

CLINICAL APPLICATIONS AND PERSONALIZED MEDICINE

Kevin O`Connell October 21st 2019

OUTLINE

- Polygenic risk scores (PRS)
 - Cancer
 - Alzheimer's
- Polygenic hazard scores (PHS)
 - Cancer
 - Alzheimer's
- PRS in Psychiatric Disorders
 - Sub-phenotype prediction
 - Schizophrenia Treatment Resistance

Schizophrenia GWAS

2014: 108 loci

2019: ~250 loci (in prep)

How can we use this genetic information in the clinic?

Figure 1 | Manhattan plot showing schizophrenia associations. Manhattan plot of the discovery genome-wide association meta-analysis of 49 case control samples (34,241 cases and 45,604 controls) and 3 family based association studies (1,235 parent affected-offspring trios). The x axis is chromosomal

position and the y axis is the significance ($-\log_{10} P$, 2-tailed) of association derived by logistic regression. The red line shows the genome-wide significance level (5×10^{-8}). SNPs in green are in linkage disequilibrium with the index SNPs (diamonds) which represent independent genome-wide significant associations.

Polygenic risk score (PRS) [Polygenic score]

- PRS_i = $\sum_{j \in SNPs} \beta_i d_{ij}$
- PRS for an individual i is calculated as the sum over the risk-allele frequencies (d_{ij}) of each SNP j. Most PRS models assume that SNPs have an additive effect on the disease risk. In this case, the frequency (d_{ij}) takes values 0, 1, or 2, depending on the number of risk alleles present in the gene.
- One cannot assume SNP influences are equal
- Here, the PRS is expressed as the sum over the weighted (β_i) number of alleles per SNP.
 The most commonly used weight is the GWAS Odds Ratio, or the univariate linear regression coefficient.

Supplementary Table 2: 128 genome-wide significant associations for schizophrenia

Ran	k Index SNP	A12	Frq _{case}	Frq _{control}	Chr	Position	Combined	Discovery		Replication		
							OR (95% CI)	P	OR	P	OR	P
54	rs4648845	TC	0.533	0.527	1	2,372,401-2,402,501	1.072 (1.049-1.097)	8.7e-10	1.071	4.03e-9	1.088	8.85e-2

C is effect allele

TT genotype = 0*1.071 = 0TC genotype = 1*1.071 = 1.071CC genotype = 2*1.071 = 2.142

Polygenic risk score (PRS) [Polygenic score]

Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

The International Schizophrenia Consortium

Nature 460, 748-752 (06 August 2009) | Download Citation ±

The personal and clinical utility of polygenic risk scores

Ali Torkamani ™, Nathan E. Wineinger & Eric J. Topol

Nature Reviews Genetics 19, 581-590 (2018)

Am J Hum Genet. 2018 Jun 7;102(6):1048-1061. doi: 10.1016/j.ajhg.2018.04.001. Epub 2018 May 17.

Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative.

Eritsche LG¹, Gruber SB², Wu Z³, Schmidt EM⁴, Zawistowski M⁵, Moser SE⁶, Blanc VM⁷, Brummett CM⁸, Kheterpal S⁸, Abecasis GR⁵, Mukherjee B⁹.

Am J Hum Genet. 2019 Jan 3;104(1):21-34. doi: 10.1016/j.ajhg.2018.11.002. Epub 2018 Dec 13.

Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes.

NIH) U.S. National Library of Medicine

Clinical Trials.gov

Find Studies ▼

Home > Search Results > Study Record Detail

Clinical Implementation of a Polygenic Risk Score (PRS) for Breast Cancer

Study Design

Study Type 1 : Observational

Estimated Enrollment 1 : 2000 participants

Observational Model: Case-Crossover

Time Perspective: Prospective

Official Title: Clinical Implementation

Actual Study Start Date 1 : September 21, 2018

Estimated Primary Completion Date 1 : September 21, 2020

Estimated Study Completion Date 1: September 21, 2025

Neurobiology of Aging Volume 49, January 2017, Pages 214.e7-214.e11

Genetic report abstract

Brief communication

Polygenic score prediction captures nearly all common genetic risk for Alzheimer's disease

 $\textit{Valentina Escott-Price} \ ^a \, \stackrel{\boxtimes}{\sim} \ \text{Maryam Shoai} \ ^b, \ \textit{Richard Pither} \ ^c, \ \textit{Julie Williams} \ ^a, \ \textit{John Hardy} \ ^b \, \stackrel{\boxtimes}{\sim} \ ^{\boxtimes}$

ORIGINAL RESEARCH ARTICLE

Front. Neurosci., 08 October 2018 | https://doi.org/10.3389/fnins.2018.00699

The Molecular and Neuropathological Consequences of Genetic Risk for Alzheimer's Dementia

Shinya Tasaki^{1,2*}, 🕒 Chris Gaiteri^{1,2}, 🕒 Sara Mostafavi³, 🕒 Philip L. De Jager^{4,5} and 🕒 David A. Bennett^{1,2}

Mol Psychiatry, 2019 Mar; 24(3):421-430, doi: 10.1038/s41380-018-0030-8. Epub 2018 Feb 27.

Use of an Alzheimer's disease polygenic risk score to identify mild cognitive impairment in adults in their 50s.

Fig. 1. Polygenic Risk score based estimation of AUC and AUC_{max} for 2% lifetime prevalence of AD. Abbreviations: AD, Alzheimer's disease; AUC, area under the curve.

Polygenic hazard score (PHS)

- PHS_i = $\sum_{j \in SNPs} \beta_i d_{ij}$
- Recent studies have introduced the Cox-derived Hazard Ratio as an alternative weight, to account for the time to event, which is otherwise ignored when using the GWAS OR.
- Age-of-onset

Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts

Tyler M Seibert, ^{1,2} Chun Chieh Fan, ^{1,3} Yunpeng Wang, ⁴ Verena Zuber, ^{4,5} Roshan Karunamuni, ^{1,2}

Polygenic hazard scores in preclinical Alzheimer's disease

Chin Hong Tan, PhD^{1,#}, Bradley T. Hyman, MD, PhD², Jacinth J. X. Tan, PhD³, Christopher P. Hess, MD, PhD¹, William P. Dillon, MD¹, Gerard D. Schellenberg, PhD⁴, Lilah M. Besser, PhD⁵, Walter A. Kukull, PhD⁵, Karolina Kauppi, PhD⁶, Linda K. McEvoy, PhD⁶, Ole A. Andreassen, MD, PhD⁷, Anders M. Dale, PhD^{6,8,9}, Chun Chieh Fan, MD^{10,*}, and Rahul S. Desikan, MD, PhD^{1,10,*,#}

Acta Neuropathol. 2018 January; 135(1): 85-93. doi:10.1007/s00401-017-1789-4.

Polygenic hazard score: an enrichment marker for Alzheimer's associated amyloid and tau deposition

Chin Hong Tan¹, Chun Chieh Fan², Elizabeth C. Mormino³, Leo P. Sugrue¹, Iris J. Broce¹, Christopher P. Hess¹, William P. Dillon¹, Luke W. Bonham⁴, Jennifer S. Yokoyama⁴, Celeste M. Karch⁵, James B. Brewer^{6,7,8}, Gil D. Rabinovici⁴, Bruce L. Miller⁴, Gerard D. Schellenberg⁹, Karolina Kauppi⁷, Howard A. Feldman⁶, Dominic Holland⁶, Linda K. McEvoy⁷, Bradley T. Hyman¹⁰, David A. Bennett¹¹, Ole A. Andreassen^{12,13}, Anders M. Dale^{2,6,7}, Rahul S. Desikan^{1,4}, and For the Alzheimer's Disease Neuroimaging Initiative

Improving PHS

 Prediction accuracy increases when we combine PHS with imaging (atrophy score) and clinical data (MMSE - mini-mental state exam) Combining Polygenic Hazard Score With Volumetric MRI and Cognitive Measures Improves Prediction of Progression From Mild Cognitive Impairment to Alzheimer's Disease

Karolina Kauppi^{1,22}, Chun Chieh Fan^{1,3}, Linda K. McEvoy¹, Dominic Holland⁴, Chin Hong Tan⁵, Chi-Hua Chen¹, Ole A. Andreassen^{6,7}, Rahul S. Desikan⁵, and Anders M. Dale^{1,2,4*} for the Alzheimer's Disease Neuroimaging Initiative[†]

PRS in Psychiatric Disorders

PRS in Psychiatric Disorders

- Independent smaller SCZ cohorts
- PRS explains small % of variance
- Similar in other psychiatric disorders
- Vast improvement required before clinically useful

Schizophrenia PRS

Biological Psychiatry Volume 81, Issue 6, 15 March 2017, Pages 470-477

Priority Communication

An Examination of Polygenic Score Risk Prediction in Individuals With First-Episode Psychosis

PRS in Psychiatric Disorders

- What PRS can do
 - Differentiate case/control at group level
 - Inform research on endophenotypes
 - Provide information on phenotypic correlations
- What PRS cannot do now
 - Inform diagnosis on individual level
 - Substitute for family history in clinical assessment

Sub-phenotype Prediction

Volume 173, Issue 7, 14 June 2018, Pages 1705-1715.e16

Artic

Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium A

Schizophrenia Treatment Resistance

- 30-50% of SCZ patients are classified as having a treatment resistant disorder¹. Thus, there is a great need for improved treatment regimens.
- Known genetic overlap; SCZ risk genes and antipsychotic target genes
 - pharmacological mechanisms polygenic
- Perturbations in one gene can propagate to affect other proteins in the protein-protein interaction (PPI) network, i.e. the interactome.
- Protein products of genes that are associated with a disease tend to interact with each other and converge on related biological and functional networks (disease module) ^{2,3}.
- We characterized a SCZ disease module
- Examined the interactome link between antipsychotic drug targets and SCZ risk genes through protein-protein interactions.

^{2.} Menche, J. et al. Science 347, 1257601 (2015).

Connection Between SCZ Risk Genes and Antipsychotic Drug targets.

- SCZ risk genes
- Antipsychotic drug targets
- ADME (absorption, distribution, metabolism, and excretion) genes

All of their interactors

Revisiting antipsychotic drug actions through gene networks associated with schizophrenia

Karolina Kauppi, PhD, ^{1,2} Sara Brin Rosenthal, PhD, ³ Min-Tzu Lo, PhD, ¹ Nilotpal Sanyal, PhD, ¹ Mian Jiang, ¹ Ruben Abagyan, PhD, ⁴ Linda K McEvoy, PhD, ¹ Ole A Andreassen, PhD, ⁵ and Chi-Hua Chen, PhD

Prediction of Treatment Resistance

- Preliminary analyses provides strong evidence for the strength of this approach
- ~67,000 SNPs from identified gene networks.
- Novel Bayesian non-local prior method¹, including confounding covariates in the model (i.e., sex, age, and four principal components of genetic population structures).
- Preliminary findings show high prediction rates
 - Training data (85.80%)
 - Testing data (81.96%)

Thank you

NORMENT
Oslo University Hospital HF
Division of Mental Health and Addiction
Psychosis Research Unit/TOP
Ullevål Hospital, building 49
P.O. Box 4956 Nydalen
N-0424 Oslo
Norway