Evan Wilcox CS1200 Fall 2018 Homework 3

Due: Friday 10/05/18

- 1. Show that  $\rightarrow$  does not have the associative or commutative laws.
  - (a)  $P \to (Q \to R)$  and  $(P \to Q) \to R$  have different truth tables.

|   | ( 0 |   | / ( )             |                   |
|---|-----|---|-------------------|-------------------|
| P | Q   | R | $P \to (Q \to R)$ | $(P \to Q) \to R$ |
| F | F   | F | T                 | F                 |
| F | F   | Т | Т                 | Т                 |
| F | Т   | F | Т                 | F                 |
| F | Т   | Т | Т                 | Т                 |
| T | F   | F | Т                 | Т                 |
| T | F   | Т | Т                 | Т                 |
| Т | Т   | F | F                 | F                 |
| Т | Т   | Т | Т                 | Т                 |

(b)  $P \to Q$  and  $Q \to P$  have different truth tables.  $P \mid Q \mid P \to Q \mid Q \to P$ 

| ĺ | P | Q | $P \rightarrow Q$ | $Q \to P$ |
|---|---|---|-------------------|-----------|
| ſ | F | F | Т                 | Т         |
| Ī | F | Т | Т                 | F         |
| Ī | Т | F | F                 | T         |
| Ī | Т | Т | Т                 | T         |

2. Verify the second DeMorgan's Law  $\sim (P|Q) = \sim P \& \sim Q$  manually using truth table.

| v | Tutti tubic. |   |          |          |              |                   |  |  |  |  |  |
|---|--------------|---|----------|----------|--------------|-------------------|--|--|--|--|--|
|   | P            | Q | $\sim P$ | $\sim Q$ | $\sim (P Q)$ | $\sim P\& \sim Q$ |  |  |  |  |  |
|   | F            | F | Т        | Т        | T            | T                 |  |  |  |  |  |
|   | F            | Т | Т        | F        | F            | F                 |  |  |  |  |  |
|   | Т            | F | F        | Т        | F            | F                 |  |  |  |  |  |
|   | Т            | Т | F        | F        | F            | F                 |  |  |  |  |  |

3. (a) Manually construct a truth table for  $\sim (P\&Q \to R\&S)$ 

| P | Q | R | S | P&Q | R&S | $\rightarrow$ | $\sim (P\&Q \to R\&S)$ |
|---|---|---|---|-----|-----|---------------|------------------------|
| F | F | F | F | F   | F   | Т             | F                      |
| F | F | F | Т | F   | F   | Т             | F                      |
| F | F | Т | F | F   | F   | Т             | F                      |
| F | F | Т | Т | F   | Т   | Т             | F                      |
| F | Т | F | F | F   | F   | Т             | F                      |
| F | Т | F | Т | F   | F   | Т             | F                      |
| F | Т | Т | F | F   | F   | Т             | F                      |
| F | Т | Т | Т | F   | Т   | Т             | F                      |
| T | F | F | F | F   | F   | Т             | F                      |
| Т | F | F | Т | F   | F   | Т             | F                      |
| Т | F | Т | F | F   | F   | Т             | F                      |
| T | F | Т | Т | F   | Т   | Т             | F                      |
| T | Т | F | F | Т   | F   | F             | Т                      |
| Т | Т | F | Т | Т   | F   | F             | Т                      |
| Т | Т | Т | F | Т   | F   | F             | Т                      |
| Т | Т | Т | Т | Т   | Т   | Т             | F                      |

(b) Find the disjunctive normal form of  $\sim (P\&Q \to R\&S)$ .

$$(P\&Q\&\sim R)|(P\&Q\&\sim S)$$

4. Let G(A, B, C) be the function:

$$B\&A|C\&C \leftarrow B\&B \rightarrow B! = A|C$$

(a) Completely parenthesize the above expression for G.

$$((((((B\&A)|(C\&C)) \leftarrow (B\&B)) \to B)! = (A|C))$$

(b) Create a truth table for G.

| A | B | C | B&A |   | C&C | $\leftarrow$ | B&B | $\rightarrow B$ | ! = | A C | G |
|---|---|---|-----|---|-----|--------------|-----|-----------------|-----|-----|---|
| F | F | F | F   | F | F   | Т            | F   | F               | F   | F   | F |
| F | F | Т | F   | Т | Т   | Т            | F   | F               | Т   | Т   | Т |
| F | Т | F | F   | F | F   | F            | Т   | Т               | Т   | F   | Т |
| F | Т | Т | F   | Т | Т   | Т            | Т   | Т               | F   | Т   | F |
| Т | F | F | F   | F | F   | Т            | F   | F               | Т   | Т   | Т |
| Т | F | Т | F   | Т | Т   | Т            | F   | F               | Т   | Т   | Т |
| Т | Т | F | Т   | Т | F   | Т            | Т   | Т               | F   | Т   | F |
| Т | Т | Т | Т   | Т | Т   | Т            | Т   | Т               | F   | Т   | F |

(c) Express G in disjunctive normal form.

$$(\sim A\&\sim C)|\sim B$$

(d) Draw a circuit that uses &, |, and  $\sim$  gates to compute G.



5. Represent the function P! = (Q! = R) using NOT, AND and OR gates.



6. Design a circuit for three switches that turns a light on only if at least two of the three switches are on.

