## Machine Learning – Brett Bernstein

## Week 7 Lecture: Concept Check Exercises

## Multiclass

1. Let  $\mathcal{X} = \mathbb{R}^2$  and  $\mathcal{Y} = \{1, 2, 3, 4\}$ , with X uniformly distributed on  $\{x \mid ||x||_2 \leq 1\}$ . Given X, the value of Y is determined according to the following image, where green is 1, orange is 2, blue is 3, and magenta is 4.



For the problems below we are using the 0-1 loss.

(a) Consider the multiclass linear hypothesis space

$$\mathcal{F} = \{ f \mid f(x) = \underset{i \in \{1, 2, 3, 4\}}{\arg\max} \ w_i^T x \},\$$

where each f is determined by  $w_1, w_2, w_3, w_4 \in \mathbb{R}^2$ . Give  $f_{\mathcal{F}}$ , a decision function minimizing the risk over  $\mathcal{F}$ , by specifying the corresponding  $w_1, w_2, w_3, w_4$ . Then give  $R(f_{\mathcal{F}})$ .

(b) Now consider the restricted hypothesis space

$$\mathcal{F}_1 = \{ f \mid f(x) = \underset{i \in \{1, 2, 3, 4\}}{\arg \max} w_i^T x, ||w_1|| = ||w_2|| = ||w_3|| = ||w_4|| = 1 \}.$$

Consider the decision function  $f \in \mathcal{F}_1$  with  $w_1, w_2, w_3, w_3$  set to the angle bisectors of the corresponding regions. Give R(f).

(c) Next consider the class-sensitive version of  $\mathcal{F}$ :

$$\mathcal{F}_2 = \{ f \mid f(x) = \arg \max_{i \in \{1,2,3,4\}} w^T \Psi(x,i) \},\$$

where  $w \in \mathbb{R}^D$  and  $\Psi : \mathbb{R}^2 \times \{1, 2, 3, 4\} \to \mathbb{R}^D$ . Give w,  $\Psi$  corresponding to  $f_{\mathcal{F}_2}$ , the decision function minimizing the risk over  $\mathcal{F}_2$ .

Solution.

(a) Let  $w_1 = (0,1)^T$ ,  $w_2 = (-1,0)^T$ ,  $w_3 = (0,-c)^T$ ,  $w_4 = (1,0)^T$ , where  $c = \cot \frac{\pi}{12} = 2 + \sqrt{3}$ . The corresponding risk is 0. To see how c was computed, consider the boundary between the magenta and blue regions. The division occurs along the vector  $(\cos(\pi/12), -\sin(\pi/12))$ . Note that

$$w_4^T(\cos(\pi/12), -\sin(\pi/12)) = \cos(\pi/12) = w_3^T(\cos(\pi/12), -\sin(\pi/12)).$$

(b) We have  $w_1 = (0, 1)$ ,  $w_3 = (0, -1)$ ,  $w_2 = (-\cos(\pi/2), \sin(\pi/12))$ ,  $w_4 = (\cos(\pi/12), \sin(\pi/12))$ . This gives the image below.



The dashed lines above are the boundaries of the 4 regions. The resulting risk is (7.5+7.5+22.5+22.5)/360=1/6.

(c) Let  $w=(0,1,-1,0,0,-\cot(\pi/12),1,0)\in\mathbb{R}^8$  and define

$$\psi(x,i) = x_1 e_{2i-1} + x_2 e_{2i} \in \mathbb{R}^8$$

where  $e_j$  is the vector with 1 in the jth position and 0 elsewhere.

2. Recall that the standard (featurized) SVM objective is given by

$$J_1(w) = \frac{1}{2} \|w\|_2^2 + \frac{C}{n} \sum_{i=1}^n [1 - y_i w^T \varphi(x_i)]_+.$$

The 2-class multiclass SVM objective is given by

$$J_2(w) = \frac{1}{2} \|w\|_2^2 + \frac{C}{n} \sum_{i=1}^n \max_{y \neq y_i} [1 - m_{i,y}(w)]_+,$$

where  $m_{i,y}(w) = w^T \Psi(x_i, y_i) - w^T \Psi(x_i, y)$ . Give a  $\Psi$  (in terms of  $\varphi$ ) so that multiclass with 2 classes  $\{-1, +1\}$  is equivalent to our standard SVM objective.

Solution. Let  $\Psi(x,y) = \frac{1}{2}yx$  for  $y \in \{-1,+1\}$ . Then we have, for  $y \neq y_i$ ,

$$1 - m_{i,y}(w) = 1 - (w^T x_i y_i - w^T x_i y)/2 = \begin{cases} 1 + w^T x_i & \text{if } y_i = -1, \\ 1 - w^T x_i & \text{if } y_i = +1. \end{cases}$$

This gives  $1 - m_{i,y}(w) = 1 - y_i w^T \varphi(x_i)$ .

3. Suppose you trained a decision function f from the hypothesis space  $\mathcal{F}$  given by

$$\mathcal{F} = \{ f \mid f(x) = \arg \max_{i \in \{1, \dots, k\}} w^T \psi(x, i) \}.$$

Give pseudocode showing how you would use f to forecast the class of a new data point x.

Solution.

- (a) Evaluate  $w^T \psi(x, i)$  for i = 1, ..., k.
- (b) Forecast the value i that gives the largest  $w^T \psi(x,i)$  value.
- 4. Consider a multiclass SVM with objective

$$J(w) = \frac{1}{2} \|w\|_{2}^{2} + \frac{C}{n} \sum_{i=1}^{n} \max_{y \neq y_{i}} [1 - m_{i,y}(w)]_{+},$$

where  $m_{i,y}(w) = w^T \Psi(x_i, y_i) - w^T \Psi(x_i, y)$ . Assume  $\mathcal{Y} = \{1, \dots, k\}, \ \mathcal{X} = \mathbb{R}^d, \ w \in \mathbb{R}^D$  and  $\psi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^D$ . Give a kernelized version of the objective.

Solution. Let  $X \in \mathbb{R}^{nk \times D}$  matrix that has each  $\Psi(x_i, y)^T$  as rows for each i = 1, ..., n and y = 1, ..., k. More precisely,  $\Psi(x_i, y)^T$  will be in row (i - 1)k + y of X. By the representer theorem, a solution, if it exists, must have the form  $w^* = X^T \alpha$ . Let  $XX^T = K$ , the Gram matrix. Then we have

$$m_{i,y}(w) = w^T \Psi(x_i, y_i) - w^T \Psi(x_i, y) = (K\alpha)_{(i-1)k+y_i} - (K\alpha)_{(i-1)k+y_i}$$

and  $||w||_2^2 = \alpha^T K \alpha$ . Substituting we have

$$J(\alpha) = \frac{1}{2} \alpha^T K \alpha + \frac{C}{n} \sum_{i=1}^n \max_{y \neq y_i} (1 - ((K\alpha)_{(i-1)k+y_i} - (K\alpha)_{(i-1)k+y}))_+.$$

Note that the Gram matrix K is  $nk \times nk$ , and thus can be infeasible to store or compute for nk large.