

КЛИ Суперфинал и финал

Желаем испехов!

- 1. Сторона куба 3 сантиметра. В центре каждой грани куба вырезают квадратную дырку размером 2 × 2 сантиметра. Дырки сквозные, их стороны параллельны соответствующим рёбрам куба. Найди объем оставшейся части куба.
- 2. Рыбак находится на льдине, верхняя поверхность льдины находится над водой. Льдина имеет вид вертикального цилиндра. Определи наименьшую возможную площадь льдины, если масса рыбака m, а толщина льдины h. Плотность воды ρ_1 , плотность льда ρ_2 . Ускорение свободного падения q.
- 3. В треугольнике $\triangle ABC$ сторона BC равна $2\sqrt{3}/3$. Медианы треугольника AA_1, BB_1, CC_1 пересекаются в точке O, и известно, что точки O, B_1, C_1, A лежат на одной окружности. Найди длину медианы AA_1 .
- 4. Подвешенному на нити шарику сообщили начальную скорость в горизонтальном направлении. Когда нить отклонилась на угол $\alpha = \pi/6$ от вертикали, ускорение шарика оказалось направленным горизонтально. Найди $\cos \beta$, где β — это угол максимального отклонения нити.

Суперфинал и финал

Желаем успехов!

- 1. Сторона куба 3 сантиметра. В центре каждой грани куба вырезают квадратную дырку размером 2 × 2 сантиметра. Дырки сквозные, их стороны параллельны соответствующим рёбрам куба. Найди объем оставшейся части куба.
- 2. Рыбак находится на льдине, верхняя поверхность льдины находится над водой. Льдина имеет вид вертикального цилиндра. Определи наименьшую возможную площадь льдины, если масса рыбака m, а толщина льдины h. Плотность воды ρ_1 , плотность льда ρ_2 . Ускорение свободного падения q.
- 3. В треугольнике $\triangle ABC$ сторона BC равна $2\sqrt{3}/3$. Медианы треугольника AA_1, BB_1, CC_1 пересекаются в точке O, и известно, что точки O, B_1, C_1, A лежат на одной окружности. Найди длину медианы AA_1 .
- 4. Подвешенному на нити шарику сообщили начальную скорость в горизонтальном направлении. Когда нить отклонилась на угол $\alpha = \pi/6$ от вертикали, ускорение шарика оказалось направленным горизонтально. Найди $\cos \beta$, где β — это угол максимального отклонения нити.