CS 228 DL HW 2

May 6, 2023

0.0.1 Imports

```
[1]: from keras.datasets import mnist # Only for dataset
  import time # note how lon code cells run
  import math # to check for nan values

import numpy as np
  import matplotlib.pyplot as plt
  plt.rcParams["figure.figsize"] = (5, 5)
```

0.0.2 Get Dataset

```
[2]: (x_train, y_train), (x_test, y_test) = mnist.load_data()
print (x_train.shape, y_train.shape, x_test.shape, y_test.shape)
```

```
[3]: # Visualize 1 sample
print ('label', y_train[0])
plt.imshow(x_train[0], cmap='gray')
```

label 5

[3]: <matplotlib.image.AxesImage at 0x7f1b3cb9f880>

0.0.3 Vectorize the dataset into n,784 and Normalize them (2 points)

(60000, 784) (60000,) (10000, 784) (10000,)

```
[5]: # Stack 1s on train set
x_train = np.hstack((x_train, np.ones((x_train.shape[0], 1))))

# Stack 1s on test set
x_test = np.hstack((x_test, np.ones((x_test.shape[0], 1))))

print (x_train.shape, y_train.shape, x_test.shape, y_test.shape)
```

(60000, 785) (60000,) (10000, 785) (10000,)

0.0.4 Linear Classifier (2 Points)

```
[6]: # Utility functions
     # function to convert y output vector of size n,1 to onhot vector of size
      \rightarrow n, (num unique vals)
     def convert_to_one_hot(labels):
         unique = np.unique(labels)
         onehot = np.zeros((labels.shape[0], unique.shape[0]))
         onehot[np.arange(labels.shape[0]), labels] = 1
         return onehot
     # get accuracy
     def accuracy(y_true, y_out_oh):
         return np.sum(np.argmax(y_out_oh, axis=1) == y_true)/y_true.shape[0]
     # predict labels
     def predict(X, w):
         return np.matmul(X, w.T)
     # calculate MSE loss
     def loss(y_pred_oh, y_true_oh):
         return np.sum(0.5*(y_pred_oh - y_true_oh)**2)/y_pred_oh.shape[0]
     # Plot loss given loss array
     def plot_loss(loss_array):
         plt.figure(1)
         plt.plot(np.arange(0,len(loss_array)), loss_array)
         plt.title('Train Loss vs iters')
         plt.xlabel('iters')
         plt.ylabel('loss')
         plt.grid()
         plt.show()
     # plot train and test accuracy given respective arrays
     def plot_accuracy(train_accuracy, test_accuracy):
         plt.figure(2)
```

```
plt.plot(np.arange(0,len(train_accuracy)), train_accuracy, label='train')
plt.plot(np.arange(0,len(test_accuracy)), test_accuracy, label='test')
plt.title('Accuracy vs iters')
plt.xlabel('iters')
plt.ylabel('Accuracy')
plt.legend()
plt.grid()
plt.show()
```

```
[7]: def linear_model(x_train, y_train_true, y_train_oh, x_test, y_test_true, u

    y_test_oh, lr = 0.001, n_epochs=10, batch_size=10):

         # create weights and bias matrix
         # weights has a shape of 2, 785
         input_dim = x_train.shape[1]
         output_dim = y_train_oh.shape[1]
         # weights and biases have been initialized as O
         w = np.zeros((output_dim, input_dim))
         # store train loss, train accuracy and test accuracy
         loss_array = []
         train_accuracy_array = []
         test_accuracy_array = []
         for epoch in range(n_epochs):
             shuffled_indices = np.random.permutation(x_train.shape[0])
             x_shuffled = x_train[shuffled_indices]
             y_shuffled_oh = y_train_oh[shuffled_indices]
             i = 0
             # Mini-batch SGD
             while i < x_train.shape[0]:</pre>
                 x = x_shuffled[i:i+batch_size]
                 y = y_shuffled_oh[i:i+batch_size]
                 # Forward pass
                 out = predict(x, w)
                 # calculate loss mse loss
                 # loss = 1/2 * (ypred_oh - ytrue_oh)**2 / N
                 1 = loss(out, y)
                 # Backward Pass
```

```
# calculate gradients for weights and bias
            \# dl/dw = ((ypred\_oh - ytrue\_oh).T).X / N
            w_grad = np.matmul((out - y).T, x) / out.shape[0]
            # optimization
            # update gradients
            w -= lr*w_grad
            i+= batch size
        # Store Statistics
        loss_array.append(1)
        # train accuracy in entire dataset
        out_train = predict(x_train, w)
        train_acc = accuracy(y_train_true, out_train)
        train_accuracy_array.append(train_acc)
        # test accuracy in entire dataset
        out_test = predict(x_test, w)
        test_acc = accuracy(y_test_true, out_test)
        test_accuracy_array.append(test_acc)
        if (epoch+1) \% 20 == 0:
            print ('epoch = {}, train_loss = {}, train_acc = {}, test_acc = {}'.

→format(epoch+1, l, train_acc, test_acc))
        # if loss is not defined due to poor lr selection, break the loop
        if 1 == np.inf or math.isnan(1):
            print ('--- loss explodes ---')
            break
    return w, loss_array, train_accuracy_array, test_accuracy_array
# convert y to one hot encoded
y_train_oh = convert_to_one_hot(y_train)
y_test_oh = convert_to_one_hot(y_test)
w,loss_arr,train_acc, test_acc = linear_model(x_train, y_train,_

    y_train_oh,x_test, y_test, y_test_oh)
plot_accuracy(train_acc, test_acc)
```



```
[8]: print ("The test accuracy is {}".format(test_acc[-1]))
```

The test accuracy is 0.8517

0.0.5 Neural Network (7 Points)

```
def logistic_loss(y_true, y_pred):
          cumulative_l = 0
          y_pred = y_pred.reshape(-1,)
          for y,y_hat in zip (y_true, y_pred):
              sigmoid_y_hat = sigmoid(y_hat)
              1 = (y*np.log(sigmoid_y_hat)) + ((1-y)*np.log(1-sigmoid_y_hat))
              1 = -1
              cumulative 1 += 1
          return cumulative_l/y_true.shape[0]
      # calculate the relu activation funtion for the layer
      # if derivative of the layer is required, pass in the true flag
      def relu(input, derivative = False):
          if derivative:
              return np.where(input > 0, 1, 0)
          else:
              return np.maximum(input, 0)
      # calculate accuracy of the model
      def get_accuracy(y_true, y_pred):
          y_pred = y_pred.reshape(-1,)
          # label is predicted by hard thresholding
          y_pred = np.where(y_pred > 0.5, 1, 0)
          return np.sum(y_true == y_pred)/y_true.shape[0]
[10]: def shallow_neural(x_train, x_test, y_train, y_test, lr=0.01, k=5, epochs=10, __
       ⇔batch_size=10, loss_type='quadratic'):
          if loss_type not in ['sigmoid', 'quadratic']:
              raise Exception('Enter Valid loss function')
          np.random.seed(112233)
          # Generate weights from gaussian distribution with 0 mean and 1/d std.
          \# Size of weights is k{5,40,200}, d(785(784+bias))
          w = np.random.randn(k, x_train.shape[1]) /x_train.shape[1]
          # Generate weights from gaussian distribution with 0 mean and 1/k std.
          # Size of weights is k\{5,40,200\}, 1
          v = np.random.randn(k) / k
          train acc per iteration = []
          test_acc_per_iteration = []
          iter ctr = 0
          for epoch in range(epochs):
```

logistic loss

```
# shuffle the dataset
       shuffled_indices = np.random.permutation(x_train.shape[0])
       x_shuffled = x_train[shuffled_indices]
       y_shuffled = y_train[shuffled_indices]
       # Mini-batch SGD
       i = 0
       t_before = time.time()
       while i < x_train.shape[0]:</pre>
           x = x_shuffled[i:i+batch_size]
           y = y_shuffled[i:i+batch_size]
           # FORWARD
           # n is 10 for batch size
           \# x is n,d and w is k, d
           \# z1 is n, k
           z1 = np.matmul(x, w.T)
           # Relu Layer
           # y1 is n, k
           y1 = relu(z1)
           # y1 is n, k and v is k,
           # z2 is n,
           z2 = np.matmul(y1, v)
           # no activation is required for final output so
           # y2 is n,
           y2 = z2
           # BACKWARD
           # delta_2 = (Grad \ of \ loss \ w.r.t \ y2) \ times (element \ wise \ product_{\sqcup}
→with first order derivative of activation function)
           # shape of delta_2 is n,
           if loss_type == 'quadratic':
               delta_2 = 2*(y2 - y)
           else:
               # add a small value in case denominator is O
               \# delta_2 = (y2 - y) / ((y2 * (1 - y2)) + 1e-16)
               delta_2 = (y2 - y)
           \# gradient of weights(v) = y1 dot delta_2
           # y1 is n,k is delta_2 is n,
```

```
# dv is k,
          dv = np.matmul(y1.T, delta_2) / x.shape[0]
           # shape of z1 is n, k
           # shape of relu_derivative is n, k
          relu_derivative = relu(z1, derivative=True)
          # delta_1 is gradient of loss w.r.t hidden layer 1
           # delta_2 is n, and shape of v is k,
           # shape of delta_1 is n,k
          delta_1 = np.matmul(delta_2.reshape(-1,1), v.reshape(-1,1).T) *__
\neg relu\_derivative
           # gradients of weight(w) = x dot delta_1
           # shape of delta_1 is n,k
          # shape of x is n,d
          # shape of dw is d,k
          dw = np.matmul(delta_1.T, x) / x.shape[0]
          # Optimization
          w -= lr*dw
          v -= lr*dv
          i += batch_size
          if iter_ctr == 0 or iter_ctr % 100 == 0:
               # ----- PER ITERATION ACCURACY -----
              # Train test loss and accuracy
              # Train
              # FORWARD
              z1 = np.matmul(x_train, w.T)
              v1 = relu(z1)
              z2 = np.matmul(y1, v)
              y2_{train} = z2
              # Accuracy
              train_accuracy = get_accuracy(y_train, y2_train)
               # Test
              # FORWARD
              z1 = np.matmul(x_test, w.T)
              y1 = relu(z1)
              z2 = np.matmul(y1, v)
              y2_test = z2
               # Accuracy
              test_accuracy = get_accuracy(y_test, y2_test)
              train_acc_per_iteration.append((iter_ctr, train_accuracy))
```

```
test_acc_per_iteration.append((iter_ctr, test_accuracy))
              # ----- PER ITERATION LOSS -----
              if loss_type == 'sigmoid':
                 train_l = logistic_loss(y_train, y2_train)
                 test_1 = logistic_loss(y_test, y2_test)
              else:
                 train_l = quadratic_loss(y_train, y2_train)
                 test_l = quadratic_loss(y_test, y2_test)
          iter_ctr += 1
      t_after = time.time()
      print (f'epoch : {epoch} | total time for epoch : {(t_after - t_before):

  .4f}¹)
      print (f'train_accuracy : {train_accuracy:.4f} | test_accuracy:__
print (f'train_loss : {train_l:.4f} | test_loss: {test_l:.4f}')
      print ()
  return train_acc_per_iteration, test_acc_per_iteration
```

0.0.6 Quadratic

```
[11]: accuracy_list = []
      loss = 'quadratic'
      for k in [5,40,200]:
          print (f'Running for K = {k} and loss = {loss}')
          print ()
          t0 = time.time()
          train_acc_per_iteration, test_acc_per_iteration = shallow_neural(x_train,_
       ax_test, y_train, y_test, lr=0.001, k=k, epochs=10, batch_size=10,
       ⇔loss type=loss)
          train_acc_per_iteration = np.array(train_acc_per_iteration)
          test_acc_per_iteration = np.array(test_acc_per_iteration)
          t1 = time.time()
          print ()
          print (f'time for K = \{k\} and loss = \{loss\} is \{(t1 - t0): .4f\}')
          plt.figure(1)
          plt.title(f'loss = {loss}, k = {k}')
          plt.plot(train_acc_per_iteration[:, 0], train_acc_per_iteration[:, 1],__
       ⇔label='train')
          plt.plot(test_acc_per_iteration[:, 0], test_acc_per_iteration[:,1],u
       ⇔label='test')
```

```
plt.xlabel('iterations')
plt.ylabel('accuracy')
plt.legend()
plt.grid()
plt.show()
print ('Test Accuracy', test_acc_per_iteration[-1:,1])
accuracy_list.append({'k':k,'test_acc':test_acc_per_iteration[-1:
$\to$,1][0]*100})
print (' -------')
Running for K = 5 and loss = quadratic
```

Running for K = 5 and loss = quadratic epoch: 0 | total time for epoch: 10.1860 train_accuracy : 0.9108 | test_accuracy: 0.9130 train_loss : 0.0831 | test_loss: 0.0812 epoch: 1 | total time for epoch: 9.5154 train_accuracy : 0.9291 | test_accuracy: 0.9262 train_loss : 0.0717 | test_loss: 0.0723 epoch: 2 | total time for epoch: 8.7766 train_accuracy : 0.9367 | test_accuracy: 0.9321 train_loss : 0.0656 | test_loss: 0.0673 epoch: 3 | total time for epoch: 9.3030 train_accuracy : 0.9399 | test_accuracy: 0.9344 train loss: 0.0635 | test loss: 0.0662 epoch: 4 | total time for epoch: 9.4154 train_accuracy : 0.9459 | test_accuracy: 0.9406 train_loss : 0.0598 | test_loss: 0.0628 epoch : 5 | total time for epoch : 9.4730 train_accuracy : 0.9492 | test_accuracy: 0.9435 train_loss : 0.0573 | test_loss: 0.0597 epoch : 6 | total time for epoch : 9.6746 train_accuracy : 0.9455 | test_accuracy: 0.9384 train_loss : 0.0604 | test_loss: 0.0643 epoch: 7 | total time for epoch: 8.8789 train_accuracy : 0.9531 | test_accuracy: 0.9484 train_loss : 0.0539 | test_loss: 0.0572 epoch: 8 | total time for epoch: 10.4024 train_accuracy : 0.9551 | test_accuracy: 0.9491 train_loss : 0.0518 | test_loss: 0.0554

epoch : 9 | total time for epoch : 9.5279
train_accuracy : 0.9556 | test_accuracy: 0.9484

train_loss : 0.0515 | test_loss: 0.0559

time for K = 5 and loss = quadratic is 96.2579

Test Accuracy [0.9484]

Running for K = 40 and loss = quadratic

epoch : 0 | total time for epoch : 14.3499
train_accuracy : 0.8876 | test_accuracy: 0.8917

train_loss : 0.0939 | test_loss: 0.0905

epoch : 1 | total time for epoch : 14.9984
train_accuracy : 0.9411 | test_accuracy: 0.9414

train_loss : 0.0626 | test_loss: 0.0620

epoch : 2 | total time for epoch : 14.7298
train_accuracy : 0.9563 | test_accuracy: 0.9548
train_loss : 0.0500 | test_loss: 0.0511

epoch : 3 | total time for epoch : 14.8726
train_accuracy : 0.9643 | test_accuracy: 0.9637
train_loss : 0.0440 | test_loss: 0.0461

epoch : 4 | total time for epoch : 14.7714
train_accuracy : 0.9694 | test_accuracy: 0.9646
train_loss : 0.0409 | test_loss: 0.0435

epoch : 5 | total time for epoch : 15.1888
train_accuracy : 0.9718 | test_accuracy: 0.9670
train_loss : 0.0373 | test_loss: 0.0406

epoch : 6 | total time for epoch : 14.8853
train_accuracy : 0.9732 | test_accuracy: 0.9683
train_loss : 0.0353 | test_loss: 0.0390

epoch : 7 | total time for epoch : 19.6847
train_accuracy : 0.9757 | test_accuracy: 0.9709
train_loss : 0.0337 | test_loss: 0.0375

epoch : 8 | total time for epoch : 15.6746
train_accuracy : 0.9766 | test_accuracy: 0.9704
train_loss : 0.0321 | test_loss: 0.0363

epoch : 9 | total time for epoch : 14.6252
train_accuracy : 0.9775 | test_accuracy: 0.9715
train_loss : 0.0319 | test_loss: 0.0365

time for K = 40 and loss = quadratic is 154.9395

Test Accuracy [0.9715]

Running for K = 200 and loss = quadratic

epoch : 0 | total time for epoch : 46.7608
train_accuracy : 0.8683 | test_accuracy: 0.8728

train_loss : 0.1057 | test_loss: 0.1021

epoch : 1 | total time for epoch : 46.9154
train_accuracy : 0.9448 | test_accuracy: 0.9431

train_loss : 0.0585 | test_loss: 0.0581

epoch : 2 | total time for epoch : 46.9572
train_accuracy : 0.9618 | test_accuracy: 0.9589

train_loss : 0.0455 | test_loss: 0.0466

epoch : 3 | total time for epoch : 46.7146
train_accuracy : 0.9701 | test_accuracy: 0.9666

train_loss : 0.0387 | test_loss: 0.0408

epoch : 4 | total time for epoch : 46.9779
train_accuracy : 0.9744 | test_accuracy: 0.9708
train_loss : 0.0346 | test_loss: 0.0377

epoch : 5 | total time for epoch : 47.6842
train_accuracy : 0.9763 | test_accuracy: 0.9729
train_loss : 0.0318 | test_loss: 0.0350

epoch : 6 | total time for epoch : 48.3977
train_accuracy : 0.9791 | test_accuracy: 0.9744
train_loss : 0.0293 | test_loss: 0.0329

epoch : 7 | total time for epoch : 47.5224
train_accuracy : 0.9805 | test_accuracy: 0.9755
train_loss : 0.0275 | test_loss: 0.0314

epoch : 8 | total time for epoch : 47.2369
train_accuracy : 0.9819 | test_accuracy: 0.9767
train_loss : 0.0259 | test_loss: 0.0300

epoch : 9 | total time for epoch : 47.4513
train_accuracy : 0.9827 | test_accuracy: 0.9785
train_loss : 0.0245 | test_loss: 0.0288

time for K = 200 and loss = quadratic is 473.7613

Test Accuracy [0.9785]

```
[12]: import pandas as pd

df = pd.DataFrame.from_records(accuracy_list)
    df
```

```
[12]: k test_acc
0 5 94.84
1 40 97.15
2 200 97.85
```

Effect of k on accuracy and optimization

As k increases, the model becomes complex and takes more time for computation. This also means that the model tends to learn more features. However, this may lead to overfitting which is bad for the model. On the other hand, if the hidden layer is small, the model may not completely learn all the features.

0.0.7 Sigmoid

```
[13]: accuracy list = []
      loss = 'sigmoid'
      for k in [5,40,200]:
          print (f'Running for K = {k} and loss = {loss}')
          print ()
          t0 = time.time()
          train_acc_per_iteration, test_acc_per_iteration = shallow_neural(x_train,_
       ox_test, y_train, y_test, lr=0.001, k=k, epochs=10, batch_size=10, ∪
       →loss_type=loss)
          train_acc_per_iteration = np.array(train_acc_per_iteration)
          test_acc_per_iteration = np.array(test_acc_per_iteration)
          t1 = time.time()
          print ()
          print (f'time for K = \{k\} and loss = \{loss\} is \{(t1 - t0): .4f\}')
          plt.figure(1)
          plt.title(f'loss = {loss}, k = {k}')
          plt.plot(train_acc_per_iteration[:, 0], train_acc_per_iteration[:, 1],__
       ⇔label='train')
          plt.plot(test_acc_per_iteration[:, 0], test_acc_per_iteration[:,1],__
       ⇔label='test')
          plt.xlabel('iterations')
          plt.ylabel('accuracy')
          plt.legend()
          plt.grid()
          plt.show()
          print ('Test Accuracy', test_acc_per_iteration[-1:,1])
          accuracy_list.append({'k':k,'test_acc':test_acc_per_iteration[-1:
       \hookrightarrow,1][0]*100})
          print (' -----')
```

```
epoch : 0 | total time for epoch : 47.7253
train_accuracy : 0.8779 | test_accuracy: 0.8853
train_loss : 0.6012 | test_loss: 0.6011

epoch : 1 | total time for epoch : 47.6834
train_accuracy : 0.9145 | test_accuracy: 0.9144
train_loss : 0.5793 | test_loss: 0.5792

epoch : 2 | total time for epoch : 47.3958
train_accuracy : 0.9249 | test_accuracy: 0.9226
train_loss : 0.5743 | test_loss: 0.5747
```

Running for K = 5 and loss = sigmoid

epoch : 3 | total time for epoch : 47.7287
train_accuracy : 0.9294 | test_accuracy: 0.9264
train_loss : 0.5719 | test_loss: 0.5732

epoch : 4 | total time for epoch : 47.3109
train_accuracy : 0.9344 | test_accuracy: 0.9309
train_loss : 0.5647 | test_loss: 0.5659

epoch : 5 | total time for epoch : 47.6547
train_accuracy : 0.9368 | test_accuracy: 0.9324
train_loss : 0.5623 | test_loss: 0.5638

epoch : 6 | total time for epoch : 47.3497
train_accuracy : 0.9357 | test_accuracy: 0.9299
train_loss : 0.5672 | test_loss: 0.5693

epoch : 7 | total time for epoch : 47.4295
train_accuracy : 0.9408 | test_accuracy: 0.9351
train_loss : 0.5588 | test_loss: 0.5605

epoch : 8 | total time for epoch : 48.7880
train_accuracy : 0.9428 | test_accuracy: 0.9374
train_loss : 0.5598 | test_loss: 0.5624

epoch : 9 | total time for epoch : 47.6961
train_accuracy : 0.9448 | test_accuracy: 0.9369
train_loss : 0.5613 | test_loss: 0.5642

time for K = 5 and loss = sigmoid is 477.7186

Test Accuracy [0.9369]

Running for K = 40 and loss = sigmoid

epoch : 0 | total time for epoch : 52.3468
train_accuracy : 0.8473 | test_accuracy: 0.8547

train_loss : 0.6090 | test_loss: 0.6087

epoch : 1 | total time for epoch : 53.4078
train_accuracy : 0.8943 | test_accuracy: 0.8981

train_loss : 0.5896 | test_loss: 0.5891

epoch : 2 | total time for epoch : 52.8165
train_accuracy : 0.9281 | test_accuracy: 0.9282

train_loss : 0.5723 | test_loss: 0.5727

epoch : 3 | total time for epoch : 53.0691
train_accuracy : 0.9417 | test_accuracy: 0.9426

train_loss : 0.5633 | test_loss: 0.5640

epoch : 4 | total time for epoch : 53.3850
train_accuracy : 0.9519 | test_accuracy: 0.9518
train_loss : 0.5576 | test_loss: 0.5584

epoch : 5 | total time for epoch : 52.7419
train_accuracy : 0.9584 | test_accuracy: 0.9563
train_loss : 0.5516 | test_loss: 0.5532

epoch : 6 | total time for epoch : 53.5325
train_accuracy : 0.9626 | test_accuracy: 0.9595
train_loss : 0.5509 | test_loss: 0.5527

epoch : 7 | total time for epoch : 52.1480
train_accuracy : 0.9655 | test_accuracy: 0.9627
train_loss : 0.5487 | test_loss: 0.5504

epoch : 8 | total time for epoch : 53.6253
train_accuracy : 0.9662 | test_accuracy: 0.9622
train_loss : 0.5456 | test_loss: 0.5476

epoch : 9 | total time for epoch : 52.8018
train_accuracy : 0.9682 | test_accuracy: 0.9638
train_loss : 0.5467 | test_loss: 0.5489

time for K = 40 and loss = sigmoid is 530.8016

Test Accuracy [0.9638]

Running for K = 200 and loss = sigmoid

epoch : 0 | total time for epoch : 84.5976
train_accuracy : 0.8338 | test_accuracy: 0.8409

train_loss : 0.6185 | test_loss: 0.6185

epoch : 1 | total time for epoch : 84.8738
train_accuracy : 0.8685 | test_accuracy: 0.8741

train_loss : 0.6032 | test_loss: 0.6029

epoch : 2 | total time for epoch : 85.3197
train_accuracy : 0.9231 | test_accuracy: 0.9246

train_loss : 0.5802 | test_loss: 0.5799

epoch : 3 | total time for epoch : 85.3325
train_accuracy : 0.9475 | test_accuracy: 0.9445

train_loss : 0.5634 | test_loss: 0.5633

epoch : 4 | total time for epoch : 84.8288
train_accuracy : 0.9578 | test_accuracy: 0.9538
train_loss : 0.5553 | test_loss: 0.5560

epoch : 5 | total time for epoch : 85.2483
train_accuracy : 0.9626 | test_accuracy: 0.9591
train_loss : 0.5486 | test_loss: 0.5494

epoch : 6 | total time for epoch : 84.9335
train_accuracy : 0.9675 | test_accuracy: 0.9629
train_loss : 0.5474 | test_loss: 0.5485

epoch : 7 | total time for epoch : 85.5451
train_accuracy : 0.9709 | test_accuracy: 0.9665
train_loss : 0.5460 | test_loss: 0.5476

epoch : 8 | total time for epoch : 85.5005
train_accuracy : 0.9723 | test_accuracy: 0.9680
train_loss : 0.5419 | test_loss: 0.5436

epoch : 9 | total time for epoch : 85.8638
train_accuracy : 0.9747 | test_accuracy: 0.9707
train_loss : 0.5407 | test_loss: 0.5425

time for K = 200 and loss = sigmoid is 853.0374

Test Accuracy [0.9707]

```
[14]: import pandas as pd

df = pd.DataFrame.from_records(accuracy_list)
    df
```

```
[14]: k test_acc
0 5 93.69
1 40 96.38
2 200 97.07
```

Effect of k on accuracy and optimization

As k increases, the model becomes complex and takes more time for computation. This also means that the model tends to learn more features. However, this may lead to overfitting which is bad for the model. On the other hand, if the hidden layer is small, the model may not completely learn all the features.

Linear Model and Neural Net

As linear model is simpler in implementation, it has a lower complexity than the neural network. Also, NN with a hidden layer is better able to learn the patterns in the data.

Logistic and Quadratic

In general we can see that logistic loss is better suited for a classification problem such as the one given here. Thus, we can see that the accuracy for classification is better for the logistic model.

In terms of optimization, we can see that logistic loss converges faster than quadratic loss

```
[]: !sudo apt-get update
!sudo apt-get install texlive-xetex texlive-fonts-recommended

⇔texlive-generic-recommended
!jupyter nbconvert --log-level CRITICAL --to pdf ./fall2022_hw2.ipynb # make

⇔sure the ipynb name is correct
```