Internals_03 (12CSUT) [8MAT4]

Shahul Hamed is IKN18 CSO97 CSE'A'Sec YMSem

Let y be the Hardom vollable for the Hardom values $x_1, 20$ $x_2 = 1$ 103 = 2 $x_4 = 3$ $x_5 = 4$ $x_5 = 5$ and the giral Probabilities on.

$$P(x=x_1) = P(0) = k$$

$$P(x=x_2) = P(0) = 5k$$

$$P(x=x_3) = P(0) = 10k$$

$$P(x=x_3) = P(0) = k$$

$$P(x=x_3) = P(0) =$$

And the peropositives were,

$$P_{11} = \frac{1}{6}$$
 $P_{12} = \frac{1}{6}$
 $P_{13} = \frac{1}{6}$
 $P_{21} = \frac{1}{6}$
 $P_{22} = \frac{1}{6}$
 $P_{23} = \frac{1}{6}$
 $P_{31} = \frac{1}{6}$
 $P_{32} = \frac{1}{6}$
 $P_{33} = \frac{1}{6}$

The joint sistribution take is at palous.

The marginal distributions of x and y are

consider 1 = 1 22-4 (2-2)(2+2)

$$(\overline{z-a})(z+a) = \frac{A}{z-a} + \underbrace{a}_{z+2}$$

3

- (c) c:|z|=|z| and -2 both q them lie outside Hence by could by thereon $(\frac{dz}{z^2-4}=0)$
 - (h) L:[2]=3: 2=a=2 and -2 lies inside the circle Algo in reach of the instagrals as in the RHS of Tay Dis

 A(2)=1

Applying Cartery's integral formula, $\int_{C} \frac{f(z)}{z-a} dz = 3\pi i f(a)$ $\int_{C} \frac{dz}{z=2} = 3\pi i f(a) = 3\pi i (1) = 3\pi i$ $\int_{C} \frac{dz}{dz} = 3\pi i f(-2) = 3\pi i (1) = 3\pi i$ $\int_{C} \frac{dz}{dz} = 3\pi i f(-2) = 3\pi i (1) = 3\pi i$ $\int_{C} \frac{dz}{dz} = 3\pi i f(-2) = 3\pi i (1) = 3\pi i$ $\int_{C} \frac{dz}{dz} = 3\pi i f(-2) = 3\pi i (1) = 3\pi i$

 $\frac{1}{2} \int_{C} \frac{d^{2}z}{z^{2}-4} = \frac{1}{4} \left(\frac{2\pi i}{2\pi i} \right) - \frac{1}{4} \left(\frac{2\pi i}{2\pi i} \right) = 0$

Oneider, $\underline{I} = A + B$ (ZH)(Z-a) ZH Z-2

 $i \mathcal{E}$

put z=a (=B(3):3=73 2=1 1=A(-3):A=->3

$$\frac{1}{(2+1)(2+3)} = \frac{1}{2} \frac{1}{2+1} + \frac{1}{2} \frac{1}{2+2}$$

$$\frac{1}{(2+1)(2+3)} = \frac{1}{2} \frac{1}{2+2} - \frac{1}{2+2} = \frac{1}{2+1}$$

$$\frac{1}{(2+1)(2-3)} = \frac{1}{2} \frac{1}{2+2} = \frac{1}{2+2} =$$

How the points z=a = -1 and a hier inside 12/=3 and we have auxhy's integral points.

$$\int_{C} \frac{f(z)}{z-a} dz = \partial \pi i f(a)$$

Taking $f(z) = e^{\partial z}$ and $a = \theta, -1$ unget $\int \frac{e^{\partial z}}{z-a} dz = 2\pi i f(a) = 2\pi i e^{4}$

Substituting there in &O

$$\begin{cases} e^{\alpha z} & dz = 73 \left[\frac{\partial \pi i e^{z}}{e^{2}} - \frac{\partial \pi i}{e^{2}} \right] \end{cases}$$