1

What is claimed is.

Clairs Coy

3

4

A process of forming a wire bond comprising:

forming a protective structure over a metallization copper pad, wherein the metallization copper pad makes contact with a device, and wherein the protective structure includes a metal first film disposed above and on the metallization copper pad and a metal second film disposed above and on the metal first film; and at the second metal film, wire bonding the device.

- The process according to claim 1, further including:by probing the metal second film, electrically testing the device.
- 3. The process according to claim 1, before forming a protective structure, further
- 2 including:
- forming a passivation structure that exposes at least a portion of the metallization copper pad.
- 1 4. The process according to claim 1, wherein the metallization copper pad is a metal-2 six copper (M6 Cu) pad.
- The process according to claim 1, wherein forming a passivation structure
- 2 includes:

3	forming a first passivation layer over the metallization copper pad;
4	forming a second passivation layer over the metallization copper pad; and
5	patterning the first and second passivation layers to expose at least a portion of the
6	metallization copper pad.
1	6. The process according to claim 1, wherein forming a protective structure includes:
2	forming the metal first film by a process selected from PVD, CVD, electroplating,
3	and electroless plating; and
4	forming the metal second film by a process selected from PVD, CVD,
5	electroplating, and electroless plating.
\bigvee	γ^{γ}
1	7. The process according to claim 6, wherein forming the metal first film results in a
2	film selected from Ni, Pd, Pt, Co, Rh, Ir, Sc, Yt, La, Ce, Re, Ir, Cu, Au, Ag, Cr, Mo, W, Mn, Tc,
3	Ti, TiW, Zr, Hr, NiB, NiP, NiBP, NiCrB, NiCrP, NiCrBP, NiMoB, NiMoP, NiMoBP, NiWB,
4	NiWP, NiWBP, NiMnB, NiMnP, NiMnBP, NiTcB, NiTcP, NiTcBP, NiReB, NiReP, NiReBP,
5	NiCoB, NiCoP, NiCoBP, NiCoCrB, NiCoCrP, NiCoCrBP, NiCoMoB, NiCoMoP, NiCoMoBP,
6	NiCoWB, NiCoWP, NiCoWBP, NiCoMnB, NiCoMnP, NiCoMnBP, NiCoTcB, NiCoTcP,
7	NiCoTcBP, NiCoReB, NiCoReP, NiCoReBP, CoB, CoP, CoBP, CoCrB, CoCrBP,
8	CoMoB, CoMoP, CoMoBP, CoWB, CoWP, CoWBP, CoMnB, CoMnP, CoMnBP, CoTcB,
9	CoTcP, CoTcBP, CoReB, CoReP, and CoReBP, CoNiB, CoNiP, CoPdBP, CoPdCrB, CoPdCrP,
10	CoPdCrBP/CoPdMoB, CoPdMoP, CoPdMoBP, CoPdWB, CoPdWP, CoPdWBP, CoPdMnB,
11	CoPdMnP, CoPdMnBP, CoPdTcB, CoPdTcP, CoPdTcBP, CoPdReB, CoPdReP, CoPdReBP,
12	CuB, CuP, CuBP, CuCrB, CuCrP, CuCrBP, CuMoB, CuMoP, CuMoBP, CuWB, CuWP,

CuWBP, CuMnB, CuMnP, CuMnBP, CuTcB, CuTcP, CuTcBP, CuReB, CuReP, CuReBP; 13 CuNiB, CuNiP, CuNiBP, CuNiCrB, CuNiCrP, CuNiCrBP, CuNiMoB, CuNiMoP, CuNiMoBP, 14 CuNiWB, CuNiWP, CuNiWBP, CuNiMnB, CuNiMnP, CuNiMnBP, CuNiTcB, CuNiTcP, 15 CuNiTcBP, CuNiReB, CuNiReP, CuNiReBP and combinations thereof. 16 The process according to claim 6, wherein forming the metal second film results 1 8. 2 in a film selected from gold, doré, platinum, and aluminum. The process according to claim 1, wherein metal first film is electrolessly plated 9. with a composition including: from zero to at least one primary metal selected from cobalt, rhenium, iridium, nickel, palladium, platinum, titanium, zirconium, hafnium, copper, silver, gold, and combinations thereof; from zero to at least one secondary metal selected from chromium, molybdenum, 6 tungsten, manganese, technetium, rhenium, and combinations thereof; 7 from zero to at least/one primary reducing agent in a concentration range from 8 about 1 gram/liter to about 30 gram/liter; 9 from zero to at least one secondary reducing agent in a concentration range from 10 about 0 gram/liter/to about 2 gram/liter; 11 a complexing and buffering agent; and 12 13 at least one pH adjusting agent.

1		10.	The process according to claim 1, after wire bonding the device, further including:
	2		removing the wire bonding; and
٠,	3	1 beli	replacement wire bonding the device.
۱۱ ^۳ الأهرا		151 V.	11. A wire-bond configuration comprising: a metallization copper pad disposed over a device;
	3		a protective structure disposed above an on the metallization copper pad, wherein
	4		the protective structure includes a metal first film disposed above and on the
	5		metallization copper pad and a second metal film disposed above and on the metal first
	6		film, and wherein the metal first film has at least one of a hardness or a corrosion
Ū	7		potential that is greater than at least one of the hardness or corrosion potential of the
	8		second metal film; and
	9		at least one of a test probe tip and a bond wire in contact with the protective
	10		structure.
	1	12.	The wire-bond configuration according to claim 11, further including:
	2		a passivation structure that exposes the metallization copper pad, wherein the
	3		passivation structure includes an inorganic first layer disposed on the metallization
	4		copper pad and an organic second layer disposed on the inorganic first layer.
	1		13. The wire-bond configuration according to claim 11, wherein the passivation
	2	structu	are includes:
	3		a nitride first layer disposed above and on the metallization copper pad; and
		•	

4	a polyimide second layer disposed above an on the nitride fire	st layer
---	--	----------

- 1 14. The wire-bond configuration according to claim 11, wherein the protective
- 2 structure includes:
- a metal first film including at least one primary metal selected from Ni, Pd, Pt,
- Co, Rh, Ir, Sc, Yt, La, Ce, Re, Ir, Cu, Au, Ag, Cr, Mo, W, Mn, Tc, Ti, Zr, Hf, and
- 5 combinations thereof; and
- a metal second film selected from Au, doré, Pt, and Al.
- 1 15. The wire-bond configuration according to claim 14, wherein the metal first film is
- 2 Ni has a hardness that is greater than the hardness of the metal second film.
- 1 16. The wire-bond configuration according to claim 14, wherein the metal second
- 2 film is Au has a resistance to corrosion that is greater than the resistance to corrosion of the metal
- 3 first film.
- 1 The wire-bond configuration according to claim 14, wherein the metal first film is
- 2 Ni has a hardness that is greater than the hardness of the metal second film, and wherein the
- 3 metal second film has a resistance to corrosion that is greater than the resistance to corrosion of
- 4 the metal second film.

I	18. A method of testing a device, comprising:
2	contacting a test probe tip to a metallization, wherein the metallization has a
3	structure including a metal first film disposed above and on the metallization, and a metal
4	second film disposed above and on the metal first film, wherein the metal first film has at
5	least one of a hardness or a corrosion potential that is greater than at least one of the
. 6	hardness or corrosion potential of the metal second film, and
7	passing a test current through the test probe, wherein the test current experiences
8	an ohmic resistance in a range from about 0.5 Ω to about 4 Ω .
	\wedge
1	19. The method according to claim 18, wherein the metal first film includes Ni and
2	the metal second film includes Au, or the metal first film includes Ti and the metal second film
3	includes Al.
1	20. The method according to claim 18, wherein the ohmic resistance is in a range
2	from about 1 Ω to about 3 Ω .
1	21. The method according to claim 18, wherein the test probe tip penetrates the metal
2	second film and stops before penetrating the metal first film.
1	The method according to claim 18, following passing a test current, further
2	including:
3	first bonding a first bond wire to the metal second film.

1	23.	The method according to claim 18, following passing a test current, further
2	including:	
3		first bonding a first bond wire to the metal second film;
4		removing the first bond wire; and
5		second bonding a second bond wire to the metal second film.
		/