Diabetes Prediction — 01 EDA

Goal: Explore the Pima Indians Diabetes dataset to understand feature distributions, missing values, class balance, and correlations.

Dataset path (relative to this notebook): ../data/diabetes.csv

```
In [1]: # ========
         # 0. Setup
         # ========
         import os
         import sys
         import math
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         # Plot config
         plt.rcParams['figure.figsize'] = (8, 5)
         plt.rcParams['axes.grid'] = True
         pd.set_option('display.max_columns', None)
         pd.set_option('display.width', 120)
         DATA_PATH = os.path.join('C:/Users/nazar/OneDrive/Documentos/machine learning/di
         assert os.path.exists(DATA_PATH), f"Dataset not found at {DATA_PATH}. Please pla
In [13]: # ========
         # 1. Load data
         # ========
         df = pd.read csv(DATA PATH, sep=";") # <--- agregamos sep=";" para separar corr</pre>
         print("Shape:", df.shape)
         print("Columns:", df.columns.tolist())
         display(df.head())
        Shape: (768, 9)
        Columns: ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
        'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome']
          Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFur
       0
                    6
                                         72
                          148
                                                       35
                                                               0 33.6
                                                       29
        1
                           85
                                                               0 26.6
                                         66
       2
                    8
                          183
                                                        0
                                                               0 23.3
                                         64
       3
                                                              94 28.1
                           89
                                         66
                                                       23
                    0
        4
                          137
                                         40
                                                       35
                                                             168 43.1
In [14]:
         # ========
         # 2. Quick overview
         # ========
```

```
display(df.info())
display(df.describe().T)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

None

	count	mean	std	min	25%	50%	
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.
Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.
BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.
SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.
Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.
ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.
Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.
4	_	_	_	_			

About "zeros" as missing values

In this dataset, certain features use **0** to represent missing measurements. Common columns:

• Glucose, BloodPressure, SkinThickness, Insulin, BMI

We'll convert $0 \rightarrow \text{NaN}$ for these to correctly analyze missingness.

```
In [15]: # Columns where 0 means 'missing'
    zero_as_missing = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI'

df_clean = df.copy()
    for col in zero_as_missing:
        if col in df_clean.columns:
            df_clean[col] = df_clean[col].replace(0, np.nan)

# Missing summary
```

```
missing_counts = df_clean.isna().sum().sort_values(ascending=False)
missing_ratio = (missing_counts / len(df_clean)).round(3)
missing_table = pd.DataFrame({'missing_count': missing_counts, 'missing_ratio':
display(missing_table[missing_table['missing_count'] > 0])
```

missing_count missing_ratio

Insulin	374	0.487
SkinThickness	227	0.296
BloodPressure	35	0.046
ВМІ	11	0.014
Glucose	5	0.007

Class balance

Check the distribution of the target variable Outcome (1 = Diabetes, 0 = No Diabetes).

```
In [16]: target_col = 'Outcome'
    class_counts = df_clean[target_col].value_counts(dropna=False).sort_index()
    class_ratio = (class_counts / class_counts.sum()).round(3)
    class_summary = pd.DataFrame({'count': class_counts, 'ratio': class_ratio})
    display(class_summary)

# Bar plot (matplotlib only, no styles)
    fig, ax = plt.subplots()
    ax.bar(class_summary.index.astype(str), class_summary['count'])
    ax.set_xlabel('Outcome')
    ax.set_ylabel('Count')
    ax.set_title('Class_Balance')
    plt.show()
```

count ratio

Outcome

0	500	0.651
1	268	0.349

Distributions

Look at feature distributions to spot skew, outliers, and ranges.

```
In [17]: feature_cols = [c for c in df_clean.columns if c != target_col]

# Histograms
for col in feature_cols:
    fig, ax = plt.subplots()
    ax.hist(df_clean[col].dropna(), bins=30)
    ax.set_title(f'Distribution - {col}')
    ax.set_xlabel(col)
    ax.set_ylabel('Frequency')
    plt.show()
```


Boxplots by class

Visualize differences in distributions between Outcome classes.

```
In [18]:
    for col in feature_cols:
        fig, ax = plt.subplots()
        # Create two arrays for each class
        data0 = df_clean.loc[df_clean[target_col] == 0, col].dropna()
        data1 = df_clean.loc[df_clean[target_col] == 1, col].dropna()
        ax.boxplot([data0, data1], labels=['No Diabetes (0)', 'Diabetes (1)'], showf
        ax.set_title(f'Boxplot - {col} by Outcome')
```

```
ax.set_ylabel(col)
plt.show()
```

C:\Users\nazar\AppData\Local\Temp\ipykernel_7608\787247708.py:6: MatplotlibDeprec
ationWarning: The 'labels' parameter of boxplot() has been renamed 'tick_labels'
since Matplotlib 3.9; support for the old name will be dropped in 3.11.
 ax.boxplot([data0, data1], labels=['No Diabetes (0)', 'Diabetes (1)'], showflie
rs=True)

C:\Users\nazar\AppData\Local\Temp\ipykernel_7608\787247708.py:6: MatplotlibDeprec
ationWarning: The 'labels' parameter of boxplot() has been renamed 'tick_labels'
since Matplotlib 3.9; support for the old name will be dropped in 3.11.
 ax.boxplot([data0, data1], labels=['No Diabetes (0)', 'Diabetes (1)'], showflie
rs=True)

C:\Users\nazar\AppData\Local\Temp\ipykernel_7608\787247708.py:6: MatplotlibDeprec
ationWarning: The 'labels' parameter of boxplot() has been renamed 'tick_labels'
since Matplotlib 3.9; support for the old name will be dropped in 3.11.
 ax.boxplot([data0, data1], labels=['No Diabetes (0)', 'Diabetes (1)'], showflie
rs=True)

C:\Users\nazar\AppData\Local\Temp\ipykernel_7608\787247708.py:6: MatplotlibDeprec
ationWarning: The 'labels' parameter of boxplot() has been renamed 'tick_labels'
since Matplotlib 3.9; support for the old name will be dropped in 3.11.
 ax.boxplot([data0, data1], labels=['No Diabetes (0)', 'Diabetes (1)'], showflie
rs=True)

C:\Users\nazar\AppData\Local\Temp\ipykernel_7608\787247708.py:6: MatplotlibDeprec
ationWarning: The 'labels' parameter of boxplot() has been renamed 'tick_labels'
since Matplotlib 3.9; support for the old name will be dropped in 3.11.
 ax.boxplot([data0, data1], labels=['No Diabetes (0)', 'Diabetes (1)'], showflie
rs=True)

C:\Users\nazar\AppData\Local\Temp\ipykernel_7608\787247708.py:6: MatplotlibDeprec
ationWarning: The 'labels' parameter of boxplot() has been renamed 'tick_labels'
since Matplotlib 3.9; support for the old name will be dropped in 3.11.
 ax.boxplot([data0, data1], labels=['No Diabetes (0)', 'Diabetes (1)'], showflie
rs=True)

C:\Users\nazar\AppData\Local\Temp\ipykernel_7608\787247708.py:6: MatplotlibDeprec
ationWarning: The 'labels' parameter of boxplot() has been renamed 'tick_labels'
since Matplotlib 3.9; support for the old name will be dropped in 3.11.
 ax.boxplot([data0, data1], labels=['No Diabetes (0)', 'Diabetes (1)'], showflie
rs=True)

C:\Users\nazar\AppData\Local\Temp\ipykernel_7608\787247708.py:6: MatplotlibDeprec
ationWarning: The 'labels' parameter of boxplot() has been renamed 'tick_labels'
since Matplotlib 3.9; support for the old name will be dropped in 3.11.
 ax.boxplot([data0, data1], labels=['No Diabetes (0)', 'Diabetes (1)'], showflie
rs=True)

Correlation analysis

Compute Pearson correlation for numeric variables and visualize a simple correlation matrix.

```
In [19]: numeric_df = df_clean.select_dtypes(include=[np.number])
    corr = numeric_df.corr(numeric_only=True)

display(corr.style.background_gradient(axis=None, cmap='Greys')) # rendered as

# Also show a plain matplotlib image for correlation matrix values
    fig, ax = plt.subplots(figsize=(8, 6))
    cax = ax.imshow(corr, interpolation='nearest')
    ax.set_title('Correlation Matrix')
    ax.set_xticks(range(len(corr.columns)))
    ax.set_yticks(range(len(corr.columns)))
    ax.set_yticklabels(corr.columns, rotation=90)
    ax.set_yticklabels(corr.columns)
    fig.colorbar(cax)
    plt.tight_layout()
    plt.show()
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin
Pregnancies	1.000000	0.128135	0.214178	0.100239	0.082171
Glucose	0.128135	1.000000	0.223192	0.228043	0.581186
BloodPressure	0.214178	0.223192	1.000000	0.226839	0.098272
SkinThickness	0.100239	0.228043	0.226839	1.000000	0.184888
Insulin	0.082171	0.581186	0.098272	0.184888	1.000000
вмі	0.021719	0.232771	0.289230	0.648214	0.228050
DiabetesPedigreeFunction	-0.033523	0.137246	-0.002805	0.115016	0.130395
Age	0.544341	0.267136	0.330107	0.166816	0.220261
Outcome	0.221898	0.494650	0.170589	0.259491	0.303454

Notes & Findings

Use this section to write observations:

- Which features differ the most between classes?
- Are there missing patterns worth addressing?
- Any strong correlations or multicollinearity?
- Potential feature engineering ideas.

Optional: simple imputation for later modeling

We won't model here, but you can prepare a processed dataset with median imputation for numeric columns.

```
os.makedirs(os.path.dirname(out_path), exist_ok=True)

# Guardar dataset procesado
processed.to_csv(out_path, index=False)
print(f'Processed dataset saved to: {out_path}')
```

Processed dataset saved to: $C:/Users/nazar/OneDrive/Documentos/machine learning\diabetes_processed.csv$