否っころし

Full Audit Report With re-assessment

DoubleUP Token Security Assessment

DoubleUP Token Security Assessment

FULL AUDIT REPORT WITH RE-ASSESSMENT

Security Assessment by SCRL on Wednesday, May 15, 2024

SCRL is deliver a security solution for Web3 projects by expert security researchers.

をSCRL

Executive Summary

For this security assessment, SCRL received a request on Sunday, May 5, 2024

Client	Language	Audit Method	Confidential	Network Chain	Contract		
DoubleUp Token	Solidity	Whitebox	Public	Polygon Mainnet	0x3667125	dOD3f23EDf49DCF506a	83A147C80ae1BA
Report Versio	n Twitter		Telegram		Website		
1.1	https://twitter.	com/doubleup org	https://t.me/do	ubleup org	https://dou	ibleup.org/	
Scoring:	Scoring 7.5	5 8	8.5	9	9.5	10	
Vulnerab	ility Summary		O esolved	2 Resolved	0 Mitigate	O Acknowledge	O Decline
						verity is assigned to securit	y vulnerabilities that
-	0 Critical 0 High				blockchai	vere threat to the smart con n ecosystem. rity issues should be addres	
					reduce th and data.	e risk of exploitation and pr	otect users' funds
•	1 Medium	1 Resolved				ial to fix medium-severity is e timeframe to enhance th contract.	
•	1 Low	1 Resolved			advisable	-severity issues can be less to address them to improv- osture of the smart contrac	e the overall
	0 Very Low					severity is used for minor s minimal impact and are ge	
•	0 Informational				direct sec	ategorize security findings t urity threat to the smart co nese findings provide additi ndations	ntract or its users.
	O Gas- optimization					ns for more efficient algorit nents in gas usage, even if t cure.	

Audit Scope:

File	SHA-1 Hash
DBLU.sol	ed3a68e6ababbe223fb4fe632569fce275da124c

Audit Version History:

Version	Date	Description
1.0	Tuesday, 7 May, 2024	Preliminary Report
1.1	Wednesday, 15 May R 2024	Full Report With Re-assessment after deployed on mainnet

Audit information:

Request Date	Audit Date	Re-assessment Date
Sunday, May 5, 2024	Tuesday, May 7 2024	Wednesday, May 15, 2024

Smart Contract Audit Summary

Security Assessment Author

Auditor:	Mark K.	[Security Researcher Redteam]
	Kevin N.	[Security Researcher Web3 Dev]
	Yusheng T.	[Security Researcher Incident Response]
Document Approval:	Ronny C.	CTO & Head of Security Researcher
	Chinnakit J.	CEO & Founder

Digital Sign

Disclaimer

Regarding this security assessment, there are no guarantees about the security of the program instruction received from the client is hereinafter referred to as "Source code".

And **SCRL** hereinafter referred to as "**Service Provider**", the **Service Provider** will not be held liable for any legal liability arising from errors in the security assessment. The responsibility will be the responsibility of the **Client**, hereinafter referred to as "**Service User**" and the

Service User agrees not to be held liable to the **service provider** in any case. By contract **Service Provider** to conduct security assessments with integrity with professional ethics, and transparency to deliver security assessments to users The **Service Provider** has the right to postpone the delivery of the security assessment. If the security assessment is delayed whether caused by any reason and is not responsible for any delayed security assessments.

If the service provider finds a vulnerability The service provider will notify the service user via the Preliminary Report, which will be kept confidential for security. The service provider disclaims responsibility in the event of any attacks occurring whether before conducting a security assessment. Or happened later All responsibility shall be sole with the service user.

Security Assessment Is Not Financial/Investment Advice Any loss arising from any investment in any project is the responsibility of the investor.

SCRL disclaims any liability incurred. Whether it's Rugpull, Abandonment, Soft Rugpull, Exploit, Exit Scam.

Security Assessment Procedure

- Request The client must submit a formal request and follow the procedure. By submitting the source code and agreeing to the terms of service.
- 2. Audit Process

 Check for vulnerabilities and vulnerabilities from source code obtained by experts using formal verification methods, including using powerful tools such as Static Analysis, SWC Registry, Dynamic Security Analysis, Automated Security Tools, CWE, Syntax & Parameter Check with AI, WAS (Warning Avoidance System a python script tools powered by SCRL).
- 3. Security Assessment Deliver Preliminary Security Assessment to clients to acknowledge the risks and vulnerabilities.
- 4. **Consulting**Discuss on risks and vulnerabilities encountered by clients to apply to their source code to mitigate risks.
 - a. **Re-assessment** Reassess the security when the client implements the source code improvements and if the client is satisfied with the results of the audit. We will proceed to the next step.
- 5. **Full Audit Report** SCRL provides clients with official security assessment reports informing them of risks and vulnerabilities. Officially and it is assumed that the client has been informed of all the information.

Risk Rating

Risk rating using this commonly defined: $Risk \ rating = impact * confidence$

Impact The severity and potential impact of an attacker attack
Confidence Ensuring that attackers expose and use this vulnerability

Confidence	Low	Medium	High
Impact [Likelihood]			
Low	Very Low	Low	Medium
Medium	Low	Medium	High
High	Medium	High	Critical

Severity is a risk assessment It is calculated from the Impact and Confidence values using the following calculation methods,

 $Risk\ rating = impact * confidence$

It is categorized into

For Informational & Non-class/Optimization/Best-practices will not be counted as severity

Category

Table Of Content

Summary

- Executive Summary
- CVSS Scoring
- Vulnerability Summary
- Audit Scope
- Audit Version History
- Audit Information
- Smart Contract Audit Summary
- Security Assessment Author
- Digital Sign
- Disclaimer
- Security Assessment Procedure
- Risk Rating
- Category

Source Code Detail

- Dependencies / External Imports
- Visibility, Mutability, Modifier function testing

Vulnerability Finding

- Vulnerability
- SWC Findings
- Contract Description
- Inheritance Relational Graph
- UML Diagram

About SCRL

Source Units in Scope

Source Units Analyzed: 1

Source Units in Scope: 1 (100%)

Тур	File	Logi c Cont racts	Interf aces	Li ne s	nLi nes	nS LO C	Com ment Line s	Com plex. Scor e	Capab ilities
 ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ 	DBL U.sol	6	1	78 7	736	240	457	174	*
	Tota Is	6	1	78 7	736	240	457	174	*

Legend: [-]

- Lines: total lines of the source unit
- nLines: normalized lines of the source unit (e.g. normalizes functions spanning multiple lines)
- **nSLOC**: normalized source lines of code (only source-code lines; no comments, no blank lines)
- Comment Lines: lines containing single or block comments
- **Complexity Score**: a custom complexity score derived from code statements that are known to introduce code complexity (branches, loops, calls, external interfaces, ...)

Visibility, Mutability, Modifier function testing

Components

Contracts	€ Libraries	Interfaces	Abstract
2	1	1	3

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter methods for public stateVars are not included.

StateVariables

Total	Public		
15	1		

Capabilities

>=0.6.0 <0.8.0 0.7.6 Level Calls DelegateC all Uses ECRecov er New/Create/C reate2	Solidity Versions observed	Experimental Features		S Can Receive	Uses Funds Assembly		 HasDestroyableContracts	
Transfers Level DelegateC Hash ECRecov New/Create/C	<0.8.0							
	Transfers	Level	D	elegateC	Hash		New/Create/C	

TryCatch	Σ Unchecked

Dependencies / External Imports

Vulnerability Findings

ID	Vulnerability Detail	Severity	Category	Status
CEN-01	Centralization Risk	Medium	Centralization	Resolved
SEC-01	beforeTokenTransfer function does not follow OZ documentation	Low	Security Risk	Resolved

CEN-01: Centralization Risk

Vulnerability Detail	Severity	Location	Category	Status
Centralization Risk	Medium	Check on finding	Centralization	Resolved

Finding:

```
File: DBLU.sol
31: function blockWallet(address addr) external onlyOwner {
        blacklist[addr] = true;
    }
35: function unblockWallet(address addr) external onlyOwner {
        blacklist[addr] = false;
    }
```

Explain Function Capability:

The contract provides several functions:

- 1. blockWallet(address addr)
 - This function allows the contract owner to block a specific wallet address (addr).
 - When invoked, it sets the corresponding entry in the blacklist mapping to true, indicating
 that the specified wallet is blocked from certain actions or functionalities within the
 contract.
 - This capability is useful for implementing restrictions or sanctions on certain addresses, perhaps due to suspicious activity or violations of contract rules.
- 2. unblockWallet(address addr)
 - This function allows the contract owner to unblock a previously blocked wallet address (addr).
 - When invoked, it sets the corresponding entry in the **blacklist** mapping to **false**, effectively removing the block on that wallet.
 - This capability provides a way to reverse the actions taken by the blockWallet function, restoring the ability of the previously blocked wallet to participate in contract interactions.

Centralization Risk

Recommendation:

In terms of timeframes, there are three categories: short-term, long-term, and permanent.

For short-term solutions, a combination of timelock and multi-signature (2/3 or 3/5) can be used to mitigate risk by delaying sensitive operations and avoiding a single point of failure in key management. This includes implementing a timelock with a reasonable latency, such as 48 hours, for privileged operations; assigning privileged roles to multi-signature wallets to prevent private key compromise; and sharing the timelock contract and multi-signer addresses with the public via a medium/blog link.

For long-term solutions, a combination of timelock and DAO can be used to apply decentralization and transparency to the system. This includes implementing a timelock with a reasonable latency, such as 48 hours, for privileged operations; introducing a DAO/governance/voting module to increase transparency and user involvement; and sharing the timelock contract, multi-signer addresses, and DAO information with the public via a medium/blog link.

Finally, permanent solutions should be implemented to ensure the ongoing security and protection of the system.

Alleviation:

The DoubleUp Team has fixed this issue by removing those function.

SEC-01: beforeTokenTransfer function does not follow OZ documentation

Vulnerability Detail	Severity	Location	Category	Status
beforeTokenTransfer function does not follow OZ documentation	Low	Check on finding	Naming Conventions	Resolved

Finding:

beforeTokenTransfer in DBLU._beforeTokenTransfer(address,address,uint256)
(src/DBLU.sol:48-50) must have virtual and super.

Recommendation:

Make sure that beforeTokenTransfer function is used in the correct way.

Reference: https://docs.openzeppelin.com/contracts/4.x/extending-contracts#rules of hooks

Alleviation:

The DoubleUp Team has fixed this issue

SWC Findings

3VVC Filluling	b ³		
ID	Title	Scanning	Result
SWC-100	Function Default Visibility	Complete	No risk
SWC-101	Integer Overflow and Underflow	Complete	No risk
SWC-102	Outdated Compiler Version	Complete	No risk
SWC-103	Floating Pragma	Complete	No risk
SWC-104	Unchecked Call Return Value	Complete	No risk
SWC-105	Unprotected Ether Withdrawal	Complete	No risk
SWC-106	Unprotected SELFDESTRUCT Instruction	Complete	No risk
SWC-107	Reentrancy	Complete	No risk
SWC-108	State Variable Default Visibility	Complete	No risk
SWC-109	Uninitialized Storage Pointer	Complete	No risk
SWC-110	Assert Violation	Complete	No risk
SWC-111	Use of Deprecated Solidity Functions	Complete	No risk
SWC-112	Delegatecall to Untrusted Callee	Complete	No risk
SWC-113	DoS with Failed Call	Complete	No risk
SWC-114	Transaction Order Dependence	Complete	No risk
SWC-115	Authorization through tx.origin	Complete	No risk

SWC-116	Block values as a proxy for time	Complete	No risk
SWC-117	Signature Malleability	Complete	No risk
SWC-118	Incorrect Constructor Name	Complete	No risk
SWC-119	Shadowing State Variables	Complete	No risk
SWC-120	Weak Sources of Randomness from Chain Attributes	Complete	No risk
SWC-121	Missing Protection against Signature Replay Attacks	Complete	No risk
SWC-122	Lack of Proper Signature Verification	Complete	No risk
SWC-123	Requirement Violation	Complete	No risk
SWC-124	Write to Arbitrary Storage Location	Complete	No risk
SWC-125	Incorrect Inheritance Order	Complete	No risk
SWC-126	Insufficient Gas Griefing	Complete	No risk
SWC-127	Arbitrary Jump with Function Type Variable	Complete	No risk
SWC-128	DoS With Block Gas Limit	Complete	No risk
SWC-129	Typographical Error	Complete	No risk
SWC-130	Right-To-Left-Override control character (U+202E)	Complete	No risk
SWC-131	Presence of unused variables	Complete	No risk
SWC-132	Unexpected Ether balance	Complete	No risk

SWC-133	Hash Collisions With Multiple Variable Length Arguments	Complete	No risk
SWC-134	Message call with hardcoded gas amount	Complete	No risk
SWC-135	Code With No Effects	Complete	No risk
SWC-136	Unencrypted Private Data On-Chain	Complete	No risk

Contracts Description Table

Contract	Туре	Bases		
L	Function Name	Visibility	Mutabilit y	Modifiers
Context	Implementation			
L	_msgSender	Internal 🔒		
L	_msgData	Internal 🗎		
Ownable	Implementation	Context		
L		Internal 🔒	•	
L	owner	Public !		NO!
L	renounceOwnership	Public !	•	<mark>onlyOwne</mark> r
L	transferOwnership	Public !		onlyOwne r
SafeMath	Library			
L	tryAdd	Internal 🗎		
L	trySub	Internal 🔒		
L	tryMul	Internal 🗎		
L	tryDiv	Internal 🔒		
L	tryMod	Internal 🔒		
L	add	Internal 🗎		
L	sub	Internal 🗎		
L	mul	Internal 🗎		
L	div	Internal 🔒		

Contract	Туре	Bases	
L	mod	Internal 🗎	
L	sub	Internal 🗎	
L	div	Internal 🔒	
L	mod	Internal 🗎	
IERC20	Interface		
L	totalSupply	External !	NO!
L	balanceOf	External !	NO!
L	transfer	External !	NO!
L	allowance	External !	NO!
L	approve	External !	NO!
L	transferFrom	External !	NO!
		_	
ERC20	Implementation	Context, IERC20	
L		Public!	NO!
L	name	Public !	NO!
L	symbol	Public !	NO!
L	decimals	Public!	NO!
L	totalSupply	Public !	NO!
L	balanceOf	Public!	NO!
L	transfer	Public!	NO!
L	allowance	Public !	NO!
L	approve	Public!	NO!

Contract	Туре	Bases	
L	transferFrom	Public !	NO!
L	increaseAllowance	Public !	NO!
L	decreaseAllowance	Public !	NO!
L	_transfer	Internal 🔒	
L	_mint	Internal 🗎	
L	_burn	Internal 🗎	
L	_approve	Internal 🔒	
L	_setupDecimals	Internal 🗎	
L	_beforeTokenTransfe r	Internal 🗎	
ERC20Burnabl e	Implementation	Context, ERC20	
L	burn	Public !	NO!
L	burnFrom	Public !	NO!
DBLU	Implementation	ERC20Burnable , Ownable	
L		Public !	ERC20

Legend

Symbol	Meaning
	Function can modify state
	Function is payable

否っころし

Call Graph

UML Class Diagram

About SCRL

SCRL (Previously name SECURI LAB) was established in 2020, and its goal is to deliver a security solution for Web3 projects by expert security researchers. To verify the security of smart contracts, they have developed internal tools and KYC solutions for Web3 projects using industry-standard technology. SCRL was created to solve security problems for Web3 projects. They focus on technology for conciseness in security auditing. They have developed Python-based tools for their internal use called WAS and SCRL. Their goal is to drive the crypto industry in Thailand to grow with security protection technology.

会SCRL

Smart Contract Audit

Our top-tier security strategy combines static analysis, fuzzing, and a custom detector for maximum efficiency.

scrl.io

Follow Us On:

Website	https://scrl.io/
Twitter	https://twitter.com/scrl_io
Telegram	https://t.me/scrl_io
Medium	https://scrl.medium.com/