

- Introduction
- 2 Analogie Arbres-L-systèmes
 - Qu'est-ce qu'un L-système ?
 - Similutudes entre les plantes et les L-systèmes
- 3 Représentation d'arbres
 - L-système déterministe
 - Amélioration du modèle pour plus de réalisme
 - L-systeme stochastique
 - L-système sensible au contexte et paramétrique
- 4 Influence du milieu sur la croissance
 - Interactions internes
 - Les interactions extérieures
- 5 Création d'une règle personnelle
- 6 Perspectives
- 7 Conclusion

Introduction

Analogie Arbres-L-systèmes Représentation d'arbres Influence du milieu sur la croissance Création d'une règle personnelle Perspectives Conclusion

Introduction

Analogie Arbres-L-systèmes Représentation d'arbres Influence du milieu sur la croissance

Qu'est-ce qu'un L-système ?

Qu'est-ce qu'un L-système ?

Similutudes entre les plantes et les L-systèmes

.-système déterministe Amélioration du modèle pour plus de réalism

.-système déterministe Amélioration du modèle pour plus de réalisn

De la 2D à la 3D

Pour pouvoir représenter des arbres en 3 dimensions, un membre du groupe a implémenter l'objet Tutle3D.

L'association de cet objet et du logiciel Blender nous a permis d'obtenir des figures tridimensionnelles.(image)

L-système déterministe

Amélioration du modèle pour plus de réalisme

L-système déterministe

L-systeme stochastique

Nous avons voulu représenter les impacts d'aléas sur la croissance d'une plante.

Interpretation

Interprétation :

9 : avancer
+ : tourner de 25.7° vers la
gauche
- : tourner de 25.7° vers la
droite
[: sauvegarder la position
] : retourner à la dernière
position sauvegardée

L-système

```
A = {F,+,-,[.]}

Graine = {F}

φ (F) = F[+F]F[-F]F Avec une
F[+F]F probabilité de
F[-F]F 1/3 chacun
```

L-système déterministe Amélioration du modèle pour plus de réalisme

L-système sensible au contexte et paramétrique

Grâce aux L-système sensibles au contexte et paramétriques, nous avons apporté de la cohérence à la croissance d'une plante.

L-système sensible au contexte

L-système Paramétrique

Interactions internes Les interactions extérieure

Les interactions internes

L-système sensible à l'environnement

Pour prendre en compte l'influence du milieu, nous avons utilisé des L-systèmes sensibles à l'environnement.

Pour pouvoir utiliser de tels L-systèmes, nous avons dû implémenter l'objet Environment.

Interactions internes Les interactions extérieures

Zones d'influence

Afin de caractériser des effets de zones(lumière, gravité), nous avons utilisé les zones d'influence de notre objet. Zones d'influence

Interactions internes Les interactions extérieures

Obstacles

Presentation de la regle

- Alphabet(T,F,A)
- Constantes(t,e,d,l, α , β , γ , Θ rand(0,10))
- T(t, e, a): taille $\leq I \Longrightarrow F(t, e \times fact) T(t, e, a+1)$
- T \Longrightarrow [+(α F(t,e)A(d,t,e)][+(β)&(γ)F(t,e)A(d,t,e)]
- $A(p,t,e) : p \le d \Longrightarrow F(t,e \times fact)A(p+1,t,e)$
- A \Longrightarrow F(t,e×fact)[-(rand(0,180))&(Θ)F(t,e×fact) &(Θ)F(t,e×fact)&(Θ)F(t,e×fact)&(Θ)F(t,e×fact)A(0,t,e)]A(0,t,e)

Représentation d'arbres Influence du milieu sur la croissance Création d'une règle personnelle Perspectives Conclusion

Représentation d'arbres Influence du milieu sur la croissance Création d'une règle personnelle Perspectives Conclusion

