Flow-Insensitive Points-To Analysis with Term and Set Constraints [4]

Pointer analysis in type theory's clothing!

Mihir Mehta

Department of Computer Science University of Texas, Austin mihir@cs.utexas.edu

20 October, 2014

Outline for section 1

Term and set constraints

Test section two

Set constraints 101 [1] I

Definition

Set constraints describe relationships between sets of *terms*. They take the form $X \subseteq Y$, where X and Y are set expressions, generated by this grammar.

$$E ::= \alpha |0|E_1 \cup E_2|E_1 \cap E_2|\neg E_1|c(E_1, \dots, E_{a(c)})|c^{-i}(E_1)$$

Definition

A system of set constraints is a finite conjunction of constraints $\bigwedge_i X_i \subseteq Y_i$.

Definition

A solution to a system of set constraints is an assignment σ of sets to variables in the system such that all the constraints in the system are satisfied when σ is extended to set expressions under these rules.

Set constraints 101 [1] II

$$\sigma(0) = \phi$$

$$\sigma(E_1 \cup E_2) = \sigma(E_1) \cup \sigma(E_2)$$

$$\sigma(E_1 \cap E_2) = \sigma(E_1) \cap \sigma(E_2)$$

$$\sigma(\neg E_1) = H - \sigma(E_1)$$

$$\sigma(c(E_1, \dots, E_n)) = \{c(t_1, \dots, t_n) | t_i \in \sigma(E_i)\}$$

$$\sigma(c^{-i}(E)) = \{t_i | \exists c(t_1, \dots, t_n) \in \sigma(E)\}$$

- ▶ H is the Herbrand universe, that is, the set of all terms.
- ▶ We use X = Y as a notational convenience to denote the pair of constraints $X \subseteq Y$ and $Y \subseteq X$. In the Hindley-Milner type system, constraints occur only in this form, and are solved by unification.
- ► Set constraints, in general, are solved by repeated application of re-writing rules, as we shall see.

This paper I

- Andersen [2] and Steensgard [6] both presented algorithms for pointer analysis; this paper formulates both of these algorithms as sets of typing rules.
- Typing rules are set constraints and can thus be solved in the general framework [3] which the authors had previously developed.
- ► The resulting implementation (in ML) is compared to a previous, more application-specific implementation (in C) [5]; the former's running time is found to be within a small constant factor of the latter.
- More concretely, this paper develops typing rules common to both algorithms (Common), typing rules specific to each algorithm (And and Ste) and shows that the type relations/equivalences which arise from And+Common and Ste+Common are equivalent to the points-to relations in the original algorithms.

This paper II

Further, the paper shows that the two algorithms are similar enough to be represented by a combined set of rules (Comb), in which the only difference is in the constructor signatures.

The analysis framework I

- Set of sorts S, including Term and Set.
- Each n-ary constructor c has a signature

$$c:\iota_1\ldots\iota_n:S$$

where each ι_i is s (covariant) or \overline{s} (contravariant) for some $s \in S$.

▶ Sort Term: set of constructors Σ_{Term} , set of variables V_{Term} . Terms: variables from V_{Term} or constructed terms following some constructor's signature:

$$c: \mathit{Term} \ldots \underbrace{\mathit{Term}}_{\mathit{arity}(c)}, c \in \Sigma_{\mathit{Term}}$$

The analysis framework II

▶ Sort Set: set of constuctors Σ_{Set} , operations \cup , \cap , 0, 1. Set expressions follow some constructor's signature:

$$c: Set \dots \underbrace{Set o Set}_{arity(c)}, c \in \Sigma_{Set}$$

 $\begin{array}{ccc} \cup & : & \operatorname{Set} \operatorname{Set} \to \operatorname{Set} \\ \cap & : & \operatorname{Set} \operatorname{Set} \to \operatorname{Set} \\ 0 & : & \operatorname{Set} \\ 1 & : & \operatorname{Set} \end{array}$

▶ In general, a sort s has a constraint relation \subseteq_s and resolution rules for \subseteq_s . Term has two, $=_t$ (Hindley-Milner style equality) and $=_c$ (Steensgard-style conditional equality.).

The analysis framework III

$$\begin{array}{lll} S \, \wedge \, f(T_1, \ldots, T_n) = \mathfrak{t} \, f(T'_1, \ldots, T'_n) & \equiv & S \, \wedge \, T_1 \subseteq \iota_1 \, T'_1 \, \wedge \, T'_1 \subseteq \iota_1 \, T_1 \, \wedge \, \cdots \, \wedge & \text{if} \quad f : \iota_1 \cdots \iota_n \to \mathtt{Term} \\ T_n \subseteq \iota_n \, T'_n \, \wedge \, T'_n \subseteq \iota_n \, T_n & & \\ S \, \wedge \, f(\ldots) = \iota_1 \, g(\ldots) & \equiv & \text{inconsistent} & & \text{if} \quad f \neq g \\ S \, \wedge \, f(\ldots) = \iota_1 \, \alpha \, \wedge \, \alpha = \iota \, T & \equiv & \alpha = \iota \, T \end{array}$$

(a) Resolution rules for sort Term.

(b) Resolution rules for sort Set.

(c) General rules.

def		$f(x_1,, x_n) \rightarrow y = e$	Function definition
acj		$def_1 def_2$	Sequencing
	- 1	dej ₁ dej ₂	sequenting
ϵ	::=	n	Constant integer n
_		x	Variable
	- 1	*6	Pointer dereference
	- 1	&e	Address of e
	!		
		if e_1 then e_2 else e_3	Conditional
		$e_1 = e_2$	Assignment
	1	$f(z_1, \dots, z_m)$	Function application
		"string"	String constant
	Ĺ	malloc(e)	Heap allocation
		$e_1 op \ e_2$	Scalar operation $(e.g. +,, *)$
		e_1, e_2	Sequencing
	Ĺ	(type) e	Type cast
	Ĺ	e.id	Field access
	į.	$e \rightarrow id$	Field indirection $(= (*e).id)$
		$e_1[e_2]$	Array access $(\approx *(e_1 + e_2))$

And

Common

$$\frac{\mathbf{k}V_l : \tau}{\text{"string}_l'' : \tau} \frac{V_l \text{ fresh}}{\text{(Const - Str)}}$$

$$\frac{\&V_l : \tau \quad e : \tau_e \qquad V_l \text{ fresh}}{malloc_l(e) : \tau}$$
(Malloc)

$$\begin{array}{cccc} V_i : \tau & e_1 : \tau_1 & e_2 : \tau_2 & e_3 : \tau_3 & V_i \text{ fresh} \\ V_i = e_2 : \tau_1' & V_i = e_3 : \tau_2' & \\ & & & & & \\ if_i e_1 \text{ then } e_2 \text{ else } e_3 : \tau & \end{array}$$
(Cond)

$$\frac{V_i : \tau \quad e_1 : \tau_1 \quad e_2 : \tau_2 \qquad V_i \text{ fresh}}{V_i = e_1 : \tau'_1 \quad V_i = e_2 : \tau'_2}$$

$$\frac{e_1 \circ p_i \cdot e_2 : \tau}{e_1 \circ p_i \cdot e_2 : \tau}$$
(Op)

$$\frac{e_1: \tau_1 - e_2: \tau_2}{e_1, e_2: \tau_2}$$
 (Seq)

$$\frac{-def_1: \mathtt{void} - def_2: \mathtt{void}}{def_1 def_2: \mathtt{void}} \tag{Def - Seq)}$$

$$\frac{e:\tau}{(type)\,e:\tau}$$
 (Cast)

$$\frac{e:\tau}{e.id:\tau}$$
 (Field – direct)

$$rac{*e : \tau}{\rightarrow id : \tau}$$
 (Field – indirect)

$$e(e_1 + e_2) : \tau$$
 $e_1[e_2] : \tau$
(Array)

 \mathbf{Ste}

 \mathbf{Comb}_{ι}

$$\frac{e : \tau}{ke : ref(p_{get} = p_{set} = x, f_{get} = f_{set} = x', t = x_t)} \qquad (Var_{Comb_t})$$

$$\frac{e : \tau}{ke : ref(p_{get} = p_{set} = \tau)} \qquad (Addr_{Comb_t})$$

$$\frac{e : \tau \quad \tau \subseteq_{\iota} ref(p_{get} = \alpha)}{*e : \alpha} \qquad (Deref_{Comb_t})$$

$$\frac{e_1 : \tau_1}{*\tau_1 \subseteq_{\iota} ref(p_{get} = \alpha')} \qquad \tau_2 \subseteq_{\iota} ref(p_{get} = \beta', f_{get} = \beta'')$$

$$\frac{\beta' \subseteq_{\iota} \alpha'}{\beta' \subseteq_{\iota} \alpha'} \qquad \beta'' \subseteq_{\iota} \alpha''$$

$$\frac{\beta'' \subseteq_{\iota} \alpha''}{\epsilon_1 = \epsilon_2 : \tau_2} \qquad (Asst_{Comb_t})$$

Domains: $Loc = \{l_x, l_y, ...\}$

 $SyntacticLoc = \{x, y, \dots \&_i, \dots \}$

 $Expr = SyntacticLoc \mid *Expr \mid \&_i Expr \mid Expr_1 = Expr_2 \mid Expr_1, Expr_2$

 $Store : Loc \rightarrow Loc$

 $\cdot \rightarrow \cdot : < Expr, Store > \rightarrow < Loc, Store >$

$$\overline{\langle \mathbf{x}, \sigma \rangle \to \langle l_{\mathbf{x}}, \sigma \rangle}$$
 (Var)

$$\frac{\langle e_1, \sigma \rangle \rightarrow \langle l_1, \sigma_1 \rangle \quad \langle e_2, \sigma_1 \rangle \rightarrow \langle l_2, \sigma_2 \rangle}{\langle (e_1, e_2), \sigma \rangle \rightarrow \langle l_2, \sigma_2 \rangle}$$
 (Seq)

$$\frac{\langle e,\sigma \rangle \to \langle l,\sigma' \rangle}{\langle \&_i e,\sigma \rangle \to \langle l',\sigma'[l'\mapsto l] \rangle} \hspace{1cm} \text{(Addr)}$$

$$\frac{<\epsilon,\sigma>\to< l,\sigma'>}{<*\epsilon,\sigma>\to<\sigma'(l),\sigma'>} \tag{Deref}$$

$$\frac{\langle e_1, \sigma \rangle \to \langle l_1, \sigma_1 \rangle - \langle e_2, \sigma_1 \rangle \to \langle l_2, \sigma_2 \rangle}{\langle e_1 = e_2, \sigma \rangle \to \langle l_2, \sigma_2[l_1 \mapsto \sigma_2(l_2)] \rangle}$$
(Asst)

Andersen-style Analysis								
		And+Common			SH			
Name	Lines	Time (s)	Size	Sets	Time (s)	Size	Sets	SH Time Framework
diff.diffh	293	0.13	42	19	0.06	42	19	0.45
genetic	324	0.12	34	16	0.07	34	16	0.62
anagram	344	0.11	33	25	0.07	34	26	0.60
allroots	428	0.04	11	7	0.04	11	7	0.90
ul	445	0.16	10	10	0.08	10	10	0.53
ks	574	0.26	190	55	0.17	222	62	0.66
compress	652	0.25	15	15	0.10	15	15	0.40
ft	1179	0.40	140	64	0.15	140	64	0.37
ratfor	1540	1.11	642	111	0.42	618	113	0.38
compiler	1895	0.50	406	29	0.40	406	29	0.80
eqntott	2316	1.72	506	159	0.47	296	158	0.27
assembler	2987	1.48	596	179	0.66	522	183	0.45
simulator	4230	6.51	14721	288	8.79	14377	289	1.35
ML-typecheck	4903	3.20	10070	254	2.03	9973	252	0.63
li	5798	473.72	809489	1314	3880.47	809834	1316	8.19
flex-2.4.7	9358	13.59	3929	373	45.28	3661	371	3.33
less-177	12108	8.43	33497	492	11.25	32794	504	1.33
make-3.72.1	15214	190.67	221937	1141	384.60	222147	1144	2.02
espresso	21583	713.16	249965	1932	343.56	243521	1928	0.48

Steensgaard-style Analysis								
		Ste+Common			SH			
Name	Lines	Time (s)	Size	Sets	Time (s)	Size	Sets	SH Time Framework
diff.diffh	293	0.13	192	19	0.04	192	19	0.33
genetic	324	0.10	92	16	0.05	92	16	0.53
anagram	344	0.10	151	30	0.04	220	31	0.41
allroots	428	0.03	14	7	0.03	14	7	0.88
ul	445	0.13	10	10	0.08	11	11	0.61
ks	574	0.11	537	57	0.08	607	64	0.71
compress	652	0.15	15	15	0.10	15	15	0.63
ft	1179	0.13	223	64	0.10	259	73	0.76
ratfor	1540	0.70	13567	177	0.42	13154	181	0.60
compiler	1895	0.58	1080	49	0.18	1080	49	0.32
eqntott	2316	0.93	1495	160	0.30	1116	160	0.32
assembler	2987	0.92	4069	227	0.38	3201	229	0.41
simulator	4230	2.45	24012	304	1.38	25320	325	0.56
ML-typecheck	4903	1.29	13685	262	0.53	13556	261	0.41
li	5798	5.67	1054796	1409	100.03	1152974	1417	17.64
flex-2.4.7	9358	10.03	23775	415	2.04	25854	452	0.20
less-177	12108	2.73	147795	646	5.15	151839	656	1.89
make-3.72.1	15214	7.10	927441	1609	73.72	938203	1634	10.38
espresso	21583	12.51	315372	1935	27.23	316999	1970	2.18

Outline for section 2

Term and set constraints

Test section two

Test

Test

References I

Introduction to set constraint-based program analysis. *Sci. Comput. Program.*, 35(2):79–111, 1999.

Lars Ole Andersen.

Program analysis and specialization for the c programming language.

Technical report, 1994.

Manuel F?hndrich and Alexander Aiken.

Program analysis using mixed term and set constraints. In *IN PROCEEDINGS OF THE 4TH INTERNATIONAL STATIC ANALYSIS SYMPOSIUM*, pages 114–126. Springer-Verlag, 1997.

References II

Jeffrey S. Foster, Manuel Fahndrich, and Alexander Aiken. Flow-insensitive points-to analysis with term and set constraints.

Technical report, U. OF CALIFORNIA, BERKELEY, 1997.

Marc Shapiro and Susan Horwitz.

Fast and accurate flow-insensitive points-to analysis.

In In Symposium on Principles of Programming Languages, pages 1–14, 1997.

Bjarne Steensgaard. Points-to analysis in almost linear time, 1996.