

ReCycle: Effiziente Zeitreihenvorhersage mit KI

Arvid Weyrauch | 16. April 2024

Emissionen durch KI-Training

Wozu effiziente KI?

Nachhaltigkeit

Anwendbarkeit

Brauchen wir KI dafür?

Klassische Methoden

- Geringer Rechenaufwand
- Interpretierbare Algorithmen
- Gut für großskalige, lineare Muster

KI Methoden

- Hoher Rechenaufwand
- Black box Algorithmen
- Gut für komplexe, nichtlineare Muster

ENTSO-E Stromverbrauchsdaten¹

- Stündlicher Stromverbrauch für Deutschland
- Relativ stabiles Tagesprofil
- Alle Wochentage sind ähnlich
- Samstag und Sonntag haben eigenes Profil
- Sage 1 Woche auf Basis der letzten 3 vorher

Stromverbrauch Deutschland (2. Juliwoche 2017)

¹https://www.kaggle.com/datasets/francoisraucent/western-europe-power-consumption

- Last(n)-Vorhersage
 - Mittle die letzten n Tage
 - Einfach und effizient
 - Wochenden und Feiertage sind problematisch

Typische Lastkurve und Last(3) PSLP

- Last(n)-Vorhersage
 - Mittle die letzten n Tage
 - Einfach und effizient
 - Wochenden und Feiertage sind problematisch
- Last(n)category-Vorhersage
 - Mittle die letzten n Wochentage, Samstage oder Sonn/Feiertage
 - Etwas mehr Aufwand, aber solides Ergebnis
 - Last(3)categories ist unsere Basismethode

Typische Lastkurve und Last(3)categories PSLP

7/12 16.04.2024 A. Weyrauch: Effiziente KI arvid.weyrauch@kit.edu

Höhere Präzision mit Residuen

- Sage Differenz zu PSLP voraus
- KI gut um verbleibende Muster zu finden
- Kompatibel mit belibigen Architekturen
 - Hauptsächlich Transformer

8/12 16.04.2024 A. Weyrauch: Effiziente KI arvid.weyrauch@kit.edu

Was haben wir, was brauchen wir

- Wöchentliche Vorhersagen
- Multivariate Vorhersagemodelle
- Rechenkomplexität $\mathcal{O}(n^2)$

- Sind beliebige Startstunden nötig?
- Univariate Vorhersagen
- Kürzere Sequenzen wären dramatisch effizienter

Was haben wir, was brauchen wir

- Wöchentliche Vorhersagen
- Multivariate Vorhersagemodelle
- Rechenkomplexität $\mathcal{O}(n^2)$

- Sind beliebige Startstunden nötig?
- Univariate Vorhersagen
- Kürzere Sequenzen wären dramatisch effizienter

⇒ Statt einer Woche mit 168h nutze sieben Tagesvektoren mit 24h

ReCycle

Ursprungsdaten

Zusätzliche Metadaten

Primärzykluskompression

stelle Serie als Tagesvektoren dar

Zerlegung der Ursprungsdaten

- Historisches Profil (PSLP)
- Residuen

Ergebnisse

		MSE [10 ⁶]	MAPE	Time [s]		Energy [W h]	
ENTSO-E DE	Transformer + ReCycle	8.53±0.31 5.80 ± 0.58	3.59±0.14 3.19 ± 0.17	161.09 56.96	×2.8	111.0 12.3	×9.0
	FEDformer + ReCycle	11.5±0.14 6.36±0.22	4.03±0.03 3.25±0.05	1242.81 123.61	×10.1	723.0 30.4	×23.8
	PatchTST + ReCycle	14.5±0.13 7.97±0.10	4.54±0.02 3.49±0.02	315.62 85.71	×3.7	164.0 16.2	×10.1

Publikation bei IEEE CAI 2023, Sourcecode wird auf Github verfügbar sein https://github.com/Helmholtz-AI-Energy/ReCycle

11/12 16.04.2024 A. Weyrauch: Effiziente KI arvid.weyrauch@kit.edu

Zusammenfassung

- Wachsende KI-Modell können zum Problem für Anwendbarkeit werden
- Testen Sie, ob KI tatsächlich nötig ist
- Spezifische Aufgaben sparen Zeit und Energie

12/12 16.04.2024 A. Weyrauch: Effiziente KI