Transmission Media

Computer Networks Lecture 1

Classification of Media Types

- Copper (Metalic)
 - Coaxial cable
 - Twisted pair
 - Shielded
 - Unshielded
- Optical
 - Multimode
 - Singlemode
- Wireless

Coaxial cables (1)

- Dominated in computer networks for a long time
 - Special cables (e.g. RG-58 for 10Base2 Ethernet)
 - 75-Ohm CaTV cable (Internet over cable TV)
- Good parameters in a wide frequency range
 - may be used for both baseband and broadband transmission
- Expensive

Coaxial Cables (2)

Usage options

- Baseband (0-150 MHz)
 - Modulation is not used
 - Reach limited to hundreds of meters to kilometers due to electrical characteristics
- Broadband (50-750MHz)
 - Carries modulated signal(s)
 - Cable lengths of a few kilometers are common

Anatomy of the Coaxial Cable

Other cabling system components:

- BNC crimp connectors
- T-connectors
- terminators

Twisted Pair (1)

- Cheaper than coaxial cabling
- Started to be used to utilize existing telephone wirings (US)
 - worse parameters than coaxial cable
- Differential mode transmission over a balanced pair
 - the receiver detects a difference between two

levels

Twisted Pair (2)

- The cable contains 4 twisted pairs
- Typically used in LANs for baseband transmissions
 - Typical reach of 100m (1Gbps)
 - The applicable bit rate depends on the quality of the cable (the TP category)
 - The pairs are also twisted one around the others

Shielding of the TP Cable

STP (Shielded Twisted Pair)

- Shielding prevents the electromagnetic interference
- Various shielding options
 - can be applied to individual pairs and/or to the collection of pairs
- The shield have to be grounded at both ends
 - there is a need to sustain shielding all the way through between the devices

EIA/TIA 568 TP Categories (1)

- Every category defines parameters up to the upper frequency that increases with the number of the category
- Relates to cables as well as to the other components of the cabling system
 - connectors, patch-panels, jacks
 - the cable may be untwisted no more than 0,5"
 (13 mm) from its termination

EIA/TIA 568 TP Categories (2)

- Cat1 1 MHz
 - POTS, never a standard
- Cat2 4 MHz
 - 4Mbps IBM Token Ring cabling system
 - never a standard
- Cat3 16 MHz 10 MHz
 - voice, 10BaseT Ethernet
- Cat4 20MHz
 - 16Mbps Token Ring, never widely installed
- Cat5 100 MHz
 - Commonly used for 100BaseT Ethernet
- Cat5E new parameters (FEXT, ...)
 - Usable for Gigabit Ethernet

EIA/TIA 568 TP Categories (3)

- Cat6 250 MHz
 - 10Gbps Ethernet / limited cable length
- Cat6a 500 MHz
 - suitable for 10Gbps Ethernet / full 100m
- Cat7 600Mhz (screened)
 - Individual pairs and the whole cable are shielded
 - special connectors (backward compatible) GG45
- Cat7a 1GHz
 - considered for 40G/100G Ethernet
- Cat8 up to 2GHz
 - 30-36m maximum distance, for data centers

Examples of TP Cable Parameters

- Most important measured parameters:
 - Propagation delay
 - Delay skew
 - Attenuation (insertion loss)
 - Return loss (reflections)
 - Near/Far End Crosstalk (NEXT, FEXT)
 - DC loop resistance
- Calculated parameters:
 - ACR (Attenuation/Crosstalk Ratio)
- Defined for a frequency range of the particular cable category

See http://en.wikipedia.org/wiki/Copper_cable_certification for detailed explanation

Optical Fiber

- Supports very high transfer rates
 - tens of Gbps
- Resilient against noise and signal tapping (eavesdropping)
- The reachable distance depends on the required bitrate
 - Mb/s*km ≈ const
- Multimode or singlemode

Geometrical Optics A Reminder of Basic Terms (1)

- Index of refraction
 - A ratio between a propagation velocity of light in vacuum and in a particular medium
 - 1.6 for glass
 - depends on the wavelength => results in dispersion
- Law of reflection

$$\alpha_1 = \alpha_2$$

Geometrical Optics A Reminder of Basic Terms (2)

- Snell's law: $sin(\alpha_1)/sin(\alpha_2) = n_2/n_1$
- When reaching a critical angle, total reflection occurs

Propagation of an Optical Signal in a Multimode Optical Fiber (1)

Propagation of an Optical Signal in a Multimode Optical Fiber (2)

Numerical aperture – range of angles over which the system can accept the light.

Utilizable Frequency Ranges of the Optical Fiber

- The chosen frequency has to be compatible with technology of production of light sources and detectors (LEDs, PIN photodiodes)
- Multiple ranges may be used in parallel (WDM/DWDM systems)

Limitations of the Optical Fiber

- Just the 2-level data encoding
 - light/darkness
- Attenuation is not the main issue
- The main cause of the bit rate limitation is the dispersion that causes the deformation of (a rectangular) signal may lead to overlapping of the neighboring pulses

The Chromatic Dispersion

Various frequencies travel with various speeds

 We try to use light sources with a narrow band of frequencies of the emitted light

(laser)

The Modal Dispersion

- Multiple light rays enter the fiber under various angles to the fiber axis
- Each of them then reflects within a fiber under a different angle
- Paths of the rays have different lengths, that causes a delay skew and thus the deformation of the received signal
 - Can be reduced by gradient-index fiber in that rays follow sinusoidal paths
 - => can be avoided by usage of the single-mode fibers

Optical Fiber Cables

- Cable contains at least 2 fibers
 - commonly more for future use
- Polymer strength members
- Various cable types
 - MM, SM, WDM, DWDM, ...
 - indoor/outdoor
 - for horizontal/vertical mounting

Joining of Optical fibers (1)

Fiber cleaving

- Fusion splicing, mechanical splicing
 - Splice protectors
- The handling is easier for MMF due to the higher diameter of the core
 - the higher absolute deviation does not cause so much loss as with SMF

Joining of Optical fibers (2)

Mechanical Splice

Fusion Splicer

Optical Connectors

- ST, SC, FC, LC, MT-RJ and others
 See: http://en.wikipedia.org/wiki/Optical_fiber_connector
- Commonly available as a prefabricated pigtails

Structured Cabling

Structured Cabling

- Originally, various network technologies required different cabling
- Today, we use a generic cabling system that is independent on the application and the particular network technology
 - designed and installed at the building without a knowledge of particular networking technologies
 - the same philosophy as with power cabling
 - expected operating life of ca 15 years
- Integrates various services
 - telephony, LAN, alarm system, ...

Advantages of the Generic Cabling System

- The network technology can be upgraded in the future without changes in the cabling
- Changes in the network may be accomplished rather easily
 - as the cabling structure is general
 - The installation investment is little bit higher compaed to the ad-hoc cabling designated just for the current needs

Structured Cabling Standards

- Commercial Building Wiring Standard
 - EIA/TIA 568 now ANSI/TIA-568-D, EN 50173
- The similar standard exists for residential buildings
 - TIA 570-A-1998, now ANSI/TIA-570-D
- Defines general terminology, topology, cable types, cable lengths, connectors and other cabling system components

Basic Terminology of the Structured Cabling System

- Horizontal and Backbone cabling
- Telecommunication Closet (TC)
- Main Crossconnect (MC)
- Point of Presence (POP)
 - a demarcation point between the building and the connection provider

Horizontal Cabling: Selected basic requirements for copper cables

- At least UTP Cat 5E/6A nowadays depending on the standard
- RJ-45 connectors, defined wiremaps
- 100m maximum distance between active network devices
 - 90 + 3 + 6 m
- at least 2 outlets per 10m² of the office area
 - much more are necessary in practice nowadays

Usage of the Structured Cabling

Network devices and stations may be interconnected in a flexible manner using patch cords on appropriate patch panels

