Introduction to Specification

Nebulas Research Zaiyang Tang

What is TLA and TLA+?

• In the late 1980's, Leslie Lamport invented TLA, the **Temporal Logic of Actions**—a simple variant of Pnueli's original temporal logic.

What is TLA and TLA+?

• In the late 1980's, Leslie Lamport invented TLA, the **Temporal Logic of Actions**—a simple variant of Pnueli's original temporal logic.

- TLA provides a mathematical foundation for describing systems, and the complete language built atop that foundation is TLA+.
- TLA+ is a language for high-level modeling of digital systems.
- The tool most commonly used by engineers are the TLC model checker, and the TLA+ proof system TLAPS.

The Industrial Use

- **Intel**: Pre-RTL formal verification;
- Amazon:
 - 1. Amazon has used TLA+ on more than 14 large complex systems;
 - 2. Amazon Web Services has been using TLA+ since 2011.

• Microsoft:

- 1. TLA+ was used sporadically at Microsoft beginning around 2004 (Xbox360);
- 2. Starting around 2015, use at Microsoft increased especially in Azure.

• ...

What is Specification?

- A specification is a *written description* of what a system is supposed to do. Precise high-level models are called specifications.
- It's a good idea to understand a system before building it, so it's a good idea to write a specification of a system before implementing it.
- TLA+ can specify algorithms and high-level designs.

Learning Resources

- Learning TLA+: https://lamport.azurewebsites.net/tla/learning.html
- TLA+ Video Course: https://lamport.azurewebsites.net/video/videos.html
- The TLA+ BOOK & The TLA Hyperbook: https://lamport.azurewebsites.net/ tla/learning.html
- Examples: https://github.com/tlaplus/Examples
- Paxos: https://github.com/tlaplus/Examples/tree/master/specifications/Paxos
- Raft: https://github.com/tlaplus/Examples/tree/master/specifications/raft
- Byzantine Paxos Algorithm: https://lamport.azurewebsites.net/tla/byzpaxos.html
- *The Writings of Leslie Lamport: https://blog.bigchaindb.com/the-writings-of-leslie-lamport-abridged-a67df77f464
- Video of Byzantizing Paxos by Refinement: https://www.microsoft.com/en-us/research/video/dr-tla-series-byzantine-paxos/

- Set theory is the foundation of ordinary mathematics and TLA.
- A set is often described as a collection of elements.
- A set can have a finite or infinite number of elements.

- Set theory is the foundation of ordinary mathematics and TLA.
- A set is often described as a collection of elements.
- A set can have a finite or infinite number of elements.

The most common operations on sets are

```
S \cap T The set of elements in both S and T. \{1, -1/2, 3\} \cap \{1, 2, 3, 5, 7\} = \{1, 3\}
S \cup T The set of elements in S or T (or both). \{1, -1/2\} \cup \{1, 5, 7\} = \{1, -1/2, 5, 7\}
S \subseteq T True iff every element of S is an element of T. \{1, 3\} \subseteq \{3, 2, 1\}
S \setminus T The set of elements in S that are not in T. \{1, -1/2, 3\} \setminus \{1, 5, 7\} = \{-1/2, 3\}
```


Other powerful operators of set theory:

UNION S The union of the elements of S. In other words, a value e is an element of union S iff it is an element of an element of S. For example:

UNION
$$\{\{1,2\},\{2,3\},\{3,4\}\} = \{1,2,3,4\}$$

SUBSET S The set of all subsets of S. In other words, $T \in \text{SUBSET } S$ iff $T \subseteq S$. For example:

SUBSET
$$\{1,2\} = \{\{\},\{1\},\{2\},\{1,2\}\}$$

Cardinality(S) The number of elements in set S, if S is a finite set.

IsFiniteSet(S) True iff S is a finite set.

Two important constructs of set:

- $\{x \in S : p\}$ The subset of S consisting of all elements x satisfying property p. For example, the set of odd natural numbers can be written $\{n \in Nat : n \% \ 2 = 1\}$. The identifier x is bound in p; it may not occur in S.
- $\{e:x\in S\}$ The set of elements of the form e, for all x in the set S. For example, $\{2*n+1:n\in Nat\}$ is the set of all odd natural numbers. The identifier x is bound in e; it may not occur in S.

Basic Math: Logic

- 1. Boolean Values
- 2. Propositional Logic
- 3. Predicate Logic
- 4. CHOOSE

Basic Math: Propositional Logic

- Elementary algebra: real numbers and operators (+, -, * and /)
- Propositional logic: Boolean values (TRUE and FALSE) and five operators

Basic Math: Propositional Logic

- Elementary algebra: real numbers and operators (+, -, * and /)
- Propositional logic: Boolean values (TRUE and FALSE) and five operators

F	G	$F \Rightarrow G$	$\neg F$	$\neg F \vee G$	$(F \Rightarrow G) \equiv \neg F \lor G$
TRUE	TRUE	TRUE	FALSE	TRUE	TRUE
TRUE	FALSE	FALSE	FALSE	FALSE	TRUE
FALSE	TRUE	TRUE	TRUE	TRUE	TRUE
FALSE	FALSE	TRUE	TRUE	TRUE	TRUE

Basic Math: Predicate Logic

- How to describe "some formula is true for all the elements of a set, or for some of the elements of a set"?
- Predicate logic extends propositional logic with the quantifiers on sets.
 - ∀ universal quantification (for all)
 - ∃ existential quantification (there exists)

Basic Math: Predicate Logic

- How to describe "some formula is true for all the elements of a set, or for some of the elements of a set"?
- Predicate logic extends propositional logic with the quantifiers on sets.

 - universal quantification (for all) existential quantification (there exists)

e.g., $\exists n \in Nat : n^2 = 2$ asserts that there exists a natural number n whose square equals 2. This formula happens to be false.

Basic Math: CHOOSE

 $CHOOSE x \in S : p$ [An x in S satisfying p]

- The expression CHOOSE x : F equals an arbitrarily chose value x that satisfies the formula F.
- If no such x exists, the expression has a completely arbitrary value.

Basic Math: Functions

- An assignment of elements of x to elements of e.
- In a programming language, such an assignment is called an array of type *x* indexed by *e*.
- In mathematics, it's called a function from x to e.

```
f[e][Function application]DOMAIN f[Domain of function][x \in S \mapsto e][Function f with such that f[x] = e for x \in S][S \to T][Set of functions f with f[x] \in T for x \in S][f EXCEPT ![e_1] = e_2][Function \hat{f} equal to f except \hat{f}[e_1] = e_2]
```


The Syntax of TLA+: Operators

Constant Operators

Logic

Sets

Functions

```
f[e] \qquad \qquad [Function application] \\ DOMAIN f \qquad \qquad [Domain of function f] \\ [x \in S \mapsto e] \ ^{(1)} \qquad \qquad [Function f such that <math>f[x] = e \text{ for } x \in S] \\ [S \to T] \qquad \qquad [Set of functions f with <math>f[x] \in T \text{ for } x \in S] \\ [f \ EXCEPT \ ![e_1] = e_2] \ ^{(3)} \qquad [Function \widehat{f} \ equal to f \ except \widehat{f}[e_1] = e_2]
```


The Syntax of TLA+: Operators

Constant Operators

Records

```
e.h [The h-field of record e]
[h_1 \mapsto e_1, \dots, h_n \mapsto e_n] [The record whose h_i field is e_i]
[h_1 : S_1, \dots, h_n : S_n] [Set of all records with h_i field in S_i]
[r \text{ EXCEPT } !.h = e]^{(3)} [Record \widehat{r} equal to r except \widehat{r}.h = e]
```

Tuples

```
e[i] [The i^{\text{th}} component of tuple e] \langle e_1, \ldots, e_n \rangle [The n-tuple whose i^{\text{th}} component is e_i] S_1 \times \ldots \times S_n [The set of all n-tuples with i^{\text{th}} component in S_i]
```

Strings and Numbers

```
"c<sub>1</sub> ... c<sub>n</sub>" [A literal string of n characters] STRING [The set of all strings] d_1 \ldots d_n \quad d_1 \ldots d_n \cdot d_{n+1} \ldots d_m [Numbers (where the d_i are digits)]
```


The Syntax of TLA+: Operators

Constant Operators

Conditional Constructs

Let/In Construct

What is Temporal Logic?

In logic, temporal logic is any system of rules and symbolism for representing, and reasoning about, propositions qualified in terms of time.

- "I am hungry"
- "I am always hungry"
- "I will *eventually* be hungry"
- "I will be hungry *until* I eat something"

State Machine

An execution of a system is represented as a **sequence of discrete steps**.

State Machine

An execution of a system is represented as a sequence of discrete steps.

How to describe (or specify) all possible executions (or behaviors) of a system?

- Programming languages
- Turing machines
- Many different kinds of automata
- Hardware description languages

State Machine

An execution of a system is represented as a **sequence of discrete steps**.

How to describe (or specify) all possible executions (or behaviors) of a system?

- Programming languages
- Turing machines
- Many different kinds of automata
- Hardware description languages

Use state machine

A state machine is described by:

- 1. All possible initial states.
- 2. What next states can follow any given state.

Terminology

- State: a state is an assignment of values to variables.
- Behavior (execution): a behavior is any infinite sequence of states.
- State function: a state function is an expression that is built from declared variables, declared constants, and constant operators.
- State predicate: a state predicate is a Boolean-valued state function.

Terminology

- State: a state is an assignment of values to variables.
- Behavior (execution): a behavior is any infinite sequence of states.
- State function: a state function is an expression that is built from declared variables, declared constants, and constant operators.
- State predicate: a state predicate is a Boolean-valued state function.

Terminology

- State: a state is an assignment of values to variables.
- Behavior (execution): a behavior is any infinite sequence of states.
- State function: a state function is an expression that is built from declared variables, declared constants, and constant operators.
- State predicate: a state predicate is a Boolean-valued state function.

state function e $x \in T$

Terminology

- State: a state is an assignment of values to variables.
- Behavior (execution): a behavior is any infinite sequence of states.
- State function: a state function is an expression that is built from declared variables, declared constants, and constant operators.
- State predicate: a state predicate is a Boolean-valued state function.

The value of function e in state s is the constant expression $42 \in T$

Terminology

- Step: a pair of successive states.
- Transition function: a transition function is an expression built from state functions using the **priming operator and the other action operators** of TLA+.
- Action: an action is a Boolean-valued transition function.

Terminology

- Step: a pair of successive states.
- Transition function: a transition function is an expression built from state functions using the **priming operator and the other action operators** of TLA+.
- Action: an action is a **Boolean-valued** transition function.

Terminology

- Step: a pair of successive states.
- Transition function: a transition function is an expression built from state functions using the **priming operator and the other action operators** of TLA+.
- Action: an action is a **Boolean-valued** transition function.

$$[x = 1] \rightarrow [x = 2] \rightarrow [x = 3] \rightarrow [x = 4] \rightarrow \dots$$

$$[x = 1] \xrightarrow{\text{state } s \text{ state } t} \xrightarrow{\text{state } t}$$

step
$$s \rightarrow t$$

transition function $e^{-x'} - x$

The value of transition function e on step $s \rightarrow t$ is 4-3

Terminology

- Step: a pair of successive states.
- Transition function: a transition function is an expression built from state functions using the **priming operator and the other action operators** of TLA+.
- Action: an action is a **Boolean-valued** transition function.

$$[x = 1] \rightarrow [x = 2] \rightarrow [x = 3] \rightarrow [x = 4] \rightarrow \dots$$

$$[x = 1] \xrightarrow{\text{state } s \text{ state } t} \xrightarrow{\text{state } t}$$

step $s \rightarrow t$

transition function $e^{-x'} - x$

action A x' = x + 1

The value of transition function e on step $s \rightarrow t$ is 4-3

The action A is true on step $s \rightarrow t$

Nonconstant Operators

- The nonconstant operators are what distinguish TLA+ from ordinary mathematics.
- There are two classes of nonconstant operators: action operators and temporal operators.

Nonconstant Operators

Action operators

```
\begin{array}{ll} e' & \qquad & [\text{The value of } e \text{ in the final state of a step}] \\ [A]_e & \qquad & [A \lor (e' = e)] \\ [A \land (e' \neq e)] \\ [A \land A \text{ step is possible}] \\ [A \land B] & \qquad & [A \land B] \\ [Composition of actions] \\ \end{array}
```


Some more

Recursion

 $fact[n] = \text{if } n = 0 \text{ then } 1 \text{ else } n * fact[n-1], \text{ for all } n \in Nat$

Some more

Recursion

 $fact[n] = \text{if } n = 0 \text{ then } 1 \text{ else } n * fact[n-1], \text{ for all } n \in Nat$

Functions vs. Operators

operator $Tail(s) \triangleq [i \in 1 ... (Len(s) - 1) \mapsto s[i + 1]]$ function $fact[n \in Nat] \triangleq \text{If } n = 0 \text{ THEN } 1 \text{ ELSE } n * fact[n - 1]$

The Syntax of TLA+(cont'd)

Some more

Recursion

 $fact[n] = \text{if } n = 0 \text{ then } 1 \text{ else } n * fact[n-1], \text{ for all } n \in Nat$

Functions vs. Operators

operator
$$Tail(s) \triangleq [i \in 1 ... (Len(s) - 1) \mapsto s[i + 1]]$$

function $fact[n \in Nat] \triangleq \text{If } n = 0 \text{ THEN } 1 \text{ ELSE } n * fact[n - 1]$

- 1. A function by itself is a complete expression that denotes a value, but an operator is not.
- 2. Unlike an operator, a function must have a domain, which is a set.
- 3. Unlike a function, an operator cannot be defined recursively.

What is specification?

What is specification?

A specification is a mathematical model of a particular view of some part of a system.

What is specification?

A specification is a mathematical model of a particular view of some part of a system.

How to write a specification?

What is specification?

A specification is a mathematical model of a particular view of some part of a system.

How to write a specification?

- 1. Pick the variables and define the type invariant and initial predicate;
- 2. Write the **next-state action**, which can be the disjunction of actions describing the different kinds of system operations;
- 3. Define those actions;
- 4. Combine the initial predicate, next-state action, and any fairness conditions chosen into the definition of a **single temporal formula** that is the specification;
- 5. Assert **theorems** about the specification.

EXTENDS Naturals

VARIABLE hr $HCini \triangleq hr \in (1 ... 12)$ $HCnxt \triangleq hr' = \text{If } hr \neq 12 \text{ Then } hr + 1 \text{ else } 1$ $HC \triangleq HCini \land \Box [HCnxt]_{hr}$ THEOREM $HC \Rightarrow \Box HCini$

THEOREM $HC \Rightarrow \Box HCini$

EXTENDS Naturals Imports other modules Variable hr $HCini \triangleq hr \in (1...12)$ $HCnxt \triangleq hr' = \text{if } hr \neq 12 \text{ Then } hr + 1 \text{ else } 1$ $HC \triangleq HCini \land \Box [HCnxt]_{hr}$

EXTENDS Naturals

VARIABLE hr $HCini \triangleq hr \in (1..12)$ $HCnxt \triangleq hr' = \text{If } hr \neq 12 \text{ Then } hr + 1 \text{ ELSE } 1$ THEOREM $HC \Rightarrow \Box HCini$ Imports other modules

Declare the variables

Initial state predicate

Next-state relation(action)

MODULE $HourClock$ ————————————————————————————————————						
EXTENDS Naturals	Imports other modules					
Variable hr	Declare the variables					
$HCini \stackrel{\Delta}{=} hr \in (1 \dots 12)$	Initial state predicate					
$HCnxt \triangleq hr' = \text{if } hr \neq 12 \text{ then } hr + 1 \text{ else}$	1 Next-state relation(action)					
$HC \triangleq HCini \wedge \Box [HCnxt]_{hr}$	Specification					
THEOREM $HC \Rightarrow \Box HCini$	Theorem					

EXTENDS Naturals

VARIABLE hr $HCini \triangleq hr \in (1..12)$ $HCnxt \triangleq hr' = \text{IF } hr \neq 12 \text{ THEN } hr + 1 \text{ ELSE } 1$ $HCini \wedge \Box [HCnxt]_{hr}$ THEOREM $HC \Rightarrow \Box HCini$ MODULE HourClockImports other modules

Declare the variables

Initial state predicate

Next-state relation(action)

Specification

Behavior 1
$$[hr = 11] \rightarrow [hr = 12] \rightarrow [hr = 1] \rightarrow [hr = 2] \rightarrow ...$$

Behavior 2 $[hr = 11] \rightarrow [hr = 77.2] \rightarrow [hr = 78.2] \rightarrow [hr = \sqrt{-2}] \rightarrow ...$

——— MODULE HourClockEXTENDS Naturals Imports other modules VARIABLE hrDeclare the variables $HCini \stackrel{\triangle}{=} hr \in (1 \dots 12)$ Initial state predicate $HCnxt \triangleq hr' = \text{if } hr \neq 12 \text{ Then } hr + 1 \text{ else } 1$ Next-state relation(action) $HC \triangleq HCini \wedge \Box [HCnxt]_{hr}$ Specification THEOREM $HC \Rightarrow \Box HCini$

Theorem

Behavior 1
$$[hr = 11] \rightarrow [hr = 12] \rightarrow [hr = 1] \rightarrow [hr = 2] \rightarrow ...$$

Behavior 2 $[hr = 11] \rightarrow [hr = 77.2] \rightarrow [hr = 78.2] \rightarrow [hr = \sqrt{-2}] \rightarrow ...$

Behavior 1 satisfies formula *HC* and behavior 2 does not.

Formula *HC* is regarded to be the specification of an hour clock because it is satisfied by exactly those behaviors that represent histories of the universe in which the clock functions properly.

Terminology

- Temporal formula: a temporal formula is an assertion about behaviors.
- Theorem: a temporal formula satisfied by every behavior is called a theorem.
- Invariant: an invariant Inv of a specification Spec is a state predicate such that Spec => []Inv is a theorem.

Terminology

- Temporal formula: a temporal formula is an assertion about behaviors.
- Theorem: a temporal formula satisfied by every behavior is called a theorem.
- Invariant: an invariant Inv of a specification Spec is a state predicate such that Spec => []Inv is a theorem.

A invariant is a Boolean expression that's checked at the end of every "step" of the model.

Terminology

- Temporal formula: a temporal formula is an assertion about behaviors.
- Theorem: a temporal formula satisfied by every behavior is called a theorem.
- Invariant: an invariant Inv of a specification Spec is a state predicate such that Spec => []Inv is a theorem.

A invariant is a Boolean expression that's checked at the end of every "step" of the model.

 $\square F$ Formula F is always true.

Terminology

- Temporal formula: a temporal formula is an assertion about behaviors.
- Theorem: a temporal formula satisfied by every behavior is called a theorem.
- Invariant: an invariant Inv of a specification Spec is a state predicate such that Spec => []Inv is a theorem.

A invariant is a Boolean expression that's checked at the end of every "step" of the model.

$\Box F$	Formul	la F is	alw	ays t	rue.
THE	OREM	HC	\Rightarrow	$\Box H$	Cini

 $\square HCini$ should be true for any behavior satisfying HC. Thus the formula $HC \Rightarrow \square HCini$ should be satisfied by every behavior, which is a theorem.

HCini is a state predicate as well as invariant.

So far, the specifications is about what a system *must not* do.

So far, the specifications is about what a system *must not* do.

Safety property

So far, the specifications is about what a system *must not* do.

Safety property

How to specify that something *does* happen?

So far, the specifications is about what a system *must not* do.

Safety property

How to specify that something does happen?

Liveness property

So far, the specifications is about what a system *must not* do.

Safety property

How to specify that something *does* happen?

Liveness property

Express liveness properties as temporal formulas.

Recall

- State: a state is an assignment of values to variables.
- Behavior: a behavior is any infinite sequence of states.
- Temporal formula: a temporal formula is an assertion about behaviors.
- A temporal formula is true or false of a behavior.
- A temporal formula satisfied by every behavior is called a theorem

Recall

- State: a state is an assignment of values to variables.
- Behavior: a behavior is any infinite sequence of states.
- Temporal formula: a temporal formula is an assertion about behaviors.
- A temporal formula is true or false of a behavior.
- A temporal formula satisfied by every behavior is called a theorem

Recall

- State: a state is an assignment of values to variables.
- Behavior: a behavior is any infinite sequence of states.
- Temporal formula: a temporal formula is an assertion about behaviors.
- A temporal formula is true or false of a behavior.
- A temporal formula satisfied by every behavior is called a theorem

$$\sigma^{+n} \triangleq \sigma_n \to \sigma_{n+1} \to \sigma_{n+2} \to \cdots$$

Recall

- State: a state is an assignment of values to variables.
- Behavior: a behavior is any infinite sequence of states.
- Temporal formula: a temporal formula is an assertion about behaviors.
- A temporal formula is true or false of a behavior.
- A temporal formula satisfied by every behavior is called a theorem

 $\sigma \models F$ Temporal formula F assigns a Boolean value to a behavior σ .

$$\sigma^{+n} \triangleq \sigma_n \to \sigma_{n+1} \to \sigma_{n+2} \to \cdots$$

 $\Box F$ Formula F is always true. $\sigma \models \Box F \triangleq \forall n \in Nat : \sigma^{+n} \models F$

Recall

- State: a state is an assignment of values to variables.
- Behavior: a behavior is any infinite sequence of states.
- Temporal formula: a temporal formula is an assertion about behaviors.
- A temporal formula is true or false of a behavior.
- A temporal formula satisfied by every behavior is called a theorem

$$\sigma^{+n} \triangleq \sigma_n \rightarrow \sigma_{n+1} \rightarrow \sigma_{n+2} \rightarrow \cdots$$

$$\Box F$$
 Formula F is always true. $\sigma \models \Box F \triangleq \forall n \in Nat : \sigma^{+n} \models F$

$$\Diamond F$$
 Formula F is eventually true. $\sigma \models \Diamond F \equiv \sigma \models \neg \Box \neg F$

Recall

- State: a state is an assignment of values to variables.
- Behavior: a behavior is any infinite sequence of states.
- Temporal formula: a temporal formula is an assertion about behaviors.
- A temporal formula is true or false of a behavior.
- A temporal formula satisfied by every behavior is called a theorem

$$\sigma^{+n} \triangleq \sigma_n \to \sigma_{n+1} \to \sigma_{n+2} \to \cdots$$

- $\Box F$ Formula F is always true. $\sigma \models \Box F \triangleq \forall n \in Nat : \sigma^{+n} \models F$
- $\Diamond F$ Formula F is eventually true. $\sigma \models \Diamond F \equiv \sigma \models \neg \Box \neg F \equiv \neg (\sigma \models \Box \neg F) \equiv \neg (\sigma \models \Box \neg F)$

Recall

- State: a state is an assignment of values to variables.
- Behavior: a behavior is any infinite sequence of states.
- Temporal formula: a temporal formula is an assertion about behaviors.
- A temporal formula is true or false of a behavior.
- A temporal formula satisfied by every behavior is called a theorem

$$\sigma^{+n} \triangleq \sigma_n \to \sigma_{n+1} \to \sigma_{n+2} \to \cdots$$

$$\Box F$$
 Formula F is always true. $\sigma \models \Box F \triangleq \forall n \in Nat : \sigma^{+n} \models F$

$$\lozenge F$$
 Formula F is eventually true. $\sigma \models \lozenge F \equiv \sigma \models \neg \Box \neg F \equiv \neg(\sigma \models \Box \neg F) \equiv \neg(\sigma \models \Box \neg F)$

$$\equiv \neg(\forall n \in Nat : \sigma^{+n} \models \neg F)$$

Recall

- State: a state is an assignment of values to variables.
- Behavior: a behavior is any infinite sequence of states.
- Temporal formula: a temporal formula is an assertion about behaviors.
- A temporal formula is true or false of a behavior.
- A temporal formula satisfied by every behavior is called a theorem

 $\sigma \models F$ Temporal formula F assigns a Boolean value to a behavior σ .

$$\sigma^{+n} \triangleq \sigma_n \to \sigma_{n+1} \to \sigma_{n+2} \to \cdots$$

$$\Box F$$
 Formula F is always true. $\sigma \models \Box F \triangleq \forall n \in Nat : \sigma^{+n} \models F$

$$\lozenge F$$
 Formula F is eventually true. $\sigma \models \lozenge F \equiv \sigma \models \neg \Box \neg F \equiv \neg(\sigma \models \Box \neg F) \equiv \neg(\sigma \models \Box \neg F)$

$$\equiv \neg(\forall n \in Nat : \sigma^{+n} \models \neg F)$$

 $\equiv \exists n \in Nat : \sigma^{+n} \models F$

The Syntax of TLA+(cont'd)

Nonconstant Operators

Temporal operators

Action

$$[A]_e \triangleq A \lor (e' = e)$$

$$\langle A \rangle_e \triangleq A \wedge (e' \neq e)$$

Action

$$[A]_e \triangleq A \lor (e' = e)$$
 Next or stutter

$$\langle A \rangle_e \triangleq A \land (e' \neq e)$$
 Next and change

Action

$$[A]_e \triangleq A \lor (e' = e)$$
 Next or stutter

$$\langle A \rangle_e \triangleq A \land (e' \neq e)$$
 Next and change

Specification

$$Init \land \square [Next]_v \land \square \lozenge \langle Next \rangle_v$$

Action

$$[A]_e \triangleq A \lor (e' = e)$$
 Next or stutter

$$\langle A \rangle_e \triangleq A \land (e' \neq e)$$
 Next and change

Specification

$$Init \wedge \square [Next]_{v} \wedge \square \lozenge \langle Next \rangle_{v}$$
Safety
Liveness

TBC...

- Weak & Strong Fairness
- TLC Model Checker
- Example: Paxos & Byzantine Paxos with TLA+

The hard part of learning to write TLA+ specs is learning to think **abstractly** about the system.

Thanks

