Trong chuyến công tác nhiều ngày, giáo sư J đã thu thập được n mẫu vật. Mẫu vật thứ i (i = 1,2,...,n) có khối lượng m_i gam và được giáo sư đánh giá có mức độ quan trọng là v_i . Giáo sư đã chuẩn bị một túi xách tay có thể chứa không quá W_1 gam và một va li có thể chứa không quá W_2 gam. Vấn đề mà giáo sư gặp phải là lựa chọn những mẫu vật và xếp chúng vào túi hay va li thỏa mãn các yêu cầu sau:

- 1) Tổng khối lượng các mẫu vật đựng trong túi xách không vượt quá W_1 ;
- 2) Tổng khối lượng các mẫu vật đựng trong va li không vượt quá W_2 ;
- 3) Tổng mức độ quan trọng của các mẫu vật được chọn là lớn nhất.

Yêu cầu: Cho W_1 , W_2 và thông tin về n mẫu vật, hãy đưa ra cách lựa chọn và xếp các mẫu vật thỏa mãn yêu cầu của giáo sư.

Dữ liệu: Vào từ file văn bản KNAPSACK.INP:

Dòng đầu chứa ba số nguyên dương n, W₁, W₂ (W₁ ≤ 5000; W₁ < W₂ ≤ 50000);
Dòng thứ i trong n dòng tiếp theo mô tả mẫu vật thứ i gồm hai số nguyên dương mi, v(mi ≤ W₂; vi ≤ 5).

Kết quả: Ghi ra file văn bản KNAPSACK.OUT gồm một dòng chứa n số mô tả cách lựa chọn và xếp các mẫu vật. Cụ thể, số thứ i bằng 0 nếu mẫu vật thứ i không được chọn, bằng 1 nếu được chọn và xếp vào túi xách, bằng 2 nếu được chọn và xếp vào va li.

Ràng buộc:

- Có 40% số test ứng với 40% số điểm của bài có $n \le 10$;
- Có 30% số test khác ứng với 30% số điểm của bài có n ≤ 50 và các mẫu vật có khối lượng là bội của 100.
- Có 15% số test khác ứng với 15% số điểm của bài có $n \le 50$;
- Có 15% số test khác ứng với 15% số điểm của bài có $n \le 1000$ và các mẫu vật có mức độ quan trọng như nhau.

Ví dụ:

KNAPSACK.INP	KNAPSACK.OUT		
5 1000 2000	2 0 1 2 2		
500 2			
600 2			
900 5			
750 5			
700 3			