Viet Tran Quoc Hoang

ID: 01607460 09/23/2017

COMP 3040: Foundation of Comp. Sci.

HW1

- **0.1** a) A set of all odd natural numbers.
 - b) A set of all even integer number.
 - c) A set of all even numbers.
 - d) A set of all positive multiples of 6.
 - e) A set of all binary numbers that are also palindromes.
 - f) A set of all odd integer numbers.
- **0.2** a) {1, 10, 100}
 - b) $\{n \in Z \mid n > 5\}$
 - c) $\{n \in N \mid n < 5\}$
 - d) {abd}
 - e) $\{\}$ or ε
 - d)Ø
- **0.3** Let A be the set $\{x,y,z\}$ and B be the set $\{x,y\}$.
 - a) Is A a subset of B? **No.**
 - a) Is B a subset of A? **Yes.**
 - c) What is $A \cup B$? $\{x,y,z\}$.
 - d) What is $A \cap B$? $\{x,y\}$.
 - e) What is A × B? $\{(x,x), (x,y), (y,x), (y,y), (z,x), (z,y)\}$
 - f) What is the power set of B? $P(B) = \{\emptyset, \{x\}, \{y\}, \{x,y\}\}.$
- **0.4** If A has a and B has b elements, how many elements are in $A \times B$? Explain your answer.

For each element in A there will be B ordered pairs, so there will be $a \times b$ elements.

0.5 If C is a set with c elements, how many elements are in the power set of C? Explain your answer.

The fomula to determine a power set is $|P(C)| = 2^c$. Where C is a set and c is a number elements of the set.

- **0.6** a) f(2) = 7
 - b) Domain $f = \{1, 2, 3, 4, 5\}$ and Range $f = \{6, 7\}$
 - c) g(2, 10) = 6
 - d) Domain $g = \{1, 2, 3, 4, 5\}$ and Range $g = \{6, 7, 8, 9, 10\}$
 - e) g(4,f(4)) = g(4,7) = 8

- **0.7** For each part, give a relation what satisfies the condition.
 - a) Reflexive and symmetric but not transitive

Let R be a set where $R = \{(a,a), (b,b), (c,c), (a,b), (b,a), (b,c), (c,b)\}$ Reflexive: (a,a), (b,b)Symmetric: $(a,b), (b,a), (b,c), (c,b) \in R$ Not transitive because $(a,b), (b,c) \in R$ while $(a,c) \notin R$

b) Reflexive and transitive but not symmetric

Let R be a set, $R = \{(a,a), (b,b), (c,c), (a,b), (b,c), (a,c)\}$ Reflexive: (a,a), (b,b), (c,c)Not symmetric because $(a,b) \in R$ but $(b,a) \notin R$ Trasitive: $(a,b), (b,c) \in R$ and $(a,c) \in R$

c) Symmetric and transitive but not reflexice

Let R be a set, $R = \{(a,b), (b,c), (a,c), (c,a), (a,b), (b,a)\}$ Not reflexive: $(a,a), (b,b), (c,c) \notin R$ Symmetric: $(a,b), (b,a), (b,c), (c,b), (a,c), (c,a) \in R$ Trasitive: $(a,b), (b,c) \in R$ also $(a,c) \in R$

- **0.8** Consider the undirected graph G = (V,E) where V, the set of nodes, is $\{1, 2, 3, 4\}$ and E, the set of edges, is $\{\{1, 2\}, \{2, 3\}, \{1, 3\}, \{2, 4\}, \{1, 4\}\}$. Draw the graph G. What are the degrees of each nodes? Indicate a path from node 3 to node 4 on your drawing of G.
 - a) Graph G

b) Degrees of node

Node	Degrees
1	3
2	3
3	2
4	2

0.9 Write a formal description of the following graph.

 $\begin{array}{l} G=(V,\!E) \ {\rm for \ any \ order} \\ G=\{\{1,\,2,\,3,\,4,\,5,\,6\}, \{(1,\,4),\,(1,\,5),\,(1,\,6),\,(2,\,4),\,(2,\,5),\,(2,\,6),\,(3,\,4),\,(3,\,5),\,(3,6)\} \end{array}$