

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS / DEPARTAMENTO DE ESTADÍSTICA

ELM2400 Métodos Estadísticos

Distribución del Mínimo y Máximo

Profesor: Alexis Peña

Ayudante: Reinaldo González S.

Sean $X_1, X_2, ..., X_n$ variables aleatorias.

Se define $Y_1 = \min(X_1, X_2, ..., X_n)$ y $Y_n = \max(X_1, X_2, ..., X_n)$.

La distribución de Y_n se desarrolla de la siguiente forma:

$$F_{Y_n}(y) = P(Y_n \le y) = P(X_1 \le y, X_2 \le y, ..., X_n \le y)$$

Ahora, si los X_i se asumen independientes, entonces:

$$P(X_1 \le y, X_2 \le y, ..., X_n \le y) = \prod_{i=1}^n P(X_i \le y) = \prod_{i=1}^n F_{X_i}(y)$$

Entonces la distribución de $Y_n = \max(X_1, X_2, ..., X_n)$ puede ser expresada en términos de la distribución marginal de $X_1, X_2, ..., X_n$. Si además es asumido que todos los $X_1, X_2, ..., X_n$ tienen la misma distribución acumulada, digamos $F_X(\cdot)$, entonces:

$$\prod_{i=1}^{n} F_{X_i}(y) = (F_X(y))^n$$

Teorema 1:

Si $X_1, X_2, ..., X_n$ son variables aleatorias independientes y $Y_n = \max(X_1, X_2, ..., X_n)$, entonces

$$F_{Y_n}(y) = \prod_{i=1}^n F_{X_i}(y)$$

Si $X_1, X_2, ..., X_n$ son independientes e idénticamente distribuidos (iid) con función de distribución acumulada común $F_X(\cdot)$, entonces:

$$F_{Y_n}(y) = (F_X(y))^n$$

Corolario: Si $X_1, X_2, ..., X_n$ son variables aleatorias iid con función de densidad común $f_X(\cdot)$ y función de distribución acumulada $F_X(\cdot)$, entonces:

$$f_{Y_n}(y) = n(F_X(y))^{n-1} f_X(y)$$

Similarmente:

$$F_{Y_1}(y) = P(Y_1 \le y) = 1 - P(Y_1 > y) = 1 - P(X_1 > y, X_2 > y, ..., X_n > y)$$

Entonces Y_1 es mayor que y si y solamente si cada $X_i > y$. Y si $X_1, X_2, ..., X_n$ son independientes, entonces:

$$1 - P(X_1 > y, X_2 > y, ..., X_n > y) = 1 - \prod_{i=1}^{n} P(X_i > y) = 1 - \prod_{i=1}^{n} (1 - F_{X_i}(y))$$

Si además es asumido que $X_1, X_2, ..., X_n$ son iid con función de distribución acumulada común $F_X(\cdot)$, entonces:

$$1 - \prod_{i=1}^{n} (1 - F_{X_i}(y)) = 1 - (1 - F_X(y))^n$$

Teorema 2:

Si $X_1, X_2, ..., X_n$ son variables aleatorias independientes y $Y_1 = \min(X_1, X_2, ..., X_n)$, entonces

$$F_{Y_1}(y) = 1 - \prod_{i=1}^{n} (1 - F_{X_i}(y))$$

Si $X_1, X_2, ..., X_n$ son independientes e idénticamente distribuidos (iid) con función de distribución acumulada común $F_X(\cdot)$, entonces:

$$F_{Y_1}(y) = 1 - (1 - F_X(y))^n$$

Corolario: Si $X_1, X_2, ..., X_n$ son variables aleatorias iid con función de densidad común $f_X(\cdot)$ y función de distribución acumulada $F_X(\cdot)$, entonces:

$$f_{Y_1}(y) = n(1 - F_X(y))^{n-1} f_X(y)$$