Exercícios de **Lógica EI**

Universidade do Minho Folha 1

0. Preliminares

- **0.1** Prove, de duas formas diferentes, que, para todo o número natural $n \geq 2$, $2n \leq n^2$.
- **0.2** Prove por indução que, para todo o número natural n > 4, $n^2 < 2^n$. Note como é útil provar simultaneamente $2n + 1 < n^2$.
- **0.3** Para $n \in \mathbb{N}$, seja P(n) a propriedade: $2^n < n!$.
 - a) Mostre que: para $k \in \mathbb{N}$ e k > 3, se P(k) é verdadeira, P(k+1) também é verdadeira.
 - b) Indique, justificando, quais os naturais n para os quais P(n) é verdadeira.
- **0.4** Prove que, para qualquer $n \in \mathbb{N}$, $1+2+\cdots+n=n(n+1)/2$.
- **0.5** Prove que, para cada $n \in \mathbb{N}_0$:

a)
$$\sum_{i=0}^{n} 2i = n^2 + n;$$
 b) $\sum_{i=0}^{n} (2i+1) = (n+1)^2.$

- **0.6** Seja $f: \mathbb{N}_0 \to \mathbb{N}_0$ a função definida recursivamente por f(0) = 1 e f(n+1) = 2f(n), para cada $n \in \mathbb{N}_0$.
 - a) Calcule f(1) e f(2).
 - **b)** Mostre que, para cada $n \in \mathbb{N}_0$, $f(n) = 2^n$.
- **0.7** Seja $s: \mathbb{N} \to \mathbb{Q}$ a função definida por s(1) = 2 e $s(n+1) = \frac{2}{s(n)}$.
 - a) Determine $s(1), s(2) \in s(3)$.
 - b) Determine o contradomínio de s. Prove a sua afirmação por indução.
- **0.8** Seja A o alfabeto $\{0,1\}$. Os elementos de A dizem-se as letras de A. Uma palavra em A é uma sequência finita de letras de A. O conjunto de todas as palavras em A representa-se por A^* . Uma linguagem em A é um subconjunto de A^* .
 - a) Quantas palavras em A existem com comprimento ≤ 3 ?
 - b) Quantas linguagens em A existem com um número de elementos ≤ 3 ?
 - c) Dadas duas palavras $u = a_1 \cdots a_n$ e $v = b_1 \cdots b_m$ em A, a concatenação de u e v, denotada uv, é a palavra em A $a_1 \cdots a_n b_1 \cdots b_m$. Seja w a palavra 0110. Quantos pares de palavras u, v existem tais que uv = w?
- **0.9** O conjunto \mathbb{N}_0 pode ser definido indutivamente pelas regras: (1) $0 \in \mathbb{N}_0$. (2) Se $n \in \mathbb{N}_0$ então $n+1 \in \mathbb{N}_0$. Apresente definições indutivas de cada um dos conjuntos que se seguem:
 - a) Conjunto dos naturais múltiplos de 5.
 - b) Conjunto dos números inteiros.
 - c) Conjunto das palavras no alfabeto $A = \{0, 1\}$ cujo comprimento é impar.
 - d) Conjunto das palavras no alfabeto $A = \{a, b\}$ que têm um número par de ocorrências do símbolo a.

Universidade do Minho Folha 2

Sintaxe do Cálculo Proposicional 1.

- 1.1 De entre as seguintes palavras sobre o alfabeto do Cálculo Proposicional, indique, justificando, aquelas que pertencem ao conjunto \mathcal{F}^{CP} :
 - **a**) $(\neg (p_1 \lor p_2))$. **b**) $((p_0 \land \neg p_0) \to \bot)$.
 - \mathbf{c}) $((\neg p_5) \to (\neg p_6))$. \mathbf{d}) (\bot) .
 - e) $((p_3 \land p_1) \lor (.$ f) $(((p_9 \to ((p_3 \lor (\neg p_8)) \land p_{12})) \leftrightarrow (\neg p_4)) \to (p_7 \lor \bot))).$
- **1.2** Para cada uma das seguintes fórmulas φ do Cálculo Proposicional:
 - i) p_{2015} . ii) $\neg \perp \vee \perp$. iii) $p_0 \rightarrow (\neg p_0 \rightarrow \neg p_1)$:
 - a) Calcule $\varphi[p_2/p_0]$, $\varphi[p_0 \wedge p_1/p_1]$ e $\varphi[p_{2016}/p_{2015}]$.
 - b) Indique o conjunto das suas subfórmulas.
- **1.3** Defina por recursão estrutural as seguintes funções (na alínea c) $BIN = \{\land, \lor, \rightarrow, \leftrightarrow\}$):
 - a) $p: \mathcal{F}^{CP} \to \mathbb{N}_0$ tal que $p(\varphi) =$ número de ocorrências de parêntesis em φ .
 - b) $v: \mathcal{F}^{CP} \to \mathbb{N}_0$ tal que $v(\varphi) =$ número de ocorrências de vars. proposicionais em φ .
 - c) $b: \mathcal{F}^{CP} \to \mathcal{P}(BIN)$ tal que $b(\varphi) = \{ \Box \in BIN : \Box \text{ ocorre em } \varphi \}.$
 - d) $\lfloor \lfloor \perp/p_7 \rfloor : \mathcal{F}^{CP} \to \mathcal{F}^{CP}$ (recorde que $\varphi[\perp/p_7]$ representa o resultado de substituir em φ todas as ocorrências de p_7 por \perp).
- 1.4 Considere de novo as funções definidas no exercício anterior. Prove, por indução estrutural, que, para todo $\varphi \in \mathcal{F}^{CP}$:

- a) $v(\varphi) \ge \#var(\varphi)$. b) $p(\varphi) \ge \#b(\varphi)$. c) $v(\varphi) \ge v(\varphi[\perp/p_7])$. d) $b(\varphi) = b(\varphi[\perp/p_7])$.
- e) se $b(\varphi) \neq \emptyset$ então $p(\varphi) > 0$. f) se $p_7 \notin var(\varphi)$ então $\varphi[\perp /p_7] = \varphi$.
- **1.5** Seja $\varphi \in \mathcal{F}^{CP}$. O tamanho de φ , denotado por $|\varphi|$, define-se por recursão do seguinte
 - (i) |p| = 1, para cada variável proposicional p; (ii) $|\perp| = 1$; (iii) $|\neg \varphi| = 1 + |\varphi|$;
 - (iv) $|\varphi\Box\psi| = 1 + |\varphi| + |\psi|$, para cada conetivo binário \Box .
 - a) Qual das fórmulas $\neg \neg \neg p_0$ ou $(p_1 \land p_2) \lor (p_3 \land p_4)$ tem maior tamanho?
 - b) Dê exemplo de fórmulas φ e ψ , com 3 subfórmulas, tais que $|\varphi| = 3$ e $|\psi| > 3$.
 - c) Mostre que, para todo $\varphi \in \mathcal{F}^{CP}$, $|\varphi| \geq \#subf(\varphi)$.
- **1.6** Seja $\varphi \in \mathcal{F}^{CP}$. A complexidade lógica de φ , denotada por $cl(\varphi)$, define-se por recursão do seguinte modo:
 - (i) cl(p) = 0, para cada variável proposicional p; (ii) $cl(\bot) = 0$; (iii) $cl(\neg \varphi) = 1 + cl(\varphi)$;
 - (iv) $cl(\varphi \Box \psi) = 1 + max(cl(\varphi), cl(\psi))$, para cada conetivo binário \Box .
 - a) Qual das fórmulas $\neg\neg\neg p$ ou $(p_1 \land p_2) \lor (p_3 \land p_4)$ tem maior complexidade lógica?
 - **b)** Mostre que, para todo $\varphi \in \mathcal{F}^{CP}$, $cl(\varphi) < |\varphi|$.

Universidade do Minho Folha 3

2. Semântica do Cálculo Proposicional

2.1 Sejam v_1 e v_2 as únicas valorações tais que

$$v_1(p) = \begin{cases} 0 \text{ se } p \in \{p_0, p_1\} \\ 1 \text{ se } p \in \mathcal{V}^{CP} - \{p_0, p_1\} \end{cases}$$
 e $v_2(p) = \begin{cases} 1 \text{ se } p \in \{p_1, p_3\} \\ 0 \text{ se } p \in \mathcal{V}^{CP} - \{p_1, p_3\} \end{cases}$.

Calcule os valores lógicos das fórmulas seguintes para as valorações v_1 e v_2 :

$$\varphi_1 = (p_2 \vee (\neg p_1 \wedge p_3)), \quad \varphi_2 = (p_2 \vee p_0) \wedge \neg (p_2 \wedge p_0), \quad \varphi_3 = (p_1 \to ((p_5 \leftrightarrow p_3) \vee \bot)).$$

2.2 Considere as fórmulas.

$$\varphi_1 = \neg p_3 \land (\neg p_1 \lor p_2), \quad \varphi_2 = (\neg p_3 \lor \neg p_1) \leftrightarrow (p_1 \to p_2), \quad \varphi_3 = \neg p_3 \to (p_1 \land \neg p_2).$$

- a) Para cada um dos conjuntos $\{\varphi_1, \varphi_2\}$ e $\{\varphi_2, \varphi_3\}$, dê exemplo de uma valoração que atribua o valor lógico 1 a todos os seus elementos.
- b) Mostre que não existem valorações que, em simultâneo, atribuam o valor lógico 1 a $\varphi_1 \in \varphi_3$.
- 2.3 Seja v uma valoração. Quais das seguintes proposições são verdadeiras?
 - a) $v((p_3 \to p_2) \to p_1) = 0$ e $v(p_2) = 0$ é uma condição suficiente para $v(p_3) = 0$.
 - **b)** Uma condição necessária para $v(p_1 \to (p_2 \to p_3)) = 0$ é $v(p_1) = 1$ e $v(p_3) = 0$.
 - c) Uma condição necessária e suficiente para $v(p_1 \land \neg p_3) = 1$ é $v((p_3 \to (p_1 \to p_3)) = 1$.
- 2.4 De entre as seguintes fórmulas, indique as tautologias e as contradições.
 - a) $(p_1 \rightarrow \perp) \vee p_1$.
- $\mathbf{b)} \quad (p_1 \to p_2) \leftrightarrow (\neg p_2 \to \neg p_1).$
- c) $\neg (p_1 \land p_2) \rightarrow (p_1 \lor p_2)$. d) $(p_1 \lor \neg p_1) \rightarrow (p_1 \land \neg p_1)$.
- 2.5 Das seguintes proposições, indique as verdadeiras. Justifique.
 - a) $\models \varphi \land \psi$ se e só se $\models \varphi$ e $\models \psi$.
 - **b)** Se $\models \varphi \lor \psi$, então $\models \varphi$ ou $\models \psi$.
 - c) Se $\models \varphi$ ou $\models \psi$, então $\models \varphi \lor \psi$.
 - d) Se $\models \varphi \leftrightarrow \psi$ e $\not\models \psi$, então $\not\models \varphi$.
- **2.6** Seja $\varphi = (\neg p_2 \to \bot) \land p_1$.
 - a) Dê exemplo de uma valoração v tal que:
 - i) $v(\varphi) = v(\varphi[p_0 \wedge p_3/p_2]);$
 - ii) $v(\varphi) \neq v(\varphi[p_0 \wedge p_3/p_2]).$
 - b) Seja ψ uma fórmula. Indique uma condição suficiente para que uma valoração vsatisfaça $v(\varphi) = v(\varphi[\psi/p_2])$. A condição que indicou é necessária?

Exercícios de Lógica EI

Universidade do Minho Folha 4

- **2.7** Considere o conjunto $\mathcal{F}^{CP}_{\{\vee,\wedge\}}$ das fórmulas cujos conetivos estão no conjunto $\{\vee,\wedge\}$.
 - a) Enuncie o teorema de indução estrutural para $\mathcal{F}_{\{\vee,\wedge\}}^{CP}$.
 - b) Seja v a valoração que a cada variável proposicional atribui o valor lógico 0. Mostre que $v(\varphi) = 0$ para qualquer $\varphi \in \mathcal{F}_{\{\vee,\wedge\}}^{CP}$.
 - c) Existem tautologias no conjunto $\mathcal{F}^{CP}_{\{\vee,\wedge\}}?$ Justifique.
- 2.8 Para cada uma das seguintes fórmulas, encontre uma fórmula que lhe seja logicamente equivalente e que envolva apenas conetivos no conjunto $\{\neg, \lor\}$.
 - a) $(p_0 \wedge p_2) \rightarrow p_3$.
- **b)** $p_1 \vee (p_2 \rightarrow \perp)$.

 $\neg p_4 \leftrightarrow p_2$. **c**)

- **d)** $(p_1 \vee p_2) \rightarrow \neg (p_1 \wedge \bot).$
- **2.9** Defina, por recursão estrutural em fórmulas, uma função $f: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}_{\{\neg,\lor\}}$ que a cada fórmula φ faça corresponder uma fórmula $f(\varphi)$ logicamente equivalente a φ .
- **2.10** Investigue se os conjuntos de conetivos $\{\lor, \land\}$ e $\{\neg, \lor, \land\}$ são ou não completos.
- 2.11 Calcule formas normais conjuntivas e disjuntivas logicamente equivalentes a cada uma das seguintes fórmulas:
 - a) $\neg p_0$.

- **b)** $p_1 \wedge (p_2 \wedge p_3)$.

- c) $(p_1 \lor p_0) \lor \neg (p_2 \lor p_0)$. d) $(p_1 \to \bot)$. e) $(p_1 \lor p_0) \land (p_2 \lor (p_1 \land p_0))$. f) $(p_1 \to p_2) \leftrightarrow (\neg p_2 \to \neg p_1)$.
- **2.12** Considere que φ e ψ são fórmulas cujo conjunto de variáveis é $\{p_1, p_2\}$ e $\{p_1, p_2, p_3\}$, respetivamente, e que têm as seguintes tabelas de verdade:

p_2	φ
1	0
0	1
1	1
0	0
	1 0 1

p_1	p_2	p_3	ψ
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	1

Determine FND's e FNC's logicamente equivalentes a cada uma das fórmulas.

- **2.13** Será que existem outros conetivos binários para além de \land , \lor , \rightarrow , e \leftrightarrow ? Para responder a esta questão, adotemos esta definição: um conetivo binário \diamond é determinado pela sua função de verdade $v_{\diamond}: \{0,1\}^2 \longrightarrow \{0,1\}.$
 - a) Quantos conetivos binários existem?
 - **b)** Para cada $v_{\diamond}: \{0,1\}^2 \longrightarrow \{0,1\}$, escreva v_{\diamond} como uma tabela de verdade e traduza essa tabela de verdade como uma FND.
 - c) Conclua que $\{\neg, \land, \lor\}$ permaneceria um conjunto completo de conetivos, mesmo se tivéssemos adoptado no Cálculo Proposicional outros conetivos binários.

Universidade do Minho Folha 5

- 2.14 De entre os seguintes conjuntos de fórmulas, indique os que são consistentes e os que são inconsistentes.
- $\{p_0 \land p_2, p_1 \to \neg p_3, p_1 \lor p_2\}.$ **b)** $\{p_0 \lor \neg p_1, p_1, p_0 \leftrightarrow (p_2 \lor p_3)\}.$

- $\mathbf{d)} \quad \mathfrak{F}^{CP}_{\{\vee,\wedge\}}.$
- **2.15** Sejam $\Gamma, \Delta \subseteq \mathcal{F}^{CP}$. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações.
 - a) Se $\Gamma \cup \Delta$ é consistente, então Γ e Δ são conjuntos consistentes.
 - b) Se Γ e Δ são conjuntos consistentes, então $\Gamma \cup \Delta$ é consistente.
 - c) Se Γ é consistente e $\varphi \in \Gamma$, então $\neg \varphi \notin \Gamma$.
 - d) Se Γ contém uma contradição, então Γ é inconsistente.
- 2.16 Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - **a)** $p_3 \lor p_0, \neg p_0 \models p_3.$
- $\mathbf{b)} \quad p_0 \vee \neg p_1, p_1 \vee p_2 \models p_0 \vee p_2.$
- c) $\neg p_2 \to (p_1 \lor p_3), \neg p_2 \models \neg p_1.$ d) para todo $\varphi, \psi, \sigma \in \mathcal{F}^{CP}, \neg \psi, \psi \to \sigma \models \sigma \lor \varphi.$
- **2.17** Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$ e Γ um conjunto de fórmulas. Demonstre que:

- a) $\varphi \lor \psi, \neg \varphi \lor \sigma \models \psi \lor \sigma.$ b) $\models \varphi \to \psi$ se e só se $\varphi \models \psi.$ c) $\Gamma \models \varphi \lor \psi$ se e só se $\Gamma, \neg \varphi \models \psi.$ d) Γ é inconsistente se e só se $\Gamma \models \bot.$
- **2.18** Considere as seguintes afirmações:
 - Se a porta do cofre foi arrombada, então: o inspetor Heitor desvenda o crime ou o segurança Bragança é culpado.
 - O segurança Bragança não é culpado se e só se: a porta do cofre não foi arrombada e o inspetor Heitor desvenda o crime.
 - Não é verdade que: o segurança Bragança não é culpado ou a porta do cofre foi arrombada.
 - a) Exprima as afirmações anteriores através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar as frases atómicas.
 - b) Admitindo que todas as afirmações são verdadeiras, podemos concluir que o inspetor Heitor desvenda o crime? Justifique.
- 2.19 O Carlos, o João e o Manuel, suspeitos de um crime, fizeram os seguintes depoimentos, respetivamente:
 - O João é culpado, mas o Manuel é inocente.
 - Se o Carlos é culpado, o Manuel também o é.
 - Eu estou inocente, mas um dos outros dois é culpado.
 - a) Os três depoimentos são consistentes?
 - b) Algum dos depoimentos é consequência dos outros dois?
 - c) Supondo os três réus inocentes, quem mentiu?
 - d) Supondo que todos disseram a verdade, quem é culpado?
 - e) Supondo que os inocentes disseram a verdade e que os culpados mentiram, quem é culpado?

Universidade do Minho Folha 6

Dedução Natural para o Cálculo Proposicional 3.

- a) Indique uma derivação em DNP cuja conclusão seja $p_0 \wedge p_1$ e cuja única hipótese não 3.1 cancelada seja $p_1 \wedge p_0$.
 - b) Indique duas derivações distintas em DNP de conclusão $p_0 \to (p_1 \to (p_0 \lor p_1))$ e sem hipóteses por cancelar.
 - c) Indique as subderivações de cada uma das derivações que apresentou em a) e em b).
- **3.2** Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$. Encontre demonstrações em DNP das fórmulas abaixo indicadas.

a)
$$(\varphi \wedge \psi) \rightarrow (\varphi \vee \psi)$$
.

b)
$$(\varphi \to (\psi \to \sigma)) \to ((\varphi \to \psi) \to (\varphi \to \sigma)).$$

c) $\varphi \to \varphi$.

d)
$$(\neg \varphi \lor \psi) \to (\varphi \to \psi)$$
.

e)
$$\varphi \leftrightarrow \neg \neg \varphi$$
.
f) $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)) \leftrightarrow (\varphi \leftrightarrow \psi)$.
g) $(\varphi \lor \psi) \leftrightarrow (\psi \lor \varphi)$.
h) $(\varphi \land \psi) \leftrightarrow \neg (\neg \varphi \lor \neg \psi)$.

h)
$$(\varphi \wedge \psi) \leftrightarrow \neg(\neg \varphi \vee \neg \psi)$$

- **3.3** Mostre que:
 - **a)** $p_0 \to p_1, \neg p_1 \vdash \neg p_0.$
 - **b)** $p_0 \rightarrow p_1, p_1 \rightarrow p_2, p_2 \rightarrow p_0 \vdash ((p_0 \leftrightarrow p_1) \land (p_1 \leftrightarrow p_2)) \land (p_0 \leftrightarrow p_2).$
 - c) $\{p_0 \lor p_1, \neg p_0 \land \neg p_1\}$ é sintaticamente inconsistente.
- 3.4 Represente o raciocínio que se segue através de uma relação de consequência sintática e construa uma derivação em DNP que prove a validade dessa relação: O Tiago disse: "Vou almoçar ao McDonald's ou à Pizza Hut". E, acrescentou: "Se comer no McDonald's, fico mal disposto e não vou ao cinema". Nesse dia, a Joana encontrou o Tiago no cinema e conclui: "O Tiago foi almoçar à Pizza Hut".
- **3.5** Demonstre as seguintes proposições, para todo $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$.
 - a) $\Gamma \vdash \varphi \land \psi$ se e só se $\Gamma \vdash \varphi$ e $\Gamma \vdash \psi$.
 - **b)** $\Gamma \vdash \varphi$ se e só se $\Gamma, \neg \varphi \vdash \bot$.
 - c) $\Gamma \vdash \perp$ se e só se $\Gamma \vdash p_0 \land \neg p_0$.
 - d) Se Γ , $\neg \varphi \vdash \varphi$, então $\Gamma \vdash \varphi$.
- **3.6** Sejam $\varphi, \psi \in \mathfrak{F}^{CP}$ fórmulas. A fórmula $((\varphi \to \psi) \to \varphi) \to \varphi$ é chamada a *Lei de Peirce*. Mostre que a Lei de Peirce é um teorema de DNP. (Sugestão: tenha em atenção a resolução da alínea d) do exercício anterior.)
- **3.7** Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que:
 - a) $(p_0 \vee p_1) \to (p_0 \wedge p_1)$ não é um teorema de DNP.
 - **b)** $p_0 \vee p_1 \not\vdash p_0 \wedge p_1$.
 - c) $\{p_0 \lor p_1, \neg p_0 \land p_1\}$ é sintaticamente consistente.
 - d) $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$ se e só se Γ é semanticamente inconsistente.
 - e) Se $\Gamma, \varphi \vdash \psi$ e φ é uma tautologia, então $\Gamma \vdash \psi$.

(Sugestão: aplique o Teorema da Correção e/ou o Teorema da Completude.)

Universidade do Minho Folha 7

Sintaxe do Cálculo de Predicados 4.

- 4.1 Escreva as seguintes afirmações como fórmulas para um tipo de linguagem apropriado.
 - a) Todo aquele que é persistente aprende Lógica.
 - b) Quem quer vai, quem não quer manda.
 - c) Nem todos os pássaros voam.
 - d) Se toda a gente consegue, também o João consegue.
 - e) Para todo o número natural que é maior do que 6, o seu dobro é maior do que 12.
 - f) Quaisquer dois conjuntos que têm os mesmos elementos são iguais.
 - g) Existe um inteiro positivo menor do que qualquer inteiro positivo.
 - h) Todo o inteiro positivo é menor do que algum inteiro positivo.
 - i) Não há barbeiro que barbeie precisamente aqueles homens que não se barbeiam a si próprios.
- **4.2** Seja $L = (\{0, f, g\}, \{R\}, \mathcal{N})$ o tipo de linguagem tal que $\mathcal{N}(0) = 0$, $\mathcal{N}(f) = 1$, $\mathcal{N}(g) = 2$, $\mathcal{N}(R) = 2.$
 - a) Explicite a definição indutiva do conjunto dos termos de tipo L.
 - b) Indique quais das seguintes sequências de símbolos constituem termos de tipo L:
 - i)
- ii)
- iii) f(1).
- **iv)** $g(f(x_1, x_0), x_0).$
- $g(x_0, f(x_1)).$ $\mathbf{v})$
- **vi)** $R(x_0, x_1)$.
- c) Calcule o conjunto das variáveis de cada um dos seguintes termos:
 - **i**)
- ii) $q(x_1, f(x_1)).$
- iii)
- $g(x_1, x_2)$. **iv)** $g(x_1, g(x_2, x_3))$.
- d) Para cada um dos termos t da alínea anterior, calcule subt(t).
- e) Para cada um dos termos t da alínea c), calcule $t[g(x_0,0)/x_1]$.
- **4.3** Seja L o tipo de linguagem definido no exercício 4.2.
 - a) Enuncie o teorema de indução estrutural para o conjunto \mathfrak{T}_L .
 - b) Defina, por recursão estrutural, funções $r, h: \mathcal{T}_L \to \mathbb{N}_0$ que a cada termo t fazem corresponder o número de ocorrências de variáveis em t e o número de ocorrências de símbolos de função em t, respetivamente.
 - c) Dê exemplos de termos t_1 e t_2 de tipo L tais que $\#VAR(t_1) = r(t_1)$ e $\#VAR(t_2) <$
 - **d)** Demonstre que, para todo o termo $t \in \mathcal{T}_L$, $\#VAR(t) \leq r(t)$.

Folha 8

4.4 Seja L um tipo de linguagem. Mostre que: para todo o termo $t \in \mathcal{T}_L$, $VAR(t) \subseteq subt(t)$.

- **4.5** Seja $L = (\{0, -\}, \{P, <\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(-) = \mathcal{N}(<) = 2$.
 - a) Dê exemplos de termos de tipo L. Justifique.
 - b) Dê exemplos de fórmulas atómicas de tipo L. Justifique.
 - c) Justifique que cada uma das seguintes palavras é uma fórmula de tipo L.
 - i) $x_2 0 < x_1$.

Universidade do Minho

- ii) $\exists x_0 \forall x_1 (x_1 x_0 < 0).$
- iii) $\forall x_2(\exists x_0(x_0 < x_1) \to \exists x_1(x_2 < x_1 x_0)) \land P(x_2).$
- iv) $\forall x_0(x_0 < x_1) \lor \exists x_1(x_1 < x_0).$
- d) Para cada fórmula da alínea anterior, calcule o conjunto das suas subfórmulas.
- e) Calcule os conjuntos de variáveis livres e de variáveis ligadas de cada uma das fórmulas da alínea c).
- f) A proposição "Para todo $\varphi \in \mathcal{F}_L$, LIV $(\varphi) \cap \text{LIG}(\varphi) = \emptyset$ " é verdadeira?
- **4.6** Para cada uma das fórmulas φ do exercício 4.5 c), calcule $\varphi[x_2 x_0/x_1]$.
- **4.7** Considere o tipo de linguagem L do exercício 4.5. Para cada uma das fórmulas φ do exercício 4.5 c), indique quais das seguintes proposições são verdadeiras.
 - a) A variável x_1 está livre para o termo 0 em φ .
 - **b)** A variável x_1 está livre para o termo x_2 em φ .
 - c) A variável x_2 está livre para qualquer termo de tipo L em φ .
 - d) Toda a variável está livre para o termo $x_1 x_3$ em φ .
- **4.8** Seja L um tipo de linguagem.
 - a) Defina, por recursão estrutural, a função SUBFA : $\mathcal{F}_L \to \mathcal{P}(\mathcal{F}_L)$ que a cada fórmula φ faz corresponder o conjunto das subfórmulas atómicas de φ .
 - b) Sejam φ uma fórmula de tipo L e x uma variável. Demonstre que: se $x \notin LIV(\psi)$ para todo $\psi \in SUBFA(\varphi)$, então $x \notin LIV(\varphi)$.

Exercícios de Lógica EI

Universidade do Minho Folha 9

5. Semântica do Cálculo de Predicados

- **5.1** Considere o tipo de linguagem $L = L_{Arit}$ e a estrutura $E_{Arit} = (\mathbb{N}_0, \overline{})$ (a estrutura usual de tipo L). Sejam a_1 e a_2 atribuições em E_{Arit} tais que $a_1(x_i) = 0$ e $a_2(x_i) = i$, para todo $i \in \mathbb{N}_0$.
 - a) Para cada um dos termos t de tipo L que se seguem, determine $t[a_1]$ e $t[a_2]$, primeiro informalmente, depois formalmente através da definição de valor de termo.
 - i) 0. ii) x_5 . iii) $s(x_2)$. iv) $s(0) + x_3$. v) $s(0 \times (x_2 \times x_3))$. vi) $(s(0) + x_7) \times s(x_1 + x_2)$.
 - b) Para cada uma das fórmulas φ de tipo L que se seguem, calcule $\varphi[a_1]$ e $\varphi[a_2]$, primeiro informalmente, depois formalmente através da definição de valor de fórmula.
 - c) Para cada uma das fórmulas φ da alínea anterior, determine

$$(\forall x_1 \varphi)[a_1]$$
 $(\forall x_1 \varphi)[a_2]$ $(\exists x_1 \varphi)[a_1]$ $(\exists x_1 \varphi)[a_2]$

- d) Indique se alguma das fórmulas da alínea b) é válida na estrutura E_{Arit} .
- e) Se $LIV(\varphi) = \{y_1, \dots, y_n\}$, a fórmula $\forall y_1 \dots \forall y_n \varphi$ diz-se um fecho universal de φ . Para cada uma das fórmulas φ da alínea b), considere ψ um fecho universal de φ e diga qual o valor lógico que E_{Arit} determina para ψ .
- **5.2** Repita o exercício anterior, considerando a estrutura $E = (D, \overline{})$, de tipo L, com $D = \{d_1, d_2\}$, e as atribuições a_1 e a_2 em E a seguir definidas:

$$\begin{array}{lll} \overline{0} = d_1 & \equiv \subseteq D^2 & \equiv = \{(d_1,d_1),(d_2,d_2)\} \\ \overline{s}:D \to D & \overline{s}(x) = x & \overline{<} \subseteq D^2 & \overline{<} = \{(d_1,d_1),(d_2,d_2)\} \\ \overline{+}:D^2 \to D & \overline{+}(x,y) = d_2 & a_1:\mathcal{V} \to D & a_1(x) = d_2 \\ \overline{\times}:D^2 \to D & \overline{\times}(x,y) = d_1 \text{ sse } x = y & a_2:\mathcal{V} \to D & a_2(x_i) = d_2 \text{ sse } i \text{ \'e par.} \end{array}$$

- **5.3** Seja $L = L_{Arit}$.
 - a) Quantas estruturas de tipo L existem com domínio $\{0\}$? E domínio $\{0,1,2\}$?
 - **b)** Defina uma estrutura de tipo L com domínio $\{0,1,2\}$.
- **5.4** Seja $L = L_{Arit}$ e sejam E_1 e E_2 as estruturas usuais de tipo L com domínios \mathbb{N}_0 e \mathbb{Z} respectivamente. Para cada i = 1, 2, seja $\Gamma_i = \{ \varphi \in \mathcal{F}_L | \varphi \text{ \'e v\'alida em } E_i \}$. Mostre que nem $\Gamma_1 \subseteq \Gamma_2$, nem $\Gamma_2 \subseteq \Gamma_1$.
- **5.5** Suponha que L tem um símbolo de relação binário R. Seja $\Gamma = \{\varphi_1, \varphi_2, \varphi_3\}$, onde

$$\varphi_{1} = \forall x_{0} R(x_{0}, x_{0})
\varphi_{2} = \forall x_{0} \forall x_{1} (R(x_{0}, x_{1}) \to R(x_{1}, x_{0}))
\varphi_{3} = \forall x_{0} \forall x_{1} \forall x_{2} ((R(x_{0}, x_{1}) \land R(x_{1}, x_{2})) \to R(x_{0}, x_{2}))$$

- a) Seja $E = (D, \overline{})$ um modelo de Γ . Caracterize \overline{R} .
- b) Suponha que L tem também duas constantes c_1 e c_2 . Mostre que existem modelos quer de $\Gamma \cup \{\neg R(c_1, c_2)\}$, quer de $\Gamma \cup \{R(c_1, c_2)\}$.

- $\mathbf{5.6}$ Seja L um tipo linguagem com um símbolo de relação binário =, seja D um conjunto com n elementos, para algum $n \geq 2$, e seja — uma interpretação de L em D que interpreta = como a relação identidade em D e seja $E = (D, \overline{\ })$. Diga, justificando, quais das seguintes fórmulas em L são universalmente válidas, válidas em E, ou satisfazíveis.
 - a) $x_1 = x_2$.

Universidade do Minho

- **b**) $x_1 = x_1$.
- c) $\forall x_1 \, x_1 = x_2$.

- **d)** $\forall x_1 x_1 = x_1$. **e)** $\exists x_1 x_1 = x_2$. **f)** $\exists x_1 x_1 = x_1$.
- **g)** $\exists x_1 \exists x_2 \ x_1 = x_2$. **h)** $\forall x_1 \exists x_2 \ x_1 = x_2$. **i)** $\exists x_1 \forall x_2 \ x_1 = x_2$.

- **5.7** Seja L um tipo de linguagem e sejam φ, ψ fórmulas de tipo L. Mostre que:

 - **a)** $\models (\forall x \varphi \lor \forall x \psi) \to \forall x (\varphi \lor \psi)$. **b)** $\not\models \forall x (\varphi \lor \psi) \to (\forall x \varphi \lor \forall x \psi)$.
 - **c)** $\models \exists x(\varphi \land \psi) \rightarrow (\exists x\varphi \land \exists x\psi).$ **d)** $\not\models (\exists x\varphi \land \exists x\psi) \rightarrow \exists x(\varphi \land \psi).$
 - $\mathbf{e)} \models \exists x \forall y \varphi \rightarrow \forall y \exists x \varphi.$
- **f)** $\not\vDash \forall x \exists y \varphi \rightarrow \exists y \forall x \varphi$.
- **5.8** Sejam L um tipo de linguagem, φ, ψ fórmulas de tipo L, $Q \in \{\forall, \exists\}$ e $\Box \in \{\lor, \land\}$. Mostre que: se $x \notin LIV(\psi)$, então $(Qx\varphi)\Box\psi \Leftrightarrow Qx(\varphi\Box\psi)$.
- 5.9 Seja L um tipo de linguagem.
 - a) Mostre que, para todo $\varphi, \psi \in \mathcal{F}_L$ tais que $x \notin LIV(\psi)$, se tem:

 - i) $\models (\forall x \varphi \to \psi) \leftrightarrow \exists x (\varphi \to \psi).$ ii) $\models (\exists x \varphi \to \psi) \leftrightarrow \forall x (\varphi \to \psi).$

Folha 10

- iii) $\models (\psi \to \exists x \varphi) \leftrightarrow \exists x (\psi \to \varphi).$ iv) $\models (\psi \to \forall x \varphi) \leftrightarrow \forall x (\psi \to \varphi).$
- b) Mostre que, na alínea anterior, a condição $x \notin LIV(\psi)$ é necessária.
- c) Conclua que, para toda a fórmula φ em L, $\models \exists x(\varphi \to \forall x\varphi)$. (Como curiosidade, pense no caso particular de φ representar a condição "x é aprovado a Lógica".)
- ${\bf 5.10}\,$ Seja Lum tipo de linguagem. Uma fórmula φ de tipo L diz-se em forma normal prenexa se φ tem a forma $Q_1y_1\cdots Q_ny_n\psi$, onde $Q_i\in\{\forall,\exists\},\ y_i\in\mathcal{V}\ \mathrm{e}\ \psi\ \mathrm{\acute{e}}\ \mathrm{uma}\ \mathrm{f\acute{o}rmula}\ \mathrm{de}\ \mathrm{tipo}\ L$ sem ocorrências de quantificadores. Considere $L=L_{Arit}$. Para cada uma das fórmulas φ de tipo L a seguir indicadas, encontre outra que seja logicamente equivalente a φ e esteja em forma normal prenexa.
 - **a)** $(\forall x_0 \, x_0 = 0) \lor (\exists x_0 \, 0 < x_0).$ **b)** $x_0 = 0 \to \exists x_1 \, x_0 < x_1.$

 - c) $x_0 < x_1 \to \exists x_0 \, s(x_0) < x_1$. d) $(\forall x_0 \exists x_1 \, x_1 < x_0) \to 0 = s(0)$.
- 5.11 Seja L um tipo de linguagem. Mostre que as seguintes afirmações são verdadeiras para todos φ , ψ e σ fórmulas de tipo L e todo $x \in \mathcal{V}$.

(Curiosidade: estas afirmações correspondem a alguns silogismos aristotélicos, cujos nomes medievais estão indicados.)

- a) Barbara
- $\forall x(\psi \to \varphi), \forall x(\sigma \to \psi) \models \forall x(\sigma \to \varphi).$
- b) Darii
- $\forall x(\psi \to \varphi), \exists x(\sigma \land \psi) \models \exists x(\sigma \land \varphi).$
- **c**)
- Cesare $\forall x(\psi \to \neg \varphi), \forall x(\sigma \to \varphi) \models \forall x(\sigma \to \neg \psi).$
- d) Festino
- $\forall x(\psi \to \neg \varphi), \exists x(\sigma \land \varphi) \models \exists x(\sigma \land \neg \psi).$
- **e**) Datisi
- $\forall x(\sigma \to \varphi), \exists x(\sigma \land \psi) \models \exists x(\psi \land \varphi).$
- f)
- Ferison $\forall x(\sigma \to \neg \varphi), \exists x(\sigma \land \psi) \models \exists x(\psi \land \neg \varphi).$