21705 - MÉTODOS DEL ÁLGEBRA LINEAL

INTRODUCCIÓN A LA PROGRAMACIÓN EN OCTAVE

Departamento de Ciencias Matemáticas e Informática

Universidad de las Islas Baleares

TABLE OF CONTENTS

- 1. Instalación y uso
- 2. Declaración de variables y operaciones elementales
- 3. Declaración de funciones
- 4. Indexación de matrices
- 5. Ejercicios propuestos

Instalación y uso

Instalación de Octave

- · Octave: Versión open source de Matlab.
- Descargar desde la fuente oficial: https: //www.gnu.org/software/octave/download.html
- · Seleccionar la versión de cada sistema operativo.

EDITOR DE CÓDIGO

EDITOR DE CÓDIGO

Elementos que aparecen en el IDE de Octave:

- Terminal de código. Podemos escribir código libre, como llamar a una función que ya tengamos definida o hacer alguna prueba corta.
- Explorador. Nos permite fijar la carpeta de trabajo (recomendable seleccionar la carpeta donde tengamos el script). Para ello:
 - Seleccionar carpeta o escribir la ruta que contiene nuestra carpeta de trabajo..
 - Click derecho sobre la carpeta de trabajo, y seleccionar Add to path / Selected directories and Subdirectories.

EDITOR DE CÓDIGO

- 3. Registro de variables. Aparecen todas las variables que hayamos definido en la terminal o en el script que ejecutemos.
 - Importante: No aparecen las variables de las diferentes funciones que llamemos desde el script principal (el que ejecutamos). Si queremos verificar el comportamiento de una función, habrá que hacer debug.
- 4. Historial. Podemos consultar todos los comandos que se han ejecutado.

CREACIÓN DE UN SCRIPT

• En la interfaz principal, seleccionamos la siguiente opción:

· Nos aparecerá el editor de código:

CREACIÓN DE UN SCRIPT

- 1. Crear un nuevo script.
- 2. Abrir un script ya existente.
- 3. Guardar el script actual.
- 4. Ejecutar el script actual.
 - Importante: Cualquier script que ejecutemos debe estar previamente guardado. En caso contrario, Octave nos pedirá que lo guardemos.
- 5. Añadir un breakpoint. Poniendo el cursor de texto sobre una línea de código, al seleccionar esta opción añade una parada; es decir, cuando se ejecute el script se parará en esa línea en concreto, y nos dejará ver las variables.

DECLARACIÓN DE VARIABLES Y

OPERACIONES ELEMENTALES

- A diferencia de otros lenguajes (como Java), Octave no es *tipado*. Automáticamente elije el tipo de la variable.
- · Cada línea de código debe terminar en punto y coma.
 - · No es obligatorio, pero tiene más rendimiento.
 - El punto y coma evita que por detrás esté imprimiendo cada resultado de cada línea.

· Variables numéricas.

```
a = 2;
 b = 3:
 sum = a+b;
 subtr = a-b;
 mult = a*b;
 div = a/b;
 pow = a**b;
 modul = mod(b, a) %Para calcular b mod a.
· Variables lógicas.
 t = true;
 f = false:
 and = t & f;
 or = t \mid f;
```

 Declaración de matrices. Se declara como una lista, separando las filas por punto y coma.
 Por ejemplo, las matrices

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 5 & 3 & 4 \\ 1 & 1 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 4 & 5 \end{bmatrix}$$

se declaran como:

$$A = [3, 2, 1; 5, 3, 4; 1, 1, -1];$$

 $B = [1, 3; 2, 2; 4, 5];$

Podemos realizar operaciones con las matrices:

Multiplicación por escalar:
 Suma de matrices:

· Matriz transpuesta:

· Producto de matrices:

Podemos realizar operaciones con las matrices:

Obtener la matriz identidad:

· Determinante:

· Rango de la matriz:

Matriz inversa (si existe):

· Dimensiones de la matriz:

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

Ejercicio resuelto

Implementar un código que permita resolver el sistema de ecuaciones:

$$\begin{bmatrix} 3 & 2 & 1 \\ 5 & 3 & 4 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Solución

Primero de todo, declaramos las dos variables que harán falta: la matriz del sistema y el vector independiente.

Importante: Hay que tener presente que el vector independiente es un vector columna, y por lo tanto hay que construirlo como tal.

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

Solución

Si $A \cdot x = b$, y A es invertible, entonces una manera de calcular las soluciones es $x = A^{-1} \cdot b$. Así, la solución es:

```
system_matrix = A;
indep_term = [1; 2; 1]
if det(system_matrix) != 0
    solution = inv(system_matrix)*indep_term;
    disp(x)
else
    disp("The system can not be solved")
endif
```

DISCUSIÓN DE SISTEMAS DE ECUACIONES

Ejercicio resuelto

Dado un sistema de ecuaciones $A \cdot x = b$, implementar un código para clasificar el sistema según el número de soluciones.

Solución

Tengamos presente el teorema de Rouché-Frobenius para resolver el ejercicio. Primero, calculemos la matriz ampliada, añadiendo el vector independiente como columna.

```
aug_matrix = [system_matrix, indep_term]
[m, number_unknowns] = size(system_matrix);
```

Y ahora discutamos los rangos.

DISCUSIÓN DE SISTEMAS DE ECUACIONES

Solución

```
if ((rank(aug matrix) == rank(system matrix)) &&
    (rank(system matrix) == number unknowns))
  disp("System independent with one solution");
elseif ((rank(aug_matrix) == rank(system_matrix)) &&
        (rank(system matrix) < number unknowns))</pre>
 disp("System independent with infinite solutions")
elseif (rank(aug matrix) != rank(system matrix))
 disp("System inconsistent");
endif
```

ITERACIONES SOBRE MATRICES

 Supongamos que queremos iterar sobre una matriz. En Java, tenemos los bucles for:

```
for (int i = 0; i < 10; i++) {
    //Do something
}

El equivalente en Octave es:
for i = 0:9
    //Do something
endfor</pre>
```

• Importante: En Java las listas (y por tanto las matrices) se indexan a partir del cero. En Octave no, hay que empezar en 1. Esto es una ventaja, ya que así se sigue la notación usual que usamos en álgebra.

ITERACIONES SOBRE MATRICES

Ejercicio resuelto

Implementar un código que determine si una matriz es simétrica o no.

Solución

Para que una matriz sea simétrica, primero comprobaremos si es cuadrada o no.

```
if m == n
          % Check if matrix is symmetric.
else
    disp("The matrix entered is not a square matrix.")
endif
```

TERACIONES SOBRE MATRICES

Solución

Ahora, una matrix $A = (a_{ij})$, con i, j = 1, ..., n es simétrica si $a_{ij} = a_{ji}$. Por lo tanto, bastará comprobar si no se cumple la igualdad.

```
for i=1:m
    for j=1:n
        if matrix(i,j) != matrix(j,i)
            disp("The matrix is not symmetric");
        endif
    endfor
```

ITERACIONES SOBRE MATRICES

Solución

Otra solución es considerar directamente la transpuesta de la matriz. Una matriz es simétrica si $A = A^t$ o, equivalentemente, cuando $A - A^t = 0$. Recurriremos a dos funciones de Octave:

- *isequal*: Comprueba si dos matrices son iguales.
 - Importante: Hay que cogerlo con pinzas. A veces errores pequeños de redondeo harán que matrices iguales den como resultado que no son iguales.
- · zeros(m, n): Genera una matriz nula de dimensión $m \times n$.

```
if isequal(matrix-matrix', zeros(m, n))
    disp("The matrix is symmetric")
else
    disp("The matrix is not symmetric")
endif
```

DECLARACIÓN DE FUNCIONES

DECLARACIÓN DE FUNCIONES

- En programación, la reutilización de código es fundamental para un código limpio.
- Esto se consigue usando funciones que realicen tareas por separado.
- · La estructura básica de una función es:

```
function value_to_return = function_name(args)
    % Do something...
    value_to_return = something
    return;
endfunction
```

DECLARACIÓN DE FUNCIONES

endif endfunction

· Por ejemplo, para determinar si una matriz es simétrica: function is symmetric = check symmetry(matrix) [m, n] = size(matrix);if m == nif isequal((matrix-matrix'), zeros(m, n)) is symmetric = true; return; else is symmetric = false; return; endif else is symmetric = false; return:

- Supongamos que necesitamos elegir todos los valores de una fila o columna de una matriz.
- Posible solución: fijado k, iterar sobre todos los i para elegir a_{ki}
 o a_{ik}.
- Alternativa: Octave permite, de forma rápida y con alto rendimiento, elegir un subconjunto de una matriz.
- · La sintaxis es matrix(a:b, c:d); es decir:
 - La submatriz de matrix cuyas filas están entre la fila a y b, y cuyas columnas están entre la columna c y d.
 - Si queremos coger toda una fila, y un determinado rango de columnas, la sintaxis es matrix(:, c:d).

- Si queremos coger filas o columnas sueltas, la sintaxis es matrix([a1,a2,...], [b1,b2,...]).
- A veces queremos coger todas las filas excepto una (por ejemplo, calculando adjuntos). Para ello:
 - 1. Generamos una lista con los números desde 1 hasta *k*:

2. Eliminamos el elemento i de esa lista:

3. Indexamos la matriz por esa lista.

· Por ejemplo, consideremos la matriz

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 & 17 & 18 \\ 19 & 20 & 21 & 22 & 23 & 24 \\ 25 & 26 & 27 & 28 & 29 & 30 \\ 31 & 32 & 33 & 34 & 35 & 36 \end{bmatrix}$$

· A(2:4, 3:5) genera la submatriz

· A(4:6, 4:6) genera la submatriz

· A(2:4, :) genera la submatriz:

· A(2, :) genera la submatriz (o vector fila):

MODIFICACIÓN DE MATRICES POR BLOQUES

- Supongamos que necesitamos copiar una matriz dentro de una matriz más grande.
- Igual que el caso anterior: dos bucles *for*, uno dentro de otro, para realizar la copia.
- · Alternativa: Usar la indexación de matrices para hacer la copia.

MODIFICACIÓN DE MATRICES POR BLOQUES

- · Consideremos la misma matriz A del ejemplo anterior.
- Para copiar la matriz identidad entre las filas 2 y 5, y entre las columnas 3 y 6, haremos:

$$A(2:4, 3:5) = eye(3);$$

Para generar la matriz

MODIFICACIÓN DE MATRICES POR BLOQUES

- Naturalmente, las dimensiones de la matriz que vayamos a copiar deben concordar con las dimensiones de destino.
- En caso contrario, Octave nos avisará que esa operación no está bien definida.

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS

1. Resolver la ecuación matricial 2X + 4A = 3BA, donde

$$A = \begin{bmatrix} 0 & -1 \\ 2 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

2. Resolver la ecuación matricial $AXB^t = C$, donde

$$A = \begin{bmatrix} -3 & -2 \\ 3 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 5 & 3 \\ 9 & 4 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

3. Encontrar dos matrices, A y B, tales que

$$2A + B = \begin{bmatrix} 1 & 2 & 2 \\ -2 & 1 & 0 \end{bmatrix}$$
$$A - 3B = \begin{bmatrix} -4 & -3 & -2 \\ -1 & 0 & -1 \end{bmatrix}$$

EJERCICIOS PROPUESTOS

- 4. La función rand(m, n) de Octave genera aleatoriamente una matriz de tamaño $m \times n$. Usadla para generar un sistema de ecuaciones 5×5 (generando dos matrices, la del sistema y el vector independiente). Después, resolved el sistema y comprobad que la solución que os da es, efectivamente, una solución.
- Dada la matriz A de tamaño 6 x 6 del ejemplo anterior, calculad la matriz transpuesta usando la indexación de matrices.
 Verificad que el resultado es la matriz transpuesta.
- 6. Generad aleatoriamente una matriz A de tamaño 6×6 , y calculad la matriz de adjuntos.

Las soluciones estarán publicadas próximamente en el repositorio https://github.com/mmunar97/21705-LinearAlgebra