答だけではなく考え方や計算の筋道を簡潔に書け(単純な計算問題は答だけでよい)。第n 問の解答はn 枚目の解答用紙に書くこと(ここで、n=1,2,3,4)。解答用紙の裏面も使用してもよい(解答用紙のスペースが不足する場合には追加の用紙を渡す。一枚の用紙に複数の問題の解答を書かないこと)。2 学期になったら答案を受け取りに来ること(また連絡します)。2022 年 10 月を過ぎたら答案を予告なく処分する。

1. $m > 0, t_0 > 0, f_0$ を実定数とする。一次元運動のニュートン方程式

$$m \frac{d^2}{dt^2} x(t) = \begin{cases} 0, & 0 \le t \le t_0 \\ f_0, & t \ge t_0 \end{cases}$$

の一般解を求めよ (x(t) を答えればよい)。任意定数として x(0) と v(0) := $\dot{x}(0)$ を使え。なお、 $t=t_0$ では x(t) の二階微分は不連続だが、 $\dot{x}(t)$ と x(t) は連続とする。

2. α, ω を正の定数、 β を実定数とする。常微分方程式

$$\frac{d}{dt}x(t) = \alpha x(t) + \beta \sin(\omega t) \tag{1}$$

の一般解を以下の手順にしたがって求めよ。

- (a) $\beta = 0$ とした斉次の常微分方程式の一般解を求めよ。
- (b) 微分方程式 (1) の特解で $x_{ps}(t) = A \sin(\omega t) + B \cos(\omega t)$ と書けるものを求めよ (A, B) は求めるべき定数)。
- (c) (a) と (b) での解を足して (1) の一般解を求めよ。任意定数を初期値 x(0) を用いて表わせ。

3. α, β, ω を正の定数とし、常微分方程式

$$\frac{dx(t)}{dt} = \alpha \cos(\omega t) x(t) + \beta t \exp\left[\frac{\alpha}{\omega} \sin(\omega t)\right]$$

を次の手順(定数変化法)で解け。

- (a) 解を $x(t) = C(t) \exp\left[\frac{\alpha}{\omega} \sin(\omega t)\right]$ という形に書き、C(t) が満たす微分 方程式を求めよ。
- (b) C(t) についての微分方程式の一般解を求め、もとの微分方程式の一般解を求めよ。任意定数は初期値 x(0) で表わせ。

 α , β を正の定数とする。 $t \ge 0$ について以下の常微分方程式の一般解を求めよ ((c) では x(t) > 0 とする)。任意定数として初期値 x(0) を使え。

(c)
$$\frac{dx(t)}{dt} = \frac{\alpha + \beta\sqrt{t}}{x(t)}$$
 (d)
$$\frac{dx(t)}{dt} = \alpha e^{\beta t} \left(1 + \{x(t)\}^2\right)$$
 (2)

- **4.** $d \times d$ 行列 A, B をそれぞれ $(a_{i,j})_{i,j=1,...d}$, $(b_{i,j})_{i,j=1,...d}$ と成分表示する。
 - (a) $(AB)_{i,j}$ を A, B の成分を使って表せ。
 - (b) $(B^{\dagger}A^{\dagger})_{i,j}$ を A, B の成分を使って表せ。
 - (c) $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ であることを示せ。

以下の計算をせよ (答えは結果だけでよい)。

(d)
$$\begin{pmatrix} 2+\sqrt{7}i \\ \sqrt{7}-i \end{pmatrix}^{\dagger} \begin{pmatrix} 3+\sqrt{7}i \\ \sqrt{7}+2i \end{pmatrix}$$
 (e) $\begin{pmatrix} 2 & 0 & 2 \\ 2 & 0 & 7 \\ 0 & 2 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 & -3 \\ 2 & 1 & 0 \\ 0 & 3 & -1 \end{pmatrix}$
(f) $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 0 & -4 \\ -3 & -2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ (g) $\begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix} \begin{pmatrix} a & b & c \end{pmatrix}$
(h) $\det \begin{pmatrix} 1 & 5 \\ 3 & -4 \end{pmatrix}$ (i) $\det \begin{pmatrix} 1 & 2 & 3 \\ 4 & 0 & -4 \\ -3 & -2 & -1 \end{pmatrix}$