

Big Data Storage and Database Services – common systems & integration problems

Hong-Linh Truong
Department of Computer Science
<u>linh.truong@aalto.fi</u>, <u>https://rdsea.github.io</u>

Common data models and data storage/database systems

Common data models

- File
- Relational data model
- Key-Value data model
- Document-oriented model
- Column family model
- Graph model
- Vectorization model

Special file formats in big data

For analytical big data, remember the patterns about data

- write once, read many
- analytics queries often access data based on "columns" (e.g., sum of all "trip payments")

File formats

- compression, columnar representation for column-based queries/accesses, encryption
- suitable with big data analytics (e.g., Spark, Hadoop)

Examples

- Apache ORC (<u>https://orc.apache.org/</u>)
- Apache Parquet (<u>https://parquet.apache.org/</u>)
- They are the file formats under many big data systems

Blob data

Big files:

• Pictures, documents, big log files, images, video, backup data

Storage

• File systems or blob storage

Implementations

- File systems: NFS, GPFS, Lustre (http://lustre.org/), Hadoop File systems
- Storage: Amazon S3, Azure Blob storage, OpenStack Swift, Minio
- Simple API for direct access

Example - Amazon S3

Store blob files and their metadata

- Max 5TB per file
- A file is identified by a key

Structure

- File = Object
- Object: name and metadata
- Objects are organized into Buckets

Simple APIs

• REST

OpenStack Swift

http://docs.openstack.org/developer/swift/

Minio

- Check https://min.io/
- For different deployment models: Kubernetes, VMs, edge-cloud
- S3 compatibility

Relational Model

- Well-known, long history
- Tables with rows and columns
 - Strict schema requirements
- Powerful querying & strong consistency support
 - E.g.: Oracle Database, MySQL Server, PostgreSQL, MariaDB

Example: Alarm in BigQuery

stationdescription

stationparameters

Relational Databases for big data scenarios

Relational database at very large-scale

 Amazon Aurora, CockroachDB, Microsoft Azure SQL Data Warehouse

We said ACID is hard with big data

 relational big database must address replication, distribution, and scalability issues

Examples of Amazon Aurora (reading list)

 based on MySQL/InnoDB but change the architecture, separate storage from engine, support cloud scale and replication, etc.

Key-Value Model

- Tuple = (key, value)
 - Values can be base on different structures
- Scalable and performance
- Primary use case: caching (pages, sessions, frequently access data, distributed lock)
 - Simple, very efficient but limited querying capabilities
- Implementation:
 - Memcached, Riak, Redis, Apache Accumulo

Example: Redis

- http://redis.io/
- In-memory cache service
 - Store (key,value) tuples in memory but persistent back to database
- Simple APIs
 - Well support with many programming languages
 - Widely used in big data ecosystems
- Learning
 - https://app.redislabs.com/#/login provides a free account

Example: Redis

http://redis.io/topics/benchmarks

Document-oriented model – simple analogy Collection **Personal Document** File Record Server log **Document** File **Document Data JSON Object**

Document-oriented Model

Documents

- flexible schema (schemaless) with flexible content
- data fields can be complex for sub documents
- use collections, each collection is a set of documents

Primary use cases

- large amounts of semi-structured data
- collection of data with different structures

Examples: MongoDB.Atlas

https://www.mongodb.com/atlas/database

Graph-oriented model

Data is represented as a graph

- nodes or vertices represent objects
- an edge describes a relationship between nodes
- properties associated with nodes and edge provide other information

Use cases

 when searching data is mainly based on relations (social networks, asset relationship, knowledge graph)

Working with graph databases

Graph databases

 Azure CosmosDB, ArgangoDB, Titan, TypeDB, Neo4J, OrientDB

Query languages:

Gremlin, SPARQL, Cypher

Graph computing frameworks (analysis)

Apache TinkerPop, Apache Spark GraphX

Example

https://github.com/vaticle/typedb

Column-family data model

Motivation: scalable, distributed storage for multi-dimensional sparse sorted map data

Figure source: Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2006. Bigtable: a distributed storage system for structured data. In Proceedings of the 7th symposium on Operating systems design and implementation (OSDI '06). USENIX Association, Berkeley, CA, USA, 205-218.

Column-family data model

Data Model

- Table consists of rows
- Row consists of a key and one or more columns
- Columns (column name, value, timestamp)
- Columns are grouped into column families
- Columns can be different in rows
 - flexible, wide columns → save spaces

Example of a data model in Cassandra

Examples

Column (name, value, timestamp)

```
english_cname | writetime(english_cname)

Black-tailed Gnatcatcher | 1569966171073228

(1 rows)
```

Examples of rows

```
cassandra@cqlsh> select * from tutorial12345.bird2;
 Row 1
species
                  melanura
country
                 Mexico
duration seconds | 29
english cname
                  Black-tailed Gnatcatcher
file id
                  71907
latitude
                  32.156
longitude
                 -115.793
 Row 2
species
                 | melanura
                  United States
country
duration_seconds
                  Black-tailed Gnatcatcher
english_cname
file id
                  358907
 latitude
                  33.7329
longitude
                  -115.8023
```


Time Series Database

- So many types of data in big data are time series
 - o IoT measurements, session data, log, etc.
- Of course you can also use other databases
 - o e.g., Cassandra, ElasticSearch, BigTable
- Time Series Databases specially designed for time series data
 - examples: Riak TS (Time Series), InfluxDB, Apache Druid

Example: InfluxDB

- https://www.influxdat a.com/
- High-level query,
 SQL-alike Language
- Retention policy for data storage, sharding and replication

An example of InfluxDB

```
> show measurements
name: measurements
name
stationalarm
stationaparameter
> select * from stationalarm;
name: stationalarm
                                                        valueThreshold
time
                    datapoint_id
                                    station id
                                                value
          alarm_id
1487444343000000
                            121
                                    1161115016 240
                    308
                                                        240
```


In-memory databases

- Databases use machine memory for storage
 - Persist data on disks
 - Require very powerful machines
- In principle it is not just about data models but also data management, data processing, software and hardware optimization, e.g.,
 - SAP HANA, VoltDB: in memory relational databases
- Why are in-memory databases important?

Interfaces between a data storage/databases system and its external analysis systems

In many cases: the data in data storage/database service must be made available for large-scale analysis:

large-scale analytics and data are managed by different systems

an important consideration in big data platforms design!

Big data at large-scale: the big picture in this course

Operation/Management/

Business Services Messaging/Ingest systems Stream processing Warehouse Analytics Data sources (e.g., Kafka, AMQP, MQTT, systems (sensors, files, (e.g., Presto, Kylin, Kinesis, Nifi, Google (e.g. Flink, Kafka KSQL, BigQuery,Redshift) database, queues, log PubSub, Azure IoT Hub) Spark, Google Dataflow) services) Storage/Database/Data Lake (S3, HDFS, CockroachDB, Batch data processing Cassandra, MongoDB, Elastic systems Search, InfluxDB, Druid, Hudi, etc.) (e.g., Hadoop, Airflow, Spark)

(VMs, dockers, Kubernetes, OpenStack elastic resource management tools, storage)

Making data available to the analytics

- Data layer must map/provide data to processing layer
 - maximize the analytics possibilities

Key issues

- avoid data movement as much as possible
- avoid contention between the data management and the data analytics system

Techniques

 "mount", specific connectors/drivers, copy-process-remove activities

Mount/"Fuse"

- Mapping a remote storage as a local file system
 - Blobfuse (Microsoft Azure), gcsfuse (Google Storage)
 - the network performance is important

Connectors

ODBC or other specific protocol connectors to enable data access and ingestion!

Your Service Storage and Database • CONNECTOR

Your customer processing systems/BI (e.g., Airflow, Spark, Drill)

Your customer data sources

... CONNECTOR

Your Service Storage and Database

Example: Superset connectors

https://superset.ap ache.org/

Connectors to different types of databases/datasets to retrieve and analyze data

Example: Druid

https://druid.apache.org/

Different types of connectors (e.g., Kafka, Files, S3, etc.) to allow data ingestion into the database

Analytics and Cloud Storage

- Various connectors for making data in cloud storages available for analytics
- Apache Hadoop/Spark (data analysis) can work with Amazon S3, OpenStack Swift, Google Cloud Storage
- Examples:
 - https://github.com/GoogleCloudDataproc/hadoop-con nectors
 - https://spark.apache.org/docs/latest/cloud-integration.
 html

"Copy and Process"

Client libraries are used to move data from storages and databases to processing places

Examples:

```
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from cassandra.cluster import Cluster

cluster = Cluster(contact_points=hosts, port=9042,auth_provider=auth_provider)
session = cluster.connect("tutorial12345")
sql_query = "SELECT * FROM tutorial12345.bird1234;"
df = pd.DataFrame()
rows= session.execute(sql_query)
df = rows._current_rows
print(df)
```


Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io

