The draft for the cost minimization of a federated cloud participant

Abstract—We plan to consider the assignment of virtual machines under the dynamic request arrival scenario. The objective is to minimize the total cost.

I. SYSTEM MODEL

We study the problem that how an individual cloud provider in the federated clouds minimize its cost.

A. Cloud federation and job model

We consider a cloud federation with J cloud providers in total. N^j is the number of servers in cloud $j, 1 \leq j \leq J$. Each cloud in the federation provides M types of instances(i.e., virtual machines). Each server in cloud j can host H^j_m type m instances, $1 \leq m \leq M$. The price for type m instance of cloud j is p^j_m per unit time. The price for cloud j transferring data out or in is p^j_{do} or p^j_{dj} per unit volume.

We consider a time slotted system. Let t=0,1,2,3...,T be the time slots. We model users' requests for a bundle of instances for a fixed time size as jobs. One job type is denoted by a (m+1)-tuple $(s_1^k,...,s_M^k,w^k)$. $s_m^k,1\leq m\leq M$ is the required number of type m instances by job type k. w^k is the required service time of job type k. Let K be the set of all job types. Let $N_m^j(t)$ be the number of servers configured to provide type m instances at time t. Each server in cloud t can host t type t instances.

Let $\mathcal{A}_k^j(t)$ be the set of type k jobs arriving at time slot t in cloud j, $|\mathcal{A}_k^j(t)| = A_k^j(t)$. Let $\mu_k^j(t)$ denote the number of type k jobs at cloud j newly served at time slot t. Then, the number of type k jobs at cloud j newly served at time slot $t-w, 0 \leq w \leq w^k-1$ is $\mu_k^j(t-w), 0 \leq w \leq w^k-1$.

We use a queue Q_k^j to denote the workload of job type k at cloud j. The dynamic of Q_k^j is as follows:

$$Q_k^j(t+1) = \max\{Q_k^j(t) - \sum_{w=0}^{w^k - 1} \mu_k^j(t-w), 0\} + w^k \cdot A_k^j(t),$$

$$1 \le j \le J, 1 \le k \le K.$$
(1)

Hence, there are $\mu_k^j(t-w)$ type k jobs running in the federation newly served at time slot t-w. Indexing the $\mu_k^j(t-w)$ jobs from 1 to $\mu_k^j(t-w)$. Let $\mathcal L$ be the set of all jobs being served in the federation at one time slot. A job l in $\mathcal L$ can be denoted by a 4-tuple (j,k,t,h), which means the job is the h-th type k job from cloud j that receive service at time slot t. With the denotation for a job, we use a 2-tuple to denote an instance s of job l (m,a), which means the instance

is the a-th one of job l's type m instances. Let S_l be the set of all instances of job l.

Each job is either served or dropped (subject to a penalty) before the maximum response delay d.

Let $I_{l,s}^i$ be the indicator whether the instance $s \in \mathcal{S}_l$ in cloud i or not.

$$I_{l,s}^i = \text{1if instance } s \text{ is in cloud } i$$

$$I_{l,s}^i = \text{0if not.} \tag{2}$$

The number of type m instances that is purchased by cloud j from cloud i is:

$$r_m^{ji} = \sum_{l:j_l=j} \sum_{s:m_s=m} I_{l,s}^i, 1 \le i \le J$$
 (3)

The total type m instances run in cloud i satisfies the following constraint:

$$\sum_{j=1}^{J} r_m^{ji} \le N_m^i \cdot n_m,$$

$$1 \le i \le J, 1 \le m \le M. \tag{4}$$

The traffic from cloud j to cloud i,i.e., tranferring into cloud i, is

$$T_{ji} = \sum_{l \in \mathcal{L}} \sum_{s_1! = s_2} I_{l,s_1}^j \cdot I_{l,s_2}^i T_{s_1,s_2}$$
 (5)

The migration of instance s in a job l can be calculated by

$$G_{l,s} = \frac{\sum_{i=1}^{J} |[I_{l,s}^{i}(t) - I_{l,s}^{i}(t-1)]|}{2}.$$
 (6)

If $G_{l,s} = 0$, there is no migration, else, instance s in a job l is migrated. We can use this to indicate whether there is a migration or not.

B. Problem definition

We formulate the cost minimization problem for one cloud provider in the federation.

Let us consider the cost at time slot t of cloud j in the federation.

The operational cost includes the electricity cost, is related to the number of on servers:

$$C_o = \beta^j \cdot \sum_{m=1}^M N_m^j$$

The network cost related to transferring data out and in:

$$C_d = p_{do}^j \cdot \sum_{i!=j} T_{ji} + p_{di}^j \cdot \sum_{i!=j} T_{ij}$$

The migration cost related to the migration times:

$$C_m = \alpha_j \cdot \sum_{l \in \mathcal{L}} \sum_s G_{l,s}$$

The cost of running instances in other cloud providers, which is the total cost of running instances in other providers minus the total revenue by running instances from other providers:

$$C_{s} = \sum_{i!=j}^{M} \sum_{m=1}^{M} p_{m}^{i} \cdot r_{m}^{ji} - \sum_{i!=j}^{M} \sum_{m=1}^{M} p_{m}^{j} \cdot r_{m}^{ij}$$

Hence, the total cost at time slot t is:

$$C = C_o + C_d + C_m + C_s$$

The time-averaged cost of cloud j for running instances is:

$$\overline{C} = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} C(t) \tag{7}$$

The cost minimization problem at cloud j can be formulated as follows:

$$\min \overline{C}$$

constraints 1 - 6.

The variables include $\mu_k^j(t)$, i.e., the number of new type k jobs served at time t, $I_{l,s}^j$, i.e., the instance s assignment indicator, N_m^j , i.e., the instance provisioning)