Getting and Exchanging Decoding State Information

Cedric Adjih, Oumaima Attia (Inria) Ichrak Amdouni (ENISO)

Nov 2019, Singapore

Motivation

- Practical problem (low level):
 - Augmenting the API draft in [1]
- General problem (high level):
 - Need for state exchange for protocols
- Questions:
 - Complete API (and implementation)?
 - Interest? Ideas?

^[1] https://datatracker.ietf.org/doc/draft-roca-nwcrg-generic-fec-api/

Example of SWIF (RLC) codec (API)

- [1] https://datatracker.ietf.org/doc/draft-roca-nwcrg-generic-fec-api/
- [2] SWIF codec implementation, an Open-source sliding window FEC codec https://github.com/irtf-nwcrg/swif-codec
- [3] https://datatracker.ietf.org/doc/draft-ietf-tsvwg-rlc-fec-scheme/

Generalizing the API?

- E.g. support: feedback, random linear network coding, recoding, ICN, broadcast,...
- Need to decide on the indices in coded symbols
 - For API and in general,
 - Good choice(?): decision at application
 - What coded symbols can I generate?
 - E.g. what is my decoding state?
 - What do my peers need?
 - E.g. what are their requirements? Based on decoding state
 - Match both

What information is needed?

Local state

- Decoder state as matrix:

```
P_{3} - Q_{1}
P_{4} = Q_{2}
P_{7} = Q_{3}
9 P_{5} + 10 P_{6} + 12 P_{7} + P_{9} = Q_{4}
P_{5} + 2 P_{6} + 13 P_{7} + 14 P_{9} = Q_{5}
13 P_{6} + 7 P_{7} + 3 P_{9} + 5 P_{10} = Q_{6}
15 P_{7} + 3 P_{9} + 5 P_{10} + 12 P_{11} = Q_{7}
```

Remote state & Summary

- State or request
- State summary:
 - Matrix
 - Implicit (acks,...)

Coarse view: first removed,

— last decoded, rank, last seen

Per column: unwanted, unseen

uninteresting, interesting

— Per column, pivots

- Per row, etc.

What information is needed?

- Information need to be useful
 - E.g. matrices of neighbors -> index coding pb.

	State	Summary
Dragoncast-2008 [1] DragonNet [2]	Last symbol decoded, (fixed) window size	
Tetrys [3]	Ack: symbol start, #missing symbols, ack. symbols bitmap, nb rows	
Network Coding for CCN/NDN[4]	"extensions in the TLV header of the Interest"	
CISEW [5]	Req: unwanted, unseen, uninteresting, interesting	

^[1] S-Y. Cho and C. Adjih, "Wireless Broadcast with Network Coding: DRAGONCAST", Inria RR-6569, July 2008; and S-Y. Cho' PhD Thesis (2008) and https://www.ietf.org/archive/id/draft-adjih-dragoncast-00.txt

^[2] I. Amdouni, A.Masucci, H. Baccouch, C. Adjih "DragonNet: Specification, Implementation, Experimentation and Performance Evaluation", report, 2014, https://hal.inria.fr/hal-01632790v1

^[3] J. Detchart, E. Lochin, J. Lacan, V. Roca - Tetrys draft https://datatracker.ietf.org/doc/draft-detchart-nwcrg-tetrys/

^[4] K. Matsuzono, H. Asaeda, C. Westphal https://datatracker.ietf.org/doc/draft-matsuzono-nwcrg-nwc-ccn-reqs/

^[5] I. Amdouni, C. Adjih https://tools.ietf.org/id/draft-amdouni-nwcrg-cisew-00.txt

To go further

- Start from a practical case (NC implementation)
 - 1. Fitting it to the API in the draft
 - (+) First trial to be compliant with the API
 - 2. Adapting the API accordingly
 - (+) no better than the integration with an implementation to complete the API
 - Need to work on the getting and exchanging questions cited above for specific scenario (or not?)
 - E.g., DragonNet [1]
- Contributions, advice, comments, discussions?

Work in progress

Dragoncast 2008/DragonNet (2014)

- [1] S-Y. Cho and C. Adjih, "Wireless Broadcast with Network Coding: DRAGONCAST", Inria RR-6569, July 2008; and S-Y. Cho' PhD Thesis (2008)
- [2] https://www.ietf.org/archive/id/draft-adjih-dragoncast-00.txt
- [3] I. Amdouni, A.Masucci, H. Baccouch, C. Adjih "DragonNet: Specification, Implementation, Experimentation and Performance Evaluation", report, 2014, https://hal.inria.fr/hal-01632790v1

0 1	2 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
	-+-+-+-+-+-+-+-+-+-+-+-+-+-
Rank of the Transmitter	High Index
Low Index	Number of Neighbors
LastTime	1

Motivation/Goal

- Low level: Augmenting the API draft in [1]:
 - API currently does not explicitly target feedback
 - API does not explicitly include recoding, etc.
- High level: State exchange for protocol
 - Useful for sending "innovative" packets
 - Useful for broadcast (many neighbors)
 - Useful for Information Centric Networking (ICN)
- Motivation: more complete API? interest?

Example of SWIF (RLC) codec (API)

CISEW

- Coding Interval-based Sliding Encoding Window:
 - I.Amdouni, C. Adjih, "Coding Interval-based Sliding Encoding Window", draft-amdouni-nwcrg-cisew-00 (work in progress), July 2014, http://tools.ietf.org/html/draft-amdouni-nwcrg-cisew-00
- Redesign of SEW allowing "desynchronization" (real-time)
 - Assume limited decoding buffer:
 - Choice between throwing decoded or undecoded packets
 - Combinations may become useless: $P_{11}+...$ if P_{11} dropped
- Need for a more general buffer management,
- Need for a more general encoding strategy, and:
- Need for more information about the state of neighbors
 - Updated signaling: unwanted, uninteresting, interesting, unseen

Discussion (& heuristics) in the draft, several tradeoffs

Sliding "Encoding" Window (SEW)

- Reversed RREF:
- $Q_1 = P_4 + P_5$
- $Q_2 = P_4$ + P_6
- $Q_3 = P_4$

+ 4 P₇

- RREF:
- $Q'_1 = P_4 + P_5$
- $Q'_2 = P_5$ -4 P_7
- Q'₃ =