Control de Motor DC

- Modelado del motor
- Función de transferencia

Control de Motor DC

En esta clase vamos a desarrollar los siguientes temas:

- Desarrollar el modelo de un motor DC con escobillas.
- Escribir la función de transferencia del motor con respecto a la tensión de entrada y la posición del eje.
- Representar la carga mecánica haciendo uso de un modelo matemático.
- Determinar como la realimentación negativa afecta a la performance del motor.

$$T = K_T * i_a - T_f[N.m]$$
 Torque del motor

Circuito de armadura
$$\longrightarrow e_a = i_a * R_a + e_b[V]$$

$$e_b = K_e * \omega_m[V]$$
 Fuerza contraelectromotriz

$$\omega_m = \frac{K_T * e_a - (T + T_f) * R_a}{K_T * K_e}$$

$$\omega_{sinCarga} = \frac{K_T * e_a - T_f * R_a}{K_T * K_e} \qquad \text{En el caso de no tener torque de carga}$$

$$\omega_m = \frac{e_a - i_a * R_a}{K_e}$$

Un motor posee las siguientes características:

$$T_f = 0.012[N.m], R_a = 1.2[\Omega] \quad K_T = 0.06[N.m/A], K_e = 0.06[V/rad/seg]$$

Tiene una corriente máxima de 2A con una velocidad máxima de 500 rad/s.

Encontrar:

- El torque máximo. (0.108 N.m)
- La potencia mecánica máxima. (54 W)
- La tensión de armadura máxima. (32.4 V)
- La velocidad sin carga a la tensión de armadura máxima. (536 rad/s)

Ahora vamos a armar las ecuaciones diferenciales tanto de la parte eléctrica como de mecánica.

$$e_a(t) = i_a(t) * R_a + L * \frac{\delta i_a(t)}{\delta t} + e_b(t)$$

$$T(t) = J_m * \frac{\delta \omega_m(t)}{\delta t} + B_m * \omega_m(t)$$

Para acoplar ambas ecuaciones utilizamos las siguientes relaciones electromecánicas

$$e_b(t) = K_e * \omega_m(t)$$
 $T(t) = K_T * i_a(t)$

Ahora vamos a armar las ecuaciones diferenciales tanto de la parte eléctrica como de mecánica.

$$e_a(t) = i_a(t) * R_a + L * \frac{\delta i_a(t)}{\delta t} + e_b(t)$$

$$T(t) = J_m * \frac{\delta \omega_m(t)}{\delta t} + B_m * \omega_m(t)$$

¿Cómo armamos la función de transferencia en base a éstas ecuaciones?

$$\frac{\Omega_m(s)}{E_a(s)} = ?$$

Para acoplar ambas ecuaciones utilizamos las siguientes relaciones electromecánicas

$$e_b(t) = K_e * \omega_m(t) \qquad T(t) = K_T * i_a(t) \quad \blacksquare$$

Usando transformada de Laplace vamos a ir obteniendo las funciones de transferencia que integran el modelo del motor

$$e_a(t) = i_a(t) * R_a + L * \frac{\delta i_a(t)}{\delta t} + e_b(t)$$

$$E_a(s) = L * s * I_a + R_a * I_a(s) + E_b(s)$$

$$E_a(s) = (L * s + R_a) * I_a(s) + E_b(s)$$

$$E_a(s) - E_b(s) = (L * s + R_a) * I_a(s)$$

$$I_a(s) = \left[\frac{1}{L * s + R_a}\right] \left[E_a(s) - E_b(s)\right]$$

Usando transformada de Laplace vamos a ir obteniendo las funciones de transferencia que integran el modelo del motor

$$T(t) = J_m * \frac{\delta \omega_m(t)}{\delta t} + B_m * \omega_m(t)$$

$$T(s) = J_m * s * \Omega_m(s) + B_m * \Omega_m(s)$$

$$T(s) = [J_m * s + B_m] * \Omega_m(s)$$

$$\Omega_m(s) = \left[\frac{1}{J_m * s + B_m}\right] * T(s)$$

$$I_{a}(s) = \left[\frac{1}{L*s + R_{a}}\right] \left[E_{a}(s) - E_{b}(s)\right] \qquad T(s) = K_{T} * I_{a}(s) \qquad \Omega_{m}(s) = \left[\frac{1}{J_{m}*s + B_{m}}\right] * T(s)$$

$$E_{a}(s) + \frac{1}{L_{a}*s + R_{a}} \qquad K_{T} \qquad \frac{1}{J_{m}*s + B_{m}} \qquad \Omega_{m}(s)$$

$$E_{b}(s) = K_{e} * \Omega_{m}(s)$$

$$\frac{\Omega_{m}(s)}{E_{a}(s)} = \frac{G(s)}{1 + G(s) * H(s)}$$

$$\frac{G(s) = K_{T} * \left[\frac{1}{L_{a} * s + R_{a}}\right] * \left[\frac{1}{J_{m} * s + B_{m}}\right] H(s) = K_{E}}{I_{a} * s + R_{a}}$$

$$\frac{\Omega_{m}(s)}{E_{a}(s)} = \frac{K_{T} * \left[\frac{1}{L_{a} * s + R_{a}}\right] * \left[\frac{1}{J_{m} * s + B_{m}}\right]}{1 + K_{T} * \left[\frac{1}{L_{a} * s + R_{a}}\right] * \left[\frac{1}{J_{m} * s + B_{m}}\right] * K_{E}}$$

$$\frac{\Omega_{m}(s)}{E_{a}(s)} = \frac{K_{T}}{(L_{a} * s + R_{a})(J_{m} * s + B_{m}) + K_{T} * K_{E}}$$

$$\frac{\Omega_{m}(s)}{E_{a}(s)} = \frac{K_{T}}{(L_{a} * s + R_{a})(J_{m} * s + B_{m}) + K_{T} * K_{E}}$$

$$\frac{\Omega_{m}(s)}{E_{a}(s)} = \frac{K_{T}}{(L_{a} * J_{m} * s^{2} + (R_{a} * J_{m} + B_{m} * L_{a}) * s] + (K_{T} * K_{E} + R_{a} * B_{m})}$$

Motor DC - Función de transferencia Posición

Motor DC - Constantes de tiempo

$$rac{L_a}{R_a}= au_e$$
 Constante de tiempo eléctrica
$$rac{J_m}{R}= au_m$$
 Constante de tiempo mecánica

Como la constante de tiempo eléctrica es mucho más pequeña que la constante de tiempo mecánica en algunas ocasiones suele ser despreciada.

Motor DC - Con caja de engranajes

Consideremos un motor conectado una carga a través de un reductor de

velocidad $N_1/N_2; N_1 < N_2$

La carga posee una inercia J_L y un rozamiento viscoso B_L .

La velocidad a la salida viene dada por:

$$\omega_L = \left[\frac{N_1}{N_2}\right] * \omega_m$$

El torque en la salida es igual a:

$$T_L = \left[\frac{N_2}{N_1}\right] * T_m$$

Se reduce la velocidad pero aumenta el torque

Motor DC - Con caja de engranajes

Consideremos un motor conectado una carga a través de un reductor de velocidad $N_1/N_2;\,N_1 < N_2$

La carga posee una inercia $\,J_L\,$ y un rozamiento viscoso $\,B_L\,$

Con acoplamiento directo

Total Motor Carga
$$B_T=B_m+B_L$$

Total N

Motor Carga

$$J_T = J_m + J_L$$

Con caja de engranajes

Total Motor Carga
$$B_T = B_m + [\frac{N_1}{N_2}]^2 * B_L$$

$$J_T = J_m + [rac{N_1}{N_2}]^2 * J_L$$

Motor DC - Con caja de engranajes 🗉

Motor DC - Diagrama en bloques TP3 Microcontrolador $\Omega_m(s)$ **PWM** RPM_{ref} Controlador Driver Motor N_2 Digital DIR RPM_{motor} Encoder

Ver script de Matlab

Encoder

Dependiendo del modelo de motor que reciban van a encontrar encoders de

48 CPR o 64 CPR. Estos encoders son de efecto Hall y poseen dos salidas A y

B que poseen una forma de onda cuadrada:

En el caso de detectar ambos

flancos de las salidas A y B se logra

obtener CPR especificados.

Para detectar el sentido de giro es

necesario analizar qué señal es

recibida primero.

Encoder

El conector del motor posee 4 pines para el encoder y dos para la alimentación propia del motor.

Color	Function
Red	motor power (connects to one motor terminal)
Black	motor power (connects to the other motor terminal)
Green	encoder GND
Blue	encoder Vcc (3.5 V to 20 V)
Yellow	encoder A output
White	encoder B output

Tener en cuenta que la alimentación

del sólo puede ser alimentado con

5V desde la placa de desarrollo.

Por lo cual las salidas A y B tendrán

dicho **nivel de tensión que deben**

reducir para evitar dañar la placa de

desarrollo.

Driver - VNH5019

- Alimentación al motor: 5.5 24 V
- Corriente de salida: 12 A (30 A máx)
- Pines de entrada compatible 3V
- Opera con una frecuencia de PWM de hasta 20 KHz para reducir ruidos.
- Posee un sensor de corriente que provee un una tensión proporcional a la corriente (140 mV/A).
- Posee protección contra tensiones negativas, sobretensiones, apagado por sobretemperatura y protección contra cortocircuitos a tierra o vcc.

Driver - VNH5019

Link al driver

Link al datasheet

Motor DC - Respuesta al escalón

Motor DC - Respuesta al escalón

Motor DC - Respuesta al escalón

Analizar la curva obtenida y actualizar el modelo del motor