Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

Отчет №5

по дисциплине «Аппаратное обеспечение информационно-измерительных систем»

Выполнил: студент гр. 5132703/20101	<nодпись></nодпись>	Баса	лгин А.Д.
Руководитель: ассистент	<подпись>	Кравчо	енко В. В.
		« <u> </u>	2024 г.

Санкт-Петербург 2024

Введение

Цели работы:

- освоить и закрепить понятия и отдельные вопросы теории автоматического регулирования нелинейных САР (нелинейные элементы и системы, релейные статические характеристики, автоколебания в нелинейных системах);
- освоить методику моделирования процессов регулирования в релейных CAP в среде SimInTech.

Задание

Структурная схема:

Значения параметров элементов САР и задающего воздействия (1 вариант):

Вариант	b _{max} , °C	b _{min} , ℃	U, B	k _{NO}	T2, c	b	θ _{ЗАД} , °С
1	1,5	0,1	380	0,090	33	1,80	25

График при $b \in [-0.1, 0.1]$:

График при b ∈ [-0.3, 0.3]:

График при b ∈ [-0.5, 0.5]:

График при b ∈ [-0.7, 0.7]:

График при b ∈ [-0.9, 0.9]:

График при b ∈ [-1.1, 1.1]:

График при b ∈ [-1.3, 1.3]:

График при $b \in [-1.5, 1.5]$:

По каждому графику определяем зависимости параметров автоколебаний (амплитуды A и частоты ω) от варьируемого параметра b:

b	A	ω
0.1	0.6	0,03333333
0.2	0.9	0,02857143
0.3	1.3	0,02380952
0.5	2	0,01923077
0.7	2.4	0,01666667
0.9	2.7	0,01470588
1.1	3.1	0,01298701
1.2	3.2	0,0125
1.3	3.5	0,01204819
1.5	3.9	0,01111111

Построим графики зависимостей A(b) и $\omega(b)$:

Оптимальное значение b из таблицы = 0.7

Вывод

В результате освоения теории автоматического регулирования нелинейных систем автоматического управления (САР) и методики моделирования процессов регулирования в релейных САР в среде SimInTech, мы смогли глубже понять динамику нелинейных систем, включая релейные статические характеристики и автоколебания. Это знание позволит эффективно анализировать и проектировать системы управления, учитывая особенности нелинейного поведения, что является ключевым для успешного применения теоретических основ на практике.