Figure 1. Baseline clinical parameters (mean ± SD) in both mild to moderate (NYHA I-II) and severe (NYHA III-IV) congestive heart failure (CHF) groups.

	Mild to Moderate CHF n = 40	Severe CHF n = 47
Age (years)	62 ± 7	§8 ∓ <i>L</i> 9
Ejection fraction (%)	29 ± 4	20 ± 6 §§
Gender (Male/Female)	36/4	38/9
Ischemic (n)	38	38
Non-ischemic (n)	2	6

§ p<0.01, §§ p<0.001 severe vs. mild to moderate CHF

Kaplan-Meier survival cuves in patients with mild to moderate (NYHA Class I-II) and severe (NYHA Class III-IV) congestive heart failure (CHF) Figure 2.

Figure 3. Values for the natriuretic and vasoactive peptides in healthy control individuals

Parameter	Method	Specificity	Ilnits	5	Geometrical	99.5 % Confidence Limits of the mean	lence Limits nean
	nomatic	Special Control of the Control of th	3	=	mean	Low limit	High limit
Big-ET-1 (1-38)	ELISA (2-site)	C-proET-1 (1-38)	fmol/ml	50	96.0	0.81	1.16
Big-ET-1 (22-38)	RIA	C-proET-1 (1 –38) and fragments of Big-ET-1 with epitopes between (22-38)	lm/gd	92	5.5	5.3	5.8
ET-1	RIA	ET-1 $(1-21)$ and peptides with epitopes between $(1-21)$	lm/gd	92	4.1	3.8	4.4
N-proANP (1-98)	ELISA (2-site)	N-proANP (1-98)	fmol/ml	09	1692	1466	1952
N-proANP (1-25)	RIA	N-proANP (1 – 98) and peptides with epitopes between (1-25)	lm/gd	92	167	149	188
N-proANP (68-98)	RIA	N-proANP (1 – 98) and peptides with epitopes between (68-98)	lm/gd	92	268	236	303
BNP	IRMA (2-site)	BNP (77-108)	lm/gd	28	60	2	15
BNP	RIA	BNP (77 – 108) and peptides with epitopes between 77-108 of N-proBNP	lm/gd	92	5.0	4.4	5.6
N-proBNP	ELISA (Competition)	BNP $(1-76)$ and peptides with epitopes between $(1-76)$	fmol/ml	50	267	224	319

Figure 4. Baseline neurohormonal data [geometric mean (range)] in

both mild to moderate and severe CHF groups,

and comparison with healthy controls.

	Controls 🌳	Mild to Moderate	Severe CHF
		CHF	n = 47
		n = 40	
N-proANP (1-98)	1692 (212-3908)	3192 (1001-7768)*	5528 (1129-
fmol/ml		,	18180)**§§
N-proANP (1-25) pg/ml	167 (66-354)	537 (145-2010)	1903 (623-
		,	7148)**§§
N-proANP (68-98)	268 (94-898)	860 (164-2480)*	2507 (709-
pg/ml			88**(5706
N-proBNP fmol/ml	267 (95-1097)	491 (109-1610)	1521 (598-
•	•		5491)**§§
BNP IRMA pg/ml	9 (2-49)	43 (3-212)	328 (28-1610)**\$
BNP RIA pg/ml	5 (3-15)	22 (10-64)*	75 (15-192)**§§
ET-1 pg/ml	4.1 (2.1-6.6)	3.5 (0.9-8.3)	10.0 (8.7-11.6)**§§
BIG ET-1 RIA pg/ml	5.5 (4.0-7.6)	7.2 (3.8-12.2)	12.0 (5.8-22.9)**§§
BIG ET-1 ELISA	1.0 (0.4-2.8)	1.8 (0.6-4.5)	3.8 (1.3-14.5)**§§
fmol/ml			

*p<0.05, ** p<0.001 vs controls § p<0.01, §§ p<0.001 severe vs mild to moderate CHF \$\$ bata derived from Figure 3

Figure 5. Prognostic values for survival using natriuretic and vasoactive peptide assays, considered independently in NYHA III-IV patients *

Best	Best.	ä۳	Best estimate of cutoff level segregating the patients with good and poor survival prognosis	level segregs ood and poor jnosis	ating		Median survival time estimation (months)	time ths)
	Va		Cutot as fold	Limits	as fold			
Prognostic parameters considered independently a by the leart later than the leart later l			ff levels expressed I geometric mean of normal	of the geometrical mean	ff levels expressed	Bad prognosis group	Good Prognosis group	Test between groups Prob>ChiSq Wilcoxon
2-site ELISA fmol/ml 4.0	4.0		4.1	3.5	5.0	10	31	0.0005
RIA pg/ml 13.8	13.8		2.5	2.4	2.6	10	30	0.0255
In-house RIA pg/mi 8.4	8.4		2.1	1.9	2.2	6	30	0.0149
2-site ELISA fmol/ml 6483	6483		3.8	3.3	4.4	10	43	0.003
In-house RIA pg/ml 1784	1784		10.7	9.5	12.0	13	44	0.0204
In-house RIA pg/ml 2562	2562		9.6	8.5	10.8	11	31	0.0092
IRMA pg/ml 480	480		54	32	89	10	28	0.1238
In-house RIA pg/ml 92	92		18	16	21	6	28	0.0577
Competition- fmol/ml 1512 ELISA	1512		5.7	4.7	6.8	11	42	0.0423

* The specificity of each assay is summarized in Figure 3 and described in full length in the text.

100

9 8 Figure 6. Patients with severe CHF (NYHA Class III-IV) A: Big ET-1 (1-38) <4.0 pg/ml B: Big ET-1 (1-38) >4.0 pg/ml 4 20 9 Time (months) $\mathbf{\omega}$ 30 20 9 6,0 9'0 0,2 0,7 0,4 0,3 0,1 **BnivivnuS**

Figure 7. Patients with severe CHF (NYHA Class III-IV) A: N-pro ANP (1-98) <6483 fmol/ml B: N-pro ANP (1-98) >6483 fmol/ml

Figure 8. Patients with severe CHF (NYHA Class III-IV) A: N-proBNP <1512 fmol/ml B: N-proBNP >1512 fmol/ml

Figure 9. Patients with severe CHF (NYHA Class III-IV) A: BNP (IRMA) <480 pg/ml B: BNP (IRMA) >480 pg/ml

Figure 10. Prognostic values for survival using Big-ET-1 (1–38) testing determined with a specific 2 site ELISA, used in combination with several other natriuretic and vasoactive peptide assays in NYHA III-IV patients *

Parameters conside	Parameters considered in combination	Classification based on cut-off combinations (Cutoff levels are as in Figure 5)	Estimation of 50 % survival in months	Number of deaths during study period	Survivors at end of study period (censored)	Total Number/Class	Total	Test between groups Prob>ChiSq
Marker 1 (M1)	Marker 2 (M2)	L : marker below cut-off H : marker above cut-off						VVIICOXON
		M1L and M2L	> 91	10	1	21		
Big ET-1 (1-38) (2-site ELISA)	N-proANP (2-site ELISA)	M1 H and M2 L OR M1 L and M2 H	22	10	-	2	45	0.0002
		M1 H and M2 H	2	13	0	13		
		M1L and M2L	09	+	11	22		
Big ET-1 (1-38) (2-site ELISA)	N-proanp (1–25) (RIA)	M1 H and M2 L OR M1 L and M2 H	16	#	-	12	46	0.0013
		M1 H and M2 H	S	12	0	12		
		M1L and M2L	×94	8	10	18		
Big ET-1 (1-38) (2-site ELISA)	N-proANP (68-98) (RIA)	M1 H and M2 L OR M1 L and M2 H	. 12	41	2	16	46	0.0003
1		M1 H and M2 H	4.5	12	0	12		

meters conside	Parameters considered in combination	Classification based on cut-off combinations (Cutoff levels are as in Figure 5)	Estimation of 50 % survival in months	Number of deaths during study period	Survivors at end of study period (censored)	Total Number/Class	Total	Test between groups Prob>ChiSq Wilcoxon
Marker 1 (M1)	Marker 2 (M2)	L : marker below cut-on H : marker above cut-off						
		M1L and M2L	61	თ	6	18		
Big ET-1 (1-38) (2-site ELISA)	N-proBNP Competition one site ELISA	M1 H and M2 L OR M1 L and M2 H	22	ω	2	10	41	0.0009
		M1 H and M2 H	7.5	13	0	13	,	
		M1L and M2L	4	12	10	22		
Big ET-1 (1-38) (2-site ELISA)	BNP (IRMA)	M1 H and M2 L OR M1 L and M2 H	16	41	2	16	46	0.0044
		M1 H and M2 H	4.5	8	0	ω		
		M1L and M2L	31	13	∞	21		
Big ET-1 (1-38) (2-site ELISA)	BNP (RIA)	M1 H and M2 L OR M1 L and M2 H	50	£	4	15	46	0.0011
		M1 H and M2 H	4.5	10	0	10		

ers consider	Parameters considered in combination	Classification based on cut-off combinations (Cutoff levels are as in Figure 5) L: marker below cut-off H: marker above cut-off	Estimation of 50 % survival in months	Number of deaths during study period	Survivors at end of study period (censored)	Total Number/Class	Total	Test between groups Prob>ChiSq Wilcoxon
Warkei I (WII)	Marker Z (MZ)	M1L and M2L	37	10	7	11		
Big ET-1 (1-38) (2-site ELISA)	ET-1 (RIA)	M1 H and M2 L OR M1 L and M2 H	12	10		11	36	0.0055
		M1 H and M2 H	4.5	8	0	ω		

* The specificity of each assay is summarized in Figure 3 and described in full length in the text.

Figure 13. Prognostic values for survival using N-proBNP testing determined with a single site competition ELISA used in combination with 2 different BNP assays in NYHA III-IV patients *

	Prob>ChiSq Wilcoxon		0.0282			0.0343	
	Total		45			45	
Total	Number/ Class	20	16	ത	19	16	10
Survivors at	period (censored)	&	4	0	ထ	က	-
Number of	during study period	12	12	6	7	13	6
Estimation of 50 % survival in months		44	18	ß	44	18	2
Classification based on cut-off combinations	(Cut-off levels are as in Fig. 5) L: below cut-off H: above cut-off	M1 L and M2 L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H	M1L and M2L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H
ered in combination	Marker 2		BNP IRMA		BNP RIA		
Parameters considered in combination	Marker 1		N-proBNP Competition one site ELISA	;		N-proBNP Competition one site ELISA	

* The specificity of each assay is summarized in Figure 3 and described in full length in the text.

100 8 80 A: N-proBNP <1512 fmol/ml AND BNP (IRMA) <480 pg/ml B: N-proBNP >1512 fmol/ml OR BNP (IRMA) >480 pg/ml C: N-proBNP >1512 fmol/ml AND BNP (IRMA) >480 pg/ml BNP (IRMA) >480 pg/ml $\mathbf{\omega}$ Figure 14. Patients with severe CHF (NYHA Class III-IV) 20 S 9 Þ Time (months) 50 30 20 10 0,0 0,8 0,7 **Bnivivnu**

A: N-proBNP <1512 fmol/ml AND BNP (IRMA) <480 pg/ml C: N-proBNP >1512 fmol/ml AND BNP (IRMA) >480 pg/ml Figure 15. Patients with severe CHF (NYHA Class III - IV) Solid lines: survival

Figure 16. Prognostic values for survival using several natriuretic and vasoactive peptide assays, considered independently in NYHA I - II patients *

_					1							
	·	Test between groups Prob>ChiSq Wilcoxon	0 00 0		0.0773	2100	0 0474	† 1	0.1078	<u> </u>	0.0178	
		Total Number/ Class	19	17	19	18	15	22	16	24	22	15
		Survivors at end of study period (censored)	16	80	15	10	13	12	13	12	18	1
		Number of deaths during study period	ო	6	4	8	2	10	3	6	4	8
14-15-14-14-14-14-14-14-14-14-14-14-14-14-14-		% Survival at end of study	84	47	62	55	87	54	84	57	84	25
		75% survival estimation (months)	> 91	43	> 91	49	>91	09	>91	50	>91	47
	Best estimate of cutoff level segregating programs with good and poor survival programs with good and poor survival programs of the geometrical mean of the geometrical mean of normal Critical levels exbressed as told decometrical mean of normal Critical levels expressed as told geometric mean of normal All the section of the critical level of the		7	Ξ		I	-	Ŧ	_	I		H
			1.7	2.2	2.6	3.3	2.4	3.1	2.6	7.0	4.4	5.7
			0.7	э. -	C	9.0	c	0,7	Ç	7.4	C	0.
	Best estima patients v	Waste stimate Value of the cutoff level		3292	00	4 0	100	95	o c	S S	30	3
			1-713	E NOME		EL/6d		ELI/6d	7	ELI/6d	Im/or	
		Prognostic parameters considered independently	Č.	Z-sile ELISA	Č	HI-nouse KIA	Č	m-nouse Kip	2	Y N	0 0000	AN acpoint
		Prognos		N-proaine (1-98)		(CZ-1) JANYOID-NI	CO CO CIAN CO	N-pioany (00-90) III-iiouse Kia	CZ	L Z G	Q A	200

	Test between groups Prob>ChiSq Wilcoxon	0.0755	3	7000	t 0200	0		0.36.0	0707.0
	Total Number/ Class	14	23	24	13	ł	ı	1	1
	Survivors at end of study period (censored)	12	13	19	9	I	ı	I	•
	Number of deaths during study period	2	10	5	7	ı	I	-	
	% Survival at end of study	98	999	79	46	l	l	I	ì
	75% survival estimation (months)	>91	53	>91	39	ı	ı	ı	ŀ
	Classification based on cut-off L: below cut-off H: above cut-off		I	-1	Ξ	ا	T	_	н
		1.3	6 .	1.6	2.4		I		I
ate of cutoff leve with good and po prognosis	Cutoff levels expressed as fold 99.5% Confidence Limits of the geometrical mean Cutoff levels expressed as fold 99.5% Confidence Limits of the geometrical mean Cutoff levels expressed as fold geometric mean of normal Value of the cutoff level		?	C	0.7		l		
Best estim patients	Value of the cutoff level	707	ţ ţ	0	<u>.</u>		I		
	I			fmol/ml		lm/gq		lm/gq	
	Prognostic parameters considered independently	Competition-	ELISA	A SI I I I I A	Acine Erioa	Š	¥ E	A I Coulod of	
	Progno consider	ONGOLO		Bio ET 4 (4.28)	(05-1) 1-13-619	100 cc/ 1 T3 cia	06-22) I-1 3-6ia	- H	

* The specificity of each assay is summarized in Figure 3 and described in full length in the text.

Figure 17. Patients with mild to moderate CHF (NYHA Class I-II) A: N-proANP (1-98) < 3292 fmol/ml B: N-proANP (1-98) > 3292 fmol/ml

22/26

Figure 20. Prognostic values for survival using N-proANP (1-98) testing determined with a specific 2-site ELISA, used in combination with several other natriuretic and vasoactive peptide assays in NYHA I-II patients *

							
Test between groups Prob>ChiSq Wilcoxon			0.0596			0.0114	
Total			36			36	
Total Number/ Class		12	10	14	14	12	10
Survivors at end of study period (censored)		£	Q	2	13	7	4
Number of deaths during study period		-	4	7	1	кo	9
75% survival estimation (months)	>91	70	42	>91	59	35	
% Survival at end of study		92	09	50	93	28	40
Classification based on cut-off combinations (Cut-off levels are as in Fig 5)	L : below cut-off H : above cut-off	M1 L and M2 L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H	M1 L and M2 L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H
red in combination	Marker 2 (M2)		BNP (IRMA)			BNP (RIA)	
Parameters considered in combination	Marker 1 (M1)		N-proANP (1-98) (2-site ELISA)	:		N-proANP (1-98) (2-site ELISA)	

Test between groups Prob>ChiSq Wilcoxon			0.0417			0.0365	
Total			36			36	
Total Number/ Class		12	თ	15	19	4	13
Survivors at end of study period (censored)		11	9	7	16	2	9
Number of deaths during study period		1	3	8	ю	7	7
75% survival estimation (months)		>91	50	40	>91	41	40
% Survival at end of study		92	29	47	84	50	46
Classification based on cut-off combinations (Cut-off levels are as in Fig 5)	L : below cut-off H : above cut-off	M1L and M2L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H	M1L and M2L	M1 H and M2 L OR M1 L and M2 H	M1 H and M2 H
	Marker 2 (M2)		N-proBNP Competition one site ELISA			Big ET-1 (2-site ELISA)	
Parameters considered in combination	Marker 1 (M1)		N-proANP (1-98) (2-site ELISA)			N-proANP (1-98) (2-site ELISA)	

* The specificity of each assay is summarized in Figure 3 and described in full length in the text.

