# QBASIC

### Introduction

- BASIC (Beginners All Purpose Symbolic Instruction Code) is one of the easiest high level language.
- BASIC was developed in 1964 by Professors John Kemeny and Thomas Kurtz.
- QBASIC (Quick Beginners All Purpose Symbolic Instruction Code) is a high level programming language published by Microsoft in 1991 AD.

## Features Of QBASIC

- It is simple and easy to learn.
- It allows us to write and run programs immediately.
- It allows us to break lengthy programs into modules.
- Supports structured programming.
- Debugging can be easily done.

# Elements of QBASIC Programming

- 1) Character Set
- 2) Variable
- 3) Constant
- 4) Operator and Expression
- 5) Keywords (Reserved Words)

### Character Set

- Character set is a set of valid characters that a language can recognize.
- A character represents any letter, digit, or any other sign.
- QBASIC has following character set:
- Alphabets : A to Z (small and capital)
- Numbers : o to 9
- Special Characters: + \* / = ^ % # ()!:&; <> \$?

### Variable

- Variables are the storage locations in the computer's memory.
- The data stored in a variable is the variable's value.
- Variable's value change during the execution of program.



# Types of Variable

- Numeric Variable: The numeric variable has a number as its value. It must begin with an alphabet and reaming characters may be alphabet or digits or both. Examples: area,aı,Lı,L2,etc.
- 2. String variable: The string variable has a string of character or alphanumeric as its value. It must begin with an alphabet and end with a dollar(\$) sign. Example: BOOK1\$,A\$,a\$,etc.

### Constant

- Constant is a data item whose value does not change during execution of a program.
- It is also called literal.
- There are two types of constant :
- 1) Numeric constant
- 2) String constant

- Numeric Constant: It is a sequence of positive or negative numbers on which mathematical operations can be performed. Examples: 23,-5,80,etc.
- String Constant: It is a sequence of characters which may include numbers, letters and certain characters enclosed in quotation marks.

# Operator and Expression

- Operators: operators are the symbol, which are used in arithmetic operation, logical expression and string expression. It helps to convert one or more values into a single value.
- Expression : A combination of an operator and its operands is referred to as an expression.

Sum=21+6

Since (21+6) has a value, it is an expression. Its value 27, is stored in the variable sum.

Expression do not have to be in form of mathematical operation. Example: number=3, 3 is expression.

# Types of Operators

- Arithmetic operators: The operators that operate on numeric constants and variables are called Arithmetic operators. They are used to perform various mathematical operation. Examples: +,-,\*,/,Mod,^
- 2) Relational operators: They are used to compare two values of same type, either both numeric or both string. Example: =,<,>,<=,>=,<>
- 3) Logical operators: They are used to connect two or more relational expressions to evaluate a single value as True or False. Example: AND,OR,NOT

# Keywords (Reserved Words)

- Keywords are those words which have special meaning in QBASIC.
- They are reserved for special purpose and must not be used as normal identifiers names.
- Some of keywords are REM, CLS, INPUT, LET, PRINT and END

# **QBASIC Statements**

- QBASIC statement is a meaningful expression or an instruction in a source language.
- These statements are stored in the memory and executed only when the command RUN is given.
- It is either executable(tell what BASIC to do during execution of program) or non-executable (do not cause any program action).
- The statements can be divided into four categories : declaration statement, assignment statement, input/output statement and control statement.

### Some QBASIC statements

- REM statement: Rem statement is a non-executable statement which is used include explanatory remarks to be inserted in program.
- It is useful to explain what a program does and what specific lines of code do.
- The general format of REM statement is :
- REM <remarks> or '<remarks>

### **CLS** statement

- CLS statement is used to clear the output screen.
- It is generally given before the start of any program so that there is a fresh screen and left over from previous program is clear completely.
- The general format of CLS statement is: CLS

### LET statement

- LET is an assignment statement used to assign the value of an expression to a variable.
- It is an optional keyword i.e., the equal sign is sufficient when assigning to a variable name.
- The general format of LET statement is :

LET <variable> = <expression>

Example: LET distance =300, Length=3

### INPUT statement

- It is used to accept the input from the keyboard during program execution.
- It facilitates the use of same program for various set of data to obtain different results in different execution.
- The general format of INPUT statement is:

INPUT ["definer";/,] list of variables

Example: INPUT "Enter length of rectangle";len

### File Edit View Search Run Debug Options Tools

```
1 Rem "This program calculates the area of circle"
2
3 PI = 3.14159
 5 Let R = 8
   ' Calculating the area of circle
9 Area = PI \times (R ^{2})
10
   'Displaying area of circle
12
13 Print "The area of circle is :"; Area
14
15 End
```

### READ statement

- It is used to read values from DATA statement and assign them to variables.
- The purpose of DATA statement is to store the numeric and string constants that are accessed by the program's READ statement.
- The general format of READ...DATA is:

```
READ [variable1,variable2,.....]
....
DATA [constant1,constant2,....]
```

### **CONST** statement

- CONST statement is a non-executable statement that declares symbolic constants to be used in place of numeric or string values.
- The general format of CONST statement is :

CONST constantname = expression

Example: CONST pi=3.141

### PRINT statement

- It is used to display data on the screen.
- It prints constants, variables or expression.
- A question mark(?) can be used instead of the word PRINT.
- The general format of PRINT statement is:

```
PRINT [list of expression] [,|;]
```

or

? [list of expression] [,|;]

Example: PRINT "Sum of two numbers=";sum

### TAB function

- It is used to space the position.
- It is only used in PRINT, LPRINT and PRINT# statement.
- The general format is : TAB(n)

### LOCATE statement

- It is used to move the cursor to the specified position on the screen and determine the height of the cursor.
- The general format is:

LOCATE [row][,[col][,[cursor][,[start][,stop]]]]

Example: LOCATE 9,50: PRINT "Hello"











```
Options
  File Edit
              View Search
                             Run
                                  Untitled
CLS
                                  Enter first number? 5
INPUT "Enter first number"; a
                                  Enter second number? 2
INPUT "Enter second number"; b
                                  Quotient= 2
q = a \setminus b
                                  Result= 2.5
PRINT "Quotient="; q
                                  Remainder= 1
res = a / b
print"Result=":res
r = a MOD b
PRINT "Remainder="; r
END
```

```
CLS
INPUT "Enter first numbers"; a
INPUT "Enter second numbers"; b
sum = a + b
diff = a - b
product = a * b
div = a / b
PRINT "sum="; sum; "Difference="; diff; "Product="; product; "Division="; div
END
Untitled
Enter first numbers? 5
Enter second numbers? 2
sum= 7 Difference= 3 Product= 10 Division= 2.5
```

### **END** statement

- It denotes the end of program.
- It must be written as the last statement of the program.
- The general format of END statement is :
   END

### Control statement

- Computer program executes its statement from beginning to end in sequential order. This type of program is called in-line program.
- But some programs do not execute all their statements in strict order from beginning to end.
- The flow of jump control jumps from one part of program to another, depending upon the calculations performed in the program.
- Program statement that cause jumps are called control statements.

# Types of control statement

Branching statement: It allows program to transfer the control to some other specified statement instead of the sequential execution.

Types of Branching statement:

a) Unconditional Branching statement :It is statement that transfers the control unconditionally (without testing any condition) from one statement to another statement in program. GOTO statement is the simplest unconditional branching statement.

### **GOTO** statement

- It is used for unconditional transfer of execution from one part of program to other. It does not depend on any test of condition.
- The general format is :

GOTO [line number | line label]

2) Conditional Branching: It is a statement that allows the selective execution of statements based on a particular condition. On the basis of a given condition a selected segment of a program is executed.

It is also called decision-making statement.

The conditional branching include IF...THEN and SELECT CASE statement.

### IF...THEN statement

- It is used for making decisions as well as comparison.
- It allows branching depending upon the value of an expression.
- The different form of IF...THEN statement are:
- 1)IF...THEN statement
- 2)IF...THEN...ELSE statement
- 3)IF...ELSEIF...ENDIF statement

# 1) IF...THEN statement

- It is a conditional branching statement. If the condition is true, the statement given next to THEN will be executed otherwise next executable statement following IF...THEN statement will be executed.
- The general format is:

IF<condition> THEN <statement>



# CLS INPUT "Enter any number"; num IF num > o THEN PRINT "positive number" IF num < o THEN PRINT "negative number" IF num=o THEN PRINT "Zero" END

## IF...THEN...ELSE statement

- It is an extension of IF...THEN statement.
- It tests a particular condition and asks the computer true or false question only.
- If condition is true, the computer follows the command given after THEN.
- If condition is false, the computer altogether ignore the command given after THEN and moves to ELSE part to execute the command started there.
- The general format is:

IF <condition> THEN <statement> ELSE <statement>



```
CLS
INPUT "Enter number"; num
IF num > 1 THEN
        PRINT "Number is greater than 1"
ELSE
        PRINT ; num; " is less than 1"
END IF
END
```

- Q) WAP to input two different number and find the greatest number.
- Q) WAP to input a number and check whether the given number is odd or even.

## IF...ELSEIF...ENDIF statement

- It is a chain of IF statement.
- The executable statements following the last ELSE statement are executed if all the conditions on the IF and ELSEIF lines are false.
- The general format is:

```
IF [condition] THEN
[statementblock-1]
ELSEIF [condition] THEN
[statementblock-2]
```

**ELSE** 

[statementblock-3]

**END IF** 



CLS INPUT "Enter your age:";age IF age>18 THEN PRINT "He can drive" ELSEIF age<18 THEN PRINT "He can't drive" ELSEIF age=18 THEN PRINT "Visit driving centre" ELSE PRINT "something error" **ENDIF END** 

- Q) WAP to input a number and check whether given number is positive, negative or zero.
- Q) WAP to find the greatest number among three number.
- Q) WAP to input a percentage and check whether he/she scores distinction, first div, second div, third div or fail.

### File Edit View Search Run Options Untitled CLS Enter three numbers? 6,2,1 INPUT "Enter three numbers"; a, b, c 6 is greater IF a > b AND a > c THEN PRINT a: "is greater" ELSEIF b > a AND b > c THEN PRINT b: "is greater number" ELSE PRINT : c: " is greater number" END IF END

### Uptions File Edit Search View Kun CLS INPUT "Enter percentage": per IF per >= 80 AND per <= 100 THEN PRINT "Distinction" ELSEIF per >= 60 AND per < 80 THEN PRINT "First Division" ELSEIF per >= 50 AND per < 60 THEN PRINT "Second Division" ELSEIF per >= 40 AND per < 50 THEN PRINT "Third Division" ELSEIF per < 40 THEN PRINT "Fail" ELSE. PRINT "please enter value between 0 to 100"

Untitled

END IF

END

Enter percentage? 88 Distinction

# **Looping Statement**

- Loop is a control structure that causes a statement or group of statements to repeat, based on a condition.
- The looping statement allow flexibility to the programmer in controlling the number of times a specific instruction is to be repeated.
- The three types of looping statement are FOR...NEXT, WHILE...WEND and DO...LOOP.

## FOR...NEXT statement

- It is used to execute a series of instruction for a given number of times.
- FOR statement is placed at beginning of loop and NEXT statement at the end.
- The criteria of FOR...NEXT are starting value, final value and Increment/Decrement.
- The general format is:

FOR <counter variable >=x to y<STEP z>

program statement>

NEXT<counter variable>

- A counter variable is used to keep count of the number of times the loop is repeated.
- The initial value(x) and final value(y) for the counter variable are given with FOR statement.
- If the STEP clauses in not included, the default value for STEP ,i.e., 1 is used.
- The next part generate a new value for the loop variable on the basis of STEP value. If STEP value is 3, then it adds 3 to previous value of loop variable.
- After generation of new value for the loop variable it returns the program control back to the FOR part of the FOR...NEXT statement.

```
Search Run Options
  File
       Edit
              View
CLS
FOR i = 1 TO 5 'by default STEP 1
    PRINT i:
NEXT i
END
 Untitled
    2 3
         4 5
```

```
File Edit
              View
                     Search
CLS
FOR i = 5 TO 1 STEP -1
NEXT i
END
Untitled
4321
```

- Q) WAP to print 'n' natural number.
- Q) Program to display "My country Nepal" 15 times.
- Q) WAP to display numbers from 20 to 5.
- Q)Program to generates first ten even numbers.
- Q) WAP to calculate sum of 10 natural numbers.
- Q) WAP to calculate sum of n-natural numbers.
- Q) WAP to calculate the factorial of a given number.
- Q) WAP to print Fibonacci series.
- What is Fibonacci series?
- The Fibonacci sequence is a sequence where the next term is the sum of the previous two terms. The first two terms of the Fibonacci sequence are o followed by 1.
- The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ......

```
File Edit
              View Search Run
                                  Options
REM program to find the print of first n natural numbers.
CLS
INPUT "Enter the number": n
FOR i = 1 TO n
    PRINT i
NEXT i
END
Untitled
Enter the number? 5
2
3
4
5
```

```
Q)WAP to find the product of first n natural number.
REM To find the product of first n natural numbers
CLS
INPUT "Enter the number"; n
p = 1
FOR i = 1 TO n
  p = p * i
NEXT i
PRINT "The product upto "; n; "="; p
END
```

## REM"program to find factorial of a number."

```
CLS
INPUT "Enter a Number: ", num
fact = 1
FOR i = 1 TO num
   fact = fact * i
NEXT i
PRINT "Factorial of ";n;" is ";fact
END
```

## WHILE...WEND statement

- It is an entry-controlled loop.
- If the condition is true, all the statements are execute and when the WEND statement reached, control is reached to WHILE statement which evaluates the condition again.
- The general format is:

```
WHILE [condition]
INC/DEC
```

WEND

```
CLS
i=1
WHILE i<=10
PRINT i
i=i+1
WEND
```

**END** 

- Q) WAP to find the sum of digits of a given number.
- Q) WAP to find the reverse of a given number.
- Q) WAP to check the given number is palindrome or not palindrome.
- Q) WAP to check the given number is Armstrong or not Armstrong.

```
File Edit View Search Run
                                 Options
REM"WAP to find sum of digits of given number"
CLS
INPUT "enter number"; num
WHILE num <> 0
   r = num MOD 10
    s = s + r
    num = num 🔨 10
WEND
PRINT "sum of digit of number is"; s
END
Untitled
enter number? 456
sum of digit of number is 15
```

### File Edit View Search Run Untitled enter number? 123 CLS reversed number is 321 INPUT "enter number"; num WHILE num <> 0 r = num MOD 10s = s \* 10 + rnum = num \ 10 WEND PRINT "reversed number is"; s **END**

- What is Armstrong number?
- The number which is formed by the sum of cubes of its own digits is Armstrong number.

Example: 153, 370, 371, 407, etc.

$$153 = 1^3 + 5^3 + 3^3$$
  
= 1 + 125 + 27  
= 153

• What is Palindrome number?

A palindromic number (also known as a numeral palindrome or a numeric palindrome) is a number that remains the same when its digits are reversed.

Example : 121, 55,767,etc

### **QB64** x32

#### File Edit View Search Run Options

```
CLS
INPUT "Enter any number": N
A = N
S = 0
WHILE N <> 0
    R = N MOD 10
    S = S \times 10 + R
    N = N \setminus 10
WEND
IF A = S THEN
    PRINT A: "is palindrome"
ELSE
    PRINT A: "is not palindrome"
END IF
END
Untitled
Enter any number? 121
```

121 is palindrome

## DO...LOOP statement

- It causes a set of program statement to execute repeatedly until certain condition are met or as long as certain condition are true.
- The syntax of DO...LOOP statement can take either of the two forms:
- Syntaxı:

DO

<statement block>

LOOP WHILE/UNTIL <br/>
<br/>
boolean expression>

Syntax2:

DO WHILE/UNTIL <br/>
<br/>
boolean expression>

<statement block>

LOOP

```
CLS
i=0
DO
PRINT i
i=i+1
LOOP WHILE i<=10
END
```

### **Using WHILE ... WEND**

```
CLS
INPUT "ENTER ANY NUMBER"; N
A = N
S = o
WHILE N <> o
  R = N MOD 10
  S = S + R \wedge 3
  N = N \setminus 10
WEND
IF A = S THEN
  PRINT A; "IS ARMSTRONG"
ELSE
  PRINT A; "IS NOT ARMSTRONG"
END IF
END
```

 Using DO WHILE ..... LOOP CLS INPUT "Enter a number"; n b = nDO WHILE n <> 0 r = n MOD 10 $a = a + r^3$  $n = n \setminus 10$ LOOP IF a = b THEN PRINT "It is armstrong number"; ELSE PRINT "It is not armstrong number"; **END IF END** 

# Library Function in QBASIC

- A function is a built-in formula or a ready-made program that helps us to perform a certain task such as mathematical, financial, logical, etc. A function manipulates data passes to it and returns either a string or a numeric value. There are two types of functions in QBASIC Programming.
- User-defined function
- Built-in function/Library function

- User-defined function: It is created by the programmer to perform the operations as per the requirements. It can be a numeric or string function.
- **Built-in function:** It is a pre-defined program which is provided by QBASIC to perform some task easily. It gives many more built-in functions for manipulating strings, numbers. It makes our work easy. It is also known as Library functions. There are two types of built in function: Mathematical Function and String Library Function

## Mathematical Function

- **SQR**: It calculate and return the square root of non-negative number.
- Example:

```
CLS
PRINT SQR(144)
END
```

### Output:12

- MOD: It returns reminder, when one number is divide by another number.
- Example:

```
CLS
PRINT 9 MOD 5
END
Output:
```

- **INT**: It returns an integer of a given number.
- Example:

```
CLS n = 27.5
PRINT INT(n)
END
```

• Output:

27

- **CINT**: It returns nearest rounding numeric value from -32768 to 32767 as argument.
- Example:

CLS
PRINT CINT(3.49)
PRINT CINT(3.51)
END

Output

ر 1

4

- **SGN**: It returns the sign of numeric value. If the number is positive it returns 1, if the number is negative, it returns -1 and if the number is 0 it returns 0.
- Example:

```
CLS
PRINT SGN(15)
PRINT SGN(-15)
PRINT SGN(0)
END

Output:

1
-1
0
```

- **ABS**: It returns corresponding positive value.
- Example:

CLS PRINT (-15.3) END

• Output:

15.3

- **SIN**: It returns the sign value of given number.
- **COS**: It is used to obtain the cosine value of a number.
- TAN: It returns the tangent of a number.
- Example:

```
CLS
PRINT SIN(1.5)
PRINT COS(1.5)
PRINT TAN(1.5)
END
```

- Output:
- .997495
- .0707372
- 14.10142

# String Library Function

- UCASE\$
- LCASE\$
- LEFT\$
- RIGHT\$
- MID\$
- LTRIM\$
- LEN
- VAL
- ASC
- CHR\$
- STR\$
- STRING\$
- SPACE\$
- TAB
- DATE\$ and TIME\$

# UCASE\$

- It converts string values to uppercase.
- Example:

```
CLS
```

```
x$ = "teach school"
PRINT UCASE$(x$)
END
```

Output:

TEACH SCHOOL

# LCASE\$

- It converts string value to lowercase.
- Example:

**CLS** 

x\$ = "TEACH SCHOOL"
PRINT LCASE\$(x\$)

**END** 

Output:

teach school

# LEFT\$

- it extract and return the number of characters from the let of a string.
- Example:

```
CLS

x$ = "computer"

PRINT LEFT$(x$, 5)

END
```

Output: compu

## RIGHT\$

- It extract and return the numbers of characters from the right of a string.
- Example:

```
CLS
x$ = "computer"
PRINT RIGHT$(x$, 4)
END
```

• Output:

uter

# MID\$

- It is used to pick up the required strings from the string.
- Example:

```
CLS
a$ = "computer"
PRINT MID$(a$, 3, 5)
END
```

Output: mpute

### LRTIM\$

- LRTIM\$ is used to remove the spaces from the left of the string and RTRIM\$ is used to remove the spaces from the right of the string.
- Example:

```
CLS
a$ = "computer"
b$ = "science"
PRINT a$ + b$
PRINT RTRIM$(a$) + LTRIM$(b$)
END
```

 Output: computer science computerscience

#### LEN

- It returns the length of a give string.
- Example:

**CLS** 

b\$ = "nepal"

PRINT LEN(b\$)

**END** 

• Output:

5

#### VAL

- If both string are started with number value. This function can perform mathematical calculations among them.
- Example:

```
CLS
a$ = "10 boys"
b$ = "20 girls"
total = VAL(a$) + VAL(b$)
PRINT "Total students = "; total
END
```

Output: Total students = 30

#### **ASC**

- It returns ASCII value of a character.
- Example:

```
CLS
```

```
x$ = "A"
PRINT ASC(x$)
END
```

#### Output:

65

| dec | hex        | oct | char | dec | hex | oct | char  | dec | hex | oct | char | dec | hex | oct       | char     |
|-----|------------|-----|------|-----|-----|-----|-------|-----|-----|-----|------|-----|-----|-----------|----------|
| 0   | 0          | 000 | NULL | 32  | 20  | 040 | space | 64  | 40  | 100 | @    | 96  | 60  | 140       | ×        |
| 1   | 1          | 001 | SOH  | 33  | 21  | 041 | !     | 65  | 41  | 101 | Α    | 97  | 61  | 141       | a        |
| 2   | 2          | 002 | STX  | 34  | 22  | 042 | 11    | 66  | 42  | 102 | В    | 98  | 62  | 142       | b        |
| 3   | 3          | 003 | ETX  | 35  | 23  | 043 | #     | 67  | 43  | 103 | С    | 99  | 63  | 143       | C        |
| 4   | 4          | 004 | EOT  | 36  | 24  | 044 | \$    | 68  | 44  | 104 | D    | 100 | 64  | 144       | d        |
| 5   | 5          | 005 | ENQ  | 37  | 25  | 045 | %     | 69  | 45  | 105 | E    | 101 | 65  | 145       | е        |
| 6   | 6          | 006 | ACK  | 38  | 26  | 046 | &     | 70  | 46  | 106 | F    | 102 | 66  | 146       | f        |
| 7   | 7          | 007 | BEL  | 39  | 27  | 047 | 1     | 71  | 47  | 107 | G    | 103 | 67  | 147       | g        |
| 8   | 8          | 010 | BS   | 40  | 28  | 050 | (     | 72  | 48  | 110 | Н    | 104 | 68  | 150       | h        |
| 9   | 9          | 011 | TAB  | 41  | 29  | 051 | )     | 73  | 49  | 111 | 1    | 105 | 69  | 151       | i        |
| 10  | а          | 012 | LF   | 42  | 2a  | 052 | *     | 74  | 4a  | 112 | J    | 106 | 6a  | 152       | j        |
| 11  | b          | 013 | VT   | 43  | 2b  | 053 | +     | 75  | 4b  | 113 | K    | 107 | 6b  | 153       | k        |
| 12  | С          | 014 | FF   | 44  | 2c  | 054 | ,     | 76  | 4c  | 114 | L    | 108 | 6c  | 154       | 1        |
| 13  | d          | 015 | CR   | 45  | 2d  | 055 | 2     | 77  | 4d  | 115 | M    | 109 | 6d  | 155       | m        |
| 14  | е          | 016 | SO   | 46  | 2e  | 056 |       | 78  | 4e  | 116 | N    | 110 | 6e  | 156       | n        |
| 15  | f          | 017 | SI   | 47  | 2f  | 057 | /     | 79  | 4f  | 117 | 0    | 111 | 6f  | 157       | o        |
| 16  | 10         | 020 | DLE  | 48  | 30  | 060 | 0     | 80  | 50  | 120 | P    | 112 | 70  | 160       | р        |
| 17  | 11         | 021 | DC1  | 49  | 31  | 061 | 1     | 81  | 51  | 121 | Q    | 113 | 71  | 161       | q        |
| 18  | 12         | 022 | DC2  | 50  | 32  | 062 | 2     | 82  | 52  | 122 | R    | 114 | 72  | 162       | r        |
| 19  | 13         | 023 | DC3  | 51  | 33  | 063 | 3     | 83  | 53  | 123 | S    | 115 | 73  | 163       | S        |
| 20  | 14         | 024 | DC4  | 52  | 34  | 064 | 4     | 84  | 54  | 124 | Т    | 116 | 74  | 164       | t        |
| 21  | 15         | 025 | NAK  | 53  | 35  | 065 | 5     | 85  | 55  | 125 | U    | 117 | 75  | 165       | u        |
| 22  | 16         | 026 | SYN  | 54  | 36  | 066 | 6     | 86  | 56  | 126 | V    | 118 | 76  | 166       | V        |
| 23  | 17         | 027 | ETB  | 55  | 37  | 067 | 7     | 87  | 57  | 127 | W    | 119 | 77  | 167       | w        |
| 24  | 18         | 030 | CAN  | 56  | 38  | 070 | 8     | 88  | 58  | 130 | X    | 120 | 78  | 170       | х        |
| 25  | 19         | 031 | EM   | 57  | 39  | 071 | 9     | 89  | 59  | 131 | Υ    | 121 | 79  | 171       | у        |
| 26  | 1a         | 032 | SUB  | 58  | 3a  | 072 | :     | 90  | 5a  | 132 | Z    | 122 | 7a  | 172       | Z        |
| 27  | 1b         | 033 | ESC  | 59  | 3b  | 073 | ;     | 91  | 5b  | 133 | [    | 123 | 7b  | 173       | {        |
| 28  | 1c         | 034 | FS   | 60  | 3c  | 074 | <     | 92  | 5c  | 134 | 1    | 124 | 7c  | 174       | 1        |
| 29  | 1d         | 035 | GS   | 61  | 3d  | 075 | =     | 93  | 5d  | 135 | 1    | 125 | 7d  | 175       | }        |
| 30  | 1e         | 036 | RS   | 62  | 3e  | 076 | >     | 94  | 5e  | 136 | ٨    | 126 | 7e  | 176       | ~        |
| 31  | <b>1</b> f | 037 | US   | 63  | 3f  | 077 | ?     | 95  | 5f  | 137 | _    | 127 | 7f  | 177       | DEL      |
|     |            |     |      |     |     |     |       |     |     |     |      |     | www | .alpharit | thms.com |

# CHR\$

- It returns character value of a give ASCII code.
- Example:

```
CLS
FOR i = 65 TO 90
   PRINT i; "="; CHR$(i)
NEXT i
END
Output
65 = A
66 = B
90 = Z
```

### STR\$

- It converts numeric value to string value, which cannot be used for mathematical calculations.
- Example:

```
CLS
a = 50
b = 20
PRINT "Before using STR$:"; a + b
PRINT "After using STR$:"; STR$(a) + STR$(b)
END
```

Output:

Before using STR\$: 70 After using STR\$: 50 70

### STRING\$

- It returns a string of a specified length made up of a repeating character.
- Example:

CLS

PRINT STRING\$(5, 97)

**END** 

• Output:

aaaaa

### SPACE\$

- It is used to put blank spaces.
- Example:

```
CLS
```

```
PRINT "Class"; SPACE$(6); "Roll.No" END
```

• Output:

Class Roll.NO

#### **TAB**

- It is used to put Tab.
- Example:

```
CLS x$ = "Name"
y$ = "Address"
PRINT TAB(5); x$; TAB(10); y$
END
```

Output:Name Address

### DATE\$ and TIME\$

- DATE\$ and TIME\$ returns the current date and time respectively.
- Example:

CLS

PRINT DATE\$

PRINT TIME\$

**END** 

```
CLS
n$="NEPAL"
FOR i=1 to LEN(n$)
    x=RIGHT(n,i)
    PRINT x$
NEXT i
END
Output:
AL
PAL
EPAL
NEPAL
```

### WAP to reverse a given string

```
CLS
INPUT "Enter any string";N$
a=LEN(N\$)
FOR i=a TO 1 STEP-1
   X=MID(N,I,1)
   W$=W$+X$
NEXT I
PRINT "Reversed string is"; W$
END
```

#### WAP to check a given number is palindrome or not.

```
CLS
INPUT "Enter any string ";N$
a=LEN(N\$)
FOR i=a TO 1 STEP-1
   X=MID(N,I,1)
   W$=W$+X$
NEXT I
IF N$=W$ THEN
     PRINT "palindrome"
ELSE
     PRINT "Not palindrome"
END
```

#### WAP to count vowels in a given string.

```
CLS
INPUT "Enter any string ";n$
FOR i=1 TO LEN(n$)
   x=MID(n,I,1)
   x$=LCASE(x$)
   IF x$="a" OR x$="e" OR x$="i" OR x$="o" OR x$="u"
   THEN v=v+1
    END IF
NEXT I
PRINT "Total no. of vowel is ";v
END
```

# WAP to make odd no. character capital and even no. character smaller.

```
CLS
INPUT "Enter any string"; n$
FOR i=1 TO LEN(n$)
   x=MID(n, i, 1)
   IF I MOD 2= 0 THEN
     w=w+LCASE(x)
   ELSE
     w=w+UCASE(x)
   ENDIF
NEXT I
PRINT w$
END
```

### Nested Loop in QBASIC

- A nested loop is a loop within a loop, an inner loop within the body of an outer one. This repeats until the outer loop finishes.
- QBASIC allows to use one loop inside another loop.

### Example

```
CLS
FORi = 1TO4
   PRINT "This is an outer loop "; i
    FOR j = 1 TO 3
       PRINT "Inner Loop"; j
    NEXT j
    PRINT //new line
NEXT i
END
```

```
CLS
FOR i = 1 \text{ TO } 5
      FOR j = 1 TO i
           PRINT j;
      NEXT j
      PRINT
NEXT i
END
```

#### WAP to print the following pattern:

```
555
5555
55555
CLS
n=5
FOR i=1 TO 5
      PRINT; n
      n=n*10+5
NEXT i
END
```

55

#### WAP to print the following pattern:

```
1
12
123
1234
12345
CLS
n=5
FOR i=1 TO 5
     FOR J=1 to i
           PRINT J;
      NEXT J
      PRINT
NEXT i
END
```

#### WAP to print the following pattern:

```
NEPAL
EPA
CLS
n$="NEPAL"
l=LEN(n\$)
FOR i=1 TO 3
     x=MID(n,i,l)
     PRINT TAB(i); x$
     l=l-2
NEXT i
END
```

### Array in QBASIC

- Array is a variable which stores different values of the same data type. It is useful to organize multiple variables.
- To declare an array DIM (dimension) statement is used.
- Example: DIM numbers(10)

#### Example

```
CLS
DIM num(5)
num(0) = 2
num(1) = 4
num(2) = 5
num(3) = 10
num(4) = 6
num(5) = 9
PRINT num(0); num(1); num(2); num(3); num(4); num(5)
PRINT num(3) + num(5)
END
```

Output:2 4 5 10 6 919

WAP to take 5 numbers from the users and print the sum of numbers.

```
CLS
DIM num(4)
sum = 0
PRINT "Enter any 5 numbers"
FOR i = o TO 4
     INPUT " :: "; num(i)
     sum = sum + num(i)
NEXT i
PRINT "The Sum = "; sum
END
```