EPFL

MAN

Mise à niveau

Maths 1A Prepa-031(A)

Student:
Arnaud FAUCONNET

Professor: Guido BURMEISTER

Printemps - 2019

Chapter 4

Nombres complexes

4.1 Définitions, forme cartésienne

Rappel:

$$x^2 + 1 \in \mathbb{R}[x]$$
 est irréductible

On ne peut par le factoriser comme

$$(x-a)(x-b)$$
 $a,b \in \mathbb{R}$

Nous voulons alors construire une extension des nombres réels $\mathbb R$ permettant de résoudre ce type d'équation:

$$x^2 + 1 = 0$$

On introduit pour cela un "nombre" i ("imaginaire") tel que

$$i^2 = -1$$

Remarque: On connait les rotations

$$\underbrace{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}_{\text{Rot}\left(\frac{\pi}{2}\right)} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = -I_2$$

On impose les mêmes règles de calcul que sur \mathbb{R} .

Remarque: Tout comme $i^2 = -1$, on a $(-i)^2 = ((-1)i)^2 = -1$ i et -i sont les 2 racines (complexes) de -1.

On admet l'écriture

$$\sqrt{-1} = \pm i$$

Le symbole √. n'est plus réservé à la racine positive d'un réel positif.

Pour l'équation $x^2 + 1 = 0$, l'ensemble solution est $\mathbb{S} = \{-i, i\}$

D'où la factorisation

$$x^2 + 1 = (x+i)(x-i)$$

En effet

$$(x+i)(x-i) = x^2$$
 if $x + ix - \underbrace{i^2}_{=-1} = x^2 + 1$

Exemple: Résoudre en *x*:

$$x^2 + x + 1 = 0$$

Le discriminent vaut

$$\Delta = 1^2 - 4 \cdot 1 \cdot 1 = -3 = -1 \cdot 3$$

L'ensemble solution est alors

$$\mathbb{S} = \left\{ \frac{-1 + i\sqrt{3}}{2}, \frac{-1 - i\sqrt{3}}{2} \right\}$$

Nous allons donc manipuler des nombres de la forme cartésienne (ou algébrique)

$$z = a + ib$$
 $a, b \in \mathbb{R}$

Définition: L'ensemble

$$\mathbb{C} = \{ z = a + ib \mid a, b \in \mathbb{R} \}$$

est l'ensemble des nombres complexes.

Définition: Soit z = a + ib, $a, bin \mathbb{R}$

- a: partie réelle de z $\operatorname{Re}(z) = a \in \mathbb{R}$
- b: partie imaginaire de z $\operatorname{Im}(z) = b \in \mathbb{R}$

Ainsi,

$$z = \operatorname{Re}(z) + i \cdot \operatorname{Im}(z) \quad \forall z \in \mathbb{C}$$

Remarque: $i \cdot \mathbb{R} = \{i \cdot b \mid b \in \mathbb{R}\}$ est l'ensemble des nombres imaginaires.

Définition: Opérations sur les nombres complexes

Soit z = a + ib, z' = a' + ib', $a, b, a', b'in\mathbb{R}$.

1. Égalité

$$z = z' \iff \begin{cases} a = a' \\ \text{et} \\ b = b' \end{cases} \iff \begin{cases} \operatorname{Re}(z) = \operatorname{Re}(z') \\ \text{et} \\ \operatorname{Im}(z) = \operatorname{Im}(z') \end{cases}$$

2. Addition +

$$z + z' = (a + ib) + (a' + ib') = (a + a') + i(b + b')$$

ou encore

$$\operatorname{Re}(z+z') = \operatorname{Re}(z) + \operatorname{Re}(z')$$
 et $\operatorname{Im}(z+z') = \operatorname{Im}(z) + \operatorname{Im}(z')$

en particulier

$$Re(2z) = 2Re(z)$$
 et $Im(2z) = 2Im(z)$

3. Multiplication \triangle

$$z\cdot z'=(a+ib)(a'+ib')=aa'+iab'+iba'+i^2bb'=(aa'-bb')+i(ab'+ba')$$
 ou encore
$$\mathrm{Re}(zz')=\mathrm{Re}(z)\mathrm{Re}(z')-\mathrm{Im}(z)-\mathrm{Im}(z')$$

$$\operatorname{Im}(zz') = \operatorname{Re}(z)\operatorname{Im}(z') - \operatorname{Im}(z) - \operatorname{Re}(z')$$

Remarque: Similitude avec $\cos(\alpha + \beta)$ et $\sin(\alpha + \beta)!$

Cas particuliers: Pour z = a + ib, $a, b \in \mathbb{R}$

- $\lambda z = \lambda a + i\lambda b$, $\lambda \in \mathbb{R}$ (amplification par un réel)
- $iz = ia + i^2b = -b + ia$ (amplification par i)
- $z^2 = z \cdot z = (a+ib)^2 = a^2 + b^2 + i2ab$ (carré)

Avec ces deux lois + et \cdot étendant celles définies sur \mathbb{R} , $(\mathbb{C},+,\cdot)$ est un corps. En effet,

- Élément neutre pour l'addition 0 = 0 + i0
- L'opposé de z=a+ib pour l'addition: $-z=-a-ib, \quad a,b\in\mathbb{R}$
- Élément neutre pour la multiplication 1 = 1 + i0
- L'inverse de $z = a + ib \neq 0$, $a, b \in \mathbb{R}$ pour la multiplication est

$$\frac{1}{z} = \frac{a - ib}{a^2 + b^2}$$

En effet,

$$z \cdot \frac{1}{z} = (a+ib) \cdot \frac{a-ib}{a^2+b^2} = \frac{a^2+b^2}{a^2+b^2} = 1$$

L'inverse permet de définir la division dans \mathbb{C} :

Soit z_1 et $z_2 \in \mathbb{C}$

$$z_1 \cdot \frac{1}{z_2} = \frac{1}{z_2} \cdot z_1 = \frac{z_1}{z_2}$$

Définition: Soit $z = a + ib \in \mathbb{C}$, $a, b \in \mathbb{R}$

Le nombre **conjugé complexe** (c.c.) de z, noté \overline{z} , est le nombre

$$\overline{z} = a - ib$$

Propriétés: Soient $z, z' \in \mathbb{C}$

1.
$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
 $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$

- $2. \ \overline{\overline{z}} = z$
- 3. $\operatorname{Re}(\overline{z}) = \operatorname{Re}(z)$ $\operatorname{Im}(\overline{z}) = -\operatorname{Im}(z)$
- 4. $\overline{z+z'} = \overline{z} + \overline{z'}$
- 5. $\overline{z \cdot z'} = \overline{z} \cdot \overline{z'}$
- 6. $\overline{z} \cdot \overline{z'} = \operatorname{Re}^2(z) + \operatorname{Im}^2(z)$
- 7. $\overline{z} = z \iff \operatorname{Im}(z) = 0 \iff z \in \mathbb{R}$ $\overline{z} = -z \iff \operatorname{Re}(z) = 0 \iff z \in i\mathbb{R}$

Vérification par calcul direct

Définition: Soit $z = a + ib \in \mathbb{C}$, $a, b \in \mathbb{R}$

Le **module** de z, noté |z|, est le nombre réel positif (ou nul)

$$|z| = \sqrt{z \cdot \overline{z}} = \sqrt{a^2 + b^2}$$

ou encore

$$|z|^2 = z \cdot \overline{z} = \operatorname{Re}^2(z) + \operatorname{Im}^2(z)$$

Propriétés:

- $|\operatorname{Re}(z)| \le |z|$ et $|\operatorname{Im}(z)| \le |z|$ $\forall z \in \mathbb{C}$
- $|\overline{z}| = |z| \quad \forall z \in \mathbb{C}$
- $\frac{1}{z} = \frac{\overline{z}}{|z|^2} \quad \forall z \in \mathbb{C}^*$
- $|z_1z_2| = |z_1| \cdot |z_2|$ [missing last points from that slide]
- $|z_1 + z_2| \le |z_1| + |z_2| \quad \forall z_1, z_2 \in \mathbb{C}$

4.2 Puissances et racines

4.2.1 Exposants entiers

Définition: Soient $z \in \mathbb{C}$ et $n \in \mathbb{N}^*$. Comme pour les réels, on définit " z puissance n" comme

$$z^n = \underbrace{z \cdot z \cdot \dots \cdot z}_{n \text{ facteurs}}$$

De plus, si $z \neq 0$, on a les exposants nuls ou négatifs:

$$z^0 = 1$$
 $z^{-1} = \frac{1}{z}$ $z^{-n} = \frac{1}{z^n}$

4.2.2 Racines complexes

Définition: Soient $z \in \mathbb{C}$ et $n \in \mathbb{N}^*$

 $w \in \mathbb{C}$ est une racine n^e de z si w vérifie $w^n = z$.

Nous admettons l'écriture $\sqrt[n]{z}$ pour désigner toutes les racines n^e de z complexes: $\sqrt{.}$ est une fonction multivalente, pas comme sur \mathbb{R} .

D'où l'équivalence

$$w^n = z \iff w = \underbrace{\sqrt[n]{z}}_{n \text{ valeur}}$$

Exemple: $\sqrt{-1} = \pm i : 2$ valeurs

Propriétés: Soit $z \in \mathbb{C}$

• Toutes les propriétés des réels à exposants fractionnaires restent valables en posant

$$z^{\frac{m}{n}} = \sqrt[n]{z^m} = \left(\sqrt[n]{z}\right)^m$$

• $\sqrt[n]{|z|} = |\sqrt[n]{z}|$ toutes les racines n^e de z sont de même module!

Exemple:

$$\sqrt[3]{-1} = \begin{cases} -1 \text{ (\'evidemment)} \\ \frac{1+i\sqrt{3}}{2} \\ \frac{1-i\sqrt{3}}{2} \end{cases}$$

En effet, $(-1)^3 = -1$

$$\left(\frac{1 \pm i\sqrt{3}}{2}\right)^3 = \frac{1}{8} \cdot \left(1 \pm i3\sqrt{3} - 9 \mp i3\sqrt{3}\right) = -1$$

Ou encore, en résolvant $z^3 = -1 \iff$

$$z^3 + 1 = 0 \iff (z+1)\underbrace{(z^2 - z + 1)}_{\text{comme avant}} = 0$$

Cas particuliers: Écrire \sqrt{z} sous la forme algébrique. Posons $z=a+ib, \quad a,b\in\mathbb{R}$. Nous cherchons $\alpha,\beta\in\mathbb{R}$ t.q.

 $\sqrt{a+ib} = \alpha + i\beta$

problème équivalent:

$$a + ib = (\alpha + i\beta)^2 = \alpha^2 - \beta^2 + i2\alpha\beta \iff \begin{cases} \alpha^2 - \beta^2 = a \\ 2\alpha\beta = b \end{cases}$$

Plutôt que la relation $2\alpha\beta = b$, utilisons le carré du module.

$$\alpha^{2} + \beta^{2} = |\alpha + i\beta|^{2} = |\sqrt{a + ib}|^{2} = \sqrt{|a + ib|^{2}} = \sqrt{\alpha^{2} + \beta^{2}}$$

Alors

$$\sqrt{z} = \sqrt{a+ib} = \alpha + i\beta \iff \left\{ \begin{array}{l} \alpha^2 - \beta^2 = a = \operatorname{Re}(z) \\ \alpha^2 + \beta^2 = \sqrt{a^2 + b^2} = |z| \\ \operatorname{sgn}(\alpha\beta) = \operatorname{sgn}(b) = \operatorname{sgn}(\operatorname{Im}(z)) \end{array} \right.$$

Exemple:

$$\sqrt{i} = \alpha + i\beta \iff \begin{cases} \alpha^2 - \beta^2 = \operatorname{Re}(z) = 0 \\ \alpha^2 + \beta^2 = |i| = 1 \\ \operatorname{sgn}(\alpha\beta) = \operatorname{sgn}(1) = +1 \end{cases} \iff \begin{cases} \alpha^2 = \beta^2 = \frac{1}{2} \\ \operatorname{sgn}(\alpha\beta) = +1 \end{cases}$$
$$\iff \sqrt{i} = \pm \frac{1+i}{\sqrt{2}}$$

Application: résoudre dans C l'équation

$$az^2 + bz + c = a, b, c \in \mathbb{C}, a \neq 0$$

Solution:

$$z_1, z_2 = \frac{-b + \sqrt{\beta}}{2a}$$

4.3 Plan complexe

4.3.1 Isomorphisme entre \mathbb{C} et \mathbb{R}^2

Tout nombre complexe $z=a+ib, \quad a,b\in\mathbb{R}$, peut être associé à un point M du plan, le plan complexe ou plan de Gauss. On dit que a est l'affixe de M.

En effet $\mathbb C$ et $\mathbb R$ sont isomorphes: il existe une application linéaire bijective de $\mathbb C$ vers $\mathbb R$

$$h: \mathbb{C} \longrightarrow \mathbb{R}^2$$

 $z \longmapsto (\operatorname{Re}(z), \operatorname{Im}(z))$

et son inverse est

$$h^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{C}$$

 $(a,b) \longmapsto a+ib$

Exemple:

Remarque: z et \overline{z} sont symétrique par rapport à l'axe réel

4.3.2 Forme polaire

Tout point du plan (et donc du plan complexe) peut être donné sous forme polaire

Définition: Soit $z \in \mathbb{C}$

La forme polaire de z est la donnée

- de la distance r = |z| de z à O: le module de z.
- de l'angle φ entre l'axe réel et le rayonvecteur

Remarque: φ est noté $\arg(z)$, argument de z. φ n'est pas unique, mais défini à 2π **près**. On écrit alors

$$z = (r, \varphi)$$
 avec $r = |z| \ge 0$ et $\varphi = \arg(z) \in \mathbb{R}$

Remarque: On devrait écrire

$$z = (r, \varphi + k \cdot 2\pi) \quad k \in \mathbb{Z}$$

mais une seule détermination suffit

Définition: Soit $z \in \mathbb{C}$. On appelle **détermination principale** de l'argument de z.

$$\varphi = \arg(z) \in]-\pi;\pi[$$

Propriété: Soi $z=(r,\varphi)\in\mathbb{C}.$ Alors

$$\overline{z} = (r, -\varphi)$$

Propriétés: Passage entre les formes polaire et cartésienne.

• Soit $z = (r, \varphi)$

Alors

$$\operatorname{Re}(z) = r \cdot \cos(\varphi)$$

et

$$Im(z) = r \cdot \sin(\varphi)$$

d'où

$$z = r(\cos(\varphi) + i \cdot \sin(\varphi))$$

• Soit z = a + ib, $a, b \in \mathbb{R}$

Alors

$$r = |z| = \sqrt{a^2 + b^2}$$
 $\cos(\varphi) = \frac{a}{\sqrt{a^2 + b^2}}$ $\sin(\varphi) = \frac{b}{\sqrt{a^2 + b^2}}$

Exemple: $z = -\sqrt{3} - i$

- $|z| = \sqrt{3+1} = 2$
- $\cos(\varphi) = -\frac{\sqrt{3}}{2}$
- $\sin(\varphi) = -\frac{1}{2}$

d'où $\varphi = \arg(z) = -\frac{5\pi}{6} + k \cdot 2\pi \quad k \in \mathbb{Z}$

Par example, pour k = 0 ou k = 1,

$$z = (2, -\frac{5\pi}{6}) = 2, \frac{7\pi}{6}$$

Conséquences:

- 1. Soient M et M_0 dexu points du plan, d'affixe z et z_0 respectivement. La distance de M à M_0 est $|z-z_0|$.
- 2. Équation d'un cercle de rayon 1, centré à l'origine: tous les points sont à distance 1 de *O*.

$$|z|^2 = z\overline{z} = 1^2$$

3. Équation d'un cercle centré en z_0 et de rayon $R|z-z_0|=R$ ou $|z-z_0|^2=R^2$

4.3.3 Translation

Une translation dans le plan de Gauss est donnée par une addition

$$z_1 = a_1 + ib_1$$
 $a_1, b_1 \in \mathbb{R}$
 $z_2 = a_2 + ib_2$ $a_2, b_2 \in \mathbb{R}$

$$\implies z_1 + z_2 = (a_1 + a_2) + i \cdot (b_1 + b_2)$$

Une translation de $t \in \mathbb{C}$ est une application linéaire de \mathbb{C} dans \mathbb{C}

$$T_t = \mathbb{C} \longrightarrow \mathbb{C}$$
$$z \longmapsto z + t$$

4.3.4 Similitude et formule de Moivre

Homothétie: dans \mathbb{C} , l'amplification par $\lambda \in \mathbb{R}$ est une homothétie (mise à l'échelle)

$$H_{\lambda}: \mathbb{C} \longrightarrow \mathbb{C}$$

 $z \longmapsto H_{\lambda}(z) = \lambda z$

En effet

$$|\lambda z| = |\lambda| \cdot |z|$$

et

$$\arg(\lambda z) = \begin{cases} \arg(z) & \text{si } \lambda > 0\\ \arg(z) + \pi & \text{si } \lambda < 0 \end{cases}$$

En particulier $(-1) \cdot z = -z$ est le symétrique de z par rapport à O.

Remarque: L'amplitude par -1 est aussi une rotation d'angle π (ou $-\pi$) autour de O dans le cercle trigonométrique.

Comme $-1=i^2$, on observe que multiplier par i revient faire une rotation de $\frac{\pi}{2}$!

$$-z = \operatorname{Rot}_{\pi}(z) = \operatorname{Rot}_{\frac{\pi}{2}}(\operatorname{Rot}_{\frac{\pi}{2}}(z)) = \cdot i(iz)$$

avec

$$iz = \operatorname{Rot}_{\frac{\pi}{2}}(z)$$

Ainsi

$$\arg(iz) = \arg(z) + \frac{\pi}{2} = \arg(z) + \arg(i)$$

Rotation dans $\mathbb C$ la multiplication par un nombre w de module 1 ($|w|=1, w=(1,\alpha), \quad \alpha=\arg(w)$) est une rotation d'angle $\alpha=\arg(w)$

$$R_{\alpha}: \mathbb{C} \longrightarrow \mathbb{C}$$

 $z \longmapsto R_{\alpha}(z) = w \cdot z = (1, \alpha)z$

Similitude [missing end of slide]

$$S_w : \mathbb{C} \longrightarrow \mathbb{C}$$

 $z \longmapsto S_w(z) = w \cdot z$

(avec $S_w = H_\lambda \cdot \text{Rot}(\alpha)$)

En effet, si $z_1=(r_1,\varphi_1)$ et $z_2=(r_2,\varphi_2)$, alors

$$z_1 z_2 = (r_1 \cdot r_2, \varphi_1 + \varphi_2)$$

Preuve

$$z_1 z_2 = r_1 \cdot (\cos(\varphi_1) + i\sin(\varphi_1)) \cdot r_2 \cdot (\cos(\varphi_2) + i\sin(\varphi_2))$$

= $r_1 r_2 (\cos(\varphi_1) \cdot \cos(\varphi_2) - \sin(\varphi_1)\sin(\varphi_2) + i(\sin(\varphi_1)\cos(\varphi_2) + \cos(\varphi_1)\sin(\varphi_2)))$
= $r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$

Exemple: $z_1 = \left(\sqrt{2}, \frac{\pi}{2}\right)$ et $z_2 = \left(\sqrt{6}, -\frac{5\pi}{6}\right)$

Calculer z_1z_2 .

- $|z_1z_2| = |z_1||z_2| = 2\sqrt{3}$
- $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) = \frac{\pi}{2} \frac{5\pi}{2} = -\frac{5\pi}{12} = -\frac{3\pi}{4}$

En particulier, si $z_1 = z_2 = z = (r, \varphi)$

$$z^2 = (r^2, 2\varphi)$$

et par récurrence,

$$z^n = (r^n, n\varphi) = r^n(\cos(n\varphi) + i\sin(n\varphi))$$

Exemple: Racine n^e de l'unité: cherchons z tel que

$$z^n = (r^n, n\varphi) = 1 = (\underbrace{1}_{\text{module de } 1}, \underbrace{0}_{\text{arg de } 1})$$

Alors:

- module: $r^n = 1 \implies r = 1(\operatorname{car} r \in \mathbb{R}_+)$
- $\bullet \ \ \text{argument:} \ n \cdot \varphi = k2\pi \quad (k \in \mathbb{Z}) \implies \varphi = k\frac{2\pi}{n}$

Il y a donc n racines distinctes!

$$S = \left\{ \left(1, k \frac{2\pi}{n} \right) \middle| k = \underbrace{0, \dots, n-1}_{n \text{ valeurs}} \right\}$$

Pour n=5

$$S = \left\{ \left(1, k \frac{2\pi}{5} \right) \middle| k = 0, ..., 4 \right\}$$

Conséquences:

1. Division Inverse de $z = (r, \varphi)$

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2} = (\frac{1}{r}, -\varphi)$$

MATHS 1A

Quotient de $z_1=(r_1,\varphi_1)$ et $z_2=(r_2,\varphi_2)$ alors

$$\frac{z_1}{z_2} = (\frac{r_1}{r_2}, \varphi_1 - \varphi_2) \quad (r_2 \neq 0)$$

Formule de Moivre

$$z^n = (r^n, n \cdot \varphi) \quad \underline{\forall n \in \mathbb{Z}} \quad (r \neq 0)$$

et plus généralement

$$z^q = (r^q, q \cdot \varphi) \quad \forall q \in \mathbb{Q} \quad (r \neq 0)$$

par équivalence

$$z = \sqrt[n]{w} \iff z^n = w$$

Remarque:

$$z^q = r^q \cdot (\cos(q\varphi) + i \cdot \sin(q\varphi)) \quad q \in \mathbb{Q}$$

2. Équation de droite verticale:

3. Droite horizontale d'ordonnée b

4. Droite quelconque: dans le plan réels

$$d: ax + by = 0$$

$$aRe(z) + bIm(z) = c a, b, c \in \mathbb{R}$$

Dans le plan complexe

$$a \cdot \frac{z + \overline{z}}{2} + b \cdot \frac{z - \overline{z}}{2i} = c$$

$$a \cdot (z + \overline{z}) - ib \cdot (z - \overline{z}) = 2c$$

$$\underbrace{(a - ib)}_{\overline{u}} z + \underbrace{(a + ib)}_{u} \overline{z} = 2c$$

Avec u = a + ib

$$\overline{u}z + u\overline{z} = 2c \iff \operatorname{Re}(\overline{u}z) = c \quad c \in \mathbb{R}$$

Interprétation géométrique

Remarque: Le nombre $\overline{u}z$ est sur la droite verticale d'abscisse c.

Le nombre u = a + ib définit la normale à d.

Remarque:

- Une translation transforme une droite en droite et un cercle en cercle.
- De même pour les similitude.

Remarque sur l'inverse: Géométriquement, l'inverse de $z=(r,\varphi)$ se construit gràce au théorème de Thalès.

Remarque:

- Un point z sur le cercle unité est transformé en son conjugué \overline{z}
- Un point z hors du cercle unité est transformé en un point $\frac{a}{z}$ à l'intérieur.

Par conséquant

- Une droite passant par *O* donne une droite passant par *O*.
- Une droite ne passant pas par *O* donne un cercle passant par *O*!

Illustration

Cercle passant par *O* donne un cercle passant par *O*.

Pour vérifier, [?] l'équation d'une droite ou d'un cercle en z et définit l'image par $w=\frac{1}{z}\iff z=\frac{1}{w}$

Exemple: Trois points donnés par leur affixe:

Donner l'angle \widehat{ABC}

$$A(a)$$
 $B(b)$ $C(c)$

Il existe $s \in \mathbb{C}$ tel que

$$a - b = s(c - b)$$

$$\implies \varphi = \arg(s) = \arg\left(\frac{a-b}{c-b}\right)$$

A partir de c, on obtient a.

- $\bullet\,$ par une rotation autour de b
- par une homothétie