

Assignment 3

Inspiring Excellence

Deadline: SPRING 2024 Total Marks: 50

Make a Front Page by yourself, mentioning your #name, #ID, and #section. (Compulsory)

1. Find the eigenvalues and corresponding basis of the eigenspace for each of the following matrices, (10)

(i)
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 5 \\ 0 & 4 & 3 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{bmatrix}$

2. Find which of the following matrices are diagonalizable and which one is not. If A is diagonalizable, find A^5 using $A = PDP^{-1}$. (10)

(i)
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 3 & 0 & 2 & 1 \\ 4 & 0 & 1 & 2 \end{bmatrix}$

3. (a) Let P_2 have the inner product $\langle p, q \rangle = \int_{-1}^1 p(x)q(x)dx$. If $p = x^2 + 2x + 5$ and $q = x^2 - 5$, find $\langle p, q \rangle$. Also compute the norm ||p||, ||q||. (5)

(b) Let the inner product defined by $\langle p,q\rangle=\int_0^{\pi/4}p(x)q(x)dx$. If $p=\sin^2 x$ and $q=\cos^3 x$, find $\langle p,q\rangle$. Also compute the norm $\|p\|,\|q\|$. (5)

4. Find the orthogonal complement (W^{\perp}) and basis of W^{\perp} of the subspace W, where, (10)

(a)
$$W = span \left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\-2\\0 \end{bmatrix} \right\}$$
 (b) $W = span \left\{ \begin{bmatrix} 1\\-2\\2 \end{bmatrix}, \begin{bmatrix} 2\\-2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-4\\1 \end{bmatrix} \right\}$

5. Use the Gram-Schmidt process to transform the basis (v_1, v_2, v_3) into an orthonormal basis.

(a)
$$v_1 = (1, -1, 1), v_2 = (3, 2, -2), v_3 = (0, -1, 1)$$

(b)
$$v_1 = (1, 0, 1), v_2 = (3, 1, -1), v_3 = (1, 1, -2)$$