بسم الله الرحمن الرحيم

نظریه علوم کامپیوتر

نظریه علوم کامپیوتر - بهار ۱۴۰۰ - ۱۴۰۰ - جلسه نهم: خودتولیدکنندگی Theory of computation - 002 - S09 - self-reproducibility

SELF

- * Self-Reproducing TM
- * The Recursion Theorem: TM T working on <w,A> -> TM R
 - * that has access to <R>,
 - * behaves like T on <w,R>

- * Self-Reproducing TM
- * The Recursion Theorem: TM T working on
 - <w,A> -> TM R
 - * that has access to <R>,
 - * behaves like T on <w,R>

- * Self-Reproducing TM
- * The Recursion Theorem: TM T working on
 - <w,A> -> TM R
 - * that has access to <R>,
 - * behaves like T on <w,R>

- * Self-Reproducing TM
- * The Recursion Theorem: TM T working on
 - <w,A> -> TM R
 - * that has access to <R>,
 - * behaves like T on <w,R>

- * Self-Reproducing TM
- * The Recursion Theorem: TM T working on
 - <w,A> -> TM R
 - * that has access to <R>,
 - * behaves like T on <w,R>

- * Self-Reproducing TM
- * The Recursion Theorem: TM T working on
 - <w,A> -> TM R
 - * that has access to <R>,
 - * behaves like T on <w,R>

- * Self-Reproducing TM
- * The Recursion Theorem: TM T working on
 - <w,A> -> TM R
 - * that has access to <R>,
 - * behaves like T on <w,R>

- * Self-Reproducing TM
- * The Recursion Theorem: TM T working on
 - <w,A> -> TM R
 - * that has access to <R>,
 - * behaves like T on <w,R>

Theorem: For any computable function $f: \Sigma^* \to \Sigma^*$,

there is a TM R such that L(R) = L(S) where $f(\langle R \rangle) = \langle S \rangle$.

Theorem: For any computable function $f: \Sigma^* \to \Sigma^*$, there is a TM R such that L(R) = L(S) where $f(\langle R \rangle) = \langle S \rangle$.

In other words, consider f to be a program transformation function. Then for some program R, its behavior is unchanged by f.

Theorem: For any computable function $f: \Sigma^* \to \Sigma^*$,

there is a TM R such that L(R) = L(S) where $f(\langle R \rangle) = \langle S \rangle$.

In other words, consider f to be a program transformation function.

Then for some program R, its behavior is unchanged by f.

Proof: Let R be the following TM.

Theorem: For any computable function $f: \Sigma^* \to \Sigma^*$,

there is a TM R such that L(R) = L(S) where $f(\langle R \rangle) = \langle S \rangle$.

In other words, consider f to be a program transformation function.

Then for some program R, its behavior is unchanged by f.

Proof: Let R be the following TM.

Theorem: For any computable function $f: \Sigma^* \to \Sigma^*$,

there is a TM R such that L(R) = L(S) where $f(\langle R \rangle) = \langle S \rangle$.

In other words, consider f to be a program transformation function.

Then for some program $oldsymbol{R}$, its behavior is unchanged by f.

Proof: Let R be the following TM.

R = "On input w

1. Get own description $\langle R \rangle$.

Theorem: For any computable function $f: \Sigma^* \to \Sigma^*$,

there is a TM R such that L(R) = L(S) where $f(\langle R \rangle) = \langle S \rangle$.

In other words, consider f to be a program transformation function.

Then for some program R, its behavior is unchanged by f.

Proof: Let R be the following TM.

- 1. Get own description $\langle R \rangle$.
- 2. Compute $f(\langle R \rangle)$ and call the result $\langle S \rangle$.

Theorem: For any computable function $f: \Sigma^* \to \Sigma^*$,

there is a TM R such that L(R) = L(S) where $f(\langle R \rangle) = \langle S \rangle$.

In other words, consider f to be a program transformation function.

Then for some program $oldsymbol{R}$, its behavior is unchanged by f.

Proof: Let R be the following TM.

- 1. Get own description $\langle R \rangle$.
- 2. Compute $f(\langle R \rangle)$ and call the result $\langle S \rangle$.
- 3. Simulate S on w."

Theorem: For any computable function $f: \Sigma^* \to \Sigma^*$,

there is a TM R such that L(R) = L(S) where $f(\langle R \rangle) = \langle S \rangle$.

In other words, consider f to be a program transformation function.

Then for some program $oldsymbol{R}$, its behavior is unchanged by f.

Proof: Let R be the following TM.

- 1. Get own description $\langle R \rangle$.
- 2. Compute $f(\langle R \rangle)$ and call the result $\langle S \rangle$.
- 3. Simulate S on w."

Defn: M is a minimal TM if $\left|\langle M' \rangle\right| < \left|\langle M \rangle\right| \to L(M') \neq L(M)$.

Defn: M is a minimal TM if $|\langle M' \rangle| < |\langle M \rangle| \to L(M') \neq L(M)$.

Thus, a minimal TM has the shortest description among all equivalent TMs.

Defn: M is a minimal TM if $|\langle M' \rangle| < |\langle M \rangle| \rightarrow L(M') \neq L(M)$.

Thus, a minimal TM has the shortest description among all equivalent TMs.

Let MINTM $= \{\langle M \rangle \mid M \text{ is a minimal TM } \}.$

Theorem: *MIN***TM** is T-unrecognizable.

Defn: M is a minimal TM if $|\langle M' \rangle| < |\langle M \rangle| o L(M') \neq L(M)$.

Thus, a minimal TM has the shortest description among all equivalent TMs.

Let MINTM $= \{\langle M \rangle \mid M \text{ is a minimal TM } \}.$

Theorem: *MIN***TM** is T-unrecognizable.

Proof by contradiction: Assume some TM $\it E$ enumerates $\it MIN$ TM .

Defn: M is a minimal TM if $|\langle M' \rangle| < |\langle M \rangle| \rightarrow L(M') \neq L(M)$.

Thus, a minimal TM has the shortest description among all equivalent TMs.

Let MINTM $= \{\langle M \rangle \mid M$ is a minimal TM $\}.$

Theorem: *MIN***TM** is T-unrecognizable.

Proof by contradiction: Assume some TM $\it E$ enumerates $\it MIN$ TM .

Consider the following TM R:

Defn: M is a minimal TM if $|\langle M' \rangle| < |\langle M \rangle| \rightarrow L(M') \neq L(M)$.

Thus, a minimal TM has the shortest description among all equivalent TMs.

Let MINTM $= \{\langle M \rangle \, | \, M$ is a minimal TM $\}.$

Theorem: *MIN***TM** is T-unrecognizable.

Proof by contradiction: Assume some TM $\it E$ enumerates $\it MIN$ TM .

Consider the following TM R:

Defn: M is a minimal TM if $|\langle M' \rangle| < |\langle M \rangle| \rightarrow L(M') \neq L(M)$.

Thus, a minimal TM has the shortest description among all equivalent TMs.

Let MINTM $= \{\langle M \rangle \mid M \text{ is a minimal TM } \}.$

Theorem: *MIN***TM** is T-unrecognizable.

Proof by contradiction: Assume some TM $\it E$ enumerates $\it MIN$ TM .

Consider the following TM R:

R = "On input w

1. Get own description $\langle R \rangle$.

Defn: M is a minimal TM if $|\langle M' \rangle| < |\langle M \rangle| \rightarrow L(M') \neq L(M)$.

Thus, a minimal TM has the shortest description among all equivalent TMs.

Let MINTM $= \{\langle M \rangle \mid M \text{ is a minimal TM } \}.$

Theorem: *MIN***TM** is T-unrecognizable.

Proof by contradiction: Assume some TM E enumerates MINTM .

Consider the following TM R:

- 1. Get own description $\langle R \rangle$.
- 2. Run enumerator E until some TM B appears, where $|\langle R \rangle| < |\langle B \rangle|$.

Defn: M is a minimal TM if $|\langle M' \rangle| < |\langle M \rangle| \rightarrow L(M') \neq L(M)$.

Thus, a minimal TM has the shortest description among all equivalent TMs.

Let MINTM $= \{\langle M \rangle \mid M \text{ is a minimal TM } \}.$

Theorem: *MIN***TM** is T-unrecognizable.

Proof by contradiction: Assume some TM E enumerates MINTM .

Consider the following TM R:

- 1. Get own description $\langle R \rangle$.
- 2. Run enumerator E until some TM B appears, where $\left|\langle R \rangle\right| < \left|\langle B \rangle\right|$.
- 3. Simulate B on w."

Defn: M is a minimal TM if $|\langle M' \rangle| < |\langle M \rangle| \rightarrow L(M') \neq L(M)$.

Thus, a minimal TM has the shortest description among all equivalent TMs.

Let MINTM $= \{\langle M \rangle \mid M \text{ is a minimal TM } \}.$

Theorem: *MIN***TM** is T-unrecognizable.

Proof by contradiction: Assume some TM E enumerates MINTM .

Consider the following TM R:

- R= "On input w
 - 1. Get own description $\langle R \rangle$.
 - 2. Run enumerator E until some TM B appears, where $|\langle R \rangle| < |\langle B \rangle|$.
 - 3. Simulate B on w."

Thus L(R)=L(B) and $\Big|\langle R\rangle\Big|<\Big|\langle B\rangle\Big|$ so B isn't minimal, but $\langle B\rangle\in L(E)$, contradiction.

Ex 3: MINTM is T-unrecognizable

Defn: M is a minimal TM if $|\langle M' \rangle| < |\langle M \rangle| \rightarrow L(M') \neq L(M)$.

Thus, a minimal TM has the shortest description among all equivalent TMs.

Let MINTM $= \{\langle M \rangle \mid M \text{ is a minimal TM } \}.$

Theorem: *MIN***TM** is T-unrecognizable.

Proof by contradiction: Assume some TM E enumerates MINTM .

Consider the following TM R:

R= "On input w

- 1. Get own description $\langle R \rangle$.
- 2. Run enumerator E until some TM B appears, where $|\langle R \rangle| < |\langle B \rangle|$.
- 3. Simulate B on w."

Thus L(R)=L(B) and $\Big|\langle R\rangle\Big|<\Big|\langle B\rangle\Big|$ so B isn't minimal, but $\langle B\rangle\in L(E)$, contradiction.

Ex 3: MINTM is T-unrecognizable

Defn: M is a minimal TM if $\left|\langle M' \rangle\right| < \left|\langle M \rangle\right| \to L(M') \neq L(M)$.

Thus, a minimal TM has the shortest description among all equivalent TMs.

Let MINTM $= \{\langle M \rangle \mid M \text{ is a minimal TM } \}.$

Theorem: *MIN***TM** is T-unrecognizable.

Proof by contradiction: Assume some TM E enumerates Let A be an infinite subset of \overline{MIN} TM .

Consider the following TM R:

R= "On input w

- 1. Get own description $\langle R \rangle$.
- 2. Run enumerator E until some TM B appears, where $|\langle R \rangle| < |\langle B \rangle|$.
- 3. Simulate B on w."

Thus L(R)=L(B) and $\Big|\langle R\rangle\Big|<\Big|\langle B\rangle\Big|$ so B isn't minimal, but $\langle B\rangle\in L(E)$, contradiction.

Check-in 11.3

Let A be an infinite subset of MINTM Is it possible that A is T-recognizable?

- (a) Yes.
- (b) No

1. Computer viruses.

- 1. Computer viruses.
- 2. A true but unprovable mathematical statement due to Kurt Gödel: "This statement is unprovable."

- 1. Computer viruses.
- 2. A true but unprovable mathematical statement due to Kurt Gödel: "This statement is unprovable."

- 1. Computer viruses.
- 2. A true but unprovable mathematical statement due to Kurt Gödel: "This statement is unprovable."

Goal: A mathematical study of mathematical reasoning itself. Formally defines the language of mathematics, mathematical truth, and provability.

Goal: A mathematical study of mathematical reasoning itself.

Formally defines the language of mathematics, mathematical truth, and provability.

Gödel's First Incompleteness Theorem:

In any reasonable formal system, some true statements are not provable.

Goal: A mathematical study of mathematical reasoning itself.

Formally defines the language of mathematics, mathematical truth, and provability.

Gödel's First Incompleteness Theorem:

In any reasonable formal system, some true statements are not provable.

Proof: We use two properties of formal proofs:

Goal: A mathematical study of mathematical reasoning itself.

Formally defines the language of mathematics, mathematical truth, and provability.

Gödel's First Incompleteness Theorem:

In any reasonable formal system, some true statements are not provable.

Proof: We use two properties of formal proofs:

1) Soundness: If ϕ has a proof π then ϕ is true.

Goal: A mathematical study of mathematical reasoning itself.

Formally defines the language of mathematics, mathematical truth, and provability.

Gödel's First Incompleteness Theorem:

In any reasonable formal system, some true statements are not provable.

Proof: We use two properties of formal proofs:

- 1) Soundness: If ϕ has a proof π then ϕ is true.
- 2) Checkability: The language $\{\langle \pi, \phi \rangle \mid \pi \text{ is a proof of statement } \phi \}$ is decidable.

Goal: A mathematical study of mathematical reasoning itself.

Formally defines the language of mathematics, mathematical truth, and provability.

Gödel's First Incompleteness Theorem:

In any reasonable formal system, some true statements are not provable.

Proof: We use two properties of formal proofs:

- 1) Soundness: If ϕ has a proof π then ϕ is true.
- 2) Checkability: The language $\{\langle \pi, \phi \rangle \mid \pi \text{ is a proof of statement } \phi\}$ is decidable.

Checkability implies the set of provable statements $\{ \langle \phi \rangle \mid \phi \text{ has a proof} \}$ is T-recognizable.

Goal: A mathematical study of mathematical reasoning itself.

Formally defines the language of mathematics, mathematical truth, and provability.

Gödel's First Incompleteness Theorem:

In any reasonable formal system, some true statements are not provable.

Proof: We use two properties of formal proofs:

- 1) Soundness: If ϕ has a proof π then ϕ is true.
- 2) Checkability: The language $\{\langle \pi, \phi \rangle \mid \pi \text{ is a proof of statement } \phi\}$ is decidable.

Checkability implies the set of provable statements $\{ \langle \phi \rangle \mid \phi \text{ has a proof} \}$ is T-recognizable.

Similarly, if we can always prove $\langle M, w \rangle \in \overline{ATM}$ when it is true, then \overline{ATM} is T-recognizable (false!).

Goal: A mathematical study of mathematical reasoning itself.

Formally defines the language of mathematics, mathematical truth, and provability.

Gödel's First Incompleteness Theorem:

In any reasonable formal system, some true statements are not provable.

Proof: We use two properties of formal proofs:

- 1) Soundness: If ϕ has a proof π then ϕ is true.
- 2) Checkability: The language $\{\langle \pi, \phi \rangle \mid \pi \text{ is a proof of statement } \phi\}$ is decidable.

Checkability implies the set of provable statements $\{ \langle \phi \rangle \mid \phi \text{ has a proof} \}$ is T-recognizable.

Similarly, if we can always prove $\langle M, w \rangle \in \overline{A}$ TM when it is true, then \overline{A} TM is T-recognizable (false!).

Therefore, some true statements of the form $\langle M, w \rangle \in A$ TM are unprovable.

Goal: A mathematical study of mathematical reasoning itself.

Formally defines the language of mathematics, mathematical truth, and provability.

Gödel's First Incompleteness Theorem:

In any reasonable formal system, some true statements are not provable.

Proof: We use two properties of formal proofs:

- 1) Soundness: If ϕ has a proof π then ϕ is true.
- 2) Checkability: The language $\{\langle \pi, \phi \rangle \mid \pi \text{ is a proof of statement } \phi\}$ is decidable.

Checkability implies the set of provable statements $\{ \langle \phi \rangle \mid \phi \text{ has a proof} \}$ is T-recognizable.

Similarly, if we can always prove $\langle M, w \rangle \in \overline{A}$ TM when it is true, then \overline{A} TM is T-recognizable (false!).

Therefore, some true statements of the form $\langle M, w \rangle \in A$ TM are unprovable.

Next, we use the Recursion Theorem to give a specific example of a true but unprovable statement.

Goal: A mathematical study of mathematical reasoning itself.

Formally defines the language of mathematics, mathematical truth, and provability.

Gödel's First Incompleteness Theorem:

In any reasonable formal system, some true statements are not provable.

Proof: We use two properties of formal proofs:

- 1) Soundness: If ϕ has a proof π then ϕ is true.
- 2) Checkability: The language $\{\langle \pi, \phi \rangle \mid \pi \text{ is a proof of statement } \phi\}$ is decidable.

Checkability implies the set of provable statements $\{ \langle \phi \rangle \mid \phi \text{ has a proof} \}$ is T-recognizable.

Similarly, if we can always prove $\langle M, w \rangle \in \overline{A}$ TM when it is true, then \overline{A} TM is T-recognizable (false!).

Therefore, some true statements of the form $\langle M, w \rangle \in A$ TM are unprovable.

Next, we use the Recursion Theorem to give a specific example of a true but unprovable statement.

Implement Gödel statement "This statement is unprovable."

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in A$ TM where R is the following TM:

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in \overline{A}$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R \rangle$ and use it to obtain ϕ_U .

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in A$ TM where R is the following TM:

- R = "On any input

 - 2. For each possible proof $\pi = \pi_1, \pi_2, \dots$

Test if π is a proof that ϕ_U is true.

If yes, then accept. Otherwise, continue."

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in A$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R
 angle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi=\pi_1,\ \pi_2,\ \dots$ Test if π is a proof that ϕ_U is true. If yes, then *accept*. Otherwise, continue."

Theorem: (1) ϕ_U has no proof (2) ϕ_U is true

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in A$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R \rangle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi=\pi_1,\ \pi_2,\ \dots$ Test if π is a proof that ϕ_U is true.

If yes, then accept. Otherwise, continue."

Theorem: (1) ϕ_U has no proof (2) ϕ_U is true

Proof:

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in A$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R \rangle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi=\pi_1,\ \pi_2,\ \dots$ Test if π is a proof that ϕ_U is true. If yes, then *accept*. Otherwise, continue."

Theorem: (1) ϕ_U has no proof (2) ϕ_U is true

Proof:

(1) If ϕ_U has a proof \cdot

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in \overline{A}$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R \rangle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi=\pi_1,\ \pi_2,\ \dots$ Test if π is a proof that ϕ_U is true. If yes, then *accept*. Otherwise, continue."

Theorem: (1) ϕ_U has no proof (2) ϕ_U is true

Proof:

(1) If ϕ_U has a proof o TM R accepts 0

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in A$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R \rangle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi=\pi_1,\ \pi_2,\ \dots$ Test if π is a proof that ϕ_U is true. If yes, then *accept*. Otherwise, continue."

Theorem: (1) ϕ_U has no proof (2) ϕ_U is true

Proof:

(1) If ϕ_U has a proof \to TM R accepts $0 \to \langle R, 0 \rangle \in \overline{A}$ TM is false

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in A$ TM where R is the following TM:

 ϕ_U

- R = "On any input
 - 1. Obtain $\langle R \rangle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi=\pi_1,\ \pi_2,\ \dots$ Test if π is a proof that ϕ_U is true. If yes, then *accept*. Otherwise, continue."

Theorem: (1) ϕ_U has no proof (2) ϕ_U is true

Proof:

(1) If ϕ_U has a proof o TM R accepts $0 \to \langle R, 0 \rangle \in \overline{A}$ TM is false

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in A$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R \rangle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi=\pi_1,\ \pi_2,\ \dots$ Test if π is a proof that ϕ_U is true. If yes, then <u>accept</u>. Otherwise, continue."

Theorem: (1) ϕ_U has no proof (2) ϕ_U is true

Proof:

(1) If ϕ_U has a proof o TM R accepts 0 o $\langle R,0
angle \in \overline{A}$ TM is false o ϕ_U cannot have a proof.

 ϕ_U

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in \overline{A}$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R
 angle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi=\pi_1,\ \pi_2,\ \dots$ Test if π is a proof that ϕ_U is true. If yes, then *accept*. Otherwise, continue."

Theorem: (1) ϕ_U has no proof (2) ϕ_U is true

Proof:

(1) If ϕ_U has a proof o TM R accepts 0 o $\langle R,0
angle \in \overline{A}$ TM is false o ϕ_U cannot have a proof.

 ϕ_U

(2) If ϕ_U is false \rightarrow

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in \overline{A}$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R
 angle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi=\pi_1,\ \pi_2,\ \dots$ Test if π is a proof that ϕ_U is true. If yes, then *accept*. Otherwise, continue."

Theorem: (1) ϕ_U has no proof (2) ϕ_U is true

Proof:

(1) If ϕ_U has a proof o TM R accepts 0 o $\langle R,0
angle \in \overline{A}$ TM is false o ϕ_U cannot have a proof.

 ϕ_U

(2) If ϕ_U is false $\rightarrow \langle R, 0 \rangle \notin \overline{ATM}$

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in A$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R
 angle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi=\pi_1,\ \pi_2,\ \dots$ Test if π is a proof that ϕ_U is true. If yes, then *accept*. Otherwise, continue."

Theorem: (1) ϕ_U has no proof (2) ϕ_U is true

Proof:

(1) If ϕ_U has a proof o TM R accepts 0 o $\langle R,0
angle \in \overline{A}$ TM is false o ϕ_U cannot have a proof.

 ϕ_U

(2) If ϕ_U is false $\rightarrow \langle R, 0 \rangle \notin \overline{ATM} \rightarrow R$ accepts 0

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in A$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R \rangle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi=\pi_1,\ \pi_2,\ \dots$ Test if π is a proof that ϕ_U is true. If yes, then *accept*. Otherwise, continue."

Theorem: (1) ϕ_U has no proof (2) ϕ_U is true

Proof:

(1) If ϕ_U has a proof o TM R accepts 0 o $\langle R,0 \rangle \in \overline{A}$ TM is false o ϕ_U cannot have a proof.

 ϕ_U

(2) If ϕ_U is false $\to \langle R,0 \rangle \not\in \overline{A}$ TM \to R accepts 0 $\to R$ found a proof that ϕ_U is true

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in A$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R \rangle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi = \pi_1, \ \pi_2, \ \dots$

Test if π is a proof that ϕ_U is true.

If yes, then accept. Otherwise, continue."

Theorem: (1) ϕ_U has no proof

(2) ϕ_U is true

Proof:

- (1) If ϕ_U has a proof o TM R accepts 0 o $\langle R,0
 angle \in \overline{A}$ TM is false o ϕ_U cannot have a proof.
- (2) If ϕ_U is false $\to \langle R, 0 \rangle \notin \overline{ATM} \to \mathbb{R}$ accepts $0 \to R$ found a proof that ϕ_U is true $\to \phi_U$ is true.

 ϕ_U

Implement Gödel statement "This statement is unprovable."

Let ϕ_U be the statement $\langle R, 0 \rangle \in A$ TM where R is the following TM:

- R = "On any input
 - 1. Obtain $\langle R
 angle$ and use it to obtain ϕ_U .
 - 2. For each possible proof $\pi=\pi_1,\ \pi_2,\ \dots$ Test if π is a proof that ϕ_U is true. If yes, then *accept*. Otherwise, continue."

Theorem: (1) ϕ_U has no proof (2) ϕ_U is true

Proof:

- (1) If ϕ_U has a proof o TM R accepts 0 o $\langle R,0
 angle \in \overline{A}$ TM is false o ϕ_U cannot have a proof.
- (2) If ϕ_U is false $\to \langle R, 0 \rangle \notin \overline{ATM} \to \mathbb{R}$ accepts $0 \to R$ found a proof that ϕ_U is true $\to \phi_U$ is true.

 ϕ_U

Quick review of this topic

- 1. Self-reference and The Recursion Theorem
- 2. Various applications.
- 3. Sketch of Gödel's First Incompleteness Theorem in mathematical logic.