

Bayesian models for cost-effectiveness analysis in the presence of structural zero costs

Gianluca Baio

University College London Department of Statistical Science

gianluca@stats.ucl.ac.uk

6th International Conference of the ERCIM WG on Computational and Methodological Statistics

Sunday 15 December 2013

Health economic evaluations

Objective

• Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework

Objective

 Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework

Main statistical issues

- Multivariate outcome variable (e, c)
 - Clinical outcome (e.g QALYs) and costs. More effective treatment has typically higher unit cost, but may also reduce overall implementation cost

Objective

 Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework

Main statistical issues

- Multivariate outcome variable (e,c)
 - Clinical outcome (e.g QALYs) and costs. More effective treatment has typically higher unit cost, but may also reduce overall implementation cost
- Joint/marginal normality not realistic
 - Costs usually skewed and benefits may be bounded in [0;1]. Can use transformation (e.g. logs) or, especially under the Bayesian approach, more suitable models (e.g. Gamma or log-Normal)

2 / 17

Objective

 Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework

Main statistical issues

- Multivariate outcome variable (e, c)
 - Clinical outcome (e.g QALYs) and costs. More effective treatment has typically higher unit cost, but may also reduce overall implementation cost
- Joint/marginal normality not realistic
 - Costs usually skewed and benefits may be bounded in [0;1]. Can use transformation (e.g. logs) or, especially under the Bayesian approach, more suitable models (e.g. Gamma or log-Normal)
- Structural zeros
 - For a proportion of subjects, the observed cost is equal to zero but Gamma or log-Normal are defined for strictly positive arguments!

Solutions/limitations

- Add a small constant ε to all cost (all sorts of problems)
- Hurdle models (not been extended to a full health economic evaluation)

Modelling framework

Pattern model for c>0

Modelling framework

Pattern model for c>0

1. (Basic) Pattern model for c = 0

ullet For individual i and treatment t, define a zero cost indicator d_{it} and model

$$d_{it} \sim \mathsf{Bernoulli}(\pi_{it}), \qquad \mathsf{logit}(\pi_{it}) = \beta_{0t} + \sum_{j=1}^{J} \beta_{jt} Z_{ij}^{t}$$

- π_{it} indicates the individual probability of structural zero
- $-Z_{ij}^t = X_{ij}^t \mathsf{E}[\boldsymbol{X}_j^t]$ are the **centered** version of some relevant covariates X_{ij}^t

1. (Basic) Pattern model for c=0

• For individual i and treatment t, define a zero cost indicator d_{it} and model

$$d_{it} \sim \mathsf{Bernoulli}(\pi_{it}), \qquad \mathsf{logit}(\pi_{it}) = \beta_{0t} + \sum_{j=1}^{J} \beta_{jt} Z_{ij}^{t}$$

- π_{it} indicates the individual probability of structural zero
- $Z_{ij}^t = X_{ij}^t \mathsf{E}[\boldsymbol{X}_j^t]$ are the **centered** version of some relevant covariates X_{ij}^t
- Define a prior for the parameters $m{eta}_t = (eta_{0t}, eta_{1t}, \dots, eta_{Jt})$
 - Typically use independent minimally informative Normal
 - If **separation** is a potential issue, can model $\beta_t \stackrel{iid}{\sim} \mathsf{Cauchy}(0,\kappa)$, where κ is a small scale parameter \Rightarrow more stable estimates

1. (Basic) Pattern model for c = 0

ullet For individual i and treatment t, define a zero cost indicator d_{it} and model

$$d_{it} \sim \mathsf{Bernoulli}(\pi_{it}), \qquad \mathsf{logit}(\pi_{it}) = \beta_{0t} + \sum_{j=1}^{J} \beta_{jt} Z_{ij}^{t}$$

- π_{it} indicates the individual probability of structural zero
- $Z_{ij}^t = X_{ij}^t \mathsf{E}[\pmb{X}_j^t]$ are the **centered** version of some relevant covariates X_{ij}^t
- Define a prior for the parameters $\beta_t = (\beta_{0t}, \beta_{1t}, \dots, \beta_{Jt})$
 - Typically use independent minimally informative Normal
 - If **separation** is a potential issue, can model $\beta_t \stackrel{iid}{\sim} \mathsf{Cauchy}(0,\kappa)$, where κ is a small scale parameter \Rightarrow more stable estimates
- The "average" probability of zero cost is

$$p_t = \frac{\exp(\beta_{0t})}{1 + \exp(\beta_{0t})}$$

 Can use sub-groups or extend the model (e.g. include "random" effects or more complex structures)

Modelling framework

Pattern model for c > 0

2. Marginal model for the costs

• For $s=d_{it}=0,1$, specify a single distribution indexed by $\pmb{\theta}_t=(\pmb{\theta}_t^{\mathrm{pos}},\pmb{\theta}_t^{\mathrm{null}})$

$$c_{it} \mid d_{it} \sim \begin{cases} p(c_{it} \mid d_{it} = 0) = p(c_{it} \mid \boldsymbol{\theta}_t^{\mathrm{pos}}) & \text{skewed, positive} \\ p(c_{it} \mid d_{it} = 1) = p(c_{it} \mid \boldsymbol{\theta}_t^{\mathrm{null}}) & \text{degenerate at 0} \end{cases}$$

2. Marginal model for the costs

• For $s=d_{it}=0,1$, specify a single distribution indexed by $\pmb{\theta}_t=(\pmb{\theta}_t^{\mathrm{pos}},\pmb{\theta}_t^{\mathrm{null}})$

$$c_{it} \mid d_{it} \quad \sim \quad \left\{ \begin{array}{l} p(c_{it} \mid d_{it} = 0) = p(c_{it} \mid \boldsymbol{\theta}_t^{\text{pos}}) & \text{skewed, positive} \\ p(c_{it} \mid d_{it} = 1) = p(c_{it} \mid \boldsymbol{\theta}_t^{\text{null}}) & \text{degenerate at 0} \end{array} \right.$$

- Original-scale vs natural-scale parameters
 - $-\theta_t = (\eta_{ts}, \lambda_{ts})$: specific to the chosen density
 - $-\omega_t = h(\theta_t) = (\psi_{ts}, \zeta_{ts}) = \text{mean and sd of the costs}$

2. Marginal model for the costs

• For $s=d_{it}=0,1$, specify a single distribution indexed by $\pmb{\theta}_t=(\pmb{\theta}_t^{\mathrm{pos}},\pmb{\theta}_t^{\mathrm{null}})$

$$c_{it} \mid d_{it} \quad \sim \quad \left\{ \begin{array}{l} p(c_{it} \mid d_{it} = 0) = p(c_{it} \mid \boldsymbol{\theta}_t^{\text{pos}}) & \text{skewed, positive} \\ p(c_{it} \mid d_{it} = 1) = p(c_{it} \mid \boldsymbol{\theta}_t^{\text{null}}) & \text{degenerate at 0} \end{array} \right.$$

- Original-scale vs natural-scale parameters
 - $-\theta_t = (\eta_{ts}, \lambda_{ts})$: specific to the chosen density
 - $-\omega_t = h(\theta_t) = (\psi_{ts}, \zeta_{ts}) = \text{mean and sd of the costs}$
- Gamma model
 - $-(\eta_{ts},\lambda_{ts})=$ shape and rate
 - $-\psi_{ts}=rac{\eta_{ts}}{\lambda_{ts}}$ and $\zeta_{ts}=\sqrt{rac{\eta_{ts}}{\lambda_{ts}^2}}$
- log-Normal model
 - $-(\eta_{ts}, \lambda_{ts}) = \text{log-mean and log-sd}$

$$-\ \psi_{ts} = \exp\left(\eta_{ts} + \frac{\lambda_{ts}^2}{2}\right) \ \text{and} \ \zeta_{ts} = \sqrt{\left(\exp(\lambda_{ts}^2) - 1\right)\exp\left(2\eta_{ts} + \lambda_{ts}^2\right)}$$

2. Marginal model for the costs (cont'd)

- Much more intuitive to set the priors on ω_t , e.g.
 - $\psi_{t0} \sim \mathsf{Uniform}(0, H_{\psi})$ and $\zeta_{t0} \sim \mathsf{Uniform}(0, H_{\zeta})$
 - $-\psi_{t1}=w$ and $\zeta_{t1}=W$, (w,W) o 0 **NB**: this implies $p(c\mid \pmb{ heta}_t^{\mathrm{null}}):=0$

2. Marginal model for the costs (cont'd)

- Much more intuitive to set the priors on ω_t , e.g.
 - $\psi_{t0} \sim \mathsf{Uniform}(0, H_{\psi})$ and $\zeta_{t0} \sim \mathsf{Uniform}(0, H_{\zeta})$
 - $\psi_{t1}=w$ and $\zeta_{t1}=W$, $(w,W)\to 0$ **NB**: this implies $p(c\mid \pmb{\theta}_t^{\mathrm{null}}):=0$
- Since $\theta_t = h^{-1}(\omega_t)$, the prior on ω_t will automatically induce one for θ_t
- **NB**: Even if $p(\omega_t)$ is very vague, the induced $p(\theta_t)$ may be very informative. But that's OK however informative, $p(\theta_t)$ will by necessity be consistent with the substantive knowledge (or lack thereof) we are assuming on ω_t !

2. Marginal model for the costs (cont'd)

- Much more intuitive to set the priors on ω_t , e.g.
 - $\psi_{t0} \sim \mathsf{Uniform}(0, H_{\psi})$ and $\zeta_{t0} \sim \mathsf{Uniform}(0, H_{\zeta})$
 - $\psi_{t1}=w$ and $\zeta_{t1}=W$, $(w,W)\to 0$ **NB**: this implies $p(c\mid \pmb{\theta}_t^{\mathrm{null}}):=0$
- Since $\theta_t = h^{-1}(\omega_t)$, the prior on ω_t will automatically induce one for θ_t
- **NB**: Even if $p(\omega_t)$ is very vague, the induced $p(\theta_t)$ may be very informative. But that's OK however informative, $p(\theta_t)$ will by necessity be consistent with the substantive knowledge (or lack thereof) we are assuming on ω_t !
- The overall average cost in the population is

$$\mu_{ct} = (1 - p_t)\psi_{t0} + p_t\psi_{t1} = (1 - p_t)\psi_{t0}$$

where the weights are given by the estimated probability associated with each of the two classes

Modelling framework

Pattern model for c > 0

3. Conditional model for the benefits

• Factorise the joint distribution of costs and benefits as

$$p(e, c \mid \boldsymbol{\theta}_t) = p(c \mid \boldsymbol{\theta}_t) p(e \mid c, \boldsymbol{\theta}_t)$$

3. Conditional model for the benefits

• Factorise the joint distribution of costs and benefits as

$$p(e, c \mid \boldsymbol{\theta}_t) = p(c \mid \boldsymbol{\theta}_t)p(e \mid c, \boldsymbol{\theta}_t)$$

• Model $p(e \mid c, \theta_t)$ via a generalised linear regression

$$g(\phi_{it}) = \xi_t + \gamma_t (c_{it} - \mu_{ct})$$

where

- ϕ_{it} is the conditional average effectiveness for individual i in arm t
- $-g(\cdot)$ is the link function, depending on the scale in which ϕ_{it} is defined
- μ_{ct} is the population average cost obtained in the marginal model
- $-\xi_t$ and γ_t are the population (marginal) average effectiveness, and the correlation between effectiveness and costs on the scale defined by g!

3. Conditional model for the benefits

• Factorise the joint distribution of costs and benefits as

$$p(e, c \mid \boldsymbol{\theta}_t) = p(c \mid \boldsymbol{\theta}_t)p(e \mid c, \boldsymbol{\theta}_t)$$

• Model $p(e \mid c, \theta_t)$ via a generalised linear regression

$$g(\phi_{it}) = \xi_t + \gamma_t (c_{it} - \mu_{ct})$$

where

- ϕ_{it} is the conditional average effectiveness for individual i in arm t
- $-g(\cdot)$ is the link function, depending on the scale in which ϕ_{it} is defined
- μ_{ct} is the population average cost obtained in the marginal model
- $-\xi_t$ and γ_t are the population (marginal) average effectiveness, and the correlation between effectiveness and costs on the scale defined by g!
- NB: The marginal average effectiveness on the natural scale is

$$\mu_{et} = g^{-1}(\xi_t)$$

Links with the missing data framework

Links with the missing data framework

Links with the missing data framework

- Double blind, multicenter, phase III RCT on non-small lung cancer patients
- Data available on a subsample of 228 patients
 - 120 with placebo (t = 0)
 - 108 with erlotinib 150mg/day (t=1)
- Measure of effectiveness: total QALYs gained
 - **NB**: Annual time-horizon \Rightarrow QALYs ∈ [0; 1]
- Overall cost calculated adding up several resources
- Additional information available on
 - $-X_1^t = \mathsf{age}$
 - $X_2^t = \text{sex (female} = 0, \text{ male} = 1)$
 - $m{X}_3^t = ext{baseline}$ stage of disease (IIIb = 0, IV = 1)
 - X_4^t = pre-progression quality of life
- Run the model under both ZCAR and ZAR

Pattern model for c = 0

$$\begin{split} &-d_{it} \sim \mathsf{Bernoulli}(\pi_{it}) \\ &-\mathsf{logit}(\pi_{it}) = \beta_{0t} \left[+ \sum_{j=1}^4 \beta_{jt} Z_{ij}^t \right], \qquad \pmb{\beta}_t \sim \mathsf{Cauchy}(0, 2.5) \\ &-p_t = \frac{\exp(\beta_{0t})}{1 + \exp(\beta_{0t})} \end{split}$$

Pattern model for c = 0

$$\begin{split} &-d_{it} \sim \mathsf{Bernoulli}(\pi_{it}) \\ &-\mathsf{logit}(\pi_{it}) = \beta_{0t} \left[+ \sum_{j=1}^4 \beta_{jt} Z_{ij}^t \right], \qquad \pmb{\beta}_t \sim \mathsf{Cauchy}(0, 2.5) \\ &-p_t = \frac{\exp(\beta_{0t})}{1 + \exp(\beta_{0t})} \end{split}$$

Marginal model for the costs

- For both the Gamma and logNormal model
 - w=W=0.000001 + sensitivity analysis
 - $H_{\psi}=50\,000$ and $H_{\zeta}=15\,000$

Pattern model for c = 0

$$\begin{split} &-d_{it} \sim \mathsf{Bernoulli}(\pi_{it}) \\ &-\mathsf{logit}(\pi_{it}) = \beta_{0t} \left[+ \sum_{j=1}^4 \beta_{jt} Z_{ij}^t \right], \qquad \pmb{\beta}_t \sim \mathsf{Cauchy}(0, 2.5) \\ &-p_t = \frac{\exp(\beta_{0t})}{1 + \exp(\beta_{0t})} \end{split}$$

Marginal model for the costs

- For both the Gamma and logNormal model
 - w=W=0.000001 + sensitivity analysis
 - $H_{\psi}=50\,000$ and $H_{\zeta}=15\,000$

Conditional model for the QALYs

- Beta regression
 - $-e_{it} \mid c_{it} \sim \text{Beta}\left(\phi_{it}\tau_t, (1-\phi_{it})\tau_t\right)$
 - $\operatorname{logit}(\phi_{it}) = \xi_t + \gamma_t (c_{it} \mu_{ct})$
 - $-\xi_t, \gamma_t, \log(\tau_t) \stackrel{iid}{\sim} \text{Normal}(0, 10\,000)$

Pattern model for c = 0

$$\begin{split} &-d_{it} \sim \mathsf{Bernoulli}(\pi_{it}) \\ &-\mathsf{logit}(\pi_{it}) = \beta_{0t} \left[+ \sum_{j=1}^4 \beta_{jt} Z_{ij}^t \right], \qquad \pmb{\beta}_t \sim \mathsf{Cauchy}(0, 2.5) \\ &-p_t = \frac{\exp(\beta_{0t})}{1 + \exp(\beta_{0t})} \end{split}$$

Marginal model for the costs

- For both the Gamma and logNormal model
 - w=W=0.000001 + sensitivity analysis
 - $H_{\psi}=50\,000$ and $H_{\zeta}=15\,000$

Conditional model for the QALYs

- Beta regression
 - $-e_{it} \mid c_{it} \sim \text{Beta}\left(\phi_{it}\tau_t, (1-\phi_{it})\tau_t\right)$
 - $\operatorname{logit}(\phi_{it}) = \xi_t + \gamma_t(c_{it} \mu_{ct})$

$$-\xi_t, \gamma_t, \log(\tau_t) \stackrel{iid}{\sim} \text{Normal}(0, 10\,000)$$

$$\Rightarrow \qquad \mu_{et} = g^{-1}(\xi_t) = \frac{\exp(\xi_t)}{1 + \exp(\xi_t)}$$

Results — model estimation

ZCAR mechanism		Gamma/B	Beta model		log-Normal/Beta model				
Parameter	Mean	SD	95% interval		Mean	SD	95%	interval	
p_0	0.17	0.04	0.11	0.24	0.17	0.03	0.11	0.24	
ψ_{00}	4 069.95	512.85	3 190.65	5 166.28	4 312.52	461.62	3 358.93	5 176.79	
μ_{c0}	3 373.55	444.88	2571.21	4 315.12	3 583.45	411.49	2770.08	4 385.66	
μ_{e0}	0.21	0.02	0.18	0.25	0.22	0.02	0.18	0.25	
p_1	0.04	0.02	0.01	0.09	0.04	0.02	0.01	0.08	
ψ_{10}	10 356.47	1 060.49	8 463.40	12 653.51	9 321.01	717.66	7884.13	10 681.00	
μ_{c1}	9 930.72	1 032.05	8 082.63	12 155.24	8 939.05	707.12	7551.40	10 284.65	
μ_{e1}	0.23	0.02	0.19	0.27	0.22	0.02	0.19	0.25	

ZAR mechanism		Gamma/E	Beta model		log-Normal/Beta model				
Parameter	Mean	SD	95%	interval	Mean	SD	95%	interval	
β_{00} (intercept)	-2.70	0.53	-3.88	-1.78	-2.68	0.53	-3.86	-1.78	
eta_{10} (age)	-0.03	0.04	-0.10	0.05	-0.03	0.04	-0.10	0.05	
β_{20} (sex)	0.63	0.57	-0.47	1.8	0.62	0.60	-0.48	1.88	
β_{30} (stage)	0.09	0.61	-1.15	1.20	0.06	0.59	-1.05	1.26	
β_{40} (QALY)	-1.61	0.50	-2.70	-0.73	-1.58	0.51	-2.72	-0.72	
p_0	0.07	0.03	0.02	0.14	0.07	0.03	0.02	0.14	
ψ_{00}	4 104.42	556.05	3 159.00	5 370.27	4 322.24	467.200	3 342.10	5 193.25	
μ_{c0}	3 817.95	537.16	2 905.75	4 989.01	4014.76	467.52	3068.24	4 903.59	
μ_{e0}	0.21	0.02	0.12	0.25	0.21	0.02	0.18	0.25	
β_{01} (intercept)	-3.86	0.66	-5.34	-2.73	-3.85	0.67	-5.31	-2.73	
eta_{11} (age)	-0.09	0.09	-0.28	0.12	-0.09	0.10	-0.27	0.10	
β_{21} (sex)	-0.35	0.99	-2.23	1.63	-0.27	0.94	-2.16	1.73	
β_{31} (stage)	0.61	1.13	-1.43	3.21	0.63	1.12	-1.24	3.15	
β_{41} (QALY)	-0.12	0.31	-0.81	0.39	-0.14	0.31	-0.88	0.37	
p_1	0.02	0.01	0.00	0.06	0.02	0.01	0.00	0.06	
ψ_{10}	10 376.91	1 035.29	8 550.78	12 571.45	9 320.26	710.00	7 777.58	10 659.33	
μ_{c1}	10 119.80	1 022.73	8 367.69	12 329.24	9 086.38	701.03	7 594.49	10 362.48	
μ_{e1}	0.23	0.02	0.19	0.27	0.22	0.02	0.19	0.26	

Results — model estimation

ZCAR mechanism		Gamma/E	Beta model			log-Norma	I/Beta mode	I
Parameter	Mean	SD	95% interval		Mean	SD	95%	interval
p_0	0.17	0.04	0.11	0.24	0.17	0.03	0.11	0.24
ψ_{00}	4 069.95	512.85	3 190.65	5 166.28	4 312.52	461.62	3 358.93	5 176.79
μ_{c0}	3 373.55	444.88	2571.21	4 315.12	3 583.45	411.49	2770.08	4 385.66
μ_{e0}	0.21	0.02	0.18	0.25	0.22	0.02	0.18	0.25
p_1	0.04	0.02	0.01	0.09	0.04	0.02	0.01	0.08
ψ_{10}	10 356.47	1 060.49	8 463.40	12 653.51	9 321.01	717.66	7884.13	10 681.00
μ_{c1}	9 930.72	1 032.05	8 082.63	12 155.24	8 939.05	707.12	7551.40	10 284.65
μ_{e1}	0.23	0.02	0.19	0.27	0.22	0.02	0.19	0.25

ZAR mechanism		Gamma/E	Beta model			log-Normal/Beta model				
Parameter	Mean	SD	95% interval		Mean	SD	95%	interval		
β_{00} (intercept)	-2.70	0.53	-3.88	-1.78	-2.68	0.53	-3.86	-1.78		
eta_{10} (age)	-0.03	0.04	-0.10	0.05	-0.03	0.04	-0.10	0.05		
β_{20} (sex)	0.63	0.57	-0.47	1.8	0.62	0.60	-0.48	1.88		
β_{30} (stage)	0.09	0.61	-1.15	1.20	0.06	0.59	-1.05	1.26		
β_{40} (QALY)	-1.61	0.50	-2.70	-0.73	-1.58	0.51	-2.72	-0.72		
p_0	0.07	0.03	0.02	0.14	0.07	0.03	0.02	0.14		
ψ_{00}	4 104.42	556.05	3 159.00	5 370.27	4 322.24	467.200	3 342.10	5 193.25		
μ_{c0}	3 817.95	537.16	2 905.75	4 989.01	4014.76	467.52	3 068.24	4 903.59		
μ_{e0}	0.21	0.02	0.12	0.25	0.21	0.02	0.18	0.25		
β_{01} (intercept)	-3.86	0.66	-5.34	-2.73	-3.85	0.67	-5.31	-2.73		
β_{11} (age)	-0.09	0.09	-0.28	0.12	-0.09	0.10	-0.27	0.10		
β_{21} (sex)	-0.35	0.99	-2.23	1.63	-0.27	0.94	-2.16	1.73		
β_{31} (stage)	0.61	1.13	-1.43	3.21	0.63	1.12	-1.24	3.15		
β_{41} (QALY)	-0.12	0.31	-0.81	0.39	-0.14	0.31	-0.88	0.37		
p_1	0.02	0.01	0.00	0.06	0.02	0.01	0.00	0.06		
ψ_{10}	10 376.91	1 035.29	8 550.78	12 571.45	9 320.26	710.00	7777.58	10 659.33		
μ_{c1}	10 119.80	1 022.73	8 367.69	12 329.24	9 086.38	701.03	7 594.49	10 362.48		
μ_{e1}	0.23	0.02	0.19	0.27	0.22	0.02	0.19	0.26		

Results — model estimation

ZCAR mechanism		Gamma/E	Beta model		log-Normal/Beta model				
Parameter	Mean	SD	95% interval		Mean	SD	95%	interval	
p_0	0.17	0.04	0.11	0.24	0.17	0.03	0.11	0.24	
ψ_{00}	4 069.95	512.85	3 190.65	5 166.28	4 312.52	461.62	3 358.93	5 176.79	
μ_{c0}	3 373.55	444.88	2571.21	4 315.12	3 583.45	411.49	2770.08	4 385.66	
μ_{e0}	0.21	0.02	0.18	0.25	0.22	0.02	0.18	0.25	
p_1	0.04	0.02	0.01	0.09	0.04	0.02	0.01	0.08	
ψ_{10}	10 356.47	1 060.49	8 463.40	12 653.51	9 321.01	717.66	7884.13	10 681.00	
μ_{c1}	9 930.72	1 032.05	8 082.63	12 155.24	8 939.05	707.12	7551.40	10 284.65	
μ_{e1}	0.23	0.02	0.19	0.27	0.22	0.02	0.19	0.25	

ZAR mechanism		Gamma/E	Beta model		log-Normal/Beta model				
Parameter	Mean	SD	95%	interval	Mean	SD	95%	interval	
β_{00} (intercept)	-2.70	0.53	-3.88	-1.78	-2.68	0.53	-3.86	-1.78	
eta_{10} (age)	-0.03	0.04	-0.10	0.05	-0.03	0.04	-0.10	0.05	
β_{20} (sex)	0.63	0.57	-0.47	1.8	0.62	0.60	-0.48	1.88	
β_{30} (stage)	0.09	0.61	-1.15	1.20	0.06	0.59	-1.05	1.26	
β_{40} (QALY)	-1.61	0.50	-2.70	-0.73	-1.58	0.51	-2.72	-0.72	
p_0	0.07	0.03	0.02	0.14	0.07	0.03	0.02	0.14	
ψ_{00}	4 104.42	556.05	3 159.00	5 370.27	4 322.24	467.200	3 342.10	5 193.25	
μ_{c0}	3 817.95	537.16	2 905.75	4 989.01	4014.76	467.52	3 068.24	4 903.59	
μ_{e0}	0.21	0.02	0.12	0.25	0.21	0.02	0.18	0.25	
β_{01} (intercept)	-3.86	0.66	-5.34	-2.73	-3.85	0.67	-5.31	-2.73	
β_{11} (age)	-0.09	0.09	-0.28	0.12	-0.09	0.10	-0.27	0.10	
β_{21} (sex)	-0.35	0.99	-2.23	1.63	-0.27	0.94	-2.16	1.73	
β_{31} (stage)	0.61	1.13	-1.43	3.21	0.63	1.12	-1.24	3.15	
β_{41} (QALY)	-0.12	0.31	-0.81	0.39	-0.14	0.31	-0.88	0.37	
p_1	0.02	0.01	0.00	0.06	0.02	0.01	0.00	0.06	
ψ_{10}	10 376.91	1 035.29	8 550.78	12 571.45	9 320.26	710.00	7 777.58	10659.33	
μ_{c1}	10 119.80	1 022.73	8 367.69	12 329.24	9 086.38	701.03	7594.49	10 362.48	
μ_{e1}	0.23	0.02	0.19	0.27	0.22	0.02	0.19	0.26	

ZCAR mechanism

Cost effectiveness plane Erlotinib vs Placebo

ZAR mechanism

Cost effectiveness plane Erlotinib vs Placebo

Sensitivity to the specification for (ψ_{t1}, ζ_{t1})

- The package BCEs0 implements the general framework
 - Freely available from CRAN
 - Documentation at www.statistica.it/gianluca/BCEs0
- The user needs to specify some basic options
 - Distributional assumption for the costs (Gamma, logNormal, Normal)
 - Distributional assumption for the benefits (Gamma, Beta, Binomial, Normal)
 - A list of data

- ...

- BECs0 then writes a .txt file with the resulting JAGS/BUGS code needed to run the model
- This can be used as a template
 - To develop more complex analyses
 - To encode more suitable assumptions (eg random effects)

Thank you!