CS38 Introduction to Algorithms

Lecture 9 April 29, 2014

Outline

- · Divide and Conquer design paradigm
 - matrix multiplication
- Dynamic programming design paradigm
 - Fibonacci numbers
 - weighted interval scheduling
 - knapsack
 - matrix-chain multiplication
 - longest common subsequence

April 29, 2014

CS38 Lecture 9

Discrete Fourier Transform (DFT)

• Given n-th root of unity ω , DFT_n is a linear map from Cⁿ to Cⁿ:

$$\begin{pmatrix} (\omega^0)^0 & (\omega^0)^1 & (\omega^0)^2 & \cdots & (\omega^0)^{n-1} \\ (\omega^1)^0 & (\omega^1)^1 & (\omega^1)^2 & \cdots & (\omega^1)^{n-1} \\ (\omega^2)^0 & (\omega^2)^1 & (\omega^2)^2 & \cdots & (\omega^2)^{n-1} \\ \vdots \\ (\omega^{n-1})^0 & (\omega^{n-1})^1 & (\omega^{n-1})^2 & \cdots & (\omega^{n-1})^{n-1} \end{pmatrix}$$

• (i,j) entry is ω^{ij}

April 29, 2014 CS38 Lecture 9

Fast Fourier Transform (FFT)

- DFT_n has special structure (assume n= 2^k)
 - reorder columns: first even, then odd
 - consider exponents on ω along rows:

nultiples of: same multiples														plus	s:	
0 →	0	0	0	0	0	0		0	0	0	0	0	0		← 0	
2 →	0	2	4	6	8	10		1	3	5	7	9	11		← 1	
4 →	0	4	8	12	16	20		2	6	10	14	18	22		← 2	
6 →	0	6	12	18	24	30		3	9	15	21	27	33		← 3	
8 →	0	8	16	24	32	44		4	12	20	28	36	40		← 4	
rows repeat twice since $\omega^n=1$																
pril 29, 201	CS	CS38 Lecture 9									4					

Fast Fourier Transform (FFT)

· so we are actually computing:

 ω^2 is (n/2)-th

$$\mathsf{DFT}_n \cdot \left(\begin{array}{c} x \mathsf{even} \\ x \mathsf{odd} \end{array} \right) = \left(\begin{array}{c|c} \mathsf{DFT}_{n/2} & D \cdot \mathsf{DFT}_{n/2} \\ \mathsf{DFT}_{n/2} & \omega^{n/2} \cdot D \cdot \mathsf{DFT}_{n/2} \end{array} \right) \cdot \left(\begin{array}{c} x \mathsf{even} \\ x \mathsf{odd} \end{array} \right)$$

so to compute DFT_n·x

FFT(n:power of 2; x) 1. let ω be a n-th root of unity 2. compute a = FFT(n/2, x_{even}) 3. compute b = FFT(n/2, x_{odd}) 4. $y_{even} = a + D \cdot b$ and $y_{odd} = a + \omega^{n/2} \cdot D \cdot b$ 5. return vector y

D = diagonal matrix

April 29 2014 CS38 Lecture 9

Fast Fourier Transform (FFT)

FFT(n:power of 2; x) 1. let ω be a n-th root of unity 2. compute a = FFT(n/2, x_{even}) 3. compute b = FFT(n/2, x_{odd}) 4. $y_{even} = a + D \cdot b$ and $y_{odd} = a + \omega^{n/2} \cdot D \cdot b$ 5. return vector y

· Running time?

$$-T(1) = 1$$

 $-T(n) = 2T(n/2) + O(n)$
 $-$ solution: $T(n) = O(n \log n)$

April 29 2014 CS38 Lecture 9

matrix multiplication

- given n x n matrices A, B
- compute C = AB
- standard method: O(n³) operations
- Strassen: $O(n^{\log_2 7}) = O(n^{2.81})$

April 29, 2014 CS38 Lecture 9

Strassen's algorithm

- · how many product operations?
- Strassen: it is possible with 7 (!!)
 - 7 products of form: (linear combos of a entries)x (linear combos of b entries)
 - result is linear combos of these 7 products

April 29, 2014 CS38 Lecture 9 8

Strassen's algorithm

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} X \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + & a_{11}b_{12} + \\ a_{12}b_{21} & a_{12}b_{22} \\ \\ a_{21}b_{11} + & a_{21}b_{12} + \\ a_{22}b_{21} & a_{22}b_{22} \end{bmatrix}$$

- 7 products of form: (linear combos of a entries) x (linear combos of b entries)
- result is linear combos of these 7 products

Key: identity holds when entries above are $n/2 \times n/2$ matrices rather than scalars

April 29, 2014 CS38 Lecture 9 9

Strassen's algorithm

Strassen-matrix-mult(A, B: n x n matrices)

1. $p_1 = A_{11} (B_{12} - B_{22})$ 2. $p_2 = (A_{11} + A_{12}) B_{22}$ 3. $p_3 = (A_{21} + A_{22}) B_{11}$ 4. $p_4 = A_{22} (B_{21} - B_{11})$ 5. $p_5 = (A_{11} + A_{22}) (B_{11} + B_{22})$ 6. $p_6 = (A_{12} - A_{22}) (B_{21} + B_{22})$ 7. $p_7 = (A_{11} - A_{21}) (B_{11} + B_{12})$ 8. $C_{11} = P_5 + P_4 - P_2 + P_6$; $C_{12} = P_1 + P_2$ 9. $C_{21} = P_3 + P_4$; $C_{22} = P_5 + P_1 - P_3 - P_7$ 10. return C

Strassen's algorithm

- 7 recursive calls
- additions/subtractions are entrywise: O(n²)
- running time recurrence?

$$T(n) = 7T(n/2) + O(n^2)$$

Solution: $T(n) = O(n^{\log_2 7}) = O(n^{2.81})$

April 29, 2014 CS38 Lecture 9 11

CS38 Lecture 9

April 29 2014

12

Dynamic programming

· Simple example: computing Fibonacci #s

```
-f(1) = f(2) = 1
-f(i) = f(i-1) + f(i-2)
```

· recursive algorithm:

```
Fibonacci(n)
  if n = 1 or n = 2 return(1)
2. else return(Fibonacci(n-1) + Fibonacci (n-2))
```

CS38 Lecture 9

19

- running time?

April 29, 2014

```
Dynamic programming
          Fibonacci(n)
             if n = 1 or n = 2 return(1)
          2. else return(Fibonacci(n-1) + Fibonacci (n-2))
· better idea:
   - 1-dimensional table; entry i contains f(i)
   - build table "bottom-up"
          Fibonacci-table(n)
           1. T(1) = T(2) = 1
          2. for i = 3 to n do T(i) = T(i-1) + T(i-2)
          return(T(n))
April 29, 2014
                            CS38 Lecture 9
                                                               20
```

Weighted interval scheduling

- job j starts at s_i, finishes at f_i, weight v_i
- · jobs compatible if they don't overlap

Weighted interval scheduling

- · recall: greedy by earliest finishing time worked when weights were all 1
- · counterexample with general weights:

Weighted interval scheduling

label jobs by finishing time f_i

Weighted interval scheduling

- subproblem j: jobs 1...j
 - OPT(j) = value achieved by optimum schedule
- · relate to smaller subproblems
 - case 1: use job j
 - can't use jobs p(j)+1, ..., j-1
 - must use optimal schedule for 1... p(j) = OPT(p(j))

p(j) = largest index i

such that job i is compatible with j.

- case 2: don't use job j
 - must use optimal schedule for 1... j-1 = OPT(j-1)

April 29 2014 CS38 Lecture 9


```
\label{eq:weighted} \begin{tabular}{ll} Weighted interval scheduling \\ \bullet \ job \ j \ starts \ at \ s_j, \ finishes \ at \ f_j, \ weight \ v_j \\ \bullet \ OPT(j) = & \ p(j) = largest index \ is \ such that job \ such that jo
```

Store extra info: 1. was job i picked? 2. which table cell has solution to resulting subproblem? Wtd-interval-schedule((s₁, f₁, v₁),..., (s_n, f_n, v_n)) 1. OPT(0) = 0 2. sort by finish times f_i; compute p(i) for all i 3. for i = 1 to n 4. OPT(i) = max {v_i + OPT(p(i)), OPT(i-1))} 5. return(OPT(n)) • OPT(n) gives value of optimal schedule - how do we actually find schedule?

```
Knapsack
item i has weight w<sub>i</sub> and value v<sub>i</sub>
goal: pack knapsack of capacity W with maximum value set of items

– greedy by weight, value, or ratio of weight/value all fail
subproblems:

– optimum among items 1...i-1?
```

```
Knapsack

• subproblems:

- optimum among items 1...i-1?

- case 1: don't use item i

• OPT(i) = OPT(i-1)

- case 2: do use item i

• OPT(i) = ? [what is weight used by subproblem?]

• subproblems, second attempt:

- optimum among items 1...i-1, with total weight w
```

```
Knapsack
subproblems:

optimum among items 1...i-1, with total weight w
case 1: don't use item i
OPT(i, w) = OPT(i-1, w)

case 2: do use item i
OPT(i, w) = OPT(i-1, w - w<sub>i</sub>)
OPT(i, w) = OPT(i-1, w) if w<sub>i</sub> > w else:

max {v<sub>i</sub> + OPT(i-1, w-w<sub>i</sub>), OPT(i-1, w))}

order to fill in the table?

Apri 29, 2014 CS38 Lecture 9 30
```

Knapsack

```
Knapsack(v<sub>1</sub>, w<sub>1</sub>, ..., v<sub>n</sub>, w<sub>n</sub>, W)

1. OPT(i, 0) = 0 for all i

2. for i = 1 to n

3. for w = 1 to W

4. if w<sub>1</sub> > w then OPT(i,w) = OPT(i-1, w)

5. else OPT(i,w) = {v<sub>1</sub> + OPT(i-1, w-w<sub>1</sub>), OPT(i-1, w)}

6. return(OPT(n, W))
```

- · Running time?
 - -O(nW)
 - space: O(nW) can improve to O(W) (how?)

31

- how do we actually find items?

April 29, 2014 CS38 Lecture 9

Matrix-chain multiplication

· Sequence of matrices to multiply

· goal: find best parenthesization

```
\begin{split} &-\text{ e.g.: } ((A \cdot B) \cdot C) \cdot D) = 10 \cdot 3 \cdot 11 + 10 \cdot 11 \cdot 9 + 10 \cdot 9 \cdot 1 = 1410 \\ &-\text{ e.g. } (A \cdot (B \cdot (C \cdot D)) = 11 \cdot 9 \cdot 1 + 3 \cdot 11 \cdot 1 + 10 \cdot 3 \cdot 1 = 162 \end{split}
```

April 29, 2014 CS38 Lecture 9

Matrix-chain multiplication

- Sequence of n matrices to multiply, given by a₁, a₂, ..., a_{n+1}
- Goal: output fully parenthesized expression with minimum cost
 - fully parenthesized = single matrix: (A) or
 - product of two fully parenthesized: (...)(...)
- try subproblems for ranges:
 OPT(1,n) = min_k OPT(1,k) + OPT(k+1,n) + a₁a_{k+1}a_{n+1}

April 29, 2014 CS38 Lecture 9 33

Matrix-chain multiplication

- Sequence of n matrices to multiply, given by a₁, a₂, ..., a_{n+1}
 - $\mathsf{OPT}(i,j) = \mathsf{cost}$ to multiply matrices $i \dots j$ optimally $\mathsf{OPT}(i,j) = 0$ if i = j
 - -OPT(i,j) = 0 if i = j-OPT(i,j) = 0 if i = j

 $\mathsf{min}_{\mathsf{k}}\,\mathsf{OPT}(\mathsf{i},\mathsf{k}) + \mathsf{OPT}(\mathsf{k+1},\mathsf{j}) + \mathsf{a}_{\mathsf{i}}\mathsf{a}_{\mathsf{k+1}}\mathsf{a}_{\mathsf{j+1}}$

· what order to fill in the table?

April 29, 2014 CS38 Lecture 9 34

Matrix-chain multiplication

```
\begin{aligned} & \textbf{Matrix-Chain}(\mathbf{a_1, a_2, ..., a_{n+1}}) \\ & 1. & \text{OPT}(i, i) = 0 \text{ for all } i \\ & 2. \text{ for } r = 1 \text{ to } n \\ & 3. & \text{ for } i = 1 \text{ to } n - r - 1; \ j = i + r \\ & 4. & \text{OPT}(i,j) = \min_{i \leq k < j} \text{OPT}(i,k) + \text{OPT}(k+1,j) + a_i a_{k+1} a_{j+1} \\ & 5. & \text{ return}(\text{OPT}(1, n)) \end{aligned}
```

- · running time?
 - $-O(n^3)$
- print out the optimal parenthesization?
 - store chosen k in each cell

April 29, 2014 CS38 Lecture 9 35