STAT5030 Assignment 2

Due: Feb 19, 2024

- 1. Let the $n \times 1$ vector $\mathbf{Y} = (Y_1, \dots, Y_n)^{\top} \sim N(\alpha \mathbf{1}, \sigma^2 \mathbf{I})$. Define $U = \sum_{i=1}^n (Y_i \bar{Y})^2 / \sigma^2$ and $V = n(\bar{Y} \alpha)^2 / \sigma^2$. Find the distributions of U and V, and show that these two random variables are independent.
- 2. Let the $n \times 1$ vector $\boldsymbol{Y} = (Y_1, \dots, Y_n)^{\top} \sim N(\mu \boldsymbol{1}, \boldsymbol{I})$. Let

$$ar{Y} = rac{\sum\limits_{i=1}^{n} Y_i}{n},$$
 $Q_1 = nar{Y}^2,$
 $Q_2 = \sum\limits_{i=1}^{n} (Y_i - ar{Y})^2.$

- (a) Prove that \bar{Y} and Q_2 are independent.
- (b) Prove that Q_1 and Q_2 are independent.
- (c) Find the distributions of Q_1 and Q_2 .
- 3. Let the $n \times 1$ vector $\boldsymbol{Y} = (Y_1, \dots, Y_n)^\top \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Let $q_1 = \boldsymbol{Y}^\top \boldsymbol{A_1} \boldsymbol{Y}, q_2 = \boldsymbol{Y}^\top \boldsymbol{A_2} \boldsymbol{Y}$ and $\boldsymbol{T} = \boldsymbol{BY}$, where \boldsymbol{B} is $r \times n$ and $\boldsymbol{A_1}$, $\boldsymbol{A_2}$ are symmetric. Prove the followings:
 - (a) $E(q_1) = tr(\mathbf{A_1}\boldsymbol{\Sigma}) + \boldsymbol{\mu}^{\top}\mathbf{A_1}\boldsymbol{\mu}$.
 - (b) $Var(q_1) = 2tr(\mathbf{A_1} \mathbf{\Sigma} \mathbf{A_1} \mathbf{\Sigma}) + 4\boldsymbol{\mu}^{\top} \mathbf{A_1} \mathbf{\Sigma} \mathbf{A_1} \boldsymbol{\mu}.$
 - (c) $Cov(q_1, q_2) = 2tr(\mathbf{A_1} \mathbf{\Sigma} \mathbf{A_2} \mathbf{\Sigma}) + 4\boldsymbol{\mu}^{\mathsf{T}} \mathbf{A_1} \mathbf{\Sigma} \mathbf{A_2} \boldsymbol{\mu}.$
 - (d) $Cov(\boldsymbol{Y}, q_1) = 2\boldsymbol{\Sigma} \boldsymbol{A_1} \boldsymbol{\mu}$.
 - (e) $Cov(\mathbf{T}, q_1) = 2\mathbf{B}\Sigma \mathbf{A}_1 \boldsymbol{\mu}$.
- 4. Suppose \boldsymbol{y} is $N_3(\boldsymbol{\mu}, \sigma^2 \boldsymbol{I})$ and let $\boldsymbol{\mu}^{\top} = [3, -2, 1]$ and

$$\mathbf{A} = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix},$$
$$\mathbf{B} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix},$$

- (a) Find the distribution of $\boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{y} / \sigma^2$.
- (b) Are $y^{\top}Ay$ and By independent?
- (c) Are $\mathbf{y}^{\top} \mathbf{A} \mathbf{y}$ and $y_1 + y_2 + y_3$ independent?

- 5. X_1, X_2, X_3, X_4 be a random sample of size 4 from a distribution which is $N(0, \sigma^2)$. Let $Q = X_1 X_2 X_3 X_4$. Does Q/σ^2 has a χ^2 distribution? Justify your answer.
- 6. Suppose \boldsymbol{y} is $N_n(\mu \boldsymbol{1}, \boldsymbol{\Sigma})$ where

$$\mathbf{\Sigma} = \sigma^2 \left(egin{array}{cccc} 1 &
ho & \cdots &
ho \\
ho & 1 & \cdots &
ho \\ dots & dots & dots \\
ho &
ho & \cdots & 1 \end{array}
ight).$$

Derive the distribution of

$$\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{\sigma^2 (1 - \rho)}.$$

7. Let $\mathbf{Y} = (Y_1, Y_2, Y_3)^{\top}$. $E(\mathbf{Y}) = (2, 3, 4)^{\top}$ and the covariance matrix of \mathbf{Y} is

$$\Sigma = \left(\begin{array}{rrr} 2 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 3 \end{array} \right).$$

Let $U = \sum_{i=1}^{3} (Y_i - \bar{Y})^2$. Find the expected value of U.

8. Let $\mathbf{Y} = (Y_1, \dots, Y_n)^{\top}$ with $E(\mathbf{Y}) = \mu \mathbf{1}$ and the covariance matrix of \mathbf{Y} be $\sigma^2 \mathbf{I}$. Let

$$U = \sum_{i < j} (Y_i - Y_j)^2.$$

- (a) Find the expected value of U.
- (b) Find a constant k such that kU is an unbiased estimator of σ^2 .
- 9. Let Y_1, \dots, Y_n be random variables with equal means μ , variances σ^2 and covariances $\rho\sigma^2$. Assume ρ known. Let

$$U = \sum_{i=1}^{n} (Y_i - \bar{Y})^2.$$

Find a constant k such that kU is an unbiased estimator of σ^2 .