ECE 09.303 Fall 2018 Homework 8 Chapter 8/27 – Electromagnetic Induction

1.

A conducting loop with area $0.15 \,\mathrm{m}^2$ and resistance $6.0 \,\Omega$ lies in the x-y plane. A spatially uniform magnetic field points in the z-direction. The field varies with time according to $B_z = at^2 - b$, where $a = 2.0 \,\mathrm{T/s^2}$ and $b = 8.0 \,\mathrm{T}$. Find the loop current (a) at $t = 3.0 \,\mathrm{s}$ and (b) when $B_z = 0$.

2.

Figure 27.39 shows a pair of parallel conducting rails a distance l apart in a uniform magnetic field \vec{B} . A resistor R is connected across the rails, and a conducting bar of negligible resistance is being pulled along the rails with velocity \vec{v} to the right. (a) What direction is the current in the resistor? (b) At what rate does the agent pulling the bar do work?

FIGURE 27.39 Problems 46-49 and 75

3.

An electron is inside a solenoid, 28 cm from the axis. It experiences a 1.3-fN electric force. At what rate is the solenoid's magnetic field changing?

A single-turn loop of radius R carries current I. How does the magnetic-energy density at the loop center compare with that of a long solenoid of the same radius, carrying the same current, and consisting of n turns per unit length?