```
\leq \lim_{t\to 0+} \frac{1}{t} ((T(t)|f|)(0)
= \lim_{t\to 0+} \langle |f|, \frac{1}{t} (T(z)'\delta_{0} - \delta_{0}) \rangle
= \langle |f|, A'\delta_{0} \rangle = \langle |f|, \mu \rangle.
```

Since $\mu(\{0\}) = \nu\{0\}) = 0$, this implies that $|\nu| \le \mu$.

Moreover, for arbitrary $f \in C[-1,0]_+$ we have $\langle f, \text{Re}_{\beta} \delta_{O} + \text{Re}_{\nu} \rangle = \lim_{t \to 0+} 1/t \text{Re}_{\langle S(t) f - f), \delta_{O} \rangle}$

We conclude this section discussing the following question. Let $(S(t))_{t\geq 0}$ be a semigroup which is dominated by some positive semigroup. Does there exist a smallest semigroup $(T(t))_{t\geq 0}$ which dominates $(S(t))_{t\geq 0}$? More precisely, we look for a positive semigroup $(T(t))_{t\geq 0}$ dominating $(S(t))_{t\geq 0}$ such that $(T(t))_{t\geq 0}$ is dominated by any other positive semigroup which dominates $(S(t))_{t\geq 0}$. If such a minimal dominating semigroup exists, it is unique and we call it the modulus semigroup of $(S(t))_{t>0}$.

Example 4.15 (the modulus semigroup associated with Δ - V). Let E be the complex space $L^p(\mathbb{R}^n)$ (1 \leq p $< \infty$) and V \in $L^p_{loc}(\mathbb{R}^n)$ satisfying ReV \geq 0. Denote by B the closure of Δ - V on C_c^∞ (cf. Example 4.7). The modulus semigroup of the semigroup (S(t)) t \geq 0 generated by B exists and its generator A is given by Af = Δ f - (ReV)f for all f \in C_c^∞ (and C_c^∞ is a core of A , see Example 4.7).

<u>Proof.</u> The operator A defined above generates a positive semigroup (see Example 4.7). For $f \in C_C^{\infty}$, $\phi \in D(A')_+$ one has $Re<(sign \ \overline{f}) Bf, \phi>=Re<(sign \ \overline{f}) (\Delta f-Vf), \phi>=Re<(sign \ \overline{f}) \Delta f, \phi>-<(ReV)|f|, \phi>=Re<(sign \ \overline{f}) Af, \phi>\leq<|f|, A'\phi>$ by Thm.2.4. Since C_C^{∞} is a core of B, it follows from Thm.4.3 that the semigroup generated by A dominates $(S(t))_{t\geq 0}$. Let C be the generator of a semigroup $(U(t))_{t\geq 0}$ dominating $(S(t))_{t\geq 0}$. Then $Re<(sign \ \overline{f}) Af, \phi>=Re<(sign \ \overline{f}) \Delta f, \phi>-<(ReV)|f|, \phi>=Re<(sign \ \overline{f}) Bf, \phi>\leq<|f|, C'\phi>$ for all $f \in C_C^{\infty}$, $\phi \in D(C')_+$ by Thm.4.2. It follows from Thm.4.3 that $(U(t))_{t>0}$ dominates the semigroup generated by A.