Improved trial wave functions with 4-body correlations for Nuclear Quantum Monte Carlo

Cody L. Petrie

Arizona State University Tempe, AZ

APS April Meeting 2019 Denver, Colorado 15 April 2019

Outline

- Quantum Monte Carlo methods
- Current trial wave function
- Improved trial wave functions
- Results/Conclusion

Quantum Monte Carlo

VMC:

$$E_V = rac{\langle \Psi_T | H | \Psi_T \rangle}{\langle \Psi_T | \Psi_T \rangle} \ge E_0$$

AFDMC:

$$\Psi_0(\mathbf{R}) = \lim_{ au o \infty} ra{\mathbf{R}} e^{-(H-E_0) au} \ket{\Psi_T}$$

• Ψ_T is calculated in practically every part of the calculation and plays an important role in guiding the propagation and diffusion of the calculation to the ground state.

Slater Determinant

- Properties:
 - Antisymmetric
 - Cluster Decomposable

$$|A + B\rangle = |A\rangle |B\rangle$$

Slater Determinant

- Properties:
 - Antisymmetric
 - Cluster Decomposable $|A + B\rangle = |A\rangle |B\rangle$

- The simplest wave function for a many-fermion system obeying these properties is a Slater determinant where $\phi_i(\mathbf{r}_i, s_i)$ are single particle nucleon states.

$$\psi_{\mathcal{T}} = \langle RS | \phi \rangle = \mathcal{A} \prod_{i=1}^{A} \phi_{i}(\mathbf{r}_{i}, s_{i}) = \frac{1}{A!} \det \phi_{i}(\mathbf{r}_{i}, s_{i})$$

Slater Determinant

- Properties:
 - Antisymmetric
 - Cluster Decomposable $|A + B\rangle = |A\rangle |B\rangle$

• The simplest wave function for a many-fermion system obeying these properties is a Slater determinant where $\phi_i(\mathbf{r}_i, s_i)$ are single particle nucleon states.

$$\psi_{\mathcal{T}} = \langle RS | \phi \rangle = \mathcal{A} \prod_{i=1}^{A} \phi_{i}(\mathbf{r}_{i}, s_{i}) = \frac{1}{A!} \det \phi_{i}(\mathbf{r}_{i}, s_{i})$$

• Short range correlations need to be put in by hand via Jastrow-like correlations.

$$|\psi_T\rangle = \prod_{i < j} f(r_{ij}) |\phi\rangle.$$

Spin Dependent Correlations

• Two spin dependent wave functions that obey these two properties are the exponentially correlated and symmetrized product wave functions, where \mathcal{O}^p_{ij} are the AV6 operators, $\sigma_i \cdot \sigma_j$, $\tau_i \cdot \tau_j$, $\sigma_i \cdot \sigma_j \tau_i \cdot \tau_j$, S_{ij} and $S_{ij} \tau_i \cdot \tau_j$, where $S_{ij} = 3\sigma_i \cdot \hat{r}_{ij}\sigma_j \cdot \hat{r}_{ij} - \sigma_i \cdot \sigma_j$.

$$|\psi_{\mathcal{T}}\rangle = \left[\prod_{i < j} f_c(r_{ij})\right] e^{\sum\limits_{i < j} \sum\limits_{p} f_p(r_{ij})\mathcal{O}_{ij}^p} |\phi
angle$$

$$|\psi_{\mathcal{T}}
angle = \left[\prod_{i < j} f_c(r_{ij})
ight] \mathcal{S} \prod_{i < j} \left(1 + \sum_{p} f_p(r_{ij}) \mathcal{O}_{ij}^p
ight) |\phi
angle$$

 These two wave functions are the same up to second order except for commutator terms.

Linear Correlations

ullet Until recently these wave functions had been expanded only to linear order in \mathcal{O}_{ij} .

$$|\psi_{\mathcal{T}}\rangle = \left[\prod_{i < j} f_c(r_{ij})\right] \left(1 + \sum_{i < j} \sum_p f_p(r_{ij}) \mathcal{O}_{ij}^p\right) |\phi\rangle$$

<u>Jastrow:</u> S. Gandolfi et al. *Phys. Rev. Lett.*, **99**, 022507, 2007.

<u>Jastrow+Linear:</u> S. Gandolfi et al. *Phys. Rev. C.*, **90**, 061306(R), 2014.

Quadratic Correlations

Symmetrized product wave function up to quadratic order

$$|\psi_{T}\rangle = \left[\prod_{i < j} f_{c}(r_{ij})\right] \left[1 + \sum_{i < j} \sum_{p} f_{p}(r_{ij}) \mathcal{O}_{ij}^{p} + \frac{1}{2} \sum_{i < j} \sum_{p} f_{p}(r_{ij}) \mathcal{O}_{ij}^{p} \sum_{\substack{k < l \ ij \neq kl}} \sum_{q} f_{q}(r_{kl}) \mathcal{O}_{kl}^{q}\right] |\phi\rangle$$

Independent Pair Quadratic Correlations

• Independent pair expansion to quadratic order

$$|\psi_{T}\rangle = \left[\prod_{i < j} f_{c}(r_{ij})\right] \left[1 + \sum_{i < j} \sum_{p} f_{p}(r_{ij}) \mathcal{O}_{ij}^{p} + \sum_{i < j} \sum_{p} f_{p}(r_{ij}) \mathcal{O}_{ij}^{p} \sum_{k < l, \text{ip}} \sum_{q} f_{q}(r_{kl}) \mathcal{O}_{kl}^{q}\right] |\phi\rangle$$

Results - AFDMC

D. Lonardoni et al. Phys. Rev. C., 97, 044318, 2018.

Table: Energy (*per nucleon) in MeV

System	Linear	IP Quadratic	Quadratic	Experimental
⁴He	-27.14(4)	-27.19(3)	-27.11(3)	-28.296
¹⁶ O	-115.7(9)	-122.4(1.5)	-120.8(1.3)	-127.62
⁴⁰ Ca	-322(3)	-350(10)	-351(6)	-342.1
SNM*	-13.97(3)	-14.87(4)	-14.81(3)	

Results - VMC

Quadratic Correlation Cost

	⁴ He	¹⁶ O	SNM(28)	⁴⁰ Ca
IP Quadratic	1.73	30.7	64.8	720.9
Quadratic	2.00	58.8	133.6	1473.9

Summary/Conclusion

- We have improved the previously used two-body spin-isospin correlations.
- The improved trial wave functions appear to make a significant difference in the energy of the calculations, but currently cost too much to use for large systems.
- AFDMC is a powerful method for solving nuclear many-body problems, however more accurate wave functions are needed to accurately describe larger systems.

Thanks

Advisor: Kevin Schmidt (ASU)

Collaborators: Stefano Gandolfi (LANL), Joe Carlson (LANL), and Diego Lonardoni

(MSU-FRIB and LANL)

Extra Slides

Extra Slides

Neutron Stars - Preliminary

ullet Use new wave function to study lpha formation in the inner crust of neutron stars.

W. Newton Nature Physics 9, 396-397 (2013)

Alpha Particle Clustering in Mostly Neutron Matter - Preliminary

 If alpha particles form in nearly neutron matter then we should be able to estimate their energy by

$$E_{\alpha}=E_{14\mathsf{n}+2\mathsf{p}}-E_{12\mathsf{n}}$$

Table: Alpha energy in MeV

$ ho$ (fm $^{-3}$)	lin	ip	
0.0005	-22.3(3)	-24.2(2)	
0.001	-20.7(3)	-23.2(3)	
0.002	-21.6(2)	-23.5(3)	
0.003	-25.7(3)	-25.26(18)	
0.005	-27.5(5)	-27.9(2)	
0.01	-37.3(3)	-37.6(7)	
	-27.5(5)	-27.9(2)	

Pair Correlation Function - Preliminary

$$g_{pp}(r) = rac{1}{4\pi r^2} \left\langle \Psi
ight| \sum_{i < j} \hat{p}_i \hat{p}_j \delta(r - r_{ij}) \left| \Psi
ight
angle$$

Pair Correlation Function - Preliminary

Variational Monte Carlo - Implementation

- Generate N configurations (walkers) distributed randomly.
- 2 Loop over each walker and do the following
 - Calculate $P(\mathbf{R}) = |\langle \Psi_T | \mathbf{R} \rangle|^2$.
 - **②** Propose a move $\mathbf{R}' = \mathbf{R} + \Delta \xi$, where ξ could be a vector of random variables from a Gaussian.
 - **3** Calculate $P(\mathbf{R}') = |\langle \Psi_T | \mathbf{R}' \rangle|^2$.
 - Calculate the probability of acceptance $A = \min \left(1, \frac{P(\mathbf{R}')}{P(\mathbf{R})}\right)$.
 - $oldsymbol{0}$ If accepted then $\mathbf{R} \to \mathbf{R}'$, else the next position in the Markov Chain for that walker is the same as the last, namely \mathbf{R} .
- Calculate observables and repeat steps 2 until energy is minimized or uncertainties are low enough.

Diffusion Monte Carlo - Branching

Branching: Each walker can be deleted or multiply. The number of walkers that continues is equal to $\operatorname{int}(w(\mathbf{R}') + \xi)$, where ξ is a uniform random number from [0,1].

Figure: Reprinted from W.M.C. Foulkes et al. *Rev. Mod. Phys.*, 73:33-83, 2001.

Diffusion Monte Carlo - Short Time Propagator

$$\langle \mathbf{R}_{N} | \Psi_{T}(\tau) \rangle = \int d\mathbf{R}_{1} \dots d\mathbf{R}_{N} \left[\prod_{i=1}^{N} G(\mathbf{R}_{i}, \mathbf{R}_{i-1}, \Delta \tau) \right] \langle \mathbf{R}_{0} | \Psi_{T}(0) \rangle$$

$$G(\mathbf{R}', \mathbf{R}, \Delta \tau) = \langle \mathbf{R}' | e^{-(H - E_{0})\Delta \tau} | \mathbf{R} \rangle$$

Diffusion Monte Carlo - Implementation

- Start with N configurations (walkers) from VMC
- 2 Loop over each walker and do the following
 - Propose a move, $\mathbf{R}' = \mathbf{R} + \chi$, where χ is a vector of random numbers from the shifted Gaussian $\exp\left(\frac{m}{2\hbar^2\Delta\tau}\left(\mathbf{R}' \mathbf{R} + 2\frac{\nabla\Psi_I(\mathbf{R}')}{\Psi_I(\mathbf{R}')}\right)^2\right)$.
 - **②** The move is then accepted with the probability $A(\mathbf{R}'\leftarrow\mathbf{R})=\min\left(1,\frac{\Psi_T^2(\mathbf{R}')}{\Psi_T^2(\mathbf{R})}\right)$.
 - Calculate the weight $w(\mathbf{R}') = \exp(-(E_L(\mathbf{R}') + E_L(\mathbf{R}) 2E_0)\Delta\tau/2)$.
 - O Do branching.
 - **6** Calculate and collect the observables and uncertainties needed and increase the imaginary time by $\Delta \tau$.
- Repeat from step 2 to 6 until the uncertainties are small enough.