

Lista de exercícios 1

Questão 1. Para cada função a seguir, (i) aproxime o valor de f(a) usando o polinômio de Taylor de primeira ordem para f definido em torno de x_0 , (ii) calcule o erro relativo correspondente e (iii) obtenha um limitante para o erro de truncamento dessa aproximação para valores de x em um intervalo de tamanho unitário centrado em a.

- (a) $f(x) = \ln x$; a = 1.5; $x_0 = 1$.
- (b) $f(x) = \sqrt{x}$; a = 9.5; $x_0 = 9$.

Questão 2 (Burden et al. (2017), Exercícios 1.1(13)). Seja $P_3(x)$ o polinômio de Taylor de ordem 3 da função $f(x) = (x-1) \ln x$ em $x_0 = 1$.

- (a) Use $P_3(x)$ para aproximar f(0,5).
- (b) Obtenha um limitante para o erro $|f(0,5) P_3(0,5)|$ e compare-o com o erro real.
- (c) Determine um limitante para $|f(x) P_3(x)|$ para $x \in [0,5,1,5]$.
- (d) Aproxime $\int_{0.5}^{1.5} f(x) dx$ usando $\int_{0.5}^{1.5} P_3(x) dx$.
- (e) Determine um limitante para o erro cometido em (d).

Questão 3 (Burden et al. (2017), Exercícios 1.1(18)). Sejam $f(x) = (1-x)^{-1}$, com x < 1, e $P_n(x)$ seu polinômio de Taylor de ordem n definido em torno de $x_0 < 1$.

- (a) Determine a expressão de $P_n(x)$ para $x_0 = 0$.
- (b) Determine o valor de n necessário para que $P_n(x)$ aproxime f(x) com precisão de 10^{-6} para $x \in \left[0, \frac{1}{2}\right]$.

Questão 4 (Burden et al. (2017), Exercícios 1.2(2)). Calcule os erros absoluto e relativo de cada aproximação \tilde{p} para o valor exato p, dados a seguir.

(a)
$$p = e^{10}$$
 e $\tilde{p} = 22.000$

(b)
$$p = 10^{\pi} \text{ e } \tilde{p} = 1.400$$

(c)
$$p = 8! \text{ e } \tilde{p} = 39.900$$

(d)
$$p = 9! \text{ e } \tilde{p} = \sqrt{18\pi} (9/e)^9$$

Questão 5 (Burden et al. (2017), Exercícios 1.2(4)). Determine o maior intervalo no qual \tilde{p} deve estar contido a fim de aproximar p com quatro dígitos significativos exatos para cada valor de p abaixo.

(a) π

(b) *e*

(c) $\sqrt{2}$

(d) $\sqrt[3]{7}$

Questão 6 (Cheney e Kincaid (2008), Problemas 2.1). Sabe-se que a operação aritmética de ponto flutuante $a \oplus (b \oplus c)$ pode ter o resultado diferente de $(a \oplus b) \oplus c$, isto é, a operação de adição não é associativa. Exemplifique isso por meio de um exemplo.

Questão 7. Um sistema de ponto flutuante é dado por $\beta = 2$, t = 2, $e_{\min} = -1$, $e_{\max} = 1$.

- (a) Liste todos os números desse sistema.
- (b) Converta os números (i) 1/3, (ii) 2/3, (iii) 0,9 et (iv) 9,6 para esse sistema.

Questão 8. Realize as operações a seguir considerando um formato decimal normalizado com precisão de três dígitos, com o intervalo de expoentes válidos ilimitado. Calcule o erro absoluto e o erro relativo tomando o valor exato constituído de pelo menos cinco algarismos de precisão.

- (a) $133 \oplus 0.921$
- (c) $(121 \ominus 0.327) \ominus 119$
- (b) $133 \ominus 0.499$
- (d) $(121 \ominus 119) \ominus 0.327$

Questão 9. O sistema de precisão dupla do IEEE é um sistema numérico binário caracterizado por ter uma precisão de 53 bits, $e_{\min} = -1022$ e $e_{\max} = 1023$. Neste contexto, é verdade que $1/3 \oplus 2/3$ é diferente de 1 quando usamos:

- (a) arredondamento para o mais próximo?
- (b) arredondamento em direção ao zero?

Questão 10 (Adaptado de REAMAT/UFRGS, Exemplo 2.7.2; Ascher e Greif (2011), Exercícios 2.5(15-16)).

(a) Calcule as raízes da equação:

$$x^2 + 300x - 0.014 = 0$$

aplicando a fórmula de Bhaskara, considerando um sistema decimal com precisão de seis dígitos.

- (b) Sabendo que os valores exatos das raízes com seis dígitos são $\xi_1 = -3,00000 \times 10^2$ e $\xi_2 = 4,66667 \times 10^{-5}$, discuta o que pode ter ocorrido com o resultado do item (a).
- (c) Proponha uma solução para contornar esta dificuldade, calculando os novos valores e seus respectivos erros relativos. [Dica: utilize as Equações 1.1, 1.2 e 1.3 do livrotexto.]
- (d) Implemente a fórmula de Bhaskara e o método escolhido no item (c) em funções denominadas bhaskara e proposto, respectivamente. Essas funções devem ter como entrada números reais a, b e c em precisão dupla e retornar as raízes do polinômio quadrático $ax^2 + bx + c$. Avalie o desempenho das funções implementadas nos seguintes casos:
 - (i) $a = 1, b = -10^5, c = 1.$
 - (ii) $a = 6 \times 10^{30}$, $b = 5 \times 10^{30}$, $c = -4 \times 10^{30}$.
 - (iii) $a = 10^{-30}$, $b = -10^{30}$, $c = 10^{30}$.