Practice Set 2.1 Geometry 10th Std Maths Part 2 Answers Chapter 2 Pythagoras Theorem

Question 1.

Identify, with reason, which of the following are Pythagorean triplets.

i. (3,5,4)

ii. (4,9,12)

iii. (5,12,13)

iv. (24,70,74)

v. (10,24,27)

vi. (11,60,61)

Solution:

i. Here, 52 = 25

32 + 42 = 9 + 16 = 25

 $\therefore 52 = 32 + 42$

The square of the largest number is equal to the sum of the squares of the other two numbers.

 \therefore (3,5,4) is a Pythagorean triplet.

ii. Here, 122 = 144

42 + 92 = 16 + 81 = 97

 $\therefore 122 \neq 42 + 92$

The square of the largest number is not equal to the sum of the squares of the other two numbers.

∴ (4,9,12) is not a Pythagorean triplet.

iii. Here, 13₂ = 169

52 + 122 = 25 + 144 = 169

 $\therefore 132 = 52 + 122$

The square of the largest number is equal to the sum of the squares of the other two numbers.

 \therefore (5,12,13) is a Pythagorean triplet.

iv. Here, 742 = 5476

242 + 702 = 576 + 4900 = 5476

 $\therefore 742 = 242 + 702$

The square of the largest number is equal to the sum of the squares of the other two numbers.

 \therefore (24, 70,74) is a Pythagorean triplet.

v. Here, 27₂ = 729

102 + 242 = 100 + 576 = 676

∴ 27₂ ≠ 10₂ + 24₂

The square of the largest number is not equal to the sum of the squares of the other two numbers.

∴ (10,24,27) is not a Pythagorean triplet.

vi. Here, 612 = 3721

112 + 602 = 121 + 3600 = 3721

 $\therefore 612 = 112 + 602$

The square of the largest number is equal to the sum of the squares of the other two numbers.

∴ (11,60,61) is a Pythagorean triplet.

Question 2.

In the adjoining figure, \angle MNP = 90°, seg NQ \perp seg MP,MQ = 9, QP = 4, find NQ.

Solution:

In \triangle MNP, \angle MNP = 90° and [Given]

 $\mathsf{seg}\;\mathsf{NQ}\;\mathsf{\bot}\;\mathsf{seg}\;\mathsf{MP}$

 $NQ2 = MQ \times QP$ [Theorem of geometric mean]

 \therefore NQ = $MQ \times QP - - - - \sqrt{\text{[Taking square root of both sides]}}$

= 9×4----V

= 3 × 2

∴NQ = 6 units

Question 3.

In the adjoining figure, \angle QPR = 90°, seg PM \perp seg QR and Q – M – R, PM = 10, QM = 8, find QR.

- Arjun
- Digvijay

Solution:

In $\triangle PQR$, $\angle QPR = 90^{\circ}$ and [Given]

seg PM ⊥ seg QR

- \therefore PM₂ = OM × MR [Theorem of geometric mean]
- $\therefore 102 = 8 \times MR$
- ∴ MR = 1008
- = 12.5

Now, QR = QM + MR [Q - M - R]

- = 8 + 12.5
- ∴ QR = 20.5 units

Question 4.

See adjoining figure. Find RP and PS using the information given in Δ PSR.

Solution:

In $\triangle PSR$, $\angle S = 90^{\circ}$, $\angle P = 30^{\circ}$ [Given]

 \therefore $\angle R = 60^{\circ}$ [Remaining angle of a triangle]

∴ \triangle PSR is a 30° – 60° – 90° triangle.

RS = 12 RP [Side opposite to 30°]

∴6 = 12 RP

 \therefore RP = 6 × 2 = 12 units

Also, PS = $3\sqrt{2}$ RP [Side opposite to 60°]

= 3√2 × 12

 $= 63 - \sqrt{\text{units}}$

∴ RP = 12 units, PS = $6.3 - \sqrt{\text{units}}$

Question 5.

For finding AB and BC with the help of information given in the adjoining figure, complete the following activity.

Solution:

AB = BC [Given]

 $\therefore \angle BAC = \angle BCA$ [Isosceles triangle theorem]

Let $\angle BAC = \angle BCA = x (i)$

In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$ [Sum of the measures of the angles of a triangle is 180°]

 $x + 90^{\circ} + x = 180^{\circ}$ [From (i)]

 $\therefore 2x = 90^{\circ}$

 $\therefore x = 90^{\circ}2 \text{ [From (i)]}$

∴ x = 45°

∴ AB = BC =
$$\frac{1}{\sqrt{2}}$$
 × AC [Side opposite to 45°]
= $\frac{1}{\sqrt{2}}$ × $\sqrt{8}$
= $\frac{1}{\sqrt{2}}$ × $2\sqrt{2}$
∴ AB = BC = 2 units

Question 6.

Find the side and perimeter of a square whose diagonal is 10 cm.

- Arjun
- Digvijay

Solution:

Let J ABCD be the given square.

 $I(diagonal\ AC) = 10\ cm$

Let the side of the square be 'x' cm.

In ΔABC,

 $\angle B = 90^{\circ}$ [Angle of a square]

∴ AC2 = AB2 + BC2 [Pythagoras theorem]

 $102 = x^2 + x^2$

 $100 = 2x_2$

∴ X2 = 1002

∴ $x_2 = 50$

 $\therefore x = 50 - -\sqrt{\text{[Taking square root of both sides]}}$

= =25×2----√=52-√

∴side of square is $52 - \sqrt{\text{cm}}$.

 $= 4 \times 52 - \sqrt{}$

 \therefore Perimeter of square = 20 $2 - \sqrt{\text{cm}}$

Question 7.

In the adjoining figure, \angle DFE = 90°, FG \perp ED. If GD = 8, FG = 12, find

i. EG

ii. FD, and

iii. EF

Solution:

i. In $\triangle DEF$, $\angle DFE = 90^{\circ}$ and $FG \perp ED$ [Given]

 \therefore FG2 = GD × EG [Theorem of geometric mean]

 $\therefore 122 = 8 \times EG.$

∴ EG = 1448

 \therefore EG = 18 units

ii. In \triangle FGD, \angle FGD = 90° [Given]

 \therefore FD2 = FG2 + GD2 [Pythagoras theorem]

= 122 + 82 = 144 + 64

= 208

∴ FD = 208 --- $\sqrt{\text{[Taking square root of both sides]}}$

 \therefore FD = 4 13-- \checkmark units

iii. In ΔEGF, ∠EGF = 90° [Given]

∴ EF2 = EG2 + FG2 [Pythagoras theorem]

= 182 + 122 = 324 + 144

= 468

∴ EF = 468 – $--\sqrt{1}$ [Taking square root of both sides]

 \therefore EF = 6 13-- \checkmark units

Question 8.

Find the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.

Solution:

Let \supset ABCD be the given rectangle.

AB = 12 cm, BC 35 cm

In $\triangle ABC$, $\angle B = 90^{\circ}$ [Angle of a rectangle]

∴ AC2 = AB2 + BC2 [Pythagoras theorem]

- Arjun
- Digvijay
- = 122 + 352
- = 144 + 1225
- = 1369
- ∴ AC = 1369 ---- $\sqrt{\text{[Taking square root of both sides]}}$
- = 37 cm
- ∴ The diagonal of the rectangle is 37 cm.

Question 9.

In the adjoining figure, M is the midpoint of QR. \angle PRQ = 90°.

Prove that, PQ2 = 4 PM2 - 3 PR2.

Solution:

Proof:

In $\triangle PQR$, $\angle PRQ = 90^{\circ}$ [Given]

PQ2 = PR2 + QR2 (i) [Pythagoras theorem]

RM = 12 QR [M is the midpoint of QR]

- ∴ 2RM = QR (ii)
- \therefore PQ2 = PR2 + (2RM)2 [From (i) and (ii)]
- ∴ PQ2 = PR2 + 4RM2 (iii)

Now, in $\triangle PRM$, $\angle PRM = 90^{\circ}$ [Given]

- ∴ PM₂ = PR₂ + RM₂ [Pythagoras theorem]
- \therefore RM2 = PM2 PR2 (iv)
- \therefore PQ2 = PR2 + 4 (PM2 PR2) [From (iii) and (iv)]
- $\therefore PQ_2 = PR_2 + 4 PM_2 4 PR_2$
- $\therefore PQ2 = 4 PM2 3 PR2$

Question 10.

Walls of two buildings on either side of a street are parallel to each other. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at the height of 4 m. On turning the ladder over to the other side of the street, its top touches the window of the other building at a height 4.2 m. Find the width of the street.

Solution:

Let AC and CE represent the ladder of length 5.8 m, and A and E represent windows of the buildings on the opposite sides of the street. BD is the width of the street.

AB = 4 m and ED = 4.2 m

In $\triangle ABC$, $\angle B = 90^{\circ}$ [Given]

AC2 = AB2 + BC2 [Pythagoras theorem]

- $\therefore 5.82 = 42 + BC2$
- $\therefore 5.82 42 = BC_2$
- \therefore (5.8 4) (5.8 + 4) = BC₂
- $\therefore 1.8 \times 9.8 = BC_2$

$$\therefore \quad \frac{18 \times 98}{100} = BC^2$$

$$\therefore \frac{9 \times 2 \times 49 \times 2}{100} = BC^2$$

$$\therefore \quad \frac{9 \times 4 \times 49}{100} = BC^2$$

$$\therefore BC = \frac{3 \times 2 \times 7}{10}$$

 \therefore BC = $\frac{42}{10}$ = 4.2 cm

ness need need

[Taking square root of both sides]

 $BC = \frac{10}{10} = 4.2 \text{ cm}$ $In \triangle CDE, \angle CDE = 90^{\circ}$

[Given]

(i)

CE2 = CD2 + DE2 [Pythagoras theorem]

- $\therefore 5.82 = CD_2 + 4.22$
- $\therefore 5.82 4.22 = CD_2$
- \therefore (5.8 4.2) (5.8 + 4.2) = CD₂
- $\therefore 1.6 \times 10 = CD_2$
- ∴ CD2 = 16
- :. CD = 4m (ii) [Taking square root of both sides]

- Arjun

- Digvijay

Now, BD = BC + CD [B - C - D]

= 4.2 + 4 [From (i) and (ii)]

= 8.2 m

: The width of the street is 8.2 metres.

Question 1.

Verify that (3,4,5), (5,12,13), (8,15,17), (24,25,7) are Pythagorean triplets. (Textbook pg. no. 30) Solution:

i. Here, 52 = 25

32 + 42 = 9 + 16 = 25

 $\therefore 52 = 32 + 42$

The square of the largest number is equal to the sum of the squares of the other two numbers.

∴ 3,4,5 is a Pythagorean triplet.

ii. Here, 132 = 169

52 + 122 = 25 + 144 = 169

 $\therefore 132 = 52 + 122$

The square of the largest number is equal to the sum of the squares of the other two numbers.

 \therefore 5,12,13 is a Pythagorean triplet.

iii. Here, 172 = 289

82 + 152 = 64 + 225 = 289

 $\therefore 172 = 82 + 152$

The square of the largest number is equal to the sum of the squares of the other two numbers.

∴ 8,15,17 is a Pythagorean triplet.

iv. Here, 252 = 625

72 + 242 = 49 + 576 = 625

∴ 252 = 72 + 242

The square of the largest number is equal to the sum of the squares of the other two numbers.

∴ 24,25, 7 is a Pythagorean triplet.

Question 2.

Assign different values to a and b and obtain 5 Pythagorean triplets. (Textbook pg. no. 31)

Solution:

i. Let a = 2, b = 1

 $a_2 + b_2 = 2_2 + 1_2 = 4 + 1 = 5$

 $a_2 - b_2 = 2_2 - 1_2 = 4 - 1 = 3$

 $2ab = 2 \times 2 \times 1 = 4$

 \therefore (5, 3, 4) is a Pythagorean triplet.

ii. Let a = 4, b = 3

 $a^2 + b^2 = 4^2 + 3^2 = 16 + 9 = 25$

 $a_2 - b_2 = 4_2 - 3_2 = 16 - 9 = 7$

 $2ab = 2 \times 4 \times 3 = 24$

 \therefore (25, 7, 24) is a Pythagorean triplet.

iii. Let a = 5, b = 2

 $a_2 + b_2 = 5_2 + 2_2 = 2_5 + 4 = 2_9$

 $a_2 - b_2 = 5_2 - 2_2 = 25 - 4 = 21$

 $2ab = 2 \times 5 \times 2 = 20$

∴ (29, 21, 20) is a Pythagorean triplet.

iv. Let a = 4, b = 1

a2 + b2 = 42 + 12 = 16 + 1 = 17

 $a_2 - b_2 = 42 - 12 = 16 - 1 = 15$

 $2ab = 2 \times 4 \times 1 = 8$

∴ (17, 15, 8) is a Pythagorean triplet.

v. Let a = 9, b = 7

 $a_2 + b_2 = 92 + 72 = 81 + 49 = 130$

 $a_2 - b_2 = 92 - 72 = 81 - 49 = 32$

 $2ab = 2 \times 9 \times 7 = 126$

 \therefore (130,32,126) is a Pythagorean triplet.

Note: Numbers in Pythagorean triplet can be written in any order.

- Arjun
- Digvijay

Practice Set 2.2 Geometry 10th Std Maths Part 2 Answers Chapter 2 Pythagoras Theorem

Question 1.

In $\triangle PQR$, point S is the midpoint of side QR. If PQ = 11, PR = 17, PS = 13, find QR.

Solution:

In ΔPQR, point S is the midpoint of side QR. [Given]

- ∴ seg PS is the median.
- ∴ PQ2 + PR2 = 2 PS2 + 2 SR2 [Apollonius theorem]
- $\therefore 112 + 172 = 2 (13)2 + 2 SR2$
- \therefore 121 + 289 = 2 (169)+ 2 SR₂
- \therefore 410 = 338+ 2 SR₂
- \therefore 2 SR₂ = 410 338
- \therefore 2 SR₂ = 72
- \therefore SR2 = 722 = 36
- \therefore SR = 36-- $\sqrt{$ [Taking square root of both sides]
- = 6 units Now, QR = 2 SR [S is the midpoint of QR]
- $= 2 \times 6$
- \therefore QR = 12 units

Question 2.

In \triangle ABC, AB = 10, AC = 7, BC = 9, then find the length of the median drawn from point C to side AB.

Solution:

Let CD be the median drawn from the vertex C to side AB.

BD = 12 AB [D is the midpoint of AB]

 $= 12 \times 10 = 5$ units

In ΔABC, seg CD is the median. [Given]

- \therefore AC2 + BC2 = 2 CD2 + 2 BD2 [Apollonius theorem]
- \therefore 72 + 92 = 2 CD2 + 2 (5)2
- \therefore 49 + 81 = 2 CD₂ + 2 (25)
- $\therefore 130 = 2 \text{ CD}_2 + 50$
- \therefore 2 CD₂ = 130 50
- \therefore 2 CD₂ = 80
- \therefore CD2 = 802 = 40
- ∴ CD = $40--\sqrt{\text{[Taking square root of both sides]}}$
- = $2 10 - \sqrt{\text{units}}$
- \therefore The length of the median drawn from point C to side AB is 2 $10--\sqrt{100}$ units.

Question 3

In the adjoining figure, seg PS is the median of APQR and PT \perp QR. Prove that,

i. $PR2 = PS2 + QR \times ST + (QR2)2$

ii. $PQ2 = PS2 - QR \times ST + (QR2)2$

Solution:

i. QS = SR = 12 QR (i) [S is the midpoint of side QR]

- Arjun
- Digvijay

∴ In ∆PSR, ∠PSR is an obtuse angle [Given]

and PT ⊥ SR [Given, Q-S-R]

- ∴ PR2 = SR2 + PS2 + 2 SR × ST (ii) [Application of Pythagoras theorem]
- \therefore PR2 = (12 QR)2 + PS2 + 2 (12 QR) × ST [From (i) and (ii)]
- $\therefore PR2 = (QR2)2 + PS2 + QR \times ST$
- $\therefore PR2 = PS2 + QR \times ST + (QR2)2$

ii. In.ΔPQS, ∠PSQ is an acute angle and [Given]

PT ⊥QS [Given, Q-S-R]

- ∴ PQ2 = QS2 + PS2 2 QS × ST (iii) [Application of Pythagoras theorem]
- ∴ $PR2 = (12 QR)^2 + PS^2 2 (12 QR) \times ST [From (i) and (iii)]$
- $\therefore PR2 = (QR2)2 + PS2 QR \times ST$
- $\therefore PR2 = PS2 QR \times ST + (QR2)2$

Question 4

In \triangle ABC, point M is the midpoint of side BC. If AB2 + AC2 = 290 cm, AM = 8 cm, find BC.

Solution:

In ΔABC, point M is the midpoint of side BC. [Given]

- ∴ seg AM is the median.
- ∴ AB₂ + AC₂ = 2 AM₂ + 2 MC₂ [Apollonius theorem]
- $\therefore 290 = 2 (8)2 + 2 MC2$
- \therefore 145 = 64 + MC₂ [Dividing both sides by 2]
- \therefore MC₂ = 145 64
- ∴ MC2 = 81
- \therefore MC = $81 -\sqrt{\text{[Taking square root of both sides]}}$

MC = 9 cm

Now, BC = 2 MC [M is the midpoint of BC]

- $= 2 \times 9$
- ∴ BC = 18 cm

Question 5

In the adjoining figure, point T is in the interior of rectangle PQRS. Prove that, TS2 + TQ2 = TP2 + TR2. (As shown in the figure, draw seg AB || side SR and A – T – B)

Given: J PQRS is a rectangle.

Point T is in the interior of J PQRS.

To prove: TS2 + TQ2 = TP2 + TR2

Construction: Draw seg AB \parallel side SR such that A – T – B.

Solution:

Proof:

- → PQRS is a rectangle. [Given]
- \therefore PS = QR (i) [Opposite sides of a rectangle]

In J ASRB,

- Arjun
- Digvijay

 $\angle S = \angle R = 90^{\circ}$ (ii) [Angles of rectangle PQRS]

side AB | side SR [Construction]

Also $\angle A = \angle S = 90^{\circ}$ [Interior angle theorem, from (ii)]

- $\angle B = \angle R = 90^{\circ}$
- $\therefore \angle A = \angle B = \angle S = \angle R = 90^{\circ}$ (iii)
- \therefore J ASRB is a rectangle.
- \therefore AS = BR (iv) [Opposite sides of a rectanglel

In \triangle PTS, \angle PST is an acute angle

and seg AT ⊥ side PS [From (iii)]

∴ TP2 = PS2 + TS2 – 2 PS.AS (v) [Application of Pythagoras theorem]

In ∆TQR., ∠TRQ is an acute angle

and seg BT ⊥ side QR [From (iii)]

∴ TQ2 = RQ2 + TR2 – 2 RQ.BR (vi) [Application of pythagoras theorem]

 $TP_2 - TQ_2 = PS_2 + TS_2 - 2PS.AS$

- -RQ2 TR2 + 2RQ.BR [Subtracting (vi) from (v)]
- \therefore TP2 TQ2 = TS2 TR2 + PS2
- RQ2 -2 PS.AS +2 RQ.BR
- $\therefore TP2 TQ2 = TS2 TR2 + PS2$
- PS2 2 PS.BR + 2PS.BR [From (i) and (iv)]
- $\therefore \mathsf{TP2} \mathsf{TQ2} = \mathsf{TS2} \mathsf{TR2}$
- $\therefore TS_2 + TQ_2 = TP_2 + TR_2$

Question 1.

In \triangle ABC, \angle C is an acute angle, seg AD Iseg BC. Prove that: AB2 = BC2 + A2 – 2 BC × DC. (Textbook pg. no. 44)

Given: $\angle C$ is an acute angle, seg AD \perp seg BC.

To prove: $AB2 = BC2 + AC2 - 2BC \times DC$

Solution:

Proof:

 \therefore LetAB = c, AC = b, AD = p,

 \therefore BC = a, DC = x

BD + DC = BC [B - D - C]

 \therefore BD = BC – DC

 $\therefore BD = a - x$

In $\triangle ABD$, $\angle D = 90^{\circ}$ [Given]

AB2 = BD2 + AD2 [Pythagoras theorem]

 \therefore c2 = (a - x)2 + [P2] (i)

 \therefore c2 = a2 - 2ax + x2 + [P2]

In $\triangle ADC$, $\angle D = 90^{\circ}$ [Given]

AC2 = AD2 + CD2 [Pythagoras theorem]

b2 = p2 + [X2]

 $p_2 = b_2 - [X_2]$ (ii)

 $\therefore c2 = a2 - 2ax + x2 + b2 - x2 [Substituting (ii) in (i)]$

 \therefore c2 = a2 + b2 - 2ax

 \therefore AB2 = BC2 + AC2 - 2 BC × DC

Question 2.

In \triangle ABC, \angle ACB is an obtuse angle, seg AD \perp seg BC. Prove that: AB2 = BC2 + AC2 + 2 BC × CD. (Textbook pg. no. 40 and 4.1)

Given: \angle ACB is an obtuse angle, seg AD \perp seg BC.

To prove: $AB_2 = BC_2 + AC_2 + 2BC \times CD$

Solution:

Proof:

- Arjun
- Digvijay

Let AD = p, AC = b, AB = c,

BC = a, DC = x

BD = BC + DC [B - C - D]

 \therefore BD = a + x

In $\triangle ADB$, $\angle D = 90^{\circ}$ [Given]

AB2 = BD2 + AD2 [Pythagoras theorem]

 \therefore c2 = (a + x)2 + p2 (i)

 \therefore c2 = a2 + 2ax + x2 + p2

Also, in $\triangle ADC$, $\angle D = 90^{\circ}$ [Given]

AC2 = CD2 + AD2 [Pythagoras theorem]

b2 = x2 + p2

∴ $p_2 = b_2 - x_2$ (ii)

 \therefore c2 = a2 + 2ax + x2 + b2 - x2 [Substituting (ii) in (i)]

 \therefore c2 = a2 + b2 + 2ax

 \therefore AB2 = BC2 + AC2 + 2 BC × CD

Question 3.

In $\triangle ABC$, if M is the midpoint of side BC and seg AM \perp seg BC, then prove that

AB2 + AC2 = 2 AM2 + 2 BM2. (Textbook pg, no. 41)

Given: In \triangle ABC, M is the midpoint of side BC and seg AM \perp seg BC.

To prove: AB2 + AC2 = 2 AM2 + 2 BM2

Solution:

Proof:

In $\triangle AMB$, $\angle M = 90^{\circ}$ [segAM \perp segBC]

∴ AB2 = AM2 + BM2 (i) [Pythagoras theorem]

Also, in $\triangle AMC$, $\angle M = 90^{\circ}$ [seg AM \perp seg BC]

∴ AC2 = AM2 + MC2 (ii) [Pythagoras theorem]

 $\therefore AB2 + AC2 = AM2 + BM2 + AM2 + MC2 [Adding (i) and (ii)]$

 $\therefore AB2 + AC2 = 2 AM2 + BM2 + BM2 [: BM = MC (M is the midpoint of BC)]$

 \therefore AB2 + AC2 = 2 AM2 + 2 BM2

Problem Set 2 Geometry 10th Std Maths Part 2 Answers Chapter 2 Pythagoras Theorem

Question 1.

Some questions and their alternative answers are given. Select the correct alternative. [1 Mark each]

i. Out of the following which is the Pythagorean triplet?

(A) (1,5,10)

(B) (3,4,5)

(C) (2,2,2)

(D) (5,5,2)

Answer: (B)

Hint: Refer Practice set 2.1 Q.1 (i)

ii. In a right angled triangle, if sum of the squares of the sides making right angle is 169, then what is the length of the hypotenuse?

- (A) 15
- (B) 13

- Arjun
- Digvijay
- (C) 5
- (D) 12

Answer: (B)

Hint:

- In $\triangle PQR$, $\angle Q = 90^{\circ}$ ii.
- $PR^2 = PQ^2 + QR^2$

...[Pythagoras theorem]

- $PR^2 = 169$
- $PR = \sqrt{169} = 13$

iii. Out of the dates given below which date constitutes a Pythagorean triplet?

- (A) 15/08/17
- (B) 16/08/16
- (C) 3/5/17
- (D) 4/9/15

Answer: (A)

Hint:

Consider Option A.

Here,
$$15^2 + 8^2 = 225 + 64 = 289$$
, and $17^2 = 289$

 $15^2 + 8^2 = 17^2$

iv. If a, b, c are sides of a triangle and $a_2 + b_2 = c_2$, name the type of the triangle.

- (A) Obtuse angled triangle
- (B) Acute angled triangle
- (C) Right angled triangle
- (D) Equilateral triangle

Answer: (C)

v. Find perimeter of a square if its diagonal is $102 - \sqrt{\text{cm}}$.

- (A) 10 cm
- (B) $402 \sqrt{\text{cm}}$
- (C) 20 cm
- (D) 40 cm

Answer: (D)

Hint:

In $\triangle ABC$, $\angle B = 90^{\circ}$, and $\angle BAC = \angle BCA = 45^{\circ}$

 $AB = \frac{1}{\sqrt{2}} AC$ $=\frac{1}{\sqrt{2}}\times 10\sqrt{2}$

...[Theorem of $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle]

- AB = 10 cm
- Perimeter of square = $4 \text{ (AB)} = 4 \times 10 = 40 \text{ cm}$

vi. Altitude on the hypotenuse of a right angled triangle divides it in two parts of lengths 4 cm and 9 cm. Find the length of the altitude.

- (A) 9 cm
- (B) 4 cm
- (C) 6 cm
- (D) 26 −√

Answer: (C)

Hint:

$$BD^2 = AD \times DC$$

 $BD = \sqrt{36} = 6 \text{ cm}$

 $BD^2 = 4 \times 9$

...[Theorem of geometric mean]

vii. Height and base of a right angled triangle are 24 cm and 18 cm find the length of its hypotenuse.

- (A) 24 cm
- (B) 30 cm
- (C) 15 cm
- (D) 18 cm

Answer: (B)

- Arjun
- Digvijay

Hint:

In
$$\triangle PQR$$
, $\angle Q = 90^{\circ}$
∴ $PR^2 = PQ^2 + QR^2$
 $= 24^2 + 18^2$
 $= 576 + 324$
 $= 900$
∴ $PR = \sqrt{900} = 30 \text{ cm}$

...[Pythagoras theorem]

viii. In ΔABC, AB = $63 - \sqrt{\text{cm}}$, AC = 12 cm, BC = 6 cm. Find measure of \angle A.

- (A) 30°
- (B) 60°
- (C) 90°
- (D) 45°

Answer: (A)

Hint:

We know that,
$$6 = \frac{1}{2}(12)$$
 and $6\sqrt{3} = \frac{\sqrt{3}}{2}(12)$

$$\therefore BC = \frac{1}{2} AC \text{ and } AB = \frac{\sqrt{3}}{2} AC$$

∴ ∠A = 30°

...[Converse of $30^{\circ} - 60^{\circ} - 90^{\circ}$ theorem]

Question 2.

Solve the following examples.

- i. Find the height of an equilateral triangle having side 2a.
- ii. Do sides 7 cm, 24 cm, 25 cm form a right angled triangle? Give reason.
- iii. Find the length of a diagonal of a rectangle having sides 11 cm and 60 cm.
- iv. Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm.
- v. A side of an isosceles right angled triangle is x. Find its hypotenuse.

vi. In $\triangle PQR$, $PQ = \$ - \sqrt{}$, $QR = \$ - \sqrt{}$, $PR = \$ - \sqrt{}$. Is $\triangle PQR$ a right angled triangle? If yes, which angle is of 90°? Solution:

i. Let $\triangle ABC$ be the given equilateral triangle.

 \therefore ∠B = 60° [Angle of an equilateral triangle]

Let AD \perp BC, B - D - C.

In $\triangle ABD$, $\angle B = 60^{\circ}$, $\angle ADB = 90^{\circ}$

- \therefore ∠BAD = 30° [Remaining angle of a triangle]
- ∴ \triangle ABD is a 30° 60° 90° triangle.
- ∴ AD = $3\sqrt{2}$ AB [Side opposite to 60°]
- = 3√2 × 2a
- = $a3 \sqrt{\text{units}}$

The height of the equilateral triangle is $a3-\sqrt{}$ units.

ii. The sides of the triangle are 7 cm, 24 cm and 25 cm.

The longest side of the triangle is 25 cm.

 \therefore (25)₂ = 625

Now, sum of the squares of the remaining sides is,

 $(7)_2 + (24)_2 = 49 + 576$

- = 625
- \therefore (25)2 = (7)2 + (24)2
- : Square of the longest side is equal to the sum of the squares of the remaining two sides.
- : The given sides will form a right angled triangle. [Converse of Pythagoras theorem]

iii. Let ${\it J}$ ABCD be the given rectangle.

$$AB = 11 \text{ cm}, BC = 60 \text{ cm}$$

- Arjun
- Digvijay

In $\triangle ABC$, $\angle B = 90^{\circ}$ [Angle of a rectangle]

- \therefore AC₂ = AB₂ + BC₂ [Pythagoras theorem]
- = 112 + 602
- = 121 + 3600
- = 3721

 \therefore AC = 3721---- [Taking square root of both sides]

= 61 cm

The length of the diagonal of the rectangle is 61 cm.

: The length of the diagonal of the rectangle is 61 cm.

iv. Let Δ PQR be the given right angled triangle.

In $\triangle PQR$, $\angle Q = 90^{\circ}$

- ∴ PR2 = PQ2 + QR2 [Pythagoras theorem]
- = 92 + 122
- = 81 + 144
- = 225
- ∴ PR = 225— $-\sqrt{\text{[Taking square root of both sides]}}$
- = 15 cm
- : The length of the hypotenuse of the right angled triangle is 15 cm.

v. Let Δ PQR be the given right angled isosceles triangle.

PQ = QR = x.

In $\triangle PQR$, $\angle Q = 90^{\circ}$ [Pythagoras theorem]

- $\therefore PR2 = PQ2 + QR2$
- = x2 + x2
- = 2x2
- ∴ PR = $2x_2$ --- $\sqrt{$ [Taking square root of both sides]
- = $x 2 \sqrt{units}$
- \therefore The hypotenuse of the right angled isosceles triangle is x $2-\sqrt{1}$ units.
- \therefore The hypotenuse of the right angled isosceles triangle is x $2-\sqrt{1}$ units.

vi. Longest side of $\triangle PQR = PQ = 8 - \sqrt{}$

:.
$$PQ2 = (8 - \sqrt{1})2 = 8$$

Now, sum of the squares of the remaining sides is,

QR2 + PR2 = $(5-\sqrt{)}2 + (3-\sqrt{)}2$

- = 5 + 3
- = 8
- $\therefore PQ2 = QR2 + PR2$
- $\mathrel{\raisebox{.3ex}{$.$}}$ Square of the longest side is equal to the sum of the squares of the remaining two sides.
- \therefore ΔPQR is a right angled triangle. [Converse of Pythagoras theorem]

Now, PQ is the hypotenuse.

- $\therefore \angle PRQ = 90^{\circ}$ [Angle opposite to hypotenuse]
- ∴ \triangle PQR is a right angled triangle in which \angle PRQ is of 90°.

Question 3.

In \triangle RST, \angle S = 90°, \angle T = 30°, RT = 12 cm, then find RS and ST.

- Arjun
- Digvijay

Solution:

in \triangle RST, \angle S = 900, \angle T = 30° [Given]

- \therefore $\angle R = 60^{\circ}$ [Remaining angle of a triangle]
- \therefore \triangle RST is a 30° 60° 90° triangle.

∴ RS = 12 RT [Side opposite to 30°]

 $= 12 \times 12 = 6$ cm

Also, $ST = 3\sqrt{2} RT$ [Side opposite to 60°]

 $= 3\sqrt{2} \times 12 = 6 3 - \sqrt{cm}$

 \therefore RS = 6 cm and ST = 6 $3 - \sqrt{\text{cm}}$

Question 4.

Find the diagonal of a rectangle whose length is 16 cm and area is 192 sq. cm.

Solution:

Let J ABCD be the given rectangle.

BC = 16cm

Area of rectangle = length \times breadth

Area of \cup ABCD = BC \times AB

∴ 192 = I6 × AB

∴ AB = 19216

= 12cm

Now, in $\triangle ABC$, $\angle B = 90^{\circ}$ [Angle of a rectangle]

∴ AC2 = AB2 + BC2 [Pythagoras theorem]

= 122 + 162

= 144 + 256

=400

∴ AC = 400— $-\sqrt{\text{[Taking square root of both sides]}}$

= 20cm

 \therefore The diagonal of the rectangle is 20 cm.

Question 5.

Find the length of the side and perimeter of an equilateral triangle whose height is $3-\sqrt{2}$ cm.

Solution:

Let $\triangle ABC$ be the given equilateral triangle.

 \therefore ∠B = 60° [Angle of an equilateral triangle]

AD \perp BC, B – D – C.

In $\triangle ABD$, $\angle B = 60^{\circ}$, $\angle ADB = 90^{\circ}$

- \therefore ∠BAD = 30° [Remaining angle of a triangle]
- ∴ \triangle ABD is a 30° 60° 90° triangle.
- ∴ AD = $3\sqrt{2}$ AB [Side opposite to 600]

 $\therefore 3 - \sqrt{3} = 3\sqrt{2}AB$

- ∴ AB = 23√3√
- ∴ AB = 2cm
- ∴ Side of equilateral triangle = 2cm

Perimeter of $\triangle ABC = 3 \times side$

- = 3 × AB
- $= 3 \times 2$
- = 6cm
- .: The length of the side and perimeter of the equilateral triangle are 2 cm and 6 cm respectively.

- Arjun
- Digvijay

Question 6.

In \triangle ABC, seg AP is a median. If BC = 18, AB2 + AC2 = 260, find AP.

Solution:

PC = 12 BC [P is the midpoint of side BC]

 $= 12 \times 18 = 9$ cm

in ΔABC, seg AP is the median,

Now, AB2 + AC2 = 2 A2 + 2 PC2 [Apollonius theorem]

- $\therefore 260 = 2 AP_2 + 2 (9)_2$
- \therefore 130 = AP₂ + 81 [Dividing both sides by 2]
- $\therefore AP_2 = 130 81$
- $\therefore AP_2 = 49$
- \therefore AP = $49 -\sqrt{\text{[Taking square root of both sides]}}$
- \therefore AP = 7 units

Question 7.

 \triangle ABC is an equilateral triangle. Point P is on base BC such that PC = 13 BC, if AB = 6 cm find AP.

Given: ΔABC is an equilateral triangle.

PC = 13 BC, AB = 6cm.

To find: AP

Consttuction: Draw seg AD \pm seg BC, B – D – C.

Solution:

 Δ ABC is an equilateral triangle.

∴ AB = BC = AC = 6cm [Sides of an equilateral triangle]

pc = 13 BC [Given]

- = 13 (6)
- ∴ PC = 2cm

In ΔADC,

 $\angle D = 90^{\circ}$ [Construction]

 $\angle C = 60^{\circ}$ [Angle of an equilateral triangle]

 $\angle DAC = 30^{\circ}$ [Remaining angle of a triangle]

- \therefore \triangle ADC is a 30° 60° 90° triangle.
- ∴ AD = $3\sqrt{2}$ AC [Side opposite to 60°]
- ∴ AD = 3√2 (6)
- \therefore AD = 3 3 $-\sqrt{\text{cm}}$

CD = 12 AC [Side opposite to 30°]

- ∴ CD = 12 (6)
- \therefore CD = 3cm

Now DP + PC = CD [D - P - C]

- ∴ DP + 2 = 3
- ∴ DP = 1cm

In ΔADP,

∠ADP = 900

AP2 = AD2 + DP2 [Pythagoras theorem]

- $\therefore AP2 = (33 \sqrt{2}) + (1)2$
- $\therefore AP_2 = 9 \times 3 + 1 = 27 + 1$
- $\therefore AP_2 = 28$
- $\therefore AP = 28 - \sqrt{}$
- $\therefore AP = 4 \times 7 ---- \sqrt{}$
- $\therefore AP = 27 \sqrt{cm}$

Question 8.

From the information given in the adjoining figure, prove that

- Arjun
- Digvijay

 $PM = PN = 3 - \sqrt{\times} a$

Solution:

Proof:

In ΔPMR,

QM = QR = a [Given]

- \therefore Q is the midpoint of side MR.
- ∴ seg PQ is the median.
- ∴ PM₂ + PR₂ = 2PQ₂ + 2QM₂ [Apollonius theorem]

 \therefore PM2 + a2 = 2a2 + 2a2

∴ $PM_2 + a_2 = 4a_2$

 \therefore PM₂ = 3a₂

∴ PM,= $3-\sqrt{a}$ (i) [Taking square root of both sides]

Simlarly, in ΔPNQ,

R is the midpoint of side QN.

∴ seg PR is the median.

 \therefore PN₂ + PQ₂ = 2 PR₂ + 2 RN₂ [Apollonius theorem]

 \therefore PN2 + a2 = 2a2 + 2a2

 $PN_2 + a_2 = 4a_2$

∴ PN2 = 3a2

∴ PN = $3 - \sqrt{a}$ (ii) [Taking square root of both sides]

 \therefore PM = PN = $3 - \sqrt{a}$ [From (i) and (ii)]

Question 9.

Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

Given: J ABCD is a parallelogram, diagonals AC and BD intersect at point M.

To prove: AC2 + BD2 = AB2 + BC2 + CD2 + AD2

Solution:

Proof:

J ABCD is a parallelogram.

∴ AB = CD and BC = AD (i) [Opposite sides of a parallelogram]

AM = 12 AC and BM = 12 BD (ii) [Diagonals of a parallelogram bisect each other]

:. M is the midpoint of diagonals AC and BD. (iii)

In ΔABC.

seg BM is the median. [From (iii)]

AB2 + BC2 = 2AM2 + 2BM2 (iv) [Apollonius theorem]

:. AB2 + BC2 = 2(12 AC)2 + 2(12 BD)2 [From (ii) and (iv)]

 $\therefore AB2 + BC2 = 2 \times BD_24 + 2 \times AC_24$

 $\therefore AB2 + BC2 = BD_22 + AC_22$

 \therefore 2AB2 + 2BC2 = BD2 + AC2 [Multiplying both sides by 2]

 $\therefore AB2 + AB2 + BC2 + BC2 = BD2 + AC2$

- Arjun
- Digvijay

$$\therefore AB2 + CD2 + BC2 + AD2 = BD2 + AC2 [From(i)]$$

i.e.
$$AC2 + BD2 = AB2 + BC2 + CD2 + AD2$$

Question 10.

Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was $152-\sqrt{\text{km}}$. Find their speed per hour.

Solution:

Suppose Pranali and Prasad started walking from point A, and reached points B and C respectively after 2 hours.

Distance between them = BC = $152 - \sqrt{km}$

Since, their speed is same, both travel the same distance in the given time.

 $\therefore AB = AC$

Let AB = AC = x km (i)

Now, in \triangle ABC, \angle A = 90°

∴ BC2 = AB2 + AC2 [Pythagoras theorem]

 $\therefore (152 - \sqrt{2})^2 = x^2 + x^2 \text{ [From (i)]}$

 $\therefore 225 \times 2 = 2 \times 2$

∴ x2 = 225

 $\therefore x = 225 - -- \sqrt{\text{[Taking square root of both sides]}}$

 \therefore x = 15 km

 \therefore AB = AC = 15km

Now, speed = distance time = 152

= 7.5 km/hr

∴ The speed of Pranali and Prasad is 7.5 km/hour.

Question 11.

In \triangle ABC, \angle BAC = 90°, seg BL and seg CM are medians of \triangle ABC. Then prove that 4 (BL2 + CM2) = 5 BC2.

Given : \angle BAC = 90°

seg BL and seg CM are the medians.

To prove: 4(BL2 + CM2) = 5BC2

Solution:

Proof:

In ΔBAL, ∠BAL 90° [Given]

∴ BL2 = AB2 + AL2 (i) [Pythagoras theorem]

In $\triangle CAM$, $\angle CAM = 90^{\circ}$ [Given]

∴ CM₂ = AC₂ + AM₂ (ii) [Pythagoras theorem]

 \therefore BL2 + CM2 = AB2 + AC2 + AL2 + AM2 (iii) [Adding (i) and (ii)]

Now, AL = 12 AC and AM = 12 AB (iv) [seg BL and seg CM are the medians]

∴ BL2 + CM2

= AB2 + AC2 + (12 AC)2 + (12 AB)2 [From (iii) and (iv)]

=AB2+AC2+AC24+AB24

 $=AB_2+AB_24+AC_2+AC_24$

=5AB24+5AC24

 \therefore BL2 + CM2 = 54 (AB2 + AC2)

4(BL2 + CM2) = 5(AB2 + AC2) (v)

In $\triangle BAC$, $\angle BAC = 90^{\circ}$ [Given]

∴ BC2 = AB2 + AC2 (vi) [Pythagoras theorem]

 \therefore 4(BL2 + CM2) = 5BC2 [From (v) and (vi)]

Question 12.

Sum of the squares of adjacent sides of a parallelogram is 130 cm and length of one of its diagonals is 14 cm. Find the length of the other diagonal.

Solution:

- Arjun
- Digvijay

Let J ABCD be the given

parallelogram and its diagonals AC and BD intersect at point M.

 \therefore AB2 + AD2 = 130cm, BD = 14cm

MD = 12 BD (i) [Diagonals of a parallelogram bisect each other]

 $= 12 \times 14 = 7 \text{ cm}$

In ΔABD, seg AM is the median. [From (i)]

- \therefore AB2 + = 2AM2 + 2MD2 [Apollonius theorem]
- $\therefore 130 = 2 \text{ AM}_2 + 2(7)_2$
- \therefore 65 = AM₂ +49 [Dividing both sides by 2]
- $\therefore AM2 = 65 49$
- ∴ AM₂ = 16 [Taking square root of both sides]
- $\therefore AM = 16 - \sqrt{}$
- = 4cm

Now, AC = 2 AM [Diagonals of a parallelogram bisect each other]

- $2 \times 4 = 8 \text{ cm}$
- : The length of the other diagonal of the parallelogram is 8 cm.

Question 13.

In \triangle ABC, seg AD \perp seg BC and DB = 3 CD. Prove that: 2 AB2 = 2 AC2 + BC2.

Given: seg AD ⊥ seg BC

DB = 3CD

To prove: 2AB2 = 2AC2 + BC2

Solution:

DB = 3CD (i) [Given]

In $\triangle ADB$, $\angle ADB = 90^{\circ}$ [Given]

- \therefore AB2 = AD2 + DB2 [Pythagoras theorem]
- $\therefore AB2 = AD2 + (3CD)2 [From (i)]$
- ∴ AB2 = AD2 + 9CD2 (ii)

In $\triangle ADC$, $\angle ADC = 90^{\circ}$ [Given]

- \therefore AC2 = AD2 + CD2 [Pythagoras theorem]
- \therefore AD2 = AC2 CD2 (iii)

 $AB_2 = AC_2 - CD_2 + 9CD_2$ [From (ii) and(iii)]

- \therefore AB2 = AC2 + 8CD2 (iv)
- CD + DB = BC [C D B]
- \therefore CD + 3CD = BC [From (i)]
- \therefore 4CD = BC
- :: CD = BC4 (v)

AB2 = AC2 + 8(BC4)2 [From (iv) and (v)]

- $\therefore AB2 = AC2 + 8 \times BC_216$
- $\therefore AB2 = AC2 + BC22$
- \therefore 2AB₂ = 2AC₂ + BC₂ [Multiplying both sides by 2]

Question 14.

In an isosceles triangle, length of the congruent sides is 13 em and its.base is 10 cm. Find the distance between the vertex opposite to the base and the centroid.

Given: $\triangle ABC$ is an isosceles triangle.

G is the centroid.

AB = AC = 13 cm, BC = 10 cm.

To find: AG

Construction: Extend AG to intersect side BC at D, B-D-C.

Solution:

Centroid G of ΔABC lies on AD

- Arjun
- Digvijay
- ∴ seg AD is the median. (i)
- ∴ D is the midpoint of side BC.
- ∴ DC = 12 BC
- $= 12 \times 10 = 5$

In \triangle ABC, seg AD is the median. [From (i)]

- ∴ AB2 + AC2 = 2 AD2 + 2 DC2 [Apollonius theorem]
- $\therefore 132 + 132 = 2 \text{ AD2} + 2 (5)2$
- $\therefore 2 \times 132 = 2 \text{ AD2} + 2 \times 25$
- \therefore 169 = AD₂ + 25 [Dividing both sides by 2]
- $\therefore AD2 = 169 25$
- $\therefore AD2 = 144$
- \therefore AD = 144--- $\sqrt{\text{[Taking square root of both sides]}}$
- = 12 cm

We know that, the centroid divides the median in the ratio 2:1.

- ∴ AGGD = 21
- ∴ GDAG = 12 [By invertendo]
- \therefore GD+AGAG = 1+22 [By componendo]
- $\therefore ADAG = 32 [A G D]$
- \therefore 12AG = 32
- ∴ AG = 12×23
- = 8cm
- : The distance between the vertex opposite to the base and the centroid is 8 cm.

Question 15.

In a trapezium ABCD, seg AB \parallel seg DC, seg BD \perp seg AD, seg AC \perp seg BC. If AD = 15, BC = 15 and AB = 25, find A (\cup ABCD).

Construction: Draw seg DE \perp seg AB, A – E – B

and seg CF \perp seg AB, A – F- B.

Solution:

In \triangle ACB, \angle ACB = 90° [Given]

- ∴ AB2 = AC2 + BC2 [Pythagoras theorem]
- $\therefore 252 = AC2 + 152$
- \therefore AC2 = 625 225
- = 400

- \therefore AC = $400---\sqrt{\text{[Taking square root of both sides]}}$
- = 20 units

Now, $A(\Delta ABC) = 12 \times BC \times AC$

Also, $A(\Delta ABC) = 12 \times AB \times CF$

- \therefore 12 × BC × AC = 12 × AB × CF
- \therefore BC \times AC = AB \times CF
- $\therefore 15 \times 20 = 25 \times CF$
- ∴ CF = 15×2025 = 12 units

In ΔCFB, ∠CFB 90° [Construction]

- ∴ BC2 = CF2 + FB2 [Pythagoras theorem]
- $\therefore 152 = 122 + FB2$
- $\therefore FB_2 = 225 144$
- ∴ FB₂ = 81
- \therefore FB = 81--1 [Taking square root of both sides]
- = 9 units

Similarly, we can show that, AE = 9 units

Now, AB = AE + EF + FB [A - E - F, E - F - B]

- $\therefore 25 = 9 + EF + 9$
- \therefore EF = 25 18 = 7 units

In J CDEF,

seg EF \parallel seg DC [Given, A – E – F, E – F – B]

seg ED || seg FC [Perpendiculars to same line are parallel]

∴ J CDEF is a parallelogram.

- Arjun
- Digvijay
- ∴ DC = EF 7 units [Opposite sides of a parallelogram]

 $A(J ABCD) = 12 \times CF \times (AB + CD)$

- $= 12 \times 12 \times (25 + 7)$
- $= 12 \times 12 \times 32$
- \therefore A(\cup ABCD) = 192 sq. units

Question 16.

In the adjoining figure, $\triangle PQR$ is an equilateral triangle. Point S is on seg QR such that QS = 13 QR. Prove that: 9 PS2 = 7 PQ2.

Given: ΔPQR is an equilateral triangle.

QS = 13 QR

To prove: $9PS_2 = 7PQ_2$

Solution: Proof:

ΔPQR is an equilateral triangle [Given]

 $\therefore \angle P = \angle Q = \angle R = 60^{\circ}$ (i) [Angles of an equilateral triangle]

PQ = QR = PR (ii) [Sides of an equilateral triangle]

In $\triangle PTS$, $\angle PTS = 90^{\circ}$ [Given]

PS2 = PT2 + ST2 (iii) [Pythagoras theorem]

In ΔPTQ,

 $\angle PTQ = 90^{\circ} [Given]$

 $\angle PQT = 60^{\circ} [From (i)]$

- \therefore \angle QPT = 30° [Remaining angle of a triangle]
- ∴ Δ PTQ is a 30° 60° 90° triangle
- ∴ PT = $3\sqrt{2}$ PQ (iv) [Side opposite to 60°]

QT = 12 PQ (v) [Side opposite to 30°]

QS + ST = QT [Q - S - T]

- \therefore 13 QR + ST = 12 PQ [Given and from (v)]
- ∴ 13 PQ + ST = 12 PQ [From (ii)]
- $\therefore ST = PQ2 PQ3$
- $\therefore ST = 3PQ-2PQ6$
- ∴ ST = *PQ6* (vi)

 $PS_2=(3\sqrt{2}PQ)_2+(PQ6)_2$ [From (iii), (iv) and (vi)]

- :. PS2=3PQ24+PQ236
- :. PS2=27PQ236+PQ236
- :.PS2=28PQ236
- ∴PS2 = 73 PQ2
- ∴ 9PS2 = 7 PQ2

Question 17.

Seg PM is a median of APQR. If PQ = 40, PR = 42 and PM = 29, find QR.

Solution:

In $\triangle PQR$, seg PM is the median. [Given]

- .. M is the midpoint of side QR.
- ∴ PQ2 + PR2 = 2 PM2 + 2 MR2 [Apollonius theorem]

- $\therefore 402 + 422 = 2 (29)2 + 2 MR2$
- \therefore 1600 + 1764 = 2 (841) + 2 MR2
- \therefore 3364 = 2 (841) + 2 MR₂
- \therefore 1682 = 841 +MR2 [Dividing both sides by 2]
- \therefore MR₂ = 1682 841
- ∴ MR2 = 841
- \therefore MR = 841--- $\sqrt{\text{[Taking square root of both sides]}}$
- = 29 units

Now, QR = 2 MR [M is the midpoint of QR]

- $= 2 \times 29$
- \therefore QR = 58 units

- Arjun
- Digvijay

Question 18.

Seg AM is a median of \triangle ABC. If AB = 22, AC = 34, BC = 24, find AM.

Solution:

In ΔABC, seg AM is the median. [Given]

 $\mathrel{{.}\,{.}\,{.}}{\,{.}\,{.}}$ M is the midpoint of side BC.

∴ MC = 12 BC

 $= 12 \times 24 = 12$ units

Now, AB2 + AC2 = 2 AM2 + 2 MC2 [Apollonius theorem]

 \therefore 222 + 342 = 2 AM2 + 2 (12)2

 \therefore 484 + 1156 = 2 AM2 + 2 (144)

 \therefore 1640 = 2 AM2 + 2 (144)

 \therefore 820 = AM₂ + 144 [Dividing both sides by 2]

 $\therefore AM_2 = 820 - 144$

∴ AM2 = 676

 \therefore AM = 676— $-\sqrt{$ [Taking square root of both sides]

 \therefore AM = 26 units