Ex: Compute Sp ye dA on R = [0, 2] x [0, 3] SolI: SR ye dA = Sro Syo ye dy dx Inner Integral: Sy=0 ye dy (du=dy v=- 1/2 e = [-xe-xy-]-xe-xy Jy=0 = [-xe-xy- 12e-xy]3=0 · (- 3/x e - 1/x e - 3x) - (0 - 1/x2 = e -3x (-3 - 1/2) + 1/2 in Spye dA = Sx=0(e 3x(-3/x-x2)+/2)dx
inproper integral - abondon ship! Sol Z: Sla ye dA = Sy= Sx= ye xy dx dy Inner Integral: Sx=0 ye dx = Sx=0-e (-y)dx = Sx=0-edu = -e/x=0=-ey/2 = (-e^{-2y})-(-e^{-0y})= 1-e^{-2y} = Jy=0 (1-e-2y)dy= [y+ 2e-2y]3 = (3+ \frac{1}{2}e^{-6})-(0+\frac{1}{2}e^{\circ})=\frac{5}{2}+\frac{1}{2}e^{-6})

GOAL Integrale over more complicated regions.

Ex: Compute net volume of the solid bounded by Z=x2+y2, y=2x, y=x2, Z=0

Picture.

X2= 2x, SO X=0 or X= 2

$$=\frac{56}{3}-\frac{32}{5}-\frac{128}{21}$$

Take-Away: If R can be parameterized by $R = \{(x,y): C, \leq x \leq C_2, g, (x) \leq y \leq g, (x)\},$

then... So f(x,y)dA = fx=c, fy=3,cx) f(x,y) dy dx

Similarly, if R is parameterized by $R = \{(x,y): C, \leq y \leq C_1, g, (y) \leq x \leq g, (y)\}$ $\iint_{R} f(x,y) dA = \int_{y=C_1}^{C_2} \int_{x=g,(y)}^{g_2(y)} f(x,y) dxdy$

Ex: Compute So y dA over R, the triangle w/ vertices (0,0), (1,3), (2,2).

Picture: $2 = \{(x,y) : 0 \le y \le 3\}$ $y - 2 = (\frac{2-3}{2-1})(x-2)$ y = 3x y = x y = 3x y = x y = x y = xy = x

> :. R = R, UR, w/ R = {(x,y): 2=y=3, \(\frac{1}{3}y=x=4-y\)} R = {(x,y): 0=y=2, \(\frac{1}{3}y=x=y\)}

 $\begin{array}{lll}
&=& \iint_{R} y \, dA = \iint_{R} y \, dA + \iint_{R} y \, dA \cdot \int_{R} \left[2y^{2} - \frac{4}{9} y^{3} \right]_{y=2}^{3} \\
&=& \iint_{R} y \, dA = \iint_{y=2} \int_{x=\frac{1}{5}} y \, y \, dx \, dy = \left(2 \cdot 9 - \frac{4}{9} \cdot 27 \right) \\
&=& \left(2 \cdot 4 - \frac{4}{9} \cdot 8 \right) \\
&=& \iint_{y=2} y \left[x \right]_{x=\frac{1}{5}}^{4-9} \, dy \\
&=& \left(18 - 12 \right) - \left(8 - \frac{3^{2}}{9} \right)
\end{array}$

 $= \int_{y=2}^{3} y \left(4 - \frac{4}{5}y \right) dy$ $= -2 + \frac{32}{9} = \left[\frac{19}{9} \right]$ $= \int_{y=2}^{3} \left(4y - \frac{4}{3}y^{2} \right) dy$

$$\int_{R} y \, dA = \int_{y=0}^{2} \int_{x=\frac{1}{3}y}^{y} y \, dx \, dy$$

$$= \int_{y=0}^{2} y \left[x \right]_{x=\frac{1}{3}y}^{y} \, dy$$

$$= \int_{y=0}^{2} y \left(y - \frac{1}{3}y \right) \, dy$$

$$= \frac{2}{3} \int_{y=0}^{2} y^{2} \, dy$$

$$= \frac{2}{3} \cdot \frac{1}{3} y^{3} \Big|_{y=0}^{2}$$

$$= \frac{2}{9} \left(8 - 0 \right) = \left(\frac{16}{9} \right)$$

-> :.
$$\iint_{R} y dA = \frac{14}{9} + \frac{16}{9} = \frac{10}{3}$$

Setup:

Motivating Question: What is the volume of a sphere?

for (x,y) & R: Z = # \(\sigma^2 - \chi^2 - \ch

"Should integrate Vol(S) = Sp ZVr2-x2-y2dA

 $X^{2}+y^{2}=r^{2}$ $\therefore R = \left\{ (x,y): -r \leq x \leq r, \sqrt{r^{2}-x^{2}} \leq y \leq \sqrt{r^{2}-x^{2}} \right\}$ $Vol(S) = \int_{x=-r}^{r} \int_{y=-\sqrt{x^{2}-x^{2}}}^{\sqrt{r^{2}-x^{2}}} \sqrt{r^{2}-x^{2}-y^{2}} \, dy \, dx$

Exercise: Explain why that's terrible.