CS 60–231 Solution to Assignment #1

Fall 2017

Exercises 1.9, 1(b)

Solution: $(((p \Rightarrow q) \Rightarrow (r \Rightarrow p)) \Rightarrow (r \Rightarrow p))$

p	q	r	$(p \Rightarrow q)$	$(r \Rightarrow p)$	$((p \Rightarrow q) \Rightarrow (r \Rightarrow p))$	$(((p \Rightarrow q) \Rightarrow (r \Rightarrow p)) \Rightarrow (r \Rightarrow p))$
F	F	F	T	T	Т	Т
F	F	T	T	F	F	T
F	T	F	T	T	Т	T
F	T	T	T	F	F	T
T	F	F	F	T	T	Т
T	F	T	F	Т	Т	T
T	T	F	T	Т	T	T
T	T	T	T	T	T	Т

Exercises 1.9, 3(f): Prove $\vdash (\alpha \Rightarrow \beta) \lor (\beta \Rightarrow \alpha)$..

Solution: You may use 'proof by contradivction'. The following is a proof based on the definition of 'proof'.

- 1. $(\alpha \lor \sim \alpha)$ axiom
- 2. $(\alpha \lor \sim \alpha) \lor (\beta \lor \sim \beta)$ 1, I1
- 3. $\alpha \vee (\sim \alpha \vee (\beta \vee \sim \beta))$ 2, E12
- 4. $\alpha \vee ((\sim \alpha \vee \beta) \vee \sim \beta)$ 3, E12
- 5. $((\sim \alpha \lor \beta) \lor \sim \beta) \lor \alpha$ 4, E10
- 6. $(\sim \alpha \vee \beta) \vee (\sim \beta \vee \alpha)$ 5, E12
- 7. $(\alpha \Rightarrow \beta) \lor (\sim \beta \lor \alpha)$ 6, E18
- 8. $(\alpha \Rightarrow \beta) \lor (\beta \Rightarrow \alpha)$ 7, E18

Hence, $\vdash (\alpha \Rightarrow \beta) \lor (\beta \Rightarrow \alpha)$.

Exercises 1.9, 3(g): Prove $\vdash (\alpha \Rightarrow \beta) \Rightarrow ((\alpha \land \gamma) \Rightarrow (\beta \land \gamma))$.

Solution: (Indirect Proof) [Recall that you cannot apply the Deduction Theorem directly.]

- 1. $\sim ((\alpha \land \gamma) \Rightarrow (\beta \land \gamma))$ Hypothesis
- 2. $\sim (\sim (\alpha \wedge \gamma) \vee (\beta \wedge \gamma))$ 1, E18
- 3. $\sim \sim (\alpha \wedge \gamma) \wedge \sim (\beta \wedge \gamma)$ 2, E17
- 4. $(\alpha \wedge \gamma) \wedge \sim (\beta \wedge \gamma)$ 3, E15
- 5. $(\alpha \wedge \gamma) \wedge (\sim \beta \vee \sim \gamma)$ 4, E16
- 6. $((\alpha \land \gamma) \land \sim \beta) \lor ((\alpha \land \gamma) \land \sim \gamma)$ 5, E13
- 7. $((\alpha \land \gamma) \land \sim \beta) \lor (\alpha \land (\gamma \land \sim \gamma))$ 6, E11
- 8. $((\alpha \land \gamma) \land \sim \beta) \lor (\alpha \land false)$ 7, E1
- 9. $((\alpha \wedge \gamma) \wedge \sim \beta) \vee false$ 8, E7
- 10. $((\alpha \land \gamma) \land \sim \beta)$ 9, E6
- 11. $(\alpha \wedge (\gamma \wedge \sim \beta))$ 10, E11
- 12. $(\alpha \wedge (\sim \beta \wedge \gamma))$ 11, E9
- 13. $((\alpha \land \sim \beta) \land \gamma)$ 12, E11
- 14. $(\alpha \wedge \sim \beta)$ 13, I2

```
15. (\sim \sim \alpha \land \sim \beta) 14, E15
```

16.
$$\sim (\sim \alpha \vee \beta)$$
 15, E17

17.
$$\sim (\alpha \Rightarrow \beta)$$
 16, E18

Hence,
$$\vdash (\alpha \Rightarrow \beta) \Rightarrow ((\alpha \land \gamma) \Rightarrow (\beta \land \gamma)).$$

Exercises 1.9, 4.: Prove Theorem 1.7.2(v): $\vdash (\alpha \Rightarrow (\beta \Rightarrow \gamma)) \Leftrightarrow (\alpha \land \beta \Rightarrow \gamma)$.

Solution: (Bidirectional proof)

- ⇒) (Direct proof)
- 1. $(\alpha \Rightarrow (\beta \Rightarrow \gamma))$ hypothesis
- 2. $(\sim \alpha \lor (\beta \Rightarrow \gamma))$ 1, E18
- 3. $(\sim \alpha \lor (\sim \beta \lor \gamma))$ 2, E18
- 4. $(\sim \alpha \lor \sim \beta) \lor \gamma$ 3, E12
- 5. $\sim (\alpha \land \beta) \lor \gamma$ 4, E16
- 6. $(\alpha \wedge \beta) \Rightarrow \gamma$ 5, E18
- (The above proof in reversed order)

Hence,
$$\vdash (\alpha \Rightarrow (\beta \Rightarrow \gamma)) \Leftrightarrow (\alpha \land \beta \Rightarrow \gamma)$$
.

Exercises 1.9, 6.(d):

Solution: (Proof by contradiction)

- 1. $\sim \sim p$ hypothesis
- 2. $r \Rightarrow s$ from Γ
- 3. $p \Rightarrow (q \land r)$ from Γ
- 4. $\sim (q \land s)$ from Γ
- 5. *p* 1,E15
- 6. $q \wedge r$ 3,5,I3
- 7. q 6,I2
- 8. $r \wedge q$ 6,E9
- 9. r 8,I2
- 10. *s* 9,2,I3
- 11. $q \wedge s$ 7,10,I6
- 12. $(q \wedge s) \wedge \sim (q \wedge s)$ 11,4,I6
- 13. false 12,E1

Hence, $P1, P2, P3 \vdash \sim p$

Exercises 1.9, 6.(i):

Solution:

- 1. $q \Rightarrow \sim p$ from Γ
- 2. $\sim q \land \sim s \Rightarrow \sim r$ from Γ
- 3. $\sim r \land \sim u \Rightarrow \sim t$ from Γ
- 4. $s \Rightarrow q$ from Γ
- 5. $\sim (\sim r \land \sim u) \lor \sim t$ 3,E18
- 6. $(\sim r \lor \sim u) \lor \sim t$ 5,E16
- 7. $\sim r \lor (\sim \sim u \lor \sim t)$ 6,E12 8. $\sim r \Rightarrow (\sim \sim u \lor \sim t)$ 7,E18
- 9. $(\sim q \land \sim s) \Rightarrow (\sim \sim u \lor \sim t)$ 2,8,I5
- 10. $\sim (\sim q \land \sim s) \lor (\sim \sim u \lor \sim t)$ 9,E18
- 11. $(\sim \sim u \lor \sim t) \lor \sim (\sim q \land \sim s)$ 10,E10
- 12. $(\sim \sim u \lor \sim t) \lor (\sim \sim q \lor \sim \sim s)$ 11,E16

```
13. (u \lor \sim t) \lor (\sim \sim q \lor \sim \sim s)
                                                            12,E15
14. (u \lor \sim t) \lor (q \lor \sim \sim s)
                                                     13,E15
15. (u \lor \sim t) \lor (q \lor s)
                                                  14,E15
16. ((u \lor \sim t) \lor q) \lor s
                                                  15,E12
17. \sim \sim ((u \lor \sim t) \lor q) \lor s
                                                        16,E15
18. \sim ((u \lor \sim t) \lor q) \Rightarrow s
                                                      17,E18
19. \sim ((u \lor \sim t) \lor q) \Rightarrow q
                                                        18,4,I5
20. \sim \sim ((u \lor \sim t) \lor q) \lor q
                                                         19,E18
21. ((u \lor \sim t) \lor q) \lor q
                                                  20,E15
22. (u \lor \sim t) \lor (q \lor q)
                                                  21,E12
23. (u \lor \sim t) \lor q
                                         22,E4
24. \sim \sim (u \lor \sim t) \lor q
                                               23,E15
25. \sim (u \lor \sim t) \Rightarrow q
                                                24,E18
26. \sim (u \lor \sim t) \Rightarrow \sim p
                                                 25,1,I5
27. \sim \sim (u \lor \sim t) \lor \sim p
                                                   26,E18
28. (u \lor \sim t) \lor \sim p
                                            27,E15
29. (\sim t \lor u) \lor \sim p
                                            28,E10
30. \sim t \vee (u \vee \sim p)
                                            29,E12
31. \sim t \vee (\sim p \vee u)
                                             30,E10
32. \sim t \lor (p \Rightarrow u)
                                            31,E18
```

Hence, $P1, P2, P3, P4 \vdash \sim t \lor (p \Rightarrow u)$

Exercises 1.9, 7.(d).

Solution: Let *C* denote the casino is shut down;

T denote a gambling tax is imposed;

D denote tourism will decline;

S denote the city will suffer;

L denote the city will be a safer place to live.

P1:
$$(C \vee T) \Rightarrow (D \wedge S)$$

P2:
$$D \Rightarrow L$$

P3: ∼ *L*

C: $\sim C$

(Direct proof)

1.
$$(C \lor T) \Rightarrow (D \land S)$$
 from Γ

- 2. $D \Rightarrow L$ from Γ
- 3. $\sim L$ from Γ
- 4. $\sim D$ 3,2, I4
- 5. $\sim D \lor \sim S$ 4, I1
- 6. $\sim (D \wedge S)$ 5, E16
- 7. $\sim (C \lor T)$ 6,1, I4
- 8. $\sim C \wedge \sim T$ 7, E16
- $\sim C$ 8, I2