Stats 756 — Assignment 2

December 8, 2022

1. In the frailty model introduced, prove that the density of lifetime T, given the frailty λ , is

$$f(t \mid \lambda) = \lambda h_0(t) e^{-\lambda H_0(t)}$$
.

(a) Then, using the fact that the joint density is

$$f(t,\lambda) = g(\lambda)f(t \mid \lambda),$$

find an expression for the joint density when frailty density $g(\lambda)$ is that of $Gamma(\alpha, \theta)$, where α is the shape parameter and θ is the scale parameter;

- (b) Prove then that the conditional density $g(\lambda \mid t)$ is $Gamma(\alpha + 1, \theta(t))$, where $\theta(t) = \theta + H_0(t)$;
- (c) Prove that the density of frailty among the survivors at time t, i.e., $g(\lambda \mid T > t)$, is $Gamma(\alpha, \theta(t))$.
- 2. Consider the data on weeks to death of 51 adults with recurrent gliomas, A-astrocytoma and G-glioblastoma, given in Assignment 1 (Problem No. 9). Compare the survival functions of the two types of gliomas using the log-rank test, and draw conclusions.
- 3. In a study of cancer of the tongue, patients were divided into two groups and the data on weeks until death were reported by Klein and Moeschberger (1997) as follows:

				\mathbf{Aty}	pical	tumo					
1	3	3	4	10	13	13	16	16	24	26	27
28	30	30	32	41	51	65	67	70	72	73	77
91	93	96	100	104	157	167					

Right censored observations

61	74	79	80	81	87	87	88	89	93	97	101
104	108	109	120	131	150	231	240	400			

Typical tumour

<u>Right censored observations</u> 8 67 76 104 176 231

- (a) Fit a Weibull distribution to each group of patients separately. Estimate the parameters η and α and their standard errors;
- (b) In each group, test the hypothesis that the shape parameter η is 1 (i.e., suitability of the exponential distribution), using the Wald test and also using the likelihood ratio test;
- (c) Find the maximum likelihood estimate of the median survival time in each group of patients;
- (d) Fit a Weibull regression model to the whole data, using one covariate which takes the value 1 for patients in the atypical tumour group and 0 for patients belonging to the typical tumour group. Then, test the hypothesis of no difference between these two groups;
- (e) Test the difference between the two groups using a Weibull regression model.
- 4. Besides the data presented in the last problem, there are two further groups of patients who had an extra stage of therapy, and these data are as follows:

\overline{NHL}	28	32	49	84	357	933*	1078*	1183*	1560*	2114*	2144*
HL	2	4	72	77	79						

In the above, * denotes right censored observations.

Then, fit a Weibull regression model with two covariates (disease -NHL/HL, and therapy - one stage/two stages), and test the effect of therapy on survival of patients.

5. Consider the frailty proportional hazards model of the form

$$h(t \mid y) = yh_0(t)e^{\boldsymbol{\beta}^T\mathbf{x}},$$

where $h(t \mid y)$ is the conditional hazard function of lifetime T, given y, y denotes the unobserved frailty, \mathbf{x} is the associated set of covariates, and $\boldsymbol{\beta}$ is the set of regression coefficients.

Then, by considering the situation in which you have observed n observations, $(t_i, \delta_i, \mathbf{x}_i)$, $i = 1, \ldots, n$, from the above frailty model, derive the likelihood function in an explicit form for the observed data.

- 6. Consider the "catheter infection data" given by McGilchrist and Aisbett (1991, Biometrics, Vol. 47, Pages 461-466), dealing with time from insertion of a catheter into dialysis patients until it has to be removed due to infection (some were removed for other reasons, resulting in censoring).
 - Restricting the analysis just to Age and Sex as covariates, and treating the two failure times of every individual as independent, a Cox hazard model can be fitted to the data.

Also, to account for heterogeneity within the observed failure times, a gamma frailty model can be fitted to the data.

- (a) Present the results of these two model fits, giving estimates of model parameters, standard errors, etc.;
- (b) Compare and comment on the suitability of gamma frailty model in its ability to account for the unobserved heterogeneity in the observed failure times.
- 7. A breast cancer study, reported by Hajan-Tilaki et al. (2011), presented the following test results for various cut-off points of BMI (kg/ m^2) for a number of breast cancer patients:

	(n =	(n = 200)				
	Breast can	Normal subjects				
Cut-off	True positive	False negative	False positive	True negative		
18	100	0	200	0		
20	100	0	198	2		
22	99	1	177	23		
24	95	5	117	83		
26	85	15	80	120		
28	66	34	53	147		
30	47	53	27	173		
32	34	66	17	183		
34	21	79	14	186		
36	17	83	6	194		
38	7	93	4	196		
40	1	99	1	199		

- (a) Calculate various indices of accuracy and inaccuracy, and comment;
- (b) Comment on the relationship between sensitivity and specificity;

- (c) Draw the corresponding ROC curve and provide an estimate of AUC (you may either use empirical method from the above or use a nonparametric smoothing method in R or in SAS), and present an approximate 95% confidence interval for it;
- (d) Comment on the ability of BMI as a biomarker in terms of its predictive ability to discriminate breast cancer patients from normal subjects.

Good luck!