Prob	ability and Stochastic Process (MA20106)	A1 10		
Nam	e:	Abxw10		
Roll	\\(\lambda n r \tau \)		ss Test-1	
Q.No	Question	Ι Λ		
1.	Suppose that $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $P(\{i\}) = \frac{i}{55}$ for $i \in \Omega$. If a number is drawn at random, determine the probability that a prime number is drawn.	17/35	11 1	
2.	Suppose that two fair dice will be rolled repeatedly and independently until a total of 6 or a total of 7 appears. Find the probability that a total of 6 is rolled before a total of 7 is rolled.	5 = 0.4.	•	
3.	Suppose that a basketball player makes 40% of his three-point shot attempts. If the players shoots 10 three-point shots in a game, and X is the number of three-point shots made. Assuming that the shots are independent, find the mean of random variable X .		1	
4.	Let the CDF of a random variable X is given by $F(x) = \begin{cases} \frac{1}{2}e^{kx}, & x < 0\\ 1 - \frac{1}{2}e^{-kx}, & x \ge 0 \end{cases}$	1-e-1 =0.63	1	
5.	when $k = 2$. Find $P(X \le \frac{1}{k})$. A computer center has three printers A, B and C, which print at different speeds.			
b	programmes are routed to the first available printer. The probability that the programmes are routed to the printers A, B and C are 0.6, 0.3 and 0.1 respectively. Occasinally, a printer will jam and destroy a print out. The probability that printers A, B and C will jam are 0.01, 0.05 and 0.04 respectively. Your programme is destroyed when a printer jams. What is the probability that printer A is involved.	6/25 = 0.24	1	
6.	Suppose that $P(A) = 0.3$, $P(B) = 0.4$, and A and B are independent events. Determine $P(A^c \cup B^c)$.	22/25 = 0188	1	
7.	Let X be a discrete random variable with MGF $M_X(t) = \frac{e^{3t}}{6} + \frac{e^{4t}}{2} + \frac{e^{5t}}{3}$. Determine Var(X).	17/36	1	
	What is the probability that he fails 9 times before he hits the target? (c) Suppose it is known that he failed to hit the target in 6 attempts, what is the probability that he can hit the target in next 2 attempts?	(4) 4.03X10 (b) 4.03X10 (c) 16/25 = 0.64	-3	Any I wreck 1/2 mark any two full mark
	need to find 3 non-defective components for our 3 new computers. Components are tested until 3 non-defectives are found. What is the probability that more than 5 components will be tested?	0.00/2	1	J
	Consider the system represented in following figure. Let r_i , $i = 1, 2, 9$ denotes the probability of functioning of i th component, and is given by $r_1 = 0.98, r_2 = r_3 = 0.87, r_4 = r_5 = 0.94, r_6 = 0.99, r_7 = r_8 = r_9 = 0.74$. Compute R_s , the probability of functioning of the system.	0.99	1	

01.
$$P(2,3,5,7) = \frac{2+3+5+7}{55} = \frac{17}{55}$$

$$P(A_{i}) = P(\{ \bigcap_{j=1}^{i-1} (6 \cup 7)^{c} \} \cap 6)$$

$$= \frac{mdep}{36} \left(\frac{25}{36} \right)^{i-1} \times \frac{5}{36}$$

$$P(6 \text{ before } 7) = P(\bigcup_{i=1}^{\infty} A_{i}) = \frac{\sum_{i=1}^{\infty} (25)^{i-1}}{36} \times \frac{S}{36} = \frac{S}{36} \times \frac{1}{1-25} = \frac{S}{11}$$

$$= \frac{\sum_{i=1}^{\infty} (25)^{i-1}}{36} \times \frac{S}{36} = \frac{S}{36} \times \frac{1}{1-25} = \frac{S}{11}$$

Total		# 1 con
2	(1,1)	1
3	(1,2) (2,1)	2
4		3
4 5		4
6 7 8		2
7		6
8		5
9		4
10		3
11		2
121	(6,6)	1

Q3.
$$X \sim Bm(n,b)$$
 , $n=10$, $p=0.40$
 $E(x) = np = 10 \times 0.40 = 4$

8.4.
$$P(-\frac{1}{k} \le X \le \frac{1}{k}) = F(\frac{1}{k}) - F(-\frac{1}{k}) = 1 - \frac{1}{2} e^{-k \times \frac{1}{k}} - \frac{1}{2} e^{k \times (-\frac{1}{k})}$$

$$= 1 - \frac{1}{2} e^{-1} - \frac{1}{2} e^{-1} = 1 - e^{-1}$$

$$P(A|D) = \frac{P(D|A) P(A)}{P(D|A) P(A) + P(D|B) P(B) + P(D|C) P(C)}$$

$$= \frac{0.01 \times 0.6}{1.01 \times 1.6 + 1.05 \times 1.3 + 1.04 \times 1} = \frac{0.06}{1.025} = \frac{6}{25}$$

$$= 0.24$$

$$QG = P(A^{c} \cup B^{c}) = P(A^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A) + 1 - P(B) - P(A^{c}) P(B^{c})$$

$$= 1 - P(A) + 1 - P(B) - P(A^{c}) P(B^{c})$$

$$= 1 - P(A) + 1 - P(B) - P(A^{c}) P(B^{c})$$

$$= 1 - P(A) + 1 - P(B) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(B^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(A^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(A^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(A^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(A^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(A^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(A^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(A^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(A^{c} \cup B^{c})$$

$$= 1 - P(A^{c} \cup B^{c}) + P(A^{c}$$

$$\frac{637.}{E(x)} = \frac{d}{dt} m_{\chi}(t) \Big|_{t=0} = \left(\frac{e^{3t}}{2} + 2e^{4t} + \frac{5}{3}e^{5t} \right) \Big|_{t=0} = \frac{1}{2} + 2 + \frac{5}{3} = \frac{25}{6}$$

$$E(x^2) = \frac{d^2}{dt^2} m_{\chi}(t) \Big|_{t=0} = \left(\frac{3}{2} e^{3t} + 8e^{4t} + \frac{25}{3} e^{5t} \right) \Big|_{t=0} = \frac{3}{2} + 8 + \frac{25}{3} = \frac{107}{6}$$

$$Van(X) = E(X^2) - (E(X))^2 = \frac{107}{6} - (\frac{25}{6})^2 = \frac{642 - 625}{36} = \frac{17}{36} = 0.47$$

(a)
$$\sqrt{9}b = (\frac{3}{5})^{9} \times \frac{2}{5} = 4.03 \times 10^{-3}$$

(b)
$$9^9 p = 4.03 \times 10^{-3}$$

(c)
$$P(X=7 \text{ or } X=8 \text{ } | \times >6) = P(X=7 \text{ } | \times >6) + P(X=8 \text{ } | \times >6)$$

$$= P(X=1) + P(X=2)$$

$$= p + p = p(1+q_0) = \frac{2}{5}(1+\frac{3}{5}) = \frac{16}{25}$$

$$P(X=x) = \begin{pmatrix} x-1 \\ x-1 \end{pmatrix} p^{2} q^{x-2x} ; x = x, x+1, x+2, --- 6 p = 0.95$$

$$9 = 0.05$$

$$P(X>5) = 1 - P(X \le 5) = 1 - [P(X=3) + P(X=4) + P(X=5)]$$

$$= 1 - [p^3 + 3p^2q + 6p^3q^2] = 1 - p^3[1 + 3q + 6q^2]$$

$$= 1 - (0.95)^3[1 + 3 \times 0.05 + 6 \times 6.05)^2] = 0.0012$$

$$\frac{(3)_{0}}{(1-(1-\pi_{2})(1-\pi_{3}))} = \frac{(1-(1-\pi_{2})(1-\pi_{3}))(1-\pi_{3})(1-\pi_{3})}{(1-(1-\pi_{2})^{2})} = \frac{(1-(1-\pi_{2})^{2})(1-\pi_{3})(1-\pi_{3})}{(1-\pi_{3})^{2}} = \frac{\pi_{2}=\pi_{3}}{\pi_{4}=\pi_{5}}$$

$$\frac{(3)_{0}}{(1-(1-\pi_{2})^{2})} = \frac{\pi_{2}=\pi_{3}}{(1-(1-\pi_{3})^{2})} = \frac{\pi_{2}=\pi_{3}}{\pi_{1}=\pi_{8}=\pi_{4}}$$

$$R_{S} = 1 - (1 - 4)(1 - 1) = 1 - (1 - 0.9634)(1 - 0.9690984)$$
$$= 1 - 0.0366 \times 0.0309$$
$$= 0.9988$$

		e: 2	Zqpe2148:	x6dWer	-
Name			Class	s Test-1	-
Roll N			Time: 4	45 mins	
Q.No.	Question		Answer	Marks]
1.	Suppose that $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $P(\{i\}) = \frac{i}{55}$ for $i \in \Omega$. I number is drawn at random, determine the probability that a even number drawn.	f a	6/11 =0.545	1	
2.	Suppose that two fair dice will be rolled repeatedly and independently untitotal of 5 or a total of 7 appears. Find the probability that a total of 5 is rolled.	led	2/5	(
3.	Suppose that a basketball player makes 30% of his three-point shot attempt If the players shoots 10 three-point shots in a game, and X is the number three-point shots made. Assuming that the shots are independent, find the most of random variable X .	of	3		
4.	Let the CDF of a random variable X is given by $F(x) = \begin{cases} \frac{1}{2}e^{kx}, & x < 0\\ 1 - \frac{1}{2}e^{-kx}, & x \ge 0 \end{cases}$		1-e-1 = 0.6321	1	
5.	when $k = 3$. Find $P(X \le \frac{1}{k})$. A computer center has three printers A, B and C, which print at different spee	ds.	2/-		
	Programmes are routed to the first available printer. The probability that programmes are routed to the printers A, B and C are 0.6, 0.3 and 0.1 respective Occasinally, a printer will jam and destroy a print out. The probability the printers A, B and C will jam are 0.01, 0.05 and 0.04 respectively. Your program is destroyed when a printer jams. What is the probability that printer B involved.	the ely. nat me is	3/5 = 0.6	l	
6.	Suppose that $P(A) = 0.4$, $P(B) = 0.5$, and A and B are independent ever Determine $P(A^c \cup B^c)$.		4/5 = 018	į	
7.	Let X be a discrete random variable with MGF $M_X(t) = \frac{e^{2t}}{6} + \frac{e^{3t}}{2} + \frac{e^{4t}}{3}$. Determ $Var(X)$.	ine	17/36	1	
8.	An archer can hit the target 1 time if he makes 5 attempts. (a) What is probability that he can hit the target for the first time on 10 th attempts? What is the probability that he fails 9 times before he hits the target? (c) Suppit is known that he failed to hit the target in 6 attempts, what is the probabilithat he can hit the target in next 2 attempts?	(b) ose	(9) 0.02 (6) 0.026 (C) 9/25 = 0.36	1	Jany 1 worses 1/2 marks any 2 correct full marks
9.	In a recent production, 4% of certain electronic components are defective. need to find 3 non-defective components for our 3 new computers. Compone are tested until 3 non-defectives are found. What is the probability that m than 5 components will be tested?	nts	0.0006		
10.	Consider the system represented in following figure. Let r_i , $i = 1, 2, 9$ denote the probability of functioning of <i>i</i> th component, and is given by $r_1 = 0.98, r_2$, $r_3 = 0.87, r_4 = r_5 = 0.94, r_6 = 0.99, r_7 = r_8 = r_9 = 0.80$. Compute R_s , probability of functioning of the system.	=	0.99	1	

		Uywe5641		-
Name			Test-1	-
Roll N			15 mins	٦
1.	Question Suppose that $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $P(\{i\}) = \frac{i}{55}$ for $i \in \Omega$. If a number is drawn at random, determine the probability that a odd number is drawn.	5/11 = 0,4545	Marks	
2.	Suppose that two fair dice will be rolled repeatedly and independently until a total of 4 or a total of 7 appears. Find the probability that a total of 4 is rolled before a total of 7 is rolled.	=0.33	1	,
3.	Suppose that a basketball player makes 60% of his three-point shot attempts If the players shoots 10 three-point shots in a game, and X is the number of three-point shots made. Assuming that the shots are independent, find the mean of random variable X .	6	1	
4.	Let the CDF of a random variable X is given by $F(x) = \begin{cases} \frac{1}{2}e^{kx}, & x < 0\\ 1 - \frac{1}{2}e^{-kx}, & x \ge 0 \end{cases}$	1-e ⁻¹ =0.632	1	
5.	when $k = 4$. Find $P(X \le \frac{1}{k})$. A computer center has three printers A, B and C, which print at different speeds Programmes are routed to the first available printer. The probability that the programmes are routed to the printers A, B and C are 0.6, 0.3 and 0.1 respectively Occasinally, a printer will jam and destroy a print out. The probability that	-1/25	1	
6.	printers A, B and C will jam are 0.01, 0.05 and 0.04 respectively. Your programme is destroyed when a printer jams. What is the probability that printer C is involved. Suppose that $P(A) = 0.5$, $P(B) = 0.6$, and A and B are independent events Determine $P(A^c \cup B^c)$.		1	
7.	Let X be a discrete random variable with MGF $M_X(t) = \frac{e^{4t}}{6} + \frac{e^{5t}}{2} + \frac{e^{6t}}{3}$. Determine $Var(X)$.	17/36 50.4722	1	
8.	An archer can hit the target 1 time if he makes 3 attempts. (a) What is the probability that he can hit the target for the first time on 10 th attempts? (b) What is the probability that he fails 9 times before he hits the target? (c) Suppose it is known that he failed to hit the target in 6 attempts, what is the probability that he can hit the target in next 2 attempts?	(4)0,008((6)0,008(Ting I wo 1/2 mm
9.	In a recent production, 6% of certain electronic components are defective. We need to find 3 non-defective components for our 3 new computers. Components are tested until 3 non-defectives are found. What is the probability that more than 5 components will be tested?	0.002	1	
10.	Consider the system represented in following figure. Let r_i , $i = 1, 2, 9$ denotes the probability of functioning of i th component, and is given by $r_1 = 0.98, r_2 = r_3 = 0.87, r_4 = r_5 = 0.94, r_6 = 0.99, r_7 = r_8 = r_9 = 0.70$. Compute R_s , the probability of functioning of the system.	0,99	1	

