

Прикладная статистика и анализ данных Съезд VIII

Дисперсионный анализ II

1. Независимые выборки

Две группы пациентов. Одним дают одно лекарство, другим — другое. Верно ли, что первое лекарство эффективнее?

2. Связные выборки

Пациент проходит испытание, принимает средство, затем снова проходит испытание. Отличается ли эффект?

- Методы для задач 2 типа можно использовать для задач 1 типа.
 При этом теряется важная информация.
- Методы для задач 1 типа нельзя использовать для задач 2 типа.

Бернуллиевские выборки

$$X_1,...,X_n \sim Bern(p)$$

$$Y_1,...,Y_n \sim Bern(q)$$
.

$$H_0: p = q$$

$$H_1: p \{<, \neq, >\} q$$

Нормальные выборки

$$X_1,...,X_n \sim \mathcal{N}(a_1,\sigma_1^2)$$

$$Y_1,...,Y_m \sim \mathcal{N}(a_2,\sigma_2^2).$$

1. Равенство средних

$$H_0: a_1 = a_2 \ vs. \ H_1: a_1 \{<, \neq, >\} \ a_2$$

Способ зависит от доступной инф. о дисп.

2. Равенство дисперсий

$$H_0\colon \sigma_1=\sigma_2 \ \text{vs.} \ H_1\colon \sigma_1\ \{<,\neq,>\}\ \sigma_2$$

3. Однородность

$$H_0: (a_1, \sigma_1^2) = (a_2, \sigma_2^2)$$

Непараметрический случай

Непараметрический = свободный от семейства распределений

Альтернативы

 $X_1,...,X_n$ и $Y_1,...,Y_m$ — две выборки из неизвестных **непрерывных** распределений с функциями распределений F и G.

 H_0 : F = G — гипотеза однородности

Гипотеза сдвига:

$$H_3$$
: $F(x - \theta) = G(x)$

Непараметрический случай Независимые выборки

Критерии на основе ЭФР: 1. Критерий Смирнова

 $X_1, ..., X_n$ и $Y_1, ..., Y_m$ — две выборки из неизвестных непрерывных распределений с функциями распределений F и G.

$$H_0$$
: $F = G$ vs. H_1 : $F \neq G$

Статистика
$$D_{nm} = \sup_{x \in \mathbb{R}} \left| \widehat{F}_n(x) - \widehat{G}_m(x) \right|$$

Вычисление:

$$D_{nm} = \max \{D_{nm}^{+}, D_{nm}^{-}\}$$

$$D_{nm}^{+} = \max_{i=1..n} \{i/n - \widehat{G}_{m}(X_{(i)})\}$$

$$D_{nm}^{-} = \max_{i=1..m} \{j/m - \widehat{F}_{n}(Y_{(j)})\}$$

$$\sqrt{rac{nm}{n+m}}D_{nm}\stackrel{d_{\mathbf{0}}}{\longrightarrow} \mathit{Kolmogorov},$$
 при $n,m \to +\infty$ если $n/(n+m) \to \gamma \in (0,1)$

Приближение точное при $n, m \ge 20$

Критерии на основе ЭФР: 2. Критерий Розенблатта

 $X_1,...,X_n$ и $Y_1,...,Y_m$ — две выборки из неизвестных непрерывных распределений с функциями распределений F и G.

 H_0 : F = G vs. H_1 : $F \neq G$

Статистика
$$\omega_{nm}^2 = \int\limits_{\mathbb{R}} \left(\widehat{F}_n(x) - \widehat{G}_m(x)\right)^2 d\widehat{H}_{n+m}(x),$$
 $\widehat{H}_{n+m}(x) = \frac{n}{n+m}\widehat{F}_n(x) + \frac{m}{n+m}\widehat{G}_m(x) - \Im\Phi$ Р по объединенной выборке.

Вычисление:

 R_i, S_j — ранги X_i, Y_j в вариац. ряду по выборке $(X_1,..,X_n,Y_1,..,Y_m)$

$$\omega_{nm}^2 = \frac{1}{nm} \left(\frac{1}{6} + \frac{1}{m} \sum_{i=1}^{n} (R_i - i)^2 + \frac{1}{n} \sum_{j=1}^{m} (S_j - j)^2 \right) - \frac{2}{3}$$

Рассматриваем альтернативу H_2 : $F \geqslant G$.

$$S_j$$
 — ранг Y_j в вариационном ряду по выборке $(X_1,..,X_n,Y_1,..,Y_m)$.

$$V = S_1 + ... + S_m$$
 — статистика критерия.

$$\frac{V - \mathsf{E}V}{\sqrt{\mathsf{D}V}} \stackrel{d_0}{\longrightarrow} \mathcal{N}(0,1),$$

где E
$$V = \frac{m(n+m+1)}{2}, \;\; \mathsf{D}V = \frac{nm(n+m+1)}{12}$$
 при $\mathsf{H}_0.$

Идея: если H_0 верна, то значения $Y_{(j)}$ равномерно разбросаны по вар. ряду. Большие значения V указывают на преобладание Y_j над X_i .

- Критерий имеет вид $S = \{V > c\}$.
 - **▶** приближение при $n, m \ge 50$;
 - ▶ если $n, m \ge 25$, используется поправка Имана;
 - ▶ при малых п и т используются таблицы.

Совпадения

- Рассматриваются средние ранги
- Дисперсия

$$DV = \frac{nm}{12} \left(n + m + 1 - \frac{1}{(n+m)(n+m-1)} \sum_{k=1}^{g} l_k (l_k - 1) \right),$$

g — число групп совпадений

 I_k — количество элементов в k-ой группе.

Критерий Уилкоксона-Манна-Уитни

Оценка параметра сдвига

В случае альтернативы H_3 : $F(x-\theta)=G(x)$ оценка

$$\widehat{\theta} = med\{W_{ij} = Y_j - X_i, i = 1..n, j = 1..m\}$$

Свойство:
$$\sqrt{\frac{nm}{n+m}}\left(\widehat{\theta}-\theta\right) \xrightarrow{d_0} \mathcal{N}\left(0,\sigma^2\right), \quad \left[n,m \to +\infty, \frac{n}{n+m} \to \gamma \in (0,1)\right]$$
 где $\sigma^{-1}=\sqrt{12}\int\limits_{\mathbb{R}} p^2(x)dx,$ $p(x)$ — плотность ф.р. F .

Доверительный интервал параметра сдвига

$$ig(W_{(k_lpha+1)},W_{(nm-k_lpha)}ig),$$
где $k_lpha=\left\lfloor nm/2-1/2-z_{1-lpha}\sqrt{nm(n+m+1)/12}
ight
floor$

Связь оценки и критерия

Статистика Манна-Уитни:

$$U = \sum_{i=1}^{n} \sum_{j=1}^{m} I\{X_i \leqslant Y_j\}$$

При отсутствии совпадений $U = V - \frac{m(m+1)}{2}$.

Пусть θ — неизвестный сдвиг.

Тогда $(X_1,...,X_n)$ и $(Y_1-\theta,...,Y_m-\theta)$ однородны.

 \implies для них распределение U симметрично относительно $\frac{nm}{2}$.

Получаем уравнение

$$\sum_{i=1}^{n} \sum_{i=1}^{m} I\{X_i \leqslant Y_j - \theta\} = \sum_{i=1}^{n} \sum_{i=1}^{m} I\{Y_i - X_i \geqslant \theta\} = \frac{nm}{2}$$

Откуда
$$\widehat{\theta} = med\{W_{ij} = Y_i - X_i, i = 1..n, j = 1..m\}$$

Пример: рост кошек и собак

Выборка кошек:

Пример: рост кошек и собак

$$X_1, ..., X_5$$
 — рост $n = 5$ кошек

$$Y_1,...,Y_6$$
 — рост $m=6$ собак

 H_0 : рост собак и кошек в среднем одинаковый

 H_2 : в среднем рост собак больше роста кошек

$$V = 4 + 7 + 8 + 9 + 10 + 11 = 49$$

pvalue = 0.009

Непараметрический случай Связные выборки

6

Связные выборки: модель

$$X_1,...,X_n$$
 и $Y_1,...,Y_n$ — связные выборки

Перейдем к выборке разностей:

$$Z_i = Y_i - X_i = \theta + \varepsilon_i$$

- lacktriangledown heta > 0 интересующий систематический эффект воздействия;
- $ightharpoonup arepsilon_1,...,arepsilon_n$ случайные ошибки.

Предположения об ошибках:

- независимы;
- имеют непрерывные распределения (м.б. разные);
- медиана = 0.

Гипотезы:
$$H_0'$$
: $\theta=0$ vs. H_3' : $\theta>0$

Пример, когда $\varepsilon_1,...,\varepsilon_n$ имеют разные распред.

Пусть $X_1, X_2 \sim \mathcal{N}(0,1)$ независимы.

Тогда
$$Y_1=X_1+X_2,\,Y_2=X_1-X_2\sim\mathcal{N}(0,2)$$
 независимы.

Ho
$$Z_1=Y_1-X_1=X_2\sim \mathcal{N}(0,1)$$

$$Z_2=Y_2-X_2=X_1-2X_2\sim \mathcal{N}(0,5)$$

Получаем

$$\varepsilon_1 = Z_1 - \theta \sim \mathcal{N}(-\theta, 1)$$

$$\varepsilon_2 = Z_2 - \theta \sim \mathcal{N}(-\theta, 5)$$

Кроме того, $cov(arepsilon_1, arepsilon_2) = -2$, т.е. они зависимы.

Критерий знаков

Рассмотрим знаки
$$U_i = I\{Z_i > 0\} \sim Bern(p)$$

$$H_0'$$
: $p = 1/2$ vs. H_3' : $p > 1/2$

Статистика критерия
$$S=U_1+...+U_n\stackrel{\mathsf{H_0'}}{\sim} \mathit{Bin}(n,1/2)$$

Критерий
$$\{S>c\}$$
.

Аппроксимация при
$$n>15$$
: $\frac{S-n/2-1/2}{\sqrt{n/4}} \stackrel{d_0}{\longrightarrow} \mathcal{N}(0,1),$

Совпадения: выбрасываем соответствующие наблюдения.

Оценка параметра:
$$\widehat{ heta} = med\{Z_i, i=1..n\}$$

Доверительный интервал для параметра

$$ig(Z_{(k_lpha+1)},Z_{(n-k_lpha)}ig)-$$
 д.и. уровня доверия $1-2lpha,$ где $k_lpha=\left\lfloor n/2-1/2-z_{1-lpha}\sqrt{n/4}
ight
vert$

Связь оценки и критерия

Знаки
$$U_i = I\{Z_i > 0\} \sim Bern(p)$$

Статистика критерия $S = U_1 + ... + U_n$

Пусть θ — неизвестный сдвиг.

Тогда для $(Z_1-\theta,...,Z_n-\theta)$ медиана равна нулю.

Получаем уравнение

$$\sum_{i=1}^{n} I\{Z_i - \theta > 0\} = \sum_{i=1}^{n} I\{Z_i > \theta\} = \frac{n}{2}$$

Откуда $\widehat{\theta} = med\{Z_i, i = 1..n\}$.

Пример: времена реакции (Лагутин)

 X_i — время реакции i-го испытуемого на световой сигнал

 Y_i — время реакции i-го испытуемого на звуковой сигнал

i	1	2	3	4	5	6	7	8	9	10	11	12
Xi	176	163	152	155	156	178	160	164	169	155	122	144
Уi	168	215	172	200	191	197	183	174	176	155	115	163
Zį	-8	+52	+20	+45	+35	+19	+23	+10	+7	0	-7	+19

$$S(x)=9$$
 — значение статистики критерия $pvalue=(1+11+55)/2048pprox 0.033$ $\widehat{ heta}(x)=19$

(7,35) - 90% доверительный интервал

Критерий ранговых сумм Уилкоксона

Дополнительное предположение: $\varepsilon_1,...,\varepsilon_n$ имеют (одно) симметричное распределение относительно нуля.

$$R_i$$
 — ранг величины $|Z_i|$ в вариационном ряду $|Z_1|,...,|Z_n|$ $U_i=I\{Z_i>0\}$ — знак $T=R_1U_1+...+R_nU_n$ — статистика критерия

$$\frac{T - \mathsf{E}\,T}{\sqrt{\mathsf{D}\,T}} \stackrel{d_0}{\to} \mathcal{N}(0,1), \qquad n > 15$$

где Е
$$T = \frac{n(n+1)}{4}$$
, D $T = \frac{n(n+1)(2n+1)}{4}$ при H₀.

 $\mathit{Идея}$: если H_0 верна, то в силу симметричности ошибок распределения Z_i тоже симметричны, а значит и ранги не зависят от знаков. Критерий имеет вид $S=\{T>c\}$.

Совпадения

- ightharpoonup Если $Z_i = 0$, то его отбрасываем;
- Если среди оставшихся есть совпадения,
 то рассматриваются средние ранги;
- Дисперсия

$$DV = \frac{1}{24} \left(n(n+1)(2n+1) - \frac{1}{2} \sum_{k=1}^{g} l_k (l_k^2 - 1) \right),$$

g — число групп совпадений;

 I_k — количество элементов в k-ой группе.

Критерий ранговых сумм Уилкоксона

Оценка параметра сдвига — медиана средних Уолша

$$\widehat{\theta} = med\{V_{ij} = (Z_i + Z_j)/2, 1 \leqslant i \leqslant j \leqslant n\}$$

Свойство:
$$\sqrt{n}\left(\widehat{\theta}-\theta\right)\overset{d_0}{\to}\mathcal{N}\left(0,\sigma^2\right),$$
 где $\sigma^{-1}=\sqrt{12}\int\limits_{\mathbb{R}}p^2(x)dx,$ $p(x)$ — плотность ф.р. F .

Доверительный интервал параметра сдвига

$$(V_{(k_lpha+1)},V_{(n(n+1)/2-k_lpha)})$$
 — д.и. уровня доверия $1-2lpha,$ где $k_lpha=\left\lfloor n(n+1)/4-1/2-z_{1-lpha}\sqrt{n(n+1)(2n+1)/24}
ight
floor$

Связь оценки и критерия

$$T = R_1 U_1 + ... + R_n U_n$$
 — статистика критерия.

Отсутствии нулей и совпадений среди $|Z_i|$ выполнено

$$T = \sum_{i \le i} I\left\{\frac{Z_i + Z_j}{2} > 0\right\}$$

Пусть θ — неизвестный сдвиг.

Тогда для $(Z_1-\theta,...,Z_n-\theta)$ распределение статистики T симметрично относительно среднего $\frac{n(n+1)}{4}$

Получаем уравнение

$$\sum_{i \leqslant j} I\left\{\frac{Z_i - \theta + Z_j - \theta}{2} > 0\right\} = \sum_{i \leqslant j} I\left\{\frac{Z_i + Z_j}{2} > \theta\right\} = \frac{n(n+1)}{2}$$

Откуда
$$\widehat{\theta} = med\{V_{ij} = (Z_i + Z_j)/2, 1 \leqslant i \leqslant j \leqslant n\}.$$

(O) (O)

Пример: времена реакции (Лагутин)

 X_i — время реакции i-го испытуемого на световой сигнал

 Y_i — время реакции i-го испытуемого на звуковой сигнал

Zį	-7	7	-8	10	19	19	20	23	35	45	52
$ z_i $	7	7	8	10	19	19	20	23	35	45	52
Ri	1.5	1.5	3	4	5.5	5.5	7	8	9	10	11
Ui	0	1	0	1	1	1	1	1	1	1	1

$$T(x) = 61.5$$
 — значение статистики критерия

$$T^*(x) = 2.54$$
 — нормированное значение статистики

pvalue = 0.006

$$\widehat{\theta}(x) = 19.25$$

(7.5, 31) - 90% доверительный интервал

Визуальная проверка симметрии

Пусть u_p-p -квантиль симметричного распределения.

Тогда
$$u_{1/2} - u_p = u_{1-p} - u_{1/2}$$
.

Для порядковых статистик стоит ожидать

$$\xi_i = \widehat{med} - Z_{(i)} \approx Z_{(n-i+1)} - \widehat{med} = \eta_i, \quad i = 1, ..., \lfloor n/2 \rfloor$$

 \Longrightarrow точки (ξ_i,η_i) должны располагаться вблизи y=x.

Строгая проверка симметрии

См., например, критерий Гупты.

Сравнение критериев

Мощность критериев связана с асимптотической эффективностью соответствующих оценок параметра сдвига.

 $ARE_{\widehat{\mu},W}$ — относительная ас. эффективность $\widehat{\mu}$ по отношению к W.

- ▶ $ARE_{\widehat{\mu},W} \approx 0.42$ для нормального распределения;
- ▶ $ARE_{\widehat{\mu},W} = 4/3$ для распределения Лапласса;
- lacktriangle Чем легче хвосты, тем предпочтительнее W по сравнению с $\widehat{\mu}.$

