Função Exponencial

Inequações exponenciais

Definição de Inequação Exponencial

Definição de Inequação Exponencial

Uma inequação exponencial é uma desigualdade em que a variável aparece no expoente, do tipo:

$$a^{f(x)} egin{cases} < & > \ > & b \ \le & > \ > & > \end{cases}$$

 $\operatorname{\mathsf{com}} a > 0$ e $a \neq 1$.

Ideia principal

Ideia principal

O **sinal da inequação** depende do valor da base *a*:

Se a > 1: a função exponencial é crescente → a desigualdade se mantém.

$$a^{f(x)} < a^{g(x)} \implies f(x) < g(x)$$

• Se 0 < a < 1: a função exponencial é decrescente ightarrow a desigualdade se inverte.

$$a^{f(x)} < a^{g(x)} \implies f(x) > g(x)$$

Exemplos práticos

Exemplo 1: base maior que 1

$$2^x > 8$$
 $2^x > 2^3 \implies x > 3$

Exemplos práticos

Exemplo 2: base entre 0 e 1

$$\left(\frac{1}{3}\right)^x \le \frac{1}{9}$$
$$\left(\frac{1}{3}\right)^x \le \left(\frac{1}{3}\right)^2$$

Como a base está entre 0 e 1, invertemos a desigualdade:

$$x \geq 2$$

Exemplo 3: sem bases iguais

$$5^x < 40$$

Aplicamos logaritmo:

$$x \cdot \log(5) < \log(40)$$

$$x < \frac{\log(40)}{\log(5)}$$

Resumo Esquemático

Resumo esquemático

Base a	Propriedade da função	Regra para inequação
a>1	Crescente	Mantém o sinal
0 < a < 1	Decrescente	Inverte o sinal
Bases sem relação	Usa logaritmo	Resolver normalmente