Optymalizacja Wspomagania Decyzji Sprawozdanie z projektu

Andrzej Smyk

16 stycznia 2017

1 Skrócona treść zadania

OD Dane nr 20

Zakłady chemiczne produkują 3 rodzaje produktów: P1, P2, P3. Wykorzystuje się do tego dwa rodzaje surowca S1 i S2 dostępnego w ilościach, odpowiednio 9000 12000 ton dziennie. Ceny Surowca S1 i S2 wynoszą, odpowiednio 140 i 110 zł za tonę.

Surowce są poddawane wstępnej obróbce w przygotowalni o całkowitej dziennej przepustowości 14722 ton. w wyniku tego powstają trzy półprodukty: D1,D2 i D3. Ilość poszczególnych półproduktów w zależności od surowca kształtuje się następująco

Surowiec	D1	D2	D3
S1	0,2	0,5	0,3
S2	0,1	0,7	0,2

D1 może być bezpośrednio użyty do produkcji P1 i P3. Natomiast D2 i D3 mogą być wykorzystane do bezpośredniej produkcji P2 lub przeznaczone do dalszej obróbki w zakładzie uwodornienia. Koszt przygotowania surowca zależny jest od wielkości dziennego przerobu danego surowca i jest przedstawiony w tabeli poniżej

	Dzienny przerób	Koszt przygotowania
S1	od 1860 ton włącznie	12zł/tonę
	od 1860 do 5398 włącznie	1860*19zł+14zł za każdą tonę powyżej progu 1860 ton
	od 5398	1860*19z+(5398-1860)*14z+10zł za każdą tonę powyżej progu 5398 ton
S2	od 3694 ton włącznie	12zł/tonę
	od 3694 do 8013 włącznie	3694*12zł+16zł za każdą tonę powyżej progu 3694 ton
	od 8013	3694*12zł $+(8013-3694)*16z$ ł $+20z$ ł za każdą tonę powyżej progu 8013 ton

Zakład uwodornienia o przepustowości dziennej 5454 ton wytwarza półprodukty K1 i K2. Ilość poszczególnych półproduktów w zależności od surowca kształtuje się następująco

Półprodukt	D2	D3
K1	0,1	0,4
K2	0,9	0,6

Półprodukty Ki i K2 mogą być użyte do produkcji P1 lub P2, ale nie mogą być użyte do wytworzenia P3. Jeśli kład uwodornienia pracuje, dzienny koszt jego pracy (niezależnie od ilości przetworzonych produktów) wynosi 13 tys. zł. Jeśli nie pracuje, dzienny koszt jest zerowy. Cena sprzedaży hurtowej wynosi: 176 zł/tonę P1, 140 zł/tonę i 109 zł/tonę P3. Zawarte umowy wymagają dostarczenia co najmniej 3495 ton każdego produktu.

Dany produkt finalny jest wytwarzany z półproduktów D1, D2, D3, K1 lub K2 bezpośrednio bez utraty masy, jednak zgodnie z zasadami opisanymi wcześniej.

Należy zaprojektować system wspomagania decyzji, w którym są 4 kryteria: całkowity koszt produkcji oraz względne niedobory każdego produktu. System powinien wykorzystywać metodę punktu odniesienia do agregacji kryteriów.

2 Model

W stworzonym modelu, zgodnie z tym co zostało opisane w treśici zadania, wszystkie pólprodukty i produkty wytwarzane są bez utraty masy, tj. ilość półproduktu/surowca wejściowego musi byc równa ilości półproduktu/produktu wyjściowego.

• ;

2.1 Zmienne decyzyjne

Zmienne ilościowe (w tonach):

 S_i ilości surowca S, i = 1, 2

 s_{ij} ilości surowca Sdla różnych progów kosztu przygotowania, gdzie i to numer surowca, j numer progu

 D_i ilości półproduktów D, i = 1, 2, 3

 K_i ilość półproduktów K, i = 1, 2

 DK_2 ilość półproduktu D2 wykorzystanego w procesie uwodornienia

 DK_3 ilość półproduktu D3 wykorzystanego w procesie uwodornienia

 DP_{ij} ilość półproduktu D_i wykorzystanego w produkcji $P_j, \ i=1,2,3 \quad j=1,2,3$

 KP_{ij} ilość półproduktu K_i wykorzystanego w produkcji $P_i, \ i=1,2 \quad j=1,2$

Zmienne binarne (flagi dodatności):

w flaga pracy zakładu uwodorowienia

 u_{ij} flaga progów kosztu przygotowania surowców S_1 i $S_2, \ i=1,2 \quad j=1,2$

2.2 Ograniczenia

Dostępność surowców:

$$0 \le S_1 \le 9000$$
 (1a)

$$0 \le S_2 \le 12000$$
 (1b)

Całkowita dzienna przepustowość przygotowalni:

$$D_1 + D_2 + D_3 \le 14722 \tag{2}$$

Ilości półproduktów $D_1,\,D_2,\,D_3$ w zależności od surowca:

$$D_1 = 0.2S_1 + 0.1S_2 \tag{3a}$$

$$D_2 = 0.5S_1 + 0.7S_2 \tag{3b}$$

$$D_3 = 0.3S_1 + 0.2S_2 \tag{3c}$$

Całkowita dzienna przepustowość zakładu uwodorowienia:

$$K_1 + K_2 \le 5454$$
 (4)

Półprodukty D_2 i D_3 mogą zostać wykorzystane do bezpośredniej produkcji P2 lub przeznaczone do dalszej obróbki w zakładzie uwodorowienia:

$$D_2 = DP_{22} + DK_2 (5a)$$

$$D_3 = DP_{32} + DK_3 \tag{5b}$$

Ilości poszczególnych półproduktów K_1 i K_2 w zależności od wykorzystanych półproduktów D_2 oraz D_3 :

$$K_1 = 0.1DK_2 + 0.4DK_3 \tag{6a}$$

$$K_2 = 0.9DK_2 + 0.6DK_3 \tag{6b}$$

Do produkcji P1 mogą zostać wykorzystane półprodukty D_1, K_1 oraz K_2 :

$$P_1 = DP_{11} + KP_{11} + KP_{21} (7)$$

Do produkcji P2 mogą zostać wykorzystane półprodukty D_2 , D_3 , K_1 oraz K_2 :

$$P_2 = DP_{22} + DP_{32} + KP_{12} + KP_{22} \tag{8}$$

Do produkcji P_3 może zostać wykorzystany połprodukt D_1 :

$$P_3 = DP_{13} \tag{9}$$

Półprodukt D_1 może zostać wykorzystany do produkcji P_1 oraz P_3 :

$$D_1 = DP_{11} + DP_{13} (10)$$

Półprodukt K_1 może zostać wykorzystany do produkcji P_1 oraz P_2 :

$$K_1 = KP_{11} + KP_{12} (11)$$

Półprodukt K2 może zostać wykorzystany do produkcji P_1 oraz P_2 :

$$K_2 = KP_{21} + KP_{22} \tag{12}$$

Jeśli zakład uwodorowienia pracuje to dzienny koszt jego pracy wynosi 13000 zł., w innym wypadku 0:

$$0 \le K_1 + K_2 \le 5454w \tag{13a}$$

$$0 \le w \le 1 \qquad w \in Z \tag{13b}$$

Koszt przygotowania surowca zależny jest od wielkości dziennego przerobu danego surowca:

• S_1 (koszty malejący):

$$S_1 = s_{11} + s_{12} + s_{13} \tag{14a}$$

$$1860u_{11} \le s_{11} \le 1860 \tag{14b}$$

$$(5398 - 1860)u_{12} \le s_{12} \le (5398 - 1860)u_{11} \tag{14c}$$

$$0 \le s_{13} \le (9000 - 5398)u_{12} \tag{14d}$$

$$0 \le u_{1i} \le 1 \quad u_i \in Z \quad i = 1, 2$$
 (14e)

• S_2 (koszty rosnące):

$$S_2 = s_{21} + s_{22} + s_{23} \tag{15a}$$

$$3694u_{21} \le s_{11} \le 3694 \tag{15b}$$

$$(8013 - 3694)u_{22} \le s_{12} \le (8013 - 3694)u_{21} \tag{15c}$$

$$0 \le s_{13} \le (8013 - 3694)u_{22} \tag{15d}$$

$$0 \le u_{2i} \le 1 \quad u_i \in Z \quad i = 1, 2$$
 (15e)

2.3 Kryteria

Całkowity koszt produkcji składa się z:

• kosztu surowców S_1 oraz S_2 :

$$c_S = 140S_1 + 110S_2 \tag{16}$$

• stałego kosztu pracy zakładu uwodorowienia:

$$c_w = 13000 * w ag{17}$$

• kosztu przygotowania surowca S_1 :

$$c_{s1} = 12s_{11} + 8s_{12} + 5s_{13} \tag{18}$$

• kosztu przygotowania surowca S_2 :

$$c_{s2} = 12s_{21} + 16s_{22} + 21s_{23} \tag{19}$$

Po zsumowaniu wszystkich składników, całkowity koszt wygląda następująco:

$$y_1 = c_w + c_{s1} + c_{s2} + c_s$$

= 13000w + 12s₁₁ + 8s₁₂ + 5s₁₃ + 12s₂₁ + 16s₂₂ + 21s₂₃ + 140S₁ + 110S₂ (20)

Względny niedobór produktów P_1 , P_2 , P_3 :

$$y_2 = \frac{3495 - P_1}{3495} \tag{21a}$$

$$y_3 = \frac{3495 - P_2}{3495} \tag{21b}$$

$$y_4 = \frac{3495 - P_3}{3495} \tag{21c}$$

2.4 Metoda punktu odniesienia

Jako wartość parametru regulacji ϵ jest ustalona jako σ/m , gdzie m jest liczbą kryterów zaś σ arbitralnie dobraną małą stałą. Jako czynnik β przyjęto typową wartość 10^{-3} . Wszystkie mnożniki λ ustalono na 1.

Parametry dla metody punktu odniesienia:

$$\sigma = 10^{-4}$$

$$\varepsilon = \frac{\sigma}{m} = 0.00025$$

$$\lambda_{ij} = 1 \quad \text{dla} \quad i = 1 \dots 4, \quad j = 1 \dots 4$$

$$\beta = 10^{-3}$$

Inżynierska aimplementacja metody punktu odniesienia:

$$\max \quad v + \varepsilon \sum_{i=1}^{m} z_i$$

$$v \le z_i \qquad i = 1 \dots m$$

$$z_i \le \beta \lambda_i (y_i - a_i) \qquad i = 1 \dots m$$

$$z_i \le \lambda_i (y_i - a_i) \qquad i = 1 \dots m$$

3 Model w AMPL

Wszystkie pliki potrzebne do przeprowadzenia symulacji znajdują się w katalogi src. Model został zapisany w pliku model.mod, zaś symulację można uruchomić za pomocą pliku owd.run. Wszystkie ograniczenia w modelu zawierają w nazwach odpowiednie numery konkretnych równań ze sprawozdania.

4 Symulacja

a	\mathcal{S}	D	K	Ь	Koszt	RD_1	RD_2	RD_3	Zysk
[2000000, 1.0000, 1.0000, 1.0000]	[9000, 5720]	[2372, 8504, 3844]	[1698, 3756]	[6894, 6894, 6894]	2047578	-0.9725	-0.9725	0.7333	232514
[2000000, 0.0000, 0.0000, 0.0000]	[9000, 5720]	[2372, 8504, 3844]	[1698, 3756]	[5454, 6894, 6894]	2047578	-0.5605	-0.9725	0.3213	136034
[1844460, 1, 1, 1]	[11000, 1950]	[4595, 4860, 3495]	[5013, 3342]	[4310, 4320, 4320]	1844461	0.1234	0.121	0.121	6889
[0, -1.633, -0.699, 0.065]	[10990, 1940]	[4590, 4849, 3491]	[5004, 3336]	[8657, 4043, 230]	1841761	-0.760	0.177	0.953	401888
[1800000, -1.633, -0.699, 0.065]	[10760, 2110]	[4515, 4916, 3439]	[5013, 3342]	[8664, 4004, 202]	1831077	-0.762	0.1857	0.958	405819
[1800000, -2, -0.699, 0.065]	[10750, 2100]	[4510, 4905, 3435]	[5004, 3336]	[9107, 3743, 0]	1828273	-0.852	0.238	1	438426
[1800000, -3, -0.699, 0.065]	[11000, 1950]	[4595, 4860, 3495]	[5013, 3342]	[12950, 0, 0]	1844461	-1.633	1	П	654889
[1500000, -1.633, -0.699, 0.065]	[10970, 1970]	[4585, 4867, 3488]	[5013, 3342]	[8626, 4042, 272]	184284	-0.754	0.1780	0.944	398881
[1500000, -1, -1, -1]	[11000, 1950]	[4595, 4860, 3495]	[5013, 3342]	[4310, 4320, 4320]	1844461	0.123	0.121	0.121	6889
[1800000, 0, 0, 0]	[11000, 1950]	[4595, 4860, 3495]	[5013, 3342]	[4310, 4320, 4320]	1844461	0.123	0.121	0.121	6889
[1800000, 0, 0.5, 0.5]	[10970, 1970]	[4585, 4867, 3488]	[5013, 3342]	[6020, 3494, 3426]	1842837	-0.224	0.289	0.303	136807
[1000000, -1, 0.5, 0.5]	[10940, 1990]	[4575, 4874, 3481]	[5013, 3342]	[9232, 1857, 1841]	1841261	-0.877	0.622	0.625	377167
[1000000, 0.5, -1, 0.5]	[10880, 2030]	[4555, 4888, 3467]	[5013, 3342]	[2258, 8354, 2298]	1837809	0.540	-0.699	0.532	-36071
[1000000, 0.5, 0.5, -1]	[10970, 1970]	[4585, 4867, 3488]	[5013, 3342]	[4184, 4172, 4584]	1842861	0.149	0.151	0.067	-9557
[1000000, -1, -1, 1]	[11000, 1950]	[4595, 4860, 3495]	[5013, 3342]	[4598, 8352, 0]	1844461	0.064	-0.6986	1	178825
[1000000, -2, 0, -1]	[10850, 2050]	[4545, 4895, 3460]	[5013, 3342]	[9771, 1, 3128]	1836129	-0.987	0.9998	0.363	362610

Dla zadanych parametrów modelu zawsze opłaca się kierować półprodukty do uwodornienia. Największy zysk zakład uzyskuje produkując P1 kosztem niedoborów innych produktów. Najbardziej nieopłacalnym jest produkt P3.