Recitation Class 7

Zexi Li

lzx12138@sjtu.edu.cn

2021.07.20

Outline

Chapter 10 - Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

The Two-Terminal MOS Structure Capacitance–Voltage Characteristics

Non-Ideal Effects

Table of Contents

Chapter 10 - Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

The Two-Terminal MOS Structure Capacitance–Voltage Characteristics Non-Ideal Effects

Metal-Oxide-Semiconductor

Negative Gate Voltage

Negative Gate Voltage

Positive Gate Voltage

Positive Gate Voltage

Depletion Layer Thickness

$$\phi_{fp} = V_t \ln \left(\frac{N_a}{n_i} \right)$$

$$x_d = \left(\frac{2\varepsilon_s \phi_s}{eN_a} \right)^{1/2} 2 \phi_{fp}$$

 ϕ_s : the surface potential, is the difference (in V) between E_{Fi} measured in the bulk semiconductor and E_{Fi} measured at the surface.

Threshold Inversion Point

Accumulation

Depletion

Inversion

$$C'(\text{inv}) = C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$

Ideal Low-Frequency C-V Curve

Exercise

Objective Calculate C_{ox} , C'_{min} and C'_{FB} for a MOS capacitor. Consider a p-type silicon substrate at T=200K doped to $N_a=10^{16}cm^{-3}$. The oxide is silicon dioxide with a thickness of $t_{ox}=18nm=180\text{Å}$, and the gate is aluminum. (Example 10.6 on textbook)

Answer:

Frequency Effects

Two sources of electrons

- 1. Diffusion of minority carrier electrons.
- 2. Thermal generation of electron-hole pairs within the space charge region. G

Work Function Difference

Not required.

Fixed Charge

Adjustment on V_T

$$\begin{aligned} \left|Q_{SD}'(\mathsf{max})\right| &= eN_a x_{dT} = 2\sqrt{e\varepsilon_s}N_a\phi_{fp} \\ V_{TN} &= \frac{\left|Q_{SD}'(\mathsf{max})\right|}{C_{ox}} + V_{FB} + 2\phi_{fp} \\ V_{TP} &= -\frac{\left|Q_{SD}'(\mathsf{max})\right|}{C_{ox}} + V_{FB} - 2\phi_{fn} \\ V_{FB} &= \phi_{ms} - \frac{Q_{ss}'}{C_{ox}} \cdot \frac{\aleph}{d} \end{aligned}$$

Surface States

Example

Objective Calculate the threshold voltage of a MOS system using an aluminum gate.

Consider a p-type silicon substrate at T=300K doped to $N_a=10^{15}cm^{-3}$. Let $Q_{ss}'=10^{10}cm^{-2}$, $t_{ox}=12cm=120\text{Å}$, and assume the oxide is silicon dioxide. $\phi_{ms}=-0.88V$. (Example 10.4 on textbook)

Answer:

End