Tutorial -08

$$y = ae^{bx} \longrightarrow afb = ?$$

$$x \mid 2 \mid 4 \mid 6 \mid 8 \mid 10$$

$$y \mid 4.077 \mid 11.084 \mid 30.128 \mid 81.897 \mid 222.62$$

$$(y = ae^{bx}) \quad take log$$

$$log \mid lny = lna + bx$$

$$Ly = ao + a_1X \quad [line]$$

$$compare \quad Y = lny$$

$$a_0 = lna$$

$$a = e^{a_0}$$

$$b = a_1$$

from the concept of least square $\Sigma Y = \Sigma a_0 + \Sigma a_1 X$ $\Sigma Y = n a_0 + a_1 \Sigma X$ $n \Rightarrow no of data points available$

Scanned with CamScanner

$$\xi XY = \xi a_0 X + \xi a_1 X^2$$

 $\xi XY = a_0 \xi X + a_1 \xi X^2$
Required ξX , ξY , ξXY , ξX^2

	X=x	ل د	Y= 2n(y)) X ²	ХУ
_	2 .	4.077	1.4054	4.0000	2.8107
	4	11:084	2.4055	16.0000	9.6220
	6	30.128	3.4055	36.0000	20.4327
	8	81.897	4.4055	64.0000	35.2437
,	10	222.620	5.4055	100.0000	54.0547
<u> </u>	30.0000	not require	17.0272	220 .0000	122-1638

$$\Sigma Y = na_0 + a_1 \Sigma X$$

Two equations two unknowns

$$a_0 = 0.4054 = lna \Rightarrow a = e = 1.4999$$

Amwer - 02

Orthogonal basis functions

$$f(n) = \frac{1}{1+x^2} \qquad x \in (-1,1)$$

Approx func =
$$\hat{f}(x)$$

$$\hat{f}(n) = a_0 P_0(n) + a_1 P_1(n) + a_2 P_2(n) - 1$$
given given given

Legendre
$$P_0(x) = 1$$

polynomials
$$P_1(x) = x$$

$$P_{n+1}(x) = \frac{2n+1}{n+1} \times P_n(x) - \frac{n}{n+1} P_{n-1}(x)$$

$$\rho_2(w) = \frac{3}{2} \varkappa \cdot \varkappa - \frac{1}{2}(1)$$

$$\rho_2(\kappa) = \frac{1}{2} (3\kappa^2 - 1)$$

Now, ao, a, & a2

$$a_{i} = \frac{\langle P_{i}(\kappa), f(\kappa) \rangle}{\langle P_{i}(\kappa), P_{i}(\kappa) \rangle}$$

$$\langle f(\kappa), g(\kappa) \rangle = \int_{-L}^{L} f(\kappa) g(\kappa) d\kappa \qquad \text{formula for inner product}$$

$$a_{0} = \frac{\langle P_{0}(\kappa), f(\kappa) \rangle}{\langle P_{0}(\kappa), P_{0}(\kappa) \rangle}$$

$$= \frac{\int_{-L}^{L} \left(\frac{1}{1+\kappa^{2}} \right) d\kappa}{\frac{2}{2\kappa o + 1}} = \frac{1}{2} \int_{-L}^{L} \frac{\pi}{4} - \left(-\frac{\pi}{4} \right) d\kappa$$

$$a_{1} = \frac{\langle P_{1}(\kappa), f(\kappa) \rangle}{\langle P_{1}(\kappa), P_{1}(\kappa) \rangle}$$

$$= \frac{\int_{-L}^{L} \left(\frac{1}{1+\kappa^{2}} \right) d\kappa}{\frac{2}{2\kappa^{2} + 1}}$$

$$= \frac{1}{2} \left(\frac{\pi}{1+\kappa^{2}} - \frac{\pi}{4} \right) d\kappa$$

$$= \frac{1}{2} \left(\frac{\pi}{1+\kappa^{2}} - \frac{\pi}{4} \right) d\kappa$$

$$= \frac{\frac{1}{2} \int_{-1}^{1} \frac{2x}{1+x^{2}} dx}{\frac{2}{3}}$$

$$= \frac{3}{4} \left[\ln (x^{2}+1) \right]_{-1}^{1}$$

$$= \frac{1}{2} \left(\frac{3}{2} x^{2} - 1 \right) \left(\frac{1}{1+x^{2}} \right) dx$$

$$= \frac{1}{2} \left(\frac{1}{2} \left(\frac{3}{3} x^{2} - 1 \right) \left(\frac{1}{1+x^{2}} \right) dx - \frac{1}{1+x^{2}} dx \right)$$

$$= \frac{1}{2} \left[\frac{3}{2} \left(\frac{3}{1+x^{2}} \right) dx - \frac{1}{1+x^{2}} dx - \frac{1}{1+x^{2}} dx \right]$$

$$= \frac{5}{4} \left[\frac{3}{3} \left(\frac{x^{2}+1}{x^{2}+1} \right) dx - \frac{3}{1+x^{2}} dx - \frac{1}{1+x^{2}} dx \right]$$

$$= \frac{5}{4} \left[\frac{3}{3} x^{2} - 4 \frac{1}{4} a^{3} (x) \right]_{-1}^{1}$$

$$q_2 = \frac{5}{4} \left[6 - 4 \left(\frac{\pi}{4} + \frac{\pi}{4} \right) \right]$$

$$q_2 = \frac{5}{4} \left[6 - 6.2831 \right]$$

$$a_1 = \frac{5}{4} \left(-0.2831 \right)$$

$$\hat{f}(n) = a_0 P_0(n) + a_1 P_1(n) + a_2 P_2(n)$$

$$= 0.7854 (1) + 0 (x) + (-0.3540)$$

$$\frac{1}{2} (3x^{2}-1)$$

$$\hat{f}(x) = 0.9624 - 0.5310 x^2$$

(b) Taylor's Socies
$$\hat{f}(x) = f(0) + x f'(0) + \frac{x^2}{2} f''(0)$$

$$f(x) = \frac{1}{1+x^2}$$

$$f(0) = \frac{(1+x^2)^2}{(1+x^2)^2}$$

$$|x=0|$$

$$f''(x) = 0$$

$$f''(x) = \frac{d}{dx} \left[\frac{-2x}{(1+x^2)^2} \right]_{x=0}$$

$$= \frac{(1+x^{2})^{2}(-2)}{(1+x^{2})^{2}} - \frac{(-2x)^{2}(1+x^{2})(2x)}{(1+x^{2})^{2}}\Big|_{x=0}$$

$$f''(x) = \frac{-2}{(1+x^{2})^{2}} + \frac{8x^{2}}{(1+x^{2})^{3}}\Big|_{x=0}$$

Replace the derivatives in equation 2
$$\hat{f}(n) = f(0) + \kappa f'(0) + \frac{\kappa^2}{2} f''(0)$$

$$= 1 + \kappa (0) + \frac{\kappa^2}{2} (-2)$$

$$f(x) = 1 - x^2$$

(C) True relative error in f(n) at x = -0.9, -0.5, 0, 0.5

True relative evolor = $\frac{\int f(u) - \hat{f}(u)}{\int f(u)} \times 100$

ET	for Logar	for Logandono polynomial		
×	0	f(n) =-0.5310x2+0.9624	E _T	
-0.9	0.55	0.532	3.66	
- 0.5	0.80	0.830	3.71	
0	1.00	6.962	3.76	
6.5	0.80	0.830	3.71	

Et for Taylor's Series							
	$= (1+x_1)$	- 1-x2	$= \left \frac{f(n) - \hat{f}(n)}{f(n)} \right \times \dots$				
- 0.9	6.55	0.190	65.61				
-0.5	0.80	0.750	6.25				
0	1.00	1.000	6.00				
0.5	0.80	0.750	6.25				