Algebra 2R

a voyage into the unknown

koteczek

 \sim

Spis treści

Teoria równań algebraicznych 1.1 Rozwiązywanie układów równań	4 4 6
Ciała skończone i pierwiastki z jedności 2.1 Algebraiczne domknięcie ciała	9 10
Ciała proste, pierwiastki z jedności 3.1 Ciała proste	12
Rozszerzenia ciał 4.1 Wymiar przestrzeni liniowej	15 15
Wielomiany koła, domknięcia algebraiczne 5.1 Wielomian rozkładu koła [cyclotomic polynomials]	
Wstęp do teorii Galois 6.1 Grupy Galois	26
Rozszerzenia radykalne (czysty Bangladesz)	31

Wykład 1: Teoria równań algebraicznych

Przez R, S będziemy oznaczać pierścienie przemienne z 1 ≠ 0, natomiast K, L będziemy rezerwować dla oznaczeń ciał.

1.1 Rozwiązywanie układów równań

Rozważmy funkcje $f_1, ..., f_m \in R[X_1, ..., X_n]$. Dla wygody będziemy oznaczać krotki przez \overline{X} , czyli $R[X_1, ..., X_n] = R[\overline{X}]$. Pojawia się problem: czy istnieje rozszerzenie pierścieni z jednością $R \subseteq S$ takie, że układ $U: f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ ma rozwiązanie w pierścieniu S?

Fakt 1.1. $\overline{a} = (a_1, ..., a_n) \subseteq S$, gdzie S jest rozszerzeniem pierścienia R, jest rozwiązaniem układu równań $U \iff g(\overline{a}) = 0$ dla każdego wielomianu $g \in (f_1, ..., f_m) \triangleleft R[X]$.

Dowód. \longleftarrow Implikacja jest dość trywialna, jeśli każdy wielomian z (f_1 , ..., f_m), czyli wytworzony za pomocą sumy i produktu wielomianów f_1 , ..., f_m zeruje się na \overline{a} , to musi zerować się też na każdym z tych wielomianów.

⇒ Rozważamy dwa przypadki:

1.
$$(f_1, ..., f_m) \ni b \neq 0 i b \in R$$
.

To znaczy w $(f_1, ..., f_m)$ mamy pewien niezerowy wyraz wolny. Wtedy mamy wielomian $g \in (f_1, ..., f_m)$ taki, że $g(\overline{a}) \neq 0$. Ale przecież g jest kombinacką wielomianów $f_1, ..., f_m$, która na \overline{a} przyjmują wartość 0. W takim razie dostajemy układ sprzeczny i przypadek jest do odrzucenia.

2. 2. $(f_1, ..., f_m) \cap R = \{0\}$. (nie ma wyrazów wolnych różnych od 0)

Teraz wiemy, że układ U jest niesprzeczny, a więc możemy skonstruować pierścień z 1 S będący rozszerzeniem R [S \supseteq R] oraz rozwiązanie $\overline{a} \subseteq$ S spełniające nasz układ równań.

Niech S = $R[\overline{X}]/(f_1, ..., f_m)$ i rozważmy

$$j: R[\overline{X}] \rightarrow S = R[\overline{X}]/(f_1, ..., f_m)$$

nazywane przekształceniem ilorazowym . Po pierwsze, zauważmy, że j ↑ R jest 1 – 1, bo

$$ker(j \upharpoonright R) = ker(j) \cap R = (f_1, ..., f_m) \cap R = \{0\}$$

i dlatego

$$j \upharpoonright R : R \xrightarrow{\cong} j[R] \subseteq S.$$

Z uwagi na ten izomorfizm, będziemy utożsamiać R, j[R]. W takim razie, S jest rozszerzeniem pierścienia R. Czyli mamy rozszerzenie pierścienia R.

Niech

$$\bar{a} = (a_1, ..., a_m) = (j(X_1), ..., j(X_n)) \subset S$$

czyli jako potencjalne rozwiązanie rozważamy zbiór obrazów wielomianów stopnia 1 przez wcześniej zdefiniowaną funkcję $j:R[\overline{X}]\to S$. Tak zdefiniowane \overline{a} jest rozwiązaniem układu U w pierścieniu S, bo dla funkcji wielomianowej (czyli zapisywalnej jako wielomian) $\widehat{f_i}\in (f_1,...,f_m)$ mamy

$$\widehat{f_i}(\overline{a}) = \widehat{f_i}(j(X_1), ..., j(X_m)) = j(\widehat{f_i}(X_1, ..., X_m)) = j(f_i) = 0.$$

Uwaga 1.2. Skonstruowane powyżej rozwiązanie a układu U ma następującą własność uniwersalności:

(⑤) Jeżeli S' \supseteq R jest rozszerzeniem pierścienia z 1 i \overline{a}' = $(a'_1,...,a'_m)\subseteq S$ jest rozwiązaniem U w S', to istnieje jedyny homomorfizm

$$h: R[\overline{a}] \to R[\overline{a}']$$

taki, że h \upharpoonright R jest identycznością na R i h $(\overline{a}) = \overline{a}'$. Wszystkie rozwiązania układów są homomorficzne.

Tutaj $R[\overline{a}] \subseteq S$ jest podpierścieniem generowanym przez $R \cup {\overline{a}}$, czyli zbiór:

$$R[\overline{a}] = \{f(\overline{a}) : f(\overline{X}) \in R[\overline{X}]\} \subseteq S$$

Dowód. Niech I = $\{g \in R[\overline{X}] : g(\overline{a}') = 0\} \subseteq S'$. Oczywiście mamy, że I $\triangleleft R[\overline{X}]$, a więc

$$(f_1, ..., f_m) \subseteq I$$
.

Z twierdzenia o faktoryzacji wie

Homomorfizm $\phi: R[\overline{X}] \to R[\overline{a}']$ określamy wzorem

$$\phi(w) = w(\overline{a}).$$

a homomorfizm j jest jak wyżej odwzorowaniem ilorazowym. Widzimy, że

$$I = ker(\phi)$$

$$ker(j) = (f_1, ..., f_m).$$

Z twierdzenia o homomorfizmie pierścieni dostajemy jedyny homomorfizm

$$h: R[X]/(f_1,...,f_m) \rightarrow R[\overline{a}]$$

taki, że
$$h(\overline{a}) = \overline{a}'$$
.

Uwaga 1.3. Jeśli I = $(f_1, ..., f_m)$, to h : $R[\overline{a}] \xrightarrow{\cong} R[\overline{a}']$.

Wtedy mamy ker ϕ = ker j, czyli ker(h \circ j) = ker ϕ = ker j, no a z tego wynika, że ker h jest trywialne, czyli h jest apimorfizmem (1-1). Z drugiej strony, Im ϕ = Im(h \circ j), a ϕ jest epimorfizmem ("na"), więc również h musi być "na".

Załóżmy, że S \supseteq R jest rozszerzeniem pierścienia oraz $\overline{a} \in S^n$. Wtedy:

1. ideał \overline{a} nad R definiujemy jako

$$I(\overline{a}/R) = \{g \in R[\overline{X}] : g(\overline{a}) = 0\}$$

2. a nazywamy rozwiązaniem ogólnym układu U, jeśli ideał

$$I(\bar{a}/R) = (f_1, ..., f_m).$$

<u></u>

Uwaga 1.4. W sytuacji jak z definicji wyżej, gdy U jest układem niesprzecznym, wtedy

ā jest rozwiązaniem ogólnym układu U ⇔ zachodzi warunek (᠖) .

Dowód. Ćwiczenia.

1.2 Rozszerzanie ciał

Dla K \subseteq L ciał i \overline{a} \subseteq L definiujemy **ideał** \overline{a} **nad** K jako:

$$I(\overline{a}/L) := \{f(X_1, ..., X_n) \in K[\overline{X}] : f(\overline{a}) = 0\},$$

to znaczy generujemy ideał w wielomianach nad K zawierający wszystkie wielomiany (niekoniecznie tylko jednej zmiennej) zerujące się w ā.

Przykład:

Dla K = \mathbb{Q} , L = \mathbb{R} , n = 1, $a_1 = \sqrt{2}$ mamy

$$I(\sqrt{2}/\mathbb{O}) = \{f(x^2 - 2) : f \in \mathbb{O}[X]\} = (x^2 - 2) \triangleleft \mathbb{O}[X]$$

Dalej, definiujemy

$$K[\overline{a}] := \{f(\overline{a}) : f \in K[X]\}$$

czyli podpierścień L generowany przez $K \cup \{\overline{a}\}$ oraz $K(\overline{a})$, czyli podciało L generowane przez $K \cup \{\overline{a}\}$:

$$K(\overline{a}) := \{f(\overline{a}) : f \in K(X_1, ..., X_n) | f(\overline{a}) \text{ dobrze określone} \}.$$

Tutaj $K(X_1, ..., X_n)$ to ciało ułamków pierścienia $K[\overline{a}]$ w ciele L (czyli najmniejsze ciało, że pierścień może być w nim zanurzony). Czasami oznaczamy to przez $K[\overline{a}]_0$.

Uwaga 1.5. Niech $K \subseteq L_1$, $K \subseteq L_2$ będą ciałami. Wybieramy $\overline{a}_1 \in L_1$ i $\overline{a}_2 \in L_2$, $|\overline{a}_1| = |\overline{a}_2| = n$. Wtedy następujące warunki są równoważne:

1. istnieje izomorfizm $\phi: K[\overline{a}_1] \to K[\overline{a}_2]$ taki, że $\phi \upharpoonright K = id_K$ oraz $\phi(\overline{a}_1) = \overline{a}_2$.

2. $I(\overline{a}_1/K) = I(\overline{a}_2/K)$.

Dowód. $1 \implies 2$

Implikacja jest jasna, bo dla $g(\overline{X}) \in K[\overline{X}]$, bo $g(\overline{a}_1) = 0$ w $K[\overline{a}_1] \iff g(f(\overline{a}_1)) = 0$, a $f(\overline{a}_1) = \overline{a}_2$.

1 ← 2

Zwróćmy uwagę na odwzorowanie ewaluacji a

$$\phi_{\overline{a}_1}: K[\overline{X}] \xrightarrow{"na"} K[a_1]$$

zadane wzorem

$$\phi(w(\overline{X})) = w(\overline{a}_1).$$

Mamy

$$\ker(\phi_{\overline{a}_1}) = I(\overline{a}_1/K).$$

Tak samo dla \overline{a}_2 możemy określić analogicznie odwzorowanie ewaluacyjne $\phi_{\overline{a}_2}: K[\overline{X}] \to K[\overline{a}_2]$. Wtedy

$$I(\overline{a}_2/K) = \ker(\phi_{\overline{a}_2}),$$

ale ponieważ I $(\overline{a}_1/K) = I(\overline{a}_2/K)$, to ker $(\phi_{\overline{a}_1}) = \ker(\phi_{\overline{a}_2})$. Oznaczmy I = I $(\overline{a}_1/K) = I(\overline{a}_2/K)$. Widzimy, że $\phi_{\overline{a}_i} \upharpoonright K = \mathrm{id}_k$.

Niech f = $f_2f_1^{-1}$: $K[\overline{a}_1] \rightarrow K[\overline{a}_2]$ jest funkcją spełniającą warunki punktu 1.

MOŻE TUTAJ ŁADNIE SPRAWDZIĆ ŻE NAPRAWDĘ JEST TO DOBRZE SPEŁNIAJĄCA WARUNKI FUNKCIA?

Uwaga. Niech $I \triangleleft K[\overline{X}]$ noetherowskiego pierścienia $K[\overline{X}]$. Niech $I = (f_1, ..., f_m)$ dla pewnych $f_i \in K[\overline{X}]$. Wtedy istnieje rozszerzenie pierścienia $S \supseteq K$ oraz $\overline{a} \subseteq S$ - rozwiązanie ogólne układu $f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ takie, że $I(\overline{a}/K) = I$.

Dowód. Uwaga 1.4.

Twierdzenie 1.6. Niech I \triangleleft K[\overline{X}]. Wtedy istnieje ciało L \supseteq K oraz \overline{a} = $(a_1, ..., a_n) \subseteq L$ takie, że $f(\overline{a})$ = 0 dla każdego $f \in I$.

Dowód. Niech $I \subseteq M \triangleleft K[\overline{X}]$ będzie ideałem maksymalnym. Niech $L = K[\overline{X}]/M$ i określmy przekształcenie ilorazowe

$$j: K[\overline{X}]/M \rightarrow L = K[\overline{X}]/M$$
.

Ponieważ M \cap K = {0} (bo inaczej w ideale byłby wielomian odwracalny), to j \uparrow K : K \rightarrow L jest funkcją 1 – 1, czyli

$$j \upharpoonright K : K \xrightarrow{1-1} j[K] \subseteq L.$$

Możemy utożsamić K z j[K], czyli K \subseteq L. Niech \overline{a} = $(a_1, ..., a_n)$ takie, że dla każdego $i \in [n]$

$$a_i = j(X_i) \in L$$
.

Wtedy $g(\overline{a}) = 0$ dla każdego $g(\overline{X}) \in M \supseteq I$ (bo inaczej mielibyśmy wyrazy wolne).

Wniosek 1.7. Niech $f \in K[X]$ stopnia > 0. Wtedy istnieje ciało $L \supseteq K$ rozszerzające ciało K takie, że f ma pierwiastek w ciele L.

Przykłady:

1. 1. Rozpatrzmy ciało K = \mathbb{Q} i f(X) = X – 2. Wtedy I = (f) $\triangleleft \mathbb{Q}[X]$ jest ideałem maksymalnym, bo jest on pierwszy (w tym wypadku nierozkładalny). Równanie f = 0 ma rozwiązanie ogólne w pierścieniu ilorazowym

$$\mathbb{O}[X]/I \cong \mathbb{O}.$$

Czyli nie zawsze musimy rozszerzać ciało do czegoś nowego.

2. 2. $\mathbb{C} = \mathbb{R}[i] = \mathbb{R}(i) = \mathbb{R}[z]$ dla każdego $z \in \mathbb{C} \setminus \mathbb{R}$, co jest na liście zadań.

Załóżmy, że $K \subseteq L_1$, $K \subseteq L_2$ są rozszerzeniami ciała. Wtedy mówimy, że L_1 **jest izomorficzne z** L_2 **nad** K [$L_1 \cong_K L_2$] \iff istnieje izomorfizm $f: L_1 \to L_2$ taki, że $f \upharpoonright K = \mathrm{id}_K$.

Fakt 1.8.

- 1. Załóżmy, że $f(X) \in K[X]$ jest nierozkładalny. Niech $L_1 = K(a_1)$, $L_2 = K(a_2)$ i $f(a_i) = 0$ w L_i . Wtedy $L_1 \cong_K L_2$.
- Ogółniej: załóżmy, że φ: K₁ → K₂ jest izomorfizmem i f₁ ∈ K₁[X], f₂ ∈ K₂[X], φ(f₁) = f₂, f_i jest nierozkładalne. Dodatkowo załóżmy, że L₁ = K₁(a₁) i L₂ = K₂(a₂), gdzie f_i(a_i) = 0 w L_i. Wtedy istnieje izomorfizm φ ∈ ψ: L₁ → L₂ taki, że ψ(a₁) = a₂.

Dowód.

- 1. 1. $I(a_1/K) = (f) = I(a_2/K)$, stąd na mocy 1.5 mamy $K(a_1) \cong_K K(a_2)$. Po dowodzie przypadku 2. możemy uzasadniać, że jest to szczególny przypadek tego ogólniejszego stwierdzenia właśnie.
- 2. 2. Zacznijmy od rozrysowania tej sytuacji:

Izomorfizm $\phi: K_1[X] \xrightarrow{\cong} K_2[X]$ indukuje nam przekształcenie

$$K_1[X]/(f_1) \xrightarrow{\cong} K_2[X]/(f_2),$$

bo $\phi(f_1)$ = f_2 . Wiemy, że f_i jest nierozkładalne, czyli

$$I(a_i/K_i) = (f_i) \triangleleft K_i[X]$$

jest ideałem maksymalnym. Mamy

Wykład 2: Ciała skończone i pierwiastki z jedności

Ciało L \supset K nazywamy ciałem rozkładu nad K wielomianu f \in K[X], gdy spełnione są warunki:

- 1. f rozkłada się w pierścieniu L[X] na czynniki liniowe (stopnia 1)
- 2. Ciało L jest rozszerzeniem ciała K o elementy $a_1, ..., a_n$, gdzie $a_1, ..., a_n$ to wszystkie pierwiastki f w L.

Przykład: Jeżeli deg(f) = 0, to nie istnieje ciało rozkładu f.

Wniosek 2.1. Załóżmy, że $f \in K[X]$ jest wielomianem stopnia > 0. Wtedy

- 1. istnieje L: ciało rozkładu f nad K,
- 2. to ciało jest jedyne z dokładnością do izomorfizmy nad K.

Dowód.

1. Dowód przez indukcje względem stopnia f

Jako przypadek bazowy rozważmy f takie, że deg(f) = 1. Wtedy L = K i wszystko wniosek jest spełniony.

Załóżmy teraz, że stopień wielomianu f jest > 1 i tez zachodzi dla wszystkich wielomianów stopnia < deg(f) i wszystkich ciał K'. Teraz z 1.7 wiemy, że istnieje rozszerzenie ciała L \supseteq K takie, że f ma pierwiastek w L. Nazwijmy ten pierwiastek a $_0$ i niech

$$K' = K(a_0).$$

Ponieważ K'[X] wielomian f ma pierwiastek a_0 , to możemy zapisać

$$f = (x - a_0)f_1$$

dla pewnego $f_1 \in K'[X]$ i $deg(f_1) < deg(f)$. Z założenia indukcyjnego dla f_a istnieje $L' = K'(a_1, ..., a_r)$ - ciało rozkładu wielomianu f_1 nad K'. Wtedy

$$L = K(a_0, ..., a_r)$$

jest ciałem rozkładu f nad K.

2. Udowodnimy wersję ogólniejszą:

(**) Jeśli $\phi: K_1 \xrightarrow{\cong} K_2$ jest izomorfizmem nad ciałem i $f_i \in K_i[X]$ jest wielomianem stopnia > 0, $\phi(f_1) = f_2$, to wtedy istnieje $\psi: L_1 \xrightarrow{\cong} L_2$ izomorfizm nad ciałami rozkładu f_i w K_i rozszerzający izomorfizm ϕ (to znaczy $\phi \subseteq \psi$).

Wykorzystamy indukcję po deg(f). W przypadku bazowym mamy deg(f) = 1, czyli $L_1 = K_1, L_2 = K_2$ i $\phi = \psi$.

Teraz niech deg(f) > 1 i załóżmy, że dla wszystkich ciał K' oraz wielomianów stopnia < deg(f) jest to prawdą. Niech

$$f_i = f'_i \cdot g_i$$

gdzie $f_i', g_i \in K_i[X]$ i g_i jest wielomianem nierozkładalnym w K. Wiemy już, że istnieje $a_i \in L_i$ będące pierwiastkiem wielomianu g_i .

Z faktu 1.8:(2), wiemy, że istnieje wtedy izomorfizm

$$\psi_0: K_1(a_1) \xrightarrow{\cong} K_2(a_2)$$

taki, że $\psi_0(a_1) = a_2 i \phi \subseteq \psi_0$.

$$\begin{array}{cccc} \mathsf{K}_1(\mathsf{a}_1) & & \cong & & \mathsf{K}_2(\mathsf{a}_2) \\ & & & \exists \; \psi_0 & & \mathsf{II} \\ & \mathsf{K}_1' & & & \mathsf{K}_2' \\ & & & & & & & \cap \\ \mathsf{L}_1 & & & \cong & & \mathsf{L}_2 \end{array}$$

Z założenia wiemy, że L_i to ciało rozkładu f_i' nad K_i . W takim razie z założenia indukcyjnego istnieje izomorfizm

$$\psi_1: L_1 \xrightarrow{\cong} L_2$$

taki, że $\psi \subseteq \psi_0$ i to już jest koniec.

Wniosek 2.2. Jeśli $f_1 \in K_1[X]$ i $f_2 \in K_2[X]$ są nierozkładalnymi wielomianami, $\phi : K_1 \xrightarrow{\cong} K_2$ izomorfizmem $i \phi(f_1) = f_2$, a L_1, L_2 to ciała rozkładu f_1, f_2 odpowiednio nad K_1 i K_2 , $a_i \in L_i$ to pierwiastek f_i , to wtedy istnieje $\psi : L_1 \xrightarrow{\cong} L_2$ takie, że $\psi(a_1) = a_2$.

Dowód. Wynika z dowodu stwierdzenia (→).

2.1 Algebraiczne domknięcie ciała

Ciało L jest **algebraicznie domknięte** ⇔ dla każdego f ∈ L[X] o stopniu > 0 istnieje pierwiastek f w L. To znaczy każdy wielomian rozkłada się na czynniki liniowe nad L.

Przykład:

- C jest algebraicznie domknięte.
- \mathbb{R} nie jest algebraicznie domknięte, gdyż x^2 + 1 nie ma pierwiastka rzeczywistego.
- $\mathbb{Q}[i]$ nie jest algebraicznie domknięte, bo $x^2 2$ nie ma pierwiastka.

Twierdzenie 2.3. Każde ciało K zawiera się w pewnym ciele algebraicznie domkniętym.

Dowód. Jak mamy wielomian nad ciałem, to istnieje rozszerzenie ciała do tego wielomianu. I dalej leci kombinatoryka.

Lemat: Dla każdego ciała K istnieje L \supseteq K takie, że (\forall f \in K[X]) stopnia > 0, f ma pierwiastek w L.

Rozważmy dobry porządek na zbiorze wielomianów z K[X] stopnia > 0

$$\{f \in K[X] : deg(f) > 0\} = \{f_{\alpha} : \alpha < \kappa\}.$$

Tutaj α , κ to liczby porządkowe, niekoniecznie skończone. Skonstruujmy rosnący ciąg rozszerzeń ciał $\{K_\alpha: \alpha < \kappa\}$ taki, że

- $K \subseteq K_{\alpha} \subseteq K_{\beta}$ dla $\alpha < \beta < \kappa$
- f_{α} ma pierwiastek w $K_{\alpha+1}$.

Dowód przez indukcję pozaskończoną. Dla K₀ = K.

Załóżmy, że $\alpha < \kappa$ i mamy $\{K_{\beta} : \beta < \alpha\}$ spełniają warunki powyżej. Niech $K' = \bigcup_{\beta < \alpha} K_{\beta}$. Musimy pokazać, że K' jest ciałem.

1. 1. α to liczba graniczna. Definiujemy K' = $\bigcup_{\beta < \alpha} K_{\beta}$ jako zbiór.

Musimy określić działania w K'. Niech x, y \in K', wtedy istnieje β < α takie, że x, y \in K $_{\beta}$. Czyli x + y \in K $_{\beta}$ \subseteq K' i xy \in K $_{\beta}$ \subseteq K'. W takim razie K' jest rozszerzeniem ciała K $_{\beta}$.

Teraz definiujemy $K_{\alpha} = K'$ i otrzymujemy pożądane rozszerzenie ciała.

2. 2. $\alpha = \beta + 1$ to następnik, wtedy K' = K $_{\beta}$.

Wielomian f_{α} jest wielomianem nad $K \subseteq K'$. Z wniosku 1.7 wiemy, że istnieje rozszerzenie $K_{\alpha} \supseteq K$ takie, że f_{α} ma pierwiastek w K_{α} .

L definiujemy jako sume po wyżej udowodnionej konstrukcji:

$$\mathsf{L} = \bigcup_{\alpha < \kappa} \mathsf{K}_{\alpha}$$

i to ciało spełnia nasz lemat.

Wracamy teraz do dowodu twierdzenia 2.3 i niech (L_n , $n < \omega$) będzie rosnącym ciągiem ciał takim, że

- $L_0 = K$
- $L_{n+1}\supseteq L_n$, gdzie L_{n+1} dane jest przez lemat, to znaczy ($\forall \ f\in L_n[X]$) f ma pierwiastek w L_{n+1} .

Niech

$$L_{\infty} = \bigcup_{n<\omega} L_n \supseteq K.$$

Jest to ciało, ponieważ suma rosnącego ciągu ciał jest ciałem. Dalej mamy, że jest to ciało algebraicznie domknięte, gdy dowolny $f \in L_{\infty}[X]$ ma stopień skończony > 0, czyli istnieje n takie, że $f \in L_n[X]$. A więc f ma wszystkie pierwiastki w $L_{n+1} \subseteq L_{\infty}$.

Wykład 3: Ciała proste, pierwiastki z jedności

3.1 Ciała proste

Uwaga 3.0. Załóżmy, że mamy ciała $K \subseteq L$. Wtedy

- char(K) = char(L)
- $0_{K} = 0_{L} \text{ oraz } 1_{K} = 1_{L}$
- $K^* = K \setminus \{0\} < L^* = L \setminus \{0\}$ oraz dla $x \in K -x$ w K jest równe -x w L.

K jest ciałem prostym wtedy i tylko wtedy, gdy K nie zawierza żadnego właściwego podciała.

Przykład:

- \mathbb{Q} , gdzie char(\mathbb{Q}) = 0 to ciało proste nieskończone.
- Ciałem prostym skończonym jest na przykład \mathbb{Z}_p dla liczby pierwszej p, wtedy char (\mathbb{Z}_p) = p.

Uwaga 3.1.

- 1. Każde ciało zawiera jedyne podciało proste
- 2. Z dokładnościa do $\cong \mathbb{Q}$, \mathbb{Z}_p to wszystkie ciała proste.

Przykład: Załóżmy, że K jest skończone. Wtedy K* też jest skończone rzędu $|K^*| = n < \infty$. Później dowiemy się, że $|K| = p^k$, a więc $|K^*| = p^k - 1$. Wiemy, że dla każdego $x \in K^*$ zachodzi $x^n = 1$.

3.2 Pierwiastki z jedności

Niech R będzie pierścieniem przemiennym z 1 \neq 0. Mamy następujące definicje:

- 1. $a \in R$ jest **pierwiastkiem z** 1 stopnia $n > 0 \iff a^n = 1$
- 2. $\mu_n(R) = \{a \in R : a^n = 1\}$ jest **grupą pierwiastków z** 1 stopnia n
- 3. $\mu(R) = \{a \in R : (\exists n) a^n = 1\} = \bigcup_{n>0} \mu_n(R) \text{ jest grupą pierwiastków z } 1$
- 4. a jest **pierwiastkiem pierwotnym** [primitive root] stopnia n z 1 \iff a $\in \mu_n(R)$ oraz dla każdego k < n a $\notin \mu_k(R)$.

Uwaga 3.2.

- 1. μ_n(R) ⊲ R* jest grupą jednostek pierścienia
- 2. $\mu(R) \triangleleft R^*$
- 3. $\mu(R)$ jest torsyjną grupą abelową (każdy element jest pierwiastkiem z 1).

Przykłady

- 1. $\mu(\mathbb{C}) = \bigcup_{n>0} \mu_n(\mathbb{C}) \lneq (\{z \in \mathbb{C} : |z| = 1\}, \cdot) < \mathbb{C}^* = C \setminus \{0\} \text{ jest nieskończona.}$
- 2. $\mu(\mathbb{C}) \cong (\mathbb{Q}, +)/(\mathbb{Z}, +)$, bo $f: \mathbb{Q} \xrightarrow{\text{"na"}} \mu(\mathbb{C})$ taki, że $f(w) = \cos(w2\pi) + i\sin(w2\pi)$ ma jądro $\ker(f) = \mathbb{Z}$.
- 3. $\mu(\mathbb{R}) = \{\pm 1\}$
- 4. $\mu_n(K) = \{ zera wielomianu x^n 1 \}$. Ten wielomian będziemy oznaczali $w_n(x) = x^n 1$.

Uwaga 3.3.

- 1. Jeśli char(K) = 0, to $w_n(x) = x^n 1$ ma tylko pierwiastki jednokrotne w K [simple roots]
- 2. Jeśli char(K) = p > 0 i n = $p^l n_1$ takie, że $p \nmid n_1$, to wszystkie pierwiastki $w_n(x) = x^n 1$ mają krotność p^l w K.

Dowód:

1. Niech $a \in K$ takie, że $w_n(a) = 0$. Z twierdzenia Bezouta mamy, że

$$w_n(x) = x^n - 1 = x^n - a^n = (x - a)(x^{n-1} + ax^{n-2} + ... + a^{n-2}x + a^{n-1}) = (x - a)v_n(x)$$

gdzie $v_n(x) = x^{n-1} + ax^{n-2} + ... + a^{n-2}x + a^{n-1}$.

Z tego, że char(K) = 0 wynika, że $v_n(a)$ = $na^{n-1} \neq 0$, skąd wynika, że a jest jednokrotnym pierwiastkiem $w_n(x)$.

2. Jesteśmy w ciele K o char(K) = p. Niech n = $p^l n_1$. Rozważmy wielomian

$$w_n(X) = X^n - 1 = (X^{n_1})^{p^l} - 1^{p^l} = (X^n - 1)^{p^l} = w_{n_1}(X)^{p^l}.$$

Czyli $\mu_n(K) = \mu_{n_1}(K)$. Załóżmy, że a \in K to pierwiastek wielomianu $w_n(X)$. Wtedy a jest też pierwiastkiem wielomianu w_{n_1} w ciele K. Wtedy

$$w_{n_1}(X) = (X - a)v_{n_1}(X),$$

vn₁ jak w przypadku wyżej. Wówczas

$$v_{n_1}(a) = n_1 a^{n_1 - 1} \neq 0$$

bo p \nmid n₁. Jeśli a jest 1-krotnym pierwiastkiem $w_{n_1}(X)$, to jest on p^l-krotnym pierwiastkiem $w_n(X)$.

Twierdzenie 3.4. Niech G < μ (K) i G jest podgrupą skończoną o |G| = n. Wtedy

- 1. G = $\mu_{n}(K)$
- 2. G jest cykliczna
- 3. Jeśli char(K) = p > 0, to $p \nmid n$.

Dowód.

- 1. 1. Jeśli |G| = n, to dla każdego $x \in G$ mamy $x^n = 1$. Z tego wynika, że $G \subseteq \mu_n(K)$, ale $|\mu_n(K)| \le n$, czyli $G = \mu_n(K)$.
- 2. 2. Chcemy pokazać, że dla wielomianu $w_n(X)$ mamy n różnych pierwiastków. Wystarczy pokazać, że istnieje $x \in G$ taki, że ord(x) = n.

Załóżmy nie wprost, że dla każdego $x \in G$ ord(x) < n. Niech

$$k = max\{ord(x) : x \in G\}.$$

Niech $x_0 \in G$ takie, że ord $(x_0) = k$. Wtedy

$$(\forall y \in G) \text{ ord}(y) \mid k.$$

Gdyby tak nie było, to istniałby $y \in G$, ord(y) $\nmid k$. Czyli istnieje liczba pierwsza p taka, że l jest podzielne przez wyższą potęgę p niż k. To oznacza, że $l = p^{\alpha}l'$ i $k = p^{\beta}k'$, gdzie $p \nmid l'$ i $\alpha > \beta$. Rozważmy $y' = y^{l'}$. Skoro y ma rząd l, to ord(y') = p^{α} , a dla $x'_0 = x_0^{p^{\beta}}$ mamy ord(x') = k'. Wobec tego ord(x'_0y') = $p^{\alpha} \cdot k'$, ale to jest większe od k i dostajemy sprzeczność.

3. 3. Wiemy, że wszystkie pierwiastki w_n = xⁿ – 1 są jednokrotne, bo jest ich w tym przypadku dokładnie n (z poprzedniego punktu). Z uwagi 3.3, że jeśli n = p^ln₁, to pierwiastki wielomianu w_n(x) mają krotność p^l. Ale w tym przypadku pierwiastki mają krotność jeden, czyli p^l = 1 i n = 1 · n₁, gdzie p ∤ n₁.

Wniosek 3.5. Jeśli a $\in \mu_n(K)$ jest pierwiastkiem pierwotnym z 1 stopnia n > 1, to a generuje $\mu_n(K)$.

Dowód. $\mu_n(K) \supseteq \langle a \rangle = \mu_k(K)$ dla pewnego $k \in \mathbb{N}$. Ale ponieważ a było pierwiastkiem pierwotnym z 1, to musimy mieć n = k.

3.3 Ciała skończone

Twierdzenie 3.6. Niech K będzie ciałem skończonym. Wtedy

- 1. $char(K) = p \implies |K| = p^n dla pewnego n \in \mathbb{N}$
- 2. Dla każdego n > 0 istnieje dokładnie jedno ciało K takie, że $|K| = p^n z$ dokładnością do izomorfizmu. Ciało mocy p^n będziemy oznaczać $F(p^n)$.

Dowód. 1. Skoro char(K) = p, to $\mathbb{Z}_p \subseteq K$ jest najmniejszym podciałem prostym ciała K. W takim razie, K jest skończoną przestrzenią liniową nad \mathbb{Z}_p . Jeśli n = $\dim_{\mathbb{Z}_p}(K)$, to K jest izomorficzne z \mathbb{Z}_p^n , jako przestrzenie liniowe nad \mathbb{Z}_p . W takim razie $|K| = p^n$.

2.

Istnienie:

Niech n > 0. Rozważmy

$$w_{p^n-1}(x) = x^{p^n-1} \in \mathbb{Z}_p[X].$$

Niech L $\supseteq \mathbb{Z}_p$ będzie ciałem rozkładu wielomianu w_{p^n-1} , a K = $\{0\} \cup \{$ pierwiastki $w_{p^n-1}\}$. Wtedy

$$|K| = 1 + p^n - 1 = p^n$$
,

czyli mamy potencjalne ciało rzędu pⁿ. Wystarczy więc pokazać, że K jest ciałem.

Niech $f: L \xrightarrow{1-1} L$ będzie funkcją Frobeniusa $x \mapsto x^p$. Teraz niech $f^n = f \circ ... \circ f$, $f^n(x) = x^{p^n}$. Jest to monomorfizm, bo składamy ze sobą n takich samych funkcji 1-1. Dla $a \in L$ mamy

$$(a^{p^n-1} = 1 \lor a = 0) \iff a \in K.$$

Co więcej, $a^{p^n-1}=1\iff a^{p^n}=a\iff f^n(a)=a$, czyli $K=\{a\in L: f^n(a)=a\}$ jest zbiorem punktów stałych morfizmu f^n , czyli jest ciałem, czego dowód jest pozostawiony na ćwiczenia.

Jedyność K:

Ciało K stworzone jak wyżej jest ciałem rozkładu $w_{p^n-1}(x)$ nad \mathbb{Z}_p .

Załóżmy nie wprost, że K' to inne ciało mocy p^n . Bes straty ogólności $\mathbb{Z}_p\subseteq K'$. Niech $x\in K'$. wiemy, że x=0 lub $x^{p^n-1}=1$. W takim razie w_{p^n-1} rozkłada się nad K' na czynniki liniowe. Zatem K' jest również ciałem rozkładu w_{p^n-1} nad \mathbb{Z}_p .

Z wniosku 2.1.(2) mamy, że dwa ciała rozkładu nad jednym wielomianem są izomorficzne i K \cong K' nad \mathbb{Z}_p i mamy sprzeczność.

Wykład 4: Rozszerzenia ciał

Definicja 4.1. Niech $K \subseteq L$ będą ciałami i $a \in L \setminus K$.

- Jeżeli a jest algebraiczny nad K , to istnieje $f \in K[X]$ stopnia > 0 i f(a) = 0
- a jest przestępny nad K [transcendental] ← a nie jest algebraiczny.
- Rozszerzenie $L\supseteq K$ jest algebraiczne \iff dla każdego $a\in L$ a jest algebraiczny nad K.
- Rozszerzenie jest przestępne ← nie jest algebraiczne.
- Niech $a \in \mathbb{C}$. Wtedy a jest algebraiczna, gdy a jest algebraiczna nad \mathbb{Q} .

Przykłady:

- 1. W \mathbb{C} na i jest pierwiastkiem algebraicznym wielomianu $x^2 + 1$, a $\sqrt[n]{d}$ jest pierwiastkiem $x^n d$.
- 2. Ciało $F(p^n)$ ma charakterystykę p i $F(p) \subseteq F(p^n)$ jest rozszerzeniem ciał, które jest algebraiczne. Dla dowolnego $a \in F(p^n)$ to jest ono pierwiastkiem wielomianu X^{p^n} X, czyli a jest algebraiczne nad F(p).
- 3. Pierwiastki przestępne to na przykład e, π , E^{π} , aczkolwiek nie jesteśmy pewni tego ostatniego [doczytać w S. Lang, Algebra].
- 4. Rozważamy $K \subseteq L = K(X)$, czyli pierścień ułamków. Weźmy $x \in K(X)$ przestępny nad K. Załóżmy, że istnieje wielomian $f \in K[X]$ rózny od 0. I załóżmy, że $0 = \widehat{f}(X)$ to funkcja wielomianowa.

$$0 = \widehat{f}(X) = f \neq 0$$

i jest to sprzeczność.

Uwaga 4.2. Niech a jak wyżej. Wtedy a jest algebraiczny nad $K \iff I(a/K) \neq \{0\}$ jako ideał K[X].

4.1 Wymiar przestrzeni liniowej

Niech K \subseteq L będzie rozszerzeniem ciała K. Wtedy L jest **przestrzenią liniową nad** K. Definiujemy stopień rozszerzenia [coś innego jak indeks przy grupach]

$$[L:K]:=dim_K(L)$$

jako wymiar przestrzeni liniowej nad K.

Uwaga 4.3. Niech $a \in L \setminus K$. Następujące warunki są równoważne:

- 1. a jest algebraiczny nad K
- 2. K[a] = K(a), to znaczy K[a] jest ciałem (usuwanie niewymierności z mianownika)
- 3. [K(a) : K] = dim_K(a) < ∞

Dowód. $1 \implies 2$

Wystarczy pokazać, że K[a] jest ciałem. Rozważamy I(a/K) \triangleleft K[X]. Wiemy, że K[X] jest PID, więc potrzebujemy, aby I(a/K) było ideałem pierwszym.

$$f \cdot g \in I(a/K) \iff 0 = \widehat{f \cdot g}(a)$$

gdzie daszek oznacza homomorfizm ewaluacji, który jest również homomorfizmem w punkcie. Czyli

$$\widehat{f \cdot g}(a) = \widehat{f}(a)\widehat{g}(a) = 0 \iff \widehat{f}(a) = 0 \ \lor \ \widehat{g}(a) = 0.$$

Czyli I(a/K) jest ideałem pierwszym w pierścieniu PID, więc jest ideałem maksymalnym. Mamy więc, że

jest ciałem, więc jest izomorficzne z K(a), bo K[a] to najmniejszy pierścień generowany przez K \cup {a} (tutaj pierścień), a K(a) to najmniejsze ciało generowane przez K \cup {a}.

$$2 \implies 3$$

Załóżmy, że a \neq 0. Wtedy $a^{-1} \in K[a]$, czyli istnieje wielomian $f \in K[X]$

$$f(x) = \sum_{i=1}^{n} b_i x^i, \quad b_n \neq 0$$

taki, że $a^{-1} = f(a)$. Wobec tego mamy

$$1 = f(a) \cdot a$$

$$0 = f(a)a - 1 = b_n a^{n+1} + b_a a^2 + ... + b_0 a - 1$$

stąd mamy, że

$$a^{n+1} = -\frac{1}{b_n}(b_{n-1}a^n + ... + b_0a - 1) \in Lin_K(1, a, ..., a^n)$$

jest w domknięciu liniowym (1, a, ..., aⁿ). Indukcyjnie pokazujemy, że

$$(\forall m \geq 0) a^m \in Lin_K(1, a, ..., a^n).$$

- 1. m = 0, ..., n + 1 bo one są już w $Lin_k(1, a, ..., a^n)$.
- 2. Zakładamy teraz, że dla m mamy

$$a^m = \sum_{i=0}^n c_i a^i$$

i pokazujemy dla m + 1.

$$a^{m+1} = a \cdot a^m = a \sum_{i=0}^n c_i a^i = \sum_{i=0}^n c_i a^{i+1} \in Lim_K(1, a, ..., a^n),$$

bo $a^{n+1} \in Lim_K(1, a, ..., a^m)$.

Czyli

$$K[a] = K(a) = Lin_K(1, a, ..., a^n),$$

co daje, że $[K(a) : K] \le n < \infty$.

 $3 \implies 1$

[K(a) : K] < ∞, z czego wynika, że

$$\{1, a, ..., a^n,\} = \{a^t : t \in \mathbb{N}\} \subset K(a)$$

jest zbiorem liniowo zależnym. Z liniowej zależności wiemy, że

$$(\exists \ n \in \mathbb{N})(\exists \ b_{n-1},...,b_0) \ a^n = b_{n-1}a^{n-1} + ... + b_1a + b_0.$$

Stad dla $f \in K[X]$ zadanego wzorem

$$f(x) = b_{n-1}x^{n-1} + ... + b_0 - x^n$$

mamy f(a) = 0, zatem a jest algebraiczny nad K.

Definicja 4.4. Niech $a \in L \supseteq K$ będzie algebraicznym pierwiastkiem nad K, $I(a/K) = \{w \in K[X] : w(a) = 0\} = (f), f \neq 0, f \in K[X], f unormowany (ang. monic)$

- f jest nazywany wielomianem minimalnym a nad K (wyznaczony jednoznacznie)
- stopień a nad K jest definiowany jako deg(f).

Uwaga 4.5. Załóżmy, że I(a/K) = (f) i f jest unormowany. Wówczas:

- 1. f jest unormowanym wielomianem minimalnego stopnia takim, że f(a) = 0
- 2. deg(f) = [K(a) : K], czyli stopień tego wielomianu jest równy stopniu przestrzeni liniowej K(a) nad K.

Dowód.

- 1. Oczywiste DOWODZIK, ZE IRREDUCIBLE JEST MINIMAL
- 2. Niech n = deg(f),

$$f(x) = x^n + \sum_{k < n} b_k x^k$$

Z tego, $\dot{z}e$ f(a) = 0 mamy, $\dot{z}e$

$$a^n = -\sum_{k < n} b_k x^k \in \text{Lin}_K(\textbf{1},\textbf{a},...,\textbf{a}^{n-1}) \subseteq \textbf{L}.$$

Czyli K(a) = $\operatorname{Lin}_K(1, a, ..., a^{n-1})$ i wystarczy zobaczyć, że $\{1, ..., a^{n-1}\}$ jest liniowo niezależny. W przeciwnym przypadku dla pewnego $0 < r < m \ a^r \in \operatorname{Lim}_K(1, a, ..., a^{t-1})$, czyli istnieje wielomian taki, że a jest jego pierwiastkiem, a stopień jest nie większy niż r < n i to daje sprzeczność.

<u></u>

Czyli Lim_K(1, a, ..., aⁿ) jest bazą K(a) nad K i koniec.

Przykład:

- 1. $\sqrt{2} \in \mathbb{R} \supseteq \mathbb{Q}$, wtedy $f(x) = x^2 2$ jest wielomianem minimalnym $\sqrt{2}$ nad \mathbb{Q} i stopień $\sqrt{2}$ nad \mathbb{Q} jest równy 2.
- 2. $\pi \in \mathbb{R}$ nie ma stopnia, bo π nie jest liczbą algebraiczną nad \mathbb{Q}
- 3. $\sqrt[7]{7+\sqrt[3]{3}} \sqrt[6]{6} \in \mathbb{R}$, czy jest to algebraiczne nad \mathbb{Q} ? Tak i ma stopień 126.

Jeśli K \subseteq L \ni a jest algebraiczny, to deg(a/K) = n, to

$$K(a) = K[a] = \{\sum_{i=0}^{n-1} b_i a^i : b_i \in K\}$$

Fakt 4.6. Niech $K \subseteq L \subseteq M$ będą rozszerzeniami ciał. Wtedy

$$[M : K] = [M : L] \cdot [L : K]$$

Dowód. Niech $\{e_i : i \in I\}$ będzie bazą L nad K, a $\{f_j : j \in J\}$ będzie bazą M nad L. Stąd |I| = [L : K] i |J| = [M : L].

Chcemy za pomocą tych dwóch zbiorków zrobić bazę M nad K. Rozważmy zbiór

$$X = \{e_i \cdot f_j \ : \ i \in I, j \in J\}.$$

Musimy pokazać, że

- 1. X jest liniowo niezależny
- 2. X jest baza M nad K
- 3. $|X| = |I| \cdot |I|$

Czyli X jest bazą M nad K (1.,2.) i ma odpowiednią moc (3.).

1. Załóżmy nie wprost, że X nie jest lnz, czyli istnieją $k_{ii} \in K$ takie, że

$$\sum_{j \in J} \sum_{i \in I} k_{ij} e_i f_j = 0,$$

ale $\sum_{i} k_{i} j e_{i} = l_{j}$ są elementami L, czyli

$$\sum_{j \in J} l_j f_j = 0$$

więc f_i są liniowo zależne, a przecież były bazowe, w takim razie

$$0 = l_j = \sum_{i \in I} k_{ij} e_i,$$

e_i ≠ 0, czyli k_{ii} = 0 i koniec.

2. X generuje M nad K, bo dla $m \in M$ mam

$$m = \sum l_j f_j = \sum \left(\sum a_{ij} e_i\right) f_j = \sum \sum a_{ij} e_i f_j = \sum \sum k_{ij} e_i f_j$$

3. Załóżmy, nie wprost, że dla i \neq i' i j \neq j' i $e_i f_i = e_{i'} f_{i'}$. Czyli

$$e_i f_i - e_{i'} f_{i'} = 0$$
,

czyli f_j , $f_{j'}$ są liniowo zależne nad L, czyli mamy, że f_j = $f_{j'}$ i

$$0 = e_i f_i - e_{i'} f_i = (e_i - e_{i'}) f_i \implies e_i - e_{i'} = 0 \implies i = i'$$

Z tego wynika, że [M : K] = |X| = |I||J| = [L : K][M : L].

Wniosek 4.7. Niech K ⊆ L będzie rozszerzeniem skończonego ciała. Niech

 $K_{alg}(L) = \{a \in L : a \text{ jest algebraiczny nad } K\}.$

Okazuje się, że K_{alg} jest podciałem.

Dowód. Weźmy a, $b \in K_{alg}$. Wiemy, że [K(a) : K] i [K(b) : K] są skończone. Mamy, że

$$K \subseteq K(a) \subseteq K(a, b)$$

Z faktu ?? wiemy, że

$$[K(a, b) : K] = [K(a, b) : K(a)] \cdot [K(a) : K]$$

czyli również K(a, b) jest skończone. Zatem dla $x \in K(a, b)$ mamy

$$[K(x) : K] \leq [K(a, b) : K]$$

też jest skończone, zatem x jest algebraiczny nad K.

Dla $x \in K(a,b)$ mamy $[K(x):K] \le [K(a):K]$, czyli również jest skończone. W takim razie, x jest algebraiczny nad K i należy do K_{alg} .

Definicja 4.8.

- 1. K_{alg}(L) nazywamy **algebraicznym domknięciem** K w L.
- 2. K jest relatywnie algebraicznie domknięte w L \iff $K_{alg}(L) = K$.

Przykłady:

- 1. $\mathbb{Q}_{alg}(\mathbb{C}) := \widehat{\mathbb{Q}} = \mathbb{Q}^{alg}$ jest to tak zwane ciało liczb algebraicznych . $\widehat{\mathbb{Q}}$ jest przeliczalne, bo $\mathbb{Q}[x]$ jest przeliczalne, więc jest mnóstwo liczb przestępnych (zespolonych, które nie są algebraiczne, ale nie potrafimy żadnej wskazać).
- 2. K jest algebraicznie domknięte w K(X)

3. $\frac{1}{\sqrt[3]{2}+\sqrt{3}}\in\mathbb{Q}[\sqrt{3},\sqrt[3]{2}]$, bo $\mathbb{Q}[\sqrt{3},\sqrt[3]{2}]$ jest ciałem

$$L = \underbrace{\mathbb{Q}[\sqrt[3]{2},\sqrt{2}]}_{\subseteq \mathbb{C}} = \underbrace{\mathbb{Q}[\sqrt[3]{2}][\sqrt{3}]}_{\text{ciało}} \mathbb{Q} = \{a + b\sqrt[3]{2} + c\sqrt[3]{2} : a,b,c \in \mathbb{Q}(\sqrt{3})\}$$

$$\sqrt[3]{2} \text{alg.w}$$

$$\sqrt[3]{2} + \sqrt{3} \in L \implies \frac{1}{\sqrt[3]{2} + \sqrt{3}} \in L$$

Wykład 5: Wielomiany koła, domknięcia algebraiczne

Uwaga 5.1. Niech $K \subseteq L \subseteq M$ będą rozszerzeniami ciał. $K \subseteq M$ jest algebraiczne $\iff K \subseteq L$ i $L \subseteq M$ są algebraiczne

Dowód.

 \implies OK

 \leftarrow

Weźmy dowolny m \in M. L \subseteq M jest algebraiczny, co oznacza f(m) = 0, gdzie f \in L[X]

$$f = \sum_{i=0}^{n} a_n x^i, \quad a_n \neq 0$$

W takim razie m jest algebraiczne nad ciałek K(a₀,, a_n). Ale teraz

$$[K(m): K] \leq [K(a_0, ..., a_m, m): K] \stackrel{4.6}{=} [K(a_0, ..., a_n, m): K(a_0, ..., a_n)][K(a_0, ..., a_n): K] < \infty$$

bo m jest algebraiczny K(ā). Czyli

$$[K(m):K]<\infty$$

<u></u>

więc m jest algebraiczny nad K (uwaga 4.3).

Uwaga 5.2. $K_{alg}(L)$ jest relatywnie algebraicznie domknięty w L. To znaczy $(K_{alg}(L))_{alg}(L) = K_{alg}(L)$.

Dowód. Ćwiczenia.

5.1 Wielomian rozkładu koła [cyclotomic polynomials]

Rozważamy wielomian

$$w_m(x) = x^m - 1$$

dla m $\in \mathbb{N}$. Wiemy, że

- pierwiastki w_m w $\mathbb C$ są jednokrotne
- $\mu_{\mathbf{m}}(\mathbb{C})$ jest grupą cykliczną
- a $\in \mu_m(\mathbb{C})$ jest generatorem $\mu_m(\mathbb{C})$ = {aⁱ : 0 \leq i \leq m} \cong (\mathbb{Z}_m , +)
- a^k generuje $\mu_m(\mathbb{C}) \iff NWD(k, m) = 1$

Funkcja Eulera:

$$\phi(m) = |\{k \in \mathbb{N} : 0 \le k < m. NWD(k, m) = 1\}|$$

 $\mu_{\mathsf{m}}(\mathbb{C})$ ma $\phi(\mathsf{m})$ generatorów.

Niech

$$\{k \in \mathbb{N} : 0 < k < m, NWD(k, m) = 1\} = \{m_1, ..., m_{\phi(n)}\}$$

i zdefiniujmy

$$F_m(x) := (x - a^{m_1})...(x - a^{m_{\phi(n)}}) \in \mathbb{C}[X]$$

 F_m to m-ty wielomian cyklotoniczny.

Uwaga 5.3.

1.
$$w_m(x) = x^m - 1 = F_m(x) \cdot v_m(x) = F_m(x) \cdot \prod_{\substack{d < m \\ d \mid m}} F_d(x)$$

2.
$$F_m(x) \in \mathbb{Z}[X]$$

Dowód:

1. Wiemy, że wielomian w_m ma m pierwiastków na płaszczyźnie Gaussa, więc jest iloczynem dwumianów x – b, $b \in \mu_m(\mathbb{C})$, czyli

$$\alpha \in \mu_{\mathbf{m}}(\mathbb{C}) \implies \alpha^{\mathbf{d}} - 1 \quad \mathbf{d} = \operatorname{ord}(\alpha), \ \mathbf{d} \mid \mathbf{m}$$

Wtedy α jest pierwiastkiem pierwotnym z 1 stopnia d. Wobec tego

$$F_d(x) = \prod_{\substack{\alpha \in \mu_m(\mathbb{C}) \\ \text{ord}(\alpha) = d}} (x - \alpha) \implies (\text{teza})$$

2. Dowód przez indukcję względem m. Dla m = 1 mamy $F_m(x) = x - 1 \in \mathbb{Z}[X]$.

Teraz zakładamy, że dla wszystkich 0 < d < m jest $F_d(x) \in \mathbb{Z}[X]$. Z punktu (1) wiemy, że

$$x^{m} - 1 = w_{m}(x) = F_{m}(x)v_{m}(x)$$

z założenia indukcyjnego v $_{\rm m}({\rm x})\in \mathbb{Z}[{\rm X}]$, bo jest iloczynem $\prod_{\substack{\alpha\in \mu_{\rm m}(\mathbb{C})\\ {\rm ord}(\alpha)={\rm d}}} ({\rm x}-\alpha)$

 $w_m(x)$ w $\mathbb{Z}[X]$ jest podzielny przez v_m i dostajemy:

$$w_m(x) = v_m(x) \cdot L(x)$$

ale w $\mathbb{C}[X] \supseteq \mathbb{Z}[X]$ było

$$W_m(x) = V_m(x) \cdot F_m(x),$$

czyli $F_m = L \in \mathbb{Z}[X]$.

Uwaga 5.4. [Lemat Gaussa] $F_m(x)$ jest wielomianem nierozkładalnym w $\mathbb{Q}[X]$ (równoważnie w $\mathbb{Z}[X]$).

Dowód:

Po pierwsze zauważmy, że F_m jest nierozkładalny w $\mathbb{Q}[X] \iff$ nierozkładalny w $\mathbb{Z}[X]$.

Załóżmy nie wprost, że

$$F_m(x) = G_1(x) \cdot G_2(x)$$

dla $G_1, G_2 \in \mathbb{Z}[X]$. Możemy założyć, że $G_1(x)$ jest dalej nierozkładalny w $\mathbb{Z}[X]$ oraz $0 < \deg(G_1) < \deg(F_m) = \phi(m)$

Lemat: Istnieje ε' -pierwiastek G_1 oraz liczba pierwsza p taka, że p \nmid m i $G_1(b) = G_2(b^p) = 0$.

Dowód lematu:

Niech ε będzie jakimś pierwiastkiem G_1 , a τ będzie jakimś pierwiastkiem G_2 . W takim razie

$$au, \varepsilon \in \mu_{\mathbf{m}}(\mathbb{C}) \implies \tau = \varepsilon^{\mathbf{l}}$$

dla pewnego l takiego, że NWD(l, m) = 1.

Niech $l = p_1 \cdot ...p_s$ będzie rozkładem na liczby pierwsze. Wtedy mamy ciąg różnych liczb

pierwiastem
$$G_1 = \varepsilon$$
, ε^{p_1} , $\varepsilon^{p_1p_2}$, ..., $\varepsilon^{p_1,...,p_s} = \tau$ pierwiastek G_2

które są pierwiastkami pierwotnymi stopnia m. Z tego wynika, że każda z tych liczb jest pierwiastkiem G_1 lub G_2 , czyli istnieje taka pozycja i, że

$$G_1(\varepsilon^{p_1...p_i}) = 0.$$

$$G_2(\varepsilon^{p_1...p_{i+1}}) = 0$$

wtedy $\varepsilon' := \varepsilon^{p_1 \dots p_i}$ oraz p = p_{i+1} i lemat jest spełniony.

Wimy już, że $G_1(\varepsilon)$ = 0 i $G_1 \in \mathbb{Z}[X]$ jest wielomianem nierozkładalnym. Niech p będzie liczbą pierwszą z lematu. Rozważmy

$$G_3(x) = G_2(x^p).$$

Wtedy $G_2(\varepsilon^p) = G_3(\varepsilon) = 0$, ale stąd wynika, że $G_1(x)$ dzieli $G_3(x)$. Niech więc

$$G_3(x) = G_1(x)H(x) \in \mathbb{Z}[X].$$

Rozważmy homomorfizm

$$f: \mathbb{Z} \to \mathbb{Z}_p \mathbb{Z}/p \mathbb{Z}$$
 =

i indukowany przez niego epimorfizm pierścieni

$$\bar{f}:\mathbb{Z}[X]\to\mathbb{Z}_p[X].$$

Z założenia $F_m = G_1G_2$ mamy, że

$$\bar{f}(F_m) = \bar{f}(G_1)\bar{f}(G_2)$$

a z rozumowania powyżej ($G_3 = G_1H$)

$$\overline{f}(G_3) = \overline{f}(G_1)\overline{f}(H)$$

ale

$$\overline{f}(G_3(x)) = \overline{f}(G_2(x^p)) = \overline{f}(G_2(x))^p$$

bo współczynniki $f(G_2(x^p))$ są w \mathbb{Z}_p , a $(\sum c_i x^i)^p = \sum c_i x^{pi}$, bo $c_i^{kp} = c_i^k$ dla $c_i \in \mathbb{Z}_p$.

Stąd wiemy, że

$$f(G_2(x))^p = \overline{f}(G_1)\overline{f}(H).$$

Pierścień $\mathbb{Z}_p[X]$ jest UFD, więc $\bar{f}(G_1)$ i $\bar{f}(G_2)$ mają wspólny dzielnik w $\mathbb{Z}_p[X]$, stopnia co najmniej 1. Zatem z

$$\overline{f}(F_m) = \overline{f}(G_1)\overline{f}(G_2)$$

$$\bar{f}(F_m)|\bar{f}(w_m) = x^m - 1$$
.

Zatem w pewnym rozszerzeniu $L \supseteq \mathbb{Z}_p$ w_m ma pierwiastek wielokrotny co daje sprzeczność.

Uwaga 5.5. Jeżeli $\varepsilon \in \mathbb{C}$ jest pierwiastkiem pierwotnym z 1 stopnia m, to $[\mathbb{Q}(\varepsilon) : \mathbb{Q}] = \phi(m)$.

Dowód: $F_m(x) \in \mathbb{Q}[X]$ jest nierozkładalny, a ε jest jego pierwiastkiem. To znaczy, że $F_r(x)$ jest wielomianem minimalnym dla ε nad \mathbb{Q} . Mamy, że $[\mathbb{Q}(b):\mathbb{Q}]$ = deg F_m = $\phi(m)$.

Lemat 5.6. [lemat Liouville'a o aproksymacji diofantycznej]: Jeżeli $a \in \mathbb{R}$ jest liczbą algebraiczną stopnia N > 1, to istnieje $c = c(a) \in \mathbb{R}_+$ takie, że dla każdego $r = \frac{p}{q} \in \mathbb{Q}$ zachodzi

$$\left|a - \frac{p}{q}\right| \ge \frac{c}{q^N}$$

Lemat Liouville'a mówi o cesze. Jeżeli liczba nie spełnia tego lematu, to jest liczba przestępną.

Dowód. Niech N > 1 i a $\in \mathbb{Q}$. Niech f $\in \mathbb{Z}[X]$ taki, że f(a) = 0 i deg(f) = deg(a/ \mathbb{Q}). Teraz zauważmy, że na f patrzymy jako na funkcję wielomianową. To znaczy, dla każdego x $\in \mathbb{R}$ patrząc na

$$\widehat{f}(x) = \widehat{f}(x) - \underbrace{\widehat{f}(a)}_{=0}$$

ale funkcje wielomianowe są różniczkowalne. Dlatego możemy skorzystać z theoremierdzenia o wartości średniej. To znaczy

$$\widehat{f}(x) - \widehat{f}(a) = \widehat{f}'(x - a)$$

My wiemy, że a jest pierwiastkiem jednokrotnym wielomianu f(x). Niech $\varepsilon > 0$ takie, że $a \in (a - \varepsilon, a + \varepsilon)$ jest jedynym pierwiastkiem f(x) w tym przedziale. Oczywiście,

$$deg(\widehat{f}'(x)) < deg(\widehat{f}(x)) \implies \widehat{f}'(a) \neq 0.$$

Bez straty ogólności $\hat{f}'(a) > 0$. Niech i d = $\sup_{x \in I} \hat{f}'(x)$.

$$c = c(a) = min(\varepsilon, \frac{1}{d}).$$

Udowodnimy, że c jest dobrze określona. Niech r = $\frac{p}{q}\in\mathbb{Q}$ i p, q $\in\mathbb{Z}$, q > 0.

$$f(x) = \sum_{k=0}^{N} a_k x^k, \quad a_k \in \mathbb{Z}, a_N \neq 0$$

Rozważamy przypadki:

- 1. f \notin I. Wtedy $\left| a \frac{p}{q} \right| \ge \varepsilon \ge \frac{\varepsilon}{q^N} \ge \frac{c}{q^N}$
- 2. $f \in I$. Wtedy $\left| a \frac{p}{q} \right|$ i $\frac{p}{q}$ może być naszym x. Czyli

$$\left|a-\frac{p}{q}\right|=\frac{|f(\frac{p}{q})|}{|f(f'(t))|}\geq \frac{|f(\frac{p}{q})|}{d}\geq \frac{c}{q^N}$$

bo $c \leq \frac{1}{d}$

$$0 \neq |f(\frac{p}{q})| = \left| \sum_{k=0}^{N} a_k \frac{p^k}{q^k} \right| = \frac{\left| \sum_{k=0}^{N} a_k p^k q^{N-k} \right|}{q^N} \geq \frac{1}{q^N}$$

<u></u>

5.2 Domknięcia algebraiczne

Definicja 5.7. Ciało L \supseteq K jest **algebraicznym domknięciem** K wtedy i tylko wtedy, gdy:

- 1. L jest algebraicznie domknięte
- 2. L \supseteq K jest rozszerzeniem algebraicznym, to znaczy dla każdego a \in L a jest pierwiastkiem algebraicznym nad K

Takie L oznaczamy przez \widehat{K} , K^{alg} .

Uwaga 5.8. Dla każdego K istnieje algebraiczne domknięcie \widehat{K} .

Dowód. Rozważmy $K_\infty \supseteq K$ - ciało algebraicznie domknięte (theoremierdzenie z początku wykładu). Pokażemy, że

$$\widehat{K}$$
 = $K_{alg}(K_{\infty})$ = $\{a \in K_{\infty} \ : \ a \ algebraiczny \ nad \ K\}$

1. \hat{K} jest algebraicznie domknięte:

Jeżeli $f \in \widehat{K}[X]$, to f ma pierwiastek w K, ale $\widehat{K} \subseteq K_{\infty}$, to znaczy, że $a \in \widehat{K}$ jest algebraiczne nad K.

2. $K \subseteq \widehat{K}$ jest rozszerzeniem algebraicznym:

 $K \subseteq \widehat{K} = K_{alg}(K_{\infty})$ z definicji jest rozszerzeniem algebraicznym.

Twierdzenie 5.9. \hat{K} jest jedyne z dokładnością do izomorfizmu nad K.

$$L_1 \xrightarrow{\text{(\exists! f) } f \upharpoonright K = id_K} L_2$$

$$K$$

Dowód. Można użyć indukcji pozaskończonej, a można też użyć lematu Zorna. My zrobimy to drugie. Niech

$$\mathfrak{K} = \{(k', f') : K \subseteq K' \subseteq L_1, f' : K' \xrightarrow{1-1} L_2, f' \upharpoonright K = id_k\}$$

Oczywiście, $\Re \neq \emptyset$, bo (K, id_K) $\in \Re$. W \Re definiujemy relację porządku w naturalny sposób, to znaczy

$$(K',f') \leq (K'',f'') \iff K' \subseteq K'' \ \land \ f'' \upharpoonright K' = f''.$$

Wtedy (\mathfrak{K}, \leq) jest zbiorem częściowo uporządkowanym i niepustym (bo jest $(K, id_K) \in \mathfrak{K}$). Ponadto każdy wstępujący łańcuch (\mathfrak{K}, \leq) ma ograniczenie górne. Na mocy lematu Kuratowskiego-Zorna w tej rodzinie istnieje element maksymalny, nazwijmy go (K_1, f_1) . Pokażemy, że $K_1 = L_1$.

Załóżmy nie wprost, że istnieje a \in L₁ \ K₁. Niech w(x) \in K₁[X] będzie wielomianem minimalnym elementu a nad K₁. Niech

$$\begin{split} &K_2 = f_1[K_1] \\ v(x) = f_1(a_0) + f_1(a_1)x + ... + f_1(a_n)x^n \in K_2[X]. \end{split}$$

v(x) też jest nierozkładalny nad K_2 , bo w(x) był nierozkładalny nad K_1 . Niech $b \in L_2$ będzie pierwiastkiem wielomianu v.

Zauważmy, że $K_1(a) = K_1[a]$, bo w(x) jest nierozkładalny nad K_1 , ale

$$K_1[a] \simeq K_1[X]/(w) \simeq K_2[X]/(v) \simeq K_2[b] \simeq K_2(b).$$

Czyli $K_1(a) \simeq K_2(b)$ i $f_2: K_1(a) \xrightarrow{\cong} K_2(b)$ jest izomorfizmem rozszerzającym f_1 . Wtedy mamy $(K_1, f_1) \leq (K_1(a), f_2)$, co daje sprzeczność z maksymalnością (K_1, f_1) . Zatem $L_1 = K_2$.

Zrobimy sprytnie wprost: $K_1 = L_1$, $K \subseteq K_2 \subseteq L_2$ i $K_1 \cong_K K_2$. K_1 jest aglebraicznie domknięte, więc K_2 też takie musi być. Czyli $K \subseteq K_2 \subseteq L_2$ jest algebraiczne, więc $K_2 = L_2$, bo założyliśmy, że $b \in L_2 \setminus K_2$ i wtedy wielomina minimalny $f_b(x) \in K_2[X]$ ma pierwiastek $c \in K_2$, czyli $(x - c)|f_n(x)$ a więc $x - c = f_b(x)$ jest nierozkładalny i b = c.

Wniosek 5.10. Jeśli K \cong L, to $\widehat{K} \cong \widehat{L}$. Dokładniej, jeżeli $f_0 : LK \to L$ jest izomorfizmem ciał, to istnieje izomorfizm $f : \widehat{K} \to \widehat{L}$ taki, że $f \upharpoonright K = f_0$.

Dowód. Ćwiczenia

Uwaga 5.11. Jeśli $K \subseteq L$ jest algebraicznym rozszerzeniem ciał, to istnieje monomorfizm $f: L \to \widehat{K}$ taki, że $f \upharpoonright K = id_K$.

Dowód. Ćwiczenie

Wykład 6: Wstęp do teorii Galois

6.1 Grupy Galois

Niech K będzie ciałem, \widehat{K} jego algebraicznym domknięciem. Niech K \subseteq L będzie rozszerzeniem algebraicznym ciał [BSO: L \subseteq \widehat{K}]. **Grupą Galois** rozszerzenia K \subseteq L nazywamy

$$G(L/K) = Gal(L/K) = \{f \in Aut(L) : f \upharpoonright K = id_k\} = Aut(L/K)$$

ze składaniem jako działaniem. Jest to jednocześnie podgrupa wszystkich automorfizmów.

Przykład:

- 1. Niech K będzie ciałem prostym (\cong z \mathbb{Q} lub z \mathbb{Z}_p). Wtedy Gal(L/K) = Aut(L), bo
 - Niech char(K) = char(L) = p > 0 i niech f ∈ Aut(L). Wtedy f(1) = 1, f(1 + + 1) = 1 + + 1, a ponieważ K = {1 + + 1 : k ∈ {1, ..., p}}, zatem f ↑ K = id_K, czyli f ∈ Gal(L/K).
 - Niech char(K) = char(L) = 0, wtedy K $\cong \mathbb{Q}$. Niech $f \in Aut(L)$. Wtedy f(0) = 0, f(1) = 1, a dla dowolnego $k \in \mathbb{N}$ f $\underbrace{1 + + 1}_{k} = \underbrace{1 + + 1}_{k}$, stąd dostajemy, że f(n) = n dla $n \in \mathbb{Z}$, a z własności \mathbb{Q} dostajemy, że $f(\frac{m}{n}) = \frac{m}{n}$, zatem f $f \in K = id_{K}$.
- 2. $Gal(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) = Aut(\mathbb{Q}(\sqrt{2})) = \{f_0, f_1\} \cong \mathbb{Z}$, bo $\sqrt{2}$ może przejść na siebie albo na $-\sqrt{2}$. Wtedy $f_0 = id$, a $f_1(-\sqrt{2})$

Grupę Galois $Gal(\widehat{K}/K)$ nazywamy **absolutną grupą Galois** ciała K.

Czy każda grupa skończona jest izomorficzna z $Gal(L/\mathbb{Q})$ dla pewnego $\mathbb{Q}\subseteq L$? Jest to otwarty problem teorii Galois.

Uwaga 6.1. a, b $\in \widehat{K}$, takie, że I(a/K) = I(b/K), to wtedy istnieje f $\in Gal(\widehat{K}/K)$ takie, że f(a) = b.

Dowód.

Co jest wnioskiem z wniosku 5.10.

6.2 Rozszerzenia algebraiczne normalne

 \widehat{K} jest największym algebraicznym rozszerzeniem K tzn. K \subseteq L oznacza, że istnieje f : L \to \widehat{K} monomorfizm ciał taki, że f \upharpoonright K = id $_K$. (\clubsuit)

Mówmy, że rozszerzenie algebraiczne $K \subseteq L$ jest **normalne**, gdy w (\clubsuit) $f[L] \subseteq \widehat{K}$ dla wszystkich $f: L \to K$.

Przykład Rozszerzenie $K \subseteq \widehat{K}$ jest normalne.

Uwaga 6.2. Załóżmy, że $K \subseteq L \subseteq \widehat{K}$. Wtedy rozszerzenie $K \subseteq L$ jest normalne \iff dla każdego $f \in Gal(\widehat{K}/K)$ f[L] = L.

Dowód. \implies z definicji, bo id_K[L] = L. \iff z definicji.

Czyli K \subset L₁ \subset L i K \subset L jest normalna, to L₁ \subset L(\subset \widehat{K}), wiec Gal($\widehat{L_1}/L_1$) < Gal(\widehat{K}/K).

Twierdzenie 6.3. Dla $K \subseteq L$ algebraicznego rozszerzenia jest normalne \iff dla każdego $b \in L$ wielomian minimalny $f \in K[X]$ rozkłada się w L[X] na iloczyn czynników liniowych.

Dowód. Bez straty ogólności rozważamy $L \subseteq \widehat{K}$.

 \Longrightarrow

Dowód nie wprost, to znaczy załóżmy, że istnieje $b \in L$ takie, że $w_b(x)$ ma pierwiastek $a \in \widehat{K} \setminus L$. Ale wtedy z Uwagi 6.1. na jednorodność \widehat{K} istnieje $f \in Gal(\widehat{K}/K)$ takie, że f(b) = a, więc f[L] = L co jest sprzeczne z 6.2.

 \leftarrow

Załóżmy nie wprost, że na mocy 6.2. istnieje $f \in Gal(\widehat{K}/K)$ takie, że $f[L] \neq L$. Ale L i f[L] są wzajemnie sprzężone, więc wybierzmy $a \in L \setminus f[L]$. Symetrycznie, $a' \in f[L] \setminus L$, $f' : f[L] \xrightarrow{\cong} L$ spełnia warunek (\clubsuit). Niech $w_a(x)$ jest wielomianem minimalnym a nad K. Wtedy $w_a(X) = f(w_a(x))$, bo $f \upharpoonright K = id_K$. Czyli w_a jest wielomianem minimalnym dla b = f(a)/K. Czyli $L \overset{f}{\cong}_K f[L]$. $Z \overset{f}{(\clubsuit)}$ wiemy, że $w_a(x)$ rozkłada się nad L na czynniki liniowe. Czyli $w_a(x)$f[L]..., co daje nam sprzeczność, bo a jest pierwiastkiem $w_a(X)$, ale $a \notin f[L]$.

Rozszerzenie ciał K \subseteq L jest **skończone**, jeśli [L : K] < ∞ .

Twierdzenie 6.4. Niech $K \subseteq L$ będą rozszerzeniami ciał. Wtedy następujące warunki są równoważne:

- 1. rozszerzenie K \subseteq L jest skończone i normalne
- 2. L jest ciałem rozkładu pewnego wielomianu

Dowód. Bez straty ogólności załóżmy, że $K \subseteq L \subseteq \widehat{K}$.

$$(2) \implies (1)$$

Załóżmy, że L jest ciałem rozkłądu pewnego wielomianu. Wtedy L = $K(a_1, ..., a_n)$, gdzie $a_1, ..., a_n$ to wszystkie pierwiastki wielomianu w(x) w \hat{K} .

Niech $f \in Gal(\widehat{K}/K)$, wtedy $f(a_1, ..., f(a_n))$ to też wszystkie pierwiastki wielomianu w(x). Stąd

$$f[L] = K(f(a_1), ..., f(a_n)) = K(a_1, ..., a_n) = L,$$

zatem rozszerzenie $K \subseteq L$ jest normalne i skończone.

$$(1) \implies (2)$$

Niech K \subseteq L będzie skończone i normalne. Wtedy L = K(a₁, ..., a_n) dla pewnych a₁, ..., a_n \in L i {a₁, ..., a_n} będzie bazą L nad K. Wtedy istnieje w \in K[X] \ {0} takie, że w(a₁) = ... = w(a_n) = 0, zatem

$$L \supseteq \{ \text{ pierwiastki w} \} \supseteq \{a_1, ..., a_n \}.$$

COŚ TUTAJ JEST NIE TAK

Przykłady:

- 1. Niech K \subseteq L będą ciałami skończonymi, wtedy K \subseteq L jest ciałem normalnym, bo |L| = pⁿ, w_{pⁿ-1}(x) = $x^{p^n-1} 1$ i L jest ciałem rozkładu w nad K.
- 2. $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2})$ to rozszerzenie skończone, ale nie normalne. Jest tak, bo
 - x³ 2 jest nierozkładalny nad Q (kryterium Eisteina)
 - W ciele \mathbb{C} x^3 2 ma 3 pierwiastki, z których tylko jeden jest w $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$ a

Uwaga 6.5. Niech $K \subseteq L \subseteq \widehat{K}$ i niech L_1 będzie ciałem generowanym przez $\bigcup \{f[L]: f \in Gal(\widehat{K}/K)\}$. Wtedy L_1 to normalne domknięcie ciała L w \widehat{K} . Wtedy

- 1. Rozszerzenie $K \subset L_1$ jest normalne
- 2. Jeśli $K \subseteq L_2$ i $L \subseteq L_2$ są normalne, to istnieje monomorfizm $L_1 \to L_2$ taki, że $f \upharpoonright K = id$.

Dowód. (1) Z 6.2

(2)

Bez straty ogólności załóżmy, że K \subseteq L \subseteq L $_2$ \subseteq \widehat{K} i K \subseteq L \subseteq L $_2$ \subseteq \widehat{K} . Niech f \in Gal(\widehat{K} /K), f[L] \subseteq L $_2$. W takim razkie $\bigcup \{f[L] : f \in Gal(\widehat{K}/K)\} \subseteq L_2$, z czego wynika, że L $_1 \subseteq L_2$.

6.3 Rozszerzenia rozdzielcze

- Niech K będzie ciałem i $a \in \widehat{K}$. Mówimy, że a jest **rozdzielczy nad** K, gdy wielomian minimalny $a, w_a(x) \in K[X]$
- Algebraiczne rozszerzenie K ⊆ L jest rozszerzeniem rozdzieliczym, gdy dla każdego a ∈ L a
 jest rozdzielcze nad K.
- Wielimian $w(x) \in K[X]$ jest **rozdzielczy**, gdy w ma tylko pierwiastki jednokrotne w K.

Uwaga 6.6. Załóżmy, że $w(x) \in K[X]$ jest wielomianem nierozkładalnym stopnia > 0. Wtedy

- 1. w(x) jest rozdzielczy $\iff w(x)$ i w'(x) są względnie pierwsze
- 2. Jeśli char(K) = 0, to w jest rozdzielczy
- 3. Jeśli char(K) = p > 0, to w jest nierozdzielczy \iff w(x) \in K[X^p], to znaczy w(x) = v(x^p dla pewnego v(x) \in K[X]).

Dowód. Dowód zadanie z listy 4

Przykłady:

- 1. Niech $K \subseteq L$ będzie rozdzielcze i $K \subseteq L_1 \subseteq L$. Wtedy $L_1 \subseteq L$ też jest rozdzielcze [ćwiczenia]
- 2. Jeśli char(K) = 0, to każde rozszerzenie algebraiczne ciała K jest rozdzielcze.
- 3. Niech $K\subseteq L$ będą ciałami skończonymi. Wtedy $K\subseteq L$ jest rozdzielcze.

Ciał L rozkładu wielomianu x^{pn} – x o pierwiastkach jednokrotnych.

4. Rozszerzeni nierozdzielnicze: niech K = $F_p(X) \subseteq L = K(\sqrt[p]{x})$. Niech $w_a(T) = T^p - x \in K[T]$ będzie wielomianem minimalnym a = $\sqrt[p]{x}$. Wtedy $w_a' = 0$, czyli w ciele L istnieje p-krotny pierwiastek w_a : $w_a(T) = (t-a)^p$.a

₩,

Lemat 6.7.

- 1. Jeśli $a \in \widehat{K}$, to $|\{f(a) : f \in Gal(\widehat{K}/K)\}| \le stopień a nad K$
- 2. a jest rozdzielczy nad K \iff w podpunkcie (1) jest równość.

Dowód.

 $\{f(a): f \in Gal(\widehat{K}/K)\} \stackrel{??}{=} \{pierwiastki wielomianu minimalnego w_a \in K[X] nad K\}$ czyli deg(a/K) = deg(w_a).

Twierdzenie 6.8. Niech K \subseteq L będzie rozszerzeniem skończonym, L = K(a₁, ..., a_n) i a₁, ..., a_n rozdzielcze nad K. Wtedy istnieje a* \in L rozdzielczy nad K taki, że L = K(a*).

Dowód. Bez starty ogólności załóżmy, że $K \subseteq L \subseteq \widehat{K}$. Rozważmy dwa przypadki:

- 1. K jest skończone. Wtedy L także jest skończone, a L* jest cykliczna. Niech więc $a^* \in L^*$ będzie generatorem L*. Wtedy L = $K(a^*)$.
- 2. K jest nieskończone.

Dowód przez indukcję względem n. Dla n = 1 jest oczywiste. Robimy więc krok indukcyjny (n − 1) ⇒ n:

$$K(a_1, ..., a_{n-1}) = K(b)$$

 $K(a_1, ..., a_{n-1}, a_n) = K(b, a_n)$

Niech teraz k będzie stopniem b nad K, a m - stopniem a_n nad K(b). Z lematu 6.7 wiemy, że istnieją $f_1,...,f_k\in Gal(\widehat{K}/K)$ takie, że $f_1(b),...,v_k(b)$ są parami różne. Niech więc $f_{1,1},...,f_{1,m}\in G(\widehat{K}/K(b))$ takie, że $f_{1,1}(a),...,f_{1,m}(a)$ są parami różne.

Dla i = 1, ..., k, j = 1, ..., m niech $f_{i,j} = f_i \circ f_{1,j} \in Gal(\widehat{K}/K)$.

Zauważmy, że

$$\langle i,j\rangle \not\equiv \langle i',j'\rangle \implies \langle f_{i,j}(a),f_{i,j}(b)\rangle \not\equiv \langle f_{i',j'}(a),f_{i',j'}(b)\rangle,$$

bo są dwie możliwości:

•
$$i \neq i'$$
, wtedy $f_{i,j} = f_i(b) \neq f_{i'}(b) = f_{i',j'}(b)$

•
$$i = i' \land j \neq j'$$
, where $f_{ij}(a) = f_i(f_{1,j}(a)) \neq f_{i'}(f_{1,j}(a)) = f_{i'i'}(a)$, bo $f'_{1,j}(a) \neq f'_{1,i'}(a)$.

Skoro K było nieskończone, to istnieje $c \in K$ takie, że dla $\langle i,j \rangle \neq \langle i',j' \rangle$ mamy

$$f_{i,j}(b) + f_{i,j}(a) \cdot c \neq f_{i',j'}(b) + f_{i',i'}(a) \cdot c$$

bo

$$F(x) = \prod_{\langle i,j \rangle \not= \langle i',j' \rangle} [f_{i,j}(b) + f_{ij}(a)x - (f_{i'j'}(b) + f_{i'j'}(a)x)]$$

i c po prostu nie jest pierwiastkiem F.

Postulujemy, że $K(b, a_n) = K(a^*)$, gdzie $a^* = b + a_n c$ jest elementem pierwotnym.

⊇ jest jasne

 $\subseteq f_{ij}(a^*)$, $1 \le i \le k$, $1 \le j \le m$ parami różne.

Wiemy, że $deg(a^*/K) \ge k \cdot m$, z drugiej strony

$$k \cdot m \le [K(a^*) : K] \le [K(a_h, b) : K] = [K(b) : K][K(a_n, b) : K(b)] = km$$

czyli wszędzie wyżej są równości i mamy $K(a^*) = K(a_n, b)$.

Wniosek 6.9.

- 1. Jeśli L = $K(a_1, ..., a_n)$ i a_i są rozdzielcze nad K, to $L \supseteq K$ też jest rozdzielcze.
- 2. $K \subseteq L$ jest rozdzielcze i $L \subseteq M$ jest rozdzielcze, to $K \subseteq M$ też jest rozdzielcze.

Dowód. 1. Niech L = K(a) i a jest rozdzielczy nad K. Załóżmy, że b ∈ L nie jest rozdzielczy nad K. Wtedy L = K(b, a).

$$n \cdot m$$
 n m
 $deg(a/K) = deg(b/K) \cdot deg(a/K(b))$
 u u u
 $[K(a): K] = [K(b): K] \cdot [K(a,b): K(b)]$

Wybierzmy teraz g ∈ K[X] takie, że g(a) = b. Wtedy

$$n \cdot m = |\{f(a) : f \in Gal(\widehat{K}/K)\}| = (\star),$$

bo a jest rozdzielczy nad K. Dalej,

$$(\star) = |\{(f(b), f(a)) : f \in Gal(\widehat{K}/K)\}| = (\star\star),$$

bo f(b) ma k < n możliwości, gdyż b nie jest rozdzielczy nad K i korzystamy z 6.7. Przy ustalonym f(b) skakać po f(a) możemy na co najwyżej m sposobów, bo deg(a/K(b)) = m = deg(f(a)/K(f(b)). Czyli koniec końców

$$(\star\star) < k \cdot m < n \cdot m$$

co daje sprzeczność.

2. Podobny dowód zostawiony studentowi do pokiwania głową, że rozumie a w duszy płacz bo co się dzieje?

<u></u>

Wykład 7: Rozszerzenia radykalne (czysty Bangladesz)

Niech K \subseteq L \subseteq \widehat{K} jak zwykle. Wtedy

- $a \in L$ jest czysto nierozdzielczy nad K, czyli radykalny, gdy wielomian minimalny a nad K, $w_a(x) \in K[X]$, ma tylko jeden pierwiastek w \widehat{K} .
- $K \subseteq L$ jest **rozszerzeniem radykalnym** (czysto nierozdzielczym), gdy dla każdego $a \in L$ a jest radykalne nad K.

Uwaga 7.1.

- 1. Jeśli char(K) = 0, to a nad K jest czysto nierozdzielczy \iff a \in K.
- 2. a jest radykalne nad K \iff dla każdego f \in Gal(\widehat{K}/K) f(a) = a
- 3. Jeśli char(K) = p, to a jest radykalne nad K \iff istnieje n \geq 0 apn \in K.

Dowód.

- 1. $w_a(x)$ ma tylko pierwiastki jednokrotne, gdy char(K) = 0
- 2. Oczywiste *
- 3. \leftarrow oczywiste: $w_a(x) \in K[X]$ dzieli $x^{p^n} a^{p^n} = (x a)^{p^n} \in K[X]$
 - \implies Dowodzimy indukcją po n = deg(a/K). Niech $w_a(x) = (x-a)^n \in K[X]i \ w_a'(x) = n(x-a)^{n-1} \in K[X]i \ w_a' \in I(a/K)$ gdy n > 1, czyli $w_a'(x) = 0$, więc p|n. Niech więc n = p \cdot n₁ i wtedy $w_a(x) = (x^p a^p)^{n_1}$ i a^p jest radykalny nad K, bo deg(a^p/K) $\le n_1 < n$. Z założenia indukcyjnego istnieje $k \ge 0$ takie, że $(a^p)^{p^k} = a^{p^{k+1}} \in K$ i to jest to, czego szukaliśmy.

Spis twierdzeń

1.1	Fakt	4
1.2	Uwaga	4
1.3	Uwaga	5
1.4	Uwaga	
1.5	Uwaga	6
1.6	Twierdzenie	7
1.7	Wniosek	7
1.8	Fakt	
2.1	Wniosek	
2.2	Wniosek	
2.3	Twierdzenie	
3.1	Uwaga	
3.2	Uwaga	
3.3	Uwaga	
3.4	Twierdzenie	
3.5	Wniosek	
3.6	Twierdzenie	
4.1	Definicja	
4.2	Uwaga	
4.3	Uwaga	
4.4	Definicja: wielomian minimalny, stopień pierwiastka	
4.5	Uwaga: $I(a/K) = (f) \implies deg(f) = [K(a) : K]$	
4.6	Fakt: $\dim_{K}(M) = \dim_{L}(M) \cdot \dim_{K}(L)$	17
4.7	Wniosek: K _{alg} - podciałem	
4.8	Definicja: (relatywne) algebraiczne domknięcie	
5.1	Uwaga: algebraiczne rozszerzenia ciał	20
5.2	Uwaga. digebraiczne rozszerzenia ciał	20
	Uwaga: $(K_{alg}(L))_{alg}(L) = K_{alg}(L)$	20
5.3	Uwaga: Fm $\in \mathbb{Z}[\Lambda]$	20
5.4	Uwaga: lemat Gaussa: F_m nierozkładalny w \mathbb{Q}	21
5.5	Uwaga: pierwiastek pierwotny a dim $\mathbb{Q}(\mathbb{Q}(b))$	22
5.6 5.7	Lemat: lemat Liouville'a o aproksymacji diofatycznej	22
5. <i>1</i> 5.8	Definicja: algebraiczne domknięcie	23
5.0 5.9	Twierdzenie: jedyność domknięcia algebraicznego	23
	twierdzenie: jedyność domknięcia digebraicznego	24
	Wniosek: $K \cong L \Longrightarrow \widehat{K} \cong \widehat{L} \ldots \ldots \ldots \ldots \ldots \ldots$	24
5.11	Uwaga: algebraiczne rozszerzenie 1 – 1 \rightarrow \widehat{K}	
6.1	Uwaga: jednorodność K	
6.2	Uwaga	
6.3	Twierdzenie: rozszerzenie jest normalne	27
6.4	Twierdzenie: skończone i normalne \iff ciało rozkładu wielomianu	
6.5	Uwaga	
6.6	Uwaga: nierozkładalny a rozdzielczy	
6.7	Lemat	
6.8	Twierdzenie: Abela o elemencie pierwotnym	
6.9	Wniosek	
_/		