2. Preliminaries: Basic Causal Inference

- 2.1 Introductory Remarks
- 2.2 Point Exposure Studies
- 2.3 Potential Outcomes and Causal Interence
- 2.4 Estimation of Causal Effects via Outcome Regression
- 2.5 Review of M-estimation
- 2.6 Estimation of Causal Effects via the Propensity Score
- 2.7 Doubly Robust Estimation of Causal Effects

Statistical model

In general: Statistical inference concerns relationships among variables in a population

- Z = random vector comprising variables of interest
- Statistical model: A class of probability distributions thought to contain the true distribution of Z
- E.g., probability density or mass function

$$p_Z(z;\theta)$$

indexed by parameter θ (fully parametric model)

 The model represents relationships among elements of Z in the population

Throughout this course: Most of the time, uppercase letters represent random variables/vectors, lowercase letters represent realized values of these (rare exceptions with Greek symbols)

Associational inference

Ubiquitous example: Classical linear regression model

• Z = (X, Y), scalar outcome Y, covariates $X = (X_1, \dots, X_k)^T$

$$Y = \beta_1 + \beta_2^T X + \epsilon = \beta_1 + \beta_{21} X_1 + \dots + \beta_{2k} X_k + \epsilon$$

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$
, $\epsilon \perp \!\!\! \perp X (\perp \!\!\! \perp = \text{"independent of"})$

- Describes the conditional mean of Y given X, E(Y|X), and thus the *association* between Y and X
- Average outcome for individuals with $X = (x_1, \dots, x_j + 1, \dots, x_k)^T$ is β_{2j} units greater than that for $X = (x_1, \dots, x_j, \dots, x_k)^T$, $\beta_{2j} > 0$
- So if β_{2j} > 0, larger values of x_j are associated with larger average outcomes in the population
- But cannot infer from the model alone that *intervening* to increase x_j by one unit (if even possible) will *cause* an increase of β_{2j} in average outcome

Causal inference

Goal of researchers:

- Interest is almost always in causal rather than associational relationships (whether or not researchers admit it)
- E.g., does administering treatment option A lead to more beneficial outcomes than option B, so that the improvement can be attributed to giving A rather than B?
- Of obvious relevance to the development of dynamic treatment regimes

Can we establish and estimate such causal relationships based on data?

- Different approaches in different disciplines
- Fruitful approach: Use potential outcomes (aka counterfactuals)
- Neyman (1923), Rubin (1974, 2005), Robins (1986, 1987)

2. Preliminaries: Basic Causal Inference

2.1 Introductory Remarks

2.2 Point Exposure Studies

- 2.3 Potential Outcomes and Causal Inference
- 2.4 Estimation of Causal Effects via Outcome Regression
- 2.5 Review of M-estimation
- 2.6 Estimation of Causal Effects via the Propensity Score
- 2.7 Doubly Robust Estimation of Causal Effects

Usual point exposure study

- Sample of n individuals from a population of interest
- Each individual receives (is exposed to) one of several interventions (e.g., treatment options)
- Outcome of interest Y is subsequently ascertained for each
- Intervention received A, individual characteristics (covariates) prior to the intervention X (at baseline) recorded for each

Data:
$$Z_i = (X_i, A_i, Y_i), i = 1, ..., n$$

Independent and identically distributed (i.i.d.) across i

Simplest case: Two options coded as 0 or 1; set of possible options

$$\mathcal{A} = \{0, 1\}$$

Example

Antihypertensive study: Does an antihypertensive drug (1) reduce systolic blood pressure (SBP) after 6 months relative to no drug (0) in individuals with SBP > 140 mmHg?

- Sample n individuals from this population; some receive 0, some receive 1; measure SBP at entry (baseline) and at 6 months
- Clinical trial: Each individual i is randomly assigned to 0 or 1
- Observational study: Each individual i is assigned to 0 or 1 at physician's discretion
- Outcome of interest Y_i = SBP at 6 months SBP at baseline
- A_i = 0 or 1, X_i = pre-treatment covariates (age, weight, race, gender, health history, etc)

Example

Goal: Use the data (X_i, A_i, Y_i) , i = 1, ..., n, to infer a causal relationship between drug and outcome

- Is reduction in SBP using drug 1 greater than with no drug (0)?
- Usually, more precisely stated as

If the entire population of interest of individuals with SBP > 140 mmHg were treated with drug 1, would the average reduction in SBP be greater than that if the entire population were treated with no drug (0)?

A statistical model

Assumed model:

$$egin{align} Y|\,A=0 &\sim \mathcal{N}(\mu_0,\sigma^2), \qquad Y|\,A=1 \sim \mathcal{N}(\mu_1,\sigma^2), \ \\ &\sigma^2>0, \quad \theta=(\mu_0,\mu_1,\sigma^2) \ \end{aligned}$$

 Difference in average outcome (change in SBP) among individuals observed to receive drug (1) and those who did not (0)

$$\delta = E(Y|A=1) - E(Y|A=0) = \mu_1 - \mu_0$$
 (2.1)

 Reflects the the association between Y, observed outcome, and A, treatment received

A statistical model

- Observational study: δ does not necessarily reflect the causal relationship of interest because individuals who do not receive drug may be inherently different (younger, healthier, smoke less, etc) than those who do
- Confounder: A variable related to both the outcome and to which treatment is received; may distort, or confound, the apparent effect of treatment on outcome
- Clinical trial: Whether or not an individual receives drug or not is at random, so independent of any individual characteristics
- Thus, it is widely accepted that there are no confounders, so δ reflects purely the causal effect the drug in a clinical trial

These observations can be formalized through the framework of potential outcomes

2. Preliminaries: Basic Causal Inference

- 2.1 Introductory Remarks
- 2.2 Point Exposure Studies
- 2.3 Potential Outcomes and Causal Inference
- 2.4 Estimation of Causal Effects via Outcome Regression
- 2.5 Review of M-estimation
- 2.6 Estimation of Causal Effects via the Propensity Score
- 2.7 Doubly Robust Estimation of Causal Effects

Potential outcomes

Philosophically: Causality is a complicated concept

- An intervention may trigger a series of events that ultimately affect outcome
- The point along this sequence we attribute to causality can be difficult to establish
- Useful simplification: Potential outcomes

Potential outcomes

In general:

- A = set of possible treatment options (feasible for all individuals)
- Y^{*}(a) = outcome that would be achieved by a randomly chosen individual in the population if he/she were to receive option a ∈ A (random variable)
- Potential outcome or counterfactual
- Hypothetical construct can conceive of the outcome an individual would have under any treatment option
- Can think of $Y^*(a)$ for any option $a \in A$ as an inherent characteristic of an individual

Causal treatment effect

Two treatment options: $A = \{0, 1\}$

Causal treatment effect:

- For any individual, two potential outcomes $Y^*(0)$ and $Y^*(1)$
- Intuitively: If the difference in outcomes an individual would achieve on each treatment ≠ 0; i.e.,

$$\{Y^{*}(1) - Y^{*}(0)\} \neq 0,$$

this non-zero difference must be attributable to the treatments

Causal treatment effect

$$\{Y^*(1) - Y^*(0)\}$$

Individual-specific

Average causal treatment effect

Challenge: Usually, only one of $Y^*(1)$ or $Y^*(0)$ can be observed for any individual, so cannot obtain the causal treatment effect

Average causal treatment effect:

$$\delta^* = E\{Y^*(1) - Y^*(0)\} = E\{Y^*(1)\} - E\{Y^*(0)\}$$
 (2.2)

- δ^* = difference between average outcome that would be achieved if all individuals in the population were to receive option 1 and that if all were to receive option 0
- So (2.2) has a causal interpretation

Can we estimate the average causal treatment effect δ^* using data from a point exposure study?

Formal causal problem

Goal: Estimate δ^* in (2.2) from i.i.d. observed data

$$(X_i, A_i, Y_i), i = 1, \ldots, n$$

- I.e., estimate E{Y*(1)} and E{Y*(0)}, which are features of the distribution of Y*(1) and Y*(0), from the distribution of (X, A, Y)
- Under what conditions can we do this?

A key assumption is required

Stable Unit Treatment Value Assumption (SUTVA)

$$Y_i = Y_i^*(1)A_i + Y_i^*(0)(1 - A_i), i = 1, ..., n$$
 (2.3)

- Rubin (1980), aka the consistency or stability assumption
- The outcome Y_i observed for individual i, who received treatment A_i, is the same as his potential outcome for that treatment regardless of the conditions under which he received that treatment
- E.g., the outcome i would have if randomized to treatment 1 in a clinical trial is the same as that if she instead received 1 at the discretion of her physician
- Implies no interference: Potential outcomes for an individual are unaffected by treatments received or potential outcomes of other individuals
- No interference is often reasonable; an exception is when the treatments are vaccines for prevention of an infectious disease

Review of conditional independence

Independence: $Z_1 \perp \!\!\! \perp Z_2$ if

$$p_{Z_1,Z_2}(z_1,z_2) = p_{Z_1}(z_1)p_{Z_2}(z_2)$$
 (2.4)

$$p_{Z_1|Z_2}(z_1|z_2) = p_{Z_1}(z_1), \text{ if } p_{Z_2}(z_2) > 0$$
 (2.5)

$$p_{Z_2|Z_1}(z_2|z_1) = p_{Z_2}(z_2), \text{ if } p_{Z_1}(z_1) > 0$$
 (2.6)

for all realizations z_1 , z_2

- p_Z(z) is the probability mass function P(Z = z) if Z is discrete or the probability density if Z is continuous
- \$\rho_{Z_1|Z_2}(z_1|z_2)\$ is the conditional probability mass function or density of \$Z_1\$ given \$Z_2\$

Review of conditional independence

Conditional independence: $Z_1 \perp \!\!\! \perp Z_2 | Z_3$ if

$$\rho_{Z_1,Z_2|Z_3}(z_1,z_2|z_3) = \rho_{Z_1|Z_3}(z_1|z_3)\rho_{Z_2|Z_3}(z_2|z_3), \text{ if } \rho_{Z_3}(z_3) > 0 \quad (2.7)$$

$$\rho_{Z_1|Z_2,Z_3}(z_1|z_2,z_3) = \rho_{Z_1|Z_3}(z_1|z_3), \text{ if } \rho_{Z_2,Z_3}(z_2,z_3) > 0$$
 (2.8)

$$\rho_{Z_2|Z_1,Z_3}(z_2|z_1,z_3) = \rho_{Z_2|Z_3}(z_2|z_3), \text{ if } \rho_{Z_1,Z_3}(z_1,z_3) > 0$$
(2.9)

for all realizations z_1 , z_2 , z_3

I.e., (2.4)-2.6) hold conditionally at all levels of z₃

We make heavy use of (2.7)-(2.9) throughout the course

Can show: Under SUTVA (2.3), data from a randomized study (e.g., clinical trial) can be used to estimate the average causal treatment effect δ^* in (2.2)

- As before, randomization ensures treatment assignment is independent of all other factors, including individual characteristics
- Including the outcome an individual would achieve under any of the possible treatment options
- That is, for any individual, randomization ensures that

$$\{Y^{*}(1), Y^{*}(0)\} \perp A$$
 (2.10)

Be careful! Do not confuse (2.10) with treatment assignment being independent of *observed outcome*,

$$Y \perp \!\!\!\perp A$$

By SUTVA, this is equivalent to

$$\{Y^{*}(1)A + Y^{*}(0)(1-A)\} \perp A$$

which clearly is not true

Y ⊥ A corresponds to the hypothesis of no treatment effect

Fundamental result: Under SUTVA (2.3) and (2.10), the average (associational) treatment difference (2.1)

$$\delta = E(Y|A=1) - E(Y|A=0)$$

is the same as the average causal treatment effect (2.2)

$$\delta^* = E\{Y^*(1)\} - E\{Y^*(0)\}$$

Demonstration: Consider E(Y|A=1)

$$E(Y|A = 1) = E\{Y^{*}(1)A + Y^{*}(0)(1 - A)|A = 1\}$$
$$= E\{Y^{*}(1)|A = 1\} = E\{Y^{*}(1)\}$$

by SUTVA and then (2.10); similarly $E(Y|A=0)=E\{Y^*(0)\}$. Thus

$$\delta = E(Y|A=1) - E(Y|A=0) = E\{Y^{*}(1)\} - E\{Y^{*}(0)\} = \delta^{*} \quad (2.11)$$

Implication of (2.11):

- E(Y|A = 1) is the average outcome among individuals observed to receive treatment 1
- Can be estimated consistently by the sample average outcome among those receiving treatment 1
- Similarly for E(Y|A=0)
- Thus

$$\widehat{\delta} = \overline{Y}_1 - \overline{Y}_0$$

is a consistent estimator for δ , where (sample averages)

$$\overline{Y}_1 = \frac{\sum\limits_{i=1}^n A_i Y_i}{\sum\limits_{i=1}^n A_i}$$
 and $\overline{Y}_0 = \frac{\sum\limits_{i=1}^n (1 - A_i) Y_i}{\sum\limits_{i=1}^n (1 - A_i)}$

• And by (2.11) is a consistent estimator for δ^*

Observational studies

Complication: Individuals receive treatment according to physician discretion or their own choice

- Thus, individuals who receive treatment 1 may have different characteristics from those who receive treatment 0
- So they may be prognostically different
- Because { Y*(1), Y*(0)} reflect prognosis (how an individual would fare on either treatment),

$$\{Y^{*}(1), Y^{*}(0)\} \perp A$$

in (2.10) is no longer reasonable

• Thus, the foregoing arguments do not hold, and it is not necessarily the case that $\widehat{\delta}$ consistently estimates δ^*

Observational studies

Hope:

- Suppose individual characteristics (covariates) X* ascertained prior to treatment can be identified that are associated with both prognosis and treatment selection, i.e., are *confounders*
- Among individuals sharing the same X*, all factors associated with treatment selection and outcome are taken into account, so that treatment assignment is effectively at random
- Formally

$$\{Y^{*}(1), Y^{*}(0)\} \perp A|X^{*}$$
 (2.12)

Difficulty:

- There may be variables U, unmeasured confounders, $U \subset X^*$ but $U \not\subset X$

No unmeasured confounders assumption

Critical assumption: All variables X^* used to make treatment decisions are captured in the data, so that $X^* \subseteq X$, and

$$\{Y^{*}(1), Y^{*}(0)\} \perp A|X$$
 (2.13)

- Assumption of no unmeasured confounders
- Aka strong ignorability assumption (Rubin, 1978)
- Fundamental difficulty: It is impossible to verify from the observed data that there are no unmeasured confounders and thus that (2.13) holds
- I.e., cannot tell from the data at hand if there are additional variables not recorded in the data that are associated with both prognosis and treatment selection
- Adoption of (2.13) must be justified based on expertise, specific situation, etc

Assumptions

We assume that SUTVA and the no unmeasured confounders (NUC) assumption hold henceforth

 In practice, these must be critically evaluated for relevance on a case by case basis

Under SUTVA (2.3) and NUC (2.13) (and a further assumption):

• The average causal effect δ^* in (2.2) can be identified from the distribution of observed data (X, A, Y)

2. Preliminaries: Basic Causal Inference

- 2.1 Introductory Remarks
- 2.2 Point Exposure Studies
- 2.3 Potential Outcomes and Causal Inference

2.4 Estimation of Causal Effects via Outcome Regression

- 2.5 Review of M-estimation
- 2.6 Estimation of Causal Effects via the Propensity Score
- 2.7 Doubly Robust Estimation of Causal Effects

Identifiability of δ^*

Fundamental calculation: Consider $E\{Y^*(1)\}$

$$E\{Y^{*}(1)\} = E[E\{Y^{*}(1)|X\}] = E[E\{Y^{*}(1)|X, A = 1\}]$$

$$= E\{E(Y|X, A = 1)\}$$
(2.14)
(2.15)

- Second equality in (2.14) follows by NUC
- (2.15) follows by SUTVA
- Outer expectations are wrt marginal distribution of X

$$E[E\{Y^{*}(1)|X\}] = \int_{\mathcal{X}} E\{Y^{*}(1)|X=x\} \rho_{X}(x) d\nu(x)$$

$$E[E\{Y^{*}(1)|X, A = 1\}] = \int_{\mathcal{X}} E(Y|X = x, A = 1) \, p_{X}(x) \, d\nu(x)$$

$$\neq \int_{\mathcal{X}} E(Y|X = x, A = 1) p_{X|A}(x|A = 1) d\nu(x) = E(Y|A = 1)$$

 $\nu(\,\cdot\,)$ is a dominating measure (Lebesgue, counting measure)

Identifiability of δ^*

Similarly:
$$E\{Y^*(0)\} = E\{E(Y|X, A=0)\}$$

Result: The average causal treatment effect (2.2)

$$\delta^* = E\{E(Y|X, A=1)\} - E\{E(Y|X, A=0)\}$$
 (2.16)

• δ^* can be expressed in terms of the observed data (X,A,Y)

Also required: For $E[E\{Y^*(1)|X,A=1\}]$ and $E\{E(Y|X,A=1)\}$ (and similarly for A=0) to be well defined, must have

$$p_{X,A}(x,a) = P(X = x, A = a) > 0$$
 $a = 0, 1$

for all $x \in \mathcal{X}$ with $p_X(x) > 0$

- Convention: We usually treat random variables as discrete to avoid measure theoretic distractions
- This holds if

$$P(A = a | X = x) > 0$$
 for all x such that $p_X(x) = P(X = x) > 0$ (2.17)

(2.17) is referred to as the positivity assumption

Outcome regression

Implication of (2.16):

$$\delta^* = E\{E(Y|X, A = 1)\} - E\{E(Y|X, A = 0)\}$$

depends on E(Y | X, A), the *regression* of observed outcome on covariates and observed treatment received

True regression relationship:

$$E(Y|X=x, A=a)=Q(x,a)$$

 Q(x, a) is the true function of x and a relating observed outcome to covariates and treatment received and thus

$$\delta^* = E\{Y^*(1)\} - E\{Y^*(0)\} = E\{Q(X,1)\} - E\{Q(X,0)\}$$

Q(x, a) ordinarily unknown in practice

Outcome regression

Posit a (parametric) regression model: Assume

$$E(Y|X=x,A=a)=Q(x,a;\beta)$$

- Q(X, A; β) is a linear or nonlinear function of x, a, and finite-dimensional parameter β; for example
- Y continuous, linear model (w/ or w/o interaction)

$$Q(x, a; \beta) = \beta_1 + \beta_2 a + \beta_3^T x + \beta_4^T x a$$
 (2.18)

• Y binary, $logit(p) = log\{p/(1-p)\}$

$$logit{Q(x, a; \beta) = \beta_1 + \beta_2 a + \beta_3^T x + \beta_4^T xa}$$

 Fit by ordinary least squares (OLS), weighted least squares (WLS), maximum likelihood, etc

Outcome regression

Important: A posited model $Q(x, a; \beta)$ may or may not be *correctly specified*

- The model $Q(x, a; \beta)$ is correctly specified if there exists β_0 , referred to as the true value of β , such that $Q(x, a; \beta_0)$ is the true function Q(x, a)
- If no such β_0 exists, then the model is not correctly specified

If Q(x, a) were known: Obvious estimator for δ^* based on (X_i, A_i, Y_i) , i = 1, ..., n

$$n^{-1}\sum_{i=1}^n \{Q(X_i,1)-Q(X_i,0)\}\$$

Outcome regression estimator

Assuming $Q(x, a; \beta)$ is correctly specified: Given estimator $\widehat{\beta}$ for β , obvious estimator for δ^* is the *outcome regression estimator*

$$\widehat{\delta}_{OR}^{\star} = n^{-1} \sum_{i=1}^{n} \{ Q(X_i, 1; \widehat{\beta}) - Q(X_i, 0; \widehat{\beta}) \}$$
 (2.19)

Under model (2.18) with no interaction

$$\{Q(x,1;\beta) - Q(x,0;\beta)\} = (\beta_1 + \beta_2 + \beta_3^T x) - (\beta_1 + \beta_3^T x) = \beta_2$$
 and $\widehat{\delta}_{OR}^* = \widehat{\beta}_2$; similarly for arbitrary function $\phi(x;\beta_1)$

$$Q(x,a;\beta) = \phi(x;\beta_1) + \beta_2 a$$

In general, substitute fitted model in (2.19)

2. Preliminaries: Basic Causal Inference

- 2.1 Introductory Remarks
- 2.2 Point Exposure Studies
- 2.3 Potential Outcomes and Causal Interence
- 2.4 Estimation of Causal Effects via Outcome Regression

2.5 Review of M-estimation

- 2.6 Estimation of Causal Effects via the Propensity Score
- 2.7 Doubly Robust Estimation of Causal Effects

Large sample inference

As for any estimator for anything:

- In addition to $\widehat{\delta}_{OR}^*$, require an estimate of the *uncertainty* associated with $\widehat{\delta}_{OR}^*$ as an estimator for δ^* (standard errors, confidence intervals, etc)
- Require the sampling distribution of $\widehat{\delta}_{\textit{OR}}^{\star}$
- Properties of $\widehat{\delta}_{\mathit{OR}}^{\star}$ depend on those of $\widehat{\beta}$
- For all but simplest models, must appeal to large sample theory approximation

Generic statistical model

$$Z_1, \ldots, Z_n$$
 i.i.d. $Z \sim p_Z(z)$

Goal: Inference on p-dimensional parameter θ

- θ fully characterizes the distribution of Z, model $p_Z(z;\theta)$
- ullet characterizes features of the distribution, e.g., expectation
- Assume the model is correctly specified, where θ_0 is the true value of θ

Statistical problem: Derive an estimator for θ and its large sample properties

 In many common models, natural/popular estimators are M-estimators

M-estimator

An M-estimator for θ is the solution (assuming it exists and is well defined) to the $(p \times 1)$ system of *estimating equations*

$$\sum_{i=1}^{n} M(Z_i; \widehat{\theta}) = 0$$
 (2.20)

• $M(z; \theta) = \{M_1(z; \theta), \dots, M_p(z; \theta)\}^T$ is a $(p \times 1)$ unbiased estimating function satisfying

$$E_{\theta}\{M(Z;\theta)\}=0$$
 for all θ

• E.g., for model $p_Z(z;\theta)$

$$E_{\theta}\{M(Z;\theta)\}=\int M(z;\theta)\,p_{Z}(z;\theta)\,d\nu(z)=0\quad \text{for all } \theta$$

• Suppress subscript for evaluation at θ_0 (expectation wrt true distribution of Z)

M-estimator

Maximum likelihood estimator: Fully parametric model $p_Z(z; \theta)$

$$M(z;\theta) = \frac{\partial \log\{p_Z(z;\theta)\}}{\partial \theta}$$

- Right hand side is (p × 1) vector of derivatives of the logarithm of p_Z(z; θ) with respect to the elements of θ
- I.e., the score

M-estimator result

Under regularity conditions: $\widehat{\theta}$ satisfying (2.20) is a consistent and asymptotically normal estimator for θ

$$\widehat{\theta} \xrightarrow{p} \theta_0$$

$$n^{1/2}(\widehat{\theta} - \theta_0) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \Sigma)$$
(2.21)

- $\stackrel{p}{\longrightarrow}$ denotes convergence in probability
- (2.21) is shorthand meaning the left hand side converges in distribution to a N(0, Σ) random vector (covariance matrix Σ)

$$0 = \sum_{i=1}^{n} M(Z_i; \theta_0) + \left\{ \sum_{i=1}^{n} \frac{\partial M(Z_i; \theta^*)}{\partial \theta^T} \right\} (\widehat{\theta} - \theta_0)$$

 θ^* is a value between $\widehat{\theta}$ and θ_0

$$\frac{\partial M(z; \theta^*)}{\partial \theta^T} = \begin{pmatrix} \frac{\partial M_1(z; \theta)}{\partial \theta_1}, & \dots, & \frac{\partial M_1(z; \theta)}{\partial \theta_p} \\ \vdots & \ddots & \vdots \\ \frac{\partial M_p(z; \theta)}{\partial \theta_1}, & \dots, & \frac{\partial M_p(z; \theta)}{\partial \theta_p} \end{pmatrix}_{\theta = \theta^*}$$

Rearrange as

$$\left\{-n^{-1}\sum_{i=1}^{n}\frac{\partial M(Z_{i};\theta^{*})}{\partial \theta^{T}}\right\}n^{1/2}(\widehat{\theta}-\theta_{0})=n^{-1/2}\sum_{i=1}^{n}M(Z_{i};\theta_{0}) \quad (2.22)$$

By consistency of $\widehat{\theta}$ and because θ^* is between $\widehat{\theta}$ and θ_0 , under regularity conditions

$$-n^{-1}\sum_{i=1}^{n}\frac{\partial\,M(Z_{i};\theta^{*})}{\partial\theta^{T}}\stackrel{p}{\longrightarrow}-E\left\{\frac{\partial\,M(Z_{i};\theta_{0})}{\partial\theta^{T}}\right\}$$

Assuming $E\{\partial M(Z,\theta^*)/\partial\theta^T\}$ is nonsingular, with increasing probability as $n\to\infty$ so is the left hand side

$$\left\{-n^{-1}\sum_{i=1}^{n}\frac{\partial M(Z_{i};\theta^{*})}{\partial \theta^{T}}\right\}^{-1} \stackrel{p}{\longrightarrow} \left[-E\left\{\frac{\partial M(Z_{i};\theta_{0})}{\partial \theta^{T}}\right\}\right]^{-1}$$

Thus rewrite (2.22) as

$$n^{1/2}(\widehat{\theta} - \theta_0) = \left\{ -n^{-1} \sum_{i=1}^{n} \frac{\partial M(Z_i; \theta^*)}{\partial \theta^T} \right\}^{-1} n^{-1/2} \sum_{i=1}^{n} M(Z_i; \theta_0) \quad (2.23)$$

By central limit theorem

$$n^{1/2} \sum_{i=1}^{n} M(Z_i; \theta_0) \xrightarrow{\mathcal{D}} \mathcal{N} \left[0, E\{M(Z; \theta_0)M^T(Z; \theta_0)\} \right]$$

Then by Slutsky's theorem

$$n^{1/2}(\widehat{\theta} - \theta_0) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \Sigma)$$
 (2.24)

$$\Sigma = \left[E \left\{ \frac{\partial M(Z; \theta_0)}{\partial \theta^T} \right\} \right]^{-1} E\{M(Z; \theta_0) M^T(Z; \theta_0)\} \left[E \left\{ \frac{\partial M(Z; \theta_0)}{\partial \theta} \right\} \right]^{-1}$$

known as the sandwich formula

Estimate

$$\left[E \left\{ \frac{\partial M(Z_i; \theta_0)}{\partial \theta^T} \right\} \right]^{-1} \quad \text{by} \quad \left[n^{-1} \sum_{i=1}^n \frac{\partial M(Z_i; \widehat{\theta})}{\partial \theta^T} \right]^{-1}$$

$$E\{M(Z;\theta_0)M^T(Z;\theta_0)\}$$
 by $n^{-1}\sum_{i=1}^n M(Z_i;\widehat{\theta})M^T(Z_i;\widehat{\theta})$

Sandwich variance estimator: Substitute in Σ to obtain $\widehat{\Sigma}$

Approximate sampling distribution for $\widehat{\theta}$: From (2.24)

$$\widehat{\theta} \sim \mathcal{N}(\theta_0, n^{-1}\widehat{\Sigma})$$
 (2.25)

- "

 ~" means "approximately distributed as"
- Standard errors for elements of $\widehat{\theta}$ are square roots of diagonal elements of $n^{-1}\widehat{\Sigma}$

Illustration: OLS estimator

OLS estimator solves: With model $Q(x, a; \beta)$, β as θ

$$\sum_{i=1}^{n} \frac{\partial Q(X_{i}, A_{i}; \beta)}{\partial \beta} \{ Y_{i} - Q(X_{i}, A_{i}; \beta) \} = 0$$

· Estimating function

$$M(z;\beta) = \frac{\partial Q(x,a;\beta)}{\partial \beta} \{ Y - Q(x,a;\beta) \}$$

With correctly specified model is unbiased

$$E_{\beta} \left[\frac{\partial Q(X,A;\beta)}{\partial \beta} \{ Y - Q(X,A;\beta) \} \right]$$

$$= E_{\beta} \left(E_{\beta} \left[\frac{\partial Q(X,A;\beta)}{\partial \beta} \{ Y - Q(X,A;\beta) \} | X, A \right] \right)$$

$$= E_{\beta} \left[\frac{\partial Q(X,A;\beta)}{\partial \beta} \{ E_{\beta} (Y|X,A) - Q(X,A;\beta) \} \right] = 0$$

Illustration: OLS estimator

Can show:

$$\left[E \left\{ \frac{\partial M(Z; \beta_0)}{\partial \beta^T} \right\} \right]^{-1} = \left[-E \left\{ \frac{\partial Q(X, A; \beta_0)}{\partial \beta} \frac{\partial Q(X, A; \beta_0)}{\partial \beta^T} \right\} \right]^{-1}$$

estimated by

$$\left[-n^{-1}\sum_{i=1}^{n}\left\{\frac{\partial Q(X_{i},A_{i};\widehat{\beta})}{\partial \beta}\frac{\partial Q(X_{i},A_{i};\widehat{\beta})}{\partial \beta^{T}}\right\}\right]^{-1}$$

$$E\{M(Z; \beta_0)M^T(Z; \beta_0)\} = E\left\{ var(Y|X, A) \frac{\partial Q(X, A; \beta_0)}{\partial \beta} \frac{\partial Q(X, A; \beta_0)}{\partial \beta^T} \right\}$$
$$var(Y|X, A) = E[\{Y - Q(X, A; \beta_0)\}^2 | X, A]$$

Illustration: OLS estimator

Approximate sampling distribution:

$$n^{1/2}(\widehat{\beta}-\beta_0) \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}(0,\Sigma), \quad \ \, \widehat{\beta} \stackrel{.}{\sim} \mathcal{N}(\beta_0,n^{-1}\widehat{\Sigma})$$

• E.g., assuming var(Y|X,A) = σ^2 , estimated by $\hat{\sigma}^2$

$$\widehat{\Sigma} = \widehat{\sigma}^2 \left[-n^{-1} \sum_{i=1}^n \left\{ \frac{\partial Q(X_i, A_i; \widehat{\beta})}{\partial \beta} \frac{\partial Q(X_i, A_i; \widehat{\beta})}{\partial \beta^T} \right\} \right]^{-1}$$

• If var(Y|X = x, A = a) = V(x, a), the optimal estimator for β solves

$$\sum_{i=1}^{n} \frac{\partial Q(X_i, A_i; \beta)}{\partial \beta} V^{-1}(X_i, A_i) \{ Y_i - Q(X_i, A_i; \beta) \} = 0$$

and similar results are obtained

• E.g., in generalized linear models, V(x, a) is a known function of E(Y|X=x, A=a)

$\widehat{\delta}_{\mathit{OR}}^{\star}$ as an M-estimator

Assume: $Q(x, a; \beta)$ is correctly specified, β estimated by OLS, and solve jointly in δ^* and β the $(p + 1 \times 1)$ "stacked" estimating equations

$$\sum_{i=1}^{n} \{Q(X_i, 1; \beta) - Q(X_i, 0; \beta) - \delta^*\} = 0$$

$$\sum_{i=1}^{n} \frac{\partial Q(X_i, A_i; \beta)}{\partial \beta} \{Y_i - Q(X_i, A_i; \beta)\} = 0$$

• With $\theta = (\delta^*, \beta^T)^T$, unbiased estimating function

$$M(z;\theta) = \begin{pmatrix} Q(x,1;\beta) - Q(x,0;\beta) - \delta^* \\ \frac{\partial Q(x,a;\beta)}{\partial \beta} \{ y - Q(x,a;\beta) \} \end{pmatrix}$$

• β_0 and δ_0^* are true values of β and δ^*

$$n^{1/2} \begin{pmatrix} \widehat{\delta}_{QR}^* - \delta_0^* \\ \widehat{\beta} - \beta_0 \end{pmatrix} \xrightarrow{\mathcal{D}} \mathcal{N}(0, \Sigma)$$

$\widehat{\delta}_{\mathit{OR}}^{\star}$ as an M-estimator

Result: With Σ_{11} (1,1) element of Σ

$$\widehat{\delta}_{OR}^* \stackrel{\cdot}{\sim} \mathcal{N}(0, n^{-1}\widehat{\Sigma}_{11}), \quad \widehat{\Sigma}_{11} = A_n + C_n^T D_n^{-1} B_n D_n^{-1} C_n$$

$$A_{n} = n^{-1} \sum_{i=1}^{n} \left\{ Q(X_{i}, 1; \widehat{\beta}) - Q(X_{i}, 0; \widehat{\beta}) - \widehat{\delta}^{*} \right\}^{2}$$

$$B_{n} = n^{-1} \sum_{i=1}^{n} \left[\left\{ Y_{i} - Q(X_{i}, A_{i}; \widehat{\beta}) \right\}^{2} \frac{\partial Q(X_{i}, A_{i}; \widehat{\beta})}{\partial \beta} \frac{\partial Q(X_{i}, A_{i}; \widehat{\beta})}{\partial \beta^{T}} \right]$$

$$C_{n} = n^{-1} \sum_{i=1}^{n} \left\{ \frac{\partial Q(X_{i}, 1; \beta)}{\partial \beta} - \frac{\partial Q(X_{i}, 0; \beta)}{\partial \beta} \right\}$$
$$D_{n} = n^{-1} \sum_{i=1}^{n} \left\{ \frac{\partial Q(X_{i}, A_{i}; \widehat{\beta})}{\partial \beta} \frac{\partial Q(X_{i}, A_{i}; \widehat{\beta})}{\partial \beta^{T}} \right\}$$

2. Preliminaries: Basic Causal Inference

- 2.1 Introductory Remarks
- 2.2 Point Exposure Studies
- 2.3 Potential Outcomes and Causal Inference
- 2.4 Estimation of Causal Effects via Outcome Regression
- 2.5 Review of M-estimation
- 2.6 Estimation of Causal Effects via the Propensity Score
- 2.7 Doubly Robust Estimation of Causal Effects

The propensity score

Two treatment options: A takes values in $A = \{0, 1\}$

$$\pi(X) = P(A = 1|X)$$

- Rosenbaum and Rubin (1983)
- Can be generalized to > 2 options (later)

Conditional independence given the propensity score: Under NUC, $\{Y^*(1), Y^*(0)\} \perp A|X$

$$\{Y^{*}(1), Y^{*}(0)\} \perp A | \pi(X)$$
 (2.26)

- $0 < \pi(x) < 1$ is one-dimensional
- Can show by a conditioning argument that

$$P\{A = 1 | Y^*(1), Y^*(0), \pi(X)\} = E\{I(A = 1) | Y^*(1), Y^*(0), \pi(X)\} = \pi(X)$$

demonstrating (2.26), where $I(B) = 1$ if B is true, = 0 otherwise

The propensity score

Under SUTVA and NUC:

$$E\{Y^{*}(1)\} = E\left[E\{Y^{*}(1)|\pi(X)\}\right] = E\left[E\{Y^{*}(1)|\pi(X), A = 1\}\right]$$
$$= E\left[E\{Y|\pi(X), A = 1\}\right]$$

and similarly $E\{Y^*(0)\} = E[E\{Y|\pi(X), A=0\}]$ and thus

$$\delta^* = E[E\{Y \mid \pi(X), A = 1\} - E\{Y \mid \pi(X), A = 0\}]$$
 (2.27)

Modeling the propensity score:

- Randomized study: $\pi(x)$ is known, often independent of x
- Observational study: $\pi(x)$ is unknown and modeled
- E.g., logistic regression model

logit
$$\{\pi(x; \gamma)\} = \gamma_1 + \gamma_2^T x$$
 or $\pi(x; \gamma) = \frac{\exp(\gamma_1 + \gamma_2^T x)}{1 + \exp(\gamma_1 + \gamma_2^T x)}$ (2.28)

Maximum likelihood estimator $\hat{\gamma}$ based on data (X_i, A_i) ,

$$i=1,\ldots,n$$

Propensity score stratification

Based on (2.27): Rosenbaum and Rubin (1983)

• Stratify individuals into S groups based on estimated propensities $\pi(X_i; \widehat{\gamma})$, $i = 1, \ldots, n$, by choosing $0 = c_0 < c_1 < \cdots < c_S = 1$ such that individual i belongs to group j if

$$c_{j-1} < \pi(X_i; \widehat{\gamma}) \leq c_j, j = 1, \ldots, S$$

• Estimate δ^* by

$$\widehat{\delta}_{\mathcal{S}}^{\star} = \sum_{j=1}^{\mathcal{S}} (\overline{Y}_{1j} - \overline{Y}_{0j}) (n_j/n)$$

 \overline{Y}_{1j} and \overline{Y}_{0j} are the sample average outcomes among individuals in the *j*th group receiving treatments 1 and 0, n_j = number of individuals in group *j*

• Suggestion: take S = 5 (stratification on quintiles)

Inverse propensity score weighting

More formal basis: Semiparametric theory for missing data (Robins, Rotinitzky, and Zhao, 1994; Tsiatis, 2006)

• If we could observe $\{Y_i^*(1), Y_i^*(0)\}, i = 1, ..., n$, obvious estimators for $E\{Y^*(1)\}$ and $E\{Y^*(0)\}$

$$n^{-1} \sum_{i=1}^{n} Y_i^*(1)$$
 and $n^{-1} \sum_{i=1}^{n} Y_i^*(0)$

- But, as in SUTVA, observe $Y_i^*(1)$ only when $A_i = 1$ and $Y_i^*(0)$ only when $A_i = 0$
- "Missing data problem" suggests inverse probability weighted complete case estimators originally proposed by Horvitz and Thompson (1952)

Inverse propensity score weighting

Estimation of $E\{Y^*(1)\}$: Weight outcomes for individuals with A=1 by $1/\pi(X)$; represent themselves and others sharing X with A=0

$$n^{-1} \sum_{i=1}^{n} \frac{A_i Y_i}{\pi(X_i)} \tag{2.29}$$

- E.g., if $\pi(X_i) = 1/3$, *i* represents himself and 2 others
- Similarly, estimate E{Y*(0)} by

$$n^{-1} \sum_{i=1}^{n} \frac{(1 - A_i) Y_i}{1 - \pi(X_i)}$$
 (2.30)

Positivity assumption: (2.29) and (2.30) are problematic if $\pi(X) = 0$ or $\pi(X) = 1$, so must have $0 < \pi(X) < 1$ a.s.

• That is, as in (2.17), for a = 0, 1,

$$P(A = a|X = x) > 0$$
 for all x such that $p_X(x) = P(X = x) > 0$

Formal justification

(2.29) and (2.30) are unbiased estimators for $E\{Y^*(1)\}$ and $E\{Y^*(0)\}$: Consider (2.29) under the positivity assumption (2.17)

$$E\left\{\frac{AY}{\pi(X)}\right\} = E\left\{\frac{AY^{*}(1)}{\pi(X)}\right\} = E\left[E\left\{\frac{AY^{*}(1)}{\pi(X)}\middle|Y^{*}(1),X\right\}\right]$$
$$= E\left[\frac{E\{A|Y^{*}(1),X\}Y^{*}(1)}{\pi(X)}\right] = E\{Y^{*}(1)\}$$

using SUTVA and, by NUC,

$$E\{A|Y^{*}(1),X\}=E\{A|X\}=P(A=1|X)=\pi(X)$$

Similarly

$$E\left\{\frac{(1-A)Y}{1-\pi(X)}\right\} = E\{Y^{*}(0)\}$$

Formal justification

Suggests estimators for δ^* :

• If $\pi(x)$ known

$$\widehat{\delta}_{IPW}^* = n^{-1} \sum_{i=1}^n \left\{ \frac{A_i Y_i}{\pi(X_i)} - \frac{(1 - A_i) Y_i}{1 - \pi(X_i)} \right\}$$
 (2.31)

• Observational studies: Posit and fit propensity model $\pi(x; \gamma)$ (e.g., logistic)

$$\widehat{\delta}_{IPW}^{*} = n^{-1} \sum_{i=1}^{n} \left\{ \frac{A_{i} Y_{i}}{\pi(X_{i}; \widehat{\gamma})} - \frac{(1 - A_{i}) Y_{i}}{1 - \pi(X_{i}; \widehat{\gamma})} \right\}$$
(2.32)

• Here, assume that the propensity model $\pi(x; \gamma)$ is correctly specified; i.e., there exists γ_0 such that $\pi(x; \gamma_0) = \pi(x)$

Approximate sampling distribution for (2.32)

Stacked M-estimating equations: $\theta = (\delta^*, \gamma^T)^T$

$$\sum_{i=1}^{n} \left\{ \frac{A_i Y_i}{\pi(X_i; \widehat{\gamma})} - \frac{(1 - A_i) Y_i}{1 - \pi(X_i; \widehat{\gamma})} - \delta^* \right\} = 0$$

$$\sum_{i=1}^{n} \binom{1}{X_i} \left\{ A_i - \frac{\exp(\gamma_1 + \gamma_2^T X_i)}{1 + \exp(\gamma_1 + \gamma_2^T X_i)} \right\} = 0$$

• Can derive approximate sampling distribution for $\hat{\delta}_{I\!PW}^*$ using M-estimation theory

Outcome regression vs. inverse propensity weighted estimators

- Both require SUTVA, NUC, and the positivity assumption
- Outcome regression estimator: Assumption on the conditional distribution of Y given X and A; i.e., on E(Y|X=x,A=a); model $Q(x,a;\beta)$ must be correctly specified for $\widehat{\delta}_{OR}^*$ to be a consistent estimator for δ^* (no assumption on $\pi(x)$ required)
- IPW estimator: Assumption on $\pi(x) = P(A = 1 | X = x)$; propensity model $\pi(X; \gamma)$ must be correctly specified for $\widehat{\delta}_{IPW}^*$ to be a consistent estimator for δ^* (no assumption on E(Y|X=x,A=a) required)
- Tradeoff which is harder to model?

Counterintuitive result

With correctly specified model $\pi(x; \gamma)$: Theoretically, $\hat{\delta}_{IPW}^{\star}$ in (2.32) with γ estimated by $\hat{\gamma}$ is *more efficient* than (2.31) with γ known

Simple special case, estimation of $E\{Y^*(1)\}$: True $\pi(x) = 1/2$; correctly specified model $\pi(x; \gamma) = \gamma$, $\gamma_0 = 1/2$,

$$\widehat{\gamma} = n^{-1} \sum_{i=1}^{n} A_i$$

Estimators: γ known and γ estimated

$$n^{-1} \sum_{i=1}^{n} \frac{A_{i} Y_{i}}{\pi(X; \gamma_{0})} = \sum_{i=1}^{n} \frac{A_{i} Y_{i}}{(n/2)} = \widehat{\mu}_{1}$$

$$n^{-1} \sum_{i=1}^{n} \frac{A_{i} Y_{i}}{\pi(X; \widehat{\gamma})} = \frac{n^{-1} \sum_{i=1}^{n} A_{i} Y_{i}}{n^{-1} \sum_{i=1}^{n} A_{i}} = \frac{\sum_{i=1}^{n} A_{i} Y_{i}}{\sum_{i=1}^{n} A_{i}} = \overline{Y}_{1}$$

Counterintuitive result

Can be shown:

$$n^{1/2}(\widehat{\mu}_1 - \mu_1) = 2n^{-1/2} \sum_{i=1}^n (A_i Y_i - \mu_1/2) \xrightarrow{\mathcal{D}} \mathcal{N}(0, 2\sigma_1^2 + \mu_1^2)$$

$$n^{1/2}(\overline{Y}_1 - \mu_1) = \left\{ n^{-1} \sum_{i=1}^n A_i \right\}^{-1} n^{-1/2} \sum_{i=1}^n A_i (Y_i - \mu_1) \xrightarrow{\mathcal{D}} \mathcal{N}(0, 2\sigma_1^2)$$

- \overline{Y}_1 with γ estimated is relatively more efficient than $\widehat{\mu}_1$ with γ known
- Similar result for estimation of $E\{Y^*(0)\}$ and δ^*
- This phenomenon persists for much more complicated inverse probability weighted estimators

2. Preliminaries: Basic Causal Inference

- 2.1 Introductory Remarks
- 2.2 Point Exposure Studies
- 2.3 Potential Outcomes and Causal Inference
- 2.4 Estimation of Causal Effects via Outcome Regression
- 2.5 Review of M-estimation
- 2.6 Estimation of Causal Effects via the Propensity Score

2.7 Doubly Robust Estimation of Causal Effects

Augmented inverse probability weighted estimators

Under the assumption that $\pi(x; \gamma)$ is correctly specified: All consistent and asymptotically estimators for δ^* are asymptotically equivalent to an estimator of form

$$\widehat{\delta}_{AIPW}^{*} = n^{-1} \sum_{i=1}^{n} \left[\frac{A_{i} Y_{i}}{\pi(X_{i}; \widehat{\gamma})} - \frac{(1 - A_{i}) Y_{i}}{1 - \pi(X_{i}; \widehat{\gamma})} - \{A_{i} - \pi(X_{i}; \widehat{\gamma})\} h(X_{i}) \right]$$
(2.33)

- Semiparametric theory (Tsiatis, 2006)
- h(X) is any arbitrary function of X, $\widehat{\delta}_{IPW}^*$ takes $h(X) \equiv 0$
- Can show $E_{\gamma}[\{A \pi(X; \gamma_0)\}h(X)] = 0$ for any h(X), so $\widehat{\delta}_{AIPW}^*$ is consistent for δ^*
- The additional term in (2.33) "augments" $\hat{\delta}_{I\!PW}^{\star}$ to increase efficiency

Optimal AIPW estimator

Among the class (2.33): The optimal, efficient estimator; i.e., with smallest asymptotic variance, is obtained with

$$h(X) = \frac{E(Y|X, A = 1)}{\pi(X)} + \frac{E(Y|X, A = 0)}{\{1 - \pi(X)\}}$$

- π(x) is the true propensity score
- E(Y|X,A) is not known, but can posit a model $Q(x,a;\beta)$
- Given fitted models $\pi(x; \widehat{\gamma})$ and $Q(x, a; \widehat{\beta})$, suggests the estimator

$$\widehat{\delta}_{DR}^* = n^{-1} \sum_{i=1}^n \left[\frac{A_i Y_i}{\pi(X_i; \widehat{\gamma})} - \frac{(1 - A_i) Y_i}{1 - \pi(X_i; \widehat{\gamma})} - \frac{\{A_i - \pi(X_i; \widehat{\gamma})\}}{\pi(X_i; \widehat{\gamma})} Q(X_i, 1; \widehat{\beta}) - \frac{\{A_i - \pi(X_i; \widehat{\gamma})\}}{1 - \pi(X_i; \widehat{\gamma})} Q(X_i, 0; \widehat{\beta}) \right]$$

$$(2.34)$$

Result: $\widehat{\delta}_{DR}^{\star}$ is a consistent estimator for δ^{\star} if only one of the models $\pi(x;\gamma)$ or $Q(x,a;\beta)$ is correctly specified

- $\widehat{\delta}_{DR}^{\star}$ is "robust to" misspecification of one of these models
- "Two tries" to develop a correct model leading to a consistent estimator

Demonstration: Suppose as $n \to \infty$, for some γ^* and β^*

$$\widehat{\gamma} \stackrel{p}{\longrightarrow} \gamma^*$$
 and $\widehat{\beta} \stackrel{p}{\longrightarrow} \beta^*$

- $\widehat{\gamma}$ and $\widehat{\beta}$ are M-estimators
- If $\pi(x; \gamma)$ is correctly specified, $\gamma^* = \gamma_0$; else, $\widehat{\gamma}$ is a function of the data so has some limit in probability γ^*
- Similarly, if $Q(x, a; \beta)$ is correctly specified, $\beta^* = \beta_0$; else, $\widehat{\beta}$ is a function of the data so has some limit in probability β^*

Thus: $\hat{\delta}_{DR}^{\star}$ in (2.34) converges in probability to

$$E\left[\frac{AY}{\pi(X;\gamma^{*})} - \frac{(1-A)Y}{1-\pi(X;\gamma^{*})} - \frac{\{A-\pi(X;\gamma^{*})\}}{\pi(X;\gamma^{*})}Q(X,1;\beta^{*}) - \frac{\{A-\pi(X;\gamma^{*})\}}{1-\pi(X;\gamma^{*})}Q(X,0;\beta^{*})\right]$$

which, using SUTVA and algebra, can be rewritten as

$$E\{Y^{*}(1) - Y^{*}(0)\}$$

$$+ E\left[\frac{\{A - \pi(X; \gamma^{*})\}}{\pi(X; \gamma^{*})} \{Y^{*}(1) - Q(X, 1; \beta^{*})\}\right]$$

$$+ E\left[\frac{\{A - \pi(X; \gamma^{*})\}}{1 - \pi(X; \gamma^{*})} \{Y^{*}(0) - Q(X, 0; \beta^{*})\}\right]$$
(2.36)

Want to show (2.35) and (2.36) = 0

By NUC and (2.7):

$$(2.35) = E\left(E\left[\frac{\{A - \pi(X; \gamma^*)\}}{\pi(X; \gamma^*)} \{Y^*(1) - Q(X, 1; \beta^*)\} \middle| X\right]\right)$$

$$= E\left(\frac{E\left[\{A - \pi(X; \gamma^*)\} \middle| X\right]}{\pi(X; \gamma^*)} E[\{Y^*(1) - Q(X, 1; \beta^*)\} \middle| X\right]\right)$$

$$(2.36) = E\left(\frac{E\left[\left\{A - \pi(X; \gamma^*)\right\} \middle| X\right]}{1 - \pi(X; \gamma^*)} E\left[\left\{Y^*(0) - Q(X, 0; \beta^*)\right\} \middle| X\right]\right)$$

•
$$\pi(X; \gamma)$$
 correct: $\gamma^* = \gamma_0$, $\pi(X; \gamma^*) = \pi(X; \gamma_0) = \pi(X)$

$$E[\{A - \pi(X; \gamma^*)\}|X] = E[\{A - \pi(X)\}|X] = E(A|X) - \pi(X) = 0$$
using $E(A|X) = \pi(X)$, so that (2.35) and (2.36) = 0

By NUC and (2.7):

$$(2.35) = E\left(E\left[\frac{\{A - \pi(X; \gamma^{*})\}}{\pi(X; \gamma^{*})} \{Y^{*}(1) - Q(X, 1; \beta^{*})\} \middle| X\right]\right)$$

$$= E\left(\frac{E\left[\{A - \pi(X; \gamma^{*})\} \middle| X\right]}{\pi(X; \gamma^{*})} E[\{Y^{*}(1) - Q(X, 1; \beta^{*})\} \middle| X\right]\right)$$

$$(2.36) = E\left(\frac{E\left[\{A - \pi(X; \gamma^*)\} \mid X\right]}{1 - \pi(X; \gamma^*)} E[\{Y^*(0) - Q(X, 0; \beta^*)\} \mid X]\right)$$

•
$$Q(x, a; \beta)$$
 correct: $\beta^* = \beta_0$, $Q(X, a; \beta^*) = Q(X, a; \beta_0)$
= $E(Y|X, A = a) = E\{Y^*(a)|X\}$, $a = 0, 1$

$$E[\{Y^*(a)-Q(X,a;\beta^*)\}|X] = E[\{Y^*(a)-Q(X,a;\beta_0)\}|X] = 0, \ a = 0,1$$

so that (2.35) and (2.36) = 0

Efficient estimator

Result: $\hat{\delta}_{DR}^{\star}$ is doubly robust

If both propensity and outcome regression models are correctly specified:

- $\hat{\delta}_{DR}^*$ in (2.34) based on the optimal choice of h(X) achieves the smallest asymptotic variance among all AIPW estimators of the form (2.33)
- This fundamental result follows from semiparametric theory

Randomized study: The propensity $\pi(x)$ is known

- $\widehat{\delta}_{DR}^{\star}$ is a consistent estimator for δ^{\star} whether or not the outcome regression model $Q(x, a; \beta)$ is correctly specified
- The augmentation term yields increased efficiency over $\hat{\delta}_{I\!PW}^{\star}$
- $\hat{\delta}_{OR}^*$ still requires a correct outcome regression model

Asymptotic properties

Using M-estimation theory: $\theta = (\delta, \gamma^T, \beta^T)^T$, and $\widehat{\delta}_{DR}^*$, $\widehat{\gamma}$, and $\widehat{\beta}$ solve "stacked" estimating equations; for example

$$\sum_{i=1}^{n} \left[\frac{A_{i}Y_{i}}{\pi(X_{i};\gamma)} - \frac{(1-A_{i})Y_{i}}{1-\pi(X_{i};\gamma)} - \frac{\{A_{i}-\pi(X_{i};\gamma)\}}{\pi(X;\gamma)} Q(X_{i},1;\beta) - \frac{\{A_{i}-\pi(X_{i};\gamma)\}}{1-\pi(X;\gamma)} Q(X_{i},0;\beta) - \delta^{*} \right] = 0$$

$$\sum_{i=1}^{n} \binom{1}{X_i} \left\{ A_i - \frac{\exp(\gamma_0 + \gamma_1^T X_i)}{1 + \exp(\gamma_0 + \gamma_1^T X_i)} \right\} = 0$$
$$\sum_{i=1}^{n} \frac{\partial Q(X_i, A_i; \beta)}{\partial \beta} \{ Y_i - Q(X_i, A_i; \beta) \} = 0$$

Onward

With this background, we are ready to single decision tackle treatment regimes...