

Presentation

RayTracing project

Why using Python version vs. Matlab old one?

- Scalability
- Performances
- Intuitive interface
- Object-oriented programming
- Python is free!
- 3D animations for debugging purposes

How to setup the project ?

- Go to https://forge.uclouvain.be/eertmans/RayTracing
- Follow the `README.md' instructions:
 - 1. Clone the repository
 - 2. Install Python
 - 3. Setup a virtual environment
 - 4. Install the packages

How to use the project?

Let's go through an example!

1. Getting some data

- Instructions in https://forge.uclouvain.be/eertmans/RayTracing/-/tree/master/data
- Data can be obtained/built via:
 - Open source projects (ex.: OpenStreetMap)
 - Open source softwares (ex.: QGIS)
 - Commands using the 'geometry.py' library or the command-line tools

2. Plotting the data

Good to verify:

- 1. Correctness of data
- 2. Orientation of surfaces
- 3. Detection of sharp edges
- 4. Visibility matrix (NP problem)

2.1 Correctness of data

2.2 Orientation of surfaces

2.3 Detection of sharp edges

2.4-A Visibility matrix (NP problem)

2.4-B Visibility matrix (NP problem)

2.4-C Visibility matrix (NP problem)

3. Ray tracing

- 1. Reflection(s)
- 2. Diffraction
- 3. Multiple reflection(s) and diffraction

3.1 Reflection(s)

3.2 Diffraction

3.3 Multiple reflection(s) and diffraction

4. Post-processing

- Save geometries in json-like files
- Re-use or modify geometries
- Compute received power at given position(s) from ray tracing
- Etc.

Benchmark of RayTracing for various implementations

4.1 Comparing Matlab and Python versions

5. Read the documentation

You can generate the documentation and read it:

- It is better than reading thousands of lines of code
- It can be open in any browser

6. Questions?

If you find any problem, I encourage you to use Gitlab's issues and merge requests:

- Issues at https://forge.uclouvain.be/eertmans/RayTracing/-/issues
- Requests at https://forge.uclouvain.be/eertmans/RayTracing/-/merge requests

Feel also free to contact me: Jérome Eertmans