207 Homework #8 Due Friday, Dec 1.

- I. Read Pugh, Chapter 5, Section 7. Section 8. Read Bamberg and Sternberg Chapters 7 and 8.
- II. Chap 5: [40, 44, 55, 68], 48, 49, 65, 67.
- III. This exercise explores the question (asked in class): suppose Df_p is invertible at every point of the domain: is f injective? Recall this is true for $f:(a,b)\to\mathbb{R}$ by the one dimensional inverse function theorem.
 - (a) Consider the map $f: A \to \mathbb{R}^2$, where $A = \{z \in \mathbb{R}^2 : 1 < |z| < 2\}$ given by

$$f(x,y) = (x^2 - y^2, 2xy).$$

Is it C^1 in A, with invertible derivative? Is it injective?

- (b) Suppose that $U \subset \mathbb{R}^n$ is open, $f: U \to \mathbb{R}^n$ is C^1 , and Df_p is invertible at each $p \in U$. Prove that if f(U) is closed in \mathbb{R}^n , then $f(U) = \mathbb{R}^n$.
- (c) ** (Extra credit) Suppose that $f: \mathbb{R}^n \to \mathbb{R}^n$ is C^1 , with invertible derivative. Must it be injective?
- (d) ** (Extra credit) Characterize the open sets $U \subset \mathbb{R}^n$ with the property that if $f: U \to \mathbb{R}^n$ is C^1 , and f is invertible at every point in U, then f is injective.
- (e) ** (Extra credit) Prove that if $f: A \to \mathbb{R}^2$ is C^1 , with the property that Df_p is invertible at every $p \in A$, then there exists an integer $k \geq 0$ such that f is k-to-one, where A is the annulus defined in (c).
- IV. Let $g: \mathbb{R}^n \to \mathbb{R}^k$ and consider the set $S = g^{-1}(0)$. Assume that for every $p \in S$, the rank of $D_p g$ is equal to k (in other words, $D_p g: \mathbb{R}^n \to \mathbb{R}^k$ is surjective). Let $p \in S$, and define $T_p S := \ker D_p f \subset \mathbb{R}^n$.
 - (a) What does the rank-nullity theorem from linear algebra tell you about the dimension of T_pS ?
 - (b) Show that if $\gamma \colon (-\epsilon, \epsilon) \to U$ is a C^1 curve through p along which g is constant (i.e. if $\gamma(0) = p$ and $g(\gamma(t)) = g(\gamma(0))$ for all $t \in (-\epsilon, \epsilon)$), then $\gamma'(0) \in T_pS$. This is why we call T_pS the tangent space to p at S.

- (c) Find a basis for T_pS for the following S, p
 - (i) $S = \{(x, y, z) : -x^2 + y^2 z^2 = -1\}, p = (\frac{1}{\sqrt{2}}, -\frac{\sqrt{3}}{\sqrt{2}}, -\sqrt{2}).$
 - (ii) $S = \{(x, y, z) : -x^2 + y^2 z^2 = -1, \text{ and } xz + 4y^2 = 5\},$ $p = (\frac{1}{\sqrt{2}}, -\frac{\sqrt{3}}{\sqrt{2}}, -\sqrt{2}).$
- (d) Let $f: \mathbb{R}^n \to \mathbb{R}$ and for $p \in S$, let V_p be the orthogonal projection of $\operatorname{grad}_p(f)$ onto the subspace $T_pS \subset \mathbb{R}^n$. Prove that if V_p is nonzero, then $\pm |V_p|$ is the maximum (resp. minimum) value of the function $G: T_p^1S \to \mathbb{R}$, where $T_p^1S := \{v \in T_pS : |v| = 1\}$, and

$$G(v) = D_p f(v).$$

- (e) Prove that $\pm V_p$, if nonzero, points to the maximal direction of increase/decrease of f in directions tangent to the surface S.
- (f) Relate (d),(e) to Lagrange multipliers.
- V. (a) Compute the volume of the region $\Omega \subset \mathbb{R}^3$ bounded by x = 0, x = 2, z = -y and by $z = y^2/2$.
 - (b) Write down a triple integral that computes the volume of the region $\Omega \subset \mathbb{R}^3$ bounded by the coordinate planes and $y = 1 x^2$ and $y = 1 z^2$. Don't evaluate.
 - (c) Compute

$$\iiint_B \left(2x + 3y^2 + 4z^3\right) dx dy dz,$$

where $B = \{(x, y, z) \mid 0 \le x \le 1, 0 \le y \le 2, 0 \le z \le 3\}.$

- VI. Let $\omega = (y\cos xy + e^x) dx + (x\cos xy + 2y) dy$.
 - (a) Evaluate $\int_{\Gamma} \omega$ along the segment of the parabola $y = x^2$ from $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ to $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Use the parameterization ϕ described by the pullback

$$\begin{pmatrix} \phi^* x \\ \phi^* y \end{pmatrix} = \begin{pmatrix} t \\ t^2 \end{pmatrix}.$$

- (b) Evaluate $\int_{\Gamma} \omega$ for the case where Γ is the straight line joining the origin to the point $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$. Do the same for the case where Γ consists of the segment $0 \le x \le \alpha$ on the x-axis, followed by the segment $x = \alpha, 0 \le y \le \beta$.
- (c) Find a function f(x, y) such that $\omega = df$.

VII. Let $\omega = y \, dx - x \, dy$.

(a) Evaluate $\int_{\gamma} \omega$ along the semicircle γ from $\binom{r-1}{0}$ to $\binom{r+1}{0}$ defined by

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r - \cos t \\ \sin t \end{pmatrix}$$

for $0 < t < \pi$.

- (b) Show explicitly that you can obtain a different value from that in (a) by choosing a different curve joining $\binom{r-1}{0}$ to $\binom{r+1}{0}$.
- VIII. In each of the following cases, u and v are functions on a plane where x and y are affine coordinates. Express $\mathrm{d} x \wedge \mathrm{d} y$ in terms of $\mathrm{d} u \wedge \mathrm{d} v$. Make a sketch showing typical curves $u = \mathrm{constant}$ and $v = \mathrm{constant}$ in the first quadrant (x,y>0) and try to give a geometric interpretation to the relations between $\mathrm{d} x \wedge \mathrm{d} y$ and $\mathrm{d} u \wedge \mathrm{d} v$ by applying both to a parallelogram whose sides are tangent to $u = \mathrm{constant}$ and $v = \mathrm{constant}$ respectively.
 - (a) $x = u \cos v$. $y = u \sin v$.
 - (b) $x = u \cosh v$, $y = u \sinh v$.
 - (c) $x = u^2 v^2$, y = 2uv.
 - IX. (a) Show, by reversing the order of integration, that

$$\int_0^a \left(\int_0^y e^{m(a-x)} f(x) dx \right) dy = \int_0^a (a-x) e^{m(a-x)} f(x) dx$$

where a and m are constants, a > 0.

(b) Show that $\int_0^x \left(\int_0^v \left[\int_0^u f(t) dt \right] du \right) dv = \frac{1}{2} \int_0^x (x-t)^2 f(t) dt$. If you do this in two steps, you never actually have to consider a triple integral!