INTEGRABLE AND WEYL MODULES FOR QUANTUM AFFINE sl_2 .

VYJAYANTHI CHARI AND ANDREW PRESSLEY

0. Introduction

Let \mathfrak{t} be an arbitrary symmetrizable Kac-Moody Lie algebra and $\mathbf{U}_q(\mathfrak{t})$ the corresponding quantized enveloping algebra of \mathfrak{t} defined over $\mathbf{C}(q)$. If μ is a dominant integral weight of \mathfrak{t} then one can associate to it in a natural way an irreducible integrable $\mathbf{U}_q(\mathfrak{t})$ -module $L(\mu)$. These modules have many nice properties and are well understood, [K], [L1].

More generally, given any integral weight λ , Kashiwara [K] defined an integrable $\mathbf{U}_q(\mathfrak{t})$ -module $V^{max}(\lambda)$ generated by an extremal vector v_{λ} . If w is any element of the Weyl group W of \mathfrak{t} , then one has $V^{max}(\lambda) \cong V^{max}(w\lambda)$. Further, if λ is in the Tits cone, then $V^{max}(\lambda) \cong L(w_0\lambda)$, where $w_0 \in W$ is such that $w_0\lambda$ is dominant integral. In the case when λ is not in the Tits cone, the module $V^{max}(\lambda)$ is not irreducible and very little is known about it, although it is known that it admits a crystal basis, [K].

In the case when $\mathfrak t$ is an affine Lie algebra, an integral weight λ is not in the Tits cone if and only if λ has level zero. Choose $w_0 \in W$ so that $w_0\lambda$ is dominant with respect to the underlying finite-dimensional simple Lie algebra of $\mathfrak t$. In as yet unpublished work, Kashiwara proves that $V^{max}(\lambda) \cong W_q(w_0\lambda)$, where $W_q(w_0\lambda)$ is an integrable $\mathbf U_q(\mathfrak t)$ -module defined by generators and relations analogous to the definition of $L(\mu)$.

In [CP4], we studied the modules $W_q(\lambda)$ further. In particular, we showed that they have a family $W_q(\pi)$ of non–isomorphic finite-dimensional quotients which are maximal, in the sense that any another finite-dimensional quotient is a proper quotient of some $W_q(\pi)$. In this paper, we show that, if t is the affine Lie algebra associated to sl_2 and $\lambda=m\in\mathbf{Z}^+$, the modules $W_q(\pi)$ all have the same dimension 2^m . This is done by showing that the modules $W_q(\pi)$, under suitable conditions, have a q=1 limit, which allows us to reduce to the study of the corresponding problem in the classical case carried out in [CP4]. The modules $W_q(\pi)$ have a unique irreducible quotient $V_q(\pi)$, and we show that these are all the irreducible finite-dimensional $\mathbf{U}_q(\mathfrak{t})$ -modules. In [CP1], [CP2], a similar classification was obtained by regarding q as a complex number and $\mathbf{U}_q(\mathfrak{t})$ as an algebra over \mathbf{C} ; in the present situation, we have to allow modules defined over finite extensions of $\mathbf{C}(q)$.

We are then able to realize the modules $W_q(m)$ as being the space of invariants of the action of the Hecke algebra \mathcal{H}_m on the tensor product $(V \otimes \mathbf{C}(q)[t, t^{-1}])^{\otimes m}$, where V is a two-dimensional vector space over $\mathbf{C}(q)$. Again, this is done by reducing to the case of q = 1.

In the last section, we indicate how to extend some of the results of this paper to the general case. We conjecture that the dimension of the modules $W_q(\pi)$ depends only on λ , and we give a formula for this dimension.

1. Preliminaries and Some Identities

Let sl_2 be the complex Lie algebra with basis $\{x^+, x^-, h\}$ satisfying

$$[x^+, x^-] = h, \quad [h, x^{\pm}] = \pm 2x^{\pm}.$$

Let $\mathfrak{h} = \mathbf{C}h$ be the Cartan subalgebra of sl_2 , let $\alpha \in \mathfrak{h}^*$ the positive root of sl_2 , given by $\alpha(h) = 2$, and set $\omega = \alpha/2$. Let $s : \mathfrak{h}^* \to \mathfrak{h}^*$ be the simple reflection given by $s(\alpha) = -\alpha$.

The extended loop algebra of sl_2 is the Lie algebra

$$L^e(\mathfrak{g}) = sl_2 \otimes \mathbf{C}[t, t^{-1}] \oplus \mathbf{C}d,$$

with commutator given by

$$[d, x \otimes t^r] = rx \otimes t^r, \quad [x \otimes t^r, y \otimes t^s] = [x, y] \otimes t^{r+s}$$

for $x, y \in sl_2$, $r, s \in \mathbf{Z}$. The loop algebra $L(\mathfrak{g})$ is the subalgebra $sl_2 \otimes \mathbf{C}[t, t^{-1}]$ of $L^e(\mathfrak{g})$. Let $\mathfrak{h}^e = \mathfrak{h} \oplus \mathbf{C}d$. Define $\delta \in (\mathfrak{h}^e)^*$ by

$$\delta(\mathfrak{h}) = 0, \quad \delta(d) = 1.$$

Extend $\lambda \in \mathfrak{h}^*$ to an element of $(\mathfrak{h}^e)^*$ by setting $\lambda(d) = 0$. Set $P^e = \mathbf{Z}\omega \oplus \mathbf{Z}\delta$, and define P^e_+ in the obvious way. We regard s as acting on $(\mathfrak{h}^e)^*$ by setting $s(\delta) = \delta$.

For any $x \in sl_2$, $m \in \mathbb{Z}$, we denote by x_m the element $x \otimes t^m \in L^e(\mathfrak{g})$. Set

$$e_1^{\pm} = x^{\pm} \otimes 1, \quad e_0^{\pm} = x^{\mp} \otimes t^{\pm 1}.$$

Then, the elements e_i^{\pm} , i = 0, 1, and d generate $L^e(\mathfrak{g})$.

For any Lie algebra \mathfrak{a} , the universal enveloping algebra of \mathfrak{a} is denoted by $\mathbf{U}(\mathfrak{a})$. We set

$$\mathbf{U}(L^e(\mathfrak{g})) = \mathbf{U}^e, \ \mathbf{U}(L(\mathfrak{g})) = \mathbf{U}, \ \mathbf{U}(\mathfrak{g}) = \mathbf{U}^{fin}.$$

Let $\mathbf{U}(<)$ (resp. $\mathbf{U}(>)$) be the subalgebra of \mathbf{U} generated by the x_m^- (resp. x_m^+) for $m \in \mathbf{Z}$. Set $\mathbf{U}^{\mathrm{fin}}(<) = \mathbf{U}(<) \cap \mathbf{U}^{\mathrm{fin}}$ and define $\mathbf{U}^{\mathrm{fin}}(>)$ similarly. Finally, let $\mathbf{U}(0)$ be the subalgebra of \mathbf{U} generated by the h_m for all $m \neq 0$. We have

$$\begin{split} \mathbf{U}^{\mathrm{fin}} &= \mathbf{U}^{\mathrm{fin}}(<)\mathbf{U}(\mathfrak{h})\mathbf{U}^{\mathrm{fin}}(>), \\ \mathbf{U}^{e} &= \mathbf{U}(<)\mathbf{U}(0)\mathbf{U}(\mathfrak{h}^{e})\mathbf{U}(>). \end{split}$$

Now let q be an indeterminate, let $\mathbf{K} = \mathbf{C}(q)$ be the field of rational functions in q with complex coefficients, and let $\mathbf{A} = \mathbf{C}[q, q^{-1}]$ be the subring of Laurent polynomials. For $r, m \in \mathbf{N}, m \geq r$, define

$$[m] = \frac{q^m - q^{-m}}{q - q^{-1}}, \quad [m]! = [m][m - 1] \dots [2][1], \quad \begin{bmatrix} m \\ r \end{bmatrix} = \frac{[m]!}{[r]![m - r]!}.$$

Then,
$$\begin{bmatrix} m \\ r \end{bmatrix} \in \mathbf{A}$$
 for all $m \ge r \ge 0$.

Let \mathbf{U}_q^e be the quantized enveloping algebra over \mathbf{K} associated to $L^e(\mathfrak{g})$. Thus, \mathbf{U}_q^e is the quotient of the quantum affine algebra obtained by setting the central generator equal to 1. It follows from [Dr], [B], [J] that \mathbf{U}_q^e is the algebra with generators \mathbf{x}_r^{\pm} $(r \in \mathbf{Z})$, $K^{\pm 1}$, \mathbf{h}_r $(r \in \mathbf{Z} \setminus \{0\})$, $D^{\pm 1}$, and the following defining

relations:

$$KK^{-1} = K^{-1}K = 1, \quad DD^{-1} = D^{-1}D = 1, \quad DK = KD,$$

$$K\mathbf{h}_{r} = \mathbf{h}_{r}K, \quad K\mathbf{x}_{r}^{\pm}K^{-1} = q^{\pm 2}\mathbf{x}_{r}^{\pm},$$

$$D\mathbf{x}_{r}^{\pm}D^{-1} = q^{r}\mathbf{x}_{r}^{\pm}, \quad D\mathbf{h}_{r}D^{-1} = q^{r}\mathbf{h}_{r},$$

$$[\mathbf{h}_{r}, \mathbf{h}_{s}] = 0, \quad [\mathbf{h}_{r}, \mathbf{x}_{s}^{\pm}] = \pm \frac{1}{r}[2r]\mathbf{x}_{r+s}^{\pm},$$

$$\mathbf{x}_{r+1}^{\pm}\mathbf{x}_{s}^{\pm} - q^{\pm 2}\mathbf{x}_{s}^{\pm}\mathbf{x}_{r+1}^{\pm} = q^{\pm 2}\mathbf{x}_{r}^{\pm}\mathbf{x}_{s+1}^{\pm} - \mathbf{x}_{s+1}^{\pm}\mathbf{x}_{r}^{\pm},$$

$$[\mathbf{x}_{r}^{+}, \mathbf{x}_{s}^{-}] = \frac{\psi_{r+s}^{+} - \psi_{r+s}^{-}}{q - q^{-1}},$$

where the ψ_r^{\pm} are determined by equating powers of u in the formal power series

$$\sum_{r=0}^{\infty} \psi_{\pm r}^{\pm} u^{\pm r} = K^{\pm 1} \exp\left(\pm (q - q^{-1}) \sum_{s=1}^{\infty} \mathbf{h}_{\pm s} u^{\pm s}\right).$$

Define the q-divided powers

$$(\mathbf{x}_k^{\pm})^{(r)} = \frac{(\mathbf{x}_k^{\pm})^r}{[r]!},$$

for all $k \in \mathbf{Z}$, $r \geq 0$.

Define

$$\mathbf{\Lambda}^{\pm}(u) = \sum_{m=0}^{\infty} \mathbf{\Lambda}_{\pm m} u^m = \exp\left(-\sum_{k=1}^{\infty} \frac{\mathbf{h}_{\pm k}}{[k]} u^k\right).$$

The subalgebras \mathbf{U}_q , $\mathbf{U}_q^{\text{fin}}$, $\mathbf{U}_q(<)$, $\mathbf{U}(0)$ etc., are defined in the obvious way. Let $\mathbf{U}_q^e(0)$ be the subalgebra of \mathbf{U}_q^e generated by $\mathbf{U}(0)$, $K^{\pm 1}$ and $D^{\pm 1}$. The following result is a simple corollary of the PBW theorem for \mathbf{U}_q^e , [B].

Lemma 1.1.
$$\mathbf{U}_q^e = \mathbf{U}_q(<)\mathbf{U}_q^e(0)\mathbf{U}_q(>)$$
.

For any invertible element $x \in \mathbf{U}_q^e$ and any $r \in \mathbf{Z}$, define

$$\begin{bmatrix} x \\ r \end{bmatrix} = \frac{xq^r - x^{-1}q^{-r}}{q - q^{-1}}.$$

Let $\mathbf{U}_{\mathbf{A}}^{e}$ be the **A**-subalgebra of \mathbf{U}_{q}^{e} generated by the $K^{\pm 1}$, $(\mathbf{x}_{k}^{\pm})^{(r)}$ $(k \in \mathbf{Z}, r \geq 0)$, $D^{\pm 1}$ and $\begin{bmatrix} D \\ r \end{bmatrix}$ $(r \in \mathbf{Z})$. Then, [L1], [BCP],

$$\mathbf{U}_{a}^{e} \cong \mathbf{U}_{\mathbf{A}}^{e} \otimes_{\mathbf{A}} \mathbf{K}.$$

Define $\mathbf{U_A}(<)$, $\mathbf{U_A}(0)$ and $\mathbf{U_A}(>)$ in the obvious way. Let $\mathbf{U_A^e}(0)$ be the Asubalgebra of $\mathbf{U_A}$ generated by $\mathbf{U_A}(0)$ and the elements $K^{\pm 1}$, $D^{\pm 1}$, $\begin{bmatrix} K \\ r \end{bmatrix}$ and $\begin{bmatrix} D \\ r \end{bmatrix}$ $(r \in \mathbf{Z})$. The following is proved as in Proposition 2.7 in [BCP].

Proposition 1.1.
$$\mathbf{U}_{\mathbf{A}}^e = \mathbf{U}_{\mathbf{A}}(<)\mathbf{U}_{\mathbf{A}}(0)\mathbf{U}_{\mathbf{A}}^e(\mathfrak{h})\mathbf{U}_{\mathbf{A}}(>).$$

The next lemma is easily checked.

Lemma 1.2.

(i) There is a unique C-linear anti-automorphism Ψ of \mathbf{U}_q^e such that $\Psi(q)=q^{-1}$ and

$$\begin{split} &\Psi(K)=K, \quad \Psi(D)=D, \\ &\Psi(x_r^\pm)=x_r^\pm, \quad \Psi(h_r)=-h_r, \end{split}$$

for all $r \in \mathbf{Z}$.

(ii) There is a unique ${\bf K}$ -algebra automorphism Φ of ${\bf U}_q^e$ such that

$$\Phi(\mathbf{x}_r^\pm) = \mathbf{x}_{-r}^\pm, \quad \Phi(\Lambda^\pm(u)) = \Lambda^\mp(u).$$

(iii) For $0 \neq a \in \mathbf{K}$, there exists a **K**-algebra automorphism τ_a of \mathbf{U}_q^e such that

$$\tau_a(\mathbf{x}_r^{\pm}) = a^r \mathbf{x}_r^{\pm}, \quad \tau_a(\mathbf{h}_r) = a^r \mathbf{h}_r, \quad \tau_a(K) = K, \quad \tau_a(D) = D,$$

for $r \in \mathbf{Z}$. Moreover,

$$\tau_a(\mathbf{\Lambda}_r) = a^r \mathbf{\Lambda}_r.$$

2. The modules $W_q(m)$

In this section, we recall the definition and elementary properties of the modules $W_q(\lambda)$ from [CP4], and state the main theorem of this paper.

Definition 2.1. A \mathbf{U}_q^e -module V_q is said to be of $type\ 1$ if

$$V_q = \bigoplus_{\lambda \in P^e} (V_q)_{\lambda},$$

where the weight space

$$(V_q)_{\lambda} = \{ v \in V_q : K.v = q^{\lambda(h)}v, D.v = q^{\lambda(d)}v \}.$$

A \mathbf{U}_q^e -module of type 1 is said to be *integrable* if the elements \mathbf{x}_k^{\pm} act locally nilpotently on V_q for all $k \in \mathbf{Z}$. The analogous definitions for \mathbf{U}^e , \mathbf{U}^{fin} and $\mathbf{U}_q^{\text{fin}}$ are clear.

We shall only be interested in modules of type 1 in this paper. It is well known [L1] that, if $m \geq 0$, there is a unique irreducible $\mathbf{U}_q^{\mathrm{fin}}$ -module $V_q^{\mathrm{fin}}(m)$, of dimension m+1, generated by a vector v such that

$$K.v = q^m v, \quad x_0^+.v = 0, \quad (x_0^-)^{m+1}.v = 0.$$

Recall [L2] that, if V_q is any integrable sl_2 -module, then

$$\dim_{\mathbf{K}}(V_q)_n = \dim_{\mathbf{K}}(V_q)_{-n},$$

for all $n \in \mathbf{Z}$. Let V(m) denote the (m+1)-dimensional irreducible representation of sl_2 .

Define the following generating series in an indeterminate u with coefficients in \mathbf{U}_q :

$$\tilde{\mathbf{X}}^{-}(u) = \sum_{m=-\infty}^{\infty} \mathbf{x}_m^{-} u^{m+1}, \qquad \mathbf{X}^{-}(u) = \sum_{m=1}^{\infty} \mathbf{x}_m^{-} u^m,$$

$$\mathbf{X}^{+}(u) = \sum_{m=0}^{\infty} \mathbf{x}_m^{+} u^m, \qquad \mathbf{X}_0^{-}(u) = \sum_{m=0}^{\infty} \mathbf{x}_m^{-} u^{m+1},$$

$$\tilde{\mathbf{H}}(u) = \sum_{m=-\infty}^{\infty} \mathbf{h}_m u^{m+1}, \qquad \mathbf{\Lambda}^{\pm}(u) = \sum_{m=0}^{\infty} \mathbf{\Lambda}_{\pm m} u^m = \exp\left(-\sum_{k=1}^{\infty} \frac{\mathbf{h}_{\pm k}}{[k]} u^k\right).$$

Given a power series f in u, we let f_s denote the coefficient of u^s in f.

For any integer $m \geq 0$, let $I_q^e(m)$ be the left ideal in \mathbf{U}_q^e generated by the elements

$$\mathbf{x}_{k}^{+} \quad (k \in \mathbf{Z}), \quad K - q^{m}, \quad D - 1,$$

$$\mathbf{\Lambda}_{r} \quad (|r| > m), \quad \mathbf{\Lambda}_{m} \mathbf{\Lambda}_{-r} - \mathbf{\Lambda}_{m-r} \quad (1 \le r \le m),$$

$$\left(\tilde{\mathbf{X}}_{i}^{-}(u)\mathbf{\Lambda}^{+}(u)\right)_{r} \mathbf{U}(0) \quad (r \in \mathbf{Z}), \quad \left(\mathbf{X}_{0}^{-}(u)^{r}\mathbf{\Lambda}^{+}(u)\right)_{s} \mathbf{U}(0) \quad (r \ge 1, \ |s| > m).$$

The ideal $I_q(m)$ in \mathbf{U}_q is defined in the obvious way (by omitting D from the definition).

Set

$$W_q(m) = \mathbf{U}_q^e / I_q^e(m) \cong \mathbf{U}_q / I_q(m).$$

Clearly, $W_q(m)$ is a left \mathbf{U}_q^e -module and a right $\mathbf{U}_q(0)$ -module. Further, the left and right actions of $\mathbf{U}_q(0)$ on $W_q(m)$ commute. Let w_m denote the image of 1 in $W_q(m)$. If $I_q(m,0)$ (resp. $I_{\mathbf{A}}(m,0)$) is the left ideal in $\mathbf{U}_q(0)$ (resp. $\mathbf{U}_{\mathbf{A}}(0)$) generated by the elements $\mathbf{\Lambda}_m$ ($|m| > \lambda(h)$) and $\mathbf{\Lambda}_{\lambda(h)}\mathbf{\Lambda}_{-m} - \mathbf{\Lambda}_{\lambda(h)-m}$ ($1 \le m \le \lambda(h)$), then

$$\mathbf{U}_q(0).w_m \cong \mathbf{U}_q(0)/I_q(m,0)$$
 (resp. $\mathbf{U}_{\mathbf{A}}(0).w_m \cong \mathbf{U}_{\mathbf{A}}(0)/I_{\mathbf{A}}(m,0)$)

as $\mathbf{U}_q(0)$ -modules (resp. as $\mathbf{U}_{\mathbf{A}}(0)$ -modules). The \mathbf{U}^e -modules W(m) are defined in the analogous way.

Let $\mathbf{U}_q(+)$ be the subalgebra of \mathbf{U}_q generated by the $\mathbf{x}_k \pm$ for $k \geq 0$. The subalgebras $\mathbf{U}_{\mathbf{A}}(+)$ and $\mathbf{U}(+)$ of $\mathbf{U}_{\mathbf{A}}$ and \mathbf{U} , respectively, are defined in the obvious way. The following proposition was proved in [CP4].

Proposition 2.1. Let $m \ge 1$.

(i) We have

$$\mathbf{U}_{q}(0)/I_{q}(m,0) \cong \mathbf{K}[\mathbf{\Lambda}_{1},\mathbf{\Lambda}_{2},\cdots,\mathbf{\Lambda}_{m},\mathbf{\Lambda}_{m}^{-1}],$$

$$\mathbf{U}_{\mathbf{A}}(m,0)/I_{\mathbf{A}}(m,0) \cong \mathbf{A}[\mathbf{\Lambda}_{1},\mathbf{\Lambda}_{2},\cdots,\mathbf{\Lambda}_{m},\mathbf{\Lambda}_{m}^{-1}],$$

as algebras over **K** and **A**, respectively.

- (ii) The U^e -module $W_q(m)$ is integrable for all $m \ge 0$.
- (iii) $W_q(m) = \mathbf{U}_q(+).w_m$. In fact, $W_q(m)$ is spanned over \mathbf{K} by the elements

$$(x_0^-)^{(r_0)}(x_1^-)^{(r_1)}\cdots(x_{m-1}^-)^{(r_{m-1})}\mathbf{U}_q(0).w_m,$$

where $r_j \geq 0$, $\sum_i r_j \leq m$.

Analogous results hold for the **U**-modules W(m).

Let \mathcal{P}_m be the Laurent polynomial ring in m variables with complex coefficients. The symmetric group Σ_m acts on it in the obvious way; let $\mathcal{P}_m^{\Sigma_m}$ be the ring of symmetric Laurent polynomials. In view of Proposition 2.1, we see that

$$\mathbf{U}_q(0)/I_q(m,0) \cong \mathbf{K}\mathcal{P}_m^{\Sigma_m}, \ \mathbf{U}_{\mathbf{A}}/I_{\mathbf{A}}(m,0) \cong \mathbf{A}\mathcal{P}_m^{\Sigma_m},$$

where $\mathbf{K}\mathcal{P}_{m}^{\Sigma_{m}}$ denotes $\mathcal{P}_{m}^{\Sigma_{m}} \otimes \mathbf{K}$, etc.

Let V be the two-dimensional irreducible sl_2 -module with basis v_0 , v_1 such that

$$x^+.v_0 = 0$$
, $h.v_0 = v_0$, $x^-.v_0 = v_1$, $x^+.v_1 = v_0$, $h.v_1 = -v_1$, $x^-.v_1 = 0$.

Let $L(V) = V \otimes \mathbf{C}[t, t^{-1}]$ be the $L(sl_2)$ -module defined in the obvious way. Let $T^m(L(V))$ be the m-fold tensor power of L(V) and let $S^m(L(V))$ be its symmetric part. Then, $T^m(L(V))$ is a left **U**-module and a right \mathcal{P}_m -module, and $S^m(L(V))$ is a left **U**-module and a right $\mathcal{P}_m^{\Sigma_m}$ -module. The following was proved in [CP4].

Theorem 1. As left U-modules and right $\mathcal{P}_m^{\Sigma_m}$ -modules, we have

$$W(m) \cong S^m(L(V)).$$

In particular, W(m) is a free $\mathcal{P}_m^{\Sigma_m}$ -module of rank 2^m .

Our goal in this paper is to prove an analogue of this result for the $W_q(m)$. To do this, we introduce a suitable quantum analogue of $S^m(L(V))$ by using the Hecke algebra and a certain quantum symmetrizer.

Definition 2.2. The Hecke algebra \mathcal{H}_m is the associative unital algebra over $\mathbf{C}(q)$ generated by elements T_i (i = 1, 2, ..., m-1) with the following defining relations:

$$(T_i + 1)(T_i - q^2) = 0,$$

 $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1},$
 $T_i T_j = T_j T_i \text{ if } |i - j| > 1.$

Set $L_q(V) = L(V) \otimes \mathbf{K}$. It is easily checked that the following formulas define an action of \mathbf{U}_q^e on $L_q(V)$:

(2.1)
$$x_k^{\pm}.(v_{\pm} \otimes t^r) = 0, \ x_k^{\pm}.(v_{\mp} \otimes t^r) = v_{\pm} \otimes t^{k+r},$$

(2.2)
$$\Psi^{+}(u).(v_{\pm} \otimes t^{r}) = v_{\pm} \otimes \frac{q^{\pm 1} - q^{\mp 1}tu}{1 - tu}t^{r},$$

(2.3)
$$\Psi^{-}(u).(v_{\pm} \otimes t^{r}) = v_{\pm} \otimes \frac{q^{\mp 1} - q^{\pm 1}t^{-1}u}{1 - t^{-1}u}t^{r}.$$

The m-fold tensor product $T^m(L_q(V))$ is a left \mathbf{U}_q^e -module (the action being given by the comultiplication of \mathbf{U}_q) and a right \mathcal{P}_m -module (in the obvious way). Now, as a vector space over \mathbf{K} ,

$$L_q(V)^{\otimes m} \cong V^{\otimes m} \otimes_{\mathbf{K}} \mathbf{K}[t_1^{\pm 1}, \dots, t_m^{\pm 1}],$$

and Σ_m acts naturally (on the right) on both $V^{\otimes m}$ and $\mathbf{K}[t_1^{\pm 1}, \dots, t_m^{\pm 1}]$ by permuting the variables. If $\mathbf{v} \in V^{\otimes m}$ and $f \in \mathbf{K}[t_1^{\pm 1}, \dots, t_m^{\pm 1}]$, denote the action of $\sigma \in \Sigma_m$ by \mathbf{v}^{σ} and f^{σ} , respectively. Let σ_i be the transposition $(i, i+1) \in \Sigma_m$.

Proposition 2.2. ([KMS, Section 1.2]) The Hecke algebra \mathcal{H}_m acts on $L_q(V)^{\otimes m}$ on the right, the action of the generators being given as follows:

$$(v_{t_1} \otimes \cdots \otimes v_{t_m})^{\sigma_i} \otimes f^{\sigma_i} - (q^2 - 1)(v_{t_1} \otimes \cdots \otimes v_{t_m}) \otimes \frac{t_{i+1}f^{\sigma_i} - t_{i}f}{t_i - t_{i+1}}$$

$$if \ t_i = +, \ t_{i+1} = -,$$

$$-v_{t_1} \otimes \cdots \otimes v_{t_m} \otimes f^{\sigma_i} - (q^2 - 1)(v_{t_1} \otimes \cdots \otimes v_{t_m}) \otimes \frac{t_{i}(f^{\sigma_i} - f)}{t_i - t_{i+1}}$$

$$if \ t_i = t_{i+1},$$

$$-q(v_{t_1} \otimes \cdots \otimes v_{t_m})^{\sigma_i} \otimes f^{\sigma_i} - (q^2 - 1)(v_{t_1} \otimes \cdots \otimes v_{t_m}) \otimes \frac{t_{i}(f^{\sigma_i} - f)}{t_i - t_{i+1}}$$

$$if \ t_i = -, \ t_{i+1} = +.$$

Moreover, this action commutes with the left action of \mathbf{U}_q^e on $L_q(V)$ and the right action of $\mathbf{K}\mathcal{P}_m^{\Sigma_m}$.

As is well known, the second and third relations in the definition of \mathcal{H}_m imply that, if $\sigma = \sigma_{i_1} \dots \sigma_{i_N}$ is a reduced expression for $\sigma \in \Sigma_m$, so that N is the length $\ell(\sigma)$, the element $T_{\sigma} = T_{i_1} \dots T_{i_N} \in \mathcal{H}_m$ depends only on σ , and is independent of the choice of its reduced expression. We define the symmetrizing operator

$$\mathcal{S}^{(m)}: L_q(V)^{\otimes m} \to L_q(V)^{\otimes m}$$

by

$$\mathcal{S}^{(m)} = \frac{1}{[m]!} \sum_{\sigma \in \Sigma} (-q^{-2})^{\ell(\sigma)} T_{\sigma}.$$

Proposition 2.3. As left \mathbf{U}_q^e -modules and right $\mathbf{K}\mathcal{P}_m^{\Sigma_m}$ -modules, we have

$$L_q(V)^{\otimes m} = im(\mathcal{S}^{(m)}) \oplus ker(\mathcal{S}^{(m)}).$$

Proof. It is clear from Proposition 2.2 that $\operatorname{im}(\mathcal{S}^{(m)})$ and $\operatorname{ker}(\mathcal{S}^{(m)})$ are submodules for both the right and left actions.

The following proof is adapted from that of Proposition 1.1 in [KMS]. For each $i = 1, \ldots, m-1$, we have a factorization

$$S^{(m)} = \left(\sum_{\sigma'} (-q^{-2})^{\ell(\sigma')} T_{\sigma'}\right) (1 - q^{-2} T_i),$$

where σ' ranges over $\Sigma_m/\{1,\sigma_i\}$. From this and the first of the defining relations of \mathcal{H}_m , it follows that

$$\mathcal{S}^{(m)}(T_i+1)=0.$$

In other words, T_i acts on the right on $\operatorname{im}(\mathcal{S}^{(m)})$ as multiplication by -1. It follows that $\mathcal{S}^{(m)}$ acts on $\operatorname{im}(\mathcal{S}^{(m)})$ by multiplication by the scalar

$$\frac{1}{[m]!} \sum_{\sigma \in \Sigma_m} (q^{-2})^{\ell(\sigma)} = \frac{1}{[m]!} \prod_{l=1}^m \frac{1 - q^{-2l}}{1 - q^{-2}} = q^{-m(m-1)/2}.$$

Hence,

$$S^{(m)}(S^{(m)} - q^{-m(m-1)/2}) = 0,$$

and this implies the proposition.

As in [KMS], define an ordered basis $\{u_m\}_{m\in\mathbb{Z}}$ of $L_q(V)$ by setting

$$u_{-2r} = v_{+} \otimes t^{r}, \quad u_{1-2r} = v_{-} \otimes t^{r}.$$

Let $u_{r_1} \otimes_S \cdots \otimes_S u_{r_m}$ be the image of $u_{r_1} \otimes \cdots \otimes u_{r_m}$ under the projection of $L_q(V)^{\otimes m}$ onto $L_q(V)^{\otimes m}/\ker(\mathcal{S}^{(m)})$. By Proposition 2.3, this can be identified with an element, which we also denote by $u_{r_1} \otimes_S \cdots \otimes_S u_{r_m}$, in $\operatorname{im}(\mathcal{S}^{(m)})$.

Proposition 2.4. The set $\{u_{r_1} \otimes_S \cdots \otimes_S u_{r_m} : r_1 \geq \cdots \geq r_m\}$ is a basis of the vector space $im(\mathcal{S}^{(m)})$. Further, $im(\mathcal{S}^{(m)})$ is a free $\mathbb{K}\mathcal{P}_m^{\Sigma_m}$ -module on 2^m generators.

Proof. The first statement in proved as in [KMS], Proposition 1.3. As for the second, for any $0 \le s \le m$, let $\operatorname{im}(\mathcal{S}^{(m)})_s$ be the subspace spanned by $u_{r_1} \otimes_S \cdots \otimes_S u_{r_m}$, where exactly s of the r_i are even. This space is naturally isomorphic as a right $\mathbf{K}\mathcal{P}_m^{\Sigma_m}$ -module to $\mathbf{K}\mathcal{P}_m^{\Sigma_s \times \Sigma_{m-s}}$. But this module is well-known to be free of rank $\binom{m}{s}$.

Let $\mathbf{w} = u_0 \otimes_S \cdots \otimes_S u_0$. Then, \mathbf{w} satisfies the defining relations of $W_q(m)$, so we have a map of left \mathbf{U}_q^e -modules and right $\mathbf{K} \mathcal{P}_m^{\Sigma_m}$ -modules $\eta_m : W_q(m) \to \operatorname{im}(\mathcal{S}^{(m)})$ that takes w_m to \mathbf{w} . The main theorem of this paper is

Theorem 2. The map η_m is an isomorphism. In particular, $W_q(m)$ is a free $\mathbb{K}\mathcal{P}_m^{\Sigma_m}$ -module of rank 2^m .

The theorem is deduced from the following two lemmas.

Lemma 2.1. Let \mathfrak{m} be any maximal ideal in $\mathbf{K}\mathcal{P}_m^{\Sigma_m}$, and let d be the degree of the field extension $\mathbf{K}\mathcal{P}_m^{\Sigma_m}/\mathfrak{m}$ of \mathbf{K} . Then,

$$dim_{\mathbf{K}} \frac{W_q(m)}{W_q(m)\mathfrak{m}} = 2^m d.$$

Lemma 2.2. The map η_m is surjective.

We defer the proofs of these lemmas to the next section. Once we have these two lemmas, the proof of Theorem 2 is completed in exactly the same way as Theorem 1. We include it here for completeness.

Proof of Theorem 2. Let K be the kernel of η_m . Since $\operatorname{im}(\mathcal{S}^{(m)})$ is a free, hence projective, right $\mathbf{K}\mathcal{P}_m^{\Sigma_m}$ -module by Proposition 2.4, it follows that

$$W_q(m) = \operatorname{im}(\mathcal{S}^{(m)}) \oplus K,$$

as right $\mathbf{K}\mathcal{P}_m^{\Sigma_m}$ -modules. Let \mathfrak{m} be any maximal ideal in $\mathbf{K}\mathcal{P}_m^{\Sigma_m}$. It follows from Lemma 2.1 and Proposition 2.4 that

$$K/K\mathfrak{m} = 0$$

as vector spaces over \mathbf{K} . Since this holds for all maximal ideals \mathfrak{m} , Nakayama's lemma implies that K=0, proving the theorem.

3. Proof of Lemmas 2.1 and 2.2

In preparation for the proof of Lemma 2.1, we first show that the modules in question are finite-dimensional. Recall that a maximal ideal in $\mathbf{K}\mathcal{P}_m^{\Sigma_m}$ is defined by an m-tuple of points $\boldsymbol{\pi}=(\pi_1,\cdots,\pi_m)$, with $\pi_m\neq 0$, in an algebraic closure $\overline{\mathbf{K}}$ of \mathbf{K} , i.e., it is the kernel of the homomorphism $ev_{\boldsymbol{\pi}}:\mathbf{K}\mathcal{P}_m^{\Sigma_m}\to\overline{\mathbf{K}}$ that sends $\boldsymbol{\Lambda}_i\to\pi_i$. Let $\mathbf{F}_{\boldsymbol{\pi}}$ be the smallest subfield of $\overline{\mathbf{K}}$ containing \mathbf{K} and π_1,\cdots,π_m . Clearly, $\mathbf{F}_{\boldsymbol{\pi}}$ is a finite-rank $\mathbf{U}_q(0)$ -module. Set

$$W_q(\boldsymbol{\pi}) = W_q(m) \otimes_{\mathbf{U}_q(0)} \mathbf{F}_{\boldsymbol{\pi}},$$

and let $w_{\pi} = w_m \otimes 1$. The U-modules $W(\pi)$ are defined similarly (with $\pi \in \mathbb{C}^m$). The following lemma is immediate from Proposition 2.1.

Lemma 3.1. We have

$$\mathbf{U}_q(0).w_{\boldsymbol{\pi}} = \mathbf{F}_{\boldsymbol{\pi}}w_{\boldsymbol{\pi}}.$$

Further, $W_q(\pi)$ is spanned over \mathbf{F}_{π} by the elements

$$(x_0^-)^{(r_0)}(x_1^-)^{(r-1)}\cdots(x_{m-1}^-)^{(r_{m-1})}$$

with $\sum_{i} r_i \leq m$.

In particular, $dim_{\mathbf{K}}W_q(\boldsymbol{\pi}) < \infty$.

The modules $W_q(m)$ and $W_q(\pi)$, together with their classical analogues, have the following universal properties.

Proposition 3.1. Let $\lambda \in P_e^+$.

- (i) Let V_q be any integrable \mathbf{U}_q^e -module generated by an element v of $(V_q)_m$ satisfying $\mathbf{U}_q(>).v=0$. Then, V_q is a quotient of $W_q(m)$.
- (ii) Let V_q be a finite-dimensional quotient \mathbf{U}_q -module of $W_q(m)$ and let v be the image of w_m in V_q . Assume that $\ker(ev_{\boldsymbol{\pi}}).v = 0$ for some $\boldsymbol{\pi} = (\pi_1, \dots, \pi_m)$, where the $\pi_i \in \overline{\mathbf{K}}$. Then, V_q is a quotient of $W_q(\boldsymbol{\pi})$.
- (iii) Let V_q be finite-dimensional \mathbf{U}_q -module generated by an element $v \in (V_q)_m$ and such that $\mathbf{U}_q(>).v = 0$ and $ker(ev_{\boldsymbol{\pi}}).v = 0$ for some $\boldsymbol{\pi}$. Then, V_q is a quotient of $W_q(\boldsymbol{\pi})$.

Analogous statements hold in the classical case.

Proof. This proposition was proved in [CP4] in the case when $\pi \in \mathbf{K}^m$. The proof in this case is identical, and follows immediately from the defining relations of $W_q(m)$ and $W_q(\pi)$.

One can now deduce the following theorem, which classifies the irreducible finite-dimensional representations of \mathbf{U}_q over \mathbf{K} .

Theorem 3. Let $\pi \in \overline{\mathbf{K}}^m$ be as above. Then, $W_q(\pi)$ has a unique irreducible quotient \mathbf{U}_q -module $V_q(\pi)$. Conversely, any irreducible finite-dimensional \mathbf{U}_q -module is isomorphic to $V_q(\pi)$ for a suitable choice of π .

Proof. To prove that $W_q(\pi)$ has a unique irreducible quotient, it suffices to prove that it has a unique maximal \mathbf{U}_q -submodule. For this, it suffices to prove that, if N is any submodule, then

$$N \cap W_q(\boldsymbol{\pi})_m = \{0\}.$$

Since $W_q(\pi)_m = \mathbf{U}_q(0).w_{\pi}$ is an irreducible $\mathbf{U}_q(0)$ -module, it follows that

$$N \cap W_q(\boldsymbol{\pi})_m \neq \{0\} \implies w_{\boldsymbol{\pi}} \in N,$$

and hence that $N = W_q(\pi)$. Conversely, if V is any finite-dimensional irreducible module, one can show as in [CP1], [CP4] that there exists $0 \neq v \in V_m$ such that $\mathbf{U}_q(>).v = 0$ and that $\mathbf{\Lambda}_r.v = 0$ if |r| > m. This shows that V_m must be an irreducible module for $\mathbf{K}[\mathbf{\Lambda}_1, \cdots, \mathbf{\Lambda}_m, \mathbf{\Lambda}_m^{-1}]$, and the result follows.

It follows from the preceding discussion that, to prove Lemma 2.1, we must show that, if \mathbf{F}_{π} is an extension of \mathbf{K} of degree d, then

(3.1)
$$\dim_{\mathbf{K}} W_q(\boldsymbol{\pi}) = 2^m d.$$

Assume from now on that we have a fixed finite extension \mathbf{F} of \mathbf{K} of degree d and an element $\boldsymbol{\pi} \in \mathbf{F}^m$ as above. Given $0 \neq a \in \mathbf{K}$, and $\boldsymbol{\pi} \in \mathbf{F}^m$ where $\mathbf{K} \subset \mathbf{F}$, define

$$\boldsymbol{\pi}_a = (a\boldsymbol{\pi}_1, a^2\boldsymbol{\pi}_2, \cdots, a^m\boldsymbol{\pi}_m).$$

Given any \mathbf{U}_q -module M, and $0 \neq a \in \mathbf{K}$, let $\tau_a^* M$ be the \mathbf{U}_q -module obtained by pulling back M through the automorphism τ_a defined in Lemma 1.2. The next lemma is immediate from Proposition 3.1.

Lemma 3.2. We have

$$\tau_a^* W_q(m) \cong W_q(m), \quad \tau_a^* W_q(\pi) \cong W_q(\pi_a),$$

where the first isomorphism is one of \mathbf{U}_q^e -modules and the second is an isomorphism of \mathbf{U}_q -modules.

Let $\overline{\mathbf{A}}$ be the integral closure of \mathbf{A} in \mathbf{F} . Fix $a \in \mathbf{A}$ such that $\pi_a \in \overline{\mathbf{A}}^m$. By Lemma 3.2, to prove (3.1) it suffices to prove that

$$\dim_{\mathbf{K}} W_a(\boldsymbol{\pi}_a) = 2^m d.$$

Let $L \supset K$ be the smallest subfield of F such that $\pi_a \in L^m$ and let \tilde{A} be the integral closure of A in L. Then, \tilde{A} is free of rank d as an A-module and

$$\mathbf{L} \cong \tilde{\mathbf{A}} \otimes_{\mathbf{A}} \mathbf{K}$$
.

In what follows we write π for π_a . Set

$$W_{\mathbf{A}}(\boldsymbol{\pi}) = \mathbf{U}_{\mathbf{A}} \otimes_{\mathbf{U}_{\mathbf{A}}(0)} \tilde{\mathbf{A}} w_{\boldsymbol{\pi}}.$$

By Lemma 3.1, $W_{\mathbf{A}}(\boldsymbol{\pi})$ is finitely-generated as an $\tilde{\mathbf{A}}$ -module, and hence as an \mathbf{A} -module. Further,

$$W_a(\pi) \cong W_{\mathbf{A}}(\pi) \otimes_{\mathbf{A}} \mathbf{K}$$

as vector spaces over \mathbf{K} . Note, however, that $W_{\mathbf{A}}(\boldsymbol{\pi})$ is not an $\mathbf{U}_{\mathbf{A}}$ -module in general, since π_m^{-1} need not be in $\tilde{\mathbf{A}}$. However, $W_{\mathbf{A}}(\boldsymbol{\pi})$ is a $\mathbf{U}_{\mathbf{A}}(+)$ -module and

$$W_q(\boldsymbol{\pi}) \cong W_{\mathbf{A}}(\boldsymbol{\pi}) \otimes_{\mathbf{A}} \mathbf{K},$$

as $\mathbf{U}_q(+)$ -modules. Set

$$\mathbf{U}_1(+) = \mathbf{U}_{\mathbf{A}}(+) \otimes_{\mathbf{A}} \mathbf{C}_1.$$

This is essentially the universal enveloping algebra U(+) of $sl_2 \otimes C[t]$, and hence

$$\overline{W_q(\boldsymbol{\pi})} = W_{\mathbf{A}}(\boldsymbol{\pi}) \otimes_{\mathbf{A}} \mathbf{C}_1$$

is a module for U(+).

Since

$$\dim_{\mathbf{K}} W_q(\boldsymbol{\pi}) = \operatorname{rank}_{\mathbf{A}} W_{\mathbf{A}}(\boldsymbol{\pi}) = \dim_{\mathbf{C}} \overline{W_q(\boldsymbol{\pi})},$$

it suffices to prove that

$$\dim_{\mathbf{C}} \overline{W_q(\boldsymbol{\pi})} = 2^m d.$$

Define elements $\Lambda_r \in \mathbf{U}(+)$ in the same way as the elments Λ_r are defined, replacing q by 1.

Lemma 3.3. With the above notation, there exists a filtration

$$\overline{W_q(\boldsymbol{\pi})} = W_1 \supset W_2 \supset \cdots \supset W_d \supset W_{d+1} = 0$$

such that, for each i = 1, ..., d, W_i/W_{i+1} is generated by a non-zero vector v_i such that

$$(3.2) x_r^+ \cdot v_i = 0, \ (x_r^-)^{m+1} \cdot v_i = 0 \ (r \ge 0),$$

(3.3)
$$h_0.v_i = mv_i, \ \Lambda_r.v_i = \lambda_{i,r}v_i \ (r > 0),$$

where the $\lambda_{i,r} \in \mathbf{C}$ and $\lambda_{i,r} = 0$ for r > m.

Proof. Let $\overline{W_q(\pi)}_n$ be the eigenspace of h_0 acting on $\overline{W_q(\pi)}$ with eigenvalue $n \in \mathbf{Z}$. Of course,

$$\overline{W_q(\pi)} = \bigoplus_{n=-m}^m \overline{W_q(\pi)}_n.$$

We can choose a basis w_1, w_2, \ldots, w_l , say, of $\overline{W_q(\pi)}_m$ such that the action of Λ_i , for $i = 1, \ldots, m$, is in upper triangular form. Let W_i be the $\mathbf{U}(+)$ -submodule of $\overline{W_q(\mathbf{m})}$ generated by $\{w_i, w_{i+1}, \ldots, w_l\}$. This gives a filtration with the stated properties. To see that l = d, note that $W_{\mathbf{A}}(\pi)_m = \tilde{\mathbf{A}}w_m$ is a free \mathbf{A} -module of rank d, hence

$$\overline{W_q(\boldsymbol{\pi})}_m = W_{\mathbf{A}}(\boldsymbol{\pi})_m \otimes_{\mathbf{A}} \mathbf{C}_1$$

is a vector space of dimension d.

Lemma 3.4. Let $\pi = 1 + \sum_{r=1}^{n} \lambda_r u^r \in \mathbf{C}[u]$ be a polynomial of degree n, and let $m \geq n$. Let $W_+(\pi, m)$ be the quotient of $\mathbf{U}(+)$ by the left ideal generated by the elements

$$h - m$$
, $\Lambda_r - \lambda_r$, x_r^+ , $(x_r^-)^{m+1}$,

for all $r \geq 0$. Then,

$$dim_{\mathbf{C}}W_{+}(\pi,m) \leq 2^{m}$$
.

Proof. This is exactly the same as the proof given in [CP5, Sections 3 and 6] that $\dim_{\mathbf{C}} W(\pi) \leq 2^{\deg(\pi)}$. We note that the arguments used there only make use of elements of the subalgebra $\mathbf{U}(+)$ of \mathbf{U} .

It follows immediately from this lemma that

$$\dim_{\mathbf{C}} \overline{W_q(\boldsymbol{\pi})} \le 2^m d.$$

Indeed, each W_i/W_{i+1} in Lemma 3.3 is clearly a quotient of some $W_+(\pi, m)$ satisfying the conditions of Lemma 3.4, and so has dimension $\leq 2^m$.

We have now proved that

$$\dim_{\mathbf{K}} W_q(\boldsymbol{\pi}) \leq 2^m d.$$

To prove the reverse inequality, let $\tilde{\mathbf{F}}$ be the splitting field of the polynomial $1 + \sum_{i=1}^{m} \pi_i u^i$ over \mathbf{F} , say

$$1 + \sum_{i=1}^{m} \pi_i u^i = \prod_{i=1}^{m} (1 - a_i u),$$

with $a_1, \ldots, a_m \in \tilde{\mathbf{F}}$. Let $V_{\mathbf{F}}(a_i)$ be a two-dimensional vector space over $\tilde{\mathbf{F}}$ with basis $\{v_+, v_-\}$, define an action of \mathbf{U}_q on it by setting $t = a_i$ in the formulas in (2.1), (2.2) and (2.3), and set

$$\tilde{W} = \bigotimes_{i=1}^{m} V_{\tilde{\mathbf{F}}}(a_i).$$

Clearly,

$$\dim_{\mathbf{K}} \tilde{W} = 2^m d\tilde{d},$$

where \tilde{d} is the degree of $\tilde{\mathbf{F}}$ over \mathbf{F} . If $\{f_1, \ldots, f_{\tilde{d}}\}$ is a basis of $\tilde{\mathbf{F}}$ over \mathbf{F} , and if $\tilde{w} = v_+^{\otimes m}$, then

$$\tilde{W} = \bigoplus_{j=1}^{\tilde{d}} \tilde{W}_j,$$

where \tilde{W}_j is the \mathbf{U}_q -submodule of \tilde{W} generated by $f_j\tilde{w}$ (see [CP3, Proof of 2.5]). Moreover, the vectors $f_j\tilde{w}$ satisfy the defining relations of $W_q(\boldsymbol{\pi})$, and so are quotients of $W_q(\boldsymbol{\pi})$. It follows that

$$\dim_{\mathbf{K}} W_a(\boldsymbol{\pi}) \geq 2^m d.$$

The proof of Lemma 2.1 is now complete.

Turning to Lemma 2.2, set

$$L_{\mathbf{A}}(V) = V \otimes \mathbf{A}[t, t^{-1}].$$

Clearly, $L_{\mathbf{A}}(V)$ is a $\mathbf{U}_{\mathbf{A}}$ -module. The map $\mathcal{S}^{(m)}$ takes $L_{\mathbf{A}}(V)^{\otimes m}$ into itself; set

$$\operatorname{im}(\mathcal{S}^{(m)}) = S_q(m), \quad S_{\mathbf{A}}(m) = \mathcal{S}_q(m) \cap L_{\mathbf{A}}(V)^{\otimes m}.$$

We have

(3.4)
$$S_{\mathbf{A}}^{(m)} \otimes_{\mathbf{A}} \mathbf{K} \cong S_{a}^{(m)}, \quad S_{\mathbf{A}}^{(m)} \otimes_{\mathbf{A}} \mathbf{C}_{1} \cong S^{m}(L(V)).$$

The first isomorphism above is clear; the second requires the basis constructed in Proposition 2.4. The proof of Proposition 2.3 shows that

$$L_{\mathbf{A}}(V)^{\otimes m} = \mathcal{S}_{\mathbf{A}}(m) \oplus (\ker(\mathcal{S}_q^{(m)}) \cap L_{\mathbf{A}}(V)^{\otimes m}).$$

Given $\boldsymbol{\pi} \in \mathbf{F}^m$ such that $\pi_i \in \overline{\mathbf{A}}$, set

$$S_q(\boldsymbol{\pi}) = S_q(m) \otimes_{\mathbf{U}_q(0)} \mathbf{F}, \quad S_{\mathbf{A}}(\boldsymbol{\pi}) = S_{\mathbf{A}} \otimes_{\mathbf{U}_{\mathbf{A}}(0)} \tilde{\mathbf{A}}.$$

Then, $S_q(\pi)$ (resp. $S_{\mathbf{A}}(\pi)$) is a \mathbf{U}_q -module (resp. $\mathbf{U}_{\mathbf{A}}(+)$ -module) and

$$(3.5) S_{\mathbf{q}}(\boldsymbol{\pi}) \cong S_{\mathbf{A}}(\boldsymbol{\pi}) \otimes_{\mathbf{A}} \mathbf{K}$$

as $\mathbf{U}_q(+)$ -modules. Further, the map $\eta_m:W_q(m)\to S_q(m)$ induces a map $\eta_{\boldsymbol{\pi}}:W_q(\boldsymbol{\pi})\to S_q(\boldsymbol{\pi})$ that takes $W_{\mathbf{A}}(\boldsymbol{\pi})$ into $S_{\mathbf{A}}(\boldsymbol{\pi})$.

Set $\overline{\mathbf{F}} = \mathbf{F} \otimes_{\mathbf{A}} \mathbf{C}_1$. Let $\overline{\boldsymbol{\pi}} : \mathbf{C}[\Lambda_1, \cdots, \Lambda_m] \to \overline{\mathbf{F}}$ be the homomorphism obtained by sending Λ_i to $\pi_i \otimes 1$ and set

$$S(\overline{\boldsymbol{\pi}}) = S^m(L(V)) \otimes_{\mathbf{U}(0)} \overline{\mathbf{F}}.$$

Now, in [CP4] we proved that $S^m(L(V))$ is a free $\mathbb{C}[\Lambda_1, \dots, \Lambda_m]$ -module of rank 2^m , hence $S(\overline{\pi})$ has dimension $2^m d$. Further, [CP4],

$$W(\overline{\pi}) \cong S(\overline{\pi}) = \mathbf{U}(+).v_{+}^{\otimes m}$$

This shows that the induced map $\overline{\eta_{\pi}}:\overline{W_q(\pi)}\to \overline{S_q(\pi)}$ is surjective and hence, using Lemma 2.1, that it is an isomorphism.

Let $K_q(\pi)$ be the kernel of η_{π} and let $K_{\mathbf{A}}(\pi) = K_q(\pi) \cap W_q(\pi)$. Then, $K_{\mathbf{A}}(\pi)$ is free **A**-module and

$$\dim_{\mathbf{K}} K_q(\boldsymbol{\pi}) = \operatorname{rank}_{\mathbf{A}} K_{\mathbf{A}}(\boldsymbol{\pi}).$$

The previous argument shows that

$$\overline{K_q(\pi)} = K_{\mathbf{A}}(\pi) \otimes_{\mathbf{A}} \mathbf{C}_1$$

is zero. Hence, $K_q(\pi) = 0$ and the map η_{π} is an isomorphism for all $\pi \in \overline{A}^m$. But now, by twisting with an automorphism τ_a for $0 \neq a \in \mathbf{K}$, we have a commutative diagram

$$\begin{array}{ccc} W_q(\boldsymbol{\pi}_a) & \longrightarrow & S_q(\boldsymbol{\pi}_a) \\ \downarrow & & \downarrow \\ W_q(\boldsymbol{\pi}) & \longrightarrow & S_q(\boldsymbol{\pi}) \end{array}$$

for any $\pi \in \mathbf{F}^m$, in which the vertical maps are isomorphisms of $\mathbf{U}_q(+)$ -modules. If a is such that $\pi_a \in \overline{\mathbf{A}}^m$, the top horizontal map is also an isomorphism, hence so is the bottom horizontal map. Thus, $W_q(\pi) \to S_q(\pi)$ is an isomorphism for all $\pi \in \mathbf{F}^m$. It follows from Nakayama's lemma that $\eta_m : W_q(m) \to S_q^{(m)}$ is surjective and the proof of Lemma 2.2 is complete.

4. The general case: a conjecture

In this section, we indicate to what extent the results of this paper can be generalized to the higher rank cases, and then state a conjecture in the general case.

Thus, let \mathfrak{g} be a finite-dimensional simple Lie algebra of rank n of type A, D or E and let $\hat{\mathfrak{g}}$ be the corresponding untwisted affine Lie algebra. Given any dominant integral weight λ for \mathfrak{g} , one can define an integrable $\mathbf{U}_q(\hat{\mathfrak{g}})$ -module $W_q(\lambda)$ on which the centre acts trivially, [CP4]. These modules have a family of finite-dimensional quotients $W_q(\pi)$, where $\pi = (\pi^1, \dots, \pi^n)$ and the $\pi^i \in \overline{\mathbf{K}}^{\lambda(i)}$. The module $W_q(\pi)$ has a unique irreducible quotient $V_q(\pi)$ and one can prove the analogue of Theorem 3. (The proofs of these statements are the same as in the sl_2 case.)

We make the following

Conjecture. For any π as above,

$$\dim_{\mathbf{K}} W_q(\boldsymbol{\pi}) = m_{\lambda},$$

where $m_{\lambda} \in \mathbf{N}$ is given by

$$m_{\lambda} = \prod_{i=1}^{n} (m_i)^{\lambda_i}, \quad m_i = \dim_{\mathbf{K}} W_q(i),$$

and $W_q(i)$ is the finite-dimensional module associated to the *n*-tuple (π^1, \dots, π^n) with $\pi^j = \{0\}$ if $j \neq i$ and $\pi^i = \{1\}$.

In the case of sl_2 , the conjecture is established in this paper. It follows from the results in [C] that $W_q(i)$ is in fact an irreducible $\mathbf{U}_q(\hat{\mathfrak{g}})$ -module and hence [CP2] the values of the m_i are actually known. The results of [C] also establish the conjecture for all π associated to the fundamental weight λ_i of \mathfrak{g} , for all $i=1,\dots,n$.

Using the results in [VV], one can show that

$$\dim_{\mathbf{K}} W_q(\boldsymbol{\pi}) \geq m_{\lambda}.$$

It suffices to prove the reverse inequality in the case when the $\pi^i \in \overline{\mathbf{A}}^{\lambda(i)}$ for all i. One can prove exactly as in this paper that the $\mathbf{U}_q(+)$ -modules $W_q(\pi)$ admit an $\mathbf{U}_{\mathbf{A}}(+)$ -lattice $W_{\mathbf{A}}(\pi)$, so that

$$\dim_{\mathbf{K}} W_q(\boldsymbol{\pi}) = \operatorname{rank}_{\mathbf{A}} W_{\mathbf{A}}(\boldsymbol{\pi}) = \dim_{\mathbf{C}} \overline{W_q(\boldsymbol{\pi})}.$$

Thus, it suffices to prove the conjecture in the classical case, i.e.,

$$\dim_{\mathbf{C}} W(\boldsymbol{\pi}) = m_{\lambda},$$

where m_{λ} is defined above.

References

- [B] J. Beck, Braid group action and quantum affine algebras, Commun. Math. Phys. 165 (1994), 555-568.
- [BCP] J. Beck, V. Chari and A. Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J. 99 No.3 (1999), 455-487.
- [C] V. Chari, On the Fermionic formula and a conjecture of Kirillov and Reshetikhin, preprint, qa/0006090.
- [CP1] V. Chari, and A. Pressley, Quantum affine algebras, Commun. Math. Phys. 142 (1991), 261-283.
- [CP2] V. Chari, and A. Pressley, Quantum affine algebras and their representations, Canadian Math. Soc. Conf. Proc. 16 (1995), 59-78.
- [CP3] V. Chari, and A. Pressley, Quantum affine algebras and integrable quantum systems, NATO Advanced Science Institute on Quantum Fields and Quantum Space-Time, Series B, Physics, Vol. 364, ed. G. t'Hooft et al., 1997, Plenum Press, pp. 245-264.
- [CP4] V. Chari and A. Pressley, Weyl modules for classical and quantum affine algebras, preprint, qa/0004174.
- [Dr] V.G. Drinfeld, A new realization of Yangians and quantum affine algebras, Soviet Math. Dokl. 36 (1988), 212-216.
- [G] H. Garland, The arithmetic theory of loop algebras, J. Algebra 53 (1978), 480-551.
- [J] N. Jing, On Drinfeld realization of quantum affine algebras. The Monster and Lie algebras (Columbus, OH, 1996), pp. 195-206, Ohio State Univ. Math. Res. Inst. Publ. 7, de Gruyter, Berlin, 1998.
- [FM] E. Frenkel and E. Mukhin, Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras, preprint, math.qa/9911112.
- [K] M. Kashiwara, Crystal bases of the modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383-413.
- [KMS] M. Kashiwara, T. Miwa and E. Stern, Decomposition of q-deformed Fock spaces, Selecta Mathematica 1 (1995), 787-805.
- [L1] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70 (1988), 237-249.

- [L2] G. Lusztig, Introduction to quantum groups, Progress in Mathematics 110, Birkhäuser, Boston, 1993.
- $[\mathrm{VV}]$ — M. Varagnolo and E. Vasserot, Standard modules for quantum affine algebras, preprint qa/0006084.

Vyjayanthi Chari, University of California, Riverside

Andrew Pressley, Kings College, London