

Anderson Acceleration of Proximal Gradient Methods

Vien V. Mai and Mikael Johansson KTH - Royal Institute of Technology

Generic unconstrained convex optimization problem

$$\mathop{\mathsf{minimize}}_{x \in \mathbb{R}^n} f(x)$$

Optimization algorithm produces **sequence** of iterates x_k converging to x^*

Example: gradient descent:

$$x_{k+1} = x_k - \gamma \nabla f(x_k)$$

Example: Newton's method:

$$x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

Note. Algorithms only keep the last iterate for the next update

Use multiple past iterates to accelerate the convergence process

Example: Heavy-ball method [Polyak, 1964]:

$$x_{k+1} = x_k + \beta_k(x_k - x_{k-1}) - \gamma \nabla f(x_k)$$

Example: Accelerated gradient descent [Nesterov, 1983]:

$$x_{k+1} = x_k + \beta_k(x_k - x_{k-1}) - \gamma \nabla f(x_k + \beta_k(x_k - x_{k-1}))$$

Optimal **momentum** parameters β_k often depend on unknown constants

Originally developed for solving nonlinear integral equations

Recently adapted for solving general fixed-point equations

$$g(x) = x$$

Key ideas. Make clever use of past iterates

- Keeps m+1 most recent iterates
- Ideally, forms $x_{\text{ext}} = \sum_{i=0}^{m} \alpha_i x_{k-i}$ such that

$$\alpha^* = \underset{\alpha: \alpha^\top 1 = 1}{\operatorname{argmin}} \| g(x_{\text{ext}}) - x_{\text{ext}} \|.$$

• Finds coefficients α_i that minimize

$$\alpha \leftarrow \operatorname*{argmin}_{\alpha^{\top} 1 = 1} \left\| \sum_{i=0}^{m} \alpha_{i} \left(g(x_{k-i}) - x_{k-i} \right) \right\|$$

• Sets $x_{k+1} = \sum_{i=0}^{m} \alpha_i g_{k-i}$

Originally developed for solving nonlinear integral equations

Recently adapted for solving general fixed-point equations

$$g(x) = x$$

Key ideas. Make clever use of past iterates

- Keeps m+1 most recent iterates
- Ideally, forms $x_{\mathrm{ext}} = \sum_{i=0}^{m} \alpha_i x_{k-i}$ such that

$$\alpha^* = \underset{\alpha: \alpha^\top \mathbf{1} = 1}{\operatorname{argmin}} \|g(x_{\text{ext}}) - x_{\text{ext}}\|.$$

• Finds coefficients α_i that minimize

$$\alpha \leftarrow \operatorname*{argmin}_{\alpha^{\top} 1 = 1} \left\| \sum_{i=0}^{m} \alpha_{i} \left(g(x_{k-i}) - x_{k-i} \right) \right\|$$

• Sets $x_{k+1} = \sum_{i=0}^{m} \alpha_i g_{k-i}$

Originally developed for solving nonlinear integral equations

Recently adapted for solving general fixed-point equations

$$g(x) = x$$

Key ideas. Make clever use of past iterates

- Keeps m+1 most recent iterates
- Ideally, forms $x_{\text{ext}} = \sum_{i=0}^{m} \alpha_i x_{k-i}$ such that

$$\alpha^* = \underset{\alpha: \alpha^\top \mathbf{1} = 1}{\operatorname{argmin}} \|g(x_{\text{ext}}) - x_{\text{ext}}\|.$$

• Finds coefficients α_i that minimize

$$\alpha \leftarrow \underset{\alpha^{\top} \mathbf{1} = 1}{\operatorname{argmin}} \left\| \sum_{i=0}^{m} \alpha_i \left(g(x_{k-i}) - x_{k-i} \right) \right\|$$

• Sets $x_{k+1} = \sum_{i=0}^{m} \alpha_i g_{k-i}$

Originally developed for solving nonlinear integral equations

Recently adapted for solving general fixed-point equations

$$g(x) = x$$

Key ideas. Make clever use of past iterates

- Keeps m+1 most recent iterates
- Ideally, forms $x_{\mathrm{ext}} = \sum_{i=0}^{m} \alpha_i x_{k-i}$ such that

$$\alpha^{\star} = \underset{\alpha: \alpha^{\top} \mathbf{1} = 1}{\operatorname{argmin}} \| g(x_{\text{ext}}) - x_{\text{ext}} \|.$$

• Finds coefficients α_i that minimize

$$\alpha \leftarrow \underset{\alpha^{\top} \mathbf{1} = 1}{\operatorname{argmin}} \left\| \sum_{i=0}^{m} \alpha_i \left(g(x_{k-i}) - x_{k-i} \right) \right\|$$

• Sets $x_{k+1} = \sum_{i=0}^{m} \alpha_i g_{k-i}$

V. V. Mai (KTH) ICCOPT-2019 4 / 28

Optimization algorithms as fixed-point iterations

Many optimization methods can be written as fixed-point iterations

Gradient descent:

$$x_{k+1} = x_k - \gamma \nabla f(x_k) \quad \Leftrightarrow \quad x_{k+1} = g(x_k)$$

with
$$g(x) := x - \gamma \nabla f(x)$$
.

Finding an optimal solution reduces to finding a fixed-point of g:

$$g(x^*) = x^* \Leftrightarrow \nabla f(x^*) = 0 \Leftrightarrow x^* \in \operatorname{argmin} f(x)$$

Idea. Apply Anderson acceleration to speed-up optimization algorithms

[Scieur, d'Aspremont, Bach, 2016], [Zhang, O'Donoghue, and Boyd, 2018]

Anderson acceleration for gradient descent

Goal. Find a point x^* satisfying $\nabla f(x^*) = 0$

AA-GD.

• Finds coefficients α_i such that

$$\alpha \leftarrow \underset{\alpha^{\top} \mathbf{1} = 1}{\operatorname{argmin}} \left\| \sum_{i=0}^{m} \alpha_i \nabla f(x_{k-i}) \right\|$$

• Sets $x_{k+1} \leftarrow \sum_{i=0}^{m} \alpha_i g_{k-i}$

If f is convex quadratic and m=k, AA-GD is GMRES

Convergence rates for the quadratic objective

Anderson acceleration for GD (AA-GD):

$$f(x_k) - f(x^*) \le O\left(\min\left\{1/k^2, e^{-\frac{k}{\sqrt{\kappa}}}\right\}\right) \left(f(x_0) - f(x^*)\right)$$

Very strong adaptive rate, remarkable property of Krylov subspace methods

Accelerated gradient descent:

$$f(x_k) - f(x^*) \le O(1/k^2) (f(x_0) - f(x^*))$$

Strong practical performance requires local adaption

adaptive restart techniques [O'Donoghue and Candes, 2014]

Quadratic convex minimization

$$\underset{x \in \mathbb{R}^n}{\operatorname{minimize}} \, \frac{1}{2} x^\top A x + b^\top x$$

• $A \in \mathbb{R}^{200 \times 200}$ with $\lambda_{\max}/\lambda_{\min} = 10^4$

Open problem: AA for constrained optimization

Consider constrained convex optimization problems

$$\underset{x \in \mathcal{C}}{\operatorname{minimize}} f(x) \tag{1}$$

where C is a closed convex set.

Recall the Anderson acceleration update

$$x_{k+1} = \sum_{i=0}^{m} \alpha_i g_{k-i}, \quad \alpha_i \in \mathbb{R}$$

The extrapolated point x_{k+1} may become **infeasible**

Q. Can we use Anderson acceleration for constrained problems?

Outline

- Background and motivation
- Accelerating proximal gradient descent
- Local convergence of AA for constrained problems
- Accelerating Bregman proximal gradient descent
- Numerical examples
- Summary and conclusions

Composite minimization and proximal operator

Consider composite convex optimization problems

$$\mathop{\mathrm{minimize}}_{x \in \mathbb{R}^n} f(x) + h(x)$$

• f is smooth and convex; h is closed and convex

Proximal operator:

$$\operatorname{prox}_h\left(y\right) := \operatorname*{argmin}_{x \in \mathbb{R}^n} \left\{ \frac{1}{2} \left\| x - y \right\|_2^2 + h(x) \right\}.$$

 x^{\star} is an optimal solution if and only if

$$x^* = \operatorname{prox}_{\gamma h} (x^* - \gamma \nabla f(x^*))$$

Proximal gradient descent

Proximal gradient algorithm (PGA)

$$x_{k+1} = \operatorname{prox}_{\gamma h} (x_k - \gamma \nabla f(x_k))$$

Exactly the fixed-point iteration of the mapping

$$g(x) = \operatorname{prox}_{\gamma h} (x - \gamma \nabla f(x))$$

Finding x^{\star} is equivalently to finding a fixed-point of g

Naively using AA for g leads to iterates **infeasible**

Proximal gradient descent

An alternative representation of PGA:

$$y_{k+1} = x_k - \gamma \nabla f(x_k)$$

$$x_{k+1} = \operatorname{prox}_{\gamma h} (y_{k+1})$$

Can be seen as the fixed-point iteration of the mapping

$$g(y) = \operatorname{prox}_{\gamma h}(y) - \gamma \nabla f(\operatorname{prox}_{\gamma h}(y))$$

Observation. x^* is optimal if and only if

$$y^{\star} = g(y^{\star})$$
 and $x^{\star} = \operatorname{prox}_{\gamma h}(y^{\star})$

Key idea. Use AA to speed-up fixed-point computations of g(y)

No iterates infeasibility since the sequence $\{y_k\}$ has no restriction

How to relate the convergence of $\{x_k\}$ and $\{y_k\}$:

$$||x_{k+1} - x^*|| = ||\operatorname{prox}_{\gamma h} (y_{k+1}) - \operatorname{prox}_{\gamma h} (x^* - \gamma \nabla f(x^*))||$$

 $\leq ||y_{k+1} - y^*||$

 \blacktriangleright if AA quickly drives y_k to y^* , so does x_k to x^*

Theorem [Toth and Kelley, 2015]. Suppose that g is differentiable and contractive with constant ρ . If x_0 is sufficiently close to x^* , then

$$||x_k - x^*|| \le \rho^k ||x_0 - x^*||.$$

Note. The mapping g is non-differentiable

Assumption. The operator $\operatorname{prox}_h(\cdot)$ is strongly semi-smooth ¹

Main result. Let f be a μ -strongly convex and L-smooth function. Suppose that x_0 is sufficiently close to x^* . Then,

$$||x_k - x^*||^2 \le \left(1 - \frac{\mu}{L}\right)^k ||x_0 - x^*||^2.$$

V. V. Mai (KTH) ICCOPT-2019 15 / 28

¹[Mifflin, 1977], [Qi and Sun, 1993]

Constrained logistic regression.

$$\begin{split} & \underset{x \in \mathbb{R}^n}{\text{minimize}} \ \frac{1}{M} \sum_{i=1}^M \log(1 + \exp(-y_i a_i^\top x)) + \mu \left\| x \right\|^2 \\ & \text{subject to} \ \left\| x \right\|_\infty \leq 1, \end{split}$$

 $a_i \in \mathbb{R}^n$ are training samples and $y \in \{-1,1\}^n$ are the corresponding labels.

We use the UCI Madelon dataset with M=2000 and n=500

We set $\mu=0.01$ and m=5

ightharpoonup Extremely ill-conditioned problem with condition number $\kappa=3 imes10^9$

Nonnegative least squares.

$$\label{eq:linear_equation} \underset{x \in \mathbb{R}^n}{\operatorname{minimize}} \ \frac{1}{2m} \left\| Ax - b \right\|^2 \quad \text{subject to} \ \ x \geq 0,$$

with $A \in \mathbb{R}^{1000 \times 5000}$ and $b \in \mathbb{R}^{1000}$.

V. V. Mai (KTH)

Challenges with global convergence

Even for smooth problems, AA may not converge!

Example. AA-GD gets stuck in unconstrained logistic regression

1. Computes

$$g_k = x_k - \gamma \nabla f(x_k)$$
 (gradient step)

2. Applies AA-PGA

$$y_{\mathrm{ext}} = \sum_{i=0}^{m_k} \alpha_i^k g_{k-i}$$
 and $x_{\mathrm{test}} = \mathrm{prox}_{\gamma h} \left(y_{\mathrm{ext}} \right)$

3. Guarded step

$$\begin{split} & \text{If } f(x_{\text{test}}) \leq f(x_k) - \frac{\gamma}{2} \left\| \nabla f(x_k) \right\|_2^2 \\ & x_{k+1} = x_{\text{test}}, \quad y_{k+1} = y_{\text{ext}} \\ & \text{else} \\ & x_{k+1} = \operatorname{prox}_{\gamma_h}(g_k), \quad y_{k+1} = g_k \\ & \text{end} \end{split}$$

Figure: Bounded logistic regression

Extending to Non-Euclidean Geometry

Consider optimization problems of the form

$$\underset{x\in\mathcal{D}}{\operatorname{minimize}}\ f\left(x\right)+h(x).$$

Problem geometry is exploited by a **kernel** function φ

Example. Energy function
$$\varphi(x) = (1/2) \|x\|_2^2$$

Example. Shannon entropy
$$\varphi(x) = \sum_{i=1}^n x_i \log x_i$$
, $\operatorname{dom} \varphi = \mathbb{R}^n_+$

Bregman proximal operator:

$$\operatorname{prox}_{h}^{\varphi}(y) = \operatorname*{argmin}_{x \in \mathbb{R}^{n}} \left\{ h(x) + D_{\varphi}\left(x,y\right) \right\}, \quad y \in \operatorname{int} \operatorname{dom} \varphi.$$

Bregman proximal gradient (BPG)

Bregman proximal gradient (BPG)

$$x_{k+1} = \operatorname*{argmin}_{x \in \mathbb{R}^n} \big\{ \left\langle \nabla f(x_k), x - x_k \right\rangle + \gamma^{-1} D_{\varphi} \left(x, x_k \right) + h(x) \big\}.$$

Can be expressed as

$$x_{k+1} = \operatorname{prox}_{\gamma h}^{\varphi} \left(\nabla \varphi^* \left(\nabla \varphi(x_k) - \gamma \nabla f(x_k) \right) \right)$$

Equivalent form

$$y_{k+1} = \nabla \varphi(x_k) - \gamma \nabla f(x_k)$$

$$x_{k+1} = \operatorname{prox}_{\gamma_k}^{\varphi} (\nabla \varphi^* (y_{k+1})).$$

Mirror Descent is a special instance

Strategy: Extrapolate the **dual** sequence $\{y_k\}$:

$$g(y) = \nabla \varphi(\operatorname{prox}_{\gamma h}^{\varphi} \circ \nabla \varphi^{*}(y)) - \gamma \nabla f(\operatorname{prox}_{\gamma h}^{\varphi} \circ \nabla \varphi^{*}(y)).$$

Assumption. The conjugate of φ has full domain, i.e., $\operatorname{dom} \varphi^* = \mathbb{R}^n$.

Reduced to AA-PGA if
$$\varphi(\cdot) = (1/2) \left\| \cdot \right\|_2^2$$

A similar guarded step as in AA-PGA guarantees global convergence

Relative-entropy nonnegative regression

The task is to reconstruct the signal $x \in \mathbb{R}^n_+$ by solving

$$\label{eq:linear_equation} \mathop{\mathrm{minimize}}_{x} D_{\mathrm{KL}}\left(Ax,b\right) + \lambda \left\|x\right\|_{1} \quad \text{subject to } x \geq 0,$$

- $A \in \mathbb{R}_+^{m \times n}$ is given nonnegative observation matrix
- $b \in \mathbb{R}^m_{++}$ is a noisy measurement vector

We adapt the family of BPG methods with:

- $\mathcal{D} = \mathbb{R}^n_+$
- φ is the Shannon entropy, $f(x) = D_{\mathrm{KL}}(Ax, b)$
- $h(x) = \lambda ||x||_1$ with $\lambda = 0.001$

Compare with BPG, BPG-LS, ABPG, ABPG-LS

[Bauschke, Bolte, Teboulle, 2016], [Hanzely, Richtárik, Xiao, 2018]

(a)
$$(m,n) = (1000,100)$$

Anderson acceleration

- dramatic speed-ups in local convergence, at small extra cost
- current theory only applies to unconstrained problems

Our contributions

- first convergence results for AA on constrained problems
- strong practical performance
- first application to non-Euclidean geometry

Future work

- algorithms: primal-dual methods, ADMM
- applications: Sinkhorn-Knopp, optimal transport