Network Flow Problems

Shusen Wang

- Send water from the source *s* to the sink *t*.
- The edges are pipes which have certain capacities, e.g., $4 m^3/s$.
- How much water can flow from source s to the sink t at most?

- Send water from the source s to the sink t.
- The edges are pipes which have certain capacities, e.g., $4 m^3/s$.
- How much water can flow from source s to the sink t at most?

- Send water from the source *s* to the sink *t*.
- The edges are pipes which have certain capacities, e.g., $4 m^3/s$.
- How much water can flow from source s to the sink t at most?
- Flow = 5.

- Capacity of the red pipe is $4 m^3/s$.
- A flow of $1 m^3/s$ goes through the red pipe.
- It has a vacancy of 3 m^3/s .

Naïve Algorithm

Initialization

Original Graph

Initialization

Original Graph

Residual Graph

Augmenting path: a path from *s* to *t* that does not contain cycles.

Found path $s \rightarrow v_2 \rightarrow v_4 \rightarrow t$.

Found path $s \rightarrow v_2 \rightarrow v_4 \rightarrow t$. (Bottleneck capacity = 2.)

Iteration 1: Update residuals

Found path $s \rightarrow v_2 \rightarrow v_4 \rightarrow t$. (Bottleneck capacity = 2.)

Iteration 1: Update residuals

Iteration 1: Remove saturated edges

Found path $s \rightarrow v_1 \rightarrow v_3 \rightarrow t$.

Found path $s \to v_1 \to v_3 \to t$. (Bottleneck capacity = 2.)

Iteration 2: Update residuals

Iteration 2: Update residuals

Iteration 2: Remove saturated edges

Found path $s \rightarrow v_1 \rightarrow v_4 \rightarrow t$.

Found path $s \to v_1 \to v_4 \to t$. (Bottleneck capacity = 1.)

Iteration 3: Update residuals

Iteration 3: Update residuals

Iteration 3: Remove saturated edges

Cannot find any path from source to sink.

Original Graph

Residual Graph

Flow = Capacity - Residual.

Flow = Capacity - Residual.

Flow = Capacity - Residual.

Amount of Flow = 5. (Why? The flows leaving the source sum to 5.)

Amount of Flow = 5. (Why? The flows leaving the source sum to 5.)

The naïve algorithm can fail!

Initial State

Original Graph

Residual Graph

Found path $s \rightarrow v_1 \rightarrow v_4 \rightarrow t$.

Found path $s \to v_1 \to v_4 \to t$. (Bottleneck capacity = 3.)

Iteration 1: Update residuals

Iteration 1: Update residuals

Iteration 1: Remove saturated edges

Iteration 2: Find an augmenting path

Found path $s \rightarrow v_1 \rightarrow v_3 \rightarrow t$.

Iteration 2: Find an augmenting path

Found path $s \rightarrow v_1 \rightarrow v_3 \rightarrow t$. (Bottleneck capacity = 1.)

Iteration 2: Update residuals

Iteration 2: Update residuals

Iteration 2: Remove saturated edges

Iteration 3: Find an augmenting path

Cannot find any path from source to sink.

Original Graph

Residual Graph

Flow = Capacity - Residual.

Flow = 4. (Why? The flow leaving the source sum to 4.)

The result is not maximum flow!

Flow = 4. (Not maximum!)

Flow = 5. (Maximum!)

Blocking Flow

- A flow is blocking flow if no more flow from source to sink can be found.
- The "pipes" are blocked.
- Maximum flow is also blocking flow.

Summary

Maximum Flow Problem

- Inputs: a weighted directed graph, the source s, and the sink t.
- Goal: Send as much water as possible from s to t.
- Constraints:
 - Every edge has a weight (i.e., the capacity of the pipe).
 - The flow cannot exceed the capacity.

Naïve Algorithm

1. Build a residual graph; initialize the residuals to the capacity.

Naïve Algorithm

- 1. Build a residual graph; initialize the residuals to the capacity.
- 2. While augmenting path can be found:
 - a. Find an augmenting path (in the residual graph.)
 - b. Find the bottleneck capacity x in the augmenting path.
 - c. Update the residuals. (Along the path, Residual = Residual -x.)

The naïve algorithm can fail

- The naïve algorithm always finds the blocking flow.
- However, the outcome may not be the maximum flow.

Questions

Q1: Bottleneck Capacity

Residual Graph

• Question: What is the bottleneck capacity of the red path?

Q2: What is the amount of flow from s to t?

Original Graph

Final Residual Graph

Thank You!