比改日期	

深圳大学实验报告

课程名称:	大 ·	学物理实验(一)	
实验名称:	多	普勒测声速	
学 院:	土木与	<u>交通工程学院</u>	
指导教师 <u>:</u>		韩成	
报告人:	孙浩滨	组号:	08
学号	2019092039	实验地点	致原楼
实验时间:		<u>5</u> 月 <u>10</u> 日	
提交时间:		2021.5.17	

1

一、实验目的

- 1、理解声波的多普勒效应。
- 2、理解相位法原理。
- 3、用多普勒效应测量空气中的声速, 并进行 误差分析。
- 4、相位法测量声速,并进行误差分析。

二、实验原理

在x一维方向传播的声波的数学表达式为:

$$A = A_0 \cos \left(2\pi f t - \frac{2\pi}{\lambda} x + \varphi \right) \qquad v = \lambda f$$

1、声波的多普勒效应

声源、介质不动,接收器运动速度为 4 , 可得接收器接收到的频率:

$$f_r = (1 + \frac{v_r}{v_0})f = (1 + M_r)f$$

其中 ν 为接收器运动的速度, ν 为声波的运动速度。向着声源运动时 ν (或 M) 为正,反之为负。

接收器、声源静止

接收器运动、声源静止

$$f_1 = \frac{n_1}{\Delta t}$$

$$f_2 = \frac{n_2}{\Delta t}$$

$$n_2 = n_1 + \frac{v_r \Delta t}{\lambda} \qquad v_0 = \lambda f_1$$

$$f_2 = f_1 + \frac{v_r f_1}{v_0} = \left(1 + \frac{v_r}{v_0}\right) f_1$$

$$\left(1 + \frac{v_r + v_s}{v_0 - v_s}\right) f_1 = \left(\frac{v_0 + v_r}{v_0 - v_s}\right) f_1$$

2、相位法原理

发射波为 S_1 , 接收波为 S_2 , 两束波频率相同,分别输入示波器的 X 和 Y 通道,即可看见频率比为 1:1 的李萨如图形。

$$\begin{cases} X = A_1 \cos(\omega t) \\ Y = A_2 \cos(\omega t + \Delta \varphi) \end{cases} \qquad \Delta \varphi = 2\pi \frac{1}{\lambda}$$

改变发射器和接收器之间的距离,相位差发生变化,即可观察到 李萨如图形的变化。相位差变化2π,则距离改变λ。

三、实验仪器:

(1) 主测试仪面板图

(2) 智能运动控制面板图

四、实验内容:

多普勒法

换能器谐振频 f=37730Hz,声源、介质不动,接收器运动速度为 ν 。

$$f_r = (1 + \frac{v_r}{v_0})f \ v_0 = \frac{f}{f_r - f}v_r = \left|\frac{f}{\Delta f}\right|v_r$$

切换到"动态测量",设定小车速度,使小车在限位区间内正或反运行,记下测量频率和源频率之差 Δf 正和 Δf 反,以及智能运动控制系统给出的小车速度 ν 。

相位法

五、数据记录:

换能器谐振频率 f = 37730Hz

多普勒法数据记录

v _r (m/s)	△ f IE (Hz)	△f反(Hz)	$\Delta f = (\Delta f \mathbb{E} + \Delta f \mathbb{Q})/2$	$v = f/\Delta f \times v_r $ (m/s)

$$\overline{v} = \frac{v_1 + v_2 + v_3 + v_4 + v_5}{5}$$

$$\bar{v} = \frac{v_1 + v_2 + v_3 + v_4 + v_5}{5} \qquad \Delta = \frac{\bar{v} - v_0}{v_0} \times 100\%$$

相位法数据记录(逐差法)

单位:

					,
L ₁	L ₂	L ₃	L ₄	L ₅	L ₆

$$\overline{3\lambda} = \frac{(L_4 - L_1) + (L_5 - L_2) + (L_6 - L_3)}{3} \qquad \overline{v} = \overline{\lambda} f \qquad \Delta = \frac{\overline{v} - v_0}{v_0} \times 100\%$$

$$\overline{v} = \overline{\lambda} f$$

$$\Delta = \frac{\overline{v} - v_0}{v_0} \times 100\%$$

六、数据处理	

十.	结果陈述:	
-	コロフトアルメビュ	i

实验通过多普勒法及相位法测声速,最后测得声速为 346.972m/s, 与实际声速的相对误差为 101.95%。

八、实验总结与思考题

该实验的测量过程中需要调节仪器使其达到共振,误差来源在此;另外,相对频率的读数略不稳定,也有可能产生误差。低速测量时,多普勒效应的相对误差较大。

思考题:

- 1、多普勒效应中, 若声源的速度超过了声速 (靠近或远离), 思考会出现什么现象, 为什么? 频率变化只和相对速度有关, 但如果相对于介质的速度都超过了波速, 则波没有机会传播。前进方向上波源速度接近波速时, 频率变得无穷大, 超过波速后变成负值, 没有物理意义。
 - **2、请简述实验中测试系统谐振频率(压电陶瓷的共振频率)的方法,并阐述其原理。** 使用阻抗分析仪进行测量,对压电陶瓷振动进行扫频操作,从而测得其共振频率。

北巴邦	게표됐	四辛口	ri
拍守豹	が 切り 加り れり れり の の の の の の の の の	別尽り	ו'ו:

成绩评定:

预习 (20分)	操作及记录 (40 分)	数据处理 20 分	结果陈述实验 总结10分	思考题 10 分	报告整体 印象	总分