

National University

Of Computer & Emerging Sciences Karachi

Course Outlines of BS (CS) Degree Program

Course Instructor(s)	Mr.Jamilusmani /Dr.KhusroMian /Mr.Usama/Mr.Mairaj /Ms.Urooj /Ms.Alishba/Ms. Asma/Ms.Javeria	Semester	Spring
Batch/Section(s)	2022/	Year	2023
Course Title	MT1006 Differential Equations	Credit Hours	3
Prerequisite(s)	MT1001- Calculus and Analytical Geometry	Course TA	

Text Book	Differential Equations with Boundary-Value Problems-9E / Dennis G. Zill	
Ref. Book Elementary Differential Equations (DE) with applications. /		
	C. H. Edwards. David, E.	

Course	The objective is to impart training to the students in this important branch of		
Objective	Mathematics. Students are expected to learn, Convergence/Divergence of Series,		
	system of linear equations & Differential Equations arising from different Physical		
	systems. Attempt will be made to introduce the students how to solve Linear		
	systems, Ordinary & Partial Differential Equations using different techniques.		
	Concept of Fourier Series will also be explained for PDE's solution.		

No.	Assigned Program Learning Outcome (PLO)		Tools
01	An ability to identify, formulate, research literature and analyze complex	R	
	engineering problems reaching substantiated conclusions using first		
	principles of mathematics, natural science and engineering sciences.		

I = Introduction, R = Reinforcement, E = Evaluation. A = Assignment, Q = Quiz, / M = Midterm, F=Final, DE=Differential Equation.

No.	Course Learning Outcome (CLO) Statements	Tools
01	Solution of different type of ODE's using different methods. Like Linear, Exact, Bernoulli etc.	Q1, A1, M1, F
02	Existence/Independence of solutions of Initial/Boundary value problems for second and higher ODE's through different techniques	Q2, A2 ,M2, F
03	Solution of PDE's by Fourier series using orthogonal set of functions	Q3,Q4 A3,A4, F

Week	Contents/Topics	Exercises	Questions	Asses sment
	Introduction to Differential Equations: Basic concepts, Types of DE, formation of DE	1.1	1-42	
1	(elimination of arbitrary constants), solution of differential equations Initial value problems	1.2	1-14,39-44	<u>CL01</u>
	·	2.2	1-30	Q1
2	First order Differential Equations: Separable variables, Linear Equations.	2.3	1-40	A1
3	Exact Equations ,Integrating factors	2.4	1-38	M1 F
4	Solution by Substitution: Homogeneous equations, Bernoulli's DE and reducible to linear equations.	2.5	1-30	
	Numerical methods (Euler's)	2.6	1-10	
5	Modelling with 1st Order Differential Equations: (Linear and Nonlinear)	3.1	2-5,13-17, 29-34	
	Growth and Decay, Newton law of cooling, Series Circuit, Logistic equation.	3.2		
6	Midterm 1		1-4	
	Higher Order Differential Equations:			
7	Initial and Boundary value problem, Existence of a unique solution. Homogeneous DEs', Linear Dependence and Independence. Wronskian and non-homogeneous Linear Differential Equation	4.1	1-36	CLO2
	Reduction of order. Homogeneous Linear	4.2	1-16	Q2
	Equations with Constant Coefficients.	4.3	1-40,49-58	A2
8	Undetermined Coefficients-Superposition approach	4.4	1-42	M2 F
9	Variation of parameters.	4.6	1-32	-
10	Cauchy Euler equation.	4.7	1-36	
	Chain rule and Extrema for function of two	13.5	1-30	
4.4	variables(ANTON)	13.8	5-20	
11	Midterm 2			
	Fourier Series: Orthogonal Functions	11.1	1-12	
12	Fourier Series (Fourier coefficients)	11.1	1-12	CLO3
13	Fourier Cosine & Sine Series (Periodic functions,	11.3	1-34	
	Even and odd function ,Half range expansion)			Q3
	BVP in Rectangular Coordinates:			A3
	Partial Differential Equations:	12.1	1-25	
14 15	Basic concepts and formation of partial differential equations. Linear homogeneous partial differential equations, Separable Partial differential equations			Q4 A4 F
	and classification of PDE's	12.3	1-8	'
	Heat Equation. Wave Equation.	12.4	1-6	
16	Laplace Equation.	12.5	1-10	

Grading Criteria:

Marks Distribution:

Particulars	% Marks
1. Quizzes (at least 3)	10
2. Assignments (at least 3)	10
4. First Mid Exam	15
5. Second Mid Exam	15
6. Final Exam	50
Total:-	100

Important Instructions to be followed for this Course

- Be in the classroom on time. Any student who arrives more than 5 min late in the class would be marked LATE. Anybody coming to class more than 15 minutes late will be marked ABSENT.
- Turn off your cell phones or other electronic devices before entering the class.
- Maintain the decorum of the classroom all the time.
- Avoid a conversation with your classmates while a lecture is in progress.
- Use parliamentary language in the classroom as well as in assignments. Refrain from using
 impolite, vulgar, or abusive language in the classroom and in-class presentations and
 assignments.
- Submit your assignments on time; no assignment will be accepted after the deadline.
- There would be no re-take of any guiz.

Instructions / Suggestions for satisfactory progress in this course:

- On average, most students find at least three hours outside of class for each class hour necessary for satisfactory learning.
- Chapters should be read, and homework should be attempted before class.
- Do not get behind. You are encouraged to work with other students. Plus, I am always available during office hours to help you.
- The homework assigned is a minimum. You may always work extra hours on your own.
- Use the few minutes you usually have before the start of each class to review the prior meetings' notes and homework. This will save us valuable in-class time to work on new material.
- Develop a learning habit rather than memorizing.
- Work in groups whenever appropriate.
- Apply the learned principles and gained knowledge.
- Be creative in thinking, but stick to the topic assigned for discussions, assignments, and presentations.
- Always bring your textbooks with you in the class.

Note: Students are welcome to get help from the Teacher.

	. Gamilusmani	
Signature: _		Date:18-01-2023