Contesta las preguntas en las hojas blancas que se te darán. Indica claramente el número de problema e inciso. No es necesario que copies la pregunta.

Profesor: Román Contreras

- Puedes usar cualquier teorema o proposición demostrado en clase siempre y cuando especifiques cláramente que lo estás usando.
- Justifica todas tus respuestas y afirmaciones. Redacta tus argumentos de la manera más clara posible, no es necesario que utilices símbolos lógicos.

Pregunta	1	2	3	Total
Puntos	5	3	8	16
Puntaje				

Nombre: _

En lo sucesivo, fijemos una base ortonormal $\beta = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$. Además, fijemos el volumen V que cumple que $V(\vec{w}_1, \vec{w}_2, \vec{w}_3) = 1$.

1. (5 Puntos) Sea T una transformación autoadjunta con forma cuadrática asociada:

$$\langle \vec{v}, T(\vec{v}) \rangle = aX^2 + bY^2 + cZ^2$$

.

Dado un ángulo α , sean:

$$\vec{z}_{1\alpha} = \cos(\alpha)\vec{w}_1 + \sin(\alpha)\vec{w}_2$$
$$\vec{z}_{2\alpha} = -\sin(\alpha)\vec{w}_1 + \cos(\alpha)\vec{w}_2$$
$$\vec{z}_{3\alpha} = \vec{w}_3$$

y sea $\gamma_{\alpha} := \{z_{1\alpha}, z_{2\alpha}, z_{3\alpha}\}$ la base ortonormal que se obtiene de la base β al rotar \vec{w}_1 y \vec{w}_2 un ángulo α . Sean $X_{\alpha}, Y_{\alpha}, Z_{\alpha}$ las coordenadas con respecto a la base γ_{α} , es decir:

$$X_{\alpha}(\vec{v}) = \langle \cos(\alpha)\vec{w}_1 + \sin(\alpha)\vec{w}_2, \vec{v} \rangle = \langle z_{1\alpha}, \vec{v} \rangle$$

$$Y_{\alpha}(\vec{v}) = \langle -\sin(\alpha)\vec{w}_1 + \cos(\alpha)\vec{w}_2, \vec{v} \rangle = \langle z_{2\alpha}, \vec{v} \rangle$$

$$Z_{\alpha}(\vec{v}) = \langle \vec{w}_3, \vec{v} \rangle = \langle z_{3\alpha}, \vec{v} \rangle$$

Demuestra que las siguientes afirmaciones son equivalentes:

- 1. a = b
- 2. Para todo ángulo α , la forma cuadrática $\langle \vec{v}, T(\vec{v}) \rangle$ en las coordenadas $X_{\alpha}, Y_{\alpha}, Z_{\alpha}$ tiene los mismos coeficientes que en las coordenadas X, Y, Z, es decir: $\langle \vec{v}, T(\vec{v}) \rangle = aX_{\alpha}^2 + bY_{\alpha}^2 + cZ_{\alpha}^2$
- 2. (3 Puntos) Enuncia el teorema espectral.
- 3. En las siguientes preguntas marca todas las opciones verdaderas.
 - (a) (1 Pt) Sea T una transformación autoadjunta, \vec{v} y \vec{w} dos vectores propios de T con valores propios λ y μ respectivamente.
 - A. $\vec{v} + \vec{w}$ es un vector propio de valor propio $\lambda + \mu$
 - B. \vec{v} es perpendicular a \vec{w}
 - C. \vec{v} no pertenece a la recta generada por \vec{w}
 - D. si $\lambda \neq \mu$, entonces \vec{v} es perpendicular a \vec{w}

Geometría Analítica II 23 de mayo de 2018

- (b) (1 Pt) Una transformación lineal T es autoadjunta si y solo si:
 - A. $\langle T(\vec{v}), T(\vec{w}) \rangle = \langle \vec{v}, \vec{w} \rangle$ para cuales quiera dos vectores \vec{v}, \vec{w}
 - B. la matríz $[T]_{\beta}$ es simétrica
 - C. Existe una base ortonormal γ tal que $[T]_{\gamma}$ es diagonal
 - D. Con respecto a cualquier base ortonormal γ , $[T]\gamma$ es diagonal
- (c) (1 Pt) Sea T una transformación lineal y λ un valor propio de T, entonces:
 - A. $\lambda \neq 0$
 - B. existe un vector \vec{v} tal que $T(\vec{v}) = \lambda \vec{v}$
 - C. λ es raíz del polinomio $det([T]_{\beta})$
 - D. $dil(T H_{\lambda}) = 0$ donde H_{λ} es la homotecia de factor λ
- (d) (1 Pt) Sea T una transformación lineal, λ un número real y \vec{v} un vector. Si $T(-\vec{v}) = \lambda \vec{v}$, entonces:
 - A. \vec{v} es un vector propio de valor propio λ
 - B. $-\vec{v}$ es un vector propio de valor propio λ
 - C. \vec{v} es un vector propio de valor propio $-\lambda$
 - D. $-\vec{v}$ es un vector propio de valor propio $-\lambda$
 - E. Ninguna de las anteriores
- (e) (2 Puntos) Sean T y S dos transformaciones lineales, tal que S es invertible.
 - A. si λ es un valor propio de T, entonces también lo es de $S^{-1} \circ T \circ S$
 - B. si \vec{v} es un vector propio de T, entonces también lo es de $S^{-1} \circ T \circ S$
 - C. si \vec{v} es un vector propio de T, entonces $S^{-1}(\vec{v})$ también lo es de $S^{-1} \circ T \circ S$
- (f) (2 Puntos) Sean T y R dos transformaciones lineales, tal que R es una isometría y T es autoadjunta. Entonces:
 - A. $T \circ R$ es autoadjunta
 - B. $R^{-1} \circ T \circ R$ es autoadjunta
 - C. R^{-1} es isometría
 - D. $R \circ T \circ R^{-1}$ es autoadjunta