

EECS 442 – Computer vision

Multiple view geometry Affine structure from Motion

- Affine structure from motion problem
- Algebraic methods
- Factorization methods

Reading: [HZ] Chapters: 6,14,18

[FP] Chapter: 12

Applications

Courtesy of Oxford Visual Geometry Group

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski

University of Washington Microsoft Research

SIGGRAPH 2006

Structure from motion problem

Given *m* images of *n* fixed 3D points

$$\bullet \mathbf{X}_{ij} = \mathbf{M}_i \mathbf{X}_j, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Structure from motion problem

From the $m_x n$ correspondences x_{ii} , estimate:

•m projection matrices \mathbf{M}_i motion •n 3D points \mathbf{X}_j structure

Structure from motion ambiguity

If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of 1/k, the projections of the scene points in the image remain exactly the same:

$$\mathbf{X} = \mathbf{PX} = \left(\frac{1}{k}\mathbf{P}\right)(k\mathbf{X})$$

It is impossible to recover the absolute scale of the scene!

Affine structure from motion

(simpler problem)

From the $m_x n$ correspondences \mathbf{x}_{ij} , estimate:

- •m projection matrices M_i (affine cameras)
- •n 3D points X_i

Finite cameras

Question:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix} = ??$$

Finite cameras

Canonical perspective projection matrix

$$M = K_{3x3} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$$
Affine Homography (in 2D)
$$K = \begin{bmatrix} \boldsymbol{\alpha}_x & s & x_o \\ 0 & \boldsymbol{\alpha}_y & y_o \\ 0 & 0 & 1 \end{bmatrix}$$

Projective & Affine cameras

$$x = K[R \ T]X$$

Projective case

$$K = \begin{bmatrix} \boldsymbol{\alpha}_{x} & s & x_{o} \\ 0 & \boldsymbol{\alpha}_{y} & y_{o} \\ 0 & 0 & 1 \end{bmatrix} \qquad M = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$$

Affine case

$$K = \begin{bmatrix} \alpha_x & s & 0 \\ 0 & \alpha_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad M = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$$

Weak perspective projection

When the relative scene depth is small compared to its distance from the camera

Orthographic (affine) projection

When the camera is at a (roughly constant) distance from the scene

$$\begin{cases} x' = x \\ y' = y \end{cases}$$

–Distance from center of projection to image plane is infinite

Transformation in 2D

Affinities:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = H_a \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Projective & Affine cameras

$$x = K[R \ T]X$$

Projective case

$$K = \begin{bmatrix} \boldsymbol{\alpha}_{x} & s & x_{o} \\ 0 & \boldsymbol{\alpha}_{y} & y_{o} \\ 0 & 0 & 1 \end{bmatrix} \qquad M = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$$

Affine case

$$K = \begin{bmatrix} \alpha_x & s & x_o \\ 0 & \alpha_y & y_o \\ 0 & 0 & 1 \end{bmatrix} \qquad M = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$$
Magnification (scaling term)
$$M = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$$

Affine cameras

$$x = K \begin{bmatrix} R & T \end{bmatrix} X$$
 [Homogeneous]

$$K = \begin{bmatrix} \alpha_x & 0 & 0 \\ 0 & \alpha_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} \alpha_x & 0 & 0 \\ 0 & \alpha_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad M = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$$

$$M = [3 \times 3 \text{ affine}] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} [4 \times 4 \text{ affine}] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \mathbf{A}\mathbf{X} + \mathbf{b} = M_{Euc} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} = M_{Euc} \begin{bmatrix} \mathbf{P} \\ 1 \end{bmatrix};$$

$$\mathbf{M}_{Euc} = \mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} \text{ [non-homogeneous image coordinates]}$$

$$M = \left[\begin{array}{cc} A & b \end{array} \right]$$

- The point b is the image location of the world origin
- The center of the affine camera is infinity

Affine cameras

To recap:

from now on we define M as the camera matrix for the affine case

$$\mathbf{p} = \begin{pmatrix} u \\ v \end{pmatrix} = \mathbf{AP} + \mathbf{b} = M \begin{bmatrix} \mathbf{P} \\ 1 \end{bmatrix}; \qquad \mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$$

The Affine Structure-from-Motion Problem

Given m images of n fixed points P_j (= X_i) we can write

$$m{p}_{ij} = \mathcal{M}_i \left(m{P}_j \atop 1
ight) = \mathcal{A}_i m{P}_j + m{b}_i \quad \text{for} \quad i = 1, \dots, \boxed{m} \quad \text{and} \quad j = 1, \dots, \boxed{n}.$$
N of cameras N of points

Problem: estimate the m 2×4 matrices M_i and the n positions P_i from the m×n correspondences \boldsymbol{p}_{ij} .

How many equations and how many unknown?

2m × n equations in 8m+3n unknowns

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)
- Factorization method

Algebraic analysis (2-view case)

- Derive the fundamental matrix F_A for the affine case
- Compute F_A
- Use F_A to estimate projection matrices
- Use projection matrices to estimate 3D points

1. Deriving the fundamental matrix F_{A}

Homogeneous system

$$\left\{ \begin{array}{ll} \boldsymbol{p} = \mathcal{A}\boldsymbol{P} + \boldsymbol{b} \\ \boldsymbol{p}' = \mathcal{A}'\boldsymbol{P} + \boldsymbol{b}' \end{array} \right. \qquad \left(\begin{array}{cc} \mathcal{A} & \boldsymbol{p} - \boldsymbol{b} \\ \mathcal{A}' & \boldsymbol{p}' - \boldsymbol{b}' \end{array} \right) \left(\begin{array}{c} \boldsymbol{P} \\ -1 \end{array} \right) = \boldsymbol{0}$$

$$\alpha u + \beta v + \alpha' u' + \beta' v' + \delta = 0$$

Deriving the fundamental matrix F_A

$$\alpha u + \beta v + \alpha' u' + \beta' v' + \delta = 0$$

$$(u, v, 1)\mathcal{F} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0 \quad \text{where} \quad \mathcal{F} \stackrel{\text{def}}{=} \begin{pmatrix} 0 & 0 & \alpha \\ 0 & 0 & \beta \\ \alpha' & \beta' & \delta \end{pmatrix}$$

The Affine Fundamental Matrix!

Are the epipolar lines parallel or converging?

Affine Epipolar Geometry

Estimating F_A

$$\alpha u + \beta v + \alpha' u' + \beta' v' + \delta = 0$$

- Measurements: u, u', v, v'
- From n correspondences, we obtain a linear system on the unknown alpha, beta, etc...

$$\begin{bmatrix} u'_1 & v'_1 & u_1 & v_1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ u'_n & v'_n & u_n & v_n & 1 \end{bmatrix} \mathbf{f} = 0$$

- Computed by least square and by enforcing |f|=1
- SVD

2. Estimating projection matrices from epipolar constraints

If M_i and P_i are solutions, then M_i' and P_i' are also solutions,

where

$$\mathcal{M}_i' = \mathcal{M}_i \mathcal{Q}$$
 and $\begin{pmatrix} \boldsymbol{P}_j' \\ 1 \end{pmatrix} = \mathcal{Q}^{-1} \begin{pmatrix} \boldsymbol{P}_j \\ 1 \end{pmatrix}$

and

$$Q = \begin{pmatrix} C & d \\ \mathbf{0}^T & 1 \end{pmatrix}$$

 $Q = \begin{pmatrix} C & d \\ \mathbf{0}^T & 1 \end{pmatrix}$ Q is an affine transformation.

Proof:

$$m{p}_{ij} = \mathcal{M}_i \left(m{P}_j \atop 1
ight) = \left(\mathcal{M}_i \mathcal{Q}
ight) \, \left(m{\mathcal{Q}}^{-1} \left(m{P}_j \atop 1
ight)
ight) = \mathcal{M}_i' \left(m{P}_j' \atop 1
ight) \, \blacksquare$$

Estimating projection matrices from F_A

Affine ambiguity

Structure from motion ambiguity

If we scale the entire scene by some factor k
and, at the same time, scale the camera
matrices by the factor of 1/k, the projections of
the scene points in the image remain exactly the
same

$$\mathbf{X} = \mathbf{P}\mathbf{X} = \left(\mathbf{P}\mathbf{Q}^{-1}\right)\left(\mathbf{Q}\mathbf{X}\right)$$

 More generally: if we transform the scene using a transformation Q and apply the inverse transformation to the camera matrices, then the images do not change

Projective ambiguity

Estimating projection matrices from F_A

Estimating projection matrices from F_A

$$\mathcal{M} = (\mathcal{A} \quad \boldsymbol{b})$$

$$\downarrow$$

$$\tilde{\mathcal{M}} = \mathcal{M}\mathcal{Q}$$

$$\tilde{\mathcal{M}}' = \mathcal{M}'\mathcal{Q}$$

$$\downarrow$$

$$\tilde{\mathcal{M}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\tilde{\mathcal{M}}' = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\tilde{\mathcal{M}}' = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\tilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix}$$

$$\tilde{\boldsymbol{P}} = \begin{pmatrix} u \\ v \\ u' \end{pmatrix}$$

Where a,b,c,d can be expressed as function of the parameters of F_A

4. Estimating the structure from F_A

$$\tilde{\mathcal{M}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad \tilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix}$$

$$\begin{array}{c} \tilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix}$$

$$\begin{array}{c} \tilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix}$$

$$\begin{pmatrix} \mathcal{A} & \boldsymbol{p} - \boldsymbol{b} \\ \mathcal{A}' & \boldsymbol{p}' - \boldsymbol{b}' \end{pmatrix} \begin{pmatrix} \boldsymbol{P} \\ -1 \end{pmatrix} = \boldsymbol{0}$$

$$\begin{pmatrix} 1 & 0 & 0 & u \\ 0 & 1 & 0 & v \\ 0 & 0 & 1 & u' \\ a & b & c & v' - d \end{pmatrix} \begin{pmatrix} \tilde{\boldsymbol{P}} \\ -1 \end{pmatrix} = 0 \qquad \Longrightarrow \qquad \tilde{\boldsymbol{P}} = \begin{pmatrix} u \\ v \\ u' \end{pmatrix}$$

Can be solved by least square again

Estimating projection matrices from epipolar constraints

$$\mathcal{M} = (\mathcal{A} \quad \mathbf{b}) \qquad \mathcal{M}' = (\mathcal{A}' \quad \mathbf{b}') \qquad \mathbf{P}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\tilde{\mathcal{M}} = \mathcal{M}\mathcal{Q} \qquad \tilde{\mathcal{M}}' = \mathcal{M}'\mathcal{Q} \qquad \tilde{\mathbf{P}} = \mathcal{Q}^{-1}\mathbf{P}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\tilde{\mathcal{M}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad \tilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix} \qquad \tilde{\mathbf{P}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\tilde{\mathbf{A}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad \tilde{\mathbf{A}}' = \begin{bmatrix} 0 & 0 & 1 \\ a & b & c \end{bmatrix} \qquad \begin{array}{c} \text{Canonical affine cameras} \\ \text{cameras} \end{array}$$

Choose Q such

that...

Function of the parameters of F

cameras

Estimating projection matrices from epipolar constraints

$$\mathcal{M} = (\mathcal{A} \quad \boldsymbol{b}) \qquad \qquad \mathcal{M}' = (\mathcal{A}' \quad \boldsymbol{b}') \qquad \boldsymbol{P}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$\tilde{\mathcal{M}} = \mathcal{M}\mathcal{Q} \qquad \qquad \tilde{\boldsymbol{P}} = \mathcal{Q}^{-1}\boldsymbol{P}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\tilde{\mathcal{M}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad \tilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix} \qquad \tilde{\boldsymbol{P}}$$

$$\tilde{\boldsymbol{P}}$$

By re-enforcing the epipolar constraint, we can compute a, b, c, d directly from the measurements

Reminder: epipolar constraint

Homogeneous system

$$\begin{cases}
\mathbf{p} = A\mathbf{P} + \mathbf{b} \\
\mathbf{p}' = A'\mathbf{P} + \mathbf{b}'
\end{cases}
\qquad \qquad \qquad \begin{pmatrix}
A & \mathbf{p} - \mathbf{b} \\
A' & \mathbf{p}' - \mathbf{b}'
\end{pmatrix}
\begin{pmatrix}
\mathbf{P} \\
-1
\end{pmatrix} = \mathbf{0}$$

$$\alpha u + \beta v + \alpha' u' + \beta' v' + \delta = 0$$

Estimating projection matrices from epipolar constraints

$$\mathcal{M} = (\mathcal{A} \quad \boldsymbol{b}) \qquad \qquad \mathcal{M}' = (\mathcal{A}' \quad \boldsymbol{b}') \qquad \boldsymbol{P}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\tilde{\mathcal{M}} = \mathcal{M}\mathcal{Q} \qquad \qquad \tilde{\boldsymbol{P}} = \mathcal{Q}^{-1}\boldsymbol{P}$$

$$\tilde{\mathcal{M}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad \tilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix} \qquad \tilde{\boldsymbol{P}}$$

$$\tilde{\boldsymbol{A}} \qquad \tilde{\boldsymbol{b}} \qquad \tilde{\boldsymbol{b}}$$

Det
$$\begin{pmatrix} \mathcal{A} & \mathbf{p} - \mathbf{b} \\ \mathcal{A}' & \mathbf{p}' - \mathbf{b}' \end{pmatrix} = 0$$
 \longrightarrow Det $\begin{pmatrix} 1 & 0 & 0 & u \\ 0 & 1 & 0 & v \\ 0 & 0 & 1 & u' \\ a & b & c & v' - d \end{pmatrix} = 0$

Estimating projection matrices from epipolar constraints

$$\mathcal{M} = (\mathcal{A} \quad \boldsymbol{b}) \qquad \mathcal{M}' = (\mathcal{A}' \quad \boldsymbol{b}') \qquad \boldsymbol{P}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\tilde{\mathcal{M}} = \mathcal{M}\mathcal{Q} \qquad \qquad \tilde{\boldsymbol{P}} = \mathcal{Q}^{-1}\boldsymbol{P}$$

$$\tilde{\mathcal{M}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad \tilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix} \qquad \tilde{\boldsymbol{P}}$$

$$\tilde{\boldsymbol{A}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad \tilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix} \qquad \tilde{\boldsymbol{P}}$$

$$\det \begin{pmatrix} 1 & 0 & 0 & u \\ 0 & 1 & 0 & v \\ 0 & 0 & 1 & u' \\ a & b & c & v' - d \end{pmatrix} = au - bv + cu' + v' - d = 0$$

Estimating projection matrices from epipolar constraints

Linear relationship between measurements and unknown

Unknown: a, b, c, d

Measurements: u, u', v, v'

- From at least 4 correspondences, we can solve this linear system and compute a, b, c, d (via least square)
- The cameras can be computed
- How about the structure?

4. Estimating the structure from F_A

$$\tilde{\mathcal{M}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad \tilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix} \quad \tilde{\boldsymbol{P}}$$

$$\begin{pmatrix} \mathcal{A} & \boldsymbol{p} - \boldsymbol{b} \\ \mathcal{A}' & \boldsymbol{p}' - \boldsymbol{b}' \end{pmatrix} \begin{pmatrix} \boldsymbol{P} \\ -1 \end{pmatrix} = \boldsymbol{0}$$

$$\begin{pmatrix} 1 & 0 & 0 & u \\ 0 & 1 & 0 & v \\ 0 & 0 & 1 & u' \\ a & b & c & v' - d \end{pmatrix} \begin{pmatrix} \tilde{\boldsymbol{P}} \\ -1 \end{pmatrix} = 0 \qquad \Longrightarrow \qquad \tilde{\boldsymbol{P}} = \begin{pmatrix} u \\ v \\ u' \end{pmatrix}$$

Can be solved by least square again

First reconstruction. Mean reprojection error: 1.6pixel

Second reconstruction. Mean re-projection error: 7.8pixel

A factorization method – Tomasi & Kanade algorithm

C. Tomasi and T. Kanade.

<u>Shape and motion from image streams under orthography: A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

- Centering the data
- Factorization

Centering: subtract the centroid of the image points

$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} - \bar{\mathbf{x}}_{i}$$

Centering: subtract the centroid of the image points

$$\begin{cases} \hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i - \frac{1}{n} \sum_{k=1}^{n} (\mathbf{A}_i \mathbf{X}_k + \mathbf{b}_i) \\ \mathbf{x}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i \end{cases}$$

Centering: subtract the centroid of the image points

$$\hat{\mathbf{X}}_{ij} = \mathbf{X}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{ik} = \mathbf{A}_{i} \mathbf{X}_{j} + \mathbf{b}_{i} - \frac{1}{n} \sum_{k=1}^{n} (\mathbf{A}_{i} \mathbf{X}_{k} + \mathbf{b}_{i})$$

$$= \mathbf{A}_{i} \left(\mathbf{X}_{j} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \right)$$

Assume that the origin of the world coordinate system is at the centroid of the 3D points

After centering, each normalized point \mathbf{x}_{ij} is related to the 3D point \mathbf{X}_i by

$$\hat{\mathbf{X}}_{ij} = \mathbf{A}_i \mathbf{X}_j$$

$$\hat{\mathbf{X}}_{ij} = \mathbf{A}_i \mathbf{X}_j$$

A factorization method - factorization

Let's create a 2m × n data (measurement) matrix:

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1n} \\ \hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2n} \\ & \ddots & \\ \hat{\mathbf{x}}_{m1} & \hat{\mathbf{x}}_{m2} & \cdots & \hat{\mathbf{x}}_{mn} \end{bmatrix}$$
 cameras (2m)

A factorization method - factorization

Let's create a 2m × n data (measurement) matrix:

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{X}}_{11} & \hat{\mathbf{X}}_{12} & \cdots & \hat{\mathbf{X}}_{1n} \\ \hat{\mathbf{X}}_{21} & \hat{\mathbf{X}}_{22} & \cdots & \hat{\mathbf{X}}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\mathbf{X}}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \mathbf{X}_{m2} & \cdots & \mathbf{X}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \mathbf{X}_{m2} & \cdots & \mathbf{X}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \mathbf{X}_{m2} & \cdots & \mathbf{X}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \mathbf{X}_{m2} & \cdots & \mathbf{X}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \mathbf{X}_{m2} & \cdots & \mathbf{X}_{mn} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{m1} & \mathbf{X}_{m2} & \cdots & \mathbf{X}_{mn} \end{bmatrix}$$

The measurement matrix **D** = **M S** has rank 3 (it's a product of a 2mx3 matrix and 3xn matrix)

Source: M. Hebert

Singular value decomposition of D:

Singular value decomposition of D:

Since rank (D)=3, there are only 3 non-zero singular values

Source: M. Hebert

Obtaining a factorization from SVD:

What is the issue here?

D has rank>3 because of - measurement noise - affine approximation

Obtaining a factorization from SVD:

Theorem: When D has a rank greater than p, $U_pW_pV_p^T$ is the best possible rank-p approximation of D in the sense of the Frobenius norm.

$$\mathcal{D} = \mathcal{U}_3 \mathcal{W}_3 \mathcal{V}_3^T \qquad \begin{cases} \mathcal{A}_0 = \mathcal{U}_3 \\ \mathcal{P}_0 = \mathcal{W}_3 \mathcal{V}_3^T \end{cases}$$

Affine ambiguity

The decomposition is not unique. We get the same **D** by using any 3×3 matrix **C** and applying the transformations $\mathbf{M} \to \mathbf{MC}$, $\mathbf{S} \to \mathbf{C}^{-1}\mathbf{S}$

We can enforce some Euclidean constraints to resolve this ambiguity (more on next lecture!)

Algorithm summary

- 1. Given: m images and n features \mathbf{x}_{ij}
- 2. For each image *i*, *c*enter the feature coordinates
- 3. Construct a $2m \times n$ measurement matrix **D**:
 - Column j contains the projection of point j in all views
 - Row i contains one coordinate of the projections of all the n
 points in image i
- 4. Factorize **D**:
 - Compute SVD: D = U W V^T
 - Create U₃ by taking the first 3 columns of U
 - Create V₃ by taking the first 3 columns of V
 - Create W₃ by taking the upper left 3 × 3 block of W
- 5. Create the motion and shape matrices:
 - $\mathbf{M} = \mathbf{M} = \mathbf{U}_3$ and $\mathbf{S} = \mathbf{W}_3 \mathbf{V}_3^{\mathsf{T}}$ (or $\mathbf{U}_3 \mathbf{W}_3^{\mathsf{V}_2}$ and $\mathbf{S} = \mathbf{W}_3^{\mathsf{V}_2} \mathbf{V}_3^{\mathsf{T}}$)
- 6. Eliminate affine ambiguity

Reconstruction results

C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography:</u> <u>A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

Next lecture

Multiple view geometry

Perspective structure from Motion