Lecture 28

Review

STAT 8010 Statistical Methods I October 28, 2019 Inferences for One Population Mean Inferences for Two Population Means Inferences for Two Population Means Inferences for Matched Pairs ANOVA Multiple Comparisons & Linear Contrasts

Notes

Whitney Huang Clemson University

Agenda

- Inferences for One Population Mean
- 2 Inferences for Two Population Means
- **3** Inferences for Matched Pairs
- 4 ANOVA
- Multiple Comparisons & Linear Contrasts

Review
CLEMS N

Notes			

Inferences for One Population Mean

Review CLEMS IT Y
Inferences for One Population Mean

Notes			

Inferences for One Population Mean μ

Goal: To infer $\mu = \mathbb{E}(X)$ from a random sample $\{X_1,X_2,\cdots,X_n\}$

Point estimation:

$$\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$$

- Interval Estimation: $100 \times (1 \alpha)\%$ Confidence Interval (CI)
 - $\sigma = \sqrt{\operatorname{Var}(X)}$ is known:

$$\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

• σ is unknown:

$$\left(\bar{X}_n - t_{\alpha/2,dt=n-1}\frac{s}{\sqrt{n}}, \bar{X}_n + t_{\alpha/2,dt=n-1}\frac{s}{\sqrt{n}}\right)$$

110100	
	-
	_

Margin of error & Sample Size Calculation

Margin of error:

$$z_{lpha/2} rac{\sigma}{\sqrt{n}}$$
 if σ known $t_{lpha/2, df=n-1} rac{s}{\sqrt{n}}$ if σ unknown

- \Rightarrow CI for $\mu = ar{X}_{\it n} \pm$ margin of error
- Sample size determination:

$$n = \left(\frac{z_{\alpha/2} \times \sigma}{\text{margin of error}}\right)^2,$$

if σ is given

Notes	

Notes

Hypothesis Testing for μ

State the null and alternative hypotheses:

$$H_0: \mu = \mu_0 \text{ vs. } H_a: \mu > \text{ or } \neq \text{ or } < \mu_0$$

Ompute the test statistic:

Make the decision of the test:

Rejection Region/ P-Value Methods

Oraw the conclusion of the test: We (do/do not) have enough statistical evidence to conclude that (H_a in words) at α % significant level.

Review							
Ė	Ē	λ	45	S	4	1	J
¥	₩	÷	R	÷	7	÷	÷.

	Comparisons &
w	Comparisons & Dinear Contrasts

Notes

Type I, II Error & Power

True State	Decision			
True State	Reject H ₀	Fail to reject H_0		
H ₀ is true	Type I error	Correct		
H_0 is false	Correct	Type II error		

- Type I error: $\mathbb{P}(\text{Reject } H_0|H_0 \text{ is true}) = \alpha$
- Type II error: $\mathbb{P}(\text{Fail to reject } H_0|H_0 \text{ is false}) = \beta$
- The power (PWR): $\mathbb{P}(\text{Reject } H_0|H_0 \text{ is false}) = 1 \beta.$

$$\Rightarrow \mathsf{PWR}(\mu_{a}) = 1 - \beta(\mu_{a}) = 1 - \mathbb{P}(z^{*} \leq z_{\alpha} - \frac{|\mu_{0} - \mu_{a}|}{\sigma/\sqrt{n}})$$

(see the figure in page 5, Lecture 20)

Review CLEMS N UNIVERSITY
Inferences for One Population Mean

Notes

Duality of Hypothesis Test with Confidence Interval

There is an interesting relationship between CIs and hypothesis tests. If H_0 is rejected with significance level α then the corresponding confidence interval does not contain the value μ_0 targeted in the hypotheses with the confidence level $(1-\alpha)$, and vice versa

Notes

Inferences for Two Population Means

Review CLEMS UNIVERSIT
Inferences for One Population Mean Inferences for Two Population Means

Notes				

Statistical Inference for $\mu_1-\mu_2$

- Point estimation: $\bar{X}_1 \bar{X}_2$
- Interval estimation:

$$\bar{X}_1 - \bar{X}_2 \pm \text{ margin of error},$$

where margin of error =

$$t_{\alpha/2,df^*}\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \quad df^* = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

When s_1 and s_2 "similar enoug", we replace $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ by $s_p\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$, where $s_p = \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}}$

Review
CLEMS N
Inferences for Two Population Means

Notes			

Hypothesis Testing for $\mu_1 - \mu_2$

- State the null and alternative hypotheses:
 - Upper-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 > 0$
 - Lower-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 < 0$
 - Two-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 \neq 0$
- Compute the test statistic:

$$t_{obs} = \begin{array}{c} \frac{\bar{X}_1 - \bar{X}_2}{\frac{\bar{X}_2 - \bar{X}_2}{n_1 + \frac{1}{n_2}}}, & \sigma_1 = \sigma_2 \\ \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}, & \sigma_1 \neq \sigma_2 \end{array}$$

• Make the decision of the test:

Rejection Region/ P-Value Methods

Draw the conclusion of the test

Notes

Inferences for Matched Pairs

Notes			

Paired T-Tests

- When to use: before/after study, pairing subjects, study on twins, etc
- $H_0: \mu_{ extit{diff}} = 0$ vs. $H_a: \mu_{ extit{diff}} > 0$ or $\mu_{ extit{diff}} < 0$ or $\mu_{ extit{diff}} \neq 0$, where $\mu_{\textit{diff}}$ is the population mean of the paired difference
- Test statistic: $t_{obs} = \frac{\bar{X}_{diff} 0}{\frac{s_{diff}}{\sqrt{2}}}$

Review
CLEMS N
Inferences for Matched Pairs

Notes

Notes

ANOVA

Review
CLEMS#N
ANOVA
28.14

ANOVA and Overall F Test

Overall F-Test

- $H_0: \mu_1 = \mu_2 = \cdots = \mu_J$ H_a : At least one mean is different
- ANOVA Table:

Source df SS MS F statistic Treatment J-1 SSTr MSTr $=\frac{\text{SSTr}}{J-1}$ $F=\frac{\text{MSTr}}{\text{MSE}}$ N - J SSE MSE = $\frac{SSE}{N-J}$ Error Total N-1 SSTo

• Test Statistic: $F_{obs} = \frac{\text{MSTr}}{\text{MSE}}$. Under H_0 , $F^* \sim F_{df_1=J-1,df_2=N-J}$

Review
CLEMS#N
Inferences for One Population Mean
ANOVA

Notes			

Multiple Comparisons & Linear Contrasts

Review
Inferences for One
ANOVA Multiple
Comparisons & Linear Contrasts

Notes

28.16

Family-Wise Error Rate (FWER) and Mulitple Comparisons

- Family-Wise Error Rate (FWER) $\bar{\alpha}$: the probability of making 1 or more type I errors in a set of hypothesis tests
- Bonferroni Correction: Adjust the significant level for each of the m tests to be $\frac{\alpha}{m}$ to control the **FWER**
- Fisher's LSD and Tukey's HSD

N	otos
I٧	otes

-			
_			
-			

Linear Contrasts

- **Definition**: Let c_1, c_2, \cdots, c_J are constants where $\sum_{j=1}^J c_j = 0$, then $L = \sum_{j=1}^J c_j \mu_j$ is called a **linear contrast** of the population means.
- Point Estimation:

$$\hat{L} = \sum_{j=1}^{J} c_j \bar{X}_j$$

Interval Estimation:

$$(\hat{L} - t_{(\alpha/2,df=N-J)}\hat{se}_{\hat{L}}, \hat{L} + t_{(\alpha/2,df=N-J)}\hat{se}_{\hat{L}}),$$

where
$$\hat{se}_{\hat{L}} = \sqrt{\mathsf{MSE}\left(\frac{c_1^2}{n_1} + \dots + \frac{c_J^2}{n_J}\right)}$$

Hypothesis Testing for linear contrasts

Review CLEMS I T Y
Multiple Comparisons & Linear Contrasts

Notes			