日本国特許庁 JAPAN PATENT OFFICE

18.06.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 6月18日

出 顯 番 号 Application Number: 特願2003-173799

[ST. 10/C]:

[JP2003-173799]

REC'D 0 6 AUG 2004

PCT

WIPO

出 願 人
Applicant(s):

日立化成工業株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年 7月22日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 HTK-743

【提出日】 平成15年 6月18日

【あて先】 特許庁長官殿

【国際特許分類】 H05B

【発明の名称】 金属配位化合物を含有する高分子共重合体およびこれを

用いた有機エレクトロルミネセンス素子

【請求項の数】 6

【発明者】

【住所又は居所】 茨城県つくば市和台48 日立化成工業株式会社 総合

研究所内

【氏名】 森下 芳伊

【発明者】

【住所又は居所】 茨城県つくば市和台48 日立化成工業株式会社 総合

研究所内

【氏名】 野村 理行

【発明者】

【住所又は居所】 茨城県つくば市和台48 日立化成工業株式会社 総合

研究所内

【氏名】 津田 義博

【特許出願人】

【識別番号】 000004455

【氏名又は名称】 日立化成工業株式会社

【代理人】

【識別番号】 100083806

【弁理士】

【氏名又は名称】 三好 秀和

【電話番号】 03-3504-3075

【選任した代理人】

【識別番号】 100068342

【弁理士】

【氏名又は名称】 三好 保男

【選任した代理人】

【識別番号】 100100712

【弁理士】

【氏名又は名称】 岩▲崎▼ 幸邦

【選任した代理人】

【識別番号】 100087365

【弁理士】

【氏名又は名称】 栗原 彰

【選任した代理人】

【識別番号】 100100929

【弁理士】

【氏名又は名称】 川又 澄雄

【選任した代理人】

【識別番号】 100095500

【弁理士】

【氏名又は名称】 伊藤 正和

【選任した代理人】

【識別番号】 100101247

【弁理士】

【氏名又は名称】 高橋 俊一

【選任した代理人】

【識別番号】 100098327

【弁理士】

【氏名又は名称】 高松 俊雄

【手数料の表示】

【予納台帳番号】 001982

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 0302311

【プルーフの要否】

【書類名】 明細書

【発明の名称】 金属配位化合物を含有する高分子共重合体およびこれを用いた 有機エレクトロルミネセンス素子

【特許請求の範囲】

【請求項1】 式(1)~式(12):

【化1】

 $B:>O,>S,>C=O,>SO_2,>CR_2$

(式中、MはIr、Rh、Ru、Os、PdまたはPt であり、nは1または2 である。環AはMに結合した窒素原子を含む環状化合物である。 X_1 \sim X_7 およ

びRはそれぞれ独立に $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^4$ 、 $-COOR^5$ 、 $-SiR^6R^7R^8$ 、および $-NR^9R^10$ (ただし、 R^1-R^{10} は水素原子、ハロゲン原子、シアノ基、ニトロ基、炭素数1-22 個の直鎖、環状もしくは分岐アルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数6-30 個のアリール基、炭素数2-30 個のヘテロアリール基もしくは炭素数7-30 個のアラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基、ハロゲン置換アラルキル基を表し、 R^1-R^10 はそれぞれ同一であっても異なっていてもよい。)からなる群から選択される置換基であって、また、 R^1-R^10 はそれぞれ同一であっても異なっていてもよく、環Aは R^1-R^10 で表される基と同様の置換基を有していてもよい。環Cは R^1-R^10 で表される結合基と結合する化合物である。環 R^1-R^10 で表される基と同様の置換基を有していてもよい。)

で表されるいずれかの金属配位化合物モノマー単位と

置換又は非置換であってもよい下記一般式(13)で表されるモノマー単位 【化2】

m-O-(mは1~3の整数)、及び-Q-からなる群から選ばれる2価の結合基[式中、Wは-Ra-、-Ar'ー、-Ra-Ar'ー、-Ra'ーO-Ra'ー、-Ra'ーC(O) O-Ra'ー、-Ra'ーNHCO-Ra'ー、-Ra-C(O) -Ra-、-Ar'ーC(O) -Ar'ー、-Het'ー、-Ar'ーS-Ar'ー、-Ar'ーS(O) -Ar'ー、-Ar'ーS(O2) -Ar'ー、及び-Ar'ーQ-Ar'ーからなる群から選ばれる2価の基であり、Raはアルキレンであり、Ar'はアリーレンであり、Ra'は各々独立にアルキレン、アリーレン及びアルキレン/アリーレン混合基からなる群から選ばれる基であり、Het'はヘテロアリーレンであり、Qは4級炭素を含有する2価の基である。)

で表されるキノリンモノマー単位と、

置換または非置換であってもよいアリーレン及び/又はヘテロアリーレンモノ マー単位と、

を含む共重合体であって、

前記各モノマー単位を結合する基が、式(14):

【化3】

- (G) b - (14)

からなる金属配位化合物含有高分子共重合体。

【請求項2】 前記式 (1) ~ (12) において、環Aが、 X_1 ~ X_7 で定義される基と同様の置換基を有していてもよいピリジン、キノリン、ベンゾオキサゾール、ベンゾチアゾール、ベンゾイミダゾール、ベンゾトリアゾール、イミ

ダゾール、ピラゾール、オキサゾール、チアゾール、トリアゾール、ベンゾピラ ゾールまたはトリアジンであることを特徴とする請求項1に記載の金属配位化合 物含有高分子共重合体。

【請求項3】 前記式 $(1) \sim (12)$ において、 $X_1 \sim X_7$ 、あるいは、 環Aが有する $X_1 \sim X_7$ と同様に定義される置換基の少なくとも1つが、フッ素 原子あるいはトリフルオロメチル基であることを特徴とする請求項1または2いずれかに記載の金属配位化合物含有高分子共重合体。

【請求項4】 前記式(1)~(12)のMがイリジウムであることを特徴とする請求項1~3いずれかに記載の金属配位化合物含有高分子共重合体。

【請求項5】 請求項1~4いずれかに記載の金属配位化合物含有高分子共 重合体を、共役あるいは非共役ポリマーに混合させたポリマー組成物。

【請求項6】 請求項1~4のいずれかに記載の金属配位化合物含有高分子 共重合体、または請求項5記載のポリマー組成物を用いて作製された有機エレク トロルミネセンス素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、新規な金属配位化合物含有高分子共重合体およびそれを用いた有機 エレクトロルミネセンス(EL)素子に関する。

[0002]

【従来の技術】

エレクトロルミネセンス素子は、例えば、白熱ランプ、ガス充填ランプの代替えとして、大面積ソリッドステート光源用途に注目されている。一方で、フラットパネルディスプレイ(FPD)分野における液晶ディスプレイを置き換えることのできる最有力の自発光ディスプレイとしても注目されている。特に、素子材料が有機材料によって構成されている有機エレクトロルミネセンス(EL)素子は、低消費電力型のフルカラーFPDとして製品化が進んでいる。中でも、有機材料が高分子材料により構成されている高分子型の有機EL素子は、真空系での成膜が必要な低分子型の有機EL素子と比較して、印刷やインクジェットなどの

簡易成膜が可能なため、今後の大画面有機ELディスプレイには、不可欠な素子である。

[0003]

これまで、高分子型有機EL素子には、共役ポリマー、例えば、ポリ(p-7ェニレンービニレン)(例えば、WO-A 第90/13148号参照)および非一共役ポリマー(例えば、I.Sokolikら.,J.Appl.Phys.1993.74,3584参照)のいずれかのポリマー材料が使用されてきた。しかしながら、素子としての発光寿命が低く、フルカラーディスプレイを構築する上で、障害となっていた。

[0004]

これらの問題点を解決する目的で、近年、種々のポリフルオレン型およびポリ (p-フェニレン)型の共役ポリマーを用いる高分子型有機EL素子が提案され ているが、これらも安定性の面では、満足いくものは見出されていない。

[0005]

この問題を解決する一つの手段として、励起三重項からのりん光を利用する素子の検討がなされている。励起三重項からのりん光を利用できれば、励起一重項からの蛍光を利用した場合より原理的に少なくとも3倍の発光量子収率が期待できる。さらに、エネルギー的に高い一重項からの三重項への項間交差による励起子の利用も考え合わせると、原理的には4倍、即ち100%の発光量子収率が期待できる。

[0006]

これまでの研究例としては、例えばM.A.Baldoら., Appl. Phys. Lett. 1999. 75.4 などがある。この文献では、以下に示す材料が用いられている。各材料の略称は以下の通りである。

Alq3:アルミーキノリノール錯体

 α -NPD: N4, N4'-Di-naphthalen-1-yl-N4, N4'-diphenyl-biphenyl-4, 4'-diamine

CBP: 4,4'-N,N'-dicarbazole-biphenyl

BCP: 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline

Ir(ppy)3:イリジウムーフェニルピリジン錯体

[0007]

他に、三重項からの発光を利用した例には、特開平11-329739号公報 、特開平11-256148号公報、特開平8-319482号公報などがある

【非特許文献1】

M.A.Baldo S., Appl. Phys. Lett. 1999. 75.4

【特許文献1】

特開平11-329739号公報

【特許文献2】

特開平11-256148号公報

【特許文献3】

特開平8-319482号公報

[0008]

【発明が解決しようとする課題】

本発明は、上記した従来の問題に鑑み、色純度に優れる青色りん光発光を有する金属配位化合物を含む高分子共重合体を提供すること、また、青色から赤色に至る様々な色の発光を有し、駆動寿命の長い金属配位化合物を含む高分子共重合体を提供することを目的とする。

[0009]

【課題を解決するための手段】

本発明者らは鋭意検討した結果、配位子としてカルバゾール誘導体に様々な置換基を導入した金属配位化合物を含有する高分子共重合体が、青色から赤色に至る発光色を有し、駆動寿命の長い金属配位化合物を含む高分子共重合体として優れた材料であることを見出し、本発明を完成するに至った。

[0010]

すなわち、本発明によれば、式(1)~式(12):

【化4】

 $B:>O,>S,>C=O,>SO_2,>CR_2$

(式中、MはIr、Rh、Ru、Os、PdまたはPt であり、nは1または2 である。環AはMに結合した窒素原子を含む環状化合物である。 X_1 \sim X_7 およ

びRはそれぞれ独立に $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ 、 $-SiR^6R^7R^8$ 、および $-NR^9R^{10}$ (ただし、 $R^1\sim R^{10}$ は水素原子、ハロゲン原子、シアノ基、ニトロ基、炭素数 $1\sim 22$ 個の直鎖、環状もしくは分岐アルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数 $6\sim 30$ 個のアリール基、炭素数 $2\sim 30$ 個のヘテロアリール基もしくは炭素数 $7\sim 30$ 個のアラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基、ハロゲン置換アラルキル基を表し、 $R^1\sim R^10$ はそれぞれ同一であっても異なっていてもよい。)からなる群から選択される置換基であって、また、 $X_1\sim X_7$ は同一であっても異なっていてもよく、環Aは $X_1\sim X_7$ で定義される基と同様の置換基を有していてもよい。環Cは $X_1\sim X_7$ で定義される基と同様の置換基を有していてもよい。)

で表されるいずれかの金属配位化合物モノマー単位と

置換又は非置換であってもよい下記一般式(13)で表されるモノマー単位 【化5】

で表されるキノリンモノマー単位と、

置換または非置換であってもよいアリーレン及び/又はヘテロアリーレンモノ マー単位と、

を含む共重合体であって、

前記各モノマー単位を結合する基が、式(14):

【化6】

- (G) b - (14)

からなる金属配位化合物含有高分子共重合体を提供することを目的とする。ここで、金属配位化合物モノマー単位の $X_1\sim X_7$ 、Rにおける $R^1\sim R^{10}$ は置換基を有していてもよく、置換基の例として、ハロゲン原子、シアノ基、アルデヒド基、アミノ基、アルキル基、アルコキシ基、アルキルチオ基、カルボキシル基

、スルホン酸基、ニトロ基等を挙げることができる。これらの置換基は、さらにハロゲン原子、メチル基等によって置換されていてもよい。

[0011]

本発明の金属配位化合物含有高分子共重合体は、前記式(1)~(12)において、環Aが、 X_1 ~ X_7 で定義される基と同様の置換基を有していてもよいピリジン、キノリン、ベンゾオキサゾール、ベンゾチアゾール、ベンゾイミダゾール、ベンゾトリアゾール、イミダゾール、ピラゾール、オキサゾール、チアゾール、トリアゾール、ベンゾピラゾールまたはトリアジンであることが好ましい。

[0012]

本発明の金属配位化合物含有高分子共重合体は、共役あるいは非共役ポリマーに混合させたポリマー組成物として用いることができる。

[0013]

また、本発明は、前記金属配位化合物含有高分子共重合体、又は、共役あるいは非共役ポリマーに混合させたポリマー組成物を用いて作製された有機エレクトロルミネセンス素子を提供することを目的とする。

[0014]

【発明の実施の形態】

有機ELにおいて、青色から赤色に至るりん光発光を得るためには、最低励起 状態のエネルギーレベルを変えることが必要である。また、一般に励起三重項状 態の寿命が励起一重項の寿命に比べて長く、分子が高エネルギー状態に長く留ま るため、周辺物質との反応、分子自体の構造変化、励起子同士の反応などが起こ るため、りん光発光素子の駆動寿命が短かったのではないかと考えられている。

[0015]

そこで、本発明者らは種々の検討を行い、前記式(1)~(12)で示される 金属配位化合物モノマー単位を含む高分子共重合体が、青色から赤色に至るりん 光発光を有し、駆動寿命も長いりん光発光材料となることを見出した。

[0016]

前記式 (1) ~ (12) で示される金属配位化合物モノマー単位を含む高分子 共重合体のうち、環Aが、X $_1$ ~ X $_7$ で定義される基と同様の置換基を有してい てもよいピリジン、キノリン、ベンゾオキサゾール、ベンゾチアゾール、ベンゾイミダゾール、ベンゾトリアゾール、イミダゾール、ピラゾール、オキサゾール、チアゾール、トリアゾール、ベンゾピラゾールまたはトリアジンであることが好ましく、 $X_1 \sim X_7$ で定義される基と同様の置換基を有していても良いピリジン、キノリンであることがより好ましい。

[0017]

本発明に用いた金属配位化合物は、りん光性発光を有するものであり、最低励起状態は三重項MLCT (Metal-to-Ligand charge transfer) 励起状態か、 $\pi-\pi$ *励起状態であると考えられる。これらの状態から基底状態に遷移するときにりん光性発光が生じる。

[0018]

本発明の発光材料のりん光量子収率は0.1から0.9と高い値が得られ、りん光寿命は $1\sim60\mu$ sであった。りん光寿命が短いことは、有機EL素子にしたときに発光効率の高効率化の条件となる。つまり、りん光寿命が長いと、励起三重項状態でいる分子の割合が多くなり、高電流密度において、T-Tアニヒレーションに基づく発光効率の低下が生じる。本発明の金属配位化合物を含む高分子共重合体は、りん光発光効率が高く発光寿命も短いので有機EL素子の発光材料に適した材料である。

[0019]

また、金属配位化合物を含む高分子共重合体は、前記式(1)~(12)で示される金属配位化合物モノマー単位の置換基を様々に変えることにより、最低励起状態のエネルギーレベルが変化し、青色から赤色発光を有する有機ELの発光材料として適している。

[0020]

(合成方法の詳細な説明)

以下、本発明の金属配位化合物を含む高分子共重合体の実施例を用いながら詳細に説明する。

[0021]

本発明の金属配位化合物を含む高分子共重合体に用いる金属配位化合物モノマ

ー単位は、種々の当業者公知の合成法により製造できる。例えば、S.Lamanskyら.,J.Am.Chem.Soc.2001.123.に記載されている方法を用いることができる。本発明で用いられる前記式(1)~(12)で示される金属配位化合物モノマー単位の合成経路の一例(環Aが置換ピリジンの場合)をイリジウム配位化合物モノマー単位を例として示す。なお、ここで説明するのは、以下表1に示した(2)に関するものであるが、他の例示化合物についてもほぼ同じ方法で合成することができる。

[0022]

(配位子L1の合成)

【化7】

[0023]

(イリジウム錯体モノマー単位の合成)

【化8】

ここで、 L_2 は金属M(上記の場合、イリジウム)に結合した化合物であって高分子共重合体と結合する環C化合物である。

[0024]

金属配位化合物モノマー単位の具体例として、下記に例示化合物を示すが、これらに限定されるものではない。

(金属配位化合物の例示)

【表1】

表1									8 A	Χι	X ₂	X ₃	X ₄		環C
No	M	П		カノ	レバゾー ル	X,		,	景A	^1	^2	,,,	"		(L ₂)
			\perp		単位		_	x	, X ₂	Н	Н	H	H	-	
(1)	lr	2			HI	СН	3			"	"			\ ,	O CH3
				_	X ₇			•	' X,						O— H CH3
(2)	lr	1 2	+			CI	1,		X, X ₂	H	Н	Н	Н		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								_	N-X				1		
			- \		X ₇	\				1	1	1	4	ļ-	H H ₂ ,,
(3)	Ir		2		X	C	Н,		×,×,	Н	Н	Н	Н		
					×				,N-X						
(4)	1,	+	2		/	 c	₂ H ₅	-	X1	+	CF	3 F	1 1	1	CH ₃
(4)	'		-				•	-	X						3-4
		1			Χ̈́7									-	CH ₃
(5)	+1	r	2			7	C ₂ H ₅			, '	1 C	F ₃ !	H	H ,	
					×,				,N-X						
	\perp	\perp	_	_			C₂H₅	+	X ₁ /X ₂	+	нС	;F ₃	H	Н	H ₂
(6)		r	2				O21 15		~ ~	6			1	-	
					X ₇				, x						
(7)	, †	Ir	2	\dagger			C ₂ H ₅		<u> </u>	×,	Н	Н	CF,	Н	CH ₃
					X ₁				N-X						
			_	_		_	C ₂ H ₅	+	X ₁ X ₂		H	H	CF ₃	H	н о́, о н
(8))	l r	2				0 21 15			-x,	- 1				
					X,				, x						H H
- (3)	١r	2	+		7	C,H	5	×,~		Н	Н	CF ₃	Н	C H
						1			~~~	-x ₃					
					X,			_		<u>-</u>	Н	Н	NO ₂	H	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(1	0)	۱r	1	2	OC		C ₂ H	5		—x,	"				CH4 H
					X ₇					4					CH ₃ H
-	11)	11	+	2		<u>-</u>	Czl	15	*;(X ₂	Н	Н	NO ₂	Н	
(1			\ \	,— X.					
					X ₇						_				H H

										T			н. 1
(12)	lr	2	6	XX.	C₂H₅	-×	×3 ×4 ×4	H	H	NOz	H	·	N H H
(13)	lr	2		N X ₁	C ₂ H ₅	-	X ₂ X ₃	Н	н	F	H	<	CH ₃ H
(14)	lr	2	(C ₂ H ₅	-	X, X,	Н	н	F	Н	+	
(15)	lr	2	-		C ₂ H ₅	-	X, X ₂ X ₂ X ₃	H	H	F	Н		H H
(16)	Ir	2			C₂H₅	-	X, X ₂	Н	Н	CN	Н		OH3 H
(17)	Ir	2		0,0	C₂H₅		X, X,	is	1 H	CN	i H	н.	
(18)		r a	2		C₂H,	5	×, ×,	X ₃	H 1	H C	N F		# H H
(19) 1	r	2	0,0	CH ₂ C	F ₃	×, ×	-X ₃	H	H 1	H 1	H	CH ₂ H
(20)	r	2		CH ₂ (CF ₃	\rightarrow	-x,	Н	Н	Н	н	H 1 1 H
(2	1)	ir	2	Q C	CH ₂	CF ₃	\rightarrow	-x ₉	н	Н	Н	H	H H2 H
(2	2)	1r	2	OX.	СН	CF ₃	×	×, 	н	CF ₃	н	Н	CH ₃ H
(2	23)	lr	2	QXX,	CH	ZCF3	×	X ₂ X ₃ X ₄	Н	CF ₃	Н	H	H H H H
							1						

									· · · ·	11 1		<u>u</u> 1
(24)	lr	2	(CH₂CF₃	×, ×, ×,	Н	CF₃	H	Н		, , , , , , , , , , , , , , , , , , ,
(25)	lr	2	1		CH ₂ CF ₃	X, X,	Н	н	CF ₃	Н	\ \ \	CH ₃ H
(26)	lr	2		O'Q	CH ₂ CF ₃	X,	Н	Н	CF ₃	Н	H /	H H H H
(27)	Ir	2			CH ₂ CF ₃	X, X,	Н		CF ₃			H ₂ H
(28)	Ir	2		O C	CH ₂ CF ₃	X, X,	6 H					CH ₃ H
(29)	11	7	2		CH ₂ CF ₃	X	×, I				H	
(30)	1	r	2	00	CH ₂ CF	3 ×××	-X ₃		H NO			H ₂ H
(31)	i	r	2		CH₂CF	3	-x,				H	CH ₃ H
(32	5 1	r	2		CH₂CF		-×.	Н			Н	H H H H
(33)	Ir	2	O'Q	CH ₂ CI		ς ₂ —χ ₃ χ ₄	Н			Н	H ₂ H
(3-	1)	lr	2		CH₂C	7,4	x₂ }—x₃ ;x₄	H		CN	H	CH ₀ H
(3	5)	lr	2	Q Q	CH₂C	OF, X	X ₂	Н	Н	CN	Н	H H H H

					ou cr 1	X,	× T	H	н	CN	н		H ₂
(36)	lr	2			CH ₂ CF ₃							/	J.H.J.
(37)	lr	2	F ₃ C		CH ₃	×	X ₂ X ₃ X ₄	Н	Н	Н	H	\ \ !	CH ₃ H
(38)	Ir	2	F ₃ C ₁		CH ₃	***	X ₂	Н	Н	н	Н	"	
(39)	lr	2	F ₃ C		CH ₃	<u></u>	X ₂ X ₃	Н	н	Н	н		
(40)	ir	2	F ₃ (CH ₃	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X ₂	Н	CF ₃	н	Н		CH ₃ H
(41)	Ir	2	F ₃	c N	CH ₃	13	X ₂ X ₃	Н	CF ₃	н	Н	H.	
(42)	li	r 2	F	, , , , , , , , , , , , , , , , , , ,	CH ₃	×	X, X,	H	CF	3 H	Н		He H
(43)	7	r	2 1		CH,	· -	X.	F	Н	CF	3 F		CH ₃ H
(44)	r	2	F ₃ C N	СН	3	×××××××××××××××××××××××××××××××××××××××	•	H 1	1 C	F ₃	Н	
(45	i)	Ir	2	F ₃ C N	CH	1, -	X, X,	6	н	НС	F ₃	H	H ₂ H H
(4	6)	1r	2	F ₃ C N X ₇	CI	H ₃	X	X _a	Н	н	NO ₂	н	CH ₃ H
(4	7)	Ir	2	F ₃ C , ,	3 0	Н ₃	X, X2	-×3	Н	Н	NO ₂	Н	H H H H
				<u> </u>									

(48)	Ir	2	F ₃ C	D'Y	CH₃	X ₁ X ₂ X ₃	Н	н	NO ₂	Н	H H H
(49)	lr	2	F ₃ (CH ₃	X, X, X,	Н	Н	F	Н	CH ₃ H
(50)	ir	2	Fa	c N	CH ₃	X, X, X, X,	н	Н	F	H	H H H H
(51)	1r	2	F		CH ₃	X, X,	н	Н	F	Н	HZ H
(52)	lr	2	F	-sa	CH ₃	×, ×,	ч	Н	CN	Н	CH ₃ H
(53)	11	2	: '	F3C X	CH ₃	X	×.	1 H	CN	Н	
(54)		r	2	F ₃ Q	CH ₃	×××	× ₃	H F	i CA	Н	H H
(55)	1	r	2	F,C C	CH₂CF	3 × ×	-× _a	Н	1		H _e H
(56)	, 1	r	2	F ₃ C X ₁	CH₂CF	3	-X ₃	Н	H	1 1	
(57)	Ir	2	F ₃ C N	CH₂CF		-x ₃				H C H
(58	0	lr	2	F ₃ C N X,	CH ₂ C	F ₃ ×	ξ 2 ≻—χ ₃ χ ₄				H CH ₃ H H
(59	9)	Ir	2	F ₃ C X ₇	CH₂C	F ₃ ×	χ <u>,</u> }—χ, `λ,	Н	CF ₃	Н	H H H H H
L											

		 	FC / 1	CUCE	x, x ₂	н	CF,	Н	н	H ₂
(60)	Ir	2	F ₃ C N N N N N N N N N N N N N N N N N N N	CH ₂ CF ₃	~~, \					N H H
(61)	ir	2	F ₃ C N X ₇	CH ₂ CF ₃	X ₁ X ₂ X ₃	H	Н	CF ₃	Н	O-CH ₃ H
(62)	lr	2	F ₃ C N X ₇	CH ₂ CF ₃	x, x,	Н	Н	CF ₃	H	H H H H
(63)	1r	2	F ₅ C X,	CH ₂ CF ₃	X_1 X_2 X_3	Н	н	CF ₃	Н	H2 H
(64)	Ir	2	F ₃ C N X ₇	CH ₂ CF ₃	×, ×, ×,	Н	Н	NOz	Н	CH ₀ H
(65)	lr	2	F ₃ C	CH ₂ CF ₃	X, X, X, X,	Н	Н	NO ₂	H	H 9 H H
(66)	Ir	2	F ₃ C N N N N N N N N N N N N N N N N N N N	CH ₂ CF ₃	X, X,	Н	Н	NO,		H-H H H
(67)	11	2	F ₂ C N X ₇	CH ₂ CF ₃	×, ×,	Н	Н	F	H	CH ₃ H
(68)	1	r 2	F ₃ C	CH ₂ CF ₃	***	H	н	F	Н	
(69)	1	r 2	F ₀ C	CH ₂ CF ₃		• F				
(70))	r	F ₃ C	CH₂CF		6	1 1			CH ₃
(71)	r	2 F ₃ C	CH₂CF	; \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	х,	H I	1 0	N I	H H H H

(72)	ir	2	F ₃ C N X,	CH ₂ CF ₃	X, X,	Н	Н	CN	Н	H ₂ H H H
(73)	1r	2		t−C ₄ H ₉	X ₁ X ₂ X ₃	Н	н	Н	Н	CH ₃ H
(74)	1r	2	O S	t-C ₄ H ₉	×, ×,	Н	Н	Н	Н	H H H H
(75)	Ir	2		t−C₄H₅	X_1 X_2 X_3 X_4	Н	H	Н	Н	
(76)	lr	2	O'Q	t-C ₄ H ₉	×,	Н	CF ₃	Н	Н	CH ₃ H
(77)	Ir	2	0,0	t-C ₄ H ₉	×, ×,	Н	CF ₃	Н	Н	
(78)	ir	2	000	t-C ₄ H ₉	x, x,	Н	CF ₃	Н	Н	H ₂ H ₄ H ₄
(79)	Ir	2	00	t-C₄H ₉	X ₁ X ₂ X ₃	Н	Н	CF ₃	Н	CH ₃ H
(80)	Ir	2	O'Q	t-C ₄ H ₉	×, ×,	Н	н	CF ₃	H	H H H H
(81)	11	2		t −C₄H₃	***	Н				
(82)	11	r 2		t-C₄H₅	x x,	H				CH ₃ H
(83)) 1	r 2		t-C₄H	Y X	۲ ا	I H	NO	₂ H	H H H H

Columbia								r	т		
(86) 1r 2	(84)	ir	2	Q C	t-C ₄ H ₉	x, x,	H	н	NO ₂	Н	
(87)	(85)	lr.	2		t-C ₄ H ₉	X ₁ X ₂ X ₃	Н	н	F	Н	
(87)	(86)	Ir	2	of o	t-C ₄ H ₉	X_1 X_2 X_3	Н	н	F	Н	H H H
(88)	(87)	lr	2		t−C₄H₃	×, ×,	Н	Н	F	H	HA H
(90) IT 2	(88)	1r	2	O O	t-C ₄ H ₉	×, ×,	Н	Н			CH ₃
(91) Rh 2 C ₂ H ₅ X ₃ H CF ₃ H H H CF ₃ H H H H H H H CF ₃ H	(89)	lr	2	QQ	t-C ₄ H ₉	***	Н	Н	CN	Н	H H H
(92) Rh 2 C ₂ H ₅ X _x H CF ₃ H H H H H H H H H H H H H H H H H H H	(90)	Ir	2		t-C₄H ₉	×, ×,		į			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(91)	Ri	2		C₂H₅	***					CH ₃
$(93) RH Z \downarrow \downarrow$	(92)	Ri	1 2		C ₂ H ₅	×	H	CF			H H H
(95) Ru 2 C ₂ H ₅ X ₃ H CF ₃ H H H H H H H H H H H H H H H H H H H	(93)) R	h 2		C₂H₅	***	a				
	(94) R	u i			, X ₁ X ₂	6				CH ₃
	(95	i) F	lu		C ₂ H ₅	\times_x	×,	H C	F ₃ I	1	

(00)	D. I	<u> </u>		C ₂ H ₅	X ₁ ,X ₂	н	CF ₃	н	Н	H ₂
(96)	Ru	2		G2115	,u-,x _s					
(97)	0s	2		C ₂ H ₅	X, X, X,	Н	CF ₃	Н	Н	OH3 H
(98)	0s	2		C₂H₅	×, ×, ×,	Н	CF ₃	Н	H	H H H H
(99)	0s	2		C₂H₅	X, X, X,	H	CF ₃	H	H	HZ H
(100)	Pd	1	O'Q	C ₂ H ₅	×, ×,	Н	CF ₃	H	Н	CH ₃ H
(101)	Pd	1	O'C	C₂H₅	****	H	CF ₃		Н	H ² H
(102)	Pt	1	O N	C₂H₅	***	Н	CF ₃		H	CH ₃ H
(103)	Pt	1		C _z H ₅	×, ×,	H			H	H ₂ H _H
(104)	!r	2		C₂H₅	*, *, *, *, *, *, *, *, *, *, *, *, *, *	Н			Н	CH ₃ H
(105)	l r	2	o d	C ₂ H ₅	X, X ₂	Н	Н	Н	Н	

(106)	İr	2	0,0	C ₂ H ₅	X ₁ X ₂ X ₃	H	Н	Н		H ₃ C CH ₃ H H ₃ C H
											H ON
	(107)	۱r	2		C ₂ H ₅	x ₁ X ₂	н	н	CF ₃	Н	CH ₃ H
						N—X ₄					CH ₃
-	(108)	lr	2	Q C	C₂H₅	×, ×,	н	н	CF ₃	н	H ₂ H ₁
	(109)	Ir	2		C ₂ H ₅	X, X, X,	Н	н	CF ₃	Н	H ₃ C CH ₃ H H ₃ C CH ₃ H H ₄ C H
											H CH ₂
											——————————————————————————————————————
	(110)	Ir	2	O C	C₂H₅		н	Н	Н	H	CH ₃ H
	(111)	lr	2	O S	C₂H₅	-	Н	Н	Н	н	H H H H
	(112)	11	7 2	O N	C₂H₅	-00	Н	Н	Н	Н	H-2 C-1 H-1 H-1 H-1
	(113)) 1	r 2		C ₂ H ₅	~XX	l l	¢		-	0 CH ₃ H H CH ₃ H
	(114) 1	r 2		CH₂CF₃	-\\	H	Н	Н	Н	H ₂ H ₄

(116)	lr	2	F ₃ C	C₂H₅		Н	Н	Н		H ₃ C CH ₃ H H ₃ C H H N N N
				0.13		Н	Н	Н	Н	H ₀ C CH ₃ H
(117)	ir	2		C₂H₅					"	H ₉ C H H N
(118)	Ir	2		C ₂ H ₅	\ A	Н	Н	Н	Н	H H
(118)	''			525	~XX					CH ₉
(119)	lr	2		C₂H₅	-,	Н	H	Н	Н	
(120)	Ir	2	O'Q	C₂H₅	~ X ₁	Н	0	-	-	#2 H
(121)	Ir	2	Q,X	CH ₂ CF ₃	-XX	Н	Н	H	H	CH ₃ H
(122)	1r	2	F ₃ C X ₁	C₂H₅	-,00	н	Н	Н	Н	H ₂ H ₄
(123)	11	2	O _v S	C₂H₅	1	Н	Н	Н	Н	
(124)) 11	r 2		C ₂ H ₅	-	Н	Н	Н	н	CH ₃ H

(125) Ir 2 E	C ₂ H ₅	-N	Н	Н	Н	H ₂ H H
--------------------	-------------------------------	----	---	---	---	--------------------------

【表2】

=	^
茲	4

表 2									 -	, ,	環C
No	М	п	;	カルバゾール 単位	Х,	環A	X ₁	X,	Х ₃	X ₄	原し (L ₂)
(125)	۱r	2		40-CX	CH₃	X ₁ X ₂ X ₃	н	Н	Н	Н	O H ₂ H ₂ H
(126)	l r	2		HO-CONS	CH₃	X_1 X_2 X_3	Н	Н	н	Н	
(127)	lr	2		но-Суб	CH,	×, ×,	H	H	Н	Н	
(128)	lr	2		HO-CINC	C _z H _s	X ₁ X ₂ X ₃	Н	CH ₃	Н	Н	0 CH ₃ H
(129)	1r	2		но	C₂H₅	X, X,	H	CH₃	Н	H	
(130)	Ir	2		но-Суб	C₂H₅	X, X,	Н	CH ₃	Н	н	
(131)	1 r	2		HO-CHO	C _z H _s	***	Н		CH ₃	Н	0 CH ₃ H
(132)	11	2	2	но-Су	C ₂ H ₅	***	Н		CH ₃	Н	
(133)	11	7	2	HO-CIN	C₂H₅	, XXX	Н		CH ₃	Н	
(134))	r i	2	но-Суб Х,	C₂H₅	X, X ₂	H		Н	ОСН	CH ₂
(135)) 1	r	2	но-Су	C ₂ H ₅	X ₁ X ₂ X	s }			OCH	
(136) 1	٢	2	HO-CNIC	C ₂ H ₅	T X	ís	i H		OCH	J.P.
(137) 1	r	2	но Ху	C ₂ H ₅	X, X ₂	¢ ₃	H F	N (CH ₃)	Н	CH ₃ H

								11/011	7i T	
(138)	Ir	2	но-Су	C₂H₅	x, x,	Н	Н	N(CH ₃) ₂	Н	
(139)	lr	2	HO-CN	C₂H₅	X, X, X,	Н	Н	N (CH ₃) ₂	Н	HZ HZ
(140)	Ir	2		C ₂ H ₅	X ₁ X ₂ X ₃	Н	CH ₃	Н	н	CH ₃
(141)	Ir	2	0,0	C₂H₅	X, X,	Н	CH₃	Н	H	****
(142)	ir	2		C₂H₅	X ₁ X ₂ X ₃	Н	CH ₃	Н	Н	H ₂ H ₁ H ₁
(143)	ir	2		C₂H₅	X, X,	Н	Н	CH₃	Н	CH ₃ H
(144)	lr	2		C ₂ H ₅	X X X	Н	Н	CH₃	Н	
(145)	Ir	2		C ₂ H ₅	***	Н	Н	CH ₃	Н	
(146)	Ir	2	of of	C₂H₅	X, X,	H		н	OCH ₃	
(147)	11	7 2		C ₂ H ₅	X ₁ X ₂ X ₃	Н		н	OCH3	XX.XX.
(148)	1	7 2		C₂H₅	Ž.	H		н	OCH ₃	
(149)) 1	r		C ₂ H ₅		۲				DO HS H
(150)) 1	r	2 000	C₂H₅	x, x,		ł H			
(151)) 1	r	2	C₂H₅	x, _x,	, ,	1 H	N (CH ₃)	Н	H H

					- X. X. 1	11	CI)	н	Н	
(152)	Ir	2		t−C₄H ₉	, x,	Н	CH ₃			CH ₃ H
(153)	lr	2	0,0	t−C₄H ₉	x, x, ,	н	CH ₃	н	H	
(154)	Ir	2		t−C₄H ₉	X_1 X_2 X_3	H	CH ₃	Н	Н	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
(155)	lr	2		t-C ₄ H ₉	X, X, X,	Н	н	CH₃	H	CH ₃ H
(156)	lr	2	0,0	t-C ₄ H ₉	×, ×,	Н	Н	CH ₃	н	
(157)	lr	2		t−C ₄ H ₉	**************************************	H	Н	CH₃	н	
(158)	ir	2		t-C ₄ H ₉	X ₁ X ₂ X ₃	Н	Н	Н	OCH ₃	CH ₂ H
(159)	lr	2	00	t-C ₄ H ₉	X, X2	Н		н	OCH ₃	
(160)	lr	2	O'Q	t-C ₄ H ₉	X, X,	H	Н	Н	OCH3	
(161)	Ir	2	O C	t-C ₄ H ₉	X, X ₂	H	Н	N (CH ₃) ₂		CH ₉
(162)	1 r	2	0,0	t-C ₄ H ₉	X, x,	F	i H	N (CH ₃) ₂		
(163)	11	2	Q X	t-C ₄ H ₉	x, x,	1	1 H	N (CH ₃) ₂		
(164)) 11	7 2	H ₉ CO-CN	C₂H₅	x, x,	'	н	Н	Н	CH ₃ H
(165)) 1	r	H ₃ CO TN	C₂H₅	x, x	,	НН	Н	Н	

				•						
(166)	Ir	2	H ₃ CO \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	C₂H₅	×, x,	Н	H	Н	Н	
(167)	1r	2	H ₃ CO N X ₇	C ₂ H ₅	×, ×, ×,	Н	CH ₃	Н	Н	
(168)	lr	2	H ₃ CO-CX	C ₂ H ₅	X ₁ X ₂ X ₃	Н	CH3	Н	H	
(169)	ir	2	H ₃ CO-C) X ₁	C₂H₅	X, X,	Н	CH ₃	Н	Н	HZ H
(170)	1r	2	H ₃ CO-CINC	C₂H₅	X, X, X,	H	Н	CH ₃	Н	CH ₃ H
(171)	lr	2	H ₃ CO N	C₂H₅	X, X, X, X,	Н	Н	CH ₃	Н	
(172)	Ir	2	H ₃ CO	C₂H₅	X, X,	H	Н	CH₃	Н	J. "H"
(173)	Ir	2	H ₃ CO N X ₇	C ₂ H ₅	X ₁ X ₂ X ₃	Н	Н	Н	OCH₃	0 CH ₃ H
(174)	Ir	2	H ₃ CO-CN	C ₂ H ₅	×, ×,	Н		Н	OCH ₃	
(175)	1 r	2		C₂H₅	*,**	Н	Н	Н	OCH ₃	
(176)	11	- 2	H ₃ 00-	C₂H₅	X ₁ X ₂ X ₃	Н	Н	N (CH ₃) ₂		CH ₃
(177)	11	7 3	H ₃ CO N X ₇	C ₂ H ₅	X; X ₂	Н		N (CH ₃) ₂		
(178)) 1	r	2 H ₂ CO N X ₇	C ₂ H ₅	X ₁ X ₂ X ₃	ŀ		N (CH ₃) ₂		
(179)) 1	r	2	N(CH ₃) ₂	X, X ₂ X, X ₃	1	1 H	Н	Н	CH ₃ H

(180)	lr	2		00	₩(CH ₂) ₂	X, X ₂ X, X,	Н	н	Н	Н	
(181)	lr	2			-N(CH ₃) ₂	X ₁ X ₂ X ₃	Н	Н	Н	Н	
(182)	lr	2			→N(CH ₃) ₂	X ₁ X ₂ X ₃ X ₄	Н	CH ₃	Н	Н	CH ₃ H
(183)	lr	2		O'Q	-N(CH ₃) ₂	X, X ₂ X ₃	Н	CH ₃	н	Н	
(184)	lr	2		X ₇	−V(CH ₂) ₂	X ₁ X ₂ X ₃	Н	CH₃	Н	Н	H ₂ H
(185)	Ir	2		0,0	-N(CH ₃) ₂	X, X,	Н	Н	CH ₃	н	CH ₃ H
(186)	Ir	2			-N(CH ₃) ₂	×, ×,	Н	Н	CH₃	H	
(187)	lr	2	1	O N		******	Н	Н	CH₃	H	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
(188)	1r	2	2			X ₁ X ₂ X ₃	Н		Н	OCH ₃	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(189)	11	7	2	00	-M(CH ₂) ₂	XX.	Н	Н	Н	OCH ₃	***
(190)	1	r	2		N(CH ₃) ₂	X, X,	н	Н	н	OCH3	
(191)	T	-	2		N(CH ₃) ₂	X ₁ X ₂ X ₃	H		N (CH ₃) ₂	Н	CH ₃ H
(192)) 1	r	2		———N(CH ₃);	X X.	ŀ		N (CH ₃) ₂		
(193) 1	٢	2		——N(CH ₃),		'	H	N (CH ₃) ₂	Н	, , , , , , , , , , , , , , , , , , ,

							· · ·		Н	н
(194)	ir	2		H ₃ C H ₃ C	× ₃	H	Н	Н		
(195)	lr	2		H ₃ C H ₃ C	-X ₁ -X ₂ -X ₃	Н	Н	Н	Н	
(196)	lr	2	X ₇	H ₂ C ————————————————————————————————————	X, X	Н	Н	H	Н	N H
(197)	lr	2		H ₂ C H ₃ C	×, ×,	н	CH ₃	Н	Н	CH ₃ H
(198)	lr	2	0,0	H ₃ C CH ₃	X, X, X,	Н	CH ₃	Н	Н	
(199)	lr	2	Q C	H ₃ C CH ₃	X, X2	н	CH ₃	H	Н	
(200)	Ir	2		H ₃ C	X ₁ X ₂ X ₃	Н	Н	CH ₃	Н	SH ₃ H
(201)	lr	2		H ₃ C H ₃ C	**************************************	Н	Н	CH₃	H	#####
(202)	Ir	2		H ₃ C CH ₃	X ₁ X ₂ X ₃	Н	Н	CH ₃	H	H H
(203)	ir	2		H ₃ C		н		Н	OCH ₃	\$\frac{1}{2}\frac{1}{4
(204)	17	2	00	H ₃ C H ₃ C	X, X,	Н	Н	Н	OCH₃	TY TY
(205)	11	7 2	O S	H ₃ C CH ₃	****	Н		Н	OCH ₄	
(206)	ī	r 2		H ₃ C H ₃ C	x, x,	H		N(CH ₃) ₂		CH ₃ H
(207)) 1	r		H ₃ C	X, X,	1	H	N (CH₃),	Н	

					ње	X, X,	н	н	N (CH ₃) ₂	Н	Н2
(208)	lr	2			CH ₃	*.	"	"			THT.
(209)	۱r	2			√g CH₃	X ₁ X ₂ X ₃	Н	н	н	Н	OCH ₃ H
(210)	lr	2		O'Q	-Chy CHy	×, ×,	Н	Н	Н	Н	
(211)	lr	2			Ash CH,	X, X,	Н	Н	н	Н	H ₂ H ₂ H ₁ H ₁
(212)	Ir	2		00	-(s)-cH3	X, X,	Н	CH₃	Н	Н	CH ₃ H
(213)	ir	2	:	0,0	√g\ci+3	X, X, X,	Н	CH ₃	Н	H	****
(214)	ir	1	2			X, X, X,	H	CH ₃	Н	Н	
(215)	Ir		2		√ _S _cн ₃	X, X, X,	Н	Н	CH ₃	Н	CH ₃ H
(216)	11	+	2	00	L _S LcH ₃	X, X ₂ X ₃	Н	Н	CH ₃	Н	
(217)	11	r	2	×,	-CH ₅	X, X,	Н	Н	CH ₃	Н	
(218)	1	r	2		√ _S \ CH ₃	x, x,	Н	Н	Н	OCH,	CH ₂ H
(219)) 1	r	2		-S-CH,	X ₁ X ₂ X ₃	F	i H	Н	ОСН	3 " " " " " " " " " " " " " " " " " " "
(220)) 1	r	2	O O	L _S \cH _s	X ₁ X ₂ X ₃	 	i H	Н	OCH	3 H ₂ H H
(221)	г	2		СH ₃	X X	•	н	N (CH ₃)	2 H	CH ₂ H

											
(222)	lr	2		00	√g CH₃	*, *, *, *, *, *, *, *, *, *, *, *, *, *	Н		(CH ₃) ₂	Н	
(223)	lr	2		O O	√д сн,	X, X, X,	Н	Н	N (CH ₃) ₂	Н	H ² H
(224)	Rh	2			C₂H₅	X, X, X, X,	H	Н	CH ₃	Н	CH ₃ H
(225)	Rh	2			C ₂ H ₅	X, X ₂ , X ₃	Н	Н	CH ₃	н	H ² H
(226)	Rh	2		0,0	C₂H₅	X ₁ X ₂ X ₃	Н	н	CH ₃	H	0 CH ₉ H
(227)	Ru	2		0,0	C₂H₅	X ₁ X ₂ X ₃	Н	H	CH ₃	Н	N H
(228)	Ri	<u>, </u>	2		C ₂ H ₅	X ₁ X ₂ X ₃	Н	Н	CH₃	Н	O H ₃ H
(229)	R	u	2	0,0	C₂H₅	X, X	H	Н	CH3	Н	
(230)	0	2	2	OQ	C ₂ H ₅	X ₁ X ₂ X ₃	Н	Н	CH₃	H	He Cote H
(231)	Os	2	ad	C ₂ H _s	X ₁ X ₂	Н	Н	CH ₃	Н	CH ₃ H
							•				CH ₃ H
(232	2)	Os	2	O'Q	C₂H₅	***	6	Н	CH ₃	Н	
(23:	3)	Pd	1		C₂H₅	x, x,	6	1 H	CH ₃	Н	MG CM3 H Hg CM3 H H H
											, , , , , , , , , , , , , , , , , , ,

CH3 H
CH3 H
H ₂ T
T."Y"
Hoc Ho H
Mac Cole II
CH ₃ H
CH ₃ H
N H
H

				ње						H of O H
(246)	Ir	2		H ₅ C	~\\\X_{x_2}	Н	9			
(247)	lr	2		———N(CH ₃)₂	-,,,,,	Н	Н	Н	Н	CH ₃ H
(248)	lr	2		∠ _S CH ₃	-,\\	Н	Н	H	Н	
(249)	lr	2	O S	H ₃ C H ₃ C CH ₃		Н	Н	Н	Н	CH ₉ H
(250)	lr	2		H ₃ C H ₃ C	-00	Н	H	Н	Н	CH ₉
(251)	1r	2	Q C	H ₃ C H ₃ C	-,50	Н	Н	Н	Н	CH ₃ H
(252)	lr	2	ON X	H ₃ C CH ₃	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H	0	-	-	CH ₃ H

[0026]

表 3												四0
No	M	n		縮合環 単位		環A	X ₁	X ₂		X ₃	X ₄	環C (L ₂)
(253)	1r	2			_	X, X, X, X,	Н	Н		Н	н	CH ₃
(254)	lr	2			_	X ₁ X ₂ X ₃	Н	Н		Н	H	
(255)	lr	2			-	X, X ₂ X,	Н	Н		Н	H	#### H
(256)	Ir	2			-	X ₁ X ₂ X ₃	Н	СН	3	Н	Н	CH ₂ H
(257)	lr	2				X ₁ X ₂ X ₃	Н	СН		Н	н	
(258)	lr	1	2			×, ×,	Н	Cŀ	13	Н	Н	H ² H
(259)	11		2			X_1 X_2 X_3 X_4	Н	ŀ	i	CH ₃	Н	
(260)	1	r	2			X ₁ X ₂ X ₃	1		H	CH ₃	Н	
(261)) 1	r	2			X, X ₂		1	Н	CH₃	Н	H ² H ² H ³
(262) 1	r	2			X, X		H	Н	Н	OCH	CH ₃
(263) 1	r	2			X, X ₂	,		Н	Н	OCH	
(264	1)	r	2			$\xrightarrow{X_1} \xrightarrow{X_2}$'s	H	Н	Н	OCI	
(26	5)	l r	2			X, X ₂	G	Н	Н	N (CH ₃)		CH ₃
(26	6)	۱r	2			X, X2	X ₃	Н	Н	N (CH ₃)	2	

(267)	1 r	2	4		_	X ₁ X ₂ X ₃ X ₄	Н	Н	N (CH ₃) ₂	Н	HZ H
(268)	۱r	2	(_	X, X, X,	Н	CF ₃		Н	Н	O CH ₃ H
(269)	1r	2			-	X ₁ X ₂ X ₃	Н	CF ₃		Н	Н	
(270)	lr	2			-	X ₁ X ₂ X ₃	Н	CF ₃		Н	Н	HZ HH
(271)	Ir	2				X_1 X_2 X_3 X_4	Н	Н		CF ₃	Н	OH3 H H2 H CH3
(272)	Ir	2				X_1 X_2 X_3	Н			CF ₃	Н	
(273)	Ir	2				X, X ₂ X, X ₃	Н	H		CF ₃	Н	H2 H
(274)	1,	2				X ₁ X ₂ X ₃	Н	F	1	NO ₂	Н	CH ₃
(275)	1	r 2				X ₁ X ₂ X ₃	1		Н	NO ₂	Н	
(276)) 1	r ;	2			X, X ₂		4	Н	NO ₂	Н	
(277) 1	r	2			X ₁ X ₂ X ₃	,	Н	Н	F	H	CH ₂ H
(278)	F	2	00		X ₁ X ₂ X ₃ X ₄ X ₄	3		Н	F		
(279	9)	Ir	2	0,0		X, X,	G	Н	Н	F		H C H
(28)	0)	ır	2			X, X2	К3	Н	Н	CN		H CH ₃ H
(28	1)	lr	2			X1 X2 X2 X4	х,	н	Н	CN		H " " " " " " " " " " " " " " " " " " "

(282)	lr	2				x₂ 	Н	Н		CN	Н	# H H
(283)	lr	2		C ₂ H ₅ C ₂ H ₅	×	X₂ }—X₃ `X₄	Н	Н		Н	Н	O CH ₃ H
(284)	lr	2		C ₂ H ₅ C ₂ H ₅	×	X ₂ -X ₃ X ₄	Н	Н		Н	Н	
(285)	lr	2		C ₂ H ₅ C ₂ H ₅	×	X ₂ X ₃	Н	Н		Н	Н	H2 H H
(286)	ir	2	-	C ₂ H ₅ C ₂ H ₅	×	X ₂ X ₃	Н	CH ₃		н	Н	CH ₃ H
(287)	ir	2		C ₂ H ₅ C ₂ H ₅	X ₁	X_2 X_3	Н	СН	3	Н	Н	
(288)	1 r	2	2	C ₂ H ₅ C ₂ H ₅	×	X ₂ X ₃	Н	СН	3	Н	H	H H
(289)	11	r i	2	C ₂ H ₅ C ₂ H ₅	×	X ₂	Н	Н		CH ₃	Н	CH ₃ H
(290)	, 1	r	2	C ₂ H ₅ C ₂ H ₅	X	-\frac{\text{X}_2}{\text{X}_4}	H			CH ₃	Н	
(291)	r	2	C2H8 C2H5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X ₂ X ₄	, F	1 1	Н	CH₃	Н	H ₂ H
(292) 1	r	2	C ₂ H ₅ C ₂ H ₅	-3	X ₂	ia I	Н	Н	Н	OCH	CH ₃ H
(293	3)	ır	2	C ₂ H ₅ C ₂ H ₅	×	X ₂	49		Н	Н	OCH	
(294	4)	Ir	2	C ₂ H ₅ C ₂ H ₅	×	\succ	Х3	H	H	Н	OCI	J. H.
(29	5)	l r	2	C ₂ H ₆ C ₂ H ₆	-	X, X ₂	-Хэ	Н	Н	N (CH ₃)		CH ₃
(29	6)	lr	2	C ₂ H ₅ C ₂ H ₅			-x ₃	Н	Н	N (CH ₃))2 }	

(297)	ir	2	(C ₂ H ₅ C ₂ H ₅	X, X ₂ X ₃	Н	н	N (C	H ₃) ₂	Н	H H
(298)	lr	2		C ₂ H ₅ C ₂ H ₅	X ₁ X ₂ X ₃ X ₃	Н	CF ₃		Н	H	O CH ₃ H
(299)	lr	2		C ₂ H ₅ C ₂ H ₅	X ₁ X ₃ X ₃ X ₄	Н	CF ₃		Н	Н	
(300)	Ir	2		C ₂ H ₅ C ₂ H ₅	X ₁ X ₂ X ₃	Н	CF ₃		Н	н	H H
(301)	Ir	2		C ₂ H ₅ C ₂ H ₅	X ₁ X ₂ X ₃	Н	Н		CF ₃	Н	CH ₃ H
(302)	Ir	2		C ₂ H ₅ C ₂ H ₅	X ₁ X ₂ X ₃	Н	Н		CF ₃	H	
(303)	11	. ;	2	C ₂ H ₅ C ₂ H ₅	X ₁ X ₂ X ₃	Н	Н		CF ₃	Н	HZ HZ
(304))	r	2	C ₂ H ₅ C ₂ H ₅	X ₁ X ₂ X ₃	F	1	1	NO _z	Н	CH ₃ H
(305)	r	3	C ₂ H ₅ C ₂ H ₅	X ₁ X ₂ X ₃ X ₃			Н	NO ₂	Н	## ## ## ## ## ## ## ## ## ## ## ## ##
(306)	r	2	C2H5 C2H5	X_1 X_2 X_3 X_4		H	H	NO ₂	Н	7,17,
(307	0	ır	2	C ₂ H ₅ C ₂ H ₅	X, X2	6	Н	Н	F	Н	
(30	B)	1r	2	C ₂ H ₅ C ₂ H ₅	X, X,	х,	н	Н	F	Н	
(30	9)	lr	2	C ₂ H ₅ C ₂ H ₅	X	-X3	Н	Н	F	H	7,17,
(31	0)	1 r	2	C ₂ H ₅ C ₂ H ₅	x, x ₂	-X ₃	Н	н	CN		CH ₃
(3)	1)	lr	2	C ₂ H ₅ C ₂ H ₅	X, X2	-x ₃	Н	Н	CN		H T T T

(312)	۱r	2	Į.	C ₂ H ₅ C ₂ H ₅	-	X ₁ X ₂ X ₃ X ₄	Н	Н	CN	Н	, , ,	HT H
(313)	lr	2		86,	-	X ₁ X ₂ X ₃	Н	Н	Н	Н	\ \o	CH ₃ H
(314)	ir	2		86	-	X ₁ X ₂ X ₃	Н	Н	Н	н	T	
(315)	lr	2		38		X ₁ X ₂ X ₃ X ₄	Н	Н	Н	Н	,,,	H ₂ H
(316)	Ir	2	 	88		X_1 X_2 X_3	Н	CH ₃	Н	Н		CH ₃ H
(317)	11	2	!	38	-	X ₁ X ₂ X ₃	H	CH ₃	Н	Н	H.	
(318)) 1	r	2	R	+	X, X ₂	F	СН	Н	Н	(H ² HH H
(319) 1	r	2	38	+	X, X ₂	•	Н	CH₃	Н	,	СН ₃ Н Н
(320	1) 1	r	2) (2)	4	X, X,	a l	H H	i CH₃	•	1	
(32	1)	Ir	2	SC	4	X, X,	4	H	1 CH	3	Н	H ₂ H
(32	2)	Ir	2		4	X, X,	×₃	Н	Н	0	CH ₃	CH ₃ H
(32	3)	lr	2		7	X ₁ X ₂	-X ₃	Н	H F	0	CH ₃	
			<u> </u>									•

(324)	Ir	2		X	7	×	X ₁	H	Н		H	OCH₃	, i	HH H
(325)	Ir	2	1	X	7	\rightarrow	X ₂ X ₃	Н	Н	N (0	CH ₃) ₂	Н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CH ₃ H H
(326)	lr	2		8	2	×.	X ₂ X ₃	Н	Н	N (CH ₃) ₂	Н	">	
(327)	lr	2			Q Q	,	X ₁ X ₂ X ₃	H	Н	N ((CH₃) ₂	Н	(O H H
(328)	ir	2		3	Q,	-	X, X ₂ , X ₃	Н	CF	3	Н	Н	(OCH ₃ H
(329)	it	2		3	0	-	X, X, X,	H	CF	3	Н	Н		
(330)	1	r 2	2	3	8	-	X, X ₂	· I	CI	F ₃	Н	н		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(331) 1	r	2	0	8	-	X ₁ X ₂ X	3	Н	Н	CF ₃	Н		CH ₉ H
(332	2)	r	2	TO D	8		X, X ₂	6	Н	Н	CF ₃	ŀ	1	
(33	3)	Ir	2	700	8		X, X ₂	× ₃	H	Н	CF ₃	1	4	H2 HH HH
(33	4)	Ir	2	TCC	8	-	×, ×,	-X ₃	Н	Н	NO ₂		Н	O CH ₂ H
(33	5)	lr	2	700	8	-	×, ×,	-x ₃	Н	Н	NO	2	Н	
L			L											

									_			
(336)	lr	2		26	×, —	ζ ₂	Н	Н	NO ₂	Н	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H H
(337)	۱r	2		PG.	×	X₂ }—X₃ `X₄	Н	н	F	Н	<	CH ₃ H
(338)	l r	2		26	×	X ₃ X ₄	Н	Н	F	H	H	
(339)	ir	2	!	26,	×	×,	Н	Н	F	Н	;	Ho H
(340)	lr		2	PG.	×,	X ₂ X ₃	Н	Н	CN	Н		CH ₉
(341)	11		2	284	X,	X ₂ X ₄	Н	Н	CN	Н		
(342)	1	r	2	A84	×,	X ₂ X ₃	H		CN	H		HZ H
(343)	1	r	2	S S CH ₃	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	X ₂ X ₃	H			1		CH ₃ H
(344)		r	2	S CH ₃	\ \rightarrow \frac{\hat{\chi}}{\chi}	X,		1 1			H	#2 L #
(345)	İ	l r	2	CS CH ₃		× ×	•				 Н	N H H
(346		1 r	2	S S CH	-	X X	6			H	Н	O CH ₉ H
(347	7)	1r	2	S S CH			х,	Н	CH ₃	П		

(348)	lr	2		C) CH ₃	X_1 X_2 X_3 X_4	Н	C	H ₃	Н	н	H H H
(349)	lr	2		H ₃ ¢	X, X ₂ X ₃	H		Н	CH ₃	Н	CH ₃ H
(350)	Ir	2	2	н ₃ С	X, X ₂ X,	F	1	Н	CH ₃	Н	
(351)	lr		2	H ₃ C S C ₁ CH ₃	X ₁ × ×	• I	н	Н	CH ₃	Н	H ₂ H
(352)	Ir		2	H _o C	X, X2	6	H	Н	Н	Н	0 H ₂ H
(353)	11	+	2	$Q_{\bullet}Q$	X X	х3	Н	Н	Н	н	H ₂ C H H H
(354)	1	r	2		****	-×,	Н	Н	Н	Н	CH ₃ H
(355)) 1	r	2	0,0	x, x,	-x ₃	Н	CH ₃	Н	Н	H H
(356))	r	2	0.0	X X	-X3	Н	CH ₃		Н	CH ₃ H CH ₃ H
(357)	r	2			2 —X3	H	CH ₃		Н	
(358	3)	۱r	2	0.0		√2 —X3 X4	Н	н	CH ₃	Н	H ₃ C CH ₃ H H ₃ C CH ₃ H H N N N N N N N N N N N N N N N N N N
(35	9)	lr	2	0,0	T X	×,	F	Н	CH ₃		CH ₃ H

																	, 	
(360)	lr	2					×	X ₂	Н		H	CH	13	Н	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
(361)	ir	1	2			\		X ₂	Н		Н	ŀ	1	OCH3	н₃с [,]	CH ₉ H	en	
								-								# #	213	
								ζ ₁ Χ ₂	1	-	Н		Н	OCH3	-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
(362)	11		2			?		X,	1	1	n		п	00113	\	CH ₃	H H	
(363)	1	r	2			7		×, ×,	9	Н	Н		Н	0CH	3 н.			
(364)	1	r	2	-		?	-	X, X,	6	Н	Н	N ((CH ₃) ₂	Н		H ₂	¢,	
(365))	r	2	-		7	-	X ₁ X ₂	Хэ .	Н	Н	N	(CH ₃) ;	Н		CH ₃	*	1
(366)	l r	2		Q.	P	-	X X	-X ₀	Н	Н	N	(CH ₃)	2 H			X,	•
(367	r)	۱r	1	2	Q.	R	-	X ₁ X ₂	-× ₃	Н	CF	3	Н	 	1	Hac CHa H	H	
						·		/ x	•							*		-н
(36	8)	Ir	+	3	Q	Q.			<u>√</u> 	Н	C	F ₃	Н		Н	CH,		Н
(36	39)	11	-	2	Q	R		×	X₂ }—x₃ `X₄	1	1 0	F ₃	Н		Н	Q		н
(3	70)	1	r	2	Q	R	+	×	X ₂ —X ₃ X ₄	+	н	Н	CF	3	Н			_H
(3	71)		r	2	0	R		×	X ₂		Н	Н	CF	3	Н		H ₂	H
				<u> </u>	<u> </u>		1						l					

													
(372)	lr	2		0,0	_	X ₂ X ₂ X ₃	Н	Н		F ₃	Н	۲	
(373)	lr	2		0,0	_	X; X ₂ X ₃ X ₃	Н	Н	N	102	Н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CH ₃ H
(374)	lr	2		0,0	-	X ₁ X ₂ X ₃	н	Н		NO ₂	Н		H ₂ H _H
(375)	ir	2		0.0	_	X ₁	Н	Н		NO ₂	Н	H. /	
(376)	lr	2		0.0	-	X, X,	Н	Н		F	Н	<	CH ₂ H
(377)	Ir	2	+	0,0	-	X ₁	Н	H		F	н	;	HZ H
(378)	11	- -	2	0,0		X ₁ X ₂ X ₃	H	ŀ	1	F	Н		
(379)	1	r	2	0.0		X_1 X_2 X_3 X_4	H		H	CN	Н		CH ₃ H
(380)	1	r	2			X_1 X_2 X_3 X_4	1	1	Н	CN	н		\(\text{\frac{1}{2}} \\ \text{\frac{1}} \\ \text{\frac{1}{2}} \\
(381))	r	2	0,0		X, X ₂ X ₃ X ₃	1	H	Н	CN	Н		
(382)	ır	2			×, ×		Н	Н	Н	F		CH ₃ H
(383	3)	lr	2				s	H	Н	Н	1	H	H2 H
(384	4)	lr	2	QQ		××××	45	H	Н	Н		H	
(38	5)	Ir	2	QQ		× ×	× ₃	Н	CH ₃	Н		Н	CH ₃ H
(38	6)	۱r	2	QsQ		×, ×,	-X ₃	Н	CH ₃	Н		Н	H ₂ H H H

					X1 X2	Н	CH ₃	Н	Н	H 0' 0 H
(387)	lr	2			×, ×,		CH ₃			
(388)	۱r	2		Q _s Q	X ₁ X ₂ X ₃	н	Н	CH₃	Н	O CH ₃ H
(389)	1r	2		0,0	X ₁ X ₂ X ₃	Н	Н	CH ₃	H	H ²
(390)	ir	2		Q _s Q	X_1 X_2 X_3 X_4	Н	Н	CH ₃	Н	
(391)	Ir	2			X_1 X_2 X_3	Н	Н	Н	OCH ₃	OCH3 H
(392)	1r	2			X, X ₂ X ₃	H	H	Н	OCH ₃	H ₂ H H H
(393)	Ir	2	2	Q_sQ	X, X ₂	Н	Н	Н	OCH ₃	
(394)	1 r		2	Q _s Q	X ₁ X ₂ X ₃	Н	Н	N (CH ₃) ₂	Н	СH ₃ Н
(395)	11		2	Q _s Q	X ₁ X ₂ X ₃	Н	Н	N (CH ₃) ₂	Н	H ₂ H
(396)) 1:	r	2	Q_sQ	X ₁ X ₂ X ₃	1		N (CH ₃) ₂		
(397))	r	2		X, X ₂	1	1 CF		Н	CH ₃ H
(398) 1	r	2	Q_sQ	X ₁ X ₂ X ₃ X ₄	,	1 CF	Н	Н	H2 H
(399) 1	r	2		X, X2	s	H CF		Н	
(400))	r	2	QsQ	**************************************	6	H		Н	CH ₃
(40)	1)	l r	3	QQ	X, X2,	6	H	CF ₃	Н	

(402) Ir 2 3 H H H CF3 H<	
(404) Ir 2	T +
(404) Ir 2 $(405) Ir 2$ $(406) Ir 2$ $(406) Ir 2$ $(407) Ir 2$ $(408) Ir 3$	1
$(406) \text{Ir} 2 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	X"H
(407) Ir 2	*
(408) Ir 2	<u> </u>
(408) 11 2	T _H
(409) Ir 2 X H H CN H	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
(410) Ir 2	X
(411) Ir 2	
(413) Ir 2	
(414) Ir 2	
(415) Rh 2	H
(416) Rh 2	

(417)	Rh	2		X, X,	Н	Н	CH₃	Н	
(418)	Ru	2		X, X ₂ X ₃	Н	Н	CH₃	Н	CH ₃ H
(419)	Ru	2		X_1 X_2 X_3 X_4	Н	Н	CH ₃	Н	H ₂ H ₂ H ₁ H ₁
(420)	Ru	2	+	X ₁ X ₂ X ₃	Н	Н	CH₃	Н	
(421)	0s	2	2	×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×	Н	Н	CH₃	Н	CH ₃ H
(422)	0s		2	X ₁ X ₂ X ₃	Н	Н	CH ₃	Н	H H
(423)	0s	+	2	X ₁ X ₂ X ₃	Н	Н	CH ₃	Н	
(424)	Po	1	1	X ₁ X ₂ X ₃ X ₄	Н	Н	CH ₃	Н	O CH ₃ H
(425)	P	d	1	X, X ₂	Н	Н	CH ₃	H	C H
(426)) P	t	1	×, ×,	, I	H	CH ₃	Н	CH ₃ H
(427) P	t	1	X, X,	.	н	CH ₃	Н	H ₂ H H H
(428) 1	r	2	X - X2	6	н сн	н	Н	() → H ₂ H
(429))	lr	2	X ₁ X ₂ ,	× ₃	H Ch	I ₃ H	Н	

(430)	lr	2			X ₁ X ₂ X ₃	Н	CH ₃	н	Н	H ₂ C CH ₃ H H ₃ C H ₃ H H ON H GH ₃
(431)	Ir	2			X, X ₂ X ₃	н	Н	CH ₃	Н	
(432)	lr	2			X ₁ X ₂ X ₃	Н	Н	CH ₃	Н	H ₂ H H ₂ H H ₃ H H ₄ H
(433)	Ir	2		₩	X1	Н	H	CH ₃	Н	H ₂ C ₂ CH ₃ H H ₃ C H H H H H H H H H H H H H H H H H H H
(434)	Ir	2			~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	Н	Н	Н	O CH ₃ H
(435)	ir	3			-Ç)	Н	Н	Н	Н	CH ₃ H
(436)	Ir	3			>	۲	Н	Н	Н	CH ₃ H
(437)	11	r 1	2		~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F	C		-	CH ₃ H
(438)) .11	r	2	0,0	-,:]	H		- H	CH ₃ H
(439))	r	2	SS CH ₃)	н	н	H	O CH ₃ H
(440)	r	2				H F	Н	ŀ	H2 H2

[0027]

金属がIr、Rh、Ru、Os の場合で、n=2 の場合、金属Mに結合するもう一つの配位子である環Cは、以下に示す構造を有する化合物のいずれかであることが好ましい。

【化9】

Wは、その他モノマー単位と反応して高分子共重合体を形成する 2 価から 6 価の基である。Wとしては、例えば、下記の $X_1 \sim X_5$ と同様の置換基であって、式(14)で表される結合基と結合する 2 価から 6 価の基を挙げることができる

 $X_1 \sim X_5$ は $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ 、 $-SiR^6R^7R^8$ 、および $-NR^9R^{10}$ (ただし、 $R^{1} \sim R^{10}$ は水素原子、ハロゲン原子、シアノ基、ニトロ基、炭素数 $1 \sim 22$ 個の直鎖、環状もしくは分岐アルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数 $6 \sim 30$ 個のアリール基、炭素数 $2 \sim 30$ 個のヘテロアリール基もしくは炭素数 $7 \sim 30$ 個のアラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基、ハロゲン置換アラルキル基を表し、 $R^{1} \sim R^{10}$ はそれぞれ同一であっても異なっていてもよい。)からなる群から選択される置換基であり、また、 $X_1 \sim X_5$ は同一であっても異なっていても良い。ここで、 $R^{1} \sim R^{10}$ は置換基を有していてもよく、置換基の例として、ハロゲン原

子、シアノ基、アルデヒド基、アミノ基、アルキル基、アルコキシ基、アルキル チオ基、カルボキシル基、スルホン酸基、ニトロ基等を挙げることができる。これらの置換基は、さらにハロゲン原子、メチル基等によって置換されていてもよい。

また、環Aは以下に示す構造を有する環状化合物のいずれかであることが好ましく、より好ましくはピリジン、キノリン、ベンゾオキサゾール、ベンゾチアゾール、ベンゾイミダゾール、ベンゾトリアゾール、イミダゾール、ピラゾール、オキサゾール、チアゾール、トリアゾール、ベンゾピラゾールまたはトリアジンである。

【化10】

(ここで $Z_1\sim Z_6$ は、それぞれ独立に $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ 、 $-SiR^6R^7R^8$ 、および $-NR^9R^{10}$ (ただし、 $R^1OR^3R^3$)は水素原子、ハロゲン原子、シアノ基、ニトロ基、炭素数 $1\sim 22$ 個の直鎖、環状もしくは分岐アルキル基又はそれらの水素原子の一部もしくは全部

がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数 $6 \sim 30$ 個のアリール基、炭素数 $2 \sim 30$ 個のヘテロアリール基もしくは炭素数 $7 \sim 30$ 個のアラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基、ハロゲン置換アラルキル基を表し、R $1 \sim R 10$ はそれぞれ同一であっても異なっていてもよい。)からなる群から選択される置換基であって、また、 $Z_1 \sim Z_6$ は、それぞれ同一であっても異なっていても良い。)ここで、R $1 \sim R 10$ は置換基を有していてもよく、置換基の例として、ハロゲン原子、シアノ基、アルデヒド基、アミノ基、アルキル基、アルコキシ基、アルキルチオ基、カルボキシル基、スルホン酸基、アルキル基、アルコキシ基、アルキルチオ基、カルボキシル基、スルホン酸基、ニトロ基等を挙げることができる。これらの置換基は、さらにハロゲン原子、メチル基等によって置換されていてもよい。

本発明の金属配位化合物を含む高分子共重合体は、式(1)~式(12)で表されるいずれかの金属配位化合物モノマー単位と、式(13)で表される置換又は非置換であってもよいキノリンモノマー単位と、置換または非置換であってもよいアリーレン及び/又はヘテロアリーレンモノマー単位とを少なくとも含有する共重合体であり、各モノマー単位を結合する基が、式(14):

【化11】

- (G) b - (14)

[0028]

本発明の金属配位化合物を含む高分子共重合体は、上記の各モノマー成分を少なくとも含んでいればよく、各モノマー単位は、いわゆるランダムコポリマーの

ように共重合体中にランダムに含まれていてもよいし、あるいはブロックコポリマーやグラフトコポリマーのように一部の特定のモノマー単位が局在して存在するような共重合体であってもよい。なお、上記の共重合体を構成する3種の各モノマー単位は、それぞれ一種類のモノマーであっても、2種類以上のモノマーが組み合わされたものであってもよい。

[0029]

[0030]

本発明で用いられる、式(13):

【化12】

で表されるキノリンモノマー単位は、単独で、または2種類以上を組み合わせて 用いることができる。

[0031]

本発明の式(13)のキノリンモノマー単位中、複数個のVは-R 1 、-OR 2 、-SR 3 、-OCOR 4 、-COOR 5 または-S i R 6 R 7 R 8 で表され、V はそれぞれ同一であっても、異なるものであってもよく、また、置換基V が複数個置換している場合、これらのV はそれぞれ同一の置換基であっても異なる種類の置換基であってもよい。 a は各々独立に 0 \sim 3 の整数である。

[0032]

一方、置換基VにおけるR¹~R⁸としては、それぞれ独立に、炭素数1~2 2個の直鎖アルキル基、環状アルキル基もしくは分岐アルキル基、または、炭素数2~30個のアリール基もしくはヘテロアリール基である。このような基としては、たとえば、メチル基、エチル基、プロピル基、シクロプロピル基、ブチル基、イソブチル基、シクロブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、シクロペンチル基、ノニル基、デシル基などの炭素数1~22個の直鎖アルキル基、環状アルキル基もしくは分岐アルキル基、また、フェニル基、ナフチル基、アントラセニル基、ビフェニル残基、ターフェニル残基、フラン残基、チオフェン残基、ピロール残基、オキサゾール残基、チアゾール残基、イミダゾール残基、ピリジン残基、ピリミジン残基、ピラジン残基、トリアジン残基、キノリン残基、キノキサリン残基などの炭素数2~30個のアリール基もしくはヘテロアリール基があげられる。

[0033]

本発明の式(13)のキノリンモノマー単位中、Vaとしては、それぞれ独立して、aが0、すなわち未置換のものであるか、あるいはVが-R 1 で表されるアルキル基、アリール基が直接置換したものが、溶解性および耐熱性の点から好ましいものである。また、置換基数は、aが0、すなわち未置換の場合を含めて、aが1または2であるものが、重合反応性の点で好ましいものである。さらに、アリール基としては、フェニル基が好ましいものである。

[0034]

また、Dとしては、オルトーフェニレン、メターフェニレン、パラーフェニレンが重合反応性の点で好ましいものである。Eとしては、単結合、一〇一、ビフェニレン、ジフェニルエーテルが重合反応性の点で好ましい。

[0035]

また、本発明で使用する置換または非置換であってもよいアリーレン及び/又はヘテロアリーレンモノマー単位としては、ベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセン、テトラセン、フルオレン、フェナントレン、クリセン、ピリジン、ピラジン、キノリン、イソキノリン、アクリジン、フェナン

トロリン、フラン、ピロール、チオフェン、オキサゾール、オキサジアゾール、チアジアゾール、トリアゾール、ベンゾオキサゾール、ベンゾオキサジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ベンゾチオフェンなどがあげられる。代表的な例としては、下記構造式で表されるものなどがあげられる。

【化13】

[0036]

これらのアリーレン及び/又はヘテロアリーレンモノマー単位の置換基Rは、各々独立に $-R^1$ 、 $-OR^2$ 、 $-SR^3$ 、 $-OCOR^4$ 、 $-COOR^5$ または $-SiR^6R^7R^8$ (ただし、 R^1 $-R^8$ は、水素原子、炭素数1 -22 個の直鎖、環状もしくは分岐アルキル基、または、炭素数2 -30 個のアリール基もしくはヘテロアリール基を表す)からなる群から選択される置換基であって、それぞれは同一であっても異なっていてもよく、アリーレン及び/又はヘテロアリーレン骨格の置換可能な位置に結合した置換基である。

[0037]

これらの置換基のうち、Rとしては、それぞれ独立して、未置換のもの、すなわち水素原子であるか、あるいは $-R^1$ で表されるアルキル基、アリール基、へ

テロアリール基が直接置換したもの、 $-OR^2$ で表される水酸基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基が、重合反応性および耐熱性の点から好ましいものである。

[0038]

[0039]

本発明の金属配位化合物を含む高分子共重合体中の全モノマー単位総数中の金属配位化合物モノマー単位の占めるモル分率は、0.1から30%が好ましく、0.5から20%がより好ましく、1から10%が最も好ましい。金属配位化合物モノマー単位が、0.1%未満であると発光色度が劣化しやすい傾向にあり、30%を超えると発光輝度が低くなる傾向にある。

[0040]

本発明の金属配位化合物を含む高分子共重合体中の全モノマー単位総数中のキノリンモノマー単位の占めるモル分率は、1から70%が好ましく、3から65%がより好ましく、5から50%が最も好ましい。キノリンモノマー単位が、1%未満であると発光輝度が低くなる傾向にあり、70%を超えると発光色度が劣化しやすい傾向にある。

[0041]

本発明の金属配位化合物を含む高分子共重合体中の全モノマー単位総数中のア

リーレン及び/又はヘテロアリーレン単位の占めるモル分率は、1から99%が好ましく、3から97%がより好ましく、5から95%が最も好ましい。アリーレン及び/又はヘテロアリーレンモノマー単位が、1%未満であると発光輝度が低くなる傾向にあり、99%を超えると発光色度が劣化しやすい傾向にある。

[0042]

なお、本発明の金属配位化合物を含む高分子共重合体に共重合させることのできる置換または非置換のトリフェニルアミン骨格を有するモノマー単位は、ポリマーの全モノマー単位総数中のモル分率で、0から30%であることが好ましい

[0043]

本発明の金属配位化合物を含む高分子共重合体は、種々の当業者公知の合成法により製造できる。例えば、各モノマー単位を結合する基が無い場合には、ヤマモト(T. Yamamoto)らのBull. Chem. Soc. Jap.、51巻、7号、2091頁(1978)およびゼンバヤシ(M. Zembayashi)らのTet. Lett., 47巻4089頁(1977)に記載されている方法を用いることができるが、SuzukiによりSynthetic Communications, Vol.11, No.7, p.513(1981)において報告されている方法が共重合体の製造には、一般的である。この反応は、芳香族ボロン酸(boronic acid)誘導体と芳香族ハロゲン化物の間でPd触媒化クロスカップリング反応(通常、「鈴木反応」と呼ばれる)を起こさしめるものであり、対応する芳香族環同士を結合する反応に用いることにより、本発明の金属配位化合物含有する高分子共重合体を製造することができる。

[0044]

また、この反応はPd(II)塩もしくはPd(0)錯体の形態の可溶性Pd化合物を必要とする。芳香族反応体を基準として $0.01\sim5$ モルパーセントのPd(PPh3) $_4$ 、 $_3$ 級ホスフィンリガンドとのPd(OAc) $_2$ 錯体およびPdCl2(dppf)錯体が一般に好ましいPd源である。この反応は塩基も必要とし、水性アルカリカーボネートもしくはバイカーボネートが最も好ましい。また、相間移動触媒を用いて、非極性溶媒中で反応を促進することもできる。

[0045]

本発明のポリマーの場合には、例えば、具体的に、次式 【化14】

(式中、R'はメチル基、エチル基、プロピル基などの低級アルキル基、あるいは2個のR'が互いに結合して環を形成するエチレン基、プロピレン基などの低級アルキレン基であり、VおよびD、E及びaは前述のとおりのものである)で表されるキノリン誘導体のジボロンエステルと、ジブロモ金属配位化合物誘導体モノマー、ジブロモアリーレン及び/又はジブロモヘテロアリーレンモノマーとを、パラジウム(0)触媒存在下、水溶性塩基により共重合させて製造することができる。

[0046]

各モノマー単位を結合する基がOの場合には、特開平9-136954号公報に記載されているようなジフルオロキノリンモノマーとジヒドロキシ金属配位化合物誘導体モノマー及びジヒドロキシアリーレン及び/又はジヒドロキシへテロアリーレンモノマー、ジブロモ金属配位化合物誘導体モノマー及びジブロモアリーレン及び/又はジブロモへテロアリーレンモノマーとジヒドロキシキノリンモノマー、またはジブロモキノリンモノマー及びジブロモアリーレン及び/又はジブロモキノリンモノマー及びジブロモアリーレン及び/又はジブロモへテロアリーレンモノマーとジヒドロキシ金属配位化合物誘導体モノマーを塩基存在下、極性溶媒中で反応させることによって本発明の金属配位化合物を含む高分子共重合体を製造できる。この反応は、本発明の金属配位化合物を含む高分子共重合体を製造するための反応を、ジヒドロキシ化合物を脱プロトン化しうる塩基の存在下で行う。このような塩基としては、アルカリ及びアルカリ土類金属炭酸塩及び水酸化物、例えば、炭酸カリウム、水酸化カリウム、炭酸ナトリ

ウム、水酸化ナトリウム等が挙げられる。ジヒドロキシ化合物の酸性度が低くて水酸化ナトリウムでは十分に脱プロトン化されない場合には、より強い塩基、例えば、水素化ナトリウム等の金属水素化物、ブチルリチウム、ナトリウムアミド等の金属アミドなどを用いてもよい。この塩基とジヒドロキシ化合物との反応時には、水が生成する。この水は、共沸蒸留により除去することができる。

[0047]

[0048]

本発明の金属配位化合物含有高分子共重合体は、共役あるいは非共役ポリマーに混合させたポリマー組成物として用いることができる。ポリマー組成物として用いることができる共役あるいは非共役のポリマーとしては、例えば、置換または非置換であってもよいポリフェニレン誘導体、ポリフルオレン誘導体、ポリフェニレン誘導体、ポリチオフェン誘導体、ポリキノリン誘導体、ポリトリフェニルアミン誘導体、ポリビニルカルバゾール誘導体、ポリアニリン誘導体、ポリアミドイミド誘導体、ポリカーボネート誘導体、ポリアクリル誘導体、ポリスチレン誘導体などが挙げられる。また、これら共役あるいは非共役のポリマーとしては、必要に応じてその他モノマー単位として、置換または非置換であってもよいアリーレン及び/又はヘテロアリーレンモノマー単

位であるベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセン、テトラセン、フルオレン、フェナントレン、クリセン、ピリジン、ピラジン、キノリン、イソキノリン、アクリジン、フェナントロリン、フラン、ピロール、チオフェン、オキサゾール、オキサジアゾール、チアジアゾール、トリアゾール、ベンゾオキサゾール、ベンゾオキサジアゾール、ベンゾチアジアゾール、ベンゾトリアゾール、ベンゾチオフェンなど、置換または非置換のトリフェニルアミン骨格を有するモノマー単位であるトリフェニルアミン、N-(4-ブチルフェニル)-N-ジフェニルアミン、N,N'-ジフェニル-N,N'-ビス(3-メチルフェニル)-[1,1'-ビフェニル]-4,4'-ジアミン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(2-ナフチル)-[1,1'-ビフェニル]-4,4'-ジアミンなどと共重合したものなどが挙げられる。

[0049]

本発明の金属配位化合物を含む高分子共重合体は、エレクトロルミネセンス素子の活性層材料として使用できる。活性層とは、層が電界の適用時に発光し得るもの(発光層)か、および/または、正および/または負の電荷の注入および/またはそれらの移動を改良するもの(電荷注入層または電荷移動層)を意味する

[0050]

本発明のポリマーをエレクトロルミネセンス素子の活性層材料として使用するためには、溶液から、または、フィルムの形状で基体に、当業者に公知の方法、例えば、インクジェット、キャスト、浸漬、印刷またはスピンコーティングなどを用いて積層することにより達成することができる。このような積層方法は、通常、 $-20\sim+300$ \sim 00 \sim

[0051]

本発明のポリマーからなる本発明のエレクトロルミネセンス素子の一般構造は、米国特許第4,539,507号および米国特許第5,151,629号に記載されている。また、ポリマー含有のエレクトロルミネセンス素子については、例えば、国際公開WO第90/13148号または欧州特許公開第0 443

861号に記載されている。

[0052]

これらは通常、電極の少なくとも1つが透明であるカソードとアノードとの間に、エレクトロルミネセント層(発光層)を含むものである。さらに、1つ以上の電子注入層および/または電子移動層が、エレクトロルミネセント層(発光層)とカソードとの間に挿入され得るもので、および/または、1つ以上の正孔注入層および/または正孔移動層が、エレクトロルミネセント層(発光層)とアノードとの間に挿入され得るものである。カソード材料としては、例えば、Li、Ca、Mg、AL、In、Cs、Mg/Ag、LiFなどの金属または金属合金であるのが好ましい。アノードとしては、透明基体(例えば、ガラスまたは透明ポリマー)上に、金属(例えば、Au)または金属導電率を有する他の材料、例えば、酸化物(例えば、ITO:酸化インジウム/酸化錫)を使用することもできる。

[0053]

本発明を以下の実施例により説明するが、これらに限定されるものではない。

[0054]

【実施例】

実施例1 金属配位化合物(1)の合成

マグネシウム(1.9g、80mmol)のTHF混合物中に、3ープロモー9ーメチルカルバゾール(30mmol)のTHF溶液を、アルゴン気流下、よく攪拌しながら徐々に加え、グリニヤール試薬を調製した。得られたグリニヤール試薬を、トリメチルホウ酸エステル(300mmol)のTHF溶液に-78 でよく攪拌しながら、2時間かけて徐々に滴下した後、2日間室温で攪拌した。反応混合物を粉砕した氷を含有する5%希硫酸中に注ぎ攪拌した。得られた水溶液をトルエンで抽出し、抽出物を濃縮したところ、無色の固体が得られた。得られた固体をトルエン/アセトン(1/2)から再結晶することにより、無色結晶としてカルバゾール誘導体ボロン酸が得られた(40%)。得られたカルバゾール誘導体ボロン酸(12mmol)と1、<math>2-x2ンジオール(30mmol)をトルエン中で10時間還流した後、トルエン/アセトン(1/4)から再結

晶したところ、カルバゾール誘導体ボロンエステルが無色結晶として得られた。 【化15】

[0055]

2-プロモピリジン($10\,\mathrm{mm\,o}$ 1)、カルバゾール誘導体ボロンエステル($10\,\mathrm{mm\,o}$ 1)、 $P\,\mathrm{d}$ (0)($P\,\mathrm{P\,h}$ 3) $_4$ (0. $2\,\mathrm{mm\,o}$ 1)のトルエン溶液 に、アルゴン気流下、 $2\,\mathrm{Mo}\,\mathrm{K}\,_2\,\mathrm{CO}\,_3$ 水溶液を加え、激しく攪拌しながら $_4$ 8 時間還流した。反応混合物を室温まで冷却した後、大量のメタノール中に注ぎ、 固体を沈殿させた。析出した固体を吸引濾過し、メタノールで洗浄することにより、 $_3-$ ($_2-$ ピリジル) $_9-$ メチルカルバゾールの固体を得た。

【化16】

[0056]

200m103つロフラスコに塩化イリジウム(III) (1.7mmo1)、3-(2-ピリジル)-9-メチルカルバゾール(7.58<math>mmo1)、エトキシエタノール50m1と水20m1を入れ、窒素気流下室温で30分間攪拌し、その後24時間還流攪拌した。反応物を室温まで冷却し、沈殿物を濾取水洗後、エタノール及びアセトンで順次洗浄した。室温で減圧乾燥し、テトラキス[3-(2-ピリジル)カルバゾールーN, C2] ($\mu-ジ$ クロロ)ジイリジウム(III)の淡黄色粉末を得た。

【化17】

[0057]

 $200 \, \text{mlo} \, 30 \, \text{DT}$ フラスコにエトキシエタノール $70 \, \text{ml}$ 、テトラキス [3 $-(2-\mathcal{C}$ リジル) $-9-\mathcal{A}$ チルカルバゾールーN,C] $(\mu-\mathcal{C})$ ロロ) イリジウム (III) $(0.7 \, \text{mmol})$ 、下記構造式で表されるアセチルアセトン誘導体 $(2.10 \, \text{mmol})$ と炭酸ナトリウム $(9.43 \, \text{mmol})$ を入れ、窒素気流下室温で攪拌し、その後 $15 \, \text{時間還流攪拌した}$ 。

【化18】

$$0 \xrightarrow{CH_3} \xrightarrow{Br} \xrightarrow{H} \xrightarrow{H}$$

$$0 \xrightarrow{CH_3} \xrightarrow{H} \xrightarrow{Br} \xrightarrow{Br}$$

反応物を氷冷し、沈殿物を濾取水洗した。この沈殿物をシリカゲルカラムクロマト (溶離液:クロロホルム/メタノール:30/1) で精製し、ビス [3-(2-2) (ジブロモベンジルアセチルアセトナト) イリジウム (III) の淡黄色粉末を得た。

【化19】

[0058]

実施例2 金属配位化合物(125)の合成

マグネシウム(1.9g、80mmo1)のTHF混合物中に、2ーヒドロキシー6ーブロモー9ーメチルカルバゾール(30mmo1)のTHF溶液を、アルゴン気流下、よく攪拌しながら徐々に加え、グリニヤール試薬を調製した。得られたグリニヤール試薬を、トリメチルホウ酸エステル(300mmo1)のTHF溶液に-78℃でよく攪拌しながら、2時間かけて徐々に滴下した後、2日間室温で攪拌した。反応混合物を粉砕した氷を含有する5%希硫酸中に注ぎ攪拌した。得られた水溶液をトルエンで抽出し、抽出物を濃縮したところ、無色の固体が得られた。得られた固体をトルエン/アセトン(1/2)から再結晶することにより、無色結晶としてカルバゾール誘導体ボロン酸が得られた(40%)。得られたカルバゾール誘導体ボロン酸(12mmo1)と1、2ーエタンジオール(30mmo1)をトルエン中で10時間還流した後、トルエン/アセトン(1/4)から再結晶したところ、カルバゾール誘導体ボロンエステルが無色結晶として得られた。

【化20】

[0059]

2-プロモピリジン($10\,\mathrm{mm\,o}$ 1)、カルバゾール誘導体ボロンエステル($10\,\mathrm{mm\,o}$ 1)、 $P\,\mathrm{d}$ (0)($P\,\mathrm{P}\,\mathrm{h}$ 3) 4 (0. $2\,\mathrm{mm\,o}$ 1)のトルエン溶液 に、アルゴン気流下、 $2\,\mathrm{M}$ の $K_2\,\mathrm{CO}$ 3 水溶液を加え、激しく攪拌しながら $4\,8$ 時間還流した。反応混合物を室温まで冷却した後、大量のメタノール中に注ぎ、 固体を沈殿させた。析出した固体を吸引濾過し、メタノールで洗浄することにより、2-ヒドロキシー6-(2-ピリジル)-9-メチルカルバゾールの固体を 得た。

【化21】

[0060]

【化22】

$$\begin{array}{c} 2X \\ HO \\ CH_3 \end{array}$$

[0.061]

200m1の3つ口フラスコにエトキシエタノール70m1、テトラキス [2 ーヒドロキシー6ー(2ーピリジル) ー9ーメチルカルバゾールーN, C] (μ ージクロロ) イリジウム(III) (0.7mmo1)、下記構造式で表されるアセチルアセトン誘導体(2.10mmo1)と炭酸ナトリウム(9.43mmo1)を入れ、窒素気流下室温で攪拌し、その後15時間還流攪拌した。

【化23】

反応物を氷冷し、沈殿物を濾取水洗した。この沈殿物をシリカゲルカラムクロマト (溶離液:クロロホルム/メタノール:30/1) で精製し、ビス [2-ビドロキシー6-(2-ピリジル) -9-メチルカルバゾール-N, C 2] (ジブロモベンジルアセチルアセトナト) イリジウム (III) の淡黄色粉末を得た。

【化24】

$$\begin{array}{c} \text{HO} \\ \text{Ho} \\ \text{Ho} \\ \text{N} \\ \text{Ho} \\ \text{N} \\ \text{CI} \\ \text{N} \\ \text{CH}_3 \\ \text{OH} \\ \text{OH} \\ \end{array}$$

[0062]

実施例3 金属配位化合物(253)の合成

マグネシウム(1.9g、80mmol)のTHF混合物中に、2-プロモー9-フルオレノン(30mmol)のTHF溶液を、アルゴン気流下、よく攪拌しながら徐々に加え、グリニヤール試薬を調製した。得られたグリニヤール試薬を、トリメチルホウ酸エステル(300mmol)のTHF溶液に-78℃でよく攪拌しながら、2時間かけて徐々に滴下した後、2日間室温で攪拌した。反応混合物を粉砕した氷を含有する5%希硫酸中に注ぎ攪拌した。得られた水溶液をトルエンで抽出し、抽出物を濃縮したところ、無色の固体が得られた。得られた固体をトルエン/アセトン(1/2)から再結晶することにより、無色結晶としてフルオレノン誘導体ボロン酸が得られた(40%)。得られたフルオレノン誘導体ボロン酸が得られた(40%)。得られたフルオレノン誘導体ボロン酸が得られた(40%)。得られたフルオレノン誘導体ボロン酸が得られた(40%)の時間還流した後、トルエン/アセトン(1/4)から再結晶したところ、フルオレノン誘導体ボロンエステルが無色結晶として得られた。

【化25】

[0063]

2-ブロモピリジン(10mmol)、フルオレノン誘導体ボロンエステル(

 $10\,\mathrm{mm\,o\,1}$)、 $\mathrm{P\,d\,(0)}$ ($\mathrm{P\,P\,h\,3}$) $_4$ ($0.2\,\mathrm{mm\,o\,1}$) のトルエン溶液に、アルゴン気流下、 $2\,\mathrm{Mo\,K\,2\,C\,O\,3}$ 水溶液を加え、激しく攪拌しながら $4\,8$ 時間還流した。反応混合物を室温まで冷却した後、大量のメタノール中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、メタノールで洗浄することにより、 $2-(2-\mathrm{ピリジル})-9-\mathrm{フルオレノンの固体を得た}$ 。

【化26】

[0064]

 $200 \, \mathrm{m}\, 1$ の $30 \, \mathrm{D}\, \mathrm{D}\, 7$ フラスコに塩化イリジウム(III) (黄色粉末を得た。

【化27】

[0065]

200mlの3つ口フラスコにエトキシエタノール70ml、テトラキス[2

-(2-ピリジル)-9-フルオレノン-N, C] $(\mu-$ ジクロロ) イリジウム (III) (0.7 mmol) 、下記構造式で表されるアセチルアセトン誘導体 (2.10 mmol) と炭酸ナトリウム (9.43 mmol) を入れ、窒素気流下室温で攪拌し、その後15時間還流攪拌した。

【化28】

反応物を氷冷し、沈殿物を濾取水洗した。この沈殿物をシリカゲルカラムクロマト (溶離液:クロロホルム/メタノール:30/1) で精製し、ビス [2-(2-(2-2))) -9-(2-2) (ジブロモベンジルアセチルアセトナト) イリジウム (111) の淡黄色粉末を得た。

【化29】

$$\begin{array}{c} O_{C} \\$$

[0066]

実施例4 キノリン誘導体 ジボロン酸エステル (Q-1) の合成 マグネシウム (1.9 g、80 mm o 1) のTHF混合物中に、6,6'ービス [2-(4-)プロモフェニル) -3,4-ジフェニルキノリン] (30 mm o 1) のTHF溶液を、アルゴン気流下に、よく攪拌しながら徐々に加え、グリニヤール試薬を調製した。得られたグリニヤール試薬を、トリメチルホウ酸エステル (300 mm o 1) のTHF溶液に-78でよく攪拌しながら、2時間かけて徐々に滴下した後、2日間室温で攪拌した。反応混合物を粉砕した氷を含有する5%希硫酸中に注ぎ、攪拌した。得られた水溶液をトルエンで抽出し、抽出物

を濃縮したところ、無色の固体が得られた。得られた固体をトルエン/アセトン (1/2) から再結晶することにより、無色結晶としてキノリン誘導体 ジボロン酸が得られた (40%)。得られたキノリン誘導体 ジボロン酸 $(12\,\mathrm{mmo}\,\mathrm{l})$ と1, $2-\mathrm{x}$ タンジオール $(30\,\mathrm{mmo}\,\mathrm{l})$ をトルエン中で $10\,\mathrm{bh}$ 間還流した後、トルエン/アセトン (1/4) から再結晶したところ、キノリン誘導体ジボロン酸エステルが無色結晶として得られた (83%)。

[0067]

実施例 5 金属配位化合物を含む高分子共重合体の合成(P-1)

実施例1で合成した金属配位化合物(1)(1 mm o 1)、下記構造式で表されるジブロモジフェニルオキサジアゾール(9 mm o 1)、ジシクロヘキシルオキシジブロモベンゼン(5 mm o 1)、実施例4で合成したキノリン誘導体 ジボロン酸エステル(Q-1)(5 mm o 1)、Pd(0)(PPh 3)4(0・2 mm o 1)のトルエン溶液に、アルゴン気流下、2 MのK 2 CO 3 水溶液を加え、激しく攪拌しながら、4 8 時間還流した。

【化30】

反応混合物を室温まで冷却した後、大量のメタノール中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、メタノールで洗浄することにより、固体を得た。濾取した固体をトルエンに溶解した後、大量のアセトン中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、アセトンで洗浄することにより、固体を得た。さらに、上記アセトンによる再沈処理を2回繰り返した。次に、得られた固体をトルエンに溶解した後、陽イオン・陰イオン交換樹脂(オルガノ社製イオン交換樹脂)を加え、1時間攪拌した後、吸引濾過してポリマー溶液を回収した

。さらに、上記イオン交換樹脂による処理を 2 回繰り返した。回収したポリマー溶液を大量のメタノール中に注ぎ、固体を沈殿させた。さらに、得られた固体をソックスレー抽出器中でアセトンにより、 2 4 時間抽出・洗浄して金属配位化合物を含む高分子共重合体の合成 (P-1) を得た。

[0068]

実施例 6 金属配位化合物を含む高分子共重合体の合成 (P-2)

実施例 2 で合成した金属配位化合物(125)(1 mm o 1)、下記構造式で表されるジブロモジフェニルオキサジアゾール(9 mm o 1)、ジシクロヘキシルオキシジブロモベンゼン(5 mm o 1)、実施例 4 で合成したキノリン誘導体ジボロン酸エステル(Q-1)(5 mm o 1)、P d(0)(P P h 3) 4(0. 2 mm o 1)のトルエン溶液に、アルゴン気流下、2 Mの K 2 C O 3 水溶液を加え、激しく攪拌しながら、4 8 時間還流した。

【化31】

反応混合物を室温まで冷却した後、大量のメタノール中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、メタノールで洗浄することにより、固体を得た。濾取した固体をトルエンに溶解した後、大量のアセトン中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、アセトンで洗浄することにより、固体を得た。さらに、上記アセトンによる再沈処理を2回繰り返した。次に、得られた固体をトルエンに溶解した後、陽イオン・陰イオン交換樹脂(オルガノ社製イオン交換樹脂)を加え、1時間攪拌した後、吸引濾過してポリマー溶液を回収した。さらに、上記イオン交換樹脂による処理を2回繰り返した。回収したポリマー溶液を大量のメタノール中に注ぎ、固体を沈殿させた。さらに、得られた固体を

ソックスレー抽出器中でアセトンにより、24時間抽出・洗浄して金属配位化合物を含む高分子共重合体の合成 (P-2) を得た。

[0069]

実施例7 金属配位化合物を含む高分子共重合体の合成 (P-3)

実施例 3 で合成した金属配位化合物(2 5 3)(1 mm o 1)、下記構造式で表されるジブロモジフェニルオキサジアゾール(9 mm o 1)、ジシクロヘキシルオキシジブロモベンゼン(5 mm o 1)、実施例 4 で合成したキノリン誘導体ジボロン酸エステル(Q-1)(5 mm o 1)、Pd(0)(PPh 3) 4(0.2 mm o 1)のトルエン溶液に、アルゴン気流下、2 MのK 2 CO 3 水溶液を加え、激しく攪拌しながら、4 8 時間還流した。

【化32】

反応混合物を室温まで冷却した後、大量のメタノール中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、メタノールで洗浄することにより、固体を得た。濾取した固体をトルエンに溶解した後、大量のアセトン中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、アセトンで洗浄することにより、固体を得た。さらに、上記アセトンによる再沈処理を2回繰り返した。次に、得られた固体をトルエンに溶解した後、陽イオン・陰イオン交換樹脂(オルガノ社製イオン交換樹脂)を加え、1時間攪拌した後、吸引濾過してポリマー溶液を回収した。さらに、上記イオン交換樹脂による処理を2回繰り返した。回収したポリマー溶液を大量のメタノール中に注ぎ、固体を沈殿させた。さらに、得られた固体をソックスレー抽出器中でアセトンにより、24時間抽出・洗浄して金属配位化合物を含む高分子共重合体の合成(P-3)を得た。

[0070]

実施例8 有機EL素子の作製(1)

実施例 5 で得た金属配位化合物を含む高分子共重合体(P-1)のトルエン溶液(1.0wt%)を、ITO(酸化インジウム錫)を 2mm幅にパターンニングしたガラス基板上に、乾燥窒素環境下でスピン塗布してポリマ発光層(膜厚 70nm)を形成した。次いで、乾燥窒素環境下でホットプレート上で 80% 50mm0 間加熱乾燥した。得られたガラス基板を真空蒸着機中に移し、上記発光層上に 5mm0 に関厚 5mm0 5

[0071]

実施例 9 有機 E L 素子の作製 (2)

実施例 6 で得た金属配位化合物を含む高分子共重合体(P-2)のトルエン溶液(1.0wt%)を、ITO(酸化インジウム錫)を 2mm幅にパターンニングしたガラス基板上に、乾燥窒素環境下でスピン塗布してポリマ発光層(膜厚 70nm)を形成した。次いで、乾燥窒素環境下でホットプレート上で 80% 50mm0 間加熱乾燥した。得られたガラス基板を真空蒸着機中に移し、上記発光層上に LiF(膜厚 0.5nm)、AL(膜厚 100nm)の順に電極を形成した。有機 EL素子の特性は室温にて、電流電圧特性をヒューレットパッカード社製の微小電流計 4140Bで測定し、発光輝度はトプコン社製 SR-3で測定した。 ITOを正極、LiF/Al を陰極にして電圧を印加したところ、約5 V でオレンジ色発光($\lambda=590nm$)が観測された。このオレンジ色発光における色調の変化は、25%で、500時間経過後も認められなかった。

[0072]

実施例10 有機EL素子の作製(3)

金属配位化合物を含む高分子共重合体(P-1)の代わりに金属配位化合物を

[0073]

比較例1

金属配位化合物を含む高分子共重合体(P-1)の代わりに下記構造式で示されるポリキノリンを用いた以外は、実施例 8 と同様にしてITO/ポリマー発光層/Ca/AL素子を作製した。得られたITO/ポリマー発光層/Ca/AL素子を電源に接続し、ITOを正極、Ca を陰極にして電圧を印加したところ、約 10 V で青色発光($\lambda = 4$ 3 0 n m)が観測されたが、時間と共に発光色が青色から水色に変化した。

【化33】

[0074]

比較例 2

金属配位化合物を含む高分子共重合体(P-1)の代わりに下記構造式で表される(ジオクチルフルオレン/ベンゾチアゾール)共重合体を用いた以外は、実施例8と同様にしてITO/ポリマー発光層/LiF/AL素子を電源に接続し、ITOを正られたITO/ポリマー発光層/LiF/AL素子を電源に接続し、ITOを正

極、LiF/ALを陰極にして電圧を印加したところ、約8Vで黄色発光($\lambda=548nm$)が観測されたが、時間と共に発光色が黄色から黄白色に変化した。

【化34】

[0075]

比較例3

ITO (酸化インジウム錫) を 2 mm幅にパターンニングしたガラス基板上に、ホール輸送層として α - NPDを、 10^{-5} Paの真空チャンバー内で抵抗加熱による真空蒸着法にて、膜厚 40 nm形成した。その上に、下記構造式で示される金属配位化合物 Ir (ppy) 3 を CBPと重量比が 5 % になるように共蒸着を行った。

【化35】

さらに、電子輸送層として前記Alq3を30nm蒸着した。 この上に、陰極電極層としてLiFを0.5~2nm、Alを100~150nm蒸着した。

有機EL素子の特性は室温にて、電流電圧特性をヒューレットパッカード社製

の微小電流計 4 1 4 0 B で測定し、発光輝度はトプコン社製 S R - 3 で測定した。得られた素子を電源に接続し、I T O を正極、L i F / A l を陰極にして電圧を印加したところ、約 6 V で緑色発光(λ = 5 1 6 n m)が観測された。

一定電流 (50 m A / c m 2) で駆動したときの輝度半減時間を測定したところ、100時間であった。

[0076]

【発明の効果】

本発明のポリキノリン共重合体は、例えば、有機EL素子用材料として好適である。これらは、中でも、良好な発光の色純度および安定性、良好なフィルム形成能を示す。

【書類名】 要約書

【要約】

【課題】 色純度に優れる青色りん光発光を有する金属配位化合物を含む高分子 共重合体を提供すること、また、青色から赤色に至る様々な色の発光を有し、駆 動寿命の長い金属配位化合物を含む高分子共重合体を提供すること。

【解決手段】 式(1)~式(12):

 $B:>0, >S, >C=0, >SO_2, >CR_2$

で表されるいずれかの金属配位化合物モノマー単位と、置換又は非置換であってもよい下記一般式 (13) で表されるモノマー単位

で表されるキノリンモノマー単位と、置換または非置換であってもよいアリーレン及び/又はヘテロアリーレンモノマー単位と、を含む共重合体であって、前記各モノマー単位を結合する基が、式(14):

【化3】

$$-(G)b-(14)$$

で表される結合基、からなる金属配位化合物含有高分子共重合体。

【選択図】 なし

1

特願2003-173799

出願人履歴情報

識別番号

[000004455]

1. 変更年月日 [変更理由] 住 所

1993年 7月27日

理由] 住所変更

東京都新宿区西新宿2丁目1番1号

氏 名 日立化成工業株式会社