Database Management Systems (DBMS)

Lec 6: Relational model of data (Cont.)

Ramesh K. Jallu

IIIT Raichur

Date: 9/2/21

Recap

- Two other variations of the join operation
 - Equijoin and Natural join
- The division operation (÷)

Today's plan

- One exercise problem for division operation
- Relational Calculus

Another example for the division operation

Q: Find employee(s) SSN(s) who work on *all* projects handled by department number 5

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

 ρ_{TEMP} (Pno)($\pi_{\text{Pnumber}}(\sigma_{\text{Dnum} = 5}(\text{PROJECT}))$)

Pno

 $EMP_DEP5 \leftarrow \Pi_{Essn,Pno}(WORKS_ON)$

1

2

3

EMP DEP5

Essn	<u>Pno</u>
123456789	1
123456789	2
666884444	3
453453453	1
453453453	2
333445555	2
333445555	3
333445555	10
333445555	20
999887777	30
999887777	10
987987987	10
987987987	30
987654321	30
987654321	20
888665555	20

WORKS ON

WOKKS_OK		
Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

EMP DEP5 ÷ TEMP

Result: Empty relation

$$T_1 \leftarrow \pi_Z \text{ (EMP_DEP5)}$$
 $T_2 \leftarrow \pi_Z \text{ ((TEMP \times T_1) - EMP_DEP5)}$
 $T \leftarrow T_1 - T_2$

Relational query languages

- Query: A question or an inquiry it causes some data to be retrieved from the database
- Query language: a language in which a user requests information from the database
- Categories
 - a. Imperative (or procedural) query language: Relational Algebra
 - b. Declarative (or non-procedural) query language: Relational Calculus

Relational Calculus (RC)

- Like RA, RC is a language for defining new relations in a DB
- Unlike RA, RC is a non-procedural
- Uses the concepts of formal logic to express relational queries
- The expressive power of both the languages is identical
- Two well-known formulations of RC are
 - Tuple relational calculus (TRC)
 - Domain relational calculus (DRC)

Tuple relational Calculus

- A query is expressed as a set, say R, {t | P(t)}
 - R contains all the tuples t such that predicate P is true for t
- We use similar notations t[A] and t∈ R to denote the value of t in on attribute A and to denote tuple t is in R, respectively

Q₁: Find all employees whose salary is above 30,000/-

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

 $\{t \mid t \in \mathsf{EMPLOYEE} \land t[\mathsf{Salary}] > 30000\}$

_{Salary > 30000} (EMPLOYEE)

```
\{t \mid t \in \mathsf{EMPLOYEE} \land t[\mathsf{Salary}] > 30000\}
```

- The previous query selects all the attributes from EMPLOYEE
- To retrieve a specific attributes we use "there exists" from mathematical logic
- Notation: $\exists t \in R(Q(t))$

• Q₂: Find the first and last names all employees whose salary is above 30,000/-

```
\{t \mid \exists s \in EMPLOYEE(s[Salary] > 30000 \land t[Fname] = s[Fname] \land t[Lname] = s[Lname])\}
```

We read the preceding expression as "The set of all tuples t such that
there exists a tuple s in relation EMPLOYEE for which the value of s for
the Salary attribute is greater than 30,000/-, the values of t and s for the
Fname attribute are equal, and the values of t and s for the Lname
attribute are equal."

 Q₃: Retrieve the birth date and address of the employee (or employees) whose name is John B. Smith.

```
\{t \mid \exists s \in EMPLOYEE(t[Bdate] = s[Bdate] \land t[Address] = s[Address] \land s[Fname] = 'John' \land s[Mint] = 'B.' \land s[Lname] = 'Smith')\}
```

• Q₄: List the first name and address of all employees who work for the 'Research' department

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date	
Research	5	333445555	1988-05-22	
Administration	4	987654321	1995-01-01	
Headquarters	1	888665555	1981-06-19	

```
\{t \mid \exists s \in \mathsf{EMPLOYEE}(t[\mathsf{Fname}] = s[\mathsf{Fname}] \land t[\mathsf{Address}] = s[\mathsf{Address}] \land u \in \mathsf{DEPARTMENT}(u[\mathsf{Dname}] = '\mathsf{Research}' \land u[\mathsf{Dnumber}] = s[\mathsf{Dno}]))\}
```

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Τ	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

 Q₅: Retrieve the Social Security numbers of all employees who either work in department 5 or directly supervise an employee who works in department 5

```
\{t \mid \exists s \in \mathsf{EMPLOYEE}(t[\mathsf{Ssn}] = s[\mathsf{Ssn}] \land s[\mathsf{Dno}] = 5) \lor \exists u \in \mathsf{EMPLOYEE}(t[\mathsf{Super\_ssn}] = u[\mathsf{Super\_ssn}] \land u[\mathsf{Dno}] = 5)\}
```

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

- Q₆: Retrieve the names of all employees who do not work on any project
 - Equivalent relational algebra expression?

WORKS OF

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

 $\{t \mid \exists s \in \mathsf{EMPLOYEE}(t[\mathsf{Ssn}] = s[\mathsf{Ssn}]) \land \neg \exists u \in \mathsf{WORKS_ON}(t[\mathsf{Essn}] = u[\mathsf{Essn}])\}$

- Q₇: Find all employees SSNs who work on all projects handled by department number 5
 - We use implication (⇒)
 - P ⇒ Q means "if P is true, then Q must be true."
 - P ⇒ Q is logically equivalent to ¬P ∨ Q
 - Notation: $\forall t \in R(Q(t))$, I.e., Q is true for all tuples t in relation R

```
\{t \mid \exists r \in \mathsf{EMPLYOYEE}(r[\mathsf{Ssn}] = t[\mathsf{Ssn}]) \land (\forall u \in \mathsf{PROJECT}(u[\mathsf{Dnum}] = 5 \Rightarrow \exists s \in \mathsf{WORKS\_ON}(t[\mathsf{Essn}] = s[\mathsf{EssN}] \land s[\mathsf{Pno}] = u[\mathsf{Pnumber}]))\}
```

```
\{t \mid \exists r \in EMPLYOYEE(r[Ssn] = t[Ssn]) \land (\forall u \in PROJECT(u[Dnum] = 5))\}

\Rightarrow \exists s \in WORKS\_ON(t[Essn] = s[Essn] \land s[Pno] = u[Pnumber]))\}
```

We interpret this expression as "The set of all employees (i.e., (Ssn) tuples t) such that, for all tuples u in the PROJECT relation, if the value of u on attribute Dnum is 5, then there exists a tuple in the WORKS_ON relation that includes the employee Essn and the project number."

Thank you!