### Advanced R Programming - Lecture 1

Leif Jonsson

Linköping University

leif.jonsson@ericsson.com leif.r.jonsson@liu.se

September 8, 2016



## Today

About the course Aim of the course

Presentation(s) Presentation(s)

Course Practicals

Why R?

Basic R

Data structures Logic and sets Subsetting/filtering **Functions** 



About the course •00000

#### Learn to

- Write R programs and packages
- Write performant code
- ► Learn basic software engineering practices

About the course 000000

# But most important...



### But most important...

Your primary tool in the next 2 years



### Course Plan

Part 1: R Syntax

Period: Week 1-2

Students work: Individually

Lab: Documented R file

Computer lab

#### **Topics**

- Basic R Syntax
- Basic data structures
- Program control
- R packages



About the course

000000

#### Part 2: Advanced topics

Period: Week 3-7

Students work: In groups

Turn in: R package on GitHub

Seminar

#### **Topics**

- ▶ Performant code: Writing quality code
- Linear algebra, Object orientation, Graphics
- Advanced I/O
- Performant code: Writing fast code
- ▶ Intro to basic Machine learning in R



About the course 000000

### **Today**

# Presentation(s)



### Me - AKA, Leif Jonsson

### My background

- 1. Computer Science, Uppsala 1998
- Ericsson
- 3. PhD Student Applied Machine Learning, LiU, PELAB - STIMA



Figure: Me



Presentation(s)

### You

- ▶ Backgound?
- Why this course?
- Expectations?



### Course Practicals...



Leif Jonsson STIMA LiU Lecture 1

### Course Practicals...

- ► Course code: 732A94
- https://www.ida.liu.se/~732A94/index.en.shtml
- https://github.com/MansMeg/AdvRCourse
- https://www.rstudio.com/
- https://cran.r-project.org/
- https://git-scm.com/



### Course litterature...



Letture 1

#### Course litterature...

- ▶ Matloff, N. The art of R programming [online]
- Wickham, H. Advanced R [online]
- Wickham, H. R packages [online]
- ...and articles.



### Examination

Weekly mandatory labs/projects

- deadline: One week after corresponding lecture

Computer exam



Why R?

イロト (部) (注) (注) 16 / 43

Why R?

#### The One main reason

# Choose the right tool for the job!



#### The One main reason

# Choose the right tool for the job!

Your main job will be statistics and data analysis... R is the right tool for that job!



Leif Jonsson STIMA LIU Lecture 1

#### Pros

- Popular (among statisticians)
- Good graphics support
- Open source all major platforms!
- ► High-level language focus on data analysis
- Strong community vast amount of packages
- Powerful for communicating results
- ► API's to high-performance languages as C/C++ and Java



#### Cons

- "Ad hoc", complex, language (Compare Perl, Awk, Sh...)
- Can be sloogoow
- Can be memory inefficient
- (Still) Hard'ish to troubleshoot
- (Still) Inferior IDE support compared to state of the art



Leif Jonsson

# Pros/Cons

- ► Niche language
- Specialized syntax
- Very permissive



Leif Jonsson

Data structures

# Variable types

| Variable type | Short | typeof()  | R example |
|---------------|-------|-----------|-----------|
| Boolean       | logi  | logical   | TRUE      |
| Integer       | int   | integer   | 1L        |
| Real          | num   | double    | 1.2       |
| Complex       | cplx  | complex   | 0+1i      |
| Character     | chr   | character | "I <3 R"  |



Leif Jonsson STIMA LiU Lecture 1

Data structures

# Variable types

|              | Variable type | Short | typeof()  | R example |              |
|--------------|---------------|-------|-----------|-----------|--------------|
| <b>+</b>     | Boolean       | logi  | logical   | TRUE      | $\Downarrow$ |
|              | Integer       | int   | integer   | 1L        |              |
| Coersion     | Real          | num   | double    | 1.2       | Coersion     |
|              | Complex       | cplx  | complex   | 0+1i      |              |
| $\downarrow$ | Character     | chr   | character | "I <3 R"  | $\Downarrow$ |



STIMA LiU

Leif Jonsson

### Data structures

| Dimension | Homogeneous data | Heterogeneous data |
|-----------|------------------|--------------------|
| 1         | vector           | list               |
| 2         | matrix           | data.frame         |
| n         | array            |                    |

- Constructors: vector() list() ...
- Name dimensions: dimnames()



Leif Jonsson

Data structures

### **Arithmetics**

- Vectorized operations (element wise)
- Recycling
- Statistical functions

See reference card...



Logic and sets

# Logic operators

| In symbols | Α     | В     | $\neg A$   | $A \wedge B$ | $A \lor B$ |
|------------|-------|-------|------------|--------------|------------|
| In R       | Α     | В     | ! <i>A</i> | A&B          | A B        |
|            | TRUE  | FALSE | ?          | ?            | ?          |
|            | TRUE  | TRUE  | ?          | ?            | ?          |
|            | FALSE | FALSE | ?          | ?            | ?          |
|            | FALSE | TRUE  | ?          | ?            | ?          |
|            |       |       |            |              |            |



Logic and sets

# Logic operators

| In symbols | Α            | В            | $\neg A$     | $A \land B$ | $A \lor B$ |
|------------|--------------|--------------|--------------|-------------|------------|
| In R       | Α            | В            | ! <i>A</i>   | A&B         | A B        |
|            | TRUE         | <b>FALSE</b> | <b>FALSE</b> | ?           | ?          |
|            | TRUE         | TRUE         | ?            | ?           | ?          |
|            | <b>FALSE</b> | <b>FALSE</b> | ?            | ?           | ?          |
|            | FALSE        | TRUE         | ?            | ?           | ?          |



Logic and sets

# Logic operators

| In symbols | Α            | В            | $\neg A$     | $A \wedge B$ | $A \lor B$ |
|------------|--------------|--------------|--------------|--------------|------------|
| In R       | Α            | В            | ! <i>A</i>   | A&B          | A B        |
|            | TRUE         | <b>FALSE</b> | <b>FALSE</b> | FALSE        | ?          |
|            | TRUE         | TRUE         | ?            | ?            | ?          |
|            | <b>FALSE</b> | <b>FALSE</b> | ?            | ?            | ?          |
|            | FALSE        | TRUE         | ?            | ?            | ?          |



Logic and sets

# Logic operators

| In symbols | Α     | В            | $\neg A$     | $A \wedge B$ | A∨B  |
|------------|-------|--------------|--------------|--------------|------|
| In R       | Α     | В            | ! <i>A</i>   | A&B          | A B  |
|            | TRUE  | <b>FALSE</b> | <b>FALSE</b> | <b>FALSE</b> | TRUE |
|            | TRUE  | TRUE         | ?            | ?            | ?    |
|            | FALSE | FALSE        | ?            | ?            | ?    |
|            | FALSE | TRUE         | ?            | ?            | ?    |



Leif Jonsson STIMA LiU Lecture 1



Logic and sets

### Logic operators

| In symbols | Α            | В            | $\neg A$     | $A \land B$  | $A \lor B$ |
|------------|--------------|--------------|--------------|--------------|------------|
| In R       | Α            | В            | ! <i>A</i>   | A&B          | A B        |
|            | TRUE         | <b>FALSE</b> | <b>FALSE</b> | <b>FALSE</b> | TRUE       |
|            | TRUE         | TRUE         | <b>FALSE</b> | TRUE         | TRUE       |
|            | <b>FALSE</b> | <b>FALSE</b> | TRUE         | <b>FALSE</b> | FALSE      |
|            | FALSE        | TRUE         | TRUE         | FALSE        | TRUE       |



Logic and sets

# Logic operators

In symbols 
$$\wedge_{i=1}^{N} a_i \quad \forall_{i=1}^{N} a_i \quad \{j : a_j == TRUE\}$$
  
In R  $all(A) \quad any(A) \quad which(A)$ 



Logic and sets

### Relational operators



Subsetting/filtering

#### Vectors

- ▶ Use []
- ▶ index by:
  - positive integers: include element(s)
  - negative integers: exclude element(s)
  - ▶ logical: include TRUEs

```
vect <-c(6,7,8,9)
> vect[vect>7]
[1] 8 9
> vect[1:2]
[1] 6 7
> vect[c(1,2)]
[1] 6 7
> vect[c(-1,-2)]
[1] 8 9
```



Subsetting/filtering

### **Matrices**

- ▶ Use [,]
- ▶ Two dimensions
- Index as vectors
- Can reduce (drop class) to vector

### Matrices

```
> mat <- matrix(c(1,2,3,4,5,6),nrow=2)
> mat
      [,1] [,2] [,3]
[1,] 1
[2,]
> mat[c(1,2),c(1,2)]
      [,1] [,2]
[1,]
[2,]
> mat[c(1,2),]
      [,1] [,2] [,3]
[1,]
              3
                    5
[2,]
              4
                    6
> mat[mat>4]
[1] 5 6
                       4日 > 4周 > 4 目 > 4 目 > 目
```

Subsetting/filtering

#### Lists

- ▶ Use [] to access list elements
- Use [[]] to access list content
- Index as vectors
- Use \$ to access list element by name
- ▶ Not like typical lists in other programming languages

### Lists

```
> lst <- list(a=47,b=11)
> lst[1]
$a
[1] 47
> lst[[1]]
[1] 47
> lst$b
[1] 11
```

Subsetting/filtering

### Data frames

- Very powerful data structure
- Can roughly think about it as the R representation of a CSV file
- Can be loaded from a CSV file
- Can be accessed both as a matrix and a list



Subsetting/filtering

### Assigning subsets

- Change values in data structures
- Works for all above mentioned data types



Leif Jonsson

Subsetting/filtering

# Assigning subsets

```
> mat
       [,1] [,2] [,3]
[1,]
[2,]
> mat[mat>4]
> mat
       [,1] [,2] [,3]
[1,]
                   75
[2,]
                   75
```

**Functions** 

#### **Functions**

```
my_function_name <- function(x, y){
        z < - x^2 + y^2
        return(z)
}
```

Unlike in many languages, return in R is a **function**. In other languages, return is usually a reserved word (like if). This means you must use return as a function call with parenthesis. By default R returns the last computed value of the function, so return is not strictly necessary in simple cases.



Functions

### HELP!

7

help(function\_name)

Functions

The End... for today.

Questions?

See you next time!

