Exam1_Study_Guide.md 2025-09-25

Exam 1 Study Guide - Algorithm Analysis & Foundations

Core Algorithm Analysis Concepts

Algorithm Properties

- Correctness: Produces correct output for all valid inputs
- Efficiency: Uses computational resources wisely (time/space)
- Clarity: Can be understood and implemented
- **Generality**: Solves a class of problems, not just one instance

Computational Model: Word-RAM

- Fundamental Operations (O(1)): Memory read/write, arithmetic (+,-,*,/,%), comparisons, logical operations, conditionals
- NOT O(1): String operations, big integer arithmetic, dynamic memory allocation

Complexity Analysis

- Time Complexity: Operations as function of input size
- Space Complexity: Memory usage as function of input size
- Best/Average/Worst Case: Focus on worst-case for upper bounds

Asymptotic Notation

Big O Families

- O(g(n)): Upper bound $f(n) \le c \cdot g(n)$ for large n
- $\Omega(g(n))$: Lower bound $f(n) \ge c \cdot g(n)$ for large n
- $\Theta(g(n))$: Tight bound f(n) = O(g(n)) AND $f(n) = \Omega(g(n))$

Common Growth Rates (fastest to slowest)

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n) < O(n!)$$

Mathematical Foundations

Essential Summations

- Triangular Numbers: $\sum (i=1 \text{ to } n) i = n(n+1)/2$
- Sum of Squares: $\sum (i=1 \text{ to } n) i^2 = n(n+1)(2n+1)/6$
- Geometric Series: $\sum (i=0 \text{ to } n-1) r^i = (r^n 1)/(r-1)$

Logarithm Rules

- Change of Base: log_a(n) = log_b(n)/log_b(a)
- **Product**: log(ab) = log(a) + log(b)

Exam1_Study_Guide.md 2025-09-25

- Quotient: log(a/b) = log(a) log(b)
- **Power**: log(a^b) = b·log(a)
- **Key Insight**: $\log_2(n)$ = "How many times can you divide n by 2?"

Binary Trees

• Perfect tree nodes: 2^(h+1) - 1

• Complete tree height: Llog₂(n) J

• Binary search iterations: Llog₂(n) ⊥ + 1

Peak Finding

1D Peak Finding

• **Problem**: Find index where arr[i] ≥ arr[i-1] and arr[i] ≥ arr[i+1]

• Brute Force: O(n) - check every position

• Divide & Conquer: O(log n) - check middle, recurse on side with larger neighbor

Data Structures

Arrays

• Access: O(1) by index

• **Search**: O(n) unsorted, O(log n) sorted

• Insert/Delete: O(n) due to shifting

Linked Lists

• Access: O(n) to reach position

• Insert/Delete: O(1) if at known position

• **Search**: O(n) always

Dynamic Arrays

• Amortized insert: O(1) average, O(n) when resizing

• **Doubling strategy**: Maintains O(1) amortized time (if double capacity when resizing)

Recurrence Relations

Master Theorem

For T(n) = aT(n/b) + f(n) where $a \ge 1$, b > 1:

Case 1: If $f(n) = O(n^{(\log_b(a) - \epsilon)})$ for $\epsilon > 0 \rightarrow T(n) = O(n^{\log_b(a)})$

Case 2: If $f(n) = \Theta(n^{\log_b(a)}) \rightarrow T(n) = \Theta(n^{\log_b(a)} \cdot \log n)$

Case 3: If $f(n) = \Omega(n^{(\log_b(a) + \epsilon)})$ for $\epsilon > 0 \rightarrow T(n) = \Theta(f(n))$

Common Examples

Exam1_Study_Guide.md 2025-09-25

- Binary Search: $T(n) = T(n/2) + O(1) \rightarrow O(\log n)$
- Merge Sort: $T(n) = 2T(n/2) + O(n) \rightarrow O(n \log n)$

Sorting Algorithms

Comparison-Based Sorting

- **Lower bound**: $\Omega(n \log n)$ for comparison-based algorithms
- **Bubble Sort**: O(n²) Iterative, stable, in-place
- **Selection Sort**: O(n²) Iterative, not stable, in-place
- Insertion Sort: O(n²) Iterative, stable, in-place
- Merge Sort: O(n log n) Divide & conquer, stable, not in-place
- Quick Sort: O(n²) Divide & conquer, not stable, in-place

Linear Sorting

- **Counting Sort**: O(n + k) where k is range Iterative, stable, not in-place
- Radix Sort: O(d(n + k)) where d is digits Iterative, stable, uses counting sort