GRADE 100%

TO PASS 80% or higher

Optimization algorithms

LATEST SUBMISSION GRADE

4	\sim	0	0/
- 1	()		1 /0

1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch? $a^{[8]\{7\}(3)}$ $a^{[8]\{3\}(7)}$ $a^{[3]\{8\}(7)}$ $a^{[3]\{8\}(7)}$	1/1 point
	✓ Correct	
2.	Which of these statements about mini-batch gradient descent do you agree with?	1/1 point
	 Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent. 	ng
	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.	
	 You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization). 	
	✓ Correct	
3.	Why is the best mini-batch size usually not 1 and not m, but instead something in-between?	1/1 point
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training so before making progress.	et
	✓ Correct	
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.	
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.	:h
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	
	✓ Correct	
4.	Suppose your learning algorithm's cost J , plotted as a function of the number of iterations, looks like this:	1/1 point

- Which of the following do you agree with:
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
- O If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

✓ Correct

5. Suppose the temperature in Casablanca over the first three days of January are the same:

1 / 1 point

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^{o}C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- $\bigcirc \ v_2 = 7.5, v_2^{\it corrected} = 7.5$
- $\bigcirc \ v_2=10 \text{, } v_2^{corrected}=7.5$
- \bigcirc $v_2=10$, $v_2^{corrected}=10$

✓ Correct

- 6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.
- 1 / 1 point

- $\alpha = \frac{1}{\sqrt{t}}\alpha_0$
- $\alpha = 0.95^t \alpha_0$
- $\bigcap \alpha = \frac{1}{1+2*t}\alpha_0$
- $\alpha = e^t \alpha_0$

✓ Correct

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

1/1 point

 $\hfill \Box$ Decreasing β will shift the red line slightly to the right.

We usually use "default" values for the hyperparameters eta_1,eta_2 and arepsilon in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=0.999$), arepsilon=0.999, arepsilon=0.999,

0	The learning rate hyperparameter α in Adam usually needs to be tuned.
•	Adam should be used with batch gradient computations, not with mini-batches.
0	Adam combines the advantages of RMSProp and momentum
	✓ Correct