平成 28 年度春定期末試験問題・解答

試験実施日 平成 29 年 1月 24 日 1 時限

出題者記入欄

試 験 科 目 名 数学 II-J		出題者名	佐藤 弘康
試 験 時 間 <u>60</u> 分	平常授業	日<u>火</u>曜日 _	
持ち込みについて 🗊	小川	可、不可のいずれかん 持ち込み可のものを(
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ	・コピーも可))	・ 毛 身 ・ 辞書
本紙以外に必要とする用紙	解答用紙_	0 枚 計算	算用紙 <u>0</u> 枚
通信欄 正規分布表を別途配布する.			

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

	317777 [[127 7 17]
採点欄	評価

- 1 次の文章中の空欄 (1) ~ (12) に入る適切な言葉を **(ア)** \sim (チ) の中から選びなさい. また, 空欄 $(a)\sim(c)$ に入 る適切な式を書きなさい.
 - 1回の試行で、ある事象 A が起こる確率を p とする と,n 回独立に試行したとき,A が k 回起こる回数 を確率変数 X にとったときの確率分布を二項分布 といい, B(n,p) で表す. B(n,p) の期待値は で,分散は (b) である.
 - X が二項分布 B(n,p) に従うとき, n が十分大き ければ, X は近似的に| (1)|分布に従う. これを (2) 定理とよぶ.
 - $X_1, X_2, \ldots X_n$ を互いに独立で、同じ確率分布に従 う確率変数とする. このとき, n が十分大きければ,

$$\bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$$

は近似的に (1) 分布に従う. これを 理という.

• 確率変数 X の平均値を μ , 標準偏差を σ とすると き, 任意の $\lambda > 1$ に対し,

$$P(|X - \mu| \ge \lambda \sigma) \le \frac{1}{\lambda^2}$$

が成り立つ. これを (4) | 定理という. また, 余 事象の確率を考えることにより、上の不等式は

$$P(|X - \mu| < \lambda \sigma) > (c)$$

と同値である.

- 調査対象である集団 (集合) Ⅱ と, Ⅱ の各要素の特 性 X の組 (Π, X) を | (5) | という. この X は確 率変数として確率分布する. この確率分布を (6)といい, X の期待値を | (7) | , 分散を | いう.
- Ⅱ が有限か、または要素の数が少なければ、すべて の要素について X を調べることは容易であろう. これを | (9) | という. 一方, Ⅱ が非常に大きな 集団であったり、無限である場合は (9) は不可 能である. Π から選ばれた n 個の要素の X の組 (x_1, x_2, \ldots, x_n) から (Π, X) 全体の情報を得る(推 定する)ことを, (10) という.
- 「における (x_1, x_2, \ldots, x_n) のことを大きさ (10)(11) |といい、 | (11) |をとり出すことを という. (12)

(解答欄)

(11)

(1) \sim (12) に入る最も適切な言葉を**(ア)** \sim **(チ)**の中か ら選びなさい.

(1)	(2)	
(3)	(4)	
(5)	(6)	
(7)	(8)	
(9)	(10)	

(ア) 正規 **(イ)** ポアソン **(ウ)** チェビシェフの

(12)

- (エ) ラプラスの (オ) 中心極限
- (力) 標本調査 (+) 全数調査 (ク) 国勢調査
- (ケ) 標本 (コ) 標本抽出 **(サ)** 母平均
- (ス) 不偏分散 (シ) 母分散 (セ) 標本分散
- (ソ) 母集団 (タ) 数標識 (チ) 母集団分布

(a)~(c) に入る適切な式を書きなさい.

(a)	
(b)	
(c)	

- $oxed{2}$ 次の確率の値を,「1」「0.5」「+」「-」「 $\Phi(z)$ (ただし,z は具体的な数値とすること)」を用いて表しなさい.ただし,Z は標準正規分布に従う確率変数とし,X は期待値 $\mu=140$,分散 $\sigma^2=25$ の正規分布に従う確率変数とする.また, $\Phi(z)=P(0\leq Z\leq z)$ である. **例)** $P(1.57\leqq Z)=0.5-\Phi(1.57)$
 - (1) D(00 T (7 (0)
 - (1) $P(-0.97 \le Z \le 0)$

(2) $P(0.51 \le Z \le 2.22)$

(3) $P(137.4 \le X \le 152.3)$

(4) $P(X \le 131.1)$

- 3 表と裏の出る確率が同じである硬貨を 4000 回投げるときに、表が出る回数を X とする. このとき、次の間に答えなさい.
 - (1) X は確率変数と考えられる. X の期待値と分散の値を答えなさい.

(2) X が近似的に正規分布に従うとして、表が 2017 回以上 でる確率を求めなさい.

- 4 ある地方の小学校新入生男子の平均身長 μ を調べたい. そのため、900 人を無作為抽出したら、平均は 116.2cm であった. 過去の資料から、小学校新入生男子の身長は、標準偏差 $\sigma=4.86$ cm の正規分布に従うと考えられる. 平均身長 μ の信頼度 95% と 90% の信頼区間をそれぞれ求めなさい.
- **5** ある精密機器メーカーでは、直径の平均が $\mu = 3.32$ cm、標準偏差 $\sigma = 0.03$ cm のボルトを製造していた。ある日、10 個のボルトを任意に抽出したら、直径の平均が 3.34 cm であった。このボルトの製造機械は正常に動作しているだろうか?有意水準 1% で検定しなさい。