Linear classification

Course of Machine Learning Master Degree in Computer Science

University of Rome "Tor Vergata"

a.a. 2020-2021

Giorgio Gambosi

Classification

- value t to predict are from a discrete domain, where each value denotes a class
- most common case: disjoint classes, each input has to assigned to exactly one class
- input space is partitioned into decision regions
- in linear classification models decision boundaries are linear functions of input x (D-1-dimensional hyperplanes in the D-dimensional feature space)
- datasets such as classes correspond to regions which may be separated by linear decision boundaries are said linearly separable

Regression and classification

- Regression: the target variable t is a vector of reals
- Classification: several ways to represent classes (target variable values)
- \blacksquare Binary classification: a single variable $t\in\{0,1\}$, where t=0 denotes class C_0 and t=1 denotes class C_1
- K > 2 classes: "1 of K" coding. t is a vector of K bits, such that for each class C_j all bits are 0 except the j-th one (which is 1)

Approaches to classification

Three general approaches to classification

- In find $f: \mathbf{X} \mapsto \{1, \dots, K\}$ (discriminant function) which maps each input \mathbf{x} to some class C_i (such that $i = f(\mathbf{x})$)
- **2** discriminative approach: determine the conditional probabilities $p(C_j|\mathbf{x})$ (inference phase); use these distributions to assign an input to a class (decision phase)
- **generative approach**: determine the class conditional distributions $p(\mathbf{x}|C_j)$, and the class prior probabilities $p(C_j)$; apply Bayes' formula to derive the class posterior probabilities $p(C_j|\mathbf{x})$; use these distributions to assign an input to a class

Discriminative approaches

- Approaches 1 and 2 are discriminative: they tackle the classification problem by deriving from the training set conditions (such as decision boundaries) that , when applied to a point, discriminate each class from the others
- The boundaries between regions are specify by discrimination functions

Generalized linear models

- In linear regression, a model predicts the target value; the prediction is made through a linear function $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ (linear basis functions could be applied)
- In classification, a model predicts probabilities of classes, that is values in [0,1]; the prediction is made through a generalized linear model $y(\mathbf{x}) = f(\mathbf{w}^T\mathbf{x} + w_0)$, where f is a non linear activation function with codomain [0,1]
- **b** boundaries correspond to solution of $y(\mathbf{x}) = c$ for some constant c; this results into $w^T \mathbf{x} + w_0 = f^{-1}(c)$, that is a linear boundary. The inverse function f^{-1} is said link function.

Generative approaches

- Approach 3 is generative: it works by defining, from the training set, a model of items for each class
- The model is a probability distribution (of features conditioned by the class) and could be used for random generation of new items in the class
- By comparing an item to all models, it is possible to verify the one that best fits

Linear discriminant functions in binary classification

- Decision boundary: D-1-dimensional hyperplane $y(\mathbf{x})=0$ of all points s.t. $\mathbf{w}^T \mathbf{x} + w_0 = 0$
- Given $\mathbf{x}_1, \mathbf{x}_2$ on the hyperplane, $y(\mathbf{x}_1) = y(\mathbf{x}_2) = 0$. Hence,

$$\mathbf{w}^{T}(\mathbf{x}_1) - \mathbf{w}^{T}(\mathbf{x}_2) = \mathbf{w}^{T}(\mathbf{x}_1 - \mathbf{x}_2) = 0$$

that is, $\mathbf{x}_1 - \mathbf{x}_2$, w orthogonal

- For any x s.t. y(x) = 0, $\mathbf{w}^T \mathbf{x}$ is the length of the projection of x in the direction of **w** (orthogonal to the hyperplane $y(\mathbf{x}) = 0$), in multiples of $||\mathbf{w}||_2$
- By normalizing wrt to $||\mathbf{w}||_2 = \sqrt{\sum_i w_i^2}$, we get the length of the projection of \mathbf{x} in the direction orthogonal to the hyperplane, assuming $||\mathbf{w}||_2 = 1$
- Since $\mathbf{w}^T \mathbf{x} = -w_0$.

$$\frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||} = -\frac{w_0}{||\mathbf{w}||}$$

thus, the distance is determined by the threshold w_0

Linear discriminant functions in binary classification

- In general, for any \mathbf{x} , $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ returns the distance (in multiples of $||\mathbf{w}||$) of x from the hyperplane
- The sign of the returned value discriminates in which of the regions separated by the hyperplane the point lies

First approach

- Define K-1 discrimination functions
- Function f_i (1 ≤ i ≤ K − 1) discriminates points belonging to class C_i from points belonging to all other classes: if $f_i(\mathbf{x}) > 0$ then $\mathbf{x} \in C_i$, otherwise $\mathbf{x} \notin C_i$
- The green region belongs to both \mathcal{R}_1 and \mathcal{R}_2

Second approach

- Define K(K-1)/2 discrimination functions, one for each pair of classes
- Function f_{ij} ($1 \le i < j \le K$) discriminates points which might belong to C_i from points which might belong to C_i
- Item x is classified on a majority basis
- The green region is unassigned

Third approach

Define K linear functions

$$y_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0} \qquad 1 \le i \le K$$

Item \mathbf{x} is assigned to class C_k iff $y_k(\mathbf{x}) > y_j(\mathbf{x})$ for all $j \neq k$: that is,

$$k = \operatorname*{argmax}_{j} y_{j}(\mathbf{x})$$

■ Decision boundary between C_i and C_j : all points \mathbf{x} s.t. $y_i(\mathbf{x}) = y_j(\mathbf{x})$, a D-1-dimensional hyperplane

$$\left(\mathbf{w}_i - \mathbf{w}_j\right)^T \mathbf{x} + \left(w_{i0} - w_{j0}\right) = 0$$

The resulting decision regions are connected and convex

- Given $\mathbf{x}_A, \mathbf{x}_B \in \mathcal{R}_k$ then $y_k(\mathbf{x}_A) > y_j(\mathbf{x}_A)$ and $y_k(\mathbf{x}_B) > y_j(\mathbf{x}_B)$, for all $j \neq k$
- Let $\hat{\mathbf{x}} = \lambda \mathbf{x}_A + (1 \lambda)\mathbf{x}_B$, $0 \le \lambda \le 1$
- For all i, since y_i is linear for all, $y_i(\hat{\mathbf{x}}) = \lambda y_i(\mathbf{x}_a) + (1 \lambda)y_i(\mathbf{x}_B)$
- Then, $y_k(\hat{\mathbf{x}}) > y_j(\hat{\mathbf{x}})$ for all $j \neq k$; that is, $\hat{\mathbf{x}} \in \mathcal{R}_k$

 The definition can be extended to include terms relative to products of pairs of feature values (Quadratic discriminant functions)

$$y(\mathbf{x}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{i} w_{ij} x_i x_j$$

- $\frac{d(d+1)}{2}$ additional parameters wrt the d+1 original ones: decision boundaries can be more complex
- lacksquare In general, generalized discrimination functions through set of functions ϕ_i,\ldots,ϕ_m

$$y(\mathbf{x}) = w_0 + \sum_{i=1}^{M} w_i \phi_i(\mathbf{x})$$

Linear discriminant functions and regression

- lacktriangle Assume classification with K classes
- Classes are represented through a 1-of-K coding scheme: set of variables z_1,\ldots,z_K , class C_i coded by values $z_i=1,\,z_k=0$ for $k\neq i$
- \blacksquare Discriminant functions y_i are derived as linear regression functions with variables z_i as targets
- To each variable z_i a discriminant function $y_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$ is associated: \mathbf{x} is assigned to the class C_k s.t.

$$k = \operatorname*{argmax}_{i} y_{i}(\mathbf{x})$$

- Then, $z_k(\mathbf{x}) = 1$ and $z_j(\mathbf{x}) = 0$ ($j \neq k$) if $k = \underset{i}{\operatorname{argmax}} y_i(\mathbf{x})$
- Group all parameters together as

$$\mathbf{y}(\mathbf{x}) = \mathbf{W}^T \overline{\mathbf{x}}$$

Linear discriminant functions and regression

- \blacksquare In general, a regression function provides an estimation of the target given the input $\textbf{\textit{E}}[t|\mathbf{x}]$
- Value $y_i(\mathbf{x})$ can then be seen as an estimation of the conditional expectation $E[z_i|\mathbf{x}]$ of binary variable z_i given \mathbf{x}
- lacktriangleright If we assume z_i is distributed according to a Bernoulli distribution, the expectation corresponds to the posterior probability

$$y_i(\mathbf{x}) \simeq E[z_i|\mathbf{x}]$$

$$= P(z_i = 1|\mathbf{x}) \cdot 1 + P(z_i = 0|\mathbf{x}) \cdot 0$$

$$= P(z_i = 1|\mathbf{x})$$

$$= P(C_i|\mathbf{x})$$

■ However, $y_i(\mathbf{x})$ is not a probability itself (we may not assume it takes value only in the interval [0,1])

- $lue{t}$ Given a training set X, t, a regression function can be derived by least squares
- lacksquare An item in the training set is a pair $(\mathbf{x}_i,\mathbf{t}_i)$, $\mathbf{x}_i\in\mathbb{R}^D$ e $\mathbf{t}_i\in\{0,1\}^K$
- $\mathbf{W} \in \mathbb{R}^{(D+1) \times K}$ is the matrix of parameters of all functions y_i : the i-th column represents the D+1 parameters w_{i0},\ldots,w_{iD} of y_i

$$\overline{\mathbf{W}} = \begin{pmatrix} w_{10} & w_{20} & \cdots & w_{K0} \\ w_{11} & w_{21} & \cdots & w_{K1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{1D} & w_{2D} & \cdots & w_{KD} \end{pmatrix}$$

 $\mathbf{y}(\mathbf{x}) = \mathbf{W}^T \overline{\mathbf{x}} \text{ with } \overline{\mathbf{x}} = (1, x_1, \dots, x_d)$

 $oldsymbol{\overline{X}} \in \mathbb{R}^{n imes (D+1)}$ is the matrix of feature values for all items in the training set

$$\overline{\mathbf{X}} = \begin{pmatrix} 1 & x_1^{(1)} & \cdots & x_1^{(D)} \\ 1 & x_2^{(1)} & \cdots & x_2^{(D)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n^{(1)} & \cdots & x_n^{(D)} \end{pmatrix}$$

■ Then, for matrix $\overline{\mathbf{X}}\mathbf{W}$, of size $n \times K$, we have

$$(\overline{\mathbf{X}}\mathbf{W})_{ij} = w_{j0} + \sum_{k=1}^{D} x_i^{(k)} w_{jk} = y_j(\mathbf{x}_i)$$

■ $y_j(\mathbf{x}_i)$ is compared to item \mathbf{T}_{ij} in the matrix \mathbf{T} , of size $n \times K$, of target values, where row i is the 1-of-K coding of the class of item \mathbf{x}_i

$$(\overline{\mathbf{X}}\mathbf{W} - \mathbf{T})_{ik} = y_k(\mathbf{x}_i) - t_{ik}$$

■ Let us consider the diagonal items of $(\overline{X}W - T)^T(\overline{X}W - T)$. Then,

$$((\overline{\mathbf{X}}\overline{\mathbf{W}} - \mathbf{T})^T (\overline{\mathbf{X}}\overline{\mathbf{W}} - \mathbf{T}))_{kk} = \sum_{i=1}^n (y_k(\mathbf{x}_i) - t_{ik})^2$$

That is,

$$((\overline{\mathbf{X}}\mathbf{W} - \mathbf{T})^T (\overline{\mathbf{X}}\mathbf{W} - \mathbf{T}))_{kk} = \sum_{\mathbf{x}_i \in C_k} (y_k(\mathbf{x}_i) - 1)^2 + \sum_{\mathbf{x}_i \notin C_k} y_k(\mathbf{x}_i)^2$$

■ Summing all elements on the diagonal of $(\overline{\mathbf{X}}\mathbf{W} - \mathbf{T})^T(\overline{\mathbf{X}}\mathbf{W} - \mathbf{T})$ provides the overall sum, on all items in the training set, of the squared differences between observed values and values computed by the model, with parameters \mathbf{W} , that is

$$\sum_{k=1}^{K} \sum_{i=1}^{n} (y_k(\mathbf{x}_i) - t_{ik})^2$$

■ This corresponds to the *trace* of $(\overline{\mathbf{X}}\mathbf{W} - \mathbf{T})^T(\overline{\mathbf{X}}\mathbf{W} - \mathbf{T})$. Hence, we have to minimize:

$$E(\mathbf{W}) = \frac{1}{2}tr((\overline{\mathbf{X}}\mathbf{W} - \mathbf{T})^{T}(\overline{\mathbf{X}}\mathbf{W} - \mathbf{T}))$$

Standard approach, solve

$$\frac{\partial E(\mathbf{W})}{\partial \mathbf{W}} = \mathbf{0}$$

It is possible to show that

$$\frac{\partial E(\mathbf{W})}{\partial \mathbf{W}} = \overline{\mathbf{X}}^T \overline{\mathbf{X}} \mathbf{W} - \overline{\mathbf{X}}^T \mathbf{T}$$

■ From $\overline{\mathbf{X}}^T \overline{\mathbf{X}} \mathbf{W} - \overline{\mathbf{X}}^T \mathbf{T} = \mathbf{0}$ it results

$$\mathbf{W} = (\overline{\mathbf{X}}^T \overline{\mathbf{X}})^{-1} \overline{\mathbf{X}}^T \mathbf{T}$$

and the set of discriminant functions

$$\mathbf{y}(\mathbf{x}) = \mathbf{W}^T \overline{\mathbf{x}} = \mathbf{T}^T \overline{\mathbf{X}} (\overline{\mathbf{X}}^T \overline{\mathbf{X}})^{-1} \overline{\mathbf{x}}$$

Some considerations

- Simple learning: closed form
- quite prone to outliers (magenta, this approach; green, logistic regression)

lacksquare poor precision for K>2 (left, this approach; right, logistic regression)

Fisher' linear discriminant

- The idea of Linear Discriminant Analysis (LDA) is to find a linear projection of the training set into a suitable subspace where classes are as linearly separated as possible
- A common approach is provided by Fisher linear discriminant, where all items in the training set (points in a D-dimensional space) are projected to one dimension, by means of a linear transformation of the type

$$y = \mathbf{w} \cdot \mathbf{x} = \mathbf{w}^T \mathbf{x}$$

where \mathbf{w} is the D-dimensional vector corresponding to the direction of projection (in the following, we will consider the one with unit norm).

LDA

If K=2, given a threshold \tilde{y} , item \mathbf{x} is assigned to C_1 iff its projection $y=\mathbf{w}^T\mathbf{x}$ is such that $y>\tilde{y}$; otherwise, \mathbf{x} is assigned to C_2 .

LDA

Different line directions, that is different parameters \mathbf{w} , may induce quite different separability properties.

Let n_1 be the number of items in the training set belonging to class C_1 and n_2 the number of items in class C_2 . The mean points of both classes are

$$\mathbf{m}_1 = \frac{1}{n_1} \sum_{\mathbf{x} \in C_1} \mathbf{x} \qquad \qquad \mathbf{m}_2 = \frac{1}{n_2} \sum_{\mathbf{x} \in C_2} \mathbf{x}$$

A simple measure of the separation of classes, when the training set is projected onto a line, is the difference between the projections of their mean points

$$m_2 - m_1 = \mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1)$$

where $m_i = \mathbf{w}^T \mathbf{m}_i$ is the projection of \mathbf{m}_i onto the line.

- We wish to find a line direction w such that $m_2 m_1$ is maximum
- $\mathbf{w}^T(\mathbf{m}_2 \mathbf{m}_1)$ can be made arbitrarily large by multiplying \mathbf{w} by a suitable constant, at the same time maintaining the direction unchanged. To avoid this drawback, we consider unit vectors, introducing the constraint $||\mathbf{w}||_2 = \mathbf{w}^T \mathbf{w} = 1$
- This results into the constrained optimization problem

$$\max_{\mathbf{w}} \mathbf{w}^{T} (\mathbf{m}_{2} - \mathbf{m}_{1})$$
where $\mathbf{w}^{T} \mathbf{w} = 1$

 This can be transformed into an equivalent unconstrained optimization problem by means of lagrangian multipliers

$$\max_{\mathbf{w}, \lambda} \mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1) + \lambda (1 - \mathbf{w}^T \mathbf{w})$$

Setting the gradient of the function wrt \mathbf{w} to $\mathbf{0}$

$$\frac{\partial}{\partial \mathbf{w}}(\mathbf{w}^T(\mathbf{m}_2 - \mathbf{m}_1) + \lambda(1 - \mathbf{w}^T\mathbf{w})) = \mathbf{m}_2 - \mathbf{m}_1 + 2\lambda\mathbf{w} = \mathbf{0}$$

results into

$$\mathbf{w} = \frac{\mathbf{m}_2 - \mathbf{m}_1}{2\lambda}$$

Setting the derivative wrt λ to 0

$$\frac{\partial}{\partial \lambda}(\mathbf{w}^T(\mathbf{m}_2 - \mathbf{m}_1) + \lambda(1 - \mathbf{w}^T\mathbf{w})) = 1 - \mathbf{w}^T\mathbf{w} = 0$$

results into

$$1 - \mathbf{w}^T \mathbf{w} = 1 - \frac{(\mathbf{m}_2 - \mathbf{m}_1)^T (\mathbf{m}_2 - \mathbf{m}_1)}{4\lambda^2} = 0$$

that is

$$\lambda = \frac{\sqrt{(\mathbf{m}_2 - \mathbf{m}_1)^T(\mathbf{m}_2 - \mathbf{m}_1)}}{2} = \frac{||\mathbf{m}_2 - \mathbf{m}_1||_2}{2}$$

Combining with the result for the gradient, we get

$$\mathbf{w} = \frac{\mathbf{m}_2 - \mathbf{m}_1}{\left|\left|\mathbf{m}_2 - \mathbf{m}_1\right|\right|_2}$$

The best direction \mathbf{w} of the line, wrt the measure considered, is the one from \mathbf{m}_1 to \mathbf{m}_2 . However, this may result in a poor separation of classes.

Projections of classes are dispersed (high variance) along the direction of $\mathbf{m}_1 - \mathbf{m}_2$. This may result in a large overlap.

- Choose directions s.t. classes projections show as little dispersion as possible
- Possible in the case that the amount of class dispersion changes wrt different directions, that is if the distribution of points in the class is elongated
- We wish then to maximize a function which:
 - is growing wrt the separation between the projected classes (for example, their mean points)
 - is decreasing wrt the dispersion of the projections of points of each class

■ The within-class variance of the projection of class C_i (i = 1, 2) is defined as

$$s_i^2 = \sum_{\mathbf{x} \in C_i} (\mathbf{w}^T \mathbf{x} - m_i)^2$$

The total within-class variance is defined as $s_1^2 + s_2^2$

 Given a direction w, the Fisher criterion is the ratio between the (squared) class separation and the overall within-class variance, along that direction

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

lacksquare Indeed, $J(\mathbf{w})$ grows wrt class separation and decreases wrt within-class variance

Let S_1, S_2 be the within-class covariance matrices, defined as

$$\mathbf{S}_i = \sum_{\mathbf{x} \in C_i} (\mathbf{x} - \mathbf{m}_i) (\mathbf{x} - \mathbf{m}_i)^T$$

Then,

$$\begin{aligned} s_i^2 &= \sum_{\mathbf{x} \in C_i} (\mathbf{w}^T \mathbf{x} - m_i)^2 = \sum_{\mathbf{x} \in C_i} (\mathbf{w}^T \mathbf{x} - \mathbf{w}^T \mathbf{m}_i)^2 \\ &= \sum_{\mathbf{x} \in C_i} (\mathbf{w}^T \mathbf{x} - \mathbf{w}^T \mathbf{m}_i) (\mathbf{w}^T \mathbf{x} - \mathbf{w}^T \mathbf{m}_i) \\ &= \sum_{\mathbf{x} \in C_i} (\mathbf{w}^T \mathbf{x} - \mathbf{w}^T \mathbf{m}_i) (\mathbf{x}^T \mathbf{w} - \mathbf{m}_i^T \mathbf{w}) \\ &= \sum_{\mathbf{x} \in C_i} (\mathbf{w}^T (\mathbf{x} - \mathbf{m}_i)) \left((\mathbf{x} - \mathbf{m}_i)^T \mathbf{w} \right) \\ &= \sum_{\mathbf{x} \in C_i} \mathbf{w}^T (\mathbf{x} - \mathbf{m}_i) (\mathbf{x} - \mathbf{m}_i)^T \mathbf{w} \\ &= \mathbf{w}^T \left(\sum_{\mathbf{x} \in C_i} (\mathbf{x} - \mathbf{m}_i) (\mathbf{x} - \mathbf{m}_i)^T \right) \mathbf{w} = \mathbf{w}^T \mathbf{S}_i \mathbf{w} \end{aligned}$$

Let also $S_W = S_1 + S_2$ be the total within-class covariance matrix and

$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^T$$

be the between-class covariance matrix.

Then,

$$\begin{split} J(\mathbf{w}) &= \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2} = \frac{(\mathbf{w}^T \mathbf{m}_2 - \mathbf{w}^T \mathbf{m}_1)^2}{\mathbf{w}^T \mathbf{S}_1 \mathbf{w} + \mathbf{w}^T \mathbf{S}_2 \mathbf{w}} \\ &= \frac{(\mathbf{w}^T \mathbf{m}_2 - \mathbf{w}^T \mathbf{m}_1)(\mathbf{w}^T \mathbf{m}_2 - \mathbf{w}^T \mathbf{m}_1)}{\mathbf{w}^T \mathbf{S}_1 \mathbf{w} + \mathbf{w}^T \mathbf{S}_2 \mathbf{w}} \\ &= \frac{\mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^T \mathbf{w}}{\mathbf{w}^T \mathbf{S}_1 \mathbf{w} + \mathbf{w}^T \mathbf{S}_2 \mathbf{w}} \\ &= \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} \end{split}$$

As usual, $J(\mathbf{w})$ is maximized wrt \mathbf{w} by setting its gradient to $\mathbf{0}$

$$\frac{\partial}{\partial \mathbf{w}} \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} = 2 \frac{(\mathbf{w}^T \mathbf{S}_B \mathbf{w}) \mathbf{S}_W \mathbf{w} - (\mathbf{w}^T \mathbf{S}_W \mathbf{w}) \mathbf{S}_B \mathbf{w}}{(\mathbf{w}^T \mathbf{S}_W \mathbf{w}) (\mathbf{w}^T \mathbf{S}_W \mathbf{w})^T}$$

which results into

$$(\mathbf{w}^T \mathbf{S}_B \mathbf{w}) \mathbf{S}_W \mathbf{w} = (\mathbf{w}^T \mathbf{S}_W \mathbf{w}) \mathbf{S}_B \mathbf{w}$$

Observe that:

- $\mathbf{w}^T \mathbf{S}_B \mathbf{w}$ is a scalar, say c_B
- $\mathbf{w}^T \mathbf{S}_W \mathbf{w}$ is a scalar, say c_W
- $\mathbf{m} (\mathbf{m}_2 \mathbf{m}_1)^T \mathbf{w}$ is a scalar, say c_m

Then, the condition $(\mathbf{w}^T \mathbf{S}_B \mathbf{w}) \mathbf{S}_W \mathbf{w} = (\mathbf{w}^T \mathbf{S}_W \mathbf{w}) \mathbf{S}_B \mathbf{w}$ can be written as

$$c_B \mathbf{S}_W \mathbf{w} = c_W \mathbf{S}_B \mathbf{w} = c_W (\mathbf{m}_2 - \mathbf{m}_1) (\mathbf{m}_2 - \mathbf{m}_1)^T \mathbf{w} = c_W (\mathbf{m}_2 - \mathbf{m}_1) c_m$$

which results into

$$\mathbf{w} = \frac{c_W c_m}{c_B} \mathbf{S}_W^{-1} (\mathbf{m}_2 - \mathbf{m}_1)$$

Since we are interested into the direction of \mathbf{w} , that is in any vector proportional to \mathbf{w} , we may consider the solution

$$\hat{\mathbf{w}} = \mathbf{S}_W^{-1}(\mathbf{m}_2 - \mathbf{m}_1) = (\mathbf{S}_1 + \mathbf{S}_2)^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$$

Deriving w in the binary case: choosing a threshold

Possible approach:

lacktriangle model $p(y|C_i)$ as a gaussian: derive mean and variance by maximum likelihood

$$m_i = \frac{1}{n_i} \sum_{\mathbf{x} \in C_i} w^T \mathbf{x}$$
 $\sigma_i^2 = \frac{1}{n_i - 1} \sum_{\mathbf{x} \in C_i} (w^T \mathbf{x} - m_i)^2$

where n_i is the number of items in training set belonging to class C_i

derive the class probabilities

$$p(C_i|y) \propto p(y|C_i)p(C_i) = p(y|C_i)\frac{n_i}{n_1 + n_2} \propto n_i e^{-\frac{(y - m_i)^2}{2\sigma_i^2}}$$

lacksquare the threshold $ilde{y}$ can be derived as the minimum y such that

$$\frac{p(C_2|y)}{p(C_1|y)} = \frac{n_2}{n_1} \frac{p(y|C_2)}{p(y|C_1)} > 1$$

Perceptron

- Introduced in the '60s, at the basis of the neural network approach
- Simple model of a single neuron
- Hard to evaluate in terms of probability
- Works only in the case that classes are linearly separable

Definition

It corrisponds to a binary classification model where an item ${\bf x}$ is first transformed by a non linear function ϕ and the classified on the basis of the sign of the obtained value. That is,

$$y(\mathbf{x}) = f(\mathbf{w}^T \phi(\mathbf{x}))$$

f() is essentially the sign function

$$f(i) = \begin{cases} -1 & \text{if } i < 0\\ 1 & \text{if } i \ge 0 \end{cases}$$

The resulting model is a particular generalized linear model. A special case is the one when ϕ is the identity, that is $y(\mathbf{x}) = f(\mathbf{w}^T\mathbf{x})$.

By the definition of the model, $y(\mathbf{x})$ can only be ± 1 : we denote $y(\mathbf{x}) = 1$ as $\mathbf{x} \in C_1$ and $y(\mathbf{x}) = -1$ as $\mathbf{x} \in C_2$.

To each element x_i in the training set, a target value is then associated $t_i \in \{-1, 1\}$.

Cost function

- A natural definition of the cost function would be the number of misclassified elements in the training set
- This would result into a piecewise constant function and gradient optimization could not be applied (we would have zero gradient almost everywhere)
- A better choice is using a piecewise linear function as cost function

Cost function

We would like to find a vector of parameters \mathbf{w} such that, for any \mathbf{x}_i , $\mathbf{w}^T\mathbf{x}_i>0$ if $\mathbf{x}_i\in C_1$ and $\mathbf{w}^T\mathbf{x}_i<0$ if $\mathbf{x}_i\in C_2$: in short, $\mathbf{w}^T\mathbf{x}_it_i>0$.

Each element \mathbf{x}_i provides a contribution to the cost function as follows

- $lue{1}$ 0 if \mathbf{x}_i is classified correctly by the model
- $\mathbf{v} \mathbf{w}^T \mathbf{x}_i t_i > 0$ if \mathbf{x}_i is misclassified

Let $\mathcal M$ be the set of misclassified elements. Then the cost is

$$E_p(\mathbf{w}) = -\sum_{\mathbf{x}_i \in \mathcal{M}} \mathbf{w}^T \phi(\mathbf{x}_i) t_i$$

The contribution of \mathbf{x}_i to the cost is 0 if $\mathbf{x}_i \notin \mathcal{M}$ and it is a linear function of \mathbf{w} otherwise

The minimum of $E_p(\mathbf{w})$ can be found through gradient descent

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \frac{\partial E_p(\mathbf{w})}{\partial \mathbf{w}} \Big|_{\mathbf{w}^{(k)}}$$

the gradient of the cost function wrt to w is

$$\frac{\partial E_p(\mathbf{w})}{\partial \mathbf{w}} = -\sum_{\mathbf{x}_i \in \mathcal{M}} \phi(\mathbf{x}_i) t_i$$

Then gradient descent can be expressed as

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta \sum_{\mathbf{x}_i \in \mathcal{M}_k} \phi(\mathbf{x}_i) t_i$$

where \mathcal{M}_k denotes the set of points misclassified by the model with parameter $\mathbf{w}^{(k)}$

Online (or stochastic gradient descent): at each step, only the gradient wrt a single item is considered

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta \phi(\mathbf{x}_i) t_i$$

where $\mathbf{x}_i \in \mathcal{M}_k$ and the scale factor $\eta>0$ controls the impact of a badly classified item on the cost function

The method works by circularly iterating on all elements and applying the above formula.

```
Initialize \mathbf{w}^0 k := 0 repeat k := k+1 i := (k \mod n)+1 y := f(\mathbf{w}^T\phi(\mathbf{x}_i))t_i if y > 0 then \mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} else \mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta\phi(\mathbf{x}_i)t_i until all elements are well classified
```


In black, decision boundary and corresponding parameter vector \mathbf{w} ; in red misclassified item vector $\phi(\mathbf{x}_i)$, added by the algorithm to the parameter vector as $\eta\phi(\mathbf{x}_i)$

At each step, if \mathbf{x}_i is well classified then $\mathbf{w}^{(k)}$ is unchanged; else, its contirbution to the cost is modified as follows

$$-(\mathbf{w}^{(k+1)})^T \phi(\mathbf{x}_i) t_i = -(\mathbf{w}^{(k)})^T \phi(\mathbf{x}_i) t_i - \eta (\phi(\mathbf{x}_i) t_i)^T \phi(\mathbf{x}_i) t_i$$
$$= -(\mathbf{w}^{(k)})^T \phi(\mathbf{x}_i) t_i - \eta ||\phi(\mathbf{x}_i)||^2$$
$$< -(\mathbf{w}^{(k)})^T \phi(\mathbf{x}_i) t_i$$

This contribution is decreasing, however this does not guarantee the convergence of the method, since the cost function could increase due to some other element becoming misclassified if $\mathbf{w}^{(k+1)}$ is used

It is possible to prove that, in the case the classes are linearly separable, the algorithm converges to the correct solution in a finite number of steps.

Let $\hat{\mathbf{w}}$ be a solution (that is, it discriminates C_1 and C_2): if \mathbf{x}_{k+1} is the element considered at iteration (k+1) and it is misclassified, then

$$\mathbf{w}^{(k+1)} - \alpha \hat{\mathbf{w}} = (\mathbf{w}^{(k)} - \alpha \hat{\mathbf{w}}) + \eta \phi(\mathbf{x}_{k+1}) t_{k+1}$$

where $\alpha > 0$ is a constant, to be specified later

By squaring left and right expressions of the above formula, we get

$$\left\| \mathbf{w}^{(k+1)} - \alpha \hat{\mathbf{w}} \right\|^{2} =$$

$$\left\| \mathbf{w}^{(k)} - \alpha \hat{\mathbf{w}} \right\|^{2} + \eta^{2} \left\| \phi(\mathbf{x}_{k+1}) \right\|^{2} + 2\eta (\mathbf{w}^{(k)} - \alpha \hat{\mathbf{w}})^{T} \phi(\mathbf{x}_{k+1}) t_{k+1} =$$

$$\left\| \mathbf{w}^{(k)} - \alpha \hat{\mathbf{w}} \right\|^{2} + \eta^{2} \left\| \phi(\mathbf{x}_{k+1}) \right\|^{2} + 2\eta (\mathbf{w}^{(k)})^{T} \phi(\mathbf{x}_{k+1}) t_{k+1} - 2\eta \alpha \hat{\mathbf{w}}^{T} \phi(\mathbf{x}_{k+1}) t_{k+1}$$

Since \mathbf{x}_{k+1} was misclassified by hypothesis, $(\mathbf{w}^{(k)})^T \phi(\mathbf{x}_{k+1}) t_{k+1} < 0$ and

$$\left\| \mathbf{w}^{(k+1)} - \alpha \hat{\mathbf{w}} \right\|^{2} < \left\| \mathbf{w}^{(k)} - \alpha \hat{\mathbf{w}} \right\|^{2} + \eta^{2} \left\| \phi(\mathbf{x}_{k+1}) \right\|^{2} - 2\eta \alpha \hat{\mathbf{w}}^{T} \phi(\mathbf{x}_{k+1}) t_{k+1}$$

Let γ be the minimum value of the signed dot product of $\hat{\mathbf{w}}$ with $\phi(\mathbf{x}_i)$ for some element \mathbf{x}_i , where the sign depends on the class of \mathbf{x}_i

$$\gamma = \min_{i} \left(\hat{\mathbf{w}}^{T} \phi(\mathbf{x}_{i}) t_{i} \right) = \min_{i} \left| \hat{\mathbf{w}}^{T} \phi(\mathbf{x}_{i}) \right| > 0$$

Let δ be the length of the longest $\phi(\mathbf{x}_i)$

$$\delta^2 = \max_{i} ||\phi(\mathbf{x}_i)||^2$$

Then,

$$\left\| \mathbf{w}^{(k+1)} - \alpha \hat{\mathbf{w}} \right\|^{2} < \left\| \mathbf{w}^{(k)} - \alpha \hat{\mathbf{w}} \right\|^{2} + \eta^{2} \delta^{2} - 2\eta \alpha \gamma$$

By setting

$$\alpha = \frac{\eta \delta^2}{\gamma}$$

we get

$$\left\| \mathbf{w}^{(k+1)} - \alpha \hat{\mathbf{w}} \right\|^2 < \left\| \mathbf{w}^{(k)} - \alpha \hat{\mathbf{w}} \right\|^2 - \eta^2 \delta^2$$

As can be seen, the squared distance between $\mathbf{w}^{(k+1)}$ and $\hat{\mathbf{w}}$ decreases at each step of an amount greater than $\eta^2\delta^2$

Iterating the above properties on all steps,

$$\left| \left| \mathbf{w}^{(k+1)} - \alpha \hat{\mathbf{w}} \right| \right|^2 < \left| \left| \mathbf{w}^{(0)} - \alpha \hat{\mathbf{w}} \right| \right|^2 - (k+1)\eta^2 \delta^2$$

Note that, after

$$\overline{k} = \frac{\left\| \mathbf{w}^{(0)} - \alpha \hat{\mathbf{w}} \right\|^2}{\eta^2 \delta^2} - 1$$

steps we get

$$\left\| \mathbf{w}^{(0)} - \alpha \hat{\mathbf{w}} \right\|^2 - (k+1)\eta^2 \delta^2 = 0$$

So, after at most \overline{k} updates of \mathbf{w} , a decision boundary has been derived

Setting $\mathbf{w}^{(0)} = \mathbf{0}$, we have

$$\overline{k} = \frac{\alpha^2}{\eta^2 \delta^2} ||\hat{\mathbf{w}}||^2 - 1 = \frac{\delta^2}{\gamma^2} ||\hat{\mathbf{w}}||^2 - 1 = \frac{\max_i ||\phi(\mathbf{x}_i)||^2}{(\min_i (\hat{\mathbf{w}}^T \phi(\mathbf{x}_i)))^2} ||\hat{\mathbf{w}}||^2 - 1$$

The number of required step is large if $\min_i (\hat{\mathbf{w}}^T \phi(\mathbf{x}_i))$ is small, that is if there exists some \mathbf{x}_i such that $\phi(\mathbf{x}_i)$ is (almost) orthogonal to $\hat{\mathbf{w}}$.