Implémentation d'un solveur discret dans AbSolute

Mathieu Vavrille

ENS de Lyon Stage de L3 encadré par Charlotte Truchet à l'Université de Nantes

13 Juillet 2017

Introduction

$$C = (x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_1 \lor \neg x_4) \land (x_2 \lor x_3 \lor x_4)$$

2			4	7	1			8
		8	3	6				
	7				9	4		2
1	5		9	8				
8	2						9	4
				4	5		8	7
7		2	5				1	
				2	6	7		
6			7	3	8			5

AbSolute

AbSolute [Pelleau et al., 2013]

- Solveur de contraintes, développé par Marie Pelleau, Ghilles Ziat, Antoine Miné, Charlotte Truchet
- Basé sur les domaines abstraits (de l'interprétation abstraite [Cousot and Cousot, 1977])
- Pour des variables réelles

- Programmation par contraintes
 - Définitions
 - Algorithmes

- Travail réalisé
 - Conception des domaines entiers
 - Implémentation dans AbSolute
 - Cadre général

- Programmation par contraintes
 - Définitions
 - Algorithmes
- Travail réalisé

Problème de satisfaction de contraintes

Définition (CSP)

Un problème de satisfaction de contraintes (CSP) est un triplet (X, D, C) où:

- $X = (x_1, \dots, x_n)$ un ensemble de variables
- $D = (D_1, \ldots, D_n)$ les domaines des variables $(x_i \in D_i)$
- $C = (C_1, \ldots, C_m)$ un ensemble de contraintes

Une solution est une instanciation (affectation des valeurs à une variable) qui satisfait les contraintes.

Problème de satisfaction de contraintes

Définition (CSP)

Un problème de satisfaction de contraintes (CSP) est un triplet (X, D, C) où:

- $X = (x_1, \dots, x_n)$ un ensemble de variables
- $D = (D_1, \ldots, D_n)$ les domaines des variables $(x_i \in D_i)$
- $C = (C_1, \ldots, C_m)$ un ensemble de contraintes

Une solution est une instanciation (affectation des valeurs à une variable) qui satisfait les contraintes.

But

- Trouver toutes les solutions (ou une seule)
- Trouver la solution minimisant une certaine fonction

Contraintes

Définition (Contraintes)

Soit $r \in \mathbb{N}$. Une contrainte est une relation définie sur les variables

$$X(c)=(x_{i_1},\ldots,x_{i_r}).$$

r est appelé arité de la contrainte et noté |X(c)|.

Contraintes

Définition (Contraintes)

Soit $r \in \mathbb{N}$. Une contrainte est une relation définie sur les variables $X(c) = (x_i, \dots, x_{i_r})$.

r est appelé arité de la contrainte et noté |X(c)|.

Exemple

- x + y = 3
- y * y + z * z > 10
- $\max(y, x^5) < 200$
- \bullet $x < y \lor x > z$

Consistance

Difficulté

- Espace de recherche exponentiel
- Réduire les domaines des variables

Consistance

Difficulté

- Espace de recherche exponentiel
- Réduire les domaines des variables

Définition (Consistance d'arc)

Soit $c \in C$ et $x \in X(c)$

 $v_i \in D(x_i)$ est consistante avec c si $\exists \tau \in c, \tau[x_i] = v_i$.

au est appellé support pour v_i .

Un problème est arc-consistant si toutes ses valeurs sont consistantes.

Consistance

Difficulté

- Espace de recherche exponentiel
- Réduire les domaines des variables

Définition (Consistance d'arc)

Soit $c \in C$ et $x \in X(c)$

 $v_i \in D(x_i)$ est consistante avec c si $\exists \tau \in c, \tau[x_i] = v_i$.

au est appellé support pour v_i .

Un problème est arc-consistant si toutes ses valeurs sont consistantes.

Exemple

- $x \in [0, 10]$
- $y \in [0, 10]$
- $x + y \le 5$

AC3 [Mackworth, 1977]

Consistance

```
function REVISE(x_i:variable, c:contrainte)
CHANGE \leftarrow false
for v_i \in D(x_i) do
if v_i n'a pas de support pour c then
Supprimer v_i de D(x_i)
CHANGE \leftarrow true
end if
end for
return CHANGE
end function
```


AC3 [Mackworth, 1977]

```
function AC3((X, D, C): CSP)
    Q \leftarrow \{(x_i, c) | c \in C, x_i \in X(c)\}
    while Q \neq \emptyset do
         (x_i, c) \leftarrow pop(Q)
         if Revise(x_i, c) then
             if D(x_i) = \emptyset then return false
             else
                  Q \leftarrow Q \cup \{(x_i, c') | c' \in C, c' \neq c, x_i, x_i \in X(c), i \neq j\}
             end if
         end if
    end while
    return true
end function
```

Recherche

Recherche

```
function Backtrack(P = (X, D, C): CSP)
P \leftarrow \operatorname{Propagation}(P)
if \operatorname{Condition\_arret}(P) \wedge \operatorname{Is\_solution}(P) then \operatorname{Afficher}(P)
else
for \ \operatorname{csp} \ \operatorname{in} \ \operatorname{SpLit}(P) \ do
\operatorname{Backtrack}(\operatorname{csp})
end for end if end function
```


Améliorations [Rossi et al., 2006]

Consistance

Compromis entre vitesse et nombre de valeurs supprimées

- Consistance plus faibles (consistance de bornes)
- Consistance plus fortes (consistance de chemin, k-consistance,...)
- Consistances spécialisées (équations linéaires, contraintes globales, ...)

Améliorations [Rossi et al., 2006]

Consistance

Compromis entre vitesse et nombre de valeurs supprimées

- Consistance plus faibles (consistance de bornes)
- Consistance plus fortes (consistance de chemin, k-consistance,...)
- Consistances spécialisées (équations linéaires, contraintes globales, ...)

- AC4: Se souvenir des supports [Mohr and Henderson, 1986]
- AC6: Se souvenir d'un seul support [Bessiere, 1994]
- AC2001: Stocker le plus petit support [Bessière et al., 2005]

All_different [Régin, 1994]

Définition

- $all_different(x_1, \ldots, x_n) \equiv (\forall i < j, x_i \neq x_j)$
- Le graphe de valeurs est G = (V, E) où $V = X \cup \bigcup_i D(x_i)$ et $E = \{(x_i, v_j) | x_i \in X, v_j \in D(x_i)\}.$

All_different [Régin, 1994]

Définition

- $all_different(x_1, \ldots, x_n) \equiv (\forall i < j, x_i \neq x_j)$
- Le graphe de valeurs est G = (V, E) où $V = X \cup \bigcup_i D(x_i)$ et $E = \{(x_i, v_j) | x_i \in X, v_j \in D(x_i)\}.$

Théorème

Pour toute variable x_i , toute valeur $v_i \in D(x_i)$ est consistante ssi (x_i, v_i) apparaît dans un couplage couvrant X dans G.

Complexité: $O(\sqrt{|V|}|E|)$, et O(|V|+|E|) incrémentalement.

All_different [Régin, 1994]

Définition

- $all_different(x_1, \ldots, x_n) \equiv (\forall i < j, x_i \neq x_j)$
- Le graphe de valeurs est G = (V, E) où $V = X \cup \bigcup_i D(x_i)$ et $E = \{(x_i, v_j) | x_i \in X, v_j \in D(x_i)\}.$

Théorème

Pour toute variable x_i , toute valeur $v_i \in D(x_i)$ est consistante ssi (x_i, v_i) apparaît dans un couplage couvrant X dans G.

Complexité: $O(\sqrt{|V|}|E|)$, et O(|V|+|E|) incrémentalement.

- Programmation par contraintes
- Travail réalisé
 - Conception des domaines entiers
 - Implémentation dans AbSolute
 - Cadre général

Conception des domaines

Dans AbSolute

- Intégration dans le solveur
- Produit cartésien d'intervalles

Conception des domaines

Dans AbSolute

- Intégration dans le solveur
- Produit cartésien d'intervalles

Limitations

- Produit cartésien d'ensembles
- Réorganisation des contraintes
- Structure de données annexes

Conception des domaines

Dans AbSolute

- Intégration dans le solveur
- Produit cartésien d'intervalles

Limitations

- Produit cartésien d'ensembles
- Réorganisation des contraintes
- Structure de données annexes

Cadre général

- Structure de données spécifiques
- Consistances spécifiques

Structure d'AbSolute

Table 1: Produit cartesien

• On associe à chaque valeur un intervalle

Structure d'AbSolute

Table 1: Produit cartesien

- On associe à chaque valeur un intervalle
- Intervalle formé de 2 bornes

Structure d'AbSolute

$$\begin{array}{c|cccc} x & y & \dots \\ \hline [x_1; x_2] & [y_1; y_2] & \dots \end{array}$$

Table 1: Produit cartesien

- On associe à chaque valeur un intervalle
- Intervalle formé de 2 bornes
- Bornes sur lesquelles on sait faire des opérations

Travail effectué

- Implémentation des intervalles entiers
 - avec les bornes entières: Problème des divisions
 - avec des rationnels (en calculs intermédiaires)

Travail effectué

- Implémentation des intervalles entiers
 - avec les bornes entières: Problème des divisions
 - avec des rationnels (en calculs intermédiaires)
- Amélioration du split entier: on énumère la liste des valeurs possibles

Travail effectué

- Implémentation des intervalles entiers
 - avec les bornes entières: Problème des divisions
 - avec des rationnels (en calculs intermédiaires)
- Amélioration du split entier: on énumère la liste des valeurs possibles
- Affichage des solutions

- $x \in [-20; 20]$
- $y \in [-20; 20]$
- $y * x + x * x/2 + y \le 30$
- y * y + x * x >= 100

Amélioration des contraintes

Type de contraintes

- All_different
- Equation linéaire
- Inéquation linéaire
- Autre

Amélioration des contraintes

Type de contraintes

- All_different
- Equation linéaire
- Inéquation linéaire
- Autre

Pour "All_different", on exécute l'algorithme de consistance spécialisé.

Pour "Autre" on exécute la consistance d'AC4

Inéquation linéaire

Remarque [Codognet and Diaz, 1996]

On prend la contrainte 3 * x < 5 + 5 * z - y. On la réécrit sous la forme:

- 3 * x < 5 + 5 * MAX(z) MIN(y)
- y < 5 + 5 * MAX(z) 3 * MIN(x)
- 5*z > -5 + 3*MIN(x) + MIN(y)

Inéquation linéaire

Remarque [Codognet and Diaz, 1996]

On prend la contrainte 3 * x < 5 + 5 * z - y. On la réécrit sous la forme:

- 3 * x < 5 + 5 * MAX(z) MIN(y)
- y < 5 + 5 * MAX(z) 3 * MIN(x)
- 5*z > -5 + 3*MIN(x) + MIN(y)

Complexité

Pour la consistance: avec n = |X(c)|, on a un algo en $O(n^2)$

Equation linéaire

Remarque

Si
$$x \in \{-3; 1; 6\}, y \in \{-2; 3; 4\}$$
 alors

$$2x + 3y + 3 \in \{-9; -1; 6; 9; 14; 17; 24; 27\} = E$$

Les contraintes linéaires peuvent être rendues consistantes par intersection et difference d'ensemble.

Si
$$z = 2x + 3y + 3$$
 alors $D(z) \leftarrow D(z) \cap E$

- Égalité: $D(z) \leftarrow D(z) \cap E$
- Différence: Si |E| = 1, $D(z) \leftarrow D(z) \setminus E$

Conclusion

Ce qui a été fait

- Un solveur de contraintes discret
- Des propagations spécifiques

Continuation

- Intégration dans AbSolute
- Domaines mixtes (réels/discret)
- D'autres contraintes globales

- Bessiere, C. (1994).
 - Arc-consistency and arc-consistency again.
- Artificial intelligence, 65(1):179–190.
- Bessière, C., Régin, J.-C., Yap, R. H., and Zhang, Y. (2005). An optimal coarse-grained arc consistency algorithm.

Artificial Intelligence, 165(2):165–185.

Codognet, P. and Diaz, D. (1996).

Compiling constraints in clp (fd).

The Journal of Logic Programming, 27(3):185–226.

Cousot, P. and Cousot, R. (1977).

Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints.

In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 238–252. ACM.

Mackworth, A. K. (1977).

Consistency in networks of relations.

Artificial intelligence, 8(1):99–118.

- Mohr, R. and Henderson, T. C. (1986). Arc and path consistency revisited. *Artificial intelligence*, 28(2):225–233.
- Pelleau, M., Miné, A., Truchet, C., and Benhamou, F. (2013). A constraint solver based on abstract domains. In *International Workshop on Verification, Model Checking, and Abstract Interpretation*, pages 434–454. Springer.
 - Régin, J.-C. (1994). A filtering algorithm for constraints of difference in csps. In AAAI, volume 94, pages 362–367.
- Rossi, F., Van Beek, P., and Walsh, T. (2006). Handbook of constraint programming. Elsevier.

n-dames						
n	mode	temps	nb_noeuds			
5	fast	0.01	22			
	slow	0.7	22			
6	fast	0.02	67			
	slow	0.7	63			
7	fast	0.04	180			
	slow	2.1	168			
8	fast	0.18	663			
	slow	X	X			
9	fast	0.45	2574			
10	fast	2	10071			
11	fast	10	43420			
12	fast	48	207037			

n-Langford							
n	mode	temps	nb_noeuds				
4	fast	0.01	10				
	slow	0.01	10				
5	fast	0.02	37				
3	slow	0.02	31				
6	fast	0.04	128				
0	slow	0.08	120				
7	fast	0.14	513				
'	slow	0.35	313				
8	fast	0.68	2592				
	slow	2.1	2392				
9	fast	3.8	14453				
	slow	15	14433				
10	fast	23	81818				
11	fast	2m34	495195				