Math 5050 – Special Topics: Manifolds– Fall 2025 w/Professor Berchenko-Kogan

Paul Carmody Section 10: Categories and Functors – June 18, 2025

Problems

10.1. Differential of the inverse map

If $F: N \to M$ is a differomorphism of manifolds and $p \in N$, prove that $(F^{-1})_{*,F(p)} = (F_{*,p})^{-1}$.

If we define our category of objects as manifolds **Man** with morphisms as smooth maps. Then we can define a functor T:**Man** \to **Vect**, i.e., the category of vectors. T sends the smooth map F into a Tangent Bundle via the push forward. That is, $F_{*,p}:T_p(N)\to T_{f(p)}(M)$. Thus, concatenation is the operator of functors and

$$(F \circ F^{-1})_* = F_* \circ F_*^{-1}$$

 $(F_*)^{-1} = (F^{-1})_*$

10.2. Isomorphism under a functor

Prove proposition 10.3

Proposition 10.3. Let $\mathscr{F}:\mathscr{C}\to\mathscr{D}$ be a functor from category \mathscr{C} to category \mathscr{D} . If $f:A\to B$ is an isomorphism in \mathscr{C} then $\mathscr{F}(f):\mathscr{F}(A)\to\mathscr{F}(B)$ is an isomorphism in \mathscr{D} .

Proof: Since f is isomorphic, there exists a $g \in \mathcal{C}$ such that $f \circ g = \mathbb{I}_A$ then

$$\mathscr{F}(\mathbb{I}_A) = \mathbb{I}_{\mathscr{F}}$$

$$\mathscr{F}(f \circ g) = \mathscr{F}(f) \circ \mathscr{F}(g)$$

$$\mathscr{F}(g) = \mathscr{F}(f)^{-1}$$

10.3. Functorial properties of the dual

Prove Proposition 10.5.

Proposition 10.5 (Functorial properies of the dual). Suppose V, W and S are real vector spaces.

- (i) $\mathbb{I}_V: V \to V$ is the identity map on V, then $\mathbb{I}_V^{\vee}: V^{\vee} \to V^{\vee}$ is the identity map on V^{\vee} . Let $f, g: V \to V$ such that $f \circ g = \mathbb{I}_V$
- (ii) If $f: V \to W$ and $g: W \to S$ are linear maps, then $(g \circ f)^{\vee} = f^{\vee} \circ g^{\vee}$.

$$(g \circ f)^{\vee} \stackrel{?}{=} f^{\vee} \circ g^{\vee}$$
Let $\phi \in S^{\vee}$

$$(g \circ f)^{\vee}(\phi) = \phi \circ (g \circ f) \qquad \text{(LHS)}$$

$$f^{\vee} \circ g^{\vee} = f^{\vee}(g^{\vee}(\phi)) \qquad \text{(RHS)}$$

$$= f^{\vee}(\phi \circ g)$$

$$= \phi \circ (g \circ f)$$

10.4. Matrix of the dual map

Suppose a linear transformation $L: V \to \bar{V}$ is represted by the martrix $A = [a_j^i]$ relative to the basis e_1, \ldots, e_n for V and $\bar{e}_1, \ldots, \bar{e}_m$ for \bar{V} :

$$L(e_j) = \sum_i a_j^i \bar{e}_i.$$

Let $\alpha^1, \ldots, \alpha^n$ and $\alpha^1, \ldots, \alpha^m$ be the dual bases for V^{\vee} and \bar{V}^{\vee} , respectively. Prove that if $L^{\vee}(\bar{\alpha}^i) = \sum_i b_i^i \alpha^j$, then $b_i^i = a_i^i$.

10.5. Injectivity of the dual map

(a) Suppose V and W are vector spaces of prossibly infinite dimension over a field K. Show that if a linear map $L:V\to W$ is surjective, then its dual $L^\vee:W^\vee\to V^\vee$ is injective.

For any $v, w \in V$, where L(v) = L(w)

$$L^{\vee}(\alpha(v-w)) = \alpha(L(v-w))$$

$$= \alpha(L(v) - L(w))$$

$$= \alpha(L(v)) - \alpha(L(w))$$

$$= L^{\vee}(\alpha(v)) - L^{\vee}(\alpha(w))$$

$$= 0$$

therefore L^{\vee} is injective.

(b) Suppose V and W are finite-dimensional vector spaces over a field K. Prove the converse of the implication in (a).

10.6. Functorial properties of the pullback

Prove Proposition 10.6.

10.7. Pullback in the top dimension

Show that if $L: V \to V$ is a linear operator on a vector space V of dimension n, then the pullback $L^*: A_n(V) \to A_n(V)$ is multiplication by the determinant of L.