Definition of Safety

Günther Wullaert

May 2022

1 Language

1.1 Term and Pools

We inductively define terms, tuples of terms, and pools:

- \bullet all numerals, symbolic constants, and variables are terms, \blacksquare
- 1 R: Define those things.
- f(t) is a term, if f is a symbolic constant and t is a pool,
- $t_1 \star t_2$ is a term, if t_1, t_2 are terms and $\star \in \{+, -, \times, \div, ..\}$,
- $\langle t \rangle$ is a term, if t is a pool,
- t_1, \ldots, t_n is a tuple of terms, if $n \ge 0$ and t_i is a term,
- $\dot{t_1}; \ldots; \dot{t_n}$ is a pool, if $n \geq 1$ and each $\dot{t_i}$ is a tuple of terms. \square

2 R: Why not empty?

We inductively define a term to be evaluable if

- it is a numeral, or
- it has form $t_1 \star t_2$ where t_1 and t_2 are evaluable and $\star \in \{+, -, \times, \div\}$.

We inductively define function *eval* to map evaluable terms to sets of numerals:

- for numerals t, we let $eval(t) = \{t\}$, and
- for terms of form $t_1 \star t_2$, we let

```
\begin{aligned} & eval(t_1+t_2) = \{s_1+s_2 \mid s_1 \in eval(t_1), s_2 \in eval(t_2)\}, \\ & eval(t_1-t_2) = \{s_1-s_2 \mid s_1 \in eval(t_1), s_2 \in eval(t_2)\}, \\ & eval(t_1 \times t_2) = \{s_1 \times s_2 \mid s_1 \in eval(t_1), s_2 \in eval(t_2)\}, \text{ and } \\ & eval(t_1 \div t_2) = \{s_1 \div s_2 \mid s_1 \in eval(t_1), s_2 \in eval(t_2), s_2 \neq 0\}. \end{aligned}
```

We say that a term c is nonzero if it is evaluable and $0 \notin eval(c)$.

1.2 Atoms and Literals

An atom has form p(t) where p is a predicate symbol and t is a pool. \square

3 R: Define predicate symbols.

A comparison has form $t_1 \prec t_2$, where t_1, t_2 are terms and \prec is among the symbols $\leq, \geq, <, >$ or \neq .

A *literal* is either an atom or a comparison optionally preceded by the *default* negation symbol \neg .

A conditional literal has form $l: \dot{l}$, where l is a literal and \dot{l} is a (possibly empty) tuple of literals.

1.3 Aggregates

An aggregate has the form

$$\alpha\{\dot{t_1}:\dot{l_1};\ldots;\dot{t_n}:\dot{l_n}\} \prec s \tag{1}$$

where

- $n \geq 0$,
- α is an aggregate name,
- each \dot{t}_i is a tuple of terms,
- each \dot{l}_i is a tuple of literals,
- \prec is among the symbols \leq , \geq , <, >, = or \neq , and
- \bullet s is a term.

1.4 Rules

A rule has form

$$a_1 \vee \dots \vee a_m \leftarrow l_1 \wedge \dots \wedge l_n$$
 (2)

where $m, n \geq 0$, each a_i is a literal and each l_i is a literal, conditional literal or aggregate.

A choice rule has form

$$\{a_1; \dots; a_m\} \leftarrow l_1 \wedge \dots \wedge l_n$$
 (3)

where $m, n \ge 0$, each e_i is an atom and each l_i is a literal, conditional literal or aggregate.

We refer to the atoms a_i and literals l_i in rules of form (2) and (3) as *head* atoms and body literals, respectively.

2 Safety

In the following, we use function vars(e) to obtain all variables occurring in an expression e. We say that a variable X occurs globally in

- a literal l if $X \in vars(l)$,
- a conditional literal $l: \dot{l}$ if $X \in vars(l) \setminus vars(\dot{l})$,
- an aggregate of form (1) if $X \in s$, and
- a rule of form (2) or (3) if it occurs globally in a head atom or body literal.

2.1 Terms

We inductively define function pt for terms, tuples of terms, and pools:

- for numerals n and symbolic constants f, we let $pt(n) = pt(f) = \emptyset$,
- for variables X, we let $pt(X) = \{X\}$,
- for term tuples $\dot{t} = t_1, \dots, t_n$, we let $pt(\dot{t}) = pt(t_1) \cup \dots \cup pt(t_n)$,
- for pools $\mathbf{t} = \dot{t_1}; \dots; \dot{t_n}$, we let $pt(\mathbf{t}) = pt(\dot{t_1}) \cap \dots \cap pt(\dot{t_n})$,
- for terms of form f(t), we let pt(f(t)) = pt(t),
- for terms of form $t_1 \star t_2$, we let

$$pt(t_1 \star t_2) = \begin{cases} pt(t_2) & t_1 \text{ is evaluable and } \star \in \{+, -\}, \text{ or} \\ & t_1 \text{ is nonzero and } \star = \times, \\ pt(t_1) & t_2 \text{ is evaluable and } \star \in \{+, -\}, \text{ or} \\ & t_2 \text{ is nonzero and } \star = \times, \\ \emptyset & \text{otherwise} \end{cases}$$

We define function dt for terms t as $dt(t) = vars(t) \setminus pt(t)$.

2.2 Atoms and Literals

2.2.1 Atoms and Literals

For an literal of form not a, where a is an atom

$$dep(not\ a) = \{(\emptyset, vars(a))\}$$

For an atom of form p(t), where t is a pool

$$dep(p(t)) = \{(pt(t), \emptyset), (\emptyset, dt(t))\}\$$

2.2.2 Comparison Literals

For an comparison literal of form $a \prec b$, where a and b are terms and \prec is among the symbols $\leq, \geq, <, >, \neq$

$$dep(a \prec b) = \{(\emptyset, vars(a \prec b))\}$$

For an comparison literal of form a = b, where a and b are terms

$$dep(a = b) = \{(pt(a), vars(b)), (pt(b), vars(a)), (\emptyset, dt(a) \cup dt(b))\}$$

For an literal of form not $a \prec b$, where a and b are terms

$$dep(not \ a = b) = dep(a \neq b)$$

$$dep(not \ a \neq b) = dep(a = b)$$

$$dep(not \ a \leq b) = dep(a > b)$$

$$dep(not \ a > b) = dep(a \leq b)$$

$$dep(not \ a \geq b) = dep(a < b)$$

$$dep(not \ a < b) = dep(a > b)$$

2.2.3 Conditional Literals

For a conditional literal of form \dot{t} : \dot{c} , where t is a tuple of terms and c is a tuple of comparison literals and atoms, where G is the set of variables occurring globally in it.

$$dep(\dot{t}:\dot{c}) = \{(\emptyset, G \cup vars(s))\}$$

For an conditional literal of form \dot{t} : \dot{c} , where t is a tuple of terms and c is a tuple of comparison literals and atoms in a local context

$$dep_l(\dot{t}:\dot{c}) = \{(\emptyset, vars(\dot{t}))\} \cup \bigcup_{e \in \dot{c}} dep(e)$$

2.3 Aggregates

For a aggragate a occurring in a rule, where G is the set of variables occurring globally in it. We define elem(a) to return a set of elements in a as

$$elem(a) = \{\dot{L_1}: \dot{L_1}, \dots, \dot{L_n}: \dot{L_n}\}$$

For an aggregate element of form $\dot{t_1}$: $\dot{L_1}$, where t_1 is a tuple of terms and $\dot{L_1}$ is a tuple of comparison literals and atoms

$$dep(\dot{t_1}:\dot{L_1}) = \{(\emptyset, vars(\dot{t_1}))\} \cup \bigcup_{l \in \dot{L_1}} dep(l)$$

For an aggregate a, where \prec is =

$$dep(a) = \{(pt(s), G), (\emptyset, dt(s) \cup G)\}$$

Otherwise

$$dep(a) = \{(\emptyset, G \cup vars(s))\}$$

2.4 Rule

For a rule r in the form of (2) the following holds:

$$dep(r) = \{(\emptyset, vars(H_1 \vee ... \vee H_k))\} \cup dep(B_1) \cup ... \cup dep(B_m)$$

2.5 Choice Rule

For a choice rule r in the form of (3) the following holds:

$$dep(r) = \{(\emptyset, vars(e_1 \vee \ldots \vee e_k))\} \cup dep(B_1) \cup \ldots \cup dep(B_m)$$

2.6 Safety Definition

We define operator C_r for a rule r applied to a set of variables V as

$$C_r(V) = \bigcup_{(P,D) \in dep(r), D \subseteq V} P.$$

A rule r is globally safe if vars(r) is the least fixed point of C_r and each aggregate and conditional literal is locally safe.

We define operator $C_{e,G}$ for an element e of an aggregate a applied to a set of variables V as

$$C_{e,G}(V) = G \cup \bigcup_{(P,D) \in dep(e), D \subseteq V} P.$$

a is locally safe if for each element $e \in elem(a)$, vars(e) is the least fixed point of $C_{e,G}$

We define operator $C_{l,G}$ for an conditional literal l applied to a set of variables V as

$$C_{l,G}(V) = G \cup \bigcup_{(P,D) \in dep_l(l), D \subseteq V} P.$$

l is locally safe if vars(l) is the least fixed point of $C_{l,G}$

3 Other Examples

$$\begin{split} dep(p(X,Y+Y)) &= \{(pt(X,Y+Y),\emptyset), (\emptyset, dt(X,Y+Y))\} \\ &= \{(pt(X) \cup pt(Y+Y),\emptyset), (\emptyset, dt(X) \cup dt(Y+Y))\} \\ &= \{(\{X\} \cup \emptyset,\emptyset), (\emptyset,\emptyset \cup vars(Y+Y))\} \\ &= \{(\{X\},\emptyset), (\emptyset,\{Y\})\} \end{split}$$

This article was processed using the comments style on July 12, 2022. There remain 3 comments to be processed.