Name- Prakhar Khanduri Registration no. 19BCE0486

```
In [11]: import pandas as pd
         import numpy as np
         import matplotlib
         from matplotlib import pyplot as plt
         %matplotlib inline
In [3]: data = pd.read_csv('Churn.csv')
In [4]: print('Data shape - ', data.shape)
         data.head()
         Data shape - (50, 24)
Out[4]:
```

	customerID	gender	CreditScore	Geography	SeniorCitizen	NumOfProducts	Partner	Depe
0	7590- VHVEG	Female	619.0	France	0.0	1.0	Yes	
1	5575- GNVDE	Male	608.0	Spain	0.0	1.0	No	
2	3668- QPYBK	Male	502.0	France	0.0	3.0	No	
3	7795- CFOCW	Male	699.0	France	0.0	2.0	No	
4	9237- HQITU	Female	850.0	Spain	0.0	1.0	No	

5 rows × 24 columns

```
In [5]: data.info()
                   <class 'pandas.core.frame.DataFrame'>
                   RangeIndex: 50 entries, 0 to 49
                   Data columns (total 24 columns):
                              Column Non-Null Count Dtype
                                                                       -----
                     0 customerID 48 non-null object
1 gender 48 non-null object
2 CreditScore 48 non-null float64
3 Geography 48 non-null object
4 SeniorCitizen 48 non-null float64
5 NumOfProducts 48 non-null float64
6 Partner 48 non-null object
7 Dependents 48 non-null object
8 Tenure 50 non-null int64
9 Balance 50 non-null float64
                     10 NumOfProducts.1 50 non-null int64
11 HasCrCard 50 non-null int64
12 IsActiveMember 50 non-null int64
13 EstimatedSalary 50 non-null float64
                     14 Exited 50 non-null int64
15 PhoneService 48 non-null object
16 InternetService 48 non-null object
17 Contract 48 non-null object
18 PaperlessBilling 48 non-null object
                     19 PaymentMethod 48 non-null object
20 MonthlyCharges 48 non-null float64
21 yearly Charges 48 non-null float64
22 TotalCharges 48 non-null float64
23 Churn 48 non-null object
                   dtypes: float64(8), int64(5), object(11)
                   memory usage: 9.5+ KB
```

Q1.1 - Using python script do density plot any three continuous variables with respect to categorical variables.

```
In [ ]: # Selecting the below continuous against categorical variable
            Continuous - CreditScore, Balance, EstimatedSalary
            Categorical - gender
            fig, ((ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2, figsize=(10,1))
In [29]:
            0))
            i=1
            for s in ['CreditScore', 'Balance', 'EstimatedSalary']:
                  data.loc[data.gender=='Male',s].plot(kind='density', ax=eval('ax'+s
            tr(i)), title=s+'- Male')
                 i=i+1
                 data.loc[data.gender=='Female',s].plot(kind='density', ax=eval('ax
            '+str(i)), title=s+'- Female')
                  i=i+1
                                 CreditScore- Male
                                                                           CreditScore- Female
                 0.0030
                                                            0.0030
                 0.0025
                                                            0.0025
                 0.0020
                                                            0.0020
                 0.0015
                                                            0.0015
                 0.0010
                                                            0.0010
                                                            0.0005
                 0.0005
                 0.0000
                                                            0.0000
                                                                           400 600 800
Balance- Female
                            400
                                   600 80
Balance- Male
                                              800
                                                      1000
                                                                    200
                                                                                                1000
               0.000008
                                                           0.000006
               0.000006
                                                        Density
                                                           0.000004
               0.000004
               0.000002
                                                           0.000002
               0.000000
                                                           0.000000
                               0 50000 100000150000200000250000
EstimatedSalary- Male
                                                                    -50000 0 50000 100000 150000 200000
EstimatedSalary- Female
               0.000006
                                                          0.000006
               0.000005
                                                           d.000005
               0.000004
                                                           .000004
               0.000003
                                                           ф.000003
               0.000002
                                                           .000002
```

Q1.2 - Find the IQR of any three continuous variables using python script. First mention which variables are you considering. Then find the IQR. Paste the code along with result.

50000100000150000200000250000

.000001

0.000000

-100000

0

100000

200000

300000

0.000001

0.000000

-50000

```
In [33]: cont_var = ['CreditScore', 'Balance', 'EstimatedSalary']

for i in cont_var:
    q75, q25 = np.nanpercentile(data[i], [75 ,25])
    iqr = q75 - q25
    print('The IQR of ', i, 'is - ', iqr)

The IQR of CreditScore is - 178.75
The IQR of Balance is - 124763.695
The IQR of EstimatedSalary is - 74639.85500000003
```

Q1.3 - Using ggplot library, do box plot of the selected continuous variables with respect to each of categorical variables. Paste code and graphics.

In []:

Q2.1 - Analysis the churn dataset and answer the following question using python /R

How different user behavior, subscription, and demographic features correlate with churn in Internet service

```
In [79]: data.corr(method='pearson')
Out[79]:
```

	CreditScore	SeniorCitizen	NumOfProducts	Tenure	Balance	NumOfPro
CreditScore	1.000000	6.015097e-02	-0.326858	0.070195	-0.056935	-0
SeniorCitizen	0.060151	1.000000e+00	0.169932	0.188525	-0.208957	0
NumOfProducts	-0.326858	1.699324e-01	1.000000	0.201372	-0.211632	1
Tenure	0.070195	1.885248e-01	0.201372	1.000000	-0.243118	0
Balance	-0.056935	-2.089568e-01	-0.211632	-0.243118	1.000000	-0
NumOfProducts.1	-0.326858	1.699324e-01	1.000000	0.202267	-0.211939	1
HasCrCard	0.131001	6.567020e-02	0.040918	0.042193	-0.085158	0
IsActiveMember	0.399406	8.991371e-02	-0.264113	-0.049492	0.064372	-0
EstimatedSalary	0.131434	2.937220e-01	-0.098617	0.041568	0.164051	-0
Exited	-0.117712	4.831626e-18	0.036155	-0.009351	0.278141	0
MonthlyCharges	0.147293	2.243296e-02	-0.015230	0.115975	0.194043	-0
yearly Charges	0.147293	2.243296e-02	-0.015230	0.115975	0.194043	-0
TotalCharges	0.147293	2.243296e-02	-0.015230	0.115975	0.194043	-0

Q2.2 - The proportion of Churn to Non-Churn.

Q2.3 - Analysis the churn distribution.

```
In [66]: pd.crosstab(data.Churn, columns='N').plot(kind='bar')

Out[66]: <matplotlib.axes._subplots.AxesSubplot at 0x1c0a42e2828>

Out[66]: 

O
```


Q2.4 - Analysis the service purchased by contract .


```
In [70]: pd.crosstab(data['PhoneService'], data['Churn']).plot(kind='bar', stacke
d=True);
```


In []:

9 of 9