MATH 3100 FALL 2020. LECTURE SUMMARIES

LEONID PETROV

1.8/25

Section 1.1 in the textbook.

- (1) Sample space long abstract definition which encompasses all possible mathematical models of randomness we are going to see in the course
- (2) Examples of sample spaces coin tossing, dice rolling.
- (3) We are discussing finite sample spaces so far. Out of finite sample spaces, a special case is formed by finite sample spaces with equally likely outcomes. In them, we have $P(\omega) = \frac{1}{\#\Omega}$ for all $\omega \in \Omega$, and $P(A) = \frac{\#A}{\#\Omega}$ for all events A.
- (4) Repeated experiments, sample space $\Omega^n = \Omega \times ... \times \Omega$ (Cartesian power), where

$$\Omega^n = \{(a_1, \dots, a_n) \colon a_i \in \Omega\}$$

- is the space of ordered *n*-tuples of elements from Ω . The sample space Ω^n models the experiment corresponding to Ω , repeated (independently) n times.
- (5) Finer point. In uncountable sample spaces, usually it is not possible to define P consistently for all subsets. Therefore, we need to restrict the definition of event to "good" subsets of Ω .

Section 1.2 in the textbook.

- (1) Random sampling. We stay in the scenario with finite sample spaces, equally likely outcomes.
- (2) We discuss three main sampling schemes of k objects out of n objects.
- (3) If we sample with replacement and order matters, then $\#\Omega = n^k$
- (4) If we sample without replacement and order matters, then

$$\#\Omega = n(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!}.$$

If k = n, we talk about random permutations of n objects.

(5) If we sample without replacement and order does not matter, then

$$\#\Omega = \frac{n(n-1)\dots(n-k+1)}{k!} = \frac{n!}{(n-k)!\,k!} = \binom{n}{k}.$$

(6) Hypergeometric distribution. Imagine we have n objects separated into a number of types $1, \ldots, L$, and there are m_j objects of type j. So that $m_1 + \ldots + m_L = n$. Sample k objects at random from n. The probability that in this sample there are p_j objects of type j is equal

to

$$\frac{\binom{m_1}{p_1} \dots \binom{p_L}{m_L}}{\binom{n}{k}}$$

where $p_1 + \ldots + p_L = k$.

- 3. 9/1
- 4.9/3
- 5. 9/8
- 6.9/10
- 7. 9/15
- 8.9/17
- 9.9/24
- 10. 9/29
- 11. 10/1
- 12. 10/6
- 13. 10/8
- 14. 10/13
- 15. 10/15
- 16. 10/20
- 17. 10/27
- $18. \ 10/29$
- 19. 11/3
- 20. 11/5
- 21. 11/10
- 22. 11/12
- $23. \ 11/17$
- 24. 11/19
- 25. 11/24