FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVOD ZA AUTOMATIKU I RAČUNALNO INŽENJERSTVO

Arhitektura računala 1R

1. laboratorijska vježba - Zadatak za vježbu

Studeni 2023.

Zadatak za vježbu

U memoriji od adrese **0x600** nalazi se niz podataka, gdje je svaki podatak struktura koja se sastoji od tri 32-bitna broja. Prva dva broja predstavljaju **operande**, a treći **računsku operaciju** koju je potrebno izvršiti nad njima. Operacije su označene sljedećim vrijednostima:

- 0 oduzimanje
- 1 zbrajanje
- 2 množenje
- 3 dijeljenje

Broj podataka u bloku nije unaprijed zadan, ali je poznato da je zaključen podatkom **0xFFFFFFF** na mjestu operatora unutar strukture. Primjer dijela memorije dostupan je u tablici 1.

Tablica 1: Prikaz memorije

#	Adresa	Opis	Podatak
1	0000 0600	1. operand	FFFF FEFF
	0000 0604	2. operand	0000 0010
	0000 0608	Operacija	0000 0003
2	0000 060C	1. operand	0000 01F4
	0000 0610	2. operand	FFFF FD44
	0000 0614	Operacija	0000 0000
3	0000 0618	1. operand	0000 0003
	0000 061C	2. operand	FFFF FFEC
	0000 0620	Operacija	0000 0001
4	0000 0624	1. operand	FFFF FFFE
	0000 0628	2. operand	0000 000A
	0000 062C	Operacija	0000 0002
5	0000 0630	1. operand	FFFF F000
	0000 0634	2. operand	FFFF FFC0
	0000 0638	Operacija	0000 0003
6	0000 063C	1. operand	0000 0001
	0000 0640	2. operand	0000 0004
	0000 0644	Operacija	FFFF FFFF

Napišite program za procesor **ARM** koji obrađuje sve podatke u bloku na način da nad dvama podacima iz strukture izvrši računsku operaciju zadanu na kraju strukture. Nakon izvršavanja operacije, program zapisuje 32-bitni **2'k** rezultat u memoriju, od adrese **0x2000**. Rezultantni blok potrebno je zaključiti podatkom **0xFFFFFFF**. Možete pretpostaviti da rezultat operacije nikad neće odgovarati broju kojim se zaključuje rezultantni blok. Primjer rezultantnog bloka za podatke iz tablice 1 dostupan je u tablici 2.

Za operacije oduzimanja i dijeljenja koje nisu komutativne, 1. operand predstavlja umanjenik, odnosno djeljenik, a 2. operand predstavlja umanjitelj, odnosno djelitelj.

Tablica 2: Rezultantni blok memorije

Adresa	Rezultat	
0000 2000	FFFF FFF0	
0000 2004	0000 04B0	
0000 2008	FFFF FFEF	
0000 200C	FFFF FFEC	
0000 2010	0000 0040	
0000 2014	FFFF FFFF	

Napišite i potprogram **DIJELI** koji cjelobrojno dijeli dva broja metodom uzastopnog oduzimanja. Potprogram prima parametre i vraća rezultat putem **stoga**. Potprogram DIJELI iskoristite u glavnom programu vašeg rješenja za operaciju dijeljenja dvaju podataka u strukturi. U slučaju dijeljenja nulom, potprogram vraća 0. Operaciju množenja možete ostvariti mnemoničkim naredbama dostupnima za procesor ARM. Operacije množenja i dijeljenja moraju čuvati predznak podataka (npr. množenjem pozitivnog i negativnog broja, rezultat će biti negativan broj). Za sve operacije možete pretpostaviti da će dati ispravan rezultat unutar 32 bita. Također, možete pretpostaviti da će vrijednost kojom je označena računska operacija uvijek biti 0, 1, 2 ili 3, osim u slučaju zaključavanja bloka (kada će biti jednaka 0xFFFFFFF).

2 Predaja

Predaja vlastitih rješenja laboratorijske vježbe vrši se isključivo prijenosom datoteke **zadatak1.a** na Moodle. Nakon prijenosa, ne zaboravite zaključati vašu predaju.