ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note

A note on acyclic edge coloring of complete bipartite graphs

Manu Basavaraju, L. Sunil Chandran*

Department of Computer Science and Automation, Indian Institute of Science, Bangalore-560012, India

ARTICLE INFO

Article history:
Received 5 June 2008
Received in revised form 22 January 2009
Accepted 22 January 2009
Available online 23 February 2009

Keywords:
Acyclic edge coloring
Acyclic edge chromatic index
Matching
Complete bipartite graphs

ABSTRACT

An *acyclic edge coloring* of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The *acyclic chromatic index* of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). Let $\Delta = \Delta(G)$ denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by $K_{n,n}$. Alon, McDiarmid and Reed observed that $a'(K_{p-1,p-1}) = p$ for every prime p. In this paper we prove that $a'(K_{p,p}) \leq p+2 = \Delta+2$ when p is prime. Basavaraju, Chandran and Kummini proved that $a'(K_{n,n}) \geq n+2 = \Delta+2$ when p is odd, which combined with our result implies that $a'(K_{p,p}) = p+2 = \Delta+2$ when p is an odd prime. Moreover we show that if we remove any edge from $K_{p,p}$, the resulting graph is acyclically $\Delta + 1 = p + 1$ -edge-colorable.

© 2009 Elsevier B.V. All rights reserved.

All graphs considered in this paper are finite and simple. A proper edge coloring of G = (V, E) is a map $c : E \to C$ (where C is the set of available colors) with $c(e) \neq c(f)$ for any adjacent edges e.f. The minimum number of colors needed to properly color the edges of G is the chromatic index of G and is denoted by $\chi'(G)$. A proper edge coloring C is acyclic if there are no bichromatic cycles in the graph. In other words, an edge coloring is acyclic if the union of any two color classes is a disjoint union of paths (i.e., a linear forest) in G. The acyclic edge chromatic number (also called the acyclic chromatic index), denoted by G is the minimum number of colors required in an acyclic edge coloring of G. The concept of acyclic coloring of a graph was introduced by G in G in G in G denote the maximum degree of a vertex in a graph G. By Vizing's theorem G is also proper, G is also proper.

It has been conjectured by Alon, Sudakov, and Zaks [2] that $a'(G) \le \Delta + 2$ for any G. Using probabilistic arguments Alon, McDiarmid, and Reed [1] proved that $a'(G) \le 60\Delta$. The best known result up to now for arbitrary graphs is that of Molloy and Reed [9], who showed that $a'(G) \le 16\Delta$.

Though the best known upper bound for the general case is far from the conjectured $\Delta+2$, the conjecture has been shown to be true for some special classes of graphs. Alon, Sudakov, and Zaks [2] proved that there exists a constant k such that $a'(G) \leq \Delta+2$ for any graph G whose girth is at least $k\Delta \log \Delta$. They also proved that $a'(G) \leq \Delta+2$ for almost all Δ -regular graphs. This result was improved by Nešetřil and Wormald [12], who showed that random regular graphs almost always have $a'(G) \leq \Delta+1$. Muthu, Narayanan, and Subramanian proved the conjecture for grid-like graphs [10] and outerplanar graphs [11]. In fact they gave a better bound of $\Delta+1$ for these classes of graphs. From Burnstein's [5] result it follows that the conjecture is true for subcubic graphs. Skulrattankulchai [13] gave a polynomial time algorithm for coloring a subcubic graph using $\Delta+2=5$ colors.

A complete bipartite graph with n vertices on each side is denoted by $K_{n,n}$. We denote the sides by A and B. Thus $V(K_{n,n}) = A \cup B$.

Our result: In this paper, we prove the following theorem:

Theorem 1. $a'(K_{p,p}) \le p + 2 = \Delta + 2$, when p is an odd prime

E-mail addresses: manu@csa.iisc.ernet.in (M. Basavaraju), sunil@csa.iisc.ernet.in (L. Sunil Chandran).

^{*} Corresponding author.

Remarks. (1) Basavaraju, Chandran and Kummini [3] proved that $a'(K_{n,n}) \ge n+2 = \Delta+2$, when n is odd. From Theorem 1, we can infer that $a'(K_{n,p}) = p+2 = \Delta+2$.

- (2) The complete bipartite graph, $K_{n,n}$ is said to have a *perfect 1-factorization* if the edges of $K_{n,n}$ can be decomposed into n disjoint perfect matchings such that the union of any two perfect matchings forms a hamiltonian cycle. Alon, McDiarmid and Reed [1] observed that $a'(K_{p-1,p-1}) = p$. It is easy to see that if $K_{n+2,n+2}$ has a perfect 1-factorization, then $a'(K_{n,n}) \le a'(K_{n+1,n+1}) \le n+2$. It is known that (see [4]), if $n+2 \in \{p,2p-1,p^2\}$, where p is an odd prime or when n+2 < 50 and odd, then $K_{n+2,n+2}$ has a perfect 1-factorization. Combining with the result that $a'(K_{n,n}) \ge n+2 = \Delta+2$ when n is odd, one gets $a'(K_{n,n}) = n+2 = \Delta+2$ for the above mentioned values of n+2. As of now, these are the only values of n for which we know the exact value for $a'(K_{n,n})$. Note that we cannot apply the simple argument mentioned here when n=p.
- (3) To get an upper bound for $a'(K_{n,n})$, the best method we can think of is to look for the smallest prime number p such that $p \ge n + 2$. Then $a'(K_{n,n}) \le p$. A weakening of the result of Iwaniec and Pintz [8] gives that for every sufficiently large integer x, there exists a prime number in the range $[x, x + x^{0.6}]$.

1. Proof of Theorem 1

Let $A = \{0, 1, ..., p-1\}$ and $B = \{0, 1, ..., p-1\}$. Let $\pi_0, \pi_1, ..., \pi_{p-1}$ be the permutation defined by $\pi_i : a \mapsto (a+i) \pmod{p}$. Let M_i be the perfect matching corresponding to the permutation π_i . It is easy to verify that if $i \neq j$, then $M_i \cap M_j = \emptyset$. Now we claim the following:

Claim 1. If $i \neq j$, then $M_i \cup M_j$ forms a Hamiltonian cycle (i.e., $M_0, M_1, \ldots, M_{p-1}$ form a perfect 1-factorization).

Proof. First note that the union of any two perfect matchings forms a collection of disjoint cycles. Suppose two matchings M_i and M_j (i>j) are such that a cycle of length 2k<2p gets formed by the edges of $M_i\cup M_j$ (recall that all cycles are of even length in $K_{p,p}$). Without loss of generality let this cycle contain the vertex $a\in A$. It is easy to see that $(\pi_j^{-1}\pi_i)^k(a)=a$. Noting that $(\pi_j^{-1}\pi_i)(a)=a+i-j\pmod p$, we have $(\pi_j^{-1}\pi_i)^k(a)=a+ki-kj=a+k(i-j)\pmod p=a\pmod p$, which implies that $k(i-j)=0\pmod p$. Since $i-j\neq 0\pmod p$, we have $k=0\pmod p$, a contradiction since k< p. Thus $M_i\cup M_j$ forms a cycle of length 2p (a Hamiltonian cycle) when i and j are distinct. \square

Now consider the multiplicative group Z_p^* , and let x be a generator of this group. Define a permutation π of $\{1, 2, \ldots, p-1\}$ by $\pi: a \longmapsto ax \pmod{p}$. Let M be the matching corresponding to the permutation π .

Claim 2. $|M \cap M_i| = 1$, for each M_i , $1 \le i \le p-1$ and $M_0 \cap M = \emptyset$ (i.e., for each M_i , $1 \le i \le p-1$, the matchings M and M_i have exactly one edge in common; also the matchings M and M_0 do not have any edge in common).

Proof. By the definition of M, we infer that $M_0 \cap M = \emptyset$. Now let $a = i(x-1)^{-1}$ (mod p). Note that since $i \neq 0$, $a \neq 0$. We have $\pi_i(a) = a + i = i(x-1)^{-1} + i = i(x-1)^{-1}(1+x-1) = i(x-1)^{-1}(x) = ax$ (mod p) = $\pi(a)$. Thus it follows that the edge $(a, ax) \in M \cap M_i$ for $a = i(x-1)^{-1}$ (mod p). Therefore $|M \cap M_i| \geq 1$ for $1 \leq i \leq p-1$. Since |M| = p-1, we can also infer that $|M \cap M_i| = 1$. \square

Now color the edges of $K_{p,p}$ as follows to get a coloring f with p + 2 colors:

- (1) if $e \in M_i \setminus M$ (where $0 \le i \le p-1$), then it is colored with color c_i ;
- (2) if $e \in M (1, x)$, then it is colored with color c_p ;
- (3) edge e = (1, x) is colored with color c_{p+1} .

Claim 3. The coloring f is acyclic.

Proof. Obviously f is a proper coloring. Let c_i and c_j be two colors. We consider different values for i and j with i > j and show that a (c_i, c_j) bichromatic cycle cannot exist.

Case 1: i = p + 1

Since there is only one edge colored c_{p+1} , there cannot be any bichromatic cycle involving the color c_{p+1} . Case 2: i, i < n

Note that $M_i \cup M_j$ forms a Hamiltonian cycle by Claim 1. Now at least one edge of M_i belongs to M (by Claim 2) and is colored c_p or c_{p+1} with respect to the coloring f, breaking the possible (c_i, c_j) bichromatic cycle. Therefore there cannot be any (c_i, c_j) bichromatic cycle when i, j < p.

Case 3: i = p

Suppose M_j is a matching such that a cycle of length 2k < 2p (no cycles of length 2p can be formed as there are only p-2 edges of color c_p) gets formed by the edges of $M \cup M_j$ (recall that all cycles are of even length in $K_{p,p}$). Thus $(\pi_j^{-1}\pi)^k(a) = a \pmod{p}$. Noting that $(\pi_j^{-1}\pi)(a) = ax - j \pmod{p}$, we have $(\pi_j^{-1}\pi)^2(a) = (ax - j)x - j = ax^2 - j(x+1) \pmod{p}$. Similarly $(\pi_j^{-1}\pi)^k(a) = ax^k - j(x^{k-1} + \dots + x + 1) = ax^k - j(x^k - 1)(x - 1)^{-1} = a \pmod{p}$. We have $a(x^k-1)-j(x^k-1)(x-1)^{-1} = 0 \pmod{p}$ and thus $(x^k-1)(a-j(x-1)^{-1}) = 0 \pmod{p}$. If $(a-j(x-1)^{-1}) = 0 \pmod{p}$,

then $a = j(x-1)^{-1}$ (mod p). But according to Claim 2, we have edge $(a, ax) \in M \cap M_j$. Therefore this edge and thus vertex a cannot be in the cycle formed by $M \cup M_j$, a contradiction. Thus we infer that $(x^k - 1) = 0 \pmod{p}$. This implies that $x^k = 1 \pmod{p}$ and hence k = p - 1, since x is a generator. Thus there are 2(p - 1) edges in the cycle, out of which p - 1 are colored c_p , a contradiction since only p - 2 edges are colored c_p . \square

Theorem 2. For a prime p > 2, if G is a graph obtained by removing just one edge from $K_{p,p}$, then $a'(G) = \Delta + 1 = p + 1$ (the above statement is true even if we delete any number of edges between 1 and p - 2).

Proof. It is easy to infer from the proof of Theorem 1 that $a'(G) \le p+1$. The lower bound comes from a simple counting argument: At most one color class can have p edges, since otherwise there will be bichromatic cycles. Thus if $a'(G) \le p$, then there can be at most $p + (p-1)^2 < p^2 - 1$ edges in G, a contradiction. \Box

References

- [1] N. Alon, C.J.H. McDiarmid, B.A. Reed, Acyclic coloring of graphs, Random Structures and Algorithms 2 (1991) 343-365.
- [2] N. Alon, B. Sudakov, A. Zaks, Acyclic edge-colorings of graphs, Journal of Graph Theory 37 (2001) 157-167.
- [3] M. Basavaraju, L.S. Chandran, M. Kummini, d-regular graphs of acyclic chromatic index at least d+2 (2008) (submitted for publication). Available at http://arxiv.org/abs/0804.4681v1.
- [4] D. Bryant, B.M. Maenhaut, I.M. Wanless, A family of perfect factorisations of complete bipartite graphs, Journal of Combinatorial Theory, Series A 98 (2002) 328–342.
- [5] M.I. Burnstein, Every 4-valent graph has an acyclic five-coloring, Soobsč, Akad. Nauk Gruzin. SSR 93 (1979).
- [6] R. Diestel, Graph Theory, 2 ed., vol. 173, Springer-Verlag, New York, 2000.
- [7] B. Grünbaum, Acyclic colorings of planar graphs, Israel Journal of Mathematics 14 (1973) 390-408.
- [8] H. Iwaniec, J. Pintz, Primes in short intervals, Monatsh. Math 98 (1984) 115-143.
- [9] M. Molloy, B. Reed, Further algorithmic aspects of Lovász local lemma, in: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, 1998, pp. 524–529.
- [10] R. Muthu, N. Narayanan, C.R. Subramanian, Optimal acyclic edge coloring of grid like graphs, in: Proceedings of the 12th International Conference, COCOON, in: LNCS, vol. 4112, 2006, pp. 360–367.
- [11] R. Muthu, N. Narayanan, C.R. Subramanian, Acyclic edge colouring of outerplanar graphs, in: Algorithmic Aspects in Information and Management, in: LNCS, vol. 4508, 2007, pp. 144–152.
- [12] J. Něsetřil, N.C. Wormald, The acyclic edge chromatic number of a random d-regular graph is d+1, Journal of Graph Theory 49 (2005) 69–74.
- [13] S. Skulrattankulchai, Acyclic colorings of subcubic graphs, Information Processing Letters 92 (2004) 161–167.