1 Lezione del 30-04-25

1.1 Criterio di Nyquist

Il criterio di Nyquist è un metodo per studiare nel piano complesso l'effetto della reazione negativa sui poli del sistema in catena chiusa con controllore C(s), cioè $W(s) = \frac{C(s)G(s)}{1+C(s)G(s)}$ a partire dalla conoscenza della funzione di trasferimento in catena aperta G(s).

Vediamo quindi la struttura della catena chiusa nel dettaglio:

$$W(s) = \frac{K_C \cdot G(s)}{1 + K_C \cdot G(s)} = K_C K_E \cdot \frac{n(s)}{d(s) + K \cdot n(s)} = \frac{\hat{G}(s)}{1 + \hat{G}(s)} = \frac{Y(s)}{U(s)}$$

La stabilità del sistema in ciclo chiuso W(s) sarà data dalle radici dell'equazione caratteristica:

$$1 + \hat{G}(s) = 0$$

cioè dai poli in ciclo chiuso.

Vorremo allora imporre le seguenti condizioni di stabilità riguardo ai poli in ciclo chiuso:

- 1. Nessuna radice deve andare nel semipiano Re > 0 al variare del guadagno K_C ;
- 2. $\hat{G}(j\omega) \neq -1$.

A questo punto esplicitiamo il polinomio caratteristico come:

$$1 + \hat{G}(s) = 1 + K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)} \implies 1 + \hat{G}(j\omega) = \alpha \frac{\prod_{i=1}^{n} (j\omega - r_i)}{\prod_{i=1}^{n} (j\omega - p_i)}$$

con:

$$\alpha = 1 + \hat{G}(\infty) = \begin{cases} 1, & m < n \\ 1 + K, & m = n \end{cases}$$

Nota questa, potremmo ricavare una condizione sugli angoli che i punti di $1+\hat{G}(j\omega)$ spazzano con poli e zeri, in quanto:

- Riguardo ai poli si ha:
 - I poli a parte reale negativa portano a variazione di fase $-\pi$;
 - I poli a parte reale nulla portano a variazione di fase $-\pi$;
 - I poli a parte reale positiva portano a variazione di fase π .
- Riguardo agli zeri si ha:
 - Gli zeri a parte reale negativa portano a variazione di fase π ;
 - Gli zeri a parte reale positiva portano a variazione di fase $-\pi$.

Questo viene direttamente dal tracciamento degli angoli dei poli e degli zeri in catena chiusa con i punti sul semiasse immaginario positivo.

Chiaramente l'unico punto esente da questa condizione è quello $\hat{G}(j\omega) = -1$, in quanto in tal caso diventa impossibile definire il vettore fra i poli in catena chiusa e il punto sull'asse immaginario. Abbiamo però che questo è il punto che annulla il denominatore della catena chiusa W()s, e quindi lo escludiamo a prescindere.

Definiamo quindi, riguardo all'espressione del polinomio caratteristico appena trovata:

$$1 + \hat{G}(s) = \alpha \frac{\prod_{i=1}^{n} (j\omega - r_i)}{\prod_{i=1}^{n} (j\omega - p_i)}$$

i valori:

- $R^{(+)} =$ numero di radici a parte reale positiva;
- $R^{(-)}$ = numero di radici a parte reale negativa;
- $P^{(+)}$ = numero di poli a parte reale positiva;
- $P^{(-)}$ = numero di poli a parte reale negativa;
- $P^{(0)}$ = numero di poli sull'asse immaginario.

Varranno le identità:

$$\begin{cases} R^{(+)} + R^{(-)} = n \\ P^{(+)} + P^{(-)} + P^{(0)} = n \end{cases}$$

e la variazione totale di fase sarà:

$$\angle 1 + \hat{G}(i\omega) = R^{(+)} \cdot -\pi + R^{(-)} \cdot \pi + P^{(+)} \cdot \pi + P^{(-)} \cdot -\pi + P^{(0)} \cdot -\pi$$

da cui:

$$\angle 1 + \hat{G}(j\omega) = \pi \left(-R^{(+)} + R^{(-)} + P^{(+)} - P^{(-)} - P^{(0)} \right) = \pi \left(n - 2R^{(+)} - n + 2 \cdot P^{(+)} \right)$$

cioè la variazione di fase non dipende dall'ordine n del sistema, ma solo da dove si trovano i poli e le radici a parte reale positiva, e in particolare vale:

$$\angle 1 + \hat{G}(j\omega) = 2\pi \left(P^{(+)} - R^{(+)} \right)$$

A questo punto basterà imporre la condizione di stabilità ${\cal R}^{(+)}=0$, per cui:

$$N_{ao} = P^+$$

dove N_{ao} è il numero di giri in senso antiorario attorno al punto critico, che per $1+\hat{G}(j\omega)$ era l'origine e per il comune diagramma di Nyquist della catena aperta sarà -1 (o $-\frac{1}{K}$ se la catena aperta è $K \cdot G(j\omega)$).