Transductive Learning: Motivation, Model, Algorithms

Olivier Bousquet

Centre de Mathématiques Appliquées Ecole Polytechnique, FRANCE olivier.bousquet@m4x.org

University of New Mexico, January 2002

• Provide motivation/potential applications

• Sketch algorithmic issues

• Sketch theoretical problems

 \rightarrow Induction vs Transduction

• Algorithms

• Formalization

• Open issues

The learning problem

Induction

We consider a phenomenon f that maps inputs (instances) \boldsymbol{x} to outputs (labels) $y = f(\boldsymbol{x})$ (here $y \in \{-1, 1\}$)

- Given a set of example pairs (training set) $\{(\boldsymbol{x}_i, y_i) : i = 1, \dots, n\},\$
- \bullet the goal is to recover f
- \rightarrow This will allow to predict the label y_{n+1} of a previously unseen instance \boldsymbol{x}_{n+1} .

Example: Face recognition

Train on pictures of a person and recognize him/her the next day

Shortcomings

But there are situations in which

- Obtaining labels is expensive
- Obtaining instances is cheap
- We know in advance the instances to be classified
- We do not care about the classification function
- \rightarrow Transduction applies

Examples

Information retrieval

Information retrieval with relevance feedback

- User enters a query
- Machine returns sample documents
- User labels the documents (relevant/non-relevant)
- Machine selects most relevant documents from database

Relevance

- Obtaining labels requires work from the user
- Obtaining documents is automatic (from database)
- Instances to be classified: documents of the database
- No need to know the classification function (changes for each query)

The learning problem

Transduction

We consider a phenomenon f that maps inputs (instances) \boldsymbol{x} to outputs (labels) $y = f(\boldsymbol{x})$ (here $y \in \{-1, 1\}$)

- Given a set of labeled examples $\{(\boldsymbol{x}_i, y_i) : i = 1, \dots, n\}$,
- and a set of unlabeled examples x'_1, \ldots, x'_m
- the goal is to find the labels y'_1, \ldots, y'_m
- \rightarrow No need to construct a function f, the output of the transduction algorithm is a vector of labels.
 - → Transfer the information from labeled examples to unlabeled.

Using Transduction for Prediction

Given training data and data to be classified, one can either

- Use induction: build \hat{f} and classify the data with it
- Use transduction directly for classifying data

Even in an inductive setting, one can use transduction.

Example: News filtering

- First day user classifies news according to interest
- Subsequent days, machine classifies incoming news based on first day labels
- → Train on the fly, when receiving the data to be classified Retrain the machine every day
 - → Maximally use the information and tune the result to the news of the day

Three Learning Tasks

- Induction: $\{(\boldsymbol{x}_i, y_i) : i = 1, \dots, n\} \mapsto f$
- Induction with unlabeled data: $\{(\boldsymbol{x}_i, y_i) : i = 1, \dots, n\} \cup \{x'_1, \dots, x'_m\} \mapsto f$
- Transduction: $\{(\boldsymbol{x}_i, y_i) : i = 1, ..., n\} \cup \{x'_1, ..., x'_m\} \mapsto (y'_1, ..., y'_m)$.

The choice will depend on

- Availability of unlabeled data
- Need for interpretability
- Time considerations

• Induction vs Transduction

 \rightarrow Algorithms

• Formalization

• Open issues

Algorithms

Linear classification

Instances represented in \mathbb{R}^d .

Find a linear separation.

Large margin classification

Margin = distance from the hyperplane to the closest point

Maximize the margin \rightarrow leads to 'robust' solution \rightarrow Support Vector Machines

Transduction

- Assumption: separated classes
- Maximize the margin on unlabeled instances.

Implementation

Goal: Maximize the margin on all examples

Algorithmic issues

- no unlabeled data \rightarrow quadratic optimization (n^3)
- unlabeled data \rightarrow combinatorial problem (NP)
- \rightarrow Need heuristics
 - \rightarrow Greedy optimization

Algorithms

Greedy

- Only the examples in the margin have an influence
- Label the ones with largest confidence (largest margin)

 \rightarrow May add backtracking

• Influenced by starting point (induction)

ullet Not fully transductive because builds an \hat{f}

• Assumption that data is separated

 \rightarrow Can we make the data separated?

Kernel Machines

Support Vector Machines

• Map data into a feature space

$$\boldsymbol{x} \in \mathcal{X} \to \Phi(\boldsymbol{x}) \in \mathcal{F}$$

• Perform maximal margin classification in feature space

Kernel trick

• Algorithm can be implemented by computing inner products

$$\Phi(\boldsymbol{x}) \cdot \Phi(\boldsymbol{x}') = k(\boldsymbol{x}, \boldsymbol{x}')$$

• Simply choose a kernel and run the linear algorithm on the matrix

$$K = (k(\boldsymbol{x}_i, \boldsymbol{x}_j))_{i,j \in \{1,...,n\}}$$

 $\rightarrow k$ is a measure of similarity. Algorithm works on similarity matrix.

Alignment

- Choice of Kernel = choice of feature space
- Ideal kernel = feature space contains label
- Ideal kernel matrix

$$k_I(\boldsymbol{x}_i, \boldsymbol{x}_j) = y_i y_j$$

Measure distance from ideal kernel: Alignment

$$A(K) = \sum_{i,j} K_{ij} y_i y_j$$

Measures the data separation:

$$A(K) = \sum_{y_i = y_i} k(\boldsymbol{x}_i, \boldsymbol{x}_j) - \sum_{y_i \neq y_j} k(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

Transduction as Optimization

- Maximize alignment on the labeled data
- Corresponds to maximizing data separation
- Diagonalize, fix eigenvectors, optimize eigenvalues

• Induction vs Transduction

• Algorithms

 \rightarrow Formalization

• Open issues

• Data is fixed

$$x_1, \dots, x_{n+m} \in \mathcal{X}$$
$$y_1, \dots, y_{n+m} \in \{-1, 1\}$$

• Oracle (teacher) chooses randomly a subset

$$I \subset \{1, \dots, n+m\}$$

• Input to algorithm

$$x_1, \dots, x_{n+m}$$

$$I$$

$$(y_i)_{i \in I}$$

• Output of algorithm

$$(\hat{y}_i)_{i\in\{1,\dots,n+m\}}$$

Formalization

Random choice of I

Randomness models

- Fixed size
 - Choose n examples among n+m with uniform probability for every choice, $\binom{n+m}{n}^{-1}$. |I|=n.
- Variable size

For each $i \in \{1, \ldots, n+m\}$ choose independently with probability $\frac{n}{n+m}$ to include it.

$$\rightarrow \mathbb{E}[|I|] = n.$$

 \rightarrow We want to make statements that hold with high probability over the random choice of I.

Risk

Recall output $\hat{\boldsymbol{y}} = \hat{y}_1, \dots, \hat{y}_{n+m}$.

 $\hat{\boldsymbol{y}}$ is an n+m dimensional vector in $\{-1,1\}^{n+m}$.

• Test error

$$R(\bar{I}, \boldsymbol{y}) = \frac{1}{|\bar{I}|} \sum_{i \in \bar{I}} \mathbb{I}\{\hat{y}_i \neq y_i\}$$

• Cannot be computed: need to estimate it from the data

Error bounds

We estimate the test error by the empirical error

$$R(I, \hat{m{y}})$$

We want to prove

$$\mathbb{P}_{I}\left[R(\bar{I},\hat{\boldsymbol{y}}) - R(I,\hat{\boldsymbol{y}}) > \epsilon\right] \leq \delta$$

Choose a set of vectors $\mathcal{Y} \subset \{-1,1\}^{n+m}$. We want to bound

$$\mathbb{P}_{I}\left[\sup_{\boldsymbol{y}\in\mathcal{Y}}R(\bar{I},\boldsymbol{y})-R(I,\boldsymbol{y})>\epsilon\right]$$

When n=m,

$$R(\bar{I}, \boldsymbol{y}) \le R(I, \boldsymbol{y}) + KC(\mathcal{Y}) + O\left(\frac{1}{\sqrt{n}}\right)$$

Where C Rademacher complexity of \mathcal{Y} .

When m > n,

$$R(\bar{I}, \boldsymbol{y}) \leq R(I, \boldsymbol{y}) + K\bar{C}(\mathcal{Y}_{2n}) + O\left(\frac{1}{\sqrt{n}}\right)$$

where $\bar{C}(\mathcal{Y}_{2n})$ is the average Rademacher complexity computed on subsets of size 2n of the data.

 \rightarrow Complexity can be computed from x_i only. Labels don't play any role!

• Induction vs Transduction

• Algorithms

• Formalization

 \rightarrow Open issues

Model Selection

Induction

- Define a structure without any data
- Compute empirical complexity

Transduction

- Define a structure with all the x_i
- Know exact complexity of this structure
- \rightarrow Data-dependent classes.
 - \rightarrow Justifies the margin approach.

Open Problems

• Analyze alignement algorithm in that framework

• Provide model selection methods

• Provide Rademacher estimates

• Prove that unlabeled data really help

29

• Different framework with potentially interesting applications

• Very few people studied it: a lot remains to be done

- Challenges
 - Good empirical evidence \rightarrow justification?
 - Algorithmic \rightarrow make transduction efficient
 - Theoretical \rightarrow provide guarantees