6. BRAKES

BRAKES: It's machine member used either to reduce the motion of machine or to bring the machine to rest.

KE Consumption Friction (Brakes) is applied and heat is generated. Mechanical Energy Consumption PE Consumption E.g....Case of Flat surface and inclined surface.

SHOE BRAKES:

P = Applied Load on operating lever,

R = Reaction between friction lining and rotating wheel,

1 = Shortest distance between the Line of action of 'P' and fulcrum 'O',

a = Shortest distance between the Line of action of 'R' and fulcrum 'O'.

b = Shortest distance between the Line of action of 'F' and fulcrum 'O', 2θ = Angle subtended by shoe at centre, Applied moment = Pl (Clockwise) Reaction moment = Ra (Anti-Clockwise)

Non-Self Energising Shoe Brake:

Friction Force $F = \mu R$ (Leftward on lever and Rightward on Wheel)

Additional moment = Fb (Anti-Clockwise)

If there is no additional moment in the direction of applied moment, the brake is said to be Non-Self Energising Shoe Brake.

At equilibrium Sum of moments at 'O' = 0

$$R = Pl/(a + \mu b)$$

Braking Torque = $F r_d = \mu R r_d$, Where $r_d = Radius$ of wheel

Self-Energising Shoe Brake:

Friction Force $F = \mu R$ (Rightward on lever and Leftward on Wheel)

Additional moment = Fb (Clockwise)

If there is additional moment in the direction of applied moment, the brake is said to be Self-Energising Shoe Brake.

At equilibrium Sum of moments at 'O' = 0

$$R = Pl/(a - \mu b)$$

Braking Torque = $F r_d = \mu R r_d$, Where $r_d = Radius$ of wheel

Self-Locking of Shoe Brake: It's extreme condition of self-energising brake.

At without Applied Load on operating lever (P = 0), Braking is present.

This effect encounters by extreme wear of brakes. Useful in Cranes.

Hence, limiting Condition for Self-Locking \Rightarrow a = μ b

Equivalent Co-efficient of friction (μ '):

Uniform Pressure condition $=> 2\theta \le 45^{\circ} =>$ Short Shoe => Braking Torque = F $r_d = \mu R r_d$

 $=> 2\theta > 45^{\circ} => \text{Long Shoe} => \text{Braking Torque} = F r_d = \mu' R r_d$ Uniform wear condition

Where, $\mu' = \frac{4 \mu \sin \theta}{2\theta + \sin 2\theta}$

SIMPLE BAND BRAKES: One end of band is connected to operating lever and another end to fulcrum.

$$F = T_1 - T_2$$

$$\frac{T_1}{T_2} = \frac{P_{max}}{P_{min}} = e^{\mu\theta}$$

$$P_{max} = \frac{T_1}{r_d w}, P_{min} = \frac{T_2}{r_d w}$$
Braking Torque, $T_b = (T_1 - T_2)r_d$

Simple Band Brake is never selfenergising brake.

F = Total Friction Force, T1= Tension on Tight Side,

T2 = Tension on Slack Side,

 θ = Angle of wrap,

 P_{max} = Maximum radial pressure due to normal reaction force on element

 $P_{min} = Minimum radial pressure due$ to normal reaction force on element w = Width of band

DIFFERENTIAL BAND BRAKES: No end of band is passing through fulcrum.

$$\frac{a}{b} \le \frac{T_1}{T_2} \le \frac{b}{a} < 1$$

Both direction of rotation of brake It's self-energise but only in one direction of rotation it's self-locking.

Correct Sequence: b-O-a (b-L)

BAND-BLOCK BRAKES:

Braking Torque,	2θ = Angle subtended by shoe at centre,	$r_d = Radius of wheel,$
$T_b = (T_1 - T_2)(r_d + t)$	P = Applied Load on operating lever,	t = Thickness of shoes,
$T_1 \qquad [1 + \mu \tan \theta]^n$	T = Reaction Force,	
$\left \frac{1}{T_2} \right = \left \frac{1}{1 - \mu \tan \theta} \right $	n = No. of shoes,	