Chapter 3. 光的干涉与衍射

- § 3.1 相干光 光程及光程差
- § 3.2 杨氏双缝干涉
- § 3.3 薄膜干涉 劈尖 牛顿环
- § 3.4 等倾干涉 麦克尔逊干涉仪
- §3.5 惠更斯一菲涅尔原理 单缝衍射
- § 3.6 圆孔衍射 光学仪器的分辨本领
- § 3.7 衍射光栅

§ 3.1 相干光 光程及光程差

§ 3.1 相干光

光程及光程差

一、热光源的发光机制

自发辐射: 在没有外界干预下,原子会自发地从高

能级跃迁到低能级而 引起的光辐射。

$$h\nu = E_2 - E_1$$

$$v = \frac{E_2 - E_1}{h}$$

发光特点:

间歇性:波列长度有限!

独立性:不同波列特性不同!

二、相干光的获得方法

1. 分波阵面法:

2. 分振幅法:

1、2两束光分别为上下两界面的反射光,为相干光。

三、光程与光程差

波在A、B两点的位相差:

$$\Delta \phi = \frac{2\pi}{\lambda_1} r_1 + \frac{2\pi}{\lambda_2} r_2 + \dots + \frac{2\pi}{\lambda_N} r_N = 2\pi \sum_i \frac{r_i}{\lambda_i}$$

$$\lambda = \frac{\lambda_0}{n}$$

$(\lambda_0$ 为真空波长)

$$\Delta \phi = \frac{2\pi}{\lambda_0} \sum_i n_i r_i$$

定义 光波在传播空间的光程 L:

光程 $L = 媒质折射率 n \times 几何路程 r$

物理意义: $L = nr = \frac{c}{v}r = c\frac{r}{v} = c\Delta t$

$$\lambda = \frac{\lambda_0}{n}$$

 $(\lambda_0$ 为真空波长)

$$\Delta \phi = \frac{2\pi}{\lambda_0} \sum_i n_i r_i$$

定义 光波在传播空间的光程 L:

光程 $L = 媒质折射率 n \times 几何路程 r$

物理意义:
$$L = nr = \frac{c}{v}r = c\frac{r}{v} = c\Delta t$$

即 L 可折算成在相等的时间内,光在享空中所走过的路程。

如图 S_1 、 S_2 (波源位相相同)在p 点引起振动的位相 差为:

$$\Delta \phi = \frac{2\pi}{\lambda_0} (n_2 r_2 - n_1 r_1)$$

$$\Rightarrow : \delta = n_2 r_2 - n_1 r_1$$

(即光程差 L_2-L_1)

$$\Delta \phi = \frac{2\pi}{\lambda_0} \delta$$

(光程差与位相差间的关系)

注意:

1. 透镜不引起额外光程差!

$$\Rightarrow : \delta = n_2 r_2 - n_1 r_1$$

$$\Delta \phi = \frac{2\pi}{2} \delta$$

(即光程差 L_2-L_1)

(光程差与位相差间的关系)

1. 透镜不引起额外光程差!

2. 当光从光疏媒质到光密媒质反射时,入射光与反射 光间亦有半波损失现象:

$$\delta = L_2 - L_1 + \frac{\lambda}{2} = (由几何路径差引起) + (额外光程差)^*$$

- 1. 普通光源发光机制:
- 2. 获得相干光的两种方法: 分波阵面法及分振幅法。
- 3. 光程 L 及光程差 δ : L = nr
- 4. 光程差与位相差间的关系: $\Delta \phi = \frac{2\pi}{\lambda_0} \delta$