Multidimensional Scaling (MDS)

Ying-Chao Hung

Department of Statistics

National Chengchi University

Email: hungy@nccu.edu.tw

Introduction

- Multidimensional scaling (MDS) is a method that represents measures of <u>similarity</u> or <u>dissimilarity</u> among pairs of objects as distances between points in a low-dimensional space (Borg & Groenen, 1997).
- Unsupervised Methods (designed for visualization)
 - Projection Methods: PCA, projection pursuit, etc.
 - MDS
 - Cluster analysis

□ Data matrix:

□ Continuous data: Euclidean distance

$$D = (d_{ij})$$
, where $d_{rs} = ||o_r - o_s||$.

□ Categorical data: Simple matching coefficient,

 C_{rs} = The proportion of features (X_i) that are common to observations r and s $= \frac{(\# \text{ of matching } X_i)}{n}$

- □ Ordinal data: Use "ranks" as if they are continuous.
- <u>Mixtures</u>: (including missing data, Kaufman & Rousseeuw, 1990)

For each feature/variable f, define first

• If f is categorical:

$$d_{rs}^f = \begin{cases} 1 & \text{if } x_r^f \neq x_s^f \\ 0 & \text{otherwise} \end{cases}$$

• If f is continuous:

$$0 \le d_{rs}^f = \frac{\left|x_r^f - x_s^f\right|}{R_f} \le 1$$
, where R_f is the range of f .

Then, the dissimilarity between object *r* and object *s* is then defined as:

$$d_{rs} = \frac{\sum_{f} d_{rs}^{f} \cdot I_{rs}^{f}}{\sum_{f} I_{rs}^{f}}, \text{ where } I_{rs}^{f} = \begin{cases} 1 & \text{if } f \text{ is not missing (thus recorded)} \\ & \text{for both objects } r \text{ and } s \\ 0 & \text{otherwise} \end{cases}$$

Remark: Small score of d_{rs} indicates that objects r and s are very similar.

Properties of Dissimilarity

Dissimilarities are distance-like quantities that s.t. the following conditions for all objects *i* and *j*:

- $\delta_{ij} \ge 0$
- $\delta_{ii} = 0$
- $\bullet \quad \delta_{ij} = \delta_{ji}$

If δ_{ij} is metric, then it also s.t. the triangle inequality:

$$\delta_{ij} \leq \delta_{ik} + \delta_{jk}$$

Covert Similarity to Dissimilarity

Denote by S_{ij} the "similarity" between objects i and j. One can convert similarity to dissimilarity by using:

$$\delta_{ij} = \text{constant} - S_{ij}$$

$$\delta_{ij} = \frac{1}{S_{ij}}$$

$$\delta_{ij}^2 = S_{ii} + S_{jj} - 2S_{ij}$$

Note that the last equality comes from:

$$||x_i - x_j||^2 = ||x_i||^2 + ||x_j||^2 - 2 < x_i, x_j > 0$$

→ $\langle x_i, x_j \rangle$ large (think about projection) → S_{ij} large (similar)

Metric Scaling

Settings: Denote the dissimilarity matrix of the data matrix $X_{N \times p}$

by
$$\Delta = \left\{ \delta_{ij} \right\}_{N \times N}$$
.

Objective: Find the best possible arrangement of the objects in a lower *m*-dimensional space with dissimilarity matrix

$$D = \left\{ d_{ij} \right\}_{N \times N}$$

so that $\Delta \approx D$ in some appropriate norm.

Note: If δ_{ij} represents the "Euclidean distance", then we are dealing with *classical* (or Togerson-Gower) MDS.

Evaluation of D

- **Q**: How good is the approximation $\Delta \approx D$?
 - → We employ a *loss function* and the goal is to minimize it.
- (1) Least Squares on the Distances (Kruskal, 1964)

$$STRESS(\tilde{X}) = \sum_{i=1}^{N} \sum_{j>i} w_{ij} \left(\delta_{ij} - d_{ij}(\tilde{X})\right)^{2},$$

where \tilde{X} is an $N \times m$ matrix (m < p) that contains the coordinates of the objects in m-dimensional Euclidean space, and $d_{ij}(\tilde{X})$ denotes the distance between objects i and j in the m-dimensional space.

Notes on the STRESS Function

Notes:

- □ STRESS function is <u>invariant</u> under <u>rotations</u> and <u>translations</u>.
- □ STRESS function is <u>scale dependent</u> (e.g., not invariant under stretching and shrinking)
- A better criterion, which is <u>not scale dependent</u>, is the **normalized (raw) STRESS**:

$$\frac{\text{STRESS}(\tilde{X})}{\sum_{i,j} w_{ij} \delta_{ij}^2}$$

Notes on the STRESS Function

- □ If $w_{ij} = 1$, then STRESS(\tilde{X}) corresponds to the Frobenius norm of (ΔD) .
- Some software packages report the <u>square root</u> of the **normalized stress** with $w_{ij} = 1$, called **Kruskal's Stress-1**.
- A special case of normalized stress is the so-called **Sammon mapping**, which chooses the weights as $w_{ij} = 1/\delta_{ij}$. This results in

Sammon's stress =
$$\frac{1}{\sum_{i}\sum_{j>i}\delta_{ij}} \cdot \sum_{i=1}^{N} \sum_{j>i} \frac{\left(\delta_{ij} - d_{ij}(\tilde{X})\right)^{2}}{\delta_{ij}}.$$

Other STRESS Functions

(2) Least Squares on the Squared Distances:

$$STRESS(\tilde{X}) = \sum_{i=1}^{N} \sum_{j>i} w_{ij} \left(\delta_{ij}^{2} - d_{ij}^{2}(\tilde{X})\right)^{2}.$$

(A normalized version "SSTRESS", by Takane-Young-de Leeuw)

(3) Least Squares on the Inner Products: (Carroll and Chung, 1972; Meulman, 1986)

Squared distances

STRAIN(
$$\tilde{X}$$
) = trace $\left\{J(\Delta^2 - D^2(\tilde{X}))J(\Delta^2 - D^2(\tilde{X}))\right\}$,

where
$$J = I_N - \frac{11!}{N}$$
 and $1! = (1, 1, ..., 1)$.

centering operator

Idea of Minimizing STRAIN

- □ To transform the dissimilarity (distance) $\delta_{ij} = \|\mathbf{x}_i \mathbf{x}_j\|$ to inner-product $B_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$.
- □ Recall that

$$\delta_{ij}^2 = \left\| \mathbf{x}_i - \mathbf{x}_j \right\|^2 = \left\| \mathbf{x}_i \right\|^2 + \left\| \mathbf{x}_j \right\|^2 - 2 < \mathbf{x}_i, \, \mathbf{x}_j > 0$$

J The process of "double-centering" w.r.t $\tilde{\delta}_{ij} = -\delta_{ij}^2/2$ gives:

$$\tilde{\delta}_{ij} - \tilde{\delta}_{i\bullet} - \tilde{\delta}_{\bullet j} + \tilde{\delta}_{\bullet \bullet} = B_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle.$$

□ Thus, the goal is the same as minimizing:

$$\sum_{i=1}^{N} \sum_{j>i} \left(B_{ij} - \langle \tilde{\mathbf{X}}_i, \tilde{\mathbf{X}}_j \rangle \right)^2 / \sum_{i} \sum_{j>i} B_{ij}^2$$

Some Remarks

- A nice property of minimizing $STRAIN(\tilde{X})$ is that the dimensions of solution are nested. 要幾維度都可以,答案會一次出來
- □ Finding \tilde{X} using STRAIN criterion corresponds to calculating the eigen-decomposition of $-\frac{1}{2}J\Delta^{(2)}J$.

Denote

$$-\frac{1}{2}J\Delta^{(2)}J = U\Lambda U'$$

and let *m* be the dimension of solution, then

$$\tilde{X} = U_m \Lambda_m^{1/2}.$$

The first m columns of U

The diagonal matrix with the first m eigenvalues of Λ

Some Remarks

- □ Finding \tilde{X} based on the STRESS criterion is <u>non-trivial</u>. The SMACOF algorithm of de Leeuw (1977) guarantees convergence to a stationary point.
- In many applications we are interested in replacing δ_{ij} by a function $f(\delta_{ii})$. For example:

$$d_{ij}(\tilde{X}) = \begin{cases} \beta \cdot \delta_{ij} + \varepsilon_{ij} & \text{(ratio scaling)} \\ \alpha + \beta \cdot \delta_{ij} + \varepsilon_{ij} & \text{(+ interval scaling)} \\ \alpha + \beta \cdot \log \delta_{ij} + \varepsilon_{ij} \\ \alpha + \beta \cdot \exp(\delta_{ij}) + \varepsilon_{ij} \end{cases}$$

 \rightarrow Finding the solution of $d_{ij}(\tilde{X})$ becomes more difficult!!

Non-metric Scaling

In some applications the dissimilarity does <u>not</u> satisfy the triangle inequality:

$$\delta_{ij} \leq \delta_{ik} + \delta_{jk}$$

Example: (A survey form)

Clearly, 5 > 3 > 2.

But, is it true that |5-3| > |3-2|?

→ This is not clear in quality!!

Non-metric Scaling

Consider a simpler constraint:

$$\delta_{ij} < \delta_{ik} \Rightarrow d_{ij}(\tilde{X}) < d_{ik}(\tilde{X})$$

→ Such models represent only the **ordinal property** of the data.

Remark: Finding \tilde{X} becomes a more challenging problem! (see Borg & Groenen, Modern Multidimensional Scaling, Springer, 1997)

Non-metric Scaling

Solution: Consider minimizing the following version of normalized stress function

isotonic的結果 與 希望投影過後的相似度 的差距

$$\frac{\sum_{i,j} \left(\theta(\delta_{ij}) - d_{ij}(\tilde{X})\right)^{2}}{\text{STRESS}} = \frac{\sum_{i,j} d_{ij}^{2}(\tilde{X})}{\text{.}}$$

Q: How to choose \tilde{X} and θ so as to minimize STRESS?

Note: Here θ is some function that preserves the property of "ordering", i.e.,

$$\delta_{ij} < \delta_{ik} \Rightarrow \theta(\delta_{ij}) \leq \theta(\delta_{ik}).$$

Utilizing Isotonic Regression

Isotonic regression is monotone regression with strictly increasing trend.

 $\rightarrow \theta(\delta_{ij})$ is a piecewise increasing step function that minimizes the sum of squared errors (Barlow et al., 1972).

Solution to Non-metric Scaling

Algorithm

Step 1. Given \tilde{X} (or $d_{ij}(\tilde{X})$), estimate $\theta(\delta_{ij})$ by using isotonic regression.

Step 2. Calculate the STRESS.

Step 3. Change \tilde{X} (usually by rotations, reflections, and translations, etc), go to Step 1.

Notes:

- \blacksquare The best \tilde{X} minimizes the STRESS.
- □ The algorithm can end up in <u>local minima</u>.

Choosing the Dimensionality of \tilde{X}

The usual choice of m is 2 or 3, since we can easily plot \tilde{X} .

However, a rule of thumb by Kruskal (1964) is:

Sqrt(Stress)	Goodness of Fit
20%	poor
10%	fair
5%	good
2.5%	excellent
0%	perfect

In practice, we can pick up a large enough *m* so that the fit is at least "fair".

An Illustrative Example

Fig. A 2D metric MDS solution of City Crime Data

Note: The 2D representation is very similar to that of PCA.