EE 231A: Information Theory Lecture 3

- A. Types of convergence, the weak law of large numbers, and the Asymptotic Equipartition Property
- B. Properties of the typical set
- C. AEP Data Compression
- D. High Probability Sets vs. typical sets.

EE 231A: Information Theory Lecture 3

- A. Types of convergence, the weak law of large numbers, and the Asymptotic Equipartition Property
- B. Properties of the typical set
- C. AEP Data Compression
- D. High Probability Sets vs. typical sets.

Convergence in probability

• $f_n \to f$ in probability iff for any $\varepsilon > 0$

$$P(|f_n - f| < \varepsilon) \rightarrow 1$$

- i.e., a probability is converging.

3

Convergence with probability 1

$$f_n \to f$$
 w.p.1

— means that f_n is converging to f for every realization (except a set of measure zero).

Weak law of large numbers

• Let $X_1, X_2, ..., X_n$ be a sequence of i.i.d. random variables.

$$\frac{1}{n} \sum_{i=1}^{n} X_i \to EX \qquad \text{in probability}$$

5

Asymptotic Equipartition Property

• Let $X_1, X_2, ..., X_n$ be a sequence of i.i.d. random variables.

$$-\frac{1}{n}\log p(X_1,...,X_n) \to H(X) \quad \text{in prob.}$$

• Proof:

$$-\frac{1}{n}\log p(X_1,...,X_n) = -\frac{1}{n}\sum_{i}\log p(X_i)$$

$$\rightarrow -E\log p(X) \quad \text{in probability}$$

$$= H(X)$$

EE 231A: Information Theory Lecture 3

- A. Types of convergence, the weak law of large numbers, and the Asymptotic Equipartition Property
- B. Properties of the typical set
- C. AEP Data Compression
- D. High Probability Sets vs. typical sets.

7

Asymptotic Equipartition Property

• Let $X_1, X_2, ..., X_n$ be a sequence of i.i.d. random variables.

$$-\frac{1}{n}\log p(X_1,...,X_n) \to H(X) \quad \text{in prob.}$$

• The Typical Set is the set of sequences $x_1,...,x_n$ within epsilon of convergence behavior, i.e. the set where

$$H(X) - \varepsilon \le -\frac{1}{n} \log p(x_1, ..., x_n) \le H(X) + \varepsilon.$$

The Typical Set

• The typical set $A_{\varepsilon}^{(n)}$ for p(x) is the set of sequences x^n for which

$$2^{-n(H(X)+\varepsilon)} \leq p(x_1,x_2,...,x_n) \leq 2^{-n(H(X)-\varepsilon)}$$

9

Properties of $A_{\varepsilon}^{(n)}$

1. Restatement of $A_{\varepsilon}^{(n)}$

$$x^n \in A_{\varepsilon}^{(n)} \iff H(X) - \varepsilon \le -\frac{1}{n} \log p(x^n) \le H(X) + \varepsilon$$

Proof:

Take $-\frac{1}{n}\log$ of each term in the definition of $A_{\varepsilon}^{(n)}$.

11

2. Probability of the typical set converges to 1.

 $P(A_{\varepsilon}^{(n)}) > 1 - \varepsilon$ for n sufficiently large.

— This is restatement of AEP. $P(A_{\varepsilon}^{(n)}) \rightarrow 1$.

3. Cardinality Upper Bound

$$\left| \underbrace{A_{\varepsilon}^{(n)}}_{\varepsilon} \right| \leq 2^{n(H(X) + \varepsilon)}$$
of elements in $A_{\varepsilon}^{(n)}$

• Proof: $1 = \sum_{x^n} p(x^n)$ $\geq \sum_{x^n \in A_{\varepsilon}^{(n)}} p(x^n)$ $\geq \sum_{x^n \in A_{\varepsilon}^{(n)}} 2^{-n(H(X) + \varepsilon)}$ $= \left| A_{\varepsilon}^{(n)} \right| 2^{-n(H(X) + \varepsilon)}$ $\left| A_{\varepsilon}^{(n)} \right| \leq 2^{n(H(X) + \varepsilon)}$

13

4. Cardinality Lower Bound

$$\left|A_{\varepsilon}^{(n)}\right| \ge (1-\varepsilon)2^{n(H(X)-\varepsilon)}$$
 for n sufficient large.

• Proof:

$$1 - \varepsilon < P(A_{\varepsilon}^{(n)})$$
 for *n* sufficiently large.

$$\leq \sum_{x^n \in A_{\varepsilon}^{(n)}} 2^{-n(H(X) - \varepsilon)}$$

$$=2^{-n(H(X)-\varepsilon)}\left|A_{\varepsilon}^{(n)}\right|$$

AEP Summary

- Consider drawing a sequence of n samples at random by drawing samples i.i.d. according to some distribution.
- With very high probability the sequence that occurs will be in the typical set and have probability about . 2^{-nH}
- There are about 2^{nH} events in the typical set and they have about the same probability.
- "Almost all events are equally surprising."

15

EE 231A: Information Theory Lecture 3

- A. Types of convergence, the weak law of large numbers, and the Asymptotic Equipartition Property
- B. Properties of the typical set
- C. AEP Data Compression
- D. High Probability Sets vs. typical sets.

A small set with a lot of probability.

 Generally speaking, the typical set contains a small number of sequences, but almost all the probability.

AEP data compression concept

 Idea: Provide short description for elements of typical set. Don't worry too much about other sequences.

A short description for typical sequences

• Label each element in the typical set with a unique label using $\left\lceil \log_2 \left| A_{\varepsilon}^{(n)} \right| \right\rceil$ bits.

$$\lceil \log_2 |A_{\varepsilon}^{(n)}| \rceil \le \log_2 2^{n(H(X) + \varepsilon)} + 1$$

$$= n(H(X) + \varepsilon) + 1$$

• Add a leading zero to indicate membership in $A_{\varepsilon}^{(n)}$. $n(H(X)+\varepsilon)+2$ bits

19

Long description for (rare) atypical sequences

- Label each sequence not in $A_{\varepsilon}^{(n)}$ with $n \log |\chi| + 2$ bits (a leading 1 indicates $\notin A_{\varepsilon}^{(n)}$).
- Code is easily decodable.
- We used a brute force labeling of $\mathit{A}_{\varepsilon}^{\scriptscriptstyle(n)C}$.
- Typical sequences have $\approx nH$ bits.

Expected length of codeword

•
$$E[l(x^{n})] = \sum_{x^{n}} p(x^{n})l(x^{n})$$

$$= \sum_{x^{n} \in A_{\varepsilon}^{(n)}} p(x^{n})l(x^{n}) + \sum_{x^{n} \notin A_{\varepsilon}^{(n)}} p(x^{n})l(x^{n})$$

$$\leq \sum_{x^{n} \in A_{\varepsilon}^{(n)}} p(x^{n})[n(H+\varepsilon)+2] + \sum_{x^{n} \notin A_{\varepsilon}^{(n)}} p(x^{n})[n\log|\mathcal{X}|+2]$$

$$= P(A_{\varepsilon}^{(n)})[n(H+\varepsilon)+2] + P(A_{\varepsilon}^{(n)C})[n\log|\mathcal{X}|+2]$$

$$\leq n(H+\varepsilon) + \varepsilon n\log|\mathcal{X}|+2$$

$$= n(H+\varepsilon+\varepsilon\log|\mathcal{X}|+\frac{2}{n})$$

$$= n(H+\varepsilon')$$

Theorem 3.2.1

• For X^n i.i.d. $\sim p(x)$, we can map sequences x^n to binary strings such that the mapping is one-to-one (invertible) and

$$E[\frac{1}{n}l(X^n)] \le H(X) + \varepsilon$$

for $\varepsilon > 0$ and n sufficiently large.

Thus we can represent sequences Xⁿ using nH(X) bits on the average.

EE 231A: Information Theory Lecture 3

- Types of convergence, the weak law of large numbers, and the Asymptotic Equipartition Property
- B. Properties of the typical set
- C. AEP Data Compression
- D. High Probability Sets vs. typical sets.

High probability sets and $A_{\varepsilon}^{(n)}$

• Consider a binary sequence with probability of ones p=0.9.

$$H(X) = 0.4690$$

• Sequences with about 90% ones are in
$$A_{\varepsilon}^{(n)}$$
.
$$\frac{1}{10} \log \left((0.9)^9 \ 0.1 \right) = 0.4690$$

- $P(A_{\varepsilon}^{(n)}) \to 1$ but for small ε , the most probable x^n , the all-ones sequence, is not in $A_{\varepsilon}^{(n)}$.
- Consider *n*=10: $-\frac{1}{10}\log((0.9)^{10}) = 0.1520$

High probability sets

• $B_{\delta}^{(n)} \subset \chi^n$ is any set with

$$P\{B_{\delta}^{(n)}\} \ge 1 - \delta$$

- $B^{(n)}_{\delta} \cap A^{(n)}_{\varepsilon}$ must still have large probability.
- Hence...

25

Theorem 3.3.1

• X_1, X_2, \dots i.i.d. $\sim p(x)$, for $\delta < \frac{1}{2}, \delta' > 0$, if $P\{B_\delta^{(n)}\} > 1 - \delta$ then

$$\frac{1}{n}\log\left|B_{\delta}^{(n)}\right| > H - \delta'$$

for n sufficiently large.

Implication of Theorem 3.3.1

- Thus $B_{\delta}^{(n)}$ must have at least 2^{nH} elements, to first order in the exponent.
- Thus, even though $A_{\varepsilon}^{(n)}$ may not contain the most probable sequence, it is about as small as the smallest set containing $1-\delta$ of the probability.

27

All the high-probability sets have about the same cardinality.

• Definition: $a_n \doteq b_n$ means

$$\lim_{n\to\infty}\frac{1}{n}\log\frac{a_n}{b_n}=0$$

- $a_n \doteq b_n$ means a_n and b_n are equal to first order in the exponent.
- $|B_{\delta}^{(n)}| \doteq |A_{\varepsilon}^{(n)}| \doteq 2^{nH}$.