

What have we learned from deep representations for action recognition?

work with

Axel Pinz
Graz University of Technology

Richard P. Wildes York University, Toronto

Andrew Zisserman University of Oxford

Outline

Two-Stream Architectures for Action Recognition
 What have we learned in:

- Fusion of appearance and motion streams
- Long-term feature aggregation
- Visualization of Two-Stream representations
 Intuitions for why:
 - Explicit motion models perform better
 - Fusion leads to good feature abstractions

→ Amazing what the brain can do without appearance information

Sources: Johansson, G. "Visual perception of biological motion and a model for its analysis." Perception & Psychophysics. 14(2):201-211. 1973.

Motivation: Separate visual pathways in nature

Sources: "Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli." Journal of neurophysiology 65.6 (1991).

"A cortical representation of the local visual environment", Nature. 392 (6676): 598–601, 2009

https://en.wikipedia.org/wiki/Two-streams hypothesis

Convolutional Two-Stream Network Fusion

We study a number of ways of fusing two-stream ConvNets

[Simonyan & Zisserman, NIPS'14]

Sum fusion works surprisingly well

as a sum kernel +
feature identity
mapping

Spatiotemporal Residual Networks

- O ST-ResNet allows the hierarchical learning of spacetime features by connecting the appearance and motion channels of a two-stream architecture.
- Though, naive fusion does not work.

Fusing Two-Stream ResNets & Injecting Temporal Filters

- ResNets for the spatiotemporal domain by introducing residual connections in two ways
 - 1. Residuals between the motion and appearance pathways to allow spatiotemporal interaction between the streams
 - 2. Transformation

 of pretrained image ConvNets by filters initialized as residuals in time
- Our most recent work (@CVPR'17) reconsiders the combination these approaches more thoroughly to increase our understanding of how these techniques interact.

Feichtenhofer, Pinz, Wildes, NIPS'16 & CVPR'17

Increasing the temporal receptive field of ResNets

 \circ The temporal receptive field is modulated by the temporal filters ullet and input stride au

Transforming spatial filters to spatiotemporal ones

- Chaining temporal filters supports hierarchical learning of long-term correspondences between features of the appearance and motion stream.
- \circ For example, if the stride is set to $\tau=15$ frames and we transform 8 filters, a unit at conv5_3 sees a window of $17\times15=255$ frames.

Feichtenhofer, Pinz, Wildes, NIPS'16

Visualizing the learned representation

[Simonyan et al. 2013] [Mahendran & Vedaldi 2014] [Yosinski et al. 2014]

Filter #21 at conv5 fusion — a local Billiard neuron?

Feichtenhofer, PhD Thesis 2017

Filter #21 at conv5 fusion — a local Billiard neuron?

Feichtenhofer, PhD Thesis 2017

Last layer

Appearance

Slow motion

e.g. "ball rolling"

Fast motion

e.g. "player moving"

sis 2017

Going through the conv layers of VGG-16 (first four filters of each layer are shown)

Appearance

conv**8_3** f1-4

Slow motion

Feichtenhofer, PhD Thesis 2017

Feichtenhofer, PhD Thesis 2017

Feichtenhofer, PhD Thesis 2017

Feichtenhofer, PhD Thesis 2017

Feichtenhofer, PhD Thesis 2017

FC 6 (4096 features; RF 404x404)

Appearance Slow motion

FC 7 (4096 features; RF 404x404)

Appearance Slow motion

Explaining failure cases:

BrushingTeeth 52% accuracy

Feichtenhofer, PhD Thesis 2017

Revealing idiosyncracies in data

Appearance

Slow motion

Fast motion

sis 2017

Revealing idiosyncracies in data

Appearance

Slow motion

Fast motion

sis 2017

Summary of our insights

We study ways of connecting appearance and motion ConvNets

and

By visualizing the learned representation we find that:

Early layers show similar spatial structures for appearance and flow

 Higher layer conv-fusion-filters are broadly tuned to multiple speeds and can be specific but also generic across classes

 Class visualizations aid in analyzing system strengths and weaknesses

