

Machine Learning for Digital Soil Mapping-Part 2

Ruhollah Taghizadeh Soil Science and Geomorphology

Content

□Part 1

- Digital Soil Mapping
- •Machine Learning

☐ Part 2

•Lets practice!

SCORPAN model

$$S = f(s, c, o, r, p, a, n) + \varepsilon$$

S: Soil, at a specific point in space and time: soil classes, Sc or soil attributes, Sa

From Jenny's Equation

- c: climate, climate properties of the environment;
- o: organisms, vegetation;
- r: topography, landscape attributes; p: parent material, lithology;
- a : age or time factor;

Additions:

- s: soil, prior knowledge of the soil at a point;
- n: space, relative spatial position;
- E: auto-correlated random spatial variation.

f(): Quantitative function f linking S to scorpan factors

SCORPAN model

SCORPAN Model

$$S = f(s,c,o,r,p,a,n) + \varepsilon$$
Machine learning

f(): Quantitative function f linking S to scorpan factors

Sequence of DSM Steps

Introduction: some terms

MACHINE LEARNING

Types of Machine Learning

☐ Different ML algorithms in DSM

☐ Artificial neural networks (ANN)

☐ Deep artificial neural networks (DL)

☐ Convolutional neural networks (CNN)

☐ Convolutional neural networks (CNN)

Convolutional layers: Filters

☐ Convolutional neural networks (CNN)

Convolutional layers: Pooling

• Fully connected neural network

Accuracy Assessment of Models

How to measure the accuracy?

Performance Metrics:

Regression	Classification
 Mean Absolute Error (MAE) Root Mean Squared Error (RMSE) R-Squared and Adjusted R-Squared 	 Recall Precision F1-Score Accuracy Area Under the Curve (AUC)

 Confusion Matrix: is one of the most intuitive and easiest metrics used for finding the correctness and accuracy of the model.

where TP, TN, FP and FN are true positive, true negative, false positive and false negative, respectively

- Confusion Matrix:
- Class A: Aridisols
- Class B: Entisols

	Class A: Aridisoils	Class B: Entisols
Class A: Aridisoils		
Class B: Entisols		

Confusion Matrix:

Actual Test data

1

Class A: Aridisols

Class B: Entisols

Predicted Test data

1

2

3

4

5

	Class A: Aridisoils	Class B: Entisols
Class A: Aridisoils		
Class B: Entisols		

Confusion Matrix:

Actual Test data

Class A: Aridisols

1 2 3 4 5

Class B: Entisols

Predicted Test data

1 2 3 4 5

	Class A: Aridisoils	Class B: Entisols
Class A: Aridisoils		
Class B: Entisols		

Confusion Matrix:

Actual Test data

Class A: Aridisols

Class B: Entisols

Predicted Test data

Confusion Matrix:

Actual Test data

2

5

Class A: Aridisols

Class B: Entisols

Predicted Test data

	Class A: Aridisoils	Class B: Entisols
Class A: Aridisoils		
Class B: Entisols	1	

Confusion Matrix:

Actual Test data

1

2)(

4 5

Class A: Aridisols

Class B: Entisols

Predicted Test data

1

3

st da

Confusion Matrix:

Actual Test data

1

3

Class A: Aridisols

Class B: Entisols

Predicted Test data

1

3

Confusion Matrix:

Actual Test data

Class A: Aridisols

Class B: Entisols

Predicted Test data

2 3 4

Overall Accuracy: is a metric calculating the classifier overall accuracy

$$OA = \left(\frac{\text{Correctly classified}}{\text{Total number of test data}}\right) * 100$$

$$OA = \left(\frac{2+1}{5}\right) * 100 = 60\%$$

 Precision: is the proportion of those predicted instances that are correctly classified

Recall: is the proportion of those instances that are correctly classified

F-score: the F-score is the harmonic mean of precision and recall

$$F - score = \left(\frac{2 \times Preciosion \times Recall}{Preciosion + Recall}\right) * 100$$

Metric	Formula
Accuracy	$ACC = \frac{TP + TN}{TP + TN + FP + FN}$
Error rate	$ERR = \frac{FP + FN}{TP + TN + FP + FN}$
Precision	$PRC = \frac{TP}{TP + FP}$
Sensitivity	$SNS = \frac{TP}{TP+FN}$
Specificity	$SNS = rac{TP}{TP+FN}$ $SPC = rac{TN}{TN+FP}$
ROC	$ROC = \frac{\sqrt{SNS^2 + SPC^2}}{\sqrt{2}}$
F ₁ score	$F_1 = 2 \frac{PRC \cdot SNS}{PRC + SNS}$
Geometric Mean	$GM = \sqrt{SNS \cdot SPC}$

Practice

Import covariates

Import point data

Overlay point data on covariates

Make a geodatabase

Split the geodatabase to training and testing sets

Train machine learning models

Test machine learning models

Predict soil maps

1. Open Rstudio

2. Clear Project List

3. New Project

4. Existing Directory

5. Find the folder and find Day_05_Machine Learning-P2 and open

6. Create project

7. Open an existing file and find 05_R_Cov.R

8. Open **05_R_Cov.R**

