有限補集合位相

1 有限補集合位相

定義 1.1. $\{\emptyset\} \cup \{U \subset X \mid U^c$ が有限集合 なる位相を有限補集合位相 (cofinite 位相) という.

有限補集合位相を \mathcal{O}_{cf} で表すことにする.

命題 1.2. X が有限集合でないならば, (X, \mathcal{O}_{cf}) はハウスドルフ空間でない.

証明・ハウスドルフ空間であると仮定する.好きに異なる二点 $p,q\in\mathbb{R}$ をとる.p,q それぞれの開近傍 U_p,U_q で $U_p\cap U_q=\varnothing$ となるものをとる. $U_q\subset U_p^c$ であるので U_q は有限集合である.従って, U_q^c は有限集合ではないので開集合でなくなる.よって矛盾である.

命題 **1.3.** (X, \mathcal{O}_{cf}) は T1 空間である.

証明. 二点 $p,q \in X$ に対してそれぞれ $X \setminus \{p\}, X \setminus \{q\}$ ととればよい.

命題 1.4. $(\mathbb{R}^n, \mathcal{O}_{cf})$ は T1 空間だがハウスドルフ空間ではない.

証明. \mathbb{R}^n は有限集合でない.

命題 **1.5.** (X, \mathcal{O}_{cf}) はコンパクトである.

証明. 任意に開被覆 $\mathcal{U}=\{U_{\lambda}\}$ をとる. 適当に $U\in\{U_{\lambda}\}$ をとると, $\mathbb{R}\setminus U$ は有限集合なので, それを $\{p_1,p_2,\ldots,p_N\}$ とする. p_i を含む $\mathcal{U}\setminus\{U\}$ の集合を U_i , とすると, $\mathcal{U},\mathcal{U}_1,\ldots,\mathcal{U}_N$ で \mathbb{R}^n を被覆できる. \square

定義 1.6. $V \subset X, p \in X$ とする. V は, p の開近傍 U_p で $U_p \subset V$ をみたすものが存在するとき, p の近傍であるという.

命題 1.7. X が不可算集合であるならば, (X, \mathcal{O}_{cf}) は第一可算公理を満たさない.

証明.第一可算公理を満たすとする.適当に $p\in\mathbb{R}^n$ をとり,p の可算基本近傍系 $\mathcal{V}_p\coloneqq \left\{V\mid V$ は p の近傍 $\right\}$ をとる. $\left\{p\right\}\cup\left(\bigcup_{v_i\subset\mathcal{V}_p}V_i^c\right)$ は可算集合となるので,不可算集合 \mathbb{R}^n と一致しない.そこで,

$$q \in \mathbb{R}^n \setminus \left(\{p\} \cup (\bigcup_{v_i \subset \mathcal{V}_p} V_i^c) \right)$$

をとる. $q \in V_i$ となるので $V_i \not\subset \mathbb{R} \setminus \{q\}$ である. 一方で, $p \in \mathbb{R}^n \setminus \{q\}$ であり, $\mathbb{R}^n \setminus \{q\}$ の補集合は有限であるので, これは p の開近傍である. 故に近傍であるので, $V_i \in \mathcal{V}_p$ で $V_i \subset \mathbb{R}^n \setminus \{q\}$ となるものがとれるので矛盾する.

2 可算補集合位相

定義 ${f 2.1.}\{arnothing\}\cup \left\{U\subset X U^c$ が可算集合 $ brace$ なる位相を可算補集合位相 (cocountable) という.	
可算補集合位相を \mathcal{O}_{cc} で表すことにする.	
命題 2.2. X が不可算集合であるならば $,(\mathbb{X},\mathcal{O}_{cc})$ はハウスドルフ空間ではない.	
証明. 命題 1.2 を真似ればよい.	
命題 $2.3.$ $(\mathbb{X},\mathcal{O}_{cc})$ は $\mathrm{T1}$ 空間である.	
証明. 命題 1.3 を真似ればよい.	
命題 $2.4.$ $(\mathbb{X},\mathcal{O}_{cc})$ はリンデレーフである.	
証明. 命題 1.5 を真似ればよい.	
命題 2.5. X が不可算集合であるならば, (X,\mathcal{O}_{cc}) は第一可算公理を満たさない.	
証明. 命題 1.7 を真似ればよい.	