SBML Model Report

Model name: "Guyton1972_PulmonaryFluidDynamics"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 3 format. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	0
events	0	constraints	0
reactions	0	function definitions	0
global parameters	24	unit definitions	1
rules	16	initial assignments	0

Model Notes

This a model from the article:

Circulation: overall regulation.

Guyton AC, Coleman TG, Granger HJ. Annu Rev Physiol 1972;34:13-46 4334846,

Abstract:

No abstract available

This model was taken from the CellML repository and automatically converted to SBML. The original model was: **Guyton AC, Coleman TG, Granger HJ. (2008) - version02**

The original model was. Guyton AC, Coleman 16, Granger 113. (2006) - Version

The original CellML model was created by:

Terkildsen, Jonna.

j.terkildsen@aukland.ac.nz The University of Auckland Auckland Bioengineering Institute

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name normalised

Definition dimensionless

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Compartment			3	1	litre	Ø	

3.1 Compartment Compartment

This is a three dimensional compartment with a constant size of one litre.

4 Parameters

This model contains 24 global parameters.

Table 3: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
PPC	PPC		29.994	dimensionless	
PPA	PPA		15.638	dimensionless	\square
PLA	PLA		2.000	dimensionless	\square
CPP	CPP		71.972	dimensionless	\square
RPV	RPV		1.557	dimensionless	\square
RPA	RPA		1.568	dimensionless	\square
PCP	PCP		0.000	dimensionless	
PFI	PFI		0.000	dimensionless	
DFP	DFP		0.000	dimensionless	
VPF	VPF		0.000	dimensionless	

Id	Name	SBO	Value	Unit	Constant
DFZ	DFZ		0.000	dimensionless	
VPF1	VPF1		0.012	dimensionless	\Box
PPI	PPI		0.000	dimensionless	\Box
PPD	PPD		0.000	dimensionless	\Box
CPN	CPN		0.000	dimensionless	\Box
PPZ	PPZ		0.000	dimensionless	\Box
PPR1	PPR1		0.420	dimensionless	\Box
PPR	PPR		0.000	dimensionless	\Box
POS	POS		0.000	dimensionless	\Box
PPN	PPN		0.000	dimensionless	\Box
PLF	PLF		0.000	dimensionless	\Box
PPO PPO	PPO		0.000	dimensionless	\Box
CPF	CPF		$3 \cdot 10^{-4}$	dimensionless	
tu	time_unit		1.000	S	$ \overline{\mathcal{L}} $

5 Rules

This is an overview of 16 rules.

5.1 Rule VPF1

Rule VPF1 is a rate rule for parameter VPF1:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VPF1} = \frac{\mathrm{DFP}}{\mathrm{tu}}\tag{1}$$

Derived unit $\,\mathrm{s}^{-1}$

5.2 Rule PPR1

Rule PPR1 is a rate rule for parameter PPR1:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PPR1} = \frac{\mathrm{PPD}}{\mathrm{tu}}\tag{2}$$

Derived unit $\,\mathrm{s}^{-1}$

5.3 Rule PCP

Rule PCP is an assignment rule for parameter PCP:

$$PCP = \frac{(PPA - PLA) \cdot RPV}{RPV + RPA} + PLA$$
 (3)

Derived unit dimensionless

5.4 Rule PFI

Rule PFI is an assignment rule for parameter PFI:

$$PFI = (PCP - PPI + POS - PPC) \cdot CPF \tag{4}$$

Derived unit dimensionless

5.5 Rule DFZ

Rule DFZ is an assignment rule for parameter DFZ:

$$DFZ = PFI - PLF \tag{5}$$

Derived unit dimensionless

5.6 Rule DFP

Rule DFP is an assignment rule for parameter DFP:

$$DFP = DFZ (6)$$

Derived unit dimensionless

5.7 Rule VPF

Rule VPF is an assignment rule for parameter VPF:

$$VPF = \begin{cases} 0.0010 & \text{if } VPF1 < 0.0010 \\ VPF1 & \text{otherwise} \end{cases}$$
 (7)

5.8 Rule PPI

Rule PPI is an assignment rule for parameter PPI:

$$PPI = 2 - \frac{0.15}{VPF} \tag{8}$$

5.9 Rule PPZ

Rule PPZ is an assignment rule for parameter PPZ:

$$PPZ = PPN - PPO (9)$$

Derived unit dimensionless

5.10 Rule PPD

Rule PPD is an assignment rule for parameter PPD:

$$PPD = PPZ \tag{10}$$

Derived unit dimensionless

5.11 Rule PPR

Rule PPR is an assignment rule for parameter PPR:

$$PPR = \begin{cases} 0.025 & \text{if } PPR1 < 0.025 \\ PPR1 & \text{otherwise} \end{cases}$$
 (11)

5.12 Rule CPN

Rule CPN is an assignment rule for parameter CPN:

$$CPN = \frac{PPR}{VPF} \tag{12}$$

Derived unit dimensionless

5.13 Rule POS

Rule POS is an assignment rule for parameter POS:

$$POS = CPN \cdot 0.4 \tag{13}$$

5.14 Rule PPN

Rule PPN is an assignment rule for parameter PPN:

$$PPN = (CPP - CPN) \cdot 2.25 \cdot 10^{-4}$$
 (14)

5.15 Rule PLF

Rule PLF is an assignment rule for parameter PLF:

$$PLF = (PPI + 11) \cdot 3 \cdot 10^{-4}$$
 (15)

5.16 Rule PPO

Rule PPO is an assignment rule for parameter PPO:

$$PPO = PLF \cdot CPN \tag{16}$$

Derived unit dimensionless

 $\mathfrak{BML2}^{AT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany