Homework 2

This assignment is about designing and analyzing a MOS differential amplifier. We will use the TSMC 0,18 μ m technology as given in your moodle course page for the MOSFETs.

- 1) For the circuit diagram given below, we would like a differential gain of 7,5. We would like that the overdrive voltages (V_{ov}) are 0,2 V for the transistors. Using $g_m = 2I_D/V_{ov}$, and $V_{D1} = V_{D2} = V_{DD} I_D R_D$, calculate the necessary V_D for these specs.
- 2) Using the μ_n , t_{ox} , and V_t values given in the transistor model, calculate k_n and the necessary W and L values to provide the desired V_{ov} . Also, calculate the necessary R_D values. Choose a tail current of $120~\mu$ A and a tail resistance of $1~M\Omega$. Please use minimum L values. Ignore the tail resistance for DC calculations. Note that μ_n is approximated by U0 and V_t by VTO in the model. TOX represents t_{ox} .
- 3) Replace the resistors R_1 and R_2 by PMOS transistors, thus creating an active load. Choose $V_{OV} = 0.2 \ V$ as well for these transistors. Thus, you can determine their bias voltage. Keeping the L values minimum for these devices, adjust their W values on the simulator so that the DC levels are approximately the same as the previous questions. You may start with a W/L ratio 2-3 times that of the NMOS transistors (Why?). What is the simulated differential gain? Assuming the "Early voltages (V_A)" to be about the same for all transistors, what are they equal to?
- 4) Keeping the *W/L* ratios the same, increase *L* by three times for all transistors. If the DC levels have shifted, you may do small adjustments to bring them back. Estimate and simulate the new gain?
- 5) Finally, using the V_A values you have approximately determined, find the necessary W and L values and the bias voltage for the tail current source for a $1\,M\Omega$ tail resistance, keeping the overdrive voltage at $0,2\,V$. The W/L ratio should be about twice the NMOS transistors (Why?). If the DC levels have shifted, correct them by making small changes.
- 6) To your circuit, apply the sum of a 0,5 V amplitude 50 Hz frequency interfering common mode signal and a 1 mV amplitude 1 kHz frequency differential input signal. Plot the inputs and the single ended and differential outputs from the simulator.

Hints:

0,18 μ m technology means that your transistor lengths (L) are at least 0,18 μ m. Your transistor widths (W) are also a minimum of 0,18 μ m and typically (but not necessarily) larger than the L values.

You may perform your simulations on LTSPICE. For MOS model information, you may look up http://ltwiki.org/LTspiceHelp/LTspiceHelp/M MOSFET.htm

You may connect the bulk terminals to the source terminals in your simulations.