The Perceptron Mistake Bound

Machine Learning

Where are we?

The Perceptron Algorithm

Variants of Perceptron

Perceptron Mistake Bound

Convergence

Convergence theorem

 If there exist a set of weights that are consistent with the data (i.e. the data is linearly separable), the perceptron algorithm will converge.

Convergence

Convergence theorem

 If there exist a set of weights that are consistent with the data (i.e. the data is linearly separable), the perceptron algorithm will converge.

Cycling theorem

 If the training data is not linearly separable, then the learning algorithm will eventually repeat the same set of weights and enter an infinite loop

Perceptron Learnability

- Obviously Perceptron cannot learn what it cannot represent
 - Only linearly separable functions

- Minsky and Papert (1969) wrote an influential book demonstrating Perceptron's representational limitations
 - Parity functions can't be learned (XOR)
 - We have already seen that XOR is not linearly separable
 - In vision, if patterns are represented with local features, can't represent symmetry, connectivity

Margin

The margin of a hyperplane for a dataset is the distance between the hyperplane and the data point nearest to it.

Margin

The margin of a hyperplane for a dataset is the distance between the hyperplane and the data point nearest to it.

The margin of a data set (γ) is the maximum margin possible for that dataset using any weight vector.

Let $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots$ be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \mathbb{R}^n$ with $||\mathbf{x}_i|| \leq R$ and the label $y_i \in \{-1, 1\}$.

Let $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots$ be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $|\mathbf{x}_i| \leq R$ and the label $y_i \in \{-1, 1\}$. We can always find such an R. Just look for the farthest data point from the origin.

Let $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots$ be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $||\mathbf{x}_i|| \leq R$ and the label $y_i \in \{-1, 1\}$.

Suppose there is a unit vector $\mathbf{u} \in \mathbb{R}^n$ (i.e., $||\mathbf{u}|| = 1$) such that for some positive number $\gamma \in \mathbb{R}$, $\gamma > 0$, we have $y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$ for every example (\mathbf{x}_i, y_i) .

Let (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , \cdots be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $||\mathbf{x}_i|| \leq R$ and the label $y_i \in \{-1, 1\}$.

Suppose there is a unit vector $\mathbf{u} \in \mathbb{R}^n$ (i.e., $|\mathbf{u}| = 1$) such that for some positive number $\gamma \in \mathbb{R}$, $\gamma > 0$, we have $y_i \mathbf{u}^T \mathbf{x}_i \geq \gamma$ for every example (\mathbf{x}_i, y_i) .

The data has a margin γ . Importantly, the data is *separable*. γ is the complexity parameter that defines the separability of data.

Let $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots$ be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $||\mathbf{x}_i|| \leq R$ and the label $y_i \in \{-1, 1\}$.

Suppose there is a unit vector $\mathbf{u} \in \mathbb{R}^n$ (i.e., $||\mathbf{u}|| = 1$) such that for some positive number $\gamma \in \mathbb{R}$, $\gamma > 0$, we have $y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$ for every example (\mathbf{x}_i, y_i) .

Then, the perceptron algorithm will make no more than R^2/γ^2 mistakes on the training sequence.

Let (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , \cdots be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $||\mathbf{x}_i|| \leq R$ and the label $y_i \in \{-1, 1\}$.

Suppose there is a unit vector $\mathbf{u} \in \mathbb{R}^n$ (i.e., $|\mathbf{u}| = 1$) such that for some positive number $\gamma \in \mathbb{R}$, $\gamma > 0$, we have $y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$ for every example (\mathbf{x}_i, y_i) .

Then, the perceptron algorithm will make no more than R^2/γ^2 mistakes on the training sequence.

If **u** hadn't been a unit vector, then we could scale it in the mistake bound. This will change the final mistake bound to $\left(\frac{||\mathbf{u}||R}{\gamma}\right)^2$.

Let (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , \cdots be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \mathbb{R}^n$ with $||\mathbf{x}_i|| \leq R$ and the label $y_i \in \{-1, 1\}$.

Suppose we have a binary classification dataset with n dimensional inputs.

Suppose there is a unit vector $\mathbf{u} \in \mathbb{R}^n$ (i.e., $|\mathbf{u}| = 1$) such that for some positive number $\gamma \in \mathbb{R}$, $\gamma > 0$, we have $y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$ for every example (\mathbf{x}_i, y_i) .

If the data is separable,...

Then, the perceptron algorithm will make no more than R^2/γ^2 mistakes on the training sequence.

...then the Perceptron algorithm will find a separating hyperplane after making a finite number of mistakes

Proof (preliminaries)

- Receive an input (\mathbf{x}_i, y_i)
- if $\operatorname{sgn}(\mathbf{w}_t^T \mathbf{x}_i) \neq y_i$: Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i \mathbf{x}_i$

The setting

- Initial weight vector w is all zeros
- Learning rate = 1
 - Effectively scales inputs, but does not change the behavior
- All training examples are contained in a ball of size R.
 - That is, for every example (\mathbf{x}_i, y_i) , we have $||\mathbf{x}_i|| \le R$
- The training data is separable by margin γ using a unit vector \mathbf{u} .
 - That is, for every example (\mathbf{x}_i, y_i) , we have $y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$

- Receive an input (\mathbf{x}_i, y_i)
- if $\operatorname{sgn}(\mathbf{w}_t^T \mathbf{x}_i) \neq y_i$: Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i \mathbf{x}_i$

1. Claim: After t mistakes, $\mathbf{u}^T \mathbf{w}_t \geq t \gamma$

- Receive an input (x_i, y_i)
 if sgn(w_t^Tx_i) ≠ y_i: Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i \mathbf{x}_i$

1. Claim: After t mistakes, $\mathbf{u}^T \mathbf{w}_t \geq t \gamma$

$$\mathbf{u}^T \mathbf{w}_{t+1} = \mathbf{u}^T \mathbf{w}_t + y_i \mathbf{u}^T \mathbf{x}_i$$

- Receive an input (\mathbf{x}_i, y_i)
- if $\operatorname{sgn}(\mathbf{w}_t^T \mathbf{x}_i) \neq y_i$: Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i \mathbf{x}_i$

1. Claim: After t mistakes, $\mathbf{u}^T \mathbf{w}_t \geq t \gamma$

$$\mathbf{u}^T \mathbf{w}_{t+1} = \mathbf{u}^T \mathbf{w}_t + y_i \mathbf{u}^T \mathbf{x}_i$$

$$\geq \mathbf{u}^T \mathbf{w}_t + \gamma \xrightarrow{\text{Because the data is separable by a margin } \gamma}$$

- Receive an input (\mathbf{x}_i, y_i)
- if $\operatorname{sgn}(\mathbf{w}_t^T \mathbf{x}_i) \neq y_i$: Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i \mathbf{x}_i$

1. Claim: After t mistakes, $\mathbf{u}^T \mathbf{w}_t \geq t \gamma$

$$\mathbf{u}^T \mathbf{w}_{t+1} = \mathbf{u}^T \mathbf{w}_t + y_i \mathbf{u}^T \mathbf{x}_i$$

$$\geq \mathbf{u}^T \mathbf{w}_t + \gamma \xrightarrow{\text{Because the data is separable by a margin } \gamma}$$

Because $\mathbf{w}_0 = \mathbf{0}$ (that is, $\mathbf{u}^T \mathbf{w}_0 = \mathbf{0}$), straightforward induction gives us $\mathbf{u}^T \mathbf{w}_t \ge t \gamma$

- Receive an input (\mathbf{x}_i, y_i)
- if $\operatorname{sgn}(\mathbf{w}_t^T \mathbf{x}_i) \neq y_i$: Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i \mathbf{x}_i$

2. Claim: After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

- Receive an input (x_i, y_i)
 if sgn(w_t^Tx_i) ≠ y_i:
 Update w_{t+1} ← w_t + y_ix_i

2. Claim: After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$\|\mathbf{w}_{t+1}\|^2 = \|\mathbf{w}_t + y_i \mathbf{x}_i\|^2$$
$$= \|\mathbf{w}_t\|^2 + 2y_i (\mathbf{w}_t^T \mathbf{x}_i) + \|\mathbf{x}_i\|^2$$

- Receive an input (\mathbf{x}_i, y_i)
- if $\operatorname{sgn}(\mathbf{w}_t^T \mathbf{x}_i) \neq y_i$: Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i \mathbf{x}_i$

2. Claim: After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$\|\mathbf{w}_{t+1}\|^{2} = \|\mathbf{w}_{t} + y_{i}\mathbf{x}_{i}\|^{2}$$

$$= \|\mathbf{w}_{t}\|^{2} + 2y_{i}(\mathbf{w}_{t}^{T}\mathbf{x}_{i}) + \|\mathbf{x}_{i}\|^{2}$$

The weight is updated only when there is a mistake. That is when $y_i \mathbf{w}_t^T \mathbf{x}_i < 0$.

 $||\mathbf{x}_i|| \le R$, by definition of R

- Receive an input (x_i, y_i)
 if sgn(w_t^Tx_i) ≠ y_i: Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_i \mathbf{x}_i$

2. Claim: After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$\|\mathbf{w}_{t+1}\|^{2} = \|\mathbf{w}_{t} + y_{i}\mathbf{x}_{i}\|^{2}$$

$$= \|\mathbf{w}_{t}\|^{2} + 2y_{i}(\mathbf{w}_{t}^{T}\mathbf{x}_{i}) + \|\mathbf{x}_{i}\|^{2}$$

$$\leq \|\mathbf{w}_{t}\|^{2} + R^{2}$$

Because $\mathbf{w}_0 = \mathbf{0}$ (that is, $\mathbf{u}^T \mathbf{w}_0 = \mathbf{0}$), straightforward induction gives us $||\mathbf{w}_t||^2 \le tR^2$

What we know:

- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \geq t \gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

What we know:

- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \geq t \gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$R\sqrt{t} \ge \|\mathbf{w}_t\|$$

From (2)

What we know:

- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \geq t \gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$R\sqrt{t} \ge \|\mathbf{w}_t\| \ge \mathbf{u}^T \mathbf{w}_t$$

$$\mathbf{u}^T \mathbf{w}_t = ||\mathbf{u}|| ||\mathbf{w}_t|| |\cos(\text{angle between them})$$

But $||\mathbf{u}|| = 1$ and cosine is less than 1

So
$$\mathbf{u}^T \mathbf{w}_t \leq ||\mathbf{w}_t||$$

What we know:

- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \geq t \gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$R\sqrt{t} \ge \|\mathbf{w}_t\| \ge \mathbf{u}^T \mathbf{w}_t$$
From (2)

 $\mathbf{u}^T \mathbf{w}_t = ||\mathbf{u}|| ||\mathbf{w}_t|| \cos(\text{angle between them})$

But $||\mathbf{u}|| = 1$ and cosine is less than 1

So
$$\mathbf{u}^T \mathbf{w}_t \leq ||\mathbf{w}_t||$$

(alternatively, using the Cauchy-Schwarz inequality)

What we know:

- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \geq t \gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$R\sqrt{t} \ge \|\mathbf{w}_t\| \ge \mathbf{u}^T \mathbf{w}_t \ge t\gamma$$
From (2)

$$\mathbf{u}^T \mathbf{w}_t = ||\mathbf{u}|| ||\mathbf{w}_t|| \cos(\text{angle between them})$$

But $||\mathbf{u}|| = 1$ and cosine is less than 1

So
$$\mathbf{u}^T \mathbf{w}_t \leq ||\mathbf{w}_t||$$

(alternatively, using the Cauchy-Schwarz inequality)

What we know:

- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \geq t \gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

What we know:

- 1. After t mistakes, $\mathbf{u}^T \mathbf{w}_t \geq t \gamma$
- 2. After t mistakes, $||\mathbf{w}_t||^2 \le tR^2$

$$R\sqrt{t} \geq \|\mathbf{w}_t\| \geq \mathbf{u}^T \mathbf{w}_t \geq t\gamma$$
 Number of mistakes $t \leq \frac{R^2}{\gamma^2}$

Bounds the total number of mistakes!

Let (\mathbf{x}_1, y_1) , (\mathbf{x}_2, y_2) , \cdots be a sequence of training examples such that every feature vector $\mathbf{x}_i \in \Re^n$ with $||\mathbf{x}_i|| \leq R$ and the label $y_i \in \{-1, 1\}$.

Suppose there is a unit vector $\mathbf{u} \in \mathbb{R}^n$ (i.e., $||\mathbf{u}|| = 1$) such that for some positive number $\gamma \in \mathbb{R}$, $\gamma > 0$, we have $y_i \mathbf{u}^T \mathbf{x}_i \ge \gamma$ for every example (\mathbf{x}_i, y_i) .

Then, the perceptron algorithm will make no more than R^2/γ^2 mistakes on the training sequence.

The Perceptron Mistake bound

Number of mistakes
$$\leq \frac{R^2}{\gamma^2}$$

- R is a property of the dimensionality. How?
 - For Boolean functions with n attributes, show that $R^2 = n$.
- γ is a property of the data

• Exercises:

- How many mistakes will the Perceptron algorithm make for disjunctions with n attributes?
 - What are R and γ ?
- How many mistakes will the Perceptron algorithm make for k-disjunctions with n attributes?
- Find a sequence of examples that will force the Perceptron algorithm to make O(n) mistakes for a concept that is a k-disjunction.

Beyond the separable case

Good news

- Perceptron makes no assumption about data distribution, could be even adversarial
- After a fixed number of mistakes, you are done. Don't even need to see any more data
- Bad news: Real world is not linearly separable
 - Can't expect to never make mistakes again
 - What can we do: more features, try to be linearly separable if you can, use averaging

What you need to know

What is the perceptron mistake bound?

How to prove it

Summary: Perceptron

- Online learning algorithm, very widely used, easy to implement
- Additive updates to weights
- Geometric interpretation
- Mistake bound
- Practical variants abound
- You should be able to implement the Perceptron algorithm and its variants, and also prove the mistake bound theorem