rucker, Alabama, and • P. O. Box 547, Lawrenceville, Va.

JONES, James T. (A 1939) 2nd Lt., U. S. Division Engrs., 19 W. South Temple, Salt Lake City,

Otah.

JONES, John P. (M 1937) • John Paul Jones,
Cary and Miller, 448 Terminal Tower, Cleveland, and 3041 Fairfax, Cleveland Heights, Ohio
JONES, Lawrence K. (M 1939) Mgr., Special
Test Section, • Pittsburgh Testing Laboratory,
1330 Locust St., and 320 S. Aiken Ave., Pitts-

1330 Locust St., and 320 S. Aiken Ave., Aiken burgh, Pa.

JONES, Sprague (M. 1936) Pres. and Mgr.,
Sprague Jones, Inc., 1914 Vermont Ave., and
2452 Kenwood Blvd., Toledo, Ohio.
JONES, Thomas S. (A. 1941) Branch Mgr.,
Crane Co., 1328 West 12th St., Kansas City, Mo.
JONES, William C. (M. 1941) Mgr., Johnson
Service Co., 1931 K St. N.W.; Washington, D. C.,
and R. F. D. 2, Ellicott City, Md.
JONES, William T. (M. 1915) (Presidential
Member) (Pres., 1933; 1st Vice-Pres., 1932; 2nd
Vice-Pres., 1931; Council, 1925-34) Treas,
Barnes & Jones, 128 Brockside Ave., Jamaica
Plain, Boston, and 16 Harvard St., Newtonville, Mass.

ville, Mass.

JORDAN, Richard C.* (M 1940; J 1935; S 1933)
Asst. Prof. and Asst. Dir., • Engineering Experiment Station, Room 205, University of Minnesota, and 1101 E. River Rd., Minneapolis, Minn.

JORDY, Jules J. (J 1940) Lt., U. S. N. R., Norfolk, Va., and • Jordy Bros., Inc., 518 Julia St., New Orleans, La.

JOSEPHSON, Simon (A 1942; J 1936) Supervising Engr., • Astor Plumbing & Heating Corp., 155 Quincy St., and 199 E. Second St., Brooklyn, N. Y.

155 Quincy St., and 199 E. Second St., Brooklyn, N. Y.

JOYCE, James J. (A 1941) Branch Mgr., ◆ The Powers Regulator Co., 208 Balter Bidg., and 2328 State St., New Orleans, La.

JUERGENS, Walter A. (A 1940) Sales Engr. ◆ Walter A. Juergens, 802 Times Star Tower, and 1447 Aster Pl., Cincinnati, Ohio.

JUNG, John S. (M 1930; A 1923) Hg. and Piping Contractor and Htg. Engr., ◆ 2409 W. Greenfield Ave., and 1516 S. Layton Blvd., Milwaukee, Wis.

JUNKER, W. H. (M 1936) Dir. of Engrg., Emery Industries, Inc., 4300 Carew Tower, Fifth and Vine Sts., and ◆ 6068 Dryden Ave., Cincinnati, Ohio. Ohio.

KACZENSKI, Chester (A 1939; J 1933) Designer, M. W. Kellogg Co., 225 Broadway, and ●5 West 63rd St., New York, N. Y. KADEL, George B. (A 1940; J 1938) Engr., E. R. Squibb & Sons, 25 Columbia Heights, Brooklyn, N. Y., and ●55 Cleveland Ave., Highland Park,

N. Y., and • 55 Cleveland Ave., Highland Park, N. J.

KAERCHER, Carl M. H. (M 1937) 2560 Ashurst Rd., University Heights, Ohio.

KAGEY, I. B. (M 1941; A 1938; J 1929) Branch Mgr., • Carrier Corp., 348 Peachtree St. N.E., and 254 Alberta Dr., N.E., Athanta, Ga. KAHN, Charles R., Jr. (J 1939) Lt. (ig) U.S.N.R., Industrial Dept., • U. S. Navy Yard, Philadelphia, Pa., and 118 Wood Lane, Woodmere, L. I., N. Y.

KAISER, Fred (M 1935) Regional Mgr., • Minneapolis-Honeywell Regulator Co., 433 E. Erie St., Chicago, and 424 Barton Pl., Evanston, Ill. KAJUK, Andrew E. (M 1936) Engr., War Dept. O. Q. M. G. Engrg. Design, Washington, D. C., and • 1859 Grantham Rd., Cleveland, Ohio. KAMMAN, Arnold R. (M 1942; A 1925; J 1921) • Arnold R. Kamman Co., 493 Franklin St., Buffalo, and R. F. D. 3, Hamburg, N. Y.

KAPPEL, George W. A. (M 1921) Pres., Treas., • Camden Heating Co., 8 Market St., Camden, and 421 Maple Ave., Westmont, N. J.

KARAKASH, Theodore J. (A 1940; J 1936) Engr. in Chief, Carrier Air Conditioning Dept., C. & A. Baker, Ltd., P. O. Box 468, Istanbul, Turkey.

KARGES, Albert (A 1935) Mgr., The James Stewart Manufacturing Co., Ltd., and • 37 Perry St., Woodstock, Ont., Canada.

KARLSON, Alfred F. (M 1918) Parks-Cramer Co., P. O. Box 444, Fitchburg, Mass.

KARLSTEEN, Gustav H. (M 1935) Plant Engr., Dunlop Tire & Rubber Corp., Buffalo, and • Box 55, Route 1, Tonawanda, N. Y.

KARSUNKY, William K. (M 1939) Consulting Engr., 1223 Connecticut Ave. N.W., Washington, D. C., and • Three Oaks, Kensington, Md.

KAUFMAN, H. J. (M 1937) Owner, H. J. Kaufman, Mfr. Chemical Dehydrating Apparatus, 13215 Roselawn Ave., Detroit, Mich.

KAUP, Edgar O. (M 1938) Products Application Engr., 926 Natoma St., and ●52 El Sereno Court, San Francisco, Calif.

Court, San Francisco, Calif.

KAYAN, Carl F. (M 1942) Asst. Prof. Mech.
Engrg., School of Engrg., Columbia University, Morningside Heights, and 425 Riverside
Dr., New York, N. Y.

KAYSER, Phillip G. (J 1942) Junior Mech. Engr.,
McQuay Inc., 1600 Broadway N.E., and 329
E. Franklin Ave., Minneapolis, Minn.

KFARNEY Joseph S. (M 1930) Pres. North-

KEARNEY, Joseph S. (M 1939) Pres., North-western Heating & Plumbing Co., 1465 Sherman Ave., and •2001 Bennett Ave., Evanston, Ill.

KEATING, Arthur J. (M 1937) Engr., • Powers Regulator Co., 2720 Greenview Ave., and 4429 W. Congress St., Chicago, Ill.

KEEFER, Donald M. (J 1941) Cost Estimator, Solar Aircraft Co., 1212 W. Juniper St., and • Route 3, Box 952, San Diego, Calif.

KEELING, Fred V. (A 1940) Assoc. Mech. Engr., Public Works Dept., Bldg. No. 1, U. S. Navy Yard, and •960 Arrott St., Philadelphia, Pa.

KEENEY, Frank P. (A 1915) Pres., • Keeney Publishing Co., 6 N. Michigan Ave., and 7059 S. Shore Dr., Chicago, Ill. KEHM, Horace S. (M 1928) Pres., • The Kehm Corp., 51 E. Grand Ave., and 180 Delaware Pl.,

Chicago, Ill.

Chicago, Ill.

KEITH, James P. (M1938) Vice-Pres., • Canadian
Domestic Engineering Co., Ltd., 1440 St.
Catherine St., W., and 4935 Clanranald Ave.,
Montreal, Que., Canada.

KELBLE, F. R. (M 1928) Vice-Pres., Mgr.,
• Hoffman-Wolfe Co. of Philadelphia, 4660
North 18th St., Philadelphia, and 205 Pleasant
Ave., Glenside Gardens, Pa.

KELLA, Waldon B. (M 1939) Mgr., Air Cond.
Dept., • Fairbanks, Morse & Co., 217 S. Eighth
St., St. Louis, and 4 Salisbury, Airport Park,
St. Louis Co., Mo.

KELLEY, James J. (A 1924) Fuel Oil and Burner

KELLEY, James J. (A 1924) Fuel Oil and Burner Asst., • Colonial Beacon Oil Co., 378 Stuart St., Boston, and 142 Governors Ave., Medford, Mass.

Asst., • Colonial Beacon Oil Co., 378 Stuart St., Boston, and 142 Governors Ave., Medford, Mass. KELLOGG, Winston T. (A 1938) 1st Lt., Asst. Base Executive • Ferrying Div., Air Transport Command, Army Air Base, Romulus, Mich., and 2020 Country Club Lane, Little Rock, Ark. KELLY, Charles J. (M 1931) New York Repr., • James P. Marsh Corp., 155 East 44th St., New York, N. Y., and 440 Fairmount Ave., Jersey City, N. J.

KELLY, Francis C. (J 1942) Pres., • Kelly & Cracknell, Ltd., 2359 Dundas St. W., and 54 Jedburgh Rd., Toronto, Ont., Canada.

KELLY, H. J. (A 1940) Sales Engr., • 816 Howard Ave., and 8006 Nelson St., New Orleans, La.

KELLY, James C. (A 1942) Dist. Mgr., Sullivan Valve & Engineering Co., S. 219 Browne St., and • W. 1806 Pacific Ave., Spokane, Wash.

KELLY, Olin A. (S 1940) Aviation Cadet, U. S. Army Air Forces, A. C. T. D. 42-4 Chanute Field, Ill., and • Shelby, Mich.

KELLY, Wilbur C. (M 1935) Field Engr., • Iron Fireman Manufacturing Co. of Canada, Ltd., 602 King St. W., and 58 Elmsthorpe Ave., Toronto, Ont., Canada.

KEMP, Gordon C. (A 1941) Gen. Sales Mgr, • Chatham Malleable & Steel Products, Ltd., 513 C. P. R. Bldg., and 296 Armadale Ave., Toronto, Ont., Canada.

KENNEDY, Maron (A 1936; J 1930) Sales Engr.,

• York Ice Machinery Corp., 5051 Santa Fe
Ave., Los Angeles, and 2704 Carlaris Rd., San
Marino, Calif.

KENNEDY, Walter W. (M 1941) Development
Engr., Electrical Div., Barber-Colman Co.,
Rock and Loomis Sts., and • 2220 Douglas St.,
Rockford, Ill.

KENNETT, V. A. (M 1936) Managing Dir., • Air
Conditioning & Engineering, Ltd., Victoria
Works, Higher Bents Lane, Bredbury, Cheshire,
and Sherwood House, Clement Rd., Marple
Bridge, Stockport, England. Conditioning & Engineering, Ltd., Victoria Works, Higher Bents Lane, Bredbury, Cheshure, and Sherwood House, Clement Rd., Marple Bridge, Stockport, England.

KENNEY, Thomas W. (M. 1937) Sales Mgr., Engr., Air Devices, Inc., 2326 S. Michigan Ave., and 1749 East 73rd Pl., Chicago, Ill.

KENT, A. Douglas (J. 1941) Foundry Supt., Aluminum Co. of Canada, and 499 Hunt St., Arvida, Que., Canada.

KENT, Laurence F. (A. 1927; J. 1924) Pres., Moncrief Furnace Co., P. O. Box 1673, and 1515 Morningside Dr. N.E., Atlanta, Ga.

KENT, Richard L. (M. 1936) Dist. Mgr., Trane Co. of Canada, Ltd., 303 New Hargrave Bldg., Hargrave St., and 147 Wellington Crescent, Winnipeg, Man., Canada.

KEPLER, Donald A. (J. 1936; S. 1934) Chief Engr., New York Stock Exchange Building Co., 20 Broad St., New York, and 188 East 12th St., Huntington Station, L. I., N. Y.

KERN, Joseph F., Jr. (A. 1937) Box 695, Massapequa, L. I., N. Y.

KERN, Raymond T. (M. 1927) Chief Engr., Jennison Co., 17 Putnam St., Fitchburg, and 51 Clafin St., Leominster, Mass.

KERR, Gerald C. (A. 1940) Acoustical Engr., Taylor-Seidenbach, Inc., 1401 Tchoupitoulas St., and 625 Pine St., Apt. 2, New Orleans, La.

KERR, William E. (M. 1937) South Carolina Rept., Barnes & Jones, Inc., 1201 Hyatt Ave., Columbia, S. C.

KERSHAW, Melville G. (M. 1932; A. 1926; J. 1921) Vtg. and Air Cond. Engr., E.I. DuPont de Nemours & Co., Wilmington, Del., and 7313 North 21st St., Philadelphia, Pa.

KESSLER, Clarence F. (M. 1938) Asst. Prof. Mech. Engr., University of Michigan, 241 W. Engineering Bidg., and 1756 Broadway, Ann Arbor, Mich.

KEYES, Marcus W. (M. 1942) Federal Repr., Kimberly Clark Corp., 6514 Brennon Lane, Chevy Chase, Md., and 99 Colchester St., Brookline, Mass.

KEYSER, Herman M. (A. 1937) Sales Engr., Murray W. Sales & Co., 801 W. Baltimore, Detroit, and 10703 Hart, Huntington Woods, Royal Oak, Mich.

KICZALES, Maurice D. (M. 1935) Chief Mech. Engr., Us., 2471-248.

ington, D. C. KIDD, Charles R. (M 1942; A 1938) Mech. Engr., Federal Public Housing Authority, Const. Div., Room 813, Longfellow Bldg., and •54 V St. N.W., Washington, D. C. KIEFER, E. J. (A 1932; J 1928) Mgr., •H. C. Archibald Co., 406 Main St., and 108 N. Sixth St., Stroudsburg, Pa.

KILLIAN, Vic J. (A 1937) Pres., V. J. Kıllian Co., 907 Linden Ave., Winnetka, Ill.

907 Linden Ave., Winnetka, Ill.

KILLIAN, William J. (A 1940) Products Application Engr., The Herman Nelson Corp., 831

Temple Bar Bldg., and 7519 Kirtley Dr.,
Kenwood, Cincinnati, Ohio.

KILLOREN, Donald E. (S 1941) Headquarters,
Co. 15th Inf., Ft. Lewis, Washington, and 3452

Giles Ave., St. Louis, Mo.

KILNER Lohp. S. (M 1999) Solve Flore 1997.

KILNER, John S. (M 1929) Sales Engr., 1091 Seminole Ave., Detroit, Mich. KILPATRICK, William S. (M 1923) W. S. Kilpatrick & Co., 1100 East 33rd St., Los Angeles, Calif.

KIMBALL, Charles W. (M 1915) Pres.-Treas.,
 Richard D. Kimball Co, 6 Beacon St., Boston,
 and 65 Prescott St., West Medford, Mass.

KIMBALL, Dwight D. (Presidential Member)
(Life Member; M 1908) (Pres., 1915; 2nd VicePres., 1914; Board of Governors, 1912-13;
Council, 1914-16), Consulting Engr. •1728
Grand Central Terminal Bldg., and 145 West
58th St., New York, N. Y.
KIMBLE, Carl W. (A 1943; J 1938) OwnerPartner, •Advance Heating & Sheet Metal
Works, 315-24th St., and 2020-38th St., Rock
Island, Ill.
KIMMELL, Phillip M. (M 1942; J 1936) Mech.
Engr., •Eastman Kodak Co., Hawk Eye Works,
and 33 Stonecliff Dr., Rochester, N. Y.
KING, Arthur C. (M 1936) Consulting Engr,
35 S. Dearborn St., Chicago, Ill.
KING, Arthur C. (A 1936) Consulting Engr,
•Anthracite Industries Laboratory, Primos, and
Green Lane and Ashland Ave., Secane, Pa.
KINGSLAND, George D. (M 1935) R. R. No 3,
Eureka, Mo.
KINGSWEI I. William F. (M 1925) Proc

Eureka, Mo. KINGSWELL, William E. (M 1935) Pres.

•William E. Kingswell, Inc., 3707 Georgia Ave.
N.W., Washington, D. C., and R. F. D. I, Silver

William E. Kingswell, Inc., 3707 Georgia Ave. N.W., Washington, D. C., and R. F. D. I, Silver Spring, Md.
KINNEY, Aldon M. (M 1936) Pres., • A. M. Kinney, Inc., Consulting Engrs., 1301-6 Enquirer Bldg., and Indian Hill, Cincinnati, Ohio.
KIPE, J. Morgan (M 1919) Dir. of Education, Anthracite Industries, Inc., 2204 Walnut St., Philadelphia, and 801 Homestead Ave., Beechwood, Upper Darby, P. O., Pa.
KIRKBRIDE, J. Owen (M 1938) Partner, Parent & Kirkbride, • N. W. Corner Fourth and Locust Sts., Philadelphia, Pa., and 1121 Eldridge Ave., West Collingswood, N. J.
KIRKENDALL, Horton J. (M 1942; A 1938) Sales Repr., Htg. Equipment, 291 Catalpa Pl. Pittsburgh, (16). Pa.
KIRKENDALL, Horton J. (M 1935; J 1931) Dist. Sales Mgr. and Engr., • Ilg Electric Ventilating Co., 415 Brainard St., and Hotel Webster Hall. Detroit, Mich.
KIRTLAND, Eugene M. (A 1940) Pres., • Engineering Specialty Co., 204 W. Ridge Rd., and 2900 W. Beverly Dr., Gary, Ind.
KITCH, Richard B. (M 1941) Registered Engr., • Mirs. Repr., 314 Palmer Bldg., and Rte. 2, N. Druid Hills Rd., Atlanta, Ga.
KITCHEN, Francis A. (A 1927; J 1923) Pres., • American Warming & Ventilating Co., 1514 Prospect Ave., Cleveland, and 2077 Campus Rd., South Euclid, Ohio.
KITCHEN, John H. (Life Member; M 1906) Pres., Mgr., • John H. Kitchen & Co., 1016 Baltimore Ave., and 5015 Westwood Terrace, Kansas City, Mo.
KITCHEN, William H. J. (A 1938) Lt. (5b), R. C.

Mvc., and softs westwood Telriace. Kainsas City, Mo.

KITCHEN, William H. J. (A 1938) Lt. (sb), R. C.

N. V. R., • Box 713 Midland, Ontario, Canada.

KLAGES, Frank E. P. (M 1940) Dist. Mgr., The Powers Regulator Co., 1034 Jefferson Standard Bldg., Greensboro, N. C.

KLEIN, Edward W. (M 1917) Repr., Warren Webster & Co., 152 Nassau St., N.W., and 456 Peachtree Battle Ave., Atlanta, Ga.

KLEINKAUF, Henry (M 1938; J 1937) Mgr., Natkin & Co., 506 South 18th St., Omaha, Nebr.

KLIE, Walter (M 1915) Pres., • The Smith & Oby Co., 6107 Carnegie Ave., Cleveland, and 18411 S. Woodland Ave., Shaker Heights, Ohio.

KLIEFOTH, Max H. (A 1939) Treas., Research Products Corp., E. Washington Ave., Madison, Wis.

Wis.

KLINK, Erwin J. (J 1942) Mech. Engr., Johnson Service Co., 230 E. Alexandrine, Detroit, Mich. KLUCKHUHN, Frederick H. (J 1940) Mech. Engr., U. S. Navy Dept., 18th and Constitution Ave., Washington, D. C., and 1110 Montgomery Ave., Laurel, Md. KLUGE, Burnett M. (J 1938) Sales Engr., Bayley Blower Co., 1817 South 66th St., and 1236 South 46th St., Milwaukee, Wis. KNAB, Edward A. (M 1943) Sole Owner, E. A. Knab Hig. & Engrg. Co., 4823 N. Bartlett Ave., Milwaukee, Wis.

KNEPPER, H. H. (A 1938) 1701 West 16th St., Texarkana, Texas.

KNIBB, Alfred E. (M 1930) Htg. Engr., • L. L
McConachie Co., 1003 Maryland Ave., and
9333 E. Jefferson Ave., Detroit, Mich.
KNIGHT, John T., Jr. (M 1941) Consulting
Engr., • 629 Common St., and 1538 Fourth St.,
New Orleans. La.
KNOWLES, Elwin L. (A 1937) Owner, • Knowles
Air Conditioning, 1324 Marshall St. N.E., and
400 Thomas Ave. S., Minneapolis, Minn.
KNOWLES, Frank R. (A 1938) Dir. Commercial
Engrg., • Pennsylvania Electric Co., 535 Vine
St., and R. D. 4, Box 428, Johnstown, Pa.
KNOX, John C. (A 1938) Secy.-Treas., • Water100 Register Co., 600 Anita St., and 176 Gates
St., Waterloo, Iowa.
KOCH, Albert H. (M 1938) Regional Mgr.,
Minneapolis-Honeywell Regulator Co., 101
Marietta Bldg, and • 3687 Peachtree Rd,
Atlanta, Ga.
KOCH, Richard G. (A 1935) House Heating
Engr., • Milwaukee Gas Light Co., 626 E. Wisconsin Ave., and 5707 W. Brooklyn Pl, Milwaukee, Wis.
KOEHLER, C. Stewart (A 1936) Sales Engr.,
Minneapolis-Honeywell Regulator Co., 221
Fourth Ave., and • 4374 Richardson Ave., New
York, N. Y.
KOENIG, Andrew G. (J 1940) Sales Engr., 701
E. Missouri St., Evansville, Ind.
KOLAKOSKI, Roman (A 1942) Owner and Mgr.,
Clarendon Plumbing & Heating Co., 4845–25th
Rd. N., Arlington, Va.
KOLASA, Marion, J. (J 1942) Engr., Gar Wood
Industries, Htg. Div., 7924 Riopelle, and • 2663
Frederick, Detroit, Mich.
KOLB, Fred W. (M 1938) • 598 Monadnock Bldg,
and 82 Macondray St., San Francisco, Calif.
KOLLAS, Will J. (M 1939) Chief Engr., Montag
Stove & Eurnace Works. 2011 N. Columbia

KOLLAS, Will J. (M 1939) Chief Engr., Montag Stove & Furnace Works, 2011 N. Columbia Blvd., and • 6104 N. Missouri Ave., Portland,

Blvd., and •6104 N. Missouri Avc., Portland, Cre.

KONZO, Seichi* (M 1939; A 1936; J 1932)
Special Research Assoc. Prof., • University of Illinois, 1108 W. Stoughton St., Urbana, and 510
S. McKinley Avc., Champaign, Ill.

KOOISTRA, John F. (M 1933) Branch Mgr., • Carrier Corp., 625 Market St., San Francisco, and 1128 Cortez Ave., Burlingame, Calif.

KORN, Charles B. (M 1922) Member of Firm, Reber-Korn Co., 817 Cumberland St., and •1022
S. Eighth St., Allentown, Pa.

KOSTER, Howard H. (A 1942; J 1939) Asst. Prof. Mech. Engrg., George Washington University, Washington, D. C., and • Sylvan Dr., Sleepy Hollow, Falls Church. Va.

KRAMIG, Robert E., Jr. (A 1933) Vice-Pres. Treas, • R. E. Kramig & Co., Inc., 222-4 East 14th St., Cincinnati, and 115 Linden Dr., Wyoming, Ohio.

KRAPOHL, William H. (M 1941) Sr. Engr. (Htg.) U. S. Government, 31 St. James Ave., Boston, and •79 Prospect St., W. Roxbury, Mass.

KRATZ, Alonzo P.* (M 1925) (Council, 1938-42) Research Prof., Dept. of Mech. Engrg., University of Illinois, and 1003 Douglas St., Urbana,

KREINER, Jack (A 1940) • 153 East 26th St., New York, and 5100–15th Ave., Brooklyn, N. Y KRENZ, Alfred S. (M 1937; A 1935) • Krenz & Co., 5114 W. Center St., Milwaukee, and 7933 W. Milwaukee Ave., Wauwatosa, Wis. KREZ, Leonard (A 1935) Vice-Pres., Paul J. Krez Co., 444 N. LaSalle St., Chicago, Ill. KRIBS, Charles L., Jr. (M 1935) Mech. Engr., Lone Star Ordnance Plant, Texarkana, Texas, and •416 E. Fourth St., Apt. 3, Texarkana, Ark., and 3416 Drexel Ave., Dallas, Texas. KRIEBEL, Arthur E. (M 1920) Sales Engr., • Haynes Selling Co., Inc., Ridge Ave. and Spring Garden St., Philadelphia, and Berwyn, Chester Co., Pa.

KROEKER, J. Donald* (M 1936) Capt. C. E., U. S. Army, E.U.T.C., O.T.S., Camp Claiborne, La., and • 6831 N.E. Siskiyou St., Portland, Ore. KRUEGER, James I. (Life Member; M 1921) Retired, c/o L. J. Krueger, 625 Market St., San Francisco, Calif. KRUSE, W. C., Jr. (M 1938) Owner, • Kruse Engineering Co., 24 Commerce St., Newark, and 32 University Court, South Orange, N. J. KUCHER, Andrew A. (M 1938) Director of Research, • Bendix Aviation Corp., Research Laboratories, 4855 Fourth Ave., Detroit, and 98 Merriweather Rd., Grosse Pointe Farms, Mich. KUCINSKI, William V. (A 1939) Pres., General Conditioners, Inc., 539 Summer Ave., and • 327 Union Ave., Belleville, N. J. KUECHENBERG, William A. (M 1937) Pres., • R. B. Hayward Co., 1714 Sheffield Ave., Chicago, and 427 Elmore Ave., Park Ridge, Ill. KUEMPEL, Leon L. (M 1936; J 1929) Owner, Kuempel Engineering Co., 2331 Gilbert Ave., and • 3702 Homewood Rd., Mariemont, Cincinnati, Ohio.

Kuempel Engineering Co., 2331 Gilbert Ave., and • 3702 Homewood Rd., Mariemont, Cincinnati, Ohio.

KUGEL, H. Kenneth (M 1938) Chief Engr., Div. of Smoke Regulation & Boiler Inspection, District Bldg., and • 3825 Morrison St. N.W., Washington, D. C.

KUHLMANN, Rudolf (M 1928) Manager, • Ameresco, Inc., 50 Church St., New York, and 21 Delta Pl., Goshen, N. Y.

KUMER, Calvin J. (A 1942; J 1938) • 1st Lt., 72nd F. A., Fort Bragg, N. C., and R. R. 3, Box 130, Louisville, Ky.

KUNEN, Herbert (J 1938) Asst. Chief Engr., • Anemostat Corporation of America, 10 East 39th St., New York, and 117-14 Union Turnpike, Kew Gardens, N. Y.

KUNTZ, Edward C. (J 1937) Asst. Engr., U. S. Engrs., Foot of Arsenal St., and • 6516a Morganford Rd., St. Louis, Mo.

KUNZOG, Theodore W. (M 1939) Engr., Moraine Products Div., General Motors, Dayton, Ohio, and • 82 Brunkerhoff St., Ridgefield Park, N. J.

KURTH, Franz J. (M 1937) Vice-Pres. and Tech. Mgr., • Anemostat Corporation of America, 10 East 39th St., New York, and 510 Cortlandt Ave., Mamaroneck, N. Y.

KURTZ, Otto (M 1941) Mech. Engr., 3518 Grove St., Oakland, Calif.

KURTZ, Robert W. (J 1936) Capt., Ordnance Dept., • U. S. Army, Nebraska Ordnance Plant, Fremont, and 3318 Mt. Vernon, Houston, Texas.

KWAN, Iu Ki (M 1933) Address Unknown—Mail Returned.

Returned.

LABONNE, Henri (A 1940) Lt., 62 Brooks St., Sherbrooke, Que.. Canada.

LADD, David (M 1938) Lt. Comdr., U. S. Naval Reserve, and 305 E. Wadesworth St., Philadelphia, Pa.

delphia, Pa.

LAGODZINSKI, Harry J. (A 1927; J 1920) Sales Engr., • Ilg Electric Ventilating Co., 222 N.

LaSalle St., Chicago, and Crystal Lake, Ill.

LAIR, Paul H. (M 1940) Engr., P. H. Lair, 120

Milk St., Boston, and • 52 Athelstane Rd.,

Newton Center, Mass.

LaMONTAGNE, Arthur F. (A 1936) Sales Mgr.,

Htg. Div., • The Gurney Foundry Co., Ltd.,

P. O. Box 277, Montreal, and 24 Prince Arthur

St., St. Lamber, Que., Canada.

LANDAU, Mitchel (M 1937) 1851 Widener Pl.,

Philadelphia, Pa.

LANDAU, MITCHE (M 1987) 1881 Witchelf Fi., Philadelphia, Pa.

LANDAUER, Leo L. (M 1938; J 1932) Lt. (CEC)
U. S. N. R., • Hq. Eighth Naval Dist., Federal
Bidg., and Bienville Hotel, New Orleans, La.

LANDERS, John J. (M 1930; J 1924) Mfrs.
Repr., • 701 Crosby Bldg., Buffalo, and 120
Burroughs Dr., Snyder, N. Y.

LANDES, Bates E. (M 1938) Consulting Engr.,
• 511 Hubbell Bldg., and 1603-47th St., Des

Moines, Iowa.

LANDFRIED, Charles L. (M 1942) Head, Htg. and Vtg. Branch, U. S. Maritime Commission, 1015 Chestnut St., Philadelphia, and • Box 34, Westtown, Pa.

LANGBERG, Martin (A 1941) Vice-Pres., Carroll Sheet Metal Works, Inc., 4610-70th St., Winfield, and •3215-93rd St., Jackson Heights, L. I., N. Y.

LANGDON, Edwin H. (M 1941) • Partner, Langdon-Faulkner Co., 966 Dexter-Horton Bldg., and 426 W. Roy St., Seattle, Wash.

LANGE, Fred F. (A 1934) Pres., • The Mechanical Service Co., 809 Pence Bldg., Minneapolis, and 338 S. Cleveland Ave., St. Paul, Minn.

LANGE, Raymond T. (M 1936) Engr., Hartzell Propeller Fan Co., Box 909, and •224 Jackson St., Piqua, Ohio.

LANING, Benjamin A. (M 1942) Utility Officer LANGBERG, Martin (A 1941) Vice-Pres., Carroll

St., Piqua, Ohio.

LANING, Benjamin A. (M 1942) Utility Officer and Staff Member Veteran's Admn., Veteran's Hospital, Chillicothe, Ohio.

LANOU, J. Ernest (M 1931) Mgr., • F. S. Lanou & Son, 90 St. Paul St., and 48 Brooks Ave., Burlington, Vt.

LARAUS, Julius (A 1943; J 1940) Production Engr., General Instrument Corp., 829 Newark Ave., Elizabeth, N. J., and • 22-21-76th St., Jackson Heights, L. I., N. Y.

LAROI, George H., II (A 1942; J 1936) Adv. Mgr., • McDonnell & Miller, Wrigley Bldg., Room 1316, Chicago, and 505 Vine Ave., Park Ridge, Ill.

Mgr., • McDonnell & Miller, Wrigley Bldg., Room 1316, Chicago, and 505 Vine Ave., Park Ridge, Ill.

LARSON, Carl W. (M 1936) Htg. Engr., and Sales Repr., Barnes & Jones, Inc., Industrial Trust Bldg., Room 1219, Providence, R. I., and •641 Hyde Park Ave., Roslindale, Mass.

LARSON, Clifford P. (A 1939; J 1936) Sgt., Hdq. and Student Det., Camp Savage, Minn.

LARSON, Gustus L.* (M 1923) (Presidential Member) (Pres., 1936; 1st Vice-Pres., 1935; 2nd Vice-Pres., 1936; 1st Vice-Pres., 1935; 2nd Vice-Pres., 1936; 1st Vice-Pres., 1935; 2nd Vice-Pres., 1936; 2nd Vice-Pres., 1936; 2nd Vice-Pres., 1936; 2nd Vice-Pres., 1936; 2nd Vice-Pres., 1936; 2nd Vice-Pres., 1936; 2nd Vice-Pres., 1936; 2nd Vice-Pres., 1936; 2nd Vice-Pres., 1936; 2nd Vice-Pres., 1936; 2nd Vice-Pres., 1937; 2nd Vice-Pres., 1938; 2nd Vice-Pres., 1936; 2nd Vice-Pres., 1937; 2nd Vice-Pres., 1938; 2nd Vice-Pres., 1938; 2nd Vice-Pres., 1938; 2nd Vice-Pres., 1939; 2nd Vice-Pres., 1939; 2nd Vice-Pres., 1939; 2nd Vice-Pres., 1939; 2nd Vice-Pres., 1939; 2nd Vice-Pres., 1939; 2nd Vice-Pres., 1939; 2nd Vice-Pres., 1939; 2nd Vice-Pres., 1938; 2nd Vice-Pres.,

Calif.

Calif.

LAUER, Rodney F. (M 1941; A 1940; J 1936)
Branch Mgr., York Ice Machinery Corp., 215
Investment Bldg., Washington, D. C.

LAUFKETTER, Fred C. (M 1936) Supt. and
Chief Engr., • Jefferson Hotel, and 7056 West
Park Ave., St. Louis, Mo.

LAUTERBACH, Henry, Jr. (M 1935) Engr. in
charge of Contract Dept., • Carrier Corp., 20 N.
Wacker Dr., and 6959 Merrill Ave., Chicago, Ill.
LAUTZ, Fritz A. (M 1936) Mech. Engr., Fraser
Brace Engineering Co., Inc., R. F. D. No. 1,
Carter-Sells Add'n., and • 703 E. Watanga Ave.,
Johnson City, Tenn.

Carter-Sells Add'n., and •703 E. Watanga Ave., Johnson City, Tenn.
LAYELLE, Anthony E. (A 1942) Htg. Contr., The Gorman-Lavelle Plumbing & Heating Co., •2341 East 22nd St., Cleveland, and 2415 Fenwood Rd., University Heights, Ohio.
LAYORGNA, Michael L. (M 1941; A 1940) Mgr., Milwaukee Sales, •L. J. Mueller Furnace Co., 2005 W. Oklahoma Ave., and 4472 N. Murray Ave., Milwaukee, Wis, LAWLOR, John J. (M 1935) Mgr., Heating Div., The James Robertson Co., Ltd., 215 Spadina Ave., and •35 Tennis Crescent, Toronto, Ont., Canada.

LAWRENCE, Chester T. (A 1940) Branch Mgr., U. S. Radiator Corp., 901 Washington Ave. S., and • 5213 Washburn Ave. S., Minneapolis, Minn.

LAWRENCE, Floyd D. (A 1938) Sales Engr.,

• Clarage Fan Co., 500 Fifth Ave., New York, and 34-31-81st St., Jackson Heights, L. I., N. Y.

LAWRENCE, L. Frank, Jr. (M 1942; J 1938)
Branch Mgr., • Minneapolis-Honeywell Regulator Co., 304-101 Marietta St. Bldg., and 796
Amsterdam Ave. N.E., Atlanta, Ga.

LEE, Burton H. (A 1940) Htg. and Vtg. Engr., H. and V. Design • Giffels & Vallet, Inc., Consulting Engrs., Naval Operating Base, Norfolk, and 34th St., and Holly Rd., Virginia Beach, Va.

LEE, James A. (A 1937) Mgr. Contract Dept.

Kelvinator Div., Nash-Kelvinator Corp., 14250
Plymouth Rd., Detroit, and • 9912 Hubbard, Rosedale Gardens, Plymouth, Mich.

LEE, Robert J. (M 1941) Engr., The Ballinger Co., 105 South 12th St., and • 2356-77th Ave., Philadelphia, Pa.

Co., 105 South 12th St., and •2356-77th Ave., Philadelphia, Pa.

LEE, Robert T. (J 1937; S 1936) Engr. in charge, Charlotte War Products Pool, P. O. Box No. 59, and •2405 Shenandoah Ave., Charlotte, N. C.

LEEK, Charles W. (M 1938) Managing Dir, Leek & Co., Ltd., 1111 Homer St., and •4682 W. Sixth Ave., Vancouver, B. C., Canada.

LEEK, Walter (Life Member; M 1903) Pres., •Leek & Co., Ltd., 1111 Homer St., and 4769 W. Second Ave., Vancouver, B. C., Canada.

LEFEBVRE, Eugene J. (M 1937) Engr., Warden King, Ltd., 2104 Bennett Ave., Montreal, and •378 Wood Ave., Westmount, Que., Canada.

LEFFEL, Paul C. (A 1941) Owner, The Leffel Co., 3323 Main, and •316 East 75th St., Kansas City, Mo.

LEFFEL, Paul C. (A 1941) Owner. The Lettel Co., 3323 Main, and •316 East 75th St., Kansas City, Mo.

LEGLER, Frederick W. (M 1935; A 1933) Pres., The Waterbury Co., 17 West 28th St., and •2919 Johnson St. N.E., Minneapolis, Minn.

LEHMAN, John L. (M 1942) Sales Engr., Columbia Radiator Co. & Triplex Heating Specialty Co., 12 Pittsfield St., Cranford, N. J. LEHMAN, M. G. (A 1937) Owner. • 720 O St., and 2011 Worthington, Lincoln, Nebr.

LEICHNITZ, Robert W. (J 1936) Mechanic, U. S. Navy, Puget Sound Navy Yard, Bremerton, and • 203 Belmont N., Seattle, Wash.

LEILICH, Roger L. (M 1922) Pres., • The Wallace Stebbins Co., 100 S. Charles St., and Ruxton, Baltimore Co., Md.

LEINBERGER, Richard J. P. (J 1942) Albert Kahn Co., 345 New Centre Bldg., and • 114 Pallister W., Detroit, Mich.

LEINROTH, J. P. (M 1929) Gen. Industrial Fuel Repr., Public Service Bectric & Gas Co., 80-Park Pl., Newark, N. J.

LEITCH, Arthur S. (M 1908) Pres. and Managing Dir., The Arthur S. Leitch Co., Ltd., 1123 Bay St., and • 421 Russell Hill Rd., Toronto, Ont., Canada.

LEITGABEL. Kenneth A. (J 1941; S 1939)

Canada.

LEITGABEL, Kenneth A. (J. 1941; S. 1939)

Test Engr., Pratt & Whitney Aircraft, E. Hartford, and Apt. 9, 95 W. Mid. Turnpike, Manchester, Conn.

LELAND, Warren B. (M. 1929) Sales Engr., The H. B. Smith Co., Inc., 57 Main St., Westfield, and 159 Sumner Ave., Springfield, Mass.

LELAND, William E. (Life Member; M. 1915)

Partner, Leland & Haley, 58 Sutter St., San Francisco, and 704 The Alameda, Berkeley, Calif.

Calif.
LENIHAN, William O. (A 1936) Vice-Pres.,

Laverack & Haines, Inc., White Bldg., and
703 W. Ferry St., Buffalo, N. Y.

LENONE, Jose M. (M 1919) Lt.-Col., Corps of
Engrs., and • 1017 East 46th St., Chicago, Ill.

LEONARD, Lorcan C. G. (J 1937) Tech. Mgr.,

• McCann Jeffreys, Ltd., 19-20 Ellis' Quay,
Dublin, and 265 Clontarf Rd., Dollymount,
Dublin, Ireland.

LEONARD, R. R. (A 1942; J 1941) Sales Engr.,

• A. M. Byers Co., 1409 Girard Trust Bldg.,
Philadelphia, Pa.

LEONHARD, Lee W. (M 1936) Asst. Supt.,
Eastman Kodak Co., and • 1075 Winona Blvd.,
Rochester, N. Y.

Rochester, N. Y.

LEOPOLD, Charles S. (M 1934) Consulting
Engr., •213 S. Broad St., Philadelphia, and 7600
West Ave., Elkins Park, Pa.

LeRICHE, Raymond E. (A 1941) Dist. Office, Minneapolis-Honeywell Regulator Co., 2210 Second Ave., and ●6345-39th S.W., Seattle,

LESER, Frederick A. (M 1941; A 1937) Dist. Mgr., • Ilg Electric Ventilating Co., 608 Mills Bldg., Washington, D. C., and 7201 Cobalt

Mgr., • lig Lice.

Bidg., Washington, D. C., and ...
Rd., Wood Acres, Md.

LESSINGER, Edgar F. (A 1941) Mgr., • Lessinger
Plumbing & Heating Co., 221 S. Tenth St., and
814 North 18th St., Boise, Idaho.

LEUPOLD, George L. (A 1937) Sales Engr.,
Minneapolis-Honeywell Regulator Co., 561
Reading Rd., and • 1630 Northwood Dr.,

Minneapolis-Honeywell Regulator Co., 561
Reading Rd., and •1630 Northwood Dr.,
Cincinnati, Ohio.

LEUTHESSER, Fred W., Jr. (M 1937) Secy.,
• National Metal Products Corp., 21 N. Loomis
St., Chicago, and 1715 North 77th Court,
Elimwood Park, Ill.

Elmwood Park, Ill.

LEVINE, Charles (A 1943; J 1939) Air Cond.

Service Engr., Alfred L. Hart, Inc., 938 Bergen
St., and •1171 Ocean Pkwy., Brooklyn, N. Y.

LEVINE, Lawrence J. (J 1940) Ensign, U. S.

Navy, and •1378 East 12th St., Brooklyn, N. Y.

LEVITT, Leroy L. (A 1942; J 1940) Lt. (1g),
U. S. N. R., and •3326 Gwynns Falls Pkwy.,

Baltimore, Md.

LEVY Merico I. (M 1938; A 1936; J 1931) Pro-

Baltimore, Md.
LEVY, Marion I. (M 1938; A 1936; J 1931) Pres.,
•Viking Air Conditioning Corp., 5606 Walworth
Ave., and 3156 Ludlow Rd., Cleveland, Ohio.
LEWIS, Carroll E. (M 1930) Sales Mgr., DelcoAppliance Div., General Motors Sales Corp., 391
Lyell Ave., and •9 Shelwood Rd., Rochester,
N. Y.

N. Y.
LEWIS, Harry E. (A 1942; J 1939) • OwensCorning Fiberglas Corp., Nicholas Bldg., and
1506 Potomac Dr., Toledo, Ohio.
LEWIS, H. Frederick (M 1940; A 1937) VicePres. and Gen. Mgr., • Harvey A. Dwight Oil
Heat & Supply Co., Inc., 147 Dongan Ave.,
Albany, and Sweet's Crossing, Nassau, N. Y.
LEWIS, L. Logan* (M 1918) Vice-Pres. and Chief
Engr., • Carrier Corp., S. Geddes St., and 207
Sedgwick Dr., Syracuse, N. Y.
LEWIS, Samuel R.* (Life Member; M 1905)
(Presidential Member) (Pres., 1914; 2nd VicePres., 1910; Board of Governors, 1909-12;
Council, 1914-15) Consulting Mech. Engr., • 407
S. Dearborn St., and 4737 Kimbark Ave.,
Chicago, Ill.

Council, 1914-15) Conservation of Council, 1914-15) Conservation St., and 4737 Kimbark Ave., Chicago, Ill.

LEWIS, Thornton (M 1919) (Presidential Member) (Pres., 1929; 1st Vice-Pres., 1928; 2nd Vice-Pres., 1927; Council, 1923-30) Deputy Chief, Production Service Branch, U. S. Army Ordnance Dept., Pentagon Bldg., and • 2123 California St., Washington, D. C.

LEWIS, W. Warner (A 1939) Mgr. Refrig. and Air Cond., • Major Appliance Dept., Beeson Hardware Co., P. O. Box 1390, and 604 Woodrow Ave., High Point, N. C.

LEY, Ralph B. (A 1940) Assoc. Engr., War Dept., Washington, D. C., and • 916 Park Ave., Falls Church, Va.

TRRY, Ralph S. (A 1939; J 1933) Sales Engr., Council

LEY, Raiph B. (A. 1940) ASSOC. Fugr., Washington, D. C., and •916 Park Ave., Falls Church, Va.

LIBBY, Raiph S. (A. 1939; J. 1933) Sales Engr., Sheldons, Ltd., 96 Grand Ave. S., and •34 Elliott St., Galt., Ont., Canada.

LICANDRO, James P. (A. 1943; J. 1938) Air Cond. Engr., • Carrier Corp., 1200 Statler Bldg., Boston, and 40 Elm St., Stoneham, Mass.

LICHTY, C. P. (Life Member; M. 1920) Mgr., C. P. Lichty Engineering Co., 1120 W. Main St., Durham, N. C.

LIEBLICH, Murray (J. 1943; S. 1940) Ensign, U.S. N. R., P. O. Box 541, Hamilton, N. Y.

LIFTON, David (J. 1942; S. 1939) Inspector, Engineering Materials, Navy Department, and •2902 Webster Ave., Pittsburgh, Pa.

LIGE, Walter W. (M. 1941; A. 1940) Production Mgr., •Bell & Gossett Co., 8200 N. Austin Ave., Morton Grove, and 1031 Ash St., Winnetka, Ill.

LIGHT, John C. (A. 1938) Capt., Ordnance Dept., Milan Ordnance Depot, Milan, Tenn., and •3004 Alamogordo St., El Paso, Texas.

LIGHTHART, Charles H. (M. 1935) Mfrs. Sales Engr., •P. O. Box 112, Niagara Square Station, Buffalo, and Eden, N. Y.

LILJA, Oscar L. (A 1937; J 1936) Htg. and Vent. Engr., Plant Engrg. Dept., Northwest Airlines, Inc., 1885 University Ave., St. Paul, and ●5000 16th Ave. S., Minneapolis, Minn. LINCOLN, Roland L. (M 1935) Mgr., Dust Lab., B. F. Sturtevant Co., Hyde Park, Boston, and

LINCOLN, Roland L. (M 1935) Mgr., Dust Lab.
B. F. Sturtevant Co., Hyde Park, Boston, and

Dover, Mass.

LINDSAY, Griffith W., Jr. (M 1937) Supt. of
Moulding, Kurz-Kasch, Inc., 1421 S. Broadway,
and 301 N. Garland Ave., Dayton, Ohio.

LINDSTROM, Donald F. (J 1941) Assoc. Engr.,
Alvin L. Lindstrom, Consulting Mech. Engr.,
1013 Mortgage Guarantee Bldg., Atlanta, and
451 Ansley St., Decatur, Ga.

LINGEN, Ralph A. (A 1939; J 1938) Dist. Mgr.,
American Foundry & Furnace Co., 709 North
11th St., Milwaukee, and 6028 W. Wisconsin
Ave., Wauwatosa, Wis.
LINK, Charles H. (S 1941) 607½ W. Franklin
St., Jackson, Mich.

LINSENMEYER, Francis J. (M 1935) Dir. of
Mech. Engrg., • University of Detroit, McNichols
and Livernois, and 19020 Warrington Dr.,
Detroit, Mich.

LINSKIE, George A. (J 1939) War Dept., U. S.
Engineers, Denison Dist., and • P. O. Box 495,
Denison, Texas.

LINTON, John P. (M 1927) Pres., Engineering
Installations, Ltd., 1154 Beaver Hall Sq., and
• 247 Brock Ave. N., Montreal W., Que., Canada.

LIPSCOMBE, Harold W. J. (M 1938) Mgr., Air
Cond. Dept., Davidson & Co., Ltd., Central
House, Kingsway, London, and • Glenmore,
Woodland Way, West Wickham, Kent, England.

LITTLEFORD, Wallace H. (M 1936) Vice-Pres.
• E. J. Febrey & Co., Inc., 616 New York Ave.
N.W., Washington, D. C., and 4208 Edmonston
Ave., Hyattsville, Md.

LIVELY, George P. (M 1942) Sr. Engr. (Naval
Arch.), U. S. Navy, Bureau of Ships, Washington, D. C., and • 4006 Fifth St. N., Arlington,
Va.

LIVERMORE, James N. (M 1939) Mech. Engr.,

• The Detroit Edison Co., 2000 Second Ave.,
Detroit, and Hanover Rd., Pleasant Ridge, Mich.

Mich.

LLOYD, Edmund H. (A 1943; J 1936) 1st Lt.
(Chief, Domestic Plants Unit), U. S. Army,
Office, Chief of Engrs., Constr. Div. R. & U.
Branch, and •3215 Newark St. N.W., Washington, D. C.

LLOYD, Edward C. (M 1927) Armstrong Cork
Co., and •R. D. 5, Old Philadelphia Pike, Lancaster, Pa.

caster. Pa.

caster, Pa.

LOBSTEIN, Melville G. (M 1941) Chief Engr. in charge of Bildg. Exhibits, and Equip., Museum of Science and Industry, 57th St. and Lake Michigan, Chicago, and 1401 S. Highland Ave., Berwyn, Ill.

LOCHMAN, Edward W. (M 1942) Owner, Edward W. Lochman Co., 1421 Cherry St., and 634 East 73rd Terrace, Kaneas City, Mo.

LOCK, Rowland H. (M 1939) Vice-Pres., J. H. Lock & Sons, Ltd., 221 Sterling Rd., and 24 Kennedy Park Rd., Toronto, Ont., Canada.

LOCKE, James S. (M 1939) Sales Engr., Minneapolis-Honeywell Regulator Co., 433 E. Erie St., Chicago, and 1828 Fairview Ave. S., Park Ridge, Ill.

Chicago, and • 1828 Fairview Ave. S., Park Ridge, III.

LOCKE, Robert A. (M. 1935) Lt.-Comdr., U.S. N. R., and • Middletown, Pa.

LOCKHART, Harold A. (A. 1936; J. 1935) Chief Engr., Bell & Gossett Co., \$200 Austin Ave., Morton Grove, and • Box 5385 R. R. 7, Des Plaines, Ill.

LOEFFLER, Frank X., Sr. (M. 1914) Pres., • Loeffler-Greene Supply Co., 1604 N. W. Fith St., and 1811 Northwest 19th St., Oklahoma City, Okla.

St., and 1811 Northwest 19th St., Oktaionia City, Okla.

LONDON, Maurice (A 1941) Owner, •S. & L. Engineering Co., 3006 Mermaid Ave., and 2926 Mermaid Ave., Brooklyn, N. Y.

LONG, Edward J. (J 1942; S 1939) Chief Plumbing Engr., Olsen, Dietrick, Carr & J. E. Greiner Co., Marine Air Station, and •P. O. Box 347, Edenton, N. C.

LONG, Wayne E. (M 1935) Capt., Signal Corps, U.S. Army, 800th Sig. Ser. Regt., Camp Crowder, Mo., and Texas Agricultural & Mechanical College, College Station, Texas.

LONGCOY, Grant B. (M 1933) Engr., Joseph Breslove, Consulting Engr., Leader Bldg., Cleveland, and • 1215 Ramona Ave., Lakewood, Ohio. LOO, Ping Yok (M 1933) Address Unknown—Mail Returned.

LOUCKS, D. W. (A 1930) Supvr., Industrial Elecand Steam Sales, • Duquesne Light Co., 435 Sixth Ave, and 1049 Osage Dr., Wilkinsburg, Pittsburgh, Pa.

LOUGHRAN, Patrick H., Jr. (J 1937) Asst. Mgr. Govt. Sales Dept., Washington Gas Light Co., 1100 H St. N.W., and •4513-49th St. N.W., Washington, D. C.

LOVE, Clarence H. (M 1919) Mfrs. Agent, Nash Engineering Co., 421 Chamber of Commerce, and •16 Lexington Ave., Apt. 1A, Buffalo, N. Y.

LOWE, Robert A. (J 1938) Engr., United States Government, and •1206 Longwood, Los Angeles, Calif.

Calif.

LOWNSBERY, B. F. (M 1920) Project Engr.,
Benjamin F. Shaw Co., 201 E. Lombard St., and
•21 S. Sycamore St., Wilmington, Del.

LUCK, Alexander W. (Life Member; M 1919)

Htg. Engr., Consultant, 532 Woodward St.,
Reading, and •2235 Fairview Ave., Mt. Penn,
Reading, Pa.

LUCKE, Charles E. (M 1924) Stevens Prof.
Emeritus Mech. Engrg., • Columbia University,
Pupin Bldg., and 186 Riverside Dr., New York,
N. V.

Fight Bidg., and 186 Riverside Dr., New York, N. Y.

LUDLOW, Harold M. (M 1940) Sales and Engrg.,

• H. M. Ludlow, 328 W. Capitol St., and 950
Pecan Blvd., Jackson, Miss.

LUDWIG, Willis D. (M 1942) Contract Engr.,

• York Ice Machinery Corp., P. O. Box 2210,
Atlanta, and 143 Kings Highway, Decatur, Ga.

LUND, Clarence E.* (M 1936; J 1935; S 1933)

Asst. Dir. and Assoc. Prof., University of
Minnesota, Engineering Experiment Station,

Experiment Engineering Bldg., and •4817-12th

Ave. S., Minneapolis, Minn.

LUTY, Donald J. (M 1933) Chief Research Engr.,

Air Cond. Div., • Gar Wood Industries, Inc.,

7924 Riopelle St., and 30 Colorado Ave., Detrott,

Mich.

Mich

Mich.

LYFORD, Robert G. (J 1939) Branch Mgr., • The Powers Regulator Co., 602 N. Akard, and 2717 E. Amherst Ave., Dallas, Texas.

LYMAN, Samuel E. (A 1924) Buensod-Stacey Air Conditioning, Inc., 60 East 42nd St., New York, N. Y., and • 865 Hueston St., Union, N. J. LYNCH, James R. (A 1940) Owner, • Lynch Furnace Co., 1804 N.E. Union, and 2952 N.E. Edgehill Pl., Portland, Ore.

LYNCH, William L. (M 1928) Pres., • Rome-Turney Radiator Co., and 1205 N. George St., Rome, N. Y.

LYNN, Frederick E. (M 1938) Refrig. Engr., Electric Products Corp., 5624 Penn Ave., Pittsburgh, and • 312 Moyhend St., Springdale, Pa.

LYON, Douglas McClure (A 1941) Owner,

LYON, Douglas McClure (A 1941) Owner, Douglas McClure Lyon, 317 State Tower Bldg., and c/o Harold Stone, 213 Highland Ave., Syracuse, N. Y.

LYON, P. S. (M 1929) Pres., • Cochrane Corp., 17th St. and Allegheny Ave., and 3416 Warden Dr., Philadelphia, Pa.

LYONS, Cornelius J. (A 1932) Sales Engr,
Nash Engineering Co., Wilson Ave., and 5
Olmstead Pl., S. Norwalk, Conn.

MABLEY, Louis C. (M 1937) Lt., U. S. N. R., Commanding Officer of the U. S. S. S. C. 763, and •57 Meadow Lane, Grosse Pointe Farms, Mich.

MABLEY, T. Hollister (M 1939) Chief Engr.,

• Mechanical Heat & Cold, Inc., 7704 Woodward
Ave., Detroit, and 2323 Yorkshire Rd., Birmingham, Mich.

MABON, James E. (J 1942; S 1939) Engr., The Glenn L. Martin Co., 409 Southway, and • 103 East 33rd St., Baltimore, Md.

MACGUBBIN, Howard A. (M 1934) Buyer, Htg. Equip., Montgomery Ward & Co., and • 4914 N. Mason Ave., Chicago, Ill.

MACDONALD, Donald B. (M 1930) Engr., Sordoni Construction Co., 45 Owens St., Forty Fort, and • 101 E. Walnut St., Kingston, Pa.

MACDONALD, Douglas J. (M 1935) Vice-Pres., Htg. Div., • Standard Sanitary Dominion Radiator Co., Ltd., Royce and Lansdowne Aves., and 96 Hudson Dr., Toronto, Ont., Canada.

MacEACHIN, Graham C. (M 1938) Major, 852nd Engineer Aviation Battalion, Geiger Field, Wash.

MACFARLAN, Norris S. (M 1942) Htg. Engr., The Philadelphia Gas Works Co., 1401 Arch St., Philadelphia, and • 320 W. Whatton Rd., Glenside, Pa.

The Philadelphia Gas Works Co., 1401 Arch St., Philadelphia, and • 320 W. Wharton Rd., Glenside, Pa.

MacGREGOR, Cecil M. (A 1939) Capt., F. A., U. S. Army, Field Artillery School, Fort Sill, and • Box 1193, Lawton, Okla.

MACHEN, James T. (A 1938; J 1934) Asst. Vice-Pres., • The Ric-wil Co., 1562 Union Commerce Bldg., and Sterling Hotel. Cleveland, Ohio.

MACHIN, Donald W. (A 1943; J 1935) Fuel Service Engr., Pittsburgh & Midway Coal Mining Co., 610 Dwight Bldg., Kansas City, Mo., and • 2112 Vermont St., Lawrence, Kan.

MACK, Emil H. (A 1938) Asst. Sales Mgr., The Vilter Manufacturing Co., 2217 S. First St., and • 2225 N. Booth St., Milwaukee, Wis.

MACK, Ludwig (M 1935) Dist. Mgr., Cooling and Air Cond. Div., B. F. Sturtevant Co., Cresmont and Haddon Aves., Camden, N. J., and • 412 W. Hortter St., Philadelphia, Pa.

MacLACHLAN, Victor D. (A 1939; J 1938) Flight Lt., R. A. F. V. R., • Honeywell-Brown, Ltd., Wadsworth Rd., Perivale, Greenford, Middlesex, and R. A. F. Station, Digby, Lincoln, England. England.

England.

MacLEAN, H. A. (M 1939) Mgr., • The MacLean Plumbing Service, P. O. Box 400, and 89 Tremoy Rd., Noranda, Que., Canada.

MacMILLAN, Alexander R. (M 1936) Mgr., Delco Appliance Div., • General Motors Sales Corp., 2-160 General Motors Bidg., and 2455 Longfellow Ave., Detroit, Mich.

MACRAE, Robert B. (A 1939; J 1935) Address Lightours—Mall Seturade

Corp., 2-100 General Motors Bidg., and 2455 Longfellow Ave., Detroit, Mich.

MACRAE, Robert B. (A 1938; J 1935) Address Unknown—Mail Returned.

MACROW, Lawrence (A 1941; J 1936) Dist. Chief Engr., • Carrier Corp., 12 South 12th St. Philadelphia, and 225 Buttonwood Way, Glenside Heights, Pa.

MacWATT, Donald A. (M 1938) Sales Engr., Powers Regulator Co., 231 East 46th St., New York, and • Plandome, L. I., N. Y.

MADDEN, Alfred B. (M 1942) Mgr., Htg. Div., • Crane, Ltd., Beaver Hall Hill, and 5367 Earnscliffe Ave., Montreal, Que., Canada.

MADDUX, O. Lloyd (M 1935; A 1933) Owner, O. Lloyd Maddux, 53 Park Pl., New York, N. Y., and • 17 Tallmadge Ave., Chatham, N. J.

MADELY, Frederick J. (A 1936) Chief Estimator, Eastern Steel Products, Ltd., 1335 Delormier Ave., and • 6370 Louis-Hemon St., Montreal, Que., Canada.

MADISON, Richard D. (M 1926) Research Engr. • Buffalo Forge Co., 490 Broadway, Buffalo, and 218 Brantwood Rd., Snyder, N. Y.

MAEHLING, Leon S. (M 1932) Supt. of Service, Equitable Gas Co., 6304 Penn Ave., and • 778 Country Club Dr., Pittsburgh, Pa.

MaGIRL, Willis J. (M 1934; A 1931; J 1927) Chief Engr., • P. H. MaGIR Foundry & Furnace Works, 401-13 E. Oakland Ave., and 1119 E. Monroe St., Bloomington, Ill.

MAGNUSSON, Nicholas (A 1938) Estimator-Designer-Sales, Montgomery Ward & Co., 150-15 Jamaica Ave., and • 138-05 Linden Blvd., Jamaica, L. I., N. Y.

MAHON, Miss B. B. (M 1935) Principal of Air Cond., • International Correspondence Schools, Wyoming Ave. and Ash St., and 433 Fig St., Scranton, Pa. Scranton, Pa.

MAHON, Frank B. (M 1937) Industrial Sales Promotion, • Duquesne Light Co., 435 Sixth Ave., and 290 LeMoyne Ave., Pittsburgh, Pa. MAHONEY, David J. (M 1930; A 1926) Branch Mgr., • Johnson Service Co., 503 Franklin St., and 140 Linwood Ave., Buffalo, N. Y. MAIER, George M. (M 1921) • American Radiator & Standard Sanitary Corp., Bessemer Bldg., Room 1226, Pittsburgh, and 135 Longue Vue Dr., Mt. Lebanon, Pa.

MAIER, Herman F. (M 1926) Chief Engr.-Secy., • New York Blower Co., 3155 Shields Ave., and 7124 S. Morgan St., Chicago, Ill.

MAKIN, Henry T., Jr. (M 1939) Engr. and Archts. Repr., American Radiator & Standard Sanitary Corp., 2212 Walnut St., and • 301 Wadesworth Ave., Philadelphia, Pa.

MALIN, Benjamin S. (M 1940; J 1939) Capt.,

Wadesworth Ave., Philadelphia, Pa.

MALIN, Benjamin S. (M 1940; J 1939) Capt.,
Ordnance Dept., U. S. Army, Asst. to Works
Mgr., Bldg. 104, Springfield Armory, and •107
High St., Springfield, Mass.
MALLIS, William (M 1914) Owner, •330 Lyon
Bldg., and 723 Federal Ave., Seattle, Wash.
MALLY, Chester F. (M 1940; A 1938) Gen. Mgr.,
Chief Engr., Air Heating Co., 20420 Woodward
Ave., Detroit, and •292 W. Woodland Ave.,
Ferndale, Mich.
MALONE, Dayle G. (M 1929; A 1925) Branch
Mgr., • Petroleum Heat & Power Co., 3301 S.
California Ave., and 7337 Merrill Ave., Chicago,
Ill.

Ill.

MALONE, James S. (A 1936) Dist. Repr.,

• Hoffman Specialty Co., 4 N. Eighth St., and
7124 Waterman Ave., St. Louis, Mo.

MALVIN, Ray C. (M 1929) Pres., • Malvin &
May, Inc., 2015 S. Michigan Ave., and 8220
Dante Ave., Chicago, Ill.

MANDELL, Thomas P. (A 1937) Sales, Carrier
Corp., 1200 Statler Office Bldg., and • 192 Commonwealth Ave., Boston, Mass.

MANK, Merrill (A 1939) Owner. • Merrill Mank
Co., 14 Bonnefoy Pl., and 15 North Ave., New
Rochelle, N. Y.

Rochelle, N. Y.

MANN, Walter N. (M 1939) Gen. Mgr., Brock-house Heater Co., Ltd., Victoria Works, West Bromwich, Staffs., and • "Moneymore," Canwell, Sutton Coldfield, Warwickshire, England.

MANNEN, D. Edward, Jr. (J 1939) Vice-Pres., The Mannen & Roth Co., 9108 Woodland Ave., Cleveland, and •4157 Silsby Rd., University Heights, Ohio.

MANNING, C. E. (J 1937) Product Engr., Packard Electric Div., General Motors Corp., and • 195 Linden Ave. S.E., Warren, Ohio.

Linden Ave. S.E., Warren, Ohio.

MANNY, J. Harvey (A. 1936) Pres., • Robinson Furnace Co., 213 W. Hubbard St., and 242 N. Parkside Ave., Chicago, Ill.

MARCONETT, Vernon G. (A. 1936) Supt., The Farquhar Furnace Co., and •216 Fulton St., Wilmington, Ohio.

MARIN. Aval* (M. 1925) April 2016

MARIN, Axel* (M 1935) Assoc. Prof. Mech. Engrg., • University of Michigan, 241 W. Engineering Bldg., and P. O. Box 175, Ann Arbor, Mich.

MARINO, Frank A. (A 1941) Tech. Sgt., U. S. Army, and ●3348-28th St., Long Island City, N. Y.

MARKERT, John W. (A 1940) Naval Archt., Htg. and Vtg., U. S. Maritime Commission, Room 4525, Dept. of Commerce Bldg., Wash-ington, D. C., and •8506 Garfield St., Bethesda,

MARKLAND, Charles E. (M 1939) Supervising Engr., • University of Illinois, Urbana, and 807 W. Clark St., Champaign, Ill.

MARKS, Alexander A. (4 1930) Chief Engr., Richmond Radiator Co., 818 Fayette Title & Trust Bldg., Uniontown, Pa.

MARKSON, Wesley H. (J 1942) Junior Engr., McQuay Inc., 1600 Broadway N.E., and •428 Russell Ave. N., Minneapolis, Minn.

MARKUSH, Emery U. (M 1931) Secy., • Eastern Mechanical Corp, 225 East 21st St., New York, and 84-30-85th Ave., Woodhaven, L. I., N. Y.

S E., Grand Rapids, Mich.

MARSHALL, Stanley C. (M 1939) Chief Engr.,
Mayflower-Lewis Corp., Duluth and East
Seventh St., St. Paul, and •2735 Toledo,
Minneapolis, Minn.

MARSHALL, Thomas A. (A 1943; J 1937) Lt.,
Technical Division V, Engineer Board, Ft.
Belvoir, Va., and •195 Eureka St., San Francisco Calif

Belvoir, Va. cisco, Calif.

MARSHALL, William D. (M 1935) Branch Mgr., Noland Co., Inc., 1823 N. Arlington Ridge Rd., and • 3232 Woodrow St. N., Arlington, Va. MARSTON, Anson D.* (A 1937) Major, G. S. C., Asst. to A. C. of S. (G-3) Headquarters V, Army Corps, Camp Beauregard, La. MART, Leon T. (M 1941) Pres., • The Marley Co., 3001 Fairfax Rd., Kansas City, Mo. MARTENS, E. D. (M 1937) Gen. Mgr., • F. Brutschy Co., Inc., Pentagon Bldg., Arlington, Va., and 89 Eldridge Ave., Hempstead, L. I. N. Y.

MARTIN, Albert B. (M 1917) Branch Mgr.,

• Kewanee Boiler Co., 549 W. Washington
Blvd., Chicago, and 997 Vine St., Winnetka, Ill.

Blvd., Chicago, and 997 Vine St., Winnetka, Ill.

MARTIN, George D. (M 1941) Branch Mgr.,
Grinnell Company of Pacific, 601 Brannan St.,
and •1543 Willard St., San Francisco, Calif.

MARTIN, George W.* (Life Member; M 1911)
Supervising Engr., • U. S. Realty & Improvement Co., 111 Broadway, New York, N. Y., and
340 Prospect St., Ridgewood, N. J.

MARTIN, John O. (A 1939) Partner, • J. O. &
C. U. Martin, 637 Minna St., San Francisco, and
328 Jerome Ave., Piedmont, Calif.

MARTIN. Raymond (A 1937) Sales Engr.

MARTIN, Raymond (A 1937) Sales Engr.,

• Vapor Car Heating Company of Canada, Ltd.,
65 Dalhousie St., Montreal, and 9 Morris Ave.,
Ste. Therese, Que., Canada.

MARTOCELLO, Joseph A. (M 1934) Pres., Jos. A. Martocello & Co., 229 North 13th St., Philadelphia, Pa.

MARTY, Edgar O. (M 1916) Mining, Elec. and Mech. Engr., Parsons, Klapp, Brinckerhoff & Douglas, 142 Maiden Lane, New York, and • 84 Long Ridge Rd., Plandome, L. I., N. Y. MARTYN, Henry J. (A 1937) Pres., • Martyn Bros., Inc., 911 Camp St., and 5306 Ridgedale St., Dallas, Texas.

MARVIN, John H. (4 1942) Mgr., John H. Marvin Co., 1016 First Ave. S., Seattle, Wash. MARZOLF, Frank X. (4 1937) Sales Engr., Minneapolis-Honeywell Regulator Co., 415 Brainard St., and •15790 St. Marys, Detroit,

MASON, Ray B. (M 1925) Sales Engr., • Kewanee Boiler Corp., 2014 Wyandotte St., and 121 East 70th Terrace, Kansas City, Mo. MAST, Clyde M. (A 1940) Heating & Air Con-ditioning Supply, Inc., 263 Sierra St., and • 536 Nixon St., Reno, Nev.

NIXON St., Reno. Nev.

MATCHETT, James C. (M 1923) Vice-Pres. and
Gen. Mgr.•Illinois Engineering Co., Racine
Ave. and 21st St., and 9936 S. Winchester Ave.,
Chicago. Ill.

MATHEKA, Charles R. (S 1939) • U. S. S.
Tattnall c/o Postmaster General, New York,
N. Y., and 1506 Summit Ave., Union City, N. J.

MATHER, Harry H. (A 1929) Treas., Mather Paper Co., 611 S. Front St., Philadelphia, and •373 Lakeview Ave., Drexel Hill, Pa.
MATHEWSON, M. E. (M 1937) Secy., •A. M. Kinney, Inc., 1301 Enquirer Bldg., and 3569 Erie Ave., Cincinnati, Ohio.
MATHIS, Eugene* (M 1922) Vice-Pres. and Treas., •The New York Blower Co., 32nd St. and Shields Ave., Armour P. O. Station, and 9151 S. Hoyne Ave., Chicago, Ill.
MATHIS, Henry (M 1921) The New York Blower Co., 32nd St. and Shields Ave., Armour P. O. Station and •11246 Longwood Dr., Chicago, Ill.
MATHIS, John (A 1938) Engr., •Standard Furnace & Supply Co., 413 S. Tenth St., and 3663 Davenport St., Omaha, Nebr.
MATHIS, Julien W. (A 1921) •New York Blower Co., 3145-55 Shields Ave., and 7929 Bishop St., Chicago, Ill.
MATHISON, Russell St. Clair (A 1938) Asst. Mgr., Weathermakers (Canada), Ltd., 593 Adelaide St. W., and •44 Strathgowan Ave., Toronto, Ont., Canada.
MATOUSEK, A. G. (M 1937) Mgr., Gamble Store, Schuyler, Nebr.
MATHHEWS, John E. (M 1934) Sales Engr., B. F. Sturtevant Co., Crestmont and Haddon Ave., Camden, and •300 Chestnut St., Haddonfield, N. J.
MATTHIES, Leo A. (S 1941) Ensign, U. S. N. R., • B. O. 2. Naval Aur Station. Seattle Wash. and

Ave., Camden, and \$300 Chestnut St., Haddonfield, N. J.

MATTHIES, Leo A. (S 1941) Ensign, U. S. N. R.,

B. O. 2, Naval Air Station, Seattle, Wash., and
4433-18th Ave. S., Minneapolis, Minn.

MATTINGLY, Maurice F. (A 1939) Sales Engr.,

Johnson Service Co., 1355 Washington Blvd.,
and 8028 Ingleside Ave., Chicago, Ill.

MATZ, George N. (M 1938) Mech. Engr., A.

Ernest D'Ambly, 2101 Architects Bldg., Philadelphia, and 649 Ferne Ave., Drexel Hill, Pa.

MATZEN, Harry B. (M 1919) Consulting Mech.
Engr., 185 Madison Ave., New York, and 16
Addison Pl., Rockville, Center, L. I., N. Y., and

3716 Belmont Rd., Mariemont, Ohio.

MAURER, Lester (M 1941) Air Cond. Engr.
Navy Dept., and \$1835-19th St. N.W., Washington, D. C.

MAVES, G. D. (A 1939) Sales Engr., Minne-

MAYES, G. D. (A 1939) Sales Engr., • Minne-apolis-Honeywell Regulator Co., 1031 Santa Fe Dr., and • 1550 Glencoe St., Denver, Colo. MAWBY, Pensyl (M 1934) Dist. Sales Mgr., Lehigh Navigation Coal Co., 123 S. Broad St., Philadelphia, and • 15 E. Ridley Ave., Ridley

Philadelphia, and •15 E. Ridley Ave., Ridley Park, Pa.

MAXWELL, George W. (M 1935; \$\sume91932\$) Engr., Kenealy & Maxwell, Main St., and •Lower County Rd., Harwich Port, Mass.

MAXWELL, R. Shierlaw (M 1937) Gen. Mgr., •Bennett & Wright, Ltd., 72 Queen St. E., and 107 Cheltenham Ave., Toronto, Ont., Canada.

MAY, Arthur O. (A 1938; J 1928) Secy., •Stannard Fover Equipment Co., 53 W. Jackson Blvd., Room 925, and 5736 N. Bernard St., Chicago, Ill.

MAY, C. W. (M 1933) Consulting Engr., •817 Smith Tower, and 6056 Fourth N.E., Seattle, Wash.

Wash.

MAY, Edward M. (M 1931) Branch Mgr. and

MAY, Edward M. (M 1931) Branch Mgr. and Combustion Engr., Steel Products Engineering Co., 1601 S. Michigan Ave., Chicago, and •848 N. Rudgeland Ave., Oak Park, Ill.

MAY, George Elmer* (M 1933) Utilization Engr., New Orleans Public Service, Inc., 317 Baronne St., New Orleans, La.

MAY, James W. (M 1938; J 1935) Assoc. Prof. of Htg. and Vtg., •College of Engrg., University of Kentucky, and 1046 Fontaine Rd., Lexington, Ky. MAY, Maxwell F. (M 1929) Vice-Pres., •Young Radiator Co., Racine, Wis., and Palos Park, Ill.

MAYNARD, J. Earle (M 1931) Dir. of Engrg., • Rybolt Heater Co., Ashland, and 324 Fifth St., Elyna, Ohio.

MAYNE, Walter L. (M 1938) Vice-Pres., Sales Mgr., • Marsh Valve Co., Brigham Rd., at Fourth St., and 718 Washington Ave., Dunkirk, N. Y.

McBRIDE, J. Nevins (A 1941) Vice-Pres., • Frank A. McBride Co., 158-160 Ward St., and 228 Derrom Ave., Paterson, N. J.

McCAFFRAY, Charles E. (M 1938) Western Electric Co., and ●5700 Cross Country Blvd., Baltimore, Md.

Electric Co., and •5700 Cross Country Blvd., Baltimore, Md.

McCAIN, H. King (M 1939; A 1938; J 1937)

1st Lt., Q. M. C., • Staff and Faculty, The Quartermaster School, Camp Lee, and Route No. 1 (Cedar Level), Hopewell, Va.

McCALLUM, Chester E. (M 1941) Mgr., Production Service Div., War Production Board, 428 Law Bldg., Charlotte, N. C.

McCANN, Frank D. (A 1939) Supvr. Air Cond. and Comm. Refrig., • Westinghouse Electric & Manufacturing Co., 40 Wall St., New York, and 378 Scarsdale Rd., Crestwood, Yonkers, N. Y.

McCAUL, Lynn K. (M 1942) Sales Engr., The Coon-DeVisser Co., Detroit, and •622 W. Marshall, Ferndale, Mich.

McCAULEY, James H. (M 1921) Pres. • J. H. McCauley & Son, 5620 West 65th St., Chicago, and 707 William St., River Forest, Ill.

McCLANAHAN, L. C. (M 1930) Dist. Mgr., • Aerofin Corp., 603 Great National Life Bldg., and 811 S. Tyler, Dallas, Texas.

McCLELLAN, James E. (M 1922) Office Mgr., • American Blower Corp., 228 N. LaSalle St., Chicago, and 738 Marion Ave., Highland Park, Ill.

McCLINTOCK. William (M 1935) Consulting

McCLINTOCK, William (M 1935) Consulting

McCLINTOCK, William (M 1935) Consulting Engr., •647 East 232nd St., New York, N. Y. McCLOSKEY, John H. (A 1940) Owner, J. H. McCloskey, 109 North St., and •304 Elkton Blvd., Elkton, Md. McCLUNG, Tom H. (A 1942; J 1939) 1403 D St., Lawton, Okla. McCONACHIE, L. L. (A 1928) Owner •L.L. McConachie Co., 1003 Maryland Ave., Detroit, and 1415 Harvard Rd., Grosse Pointe Park, Mich.

McCONNER, Charles R. (A 1925; J 1922) Gen. Sales Mgr., • Clarage Fan Co., and 1904 Waite Ave., Kalamazoo, Mich.

- McCORMACK, Denis (M 1933) Mgr. Commercial Instruments and Controls Dept., Julien P. Friez & Sons, Div. of Bendix Aviation Corp., 4 N. Central Ave., and Ruxton Post Office, Baltimore, Md.
- McCORMICK, George W., Jr. (A 1941) Chief, Liquid and Gas Handling Equipment Branch, W. P. B., and •1135-16th St. N.W., Wash-ington, D. C.
- McCOY, C. E. (M 1936) Partner Turner-McCoy, 315 W. Second St., and 5117 Sherwood Rd., Little Rock, Ark.
- McCOY, Thomas F. (M 1924) Mgr., The Powers Regulator Co., 125 St. Botolph St., Boston, and •124 Babcock St., Brookline, Mass.

- Regulator Co., 125 St. Botolph St., Boston, and

 124 Babcock St., Brookline, Mass.

 McCREA, Joseph B. (M. 1937) Htg. and Vtg.,
 2919 Drexel Ave., Detroit, Mich.

 McCREA, Lester W. (M. 1920) Prop., McCrea
 Sales Co., 15 East 21st St., and 564 W. University
 Pkwy., Baltimore, Md.

 McCULLEY, D. E. (A. 1917) Mfrs. Repr., Htg.
 Equip., 1101 Jackson St., and 5504 Corby St.,
 No. 3, Omaha, Nebr.

 McCULLOUGH, Henry G. (M. 1936) Smaller
 War Plants Div., War Production Board,
 Washington, D. C., and 7042 Lincoln Dr.,
 Mt. Airy, Philadelphia, Pa.

 McCULLOUGH, John L. (M. 1930) Harry
 Dougherty & Son, Freeport, and 105 Roycroft
 Ave. (16), Pittsburgh, Pa.

 McCUSKER, James P. (S. 1940) Student, Catholic
 University of America, and 1445 Evarts St.
 N.E., Washington, D. C.

 McDERMOTT, John P. (A. 1942; J. 1939) Engr.

 Corps, Fort Belvoir, Va., and 3534 S.E. Claybourne, Portland, Ore.

 McDONALD, Ivan (A. 1938) Brnach Mgr.,

 Minneapolis-Honeywell Regulator Co., 44
 Princess St., and 132 Kingston Row, Winnipeg,
 Man., Canada.

 McDONALD, Thomas (A. 1931) Vice-Pres.,

 Minneapolis-Honeywell Regulator Co., 1135
 N. Cicero Ave., Chicago, and 7855 Green-field
 Ave., River Forest, Ill.
- Ave., River Forest, Ill.

- McDONNELL, Everett N. (M 1923) (Council, 1940-42) Pres.,

 McDonnell & Miller, 400 N. Michigan Ave., and 219 Lake Shore Dr., Chicago,
- McDonnell, John E. (A. 1936) Sales Engr.,

 McDonnell & Miller, 400 N. Michigan Ave.,
 Chicago, and 2299 Lakeside Pl., Highland Park,

- III.

 McDOWELL, Harry L. (J 1939) Ensign, U.S N.R. and •1128 Belt Line Blvd., Columbia, S. C. McELGIN, John W.* (A 1937; J 1931) Engr., J. J. Nesbitt, Inc., Holmesburg, Philadelphia, and •260 Cleveden Ave., Glenside, Pa.

 McENTEE, Francis M. (M 1940) Asst. Supervising Air Cond. Engr., Office of the Architect, U. S. Capitol, and 718 Somerset Pl., Washington, D. C.
- D. C. Caphor, and Condition of the Model of

- Supt., Synthetic Rubber Plant, Stone & Webster Engineering Corp., Gardena, and •1545 Brad-bury Rd., San Marino, Calif. McGOWN, Frederick H., Jr. (J 1941; S 1939) P. O. Box 105, Cooperstown, N. Y. McGRAIL, Thomas E., (M 1926) Local Repr., Canadian Sirocco Co., Ltd., 63 Sparks St., Ottawa, Ont., Canada.
- McILVAINE, John H. (M 1929) Pres., Landwehr Heating Corp., Sixth and Cuyuga Sts., Phila-delphia, and •601 Pembroke Rd., Bryn Mawr,
- MCINDOE, James F. (M 1939; A 1931) Regional Supervisor, War Production Board, Room 270, 1355 Market St., San Francisco, and 1340 Bernal Ave., Burlingame, Calif.
- McINTIRE, James F.* (M 1915; A 1914) (Press-dential Member) (Pres., 1939; 1st Vice-Pres., 1938; 2nd Vice-Pres., 1937; Council, 1926-28; 1932-40) 1st Vice-Pres., U. S. Radiator Corp., Pres., Pacific Steel Boller Corp., 1500 United Artists Bldg., and 3261 Sherbourne Rd., Detroit,
- McINTOSH, Fabian C. (M 1921; J 1917) (Council, 1929-31; 1933-35; 1942) Branch Mgr., Johnson Service Co., 1238 Brighton Rd., and 3650 Perrysville Ave., Pittsburgh, Pa.
- 3650 Perrysville Ave., Pittsburgh, Pa.
 McKAY, Albert W. (M 1942) Capt., Ordnance
 Dept., Office—Chief of Ordnance, and 1629
 Columbia Rd. N.W., Washington, D. C.
 McKEEMAN, Clyde A.* (M 1936) Assoc. Prof. of
 Mech. Engrg. Case School of Applied Science,
 10900 Euclid Ave., Cleveland, and 4035 Bluestone Rd., Cleveland Heights, Ohio.
 McKENZIE, Murdock Charles, Jr. (M 1938)
 Htg. Engr., Southern California Gas Co., 810 S.
 Flower St., and 3806 Boyce Ave., Los Angeles,
 Calif
- McKERNAN, Gordon S. (A 1942) Secy.-Treas., Reg. H. Steen, Ltd., 12 Humewood Dr., and ●7 Grimthorpe Rd., Toronto, Ont., Canada.
- Grimthorpe Rd., Toronto, Ont., Canada.

 McKINNEY, Carl A. (A 1939; J 1937) Air Cond.
 Engr., United Gas Corp., United Gas Bldg.,
 and 2136 Addison Rd., Houston, Texas.

 McKINNEY, William J. (M 1938; A 1934) Dist.
 Mgr., American Blower Corp., Room 714, 101
 Marietta St. Bldg., and 3363 Mathieson Dr.
 N.W., Atlanta, Ga.
- McKITRICK, Walter D. (M 1936) Mech. Engr.,

 M. P. H. Co., N. O. B., Bermuda, and 3632
 Detroit Ave., Toledo, Ohio.

 McKITRICK, Percy A. (A 1934) Treas., Gen.
 Mgr., Parks-Cramer Co., P. O. Box 444, and
 219 Blossom St., Fitchburg, Mass.

McLAREN, T. H. (A 1938) Gen. Sales Mgr., ● The James Morrison Brass Manufacturing Co., Ltd., 276 King St. W., and 2084 Girard St. E., Toronto,

James Morrison Brass Manufacturing Co., Ltd., 276 King St. W., and 2084 Girard St. E., Toronto, Ont., Canada.

McLARNEY, Harry W. (M 1933) Industrial Engr., • Union Electric Company of Missour., 315 North 12th Blvd., St. Louis, and 807 Hawbiook Rd., Glendale, Mo McLEAN, Dermid (M 1917) Mech. Engr., • Snyder & McLean, 2214 Penobscot Bldg., and 12651 Birwood Ave., Detroit, Mich. McLEISH, William S. (A 1932; J 1928) Chief Engr., • The Ric-wil Co., and Overlook and Hillcrest, Barberton, Ohio.

McLENEGAN, D. W.* (M 1933) Engr. in charge, Air Cond. and Commercial Refrig. Dept., • General Electric Co., 5 Lawrence St., Bloomfield, and 73 Arlington Ave., Caldwell, N. J.

McLOUTH, Bruce F. (M 1936; J 1934) Mech. Engr., • Office Chief of Engrs., U. S. Army, R. & U. Branch, War Bldg., Washington, D. C., and 135 Gunson St., East Lansing, Mich.

McMAHON, Thomas W. (M 1928) Dist. Mgr., • American Blower Corp., 1711 Railway Exchange Bldg., and 6173 Waterman Blvd., St. Louis, Mo.

McMULLEN, Ernest W. (M 1942) Partner, Ganteaume & McMullen, 99 Chauncy St., Boston, and • 103 Bynner St., Jamaica Plain, Mass.

McMULLEN, E. W. (M 1938) Dir. of Research,

- McMULLEN, E. W. (M 1938) Dir. of Research,

 The Eagle-Picher Lead Co., and Olivia Apts.,

• The Eagle-Picher Lead Co., and Olivia Apts., Joplin. Mo.

McNAMARA, William (A 1930) Mgr., • The Trane Co., 850 Cromwell Ave., and 1355 Como Ave. W., St. Paul, Mınn.

McNAMEE, Earl W. (M 1940) Air Cond. Engr., • B. & J. Jacobs Co., 1729 John St., and 2627 Cocosta Ave., Cincinnati, Ohio.

McNEVIN, Joseph E. (M 1937) Owner, • Colorado Heating Co., 950 Cherokee St., and 1221 Sherman St., Apt. 37, Denver, Colo.

McPHERSON, William A. (M 1929) Chief, Htg., Vig. Div., Dept. of School Bldg., 26 Norman St., Boston, and • 86 Dwinnell St., West Roxbury, Mass.

Mass.

McQUAID, Dan J. (M 1934) Owner, • Dan J. McQuaid Engineering Service, 1742-46 Arapahoe St., and 1565 Milwaukee St., Denver, Colo. McRAE, M. W. (M 1939) Research Engr., • Crane Co., 836 S. Michigan Ave., Chicago, and 816 Fairview Ave., Park Ridge, Ill.

McWILLIAMS, Joseph W. (A 1942) Mech. Engr., Eastman Kodak Co., Camera Works, 333 State St., and • 250 Chili Gates T. L. Rd., R. F. D. No. 5, Rochester, N. Y.

MEAD, E. A. (M 1926) Sales Mgr., Nash Engineering Co., South Norwalk, Conn.

MEAD, George E. (A 1941) Owner, • George E. Mead Co., Seattle Construction Center, Frye Hotel Bldg., and 4729–36th Ave. N.E., Seattle, Wash.

MEAD, H. K. (A 1939) Htg. and Vtg. Equipment, •1100 Guardian Bldg., Portland, and Jennings Lodge, Ore.

MEAGHER, Arthur T. (M 1938) Dir. and Sales Mgr., Plbg. and Htg. Dept., Wm. Stairs, Son & Morrow, Ltd., 174-190 Lower Water St., and •83 Seymour St., Halifax, Nova Scotia, Canada.

MEHNE, Carl A. (M 1929) Htg., Vtg. Expert, 35 Livingston St., Valhalla, N. V.

MELLLER, Daniel V. (A 1941) Supvr., Gas Utilization and Testing, Public Service Com-pany of Northern Illinois, 1001 S. Taylor Ave., Oak Park, and 1101 S. Fifth Ave., Maywood, Ill.

MEINHOUTZ, Herbert W. (M 1936) Sales Engr., York Ice Machinery Corp., 215 Investment Bldg., 12th and K. N.W., Washington, D. C.

MEINKE, Howard G. (M 1933) Div. Engr.,

Consolidated Edison Company of New York,
Inc., 4 Irving Pl., Room 1500, New York, and 41
Harte St., Baldwin, L. I., N. Y.

MELLON, James T. J. (M 1911) (Council, 1915)
Pres., Mellon Co., 4419 Ludlow St., and 431
North 63rd St., Philadelphia, Pa.

MELNICK, Nicholas A. (M 1941) Engr., G. M. Simonson, Consulting Engr., 625 Market St., and • 279 Fifth Ave., San Francisco, Calif.

MELONEY, Edward J. (M 1930) Vice-Pres., Secy., • Bowers Bros. Co., 2015 Sansom St. Philadelphia, and 100 E. Stewart Ave., Lansdowne, Pa.

MELTON, Howard E. (A 1942) Mgr., • Howard E. Melton, Inc., 1017 N. Harvey, and 1709 Pennington. Oklahoma City, Okla.

MELTON, Rupert D. (J 1942) Asst. Engr., Page & Co., 219 S. Mint St., and • 117 W. Tenth St., Charlotte, N. C.

MENDEN, Peter J. (M 1935) Heating and Piping Designer, The Austin Co., 220 W. Main St., Midland, and • 1901 Third St., Bay City, Mich.

MENSING, Frederick D. (M 1920) (Treas., 1931-32). (Conucil, 1931-32). Consulting Engr., Mensing & Co., 2845 Frankford Ave., Philadelphia, Pa.

MERENS, Seymour H. (A 1939) Vice-Pres., Max Miller & Co., 823 N. California Ave., and • 4955 N. Whipple St., Chicago, Ill.

MERGARDT, Albert P. (A 1940) Owner, • American Heating Co., 55 K St. S.E., Washington, D. C., and 3905 N. Fifth St., Arlington, Va.

MERRILL, Carle J. (M 1919) Treas., • C. J.

mgton, D. C., and 3905 N. Fitth St., Arlington, Va.

MERRILL, Carle J. (M 1919) Treas., ◆C. J. Merrill, Inc., 54 St. John St., and 31 Craigie St., Portland, Me.

MERRILL, Frank A. (M 1934) Consulting Engr., ◆Office of Hollis French, 210 South St., Boston, and 19 Auburndale Rd., Marblehead, Mass.

MERZ, Robert A. (S 1940) Student, Michigan State College, and ◆810 W. Grand River Ave., East Lansing, Mich.

MERTZ, Walter A. (M 1919) Secy, ◆The Kehm Bros. Co., 51 E. Grand Ave., and 3753 N. Keeler Ave., Chicago, Ill.

MERWIN, Gile E. (M 1924; J 1923) Dist. Mgr., The Trane Co., 5012 Parker St., Omaha, Nebr.

METZGER, A. F. (M 1940) Supvr. of Steam Utilization Div., ◆Allegheny County Steam Heating Co., 435 Sixth Ave., and 3421 Horne St., Pittsburgh, Pa.

METZGER, H. J. (A 1937) Pres., Wheeler-Blaney Co., 137 E. Water St., Kalamazoo, Mich.

MEYER, Frank L.* (M 1932; J 1928) Pres., ◆The Meyer Furnace Co., and 9 Cole Court, Peoria, Ill.

MEYER, Henry C., Jr.* (Life Member: M 1898)

Meyer Furnace Co., and 9 Cole Court. Peoria, III.

MEYER, Henry C., Jr.* (Life Member; M 1898)
(Council, 1915-16) Pres., • Meyer, Strong & Jones, Inc., 101 Park Ave., New York, N. Y., and 25 Highland Ave., Montclair, N. J.

MEYER, Karl A. (M 1938) Senior Draftsman, Whiting Corp., Harvey, and • 12251 Western Ave., Blue Island, Ill.

MEYERS, Carl F. (A 1942) Engr., Coblentz Equipment Co., 1119 Peach St., and • 142 East 35th St., Erie, Pa.

MICHIE, D. Fraser (M 1938; A 1930) Htg. Engr., • Crane, Ltd., 93 Lombard St., and 176 Green Ave., Winnipeg, Man., Canada.

MILENER, Eugene D. (M 1936) Secy., Industrial & Commercial Gas Section, American Gas Assn., 420 Lexington Ave., Suite 550, New York, N. Y.

MILES, James C. (M 1914) Research Engr., The Geometric Stamping Co., 1111 East 200th St., and • 2007 East 115th St., Cleveland, Ohio.

MILLARD, Junius W. (M 1929) Lt., U. S. Navy, Atlantic Fleet, and • 1025 Laird St., Key West, Fla.

Fla.

MILLER, Archibald T. (M 1938) Mgr. Insulation Sales, The Barrett Div., Allied Chemical & Dye Corp., 40 Rector St., New York, N. Y., and • 125 Godwin Ave., Ridgewood, N. J.

MILLER, Bruce R. (M 1935; A 1930) Mech. Engr., R. K. Werner, Consulting Engr., 316 W. T. Waggoner Bldg., Fort Worth, Texas.

MILLER, Charles A. (A 1917) Sales, The H. B. Smith Co., Inc., 331 Madison Ave., New York, N. Y.

MILLER, Charles W. (M 1919; J 1908) Pres.,

• The Rado Co, 759 N. Milwaukee St., Room
405, Milwaukee, and R-1, Box 42, Menomonee Falls, Wis.

MILLER, Edgar R. (A 1935) Chief Engr., • Winnipeg Cold Storage Co., Ltd., Salter and Jarvis Ave., and P. O. Box 1384, Winnipeg, Man., Canada.

MILLER, Floyd A. (M 1911) Inspection Engr., Federal Works Agency, U. S. Government, 377 U. S. Court House, and 944 Montrose Ave.,

Chicago, Ill.

MILLER, George F. (M 1936) Sales Engr.,

• George F. Miller, 1614 K St. N.W., Washington, D. C., and 5608 Grove St., Chevy Chase, Md. MILLER.

Md.

MILLER, Jacob (M 1936) Pres., • Hy-Grade

Construction Co., Inc., 342 West 14th St., New
York, and 20 East 58th St., Brooklyn, N. Y.

MILLER, John W. (M 1941) Research Engr.,

Motor Wheel Corp., and • R. 2, Box 602,

Motor Wheel Corp., and •R. 2, Box 602, Lansing, Mich.

MILLER, Leo B. (M 1926) Sales Exec., •Perfex Corp., 500 W. Oklahoma Ave., and 3481 N. Hackett Ave., Milwaukee, Wis.

MILLER, Lorin G.* (M 1933) (Council, 1942) Head, Mech. Engrg. Dept., •Michigan State College, R. E. Olds Hall of Engrg., and 232 University Dr., East Lansing, Mich.

MILLER, Mahlon S. (A 1942) Sales Engr., • Iowa Public Service Co., and 917 W. Main St., Cherokee, Iowa.

Name Town
Iowa Public Service Co., and 917 W. Main St., Cherokee, Iowa.
MILLER, Robert A.* (M 1931) Tech. Sales Engr.,
Pittsburgh Plate Glass Co., 2200 Grant Bldg., Pittsburgh, and 1211 Carlisle St., Tarentum, Pa.
MILLER, Robert T. (A 1927) Chief Engr., Sales Dept.,
Masonite Corp., 111 W. Washington St., Chicago, and Evans Rd., Flossmoor, Ill.
MILLER, William T. (M 1938) Prof. Htg., Vtg.,
Purdue University, and 525 Hayes St., West Lafayette, Ind.
MILLHAM, Franklyn B. (M 1938) Sr. Industrial Specialist, General Industrial Equipment Div., War Production Board, 1641 Temporary S Bldg., and ●2505 N St. S.E., Washington, D. C.
MILKEN, J. H.* (M 1923) Repr., ●American Air Filter Co., Inc., 228 N. LaSalle St., Chicago, and 1021 Ridge Court, Evanston, Ill.
MILLIS, Linn W. (Life Member: M 1918) Secy.

MILLIS, Linn W. (Life Member; M 1918) Secy., Security Manufacturing Co., 1630 Oakland Ave., and • 3534 Wabash Ave., Kansas City, Mo.

MILLS, D. M. (A 1940) Mgr., Houston Div.,

• F. J. Evans Engineering Co., 3223 Milan St.,
and 711 W. Alabama, Houston, Texas.

and 711 W. Alabama, Houston, Texas.

MILLS, Hartzell C. (A 1935) Sales Engr., Minneapolis Gas Light Co, Eighth and Marquette, and 4137 Tenth Ave. S., Minneapolis, Minn.

MILNE, Arthur H. (M 1938) Dir., Dept. of Bldgs., eProtestant Board of School Commissioners, City of Montreal, 3460 McTavish St., and 4786 Grosvenor Ave., Montreal, Que., Canada Canada.

MILWARD, Robert K. (A 1920) Branch Mgr.,

•U. S. Radiator Corp., 127 Campbell Ave., and
2441 Calvert Ave., Detroit, Mich.

MINER, H. Harvey (A 1940) Partner, • Miner Supply Co., 129 W. Front St., Red Bank, and 71 Silverton Ave., Little Silver, N. J.

MINKLER, William A. (M 1940) Sales Mgr., Htg., Cooling and Air Cond. Div., Young Radiator Co., and •916 W. Lawn Ave., Racine, Wis.

MIRABILE, J. James (A 1938) Engr., ●Thomas Shipley, Inc., 161 Roosevelt Ave., and 1525 Third Ave., York, Pa.

MITCHELL, Alva E. (M 1939) Chief, Plumbing Section, • War Production Board, U. S. Govt., 603 Steuart Bldg., Washington, D. C., and 6501 Sligo Pkwy., Hyattsville, Md.

MITCHELL, A. J. (M 1938; J 1930) Vice-Pres., Air Conditioning Co., 3215 McKinney Ave.,

Houston, Texas.

MITCHELL, John G. (A 1943; J 1937; S 1936) Sales Engr., • Fairbanks Morse & Co., 417 S. Fourth St., and 704 Delaware S.E., Minneapolis, Minn.

MITTENDORFF, Edward M. (M 1932) Engr.,

• Sarco Co., Inc., Merchandise Mart, Chicago, and 772 Grove St., Glencoe, Ill.

MOESEL, F. Albert (A 1939) Asst. Mgr., • W. A. Case & Son, Manufacturing Co., 31 Main St., Buffalo, and 382 Argonne Dr., Kenmore, N. Y. MOFFAT, Ormond George (M 1940; A 1937) Mgr. Air. Cond. Div., Canadian Westinghouse Co., and • 141 George St., Hamilton, Ont.,

Canada.

MOHN, H. Leroy (M 1937) Chief Engr., Milton Manufacturing Co., and •705 Hepburn St.,

MOHN, H. Leroy (M 1937) Chief Engr., Milton Manufacturing Co., and •705 Hepburn St., Milton, Pa.

MOHRFELD, Herbert H. (A 1943; J 1935) Engr. and Vice-Pres., •C. P. Mohrfeld, Inc., 24 Lees Ave., Collingswood, and 670 Station Ave., Haddonfield, N. J.

MOLER, William H. (M 1927) Dist. Mgr., •Governair Corp., 504 Great National Life Bldg., Dallas, and R. F. D. No. 1, Box 69B, Irving, Texas.

MOLFINO, Philip (M 1938) Mech. Engr., Leland & Haley, 58 Sutter St., and •125 Clayton St., San Francisco, Calif.

MOLLANDER, Eric D. (A 1940) Dir., Register & Grille Manufacturing Co., Inc., 70 Berry St., Brooklyn, and •1564 Unionport Rd., Park-chester, New York, N. Y.

MOLLENBERG, Harold J. (M 1936) Vice-Pres., •Mollenberg-Betz Machine Co., 22 Henry St., Buffalo, and 172 Westgate Rd., Kenmore, N. Y.

MOLONEY, Roger R. (M 1937) 26 Bonner Ave., Manly, Sydney, Australia.

MONICK, Fred R. (A 1936) Mgr., •American Radiator & Standard Sanitary Corp., 605 E. Eighth St., and 1114 S. Sixth Ave., Sioux Falls, S. D.

MONTGOMERY, Edward G. (A 1938) Special

S. D.
MONTGOMERY, Edward G. (A 1938) Special
Repr., Steel Company of Canada, Ltd., 525
Dominion St., Montreal, and •20 Finchley Rd.,
Hampstead, Que., Canada.
MONTGOMERY, John R. (A 1937) Mgr.,
Standards & Research, Truscon Steel Co.,
Albert St., and 296 Granada Ave., Youngstown,
Obio

MOODY, Lawrence E. (M 1919) Partner, • Moody & Hutchison, 1701 Architects Bldg., Philadelphia, Pa., and 224 Bellevue Ave., Had-donfield, N. J.

MOON, L. Walter (M 1915) (Council, 1933-36) Secy., Treas., St. Louis Industrial Truck Co., 7700 E. Railroad Ave., and 1137A Hornsby Ave., St. Louis, Mo.

MOORE, Bryant W. (A 1939) Mfrs. Agent, 36 S.W. Third St., and •7910 Southeast 30th Ave., Portland, Ore.

MOORE, Frank C. (A 1938) Canadian Mgr., Aerofin Corp., 67 Yonge St., and •44 Lola Rd., Toronto, Ont., Canada.

MOORE, H. Carlton* (M 1935) Engr., Design, Shreve, Lamb & Harmon, Fay, Spofford & Thorndyke, 11 Beacon St., Boston, and •145 Beaumont Ave., Newtonville, Mass.

MOORE, H. Lee (M 1919) (Council, 1927-28)
Repr., • Buffalo Forge Co., 431 Fulton Bldg.,
and Flaccus Rd., Ben Avon, Pittsburgh, Pa.

and Flaccus Kd., Ben Avon, Pittsburgh, Pa.

MOORE, Henry W. (M 1935) 1st Lt., Cincinnati
Ordnance District, U. S. War Dept., Big Four
Bidg., and •1406 Myrtle Ave., Cincinnati, Ohio.

MOORE, Herbert S. (A 1923) Dist. Repr., Iron
Fireman Manufacturing Company of Canada,
Ltd., 602 King St., and •107 Clendenan Ave.,
Toronto, Ont., Canada.

MOORE, MacDonal (A 1946) Page Company
MOORE, MacDonal (A 1946) Page Company

MOORE, MacDonell (A 1940) Pres., Gen. Mgr.,

• The Moore Fuel Corp., 23 Rose St., and 14
Farview Ave., Danbury, Conn.

MOORE, R. Edwin (A 1928 Vice-Pres. in charge of Sales, • Bell & Gossett Co., 8200 N. Austin Ave., Morton Grove, and 425 Merrill Ave., Park Ridge, Ill.

MOORE, Wesley Robert (M 1937) Regional Mgr., • Minneapolis-Honeywell Regulator Co., 5005 Euclid Ave., Cleveland, and 14211 Ashwood Rd., Shaker Heights, Ohio.

MORAWECK, Alvin H., Jr. (J 1941) Lt., U. S. Army, and • 36 Woodland Rd., Maplewood,

ROLL OF MEMBERSHIP

MOREHOUSE, H. Preston (M 1933) Gen. Htg. and Air Cond. Repr., Public Service Electric & Gas Co., 80 Park Pl., Newark, N. J.

MOREHOUSE, J. Stanley (M 1938) Dean of Engrg., • Villanova College, Villanova, and 102 Llandoff Rd., Upper Darby, Pa.

MORGAN, Arthur S. (M 1938) Mgr., Fess Oil Burners of Canada. Ltd., 85 King St. W., and • 156 Glenmanow Dr., Toronto, Ont., Canada. MORGAN, Edwin H., Jr. (J 1942) Draftsman, Chemical Construction Corp., 30 Rockefeller Plaza, New York, N. Y., and • 411 Chestnut St., Roselle Park, N. J.

MORGAN, Glenn C. (M 1911) Partner, • Morgan-Gerish Co., 307 Essex Bldg., and 4308 Fremont Ave. S., Minneapolis, Minn.

MORGAN, Robert C. (Life Member; M 1915) Chairman of the Board, • Stewart A. Jellett Co., 1200 Locust St., and 314 W. Seymour St., Philadelphia, Pa.

MORGAN, Robert W. (M 1938) Asst. Chief Design Engr., Fedders Manufacturing Co., 57 Tonawanda St., Buffalo, and • 71 Highland Dr, Williamsville, N. Y.

MORIARTY, John M. (M 1937) Owner, • Consolidated Hactings & Variibers Co., 1700 W.

MORIARTY, John M. (M 1937) Owner, • Consolidated Heating & Ventilating Co., 1709 W. Eighth St., Los Angeles, and 1616 Baldwin Ave., Arcadia, Calif.

MORIN, A. R. (A 1938) Mgr., Refrigeration Dept., Macklanburg Supply Co., Inc., 111 North-west 23rd, and ●2115 Sherman, Oklahoma City, Ökla.

west 23rd, and •2115 Sherman, Oklahoma City, Okla.

MORRIS, C. Raymond (M 1921) Pres., Power & Heating Equipment Sales, Inc., 56 N. Spring Garden Ave., Nutley, N. J.

MORRIS, Edward J. (M 1942) Mgr., • Morris Engineering Co., 813 N. Calvert St., and 3414 Gwynn's Fall Pkwy., Baltimore, Md.

MORRISON, Chester B. (M 1931) Managing Dir., • Vork Shipley, Ltd., North Gircular Rd., Hendon, London, N. W. 2, and Flat 168, 55 Park Lane, London, S. W. 1, England.

MORRISON, W. Bruce (A 1942; J 1939) Asst. Engr., U. S. Engineers, 628 Pittock Block, and • 1805 Northeast 27th Ave., Portland, Ore.

MORRO, John J. (M 1940) Engr., Paragon Oil Co., 50 Van Dam St., Brooklyn, and • 28 East 28th St., New York, N. Y.

MORROW, J. DeWitt (A 1938) Pres. and Mgr., • The Warren Co., Inc., 614 Walker Ave., and 5503 La Branch St., Houston, Texas.

MORSE, Clark T. (M 1913) Pres., • American Blower Corp., P. O. Box 58, Roosevelt Park Annex, and 16222 Shaftsbury Rd., Detroit, Mich.

MORSE, Floyd W. (A 1934) Vice-Pres., • Chamberlin Metal Waether Strip Co. 1254 La Breness Elin Metal Waether Strip Co. 1254 La Breness

MORSE, Floyd W. (A 1934) Vice-Pres., • Chamberlin Metal Weather Strip Co., 1254 LaBrosse St., Detroit, Mich., and 132 Villa St., Mt. Vernon,

MORSE, Louis S., Jr. (M 1938; J 1936) Lt. (jg), U. S. N. R., and Lone Pine Rd., Bloomfield Hills, Mich.

MORSE, Robert D. (M 1936) Mfrs. Repr., • 4404 White Bldg., and 4316 East 43rd St., Seattle, Wash.

MORTON, Harold S. (M 1931) Lt.-Col., Ordnance Dept., U. S. Army, Office of the Chief of Ordnance, Washington, D. C., and •524 Ritchie Ave., Silver Spring, Md.

MORTON, Paul S. (A 1943; J 1939) Htg., Plbg., Sales and Engrg., 609 Bangor Rd., Lawrence,

Mich.

MOSES, Walter B., Jr. (J 1940; S 1936) Engr., Pendleton Shipyards Co., Inc., 1800 Masonic Temple Bldg., and •8330 Spruce St., New Orleans, La.

MOSHER, Clarence H. (A 1919) Owner, C. H. Mosher Co., 423 Ashland Ave., Buffalo, N. Y. MOSKOWITZ, Samuel (A 1942) Prop., American Steam & Oil Heating Co., 4504 Ft. Hamilton Pkwy., and 955–45th St., Brooklyn, N. Y. MOTZ, O. Wayne (M 1932) Consulting Engr., 234 Paramount Bidg., and 2605 Briarcliff, Cincinnati, Ohio.

Cincinnati, Ohio.

MOULD, Harry W., Jr. (J 1941) Engr., Fedders Manufacturing Co., Buffalo, and ●23 Tremont Ave., Kenmore, N. Y.
MUCKLE, James (M 1939) Address Unknown—Mail Returned.

MUELLER, Harald C. (M 1936; A 1930) Mgr.,

• Powers Regulator Co., 2720 Greenview Ave.,
Chicago, and 1277 Forest Glen Dr. N., Winnetka,

MUELLER, Harold P. (M 1936) Pres., Treas.,

• L. J. Mueller Furnace Co., 2005 W. Oklahoma
Ave., and 511 E. Monrovia Ave., Milwaukee,

MUELLER, John E. (M 1937) Mgr. of Commercial Customer Dept., • West Penn Power Co., 14 Wood St., Pittsburgh, and 810 Parkside

Dr., Mt. Lebanon, Pa.

MUENZENMAYER, Willard R. (A 1941) Owner,
Mgr., Muenzenmayer Sheet Metal Co., Junction

MUENZENMALER, WHALLER, Philadelphia, and 73b Beechwood D., Determood, Pa. Wood, Pa. MURHARD, Erroll A. (M 1939) Pres., Engr. (Civil and Mech.), Muirhead & Murhard Co., 338 S.W. Ninth Ave., and • 2136 N.W. Upshur St., Portland, Ore.

MURPHREE, Robert L. (A 1940; J 1936) Engr., Rogers Plumbing & Heating Co., 2127 Eighth St., and • P. O. Box 864, Tuscaloosa, Ala.

MURPHY, Charles G. (M 1942; A 1935) Design Foreman, Mech. and Elec., Wright Aeronautical Corp., Aircraft Engines, Lockland, and • 6717 Murray Ave., Mariemont, Ohio.

MURPHY, Daniel C. (A 1940) Sales Repr., MURPHY, Daniel C. (A 1940) Sales Repr.

Murray Ave., Mariemont, Ohio.

MURPHY, Daniel C. (A 1940) Sales Repr.,

C. A. Dunham Co., 214 Old Colony Bldg., and
3900 Grand Ave., Des Moines, Iowa.

MURPHY, Delacour I. (M 1941) Sales Engr.,
E. C. Cooley Co., 625 Market St., San Francisco,
and © 3027 Millsbrae Ave., Oakland, Calif.

MURPHY, Edward T.* (M 1915) Vice-Pres.,
Carrier Corp., and 1055 James St., Syracuse,
N. Y.

MURPHY Evidence E. (J. 1042) Janta Market

MURPHY. URPHY, Eugene F. (J 1942) Instr. Mech. Engrg., University of California, Berkeley, Calif.

MURPHY, Howard C.* (M 1923) Vice-Pres.,

• American Air Filter Co., 215 Central Ave.,
and 495 Lightfoot Rd., Louisville, Ky.

MURPHY, Joseph R. (M 1934; A 1925) VicePres., Taco Heaters, Inc., 342 Madison Ave.,
New York, N. Y., and • Terrace Ave., Riverside,

New York, N. Y., and • Ierrace Ave., Riversuce, Conn.

MURPHY, William W. (M 1930) Treas., • W. W.

Murphy Co., 424 Worthington St., and 25

Mansfield St., Springfield, Mass.

MURRAY, H. G. S. (M 1942; A 1941; J 1936)

Sales Engr., • Canadian Comstock Co., Ltd., 80

King St. W., and 19 Elora Rd., Toronto, Ont.,

King St. w., and 19 Elora Rd., 1 oronto, Ont., Canada.

MURRAY, Thomas F. (M 1923) Sr. Htg. and Vtg. Engr., Div. of Architecture, New York State Dept. of Public Works, State Office Bldg., and •14 S. Lake Ave., Albany, N. Y.

MURSINNA, Gilbert P. (A 1939) Htg., Air Cond. Contractor. • Gilbert P. Mursinna, 411 Poplar St., and 3657 Boudinot Ave., Cincinnati, Obio.

MUSGRAVE, Merrill N. (A 1935) Owner,

• Merrill N. Musgrave & Co., 2019 Third Ave.,
and 1005 E. Roy St., Apt. 13, Seattle, Wash.

MUSSER, John M. (M 1942) Mech. Engr., U. S. Engineers, 110 E. Garden St., and •530 Turin, Rome, N. Y. MYER, Haydn (A 1920) Pres., • Haydn Myer Co., Inc., 2224 Comer Bldg., and 1411 Avon Circle,

Birmingham, Ala.

Birmingham, Ala.

MYERS, George W. F. (M 1930; A 1928; J 1923)

Myers Engineering Equipment Co., 3800 W.

Pine Blvd, St. Louis, and • 476 Pasadena Ave.,

Webster Groves, Mo.

MYLER, William M., Jr.* (M 1937) Chief Engr.,

• Janitrol Engrg. Dept., Surface Combustion

Div. of General Properties Co., Inc., 400 Dublin

Ave., and 1545 Grenoble Rd., Columbus, Ohio.

N
NACHMAN, George P. (M 1938) Treas., • The Spohn Heating & Ventilating Co., 1775 East 45th St., and 2887 Falmouth Rd., Cleveland, Ohio.
NAMAN, Israel A. (J 1940) Mech. Engr., Planning Div., Ventilation Group, Puget Sound Navy Yard, and • P. O. Box No. 46, Bremerton, Wash.
NAROWETZ, Louis L., Jr. (M 1929; A 1912) Pres., • Narowetz Heating & Ventilating Co., 1711-1717 Maypole Ave., Chicago, and 112 S. Northwest Highway, Park Ridge, Ill.
NASS, Arthur F. (M 1927) Pres., • McGinness. Smith & McGinness Co., 527 First Ave., and 29 Elmhurst Rd. (Wabash Station), Pittsburgh, Pa. NATION, Oslin (J 1942) Assoc. Engr., U. S. Engineering Defense Div., Denison, and • 9702 El Patio Dr., Dallas, Texas.
NEAL, James P. (A 1939) Capt., Cincinnati Ordnance Dist., and • Box 154, R. R. 1, Station M., Indian Hill Rd., Cincinnati, Ohio.
NEARINGBURG, Arthur (A 1938) Sales Engr., • Sheldons, Ltd., 1221 Bay St., and 130 Floyd Ave., Toronto, Ont., Canada.
NEE, Raymond M. (M 1936) Mech. Engrg. Administrator, • Chemical Construction Corp., Room 6201, 30 Rockefeller Plaza., and 5 East 82nd St., New York, N. Y.
NELLER, Samuel G. (Life Member; M 1898) Owner, • Neiler Rich & Co., Consulting Mech. & Elec. Engrs., 431 S. Dearborn St., Chicago, and 737 N. Oak Park Ave., Oak Park, Ill.
NELSON, Axel A. (A 1942) Chief Engr., • Federal Reserve Bank Bldg., Federal Reserve P. O. Station, Kansas City, and R. F. D. No. 4, North Kansas City, Mo.
NELSON, D. W.* (M 1928) Assoc. Prof. Mech. Engrg., • College of Engineering, University of Wisconsin, Mech. Engrg. Bldg., and 3906 Council Crest, Madison, Wis.
NELSON, Harold M. (M 1937) Pres., • H. M. Nelson & Co., Inc., 1223 Connecticut Ave., Washington, D. C., and Falls Church, Va.

NELSON, George O. (M 1923) Engr., Carstens Bros., Ackley, Iowa.

NELSON, Harold M. (M 1937) Pres., H. M. Nelson & Co., Inc., 1223 Connecticut Ave., Washington, D. C., and Falls Church, Va.

NELSON, Herman W. (Life Member; M 1909) Chairman of the Board, The Herman Nelson Corp., 1824 Third Ave., and 2615-12th St., Moline, Ill.

NELSON, Laurence K. (M 1940) Assoc. Engr., James M. Todd, Consulting Engr., 624 Gravier St., and 2502 Palmer Ave., New Orleans, La.

NELSON, Richard H. (A 1933; J 1928) Pres., The Herman Nelson Corp., 1824 Third Ave., and 1303-30th St., Moline, Ill.

NELSON, Roy O. (M 1938) Sales Engr., C.H Bevington Co., 600 S. Michigan Ave., and 5636 N. Bernard St., Chicago, Ill.

NESBITT, Albert J.* (M 1921) Pres., John J. Nesbitt, Inc., State Rd. and Rhawn St., Philadelphia, and Babylon and Davis Grove Rds., Hatboro, Pa.

delphia, and Babylon and Davis Grove Rds., Hatboro. Pa.

NESMITH, Oliver E. (A 1928) Engr., Williams Oil-O-Matic Heating Corp., Bell and Hanna, and • 107 Warner, Bloomington, Ill.

NESS, William H. C. (M 1931) Gen. Mgr., • Master Fan Corp., 1323-35 Channing St., and 215 N. Kingsley Dr., Los Angeles, Calif.

NESSELL, Clarence W. (M 1937) Supvr., Federal Projects Div., Minneapolis-Honeywell Regulator Co., 2753 Fourth Ave. S., Minneapolis, Minn.

NEST, Richard E. (M. 1936) Consultant, 5018
Morello Rd., Baltimore, Md.
NEUBAUER, Edwin W. (M. 1939) Engr., • Campbell Norquist & Co., 1127 S.W. Morrison St., and 4804 N.E. Davis St., Portland, Ore.
NEWBY, Ira P. (M. 1941) In charge of Htg. Sect., 8th Service Command, U. S. Engineers, Santa Fe Bldg, and • 6325 Bryan Pkwy, Dallas, Texas.
NEWMAN, Harold E. (M. 1938) Asst. Mgr.,
• B. A. Newman Co., 320 North H St., and 419
Buckingham Way, Fresno, Calif.
NEWPORT, Charles F.* (Life Member; M. 1906)
Sales Engr., Weil-McLain Co., Michigan City, 1nd., and • 10001 Longwood Dr., Chicago, Ill.
NEWTON, Alwin B.* (M. 1938) Mgr., Refrigeration Controls Div., • Minneapolis-Honeywell Regulator Co., 2747 Fourth Ave. S., and 18 W. Rustic Lodge Ave., Minneapolis, Minn.
NICHOLLS, John M. (M. 1939) • Robbins Gamwell Corp., 68 West St., and 136 Bartlett Ave., Pittsfield, Mass.
NICHOLSON, Sterling J. (A. 1941) Pres., Nicholson, Inc., Box 317, Durham, N. C.
NICKLE, Arthur J. (A. 1936) Sales Engr.,
• Darling Brothers, Ltd., 140 Prince St., and 4356 Marcil Ave., Montreal, Que., Canada.
NICOLL, Scott F.* (M. 1939) Air Cond. Application Engr., • York Ice Machinery Corp., York, and 1433 First Ave., Elmwood, York, Pa.
NICOLS, John A. (M. 1941) Mgr., B. F. Sturtevant Co., 910 Essex Bldg., 31 Clinton St., Newark, and • 52 Wood Rd., Mountainside, N. J.
NIELSEN, Howard B. (A. 1939) 416 Couch Bldg., Portland, Ore.
NIESSE, Joseph H. (M. 1938) Indiana Branch Mgr., Ilg Electric Ventilating Co., 836 Architects & Builders Bldg., and • 5837 Winthrop Ave., Indianapolis, Ind.
NIGHTINGALE, George F. (A. 1931) 2136
Linneman St., Glenview, Ill.
NOBBS, Walter W. (M. 1919) Consulting Engr., 26 Victoria St., London, N. W. 6, England.
NOBIS, Harry M. (M. 1914) Owner, • Nobis Heater Co., 1935 Union Commerce Bldg., Cleveland, and 1827 Stanwood Rd., East Cleveland, Ohio.
NOBLE, Milner (M. 1940; A. 1929; J. 1924) Gen. Mgr., Aerofin Corp., 410 S. Geddes, Syracuse, N. Y.

NOBLE, Milner (M 1940; A 1929; J 1924) Gen. Mgr., Aerofin Corp., 410 S. Geddes, Syracuse, N. Y.

NOBLE, Milner (M 1940; A 1929; J 1924) Gen. Mgr., Aerofin Corp., 410 S. Geddes, Syracuse, N. Y.

NOLAN, James J., Jr. (M 1939) Sr. Mech. Engr., War Dept., Office of Quartermaster General, and •4024 Calvert St. N.W., Washington, D. C.

NOLL, William F. (M 1924) Prop., •Wm. F.

Noll, 629 North 27th St., and 4823 W. Townsend St., Milwaukee, Wis.

NORD, Donald F. (J 1941; S 1935) 268 E. Main St., Frostburg, Md.

NORAIR, Henry (M 1938) Pres., •Norair Engineering Corp., 1114–22nd St. N.W., and 5908 32nd St. N.W., Washington, D. C.

NORBY, Karl H. (A 1938) Mgr. Htg. Dept., Tacoma Plumbing Supply Co., 315 South 23rd St., Tacoma, and •Box 113, Parkland, Wash.

NORDINE, Louis F. (M 1914) Office Mgr., The Trane Co., 2701 Ontano Rd. N.W., Washington, D. C., and •812 Silver Springs Ave., Silver Spring, Md.

NORFOLK, Leslie W. (A 1941; J 1939) Major, Royal Engrs., H. M. Forces, F. H. Q., Gibraltar, and •42 Hampden St., Nottingham, England.

NORMAN, Roy A. (M 1937) Prof. of Mech. Engrg., Iowa State College, Mech. Engrg., Dept., and •715 Ridgewood Ave., Ames, Iowa.

NORRINGTON, Walter L. (A 1943; J 1938)

Capt., Ordnance Dept., Office of Chief of Ordnance, Washington, D. C., and •305 Barbara Fritchie, Beverly Plaza, Alexandria, Va.

NORRIS, William P. (J 1938) •U. S. Engineer Office, Room 611, Santa Fe Bldg., and 1716 Avenue F., Galveston, Texas.

NORTE, Wilbur R. (J 1942) Industrial Sales Crane Co., 532 Eighth Ave. S., Nashville, Tenn NORTH, Clarence P. (M 1942) Chief Engr. Campbell Heating Co., and •3614 E. Seventi St., Des Moines, Iowa. St., Des Moines, Iowa.

NORTH, Samuel L. (A 1942) Partner, North Bros., 442 Cain St. N.E., and 107 Peachtree Hills Ave. N.E., Atlanta, Ga. NORTH, William R. (A 1940) Sales Engr., 27 S. Gay St., and 1521 Kingsway Rd., Baltimore,

S. Gay St., and 1521 Kingsway Rd., Baltimore, Md.

NORTON, John A. (M 1940) Mgr. Htg. Sales Div., Crane, Ltd., 306 Front St. W., Toronto, and •136 Hanna Rd., Leaside, Ont., Canada.

NORTON, L. Ivan (A 1941) Engr., • Evoready Plumbing & Heating Co., 211 S. Iowa Ave., and 110 E. Polk St., Washington, Iowa.

NOTTBERG, Gustav (A 1933) Vice-Pres., • U. S. Engineering Co., 914 Campbell St., and 1835 East 68th Terrace, Kansas City, Mo.

NOTTBERG, Henry (M 1919) Pres., • U. S. Engineering Co., 914 Campbell St., and 150 West 54th St., Kansas City, Mo.

NOTTBERG, Henry, Jr. (J 1937) Secy., • U. S. Engineering Co., 914 Campbell St., and 150 West 54th St., Kansas City, Mo.

NOTTBERG, Henry, Jr. (J 1937) Secy., • U. S. Engineering Co., 914 Campbell St., and 150 West 54th St., Kansas City, Mo.

NOTTBERG, Henry, Jr. (J 1931) Supt. Construction, Wilmer & Vincent Corp., 1776 Broadway, New York, N. Y., and • 821 Llewellyn Ave., Norfolk, Va.

NOYES, Richard R. (J 1938) Field Engr., • Canadian Sirocco Co., Ltd., 630 Dorchester St. W., and 5552 Queen Mary Rd., Apt. 4, Montreal, Que., Canada.

NUSBAUM, Lee* (M 1915) Owner, • Pennsylvania Engineering Co., 1119-21 N. Howard St., Philadelphia, and 315 Carpenter Lane, Germantown, Philadelphia, Pa.

NUSBAUM, S. Richard (J 1940) Mgr., • Pennsylvania Engineering Co., 1119-21 N. Howard St., Philadelphia, and 552 Montgomery Ave., Haverford, Pa.

NUTTING, Arthur* (M 1940) Chief Engr.

St., Philadelphia, and 552 Montgomery Ave., Haverford, Pa.

NUTTING, Arthur* (M 1940) Chief Engr.,

• American Air Filter Co., Inc., 215 Central Ave., and 4040 Ormond Rd., Louisville, Ky.

NYE, L. Bert, Jr. (A 1943; J 1936) Laboratory Supvr., Washington Gas Light Co., 1100 H St.

N.W., Washington, D. C., and • McLean, Va.

NYQUIST, John D. (J 1942; S 1941) Development Engr., Collins Radio Co., 835–35th St., and

• 1535 Bever Ave., Cedar Rapids, Iowa.

OAKLEY, LeRoy W. (M 1937) Owner, • L. W. Oakley Sales Co., 408 W. Clinch Ave., and 2003 Laurel Ave., Knoxville, Tenn.

Laurel Ave., Knoxville, Tenn.

OAKS, Orion O. (M 1917) Consulting Mech.
Engr., 511 Fifth Ave., New York, N. Y., and

• 119 Oakridge Ave., Summit, N. J.

O'BANNON, Lester S.* (M 1928) Research Engr.,

• Agricultural Experiment Station, University of
Kentucky, and 123 State St., Lexington, Ky.

OBERG, H. C. (A 1933) Mgr. Engrg. Dept.,
Crane Co., Fifth and Broadway, and • 1362 W.
Minnehaha St., St. Paul, Minn.

OBERLIN, James A. (J 1942; S 1940) Engr.,

• Allied Products Corp., Plant 3, and 211 Union
St., Hillsdale, Mich.

St., Hillsdale, Mich.

OBERSCHULTE, Richard H. (J 1938) Sales Engr., • D. T. Randall & Co., 404 Blvd. Bldg., Detroit, and Box 76, Franklin, Mich.

O'CONNELL, Thomas D'Arcy (A 1942) Pres., • Thomas O'Connell, Ltd., 1169 Ottawa St., and 1505 Mountain St., Montreal, Que., Canada.

O'DANIEL, James A. (M 1942) Mgr., • Maple City Furnace Co., 603 S. Main St., and 617 S. Main St., Monmouth, Ill.

O'DOWER, Hugh J. (A 1938) Sales Engr., • Vilter Manufacturing Co., 114 W. Tenth St., and 6844 Locust, Kansas City, Mo.

ODUM, Ralph A. (A 1939) R. 1, Box 173, Holly Hill, Fla.

OELGOETZ, J. F. (M. 1938) Owner, • J. F. Oelgoetz Co., 3365 N. High St., and 279 E. North Broadway, Columbus, Ohio.
OESTERLE, Arthur L. (M. 1940) Engr., • Gulf Engineering Co., Inc., 916 S. Peters St., and 3420 Live Oak Pl., New Orleans, La.

OFFEN, Ben (M 1928) • B. Offen & Co., 608 S. Dearborn St., and 5555 Sheridan Rd., Chicago, Ill.

Ill.

OFFNER, Alfred J.* (M 1922) (Treas., 1935-38;
Council, 1935-42) Consulting Engr., • 139 East
53rd St., New York, and 160-15 11th Ave.,
Beechhurst, L. I., N. Y.

O'GORMAN, J. S., Jr. (A 1934) Branch Mgr.,
• Johnson Service Co., 230 E. Alexandrine Ave.,
Detroit, and 147 Abbey Rd., Birmingham, Mich.
OLD, William H. (M 1937) Asst. Mgr., • Glanz &
Killian, 1761 Forest Ave. W., Detroit, and 18245
Devonshire Rd., R. F. D. No. 4, Birmingham,
Mich. Mich

Mich.
OLSEN, Carlton F. (A 1925; J 1920) Engr. and
Sales, Kewanee Boiler Corp., 549 W. Washington
Blvd., and • 1000 West 100th St., Chicago, Ill.
OLSEN, Gustav E. (M 1930) Sales Mgr., Fitzgibbons Boiler Co., Inc., 101 Park Ave., New
York, and • 68-09 Beach Channel Dr., Arverne,
L. I., N. Y.

OLSON, Barney (A 1929) • Barney Olson, Inc., 122 S. Michigan Ave., and 5724 N. Natoma Ave., Chicago, Ill.

OLSON, Eugene O. (M 1942) Asst. Prof., • Iowa State College, Engineering Extension Service, and 804 Tenth St., Ames, Iowa.

OLSON, Gilbert E. (M 1930) Southern Mgr.,

• H. K. Ferguson Co., 1605 Commerce Bldg.,
and 8359 Park Pl. Blvd., Houston, Texas.

ang 8509 Park Pl. Bivd., Houston, Texas.

OLSON, Milton J. (A 1941; J 1937) Vice-Pres.,
Olson Bros., 2651-55 St. Mary's Ave., and

• 5627 Williams St., Omaha, Nebr.

OLSON, Robert G. (M 1923) Eastern Mgr.,

• Hydraulic Coupling Div., American Blower
Corp., 50 West 40th St., and 108 East 38th St.,
New York, N. Y.

OLVANY, William J. (Life Member; M 1912) Pres., Wm. J. Olvany, Inc., 100 Charles St., New York, N. Y.

New York, N. Y.

O'NEILL, James W. (M 1929; A 1927; J 1925)
Chief Engr., Trane Company of Canada, Ltd.,
4 Mowat Ave., and •55 Highview Crescent,
Toronto, Ont., Canada.

OONK, W. J. (M 1937) Dist. Engr., B. F. Sturtevant Co., 915 Olive St., and •4548 Red Bud
Ave., St. Louis, Mo.

OOSTEN, Louis S. (J 1938) Engr., Bell & Gossett
Co., 8200 Austin Ave., Morton Grove, and •1827
Berwyn Ave., Chicago, Ill.

OREAR, Andrew G. (M 1942; A 1930) Pres.,
•Trade-Wind Motorfans, Inc., 5725 S. Main
St., Los Angeles, and 1015 E. Raleigh St., Glendale, Calif.

dale, Calif.

St., Los Angeies, and 1015 E. Raieign St., Giendale, Calif.

O'REAR, L. R. (M 1934) Pres., • Midwest Plumbing & Heating Co., 2450 Blake St., and 825 S. Josephine St., Denver, Colo.

ORGELMAN, George H. (J 1942; S 1940) Construction Engr., Turner Construction Co. 420 Lexington Ave., New York, N. Y., and • 3324 Latimer Ave., Ashtabula, Ohio.

ORMISTON, John B. (A 1940) Owner, • Ormiston Plumbing & Heating Co., 105 Manning Ave., and 1 Gramatan Dr., Yonkers, N. Y.

OSBORN, Wallace J. (A 1927) Vice-Pres., Keeney Publishing Co., 1734 Grand Central Terminal Bidg., New York, N. Y., and • 1029 Old Post Rd., Fairfield, Conn.

OSBORNE, G. H. (M 1922) Managing Dir., The Ventilating & Blow Fipe Co., Ltd., 714 St. Montreal, Que., Canada.

OSBORNE, Stanley R. (M 1939) Development Engr., • Chase Brass & Copper Co., Grand St., Waterbury, and 115 Grove St., Naugatuck, Conn.

Conn.

O'SHEA, John J. (A 1941) Sales Repr., Buffalo Forge Co., 305 Teckwood Dr. N.E., and •714 Greenview Ave. N.E., Atlanta, Ga.

OSTER, William P. (M 1940) Vice-Pres. Engrg. Service Div., • Equitable Equipment Co., Inc., 410 Camp St., and 4051 Baccich St., New Orleans, La.

OSTROM, Eric W. (M 1937) Chief Engr., Air Cond. Dept., A/B Svenska Flaktfabriken, Kungsgatan 16, and • John Ericssonsgatan 18, Stockholm, Sweden.

OTT, M. Earl (M 1942) Pres., Parkside Shet Metal Works, Inc., 7445 S. Chicago Ave., Secy., Treas., Lakeside Metal Service, Inc., 23 East 115th St., and • 8635 S. Wabash Ave., Chicago, Ill.

Consulting Mech. Engr., •606 Washington Bldg., Los Angeles, and 1462 Waverly Rd., San Marino, Calif.

Bldg., Los Angeles, and 1462 Waverly Rd., San Manno, Calif.
OTTO, Robert W. (M 1912) Mech. Engr., Toltz, King & Day, Inc., 1509 Pioneer Bldg., and •2147 Carroll Ave., St. Paul, Minn.
OTTS, John G. (A 1942) 1st Lt., Post Ordnance Office, Fort Dix, N. J., and •3327 Riverside Ave., Jacksonville, Fla.
OURUSOFF, L.* (M 1931) Mgr. of Utilization, Washington Gas Light Co., 11th and H Sts. N.W., Washington, D. C.
OUWENEEL, William A. (M 1937) Mech. Engr., Works Engrg. Dept., Plant No. 2 B, Fairchild Aircraft Div., and •845 Woodland Way, Hagerstown, Md.
OVERTON, Sidney H. (M 1929) Repr., Ideal Boiler & Radiators, Ltd., and American Radiator & Standard Sanitary Corp., P. O. Box 5985, Johannesburg, South Africa.
OWEN, Charles E. (M 1941) Consulting Engr., Mfrs. Agent, Owen Engineering Service, and •1218 S. Thompson, Carbondale, Ill.
OWEN, Jeff Davis (M 1937) Head Operating Engr., U. S. Army, and •P. O. Box 837, March Field, Calif.
OWINGS, Horace L. (A 1940) Refrig. and Air Cond. Engr., • Houston Natural Gas Corp., P. O. Box 1188, and 3101 Arbor, Houston, Texas.

PABST, Charles S. (M 1934) Pres., Pabst Air Conditioning Corp., 219-221 Eagle St, Brook-lyn, and • 8727-98th St., Woodhaven, L. I., N. Y.

N. Y.

PACKTOR, Bernard M. (A 1941) Engr., War
Ordnance Dept., Springfield Armory, and •5
Decker Pl., Springfield, Mass.

PAETZ, George A. (J 1942; S 1940) Ensign,
U. S. N. R., and •3308 College Ave., Indianapolis, Ind.

polis, Ind.

PAETZ, Herbert E. (M 1922) Div. Sales Mgr.,

• American Blower Corp., 632 Fisher Bldg., and
1415 Parker, Detroit, Mich.

PAGE, Arvin (M 1935) Chief Engr., • The
Bahnson Co., Salem Station, and 628 Roslyn
Rd., Winston-Salem, N. C.

PAGE, Harry W. (M 1923) Pres., Chicago Blower
Co., and • Box 320, Lake Delton, Wis.

PAGE, Vernon C. (A 1936) Mgr., Air Cond. Div.,

• Fitzgibbons Boiler Co., Inc., 101 Park Ave.,
New York, and The Scarswold, Scarsdale, N. Y.

New York, and The Scarswold, Scarsdale, N. Y. PAINE, H. Allan (J 1940) Engr. in charge of Construction, Healy Plumbing & Heating Co., St. Paul, and • 602 N. Ninth St., Brainerd, Minn. PALUMBO, Bernard F. (A 1943; J 1941) Htg., Vtg. Engr., N. A. Sperry, 61 Bradley St., and • 60 Foster Sq., Bridgeport, Conn. PAQUET, Jean-M. (A 1940; J 1936) Engr., • J. A. Y. Bouchard, Inc., 97 Abraham Hill, and 9 Bois Joli Ave., Quebec, Que., Canada. PARENT, Harold M. (M 1938) Partner, • Parent & Kirkbride, N. W. Cor. Fourth and Locust St., Philadelphia, Pa., and 324 Pitman Ave., Pitman, N. J.

PARK, Harold E. (A 1938; J 1936) Sales Engr.,
• Shaw-Perkins Manufacturing Co., 1645 Oliver
Bldg., Pittsburgh, and 106 W. Littlewood St., Bldg., Pit Etna, Pa.

PARK, J. Frank (M 1937; A 1936; J 1930) Vice-Pres., • Western Air & Refrigeration, Inc., 1234 S. Grand Ave., and 2160 Kenilworth Ave., Los Angeles, Calif.

PARK, Nicholas W. (M 1936) Htg. Engr., Philadelphia Saving Fund Society (Real Estate Dept.), 12 South 12th St., Philadelphia, and •509 Jericho Rd., Abington, Pa.
PARKER, Richard A. (A 1938) 1st Lt., •749th Military Police Detachment, and 2922 Gough St., San Francisco, Calif.
PARKINSON, John S.* (A 1940) Lt., U.S. N. R., David Taylor Model Basin, Navy Dept., Washington, D. C., and •8907 Oneida Lane, Bethesda, Md.

ington, D. C., and • 8907 Oneida Lane, Bethesda, Md.

PARKS, Charles E. (M 1937) Pacific Coast Dist. Mgr, Ilg Electric Ventilating Co, 815 W. Fifth St., Los Angeles, Calif.

PARKS, Vernon H., Jr. (A 1941) Htg. Engr., Meyer Furnace Co., 1051 St. Louis Ave., and • 6837 Agnes Ave., Kansas City, Mo.

PARROTT, Lyle G. (M 1922) Consulting Engr., • Snyder & McLean, 2214 Penobscot Bldg., and 3788 Gladstone, Detroit, Mich.

PARSONS, John H. (A 1942) Chief Engr., California Shipbuilding Corp., Terminal Island, and • 4119 Fourth Ave., Los Angeles, Calif.

PARSONS, Roger A. (A 1942; J 1933) Htg. Engr., • Board of Water & Electric Light Commissioners, 114-16 W. Ottawa St., and 2609 Chiton St., Lansing, Mich.

PARTLAN, Robert L. (J 1940) Pres., Treas., • Partlan Sheet Metal Works, 14268 Goddard Ave., and 9100 Pinehurst Ave., Detroit, Mich.

PARVIS, Ralph S. (M 1938) Mgr., Diamond Ice & Coal Co., 237 Market St., and • 2128 Biddle St., Wilmington, Del.

PASTOR, John C. (M 1938) Design Engr., 1091 Talbot Ave., Jacksonville, Fla.

PATTERSON, Frank H. (M 1936) Sales Engr., Hoffman Specialty Co., 1001 York St., Indianapolis, Ind., and • 9201 Boleyn Ave., Detroit, Mich.

PATTERSON, Granville P. (M 1939) Sales Engr.,

Mich.

PATTERSON, Granville P. (M 1939) Sales Engr.,

•W. B. Haggerty, Inc., P. O. Box 2971, and
Hotel Mirasol, Tampa, Fla.

PAUL, Donald I. (M 1936; J 1932) Chief Engr.,

• Gurney Foundry Co., Ltd., 4 Junction Rd.,
and 264 Lawrence Ave. E., Toronto, Ont.,

Canada.

PAULEY, Robert D. (J 1940) Development Engr.,

• Weyerhaeuser Timber Co., and 1709–22nd St.,

PAULEY, Robert D. (J 1940) Development Engr.,

• Weyerhaeuser Timber Co., and 1709-22nd St.,
Longview, Wash.

PAVEY, Charles A. (M 1937) Dist. Mgr., • B. F.
Sturtevant Co., 812 Michigan Bldg., and 18727
Bretton Dr., Detroit, Mich.

PAWKETT, Lawrence S. (A 1938) Owner, • L. S.
Pawkett & Co., 810 Insurance Bldg., and 902 W.
Magnolia, San Antonio, Texas.

PEACOCK, Glenn S. (M 1939) Htg. Engr.,
University of Pittsburgh, Oakland P. O., and
• 111 Elmont St., Crafton P. O., Pittsburgh, Pa.
PEACOCK, Herbert (M 1930) Washington Mgr.,
• Carrier Corp., 942 Investment Bldg., and 5073
Lowell St. N.W., Washington, D. C.

PEARCE, Edward A. (M 1942) Engr. and Chief
Draftsman, E. Wingfield-Bowles & Partners, 28
Chester Rd., Northwood, and • 55, Blenheim
Rd., North Harrow, Middlesex, England.
PEARSON, Fred L. (M 1925) 1708 Albion Ave.,
Chicago, III.

PEART, Allen M. (A 1937) Dist. Mgr., • Minneapolis-Honeywell Regulator Co., 637 Craig W.,
Room 812, and 5580 Bradford Pl., Montreal,
Que., Canada.

PECK, Henry E. (A 1938) Asst. Branch Mgr.,
Delco Appliance Div., General Motors Sales
Corp., 2345 Westfall Rd., Rochester, N. Y.
PEBBLES, John K., Jr. (A 1925; J 1924) Chief
Engr., Partner, Baskervill & Son, Archts.,
Central National Bank Bldg., and • 1708 Park
Ave., Richmond, Va.

PEISER, Maurice B. (J 1937) Aviation Cadet,
Hotel Hayes, Room 486, 64th St. and University
Ave., Chicago, Ill.

PELLEGRINI, Louis C. (M 1939) Vice-Pres.
Marlo Coil Co., 6135 Manchester Ave., and
• 6549 Murdoch St., St. Louis, Mo.

PELLER, Leonard (A 1942; J 1934) Industrial Engr., United Engineers & Constructors, Inc., 1401 Arch St., and •6810 Lawnton Ave., Phila-

1401 Arch St., and •6810 Lawnton Ave., Philadelphia, Pa.

PELLMOUNTER, Thomas (A 1936) Mfrs. Agent, 903 McGee St., and •3308 Euclid Ave., Kansas City, Mo.

PELLMOUNTER, Thomas V. (J 1938) 2nd Lt., •55th Ordnance Co., A. P. O. 309, Fort Lewis, Wash., and 401 South 14th St., LaCrosse, Wis.

PENN, Lester W. (M 1942) Chief Engr., W. J. Knight & Co., Consulting Engrs., 903 Wainwright Bldg., and 3916 Shreve Ave., St. Louis, Mo.

Mo.
PENNEY, Gaylord W. (M 1938) Mgr., ElectroPhysics Dept., • Research Lab., Westinghouse
Electric & Manufacturing Co., East Pittsburgh,
and 171 Orchard Rd., Wilkinsburg, Pa.
PENNOCK, William B. (M 1927) Lt. Col.,
Royal Canadian Engrs., CRCE 8th Canadian
Div., and • Pennock Engineering, 53 Queen St.,

ROYAL CARAGUAL ENISTS., CLE Soft Carladuan Div., and Pennock Engineering, 53 Queen St, Ottawa, Ont., Canada.

PERKINS, Robert C. (M 1941; A 1935) Mgr. Testing Lab., Lone Star Defense Corp., and •3409 Moore Dr., Texarkana, Texas.

PERRAS, George E. (M 1936) Mgr. Htg. Div., • Thomas Robertson & Co., Ltd., 262 Craig St. W., and 5915 Christophe Colomb St., Montreal, Que., Canada.

PERSON, N. Bert (M 1937) Research Engr. and Designer, Conveyors, Inc., 483 Endicott-on-Robert, and •1418 Simpson St., St. Paul, Minn. PETERFIELD, C. H. (M 1938; J 1936; S 1932) Asst. Prof. of Mech. Engrg., • Michigan State College, Dept. of Mech. Engrg., and 142 Gunson St., East Lansing, Mich.

PETERSEN, Christian P. (A 1937) Engr., • Day Co., 810 Third Ave. N.E., and 4000 Cedar Ave., Minneapolis, Minn.

Minneapolis, Minn.

PETERSEN, Robert H. (J 1942; S 1941) Grad.

Engr., Allis-Chalmers Manufacturing Co., and

• 2251 North Lake Dr., Milwaukee, Wis.

PETERSON, Bernhard G. (A 1941) Sales Engr., 6235 Florence Blvd., Omaha, Nebr.

PETERSON, Carl M. F.* (M 1936) Asst. Prof. Mech. Engrg., Asst. Supt. of Bldgs. and Power, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, and 74 Cutter Hill Rd., Arlington, Mass.

Hill Rd., Arlington, Mass.

PETERSON, Clarence L. (M 1938) Branch Mgr.,

Minneapolis-Honeywell Regulator Co., 1136
Howard St., San Francisco, and •2 Indian Rock
Path, Berkeley, Calif.

PETERSON, DuWayne J. (M 1940) Branch Mgr.,

• Minneapolis-Honeywell Regulator Co., 415
Brainard St., Detroit, and 16819 Cranford Lane,
Grosse Pointe, Mich.

PETERSON, Hans P. (J 1939) Research Engr.,

• Bush Manufacturing Co., Elmwood Branch
Box 25, W. Hartford, and 4 Vernon St., Hartford, Conn.

PETERSON, J. Raymond (A 1941; J 1940) Draftsman, Gausman and Moore, E1026 First National Bank Bldg., and •719 E. Nevada Ave., St. Paul. Minn.

PETERSON, Neil H. (M 1937) Mfrs. Agent, •1129 Folsom St., and 2373-24th Ave., San Francisco, Calif. PETERSON, Sterling D. (A 1930) Northwest

Mgr., • Johnson Service Co., 311 Colman Bldg., and 5051 Prince St., Seattle, Wash.

PETERSON, Walter E. (M 1941) Design Engr., Sanderson & Porter, Johet, and • 5246 N. Kimball Ave., Chicago, Ill.

PETT, Alfred W. (M 1942) Head, Control Engrg Div., Perfex Corp., 500 W. Oklahoma Ave., and •4958 N. Cumberland Blvd., Whitefish Bay, Milwaukee, Wis.

PETTIT, Ernest N., Jr. (M 1937) Mech. Engr., Office of Post Engineer, War Dept., Tech. Air Training School, Sheppard Field, and •1201 Brook St., Wichita Falls, Texas.

PETTY, Charles E. (A 1939) Htg. Engr., 2120 Providence Rd., Charlotte, N. C.

PEXTON, Frank S. (A 1936) Industrial Engr.,

• Kansas City Gas Co., 824 Grand, and 304
East 70th Terrace, Kansas City, Mo.

PFEIFFER, David C. (M 1940) Power Sales
Engr., • Dallas Power & Light Co., 1506 Commerce St., and 3516 St. Johns Dr., Dallas, Texas.

PFEIFFER, Frank F. (M 1938) Engr., Industrial
Div., United Engineers & Constructors, Inc.,
1401 Arch St., and •7421 Sommers Rd., Philadelphia Pa

1401 Arch St., and ●7421 Sommers Rd., Philadelphia, Pa.

PFISTER, Van Alen (A 1942) Sales Engr., McDonnell & Miller, Wrigley Bldg., and ●2507 Gunnson St., Chicago, Ill.

PFRIEM, Peter G. (A 1937) Sales Engr., The Knapp Supply Co., Ohio and Dudley Sts., Muncie, Ind., and ●2535 Burnet Ave., Cincinnati, Ohio

PFUHLER, John L. (A 1925; J 1923) Plbg. and Htg. Contractor, 600 Manor Rd., Staten Island, N. Y.

Htg. Contractor, 600 Manor Rd., Staten Island, N. Y.

PHILIP, William (M 1937) Sales Engr., Standard Sanitary & Dominion Radiator, Ltd., Cor. Royce and Lansdowne Aves., and 674 Bastedo Ave., Toronto, Ont., Canada.

PHILIPPI, Joseph J. (M 1939) Sales Engr.,

Johnson Service Co., 1355 Washington Blvd., and 7807 S. Winchester St., Chicago, Ill.

PHILLIPS, Frederic W. (M 1921) War Production Board, Oil Conversion Dept., 122 East 42nd St., New York, and \$25 East 38th St., Brooklyn, N. Y.

PHILLIPS, Ralph E. (M 1936) Consulting Mech. and Elec. Engr., • Ralph E. Phillips, 603 Architects Bldg., Los Angeles, Calif.

PHILLIPS, Robert H. (A 1941; J 1938) Lt., Infantry, U. S. Army, Fort Ord, and •2343 London St., Los Angeles, Calif.

PHILLIPS, Walter L. (A 1938) Mgr., Air Cond. Dept., • Griffith Consumers Co., 1413 New York Ave. N.W., Washington, D. C., and Box 233, Falls Church, Va.

PHPPS, Frederick G. (M 1930) Vice-Pres., Preston-Phipps Inc. 637 Craig St. W. and

Falls Church, Va.
PHIPPS, Frederick G. (M 1930) Vice-Pres.,
Preston-Phipps, Inc., 637 Craig St. W., and
•5431 Earnscliffe Ave., Montreal, Que., Canada.
PIERCE, Joseph D. (J 1942) Asst. Research
Engr., • Crane Co., 836 S. Michigan Ave., and
1634 East 53rd St., Chicago, Ill.
PILLEN, Harry A. (A 1933) Owner, • Harry A.
Pillen Co., 626 Broadway, and 2124 Crane Ave.,
Cincinnati, Ohio.

NINES Sidnay (M 1929) Owner, • Pines Engi-

PINES, Sidney (M 1920) Owner, Pines Engineering Co., 2413 N. Pearl St., and 3541 Bryn Mawr Dr., Dallas, Texas.

PINNEY, Theodore M. (M. 1942) Asst. Mech. Engr., and Gen. Projects Engr., The Austin Co., and • 1838 Colonnade Rd., Cleveland, Ohio.

PINTER, Joseph L. (A 1942) Owner, Joseph L. Pinter & Co., 62 Early St., Morristown, N. J.

PISTLER, Willard C. (M 1934) Consulting Engr., 61 Leverone Bldg., 4 W. Seventh St., and • Orchard Lane and Crestview Ave., Cincinnati, Ohio.

PLACE, Clyde R. (M 1924) Consulting Engr.,

•420 Lexington Ave., and 333 East 57th St.,
New York, N. Y.

PLATZ, John F. (A 1940) Sales Engr., • J. M. &
L. A. Osborn Co., 1541 East 38th St., Cleveland,
and 1739 Holyoke Ave., East Cleveland, Ohio.

PLAYFAIR, G. A. (A 1924) Mgr., Johnson Temperature Regulating Company of Canada, Ltd., 113 Simcoe St., Toronto, Ont., Canada.

PLEUTHNER, Richard L. (J 1938) Air Corps Flying Cadet Ground Duty, Chanute Field, Rantoul, Ill., and •393 Starin Ave., Buffalo,

N. Y.

PLEWES, Stanley E. (M 1917) Branch Mgr.

Johnson Service Co., 2853 North 12th St., and
341 E. Hortter St., Philadelphia, Pa.

PLOSKEY, Edward J. (J 1940) Cpl., 40th Ordnance Co., A. P. G., Aberdeen, Md., and •2367-32nd Ave., San Francisco, Calif.
PLUM, Leroy H. (M 1935; A 1934) •Warren Webster Co., 17th and Federal Sts., Camden, and 9 Second Ave., Haddon Heights, N. J.

PODOLSKE, Arthur R. (A 1938) Prop., Arthur R. Podolske Sheet Metal Works, 824 E. Center St., Milwaukee, Wis.

POEHNER, Robert E. (M 1928) Owner, • Htg. Contractor, 849 Massachusetts Ave., and 2308 Coyner Ave., Indianapolis, Ind.

POGALIES, Louis H. (M 1931) Mech. Engr., Wilbur Watson & Associates, 4614 Prospect Ave., and • 4102 Archwood Ave., Cleveland, Ohio.

Ohio.

POHLE, Kenneth F. (A 1930) Vice-Pres., W. F. Hirschman Co., Inc., LeRoy, N. Y.

POLLAK, Rudolf (M 1937) Chief Engr., • Rockefeller Center. Inc., 50 Rockefeller Plaza, New York, and 140 Palmer Ave., Larchmont, N. Y.

POLLARD, Alfred L. (A 1932) Gen. Supt., • Puget Sound Power & Light Co., 860 Stuart Bidg., and 3009-28th Ave. W., Seattle, Wash.

POLLOCK, Carl A. (A 1937) Vice-Pres. and Gen. Mgr., • Dominion Electrohome Industries, Ltd., 39 Edward St., and 120 Sterling Ave., Kitchener, Ont., Canada.

39 Edward St., and Leo Steining 1997.
Ont., Canada.
POND, William H. (M 1938) 820 W. Front St.,
Plainfield, N. J.
PONDER, Everett A. (A 1939) Owner, Everett
A. Ponder Co., 3315 Northeast 73rd St., Portland, Ore.

land, Ore.

POPE, S. Austin (M 1917) Pres., • William A.

Pope Co., 26 N. Jefferson St., Chicago, and 831

Ashland Ave., River Forest, Ill.

PORTER, Knight C. (M 1940) Acting Supvr.,

Home Service Div., • Commonwealth Edison

Co., 72 W. Adams St., Chicago, and 144 Linden

Ave., Glencoe, Ill.

PORTER, Noel E.* (A 1943; J 1938) Engr., Richmond Shipyard Number One of the Permanente Metals Corp., Fourth and Cutting Sts., Richmond, and • 1604 Scenic Ave., Berkeley,

Calif.

POSEY, James (M 1919) Consulting Engr., • 10

E. Pleasant St., and 4005 Liberty Heights Ave.,
Baltimore, Md.

POST, 'Nicholas (A 1943; J 1941) Mech. Engr.,
Equipment Lab., War Dept., Wright Field,
Dayton, Ohio, and •616 Post Pl., East St.
Louis, Ill.

POTTER, • Lockwood Greene Engineers, Inc., 10
Rockefeller Plaza, New York, N. Y., and
Dushore, Pa.

Rockefeller Plaza, New York, N. Y., and Dushore, Pa.

POUGHER, Bernard R. E. (J 1940) Sgt., 110 (EL) A. T. Coy, R. E., and 99, Mauldeth Rd. W., Withington, Manchester, England.

POUGHER, Ernest W. (M 1939) E. W. Pougher & Son, Old Trafford, and 99 Mauldeth Rd. W., Withington, Manchester, England.

POUND, Howard W. (M 1941) Mgr., • Electro-Matic Sales, American Air Filter Co., 215 Central Ave., and 3341 Brownsboro Rd., Louisville, Kv.

ville, Ky. George W., Jr. (M 1938) Industrial Engr., United Engineers & Constructors, Inc., 1401 Arch St., Philadelphia, and 458 S. Fourth St., Darby, Pa.

POWERS, Earle C. (M 1939) Partner, • E. C. Powers & Son, 240 Cherry St., Philadelphia, Pa., and 28 Madison Ave., Erlton, N. J.

and 28 Madison Ave., Erlton, N. J.

POWERS, Edgar C. (A 1934; J 1931) Lt., U.S.N.R.,

• District Communication Office, Navy Yard,
and E. C. Powers & Son, 240 Cherry St., Philadelphia, Pa., and 23 Madison Ave., Erlton, N. J.

POWERS, F. W. (Life Member; M 1911) (Council,
1918-19) Pres., • The Powers Regulator Co.,
2720 Greenview Ave., and 900 Castlewood
Terrace, Chicago, Ill.

POWERS, Lowell G. (A 1937; J 1930) Branch
Mgr., • Carrier Corp., 795 Union Commerce
Bldg., Cleveland, and 2730 Cranlyn Rd., Shaker
Heights. Ohio.

Heights, Ohio.

Heights, Ondo.

POWERS, Robert W. (J 1943; S 1941) Assoc.

Mech. Engr., ● U. S. Engineers, and Route No. 1,

Box 370, Wilmington, N. C.

POWLESLAND, John W. (J 1942) Sales Engr.,

Canadian Sirocco Co., Ltd., 57 Bloor W.,

Toronto, and ● Woodbridge, Ont., Canada.

PRATT, Foster J. (M 1937) Sr. Naval Archt., Puget Sound Navy Yard, Bremerton, and • Annapolis Terrace, Port Orchard, Wash. PRAWL, Frank E. (M 1940; J 1936) Capt., Ordnance Dept., U. S. Army, C. & G. S. Sebool,

Ft. Leavenworth, Kansas, and • 705 S. Lincoln.

Ft. Leavenworth, Kansas, and •705 S. Lincoln, Casper, Wyo.

PREBENSEN, Harold J. (M 1938) Chief of Production, Tank and Automotive Branch, War Dept., Chicago Ordnance Dist., Chicago, and •Rt. 1, Meadow Lark Rd., Northbrook, Ill.

PRENTICE, Oliver J. (Life Member; A 1927) Dir. of Publicity and Public Relations, •C. A. Dunham Co., 450 E. Ohio St., and 850 Lake Shore Dr., Chicago, Ill.

PREWITT, H. B. (A 1939) Asst. Branch Mgr., •American Blower Corp., 783 Broad St.; Suburban Station Bldg., and 615 E. Allen Lane, Philadelphia, Pa.

American Blower Corp., 783 Broad St.; Suburban Station Bldg., and 615 E. Allen Lane, Philadelphia, Pa.
PRICE, Charles E. (A 1933) Treas., ◆ Keeney Publishing Co., 6 N. Michigan Ave., Chicago, and 800 Vernon Ave., Glencoe, Ill.
PRICE, Charles F. (A 1943; J 1937) Pvt., Serial No. 35563730, Co. "E," 10th Q. M. Training Reg., Barracks T-644, Quartermaster Replacement Training Center, Camp Lee, Va., and • 1015 W. Washington St., Muncie, Ind.
PRICE, D. O. (M 1934) Htg., Air Cond. Engr., General Steel Wares, Ltd., 199 River St., and • 131 St. Germain Ave., Toronto, Ont., Canada.
PRICE, Ernest H. (M 1939; A 1937; J 1934; S 1932) Lt., 1st Corps Field Park Coy, Royal Canadian Engineers, and • 170 Harbison Ave., Winnipeg, Man., Canada.
PRIESTER, Gayle B.* (A 1943; J 1935; S 1934) Instructor, Mech. Engrg., • Case School of Applied Science, Cleveland, and 2865 Derbyshire Rd., Cleveland Heights, Ohio.
PRINCE, Raymond F. (A 1943; J 1936) Htg. and Sales Engr., R. B. Dunning & Co., 54 Broad St., and • Burleigh Hill, R. F. D. 1, Bangor, Me.
PROIE, John (M 1936) Gen. Mgr., • Proie Bros., 856 W. North Ave., and 101 Dilworth St., Pittsburgh, Pa.
PRYIBIL. Paul L. (A 1932) Partner, • Hucker-

Pittsburgh, Pa.

PRYIBIL, Paul L. (A 1932) Partner, • Hucker-Pryibil Co., 1700 Walnut St., and 328 E. Phil-Ellena St., Philadelphia, Pa.

Ellena St., Philadelphia, Pa.

PRYKE, John K. M. (A 1937) Captain, Royal
Army Ordnance Corp. (British Army), and • 140
East 81st St., New York, N. Y.

PUGH, Daniel C. (J 1942; S 1939) Engrg.
Draftsman, • Carbide & Carbon Chemicals
Corp., Research and Development Dept., S.
Charleston, and 215 Brooks St., Charleston,
W. Vo.

PULLUM, Clarence E. (M 1940) Vice-Pres.,

• Bell & Gossett Co., 8200 Austin Ave., Morton
Grove, and 1011 N. Grove Ave., Oak Park, Ill.

PULLEN, Royal R. (M 1935) Chief Mech. Engr.,
Homestake Mining Co., and • 109 E. Hill St.,

Lead, S. D.

PURCELL, Frederick C. (M 1926) Sales Engr., Minneapolis-Honeywell Regulator Co., 415 Brainard St., and •18680 Santa Rosa Dr., Detroit, Mich.

PURINTON, Dexter J. (A 1923) Plant Engr., Wright Aeronautical Corp., Paterson, and ● 208 Ridge Rd., Rutherford, N. J.

QUACKENBUSH, Seelye M. (M 1940) Partner,
Quackenbush Co., 117 W. Tupper St., and 251
Parkside Ave., Buffalo, N. Y.
QUALL, Clarence O. (A 1937) Owner, Quall
Plumbing & Heating Co., 65 Ninth St., and •54
Pearl St., Clintonville, Wis.

reari St., Lintonville, Wis.

QUEER, E. R.* (M 1933) Lt., U. S. N. R., Bureau
of Ships, Navy Dept., Washington, D. C., and
•5707-26th St. N., Arlington, Va.

QUIRK, Clinton H. (M 1916; J 1915) Htg. and
Plbg. Inspector, War Dept.. U. S. Engr. Office,
Mitchel Field, L. I.; 120 Wall St., New York,
and •465 Front St., Hempstead, L. I., N. Y.

R

RABE, Albert E. (M. 1938) Mgr., Carrier Div., Armco Industrial E. Comercial S/A, Rio de

RABE, Albert E. (M 1938) Mgr., Carrier Div., Armoo Industrial E Comercial S/A, Rio de Janeiro, Brazil.

RABER, Benedict F* (M 1937) Prof. Mech. Engrg., e University of California, Room 114, Engrg., Bldg., and 1124 Arch St., Berkeley, Calif. RAINE, John J. (Life Member; M 1912) Vice-Pres., eG. S. Blodgett Co., 190 Bank St., Burlington, and Essex Junction, Vt.

RAINGER, Wallace F. (A 1930; J 1924) Jaros. Baum & Bolles, 415 Lexington Ave., New York, amd • 441 Hawthorne Ave., Yonkers, N. Y.

RAINSON, Samuel J. (J 1940) Air Cond. Tech., Htg., Cooling Installation and Service, Quinn Engineering Corp., 50 Watt St., and • 646 East 231st St., New York, N. Y.

RAISLER, Robert K. (M 1941; A 1933; J 1930) Treas., • Raisler Corp., 129 Amsterdam Ave., and 38 East 55th St., New York, N. Y.

RAMONEDA, Enrique (J 1941) Engr., Ing. Enrique Ramoneda, Valladolid No. 25, Mexico, D. F., Mexico.

RAMSEUR, Vardry D., Jr. (J 1940) Htg. Engr., Ramseur Roofing Co., Inc., 353 W. McBee Ave., and • 50 Woodvale Ave., Greenville, S. C.

RAND, Fred R. (M 1938) Htg. Engr. and Sales Mgr., Enamel & Heating Products, Ltd., and • Squire St., Sackville, N. B., Canada.

RANDALL, Robert D. (A 1930) • D. T. Randall Co., 7310 Woodward Ave., 404 Blvd. Bldg., and 340 E. Grand Blvd., Apt., 211, Detroit, Mich.

RANDALL, W. Clifton* (M 1928) Chief Engr., • Detroit Steel Fraducts Co., 2250 E. Grand Blvd., Detroit, and 770 Shirley Dr., Birmingham, Mich.

Mich.

RANDOLPH, Charles H. (M 1930; A 1928; J 1926) Air Cond. Engr., Wisconsin Electric Power Co., 213 W. Michigan St., and • 2715 N. Maryland Ave., Milwaukee, Wis.

RANDOLPH, Harold F. (M 1940) Vice-Pres..

• International Heater Co., 101 Park Ave., and 12 Woodlawn Ave. E., Utica, N. Y.

RATHER, Max F. (M 1919) Eastern Dist. Mgr.,

• Johnson Service Co., 28 East 29th St., New York, N. Y., and 90 Orchard Dr., Greenwich, Conn.

Conn.

RAVEN, A. H. (M 1938) Htg. Engr., Wigman Co.,
313 Perry St., and •2119 George St., Sioux

313 Perry St., and •2119 George St., Sioux City, Iowa.
RAY, George E. (J 1939) A. S. R., (Apprentice Seaman) Hotel Brunswick, Coast Guard Station, Boston, Mass., and •22 West Ave., Elyria, Ohio.
RAY, John A. (M 1942) Sales Engr., •W. E. Lewis & Co., 610 Thomas Bldg., and 5211 Stoneleigh Ave., Dallas, Texas.
RAY, Lewis B. (M 1932) Press., •Ray Engineering Co., Inc., 830 Broad St., Newark, and 151 Augusta St., Irvington, N. J.
RAYMER, William F., Jr. (A 1936; J 1934) Htg. and Vtg. Engr., Wright Aeronautical Corp., 132 Beckwith Ave., Paterson, and •18 Bradley Terrace, West Orange, N. J.
RAYMOND, Fred I.* (A 1929) Owner, F. I. Raymond Co., 629 W. Washington Blvd., Chicago, Ill.

Chicago, Ill.

RAYNIS, Theodore (A 1939; J 1934) Naval Archt., New York Navy Yard, Brooklyn, and •58 Hilltop Dr., Manhasset, L. I., N. Y.

READER, Joseph T. (A 1938) Partner, • Kerr Machinery Co., 608 Kerr Bldg., and 8162 E. Jefferson Ave., Detroit, Mich.

REARDON, John F. (A 1941) Contract Sales, Fowers Regulator Co., 2341 Carnegie, and 2012 West 25th St., Cleveland, and ●26981 Mallard Ave., Euclid, Ohio.

REDRUP, Will D. (M 1936) Pres., • The Majestic Co., and 310 Randolph St., Huntington, Ind.

REDSTONE, Arthur L. (M 1931) Research Engr.,
Proctor & Schwartz, Seventh and Tabor Rd.,
and • 1636 E. Duval, Philadelphia, Pa.

REED, Frederick J. (M 1939) Asst. Prof. Mech. Engrg., • Duke University, 263 College Station, and 2203 Englewood Ave., Durham, N. C.

REED, Van A., Jr. (M 1930) Mech. Engr.,

• Federal Engineering Co., 239 Fourth Ave.,
Pitsburgh, and 114 Water St., Elizabeth, Pa.

REED, Virgil C. (M 1938) Estimator, Engr.,
Owner, James H. Pinkerton Co., 640 Natoma
St., San Francisco, and Rte. 2, Box 3117, Redwood City, Calif.
REED, William H., III (A 1938) Sales Mgr.,
Air Cond. Equipment, • Dravo Corp., 302 Penn
Ave., and 7458 Penfield Pl., Pittsburgh, Pa.
REESE, Henry L (M 1923) Consulting Engr.,
R. D. 4, Coudersport, Pa.
REGER, Henry P. (M 1934) Pres., • H. P. Reger
& Co., Htg. & Pibg. Contractor, 1501 East 72nd
Pl., and The South Shore View Apt. Hotel,
7100 South Shore Dr., Chicago, Ill.

REICH, Julius G. (A 1941) Chief Engr., Sales
Engr., • The Holland Furnace Co., 12700
Superior Ave., and 10703 Lee Ave., Cleveland,
Ohio.

Engr., • The Holland Furnace Co., 12/100
Superior Ave., and 10703 Lee Ave., Cleveland, Ohio.

REID, Henry P. (M 1931; A 1927) Asst. to Pres.,
Universal Atlas Cement Co., 135 East 42nd St.,
Chrysler Bldg., New York, N. Y.

REID, Herbert F. (A 1932) Partner, Htg. Dept.,
• Reid-Graff Co., 1417 Peck St., and 1552
Maffett St., Muskegon Heights, Mich.
REIF, Allan T. (M 1937) Colonel, 74th Inf. Regt.,
and • 10 Livingston Pkwy., Snyder, N. Y.

REIF, Charles A. (M 1937) Vice-Pres., • ReifRexoil, Inc., 37 Carroll St., Buffalo, and 77
Ruskin Rd., Eggertsville, N. Y.

REIFSCHNEIDER, Jake (A 1938) Chief Engr.,
• Eppley Hotels Co., 1802 Dodge St., and 4409
Roppleton, Omaha, Nebr.

REILLY, Bertram B. (J 1938) Engr., • Dravo
Corp., 300 Penn Ave., Pittsburgh, and 220
Ridge Ave., Ben Avon, Pa.

REILLY, Philip H., Jr. (A 1941) Secy., Treas.
and Production Mgr., • Heating Equipment Co.,
1123 Harrison St., San Francisco, and 1321
Vancouver Ave., Burlingame, Calif.

REINEE Alfred G. (4 1940; J 1933) Serv., Gus

and Production Mgr., • Heating Equipment Co., 1123 Harrison St., San Francisco, and 1321 Vancouver Ave., Burlingame, Calif.

REINKE, Alfred G. (A 1940; J 1933) Secy., Gus Reinke Machinery & Tool Co., 63 Dickenson St., Newark, and • 321 Park Pl., Irvington, N. J.

REINKE, Louis F. (A 1937) Owner, • Reinke Sheet Metal Works, 534 S. Fifth St., and 1535 W. Walker St., Milwaukee, Wis.

REIS, Robert (J 1939) Mech. Engr., • Wigton Abbott Corp., 1225 South Ave., and 713 Watching Ave., Plainfield, N. J.

REISBERG, Lester K. (M 1942; A 1939) Vice-Pres., Goodin Co., 615 N. Third St., and • 2724 N.E. Hayes St., Minneapolis, Minn.

REPP, Harry L. (M 1922); • U. S. Radiator Corp., 402 Swetland Bldg., Euclid Ave., Cleveland, and 14611 Clifton Blvd., Lakewood, Ohio.

RESCH, Roy J. (A 1940) Pres., • McQuay Inc., 1600 Broadway N.E., and 3725 Glenhurst Ave., St. Louis Park, Minneapolis, Minn.

RETTEW, Harvey F. (M 1929) Chief Engr., Board of Education, School Dist., of Philadelphia, 21st and Parkway, and • 4912 Osage Ave., Philadelphia, Pa.

Philadelphia, Pa.

REX, Harland E. (M 1942; J 1930) Carrier Corp.,
20 N. Wacker Dr., Chicago, III.

20 N. Wacker Dr., Chicago, Ini.
REYNOLDS, Thurlow W. (M 1922) Consulting
Engr., and •100 Pinecrest Dr., Hastings-onHudson, N. Y.
REYNOLDS, Walter V. (A 1928) Pres., • Walter
Reynolds, Inc., 861 Third Ave., New York, and
80 Boulevard, Scarsdale, N. Y.

RHEAULT, Walter E. (M 1942) 1st Lt., C. E., U. S. Army • 325th Engr. Bn. (c), A. P. O. 100, Ft. Jackson, S. C., and 2246 Orchard St., Racine,

RHINE, George R. (A 1938) Major, Ordnance Dept., Asst. Port Ordnance Officer, New York Port of Embarkation, and •8801 Shore Rd., Brooklyn, N. Y.

RHOTON, W. R. (M 1936) Vice-Pres., The W. R. Rhoton Co., 5915 Bonna Ave., Cleveland, and •1728 Lee Rd., Cleveland Heights, Ohio.

RICE, C. J. (A 1923) Pres., Sterling, Inc., 3738 N. Holton St., and • Route 6, Box 374, Milwaukee, Wis.

RICE, Robert B. (M 1934) Exec. Officer, Mech. Engrg. Dept., • North Carolina State College, and 2502 White Oak Rd., Raleigh, N. C.
RICHARD, Edwin J. (M 1933) Owner, • Richard Equipment Co., 2137 Reading Rd., and 3147 Victoria Ave., Cincunnati, Ohio.
RICHARDS, Guy H. (A 1939) Mgr. Htg. Dept., Crane Co., 2 South 20th St., and •7230 First Ave. S., Birmingham, Ala.
RICHARDS, Leslie V. (M 1941; A 1940) Owner-Mgr., • Richards Oil Burner Sales & Service, 97 Lawrence St., Malden, Mass.
RICHARDSON, Henry G. (M 1934) Pres. Williams-Richardson Co., and •1433 Harvard Ave., Salt Lake City, Utah.
RICHARDSON, R. Donald (J 1938) Active Service, Bombardier Royal Regiment Artillery, and •85 Silhill Hall Rd., Solihull, Birmingham, England.

and • os similar ran, some sending sending sending.

RICHARDSON, Walter A. (J 1942) Engr., Htg., Dept., Thorn & Hoddle, Ltd., London, S. W. 1, and • 118, Mashiters Walk, Romford, Essex,

and •118, Mashiters Waik, Romander England.

RIDLEY, Walter H. (M 1939) Industrial Specialist, War Production Board, Lowell, and •22 Westford St., Chelmsford, Mass.

RIES, Lester S. (M 1929) Supt., Dept of Bldgs. & Grounds, •Oberlin College, 32 E. College St., and 291 Oak St., Oberlin, Ohio.

RIESECK, Wilbert L. (J 1943; S 1941) 2nd Lt. C. E., and •3763 East St., Pittsburgh, Pa.

RIESMEYER, Edward H., Jr. (A 1936; J 1930) Htg. Engr., •Schaffer Heating Co., 231-33 Water St., and 4702 Stanton Ave., Pittsburgh, Pa.

Pa.

RIETZ, Elmer W. (M 1923) Mgr. Specialty Div.,

• The Powers Regulator Co., 2720 Greenview

Ave., Chicago, and 2250 S. Sheridan Rd., Highland Park, Ill.

RILEY, John N. (M 1942) Lt. (jg), E-V (s)

U. S. N. R., c/o Supervisor of Shipbuilding, and

•4327 S.E. Ash St., Portland, Ore.

RINK, Charles N. (M 1942) Mgr. Coil Div.,

McQuay Inc., 1600 Broadway N.E., and •4802

Emerson S., Minneapolis, Minn.

RISLEY, George H. (A 1941) Mgr., • Cole Draft

Governor Co., 801 S.W. Stark St., Portland, and

R. No. 10, Box 382, Milwaukie, Ore.

RITCHIE, A. G. (M 1933) Pres., • John Ritchie,

Ltd., 102 Adelaide St. E., and 41 Garfield Ave.,

Toronto, Ont., Canada

Toronto, Ont., Canada

Toronto, Ont., Canada
RITCHIE, Edmund J. (M 1923) Vice-Pres..
Sales., Sarco Co., Inc., 475 Fifth Ave., New York, and •2 Grace Court, Brooklyn, N. Y.
RITTELMEYER, John M. (M 1941) • Rittelmeyer & Co., 405 Bona Allen Bldg., and 2332 Woodward Way, Atlanta, Ga.
RITTENHOUSE, Owen R. (J 1943; S 1941) Foreman, Inspection Dept., Saginaw Steering Gear Div. of General Motors, Plant No. 2, Holmes St., and •1003 Court St., Saginaw, Mich.

RITTER, Arthur (M 1911) Mgr. New York Office,

• American Blower Corp., 50 West 40th St.,
New York, and 29 Edgemont Rd., Scarsdale,
N. Y.

New York, and 29 Eugemont Ru, Geasual, N. Y.
RIVARD, M. M. (M 1935) Mgr., Rivard Sales Co., 4550 Main St., and •1805 West 49th St. Terrace, Kansas City, Mo.
ROACH, Edwin R. (A 1941) Htg. and Vent. Engr., Engineer Board, Fort Belvoir, and •724 S. St., Asaph St., Apt. 108-A, Alexandria, Va.
ROBB, Joseph E. (A 1936) Sales Engr., Minneapolis, and •1717 Illinois St., Lawrence, Kan.
ROBERTS, Edward F., Jr. (A 1942; J 1930) Partner, Gen. Mgr., •Edward F. Roberts Co., 2622 Columbia Ave., Philadelphia, and 435 Righters Mill Rd. Penn Valley, Pa.
ROBERTS, Harry H. (J 1941) Naval Archt., U. S. Maritime Commission, 348 Baronne St., and •7444 St. Charles Ave., Apt. 2-F, New Orleans, La.

ROBERTS, Henry L. (M 1916) • 228 North 16th St., Philadelphia, and 1014 Allston Rd., Brookline, Del. Co. (Upper Darby P. O.), Pa.

ROBERTS, Henry P. (A 1936) 3142 W. Lake Calhoun Blvd., Minneapolis, Minn.
ROBERTSON, J. A. M. (A 1936) Vice-Pres.,
• The James Robertson Co., Ltd., 946 William St., Montreal, and 109 Sunnyside Ave., Westmount, Que., Canada.
ROBIN, Richard C. (A 1941) Section Leader, General Electric Co., 920 Western Ave., Lynn, and • Hartford St., Natick, Mass.
ROBINSON, Arthur S. (M 1936) Engr., E. I. duPont deNemours Co., Wilmington, Del., and
• 730 Ogden Ave., Swarthmore, Pa.
ROBINSON, Donald M. (A 1936) Engr., • Buffalo Forge Co., 512 Woodward Bldg, Washington, D. C., and 5509 Lambeth Rd, Bethesda, Md.
ROBINSON, Edgar R. (A 1938) Sr. Draftsman, Vtg and Htg., New York Shipbulding Corp., Camden, and • 216 Carlton Ave., Westmont, N. J.
ROBINSON, George L. (A 1935) Designer, E. I. du Pont de Nemours & Co., and • 14 West 35th St., Wilmington, Del.
ROBINSON, Jack A. (A 1940; J 1936) Engr., J. A. Robinson & Associates, 252 George St., Sydney, Australia.

Sydney, Australia.
ROBINSON, Kenneth E. (J 1941) 211 Smith

ROBINSON, Kenneth E. (J 1941) 211 Smith Ave., Lansing, Mich.

ROCK, George A. (M 1937) Chief Inspector, U. S. N. • Cunningham Field, Cherry Point, and 30 S. Front St., New Bern, N. C.

ROCKWELL, Theo. F. (M 1933; J 1932) Asst. Prof. Mech. Engrg., • Carnegie Institute of Technology, Schenley Park, Pittsburgh, and Glenover Pl., Aspinwall, Pittsburgh, Pa.

RODEE, E. J. (M 1936) Lt. U. S. N. R., Office of Supvr. of Shipbuilding, Bethlehem Steel Corp., and • 18 Samoset Ave., Quincy, Mass.

RODEFFER, Edgar W. (A 1941) U. S. Army, and • 668 West 70th St., Los Angeles, Calif.

RODENHEISER, George B. (M 1933) Asst. Dir., • David Ranken, Jr. School of Mechanical Trades, 4431 Finney Ave., and 3039a Dover Pl., St. Louis, Mo.

Trades, 4431 Finney Ave., and 3639a Dover Pl., St. Louis, Mo.

RODGERS, Frederick A. (A 1934) Pres., Rodgers Engineering Co., 207 Thomas Bidg., and • 3913 Amherst, Dallas, Texas.

RODGERS, Joseph S. (A 1937; J 1934) Asst. Mech. Engr., Naval Academy, U. S. N., Annapolis, and • 16 Fourth Ave. S., Glen Burnie, Md.

RODMAN, R. W. (M 1922) Supt. of Custodians, • Board of Education, City of New York, 110 Livingston St., Brooklyn, and 175 West 73rd St., New York, N. V.

ROEBUCK, William, Jr. (M 1917) Mfrs. Agent, • 220 Delaware Ave., and 1240 Delaware Ave., Buffalo, N. V.

ROEBUCK, William, Jr. (M 1917) Mfrs. Agent,

• 220 Delaware Ave., and 1240 Delaware Ave.,
Buffalo, N. Y.

ROEDER, Winfield (M 1941) Branch Mgr.,
• American Blower Corp., 185 Church St., and
484 Whitney Ave., New Haven, Conn.
ROGERS, Charles S. (A 1940) Lt. (ig., U.S.N.R.,
and • 304 Maple Ave., Falls Church, Va.
RONSICK, Edward H. (M 1937) Supvr., Gas
Htg. Sales, • St. Louis County Gas Co., 231 W.
Lockwood Ave., Webster Goves, and 7739
Stanford. University City, Mo.
ROOT, Edwin B. (M 1936) Superior Safety
Furnace Pipe Co., 5816-44 Forsythe Ave.,
Detroit, and • 964 Pierce St., Birmingham, Mich.
ROPER, Richard F. (A 1940) Pres., Pleasantaire
Corp., Tower Bldg., and • 2700 Tilden St. N.W.,
Washington, D. C.
ROSAS, Milton L. (J 1941) Sales Engr., • 514
Wesley Temple Bldg., Minneapolis, and 139 E.
Congress, St. Paul, Minn.
ROSE, Harold J.* (M 1938) Sr. Industrial Fellow,
• Mellon Institute, 4400 Fifth Ave., and 219
Lytton Ave., Pittsburgh, and Vice-Pres. in
charge of Research, Anthracite Industries, Inc.
Primos, Del. Co., Pa.
ROSE, Howard J. (M 1934) Pres., Gen. Mgr.,

charge of Research, Anthracite Industries, Inc., Primos, Del. Co., Pa., ROSE, Howard J. (M. 1934) Pres., Gen. Mgr., Consolidated Conditioning Corp., 10 Brookdale Pl., Mt. Vernon, and \$100 Norman Rd., New Rochelle, N. Y.

ROSE, Jerome C. (M. 1937) Air Cond. Engr., Buensod-Stacey Air Conditioning, Inc., 60 East 42nd St., New York, and \$8031-213th St., Hollis, L. I., N. Y.

ROSEBROUGH, J. Stoddard (A 1937) Sales, L. J. Mueller Furnace Co., 4246 Forest Park, and •5937 McPherson Ave., St. Louis, Mo. ROSEBROUGH, Robert M. (M 1920) Branch Mgr., L. J Mueller Furnace Co., 4246 Forest Park Blyd, St. Louis, and •332 Bompart Ave.,

Mgr., L. J. Mueller Furnace Co., 4246 Forest Park Blvd, St. Louis, and • 332 Bompart Ave., Webster Groves, Mo.

ROSEBY, Thomas A. (M 1939) Chief Designing Engr., • Carrier Australasia, Ltd., 36-40 Bourke St., Sydney, N. S. W., and 11 Gillies St., North Sydney, N. S. W., Australia.

ROSELL, Axel F. (M 1935) Civil Engr., • A.-B Svenska Flaktfabriken, Kungsgatan 18, and Kammakaregatan 25, Stockholm, Sweden.

ROSEN, Edmond J. (A 1939) Vice-Pres., • Parker Building Specialties, Inc., 991 Bryant St., San Francisco, and 3701 Redding St., Oakland, Calif.

ROSENBERG, Irwin (J 1942; S 1939) Junior Naval Archt., Norfolk Navy Yard, and •713 High St., Apt. 2. Portsmouth, Va.

ROSENBERG, Philip (A 1928) Secy-Treas., Universal Fixture Corp., 135 West 23rd St., and •240 West 98th St., New York, N. Y.

ROSENBLATT, Arthur M. (M 1938) Pres., • Rosenblatt & Hunt, Inc., P. O. Box 33, and 1250 Edgewood Dr., Charleston, W. Va.

ROSS, David S. (J 1943; S 1941) Student, • Carnegie Institute of Technology, 4929 Forbes St., Pittsburgh, Pa., and 1131 West 22nd St., Loran, Ohio.

ROSS, John D. (4 1937) Sales. • Railway & Son Son St., John D. (4 1937) Sales. • Railway & Son St., John D. (4 1937) Sales.

Loran, Chio.

ROSS, John D. (A 1937) Sales, •Railway & Engineering Specialties, Ltd., 417 St. Peter St., and 4376 Earnschiffe Ave., Montreal, Que., anada.

Canada.

ROSS, John O.* (M 1920) Pres., • Ross Industries Corp., 350 Madison Avc., New York, and Lake George, N. Y.

ROSS, Roderick (M 1937) • Roderick Ross & Traill, Consulting Engrs., Nicholas Bldg., 37 Swanston St., Melbourne, C.-1, and 5 Burns St., Elwood, Melbourne, S. 3, Australia.

ROSSITER, Irvin J. (A 1939) Capt., Air Corps, U. S. Army, Lincoln Air Base, Box 26, and • 2518 Worthington Ave., Lincoln, Nebr.

ROTH. Charles F. (A 1930) Pres, • International

ROTH, Charles F. (A 1930) Pres, e International Exposition Co., Grand Central Palace, and 141 East 36th St., New York, N. Y. ROTH, Harold R. (M 1935) Dist. Mgr., e Canadian Sirocco Co., Ltd., 57 Bloor St. W, and 5 Castleview, Toronto, Ont., Canada.

Castleview, Toronto, Ont., Canada.

ROTHMAN, S. C. (M 1936) Capt., Sn. C. A., U.S.,
Army Ind., Hyg. Laboratory, c/o Johns Hopkins
School of Hyg., 615 N. Wolfe St., Baltimore, Md.
ROTTMAYER, Samuel I. (A 1933; J 1928)
Mech. Engr., • Samuel R. Lewis. Consulting
Engr., 407 S. Dearborn St., and 8830 S. Laflin
St., Chicago, Ill.

ROWE, William A.* (M 1921) (Council, 1929-31) Mech. Engr., • The Trane Co., LaCrosse, Wis., and 718 Longfellow Ave., Detroit, Mich.

and 718 Longfellow Ave., Detroit, Mich.

ROWE, William M. (J 1936) Sales, • American
Blower Corp., 1302 Swetland Bldg., Cleveland,
and 151 Bradley Ave., Chagrin Falls, Ohio.

ROWLEY, Frank B.* (M 1918) (Presidential
Member) (Pres., 1932; 1st Vice-Pres., 1931; 2nd
Vice-Pres., 1930; Council, 1927-33) Prof. Mech.
Engrg., and Dir. of Engineering Experiment
Station, and Head of Mech. Dept., University of
Minnesota, Minneapolis, and • Excelsior, Minn.

ROWLEY, Robert K. (S 1941) Student, University of Minnesota, Minneapolis, and • Excelsior, Minn.

ROY, Leo (A 1937) Asst. Supt.. Power Div..

Cessior, Minn.

ROY, Leo (A 1937) Asst. Supt., Power Div.,

Quebec Power Co., 229 St. Joseph St., and 41
Laurentide Ave., Quebec City, P. Q., Canada.

RUDD, Dann J. (M 1937) Supvr. Designer, Hig.,

Refrig., Air Cond., and Pibg., Madison-Hyland.

Consulting Engineers, 28-04-41st Ave., Long
Island City, and • 367 Deer Park Ave., Babylon,

L. I., N. V.

RUERMELE, Albert M. (4 1943: 7 1938) let I.t.

RUEMMELE, Albert M. (A 1943; J 1938) 1st Lt.,
Ordnance Dept., Hqs. P. R. Dept., O of Asst.
C. of S., G-4, San Juan, Puerto Rico, and Ashley,
N. D.

RUFF, Adolph G. (M 1935) Supt. of Power, U. S. Playing Card Co., Park Ave., Norwood, and • 3824 Woodford Rd., Cincinnati, Ohio. RUFF, DeWitt C. (M 1922) Treas., • Healy-Ruff Co., 2255 University Ave., and 2211 St. Clair Ave., St. Paul, Minn. RUGART, Karl (A 1924) Dist. Repr., • 26 South 20th St., Philadelphia, and 612 Bryn Mawr Ave., Narberth P. O., Penn Valley, Pa. RUGGLES, Robert F. (M 1936; A 1927; J 1926) Gen. Sales Mgr., • Autovent Fan & Blower Div., Herman Nelson Co., 1805 N. Kostner Ave., and 7041 Branch, N. Ozark, Edison Park, Chicago, III.

7041 Branch, N. Ozark, Edison Park, Chicago, Ill.

RUMBOLD, Allan H. (M 1941) Branch Mgr,

• Clow Gasteam Heating Co., 427 Peachtree St.,

Atlanta, and Norcross, Ga.

RUMMEL, Adolph J.* (M 1937) Asst. Mgr.,

Commercial Dept., • San Antonio Public Service

Co., 201 N. St. Mary's St., and 235 North Dr.,

San Antonio, Texas.

RUMSEY, John L. (M 1941) Chief Htg. and Plbg.

Engr., Macnsons Contractors, Naval Supply

Depot, Clearfield, and •35 Hill Villa Circle,

Layton, Utah.

RUSSELL, Boyd A. (A 1941) Air Conditioning

Testing Engr., Baker, Smith & Co., Inc., War

Dept., Pentagon Bldg., Washington, D. C., and

• 10210 Pierce Dr., Silver Spring, Md.,

RUSSELL, Edward A. (M 1938) Chief Engr.,

Vapor Car Heating Co., Inc., 1600 S. Kilbourn

Ave., and •8103 Dorchester Ave., Chicago, Ill.

RUSSELL, J. Nelson (Life Member; M 1899)

Director, Rosser & Russell, Ltd., 30 Conduit St.,

London W. 1, and •Fernacres, Fulmer near

Slough, Buckinghamshire, England.

RUSSELL, William A. (M 1921) (Council, 1934
39, 1941-42) Southwestern Zone Mgr., • Hoffman

Specialty Co., 1229 Union Ave., and 444 West

58th St., Kansas City, Mo.

RYAN, Harold J. (M 1940) Pres., • Harold J.

Ryan, Inc., 101 Park Ave., New York, and 461

81st St., Brooklyn, N. Y.

RYAN, Joseph B. (M 1938) Mech. Engr., Gentry

& Voskamp, Archts., 4 West 13th St., and •3860

81st St., Brooklyn, N. Y.

RYAN, Joseph B. (M 1938) Mech. Engr., Gentry & Voskamp, Archts., 4 West 13th St., and • 3860 Charlotte Ave., Kansas City, Mo.

RYAN, William F. (M 1940; A 1939; J 1933) Chief Engr., The Salina Supply Co., 302-304 N. Santa Fe, and • 310 W. Republic, Salina, Kan.

RYBOLT, Arthur L. (A 1938) Gen. Mgr., • The Rybolt Heater Co., Miller St., and 75 Samaritan Ave., Ashland, Ohio.

RYERSON. Herbert E. (M 1937) Frequency

RYERSON, Herbert E. (M. 1937) Executive Engr, • Cardox Corp., 801 Munsey Bldg., Wash-ington, D. C., and 6503 Chevy Chase, Md.

SABIN, Edward R. (M 1919) Pres., • E. R. Sabin & Co., 4710 Market St., Philadelphia, Pa., and

205 Page Ave., Allenhurst, N. J.

SABLE, Edward J. (M 1939) Treas.. • The T. O.

Murphy Co., 25-27 E. College St., and 246 W.

Loram St., Oberlin, Ohio.

SACHS, Sam* (J 1940) Research Asst. in Mech. Engrg., University of Illinois, 213 Mech. Engrg. Lab., Urbana, and •1335 Birchwood, Chicago,

SADLER, C. Boone (M 1928) Civil Engr., • Public Works Office, 11th Naval Dist., and 4828 Orchard Ave., San Diego, Calif.

SAENGER, Lester W. (J 1941) Mech. Engr., National Bearing Metals Corp., 4930 Manchester Ave., and • 5540 Milentz, St. Louis, Mo.

SAGINOR, S. V. (M 1939) Gen. Mgr., Davey Compressor Co., 266 N. Water St., and •308 Highland Ave., Kent, Ohio.

SALE, Francis B. (A 1939) Sales Engr., Preferred Utilities Co., 2032 Belmont Rd. Washington,

SALTER, Stanton W. (M 1942) Sales Engr., Engineering Equipment Co., Ltd., 620 Cathcart St., Montreal, and • 153 Hillcrest Ave, Montreal W., Que., Canada.

SALZER, Alfred R., Jr. (J 1940) Mech. Engr., Government Construction, and 1923 N. Claborne Ave., New Orleans, La.

SAMPSON, Edwin T. (A 1938) Mgr., Acoustical Dept., Atlas Asbestos Co., Ltd., 110 McGill St., Montreal, and 28 Finchley Rd., Hampstead, One Canada. Canada

- St., Montreal, and 28 Finchley Rd., Hampstead, Que., Canada.

 SAMUELS, Sidney (M 1941; A 1928; J 1925)
 Pres., Sidney Samuels, Inc., 146 West 99th St., and 245 West 107th St., New York, N. Y.

 SANBERN, E. N.* (M 1923) Asst. Secy., Hoffman Specialty Co., Inc., 1001 York St., and •5007 Boulevard Pl., Indianapolis, Ind.

 SANDER, Andy J. (M 1941) Engr., Chicago Master Steamfitters Assn., 228 N. LaSalle, and 7401 Kingston Ave., Chicago, Ill.

 SANDERS, Charles M., Jr. (J 1938) 2nd Lt., Signal Corps, Electronics Training Group, Section 116-B A. P. Area Ft. Monmouth, and Shrewsbury, N. J.

 SANDFORT, John F. (M 1942; J 1938) 1st Lt., F. A., B. O. C. No. 44, Ft. Sill, Okla., and •728 N. High St., Covington, Ohio.

 SANFORD, A. L. (M 1915) Mech. Engr., C. H. Johnston, Archts, & Engrs., 715 Empire Bank Bldg., and Gopher Ordnance Works, and •1037 Davern St., St. Paul, Minn.

 SANFORD, Sterling S.* (M 1930) Sales Engr., The Detroit Edison Co., 2000 Second Ave., and 1503 Seyburn Ave., Detroit, Mich.

Davern St., St. Paul, Minn.

SANFORD, Sterling S.* (M. 1930) Sales Engr.

The Detroit Edison Co., 2000 Second Ave., and 1503 Seyburn Ave., Detroit. Mich.

SAPP, Charles L. (A. 1936) Sales Mgr., Farquhar Furnace Co., and •620 N. Walnut St., Wilmington, Ohio.

SATLOW, Abraham (J. 1941) Engr., Semet-Solvay, 40 Rector St., New York, and •68-02 Utopia Pkwy., Flushing, L. I., N. Y.

SATTERLEE, H. A. (J. 1940) 2nd Lt., Ordnance Dept., 268th Ordnance Co., U. S. Army, Camp Maxey, Paris, Texas, and •1304 Crest Dr., Joplin, Mo.

SAUNDERS, Lawrence P. (M. 1933) (Council, 1941-42) Chief Engr., • Research Engrg., Harrison Radiator Div., General Motors Corp., and The Tuscarora Club. Lockport., N. Y.

SAURWEIN, George K. (M. 1938) Major (Plant Engr.), Ordnance, U. S. Army, Watertown Arsenal, Watertown, and •247 Slade St., Belmont, Mass.

SAWDON, Will M.* (Life Member; M. 1920) Prof. of Experimental Engrg., • Cornell University, College of Engineering, and 1018 E. State St., Ithaca, N. Y.

SAWHILL, R. V. (A. 1929) • Domestic Engineering, 110 East 42nd St., New York, and 115 Townsend Ave., Pelham Manor, N. Y.

SAWYER, Howard C. (A. 1942) Partner, Sawyer-Hare Furnace Co., 5736–12th St., and •14217 Mettatal Ave., Detroit, Mich.

SAXON, Ruben B. (M. 1941) Asst. Operating Supt., University of Nebraska, 42 and Dewey Ave., and •1206 South 43rd St., Omaha, Nebr.

SCANDRETT, Harold R. (M. 1941) Estimator, • Pacific Gas & Electric Co., 445 Sutter St., and 458–17th Ave., San Francisco, Calif.

SCHAPE, Harry C. (M. 1937) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mgr., Vernacio Co., 575 (M. 1947) Sales Mg

apolis, Minn.

apolis, Minn.

SCHAFER, Harry C. (M 1937) Sales Mgr., Iroquois Gas Corp., 45 Church St., Buffalo, and •197 Union St., Hamburg, N. Y.

SCHAUER, Robert A. (J 1942) Htg. and Air Cond. Engr., • Westinghouse Electric & Manufacturing Co., Raff Rd. S.W., and 3205 Engle Pl. S.W., Canton, Ohio.

SCHECHTER, Jack E. (A 1941; J 1937) Lt. (jg), U.S. N. R., and •c/o Brandt, 733 Howard Ave., Brooklyn, N. Y.

SCHEIDECKER, Daniel B. (A 1919) Pres.,

• Hunter-Clark Ventilating System Co., 2800
Cottage Grove Ave., and 4626 N. Kilbourn Ave.,

Chicago, Ill.

SCHERGER, Fred J. (A 1942) Const. Engr.,

• Mundet Cork Corp., 335 W. Jefferson Ave.,
Detroit, and 3754 Kipling Ave., Berkley, Mich.

SCHERNBECK, Fred H. (A 1930) Sales, • William Bros. Boiler & Manufacturing Co., Nicollet Island, and 5045 Portland Ave., Minneapolis, Minn.

island, and 5045 Fortland Ave., Minneapons, Minn.

SCHLICHTING, Walter G. (M 1932) Mgr., Air Cond. Dept., Clarage Fan Co., and •224 Fletcher Ave., Kalamazoo, Mich.

SCHLICK, Paul F. (A 1940) Col., C. A. C., U. S. Army, •216th Coast Artillery, Camp Haan, San Francisco, Calif., and 1410 Edgcumbe Rd., St. Paul, Minn.

SCHMIDT, Harry (M 1937) Factory Planning Engr., Western Electric Co., Specialty Products Div., 300 Central Ave., Kearny, and •57 Elm Rd., Caldwell, N. J.

SCHMIELER, Joseph B. (J 1938) Ventilation Engr., New York Shipbuilding Corp., Broadway St., and •453 Raritan St., Camden, N. J.

SCHNEIDER, Charles H. (J 1938) Branch Mgr., Ilg Electric Ventilating Co., 706 Professional Bldg., Pittsburgh, and 1697 Potomac Ave., Dormont, Puttsburgh, Pa.

SCHNELL, Robert H. (A 1938) Mech. Engrg.

Dormont, Pittsburgh, Pa.

SCHNELL, Robert H. (A 1938) Mech. Engrg.
Designer, Smith, Hinchmann & Grylls, Inc.,
Archts. and Engrs., Des Moines Ordnance Plant,
and •1617-33rd St., Des Moines, Iowa.

SCHOEN, Daniel D. (J 1942) Mech. Engr.,
Brooklyn Navy Yard. Brooklyn, and •272 S.
Broadway, Yonkers, N. Y.

SCHOENIJAHN, Robert P. (M 1919) Consulting
Engr. •305 Industrial Trust Bidg., and 719
Nottingham Rd., Wilmington, Del.

SCHOEPFUIN Paul H. (M 1920) Pres. • Niagara

Nottingham Rd., Wilmington Del.

SCHOEPFLIN, Paul H. (M 1920) Pres., • Niagara Blower Co., 6 East 45th St., New York, and 91 Valley Rd., Larchmont, N. Y.

SCHREIBER, Herbert W. (A 1937) Branch Mgr., • Johnson Service Co., 507 E. Michigan St., and 6187 Washington Circle, Milwaukee, Wis.

SCHROEDER, William R. (A 1939) Sales Engr., General Heating Corp., 3508 Elston Ave., Chicago, and • 207 Main St., Evanston, Ill.

SCHROTH, August H. (Life Member; M 1911) New York Mgr., Columbia Radiutor Co., Room 133, 101 Park Ave., New York, N. Y., and • 167 N. Grove St., P. O. Box 47, East Orange, N. J.

SCHUBERT, Arno G. (M 1939) Asst. Prof. Mech.

SCHUBERT, Arno G. (M. 1939) Asst. Prof. Mech. Engrg., Rensselaer Polytechnic Institute, Troy, and • 1301 Broadway, Watervilet, N. Y. SCHUETZ, Clyde C. (A. 1936) Research Engr., United States Gypsum Co., 1253 Diversey Pkwy., Chicago, and • 206 S. Edward St., Mt. Prospect,

SCHULEIN, Lars E. (A 1942) Engr., Economy Electric Manufacturing Co., 4634 West 21st Pl., Cicero, and • 617 Şouth 23rd Ave., Bellwood, III. SCHULTZ, Albert W. (M 1936) • Grinnell Co., Inc., 240 Seventh Ave. S., and 5204 France Ave. S., Minneapolis, Minn.

SCHULZ, Edward L. (A 1943; J 1937) Sales Engr., Carrier Corp., 20 N. Wacker Dr., Chicago, and •901 Maple Ave., Evanston, Ill.

and •901 Maple Ave., Evanston, III. SCHULZ, Howard I. (A 1915) Mgr., • Crane Co., 1223 W. Broad St., and 1600 Monument Ave., Richmond, Va. SCHULZE, Ben H. (M 1921) Eastern and Government Sales Mgr., • Kewanee Boiler Corp., 214 Burr Bldg., Washington, D. C., and R. D. I. Pipersville, Pa. SCHUEMAN John A. Jr. (M 1936, J 1935)

SCHURMAN, John A., Jr. (M 1936; J 1935)
Sales Engr., Vork Ice Machinery Corp., 2700
Washington Ave., Cleveland, and •16307 Lakewood Heights Blvd., Lakewood, Ohio.
SCHUSTER, Paul H. (A 1942) Chief Htg. Inspector (War Dept.), c/o Post Engrs., Camp Chaffee, and •110 North 20th St., Ft. Smith.

SCHWARTZ, Jacob (A 1936; J 1929) Contractor.

Samuel Schwartz & Son, Inc., 30 West 27th
St., Bayonne, and 12 Van Houten Ave., Jersey
City, N. J.

SCHWARTZ, Maurice (A 1938) Supvr., Queens-borough Gas & Electric Co., and 780 Caffrey Ave., Far Rockaway, L. I., N. Y.

SCOFIELD, Paul C. (A 1937; J 1933) Sr. Design Engr., Lockheed Aircraft Corp., Burbank, and •425 E. Randolph, Glendale, Calif. SCOTT, George M. (Life Member; M 1915) Pres., Child & Scott-Donohue, Inc., 153 East 38th St., New York, and •24 Bramback Ave., Scarsdale, N. Y.

N. Y.
SCOTT, Roy M. (A 1941) Mgr., Roy M. Scott,
•323 Tenth St., and 35 Fairfield Way. San
Francisco, Calif.
SCOTT, Willaim P., Jr. (M 1941; J 1939) VicePres., Scott Co., 243 Minna St., and •255 Santa
Paula Ave., San Francisco, Calif.
SEARLE, William J., Jr. (M 1938) Air Conditioning Engr., 110 Woodside Ave., Narberth,
Pa

SECKINGER, Benjamin J., Jr. (M 1941) Vice-Pres., • Seckinger Sons Co., Inc., 180 Forsyth St. S.W., and 1110 Lanier Blvd. N.E., Atlanta,

SEEBER, R. R.* (M 1934) Prof. Mech. Engrg. Dept., Michigan College of Mining & Technology, Houghton, Mich.

SEELBACH, Herman, Jr. (A 1937) Dist. Mgr.,

• Minneapolis-Honeywell Regulator Co., 45
Allen St., Buffalo, and 186 Union St., Hamburg,
N. Y.

SEELBACH, William R. (A 1942) Pres., • Equipment Sales, Inc., 800 Erie County Bank Bldg., Buffalo, and Windover, Hamburg, N. Y.

Buffalo, and Windover, Hamburg, N. Y.
SEELERT, Edward H. (A 1935) Secy-Treas,
McQuay Inc., 1600 Broadway N.E., and • 2927
Ulysses St. N.E., Minneapolis, Minn.
SEELEY, Lauren E.* (M 1930) Assoc. Prof. of
Mech. Engrg., • Mason Laboratory, Yale University, New Haven, and 1856 Whitney Ave.,
Hamden, Conn.
SEELIG, Lester (M 1925) Development Engr.,
U. S. Rubber Co., 6600 E. Jefferson Ave., and
• 17206 Pennington Dr., Detroit, Mich.
SEGLE, Thomas L. (A 1942) Sales Engr., Wells
& Wade, Inc., and • 819 S. Chelan Ave., Wenatchee, Wash.
SEITER, J. Earl* (M 1928) Asst. Mgr. of New

& Wade, Inc., and •819 S. Chelan Ave., Wenatchee, Wash.

SEITER, J. Earl* (M 1928) Asst. Mgr. of New Business Dept., • Consolidated Gas, Electric Light & Power Co., Lexington Bldg., Room 500, and 7117 Bristol Rd., Stoneleigh, Baltimore, Md. SELDEN, Karl W., Jr. (A 1942) Dist. Repr., • Minneapolis-Honeywell Regulator Co., 701 Builders Bldg., and 232 S. Torrence St., Charlotte, N. C.

SELF, V. Floyd (M 1941) Sales Engr., • Anemostat Corporation of America, 10 East 39th St., New York, and 615 Harrison Ave., Harrison, N. V.

SELIG, Ernest T., Jr. (M 1936) Chief Mech. Engr., • Black & Veatch, Box 12, Pando, and Glenwood Springs, Colo.

SELLMAN, Nils T. (M 1922) Asst. Vice-Pres., • Consolidated Edison Company of New York, Inc., 4 Irving Pl., New York, and 58 Walworth Ave., Scarsdale, N. Y.

SELTZER, Paul A. (A 1943; J 1938) Engr., Bryant Air Conditioning Corp., 915 N. Front St., Philadelphia, and • 154 E. Marshall Rd., Lansdowne, Pa.

Lansdowne, Pa.

Lansdowne, Pa.

SEMEL, Edward (A 1943; J 1941) Htg. Engr.,
Huffman Wolfe Co., 4660 North 18th St., and
6029 Ellsworth St., Philadelphia, Pa.

SEVERNS, William H.* (M 1933) Prof. Mech.
Engrg., © University of Illinois, and 609 Indiana
Ave., Urbana, Ill.

SEYFANG, William G. (M 1939) Managing
Engr., Div. of Plants, © Board of Education, 814
City Hall, and 116 Dorchester Rd., Buffalo,
N. Y.

SEYMOUR, James E. (A 1937) Prop., Lee & Scymour, 346 Russell St., and 208 Lakewood Blvd., Madison, Wis.

SGAMBATI, Anthony P. (S 1939) 3 Spencer St., Youngstown, Ohio.

SHAER, I. Ernest (A 1934) Treas. and Sales Mgr.,
Shaer & Turner Engineering Co., 88 Broad St.,
Boston, and 154 Seaver St., Roxbury, Mass.

SHAFER, W. P., Jr. (J 1941; S 1939) Asst. Engr., U. S. Engineers, Ft. Sam Houston, and • 210 Encino Ave., San Antonio, Texas. SHAFFER, Chester E. (M 1937) Research Engr., • Koppers Co., Kearny, and 645 Belgrove Dr., Arlington, N. J. SHANKLIN, Arthur P. (M 1929) Vice-Pres. and Regional Mgr., • Carrier Corp., 20 N. Wacker Dr., Chicago, and 45 Green Bay Rd., Winnetka, III.

SHANKLIN, John A. (M 1928) Vice-Pres. and Treas., • West Virginia Heating & Plumbing Co., 233 Hale St., and 1507 Quarrier St., Charleston, W. Va.

233 Hale St., and 1507 Quarrier St., Charleston, W. Va.
W. Va.
SHAPIRO, Charles A. (A 1943; J 1938) Lt.,
U. S. N. R., Missouri Valley Bridge & Iron Co.,
Evansville, Ind.
SHAPIRO, Morris (M 1941) Sr. Mech. Engr.,
Federal Public Housing Authority, Tech. Div.,
and • 6323 Luzon Ave. N.W., Washington, D. C.
SHARP, Henry C. (M 1935) Product Application
Engr., • The Herman Nelson Corp., 6625 Delman
Blvd., St. Louis, and 7442 MeIrose Ave., University City, Mo.
SHARP, John R. (A 1937) Major, C. E., • c/o
104th Engr. Bn., A. P. O. 44, Ft. Lewis, Wash.,
and Maple St., Haworth, N. J.
SHAW, Burton E.* (A 1936; J 1934) Research
Chief. • Penn Electric Switch Co., Goshen, and

Chief, • Penn Electric Switch Co., Goshen, and Bristol, Ind.

SHAW, John A. (M 1938) Gen. Elec. Engr.,
• Canadian Pacific Railway Co., Room 900, Windsor St. Station, Montreal, and 448 Lansdowne Ave., Westmount, P. Q., Canada.

SHAW, N. J. H. (M 1927; J 1925) Sales Engr., Barnes & Jones, Inc., 128 Brookside Ave., Jamaica Plan, and • 37 Benjamin Rd., Arlington, Mass.

SHEA, Michael B. (M 1921) Registered Engr., Sales Dept., • American Radiator & Standard

Sales Dept., American Radiator & Standard Sanitary Corp., 1426 Maccabee Bldg., and 3214 Carter St., Detroit, Mich.

SHEARER, William A., Jr. (J 1941; S 1939) 2nd Lt., Engr. Corps., Fort Leonard Wood, Mo., and 407 Sixth Ave., New Kensington, Pa.

SHEARS, Matthew W. (M 1922) Engr., C. A. Dunham Co., Ltd., 1523 Davenport Rd., and 39 Sylvan Ave., Toronto, Ont., Canada.

SHEFFIELD, Raymond A. (M 1937) Owner, Air Conditioning Engineering Co., 90 Memorial Dr., Cambridge, and 92 Governor Winthrop Rd., Somerville, Mass.

SHEFFLER, Morris (M 1921) Partner, Sheffler-Gross Co., Inc., Drexel Bldg., Philadelphia, and 419 Chapel Rd., Melrose Park, Montgomery Co., Pa.

Pa.
SHELBY, Alexander W. (M 1942) Partner of Firm • Shelby-Skipwith, Inc., 678 Union Ave., and 1748 Vinton, Memphis, Tenn.
SHELDON, Nelson E. (M 1927) Branch Mgr., • Carrier Corp., S. Geddes St., Syracuse, and 41 Lanark Crescent, Rochester, N. Y.
SHELDON, Robert W. (A 1942) Sales Engr., • The Lake Shore Gas Co., 226 Progress Pl., and 1512 East 47th St., Ashtabula, Ohio.
SHELDON William D. Jr. (A 1936: J 1934)

SHELDON, William D., Jr. (A 1936; J 1934) Chief Engr., Sheldon's, Ltd., • Cedar St., Galt, Ont., Canada.

Ont., Canada.

SHELLEY, Earle D. (M 1937) Pres., • Glanz & Killian Co., 1761 W. Forest Ave., Detroit, and Box 243, Birmingham, Mich.

SHELL, Jack (M 1940) Engr., Air Cond. Dept., Jefferson Amusement Co., Box 3191, and • 2575 11th St. Rd., Beaumont, Texas.

SHELLDROP, Tonn F. (M 1942) Design Engr., Parsons, Klapp, Brinckerhoff & Douglas, 142 Maiden Lane, New York, and • 8000 Fourth Ave., Brooklyn, N. Y.

SHEPARD, Carl R. (M 1941) Inspection Engr. (M.E.), U. S. Public Bldgs. Admn., 1108 Latham Square Bldg., and • 438 Rich St., Oakland, Calif. SHEPARD, John deB. (M 1937: J 1929) Air

SHEPARD, John deB. (M 1937; J 1929) Air Cond. Engr., • Consolidated Gas, Electric Light & Power Co., Lexington Bldg., Room 505, and 4823 Keswick Rd., Baltimore, Md.

SHEPPARD, Frank A. (M 1918) Sales, • Johnson Service Co., 1031 Wyandotte ., and 27 East 70th St., Kansas City. Mo.
SHEPPARD, Wallace K. (M 1942) Supvr. of Htg. Sales • The Peoples Natural Gas Co., 545 William Penn Way, and 6420 Darlington Rd.,

William Fenn Way, and 6420 Darlington Rd., Pittsburgh, Pa. SHEPPERD, Parker D. (A 1940; J 1938) Branch Mgr., Johnson Service Co., 608 Masonic Temple Bldg., and 17 Metairie Court, New Orleans, La.

Temple Bldg., and 17 Metaire Court, New Orleans, La.

SHERBROOKE, Walter A. (M 1938) Grinnell Co., 29-50 Northern Blvd., Long Island City, and • 92 Twombly Ave., Bay Terrace, Staten Island, N. Y.

SHERET, Andrew (Life Member; M 1929; A 1925) Pres., • Andrew Sheret, Ltd., 1114 Blanshard St., and 1030 St. Charles St., Victoria, B. C., Canada. SHERMAN, Ralph A.* (M 1933) Supvr., Fuels Div., • Battelle Memorial Institute, 505 W. King Ave., and 1893 Coventry Rd., Columbus, Ohio, SHERMAN, Victor L. (M 1935) Consulting Mech. Engr., and • 643 Hillside Ave., Glen Ellyn, Ill.

SHERMAN, W. P. (M 1937) Chief Engr., • T. Louis Murray Co., 1807 Main St., and 1802 Pendleton St., Columbia, S. C.

SHERWOOD, Laurence T. (M 1937) Glass Technologist, • Pennsylvania Wire Glass Co., Fayette Co., Dunbar, and 11 Angle St., Connellsville, Pa.

ville. Pa.

ville, Pa.

SHIRE, A. C. (M 1942) Technical Dir., • Federal Public Housing Authority, Longfellow Bldg., and 3015 Dumbarton Ave., Washington, D. C. SHORE, David* (J 1938) Htg. and Vent. Design, New York Shipbuilding Corp., Camden, N. J., and •4101 Spruce St., Apt. 412, Philadelphia,

SHORT, William W. (A 1942) Sales Engr.,

• Anemostat Corporation of America, 10 East
39th St., and 541 West 113th St., New York,

SHROCK, John H. (M 1924) Vice-Pres., New York Blower Co., and • 2026 Indiana Ave., LaPorte, Ind.

SHULTZ, Earle (A 1919) Vice-Pres., • Illinois Maintenance Co., 72 W. Adams St., and 5555 Sheridan Rd., Chicago, Ill.

SHUMAN, Laurence (M 1939) Mech. Engr., Federal Public Housing Authority, Region III, 19th and D St., Washington, D. C., and • 8367 16th St., Silver Spring, Md.

SIEGEL, Daniel E. (J 1940; S 1938) Giffels & Vallet, Inc., 1000 Marquette Bldg., and • 2980 Elmhurst, Detroit, Mich.

SIEGEL, Roy C (4 1939) Owner a International

SIEGEL, Roy C. (A 1939) Owner • International Chimney Co., 303 Curtiss Bldg., and 243 Nor-walk Ave., Buffalo, N. Y.

SIEMON, Herbert B. (M 1942) Branch Mgr., Holland Furnace Co., 604 Cherokee, Leaven-worth, and •2604 West 68th St., Rt. No. 2, Mission, Kan.

SIGMUND, Raiph W. (M 1932) Dist. Mgr.,

B. F. Sturtevant Co., 913 Provident Bank
Bldg., and 130 Wm. H. Taft Rd., Cincinnati, Ohio.

SILBERSTEIN, Bernard G. (M 1937) Dist. Mgr., • Ilg Electric Ventilating Co., 622 Broadway, and 814 E. Mitchell Ave., Cincinnati, Ohios. SILVERA, Americo (A 1948; J 1939) Engr., Carrier Corp., International Div., Syracuse,

N. Y.

SIMKIN, Milton (A 1942; J 1936; S 1933) Engr.,
Buensod-Stacey Air Conditioning, Inc., 60 East
42nd St., New York, N. Y., and •111 Brighton
Avc., Perth-Amboy, N. J.

SIMMS, Herman (J 1942) Draftsman (Head of
Drafting Dept.), York Ice Machinery Corp., 412
Houston St. N.E., and •863 Ponce de Leon Avc.
N. F. Atlanta (S.

N.E., Atlanta, Ga.

SIMONS, Byron C. (M 1938) Branch Mgr.,

• Minneapolis-Honeywell Regulator Co., 3033
Locust Blyd., St. Louis, and 20 Orchard Ave., Webster Groves, Mo.

SIMONS, Edward W. (M 1938) Chief Mech. Engr., Redwood Manufacturers Co., and Caspar Lumber Co., 1600 Hobart Bldg., and •40 Villa Terrace, San Francisco, Calif.

SIMONSON, George M. (M 1937) Consulting Engr., •625 Market St., Room 309, San Francisco, and 20 Lorita Ave., Piedmont, Calif.

SIMOSON, G. L. (M 1941) Vice-Pres., Gen. Mgr., •Pittsburgh Lectrodryer Corp., P. O. Box 1766, Pittsburgh, and 317 Pine Rd., Edgeworth, Pa. SIMPSON, Robert L. (J 1941) Lt. (1g), U.S.N.R., and •9 Sands St., Waterbury, Conn.

SIMPSON, William K. (M 1919) Engrg. Consultant, 9 Sands St., Waterbury, Conn.

SKAGERBERG, Rutcher (M 1924; J 1921) Sr. Mech. Engr., Federal Public Housing Authority, Longfellow Bldg., Washington, D. C., and •420 Tyler Pl., Alexandria, Va.

Longfellow Bldg., Washington, D. C., and 420 Tyler Pl., Alexandria, Va. SKINNER, Alton, Jr. (J 1940) Htg. and Air Cond. Engr., • J. R. Bagwell Co., 320 Holland St., and 1202 Vickers Ave., Durham, N. C. SKINNER, Henry W. (M 1920) Mech. Engr., Austin Co., 4816 Dexter, Fort Worth, Texas. SLAWSON, Lloyd E. (A 1938) Mgr., Temperature Control Dept., • Barber-Colman Co., 3030 Euclid Ave., Cleveland, Ohio, and Rockford, Ill. SLEMMONS, John D. (M 1937) Mgr. Sales Office, • American Blower Corp., 666 Marion Rd., Columbus and Rte. 2, Wilson Rd., Worthington, Ohio.

Onio.
SLOANE, David J. (J 1943; S 1939) U. S. Army, 56th General Hospital, Fort Jackson, S. C. SMAK, Julius R. (A 1934) Fletcher-Thompson, Inc. Architects and Engrs., 211 State St., Bridgeport, and • 160 Morehoust Highway, Fairfield Cons.

field, Conn.

SMALL, Bartlett R. (M 1938; A 1937; J 1932)

Staff Engr.. • Aluminum Company of America,
801 Gulf Bldg., and 34 Hillman St. (10), Pitts-

Staff Engr., • Aluminum Company of America, 801 Gulf Bldg., and 34 Hillman St. (10), Pittsburgh, Pa.

SMALL, Ray A. (M 1941) Mech. Engr., • Dept. of Agriculture, 28 V St. N.W. Washington, D. C., and 227 N. Third St., Lewisburg, Pa.

SMILES, Roy H. (M 1941) Dealer Supvr, • Carrier Corp., 12 South 12th St., and 5936 N. Seventh St., Philadelphia, Pa.

SMITH, Clifford F., Jr. (J 1943; S 1941) Ensign, Planning Div., Puget Sound Navy Yard, and 100 Anaha Ave., Bremerton, Wash.

SMITH, David J. (J 1941) Sales Engr., • Walter H. Eagan Co., 2336 Fairmount Ave., Philadelphia, and 524 Mercer Rd., Merion Park, Pa.

SMITH, Elmer G.* (M 1920) Prof. of Physics, • Agricultural and Mechancial College of Texas. Dept. of Physics, and 100 Fairview Ave., College Station, Texas.

SMITH, Gard W. (M 1927) Sales Engr., Premier Furnace Co., 1131 Cuilford St., Huntington, Ind.

SMITH, Gorge E. (A 1942) Supvr. Engr., Ministry of Works & Planning, 67/68 Jermyn St., No. 1 West Ave., Pinner, Middlesex, England.

SMITH, Gerald E. (J 1938) Royal Canadian Engineers • 52 Parkway Ave., Toronto, Ont., Canada.

Canada.

SMITH, Harold C. (M 1941) Partner • The Smith-White Co., 1102 Commerce Trust Bldg..

smith-White Co., 1102 Commerce Trust Bidg., and 5840 Olive St. Kansas City, Mo.

SMITH, Milton S. (M 1919) Vice-Pres. and Gen. Mgr.,

Buensod-Stacey Air Conditioning, Inc., 60 East 42nd St., New York, N. Y., and 13 N. Terrace, Maplewood, N. J.

SMITH, Nelson J. (M 1938) Air Cond. Design Engr.,

Frigidaire Div., General Motors Sales Corp., Taylor and Monument Ave., and 1332 Riverview Dayton Ohio.

SMITH, Roger C. (A 1940) Asst. to Branch Engr., York Ice Machinery Corp., 119 S. Eleventh St., St. Louis, and •7040 Tulane Ave., University City, Mo.

SMITH, Roger K. (M 1942) Instructor in Mech. Engrg., • Iowa State College, Mech. Engrg. Dept., and 2031 Country Club Blvd., Ames.

SMITH, Sidney T. (J 1941) Htg. Engr., Sid Smith & Co., 411 W. Fifth St., and ● 609 Moir. Waterloo, Iowa.

SMITH, Stuart (A 1936) Asst. Mgr., American Radiator & Standard Sanitary Corp., 1747 Connecticut Avc., Washington, D. C., and •6922 Fairfax Rd., Bethesda, Md.
SMITH, Walter H. (M 1939) Chief Engr., • The T. Eaton Co., Ltd., 10 Louisa St., and 7 Kingscourt Dr., Toronto, Ont., Canada.
SMITH, Wilbur F. (M 1920) Consulting Engr., W. M. Anderson Co., 600 Schuykill Avc., Philadelphia, and •709 Braeburn Lane, Penn Valley, Narberth P. O., Pa.
SMITH, William O. (A 1937) Pres., • Smith Automatic Heat Service, Inc., 19250 John R St., Detroit, and 7 Sylvan Rd., Pleasant Ridge, Mich.

Mich.

SMITH, William P., Jr. (J 1942) Estimator and Engr., • The A. Z. Price Co., Inc., 225 Piedmont Bldg., and 1808 Kenwood Ave., Charlotte, N. C. SMOOT, Charles B. (M 1942) Chief Engr. of Southern Region • Carrier Corp., 348 Peachtree St. N.E., and 892 Adair Ave. N.E., Atlanta, Ga. SMOOT, T. H. (M 1935) • Room 108, Maryland Hall, Johns Hopkins University, and 1302 Southview Rd., Baltimore, Md.

SMYERS, Edward C. (A 1933) Sales Engr., Barber-Colman Controls, 1013 Penn Ave., Wilkinsburg, and • 148 Jamaica Ave., West View, Pittsburgh, Pa.

Wikinsburg, and 148 Jamaica Ave., West View, Pittsburgh, Pa. SNAVELY, A. Bowman (M 1937) Chief Engr., Hershey Chocolate Corp., Hershey, Pa. SNAVELY, Earl R. (M 1937) Sales Mgr., • Instrument Div., Thomas A. Edison, Inc., West Orange, and Parkway Dr., R. F. D. No. 1, Clark,

SŃÖŎK, Alfred H. (A 1940) Mfrs. Agent, Wayland, Mich.

land, Mich.
SNYDER, Edwin F., Jr. (J 1940) 2nd Lt., C. of
E., U. S. Army, U. S. Engr. Dept., Keesler Field,
Miss., and •308 Courtland St., Dowagiac, Mich.
SNYDER, Jay W. (M 1917) Member of Firm.
•Snyder & McLean, 2214 Penobscot Bldg., and

Snyder & McLean, 2214 Penobscot Bidg., and S987 Martindale Ave., Detroit, Mich. SNYMAN, G. C. (A 1941) Executive Co-ordinator, Bell Aircraft Corp., Niagara Falls Plant, and Apt. 7, Red Coach Inn., Niagara Falls, N. Y. SOBL, Frank (S 1939) Private, ◆Co. A, 101 M. P. Bn., Fort Dix, N. J., and 115 Post Ave., New York, N. Y. SOCKWELL, Charles, Jr. (A 1942) Partner, Sockwell Co., 156 Rogers St. N.E., and €2562 Boulevard Dr. N.E., Atlanta, Ga. SOCKWELL, Charles, Sr. (M 1942) Partner, ◆Sockwell Co., 156 Rogers St. N.E., Atlanta, and 5447 Roswell Rd., Dunwoody, Ga. SOCKWELL, Tyrus R. (A 1942) Partner, ◆Sockwell Co., 156 Rogers St. N.E., atlanta, and 5447 Roswell Rd., Dunwoody, Ga. SOCKWELL, Tyrus R. (A 1942) Partner, ◆Sockwell Co., 156 Rogers St. N.E., and 5385 Peachtree-Dunwoody Rd., Rtc. No. 6, Atlanta, Ga.

Ga.

SODEMANN, William C. B. (M 1919) Pres.,
Sodemann Heat & Power Co., 2306 Delmar
Blvd., St. Louis, and 7542 Teasdale Ave., University City, Mo.
SOLSTAD, Lester L. (J 1936) Htg. Engr., Austin
Sheet Metal Works, 5109 W. Chicago, and • 5348
W. Potomac, Chicago, Ill.

w. Fotomac, Chicago, Ill.

SOMMERFIELD, Sumner S. (A 1941; J 1936)
4106 N. Keystone Ave., Chicago, Ill.

SOMMERS, William J. (M 1937) Sales Repr.,

• Ilg Electric Ventilating Co., 505 Delaware
Ave., Buffalo, and 235 Hartford Ave., Kenmore,
N. Y.

SOMERS, William S. (M 1938; A 1928; J 1926) Vice-Pres. in charge of Production, Lamneck Products, Inc., and •113 Kenwood Dr, Middletown, Ohio.

SOPER, Horace A. (M 1916) Pres., • American Foundry & Furnace Co., Washington at McClun, and 1122 E Monroe St., Bloomington, Ill.

SOULE, John P. (J 1942) Mech. Engr., Federal Shipbuilding & Drydock Co, 744 Broad St., Newark, and • Gordon Rd., Essex Fells, N. J.

SOULE, Lawrence C.* (Life Member; M 1908) Secv. and Consulting Engr., Aerofin Corp., Syracuse, N. Y., and Gordon and Stewart Rds., Essex Fells, N. J.

SOUTHMAYD, R. T. (J 1936) Sales, American Blower Corp., 611 Akron Savings & Loan Bldg, Akron, Ohio.

SPALL, Edward G. (A 1939) Sales Engr., Powerlite Devices, Ltd., Penn Electric Switch Div., 171 John St., and • 291 Windermere Ave., Toronto, Ont., Canada.

SPARKS, James D. (A 1937) Northwest Repr., Ilg Electric Ventilating Co., 7331 W. Green Lake Way, Seattle, Wash.

SPECKMAN, Charles H. (Life Member; M 1918) • Consulting Htg. and Vtg. Engr., 482 Bourse Bldg., and 1217 S. Fourth, Philadelphia, Pa.

SPELLER, Frank N.* (Life Member; M 1908) Metallurgical Consultant, 6411 Darlington Rd., Pittsburgh, Pa.

SPENCE, Morton R. (A 1942; J 1934) Vice-Pres., • Rundle & Spence Manufacturing Co., 445 N. Fourth St., and 709 E. Lexington Blvd., Milwaukee, Wis.

vaukee, Wis.

SPENCE, Robert A. (J 1937) Lt., Ordnance Dept., U. S. Army, Boston Ordnance Dist., 140 Federal St., Boston, and •33 Barnard Rd., Belmont,

Mass.
SPENCER, Roland M. (A 1940; J 1984) Priorities
Mgr., The Powers Regulator Co., 2720 Greenview Ave., and •7315 Lunt Ave., Chicago, Ill.
SPENCER, Warner E. (A 1938) Repr., National
Radiator Co., Inc., 220 Delaware Ave., Buffalo,

SPENCER, Warner E. (A 1935) Repr., National Radiator Co., Inc., 220 Delaware Ave., Buffalo, N. Y.

SPIELMANN, Gordon P. (A 1931; J 1923) Owner, Harrison-Spielmann Co., 480 Milwaukee Ave., Chicago, and 730 N. Prospect Ave., Park Ridge, Ill.

SPIETH, Benjamin (M 1941) Chief Engr., Modine Manufacturing Co., and 400 Harvey Dr., Racine, Wis.

SPITZLEY, Joseph H. (J 1939) Engr., R. L. Spitzley Heating Co., 1200 W. Fort St., and 1415 Parker Ave., Detroit, Mich.

SPITZLEY, R. L. (M 1920) Pres., R. L. Spitzley Heating Co., 1200 W. Fort St., Detroit, and 26 Renaud Rd., Grosse Pointe Shores, Mich.

SPOERR, Frank F. (A 1942; J 1937) Carrier Corp., Marine Div., Chrysler Bldg., New York, and *9815-182nd Pl., Jamaica, L. I., N. Y.

SPOFFORTH, Walter (M 1930) Chief of Mech. Services, Federal Penitentiary, McNeil Island, and 615 N. Ainsworth, Tacoma, Wash.

SPROUT, John I. (A 1941) Sales, Ray Oil Burner Co., 401 Bernal Ave., and 10 Parker Ave., San Francisco, Calif.

SPROULL, Howard E. (M 1920) Div. Sales Mgr., American Blower Co., 1005-6 American Bldg., and 3588 Raymar Dr., Cincinnati, Ohio.

SPURGEON, Joseph H. (M 1924) Mfrs. Agent, Spurgeon Co., 5050 Joy Rd., and 17215 Pennington Dr., Detroit, Mich.

SPURNEY, Felix E. (A 1938) Engr., Turner Construction Co., and 28 W. Baltimore St. Kensington, Md.

STACEY, Alfred E., Jr.* (M 1914) (Council, 1941-42) Comdr., U. S. Navy, and 358 Wootton Rd., Essex Fells, N. J.

STACK, Arthur E. (A 1935) Asst. Mgr. of Utilization Dept., Washington Cas A 7911

STACK, Arthur E. (A 1935) Asst. Mgr. of Utilization Dept., Washington Gas Light Co., 11th and H Sts. N.W., Washington, D. C., and •7911 Chicago Ave., Silver Spring, Md.

STACY, L. David (A 1936) Sales Engr., Ilg Electric Ventilating Co, 222 N. LaSalle St., Chicago, and •303 Elmhurst Rd., Prospect Chicago, as Heights, Ill.

STACY, Stanley C. (M 1931) Mech. Engr.,

Board of Education, 13 S. Fitzhugh St., and
340 Monroe Ave., Rochester, N. Y.

STAFFORD, J. Fuller (A 1938) Owner, 519 N. Snelling Ave., St. Paul, and •4545-18th Ave. S., Minneapolis, Minn.
STAFFORD, Thomas D. (A 1937) Vice-Pres.-Mgr., • Alexander-Stafford Corp., 1 Ionia Ave. N.W., and 954 Ogden Ave. S.E., Grand Rapids, Makh. Mich.

STAHL, Walter A. (M 1938) Properties Mgr., Montgomery Ward & Co., 618 W. Chicago Ave., Chicago, and • 2504 Harrison St., Evanston, Ill.

STAMMER, Edward L. (Life Member; M 1919) Supt. Htg. and Vtg. Repairs, St. Louis Board of Education, Board of Education Bldg., and • 4430 Tennessee Ave., St. Louis, Mo. STANDRING, Ronald A. (A 1942; J 1938) Htg. Engr., • Gurney Foundry Co., Ltd., 100 Principal St., Ville St. Laurent de Montreal, and 2358 Leclaire St., Maisonneuve, Montreal, Que., Canada Canada

Canada. STANGER, R. B. (M 1920) Prop., • Robinson & Stanger, Empire Bldg., Pittsburgh, and Middle Rd., Glenshaw, Pa. STANGLE, William H. (M 1940) Servel, Inc., Evansville, Ind., and • 255 Benita, Youngstown, Obio

Ohio.

STANLEY, Robert L. (M 1938) Engr., Factory Repr., Pacific Gas Radiator Co., 7631 Rose-

Repr., • Pacific Gas Radiator Co., 7631 Roseberry Ave., Huntington Park, and 2518 Dearborn Dr., Los Angeles, Calif.

STANTON, Harold W. (M 1938) Commercial Sales Dir., • Iowa-Nebraska Light & Power Co., and 2100 Ryons St., Lincoln, Nebr.

STARK, W. E.* (M 1926) (Council, 1932-36)
Mgr. Stoker Div., The Bryant Heater Co., 17825
St. Clair Ave., Cleveland, and • 1875 Rosemont Rd., East Cleveland, Olio.

STASZESKY, Francis M. (J 1942; S 1938)
Student (Co-Op), Boston Edison Co., • Mass. Inst. of Tech. Dorms, Cambridge, Mass. (from October to June), and 10 Roselawn Ave, Roselle, Wilmington, Del.

STECKHAN, Louis (M 1928; J 1926) Sales Engr., • Crane Co., 30 South 16th St., and 3240 Liberty St., St. Louis, Mo.

St., St. Louis, Mo.
STEEL, R. Justin (A 1938) Lt., U. S. N. R.,

Bureau of Ships, Navy Dept., Washington,
D. C., and 346 S. College Ave., Newark, Del.
STEELE, J. B. (M 1932) Chief Engr., Winnipeg
School Board, Ellen and William Ave., Winnipeg,
and 184 Waterloo St., Riverheights, Winnipeg,
Man., Canada.
STEFFNER. Edward F. (A 1937: J 1934) Htg.

Man., Canada.

STEFFNER, Edward F. (A 1937; J 1934) Htg.
Engr., The Henry Furnace & Foundry Co., 3471
East 49th St., Cleveland, and •1429 East 133rd
St., East Cleveland, Ohio.

STEGGALL, Howard B. (M 1942; A 1934)
Branch Mgr., U. S. Radiator Corp., 941 Behan
St., and •1166 Murray Hill Ave., Pittsburgh, Pa.

STEIN, Jerome (J 1942; S 1940) Secy., Torrington
Supply Co., Inc., 125 Maple St., and •756
Waterville St., Waterbury, Conn.

STEINHORST, T. F. (M 1919) Pres., Emil
Steinhorst & Sons, Inc., 612 South St., Utica,
N. Y.

Steinhorst & Sons, Inc., 612 South St., Utica, N. Y.

STEINKE, Bernard J. (J 1940; S 1937) Mech. Design Engr., U. S. Navy Yard, Public Works Div., Brooklyn, N. Y., and • Railroad Ave., River Edge, N. J.

STEINMETZ, C. W. A. (M 1934) Office Mgr., • Sales Engineering & Business Management, American Blower Corp., 249 High St., Newark, and 50 Oakwood Ave., Bogota, N. J.

STELLWAGEN, Frank G. (A 1937) Sales Engr., 8637-77th St., Woodhaven, L. I., N. Y.

ST. LAURENT, Guy (A 1942) Plbg, and Htg. Contr., • Hector Groulx, Engr., 1638 Notre Dame St. W., and 8381 Drolet St., Montreal, Oue., Canada.

STE-MARIE, Gaston P. (M 1930) Examiner Technician, • Provincial Government, 97 E. Notre Dame St., and 5329 Duquette Ave., N. D. G., Montreal, Que., Canada.

STEMPEL, Edward H. (M 1942) Chief Design Engr., Young Radiator Co., 709 Marquette St., and • 1001 Lathrop Ave., Racine, Wis.

STENCEL, Reinhold Arrhur (M 1938) Chief Engr., Canadian Ice Machine Co., Ltd., 65 Villiers St., and • 540 Egiinton Ave. W., Toronto, Ont., Canada.

Villers St., and • 540 Eginton Ave. W., 1615At., Ont., Canada.

STENCEL, Frank J. (A 1935) Secy., • R. F. Stengel & Son, 76-80 Rosehill Pl., Irvington, and 39 Walnut Ave., Milburn, N. J.

STEPHENSON, James R. (A 1940) Partner, • J. R. Stephenson & M. M. Perry, 311 Bank of Nova Scotia Bidg., and 647 Strathcona St., Winnipeg, Man., Canada.

STEPHENSON, K. A. (M 1941) Secy.-Treas..

• Stephenson Co., 14 Harris St. N.W., and 923
St. Charles Ave. N.E., Atlanta, Ga.

STEPHENSON, Lewis A. (M 1917) Dist. Mgr.,

• The Powers Regulator Co., 409 East 13th St.,

and 801 West 57th Terrace, Kansas City, Mo.

STEPMER, Clarence J. (M 1936) Engr., Crane

Co., 836 S. Michigan Ave., and •7839 Clyde

Ave., Chicago, Ill.

STERN, Edward J. (A 1941) Dist. Mgr., • Arm
strong Cork Co., 701 Burt Bidg., and 223 E.

Davis St., Dallas. Texas.

STERNBERG, Edwin (A 1932; J 1931) 16 East

98th St., New York, N. Y.

STERNE, C. M. (A 1934) Lt. Comdr., U. S. N. R.,

Bureau of Ships, Navy Dept., Washington, D. C.

STERNER, Douglas S. (M 1941; A 1940; J 1938;

S 1936) Capt., 282nd Q. M. Corps, and •1065

Springdale Rd. N.E., Atlanta, Ga.

STETSON, Lawrence R. (M 1913) Engr.

STETSON, Lawrence R. (M 1913) Engr.,

• McMurrer Co., 303 Congress St., Boston, and
35 Bradfield Ave., Roselindale, Mass.

STEVENS, Earl K. (A 1940) Treas. • International Exposition Co., 480 Lexington Ave., New York, N. Y., and Fairfield Ave., Greenwich,

STEVENS, Harry L. (M 1934; A 1927; J 1924)
Pres., • M. M. Stevens Plumbing & Heating Co.,
108-110 W. Sherman St., and 320 West 20th St., Hutchinson, Kan.

STEVENS, Howard R. (M 1941) Mgr., Htg. and Air Cond. Dept., H. E. Saviers & Son, Inc., Cor. W. Second and West St., and • P. O. Box 182, Reno, Nev.

182, Reno, Nev.

STEVENS, Judson E. (A 1941) Engr. in charge.

National Coal Co.. Ray Oil Burner Co., 318

Spokane Ave., P. O. Box 318, and 520 Vassar St., Reno, Nev.

STEVENS, Kenneth M. (A 1943; J 1936) 1st

Lt., 958th Coast Artillery, Camp Wallace, and

Coronado Cts. No. 106, Gaiveston, Texas.

STEVENS, Wayne H. (A 1939) Service Mgr. and
Engr., Shellenberger, Gregg & Co., 2203 N. Prospect Ave., and 2501 E. Stratford Ct., Milwaukee, Wis.

STEVENS, William R. (A 1934) Htg. Contractor,

L. E. Stevens Co., 626 Broadway, Cincinnati, Ohio, and 30 Chalfonte Ct., Fort Thomas, Ky.

STEVENSON, Mel. J. (M 1935) Consulting Mech.

STEVENSON, Mel. J. (M 1935) Consulting Mech. Engr., 5017 Greenwood Ave., c/o E. T. Bryant, Chicago, Ill.

STEVENSON, W. W. (M 1928) Steam Htg. Engr., • Allegheny Co. Steam Heating Co., 435 Sixth Ave., and 1125 Lancaster Ave., Pittsburgh,

STEWART, Charles W. (M 1919; A 1918) Asst. Gen. Sales Mgr., → Hoffman Specialty Co., 1001 York St., and 3111 N. Meridian St., Indianapolis, Ind.

STEWART, Duncan J.* (M 1936; A 1930) Asst. Gen. Mgr., • Barber-Colman Co., and Hickory Lane, Rockford, Ill.

Lane, Rockford, Ill.

STEWART, James P. (A 1940; J 1937) Engr.,
Carrier Corp., 12 South 12th St., and •2030
Spruce St., Philadelphia, Pa.

STEWART, John N. (A 1939) Plan Examiner,
Div. of Smoke Regulation & Hoiler Inspection,
District Bldg., and •6124-32nd Pl. N.W., Washington, D. C.

STEWART, Robert S. (A 1941) Exfoliation
Engr., Armco International Corp., Middletown,
Ohio, • and Monclova, Coahuila, Mexico.

STEWART. Wesley O. (A 1938) Mgr., Los

STEWART, Wesley O. (A 1938) Mgr., Los Angeles Office. • Johnson Service Co., 153 West Ave. 34, and 4100½ Los Feliz Blvd., Los Angeles, Calif.

STILES, Gordon S. (A 1941; J 1936) Instructor Engrg. Drawing, A. & M. College of Texas, College Station, and •101 Dodge, R. F. D. 4, Bryan, Texas.

STILLER, Frederick W. (A 1942; J 1933) Estimator, F. C. Stiller & Co., 130 S. Tenth St., and . •4501 S. Aldrich, Minneapolis, Minn.

STIRLING, Walter N. (M 1939) c/o J. & E. Hall, Ltd., Dartford, Kent, England.
STITES, Richard, Jr. (A 1943; J 1937) Sales Engr., • Buffalo Forge Co., 2051 W. Lafayette Blvd., and 17537 Hartwell, Detroit, Mich.
STOCK, Charles S. (M 1936) Dist. Repr., The Herman Nelson Corp., Room 404, 1108-16th St. N.W., and • 3052 Garrison St. N.W., Washington, D. C.
STOCKWELL, William R. (Life Member; M 1903; J 1901) Gen. Mgr., Mfg. Div., Well-McLain Co., Michigan City, Ind.
STOKES, Alvin D. (M 1936) Project Mgr., Riggs Distler & Co., Inc., 216 N. Calvert St., and • 424 Winston Ave., Baltmore, Md.
STOKES, Arledge (A 1942; J 1936) Engr., Mehring & Hanson Co., 12 H St. N.E., Washington, D.C., and • 4908 North 17th St., Arlington, Va. STORMS, Robert M. (M 1936) Consulting Engr., Plbg., Htg. and Vtg., 1717 N. Vine St., Los Angeles, and • 354 W. Wilson Ave., Glendale, Calif.

Calif.
STOTESBURY, Bernard (M 1942) • W. G. Edge,
Ltd., 150 Gloucester St., and 118 Gilmour St.,
Ottawa, Ont., Canada
STOTT, Douglas A. (A 1940) Mgr., • Canadian
Powers Regulator Co., Ltd., 195 Spadina Ave.,
and 119 Parkhurst Blvd., Toronto, Ont., Canada.
STOTT, F. W. (M 1938) Sales, C. A. Dunham Co.,
Ltd., 1139 Bay St., Toronto, and • 86 Allan St.,
Oakville, Ont., Canada.
STRAIN. A. James (A 1942) Sales Mgr. • The

STRAIN, A. James (A 1942) Sales Mgr. • The Consumers Gas Company of Toronto, 19 Toronto St., and 376 St. Clements Ave., Toronto, Ont., Canada.

Canada.

STRAND, Charles A. (A 1940) Supt., • Bruce Wigle Plumbing & Heating Co., 9117 Hamilton Ave., and 6533 Barlum Ave., Detroit, Mich.

STRAUCH, Paul C. (A 1934) Sales Engr., Dravo Corp., 300 Penn Ave., Pittsburgh, and • Sherwood Hall, Cambridge Court Apts., Edgewood, Pittsburgh, Pa.

STREATER, Edward C. (A 1939) Mgr., • L. E. Streater Lumber Co., Spring, Park, and Mound, Minn.

STREVELL, R. P. (M 1934) Pres-Treas., • The William R. Hogg Co., Inc., 900 Fourth Ave., Asbury Park, and Victor Pl. and State Highway, Neptune, N. J.

Asbury Park, and Victor Pl. and State Highway, Neptune, N. J.
STROCK, Clifford (M 1937; A 1929) Editor
• Heating & Ventilating, 148 Lafayette St., New York, and Box 756, Amityville, L. I., N. Y.
STROMGREN, Sven G. (M 1938) Metallurgical Engr., Svenska Flaktfabriken, Kungsgatan 18, Stockholm, Sweden.
STROTHER, William E. (A 1941) 1st Lt., Corps of Engineers, S. Atlantic Div., and • 997 Burns Dr., Atlanta, Ga.
STROUSE, Sherman W. (A 1934) Engr. Aircraft

Dr., Atlanta, Ga. STROUSE, Sherman W. (A 1934) Engr. Aircraft Div., • Trane Co., 493 Franklin St., and 95 Mayville Avc., Buffalo, N. Y. STROUSE, Sidney B. (M 1921) Member of Firm, • S. B. & B. H. Strouse, 500-529 Guarantee Trust Bldg., and 22 S. Illinois Avc., Atlantic

Trust Bldg., and 22 S. Illinois Ave., Atlantic City, N. J. STRUNIN, Jay (A 1939; J 1933) Engr., Contractor, Struinin Plumbing & Heating Co., 408 Second Ave., New York, and 217 Ocean Ave., Brooklyn, N. Y. STUART, Milton C.* (M 1935) Prof. of Mech. Engrg., Stelhigh University, and 1828 Jennings St., Bethlehem, Pa. STUART, W. W. (A 1940) Owner, W. W. Stuart Co., 417 Ninth St., and 1920 Pleasant St., Des Moines, Iowa.

Co., 417 Ninth St., and 1920 Pleasant St., Des Moinces, Iowa.
STUBBS, W. C. (M 1934) Supervisor, Ventilation Section, e Norfolk Navy Yard, and 39 Channing Ave., Portsmouth, Va.
STURM, William (J 1937; S 1936) Asst. Engr., Smith, Hunchman & Grylls, Twin Cities Ordnance Plant, and e 1877 Grand Ave., Apt. 1, C. Plant Mirror 1887. St. Paul, Minn.

SUDDERTH, Leo, Jr. (A 1942; J 1936) Branch Mgr., • Johnson Service Co., 311 Bona Allen Bldg., and 1115 Los Angeles Ave. N.E., Atlanta,

SULLIVAN, Thomas J. (J 1943; S 1942) Ensign, U. S. N. R., and •615 Delaware Ave., Erie, Pa. SULLIVAN, Tim J. (M 1930) Pres., Sullivan Valve & Engineering Co., 910 S. Arizona St., and •1205 W. Park St., Butte, Mont. SUNDERLAND, Richard P. (A 1938) Partner, • General Meters-Controls Co., 205 W. Wacker Dr., Chicago, and 936 Judson Ave., Evanston, 111

III.

SUPPLE, Graeme B. (M 1934) Dist. Sales Engr.

• American Blower Corp., 625 Architects & Builders Bldg., and 420 East 55th St., Indianapolis, Ind.

polis, Ind.
SUTCH, H. C.' (A 1940) 1st Lt., Umatilla Ordnance Depot, Hermiston, Ore.
SUTCLIFFE, A. G. (M 1922; A 1918) Chief Engr., Ilg Electric Ventilating Co., 2850 N. Crawford Ave, Chicago, and •432 S. Delphia Ave., Park Ridge, Ill.
SUTFIN, George V. (M 1942; A 1937) Field Engr., •American Blower Corp., 1005-6 American Bldg., and 3270 Hildreth Ave., Cincinnati, Ohio.

Ohio.

SUTTER, Edgar E. (A 1936) Sales Engr., Mueller Brass Co., Port Huron, Mich., and •6705 Sixth St. N. W., Washington, D. C.

St. N. W., Washington, D. C.

SWAIN, Douglas S. (J 1941) Sales Engr., Trane
Company of Canada, Ltd., 365 Hargrave St.,
and •27 Fawcett Ave., Winnipeg, Man., Canada.

SWAIN, William L. (M 1939) Dir., •Young
Austen & Young, Ltd., 35 Uphill Rd., Mill Hill,
London, N. W. 7, and St. Catherine's, Sandy
Lodge Rd., Moor Park, Hertfordshire, England.

SWANEY, Carroll R. (M 1929; J 1921) Owner,

• C. R. Swaney Co., 28 St. Botolph St., Boston,
and 61 Morse Rd., Newtonville, Mass.

and 61 Morse Rd., Newtonville, Mass.

SWANSON, Donald F. (J. 1938) Test Engr.,
Seeger Refrigerator Co., 850 Arcade St., and

•1824 N. Asbury, St. Paul, Minn.

SWANSON, Earl C. (A 1935) Vice-Pres., Andersen
Corp., Bayport, Minn.

SWANSON, Nils W. (A 1936) Sales, McDonnell
& Miller, 400 N. Michigan Ave., and •2746
Morse Ave., Chicago, Ill.

SWEENEY, Robert H. (A 1939) Sales Engr.,
Minneapolis-Honeywell Regulator Co., 4740
Baum Blvd., and •1201 Hillsdale Ave., No. 16,
Pittsburgh, Pa.

SWENEHART. Delmer W. (A 1940) Educational

SWENEHART, Delmer W. (A 1940) Educational Dir., Air Conditioning Training Corp., 789 Wick Ave., Youngstown, and • Cortland, Ohio. SWENSON, J. E. (A 1930) Mgr., Htg. Div., • Minneapolis Gas Light Co., 789 Marquette Ave., and 4853 South 14th Ave., Minneapolis, Minn

WINGLE, Wayne T. (A 1938) Pres., Hastings Air Conditioning Co., Inc., and ●918 W. Seventh St., Hastings, Nebr. SWINGLE.

St., Flashings, Neur.
SWISHER, Stephen G., Jr. (M 1936; A 1934)
Partner, • Swisher-Hessler Co., 1335 N. Third
St., and 1711 E. Dean Rd., Milwaukee, Wis.
SYSKA, Adolph G. (M 1933) Partner, Syska &
Hennessy, 144 East 39th St., New York, N. Y.

SZEKELY, Ernest (M 1920) Pres., • Bayley Blower Co., 1817 South 66th St., Milwaukee, and 6026 W. Washington Blvd., Wauwatosa, Wis.

SZOMBATHY, L. R. (A 1930) Pres., • Ferguson Sheet Metal Works, Inc., 34 N. Florissant Blvd., Ferguson, and 3125 Hawthorne Blvd., St. Louis, Mo. ·

T

TAGGART, Ralph C.* (Life Member; M 1912) Div. of Architecture, Dept. of Public Works, New York State, and 14 Lyon Ave., Menands, Albany, N. Y.

TAHRY, Mahmoud E1 (M 1939) Engr., • Carrier Egypt, S. A. E., 37 Kasr El Nil, Cairo, and 28, Hishmat Pacha St., Zamalek, Cairo, Egypt. TALIAFERRO, Robert R.* (M 1919) Application Engr., Carrier Corp., 302 S. Geddes St., and • 101 Comstock Ave., Syracuse, N. Y.

TALLMADGE, Webster (M 1924) Pres.,

• Webster Tallmadge & Co., Inc., 364 Glenwood
Ave., East Orange, and 56 Cambridge Rd.,
Montclair, N. J.

TANZER, Guy J. (M 1942) Mech. Supt., George
A. Fuller Co., P. O. Box 5398, Houston, Texas,
and Hotel Wellington, New York, N. Y.

TARR, Harold M. (M 1931) Htg., Vtg. and Air
Cond. Engr., 21 Montague St., Arlington
Heights, Mass.

TASKER, C.* (M 1935) (Council 1941-42) Sr.

TASKER, C.* (M 1935) (Council 1941-42) Sr.

- Cond. Engr., 21 Montague St., Affington Heights, Mass.

 TASKER, C.* (M 1935) (Council, 1941-42) Sr. Research Fellow, ©ontario Research Foundation, 43 Queens Park, and 737 Avenue Rd., Toronto, Ont., Canada.

 TAVERNA, Fred F. (M 1928; A 1927; J 1924) Raisler Corp., 129 Amsterdam Ave., New York, N. Y., and •1011 Palisade Ave., Union City, N. J.

 TAYLOR, Arthur R. (M 1942) Sales Engr., Darling Bros., Ltd., and •617 Willard Ave., Toronto, Ont., Canada.

 TAYLOR, Edward M. (A 1934) Tech. Mgr., Taylors, Ltd., 32A Lichfield St., and 3 Wairarapa Terrace, Christchurch, New Zealand.

 TAYLOR, Harold J. (M 1937) Owner, Harold J. Taylor, Htg. and Vtg., 17514 Greenlawn Ave., Detroit, Mich.

 TAYLOR, R. F. (M 1915) Consulting Engr., 910 Bankers Mortgage Bldg., and 2332 Watts

- Detroit, Mich.

 TAYLOR, R. F. (M 1915) Consulting Engr.,

 •910 Bankers Mortgage Bldg., and 2332 Watts

 Rd., Houston, Texas.

 TAYLOR, Robert B. (J 1938) Repr., Buffalo

 Forge Co., 112 State St., Albany, and R. F. D.,

 Slingerlands, N. Y.

 TAYLOR, Thomas E. (M 1942; J 1937) Consulting Engr., 307 Postal Bldg., and 7307 N.

 Wall St., Portland, Ore.

 TAZE, D. L. (M 1931) Mgr., American Blower

 Corp., 1302 Swetland Bldg., Cleveland, and

 19412 Winslow Rd., Shaker Heights, Ohio.

 TAZE, Edwin H. (M 1937) Branch Mgr., American Blower Corp., 620 Court Square Bldg., Baltimore, and 28 Normal Terrace, Towson, Md.

 TEASDALE, Lawrence A. (M 1926) Mgr., Div. of

 Htg. and Ltg., Vale University Service Bureaus,

 20 Ashmum St., and 262 W. Rock Ave., New

 Haven, Conn.
- 20 Ashmum St., and 202 W. Rock Ave., Alen-Haven, Conn.
 TEELING, George A. (M 1930) Consulting Engr.,

 1 Columbia Pl., Albany, and Clarksville, N. Y.
 TEMPLE, W. J. (M 1931) Mgr. and Engr., J. A.
 Temple Co., 108 Parkway, and 1215 Reed Ave.,
 Kalamazoo, Mich.

- TEMPLE, W. J. (M 1931) Mgr. and Engr., J. A. Temple Co., 108 Parkway, and 1215 Reed Ave., Kalamazoo, Mich.

 TEMPLIN, Charles L. (M 1921) Pres., Carrier-Atlanta Corp., 348 Peachtree St., and 781 Sherwood Rd. N.E., Atlanta, Ga.

 TENKONOHY, Rudolph J. (M 1923) Charles W. Cole & Son, Archt.-Engr., and 1533 W. Main St., Decatur, Ill.

 TENNANT, Raymond J. J. (A 1929) Chief Engr., Pittsburgh Business Properties, Inc., 2237 Oliver Bidg., Pittsburgh, and 752 N. Meadow-croft Ave., Mt. Lebanon, Pittsburgh, Pa.

 TENNEY, Dwight (M 1932) Pres., Tenney Engineering, Inc., 8 Elm St., Montclair, and 33 Summit Rd., Verona, N. J.

 TERHUNE, Ralph D. (A 1936) The Bryant Heater Co., 17825 St., Clair Ave., Cleveland, and 3057 E. Derbyshire Rd., Cleveland Heights, Ohio.

 TERRY, Matson C. (M 1936) Pres., Certified Products Co., and 7405 Alaska Ave. N.W., Washington, D. C.

 TERRY, Samuel W. (M 1941) Pres., Aladdin Heating Corp., 2222 San Pablo Ave., Oakland, and 2820 Oak Knoll Terrace, Berkeley, Calif.

 THEISS, Ernest S. (A 1941; J 1940) Instructor, Duke University, and 2645 University Dr., Durham, N. C.

- Duke University, and 2645 University Dr., Durham, N. C.
 THEOBALD, Art. (A 1937) Engr., Payne Furnace & Supply Co., Inc., 336 N. Foothill Rd., Beverly Hills, and 116½ S. Kings Rd., Los Angeles, Calif.
 THEORELL, Hugo G. T.* (Life Member; M 1902) Consulting Engr., Hugo Theorells Ingeniorsbyra, Skoldungagatan 4, Stockholm, Sweden.
 THINN, Christian A.* (M 1921) Manager of Service, C. A. Dunham Co., 450 E. Ohio St., Chicago, Ill.

- THOM, George B. (M 1937) Asst. Prof. of Mech. Engrg., Swarthmore College, Swarthmore, Pa. THOMAN, Estell O. (A 1938) Htg. and Air Cond. Engr., Boot & Co., 115 Fulton St. W., and •714 Fulton St. E., Grand Rapids, Mich. THOMAS, Bernard A. (A 1937; J 1923) Mgr., Htg. Dept., Crane Co., and •405 E. Idlewild Ave. Tango Els.

- Engr., Boot & Co., 115 Fulton St. W., and •714 Fulton St. E., Grand Rapids, Mich.

 THOMAS, Bernard A. (A 1937; J 1923) Mgr., Htg. Dept., Crane Co., and •405 E. Idlewild Ave., Tampa, Fla.

 THOMAS, Ernest R. (M 1942) Mech. Designer, Black & Veatch, 4906 Broadway, Kansas City, Mo., and •108 Masonic Ave., Monroe, La.

 THOMAS, Glegge (M 1923) Office Mgr., •Clarage Fan Co., 723 Albee Bldg., Washington, D. C., and 7 W. Leland St., Chevy Chase, Md.

 THOMAS, L. G. L. (M 1934) Vice-Pres., Economy Pumps, Inc., 1000 Weller Ave., Hamilton, and 1vy Ave., Glendale, Ohio.

 THOMAS, Melvern F. (M 1909) Supervising Engr. for Htg. and Vtg., No. 1 Training Command R. C. A. F., 55 York St., and •74 Rivercrest Rd., Toronto, Ont., Canada.

 THOMAS, Ralph C. (A 1938) Capt., U. S. Army, and •Pres., Thomas Air Conditioning, Inc., 819 Westover Ave., Norfolk, Va.

 THOMAS, Richard H. (Life Member; M 1920) Pres., Economy Pumps, Inc., Hamilton, and P. O. Box 76, Glendale, Ohio.

 THOMPSON, Edward B. (A 1938) Supvr. Engrg. Div., Gas Commercial Dept., Cincinnati Gas & Electric Co., Fourth and Main Sts., and •1198 Coronado Ave., Cincinnati, Ohio.

 THOMPSON, Frank (M 1935) Mgr., Sherbrooke Eactory, The Canadian Fairbanks-Morse Co., Ltd., Belvidere St. S., and •107 Quebec St., Sherbrooke, Que., Canada.

 THOMPSON, John (M 1942) Administration Bldg. Engr., Hydro-Electric Power Commission of Ontario, 620 University Ave., and 62 Browning Ave., Toronto, Ont., Canada.

 THOMPSON, Nieson S.* (Life Member; M 1917; J 1897) Retired, Engr., 3206 Oliver St. N.W., Washington, D. C.

 THOMSEN, Nis B. (M 1938) Macdonald Engineering Co., 1 N. LaSalle St., Chicago, Ill., and 168 Fallingbrookedd., Toronto, Ont., Canada.

 THOMSON, Thomas N.* (Life Member; M 1899) Htg. and Pibg Consulting Engr., or Air Cond. and Refrig., U. S. Rubber Co., 1230 Sixth Ave., Room 1801, New York, and 1911 Dorchester Rd., Apt. 6G. Brooklyn, N. Y.

 THORNEURG, Harold A. (M 1932; J 1929) Consulting Engr., for Air Cond. and Refrig., U. S. Rubber Co., 1230 Sixth Ave., Room 1801, New York, an

- TICHENOR, Leslie R., Jr. (A 1942; J 1930) Vice-Pres., Treas., L. R. Tichenor & Son, 2 Ridgway Ave., Hillside, N. J.
- TIDMARSH, P. M. (M 1938) Vice-Pres. and Gen. Mgr., Tidmarsh Engineering Co., P. O. Box Mgr., Tidmarsh E 2425, Tucson, Ariz.
- 2425, 1ucson, Ariz.

 TIERNEY, Lawrence J. J. (A 1929) Owner,

 L. J. Tierney Co., 10 High St., Boston, and 17
 Oriole St., West Roxbury, Mass.

 TILFORD, Leo A. (M 1941) Owner and Mgr.,

 Leo A. Tilford Temperature Control Co., 1230
 Francis St., and 1230½ Francis St., Jackson,
- TILLER, Louin (A 1935; S 1933) Engr., Velocity Steam Systems, 38 S. Dearborn Ave., Chicago.
- LTZ, Bernard E. (M 1930) Pres., Tiltz Air Conditioning Corp., 230 Park Ave., New York, amd 25 Lookout Circle, Larchmont, N. Y. TILTZ,

TIMMINS, W.W. (M 1937) Dist. Mgr., • Canadian Powers Regulator Co., Ltd., University Tower Bldg., Montreal, and 305 Brock Ave. N., Monttreal W., Que., Canada.

TIMMIS, Pierce (M 1920) Service Equip. Engr., • United Engineers & Constructors, Inc., 1401 Arch St., Philadelphia, and 202 Midland Ave., Wayne, Pa.

TIMMIS, William W. (M 1933; A 1925) Lt.—Comdr., U. S. N., Production Engr., and • 103 George Mason Dr., Arlington, Va.

TOBIN, John F. (A 1934) Sales, • American Blower Corp., 228 N. LaSalle St., and 11256 S. Artesian Ave., Chicago, Ill.

TODD, Malcolm McM. (M 1942) Owner, Malcolm Todd. • 302 Bay St., and 34 Halford, Toronto, Ont., Canada.

TODD, Meryl L. (M 1940; J 1936) Mech. Engr.,

- TODD, Meryl L. (M 1940; J 1936) Mech. Engr.,

 M. L. Todd & Associates, 1111 Independence
 Ave., and 100 Highland Blvd., Waterloo, Iowa.

 TOENSFELDT, Ralf (M 1940) Consulting Engr.,

 •411 Security Bldg., and 6311 Waterman Ave.,
 St. Louis, Mo.

TOLHURST, George C. (M 1936) Htg. Draftsman, Warden King, Ltd., Bennett St., Maisonneuve, Montreal, and •142 Blvd. St. Germain, St., Laurent (near Montreal), Que., Canada.

TONE, J. E., Jr. (A 1940) 109 Court Ave., Des Moines, Iowa.

- Moines, Iowa.

 TONRY, Robert C. (M 1936) Mgr., Wiedebusch Plumbing & Heating Co., 511 First St., and 217 Fairmont Ave., Fairmont, W. Va.

 TOONDER, Clarence L. (M 1933) Mech. Engr., Argonaut Div., General Motors Corp., General Motors Research Bldg., and •13391 Marlowe, Detroit, Mich.

 TOROK, Elmer (M 1936) Pres., East Tennessee Sheet Metal Works, Inc., P. O. Box 421, Bristol, and 203 West G St., Elizabethton, Tenn.

 TORR, T. W. (M 1933) Chief Engr., Rudy Furnace Co., and •205 Green St., Dowagiac, Mich.
- Mich.
- ate Student, Massachusetts Institute of Technology, M. I. T. Graduate House, Cambridge, Mass, and Istanbul, Turkey.

 TOUTON, Rush D. (M 1933) Tech. Dir., Bayuk Cigars, Inc., Ninth and Columbia Ave., Philadelphia, and 624 Montgomery School Lane, Wynnewood, Pa.

 TOWER, F. S. (M 1920) Committee.
- TOWER, E. S. (M 1930) Consulting Engr., 213 Investment Bldg., and 1422 Wightman St., Pittsburgh, Pa.
- Tittsburgh, Pa.

 TOWLE, Philip H. (A 1942; J 1938) Engr.,
 General Air Conditioning Co., 116 New Montgomery St., San Francisco, and 1200 Second
 Ave., Salinas, Calif.

 TOWNSEND, John M. (M 1942) Combustion
 Engr., War Dept., Eighth Service Command,
 Repairs and Utilities Branch, Mech. and Elect.
 Dept., Santa Fe Bldg., and Ervington Hotel, Dallas, Texas.

TRACY, William E. (A 1943; J 1938) R. C. Mahon Co., 231 S. LaSalle St., Chicago, and • 906 N. Austin Blvd., Oak Park, Ill.

- TRAMBAUER, Charles W. (A 1941; J 1936) Supervising Engr., Raisler Corp., U. S. Naval Training Station, Port Deposit, Md.
- TRANE, Reuben N.* (M 1915) Pres., The Trane Co., and 208 South 15th St., La Crosse, Wis.
- TRAUGOTT, Mortimer (A 1930) Bryant Air Conditioning Corp., 915 N. Front St., Phila-delphia, and 8208 Westminster Rd., Elkins Park,
- Pa.

 TRAYNOR, Harry S. (A 1942; J 1937) Lt., Corps of Engrs., U. S. Army, 110 E. Garden St., Rome, and 821 Euclid Ave., Syracuse, N. Y.

 TREADWAY, J. Quentin (A 1936; J 1932) Dist. Sales Mgr., Clarage Fan Co., 210 Reynolds Arcade, and 826 Winona Blvd., Rochester, N. Y.

 TRICKLER, Earl E. (M 1942) New York Blower Co., 3155 Shields Ave., and 8219 Kenwood Ave., Chicago, Ill.

TRIEGEL, Erich V. (M. 1942) Mech. Engr.,

• Francisco & Jacobus, 511 Fifth Ave., New York, N. Y., and Candlewood Isle, Danbury, Conn.

• FRIGGS, Fred E. (M. 1938) Mfrs. Agent., 3901 Second St., Des Moines, Iowa.

TROSTEL, Otto A. (M. 1935) Engr., Standard Distributing Co., 406 E. Wells St., Milwaukee, and • Rte. No. 2. Thiensville, Wis.

TROUP, John D. (M. 1938) Managing Dir., • John D. Troup, Ltd., 90 High Holborn, London, W. C. 1, and 48 Plough Lane, Purley, Surrey, England.

TRUMBO, S. M. (A. 1926) Sales Engr., • Buffalo Forge Co., 20 N., Wacker Dr., Chicago, and 921 Franklin St., Downers Grove, Ill.

TUCKER, Frank N. (M. 1926) Field Engr., Ilg Electric Ventilating Co., 13 Park Row, Room 11, New York, and • 239 Whaley St., Freeport, L. I., N. Y.

TUCKER, Leonard A. (M. 1935) Chief Engr., J. Pocock, Inc., 31st and Jefferson Sts., Philadelphia, and • 220 Buttonwood Way, Glenside, Pa.

- Pa.
 TUCKER, Thomas T. (M 1938; A 1936) Chief Engr., Armor Insulating Co., 800 Forrest St. N.W., and § 3619 Ivy Rd. N.E., Atlanta, Ga. TUCKERMAN, George E. (M 1932) Mgr., § Anderson Conditioning Co., 600 Schuylkill Ave., Philadelphia, and 502 Rodman Ave.,

• Anderson
Ave., Philadelphia, and 502 Rodman
Jenkintown, Pa.

TUPPER, Edward B. (S 1941) Student, University of Minnesota, and • 3248 Park Ave.,
Minneapolis, Minn.

TURLAND, Charles H. (M 1934; A 1930) Sales
Engr., • R. E. Johnston Co., Ltd., 1070 Homer
St., and 4553 W. Third Ave., Vancouver, B. C.,
Canada.

Canada.
TURNER, Edmond S. (A 1939) Partner, • Wm. S.
TURNER, Edmond S. (A 1939) Partner, • Wm. S.
Turner & Co., 618 Pacific Bldg., and 3455 Northeast 36th Ave., Portland, Ore.
TURNER, John P., Jr. (M 1942) Lt. (jg),
U. S. N. R., and • 430 West 116th St., New York,
N. Y.

N. Y.

TURNO, Walter G. W. (M 1917; A 1912) Secy.,
H. W. Porter & Co., Inc., Newark, and •71
Lafayette Ave., East Orange, N. J.

TUSCH; Walter (M 1917) Secy., Tenney &
Ohmes, Inc., 101 Park Ave., New York, and
•881 Sterling Pl., Brooklyn, N. Y.

TUTHILL, Arthur F.* (J 1940; S 1938) Instructor
Mech. Engrg., • The Cooper Union, Mech. Engrg.
Dept., Cooper Square, New York, and 62
Montague St., Brooklyn, N. Y.

TUTSCH, Rodney J. (A 1943; J 1939) 4455 N.
Oakland Ave., Milwaukee, Wis.
TUTT, Richard D. (J 1942) Air Cond. Engr.,
Allison Div., General Motors Corp., Speedway
City, and •5845 Haverford Ave., Indianapolis,
Ind.

City, and • 5840 Haveriord Ave., Indianapolis, Ind.
TUTTLE, G. H.* (M 1937; A 1936; J 1934) Htg.
Engr., • The Detroit Edison Co., 2000 Second Ave., and 16714 Kentfield, Detroit, Mich.
TUTTLE, J. Frank (Life Member; M 1913) Sales Agent, • Warren Webster & Co., 127 Federal St., Boston, and 9 Lewis Rd., Winchester, Mass.
TUVE, George L.* (M 1932) (Council, 1939-41)
Prof. of Heat Power Engrg., • Case School of Applied Science, 10900 Euclid Ave., Cleveland, and 2510 Newbury Dr., Cleveland Heights, Ohio.
TUXHORN, David B. (M 1936) Mgr., The York Heat & Fuel Co., 1419 Eye St. N.W., and • 4853 Sedgwick St. N.W., Washington, D. C.
TWIST, C. F. (Life Member; M 1921) Pres., • Ashwell-Twist Co., 967 Thomas St., and 2310 Tenth Ave. N., Seattle, Wash.
TWIZELL, Edwin W. (M 1937) Partner, • Connolly & Twizell Reg'd., 1405 Bishop St., Montreal, and 22 Merton, Crescent, Hampstead, Oue., Canada.

Oue., Canada.

TYDINGS, Wm. F. (M 1942) Owner, Tydings Engineering Co., 16895 Lahser Rd., and 26540 Lyndon Rd., Detroit, Mich.

TYLER, Roy D. (M 1928) Chief Mech. Engr.,

New Facilities & D. P. C. Section, U. S. Army,
Boston Ordnance Dist, 140 Federal St., and 20 Pinckney St., Boston, Mass.

UHL, Edwin J. (M 1925) Partner • Uhl Co., 132 S. Tenth St., and 4830 Pleasant Ave. S., Minne-

S. Tenth St., and Solar St., and Solar St., and Solar St., and 4716 Lyndale Ave. S., Minneapolis, Minn. UHLHORN, W. J. (M. 1920) 733 S. Highland Ave., Oak Park, Ill.

YM. 1938) Dir. of Research,

Oak Park, Ill.
UPSON, Walter L. (M 1938) Dir. of Research,
• The Torrington Manufacturing Co., Torrington, and Litchfield, Conn.
URBAN, Frank F. (A 1939) Vice-Pres., Urban
Plumbing & Heating Co., 1215 S. W. Fifth Ave.,
and • 6726 S. W. Burlingame Ave., Portland,

Ore.

URDAHL, Thomas H. (M 1930) (Council, 1940-42) Lt.-Comdr. E-V (s), U. S. N. R, and • 1505 44th St. N.W., Washington, D. C.

USHER, Wellington J., Jr. (M 1942) Sales Engr.,

• The Arthur S. Leitch Co., Ltd., 1123 Bay St.,
Toronto, and West Point Crescent, Rouge Hills,
Ontario, Canada.

V

VALE, Henry A. L. (M 1929) Managing Dir.,

•Vale Company, Ltd., 141-143 Armagh St.,
Christchurch, and 203 Llam Rd., Fendalton,
Christchurch, New Zealand.

VAN ALSBURG, Jerold H.* (M 1931) Lt.,
Navy Dept., Bureau of Ships, and •2222 Eye
St. Nw., Washington, D. C.

VANCE, Louis G. (M 1919) Mfrs. Agent, 15 East
21st St., and •4402 Maine Ave., Forest Park,
Baltimore, Md.

VANDERHOOF, Austin L. (A 1933) Dist Repr.,
•Warren Webster & Co., Room 233, Hanna
Bidg., Cleveland, and 2762 Landon Rd., Shaker
Heights, Ohio.

VAN NOUHUYS, Herbert C. (A 1942; J 1937)
1st Lt., Signal Corps, Camp Murphy, Fla.,
and •6 Walnut Ave., Cambridge, Mass.
van WYNGARDEN, J. E. (A 1940) Secy.-Treas.,
•Day Heating Co., 863 N. Liberty St., and 945
N. Church St., Salem, Ore.

VAUGHAN, John G., Jr. (A 1942; J 1935)
Housing Specialist. • Office of the Administrator,
National Housing Agency, 401 Barr Bldg.,
Washington, D. C., and 14 Tauxemont Rd.,
R. F. D. 1, Alexandria, Va.

VAUGHAN, Lillian L. (M 1938) Prof. of Mech.
Engrg., Acting Dean, School of Engrg., •North
Carolina State College, and 11 Enterprise St.,
Raleigh, N. C.

VERNON, Rex (M 1928; A 1926) • Johnson
Service Co., 507 E. Michigan St., Milwaukee, and
710 Oakland Ave., Waukesha, Wis.

VERVOORT, Edward L. (J 1937; S 1936)
Ensign, Instructor, General Ordnance School,
Washington Navy Vard, and • 4101 W St. N.W.,
Washington, D. C.

VETLESEN, G. Unger (M 1930) 1 Beekman Pl.,
New York, N. Y.

VIDALE, Richard (M 1935) Mech. Engr., • Flesch
& Schmitt, Inc., 118 Brown St., and 92 Harding

New York, N. V.

VIDALE, Richard (M 1935) Mech. Engr., • Flesch & Schmitt, Inc., 118 Brown St., and 92 Harding Rd... Rochester, N. Y.

VINCENT, Paul J. (M 1931) Owner, • Paul J. Vincent Co., 2208 Maryland Ave., and 202 St. Martins Rd., Baltimore, Md.

VINSON, Neal L. (J 1936; S 1932) Supvr. of Ventilation, Installation, Shipbuilding, Bethlehem Shipbuilding Co., San Francisco, and • 256 Miller Ave., Mill Valley, Calif.

VIRRILL, George A. (A 1940) Chief Engr., The University Club, 1-3 West 54th St., New York, and • 345 Washington Ave., New Rochelle, N. Y.

VISSAC, Gustave A. (M 1937) Consulting Engr., 1475 W. King Edward Ave., Vancouver, B. C., Canada.

Canada.

VIVARTTAS, E. Arnold (Life Member; M 1910)
P. E., Mech. Engr., 154 Maine Ave. W., New Brighton, S. I., N. Y.

VOISINET, Walter E. (M 1930) • Laboratory Supt., Curtiss-Wright Corp., Airplane Div., Research Laboratory, Genesee St., Buffalo, and 151 Warren Ave., Kenmore, N. Y.

VOLK, George H. (J 1942; S 1940) Vice-Pres., Thomas E. Hoye Heating Co., 1906 W. St. Paul Ave., and • 2965 South 43rd St., Milwaukee, Wis. VOLK, Joseph H. (M 1923) Pres. and Treas., • Thos. E. Hoye Heating Co., 1906 W. St Paul Ave., and 2965 South 43rd St., Milwaukee, Wis. VOLKHARDT. Aquila N. (M 1938) Owner, • A. N. Volkhardt, 942 Bay St., and 104 Townsend Ave., Staten Island, N. Y. VOLLMANN, Carl W. (M 1938) Pres., Gen.-Mgr., • Linde Canadian Retrigeration Co., 355 St. Peter St., Montreal, and 517 Roslyn Ave., Westmount, Que., Canada. vonREHBERG, Hugo L. (M 1942) Consulting and Sales Engr., Braman Dow & Co., 239 Causeway St., Boston, and • 11 Parkton Rd., Jamaica

way St., Boston, and •11 Parkton Rd., Jamaica Plain, Mass

Plain, Mass.
vonROSENBERG, Paul C. (J 1939) Sales Engr.,
• Allegheny Engineering Co., 248 Fourth Ave.,
and 1930 Wightman St., Pittsburgh, Pa.
VOORHEES, Guy A. (M 1922) Chiei Engr.,
Hall-Neal Furnace Co., 1324 N. Capitol Ave.,
and • 3451 Broadway, Indianapolis, Ind.
VROOME, Albert E. (M 1932) Air Cond. Engr.,
• Ebasco Services, Inc., 2 Rector St., New York,
and 6218 Amboy Rd., Prince Bay, Staten Island,
N. V.

WACHS, Louis J. (A 1936; J 1930) Sales Engr., Carrier Corp., 405 Lexington Avc., New York, and • 1820 Cortelyou Rd., Brooklyn, N. Y. WAECHTTER, Herman P. (A 1930; J 1927) Mech. Engr., United Merchants & Manu-facturers Management Corp., 601 West 26th St., New York, and •89 Sherman Ave., Staten Island, N. Y.

Island, N. Y. WAGGONER, Jack H. (M 1937) Product Control

Supvr., Owens-Corning Fiberglas Corp., and •240 Quentin Rd., Newark, Ohio.

WAGNER, Earle Keller (M 1938) Sales Engr.,
• The Powers Regulator Co., 2240 N. Broad St.,
Philadelphia, and 312 Myrtle Ave., Cheltenham,

Philadelphia, and 312 Myrtle Ave., Cheltenham, Pa.

WAHLIN, Bernard J. (1 1941) Dist. Repr., General Electric Co., 140 Federal St., Boston, and • 18 Stoncleigh Rd., West Newton, Mass.

WAID, Glen H. (1 1930) Dist. Sales Mgr., Scott Valve Manufacturing Co., 3963 McKinley Ave., and • 2928 Northwestern Ave., Detroit, Mich. WALDEN, H. Kenneth (4 1942; J 1939) C. S. F., U. S. N. R., 46th Battalion, Company C. H., Platoon 1. Camp Endicott, Davisville, R. I., and • 512 Sixth St. S.W., Birmingham, Ala. WALDON, Charles Denchfield (4 1932) Inventor, Vacuum Smoke Condenser, • 32 Ferndale Ave., Toronto, Ont., Canada.

WALDEP, James E. (A 1943; J 1939) Mech. Engr., J. E. Sirrine & Co., Engrs., S. Main St., and • 21 Mt. Vista Ave., Greenville, S. C.

WALFORD, Leslie C. A. (M 1938) Joint Inspection Board of United Kingdom and Canada, McGill Bidg., 908 G St. N.W., Washington, C.

WALKER, Edmund R. (M 1934) Gen. Mgr., Fedders Manufacturing Co., Inc., 57 Tonawanda St., Buffalo, and • 365 McKinley Ave., Kenmore,

St., Bullalo, and •363 McKinley Ave., Kenmore, N. Y.
WALKER, J. Herbert* (M 1916) (2nd Vice-Pres., 1941; Council, 1925; 1938-41) Engr. Asst. to Gen. Mgr., • The Detroit Edison Co., 2000 Second Ave., Detroit, and 432 Arlington Rd., Birmingham, Mich.
WALKER, Wythe F. (A 1941) Htg. Engr., Douglas Aircraft, Long Beach, and •3637 Sixth Ave., Los Angeles, Calif.
WALLACE, George J. (Life Member; M 1923) Principal Engr. and Contr., 96-19-35th Ave., Corona, and •27-36 Ericsson St., East Elmhurst, L. I., N. Y.
WALLACE, William M., II (M 1929) Consulting Engr., 2603 Highland Ave., Durham, N. C.
WALLICH, A. C. (M 1919) Dist. Mgr., Cardox Corporation, 1010 Stephenson Bldg., and •17408 Oak Dr., Detroit, Mich.

WALLIS, Walter M. (A 1940) 11225 Tenth Ave. S.W., Seattle, Wash.
WALSH, Edward R., Jr. (M 1936; A 1935)
National Supvr., Htg and Air Cond., York Ice Machinery Corp., and ●Wyndham Hills, York,

Machinery Cosp., a...
Pa.

WALSH, James A. (A 1932; J 1929) Pres., Air Conditioning Co., 3215 McKinney Ave., • Box 1773, and 513 Branard St., Houston, Texas.

WALTERS, Arthur L. (M 1926; A 1925, J 1924) Chief Engr., • Green Colonial Furnace Co., 322 S.W. Third St., and 719–33rd St., Des Moines,

ALTERS, William T. (M 1917) Mech. Inspector, Bldg. Dept., Illinois Central Railroad, 135 East 11th St., and •12747 Wallace St., Chicago, Ill. WALTERS.

Chicago, Ill.

WALTERTHUM, John J. (A 1922) Htg. and
Vtg. Contr., 212 East 58th St., New York, N. Y.,
and 42½ Van Reipen Ave., Jersey City, N. J.
WALTON, Charles W., Jr. (M 1934) Engrg.
Staff, U. S. Rubber Corp., 1230 Sixth Ave., New
York, N. Y., and 120 Monte Vista Ave., Ridgewood, N. J.

WALZ, Chester D. (A 1939) 2386 Haven Lane,
Holladay Utah

Vork, N. Y., and • 120 Monte Vista Ave., Ridgewood, N. J.

WALZ, Chester D. (A 1939) 2386 Haven Lane, Holladay, Utah.

WANGSGAARD, Dee (A 1942) Proprietor

• Wangsgaard Coal & Stoker Co., 167 S. Main St., and 225 E. Second St., Logan, Utah.

WARD, Frank J. (M 1935) Owner, • Frank J. Ward Co., 237 W. Court St., Logan, Utah.

WARD, O. G. (M 1919) Vice-Pres., • Johnson Service Co., 1355 Washington Blvd., Chicago, and 1345 Ashland Ave., Wilmette, Ill.

WARDELL, Arthur (M 1935) Asst. Prof. of Engrg. Drawing, University of Toronto, and •124 Melrose Ave., Toronto, Ont., Canada.

WARE, John H., III (M 1937) Vice-Pres., Citizens Gas & Fuel Co., Pres., Oxford Co., Vice-Pres., Gas Oil Products, Inc., ₱-45. Third St., and "The Woods," Oxford, ₱a.

WARNER, Cecil F.* (J 1941) Instructor, • Purdue University, Dept. of Mech. Engrg., and 314 W. Lutz Ave., West Lafayette, Ind.

WARREN, F. C. (M 1934) Mgr., Grand Rapids, Mich.

WARREN, Hugh P. (J 1943; S 1940) Inspector of Materials and Supplies, • Magnolia Petroleum Co., Field Research Dept., 1920 McKinney St., Dallas, and 2309 Astor, Fort Worth, Texas.

WARREN, Robert M., Jr. (A 1943; J 1938) Aviation Cadet, U. S. Army, Meteorology, A. A. F. T. D., Holman Hall, M. I. T., Cambridge, Mass., and • 313 N. Main St. Sumter, S. C.

WASHINGTON, Laurence W. (M 1929) Dist. Mgr., • Clarage Fan Co., 500 Fifth Ave., New York, and 15 Willow St., Brooklyn, N. Y.

WATERFALL, Wallace (M 1941) Dir. Research Engrg., The Celotex Corp., 120 S. LaSalle St., Chicago, Ill.

WATERMAN, John Howard (M 1931) Engr., Charles T., Main, Inc., 201 Devonshire St.,

WATERMAN, John Howard (M 1931) Engr., Charles T. Main, Inc., 201 Devonshire St.,

WATERMAN, John Howard (M 1931) Engr., Charles T. Main, Inc., 201 Devonshire St., Boston, Mass.
WATERS, G. G. (M 1931; A 1926) Dist. Mgr.,
• American Blower Corp., 1841 Oliver Bldg., and 110 Longuevue Dr., Pittsburgh (16), Pa.
WATKINS, George B. (A 1936) Dir. of Research,
• Libby-Owens-Ford Glass Co., 1701 E. Broadway, Technical Bldg., and 4941 Rolandale Rd., Box 227, R. R. 8, Toledo, Ohio.
WATSON, Gerald M. (S 1941) Pvt., Hdq. Btry.,
94th Div. Artillery, Camp Phillips, Kan.
WATSON, William W. (A 1942) Mfrs. Agent,
• 2970 W. Grand Blvd., Detroit, and 149 N.
Main St., Clarkston, Mich.
WATT, Robert D. (A 1943; J 1937) Pres., Electrol
Oil Burner Corp., Aurora at Mercer, and • 3617
47th N.E., Seattle, Wash.

WATTS, Albert E. (A 1937) Mgr., A. E. Watts, 637 Craig St. W., and ●3788 Hampton Ave., N. D. G., Montreal, Que., Canada. WAY, William J., H (J 1941) Partner, Way Engineering Co., 1901 Carolina St., and ●2321 Dryden Ave., Houston, Texas. WAYLAND, Clarke E. (A 1937) Vice-Pres. and Chief Engr., ● Western Asbestos Co., 675 Townsend St., and 42 Allston Way, San Francisco, Calif.

Calif.

WEATHERBY, Edward P. Jr. (A 1943; J 1936; S 1935) 2nd Lt., 0-325054, 418 Signal Co., Aviation 8th Fighter Command, A. P O. 887, c/o Postmaster, New York, N. Y.

WEAVER, J. v. O. (M 1940) Lt.-Col. A. C., Chief, Mfg. Methods Section, e Production Div. Materiel Center, Wright Field, and 321 Lomsdale, Oakwood, Dayton, Ohio.

WEBB, Ernest C.* (M 1935) Engrg Service Mgr., Iron Fireman Manufacturing Co., 3170 West 106th St., Cleveland, and 24721 West Lake Rd., Bay Village, Ohio.

106th St., Cleveland, and 24721 West Lake Rd., Bay Village, Ohio.

WEBB, John W. (M 1926) Managing Dir., • Webb Dust Removing & Drying Co., Vinery Works, Town Lane, Denton, N. Manchester, and "Ebor," Brinnington, Stockport, England.

WEBBER, Charles H. (A 1940) Sales Engr., • Pacific Scientific Co., 1430 Grande Vista Ave., Los Angeles, and 1176 Mt. Lowe Dr., Altadena, Calif.

Calif.

Pacific Scientific Co., 1430 Grande Vista Ave., Los Angeles, and 1176 Mt. Lowe Dr., Altadena, Calif.

WEBER, Erwin L. (M 1921) Consulting Engr., 534 Medical Arts Bldg, Seattle, Wash.

WEBER, Eugene F., Jr. (A 1940; J 1937) Application Engr., York Ice Machinery Corp., 117 South 11th St., St. Louis, and ●607 Forest Court. Clayton, Mo.

WEBSTER, Chester C. (A 1940) Pres., ●John Hankin & Brother, 120 Greenwich St., New York, and Box 192, Piermont, N. Y.

WEBSTER, E. Kessler (M 1915) Secy.-Asst. Gen. Mgr., ●Warren Webster & Co., 17th and Federal Sts., Camden, and First and Kings Highway, Haddon Heights, N. J.

WEBSTER, Warren, Jr. (M 1932; J 1927) Pres.—Treas., ●Warren Webster & Co., 1625 Federal St., Camden, and 108 Colonial Ridge Dr., Haddonfield, N. J.

WEBSTER, William H., Jr. (M 1942; A 1935) Pres. (Engr.), ●Allied Heating Products Co., Inc., 2706 Colley Ave., and 200 N. Shore Rd., Academy Terrace, Norfolk, Va.

WECHSBERG, Otto (M 1932) Pres.—Gen. Mgr., ●Coppus Engineering Corp., 344 Park Ave., and 28 Lenox St., Worcester, Mass.

WEDDELL, George O. (M 1936) Branch Mgr., Vork Ice Machinery Corp., 7 Ferry St., and 3114 Wainbell Ave., Dormont, Pittsburgh, Pa.

WEEKES, Roy W. (M 1941) Gas Htg Engr., Iowa City Light & Power Co., Iowa City, Iowa, and ●640 Washington Rd., Apt. L. Pittsburgh, Pa.

WEGMANN, Albert (M 1918) Sheet Metal Contractor, A. Wegmann Co., 2801-7 W. Susquehanna Ave., and ●6206 North 17th St., Philadelphia, Pa.

WEIL, F. H. Eugene (A 1938) Sales Engr., Vort. Red St. Science and ●2515 North

tractor, A. Wegmann Co., 2801-7 W. Susquehanna Ave., and •6206 North 17th St., Philadelphia, Pa.

WEIL, F. H. Eugene (A 1938) Sales Engr., Young Radiator Co., Racine, and •2515 North 59th St., Milwaukee, Wis.

WEIL, Leo S. (M 1940) Consulting Engr., •Leo S. Weil & Walter B. Moses, 425 S. Peters St., and 478 Broadway, New Orleans, La.

WEIL, Martin (A 1925) Vice-Pres., •Weil-McLain Co., 641 W. Lake St., and 4259 Hazel St., Chicago, Ill.

WEIMER, Fred G. (A 1919) Mgr., •Kewanee Boiler Corp., 312 E. Wisconsin Ave., Room 502, and 3958 N. Stowell Ave., Milwaukee, Wis.

WEINERT, Fred C. (A 1937) Sales Promotion Mgr., •Chamberlin Metal Weather Strip Co., Inc., '1254 Labrosse St., Detroit, and 9909 Auburndale Ave., Rte. No. 4, Plymouth, Mich.

WEINSHANK, Theodore* (Life Member; M 1906) (Board of Governors, 1913) Consulting Engr., 2419 Kimball Ave., Chicago, Ill.

WEISS, Arthur P. (M 1928) Burnham Boiler Corp., Irvington, and •134 Farrington Ave., North Tarrytown, N. Y.

WEISS, Carl A. (M 1936; A 1924) Vice-Pres.,

• Kornbrodt Kornice Co., 1811 Troost Ave.,
and 29 East 68th St., Kansas City, Mo.

WEISS, Edward J. (M 1942) Asst. Industrial Air
Cond. Engr., General Electric Co., 1 River Rd.,
and • 2034 Campbell Ave., Schencetady, N. Y.
WEISS, Walter G. (A 1942; J 1940) 4571 Clarence
Ave., St. Louis, Mo.

WEITZEL, Cameron B. (M 1936) Owner and
Operator, 122 E. High St., Manheim, Pa.
WEITZEL, Paul H. (A 1942; J 1936; S 1934)
Draftsman, Armstrong Cork Co., and • 335
College Ave., Lancaster, Pa.
WELCH, Louis A., Jr. (A 1929) Owner, • Welch
Bros., 443 Second St., and 2001 Campbell Ave.,
Schenectady, N. Y.

WELDY, Lloyd O. (M 1930) Dist. Mgr., • The
Powers Regulator Co., 2012 West 25th St., Cleveland, and 19623 Laurel Ave., Rocky River, Ohio.

WELLS, Donald E. (M 1942) Sales Repr., Globe
Machinery & Supply Co., E. First and Court
Ave., and • 701-42nd St., Des Moines, Iowa.

WELLS, Edward E. (M 1941) Gen. Engrg. Dept.,
Aluminum Company of Canada, 620 Sun Life
Bldg., Montreal, and • 6 St. John Rd., Pointe
Claire, Que., Canada.

WELLS, Earl P.* (M 1938) Sales Engr., Gav

Claire, Que., Canada.

WELLS, Earl P.* (M 1938) Sales Engr., Gay
Engineering Corp., 2730 East 11th St., Los
Angeles, and •1133 Graynold Ave., Glendale,

WELLS, William F.* (M 1939) Dir. Lab. for Study of Air-Borne Infection, University of Pennsylvania, Medical School, Philadelphia, and

Study of Air-Borne Infection, •University of Pennsylvania, Medical School, Philadelphia, and 112 Pine Ridge Rd., Media, Pa.

WENDT, Edgar F. (M 1918) Pres., •Buffalo Forge Co., 490 Broadway, and 120 Lincoln Pkwy., Buffalo, N. Y.

WENDT, Edwin H. (A 1942; J 1936) Engr., •O. A. Wendt Co., 2124 N. Southport Ave., and 4728 N. Lawndale Ave., Chicago, Ill.

WERKER, Herwart (M 1939) Engr., American Radiator & Standard Sanitary Corp., Institute of Thermal Research, 675 Bronx River Rd., and •38 Loring Ave., Yonkers, N. Y.

WERNER, John G. (M 1937) Procurement Engr., The Bryant Heater Co., Shoreham Bidg., and •4512-49th St., N.W., Washington, D. C.

WERNER, Phillip H. (A 1941; J 1939) Reserve Cofficer, U. S. Army Signal Corps., •Barber Colman Co., 914 N. Broadway, and 2967 North 78th St., Milwaukee, Wis.

WERNER, Richard K. (M 1936) Consulting Mech. Engr., •316 W. T. Waggoner Bidg., and Jacksboro Highway, Fort Worth, Texas.

WESLEY, Ray O. (A 1937) • U. S. Radiator Corp., 348 Boren Ave. N., Seattle, and Yarrow Point, Bellevue, Wash.

WEST, C. H., Jr. (A 1941) Vice-Pres., • Massey, Wood & West, Inc., Lombardy Underpass, and 1602 Confederate Ave., Richmond, Va.

WEST, C. H., Jr. (A 1941) Vice-Pres., • Massey, Wood & West, Inc., Lombardy Underpass, and 1602 Confederate Ave., Richmond, Va.

WEST, Perry* (Life Member; M 1911) (Treas., 1924-25) (Council, 1920-25) Prof. of Steam Power Engrg., Head of Mech. Engrg., Dept., Operating Consultant on Central Heating Plant and Underground Distribution System. • College of Engineering, University of Kentucky, Lexington, and 303 W. Oak St., Nicholasville, ky.

and Underground Distribution System. • College of Engineering, University of Kentucky, Lexington, and 303 W. Oak St., Nicholasville, Ky. WESTENDARP, Francisco G. (M. 1939) Mgr., Carrier Dept., Guinand Freres Sucs. Dept., Tecnico Apartado 668, Caracas, Venezuela. WESTOVER, Wendell (M. 1936) Pres., • Westover-Wolfe, Inc., 170 Washington Ave., and 254 Lenox Ave., Albany, N. Y. WESTPHAL, N. E. (J. 1940; S. 1937) Ensign, U. S. N. R., • "B" Division Officer, U. S. S. Helena. c/o Postmaster, San Pedro, Calif., and Long Beach, Michigan City, Ind.
WETHERED, Woodworth (M. 1938) The Bohemian Club, San Francisco, Calif.

Long Beach, Michigan City, Inn.

WETHERED, Woodworth (M 1938) The
Bohemian Club, San Francisco, Calif.

WETZELL, Horace E. (M 1934) Vice-Pres, and
Chief Engr., • The Smith & Oby Co., 6107
Carnegie Ave., Cleveland, and 21144 Aberdeen
Rd., Rocky River, Ohno.

WHEELER, Charles A. (M 1941) Branch Mgr.,

• Johnson Service Co., 511 Fifth Ave., and 345
49th St. Pl., Des Moines, Iowa.

WHEELER, Charles W. (M 1916) Engr., ● The Ric-wil Co., 1562 Union Commerce Bldg., Cleveland, and 11859 Edgewater Dr., Lakewood,

Ohio.

WHEELER, Joe, Jr. (M 1938) Sales Repr.,

Johnson Service Co., 28 East 29th St., New
York, and 201 Dogwood Lane, Manhasset,
L.I., N.Y.

WHELAN, William J. (M 1923) Estimating,

Harrigan & Reid Co., 1365 Bagley Ave., and
3790 Seminole Ave., Detroit, Mich.

WHELLER, Harry S. (M 1916) Vice-Pres., L. J.
Wing Manufacturing Co., 154 West 14th St.,
New York, N. Y., and 725 Union Ave., Elizabeth,
N. J.

New York, N. Y., and 725 Union Ave., Elizabeth, N. J.
WHITE, Eugene B. (M 1934) Exec. Secy.,
Architectural & Engineering Bureau, Young Men's Christian Assn., 19 S. LaSalle St., Chicago, and 126 S. East Ave., Oak Park, Ill.
WHITE, Harry S. (A 1936) Mgr., Acme Sheet Metal Co., 5301 E. Ninth, and 6805 Edgevale Rd., Kansas City, Mo.
WHITE, John C. (M 1932) State Power Plant Engr., State Bureau of Engineering, 624 E. Main St., and 622 E. Main St., Madison, Wis.
WHITE, Thomas J. (A 1941; J 1938) Sales Engr.,
American Blower Corp., 625 Market St., San Francisco, and 2340 Pelham Pl., Pledmont Pines, Oakland, Calif.
WHITE, W. Emery (M 1941) Partner, The Smith-White Co., 1102 Commerce Trust Bldg., and 7411 Ward Pkwy., Kansas City, Mo.
WHITE, W. R. (M 1938; A 1936) Industrial Engr.,
Nebraska Power Co., 718 Electric Bldg., and 4916 Grand Ave., Omaha, Nebr.
WHITEHURST, Bert W. (M 1942) Stone & Webster Engineering Co., 49 Federal St., Boeton, Mass.

Mass.
WHITELAW, H. Leigh (M 1916) Jones & Laughlin Steel Corp., Third and Ross, and 166 Ditheridge St., Pittsburgh, Pa.
WHITMER, Robert P. (M 1935) Secy., American Foundry & Furnace Co., and 1402 E. Washington St., Bloomington, Ill.
WHITNEY, C. W. (M 1935) Pres., ABC Oil Burner & Engineering Co., 2012-14 Chestnut St., Philadelphia, and Sevilla Court, Apt. F-3, Rela Coursey 4. Bala-Cynwyd, Pa.

WHITT, Sidney A. (A 1938; J 1937) Chief Design Engr., Fedders Manufacturing Co., Inc., 57 Tonawanda St., and ● 12 Inwood Pl., Buffalo, N. Y.

WHITTAKER, Wayne K. (A 1935) Engr., Irving Trust Co. Bldg., 1 Wall St., New York, and •119-23-226th St., St. Albans, L. I., N. Y.

•119-23-226th St., St. Albans, L. I., N. Y. WHITTEN, H. E. (M 1924) Pres.-Treas., H. E. Whitten Co., 9 Federal Court, Boston, and •56 Highland Rd., Somerville, Mass. WHITTLESEY, Welsh C. (M 1941) Engr. (Naval Archt.), Navy Dept., Washington, D. C., and •1500 S. Barton St., No. 590, Arlington, Va. WIDDOWFIELD, A. S. (A 1941; J 1937) Sales Engr., The Mercoid Corp., 4201 Belmont Ave., Chicago, Ill., and •535 Hanna St., Birmingham, Mich. Mich.

WIDMER, Walter J. (A 1939) Secy.-Treas.
 Widmer Plumbing & Heating Co., Inc., 34
 N.E. Seventh Ave., and 1565 N. Shaver St.,

N.E. Seventh Ave., and 1565 N. Shaver St., Portland, Ore.

WIEDENMANN, William A. (A 1942) Sole Owner, W. C. Wiedenmann & Son, 1820-24 Harrison St., Kansas City, Mo.

WIEGNER, Henry B. (M 1919) Office Mgr., Johnson Service Co., 20 Winchester St., Boston, and • 143 Standish Rd., Watertown, Mass.

WIGGS, G. Lorne (M 1936; A 1932; J 1924) (Council, 1938-40) Consulting Engr., • 714 University Tower Bldg., and 4797 Grosvenor Ave., Montreal, Que., Canada.

WILDE, Ray S. M. (M 1916) Consulting Engr., 18286 Griggs, Detroit, Mich.

WILDER, Edward L. (M 1915) Industrial Promotion Engr., eRochester Gas & Electric Corp., 89 East Ave., and 369 Bonnie Brae Ave., Rochester, N. Y.

WILDMAN, Eugene L. (A 1942; J 1939) New York Repr., Stewart A. Jellett Co., 1328 Broadway, New York, N. Y., and • 122 N. Walnut St., East Orange, N. J.
WILEY, Donald C.* (A 1939; J 1936) Production Mgr., • John J. Nesbitt, Inc., State Rd. and Rhawn St., Philadelphia, and County Line Rd., Huntingdon Valley, Pa.
WILHELM, Joseph E. (A 1943; J 1936; S 1934) Chief Engr., Avery Engineering Co., 1906 Euchd Ave., Cleveland, and • 294 East 195th St., Euclid Ohio.

Ave., Cleveland, and • 294 Least Euclid, Ohio.

WILKES, Gordon B.* (M 1937) Prof. of Heat Engrg., • Massachusetts Institute of Technology, Cambridge, and 51 Everett St., Newton Centre,

Cambridge, and 51 Everett St., Newton Centre, Mass.

WILKINSON, Arthur (A 1936) Flight Lt., Royal Canadian Air Force Hq., D. G. (P. S. O.), Lisgar Bidg., Ottawa, Ont., Canada.

WILKINSON, F. J. (M 1933) Mgr., Central Engrg. Service, Montgomery Ward & Co., Chicago Ave. and Larabee St., Chicago, and • 78257 Martin Ave., Homewood, Ill.

WILLARD, Arthur C.* (M 1914) (Presidential Member) (Pres., 1928; List Vice-Pres., 1927; 2nd Vice-Pres., 1928; Louncil, 1925-29) Pres., • University of Illinois.355 Administration Bldg., and 711 Florida Ave., Urbana, Ill.

WILLEY, Earl C. (M 1934) Asst. Prof. of Mech. Engrg., Oregon State College, and • 121 North 29th St., Corvallis, Ore.

WILLIAMS, Allen W. (Life Member; A 1915) Secy.-Treas., • National Warm Air Register Manufacturers Institute, Room 808, 5 E. Long St., Columbus, and 51 Meadow Park, Bexley, Ohio.

WILLIAMS, Chester D. (M 1938) Mgr., • General Air Conditioning & Heating Co., 3959 Piedmont Ave., Oakland, and 2709 College Ave., Berkeley, Calif.

WILLIAMS, Onnald D. (M 1942; A 1940; J 1938) Htg. Engr. • Lowa-Nebraska Light & Power Co.

WILLIAMS, Donald D. (M 1942; A 1940; J 1938)

Ave., Oakland, and 2709 College Ave., Berkeley, Calif.

WILLIAMS, Donald D. (M 1942; A 1940; J 1938)

Htg. Engr., • Iowa-Nebraska Light & Power Co., 12th and N Sts., and 2236 A St., Luncoln, Nebr.

WILLIAMS, Donald L. (M 1941) Engr., • General Air Conditioning & Heating Co., 3959 Piedmont Ave., and 67 Glen Ave., Oakland, Calif.

WILLIAMS, Elwin C. (A 1939) Sales Repr., 4028
Egbert Ave., Cincinnati, Ohio.

WILLIAMS, Frank H. (A 1940; J 1934) War Staff (Mat'l. Procurement), General Motors Corp., Transportation Bldg., and • 5009 Baltimore Ave. N.W., Washington, D. C.

WILLIAMS, Gordon S. (A 1941; J 1937; S 1936)
Partner, Augur-Williams Co., 15 Chapel St., Woodmont, Conn.

WILLIAMS, H. Edmund (J 1939) Civilian Engr., Bureau of Yards and Docks, U. S. Navy Dept., S21 Fifth Ave., and • 14 West 103rd St., New York, N. Y.

WILLIAMS, J. Walter (Life Member; M 1915)
Pres.-Treas., • Forest City Plumbing Co., 332 E. State St., and 923 E. State St., Ithaca, N. Y.

WILLIAMS, Lyle G. (M 1939) Plbg. and Htg., • Crane Co., 419 Second Ave. S., and 5555-33rd Ave. N.E., Seattle, Wash.

WILLIAMSON, Chester C. (M 1942) Engrg. Dept., H. J. Heinz Co., 1062 Progress St., and • 373 S. Pacific Ave., Pittsburgh, Pa.

WILLIAMS, N. Y.

WILLIA, Fra (M 1937) Pres., • Willner Heating Co., Inc., 415 Lexington Ave., and 125 East 93rd St., New York, N. Y.

WILLS, Fred W. (/ 1938) Aviation Cadet, 5th Army Air Force Flying Training Detachment, Ryan Field, Sq. 11, Cabin 43B, Hemet, Calif., and • 2257 W. Addison St., Chicago, Ill.

WILLSON, Frank J. (M 1941) Vice-Pres., • Staynew Filter Corp., 11 Centre Park, and 2219 Westfall Rd., Rochester, N. Y.

WILLSON, Alexander M. (/ 1942; S 1939) Engr., Andrew Wilson Co., 616 Essex St., Lawrence.

WILSON, Alexander M. (J. 1942; S. 1939) Engr., Andrew Wilson Co., 616 Essex St., Lawrence, and 613 Third St., North Andover, Mass.
WILSON, George T. (M. 1925) Sales Engr., Gurney Foundry Co., Ltd., 4 Junction Rd., Toronto, and 625 Tyre Ave., Islington, Ont.,

Canada.

WILSON, James (M 1942) Service Engr., Darling Bros., Ltd., 140 Prince St., Montreal, and •4259 Hingston Ave., N. D. G., Montreal, Que., Canada.

Canada.
WILSON, Raymond W. (M 1934) Member of
Firm, Wilson-Brinker Co., 309 Pythian Bldg.,
and •429 Creston Ave., Kalamazoo, Mich.
WILSON, Robert A. (M 1936) Sales Engr.,
Minneapolis-Honeywell Regulator Co., 5005
Euclid Ave., Cleveland, and • Briar Hill, Solon, Ohio.

Ohio.

WILSON, Victor H. (A 1938) Engr.-Distributor and Contractor in Refractories, Plibrico Jointless Firebrick Co., 403 Hitchcock Bldg., Nashville, and • "The Thistle-Patch," Donelson, Tenn. WILSON, Westray E. (A 1939) Lt.-Col., Infantry, U. S. Army, Camp Murphy, Fla.; • Wilson Plumbing Co., 227 Haywood Rd., and 110 Salola St., Ashville, N. C.

WILSON, W. H. (A 1932) Chief Power Plant Engr., Pullman-Standard Car Manufacturing Co., 11001 Cottage Grove Ave., and • 22 West 110th Pl., Chicago, Ill.

WILTBERGER, Constant F. (M 1935) Partner, Consulting Engrg., Pennell & Wiltberger, Land Title Bldg., and • 2650 N. Ninth St., Philadelphia, Pa.

Title Bldg., and \$2650 N. Ninth St., Philadelphia, Pa.
WINANS, G. D. (M 1929) Engr. of Steam Distribution, The Detroit Edison Co., 2000 Second Ave., and 16183 Wisconsin, Detroit, Mich.
WINKLER, Ralph A. (A 1940; J 1937) Sales
Engr., Alfred C. Goethel Co., 2337 North 31st
St., Milwaukee, and P. O. Box 179, Elm Grove,

WIS.

WINSLOW, C.-E. A.* (M 1932) (Council, 1940-42) Prof. of Public Health, Yale University School of Medicine, and Dir., • John B. Pierce Laboratory of Hygiene, 310 Cedar St., and 314 Prospect St., New Haven, Conn.

WINTERBOTTOM, Ralph F. (M 1923) Engr., Winterbottom Supply Co., and • 720 Moir, Waterloa Lows.

Winterbottom Supply Co., and • 120 Molf, Waterloo, Iowa.
WINTERER, Frank C. (M 1920) Branch Sales Mgr., • American Radiator & Standard Sanitary Corp., 300 Broadway, and 836 Juno St., St. Paul, Minn.
WISE, Mason W. (M 1923) Owner, M. W. Wise Co., "Lakewood," and • 1656 Melrose Dr. S.W., Atlanta Ga

Co., "Lakewoou, and Tournell Co., "Lakewoou, and Tournell Co., 3023 Farnam St., and 6312 Florence Blvd., Omaha, Nebr.
WITHERIDGE, David E. (J. 1936) Consulting Engr., W. A. Witheridge Co., 2340 Mershon St., Saginaw, Mich.
WITMER. Howard S. (A. 1937) Engrg. Dept.,

Saginaw, Mich.
WITMER, Howard S. (A 1937) Engrg. Dept.,
United States Rubber Co., 6600 E. Jefferson
Ave. and • 2217 Harding, Detroit, Mich.
WITTIG, Frederick E. (J 1939) Instructor,
• Pratt Institute, 215 Ryerson St., Brooklyn,
and Box 145, Glenwood Landing, N. Y.
WOESE, Carl F. (M 1934) Consulting Engr.,
• Robson & Woese, Inc., 1001 Burnet Ave., and
256 Robineau Rd., Syracuse, N. Y.
WOLFE, John S. (M 1941) Mech. Engr., Board of
School Directors, 1012 W. Highland Ave., and
• 2004 N. Bartlett Ave., Milwaukee, Wis.
WOLFF, Peter P. (M 1935) Engr., Bell & Gossett
Co., 3000 Wallace St., and • 7333 Blackstone
Ave., Chicago, Ill.

Ave., Chicago, Ill.

WOLIN, Milton W. (J 1938; S 1937) War Dept.,
and • R. F. D. 2, Box 73-D, New Brunswick,

N. J. WOLL, Willard M. (M 1938) Engr., Industrial Hig. and Refrig., • Commonwealth Edison Co., 72 W. Adams St., and 9320 S. Throop St.,

72 W. Adams St., and 9320 S. Inroop St., Chicago, III. WOLLENBERGER, Louis (M 1938) Industrial Gas Engr., • Coast Counties Gas & Electric Co., 22 Pacific Ave., and 122 Davis St., Santa Cruz, Calif.

WONG, Wilfred S. B. (M 1938) Address Un-

known—Mail Returned.

WONSON, Arthur S., Jr. (J 1941; S 1938) Navy Yard, Boston, and Walnut Park Ave., Essex, Mass.

WOOD, Alfred W. (A 1941; J 1938) Royal Canadian Air Force, and •451 Margaret St., Preston, Ont., Canada.
WOOD, Charles F. (M 1937) Air Cond. Mgr., Prod. Development and Application Dept., Frigidaire Div., General Motors Sales Corp., 300 Taylor St., Dayton, and . R. R. I. Spring Valley, Ohio

WOODGER, Herbert W. (M 1939) Htg. and Vtg. Engr., • General Electric Co., 100 Woodlawn Avc., Pittsfield, and "Pineacres," East St.,

Engr., • General Electric Co., 100 woodnawn Ave., Pittsfield, and "Pineacres," East St., Lenox, Mass.

WOODHOUSE, Graham D. (A 1938) General Supt., Dowagiac Steel Furnace Co., and • 304 West St., Dowagiac, Mich.

WOODMAN, Lawrence E. (M 1934) Pres., • Woodman Engineering Co., 203 E. Capitol, and 925 Adams, Jefferson City, Mo.

WOODS, Baldwin M. (M 1937) (Council, 1942) Dir. University Extension, Prof. Mech. Engrg., • University of California, 301 California Hall, and 249 The Uplands, Berkeley, Calif.

WOODS, Charles F. (A 1940) Town Plant Mgr., • Texas Southwestern Gas Co., and S. Baylor St., Brenham, Texas.

WOODS, Edward H. (M 1934) 916 College Ave., Niagara Falls, N. Y.

WOOLLARD, Mason S. (M 1934) Htg. Engr., Harry H. Angus, Consulting Engr., 1221 Bay St., and • 31 Hillcrest Park Ave., Toronto 5, Ont., Canada.

Canada.

WOOLCOCK, Edwin (A 1938) Mgr., • Woolcock Plumbing & Heating Co., 2217–15th St., and 440 Memorial Pkwy., Niagara Falls, N. V.

WOOLSTON, A. H. (M 1910) Chief Engr., • Woolston-Woods Co., 2132 Cherry St., and 4815 North 12th St., Philadelphia, Pa. WOOLSTON, Robert H. (J 1941) Engr., • Woolston-Woods Co., 2132 Cherry St., and 358 W. Mt. Airy Ave., Philadelphia, Pa. WOOTEN, M. Frank, Jr. (M 1941; A 1940) Consulting Engr., 104 Latta Arcade, and • 400 Cheroke Rd., Charlotte, N. C.

WORKMAN, Albert E. (A 1941) Lt. (jg), U. S. N. R., and • 14601 Bayes Ave., Lakewood, Ohio.

U. S. N. R., and • 14601 Bayes Ave., Lakewood, Ohio.

WORMLEY, Robert F. (A 1938) Branch Mgr.,
• Grinnell Company of Canada, Ltd., 700
Beaumont St., and 6092 Terrebonne Ave.,
Montreal, Que., Canada.

WORSHAM, Hierman (M 1925; J 1918) Instructor at Ordnance Gun School, • Frigidaire
Div., General Motors Corp., 300 Taylor St., and
524 Daytona Pkwy., Dayton, Ohio.

WORTHINGTON, Thomas H. (M 1937) Mgr.,
Eastern Htg. Sales, Standard Sanitary &
Dominion Radiator, Ltd., 405 Beaubien St. W.,
Montreal, Que., Canada.

WORTON, William (M 1937) Branch Mgr.,
• C. A. Dunham Co., Ltd., 504 Scott Bldg., and
292 Lansdowne Ave., Winnipeg, Man., Canada.

WRIGHT, Clarence E. (A 1940; J 1935; S 1933)
Mgr., Htg. and Vtg. Dept., Fairmont Wall
Plaster Co., Tenth St., and • 303 Nuzum Pl.,
Fairmont, W. Va.

WRIGHT, Harris H. (M 1917) Owner, • H. H.

WRIGHT, Harris H. (M 1917) Owner, • H. H. Wright Co., 1322 Walnut St., and 808 Greenway Terrace, Kansas City, Mo. WRIGHT, John B. (M 1940) Sales Engr., • Nash Engineering Co., South Norwalk, and Rowayton,

Conn.

WRIGHT, K. A. (M 1921) Branch Mgr., • Johnson Service Co., 1905 Dunlap St., Cincinnati, Ohio, and 113 Orchard Rd., Ft. Mitchell, Ky.

WRIGHT, Norman S., Jr. (A 1942; J 1941) Mfrs. Repr., • 250 Perry St., San Francisco, and 22 Hillcrest Rd., Mill Valley, Calif.

WRIGHTSON, Wilbor T. (M 1937) Eastern Mgr., • Garden City Fan Co., 55 West 42nd St., New York, and 22 Sagamore Rd., Bronxville, N. Y.

WUNDERLICH, Milton S.* (M 1925) Gen. Sales Mgr., Insulite Div., Minnesota & Ontario Paper Co., 500 Baker Arcade, Minneapolis, and • 545 Mt. Curve Blvd., St. Paul, Minn.

WYATT, DeWitt H. (M 1936) Mech. Engr., West Virginia Ordnance Works, Point Pleasant, W. Va., and • 123 Acton Rd., Columbus, Ohio. WYLD, Reginald G. (M 1937) Lt., U. S. N. R., Navy Dept., Office of Inspector of Naval Material, Pittsburgh Dist., and • 407 Terminal Bldg., 65 Broad St., Rochester, N. Y. WYLLE, Howard M. (M 1925; J 1917) Vice-Pres. in charge of Sales, The Nash Engineering Co., and • 51 Elmwood Ave., South Norwalk, Conn.

Y
YAGER, John J. (M 1921) Pres., Goergen-Mackwirth Co., Inc., 817 Sycamore St., and • 425 Woodbridge Ave., Buffalo, N. V.
YAGLOU, Constantin P.* (M 1923) Assoc. Prof. Industrial Hygiene, • Harvard School of Public Health, 55 Shattuck St., Boston, and 10 Vernon Rd., Belmont. Mass.
YARBOROUGH, T. R. (M 1938) Production and Inventory Analyst, W. P. B., Phoenix Bldg., Birmingham, Ala., and • 1268 Stillwood Dr. N.E., Atlanta, Ga.
YATES, Joseph E. (M 1939) Asst. Engr., • Pacific Power & Light Co., 405 Public Service Bldg., and 1820 Northeast 57th Ave., Portland, Ore.
YATES, Walter (Life Member; M 1902) Governing Dir., • Matthews & Yates, Ltd., Cyclone Works, Swinton, and 4 Egerton Park, Worsley, Manchester, England.
YERKES, William L. (M 1941; A 1937) Engr., • Carrier Corp., S. Geddes St., Syracuse, N. Y., and • Box 153, Ithan, Pa.
YOUNG, Emil O. (A 1935) Owner, • Young Regulator Co., 4500 Euclid Ave., Cleveland, and 3628 Cummings Rd., Cleveland Heights, Ohio.
YOUNG, Harold J. (M 1937) Sales Engr., Young Radiator Co., Occidental Hotel Bldg., and • 1364 Lakeshore Dr., Muskegon, Mich.
YOUNG, J. T., Jr. (A 1936) Mgr. • Crane Co.,

Radiator Co., Occidental Hotel Bidg., and • 1364 Lakeshore Dr., Muskegon, Mich. YOUNG, J. T., Jr. (A 1936) Mgr., • Crane Co., Box 709, 20th and Wall, and 508 Ogden Canyon, Ogden, Utah. YOUNGER, John R. (J 1941) U. S. N. R., Sp.3/c (T), U. S. Naval Training School, Wahpeton, N. D.

Z
ZACK, H. J. (M 1928) Prop., The Zack Co., 2311
Van Buren St., Chicago, Ill.
ZAKI, Hussein M. (/ 1941; S 1940) Architectural
Engr., 17 Cleopatra St., Heliopolls, Cairo, Egypt.
ZEIGLER, Donald D. (S 1942) Student, Carnege
Institute of Technology, Pittsburgh, Pa., and
•243 N. St. Clair St., Dayton, Ohio.
ZIBOLD, Carl E. (M 1929) Mech. Engr., Htg. and
Vtg., 13 Chadwick Rd., Westminster Ridge,
White Plains, N. Y.
ZIEBER, W. E. (M 1935) Dir. of Research, • York
Ice Machinery Corp., and 22 S. Keesey St.,
York, Pa.
ZIEL, Herbert E. (M 1924) Mech. Engr., • Albert
Kahn, Associated Archts, and Engrs., 345 New
Center Bldg., and 694 Glynn Court, Detroit,
Mich.

ZIESSE. ESSE, Karl L. (A 1931) Partner, Phoenix Sprinkler & Heating Co., 115 Campau Ave. N.W., and 315 Hampton Ave. S.E., Grand

Rapids, Mich.

ZINK, David D. (M 1931) I.t.-Col., G. S. C., U. S.
Army, Hq. I Armored Corps. A. P. O. No. 758,
c/o Postmaster, N. Y., and •642 Lincoln St.,

c/o Postmaster, N. Y., and •642 Lincoln St., Eugene, Ore.
ZINTEL, George V. (A 1941) Sales Engr., Himelblau Byfield & Co., 36 S. Throop St., and •1428 Summerdale, Chicago, Ill.
ZUBER, Otto C. (A 1938) Chief Engr., •Amana Society, Amana, and South Amana, Iowa.
ZUMWALT, Ross (A 1941; J 1938) Partner, •Zumwalt & Vinther, 707 Thomas Bldg., and 9435 Waterview, Dallas, Texas.
ZUROW, William Allan (J 1937) Ensign, U. S. N., and •728 S. Tenth St., St. Joseph, Mo. ZYNDA, John R. (J 1942) Mech. Engr., Tool and Fixture Designer, Reliant Industries, Fisher Bldg., and •8876 Burt Rd., Detroit, Mich.

SUMMARY OF MEMBERSHIP

Junior Members 263

Student Members 27

Members_____1675

Associate Members	_ 937	Total	3006
_			
•		•	
WORKS CO.		•	
TINIT	rrn	STATES	
ONI	עעוו	SIAIES	
Alabama	. 8	Tennessee	. 17
Arizona	. 3	Texas	. 86
Arkansas	. 6	Utah	. 8
California	129	Vermont	. š
Colorado	. 8	Virginia	. 55
Connecticut	40	Washington	49
Delaware	10	West Virginia	. 8
District of Columbia	88	Wisconsin	. 88
Florida	16	Wyoming	2
Georgia	57		
Idaho	1		2698
Illinois	249		
Indiana	38	DOMINION OF CANADA	. 218
Iowa	39		
Kansas	15	FOREIGN COUNTRIES	
Kentucky	12	Australia	. 8
Louisiana	36	Bermuda Islands	. 1
Maine	4	Brazil	
Maryland	58	Chile *	
Massachusetts	100	Cuba	
Michigan	182	Egypt	. ŝ
Minnesota	93	England	
Mississippi	4	India	4
Missouri	110	Ireland •	2
Montana	3	Mexico	
Nebraska	21	New Zealand	. 3
Nevada	5	Puerto Rico	3
New Jersey		South Africa	3 5
New York		Sweden	
North Carolina	43	Turkey	
Ohio		Venezuela	2
Oklahoma	15	-	
Oregon	43		81
Pennsylvania	248		Ų1
Rhode Island	7	Addresses Unknown	9
South Carolina	12	momer sensennourin	2007
South Dakota	2	TOTAL MEMBERSHIP	3006

LIST OF MEMBERS

(Geographically Arranged)

UNITED STATES and POSSESSIONS

ALABAMA

Attalla.... Gilliland, L.

Birmingham-

Gause, H. C. Myer, H. Richards, G. H Walden, H. K.

Montgomery-Dowdy, R. B. Drum, L. J., Jr.

Tuscaloosa-Murphree, R. L.

ARIZONA

Phoenix-

Chapman, W. A., Jr. Hummell, G. W.

Tucson-Tidmarsh. P. M.

ARKANSAS

Fort Smith-Schuster, P. H.

Little Rock-Cumnock, H. McCoy, C. E.

Pine Bluff-

Carnahan, J. H. Hellmers, C. C., Jr.

Kribs, C. L., Jr.

CALIFORNIA

Bakersfield-Baker, H. S.

Texarkana-

Berkeley-

Atkins, G. E.
Baldwin, K. F., Jr.
Fluckey, K. N.
Hutchinson, F. W.
Murphy, E. F.
Peterson, C. L.
Porter, N. E.
Raber, B. F.
Woods, B. M.

Beverly Hills-Theobald, A. Burlingame-Hill. J. A.

Camp Roberts-Green, E. W.

El Monte-Hazlehurst, H. D.

Fresno-Newman, H. E.

Glendale-

Eggleston, H. L. Scofield, P. C. Storms, R. M. Wells, E. P.

Huntington Park-Bullock, H. H. Stanley, R. L.

Long Beach-Barth, J. W. Billingsley, O.F.H., II

Los Angeles-

Anderson, C. S. Cummings, T. P. DeFlon, J. G. deMena, L. I. deMena, L. 1.
Dieter, G. H.
Dillender, E. A.
Downes, A. H.
English, H.
Fabling, W. D.
Fulmor, I. P.
Gunzel, R. M.
Hendrickson, H. M. Hess, A. J. Hokanson, C. G. Hungerford, L. Kennedy, M. Kilpatrick W. S. Lauer, H. B. Lowe, R. A. Lowe, R. A.
McKenzie, M. C., Jr.
Moriarty, J. M.
Ness, W. H. C.
Orcar, A. G.
Ott., O. W.
Park, J. F.
Parks, C. E.
Parsons, J. H.
Phillips, R. E.
Phillips, R. H.
Rodeffer, E. W. Rodeffer, E. W. Stewart, W. O. Walker, W. F. Webber, C. H.

March Field-Owen, J. D.

Mill Valley-Vinson, N. L.

Oakland-

Babcock, P. R. Blumenthal, M. I. Cummings, G. J. Emanuels, M. Kurtz, O.
Kurtz, O.
Murphy, D. I.
Shepard, C. R.
Terry, S. W.
Williams, C. D.
Williams, D. L.

Pacific Palisades-Finney, B.

Palo Alto-Johnson, O. W.

Pasadena-Gifford, R. L.

Paso Robles-Hill, E., Jr.

Redwood City-Hudson, R. A.

Towle, P. H.

Salinas-

San Diego-Elizardi, R. Keeter, D. M. Sadler, C. B.

San Francisco-Akers, G. W. Bentley, C. E. Bouey, A. J. Brown, S. D. Cochran, L. H. Cooley, E. C. Cushing, R. C. Folsom, R. A. Fanning, E. C. Gayner, J.
Goins, E. H.
Haley, H. S.
Herre, H. A.
Hickman, H. V.

Holland, R. B. Hook, F. W. Hook, F. W. Howes, E. W. Hunter, T. B. Kaup, E. O. Kolb, F. W. Kooistra, J. F. Krueger, J. I. Leland, W. E. Martin, G. D.

McIndoe, J. F.

Melnick, N. A. Molfino, P. Parker, R. Parker, R. A.,
Peterson, N. H.,
Ploskey, E. J.
Reed, V. C.,
Reilly, P. H., Jr.
Rosen, E. J.
Scandrett, H. R.
Schlick, P. F.
Scott, W. P.,
Simons, E. W.,
Simonson, G. M.,
Sorott, J. I. Simonson, G. M. Sprott, J. I. Wayland, C. E. Wethered, W. White, T. J. Wright, N. S., Jr.

San Gabriel-Griffith, J. B.

San Marino-McGowan, T. E.

San Pedro --Westphal, N. E.

Santa Cruz --Wollenberger, L.

Santa Monica-Coghlan, S. F.

Piedmont--Martin, J. O.

South Pasadena ---Jones, D. R. A.

Victorville-Bachofer, H. A., Jr.

COLORADO

Colorado Springs -Jardine, D. C.

Denver-

Adams, F. L. Maves, G. D. McNevin, J. E McQuaid, D. J. O'Rear, L. R.

La Junta-Curtice, J. M.

Pando-Selig, E. T., Jr.

ROLL OF MEMBERSHIP

CONNECTICUT

Bridgeport-

Clement, E. R., Sr. Earle, F. E. Palumbo, B. F.

Danbury-Moore, M.

Elmwood-

Fischer, L. W. Fairfield—

Osborn, W. J. Smak, J. R. Greenwich—

Jones, A. L.

Secley, L. E.

Hartford— Bemis, P. D. Peterson, H. P.

Manchester— Leitgabel, K. A.

New Britain— Hart, S. Hart, T. S.

New Haven-

Blakeley, H. J. Converse, T. J. Roeder, W. Teasdale, L. A. Winslow, C.-E. A.

New London— Chapin, C. G. Forsberg, W. Hopson, W. T.

Old Greenwich-

Riverside— Murphy, J. R.

South Norwalk—
Adams, H. E.
Jennings, I. C.
Lyons, C. J.
Mead, E. A.
Wright, J. B.
Wylie, H. M.

Stamford -- Jessup, B. H.

Torrington— Doster, A. Upson, W. L.

Waterbury—
Osborne, S. R.
Simpson, R. L.
Simpson, W. K.
Stein, J.

West Hartford-

Westport-Faile, E. H.

Woodmont— Williams, G. S.

DELAWARE

Claymont— Ginzburg, N.

Milford-Downing, C. B.

Wilmington—
Burke, J. J.
Granke, A. A.
Hayman, A. E., Jr.
Kershaw, M. G.
Lownsbery, B. F.
Parvis, R. S.
Robinson, G. L.

DISTRICT OF COLUMBIA

Schoenijahn, R. P.

Friendship Station— Burns, H. J.

Washington-

Ashington—
Bichowsky, F. R.
Bornstein, A. B.
Bornstein, W.
Brown, L. S., Jr.
Brunner, E. G.
Campbell, G. W.
Carson, C. C.
Clo, H. E.
Crawford, A. C.
Cullen, A. G.
Day, I. M.
Devore, A. B. Devore, A. B. Dovener, R. F. Downes, H. H. Ellis, G. P. Erisman, P. H., Jr. Espenschied, F. F. Faxon, H. C. Febrey, E. J. Feltwell, R. H. Frankel, G. S. Graves, V. Frankel, G. S. Graves, V. Hall, M. S. Hanlein, J. H. Hannigan, W. Heagerty, W. H. Hertzler, J. R. Hill, H. H. H. Holder, L. H. Holdere, P. B. Hoppe, M. F. C. Houghten, F. C. Hoppe, M. F.
Houghten, F. C.
Inman, C. M.
Iverson, H. R.
Jones, W. C.
Kiczales, M. D.
Kidd, C. R.
Kingswell, W. E.
Kugel, H. K.
Latterner, H., Jr.
Lauer, R. F. Latterner, H., Jr. Lauer, R. F. Leser, F. A. Lewis, T. Littleford, W. H. Lloyd, E. H. Loughran, P. H., Jr. Maurer, L. McCormick, G.W., Jr. McCusker, J. P. McEntee, F. M. McKay, A. W. McLouth, B. F. Mchother, H. W. McKay, A. W. Mchother, H. W. McKay, A. W. Mchother, H. W. W. Mchother, H. W. W. Mchother, H. W. Mchother, H. W. W. Mchother, H. W. W. Mchother Meinholtz, H. W.

Mergardt, A. P.
Miller, G. F.
Millham, F. B.
Mitchell, A. E.
Nelson, H. M.
Nolan, J. J., Jr.
Norair, H.
Ourusoff, L.
Peacock, H.
Phillips, W. L.
Robinson, D. M.
Roper, R. F.
Ryerson, H. E.
Sale, F. B.
Schulze, B. H.
Shapiro, M.
Shire, A. C.
Small, R. A.
Steel, R. J.
Sterne, C. M.
Stewart, J. N.
Stewart, J. N.
Sterne, C. M.
Stewart, J. N.
Sterne, C. M.
Stewart, J. N.
Sterne, C. M.
Sterne, C. M.
Sterne, C. M.
Sterne, C. M.
Sterne, C. M.
Sterne, C. M.
Sterne, C. M.
Sterne, C. M.
Sterne, C. M.
Sterne, J. G.
Sutter, E. E.
Terry, M. C.
Thomas, G.
Thomas, G.
Thompson, N. S.
Tuxhorn, D. B.
Urdahl, T. H.
Van Alsburg, J. H.
Van Alsburg, J. H.
Vaughan, J. G., Jr.
Werner, J. G.
Werner, J. G.

FLORIDA

Camp Murphy— Diamond, D. D.

Holly Hill-Odum, R. A.

Jacksonville—
Allen, W. W.
Beckwith, F. J.
Crumley, M. T.
Edge, A. J.
Griest, K. C.
Otts, J. G.
Pastor, J. C.

Key West-Millard, J. W.

Miami—
Andrews, W. G.
Caskey, L. H., Jr.
Fuller, E. W.

Orlando— Flarsheim, C. A.

Tampa— Patterson, G. P. Thomas, B. A.

GEORGIA

Atlanta—
Baird, F. E.
Baker, H. L., Jr.
Barnes, L. L.
Baxter, J. F.,
Baxter, J. F.,
Backnan, A. O.
Boland, L. C., Jr.
Boyd, S. W.
Brodnax, G. H., Jr.
Bull, F. W.
Clare, F. W.

Cole, C. B.
Como, J. A.
Como, J. A.
Crout, M. M.
DuChateau, M. F.
Foss, E. R.
Galloway, D.
Garrard, W. M.
Godfrey, J. E.
Gorbandt, E. T.
Gunthorpe, C. E.
Hahn, R. F.
Johnson, C. E.
Kagey, I. B.
Kent, L. F.
Kitch, R. B.
Klein, E. W.
Koch, A. H.
Lawrence, L. F., Jr.
Ludwig, W. D.
McKinney, W. J.
North, S. L.
O'Shea, J. J.
Rittelmeyer, J. M.
Seckinger, B. J., Jr.
Simms, H.
Smoot, C. B.
Sockwell, C., Jr.
Sockwell, C., Jr.
Sockwell, C., Jr.
Sockwell, C., Jr.
Sockwell, C., Jr.
Stephenson, K. A.
Strother, W. E.
Sudderth, L., Jr.
Templin, C. L.
Tucker, T. T.
Wise, M. W.
Yarborough, T. R.

Augusta— Arndt, H. W.

Brunswick— Gilmore, J. L.

College Park— Blackshaw, J. L. Croley, J. G.

Decatur— Lindstrom, D. F.

Marietta— Huff, J. M.

Savannah— Hamlin, J. B., Jr.

IDAHO

Boise— Lessinger, E. F.

ILLINOIS

Batavia— Atherton, G. R.

Bellwood— Schulein, L.

Berwyn— Lobstein, M. G.

MaGirl, W. J. Nesmith, O. E. Soper, H. A. Whitmer, R. P.

Blue Island-Meyer, K. A.

Carbondale-Owen, C. E.

Chicago-

Abramson, R. J.
Adams, B. P.
Adams, B. P.
Aeberly, J. J.
Ammerman, A. S., Jr.
Anderson, C. G.
Arenberg, M. K.
Aronson, H. H.
Bamond, M. J.
Banach, C. J.
Barnes, N. W.
Beanach, C. J.
Barnes, N. W.
Bevington, C. M.
Becker, W. A.
Beery, C. E.
Benson, F. W.
Bevington, C. H.
Black, F. C.
Blaker, A. H.
Blayney, W. R.
Boyle, J. R.
Bracken, J. H.
Braun, L. T.
Brigham, C. M.
Brocke, I. E.
Broom, B. A.
Brown, A. P.
Burnam, C. M., Jr.
Casey, B. L.
Chase, L. R.
Christophersen, A. E.
Close, P. D. Christmann, W. F.
Christophersen, A. E.
Close, P. D.
Connors, E. C.
Cook, H. D.
Crone, C. E.
Cross, R. C.
Crump, A. L.
Cummiskey, J. F.
Cunningham, T. M.
Dasing, E. Cummiskey, J. F. Cunningham, T. Dasing, E. Dauber, O. W. DeLand, C. W. Dunham, C. A. Eggers, W. K. Ericsson, E. B. Fatz, J. L. Fleak, W. D. Floreth, J. J. Floreth, J. J. Frank, J. M. Gardner, W. Gaylord, F. H. Getschow, R. M. Goelz, A. H. Gothard, W. W. Gotschall, H. C. Graves, W. B. Griffin, C. J. Gritschke, E. R. Gustafson, C. A. Hass, S. L. Gustafson, C. A. Haas, S. L. Haines, J. J. Hanley, T. F., Jr. Hart, H. M. Hattis, R. E. Hayes, J. J. Hendrickson, R. L. Harliby, J. J. Herlihy, J. J. Hill, E. V. Howatt, J. Hubbard, G. W. Hustoel, A. M. Johnson, C. W. Kaiser, F. Keating, A. J. Keeney, F. P. Kehm, H. S.

Kenney, T. W. King, A. C. Krez, L. Krez, L.
Kuechenberg, W. A.
Lagodzinski, H. J.
LaRoi, G. H., II
Lauterbach, H., Jr.
Lenone, J. M.
Leuthesser, F. W., Jr.
Lewis, S. R.
MacCubbin, H. A.
Maier, H. F. Lewis, S. K.
MacCubbin, H. A.
Maier, H. F.
Malone, D. G.
Malvin, R. C.
Manny, J. H.
Matchett, J. C.
Mathis, E.
Mathis, E.
Mathis, J. W.
Mattingly, M. F.
May, A. O.
May, E. M.
McCauley, J. H.
McCauley, J. H.
McDonnell, E. N.
McDonnell, J. E.
McDonnell, J. E.
McDonnell, J. E.
McDonnell, J. E.
McRae, M. W.
Merens, S. H.
Mertz, W. A.
Miller, F. A.
Miller, R. T.
Milliken, J. H.
Mittendoff, E. M.
Mucler, H. C.
Muecker, J. W. Muclier, H. C. Muelser, H. C. Muessig, J. W. Narowetz, L. L., Jr. Neiler, S. G. Nelson, R. O. Newport, C. F. Nelson, R. O.
Newport, C. F.
Offen, B.
Olsen, C.F.
Offen, B.
Olsen, L.F.
Olsen, B.
Oosten, L. S.
Ott, M. E.
Peiser, M. B.
Peterson, W. E.
Pfister, V. A.
Phillippi, J. J.
Pierce, J. D.
Pope, S. A.
Porter, K. C.
Powers, F. W.
Prentice, O. J.
Price, C. E.
Raymond, F. I.
Reger, H. P.
Rex, H. E.
Rietz, E. W.
Rottmayer, S. I.
Ruggles, R. F.
Russell, E. A.
Sachs, S.
Sander, A. J.
Scheidecker, D. B.
Shanklin, A. P.
Shultz, E.
Solstad, L. L. Shanklin, A. P.
Shultz, E.
Solstad, L. I.
Sommerfield, S. S.
Spencer, R. M.
Spielmann, G. P.
Stevenson, M. J.
Stevenson, M. J.
Sunderland, R. P.
Swanson, N. W.
Thinn, C. A.
Tiller, L.
Trickler, E. E.
Trumbo, S. M.
Walters, W. T.
Waterfall, W.
Weil, M. Weil. M. Weinshank, T. Wendt, E. H. White, E. B.

Wills, F. W.
Wilson, W. H.
Wolff, P. P.
Woll, W. M.
Zack, H. J.
Zintel, G. V. Decatur-

Carlock, M. F. Tenkonohy, R. J.

Des Plaines-Lockhart, H. A.

East St. Louis-Cover, E. B. Post, N.

Evanston-

Clarke, J. H.
Emmert, L. D.
Jennings, B. H.
Kearney, J. S.
Schroeder, W. R.
Schulz, E. L.
Stahl, W. A.

Glencoe - -Barnett, H. Hornung, J. C.

Glen Ellyn --Sherman, V. L.

Glenview --Nightingale, G. F.

Great Lakes -Ash, R. S. Cary, E. B.

Homewood --Wilkinson, F. J.

Kewanee --

Bronson, C. E. Dickson, R. B. Hartman, J. M.

La Grange -Estep, L. G.

Maywood --Meiller, D. V.

Moline --

Beling, E. H. Hansen, J. T. Holuba, H. J. Nelson, H. W. Nelson, R. H.

Monmouth -O'Daniel, J. A.

Morton Grove -Gossett, E. J. Lige, W. W. Moore, R. E. Pullum, C. E.

Mt. Prospect --Schuetz, C. C.

Mt. Vernon -Benoist, L. L. Benoist, R. E. Northbrook -Prebensen, H. J.

Oak Park-

Fitzgerald, M. J. Johns, H. B. Tracy, W. E. Uhlhorn, W. J.

Ottawa--

Bazzoni, J. P.

Park Ridge--

Brandt, A. D. Heckel, E. P. Locke, J. S. Sutcliffe, A. G.

Peoria -Hauer, F. Meyer, F. L.

Prospect Heights -

Stacy, L. D.

Rochelle--Caron, H.

Rockford -Berzelius, C. E. Braatz, C. J. Kennedy, W. W. Stewart, D. J.

Rock Island -Kimble, C. W.

Streator -Johnson, R. A.

Urbana -

Fahnestock, M. K. Giesecke, F. E. Harris, W. S. Konzo, S. Kratz, A. P. Markland, C. F Severns, W. H. Willard, A. C. Ε.

Villa Park -Armspach, O. W.

Wilmette -DeBerard, P. E. Marschall, P. J. Ward, O. G.

Winnetka --Killian, V. J. Martin, A. B.

INDIANA

East Chicago -Boyar, S. L.

Evansville --Becker, R. K. Gair, K. B. Grossman, F. A. Koenig, A. C.

Fairland --Garber, W. E., Jr.

Gary-Kirtland, E. M.

ROLL OF MEMBERSHIP

Joshen --Shaw, B. E.

Redrup, W. D. Smith, G. W.

ndianapolis-

Barney, W. J.
Bevington, W. C.
Bevington, W. C.
Bowles, P.
Clark, L. W.
Curl, R. S.
Davis, T. R.
Fenstermaker, S. E.
Gillett, M. C.
Hagedon, C. H.
Hayes, J. G.
Jehle, F.
Niesse, J. H.
Paetz, G. A.
Poehner, R. E.
Sanbern, E. N.
Stewart, C. W.
Supple, G. B.
Tutt, R. D.
Voorhees, G. A.

A Porte— Hashagen, J. B. Shrock, J. H.

ogansport— Baker, T. A.

Aichigan City-Stockwell, W. R.

Auncie-Price, C. F.

'eru --Thrush, H. A.

Vest Lafayette— Dickson, D. R. Miller, W. T. Warner, C. F.

IOWA

Nelson, G. O.

Brown, W. E. Norman, R. A. Olson, E. O. Smith, R. K.

ledar Rapids— Nyquist, J. D.

herokee -Miller, M. S.

Ahrens, R. H.

)es Moines-

Armstrong, C. C. Borg, E. H. Frankle, H. R. Gunton, C. Helstrom, C. W. Hennessy, W. J. Johnson, T. R. Johnston, M. T. Landes, B. E. LaRue, P.

Murphy, D. C.
North, C. P.
Schnell, R. H.
Stuart, W. W.
Tone, J. E., Jr.
Triggs, F. E.
Walters, A. L.
Wells, D. E.
Wheeler, C. A.

Iowa City— Croft, H. O. Weekes, R. W.

Plymouth— Friedline, J. M.

Sioux City— Hagan, W. V. Raven, A. H.

South Amana— Zuber, O. C.

Washington-Norton, L. I.

Waterloo—
Hedeen, L. E.
Knox, J. C.
Smith, S. T.
Todd, M. L.
Winterbottom, R. F.

KANSAS

Camp Phillips— Watson, G. M.

Coffeyville— Cheeseman, E. W.

Fort Leavenworth— Franklin, S. H., Jr.

Hutchinson-Stevens, H. L.

Junction City— Froelich, H. A. Muenzenmayer, W.R.

Kansas City— Allen, DeW. M. Arthur, J. M., Jr. Boyd, L. E. Mart, L. T.

Machin, D. W. Robb, J. E.

Manhattan-Gould, J. L.

Mission-Siemon, H. B.

Salina— Ryan, W. F.

KENTUCKY

California— Hauss, C. F.

Fort Knox---Brown, H. J. Lexington-

May, J. W. O'Bannon, L. S. West, P.

Louisville-

Groot, H. W. Hellstrom, J. Hubbuch, N. J., Jr. Murphy, H. C. Nutting, A. Pound, H. W.

Owensboro-Hoover, W. L.

LOUISIANA

Camp Beauregard— Marston, A. D.

Camp Polk-Bernard, E. L.

Gretna— Hero, G. A., Jr.

Monroe-

Thomas, E. R. New Orleans-

Adair, J. S.
Bryner, J. J.
Burke, J. S.
Cressy, L. V.
DeLaureal, W. D.
Devlin, J.
Dudley, W. H., Jr.
Eutsler, E. E., Jr.
Fischer, F. P.
Friedler, J., Jr.
Graham, F. D.
Grant, W. H., Jr.
Guest, R. B.
Gutknecht, F.

Grant, W. H., Jr.
Guest, R. B.
Gutknecht, F.
Helwick, N. J.
Holzer, R. J., Jr.
Jordy, J. J.
Joyce, J. J.
Kelly, H. J.
Kerr, G. C.
Knight, J. T., Jr.
Landauer, L. L.
May, G. E.
Moscs, W. B., Jr.
Nelson, L. K.
Oesterle, A. L.
Oster, W. P.
Roberts, H. H.
Salzer, A. R., Jr.
Shepperd, P. D.
Weil, L. S.

Shreveport— Fitzgerald, W. E.

MAINE

Auburn— Fowles, H. H.

Bangor— Prince, R. F.

Portland— Fels, A. B. Merrill, C. J. MARYLAND

Annapolis— Kolb. R. P.

Baltimore-

Ay, E. L.
Collier, W. I.
Crosby, E. L.
Dorsey, F. C.
Dressell, R. E.
Dukehart, M. McI.
Gjertsen, G.
Levitt, L. L.
Mabon, J. E.
McCaffray, C. E.
McCormack, D.
McCrea, L. W.
Morris, E. J.
Nost, R. E.
North, W. R.
Posey, J.
Rothmann, S. C.
Seiter, J. E.
Shepard, J. deB.
Smoot, T. H.
Stokes, A. D.
Taze, E. H.
Vance, L. G.
Vincent, P. J.

Bethesda-

Goodwin, E. W. Gregg, S. L. Markert, J. W. Parkinson, J. S. Smith, S.

Catonsville— Hinnant, C. H., Jr.

Chevy Chase—
Beitzell, A. E.
Humphrey, L. G., Jr.
Keyes, M. W.
Thulman, R. K.

Cumberland— Griffith, C. A.

Elkton— McCloskey, J. H.

Fort Deposit— Trambauer, C. W.

Frostburg— Noord, D. F.

Glen Burnie— Rodgers, J. S.

Kensington— Gates, A. S., Jr. Karsunky, W. K. Spurney, F. E.

Laurel— Kluckhuhn, F. H.

Mt. Rainier— Gray, W. E.

Rockville— Brunett, A. L.

Ruxton-Leilich, R. L.

Silver Spring-

Becker, C. S.
Dill, R. S.
Eagleton, S. P.
Gritzan, L. L.
Morton, H. S.
Nordine, L. F.
Russell, B. A.
Shuman, L.
Stack, A. E.

Takoma Park— DeSomma, A. E.

Towson— Hunt, M.

MASSACHUSETTS

Arlington-Shaw, N. J. H.

Arlington Heights— Tarr, H. M.

Belmont— Sauerwein, G. K. Spence, R. A.

Boston-

Ahearn, W. J.
Archer, D. M.
Bartlett, A. C.
Bergan, J. R.
Blair, D. W.
Brayman, A. I.
Brinton, J. W.
Brissette, L. A.
Colby, J. H.
Cummings, C. H.
Donohoe, J. B.
Drinker, P.
Edwards, D. J.
Foulds, P. A. L.
Howes, B. B.
Jennings, W. G.
Kelley, J. J.
Kimball, C. W.
Licandro, J. P.
Licandro, J. P.
Licandro, J. P.
Merrill, F. A.
Shaer, I. E.
Stetson, L. R.
Swaney, C. R.
Tierney, L. J. J.
Tuttle, J. F.
Tyler, R. D.
Waterman, J. H.
Whitehurst, B. W.
Vaglou, C. P.

Brighton-Boyden, D. S.

Brookline-

Flint, C. T. McCoy, T. F.

Cambridge—
Hesselschwerdt,
Holt, J.
Peterson, C. M. F.
Sheffield, R. A.
Staszesky, F. M.
Touloukian, Y. S.
Van Nouhuys, H. C.
Wilkes, G. B.

Chelmsford— Ridley, W. H.

Chicopee Falls— Ferderber, M. B.

Dorchester— Ehrenzeller, A. Goodrich, C. F. Hosterman, C. O.

Essex— Wonson, A. S., Jr.

Fitchburg-

Dolan, W. H.
Illig, E. E.
Illig, W. R.
Karlson, A. F.
McKittrick, P. A.

Harwich Port— Maxwell, G. W.

Hyde Park— Ellis, F. R.

Jamaica Plain— McMullen, E. W. von Rehberg, H. L.

von Rehberg, H

Bride, W. T.

Leominster-Kern, R. T.

Lynn-

Farrow, H. L. Feehan, J. B.

Malden-

Denham, H. S. Hill, C. F. Richards, L. V.

Marblehead-Fuller, R. A.

Melrose— Franklin, R. S. Gerrish, G. B.

Natick-

Robin, R. C. Newton—

Croney, P. A.

Newton Center-Lair, P. H.

Newtonville— Emerson, R. R. Jones, W. T. Moore, H. C.

North Andover-

Wilson, A. M.

Pittsfield— Nicholls, J. M. Woodger, H. W.

Quincy— Rodee, E. J.

Reading— Ingalls, F. D. B. Roslindale— Larson, C. W.

Somerville— Whitten, H. E.

Springfield—
Cross, R. E.
Hart, J. H.
Huggins, L. G.
Malin, B. S.
Murphy, W. W.
Packtor, B. M.

Watertown-Wiegner, H. B.

Wellesley Hills-Barnes, W. E.

Westfield-Leland, W. B.

West Newton-Wahlin, B. J.

West Roxbury— Krapohl, W. H. McPherson, W. A.

Winchester— Carrier, E. G. Doherty, J. J.

Wollaston-Blair, E. L.

Worcester— Wechsberg, O.

MICHIGAN

Albion— Gable, H. R.

Alpena— Freestrom, A.

Ann Arbor—
Backus, T. H. L.
Calhoon, F. N.
Falk, D. S.
Kessler, C. F.
Marin, A.

Battle Creek— Christenson, H. Dempsey, S. J.

Bay City— Gray, J. W. Henry, E. C. Menden, P. J.

Birmingham-

Hadjisky, J. N. Hyde, E. F. Old, W. H. Root, E. B. Widdowfield, A. S.

Bloomfield Hills— Morse, L. S., Jr.

Dearborn— Darlington, A. P.

Adam, R. W. Anderson, E. J. Anderson, E. J.
Barth, H. E.
Barton, J.
Bassett, J. W.
Bay, C. H.
Beattie, J.
Beers, L. N.
Beennett, M. F.
Berryman, R. H.
Biggers, R. H.
Bishop, F. R.
Blackmore, F. H.
Boales, W. G.
Bottum, E. W.
Brodie, A. H. Brodie, A. H. Bruce, M. Busse, H. Busse, H.
Champlin, R. C.
Chapin, H. G.
Chapman, D. B.
Chappell, H. D.
Chester, T.
Clark, E. H.
Cohn, H.
Collins, L. F. Cohn, H.
Collins, L. F.
Connell, R. F.
Connell, R. F.
Coon, T. E.
Cummins, G. H.
Dauch, E. O.
Deppmann, R. L.
Donohoe, C. F.
Dubry, E. E.
Elliott, N. B.
Feedy, F. J.
Feinberg, E.
Giguere, G. H.
Gonzalez, R. A.
Goss, M. H.
Greiling, W. W.
Harrigun, E. M.
Heydon, C. G.
Hogan, E. L.
Holmes, R. E. Hogan, E. L.
Holmes, R. E.
Hubbard, N. B.
Hughson, H. H.
Johnson, F. W.
Kaufman, H. J.
Kilner, J. S.
Kirkpatrick, A. H.
Klink, E. J.
Knibb, A. E.
Kolasa, M. J.
Kucher, A. A.
Lee, J. A.
Lee, J. A.
Leinberger, R. J. P.
Linsenmeyer, F. J.
Livermore, J. N.
Luty, D. J.
Mabley, T. H.
MacMillan, A. R.
Marzoff, F. X.
McConachie, L. L. McConachie, L. L. McConachie, L. L.
McCrea, J. B.
McGeorge, R. H.
McLeorge, R. H.
McLean, D.
Milward, R. K.
Morse, C. T.
Morse, F. W.
Oberschulte, R. H.
O'Gorman, J. S., Jr.
Paetz H. E.
Parrott, L. G.
Partlan, R. L.
Patterson, F. H. Patterson, F. II. Pavey, C. A. Pavey, C. A. Pearson, F. I. Peterson, D. J. Purcell, F. C. Randall, R. D. Randall, W. C. Reader, J. T. Sanford, S. S. Sawyer, H. C.

Detroit-

Scherger, F. J.
Scelig, L.
Scheig, L.
Shea, M. B.
Sheley, E. D.
Siegel, D. E.
Smith, W. O.
Snyder, J. W.
Spitzley, J. H.
Spitzley, R. L.
Spitzley, R. L.
Spurgeon, J. H.
Stites, R., Jr.
Strand, C. A.
Taylor, H. J.
Toonder, C. L.
Tuttle, G. H.
Tydings, W. F.
Waild, G. H.
Walker, J. H.
Walker, J. H.
Walker, J. Wilde, R. S.
Weinert, F. C.
Whelan, W. J.
Wilde, R. S. M.
Winnans, G. D.
Witmer, H. S.
Ziel, H. E.
Zynda, J. R.

Dowagiac-

Cunningham, J. S. Deming, R. E. Harden, J. C. Torr, T. W. Woodhouse, G. D.

East Lansing
Distel, R. E.
Ely, R. S.
Merz, R. A.
Miller, L. G.
Pesterfield, C. H.

Ferndale— Mally, C. F. McCaul, L. K.

Flint-Hendriksen, L.

Grand Rapids—
Bradfield, W. W.
Bratt, H. D.
Marshall, O. D.
Stafford, T. D.
Thoman, E. O.
Warren, F. C.
Ziesse, K. L.

Grosse Pointe Farms Mabley, L. C.

Grosse Pointe Park— Buckeridge, V. L. Davis, G. L., Jr.

Hillsdale— Oberlin, J. A.

Holland-Harbin, F., Jr.

Houghton-

Jackson-Link, C. H. Tilford, L. A.

Kalamazoo— Brinker, H. A. Downs, S. H. McConner, C. R. Metzger, H. J. Schlichting, W. G. Temple, W. J. Wilson, R. W.

Lansing—
Hill, V. H.
Miller, J. W.
Parsons, R. A.
Robinson, K. E.

Lawrence-Morton, P. S.

Muskegon-Young, H. J.

Muskegon Heights-Reid, H. F.

Port Huron-Borak, E.

Romulus— Kellogg, W. T.

Royal Oak— Burch, L. A. Keyser, H. M.

Saginaw— Rittenhouse, O. R. Witheridge, D. E.

Shelby— Kelly, O. A.

Three Rivers— Hall, C. H.

Wayland---Snook, A. H.

MINNESOTA

Bayport-Swanson, E. C.

Brainerd— Paine, H. A.

Camp Savage— Larson, C. P.

Duluth— Foster, C.

Hibbing— Bispala, J. T.

Mankato— Forderbruggen, K. J.

Minneapolls—
Algren, A. B.
Bell, E. F.
Bensen, C. L.
Betts, H. M.
Bjerken, M. H.
Brcdesen, B. P.
Burns, E. J.
Burritt, C. G.
Caple, I.
Carlson, C. O.
Chalmers, C. H.
Copperud, E. R.
Dahlstrom, G. R.

Dever, H. F.

Evans, R. W. Forfar, D. M. Gausewitz, W. H. Gausewitz, W. H. Gerrish, H. E. Gorgen, R. E. Gross, L. C. Hanson, L. C. Hanson, L. P. Harris, J. B. Hayes, O. J. Helstrom, H. G. Herman, N. B. Hitchcock, P. C. Huch, A. J. Jordan, R. C. Kayser, P. G. Knowles, E. L. Lange, F. F. Lawrence, C. T. Legler, F. W. Lilja, O. L. Lund, C. E. Markson, W. H. Marshall, S. C. Mitchell, J. G. Morgan, G. C. Nessell, C. W. Newton, A. B. Petersen, C. P. Reisberg, L. K. Resch, R. J. Rink, C. N. Roberts, H. P. Rosas, M. L. Rowley, F. B. Rowley, F. B. Rowley, F. B. Schad, C. A. Schernbeck, F. H. Schultz, A. W. Seelert, E. H. Ställer, F. W. Swenson, J. E. Thuney, F. M. Tupper, E. B. Uhl, E. J. Uhl, W. F.

Owatonna— Anderson, G. A. M.

Robbinsdale— Hyde, L. L.

Rochester-Adams, N. D.

St. Paul—

Anderson, D. B.
Backstrom, R. E.
Bauer, A. E.
Bean, G. S.
Colman, R. C.
Craig, J. A.
Estes, E. C.
Gausman, C. E.
Hickey, D. W.
McNamara, W.
Oberg, H. C.
Otto, R. W.
Persson, N. B.
Peterson, J. R.
Ruff, D. C.
Sanford, A. L.
Sturm, W.
Swanson, D. F.
Winterer, F. C.
Wunderlich, M. S.

Spring Park— Streater, E. C. MISSISSIPPI

Greenwood— Addington, H. M.

Gulfport Field— Clemens, J. D.

Jackson— Ludlow, H. M.

Tupelo— Dabbs, J. T.

MISSOURI

Airport Park, St. Louis Co.— Kella, W. B.

Clayton— Weber, E. F., Jr.

Eureka— Kingsland, G. D.

Ferguson— Szombathy, L. R.

Independence— Cook, B. F.

Jefferson City— Woodman, L. E.

Joplin— McMullen, E. W. Satterlee, H. A.

Kansas City-

Ball, W.
Barnes, A. R.
Betz, H. D.
Bowen, L. F.
Burns, F. C.
Caleb, D.
Campbell, E. K.
Case, D. V.
Cassell, W. L.
Clegg, C.
Davis, C. A. L.
Dean, F. J., Jr.
Doann, M. H.
Dodds, F. F.
Downes, N.
Fehlig, J. B.,
Fehlig, J. B., Jr.
Forslund, O. A.
Furber, S. L.
Golild, H. E.
Harbordt, O. E.
Jones, T. S.
Kitchen, J. H.
Lochman, E. W.
Mason, R. B.
Millis, L. W.
Nelson, A. A.
Nottberg, H.
Nottberg, H.
Nottberg, H.
Nottberg, H.
Jr.
O'Dower, H. Jr.
Pellmounter, T.
Pellmounter, T.
Pexton, F. S.

Pexton, F. S. Rivard, M. M. Russell, W. A. Ryan, J. B.

Sheppard, F. A. Sheppard, P. A.
Smith, H. C.
Stephenson, L. A.
Stevens, K. M.
Weiss, C. A.
White, H. S.
White, W. E. Wiedenmann, W. A. Wright, H. H.

Keesler Field-Snyder, E. F., Jr.

Kirkwood---Grossmann, H. A.

Normandy-Bemis, W. A. Dulle, W. L.

Overland-Cain, W. J. Grossenbacher, H. E.

St. Joseph---Harton, A. J. Zurow, W. A.

St. Louis-

Ahrens, C. F.
Bayse, H. V.
Blackmore, J. J.
Boester, C. F.
Bradley, E. P.
Burnap, C. H.
Carlson, E. E.
Cooper, J. W.
Corrigan, J. A.
Davis, C. R.
Drienteyer, R. C.
Evans, B. L.
Fagin, D. J.
Falvey, J. D.
Gilmore, L. A.
Gross, L.
Haller, A. L.
Hester, T. J.
Killoren, D. E.
Kuntz, B. C.
Laufketter, F. C.
Malone, J. S.
McLarney, H. W. Malone, J. S.
McLarney, H. W.
McMahon, T. W.
McMahon, T. W.
Moon, L. W.
Oonk, W. J.
Pellegrini, L. C.,
Penn, L. W.
Rodenheiser, G. B.
Rosebrough, J. S.
Saenger, L. W.
Sharp, H. C.
Simons, B. C.
Sodemann, W. C. B.
Stammer, E. L.
Steckhan, L.

University City-Angus, F. M. Smith, R. C.

Steckhan, L. Toensfeldt, R. Weiss, W. G.

Webster Groves-Carter, J. II. Hartwein, C. E. Hyde, D. F. Jones, E. A. Myers, G. W. F. Ronsick, E. H. Rosebrough, R.M. MONTANA

Billings-Cohagen, C. C.

Butte-Sullivan, T. J.

Great Falls-Ginn, T. M.

NEBRASKA

Hastings-Swingle, W. T.

Lincoln-Lehman, M. G. Rossiter, I. J. Stanton, H. W. Williams, D. D.

Omaha-

Adams, E. F.
Blanchard, N. M.
Eaton, B. K.
Goll, W. A.
Kleinkauf, H.
Mathie, I. Mathis, J.
McCulley, D. E.
Merwin, G. E.
Olson, M. J.
Peterson, B. G. Reifschneider, J. Saxon, R. B. White, W. R. Wiser, C. E.

Schuyler-Matousek, A. G.

Scottsbluff-Davis, O. E.

NEVADA

Luning-Thomsen, N. B.

Reno-Humes, W. E. Mast, C. M. Stevens, H. R.

Stevens, J. E.

NEW JERSEY

Allenhurst-Sabin, E. R. Asbury Park -

Strevell, R. P.

Atlantic City-Strouse, S. B.

Bayonne-Baechlin, A. C., Jr. Schwartz, J.

Belleville-Kucinski, W. V. Thornton, T. L.

Bloomfield-Berry, R. U. Burges, J. H. M. Faust, F. H. McLenegan, D. W. Bogota---Griess, P. G.

Bridgeton-Shapiro, C. A.

Caldwell-Schmidt, II.

Camden-

amden—
Brown, W. M.
Coward, C. W.
Dickson G. P.
Hendrickson, W. B.
Hyncs, L. P.
Kappel, G. W. A.
Plum, L. H.
Schmieler, J. B.
Webster, E. K.
Webster, W., Jr.

Chatham-Maddux, O. L.

Clark-Snavely, E. R. Cliffside Park -

Butler, P. D. Collingswood --

Danowitz, C. J. Mohrfeld, H. H.

Cranford -Lehman, J. L.

East Orange-Schroth, A. H. Tallmadge, W. Turno, W. G. W. Wildman, E. L.

Elizabeth -Anderson, J. W. Beebe, F. E. W. Bermel, A. H. Cornwall, G. I.

Essex Fells -Ekings, R. M., Jr. Soule, J. P. Soule, L. C. Stacey, A. E., Jr.

Fort Dix -Sobel, F.

Fort Monmouth -Sanders, C. M., Jr.

Freehold -Buck, D. T.

Haddonfield -Buzzard, F. H. Matthews, J. E.

Hasbrouck Heights . Goodwin, S. L. Hoecker, G. F., Jr.

Highland Park -Kadel, G. B.

Hillside-Tichenor, L. R., Jr.

Hoboken --Dick, H. S. Irvington-

Feldermann, W. Reinke, A. G. Stengel, F. J.

Jersey City-Jones, H. L. Walterthum, J. J.

Kearny-Shaffer, C. E.

Kenvil--Johnston, R. M.

Leonia -Close, R.

Little Silver -Miner, H. H.

Lyndhurst -Ehrlich, M. W.

Maplewood -Moraweck, A. H., Jr.

Merchantville -Binder, C. G.

Montclair --Broome, J. H. Jacobus, D. S. Tenney, D.

Morristown -Pinter, J. L.

Mountainside -Nicols, J. A.

Newark --

Bryant, P. J. Carey, P. C. Conklin, R. M. Haitmanek, L. M. Kruse, W. C., Jr. Leinroth, J. P. Morehouse, H. P. Ray, L. B. Steinmetz, C. W. A.

New Brunswick -Wolin, M. W.

Nutley -Morris, C. R.

Orange -Crawford, J. H., Jr.

Palmyra -Cussell, J. D.

Passaic -Blazer, B. V.

Paterson -Frank, O. E. McBride, J. N.

Perth Amboy -Simkin, M.

Plainfield -Pond, W. H. Reis, R.

Red Bank -Isnacs, H. A., Jr.

Ridgefield Park -Kunzog, T. W.

Ridgewood -Fitts, J. C. Miller, A. F. Walton, C. W., Jr.

River Edge . Steinke, B. J.

Roselle Park -Morgan, E. H., Ir,

Rutherford -Purinton, D. J.

South Orange -Browne, A. L.

Summit -Oaks, (), (),

Tonneck -Heebner, W. M.

Union -Lyman, S. E.

Union City . Taverna, F. F.

Upper Montclair -Albright, C. B.

Anderson, E. L. Boxall, F.

Vineland . Houck, R. C.

West Englewood -Hutcheon, C. R.

Westfield . Hansler, J. E. McFarlan, A. I.

Westmont ---Robinson, E. R.

West Orange --Adlam, T. N. Ferguson, R. R. Raymer, W. F., Jr.

NEW YORK

Albany

Bond, H. A. Lewis, H. F. Murray, T. F. Laggart, R. C. Taylor, R. B. Teeling, G. A. Westover, W.

Big Flats -Davis, B. C.

Bronxville . Bishop, C. R. Groves, S. A. Brooklyn -

Bacon, W. H., Jr. Balsam, C. P. Brex, I. E. Coe, S. A. Derer, B. Derer, D. Dwyer, T. F. Everetts, J., Jr. Goldberg, M. Heymsfield, H. Hollister, N. A. Jacobi, B. A. Janet, H. L. Josephson, S. Levine, C. Levine, L. London, M. Moskowitz, S Phillips, F. W. Ritchie, F. J. Rodman, R. W. Schechter, J. E. Shelldrop, T. F. Thornburg, H. A. Tusch, W. Wachs, L. J. Wittig, F. E.

Buffalo .

Adema, G. E Beman, M. C. Booth, C. A. Cherry, L. A. Cheyney, C. C. Constant, E. S. Davis, J. Day, H. C. Drake, G. M. Evans, E. C. Evans, E. C. Farnham, R. Farrar, C. W. Harding, L. A. Heath, W. R. Heckel, E. P., Jr. Hedley, P. S. Hirschman, W. F. Hurwich, S. B. Landers, I. L. Landers, J. J. Lenihan, W. O. Lighthart, C. H. Love, C. H. Jackson, M. S. Kamman, A. R. Madison, R. D. Mahoney, D. J. Mollenberg, H. J. Mosher, C. H. Moesel, F. A. Pleuthner, R. L. Pleuthner, R. L. Quackenbush, S. M. Reif, C. A. Roebuck, W., Jr. Seelbach, W. R. Seelbach, H., Jr. Seylang, W. G. Siegel, R. C. Sommers, W. J. Spencer, W. E. Strouse, S. W. Voisinet, W. E. Whitt, S. A. Yager, J. J.

Cooperstown -McGown, F. H., Jr.

Dunkirk ---Mayne, W. L.

Eden ~

Ensign, W. A. Fayetteville --Des Reis, J. F. Hastings-on-Hudson Hewett, J. B. Reynolds, T. W.

Hamburg-

Schafer, H. C.

Hamilton -Lieblich, M.

Irvington -Bastedo, A. E. Hastings, A.

Ithaca ---

Dropkin, D. Elwood, W. H. Frederick, H. W. Sawdon, W. M. Williams, J. W.

Kenmore-

Candee, B. C. Criqui, A. A. Curry, R. F. Mould, H. W., Jr. Walker, E. R.

Kodak Park---Cook, R. P.

Larchmont -Tiltz, B. E.

LeRoy -Pohle, K. F.

Lockport--Saunders, L. P.

Long Island -

Alt, H. L.
(St. Albans)
Apt, S. R.
(Bayside)
Bachmann, A. (Ridgewood) Bastedo, G. R. Bastedo, G. R.
(Richmond Hill)
Behrer, W. H., Jr.
(Northport)
Benesch, E. J.
(Merrick) Birkett, H. S. (Roslyn Heights) Bloom, L. Bloom, L.
(Freeport)
Bonthron, R. C.
(Hempstead)
Carbone, J. H.
(St. Albans)
Carroll, D. E.
(Woodside)
Chase, C. L.
(Manhasset)

(Manhasset) Crone, T. E. (Jamaica) Eastwood, H. F. (Merrick) Eschenbach, S. P. (Bayside) Franck, P.

Franck, P.
(Jackson Heights)
Freeman, A. W.
(Jackson Heights)
Friedlieb, M. J.
(Forest Hills)
Gebel, K. M.

(Rockaway Beach)

Gilman, F. W. (Long Island City) Gornston, M. H. (Jamaica)

Graber, E. (Douglaston)
Hiers, C. R.
(Great Neck)
Hirsch, M. H.
(Forest Hills)
Kern, J. F., Jr.

(Massapequa) Langberg, M.

(Jackson Heights) LaRaus, J. (Jackson Heights) MacWatt, D. A. (Plandome)

Magnusson, N (Jamaica)

Marino, F. A. (Corona) Markush, E. U. (Woodhaven) Marty, E. O. (Plandome)

Matzen, H. B. (Rockville Centre)

Olsen, G. E. (Arverne) Pabst, C. S. (Woodhaven) Quirk, C. H. (Hempstead)

Raynis, T. (Manhasset) Rose, J. C. (Hollis)

Rudd, D. J (Babylon) Satlow, A. (Flushing) Schwartz, M. (Far Rockaway)

Spoerr, F. F. (Jamaica) Stellwagen, F. G. (Woodhaven) Thomson, T. N.

(Huntington) Tucker, F. N. (Freeport) Vervoort, E. L. (Rockville Centre) Wallace, G. J. (East Elmhurst)

Wheeler, J., Jr. (Manhasset) Whittaker, W. K. (St. Albans)

Mt. Vernon Brod, B. M. Cullin, W. W. Freitag, F. G. Herske, A. R.

New Rochelle -

Abrams, A. Farley, W. F. Fitz, J. C. Mank, M. Rose, H. J. Virrill, G. A.

New York --

Adams, E. E. Addams, H. Addams, H.
Addington, H. B.
Akers, A. W.
Ambrose, E. R.
Ashley, E. E.
Baber, J. E.
Baker, R. H.
Baker, T.

Barbieri, P. J. Barnes, H. S. Baum, A. L. Barnes, H. S.
Baum, A. L.
Beaum, A. A.
Bennett, B. A.
Berman, L. K.
Bodinger, J. H.
Bond, H. H.
Brown, D.
Brundage, F. W.
Buensod, A. C.
Carpenter, R. H.
Clark, J. R.
Clark, J. R.
Clay, W.
Cucci, V. J.
Darts, J. A.
Davis, C.
Davison, R. L.
Demarest, R. T.
Denny, H. R.
Deterling, W. C.
Dodge, H. A.
Donnelly, R.
Dornheim, G. A.
Downs, C. R.
Eadie, J. G.
Engle, A.
Farbman, L.
Feder, N.
Feldman, A. M.
Fielder, H. W. Feder, N.
Feldman, A. M.
Fiedler, H. W.
Firestone, M. T.
Fleisher, W. L.
Foster, J. G.
Friedman, F. J.
Friedman, M.
Friend, W. F.
Fuller, C. A.
Gezari, Z.
Giannini, M. C.
Goldsmith, E. Giannini, M. C.
Goldsmith, E.
Gordon, P. B.
Greenburg, L.
Gumaer, F. W.
Harburger, F. W.
Harburger, F. W.
Harrigan, E. R.
Heibel, W. E.
Heller, J. A.
Henry, A. S., Jr.
Hering, A. S., Jr.
Hering, A. M.
Hinrichsen, A. F.
Hobble, E. H.
Hoffman, C. S.
Honerkamp, F.
Hotchkiss, C. H. B.
Janos, W. A.
Jarcho, M. D.
Johnson, H. S. Jarcho, M. D.
Johnson, H. S.
Kaczenski, C.
Kayan, C. F.
Kelly, C. J.
Kepler, D. A.
Kimball, D. D.
Koehler, C. S.
Kreiner, J.
Kuhlmann, R. Kreiner, J.
Kuhlmann, R.
Kunen, H. K.
Kurth, F. J.
Lawrence, F. D.
Lucke, C. E.
Martin, G. W.
Matheka, C. R.
McCann, F. D.
McClintock, W.
Meinke, H. G.
Meyer, H. C., Jr.
Millener, E. D.
Miller, J.
Mollander, E. D. Mollander, E. D. Mollander, E. D. Morrow, J. J. Munier, L. L. Munkelt, F. H. Nee, R. M. Offner, A. J.

Olson, R. G.
Olvany, W. J.
Ormiston, J. B.
Page, V. C.
Page, V. C.
Pager, V. C.
Paterno, S. A. S.
Place, C. R.
Pollak, R.
Potter, J. R.
Reyke, J. K. M.
Rainson, S. J.
Raisler, R. K.
Rather, M. F.
Reid, H. P.
Reynolds, W. V.
Rosenberg, P.
Ross, J. O.
Roth, C. F.
Ryan, H. J.
Samuels, S.
Sawhill, R. V.
Schoepfiln, P. H.
Self, V. F.
Short, W. W.
Smith, M. S.
Sternberg, E.
Stevens, E. K.
Strunin, J.
Syska, A. G.
Triegel, E. V.
Turner, J. P., Jr.
Tuthill, A. F.
Vetlesen, G. U.
Vroome, A. E.
Wasson, R. A.
Weatherby, E. P., Jr.
Webster, C. C.
Wheller, H. S.
Williams, H. E.
Willner, H.
Wrightson, W. T.

Niagara Falls-

Snyman, G. C. Woods, E. H. Woolcock, E.

North Tarrytown— Weiss, A. P.

North Tonawanda—Conaty, B. M.

Oswego-

Fidelius, W. R.

Poughkeepsie-Bertolette, C., Jr.

Rochester-

Betlem, H. T.
Dickason, G. D.
Hakes, L. M.
Hutchins, W. H.
Kimmell, P. M.
Leonhard, L. W.
Lewis, C. E.
McWilliams, J. W.
Peck, H. E.
Stacy, S. C.
Treadway, J. Q.
Vidale, R.
Wilder, E. L.
Willson, F. J.
Wyld, R. G.

Rome-

Lynch, W. L. Musser, J. M.

Scarsdale— Cumming, R. W.

Ritter, A. Scott, G. M. Sellman, N. T.

Schenectady-

Harrington, E. Hunziker, C. E. Weiss, E. J. Welch, L. A., Jr.

Snyder-

Gifford, C. A. Reif, A. T.

Staten Island-

Callahan, P. J. Johnson, E. B. Pfuhler, J. L. Sherbrooke, W. A. Vivarttas, E. A. Volkhardt, A. N. Waechter, H. P.

Syracuse-

Ashley, C. M.
Carrier, W. H.
Day, V. S.
Driscoll, W. H.
Dunne, R. V. D.
French, D.
Fritzberg, L. H.
Goldmann, P.
Graham, W. D.
Hockensmith, F. E.
Ingels, M.
Lewis, L. L.
Lyon, D. M.
Murphy, E. T.
Noble, M.
Sheldon, N. E.
Silvera, A.
Taliaferro, R. M.
Traynor, H. S.
Woese, C. F.

Tarrytown d'Issertelle, H. G.

Tonawanda— Karlsteen, G. H.

Tuckahoe---Goulding, W.

Utica-

Randolph, H. F. Steinhorst, T. F.

Valhalla-Mehne, C. A.

Watervliet-Schubert, A. G.

White Plains— Belsky, G. A. Guler, G. D. Zibold, C. E.

Williamsville-Morgan, R. W.

Yonkers-

Calnan, D. J.
Dean, D.
Flink, C. H.
Goerg, B.
Harmonay, W. L.
Rainger, W. F.

Schoen, D. D. Werker, H.

Yorktown Heights— Gitterman, H.

NORTH CAROLINA

Asheville— Wilson, W. E.

Camp Davis— Hawes, H. D.

Charlotte-

Bailey, J. L.
Brandt, E. H., Jr.
Cameron, R. T.
DeWitt, E. S.
Hodge, W. B.
Lee, R. T.
McCallum, C. E.
Melton, R. D.
Petty, C. E.
Selden, K. W., Jr.
Smith, W. P., Jr.
Warren, R. M., Jr.
Wooten, M. F., Jr.

Durham-

Altenueller, G. F. Brown, W. L., Jr. Daddario, F. T. Lichty, C. P. Nicholson, S. J. Reed, F. J. Skinner, A., Jr. Theiss, E. S. Wallace, W. M., II

Edenton-Long, E. J.

Fort Bragg-Kummer, C. J.

Greensboro-

Adams, C. Z. Guest, P. L., Jr. Harding, E. R. Hoffman, H. Klages, F. E. P.

High Point— Gray, H. E. Lewis, W. W.

New Bern-Rock, G. A.

Raieigh—
Powers, R. W.
Rice, R. B.
Vaughan, L. L.

Wahpeton-Younger, J. R.

Winston-Salem—Bahnson, F. F. Brown, M. D. Marshall, J. Page, A.

Wrightsville Beach-Burr. G. C.

OHIO

Akron---Southmayd, R. T.

Ashland -Maynard, J. E. Rybolt, A. L.

Ashtabula— Orgelman, G. H. Sheldon, R. W.

Barberton— McLeish, W. S.

Canton-Schauer, R. A.

Chagrin Falls— Downe, E. R. Guilbert, S. R.

Chilicothe-Laning, B. A.

Cincinnati—

Bechtol, J. J.

Bird, C.

Blum, R. J., Jr.

Boyd, T. D.

Buenger, A.

Coombe, J.

Edwards, A. W.

Gannon, R. R.

Green, W. C.

Hard, A. I.

Helburn, I. B.

Hermann, H. N.

Houlis, L. D.

Houliston, G. B.

Hudepohl, L. F.

Hutchinson, B. L., Jr.

Juergens, W. A.

Junker, W. H.

Killian, W. J.

Kramig, R. E., Jr.

Kuempel, L. L.

Leupold, G. L.

Mathewson, M. E.

McNamee, E. W.

Moore, H. W.

Motz, O. W.

Mursinna, G. P.

Prifem, P. G.

Pillen, H. A.

Pistler, W. C.

Richard, E. J.

Ruff, A. G.

Sigmund, R. W.

Silberstein, B. C.

Sproull, H. E.

Stevens, W. R.

Stein, G. V.

Thompson, E. B.

Ward, F. J.

Washington, I. W.

Williams, E. C.

Wright, K. A.

Cleveland —

Cleveland —
Auer, G. G.
Baggaley, W.
Beach, W. R.
Berger, J. L.
Borkat, P.
Byers, R. L.
Cohen, P.
Conner, R. M.

Cummings, R. J. Curtis, H. F. Cushing, C. F. Evans, W. A. Eveleth, C. F. Findley, H. N. Fleming, P. B. Friedman, A. Gayman, P. D. Geltz, R. W. Gottwald, C. Geltz, R. W. Gottwald, C. Gray, E. W. Hall, J. R. Hall, N. H. Hall, N. H.
Harvey, L. C.
Heisterkamp, H. W.
James, J. W.
Jones, J. P.
Kaercher, C. M. H.
Kajuk, A. E.
Kitchen, F. A.
Klie, W.
LaSalvia, J. J.
Lavelle, A. E.
Levy, M. I.
Machen, J. T.
McKeeman, C. A. McKeernan, C. A Miles, J. C. Moore, W. R. Nachman, G. P. Nobis, H. M. Pintey, T. M. Platz, J. F. Pogalies, L. H. Powers, L. G. Priester, G. B. Reich, J. G. Repp, H. L. Rowe, W. M. Slawson, L. E. Stark, W. E. Steffner, E. F. Taze, D. L. Terhune, R. D. McKeeman, C. A. Terhune, R. D. Tuve, G. L. vanderhoof, A. L. Vanderhoof, A. L. Webb, E. C. Weldy, I. Wetzell, H. E. Wheeler, C. W. Young, E. O.

Cleveland Heights—

Cady, E. F. Clark, R. L. Cutting, R. H. Dickens, L. A. Mannen, D. E., Jr. Rhoton, W. R.

Columbus-

Allonier, H. R. Benson, M. L. Breneman, R. B. Brown, A. I. Engdahl, R. B. Myler, W. M., Jr. Celgoetz, J. F. Sherman, R. A. Sleminons, J. D. Williams, A. W. Wyatt, D. H.

Cortland -Swenchart, D. W.

Covington-Sandfort, J. F.

Cuyahoga Falls— Humphrey, D. E. Dayton—
Anoff, S. M.
Baker, I. C.
Hlack, J. M.
Brown, J. S., Jr.
Brown, T.
Gibbons, M. J., Jr.
Gowdy, A. C.
Lindsay, G. W., Jr.
Smith, N. J.
Weaver, J. v. O.
Worsham, H.
Zeigler, D. D.

East Cleveland—Geiger, R. L.

Ray, G. E.

Euclid—

Reardon, J. F.

Wilhelm, J. E.

Elyria -

Giendale— Thomas, R. H.

Hamilton— Crane, R. S. Thomas, L. G. L.

Kent-Saginor, S. V.

Lakewood— Longcoy, G. B. Schurman, J. A., Jr.

Lawton— McClung, T. H.

Hawisher, H. H.

Lorain—
Jackson, W. F.

Mariemont— Cherne, R. E. Murphy, C. G.

Marion-Holden, R. G.

Middletown— Byrd, T. I. Somers, W. S.

Newark— Waggoner, J. H.

Oberlin— Ries, L. S. Sable, E. J.

Painesville— Hobbs, J. C.

Piqua— Lange, R. T.

Shaker Heights— Avery, L. T. Foley, J. L.

Solon-Wilson, R. A. South Park-Barney, W. E.

Spring Valley---Wood, C. F.

Toledo— Jones, S. Lewis, H. E. Watkins, G. B.

Warren-Manning, C. E.

Waverly— Armbruster, F. T. W.

Wilmington— Marconett, V. G. Sapp, C. L.

Youngstown— Montgomery, J. R. Sgambati, A. P. Stangle, W. H.

OKLAHOMA

Lawton— MacGregor, C. M.

McAlester—Green, S. H.

Norman— Dawson, E. F.

Oklahoma City—
Beals, D. E.
Braniff, P. F.
Dolan, R. G.
Doughty, C. J.
Ellingson, E. T. P.
Gray, E. W.
Loeffer, F. X., Sr.
Melton, H. E.
Morin, A. R.

Tulsa— Dean, C. H. Holmes, A. D. Jones, E.

OREGON

Corvallis— Willey, E. C.

Chase, P. S. Zink, D. D.

Hermiston— Sutch, H. C.

Medford— Hoey, J. K.

Portland—
Armstrong, C. E.
Banks, J. B.
Brissenden, C. W.
Burtchaell, J. T.
Burton, W. R.
Byrne, J. J.
Campau, W. R.
Carroll, E. E.
Farnes, B. W.
Finlay, A. E.

Finnigan, W. T. Freeman, J. A. Gehrs, W. Goehler, E. E. Gribbon, J. H. Goenier, E. E. Gribbon, J. H. Harrington, L. J. Heinkel, C. E. Johnston, A. K. Kollas, W. J. Kroeker, J. D. Lynch, J. R. McDermott, J. P. Mead, H. K. Moore, B. W. Morrison, W. B. Murhard, E. A. Neubauer, E. W. Nielsen, H. B. Ponder, E. A. Riley, J. N. Risley, G. H. Taylor, T. E. Turner, E. S. Urban, F. F. Widmer, W. J. Yates, J. E.

Salem-

Cooper, D. E. VanWyngarden, J. E.

PENNSYLVANIA

Abington-Park, N. W.

Allentown-

Goundie, J. K. Hersh, F. C. Hilder, F. L. Korn, C. B.

Ambler-McElgin, J. W.

Ardmore-Haynes, C. V.

Avondale-

Battan, S. W. Ben Avon-

McGonagle, A.

Bethlehem-Curley, E. I. Stuart, M. C.

Brookline (Del. Co.) Eastman, C. B.

Bryn Mawr-McIlvaine, J. H.

Coudersport-Reese, H. L.

Dravosburg-Marshall, A. W.

Drexel Hill-Mather, H. H. Matz, G. N.

Dunbar-Sherwood, L. T. East Pittsburgh-Hazlett, T. L. Penney, G. W.

Elizabethtown-Dibble, S. E.

Erie-

Meyers, C. F. Sullivan, T. J.

Freeport-McCullough, J. L.

Glenmoore-Gant, H. P.

Glenside-Macfarlan, N. S. Tucker, L. A.

Harrisburg-Eicher, H. C. Geiger, I. H.

Haverford-Arnold, R. S.

Hershey-Snavely, A. B.

Irwin--Cost, G. W.

Ithan-Crew, F. D. Yerkes, W. L.

Johnstown-Hunter, L. N. Knowles, F. R.

Kingston-MacDonald, D. B.

Lancaster-Jones, A. Lloyd, E. C. Weitzel, P. H.

Lansdowne-James, H. R. Seltzer, P. A.

Manheim-Weitzel, C. B.

McKeesport-Dugan, T. M.

Middletown-Locke, R. A.

Milton--Mohn, H. L.

Narharth~ Grant, W. A. Searle, W. J., Jr. Smith, W. F. Wilmot, C. S.

New Hone-Davidson, P. L.

New Kensington-Edwards, J. D. Shearer, W. A., Jr. Oxford-Ware, J. H., III

Philadelphia-

Bachman, F.
Ballman, W. H.
Barnard, M. E.
Barr, G. W.
Bartlett, C. E.
Bates, J. H.
Belford, L. du B.
Black, E. N., III
Black, H. G.
Blankin, M. F.
Bogaty, H. S.
Bornemann, W. A.
Borton, A. R.
Buck, L. R. Borton, A. R.
Buck, L.
Burritt, E. E., Jr.
Caldwell, A. C.
Call, J.
Childs, L. A.
Cody, H. C.
Culbert, W. P.
Dafter, E. H.
D'Ambly, A. E.
Davidson, L. C.
Duetz, C. E. Dietz, C. F. Dome, A. G. Donovan, W. J. Elliot, E. Erickson, H. H. Faltenbacher, H. J. Farrington, S. E. Goff, J. A. Hedges, H. B. Holland, G. R. Hucker, J. H. Hunger, R. F. Hutchison, J. E. Lckeringill, J. G. Jacobsen, K. C. S. Jakoby, A. C. Kahn, C. R., Jr. Keeling, F. V. Kelble, F. R. Kirkbride, J. O. Kriebel, A. E. Ladd, D. Landau, M. Lee, R. J. Leonard, R. R. Lcopold, C. S. Lyon, P. S. Mack, L. Makin, H. T., Jr. Maccullough, H. G. Mellon, J. T. J. Meloney, E. J. Mensing, F. D. Moody, L. E. Morgan, R. C. Murdock, J. P. Nesbitt, A. J. Faltenbacher, H. J. Farrington, S. E. Morgan, R. C. Murdock, J. P. Nesbitt, A. J. Nusbaum, L. Nusbaum, S. R. Parent, H. M. Peller, L. Pfeiffer, F. F. Plewes, S. E. Powell, G. W., Jr. Powers, Earle C. Powers, Edgar C. Prewitt, H. B. Pryibil, P. L. Redstone, A. L. Rettew, H. F. Roberts, E. F., Jr. Roberts, E. F., Jr. Roberts, H. L. Rugart, K. Semel, E. Rugart, K Semel, E. Sheffler, M.

Shore, D. Smore, D.
Smiles, R. H.
Smith, D. J.
Speckman, C. H.
Stewart, J. P.
Timmis, P.
Touton, R. D. Traugott, M. Tuckerman, G. E von Rosenberg, P. C. von Rosenberg, F. Wagner, E. K. Wegmann, A. Wells, W. F. Whitney, C. W. Wiley, D. C. Wiltberger, C. F. Woolston, A. H. Woolston, R. H.

Pittsburgh -

Allen, W. A. Alvarez, J. Baker, W. H., Jr. Beatty, J. W. Beighel, H. A. Beighel, H. A.
Brauer, R.
Braun, C. R., Jr.
Breyer, F.
Bushnell, C. D.
Collins, J. F. S., Jr.
Comperman, E.
Cox, S. F.
Daly, R. E.
Dickinson, R. P., Jr.
Dorfan M. I.
Edwards, P. A. Dorran M. I. Edwards, P. A. Hach, E. C. Hamilton, M. S. Hebley, H. F. Hecht, F. H. Heilman, R. H. Heilman, R. H. Humphreys, C. M. Hyde, E. H. Jones, L. K. Kirkendali, H. Lifton, D. Loucks, D. W. Machling, L. S. Malion, F. B. Maier, G. M. McIntosh, F. C. Metzger, A. F. Miller, R. A. Moore, H. L. Miller, R. A.
Moore, H. L.
Moore, H. L.
Nass, A. F.
Purk, H. E.
Peacock, G. S.
Proie, J.
Reed, V. A., Jr.
Reed, W. H., III
Reilly, B. B.
Rieseck, W. L.
Riesmeyer, E. H., Jr.
Rose, H. J.
Rose, D. S.
Schneider, C. H.
Sheppard, W. K.
Simpson, G. L.
Small, B. R.
Smyers, E. C.
Speller, F. N.
Stanger, R. B.
Stevenson, W. W.
Sweeney, R. H.
Strauch, P. C.
Tennant, R. J. J.
Tower, E. S.
Waters, G. G.
Weddell, G. O.
Whitelaw, H. L.
Williamson, C. C. Williamson, C. C.

Pottstown -Harberger, G. L.

Primos Johnson, A. J. King, J. S.

Reading

Luck, A. W. Ridley Park -Mawby, P.

Scranton -Gilboy, J. P. Mahon, B. B.

sewickley Fullman, J. B.

Springdale -Lynn, F. E.

Stroudsburg Kiefer, E. J.

swarthmore -Hobbs, W. S. Robinson, A. S. Thom, G. B.

Union town --Marks, A. A.

Upper Darby-Ahlff, A. A. Bertrand, G. F. Kipe, J. M.

Villanova -Morchouse, J. S.

Washington -brazier, J. R.

Westtown -Landfried, C. L.

Wilkinsburg -Hkines.

Biber, H. A.

shell, T. F. Campbell, 1 Good, C. S. Hershey, A. E.

Williamsport-Axeman, J. E.

York-

Bryan, W. L., Jr. DuBois, L. J. Mirabile, J. J. Nicoll, S. F. Walsh, E. R., Jr. Zieber, W. E.

RHODE ISLAND

Greenwood-Austin, W. H.

Newport Forbes, H. B., Jr.

Providence ---Blanding, R. L. Coleman, J. B. Essley, H. A. Gibbs, E. W. Hartwell, J. C.

SOUTH CAROLINA

Charleston -Bailey, F. A., Jr. Burns, F. G. Herty, F. B.

Columbia -Hartin, W. R., Jr. Kerr, W. E. McDowell, H. L. Sherman, W. P.

Fort Jackson -Rheault, W. E. Sloane, D. J.

Greenville · Ramseur, V. D., Jr. Waldrep, J. E.

Myrtle Beach ~ Laseter, F. L.

SOUTH DAKOTA

Lead

Pullen, R. R.

Sloux Falls -Monick, F. R.

TENNESSEE

Bristoi -Torok, E.

Donelson --Wilson, V. H.

Johnson City --Lautz, F. A.

Kingsport ---Herbert, J. S.

Knoxville -Cross, F. G Oakley, L. W.

Memphis -Campbell, A. Q., Jr. Danielson, W. A. Hoshall, R. H. Shelby, A. W.

Nashville-

Armistead, W. C. Brown, F. Campbell, G. S Campbell, R. P. Fly, E. P. Norte, W. R.

Smyrna --Friedman, D. H., Jr.

TEXAS

Amarillo --Burnett, E. S.

Beaumont -Shell, J.

Brenham · · Woods, C. F. Bryan ---Stiles, G. S.

Camp Hood-Badgett, W. H.

Camp Wallace-Cox, V. G.

Camp Wolters --Clow, S. A.

College Station-Hopper, J. S. Long, W. E. Smith, E. G.

Corpus Christi-Holsworth, R. C.

Dallas .-

Allias —
Allison, R. E.
Anspacher, T. H.
Bishop, J. A.
Blum, H., Jr.
Brown, M. L.
Brown, M. W.
Carroll, W. M.
Dowdell, J. R.
Farrow, E. E.
Gammill, O. E., Jr.
Gardner, C. R.
Gessell, E. T.
Gilbert, L. S.
Jelinck, F. R.
Lyford, R. G.
Martyn, H. J.
McClanahan, L. C.
Moler, W. H. Moler, W. H. Nation, O. Nation, O. Newby, I. P. Pines, S. Pfeiffer, D. C. Ray, J. A. Rodgers, F. A. Stern, E. J. Townsend, J. M. Warren, H. P. Zumwalt, R.

Denison-Linskie, G. A.

Ellington Field-Boyd, R. L., Jr.

El Paso --Light, J. C.

Fort Sam Houston --Sterner, D. S.

Fort Worth-Edwards, C. E. MacEachin, G. C. Miller, B. R. Skinner, H. W. Werner, R. K.

Fremont-Kurtz, R. W.

Galveston ---Disney, M. A. Norris, W. P.

Goose Creek-Rhine, G. R.

Houston-

Andrews, W. M.
Banowsky, A. B.
Barnes, A. F.
Bible, H. U.
Chase, A. M., Jr.
Cooper, D. S.
Howell, L.
Johnson, R. B.
McKinney, C. A.
Mills, D. M.
Mitchell, A. J.
Morrow, J. D.
Olson, G. E.
Owings, H. L.
Tanzer, G. J.
Taylor, R. F.
Walsh, J. A.
Way, W. J. II
Workman, A. E. Andrews, W. M.

Lubbock-Ainsworth, S. E. Herbert, R. M.

San Antonio-Barnes, R. W.
Diver, M. L.
Ebert, W. A.
Feldstein, H.
Pawkett, L. S.
Rummel, A. J.
Shafer, W. P., Jr.

Texarkana--Knepper, H. H. Perkins, R. C.

Waco-Benham, F. C., Jr. Gamble, C. B.

Weatherford-Hughes, S.

Wichita Falls-Pettit, E. N., Jr.

UTAH

Holliday -Walz, C. D.

Layton-Brokaw, G. K. Rumsey, J. L.

Logan ---Wangsgaard, D.

Odden-Young, J. T., Jr.

Salt Lake City-Cockins, W. W. Jones, J. T. Richardson, H. G.

VERMONT

Burlington-Lanou, J. E. Raine, J. J.

Woodstock --Ambrose, A. H.

VIRGINIA

Alexandria-

Ammerman, C. R. Ammerman, C. R. Broderick, E. L. Fogg, J. H. Gault, G. W. Goergens, A. G. Norrington, W. L. Skagerberg, R.

Arlington-

Achenbach, P. R. Bartels, E. M. Cover, R. R. Fife, G. D. Grimes, F. M. Hackett, F. C. Horne, H. F. Iverstrom, C. Kolskeski, P. Kolakoski, R. Lively, G. P. Marshall, W. D. Martens, E. D. Queer, E. R. Roach, E. R. Stokes, A. Timmis, W. W. Whittlesey, W. C.

Camp Lee-

Cropper, R. O. McCain, H. K.

Danville-Farley, W. S.

Falls Church-Koster, H. H. Ley, R. B. Rogers, C. S.

Fort Belvoir-Marshall, T. A. Muirheid, I. G.

Fort Eustis-Ibison, J. L.

Lawrenceville-Jones, H. S.

Lynchburg-Doering, F. L.

McLean-Nye, L. B., Jr.

Norfolk-

Davidson, J. C.
Jalonack, I. G.
Lee, B. H.
Nowitzky, H. S.
Thomas, R. C.
Webster, W. H., Jr.

Portsmouth-

Bensinger, M. Rosenberg, I. Stubbs, W. C.

Richmond-Bernert, L. A. Carle, W. E.

Johnston, J. A. Pecbles, J. K., Jr. Schulz, H. I. West, C. H., Jr.

Roanoke-Bailey, A. E., Ir.

Williamsburg-McGinnis, F. L.

Windsor-Bailey, C. F.

WASHINGTON

Anacortes-Hanthorn, W.

Bremerton-Bysom, L. L. Dominy, C. B. Naman, I. A. Smith, C. F., Jr.

Fort Lewis-Pellmounter, T. V. Sharp, J. R.

Kent-

Boyker, R. C.

Longview-Pauley, R. D.

Parkland-Norby, K. H.

Port Orchard-Pratt, F. J.

Seattle-

Barnum, W. E., Jr. Beggs, W. E. Bouillon, L. Clark, A. C. Conrad, R. Cox, W. W. Cox, W. W. Eastwood, E. O. Faulkner, J. H. Grabman, H. B. Granston, R. O. Griffith, H. T. Hauan, M. J. Langdon, E. H. Leichnitz, R. W. LeRiche, R. E. Mallis, W. Mervin I. H. Mallis, W.
Marvin, J. H.
Matvines, L. A.
May, C. W.
Mead, G. E.
Morse, R. D.
Peterson, S. D.
Pollard, A. L.
Musgrave, M. N.
Sparks, J. D.
Twist, C. F.
Wallis, W. M.
Watt, R. D.
Weber, E. L. Weber, E. L. Wesley, R. O. Williams, L. G.

Spokane-

Chase, R. E., Jr. Kelly, J. C.

Tacoma-

Chase, R. E. . Foote, E. E. Spofforth, W.

Wenatchee-

Clausen, A. H. Segle, T. L.

WEST VIRGINIA

Charleston-Pugh, D. C. Rosenblatt, A. M. Shanklin, J. A.

Fairmont-Tonry, R. C. Wright, C. E.

Huntington-Johnson, L.

Largent-Donnelly, J. A.

Parkersburg-Bartels, C. J.

WISCONSIN

Clintonville-Quall, C. O.

Elm Grove-Winkler, R. A.

Kohler-Hvoslef, F. W.

LaCrosse-

Anderegg, R. H. Goodman, W. Rowe, W. A. Trane, R. N.

Lake Delton-Page, H. W.

Madison-Dean, C. L. Feirn, W. H. Hall, G. Kliefoth, M. H. Larson, G. L. Nelson, D. W. Seymour, J. E. White, J. C.

Manitowoc-Ellis, G. W.

Marshfield-Himsel, S. R.

Milwaukee-

Alfery, H. F.
Allan, W.
Bishop, M. W.
Boden, W. F.
Bowers, A. F.
Brown, W. H.
Cutler, J. A.
Davis, D. W., Jr.
Davis, K. T.

Griewisch, A. H.

Ellis, H. W. Frentzel, H. C.

Gerstenberger, E. J. Gifford, E. W. Goldsmith, F. W.

Griewisch, A. H.
Haerile, R. A.
Hamacher, K. F.
Hamilton, H. S.
Hanley, E. V.
Haus, I. J.
Hessler, L. W.
Hoffmann, A.
Holland, W. T.
Hughey, T. M.
Jackson, C. H.
Jung, I. S. Jackson, C. F. Jung, J. S. Kluge, B. M. Knab, E. A. Koch, R. G. Krenz, A. S.

Koch, R. G.
Krenz, A. S.
Lavorgna, M. L.
Lingen, R. A.
Mack, E. H.
Miller, C. W.
Miller, L. B.
Mueller, H. P.
Noll, W. F.
Ouweneel, W. A.
Petersen, R. H.
Pett, A. W.
Podolske, A. R.
Randolph, C. H.
Reinke, L. F.
Kries, C. J.
Schreiber, H. W.
Spence, M. R.
Stevens, W. H.
Swisher, S. G., Jr.
Szekely, E.
Tutsch, R. J.
Vernon, R.
Volk, G. H.
Volk, J. H.
Weil, F. H. E.
Weimer, F. G.
Werner, P. H.
Wolfe, J. S.

Neenah-

Angermeyer, A. H. Elss, R. M. Harvey, A. D.

Racine-Dixon, A. G.
Donelson, W. N.
Johnson, R. L.
May, M. F.
Minkler, W. A.
Spieth, B. Stempel, E. H.

Superior-Jarvis, G. E.

Thiensville-Trostel, O. A.

Wauwatosa-Eicholtz, M. V.

WYOMING

Casper-Prawl, F. E.

Fort Francis E. Warren-Dyer, W. S.

DOMINION OF CANADA

Arvida, Que. --Kent, A. D.

Brantford, Ont.-

Caigary, Alta.— Deeves, E. W. Jenkins, S. D.

Clarkson, Ont.-

Freeman, Ont.— Givin, A. W. Goodram, W. E.

Galt, Ont.— Libby, R. S. Sheldon, W. D., Jr.

Halifax, Nova Scotia-Meagher, A. T.

Hamilton, Ont.— Dickenson, M. E. Moffat, O. G.

Hampetead, Que.— Sampson, E. T. Twizell, E. W.

Kitchener, Ont.— Beavers, G. R. Pollock, C. A.

Leaside, Ont.-

London, Ont.— Gilbert, T.

Midland, Ont.---Kitchen, W. H. J.

Montreal, Que.—
Andrews, W. R.
Armstrong, W. J.
Ballantyne, G. L.
Barter, W. E.
Berridge, W. W.
Boland, R. O.
Booth, C. A.
Chenevert, J. G.
Clapperton, R.
Colle, S. S.
Darling, A. B.
Dufault, F. H.
Dupuis, J. E. R.
Dykes, J. B.
Ewens, F. G.
Flanagan, J. B.
Forrester, N. J.
Freeman, E. M.
Garneau, L.
Hamlet, F. A.
Hole, W. G.

Hood, L. A.
Hooper, F. W.
Hooper, F. W.
Horsburgh, B. J.
Hughes, W. U.
Johnson, C. W.
Keith, J. P.
Linton, J. P.
Madden, A. B.
Madely, F. J.
Martin, R.
Milne, A. H.
Montgomery, E. G.
Nickle, A. J.
Noyes, R. R.
O'Connell, T. D.
O'Sborne, G. H.
Peart, A. M.
Peart, A. M.
Perras, G. E.
Phipps, F. G.
Ross, J. D.
St. Laurent, G.
Ste-Marie, G. P.
Salter, S. W.
Shaw, J. A.
Standring, R. A.
Timmins, W. W.
Tolhurst, G. C.
Watts, A. E.
Wiggs, G. L.
Wigson, J.
Wormley, R. F.

Newton, Ont.-Barrett, C. M.

Noranda, Que.— MacLean, H. A.

North Bay, Ont.— Goodman, C. E.

Oakville, Ont.— Stott, F. W.

Ottawa, Ont.— Allen, A. W., Bishop, J. W. Colclough, O. T. Gauley, E. R. Gray, G. A. Johns, C. F. Pennock, W. B. Stotesbury, B. Wilkinson, A.

Outremont, Que.—Gittleson, H.

Pointe Claire, Que.— Wells, E. E.

Preston, Ont.— Everest, R. H. Wood, A. W.

Quebec, Que-Paquet, J. M. Roy, L.

Sackville, N. B.— Rand, F. R. St. Lambert, Que.— LaMontagne, A. F.

Sherbrooke, Que.— Archambault, J. A. Labonne, H. Thompson, F.

Thorold, Ont.—Calnan, E. J.

Three Rivers, Que.— Germain, O.

Toronto, Ont .-Abbott, T. J. Alexander, S. W. Allsop, R. P. Angus, H. H. Anthes. L. L. Arkley, L. M. Arkley, L. M.
Arrowsmith, J. O.
Bayles, R. W.
Blackhall, W. R.
Bowerman, E. L.
Brittain, A., Jr.
Carter, A. W.
Chambers, F. W.
Church, H. J.
Clark, A. M.
Cole, G. E.
Davis, E. J.
Dickey, A. J. Davis, E. J.
Dickey, A. J.
Dion, A. M.
Dowler, E. A.
Duncan, W. A.
Eaton, W. G. M.
Ellis, F. E.
Fagan, L. E.
Fear, S. L.
Ferris, A. L.
Fitzsimons, J. P.
Foley, I. L. Fitzsimons, J. I Foley, J. J. Fox, E. Fox, J. H. Gordon, C. W. Gordon, W. D. Gurney, E. H. Gurney, E. R. Henion, H. D. Hill, H. G. Hills, A. H. Hills, A. H.
Hopper, G. H.
Hopper, G. H.
Hughes, L. K.
Jenkinson, V. J.
Jennings, S. A.
Jones, A. T.
Kelly, F. C.
Kelly, W. C.
Kemp, G. C.
Lawlor, J. J.
Leitch, A. S.
Lock, R. H.
Macdonald, D. Macdonald, D. J. Marriner, J. M. S. Mathison, R. St. C. Maxwell, R. S. McGrail, T. E. McKernan, G. S McLaren, T. H. Moore, F. C. Moore, H. S. G. S. Morgan, A. S. Murray, H. G. S.

Nearingburg, A. O'Neill, J. W. Paul, D. I. Playfair, G. A. Philip, W. Price, D. O., Ritchie, A. G. Roth, H. R. Shears, M. W. Smith, G. E. Smith, W. H. Spall, E. G. Stencel, R. A. Stott, D. A. Strain, A. J. Tasker, C. Taylor, A. R. Thompson, J. Todd, M. McM. Usher, W. J., Jr. Waldon, C. D. Wardell, A. Wilson, G. T. Woollard, M. S.

Vancouver, B. C.— Hale, F. J. Johnston, R. E. Leek, C. W. Leek, W. Turland, C. H. Vissac, G. A.

Victoria, B. C.— Sheret, A.

Westmount, Que.— Colford, J. Lefebvre, E. J. Robertson, J. A. M. Vollmann, C. W.

Windsor, Ont.— Hare, W. A.

Winnipeg, Man.
Anderson, E.
Argue, E. J.
Ball, F. T.
Charles, P. L.
Chester, F. L.
Dahlgren, G. E.
Davis, G. C.
Glass, W.
Hatch, O. J.
Hepburn, E. M.
Jones, B. G.
Kent, R. L.
McDonald, I.
Michie, D. F.
Miller, E. R.
Price, E. H.
Steele, J. B.
Stephenson, J. R.
Swain, D. S.
Worton, W.

Woodbridge, Ont.—Powlesland, J. W.

Woodstock, Ont.— Karges, A.

AUSTRALIA

Darlinghurst-

Henderson, A. S.

Melbourne-

Atherton, A. E. Bell, S. R.

Sydney-

Davey, G. I. Moloney, R. R. Robinson, J. A. Roseby, T. A.

Victoria— Ross, R.

BERMUDA

McKitrick, W. D.

BRAZIL

Rio de Janeiro-

Botelho, N. J. DeSales, M., Jr. Rabe, A. E.

CHILE

Santiago-

Demeter, J.

CUBA

Havana-

Colmenares, G. V.

EGYPT

Cairo-

Ezz-El-Din, K. Tahry, M. E. Zakı, H. M.

ENGLAND .

Birmingham-

Greenland, S. F. Richardson, R. D.

Buckinghamshire— Russell, J. N.

Cheshire-

Kennett, V. A.

Essex-

Richardson, W. A.

Kent-

Lipscombe, H W. Stirling, W. N.

Lancaster-

Bartley, H. E.

Leeds-

Jennins, H. H.

London-

Bailey, W. M.
Benham, C. S. K.
Butt, R. E. W.
Daniel, W. E.
Haden, G. N.
Herring, E.
Jackson, G. R.
Morrison, C. B.
Nobbs, W. W.
Swain, W. L.

Manchester-

Pougher, E. W. Pougher, B. R. Webb, J. W. Yates, W.

Middlesex-

Case, W. G. Fraser, J. J. Harvey, J. W. MacLachlan, V. D. Pearce, E. A. Smith, G. E.

Nottingham — Norfolk, L. W.

Surrey---

Harding, W. Troup, J. D.

Sussex-

Carter. D.

Trowbridge— Haden, W. N.

Warwickshire-

INDIA

Bombay— Badhe, J. M.

Badhe, J. M. Duplant, J. L.

Calcutta—

Ghose, K. N. Ghosh, B. B.

IRELAND

Cork-

Barry, P. I.

Dublin-Leonard, L. C. G.

MEXICO

Mexico, D. F.— Huber, E. Ramoneda, E.

Monclova, Coahuila Stewart, R. S.

NEW ZEALAND

Christchurch-

Taylor, E. M. Vale, H. A. L.

Dunedin— Davies, G. W.

PUERTO RICO

Boringuen Field —

Dickson, R. W., Jr.

San Juan --

Baker, D. L. Ruemmele, A. M. SOUTH AFRICA

Cape Town— Daitsh, A.

Durban-

Christierson, C. A.

Johannesburg

(Bellevue) — Caldwell, R. J. S. Ehlers, J. Overton, S. H.

SWEDEN

Nockeby-

Erikson, H. A.

Stockholm-

Eklund, K. G. Ostrom, E. W. Rosell, A. F. Stromgren, S. G. Theorell, H. G. T.

TURKEY

Istanbul ---

Karakash, T. J.

VENEZUELA

Caracas -

Blas, R. J. Westendarp, F. G.

MAIL RETURNED

Bodmer, E. Beaurienne, A Hausman, L. M. Hutchinson, F. A. Kwan, I. K. Loo, P. V. Macrae, R. B. Muckle, J. Wong, W. S. B.

PAST OFFICERS

AMERICAN SOCIETY of HEATING and VENTILATING ENGINEERS

1894	1000	
	1898	
President	President Wiltsie F. Wolfe	
1st Vice-President Wm. M. Mackay and Vice-President Wiltsie F. Wolfe	1st Vice-President J. H. Kinealy	
3rd Vice-President	President Wiltsie F. Wolfe 1st Vice-President J. H. Kinealy 2nd Vice-President A. E. Kenrick	
TreasurerJudson A. Goodrich	ora Vice-President	
Secretary L. H. Hart	Treasurer Judson A. Goodrich	
,	SecretaryStewart A. Jellett	
Board of Managers	Board of Managers .	
Chairman, Fred P. Smith Henry Adams A. A. Carv		
Henry Adams A. A. Cary Hugh J. Barron James A. Harding	Chairman, Wm. M. Mackay	
Henry Adams Hugh J. Barron Edward P. Bates, Pres. A. A. Cary James A. Harding L. H. Hart, Secy.	Thomas Barwick A. C. Mott John A. Connolly Francis A. Williams	
	Wiltsie F. Wolfe, Pres. Stewart A. Jellett, Stey.	
Council		
Chairman, R. C. Carpenter Albert A. Cryer Chas. W. Newton	Council	
Albert A. Cryer Chas. W. Newton	Chairman, R. C. Carpenter	
F. W. Foster Ulysses G. Scollay, Secy.	Henry Adams W. S. Hadaway, Ir.	
ASSA national applications.	Albert A. Cryer Wm. McMannis	
	Albert A. Cryer Wiltsie F. Wolfe, Pres. Wm. McMannis Stewart A. Jellett, Secy.	
1895		
President Stewart A. Jellett	www.	
1st Vice-President Wm. M. Mackay		
and vice-President		
3rd Vice-President	1899	
Treasurer Judson A. Goodrich Secretary L. H. Hart	President Henry Adams	
CHIPTON, V	1st Vice-President D. M. Quay	
Board of Managers	End Vice-President A. E. Kenrick	
	3rd Vice-President Francis A. Williams	
Chairman, James A. Harding Geo. B. Cobb Ulysses G. Scollay	Treasurer	
Geo. B. Cobb Ulysses G. Scollay Wm. McMannis B. F. Stangland Stewart A. Jellett. Pres. L. H. Hart. Seco.	SecretaryWm. M. Mackay	
Stewart A. Jellett, Pres. L. H. Hart, Secy.	Board of Managers	
Commett		
Council	Chairman, Stewart A. Jellett B. H. Carpenter Wm. Kent	
Chairman, R. C. Carpenter Henry Adams T. J. Waters Edward P. Bates Albert A. Cryer, Secy.	B. H. Carpenter Wm. Kent A. A. Cary Wiltsie F. Wolfe	
menry Adams T. J. Waters	A. A. Cary Wiltsie F. Wolfe Henry Adams, Pres. Wm. M. Mackay, Secy.	
Edward P. Bates Albert A. Cryer, Secy.	remy Adams, 1765. Win. W. Wackay, Secy.	
The state of the s	Council	
1896	Council	
1896		
President R C Cornenter		
President R. C. Carpenter		
Pressdent R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates	Council Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. Council Wm. McMannis Wm. McMannis Wm. M. Mackay, Secy.	
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 2nd Vice-President F. W. Foster Treassurer Judson A. Goodrich		
Pressdent R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates		
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 3rd Vice-President F. W. Foster Treasurer Judson A. Goodrich Secretary L. H. Hart	Chairman, R. C. Carpenter John Gormly Wm. McMannis W. S. Hadaway, Jr. B. F. Stangland Henry Adams, Pres. Wm. M. Mackay, Secy.	
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 5rd Vice-President F. W. Foster Treassurer Judson A. Goodrich Secretary L. H. Hart Board of Managers		
Pressdent R. C. Carpenter 1st Vice-Pressident D. M. Quay 2nd Vice-Pressident Edward P. Bates 3rd Vice-Pressident F. W. Foster Treasurer Judson A. Goodrich Secretary Wm. M. Mockey	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President	
Pressdent R. C. Carpenter 1st Vice-Pressident D. M. Quay 2nd Vice-Pressident Edward P. Bates 3rd Vice-Pressident F. W. Foster Treasurer Judson A. Goodrich Secretary Wm. M. Mockey	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President	
Pressdent R. C. Carpenter 1st Vice-Pressident D. M. Quay 2nd Vice-Pressident Edward P. Bates 3rd Vice-Pressident F. W. Foster Treasurer Judson A. Goodrich Secretary Wm. M. Mockey	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President	
Pressdent R. C. Carpenter 1st Vice-Pressident D. M. Quay 2nd Vice-Pressident Edward P. Bates 5rd Vice-Pressident F. W. Foster Treasurer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President	
Pressdent R. C. Carpenter 1st Vice-Pressident D. M. Quay 2nd Vice-Pressident Edward P. Bates 3rd Vice-Pressident F. W. Foster Treasurer Judson A. Goodrich Secretary Wm. M. Mockey	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. Wm. McMannis B. F. Stangland Wm. M. Mackay, Secy.	
Pressdent R. C. Carpenter 1st Vice-Pressident D. M. Quay 2nd Vice-Pressident Edward P. Bates 5rd Vice-Pressident F. W. Foster Treasurer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Press. L. H. Hart, Secy. Council Chairman, A. A. Cary	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President D. M. Quay 1st Vice-President A. E. Kenrick 2nd Vice-President Francis A. Williams Treasurer Judson A. Goodrich Secretary Wm. M. Mackay	
Pressdent R. C. Carpenter 1st Vice-Pressident D. M. Quay 2nd Vice-Pressident Edward P. Bates 5rd Vice-Pressident F. W. Foster Treasurer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Press. L. H. Hart, Secy. Council Chairman, A. A. Cary	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President	
Pressdent R. C. Carpenter 1st Vice-Pressident D. M. Quay 2nd Vice-Pressident Edward P. Bates 5rd Vice-Pressident F. W. Foster Treasurer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Press. L. H. Hart, Secy. Council Chairman, A. A. Cary	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. Wm. McMannis B. F. Stangland Wm. M. Mackay, Secy. 1900 President D. M. Quay 1st Vice-President Francis A. Williams Treasurer Judson A. Goodrich Secretary Wm. M. Mackay Board of Governors Chairman, D. M. Quay	
Pressdent R. C. Carpenter 1st Vice-Pressident D. M. Quay 2nd Vice-Pressident Edward P. Bates 3rd Vice-Pressident F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Press L. H. Hart, Secy. Council	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 18t Vice-President Treasurer 1900 Board of Governors Chairman, D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay	
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 3rd Vice-President F. W. Foster Treasurer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Pres. L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy.	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 18t Vice-President Treasurer 1900 Board of Governors Chairman, D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay	
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 3rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy.	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 18t Vice-President Treasurer 1900 Board of Governors Chairman, D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay	
President R. C. Carpenter 1st Vice-President D. M. Quay 2md Vice-President Edward P. Bates 5rd Vice-President F. W. Foster Treasurer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Pres. L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. Blackmore, Secy. 1897 President Wm. M. Mackay	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 18t Vice-President Treasurer 1900 Board of Governors Chairman, D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay	
Pressdent R. C. Carpenter 1st Vice-Pressident D. M. Quay 2nd Vice-Pressident Edward P. Bates 3rd Vice-Pressident F. W. Foster Treaswer Judson A. Goodrich Secretary Mm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Press. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 Pressident Mm. M. Mackay 1st Vice-Pressident H. D. Crane	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 18t Vice-President Treasurer 1900 Board of Governors Chairman, D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay	
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 5rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Choirman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Pres. L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President Wm. M. Mackay 1st Vice-President H. D. Crane 2nd Vice-President Henry Adams	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 18t Vice-President Treasurer 1900 Board of Governors Chairman, D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay	
Pressdent R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 3rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Press L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President Wm. M. Mackay 1st Vice-President H. D. Crane 2nd Vice-President Henry Adams 2rd Vice-President Henry Adams 3rd Vice-President A. E. Kenrick	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President	
Pressdent R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 3rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Press L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President Wm. M. Mackay 1st Vice-President H. D. Crane 2nd Vice-President Henry Adams 2rd Vice-President Henry Adams 3rd Vice-President A. E. Kenrick	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 18t Vice-President Treasurer 1900 Board of Governors Chairman, D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay Wm. Kent. Vice-Chm. D. M. Quay	
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 5rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Choirman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Pres. L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President Wm. M. Mackay 1st Vice-President H. D. Crane 2nd Vice-President Henry Adams	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 D. M. Quay 1st Vice-President 1910 Francis A. Williams 1900 M. Mackay 1900 Board of Governors 1900 Chairman, D. M. Quay Wm. Kent, Vice-Chm 1900 D. M. Nesbit 1901 C. Carpenter 1900 1900	
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 5rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Pres. L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President Wm. M. Mackay 1st Vice-President H. D. Crane 2nd Vice-President Henry Adams 3rd Vice-President Henry Adams 3rd Vice-President Judson A. Goodrich Secretary Judson A. Goodrich Secretary H. M. Swetland Board of Managers	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 D. M. Quay 1st Vice-President 1910 Francis A. Williams 1900 M. Mackay 1900 Board of Governors 1900 Chairman, D. M. Quay Wm. Kent, Vice-Chm 1900 D. M. Nesbit 1901 C. Carpenter 1900 1900	
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 5rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Pres. L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President Wm. M. Mackay 1st Vice-President H. D. Crane 2nd Vice-President Henry Adams 3rd Vice-President Henry Adams 3rd Vice-President Judson A. Goodrich Secretary Judson A. Goodrich Secretary H. M. Swetland Board of Managers	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 D. M. Quay 1st Vice-President 1901 President 1901 A. E. Kenrick 2nd Vice-President A. E. Kenrick 2nd Vice-President 1901 Andrew Harvey	
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 5rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Pres. L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President Wm. M. Mackay 1st Vice-President H. D. Crane 2nd Vice-President Henry Adams 3rd Vice-President Henry Adams 3rd Vice-President Judson A. Goodrich Secretary Judson A. Goodrich Secretary H. M. Swetland Board of Managers	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President D. M. Quay 1st Vice-President Francis A. Williams Treasure Judson A. Goodrich Secretary Wm. M. Mackay Board of Governors Chairman, D. M. Quay Wm. Kent, Vice-Chm. R. C. Carpenter C. B. J. Snyder John Gormly 1901 President J. H. Kinealy 1st Vice-President A. E. Kenrick 2nd Vice-President A. E. Kenrick 2nd Vice-President A. E. Kenrick 2nd Vice-President A. E. Kenrick 2nd Vice-President Andrew Harvey Treasure Judson A. Goodrich	
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 5rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Pres. L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President Wm. M. Mackay 1st Vice-President H. D. Crane 2nd Vice-President Henry Adams 3rd Vice-President Henry Adams 3rd Vice-President Judson A. Goodrich Secretary Judson A. Goodrich Secretary H. M. Swetland Board of Managers	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 D. M. Quay 1st Vice-President 1901 President 1901 A. E. Kenrick 2nd Vice-President A. E. Kenrick 2nd Vice-President 1901 Andrew Harvey	
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 5rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Pres. L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President H. D. Crane 2nd Vice-President H. M. Swetland Board of Managers Chairman, R. C. Carpenter Chairman, R. C. Carpenter	Chairman, R. C. Carpenter Wm. McMannis W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President D. M. Quay 1st Vice-President Francis A. Williams Treasure Judson A. Goodrich Scorelary Wm. M. Nackay Board of Governors Chairman, D. M. Quay Wm. Kent, Vice-Chm. R. C. Carpenter John Gormly C. B. J. Snyder John Gormly Wm. M. Mackay, Secy. 1901 President J. H. Kinealy 1st Vice-President A. E. Kenrick 2nd Vice-President A. E. Kenrick 2nd Vice-President A. E. Kenrick 2nd Vice-President Andrew Harvey Treasurer Judson A. Goodrich Secretary Wm. M. Mackay Wm. M. Mackay	
President R. C. Carpenter 1st Vice-President D. M. Quay 2md Vice-President Edward P. Bates 3rd Vice-President F. W. Foster Treasurer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett Witsie F. Wolfe R. C. Carpenter, Pres. L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President Wm. M. Mackay 1st Vice-President H. D. Crane 2md Vice-President Henry Adams 3rd Vice-President Henry Adams 3rd Vice-President A. E. Kenrick Treasurer Judson A. Goodrich Secretary H. M. Swetland Board of Managers Chairman, R. C. Carpenter Stewart A. Jellett Wiltsie F. Wolfe H. M. Swetland, Secy.	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President D. M. Quay 1st Vice-President Francis A. Williams Treasure Judson A. Goodrich Secretary Wm. M. Mackay Board of Governors Chairman, D. M. Quay Wm. Kent, Vice-Chm. R. C. Carpenter C. B. J. Snyder John Gormly 1901 President J. H. Kinealy 1st Vice-President A. E. Kenrick 2nd Vice-President A. E. Kenrick 2nd Vice-President A. E. Kenrick 2nd Vice-President A. E. Kenrick 2nd Vice-President Andrew Harvey Treasure Judson A. Goodrich	
President R. C. Carpenter 1st Vice-President D. M. Quay 2nd Vice-President Edward P. Bates 3rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President B. F. Stangland J. J. Blackmore, Secy. 1897 President H. D. Crane 2nd Vice-President Henry Adams 3rd Vice-President Henry Adams 3rd Vice-President Judson A. Goodrich Treaswer Judson A. Goodrich Secretary L. H. M. Swetland Board of Managers Chairman, R. C. Carpenter Edward P. Bates Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President Ist Vice-President Treasurer Chairman, D. M. Quay Board of Governors Chairman, D. M. Quay Wm. M. Mackay, Secy. Board of Governors Chairman, D. M. Quay Wm. Kent, Vice-Chm. R. C. Carpenter John Gormly 1901 President Ist Vice-President A. E. Kenrick R. C. Carpenter John Gormly 1901 President Ist Vice-President A. E. Kenrick R. C. Carpenser Judson A. Goodrich C. B. J. Snyder Wm. M. Mackay, Secy. 1901 President Ist Vice-President A. E. Kenrick R. C. Carpenser Judson A. Goodrich Secretary. Board of Governors Chairman, I. H. Kinealy Ist Vice-President J. H. Kinealy Ist Vice-President Judson A. Goodrich Secretary. Board of Governors	
President R. C. Carpenter 1st Vice-President D. M. Quay 2md Vice-President Edward P. Bates 5rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Pres. L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President H. D. Crane 2md Vice-President H. D. Crane 2md Vice-President H. D. Crane 3rd Vice-President H. D. Crane 5rd Vice-President A. E. Kenrick Treaswer Judson A. Goodrich Secretary H. M. Swetland Board of Managers Chairman, R. C. Carpenter Edward P. Bates W. S. Hadaway, Jr. Wiltsie F. Wolfe Wm. M. Mackay, Pres. Council Chairman, Albert A. Cryer	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 D. M. Quay 1st Vice-President 1901 Board of Governors 1900 Chairman, D. M. Quay Wm. Kent, Vice-Chm 1901 President 1901	
President R. C. Carpenter 1st Vice-President D. M. Quay 2md Vice-President Edward P. Bates 5rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Press L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President Wm. M. Mackay 1st Vice-President Henry Adams 3rd Vice-President A. E. Kenrick Treaswer Judson A. Goodrich Secretary H. M. Swetland Board of Managers Chairman, R. C. Carpenter Edward P. Bates Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe Wm. M. Mackay, Press. H. M. Swetland, Secy. Council Chairman, Albert A. Cryer John A. Fish James Mackay	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 President 1900 D. M. Quay 1st Vice-President 1901 Board of Governors 1900 Chairman, D. M. Quay Wm. Kent, Vice-Chm 1901 President 1901	
President R. C. Carpenter 1st Vice-President D. M. Quay 2md Vice-President Edward P. Bates 5rd Vice-President F. W. Foster Treaswer Judson A. Goodrich Secretary L. H. Hart Board of Managers Chairman, Wm. M. Mackay Hugh J. Barron Stewart A. Jellett W. S. Hadaway, Jr. Wiltsie F. Wolfe R. C. Carpenter, Pres. L. H. Hart, Secy. Council Chairman, A. A. Cary Albert A. Cryer B. F. Stangland Wm. McMannis J. J. Blackmore, Secy. 1897 President H. D. Crane 2md Vice-President H. D. Crane 2md Vice-President H. D. Crane 3rd Vice-President H. D. Crane 5rd Vice-President A. E. Kenrick Treaswer Judson A. Goodrich Secretary H. M. Swetland Board of Managers Chairman, R. C. Carpenter Edward P. Bates W. S. Hadaway, Jr. Wiltsie F. Wolfe Wm. M. Mackay, Pres. Council Chairman, Albert A. Cryer	Chairman, R. C. Carpenter John Gormly W. S. Hadaway, Jr. Henry Adams, Pres. 1900 President Ist Vice-President. Secretary. Chairman, D. M. Quay Wm. M. Mackay, Secy. 1900 President Industry Industry Board of Governors Chairman, D. M. Quay Wm. Kent, Vice-Chm. R. C. Carpenter John Gormly 1901 President Ist Vice-President Industry I	

1902	1907		
President A. E. Kenrick 1st Vice-President Andrew Harvey 2nd Vice-President Robert C. Clarkson Treasurer Judson A. Goodrich Secretary Wm. M. Mackay	President C. B. J. Snyder 1st Vice-President James Mackay 2nd Vice-President Wm. G. Snow Treasure Ulysses G. Scollay Secretary Wm. M. Mackay		
Board of Covernors	Board of Governors		
Chairman, A. E. Kenrick John Gormly, Vice-Chm. J. H. Kinealy R. C. Carpenter C. B. J. Snyder Wm. Kent Wm. M. Mackay, Secy.	Chairman, C. B. J. Snyder James Mackay, Vice-Chm. Frank K. Chew R. E. Atkinson A B. Franklin R. C. Carpenter Wm. G. Snow Edmund F. Capron Wm. M. Mackay, Secy.		
1002	40.00		
1903	1908		
Board of Governors	Board of Governors		
C. B. J. Snyder, Vice-Chm. A. E. Kenrick R. C. Carpenter Geo. Mehring John Gormly Wm. M. Mackay, Secy.	Chasrman, James Mackay Jas.D. Hoffman, Vice-Chm. John F. Hale B. F. Stangland R. C. Carpenter Frank K. Chew C. B. J. Snyder Wm. M. Mackay, Secy.		
	pala en model filippe		
1904 Andrew Harvey	1909		
President Andrew Harvey 1st Vice-President John Gormly 2nd Vice-President Robert C. Clarkson Treasurer Ulysses G. Scollay Secretary Wm. M. Mackay	President		
	September 3		
Board of Governors	Board of Governors		
Board of Governors Chairman, Andrew Harvey John Gormly H. D. Crane Robert C. Clarkson J. J. Blackmore C. B. J. Snyder R. C. Carpenter Wm. M. Mackay, Secy,			
Chairman, Andrew Harvey John Gormly H. D. Crane Robert C. Clarkson A. E. Kenrick J. J. Blackmore C. B. J. Snyder R. C. Carpenter Wm. M. Mackay, Secy.	Board of Governors Chairman, Wm. G. Snow August Kehm Vice-Chm. Samuel R. Lewis		
	Board of Governors Chairman, Wm. G. Snow August Kehm, Vice-Chm. Samuel R. Lewis John R. Allen James Mackay R. C. Carpenter B. F. Stangland B. S. Harrison Wm. M. Mackay, Secy.		
Chairman, Andrew Harvey John Gormly H. D. Crane Robert C. Clarkson A. E. Kenrick J. J. Blackmore C. B. J. Snyder R. C. Carpenter Wm. M. Mackay, Secy. 1905 President Wm. Kent 1st Vice-President R. P. Bolton 2nd Vice-President C. B. J. Snyder Treasurer Ulysses G. Scollay	Board of Governors Chairman, Wm. G. Snow August Kehm, Vice-Chm. Samuel R. Lewis John R. Allen James Mackay R. C. Carpenter B. F. Stangland Wm. M. Mackay, Secy. 1910 President. Jas. D. Hoffman 1st Vice-President. R. P. Bolton 2nd Vice-President. Samuel R. Lewis Treasurer. Ulysees G. Scollay Secretary. Wm. M. Mackay Board of Governors		
Chairman, Andrew Harvey John Gormly H. D. Crane Robert C. Clarkson A. E. Kenrick J. J. Blackmore C. B. J. Snyder R. C. Carpenter Wm. M. Mackay, Secy. 1905 President Wm. Kent 1st Vice-President C. B. J. Snyder Treasurer Ulysges G. Scollay Secretary Wm. M. Mackay	Board of Governors Chairman, Wm. G. Snow August Kehm, Vice-Chm. Samuel R. Lewis John R. Allen R. C. Carpenter B. F. Stangland Wm. M. Mackay, Secy. 1910 President. Jas. D. Hoffman 1st Vice-President. R. P. Bolton 2nd Vice-President. Samuel R. Lewis Trassurer Ulysses G. Scollay Secretary. Wm. M. Mackay		
Chairman, Andrew Harvey John Gormly H. D. Crane Robert C. Clarkson A. E. Kenrick J. J. Blackmore C. B. J. Snyder R. C. Carpenter Wm. M. Mackay, Secy, 1905 President Wm. Kent Ist Vice-President R. P. Bolton 2nd Vice-President C. B. J. Snyder Treasurer Ulysses G. Scollay Secretary Wm. M. Mackay Board of Governors Chairman, Wm. Kent R. P. Bolton James Mackay C. B. J. Snyder B. F. Stangland B. H. Carpenter J. C. F. Trachsel A. B. Franklin Wm. M. Mackay, Secy.	Chairman, Wm. G. Snow August Kehm, Vice-Chm. Samuel R. Lewis John R. Allen James Mackay R. C. Carpenter B. F. Stangland Wm. M. Mackay, Secy. 1910 President Jas. D. Hoffman 1st Vice-President Samuel R. Lewis Treasurer Ulysees G. Scollay Secretary Wm. M. Mackay Board of Governors Chairman, Jas. D. Hoffman R. P. Bolton, Vice-Chm. John F. Hale Geo. W. Barr Samuel R. Lewis		
Chairman, Andrew Harvey John Gormly H. D. Crane Robert C. Clarkson A. E. Kenrick J. J. Blackmore C. B. J. Snyder R. C. Carpenter Wm. M. Mackay, Secy, 1905 President Wm. Kent Ist Vice-President R. P. Bolton 2nd Vice-President C. B. J. Snyder Treasurer Ulysses G. Scollay Secretary Wm. M. Mackay Board of Governors Chairman, Wm. Kent R. P. Bolton James Mackay C. B. J. Snyder B. F. Stangland B. H. Carpenter J. C. F. Trachsel A. B. Franklin Wm. M. Mackay, Secy.	Chairman, Wm. G. Snow August Kehm, Vice-Chm. Samuel R. Lewis John R. Allen R. C. Carpenter B. S. Harrison 1910 President. Jas. D. Hoffman 1st Vice-President. R. P. Bolton 2nd Vice-President. Samuel R. Lewis Treasurer Ulysses G. Scollay Secretary. Wm. M. Mackay Board of Governors Chairman, Jas. D. Hoffman R. P. Bolton, Vice-Chm. John F. Hale Geo. W. Barr R. C. Carpenter James Mackay Wm. M. Mackay, Secy.		
Chairman, Andrew Harvey John Gormly Robert C. Clarkson J. J. Blackmore R. C. Carpenter 1905 President Wm. M. Mackay, Secy, 1905 President R. P. Bolton Secretary Wm. M. Mackay Board of Governors Chairman, Wm. Kent R. P. Bolton R. P. B	Roard of Governors Chairman, Wm. G. Snow August Kehm, Vice-Chm. Samuel R. Lewis John R. Allen R. C. Carpenter B. S. Harrison I910 President. Jas. D. Hoffman 1st Vice-President. R. P. Bolton 2nd Vice-President. Samuel R. Lewis Secretary. Wm. M. Mackay Board of Governors Chairman, Jas. D. Hoffman Chairman, Jas. D. Hoffman R. P. Bolton, Vice-Chm. John F. Hale Geo. W. Barr R. C. Carpenter James Mackay Judson A. Goodrich I911 President R. P. Bolton 1st Vice-President A. B. Franklin		

1912	1917
President John R. Allen 1st Vice-President John F. Hale 2nd Vice-President Fdmund F. Capron Treasurer James A. Donnelly Secretary Wm. W. Macon	President. J. Irvine Lyle 1st Vice-President. Arthur K. Ohmes 2nd Vice-President Fred R. Still Treasurer Homer Addams Secretary. Casin W. Obert
Board of Governors	Council
Chairman, John R. Allen John F. Hale, Vice-Chm. Edmund F. Capron R. P. Bolton Jaa. D. Hoffman Chairman, John R. Allen Dwight D. Kimball Samuel R. Lewis Wm. M. Mackay Wm. W. Macon, Secy.	Chairman, J. Irvine Lyle A. K. Ohmes, Vice-Chm. Homer Addams Davis S. Boyden Bert C. Davis Milton W. Franklin Charles A. Fuller Chairman, J. Irvine Lyle Harry M. Hart E. Vernon Hill James M. Stannard Fred R. Still Walter S. Timmis Casin W. Obert, Seey.
1913	1918
President John F. Hale 1st Vice-President A. B. Franklin 3md Vice-President Edmund F. Capron Treasurer James A. Donnelly Secretary Edwin A. Scott Board of Governors	President Fred R. Still 1st Vice-President Walter S. Timmis 8nd Vice-President E. Vernon Hill Treasurer Homer Addams Secretary Casin W. Obert
	Council
Chairman, John F. Hale A. B. Franklin, Vice-Chm. John R. Allen Edmund F. Capron R. P. Bolton Frank T. Chapman Ralph Collamore Chairman, John F. Hale Dames A. Donnelly Dwight D. Kimball Wm. W. Macon James M. Stannard Theodore Weinshank Rdwin A. Scott, Secy.	Chairman, Fred R. Still W. S. Timmis, Vice-Chm. Homer Addams William H. Driscoll Howard H. Fielding H. P. Gant C. W. Kimball Casin W. Obert, Secy.
1914	1919
President Samuel R. Lewis 1st Vice-President Edmund F. Capron 2nd Vice-President Dwight D. Kimball Treasure James A. Donnelly Secretary J. J. Blackmore	President Walter S. Timmis 1st Vice-President E. Vernon Hill 2nd Vice-President Milton W. Franklin Treasurer Homer Addams Secretary Casin W. Obert
Council	Council
Chairman, Samuel R. Lewis E. F. Capron, Vice-Chm. John F. Hale Dwight D. Kimball Harry M. Hart John R. Allen Frank G. McCann Frank T. Chapman Wm. W. Macon Frank I. Cooper James M. Stannard James A. Donnelly J. J. Blackmore, Secy.	Chairman, Walter S. Timmis E. Vernon Hill, Vice-Chm. Homer Addams Howard H. Fielding Milton W. Franklin Harry E. Gerrieh George B. Nichols Chairman, Walter S. Timmis Fred. W. Phyor, Jr. Champlain L. Riley Fred R. Still Casin W. Obert, Secy.
1915	19,20
President Dwight D. Kimball 1st Vice-President Harry M. Hart 2nd Vice-President Frank T. Chapman Treasurer Homer Addams Secretary. J. J. Blackmore	President E. Vernon Hill 1st Vice-President Champlain L. Riley 2nd Vice-President Jay R. McColl Treasurer Homer Addams Secretary Casin W. Obert
Council	Council
Chairman, Dwight D. Kimball Harry M. Hart, Vice-Chm. Homer Addams Frank T. Chapman Frank I. Cooper E. Vernon Hill Wm. M. Kingsbury Chairman, Dwight D. Kimball Samuel R. Lewis Frank G. McCann J. T. J. Mellon Henry C. Meyer, Jr. Arthur K. Ohmes J. J. Blackmore, Secy.	Chairman, E. Vernou Hill C. L. Riley, Vice-Chm. Homer Addams Jos. A. Cutler Wm. H. Driscoll A. C. Edgar Alfred Kellogg Chairman, E. Vernou Hill George B. Nichols George B. Nichols Robt. W. Pryor, Jr. W. S. Timmis Perry West Casin W. Obert, Secy.
1916	1921
President Harry M. Hart 1st Vice-President Frank T. Chapman 8nd Vice-President Arthur K. Ohmes Treasure Homer Addams Secretary Casin W. Obert	President Champlain L. Riley 1st Vice-President Jay R. McColl 2nd Vice-President H. P. Gant Treasure Homer Addams Secretary Casin W. Obert
Council	Council
Chairman, Harry M. Hart F. T. Chapman, Vice-Chm. Homer Addams Charles R. Bishop Frank I. Cooper Milton W. Franklin E. Vernon Hill Chairman, Harry M. Hart Henry C. Meyer, Jr. Arthur K. Ohmes Fred R. Still Walter S. Timmis Casin W. Obert, Secy.	Chairman, Champlain L. Riley Jay R. McColl, Vice-Chm. E. S. Hallett Homer Addams Jos. A. Cutler Samuel E. Dibble Wm. H. Driscoll H. P. Gant Chairman, Champlain L. Riley E. S. Hallett E. Vernon Hill Alfred Kellogg E. E. McNair Perry West Casin W. Obert, Secy.

1922	1927	
President. Jay R. McColl 1st Vice-President. H. P. Gant 2nd Vice-President. Samuel E. Dibble Trester. H. Denry Addams	President F. Paul Anderson 1st Vice-President A. C. Willard 2nd Vice-President Thornton Lewis Treasurer W. E. Gillham Secretary A. V. Hutchinson	
1st Vice-President H. P. Gant	1st Vice-PresidentA. C. Willard	
and Vice-President Samuel E. Dibble	2nd Vice-PresidentThornton Lewis	
	Treasurer. V. E. Gilliam	
SecretaryCasin W. Obert	Secretary	
Council	Council	
Chairman, Jay R. McColl		
H. P. Gant, Vice-Chm. Homer Addams Jos. A. Cutler Samuel E. Dibble Wm. H. Driscoll E. S. Hallett H. M. M. M. M. M. M. M. M. M. M. M. M. M.	Chairman, F. Paul Anderson	
Homer Addams E. E. McNair	A. C. Willard, Vice-Chm. John Howatt	
Jos. A. Cutler H. J. Meyer	H. H. Angus W. T. Jones W. H. Carrier J. J. Kissick	
Wm H Drugoll Perry West	W. H. Carrier J. J. Kissick W. H. Driscoll E. B. Langenberg	
E. S. Hallett Casin W. Obert. Secv.	Roswell Farnham Thornton Lewis	
	H. H. Fielding J. F. McIntire	
	W. E. Gillham H. Lee Moore	
	H. H. Fielding J. F. McIntire W. E. Gillham H. Lee Moore C. V. Haynes F. B. Rowley	
1923		
President H. P. Gant 1st Vice-President Homer Addams		
Isl Vice-President Homer Addams		
2nd Vice-President E. E. McNair Treasurer Wm. H. Driscoll	1928	
Secretary	President A. C. Willard 1st Vice-President Thornton Lewis	
-	Ist Vice-President Thornton Lewis	
Council	8nd Vice-President L. A. Harding Treasurer W. E. Gillham	
Chairman, H. P. Gant	Secretary	
Homer Addams, Vice-Chm. E. S. Hallett W. H. Carrier Alfred Kellogg	Scotton y	
I. A. Cutler Thornton Lewis	Council	
S. E. Dibble E. E. McNair	Chairman, A. C. Willard	
Wm. H. Driscoll Perry West		
Casin W. Obert, Secy.	Thornton Lewis, Vice-Chm. C. V. Haynes	
	H H Angue W. T. Iones	
1924	W. H. Carrier I. J. Kissick	
	F. Paul Anderson John Howatt H. H. Angus W. T. Jones W. H. Carrier J. J. Kissick N. W. Downes E. B. Langenberg	
President Homer Addams	Roswell Farnham J. F. McIntite	
1st Vice-President S. E. Dibble 2nd Vice-President William H. Driscoll	W. E. Gillham H. Lee Moore	
Treasurer Perry West	F. B. Rowley	
Treasurer Perry West Secretary F. C. Houghten		
Council		
Chairman, Homer Addams	1929	
S. E. Dibble, Vice-Chm. W. E. Gillham		
S. E. Dibble, Vice-Chm. W. E. Gillham L. A. Harding	President Thornton Lewis 1st Vice-President L. A. Harding	
W. H. Carrier Alfred Kellogg		
Y A COLUMN	and Vice-President W. H. Carrier	
F. Paul Anderson L. A. Harding W. H. Carrier Alfred Kellogg J. A. Cutler Thornton Lewis William H. Driscell Parry, West	2nd Vice-President W. H. Carrier	
J. A. Cutler Thornton Lewis William H. Driscoll Perry West H. P. Gant F. C. Houghten, Secv.	2nd Vice-President W. H. Carrier Treasurer W. E. Gillham Secretary A. V. Hutchinson	
J. A. Cutler William H. Driscoll H. P. Gant Thornton Lewis Perry West F. C. Houghten, Secy.	2nd Vice-President W. H. Carrier	
William H. Driscoll H. P. Gant F. C. Houghten, Secy.	\$nd Vice-President. W. H. Carrier Treasurer. W. E. Gillinem Secretary. A. V. Hutchinson Technical Secretary P. D. Close	
H. P. Gant Perry West F. C. Houghten, Secy.	that Vice-President. W. H. Carrier Treasurer. W. E. Gillinem Secretary. A. V. Hutchinson Technical Secretary P. D. Close Council	
H. P. Gant Perry West F. C. Houghten, Secy.	## Add Vice-President W. H. Carrier Treasurer W. E. Gillham Secretary A. V. Hutchinson Technical Secretary P. D. Close Council Chairman, Thornton Lewis	
H. P. Gant Perry West F. C. Houghten, Secy.	## A. Harding Vice-Chm. **W. H. Carrier Treasurer.** W. E. Gillham Secretary.** A. V. Hutchinson Technical Secretary.** **Council Chairman, Thornton Lewis* L. A. Harding Vice-Chm. **John Howatt*	
H. P. Gant Perry West F. C. Houghten, Secy.	## A. Harding Vice-Chm. **W. H. Carrier Treasurer.** W. E. Gillham Secretary.** A. V. Hutchinson Technical Secretary.** **Council Chairman, Thornton Lewis* L. A. Harding Vice-Chm. **John Howatt*	
H. P. Gant Perry West F. C. Houghten, Secy.	## A. Harding Vice-Chm. **W. H. Carrier Treasurer.** W. E. Gillham Secretary.** A. V. Hutchinson Technical Secretary.** **Council Chairman, Thornton Lewis* L. A. Harding Vice-Chm. **John Howatt*	
H. P. Gant Perry West F. C. Houghten, Secy. 1925 President S. E. Dibble 1st Vice-President F. Paul Anderson Treasurer Perry West Secretary F. C. Houghten, Secy.	## Vice-President. W. H. Carrier Treasurer. W. E. Gillham Secretary. A. V. Hutchinson Technical Secretary P. D. Close Council Chairman, Thornton Lewis L. A. Harding, Vice-Chm. John Howatt H. H. Angus W. T. Jones W. H. Carrier E. B. Langenberg N. W. Downes G. L. Larson Roswell Farnham F. C. McIntosh	
H. P. Gant 1925 President Wm. H. Driscoll 1st Vice-President Wm. H. Driscoll 2nd Vice-President Ferry West Secretary F. C. Houghten, Secy.	## Vice-President. W. H. Carrier Treasurer. W. E. Gillham Secretary. A. V. Hutchinson Technical Secretary P. D. Close Council Chairman, Thornton Lewis L. A. Harding, Vice-Chm. John Howatt H. H. Angus W. T. Jones W. H. Carrier E. B. Langenberg N. W. Downes G. L. Larson Roswell Farnham F. C. McIntosh	
H. P. Gant 1925 President Wm. H. Driscoll 1st Vice-President Wm. H. Driscoll 2nd Vice-President Ferry West Secretary F. C. Houghten, Secy.	## Vice-President. W. H. Carrier Treasurer. W. E. Gillham Secretary. A. V. Hutchinson Technical Secretary P. D. Close Council Chairman, Thornton Lewis L. A. Harding, Vice-Chm. John Howatt H. H. Angus W. T. Jones W. H. Carrier E. B. Langenberg N. W. Downes G. L. Larson Roswell Farnham F. C. McIntosh	
H. P. Gant 1925 President Wm. H. Driscoll 1st Vice-President Wm. H. Driscoll 2nd Vice-President Ferry West Secretary F. C. Houghten, Secy.	## Vice-President. W. H. Carrier Treasurer. W. E. Gillham Secretary. A. V. Hutchinson Technical Secretary P. D. Close Council Chairman, Thornton Lewis L. A. Harding, Vice-Chm. John Howatt H. H. Angus W. T. Jones W. H. Carrier E. B. Langenberg N. W. Downes G. L. Larson Roswell Farnham F. C. McIntosh	
H. P. Gant 1925 President Wm. H. Driscoll 1st Vice-President Wm. H. Driscoll 2nd Vice-President Ferry West Secretary F. C. Houghten, Secy.	## Vice-President. W. H. Carrier Treasurer. W. E. Gillham Secretary. A. V. Hutchinson Technical Secretary P. D. Close Council Chairman, Thornton Lewis L. A. Harding, Vice-Chm. John Howatt H. H. Angus W. T. Jones W. H. Carrier E. B. Langenberg N. W. Downes G. L. Larson Roswell Farnham F. C. McIntosh	
H. P. Gant 1925 President Wm. H. Driscoll 1st Vice-President Wm. H. Driscoll 2nd Vice-President Ferry West Secretary F. C. Houghten, Secy.	## Vice-President. W. H. Carrier Treasurer. W. E. Gillham Secretary. A. V. Hutchinson Technical Secretary P. D. Close Council Chairman, Thornton Lewis L. A. Harding, Vice-Chm. John Howatt H. H. Angus W. T. Jones W. H. Carrier E. B. Langenberg N. W. Downes G. L. Larson Roswell Farnham F. C. McIntosh W. E. Gillham C. V. Haynes A. C. Willard F. B. Rowley	
H. P. Gant 1925 President Wm. H. Driscoll 1st Vice-President Wm. H. Driscoll 2nd Vice-President Ferry West Secretary F. C. Houghten, Secy.	## A Vice-President	
H. P. Gant Perry West F. C. Houghten, Secy. 1925 President S. E. Dibble 1st Vice-President F. Paul Anderson Treasurer Perry West Secretary F. C. Houghten, Secy.	## A Vice-President	
William H. Driscoll H. P. Gant 1925 President 1925 President 1925 S. E. Dibble 1925 S. E. Dibble 2020 2021 2021 2022 2022 2022 2022 202	## A Vice-President	
William H. Driscoll H. P. Gant 1925 President Solvice-President Solvice-President F. C. Houghten, Secy. 1924 President Wm. H. Driscoll Treasurer F. C. Houghten Council Chairman, S. E. Dibble Wm. H. Driscoll, Vice-Chm. W. T. Jones Homer Addams F. Paul Anderson F. Paul Anderson J. H. Walker W. H. Carrier J. A. C. Willard W. E. Gillham F. C. Houghten, Secy.	## A Vice-President	
H. P. Gant 1925 President Ist Vice-President. S. E. Dibble Ist Vice-President. Treasurer. Council Chairman, S. E. Dibble Wm. H. Driscoll, Vice-Chm. Wm. H. Driscoll, Vice-Chm. Homer Addams F. Paul Anderson F. Paul Anderson J. H. Walker F. Paul Anderson W. H. Carrier J. H. Walker W. E. Gillham F. C. Houghten, Secy.	## A Vice-President	
H. P. Gant 1925 President Ist Vice-President. Council Chairman, S. E. Dibble Wm. H. Driscoll, Vice-Chm. Wm. H. Driscoll, Vice-Chm. Wm. H. Driscoll, Vice-Chm. F. Paul Anderson Thornton Lewis F. Paul Anderson J. H. Walker Perry West A. C. Willard W. E. Gillham Perry West LA. C. Willard F. C. Houghten, Secy.	## Vice-President. W. H. Carrier Treasurer. W. E. Gillham Secretary. A. V. Hutchinson Technical Secretary P. D. Close Council Chairman, Thornton Lewis L. A. Harding, Vice-Chm. John Howatt H. H. Angus W. T. Jones W. H. Carrier E. B. Langenberg N. W. Downes G. L. Larson Roswell Farnham F. C. McIntosh W. E. Gillham C. V. Haynes A. C. Willard F. B. Rowley	
William H. Driscoll H. P. Gant 1925 President. 1925 President. 1926 President. 1927 S. E. Dibble Wm. H. Driscoll 2nd Vice-President. Council Chairman, S. E. Dibble Wm. H. Driscoll, Vice-Chm. W. T. Jones Homer Addams F. Paul Anderson Thornton Lewis F. Paul Anderson W. H. Carrier J. A. Cutler W. E. Gillham 1926 President. 1926 President. 1926 President. 1926 President. 1927 W. H. Driscoll 1928 W. H. Driscoll 1929 President. 1920 President. 1920 President. 1920 President. 1920 President. 1920 A. C. Willard F. Paul Anderson A. C. Willard A. C. Willard Perry West F. C. Houghten, Secy.	## A Vice-President. W. H. Carrier F. D. Close P. D. Close	
William H. Driscoll H. P. Gant 1925 President 1925 President 1926 President 1926 Council Chairman, S. E. Dibble Wm. H. Driscoll 1926 Wm. H. Driscoll, Vice-Chm. W. T. Jones Thornton Lewis F. Paul Anderson J. H. Walker W. H. Carrier W. H. Carrier U. A. C. Willard W. E. Gillham 1926 President 19	## A. C. Willard F. B. Rowley Tesistent W. H. Carrier Council Chairman, Thornton Lewis L. A. Harding, Vice-Chm. H. H. Angus W. H. Carrier Roswell Farnham W. E. Gillham C. V. Haynes A. C. Willard F. B. Rowley President Ist Vice-President Treasurer ## A. Harding ## A. C. Willard ## A. C. W. H. Carrier ## A. C. W. H. Carrier ## A. C. W. H. Carrier ## A. C. W. H. Carrier ## A. C. W. H. Carrier ## A. C. W. H. Carrier ## A. C. W. H. Carrier ## A. C. W. H. Carrier ## A. C. W. H. Carrier ## A. C. W. H. Carrier ## A. C. W. H. Carrier ## A. V. H. Carrier ## A. C. W. F. B. Rowley ## A. C. W. F. B. Rowley ## A. C. W. F. B. Rowley ## A. C. W. F. B. Rowley ## A. C. W. F. B. Rowley ## A. V. W. H. Carrier ## A. V. W. F. F. B. Rowley ## A. V. W. F. F. B. Rowley ## A. V. W. F. F. B. Rowley ## A. V. W. F. F. B. Rowley ## A. V. W. H. Carrier ## A. V. W. H. Carrier ## A. V. W. W. F. F. B. Rowley ## A. V. W. W. F. F. B. Rowley ## A. V. W. W. F. F. B. Rowley ## A. V. W. W. F. F. B. Rowley ## A. V. W. W. F. F. B. Rowley ## A. V. W. W. F. F. B. Rowley ## A. V. W. W. C. F. B. Rowley ## A. V. W. W. C. F. B. Rowley ## A. V. W. W. C. B. B. B. B. B. B. B. B. B. B. B. B. B.	
H. P. Gant 1925 President Wint President Wm. H. Driscoll Survive President F. C. Houghten, Secy. 1926 President Wm. H. Driscoll Wm. H. Driscoll Perry West Secretary F. C. Houghten Council Chairman, S. E. Dibble Wm. H. Driscoll, Vice-Chm. W. T. Jones Thornton Lewis F. Paul Anderson J. H. Walker W. H. Carriero J. A. C. Willard W. E. Gillham F. C. Houghten, Secy. 1926 President W. H. Driscoll 1st Vice-President F. Paul Anderson 2nd Vice-President F. Paul Anderson 2nd Vice-President A. C. Willard W. E. Gillham Secretary W. E. Gillham Secretary W. E. Gillham Secretary W. E. Gillham Secretary A. V. Hutchinson	## A Vice-President. W. H. Carrier F. D. Close Council	
William H. Driscoll H. P. Gant 1925 President 1925 President 1926 President 1926 Council Chairman, S. E. Dibble Wm. H. Driscoll 1926 Wm. H. Driscoll, Vice-Chm. W. T. Jones Thornton Lewis F. Paul Anderson J. H. Walker W. H. Carrier W. H. Carrier U. A. C. Willard W. E. Gillham 1926 President 19	## A Carrier Treasurer	
William H. Driscoll H. P. Gant 1925 President 1st Vice-President 2nd Vice-President Treasurer Council Chairman, S. E. Dibble Wm. H. Driscoll, Vice-Chm. W. T. Jones Thornton Lewis F. Paul Anderson J. H. Walker W. H. Carrier J. A. Cutler W. E. Gillham 1926 President 1st Vice-President 1st Vice-President 1st Vice-President Treasurer W. H. Driscoll 1st Vice-President Treasurer W. H. Driscoll 1st Vice-President Treasurer W. H. Driscoll 1st Vice-President Treasurer W. E. Gillham Council Chairman, W. H. Driscoll Treasurer W. E. Gillham Council Chairman, W. H. Driscoll Chairman, W. H. Driscoll Chairman, W. H. Driscoll Chairman, W. H. Driscoll Chairman, W. H. Driscoll Chairman, W. H. Driscoll Chairman, W. H. Driscoll	## A Carrier Treasurer	
William H. Driscoll H. P. Gant 1925 President 1st Vice-President 2nd Vice-President Treasurer Council Chairman, S. E. Dibble Wm. H. Driscoll, Vice-Chm. W. T. Jones Thornton Lewis F. Paul Anderson J. H. Walker W. H. Carrier J. A. Cutler W. E. Gillham 1926 President 1st Vice-President 1st Vice-President 1st Vice-President Treasurer W. H. Driscoll 1st Vice-President Treasurer W. H. Driscoll 1st Vice-President Treasurer W. H. Driscoll 1st Vice-President Treasurer W. E. Gillham Council Chairman, W. H. Driscoll Treasurer W. E. Gillham Council Chairman, W. H. Driscoll Chairman, W. H. Driscoll Chairman, W. H. Driscoll Chairman, W. H. Driscoll Chairman, W. H. Driscoll Chairman, W. H. Driscoll Chairman, W. H. Driscoll	## A Carrier Treasurer	
H. P. Gant 1925 President	## A Carrier Treasurer	
H. P. Gant 1925 President	## A Carrier ## A C. Willard F. B. Rowley President	
H. P. Gant 1925 President Ist Vice-President. Chairman, S. E. Dibble Wm. H. Driscoll F. Paul Anderson F. Paul Anderson J. H. Walker W. H. Carrier J. A. Cutler Chairman, W. H. Driscoll W. H. Driscoll F. Paul Anderson J. H. Walker Perry West A. C. Willard W. E. Gillham Council Chairman, W. H. Driscoll W. H. Carrier J. A. C. Willard W. E. Gillham Council Chairman, W. H. Driscoll Chairman, W. H. Driscoll Chairman, W. H. Driscoll Council Chairman, W. H. Driscoll Council Chairman, W. H. Driscoll C. V. Haynes W. H. Carrier J. A. Cutter W. H. Driscoll C. V. Haynes W. H. Carrier J. A. Cutter W. H. Driscoll C. V. Haynes W. H. Carrier J. A. Cutter E. B. Langenberg Thornton Lewis F. Paul Anderson C. V. Haynes W. T. Jones H. Jones J. A. Cutter E. B. Langenberg Thornton Lewis	## A Carrier ## A C. Willard F. B. Rowley President	
H. P. Gant 1925 President	## A Vice-President	
H. P. Gant 1925 President.	## A Vice-President	
H. P. Gant 1925 President.	## A Vice-President	

1931		1936	
President W H	Carrier	President	G. L. Larson
1st Vsce-President F. B.	Rowley	1st Vice-President	D. S. Boyden
2nd Vice-President W. 7	l. Iones	and Vice-President.	E. H. Gurney
Treasurer. F. D. N.	Mensing	Treasurer	A. J. Offner
President W. H.	chinson	Secretary	A. V. Hutchinson
Technical Secretary	D. Close	President	Y
Chairman, W. H. Carrier		D. S. Boyden, Vice-Chm. M. C. Beman R. C. Bolsinger Albert Buenger S. H. Downs W. L. Fleisher F. E. Giesecke E. H. Gurney	Larson Iohn Howatt
F. B. Rowley, Vice-Chm. L. A. Hard	ding	M. C. Beman	C. M. Humphreys
D. S. Boyden John How	att	R. C. Bolsinger	L. Walter Moon
E. K. Campbell W. T. Jon	es	Albert Buenger	J. F. McIntire
R. H. Carpenter E. B. Lan	genberg	S. H. Downs	A. J. Offner
J. D. Cassell G. L. Lars	son	W. L. Fleisher	U. W. Ott
Postell Fornham F D Mar	ntosn	F. B. Giesecke	W. E. Stark
Chairman, W. H. Carrier E. B. Rowley, Vice-Chm. D. S. Boyden E. K. Campbell E. K. Carpenter J. D. Cassell E. O. Eastwood E. C. Carpenter E. B. Lang F. C. Med E. H. Gurney W. A. Rov	we.	is in Gamey	W. D. CLARK
		1937	
1932		President 1st Vice-President	D. S. Boyden
President F. B.	Rowley	Ist Vice-President	E. Holt Gurney
4nd Vice President	L. Jones	Trensurer	A I Offner
President F. B. 1st Vice-President W. T. 2nd Vice-President C. V. Treasurer F. D. A. Scoredary A. V. Hut	Mensing	8nd Vice-President Treasurer Secretary Council	A. V. Hutchinson
Secretary A. V. Hut	chinson	Council	
Technical Secretary	D. Close		
Council Chairman, F. B. Rowley W. T. Jones, Vice-Chm. F. E. G. D. S. Boyden E. H. C. V. F. R. H. Carpenter John H. W. H. Carrier G. L. I. John D. Cassell J. F. M.		E. H. Gurney, Vice-Chm. J. J. Aeberly M. C. Beman R. C. Bolsinger Albert Buenger S. H. Downs S. H. Downs S. H. Downs S. H. Downs	W. L. Fleisher
W. T. Jones, Vice Chm. F. B. Rowley	Siegente	J. J. Acteriy	C M Hummhreys
D. S. Royden F. H. C	Surney	R. C. Bolsinger	G. L. Larson
E. K. Campbell C. V. F	laynes	Albert Buenger	J. F. McIntire
R. H. Carpenter John H	lowatt	S. H. Downs E. O. Eastwood W. E. Stark	A. J. Offner
W. H. Carrier G. L. L	urson	E. O. Eastwood W. E. Stark	W. A. Russell
John D. Cassell J. F. M	deintire	1938	
E. O. Eastwood F. D. N Roswell Farnham W. E. S	AcIntire Mensing Stark	Descident	W Molt Curney
***************************************	J. 61. Z	1st Vice-President. 2nd Vice-President. Treasurer Secretary.	I. F. McIntire
1933		2nd Vice-President	
President W. T	r. Jones	Treasurer	
1st Vice-President	Haynes	Secretary.	A. V. Hutchinson
Transition Designation	Royden	Council	John James
Secretary A. V. Hut	chinson	Chairman, E. Holt	Gurney
President W. T 1st Vice-President C. V. \$nd Vice-President John Treasurer D. S. Secretory A. V. Hut		J. F. McIntire, Vice-Chm.	W. L. Fleisher
		N. D. Adams	F. E. Giesecke
C. V. Haynes, Vice-Chm. E. H. G	urney	J. J. Aeberly	C. M. Humphreys
D. S. Boyden John Mc	owatt	R C Rolsinger	A. I. Offner
R. H. Carpenter J. F. Mo	cIntire	D. S. Boyden	W. A. Russell
I I's Connell to C M			
J. D. Casscii F. C. IV.	cIntosh	S. H. Downs	J. H. Walker
E. O. Eastwood L. W. M.	cIntosh Ioon	S. H. Downs E. O. Eastwood	J. H. Walker G. L. Wiggs
C. V. Haynes, Vics-Chm. E. H. G. D. S. Boyden John Ho. E. K. Campbell G. L. Le R. H. Carpenter J. F. M. J. D. Cassell F. C. M. Roswell Farnham F. B. R. C. W. M. Roswell Farnham	cIntosh Ioon owley	Secretary	
F. E. Giesecke W. E. S	cIntosh Ioon owley tark	1020	
F. E. Glesecke W. E. S	tark	1020	
F. E. Glesecke W. E. S	tark	1020	
F. E. Glesecke W. E. S 1934 President C. V. 1st Vice-President John	tark Haynes Howatt	1020	
F. E. Giesecke W. E. S 1934 President C. V. 1st Vice-President John 2nd Vice-President G. L.	tark Haynes Howatt Larson	President 1939 Ist Vice-President 1939 Bud Vice-President 1939 Treasurer 1939	J. F. McIntire F. E. Giesecke W. L. Fleisher M. F. Blankin
F. E. Giesecke W. E. S 1934 President C. V. 1st Vice-President John 2nd Vice-President G. L. Transver B. C. V.	Haynes Howatt Larson Boyden	1939 President	J. F. McIntire F. E. Giesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James
F. E. Giesecke W. E. S 1934	Haynes Howatt Larson Boyden	President	J. F. McIntire F. E. Giesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James
F. E. Giesecke W. E. S 1934	Haynes Howatt Larson Boyden	President	J. F. McIntire F. E. Giesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James
F. E. Giesecke W. E. S 1934	Haynes Howatt Larson Boyden	1939 President	J. F. McIntire F. E. Giesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James
F. E. Giesecke W. E. S 1934	Haynes Howatt Larson Boyden	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James cIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. L. Offner
F. E. Giesecke W. E. S 1934	Haynes Howatt Larson Boyden	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James cIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. L. Offner
1934 President 1934 President C. V. 1st Vice-President G. L. Treaswer D. S. Secretary Council Chairman, C. V. Haynes John Howatt, Vice-Chm W. T. John M. C. Beman G. L. La D. S. Boyden J. F. Mc Albert Buenger J. V. M. V. M. V. M. J. V.	Haynes Howatt Larson Boyden chinson ones rrson lintire clintosh	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James cIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. L. Offner
1934 President	Haynes Howatt Larson Boyden chinson ones rrson lintire clintosh	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James cIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offner W. A. Russell G. L. Tuve J. H. Walker
1934 President	Haynes Howatt Larson Boyden chinson ones rrson lintire clintosh	1939 President. Ist Vice-President. 8nd Vice-President. Treasurer. Secretary. Technical Secretary. Chairman, J. F. M F. E. Glesecke, Vice-Chm. N. D. Adams J. J. Acberly M. C. Beman M. F. Blankin E. K. Campbell S. H. Downs E. O. Eastwood	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James cIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs
1934 President	Haynes Howatt Larson Boyden chinson ones rrson lintire clintosh	1939 President. Ist Vice-President. 8nd Vice-President. Treasurer. Secretary. Technical Secretary. Chairman, J. F. M F. E. Glesecke, Vice-Chm. N. D. Adams J. J. Acberly M. C. Beman M. F. Blankin E. K. Campbell S. H. Downs E. O. Eastwood	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James cIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs
1934 President P. B. K.	Haynes Howatt Larson Boyden chinson ones crison tripic tri	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James CIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs
1934 President V. E. St	Haynes Howatt Larson Boyden chinson ones crison tripic tri	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James CIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs
F. E. Glesecke 1934 President 1934 President 2	Haynes Howatt Larson Boyden chinson ones crison tripic tri	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James CIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs
1934 President V. E. St	Haynes Howatt Larson Boyden chinson ones crison tripic tri	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James CIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs
1934 President L. L. L. L. L. L. L. L. L. L. L. L. L.	Haynes Howatt Larson Boyden chinson ones crison tripic tri	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James CIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs
1934 President	Haynes Howatt Larson Boyden chinson ones reson clintire clintosh rr Moon tt ussell tark Howatt Larson Boyden . Offner tchinson	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James cIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offiner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs F. E. Giesecke W. L. Fleisher E. O. Eastwood M. F. Blankin A. V. Hutchinson John James
1934 President L. V.	Haynes Howatt Larson Boyden chinson ones rrson clintire clintire clintire clintire tt ussell tark Howatt Larson Boyden conservation c	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James Cintire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs F. E. Glesecke W. L. Fleisher E. O. Eastwood M. F. Blankin A. V. Hutchinson John James Glesecke E. N. McDonnell
1934 President L. V.	Haynes Howatt Larson Boyden chinson ones rrson clintire clintire clintire clintire tt ussell tark Howatt Larson Boyden conservation c	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James cIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offiner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs F. E. Glesecke W. L. Fleisher E. O. Eastwood M. F. Blankin A. V. Hutchinson John James Glesecke E. N. McDonnell L. F. McDonnell L. F. McIntire
1934 President	Haynes Howatt Larson Boyden chinson ones rrson clintire clintire clintire clintire tt ussell tark Howatt Larson Boyden conservation c	President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James CIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offiner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs F. E. Glesecke W. L. Fleisher E. O. Eastwood M. F. Blankin A. V. Hutchinson John James Siesecke E. N. McDonnell J. F. McIntire A. J. Offiner
1934 President L. V.	Haynes Howatt Larson Boyden chinson ones crison clintire clintosh cr Moon tt Larson Boyden Larson chinson ones crison chinson ones clintire clintosh crison crison clintire clintosh crison	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James CIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offiner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs F. E. Glesecke W. L. Fleisher E. O. Eastwood M. F. Blankin A. V. Hutchinson John James Siesecke E. N. McDonnell J. F. McIntire A. J. Offiner
1934 President L. V.	Haynes Howatt Larson Boyden chinson ones crison clintire clintosh cr Moon tt Larson Boyden Larson chinson ones crison chinson ones clintire clintosh crison crison clintire clintosh crison	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James CIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs F. E. Glesecke W. L. Fleisher E. O. Eastwood M. F. Blankin A. V. Hutchinson John James Glesecke E. N. McDonnell J. F. McIntire A. J. Offner G. L. Tuve T. H. Urdahl J. H. Walker
1934 President L. V.	Haynes Howatt Larson Boyden chinson ones crison clintire clintosh cr Moon tt Larson Boyden Larson chinson ones crison chinson ones clintire clintosh crison crison clintire clintosh crison	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James CIntire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs F. E. Glesecke W. L. Fleisher E. O. Eastwood M. F. Blankin A. V. Hutchinson John James Glesecke E. N. McDonnell J. F. McIntire A. J. Offner G. L. Tuve T. H. Urdahl J. H. Walker
1934 President John St. K. C. V.	Haynes Howatt Larson Boyden chinson ones crison clintire clintosh cr Moon tt Larson Boyden Larson chinson ones crison chinson ones clintire clintosh crison crison clintire clintosh crison	1939 President	J. F. McIntire F. E. Glesecke W. L. Fleisher M. F. Blankin A. V. Hutchinson John James Cintire W. L. Fleisher E. H. Gurney A. P. Kratz A. J. Offiner W. A. Russell G. L. Tuve J. H. Walker G. L. Wiggs F. E. Glesecke W. L. Fleisher E. O. Eastwood M. F. Blankin A. V. Hutchinson John James Siesecke E. N. McDonnell J. F. McIntire A. J. Offiner G. L. Tuve T. H. Ulrdahl

1941 President	President E. O. Eastwood 1st Vice-President M. F. Blankin 2nd Vice-President S. H. Downs Treasurer E. K. Campbell Secretary A. V. Hutchinson Technical Secretary John James
Council Chairman, W. L. Fleisher E. O. Eastwood, Vsce-Chm. M. F. Blankin E. K. Campbell J. F. Collins, Jr. C. Tasker S. H. Downs G. L. Tuve F. E. Giesecke T. H. Urdahl A. P. Kratz J. H. Walker E. N. McDonnell A. E. Stacey, Jr., Ex-Oficio	Council Chairman, E. O. Eastwood M. F. Blankin, Vice-Chm. E. K. Campbell W. A. Russell J. F. Collins, Jr. S. H. Downs A. E. Stacey, Jr. W. L. Fleisher C. Tasker A. P. Kratz T. H. Urdahl E. N. McDonnell CE. A. Winslow B. M. Woods F. C. McIntosh, Ex-Officio

