# Gradient Learning in A Non-Euclidean Space

Tsung-Wei Chiang (Jimmy)

Natinal Taiwan University d98942029@ntu.edu.tw

September 11, 2018

## Motivation:

# Parameter Space from Euclidean to Non-Euclidean

- Previous Assumption: Learning takes places in a parameter space which is Euclidean.
- New Assumption: Learning takes places in a parameter space which is Non-Euclidean.
- What if the parameter space is Non-Euclidean [1, 2, 3], e.g., Reimannian?
- (Ordinary) Gradient Descent Methods (including SGD) in deep learning
- Natural Gradient Descent Methods

- Example: a regression problem,
- input signal: x, generate randomly
- desired response: f(x)
- teacher signal: y
- random noise:  $\epsilon \sim p_{\epsilon}(\epsilon)$ , e.g., Gaussian
- noisy version of the desired output:

$$y = f(\mathbf{x}) + \epsilon \tag{1}$$

- unknown joint probability distribution: p(x)
- The task of a learning machine is to estimate the desired output mapping f(x) by using the available examples of input-output pairs  $D = \{(\mathbf{x}_i, y_i), i = 1, \dots, T\}$  (training examples)

- $f(x, \xi)$ : a parametrized family of functions as candidates for the desired output
- $\xi$ : a vector parameter. The set of  $\xi$  is a parameter space.
- We search for the optimal  $\hat{\xi}$  that approximates the ture  $f(\xi)$  by using training examples D.
- Regression Problem: when y takes an analog value.
- Pattern Recognition: when y is decrete, say, binary.

• The instantaneous loss function (of processing x by machine  $f(x, \xi)$ ), e.g.:

$$I(\mathbf{x}, y, \xi) = \frac{1}{2} \{ y - f(\mathbf{x}, \xi) \}^2$$
 (2)

• Generalization error, the loss function function (of machine  $\xi$  is the expectation of the instantaneous loss over all possible pairs  $(\mathbf{x}, y)$ :

$$L(\boldsymbol{\xi}) = E_{\rho(\mathbf{x}, y)} \left\{ I(\mathbf{x}, y, \boldsymbol{\xi}) \right\} \tag{3}$$

where the expectation is taken with respect to the unknown joint probability distribution  $p(\mathbf{x}, y)$ .

Training error:

$$L_{\text{train}}(\boldsymbol{\xi}) = \frac{1}{T} \sum_{t=1}^{T} I(\mathbf{x}_t, y_t; \boldsymbol{\xi}_t)$$
 (4)

since we do not know  $p(\mathbf{x}, y)$ , we use the average over the training data.

- Since we do not know L, we minimize the training error  $L_{\text{train}}$  to obtain  $\hat{\xi}$ .
- A regularization term may be added to  $L_{\text{train}}$ .

# On-line Learning

- On-line Learning: Modifying the current candidate  $\xi_t$  at time t to obtain  $\xi_{t+1}$  at the next time t+1 based on the current training example  $(\mathbf{x}_t, y_t)$  so as to decrease the instantaneous loss  $I(\mathbf{x}_t, y_t, \xi_t)$ .
- Usually, the negative of the gradient is used to update  $\xi_t$ :

$$\boldsymbol{\xi}_{t+1} = \boldsymbol{\xi}_t - \eta_t \nabla_{\boldsymbol{\xi}} \boldsymbol{I}(\mathbf{x}_t, y_t, \boldsymbol{\xi}_t)$$
 (5)

- ullet abla: the gradient with respect to  ${m \xi}$
- $\eta_t$ : learning rate, which may depend on t.

# On-line Learning

• Since traing data  $(\mathbf{x}_t, y_t)$  are given one by one, the change is a random variable,

$$\Delta \boldsymbol{\xi}_t = -\eta_t \nabla_{\boldsymbol{\xi}} \boldsymbol{I}(\mathbf{x}_t, y_t, \boldsymbol{\xi}_t) \tag{6}$$

- The expectation of  $\nabla_{\xi} I(\mathbf{x}_t, y_t, \xi_t)$  equals  $\nabla_{\xi} L(\xi_t)$ .
- Stochastic Gradient Descent (SGD) Learning:

$$\Delta \boldsymbol{\xi}_t = -\eta_t \nabla_{\boldsymbol{\xi}} \boldsymbol{I}(\mathbf{x}_t, y_t, \boldsymbol{\xi}_t) \tag{7}$$

Gradient Descent (GD) Learning:

$$E\{\Delta \boldsymbol{\xi}_t\} = -\eta_t E\{\nabla_{\boldsymbol{\xi}} I(\mathbf{x}_t, y_t, \boldsymbol{\xi}_t)\} = -\eta_t \nabla_{\boldsymbol{\xi}} L(\boldsymbol{\xi}_t)$$
(8)

- The change of  $\Delta \xi_t$  is random but its expectation is in the direction of  $-\nabla_{\xi} L(\xi_t)$ .
- Well established as the back-propagation learing method.

# On-line Learning

Gradient descent of expected loss L v.s. stochastic gradient descent of l.



Figure: See [4].

# **Batch Learning**

- Batch Learning: an iterative method which uses all the training data for modifying  $\xi_t$  at one step, such that  $\xi_t$  is modified to  $\xi_{t+1}$  by
- The update

$$\xi_{t+1} = \xi_t - \eta_t \frac{1}{T} \sum_{i=1}^{T} \nabla_{\xi} I(\mathbf{x}_i, y_i, \xi_t)$$
 (9)

#### What is Natural Gradient

It is believed that the gradient

$$\nabla_{\boldsymbol{\xi}} L(\boldsymbol{\xi}) = \frac{\partial L(\boldsymbol{\xi})}{\partial \boldsymbol{\xi}} \tag{10}$$

is the direction of the steepest change of  $L(\xi)$ .

- In a geographical map with contour lines, the steepest direction is given by the gradient of the height function  $H(\xi)$ , i.e.  $\nabla_{\xi}H(\xi)$  is orthogonal to contour lines.
- However, this is ture only when an orthonormal coordinate system is used in a Euclidean space.
- Ordinary Gradient: steepest descent direction in Euclidean Manifolds
- Natural Gradient: steepest descent direction in Riemannian Manifolds

#### What is Natural Gradient

It is believed that the gradient

$$\nabla_{\boldsymbol{\xi}} L(\boldsymbol{\xi}) = \frac{\partial L(\boldsymbol{\xi})}{\partial \boldsymbol{\xi}} \tag{11}$$

is the direction of the steepest change of  $L(\xi)$ .

- In a geographical map with contour lines, the steepest direction is given by the gradient of the height function  $H(\xi)$ , i.e.  $\nabla_{\xi}H(\xi)$  is orthogonal to contour lines.
- However, this is ture only when an orthonormal coordinate system is used in a Euclidean space.
- Ordinary Gradient: steepest descent direction in Euclidean Manifolds
- Natural Gradient: steepest descent direction in Riemannian Manifolds

#### A Riemannian Manifold

• A Riemannian manifold can be intuitively seen as one kind of high dimensional ( $\geqslant 4D$ , or k-manifold,  $k \geqslant 3$ ) surface, a hypersurface.



Figure: A 2-manifold, 3D surface. See [5].

#### A Riemannian Manifold

• In a Riemannian manifold, the square of local distance between two nearby points  $\xi$  and  $\xi + d\xi$  is given by the quadractic form:

$$ds^2 = g_{ij}d\xi^i\xi^j \tag{12}$$

- Einstein convention is applied here.
- $\mathbf{G} = [g_{ij}]$ : a Riemannian metric tensor.
- Let us change the current point  $\xi$  to  $\xi + d\xi$ , and see how the value of  $L(\xi)$  changes, depending on the direction  $d\xi$ . We search for the direction in which L changes most rapidly.

#### Natural Gradient

• In order to make a fair comparison, the step-size of  $d\xi$  should have the same magnitude in all directions, so that the length of  $d\xi$  should be the same,

$$g_{ij}(\boldsymbol{\xi})d\xi^i d\xi^j = \epsilon^2 \tag{13}$$

- $\bullet$   $\epsilon$ : a small constant
- We put  $d\xi = \epsilon \mathbf{a}$  and require that

$$|\mathbf{a}|^2 = g_{ij}a^ia^j = 1 \tag{14}$$

• The Steepest direction of L is the maximizer of

$$L(\boldsymbol{\xi} + d\boldsymbol{\xi}) - L(\boldsymbol{\xi}) = \epsilon \nabla L(\boldsymbol{\xi}) \cdot \mathbf{a}$$
 (15)

under the constraint (14)



## Natural Gradient

#### Natural Gradient

Using the variational method, we obtain:

$$\max_{\mathbf{a}} \operatorname{maximize} \nabla_{\boldsymbol{\xi}} L(\boldsymbol{\xi}) \cdot \mathbf{a} - \lambda g_{ij} a^{i} a j \tag{16}$$

This is a quadratic problem and the steepest direction is obtained as

$$\mathbf{a} \propto \mathbf{G}^{-1} \nabla_{\boldsymbol{\xi}} L(\boldsymbol{\xi}) \tag{17}$$

The natural gradient or Riemannian gradient of L is

$$\widetilde{\nabla_{\boldsymbol{\xi}}}L(\boldsymbol{\xi}) = \mathbf{G}^{-1}(\boldsymbol{\xi})\nabla_{\boldsymbol{\xi}}L(\boldsymbol{\xi}) \tag{18}$$

The natural gradient operator is

$$\widetilde{\nabla_{\boldsymbol{\xi}}} = \mathbf{G}^{-1}(\boldsymbol{\xi})\nabla_{\boldsymbol{\xi}} \tag{19}$$

## **Proof**

Our goal:

$$\max_{\mathbf{a}} \operatorname{maximize} \nabla_{\boldsymbol{\xi}} L(\boldsymbol{\xi}) \cdot \mathbf{a} - \lambda g_{ij} a^{i} a j \tag{20}$$

By the Lagrangian method, we take

$$\frac{\partial}{\partial a_i} \left\{ \nabla_{\boldsymbol{\xi}} L(\boldsymbol{\xi})^{\mathsf{T}} \mathbf{a} - \lambda \mathbf{a}^{\mathsf{T}} \mathbf{G} \mathbf{a} \right\} = 0$$
 (21)

Then, we get

$$\nabla_{\boldsymbol{\xi}} L(\boldsymbol{\xi}) = 2\lambda \mathbf{G} \mathbf{a} \tag{22}$$

$$\mathbf{a} = \frac{1}{2\lambda} \mathbf{G}^{-1} \nabla_{\boldsymbol{\xi}} L(\boldsymbol{\xi}) \tag{23}$$

Using the constraint  $|\mathbf{a}|^2 = g_{ij}a^ia^j = 1$ ,  $\lambda$  is determined.



 Special Case: when an orthonoral coordinate system is used in a Euclidean space, we have

$$g_{ij}(\boldsymbol{\xi}) = \delta_{ij} \tag{24}$$

On-line learning mode, the natural gradient decent method:

$$\boldsymbol{\xi}_{t+1} = \boldsymbol{\xi}_t - \eta_t \widetilde{\nabla}_{\boldsymbol{\xi}} \boldsymbol{I}(\mathbf{x}_t, y_t, \boldsymbol{\xi}_t)$$
 (25)

• Batch learning mode,

$$\boldsymbol{\xi}_{t+1} = \boldsymbol{\xi}_t - \eta_t \frac{1}{T} \sum_{i=1}^T \widetilde{\nabla_{\boldsymbol{\xi}}} I(\mathbf{x}_i, y_i, \boldsymbol{\xi}_t)$$
 (26)

In the case of statistical estimation,

- The loss function and the Riemannian metric **G** are related.
- The Fisher information is a Riemannian metric

$$g_{ij} = E\left[\frac{\partial \log p(\mathbf{x}, \boldsymbol{\xi})}{\partial \xi_i} \frac{\partial \log p(\mathbf{x}, \boldsymbol{\xi})}{\partial \xi_j}\right]$$
(27)

- The loss function L uses the same log likelihood  $\log p(\mathbf{x}, \boldsymbol{\xi})$ .
- The Reimannian **G** uses the same log likelihood log  $p(\mathbf{x}, \boldsymbol{\xi})$ .
- The natural gradient method is a version of the Gauss-Newton method.

In the case of independent component analysis,

- The loss function and the Riemannian metric **G** are NOT related.
- The natural gradient learning method is useful in such case, too.
- Parameter space is a set of mixing matrices.
- The loss function L is measured by the degree of independence of unmixed signals.
- ullet The Reimannian  ${f G}$  is measured by the invariant metric of Lie group.

In the case of independent component analysis,

- Deep learning: [Roux et al. 2007; Ollivier 2015]
- Reinforcement learning: as a policy natual gradient [Kakade 2002; Peters and Schaal 2008; Morimura et al. 2009]
- Optimization: stochastic relaxation technique [Malagò and Pistone 2014; Malagò et al. 2013; Yi et al. 2009; see also Hansen and Ostermeier 2001]

Natural gradient learning is Fisher efficient.

#### Theorem

The estimator obtained by on-line natural gradient learning

$$\boldsymbol{\xi}_{t+1} = \boldsymbol{\xi}_t - \eta_t \widetilde{\nabla_{\boldsymbol{\xi}}} \boldsymbol{I}(\mathbf{x}_t, y_t, \boldsymbol{\xi}_t)$$
 (28)

is Fisher efficient, attaining the Cramér-Rao lower bound asymptotically.

# Natural Gradient: Property 1, Proof

Let the error covariance matrix of the estimator at time t be

$$\mathbf{V}_{t+1} = E \left[ (\xi_{t+1} - \xi_0) (\xi_{t+1} - \xi_0)^{\mathsf{T}} \right]$$
 (29)

- ξ<sub>0</sub> is the ture value of ξ.
  We expand the loss at ξ<sub>t</sub> as

$$\nabla_{\boldsymbol{\xi}} I(\mathbf{x}_t, y_t, \boldsymbol{\xi}_t) = \nabla_{\boldsymbol{\xi}} I(\mathbf{x}_t, y_t, \boldsymbol{\xi}_0) + \nabla_{\boldsymbol{\xi}} \nabla_{\boldsymbol{\xi}} I(\mathbf{x}_t, y_t, \boldsymbol{\xi}_0) \cdot (\boldsymbol{\xi}_t - \boldsymbol{\xi}_0)$$
(30)

Substracting  $\xi_0$  form both sides of (28) and substituting it in (29), we have

$$\mathbf{V}_{t+1} = \mathbf{V}_t - \frac{2}{t}\mathbf{V}_t + \frac{1}{t^2}\mathbf{G}^{-1} + O\left(\frac{1}{t^3}\right)$$
 (31)

where

$$E\left[\nabla_{\boldsymbol{\xi}}I(\mathbf{x}_t,y_t,\boldsymbol{\xi}_0)\right]=0\tag{32}$$

$$E\left[\nabla_{\boldsymbol{\xi}}\nabla_{\boldsymbol{\xi}}I(\mathbf{x}_{t},y_{t},\boldsymbol{\xi}_{0})\right]=\mathbf{G}(\boldsymbol{\xi}_{0})$$
(33)

Note that

$$\mathbf{G}(\boldsymbol{\xi}_t) = \mathbf{G}(\boldsymbol{\xi}_0) + O\left(\frac{1}{t}\right) \tag{34}$$

Then the solution of (31) is asymptotically

$$\mathbf{V}_t = \frac{1}{t}\mathbf{G}^{-1} \tag{35}$$

which prove the theorem.



Consider a regression problem, the output is written as

$$y = f(\mathbf{x}, \boldsymbol{\xi}) + \epsilon \tag{36}$$

ullet First, we consider a simple perceptron, where f is written as

$$f(\mathbf{x}, \boldsymbol{\xi}) = \phi(\mathbf{w} \cdot \mathbf{x}) \tag{37}$$

- Here, we neglect the bias term for simplicity.
- The parameter is a vector  $\boldsymbol{\xi} = \mathbf{w}$  and the activation function  $\phi$  is a sigmoid function,

$$\phi(u) = \tanh(u) \tag{38}$$

The gradient is

$$\nabla I(\mathbf{x}, y, \mathbf{w}) = -(y - f)\phi'(\mathbf{w} \cdot \mathbf{x})\mathbf{x}$$
(39)

- When the absolute value of  ${\bf w}$  is large,  $\phi({\bf w}\cdot{\bf x})$  saturates for most  ${\bf x}$ , becoming nearly equal +1 or -1.
- $\bullet$  This is the saturation problem, where the gradient almost equal to 0 because  $\phi^{'}\approx$  0, and the ordinary SGD learning becomes slow.
- This is not serious in the case of a simple perceptron, but is serious in the case of multilayer perceptrons used in deep learning, where  $f(x, \xi)$  is composed of a concatenation of many f. In MLP, We may write the output as

$$f(\mathbf{x}, \boldsymbol{\xi}) = \phi(\mathbf{W}_k \phi(\mathbf{W}_{k-1} \phi \cdots \phi(\mathbf{W}))) \tag{40}$$

where  $\boldsymbol{\xi} = (\mathbf{W}_1, \cdots, \mathbf{W}_k)$ 

• Its derivative with respect to  $\mathbf{W}_1$ , for example, includes the product of many  $\phi'$ . Hence, it is almost vanishing in many cases. This is considered as a flaw of back-propagation in deep learning.

 The natural gradient learning method is free of such a saturation problem. The gradient is written as

$$\nabla I(\mathbf{x}, y, \boldsymbol{\xi}) = -(y - f)\nabla f(\mathbf{x}, \boldsymbol{\xi}) \tag{41}$$

 The magnitude of the ordinary gradient would be very small in many cases but the natural gradient is different.

Natural gradient is Saturation Free.

#### Theorem

The magnitude of the natural gradient is given by

$$E\left[\left\|\widetilde{\nabla}I\right\|^{2}\right] = \operatorname{tr}\left(\overline{\mathbf{G}}(\xi)\overline{\mathbf{G}}^{-1}(\xi)\right) \tag{42}$$

where

$$\overline{\mathbf{G}}(\boldsymbol{\xi}) = E_{p(\mathbf{x}, y, \boldsymbol{\xi}_0)} \left[ \nabla_{\boldsymbol{\xi}} I(\mathbf{x}, \boldsymbol{\xi}) I(\mathbf{x}, \boldsymbol{\xi})^{\mathsf{T}} \right]$$
(43)

It dose not vanish even when  $\phi'$  is small. Moreover,

$$E\left[\left\|\widetilde{\nabla}I\right\|^{2}\right] \approx k \tag{44}$$

in a neighborhood of the optimal  $\xi_0$ , where k is the dimension of  $\xi$ .

# Natural Gradient: Property 2, Proof

Firstly, from

$$\nabla_{\boldsymbol{\xi}} I(\mathbf{x}, \boldsymbol{\xi}) = \mathbf{G}^{-1}(\mathbf{x}, \boldsymbol{\xi}) \nabla_{\boldsymbol{\xi}} I(\mathbf{x}, \boldsymbol{\xi})$$
(45)

We have

$$E\left[\left\|\widetilde{\nabla}I\right\|^{2}\right] = E_{\rho(\mathbf{x},y,\xi_{0})}\left[\operatorname{tr}\mathbf{G}(\xi)\mathbf{G}^{-1}(\xi)\nabla_{\xi}I(\mathbf{x},\xi)I(\mathbf{x},\xi)^{\mathsf{T}}\mathbf{G}^{-1}(\xi)\right]$$
(46)

which completes the proof.

Secondly, when  $\xi = \xi_0$ , we easily have (44).

#### References I



S.-i. Amari, "Natural gradient works efficiently in learning," *Neural Computation*, vol. 10, no. 2, pp. 251–276, 1998. [Online]. Available: https://doi.org/10.1162/089976698300017746



S. Fiori, "Extended hamiltonian learning on riemannian manifolds: Theoretical aspects," *IEEE Transactions on Neural Networks*, vol. 22, no. 5, pp. 687–700, May 2011.



S. Fiori, "Extended hamiltonian learning on riemannian manifolds: Numerical aspects," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 23, no. 1, pp. 7–21, Jan 2012.



S.-i. Amari, Information Geometry and Its Applications, 1st ed. Springer Publishing Company, Incorporated, 2016.



M. do Carmo, Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976. [Online]. Available: https://books.google.com.tw/books?id=1v0YAQAAIAAJ

# The End