

Analyzing Astrophysical Data with Python: Statistical Methods and Applications-I

Workshop on Python Programming in Astronomy, Astrophysics & Cosmology

Darshan Kumar Beniwal

April 07th 2023

Department of Physics and Astrophysics, University of Delhi, Delhi, India-110007 Organized by

Department of Applied Science GHRCE, Nagpur, April 07th-08th, 2023

Why do we study statistics in Astrophysics & Cosmology?

Astrophysics & Cosmology in the Era of Big Data

Motivations:

- Availability of vast and precise data
- Different kinds of Statistical techniques

Goal:

- To understand the universe with high accuracy,
- To extract the maximum amount of information from the observational data.

Methodology used:

- Frequentist Statistics: Likelihood or Chi-square.
- Bayesian Statistics: Markov Chain Monte Carlo.

Outline

- 1. Introduction to Statistics
- 2. Least Square Fitting
 - a). Maximum Likelihood Estimator (MLE)
 - b). Minimum Chi-square Statistics
 - c). Example: Hand-on Session
- 3. Bayesian Statistics
 - a). Markov Chain Monte Carlo
 - b). Metropolis Hasting Algorithm
 - c). Example

Introduction to Statistics

Problem: Making the Decision to Pursue a Career in Astrophysics and Cosmology After Completing Your Bachelor's or Master's Degree

- Collect data: Based on salary range, job satisfaction, and career growth
- Analyze data: Identify patterns and comparison with other fields
- Interpret data: Potential benefits and drawbacks of pursuing a career in this
- Present data: Data & analysis in a concise manner: graphs, charts, & tables

Statistics: Study of collecting, analyzing, interpreting, and presenting numerical data.

Statistics: Study of collecting, analyzing, interpreting, and presenting numerical data.

Basic form of Statistics:

- Descriptive Statistics: Summarizing and describing the data
 - mean, median, mode
 - standard deviation, variance
 - achieved with the help of charts, graphs, tables, etc.
- Inferential Statistics: Generalizations or draw conclusions about a larger dataset.
 - testing hypotheses
 - estimating parameters
 - achieved by probability.

Descriptive Statistics:

1	2	1	1	3	4	100

• Mean: Average of observed values: 16

• Median: Value which divides the dataset into half: 2 [Data should be in Ascending order]

• Mode: Value which occurs with greatest frequency: 1

outlier: 100

Mean: 2

• Median: 1.5

• Mode: 1

Descriptive Statistics:

• Standard Deviation: Dispersion of data points from the mean of a dataset.

$$\sigma = \sqrt{\sum_{i=0}^{n} \frac{(x_i - \mu)^2}{n}} = 1.155$$

• Variance: Average of the squared differences from the mean.

$$\sigma^2 = \sum_{i=0}^{n} \frac{(x_i - \mu)^2}{n} = 1.334$$

Inferential Statistics: Generalizations or draw conclusions about a larger dataset.

1. Hypothesis Testing:

Year	2018	2019	2020	2021	2022
Rainfall (inches)	8	5	7	5	6

⇒Test the hypothesis that the average rainfall in a given area is 8 inches?

- Null Hypothesis (H_0): The average annual rainfall from 2018-2022 is the same as the overall average annual rainfall of 8 inches.
- Alternative Hypothesis (H_A): The average annual rainfall from 2018-2022 is the same not as the overall average annual rainfall of 8 inches

Introduction to Statistics

Inferential Statistics:

1. Hypothesis Testing:

Year	2018	2019	2020	2021	2022
Rainfall (inches)	8	5	7	5	6

⇒Test the hypothesis that the average rainfall in a given area is 8 inches?

Sample mean $(\bar{x}) = 6.2$,

sample size (n) = 5

Sample Standard Deviation $(\sigma)=1.30$,

Population mean $(\mu)=8$

t-test:

$$t_{obs} \equiv \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = -3.10$$

Degree of freedom: $d \equiv N-1=4$

Inferential Statistics:

1. Hypothesis Testing:

Year	2018	2019	2020	2021	2022
Rainfall (inches)	8	5	7	5	6

⇒Test the hypothesis that the average rainfall in a given area is 8 inches?

$$t_{obs} < t_{tab}$$

Reject the null hypothesis.

Difference is not purely due to the random error.

Introduction to Statistics

...cntd

Inferential Statistics:

2. Parameter Estimation:

Observational Dataset

i	Х	у
1	0.0	-0.4326
2	0.5	-0.1656
3	1.0	3.1253
4	1.5	4.7877
5	2.0	4.8535
6	2.5	8.6909

Least Square Fitting

Parameter Estimation

i	х	у
1	0.0	-0.4326
2	0.5	-0.1656
3	1.0	3.1253
4	1.5	4.7877
5	2.0	4.8535
6	2.5	8.6909

- y_{obs}: Observational dataset
- y_{th} : Theoretical Model: y = a + bx
- AIM: a = ? and b = ?

Least Square Fit: Minimizing the sum of the squares of the residuals.

- Observable quantity: y^{obs}
- Theoretical quantity: $y^{th}(x_i; a, b)$

$$\min_{a,b} : \sum_{i=1}^{n} \left[y_i^{\text{obs}} - y^{\text{tr}}(x_i; a, b) \right]^2$$

Residuals =
$$\sum_{i=1}^{n} \left[y_i^{\text{obs}} - (a + bx_i) \right]^2$$

Least Square Fit: Minimizing the sum of the squares of the residuals.

- Observable quantity: y^{obs}
- Theoretical quantity: $y^{\text{th}}(x_i; a, b)$

$$\frac{\partial \mathsf{Residuals}}{\partial a} = 0$$

$$\frac{\partial \mathsf{Residuals}}{\partial b} = 0$$

$$\Rightarrow aN + b\sum x_i = \sum y_i^{\text{obs}}$$

$$\Rightarrow a \sum x_i + b \sum x_i^2 = \sum x_i y_i^{\text{obs}}$$

Least Square Fit: Minimizing the sum of the squares of the residuals.

$$a = \frac{\sum x^2 \sum y - \sum x \sum xy}{N \sum x^2 - (\sum x)^2}$$
$$b = \frac{N \sum xy - \sum x \sum y}{N \sum x^2 - (\sum x)^2}$$

$$\begin{bmatrix} N & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum (x_i y_i) \end{bmatrix}$$
$$X \cdot P = Y \quad \Rightarrow P = X^{-1} \cdot Y$$

i	1	2	3	4	5	6
х	0	0.5	1.0	1.5	2.0	2.5
у	-0.4326	-0.1656	3.1253	4.7877	4.8535	8.6909

•
$$n = 6$$
 $\sum x_i = 7.5$, $\sum y_i = 20.8593$, $\sum x_i^2 = 13.75$, $\sum x_i y_i = 41.6584$

$$\begin{bmatrix} 6 & 7.5 \\ 7.5 & 13.75 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 20.8593 \\ 41.6584 \end{bmatrix} \Rightarrow \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 6 & 7.5 \\ 7.5 & 13.75 \end{bmatrix}^{-1} \times \begin{bmatrix} 20.8593 \\ 41.6584 \end{bmatrix}$$

$$\rightarrow \left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} -0.975 \\ 3.561 \end{array}\right]$$

$$y = -0.975 + 3.561x$$

What if uncertainties or errors are associated with the observed data?

- Key-points of Error Bars:
 - How far the reported value is from the true (error-free) value?
 - Errors introduced by random fluctuations in the measurement: random errors.
 - Errors due to a faulty calibration of equipment or observer biasing: systematic errors.
- Total Error Estimation:
 - Sum and Difference: $q_o = x_o \pm y_o$

$$\sigma_q = \sigma_x + \sigma_y$$

• Products and Quotients: $q_o = x_o.y_o$ & $q_o = x_o/y_o$

$$\sigma_{m{q}} = |m{q}_{m{o}}| \left[rac{\sigma_{m{x}}}{x_{m{o}}} + rac{\sigma_{m{y}}}{y_{m{o}}}
ight]$$

Observational dataset:

X	у	$\sigma_{ m y}$
1.0	2.3	0.08
2.0	4.1	0.12
3.0	6.2	0.20
4.0	8.1	0.16
5.0	10.0	0.28

Assumptions: Observed data are normal distributed with center y and width σ_{v}

Theoretical Model: $y^{th} = a + bx$

- Theoretical Term: $y^{\text{th}} = a + bx$
- Observational Term: y_i^{obs} , σ_{y_i}

The probability of obtaining the observed value (y_i^{obs}) is

$$\mathsf{Prob}_{a,b}\left(y_{i}\right) = \frac{1}{\sqrt{2\pi\sigma_{y}^{2}}}e^{-\left(y_{i}^{\mathsf{obs}} - a - bx_{i}\right)^{2}/2\sigma_{y}^{2}}$$

$$\mathcal{L}(x_i; a, b) = \prod_{i=1}^n \mathsf{Prob}_{a,b}\left(y_i\right) \Rightarrow \mathsf{Maximise}$$
 it

..... gives the parameters values for which observed data have the highest probability

Least Square Fitting

a). Maximum Likelihood Estimator (MLE)

The probability of obtaining the observed value (y_i^{obs}) is

$$\mathcal{L}(x_i; a, b) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_{y_i}^2}} \exp\left\{-\frac{1}{2} \left[\frac{\left(y_i^{\text{obs}} - a - bx_i\right)^2}{\sigma_{y_i}^2}\right]\right\}$$
$$-2 \ln \mathcal{L}(x_i; a, b) = \sum_{i=1}^{N} \frac{\left(y_i^{\text{obs}} - a - bx_i\right)^2}{\sigma_{y_i}^2} \equiv \chi^2$$

To estimate parameters: either maximize the likelihood or minimise the Chi-square

..... log makes math easier, doesn't change answer (monotonic)!

Chi-square:

$$\chi^2 = \sum_{i=1}^N \frac{\left(y_i^{\text{obs}} - a - bx_i\right)^2}{\sigma_{y_i}^2}$$

• Minimize the Chi-square: $\frac{\partial \chi^2}{\partial a}$ $\frac{\partial \chi^2}{\partial b}$

$$\frac{\partial \chi^{-}}{\partial a}$$

$$a = \frac{\sum wx^2 \sum wy - \sum wx \sum wxy}{\sum w \sum wx^2 - (\sum wx)^2} \qquad b = \frac{\sum w \sum wxy - \sum wx \sum wy}{\sum wx^2 - (\sum wx)^2}$$

$$\sigma_a = \sqrt{\frac{\sum wx^2}{\sum \sum x^2}}$$

$$b = \frac{\sum w \sum wxy - \sum wx \sum wy}{\sum wxy - \sum wx \sum wy}$$

$$\sigma_{a} = \sqrt{\frac{\sum wx^{2}}{\sum w \sum wx^{2} - (\sum wx)^{2}}} \qquad \sigma_{b} = \sqrt{\frac{\sum w}{\sum w \sum wx^{2} - (\sum wx)^{2}}}$$

$$w=1/\sigma_{y_i}^2$$

Observational dataset:

Х	У	$\sigma_{ m y}$
1.0	2.3	0.08
2.0	4.1	0.12
3.0	6.2	0.20
4.0	8.1	0.16
5.0	10.0	0.28

Theoretical Model: $y^{th} = a + bx$

Best Fit values: $a = 0.22 \pm 0.14$, $b = 2.03 \pm 0.07$

Revise:

- Observational dataset: x_i^{obs} , y_i^{obs} , σ_{y_i}
- Theoretical model: $y = f(x; a_0, a_1, \dots, a_i)$
- Likelihood: Maximise or Chi-square: Minimise
- Solve:

$$\begin{bmatrix} N & \sum x_{i} & \sum x_{i}^{2} & \cdots & \sum x_{i}^{j} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \cdots & \sum x_{i}^{j+1} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \cdots & \sum x_{i}^{j+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum x_{i}^{j} & \sum x_{i}^{j+1} & \sum x_{i}^{j+2} & \cdots & \sum x_{i}^{j+n} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{j} \end{bmatrix} = \begin{bmatrix} \sum y_{i} \\ \sum (x_{i}y_{i}) \\ \sum (x_{i}^{2}y_{i}) \\ \vdots \\ \sum (x_{i}^{j}y_{i}) \end{bmatrix} \Rightarrow \text{Inverse} = \dots?$$

Least Square Fitting

b). Minimum Chi-square Statistics

Chi-square Test: describes the goodness-of-fit of the data to the model.

$$\chi^2 = \sum_i \frac{(\text{ observed } - \text{ expected })^2}{\text{expected}} = \sum_i \frac{(O_i - E_i)^2}{E_i}$$

- Observational dataset: x_i , $y_{obs}(x_i)$, σ_{y_i}
- Theoretical model: $y_{th}(x_i; a, b) = f(x_i; a, b)$
- Define

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{y_{\mathrm{obs}}(x_i) - y_{\mathrm{th}}(x_i; a, b)}{\sigma_{y_i}} \right)^2$$

Chi-square:

$$\chi^2 = \sum_{i=1}^N \left(\frac{y_{\rm obs}(x_i) - y_{\rm th}(x_i; a, b)}{\sigma_{y_i}} \right)^2 \Rightarrow \chi^2_{\rm min} o {\sf Best fit value of parameter}$$

Case:1 One Parameter Model:

Case: 2 Two Parameters Model:

Darshan Beniwal • Workshop on Python Programming in Astronomy, Astrophysics & Cosmology — Least Square Fitting • 27/37

Question: Why should we trust our model?

- \rightarrow Fitting can be overfit or underfit..
- → Model can be linear, quadratic or so..
- Chi-squared probability distribution:

$$P\left(\chi^2
ight) \propto \left(\chi^2
ight)^{rac{
u-2}{2}} \exp\left(-\chi^2/2
ight)$$
 ;

 ν : d.o.f.=N-p

• Mean:
$$\overline{\chi^2} = \nu$$

Variance: Var $(\chi^2) = 2\nu$

$$\Rightarrow$$
 we expect

$$\Rightarrow$$
 we expect $\left|\chi^2 \sim \nu \pm \sqrt{2\nu}\right|$

Reduced Chi-square:

$$\chi^2_{\nu} = \frac{\chi^2}{\nu}$$

Goodness-of-fit:

- $\chi^2_{\nu} < 1 o$ over-fitting of the data.
- $\chi^2_{\nu} > 1 \rightarrow \text{ poor model fit}$
- $\chi^2_{\nu} \simeq 1 o {\sf good}$ match between data and model

Model Comparison: Linear model: M_L or Quadratic model: M_Q

Best model is one whose value of χ^2_{ν} is closest to one!

Confidence Intervals: Range of estimates for an unknown parameter.

Chi-squared Distribution with Sigma Values: $\chi^2_{n\sigma} = \chi^2_{\min} + \Delta \chi^2_{n\sigma}$

Dimensionality	1σ	2σ	3σ
1	1.00	4.00	9.00
2	2.30	6.18	11.83
3	3.53	8.02	14.16
4	4.72	9.72	16.25
5	5.89	11.31	18.21

Chi-squared distribution $\Delta \chi^2_{n\sigma}$ upto 5 parameters (5D).

Chi-squared Distribution with Sigma Values: $\chi^2_{n\sigma} = \chi^2_{\min} + \Delta \chi^2_{n\sigma}$ Two-parameters model:

Parameter error estimation:

$$\sigma_{a_o} = \sqrt{\frac{\mathcal{B}}{\mathcal{C}^2 - \mathcal{A}\mathcal{B}}}, \quad \sigma_{b_o} = \sqrt{\frac{\mathcal{A}}{\mathcal{C}^2 - \mathcal{A}\mathcal{B}}}, \quad \sigma_{a_ob_o} = \sqrt{\frac{-\mathcal{C}}{\mathcal{C}^2 - \mathcal{A}\mathcal{B}}}$$

where $\mathcal{A} < 0$. $\mathcal{B} < 0$. $\mathcal{AB} > \mathcal{C}^2$ and defined as

$$\mathscr{A} = \left. \frac{\partial^2 \mathcal{L}}{\partial \mathsf{a}^2} \right|_{\mathsf{a}_o, \mathsf{b}_o}, \quad \mathscr{B} = \left. \frac{\partial^2 \mathcal{L}}{\partial \mathsf{b}^2} \right|_{\mathsf{a}_o, \mathsf{b}_o}, \quad \mathscr{C} = \left. \frac{\partial^2 \mathcal{L}}{\partial \mathsf{a} \partial \mathsf{b}} \right|_{\mathsf{a}_o, \mathsf{b}_o}$$

where a_0 and b_0 : best fit value of a and b parameters, and \mathcal{L} : log-likelihood function.

Parameter error estimation:

Correlation among parameters:

Least Square Fitting

c). Example: Hand-on Session

Example-1: Hand-on Session

Mock dataset:

X	У	$\sigma_{ m y}$
1.0	2.3	0.08
2.0	4.1	0.12
3.0	6.2	0.20
4.0	8.1	0.16
5.0	10.0	0.28

Theoretical Model: $y^{th} = a + bx$

Best Fit values: $a = -- \pm ---$, $b = -- \pm ---$

Example-2: Hand-on Session

Astro-Observational dataset: Hubble parameter measurements of 30 datapoints

z	H(z)	$\sigma_{_H}(z)$
0.07	69.0	19.6
1.965	186.5	50.4

Theoretical Model:
$$H^{\mathrm{th}}(z) = H_0 \sqrt{\Omega_{m0}(1+z)^3 + 1 - \Omega_{m0}}$$

Best Fit values:
$$H_0 = -- \pm ---$$
, $\Omega_{m0} = -- \pm ---$

Key Takeaways

Observational dataset: x_i , $y_{obs}(x_i)$, σ_{y_i}

Theoretical model: $y_{th}(x_i; a, b) = f(x_i; a, b)$

Define Chi-square:
$$\chi^2 = \sum_{i=1}^N \left(\frac{y_{\text{obs}}(x_i) - y_{\text{th}}(x_i; a, b)}{\sigma_{y_i}} \right)^2$$

Minimize Chi-square: $\chi^2_{\min} \Rightarrow$ Best fit value of parameters

Draw Confidence Level: $\chi_{n\sigma}^2 = \chi_{\min}^2 + \Delta \chi_{n\sigma}^2$

Error in parameters: $a = a_{\text{best}} \pm \sigma_a$ and $b = b_{\text{best}} \pm \sigma_b$