

Transient respons

Øvelse 4

Emma Spanner 201907955 Mads Emil Nielsen 201908775 Peter Gehlert Theilgaard 201907648 hejhej

Hold 2

9. december 2019

IKLT-MMLS 1. semester Ingeniørhøjskolen Aarhus Universitet

Indhold

1	Indledning	2	
2	Analyse 2.1 Analyse af 1. ordens lavpasfilter	3	
3	En dejlig tilfældig overskrift 3.1 Underoverskrift	9 9	
	Ny Section 4.1 Ny SubSection1	9	
	4.2 Ny SubSection2	9	

1 Indledning

Formålet med denne øvelse er at vise:

- Hvordan beregnes og måles steprespons signaler i et kredsløb.
- Hvordan påvirker et kredsløbs komponenter det beregnede og målte steprespons.

I øvelsen betragtes 1. og 2. ordens lavpasfiltre. Resultaterne fra øvelsen præsenteres i form af en målejournal og godkendes af underviserne ved det den afsluttede måling.

2 Analyse

Øvelsen er opdelt i to dele, 1. og 2. ordens lavpasfilter.

2.1 Analyse af 1. ordens lavpasfilter

Figur 1 viser et 1. ordens lavpasfilter med en modstand og en kondensator. V_{in} er stepinput med spænding 0-5 V. Steppet sker til tiden t=0 sek.

$$V_{in}(t) = \begin{cases} 0 & \text{if } t < 0 \\ V_0 & \text{if } t > 0 \end{cases} \tag{1}$$

Ligning: 1 Indgangs spændingen er en funktion af t

Figur 1: Første ordens lavpasfilter

Strøm-spænding sammenhængen for en modstand og en kondensator er: Modstand:

$$V_R = R \cdot i \tag{2}$$

Ligning 2: Spændingen over en modstand

Kondensator:

$$i = C \cdot \frac{d(V_C)}{dt} \tag{3}$$

Ligning 3: Strømen gennem en kondensator

Output spænding:

$$V_{Out}(t) = V_C(t) \tag{4}$$

Ligning 4: Spændingen over $V_C(t)$ er den samme som i punktet $V_{Out}(t)$

Følgende 8 delopgaver er givet:

1. Vis ved Kirchhoffs love: KVL

Vis ved Kirchhoffs love at følgende differentialligning gælder for kredsløbet i Figur 1:

$$V_{in}(t) = R \cdot C \cdot \frac{d(V_{out}(t))}{dt} + V_{out}(t)$$
(5)

Efter en kredsløbsanalyse ses det at:

$$V_{in} = V_R + V_C \tag{6}$$

Ved brug af Ligning 1 og Ligning 4 kan ligningen omskrives til

$$V_0 = V_R + V_{Out} \tag{7}$$

Ved at kombinere Ligning 2 og Ligning 3, kan der findes et nyt udtryk fra V_R som er afhængig af tiden t

$$V_R = R \cdot C \cdot \frac{d}{dt} \cdot V_C \tag{8}$$

Dernæst kan den indsættes i Ligning 7 hvilket medføre

$$V_0 = R \cdot C \cdot \frac{d(V_{out}(t))}{dt} + V_{out}(t) \tag{9}$$

2. Løs differentialligningen med hensyn til Vout

Løs differentialligningen med hensyn til Vout for $0 \le t < \infty$ Ligning 5 kan omskrives så konstanten foran $\frac{d(V_{out}(t))}{dt}$ ved at gange igennem med $\frac{1}{R \cdot C}$, det medføre

$$\frac{d(V_{out}(t))}{dt} + \frac{1}{R \cdot C} \cdot V_{out}(t) = \frac{1}{R \cdot C} \cdot V_0 \tag{10}$$

Ved hjælp af en løsnings protokol Ligning 10 nu løses:

$$P(t) = \frac{1}{R \cdot C} \tag{11}$$

$$Q(t) = \frac{1}{R \cdot C} \cdot V_0 \tag{12}$$

$$\mu(t) = e^{\int P(t)dt} \to e^{(\frac{t}{R \cdot C})} \tag{13}$$

Ligning 13: Hjælpefunktion

$$F(t) = \int \mu(t) \cdot Q(t)dt \to V_0 + k \cdot e^{-\frac{t}{R \cdot C}}$$
(14)

Ligning 14: Stamfunktion

$$V_{Out}(t) = \frac{1}{\mu(t)} \cdot (F(t) + k) \xrightarrow{simplify} V_{Out}(t) = V_0 + k \cdot e^{-\frac{t}{R \cdot C}}$$
(15)

Ligning 15: Fuldstændig løsning

$$k = V_{Out}(0) \xrightarrow{solve,k} -V_0 \tag{16}$$

Ligning 16: Betingelse

$$V_{Out}(t) = V_0 - V_0 \cdot e^{\frac{-t}{R \cdot C}} \tag{17}$$

Ligning 17: Specifikke Løsning

3. Beregn tidskonstanten

Beregn tidkonstanten τ for lavpasfilteret med hhv. $R=10~k\Omega$, $R=100~k\Omega$ og C=100nF. Tidskonstanten er et udtryk for at V_{Out} er opnået 63% af V_{in} .

$$\tau = R \cdot C \tag{18}$$

Ligning 18: Generel tidskonstant

Tidskonstant τ_{10} :

Ved brug af Ligning 18 kan τ_{10} beregnes:

$$\tau_{10} = R_{10} \cdot C$$

$$\tau_{10} = 10k\Omega \cdot 100nF$$

$$\tau_{10} = 1ms$$
(19)

Tidskonstant τ_{100} :

Ved brug af Ligning 18 kan τ_{100} beregnes:

$$\tau_{100} = R_{100} \cdot C$$

$$\tau_{100} = 100k\Omega \cdot 100nF$$

$$\tau_{100} = 10ms$$
(20)

4. Beregn kurveform

Beregn kurveform for Vout med hhv. $R=10~k\Omega$ og $R=100~k\Omega$, og vis disse grafisk for $0 \le t \le 50ms$

Bestemt er: $V_0 = 5V \text{ og } t = 0s, 0.1ms..50ms$

Kurveformen er givet ved Ligning 15, da dette er den genrelle løsning. I denne ligning kan man nu indsætte parametrene og derved få 2 nye ligninger der afhænger af tiden t: $V_{Out_{10}}(t)$:

$$V_{Out_{10}}(t) = 5V + k \cdot e^{-\frac{t}{10k\Omega \cdot 100nF}}$$
(21)

 $V_{Out_{100}}(t)$:

$$V_{Out_{100}}(t) = 5V + k \cdot e^{-\frac{t}{100k\Omega \cdot 100nF}}$$
 (22)

Figur 2: $10k\Omega$ - 0-50ms

Figur 4: $10k\Omega$ - 0-50ms

5. Beregn Vout max

Beregn den maksimale værdi af Vout i de to tilfælde.

6. Bestem stigetiden tr

Bestem stigetiden tr (10-90%).

7. Forklar

Forklar hvordan tidskonstanten og stigetiden kan findes ud fra grafen for Vout, og opstil en ligning til bestemmelse af C, når tidskonstanten og modstanden R er kendte.

8. Indfør resultatur i Tabel 1

Resultaterne indføres i Tabel 1. Et eller andet bullshit Tabel 1: Multirow table.

Analyse				Simulering				Måling				
R	τ	t_r	V_{Max}	R	τ	t_r	V_{Max}	R	au	t_r	V_{Max}	
$k\Omega$	[msek]	[msek]	[V]	$[k\Omega]$	[msek]	[msek]	[V]	$[k\Omega]$	[msek]	[msek]	[V]	
1. ordens lavpas filter												
10	1.0	2.197	4.966	10	1	2.08	4.97	10	1.01	2.18	5.06	
10	(19)											
100	10	21.972	4.966	100	10.04	19.72	4.96	100	9.87	21.053	4.65	
100	(20)											
2. ordens lavpas filter												
1		x1	x2	1		х3	x4	1		x5	x6	
10		x7	x8	10		x9	x10	10		x11	x12	

3 En dejlig tilfældig overskrift

Med hensyn til formelombrydningen af matematik i teksten,er dette noget man først skal begynde at rette på når man er helt færdig med at skrive sin tekst. Nu med mere tekst.

3.1 Underoverskrift

Her kan det også stå noget tekst

4 Ny Section

tekst tekst tekst

4.1 Ny SubSection1

tekst tekst tekst

4.2 Ny SubSection2

tekst tekst tekst

Ny SubSection*1

tekst tekst tekst

Dette er en paragraph tekst tekst tekst

Dette er en SubParagraph tekst tekst tekst

subparagraph med * tekst