

Longitudinal Analysis of Change and Variety of Natural Language Data

Computational linguistic methods for modeling lexical-semantic dynamics of hate speech

by Sanne Hoeken

But first... Who am !?

- (3rd year) PhD in Computational Linguistics Bielefeld University
- MA Human Language Technology Vrije Universiteit Amsterdam
- BA Linguistics Leiden University

Besides spiralling my way into NLP,

l also love sports (gym, running, cycling, skiing, ...) and cooking (others with a named sourdough starter?)

Longitudinal Analysis of Change and Variety of Natural Language Data

Computational linguistic methods for modeling lexical-semantic dynamics of hate speech

by Sanne Hoeken

Longitudinal Analysis of Change and Variety of Natural Language Data

Computational linguistic methods for modeling lexical-semantic dynamics of hate speech

by Sanne Hoeken

Longitudinal Analysis of Change and Variety of Natural Language Data

Computational linguistic methods for modeling lexical-semantic dynamics of hate speech

by Sanne Hoeken

Longitudinal Analysis of Change and Variety of Natural Language Data

Computational linguistic methods for modeling lexical-semantic dynamics of hate speech

by Sanne Hoeken

Change and Variety

dynamics

Change over time

dynamics

Change over time

dynamics

→ the evolution of hateful word meanings

Variety across different contexts

dynamics

individual Variety across different contexts

dynamics

individual Variety across different contexts

Computational linguistic methods for modeling lexical-semantic dynamics of hate speech

Hateful Word in Context Classification

Sanne Hoeken¹, Sina Zarrieß¹ and Özge Alaçam^{1,2}

¹Computational Linguistics, Department of Linguistics, Bielefeld University, Germany ²Centre for Information and Language Processing, LMU Munich, Germany {sanne.hoeken, sina.zarriess, oezge.alacam}@uni-bielefeld.de

The 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Table of contents

- 1. Why Hateful Word in Context (HateWiC) Classification?
- 2. HateWiC dataset
 - with Wiktionary data and crowd-sourced annotations
- 3. HateWiC classification
 - with various word sense and annotator representations
- 4. Results
- 5. Final remarks

HateWiC classification because hateful senses are not...

- ... enough in focus within HSD research
 - Predominant focus on entire utterances (e.g. Waseem & Hovy, 2016; Davidson et al., 2017)
- ... descriptive only, but highly subjective
 - Hateful connotation depends on contextual factors (Frigerio & Tenchini, 2019)
 - Current HSD data typically reflect single perspectives (e.g. Zampieri et al., 2020; Mathew et al., 2020)

Starting with Wiktionary...

• 1087 entries with at least one sense labeled with category offensive or derogatory

After cleaning:

- 826 terms
- 1888 sense definitions
- 4029 examples

Oreo

Annotation

Annotation

- Crowd-sourced annotations using Prolific
- Three annotations per instance; 250 instances per annotator
 - → 48 annotators (with diverse backgrounds)
 - → 12442 individual annotations (48% hate and 52% non-hate ratings)
- Inter-annotator agreement of 0.33 (three-class) and 0.45 (binary)
 - → inherent subjectivity of the task!

Annotation

Example	Term	Definition	Annotations	Binary labels	Majority label	Hate-hetero- geneous sense	Agreement on binary
(1) "Me having an up to date style even though I've turned into a carrot cruncher."	carrot cruncher	Someone from a rural background.	Nh, Nh, Nh	0, 0, 0	0	True	True
(2) "you're a friggn' carrot cruncher and you support the bloody scally's."	carrot cruncher	Someone from a rural background.	Sh, Sh, Sh	1, 1, 1	1	True	True
(3) "The bugger's given me the wrong change."(4) "He's a silly bugger for losing his keys."	bugger bugger	A foolish person or thing. A foolish person or thing.	Wh, Sh, Sh Nh, Wh, Sh	1, 1, 1 0, 1, 1	1 1	False False	True False

Table 1: HateWiC examples with their annotations, illustrating the phenomena of annotator disagreement and hate-heterogeneous word senses (Nh = Not hateful, Wh = Weakly hateful, Sh = Strongly hateful)

- 319 hate-heterogeneous definitions (wrt majority ratings!)
 - → hateful connotation of a word sense is not exclusively determined by its descriptive definition!

HateWiC Classification

Overview

HateWiC Classification Sense representations

- Encoder models
 - BERT (Devlin et al., 2019)
 - HateBERT (Caselli et al., 2021)
 - WSD Biencoder (Blevins and Zettlemoyer, 2020)
- Embeddings
 - Word in Context (WiC)
 - Definition (Def)
 - T5-generated definition (T5Def)

"This libtard should leave"

HateWiC Classification Sense representations

- Encoder models
 - BERT (Devlin et al., 2019)
 - HateBERT (Caselli et al., 2021)
 - WSD Biencoder (Blevins and Zettlemoyer, 2020)
- Embeddings
 - Word in Context (WiC)
 - Definition (Def)
 - T5-generated definition (T5Def)

HateWiC Classification Sense representations

- Encoder models
 - BERT (Devlin et al., 2019)
 - HateBERT (Caselli et al., 2021)
 - WSD Biencoder (Blevins and Zettlemoyer, 2020)
- Embeddings
 - Word in Context (WiC)
 - Definition (Def)
 - T5-generated definition (T5Def)

"a person considered naively liberal"

HateWiC Classification Sense representations

- Encoder models
 - BERT (Devlin et al., 2019)
 - HateBERT (Caselli et al., 2021)
 - WSD Biencoder (Blevins and Zettlemoyer, 2020)
- Embeddings
 - Word in Context (WiC)
 - Definition (Def)
 - T5-generated definition (T5Def)

"This libtard should leave. What is the definition of libtard?"

FLAN-T5 Base

(Giulianelli et al., 2023)

[finetuned on English definitions and usage examples]

"a person who is libertarian"

Encoder model

HateWiC Classification

Annotator information

Annotator description embeddings (Ann)

HateWiC Classification

Evaluation

- Evaluating individual label prediction (i.e. 12442 instances)
- Ten-fold cross-validation with two variants of data split for each fold:
 - 1. Random: based on example sentences
 - 2. Out-of-Vocabulary (OoV): based on terms
 - → testing zero-shot capabilities

Results **Overall**

- Effectiveness of all methods
- Only slight drop for OoV-terms
- Negligible differences between encoders

Results Embeddings

- Def and WiC+Def > WiC
- T5Def performs worst
- +Ann: minimal improving effect
- Def+Ann best for Random
- WiC+Def+Ann best for OoV terms

Results in highly subjective scenarios

- Scenario 1: Hate-heterogeneous sense definition
- Scenario 2: Annotator disagrees with majority label
- In both, performance of all embeddings drops significantly!

Results

in highly subjective scenarios

- Highest drop for Def embeddings (up to 47%), less so for T5-generated
 - → aligning with more context-specific nature of T5Def-embeddings
- Incorporating annotator information mitigates drop up to 11%
 - → thus, contributes to cases with high-subjectivity

Final remarks

Insights into hate speech detection through the lens of lexical semantics!

- To define or not define?
 - → potential usefulness of generating context-specific definitions for subjective lexical semantic tasks.

- To individualize anyway?
 - \rightarrow yes, value of personalizing models to account for subjectivity in annotations.

Final remarks & next steps

Insights into hate speech detection through the lens of lexical semantics!

- To define or not define?
 - \rightarrow potential usefulness of generating context-specific definitions for subjective lexical semantic tasks.
- Next steps: more advanced and task-tailored definition generation methods?
- To individualize anyway?
 - → yes, value of personalizing models to account for subjectivity in annotations.
- Next steps: exploring the effectivity of different annotator embeddings?
 - → going beyond annotator demographics?

My questions...

- Can we systematically identify dimensions to profile hateful word meanings in order to explain their variation?
 - i) Lexical semantic dimensions: what semantic features (e.g. referential transparency), relations (e.g. metaphor) and literal domains (e.g. animals, food, diseases) can we observe?
 - ii) Pragmatic dimensions: what contextual features can we observe (e.g. speaker intention and identity, time, place)?
- Can we model meaning variation of hateful words better, incorporating this structured information?

Some more concrete (but preliminary) example thoughts...

- Can we systematically identify dimensions to profile hateful word meanings in order to explain their variation?
 - i) Lexical semantic dimensions: what semantic features (e.g. referential transparency), relations (e.g. metaphor) and literal domains (e.g. animals, food, diseases) can we observe?
 - Referential transparency: a bastard versus cheesehead issue?
 - E.g., do word meanings with more descriptive content carry a higher degree of derogatory autonomy?

Some more concrete (but preliminary) example thoughts...

- Can we systematically identify dimensions to profile hateful word meanings in order to explain their variation?
 - i) Lexical semantic dimensions: what semantic features (e.g. referential transparency), relations (e.g. metaphor) and literal domains (e.g. animals, food, diseases) can we observe?
 - Literal domain: a pig versus potato issue?
 - E.g., are metaphorical mappings (onto a target group) from animals more sensitive to reinforce a subjective hateful meaning than from food?

My questions...

- Can we systematically identify dimensions to profile hateful word meanings in order to explain their variation?
 - i) Lexical semantic dimensions: what semantic features (e.g. referential transparency), relations (e.g. metaphor) and literal domains (e.g. animals, food, diseases) can we observe?
 - ii) Pragmatic dimensions: what contextual features can we observe (e.g. speaker intention and identity, time, place)?
- Can we model meaning variation of hateful words better, incorporating this structured information?

Next steps Your questions?

Thank you for listening!

References

Terra Blevins and Luke Zettlemoyer. 2020. Moving down the long tail of word sense disambiguation with gloss informed bi-encoders. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 1006-1017, Online. Association for Computational Linguistics.

Tommaso Caselli, Valerio Basile, Jelena Mitrovic, and Michael Granitzer. 2021. HateBERT: Retraining BERT for abusive language detection in English. In *Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)*, pages 17-25, Online. Association for Computational Linguistics.

Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017. Automated hate speech detection and the problem of offensive language. *Proceedings of the International AAAI Conference on Web and Social Media*, 11(1):512–515.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 4171-4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Aldo Frigerio and Maria Paolo Tenchini. 2019. Pejoratives: a classification of the connoted terms. Riviera Italian di Filosofia del Linguaggio, 13(1).

Mario Giulianelli, Iris Luden, Raquel Fernández, and Andrey Kutuzov. 2023. Interpretable word sense representations via definition generation: The case of semantic change analysis. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 3130-3148, Toronto, Canada. Association for Computational Linguistics.

Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Biemann, Pawan Goyal, and Animesh Mukherjee. 2021. Hatexplain: A benchmark dataset for explainable hate speech detection. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(17):14867–14875.

Zeerak Waseem and Dirk Hovy. 2016. Hateful symbols or hateful people? predictive features for hate speech detection on Twitter. In *Proceedings of the NAACL Student Research Workshop*, pages 88–93, San Diego, California. Association for Computational Linguistics.

Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa Atanasova, Georgi Karadzhov, Hamdy Mubarak, Leon Derczynski, Zeses Pitenis, and Çagrı Çöltekin. 2020. SemEval-2020 task 12: Multilingual offensive language identification in social media (OffensEval 2020). In *Proceedings of the Fourteenth Workshop on Semantic Evaluation*, pages 1425–1447, Barcelona (online). International Committee for Computational Linguistics.