#### EE 240B - Fall 2019

# Advanced Analog Integrated Circuits Lecture 7: Noise- and SNR-Limited Amplifier Design Methodology



Ali M. Niknejad Dept. of EECS

## Noise Density Limited Amplifier Design Methodology



#### Input specifications:

- Minimum small signal gain A<sub>v</sub>
- Supply voltage V<sub>dd</sub>
- Fixed V\*
- Maximum input-referred noise spectral density  $v_{i,n}^2/\Delta f$

Goal: minimize power

## Small Signal Model and Noise Analysis



EE 240B

## **Resulting Design**

$$g_{m} \geq \frac{4\mu T \left(\frac{1+\sqrt{4}}{A_{lo}}\right)}{\left(\sqrt{V_{l,nex}}/\Delta f\right)}$$

$$f_{0} = \frac{g_{n}V^{*}}{Z} = \frac{4\mu T}{2} \left(\frac{1+\sqrt{4}}{A_{lo}} + \frac{1+\sqrt{4}}{Z}\right) \cdot \frac{V^{*}}{\left(\sqrt{V_{l,nex}}/\Delta f\right)}$$

$$A_{v} = \frac{g_{m}}{A_{v}} = \frac{g_{m}}{A_{v}} = \frac{g_{m}R_{v}}{A_{v}} = \frac{A_{v}}{A_{v}}$$

$$A_{v} = \frac{A_{v}}{A_{v}} \left(\frac{1+\frac{A_{v}}{A_{v}}}{A_{v}}\right) = \frac{A_{v}}{A_{v}} = \frac{A_{v}}{A_{v}}$$

$$A_{v} = \frac{A_{v}}{A_{v}} \left(\frac{1+\frac{A_{v}}{A_{v}}}{A_{v}}\right) = \frac{g_{m}R_{v}}{A_{v}} = \frac{A_{v}}{A_{v}}$$

$$A_{v} = \frac{A_{v}}{A_{v}} = \frac{A_{v}}{A_{v}} = \frac{A_{v}}{A_{v}} = \frac{A_{v}}{A_{v}}$$

$$A_{v} = \frac{A_{v}}{A_{v}} = \frac{A_{v}}{A$$

## Discussion (1)

Why did we not even specify the capacitive load?



## Discussion (2)

If you could exactly set a<sub>v0</sub>, what value would you pick?

Av = 
$$\frac{Av}{1 - \frac{Av}{avo}}$$
 $\frac{Av - gain}{avo}$ 
 $\frac{Av - gain}{solid point}$ 
 $\frac{Av - gain}{avo}$ 
 $\frac{Av - gain$ 

### Integrated Noise-Limited Amplifier



#### Input specifications:

- Minimum small signal gain A<sub>v</sub>
- Minimum 3dB bandwidth  $\omega_{bw}$
- Supply voltage V<sub>dd</sub>
- Fixed V\*
- Maximum noise variance  $v_{o,n}^2$

#### Goal: minimize power

## Required C<sub>L</sub>, g<sub>m</sub>, and I<sub>D</sub>

$$V_{off}^{2} = \frac{kT}{C} \left( 1 + \frac{r}{\alpha} A_{Vo} \right)$$

$$C_{L} = \frac{kT}{V_{off}^{2}} \left( 1 + \frac{r}{\alpha} A_{Vo} \right)$$

$$C_{L} = \frac{kT}{V_{off}^{2}} \left( 1 + \frac{r}{\alpha} A_{Vo} \right)$$

$$GBW = \frac{9m}{CL} = A_{V} \omega_{BV}$$

$$g_{m} = \frac{A_{V} \omega_{BV}}{CL} \cdot kT \left( 1 + \frac{r}{\alpha} A_{Vi} \right)$$

$$T_{D} = \frac{5mV^{*}}{2} \xrightarrow{P} \frac{R_{L}}{GAIN}$$

$$R_{L} = \frac{SET}{GAIN}$$

EE 240B Lecture 7 8

## Discussion (1)

 For both noise-density and integrated noiselimited amplifiers, what V\* should you pick?

## Discussion (2)

• How would one know the  $v_{i,n}^2/\Delta f$  or  $v_{o,n}^2$  spec?

## **Signal Swing Limitations**



LINEARITY
DETERMINES
SWING



### **Why Linearity Matters**

- Option 1: Retaining the original shape of the input inherently matters
  - E.g., oscilloscope, spectrum analyzer
  - (Actually also often matters in communication systems)
- Option 2: Need to be able to discern a (small) signal out of the combination of many others
  - E.g., RF, neural front-ends
  - "Other" signals could
- Precise linearity metric depends on usage scenario
  - More next time will use simplified metric for now

## **Sources of Non-Linearity**

#### Output limited: Non-linear Z<sub>out</sub> (r<sub>o</sub>)



**Input limited:** 



## Linearity: Small vs. Large-Signal Gain



#### · Small Signal:

$$a_{vo} = \frac{dV_{out}}{dV_{in}}$$

#### Large Signal:

$$A_{vo} = \frac{V_{out} - V_{out\_o}}{V_{in} - V_{in\_o}}$$

### Input Non-Linearity with a Diff. Pair



## Full Circle: SNR-Limited Design (noise density)



#### Input specifications:

- Minimum small signal gain A<sub>v</sub>
- Supply voltage V<sub>dd</sub>
- Signal shape (usually sinusoid) and amplitude V<sub>sig</sub>
- Externally determined bandwidth f<sub>bw</sub>
- Minimum signal-to-noise ratio SNR<sub>min</sub>

#### Goal: minimize power

## Required $v_{i,n}/\Delta f$

- a Assume sinsoidal signel drive
- · Signel power = 1/2 /5/3
  - a (uput refer hoise power =  $4kT\left(\frac{x}{\alpha} + \frac{1}{4v_0}\right) f_{bu} \cdot \frac{1}{9m}$

EE 240B Lecture 7 17

## Required V\*

$$9_{h} > \frac{8 kT \left(\frac{k}{\alpha} + \frac{1}{Av_{\delta}}\right) f_{bw} \cdot SNR_{min}}{V_{sig}^{2}}$$

$$V_{i,mex} < \frac{V^{*}}{2} \qquad V^{*} = 2 V_{i,mex}$$

$$\frac{2 I_{D}}{2 V_{i,mex}} = \frac{8 kT \left(\frac{k}{\alpha} + \frac{1}{Av_{\delta}}\right) f_{bw} \cdot SNR_{i,m}}{V_{sig}}$$

$$I_{D} = \frac{8 kT \left(\frac{k}{\alpha} + \frac{1}{Av_{\delta}}\right) f_{bw} \cdot SNR_{i,m}}{V_{sig}}$$

EE 240B Lecture 7 18

## **SNR-Limited Design (total noise)**



#### Input specifications:

- Minimum small signal gain A<sub>v</sub>
- Minimum 3dB bandwidth  $\omega_{bw}$
- Supply voltage V<sub>dd</sub>
- Input-referred maximum linear amplitude V<sub>i.max</sub>
- Signal shape (usually sinusoid) and amplitude V<sub>sig</sub>
- Minimum signal-to-noise ratio SNR<sub>min</sub>

#### Goal: minimize power

## Methodology

$$\frac{1}{2} Av V_{si}$$

$$\frac{LT}{C_L} (1 + \frac{t}{\alpha} Av_*)$$

$$C_{1} = \frac{2kT}{A_{V}^{2}} \frac{SNR_{min} \left( \left( + \frac{t}{\alpha} A_{V_{0}} \right) \right)}{A_{V_{0}}^{2} V_{Six}^{2}}$$

### **Discussion**