HW3

March 5, 2018

```
In [1]: import pandas as pd
        import numpy as np
        import warnings
        warnings.filterwarnings('ignore')
        import fancyimpute as fi
        from sklearn.linear_model import Ridge
        from sklearn.preprocessing import StandardScaler
        from sklearn.model_selection import train_test_split
        from datetime import datetime
Using TensorFlow backend.

In []:
```

1 Task 1: Linear Model and Data Cleaning

For Tasks 1-3 we used the following features: 'Model Year', 'Index (Model Type Index)', 'Range1 - Model Type Driving Range - Conventional Fuel', '2Dr Pass Vol', '4Dr Pass Vol', '4Dr Lugg Vol', 'Htchbk Pass Vol', 'Htchbk Lugg Vol', 'Fuel2 Annual Fuel Cost - Alternative Fuel', 'Carline Class', 'Release Date', '\$ You Save over 5 years (amount saved in fuel costs over 5 years - on label)',

'Mfr Name', 'Division', 'Verify Mfr Cd', '# Cyl', 'Transmission', 'Air Aspir Method', 'Trans', '# Gears', 'Lockup Torque Converter', 'Trans Creeper Gear', 'Drive Sys', 'Max Ethanol % - Gasoline', 'Fuel Usage - Conventional Fuel', 'Gas Guzzler Exempt (Where Truck = 1975 NHTSA truck definition)', 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel', 'Fuel2 Usage - Alternative Fuel', 'Exhaust Valves Per Cyl', 'Car/Truck Category - Cash for Clunkers Bill.', 'Unique Label?', 'Label Recalc?', 'Cyl Deact?', 'Var Valve Timing?', 'Var Valve Lift?', 'Fuel Metering Sys Cd', 'Off Board Charge Capable (Y or N)', 'Camless Valvetrain (Y or N)', 'Stop/Start System (Engine Management System) Code'

Our system for choosing these features is based on domain knowledge of cars, removing the list of features that give away the target and mapping correlations.

```
In [4]: d18.shape
Out[4]: (1220, 162)
In [5]: d_{test} = d18
In [6]: frames = [d15, d16, d17]
        all_years_frame = [d15, d16, d17, d18]
        d_all = pd.concat(all_years_frame)
        d_train = pd.concat(frames)
In [65]: y_tr = d_train['Comb Unrd Adj FE - Conventional Fuel']
         y_te = d18['Comb Unrd Adj FE - Conventional Fuel']
         d_train.shape
Out[65]: (3701, 162)
In [8]: #Finding number of numerical categories
        num_cols = d_train._get_numeric_data().columns
In [9]: num_cols.shape
Out[9]: (86,)
In [10]: d_all.shape
Out[10]: (4921, 162)
In [11]: d_temp = d_all[['Model Year',
             'Index (Model Type Index)',
          'Range1 - Model Type Driving Range - Conventional Fuel',
          '2Dr Pass Vol',
          '4Dr Pass Vol',
          '4Dr Lugg Vol',
          'Htchbk Pass Vol',
          'Htchbk Lugg Vol',
          'Fuel2 Annual Fuel Cost - Alternative Fuel',
          'Carline Class',
          'Release Date',
          '$ You Save over 5 years (amount saved in fuel costs over 5 years - on label) ',
          'Mfr Name',
          'Division',
          'Verify Mfr Cd',
          '# Cyl',
          'Transmission',
          'Air Aspir Method',
          'Trans',
```

```
'# Gears',
          'Lockup Torque Converter',
          'Trans Creeper Gear',
          'Drive Sys',
          'Max Ethanol % - Gasoline',
          'Fuel Usage - Conventional Fuel',
          'Gas Guzzler Exempt (Where Truck = 1975 NHTSA truck definition)',
          ' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel',
          ' Fuel2 Usage - Alternative Fuel',
          'Exhaust Valves Per Cyl',
          'Car/Truck Category - Cash for Clunkers Bill.',
          'Unique Label?',
          'Label Recalc?',
          'Cyl Deact?',
          'Var Valve Timing?',
          'Var Valve Lift?',
          'Fuel Metering Sys Cd',
          'Off Board Charge Capable (Y or N)',
          'Camless Valvetrain (Y or N)',
          'Stop/Start System (Engine Management System) Code']]
In [12]: d_tr = d_train[['Model Year',
             'Index (Model Type Index)',
          'Range1 - Model Type Driving Range - Conventional Fuel',
          '2Dr Pass Vol'.
          '4Dr Pass Vol',
          '4Dr Lugg Vol',
          'Htchbk Pass Vol',
          'Htchbk Lugg Vol',
          'Fuel2 Annual Fuel Cost - Alternative Fuel',
          'Carline Class',
          'Release Date'.
          '$ You Save over 5 years (amount saved in fuel costs over 5 years - on label) ',
          'Mfr Name'.
          'Division',
          'Verify Mfr Cd',
          '# Cyl',
          'Transmission',
          'Air Aspir Method',
          'Trans',
          '# Gears',
          'Lockup Torque Converter',
          'Trans Creeper Gear',
          'Drive Sys',
          'Max Ethanol % - Gasoline',
          'Fuel Usage - Conventional Fuel',
          'Eng Displ',
          ' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel',
```

```
' Fuel2 Usage - Alternative Fuel',
          'Exhaust Valves Per Cyl',
          'Car/Truck Category - Cash for Clunkers Bill.',
          'Unique Label?',
          'Label Recalc?',
          'Cyl Deact?',
          'Var Valve Timing?',
          'Var Valve Lift?',
          'Fuel Metering Sys Cd',
          'Off Board Charge Capable (Y or N)',
          'Camless Valvetrain (Y or N)',
          'Stop/Start System (Engine Management System) Code']]
In [13]: d_te = d_test[['Model Year',
             'Index (Model Type Index)',
          'Range1 - Model Type Driving Range - Conventional Fuel',
          '2Dr Pass Vol'.
          '4Dr Pass Vol',
          '4Dr Lugg Vol',
          'Htchbk Pass Vol',
          'Htchbk Lugg Vol',
          'Fuel2 Annual Fuel Cost - Alternative Fuel',
          'Carline Class',
          'Release Date',
          '$ You Save over 5 years (amount saved in fuel costs over 5 years - on label) ',
          'Mfr Name',
          'Division',
          'Verify Mfr Cd',
          '# Cyl',
          'Transmission',
          'Air Aspir Method',
          'Trans',
          '# Gears',
          'Lockup Torque Converter',
          'Trans Creeper Gear',
          'Drive Sys',
          'Max Ethanol % - Gasoline',
          'Fuel Usage - Conventional Fuel',
          'Eng Displ',
          ' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel',
          ' Fuel2 Usage - Alternative Fuel',
          'Exhaust Valves Per Cyl',
          'Car/Truck Category - Cash for Clunkers Bill.',
          'Unique Label?',
          'Label Recalc?',
          'Cyl Deact?',
          'Var Valve Timing?',
          'Var Valve Lift?',
```

```
'Fuel Metering Sys Cd',
          'Off Board Charge Capable (Y or N)',
          'Camless Valvetrain (Y or N)',
          'Stop/Start System (Engine Management System) Code']]
In [14]: d_tr.shape
         d_tr_cat = d_tr.select_dtypes(include = ['object'])
         d_tr_num = d_tr.select_dtypes(exclude = ['object'])
In [15]: d_te.shape
         d_te_cat = d_te.select_dtypes(include = ['object'])
         d_te_num = d_te.select_dtypes(exclude = ['object'])
In [16]: d_tr_num = d_tr_num.drop(['Model Year','Carline Class','# Cyl','# Gears',
                                 'Max Ethanol % - Gasoline', 'Exhaust Valves Per Cyl', 'Release Date
In [17]: d_tr_num.head()
            Index (Model Type Index)
Out[17]:
                                        2Dr Pass Vol 4Dr Pass Vol
                                                                     4Dr Lugg Vol \
         0
                                   264
                                                 NaN
                                                                NaN
                                                                               NaN
         1
                                     8
                                                 NaN
                                                                NaN
                                                                               NaN
         2
                                     4
                                                 NaN
                                                                NaN
                                                                               NaN
         3
                                     1
                                                 NaN
                                                                NaN
                                                                               NaN
                                     5
                                                 NaN
                                                                NaN
                                                                               NaN
            Htchbk Pass Vol Htchbk Lugg Vol
         0
                         NaN
                                           NaN
         1
                         NaN
                                           NaN
         2
                         NaN
                                           NaN
         3
                         NaN
                                           NaN
         4
                         NaN
                                           NaN
            Fuel2 Annual Fuel Cost - Alternative Fuel \
         0
                                                    NaN
         1
                                                    NaN
         2
                                                    NaN
         3
                                                    {\tt NaN}
         4
                                                    NaN
            $ You Save over 5 years (amount saved in fuel costs over 5 years - on label)
                                                           750.0
         0
         1
                                                             {\tt NaN}
         2
                                                             NaN
         3
                                                             NaN
         4
                                                             NaN
            Eng Displ
         0
                   1.8
         1
                   6.0
```

```
2
                   4.7
         3
                   4.7
         4
                   4.7
In [18]: d_te_num = d_te_num.drop(['Model Year', 'Carline Class', '# Cyl', '# Gears',
                                 'Max Ethanol % - Gasoline', 'Exhaust Valves Per Cyl', 'Release Date
In [19]: col_list = ['Model Year','Carline Class','# Cyl','# Gears',
                                 'Max Ethanol % - Gasoline', 'Exhaust Valves Per Cyl']
In [20]: for i in col_list:
             d_tr_cat[i]=d_tr[i]
In [21]: for i in col_list:
             d_te_cat[i]=d_te[i]
In [22]: d_tr_cat.head()
           Range1 - Model Type Driving Range - Conventional Fuel
Out[22]:
                                                                          Mfr Name \
         0
                                                              {\tt NaN}
                                                                          FCA Italy
         1
                                                              NaN
                                                                       aston martin
         2
                                                              {\tt NaN}
                                                                       aston martin
         3
                                                              NaN
                                                                       aston martin
         4
                                                              {\tt NaN}
                                                                       aston martin
                              Division Verify Mfr Cd Transmission Air Aspir Method Trans
                                                  FTG
         0
                            Alfa Romeo
                                                          Auto(AM6)
                                                                                    TC
                                                                                          AM
                                                  ASX
         1 Aston Martin Lagonda Ltd
                                                          Auto(AM7)
                                                                                   NaN
                                                                                          AM
         2 Aston Martin Lagonda Ltd
                                                  ASX
                                                          Auto(AM7)
                                                                                   NaN
                                                                                          AM
         3 Aston Martin Lagonda Ltd
                                                  ASX
                                                         Manual (M6)
                                                                                   NaN
                                                                                           Μ
         4 Aston Martin Lagonda Ltd
                                                  ASX
                                                          Auto(AM7)
                                                                                   NaN
                                                                                          AM
           Lockup Torque Converter Trans Creeper Gear Drive Sys
         0
                                   Y
                                                                  R
         1
                                   N
                                                        N
                                                                  R
         2
                                   N
                                                        N
                                                                  R
         3
                                   N
                                                                  R
         4
                                                        N
                                                                  R
                                                                               . . .
           Fuel Metering Sys Cd Off Board Charge Capable (Y or N)
         0
                              GDI
                                                                  NaN
                              MFI
         1
                                                                  NaN
         2
                              MFI
                                                                  NaN
         3
                              MFI
                                                                  NaN
         4
                              MFI
                                                                  NaN
           Camless Valvetrain (Y or N)
         0
                                       N
                                       N
         1
```

```
2
                                        N
         3
                                        N
         4
                                        N
            Stop/Start System (Engine Management System) Code Model Year Carline Class \
         0
                                                                N
                                                                         2015
                                                                N
                                                                                            1
         1
                                                                         2015
         2
                                                                         2015
         3
                                                                N
                                                                         2015
                                                                                            1
         4
                                                                N
                                                                         2015
                                                                                            1
            # Cyl # Gears Max Ethanol % - Gasoline Exhaust Valves Per Cyl
                4
                         6
         0
                                                 10.0
                         7
                                                                              2
         1
               12
                                                 10.0
         2
                8
                         7
                                                                              2
                                                 10.0
                                                                              2
         3
                8
                         6
                                                 10.0
                8
                                                 10.0
                                                                              2
         [5 rows x 29 columns]
In [23]: d_te_cat.head()
Out [23]:
            Range1 - Model Type Driving Range - Conventional Fuel
                                                                                    Mfr Name
         0
                                                                                       Honda
         1
                                                               NaN
                                                                                  FCA US LLC
         2
                                                               NaN
                                                                        Volkswagen Group of
         3
                                                               NaN
                                                                        Volkswagen Group of
         4
                                                               {\tt NaN}
                                                                        Volkswagen Group of
               Division Verify Mfr Cd Transmission Air Aspir Method Trans
                                    HNX Auto(AM-S9)
         0
                  Acura
                                                                      TC
                                                                            AMS
                                                                      TC
             ALFA ROMEO
                                    CRX
                                                                             ΑM
         1
                                            Auto(AM6)
         2
                   Audi
                                    VGA Auto(AM-S7)
                                                                     NaN
                                                                            AMS
                                    VGA
         3
                                                                            AMS
                   Audi
                                         Auto(AM-S7)
                                                                     NaN
         4
                   Audi
                                    VGA Auto(AM-S7)
                                                                     {\tt NaN}
                                                                            AMS
            Lockup Torque Converter Trans Creeper Gear Drive Sys
         0
                                    Y
                                    Y
                                                         N
         1
                                                                    R
                                    Y
         2
                                                         N
                                                                    Α
         3
                                    Y
                                                         N
                                                                    R.
         4
                                    Y
                                                         N
                                                                    Α
            Fuel Metering Sys Cd Off Board Charge Capable (Y or N)
         0
                              GDI
                                                                      N
         1
                              GDI
                                                                    NaN
         2
                             GDPI
                                                                    NaN
         3
                             GDPI
                                                                    NaN
```

```
Camless Valvetrain (Y or N)
         0
         1
                                       N
         2
                                       N
         3
                                       N
         4
                                       N
           Stop/Start System (Engine Management System) Code Model Year Carline Class \
         0
                                                                       2018
                                                                                         1
                                                              N
         1
                                                                       2018
                                                                                         1
         2
                                                              N
                                                                       2018
                                                                                         1
         3
                                                              N
                                                                       2018
                                                                                         1
         4
                                                                       2018
           # Cyl # Gears Max Ethanol % - Gasoline Exhaust Valves Per Cyl
         0
                                               10.0
         1
               4
                        6
                                               10.0
                                                                           2
         2
                        7
                                                                           2
              10
                                               15.0
                                                                           2
         3
              10
                        7
                                               15.0
                        7
                                                                           2
         4
              10
                                               15.0
         [5 rows x 29 columns]
In [24]: d_tr_num.dtypes
Out[24]: Index (Model Type Index)
                                                                                                 int6
         2Dr Pass Vol
                                                                                               float6
         4Dr Pass Vol
                                                                                               float6
         4Dr Lugg Vol
                                                                                               float6
         Htchbk Pass Vol
                                                                                               float6
         Htchbk Lugg Vol
                                                                                               float6
         Fuel2 Annual Fuel Cost - Alternative Fuel
                                                                                               float6
         $ You Save over 5 years (amount saved in fuel costs over 5 years - on label)
                                                                                               float6
         Eng Displ
                                                                                               float6
         dtype: object
In [25]: d_te_num.dtypes
Out[25]: Index (Model Type Index)
                                                                                                 int6
         2Dr Pass Vol
                                                                                               float6
         4Dr Pass Vol
                                                                                               float6
         4Dr Lugg Vol
                                                                                               float6
         Htchbk Pass Vol
                                                                                               float6
         Htchbk Lugg Vol
                                                                                               float6
         Fuel2 Annual Fuel Cost - Alternative Fuel
                                                                                               float6
         $ You Save over 5 years (amount saved in fuel costs over 5 years - on label)
                                                                                               float6
```

 ${\tt NaN}$

4

GDPI

```
dtype: object
In [26]: d_tr_num = d_tr_num.reset_index(drop=True)
In [27]: d_te_num = d_te_num.reset_index(drop=True)
In [28]: #d_tr_num = d_tr_num.drop(["Release Date"], axis = 1)
In [29]: # for i in range(len(d_tr_num['Release Date'])):
                   d_tr_num['Release\ Date'][i] = datetime.strptime(str(d_tr_num['Release\ Date'][i]).
                   print(i)
In [192]: d_{tr_num.head}
Out[192]: <bound method NDFrame.head of
                                                           Index (Model Type Index)
                                                                                            2Dr Pass Vol 4Dr Pass V
                                                264
                                                                 NaN
                                                                                   NaN
                                                                                                     NaN
             1
                                                  8
                                                                 {\tt NaN}
                                                                                   NaN
                                                                                                     NaN
             2
                                                  4
                                                                 NaN
                                                                                   NaN
                                                                                                     NaN
             3
                                                  1
                                                                 NaN
                                                                                   NaN
                                                                                                     {\tt NaN}
             4
                                                  5
                                                                 NaN
                                                                                                     {\tt NaN}
                                                                                   NaN
             5
                                                  2
                                                                 {\tt NaN}
                                                                                   NaN
                                                                                                     NaN
             6
                                                  6
                                                                 NaN
                                                                                   NaN
                                                                                                     NaN
            7
                                                  3
                                                                 NaN
                                                                                   NaN
                                                                                                     {\tt NaN}
            8
                                                 27
                                                                 NaN
                                                                                   NaN
                                                                                                     {\tt NaN}
             9
                                                 29
                                                                 NaN
                                                                                   NaN
                                                                                                     NaN
             10
                                                35
                                                                 NaN
                                                                                                     {\tt NaN}
                                                                                   NaN
             11
                                                 33
                                                                 NaN
                                                                                                     NaN
                                                                                   NaN
             12
                                                 26
                                                                 NaN
                                                                                   NaN
                                                                                                     NaN
             13
                                                 28
                                                                 NaN
                                                                                   NaN
                                                                                                     {\tt NaN}
             14
                                                34
                                                                 NaN
                                                                                                     NaN
                                                                                   NaN
                                                32
             15
                                                                 NaN
                                                                                   NaN
                                                                                                     {\tt NaN}
             16
                                                  3
                                                                 {\tt NaN}
                                                                                                     {\tt NaN}
                                                                                   NaN
             17
                                               110
                                                                 NaN
                                                                                   NaN
                                                                                                     {\tt NaN}
                                               428
             18
                                                                 NaN
                                                                                   {\tt NaN}
                                                                                                     {\tt NaN}
                                               429
             19
                                                                 NaN
                                                                                                     {\tt NaN}
                                                                                   NaN
             20
                                               436
                                                                 NaN
                                                                                   NaN
                                                                                                     {\tt NaN}
             21
                                               438
                                                                 NaN
                                                                                                     NaN
                                                                                   NaN
             22
                                                60
                                                                 NaN
                                                                                   NaN
                                                                                                     NaN
             23
                                                 59
                                                                 NaN
                                                                                   NaN
                                                                                                     {\tt NaN}
             24
                                                67
                                                                 NaN
                                                                                   NaN
                                                                                                     {\tt NaN}
             25
                                                60
                                                                 NaN
                                                                                   NaN
                                                                                                     {\tt NaN}
             26
                                                68
                                                                 NaN
                                                                                   NaN
                                                                                                     NaN
             27
                                               185
                                                                                                     {\tt NaN}
                                                                 NaN
                                                                                   NaN
             28
                                               143
                                                                 NaN
                                                                                   NaN
                                                                                                     NaN
             29
                                               142
                                                                 NaN
                                                                                                     {\tt NaN}
                                                                                   NaN
                                                . . .
                                                                  . . .
                                                                                                      . . .
             . . .
                                                                                    . . .
                                               402
            3671
                                                                 {\tt NaN}
                                                                                   {\tt NaN}
                                                                                                     {\tt NaN}
             3672
                                               408
                                                                 NaN
                                                                                                     {\tt NaN}
                                                                                   NaN
```

float6

Eng Displ

3673	421	NaN	NaN	NaN
3674	423	NaN	NaN	NaN
3675	283	NaN	NaN	NaN
3676	401	NaN	NaN	NaN
3677	412	NaN	NaN	NaN
3678	402	NaN	NaN	NaN
3679	411	NaN	NaN	NaN
3680	421	NaN	NaN	NaN
3681	422	NaN	NaN	NaN
3682	69	NaN	NaN	NaN
3683	207	NaN	NaN	NaN
3684	103	NaN	NaN	NaN
3685	104	NaN	NaN	NaN
3686	114	NaN	NaN	NaN
3687	105	NaN	NaN	NaN
3688	106	NaN	NaN	NaN
3689	37	NaN	NaN	NaN
3690	12	NaN	NaN	NaN
3691	8	NaN	NaN	NaN
3692	46	NaN	NaN	NaN
3693	53	NaN	NaN	NaN
3694	52	NaN	NaN	NaN
3695	348	NaN	NaN	NaN
3696	293	NaN	NaN	NaN
3697	212	NaN	NaN	NaN
3698	211	NaN	NaN	NaN
3699	232	NaN	NaN	NaN
3700	231	NaN	NaN	NaN
77. 111 10	77 7 77. 111 7 71	\		

	Htchbk	Pass	Vol	Htchbk	Lugg	Vol	\
0			${\tt NaN}$			${\tt NaN}$	
1			${\tt NaN}$			${\tt NaN}$	
2			${\tt NaN}$			${\tt NaN}$	
3			${\tt NaN}$			${\tt NaN}$	
4			${\tt NaN}$			${\tt NaN}$	
5			${\tt NaN}$			${\tt NaN}$	
6			${\tt NaN}$			${\tt NaN}$	
7			${\tt NaN}$			${\tt NaN}$	
8			${\tt NaN}$			${\tt NaN}$	
9			${\tt NaN}$			${\tt NaN}$	
10			${\tt NaN}$			${\tt NaN}$	
11			${\tt NaN}$			${\tt NaN}$	
12			${\tt NaN}$			${\tt NaN}$	
13			${\tt NaN}$			${\tt NaN}$	
14			${\tt NaN}$			${\tt NaN}$	
15			${\tt NaN}$			${\tt NaN}$	
16			${\tt NaN}$			${\tt NaN}$	
17			${\tt NaN}$			${\tt NaN}$	

```
23
                                  {\tt NaN}
                                                                  {\tt NaN}
24
                                  {\tt NaN}
                                                                  NaN
25
                                  {\tt NaN}
                                                                  {\tt NaN}
26
                                  {\tt NaN}
                                                                  NaN
27
                                  {\tt NaN}
                                                                  {\tt NaN}
28
                                  {\tt NaN}
                                                                  NaN
29
                                  {\tt NaN}
                                                                  NaN
. . .
                                   . . .
                                                                   . . .
3671
                                  {\tt NaN}
                                                                   NaN
3672
                                  {\tt NaN}
                                                                   {\tt NaN}
3673
                                  {\tt NaN}
                                                                  {\tt NaN}
3674
                                  {\tt NaN}
                                                                  {\tt NaN}
3675
                                  {\tt NaN}
                                                                  {\tt NaN}
3676
                                  {\tt NaN}
                                                                  {\tt NaN}
                                  {\tt NaN}
3677
                                                                   NaN
3678
                                  {\tt NaN}
                                                                  {\tt NaN}
3679
                                  NaN
                                                                   NaN
3680
                                  {\tt NaN}
                                                                  {\tt NaN}
3681
                                  {\tt NaN}
                                                                  {\tt NaN}
3682
                                  {\tt NaN}
                                                                  {\tt NaN}
3683
                                  {\tt NaN}
                                                                  {\tt NaN}
3684
                                  {\tt NaN}
                                                                   NaN
3685
                                  {\tt NaN}
                                                                   NaN
3686
                                  {\tt NaN}
                                                                   NaN
3687
                                  {\tt NaN}
                                                                   {\tt NaN}
3688
                                  {\tt NaN}
                                                                   {\tt NaN}
3689
                                  {\tt NaN}
                                                                  {\tt NaN}
3690
                                  {\tt NaN}
                                                                  {\tt NaN}
3691
                                  {\tt NaN}
                                                                   {\tt NaN}
3692
                                  NaN
                                                                  NaN
                                  {\tt NaN}
                                                                   {\tt NaN}
3693
3694
                                  NaN
                                                                  NaN
3695
                                  {\tt NaN}
                                                                   {\tt NaN}
3696
                                  {\tt NaN}
                                                                  {\tt NaN}
3697
                                  {\tt NaN}
                                                                  {\tt NaN}
3698
                                  {\tt NaN}
                                                                  {\tt NaN}
3699
                                  {\tt NaN}
                                                                   NaN
3700
                                  {\tt NaN}
                                                                   {\tt NaN}
           Fuel2 Annual Fuel Cost - Alternative Fuel
0
                                                                                    {\tt NaN}
                                                                                    {\tt NaN}
1
2
                                                                                    {\tt NaN}
                                                          11
```

18

19

20

21

22

 ${\tt NaN}$

 ${\tt NaN}$

 ${\tt NaN}$

 ${\tt NaN}$

NaN

NaN

 ${\tt NaN}$

 ${\tt NaN}$

 ${\tt NaN}$

NaN

3	${\tt NaN}$
4	${\tt NaN}$
5	${\tt NaN}$
6	${\tt NaN}$
7	${\tt NaN}$
8	NaN
9	NaN
10	NaN
11	NaN
12	NaN
13	NaN
14	NaN N-N
15	NaN
16	NaN
17	NaN
18	NaN
19	NaN
20	${\tt NaN}$
21	${\tt NaN}$
22	${\tt NaN}$
23	${\tt NaN}$
24	${\tt NaN}$
25	${\tt NaN}$
26	${\tt NaN}$
27	${\tt NaN}$
28	NaN
29	NaN
3671	NaN
3672	NaN
3673	NaN
3674	NaN
3675	NaN
3676	NaN
3677	NaN
	NaN
3678	
3679	NaN
3680	NaN
3681	NaN
3682	NaN
3683	NaN
3684	NaN
3685	${\tt NaN}$
3686	${\tt NaN}$
3687	${\tt NaN}$
3688	${\tt NaN}$
3689	${\tt NaN}$
3690	NaN

```
3692
                                                                        {\tt NaN}
3693
                                                                        NaN
3694
                                                                        {\tt NaN}
3695
                                                                        {\tt NaN}
3696
                                                                        {\tt NaN}
                                                                        {\tt NaN}
3697
3698
                                                                        {\tt NaN}
3699
                                                                        {\tt NaN}
3700
                                                                        {\tt NaN}
          $ You Save over 5 years (amount saved in fuel costs over 5 years - on label)
0
                                                                                 750.0
1
                                                                                     {\tt NaN}
2
                                                                                     NaN
3
                                                                                     NaN
4
                                                                                     {\tt NaN}
5
                                                                                     {\tt NaN}
6
                                                                                     {\tt NaN}
7
                                                                                     {\tt NaN}
8
                                                                                     {\tt NaN}
9
                                                                                     {\tt NaN}
10
                                                                                     NaN
11
                                                                                     {\tt NaN}
12
                                                                                     {\tt NaN}
13
                                                                                     {\tt NaN}
14
                                                                                     {\tt NaN}
15
                                                                                     {\tt NaN}
                                                                                     0.0
16
17
                                                                                     {\tt NaN}
18
                                                                                     0.0
19
                                                                                     0.0
20
                                                                                     {\tt NaN}
21
                                                                                     {\tt NaN}
22
                                                                                     {\tt NaN}
23
                                                                                     {\tt NaN}
24
                                                                                     {\tt NaN}
25
                                                                                     {\tt NaN}
26
                                                                                     {\tt NaN}
27
                                                                                     {\tt NaN}
28
                                                                                     {\tt NaN}
29
                                                                                     {\tt NaN}
. . .
                                                                                     . . .
3671
                                                                                     NaN
3672
                                                                                     {\tt NaN}
3673
                                                                                     NaN
3674
                                                                                     {\tt NaN}
3675
                                                                                     NaN
```

3676	NaN
3677	NaN
3678	NaN
3679	NaN
3680	NaN
3681	NaN
3682	NaN
3683	NaN
3684	NaN
3685	NaN
3686	NaN
3687	500.0
3688	750.0
3689	NaN
3690	NaN
3691	NaN
3692	NaN
3693	NaN
3694	NaN
3695	NaN
3696	NaN
3697	NaN
3698	NaN
3699	NaN
3700	NaN

	Eng Displ
0	1.8
1	6.0
2	4.7
3	4.7
4	4.7
5	4.7
6	4.7
7	4.7
8	4.2
9	4.2
10	5.2
11	5.2
12	4.2
13	4.2
14	5.2
15	5.2
16	2.0
17	4.0
18	2.0
19	2.0
20	3.0

```
21
             3.0
22
             8.0
23
             6.2
24
             6.2
             6.2
25
26
             6.2
27
             8.4
             4.5
28
29
             4.5
. . .
              . . .
3671
             3.5
3672
             3.0
3673
             3.0
             4.7
3674
3675
             5.6
             3.6
3676
3677
             3.6
3678
             3.6
3679
             3.6
3680
             4.8
             4.8
3681
3682
             4.0
             4.0
3683
3684
             3.5
3685
             3.5
             3.5
3686
3687
             3.5
3688
             3.5
             5.7
3689
3690
             5.7
             5.7
3691
3692
             3.6
3693
             2.0
3694
             2.0
3695
             3.5
             3.5
3696
             2.0
3697
3698
             2.0
3699
             2.5
3700
             2.5
```

[3701 rows x 9 columns]>

In [193]: d_te_num.head

Out[193]: <box/>bound method NDFrame.head of Index (Model Type Index) 2Dr Pass Vol 4Dr Pass Vol

2	65	NaN	NaN	NaN
3	71	NaN	NaN	NaN
4	66	NaN	NaN	
5	72	NaN	NaN	
6	46	NaN	NaN	
7	488	NaN	NaN	
8	38	NaN	NaN	
9	278	NaN	NaN	
10	223	NaN	NaN	
11	285	NaN	NaN	
12	276	NaN	NaN	
13	142	NaN	NaN	
14	143	NaN	NaN	
15	145	NaN	NaN	
16	144	NaN	NaN	
17	154	NaN	NaN	
18	405	NaN	NaN	
19	406	NaN	NaN	
20	322	43.0	NaN	
21	185	NaN	NaN	
22	161	NaN	NaN	
23	171	NaN	NaN	
24	184	NaN	NaN	NaN
25	160	NaN	NaN	NaN
26	170	NaN	NaN	NaN
27	159	NaN	NaN	NaN
28	158	NaN	NaN	NaN
29	165	NaN	NaN	NaN
1190	271	NaN	NaN	NaN
1191	406	NaN	NaN	NaN
1192	272	NaN	NaN	NaN
1193	274	NaN	NaN	NaN
1194	424	NaN	NaN	NaN
1195	435	NaN	NaN	NaN
1196	436	NaN	NaN	NaN
1197	821	NaN	NaN	NaN
1198	402	NaN	NaN	NaN
1199	421	NaN	NaN	
1200	423	NaN	NaN	NaN
1201	283	NaN	NaN	NaN
1202	401	NaN	NaN	NaN
1203	412	NaN	NaN	
1204	402	NaN	NaN	
1205	411	NaN	NaN	
1206	421	NaN	NaN	
1207	422	NaN	NaN	
1208	58	NaN	NaN	NaN

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219		207 102 103 108 111 114 86 37 33 53	NaN NaN NaN NaN NaN NaN NaN NaN
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 1190	Na N	ol Htchbk Lugg aN	
1191 1192 1193	N a N a	aN aN aN	NaN NaN NaN

 ${\tt NaN}$

 ${\tt NaN}$

NaN NaN

 ${\tt NaN}$

 ${\tt NaN}$

NaN

 ${\tt NaN}$

 ${\tt NaN}$

1195		ľ	NaN			N	aN		
1196		ľ	NaN			N	aN		
1197		1	NaN			N	aN		
1198		1	NaN			N	aN		
1199		I	NaN			N	aN		
1200		1	NaN			N	aN		
1201		1	NaN			N	aN		
1202		I	NaN			N	aN		
1203		ľ	NaN			N	aN		
1204		ľ	NaN			N	aN		
1205			NaN			N	aN		
1206			NaN				aN		
1207			NaN				aN		
1208			NaN				aN		
1209			NaN				aN		
1210			NaN				aN		
1211			NaN			N	aN		
1212			NaN			N	aN		
1213		I	NaN			N	aN		
1214		I	NaN			N	aN		
1215		I	NaN			N	aN		
1216		I	NaN			N	aN		
1217		I	NaN			N	aN		
1010									
1218		l	NaN			N	aN		
1218			NaN NaN				aN aN		
	Fuell	1	NaN	Cost		N	aN	Eu 01	\
1219	Fuel2		NaN	Cost	_	N	aN		\
1219	Fuel2	1	NaN	Cost	_	N	aN	NaN	\
1219 0 1	Fuel2	1	NaN	Cost	_	N	aN	NaN NaN	\
1219 0 1 2	Fuel2	1	NaN	Cost	_	N	aN	NaN NaN NaN	\
1219 0 1 2 3	Fuel2	1	NaN	Cost	_	N	aN	NaN NaN NaN NaN	\
1219 0 1 2 3 4	Fuel2	1	NaN	Cost	-	N	aN	NaN NaN NaN NaN NaN	\
1219 0 1 2 3 4 5	Fuel2	1	NaN	Cost	-	N	aN	NaN NaN NaN NaN NaN	\
1219 0 1 2 3 4 5 6	Fuel2	1	NaN	Cost	_	N	aN	NaN NaN NaN NaN NaN NaN	\
1219 0 1 2 3 4 5 6 7	Fuel2	1	NaN	Cost	_	N	aN	NaN NaN NaN NaN NaN NaN NaN NaN NaN	\
1219 0 1 2 3 4 5 6 7 8	Fuel2	1	NaN	Cost	_	N	aN	NaN	\
1219 0 1 2 3 4 5 6 7 8 9	Fuel2	1	NaN	Cost		N	aN	NaN	\
1219 0 1 2 3 4 5 6 7 8 9 10	Fuel2	1	NaN	Cost	_	N	aN	NaN	\
1219 0 1 2 3 4 5 6 7 8 9 10 11	Fuel2	1	NaN	Cost	_	N	aN	NaN	\
1219 0 1 2 3 4 5 6 7 8 9 10 11 12	Fuel2	1	NaN	Cost	_	N	aN	NaN	\
1219 0 1 2 3 4 5 6 7 8 9 10 11 12 13	Fuel2	1	NaN	Cost	_	N	aN	NaN	\
1219 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Fuel2	1	NaN	Cost	_	N	aN	NaN	
1219 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Fuel2	1	NaN	Cost	_	N	aN	NaN	
1219 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Fuel2	1	NaN	Cost		N	aN	NaN	
1219 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Fuel2	1	NaN	Cost	_	N	aN	NaN	
1219 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Fuel2	1	NaN	Cost		N	aN	NaN	

 ${\tt NaN}$

 ${\tt NaN}$

```
20
                                                                  NaN
21
                                                                  {\tt NaN}
22
                                                                  {\tt NaN}
23
                                                                  {\tt NaN}
24
                                                                  NaN
25
                                                                  {\tt NaN}
26
                                                                  NaN
27
                                                                  {\tt NaN}
28
                                                                  {\tt NaN}
29
                                                                  {\tt NaN}
                                                                   . . .
. . .
1190
                                                                  NaN
1191
                                                                  {\tt NaN}
1192
                                                                  NaN
1193
                                                                  {\tt NaN}
1194
                                                                  {\tt NaN}
1195
                                                                  {\tt NaN}
1196
                                                                  {\tt NaN}
                                                              2100.0
1197
1198
                                                                  {\tt NaN}
1199
                                                                  {\tt NaN}
1200
                                                                  NaN
1201
                                                                  {\tt NaN}
1202
                                                                  {\tt NaN}
1203
                                                                  {\tt NaN}
1204
                                                                  NaN
1205
                                                                  NaN
1206
                                                                  {\tt NaN}
1207
                                                                  NaN
1208
                                                                  {\tt NaN}
1209
                                                                  {\tt NaN}
1210
                                                                  {\tt NaN}
1211
                                                                  NaN
1212
                                                                  {\tt NaN}
1213
                                                                  NaN
1214
                                                                  {\tt NaN}
1215
                                                                  NaN
1216
                                                                  {\tt NaN}
1217
                                                              2900.0
1218
                                                                  {\tt NaN}
1219
                                                                  {\tt NaN}
         $ You Save over 5 years (amount saved in fuel costs over 5 years - on label)
0
                                                                              NaN
1
                                                                              NaN
2
                                                                              NaN
3
                                                                              {\tt NaN}
4
                                                                              {\tt NaN}
```

5	NaN
6	NaN
7	NaN
8	NaN
9	NaN
10	NaN
11	NaN
12	NaN
13	NaN
14	NaN
15	NaN
16	NaN
17	NaN
18	NaN
19	NaN
20	NaN NaN
21	NaN
22	NaN NaN
23	NaN NaN
24	NaN NaN
25	NaN NaN
26	NaN N-N
27	NaN
28	NaN N-N
29	NaN
•••	
1190	NaN
1191	NaN
1192	NaN
1193	NaN
1194	NaN
1195	NaN
1196	NaN
1197	NaN
1198	NaN
1199	NaN
1200	NaN
1201	NaN
1202	NaN
1203	NaN
1204	NaN
1205	NaN
1206	NaN
1207	NaN
1208	NaN
1209	NaN
1210	NaN
1211	NaN

1212	NaN
1213	250.0
1214	500.0
1215	NaN
1216	NaN
1217	NaN
1218	NaN
1219	NaN

	Eng	Displ
0		3.5
1		1.8
2		5.2
3		5.2
4		5.2
5		5.2
6		2.0
7		3.0
8		8.0
9		6.2
10		6.2
11		6.2
12		6.2
13		3.9
14		3.9
15		3.9
16		3.9
17		6.5
18		1.4
19		1.4
20		3.5
21		2.0
22		3.0
23		3.0
24		2.0
25		3.0
26		3.0
27		5.0
28		5.0
29		3.0
1190		3.0
1191		5.5
1192		5.5
1193		5.5
1194		5.5
1195		4.0
1196		4.0

```
1200
                      4.7
                      5.6
          1201
          1202
                      3.6
          1203
                      3.6
          1204
                      3.6
          1205
                      3.6
          1206
                      4.8
          1207
                      4.8
          1208
                      4.0
                      4.0
          1209
                      3.5
          1210
                      3.5
          1211
          1212
                      3.5
          1213
                      3.5
          1214
                      3.5
          1215
                      5.7
          1216
                      5.7
          1217
                      5.7
          1218
                      2.0
          1219
                      2.0
          [1220 rows x 9 columns]>
In [32]: from sklearn.preprocessing import Imputer
         imp_num = Imputer(strategy = 'median').fit(d_tr_num)
In [33]: from sklearn.preprocessing import Imputer
         imp_num_t = Imputer(strategy = 'median').fit(d_te_num)
In [34]: X_tr_imp = imp_num.transform(d_tr_num)
In [35]: X_te_imp = imp_num_t.transform(d_te_num)
In [36]: X_tr_num = pd.DataFrame(X_tr_imp, columns=d_tr_num.columns)
In [37]: X_te_num = pd.DataFrame(X_te_imp, columns=d_te_num.columns)
In [194]: X_tr_num.head
Out[194]: <bound method NDFrame.head of
                                               Index (Model Type Index) 2Dr Pass Vol 4Dr Pass V
                                    264.0
                                                   83.0
                                                                  98.0
                                                                                 14.0
          1
                                      8.0
                                                   83.0
                                                                  98.0
                                                                                 14.0
          2
                                      4.0
                                                   83.0
                                                                  98.0
                                                                                 14.0
          3
                                      1.0
                                                   83.0
                                                                  98.0
                                                                                 14.0
```

1197

1198

1199

3.5

3.5

3.0

4	5.0	83.0	98.0	14.0
5	2.0	83.0	98.0	14.0
6	6.0	83.0	98.0	14.0
7	3.0	83.0	98.0	14.0
8	27.0	83.0	98.0	14.0
9	29.0	83.0	98.0	14.0
10	35.0	83.0	98.0	14.0
11	33.0	83.0	98.0	14.0
12	26.0	83.0	98.0	14.0
13	28.0	83.0	98.0	14.0
14	34.0	83.0	98.0	14.0
15	32.0	83.0	98.0	14.0
16	3.0	83.0	98.0	14.0
17	110.0	83.0	98.0	14.0
18	428.0	83.0	98.0	14.0
19	429.0	83.0	98.0	14.0
20	436.0	83.0	98.0	14.0
21	438.0	83.0	98.0	14.0
22	60.0	83.0	98.0	14.0
23	59.0	83.0	98.0	14.0
24	67.0	83.0	98.0	14.0
25	60.0	83.0	98.0	14.0
26	68.0	83.0	98.0	14.0
27	185.0	83.0	98.0	14.0
28	143.0	83.0	98.0	14.0
29	142.0	83.0	98.0	14.0
3671	402.0	83.0	98.0	14.0
3672	408.0	83.0	98.0	14.0
3673	421.0	83.0	98.0	14.0
3674	423.0	83.0	98.0	14.0
3675	283.0	83.0	98.0	14.0
3676	401.0	83.0	98.0	14.0
3677	412.0	83.0	98.0	14.0
3678	402.0	83.0	98.0	14.0
3679	411.0	83.0	98.0	14.0
3680	421.0	83.0	98.0	14.0
3681	422.0	83.0	98.0	14.0
3682	69.0	83.0	98.0	14.0
3683	207.0	83.0	98.0	14.0
3684	103.0	83.0	98.0	14.0
3685	104.0	83.0	98.0	14.0
3686	114.0	83.0	98.0	14.0
3687	105.0	83.0	98.0	14.0
3688	106.0	83.0	98.0	14.0
3689	37.0	83.0	98.0	14.0
3690	12.0	83.0	98.0	14.0
3691	8.0	83.0	98.0	14.0

3692		46.0	83.0	98.0	14.0
3693		53.0	83.0	98.0	14.0
3694		52.0	83.0	98.0	14.0
3695		348.0	83.0	98.0	14.0
3696		293.0	83.0	98.0	14.0
3697		212.0	83.0	98.0	14.0
3698		211.0	83.0	98.0	14.0
3699		232.0	83.0	98.0	14.0
3700		231.0	83.0	98.0	14.0
	Htchbk Pass Vol	Htchbk Lugg Vol	\		
0	90.0	16.0	•		
1	90.0	16.0			
2	90.0	16.0			
3	90.0	16.0			
4	90.0	16.0			
5	90.0	16.0			
6	90.0	16.0			
7	90.0	16.0			
8	90.0	16.0			
9	90.0	16.0			
10	90.0	16.0			
11	90.0	16.0			
12	90.0	16.0			
13	90.0	16.0			
14	90.0	16.0			
15	90.0	16.0			
16	90.0	16.0			
17	90.0	16.0			
18	90.0	16.0			
19	90.0	16.0			
20	90.0	16.0			
21	90.0	16.0			
22	90.0	16.0			
23	90.0	16.0			
24	90.0	16.0			
25	90.0	16.0			
26	90.0	16.0			
27	90.0	16.0			
28	90.0	16.0			
29	90.0	16.0			
3671	90.0	16.0			
3672	90.0	16.0			
3673	90.0	16.0			
3674	90.0	16.0			
3675	90.0	16.0			
3676	90.0	16.0			

3011	30.0	10.0	
3678	90.0	16.0	
3679	90.0	16.0	
3680	90.0	16.0	
3681	90.0	16.0	
3682	90.0	16.0	
3683	90.0	16.0	
3684	90.0	16.0	
3685	90.0	16.0	
3686	90.0	16.0	
3687	90.0	16.0	
3688	90.0	16.0	
3689	90.0	16.0	
3690	90.0	16.0	
3691	90.0	16.0	
3692	90.0	16.0	
3693	90.0	16.0	
3694	90.0	16.0	
3695	90.0	16.0	
3696	90.0	16.0	
3697	90.0	16.0	
3698	90.0	16.0	
3699	90.0	16.0	
3700	90.0	16.0	
	Fuel2 Annual Fuel	Cost - Alternative Fuel	\
0	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0	\
0 1	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0	\
0 1 2	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0	\
0 1	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0	\
0 1 2	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0	\
0 1 2 3	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0	\
0 1 2 3 4	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0	\
0 1 2 3 4 5	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	\
0 1 2 3 4 5	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	\
0 1 2 3 4 5 6	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	\
0 1 2 3 4 5 6 7 8	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	\
0 1 2 3 4 5 6 7 8	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	\
0 1 2 3 4 5 6 7 8 9 10	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	\
0 1 2 3 4 5 6 7 8 9 10 11	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	\
0 1 2 3 4 5 6 7 8 9 10 11 12	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	\
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	\
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	`
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	`
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Fuel2 Annual Fuel	Cost - Alternative Fuel 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0	

16.0

```
22
                                             2750.0
23
                                             2750.0
24
                                             2750.0
25
                                             2750.0
26
                                             2750.0
27
                                             2750.0
28
                                             2750.0
29
                                             2750.0
. . .
                                                . . .
3671
                                             2750.0
3672
                                             2750.0
3673
                                             2750.0
3674
                                             2750.0
3675
                                             2750.0
                                             2750.0
3676
3677
                                             2750.0
3678
                                             2750.0
3679
                                             2750.0
3680
                                             2750.0
3681
                                             2750.0
3682
                                             2750.0
3683
                                             2750.0
3684
                                             2750.0
3685
                                             2750.0
3686
                                             2750.0
3687
                                             2750.0
3688
                                             2750.0
3689
                                             2750.0
3690
                                             2750.0
3691
                                             3100.0
3692
                                             2750.0
3693
                                             2750.0
3694
                                             2750.0
3695
                                             2750.0
3696
                                             2750.0
3697
                                             2750.0
3698
                                             2750.0
3699
                                             2750.0
3700
                                             2750.0
      $ You Save over 5 years (amount saved in fuel costs over 5 years - on label)
0
                                                       750.0
1
                                                      1000.0
2
                                                      1000.0
3
                                                      1000.0
4
                                                      1000.0
5
                                                      1000.0
6
                                                      1000.0
```

7	1000.0
8	1000.0
9	1000.0
10	1000.0
11	1000.0
12	1000.0
13	1000.0
14	1000.0
15	1000.0
16	0.0
17	1000.0
18	0.0
19	0.0
20	1000.0
21	1000.0
22	1000.0
23	1000.0
24	1000.0
25	1000.0
26	1000.0
27	1000.0
28	1000.0
29	1000.0
	1000.0
 3671	1000.0
3672	1000.0
3673	1000.0
3013	1000.0
367/	1000 0
3674 3675	1000.0
3675	1000.0
3675 3676	1000.0 1000.0
3675 3676 3677	1000.0 1000.0 1000.0
3675 3676 3677 3678	1000.0 1000.0 1000.0 1000.0
3675 3676 3677 3678 3679	1000.0 1000.0 1000.0 1000.0 1000.0
3675 3676 3677 3678 3679 3680	1000.0 1000.0 1000.0 1000.0 1000.0
3675 3676 3677 3678 3679 3680 3681	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
3675 3676 3677 3678 3679 3680 3681	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
3675 3676 3677 3678 3679 3680 3681 3682 3683	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
3675 3676 3677 3678 3679 3680 3681 3682 3683	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 500.0
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 500.0 750.0
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 750.0
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3690 3691 3692	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690	1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0

3695		1000.0
3696		1000.0
3697		1000.0
3698		1000.0
3699		1000.0
3700		1000.0
E	ing Displ	

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	Eng	1.8 6.0 4.7 4.7 4.7 4.7 4.2 5.2 4.2 5.2 4.2 5.2 4.2 5.2 2.0 2.0 3.0 8.2 6.2 8.4 4.5 4.5
3671 3672 3673 3674 3675 3676 3677 3678		3.5 3.0 3.0 4.7 5.6 3.6 3.6
3679		3.6

3680	4.8
3681	4.8
3682	4.0
3683	4.0
3684	3.5
3685	3.5
3686	3.5
3687	3.5
3688	3.5
3689	5.7
3690	5.7
3691	5.7
3692	3.6
3693	2.0
3694	2.0
3695	3.5
3696	3.5
3697	2.0
3698	2.0
3699	2.5
3700	2.5

[3701 rows x 9 columns]>

In [195]: X_te_num.head

Out[195]: <bound method<="" th=""><th>d NDFrame.head of</th><th>Index (Model Typ</th><th>e Index)</th><th>2Dr Pass Vol</th><th>4Dr Pass V</th></bound>	d NDFrame.head of	Index (Model Typ	e Index)	2Dr Pass Vol	4Dr Pass V
0	57.0	83.0	99.0	14.0	
1	410.0	83.0	99.0	14.0	
2	65.0	83.0	99.0	14.0	
3	71.0	83.0	99.0	14.0	
4	66.0	83.0	99.0	14.0	
5	72.0	83.0	99.0	14.0	
6	46.0	83.0	99.0	14.0	
7	488.0	83.0	99.0	14.0	
8	38.0	83.0	99.0	14.0	
9	278.0	83.0	99.0	14.0	
10	223.0	83.0	99.0	14.0	
11	285.0	83.0	99.0	14.0	
12	276.0	83.0	99.0	14.0	
13	142.0	83.0	99.0	14.0	
14	143.0	83.0	99.0	14.0	
15	145.0	83.0	99.0	14.0	
16	144.0	83.0	99.0	14.0	
17	154.0	83.0	99.0	14.0	
18	405.0	83.0	99.0	14.0	
19	406.0	83.0	99.0	14.0	
20	322.0	43.0	99.0	14.0	

		405.0		00.0	
21		185.0	83.0	99.0	14.0
22		161.0	83.0	99.0	14.0
23		171.0	83.0	99.0	14.0
24		184.0	83.0	99.0	14.0
25		160.0	83.0	99.0	14.0
26		170.0	83.0	99.0	14.0
27		159.0	83.0	99.0	14.0
28		158.0	83.0	99.0	14.0
29		165.0	83.0	99.0	14.0
1190		271.0	83.0	99.0	14.0
1191		406.0	83.0	99.0	14.0
1192		272.0	83.0	99.0	14.0
1193		274.0	83.0	99.0	14.0
1194		424.0	83.0	99.0	14.0
1195		435.0	83.0	99.0	14.0
1196		436.0	83.0	99.0	14.0
1197		821.0	83.0	99.0	14.0
1198		402.0	83.0	99.0	14.0
1199		421.0	83.0	99.0	14.0
1200		423.0	83.0	99.0	14.0
1201		283.0	83.0	99.0	14.0
1202		401.0	83.0	99.0	14.0
1203		412.0	83.0	99.0	14.0
1204		402.0	83.0	99.0	14.0
1205		411.0	83.0	99.0	14.0
1206		421.0	83.0	99.0	14.0
1207		422.0	83.0	99.0	14.0
1208		58.0	83.0	99.0	14.0
1209		207.0	83.0	99.0	14.0
1210		102.0	83.0	99.0	14.0
1211		103.0	83.0	99.0	14.0
1212		108.0	83.0	99.0	14.0
1213		111.0	83.0	99.0	14.0
1214		114.0	83.0	99.0	14.0
1215		86.0	83.0	99.0	14.0
1216		37.0	83.0	99.0	14.0
1217		33.0		99.0	
			83.0		14.0
1218		53.0	83.0	99.0	14.0
1219		52.0	83.0	99.0	14.0
	II. 111 B	TT. 111 T			
0	Htchbk Pass Vol	Htchbk Lugg			
0	92.0		.9.0		
1	92.0		.9.0		
2	92.0		.9.0		
3	92.0		.9.0		
4	92.0		.9.0		
5	92.0	1	.9.0		

6	92.0	19.0
7	92.0	19.0
8	92.0	19.0
9	92.0	19.0
10	92.0	19.0
11	92.0	19.0
12	92.0	19.0
13	92.0	19.0
14	92.0	19.0
15	92.0	19.0
16	92.0	19.0
17	92.0	19.0
18	92.0	19.0
19	92.0	19.0
20	92.0	19.0
21	92.0	19.0
22	92.0	19.0
23	92.0	19.0
24	92.0	19.0
25	92.0	19.0
26	92.0	19.0
27	92.0	19.0
28	92.0	19.0
29	92.0	19.0
1190	92.0	19.0
1191	92.0	19.0
1192	92.0	19.0
1193	92.0	19.0
1194	92.0	19.0
1195	92.0	19.0
		19.0
1196	92.0	
1197	92.0	19.0
1198	92.0	19.0
1199	92.0	19.0
1200	92.0	19.0
1201	92.0	19.0
1202	92.0	19.0
1203	92.0	19.0
1204	92.0	19.0
1205	92.0	19.0
1206	92.0	19.0
1207	92.0	19.0
1208	92.0	19.0
1209	92.0	19.0
1210	92.0	19.0
1211		
	92.0	19.0
1212	92.0 92.0	19.0 19.0

```
92.0
                                      19.0
1213
1214
                   92.0
                                      19.0
1215
                   92.0
                                      19.0
1216
                   92.0
                                      19.0
1217
                   92.0
                                      19.0
                   92.0
1218
                                      19.0
                   92.0
                                      19.0
1219
      Fuel2 Annual Fuel Cost - Alternative Fuel \
                                             2100.0
0
                                             2100.0
1
2
                                             2100.0
3
                                             2100.0
4
                                             2100.0
5
                                             2100.0
6
                                             2100.0
7
                                             2100.0
8
                                             2100.0
9
                                             2100.0
10
                                             2100.0
11
                                             2100.0
12
                                             2100.0
13
                                             2100.0
                                             2100.0
14
15
                                             2100.0
                                             2100.0
16
17
                                             2100.0
                                             2100.0
18
19
                                             2100.0
20
                                             2100.0
21
                                             2100.0
22
                                             2100.0
23
                                             2100.0
                                             2100.0
24
25
                                             2100.0
                                             2100.0
26
27
                                             2100.0
28
                                             2100.0
29
                                             2100.0
. . .
                                                 . . .
1190
                                             2100.0
1191
                                             2100.0
1192
                                             2100.0
1193
                                             2100.0
1194
                                             2100.0
1195
                                             2100.0
                                             2100.0
1196
1197
                                             2100.0
```

```
1199
                                            2100.0
1200
                                            2100.0
1201
                                            2100.0
1202
                                            2100.0
1203
                                            2100.0
1204
                                            2100.0
1205
                                            2100.0
1206
                                            2100.0
1207
                                            2100.0
1208
                                            2100.0
1209
                                            2100.0
1210
                                            2100.0
                                            2100.0
1211
1212
                                            2100.0
1213
                                            2100.0
1214
                                            2100.0
1215
                                            2100.0
1216
                                            2100.0
1217
                                            2900.0
1218
                                            2100.0
1219
                                            2100.0
      $ You Save over 5 years (amount saved in fuel costs over 5 years - on label)
0
                                                      750.0
                                                      750.0
1
2
                                                      750.0
3
                                                      750.0
4
                                                      750.0
5
                                                      750.0
6
                                                      750.0
7
                                                      750.0
8
                                                      750.0
9
                                                      750.0
10
                                                      750.0
11
                                                      750.0
12
                                                      750.0
13
                                                      750.0
14
                                                      750.0
15
                                                      750.0
16
                                                      750.0
17
                                                      750.0
18
                                                      750.0
19
                                                      750.0
20
                                                      750.0
21
                                                      750.0
                                                      750.0
22
23
                                                      750.0
```

24		750.0
25		750.0
26		750.0
27		750.0
28		750.0
29		750.0
1190		750.0
1191		750.0
1192		750.0
1193		750.0
1194		750.0
1195		750.0
1196		750.0
1197		750.0
1198		750.0
1199		750.0
1200		750.0
1201		750.0
1202		750.0
1203		750.0
1204		750.0
1205		750.0
1206		750.0
1207		750.0
1208		750.0
1209		750.0
1210		750.0
1211		750.0
1212		750.0
1213		250.0
1214		500.0
1215		750.0
1216		750.0
1217		750.0
1218		750.0
1219		750.0
	Eng Displ	
0	3.5	
1	1.8	
2	5.2	
3	5.2	
4	5.2	
5	5.2	
6	2.0	
7	3.0	
•	0.0	

8.0

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	6.2 6.2 6.2 3.9 3.9 3.9 6.5 1.4 1.4 3.5 2.0 3.0 3.0 3.0 5.0 5.0
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215	3.0 5.5 5.5 5.5 5.5 4.0 3.5 3.6 3.6 3.6 3.6 4.8 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.6 3.6 3.6 3.5 3.5 3.5 3.5 3.6 3.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7

```
1217
                       5.7
                       2.0
          1218
          1219
                       2.0
          [1220 rows x 9 columns]>
In [40]: from sklearn.linear_model import Ridge
         from sklearn.preprocessing import StandardScaler
         from sklearn.model_selection import train_test_split
         scaler = StandardScaler()
         scaler.fit(X_tr_num)
         X_tr_num_sc = scaler.transform(X_tr_num)
In [41]: X_te_num_sc = scaler.transform(X_te_num)
In [42]: X_tr_num_sc = pd.DataFrame(X_tr_num_sc, columns=X_tr_num.columns)
In [43]: X_te_num_sc = pd.DataFrame(X_te_num_sc, columns=X_te_num.columns)
In [196]: X_tr_num_sc.head #train data numerical scaled
Out[196]: <bound method NDFrame.head of
                                                Index (Model Type Index)
                                                                            2Dr Pass Vol 4Dr Pass V
                                 0.249234
                                                0.014368
                                                              -0.050836
          0
                                                                            -0.173528
          1
                                -0.907082
                                                0.014368
                                                              -0.050836
                                                                            -0.173528
          2
                                -0.925150
                                                0.014368
                                                              -0.050836
                                                                            -0.173528
          3
                                -0.938700
                                                0.014368
                                                              -0.050836
                                                                            -0.173528
          4
                                -0.920633
                                                                            -0.173528
                                                0.014368
                                                              -0.050836
          5
                                -0.934184
                                                0.014368
                                                              -0.050836
                                                                            -0.173528
          6
                                                                            -0.173528
                                -0.916116
                                                0.014368
                                                              -0.050836
          7
                                -0.929667
                                                              -0.050836
                                                                            -0.173528
                                                0.014368
          8
                                -0.821262
                                                0.014368
                                                              -0.050836
                                                                            -0.173528
          9
                                                                            -0.173528
                                                              -0.050836
                                -0.812228
                                                0.014368
          10
                                -0.785127
                                                0.014368
                                                              -0.050836
                                                                             -0.173528
          11
                                -0.794161
                                                              -0.050836
                                                                            -0.173528
                                                0.014368
          12
                                -0.825779
                                                0.014368
                                                              -0.050836
                                                                            -0.173528
          13
                                -0.816745
                                                              -0.050836
                                                                            -0.173528
                                                0.014368
          14
                                -0.789644
                                                0.014368
                                                              -0.050836
                                                                            -0.173528
          15
                                -0.798678
                                                0.014368
                                                              -0.050836
                                                                            -0.173528
          16
                                -0.929667
                                                0.014368
                                                              -0.050836
                                                                            -0.173528
          17
                                -0.446363
                                                0.014368
                                                              -0.050836
                                                                             -0.173528
          18
                                 0.989999
                                                0.014368
                                                              -0.050836
                                                                            -0.173528
                                                                            -0.173528
          19
                                 0.994516
                                                0.014368
                                                              -0.050836
          20
                                 1.026134
                                                0.014368
                                                              -0.050836
                                                                            -0.173528
          21
                                                                            -0.173528
                                 1.035168
                                                0.014368
                                                              -0.050836
          22
                                -0.672206
                                                0.014368
                                                              -0.050836
                                                                            -0.173528
```

```
23
                       -0.676723
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
24
                       -0.640588
                                       0.014368
                                                     -0.050836
                                                                     -0.173528
25
                       -0.672206
                                       0.014368
                                                     -0.050836
                                                                     -0.173528
26
                       -0.636071
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
                       -0.107598
27
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
28
                       -0.297306
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
29
                       -0.301823
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
. . .
                              . . .
                                                            . . .
                                                                            . . .
                        0.872561
3671
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3672
                        0.899662
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3673
                        0.958381
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3674
                        0.967415
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3675
                        0.335054
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3676
                        0.868044
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3677
                        0.917730
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3678
                        0.872561
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3679
                        0.913213
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3680
                        0.958381
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3681
                        0.962898
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3682
                                       0.014368
                                                      -0.050836
                       -0.631554
                                                                     -0.173528
3683
                       -0.008227
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3684
                       -0.477981
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3685
                       -0.473464
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3686
                       -0.428295
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3687
                       -0.468947
                                                                     -0.173528
                                       0.014368
                                                      -0.050836
                       -0.464430
3688
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3689
                       -0.776093
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3690
                       -0.889015
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3691
                       -0.907082
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3692
                       -0.735442
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
                       -0.703824
3693
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3694
                       -0.708341
                                       0.014368
                                                     -0.050836
                                                                     -0.173528
                        0.628650
3695
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3696
                        0.380223
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3697
                                                      -0.050836
                        0.014357
                                       0.014368
                                                                     -0.173528
3698
                        0.009840
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3699
                        0.104695
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
3700
                        0.100178
                                       0.014368
                                                      -0.050836
                                                                     -0.173528
      Htchbk Pass Vol
                        Htchbk Lugg Vol
0
              0.015271
                                -0.066354
1
                                -0.066354
              0.015271
2
              0.015271
                                -0.066354
3
              0.015271
                                -0.066354
4
              0.015271
                                -0.066354
5
              0.015271
                                -0.066354
6
              0.015271
                                -0.066354
7
                                -0.066354
              0.015271
```

8	0.015271	-0.066354
9	0.015271	-0.066354
10	0.015271	-0.066354
11	0.015271	-0.066354
12	0.015271	-0.066354
13	0.015271	-0.066354
14	0.015271	-0.066354
15	0.015271	-0.066354
16	0.015271	-0.066354
17	0.015271	-0.066354
18	0.015271	-0.066354
19	0.015271	-0.066354
20	0.015271	-0.066354
21	0.015271	-0.066354
22	0.015271	-0.066354
23	0.015271	-0.066354
24	0.015271	-0.066354
25	0.015271	-0.066354
26	0.015271	-0.066354
27	0.015271	-0.066354
28	0.015271	-0.066354
29	0.015271	-0.066354
3671	0.015271	-0.066354
3672	0.015271	-0.066354
3673	0.015271	-0.066354
3674	0.015271	-0.066354
3675	0.015271	-0.066354
3676	0.015271	-0.066354
3677	0.015271	-0.066354
3678	0.015271	-0.066354
3679	0.015271	-0.066354
3680	0.015271	-0.066354
3681	0.015271	-0.066354
3682	0.015271	-0.066354
3683	0.015271	-0.066354
3684	0.015271	-0.066354
3685	0.015271	-0.066354
3686	0.015271	-0.066354
3687	0.015271	-0.066354
3688	0.015271	-0.066354
3689	0.015271	-0.066354
3690	0.015271	-0.066354
3691	0.015271	-0.066354
3692	0.015271	-0.066354
3693	0.015271	-0.066354
3694	0.015271	-0.066354
3695	0.015271	-0.066354

```
-0.066354
3696
              0.015271
3697
              0.015271
                                -0.066354
3698
              0.015271
                                -0.066354
3699
              0.015271
                                -0.066354
                                -0.066354
3700
              0.015271
      Fuel2 Annual Fuel Cost - Alternative Fuel \
0
                                          -0.015760
1
                                          -0.015760
2
                                          -0.015760
3
                                          -0.015760
4
                                          -0.015760
5
                                          -0.015760
6
                                          -0.015760
7
                                          -0.015760
8
                                          -0.015760
9
                                          -0.015760
10
                                          -0.015760
11
                                          -0.015760
12
                                          -0.015760
13
                                          -0.015760
14
                                          -0.015760
                                          -0.015760
15
16
                                          -0.015760
17
                                          -0.015760
18
                                          -0.015760
19
                                          -0.015760
20
                                          -0.015760
21
                                          -0.015760
22
                                          -0.015760
23
                                          -0.015760
24
                                          -0.015760
25
                                          -0.015760
26
                                          -0.015760
27
                                          -0.015760
28
                                          -0.015760
29
                                          -0.015760
. . .
                                                . . .
3671
                                          -0.015760
3672
                                          -0.015760
3673
                                          -0.015760
3674
                                          -0.015760
3675
                                          -0.015760
3676
                                          -0.015760
3677
                                          -0.015760
3678
                                          -0.015760
3679
                                          -0.015760
3680
                                          -0.015760
```

```
3682
                                         -0.015760
3683
                                         -0.015760
3684
                                         -0.015760
                                         -0.015760
3685
3686
                                         -0.015760
3687
                                         -0.015760
3688
                                         -0.015760
3689
                                         -0.015760
3690
                                         -0.015760
3691
                                          1.699727
3692
                                         -0.015760
3693
                                         -0.015760
3694
                                         -0.015760
3695
                                         -0.015760
3696
                                         -0.015760
3697
                                         -0.015760
3698
                                         -0.015760
3699
                                         -0.015760
3700
                                         -0.015760
      $ You Save over 5 years (amount saved in fuel costs over 5 years - on label)
0
                                                  -0.553136
1
                                                  -0.126290
2
                                                  -0.126290
3
                                                  -0.126290
4
                                                  -0.126290
5
                                                  -0.126290
6
                                                  -0.126290
7
                                                  -0.126290
8
                                                  -0.126290
9
                                                  -0.126290
10
                                                  -0.126290
11
                                                  -0.126290
12
                                                  -0.126290
13
                                                  -0.126290
14
                                                  -0.126290
15
                                                  -0.126290
16
                                                  -1.833677
17
                                                  -0.126290
18
                                                  -1.833677
19
                                                  -1.833677
20
                                                  -0.126290
21
                                                  -0.126290
22
                                                  -0.126290
23
                                                  -0.126290
24
                                                  -0.126290
25
                                                  -0.126290
```

-0.015760

3681

26		-0.126290
27		-0.126290
28		-0.126290
29		-0.126290
3671		-0.126290
3672		-0.126290
3673		-0.126290
3674		-0.126290
3675		-0.126290
3676		-0.126290
3677		-0.126290
3678		-0.126290
3679		-0.126290
3680		-0.126290
3681		-0.126290
3682		-0.126290
3683		-0.126290
3684		-0.126290
3685		-0.126290
3686		-0.126290
3687		-0.979983
3688		-0.553136
3689		-0.126290
3690		-0.126290
3691		-0.126290
3692		-0.126290
3693		-0.126290
3694		-0.126290
3695		-0.126290
3696		-0.126290
3697		-0.126290
3698		-0.126290
3699		-0.126290
3700		-0.126290
	Eng Dign]	
0	Eng Displ -1.008939	
1	2.074229	
2	1.119915	
3	1.119915	
4	1.119915	
5	1.119915	
6	1.119915	
7	1.119915	
8	0.752871	
9	0.752871	

1.486959

11 1.486959 12 0.752871 13 0.752871 14 1.486959 15 1.486959 16 -0.862122 17 0.606054 18 -0.862122 19 -0.862122 20 -0.128034 21 -0.128034 22 3.542405 23 2.221047 24 2.221047 25 2.221047 26 2.221047 27 3.836040 28 0.973098 29 0.973098 3671 0.239010 3672 -0.128034 3673 -0.128034 3674 1.119915 3675 1.780594 0.312419 3676 3677 0.312419 0.312419 3678 3679 0.312419 3680 1.193324 3681 1.193324 0.606054 3682 0.606054 3683 3684 0.239010 3685 0.239010 3686 0.239010 0.239010 3687 3688 0.239010 3689 1.854003 3690 1.854003 3691 1.854003 0.312419 3692 3693 -0.862122 3694 -0.862122 3695 0.239010 3696 0.239010 3697 -0.862122 3698 -0.862122

3699 -0.495078 3700 -0.495078

[3701 rows x 9 columns]>

In [197]: X_te_num_sc.head

Out[197]: <bound metho<="" th=""><th>od NDFrame.head of</th><th>Index (Model</th><th>Type Index)</th><th>2Dr Pass Vol</th><th>4Dr Pass W</th></bound>	od NDFrame.head of	Index (Model	Type Index)	2Dr Pass Vol	4Dr Pass W
0	-0.685756		0.174215		
1	0.908696	0.014368	0.174215	-0.173528	
2	-0.649621		0.174215	-0.173528	
3	-0.622520	0.014368		-0.173528	
4	-0.645104	0.014368	0.174215	-0.173528	
5	-0.618003	0.014368	0.174215	-0.173528	
6	-0.735442	0.014368	0.174215	-0.173528	
7	1.261011	0.014368	0.174215	-0.173528	
8	-0.771577	0.014368	0.174215	-0.173528	
9	0.312470	0.014368	0.174215	-0.173528	
10	0.064043	0.014368	0.174215	-0.173528	
11	0.344088	0.014368	0.174215	-0.173528	
12	0.303436	0.014368	0.174215	-0.173528	
13	-0.301823	0.014368	0.174215	-0.173528	
14	-0.297306	0.014368	0.174215	-0.173528	
15	-0.288272	0.014368	0.174215	-0.173528	
16	-0.292789	0.014368	0.174215	-0.173528	
17	-0.247621	0.014368	0.174215	-0.173528	
18	0.886112	0.014368	0.174215	-0.173528	
19	0.890628	0.014368	0.174215	-0.173528	
20	0.511212	-10.361108	0.174215	-0.173528	
21	-0.107598	0.014368	0.174215	-0.173528	
22	-0.216003	0.014368	0.174215	-0.173528	
23	-0.170834	0.014368	0.174215	-0.173528	
24	-0.112115	0.014368	0.174215	-0.173528	
25	-0.220519	0.014368	0.174215	-0.173528	
26	-0.175351	0.014368	0.174215	-0.173528	
27	-0.225036	0.014368	0.174215	-0.173528	
28	-0.229553	0.014368	0.174215	-0.173528	
29	-0.197935	0.014368	0.174215	-0.173528	
• • •					
1190	0.280852	0.014368	0.174215	-0.173528	
1191	0.890628	0.014368	0.174215	-0.173528	
1192	0.285369	0.014368	0.174215	-0.173528	
1193	0.294403	0.014368	0.174215	-0.173528	
1194	0.971932	0.014368	0.174215	-0.173528	
1195	1.021617	0.014368	0.174215	-0.173528	
1196	1.026134	0.014368	0.174215	-0.173528	
1197	2.765126	0.014368	0.174215	-0.173528	
1198	0.872561	0.014368	0.174215	-0.173528	

1199	0.958381	0.014368	0.174215	-0.173528
1200	0.967415	0.014368	0.174215	-0.173528
1201	0.335054	0.014368	0.174215	-0.173528
1202	0.868044	0.014368	0.174215	-0.173528
1203	0.917730	0.014368	0.174215	-0.173528
1204	0.872561	0.014368	0.174215	-0.173528
1205	0.913213	0.014368	0.174215	-0.173528
1206	0.958381	0.014368	0.174215	-0.173528
1207	0.962898	0.014368	0.174215	-0.173528
1208	-0.681239	0.014368	0.174215	-0.173528
1209	-0.008227	0.014368	0.174215	-0.173528
1210	-0.482497	0.014368	0.174215	-0.173528
1211	-0.477981	0.014368	0.174215	-0.173528
1212	-0.455396	0.014368	0.174215	-0.173528
1213	-0.441846	0.014368	0.174215	-0.173528
1214	-0.428295	0.014368	0.174215	-0.173528
1215	-0.554767	0.014368	0.174215	-0.173528
1216	-0.776093	0.014368	0.174215	-0.173528
1217	-0.794161	0.014368	0.174215	-0.173528
1218	-0.703824	0.014368	0.174215	-0.173528
1219	-0.708341	0.014368	0.174215	-0.173528

	Htchbk	Pass Vol	Htchbk	Lugg Vol	\
0		1.052295		1.68359	
1		1.052295		1.68359	
2		1.052295		1.68359	
3		1.052295		1.68359	
4		1.052295		1.68359	
5		1.052295		1.68359	
6		1.052295		1.68359	
7		1.052295		1.68359	
8		1.052295		1.68359	
9		1.052295		1.68359	
10		1.052295		1.68359	
11		1.052295		1.68359	
12		1.052295		1.68359	
13		1.052295		1.68359	
14		1.052295		1.68359	
15		1.052295		1.68359	
16		1.052295		1.68359	
17		1.052295		1.68359	
18		1.052295		1.68359	
19		1.052295		1.68359	
20		1.052295		1.68359	
21		1.052295		1.68359	
22		1.052295		1.68359	
23		1.052295		1.68359	
24		1.052295		1.68359	

```
1.052295
26
                                  1.68359
27
              1.052295
                                  1.68359
28
              1.052295
                                  1.68359
29
              1.052295
                                  1.68359
. . .
                    . . .
                                       . . .
1190
              1.052295
                                  1.68359
1191
              1.052295
                                  1.68359
1192
                                  1.68359
              1.052295
1193
              1.052295
                                  1.68359
1194
              1.052295
                                  1.68359
1195
              1.052295
                                  1.68359
1196
              1.052295
                                  1.68359
1197
              1.052295
                                  1.68359
1198
              1.052295
                                  1.68359
              1.052295
                                  1.68359
1199
1200
              1.052295
                                  1.68359
              1.052295
                                  1.68359
1201
1202
              1.052295
                                  1.68359
1203
              1.052295
                                  1.68359
1204
              1.052295
                                  1.68359
1205
              1.052295
                                  1.68359
1206
              1.052295
                                  1.68359
1207
              1.052295
                                  1.68359
1208
              1.052295
                                  1.68359
              1.052295
                                  1.68359
1209
1210
              1.052295
                                  1.68359
1211
              1.052295
                                  1.68359
1212
              1.052295
                                  1.68359
1213
              1.052295
                                  1.68359
              1.052295
                                  1.68359
1214
1215
              1.052295
                                  1.68359
1216
              1.052295
                                  1.68359
1217
              1.052295
                                  1.68359
1218
              1.052295
                                  1.68359
1219
              1.052295
                                  1.68359
      Fuel2 Annual Fuel Cost - Alternative Fuel
0
                                          -3.201663
1
                                          -3.201663
2
                                          -3.201663
3
                                          -3.201663
4
                                          -3.201663
5
                                          -3.201663
6
                                          -3.201663
7
                                          -3.201663
8
                                          -3.201663
9
                                          -3.201663
```

1.68359

25

1.052295

10	-3.201663
11	-3.201663
12	-3.201663
13	-3.201663
14	-3.201663
15	-3.201663
16	-3.201663
17	-3.201663
18	-3.201663
19	-3.201663
20	-3.201663
21	-3.201663
22	-3.201663
23	-3.201663
24	-3.201663
25	-3.201663
26	-3.201663
27	-3.201663
28	-3.201663
29	-3.201663
• • •	
1190	-3.201663
1191	-3.201663
1192	-3.201663
1193	-3.201663
1194	-3.201663
1195	-3.201663
1196	-3.201663
1197	-3.201663
1198	-3.201663
1199	-3.201663
1200	-3.201663
1201	-3.201663
1202	-3.201663
1203	-3.201663
1204	-3.201663
1205	-3.201663
1206	-3.201663
1207	-3.201663
1208	-3.201663
1209	-3.201663
1210	-3.201663
1211	-3.201663
1212	-3.201663
1213	-3.201663
1214	-3.201663
1215	-3.201663
1216	-3.201663

```
1217
                                          0.719449
1218
                                         -3.201663
                                         -3.201663
1219
      $ You Save over 5 years (amount saved in fuel costs over 5 years - on label)
0
                                                 -0.553136
1
                                                 -0.553136
2
                                                 -0.553136
3
                                                 -0.553136
4
                                                 -0.553136
5
                                                 -0.553136
6
                                                 -0.553136
7
                                                 -0.553136
8
                                                 -0.553136
9
                                                 -0.553136
10
                                                 -0.553136
11
                                                 -0.553136
12
                                                 -0.553136
13
                                                 -0.553136
14
                                                 -0.553136
15
                                                 -0.553136
16
                                                 -0.553136
17
                                                 -0.553136
18
                                                 -0.553136
19
                                                 -0.553136
20
                                                 -0.553136
21
                                                 -0.553136
22
                                                 -0.553136
23
                                                 -0.553136
24
                                                 -0.553136
25
                                                 -0.553136
26
                                                 -0.553136
27
                                                 -0.553136
28
                                                 -0.553136
29
                                                 -0.553136
. . .
1190
                                                 -0.553136
1191
                                                 -0.553136
1192
                                                 -0.553136
1193
                                                 -0.553136
1194
                                                 -0.553136
1195
                                                 -0.553136
1196
                                                 -0.553136
1197
                                                 -0.553136
                                                 -0.553136
1198
1199
                                                 -0.553136
1200
                                                 -0.553136
1201
                                                 -0.553136
```

1202	-0.553136
1203	-0.553136
1204	-0.553136
1205	-0.553136
1206	-0.553136
1207	-0.553136
1208	-0.553136
1209	-0.553136
1210	-0.553136
1211	-0.553136
1212	-0.553136
1213	-1.406830
1214	-0.979983
1215	-0.553136
1216	-0.553136
1217	-0.553136
1218	-0.553136
1219	-0.553136
Eng Displ	

	Eng Displ
0	0.239010
1	-1.008939
2	1.486959
3	1.486959
4	1.486959
5	1.486959
6	-0.862122
7	-0.128034
8	3.542405
9	2.221047
10	2.221047
11	2.221047
12	2.221047
13	0.532645
14	0.532645
15	0.532645
16	0.532645
17	2.441273
18	-1.302574
19	-1.302574
20	0.239010
21	-0.862122
22	-0.128034
23	-0.128034
24	-0.862122
25	-0.128034
26	-0.128034
27	1.340142

```
1.340142
           29
                 -0.128034
           1190
                 -0.128034
          1191
                  1.707185
           1192
                  1.707185
          1193
                  1.707185
          1194
                  1.707185
          1195
                  0.606054
          1196
                  0.606054
          1197
                  0.239010
                  0.239010
          1198
           1199
                 -0.128034
          1200
                  1.119915
          1201
                  1.780594
          1202
                  0.312419
           1203
                  0.312419
          1204
                  0.312419
          1205
                  0.312419
           1206
                  1.193324
          1207
                  1.193324
           1208
                  0.606054
          1209
                  0.606054
          1210
                  0.239010
          1211
                  0.239010
          1212
                  0.239010
          1213
                  0.239010
          1214
                  0.239010
           1215
                  1.854003
          1216
                  1.854003
           1217
                  1.854003
          1218
                 -0.862122
           1219
                 -0.862122
           [1220 rows x 9 columns]>
In [46]: d_tr_cat.head()
Out [46]:
           Range1 - Model Type Driving Range - Conventional Fuel
                                                                           Mfr Name \
                                                              NaN
                                                                          FCA Italy
         1
                                                              NaN
                                                                       aston martin
         2
                                                              NaN
                                                                       aston martin
         3
                                                                       aston martin
                                                              NaN
         4
                                                              NaN
                                                                       aston martin
                              Division Verify Mfr Cd Transmission Air Aspir Method Trans
         0
                            Alfa Romeo
                                                  FTG
                                                          Auto(AM6)
                                                                                    TC
                                                                                          AM
            Aston Martin Lagonda Ltd
                                                  ASX
                                                                                   NaN
                                                                                          AM
                                                          Auto(AM7)
```

28

```
3 Aston Martin Lagonda Ltd
                                                   ASX
                                                          Manual(M6)
                                                                                    NaN
                                                                                            Μ
         4 Aston Martin Lagonda Ltd
                                                                                            AM
                                                   ASX
                                                           Auto(AM7)
                                                                                    NaN
           Lockup Torque Converter Trans Creeper Gear Drive Sys
         0
                                    Y
                                    N
         1
                                                        N
                                                                   R
         2
                                    N
                                                        N
                                                                   R
         3
                                    N
                                                        N
                                                                   R
         4
                                    N
                                                         N
                                                                   R
           Fuel Metering Sys Cd Off Board Charge Capable (Y or N)
         0
                              GDI
         1
                              MFI
                                                                   NaN
         2
                              MFI
                                                                   {\tt NaN}
         3
                              MFI
                                                                   {\tt NaN}
         4
                              MFI
                                                                   NaN
           Camless Valvetrain (Y or N)
         0
                                        N
         1
                                        N
         2
                                        N
         3
                                        N
         4
                                        N
           Stop/Start System (Engine Management System) Code Model Year Carline Class
         0
                                                                N
                                                                         2015
         1
                                                                N
                                                                         2015
                                                                                            1
         2
                                                                N
                                                                         2015
                                                                                            1
         3
                                                                N
                                                                         2015
                                                                                            1
         4
                                                                N
                                                                         2015
           # Cyl # Gears Max Ethanol % - Gasoline Exhaust Valves Per Cyl
         0
                4
                         6
                                                 10.0
                                                                             2
                                                                             2
         1
               12
                         7
                                                 10.0
                                                                             2
         2
                8
                         7
                                                 10.0
                                                                              2
         3
                8
                         6
                                                 10.0
                         7
                                                 10.0
                                                                              2
         [5 rows x 29 columns]
In [47]: d_te_cat.head()
           Range1 - Model Type Driving Range - Conventional Fuel
                                                                                    Mfr Name
                                                                                              \
         0
                                                               NaN
                                                                                       Honda
         1
                                                               NaN
                                                                                  FCA US LLC
         2
                                                                        Volkswagen Group of
                                                               NaN
         3
                                                                        Volkswagen Group of
                                                               NaN
```

ASX

Auto(AM7)

NaN

ΑM

2 Aston Martin Lagonda Ltd

```
4
                                                                {\tt NaN}
                                                                         Volkswagen Group of
               Division Verify Mfr Cd Transmission Air Aspir Method Trans
         0
                                    HNX Auto(AM-S9)
             ALFA ROMEO
                                    CRX
                                            Auto(AM6)
                                                                      TC
                                                                             AM
          2
                                    VGA Auto(AM-S7)
                                                                     NaN
                                                                            AMS
                   Audi
         3
                   Audi
                                    VGA
                                         Auto(AM-S7)
                                                                     NaN
                                                                            AMS
          4
                   Audi
                                    VGA
                                         Auto(AM-S7)
                                                                     NaN
                                                                            AMS
            Lockup Torque Converter Trans Creeper Gear Drive Sys
         0
                                    Y
         1
                                    Y
                                                         N
                                    Y
         2
                                                         N
                                                                    Α
         3
                                    Y
                                                                    R
         4
                                    Y
            Fuel Metering Sys Cd Off Board Charge Capable (Y or N)
         0
                              GDI
         1
                              GDI
                                                                    NaN
         2
                              GDPI
                                                                    NaN
         3
                              GDPI
                                                                    {\tt NaN}
          4
                              GDPI
                                                                    {\tt NaN}
            Camless Valvetrain (Y or N)
         0
                                        N
                                        N
         1
         2
                                        N
         3
                                        N
         4
                                         N
            Stop/Start System (Engine Management System) Code Model Year Carline Class
         0
                                                                 Y
                                                                          2018
                                                                                             1
                                                                 N
                                                                          2018
         1
                                                                                             1
         2
                                                                 N
                                                                          2018
                                                                                             1
         3
                                                                 N
                                                                                             1
                                                                          2018
         4
                                                                 N
                                                                          2018
                                                                                             1
            # Cyl # Gears Max Ethanol % - Gasoline Exhaust Valves Per Cyl
         0
                6
                         9
                                                                              2
                                                  10.0
                4
                         6
                                                                              2
         1
                                                  10.0
                                                                              2
         2
               10
                         7
                                                  15.0
                         7
                                                                              2
         3
               10
                                                  15.0
               10
                                                  15.0
                                                                              2
          [5 rows x 29 columns]
In [48]: d_tr_cat = d_tr_cat.apply(lambda x:x.fillna(x.value_counts().index[0]))
```

In [49]: d_te_cat = d_te_cat.apply(lambda x:x.fillna(x.value_counts().index[0]))

In [50]: d_tr_cat.isna().any() Out [50]: Range1 - Model Type Driving Range - Conventional Fuel False Mfr Name False Division False Verify Mfr Cd False Transmission False False Air Aspir Method Trans False Lockup Torque Converter False Trans Creeper Gear False Drive Sys False Fuel Usage - Conventional Fuel False Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel False Fuel2 Usage - Alternative Fuel False Car/Truck Category - Cash for Clunkers Bill. False False Unique Label? Label Recalc? False Cvl Deact? False Var Valve Timing? False Var Valve Lift? False Fuel Metering Sys Cd False Off Board Charge Capable (Y or N) False Camless Valvetrain (Y or N) False Stop/Start System (Engine Management System) Code False Model Year False Carline Class False # Cyl False # Gears False Max Ethanol % - Gasoline False False Exhaust Valves Per Cyl dtype: bool In [51]: d_te_cat.isna().any() Out[51]: Range1 - Model Type Driving Range - Conventional Fuel False Mfr Name False Division False Verify Mfr Cd False Transmission False Air Aspir Method False Trans False Lockup Torque Converter False Trans Creeper Gear False Drive Sys False Fuel Usage - Conventional Fuel False Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel False Fuel2 Usage - Alternative Fuel False

	Car/Truck Category - Cash for Clunkers Bill.	False
	Unique Label?	False
	Label Recalc?	False
	Cyl Deact?	False
	Var Valve Timing?	False
	Var Valve Lift?	False
	Fuel Metering Sys Cd	False
	Off Board Charge Capable (Y or N)	False
	Camless Valvetrain (Y or N)	False
	Stop/Start System (Engine Management System) Code	False
	Model Year	False
	Carline Class	False
	# Cyl	False
	# Gears	False
	Max Ethanol % - Gasoline	False
	Exhaust Valves Per Cyl	False
	dtype: bool	
In [52]:	<pre>d_tr_cat.isnull().any()</pre>	
Out[52]:	Range1 - Model Type Driving Range - Conventional Fuel	False
	Mfr Name	False
	Division	False
	Verify Mfr Cd	False
	Transmission	False
	Air Aspir Method	False
	Trans	False
	Lockup Torque Converter	False
	Trans Creeper Gear	False
	Drive Sys	False
	Fuel Usage - Conventional Fuel	False
	Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel	False
	Fuel2 Usage - Alternative Fuel	False
	Car/Truck Category - Cash for Clunkers Bill.	False
	Unique Label?	False
	Label Recalc?	False
	Cyl Deact?	False
	Var Valve Timing?	False
	Var Valve Lift?	False
	Fuel Metering Sys Cd	False
	Off Board Charge Capable (Y or N)	False
	Camless Valvetrain (Y or N)	False
	Stop/Start System (Engine Management System) Code	False
	Model Year	False
	Carline Class	False
	# Cyl	False
	# Gears	False
	Max Ethanol % - Gasoline	False

```
Exhaust Valves Per Cyl
                                                                            False
         dtype: bool
In [53]: d_tr_cat_dummied = pd.get_dummies(d_tr_cat, columns = list(d_tr_cat))
In [54]: d_te_cat_dummied = pd.get_dummies(d_te_cat, columns = list(d_te_cat))
In [55]: print(X_tr_num_sc.shape)
         d_tr_cat_dummied.shape
(3701, 9)
Out [55]: (3701, 373)
In [56]: print(X_te_num_sc.shape)
         d_{te_cat_dummied.shape}
(1220, 9)
Out [56]: (1220, 274)
In [57]: X_tr_num_sc = pd.DataFrame(X_tr_num_sc, columns=X_tr_num.columns)
         missing_cols = set( d_tr_cat_dummied.columns ) - set( d_te_cat_dummied.columns )
         # Add a missing column in test set with default value equal to 0
         for c in missing_cols:
             d_te_cat_dummied[c] = 0
         # Ensure the order of column in the test set is in the same order than in train set
         d_te_cat_dummied2 = d_te_cat_dummied[pd.DataFrame(d_tr_cat_dummied).columns]
In [58]: d_te_cat_dummied2.shape
Out [58]: (1220, 373)
In [59]: X_tr_complete = np.append(X_tr_num_sc, d_tr_cat_dummied, axis = 1)
In [60]: X_te_complete = np.append(X_te_num_sc, d_te_cat_dummied2, axis = 1)
In [61]: X_tr_complete.shape
Out[61]: (3701, 382)
In [62]: X_te_complete.shape
Out[62]: (1220, 382)
   Plotting the distribution of the target
In [63]: import matplotlib.pyplot as plt
         %matplotlib
```

Using matplotlib backend: TkAgg


```
In [69]: num_cols = X_tr_num.columns
    plt.matshow(X_tr_num[num_cols].corr(), cmap='GnBu')
    fig = plt.gcf()
    fig.set_size_inches(10,10)
    ax = plt.gca()
    ax.set_xticklabels(num_cols, rotation = 'vertical')
    ax.set_xticks(np.arange(len(num_cols)))
    ax.title.set_position([.5, 1.07]) #this adjusts title position. tune 1.07
    ax.set_yticklabels(num_cols)
    ax.set_yticks(np.arange(len(num_cols)))
    plt.title('Correlation matrix for continous variables')
    plt.colorbar(fraction=0.046, pad=0.04)
    ax.xaxis.set_ticks_position('bottom')
    plt.show()
```



```
In [70]: y_tr = d_train['Comb Unrd Adj FE - Conventional Fuel']
    y_te = d18['Comb Unrd Adj FE - Conventional Fuel']
In [89]: from sklearn.model_selection import GridSearchCV
    from sklearn.linear_model import Lasso

    param_ridge = {'alpha': np.logspace(-3, 3, 13)}
    grid_ridge = GridSearchCV(Ridge(), param_ridge, cv=10)
    grid_ridge.fit(X_tr_complete,y_tr)
    print(grid_ridge.best_params_)
    print(grid_ridge.best_score_)
{'alpha': 3.1622776601683795}
0.873000596902198
```

Thus Lasso performs better than Ridge in linear case

2 Task 2

```
In [74]: from sklearn.preprocessing import PolynomialFeatures
In [83]: poly = PolynomialFeatures()
         X_tr_num_poly = poly.fit_transform(X_tr_num)
         X_te_num_poly = poly.transform(X_te_num)
In [84]: scaler = StandardScaler()
         X_tr_num_poly_sc = scaler.fit_transform(X_tr_num_poly)
         X_te_num_poly_sc = scaler.transform(X_te_num_poly)
In [85]: X_tr_complete_poly = np.append(X_tr_num_poly_sc, d_tr_cat_dummied, axis = 1)
         X_te_complete_poly = np.append(X_te_num_poly_sc, d_te_cat_dummied2, axis = 1)
In [86]: X_tr_complete_poly.shape
Out[86]: (3701, 428)
In [ ]:
In [87]: param_ridge = {'alpha': np.logspace(-3, 3, 15)}
         grid_ridge = GridSearchCV(Ridge(), param_ridge, cv=10)
         grid_ridge.fit(X_tr_complete_poly,y_tr)
         print(grid_ridge.best_params_)
         print(grid_ridge.best_score_)
```

```
{'alpha': 0.3727593720314938}
0.8902003054510154

In [88]: print("The test score for Ridge Linear Model is "+str(grid_ridge.score(X_te_complete_potential test score for Ridge Linear Model is 0.8254235214509167
```

We notice that Polynomial features is causing the data to overfit

3 Task 3

Gradient Boosting seems to overfit the data a lot. We will attempt to make a grid search to find best parameters that don't underfit the model'

```
In [128]: from sklearn.model_selection import RandomizedSearchCV

# Number of trees in random forest
n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, num = 10)]
# Number of features to consider at every split
max_features = ['auto', 'sqrt']
# Maximum number of levels in tree
max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]
max_depth.append(None)
# Minimum number of samples required to split a node
min_samples_split = [2, 5, 10]
# Minimum number of samples required at each leaf node
min_samples_leaf = [1, 2, 4]
# Method of selecting samples for training each tree
bootstrap = [True, False]
```

```
# Create the random grid
          random_grid = {'n_estimators': n_estimators,
                         'max_features': max_features,
                         'max_depth': max_depth,
                         'min_samples_split': min_samples_split,
                         'min_samples_leaf': min_samples_leaf,
                         'bootstrap': bootstrap}
         print(random_grid)
{'max_features': ['auto', 'sqrt'], 'min_samples_split': [2, 5, 10], 'bootstrap': [True, False],
In [129]: # Use the random grid to search for best hyperparameters
          # First create the base model to tune
         rf = RandomForestRegressor()
          # Random search of parameters, using 3 fold cross validation,
          # search across 100 different combinations, and use all available cores
         rf_random = RandomizedSearchCV(estimator = rf, param_distributions = random_grid, n_it
          # Fit the random search model
         rf_random.fit(X_tr_complete, y_tr)
Fitting 3 folds for each of 100 candidates, totalling 300 fits
[CV] max_depth=30, min_samples_split=5, min_samples_leaf=1, n_estimators=400, max_features=sqrt,
[CV] max_depth=30, min_samples_split=5, min_samples_leaf=1, n_estimators=400, max_features=sqrt,
[CV] max_depth=30, min_samples_split=5, min_samples_leaf=1, n_estimators=400, max_features=sqrt,
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=1, n_estimators=2000, max_features=sqrt
[CV] max_depth=30, min_samples_split=5, min_samples_leaf=1, n_estimators=400, max_features=sqrt
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=1, n_estimators=2000, max_features=sqrt
[CV] max_depth=30, min_samples_split=5, min_samples_leaf=1, n_estimators=400, max_features=sqrt
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=1, n_estimators=2000, max_features=sqrt
[CV] max_depth=30, min_samples_split=5, min_samples_leaf=1, n_estimators=400, max_features=sqrt
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=2, n_estimators=1200, max_features=sqrt
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=1, n_estimators=2000, max_features=sqr
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=2, n_estimators=1200, max_features=sqrt
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=2, n_estimators=1200, max_features=sqr
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=2, n_estimators=1200, max_features=sqrt
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=1, n_estimators=2000, max_features=sqr
[CV] max_depth=30, min_samples_split=2, min_samples_leaf=4, n_estimators=2000, max_features=auto
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=1, n_estimators=2000, max_features=sqr
[CV] max_depth=30, min_samples_split=2, min_samples_leaf=4, n_estimators=2000, max_features=auto
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=2, n_estimators=1200, max_features=sqr
[CV] max_depth=30, min_samples_split=2, min_samples_leaf=4, n_estimators=2000, max_features=auto
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=2, n_estimators=1200, max_features=sqr
[CV] max_depth=10, min_samples_split=2, min_samples_leaf=4, n_estimators=1600, max_features=sqrt
[CV] max_depth=10, min_samples_split=2, min_samples_leaf=4, n_estimators=1600, max_features=sqr
[CV] max_depth=10, min_samples_split=2, min_samples_leaf=4, n_estimators=1600, max_features=sqrt
```

```
max_depth=10, min_samples_split=2, min_samples_leaf=4, n_estimators=1600, max_features=sqr
[CV] max_depth=10, min_samples_split=2, min_samples_leaf=4, n_estimators=1600, max_features=sqrt
     max_depth=10, min_samples_split=2, min_samples_leaf=4, n_estimators=1600, max_features=sqr
[CV] max_depth=30, min_samples_split=5, min_samples_leaf=4, n_estimators=800, max_features=sqrt,
     max_depth=30, min_samples_split=5, min_samples_leaf=4, n_estimators=800, max_features=sqrt
[CV] max_depth=30, min_samples_split=5, min_samples_leaf=4, n_estimators=800, max_features=sqrt,
     max_depth=30, min_samples_split=5, min_samples_leaf=4, n_estimators=800, max_features=sqrt
[CV] max_depth=30, min_samples_split=5, min_samples_leaf=4, n_estimators=800, max_features=sqrt,
     max_depth=30, min_samples_split=5, min_samples_leaf=4, n_estimators=800, max_features=sqrt
[CV]
[CV] max_depth=100, min_samples_split=5, min_samples_leaf=2, n_estimators=1000, max_features=sqr
     max_depth=100, min_samples_split=5, min_samples_leaf=2, n_estimators=1000, max_features=so
[CV]
[CV] max_depth=100, min_samples_split=5, min_samples_leaf=2, n_estimators=1000, max_features=sqr
[CV]
     max_depth=100, min_samples_split=5, min_samples_leaf=2, n_estimators=1000, max_features=so
[CV] max_depth=100, min_samples_split=5, min_samples_leaf=2, n_estimators=1000, max_features=sqr
     max_depth=100, min_samples_split=5, min_samples_leaf=2, n_estimators=1000, max_features=so
[CV] max_depth=60, min_samples_split=5, min_samples_leaf=1, n_estimators=600, max_features=sqrt,
[CV]
     max_depth=60, min_samples_split=5, min_samples_leaf=1, n_estimators=600, max_features=sqrt
[CV] max_depth=60, min_samples_split=5, min_samples_leaf=1, n_estimators=600, max_features=sqrt,
[CV]
     max_depth=60, min_samples_split=5, min_samples_leaf=1, n_estimators=600, max_features=sqrt
[CV] max_depth=60, min_samples_split=5, min_samples_leaf=1, n_estimators=600, max_features=sqrt,
     max_depth=60, min_samples_split=5, min_samples_leaf=1, n_estimators=600, max_features=sqrt
[CV] max_depth=50, min_samples_split=2, min_samples_leaf=1, n_estimators=1000, max_features=auto
     max_depth=30, min_samples_split=2, min_samples_leaf=4, n_estimators=2000, max_features=aut
[CV] max_depth=50, min_samples_split=2, min_samples_leaf=1, n_estimators=1000, max_features=auto
     max_depth=30, min_samples_split=2, min_samples_leaf=4, n_estimators=2000, max_features=aut
[CV] max_depth=50, min_samples_split=2, min_samples_leaf=1, n_estimators=1000, max_features=auto
     max_depth=30, min_samples_split=2, min_samples_leaf=4, n_estimators=2000, max_features=aut
[CV]
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=4, n_estimators=1800, max_features=auto
     max_depth=50, min_samples_split=2, min_samples_leaf=1, n_estimators=1000, max_features=aut
[CV]
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=4, n_estimators=1800, max_features=auto
[CV]
     max_depth=50, min_samples_split=2, min_samples_leaf=1, n_estimators=1000, max_features=aut
[CV] max_depth=10, min_samples_split=5, min_samples_leaf=4, n_estimators=1800, max_features=auto
     max_depth=50, min_samples_split=2, min_samples_leaf=1, n_estimators=1000, max_features=aut
[CV] max_depth=70, min_samples_split=10, min_samples_leaf=4, n_estimators=400, max_features=auto
     max_depth=70, min_samples_split=10, min_samples_leaf=4, n_estimators=400, max_features=aut
[CV] max_depth=70, min_samples_split=10, min_samples_leaf=4, n_estimators=400, max_features=auto
     max_depth=10, min_samples_split=5, min_samples_leaf=4, n_estimators=1800, max_features=aut
[CV] max_depth=70, min_samples_split=10, min_samples_leaf=4, n_estimators=400, max_features=auto
     max_depth=70, min_samples_split=10, min_samples_leaf=4, n_estimators=400, max_features=aut
[CV] max_depth=90, min_samples_split=5, min_samples_leaf=1, n_estimators=800, max_features=sqrt,
[CV]
     max_depth=70, min_samples_split=10, min_samples_leaf=4, n_estimators=400, max_features=aut
[CV] max_depth=90, min_samples_split=5, min_samples_leaf=1, n_estimators=800, max_features=sqrt,
[CV]
     max_depth=90, min_samples_split=5, min_samples_leaf=1, n_estimators=800, max_features=sqrt
[CV] max_depth=90, min_samples_split=5, min_samples_leaf=1, n_estimators=800, max_features=sqrt,
     max_depth=90, min_samples_split=5, min_samples_leaf=1, n_estimators=800, max_features=sqrt
[CV] max_depth=10, min_samples_split=10, min_samples_leaf=1, n_estimators=2000, max_features=sqr
```

```
[CV] max_depth=90, min_samples_split=5, min_samples_leaf=1, n_estimators=800, max_features=sqrt
[CV] max_depth=10, min_samples_split=10, min_samples_leaf=1, n_estimators=2000, max_features=sqr
                                                  Traceback (most recent call last)
       KeyboardInterrupt
        <ipython-input-129-71c0b0f18e05> in <module>()
         8 # Fit the random search model
    ---> 9 rf_random.fit(X_tr_complete, y_tr)
        "/.local/lib/python3.5/site-packages/sklearn/model_selection/_search.py in fit(self, X,
        637
                                              error_score=self.error_score)
        638
                      for parameters, (train, test) in product(candidate_params,
                                                                cv.split(X, y, groups)))
    --> 639
        640
        641
                    # if one choose to see train score, "out" will contain train score info
        ~/.local/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py in __call__(se
        787
                            # consumption.
        788
                            self._iterating = False
    --> 789
                        self.retrieve()
        790
                        # Make sure that we get a last message telling us we are done
        791
                        elapsed_time = time.time() - self._start_time
        ~/.local/lib/python3.5/site-packages/sklearn/externals/joblib/parallel.py in retrieve(se
        697
                        try:
        698
                            if getattr(self._backend, 'supports_timeout', False):
                                self._output.extend(job.get(timeout=self.timeout))
    --> 699
        700
                            else:
        701
                                self._output.extend(job.get())
        ~/.conda/envs/stuff/lib/python3.5/multiprocessing/pool.py in get(self, timeout)
        636
        637
                def get(self, timeout=None):
    --> 638
                    self.wait(timeout)
                    if not self.ready():
        639
                        raise TimeoutError
        640
```

| elapsed: 16.2min

[Parallel(n_jobs=-1)]: Done 33 tasks

```
633
        634
                def wait(self, timeout=None):
    --> 635
                    self._event.wait(timeout)
        636
                def get(self, timeout=None):
        637
        ~/.conda/envs/stuff/lib/python3.5/threading.py in wait(self, timeout)
                        signaled = self._flag
        547
        548
                        if not signaled:
                            signaled = self._cond.wait(timeout)
    --> 549
        550
                        return signaled
        551
        ~/.conda/envs/stuff/lib/python3.5/threading.py in wait(self, timeout)
                            # restore state no matter what (e.g., KeyboardInterrupt)
        291
                        if timeout is None:
        292
    --> 293
                            waiter.acquire()
        294
                            gotit = True
        295
                        else:
        KeyboardInterrupt:
In [177]: rf_grid = GridSearchCV(RandomForestRegressor(max_features =45), param_grid = {'n_estim
          rf_grid.fit(X_tr_complete,y_tr)
          print(rf_grid.best_params_)
          print(rf_grid.best_score_)
{'n_estimators': 90}
0.9457666197587219
In [178]: rf_grid.score(X_te_complete,y_te)
Out[178]: 0.8812460315714362
   Task 4
In [179]: rf_grid.best_estimator_.feature_importances_
Out[179]: array([2.41755855e-02, 2.05651041e-03, 2.13574119e-02, 1.00172349e-02,
                 7.29946323e-03, 6.49493257e-03, 5.62503254e-04, 1.47017682e-01,
```

~/.conda/envs/stuff/lib/python3.5/multiprocessing/pool.py in wait(self, timeout)

```
1.86390106e-01, 5.75697362e-07, 5.88611925e-07, 2.09484341e-08,
6.28058894e-07, 6.66013968e-06, 1.81446732e-06, 1.42174874e-07,
4.93685447e-07, 3.29638490e-06, 7.27004696e-06, 4.32823784e-06,
6.67369396e-05, 3.63762407e-06, 8.57635666e-07, 2.07697537e-06,
2.54703136e-06, 5.25054782e-06, 4.54075069e-06, 9.63392921e-07,
1.63925125e-06, 4.21148769e-07, 3.76106265e-06, 7.14894422e-06,
1.55398935e-04, 6.97681488e-05, 1.04539321e-05, 2.41531326e-07,
3.83974228e-07, 1.43586640e-06, 1.30214396e-06, 1.09610325e-05,
1.56599779e-05, 8.78547930e-08, 5.05976513e-07, 2.02697081e-06,
3.48398227e-06, 5.51768153e-06, 4.93115083e-07, 7.84726648e-06,
4.04833558e-06, 1.16976024e-05, 3.83136477e-07, 9.64098289e-08,
2.09924738e-07, 1.85559432e-05, 1.31493832e-07, 2.75835649e-07,
6.61983471e-06, 1.18824948e-06, 5.77254541e-07, 2.72811302e-07,
2.55225506e-07, 4.77480662e-06, 1.79162754e-07, 4.33512842e-06,
1.45253671e-05, 6.36902969e-07, 1.13975468e-06, 2.33126443e-06,
3.74885931e-06, 2.54766193e-06, 2.07283367e-06, 5.09488201e-07,
8.94492310e-07, 2.15542980e-07, 2.63748313e-06, 7.84702937e-07,
5.79123520e-07, 7.87715954e-06, 2.75190896e-06, 2.78144255e-06,
1.40759667e-05, 1.86117776e-03, 9.16314940e-07, 1.08808533e-03,
7.34521812e-04, 1.87048625e-03, 1.14373171e-03, 1.30609839e-03,
3.14986061e-04, 2.66092067e-04, 3.31370652e-04, 2.87434216e-06,
8.89934477e-04, 1.83966897e-04, 5.46753207e-05, 7.37157934e-04,
4.05049836e-04, 3.60314382e-05, 2.07337261e-03, 1.20409961e-07,
4.24547296e-04, 5.89793985e-06, 7.11739036e-04, 1.26999194e-04,
6.26119828e-04, 1.34252694e-03, 7.15312585e-04, 2.00122101e-04,
4.06074648e-04, 3.47218432e-05, 2.11652585e-04, 4.25488207e-06,
2.11922948e-04, 4.23702961e-04, 7.58248233e-04, 2.31325895e-04,
5.56134695e-05, 5.30073895e-04, 2.20793068e-06, 4.18235848e-04,
4.62411470e-04, 9.45339376e-05, 3.30379998e-04, 1.82603468e-04,
1.37311170e-03, 9.27343396e-04, 7.25760381e-06, 1.75804454e-04,
8.68561938e-04, 1.23125479e-03, 7.07432304e-04, 4.70406627e-04,
5.94826062e-04, 3.33595948e-04, 8.57840541e-04, 4.74885001e-04,
2.72673290e-04, 2.48623671e-04, 2.65351430e-06, 1.76710080e-04,
9.64373906e-04, 1.98733735e-05, 1.83777955e-06, 7.13929667e-04,
5.77760968e-04, 3.39222233e-04, 3.86171709e-05, 8.04411468e-04,
1.79496713e-06, 3.01013658e-04, 5.91130757e-05, 1.75431229e-04,
3.59695353e-05, 1.00949137e-04, 5.25413855e-04, 1.78150602e-03,
2.70229921e-04, 2.41469512e-04, 5.77274762e-05, 1.71688931e-03,
9.11530440e-04, 1.15926838e-03, 2.94293029e-04, 2.05990178e-03,
3.39537655e-06, 1.18743057e-03, 1.12414313e-03, 4.34489668e-04,
3.15904058e-04, 4.12302346e-04, 1.28184582e-05, 2.02478749e-04,
5.74786222e-05, 8.82811514e-04, 1.65579698e-05, 5.78037628e-04,
1.33797830e-03, 1.02963177e-05, 2.39428188e-04, 3.65091553e-06,
4.17543967e-05, 4.72708011e-04, 9.23294766e-04, 1.81331890e-03,
7.12235310e-04, 1.63933397e-04, 7.50427856e-05, 2.26826630e-04,
1.15683915e-03, 5.27314474e-04, 3.60965717e-04, 2.60919877e-04,
9.42613506e-05, 8.73757484e-04, 6.84093779e-05, 9.88163892e-07,
1.57295632e-04, 6.95106375e-03, 9.84784660e-04, 3.22042708e-06,
```

```
1.52197756e-02, 1.89585800e-03, 8.82639656e-04, 4.31106821e-04,
2.87286389e-05, 9.84637762e-06, 2.83799324e-05, 2.06447836e-03,
3.11461636e-04, 1.15071934e-03, 1.07434002e-04, 7.49404494e-04,
1.31128498e-03, 8.70300484e-05, 5.73577437e-04, 3.73699830e-04,
3.13120296e-05, 4.40744036e-03, 2.89151436e-03, 8.65809293e-04,
1.05678289e-02, 1.93959094e-03, 2.59501012e-03, 3.45549360e-03,
6.10333570e-03, 5.86326186e-03, 3.00604204e-05, 2.32991216e-05,
1.99847690e-03, 3.53546922e-06, 5.38695682e-03, 6.31802579e-02,
6.83528412e-04, 1.36235525e-02, 4.78714487e-06, 4.32314469e-03,
3.42943247e-03, 3.53001541e-05, 2.04513971e-03, 2.43136848e-03,
6.57647735e-06, 2.07816323e-07, 1.62622354e-06, 3.14519215e-07,
2.06902754e-06, 5.88013844e-06, 8.06027524e-06, 5.45274300e-06,
9.16457482e-07, 6.19832751e-06, 1.56544387e-07, 6.23696402e-06,
2.95371730e-07, 2.08839553e-05, 1.76917797e-06, 3.67295685e-04,
1.54952857e-06, 4.57109673e-06, 1.97662318e-05, 4.83832947e-06,
6.67150366e-07, 9.38232537e-08, 1.32241561e-06, 3.01821826e-06,
1.23713451e-05, 2.29556344e-06, 3.02354987e-06, 6.35956639e-07,
1.70852022e-05, 6.09585837e-08, 1.02945957e-06, 2.94239235e-05,
3.28970128e-08, 1.43526922e-05, 1.15996951e-06, 3.88412610e-08,
2.55699045e-06, 2.94607609e-07, 9.42720907e-07, 1.06209549e-07,
6.57586083e-07, 1.27801243e-06, 3.05573492e-06, 2.11064163e-07,
1.64392082e-07, 4.84382060e-07, 2.41761916e-07, 1.38772527e-06,
3.01404873e-07, 7.52214659e-06, 1.45257767e-07, 4.79366078e-07,
1.14311235e-06, 8.76138856e-07, 8.55618419e-07, 4.55852723e-06,
5.20703306e-08, 6.00007248e-06, 6.41321169e-07, 2.13957985e-07,
5.63317451e-06, 1.34380631e-06, 7.34585893e-07, 8.37543624e-06,
4.82686128e-06, 6.48402852e-07, 6.58042592e-06, 1.77412882e-05,
4.11674644e-06, 8.01959116e-06, 1.81239140e-04, 1.33413027e-03,
1.22236271e-03, 1.27214837e-03, 1.38172215e-03, 2.12677970e-05,
2.25272600e-04, 1.32348669e-04, 4.96657654e-03, 3.61947940e-03,
1.68307674e-03, 2.14359232e-03, 2.34968785e-03, 3.41405985e-03,
3.71610570e-03, 9.91676246e-05, 3.58558693e-03, 4.82615058e-04,
3.95851671e-03, 3.28403847e-05, 3.64523157e-05, 5.38900548e-04,
5.08333763e-04, 1.46708688e-02, 1.50608991e-02, 2.42444599e-03,
1.24021894e-03, 2.47111066e-03, 1.17610228e-03, 4.09032795e-04,
7.80912709e-04, 4.08503715e-03, 6.47815556e-03, 1.50299523e-03,
5.95127837e-04, 1.47518490e-04, 5.73945713e-04, 5.08785825e-04,
1.68931939e-04, 7.64239514e-04, 1.29890437e-04, 9.97863543e-04,
7.30058095e-04, 1.42837726e-05, 3.02440707e-04, 1.34763493e-04,
2.00550703e-05, 3.23474742e-03, 3.04692490e-03, 6.09300080e-04,
5.88340914e-03, 6.05797265e-03, 9.56926263e-02, 9.71728271e-05,
2.86443587e-02, 6.69101449e-02, 2.21933422e-04, 1.34855156e-02,
9.84596841e-05, 1.56668352e-02, 8.59548033e-05, 7.06921027e-04,
2.53936785e-03, 1.94491628e-03, 1.11305682e-03, 3.84081639e-04,
3.14532201e-05, 4.34401279e-03, 3.81822727e-03, 1.39467111e-04,
6.39147139e-03, 1.24985395e-02])
```

In [181]: X_tr_com_cols = list(X_tr_num_sc) + list(d_tr_cat_dummied)

```
In [182]: len(X_tr_com_cols)
Out[182]: 382
In [183]: imp__feat_list = sorted(zip(map(lambda x: round(x, 4), rf_grid.best_estimator_.feature
                       reverse=True)
In [184]: imp__feat_list
Out[184]: [(0.1864, 'Eng Displ'),
           (0.147,
            '$ You Save over 5 years (amount saved in fuel costs over 5 years - on label) '),
           (0.0957, '# Cyl_4'),
           (0.0669, '\# Cyl_8'),
           (0.0632, 'Drive Sys_F'),
           (0.0286, '# Cyl_6'),
           (0.0242, 'Index (Model Type Index)'),
           (0.0214, '4Dr Pass Vol'),
           (0.0157, '# Gears_1'),
           (0.0152, 'Transmission_Auto(AV)'),
           (0.0151, 'Stop/Start System (Engine Management System) Code_Y'),
           (0.0147, 'Stop/Start System (Engine Management System) Code_N'),
           (0.0136, 'Drive Sys_R'),
           (0.0135, '# Cyl_12'),
           (0.0125, 'Exhaust Valves Per Cyl_2'),
           (0.0106, 'Trans_CVT'),
           (0.01, '4Dr Lugg Vol'),
           (0.0073, 'Htchbk Pass Vol'),
           (0.007, 'Transmission_Auto(AM6)'),
           (0.0065, 'Htchbk Lugg Vol'),
           (0.0065, 'Carline Class_5'),
           (0.0064, 'Exhaust Valves Per Cyl_1'),
           (0.0061, 'Lockup Torque Converter_N'),
           (0.0061, '# Cyl_3'),
           (0.0059, 'Lockup Torque Converter_Y'),
           (0.0059, 'Carline Class_33'),
           (0.0054, 'Drive Sys_A'),
           (0.005, 'Cyl Deact?_N'),
           (0.0044, 'Trans_A'),
           (0.0043, 'Max Ethanol % - Gasoline_10.0'),
           (0.0043, 'Fuel Usage - Conventional Fuel_DU'),
           (0.0041, 'Carline Class_4'),
           (0.004, 'Fuel Metering Sys Cd_MFI'),
           (0.0038, 'Max Ethanol % - Gasoline_15.0'),
           (0.0037, 'Fuel Metering Sys Cd_CRDI'),
           (0.0036, 'Fuel Metering Sys Cd_GDI'),
           (0.0036, 'Cyl Deact?_Y'),
           (0.0035, 'Trans_SCV'),
           (0.0034, 'Var Valve Lift?_Y'),
```

```
(0.0034, 'Fuel Usage - Conventional Fuel_G'),
(0.0032, 'Carline Class_30'),
(0.003, 'Carline Class_31'),
(0.0029, 'Trans_AM'),
(0.0026, 'Trans_SA'),
(0.0025, 'Model Year_2017'),
(0.0025, '# Gears_6'),
(0.0024, 'Model Year_2015'),
(0.0024, 'Fuel Usage - Conventional Fuel_GPR'),
(0.0023, 'Var Valve Lift?_N'),
(0.0021, 'Verify Mfr Cd_FMX'),
(0.0021, 'Var Valve Timing?_Y'),
(0.0021, 'Transmission_Auto(S6)'),
(0.0021, 'Mfr Name_Nissan'),
(0.0021, '2Dr Pass Vol'),
(0.002, 'Fuel Usage - Conventional Fuel_GP'),
(0.002, 'Drive Sys_4'),
(0.0019, 'Transmission_Auto(AV-S6)'),
(0.0019, 'Trans_M'),
(0.0019, 'Mfr Name_Ford Motor Company'),
(0.0019, 'Mfr Name_BMW'),
(0.0019, '# Gears_7'),
(0.0018, 'Verify Mfr Cd_TYX'),
(0.0018, 'Division_TOYOTA'),
(0.0017, 'Verify Mfr Cd_BMX'),
(0.0017, 'Var Valve Timing?_N'),
(0.0015, 'Carline Class_6'),
(0.0014, 'Unique Label?_Y'),
(0.0014, 'Division_Ferrari North America, Inc.'),
(0.0013, 'Verify Mfr Cd_NSX'),
(0.0013, 'Unique Label?_N'),
(0.0013, 'Transmission_Manual(M6)'),
(0.0013, 'Mfr Name_Toyota'),
(0.0013, 'Mfr Name_Honda'),
(0.0013, 'Car/Truck Category - Cash for Clunkers Bill._??'),
(0.0012, 'Verify Mfr Cd_GMX'),
(0.0012, 'Verify Mfr Cd_FEX'),
(0.0012, 'Transmission_Auto(S8)'),
(0.0012, 'Transmission_Auto(A6)'),
(0.0012, 'Model Year_2016'),
(0.0012, 'Division_Honda'),
(0.0012, 'Carline Class_1'),
(0.0012, 'Car/Truck Category - Cash for Clunkers Bill._car'),
(0.0011, 'Verify Mfr Cd_HNX'),
(0.0011, 'Mfr Name_General Motors'),
(0.0011, 'Mfr Name_FCA US LLC'),
(0.0011, '# Gears_8'),
(0.001, 'Transmission_Auto(AM7)'),
```

```
(0.001, 'Division_MAZDA'),
(0.001, 'Carline Class_15'),
(0.0009, 'Verify Mfr Cd_TKX'),
(0.0009, 'Verify Mfr Cd_MBX'),
(0.0009, 'Verify Mfr Cd_CRX'),
(0.0009, 'Transmission_Auto(AV-S7)'),
(0.0009, 'Transmission_Auto(AM-S7)'),
(0.0009, 'Trans_AMS'),
(0.0009, 'Mfr Name_MAZDA'),
(0.0009, 'Division_LEXUS'),
(0.0009, 'Division_HYUNDAI MOTOR COMPANY'),
(0.0009, 'Division_Ford'),
(0.0008, 'Division_NISSAN'),
(0.0008, 'Division_BMW'),
(0.0008, 'Carline Class_3'),
(0.0008, 'Carline Class_13'),
(0.0007, 'Verify Mfr Cd_VGA'),
(0.0007, 'Transmission_Manual(M5)'),
(0.0007, 'Mfr Name_Volkswagen Group of'),
(0.0007, 'Mfr Name_Rolls-Royce'),
(0.0007, 'Mfr Name_Mercedes-Benz'),
(0.0007, 'Mfr Name_Ferrari'),
(0.0007, 'Drive Sys_P'),
(0.0007, 'Division_Mercedes-Benz'),
(0.0007, 'Division_INFINITI'),
(0.0007, 'Carline Class_17'),
(0.0007, '# Gears_5'),
(0.0006, 'Verify Mfr Cd_MTX'),
(0.0006, 'Mfr Name_Subaru'),
(0.0006, 'Fuel2 Annual Fuel Cost - Alternative Fuel'),
(0.0006, 'Division_Mini'),
(0.0006, 'Division_Jeep'),
(0.0006, 'Carline Class_7'),
(0.0006, 'Carline Class_32'),
(0.0006, 'Carline Class_10'),
(0.0006, 'Air Aspir Method_SC'),
(0.0005, 'Verify Mfr Cd_RRG'),
(0.0005, 'Transmission_Auto(A7)'),
(0.0005, 'Fuel Metering Sys Cd_GDPI'),
(0.0005, 'Division_Subaru'),
(0.0005, 'Division_Lamborghini'),
(0.0005, 'Division_Jaguar'),
(0.0005, 'Division_Chevrolet'),
(0.0005, 'Division_Buick'),
(0.0005, 'Carline Class_11'),
(0.0005, 'Camless Valvetrain (Y or N)_Y'),
(0.0005, 'Camless Valvetrain (Y or N)_N'),
(0.0004, 'Verify Mfr Cd_KMX'),
```

```
(0.0004, 'Verify Mfr Cd_HYX'),
(0.0004, 'Transmission_Auto(AV-S8)'),
(0.0004, 'Transmission_Auto(A8)'),
(0.0004, 'Mfr Name_aston martin'),
(0.0004, 'Mfr Name_Porsche'),
(0.0004, 'Mfr Name_Mitsubishi Motors Co'),
(0.0004, 'Division_Cadillac'),
(0.0004, 'Division_Audi'),
(0.0004, 'Carline Class_2'),
(0.0004, 'Air Aspir Method_TC'),
(0.0004, '# Gears_9'),
(0.0004, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_280'),
(0.0003, 'Verify Mfr Cd_JLX'),
(0.0003, 'Verify Mfr Cd_FJX'),
(0.0003, 'Transmission_Auto(S7)'),
(0.0003, 'Transmission_Auto(A9)'),
(0.0003, 'Mfr Name_Kia'),
(0.0003, 'Mfr Name_Jaguar Land Rover L'),
(0.0003, 'Mfr Name_Hyundai'),
(0.0003, 'Division_Volkswagen'),
(0.0003, 'Division_Porsche'),
(0.0003, 'Division_Mitsubishi Motors Corporation'),
(0.0003, 'Division_Land Rover'),
(0.0003, 'Division_KIA MOTORS CORPORATION'),
(0.0003, 'Division_Dodge'),
(0.0003, 'Carline Class_19'),
(0.0002, 'Verify Mfr Cd_VVX'),
(0.0002, 'Verify Mfr Cd_PRX'),
(0.0002, 'Verify Mfr Cd_MAX'),
(0.0002, 'Transmission_Auto(AM5)'),
(0.0002, 'Transmission_Auto(A5)'),
(0.0002, 'Range1 - Model Type Driving Range - Conventional Fuel_400'),
(0.0002, 'Mfr Name_Volvo'),
(0.0002, 'Mfr Name_Maserati'),
(0.0002, 'Label Recalc?_N'),
(0.0002, 'Division_Volvo Cars of North America, LLC'),
(0.0002, 'Division_Rolls-Royce Motor Cars Limited'),
(0.0002, 'Division_MASERATI'),
(0.0002, 'Division_Lincoln'),
(0.0002, 'Division_GMC'),
(0.0002, 'Division_FIAT'),
(0.0002, 'Division_Bentley'),
(0.0002, 'Division_Aston Martin Lagonda Ltd'),
(0.0002, 'Division Acura'),
(0.0002, 'Carline Class_12'),
(0.0002, 'Car/Truck Category - Cash for Clunkers Bill._1'),
(0.0002, '# Cyl_10'),
(0.0001, 'Verify Mfr Cd_MBV'),
```

```
(0.0001, 'Verify Mfr Cd_ASX'),
(0.0001, 'Transmission_Manual(M7)'),
(0.0001, 'Transmission_Auto(S9)'),
(0.0001, 'Transmission_Auto(AM-S8)'),
(0.0001, 'Transmission_Auto(AM-S6)'),
(0.0001, 'Transmission_Auto(A4)'),
(0.0001, 'Range1 - Model Type Driving Range - Conventional Fuel_402'),
(0.0001, 'Range1 - Model Type Driving Range - Conventional Fuel_370'),
(0.0001, 'Mfr Name_Roush'),
(0.0001, 'Mfr Name_McLaren Automotive'),
(0.0001, 'Max Ethanol % - Gasoline_85.0'),
(0.0001, 'Label Recalc?_Y'),
(0.0001, 'Fuel Metering Sys Cd_DDI'),
(0.0001, 'Division_SCION'),
(0.0001, 'Division_RAM'),
(0.0001, 'Division_Chrysler'),
(0.0001, 'Division_Bugatti'),
(0.0001, 'Carline Class_8'),
(0.0001, 'Carline Class_20'),
(0.0001, 'Carline Class_14'),
(0.0001, '# Gears_4'),
(0.0001, '# Cyl_5'),
(0.0001, '# Cyl_16'),
(0.0, 'Verify Mfr Cd_RII'),
(0.0, 'Verify Mfr Cd_QTM'),
(0.0, 'Verify Mfr Cd_PGN'),
(0.0, 'Verify Mfr Cd_MLN'),
(0.0, 'Verify Mfr Cd_LTX'),
(0.0, 'Verify Mfr Cd_FTG'),
(0.0, 'Transmission_Auto(S5)'),
(0.0, 'Transmission_Auto(S4)'),
(0.0, 'Transmission_Auto(S10)'),
(0.0, 'Transmission_Auto(AM8)'),
(0.0, 'Transmission_Auto(AM-S9)'),
(0.0, 'Trans Creeper Gear_Y'),
(0.0, 'Trans Creeper Gear_N'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_610'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_604'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_580'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_572'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_570'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_558'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_520/680'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_520/640'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_494/646'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_494/608'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_492'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_490/650'),
```

```
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_490'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_489'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_484'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_482/716'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_476/482'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_470/610'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_470'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_468/612'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_467'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_460'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_459'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_458/680'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_455'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_452/458'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_450'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_443'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_442'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_437'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_436'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_434/644'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_432'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_430'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_428/434'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_427'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_426'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_422'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_420'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_410/609'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_410'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_409'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_408'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_406'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_405/410'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_399'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_396/570'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_395'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_391'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_390'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_389'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_388'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_386/573'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_384'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_383'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_380'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_379'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_372'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_368'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_363'),
```

```
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_361'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_360'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_357'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_353'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_348'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_347'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_324'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_318'),
(0.0, 'Range1 - Model Type Driving Range - Conventional Fuel_193'),
(0.0, 'Off Board Charge Capable (Y or N)_Y'),
(0.0, 'Off Board Charge Capable (Y or N)_N'),
(0.0, 'Mfr Name_Quantum Fuel System'),
(0.0, 'Mfr Name_Pagani Automobili S'),
(0.0, 'Mfr Name_Mobility Ventures L'),
(0.0, 'Mfr Name_Lotus'),
(0.0, 'Mfr Name_FCA Italy'),
(0.0, 'Label Recalc?_Mod'),
(0.0, 'Fuel Usage - Conventional Fuel_GM'),
(0.0, 'Fuel Usage - Conventional Fuel_CNG'),
(0.0, 'Drive Sys_4'),
(0.0, 'Division_Roush Industries, Inc.'),
(0.0, 'Division_Pagani Automobili S.p.A.'),
(0.0, 'Division_Mobility Ventures LLC'),
(0.0, 'Division_McLaren Automotive Limted'),
(0.0, 'Division_McLaren'),
(0.0, 'Division_Lotus Cars Ltd'),
(0.0, 'Division_GENESIS'),
(0.0, 'Division_CHEVROLET'),
(0.0, 'Division_Alfa Romeo'),
(0.0, 'Division_ALFA ROMEO'),
(0.0, 'Carline Class_21'),
(0.0, 'Carline Class_18'),
(0.0, 'Air Aspir Method_TS'),
(0.0, '# Gears_10'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_450'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_445'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_410'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_403'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_394'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_382'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_380'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_372'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_370'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_369'),
(0.0,
 ' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_364/476'),
(0.0,
 ' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_364/448'),
```

```
(0.0,
' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_362/537'),
(0.0,
' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_360/480'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_360'),
(0.0,
' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_357/362'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_357'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_350'),
(0.0,
' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_340/440'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_340'),
(0.0,
' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_338/442'),
(0.0,
' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_338/416'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_338'),
' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_337/501'),
(0.0.
' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_333/337'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_332'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_330'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_320'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_317'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_316'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_314'),
(0.0,
' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_313/465'),
(0.0,
' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_312/408'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_310'),
(0.0,
' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_309/313'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_305'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_304'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_301'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_300'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_298'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_296'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_295'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_292'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_291'),
(0.0,
' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_290/418'),
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_290'),
(0.0,
 ' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_289/430'),
```

```
(0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_287'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_285'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_284'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_283'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_279'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_276'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_274'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_273'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_270'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_269'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_266'),
           (0.0,
            ' Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_264/380'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_264'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_262'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_260'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_253'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_250'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_241'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_234'),
           (0.0, 'Range2 - Alt Fuel Model Typ Driving Range - Alternative Fuel_119'),
           (0.0, 'Fuel2 Usage - Alternative Fuel_E'),
           (0.0, 'Fuel2 Usage - Alternative Fuel_CNG')]
In [185]: top_20 = []
          for i in range(20):
              top_20.append(imp__feat_list[i][1])
In [186]: top_20
Out[186]: ['Eng Displ',
           '$ You Save over 5 years (amount saved in fuel costs over 5 years - on label) ',
           '# Cyl_4',
           '# Cyl_8',
           'Drive Sys_F',
           '# Cyl_6',
           'Index (Model Type Index)',
           '4Dr Pass Vol',
           '# Gears_1',
           'Transmission_Auto(AV)',
           'Stop/Start System (Engine Management System) Code_Y',
           'Stop/Start System (Engine Management System) Code_N',
           'Drive Sys_R',
           '# Cyl_12',
           'Exhaust Valves Per Cyl_2',
           'Trans_CVT',
           '4Dr Lugg Vol',
           'Htchbk Pass Vol',
```

The top 20 features seem to grossly overfit the data

We first concatenated the data for 15,16 and 17 into a train set. Eliminated the columns that directly report the target. Next we split the data into numerical and categorical columns. Then we impute each of these splits. Next we scale the numerical one and join the 2 into one single X_train dataframe. Likewise, we used the same process for the test set. However, we fit the scaler according to the train set. Also, we use the same columns as the training the set for the test set. Finally, we use 2 different linear models, followed by a polynomial transform and finally we try the randomforest regressor and gradient boost regression.

5 In conclusion, the best test accuracy we get is with Random Forest Regressor at 88.12%