Motores de inferencia en la actualidad

Un motor de inferencia es el componente central de un sistema experto o de una inteligencia artificial basada en reglas, encargado de razonar a partir de la base de conocimientos para obtener conclusiones.

Hoy en día siguen siendo usados, aunque muchas veces se combinan con técnicas modernas como machine learning. Los más relevantes incluyen:

CLIPS (C Language Integrated Production System)

Descripción: Desarrollado por la NASA, es uno de los sistemas más antiguos y robustos para construir sistemas expertos.

Funcionamiento: Utiliza el encadenamiento hacia adelante; es decir, parte de hechos conocidos y aplica reglas hasta llegar a nuevas conclusiones.

Ejemplo de uso: Un sistema médico que, partiendo de síntomas reportados por el paciente, va aplicando reglas hasta identificar una posible enfermedad.

• Drools (JBoss Rules)

Descripción: Motor de inferencia moderno escrito en Java, muy usado en la industria para gestión de reglas de negocio.

Funcionamiento: Implementa el algoritmo Rete, que optimiza la aplicación de reglas cuando existen miles o millones de condiciones.

Ejemplo de uso: En banca, se usa para evaluar solicitudes de crédito aplicando cientos de reglas sobre historial, ingresos, deudas y perfil del cliente.

Prolog (Programming in Logic)

Descripción: Más que un motor, es un lenguaje de programación basado en lógica.

Funcionamiento: Utiliza encadenamiento hacia atrás, partiendo de hipótesis y comprobando si existen hechos que las respalden.

Ejemplo de uso: Un sistema de diagnóstico legal donde, dado un caso, se verifica si los hechos cumplen con las condiciones necesarias para dictaminar un delito.

Métodos de inferencia

Los métodos de inferencia son los procedimientos que guían la manera en que los motores aplican reglas y obtienen conclusiones. Los más conocidos son:

Encadenamiento hacia adelante (Forward Chaining)

Definición: Parte de hechos conocidos y aplica reglas de manera progresiva hasta llegar a una conclusión.

Ejemplo:

- Hecho 1: "Juan tiene fiebre."
- Hecho 2: "Si alguien tiene fiebre y tos, entonces puede tener gripe."
- Se añade: "Juan tiene tos."
- Conclusión: "Juan puede tener gripe."

Encadenamiento hacia atrás (Backward Chaining)

Definición: Parte de una hipótesis y busca hechos que la respalden.

Ejemplo:

- Hipótesis: "Juan tiene gripe."
- Regla: "Si alguien tiene fiebre y tos, entonces puede tener gripe."
- Se pregunta: ¿Juan tiene fiebre? → Sí.
- ¿Juan tiene tos? → Sí.
- Conclusión: La hipótesis "Juan tiene gripe" es verdadera.

Inferencia abductiva

Definición: Busca la mejor explicación para un hecho, aunque no sea una conclusión definitiva.

Ejemplo:

- Hecho: "El césped está mojado."
- Posibles explicaciones: "Ha llovido", "El aspersor estuvo encendido", "Alguien arrojó agua."
- Se infiere que la causa más probable es: "Ha llovido."

Inferencia inductiva

Definición: Generaliza a partir de ejemplos particulares.

Ejemplo:

- Caso 1: "El sol salió ayer."
- Caso 2: "El sol salió hoy."
- Conclusión inductiva: "El sol sale todos los días." (aunque no es una certeza lógica).

Inferencia deductiva

Definición: A partir de premisas verdaderas se obtiene necesariamente una conclusión verdadera.

Ejemplo:

- Premisa 1: "Todos los mamíferos tienen pulmones."
- Premisa 2: "El perro es un mamífero."
- Conclusión: "El perro tiene pulmones."

Modus Ponens y Modus Tollens

Dentro de la inferencia deductiva, existen reglas clásicas de razonamiento que se aplican tanto en lógica formal como en sistemas expertos.

Modus Ponens (afirmación del antecedente)

Estructura:

Si $P \rightarrow Q$ (si P entonces Q).

P es verdadero.

→ Q es verdadero.

Ejemplo:

Premisa 1: "Si estudias, aprobarás el examen." ($P \rightarrow Q$).

Premisa 2: "Estudiaste." (P).

Conclusión: "Aprobarás el examen." (Q).

Modus Tollens (negación del consecuente)

Estructura:

Si $P \rightarrow Q$ (si P entonces Q).

Q es falso.

→ P es falso.

Ejemplo:

Premisa 1: "Si llueve, la calle estará mojada." ($P \rightarrow Q$).

Premisa 2: "La calle no está mojada." (¬Q).

Conclusión: "No llovió." (¬P).

Conclusión:

En conclusión, los motores de inferencia actuales constituyen una pieza fundamental en los sistemas inteligentes modernos, pues permiten aplicar lógica y razonamiento automático sobre bases de conocimiento extensas. Su efectividad radica en el uso de diferentes métodos de inferencia, que van desde el encadenamiento hacia adelante y hacia atrás, hasta formas abductivas, inductivas y deductivas.