Supervised Learning (I)

Outline

- I. What is Machine Learning
- II. Supervised Learning
- III. Computational Learning Theory

I What is Machine Learning

Machine Learning

A computer program is said to learn from experience *E* with respect to some class of tasks *T* and performance measure *P* if its performance at tasks in *T*, as measured by *P*, improves with experience *E*.

---Tom M. Mitchell

Learn from experience/examples/samples

- There are many forms of machine learning. We focus on learning from examples here.
- Learning from experience/examples/samples:
 - Supervised learning (监督学习)
 - Classification, regression
 - Unsupervised learning (无监督学习)
 - Clustering
 - Semi-supervised learning (半监督学习)
 - Reinforcement learning (强化学习/增强学习)
 - •

Types of Machine Learning

Based on the available teacher/supervision information

- Supervised learning: Training data include both inputs and outputs.
 - Given: training data of inputs \mathcal{X}_l and corresponding outputs \mathcal{Y}_l .
 - Goal: predict a 'correct' output for a new input.
- Unsupervised learning: Training data do not include outputs.
 - Given: only unlabeled data of inputs \mathcal{X}_u .
 - Goal: learn some structure of \mathcal{X}_u or relationship among \mathcal{X}_u 's.
- Semi-supervised learning: Some training data are with output labels and some without.
 - Given: A small portion of $(\mathcal{X}_l, \mathcal{Y}_l)$ and large portion of \mathcal{X}_u .
 - Goal: prediction (classification).

Types of Machine Learning

- Reinforcement learning:
 - Given: Training data do not include output labels, but do have a scalar feedback.
 - Goal: learn a sequence of actions that maximize some cumulative rewards.

And so on ...

Types of Machine Learning: Illustration

Supervised learning

Semi-supervised learning

Unsupervised learning

Reinforcement learning

II Supervised Learning

- 1. What is Supervised Learning (formulation)
- 2. Hypothesis Space ${\mathcal H}$ for Curve Fitting

Supervised Learning

- Using past experiences to improve future performance on some task.
- Experience: the training examples or training data.
- What does it mean to improve performance? Learning is guided by an objective, e.g. a loss function to be minimized.

Figure generated by Liyan Song.

Training

- Data collection: Start with training data $\mathcal D$ from which experience is learned.
- Data representation: Encode $\mathcal D$ to be the input to the learning system.
- Modeling: Choose a hypothesis space \mathcal{H} --- a set of possible models for \mathcal{D} .
- Learning: Find the best hypothesis $h \in \mathcal{H}$ according to some objective.
- Model selection: Select the best model according to some criteria.

> Two important factors: modeling + optimization (learning process).

Prediction/Inference

 The goal of machine learning is to predict the output of the future unseen data based on the trained model.

Figure generated by Liyan Song.

Generalization: Prediction Ability

• Generalization (泛化): the ability to produce reasonable outputs for inputs not encountered during the training process.

In other words: No PANIC when never-seen-before data are given to predict.

Supervised Learning: Classification (分类)

- Supervised learning: given some labeled examples.
- Classification: output is a finite set of labels.

Supervised Learning: Regression (回归)

- Supervised learning: given some pairwise points.
- Regression: output is a real-valued number.

Figure 18.13 of the AI book by S. Russell & P. Novig.

Supervised Learning Formulation

- Given a set of pairwise examples $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$ sampled i.i.d. from $\mathcal{X} \times \mathcal{Y}$. Each $y^{(n)} = f(x^{(n)})$ is generated by an unknown function $f: \mathcal{X} \to \mathcal{Y}$.
 - $\mathbf{x}^{(n)} \in \mathcal{X} \subset \mathbb{R}^d$ is the input feature space.
 - $y^{(n)} \in \mathcal{Y} \subset \mathbb{R}^1$ for regression, and $y^{(n)}$ is discrete for classification.
 - \mathcal{D} : training data set.
- Find a function h^* from hypothesis space (假设空间) ${\mathcal H}$ to best approximate f

$$h^* = \arg \max_{h \in \mathcal{H}} p(h|\mathcal{D}).$$

Alternative Formulation

- Let
 - $y = f(x) + \varepsilon$, the *true* model with $\varepsilon \sim (0, \sigma^2)$
 - $\hat{y} = \hat{f}(x)$, the *estimated* model
- GOAL: Find \hat{f} such that the discrepancy between y and \hat{y} is minimized

Supervised Learning Process

- Learning: Learn a model $h \in \mathcal{H}$ using training set \mathcal{D}
 - ⇒ training error (训练误差) or empirical error (经验误差)
- Evaluation: Evaluate h on validation set $\mathcal{T} = \{(\pmb{x}^{(t)}, \pmb{y}^{(t)})\}$
 - ⇒ validation (test) error (测试误差)
 - Classification:
 - (e.g.) error rate $\frac{1}{T}\sum_t [y^{(t)} \neq h(x^{(t)})]$
 - Regression:
 - (e.g.) mean-square-error $\frac{1}{T}\sum_t \left[y^{(t)} h(x^{(t)})\right]^2$

Learning process: major steps

- Iterative process
- If the model gives mediocre results on the testing/validation set, something needs to be changed, and then repeat the process
- Many possibilities for changes

Training, Validation and Testing Sets

- Divide the data into training, validation and testing sets, e.g.,
 - 60/20/20% for smaller datasets
 - 90/5/5% for large datasets
- Estimate parameters using the training set
- Check performance on the validation set ,and if unsatisfactory, make modifications to the model and re-compute the parameters using the training set
- Repeat if necessary
- Check the performance of the FINAL model on the test set (this is not part of training)

Cross Validation

- The hold out method
- K-fold cross validation
- Leave-one-out (LOO) cross validation

Where/when do you use cross validation?

II Supervised Learning

- 1. What is Supervised Learning (formulation)
- 2. Hypothesis Space ${\mathcal H}$ for Curve Fitting

Example: Curve Fitting (曲线拟合)

- Fit a function to the points in the (x, y) plane, where y = f(x).
 - Do not know the true function f.
 - Can only approximate f with an h from hypothesis space \mathcal{H} .

Image source: https://docs.aws.amazon.com/machine-learning/latest/dg/images/mlconcepts_image5.png

Perfect Fit from Hypothesis Space

- \mathcal{H} (a): linear function, and \mathcal{H} (b): degree-7 polynomials.
 - Both can perfectly fit all the points.
- Question: Which ${\mathcal H}$ is better when both have the perfect fit?
- Answer: $\mathcal{H}(a)$.
- Ockham's razor (奥卡姆剃刀): prefersimpler \mathcal{H} .
 - Fact: $\mathcal{H}(a)$ linear function is simpler than $\mathcal{H}(b)$ degree-7 polynomial.
- Define simplicity of ${\mathcal H}$ is NOT easy.
- Related to model selection.

Figure 18.11 of the AI book by S. Russell & P. Novig.

Imperfect Fit from Hypothesis Space

- The points on the graph:
 - Cannot perfectly fit by any linear function from $\mathcal{H}(a)$.
 - Can perfectly fit by a degree-6 polynomial $h_b^* \in \mathcal{H}(b)$.
- Question: Which \mathcal{H} is better?
- Consideration: fit on seen vs generalize on unseen
 - $\mathcal{H}(a)$: not perfectly fit but might generalize well.
 - $\mathcal{H}(b)$: perfectly fit but might not generalize well.

Figure 18.11 of the AI book by S. Russell & P. Novig.

• Answer: Trade-off between complex $\mathcal H$ that fit the training data well and simpler $\mathcal H$ that may generalize better.

Enriched Hypothesis Space $\mathcal{H}(c)$

- $\mathcal{H}(c)$: polynomials over both x and sin(x).
- $h_c^* = ax + b + c \cdot \sin(x)$ can perfectly fit.
- h_c^* is 'simpler' than h_b^* (only 3 parameters).

 \triangleright Choice of hypothesis space \mathcal{H} is important.

Figure 18.11 of the AI book by S. Russell & P. Novig.

Underfitting vs Overfitting (Regression)

- Underfitting (欠拟合): too simple ${\cal H}$
 - \Rightarrow cannot capture the underlying pattern.
- Overfitting (过拟合): too complex ${\cal H}$
 - \Rightarrow perfect on the given data, but much worse on unseen data.

Image source: https://docs.aws.amazon.com/machine-learning/latest/dg/images/mlconcepts_image5.png

Underfitting vs Overfitting (Classification)

- Underfitting (欠拟合): too simple ${\cal H}$
 - ⇒ cannot capture the underlying pattern.
- Overfitting (过拟合): too complex ${\cal H}$
 - \Rightarrow perfect on the given data, but much worse on unseen data.

Figure by Sachin Joglekar@Google.

Underfitting and Overfitting

Underfitting:

- How to recognize? High training error and high test error.
- How to deal with it? Use a more complex \mathcal{H} .

Overfitting:

- How to recognize? Low training error but high test error.
- How to deal with it?
 - (1) Use a less complex \mathcal{H} .
 - (2) Regularization (正则化): penalize certain parts of the parameter space or introduce additional constraints to constrain the hypothesis space.
 - (3) Get more training data.

III Computational Learning Theory

- 1. Bias-variance trade-off
- 2. Model selection
- 3. Probably approximately correct (PAC) learning

Issues

- How should we understand supervised learning?
- What are the fundamentals of supervised learning?

Bias-variance Trade-off

- Let
 - $y = f(x) + \varepsilon$, true model with $\varepsilon \sim (0, \sigma^2)$
 - $\hat{y} = \hat{f}(x)$, the *estimated* model
- GOAL: Find \hat{f} such that the discrepancy between y and \hat{y} is minimized
- For any variable Z

$$var(Z) = E[(Z - E[Z])^2] = E[Z^2] - (E[Z])^2$$

 $E[Z^2] = var(Z) + (E[Z])^2$

Objective (loss) function

$$L(x) = E_{\mathcal{D}}(y - \hat{f}(x))^2 = E[y^2] - 2E_{\mathcal{D}}[y\hat{f}(x)] + E_{\mathcal{D}}[\hat{f}(x)^2]$$

Bias-variance Trade-off

Individual terms

$$E[y^{2}] = var(y) + (E[y])^{2} = \sigma^{2} + f(x)^{2}$$

$$-2E_{D}[y\hat{f}(x)] = -2f(x)E_{D}[\hat{f}(x)]$$

$$E_{D}[\hat{f}(x)^{2}] = var(\hat{f}(x)) + (E_{D}[\hat{f}(x)])^{2}$$

All terms combined

$$L(x) = \sigma^{2} + \text{var}(\hat{f}(x)) + f(x)^{2} - 2f(x)E_{\mathcal{D}}[\hat{f}(x)] + (E_{\mathcal{D}}[\hat{f}(x)])^{2}$$

= $\sigma^{2} + \text{var}(\hat{f}(x)) + (f(x) - E_{\mathcal{D}}[\hat{f}(x)])^{2}$
= $\sigma^{2} + \text{var}(\hat{f}(x)) + \text{bias}^{2}\hat{f}(x)$

Bias-variance Trade-off

- The loss function consists of three terms
 - Irreducible error: σ^2
 - Bound on the algorithm performance
 - Uncertainty in the data
 - Squared bias: $bias^2 \hat{f}(x)$
 - Error due to simplification in the model
 - Difference between f(x) and $E\hat{f}(x)$
 - Performance on the training data
 - Variance: $\operatorname{var} \hat{f}(x)$
 - How much the estimate "jumps" around its mean
 - How well the method generalizes on different testing data

Connection to Overfitting and Underfitting

Complexity Choice

- With the increasing model complexity, the error
 - On the training set decreases
 - On the testing set first decreases and then starts increasing

Image source: Hastie, Tibshirani, Friedman (2009).

Complexity Choice

- Optimal model complexity
- Underfitting: to the left
- Overfitting: to the right
- Trade-off!

Image source: https://djsaunde.wordpress.com/2017/07/17/the-bias-variance-tradeoff/

III Computational Learning Theory

- 1. Bias-variance trade-off
- 2. Model selection
- 3. Probably approximately correct (PAC) learning

Learning process: major steps

- Iterative process
- If the model gives mediocre results on the testing/validation set, something needs to be changed, and then repeat the process
- Many possibilities for changes

What to do when something is wrong?

- Bad performance on the training set (high bias)
 - More complex model, different model, change hyperparameters, normalize inputs, train longer, change starting points, more complex optimization procedure, ...
- Good performance on the training set, bad performance on the validation set (high variance)
 - Simpler model, more data in the training set, regularization, feature selection, ...
- Good performance on the training set, good performance on the validation set
 - Done

Input normalization

• Instead of $(x_1, ..., x_n)$ consider $(z_1, ..., z_n)$

$$z_{i} = \frac{x_{i} - \mu}{\sigma}$$

$$\mu = \frac{1}{n} \sum x_{i}$$

$$\sigma^{2} = \frac{1}{n-1} \sum (x_{i} - \mu)^{2}$$

- Then $Z \sim (0, I)$
- Eliminates strong impact of one variable
- IMPORTANT: Use the same coefficients μ and σ for the training and testing data

Increasing training set size

- Individual observations have smaller impact (reduces outliers)
- Difference with increasing model complexity:
 - Increase training set size: Optimization algorithm (mostly) unchanged
 - Increase model complexity: Optimization algorithm takes longer to converge. Convergence issues may occur (later)
- How to add observations?
 - Gather them: May be costly
 - Add artificial observations/Data augmentation: for example flip or rotate images. May improve the behaviour but the benefit is not so great as for the first option. It is cheap.

Regularization

- Reduces the model complexity by forcing some parameters to approach zero
- For linear regression, modifies the objective by adding regularization minimize $||y Xw||^2 + \lambda R(w)$
- Possible regularizations
 - $R(w) = ||w||_0$ (sparse). Number of non-zeros. Discontinuous. Difficult
 - $R(w) = ||w||_1$ (l_1 penalization, LASSO). Piecewise linear. Simpler
 - $R(w) = ||w||_2^2$ (l_2 penalization, Ridge regression, Tikhonov regularization, ...). Differentiable. Simplest
- Regularization parameter (weight) $\lambda \geq 0$
 - $\lambda = 0 \Rightarrow$ no effect
 - $\lambda \approx \infty \Rightarrow w \approx 0$

Feature selection

- GOAL: Reduce the number of features, set some w_i to zero
- It can be shown that
 - l_2 regularization shrinks w_i towards zero
 - l_1 regularization sets w_i to zero if below a certain threshold
 - l_0 regularization counts non-zeros in w_j and tries to set as many of them to zero as possible
- Another idea for feature selection
 - Filter methods: Run the model and select the active features based on some criterion (correlation, largest values of w_i , ...)
 - Wrapper methods: Run the model repeatedly and subsequently add or remove features

Feature selection: Wrapper methods

- Wrapper methods include forward and backward stepwise methods
- Forward method
 - Start with empty feature set $F = \emptyset$
 - For all $j \notin F$ evaluate performance for active features $F \cup \{j\}$
 - Add the best performing j to F and repeat until a stopping criterion is satisfied (maximal number of features, the performance is stable, ...)
- Backward method
 - The same but start with full set $F = \{1, ..., d\}$
 - And removes features one after another
- Combination of forward and backward stepwise method (adding or removing more features at the same time) is possible

Training v.s. Testing

- The basic requirement is that the training, validation and test sets follow the same distribution
- Otherwise, the model is trained for a behavior but tested for another one
- Sometimes a discrepancy between distributions happens naturally
 - You test your app for cat recognition on many pictures downloaded from the Internet (good quality pictures) + few pictures uploaded by users (bad quality pictures)
 - But you are only interesting in the performance on the second category
- Possible solutions
 - Add artificial blurring effect to good pictures
 - Increase weights in the objective function for bad quality pictures

Design of Training and Validation Sets

- Given a set of samples, how to design a training set and a test set?
 - Hold-out (留出法) cross-validation: separate to 2 compliment subsets.
 - Random sampling (随机采样): no bias, no knowledge is used.
 - Stratified sampling (分层采样): biased sampling based on the labels of the given set.
 - k-fold cross-validation (k折交叉验证法): separate to k subsets.

Image source: https://en.wikipedia.org/wiki/Cross-validation_(statistics)#/media/File:K-fold_cross_validation_EN.jpg

III Computational Learning Theory

- 1. Bias-variance trade-off
- 2. Model selection
- 3. Probably approximately correct (PAC) learning

PAC Learning

- PAC (probably approximately correct) learning studies how many examples are needed to show that all consistent hypotheses are "good"
- Consider a hypothesis space \mathcal{F} , its subset \mathcal{F}_{bad} of bad hypotheses and assume that observations follow distribution D
- For $\hat{f} \in \mathcal{F}$ define the error function

$$e(\hat{f}) = P(\hat{f}(x) \neq f(x) | x \sim D)$$

• We say that a hypothesis $\hat{f} \notin \mathcal{F}_{bad}$ is approximately correct if $e(\hat{f}) \leq \varepsilon$

PAC Learning

• For incorrect hypothesis $\hat{f} \in \mathcal{F}_{bad}$ we have

$$P(\hat{f}(x) = f(x) | x \sim D) \le 1 - \varepsilon$$

• Considering n observations

$$P(\hat{f}(x_i) = f(x_i) | x_1, \dots, x_n \sim D \text{ iid}) \le (1 - \varepsilon)^n$$

- Thus the chance that \mathcal{F}_{bad} contains at least one hypothesis which is consistent on the n observations is bounded above by $|\mathcal{F}|(1-\varepsilon)^n$
- If our algorithm returns a hypothesis which is consistent on *n* examples, we want to minimize the chance that it is probably incorrect, thus we require

$$|\mathcal{F}|(1-\varepsilon)^n \le \delta$$

PAC Learning

Assume that

$$n \ge \varepsilon^{-1}(\log |\mathcal{F}| - \log \delta)$$

- Then from $e^x \ge 1 + x$ and the assumption above $n\log(1-\varepsilon) \le n\log e^{-\varepsilon} = -n\varepsilon \le \log \delta \log |\mathcal{F}|$
- This is equivalent to

$$|\mathcal{F}|(1-\varepsilon)^n \le \delta$$

• Unfortunately, if \mathcal{F} is a set of all Boolean functions of k attributes, we have $|\mathcal{F}|=2^{2^k}$, and thus approximately $n\geq \varepsilon^{-1}(2^k-\log\delta)$ has the exponential growth in this case

Summary of this lecture

- What is Machine Learning
- Supervised Learning
 - Formulation
 - Hypothesis Space \mathcal{H} for Curve Fitting
- Computational Learning Theory
 - Bias-variance trade-off
 - Model selection
 - Probably approximately correct (PAC) learning

Reading Materials for This Lecture

- [1] Gradient Descent: http://ruder.io/optimizing-gradient-descent/
- [2] Al book (P693-704 & P708-718).
- [3] Hastie, Tibshirani, Friedman, The Elements of Statistical Learning (Chapters 2, 7, 10)
- [4] L.G. Valiant, A Theory of the Learnable, Communications of the ACM 27(11):1134–1142 (1984).