Chapter 6

Height model again and again...

model:

$$h_i \sim N(\mu_i, \sigma)$$

 $\mu_i = \alpha + w_i \beta$
 $\alpha_0 \sim N(\mu_\alpha, \sigma_\alpha)$
 $\beta \sim N(\mu_\beta, \sigma_\beta)$
 $\sigma \sim U(a_\sigma, b_\sigma)$

Height model again and again...

model:

$$h_i \sim N(\mu_i, \sigma)$$

 $\mu_i = \alpha + w_i \beta$
 $\alpha_0 \sim N(\mu_\alpha, \sigma_\alpha)$
 $\beta \sim N(\mu_\beta, \sigma_\beta)$
 $\sigma \sim U(a_\sigma, b_\sigma)$

• If h_i is in cm, and w_i is in kilo gram, what scale is the parameters in?

parameter scale

Model	scale
μ	cm
σ	cm
α	cm
β	cm kg
μ_{eta}	<u>cm</u> kg
σ_{eta}	<u>cm</u> kg

Lab 2

• If you don't have any information about coefficients, choose vague prior. Think don't over think!

.

```
library (NHANES)
data ("NHANES")
NHANES = NHANES[duplicated (NHANES$ID)==F,]
NHANES = NHANES[NHANES$Age > 20,]
NHANES = NHANES[, c("Height", "Weight", "DirectChol", "TotChol")]
NHANES = NHANES[complete.cases (NHANES),]
NHANES = data.frame(NHANES)
```

- map uses optimization to find the MAP value.
- If using very vague priors, set start values in map, otherwise it will take a sample from the prior as a starting guess.
- .

Figure : MAP estimate of $\mu=\beta_0$

Figure : MAP estimate of $\mu = \beta_0 + x\beta_1$

Figure : MAP estimate of $\mu=\beta_0+x\beta_1+x^2\beta_2$

Figure : MAP estimate of $\mu=\beta_0+x\beta_1+x^2\beta_2+x^3\beta_3$

Figure : MAP estimate of $\mu = \beta_0 + x\beta_1 + x^2\beta_2 + x^3\beta_3 + x^4\beta_4$

Figure : MAP estimate of $\mu=\beta_0+x\beta_1+x^2\beta_2+x^3\beta_3+x^4\beta_4+x^5\beta_5$

Figure : MAP estimate of $\mu = \beta_0 + x\beta_1 + x^2\beta_2 + x^3\beta_3 + x^4\beta_4 + x^5\beta_5 + x^6\beta_6$

Removing one observations

- Loop over all data $j = 1, \ldots, n$:
- Remove one observation, y_j .
- Estimate β using $y_1, \ldots, y_{j-1}, y_{j+1}, \ldots, y_n$.
- Estimate σ using $\sqrt{\frac{1}{n}\sum(y_j-\hat{y}_j)^2}$.

Figure : Leave one out estimate of $\mu=\beta_0$

Figure : Leave one out of $\mu=\beta_0+x\beta_1$

Figure : Leave one out of $\mu=\beta_0+x\beta_1+x^2\beta_2$

Figure : Leave one out of $\mu=\beta_0+x\beta_1+x^2\beta_2+x^3\beta_3$

Figure : Leave one out of $\mu=\beta_0+x\beta_1+x^2\beta_2+x^3\beta_3+x^4\beta_4$

Figure : Leave one out of $\mu=\beta_0+x\beta_1+x^2\beta_2+x^3\beta_3+x^4\beta_4+x^5\beta_5$

Figure : Leave one out of $\mu = \beta_0 + x\beta_1 + x^2\beta_2 + x^3\beta_3 + x^4\beta_4 + x^5\beta_5 + x^6\beta_6$

Beyond linear model

• For linear, there exists many different measure R_{adj}^2 .

Beyond linear model

- For linear, there exists many different measure R_{adi}^2 .
- For a general density/probability function what indicates a good fit?

Beyond linear model

- For linear, there exists many different measure R_{adj}^2 .
- For a general density/probability function what indicates a good fit?
- Answer: $p(y_i)$, or equivalently $log(p(y_i))$

- AIC = $-2\sum_{i=1}^{n} \log(p(y_i)) + 2d$, d the number of parameters in the model.
- The smaller the better.

AIC, back to linear model

True model:

$$y_i = 1 + x0.1 - x^20.3 + 0.4x^3 + \epsilon_i,$$

$$\epsilon_i \sim N(0, 0.2)$$

Models with different number of parameters (d)

$$y_i = \alpha_0 + \sum_{i=1}^{d-1} x^i \beta_i + \epsilon_i.$$

● Choosing model by best (smallest) AIC.

repeated experiment, in sample

- Simulate 100 observations, repeat 101 times.
- Record the best model by AIC.

Cross-validation

- Split data into two or three sets.
- Training data fit the parameters.
- Test data evaluate performance.
- Evaluation data (not used here).

repeated experiment

- Simulate 100 observations, repeat 101 times.
- Split the data into two part, 60% training, 40% testing.
- Fit the parameters on the training data.
- Choose model on the testing data.

Bayesian

- The AIC is not well suited for the Bayesian modeling.
- Priors can affect over-fitting vs under-fitting.
- Possible to choose prior so they learn less from the data.
- Leaving, model selection for a slide to examine prior effect on the posterior distribution.

Model:

$$y_i \sim N(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta x_i$
 $\alpha \sim N(0, 100)$
 $\beta \sim N(0, \sigma_{\beta})$
 $\sigma \sim (0, 10)$

• What effect does σ_{β} on the posterior distribution.

Regularization, in Machine learning

Model:

$$y_i \sim N(\mu_i, \sigma)$$
 $\mu_i = \alpha + \sum_{j=1}^d x_{ij} \beta_j$
 $\alpha \sim N(0, \sigma_\beta)$
 $\beta_j \sim N(0, \sigma_\beta), j = 1, \dots, d$
 $\sigma \sim (0, 10)$

- σ_{β} is a hyperparameter.
- In Machine learning: choose the optimal σ_{β} gives best prediction.

Figure : Posterior samples for $\sigma_{\beta}=100$

Figure : Posterior samples for $\sigma_{eta}=10$

Figure : Posterior samples for $\sigma_{\beta}=1$

Figure : Posterior samples for $\sigma_{eta}=0.1$

Figure : Posterior samples for $\sigma_{\beta}=0.01$

Figure : Posterior samples for $\sigma_{\beta}=0.001$

Figure : Posterior samples for $\sigma_{\beta}=0.0001$

- Prior makes the posterior conservative.
- How to compare models?
- For $\sigma_{\beta}=0.0001$ and $\sigma_{\beta}=100$ same number of parameters.

WAIC

WAIC balances how well a model predicts, with flexibility of the model

• How well does a model predict the data?

$$\sum_{j=1}^{n} \log(p(y_{j}|y_{1},...,y_{n})) = \sum_{j=1}^{n} \log(\mathbb{E}[p(y_{j}|\alpha,\beta,\sigma,y_{1},...,y_{n})])$$

$$= \sum_{j=1}^{n} \log\left(\int p(y_{j}|\tilde{\alpha},\tilde{\beta},\tilde{\sigma})\cdot p(\tilde{\alpha},\tilde{\beta},\tilde{\sigma}|y_{1},...,y_{n}) d\tilde{\alpha} d\tilde{\beta} d\tilde{\sigma}\right)$$

• How flexible is the model?

$$p_{WAIC} = \sum_{j=1}^{n} \mathbb{V}[\log(p(y_j|\alpha, \beta, \sigma, y_1, \dots, y_n))]$$

WAIC code

Building the model:

WAIC code

Computing $\log(p(y_j|\alpha^{(i)},\beta^{(i)},\sigma^{(i)}))$ for data $j=1,\ldots,n$ and samples $i=1,\ldots,n_{sim}$:

```
\label{eq:continuity} $$II <= sapply($1:n.sim$, $$function(j){$ & mu <= post$alpha[j] + d$neocortex * post$bn[j] $$ & dnorm(d$kcal.per.g, mu, post$sigma[j], log=T )} $$)
```

WAIC code, deviation

Approximating:

$$\sum_{j=1}^{n} \log(\mathbb{E}[p(y_{j}|\alpha, \beta, \sigma, y_{1}, \dots, y_{n})]) = \sum_{j=1}^{n} \log\left(\int p(y_{j}|\tilde{\alpha}, \tilde{\beta}, \tilde{\sigma})p(\tilde{\alpha}, \tilde{\beta}, \tilde{\sigma})|y_{1}, \dots, y_{n}\right) d\tilde{\alpha} d\tilde{\beta} d\tilde{\sigma}\right)$$
with

$$lppd = \sum_{j=1}^{n} \log \left(\frac{1}{n_{sim}} \sum_{i=1}^{n_{sim}} p(y_j | \alpha^{(i)}, \beta^{(i)}, \sigma^{(i)}) \right)$$

```
 \begin{array}{ll} n <& nrow(d) \\ lppd <& sum( \ sapply(1:n, \ function(j) \ log\_sum\_exp(ll[j,]) - log(n.sim))) \end{array}
```

WAIC code, pwaic

Approximating:

$$\sum_{j=1}^{n} \mathbb{V}[\log(p(y_j|\alpha,\beta,\sigma,y_1,\ldots,y_n))]$$

with the variance of the function $\log(p(y_j|\alpha^{(i)},\beta^{(i)},\sigma^{(i)}))$

```
pWAIC <- sum(sapply(1:n, function(j) var(||[j,])))
```

WAIC code, pwaic

Model1

$$y_i \sim N(\mu_i, \sigma)$$

 $\mu_i = \alpha + nero\beta_n$
 $\alpha \sim N(0, \sigma_\beta = 10)$
 $\beta_n \sim N(0, \sigma_\beta = 10)$

Model2

$$y_i \sim N(\mu_i, \sigma)$$

 $\mu_i = \alpha + nero\beta_n$
 $\alpha \sim N(0, \sigma_\beta = 0.1)$
 $\beta_n \sim N(0, \sigma_\beta = 0.1)$

Results:

$$-2lppd \approx -12$$

 $2p_{WAIC} \approx 6$
 $WAIC = -2llpd + 2p_{WAIC} = -6$

Results:

$$-2lppd \approx 36$$

 $2p_{WAIC} \approx 1$
 $WAIC = -2llpd + 2p_{WAIC} = 37$

Comparing models

```
model1 <- map(
              alist(kcal.per.g ~ dnorm(mu, sigma),
              mu <- alpha,
              alpha ~ dnorm(0,10)),
              data = d
model2 <- map(
              alist (kcal.per.g ~ dnorm (mu, sigma),
              mu <- alpha + bn * neocortex,
              alpha ~ dnorm(0,10),
                   ~ dnorm(0,10)),
              data = d
model3 <- map(
              alist (kcal.per.g ~ dnorm(mu, sigma),
                 <- alpha + bn * neocortex + bm * log(mass),
              alpha ~ dnorm(0,10),
                   ~ dnorm(0,10),
                   ~ dnorm(0,10)),
              data = d
```

Comparing models

```
WAIC(model1)
```

```
[1] -7.410979
attr(,"lppd")
[1] 5.938131
attr(,"pWAIC")
[1] 2.232642
attr(,"se")
[1] 4.902928
```

Comparing models

```
{\tt compare (model1,model2,model3)}
```

```
WAIC pWAIC dWAIC weight SE dSE model3 -13.6 5.5 0.0 0.93 8.10 NA model1 -8.0 2.0 5.6 0.06 4.91 7.66 model2 -5.8 3.1 7.8 0.02 4.59 7.91
```

- WAIC_{min} is the smallest WAIC of all compared models.
- $dWAIC_i = WAIC_i WAIC_{min}$, gives the weight of a model

$$w_i = \frac{\exp(-\frac{1}{2}dWAIC_i)}{\sum_{j=1}^{m} \exp(-\frac{1}{2}dWAIC_j)}$$