$$\operatorname{\mathsf{Msc}}$ thesis Mathematical Modelling and Computation

The dynamics of adaptive neuronal networks: influence of topology on synchronisation Simon Aertssen. s181603

Supervisors
Erik Martens and Poul Hjorth
February 1st 2021

DTU Compute

Department of Applied Mathematics and Computer Science

Contents

- 1. Introduction
- 2. The Theta Neuron Model
- 3. Network Topologies
- 4. Mean Field Reductions
- 5. Investigation: Mean Field Reductions for undirected graphs
- 6. Hebbian Learning and Synaptic Plasticity
- 7. Investigation: Emerging Network Topologies
- 8. Conclusion and Discussion

Introduction

Introduction

February 1st 2021

The Theta Neuron Model

The Theta Neuron Model

• SNIC bifurcation

Excitable regime: ${\cal I}<0$

 ${\it Bifurcation:}\ I=0$

Periodic regime: I>0

Features of the model

The Theta Neuron Model

Network Topologies Network Topologies

Mean Field Reductions

Mean Field Reductions

Investigation: Mean Field Reductions for undirected graphs

Investigation: Mean Field Reductions for undirected graphs

Hebbian Learning and Synaptic Plasticity

Hebbian Learning and Synaptic Plasticity

Investigation: Emerging Network Topologies

Investigation: Emerging Network Topologies

Conclusion and Discussion