Кривые второго порядка как конические сечения

Впервые кривые второго порядка изучались древнегреческим математиком Менехмом (ок. 380 г. – ок. 320 г. до н.э.). Его работа заключалась в следующем: если взять две пересекающиеся прямые и вращать их вокруг биссектрисы угла, ими образованного, то получится коническая поверхность (бесконечный в обе стороны конус). Если же пересечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры:

- если плоскость пересекает одну половину конуса, получается эллипс;
- если плоскость пересекает обе половины конуса, то гипербола;
- если плоскость параллельна образующей конуса, получается парабола.

Однако эти научные знания нашли применение лишь в XVII в., когда стало известно, что планеты движутся по эллиптическим траекториям, а пушечный снаряд летит по параболической. Еще позже стало известно, что если придать телу первую космическую скорость, то оно будет двигаться по окружности вокруг Земли, при увеличении этой скорости – по эллипсу, при достижении второй космической скорости – по параболе, а при скорости, большей второй космической – по гиперболе. Для Земли вторая космическая скорость равна 11,16 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с.

Оптические свойства эллипса и гиперболы заключаются в том, что отрезки, проведенные из фокусов к некоторой точке эллипса (гиперболы), образуют равные углы с касательной.

В связи с этим если в один из фокусов эллиптического зеркала поместить источник света, то лучи, отразившись, соберутся в другом фокусе (луч отражается от касательной к эллипсу по правилу «угол падения равен углу отражения»). Если источником является, например, свеча, то предмет, помещенный в другой фокус, может загореться. Отсюда и происходит термин «фокус» (лат. focus — «очаг»), введенный И. Кеплером. На этом свойстве основаны некоторые эффекты с распространением звуковых волн в зданиях с овальными стенами, сводами и др., когда шепотом произнесенное слово в одном из фокусов оказывается слышно в другом.

В результате отражения в гиперболическом зеркале не лучи, исходящие из фокуса, а их продолжения соберутся в другом фокусе: они создадут иллюзию, что источник света находится в другом фокусе.

Существует и *оптическое свойство параболы*: параболическое зеркало собирает в одной точке параллельные лучи; в частности, лучи, параллельные оптической оси, собираются в фокусе параболы.

На этом свойстве основано действие зажигательных зеркал, собирающих параллельные солнечные лучи в одной точке. Согласно легенде, Архимед использовал этот принцип при обороне Сиракуз от римлян, поджигая таким образом вражеские корабли. Оптическое свойство параболы широко применяется сегодня в самых различных сферах жизни: карманный фонарик, автомобильные фары, прожекторы и т. д. Широкое применение нашли параболические зеркала и в конструкции телескопов.

§5. Кривые второго порядка с осями симметрии, параллельными координатным осям

Пусть даны две системы Oxy и O_1XY декартовых координат на плоскости с разными началами O и O_1 и одинаковым направлением осей. Пусть $O_1(x_0; y_0)$ в системе координат на Oxy. Пусть M – произвольная точка на плоскости. Обозначим через M(x; y) ее координаты в системе координат Oxy; через M(X; Y) – в системе координат Oxy. Тогда

$$\begin{cases} X = x - x_0, \\ Y = y - y_0. \end{cases}$$

Пусть имеется эллипс с центром $O_1(x_0; y_0)$ и осями симметрии, параллельными координатным осям Ox и Oy, его уравнение в новой системе координат

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1,$$

а значит, в системе координат Оху уравнение эллипса примет вид

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1.$$

Аналогично для гиперболы с центром $O_1(x_0; y_0)$ и осями симметрии, параллельными координатным осям Ox и Oy (если действительная ось параллельна Ox), имеем:

$$\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1 \iff \frac{(x - x_0)^2}{a^2} - \frac{(y - y_0)^2}{b^2} = 1;$$

для параболы с вершиной $O_1(x_0; y_0)$ получим

$$Y^2 = \pm 2pX \iff (y - y_0)^2 = \pm 2p(x - x_0),$$

если ось симметрии параллельна Ox;

$$X^{2} = \pm 2pY \iff (x - x_{0})^{2} = \pm 2p(y - y_{0}),$$

если ось симметрии параллельна Оу.

Заметим, что после преобразований все эти уравнения могут быть записаны в виде

$$a_{11}x^2 + a_{22}y^2 + 2a_1x + 2a_2y + a_0 = 0,$$

в котором хотя бы один из коэффициентов a_{11} , a_{22} не равен 0.

Для того, чтобы определить тип кривой второго порядка, имея уравнение общего вида, нужно получить ее каноническое уравнение, выделив полный квадрат по каждой переменной. Таким образом, уравнение приводится к каноническому виду с помощью замены переменных

$$\begin{cases} X = x - x_0, \\ Y = y - y_0, \end{cases}$$

которая сводится к параллельному переносу системы координат.

Пример. Построим линию $9x^2 + 4y^2 - 18x + 24y + 9 = 0$.

Peшение. Выделим полный квадрат по x и по y и приведем уравнение кривой второго порядка к каноническому виду:

$$9(x^{2}-2x)+4(y^{2}+6y)+9=0;$$

$$9(x^{2}-2x+1)-9+4(y^{2}+6y+9)-36+9=0;$$

$$9(x-1)^{2}+4(y+3)^{2}=36;$$

$$\frac{(x-1)^{2}}{4}+\frac{(y+3)^{2}}{9}=1.$$

Получили уравнение эллипса с центром в точке $O_1(1; -3)$ и полуосями a=2; b=3 (рис. 30).

Отметим, что у этого эллипса a = 2 — малая полуось, а b = 3 — большая. Фокусы эллипса лежат на его большой оси.

Найдем дополнительно координаты фокусов эллипса. Эти точки будут расположены симметрично относительно центра $O_1(1;-3)$ эллипса на расстоянии c от него, поэтому $F_1(1;-3+c); F_2(1;-3-c)$. Величину c найдем из условия $c^2=3^2-2^2=5$, поэтому $c=\sqrt{5}$, а значит

$$F_1(1; -3 + \sqrt{5}); F_2(1; -3 - \sqrt{5}).$$

Пример. Построить линию $x^2 + 3y^2 - 4x + 20 = 0$.

Решение. Выделяя полный квадрат по x, получим

$$(x^2-4x+4)-4+3y^2+20=0;$$

 $(x-2)^2+3y^2=-16.$

Очевидно, что этому уравнению никакая линия не соответствует.

Пример. Построить линию $x^2 - 4y^2 + 16y = 0$.

Решение. Выделим полный квадрат по *у* и приведем уравнение кривой второго порядка к каноническому виду:

$$x^{2}-4(y^{2}-4y)=0;$$

$$x^{2}-4(y^{2}-4y+4)+16=0;$$

$$x^{2}-4(y-2)^{2}=-16;$$

$$-\frac{x^{2}}{16}+\frac{(y-2)^{2}}{4}=1.$$

Получили уравнение гиперболы с центром в точке $O_1(0;2)$ и полуосями a=4;b=2, причем a — мнимая, b — действительная полуоси.

Эта гипербола проходит через начало координат — точку с координатами x=0; y=0, что хорошо видно из исходного уравнения. Ее фокусы лежат на действительной оси симметрично относительно центра $O_1(0;2)$ гиперболы на расстоянии c от него, поэтому $F_1(0;2+c); F_2(0;2-c)$. Величину c найдем из условия

$$c^2 = 4^2 + 2^2 = 20$$
.

поэтому $c = 2\sqrt{5}$, а значит $F_1(0; 2+2\sqrt{5}); F_2(0; 2-2\sqrt{5}).$ •

Пример. Построим линию $y^2 - 4x - 4y - 8 = 0$.

Решение. Выделим полный квадрат по у и приведем уравнение кривой второго порядка к каноническому виду:

$$(y^2 - 4y + 4) - 4 - 4x - 8 = 0;$$

 $(y-2)^2 = 4x + 12;$
 $(y-2)^2 = 4(x+3).$

Получили уравнение параболы с вершиной $O_1(-3;2)$ и осью симметрии y=2. Поскольку левая часть уравнения неотрицательна, то $x \ge -3$, а значит, ветви параболы направлены вправо. Для уточнения рисунка, найдем точки пересечения параболы с осями координат. На оси Ox переменная y=0, поэтому из исходного уравнения получим -4x-8=0; x=-2. На оси Oy переменная x=0, из последнего уравнения получаем $(y-2)^2=12$; $y=2\pm 2\sqrt{3}$.

Пример. Построим линию $x^2 - 2x - y^2 + 1 = 0$. Решение. Выделяя полный квадрат по x, получим

$$(x-1)^2 - y^2 = 0.$$

Раскладывая левую часть на множители, имеем:

$$(x-1-y)(x-1+y) = 0 \Leftrightarrow \begin{bmatrix} x-1-y=0, \\ x-1+y=0. \end{bmatrix}$$

Таким образом, исходное уравнение задает на плоскости две пересекающиеся прямые x - y = 1 и x + y = 1.

Теорема. Всякое алгебраическое уравнение 2-го порядка

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_1x + 2a_2y + a_0 = 0,$$

(в котором хотя бы один из коэффициентов a_{11}, a_{12}, a_{22} не равен 0) задает одну из следующих линий на плоскости: эллипс (возможно, вырожденный эллипс вида $x^2 + y^2 = 0$ (точка) или мнимый эллипс

вида $x^2 + y^2 = -1$), гиперболу, параболу или пару прямых (пересекающихся, параллельных или совпадающих).

Преобразование уравнения к каноническому виду осуществляется с помощью замены переменных вида

$$\begin{cases} X = \alpha_{11}x + \alpha_{12}y + c_1, \\ Y = \alpha_{21}x + \alpha_{22}y + c_2, \end{cases}$$

которая сводится к повороту и параллельному переносу системы координат.

§6. Поверхности второго порядка. Метод сечений

Поверхностью 2-го порядка называется поверхность, определяемая в декартовой прямоугольной системе координат в пространстве алгебраическим уравнением 2-й степени с тремя переменными, т. е. уравнением вида

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz +$$

 $+2a_1x + 2a_2y + 2a_3z + a_0 = 0,$

в котором хотя бы один из коэффициентов $a_{11}, a_{22}, a_{33}, a_{12}, a_{13}, a_{23}$ не равен 0.

В зависимости от значений коэффициентов это уравнение определяет поверхности следующих типов:

- 1) эллиптический (эллипсоид, частный случай сфера);
- 2) *гиперболический* (однополостный и двуполостный гиперболоиды, коническая поверхность);
- 3) *параболический* (эллиптический и гиперболический параболоиды);
- 4) *цилиндрические* поверхности (эллиптический, гиперболический, параболический цилиндры, пара пересекающихся или пара параллельных плоскостей).

Для того чтобы определить тип поверхности, ее уравнение приводят к наиболее простому *каноническому виду*. Как и в случае кривых 2-го порядка, это можно сделать с помощью замены переменных, которая сводится к повороту и параллельному переносу системы координат.

При изучении формы поверхностей используется *метод сечений*, который состоит в том, что поверхность рассекают плоскостями и по виду линий пересечения делают вывод о форме самой поверхности. Для простоты в качестве секущих плоскостей рассматривают координатные плоскости и им параллельные.

Сфера

 $C\phi epa$ — множество точек пространства, равноудаленных от данной точки $M_0(x_0; y_0; z_0)$, которая называется **центром сферы**. Расстояние R от центра до точек сферы называется ее paduycom.

Если M(x; y; z) — произвольная точка на сфере, то, по определению, расстояние от точки M до точки M_0 должно быть равно R, поэтому

$$\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}=R$$
 или
$$(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2.$$

Если $x_0 = 0$; $y_0 = 0$; $z_0 = 0$, то уравнение сферы с центром в начале координат имеет вид

$$x^2 + y^2 + z^2 = R^2$$
.

Эллипсоид

Эллипсоид — это поверхность, которая в некоторой прямоугольной декартовой системе координат задается уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Для исследования формы этой поверхности применим метод сечений. Будем пересекать данную поверхность плоскостями z = h, параллельными плоскости Oxy. При заданном h линия, полученная в сечении, определяется в плоскости z = h (в системе координат с началом в точке (0;0;h) и осями, параллельными Ox и Oy) уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2}.$$

При h=0 (в плоскости Oxy) получим эллипс с полуосями a и b. При |h| < c получим линию

$$\frac{x^2}{a^2 \left(1 - \frac{h^2}{c^2}\right)} + \frac{y^2}{b^2 \left(1 - \frac{h^2}{c^2}\right)} = 1.$$

Это уравнение определяет эллипс, полуоси которого $a\sqrt{1-\frac{h^2}{c^2}} \le a; \ b\sqrt{1-\frac{h^2}{c^2}} \le b$ и уменьшаются с возрастанием |h|.

При |h| = c получим точку.

При |h| > c плоскость не пересекается с эллипсоидом.

Аналогичная картина имеет место при пересечении эллипсоида плоскостями y = h и x = h.

Таким образом, в сечении эллипсоида любой плоскостью, параллельной одной из координатных плоскостей, можно получить пустое множество, точку или эллипс.

Однополостный гиперболоид

Однополостный гиперболоид — это поверхность, которая в некоторой прямоугольной декартовой системе координат задается уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

Исследуем форму этой поверхности методом сечений.

Рассмотрим сечения плоскостями z = h, параллельными плоскости Oxy. При заданном h линия, полученная в сечении, определяется в плоскости z = h (в системе координат с началом в точке (0;0;h) и осями, параллельными Ox и Oy) уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{h^2}{c^2}$$
.

При h=0 (в плоскости Oxy) получим эллипс с полуосями a и b. При $h\neq 0$ получим линию

$$\frac{x^2}{a^2 \left(1 + \frac{h^2}{c^2}\right)} + \frac{y^2}{b^2 \left(1 + \frac{h^2}{c^2}\right)} = 1,$$

т. е. эллипс, полуоси которого $a\sqrt{1+\frac{h^2}{c^2}}\geq a;\ b\sqrt{1+\frac{h^2}{c^2}}\geq b$ и увеличиваются с возрастанием |h|.

В сечении плоскостью Oyz (при x = 0) получается линия

$$\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1,$$

т. е. гипербола с полуосями b и c. Действительной осью здесь является ось Oy (гипербола пересекает ось Oy в точках b и -b), а мнимой – ось Oz.

Двуполостный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1.$$

Рассмотрим сечения плоскостями z = h, параллельными плоскости Oxy. При заданном h линия, полученная в сечении, определяется в плоскости z = h (в системе координат с началом в точке (0; 0; h) и осями, параллельными Ox и Oy) уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2} - 1.$$

При |h| < c плоскость не пересекает гиперболоид.

При |h| = c получим в сечении точку.

При |h| > c получим эллипс

$$\frac{x^2}{a^2 \left(\frac{h^2}{c^2} - 1\right)} + \frac{y^2}{b^2 \left(\frac{h^2}{c^2} - 1\right)} = 1,$$

полуоси которого $a\sqrt{\frac{h^2}{c^2}-1};\ b\sqrt{\frac{h^2}{c^2}-1}$ увеличиваются с возрастанием |h|.

В сечении плоскостью Oyz (при x = 0) получается линия

$$-\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1,$$

т. е. гипербола с полуосями b и c. Действительной осью здесь является ось Oz (гипербола пересекает ось Oz в точках c и -c), а мнимой - ось Oy.

Коническая поверхность

Коническая поверхность — это поверхность, которая в некоторой прямоугольной декартовой системе координат задается уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

Рассмотрим сечения плоскостями z = h, параллельными плоскости Oxy. При заданном h линия, полученная в сечении, определяется в плоскости z = h (в системе координат с началом в точке (0; 0; h) и осями, параллельными Ox и Oy) уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2}.$$

При |h| = 0 получим в сечении точку — начало координат. При $h \neq 0$ получим эллипс

$$\frac{x^2}{\frac{a^2h^2}{c^2}} + \frac{y^2}{\frac{b^2h^2}{c^2}} = 1,$$

полуоси которого $\frac{a}{c}|h|$; $\frac{b}{c}|h|$ увеличиваются с возрастанием |h|.

В сечении плоскостью Oyz (при x = 0) получается линия

$$\frac{y^2}{b^2} - \frac{z^2}{c^2} = 0,$$

т. е. пара пересекающихся прямых $y = \pm \frac{b}{c}z$.

Эллиптический параболоид

Эллиптический параболоид — это поверхность, которая в некоторой прямоугольной декартовой системе координат задается уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z.$$

Рассмотрим сечения плоскостями z = h, параллельными плоскости Oxy:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = h.$$

При h < 0 пересечения нет.

При h = 0 получим в сечении точку — начало координат.

При h>0 получим эллипс с полуосями $a\sqrt{h}$; $b\sqrt{h}$, увеличивающимися с возрастанием h.

В сечении плоскостью Oyz (при x=0) получается парабола $\frac{y^2}{b^2} = z$ с вершиной в начале координат и осью симметрии Oz.

Гиперболический параболоид

Гиперболический параболоид – это поверхность, которая в некоторой прямоугольной декартовой системе координат задается уравнением

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -z.$$

Рассмотрим сечения плоскостями z = h, параллельными плоскости Oxy:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -h.$$

При h = 0 получим в сечении пару пересекающихся прямых $y = \pm \frac{b}{a} x$. При $h \neq 0$ получим гиперболу

$$-\frac{x^2}{a^2h} + \frac{y^2}{b^2h} = 1.$$

При h > 0 эта гипербола пересекает ось Oy (точнее, прямую x = 0; z = h, параллельную оси Oy); при h < 0 пересекает ось Ox (прямую y = 0; z = h, параллельную оси Ox).

В сечении плоскостью Oyz (при x=0) получается парабола $\frac{y^2}{h^2} = z$, осью симметрии которой является ось Oz, а ветви направ-

лены вверх. Более того, в сечении любой плоскостью x = h, параллельной Oyz, получается парабола, ось симметрии которой параллельна Oz, а ветви направлены вверх.

Аналогично, в сечении плоскостью Oxz (при y=0) получается парабола $\frac{x^2}{a^2} = -z$, осью симметрии которой является ось Oz, а ветви направлены вниз. Более того, в сечении любой плоскостью y=h, параллельной Oxz, получается парабола, ось симметрии которой параллельна Oz, а ветви направлены вниз.

Гиперболический параболоид называют также *седловидной поверхностью*.

Замечание. Гиперболический параболоид можно получить, взяв две параболы с общей вершиной и противоположно направленными ветвями, расположенными в двух взаимно перпендикулярных плоскостях и перемещая одну из парабол параллельно самой себе так, чтобы ее вершина двигалась по второй параболе.

§7. Цилиндрические поверхности

Цилиндрической поверхностью, или **цилиндром**, называется поверхность, которую можно получить перемещением прямой L, которая называются *образующей*, параллельно самой себе вдоль некоторой кривой K, которая называется **направляющей**.

Цилиндрическая поверхность называется *цилиндрической поверхностью 2-го порядка*, если ее направляющей является одна из линий 2-го порядка.

Уравнение второй степени с двумя переменными определяет в пространстве цилиндрическую поверхность с образующей, параллельной той координатной оси, переменная которой отсутствует в уравнении. Так, уравнение любой цилиндрической поверхности, образующая которой параллельна оси Oz, имеет вид F(x; y) = 0.

Рассмотрим цилиндрические поверхности 2-го порядка с образующими, параллельными оси Oz:

- гиперболический цилиндр $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1;$

-параболический цилиндр $y^2 = 2px$.

§8. Способы образования поверхностей

По способу образования поверхностей выделяют линейчатые поверхности и поверхности вращения.

Линейчатая поверхность – это поверхность, которую можно получить движением некоторой прямой линии (*образующей*).

Линейчатыми поверхностями являются:

- цилиндрические поверхности;
- коническая поверхность;
- однополостный гиперболоид;
- гиперболический параболоид (седло).

Интересно, что через каждую точку однополостного гиперболоида и гиперболического параболоида проходит *ровно две прямые*, лежащие на этой поверхности.

Отметим, что однополостные гиперболоиды нашли применение в практике строительства. Сооружение различных высотных башен с использованием прямолинейных образующих однополостного гиперболоида сочетает в себе прочность конструкции с простотой ее исполнения. Идея использования однополостного гипер-

болоида в строительстве принадлежит русскому и советскому инженеру В. Г. Шухову (1853–1939). По проекту Шухова строились водонапорные башни, опоры линий передач, маяки, а также была построена телевизионная башня на Шаболовке в г. Москве, она состоит из секций однополостных гиперболоидов вращения.

Поверхность вращения — это поверхность, образованная вращением некоторой плоской кривой вокруг оси, лежащей в ее плоскости.

Поверхность, полученная вращением вокруг оси Oz, имеет уравнение $F(x^2 + y^2; z) = 0$. Например,

$$\frac{x^2+y^2}{a^2}+\frac{z^2}{c^2}=1 -$$
эллипсоид вращения;
$$\frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=1; \quad \frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=-1 -$$
однополостный и двупо-

лостный гиперболоиды вращения;
$$\frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=0 - круговой конус;$$

$$a$$
 c $x^2 + y^2 = \pm a^2 z$ — параболоид вращения (круговой параболоид); $x^2 + y^2 = a^2$ — круговой цилиндр.

§ 9. Криволинейные системы координат на плоскости и в пространстве

В декартовой прямоугольной системе координат на плоскости каждая точка M однозначно определяется двумя своими координатами x и y. С другой стороны, можно охарактеризовать точку M следующим образом: расстоянием r от начала координат (точки O) и углом ϕ между положительным направлением оси Ox и лучом OM.

Говорят, что на плоскости задана *полярная система координат*, если заданы:

- 1) точка O, которая называется *полюсом*;
- 2) луч *OP*, выходящий из полюса, который называется *поляр- ным лучом*;
- 3) единица масштаба на полярной оси.

Полярными координатами точки M называется пара чисел $(r; \varphi)$, где:

r — расстояние от точки M до полюса (точки O) — **полярный ра- диус**;

 ϕ — угол между полярной осью и лучом OM, который отсчитывается против часовой стрелки, как в тригонометрии, — *полярный угол*.

Обычно считается, что полярный радиус удовлетворяет условию $0 \le r < +\infty$, так как характеризует расстояние. Иногда рассматривают так называемую *обобщенную полярную систему координат*, в которой допускаются отрицательные значения полярного радиуса. Для точки O (полюса) r = 0, значение φ не определено.

Любой точке плоскости, кроме полюса, соответствует одно определенное значение r и множество значений φ , отличающихся на $2\pi n$, $n \in \mathbb{Z}$. Значение полярного угла, удовлетворяющее условию $0 \le \varphi < 2\pi$, называется *главным*.

Пример 1. Построим точки
$$A\bigg(4;\frac{\pi}{3}\bigg); B\bigg(3;\frac{5\pi}{4}\bigg); C\bigg(2;-\frac{\pi}{4}\bigg);$$
 $D(4,5;0); E\bigg(-2;\frac{\pi}{3}\bigg),$ заданные полярными координатами.

Решение. Выберем начало отсчета точку O (полюс), зададим направление полярного луча OP и единицу масштаба на полярной оси. Чтобы построить точку $A\left(4;\frac{\pi}{3}\right)$, повернем луч OP против часовой стрелки на угол $\phi=\frac{\pi}{3}$ и отложим на новом луче отрезок длиной r=4. Аналогично, точка $B\left(3;\frac{5\pi}{4}\right)$ получится, если повернуть полярную ось OP против часовой стрелки на угол $\phi=\frac{5\pi}{4}$ и отложить отрезок длиной r=3.

Чтобы построить точку $C\left(2;-\frac{\pi}{4}\right)$ (с отрицательным значением полярного угла $\phi=-\frac{\pi}{4}$), нужно повернуть полярную ось по часовой стрелке на угол $\frac{\pi}{4}$. Точка D(4,5;0) располагается на полярной оси. Чтобы получить точку $E\left(-2;\frac{\pi}{3}\right)$ (с отрицательным значением полярного радиуса r=-2), нужно отложить отрезок длины 2 на продолжении луча $\phi=\frac{\pi}{3}$ (луча OA) за точку O.

Если совместить начало декартовой системы координат с полюсом O, а ось Ox – с полярной осью OP, то $censuremath{\textit{censure}}$ properties of the end of the en

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi. \end{cases}$$

С другой стороны, зная декартовы координаты (x; y) точки, можно определить ее полярные координаты по формулам

$$r = \sqrt{x^2 + y^2}; \begin{cases} \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}, \\ \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}. \end{cases}$$

Примеры линий, заданных уравнениями в полярных координатах

Пример. Построим **спираль Архимеда** $r = a \varphi$.

Решение. При увеличении полярного угла от $\phi=0$ до $\phi=2\pi$ полярный радиус постепенно увеличивается от r=0 до $r=2\pi a$. Далее, при изменении полярного угла на 2π (полный оборот вокруг полюса) полярный радиус изменяется на одно и то же значение $2\pi a$, т. е. каждый новый виток спирали отстоит от предыдущего и последующего на одно и то же расстояние $2\pi a$.

 Π ример. Определим, какая линия задается уравнением $r=2a\cos\varphi$.

Решение. Перейдем к декартовым координатам. Для этого умножим обе части уравнения на r и воспользуемся формулами $r^2 = x^2 + y^2$, $x = r \cos \varphi$. Тогда

$$r = 2a\cos\varphi;$$
 $r^2 = 2ar\cos\varphi;$ $x^2 + y^2 = 2ax.$

Выделяя в последнем уравнении полный квадрат по переменной x, получим

$$x^{2}-2ax+a^{2}+y^{2}=a^{2}$$
; $(x-a)^{2}+y^{2}=a^{2}$.

Таким образом, $r = 2a\cos\phi$ — это уравнение окружности с центром (a;0) и радиусом R = a.

Аналогично, $r = 2a \sin \varphi$ — уравнение окружности с центром (0; a) и радиусом R = a.

Пример. Построим линию $r = a(1 + \cos \varphi)$.

Решение. Заметим, что поскольку функция $\cos \varphi$ имеет период 2π , то все точки линии можно получить, если взять $\varphi \in [0; 2\pi]$.

При увеличении полярного угла от $\varphi=0$ до $\varphi=\pi$ значения функции $\cos\varphi$ уменьшаются от 1 до -1, а значения полярного радиуса — соответственно, от r=2a до r=0. Аналогично, при изменении полярного угла от $\varphi=\pi$ до $\varphi=2\pi$ значения функции $\cos\varphi$ увеличиваются от -1 до 1, значения полярного радиуса — от r=0 до r=2a. Учитывая это, отметим опорные точки с полярными координатами $(2a;0), \left(a;\frac{\pi}{2}\right), (0;\pi), \left(a;\frac{3\pi}{2}\right)$ и схематически построим линию.

Линия, заданная уравнением $r = a(1 + \cos \varphi)$ (или $r = a(1 - \cos \varphi)$, $r = a(1 + \sin \varphi)$, $r = a(1 - \sin \varphi)$), называется **кардиоидой**. **Кардио-ида** — это траектория точки, лежащей на окружности радиуса $\frac{a}{2}$, которая катится по окружности такого же радиуса.

Линия, заданная уравнением вида $r = a + b\cos\varphi$ (или $r = a + b\sin\varphi$), называется улиткой Паскаля (в честь Этьена Паскаля (1588–1651), математика-любителя, отца знаменитого Блеза Паскаля). Линии, заданные уравнениями вида $r = a\cos k\varphi$ (или $r = a\sin k\varphi$), называются розами.

Пример. Построим трехлепестковую розу $r = a \sin 3\varphi$.

Решение. Заметим, что поскольку функция $\sin 3\phi$ имеет период $\frac{2\pi}{3}$, достаточно построить часть линии, соответствующую значе-

ниям $\phi \in \left[0; \frac{2\pi}{3}\right]$, а затем повернуть картинку на угол $\frac{2\pi}{3}$ дважды, чтобы получить все точки, отвечающие $\phi \in [0; 2\pi]$.

Значения полярного радиуса $r \le a$, т. е. вся линия будет расположена внутри окружности r = a. При увеличении полярного угла от $\phi = 0$ до $\phi = \frac{\pi}{6}$ значения полярного радиуса увеличиваются от

r=0 до r=a, а при $\phi \in \left[\frac{\pi}{6}; \frac{\pi}{3}\right]$ значения полярного радиуса уменьшаются от r=a до r=0. При $\phi \in \left[\frac{\pi}{3}; \frac{2\pi}{3}\right]$ получаем $r \le 0$, т. е. в секторе между $\phi = \frac{\pi}{3}$ и $\phi = \frac{2\pi}{3}$ точек линии нет (если рассматривать обобщенные полярные координаты, то соответствующие точки будут расположены в секторе между $\phi = \frac{4\pi}{3}$ и $\phi = \frac{5\pi}{3}$). Отмечая опорные точки, в которых r=a, схематически построим линию.

При специальном выборе полярной системы координат (если поместить полюс в один из фокусов кривой 2-го порядка, а полярную ось направить из фокуса по оси кривой в сторону, противоположную той, где лежит соответствующая директриса) уравнение кривой 2-го порядка имеет вид

$$r = \frac{p}{1 - \varepsilon \cos \varphi},$$

где ε — эксцентриситет кривой, а p — ее фокальный параметр (в случае параболы p — ее параметр; в случае эллипса $p = \frac{a^2}{b}$, где a —

большая, b — малая полуось; в случае гиперболы $p = \frac{a^2}{b}$, где a — действительная, b — мнимая полуось).

Пусть в пространстве задана декартова система координат Oxyz. Пусть M' – проекция точки M на плоскость Oxy.

Цилиндрическими координатами точки M называется тройка чисел $(r; \varphi; z)$, где:

r – расстояние от начала координат (точки O) до точки M';

 ϕ – угол между осью Ox и лучом OM';

z — аппликата точки M.

Связь между цилиндрическими $(r; \varphi; z)$ и декартовыми (x; y; z) координатами точки задается формулами

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi, \\ z = z. \end{cases}$$

Пусть в пространстве задана декартова система координат Oxyz. Обозначим через M' проекцию точки M на плоскость Oxy.

Сферическими координатами точки M называется тройка чисел $(\rho; \theta; \phi)$, где:

- ρ расстояние от начала координат (точки O) до точки M;
- θ угол между осью Oz и лучом OM $(0 \le \theta \le \pi)$;
- φ угол между осью Ox и лучом OM' ($0 \le \varphi < 2\pi$).

Можно видеть, что связь между сферическими (ρ ; θ ; ϕ) и декартовыми (x; y; z) координатами точки задается формулами

$$\begin{cases} x = \rho \sin \theta \cos \varphi, \\ y = \rho \sin \theta \sin \varphi, \\ z = \rho \cos \theta. \end{cases}$$