

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERINGAssignment-3

Answer any 10 Questions.

Semester: 5th	Date: 07/03/2024
Subject Name: Artificial Intelligence and Machine Learning	Subject Code: 21CS54

Q. No.	Questi	tions-Module 4, and 5						Marks	СО	Level				
Q1.	Describe trees.	decis	ecision tree learning model. Discuss the advantages and disadvantages of decision						8	СОЗ	L2			
Q2.	Explain the role of Entropy in uncertainty with an example. Write general decision tree algorithm.							8	CO3	L2				
Q3.							8	CO3	L2					
Q4.			_		onstruct de	cision tree	e using l	ID3 algorit	hm.			8	CO3	L3
		S.No.	CGPA	Interactivenes		CHARLES THE SAME STATE	nmunication							
		1.	≥9	Yes	Very good	Good	i	Yes	A m					
		2.	≥8	No	Good	Mod	erate	Yes	9)9.4					
		3.	≥9	No No	Average	Poor	ngin theto	No	3 9					
		4.	<8	No	Average	Good	d	No						
		5.	≥8	Yes	Good	Mod	erate	Yes						
		6.	≥9	Yes	Good	Mod	erate	Yes	n 500					
		7.	<8	Yes Yes	Good	Poor	length (All	No	accion					
		8.	≥9	No	Very good	Good	d areasons	Yes	Carried .					
		9.	≥8	Yes	Good	Good	Posterion	Yes	Eq. (6					
		10.	≥8	Yes	Average	Good	d	Yes	hypotyn					
05	Consider	doto	sat in	Toble 1 o	Table 1	aision tra	a ucina l	C4.5 algori	ithm			8	CO3	L3
Q5.														
Q6.						8	CO3	L2						
Q7.							8	CO3	L2					
Q8.	8. Explain Bayes Theorem and Bayes Classification Model.9. Apply Naïve Bayes algorithm for the dataset in Table 1 and classify the given test data						8	CO3	L2					
Q9.	1 1 2		-	_	for the dat YES, Prac			•	_			8	CO3	L3
Q10	. Apply Naïve Bayes algorithm for following dataset and classify the given test data {Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong}.										ı 8	CO3	L3	
			Day	Outlook	Temperature	Humidity	Wind	PlayTennis						
			D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12	Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny Rain Sunny Overcast	Hot Hot Hot Mild Cool Cool Cool Mild Cool Mild Mild Mild Mild Hot	High High High Normal Normal Normal High Normal High Normal Normal Normal Normal	Weak Strong Weak Weak Strong Strong Weak Weak Strong Strong Weak	No No Yes Yes Yes No Yes No Yes Yes Yes Yes						

Q11. Explain following with examples	8	CO3	L2
a. Zero probability error			
b. Bayes Optimal Classifier			
Q12. Define Clustering. Differentiate between Clustering and Classification	8	CO5	L2
Q13. Mention the properties of distance measures. Calculate the distance for the following objects with	8	CO5	L2
attribute values (0, 3, 5) and (5, 8, 4) using Euclidean, City block and Chebyshev Distance			
formulae.			
Q14. Explain distance measures, Simple Matching Coefficient (SMC), Jaccard Coefficient and	8	CO5	L2
Hamming distance, of binary attributes with examples.			
Q15. Consider the array of points as shown in the following table, apply single linkage algorithm for	8	CO5	L3
clustering and draw dendrogram.			
Objects X Y			
1 2 8			
2 5 10			
3 12 18			
4 14 28		005	T 2
Q16. Apply K-means clustering with initial values of object 2 and 5 as initial seeds.	8	CO5	L3
Objects X Y			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
5 12 4			
Q17. Write a note on	8	CO5	L2
a. Density based clustering			LZ
b. Grid based clustering			
Q18. Describe perceptron model and write perceptron algorithm.	8	CO4	L2
Q19. Discuss about the types of Artificial Neural Network (ANN).	8	CO4	L2
Q20. Discuss on advantages, disadvantages and Challenges in ANN	8	CO4	L2

Prepared By

Mr. Kotreshi S N

Dr. Rachana P G

Assistant Professor Department of Computer Science & Engineering GM Institute of Technology Assistant Professor
Department of Computer Science & Engineering
GM Institute of Technology