Examé de Qualificação: Topologia 18/12/2006

Cada item vale 1 ponto.

- 1) Sejam X, Y espaçõs topologicos e f : X → Y sobrejetora e fechada. Suponha que Y é conexo e que f⁻¹(y) é conexo para todo y ∈ Y. Provar que X é conexo.
 - 2) Seja X um espaço topologico conexo, $f,g:X\to [0,1]$ funções continuas e f sobrejetora. Provar que existe $x\in X$ tal que f(x)=g(x).
- Seja X um conjunto n\u00e3o enumeravel e p ∈ X. A topologia de Fort com respeito a p \u00e9 dada por:

$$\mathfrak{T} = \{ U \subset X : X - U \text{ \'e finito ou } p \in X - U \}.$$

Provar que (X, \mathfrak{T}) é Hausdorff e não é metrizavel.

2) Sejam los subespaços de R com a topologia induzida:

$$X = [0,1) \cup \{2\} \cup (3,4) \cup \{5\} \cup (6,7) \cup \{8\} \cup \dots$$

е

$$Y = [0,1] \cup \{2\} \cup (3,4) \cup \{5\} \cup (6,7) \cup \{8\} \cup \dots$$

Provar que X e Y não são homeomorfos e que existem bijeções continuas de X em Y e de Y em X.

- 3. 1) Prove que todo espaço compacto, Hausdorff é normal.
 - 2) Seja (X,d) um espaço metrico compacto. Provar que se $\mathfrak U$ é uma cobertura por abertos de X, existe um $\lambda>0$ tal que todo $A\subset X$ com $diam(A)<\lambda$ esta contido em algúm elemento de $\mathfrak U$.
- 4. 1) Prove que \mathbb{R}^2 não é homeomorfo a \mathbb{R}^n para $n \neq 2.$
 - Prove que o circulo S¹ n\u00e3o \u00e9 um retrato do disco unitario fechado.
- 5. 1) Seja $p:(E,e_0) \to (X,x_0)$ uma aplicação de recobrimento, Y um espaço conexo por caminhos e localmente conexo por caminhos, $f:(Y,y_0) \to (X,x_0)$ continua. Prove que existe $F:(Y,y_0) \to (E,e_0)$ continua tal que $p \diamond F = f$ se e somente se

$$f_*(\pi_1(Y, y_0)) \subset p_*\pi_1(E, e_0)$$

2) Seja Y um espaço conexo por caminhos, localmente conexo por caminhos tal que $\pi_1(Y)$ é finito. Prove que toda aplicação continua $f:Y\to S^1$ é homotopica a uma aplicação constante.

Exame de Qualificação ao Mestrado Álgebra Linear, 10 de julho de 2006

A resolução completa de cada exercício vale 2 (dois) pontos.

1. A transformação linear $T: \mathbb{C}^4 \to \mathbb{C}^4$ atua sobre os vetores e_1, e_2, e_3, e_4 da base canônica de \mathbb{C}^4 como segue:

$$T(e_1) = e_1 + 2e_2 + e_3,$$
 $T(e_2) = 2e_1 - e_2 + e_4,$ $T(e_3) = -4e_1 + 4e_2 + e_3 - 2e_4,$ $T(e_4) = 4e_1 - 8e_2 - 2e_3 + 3e_4.$

- a) Encontrar a matriz A de T na base canônica de C⁴.
- b) Encontrar a forma canônica de Jordan J de A.
- c) Encontrar uma base de \mathbb{C}^4 onde a matriz de T é igual a J.
- 2. Seja $f=x_1^2+x_2^2+x_3^2+4x_1x_2+4x_1x_3+4x_2x_3$ uma forma quadrática em \mathbb{R}^3 . Encontrar uma transformação ortogonal das variáveis que leva f a eixos principais.
- 3. Sejam u_1, u_2, \ldots, u_k vetores não nulos no espaço euclidiano \mathbb{R}^n tais que o ângulo entre quaisquer u_i e u_j , $i \neq j$, é igual a θ , $90^\circ < \theta < 180^\circ$. Mostrar que $k \leq n+1$.
- Responder falsa ou verdadeira a cada uma das afirmações abaixo. Justificar as suas respostas. (Resposta sem a devida justificativa não sera considerada.)
- a) Se A é uma matriz $n \times n$ cujas entradas são números inteiros e cujo determinante é igual a 1, então A é invertível e A^{-1} também tem todas as suas entradas números inteiros.
- b) Seja $A \in M_n(\mathbb{C})$ tal que $A^k = I$ para algum k e |traço(A)| = n então A = I. (Aqui I é a matriz identidade $n \times n$.)
 - c) Se T_1 e T_2 são dois operadores normais em \mathbb{C}^n então T_1+T_2 também o é.
 - d) Existem matrizes $A, B \in M_n(\mathbb{C})$ tais que AB BA = I.
- e) Seja $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ uma função bilinear e alternada. Então existe $a \in \mathbb{R}$ tal que $f((x_1, x_2), (y_1, y_2)) = a(x_1y_2 x_2y_1)$, para quaisquer $u = (x_1, x_2)$, $v = (y_1, y_2) \in \mathbb{R}^2$.
- 5. Seja S um conjunto não vazio de operadores auto-adjuntos em \mathbb{R}^n tais que $T_1T_2 \in S$ para todos $T_1, T_2 \in S$. Mostrar que existe uma base ortonormal de \mathbb{R}^n que consiste de autovetores de todo $T \in S$.

Exame de qualificação ao mestrado em matemática Álgebra Linear, 13/12/2006

1. (2,5 pt) Seja $V=\mathbb{C}^4$ com a base canônica $e_1,\,e_2,\,e_3,\,e_4$ e seja $T\colon V\to V$ com

$$T(e_1) = 4e_1 + 4e_2, \quad T(e_2) = -4e_1 - 4e_2, \quad T(e_3) = -2e_2 + 4e_3 + 2e_4, \quad T(e_4) = 2e_1 + 4e_2 - 2e_3.$$

- a) Mostrar que existe um único operdor linear $T:V\to V$ que atua nos vetores da base canônica na maneira descrita acima, e escrever a matriz de T.
 - b) Encontrar uma base de Jordan para T e a matriz de T nessa base.
 - 2. (2 pt) Seja $A \in M_n(\mathbb{C})$ uma matriz de posto 1 e seja n > 1.
 - a) Mostrar que $A^2 = pA$ para algum número complexo p.
 - b) Mostrar que se p = -1 então a matriz $I_n + A$ não é invertível.
- c) Mostrar que se $p \neq -1$ então $I_n + A$ é invertível e encontrar a sua inversa. (Dica: Procure essa inversa da forma $I_n + qA$.)
- 3. (1 pt) Sejam V um espaço vetorial sobre C, dim V = n, e sejam f, g ∈ V*, o espaço dual de V. Mostrar que se ker f = ker g então f e g são linearmente dependentes em V*. (Aqui ker f é o núcleo da transformação f.)
- 4. (2 pt) Seja $f = -x^2 4y^2 4z^2 4xy 4xz 8yz$ uma forma quadrática nas variáveis x, y e z sobre \mathbb{R} . Encontrar uma transformação ortogonal das variáveis x, y, z, que reduz f em forma canônica (eixos principais).
 - (2,5 pt) a) Definir produto interno hermitiano no espaço vetorial V sobre C. Definir isometria em V.
- b) Seja $V = \mathbb{C}^n$ com o produto interno usual (u, v) e sejam v_1, \ldots, v_k e w_1, \ldots, w_k dois sistemas de vetores em V. Se T é isometria de V tal que $T(v_i) = w_i$, $i = 1, \ldots, k$, mostrar que $(v_i, v_j) = (w_i, w_j)$ para todos i e j.
- c) Nas notações de (b), mostrar que se (v_i, v_j) = (w_i, w_j) para todos i e j, então existe uma isometria T de V tal que T(v_i) = w_i para todo i.
- 6. (1 pt) Seja E = E(V) a álgebra exterior do espaço V sobre \mathbb{R} , dim V = 2006, e sejam $f_1, f_2, f_3 \in E$. Mostrar que $(f_1 \wedge f_2 f_2 \wedge f_1) \wedge (f_1 \wedge f_3 f_3 \wedge f_1) = 0$ em E.

TOPOLOGIA EXAME DE QUALIFICAÇÃO JULHO 2006

1) Seja $\{X_i:i\in I\}$ uma familia de espaços topológicos. Sejam $A_i\subset X_i$ para cada $i\in I$. Provar as seguintes afirmações:

a) (1 pt.)
$$\overline{(\Pi_{i \in I} A_i)} = \Pi_{i \in I} \overline{A_i}$$
.

- b) (1 pt.) $(\Pi_{i \in I} A_i)^o \subset \Pi_{i \in I} A_i^o$.
- c) (1 pt.) Mostre um exemplo onde (Π_{i∈I} A_i)^o ≠ Π_{i∈I} A^o_i.
- 2) (2 pt.) Sejam X um espaço compacto e Y um espaço Hausdorff e $f:X\to Y$ continua e sobrejetora. Mostre que f é aberta.
- 3) a) (1 pt.) Prove que o grupo fundamental $\pi_1(\mathbb{RP}^2)$ é finito.
- b) (1 pt.) Seja $p: E \to B$ uma aplicação de recobrimento e $f: X \to B$. Sob quais condições existe um levantamento de f?. Isto é, uma função $\tilde{f}: X \to E$ tal que $f = p \circ \tilde{f}$.
- c) (1 pt.) Prove que toda aplicação continua de RP² em S¹ é homotopica a uma aplicação constante.
- 4) (2 pt.) Sejam $A \subset \mathbb{R}^k$ fechado e $f: A \to \mathbb{R}^n$ continua $(k, n \ge 1)$. Provar que existe uma extensão continua de f a todo \mathbb{R}^k .

IMECC-UNICAMP-DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO DE MESTRADO ANÁLISE NO \mathbb{R}^N

DATA: 12/07/2006

- (1) A função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = \frac{x^2y}{x^2+y^2}$ se $(x,y) \neq (0,0)$ e f(0,0) = 0 é diferenciável no ponto (0,0)?
- (2) Seja $M(n \times n) = \mathbb{R}^{n^2}$ o espaço das matrizes $n \times n$ com elementos reais. Mostre que o máximo da função $f: \mathbb{R}^{n^2} \to \mathbb{R}$ definida por f(x) = det(x) restrita à esfera $\sum_{i,j=1}^n x_{ij}^2 = n$ é atingido numa matriz ortogonal e vale 1.
- (3) Mostre que toda submersão $f:U\to\mathbb{R}^n$ de classe C^1 definida num aberto $U\subset\mathbb{R}^k$ (k>n) é uma aplicação aberta, isto é, se $A\subset U$ é aberto, então $f(A)\subset\mathbb{R}^n$ é aberto.
- (4) Seja $f: A \to \mathbb{R}$ uma função contínua no bloco $A \subset \mathbb{R}^n$. Mostre que o gráfico de f tem medida nula em \mathbb{R}^{n+1} .
- (5) (A) Calcule a integral de superfície $\int_S x^2 d\sigma$, onde S é a esfera unitária em \mathbb{R}^3 .
- (B) Encontre uma curva fechada e sem auto-interseções C de classe C^{∞} em \mathbb{R}^2 de maneira que a integral $\int_C (y^3-y)dx 2x^3dy$ seja máxima.
- (6) (A) Seja M uma superfície com bordo, orientada e de dimensão m+1. Seja w uma forma de classe C¹ e de grau m, com suporte compacto disjunto do bordo ∂M. Mostre que ∫_M dw = 0.
- (B) Disserte sobre o Teoremas de Green, Gauss e Stokes.

TOPOLOGIA EXAME DE QUALIFICAÇÃO JULHO 2006

- 1) Seja $\{X_i:i\in I\}$ uma familia de espaços topológicos. Sejam $A_i\subset X_i$ para cada $i\in I$. Provar as seguintes afirmações:
 - a) (1 pt.) $\overline{(\Pi_{i \in I} A_i)} = \Pi_{i \in I} \overline{A_i}$.
 - b) (1 pt.) $(\Pi_{i \in I} A_i)^{\circ} \subset \Pi_{i \in I} A_i^{\circ}$.
 - c) (1 pt.) Mostre um exemplo onde $(\Pi_{i \in I} A_i)^o \neq \Pi_{i \in I} A_i^o$.
- 2) (2 pt.) Sejam X um espaço compacto e Y um espaço Hausdorff e $f:X\to Y$ continua e sobrejetora. Mostre que f é aberta.
- a) (1 pt.) Prove que o grupo fundamental π₁(RP²) é finito.
- b) (1 pt.) Seja $p: E \to B$ uma aplicação de recobrimento e $f: X \to B$. Sob quais condições existe um levantamento de f?. Isto é, uma função $\tilde{f}: X \to E$ tal que $f = p \circ \tilde{f}$.
- c) (1 pt.) Prove que toda aplicação continua de RP² em S¹ é homotopica a uma aplicação constante.
- 4) (2 pt.) Sejam $A \subset \mathbb{R}^k$ fechado e $f: A \to \mathbb{R}^n$ continua $(k, n \ge 1)$. Provar que existe uma extensão continua de f a todo \mathbb{R}^k .

IMECC-UNICAMP-DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO DE MESTRADO ANÁLISE NO \mathbb{R}^N

DATA: 15/12/2006

- (1) Se $f: \mathbb{R}^n \to \mathbb{R}$ é uma função tal que $|f(x)| \leq |x|^2$, mostre que f é diferenciável em x = 0.
- (2) Seja $\Omega \subset \mathbb{R}^2$ um conjunto aberto e suponha que a bola unitária $B_1(0)$ está contida em Ω . Seja $h: \Omega \to \mathbb{R}^2$ uma aplicação de classe C^{∞} definida por h(z) = (f(z), g(z)) tal que $f(z)^2 + g(z)^2 = 1$ para todo $z \in \Omega$.
- (A) Mostre que $f_x g_y f_y g_x = 0$ para todo $z = (x, y) \in \Omega$.
- (B) Seja S^1 o bordo de $B_1(0)$, calcule $\int_{S^1} f dg g df$.
- (C) Mostre que não existe uma aplicação h nas condições acima tal que $h\mid_{S^1}$ seja a aplicação identidade.
- (3) Seja $\Omega \subset \mathbb{R}^n$ um conjunto aberto limitado. Se $f:\Omega \to \mathbb{R}^n$ é uma função de classe C^1 com determinante jacobiano não-nulo em todo ponto de Ω , mostre que existem c>0 e $\delta>0$ tais que $|f(x)-f(y)|\geq c|x-y|$ se $|x-y|<\delta$ e $x,y\in\Omega$.
- (4) (A) Seja w uma 1-forma diferencial definida em um aberto $\Omega \subset \mathbb{R}^2$ tal que dw = 0. Seja M uma região limitada de Ω , cujo bordo ∂M é uma curva C^{∞} . Mostre que $\int_{\partial M} w = 0$.
- (B) Considere $w=\frac{-ydx+xdy}{x^2+y^2}$. Mostre que dw=0, mas $\int_C w=2\pi$, onde C é o círculo $x^2+y^2=1$, bordo da região limitada $\Omega=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$. Isso contradiz o resultado do item (A)?
- (5) Seja H o hiperplano de \mathbb{R}^{n+1} definido pela equação < b, x >= c. Use o método dos multiplicadores de Lagrange para mostrar que o ponto de H mais próximo do ponto $a \in \mathbb{R}^{n+1}$ é $x = a + \frac{c \langle b, a \rangle}{|b|^2} b$.