МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №23

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ_

(5)

ПРЕПОДАВАТЕЛЬ

Ассистент должность, уч. степень, звание м 03-2014 полнись, дата Т.С. Мисникова

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

Исследование полупроводникового стабилитрона

по курсу: Электроника

СТУДЕНТ ГР. №

2221

номер группы

18.03.2024, Et

Е.Ю. Дройзман

Санкт-Петербург 2024

Managolomes

Inn, MA	0	2,0	10	50	30	.40	30	120	160	200	240	280
un, B(KC)	0	0,61	0,64	0,66	0,67	0,68	0,70	15,0	0,72	0,73	0,44	0,75

M2.B	0,	6.1	0,5	1,0	7.5	2.0	25	30	3.5	4,0
de. B	0101			6,3					1	
Josn, MA	0			1,9			-		-	
Mesh	0	4,3		5,3			1		5,6	5,7

MZB	4,5	5,0
rea, B	10,3	10,7
705, NA	8,8	9,8
Mospb	5,8	5,7

KC156A

Dod struca:

Aroignan Erma Bocogram Norma terroros Americanopa

Цель лабораторной работы: изучение свойств полупроводникового стабилитрона, исследование его вольт-амперной характеристики.

1 Схемы исследования

На Рисунке 1 представлена схема измерения прямой ветви вольтамперной характеристики стабилитрона и определение основных параметров.

Рисунок 1 – Схема измерения прямой ветви ВАХ стабилитрона

На Рисунке 2 представлена схема измерения обратной ветви вольтамперной характеристики стабилитрона.

Рисунок 2 – Схема измерения обратной ветви ВАХ стабилитрона

2 Рабочие формулы

Обратный ток находится по формуле:

$$I_{\text{обр}} = \frac{U_2}{R}$$
, где (1)

R — сопротивление стабилитрона (R=510 Ом);

Обратное напряжение находится как:

$$U_{\text{обр}} = U_1 - U_2, \, \text{гдe} \tag{2}$$

 U_2 – падение напряжения;

 U_1 — напряжение подаваемое от источника тока.

Уравнение нагрузочной характеристики:

$$I_{\text{o6p}} = \frac{U_1 - U_{\text{o6p}}}{R} \tag{3}$$

3 Результаты измерений и вычислений

Таблица 3.1 – результаты измерения прямой ветви ВАХ стабилитрона.

Іпр, мА	0	2,0	10	20	30	40	80	120	160	200	240	280
Uпр, В	0	0,61	0,64	0,66	0,67	0,68	0,70	0,71	0,72	0,73	0,74	0,75

Таблица 3.2 – результаты измерения обратной ветви BAX стабилитрона.

U_2, B	0	0,1	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
U ₁ , B	0	4,4	5,4	6,3	6,8	7,5	8,0	8,6	9,1	9,7	10,3	10,7
Іобр, мА	0	0,2	0,9	1,9	2,9	3,9	4,9	5,9	6,9	7,8	8,8	9,8
Uобр , В	0	4,3	4,9	5,3	5,3	5,5	5,5	5,6	5,6	5,7	5,8	5,7

Пример вычисления данных для таблицы:

 $I_{\rm oбp} = \frac{0.1}{510} = 0.2$ мА — значение обратного тока при падении напряжения равному 0.1 В;

 $U_{\rm oбp} = 4.4 - 0.1 = 4.3 \ {\rm MA} - {\rm 3}$ начение обратного напряжения при подаваемом напряжении 4,4 В и напряжении падения 0,1 В;

Расчет для линии нагрузки (при U₁= -8B)

 $Ioбp = \frac{-8-0}{510} = -15,7$ мА — значение обратного тока при обратном напряжении равному нулю;

 $U_{\rm oбp} = 0 \cdot 510 - 8 = -8 \;\; {\rm B} \;\; - \;\;$ значение обратного напряжения при обратном токе равному нулю;

 $R_{\text{диф}} = \frac{\Delta U}{\Delta I} = \frac{5,8-5,5}{(0,98-0,2)*10^{-3}} = 384,6 \text{ Ом } - \text{ дифференциальное сопротивление}$ стабилитрона в режиме пробоя.

4 Графическое изображение ВАХ

На рисунке 3 изображен график ВАХ для прямой ветви стабилитрона

Рисунок 3 – ВАХ прямой ветви стабилитрона

На рисунке 4 изображен график ВАХ для обратной ветви стабилитрона и линия нагрузки.

Рисунок 4 – ВАХ для обратной ветви стабилитрона

Вывод

В ходе данной работы я ознакомилась с стабилитроном, поняла что он необходим для стабилизации напряжения.

Построение ВАХ показало, что прямая ветвь необходима для стабилизации низких напряжений, в то время как обратная для стабилизации высоких напряжений.

Так же в работе была построена линия нагрузки, что показала на пересечении с обратной ветвью BAX значение рабочей точки.

В ходе работы так же было найдено дифференциальное сопротивление стабилитрона.