1 Schemat Komponentów

1.1 Kolor sensor TCS3200

1.1.1 Opis

Sensor jest odpowiedzialny za odczyt(wykrycie) koloru obiektu.

Umożliwia konwersje natężenia światła do częstotliwości RGB (Light intensity -> frequency). Na jego wyjściu mamy częstotliwości dla danego koloru. Czujnik jest kompatybilny z Arduino.

1.1.2 Specyfikacja

Napięcie	2.7-5.5V	
Bezpośrednio komunikuje się z Mikrokontrollerem		
Konwersja światła o wysokiej rozdzielczości na częstotliwość		
Funkcja wyłączania		
Programowalny kolor i częstotliwość wyjściowa w pełnej skali		

Posiada cztery rodzaje filtrowania:

S2	S3	Photo Diode Type
L	L	Red
L	Н	Blue
Н	L	Clear (no filter)
Н	Н	Green

1.2 Serwo micro servo SG90 Tower Pro

1.2.1 Opis

W systemie wykorzystywane są dwa serwa: górne i dolne. Serwo górne ma dwa zadania do wykonania podawanie obiektu z wejścia pod sensor i zepchnięcie spod senora na zsuw. Natomiast serwo dolne ustawia zsuw pod odpowiednim kątem.

1.2.2 Specyfikacja

Napięcie	4.8 V (5V)
Moment przegięcia	$0.1 \; { m s}/60^{\Omega}$
Szybkość operowania	1.8 kgf⋅cm
Szerokość strefy nieczułości	10 µs
Zasięg temperatury	$0 {}^{\circ}\text{C} - 55 {}^{\circ}\text{C}$
Zasięg obrotu	180º
Waga	9 g
Wysokość	27 mm
Szerokość	22 mm
Głębokość	11,5 mm

1.3 Serwo micro servo SG90 Tower Pro

1.3.1 Opis

Głową systemu jest płytka arduino UNO R3. Odpowiada za kolekcjonowanie częstotliowści z sensora i sterowanie serwami. Określa i przechowuje dane dotyczące kolorów i kątów kontenerów.

1.3.2 Specyfikacja

Mikrokontroler	mikroczip AT-
	mega328P
Napięcie wejściowe	7-20 Volts
Napięcie operatywne	5 Volts
Flash Memory	32 KB
Piny Cyfrowe I/O	14
Piny Analogowe	6
DC Current na I/O Pin	20 mA
DC Current dla 3.3V Pin:	50 mA
SRAM	2 KB
EEPROM	1 KB
Wysokość	68.6 mm
Szerokość	53.4 mm
Waga	25 g

1.4 Zasilacz

1.4.1 Opis

Dostarcza zasilanie dla całego systemu.

1.4.2 Specyfikacja

Napięcie wyjściowe	12 V	
Napięcie zasilania	max 240 V	
Prąd wyjściowy	2 A	
Wtyk DC		
Impulsowy		
Wtyczkowy		

1.5 Włącznik/ Wyłącznik

1.5.1 Opis

Pozwala na regulowanie dopływu prądu tzn, włączanie urządzenia oraz wyłączanie.

1.5.2 Specyfikacja

Prąd	6A
Napięcie	230V

2 Schemat Połączeń

2.1 Schemat w kontekście fizycznym

2.1.1 Obwód

Wszystkie linie(połączenia) to copper wires.

2.1.2 Opis Obwodu

Gniazdo GND płytki Arduino Uno R3 jest połączone z gniazdem GND na sensorze TCS 3200. "Ziemia" (Power supply Ground) krzyżuje się z drugim wire również łączącym GND obu serw z OE(Enable for output frequency) sensora. Napięcie 5V poprowadzone jest zielonym wire'm do serwa górnego, dolnego oraz sensora TCS pod gniazdem VCC w każdym z komponentów. Gniazdo PWM serwa górnego i dolnego podłączone jest do pinów cyfrowych 10 i 9 na płycie Arduino. Gniazdo OUT sensora, z którego zczytywana jest częstotliwość(frequency output) połączone jest w pinie 8 z płytką AUR3. Gniazda S2,S3(Photodiode type selection inputs) sensora, na które wysyłane są sygnały przez płytkę HIGH,LOW w celu określenia natężeń RGB(tabela 1.1.2) z pinami 6,5 płytki arduino. I ostatnie połączenia kablowe to S1,S0 wejścia selekcji, skalowania częstotliwości wyjściowej połączone z pinem 4, 5 w płytce Arduino.

2.2 Schemat Interakcji

2.2.1 Opis

- 1. Arduino przesyła do serwa górnego żądanie z kątem przesunięcia.
- 2. Serwo górne odbiera sygnał i przenosi obiekt pod sensor TCS.
- 3. Arduino wysyła kolejno sygnały (High,High); (Low,High); (Low,Low) przez wejścia S2,S3 do sensora TCS. Krócej: arduino pyta sensor TCS o kolor obiektu.
- 4. TCS zwraca (OUT) częstotliowść zwrotną dla zadanej kombinacji. TCS zwraca odpowiedź na zapytanie o kolor do Arduino.
- 5. Arduino wysyła do serwa dolnego kat pod jakim ma się ustawić.
- 6. Serwo dolne ustawia zsuw pod odpowienim kątem z wiadomości od Arduino.
- 7. Arduino wysyła sygnał do serwa górnego.
- 8. Serwo góne przesuwa się zgodnie z rozkazem.
- 9. Arduino ustawia serwo górne do stanu zerowego.
- 10. Wszystko się zapętla aż do wyłączenia przyciskiem OFF.

2.2.2 Diagramy

2.2.3 Diagram współpracy

2.2.4 Diagram interakcji

