定义 若等价式 $A \leftrightarrow B$ 是重言式,则称 $A \hookrightarrow B$ 等值,记作 $A \Leftrightarrow B$,并称 $A \Leftrightarrow B$ 是等值式

真值表验算

双重否定	$\neg \neg A \Leftrightarrow A$	1
幂等律	$A \lor A \Leftrightarrow A, A \land A \Leftrightarrow A$	2
交换律	$A \lor B \Leftrightarrow B \lor A, A \land B \Leftrightarrow B \land A$	3
结合律	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$	4
	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$	
分配律	$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$	5
	$A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$	
吸收律	$A \lor (A \land B) \Leftrightarrow A, A \land (A \lor B) \Leftrightarrow A$	6

德·摩根律	$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B,$	7
	$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$	
零律	$A \land 0 \Leftrightarrow 0, \ A \lor 1 \Leftrightarrow 1$	8
同一律	$A \lor 0 \Leftrightarrow A, A \land 1 \Leftrightarrow A$	9
排中律	$A \lor \neg A \Leftrightarrow 1$,	10
矛盾律	$A \land \neg A \Leftrightarrow 0$	
蕴含等值	$A \rightarrow B \Leftrightarrow \neg A \lor B$	
式		

等价等值式	$A \longleftrightarrow B \Leftrightarrow (A {\rightarrow} B) {\wedge} (B {\rightarrow} A)$	13
	$\Leftrightarrow (A \land B) \lor (\neg A \land \neg B)$	
	$\neg (A \leftrightarrow B) \Leftrightarrow (A \land \neg B) \lor (\neg A \land B)$	
	$\Leftrightarrow A \leftrightarrow \neg B$	
假言易位	$A {\rightarrow} B \Leftrightarrow \neg B {\rightarrow} \neg A$	14
等价否定等值式	$A \leftrightarrow B \Leftrightarrow \neg A \leftrightarrow \neg B$	15
归谬论	$(A \rightarrow B) \land (A \rightarrow \neg B) \Leftrightarrow \neg A$	16

等值

析取范式:由有限个简单 合取式组成的析取式

一个析取范式是矛盾式 当且仅当它的每个简单 合取 式都是矛盾式.

一个合取范式是重言式

主析取范式

 A_1 Ú A_2 Ú...Ú A_r ,其中 A_1 , A_2 ,..., A_r 是简单合取 式

合取范式:由有限个简单 析取式组成的合取式

当且仅当它的每个简单析取 式都是重言式.

主合取范式

 A_1 Ù A_2 Ù... $ÙA_r$,其中 A_1 , A_2 ,..., A_r 是简单析取 式

命题逻辑等值演算

等值关系

传递性

自反性

主范式

对称性

极小项				
公式	成真赋值	名称		
$\neg p \wedge \neg q$	0 0	m_0		
$\neg p \land q$	0 1	m_1		
$p \land \neg q$	1 0	m_2		
$p \wedge q$	1 1	m_3		

若每个命题变项均以文字的形式出现且仅出现一次,称这样的简单合取式为极小项.

极小项与极大项

极大项				
公式	成假赋值	名称		
$p \vee q$	0 0	M_0		
$p \vee \neg q$	0 1	M_1		
$\neg p \lor q$	1 0	M_2		
$\neg p \lor \neg q$	1 1	M_3		

若每个命题变项均以文字的形式 出现且仅出现一次,称这样的简 单析取式为极大项.