

电磁辐射与加速器束流动力学导论

Introduction to Accelerator Beams, Collective Dynamics,

Electromagnetic Radiation and **F**ree-electron Lasers

作者: 蔡承颖 (Cheng-Ying Tsai, C.-Y. Tsai)

单位: 华中科技大学电气学院

时间: 2024年5月

版本: v4.1

特别声明

此笔记/讲义非最终版,内容可能存在笔误、谬误,仍在迭代修改中。此讲义不定期 更新。

前言

粒子加速器是什么? 如果用三句话概括:

- 1. 用电场加速带电粒子、用磁场导引使带电粒子弯转并控制粒子束团的电磁装置。
- 2. 从物理上看,一半讨论"粒子"动力学(经典力学),一半则包含"场"动力学(电磁理论)。
- 3. 从工程上看,粒子加速器是结合电气、机械、控制、光电等领域的跨学科、多学科平台。

这份讲义面向群体: 电气专业、以电磁辐射与粒子加速器束动力学为未来选题方向的大二以上本科生或低年级研究生。对应用物理或光电专业的读者或许略显简单,但仍适用。

编写此讲义的初衷:电气专业的读者对于时变电磁场进阶内容接触较少,部分原因由于电磁场作为必修课的课程学时没有得到足够重视(相比于电气学院的其它课程),另外一部分原因则是本校电气学院属于"强电"专业,由于历史发展原因,高频时变电磁场有时被归类为"弱电"专业。因此,对于时变电磁场理论的一个重要应用— 电磁辐射—着墨就更少了,涉及到相对论电子运动情况下的电磁辐射更是只字未提。特殊或狭义相对论曾经在一年级大学物理介绍过,但是,在电磁场课程中没有接续作为解释磁场来源的素材进行介绍是令人遗憾的。并且,也忽略了在不同惯性坐标系中的时变电磁场形式与洛伦兹变换的讨论。这些都无形地阻断了电气学院学生接触电磁辐射与粒子加速器课题的契机。粒子加速器作为结合电气、机械、物理等领域的跨学科、多学科平台,在二十一世纪的现在应该值得更多重视。因此,编写此讲义的初衷为有针对性地对粒子加速器(特别是束流动力学相关)课题感兴趣的读者群体,试图弥补过去所学的课程中缺少的部分时变电磁场与电磁辐射内容,同时使用一致的符号惯例基础上,衔接加速器物理的基本内容。

写在开始前,讲义第零章介绍几个术语、惯例、基础知识与单位制转换等。术语主要包含狭义相对论的洛伦兹因子、时空坐标的洛伦兹变换、伴随的时慢、尺缩效应、常用来描述粒子能量的电子伏特 (eV) 单位等。惯例则包含工程与物理领域的虚数单元 i,j 符号,与傅里叶变换的 $2\pi,\sqrt{2\pi}$ 惯例、相关定理等。基础知识给出几种加速器的大致样貌的介绍,提供读者一个粗略、模糊的认识。此讲义不涉及关于加速器历史发展的介绍。同样并入第零章介绍的还有时常令人困惑的单位制转换,特别是国际单位制 (SI, MKS) 与高斯单位制 (Gaussian/CGS) 的转换,包含常用物理常数列表。正式进入正题前,一些高等数学基础的内容包含:三种正交坐标系的向量微积分与坐标变换、常用向量恒等式、微分运算、常用积分公式、恒等式、特殊函数、近似展开公式、级数求和公式、矩阵特征分解等整理为附录 B 内容。这部分作为参考素材,已具备这些基础知识或不感兴趣的读者可以直接跳过,等在后面学习需要时再回头查阅。

这份讲义的正式内容从第一个主题 — 时变电磁场与电磁辐射理论 — 开始,不同于 多数介绍加速器基础的教科书由介绍带电粒子的经典力学 (哈密顿力学) 开始。这么做对 于缺乏经典力学基础知识的电气专业学生而言,有一些好处:

- 时变电磁场理论接续本科电磁场课程,先从复习既有电磁场知识开始 (Chapter 1),接着介绍电磁辐射理论 (Chapter 2-5),属于学生相对熟悉的电磁场知识,可以减少课题陌生感造成的学习困难与抵触情绪。
- 第一部分,即前五章,介绍的电磁辐射理论多为单电子运动产生的辐射,并假设电子运动轨迹是预先给定 (prescribed) 的。下一步便是探讨电子在粒子加速器中的运动如何受外部场支配。由洛伦兹方程开始,将重心由"场"的分析转移至"电子(粒子)"的分析,就进入这份讲义的第二个主题: 束流动力学 (Chapter 6、7、8)。相信对电气专业学生而言,这个转换会比起直接从讨论"电子"的运动(哈密顿力学)至电子辐射的"场"(电磁理论) 更自然。这是此讲义的特色之一。尽管做了内容调整的安排,电气专业的读者在初次接触第二个主题时,觉得陌生、困难是极为正常的。对有志于了解或熟悉加速器课题的读者,应该坚持消化这部分介绍的内容。

第二部分粒子动力学的内容,对单粒子 (Chapter 6-8) 效应与多粒子效应的讨论约各占一半 (Chapter 10-12), Chapter 9 可视为中场休息。在粒子加速器中,许多 — 成万上亿 (10⁴ ~ 10¹⁰) 个 — 电子形成束团 (beam 或 bunch),束团内粒子间的 (库仑) 场、电磁辐射场与环境交互作用,产生众多丰富多彩的动力学课题,形成多粒子集体效应 (Chapter 10-13)。集体效应是粒子束流动力学的一个分支,也是这份讲义第二部分的主要组成部分。这里注意到,即使是单粒子束流动力学的研究内容也是多姿多彩的,涉及的研究层面与使用工具既多且广。限于作者水平与知识所限,这份讲义对于单粒子动力学的介绍仅包含最基础部分。对集体效应的介绍,我们选择从自由电子激光 (free-electron laser, FEL)理论开始,算是这份讲义的另一个特色。这么选择的原因一方面是因为描述自由电子激光机制的理论框架相对独立 (self-contained),并且使用的语言与符号与传统加速器集体效应有些不同。在介绍完自由电子激光理论之后,这份讲义接着介绍经典、标准的集体效应理论,从尾场函数、阻抗函数开始 (Chapter 11),然后再是粒子动力学,包含宏粒子模型 (Chapter 12) 与连续体分布函数的动理学模型 (Chapter 13)。

最后,这份讲义的第三部分简短介绍笔者近年感兴趣的三个课题:超快电子成像的电子动力学(Chapter 14)、相干同步辐射(Chapter 15)、高亮度电子微束团动力学(Chapter 16),与一个与工程实际紧密结合,同时蕴含丰富物理原理的专题:束测(Chapter 17)。

综上,此讲义一共包含 18 章,第零章为预备知识,其余 17 章中,第一部分有 5 章,包含时变电磁场基础、同步辐射与波荡器辐射理论;第二部分有 8 章,包含横向与纵向单粒子束流动力学、自由电子激光理论、集体效应的场动力学与束动力学;第三部分有

- 4章,分别介绍四个专题。学时所限,一般未必有足够时间覆盖讲义所有内容:
 - •对32学时、偏电子束动力学的课程,可挑选第六章至第八章内容,其中,第八章 关于同步辐射效应的讨论仅需要非常有限的第四章的内容,在讲义 §8.3、§8.4中已 经提及。如讲授时间有余,可选择一些第十二章与第十三章的内容,其中,尾场或 阻抗函数作为给定的、已知函数即可。
 - 对32学时、偏辐射场动力学的课程,可挑选第一章至第五章内容。如讲授时间有余,可再包含一些第十一章的内容,介绍如何计算集体效应的尾场函数或阻抗函数。
 - 对 64 学时、总论导向的课程,如果学生背景为初学,原则上可包含第一章至第九章内容。如果学生已具备足够电磁学知识,则可考虑跳过第一章,从第二章开始,跳过第十章以外的前十三章内容。或者,如果希望介绍自由电子激光基础,不妨考虑从第二章至第十章,略去第十二章与第十三章。
 - 对 64 学时、偏电子来动力学的课程,如果学生已具备足够电磁学知识,则可涵盖 第六章至第十三章内容,其中关于同步辐射与波荡器辐射的基础只需要在必要时候 简短回顾第四、五章即可。如讲授时间有余,可选择第三部分的部分内容作为进阶 素材。

此讲义虽假设初学的读者为电气专业,但对应用物理或光电专业等相关专业的读者 仍适用。需要具备的、共同的前置基础知识有:

- 大学物理、微积分;
- 电磁学或电动力学;
- 高等数学(包含:线性代数、复变函数与积分变换、偏微分方程、特殊函数)。

对电气专业的读者,如果具备自动控制理论、信号与系统、概率论与数理统计等背景知识则更好,相信能够帮助对粒子加速器集体效应的更深刻理解。对物理或光电专业的读者,如果具备量子力学、统计力学、激光原理、固体物理或许能更深入理解电子产生辐射的物理过程。经典力学一般作为物理专业的必修课之一,相信这些对理解此讲义第二部分内容具有较大程度帮助。

关于这份讲义的几个特点:

要点以定律、定义、定理、性质形式 模块化 呈现,尽可能简明地总结,方便复习、查找。定义或定理中的物理量尽量在方格内全部介绍,虽然用到的一些符号可能前面已经定义过而显得啰嗦。但希望这么做能更方便复习、查找。部分定理可能给出证明或思路;如果不在意证明细节,可以略去不看;如果在乎推导细节,将尽量提供参考文献。

定律.

物理定律、基本方程、经验定律或数量级尺度以"定律"呈现。

定义.	
专有名词首次出现以"定义"呈现。	
定理.	
一些重要结果以"定理"呈现。	
性质	
一些重要结果伴随的讨论或实用公式整理成"性质"呈现。	

- 除定义、定理、性质外,有时候不免再啰嗦几句,或是给出一些不属于正文的评语、标注、笔记等,将以散落各处的注、笔记呈现。此外,穿插在段落中可能给出一些延伸练习。
- 每章篇幅尽可能符合一个较明确、特定的主题,做到讲义"精、美"。

除束测一章外,此讲义各章之间关联程度不一,可通过图 1体现。

图 1: 此讲义各章间关联图。前九章应视为基础章节,主要包含前述第一部分的电磁场理论(Chapter 1 - Chapter 5)与第二部分的经典力学前半部(Chapter 6 - Chapter 9)。讲义第二部分的后半部(Chapter 10 - Chapter 13)与第三部分的专题(Chapter 14 - Chapter 16)共七章则相对进阶,围绕高亮度电子动力学的不同面向展开。束测部分相对独立,未列入此图。

限于作者知之甚少,这份讲义仅简单介绍了电磁辐射理论与加速器理论的基础内容,

讨论的对象也主要限于容易辐射电磁场的电子。虽然有些讨论同样适用于质子或重离子,但是质子不太容易辐射的这个特点导致的一些特殊的束流动力学现象将不在这份讲义目前包含的范围。

无论在科研或教学上,限于学识与经验,讲义里难免存在错误或不妥处,欢迎所有对此讲义任何带有建设性的意见通过我以下的电邮给我指正。最后,讲义基于ElegantLATEX的 ElegantBook 模板,经过部分修改后编辑而成。

蔡承颖 jcytsai@hust.edu.cn 2024年4月于武汉

一些有用的参考书籍与素材

既然作为"讲义",不是百科全书也不是工具书,就不打算也无法"包山包海"¹。在这份讲义不够完整的地方,笔者推荐一些目前市面上较经典的几本教科书或讨论特定专题的参考书:

一 电磁理论

- John David Jackson, Classical Electrodynamics, 3rd ed., John Wiley & Sons (1998)
- Julian Schwinger, Lester L. Deraad Jr., Kimball Milton, and Wu-Yang Tsai, Classical Electrodynamics, Perseus Books (1998)
- Charles A. Brau, Modern Problems in Classical Electrodynamics, Oxford University Press (2004)
- Andrew Zangwill, Modern Electrodynamics, Cambridge University Press (2013)
- Richard Feynman, Robert Leighton, and Mathew Sands, The Feynman Lectures on Physics, Volume II, Addison-Wesley Publishing Company (1964). https://www.feynmanlectures.caltech.edu/II_toc.html
- Gennady Stupakov and Gregory Penn, Classical Mechanics and Electromagnetism in Accelerator Physics, Springer (2018). 此书特别针对与粒子加速器相关的经典力学与电磁理论进行介绍

二 加速器物理基础

- Mathew Sands, The Physics of Electron Storage Rings An Introduction, SLAC-121 (1970). https://www.slac.stanford.edu/pubs/slacreports/reports02/slacr-121.pdf
- Philip J. Bryant and Kjell Johnsen, The Principles of Circular Accelerators and Storage Rings, Cambridge University Press (1993)
- Alexander Wu Chao, Lectures on Accelerator Physics, World Scientific (2020)
- Alexander Wu Chao, Special Topics in Accelerator Physics, World Scientific (2022)
- Simone Di Mitri, Fundamentals of Particle Accelerator Physics, Springer (2022)
- Shyh-Yuan Lee, Accelerator Physics, 4th ed., World Scientific (2019). https://library.oapen.org/handle/20.500.12657/50490
- Helmut Wiedemann, Particle Accelerator Physics, 4th ed., Springer (2015). https://library.oapen.org/handle/20.500.12657/23641
- Andrzej Wolski, Beam Dynamics in High Energy Particle Accelerators, Imperial College Press (2014)
- Mario Conte and William M. MacKay, An Introduction to the Physics of Particle Accel-

 $^{^1}$ 此讲义附录 $^{\mathrm{I}}$ 给出 CERN CAS 列举的一般课的课程大纲,此讲义内容大概涵盖 $^{\mathrm{80\%}}$ 以上内容,作为导论应该足够。

- erators, 2nd ed., World Scientific (2008)
- Klaus Wille, The Physics of Particle Accelerators, Oxford University Press (2005)
- Edmund Wilson, An Introduction to Particle Accelerators, Oxford University Press (2001).
 https://library.oapen.org/handle/20.500.12657/76447
- Donald Edwards and Michael Syphers, An Introduction to the Physics of High Energy Accelerators, John Wiley & Sons (2004)
- James Rosenzweig, Fundamentals of Beam Physics, Oxford University Press (2003)
- Martin Reiser, Theory and Design of Charged Particle Beams, Second, Updated and Expanded Edition, Wiley-VCH (2008)
- Rob Appleby, Graeme Burt, James Clarke, and Hywel Owen, The Science and Technology of Particle Accelerators, CRC Press (2021). https://library.oapen.org/handle/2 0.500.12657/53311
- Martin Berz, Kyoko Makino, and Weishi Wan, An Introduction to Beam Physics, CRC Press (2015). https://library.oapen.org/handle/20.500.12657/50888
- Alex J. Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics. https://www.physics.umd.edu/dsat/dsatliemethods.html
- 金玉明, 电子储存环物理 (修订版), 中国科学技术大学出版社 (2001)
- 刘乃泉, 加速器理论 (第2版), 清华大学出版社 (2004)
- 陈佳洱 主编, 加速器物理基础, 北京大学出版社 (2012)

三 同步辐射理论、自由电子激光理论

- Albert Hofmann, The Physics of Synchrotron Radiation, Cambridge University Press (2004)
- Kwang-Je Kim, Zhirong Huang, and Ryan Lindberg, Synchrotron Radiation and Free-Electron Lasers Principles of Coherent X-Ray Generation, Cambridge University Press (2017). 此书有中文译本: 黄森林、刘克新译, 同步辐射与自由电子激光 相干 X 射线产生原理, 北京大学出版社 (2018)
- Peter Schmuser, Martin Dohlus, Jorg Rossbach, and Christopher Behrens, Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 2nd ed., Springer (2014)
- Evgeny L. Saldin, Evgeny A. Schneidmiller, and Mikhail V. Yurkov, The Physics of Free Electron Lasers, Springer (1999)
- Toshiyuki Shiozawa, Classical Relativistic Electrodynamics Theory of Light Emission and Application to Free Electron Lasers, Springer (2004)
- Henry Freund and Thomas Antonsen Jr., Principles of Free Electron Lasers, 3rd ed., Springer (2018)
- Charles A. Brau, Free-Electron Lasers, Academic Press, Inc. (1990)
- Thomas C. Marshall, Free-Electron Lasers, Macmillan Publishing Company (1985)
- 刘祖平, 同步辐射光源物理引论, 中国科学技术大学出版社 (2009)

• 贾启卡,自由电子激光物理导论,科学出版社 (2022)

四 集体效应理论

- Alexander Wu Chao, Physics of Collective Beam Instabilities in High Energy Accelerators,
 John Wiley & Sons (1993). https://www.slac.stanford.edu/~achao/wileybook
 .html
- King-Yuen Ng, Physics of Intensity Dependent Beam Instabilities, World Scientific (2005)
- Bruno W. Zotter and Semyon A. Kheifets, Impedances and Wakes in High-Energy Particle Accelerators, World Scientific (1998)
- Shaukat Khan, Collective Phenomena in Synchrotron Radiation Sources: Prediction,
 Diagnostics, Countermeasures, Springer (2006)
- J.C. Bergstrom, Jack's Book On Beam Instabilities and Other Things (2016)

五 束流量测与诊断

- Michiko G. Minty and Frank Zimmermann, Measurement and Control of Charged Particle Beams, Springer (2003). https://library.oapen.org/handle/20.500.12657/50 057
- Peter Strehl, Beam Instrumentation and Diagnostics, Springer (2006)
- Smaluk Victor, Particle Beam Diagnostics for Accelerators: Instruments and Methods, VDM Verlag Dr. Muller (2009)

六 工具书

- Alexander Wu Chao, Karl Hubert Mess, Maury Tigner, and Frank Zimmermann ed.,
 Handbook of Accelerator Physics and Engineering, 3rd. ed., World Scientific (2023)
- Graham Woan, The Cambridge Handbook of Physics Formulas, Cambridge University Press (2000)

七 高等数学基础

- Jon Mathews and R.L. Walker, Mathematical Methods of Physics, Addison-Wesley (1970)
- George B. Arfken, Hans J. Weber, and Frank E. Harris, Mathematical Methods for Physicists, 7th ed., Elsevier (2013)
- Philip M. Morse and Herman Feshbach, Methods of Theoretical Physics, McGraw-Hill Book Company, Inc. (1953)
- 郑志军、虞吉林编著,应用数学 分析过程和摄动方法,中国科学技术大学出版社 (2023)

此外,在几乎万能的网际网路世界也能找到许多关于粒子加速器的许多的素材,包含科普、教学、综述、科研类的文献。以下列举一些推荐网页:

- 科普: 粒子加速器对人类社会在方方面面的应用 ⇒ http://www.accelerators-for-society.org/里面有许多关于粒子加速器的科普介绍,包含科学、环境、能源、国防安全、工业、医学等面向。
- 教学: CERN Yellow Report ⇒ https://cds.cern.ch/collection/CERN%20Yell ow%20Reports?ln=en 包含许多珍贵的、媲美教科书的加速器基础教程。
- 教学: 美国粒子加速器学校 (U.S. Particle Accelerator School, USPAS) ⇒ https://uspas.fnal.gov/里面有最新办学信息,还有许多过去加速器学校的上课讲义、材料等。此外,早期由美国物理联合会 (American Institute of Physics, AIP) 出版的会议记录文集中,有几卷包含了丰富、珍贵的加速器会议记录,其中许多是长篇教程、前沿综述等:
 - AIP Conference Proceedings No. 57: Nonlinear Dynamics and the Beam-Beam Interaction (BNL, 1979). https://pubs.aip.org/aip/acp/issue/57/1
 - AIP Conference Proceedings No. 87: The Physics of High Energy Particle Accelerators (Fermilab, 1981). https://pubs.aip.org/aip/acp/issue/87/1
 - AIP Conference Proceedings No. 105: The Physics of High Energy Particle Accelerators (SLAC, 1982). https://pubs.aip.org/aip/acp/issue/105/1
 - AIP Conference Proceedings No. 127: The Physics of Particle Accelerators (BNL/-SUNY, 1983). https://pubs.aip.org/aip/acp/issue/127/1
 - AIP Conference Proceedings No. 153: The Physics of Particle Accelerators (Fermilab, 1984 & SLAC, 1985). https://pubs.aip.org/aip/acp/issue/153/1
 - AIP Conference Proceedings No. 184: The Physics of Particle Accelerators (Fermilab, 1987 & Ithaca, N.Y. 1988). https://pubs.aip.org/aip/acp/issue/184/1
 - AIP Conference Proceedings No. 249: The Physics of Particle Accelerators (Upton, N.Y. 1989). https://pubs.aip.org/aip/acp/issue/249/1
 - High Quality Beams Joint US-CERN-JAPAN-RUSSIA Accelerator School, AIP Publishers, 2001. https://pubs.aip.org/aip/acp/issue/592/1
 Springer 也出版了一些关于粒子束讲义:
 - Lecture Notes in Physics No. 247: Nonlinear Dynamics Aspects of Particle Accelerators, Springer-Verlag Publishers, 1985. https://link.springer.com/book/10.1007/BFb0107342
 - Lecture Notes in Physics No. 296: Frontiers of Particle Beams, Springer-Verlag Publishers, 1986. https://link.springer.com/book/10.1007/BFb0031487
 - Lecture Notes in Physics No. 343: Frontiers of Particle Beams; Observation, Diagnosis and Correction, Springer-Verlag Publishers, 1988. https://link.springer.com/book/10.1007/BFb0018278
 - Lecture Notes in Physics No. 400: Frontiers of Particle Beams: Intensity Limitations,
 Springer-Verlag Publishers, 1990. https://link.springer.com/book/10.10
 07/3-540-55250-2

Lecture Notes in Physics No. 425: Frontiers of Particle Beams: Factories with e⁺ e⁻ Rings, Springer-Verlag Publishers, 1992. https://link.springer.com/book/1 0.1007/978-3-662-13972-1

自由电子激光理论早期进展的一些文献 — PQE2 — 也具有借鉴意义:

- Physics of Quantum Electronics, Vol. 5: Novel Sources of Coherent Radiation, Addison-Wesley, 1978.
- Physics of Quantum Electronics, Vol. 7: Free-Electron Generators of Coherent Radiation, Addison-Wesley, 1979.
- Physics of Quantum Electronics, Vol. 8: Free-Electron Generators of Coherent Radiation, Addison-Wesley, 1981.
- Physics of Quantum Electronics, Vol. 9: Free-Electron Generators of Coherent Radiation, Addison-Wesley, 1981.
- 科研:物理评论 加速器与束物理 (Physical Review Accelerators and Beams, PRAB)
 ⇒ https://journals.aps.org/prab/ 一个业内高度认可、标准的加速器物理与工程期刊。此外,在 1970至 2000年期间,"粒子加速器"(Particle Accelerator, PA) 期刊也享誉盛名,尽管现在不再出版,但当时的论文已全部归档,全文链接⇒https://cds.cern.ch/record/229735?ln=en。
- 科研:核仪器与方法 (Nuclear Instruments and Methods in Physics Research, NIM)
 ⇒ https://www.sciencedirect.com/journal/nuclear-instruments-and-met hods-in-physics-research-section-a-accelerators-spectrometers-detectors-and-associated-equipment 也是一个业内标准的加速器期刊,包含探测器与核技术应用等。
- 科研:联合加速器会议网 (Joint Accelerator Conferences Website, JACoW) ⇒ https://www.jacow.org/ 收录许多过去举办的国际加速器会议与会议论文,也有即将举办的会议信息。
- 综述: 2008 年至 2019 年间,由 World Scientific 出版的年刊"加速器科学与技术回顾" (Reviews of Accelerator Science and Technology, RAST) https://www.worldscientific.com/worldscinet/rast 按十个主题收录了加速器各领域目前最新进展,具有借鉴意义。
 - 1. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 1: Overview, World Scientific (2008) 总览
 - Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology — Vol. 2: Medical Applications of Accelerators, World Scientific (2009) 医疗应用
 - 3. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 3: Accelerators as Photon Sources, World Scientific (2010) 先

²https://www.pqeconference.com/pqe-history

进光源

- 4. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 4: Accelerator Applications in Industry and the Environment, World Scientific (2011) 工业与环境应用
- 5. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 5: Applications of Superconducting Technology to Accelerators, World Scientific (2012) 超导技术
- Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology — Vol. 6: Accelerators for High Intensity Beams, World Scientific (2013) 强流加速器
- 7. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 7: Colliders, World Scientific (2014) 对撞机
- 8. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 8: Accelerator Applications in Energy and Security, World Scientific (2015) 能源与国家安全应用
- 9. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 9: Technology and Applications of Advanced Accelerator Concepts, World Scientific (2016) 先进加速器技术与应用
- Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 10: The Future of Accelerators, World Scientific (2019) 加速器的未来

目录

0	几个	术语、惯例、基础知识与单位制转换	1
	0.1	几个术语	3
	0.2	惯例	9
		$0.2.1 j = -i \dots \dots \dots \dots \dots \dots \dots \dots \dots $	9
		$0.2.2 2\pi, \sqrt{2\pi} \dots \dots$	9
		0.2.3 $q, e, -e, e^{(\dots)}$	14
	0.3	基础知识	15
	0.4	单位、量纲、物理常数	20
	0.5	单位制转换	22
	0.6	基础高等数学练习题	27
	第零	章 补充习题	28
第	一 部,	分 时变电磁场、电磁辐射理论	31
710	Pr.		
1	电磁	场基础: 复习	32
	1.1	基本方程	32
		1.1.1 静电场基本方程	37
		1.1.2 恒定电场基本方程	40
		1.1.3 静磁场或恒定磁场基本方程	41
		1.1.4 电磁场分界面边界条件	43
	1.2	无源电磁场方程	46
	1.3	趋肤效应	48
		1.3.1 浅谈: 超导体的电磁特性	52
	1.4	位函数	54
	1.5	电磁场能量守恒定律	59
	1.6	求解电磁波方程: 思路	64
	1.7	求解电磁波方程:波动问题	65
	1.8	求解电磁波方程:波形问题	66
	1.9	电磁波定向传播的几个类型	70
	1.10	波速	73
	1.11	电磁波的偏振:极化 (polarization)	75
		1.11.1 在X射线波段,物质折射率小于、但非常接近1	78
	1.12	波导	80
		1.12.1 波导的激励	92
	1.13	谐振腔	94

4	同步	辐射		178
	4.1	同步辐	ā射的定性讨论	180
		4.1.1	同步辐射张角 $ heta pprox rac{1}{\gamma}$	180
		4.1.2	同步辐射特征频率 $\omega_c \approx \frac{3c\gamma^3}{2\rho}$	180
		4.1.3	同步辐射由横向水平极化主导 $P_{\sigma}: P_{\pi} \approx 7:1$	182
		4.1.4	同步辐射是量子力学效应,不是经典力学效应	182
	4.2	同步辐	a射的定量讨论	185
	4.3	一些计	- 算细节	187
	4.4	一些辐	a射物理量的分布函数	193
		4.4.1	同步辐射功率 <u>频谱</u> <u>角</u> 分布	193
		4.4.2	同步辐射功率 <u>频谱</u> 分布	194
		4.4.3	同步辐射功率 <u>角</u> 分布	196
		4.4.4	同步辐射 <u>偏振</u> 或 <u>极化</u> 分布	196
		4.4.5	同步辐射 <u>光量子</u> 分布	198
		4.4.6	讨论:中心极限定理	199
	4.5	辐射形	形成长度 (formation length)	202
	4.6	整理:	同步辐射实用公式	206
	第四	章补;	充习题	208
5	波荡	器辐射		209
	5.1	四代光	台源大致进展	210
	5.2	波荡器	异辐射的定性讨论	211
		5.2.1	共振条件 $\lambda_1 = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K_u^2}{2} + \gamma^2 \theta^2 \right) \dots$	211
		5.2.2	波荡器辐射像甩动的探照灯,谱宽 $\frac{\Delta \omega}{\omega_1} \approx \frac{1}{N_n} \cdot \cdot$	
		5.2.3	平面型波荡器是线偏振主导	217
	5.3	波荡器	异辐射的定量讨论	218
	5.4	一些辐	a射物理量的分布函数	221
		5.4.1	$K_u \leq 1$ 波荡器辐射功率 <u>频谱</u> 角 分布	221
		5.4.2	$K_u \leq 1$ 波荡器辐射功率 <u>角</u> 分布	221
		5.4.3	$K_u \leq 1$ 波荡器辐射功率 <u>频谱</u> 分布 \dots	224
		5.4.4	$K_u \le 1$ 波荡器辐射功率 <u>光量子</u> 分布	225
		5.4.5	$K_u \geq 1$ 波荡器辐射分析的两个区别 \dots	227
		5.4.6	$K_u \ge 1$ 波荡器辐射功率 <u>频谱</u> 角 分布、频谱 分布、光量子 分布 .	227
	5.5	整理:	波荡器辐射实用公式	233
	<i></i>	育 韵	- 京 京	235

第	二部	分 束流动力学、集体效应	237
6	粒子	加速器基础:综述与哈密顿力学基础	238
	6.1	经典力学理论: 拉格朗日量、哈密顿量	238
	6.2	相空间与 Liouville 定理	243
	6.3	正则变换	248
		6.3.1 作用量-角度变换	254
	6.4	磁刚度 $B ho$ 与 Frenet-Serret 坐标系 \dots	258
		6.4.1 Frenet-Serret 坐标系向量运算	260
	6.5	加速器哈密顿量	262
	第六	て章 补充习题	265
7	粒子	加速器基础: 東流光学 — 横向	267
	7.1	几种常见的磁铁部件	269
		7.1.1 真空漂移段	269
		7.1.2 二极铁	269
		7.1.3 四极铁	270
		7.1.4 六极铁	274
		7.1.5 螺线管	279
		7.1.6 磁铁的磁场强度极限:饱和、磁滞	283
	7.2	Hill 方程	286
	7.3	Courant-Snyder 参量、Twiss 参量	294
	7.4	传输矩阵概念初探	303
		7.4.1 浅谈: 光学的 ABCD 传输矩阵	310
	7.5	发射度: 一个加速器中重要的物理量	313
	7.6	几种常见的磁聚焦结构单元	322
	7.7	非参考粒子的几种效应的分类	327
	7.8	传输矩阵 — Case 1	329
	7.9	闭轨畸变、共振 — Case 2	340
		7.9.1 非线性动力学问题基本思想	350
	7.10	色散、色品 — Case 3	353
	7.11	一个用来衡量储存环横向磁聚焦结构设计的物理量: 动力学孔径	368
	第七	二章 补充习题	372
8	电子	纵向动力学与同步辐射效应	378
	8.1	几个描述粒子纵向运动的物理量	380
		8.1.1 讨论: z, s, ct 与東团头部尾部粒子符号惯例	390
	8.2	同步加速器稳相原理与纵向动力学	392
		8.2.1 高次谐波腔、双 RF 系统	410

目录

			目录
		11.7.4 尾场与阻抗模型公式	653
		11.7.5 能量损耗因子	680
		11.7.6 有效阻抗	684
	11.8	关于宽带阻抗模型的更多讨论	687
	11.9	关于尾场定义的更多讨论	691
	第十	一 章 补充习题	693
12	集体	效应的粒子动力学: 宏粒子模型	697
	12.1	粒子加速器集体不稳定性年代表	698
	12.2	束流负载基本定理	699
	12.3	几种常见的束团不稳定性	701
		12.3.1 東团崩溃不稳定性	701
		12.3.2 罗宾逊不稳定性	704
		12.3.3 强头尾不稳定性	715
		12.3.4 头尾不稳定性	719
		12.3.5 讨论	724
	12.4	浅谈: 粒子运动方程的集体效应驱动项该用集总模型或分散模型?	725
	第十	一二章 补充习题	727
13	集体	效应的粒子动力学: Vlasov 方程	728
	13.1	无碰撞动理学方程	728
	13.2	线性化 Vlasov 方程: 零阶分析	736
	13.3	线性化 Vlasov 方程: 一阶分析	743
	13.4	积分方程: 思路一	744
		13.4.1 单次经过加速器微束团不稳定性	747
	13.5	色散方程: 思路二	750
		13.5.1 讨论: 朗道积分	750
		13.5.2 Keil-Schneil 条件	753
		13.5.3 储存环微束团不稳定性	756
	13.6	模式分解: 思路三	758
		13.6.1 微波不稳定性	760
	13.7	三种思路的比较	763
	13.8	几种常见的束团不稳定性:分类与半定量讨论	765
		13.8.1 势阱畸变效应	766
		13.8.2 微波不稳定性	767
		13.8.3 基于相空间模式分解的讨论	768
		13.8.4 头尾不稳定性	770
		13.8.5 耦合束团不稳定性	773
		13.8.6 电阻壁不稳定性	776

		目录
	13.8.7 离子导致的集体不稳定性	777
	13.8.8 自由电子激光不稳定性	778
13.9	讨论:复频率的实部与虚部	779
第 -	十三 章 补充习题	781
第三部	分 四个专题	784
14 兆伊	六、超快电子束动力学	785
14.1	泵浦-探测:一种研究物质结构的技巧	785
14.2	超快电子成像平台概述	788
	14.2.1 总论	788
	14.2.2 兆伏超快电子衍射: 总论	793
14.3	MeV UED 组成单元	795
	14.3.1 MeV UED 束线	795
	14.3.2 激光系统	797
	14.3.3 射频系统: 光阴极电子枪、加速腔	798
	14.3.4 传输段	803
	14.3.5 束测元件	804
	14.3.6 样品室	809
	14.3.7 衍射成像系统	810
14.4	MeV UED 总体设计参数	812
	14.4.1 激光系统	812
	14.4.2 束流动力学:初始主体物理参数与仿真结果	817
	14.4.3 射频光阴极电子枪附近的发射度增长因素与估算	819
14.5	高亮度电子空间电荷效应动力学	822
	14.5.1 RF 腔传输矩阵	825
	14.5.2 空间电荷传输矩阵 ⇒ 7×7空间电荷传输矩阵	826
	14.5.3 整体束团与切片束团的分与合	828
14.6	横向、纵向空间电荷束包络方程	831
14.7	Kapchinsky-Vladimirsky (KV) 分布	834
14.8	空间电荷效应主宰的束动力学与几个定标定律	839
第 -	十四 章 补充习题	843
15 相干	一同步辐射	844
15.1	定性描述	846
	15.1.1 "场"观点	846
	15.1.2 "粒子"观点	846
15.2	一维模型	850
	15.2.1 Case A	853

		E	目录
		15.2.2 Case B	856
		15.2.3 Case C	859
		15.2.4 Case D	861
		15.2.5 一维稳态与暂态 CSR 尾场	863
	15.3	数值算例	867
	15.4	一维模型的几个结果	870
		15.4.1 讨论:辐射阻抗函数的一种计算方法	879
		15.4.2 讨论: 非相干同步辐射的切片发射度与切片能散增加	880
	15.5	研究现状总论	882
	15.6	二维 CSR 模型研究动机与现况	886
	第十	-五 章 补充习题	889
16	高亮	度电子微束团动力学	890
	16.1	高亮度电子束:双面刃	890
	16.2	单次经过加速器的微束团不稳定性理论	891
		16.2.1 比拟: 一种"速调管"放大器	891
		16.2.2 积分方程	892
		16.2.3 四弯铁磁压缩结构的微束团不稳定性	899
		16.2.4 研究现状总论	906
	16.3	储存环微束团不稳定性理论	913
		16.3.1 两种观点	913
		16.3.2 色散方程	915
		16.3.3 特征方程	918
		16.3.4 数值求解 Vlasov-Fokker-Planck 方程	919
		16.3.5 研究现状总论	920
	16.4	稳态微聚束:一种崭新的电子储存环高平均功率、相干辐射源	922
		16.4.1 总论	922
		16.4.2 两类可能的方案与工作原理	925
			926
		16.4.4 研究现状总论	929
		7.50	930
	第十	-六 章 补充习题	935
17	加速	器束测基础原理	936
	17.1	東团时频信号	936
		17.1.1 时域: 库仑场、辐射场	936
		17.1.2 频域: 東流频谱	937
	17.2	零阶矩: 电流、电荷	945
		17.2.1 电流	945

			目录
		17.2.2 电荷	947
	17.3	一阶矩: 位置、到达时间	948
		17.3.1 位置	948
		17.3.2 到达时间	950
		17.3.3 能量	950
	17.4	二阶矩:发射度、能散、束长	952
		17.4.1 横向尺寸: 束流截面测量	952
		17.4.2 发射度	955
		17.4.3 東长	959
		17.4.4 能散	962
	17.5	其它物理量	963
		17.5.1 横向 betatron 振荡频率	963
		17.5.2 纵向同步振荡频率	963
		17.5.3 动量压缩因子	964
		17.5.4 束流损失	964
		17.5.5 Courant-Snyder 函数	964
		17.5.6 色散函数	965
		17.5.7 色品函数	965
		17.5.8 动力学孔径	966
		17.5.9 阻抗函数	967
		17.5.10 电子束纵向分布	970
	17.6	加速器反馈系统	971
绺	Ⅲ盆7	分 附录	974
カマ	्भवा ह्य	力 門水	<i>)</i> •
A	杨振	宁先生对加速器领域的看法	975
В	数学	其础	977
	B.1	三种正交坐标系的向量微积分与坐标变换	977
	B.2	常用向量恒等式、微分运算	
	B.3	偏微分、全微分、对流导数、莱布尼兹法则	
	B.4	δ 函数、留数定理、常用积分公式、三角函数恒等式、双曲函数恒等式	
	B.5	其它恒等式、特殊函数、近似展开公式、级数求和公式	1001
	B.6	几种常见分布函数的定义	1001
	B.7	矩阵特征分解的实用特性	1023
	B.8	归一化完备基底函数展开特性	1023
		一元代数方程的一般解公式	1020
		时间平均定理	1029
		矩阵指数	
	11.ע	/L[/十]日XX · · · · · · · · · · · · · · · · · ·	1031

		目录
C	目前正在设计、建设或运行的电子加速器参数 C.1 直线加速器	1033
	C.2 常温、光阴极、射频电子枪的典型参数	1034
	C.3 自由电子激光	1035
	C.4 同步辐射储存环	
	C.5 能量循环/回收直线加速器	1039
	C.6 对撞机	1040
D	电磁频谱	1043
E	Livingston 图	1044
F	粒子加速器对人类社会在方方面面的应用	1045
G	符号表	1049
Н	部分教科书使用惯例比较	1055
I	CERN 加速器学校课程大纲	1057
J	加速器学家小传	1073
	J.1 Helmut Wiedemann — 温文儒雅、受崇敬的加速器专家	1073
	J.2 Shyh-Yuan Lee — 加速器人才树木园	1075
	J.3 Klaus Halbach — 世界级加速器磁铁专家	1076
	J.4 Rodolfo Bonifacio — 经典与量子自由电子激光先驱	1077
	J.5 Kaoru Yokoya — 直线加速的成功道路	1079
	J.6 Kwang-Je Kim — 细推物理须行乐,何用浮名绊此生	1080
	J.7 John Madey — 第一位实现自由电子激光器的科学家	1081
	J.8 Claudio Pellegrini — 高增益自由电子激光不稳定性	1082
	J.9 Albert Josef Hofmann — 同步辐射理论大师	1083
	J.10 John Paul Blewett — 几乎为首位见证同步辐射的人之一	1084
	J.11 Alexander Wu Chao — 加速器百科全书	1086
	J.12 Kenneth Robinson — 谦逊孤独,卓越天才	1087
	J.13 Yaroslav Derbenev — 西伯利亚蛇	1088
	J.14 Ernest Orlando Lawrence — 回旋加速器的发明者	1089
	J.15 Ernest David Courant — 虎父无犬子、横向强聚焦发明者	1090
	J.16 Hartland Sweet Snyder — 横向强聚焦发明者、黑洞共同发现者	1091
	J.17 Milton Stanley Livingston — 横向强聚焦发明者、Livingston 图	1092
	J.18 Edwin McMillan — 纵向稳相原理提出者	1093
	J.19 Wolfgang Panofsky — SLAC 首任主任	1094

	目录
J.21 Gersh Budker — "相对论"的工程师	1096
J.22 Bruno Touschek — 世界上第一台对撞机 AdA 建造者	1097
J.23 Matthew Sands — 费曼物理学讲义、SLAC-121	1099
J.24 Simon van der Meer — 随机冷却机制的发明者	1100
J.25 Nikolay Vinokurov — "OK"	1101
J.26 Lawrence Jackson Laslett — 低调卓越、洞见非凡	1102
J.27 Franklin James Sacherer — 攀岩与物理的双绝英才	1103
J.28 Michael David Borland — ELEGANT	1104
J.29 Robert Siemann — PRST-AB	1105
I 30 方字图 — 中国喜能加速器事业的开拓者和尊某人	1106

索引

2×2 transfer matrix	booster synchrotron, 452		
elements, 329	Boussard criterion, 755		
elements, cavity, 457	breakdown rate (BDR), RF, 104		
stability, 333	brightness, 470		
$2\pi, \sqrt{2\pi}$ convention, 9	collider, 569		
6×6 transfer matrix	electron beam, 4D, 791		
elements, 460	electron beam, 5D, 789		
δ function, 988	radiation, 497		
\mathcal{H} function, 363	broadband-narrowband substitution, 741		
i, j convention, 9	bunch compression factor, 389		
$[JJ]_h$ factor, 234	bunching factor		
ADCD water 200	complete random phase, 538		
ABCD matrix, 309	definition, 1-D, 481		
accelerator Hamiltonian \mathcal{H} , 263	definition, 1-D continuum, 745, 894		
action-angle transform, 254, 350	definition, 1-D, ensemble average, 529		
adiabatic damping, 315	definition, 3-D, 482		
Airy function, 1006	Comphall theorem 424		
Alfven current, 744	Campbell theorem, 434 canonical transformation		
alternating-gradient focusing, 288 analytic continuation, 751	generating functions, 249		
•	Cardano formula, 1029		
anomalous dispersion, 73 anomalous magnetic moment, 950	Carlson's elliptic integral, 826		
anomalous skin effect, 50, 596, 603	catch-up distance, 575, 691		
anomaious skin effect, 30, 350, 003	Cauchy principal value, 992		
BBGKY hierarchy, 246	Cauchy's integral formula, 991		
BCS surface resistance, 53	Cauchy-Riemann condition, 278		
beam breakup instability, 765	cavity		
beam breakup, BBU, 702	circular cylindrical modes, 95		
beam matrix Σ , 316	Landau cavity, 410, 588, 589		
beam rigidity $B\rho$, 258	pillbox cavity TM_{010} , 99		
beam rigidity $E^a \rho$, 258	quality factor Q , 97		
beam transfer function (BTF), 969	rectangular modes, 94		
Beer-Lambert law, 602	RF breakdown, 103		
Bessel function, 989, 1001, 1003, 1026	shunt impedance R_S , 98		
betatron resonance, 348	Slater theorem, 106		
Beth representation, 277	TE,TM,E,H mode definition, 70		
BNS damping, 702	Cayley-Hamilton theorem, 1024		

central limit theorem, CLT, 199, 232	collective effects
Chao-Gareyte scaling law, 768	beam breakup, BBU, 702
Cherenkov acceleration, 624	CSR, 873
Cherenkov radiation, 171	definition, 572
chicane, 390	dispersion equation, coasting beam, 750,
CSR-induced microbunching gain formula,	915
902	fast beam-ion instability, 777
optics, 900	fundamental theorem of beam loading, 699
Cholesky decomposition, 829	Haissinski equation, 738
chromatic frequency ω_{ξ} , 686	head-tail instability, 723
chromatic frequency ω_{ξ} , 363, 720	ion trapping instability, 777
chromaticity ξ , 358	kick factor κ_{\perp} , 682
different conventions, 358	Landau damping, 899
classical radius of electron, 166	longitudinal mode coupling instability, 760
closed orbit distortion, COD, 340	loss factor κ_{\parallel} , 682
coasting beam, 366, 744, 767, 893	microbunching instability, 897
unbunched beam, 404	microwave instability, 760
coherence	negative mass instability, 767
longitudinal, 500	potential well distortion, PWD, 737
transverse, 501	resistive wall instability, 776
coherent synchrotron radiation (CSR)	Robinson instability, 708
Case A, 853	Sacherer integral equation, 759
Case B, 855	space charge
Case C, 859	beam dynamics, 822
Case D, 861	field dynamics, 578
CSR-induced microbunching gain formula,	strong head-tail instability, 717
chicane, 902	transverse microwave instability, 717
CSR-induced microbunching gain formula,	transverse mode coupling instability, TMCI,
general, 905	717
definition, wake function, 852	turbulent instability, 759
incoherent, see synchrotron radiation, 852	Volterra integral equation, 745
overtaking distance, 867	compression factor, 389
parallel-plate impedance, 872	Compton scattering effect, 114
point-kick model, 877	inverse, 115
slippage distance, 865	conductivity, AC, 49, 598
steady-state impedance, 870	conductivity, DC, 49, 598
steady-state wakefield, 863	configuration space (x, y) , 262
suppression conditions, 882	confluent hypergeometric function, 1009

Constants, 20	dielectric linear accelerator, DLA, 620
constitutive relation $\mathbf{D}(\mathbf{E}), \mathbf{H}(\mathbf{B}), 34$	diffusion, 200
CGS units, 137	anomalous diffusion, 200
convention	sub-diffusion, 200
$2\pi,\sqrt{2\pi},$ 9	super-diffusion, 200
i, j, 9	dipole radiation, 166
$k, \Gamma, 9$	dispersion equation
z, s, ct and bunch head vs. tail, 390	1-D high-gain FEL, 530
capacitive, inductive, 626	microbunching instability, 750
convolution theorem (faltung theorem), 11	Robinson instability, 714
Z-transform, 713	dispersion function $D, \eta, R_{16}, 353$
cooling	comparison, 364
coherent electron cooling, 431	distribution
electron cooling, 431	δ -function, 1021
laser cooling, 431	bi-Lorentz, 1021
stochastic cooling, 431	elliptical, 1021
Cornu spiral, 649, 993	Gaussian, 1021
correlation function	Lorentz, 1021
auto-correlation, 500	normal, 1021
convolution, 503	parabolic, 1021
cross-correlation, 503	rectangular, 1021
cosine integral, 993	tri-elliptical, 1021
Coulomb field, 578	triangular, 1021
Coulomb gauge, 56	water-bag, 1021
coupled bunch instability, 644, 686, 724, 765	distribution width $\Delta\omega$, 1022
Courant-Snyder parameters, 295	Doppler effect, 112, 180
critical angle, 77	Drude model, 49, 598
cryogenic temperatures, 271	Drude-Lorentz model, 598
cyclotron frequency ω_c , 282	dual-energy storage ring, 935
Darwin width, 551	dynamic aperture, 368, 775
Dawson function, 996	Earnshaw's theorem, 379, 403
de Moivre theorem, 306, 307	effective impedance, 684
Debye length	elliptic functions, 1013
longitudinal, 578	elliptic integrals, 1009
transverse, 578	elliptic theta function $\vartheta_3(u,q)$, 775
delta function, 988	emittance
Derbenev criterion, 865	beam, 314
diamagnetic $\mu_r < 1.34$	beam's vs. lattice's, 296, 958

coupling κ , 440	Feynman's integration trick, 986
geometric ϵ , 315	Feynman-Heaviside formula, 152
longitudinal, 408	first recurrence map, 302
natural ϵ , 315	fixed point, 399
normalized ϵ_N , 315	attractor, repellor, 399
photon, 488	SFP, UFP, 399
single-particle, 302	fixed-field alternating gradient (FFAG), 289
statistical definition, continuous distribu-	Floquet transformation, 290
tion, 317	Fourier transform
statistical definition, discrete distribution,	convolution theorem, 11
318	definition, 9
emittance compensation, 821	Parseval theorem, 11, 159
energy acceptance, 370, 404, 589, 590	sine transform, cosine transform, 10
energy recovery linac, ERL, 454	Fraunhoffer diffraction, 648
energy spread	free-electron laser (FEL)
correlated, bulk, 386	1-D $(2N+1)$ equations, 515
incoherent, uncorrelated, slice, 386	1-D high-gain, 530
ensemble, 243	3-D high-gain, guiding effect, 542
ergodic hypothesis, 313	ADM, 562
error function, 996	amplifier, 538
complementary, 996	DEHG, 564
complex, 996	EEHG, 556
imaginary, 996	group velocity, 533
Euler-Lagrange equation, 241	HGHG, 555
exponential integral, 993	inverse FEL, 506, 624
extraction, 458	iSASE, 551
6	low-gain pendulum equation, 520
factorial function, 1018	Madey theorem, 525
double, 1018	Ming Xie fitting formula, 547
Faddeeva function, 996	oscillator, FELO, 538
faltung theorem, 11	PEHG, 559
fast beam-ion instability, 777	phase velocity, 533
fast head-tail instability, 765	Pierce parameter, 518
FEL instability, 778	resonance condition, 507, 549
wakefield approach, 778	SASE, 535
FEL parameter, 518	self-seeding, 549
Fermi velocity, 602	sideband instability, 537
ferromagnetic $\mu_r \gg 1,34$	Frenet-Serret coordinate
Feynman diagram, synchrotron radiation, 183	

calculus, 260	Hermite polynomial, 1027
definition, 259	higher harmonic cavity, HHC, 410, 588, 589
left-hand vs. right-hand, 263	Hill equation, 290
frequency map analysis, 370	hourglass effect, 1040
Fresnel diffraction, 648	Huygens principle, 54
Fresnel integrals, 649, 993	hypergeometric function, 1008
fundamental theorem of beam loading, 699	confluent, 1009
gain guiding, 542	image charge method, 118
Gamma function, 1006	image current method, 121
Gauss divergence theorem, 982	Imbert-Fedorov effect, 77
ghost imaging, 501	impedance
globatron, 258	broadband, 644
Goos-Hanchen effect, 77	cavity resonator, 625
Gouy phase, 133, 204, 296	CSR, 659, 870, 872
Gram-Schmidt process, 72	dimensionality, 626
Green's theorem, 982	impedance function $Z_{\parallel}, Z_{\perp},$ 625
group velocity, 73	LSC, 656
gyro-frequency, 282	LSC, low frequency, 625
H function, 363	order of magnitude estimate, 643
Haissinski integral equation, 738	periodic structure, 660
Halback formula, 213	resistive wall, ASE, 605, 661
Hamilton's equations of motion, 241	resistive wall, NSE, 625
Hamiltonian \mathcal{H}	RLC, 637
definition, 241	step-in, step-out, 689
integrable, 352, 398	tables, 662
KAM theorem, 352	index of refraction, 76
quasi-integrable, 352	critical angle, 77
torus, tori, 256, 398	metamaterial, 125
harmonic cavity, 410, 588, 589	x-ray, 78
harmonic number h , 400	injection, 458
head-tail instability, 723, 765	emittance convention, 315
Heaviside step function, 1006	off-axis vs. on-axis, 458
Heaviside-Feynman formula, 152	single-turn vs. multi-turn, 458
Helmholtz equation	swap-out injection, 458
frequency domain, 48	top-up injection, 458
time domain, 54	injector scaling, 840
Helmholtz theorem, 983	intrabeam scattering, IBS, 585
111111111111111111111111111111111111111	inverse Cherenkov acceleration, 624

inverse Compton scattering, 115	lattice
inverse Smith-Purcell acceleration, 624	DBA, TBA, MBA, 322
ion trapping instability, 777	FODO, 322
IOTA, Integrable Optics Test Accelerator, 368	FODO, properties, 336, 362
isochronous, 389	Lawson-Woodward theorem, 623
Jacobi Ameridantin 554 1001	Legendre polynomial, 1026
Jacobi-Anger identity, 554, 1001	Leibniz Rule, 986
Jacobian matrix, 254	length contraction, 6
Jefimenko formula, 152	Leontovich boundary condition, 51, 592, 603
JJ_h factor, 234	Lie operator, 251
Jordan's lemma, 14	Lienard-Wiechert formula
Joule's law of heating, 40	frequency-domain, 157
Keil-Schneil criterion, 754	time-domain, 146, 156
Keil-Schneil-Boussard criterion, 755	linear acceleration, 448
kick factor κ_{\perp} , 682	standing-wave structure, 449
Kilpatrick limit, 104	traveling-wave structure, 448
Kolmogorov-Arnold-Moser (KAM) theorem,	Liouville theorem, 246, 729
352	ensemble, 243
Kostenbauder matrix, 309, 465	Livingston plot, 1044
Kramers-Kronig relation, 504, 633	longitudinal coupled bunch instability, 765
Kummer function, 1009	longitudinal mode coupling instability, 760, 765
· 7	Lorentz force equation, 33
Lagrangian L	CGS units, 137
definition, 240	Lorentz relativistic factor
Landau cavity, 410, 588, 589	conversion, 18
Landau damping, 595, 899	definition, 4
loss of Landau damping, 898	Lorentz transformation
Landau's contour method, 750	$\mathbf{E}, \mathbf{B}, 111$
Landau's prescription, 751	Doppler effect, 112
Langevin equation, 444	four-vector, 109
Laplace transform	length contraction, 6
definition, 12	space-time, 109
Larmor frequency ω_L , 283	time dilation, 6
Larmor radius, 283	Lorenz gauge, 56
laser heater, 908	loss factor κ_{\parallel} , 682
laser undulator, 116, 214, 508	loss of Landau damping, 898
laser wakefield acceleration, LWFA, 620	loss tangent $\tan \delta$, 46
laser-electron modulation, 551	luminosity, 569
Laslett tune shift, 780	

lumped vs. distributed model, 286, 725	microwave instability, 760, 765
Madagada sang 525	mirror symmetry, 307
Madey theorem, 525	mismatch parameter B_{mag} , 958
magnet	Mobius accelerator, 305
dipole, 269	Mobius transform, 311
quadrupole, 270	momentum compaction factor $\alpha_c, R_{56}, 380$
sextupole, 274	Moore's law, 931
solenoid, 281	
strength, 275	NAFF, 370
magnetic hysteresis, 283	narrowband-broadband substitution, 741
magnetization currents, 42	NEG, non-evaporable getter, 473
matrix exponential, 1031	negative mass effect, 385
matrix properties, 1023	negative mass instability, 767
Maxwell equations	Newton's law vs. radiation reaction, 573, 703
boundary conditions, 43, 55	nonlinear resonance, 350, 400
CGS units, 137	normal dispersion, 73
covariant form, 110	numerical aperture, 813, 932
electrostatics, 37	Nyquist theorem, 943
free space, 33	optical guiding, 542
magnetostatics, 41	
material, 34	orthogonal expansion, 1026
Maxwell-Klimontovich equations, 778	P.V., definition, 992
mean free path, 601	Pade approximant, 1017
mean transverse kinetic energy, MTE, 791	Panofsky-Wenzel theorem, 629
Meissner effect, 53	paramagnetic $\mu_r > 1$, 34
metamaterial, 124	parametric resonance, 350, 400
metamaterial $\mu_r < 0,34$	parasitic energy loss, 706
method of steepest descent, 1017	paraxial approximation, 263
microbunching instability, 765	paraxial wave equation, 130, 192, 652
Microbunching instability (MBI)	Parseval theorem, 11, 159
bunched beam, storage ring, 760	phase advance ψ , 301
coasting beam, single-pass, 745	phase space (x, p_x) , 244, 262
coasting beam, storage ring, 750	phase velocity, 73
formula, chicane, 902	photoinjector scaling, 840
formula, general, 905	photon emittance, 488
klystron analogy, 891	Pierce parameter, 518
laser heating, 908	plasma frequency, 50, 601
model comparison, 763	index of refraction, 76
suppression conditions, 908, 909	plasma oscillation, 658

plasma wakefield acceleration, PWFA, 620	quality factor Q , 97
Poincare map, 302	rectangular modes, 94
Poincare section, 302	RF breakdown, 103
point-kick model, see CSR, 877	shunt impedance R_S , 98
Poisson bracket, 250	Slater theorem, 106
Poisson noise, 537	TE,TM,E,H mode definition, 70
Poisson sum formula, 704, 937	retardation condition, 56, 144
polarization, 75	RF breakdown, 103, 620
polarization charges, 39	figure of merit, 104
ponderomotive acceleration, 624	Kilpatrick limit, 104
ponderomotive motion, 115, 506	RF breakdown rate (BDR), 104
population inversion, 491	RFQ, radio-frequency quadrupole, 378, 834
potential well distortion, PWD, 706, 736, 737,	RFQM, radio-frequency quadrupole magnet,
765	378, 703, 834
Poynting theorem, 61	Riemann-Lebesgue lemma, 13
Poynting vector, 59	RLC circuit model, 637
principle of longitudinal phase stability, 392	Robinson instability, 708, 765
	dispersion equation, 706, 714
quality factor Q , 97	secular equation, 706, 714
radiation reaction vs. Newton's law, 573, 703	Robinson sum rule $\sum_{i=x,y,z} \mathcal{J}_i = 4$, 428
radiation shielding, 205, 484, 865	rocking curve, 551
ramp function, 1006	0.1
ramping, booster, 452	Sacherer integral equation, 759
ramping, linac, 448	Sacherer mode coupling theory, 712, 760
Rayleigh length, Rayleigh range, 131, 203, 541	saddle-point method, 1017
rectangular function, 989	Schottky effect, 792, 820
Residual Resistance Ratio (RRR), 604	secular equation, 706, 1024
residue theorem, 990	Shintake monitor, 953
resistive wall instability, 644, 724, 776	shot noise, 537
resonance, 344	shunt impedance R_S , 98, 618, 637
difference resonance, 348	simple harmonic oscillator, SHO, 239
nonlinear, 350	sinc function, 989
order, 348	sine integral, 993
parametric, 350	single-particle emittance, 302, 420
sum resonance, 348	single-particle equations
resonator	single-pass accelerator, 365
circular cylindrical modes, 95	storage ring, 366
pillbox cavity TM_{010} , 99	skin effect, anomalous, 603
1 7 0107	skin effect, skin depth, 50, 596

Slater theorem, 106	synchrotron
slippage factor $\eta=lpha_c-rac{1}{\gamma^2},$ 383	energy ramping, 452
Smith-Purcell acceleration, 624	mapping equation, 468
Smith-Purcell radiation, 174	synchrotron oscillation
Snell's law, 75	low-gain FEL, 522
Sokhotski-Plemelj theorem, 635, 751, 992	storage ring, 403
solid angle, 59, 160	synchrotron radiation
space charge	bunch form factor, 481, 970
beam dynamics, 822	coherent, see coherent synchrotron radia-
definition, 578	tion, 852
direct space charge field, 579	damping, 416
envelope equation, 832	damping partition number $\mathcal{J}_{x,y,z}$, 428
field dynamics, 578	energy-momentum conservation, 510
indirect space charge field, 118, 579	Feynman diagram, 183
perveance, 826, 837	formation length — longitudinal, 202, 486
special functions	formation length — transverse, 203, 487
Airy function, 1006	opening angle, 180
Bessel function, 989, 1003, 1026	practical formula, 206
Dirac delta function, 988	properties, 191
Gamma function, 1006	quantum excitation, 433
Hermite polynomial, 1027	quantum lifetime, 443
Legendre polynomial, 1026	radiation integrals $\mathcal{I}_{1,2,3,4,5,6}$, 418
modified Bessel function, 1001	shielding, 205, 484, 865
spectral fluence, 162	slice emittance growth, 880
split-ring resonator (SRR), 127, 807	slice energy spread increase, 880
stability boundary diagram, 969	talasaama 200
stability condition	telescope, 308
1-D, 2×2 , 333	theta function $\vartheta_3(u,q)$, 775
n-D, $2n \times 2n$, 335	Thomas-BMT equation, 950
stable fixed point, SFP, 399	Thomson scattering, 115
steady-state microbunching, SSMB, 922	time dilation, 6 TMCI (transverse mode counting instability)
Stirling's formula, 1018	TMCI (transverse mode coupling instability),
Stokes curl theorem, 982	717 total internal reflection, 77
strong focusing, 288	Touchard polynomial, 1020
strong head-tail instability, 717, 765	
surface impedance, 52, 592, 598, 603, 604	Touschek effect, 578, 589 trace space (x, x') , 262
surface resistivity, 51	trace space (x, x) , 262 transit time factor, 451
symplectic condition, 254, 334	
	transition γ_t , 383

transition crossing, 383, 406	broadband, 644
transition radiation, 173	catch-up distance, 575, 691
transparent, 308	CSR, 659, 852, 863, 867
transverse deflecting cavity, TDC, 807	Derbenev criterion, 865
transverse gradient undulator, TGU, 559	cylindrical cavity, 608
transverse microwave instability, 717, 765	dimensionality, 618
transverse mode coupling instability, 765	No-wake theorem, 576
transverse mode coupling instability, TMCI,	order of magnitude estimate, 643
717	resistive wall, 592
tune ν , 301	RLC, 638
tune diagram, 348	space charge, 578
tune shift, 344, 350	vs. electric field, 618
complex, 779	wake function $W_{\parallel}, W_{\perp}, 614$
tune spread, 779	wake potential $V_{\parallel}, V_{\perp}, 616$
turbulent instability, 759, 765	wakefield $\mathcal{W}_{\parallel}, \mathcal{W}_{\perp},$ 616
Twiss parameters, 295	wakefield acceleration, 619
unbunghed beem 767	water-bag distribution, 838
unbunched beam, 767	waveguide
undulator radiation	band, 80
formation length — longitudinal, 231	circular cylindrical mode plots, 89
formation length — transverse, 231	circular cylindrical modes, 88
practical formula, 233	rectangular mode plots, 84
properties, 219	rectangular modes, 83
resonance condition, 212, 497	TE,TM,E,H mode definition, 70
Unit & Dimensionality, 20	weak focusing, 288
Unit conversion table	Weizsacker-Williams approximation, 585
numeric, 25	Wiener-Khinchin theorem, 504
symbolic, 22, 23	Wigner distribution, 321
unit impulse function, 988	Wronskian, 355
unstable fixed point, UFP, 399	5. 5.0
variation of constants, 355	Z-transform, 713
Vlasov equation, 245, 731	加速器物理学家
stationary solution, 731	Blewett, John Paul (1910-2000), 加拿大
transient solution, 733	178, 975, 1084
Vlasov-Fokker-Planck equation, 730	Bonifacio, Rodolfo (1940-2016), 意大利
Vlasov-Maxwell equations, 778	530, 1077
Volterra integral equation, 745, 897	Budker, Gersh Itskovich (1918-1977), 俄
1.6.11	国, 431, 1096
wakefield	

Piwinski, Anton (1934-), 德国, 585 Reiser, Martin (1931-2011), 美国, ix

1087

Robinson, Kenneth (1925-1979), 美国, 429,

Chao, Alexander Wu (1949-), 美国, 614,
922, 1086 Christofilos, Nicholas Constantine (1916-
1972), 希腊, 288, 975
Courant, Ernest David (1920-2020), 美国,
288, 295, 1090
Davidson, Ronald Crosby (1941-2016), 加
拿大,823
Derbenev, Yaroslav (1940-), 俄国/美国,
865, 1088
Fang, Shouxian (1932-2020), 中国, 1106
Gluckstern, Robert L. (1924-2008), 美国,
652
Haissinski, Jacques (1935-), 法国, 738
Halbach, Klaus (1924-2000), 美国/德国,
1076
Hofmann, Albert Josef (1933-2018), 瑞士,
ix, 1083
Kim, Kwang-Je (1944-), 美国, 1080
Laslett, Lawrence Jackson (1913-1993),
美国, 780, 1102
Lawrence, Ernest Orlando (1901-1958), 美
国, 975, 1089
Lawson, John David (1923-2008), 英国,
649, 823
Livingston, Milton Stanley (1905-1986),
美国 288 975 1092

Madey, John M.J. (1943-2016), 美国, 495,

McMillan, Edwin Mattison (1907-1991),

Orlov, Yuri Fyodorovich (1924-2020), 俄

Panofsky, Wolfgang Kurt Hermann (1919-

Pellegrini, Claudio (1935-), 意大利/美国,

Ng, King-Yuen (1949-), 美国, 612

2007), 德国/美国, 1094

1081

美国,1093

国,429

1082

Sacherer, Franklin James (1940-1978), 美 国, 759, 1103 Saldin, Evgeny L. (1951-), 俄国, 891 Sands, Matthew Linzee (1919-2014), 美 国, ix, 1099 Sessler, Andrew Marienhoff (1928-2014), 美国,899 Shintake, Tsumoru (1955-), 日本, 953 Siemann, Robert H. (-2008), 美国, 1105 Snyder, Hartland Sweet (1913-1962), 美 国, 288, 295, 1091 Symon, Keith Randolph (1920-2013), 美 国,290 Touschek, Bruno (1921-1978), 奥地利, 589, 1097 Twiss, Richard Quintin (1920-2005), 英 国, 295 Vaccaro, Vittorio Giorgio (1941-2023), 意 大利,626 van der Meer, Simon (1925-2011), 荷兰, 432, 1100 Vinokurov, Nikolay Aleksandrovich (1952-), 俄国, 1101 Wiedemann, Helmut (1938-2020), 美国, ix, 1073 Wilson, Robert Rathbun (1914-2000), 美 国,1095 Xie, Ming (1959-2004), 中国, 547 Yokoya, Kaoru (1947-), 日本, 1079 数学家 Arnold, Vladimir Igorevich (1937-2010), 俄国,352 Bessel, Friedrich Wilhelm (1784-1846),

德国,1026

Cardano, Gerolamo (1501-1576), 意大利, 1029	Legendre, Adrien-Marie (1752-1833), 法 国, 1026
Cauchy, Baron Augustin-Louis (1789-1857)	, Leibniz, Gottfried Wilhelm (1646-1716),
法国, 991	英国,986
Cayley, Arthur (1821-1895), 英国, 1024	Lie, Marius Sophus (1842-1899), 挪威,
de Moivre, Abraham (1667-1754), 法国,	251
307	Liouville, Joseph (1809-1882), 法国, 246
Euler, Leonhard (1707-1783), 瑞士, 241	Lorenz, Edward Norton (1917-2008), 美
Floquet, Achille Marie Gaston (1847-1920),	国,56
法国, 290	Moser, Jurgen Kurt (1928-1999), 德国/美
Fourier, Jean-Baptiste Joseph (1768-1830),	国, 352
法国, 9	Pade, Henri Eugene (1863-1953), 法国,
Gauss, Carl Friedrich (1777-1855), 德国,	1017
32, 982	Parseval, Marc-Antoine (1755-1836), 法
Green, George (1793-1841), 英国, 54 , 617 ,	国, 11, 159
827, 982	Poincare, Jules Henri (1854-1912), 法国,
Hamilton, William Rowan (1805-1865),	302
爱尔兰, 241, 1024	Poisson, Simeon Denis (1781-1840), 法
Heaviside, Oliver (1850-1925), 英国, 152	国, 36
Helmholtz, Hermann Ludwig Ferdinand	Riemann, Georg Friedrich Bernhard (1826-
(1821-1894), 德国, <mark>48</mark>	1866), 德国, <mark>13</mark>
Hermite, Charles (1822-1901), 法国, 1027	Stokes, George Gabriel (1819-1903), 爱尔
Hoene-Wronski, Jozef Maria (1776-1853),	<u> </u>
波兰,355	Volterra, Vito (1860-1940), 意大利, 745
Jacobi, Carl Gustav Jacob (1804-1851), 德	Wiener, Norbert (1894-1964), 美国, 504
国, 248, 554	数量级
Jordan, Marie Ennemond Camille (1838-	储存环磁聚焦结构函数,364
1922), 法国, <mark>14</mark>	电子储存环时间尺度,430
Khinchin, Aleksandr Yakovlevich (1894-	自由电子激光空间尺度,548
1959), 俄国, 504	₩m TEL 24 ↔
Kolmogorov, Andrey Nikolaevich (1903-	物理学家
1987), 俄国, <mark>352</mark>	Ampere, Andre-Marie (1775-1836), 法国,
Lagrange, Joseph-Louis (1736-1813), 法	32 Pardom John (1909, 1991) 美国 52
国, 240	Bardeen, John (1908-1991), 美国, 53
Laplace, Pierre-Simon (1749-1827), 法国,	Beth, Richard Alexander (1906-1999), 美
12, 32, 64	国, 277 Piot Joon Pontisto (1774-1862) 社园 32
Lebesgue, Henri Leon (1875-1941), 法国,	Biot, Jean-Baptiste (1774-1862), 法国, 32
13	Bohr, Niels Henrik David (1885-1962), 丹

Vilhelm (1646-1716), (1842-1899), 挪威, 809-1882), 法国, **246** orton (1917-2008), 美 (1928-1999), 德国/美 e (1863-1953), 法国, oine (1755-1836), 法 ri (1854-1912), 法国, enis (1781-1840), 法 edrich Bernhard (1826riel (1819-1903), 爱尔 -1940), 意大利, 745 94-1964), 美国, 504 函数,364 度,430 尺度,548 rie (1775-1836), 法国, 3-1991),美国,53 under (1906-1999), 美 (1774-1862), 法国, 32 David (1885-1962), 丹 麦, 184

俄国, 173

Goos, Hermann Fritz Gustav (1883-1968),

Boltzmann, Ludwig Eduard (1844-1906),
奥地利, 313, 731
Campbell, Norman Robert (1880-1949),
英国, 434
Cherenkov, Pavel Alekseyevich (1904-1990)
俄国,171
Cooper, Leon N (1930-), 美国, 53
Coulomb, Charles-Augustin (1736-1806),
法国,32
Debye, Peter Joseph William (1884-1966),
荷兰/美国,578
Dirac, Paul Adrien Maurice (1902-1984),
英国,988
Doppler, Christian Andreas (1803-1853),
奥地利, 112
Drude, Paul Karl Ludwig (1863-1906), 德
国, 598
Dyson, Freeman John (1923-2020), 英国/美
国, 135
Earnshaw, Samuel (1805-1888), 英国, 379
Einstein, Albert (1879-1955), 德国, 32,
504
Faraday, Michael (1791-1867), 英国, 32
Fermi, Enrico (1901-1954), 意大利/美国,
258
Feynman, Richard Phillips (1918-1988),
美国, 152
Feynman, Richard Phillips (1918-1988),
美国,986
Fokker, Adriaan Daniel (1887-1972), 荷
兰, 730
Frank, Ilya Mikhailovich (1908-1990), 俄

国, 171

32, 243

650

Fresnel, Augustin-Jean (1788-1827), 法国,

Gibbs, Josiah Willard (1839-1903), 美国,

Ginzburg, Vitaly Lazarevich (1916-2009),

德国,77
Gouy, Louis Georges (1854-1926), 法国,
133
Hanchen, Hilda (1919-2013), 德国, 77
Heaviside, Oliver (1850-1925), 英国, 32,
1006
Heisenberg, Werner Karl (1901-1976), 德
国, 321
Hertz, Heinrich Rudolf (1857-1894), 德
国, 32
Hill, George William (1838-1914), 美国,
290
Huygens, Christiaan (1629-1695), 荷兰,
54
Jackson, John David (1925-2016), 美国,
ix
Jeans, James Hopwood (1877-1946), 英
国,731
Jefimenko, Oleg Dmitrovich (1922-2009),
乌克兰, 152
Kramers, Hendrik Anthony (1894-1952),
荷兰, 633
Kronig, Ralph (1904-1995), 德国, 633
Landau, Lev Davidovich (1908-1968), 俄
国, 751, 899
Langevin, Paul (1872-1946), 法国, 444
Larmor, Joseph (1857-1942), 英国, 283
Leontovich, Mikhail Aleksandrovich (1903
1981), 俄国, 51, 592
Lienard, Alfred-Marie (1869-1958), 法国,
146
Lorentz, Hendrik Antoon (1853-1928), 荷 兰, 32, 109
三, 52, 109 Lorenz, Ludvig Valentin (1829-1891), 丹
表, 56
Maxwell, James Clerk (1831-1879), 英国,

	索引			
32	Veselago, Victor Georgievich (1929-2018),			
McMillan, Edwin Mattison (1907-1991),	俄国/乌克兰, 124			
美国, 392	Vlasov, Anatoly Aleksandrovich (1908-1975)			
Meissner, Fritz Walther (1882-1974), 德	俄国, 245			
国, 53	Wiechert, Emil Johann (1861-1928), 德			
Nyquist, Harry (1889-1976), 瑞士, 943	国, 146			
Oersted, Hans Christian (1777-1851), 丹	Yang, Chen Ning (1922-), 中国, 975			
麦, 32, 41	±- 147			
Onnes, Heike Kamerlingh (1853-1926), 丹	表格			
麦,52	$2\pi, \sqrt{2\pi}, 9$			
Panofsky, Wolfgang Kurt Hermann (1919-	i, j 惯例, 9			
2007), 德国/美国, 629	z, s, ct、头部 vs. 尾部粒子, 390			
Pendry, John Brian (1943-), 英国, 124	Frenet-Serret 坐标系左右手惯例, 263			
Planck, Max Karl Ernst Ludwig (1858-	三种坐标系			
1947), 德国, 730	定义,979			
Poynting, John Henry (1852-1914), 英国,	梯度、散度、旋度和 Laplace 算子展			
59	开,983			
Purcell, Edward Mills (1912-1997), 美国,	三角函数恒等式,998			
174	不同分布函数的定义 $\rho(\omega)$, 1021			
Savart, Felix (1791-1841), 法国, 32	不同分布函数的特征宽度 $\Delta\omega$, 1022			
Schott, George Augustus/Adolphus (1868-	不同教科书符号惯例比较,1055			
1937), 英国, 147	传统常温磁铁 vs. 超导磁铁, 271			
Schrieffer, John Robert (1931-2019), 美	位置向量 r 的微分运算, 985			
国, 53	加速器基础科学问题,844			
Schroedinger, Erwin Rudolf Josef Alexan-	加速器应用、模拟与技术难题,844			
der (1887-1961), 奥地利, 135	加速器集体不稳定性年表,698			
Schwinger, Julian Seymour (1918-1994),	单位制转换—数值,25			
美国, 80, 178	单位制转换 — 符号, 22, 23			
Slater, John Clarke (1900-1976), 美国, 106	单侧傅里叶变换公式,597			
Strutt, John William (3rd Baron Rayleigh),	双曲函数恒等式,1000			
(1842-1919), 英国, 131	同步辐射储存环,1036			
Tamm, Igor Yevgenyevich (1895-1971), 俄	同步辐射实用公式, 206			
国, 171	商业激光覆盖频谱, 493			
	四代光源亮度比较, 499			

俄国, 392

Veksler, Vladimir Iosifovich (1907-1966),

Thomson, William (1824-1907), 英国, 118

van Kampen, Nicolaas Godfried (1921-

2013), 荷兰, 899

四极铁梯度, 287, 419

尾场与阻抗公式,662

对撞机,1040

容性、感性阻抗惯例,626

常温、光阴极、射频电子枪,1034

常用向量恒等式 $\cdot, \times, \nabla, \nabla \cdot, \nabla \times, 982$

常用积分公式,995

微波频段定义,80

波荡器辐射实用公式,233

泰勒展开近似公式,1014

物理常数,20

电子加速器光源形态的東团特性,924

电磁频谱, 1043

直线加速器, 1033

级数求和公式,1019

能量循环/回收直线加速器,1039

自由电子激光,1035

贝索函数解,91

量纲,20

铝、铜金属的一些特性参数,602