
Centro Tecnológico Departamento de Engenharia Elétrica

Laboratório de Circuitos Elétricos I

ELE08475 - 2022/2

Experiência Nº 03

Associação em Série de Resistores e Divisor de Tensão Resistivo

1. OBJETIVOS

- Calcular a resistência equivalente de uma associação em série de resistores;
- Comprovar por simulação a equivalência entre o circuito contendo a associação série e o circuito contendo apenas a resistência equivalente;
- Comprovar por simulação a equação do divisor de tensão resistivo.

2. INTRODUÇÃO

2.1. Associação em Série de Resistores

Em uma associação em série, todos os elementos estão submetidos à mesma corrente, conforme mostrado na Figura 3.1(a).

Figura 3.1 – Associação em série de resistores (a) e circuito equivalente (b).

Seguindo o princípio da equivalência de circuitos é possível demonstrar que o circuito formado pela associação em série de "N" resistores é equivalente a um circuito contendo apenas um resistor (Figura 3.1(b)), cujo valor de resistência é dado por:

$$R_T = R_1 + R_2 + R_3 + \dots + R_N \tag{3.1}$$

2.2. Divisor de Tensão

Em uma associação em série de dois resistores, conforme a mostrada na Figura 3.2, pode-se demonstrar que as tensões através dos resistores, V_1 e V_2 , serão uma fração da tensão total fornecida pela fonte. Esta fração é dada pelas equações:

Experiência No 03 - Associação em Série de Resistores e Divisor de Tensão

Figura 3.2 – Desenvolvimento da regra do divisor de tensão.

$$V_x = \frac{R_x}{R_T} E \tag{3.2}$$

$$V_1 = \left(\frac{R_1}{R_1 + R_2}\right) E \tag{3.3}$$

$$V_{x} = \frac{R_{x}}{R_{T}} E$$

$$V_{1} = \left(\frac{R_{1}}{R_{1} + R_{2}}\right) E$$

$$V_{2} = \left(\frac{R_{2}}{R_{1} + R_{2}}\right) E$$
(3.2)
(3.3)

3. PROCEDIMENTO

Para o circuito mostrado na Figura 3.3, calcule os valores das tensões V_I até V_4 e anote os valores calculados na Tabela 3.1. Considere os seguintes valores de resistência: $R_1 = 470 \Omega$; $R_2 = 820 \Omega$; $R_3 = 1200 \Omega$.

Figura 3.3 - Circuito a ser simulado: circuito série.

3.1. Simule o circuito mostrado na Figura 3.3, ajuste o valor da fonte de tensão de acordo com os valores mostrados na Tabela 3.1 e meça os valores das tensões e correntes nos três resistores, obedecendo aos sentidos e polaridades mostrados na figura. Anote os valores medidos na Tabela 3.1;

TD 1 1 2 1 1	C 7 1	1 1 1	1	• •,		1 1	T-1.	2 5 ()
Tabela 4 I	V alorec	calculados	α	CITCHILLO	evnerimenta	เ ศจ	Highira	3 3 (2)
Tabela 3.1 – '	v aioics	Carcuracios	uo	CHCUITO	CADCIIIICIIIa	ı ua	. i izuia	. J.J.a.

\boldsymbol{E}	I_{s}	V_1	V_2	V_3	V_4	
3 V						Simulado
						Calculado
5 V						Simulado
						Calculado
10 V						Simulado
						Calculado

- **3.2.** Calcule a Resistência Equivalente do circuito mostrado na Figura 3.3 e anote o valor abaixo:
- **3.3.** Simule o Circuito Equivalente do circuito mostrado na Figura 3.3 e repita os procedimentos 3.2 para este novo circuito. Anote os valores de corrente simulados e calculados na Tabela 3.2;

Tabela 3.2 -	- Valores	calculados	do circuito	equivalente	da Figura 3.3.
rabbia 5.2	v aioics	carcarados	do chedito	cquivalente	ua i igura 5.5.

E	I_s	
3 V		Simulado
		Calculado
5 V		Simulado
		Calculado
10 V		Simulado
		Calculado

4. RESULTADOS E CONCLUSÕES

- **4.1.** Compare os valores calculados e simulados na Tabela 3.1 e calcule o erro dos valores medidos. Os valores de erro são aceitáveis? Quais os seus possíveis motivos?
- **4.2.** Compare os valores medidos de tensão e de corrente nos resistores no circuito original (associação em série, Tabela 3.1) e no circuito equivalente (Tabela 3.2). Foi possível comprovar experimentalmente a equivalência entre os dois circuitos? (**Justifique sua resposta**);
- **4.3.** Utilizando a equação do divisor de tensão, calcule o valor das tensões nos quatro nós do circuito da Figura 3.3. Compare os valores calculados com os valores medidos (Tabela 3.1). Foi possível comprovar a equação do divisor de tensão? (**Justifique sua resposta**);