Supplementary Materials

I. COMPUTATIONAL COMPLEXITY ANALYSIS

First, note that the computational complexity of the matrix multiplication for two matrices $M_{n\times m}$ and $M_{m\times p}$ is O(nmp) using the definition of matrix multiplication, and of the matrix inverse for a matrix $M_{m\times m}$ is $O(m^3)$ using the Gauss–Jordan elimination method. (The results can be improved by advanced algorithms, e.g., the Strassen algorithm.) Therefore,

- 1) in the time-update step, the computational complexity of (18) is $O[(n+m) \times n + (n+m)]$, of (19) is $O[(n+m) \times n \times n + (n+m) \times n \times (n+m) + (n+m) \times (p+m) \times (n+m) + 2 \times (n+m) \times (n+m)]$;
- 2) in the step of obtaining the worst-case scenario, the computational complexity of (33) is O[n+m], of (47) is $O[2 \times (n+m) \times (n+m)]$;
- 3) in the measurement-update step, the computational complexity of (35) is $O[n+m^3+nmm+nm+n]$, of (36) is $O[n^2+m^3+nmm+nmn+n^2]$.

Let $d := \max\{n, m, p\}$. As a result, the computational complexity of Algorithm 1 is asymptotically $O(d^3)$. Since for a usual state estimation problem, $n \ge p$ and $n \ge m$, the computational complexity of Algorithm 1 is $O(n^3)$.

II. SUPPLEMENTARY EXPERIMENTS

In Introduction I, we claim that the proposed method would be robust against uncertainties due to violation(s) of the following three types of assumptions.

- 4) μ_k^w , μ_k^v are exactly known and typically $\mu_k^w \equiv 0$, $\mu_k^v \equiv 0$;
- 5) Q_k and R_k are exactly known;
- 6) F_{k-1} , G_{k-1} , and H_k are exactly known.

In the experiment section (Section VI), we have studied the robustness of the proposed method against uncertainties in the system matrix F_k [i.e., the type 6)]. In this appendix, we investigate the robustness of the proposed method against uncertainties in the statistical properties, i.e., mean and covariance, of the noises, respectively. Comparisons are made with the non-robust canonical Kalman filter.

First, we suppose the mean vector μ_{k-1}^{w} of the process noise w_{k-1} is not exactly zero-valued [i.e., the type 4)]. In this case, the underlying true system is

$$\left\{egin{array}{ll} oldsymbol{x}_k &= oldsymbol{F}_{k-1}oldsymbol{x}_{k-1} + oldsymbol{\Gamma}_{k-1}oldsymbol{d}_{k-1} + oldsymbol{G}_{k-1}oldsymbol{w}_{k-1}, \ oldsymbol{y}_k &= oldsymbol{H}_koldsymbol{x}_k + oldsymbol{v}_k, \end{array}
ight.$$

while the nominal system is

$$\left\{ egin{array}{ll} oldsymbol{x}_k &= oldsymbol{F}_{k-1}oldsymbol{x}_{k-1} + oldsymbol{G}_{k-1}oldsymbol{w}_{k-1}, \ oldsymbol{y}_k &= oldsymbol{H}_koldsymbol{x}_k + oldsymbol{v}_k, \end{array}
ight.$$

where we use $\Gamma_{k-1}d_{k-1} := G_{k-1}\mu_{k-1}^w$ to model the uncertain mean of w_{k-1} (strictly, the uncertain mean of $G_{k-1}w_{k-1}$). Without loss of generality, we still use the nominal values of F_{k-1} , G_{k-1} , H_k , Q_{k-1} , and R_k in Section VI. Besides, we assume $\Gamma_{k-1} := [1,0]^T$ and d_{k-1} is a random variable which follows a standard Gaussian distribution. We have results in Fig. 1 (see also its caption for RMSEs),

Fig. 1. Results with $\gamma_2=1.005, \ \gamma_2=1.02, \ \text{and} \ \gamma_2=1.05, \ \text{respectively.}$ RMSE: TMKF = 9.43, KF = 21.96, MKF (1.005) = 19.34, MKF (1.02) = 13.25, MKF (1.05) = 18.28.

through which the robustness of the proposed method against uncertainties in the mean of the noises is validated.

Second, we suppose the covariance matrices Q_{k-1} of the process noise w_{k-1} and R_k of the measurement noise v_k are not exactly known [i.e., the type 5)]. In this case, the underlying true system and the nominal system are

$$\left\{egin{array}{ll} oldsymbol{x}_k &= oldsymbol{F}_{k-1}oldsymbol{x}_{k-1} + oldsymbol{G}_{k-1}oldsymbol{w}_{k-1}, \ oldsymbol{y}_k &= oldsymbol{H}_koldsymbol{x}_k + oldsymbol{v}_k, \end{array}
ight.$$

but they have different Q_{k-1} and R_k . We investigate a target tracking problem discussed in [1]. Therefore, the nominal values of F_{k-1} , G_{k-1} , H_k , Q_{k-1} , and R_k are:

$$egin{aligned} m{F}_{k-1} &:= \left[egin{array}{cc} 1 & \Delta t \ 0 & 1 \end{array}
ight], & m{G}_{k-1} &:= \left[egin{array}{cc} (\Delta t)^2/2 \ \Delta t \end{array}
ight], \ m{H}_k &:= \left[egin{array}{cc} 1 & 0 \end{array}
ight], & m{Q}_{k-1} &:= 0.1, & m{R}_k &:= 20^2, \end{aligned}$$

where $\Delta t := 1$ (second) is the sampling time. The true values of Q_{k-1} and R_k are

$$Q_{k-1} := 0.1 + 0.1 \times q_{k-1}, \quad R_k := 20^2 + 10 \times r_k,$$

where q_{k-1} and r_k are two random variables following standard uniform distributions in [0,1]. We have results in Fig. 2 (see also its caption for RMSEs), through which the robustness of the proposed method against uncertainties in the covariances of the noises is validated.

Fig. 2. Results with $\gamma_2=1.005,\ \gamma_2=1.02,\ \text{and}\ \gamma_2=1.05,\ \text{respectively.}$ RMSE: TMKF = 10.16, KF = 12.65, MKF (1.005) = 12.43, MKF (1.02) = 11.88, MKF (1.05) = 489.86.

REFERENCES

 Y. Huang, Y. Zhang, Z. Wu, N. Li, and J. Chambers, "A novel adaptive kalman filter with inaccurate process and measurement noise covariance matrices," *IEEE Transactions on Automatic Control*, vol. 63, no. 2, pp. 594–601, 2017.