Properties of Materials

Theme: Polymers and Composites

Lecture 1: Structures of Polymers

Dr Ian Hamerton

Ian.hamerton@bristol.ac.uk

Room 0.106 Queen's Building

Lecture Contents

- Lecture 1
 - Introduction
 - Basic structure of polymers
- Lecture 2
 - Deformation
 - Chain alignment and viscoelasticity
- Lecture 3
 - Composites
 - Modulus and strength

Introduction

Generally, engineers say polymers but we mean plastics

Historical Context

Properties Context

Polymers open up huge areas of property space

Polymers show more capacity to customise properties than any other material class

Why use rubber?

- Low density
- Low modulus
 - Conformable
 - High resilience
- Cheap to produce
- Easy to form into complex shapes
- High friction coefficient
- Easy to colour (and robust colour)

Structure

Customising polymers

Longer chains

Bigger, heavier more entangled chains

Change repeat units

Some repeat units are stronger, stiffer or have different chemistry

Change interlinking

Chains can be tethered together by strong covalent bond

Change architecture

Macroscopic changes in shape and form of polymer product (composites and foams)

Change crystallisation

Some polymers can form crystals to varying degrees

Amorphous Polymers

- Long chains don't pack easily
 - Become entangled and twisted together
- Lack of long range order
 - Amorphous
- Stiffness arises from entanglements of chains

Semi-crystalline

- Hard to get close packing of long chains
 - Small regions of crystals surrounded by amorphous phase
- Additional stiffness derived from close packing

Chain length and Crystallinity

Longer chains, more crystallinity = denser, stiffer, stronger polymer

Amorphous vs. crystalline

Amorphous

- Broad softening range
 - Variety of bond strengths due to formless structure
- Usually transparent
 - Loose structure of consistent refractive index

Semi-crystalline

- Sharp melting points
 - Regular structure so bonds have the same strength
- Usually opaque
 - Regions have different refractive index leading to interference

Amorphous vs. crystalline

Amorphous

- Low chemical resistance
 - Open random structure allows chemicals to penetrate
- Low shrinkage
 - Processed in amorphous state and remains in this state

liquid solid

Semi-crystalline

- High chemical resistance
 - Tightly packed structure is harder to infiltrate
- High shrinkage
 - Crystalline regions take up less space than amorphous

Interlinking

 Chains have thousands of covalent bonds in the chain

- Thermoplastics
 - Polyethylene
 - Nylon

- Chains can be linked together by additional covalent bonds
 - Interlinks or cross-links

- Thermosets
 - Epoxy resins

Thermoplastics

- Most common
- Allow mechanised forming methods
 - Heat based
 - Suited to high productivity

Polymers that melt or soften are

thermoplastics

Thermoplastics

Thermosets

- No need for heating/cooling
 - Particularly suited to custom, low productivity
- Automated still easy
 - Need to allow for setting time

Prepare component(s)

Mix, heat, press or irradiate

Final piece

Hand layup of composites

Summary

- Characterised by
 - low density
 - low stiffness/strength
 - Ease of manufacture
- Polymers are highly customisable
 - Monomer, chain length, interlinking, crystallinity

Properties of Materials

Theme: Polymers and Composites

Lecture 2: Deformation of Polymers

Dr Ian Hamerton

Ian.hamerton@bristol.ac.uk

Room 0.106 Queen's Building

Introduction

- Glass transition temperature
 - Change from brittle to rubbery
- Chain alignment
 - Increasing strength with deformation
- Viscoelasticity
 - Time dependent plastic deformation

Each chain occupies a tube of **free** space within which it can slide or rotate (and bond with neighbours)

In addition to bonding chains become linked at 'entanglement' points (last lecture)

Crystalline

Step change in state
 at melting point

Glass

- Change in gradient at glass transition
- No clear change from solid to liquid

Critical free volume to let chains rotate

 One polymer shows different behaviour at different temperatures

Polymer	GTT (°C)	Melting point (°C)
LDPE	-110	115
PTFE	-97	327
HDPE	-90	137
PP	-18	175
Nylon	57	265
PET	69	265
PVC	87	212
PS	100	240
PC	150	265

 Challenger: rubber seals expanded too slowly in low temperatures (below glass transition)

Stiffness (Glassy Polymers)

Small distortions of secondary and primary bonding

Some load taken by primary bonds (stiff)
Some load taken by secondary bonds (compliant)

Model: springs in parallel

Model: springs in series

Stiffness (Glassy Polymers)

Diamond 100% covalent bonds linking C atoms

Paraffin wax Small chains Lots of secondary bonds

Plastic (permanent) deformation

Chain alignment

Strain

Stable Necking

Unlike metals, polymers form long stable necks as chains are drawn in an align

Memory Effect

Applying heat lets aligned chains curl up again

Reverses previous plastic strain

Kevlar (aromatic polyamide)

 5 times higher specific strength than steel

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

- Straight, immobile repeat units, many secondary bonds
 - Highly aligned in fibres

Polymers show time-dependent, recoverable strain = viscoelasticity

Time

 t_r

Creep

The increase in strain when held at constant stress

Creep Modulus

$$E(t) = \frac{\sigma_0}{\varepsilon(t)}$$

Stress relaxation

The reduction in stress when held at

constant strain

$$E(t) = \frac{\sigma(t)}{\varepsilon_0}$$

Try to mimic this behaviour using imaginary elements

Spring

Simple elastic spring following Hooke's law. Instantaneous deformation with force proportional to deformation *Elastic part*

Dashpot

Damping element filled with viscous fluid which resists movement of the piston. Force needed is a function of deformation rate *Viscous part*

$$\sigma = E\varepsilon$$

Standard Linear

Model
(simplest model that predicts both creep and relaxation)

Predicts 100% recovery

How might permanent deformation be included? (revision question 1)

Viscoelastic Behaviour

Ear plugs recover shape to fill available space

Cars left for long times develop flat spots (persists for some time)

Maxwell Relaxation Time

The reduction in stress when held at constant strain

Relaxation Modulus $E(t) = \frac{\sigma(t)}{\varepsilon_0}$

Can use these models to derive mathematical models

Maxwell unit

$$\frac{d\varepsilon_s}{dt} = \frac{1}{E} \frac{d\sigma}{dt} = -\frac{d\varepsilon_d}{dt}$$

Maxwell Relaxation Time

Under conditions of stress relaxation:

$$\frac{d\varepsilon}{dt} = \frac{1}{E}\frac{d\sigma}{dt} + \frac{\sigma}{\eta} = 0$$

$$\ln\left(\frac{\sigma}{\sigma_0}\right) = -\frac{E}{\eta}t$$

$$\int_0^t \frac{E}{\eta}dt = -\int_{\sigma_0}^\sigma \frac{d\sigma}{\sigma}$$

$$\sigma = \sigma_0 \exp\left(-\frac{E}{\eta}t\right)$$

$$\tau = \frac{\eta}{E}$$
 Relaxation time
$$\max_{\text{Material parameter}} = \sigma_0 \exp\left(-\frac{t}{\tau}\right)$$

Measured empirically

Long time = dimensionally stable

Maxwell Relaxation Time

These are only semi-empirical models for plastic behaviour

Time (s)	Stress (MPa)
0	8.62
157	2.44

Constant strain = 5%

What is the relaxation modulus after 331 seconds?

$$E(t) = \frac{\sigma(t)}{\varepsilon_0}$$

$$\sigma = \sigma_0 \exp\left(-\frac{t}{\tau}\right)$$

$$au = \frac{-t}{\ln{(\sigma/\sigma_0)}}$$
 2.44 MPa 8.62 MPa

$$\tau = 124.47s$$

$$\sigma = 8.62 \exp\left(-\frac{331}{124.5}\right)$$
$$= 0.60 \text{MPa}$$

$$E(t) = \frac{0.6}{0.05} = 12.07 \text{MPa}$$

Summary

- Most of the time we can treat polymer properties the same as metals/ceramics
- Need to be aware of odd differences arising from unique structure
 - Glass transition temperature
 - Chain alignment (increasing strength)
 - Viscoelasticity

Properties of Materials

Theme: Polymers and Composites

Lecture 3: Composites

Dr Chenchen Zhu

<u>Chenchen.zhu@bristol.ac.uk</u>

ACCIS Suite, Queen's Building

Composites

Carbon fibre

- Hard to make bulk strong carbon
- Easy to make high quality fibre

- Fibre strong in tension
- Weave into fibre and cloth for mass use

Carbon fibre + matrix (resin)

- Fibre provides strength and stiffness
- Resin provides protection (wear, chemical) and holds shape

Properties

Expect to see volume fraction dependent properties

Modulus Aligned fibres

- Same strain in both components
 - $-\varepsilon_c = \varepsilon_f = \varepsilon_m$
 - Otherwise continuity breaks
- Fibre higher modulus
 - Same strain, high E = high fibre stress
 - Load partitioning
 - Load shedding

Modulus Unaligned fibres

- Same stress in both components
 - $-\sigma_c = \sigma_f = \sigma_m$
 - No need for continuity
- Strain function of E
 - Matrix: low E, high strain
 - Fibre: high E, low strain
- Fibres provide no restraint on matrix strain
 - limited reinforcement

 σ

Modulus

Aligned (Voigt)

$$E_c = V_f E_f + \left(1 - V_f\right) E_m \ _{\rm E_{composite}} \label{eq:ecomposite}$$
 Upper limit

Unaligned (Reuss)

$$\frac{1}{E_c} = \frac{V_f}{E_f} + \frac{\left(1 - V_f\right)}{E_m}$$

Lower limit

Data for

Anisotropy

Anisotropy

Aligned short fibres High peak E High anisotropy

Random short fibres Lower peak E Low anisotropy

$$E_c \approx \frac{(E_u + E_l)}{2}$$

Anisotropy

Opportunity to customise modulus to be high in specified directions

Potential for failure due to unexpected loading!

- Much more complex than modulus
- Multiple failure mechanisms
- Hard to predict compared to metals
 - Major limit on uptake

Assume linear elastic fibres and matrix

$$\sigma_c = V_f \sigma_f + (1 - V_f) \sigma_m$$

- High fibre fraction
 - Controlled by stiff fibres
 - Fibres fail, matrix fails

$$\varepsilon_m = \varepsilon_f$$

$$\sigma_m' = E_m \varepsilon_f$$

Reduced matrix contribution

$$\sigma_c = V_f \sigma_f + (1 - V_f) \sigma_m$$

$$\sigma_c = V_f \sigma_f + (1 - V_f) \sigma_m'$$

$$\sigma_m$$

$$\sigma_m'$$

$$V_{\text{crit } V_{\text{min}}} V_f$$

- Low fibre fraction
 - Controlled by matrix
 - matrix fails, fibres fail
 - $-\varepsilon_c \approx \varepsilon_m$
 - Fibres already fractured
 by the time the matrix
 reaches failure strain
 - Fibres effectively hole

$$\sigma_c = V_f \sigma_f + (1 - V_f) \sigma_m$$

$$\sigma_c = (1 - V_f) \sigma_m -$$

- Less benefit than expected
- Need minimum V_f to improve compared to matrix
- Actually compromise strength prior to V_{min}
 - Very low for strong fibres/weak matrix
 - Worst strength at V_{crit}

Toughness

- Composites give E and σ_f of ceramic without the brittleness (much)
- Small, high quality fibres
- Protection by matrix
- Complex fracture mechanisms

Toughness

- Fibre pull out
 - Drag fibres from matrix
- Crack bridging
 - Fibres hold crack
 together and prevent
 it growing
- Deflection
 - Fibres get in way of crack

Summary

- Composites (and other hybrids) get strengths of both phases and mitigate weaknesses of both
- Potential game changer in design
 - Not properly exploited?

- Introduce new set of complications
 - Either component can fail
 - Multiple failure modes
 - New failure modes
 - Anisotropy in modulus and strength