EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

: 2001093558

PUBLICATION DATE

06-04-01

APPLICATION DATE

: 21-09-99

APPLICATION NUMBER

11267209

APPLICANT: TOSHIBA CORP;

INVENTOR: NAKANO YOSHIHIKO;

INT.CL.

: H01M 8/06 C10L 1/02 C10L 1/22 H01M 8/04

TITLE

: FUEL COMPOSITION FOR FUEL CELL

ABSTRACT :

PROBLEM TO BE SOLVED: To provide a fuel composition contributing to reduction of the

start time of a fuel cell.

SOLUTION: The fuel composition consists of alcohol with a carbon number equal to or

less than 3 and water together with a surfactant.

COPYRIGHT: (C)2001,JPO

(19)日本国特許广(JP)

(12) 公開特許公報 (A)

(11)特許出願公開發号 特開2001 —93558 (P2001 —93558.A)

(43)公開日 平成13年4月6日(2001.4.6)

デーロート*(参考) 8/08 G 4H013 1/02 5H027 1/22 B 8/04 J 球 京部球 菌衆項の数5 OL (全 7 頁) 人 000003078 株式会社東芝
8/08 G 4H013 1/02 5H027 1/22 B 8/04 J 球 京部球 菌衆項の数5 OL (全 7 頁) 人 000003078
1/02 5H027 1/22 B 8/04 J 球 末部球 菌衆項の数5 OL (全 7 頁) 人 000003078
1/22 B 8/04 J 球 末部球 菌衆項の数5 OL (全 7 頁) 人 000003078
8/04 J T
人 000003078
· · · · · · · · ·
神奈川県川崎竹幸区堀川町72番地
中野 強彦
神奈川県川崎市幸区小向東芝町 1 番地 株
式会社東芝研究開発センター内
ኢ 100058479
井理士 鈴江 武彦 (外6名)
(参考) 4HD13 BAG1 CCD1 CCD2 CDG5 CDG6
CEDO CEO3
5H027 AAG8

(54) 【発明の名称】 盤料電油用の盤料組成物

(57)【要約】

【課題】 燃料電池の起動時間を短幅可能な、燃料電池 用の燃料組成物を提供する。

【解決手段】 炭素数3以下のアルコールおよび水を含む燃料と、界面活性剤とを含有する燃料電池用の燃料組成物である。

【特許請求の範囲】

【請求項1】 炭素数3以下のアルコールおよび水を含 む燃料と、昇面活性剤とを含有する燃料電池用の燃料組 成物。

【請求項2】 識別剤を含有する請求項1に記載の燃料 電池用の燃料組成物。

【請求項3】 前記アルコールに比べて低温で蒸気圧の 高い動燃剤を含有する請求項1または2に記載の燃料電 他用の燃料組成物。

【請求項4】 前記アルコールの含有量は前記燃料に対 10 して30wt%以下であり、不凍液化剤または流動性向 上剤を含有する語求項1ないし3のいずれか1項に記載 の燃料電池用の燃料組成物。

【語求項5】 語求項1ないし請求項4のいずれか1項 に記載の熊料組成物とゲル化剤とを含有する焼料電池用 のゲル状燃料組成物。

【発明の詳細な説明】

[0001]

[発明の届する技術分野] 本発明は、メタノール型燃料 電池用の燃料組成物に係り、特に毛管力による燃料供給 20 を行う燃料電池の燃料組成物に関する。

[0002]

【従来の技術】燃料電池としては、燃料気化供給型や毛 管力を利用したものなど種々のタイプが知られており、 終斜としてはアルコールと木とを複合して調製されたも のが用いられている。

[0003]従来の燃料気化供給型の燃料電池は、高濃 度の燃料を直接用いることができるため燃料部のコンパ クト化に関しては有利であるものの。 システムが複雑で あるのでそのままの構成では小型化が困難であるという 問題を有している。一方、毛管力を利用した従来の液体 続斜電池は、構成上は小型化に適しているものの。 燃料 極に燃料が直接液体状態で供給されるため低温度の燃料 を使わざるを得ない。したがって、結果的に燃料部の容 論が大きくなり小型化が困難である。

【①①①4】とうした問題を解決する新型の無斜電池 が、特別平11-162630号公報に関示されてい る。この燃料電池は、燃料としての液体燃料を毛管力で 各単電池内に導入して各単電池内で気化し、気化された 燃料を燃料極に供給する構造である。このため、燃料気 46 設置された芯体8と、外部から空気を取り入れ可能な透 化器等などの補器を使用せずに、高濃度の燃料を使用で きるため小型化が可能である。

[0005]しかしながら、こうした新型電池において 6. 従来の液体型燃料電池での課題であった起勤時間の 短檔化、低温からの起動が小型電源として裏用化する上 での極めて大きな障害となっている。

[0006]

【発明が解決しようとする課題】上途した新型電池のよ うに、多孔板の毛細管現象を利用した燃料供給システム の場合には、毛細管と燃料との濡れ性が大きな問題であ 50 されるため、燃料気化器等の循路を必要としない。ま

る。また、こうした新型電池を低湿(外気温が室温以 下) から起動した際には、多孔質気化層による燃料気化 が起こり難くなり、メタノールおよび水の蒸気圧が大幅 に低下してしまう。したがって、ヒーターで加熱を行っ ても電池の始勤に長時間が必要となり、起動時間の短縮 を図ることができない。一方、こうした燃料電池を低温 (氷点下40°Cから室温)で使用する際には、燃料自体 の原緒および粘度上昇に起因した逸動性が問題となって

2

【0007】他方、通常使用されている燃料は無色透明 であるため、燃料の使用状況を目視により容易に確認の が困難である。万一、こうした燃料が漏出した場合に は、適明であるために分かり難く、燃料成分にアルコー ルを含むため危険を招くおそれがある。

【0008】本発明は上記の従来の燃料電池における間 題点を解決して、小型機器の電源として有用な小型総料 弯曲用の燃料を提供するために行われたものであり、燃 料電池の起動時間を短縮可能な、蒸料電池用の燃料組成 物を提供することを目的とする。

[00009]

【課題を解決するための手段】上記課題を解決するため に、本発明は、炭素数3以下のアルコールおよび水を含 む燃料と、界面活性剤とを含有する燃料電池用の燃料組 成物を提供する。

【0010】以下、本発明を詳細に説明する。

【①①11】まず、本発明の燃料組成物を使用する新し いアルコール型燃料管池について説明する。

【9012】図1に、かかるアルコール型燃料電池の構 成を表す機略図を示す。図示するように、この燃料電池 30 は、基本的には、スタック本体 1、燃料タンク2、およ び燃料タンクから本体に液体燃料を供給する導入管3に より構成される。

【0013】なお、スタック本体1内においては、各単 電池 1 1 の間に浸透板 4 が配置され、外部から空気を取 り入れ可能な透過膜5、および導入管3から供給された 液体燃料を受け取るレシーバー6が設けられている。さ らにスタック本体 1 の側面には、酸化剤ガスを供給する ためにファン (図示せず) が設けられている。燃料タン ク2には、蒸料を収容するための貯漑部7と、この中に 過購9とが設けられている。芯体8は、ジャンクション 10において導入管3に接続されている。

【①①14】かかる燃料電池においては、燃料としての 液体燃料を毛管方により各単電池11内に導入して、各 **単電池内で気化し、気化された燃料が燃料器に供給され** る。このように液体燃料は毛管力で各単電池内に導入さ れるため、図示する燃料電池は燃料供給のためのボンブ 等の駆動部を必要としない。電池内に導入された液体燃 料は、燃料気化層にて電池反応の反応熱を利用して気化

た。燃料気化層内の気体燃料は、ほぼ飽和状態に保たれ るので、電池反応による燃料気化層中の気体燃料の消費 分だけ燃料浸透層から液体燃料が気化し、さらに気化分一 だけ液体燃料が毛管力によってセル内に導入される。

【0015】とのように、図示する燃料電池において は、燃料供給量は燃料消費量に運動しているため、未反 応で電池の外に排出される燃料はほとんどなく、従来の 液体燃料電池のように燃料出口側の処理系を必要としな い。すなわち、図1に示した蒸料電池は、ポンプやプロ ワ、燃料気化器、経縮器等の結器を特に用いる必要な い、新しいタイプの液体燃料である。

【0016】ころした燃料電池においては、毛細管現象 による液体の導入を達成するために、毛細管現象が起こ りうる多孔質を有する基材が用いられている。その材料 の種類にも依存するが、アルコール水溶液だけからなる 液体燃料は、十分に基材内を浸透しない。本発明者ち は、アルコール水溶液からなる液体燃料に昇面活性剤を 添加することによって、液体燃料と多孔板内部の毛細管 との滔れ姓を向上させ、毛細管現象による燃料の殴い上 ことを見出した。

【①①17】本発明の燃料組成物において、燃料は炭素 数3以下のアルコールと水とにより構成される。炭素数 3個以下のアルコールとしては、メタノール、エタノー ル、イソプロバノール、および1-プロパノールが挙げ られる。アルコールの含有量は、アルコールと水とから なる燃料全体に対して1wt%以上80wt%以下であ ることが好ましく、10wt%以上40wt%以下であ ることがより好ましい。アルコールの含有量が1wt% 未満の場合には燃料タンクが大きくなりすぎ、小型化を 図ることが困難になる。80wt%を越えると、燃料を 構成する他方の成分である水が減少するため、電池反応 が起こりにくくなるおそれがある。

【①①18】燃料の他方の成分である水の含有量は、こ うしたアルコールの畳に応じて、適宜決定することがで きる.

【りり19】本発明の燃料組成物に配合される界面活性 剤としては、イオン館(カチオン館、アニオン性、両 性) 界面活性剤および非イオン性 (ノニオン性) 界面活 性剤のいずれを用いてもよく、単独でまたは2種以上の 46 複合物として用いることができる。

【0020】以下に、本発明で用い得る界面活性剤の具 体的な例を挙げるが、これらに限定されるものではな

【0021】アニオン軽界面活性剤としては、アルキル スルホン酸およびその塩、アルキルベンゼスルホン酸お よびその塩、ポリオキシアルキレンスルホン酸およびそ の塩パーフルオロアルキルスルホン酸およびその塩、パ ーフルオロアルキルベンゼスルホン酸およびその塩、パ ーフルオロボリオキシアルキレンスルホン酸およびその 5G 塩、ポリスチレンスルホン酸およびその共宣合体、ポリ ビニルスルホン酸もよびその共宣合体。ボリパーフルオ ロビニルスルホン酸もよびその誘導体。ポリアクリル酸 およびその共重合体などが挙げられる。

4

【0022】カチオン性界面剤としては、アルキルトリ メチルアンモニウムハライドなどの4級アンモニウム基 を持つボリマーおよび高級アルカン誘導体などが挙げら れる.

【① ①23】両性界面活性剤としては、スルホン酸基 (RSO。) ねよび4級アンモニウム菌(R,N・) を分 10 子中内に有するポリマーおよび高級アルカン誘導体(ス ルホン酸ベタイン) や、カルボキシル基(RCOO-) および4級アンモニウム蟇(R,N')を分子中に有する ポリマーねよび高級アルカン誘導体(ベタイン)などが 挙げられる。

【①024】非イオン性界面活性剤は、アルキルスルボ ン酸エステル。アルキルベンゼスルホン酸エステル、ボ リオキシアルキレンとその共宣合体。ポリオキシアルキ レンスルホン酸エステル。パーフルオロアルキルスルボ げを容易に行って、燃料供給を向上させることができる。20 ン酸エステル。パーフルオロアルキルベンゼスルホン酸 エステル、パーフルオロボリオキシアルキレとその共産 台体。パーフルオロボリオキシアルキレンスルホン酸エ ステル、ポリスチレンスルホン酸とその共重合体。ポリ パーブルオロビニルスルボン酸エステルとその共重台 体。およびポリアクリル酸エステルとその共産合体など が挙げられる。

> 【0025】本発明において特に好ましく用いられる界 面活性剤としては、具体的には、ポリオキシエチレン、 フッ素系昇面活性時のフローラード(3M社製) 第2 30、報高級アルコールエトキシサルフォン、アルキルベンゼ ンスルボン酸塩。スルボコハク酸アルギル塩、ポリオギ シエチレンアルキルエーテルカルボン酸塩、ポリオキシ エチレンアルキルフェニルエーテル等が挙げられる。

【0026】本発明の燃料組成物におけるこうした界面 活性剤の添加量は、組成物全体に対して100mから5 %の節聞とすることが好ましく、10ppmからり、1 %(1000ppm)であることより好ましい。 1pp m未満の場合には、雰面活性剤を添加した効果を得るこ とができない。一方、5%を越えると気泡などを抱え込 んで毛細管による燃料導入の妨げになるもそれがある。

【① 027】本発明の蒸料組成物には、識別剤として色 素(染料、顔斜)を配合して、燥料を着色させてもよ い。とうした識別剤を添加することによって、燃料の使 用状況や燃料の漏れなどがないか目視で確認するととが

【①①28】 色素は、有機顕料および無機顕料のいずれ でもよく、臭紂としては、水溶性およびアルコールに可 溶な染料を用いることができる。さらに本発明において は、色素として蛍光色素を配合してもよい。

【0029】用い得る色素の具体的な例を以下に示す

が、とれらに限定されるものではない。顔料としては、 例えばカーボン。キナクリドンおよびフタロシアニンな どが挙げられ、染料としてはインジゴ、アゾ染料、トリ フェニルメタン系染料(マゼンタなど)キザテン系染料 (フェノールフタレイン、ローダミンなど) などが挙げ **られる。**

【①①30】蛍光色素は無機系および有機系のいずれで もよく、無機系としては、例えば、瞳化カルシウム、硫 化亜鉛、などの硫化物とその誘導体、酸化イットリウム などの酸化物。タングステン酸マグネシウム、珪酸亜 鉛、珪酸パリウムなどの酸素酸塩系などが挙げられる。 一方、有錢系の蛍光色素としては、何えば、アントラキ ノン系色素、ポリメチン系色素、ジチオール金属塩系色 素。インドフェノール系色素、およびキサンテン染料な どが挙げられる。

【①①31】上途した色素のうち、燃料組成物に治解し ないものを本発明の燃料組成物に添加する場合には、分 散剤を予め分散液として分散液を調製し、燥料組成物に 分散して用いることができる。一方、燃料組成物に溶解 するものは、そのまま所定量を、燃料組成物またはその 20 成分に恣解すればよい。

【①①32】識別剤として本発明の燃料組成物に配合さ れる色素の登は、燥料組成物の重量に対して、①、①1 gpmから10000ppm以下とすることが好まし く、()、 1 ppmから 1 () () ppmとすることがより好 ましい。 () . () 1 p p m未満の場合には目標での確認が 困難となり、10000ppmを越えると電極反応及び 燃料供給に悪影響を及ぼすと考えられる。添加された色 素が、毛細管による燥料の供給(濡れ性)や弯種反応に 悪影響を及ぼすおそれがある場合には、紫料タンクの出 30 口または熱料の浸透板の入り口に、フィルターおよび色 **素吸着層を設ければよい。**

【りり33】図1に示したような蒸料電池においては、 低温では、燥料電池内の燃料気化層における燥料気化が 起こり競いため、燃料のアルコールや水の蒸気圧は非常 に小さくなる。との場合には、充分な霊の懸料を電極に 供給することが困難になる。こうした不都台を退けるた めには、低温でも気化能が大きい、すなわち蒸気圧の大 きい燃料(助燃剤)を添加することによって、低温の起 動ねよび起動時間の短縮を可能とすることができる。

【0034】本発明で用いる助熱剤としては、燃料の一 方の成分であるアルコールの代替となる物質と、燃料の 他方の成分である水の代替となる物質との2 種類が挙げ られる。

【りり35】第1の助照剤であるアルコールの代替とな る物質としては、炭素数3個以下のアルキルエーテル、 アルデヒド、陰酸アルキルおよび蓚酸エステルなどが参 けられる。これらは、単独できたは2種以上の混合物と して用いることができる。

ノールの二酸化炭素への酸化に使用されることから、上 述したような水の代替となる物質が第2の助燃剤として 用いられる。こうした物質としては、硝酸アルキル、有 畿ニトロ化合物。ニトロソ化合物、有機化酸化物などの 敵素原子を供給できる物質が挙げられる。 これらは、 単 練でまたは2種以上の複合物として用いることができ

【0037】動燃剤の具体的な例としては、例えば、ジ メチルエーテル、メチラール、1,2-ジメトキンタン 16 のようなエーテル類:ホルムアルデヒド、アセトアルデ ヒド、グリオキサール、グリコールアルデヒドなどのア ルデヒド類:爆酸メチル、爆酸エチル、爆酸イソプロピ ル、機酸カープロビルなどの機酸エステル類;蘇酸シメ チル、蓚酸ジエチル、蓚酸エチルメチルなどの蓚酸エス テル類:硝酸メチル、硝酸エチルなどの硝酸エステル 類: ニトロメタン、ニトロエタンなどのニトロ化合物、 メチルヒドロベルオキシド、 しープチルヒドロベルオキ シド、ジメチルベルオキシド、過酢酸、過燥酸など有機 過酸化物が挙げられるが、これらに限定されるものでは 7662

【0038】上述した第1の助薬剤と第2の助燃剤と は、それぞれ1種以上を選択して組み合わせて用いるこ とが好ましい。

【りり39】また、毛管現象を用いて燃料供給を行い、 気化層で気化させるタイプの燃料電池では、助燃剤の電 極反応による生成物が残留してしまうことを考慮する と、電極反応により生じる助統剤の最終生成物はガス化 することが望まれる。電便反応の最終生成物がガス化す る助燃剤としては、例えば、ジメチルエーテル、メチラ ール、ホルムアルデヒド、嬉唆メチル、藤敬メチル、鷸 敵メチル、ニトロメタン、メチルヒドロアルオキンド、 過機酸などを挙げることができる。

【①①40】上述したような助怒剤の含有費は、燃料組 成物全体に対して0.001%から50%の範囲で添加 することが好ましい。 0、 00 1 %未満の場合には充分 な効果を得ることが困難となり、50%を越えると水へ の溶解性が低下して液が分離するおそれがある。

【①①41】本発明の焼料組成物は、酸素を導入し、紫 外線を照射して反応させることにより調製してもよい。 酸素を導入し繁外線を照射することによって、過酸化物 が生成される。とうして得られた過酸化物は、アノード 様でアルコールなどの無対と反応し水の代替として作用 するので、善酒の低温起勁などの点で好きしい。

【0042】場合によっては、敵素を導入して紫外線を 無射する操作は、 界面活性剤を加える前に行うこともで きる。まず、アルコールと水とを混合して燃料を調製 し、この原料に対し職業を導入し、集外線を照射して反 応させた後に、所定の界面活性剤を添加してもよい。待 に、界面活性剤が紫外線に分解しやすい場合には、とう 【0036】なお、アノード極では、燃料中の水がメタ 50 した手順で燃料組成物を調製することが望まれる。

【10043】本発明の熱料組成物には、電極反応を促進 する成分として、揮発性の有機酸ねよび無機酸。ヨウ 素、ヨウ素化合物を加えてもよい。

【0044】酸は、電極反応においてアルコールの酸化 の過電圧を低下させることができるので、反応の促進剤 として作用する。用い得る酸としては、例えば、酢酸、 メタンスルボン酸、トリブルオロメタンスルボン酸、塩 酸。およびトリフルオロ酢酸などが挙げられるか。 これ らに限定されるものではない。

【0045】また、ヨウ素およびヨウ素化合物は、ヨウ 10 素イオンが電極反応で触媒的に働いて反応を促進する。 化合物の具体的な例として、ヨウ化メタン、ヨウ化エタ ンのようなヨウ素化合物などが挙げられるが、これらに 限定されるものではない。

【① 0.4.6】本発明の燃料組成物に含有されるアルコー ルの量が、燃料全体の30w1%を超える場合には、低 温(氷点下40℃)でも浸結しないので、添加剤を配合 する必要はないが、アルコールの量が30~1%以下の 場合には、不浸液化剤または液動性向上剤を配合して、 燃料組成物の不須液化を図ることが望まれる。

【りり47】不療液化剤および濾動性向上剤としては、 多価アルコールおよびその誘導体などを用いることがで き、その添加量は、燥料に対して、0、1%から10% の範囲とすることが好ましい。()、1%未満の場合には 充分な効果を得ることが困難であり、10%を越えると 燃料の流動性を低下させるおそれがある。

【0048】多価アルコールおよびその誘導体として は、例えば、エチレングリコール、ジエチレングリコー ル。グリセリン、プロピレングリコール、エチレングリ コールモノメチルエーテル、ジグライム、ポリオキシエ 35 チレンのオリゴマー、およびポリオキンプロピレンのオ リゴマーなどが挙げられるが、これらに限定されるわけ ではない。

【10049】上途した成分に加えて、本発明の燃料組成 物には、香料、腐食防止剤などをさらに添加してもよ い。香料としては、例えば熔酸イソアミル、エチルパニ リン、シトラール、プロピオン酸イソアミル、1~メン トール等を用いることができる。また、腐食防止剤とし ては、例えばダイマー酸、ポリオキシエチレンアルキル ることができる。

【① 05 0 】なお、安全性の点を考慮すると、燃料タン りが壊れた場合や、待ち道びの際の安全を確保すること が望まれる。また、猛科タンクが高温となる場所での使 用では、液体燃料の蒸気圧が大きくなるのでタンクが加 圧状態となって、危険が生じることが考えられる。

【りり51】上述したような本発明の燃料組成物をゲル 化して、ゲル状燃料組成物とすることによって、とうし た危険を回避することができる。

【0052】ゲル状燃料組成物を得るためのゲル化は、

有機高分子に燃料を吸収させる方式 (化学ゲル) により 達成することができる。あるいは、燃料液体と粒子粉末 との混合による相互作用(水素結合など)によるチキッ トロピー怪を用いた方式 (物理ゲル)を用いて、燃料組 成物のゲル化を行ってもよい。

3

【①053】化学ゲルのゲル化剤の有機高分子として は、具体的には、架橋型ボリアクリル酸やその誘導体、 架橋型ポリアクリルアミドとその誘導体などが挙げられ るが、限定されるものではない。

【0054】また、物理ゲルの架備削は、燃料組成物と 水素結合を起す物質であれば任意のものを用いることが できる。具体的には、例えば活性炭、エアロジルなどの 急機酸化物、有機アミドの誘導体などが挙げられるが、 これらに限定されるものではない。

【0055】ゲル化剤は、燃料組成物重置に対して、1 宣霊部から100宣量部の節囲で加えることが好まし い。こうしてゲル状とされた燃料組成物は、燃料液体と ゲル化剤との相互作用により、高温での蒸気圧が減少し て鮎性が大きく増加する。このため、タンクが壊れた場 20 台における液体の飛散を防止することができ、安全上の 向上につながる。

【0056】ゲル状燃料組成物は、例えば、図2に示す ような構成の燃料電池で用いることができる。図2に示 す燃料電池においては、ゲル保持材13によってゲル状 感料組成物12がスタック本体2に取り付けられている。 る。スタック本体2の構成は、図1に示した燃料電池の 場合と同様である。

[0057]

【発明の実施の形態】以下、具体例を示して本発明をさ ちに詳細に説明する。

【0058』(実施例1)まず、メタノール50gに昇 面后性剤としてのパーフルオロアルキルボリオキシェチ レンエタノール (プロラードFC-170C住友シリー エム社製)〇、〇1gを溶解させた。さらに、イオン交 後水50gを加えて、実施側1の燃料組成物を得た。

【0059】この燃料組成物中に炭素多孔板(日本カー ボン社製)の一端を接して浸透試験を行ったところ、多 孔板を接選して行く様子が目視で確認された。浸透が目 視で確認できたことから、本実施例の燃料組成物を用い アミン、カルボキシベタイン型両性界面活性剤等を用い。40 るととによって、極めて短時間で燃料電池を起動できる ことがわかる。

> 【0060】(比較例1)メタノール50gとイオン交 換水50gとからなる燃料を調製した。この燃料は、従 **采用いられている蒸料に钼当する。 得られた蒸料につい** て前述の実施例1と同様の浸透試験を行ったところ、ほ とんど浸透しなかった。したがって、この燃料を用いる と、燃料電池の超動に長時間を要することが推測され

【0061】 (実施例2)まず、メタノール50gに昇 50 面活性剤としてのパーフルオロアルキルボリオキシェチ

レンエタノール (フロラードFC-170C住友シリーエム社製) 0.01 gを溶解させた。この溶液にイオン交換水50 gを加え、さらに識別剤としての赤色染料 (C.1.No.16045、ダイワ化成株式会社製) 1 m 8 加えて、着色した燃料組成物を調製した。

9

【0063】(実施例3)分散剤としてのブチラール樹脂18をメタノール458に控解し、識別剤としての音色顔料のフタリシアニン58を加えて、ザンドミルにより顔斜分散液を調製した。

【① 0 6 4 】一方、メタノール5 0 8 に界面活性剤としてのパーフルオロアルキルボリオキシエチレンエタノール(フロラードFC-170C住友シリーエム社製) ① 0 1 g を溶解させて溶液を得、前途の顔料分散液

(). () 1 g および水 5 () g を加えて、着色した燃料組成 20 物を調製した。

【① 0 6 5 】得られた燃料組成物は、均一かつ非常にはっきりした青色に着色されていた。この燃料組成物について実施例1と同様の浸透試験を行ったところ、多孔板を浸透していく様子が目視で確認された。このことから、本実施例の燃料組成物を用いることによって、極めて短時間で燃料電池を起動できることがわかる。

【0066】(実施例4)まず、メタノール508に昇面活性剤としてのパーフルオロアルキルポリオキシエチレンエタノール (フロラードFC-170C住友シリーエム社製) 0.01gを治解させた。次いで、この溶液にイオン交換水50gを加え、さらに識別剤としての黄色染料(C.I.acid yellow 7)1mg加えて、着色した燃料組成物を調製した。

[0067]得られた無料組成物は、均一かつ非常にはっきりと君色され、緑色の生光を発した。この燃料組成物について真態例1と同様の浸透試験を行ったところ、多孔板を浸透していく様子が目視で確認された。このことから、本真態例の無料組成物を用いることによって、極めて短時間で燃料電池を起動できることがわかる。

【① ① 6 8】 (実施例5)まず、メタノール5 0 まとイオン交換水5 0 まとの混合溶液に、助燃剤としての蟻酸メチル1 g むよび硝酸メチル1 g を加えた。さらに昇面活性剤としてのパーフルオロアルキルボリオキシエチレンエタノール(プロラードFC-170C住友シリーエム社製) 0.01gを溶解させて、本実施例の燃料組成物を調製した。

【① ① 6 9 】 との無料組成物を用いて、図 1 で示した無料電池の起動試験を 0 ℃で行ったところ、電池が正常に起助することが確認された。

【① 0 7 0 】 (比較例2) メタノール50 g とイオン交 後水50 g の混合溶液を用いて、実施例5 と同様に燃料 電池の起動試験を行ったが始動しなかった。

【0071】(実施例6)まず、メタノール508とイオン交換水508との混合泊液に、助燃剤としてのジメチルエーテル18および硝酸メチル18を加えた。さらに、界面活性剤としてのパーフルオロアルキルボリオキシエチレンエタノール(プロラードFC-170C住友シリーエム社製)0.018を溶解させて、本実施例の燃料組成物を調製した。

【0072】との燃料組成物を用いて、図1で示した燃料電池の起動試験を0℃で行ったところ電池が正常に起動することが確認された。

【0073】(実施例7)まず、メタノール508とイオン交換水508との混合溶液に、動燃剤としてのホルムアルデヒドおよび1ーブチルパーオキシド18を加えた。さらに、界面活性剤としてのパーブルオロアルキルポリオキシエチレンエタノール(フロラードFC-170C位友シリーエム社製)0.018を溶解させて、本実施例の燃料組成物を調製した。

【①①7.4】との燃料組成物を用いて、図1で示した燃料電池の起動試験を0℃で行ったところ電池が正常に起動することが確認された。

【① ① 7 5】 (実施例8) メタノール50 gとイオン交換水50 gとの混合控液に、空気を導入してバブリングしながら高圧水銀ランプを照射して反応を生じさせた。その後、昇面活性剤としてのポリエチレングリコール(メルク性製)を0.1 g添加して、本実施例の燃料組成物を調製した。

【①①76】との燃料組成物を用いて、図1で示した燃料箱池の起動試験を0℃で行ったところ電池が正常に起動することが確認された。

【0077】(実施例9)メタノール20gとイオン交換水80gとの混合溶液に、不凍液化剤としてのエチレングリコール10g加え、さらに界面活性剤としてのフロラードFC93(3M社製)を0.05g添加して、本実施例の燃料組成物を調製した。

【0078】得られた燃料組成物を冷却したところ、-30℃でも凍結しなかった。したがって、本実施例の燃料46 料組成物は、-30℃という低温でも燃料電池を起動できることがわかる。

【0079】(比較例3) メタノール20gとイオン交換水80gの混合溶液を調製し、この混合溶液を冷却したところ、約-10℃で衰結した。

【① ①80】このように従来の燃料は、-10℃程度の 条件下では燃料電池を起勤することができない。

【0081】(実施例10)メタノール30gとイオン 交換水60gとの混合溶液に、不凍液化剤としてのエチ レングリコール10g加え、満別剤としての赤色染料

55 (C. J. No. 16045、ダイワ化吸株式会社製)

1mg添加して着色させた。さらに、界面活性剤としてのパーフルオロアルキルボリオキシエチレンエタノール(フロラードFC-170C住友シリーエム社製)0.01gを溶解させて、本実施例の燃料組成物を調製した。

【0082】得られた燃料組成物は、均一かつ非常にはっきりした赤色に着色されていた。また、この燃料組成物を冷却したところ、-40℃の低温下でも凍結しなかった。したがって、李寒脳側の燃料組成物は、-40℃でも燃料電池を超動できることがわかる。

【①083】(実施例11)まず、メタノール50gとイオン交換水50gとの混合溶液に、助燃剤としての機酸メチル1gおよび硝酸メチル1gを加えた。さらに、満別剤としての赤色染料(C. i. No. 16045、ダイワ化成株式会社製)1mg加えて着色し、界面活性剤としてのパーフルオロアルキルポリオキシエチレンエタノール(フロラードFC-170C住友シリーエム社製)0.01g加えて、本実施例の燃料組成物を調製した。

【りり84】得られた燃料組成物は、均一かつ非常には 20っきりした赤色に着色されていた。また、この燃料組成物を用いて、図1で示した燃料電池の起動試験をりでで行ったところ。電池が正常に起動することが確認された。

【9085】(実施例12)まず、メタノール50gに 昇面活性剤としてのパープルオロアルキルボリオキシエチレンエタノール(フロラードFC-170C住友シリーエム社製) 9.01gを溶解させた。次いで、イオン交換水50gを加えて、本実施例の燃料組成物とした。さらに、ゲル化剤(架論型ボリアクリル酸)5gを加え、概律してゲル状態料組成物を得た。

【① 086】得られたゲル状縈料組成物を用いて、図2*

*に示した燃料電池を起動したところ。正常に起勤することが確認された。

12

[0087]

【発明の効果】以上詳述したように本発明によれば、燃料電池の起動時間を短縮可能な燃料電池用の燃料組成物が提供される。

【10088】本発明の燃料組成物を用いることによって、液体型燃料電池の起勤時間の短端化を図れるのみならず、こうした燃料電池を低温から起勤することも可能 となる。さらに本発明の燃料組成物は、目視により識別確認することもできるので安全性の点でも優れており、その工業的価値は絶大である。

【図面の簡単な説明】

【図1】本発明の燃料組成物で起動される燃料電池の一例の構成を表す概略図。

【図2】本発明の燃料組成物で起動される燃料電池の他の例の構成を表す機略図。

【符号の説明】

1…スタック本体

- 2…燃料タンク

3…導入管

4…没透板

5…透過膜

6…レシーバー

7…貯液部

8…芯体

9…透過膜

10…ジャンクション

11…单弯池

12…ゲル状燃料組成物

13…ゲル保持材

[図1]

[図2]

