NXP Semiconductors

Data Sheet: Technical Data

LS1046A

QorlQ LS1046A, LS1026A Data Sheet

Features

- LS1046A has four cores and LS1026A has two cores
- Four 32-bit/64-bit Arm® Cortex®-v8 A72 CPUs
 - Arranged as a single cluster of four cores sharing a single 2 MB L2 cache
 - Up to 1.8 GHz operation
 - Single-threaded cores with 32 KB L1 data cache and 48 KB L1 instruction cache
- · Hierarchical interconnect fabric
 - Up to 700 MHz operation
- One 32-bit/64-bit DDR4 SDRAM memory controller with ECC and interleaving support
 - Up to 2.1 GT/s
- Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions:
 - Packet parsing, classification, and distribution (FMan)
 - Queue management for scheduling, packet sequencing, and congestion management (QMan)
 - Hardware buffer management for buffer allocation and de-allocation (BMan)
 - Cryptography acceleration (SEC)
 - IEEE 1588TM support
- Two RGMII interfaces
- Eight SerDes lanes for high-speed peripheral interfaces
 - Three PCI Express 3.0 controllers
 - One Serial ATA (SATA 6 Gbit/s) controller
 - Up to two XFI (10 GbE) interfaces
 - Up to five SGMII interfaces supporting 1000 Mbps
 - Up to three SGMII interfaces supporting 2500 Mbps
 - Up to one QSGMII interface
 - Supports 10GBase-KR
 - Supports 1000Base-KX

- Additional peripheral interfaces
 - One Quad Serial Peripheral Interface (QSPI) controller
 - One Serial Peripheral Interface (SPI) controller
 - Integrated flash controller (IFC) supporting NAND and NOR flash
 - Three high-speed USB 3.0 controllers with integrated PHY
 - One Enhanced Secure Digital Host Controller supporting SD 3.0, eMMC 4.4, and eMMC 4.5
 - Four I2C controllers
 - Two 16550-compliant DUARTs and six low-power UARTs (LPUARTs)
 - General purpose IO (GPIO), eight Flextimers
 - One Queue Direct Memory Access Controller (qDMA)
 - One Enhanced Direct Memory Access Controller (eDMA)
 - Global programmable interrupt controller (GIC)
 - Thermal monitoring unit (TMU)
- 780 FC-PBGA package, 23 mm x 23 mm

Table of Contents

1 I	ntrod	luction	3	3.18	Enhanced secure digital host controller (eSDHC)	135
2 I	Pin as	ssignments	4	3.19	JTAG controller	144
2	2.1	780 BGA ball layout diagrams	4	3.20	I2C interface	147
2	2.2	Pinout list	10	3.21	GPIO interface	150
3 I	Electr	rical characteristics.	48	3.22	2 GIC interface	153
3	3.1	Overall DC electrical characteristics	48	3.23	High-speed serial interfaces (HSSI)	154
3	3.2	Power sequencing	56	4 Sect	urity fuse processor	180
3	3.3	Power-down requirements	58	5 Har	dware design considerations	180
3	3.4	Power characteristics	58	5.1	Clock ranges	180
3	3.5	I/O power dissipation	61	5.2	Minimum platform frequency requirements for high-speed	
3	3.6	Power-on ramp rate	64		interfaces	181
3	3.7	Input clocks	64	5.3	Minimum DPAA frequency requirements	182
3	3.8	RESET initialization	70	6 The	rmal	182
3	3.9	DDR4 SDRAM controller	71	6.1	Recommended thermal model	184
3	3.10	Ethernet interface, Ethernet management interface, IEEE Sto	I	6.2	Temperature diode	184
		1588	76	6.3	Thermal management information	184
3	3.11	USB 3.0 interface	102	7 Pacl	kage information	187
3	3.12	Integrated Flash Controller	105	7.1	Package parameters for the FC-PBGA	187
3	3.13	LPUART interface	125	7.2	Mechanical dimensions of the FC-PBGA	187
3	3.14	DUART interface	126	8 Ord	ering information	189
3	3.15	Flextimer interface.	128	8.1	Part numbering nomenclature	189
3	3.16	SPI interface	130	8.2	Part marking	189
3	3.17	OSPI interface	133	9 Rev	ision history	190

1 Introduction

The LS1046A is a cost-effective, power-efficient, and highly integrated system-on-chip (SoC) design that extends the reach of the NXP value-performance line of QorIQ communications processors. Featuring power-efficient 64-bit Arm[®] Cortex[®]-A72 cores with ECC-protected L1 and L2 cache memories for high reliability, running up to 1.8 GHz.

The LS1046A and LS1026A processors are perfectly suited for a range of embedded applications such as enterprise routers and switches, linearrd controllers, network attached storage, security appliances, virtual customer premise equipment (vCPE), service providers gateways, and single board computers.

This figure shows the block diagram of the chip.

Figure 1. LS1046A block diagram

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Figure 2. LS1026A block diagram

2.1 780 BGA ball layout diagrams

This figure shows the complete view of the LS1046A BGA ball map diagram. Figure 4, Figure 5, Figure 6, and Figure 7 show quadrant views.

Figure 3. Complete BGA Map for the LS1046A

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Figure 4. Detail A

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Figure 5. Detail B

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Figure 6. Detail C

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Figure 7. Detail D

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

2.2 Pinout list

This table provides the pinout listing for the LS1046A by bus. Primary functions are **bolded** in the table.

Table 1. Pinout list by bus

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
	DDR SDRAM Memor	y Interface 1		•	•
D1_MA00	Address	V27	0	G1V _{DD}	
D1_MA01	Address	N27	0	G1V _{DD}	
D1_MA02	Address	N28	0	G1V _{DD}	
D1_MA03	Address	M28	0	G1V _{DD}	
D1_MA04	Address	L28	0	G1V _{DD}	
D1_MA05	Address	L27	0	G1V _{DD}	
D1_MA06	Address	K28	0	G1V _{DD}	
D1_MA07	Address	J27	0	G1V _{DD}	
D1_MA08	Address	J28	0	G1V _{DD}	
D1_MA09	Address	G28	0	G1V _{DD}	
D1_MA10	Address	Y28	0	G1V _{DD}	
D1_MA11	Address	H28	0	G1V _{DD}	
D1_MA12	Address	G27	0	G1V _{DD}	
D1_MA13	Address	AD27	0	G1V _{DD}	
D1_MACT_B	Activate	D28	0	G1V _{DD}	
D1_MALERT_B	Alert	F28	I	G1V _{DD}	1, 6
D1_MBA0	Bank Select	Y27	0	G1V _{DD}	
D1_MBA1	Bank Select	W28	0	G1V _{DD}	
D1_MBG0	Bank Group	E27	0	G1V _{DD}	
D1_MBG1	Bank Group	E28	0	G1V _{DD}	
D1_MCAS_B	Column Address Strobe / MA[15]	AC28	0	G1V _{DD}	
D1_MCK0	Clock	R28	0	G1V _{DD}	
D1_MCK0_B	Clock Complement	R27	0	G1V _{DD}	
D1_MCK1	Clock	T28	0	G1V _{DD}	
D1_MCK1_B	Clock Complement	T27	0	G1V _{DD}	
D1_MCKE0	Clock Enable	C28	0	G1V _{DD}	2
D1_MCKE1	Clock Enable	B28	0	G1V _{DD}	2
D1_MCS0_B	Chip Select	AB27	0	G1V _{DD}	
D1_MCS1_B	Chip Select	AE28	0	G1V _{DD}	
D1_MCS2_B	Chip Select / MCID[0]	AG28	0	G1V _{DD}	

Table continues on the next page...

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
		pin number	type		
D1_MCS3_B	Chip Select / MCID[1]	AF28	0	G1V _{DD}	
D1_MDIC0	Driver Impedence Calibration	P28	Ю	G1V _{DD}	3
D1_MDIC1	Driver Impedence Calibration	U28	Ю	G1V _{DD}	3
D1_MDM0	Data Mask	B23	Ю	G1V _{DD}	
D1_MDM1	Data Mask	H22	Ю	G1V _{DD}	
D1_MDM2	Data Mask	E25	Ю	G1V _{DD}	
D1_MDM3	Data Mask	J25	Ю	G1V _{DD}	
D1_MDM4	Data Mask	V25	Ю	G1V _{DD}	
D1_MDM5	Data Mask	AD24	Ю	G1V _{DD}	
D1_MDM6	Data Mask	AC23	Ю	G1V _{DD}	
D1_MDM7	Data Mask	AH24	Ю	G1V _{DD}	
D1_MDM8	Data Mask	P24	Ю	G1V _{DD}	
D1_MDQ00	Data	C22	Ю	G1V _{DD}	
D1_MDQ01	Data	A23	Ю	G1V _{DD}	
D1_MDQ02	Data	C26	Ю	G1V _{DD}	
D1_MDQ03	Data	A27	Ю	G1V _{DD}	
D1_MDQ04	Data	B22	Ю	G1V _{DD}	
D1_MDQ05	Data	A22	Ю	G1V _{DD}	
D1_MDQ06	Data	B25	Ю	G1V _{DD}	
D1_MDQ07	Data	A26	Ю	G1V _{DD}	
D1_MDQ08	Data	E22	Ю	G1V _{DD}	
D1_MDQ09	Data	D22	Ю	G1V _{DD}	
D1_MDQ10	Data	F23	Ю	G1V _{DD}	
D1_MDQ11	Data	G23	Ю	G1V _{DD}	
D1_MDQ12	Data	G22	Ю	G1V _{DD}	
D1_MDQ13	Data	F22	Ю	G1V _{DD}	
D1_MDQ14	Data	C24	Ю	G1V _{DD}	
D1_MDQ15	Data	E23	Ю	G1V _{DD}	
D1_MDQ16	Data	D26	Ю	G1V _{DD}	
D1_MDQ17	Data	E24	Ю	G1V _{DD}	
D1_MDQ18	Data	G24	Ю	G1V _{DD}	
D1_MDQ19	Data	H25	Ю	G1V _{DD}	
D1_MDQ20	Data	C25	Ю	G1V _{DD}	
D1_MDQ21	Data	D25	Ю	G1V _{DD}	
D1_MDQ22	Data	G25	Ю	G1V _{DD}	
D1_MDQ23	Data	H26	Ю	G1V _{DD}	
D1_MDQ24	Data	K23	Ю	G1V _{DD}	
D1_MDQ25	Data	J24	Ю	G1V _{DD}	

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
0.3	organi accompani	pin number	type	· one outpro	
D1_MDQ26	Data	L24	Ю	G1V _{DD}	
D1_MDQ27	Data	M24	Ю	G1V _{DD}	
D1_MDQ28	Data	J22	Ю	G1V _{DD}	
D1_MDQ29	Data	H23	Ю	G1V _{DD}	
D1_MDQ30	Data	K24	Ю	G1V _{DD}	
D1_MDQ31	Data	L25	Ю	G1V _{DD}	
D1_MDQ32	Data	V24	Ю	G1V _{DD}	
D1_MDQ33	Data	U26	Ю	G1V _{DD}	
D1_MDQ34	Data	AA26	Ю	G1V _{DD}	
D1_MDQ35	Data	W23	Ю	G1V _{DD}	
D1_MDQ36	Data	U24	Ю	G1V _{DD}	
D1_MDQ37	Data	U25	Ю	G1V _{DD}	
D1_MDQ38	Data	W24	Ю	G1V _{DD}	
D1_MDQ39	Data	Y25	Ю	G1V _{DD}	
D1_MDQ40	Data	AB24	Ю	G1V _{DD}	
D1_MDQ41	Data	AB25	Ю	G1V _{DD}	
D1_MDQ42	Data	AE25	Ю	G1V _{DD}	
D1_MDQ43	Data	AF25	Ю	G1V _{DD}	
D1_MDQ44	Data	Y24	Ю	G1V _{DD}	
D1_MDQ45	Data	AA25	Ю	G1V _{DD}	
D1_MDQ46	Data	AD25	Ю	G1V _{DD}	
D1_MDQ47	Data	AE26	Ю	G1V _{DD}	
D1_MDQ48	Data	AA22	Ю	G1V _{DD}	
D1_MDQ49	Data	AB23	Ю	G1V _{DD}	
D1_MDQ50	Data	AC22	Ю	G1V _{DD}	
D1_MDQ51	Data	AB22	Ю	G1V _{DD}	
D1_MDQ52	Data	Y22	Ю	G1V _{DD}	
D1_MDQ53	Data	AA23	Ю	G1V _{DD}	
D1_MDQ54	Data	AD22	Ю	G1V _{DD}	
D1_MDQ55	Data	AE22	Ю	G1V _{DD}	
D1_MDQ56	Data	AH25	Ю	G1V _{DD}	
D1_MDQ57	Data	AF24	Ю	G1V _{DD}	
D1_MDQ58	Data	AG22	Ю	G1V _{DD}	
D1_MDQ59	Data	AF22	Ю	G1V _{DD}	
D1_MDQ60	Data	AH26	Ю	G1V _{DD}	
D1_MDQ61	Data	AG25	Ю	G1V _{DD}	
D1_MDQ62	Data	AF23	Ю	G1V _{DD}	
D1_MDQ63	Data	AH22	Ю	G1V _{DD}	

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
D1_MDQS0	Data Strobe	A25	Ю	G1V _{DD}	
D1_MDQS0_B	Data Strobe	A24	10	G1V _{DD}	
D1_MDQS1	Data Strobe	D23	10	G1V _{DD}	
D1_MDQS1_B	Data Strobe	C23	Ю	G1V _{DD}	
D1_MDQS2	Data Strobe	F25	Ю	G1V _{DD}	
D1_MDQS2_B	Data Strobe	F26	Ю	G1V _{DD}	
D1_MDQS3	Data Strobe	K26	Ю	G1V _{DD}	
D1_MDQS3_B	Data Strobe	K25	10	G1V _{DD}	
D1_MDQS4	Data Strobe	W26	Ю	G1V _{DD}	
D1_MDQS4_B	Data Strobe	W25	Ю	G1V _{DD}	
D1_MDQS5	Data Strobe	AC25	10	G1V _{DD}	
D1_MDQS5_B	Data Strobe	AC26	10	G1V _{DD}	
D1_MDQS6	Data Strobe	AE23	Ю	G1V _{DD}	
D1_MDQS6_B	Data Strobe	AD23	Ю	G1V _{DD}	
D1_MDQS7	Data Strobe	AH23	10	G1V _{DD}	
D1_MDQS7_B	Data Strobe	AG23	Ю	G1V _{DD}	
D1_MDQS8	Data Strobe	P25	Ю	G1V _{DD}	
D1_MDQS8_B	Data Strobe	P26	Ю	G1V _{DD}	
D1_MECC0	Error Correcting Code	M26	Ю	G1V _{DD}	
D1_MECC1	Error Correcting Code	N25	Ю	G1V _{DD}	
D1_MECC2	Error Correcting Code	T25	Ю	G1V _{DD}	
D1_MECC3	Error Correcting Code	T24	Ю	G1V _{DD}	
D1_MECC4	Error Correcting Code	M25	0	G1V _{DD}	
D1_MECC5	Error Correcting Code	N24	0	G1V _{DD}	
D1_MECC6	Error Correcting Code	R25	0	G1V _{DD}	
D1_MECC7	Error Correcting Code	R24	Ю	G1V _{DD}	
D1_MODT0	On Die Termination	AD28	0	G1V _{DD}	2
D1_MODT1	On Die Termination / MCID[2]	AF27	0	G1V _{DD}	2
D1_MPAR	Address Parity Out	V28	0	G1V _{DD}	
D1_MRAS_B	Row Address Strobe / MA[16]	AA28	0	G1V _{DD}	
D1_MWE_B	Write Enable / MA[14]	AB28	0	G1V _{DD}	
	Integrated Flash (Controller			
IFC_A16/QSPI_A_CS0	IFC Address	D8	0	OV _{DD}	1, 5
IFC_A17/QSPI_A_CS1	IFC Address	C8	0	OV_{DD}	1, 5
IFC_A18/QSPI_A_SCK	IFC Address	C9	0	OV _{DD}	1, 5
IFC_A19/QSPI_B_CS0	IFC Address	D10	0	OV _{DD}	1, 5
IFC_A20/QSPI_B_CS1	IFC Address	C10	0	OV_{DD}	1, 5

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
IFC_A21/QSPI_B_SCK/ cfg_dram_type	IFC Address	C11	0	OV_{DD}	1, 15
IFC_A22/QSPI_A_DATA0/ IFC_WP1_B	IFC Address	D11	0	OV_{DD}	1
IFC_A23/QSPI_A_DATA1/ IFC_WP2_B	IFC Address	C12	0	OV _{DD}	1
IFC_A24/QSPI_A_DATA2/ IFC_WP3_B	IFC Address	D13	0	OV_{DD}	1
IFC_A25/GPIO2_25/ QSPI_A_DATA3/FTM5_CH0/ IFC_CS4_B/IFC_RB2_B	IFC Address	C13	0	OV_{DD}	1
IFC_A26/GPIO2_26/ FTM5_CH1/IFC_CS5_B/ IFC_RB3_B	IFC Address	D14	0	OV_{DD}	1
IFC_A27/GPIO2_27/ FTM5_EXTCLK/IFC_CS6_B	IFC Address	C14	0	OV _{DD}	1
IFC_AD00/cfg_gpinput0	IFC Address / Data	B8	Ю	OV _{DD}	4
IFC_AD01/cfg_gpinput1	IFC Address / Data	A8	Ю	OV _{DD}	4
IFC_AD02/cfg_gpinput2	IFC Address / Data	В9	Ю	OV_{DD}	4
IFC_AD03/cfg_gpinput3	IFC Address / Data	A9	Ю	OV_{DD}	4
IFC_AD04/cfg_gpinput4	IFC Address / Data	A10	Ю	OV_{DD}	4
IFC_AD05/cfg_gpinput5	IFC Address / Data	B11	Ю	OV_{DD}	4
IFC_AD06/cfg_gpinput6	IFC Address / Data	A11	Ю	OV_{DD}	4
IFC_AD07/cfg_gpinput7	IFC Address / Data	B12	Ю	OV_{DD}	4
IFC_AD08/cfg_rcw_src0	IFC Address / Data	A12	Ю	OV_{DD}	4
IFC_AD09/cfg_rcw_src1	IFC Address / Data	A13	Ю	OV_{DD}	4
IFC_AD10/cfg_rcw_src2	IFC Address / Data	B14	Ю	OV_{DD}	4
IFC_AD11/cfg_rcw_src3	IFC Address / Data	A14	Ю	OV_{DD}	4
IFC_AD12/cfg_rcw_src4	IFC Address / Data	B15	Ю	OV_{DD}	4
IFC_AD13/cfg_rcw_src5	IFC Address / Data	A15	Ю	OV_{DD}	4
IFC_AD14/cfg_rcw_src6	IFC Address / Data	A16	Ю	OV_{DD}	4
IFC_AD15/cfg_rcw_src7	IFC Address / Data	A17	Ю	OV _{DD}	4
IFC_AVD	IFC Address Valid	A18	0	OV _{DD}	1, 5
IFC_BCTL	IFC Buffer control	E15	0	OV_{DD}	
IFC_CLE/cfg_rcw_src8	IFC Command Latch Enable / Write Enable	C19	0	OV_{DD}	1, 4
IFC_CLK0	IFC Clock	A20	0	OV_{DD}	
IFC_CLK1	IFC Clock	B20	0	OV_{DD}	
IFC_CS0_B	IFC Chip Select	C17	0	OV_{DD}	1, 6
IFC_CS1_B/GPIO2_10/ FTM7_CH0	IFC Chip Select	A19	0	OV _{DD}	1, 6

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
IFC_CS2_B/GPIO2_11/ FTM7_CH1	IFC Chip Select	D20	0	OV_{DD}	1, 6
IFC_CS3_B/GPIO2_12/ QSPI_B_DATA3/ FTM7_EXTCLK	IFC Chip Select	C20	0	OV _{DD}	1, 6
IFC_CS4_B/ IFC_A25 / GPIO2_25/QSPI_A_DATA3/ FTM5_CH0/IFC_RB2_B	IFC Chip Select	C13	0	OV _{DD}	1
IFC_CS5_B/ IFC_A26 / GPIO2_26/FTM5_CH1/ IFC_RB3_B	IFC Chip Select	D14	0	OV_{DD}	1
IFC_CS6_B/ IFC_A27 / GPIO2_27/FTM5_EXTCLK	IFC Chip Select	C14	0	OV _{DD}	1
IFC_NDDDR_CLK	IFC NAND DDR Clock	E16	0	OV _{DD}	
IFC_NDDQS	IFC DQS Strobe	B17	Ю	OV _{DD}	
IFC_OE_B/cfg_eng_use1	IFC Output Enable	C18	0	OV _{DD}	1, 4
IFC_PAR0/GPIO2_13/ QSPI_B_DATA0/FTM6_CH0	IFC Address & Data Parity	B18	Ю	OV _{DD}	
IFC_PAR1/GPIO2_14/ QSPI_B_DATA1/FTM6_CH1	IFC Address & Data Parity	D17	Ю	OV _{DD}	
IFC_PERR_B/GPIO2_15/ QSPI_B_DATA2/ FTM6_EXTCLK	IFC Parity Error	E17	I	OV _{DD}	1
IFC_RB0_B	IFC Ready / Busy CS0	C16	I	OV _{DD}	6
IFC_RB1_B	IFC Ready / Busy CS1	D16	I	OV _{DD}	6
IFC_RB2_B/ IFC_A25 / GPIO2_25/QSPI_A_DATA3/ FTM5_CH0/IFC_CS4_B	IFC Ready/Busy CS 2	C13	I	OV_{DD}	1
IFC_RB3_B/ IFC_A26 / GPIO2_26/FTM5_CH1/ IFC_CS5_B	IFC Ready/Busy CS 3	D14	I	OV _{DD}	1
IFC_TE/cfg_ifc_te	IFC External Transceiver Enable	E14	0	OV _{DD}	1, 4
IFC_WE0_B/cfg_eng_use0	IFC Write Enable	C15	0	OV _{DD}	1, 4, 26
IFC_WP0_B/cfg_eng_use2	IFC Write Protect	D19	0	OV _{DD}	1, 4
IFC_WP1_B/ IFC_A22 / QSPI_A_DATA0	IFC Write Protect	D11	0	OV _{DD}	1
IFC_WP2_B/ IFC_A23 / QSPI_A_DATA1	IFC Write Protect	C12	0	OV _{DD}	1
IFC_WP3_B/ IFC_A24 / QSPI_A_DATA2	IFC Write Protect	D13	0	OV _{DD}	1
	DUAR	Т			·

Table 1. Pinout list by bus (continued)

Signal Signal description Package Pin Power supply							
Signai	Signal description	pin number	type	Power supply	Notes		
UART1_CTS_B/GPIO1_21/ UART3_SIN/FTM4_CH4/ LPUART2_SIN	Clear To Send	J1	I	DV _{DD}	1		
UART1_RTS_B/GPIO1_19/ UART3_SOUT/ LPUART2_SOUT/FTM4_CH2	Ready to Send	J2	0	DV_DD	1		
UART1_SIN/GPIO1_17	Receive Data	H2	Ι	DV _{DD}	1		
UART1_SOUT/GPIO1_15	Transmit Data	H1	0	DV _{DD}	1		
UART2_CTS_B/GPIO1_22/ UART4_SIN/FTM4_CH5/ LPUART1_CTS_B/ LPUART4_SIN	Clear To Send	M2	I	DV _{DD}	1		
UART2_RTS_B/GPIO1_20/ UART4_SOUT/ LPUART4_SOUT/FTM4_CH3/ LPUART1_RTS_B	Ready to Send	L1	0	DV _{DD}	1		
UART2_SIN/GPIO1_18/ FTM4_CH1/LPUART1_SIN	Receive Data	K1	I	DV _{DD}	1		
UART2_SOUT/GPIO1_16/ LPUART1_SOUT/FTM4_CH0	Transmit Data	L2	0	DV_DD	1		
UART3_SIN/ UART1_CTS_B / GPIO1_21/FTM4_CH4/ LPUART2_SIN	Receive Data	J1	I	DV_DD	1		
UART3_SOUT/ UART1_RTS_B/GPIO1_19/ LPUART2_SOUT/FTM4_CH2	Transmit Data	J2	0	DV_DD	1		
UART4_SIN/UART2_CTS_B/ GPIO1_22/FTM4_CH5/ LPUART1_CTS_B/ LPUART4_SIN	Receive Data	M2	I	DV _{DD}	1		
UART4_SOUT/ UART2_RTS_B/GPIO1_20/ LPUART4_SOUT/FTM4_CH3/ LPUART1_RTS_B	Transmit Data	L1	0	DV _{DD}	1		
	I2C						
IIC1_SCL	Serial Clock (supports PBL)	N1	Ю	DV_DD	7, 8		
IIC1_SDA	Serial Data (supports PBL)	M1	Ю	DV_DD	7, 8		
IIC2_SCL/GPIO4_2/ SDHC_CD_B/FTM3_QD_PHA	Serial Clock	КЗ	Ю	DV_DD	7, 8		
IIC2_SDA/GPIO4_3/ SDHC_WP/FTM3_QD_PHB	Serial Data	L3	Ю	DV_DD	7, 8		
IIC3_SCL/GPIO4_10/EVT5_B/ USB2_DRVVBUS/FTM8_CH0	Serial Clock	L4	Ю	DV_DD	7, 8		
IIC3_SDA/GPIO4_11/EVT6_B/ USB2_PWRFAULT/ FTM8_CH1	Serial Data	M4	Ю	DV_DD	7, 8		

17

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
	2.3 4000//pho//	pin number	type	. Site: Supply	1.5.00
IIC4_SCL/GPIO4_12/EVT7_B/ USB3_DRVVBUS/ FTM3_FAULT	Serial Clock	M3	Ю	DV_DD	7, 8
IIC4_SDA/GPIO4_13/EVT8_B/ USB3_PWRFAULT/ FTM3_EXTCLK	Serial Data	N3	Ю	DV _{DD}	7, 8
	SPI Interfa	ace			
SPI_PCS0/GPIO2_00/ SDHC_DAT4/SDHC_VS	SPI Chip Select	U1	0	OV _{DD}	1
SPI_PCS1/GPIO2_01/ SDHC_DAT5/ SDHC_CMD_DIR	SPI Chip Select	R3	0	OV _{DD}	1
SPI_PCS2/GPIO2_02/ SDHC_DAT6/ SDHC_DAT0_DIR	SPI Chip Select	Т3	0	OV _{DD}	1
SPI_PCS3/GPIO2_03/ SDHC_DAT7/ SDHC_DAT123_DIR	SPI Chip Select	V1	0	OV _{DD}	1
SPI_SCK	SPI Clock	U2	0	OV_{DD}	1
SPI_SIN/ SDHC_CLK_SYNC_IN	Master In Slave Out	U3	I	OV_{DD}	1
SPI_SOUT/ SDHC_CLK_SYNC_OUT	Master Out Slave In	V3	Ю	OV_{DD}	
	eSDHC	;		1	
SDHC_CD_B/ IIC2_SCL / GPIO4_2/FTM3_QD_PHA	Command	КЗ	I	DV _{DD}	1
SDHC_CLK/GPIO2_09/ LPUART3_CTS_B/ LPUART6_SIN/ FTM4_QD_PHB	Host to Card Clock	P3	0	EV _{DD}	1
SDHC_CLK_SYNC_IN/ SPI_SIN	IN	U3	I	OV _{DD}	1
SDHC_CLK_SYNC_OUT/ SPI_SOUT	OUT	V3	0	OV _{DD}	1
SDHC_CMD/GPIO2_04/ LPUART3_SOUT/FTM4_CH6	Command/Response	P2	Ю	EV _{DD}	
SDHC_CMD_DIR/SPI_PCS1/ GPIO2_01/SDHC_DAT5	DIR	R3	0	OV _{DD}	1
SDHC_DAT0/GPIO2_05/ FTM4_CH7/LPUART3_SIN	Data	P1	Ю	EV _{DD}	
SDHC_DAT0_DIR/ SPI_PCS2 / GPIO2_02/SDHC_DAT6	DIR	Т3	0	OV _{DD}	1
SDHC_DAT1/GPIO2_06/ LPUART5_SOUT/	Data	R2	Ю	EV _{DD}	

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
FTM4_FAULT/ LPUART2_RTS_B					
SDHC_DAT123_DIR/ SPI_PCS3/GPIO2_03/ SDHC_DAT7	DIR	V1	0	OV_{DD}	1
SDHC_DAT2/GPIO2_07/ LPUART2_CTS_B/ LPUART5_SIN/ FTM4_EXTCLK	Data	R1	Ю	EV _{DD}	
SDHC_DAT3/GPIO2_08/ LPUART6_SOUT/ FTM4_QD_PHA/ LPUART3_RTS_B	Data	T1	Ю	EV _{DD}	
SDHC_DAT4/ SPI_PCS0 / GPIO2_00/SDHC_VS	Data	U1	Ю	OV _{DD}	
SDHC_DAT5/ SPI_PCS1 / GPIO2_01/SDHC_CMD_DIR	Data	R3	Ю	OV _{DD}	
SDHC_DAT6/ SPI_PCS2 / GPIO2_02/SDHC_DAT0_DIR	Data	ТЗ	Ю	OV _{DD}	
SDHC_DAT7/ SPI_PCS3 / GPIO2_03/ SDHC_DAT123_DIR	Data	V1	Ю	OV _{DD}	
SDHC_VS/ SPI_PCS0 / GPIO2_00/SDHC_DAT4	VS	U1	0	OV_{DD}	1
SDHC_WP/ IIC2_SDA / GPIO4_3/FTM3_QD_PHB	Write Protect	L3	I	DV_DD	1
	Programmable Interru	pt Controlle	er		•
EVT9_B	Event 9	G7	Ю	OV _{DD}	1, 6, 7
IRQ00	External Interrupt	F11	I	OV_{DD}	1
IRQ01	External Interrupt	F15	_	OV _{DD}	1
IRQ02	External Interrupt	H7	I	OV_{DD}	1
IRQ03/GPIO1_23/FTM3_CH7	External Interrupt	J3	I	DV_DD	1
IRQ04/GPIO1_24/FTM3_CH0	External Interrupt	J4	I	DV_DD	1
IRQ05/GPIO1_25/FTM3_CH1	External Interrupt	J5	I	DV_DD	1
IRQ06/GPIO1_26/FTM3_CH2	External Interrupt	K5	I	DV_DD	1
IRQ07/GPIO1_27/FTM3_CH3	External Interrupt	L5	I	DV_DD	1
IRQ08/GPIO1_28/FTM3_CH4	External Interrupt	M5	I	DV_DD	1
IRQ09/GPIO1_29/FTM3_CH5	External Interrupt	N5	I	DV_DD	1
IRQ10/GPIO1_30/FTM3_CH6	External Interrupt	P4	I	DV_DD	1
IRQ11/GPIO1_31	External Interrupt	W3	I	LV _{DD}	1
	Battery Backet	d Trust		•	1
TA_BB_TMP_DETECT_B	Battery Backed Tamper Detect	H12	I	TA_BB_V _{DD}	
	Trust				•

Table 1. Pinout list by bus (continued)

System Control	Power supply	Notes
System Control		
HRESET_B	OV _{DD}	1
PORESET_B Power On Reset F9 I C RESET_REQ_B Reset Request F10 O C Power Management ASLEEP/GPIO1_13 Asleep E9 O C SYSCLK SYSCLK SYSCLK DDR Clocking DDR Clocking RTC RTC/GPIO1_14 Real Time Clock J20 I C Debug CKSTP_OUT_B RSVD G15 - C CLK_OUT G16 O C EVT0_B Event 0 E10 IO C EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO C		-
RESET_REQ_B Reset Request F10 O C Power Management ASLEEP/GPIO1_13 Asleep E9 O C SYSCLK SYSCLK G14 I C DDR Clocking DDR Clocking RTC RTC RTC RTC/GPIO1_14 Real Time Clock F17 I C CKSTP_OUT_B RSVD G15 - C CLK_OUT Clock Out G16 O C EVTO_B Event 0 E10 IO C EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO	OV _{DD}	6, 7
Power Management	OV _{DD}	
ASLEEP/GPIO1_13	OV _{DD}	1, 5
SYSCLK SYSCLK System Clock G14 I C DDR Clocking DDR Controller Clock J20 I C RTC RTC/GPIO1_14 Real Time Clock F17 I C Debug CKSTP_OUT_B RSVD G15 - C CLK_OUT Clock Out G16 O C EVT0_B Event 0 E10 IO C EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO C		-
SYSCLK System Clock G14 I C DDR Clocking DDR Controller Clock J20 I C RTC RTC/GPIO1_14 Real Time Clock F17 I C Debug CKSTP_OUT_B RSVD G15 - C CLK_OUT Clock Out G16 O C EVT0_B Event 0 E10 IO C EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO C	OV _{DD}	1
DDR Clocking DDRCLK DDR Controller Clock J20 I C RTC RTC/GPIO1_14 Real Time Clock F17 I C Debug CKSTP_OUT_B RSVD G15 - C CLK_OUT Clock Out G16 O C EVT0_B Event 0 E10 IO C EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO C		-
DDRCLK DDR Controller Clock J20 I C RTC RTC/GPIO1_14 Real Time Clock F17 I C Debug CKSTP_OUT_B RSVD G15 - C CLK_OUT Clock Out G16 O C EVT0_B Event 0 E10 IO C EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO C	OV _{DD}	22
RTC RTC/GPIO1_14 Real Time Clock F17 I C Debug CKSTP_OUT_B RSVD G15 - C CLK_OUT Clock Out G16 O C EVT0_B Event 0 E10 IO C EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO C		-
RTC/GPIO1_14 Real Time Clock F17 I C Debug CKSTP_OUT_B RSVD G15 - C CLK_OUT Clock Out G16 O C EVT0_B Event 0 E10 IO C EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO C	OV _{DD}	22
Debug CKSTP_OUT_B RSVD G15 - C CLK_OUT Clock Out G16 O C EVT0_B Event 0 E10 IO C EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO C		-
CKSTP_OUT_B RSVD G15 - C CLK_OUT Clock Out G16 O C EVT0_B Event 0 E10 IO C EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO C	OV _{DD}	1
CLK_OUT Clock Out G16 O C EVT0_B Event 0 E10 IO C EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO C		-
EVT0_B Event 0 E10 IO C EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO C	OV _{DD}	6, 7
EVT1_B Event 1 E13 IO C EVT2_B Event 2 E8 IO C	OV _{DD}	
EVT2_B Event 2 E8 IO C	OV _{DD}	9
	OV _{DD}	
EVT3_B Event 3 E12 IO C	OV _{DD}	
	OV _{DD}	
EVT4_B Event 4 E11 IO C	OV _{DD}	
EVT5_B/IIC3_SCL/GPIO4_10/ Event 5 L4 IO USB2_DRVVBUS/FTM8_CH0	DV _{DD}	
EVT6_B/IIC3_SDA/GPIO4_11/ Event 6 M4 IO USB2_PWRFAULT/ FTM8_CH1	DV _{DD}	
EVT7_B/IIC4_SCL/GPIO4_12/ Event 7 M3 IO DUSB3_DRVVBUS/FTM3_FAULT	DV _{DD}	
EVT8_B/IIC4_SDA/GPIO4_13/ Event 8 N3 IO DUSB3_PWRFAULT/FTM3_EXTCLK	OV _{DD}	
DFT		
JTAG_BSR_VSEL An IEEE 1149.1 JTAG Compliance Enable pin. 0: normal operation. 1: To be compliant to the 1149.1 specification for boundary scan functions. The JTAG compliant state is documented in the BSDL.	OV _{DD}	24, 25
SCAN_MODE_B Reserved H19 I C	OV _{DD}	10, 25

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
TBSCAN_EN_B	An IEEE 1149.1 JTAG Compliance Enable pin. 0: To be compliant to the 1149.1 specification for boundary scan functions. The JTAG compliant state is documented in the BSDL. 1: JTAG connects to DAP controller for the Arm core debug.	F19	I	OV _{DD}	20, 25
TEST_SEL_B	Reserved	F20	I	OV_{DD}	19, 25
	JTAG		•		'
тск	Test Clock	E18	I	OV _{DD}	
TDI	Test Data In	G17	I	OV _{DD}	9
TDO	Test Data Out	E20	0	OV_{DD}	2
TMS	Test Mode Select	G18	I	OV_{DD}	9
TRST_B	Test Reset	E19	I	OV_{DD}	9
	Analog Sign	als		1	
D1_TPA	DDR Controller 1 Test Point Analog	F21	Ю		12
FA_ANALOG_G_V	Reserved	AG21	Ю		15
FA_ANALOG_PIN	Reserved	AD21	Ю		15
TD1_ANODE	Thermal diode anode	J13	Ю		17
TD1_CATHODE	Thermal diode cathode	H13	Ю		17
TH_TPA	Thermal Test Point Analog	H8	-	-	12
	SerDes 1				-
SD1_IMP_CAL_RX	SerDes Receive Impedence Calibration	Y11	I	SV _{DD}	11
SD1_IMP_CAL_TX	SerDes Transmit Impedance Calibration	AA6	I	XV_{DD}	16
SD1_PLL1_TPA	SerDes PLL 1 Test Point Analog	AF12	0	AVDD_SD1_PLL1	12
SD1_PLL1_TPD	SerDes Test Point Digital	AF13	0	XV_{DD}	12
SD1_PLL2_TPA	SerDes PLL 2 Test Point Analog	AF5	0	AVDD_SD1_PLL2	12
SD1_PLL2_TPD	SerDes Test Point Digital	AB5	0	XV_{DD}	12
SD1_REF_CLK1_N	SerDes PLL 1 Reference Clock Complement	AH13	I	SV _{DD}	
SD1_REF_CLK1_P	SerDes PLL 1 Reference Clock	AG13	1	SV _{DD}	
SD1_REF_CLK2_N	SerDes PLL 2 Reference Clock Complement	AB8	I	SV _{DD}	
SD1_REF_CLK2_P	SerDes PLL 2 Reference Clock	AA8	I	SV _{DD}	
SD1_RX0_N	SerDes Receive Data (negative)	AH6	I	SV _{DD}	

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
		pin number	type		
SD1_RX0_P	SerDes Receive Data (positive)	AG6	I	SV _{DD}	
SD1_RX1_N	SerDes Receive Data (negative)	AH8	I	SV _{DD}	
SD1_RX1_P	SerDes Receive Data (positive)	AG8	I	SV _{DD}	
SD1_RX2_N	SerDes Receive Data (negative)	AH10	I	SV _{DD}	
SD1_RX2_P	SerDes Receive Data (positive)	AG10	I	SV _{DD}	
SD1_RX3_N	SerDes Receive Data (negative)	AH11	I	SV _{DD}	
SD1_RX3_P	SerDes Receive Data (positive)	AG11	-	SV _{DD}	
SD1_TX0_N	SerDes Transmit Data (negative)	AE6	0	XV_{DD}	
SD1_TX0_P	SerDes Transmit Data (positive)	AD6	0	XV_{DD}	
SD1_TX1_N	SerDes Transmit Data (negative)	AE8	0	XV_{DD}	
SD1_TX1_P	SerDes Transmit Data (positive)	AD8	0	XV_{DD}	
SD1_TX2_N	SerDes Transmit Data (negative)	AE10	0	XV_{DD}	
SD1_TX2_P	SerDes Transmit Data (positive)	AD10	0	XV_{DD}	
SD1_TX3_N	SerDes Transmit Data (negative)	AE11	0	XV_{DD}	
SD1_TX3_P	SerDes Transmit Data (positive)	AD11	0	XV_{DD}	
	SerDes 2				•
SD2_IMP_CAL_RX	SerDes Receive Impedence Calibration	Y12	I	SV _{DD}	11
SD2_IMP_CAL_TX	SerDes Transmit Impedance Calibration	Y20	I	XV_{DD}	16
SD2_PLL1_TPA	SerDes PLL 1 Test Point Analog	AF14	0	AVDD_SD2_PLL1	12
SD2_PLL1_TPD	SerDes Test Point Digital	AC13	0	XV_{DD}	12
SD2_PLL2_TPA	SerDes PLL 2 Test Point Analog	AF20	0	AVDD_SD2_PLL2	12
SD2_PLL2_TPD	SerDes Test Point Digital	AA20	0	XV_{DD}	12
SD2_REF_CLK1_N	SerDes PLL 1 Reference Clock Complement	AE13	I	SV _{DD}	
SD2_REF_CLK1_P	SerDes PLL 1 Reference Clock	AD13	I	SV _{DD}	
	+			+	

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Din	Pin Power supply	
Signal	Signal description	pin number	type	Power supply	Notes
SD2_REF_CLK2_N	SerDes PLL 2 Reference Clock Complement	AB19	I	SV _{DD}	
SD2_REF_CLK2_P	SerDes PLL 2 Reference Clock	AB18	I	SV _{DD}	
SD2_RX0_N	SerDes Receive Data (negative)	AH15	I	SV _{DD}	
SD2_RX0_P	SerDes Receive Data (positive)	AG15	I	SV _{DD}	
SD2_RX1_N	SerDes Receive Data (negative)	AH16	-	SV _{DD}	
SD2_RX1_P	SerDes Receive Data (positive)	AG16	I	SV _{DD}	
SD2_RX2_N	SerDes Receive Data (negative)	AH18	I	SV _{DD}	
SD2_RX2_P	SerDes Receive Data (positive)	AG18	I	SV _{DD}	
SD2_RX3_N	SerDes Receive Data (negative)	AH19	I	SV _{DD}	
SD2_RX3_P	SerDes Receive Data (positive)	AG19	I	SV _{DD}	
SD2_TX0_N	SerDes Transmit Data (negative)	AE15	0	XV_{DD}	
SD2_TX0_P	SerDes Transmit Data (positive)	AD15	0	XV_{DD}	
SD2_TX1_N	SerDes Transmit Data (negative)	AE16	0	XV_{DD}	
SD2_TX1_P	SerDes Transmit Data (positive)	AD16	0	XV_{DD}	
SD2_TX2_N	SerDes Transmit Data (negative)	AE18	0	XV_{DD}	
SD2_TX2_P	SerDes Transmit Data (positive)	AD18	0	XV_{DD}	
SD2_TX3_N	SerDes Transmit Data (negative)	AE19	0	XV_{DD}	
SD2_TX3_P	SerDes Transmit Data (positive)	AD19	0	XV_{DD}	
	USB3 PHY	#1			
USB1_D_M	USB PHY HS Data (-)	E6	Ю	-	
USB1_D_P	USB PHY HS Data (+)	F6	Ю	-	
USB1_ID	USB PHY ID Detect	F5	I	-	
USB1_RESREF	USB PHY Impedance Calibration	G3	Ю	-	18
USB1_RX_M	USB PHY SS Receive Data (-)	E4	I	-	
USB1_RX_P	USB PHY SS Receive Data (+)	E3	I	-	
			l	1	

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
		pin number	type		
USB1_TX_M	USB PHY SS Transmit Data (-)	F2	0	-	
USB1_TX_P	USB PHY SS Transmit Data (+)	F1	0	-	
USB1_VBUS	USB PHY VBUS	E7	I	-	
	USB3 PHY	#2			
USB2_D_M	USB PHY HS Data (-)	C6	Ю	-	
USB2_D_P	USB PHY HS Data (+)	D6	Ю	-	
USB2_ID	USB PHY ID Detect	D5	I	-	
USB2_RESREF	USB PHY Impedance Calibration	G4	Ю	-	18
USB2_RX_M	USB PHY SS Receive Data (-)	C4	I	-	
USB2_RX_P	USB PHY SS Receive Data (+)	C3	I	-	
USB2_TX_M	USB PHY SS Transmit Data (-)	D2	0	-	
USB2_TX_P	USB PHY SS Transmit Data (+)	D1	0	-	
USB2_VBUS	USB PHY VBUS	C7	I	-	
	USB PHY	‡ 3			
USB3_D_M	USB PHY HS Data (-)	A6	Ю	-	
USB3_D_P	USB PHY HS Data (+)	B6	Ю	-	
USB3_ID	USB PHY ID Detect	B5	I	-	
USB3_RESREF	USB PHY Impedance Calibration	G5	Ю	-	18
USB3_RX_M	USB PHY SS Receive Data (-)	A4	I	-	
USB3_RX_P	USB PHY SS Receive Data (+)	A3		-	
USB3_TX_M	USB PHY SS Transmit Data (-)	B2	0	-	
USB3_TX_P	USB PHY SS Transmit Data (+)	B1	0	-	
USB3_VBUS	USB PHY VBUS	A7	I	-	
	Ethernet Managemer	t Interface 1			•
EMI1_MDC/GPIO3_00	Management Data Clock	AG2	0	LV _{DD}	1
EMI1_MDIO/GPIO3_01	Management Data In/Out	AF2	Ю	LV _{DD}	
	Ethernet Managemer	t Interface 2	2		·
EMI2_MDC/GPIO4_00	Management Data Clock	AH4	0	TV _{DD}	1
EMI2_MDIO/GPIO4_01	Management Data In/Out	АН3	Ю	TV_DD	
	Ethernet Contr	oller 1			
EC1_GTX_CLK/GPIO3_07/ FTM1_EXTCLK	Transmit Clock Out	W4	0	LV _{DD}	1
EC1_GTX_CLK125/GPIO3_08	Reference Clock	AC3	I	LV _{DD}	1
EC1_RXD0/GPIO3_12/ FTM1_CH0	Receive Data	AA2	I	LV _{DD}	1

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Pin Power supply	
Signal	Oignal description	pin number	type	i ower suppry	Notes
EC1_RXD1/GPIO3_11/ FTM1_CH1	Receive Data	AA1	I	LV _{DD}	1
EC1_RXD2/GPIO3_10/ FTM1_CH6	Receive Data	Y1	I	LV _{DD}	1
EC1_RXD3/GPIO3_09/ FTM1_CH4	Receive Data	W2	_	LV _{DD}	1
EC1_RX_CLK/GPIO3_13/ FTM1_QD_PHA	Receive Clock	W1	_	LV _{DD}	1
EC1_RX_DV/GPIO3_14/ FTM1_QD_PHB	Receive Data Valid	AB1	I	LV _{DD}	1
EC1_TXD0/GPIO3_05/ FTM1_CH2	Transmit Data	AB3	0	LV _{DD}	1
EC1_TXD1/GPIO3_04/ FTM1_CH3	Transmit Data	AA3	0	LV _{DD}	1
EC1_TXD2/GPIO3_03/ FTM1_CH7	Transmit Data	Y4	0	LV _{DD}	1
EC1_TXD3/GPIO3_02/ FTM1_CH5	Transmit Data	Y3	0	LV _{DD}	1
EC1_TX_EN/GPIO3_06/ FTM1_FAULT	Transmit Enable	AB4	0	LV _{DD}	1, 14
	Ethernet Cont	roller 2			
EC2_GTX_CLK/GPIO3_20/ FTM2_EXTCLK	Transmit Clock Out	AC4	0	LV _{DD}	1
EC2_GTX_CLK125/GPIO3_21	Reference Clock	AG4	I	LV _{DD}	1
EC2_RXD0/GPIO3_25/ TSEC_1588_TRIG_IN2/ FTM2_CH0	Receive Data	AE2	I	LV _{DD}	1
EC2_RXD1/GPIO3_24/ TSEC_1588_PULSE_OUT1/ FTM2_CH1	Receive Data	AE1	I	LV _{DD}	1
EC2_RXD2/GPIO3_23/ FTM2_CH6	Receive Data	AD1	I	LV _{DD}	1
EC2_RXD3/GPIO3_22/ FTM2_CH4	Receive Data	AC2	I	LV _{DD}	1
EC2_RX_CLK/GPIO3_26/ TSEC_1588_CLK_IN/ FTM2_QD_PHA	Receive Clock	AC1	I	LV _{DD}	1
EC2_RX_DV/GPIO3_27/ TSEC_1588_TRIG_IN1/ FTM2_QD_PHB	Receive Data Valid	AF1	I	LV _{DD}	1
EC2_TXD0/GPIO3_18/ TSEC_1588_PULSE_OUT2/ FTM2_CH2	Transmit Data	AF3	0	LV _{DD}	1

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package Pin	Pin Power supply	Notes	
Signal	Signal description	pin number	type	Power suppry	Notes
EC2_TXD1/GPIO3_17/ TSEC_1588_CLK_OUT/ FTM2_CH3	Transmit Data	AE4	0	LV _{DD}	1
EC2_TXD2/GPIO3_16/ TSEC_1588_ALARM_OUT1/ FTM2_CH7	Transmit Data	AE3	0	LV _{DD}	1
EC2_TXD3/GPIO3_15/ TSEC_1588_ALARM_OUT2/ FTM2_CH5	Transmit Data	AD3	0	LV _{DD}	1
EC2_TX_EN/GPIO3_19/ FTM2_FAULT	Transmit Enable	AG3	0	LV _{DD}	1, 14
	USB				
USB2_DRVVBUS/IIC3_SCL/ GPIO4_10/EVT5_B/ FTM8_CH0	DRV VBus	L4	0	DV _{DD}	1
USB2_PWRFAULT/ IIC3_SDA / GPIO4_11/EVT6_B/ FTM8_CH1	PWR Fault	M4	I	DV _{DD}	1
USB3_DRVVBUS/ IIC4_SCL / GPIO4_12/EVT7_B/ FTM3_FAULT	DRV Bus	M3	0	DV _{DD}	1
USB3_PWRFAULT/ IIC4_SDA / GPIO4_13/EVT8_B/ FTM3_EXTCLK	PWR Fault	N3	I	DV _{DD}	1
USB_DRVVBUS/GPIO4_29	USB_DRVVBUS	H6	0	DV_DD	1
USB_PWRFAULT/GPIO4_30	USB_PWRFAULT	G6	I	DV_DD	1
	DSYSCLI	(
DIFF_SYSCLK	Single Source System Clock Differential (positive)	AA13	I	OV _{DD}	21
DIFF_SYSCLK_B	Single Source System Clock Differential (negative)	AB13	I	OV _{DD}	21
	Power-On-Reset Co	nfiguration			
cfg_dram_type/ IFC_A21 / QSPI_B_SCK	Power-on-Reset Configuration	C11	I	OV _{DD}	1, 15
cfg_eng_use0/IFC_WE0_B	Power-on-Reset Configuration	C15	I	OV _{DD}	1, 4, 26
cfg_eng_use1/IFC_OE_B	Power-on-Reset Configuration	C18	I	OV_{DD}	1, 4
cfg_eng_use2/IFC_WP0_B	Power-on-Reset Configuration	D19	I	OV_{DD}	1, 4
cfg_gpinput0/IFC_AD00	Power-on-Reset Configuration	B8	I	OV_{DD}	1, 4
cfg_gpinput1/IFC_AD01	Power-on-Reset Configuration	A8	I	OV_{DD}	1, 4
cfg_gpinput2/IFC_AD02	Power-on-Reset Configuration	B9	I	OV_{DD}	1, 4
cfg_gpinput3/IFC_AD03	Power-on-Reset Configuration	A 9	I	OV _{DD}	1, 4
cfg_gpinput4/IFC_AD04	Power-on-Reset Configuration	A10	I	OV _{DD}	1, 4
cfg_gpinput5/IFC_AD05	Power-on-Reset Configuration	B11	I	OV_{DD}	1, 4

Table 1. Pinout list by bus (continued)

Signal Signal description Package Pin Power supply									
Signal	Signal description	pin number	type	i ower suppry	Notes				
cfg_gpinput6/IFC_AD06	Power-on-Reset Configuration	A11	I	OV_{DD}	1, 4				
cfg_gpinput7/IFC_AD07	Power-on-Reset Configuration	B12	I	OV_{DD}	1, 4				
cfg_ifc_te/ IFC_TE	Power-on-Reset Configuration	E14	I	OV_{DD}	1, 4				
cfg_rcw_src0/IFC_AD08	Power-on-Reset Configuration	A12	I	OV_{DD}	1, 4				
cfg_rcw_src1/IFC_AD09	Power-on-Reset Configuration	A13	I	OV_{DD}	1, 4				
cfg_rcw_src2/IFC_AD10	Power-on-Reset Configuration	B14	I	OV _{DD}	1, 4				
cfg_rcw_src3/IFC_AD11	Power-on-Reset Configuration	A14	I	OV _{DD}	1, 4				
cfg_rcw_src4/IFC_AD12	Power-on-Reset Configuration	B15	I	OV _{DD}	1, 4				
cfg_rcw_src5/IFC_AD13	Power-on-Reset Configuration	A15	I	OV _{DD}	1, 4				
cfg_rcw_src6/IFC_AD14	Power-on-Reset Configuration	A16	I	OV _{DD}	1, 4				
cfg_rcw_src7/ IFC_AD15	Power-on-Reset Configuration	A17	I	OV _{DD}	1, 4				
cfg_rcw_src8/ IFC_CLE	Power-on-Reset Configuration	C19	I	OV _{DD}	1, 4				
	QSPI								
QSPI_A_CS0/ IFC_A16	Chip Select	D8	0	OV _{DD}	1, 5				
QSPI_A_CS1/IFC_A17	CS1	C8	0	OV _{DD}	1, 5				
QSPI_A_DATA0/ IFC_A22 / IFC_WP1_B	DATA0	D11	Ю	OV _{DD}					
QSPI_A_DATA1/ IFC_A23 / IFC_WP2_B	DATA1	C12	Ю	OV _{DD}					
QSPI_A_DATA2/ IFC_A24 / IFC_WP3_B	DATA2	D13	Ю	OV _{DD}					
QSPI_A_DATA3/ IFC_A25 / GPIO2_25/FTM5_CH0/ IFC_CS4_B/IFC_RB2_B	DATA3	C13	Ю	OV_{DD}					
QSPI_A_SCK/ IFC_A18	SCK	C9	0	OV_{DD}	1, 5				
QSPI_B_CS0/ IFC_A19	Chip Select	D10	0	OV _{DD}	1, 5				
QSPI_B_CS1/ IFC_A20	CS1	C10	0	OV_{DD}	1, 5				
QSPI_B_DATA0/ IFC_PAR0 / GPIO2_13/FTM6_CH0	DATA0	B18	Ю	OV_{DD}					
QSPI_B_DATA1/ IFC_PAR1 / GPIO2_14/FTM6_CH1	DATA1	D17	Ю	OV_{DD}					
QSPI_B_DATA2/ IFC_PERR_B/GPIO2_15/ FTM6_EXTCLK	DATA2	E17	Ю	OV _{DD}					
QSPI_B_DATA3/ IFC_CS3_B / GPIO2_12/FTM7_EXTCLK	DATA3	C20	Ю	OV _{DD}					
QSPI_B_SCK/ IFC_A21 / cfg_dram_type	SCK	C11	0	OV _{DD}	1, 15				
	General Purpose In	put/Output		,	•				
GPIO1_13/ASLEEP	General Purpose Input/Output	E9	0	OV _{DD}	1				
GPIO1_14/RTC	General Purpose Input/Output	F17	IO	OV _{DD}					

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
Signal	Signal description	pin number	type	Power supply	Notes
GPIO1_15/UART1_SOUT	General Purpose Input/Output	H1	Ю	DV_DD	
GPIO1_16/ UART2_SOUT / LPUART1_SOUT/FTM4_CH0	General Purpose Input/Output	L2	Ю	DV_DD	
GPIO1_17/UART1_SIN	General Purpose Input/Output	H2	Ю	DV_DD	
GPIO1_18/ UART2_SIN / FTM4_CH1/LPUART1_SIN	General Purpose Input/Output	K1	Ю	DV_DD	
GPIO1_19/ UART1_RTS_B / UART3_SOUT/ LPUART2_SOUT/FTM4_CH2	General Purpose Input/Output	J2	Ю	DV _{DD}	
GPIO1_20/ UART2_RTS_B / UART4_SOUT/ LPUART4_SOUT/FTM4_CH3/ LPUART1_RTS_B	General Purpose Input/Output	L1	Ю	DV _{DD}	
GPIO1_21/ UART1_CTS_B / UART3_SIN/FTM4_CH4/ LPUART2_SIN	General Purpose Input/Output	J1	Ю	DV _{DD}	
GPIO1_22/ UART2_CTS_B / UART4_SIN/FTM4_CH5/ LPUART1_CTS_B/ LPUART4_SIN	General Purpose Input/Output	M2	Ю	DV _{DD}	
GPIO1_23/ IRQ03 /FTM3_CH7	General Purpose Input/Output	J3	Ю	DV_DD	
GPIO1_24/ IRQ04 /FTM3_CH0	General Purpose Input/Output	J4	Ю	DV_DD	
GPIO1_25/ IRQ05 /FTM3_CH1	General Purpose Input/Output	J5	Ю	DV_DD	
GPIO1_26/ IRQ06 /FTM3_CH2	General Purpose Input/Output	K5	Ю	DV_DD	
GPIO1_27/ IRQ07 /FTM3_CH3	General Purpose Input/Output	L5	Ю	DV_DD	
GPIO1_28/ IRQ08 /FTM3_CH4	General Purpose Input/Output	M5	Ю	DV_DD	
GPIO1_29/ IRQ09 /FTM3_CH5	General Purpose Input/Output	N5	Ю	DV_DD	
GPIO1_30/ IRQ10 /FTM3_CH6	General Purpose Input/Output	P4	Ю	DV_DD	
GPIO1_31/ IRQ11	General Purpose Input/Output	W3	Ю	LV _{DD}	
GPIO2_00/ SPI_PCS0 / SDHC_DAT4/SDHC_VS	General Purpose Input/Output	U1	Ю	OV _{DD}	
GPIO2_01/ SPI_PCS1 / SDHC_DAT5/ SDHC_CMD_DIR	General Purpose Input/Output	R3	Ю	OV _{DD}	
GPIO2_02/SPI_PCS2/ SDHC_DAT6/ SDHC_DAT0_DIR	General Purpose Input/Output	Т3	Ю	OV _{DD}	
GPIO2_03/SPI_PCS3/ SDHC_DAT7/ SDHC_DAT123_DIR	General Purpose Input/Output	V1	Ю	OV _{DD}	
GPIO2_04/ SDHC_CMD / LPUART3_SOUT/FTM4_CH6	General Purpose Input/Output	P2	Ю	EV _{DD}	
GPIO2_05/ SDHC_DAT0 / FTM4_CH7/LPUART3_SIN	General Purpose Input/Output	P1	Ю	EV _{DD}	

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
Oignai	Oighai description	pin number	type	i ower suppry	Notes
GPIO2_06/ SDHC_DAT1 / LPUART5_SOUT/ FTM4_FAULT/ LPUART2_RTS_B	General Purpose Input/Output	R2	Ю	EV _{DD}	
GPIO2_07/ SDHC_DAT2 / LPUART2_CTS_B/ LPUART5_SIN/ FTM4_EXTCLK	General Purpose Input/Output	R1	Ю	EV _{DD}	
GPIO2_08/ SDHC_DAT3 / LPUART6_SOUT/ FTM4_QD_PHA/ LPUART3_RTS_B	General Purpose Input/Output	T1	Ю	EV _{DD}	
GPIO2_09/ SDHC_CLK / LPUART3_CTS_B/ LPUART6_SIN/ FTM4_QD_PHB	General Purpose Input/Output	P3	IO	EV _{DD}	
GPIO2_10/ IFC_CS1_B / FTM7_CH0	General Purpose Input/Output	A19	Ю	OV _{DD}	
GPIO2_11/ IFC_CS2_B / FTM7_CH1	General Purpose Input/Output	D20	Ю	OV _{DD}	
GPIO2_12/ IFC_CS3_B / QSPI_B_DATA3/ FTM7_EXTCLK	General Purpose Input/Output	C20	Ю	OV _{DD}	
GPIO2_13/ IFC_PAR0 / QSPI_B_DATA0/FTM6_CH0	General Purpose Input/Output	B18	Ю	OV _{DD}	
GPIO2_14/ IFC_PAR1 / QSPI_B_DATA1/FTM6_CH1	General Purpose Input/Output	D17	Ю	OV _{DD}	
GPIO2_15/ IFC_PERR_B / QSPI_B_DATA2/ FTM6_EXTCLK	General Purpose Input/Output	E17	Ю	OV_{DD}	
GPIO2_25/ IFC_A25 / QSPI_A_DATA3/FTM5_CH0/ IFC_CS4_B/IFC_RB2_B	General Purpose Input/Output	C13	Ю	OV_{DD}	
GPIO2_26/ IFC_A26 / FTM5_CH1/IFC_CS5_B/ IFC_RB3_B	General Purpose Input/Output	D14	Ю	OV_{DD}	
GPIO2_27/ IFC_A27 / FTM5_EXTCLK/IFC_CS6_B	General Purpose Input/Output	C14	Ю	OV _{DD}	
GPIO3_00/EMI1_MDC	General Purpose Input/Output	AG2	Ю	LV _{DD}	
GPIO3_01/EMI1_MDIO	General Purpose Input/Output	AF2	Ю	LV _{DD}	
GPIO3_02/ EC1_TXD3 / FTM1_CH5	General Purpose Input/Output	Y3	Ю	LV _{DD}	
GPIO3_03/EC1_TXD2/ FTM1_CH7	General Purpose Input/Output	Y4	Ю	LV _{DD}	
GPIO3_04/ EC1_TXD1 / FTM1_CH3	General Purpose Input/Output	AA3	Ю	LV _{DD}	

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
		pin number	type		
GPIO3_05/ EC1_TXD0 / FTM1_CH2	General Purpose Input/Output	AB3	Ю	LV _{DD}	
GPIO3_06/ EC1_TX_EN / FTM1_FAULT	General Purpose Input/Output	AB4	Ю	LV _{DD}	
GPIO3_07/ EC1_GTX_CLK / FTM1_EXTCLK	General Purpose Input/Output	W4	Ю	LV _{DD}	
GPIO3_08/EC1_GTX_CLK125	General Purpose Input/Output	AC3	Ю	LV _{DD}	
GPIO3_09/ EC1_RXD3 / FTM1_CH4	General Purpose Input/Output	W2	Ю	LV _{DD}	
GPIO3_10/ EC1_RXD2 / FTM1_CH6	General Purpose Input/Output	Y1	Ю	LV _{DD}	
GPIO3_11/ EC1_RXD1 / FTM1_CH1	General Purpose Input/Output	AA1	Ю	LV _{DD}	
GPIO3_12/ EC1_RXD0 / FTM1_CH0	General Purpose Input/Output	AA2	Ю	LV _{DD}	
GPIO3_13/ EC1_RX_CLK / FTM1_QD_PHA	General Purpose Input/Output	W1	Ю	LV _{DD}	
GPIO3_14/ EC1_RX_DV / FTM1_QD_PHB	General Purpose Input/Output	AB1	Ю	LV _{DD}	
GPIO3_15/ EC2_TXD3 / TSEC_1588_ALARM_OUT2/ FTM2_CH5	General Purpose Input/Output	AD3	Ю	LV _{DD}	
GPIO3_16/ EC2_TXD2 / TSEC_1588_ALARM_OUT1/ FTM2_CH7	General Purpose Input/Output	AE3	Ю	LV _{DD}	
GPIO3_17/EC2_TXD1/ TSEC_1588_CLK_OUT/ FTM2_CH3	General Purpose Input/Output	AE4	Ю	LV _{DD}	
GPIO3_18/EC2_TXD0/ TSEC_1588_PULSE_OUT2/ FTM2_CH2	General Purpose Input/Output	AF3	Ю	LV _{DD}	
GPIO3_19/ EC2_TX_EN / FTM2_FAULT	General Purpose Input/Output	AG3	Ю	LV _{DD}	
GPIO3_20/ EC2_GTX_CLK / FTM2_EXTCLK	General Purpose Input/Output	AC4	Ю	LV _{DD}	
GPIO3_21/EC2_GTX_CLK125	General Purpose Input/Output	AG4	Ю	LV _{DD}	
GPIO3_22/ EC2_RXD3 / FTM2_CH4	General Purpose Input/Output	AC2	Ю	LV _{DD}	
GPIO3_23/ EC2_RXD2 / FTM2_CH6	General Purpose Input/Output	AD1	Ю	LV _{DD}	
GPIO3_24/EC2_RXD1/ TSEC_1588_PULSE_OUT1/ FTM2_CH1	General Purpose Input/Output	AE1	Ю	LV _{DD}	

Table 1. Pinout list by bus (continued)

Signal Signal description Package Din Power supply Not									
Signal	Signal description	Package pin number	Pin type	Power supply	Notes				
GPIO3_25/EC2_RXD0/ TSEC_1588_TRIG_IN2/ FTM2_CH0	General Purpose Input/Output	AE2	Ю	LV _{DD}					
GPIO3_26/ EC2_RX_CLK / TSEC_1588_CLK_IN/ FTM2_QD_PHA	General Purpose Input/Output	AC1	Ю	LV _{DD}					
GPIO3_27/ EC2_RX_DV / TSEC_1588_TRIG_IN1/ FTM2_QD_PHB	General Purpose Input/Output	AF1	Ю	LV _{DD}					
GPIO4_00/EMI2_MDC	General Purpose Input/Output	AH4	Ю	TV _{DD}					
GPIO4_01/EMI2_MDIO	General Purpose Input/Output	AH3	Ю	TV _{DD}					
GPIO4_10/IIC3_SCL/EVT5_B/ USB2_DRVVBUS/FTM8_CH0	General Purpose Input/Output	L4	Ю	DV_DD					
GPIO4_11/ IIC3_SDA /EVT6_B/ USB2_PWRFAULT/ FTM8_CH1	General Purpose Input/Output	M4	Ю	DV _{DD}					
GPIO4_12/ IIC4_SCL /EVT7_B/ USB3_DRVVBUS/ FTM3_FAULT	General Purpose Input/Output	M3	Ю	DV _{DD}					
GPIO4_13/ IIC4_SDA /EVT8_B/ USB3_PWRFAULT/ FTM3_EXTCLK	General Purpose Input/Output	N3	Ю	DV _{DD}					
GPIO4_2/ IIC2_SCL / SDHC_CD_B/FTM3_QD_PHA	General Purpose Input/Output	K3	Ю	DV_DD					
GPIO4_29/USB_DRVVBUS	General Purpose Input/Output	H6	Ю	DV_DD					
GPIO4_3/ IIC2_SDA / SDHC_WP/FTM3_QD_PHB	General Purpose Input/Output	L3	Ю	DV_{DD}					
GPIO4_30/USB_PWRFAULT	General Purpose Input/Output	G6	Ю	DV_DD					
	Frequency Time	Module			•				
FTM1_CH0/ EC1_RXD0 / GPIO3_12	Channel 0	AA2	Ю	LV _{DD}					
FTM1_CH1/ EC1_RXD1 / GPIO3_11	Channel 1	AA1	Ю	LV _{DD}					
FTM1_CH2/ EC1_TXD0 / GPIO3_05	Channel 2	AB3	Ю	LV _{DD}					
FTM1_CH3/ EC1_TXD1 / GPIO3_04	Channel 3	AA3	Ю	LV _{DD}					
FTM1_CH4/ EC1_RXD3 / GPIO3_09	Channel 4	W2	Ю	LV _{DD}					
FTM1_CH5/ EC1_TXD3 / GPIO3_02	Channel 5	Y3	Ю	LV _{DD}					
FTM1_CH6/EC1_RXD2/ GPIO3_10	Channel 6	Y1	Ю	LV _{DD}					
FTM1_CH7/ EC1_TXD2 / GPIO3_03	Channel 7	Y4	Ю	LV _{DD}					

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
Signal	Signal description	pin number	type	Power suppry	Notes
FTM1_EXTCLK/ EC1_GTX_CLK/GPIO3_07	External Clock	W4	I	LV _{DD}	1
FTM1_FAULT/ EC1_TX_EN / GPIO3_06	Fault	AB4	I	LV _{DD}	1
FTM1_QD_PHA/ EC1_RX_CLK/GPIO3_13	Phase A	W1	I	LV _{DD}	1
FTM1_QD_PHB/ EC1_RX_DV /GPIO3_14	Phase B	AB1	I	LV _{DD}	1
FTM2_CH0/ EC2_RXD0 / GPIO3_25/ TSEC_1588_TRIG_IN2	Channel 0	AE2	Ю	LV _{DD}	
FTM2_CH1/ EC2_RXD1 / GPIO3_24/ TSEC_1588_PULSE_OUT1	Channel 1	AE1	Ю	LV _{DD}	
FTM2_CH2/ EC2_TXD0 / GPIO3_18/ TSEC_1588_PULSE_OUT2	Channel 2	AF3	Ю	LV _{DD}	
FTM2_CH3/ EC2_TXD1 / GPIO3_17/ TSEC_1588_CLK_OUT	Channel 3	AE4	Ю	LV _{DD}	
FTM2_CH4/ EC2_RXD3 / GPIO3_22	Channel 4	AC2	Ю	LV _{DD}	
FTM2_CH5/ EC2_TXD3 / GPIO3_15/ TSEC_1588_ALARM_OUT2	Channel 5	AD3	Ю	LV _{DD}	
FTM2_CH6/ EC2_RXD2 / GPIO3_23	Channel 6	AD1	Ю	LV _{DD}	
FTM2_CH7/ EC2_TXD2 / GPIO3_16/ TSEC_1588_ALARM_OUT1	Channel 7	AE3	Ю	LV _{DD}	
FTM2_EXTCLK/ EC2_GTX_CLK/GPIO3_20	External Clock	AC4	I	LV _{DD}	1
FTM2_FAULT/ EC2_TX_EN / GPIO3_19	Fault	AG3	I	LV _{DD}	1
FTM2_QD_PHA/ EC2_RX_CLK/GPIO3_26/ TSEC_1588_CLK_IN	Phase A	AC1	I	LV _{DD}	1
FTM2_QD_PHB/ EC2_RX_DV / GPIO3_27/ TSEC_1588_TRIG_IN1	Phase B	AF1	I	LV _{DD}	1
FTM3_CH0/IRQ04/GPIO1_24	Channel 0	J4	Ю	DV_DD	
FTM3_CH1/ IRQ05 /GPIO1_25	Channel 1	J5	Ю	DV_DD	
FTM3_CH2/IRQ06/GPIO1_26	Channel 2	K5	Ю	DV_DD	
FTM3_CH3/ IRQ07 /GPIO1_27	Channel 3	L5	Ю	DV_DD	
FTM3_CH4/IRQ08/GPIO1_28	Channel 4	M5	Ю	DV_DD	

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
FTM3_CH5/ IRQ09 /GPIO1_29	Channel 5	N5	Ю	DV _{DD}	
FTM3_CH6/IRQ10/GPIO1_30	Channel 6	P4	Ю	DV _{DD}	
FTM3_CH7/ IRQ03 /GPIO1_23	Channel 7	J3	Ю	DV_DD	
FTM3_EXTCLK/ IIC4_SDA / GPIO4_13/EVT8_B/ USB3_PWRFAULT	External Clock	N3	I	DV _{DD}	1
FTM3_FAULT/ IIC4_SCL / GPIO4_12/EVT7_B/ USB3_DRVVBUS	Fault	M3	I	DV _{DD}	1
FTM3_QD_PHA/ IIC2_SCL / GPIO4_2/SDHC_CD_B	Phase A	К3	Ι	DV_DD	1
FTM3_QD_PHB/ IIC2_SDA / GPIO4_3/SDHC_WP	Phase B	L3	I	DV _{DD}	1
FTM4_CH0/ UART2_SOUT / GPIO1_16/LPUART1_SOUT	Channel 0	L2	Ю	DV _{DD}	
FTM4_CH1/ UART2_SIN / GPIO1_18/LPUART1_SIN	Channel 1	K1	Ю	DV _{DD}	
FTM4_CH2/ UART1_RTS_B / GPIO1_19/UART3_SOUT/ LPUART2_SOUT	Channel 2	J2	Ю	DV _{DD}	
FTM4_CH3/ UART2_RTS_B / GPIO1_20/UART4_SOUT/ LPUART4_SOUT/ LPUART1_RTS_B	Channel 3	L1	Ю	DV _{DD}	
FTM4_CH4/ UART1_CTS_B / GPIO1_21/UART3_SIN/ LPUART2_SIN	Channel 4	J1	Ю	DV _{DD}	
FTM4_CH5/ UART2_CTS_B / GPIO1_22/UART4_SIN/ LPUART1_CTS_B/ LPUART4_SIN	Channel 5	M2	Ю	DV _{DD}	
FTM4_CH6/ SDHC_CMD / GPIO2_04/LPUART3_SOUT	Channel 6	P2	Ю	EV _{DD}	
FTM4_CH7/ SDHC_DAT0 / GPIO2_05/LPUART3_SIN	Channel 7	P1	Ю	EV _{DD}	
FTM4_EXTCLK/ SDHC_DAT2 / GPIO2_07/LPUART2_CTS_B/ LPUART5_SIN	External Clock	R1	I	EV _{DD}	1
FTM4_FAULT/ SDHC_DAT1 / GPIO2_06/LPUART5_SOUT/ LPUART2_RTS_B	Fault	R2	I	EV _{DD}	1
FTM4_QD_PHA/ SDHC_DAT3 / GPIO2_08/LPUART6_SOUT/ LPUART3_RTS_B	Phase A	T1	I	EV _{DD}	1

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
		pin number	type		
FTM4_QD_PHB/ SDHC_CLK / GPIO2_09/LPUART3_CTS_B/ LPUART6_SIN	Phase B	P3	I	EV _{DD}	1
FTM5_CH0/ IFC_A25 / GPIO2_25/QSPI_A_DATA3/ IFC_CS4_B/IFC_RB2_B	Channel 0	C13	Ю	OV _{DD}	
FTM5_CH1/ IFC_A26 / GPIO2_26/IFC_CS5_B/ IFC_RB3_B	Channel 1	D14	Ю	OV _{DD}	
FTM5_EXTCLK/ IFC_A27 / GPIO2_27/IFC_CS6_B	External Clock	C14	I	OV _{DD}	1
FTM6_CH0/ IFC_PAR0 / GPIO2_13/QSPI_B_DATA0	Channel 0	B18	Ю	OV _{DD}	
FTM6_CH1/ IFC_PAR1 / GPIO2_14/QSPI_B_DATA1	Channel 1	D17	Ю	OV _{DD}	
FTM6_EXTCLK/ IFC_PERR_B /GPIO2_15/QSPI_B_DATA2	External Clock	E17	I	OV _{DD}	1
FTM7_CH0/ IFC_CS1_B / GPIO2_10	Channel 0	A19	Ю	OV _{DD}	
FTM7_CH1/ IFC_CS2_B / GPIO2_11	Channel 1	D20	Ю	OV _{DD}	
FTM7_EXTCLK/ IFC_CS3_B / GPIO2_12/QSPI_B_DATA3	External Clock	C20	I	OV _{DD}	1
FTM8_CH0/ IIC3_SCL / GPIO4_10/EVT5_B/ USB2_DRVVBUS	Channel 0	L4	Ю	DV _{DD}	
FTM8_CH1/ IIC3_SDA / GPIO4_11/EVT6_B/ USB2_PWRFAULT	Channel 1	M4	Ю	DV _{DD}	
	LPUART	•			
LPUART1_CTS_B/ UART2_CTS_B/GPIO1_22/ UART4_SIN/FTM4_CH5/ LPUART4_SIN	Clear to send	M2	I	DV _{DD}	1
LPUART1_RTS_B/ UART2_RTS_B/GPIO1_20/ UART4_SOUT/ LPUART4_SOUT/FTM4_CH3	Request to send	L1	0	DV _{DD}	1
LPUART1_SIN/ UART2_SIN / GPIO1_18/FTM4_CH1	Receive data	K1	I	DV_DD	1
LPUART1_SOUT/ UART2_SOUT/GPIO1_16/ FTM4_CH0	Transmit data	L2	Ю	DV _{DD}	
LPUART2_CTS_B/ SDHC_DAT2/GPIO2_07/	Clear to send	R1	I	EV _{DD}	1

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
LPUART5_SIN/ FTM4_EXTCLK		1101111101			
LPUART2_RTS_B/ SDHC_DAT1/GPIO2_06/ LPUART5_SOUT/ FTM4_FAULT	Request to send	R2	0	EV _{DD}	1
LPUART2_SIN/ UART1_CTS_B/GPIO1_21/ UART3_SIN/FTM4_CH4	Receive data	J1	I	DV _{DD}	1
LPUART2_SOUT/ UART1_RTS_B/GPIO1_19/ UART3_SOUT/FTM4_CH2	Transmit data	J2	Ю	DV_DD	
LPUART3_CTS_B/ SDHC_CLK/GPIO2_09/ LPUART6_SIN/ FTM4_QD_PHB	Clear to send	P3	I	EV _{DD}	1
LPUART3_RTS_B/ SDHC_DAT3/GPIO2_08/ LPUART6_SOUT/ FTM4_QD_PHA	Request to send	T1	0	EV _{DD}	1
LPUART3_SIN/ SDHC_DAT0 / GPIO2_05/FTM4_CH7	Receive data	P1	_	EV _{DD}	1
LPUART3_SOUT/ SDHC_CMD/GPIO2_04/ FTM4_CH6	Transmit data	P2	Ю	EV _{DD}	
LPUART4_SIN/ UART2_CTS_B/GPIO1_22/ UART4_SIN/FTM4_CH5/ LPUART1_CTS_B	Receive data	M2	I	DV _{DD}	1
LPUART4_SOUT/ UART2_RTS_B/GPIO1_20/ UART4_SOUT/FTM4_CH3/ LPUART1_RTS_B	Transmit data	L1	Ю	DV _{DD}	
LPUART5_SIN/SDHC_DAT2/ GPIO2_07/LPUART2_CTS_B/ FTM4_EXTCLK	Receive data	R1	I	EV _{DD}	1
LPUART5_SOUT/ SDHC_DAT1/GPIO2_06/ FTM4_FAULT/ LPUART2_RTS_B	Transmit data	R2	Ю	EV _{DD}	
LPUART6_SIN/SDHC_CLK/ GPIO2_09/LPUART3_CTS_B/ FTM4_QD_PHB	Receive data	P3	I	EV _{DD}	1
LPUART6_SOUT/ SDHC_DAT3/GPIO2_08/ FTM4_QD_PHA/ LPUART3_RTS_B	Transmit data	T1	Ю	EV _{DD}	
	TSEC_1	588		•	· ·

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin	Pin type	Power supply	Notes
		number	type		
TSEC_1588_ALARM_OUT1/ EC2_TXD2/GPIO3_16/ FTM2_CH7	Alarm Out	AE3	0	LV _{DD}	1
TSEC_1588_ALARM_OUT2/ EC2_TXD3/GPIO3_15/ FTM2_CH5	Alarm Out	AD3	0	LV _{DD}	1
TSEC_1588_CLK_IN/ EC2_RX_CLK/GPIO3_26/ FTM2_QD_PHA	Clock In	AC1	I	LV _{DD}	1
TSEC_1588_CLK_OUT/ EC2_TXD1/GPIO3_17/ FTM2_CH3	Clock Out	AE4	0	LV _{DD}	1
TSEC_1588_PULSE_OUT1/ EC2_RXD1/GPIO3_24/ FTM2_CH1	Pulse Out	AE1	0	LV _{DD}	1
TSEC_1588_PULSE_OUT2/ EC2_TXD0/GPIO3_18/ FTM2_CH2	Pulse Out	AF3	0	LV _{DD}	1
TSEC_1588_TRIG_IN1/ EC2_RX_DV/GPIO3_27/ FTM2_QD_PHB	Trigger In	AF1	I	LV _{DD}	1
TSEC_1588_TRIG_IN2/ EC2_RXD0/GPIO3_25/ FTM2_CH0	Trigger In	AE2	I	LV _{DD}	1
	Power and Grour	d Signals			•
GND001	GND	A2			
GND002	GND	A5			
GND003	GND	A21			
GND004	GND	В3			
GND005	GND	B4			
GND006	GND	B7			
GND007	GND	B10			
GND008	GND	B13			
GND009	GND	B16			
GND010	GND	B19			
GND011	GND	B21			
GND012	GND	B24			
GND013	GND	B26			
GND014	GND	C1			
GND015	GND	C2			
GND016	GND	C5			
GND017	GND	C21			
GND018	GND	C27			

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
GND019	GND	D3			
GND020	GND	D4			
GND021	GND	D7			
GND022	GND	D9			
GND023	GND	D12			
GND024	GND	D15			
GND025	GND	D18			
GND026	GND	D21			
GND027	GND	D24			
GND028	GND	E1			
GND029	GND	E2			
GND030	GND	E5			
GND031	GND	E21			
GND032	GND	E26			
GND033	GND	F3			
GND034	GND	F4			
GND035	GND	F7			
GND036	GND	F14			
GND037	GND	F16			
GND038	GND	F18			
GND039	GND	F24			
GND040	GND	G1			
GND041	GND	G2			
GND042	GND	G9			
GND043	GND	G10			
GND044	GND	G11			
GND045	GND	G21			
GND046	GND	G26			
GND047	GND	НЗ			
GND048	GND	H4			
GND049	GND	H5			
GND050	GND	H14			
GND051	GND	H15			
GND052	GND	H16			
GND053	GND	H17			
GND054	GND	H18			
GND055	GND	H21			
GND056	GND	H24			

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin	Pin	Power supply	Notes
		number	type		
GND057	GND	J6			
GND058	GND	J7			
GND059	GND	J8			
GND060	GND	J9			
GND061	GND	J10			
GND062	GND	J11			
GND063	GND	J12			
GND064	GND	J21			
GND065	GND	J23			
GND066	GND	J26			
GND067	GND	K2			
GND068	GND	K4			
GND069	GND	K6			
GND070	GND	K13			
GND071	GND	K15			
GND072	GND	K17			
GND073	GND	K19			
GND074	GND	K21			
GND075	GND	L6			
GND076	GND	L10			
GND077	GND	L12			
GND078	GND	L14			
GND079	GND	L16			
GND080	GND	L18			
GND081	GND	L20			
GND082	GND	L23			
GND083	GND	L26			
GND084	GND	M6			
GND085	GND	M9			
GND086	GND	M11			
GND087	GND	M13			
GND088	GND	M15			
GND089	GND	M17			
GND090	GND	M19			
GND091	GND	M21			
GND092	GND	M23			
GND093	GND	N2			
GND094	GND	N4			

Pin assignments

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
		pin number	type		
GND095	GND	N6			
GND096	GND	N8			
GND097	GND	N10			
GND098	GND	N12			
GND099	GND	N14			
GND100	GND	N16			
GND101	GND	N18			
GND102	GND	N20			
GND103	GND	N23			
GND104	GND	N26			
GND105	GND	P6			
GND106	GND	P9			
GND107	GND	P11			
GND108	GND	P13			
GND109	GND	P15			
GND110	GND	P17			
GND111	GND	P19			
GND112	GND	P23			
GND113	GND	R5			
GND114	GND	R8			
GND115	GND	R10			
GND116	GND	R12			
GND117	GND	R14			
GND118	GND	R16			
GND119	GND	R18			
GND120	GND	R20			
GND121	GND	R23			
GND122	GND	R26			
GND123	GND	T2			
GND124	GND	T4			
GND125	GND	T6			
GND126	GND	Т9			
GND127	GND	T11			
GND128	GND	T13			
GND129	GND	T15			
GND130	GND	T17			
GND131	GND	T19			
GND132	GND	T21			

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
GND133	GND	T23			
GND134	GND	T26			
GND135	GND	U6			
GND136	GND	U8			
GND137	GND	U10			
GND138	GND	U12			
GND139	GND	U14			
GND140	GND	U16			
GND141	GND	U18			
GND142	GND	U20			
GND143	GND	U23			
GND144	GND	V2			
GND145	GND	V4			
GND146	GND	V6			
GND147	GND	V9			
GND148	GND	V11			
GND149	GND	V13			
GND150	GND	V15			
GND151	GND	V17			
GND152	GND	V19			
GND153	GND	V21			
GND154	GND	V23			
GND155	GND	V26			
GND156	GND	W12			
GND157	GND	W18			
GND158	GND	W20			
GND159	GND	W22			
GND160	GND	Y2			
GND161	GND	Y5			
GND162	GND	Y13			
GND163	GND	Y14			
GND164	GND	Y21			
GND165	GND	Y23			
GND166	GND	Y26			
GND167	GND	AA4			
GND168	GND	AA14			
GND169	GND	AA21			
GND170	GND	AA24			

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
		pin number	type		
GND171	GND	AB2			
GND172	GND	AB12			
GND173	GND	AB26			
GND174	GND	AC21			
GND175	GND	AC24			
GND176	GND	AD2			
GND177	GND	AD4			
GND178	GND	AD26			
GND179	GND	AE21			
GND180	GND	AE24			
GND181	GND	AF4			
GND182	GND	AF21			
GND183	GND	AF26			
GND184	GND	AG1			
GND185	GND	AG24			
GND186	GND	AG26			
GND187	GND	AH2			
GND188	GND	AH21			
SD_GND01	Serdes core logic GND	Y6			23
SD_GND02	Serdes core logic GND	Y7			23
SD_GND03	Serdes core logic GND	Y8			23
SD_GND04	Serdes core logic GND	Y9			23
SD_GND05	Serdes core logic GND	Y10			23
SD_GND06	Serdes core logic GND	Y15			23
SD_GND07	Serdes core logic GND	Y16			23
SD_GND08	Serdes core logic GND	AA5			23
SD_GND09	Serdes core logic GND	AA7			23
SD_GND10	Serdes core logic GND	AA9			23
SD_GND11	Serdes core logic GND	AA12			23
SD_GND12	Serdes core logic GND	AA17			23
SD_GND13	Serdes core logic GND	AA18			23
SD_GND14	Serdes core logic GND	AA19			23
SD_GND15	Serdes core logic GND	AB7			23
SD_GND16	Serdes core logic GND	AB9			23
SD_GND17	Serdes core logic GND	AB14			23
SD_GND18	Serdes core logic GND	AB17			23
SD_GND19	Serdes core logic GND	AB20			23
SD_GND20	Serdes core logic GND	AC5			23

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
		pin number	type		
SD_GND21	Serdes core logic GND	AC6			23
SD_GND22	Serdes core logic GND	AC8			23
SD_GND23	Serdes core logic GND	AC10			23
SD_GND24	Serdes core logic GND	AC11			23
SD_GND25	Serdes core logic GND	AC15			23
SD_GND26	Serdes core logic GND	AC16			23
SD_GND27	Serdes core logic GND	AC18			23
SD_GND28	Serdes core logic GND	AC19			23
SD_GND29	Serdes core logic GND	AD5			23
SD_GND30	Serdes core logic GND	AD7			23
SD_GND31	Serdes core logic GND	AD9			23
SD_GND32	Serdes core logic GND	AD12			23
SD_GND33	Serdes core logic GND	AD14			23
SD_GND34	Serdes core logic GND	AD17			23
SD_GND35	Serdes core logic GND	AD20			23
SD_GND36	Serdes core logic GND	AE5			23
SD_GND37	Serdes core logic GND	AE7			23
SD_GND38	Serdes core logic GND	AE9			23
SD_GND39	Serdes core logic GND	AE12			23
SD_GND40	Serdes core logic GND	AE14			23
SD_GND41	Serdes core logic GND	AE17			23
SD_GND42	Serdes core logic GND	AE20			23
SD_GND43	Serdes core logic GND	AF6			23
SD_GND44	Serdes core logic GND	AF7			23
SD_GND45	Serdes core logic GND	AF8			23
SD_GND46	Serdes core logic GND	AF9			23
SD_GND47	Serdes core logic GND	AF10			23
SD_GND48	Serdes core logic GND	AF11			23
SD_GND49	Serdes core logic GND	AF15			23
SD_GND50	Serdes core logic GND	AF16			23
SD_GND51	Serdes core logic GND	AF17			23
SD_GND52	Serdes core logic GND	AF18			23
SD_GND53	Serdes core logic GND	AF19			23
SD_GND54	Serdes core logic GND	AG5			23
SD_GND55	Serdes core logic GND	AG7			23
SD_GND56	Serdes core logic GND	AG9			23
SD_GND57	Serdes core logic GND	AG12			23
SD_GND58	Serdes core logic GND	AG14			23

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
		pin number	type		
SD_GND59	Serdes core logic GND	AG17			23
SD_GND60	Serdes core logic GND	AG20			23
SD_GND61	Serdes core logic GND	AH5			23
SD_GND62	Serdes core logic GND	AH7			23
SD_GND63	Serdes core logic GND	AH9			23
SD_GND64	Serdes core logic GND	AH12			23
SD_GND65	Serdes core logic GND	AH14			23
SD_GND66	Serdes core logic GND	AH17			23
SD_GND67	Serdes core logic GND	AH20			23
SENSEGND	GND Sense pin	G20			
OVDD1	General I/O supply	J14		OV _{DD}	
OVDD2	General I/O supply	J15		OV _{DD}	
OVDD3	General I/O supply	J16		OV_{DD}	
OVDD4	General I/O supply	J17		OV_{DD}	
OVDD5	General I/O supply	J18		OV_{DD}	
OVDD6	General I/O supply	R7		OV_{DD}	
DVDD1	UART/I2C supply - switchable	N7		DV_DD	
DVDD2	UART/I2C supply - switchable	P7		DV_DD	
EVDD	eSDHC supply - switchable	R6		EV _{DD}	
LVDD1	Ethernet controller 1 & 2 supply	T7		LV _{DD}	
LVDD2	Ethernet controller 1 & 2 supply	U7		LV _{DD}	
LVDD3	Ethernet controller 1 & 2 supply	V7		LV _{DD}	
TVDD	1.2 V / LVDD supply for MDIO interface for 10G Fman (EC2)	W6		TV _{DD}	
G1VDD01	DDR supply	B27		G1V _{DD}	
G1VDD02	DDR supply	D27		G1V _{DD}	
G1VDD03	DDR supply	F27		G1V _{DD}	
G1VDD04	DDR supply	H27		G1V _{DD}	
G1VDD05	DDR supply	K27		G1V _{DD}	
G1VDD06	DDR supply	L22		G1V _{DD}	
G1VDD07	DDR supply	M22		G1V _{DD}	
G1VDD08	DDR supply	M27		G1V _{DD}	
G1VDD09	DDR supply	N22		G1V _{DD}	
G1VDD10	DDR supply	P22		G1V _{DD}	
G1VDD11	DDR supply	P27		G1V _{DD}	
G1VDD12	DDR supply	R22		G1V _{DD}	

Table 1. Pinout list by bus (continued)

GIVDD14 DDR supply U22 GIV _{DD} GIVDD15 DDR supply U27 GIV _{DD} GIVDD16 DDR supply V22 GIV _{DD} GIVDD17 DDR supply V22 GIV _{DD} GIVDD18 DDR supply W27 GIV _{DD} GIVDD18 DDR supply AA27 GIV _{DD} GIVDD19 DDR supply AA27 GIV _{DD} GIVDD20 DDR supply AA27 GIV _{DD} GIVDD21 DDR supply AA27 GIV _{DD} GIVDD21 DDR supply AA27 GIV _{DD} GIVDD22 DDR supply AA27 GIV _{DD} GIVDD22 DDR supply AA27 GIV _{DD} GIVDD22 DDR supply AA27 GIV _{DD} SVDD2 SerDest core logic supply W10 SV _{DD} SVDD2 SerDest core logic supply W13 SV _{DD} SVDD3 SerDest core logic supply W14 SV _{DD} SVDD4 SerDest core logic supply W15 SV _{DD} SVDD5 SerDest core logic supply W16 SV _{DD} SVDD5 SerDest core logic supply W17 SV _{DD} SVDD6 SerDest core logic supply W17 SV _{DD} SVDD7 SerDest core logic supply W17 SV _{DD} SVDD8 SerDest core logic supply W18 SV _{DD} SVDD8 SerDest core logic supply W19 SV _{DD} SVDD8 SerDest core logic supply W19 SV _{DD} SVDD9 SerDest transceiver supply AC7 XV _{DD} SVDD8 SerDest transceiver supply AC7 XV _{DD} SVDD9 SerDest transceiver supply AC9 XV _{DD} SVDD9 SerDest transceiver supply AC12 XV _{DD} SVDD9 SerDest transceiver supply AC14 XV _{DD} SVDD9 SerDest transceiver supply AC14 XV _{DD} SVDD9 SerDest transceiver supply AC17 XV _{DD} SVDD9 SerDest transceiver supply AC17 XV _{DD} SVDD9 SerDest transceiver supply AC19 XV _{DD} SVDD9 SerDest transceiver supply AC19 XV _{DD} SVDD1 SerDest trans	Signal	Signal description	Package pin	Pin type	Power supply	Notes
GIVDD14 DDR supply U22 GIV _{DD} GIVDD15 DDR supply U27 GIV _{DD} GIVDD16 DDR supply V22 GIV _{DD} GIVDD17 DDR supply V22 GIV _{DD} GIVDD18 DDR supply W27 GIV _{DD} GIVDD18 DDR supply A27 GIV _{DD} GIVDD19 DDR supply A27 GIV _{DD} GIVDD20 DDR supply A27 GIV _{DD} GIVDD21 DDR supply A227 GIV _{DD} GIVDD21 DDR supply A227 GIV _{DD} GIVDD22 DDR supply A427 GIV _{DD} GIVDD22 DDR supply A427 GIV _{DD} GIVDD22 DDR supply A427 GIV _{DD} SVDD1 SerDest core logic supply W13 SV _{DD} SVDD2 SerDest core logic supply W13 SV _{DD} SVDD2 SerDest core logic supply W14 SV _{DD} SVDD3 SerDest core logic supply W15 SV _{DD} SVDD4 SerDest core logic supply W16 SV _{DD} SVDD5 SerDest core logic supply W17 SV _{DD} SVDD5 SerDest core logic supply W16 SV _{DD} SVDD6 SerDest core logic supply W17 SV _{DD} SVDD7 SerDest core logic supply W18 SV _{DD} SVDD8 SerDest core logic supply W19 SV _{DD} SVDD8 SerDest core logic supply W19 SV _{DD} SVDD8 SerDest transceiver supply A27 XV _{DD} SVDD8 SerDest transceiver supply A27 XV _{DD} SVDD9 SerDest transceiver supply A27 XV _{DD} SVDD1 SerDest transceiver supply A27 XV _{DD} SVDD2 SerDest transceiver supply A28 XV _{DD} SVDD6 SerDest transceiver supply A29 XV _{DD} SVDD6 SerDest transceiver supply A29 XV _{DD} SVDD8 SerDest transceiver supply A29 XV _{DD} SVDD9 SerDest transceiver supply A29 XV _{DD} SVDD9 SerDest transceiver supply A29 XV _{DD} SVDD9 SerDest transceiver supply A29 XV _{DD} SVDD1 SerDest transceiver supply A29 XV _{DD} SVDD2 Supply for cores and platform K			number			
G1VDD15	G1VDD13	DDR supply	T22		G1V _{DD}	
GIVDD16 DDR supply	G1VDD14	DDR supply	U22		G1V _{DD}	
GIVDD17	G1VDD15	DDR supply	U27		G1V _{DD}	
GIVDD18	G1VDD16	DDR supply	V22		G1V _{DD}	
DDR supply	G1VDD17	DDR supply	W27		G1V _{DD}	
GIVDD20 DDR supply AE27 GIVDD GIVDD21 DDR supply AG27 GIVDD GIVDD22 DDR supply AH27 GIVDD SVDD1 SerDes1 core logic supply W10 SVDD SVDD2 SerDes1 core logic supply W13 SVDD SVDD3 SerDes1 core logic supply W14 SVDD SVDD4 SerDes1 core logic supply W15 SVDD SVDD5 SerDes1 core logic supply W16 SVDD SVDD6 SerDes1 core logic supply Y17 SVDD SVDD7 SerDes1 core logic supply Y18 SVDD SVDD8 SerDes1 transceiver supply Y19 SVDD SVDD8 SerDes1 transceiver supply AC7 XVDD XVDD2	G1VDD18	DDR supply	AA27		G1V _{DD}	
DR supply	G1VDD19	DDR supply	AC27		G1V _{DD}	
DR supply	G1VDD20	DDR supply	AE27		G1V _{DD}	
SVDD1 SerDes1 core logic supply W10 SVDD SVDD2 SerDes1 core logic supply W13 SVDD SVDD3 SerDes1 core logic supply W14 SVDD SVDD4 SerDes1 core logic supply W15 SVDD SVDD5 SerDes1 core logic supply W16 SVDD SVDD6 SerDes1 core logic supply Y17 SVDD SVDD7 SerDes1 core logic supply Y18 SVDD SVDD8 SerDes1 core logic supply Y19 SVDD SVDD8 SerDes1 core logic supply Y19 SVDD SVDD8 SerDes1 core logic supply Y19 SVDD SVDD7 SerDes1 transceiver supply AC7 XVDD XVDD1 SerDes1 transceiver supply AC9 XVDD	G1VDD21	DDR supply	AG27		G1V _{DD}	
SVDD2 SerDest core logic supply W13 SVDD SVDD3 SerDest core logic supply W14 SVDD SVDD4 SerDest core logic supply W15 SVDD SVDD5 SerDest core logic supply W16 SVDD SVDD6 SerDest core logic supply Y17 SVDD SVDD7 SerDest core logic supply Y18 SVDD SVDD8 SerDest core logic supply Y19 XVDD XVDD1 SerDest core logic supply AC7 XVDD	G1VDD22	DDR supply	AH27		G1V _{DD}	
SVDD3 SerDest core logic supply W14	SVDD1	SerDes1 core logic supply	W10		SV _{DD}	
SVDD4 SerDest core logic supply W15 SVDD SVDD5 SerDest core logic supply W16 SVDD SVDD6 SerDest core logic supply Y17 SVDD SVDD7 SerDest core logic supply Y18 SVDD SVDD8 SerDest core logic supply Y19 SVDD SVDD1 SerDest transceiver supply AC7 XVDD XVDD2 SerDest transceiver supply AC9 XVDD XVDD3 SerDest transceiver supply AC12 XVDD XVDD4 SerDest transceiver supply AC14 XVDD XVDD5 SerDest transceiver supply AC20 XVDD XVDD6 SerDest transceiver supply AC20 XVDD XVDD6 SerDest transceiver supply AC20 XVDD	SVDD2	SerDes1 core logic supply	W13		SV _{DD}	
SVDD5 SerDes1 core logic supply W16 SVDD SVDD	SVDD3	SerDes1 core logic supply	W14		SV _{DD}	
SVDD6 SerDes1 core logic supply Y17 SVDD SVDD7 SerDes1 core logic supply Y18 SVDD SVDD8 SerDes1 core logic supply Y19 SVDD XVDD1 SerDes1 transceiver supply AC7 XVDD XVDD2 SerDes1 transceiver supply AC9 XVDD XVDD3 SerDes1 transceiver supply AC12 XVDD XVDD4 SerDes1 transceiver supply AC14 XVDD XVDD5 SerDes1 transceiver supply AC20 XVDD XVDD6 SerDes1 transceiver supply AC20 XVDD <td>SVDD4</td> <td>SerDes1 core logic supply</td> <td>W15</td> <td></td> <td>SV_{DD}</td> <td></td>	SVDD4	SerDes1 core logic supply	W15		SV _{DD}	
SVDD7 SerDes1 core logic supply Y18 SVDD SVDD8 SerDes1 core logic supply Y19 SVDD XVDD1 SerDes1 transceiver supply AC7 XVDD XVDD2 SerDes1 transceiver supply AC9 XVDD XVDD3 SerDes1 transceiver supply AC12 XVDD XVDD4 SerDes1 transceiver supply AC14 XVDD XVDD5 SerDes1 transceiver supply AC20 XVDD XVDD6 SerDes1 transceiver supply AC20 XVDD </td <td>SVDD5</td> <td>SerDes1 core logic supply</td> <td>W16</td> <td></td> <td>SV_{DD}</td> <td></td>	SVDD5	SerDes1 core logic supply	W16		SV _{DD}	
SVDD8 SerDest core logic supply Y19 SVDD XVDD1 SerDest transceiver supply AC7 XVDD XVDD2 SerDest transceiver supply AC9 XVDD XVDD3 SerDest transceiver supply AC12 XVDD XVDD4 SerDest transceiver supply AC14 XVDD XVDD5 SerDest transceiver supply AC21 XVDD XVDD6 SerDest transceiver supply AC20 XVDD XVDD6 Reserved AB21 XVDD	SVDD6	SerDes1 core logic supply	Y17		SV _{DD}	
XVDD1 SerDes1 transceiver supply AC7 XVDD XVDD2 SerDes1 transceiver supply AC9 XVDD XVDD3 SerDes1 transceiver supply AC12 XVDD XVDD4 SerDes1 transceiver supply AC14 XVDD XVDD5 SerDes1 transceiver supply AC20 XVDD XVDD6 SerDes1 transceiver supply AC20 XVDDD XVDD6 SerDes1 transceiver supply AC20 XVDDD XVDD6 SerDes1 transceiver supply AC20 XVDD XVDD6 SFP EserProgramming Oversing G8	SVDD7	SerDes1 core logic supply	Y18		SV _{DD}	
XVDD2 SerDes1 transceiver supply AC9 XVDD XVDD3 SerDes1 transceiver supply AC12 XVDD XVDD4 SerDes1 transceiver supply AC14 XVDD XVDD5 SerDes1 transceiver supply AC20 XVDD XVDD6 SerDes1 transceiver supply AC20 XVDD FA_VL Reserved AB21 FA_VL 15 PROG_MTR Reserved F13 PROG_MTR 15 TA_PROG_SFP SFP Fuse Programming Override supply G13 TA_PROG_SFP YDD0 Thermal Monitor Unit supply G8 TH_VDD YDD01 Supply for cores and platform K14 VDD YDD02 Supply for cores and platform K16 VDD YDD03 Supply for cores and platform K20 VDD <td>SVDD8</td> <td>SerDes1 core logic supply</td> <td>Y19</td> <td></td> <td>SV_{DD}</td> <td></td>	SVDD8	SerDes1 core logic supply	Y19		SV _{DD}	
XVDD3 SerDes1 transceiver supply AC12 XVDD XVDD4 SerDes1 transceiver supply AC14 XVDD XVDD5 SerDes1 transceiver supply AC17 XVDD XVDD6 SerDes1 transceiver supply AC20 XVDD XVDD SFP Euse Programming Override G13 TAPROG_SFP XTA_PROG_SFP SFP Fuse Programming Override supply G8 <td< td=""><td>XVDD1</td><td>SerDes1 transceiver supply</td><td>AC7</td><td></td><td>XV_{DD}</td><td></td></td<>	XVDD1	SerDes1 transceiver supply	AC7		XV_{DD}	
SerDes1 transceiver supply AC14 XV _{DD} XVDD5 SerDes1 transceiver supply AC17 XV _{DD} XVDD6 SerDes1 transceiver supply AC20 XV _{DD} XVDD6 SerDes1 transceiver supply AC20 XV _{DD} XVDD6 SerDes1 transceiver supply AC20 XV _{DD} YVDD6 Supply for cores and platform AC13 YCDD AC14 Supply for cores and platform AC14 YCDD YVDD6 Supply for cores and platform AC20 YCDD YCDD6 Supply for cores and platform AC20 YCDD YVDD6 Supply for cores and platform AC20 YCDD YCDD6 Supply for cores and platform AC20 YCDD6 YCDD6 YCDD6 Supply for cores and platform AC20 YCDD6 YCD6 YCDD6 YCDD6 YCDD6 YCDD6 YCDD6 YCDD6	XVDD2	SerDes1 transceiver supply	AC9		XV_{DD}	
SerDes1 transceiver supply AC17 XV _{DD}	XVDD3	SerDes1 transceiver supply	AC12		XV_{DD}	
XVDD6 SerDes1 transceiver supply AC20 XV _{DD} FA_VL Reserved AB21 FA_VL 15 PROG_MTR Reserved F13 PROG_MTR 15 TA_PROG_SFP SFP Fuse Programming Override supply G8 TA_PROG_SFP VDD01 Thermal Monitor Unit supply G8 TH_V _{DD} VDD02 Supply for cores and platform K14 V _{DD} VDD03 Supply for cores and platform K18 V _{DD} VDD04 Supply for cores and platform K20 V _{DD} VDD05 Supply for cores and platform L11 V _{DD} VDD06 Supply for cores and platform L13 V _{DD} VDD07 Supply for cores and platform L15 V _{DD} VDD08 Supply for cores and platform L15 V _{DD}	XVDD4	SerDes1 transceiver supply	AC14		XV_{DD}	
FA_VL Reserved AB21 FA_VL 15 PROG_MTR Reserved F13 PROG_MTR 15 TA_PROG_SFP SFP Fuse Programming Override supply G13 TA_PROG_SFP TH_VDD Thermal Monitor Unit supply G8 TH_VDD VDD01 Supply for cores and platform K14 VDD VDD02 Supply for cores and platform K16 VDD VDD03 Supply for cores and platform K18 VDD VDD04 Supply for cores and platform K20 VDD VDD05 Supply for cores and platform L11 VDD VDD06 Supply for cores and platform L13 VDD VDD07 Supply for cores and platform L15 VDD VDD08 Supply for cores and platform L17 VDD <t< td=""><td>XVDD5</td><td>SerDes1 transceiver supply</td><td>AC17</td><td></td><td>XV_{DD}</td><td></td></t<>	XVDD5	SerDes1 transceiver supply	AC17		XV_{DD}	
PROG_MTR Reserved F13 PROG_MTR 15 TA_PROG_SFP SFP Fuse Programming Override supply TH_VDD Thermal Monitor Unit supply VDD01 Supply for cores and platform VDD02 Supply for cores and platform VDD03 Supply for cores and platform K16 VDD0 VDD04 Supply for cores and platform K20 VDD VDD05 Supply for cores and platform L11 VDD VDD06 Supply for cores and platform L13 VDD VDD07 Supply for cores and platform L15 VDD VDD06 Supply for cores and platform L17 VDD VDD06 Supply for cores and platform L17 VDD VDD0 VDD0 Supply for cores and platform L17 VDD VDD VDD0	XVDD6	SerDes1 transceiver supply	AC20		XV_{DD}	
TA_PROG_SFP SFP Fuse Programming Override supply Th_VDD Thermal Monitor Unit supply G8 TH_VDD Supply for cores and platform VDD01 Supply for cores and platform VDD02 Supply for cores and platform K16 VDD VDD03 Supply for cores and platform K18 VDD VDD04 Supply for cores and platform K20 VDD VDD05 Supply for cores and platform L11 VDD Supply for cores and platform VDD Supply for cores and platform VDD Supply for cores and platform L11 VDD Supply for cores and platform VDD Supply for cores and platform L13 VDD Supply for cores and platform L15 VDD Supply for cores and platform L17 VDD	FA_VL	Reserved	AB21		FA_VL	15
Override supply TH_VDD Thermal Monitor Unit supply G8 TH_V_DD Supply for cores and platform K14 VDD0 Supply for cores and platform K16 VDD0 Supply for cores and platform K18 VDD0 Supply for cores and platform K18 VDD0 Supply for cores and platform K20 VDD0 Supply for cores and platform L11 VDD0 Supply for cores and platform L13 VDD0 Supply for cores and platform L15 VDD0 Supply for cores and platform L17 VDD0	PROG_MTR	Reserved	F13		PROG_MTR	15
VDD01 Supply for cores and platform K14 VDD VDD02 Supply for cores and platform K16 VDD VDD03 Supply for cores and platform K18 VDD VDD04 Supply for cores and platform K20 VDD VDD05 Supply for cores and platform L11 VDD VDD06 Supply for cores and platform L13 VDD VDD07 Supply for cores and platform L15 VDD VDD08 Supply for cores and platform L17 VDD	TA_PROG_SFP		G13		TA_PROG_SFP	
VDD02 Supply for cores and platform K16 VDD VDD03 Supply for cores and platform K18 VDD VDD04 Supply for cores and platform K20 VDD VDD05 Supply for cores and platform L11 VDD VDD06 Supply for cores and platform L13 VDD VDD07 Supply for cores and platform L15 VDD VDD08 Supply for cores and platform L17 VDD	TH_VDD	Thermal Monitor Unit supply	G8		TH_V _{DD}	
VDD03 Supply for cores and platform K18 V _{DD} VDD04 Supply for cores and platform K20 V _{DD} VDD05 Supply for cores and platform L11 V _{DD} VDD06 Supply for cores and platform L13 V _{DD} VDD07 Supply for cores and platform L15 V _{DD} VDD08 Supply for cores and platform L17 V _{DD}	VDD01	Supply for cores and platform	K14		V_{DD}	
VDD04 Supply for cores and platform K20 V _{DD} VDD05 Supply for cores and platform L11 V _{DD} VDD06 Supply for cores and platform L13 V _{DD} VDD07 Supply for cores and platform L15 V _{DD} VDD08 Supply for cores and platform L17 V _{DD}	VDD02	Supply for cores and platform	K16		V _{DD}	
VDD05 Supply for cores and platform L11 V _{DD} VDD06 Supply for cores and platform L13 V _{DD} VDD07 Supply for cores and platform L15 V _{DD} VDD08 Supply for cores and platform L17 V _{DD}	VDD03	Supply for cores and platform	K18		V_{DD}	
VDD06 Supply for cores and platform L13 V _{DD} VDD07 Supply for cores and platform L15 V _{DD} VDD08 Supply for cores and platform L17 V _{DD}	VDD04	Supply for cores and platform	K20		V _{DD}	
VDD07 Supply for cores and platform L15 V _{DD} VDD08 Supply for cores and platform L17 V _{DD}	VDD05	Supply for cores and platform	L11		V _{DD}	
VDD08 Supply for cores and platform L17 V _{DD}	VDD06	Supply for cores and platform	L13		V_{DD}	
111	VDD07	Supply for cores and platform	L15		V_{DD}	
VDD09 Supply for cores and platform L19 V _{DD}	VDD08	Supply for cores and platform	L17		V _{DD}	
	VDD09	Supply for cores and platform	L19		V _{DD}	

Pin assignments

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin	Pin type	Power supply	Notes
		number	type		
VDD10	Supply for cores and platform	M10		V_{DD}	
VDD11	Supply for cores and platform	M12		V_{DD}	
VDD12	Supply for cores and platform	M14		V_{DD}	
VDD13	Supply for cores and platform	M16		V_{DD}	
VDD14	Supply for cores and platform	M18		V_{DD}	
VDD15	Supply for cores and platform	N9		V_{DD}	
VDD16	Supply for cores and platform	N11		V_{DD}	
VDD17	Supply for cores and platform	N13		V_{DD}	
VDD18	Supply for cores and platform	N15		V_{DD}	
VDD19	Supply for cores and platform	N17		V_{DD}	
VDD20	Supply for cores and platform	N19		V_{DD}	
VDD21	Supply for cores and platform	P10		V_{DD}	
VDD22	Supply for cores and platform	P12		V_{DD}	
VDD23	Supply for cores and platform	P14		V _{DD}	
VDD24	Supply for cores and platform	P16		V_{DD}	
VDD25	Supply for cores and platform	P18		V_{DD}	
VDD26	Supply for cores and platform	R9		V _{DD}	
VDD27	Supply for cores and platform	R11		V _{DD}	
VDD28	Supply for cores and platform	R13		V_{DD}	
VDD29	Supply for cores and platform	R15		V _{DD}	
VDD30	Supply for cores and platform	R17		V _{DD}	
VDD31	Supply for cores and platform	R19		V _{DD}	
VDD32	Supply for cores and platform	T10		V_{DD}	
VDD33	Supply for cores and platform	T12		V_{DD}	
VDD34	Supply for cores and platform	T14		V_{DD}	
VDD35	Supply for cores and platform	T16		V_{DD}	
VDD36	Supply for cores and platform	T18		V_{DD}	
VDD37	Supply for cores and platform	U9		V_{DD}	
VDD38	Supply for cores and platform	U11		V_{DD}	
VDD39	Supply for cores and platform	U13		V_{DD}	
VDD40	Supply for cores and platform	U15		V_{DD}	
VDD41	Supply for cores and platform	U17		V_{DD}	
VDD42	Supply for cores and platform	U19		V_{DD}	
VDD43	Supply for cores and platform	V10		V_{DD}	
VDD44	Supply for cores and platform	V12		V_{DD}	
VDD45	Supply for cores and platform	V14		V_{DD}	
VDD46	Supply for cores and platform	V16		V_{DD}	
VDD47	Supply for cores and platform	V18		V_{DD}	

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package	Pin	Power supply	Notes
		pin number	type		
VDD48	Supply for cores and platform	V20		V_{DD}	
VDD49	Supply for cores and platform	W11		V_{DD}	
VDD50	Supply for cores and platform	W17		V_{DD}	
VDD51	Supply for cores and platform	W19		V_{DD}	
TA_BB_VDD	Battery Backed Security Monitor supply	G12		TA_BB_V _{DD}	
AVDD_CGA1	CPU Cluster Group A PLL1 supply	H11		AVDD_CGA1	
AVDD_CGA2	CPU Cluster Group A PLL2 supply	H10		AVDD_CGA2	
AVDD_PLAT	Platform PLL supply	H9		AVDD_PLAT	
AVDD_D1	DDR1 PLL supply	R21		AVDD_D1	
AVDD_SD1_PLL1	SerDes1 PLL 1 supply	AA11		AVDD_SD1_PLL1	
AVDD_SD1_PLL2	SerDes1 PLL 2 supply	AB6		AVDD_SD1_PLL2	
AVDD_SD2_PLL1	SerDes2 PLL 1 supply	AB15		AVDD_SD2_PLL1	
AVDD_SD2_PLL2	SerDes2 PLL 2 supply	AA16		AVDD_SD2_PLL2	
SENSEVDD	Vdd Sense pin	G19		SENSEVDD	
USB_HVDD1	3.3 V High Supply	K8		USB_HV _{DD}	
USB_HVDD2	3.3 V High Supply	L8		USB_HV _{DD}	
USB_SDVDD1	1.0 V Analog and digital HS supply	M7		USB_SDV _{DD}	
USB_SDVDD2	1.0 V Analog and digital HS supply	M8		USB_SDV _{DD}	
USB_SVDD1	1.0 V Analog and digital SS supply	K7		USB_SV _{DD}	
USB_SVDD2	1.0 V Analog and digital SS supply	L7		USB_SV _{DD}	
	No Connection	n Pins			
NC_AA10	No Connection	AA10			12
NC_AA15	No Connection	AA15			12
NC_AB10	No Connection	AB10			12
NC_AB11	No Connection	AB11			12
NC_AB16	No Connection	AB16			12
NC_F12	No Connection	F12			12
NC_K10	No Connection	K10			12
NC_K11	No Connection	K11			12
NC_K12	No Connection	K12			12
NC_K22	No Connection	K22			12
NC_K9	No Connection	K9			12
NC_L21	No Connection	L21			12

Table 1. Pinout list by bus (continued)

Signal	Signal description	Package pin number	Pin type	Power supply	Notes
NC_L9	No Connection	L9			12
NC_M20	No Connection	M20			12
NC_N21	No Connection	N21			12
NC_P20	No Connection	P20			12
NC_P21	No Connection	P21			12
NC_P5	No Connection	P5			12
NC_P8	No Connection	P8			12
NC_R4	No Connection	R4			12
NC_T20	No Connection	T20			12
NC_T5	No Connection	T5			12
NC_T8	No Connection	T8			12
NC_U21	No Connection	U21			12
NC_U4	No Connection	U4			12
NC_U5	No Connection	U5			12
NC_V5	No Connection	V5			12
NC_V8	No Connection	V8			12
NC_W21	No Connection	W21			12
NC_W5	No Connection	W5			12
NC_W7	No Connection	W7			12
NC_W8	No Connection	W8			12
NC_W9	No Connection	W9			12

- 1. Functionally, this pin is an output or an input, but structurally it is an I/O because it either sample configuration input during reset, is a muxed pin, or has other manufacturing test functions. This pin will therefore be described as an I/O for boundary scan.
- 2. This output is actively driven during reset rather than being tri-stated during reset.
- 3. MDIC[0] is grounded through a 162 Ω precision 1% resistor and MDIC[1] is connected to GV_{DD} through a 162 Ω precision 1% resistor. For either full or half driver strength calibration of DDR IOs, use the same MDIC resistor value of 162 Ω . The memory controller register setting can be used to determine automatic calibration is done to full or half drive strength. These pins are used for automatic calibration of the DDR4 IOs.

47

- 4. This pin is a reset configuration pin. It has a weak ($\sim 20 \text{ k}\Omega$) internal pull-up P-FET that is enabled only when the processor is in its reset state. This pull-up is designed such that it can be overpowered by an external 4.7 k Ω resistor. However, if the signal is intended to be high after reset, and if there is any device on the net that might pull down the value of the net at reset, a pull-up or active driver is needed.
- 5. Pin must **NOT** be pulled down during power-on reset. This pin may be pulled up, driven high, or if there are any externally connected devices, left in tristate. If this pin is connected to a device that pulls down during reset, an external pull-up is required to drive this pin to a safe state during reset.
- 6. Recommend that a weak pull-up resistor (2-10 k Ω) be placed on this pin to the respective power supply.
- 7. This pin is an open-drain signal.
- 8. Recommend that a weak pull-up resistor (1 $k\Omega$) be placed on this pin to the respective power supply.
- 9. This pin has a weak (\sim 20 k Ω) internal pull-up P-FET that is always enabled.
- 10. These are test signals for factory use only and must be pulled up (100Ω to $1-k\Omega$) to the respective power supply for normal operation.
- 11. This pin requires a $200\Omega \pm 1\%$ pull-up to respective power-supply.
- 12. Do not connect. These pins should be left floating.
- 14. This pin requires an external 1-k Ω pull-down resistor to prevent PHY from seeing a valid Transmit Enable before it is actively driven.
- 15. These pins must be pulled to ground (GND).
- 16. This pin requires a $698\Omega \pm 1\%$ pull-up to respective power-supply.
- 17. These pins should be tied to ground if the diode is not utilized for temperature monitoring.
- 18. This pin should be grounded through a 200Ω +/-1% 100ppm/°C precision resistor.
- 19. This pin must be pulled to OVDD through a $100-\Omega$ to $1k\Omega$ resistor for a four core LS1046A device and tied to ground for a two core LS1026A device.
- 20. In normal operation, this pin must be pulled high to OVDD with 4.7 k Ω .
- 21. DIFF_SYSCLK and DIFF_SYSCLK_B is tied to cfg_eng_use0, the configuration is described in section "Reset configuration word (RCW)" of *QorIQ LS1046A Reference Manual*.

- 22. This pin should be connected to ground through 2-10 k Ω resistor when not used.
- 23. SD_GND must be directly connected to GND.
- 24. This pin must be pulled down to GND with a pull down resistor of value 1 K Ω
- 25. This pin will not be tested using JTAG Boundary scan operation.
- 26. For proper clock selection, terminate cfg_eng_use0 with a pull up or pull down of 4.7 $k\Omega$ to ensure that the signal will have a valid state as soon as the IO voltage reach its operating condition.

Warning

See "Connection Recommendations" for additional details on properly connecting these pins for specific applications.

3 Electrical characteristics

This section describes the DC and AC electrical specifications for the chip. The chip is currently targeted to these specifications, some of which are independent of the I/O cell but are included for a more complete reference. These are not purely I/O buffer design specifications.

3.1 Overall DC electrical characteristics

This section describes the ratings, conditions, and other characteristics.

3.1.1 Absolute maximum ratings

This table provides the absolute maximum ratings.

Table 2. Absolute maximum ratings^{1,5}

Characteristic	Symbol	Max Value	Unit	Notes
Core and platform supply voltage	V_{DD}	-0.3 to 1.08	V	4
PLL supply voltage (core PLL, platform, DDR)	R) AV _{DD} _CGA1		V	_
	AV _{DD} _CGA2			
	AV _{DD} _D1			
	AV _{DD} _PLAT			
PLL supply voltage (SerDes, filtered from XnV _{DD})	AVDD_SDn_PLL1	-0.3 to 1.48	V	_
	AVDD_SDn_PLL2			

Table continues on the next page...

Table 2. Absolute maximum ratings^{1,5} (continued)

Characteristic	Symbol	Max Value	Unit	Notes
SFP Fuse Programming	TA_PROG_SFP	-0.3 to 1.98	V	_
Thermal Unit Monitor supply	TH_V _{DD}	-0.3 to 1.98	V	_
Battery Backed Security Monitor supply	TA_BB_V _{DD}	-0.3 to 1.08	V	_
IFC, SPI, IRQ[0:2], Tamper Detect, System Control, SYSCLK, DDRCLK, RTC, EVT[0:4], DFT, JTAG, DIFF_SYSCLK, CLK_OUT, QSPI, FTM[5:7], eSDHC_DAT[4:7], eSDHC_CMD/DAT0_DIR, eSDHC_DAT123_DIR, eSDHC_SYNC_IN/OUT, SDHC_VS	OV _{DD}	-0.3 to 1.98	V	_
DUART, I2C, IRQ[3:10], USB2/3_PWRFAULT, USB2/3_DRVVBUS, EVT_B[5:8], LPUART[1:2], LPUART4, FTM3_CH[1:7], FTM4_CH[1:5], FTM8, eSDHC_CD/WP	DV _{DD}	-0.3 to 3.63 -0.3 to 1.98	V	_
eSDHC_DAT[0:3], eSDHC_CMD, eSDHC_CLK, FTM4_CH[6:7], LPUART[3:6]	EV _{DD}	-0.3 to 3.63 -0.3 to 1.98	V	_
DDR4 DRAM I/O voltage	G1V _{DD}	-0.3 to 1.32	V	_
Main power supply for internal circuitry of SerDes and pad power supply for SerDes receivers	SV _{DD}	-0.3 to 1.08	V	_
Pad power supply for SerDes transmitter	XV_{DD}	-0.3 to 1.48	V	_
Ethernet interface, Ethernet management interface 1 (EMI1), 1588, IRQ11, FTM1, FTM2,	LV _{DD}	-0.3 to 2.75 -0.3 to 1.98	V	_
Ethernet management interface 2 (EMI2), GPIO2	TV _{DD}	-0.3 to 2.75 -0.3 to 1.98 -0.3 to 1.32	V	_
USB PHY Transceiver supply voltage	USB_HV _{DD}	-0.3 to 3.63	V	-
	USB_SDV _{DD}	-0.3 to 1.08	٧	3
	USB_SV _{DD}	-0.3 to 1.08	V	2
Storage temperature range	T _{STG}	-55 to 150	°C	

Notes:

- 1. Functional operating conditions are given in Table 4. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. Analog and Digital SS supply for USBPHY.
- 3. Analog and Digital HS supply for USBPHY.
- 4. Supply voltage specified at the voltage sense pin. Voltage input pins should be regulated to provide specified voltage at the sense pin.
- 5. Exposing device to Absolute Maximum Ratings conditions for long periods of time may affect reliability or cause permanent damage.

This table provides the absolute maximum ratings for input signal voltage levels.

Table 3. Absolute maximum ratings for input signal voltage levels¹

Interface Input signals	Symbol	Max DC V_input range	Max undershoot and overshoot voltage range	Uni t	Note s
DDR4 DRAM signals	G1V _{IN}	GND to (G1V _{DD} x 1.05)	-0.3 to (G1V _{DD} x 1.1)	V	2, 3, 5
Ethernet interface, Ethernet management interface 1 (EMI1), 1588, IRQ11, FTM1, FTM2	LV _{IN}	GND to (LV _{DD} x 1.1)	-0.3 to (LV _{DD} x 1.15)	V	2, 3
IFC, SPI, IRQ[0:2], Tamper Detect, System Control, SYSCLK, DDRCLK, RTC, EVT[0:4], DFT, JTAG, DIFF_SYSCLK, CLK_OUT, QSPI, FTM[5:7], eSDHC_DAT[4:7], eSDHC_CMD/DAT0_DIR, eSDHC_DAT123_DIR, eSDHC_SYNC_IN/OUT, SDHC_VS	OV _{IN}	GND to (OV _{DD} x 1.1)	-0.3 to (OV _{DD} x 1.15)	V	2, 3
DUART, I2C, IRQ[3:10], USB2/3_PWRFAULT, USB2/3_DRVVBUS, EVT_B[5:8], LPUART[1:2], LPUART4, FTM3_CH[1:7], FTM4_CH[1:5], FTM8, eSDHC_CD/WP	DV _{IN}	GND to (DV _{DD} x 1.1)	-0.3 to (DV _{DD} x 1.15)		
eSDHC_DAT[0:3], eSDHC_CMD, eSDHC_CLK, FTM4_CH[6:7], LPUART[3:6]	EV _{IN}	GND to (EV _{DD} x 1.1)	-0.3 to (EV _{DD} x 1.15)	V	2, 3
Main power supply for internal circuitry of SerDes	SnV _{IN}	GND to (SV _{DD} x 1.05)	-0.3 to (SnV _{DD} x 1.1)	٧	2, 3
Ethernet management interface 2 (EMI2), GPIO2	TV _{IN}	GND to (TV _{DD} x 1.05)	-0.3 to (TV _{DD} x 1.15)	V	2, 3
USB PHY Transceiver signals	USB_HV _{IN}	GND to (USB_HV _{DD} x 1.05)	-0.3 to (USB_HV _{DD} x 1.15)	٧	2, 3
	USB_SV _{IN}	GND to (USB_SV _{DD} x 1.1)	-0.3 to (USB_SV _{DD} x 1.15)	٧	2, 3

Notes:

- 1. Functional operating conditions are given in Table 4. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. **Caution:** The input voltage level of the signals must not exceed corresponding Max DC V_input range. For example DDR4 must not exceed 5% of G1V_{DD}.
- 3. **Caution:** (S, G, L, O, D, E, T) VIN, USB_HVIN, USB_SVIN may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 8.
- 5. Typical DDR interface uses ODT enabled mode. For tests purposes with ODT off mode, simulation should be done first so as to make sure that the overshoot signal level at the input pin does not exceed GVDD by more than 10%. The Overshoot/Undershoot period should comply with JEDEC standards.

3.1.2 Recommended operating conditions

This table provides the recommended operating conditions for this chip.

NOTE

The values shown are the recommended operating conditions and proper device operation outside these conditions is not guaranteed.

Table 4. Recommended operating conditions

Characteristic	Symbol	Recommended value	Unit	Notes
Core and platform supply voltage	V_{DD}	1.0 V ± 30 mV	V	3, 4, 5, 8
0.9 V core and platform supply voltage		0.9 V ± 30 mV		
PLL supply voltage (core PLL, platform, DDR)	AV _{DD} _CGA1	1.8 V ± 90 mV	V	9
	AV _{DD} _CGA2	1		
	AV _{DD} _D1	1		
	AV _{DD} _PLAT	1		
PLL supply voltage (SerDes, filtered from XnV _{DD})	AV _{DD} _SD1_PLL1	1.35 V ± 67 mV	V	_
	AV _{DD} _SD1_PLL2			
	AV _{DD} _SD2_PLL1	1		
	AV _{DD} _SD2_PLL2			
SFP fuse programming	TA_PROG_SFP	1.8 V ± 90 mV	V	2
Thermal monitor unit supply	TH_V _{DD}	1.8 V ± 90 mV	V	_
Battery Backed Security Monitor supply	TA_BB_V _{DD}	1.0 V ± 30 mV	V	8
		0.9 V ± 30 mV		
IFC, IRQ[0:2], Tamper Detect, System Control, SYSCLK, DDRCLK, RTC, EVT[0:4], DFT, JTAG, DIFF_SYSCLK, CLK_OUT, QSPI, FTM[5:7], SPI, SDHC_DAT[4:7], SDHC_CMD_DIR, SDHC_DAT0_DIR, SDHC_DAT123_DIR, SDHC_SYNC_IN/OUT, SDHC_VS	OV _{DD}	1.8 V ± 90 mV	V	_
DUART, I2C, IRQ[3:10], USB2/3_PWRFAULT, USB2/3_DRVVBUS, EVT_B[5:8], LPUART[1:2], LPUART4,	DV_DD	3.3 V ± 165 mV 1.8 V ± 90 mV	V	_
FTM3_CH[1:7], FTM4_CH[1:5], FTM8, SDHC_CD/WP		0.01/ 405 1/	.,	
SDHC_DAT[0:3], SDHC_CMD, SDHC_CLK, FTM4_CH[6:7], LPUART3, LPUART5, LPUART6	EV _{DD}	3.3 V ±165 mV	V	
		1.8 V ± 90 mV		
DDR4 DRAM I/O voltage	G1V _{DD}	1.2 V ± 60 mV	V	_
Main power supply for internal circuitry of SerDes and pad power supply for SerDes receivers	SV _{DD}	1.0 V ± 50 mV	V	_
power supply for derbes receivers		0.9 V + 50 mV		
		0.9 V - 30 mV		
Pad power supply for SerDes transmitters	XV_{DD}	1.35 V ± 67 mV	V	-
Ethernet interface 1/2, Ethernet management interface 1 (EMI1), 1588, IRQ11, FTM1, FTM2	LV _{DD}	2.5 V ± 125 mV 1.8 V ± 90 mV	V	1
Ethernet management interface 2 (EMI2), GPIO2	TV _{DD}	2.5 V ± 125 mV	V	

Table continues on the next page...

Table 4. Recommended operating conditions (continued)

Charac	cteristic	Symbol	Recommended value	Unit	Notes
			1.8 V ± 90 mV		
			1.2V ± 60 mV		
USB PHY 3.3 V high supply v	oltage	USB_HV _{DD}	3.3 V ± 165 mV	V	
USB PHY analog and digital I	HS supply	USB_SDV _{DD}	1.0 V ± 50 mV	V	7, 8
			0.9 V + 50 mV		
			0.9 V - 30 mV		
USB PHY analog and digital S	SS supply	USB_SV _{DD}	1.0 V ± 50 mV	V	6, 8
			0.9 V + 50 mV		
			0.9 V - 30 mV		
Input voltage	DDR4 DRAM signals	G1V _{IN}	GND to G1V _{DD}	V	_
	Ethernet interface, Ethernet management interface 1 (EMI1), 1588, IRQ11, FTM1, FTM2	LV _{IN}	GND to LV _{DD}	V	_
	IFC, SPI, IRQ[0:2], Tamper Detect, System Control, SYSCLK, DDRCLK, RTC, EVT[0:4], DFT, JTAG, DIFF_SYSCLK, CLK_OUT, QSPI, FTM[5:7], SDHC_DAT[4:7], SDHC_CMD_DIR/ DAT0_DIR, SDHC_DAT123_DIR, SDHC_SYNC_IN/OUT, SDHC_VS	OV _{IN}	GND to OV _{DD}	V	_
	DUART, I2C, IRQ[3:10], USB2/3_PWRFAULT, USB2/3_DRVVBUS, EVT_B[5:8], LPUART[1:2], LPUART4, FTM3_CH[1:7], FTM4_CH[1:5], FTM8, SDHC_CD/WP	DV _{IN}	GND to DV _{DD}	V	_
	SDHC_DAT[0:3], SDHC_CMD, SDHC_CLK, FTM4_CH[6:7], LPUART[3:6]	EV _{IN}	GND to EV _{DD}	V	_
	Main power supply for internal circuitry of SerDes	SV _{IN}	GND to SV _{DD}	V	_
	Ethernet management interface 2 (EMI2), GPIO2	TV _{IN}	GND to TV _{DD}	V	
PHY transceiver signals	USB transceiver supply for USB PHY	USB_HV _{IN}	GND to USBn_HV _{DD}	V	_
	Analog and digital HS supply for USB PHY	USB_SV _{IN}	0.3 to USB_SV _{DD}	V	_
Operating temperature range	Normal operation	T _A ,	$T_A = 0$ °C (min) to	°C	_
		$ T_J $	$T_J = 105^{\circ}C \text{ (max)}$		

Table 4. Recommended operating conditions (continued)

Characteris	Symbol	Recommended value	Unit	Notes	
Exte	nded temperature	T _A ,	$T_A = -40^{\circ}C$ (min) to	°C	_
		T_J	$T_J = 105^{\circ}C \text{ (max)}$		
	ure boot fuse	T _A ,	$T_A = 0$ °C (min) to	°C	2
programming		T_J	$T_J = 105^{\circ}C \text{ (max)}$		

Notes:

- 1. RGMII is supported at 2.5 V or 1.8 V.
- 2. TA_PROG_SFP must be supplied 1.8 V and the chip must operate in the specified fuse programming temperature range only during secure boot fuse programming, subject to the power sequencing constraints shown in Power sequencing. For all other operating conditions, TA_PROG_SFP must be tied to GND.
- 3. For additional information, see the core and platform supply voltage filtering section in the chip design checklist.
- 4. Supply voltage specified at the voltage sense pin. Voltage input pins should be regulated to provide specified voltage at the sense pin.
- 5. Operation at 1.08 V is allowable for up to 25 ms at initial power on.
- 6. Analog and Digital SS supply for USB PHY.
- 7. Analog and Digital HS supply for USB PHY.
- 8. For supported voltage requirement for a given part number, see Table 145.
- 9. AVDD_PLAT, AVDD_CGA1, AVDD_CGA2, and AVDD_D1 are measured at the input to the filter and not at the pin of the device.

This figure shows the undershoot and overshoot voltages at the interfaces of the chip.

Notes:

The overshoot/undershoot period should be less than 10% of shortest possible toggling period of the input signal or per input signal specific protocol requirement. For GPIO input signal overshoot/undershoot period, it should be less than 10% of the SYSCLK period.

Figure 8. Overshoot/undershoot voltage for $G1V_{DD}/OV_{DD}/SV_{DD}/TV_{DD}/LV_{DD}/EV_{DD}/DV_{DD}/USB_SV_{DD}$

See Table 4 for actual recommended core voltage. Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 4. The input voltage threshold scales with respect to the associated I/O supply voltage. OV_{DD}, EV_{DD}, DV_{DD}, TV_{DD}, and LV_{DD} based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses differential receivers referenced by the internally supplied reference signal as is appropriate for the JEDEC DDR4 electrical signaling standard. The DDR DQS receivers cannot be operated in single-ended fashion. The complement signal must be properly driven and cannot be grounded.

3.1.3 Output driver characteristics

This chip provides information on the characteristics of the output driver strengths.

NOTE

These values are preliminary estimates.

Table 5. Output drive capability

Driver type	Out	put impedan	ce (Ω)	Supply Voltage	Notes
	Minimum ²	Typical	Maximum ³]	
DDR4 signal	-	18(full- strength mode) 27(half-	-	G1V _{DD} = 1.2 V	1
		strength mode)			
Ethernet interface, Ethernet	30	50	70	LV _{DD} = 2.5V	-
management interface 1 (EMI1), 1588, IRQ11, FTM1, FTM2	30	45	60	LV _{DD} = 1.8V	-
MDC of Ethernet management interface	45	65	100	TV _{DD} = 1.2 V	-
2 (EMI 2)	40	55	75	TV _{DD} = 1.8V	-
	40	60	90	TV _{DD} = 2.5V	-
MDIO of Ethernet management interface	30	40	60	TV _{DD} = 1.2 V	-
2 (EMI 2)	25	33	44	TV _{DD} = 1.8V	-
	25	40	57	TV _{DD} = 2.5V	-
FC, SPI, IRQ[0:2], Tamper Detect, System Control, SYSCLK, DDRCLK, RTC, EVT[0:4], DFT, JTAG, CLK_OUT, QSPI, FTM[5:7], eSDHC_DAT[4:7], eSDHC_CMD/DAT0_DIR, eSDHC_DAT123_DIR, eSDHC_SYNC_IN/OUT, SDHC_VS	30	45	60	OV _{DD} = 1.8 V	-
eSDHC_DAT[0:3], eSDHC_CMD,	45	65	90	EV _{DD} = 3.3V	-
eSDHC_CLK, FTM4_CH[6:7], LPUART[3:6]	40	55	75	EV _{DD} = 1.8V	
DUART, I2C, IRQ[3:10],	40	55	75	DV _{DD} = 1.8V	-
USB2/3_PWRFAULT, USB2/3_DRVVBUS, EVT_B[5:8], LPUART[1:2], LPUART4, FTM3_CH[1:7], FTM4_CH[1:5], FTM8, eSDHC_CD/WP	45	65	90	DV _{DD} = 3.3V	

^{1.} The drive strength of the DDR4 in half-strength mode is at $T_i = 105$ °C and at $G1V_{DD}$ (min).

3.1.4 General AC timing specifications

This table provides AC timing specifications for the sections not covered under the specific interface sections.

^{2.} Estimated number based on best case processed device.

^{3.} Estimated number based on worst case processed device.

Table 6. AC Timing specifications

Parameter	Symbol	Min	Max	Unit	Note s			
Input signal rise and fall times	t_{P}/t_{F}	-	5	ns	1			
1. Rise time refe	1. Rise time refers to signal transitions from 10% to 90% of supply; fall time refers to transitions from 90% to 10% of supply							

3.2 Power sequencing

The chip requires that its power rails be applied in a specific sequence in order to ensure proper device operation. For power up, these requirements are as follows:

- 1. OV_{DD} , DV_{DD} , LV_{DD} , EV_{DD} , TV_{DD} , XV_{DD} , AV_{DD} _CGAn, AV_{DD} _PLAT, AV_{DD} _D1, AV_{DD} _SDn_PLL1, AV_{DD} _SDn_PLL2, USB_HV_{DD}. Drive TA_PROG_SFP = GND.
 - PORESET_B input must be driven asserted and held during this step.
- 2. V_{DD} , SV_{DD} , $TA_BB_V_{DD}$, USB_SDV_{DD} , USB_SV_{DD}
 - The 3.3 V (USB_HV_{DD}) in Step 1 and 1.0 V (USB_SDV_{DD}, USB_SV_{DD}) in Step 2 supplies can power up in any sequence provided all these USB supplies ramp up within 95 ms with respect to each other.
- 3. $G1V_{DD}$

Items on the same line have no ordering requirement with respect to one another. Items on separate lines must be ordered sequentially such that voltage rails on a previous step must reach 90% of their value before the voltage rails on the current step reach 10% of their value.

All supplies must be at their stable values within 400 ms.

Negate PORESET_B input when the required assertion/hold time has been met per Table 24.

NOTE

- While V_{DD} is ramping up, current may be supplied from V_{DD} through LS1046A to G1V_{DD}.
- If using Trust Architecture Security Monitor battery backed features, prior to VDD ramping up to the 0.5 V level, ensure that OVDD is ramped to recommended operational voltage and SYSCLK or DIFF_SYSCLK/ DIFF_SYSCLK_B is running. These clocks should have a minimum frequency of 800 Hz and a maximum frequency

not greater than the supported system clock frequency for the device.

• Ramp rate requirements should be met per Table 13.

Warning

Only 300,000 POR cycles are permitted per lifetime of a device. Note that this value is based on design estimates and is preliminary.

For secure boot fuse programming, use the following steps:

- 1. After negation of PORESET_B, drive TA_PROG_SFP = 1.8 V after a required minimum delay per Table 7.
- 2. After fuse programming is complete, it is required to return TA_PROG_SFP = GND before the system is power cycled (PORESET_B assertion) or powered down (V_{DD} ramp down) per the required timing specified in Table 7. See Security fuse processor for additional details.

Warning

No activity other than that required for secure boot fuse programming is permitted while TA_PROG_SFP is driven to any voltage above GND, including the reading of the fuse block. The reading of the fuse block may only occur while TA_PROG_SFP = GND.

This figure shows the TA_PROG_SFP timing diagram.

Figure 9. TA_PROG_SFP timing diagram

This table provides information on the power-down and power-up sequence parameters for TA PROG SFP.

Table 7. TA_PROG_SFP timing 5

Driver type	Min	Max	Unit	Notes
tta_prog_sfp_delay	100	_	SYSCLKs	1
t _{TA_PROG_SFP_PROG}	0	_	us	2
t _{TA_PROG_SFP_VDD}	0	_	us	3
t _{TA_PROG_SFP_RST}	0	_	us	4

Notes:

- 1. Delay required from the deassertion of PORESET_B to driving TA_PROG_SFP ramp up. Delay measured from PORESET_B deassertion at 90% OV_{DD} to 10% TA_PROG_SFP ramp up.
- 2. Delay required from fuse programming completion to TA_PROG_SFP ramp down start. Fuse programming must complete while TA_PROG_SFP is stable at 1.8 V. No activity other than that required for secure boot fuse programming is permitted while TA_PROG_SFP is driven to any voltage above GND, including the reading of the fuse block. The reading of the fuse block may only occur while TA_PROG_SFP = GND. After fuse programming is complete, it is required to return TA_PROG_SFP = GND.
- 3. Delay required from TA_PROG_SFP ramp-down complete to V_{DD} ramp-down start. TA_PROG_SFP must be grounded to minimum 10% TA_PROG_SFP before V_{DD} reaches 90% V_{DD} .
- 4. Delay required from TA_PROG_SFP ramp-down complete to PORESET_B assertion. TA_PROG_SFP must be grounded to minimum 10% TA_PROG_SFP before PORESET_B assertion reaches 90% OV_{DD}.
- 5. Only six secure boot fuse programming events are permitted per lifetime of a device.

3.3 Power-down requirements

The power-down cycle must complete such that power supply values are below 0.4 V before a new power-up cycle can be started.

If performing secure boot fuse programming per the requirements in Power sequencing, it is required that $TA_PROG_SFP = GND$ before the system is power cycled (PORESET_B assertion) or powered down (V_{DD} ramp down) per the required timing specified in Power sequencing.

3.4 Power characteristics

This table provides the power dissipations of the V_{DD} supply and SerDes supply (SV_{DD}) for various operating platform clock frequencies versus the core and DDR clock frequencies.

Table 8. LS1046A core power dissipation

Core	Platform/	DDR	V _{DD} (V)	SV _{DD}	Junction	Power	Pow	er (W)	Total Core	Notes		
freque ncy (MHz)	FMan frequency (MHz)	frequen cy (MHz)		(V)	re (°C)	mode	V _{DD}	SV _{DD} ⁸	and platform power			
									(W) ¹			
1800	700/800	2100	1.0	1.0	65	Typical	8.5	0.9	9.4	2, 3		
					85	Thermal	11.4	0.9	12.3	4, 7		
						Maximum	14.3	0.9	15.2	5, 6, 7		
					105	Thermal	14.4	0.9	15.3	4, 7		
						Maximum	17.3	0.9	18.2	5, 6, 7		
1600	700/800	2100	1.0	1.0	65	Typical	7.7	0.9	8.7	2, 3		
					85	Thermal	10.7	0.9	11.6	4, 7		
								Maximum	13.2	0.9	14.2	5, 6, 7
					105	Thermal	13.7	0.9	14.6	4, 7		
						Maximum	16.3	0.9	17.2	5, 6, 7		
1400	600/600	2100	1.0	1.0	65	Typical	7.3	0.9	8.2	2, 3		
					85	Thermal	8.7	0.9	9.6	4, 7		
						Maximum	11.1	0.9	12.0	5, 6, 7		
					105	Thermal	10.5	0.9	11.5	4, 7		
						Maximum	12.9	0.9	13.8	5, 6, 7		
1200	400/600	1600	0.9	0.9	65	Typical	4.9	0.7	5.6	2, 3		
					85	Thermal	5.9	0.7	6.6	4, 7		
						Maximum	7.4	0.7	8.2	5, 6, 7		
					105	Thermal	7.2	0.7	8.0	4, 7		
						Maximum	8.8	0.7	9.5	5, 6, 7		

- 1. Combined power of V_{DD} and SV_{DD} with DDR controller and all SerDes banks active. Does not include I/O power.
- 2. Typical power assumes Dhrystone running with activity factor of 70% (on all cores) and executing DMA on the platform with 100% activity factor.
- 3. Typical power based on nominal, processed device.
- 4. Thermal power assumes Dhrystone running with activity factor of 70% (on all cores) and executing DMA on the platform at 100% activity factor.
- 5. Maximum power assumes Dhrystone running with activity factor at 100% (on all cores) and executing DMA on the platform at 115% activity factor.
- ${\bf 6.} \ \ {\bf Maximum\ power\ is\ provided\ for\ power\ supply\ design\ sizing.}$
- 7. Thermal and maximum power are based on worst case processed device.
- 8. Total SV_{DD} Power conditions:
 - a. SerDes 1: XFI x2, 10 Gbaud
 - b. SerDes 1: SGMII x2, 1.25 Gbaud
 - c. SerDes 2: PEX x2, 5 Gbaud

Table 9. LS1026A core power dissipation

Core	Platform/	DDR	V _{DD} (V)	SV _{DD}	Junction	Power	Pow	er (W)	Total Core	Notes	
freque ncy (MHz)	FMan frequency (MHz)	frequen cy (MHz)		(V)	tempera ture (°C)	mode	V _{DD}	SV _{DD} ⁸	and platform power		
									(W) ¹		
1800	700/800	2100	1.0	1.0	65	Typical	6.7	0.9	7.6	2, 3	
					85	Thermal	9.3	0.9	10.2	4, 7	
						Maximum	11.5	0.9	12.4	5, 6, 7	
					105	Thermal	12.3	0.9	13.2	4, 7	
						Maximum	14.5	0.9	15.4	5, 6, 7	
1600	700/800	2100	1.0	1.0	65	Typical	6.2	0.9	7.1	2, 3	
					85	Thermal	8.7	0.9	9.6	4, 7	
							Maximum	10.7	0.9	11.6	5, 6, 7
					105	Thermal	11.7	0.9	12.6	4, 7	
						Maximum	13.7	0.9	14.6	5, 6, 7	
1400	600/600	2100	1.0	1.0	65	Typical	6.0	0.9	6.9	2, 3	
					85	Thermal	7.2	0.9	8.1	4, 7	
						Maximum	9.1	0.9	10.0	5, 6, 7	
					105	Thermal	9.0	0.9	10.0	4, 7	
						Maximum	10.9	0.9	11.8	5, 6, 7	
1200	400/600	1600	0.9	0.9	65	Typical	3.9	0.7	4.7	2, 3	
					85	Thermal	4.7	0.7	5.5	4, 7	
							Maximum	6.0	0.7	6.7	5, 6, 7
					105	Thermal	6.1	0.7	6.9	4, 7	
						Maximum	7.3	0.7	8.1	5, 6, 7	

- 1. Combined power of V_{DD} and SV_{DD} with DDR controller and all SerDes banks active. Does not include I/O power.
- 2. Typical power assumes Dhrystone running with activity factor of 80% (on all cores) and executing DMA on the platform with 100% activity factor.
- 3. Typical power based on nominal, processed device.
- 4. Thermal power assumes Dhrystone running with activity factor of 80% (on all cores) and executing DMA on the platform at 100% activity factor.
- 5. Maximum power assumes Dhrystone running with activity factor at 100% (on all cores) and executing DMA on the platform at 115% activity factor.
- 6. Maximum power is provided for power supply design sizing.
- 7. Thermal and maximum power are based on worst case processed device.
- 8. Total SV_{DD} power conditions:

a. SerDes 1 : XFI x2, 10 Gbaudb. SerDes 1 : SGMII x2, 1.25 Gbaudc. SerDes 2 : PEX x2, 5 Gbaud

3.4.1 Low-power mode saving estimation

See this table for low-power mode savings.

Table 10. Low-power mode savings, 65C^{1, 2, 3}

Mode	Core Frequency = 1.2 GHz (VDD =0.9V)	Core Frequency = 1.4 GHz (VDD =1.0V)	Core Frequency = 1.6 GHz (VDD =1.0V)	Core Frequency = 1.8 GHz (VDD =1.0V)	Units	Comments	Notes
PW15	0.71	0.77	0.88	0.99	Watts	Saving realized moving from run to PW15 state, single core. Arm in STANDBYWFI/WFE	4
PH20	0.05	0.21	0.24	0.26	Watts	Saving realized moving from run to PH20 state, single core. Arm in STANDBYWFI/ WFE- retain	
LPM20	1.02	1.70	1.94	2.18	Watts	Saving realized moving from PH20 to LPM20 per device	5

Notes:

- 1. Power for VDD only
- 2. Typical power assumes Dhrystone running with activity factor of 70%
- 3. Typical power based on nominal process distribution for this device.
- 4. PW15 power savings with 1 core. Maximum savings would be N times, where N is the number of used cores.
- 5. LPM20 has all platform clocks disabled.

3.5 I/O power dissipation

This table provides the estimated I/O power numbers for each block: DDR, PCI Express, IFC, Ethernet controller, SGMII, eSDHC, USB, SPI, DUART, IIC, SATA, and GPIO. Note that these numbers are based on design estimates only.

Table 11. IO power supply estimated values

Interface	Parameter	Symbol	Typical	Unit	Notes
DDR4	x64 2100 MT/s data rate	G1VDD (1.2 V)	990	mW	1, 2
	x64 1600 MT/s data rate		860		
	x64 2100 MT/s data rate		761	mW	1, 7
	x64 1600 MT/s data rate		660		
	x32 2100 MT/s data rate		740	mW	1, 2
	x32 1600 MT/s data rate		637		

Table continues on the next page...

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 11. IO power supply estimated values (continued)

	x32 2100 MT/s		518	mW	1, 7
	data rate	1		_	
	x32 1600 MT/s data rate		490		
PCI Express	x1, 2.5 Gbaud	XVDD (1.35 V)	79	mW	1, 3
	x2, 2.5 Gbaud		132	mW	
	x4, 2.5 Gbaud		237	mW	
	x1, 5 Gbaud		80	mW	
	x2, 5 Gbaud]	133	mW	
	x4, 5 Gbaud	1	239	mW	
	x1, 8 Gbaud	1	81	mW	
	x2, 8 Gbaud	1	136	mW	
	x4, 8 Gbaud	1	245	mW	
SGMII	x1, 1.25 Gbaud	XVDD (1.35 V)	77	mW	1, 3
	x2, 1.25 Gbaud	1	127	mW	
	x3, 1.25 Gbaud	1	177	mW	
	x4, 1.25 Gbaud	1	227	mW	
	x1, 3.125 Gbaud	1	79	mW	
	x2, 3.125 Gbaud	1	132	mW	
	x3, 3.125 Gbaud	1	184	mW	
QSGMII	x1, 5 Gbaud	XVDD (1.35 V)	80	mW	1, 3
XFI	x1, 10 Gbaud	XVDD (1.35 V)	81	mW	1, 3
	x2, 10 Gbaud	1	136	mW	
SATA (per port)	3.0 Gbaud	XVDD (1.35 V)	73	mW	1, 3
	6.0 Gbaud	1	74	mW	
USB1/USB2/USB3	x1 Super speed	USB_HVDD (3.3 V)	46	mW	1, 5
(per PHY)	mode	USB_SVDD (1 V)	37	mW	
		USB_SDVDD (1 V)	4	mW	
USB1/USB2/USB3	x1 High speed	USB_HVDD (3.3 V)	79	mW	1, 5
(per PHY)	mode	USB_SVDD (1 V)	0.31	mW	
		USB_SDVDD (1 V)	4.9	mW	
IFC	16-bit, 100 MHz	OVDD (1.8 V)	60	mW	1
DUART		DVDD (3.3 V)	18	mW	1
		DVDD (1.8 V)	9	mW	
I2C		DVDD (3.3 V)	17	mW	1
		DVDD (1.8 V)	9	mW	1
SPI		OVDD (1.8 V)	8	mW	1, 9
eSDHC	1.	EVDD (3.3 V)	19	mW	1, 9
		EVDD (1.8V)	21	mW	1
System control		OVDD (1.8 V)	16	mW	1, 9
EC1	RGMII	LVDD (2.5 V)	24	mW	1, 9

Table 11. IO power supply estimated values (continued)

		LVDD (1.8 V)	17	mW	
EC2	RGMII	LVDD (2.5 V)	24	mW	
		LVDD (1.8 V)	17	mW	
QSPI		OVDD (1.8V)	17	mW	1, 9
IEEE1588		LVDD (2.5 V)	14	mW	1, 9
		LVDD (1.8 V)	10	mW	
JTAG + DFT		OVDD (1.8V)	10	mW	1, 9
GPIO	x8	3.3 V	5	mW	1, 4, 9
		2.5 V	4	mW	
		1.8 V	3	mW	
PLL core and system (per PLL)		AVDD_CGA1, AVDD_CGA2, AVDD_PLAT (1.8 V)	30	mW	1, 9
PLL DDR		AVDD_D1 (1.8 V)	30	mW	1, 9
PLL SerDes		AVDD_SD1_PLL1, AVDD_SD1_PLL2, AVDD_SD2_PLL1, AVDD_SD2_PLL2 (1.35 V)	100	mW	1, 9
Interrupts (IRQ)		OVDD (1.8 V)	4	mW	1
		DVDD (1.8 V)	9	mW	
		DVDD (3.3 V)	18	mW	
		LVDD (2.5 V)	2	mW	
		LVDD (1.8 V)	1	mW	
Ethernet	-	LVDD (2.5 V)	3	mW	1
management interface 1		LVDD (1.8 V)	2	mW	
Ethernet		TVDD (2.5 V)	3	mW	1
management interface 2		TVDD (1.8 V)	2	mW	
intoriaco Z		TVDD (1.2 V)	2	mW	
TA_PROG_SFP		TA_PROG_SFP (1.8 V)	173	mW	6
TH_VDD		TH_VDD (1.8 V)	18	mW	

^{1.} The typical values are estimates and based on simulations at nominal recommended voltage for the I/O power supply and assuming 105°C junction temperature.

^{2.} Typical DDR4 power numbers are based on two Rank DIMM with 40% utilization.

^{3.} The total power numbers of XVDD is dependent on customer application use case. This table lists all the SerDes configurations possible for the device. To get the X1VDD power numbers, the user should add the combined lanes to match to the total SerDes Lanes used, not simply multiply the power numbers by the number of lanes.

^{4.} GPIOs are supported on OVDD, LVDD, DVDD, TVDD and EVDD power rails.

^{5.} USB power supply pins are shared between three USB controllers.

^{6.} The maximum power requirement is during programming. No active power beyond leakage levels should be drawn and the supply must be grounded when not programming.

Table 11. IO power supply estimated values

- 7. Typical DDR4 power numbers are based on single Rank DIMM with 40% utilization.
- 9. Assuming 15 pF total capacitance load per pin.

Table 12. TA_BB_VDD power dissipation

Supply	Maximum	Unit	Notes
TA_BB_VDD (SoC off, 40°C)	40	μW	1
TA_BB_VDD (SoC off, 70°C)	55	μW	1

Note: 1. When SoC is off, TA_BB_VDD may be supplied by battery power to retain the Zeroizable Master Key and other trust architecture state. Board should implement a PMIC, which switches TA_BB_VDD to battery when SoC is powered down. See the Device reference manual trust architecture chapter for more information.

3.6 Power-on ramp rate

This section describes the AC electrical specifications for the power-on ramp rate requirements. Controlling the maximum power-on ramp rate is required to avoid excess in-rush current.

This table provides the power supply ramp rate specifications.

Table 13. Power supply ramp rate

Parameter	Min	Max	Unit	Notes
Required ramp rate for all voltage supplies (including $OV_{DD}/DV_{DD}/G1V_{DD}/SV_{DD}/LV_{DD}/EV_{DD}/TV_{DD}$ all core and platform V_{DD} supplies, TA_PROG_SFP, and all AV_{DD} supplies.)	_	25	V/ms	1, 2
Required ramp rate for TA_PROG_SFP		25	V/ms	1,2
Required ramp rate for USB_HVDD		26.7	V/ms	1,2

Notes:

3.7 Input clocks

3.7.1 System clock (SYSCLK)

This section describes the system clock DC electrical characteristics and AC timing specifications.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

^{1.} Ramp rate is specified as a linear ramp from 10% to 90%. If non-linear (for example, exponential), the maximum rate of change from 200 mV to 500 mV is the most critical as this range might falsely trigger the ESD circuitry.

^{2.} Over full recommended operating temperature range. See Table 4.

3.7.1.1 SYSCLK DC electrical characteristics

This table provides the SYSCLK DC characteristics.

Table 14. SYSCLK DC electrical characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	_	_	V	1
Input low voltage	V _{IL}	_	_	0.3 x OV _{DD}	V	1
Input capacitance	C _{IN}	_	7	12	pF	_
Input current (V_{IN} = 0 V or V_{IN} = OV_{DD})	I _{IN}	_	_	± 50	μΑ	2

Notes:

3.7.1.2 SYSCLK AC timing specifications

This table provides the SYSCLK AC timing specifications.

Table 15. SYSCLK AC timing specifications^{1, 5}

Parameter/condition	Symbol	Min	Тур	Max	Unit	Notes
SYSCLK frequency	f _{SYSCLK}		100.0		MHz	2
SYSCLK cycle time	t _{SYSCLK}		10.0		ns	1, 2
SYSCLK duty cycle	t _{KHK} /t _{SYSCLK}	40	_	60	%	2
SYSCLK slew rate	_	1	_	4	V/ns	3
SYSCLK peak period jitter	_	_	_	± 150	ps	_
SYSCLK jitter phase noise at -56 dBc	_	_	_	500	kHz	4
AC Input Swing Limits at 1.8 V OV _{DD}	ΔV_{AC}	1.08	_	1.8	V	_

Notes:

- 1. **Caution:** The relevant clock ratio settings must be chosen such that the resulting SYSCLK frequencies do not exceed their respective maximum or minimum operating frequencies.
- 2. Measured at the rising edge and/or the falling edge at OV_{DD}/2.
- 3. Slew rate as measured from 0.35 x OV_{DD} to 0.65 x OV_{DD}.
- 4. Phase noise is calculated as FFT of TIE jitter.
- 5. At recommended operating conditions with $OV_{DD} = 1.8 \text{ V}$. See Table 4.

^{1.} The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Table 4.

^{2.} At recommended operating conditions with OV_{DD}= 1.8 V. See Table 4.

3.7.1.3 USB 3.0 reference clock requirements

This table summarizes the requirements of the reference clock provided to the USB 3.0 SSPHY. There are two options for the reference clock of USB PHY: SYSCLK or DIFF_SYSCLK/DIFF_SYSCLK_B. The following table provides the additional requirements when SYSCLK or DIFF_SYSCLK/DIFF_SYSCLK_B is used as USB REFCLK. This table can also be used for 100 MHz reference clock requirements.

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Reference clock frequency offset	FREF_OFFSET	-300	_	300	ppm	_
Reference clock random jitter (RMS)	RMSJREF_CLK	_	_	3	ps	1, 2
Reference clock deterministic jitter	DJREF_CLK	_	_	150	ps	3

40

60

%

Table 16. Reference clock requirements

Notes:

Duty cycle

- 1. 1.5 MHz to Nyquist frequency. For example, for 100 MHz reference clock, the Nyquist frequency is 50 MHz.
- 2. The peak-to-peak Rj specification is calculated as 14.069 times the RMS Rj for 10-12 BER.

DCREF CLK

3. DJ across all frequencies.

3.7.2 Spread-spectrum sources

Spread-spectrum clock sources are an increasingly popular way to control electromagnetic interference emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise magnitude in order to meet industry and government requirements. These clock sources intentionally add long-term jitter to diffuse the EMI spectral content.

The jitter specification given in this table considers short-term (cycle-to-cycle) jitter only. The clock generator's cycle-to-cycle output jitter should meet the chip's input cycle-to-cycle jitter requirement.

Frequency modulation and spread are separate concerns; the chip is compatible with spread-spectrum sources if the recommendations listed in this table are observed.

Table 17. Spread-spectrum clock source recommendations³

Parameter	Min	Max	Unit	Notes
Frequency modulation	_	60	kHz	_
Frequency spread	_	1.0	%	1, 2

Notes:

^{1.} SYSCLK frequencies that result from frequency spreading and the resulting core frequency must meet the minimum and maximum specifications given in Table 15.

67

Table 17. Spread-spectrum clock source recommendations³

Parameter	Min	Max	Unit	Notes		
2. Maximum spread-spectrum frequency may not result in exceeding any maximum operating frequency of the device.						
3. At recommended operating conditions with OVDD =	= 1.8 V. See Table	4.				

CAUTION

The processor's minimum and maximum SYSCLK and core/platform/DDR frequencies must not be exceeded, regardless of the type of clock source. Therefore, systems in which the processor is operated at its maximum rated core/platform/DDR frequency should use only down-spreading to avoid violating the stated limits.

3.7.3 Real-time clock timing (RTC)

The real-time clock timing (RTC) input is sampled by the platform clock. The output of the sampling latch is then used as an input to the Watchdog, Flextimer, 1588 Timer and snvs unit; there is no need for jitter specification. The minimum period of the RTC signal should be greater than or equal to 16x the period of the platform clock with a 50% duty cycle. There is no minimum RTC frequency; RTC may be pulled to ground, if not needed.

3.7.4 Gigabit Ethernet reference clock timing

This table provides the Ethernet gigabit reference clock DC electrical characteristics with $LV_{DD} = 2.5 \text{ V} / 1.8 \text{ V}$.

Table 18. ECn_GTX_CLK125 DC electrical characteristics (LV_{DD} = $2.5 \text{ V} / 1.8 \text{ V})^1$

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x LV _{DD}	_	_	V	2
Input low voltage	V _{IL}	_	_	0.2 x LV _{DD}	V	2
Input capacitance	C _{IN}	_	_	6	pF	_
Input current (V _{IN} = 0 V or V _{IN} = LV _{DD})	I _{IN}	_	_	± 50	μΑ	3

Notes:

- 1. For recommended operating conditions, see Table 4.
- 2. The min V_{IL} and max V_{IH} values are based on the respective min and max V_{IN} values found in Table 4.
- 3. The symbol V_{IN}, in this case, represents the LV_{IN} symbol referenced in Table 4.

This table provides the Ethernet gigabit reference clock AC timing specifications.

Table 19. ECn_GTX_CLK125 AC timing specifications ¹

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
ECn_GTX_CLK125 frequency	f _{G125}	125 - 100 ppm	125	125 + 100 ppm	MHz	_
ECn_GTX_CLK125 cycle time	t _{G125}		8		ns	_
ECn_GTX_CLK125 rise and fall time	t _{G125R} /t _{G125F}	_	_	0.75	ns	2
ECn_GTX_CLK125 duty cycle	t _{G125H} /t _{G125}	40	_	60	%	3
1000Base-T for RGMII						
ECn_GTX_CLK125 jitter	_	_	_	± 150	ps	3

Notes:

- 1. At recommended operating conditions with $LV_{DD} = 1.8 \text{ V} \pm 90 \text{mV} / 2.5 \text{ V} \pm 125 \text{ mV}$. See Table 4.
- 2. Rise times are measured from 20% of LV_{DD} to 80% of LV_{DD} . Fall times are measured from 80% of LV_{DD} to 20% of LV_{DD} .
- 3. ECn_GTX_CLK125 is used to generate the GTX clock for the Ethernet transmitter. See RGMII AC timing specifications for duty cycle for the 10Base-T and 100Base-T reference clocks.

3.7.5 DDR clock (DDRCLK)

This section provides the DDRCLK DC electrical characteristics and AC timing specifications.

3.7.5.1 DDRCLK DC electrical characteristics

This table provides the DDRCLK DC electrical characteristics.

Table 20. DDRCLK DC electrical characteristics³

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	_	_	V	1
Input low voltage	V _{IL}	_	_	0.3 x OV _{DD}	V	1
Input capacitance	C _{IN}	_	7	12	pF	_
Input current (V _{IN} = 0V or V _{IN} = OV _{DD})	I _{IN}	_	_	± 50	μΑ	2

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Table 4.
- 2. The symbol OV_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 4.
- 3. At recommended operating conditions with $OV_{DD} = 1.8 \text{ V}$. See Table 4.

3.7.5.2 DDRCLK AC timing specifications

This table provides the DDRCLK AC timing specifications.

Table 21. DI	DRCLK AC timin	ng specifications ⁵
--------------	----------------	--------------------------------

Parameter/Condition	Symbol	Min	Тур	Max	Unit	Notes
DDRCLK frequency	f _{DDRCLK}		100.0		MHz	1, 2
DDRCLK cycle time	t _{DDRCLK}		10.0		ns	1, 2
DDRCLK duty cycle	t _{KHK} /t _{DDRCLK}	40	_	60	%	2
DDRCLK slew rate	_	1	_	4	V/ns	3
DDRCLK peak period jitter	_	_	_	± 150	ps	_
DDRCLK jitter phase noise at -56 dBc	_	_	_	500	kHz	4
AC Input Swing Limits at 1.8 V OV _{DD}	ΔV_{AC}	1.08	_	1.8	V	_

Notes:

- 1. **Caution:** The relevant clock ratio settings must be chosen such that the resulting DDRCLK frequencies do not exceed their respective maximum or minimum operating frequencies.
- 2. Measured at the rising edge and/or the falling edge at OV_{DD}/2.
- 3. Slew rate as measured from 0.35 x OV_{DD} to 0.65 x OV_{DD}.
- 4. Phase noise is calculated as FFT of TIE jitter.
- 5. At recommended operating conditions with $OV_{DD} = 1.8V$. See Table 4.

3.7.6 Differential system clock (DIFF_SYSCLK/DIFF_SYSCLK_B) timing specifications

Single Source clocking mode requires single onboard oscillator to provide reference clock input to Differential System clock pair (DIFF_SYSCLK/DIFF_SYSCLK_B).

This Differential clock pair input provides clock to Core, Platform, DDR and USB PLL's

This figure shows a receiver reference diagram of the Differential System clock.

Figure 10. LVDS receiver

This section provides the differential system clock DC and AC timing specifications.

3.7.6.1 Differential system clock DC electrical characteristics

The differential system clock receiver voltage requirements are as specified in the Recommended operating conditions table.

The differential system clock can also be single-ended. For this, DIFF_SYSCLK_B should be connected to $OV_{DD}/2$.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

This table provides the differential system clock (DIFF_SYSCLK/DIFF_SYSCLK_B) DC specifications.

Table 22. Differential system clock DC electrical characteristics¹

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Input differential voltage swing	V _{id}	100	-	600	mV	2
Input common mode voltage	V _{icm}	50	-	1570	mV	-
Power supply current	I _{cc}	-	-	5	mA	-
Input capacitance	C _{in}	1.45	1.5	1.55	pF	-

Note:

3.7.6.2 Differential system clock AC timing specifications

Spread spectrum clocking is not supported on differential system clock pair input.

This table provides the differential system clock (DIFF_SYSCLK/DIFF_SYSCLK_B) AC specifications.

Table 23. Differential system clock AC electrical characteristics¹

Parameter	Symbol	Min	Typical	Max	Unit	Notes
DIFF_SYSCLK/DIFF_SYSCLK_B frequency range	t _{DIFF_SYSCLK}	-	100	-	MHz	-
DIFF_SYSCLK/DIFF_SYSCLK_B frequency tolerance	t _{DIFF_TOL}	-300	-	+300	ppm	-
Duty cycle	t _{DIFF_DUTY}	40	50	60	%	-

Note:

3.7.7 Other input clocks

A description of the overall clocking of this device is available in the chip reference manual in the form of a clock subsystem block diagram. For information about the input clock requirements of functional sourced external of the chip, such as SerDes, Ethernet management, eSDHC, and IFC, see the specific interface section.

^{1.} At recommended operating conditions with $OV_{DD} = 1.8 \text{ V}$, see Table 4 for details.

^{2.} Input differential voltage swing (Vid) specified is equal to IVDIFF_SYSCLK_P - VDIFF_SYSCLK_NI

^{1.} This is evaluated with supply noise profile at +/- 5% sine wave

^{2.} At recommended operating conditions with OV_{DD} = 1.8 V, see Table 4

71

3.8 RESET initialization

This table provides the AC timing specifications for the RESET initialization timing.

Table 24. RESET Initialization timing specifications

Parameter/Condition		Max	Unit	Notes
Required assertion time of PORESET_B after all power rails are stable 1		_	ms	1
Required input assertion time of HRESET_B	32	_	SYSCLKs	2, 3
Maximum rise/fall time of HRESET_B	_	10	SYSCLK	4
Maximum rise/fall time of PORESET_B	_	1	SYSCLK	4
Input setup time for POR configs (other than cfg_eng_use0) with respect to negation of PORESET_B	4	_	SYSCLKs	2, 5
Input hold time for all POR configs with respect to negation of PORESET_B	2	_	SYSCLKs	2
Maximum valid-to-high impedance time for actively driven POR configs with respect to negation of PORESET_B	_	5	SYSCLKs	2

Notes:

- 1. PORESET_B must be driven asserted before the core and platform power supplies are powered up.
- 2. SYSCLK is the primary clock input for the chip.
- 3. The device asserts HRESET_B as an output when PORESET_B is asserted to initiate the power-on reset process. The device releases HRESET_B sometime after PORESET_B is deasserted. The exact sequencing of HRESET_B deassertion is documented in the reference manual's "Power-on Reset Sequence" section.
- 4. The system/board must be designed to ensure the input requirement to the device is achieved. Proper device operation is guaranteed for inputs meeting this requirement by design, simulation, characterization, or functional testing.
- 5. For proper clock selection, terminate cfg_eng_use0 with a pull up or pull down of 4.7 k Ω to ensure that the signal will have a valid state as soon as the IO voltage reach its operating condition.

3.9 DDR4 SDRAM controller

This section describes the DC and AC electrical specifications for the DDR4 SDRAM controller interface. Note that the required $G1V_{DD}(typ)$ voltage is 1.2 V when interfacing to DDR4 SDRAM.

3.9.1 DDR4 SDRAM interface DC electrical characteristics

This table provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR4 SDRAM.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 25. DDR4 SDRAM interface DC electrical characteristics $(G1V_{DD} = 1.2 \text{ V})^1$

Parameter	Symbol	Min	Max	Unit	Notes
Input low	V _{IL}	_	0.7 x G1V _{DD} - 0.175	V	3
Input high	V _{IH}	0.7 x G1V _{DD} + 0.175	_	V	3
I/O leakage current	l _{OZ}	-200	200	μΑ	

Notes:

- G1V_{DD} is expected to be within 60 mV of the DRAM's voltage supply at all times. The DRAM's and memory controller's voltage supply may or may not be from the same source.
- 2. V_{TT} and VREFCA are applied directly to the DRAM device. Both V_{TT} and VREFCA voltages must track G1V_{DD}/2.
- 3. Input capacitance load for DQ, DQS, and DQS_B are available in the IBIS models.
- 4. See the IBIS model for the complete output IV curve characteristics.
- 5. Output leakage is measured with all outputs disabled, $0V \le VOUT \le G1V_{DD}$
- 6. For recommended operating conditions, see Table 4.

3.9.2 DDR4 SDRAM interface AC timing specifications

This section provides the AC timing specifications for the DDR SDRAM controller interface. The DDR controller supports DDR4 memories. Note that the required GV_{DD}(typ) voltage is 1.2 V when interfacing to DDR4 SDRAM.

3.9.2.1 DDR4 SDRAM interface input AC timing specifications

This table provides the input AC timing specifications for the DDR controller when interfacing to DDR4 SDRAM.

Table 26. DDR4 SDRAM interface input AC timing specifications ¹

Parameter	Symbol	Min	Max	Unit	Notes
AC input low voltage	V _{ILAC}	_	0.7 x G1V _{DD} - 0.175	٧	_
≤ 2100 MT/s data rate					
AC input high voltage	V _{IHAC}	0.7 x G1V _{DD} +	_	V	_
≤ 2100 MT/s data rate		0.175			

Note:

1. For recommended operating conditions, see Table 4.

This table provides the input AC timing specifications for the DDR controller when interfacing to DDR4 SDRAM.

Table 27. DDR4 SDRAM interface input AC timing specifications ³

Parameter	Symbol	Min	Max	Unit	Notes
Controller skew for MDQS-MDQ/MECC	t _{CISKEW}	_	_	ps	1
2100 MT/s data rate		-80	80		
1800 MT/s data rate		-93	93		
1600 MT/s data rate		-112	112		
1300 MT/s data rate		-125	125		
Tolerated Skew for MDQS-MDQ/MECC	t _{DISKEW}	_	_	ps	2
2100 MT/s data rate		-154	154		
1800 MT/s data rate		-175	175		
1600 MT/s data rate		-200	200		
1300 MT/s data rate	1	-250	250	1	

- 1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. This must be subtracted from the total timing budget.
- 2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW} . This can be determined by the following equation: $t_{DISKEW} = \pm (T \div 4 abs\ (t_{CISKEW}))$ where T is the clock period and $abs(t_{CISKEW})$ is the absolute value of t_{CISKEW} .
- 3. For recommended operating conditions, see Table 4.

This figure shows the DDR4 SDRAM interface input timing diagram.

Figure 11. DDR4 SDRAM interface input timing diagram

3.9.2.2 DDR4 SDRAM interface output AC timing specifications

This table contains the output AC timing targets for the DDR4 SDRAM interface.

Table 28. DDR4 SDRAM interface output AC timing specifications $(G1V_{DD} = 1.2 \text{ V})^7$

Parameter	Symbol ¹	Min	Max	Unit	Notes
MCK[n] cycle time	t _{MCK}	952	1538	ps	2
ADDR/CMD/CNTL output setup with respect to MCK	t _{DDKHAS}	_	_	ps	3
2100 MT/s data rate		350	_		
1800 MT/s data rate		410	_		
1600 MT/s data rate		495	_		
1300 MT/s data rate		606	_		
ADDR/CMD/CNTL output hold with respect to MCK	t _{DDKHAX}	_	_	ps	3
2100 MT/s data rate		350	_		
1800 MT/s data rate		390	_		
1600 MT/s data rate		495	_		
1300 MT/s data rate		606	_		
MCK to MDQS Skew	t _{DDKHMH}	-150	150	ps	4,7
MDQ/MECC/MDM output data eye	t _{DDKXDEYE}	_	_	ps	5
2100 MT/s data rate		320	_		
1800 MT/s data rate		350	_		
1600 MT/s data rate		400	_		
1300 MT/s data rate		500	_		
MDQS preamble	t _{DDKHMP}	0.9 x t _{MCK}	_	ps	_
MDQS postamble	t _{DDKHME}	0.4 x t _{MCK}	0.6 x t _{MCK}	ps	

^{1.} The symbols used for timing specifications follow the pattern of $t_{(first\ two\ letters\ of\ functional\ block)(signal)(state)}$ for inputs and $t_{(first\ two\ letters\ of\ functional\ block)(reference)(state)(signal)(state)}$ for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.

- 2. All MCK/MCK_B and MDQS/MDQS_B referenced measurements are made from the crossing of the two signals.
- 3. ADDR/CMD/CNTL includes all DDR SDRAM output signals except MCK/MCK_B, MCS_B, and MDQ/MECC/MDM/MDQS.
- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the MDQS override bits (called WR_DATA_DELAY) in the TIMING_CFG_2 register. This is typically set to the same delay as in DDR_SDRAM_CLK_CNTL[CLK_ADJUST]. The timing parameters listed in the table assume that these two parameters have been set to the same adjustment value. See the chip reference manual for a description and explanation of the timing modifications enabled by the use of these bits.
- 5. Available eye for data (MDQ), ECC (MECC), and data mask (MDM) outputs at the pin of the processor. Memory controller will center the strobe (MDQS) in the available data eye at the DRAM (end point) during the initialization.
- 6. Note that this is required to program the start value of the DQS adjust for write leveling.
- 7. For recommended operating conditions, see Table 4.

75

NOTE

For the ADDR/CMD/CNTL setup and hold specifications in Table 28, it is assumed that the clock control register is set to adjust the memory clocks by ½ applied cycle.

This figure shows the DDR4 SDRAM interface output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

Figure 12. t_{DDKHMH} timing diagram

This figure shows the DDR4 SDRAM output timing diagram.

Figure 13. DDR4 output timing diagram

3.10 Ethernet interface, Ethernet management interface, IEEE Std 1588[™]

This section describes the DC and AC electrical characteristics for the Ethernet controller, Ethernet management, and IEEE Std 1588 interfaces.

3.10.1 SGMII interface

Each SGMII port features a 4-wire AC-coupled serial link from the SerDes interface of the chip, as shown in Figure 14, where C_{TX} is the external (on board) AC-coupled capacitor. Each SerDes transmitter differential pair features $100-\Omega$ output impedance. Each input of the SerDes receiver differential pair features $50-\Omega$ on-die termination to GNDn. The reference circuit of the SerDes transmitter and receiver is shown in Figure 84.

3.10.1.1 SGMII clocking requirements for SDn_REF_CLK1_P and SDn_REF_CLK1_N

When operating in SGMII mode, the EC*n*_GTX_CLK125 clock is not required for this port. Instead, a SerDes reference clock is required on SDn_REF_CLK[1:2]_P and SDn_REF_CLK[1:2]_N pins. SerDes lanes may be used for SerDes SGMII configurations based on the RCW Configuration field SRDS_PRTCL.

For more information on these specifications, see SerDes reference clocks.

3.10.1.2 SGMII DC electrical characteristics

This section describes the electrical characteristics for the SGMII interface.

3.10.1.2.1 SGMII and SGMII 2.5G transmit DC specifications

This table describes the SGMII SerDes transmitter AC-coupled DC electrical characteristics. Transmitter DC characteristics are measured at the transmitter outputs $(SDn_TXn_P \text{ and } SDn_TXn_N)$ as shown in Figure 15.

Table 20	SGMII DC transmitter electrica	l characteristics (Y	$nV_{} = 1.35 V)^4$
i abie 29.		II Characteristics (A	(

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Output high voltage	V _{OH}	-	-	1.5 x V _{OD} -max	mV	1
Output low voltage	V _{OL}	V _{OD} -min/2	-	-	mV	1
Output differential voltage ^{2, 3, 5}	V _{OD}	320	500.0	725.0	mV	TECR0[AMP_RED]=0b00 0000
(XV _{DD-Typ} at 1.35 V)		293.8	459.0	665.6		TECR0[AMP_RED]=0b00 0001
		266.9	417.0	604.7		TECR0[AMP_RED]=0b00 0011
		240.6	376.0	545.2		TECR0[AMP_RED]=0b00 0010
		213.1	333.0	482.9		TECR0[AMP_RED]=0b00 0110
		186.9	292.0	423.4		TECR0[AMP_RED]=0b00 0111
		160.0	250.0	362.5		TECR0[AMP_RED]=0b01 0000
Output impedance (differential)	R _O	80	100	120	Ω	-

Notes:

- 1. This does not align to DC-coupled SGMII.
- 2. $|V_{OD}| = |V_{SD TXn P} V_{SD TXn N}|$. $|V_{OD}|$ is also referred to as output differential peak voltage. $V_{TX-DIFFp-p} = 2 \times |V_{OD}|$.
- 3. The $|V_{OD}|$ value shown in the Typ column is based on the condition of XVDD_SRDSn-Typ = 1.35 V, no common mode offset variation. SerDes transmitter is terminated with 100- Ω differential load between SDn_TXn_P and SDn_TXn_N.

Table 29. SGMII DC transmitter electrical characteristics $(XnV_{DD} = 1.35 \text{ V})^4$

Parameter	Symbol	Min	Тур	Max	Unit	Notes

^{4.} For recommended operating conditions, see Table 4.

This figure shows an example of a 4-wire AC-coupled SGMII serial link connection.

Figure 14. 4-wire AC-coupled SGMII serial link connection example

This figure shows the SGMII transmitter DC measurement circuit.

^{5.} Example amplitude reduction setting for SGMII on SerDes1 lane A: LNATECR0[AMP_RED] = 0b000001 for an output differential voltage of 459 mV typical.

Figure 15. SGMII transmitter DC measurement circuit

This table defines the SGMII 2.5G transmitter DC electrical characteristics for 3.125 GBaud.

Table 30. SGMII 2.5G transmitter DC electrical characteristics $(XnV_{DD} = 1.35 \text{ V})^1$

Parameter	Symbol	Min	Typical	Max	Unit	Notes	
Output differential voltage	V _{OD}	400	-	600	mV		
Output impedance (differential)	R _O	80	100	120	Ω	-	
Notes:							
1. For recommended operating conditions, see Table 4.							

3.10.1.2.2 SGMII and SGMII 2.5G DC receiver electrical characteristics

This table lists the SGMII DC receiver electrical characteristics. Source synchronous clocking is not supported. Clock is recovered from the data.

Table 31. SGMII DC receiver electrical characteristics ⁴

Parameter		Symbol	Min	Тур	Max	Unit	Notes
DC input voltage range		-	N/A	-	-	-	1
Input differential voltage	REIDL_TH = 001	V _{RX_DIFFp-p}	100	-	1200	mV	2, 5
	REIDL_TH = 100		175	-			
Loss of signal threshold	REIDL_TH = 001	V _{LOS}	30	-	100	mV	3, 5
	REIDL_TH = 100		65	-	175		

Table continues on the next page...

Table 31. SGMII DC receiver electrical characteristics ⁴ (continued)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Receiver differential input impedance	Z _{RX_DIFF}	80	-	120	Ω	-

- 1. Input must be externally AC coupled.
- 2. $V_{RX\ DIFFp-p}$ is also referred to as peak-to-peak input differential voltage.
- 3. The concept of this parameter is equivalent to the electrical idle detect threshold parameter in PCI Express. See PCI Express DC physical layer receiver specifications, and PCI Express AC physical layer receiver specifications, for further explanation.
- 4. For recommended operating conditions, see Table 4.
- 5. The REIDL_TH shown in the table refers to the chip's SRDSxLNmGCR1[REIDL_TH] bit field.

This table defines the SGMII 2.5G receiver DC electrical characteristics for 3.125 GBaud.

Table 32. SGMII 2.5G receiver DC timing specifications ¹

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Input differential voltage	V _{RX_DIFFp-p}	200	-	1200	mV	-
Loss of signal threshold	V _{LOS}	75	-	200	mV	-
Receiver differential input impedance	Z _{RX_DIFF}	80	-	120	Ω	-

Notes:

3.10.1.3 SGMII AC timing specifications

This section describes the AC timing specifications for the SGMII interface.

3.10.1.3.1 SGMII and SGMII 2.5G transmit AC timing specifications

This table provides the SGMII and SGMII 2.5G transmit AC timing specifications. A source synchronous clock is not supported. The AC timing specifications do not include RefClk jitter.

Table 33. SGMII transmit AC timing specifications⁴

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Deterministic jitter	JD	-	-	0.17	UI p-p	-
Total jitter	JT	-	-	0.35	UI p-p	2
Unit Interval: 1.25 GBaud (SGMII)	UI	800 - 100 ppm	800	800 + 100 ppm	ps	1
Unit Interval: 3.125 GBaud (2.5G SGMII))	UI	320 - 100 ppm	320	320 + 100 ppm	ps	1

Table continues on the next page...

^{1.} For recommended operating conditions, see Table 4.

Table 33. SGMII transmit AC timing specifications⁴ (continued)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
AC coupling capacitor	C _{TX}	10	-	200	nF	3

- 1. Each UI is 800 ps \pm 100 ppm or 320 ps \pm 100 ppm.
- 2. See Figure 17 for single frequency sinusoidal jitter measurements.
- 3. The external AC coupling capacitor is required. It is recommended that it be placed near the device transmitter output.
- 4. For recommended operating conditions, see Table 4.

3.10.1.3.2 SGMII AC measurement details

Transmitter and receiver AC characteristics are measured at the transmitter outputs (SDn_TXn_P) and SDn_TXn_N or at the receiver inputs (SDn_RXn_P) and SDn_RXn_N respectively, as shown in this figure.

Figure 16. SGMII AC test/measurement load

3.10.1.3.3 SGMII and SGMII 2.5G receiver AC timing specifications

This table provides the SGMII and SGMII 2.5G receiver AC timing specifications. The AC timing specifications do not include RefClk jitter. Source synchronous clocking is not supported. Clock is recovered from the data.

Table 34. SGMII receiver AC timing specifications³

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Deterministic jitter tolerance	J_D	-	-	0.37	UI p-p	1
Combined deterministic and random jitter tolerance	J_{DR}	-	-	0.55	UI p-p	1

Table continues on the next page...

Table 34. SGMII receiver AC timing specifications³ (continued)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Total jitter tolerance	J _T	-	-	0.65	UI p-p	1, 2
Bit error ratio	BER	-	-	10 ⁻¹²	-	-
Unit Interval: 1.25 GBaud (SGMII)	UI	800 - 100 ppm	800	800 + 100 ppm	ps	1
Unit Interval: 3.125 GBaud (2.5G SGMII])	UI	320 - 100 ppm	320	320 + 100 ppm	ps	1

- 1. Measured at receiver
- 2. Total jitter is composed of three components: deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 1. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
- 3. For recommended operating conditions, see Table 4.

The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of this figure.

Figure 17. Single-frequency sinusoidal jitter limits

3.10.2 QSGMII interface

This section describes the QSGMII clocking and its DC and AC electrical characteristics.

3.10.2.1 QSGMII clocking requirements for SDn_REF_CLKn and SDn_REF_CLKn B

For more information on these specifications, see SerDes reference clocks.

3.10.2.2 QSGMII DC electrical characteristics

This section discusses the electrical characteristics for the QSGMII interface.

3.10.2.2.1 QSGMII transmitter DC specifications

This table describes the QSGMII SerDes transmitter AC-coupled DC electrical characteristics. Transmitter DC characteristics are measured at the transmitter outputs $(SDn_TXn$ and $SDn_TXn_B)$.

Table 35. QSGMII DC transmitter electrical characteristics $(XnV_{DD} = 1.35V)^{1}$

Parameter	Symbol	Min	Тур	Max	Unit	Notes		
Output differential voltage	V_{DIFF}	400	-	900	mV	-		
Differential resistance	T _{RD}	80	100	120	Ω	-		
Notes:								
1. For recommended operating conditions, see Table 4.								

3.10.2.2.2 QSGMII DC receiver electrical characteristics

This table defines the OSGMII receiver DC electrical characteristics.

Table 36. QSGMII receiver DC timing specifications ¹

Parameter	Symbol	Min	Typical	Max	Unit	Notes		
Input differential voltage	V_{DIFF}	100	-	900	mV	-		
Differential resistance	R _{RDIN}	80	100	120	Ω	-		
Notes:	·							
1. For recommended operating conditions, see Table 4.								

3.10.2.3 QSGMII AC timing specifications

This section discusses the AC timing specifications for the QSGMII interface.

3.10.2.3.1 QSGMII transmit AC timing specifications

This table provides the QSGMII transmitter AC timing specifications.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 37. QSGMII transmit AC timing specifications¹

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Transmitter baud rate	T _{BAUD}	5.000 - 100 ppm	5.000	5.000 + 100 ppm	Gb/s	-
Uncorrelated high probability jitter	T _{UHPJ}	-	-	0.15	UI p-p	-
Total jitter tolerance	J _T	-	-	0.30	UI p-p	-

Notes:

3.10.2.3.2 QSGMII receiver AC timing Specification

This table provides the QSGMII receiver AC timing specifications.

Table 38. QSGMII receive AC timing specifications²

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Receiver baud rate	R _{BAUD}	5.000 - 100 ppm	5.000	5.000 + 100 ppm	Gb/s	-
Uncorrelated bounded high probability jitter	R _{DJ}	-	-	0.15	UI p-p	-
Correlated bounded high probability jitter	R _{CBHPJ}	-	-	0.30	UI p-p	1
Bounded high probability jitter	R _{BHPJ}	-	-	0.45	UI p-p	-
Sinusoidal jitter, maximum	R _{SJ-max}	-	-	5.00	UI p-p	-
Sinusoidal jitter, high frequency	R _{SJ-hf}	-	-	0.05	UI p-p	-
Total jitter (does not include sinusoidal jitter)	R _{Tj}	-	-	0.60	UI p-p	-

Notes:

The sinusoidal jitter may have any amplitude and frequency in the unshaded region of this figure.

^{1.} For recommended operating conditions, see Table 4.

^{1.} The jitter (R_{CBHPJ}) and amplitude have to be correlated, for example, by a PCB trace.

^{2.} For recommended operating conditions, see Table 4.

Figure 18. QSGMII single-frequency sinusoidal jitter limits

3.10.3 XFI interface

This section describes the XFI clocking requirements and its DC and AC electrical characteristics.

XFI clocking requirements for SDn_REF_CLKn_P and 3.10.3.1 SDn REF CLKn N

Only SerDes 1 (SD1_REF_CLK[1:2]_P and SD1_REF_CLK[1:2]_N) may be used for SerDes XFI configurations based on the RCW configuration field SRDS_PRTCL.

For more information on these specifications, see SerDes reference clocks.

XFI DC electrical characteristics 3.10.3.2

This section describes the DC electrical characteristics for XFI.

XFI transmitter DC electrical characteristics 3.10.3.2.1

This table defines the XFI transmitter DC electrical characteristics.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018 **NXP Semiconductors** 85

Table 39. XFI transmitter DC electrical characteristics $(XV_{DD} = 1.35 \text{ V})^1$

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Output differential voltage	V _{TX-DIFF}	360	-	770	mV	- LNmTECR 0[AMP_RE D]= 0b000111
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-1.14dB	0.6	1.1	1.6	dB	- LNmTECR 0[RATIO_P ST1Q]=0b0 0011
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-3.5dB	3	3.5	4	dB	- LNmTECR 0[RATIO_P ST1Q]=0b0 1000
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-4.66dB	4.1	4.6	5.1	dB	- LNmTECR 0[RATIO_P ST1Q]=0b0 1010
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-6.0dB	5.5	6.0	6.5	dB	- LNmTECR 0[RATIO_P ST1Q]=0b0 1100
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-9.5dB	9	9.5	10	dB	- LNmTECR 0[RATIO_P ST1Q]=0b1 0000
Differential resistance	T _{RD}	80	100	120	Ω	

3.10.3.2.2 XFI receiver DC electrical characteristics

This table defines the XFI receiver DC electrical characteristics.

Table 40. XFI receiver DC electrical characteristics ²

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Input differential voltage	V _{RX-DIFF}	110	-	1050	mV	1
Differential resistance	R _{RD}	80	100	120	Ω	-

^{1.} Measured at receiver

^{1.} For recommended operating conditions, see Table 4.

^{2.} For recommended operating conditions, see Table 4.

87

3.10.3.3 XFI AC timing specifications

This section describes the AC timing specifications for XFI.

3.10.3.3.1 XFI transmitter AC timing specifications

This table defines the XFI transmitter AC timing specifications. RefClk jitter is not included.

Symbol Min **Typical** Max Unit **Parameter** 10.3125 - 100ppm | 10.3125 10.3125 + Gb/s Transmitter baud rate $\mathsf{T}_{\mathsf{BAUD}}$ 100ppm UI Unit Interval 96.96 ps Deterministic jitter D_{J} 0.15 UI p-p 0.30 Total jitter T_J UI p-p

Table 41. XFI transmitter AC timing specifications¹

Notes:

3.10.3.3.2 XFI receiver AC timing specifications

This table defines the XFI receiver AC timing specifications. RefClk jitter is not included.

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Receiver baud rate	R _{BAUD}	10.3125 - 100ppm	10.3125	10.3125 + 100ppm	Gb/s	-
Unit Interval	UI	-	96.96	-	ps	-
Total non-EQJ jitter	T _{NON-EQJ}	-	-	0.45	UI p-p	1
Total jitter tolerance	TJ	-	-	0.65	UI p-p	1, 2

Table 42. XFI receiver AC timing specifications³

- 1. The total jitter (T_J) consists of Random Jitter (R_J) , Duty Cycle Distortion (DCD), Periodic Jitter (P_J) , and Inter symbol Interference (ISI). Non-EQJ jitter can include duty cycle distortion (DCD), random jitter (R_J) , and periodic jitter (P_J) . Non-EQJ jitter is uncorrelated to the primary data stream with exception of the DCD and so cannot be equalized by the receiver under test. It can exhibit a wide spectrum. Non EQJ = T_J ISI = R_J + DCD + P_J
- 2. The XFI channel has a loss budget of 9.6 dB @5.5GHz. The channel loss including connector @ 5.5GHz is 6dB. The channel crosstalk and reflection margin is 3.6dB. Manual tuning of TX Equalization and amplitude will be required for performance optimization.
- 3. For recommended operating conditions, see Table 4.

NXP Semiconductors

This figure shows the sinusoidal jitter tolerance of XFI receiver.

^{1.} For recommended operating conditions, see Table 4.

Figure 19. XFI host receiver input sinusoidal jitter tolerance

3.10.4 10GBase-KR interface

This section describes the 10GBase-KR clocking requirements and its DC and AC electrical characteristics.

3.10.4.1 10GBase-KR clocking requirements for SDn_REF_CLKn_P and SDn_REF_CLKn_N

Only SerDes 1 (SD1_REF_CLK1_P and SD1_REF_CLK1_N) may be used for SerDes 10GBase-KR configurations based on the RCW Configuration field SRDS_PRTCL.

For more information on these specifications, see SerDes reference clocks.

3.10.4.2 10GBase-KR DC electrical characteristics

This section describes the DC electrical characteristics for 10GBase-KR.

3.10.4.2.1 10GBase-KR transmitter DC electrical characteristics

This table defines the 10GBase-KR transmitter DC electrical characteristics.

Table 43. 10GBaseKR transmitter DC electrical characteristics $(XV_{DD} = 1.35 \text{ V})^1$

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Output differential voltage	V _{TX-DIFF}	800	-	1200	mV	- LNmTECR 0[AMP_RE D]= 0b000000
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-1.14dB	0.6	1.1	1.6	dB	- LNmTECR 0[RATIO_P ST1Q]=0b0 0011
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-3.5dB	3	3.5	4	dB	- LNmTECR 0[RATIO_P ST1Q]=0b0 1000
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-4.66dB	4.1	4.6	5.1	dB	- LNmTECR 0[RATIO_P ST1Q]=0b0 1010
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-6.0dB	5.5	6.0	6.5	dB	- LNmTECR 0[RATIO_P ST1Q]=0b0 1100
De-emphasized differential output voltage (ratio)	V _{TX-DE-} RATIO-9.5dB	9	9.5	10	dB	- LNmTECR 0[RATIO_P ST1Q]=0b1 0000
Differential resistance	T _{RD}	80	100	120	Ω	-

3.10.4.2.2 10GBase-KR receiver DC electrical characteristics

This table defines the 10GBase-KR receiver DC electrical characteristics.

Table 44. 10GBase-KR receiver DC electrical characteristics¹

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Input differential voltage	V _{RX-DIFF}	-	-	1200	mV	-

Table continues on the next page...

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 44. 10GBase-KR receiver DC electrical characteristics¹ (continued)

Parameter	Symbol	Min	Typical	Max	Unit	Notes	
Differential resistance	R _{RD}	80	-	120	Ω	-	
1. For recommended operating conditions, see Table 4.							

3.10.4.3 10GBase-KR AC timing specifications

This section describes the AC timing specifications for 10GBase-KR.

3.10.4.3.1 10GBase-KR transmitter AC timing specifications

This table defines the 10GBase-KR transmitter AC timing specifications. RefClk jitter is not included.

Table 45. 10GBase-KR transmitter AC timing specifications¹

Parameter	Symbol	Min	Typical	Max	Unit			
Transmitter baud rate	T _{BAUD}	10.3125 - 100 ppm	10.3125	10.3125 + 100 ppm	Gb/s			
Uncorrelated high probability jitter/Random jitter	U _{HPJ} /R _J	-	-	0.15	UI p-p			
Deterministic jitter	D_J	-	-	0.15	UI p-p			
Total jitter	T _J	-	-	0.30	UI p-p			
1. For recommended operating conditions, see Table 4.								

3.10.4.3.2 10GBase-KR receiver AC timing specifications

This table defines the 10GBase-KR receiver AC timing specifications. RefClk jitter is not included.

Table 46. 10GBase-KR receiver AC timing specifications²

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Receiver baud rate	R _{BAUD}	10.3125 - 100 ppm	10.3125	10.3125 + 100 ppm	Gb/s	-
Random jitter	R _J	-	-	0.130	UI p-p	-
Sinusodial jitter, maximum	S _{J-max}	-	-	0.115	UI p-p	-
Duty cycle distortion	D _{CD}	-	-	0.035	UI p-p	-
Total jitter	T _J	-	-	See Note 1	UI p-p	1

^{1.} The total jitter (TJ) is per Interference tolerance test IEEE Standard 802.3ap-2007 specified in Annex 69A.

^{2.} For recommended operating conditions, see Table 4.

91

3.10.5 1000Base-KX interface

This section discusses the electrical characteristics for the 1000Base-KX. Only ACcoupled operation is supported.

3.10.5.1 1000Base-KX DC electrical characteristics

3.10.5.1.1 1000Base-KX Transmitter DC Specifications

This table describes the 1000Base-KX SerDes transmitter DC specification at TP1 per IEEE Std 802.3ap-2007. Transmitter DC characteristics are measured at the transmitter outputs (SDn_TXn_P and SDn_TXn_N).

Table 47. 1000Base-KX Transmitter DC Specifications

Parameter	Symbols	Min	Тур	Max	Units	Notes
Output differential voltage	V _{TX-DIFFp-p}	800	-	1600	mV	1
Differential resistance	T _{RD}	80	100	120	ohm	-

Notes:

3.10.5.1.2 1000Base-KX Receiver DC Specifications

This table provides the 1000Base-KX receiver DC timing specifications.

Table 48. 1000Base-KX Receiver DC Specifications

Parameter	Symbols	Min	Typical	Max	Units	Notes
Input differential voltage	V _{RX-DIFFp-p}	-	-	1600	mV	1
Differential resistance	T _{RDIN}	80	-	120	ohm	-

Notes:

3.10.5.2 1000Base-KX AC electrical characteristics

^{1.} SRDSxLNmTECR0[AMP_RED]=00_0000.

^{2.} For recommended operating conditions, see Table 4.

^{1.} For recommended operating conditions, see Table 4.

3.10.5.2.1 1000Base-KX Transmitter AC Specifications

This table provides the 1000Base-KX transmitter AC specification.

Table 49. 1000Base-KX Transmitter AC Specifications

Parameter	Symbols	Min	Typical	Max	Units	Notes
Baud Rate	T _{BAUD}	1.25-100ppm	1.25	1.25+100pp m	Gb/s	-
Uncorrelated High Probability Jitter/ Random Jitter	$T_{UHPJ}T_{RJ}$	-	-	0.15	UI p-p	-
Deterministic Jitter	T _{DJ}	-	-	0.10	UI p-p	-
Total Jitter	T _{TJ}	-	-	0.25	UI p-p	1

Notes:

3.10.5.2.2 1000Base-KX Receiver AC Specifications

This table provides the 1000Base-KX receiver AC specification with parameters guided by IEEE Std 802.3ap-2007.

Table 50. 1000Base-KX Receiver AC Specifications

Parameter	Symbols	Min	Typical	Max	Units	Notes
Receiver Baud Rate	T _{BAUD}	1.25-100ppm	1.25	1.25+100pp m	Gb/s	-
Random Jitter	R _{RJ}	-	-	0.15	UI p-p	1
Sinusoidal Jitter, maximum	R _{SJ-max}	-	-	0.10	UI p-p	2
Total Jitter	R _{TJ}	-	-	See Note 3	UI p-p	2

Notes:

- 1. Random jitter is specified at a BER of 10⁻¹².
- 2. The receiver interference tolerance level of this parameter shall be measured as described in Annex 69A of the IEEE Std 802.3ap-2007.
- 3. Per IEEE 802.3ap-clause 70.
- 4. The AC specifications do not include Refclk jitter.
- 5. For recommended operating conditions, see Table 4.

3.10.6 RGMII electrical specifications

This section describes the electrical characteristics for the RGMII interface.

^{1.} Total jitter is specified at a BER of 10⁻¹².

^{2.} For recommended operating conditions, see Table 4.

3.10.6.1 RGMII DC electrical characteristics

This table provides the DC electrical characteristics for the RGMII interface at $LV_{DD} = 2.5 \text{ V}$.

Table 51. RGMII DC electrical characteristics $(LV_{DD} = 2.5 \text{ V})^3$

Parameters	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x LV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x LV _{DD}	V	1
Input current (LV _{IN} =0 V or LV _{IN} = LV _{DD})	I _{IH}	_	±50	μΑ	2
Output high voltage (LV _{DD} = min,I _{OH} = -1.0 mA)	V _{OH}	2.00	_	V	
Output low voltage (LV _{DD} = min, I _{OL} = 1.0 mA)	V _{OL}	_	0.4	V	

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max LV_{IN} values found in Table 4.
- 2. The symbol LV_{IN}, in this case, represents the LV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

This table provides the DC electrical characteristics for the RGMII interface at $LV_{DD} = 1.8 \text{ V}$.

Table 52. RGMII DC electrical characteristics $(LV_{DD} = 1.8 \text{ V})^3$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x LV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x LV _{DD}	V	1
Input current (LV _{IN} = 0 V or LV _{IN} = LV _{DD})	I _{IN}	_	±50	μΑ	2
Output high voltage (LV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	_	V	
Output low voltage (LV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	_	0.4	V	

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the min and max LV_{IN} values found in Table 4.
- 2. The symbol LV_{IN}, in this case, represents the LV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

3.10.6.2 RGMII AC timing specifications

This table provides the RGMII AC timing specifications.

Table 53. RGMII AC timing specifications (LV_{DD} = $2.5/1.8 \text{ V})^8$

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
Data to clock output skew (at transmitter)	t _{SKRGT_TX}	-500	0	500	ps	7

Table continues on the next page...

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 53. RGMII AC timing specifications (LV_{DD} = 2.5/1.8 V)⁸ (continued)

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
Data to clock input skew (at receiver)	t _{SKRGT_RX}	1.0	_	2.6	ns	2, 9
Clock period duration	t _{RGT}	7.2	8.0	8.8	ns	3
Duty cycle for 10BASE-T and 100BASE-TX	t _{RGTH} /t _{RGT}	40	50	60	%	3, 4
Duty cycle for Gigabit	t _{RGTH} /t _{RGT}	45	50	55	%	_
Rise time (20%-80%)	t _{RGTR}	_	_	_	ns	5, 6
				0.75		
Fall time (20%-80%)	t _{RGTF}	_	_	_	ns	5, 6
				0.75		

Notes:

- 1. In general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII timing. Note that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).
- 2. This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns is added to the associated clock signal. Many PHY vendors already incorporate the necessary delay inside their device. If so, additional PCB delay is probably not needed.
- 3. For 10 Mbps and 100 Mbps, t_{RGT} scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.
- 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.
- 5. Applies to inputs and outputs.
- 6. The system/board must be designed to ensure this input requirement to the chip is achieved. Proper device operation is guaranteed for inputs meeting this requirement by design, simulation, characterization, or functional testing.
- 7. The frequency of ECn_RX_CLK (input) should not exceed the frequency of ECn_GTX_CLK (output) by more than 300 ppm.
- 8. For recommended operating conditions, see Table 4.
- 9. For 10 Mbps and 100 Mbps, the max value is unspecified.

This figure shows the RGMII AC timing and multiplexing diagrams.

Figure 20. RGMII AC timing and multiplexing diagrams

Warning

NXP guarantees timings generated from the MAC. Board designers must ensure delays needed at the PHY or the MAC.

3.10.7 Ethernet management interface (EMI)

This section describes the electrical characteristics for the Ethernet Management Interface (EMI) interface.

Both the interfaces (EMI1 and EMI2) interface timing is compatible with IEEE Std 802.3^{TM} clause 22.

3.10.7.1 Ethernet management interface 1 (EMI1)

This section describes the electrical characteristics for the EMI1 interface.

The EMI1 interface timing is compatible with IEEE Std 802.3[™] clause 22.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

3.10.7.1.1 EMI1 DC electrical characteristics

This section describes the DC electrical characteristics for EMI1_MDIO and EMI1_MDC. The pins are available on LV_{DD} . See Table 4 for operating voltages.

This table provides the EMI1 DC electrical characteristics when $LV_{DD} = 2.5 \text{ V}$.

Table 54. EMI1 DC electrical characteristics $(LV_{DD} = 2.5 \text{ V})^3$

Parameters	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x LV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x LV _{DD}	V	1
Input current (LV _{IN} = 0 or LV _{IN} = LV _{DD})	I _{IN}	_	±50	μΑ	2
Output high voltage (LV _{DD} = min, I _{OH} = -1.0 mA)	V _{OH}	2.00	_	V	_
Output low voltage (LV _{DD} = min, I _{OL} = 1.0 mA)	V _{OL}	_	0.40	٧	_

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max LV_{IN} values found in Table 4.
- 2. The symbol V_{IN} , in this case, represents the LV_{IN} symbols referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

This table provides the EMI1 DC electrical characteristics when $LV_{DD} = 1.8 \text{ V}$.

Table 55. EMI1 DC electrical characteristics $(LV_{DD} = 1.8 \text{ V})^3$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x LV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x LV _{DD}	V	1
Input current (LV _{IN} = 0 V or LV _{IN} = LV _{DD})	I _{IN}	_	±50	μΑ	2
Output high voltage (LV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	_	V	
Output low voltage (LV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	_	0.4	V	

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the min and max LV_{IN} respective values found in Table 4.
- 2. The symbol LV_{IN} represents the LV_{IN} symbols referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

3.10.7.1.2 EMI1 AC timing specifications

This table provides the EMI1 AC timing specifications.

Table 56. EMI1 AC timing specifications⁵

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
MDC frequency	f_{MDC}	_	_	2.5	MHz	2

Table continues on the next page...

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

97

Table 56.	EMI1 AC timing specifications ⁵ ((continued)
-----------	--	-------------

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
MDC clock pulse width high	t _{MDCH}	160	_	_	ns	_
MDC to MDIO delay	t _{MDKHDX}	(Y+5) x t _{enet_clk} - 4	_	(Y+5) x t _{enet_clk} + 4	ns	3
MDIO to MDC setup time	t _{MDDVKH}	8	_	_	ns	
MDIO to MDC hold time	t _{MDDXKH}	2.6	_	_	ns	6

Notes:

- 1. The symbols used for timing specifications follow these patterns: $t_{(first\ two\ letters\ of\ functional\ block)(signal)(state)(reference)(state)}$ for inputs and $t_{(first\ two\ letters\ of\ functional\ block)(reference)(state)(signal)(state)}$ for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time.
- 2. This parameter is dependent on the Ethernet clock frequency. The MDIO_CFG[MDIO_CLK_DIV] field determines the clock frequency of the MgmtClk Clock EC_MDC.
- 3. Ethernet clock period (tenet clk) is equal to Frame Manager Clock period (tenet clk)
- 4. Y is the value programmed to adjust hold time by MDIO_CFG[MDIO_HOLD].
- 5. For recommended operating conditions, see Table 4.
- 6. See Ethernet A-010717 erratum.

This figure shows the Ethernet management interface 1 timing diagram

Figure 21. Ethernet management interface 1 timing diagram

3.10.7.2 Ethernet management interface 2 (EMI2)

This section describes the electrical characteristics for the EMI2 interface.

The EMI2 interface timing is compatible with IEEE Std 802.3[™] clause 45.

3.10.7.2.1 EMI2 DC electrical characteristics

This section describes the DC electrical characteristics for EMI2_MDIO and EMI2_MDC. The pins are available on TV_{DD}. See Table 4 for operating voltages.

This table provides the EMI2 DC electrical characteristics when $TV_{DD} = 2.5 \text{ V}$.

Table 57. EMI2 DC electrical characteristics $(TV_{DD} = 2.5 \text{ V})^4$

Parameters	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x TV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x TV _{DD}	V	1
Input current (TV _{IN} = 0 or TV _{IN} = TV _{DD})	I _{IN}	_	±50	μΑ	2, 3
Output high voltage (TV _{DD} = min, I _{OH} = -1.0 mA)	V _{OH}	2.00	_	V	_
Output low voltage (TV _{DD} = min, I _{OL} = 1.0 mA)	V _{OL}	_	0.4	V	_

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max TV_{IN} values found in Table 4.
- 2. The symbol V_{IN} , in this case, represents the TV_{IN} symbols referenced in Recommended operating conditions.
- 3. The symbol TV_{DD}, in this case, represents the TV_{DD} symbols referenced in Recommended operating conditions.
- 4. For recommended operating conditions, see Table 4.

This table provides the EMI2 DC electrical characteristics when $TV_{DD} = 1.8 \text{ V}$.

Table 58. EMI2 DC electrical characteristics $(TV_{DD} = 1.8 \text{ V})^4$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x TV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x TV _{DD}	V	1
Input current (TV _{IN} = 0 V or TV _{IN} = TV _{DD})	I _{IN}	_	±50	μΑ	2, 3
Output high voltage (TV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	_	V	3
Output low voltage (TV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	<u> </u>	0.4	V	3

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the min and max TV_{IN} respective values found in Table 4.
- 2. The symbol TV_{IN} represents the TV_{IN} symbols referenced in Recommended operating conditions.
- 3. The symbol TV_{DD}, in this case, represents the TV_{DD} symbols referenced in Recommended operating conditions.
- 4. For recommended operating conditions, see Table 4.

This table provides the EMI2 DC electrical characteristics when $TV_{DD} = 1.2 \text{ V}$.

Table 59. EMI2 DC electrical characteristics (TV_{DD} = 1.2 V) 1

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x TV _{DD}	_	V	_
Input low voltage	V _{IL}	_	0.2 x TV _{DD}	V	_
Output low current (V _{OL} = 0.2 V)	I _{OL}	4		mA	_
Output high voltage ($TV_{DD} = min, I_{OH} = -100uA$)	V _{OH}	1.0	_	٧	_
Output low voltage (TV _{DD} = min, I _{OL} = 100 uA)	V _{OL}	_	0.2	V	_
Input Capacitance	C _{IN}	_	10	pF	_

3.10.7.2.2 EMI2 AC timing specifications

This table provides the EMI2 AC timing specifications.

Table 60. EMI2 AC timing specifications⁶

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
MDC frequency	f _{MDC}	_	_	2.5	MHz	2
MDC clock pulse width high	t _{MDCH}	160	_	_	ns	_
MDC to MDIO delay	t _{MDKHDX}	(Y+5) x t _{enet_clk} - 25	_	(Y+5) x t _{enet_clk}) + 25	ns	3, 4
MDIO to MDC setup time	t _{MDDVKH}	36	_	_	ns	5
MDIO to MDC hold time (TV _{DD} =1.2V)	t _{MDDXKH}	2.6	_	_	ns	7
MDIO to MDC hold time (TV _{DD} =1.8V / 2.5V)	t _{MDDXKH}	1.1	_	_	ns	7

Notes:

- 1. The symbols used for timing specifications follow these patterns: $t_{(first\ two\ letters\ of\ functional\ block)(signal)(state)(reference)(state)}$ for inputs and $t_{(first\ two\ letters\ of\ functional\ block)(reference)(state)}$ for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time.
- 2. This parameter is dependent on the Ethernet clock frequency. The MDIO_CFG [MDIO_CLK_DIV] field determines the clock frequency of the MgmtClk Clock EC_MDC.
- 3. Ethernet clock period (t_{enet clk}) is equal to Frame Manager Clock period (t_{FMAN clk})
- 4. Y is the value programmed to adjust hold time by MDIO_CFG[MDIO_HOLD].
- 5. The setup time t_{MDDVKH} is measured at following load conditions
 - For MDC = 65 pf and for MDIO =75 pf @1.2 V open drain configuration
- 6. For recommended operating conditions, see Table 4.
- 7. See Ethernet A-010717 erratum.

This figure shows the Ethernet management interface 2 timing diagram

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

^{1.} For recommended operating conditions, see Table 4.

Figure 22. Ethernet management interface 2 timing diagram

3.10.8 IEEE 1588 electrical specifications

3.10.8.1 IEEE 1588 DC electrical characteristics

This table provides the IEEE 1588 DC electrical characteristics when operating at $LV_{DD} = 2.5 \text{ V}$ supply.

Table 61. IEEE 1588 DC electrical characteristics($LV_{DD} = 2.5 V$)³

Parameters	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x LV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x LV _{DD}	V	1
Input current (LV _{IN} = 0 V or LV _{IN} = LV _{DD})	I _{IH}	_	±50	μΑ	2
Output high voltage (LV _{DD} = min, I _{OH} = -1.0 mA)	V _{OH}	2.00	_	V	_
Output low voltage (LV _{DD} = min, I _{OL} = 1.0 mA)	V _{OL}	_	0.40	V	_

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max LV_{IN} values found in Table 4.
- 2. The symbol LV_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

This table provides the IEEE 1588 DC electrical characteristics when operating at $LV_{DD} = 1.8 \text{ V}$ supply.

Table 62. IEEE 1588 DC electrical characteristics($LV_{DD} = 1.8 \text{ V}$)³

Parameters	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x LV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x LV _{DD}	V	1
Input current (LV _{IN} = 0 V or LV _{IN} = LV _{DD})	I _{IH}	_	±50	μΑ	2
Output high voltage (LV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	_	V	_
Output low voltage (LV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	_	0.40	V	_

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max LV_{IN} values found in Table 4.
- 2. The symbol LV_{IN}, in this case, represents the LV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

3.10.8.2 IEEE 1588 AC timing specifications

This table provides the IEEE 1588 AC timing specifications.

Table 63. IEEE 1588 AC timing specifications⁵

Parameter/Condition	Symbol	Min	Тур	Max	Unit	Notes
TSEC_1588_CLK_IN clock period	t _{T1588CLK}	5.0	_	T _{RX_CLK} x 7	ns	1, 3
TSEC_1588_CLK_IN duty cycle	t _{T1588CLKH} / t _{T1588CLK}	40	50	60	%	2
TSEC_1588_CLK_IN peak-to-peak jitter	t _{T1588CLKINJ}	_	_	250	ps	_
Rise time TSEC_1588_CLK_IN (20%-80%)	t _{T1588CLKINR}	1.0	_	2.0	ns	_
Fall time TSEC_1588_CLK_IN (80%-20%)	t _{T1588CLKINF}	1.0	_	2.0	ns	_
TSEC_1588_CLK_OUT clock period	t _{T1588CLKOUT}	5.0	_		ns	4
TSEC_1588_CLK_OUT duty cycle	t _{T1588CLKOTH} / t _{T1588CLKOUT}	30	50	70	%	_
TSEC_1588_PULSE_OUT1/2,	t _{T1588OV}	0	_	4.0	ns	_
TSEC_1588_ALARM_OUT1/2						
TSEC_1588_TRIG_IN1/2 pulse width	t _{T1588TRIGH}	2 x t _{T1588CLK_MAX}	<u> </u>	_	ns	3

Notes:

- 1. T_{RX_CLK} is the maximum clock period of the ethernet receiving clock selected by TMR_CTRL[CKSEL]. See the chip reference manual for a description of TMR_CTRL registers.
- 2. This needs to be at least two times the clock period of the clock selected by TMR_CTRL[CKSEL]. See the chip reference manual for a description of TMR_CTRL registers.
- 3. The maximum value of $t_{T1588CLK}$ is not only defined by the value of t_{RX_CLK} , but also defined by the recovered clock. For example, for 10/100/1000 Mbps modes, the maximum value of $t_{T1588CLK}$ will be 2800, 280, and 56 ns, respectively.
- 4. There are three input clock sources for 1588: TSEC_1588_CLK_IN, RTC, and MAC clock / 2. When using TSEC_1588_CLK_IN, the minimum clock period is 2 x $t_{T1588CLK}$.
- 5. For recommended operating conditions, see Table 4.

This figure shows the data and command output AC timing diagram.

Note: The output delay is counted starting at the rising edge if t_{T1588CLKOUT} is non-inverting. Otherwise, it is counted starting at the falling edge.

Figure 23. IEEE 1588 output AC timing

This figure shows the data and command input AC timing diagram.

Figure 24. IEEE 1588 input AC timing

3.11 USB 3.0 interface

This section describes the DC and AC electrical specifications for the USB 3.0 interface.

3.11.1 USB 3.0 PHY transceiver supply DC voltage

This table provides the DC electrical characteristics for the USB 3.0 interface when operating at $USB_HV_{DD} = 3.3 \text{ V}$.

Table 64. USB 3.0 PHY transceiver supply DC voltage $(USB_HV_{DD} = 3.3 \text{ V})^3$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	2.0	_	V	1
Input low voltage	V _{IL}	_	0.8	V	1
Input current (USB_HV _{IN} = 0 V or USB_HV _{IN} = USB_HV _{DD})	I _{IN}	_	±50	μΑ	2

Table continues on the next page...

103

Table 64. USB 3.0 PHY transceiver supply DC voltage (USB_HV_{DD} = 3.3 V)³ (continued)

Parameter	Symbol	Min	Max	Unit	Notes
Output high voltage (USB_HV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	2.8	_	٧	_
Output low voltage (USB_HV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	_	0.3	V	_

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max USB_HV_{IN} values found in Table 4.
- 2. The symbol USB_HV $_{\rm IN}$, in this case, represents the USB_HV $_{\rm IN}$ symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

3.11.2 USB 3.0 DC electrical characteristics

This table provides the USB 3.0 transmitter DC electrical characteristics at package pins.

Table 65. USB 3.0 transmitter DC electrical characteristics¹

Characteristic	Symbol	Min	Nom	Max	Unit
Differential output voltage	V _{tx-diff-pp}	800	1000	1200	mV _{p-p}
Low-power differential output voltage	V _{tx-diff-pp-low}	400	_	1200	mV _{p-p}
Tx de-emphasis	V _{tx-de-ratio}	3	_	4	dB
Differential impedance	Z _{diffTX}	72	100	120	Ohm
Tx common mode impedance	R _{TX-DC}	18	_	30	Ohm
Absolute DC common mode voltage between U1 and U0	T _{TX-CM-DC-} ACTIVEIDLE- DELTA	_	_	200	mV
DC electrical idle differential output voltage	V _{TX-IDLE-}	0	_	10	mV

Note:

This table provides the USB 3.0 receiver DC electrical characteristics at the Rx package pins.

Table 66. USB 3.0 receiver DC electrical characteristics

Characteristic	Symbol	Min	Nom	Max	Unit	Notes
Differential Rx input impedance	R _{RX-DIFF-DC}	72	100	120	Ohm	_
Receiver DC common mode impedance	R _{RX-DC}	18	_	30	Ohm	_
DC input CM input impedance for V > 0 during reset or power down	ZRX- HIGH-IMP- DC	25 K	_	_	Ohm	_

Table continues on the next page...

^{1.} For recommended operating conditions, see Table 4.

Table 66. USB 3.0 receiver DC electrical characteristics (continued)

Characteristic	Symbol	Min	Nom	Max	Unit	Notes
LFPS detect threshold	VRX-IDLE- DET-DC- DIFF _{pp}	100	_	300	mV	1

Note:

3.11.3 USB 3.0 AC timing specifications

This table provides the USB 3.0 transmitter AC timing specifications at package pins.

Table 67. USB 3.0 transmitter AC timing specifications¹

Parameter	Symbol	Min	Nom	Max	Unit	Notes
Speed	_	_	5.0	_	Gb/s	_
Transmitter eye	t _{TX-Eye}	0.625	_	_	UI	_
Unit interval	UI	199.94	_	200.06	ps	2
AC coupling capacitor	AC coupling capacitor	75	_	200	nF	_

Note:

This table provides the USB 3.0 receiver AC timing specifications at Rx package pins.

Table 68. USB 3.0 receiver AC timing specifications¹

Parameter	Symbol	Min	Nom	Max	Unit	Notes
Unit interval	UI	199.94	_	200.06	ps	2

Notes:

- 1. For recommended operating conditions, see Table 4.
- 2. UI does not account for SSC-caused variations.

3.11.4 USB 3.0 reference clock requirements

There are two options for the reference clock of USB PHY: SYSCLK or DIFF_SYSCLK/DIFF_SYSCLK_B. For more information, see USB 3.0 reference clock requirements.

^{1.} Below the minimum is noise. Must wake up above the maximum.

^{1.} For recommended operating conditions, see Table 4.

^{2.} UI does not account for SSC-caused variations.

3.11.5 USB 3.0 LFPS specifications

This table provides the key LFPS electrical specifications at the transmitter.

Table 69. LFPS electrical specifications at the transmitter

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Period	tPeriod	20	_	100	ns	_
Peak-to-peak differential amplitude	V _{TX-DIFF-PP-LFPS}	800	_	1200	mV	_
Rise/fall time	t _{RiseFall20-80}	_	_	4	ns	1
Duty cycle	Duty cycle	40	_	60	%	1
Notes	•	•		•	•	•

Note:

This figure shows the transmit normative setup with reference channel as per USB 3.0 specifications.

Figure 25. Transmit normative setup

3.12 Integrated Flash Controller

This section describes the DC and AC electrical specifications for the integrated flash controller.

3.12.1 Integrated Flash Controller DC electrical characteristics

This table provides the DC electrical characteristics for the integrated flash controller.

Table 70. Integrated Flash Controller DC electrical characteristics (1.8 V)³

Parameter	Symbol	Min	Max	Unit	Note
Input high voltage	V _{IH}	0.7 x OV _{DD}	-	V	1
Input low voltage	V _{IL}	-	0.3 x OV _{DD}	V	1
Input current	I _{IN}	-	±50	μΑ	2

Table continues on the next page...

^{1.} Measured at compliance TP1. See Figure 25 for details.

Table 70. Integrated Flash Controller DC electrical characteristics (1.8 V)³ (continued)

Parameter	Symbol	Min	Max	Unit	Note
$(V_{IN} = 0 \text{ V or } V_{IN} = OV_{DD})$					
Output high voltage	V _{OH}	1.6	-	V	-
$(OV_{DD} = min, I_{OH} = -0.5 mA)$					
Output low voltage	V _{OL}	-	0.32	V	-
$(OV_{DD} = min, I_{OL} = 0.5 mA)$					

NOTE:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Table 4.
- 2. The symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

3.12.2 Integrated Flash Controller AC timing specifications

This section describes the AC timing specifications for the integrated flash controller.

3.12.2.1 Test condition

The figure below provides the AC test load for the integrated flash controller.

Figure 26. Integrated Flash Controller AC test load

3.12.2.2 IFC AC timing specifications (GPCM/GASIC)

This table describes the input AC timing specifications for the IFC-GPCM and IFC-GASIC interface.

Table 71. Integrated flash controller input timing specifications for GPCM and GASIC mode $(OV_{DD} = 1.8 \text{ V})^1$

Parameter	Symbol	Min	Max	Unit	Notes
Input setup	t _{IBIVKH1}	4	-	ns	-

Table continues on the next page...

107

Table 71. Integrated flash controller input timing specifications for GPCM and GASIC mode $(OV_{DD} = 1.8 \text{ V})^1$ (continued)

Parameter	Symbol	Min	Max	Unit	Notes			
Input hold	t _{IBIXKH1}	1	-	ns	-			
NOTE:								
1. For recommended operating conditions	, see Table 4.							

This figure shows the input AC timing diagram for the IFC-GPCM, IFC-GASIC interface.

Figure 27. IFC-GPCM, IFC-GASIC input AC timing specifictions

This table describes the output AC timing specifications for the IFC-GPCM and IFC-GASIC interfaces.

Table 72. Integrated flash controller IFC-GPCM and IFC-GASIC interface output timing specifications $(OV_{DD} = 1.8 \text{ V})^2$

Parameter	Symbol	Min	Max	Unit	Notes
IFC_CLK cycle time	t _{IBK}	10	-	ns	-
IFC_CLK duty cycle	t _{IBKH} /t _{IBK}	45	55	%	-
Output delay	t _{IBKLOV1}	-	1.5	ns	-
Output hold	t _{IBKLOX}	-	-2	ns	1
IFC_CLK[0] to IFC_CLK[m] skew	t _{IBKSKEW}	0	±75	ps	-

NOTE:

1. The output hold is negative. This means that output transition happens earlier than the falling edge of IFC_CLK.

2. For recommended operating conditions, see Table 4.

This figure shows the output AC timing diagram for the IFC-GPCM and IFC-GASIC interface.

Figure 28. IFC-GPCM, IFC-GASIC signals

3.12.2.3 IFC AC timing specifications (NOR)

This table describes the input timing specifications for the IFC-NOR interface.

Table 73. Integrated flash controller input timing specifications for NOR mode ($OV_{DD} = 1.8$ $V)^2$

Parameter	Symbol	Min	Max	Unit	Notes
Input setup	t _{IBIVKH2}	(2 x t _{IP_CLK}) + 2	-	ns	1
Input hold	t _{IBIXKH2}	(1 x t _{IP_CLK}) + 1	-	ns	1

Notes:

- 1. t_{IP CLK} is the period of ip clock (not the IFC_CLK) on which IFC is running.
- 2. For recommended operating conditions, see Table 4.

The figure below shows the AC input timing diagram for input signals for the IFC-NOR interface. Here TRAD is a programmable delay parameter. See the IFC section of the chip reference manual for more information.

Figure 29. IFC-NOR interface input AC timings

109

This table describes the output AC timing specifications of IFC-NOR interface.

Table 74. Integrated flash controller IFC-NOR interface output timing specifications (OV_{DD} = 1.8 V)²

Parameter	Symbol	Min	Max	Unit	Notes
Output delay	t _{IBKLOV2}	-	±1.5	ns	1

NOTE:

The figure below shows the AC timing diagram for IFC-NOR interface output signals. The timing specs have been illustrated here by taking timings between two signals, CS_B and OE_B as an example. In a read operation, OE_B is supposed to change the TACO (a programmable delay; see the IFC section of the chip reference manual for more information) time after CS_B. Because of the skew between the signals, OE_B may change anywhere within the window of time defined by tIBKLOV2. This concept applies to other IFC-NOR interface output signals as well. The diagram is an example that shows the skew between any two chronological toggling signals as per the protocol. The list of IFC-NOR output signals is as follows: NRALE, NRAVD_B, NRWE_B, NROE_B, CS_B, AD (Address phase).

Figure 30. IFC-NOR interface output AC timings

3.12.2.4 IFC AC timing specifications (NAND)

This table describes the input timing specifications of the IFC-NAND interface.

Table 75. Integrated flash controller input timing specifications for NAND mode (OV_{DD} = 1.8 V)²

Parameter	Symbol	Min	Max	Unit	Notes
Input setup	t _{IBIVKH3}	(2 x t _{IP_CLK}) + 2	-	ns	1
Input hold	t _{IBIXKH3}	1	-	ns	1
IFC_RB_B pulse width	t _{IBCH}	2	-	t _{IP_CLK}	1
NOTE:	•	•	•	•	

^{1.} This effectively means that a signal change may appear anywhere within $\pm t_{IBKLOV2}$ (max) duration, from the point where it's expected to change.

^{2.} For recommended operating conditions, see Table 4.

Table 75. Integrated flash controller input timing specifications for NAND mode ($OV_{DD} = 1.8$ $V)^2$

Parameter	Symbol	Min	Max	Unit	Notes
1. t _{IP_CLK} is the period of ip clock on which	IFC is running.	-	-		
2. For recommended operating conditions	, see Table 4.				

The figure below shows the AC input timing diagram for input signals of IFC-NAND interface. Here TRAD is a programmable delay parameter. See the IFC section of the chip reference manual for more information.

Figure 31. IFC-NAND interface input AC timings

NOTE

 $t_{\mbox{\footnotesize{IP_CLK}}}$ is the period of ip clock (not the IFC_CLK) on which IFC is running.

This table describes the output AC timing specifications for the IFC-NAND interface.

Table 76. Integrated flash controller IFC-NAND interface output timing specifications (OV_{DD} = 1.8 V)²

Parameter	Symbol	Min	Max	Unit	Notes
Output delay	t _{IBKLOV3}	-	±1.5	ns	1
NOTE:					

^{1.} This effectively means that a signal change may appear anywhere within $t_{IBKLOV3}$ (min) to $t_{IBKLOV3}$ (max) duration, from the point where it's expected to change.

The figure below shows the AC timing diagram for output signals of IFC-NAND interface. The timing specs are shown here by taking the timings between two signals, CS_B and CLE as an example. CLE is supposed to change TCCST (a programmable

^{2.} For recommended operating conditions, see Table 4.

111

delay; see the IFC section of the chip reference manual for more information) time after CS_B. Because of the skew between the signals, CLE may change anywhere within window of time defined by t_{IBKLOV3}. This concept applies to other output signals of the IFC-NAND interface as well. The diagram is an example to show the skew between any two chronological toggling signals as per the protocol. The list of output signals is as follows: NDWE_B, NDRE_B, NDALE, WP_B, NDCLE, CS_B, and AD.

Figure 32. IFC-NAND interface output AC timings

3.12.2.5 IFC-NAND SDR AC timing specifications

This table describes the AC timing specifications for the IFC-NAND SDR interface. These specifications are compliant to the SDR mode of the ONFI specification revision 3.0.

Table 77. Integrated flash controller IFC-NAND SDR interface AC timing specifications (OVDD = 1.8 V)

Parameter	Symbol	I/O	Min	Max	Unit	Notes
Address cycle to data loading time	t _{ADL}	0	TADLE - 1500(ps)	TADLE + 1500(ps)	t _{IP_CLK}	Figure 33
ALE hold time	t _{ALH}	0	TWCHT - TWCHT + 1500(ps)		t _{IP_CLK}	Figure 34
ALE setup time	t _{ALS}	0	TWP - 1500(ps)	TWP + 1500(ps)	t _{IP_CLK}	Figure 34
ALE to RE_n delay	t _{AR}	0	TWHRE - 1500(ps)	TWHRE - TWHRE + 1		Figure 35
CE_n hold time	t _{CH}	0	5 + 1500(ps)	-	ns	Figure 34
CE_n high to input hi-Z	t _{CHZ}	I	TRHZ - 1500(ps)	TRHZ + 1500(ps)	t _{IP_CLK}	Figure 36
CLE hold time	t _{CLH}	0	TWCHT - 1500(ps)	TWCHT + 1500(ps)	t _{IP_CLK}	Figure 34
CLE to RE_n delay	t _{CLR}	0	TWHRE - 1500(ps)	TWHRE - 1500(ps)	t _{IP_CLK}	Figure 37
CLE setup time	t _{CLS}	0	TWP - 1500(ps)	TWP + 1500(ps)	t _{IP_CLK}	Figure 34
CE_n high to input hold	t _{COH}	I	150 - 1500(ps)	-	ns	Figure 36
CE_n setup time	t _{CS}	0	TCS - 1500(ps)	TCS + 1500(ps)	t _{IP_CLK}	Figure 34

Table continues on the next page...

Table 77. Integrated flash controller IFC-NAND SDR interface AC timing specifications (OVDD = 1.8 V) (continued)

Parameter	Symbol	I/O	Min	Max	Unit	Notes
Data hold time	t _{DH}	0	TWCHT - 1500(ps)	TWCHT + 1500(ps)	t _{IP_CLK}	Figure 34
Data setup time	t _{DS}	0	TWP - 1500(ps)	TWP + 1500(ps)	t _{IP_CLK}	Figure 34
Busy time for Set Features and Get Features	t _{FEAT}	0	-	- FTOCNT t		Figure 38
Output hi-Z to RE_n low	t _{IR}	0	TWHRE - 1500(ps)	TWHRE + 1500(ps)	t _{IP_CLK}	Figure 39
Interface and Timing Mode Change time	t _{ITC}	0	-	FTOCNT	t _{IP_CLK}	Figure 38
RE_n cycle time	t _{RC}	0	TRP + TREH - 1500(ps)	TRP + TREH + 1500(ps)	t _{IP_CLK}	Figure 36
RE_n access time	t _{REA}	I	-	(TRAD - 1) + 2(ns)	t _{IP_CLK}	Figure 36
RE_n high hold time	t _{REH}	I	TREH	TREH	t _{IP_CLK}	Figure 36
RE_n high to input hold	t _{RHOH}	I	0	-	ns	Figure 36
RE_n high to WE_n low	t _{RHW}	0	100 + 1500(ps)	-	ns	Figure 40
RE_n high to input hi-Z	t _{RHZ}	I	TRHZ - 1500(ps)			Figure 36
RE_n low to input data hold	t _{RLOH}	I	0	-		Figure 41
RE_n pulse width	t _{RP}	0	TRP TRP		t _{IP_CLK}	Figure 36
Ready to data input cycle (data only)	t _{RR}	0	TRR - 1500(ps)	O(ps) TRR + 1500(ps)		Figure 36
Device reset time, measured from the falling edge of R/B_n to the rising edge of R/B_n.	t _{RST} (raw NAND)	0	-	FTOCNT	t _{IP_CLK}	Figure 42
Device reset time, measured from the falling edge of R/B_n to the rising edge of R/B_n.	t _{RST2} (EZ NAND)	0	-	FTOCNT	t _{IP_CLK}	Figure 42
(WE_n high or CLK rising edge) to SR[6] low	t _{WB}	0	TWBE + TWH - 1500(ps)	TWBE + TWH + 1500(ps)	t _{IP_CLK}	Figure 34
WE_n cycle time	t _{WC}	0	TWP + TWH	TWP + TWH	t _{IP_CLK}	Figure 43
WE_n high hold time	t _{WH}	0	TWH	TWH	t _{IP_CLK}	Figure 43
Command, address, or data input cycle to data output cycle	twhR	0	TWHRE + TWH - 1500(ps)		t _{IP_CLK}	Figure 44
WE_n pulse width	t _{WP}	0	TWP	TWP	t _{IP_CLK}	Figure 34
WP_n transition to command cycle	t _{ww}	0	TWW - 1500(ps) TWW + 1500(ps)		t _{IP_CLK}	Figure 45
Data Input hold	t _{IBIXKH4}	1	1	-	t _{IP_CLK}	Figure 46

Table 77. Integrated flash controller IFC-NAND SDR interface AC timing specifications (OVDD = 1.8 V)

Parameter	Symbol	I/O	Min	Max	Unit	Notes
1. t _{IP_CLK} is the clock period the device.	d of the IP clock (on wh	nich the IFC	IP is running). Not	e that the IFC IP cl	ock does n	ot come out of

This figure shows the t_{ADL} timing.

Figure 33. t_{ADL} timing

This figure shows the command cycle.

Figure 34. Command cycle

This figure shows the t_{AR} timings.

Figure 35. t_{AR} timings

This figure shows the data input cycle timings.

Figure 36. Data input cycle timings

This figure shows the t_{CLR} timings.

Figure 37. t_{CLR} timings

This figure shows the t_{WB} , t_{FEAT} , t_{ITC} , and t_{RR} timings.

Figure 38. t_{WB} , t_{FEAT} , t_{ITC} , and t_{RR} timings

This figure shows the read status timings.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Figure 39. Read status timings

This figure shows the t_{RHW} timings.

Figure 40. t_{RHW} timings

This figure shows the EDO mode data input cycle timings.

Figure 41. EDO mode data input cycle timings

This figure shows the $t_{\mbox{\scriptsize WB}}$ and $t_{\mbox{\scriptsize RST}}$ timings.

117

Figure 42. t_{WB} and t_{RST} timings

This figure shows the address latch timings.

Figure 43. Address latch timings

This figure shows the t_{WHR} timings.

Figure 44. t_{WHR} timings

This figure shows the $t_{\mbox{\scriptsize WW}}$ timings.

Figure 45. tww timings

This figure shows the t_{IBIXKH4} timings.

Figure 46. t_{IBIXKH4} timings

3.12.2.6 IFC-NAND NVDDR AC timing specification

The table below describes the AC timing specifications for the IFC-NAND NVDDR interface. These specifications are compliant to NVDDR mode of ONFI specification revision 3.0.

Table 78. Integrated flash controller IFC-NAND NVDDR interface AC timing specifications (OVDD = 1.8 V)

Parameter	Symbol	I/O	Min	Max	Unit	Notes
Access window of DQ[7:0] from CLK	t _{AC}	I	3 - 150 (ps)	20 + 150 (ps)	ns	Figure 50
Address cycle to data loading time	t _{ADL}	I	TADL	-	t _{IP_CLK}	Figure 51

Table continues on the next page...

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

NVP.

Table 78. Integrated flash controller IFC-NAND NVDDR interface AC timing specifications (OVDD = 1.8 V) (continued)

Parameter	Symbol	I/O	Min	Max	Unit	Notes
Command, Address, Data delay (command to command, address to address, command to address, address to command, command/ address to start of data) Fast	tCADf	0	TCAD - 150 (ps)	TCAD + 150 (ps)	t _{IP_CLK}	Figure 47
Command, Address, Data delay (command to command, address to address, command to address, address to command, command/ address to start of data) slow	tCADs	0	TCAD - 150 (ps)	TCAD + 150 (ps)	t _{IP_CLK}	Figure 47
Command/address DQ hold time	t _{CAH}	0	2 + 150 (ps)	-	ns	Figure 47
CLE and ALE hold time	t _{CALH}	0	2 + 150 (ps)	-	ns	Figure 47
CLE and ALE setup time	t _{CALS}	0	2 + 150 (ps)	-	ns	Figure 47
Command/address DQ setup time	t _{CAS}	0	2 + 150 (ps)	-	ns	Figure 47
CE# hold time	t _{CH}	0	2 + 150 (ps)	-	ns	Figure 47
Average clock cycle time, also known as tCK	t _{CK} (avg) or t _{CK}	0	10	-	ns	Figure 47
Absolute clock period, measured from rising edge to the next consecutive rising edge	t _{CK} (abs)	0	tCK(avg) + tJIT(per) min	tCK(avg) + tJIT(per) max	ns	Figure 47
Clock cycle high	t _{CKH} (abs)	0	0.45	0.55	tCK	Figure 47
Clock cycle low	t _{CKL} (abs)	0	0.45	0.55	tCK	Figure 47
Data input end to W/R# high B16	t _{CKWR}	0	TCKWR - 150 (ps)	TCKWR + 150 (ps)	t _{IP_CLK}	Figure 50
CE# setup time	t _{CS}	0	TCS - 150 (ps)	TCS + 150 (ps)	t _{IP_CLK}	Figure 49
Data DQ hold time	t _{DH}	0	1050	-	ps	Figure 49
Access window of DQS from CLK	tDQSCK	I	-	20 + 150 (ps)	ns	Figure 50
W/R# low to DQS/DQ driven by device	tDQSD	I	-150 (ps)	18 + 150 (ps)	ns	Figure 50
DQS output high pulse width	t _{DQSH}	0	0.45	0.55	tCK	Figure 49
W/R# high to DQS/DQ tri- state by device	t _{DQSHZ}	0	RHZ - 150 (ps)	RHZ + 150 (ps)	t _{IP_CLK}	Figure 47
DQS output low pulse width	t _{DQSL}	0	0.45	0.55	tCK	Figure 49

Table continues on the next page...

Table 78. Integrated flash controller IFC-NAND NVDDR interface AC timing specifications (OVDD = 1.8 V) (continued)

Parameter	Symbol	I/O	Min	Max	Unit	Notes
DQS-DQ skew, DQS to last DQ valid, per access	t _{DQSQ}	I	-	1000	ps	Figure 50
Data output to first DQS latching transition	t _{DQSS}	0	0.75 + 150 (ps)	1.25 - 150 (ps)	tCK	Figure 49
Data DQ setup time	t _{DS}	0	1050	-	ps	Figure 49
DQS falling edge to CLK rising - hold time	t _{DSH}	0	0.2 + 150 (ps)	-	tCK	Figure 49
DQS falling edge to CLK rising - setup time	t _{DSS}	0	0.2 + 150 (ps)	-	tCK	Figure 49
Input data valid window	t _{DVW}	I	tDVW = tQH - tDQSQ	-	ns	Figure 50
Busy time for Set Features and Get Features	t _{FEAT}	I	-	FTOCNT	t _{IP_CLK}	Figure 52
Half-clock period	t _{HP}	0	tHP = min(tCKL, tCKH)	-	ns	Figure 50
Interface and Timing Mode Change time	t _{ITC}	I	-	FTOCNT	t _{IP_CLK}	Figure 52
The deviation of a given tCK(abs) from tCK(avg)	t _{JIT} (per)	0	-0.5	0.5	ns	NA
DQ-DQS hold, DQS to first DQ to go non-valid, per access	t _{QH}	I	tQH = tHP - tQHS	-	t _{IP_CLK}	Figure 50
Data input cycle to command, address, or data output cycle	t _{RHW}	0	TRHW	-	t _{IP_CLK}	Figure 53
Ready to data input cycle (data only)	t _{RR}	I	TRR	-	t _{IP_CLK}	Figure 52
Device reset time, measured from the falling edge of R/B# to the rising edge of R/B#.	t _{RST} (raw NAND)	0	FTOCNT	FTOCNT	t _{IP_CLK}	Figure 54
Device reset time, measured from the falling edge of R/B# to the rising edge of R/B#.	t _{RST2} (EZ NAND)	0	FTOCNT	FTOCNT	t _{IP_CLK}	Figure 54
CLK rising edge to SR[6] low	t _{WB}	0	TWB - 150 (ps)	TWB + 150 (ps)	t _{IP_CLK}	Figure 54
Command, address or data output cycle to data input cycle	twhR	0	TWHR	-	t _{IP_CLK}	Figure 55
DQS write preamble	t _{WPRE}	0	1.5	-	tCK	Figure 49
DQS write postamble	t _{WPST}	0	1.5	-	tCK	Figure 49
W/R# low to data input cycle	t _{WRCK}	I	TWRCK - 150 (ps)	TWRCK + 150 (ps)	t _{IP_CLK}	Figure 50

Table continues on the next page...

Table 78. Integrated flash controller IFC-NAND NVDDR interface AC timing specifications (OVDD = 1.8 V) (continued)

Parameter	Symbol	I/O	Min	Max	Unit	Notes		
WP# transition to command cycle	t _{WW}	0	TWW - 150 (ps)	TWW + 150 (ps)	t _{IP_CLK}	Figure 56		
NOTE:								
1. t _{IP_CLK} is the clock period	I. t _{IP CLK} is the clock period of IP clock (on which IFC IP is running). Note that the IFC IP clock does not come out of device.							

The following diagrams show the AC timing for the IFC-NAND NVDDR interface.

Figure 47. Command cycle

Figure 48. Address cycle

Figure 49. Write cycle

Figure 50. Read cycle

Figure 51. t_{ADL} timings

Figure 52. t_{WB} , t_{FEAT} , t_{ITC} , t_{RR} timings

Figure 53. t_{RHW} timings

Figure 54. t_{WB} and t_{RST} timings

Figure 55. tWHR timings

Figure 56. tWW timings

LPUART interface 3.13

This section describes the DC and AC electrical specifications for the LPUART interface.

3.13.1 LPUART DC electrical characteristics

This table provides the DC electrical characteristics for the LPUART interface when operating at $DV_{DD}/EV_{DD} = 3.3 \text{ V}$.

Table 79. LPUART DC electrical characteristics $(DV_{DD}/EV_{DD} = 3.3 \text{ V})^2$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x D/ EV _{DD}		V	1
Input low voltage	V _{IL}	_	0.2 x D/EV _{DD}	V	1
Input current (D/EV _{IN} = 0 V or D/EV _{IN} = D/EV _{DD})	I _{IN}	_	±50	μΑ	_
Output high voltage (I _{OH} = -2.0 mA)	V _{OH}	2.4	_	V	_
Output low voltage (I _{OL} = 2.0 mA)	V _{OL}	_	0.4	V	_
Notes:		•	•	•	•

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 79. LPUART DC electrical characteristics $(DV_{DD}/EV_{DD} = 3.3 \text{ V})^2$

Parameter	Symbol	Min	Max	Unit	Notes

^{1.} The min $V_{\rm IL}$ and max $V_{\rm IH}$ values are based on the min and max D/EV_{DD} respective values found in Table 4.

This table provides the DC electrical characteristics for the LPUART interface when operating at $EV_{DD}/DV_{DD} = 1.8 \text{ V}$.

Table 80. LPUART DC electrical characteristics (1.8 V)³

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x E/ DV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x E/DV _{DD}	V	1
Input current (E/DV _{IN} = 0 V or E/DV _{IN} = E/DV _{DD})	I _{IN}	_	±50	μΑ	2
Output high voltage (E/DV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	_	V	_
Output low voltage (DV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	_	0.4	V	_

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the min and max E/DV_{DD} respective values found in Table 4.
- 2. The symbol E/DV_{IN} represents the input voltage of the supply referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

LPUART AC timing specifications 3.13.2

This table provides the AC timing specifications for the LPUART interface.

Table 81. LPUART AC timing specifications

Parameter	Value	Unit	Notes
Minimum baud rate	f _{PLAT} /(2 x 32 x 8192)	baud	1, 3, 4
Maximum baud rate	f _{PLAT} /(2 x 4)	baud	1, 2, 4

Notes:

- 1. f_{PLAT} refers to the internal platform clock.
- 2. The actual attainable baud rate is limited by the latency of interrupt processing.
- 3. Every bit can be over sampled with a sample clock rate of 8 and 64 times (software configurable) and each bit is the majority of the values sampled at the sample rate divided by two, (sample rate/2)+1 and (sample rate/2)+2.
- 4. The 1-to-0 transition during a data word can cause a resynchronization of the sample point.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018 126 NXP Semiconductors

^{2.} For recommended operating conditions, see Table 4.

3.14 DUART interface

This section describes the DC and AC electrical specifications for the DUART interface.

3.14.1 DUART DC electrical characteristics

This table provides the DC electrical characteristics for the DUART interface at $DV_{DD} = 3.3 \text{ V}$.

Table 82. DUART DC electrical characteristics (3.3 V)³

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x DV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x DV _{DD}	V	1
Input current (DV _{IN} = 0 V or DV _{IN} = DV _{DD})	I _{IN}	_	±50	μΑ	2
Output high voltage (DV _{DD} = min, I _{OH} = -2.0 mA)	V _{OH}	2.4	_	٧	_
Output low voltage (DV _{DD} = min, I _{OL} = 2.0 mA)	V _{OL}	_	0.4	V	_

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max DV_{IN} values found in Table 4.
- 2. The symbol DV_{IN} represents the input voltage of the supply referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

This table provides the DC electrical characteristics for the DUART interface at $DV_{DD} = 1.8 \text{ V}$.

Table 83. DUART DC electrical characteristics (1.8 V)³

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x DV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x DV _{DD}	V	1
Input current (DV _{IN} = 0 V or DV _{IN} = DV _{DD})	I _{IN}	_	±50	μΑ	2
Output high voltage (DV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	_	V	_
Output low voltage (DV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	_	0.4	V	_

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the min and max DV_{IN} respective values found in Table 4.
- 2. The symbol DV_{IN} represents the input voltage of the supply referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

3.14.2 DUART AC timing specifications

This table provides the AC timing specifications for the DUART interface.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 84. DUART AC timing specifications

Parameter	Value	Unit	Notes
Minimum baud rate	f _{PLAT} /(2 x 1,048,576)	baud	1, 3
Maximum baud rate	f _{PLAT} /(2 x 16)	baud	1, 2

Notes:

- 1. f_{PLAT} refers to the internal platform clock.
- 2. The actual attainable baud rate is limited by the latency of interrupt processing.
- 3. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

3.15 Flextimer interface

This section describes the DC and AC electrical characteristics for the Flextimer interface. There are Flextimer pins on various power supplies in this device.

3.15.1 Flextimer DC electrical characteristics

This table provides the DC electrical characteristics for Flextimer pins operating at $DV_{DD}/EV_{DD} = 3.3 \text{ V}$.

Table 85. Flextimer DC electrical characteristics $(DV_{DD}/EV_{DD} = 3.3 \text{ V})^3$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x D/EV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x D/EV _{DD}	V	1
Input current (V _{IN} = 0 V or V _{IN} = D/EV _{DD)}	I _{IN}	_	±50	μΑ	2
Output high voltage	V _{OH}	2.4	_	V	_
$(D/EV_{DD} = min, I_{OH} = -2 mA)$					
Output low voltage	V _{OL}	_	0.4	V	_
$(D/EV_{DD} = min, I_{OL} = 2 mA)$					

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max DV_{IN}/EV_{IN} values found in Table 4.
- 2. The symbol V_{IN} , in this case, represents the DV_{IN}/EV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

This table provides the DC electrical characteristics for Flextimer pins operating at $DV_{DD}/EV_{DD}/LV_{DD}/OV_{DD} = 1.8 \text{ V}$.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

128

Table 86. Flextimer DC electrical characteristics $(DV_{DD}/EV_{DD}/LV_{DD}/OV_{DD} = 1.8 \text{ V})^3$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x D/E/L/ OV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x D/E/L/V _{DD}	V	1
Input low voltage	V _{IL}	_	0.3 x OV _{DD}	V	1
Input current ($V_{IN} = 0 \text{ V or } V_{IN} = D/E/L/OV_{DD}$)	I _{IN}	_	±50	μΑ	2
Output high voltage	V _{OH}	1.35	_	V	_
$(D/E/L/OV_{DD} = min, I_{OH} = -0.5 mA)$					
Output low voltage	V _{OL}	_	0.4	V	_
$(D/E/L/OV_{DD} = min, I_{OL} = 0.5 mA)$					

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max $DV_{IN}/EV_{IN}/L/OV_{IN}$ values found in Table 4.
- 2. The symbol V_{IN} , in this case, represents the $DV_{IN}/EV_{IN}/L/OV_{IN}$ symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

This table provides the DC electrical characteristics for Flextimer pins operating at $LV_{DD} = 2.5 \text{ V}$.

Table 87. Flextimer DC electrical characteristics (LV_{DD}= 2.5 V)³

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x LVDD	_	V	1
Input low voltage	V _{IL}	_	0.2 x LVDD	V	1
Input current (V _{IN} = 0 V or V _{IN} = LV _{DD})	I _{IN}	_	±50	μΑ	2
Output high voltage	V _{OH}	2.0	_	V	_
$(LV_{DD} = min, I_{OH} = -1 mA)$					
Output low voltage	V _{OL}	_	0.4	V	_
$(LV_{DD} = min, I_{OL} = 1 mA)$					

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max LV_{IN} values found in Table 4.
- 2. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

3.15.2 Flextimer AC timing specifications

This table provides the Flextimer AC timing specifications.

Table 88. Flextimer AC timing specifications²

Parameter	Symbol	Min	Unit	Notes
Flextimer inputs—minimum pulse width	t _{PIWID}	20	ns	1

Notes:

- 1. Flextimer inputs and outputs are asynchronous to any visible clock. Flextimer outputs should be synchronized before use by any external synchronous logic. Flextimer inputs are required to be valid for at least t_{PIWID} to ensure proper operation.
- 2. For recommended operating conditions, see Table 4.

This figure provides the AC test load for the Flextimer.

Figure 57. Flextimer AC test load

3.16 SPI interface

This section describes the DC and AC electrical characteristics for the SPI interface.

3.16.1 SPI DC electrical characteristics

This table provides the DC electrical characteristics for the SPI interface operating at $OV_{DD} = 1.8 \text{ V}$.

Table 89. SPI DC electrical characteristics (1.8 V)³

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.3 x OV _{DD}	V	1
Input current $(V_{IN} = 0 V \text{ or } V_{IN} = OV_{DD})$	I _{IN}	_	±50	μΑ	2
Output high voltage	V _{OH}	1.35	_	V	_
$(OV_{DD} = min, I_{OH} = -0.5 mA)$					
Output low voltage	V _{OL}	_	0.4	V	_
$(OV_{DD} = min, I_{OL} = 0.5 mA)$					
Notes:	•	•	•	•	•

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 89. SPI DC electrical characteristics (1.8 V)³

Parameter	Symbol	Min	Max	Unit	Notes		
1. The min V _{IL} and max V _{IH} values are based on the respective min and max OV _{IN} values found in Table 4.							
2. The symbol V _{IN} , in this case, represents	the OV _{IN} symbol	referenced in Tab	ole 4.				

3.16.2 SPI AC timing specifications

This table provides the SPI timing specifications.

Table 90. SPI AC timing specifications

Parameter	Symbol	Condition	Min	Max	Unit
SCK cycle time	t _{SCK}	_	t _{SYS} x 2	_	ns
SCK clock pulse width	t _{SDC}	_	40%	60%	t _{SCK}
CS to SCK delay	t _{CSC}	Master	16	_	ns
After SCK delay	t _{ASC}	Master	16	_	ns
Data setup time for inputs	t _{NIIVKH}	Master	9	_	ns
Data hold time for inputs	t _{NIIXKH}	Master	0	_	ns
Data valid (after SCK edge) for Outputs	t _{NIKHOV}	Master	_	5	ns
Data hold time for outputs	t _{NIKHOX}	Master	0	_	ns

This figure shows the SPI timing master when CPHA = 0.

^{3.} For recommended operating conditions, see Table 4.

Figure 58. SPI timing master, CPHA = 0

This figure shows the SPI timing master when CPHA = 1.

133

Figure 59. SPI timing master, CPHA = 1

3.17 QSPI interface

This section describes the DC and AC electrical characteristics for the QSPI interface.

3.17.1 QSPI DC electrical characteristics

This table provides the DC electrical characteristics for the QSPI interface operating at $OV_{DD} = 1.8 \text{ V}$.

Table 91. QSPI DC electrical characteristics (1.8 V)³

Parameter Symbol Min Max Unit

Puput high voltage V_{IH} 0.7 x OV_{DD} - V

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.3 x OV _{DD}	V	1
Input current (V _{IN} = 0 V or V _{IN} = OV _{DD})	I _{IN}	_	±50	μΑ	2
Output high voltage	V _{OH}	OV _{DD} - 0.2	_	V	_

Table continues on the next page...

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 91. QSPI DC electrical characteristics (1.8 V)³ (continued)

Parameter	Symbol	Min	Max	Unit	Notes
$(OV_{DD} = min, I_{OH} = -0.5 mA)$					
Output low voltage	V _{OL}	_	0.4	V	_
$(OV_{DD} = min, I_{OL} = 0.5 mA)$					

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Table 4.
- 2. The symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

3.17.2 QSPI AC timing specifications

This section describes the QSPI timing specifications in SDR mode. All data is based on a negative edge data launch from the device and a positive edge data capture, as shown in the timing figures in this section.

3.17.2.1 QSPI timing SDR mode

This table provides the QSPI input and output timing in SDR mode.

Table 92. SDR mode QSPI input and output timing

Parameter	Symbol	Min	Max	Unit
Clock frequency	F _{SCK}	_	62.5	MHz
Clock rise/fall time	T _{RISE} /T _{FALL}	1	_	ns
CS output hold time	t _{NIKHOX2}	-3.4	_	ns
CS output delay	t _{NIKHOV2}	_	3.5	ns
Setup time for incoming data	t _{NIIVKH}	8.6	_	ns
Hold time requirement for incoming data	t _{NIIXKH}	0.4	_	ns
Output data valid	t _{NIKHOV}	_	4.5	ns
Output data hold	t _{NIKHOX}	-4.4	_	ns

This figure shows the QSPI AC timing in SDR mode.

135

Figure 60. QSPI AC timing — SDR mode

3.18 Enhanced secure digital host controller (eSDHC)

This section describes the DC and AC electrical specifications for the eSDHC interface.

3.18.1 eSDHC DC electrical characteristics

This table provides the DC electrical characteristics for the eSDHC interface at D/EV_{DD} = 3.3 V.

Characteristic	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x D/EV _{DD}	-	V	1
Input low voltage	V _{IL}	-	0.25 x D/EV _{DD}	٧	1
Output high voltage (D/EV _{DD} = min, I_{OH} = -100 μ A)	V _{OH}	0.75 x D/EV _{DD}	-	V	-
Output low voltage (D/EV _{DD} = min, I_{OL} = 100 μ A)	V _{OL}	-	0.125 x D/EV _{DD}	V	-

Table 93. eSDHC interface DC electrical characteristics²

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max D/EV $_{IN}$ values found in Table 4 .
- 2. At recommended operating conditions with D/EV_{DD}= 3.3 V.

This table provides the DC electrical characteristics for the eSDHC interface at D/O/ $EV_{DD} = 1.8 \text{ V}$.

Table 94. eSDHC interface DC electrical characteristics ³

Characteristic	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x D/O/EV _{DD}	-	V	1
Input low voltage	V _{IL}	-	0.3 x D/O/EV _{DD}	V	1
Output high voltage (D/O/EV _{DD} = min, I _{OH} = -2mA)	V _{OH}	D/O/EV _{DD} - 0.45	-	V	-
Output low voltage (D/O/EV _{DD} = min, I_{OL} = 2mA)	V _{OL}	-	0.45	V	-

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max DV_{IN}/OV_{IN}/EV_{IN} values found in Table 4.
- 3. At recommended operating conditions $DV_{DD}/OV_{DD}/EV_{DD} = 1.8V$.

3.18.2 eSDHC AC timing specifications

This section provides the AC timing specifications.

This table provides the eSDHC AC timing specifications as defined in Figure 61, Figure 62, and Figure 63.

Table 95. eSDHC AC timing specifications (full-speed/high-speed mode)⁶

Parameter	Symbol ¹	Min	Max	Unit	Notes
SDHC_CLK clock frequency:	f _{SHSCK}	0	25/50	MHz	2, 4
SD/SDIO (full-speed/high-speed mode) eMMC (full-speed/high-speed mode)			26/52		
SDHC_CLK clock low time (full-speed/high-speed mode)	t _{SHSCKL}	10/7	-	ns	4
SDHC_CLK clock high time (full-speed/high-speed mode)	t _{SHSCKH}	10/7	-	ns	4
SDHC_CLK clock rise and fall times	t _{SHSCKR/}	-	3	ns	4
	t _{SHSCKF}				
Input setup times: SDHC_CMD, SDHC_DATx to SDHC_CLK	t _{SHSIVKH}	2.5	-	ns	3, 4, 5
Input hold times: SDHC_CMD, SDHC_DATx to SDHC_CLK	t _{SHSIXKH}	2.5	-	ns	4, 5
Output hold time: SDHC_CLK to SDHC_CMD, SDHC_DATx valid	t _{SHSKHOX}	-3	-	ns	4, 5
Output delay time: SDHC_CLK to SDHC_CMD, SDHC_DATx valid	t _{SHSKHOV}	-	3	ns	4, 5

Notes:

- 1. The symbols used for timing specifications herein follow the pattern of $t_{\text{(first two letters of functional block)(signal)(state)}}$ for inputs and $t_{\text{(first two letters of functional block)(reference)(state)(signal)(state)}}$ for outputs. For example, t_{SHKHOX} symbolizes eSDHC high-speed mode device timing (SH) clock reference (K) going to the high (H) state, with respect to the output (O) reaching the invalid state (X) or output hold time. Note that in general, the clock reference symbol is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. In full-speed mode, the clock frequency value can be 0-25MHz for an SD/SDIO card and 0-26MHz for an eMMC device. In high-speed mode, the clock frequency value can be 0-50MHz for an SD/SDIO card and 0-52MHz for an eMMC device.

Table 95. eSDHC AC timing specifications (full-speed/high-speed mode)⁶

Symbol¹

Parameter	Symbol ¹	Min	Max	Unit	Notes
3. SDHC_SYNC_OUT/IN loop back is recommended to compens	ate the clock del	ay. In case	the SDHC	SYNC_OL	JT/IN
loopback is not used, to satisfy setup timing, one-way board-routing	ng delay betweer	n host and	card, on SE	HC_CLK,	
SDHC_CMD, and SDHC_DATx should not exceed 1ns for any high	gh-speed MMC o	ard. For ar	y high-spe	ed or defau	It speed
mode SD card, the one-way board-routing delay between host an	d card, on SDHC	C_CLK, SDI	HC_CMD, a	and SDHC_	DATx
should not exceed 1.5ns.					

- 4. $C_{CARD} \le 10 \text{ pF}$, (1 card), and $C_L = C_{BUS} + C_{HOST} + C_{CARD} \le 40 \text{ pF}$.
- 5. The parameter values apply to both full-speed and high-speed modes.
- 6. At recommended operating conditions with EV_{DD}=1.8 V or 3.3V, see Table 4.

This figure provides the eSDHC clock input timing diagram.

VM = Midpoint voltage (Respective supply/2)

Figure 61. eSDHC clock input timing diagram

This figure provides the input AC timing diagram for high-speed mode.

Figure 62. eSDHC high-speed mode input AC timing diagram

This figure provides the output AC timing diagram for high-speed mode.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

VM = Midpoint voltage (EV_{DD}/2)

Figure 63. eSDHC high-speed mode output AC timing diagram

This table provides the eSDHC AC timing specifications for SDR50 mode.

Table 96. eSDHC AC timing specifications (SDR 50 mode)

Parameter	Symbol	Min	Max	Unit	Notes
SDHC_CLK clock frequency:	f _{SHSCK}	0	90	MHz	
SDHC_CLK duty cycle	t _{SHSCKH} / t _{SHSCK}	45	55	%	
SDHC_CLK clock rise and fall times	t _{SHSCKF} /	-	2	ns	1
Skew between SD_CLK_SYNC_OUT and SD_CLK	-	-0.1	0.1	ns	1
Input setup times: SDHC_CMD, SDHC_DATx to SDHC_CLK_SYNC_IN	t _{SHSIVKH}	3.21	-	ns	2,1
Input hold times: SDHC_CMD, SDHC_DATx to SDHC_CLK_SYNC_IN	t _{SHSIXKH}	1.1	-	ns	2,1
Output hold time: SDHC_CLK to SDHC_CMD, SDHC_DATx valid, SDHC_DATx_DIR, SDHC_CMD_DIR	t _{SHSKHOX}	1.7	-	ns	2,1
Output delay time: SDHC_CLK to SDHC_CMD, SDHC_DATx valid, SDHC_DATx_DIR, SDHC_CMD_DIR	tshskhov	-	7.21	ns	2,1

Notes:

- 1. $C_{CARD} \le$ 10 pF, (1 card), and $C_{L} = C_{BUS} + C_{HOST} + C_{CARD} \le$ 30 pF
- 2. Without a voltage translator
- 3. At recommended operating conditions with EV_{DD}=1.8 V, see Table 4.

This figure provides the eSDHC clock input timing diagram for SDR50 mode.

Figure 64. eSDHC SDR50 mode clock input timing diagram

This figure provides the eSDHC input AC timing diagram for SDR50 mode.

Figure 65. eSDHC SDR50 mode input AC timing diagram

This figure provides the eSDHC output timing diagram for SDR50 mode.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Figure 66. eSDHC SDR50 mode output timing diagram

This table provides the eSDHC AC timing specifications for DDR50/DDR mode.

Table 97. eSDHC AC timing specifications (DDR50/DDR)³

Parameter	Symbol	Min	Max	Unit	Notes
SDHC_CLK clock frequency	f _{SHCK}	-	-	MHz	-
SD/SDIO DDR50 mode			50		
eMMC DDR mode			52		
SDHC_CLK duty cycle	t _{SHSCKH} / t _{SHSCK}	47	53	%	
Skew between SDHC_CLK_SYNC_OUT and SDHC_CLK	-	-0.1	0.1	ns	-
SDHC_CLK clock rise and fall times	t _{SHCKR/}	-	-	ns	1
SD/SDIO DDR50 mode	t _{SHCKF}		4		2
eMMC DDR mode			2		
Input setup times: SDHC_DATx to	t _{SHDIVKH}	-	-	ns	1, 4
SDHC_CLK_SYNC_IN		2.0			2
SD/SDIO DDR50 mode		1.6			
eMMC DDR mode					
Input hold times: SDHC_DATx to	t _{SHDIXKH}	-	-	ns	1
SDHC_CLK_SYNC_IN		1.1			2
SD/SDIO DDR50 mode		1.1			
eMMC DDR mode					
Output hold time: SDHC_CLK to SDHC_DATx valid,	t _{SHDKHOX}	-	-	ns	1
SDHC_DATx_DIR		1.7			2
SD/SDIO DDR50 mode		3.4			
eMMC DDR mode					
Output delay time: SDHC_CLK to SDHC_DATx valid,	t _{SHDKHOV}	-	-	ns	1
SDHC_DATx_DIR			6.1		2

Table continues on the next page...

Table 97. eSDHC AC timing specifications (DDR50/DDR)³ (continued)

Parameter	Symbol	Min	Max	Unit	Notes
SD/SDIO DDR50 mode			6.2		
eMMC DDR mode					
Input setup times: SDHC_CMD to SDHC_CLK_SYNC_IN	tshcivkh	5.3	-	ns	1
SD/SDIO DDR50 mode		4.5			_
eMMC DDR mode		7.5			
Input hold times: SDHC_CMD to SDHC_CLK_SYNC_IN	t _{SHCIXKH}	-	-	ns	1
SD/SDIO DDR50 mode		1.1			2
eMMC DDR mode		1.1			
Output hold time: SDHC_CLK to SDHC_CMD valid, SDHC_CMD_DIR	tshckhox	1.7	-	ns	1
SD/SDIO DDR50 mode		3.9			-
eMMC DDR mode		0.0			
Output delay time: SDHC_CLK to SDHC_CMD valid, SDHC_CMD_DIR	tshckhov	-	- 13.1	ns	1
SD/SDIO DDR50 mode			15.3		_
eMMC DDR mode			13.3		

Notes:

This figure provides the eSDHC DDR50/DDR mode input AC timing diagram.

^{1.} $C_{CARD} \le 10 \text{ pF}$, (1 card).

^{2.} $C_L = C_{BUS} + C_{HOST} + C_{CARD} \le 20$ pF for MMC, ≤ 25 pF for Input Data of DDR50, ≤ 30 pF for Input CMD of DDR50.

^{3.} At recommended operating conditions with $EV_{DD} = 1.8$ or 3.3 V for eMMC DDR mode, $EV_{DD} = 1.8$ V for DDR50, see Table 4.

Figure 67. eSDHC DDR50/DDR mode input AC timing diagram

This figure provides the eSDHC DDR50/DDR mode output AC timing diagram.

Figure 68. eSDHC DDR50/DDR mode output AC timing diagram

This table provides the eSDHC AC timing specifications for SDR104/eMMC HS200 mode.

Table 98. eSDHC AC timing specifications (SDR104/eMMC HS200)

Para	meter	Symbol ¹	Min	Max	Unit	Notes
SDHC_CLK clock frequency	SD/SDIO SDR104 mode	f _{SHCK}	-	167	MHz	1
	eMMC HS200 mode			167		-
SDHC_CLK duty cycle		t _{SHSCKH} /t _{SHSCK}	40	60	%	
SDHC_CLK clock rise and fall ti	mes	t _{SHCKR} /t _{SHCKF}	-	1	ns	1
Output hold time: SDHC_CLK to SDHC_CMD, SDHC_DATx valid, SDHC_CMD_DIR, SDHC_DATx_DIR	SD/SDIO SDR104 mode	T _{SHKHOX}	1.58	-	ns	1
	eMMC HS200 mode		1.6			
Output delay time: SDHC_CLK	SD/SDIO SDR104 mode	T _{SHKHOV}	-	3.94	ns	1
to SDHC_CMD, SDHC_DATx valid, SDHC_CMD_DIR, SDHC_DATx_DIR	eMMC HS200 mode			3.92		
Input data window (UI)	SD/SDIO SDR104 mode	t _{SHIDV}	0.5	-	Unit	1
	eMMC HS200 mode		0.475	Int	Interval	

Notes:

- 1. $C_L = C_{BUS} + C_{HOST} + C_{CARD} \le 15pF$.
- 2. At recommended operating conditions with EV_{DD} =1.8 V, see Table 4.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

This figure provides the eSDHC SDR104/HS200 mode timing diagram.

Figure 69. eSDHC SDR104/HS200 mode timing diagram

3.19 JTAG controller

This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface.

3.19.1 JTAG DC electrical characteristics

This table provides the JTAG DC electrical characteristics.

Table 99. JTAG DC electrical characteristics $(OV_{DD} = 1.8V)^3$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x OV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.3 x OV _{DD}	V	1

Table continues on the next page...

Table 99. JTAG DC electrical characteristics $(OV_{DD} = 1.8V)^3$ (continued)

Parameter	Symbol	Min	Max	Unit	Notes
Input current (OV _{IN} = 0 V or OV _{IN} = OV _{DD})	I _{IN}	_	-100/+50	μΑ	2, 4
Output high voltage (OV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	_	V	_
Output low voltage (OV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	_	0.4	V	_

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max OV_{IN} values found in Table 4.
- 2. The symbol V_{IN} , in this case, represents the OV_{IN} symbol found in Table 4.
- 3. For recommended operating conditions, see Table 4.
- 4. Per IEEE Std. 1149.1 specification, TDI, TMS, and TRST_B have internal pull-up.

JTAG AC timing specifications

This table provides the JTAG AC timing specifications as defined in Figure 70, Figure 71, Figure 72, and Figure 73.

Table 100. JTAG AC timing specifications⁴

Para	meter	Symbol ¹	Min	Max	Unit	Notes
JTAG external clock frequency	of operation	f _{JTG}	0	33.3	MHz	_
JTAG external clock cycle time)	t _{JTG}	30	_	ns	_
JTAG external clock pulse wid	th measured at 1.4 V	t _{JTKHKL}	15	_	ns	_
JTAG external clock rise and fall times		t _{JTGR} /t _{JTGF}	0	2	ns	_
TRST_B assert time		t _{TRST}	25	_	ns	2
Input setup times		t _{JTDVKH}	4	_	ns	_
Input hold times		t _{JTDXKH}	10	_	ns	_
Output valid times	Boundary-scan data	t _{JTKLDV}	_	15	ns	3
	TDO		_	10		
Output hold times		t _{JTKLDX}	0	_	ns	3

Notes:

- $1. The \ symbols \ used for \ timing \ specifications \ follow \ these \ patterns: \ t_{(first \ two \ letters \ of \ functional \ block)(signal)(state)(reference)(state)} \ for \ timing \ specifications \ follow \ these \ patterns: \ t_{(first \ two \ letters \ of \ functional \ block)(signal)(state)(reference)(state)} \ for \ timing \ specifications \ follow \ these \ patterns: \ t_{(first \ two \ letters \ of \ functional \ block)(signal)(state)(reference)(state)} \ for \ timing \ specifications \ follow \ these \ patterns: \ t_{(first \ two \ letters \ of \ functional \ block)(signal)(state)(reference)(state)} \ for \ timing \ specifications \ follow \ the \ times \ t_{(first \ two \ letters \ of \ functional \ block)(signal)(state)(reference)(state)} \ for \ times \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ functional \ block)} \ for \ t_{(first \ two \ letters \ of \ to \ block)} \ for \ t_{(first \ two \ to \ to \ t_{(first \ two \ t_{(first \ two \ t_{(first \ two \ t_{(first$ inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, tutto, symbolizes JTAG timing (JT) with respect to the time data input signals (D) reaching the invalid state (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular function. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2.TRST_B is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 3. All outputs are measured from the midpoint voltage of the falling edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 4. For recommended operating conditions, see Table 4.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018 NXP Semiconductors 145

This figure shows the AC test load for TDO and the boundary-scan outputs of the device.

Figure 70. AC test load for the JTAG interface

This figure shows the JTAG clock input timing diagram.

Figure 71. JTAG clock input timing diagram

This figure shows the TRST_B timing diagram.

Figure 72. TRST_B timing diagram

This figure shows the boundary-scan timing diagram.

Figure 73. Boundary-scan timing diagram

3.20 I²C interface

This section describes the DC and AC electrical characteristics for the I²C interfaces.

3.20.1 I²C DC electrical characteristics

This table provides the DC electrical characteristics for the I^2C interfaces operating at $DV_{DD} = 3.3 \text{ V}$.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x DV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x DV _{DD}	V	1
Output low voltage	V _{OL}	_	0.4	V	2
$(DV_{DD} = min, I_{OL} = 3 mA)$					
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between 0.1 x DV_{DD} and 0.9 x DV_{DD} (max)	II	-50	50	μΑ	-
Capacitance for each I/O pin	Cı	_	10	pF	_

Table 101. I^2C DC electrical characteristics $(DV_{DD} = 3.3 \text{ V})^4$

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max DV_{IN} values found in Table 4.
- 2. The output voltage (open drain or open collector) condition = 3 mA sink current.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 101. I²C DC electrical characteristics (DV_{DD} = 3.3 V)⁴

Parameter	Symbol	Min	Max	Unit	Notes
3. See the chip reference manual for information about the digital filter us	ed.				

^{4.} For recommended operating conditions, see Table 4.

This table provides the DC electrical characteristics for the I^2C interfaces operating at $DV_{DD} = 1.8 \text{ V}$.

Table 102. I^2C DC electrical characteristics $(DV_{DD} = 1.8 \text{ V})^5$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x DV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x DV _{DD}	V	1
Output low voltage (DV _{DD} = min, I _{OL} = 3 mA)	V _{OL}	0	0.36	V	2
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between 0.1 x DV $_{\rm DD}$ and 0.9 x DV $_{\rm DD}$ (max)	II	-50	50	μΑ	4
Capacitance for each I/O pin	Cı	_	10	pF	_

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max DV_{IN} values found in Table 4.
- 2. The output voltage (open drain or open collector) condition = 3 mA sink current.
- 3. See the chip reference manual for information about the digital filter used.
- 4. I/O pins obstruct the SDA and SCL lines if ${\sf DV_{DD}}$ is switched off.
- 5. For recommended operating conditions, see Table 4.

3.20.2 I²C AC timing specifications

This table provides the AC timing specifications for the I²C interfaces.

Table 103. I²C AC timing specifications⁵

Parameter	Symbol ¹	Min	Max	Unit	Notes
SCL clock frequency	f _{I2C}	0	400	kHz	2
Low period of the SCL clock	t _{I2CL}	1.3	_	μs	_
High period of the SCL clock	t _{I2CH}	0.6	_	μs	_
Setup time for a repeated START condition	t _{I2SVKH}	0.6	_	μs	_
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	_	μs	_
Data setup time	t _{I2DVKH}	100	_	ns	_

Table continues on the next page...

Table 103. I²C AC timing specifications⁵ (continued)

Parameter		Symbol ¹	Min	Max	Unit	Notes
Data input hold time	CBUS compatible masters	t _{l2DXKL}	_	_	μs	3
	I ² C bus devices		0	_		
Data output delay time	•	t _{I2OVKL}	_	0.9	μs	4
Setup time for STOP condition		t _{I2PVKH}	0.6	_	μs	_
Bus free time between a S	TOP and START condition	t _{I2KHDX}	1.3	_	μs	_
Noise margin at the LOW level for each connected device (including hysteresis)		V _{NL}	0.1 x DV _{DD}	_	V	_
Noise margin at the HIGH level for each connected device (including hysteresis)		V _{NH}	0.2 x DV _{DD}	_	V	_
Capacitive load for each b	us line	Cb	_	400	pF	_

Notes:

- 1. The symbols used for timing specifications herein follow these patterns: $t_{(first\ two\ letters\ of\ functional\ block)(signal)(state)(reference)(state)}$ for inputs and $t_{(first\ two\ letters\ of\ functional\ block)(reference)(state)(signal)(state)}$ for outputs. For example, t_{I2DVKH} symbolizes I^2C timing (I2) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2SXKL} symbolizes I^2C timing (I2) for the time that the data with respect to the START condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I^2C timing (I2) for the time that the data with respect to the STOP condition (P) reaches the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time.
- 2. The requirements for I^2C frequency calculation must be followed. See *Determining the I^2C Frequency Divider Ratio for SCL* (AN2919).
- 3. As a transmitter, the chip provides a delay time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of a START or STOP condition. When the chip acts as the I^2 C bus master while transmitting, it drives both SCL and SDA. As long as the load on SCL and SDA are balanced, the chip does not generate an unintended START or STOP condition. Therefore, the 300 ns SDA output delay time is not a concern. If, under some rare condition, the 300 ns SDA output delay time is required for the chip as transmitter, see *Determining the I^2C Frequency Divider Ratio for SCL* (AN2919).
- 4. The maximum t_{I2OVKL} has to be met only if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 5. For recommended operating conditions, see Table 4.

This figure shows the AC test load for the I^2C .

Figure 74. I²C AC test load

This figure shows the AC timing diagram for the I²C bus.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Figure 75. I²C bus AC timing diagram

3.21 GPIO interface

This section describes the DC and AC electrical characteristics for the GPIO interface. There are GPIO pins on various power supplies in this device.

3.21.1 GPIO DC electrical characteristics

This table provides the DC electrical characteristics for GPIO pins operating at $EV_{DD} = 3.3 \text{ V}$.

Table 104.	GPIO DC electrical characteristics $(EV_{DD} = 3.3 \text{ V})^3$
-------------------	--

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x EV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x EV _{DD}	V	1
Input current (V _{IN} = 0 V or V _{IN} = LV _{DD)}	I _{IN}	_	±50	μΑ	2
Output high voltage	V _{OH}	2.4	_	V	_
$(EV_{DD} = min, I_{OH} = -2 mA)$					
Output low voltage	V _{OL}	_	0.4	V	_
$(EV_{DD} = min, I_{OL} = 2 mA)$					

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max EV_{IN} values found in Table 4.
- 2. The symbol V_{IN} , in this case, represents the EV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

This table provides the DC electrical characteristics for GPIO pins operating at $TV_{DD}/LV_{DD} = 2.5 \text{ V}$.

Table 105. GPIO DC electrical characteristics $(TV_{DD}/LV_{DD} = 2.5 \text{ V})^3$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x T/LV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x T/LV _{DD}	V	1
Input current (V _{IN} = 0 V or V _{IN} = T/LV _{DD)}	I _{IN}	_	±50	μΑ	2
Output high voltage	V _{OH}	2.0	_	V	_
$(T/LV_{DD} = min, I_{OH} = -2 mA)$					
Output low voltage	V _{OL}	_	0.4	V	_
$(T/LV_{DD} = min, I_{OL} = 2 mA)$					

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max L/TV_{IN} values found in Table 4.
- 2. The symbol V_{IN} , in this case, represents the L/TV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

This table provides the DC electrical characteristics for GPIO pins operating at $LV_{DD}/EV_{DD}/DV_{DD}/TV_{DD}/OV_{DD} = 1.8 \text{ V}$.

Table 106. GPIO DC electrical characteristics $(LV_{DD}/EV_{DD}/DV_{DD}/TV_{DD}/OV_{DD} = 1.8 \text{ V})^3$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x L/E/D/T/OV _{DD}		V	1
Input low voltage	V _{IL}	_	0.2 x L/E/D/ TV _{DD}	V	1
Input low voltage	V _{IL}	_	0.3 x OV _{DD}	V	1
Input current ($V_{IN} = 0 \text{ V or } V_{IN} = L/E/D/T/OV_{DD}$)	I _{IN}		±50	μΑ	2
Output high voltage	V _{OH}	1.35	_	V	_
$(L/E/D/T/OV_{DD} = min, I_{OH} = -0.5 mA)$					
Output low voltage	V _{OL}	<u> </u>	0.4	V	_
$(L/E/D/T/OV_{DD} = min, I_{OL} = 0.5 mA)$					

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max $LV_{IN}/EV_{IN}/DV_{IN}/TV_{IN}/OV_{IN}$ values found in Table 4.
- 2. The symbol V_{IN}, in this case, represents the LV_{IN}/EV_{IN}/DV_{IN}/TV_{IN}/OV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

This table provides the DC electrical characteristics for GPIO pins operating at $TV_{DD} = 1.2 \text{ V}$.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 107. GPIO DC electrical characteristics $(TV_{DD} = 1.2 \text{ V})^3$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x TV _{DD}	_	V	
Input low voltage	V _{IL}	_	0.2 x TV _{DD}	V	
Output low current current (V _{OL} = 0.2 V)	I _{OL}	4		mA	
Output high voltage	V _{OH}	1.0	_	V	_
$(TV_{DD} = min, I_{OH} = -100uA)$					
Output low voltage	V _{OL}	_	0.2	V	_
$(TV_{DD} = min, I_{OL} = 100uA)$					
Input Capacitance	C _{IN}	_	10	pF	_

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max TV_{IN} values found in Table 4.
- 2. The symbol V_{IN} , in this case, represents the TV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

3.21.2 GPIO AC timing specifications

This table provides the GPIO input and output AC timing specifications.

Table 108. GPIO Input AC timing specifications

Parameter	Symbol	Min	Unit	Notes
GPIO inputs-minimum pulse width	t _{PIWID}	20	ns	1

Notes:

- 1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least tPIWID to ensure proper operation.
- 2. For recommended operating conditions, see Table 4.

This figure provides the AC test load for the GPIO.

Figure 76. GPIO AC test load

3.22 GIC interface

This section describes the DC and AC electrical characteristics for the GIC interface.

3.22.1 GIC DC electrical characteristics

This table provides the DC electrical characteristics for GIC pins operating at $DV_{DD} = 3.3 \text{ V}$.

Table 109. GIC DC electrical characteristics $(DV_{DD} = 3.3 \text{ V})^3$

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x DV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x DV _{DD}	V	1
Input current (V _{IN} = 0 V or V _{IN} = DV _{DD)}	I _{IN}	_	±50	μΑ	2
Output high voltage	V _{OH}	2.4	_	V	_
$(DV_{DD} = min, I_{OH} = -2 mA)$					
Output low voltage	V _{OL}	_	0.4	V	_
$(DV_{DD} = min, I_{OL} = 2 mA)$					

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max DV_{IN} values found in Table 4.
- 2. The symbol V_{IN} , in this case, represents the DV_{IN} symbol referenced in Table 4.
- 3. For recommended operating conditions, see Table 4.

This table provides the GIC DC electrical characteristics when $LV_{DD} = 2.5 \text{ V}$.

Table 110. GIC DC electrical characteristics $(LV_{DD} = 2.5 \text{ V})^4$

Parameters	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x LV _{DD}	_	V	1
Input low voltage	V _{IL}	_	0.2 x LV _{DD}	V	1
Input current (LV _{IN} = 0 or LV _{IN} = LV _{DD})	I _{IN}	_	±50	μΑ	2, 3
Output high voltage (LV _{DD} = min, I _{OH} = -1.0 mA)	V _{OH}	2.00	_	V	_
Output low voltage (LV _{DD} = min, I _{OL} = 1.0 mA)	V _{OL}	_	0.40	V	_

Notes:

- 1. The min V_{IL} and max V_{IH} values are based on the respective min and max LV_{IN} values found in Table 4.
- 2. The symbol V_{IN} , in this case, represents the LV_{IN} symbols referenced in Table 4.
- 3. The symbol LV_{DD} , in this case, represents the LV_{DD} symbols referenced in Table 4.
- 4. For recommended operating conditions, see Table 4.

This table provides the GIC DC electrical characteristics when $LV_{DD}/DV_{DD}/OV_{DD} = 1.8$ V.

Table 111. GIC DC electrical characteristics (LV_{DD}/ DV_{DD}/ OV_{DD} = 1.8 V)⁴

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	0.7 x L/D/OV _{DD}	_	٧	1
Input low voltage	V _{IL}	_	0.2 x L/DV _{DD}	٧	1
Input low voltage	V _{IL}	_	0.3 x OV _{DD}	٧	1
Input current (L/D/OV _{IN} = 0 V or L/D/OV _{IN} = L/D/OV _{DD})	I _{IN}	_	±50	μΑ	2, 3
Output high voltage (L/D/OV _{DD} = min, I _{OH} = -0.5 mA)	V _{OH}	1.35	_	V	3
Output low voltage (L/D/OV _{DD} = min, I _{OL} = 0.5 mA)	V _{OL}	_	0.4	V	3

Notes:

- 1. The min V_{IL}and max V_{IH} values are based on the min and max L/D/OV_{IN} respective values found in Table 4.
- 2. The symbol L/D/OV_{IN} represents the L/D/OV_{IN} symbols referenced in Table 4.
- 3. The symbol L/D/OV_{DD}, in this case, represents the L/D/OV_{DD} symbols referenced in Table 4.
- 4. For recommended operating conditions, see Table 4.

3.22.2 GIC AC timing specifications

This table provides the GIC input and output AC timing specifications.

Table 112. GIC input AC timing specifications²

Characteristic	Symbol	Min	Max	Unit	Notes
GIC inputs-minimum pulse width	t _{PIWID}	3	-	SYSCLKs	1

^{1.} GIC inputs and outputs are asynchronous to any visible clock. GIC outputs must be synchronized before use by any external synchronous logic. GIC inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation when working in edge triggered mode.

3.23 High-speed serial interfaces (HSSI)

The chip features a Serializer/Deserializer (SerDes) interface to be used for high-speed serial interconnect applications. The SerDes interface can be used for PCI Express, SGMII, and serial ATA (SATA) data transfers.

^{2.} For recommended operating conditions, see Table 4.

This section describes the most common portion of the SerDes DC electrical specifications: the DC requirement for SerDes reference clocks. The SerDes data lane's transmitter (Tx) and receiver (Rx) reference circuits are also described.

3.23.1 Signal terms definitions

The SerDes utilizes differential signaling to transfer data across the serial link. This section defines the terms that are used in the description and specification of differential signals.

This figure shows how the signals are defined. For illustration purposes only, one SerDes lane is used in the description. This figure shows the waveform for either a transmitter output (SD_TXn_P and SD_TXn_N) or a receiver input (SD_RXn_P and SD_RXn_N). Each signal swings between A volts and B volts where A > B.

Figure 77. Differential voltage definitions for transmitter or receiver

Using this waveform, the definitions are as described in the following list. To simplify the illustration, the definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment:

Single-Ended Swing

The transmitter output signals and the receiver input signals SD_TXn_P , SD_TXn_N , SD_RXn_P and SD_RXn_N each have a peak-to-peak swing of A - B volts. This is also referred to as each signal wire's single-ended swing.

Differential Output Voltage, VOD (or Differential Output Swing)

The differential output voltage (or swing) of the transmitter, V_{OD} , is defined as the difference of the two complementary output voltages: $V_{SD_TXn_P} - V_{SD_TXn_N}$. The V_{OD} value can be either positive or negative.

Differential Input Voltage, V_{ID} (or Differential Input Swing)

The differential input voltage (or swing) of the receiver, V_{ID} , is defined as the difference of the two complementary input voltages: $V_{SD_RXn_P}$ - $V_{SD_RXn_N}$. The V_{ID} value can be either positive or negative.

Differential Peak Voltage, VDIFFD

The peak value of the differential transmitter output signal or the differential receiver input signal is defined as the differential peak voltage, $V_{DIFFp} = |A - B|$ volts.

Differential Peak-to-Peak, $V_{DIFFp-p}$

Because the differential output signal of the transmitter and the differential input signal of the receiver each range from A - B to -(A - B) volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as differential peak-to-peak voltage, $V_{DIFFp-p} = 2 \times V_{DIFFp} = 2 \times |(A - B)|$ volts, which is twice the differential swing in amplitude, or twice the differential peak. For example, the output differential peak-to-peak voltage can also be calculated as $V_{TX-DIFFp-p} = 2 \times |V_{OD}|$.

Differential Waveform

The differential waveform is constructed by subtracting the inverting signal (SD_TX*n*_N, for example) from the non-inverting signal (SD_TX*n*_P, for example) within a differential pair. There is only one signal trace curve in a differential waveform. The voltage represented in the differential waveform is not referenced to ground. See Figure 82 as an example for differential waveform.

Common Mode Voltage, V_{cm}

The common mode voltage is equal to half of the sum of the voltages between each conductor of a balanced interchange circuit and ground. In this example, for SerDes output, $V_{cm_out} = (V_{SD_TXn_P} + V_{SD_TXn_N}) \div 2 = (A + B) \div 2$, which is the arithmetic mean of the two complementary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component's output to the other's input. It may be different between the receiver input and driver output circuits within the same component. It is also referred to as the DC offset on some occasions.

To illustrate these definitions using real values, consider the example of a current mode logic (CML) transmitter that has a common mode voltage of 2.25 V and outputs, TD and TD_B. If these outputs have a swing from 2.0 V to 2.5 V, the peak-to-peak voltage swing of each signal (TD or TD_B) is 500 mV p-p, which is referred to as the single-ended swing for each signal. Because the differential signaling environment is fully symmetrical in this example, the transmitter output's differential swing ($V_{\rm OD}$) has the same amplitude as each signal's single-ended swing. The differential output signal ranges between 500 mV and -500 mV. In other words, $V_{\rm OD}$ is 500 mV in one phase and -500 mV in the other phase. The peak differential voltage ($V_{\rm DIFFp}$) is 500 mV. The peak-to-peak differential voltage ($V_{\rm DIFFp-p}$) is 1000 mV p-p.

3.23.2 SerDes reference clocks

The SerDes reference clock inputs are applied to an internal phase-locked loop (PLL) whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clocks inputs are SDn_REF_CLK[1:2]_P and SDn_REF_CLK[1:2]_N.

SerDes may be used for various combinations of the following IP block based on the RCW Configuration field SRDS_PRTCLn:

- SGMII (1.25 Gbit/s or 3.125 Gbit/s), QSGMII (5 Gbit/s)
- XFI (10 Gbit/s)
- PCIe (2.5 Gbit/s, 5 Gbit/s, and 8 Gbit/s)
- SATA (1.5 Gbit/s, 3.0 Gbit/s, and 6.0 Gbit/s)

The following sections describe the SerDes reference clock requirements and provide application information.

3.23.2.1 SerDes spread-spectrum clock source recommendations

SD*n*_REF_CLK*n*_P and SD*n*_REF_CLK*n*_N are designed to work with spread-spectrum clocking for the PCI Express protocol only with the spreading specification defined in Table 113. When using spread-spectrum clocking for PCI Express, both ends of the link partners should use the same reference clock. For best results, a source without significant unintended modulation must be used.

The SerDes transmitter does not support spread-spectrum clocking for the SATA protocol. The SerDes receiver does support spread-spectrum clocking on receive, which means the SerDes receiver can receive data correctly from a SATA serial link partner using spread-spectrum clocking.

Spread-spectrum clocking cannot be used if the same SerDes reference clock is shared with other non-spread-spectrum-supported protocols. For example, if spread-spectrum clocking is desired on a SerDes reference clock for the PCI Express protocol and the same reference clock is used for any other protocol, such as SATA or SGMII because of the SerDes lane usage mapping option, spread-spectrum clocking cannot be used at all.

This table provides the source recommendations for SerDes spread-spectrum clocking.

Table 113. SerDes spread-spectrum clock source recommendations ¹

Parameter	Min	Max	Unit	Notes
Frequency modulation	30	33	kHz	_
Frequency spread	+0	-0.5	%	2

Notes:

1. At recommended operating conditions. See Table 4.

Table 113. SerDes spread-spectrum clock source recommendations ¹

Parameter	Min	Max	Unit	Notes
2. Only down-spreading is allowed.				

3.23.2.2 SerDes reference clock receiver characteristics

This figure shows a receiver reference diagram of the SerDes reference clocks.

Figure 78. Receiver of SerDes reference clocks

The characteristics of the clock signals are as follows:

- The SerDes receiver's core power supply voltage requirements (SV_{DD}n) are as specified in Table 4.
- The SerDes reference clock receiver reference circuit structure is as follows:
 - The SD*n*_REF_CLK*n*_P and SD*n*_REF_CLK*n*_N are internally AC-coupled differential inputs as shown in Figure 78. Each differential clock input (SD*n*_REF_CLK*n*_P or SD*n*_REF_CLK*n*_N) has on-chip 50-Ω termination to SGND*n* followed by on-chip AC-coupling.
 - The external reference clock driver must be able to drive this termination.
 - The SerDes reference clock input can be either differential or single-ended. See the differential mode and single-ended mode descriptions in Signal terms definitions for detailed requirements.
- The maximum average current requirement also determines the common mode voltage range.
 - When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA because the input is AC-coupled on-chip.

- This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V ÷ 50 = 8 mA) while the minimum common mode input level is 0.1 V above SGNDn. For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 mA to 16 mA (0-0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.
- If the device driving the SDn_REF_CLKn_P and SDn_REF_CLKn_N inputs cannot drive 50 Ω to SGNDn DC or the drive strength of the clock driver chip exceeds the maximum input current limitations, it must be AC-coupled off-chip.
- The input amplitude requirement is described in detail in the following sections.

3.23.2.3 DC-level requirements for SerDes reference clocks

The DC-level requirements for the SerDes reference clock inputs are different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs, as described below:

- Differential Mode
 - The input amplitude of the differential clock must be between 400 mV and 1600 mV differential peak-to-peak (or between 200 mV and 800 mV differential peak). In other words, each signal wire of the differential pair must have a single-ended swing of less than 800 mV and greater than 200 mV. This requirement is same for both external DC-coupled or AC-coupled connection.
 - For an external DC-coupled connection, as described in Figure 78, the maximum average current requirements set the requirement for average voltage (common mode voltage) as between 100 mV and 400 mV.
 - This figure shows the SerDes reference clock input requirement for a DC-coupled connection scheme.

Figure 79. Differential reference clock input DC requirements (external DC-coupled)

• For an external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Because the external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock receiver

operate in different common mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to SGNDn. Each signal wire of the differential inputs is allowed to swing below and above the common mode voltage (SGNDn).

• This figure shows the SerDes reference clock input requirement for an ACcoupled connection scheme.

Figure 80. Differential reference clock input DC requirements (external AC-coupled)

Single-ended mode

160

- The reference clock can also be single-ended. The SDn_REF_CLKn_P input amplitude (single-ended swing) must be between 400 mV and 800 mV peak-topeak (from V_{MIN} to V_{MAX}) with SDn_REF_CLKn_N either left unconnected or tied to ground.
- To meet the input amplitude requirement, the reference clock inputs may need to be externally DC- or AC-coupled. For the best noise performance, the reference of the clock could be DC- or AC-coupled into the unused phase (SDn_REF_CLKn_N) through the same source impedance as the clock input $(SDn_REF_CLKn_P)$ in use.
- The SDn REF CLKn P input average voltage must be between 200 and 400 mV.
- This figure shows the SerDes reference clock input requirement for single-ended signaling mode.

Figure 81. Single-ended reference clock input DC requirements

NXP Semiconductors

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

3.23.2.4 AC requirements for SerDes reference clocks

This table provides the AC requirements for SerDes reference clocks for PCI Express protocols running at data rates up to 5 Gbit/s.

This includes PCI Express (2.5 GT/s and 5 GT/s), SGMII (1.25 Gbit/s), and SATA (1.5 Gbit/s, 3.0 Gbit/s, and 6.0 Gbit/s). SerDes reference clocks need to be verified by the customer's application design.

Table 114. SDn_REF_CLKn_P and SDn_REF_CLKn_N input clock requirements

Parameter	Symbol	Min	Тур	Max	Unit	Notes
SDn_REF_CLKn_P/SDn_REF_CLKn_N frequency range	t _{CLK_REF}	_	100/125/156.25	_	MHz	2
SDn_REF_CLKn_P/SDn_REF_CLKn_N clock frequency tolerance	t _{CLK_TOL}	-300	_	300	ppm	3
SDn_REF_CLKn_P/SDn_REF_CLKn_N clock frequency tolerance	t _{CLK_TOL}	-100	_	100	ppm	4
SDn_REF_CLKn_P/SDn_REF_CLKn_N reference clock duty cycle	t _{CLK_DUTY}	40	50	60	%	5
SDn_REF_CLKn_P/SDn_REF_CLKn_N max deterministic peak-to-peak jitter at 10 ⁻⁶ BER	t _{CLK_DJ}	_	_	42	ps	_
SDn_REF_CLKn_P/SDn_REF_CLKn_N total reference clock jitter at 10 ⁻⁶ BER (peak-to-peak jitter at refClk input)	t _{CLK_TJ}	_	_	86	ps	6
SDn_REF_CLKn_P/SDn_REF_CLKn_N 10 kHz to 1.5 MHz RMS jitter	t _{REFCLK-LF-RMS}	_	_	3	ps RMS	7
SDn_REF_CLKn_P/SDn_REF_CLKn_N > 1.5 MHz to Nyquist RMS jitter	t _{REFCLK-HF-RMS}	_	_	3.1	ps RMS	7
SDn_REF_CLKn_P/SDn_REF_CLKn_N RMS reference clock jitter	t _{REFCLK-RMS-DC}	_	_	1	ps RMS	8
SDn_REF_CLKn_P/SDn_REF_CLKn_N rising/ falling edge rate	t _{CLKRR} /t _{CLKFR}	0.6	_	4	V/ns	9
Differential input high voltage	V _{IH}	150	_	_	mV	5
Differential input low voltage	V _{IL}	_	_	-150	mV	5
Rising edge rate (SDn_REF_CLKn_P) to falling edge rate (SDn_REF_CLKn_N) matching	Rise-Fall Matching	_	_	20	%	10, 11

Notes:

- 1. For recommended operating conditions, see Table 4.
- 2. Caution: Only 100 and 125 have been tested. In-between values do not work correctly with the rest of the system.
- 3. For PCI Express (2.5, 5 and 8 GT/s).
- 4. For SGMII, 2.5GSGMII and QSGMII.
- 5. Measurement taken from differential waveform.
- 6. Limits from PCI Express CEM Rev 2.0.
- 7. For PCI Express 5 GT/s, per PCI Express base specification Rev 3.0.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 114. SDn_REF_CLKn_P and SDn_REF_CLKn_N input clock requirements

Parameter	Symbol Min	Тур Ма	x Unit Notes
-----------	------------	--------	--------------

^{8.} For PCI-Express-8 GT/s, per PCI-Express base specification rev 3.0

This table lists the AC requirements for SerDes reference clocks for protocols running at data rates greater than 8 GBaud.

This includes XFI (10.3125 GBaud), SerDes reference clocks to be guaranteed by the customer's application design.

Table 115. SD1_REF_CLKn_P/SD1_REF_CLKn_N input clock requirements ¹

Parameter	Symbol	Min	Тур	Max	Unit	Notes
SD1_REF_CLKn_P/SD1_REF_CLKn_N frequency range	t _{CLK_REF}	-	156.25	-	MHz	2
SD1_REF_CLKn_P/SD1_REF_CLKn_N clock frequency tolerance	t _{CLK_TOL}	-100	-	100	ppm	-
SD1_REF_CLKn_P/SD1_REF_CLKn_N reference clock duty cycle	t _{CLK_DUTY}	40	50	60	%	3
SD1_REF_CLKn_P/SD1_REF_CLKn_N single side band noise	@1 kHz	-	-	-85	dBC/Hz	4
SD1_REF_CLKn_P/SD1_REF_CLKn_N single side band noise	@10 kHz	-	-	-108	dBC/Hz	4
SD1_REF_CLKn_P/SD1_REF_CLKn_N single side band noise	@100 kHz	-	-	-128	dBC/Hz	4
SD1_REF_CLKn_P/SD1_REF_CLKn_N single side band noise	@1 MHz	-	-	-138	dBC/Hz	4
SD1_REF_CLKn_P/SD1_REF_CLKn_N single side band noise	@10MHz	-	-	-138	dBC/Hz	4
SD1_REF_CLKn_P/SD1_REF_CLKn_N random jitter (1.2 MHz to 15 MHz)	t _{CLK_RJ}	-	-	0.8	ps	-
SD1_REF_CLKn_P/SD1_REF_CLKn_N total reference clock jitter at 10 ⁻¹² BER (1.2 MHz to 15 MHz)	t _{CLK_TJ}	-	-	11	ps	-
SD1_REF_CLKn_P/SD1_REF_CLKn_N spurious noise (1.2 MHz to 15 MHz)	-	-	-	-75	dBC	-

Notes:

^{9.} Measured from -150 mV to +150 mV on the differential waveform (derived from SDn_REF_CLKn_P minus SDn_REF_CLKn_N). The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing. See Figure 82.

^{10.} Measurement taken from single-ended waveform.

^{11.} Matching applies to rising edge for SDn_REF_CLKn_P and falling edge rate for SDn_REF_CLKn_N. It is measured using ±75 mV window centered on the median cross point where SDn_REF_CLKn_P rising meets SDn_REF_CLKn_N falling. The median cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate calculations. The rise edge rate of SDn_REF_CLKn_P must be compared to the fall edge rate of SDn_REF_CLKn_N, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 83.

^{1.} For recommended operating conditions, see Table 4.

^{2.} Caution: Only 156.25 have been tested. In-between values do not work correctly with the rest of the system.

Table 115. SD1_REF_CLKn_P/SD1_REF_CLKn_N input clock requirements 1

Parameter	Symbol	Min	Тур	Max	Unit	Notes
3. Measurement taken from differential waveform.						

^{4.} Per XFP Spec. Rev 4.5, the Module Jitter Generation spec at XFI Optical Output is 10mUI (RMS) and 100 mUI (p-p). In the CDR mode the host is contributing 7 mUI (RMS) and 50 mUI (p-p) jitter.

This figure shows the differential measurement points for rise and fall time.

Figure 82. Differential measurement points for rise and fall time

This figure shows the single-ended measurement points for rise and fall time matching.

Figure 83. Single-ended measurement points for rise and fall time matching

3.23.3 SerDes transmitter and receiver reference circuits

This figure shows the reference circuits for SerDes data lane's transmitter and receiver.

Figure 84. SerDes transmitter and receiver reference circuits

The DC and AC specifications of the SerDes data lanes are defined in each interface protocol section below based on the application usage:

- PCI Express
- Serial ATA (SATA) interface
- SGMII interface
- XFI interface

Note that an external AC-coupling capacitor is required for the above serial transmission protocols with the capacitor value defined in the specification of each protocol section.

3.23.4 PCI Express

This section describes the clocking dependencies, as well as the DC and AC electrical specifications for the PCI Express bus.

3.23.4.1 Clocking dependencies

The ports on the two ends of a link must transmit data at a rate that is within 600 ppm of each other at all times. This is specified to allow bit rate clock sources with a ± 300 ppm tolerance.

The platform clock frequency must be greater than or equal to 400 MHz for PCI Express Gen2. For more details, see Minimum platform frequency requirements for high-speed interfaces.

3.23.4.2 PCI Express DC physical layer specifications

This section contains the DC specifications for the physical layer of PCI Express on this chip.

3.23.4.2.1 PCI Express DC physical layer transmitter specifications

This section discusses the PCI Express DC physical layer transmitter specifications for 2.5 GT/s, 5 GT/s, and 8 GT/s.

This table defines the PCI Express 2.0 (2.5 GT/s) DC specifications for the differential output at all transmitters. The parameters are specified at the component pins.

Table 116. PCI Express 2.0 (2.5 GT/s) differential transmitter output DC specifications $(XV_{DD} = 1.35 \text{ V})^1$

Parameter	Symbol	Min	Typical	Max	Units	Notes
Differential peak-to-peak output voltage	V _{TX-DIFFp-p}	800	1000	1200	mV	$V_{TX-DIFFp-p} = 2 x \mid V_{TX-D+} - V_{TX-D-} \mid$
De-emphasized differential output voltage (ratio)	V _{TX-DE-RATIO}	3.0	3.5	4.0	dB	Ratio of the $V_{TX-DIFFp-p}$ of the second and following bits after a transition divided by the $V_{TX-DIFFp-p}$ of the first bit after a transition.
DC differential transmitter impedance	Z _{TX-DIFF-DC}	80	100	120	Ω	Transmitter DC differential mode low Impedance
Transmitter DC impedance	Z _{TX-DC}	40	50	60	Ω	Required transmitter D+ as well as D- DC Impedance during all states
Notes:	•		-		•	,

Notes

This table defines the PCI Express 2.0 (5 GT/s) DC specifications for the differential output at all transmitters. The parameters are specified at the component pins.

Table 117. PCI Express 2.0 (5 GT/s) differential transmitter output DC specifications $(XV_{DD} = 1.35 \text{ V})^1$

Parameter	Symbol	Min	Typical	Max	Units	Notes
Differential peak-to-peak output voltage	V _{TX-DIFFp-p}	800	1000	1200	mV	$V_{TX-DIFFp-p} = 2 x V_{TX-D+} - V_{TX-D-} $
Low-power differential peak-to-peak output voltage	V _{TX-DIFFp-p_low}	400	500	1200	mV	$V_{TX-DIFFp-p} = 2 \times V_{TX-D+} - V_{TX-D-} $
De-emphasized differential output voltage (ratio)	V _{TX-DE-RATIO-3.5dB}	3.0	3.5	4.0	dB	Ratio of the $V_{TX\text{-DIFFp-p}}$ of the second and following bits after a transition divided by the $V_{TX\text{-DIFFp-p}}$ of the first bit after a transition.
De-emphasized differential output voltage (ratio)	V _{TX-DE-RATIO-6.0dB}	5.5	6.0	6.5	dB	Ratio of the $V_{TX\text{-DIFFp-p}}$ of the second and following bits after a transition divided by the $V_{TX\text{-DIFFp-p}}$ of the first bit after a transition.
DC differential transmitter impedance	Z _{TX-DIFF-DC}	80	100	120	Ω	Transmitter DC differential mode low impedance
Transmitter DC Impedance	Z _{TX-DC}	40	50	60	Ω	Required transmitter D+ as well as D- DC impedance during all states

Notes:

^{1.} For recommended operating conditions, see Table 4.

^{1.} For recommended operating conditions, see Table 4.

This table defines the PCI Express 3.0 (8 GT/s) DC characteristics for the differential output at all transmitters. The parameters are specified at the component pins.

Table 118. PCI Express 3.0 (8 GT/s) differential transmitter output DC characteristics $(XV_{DD} = 1.35 \text{ V})^3$

Parameter	Symbol	Min	Typical	Max	Units	Notes
Full swing transmitter voltage with no TX Eq	V _{TX-FS-NO-EQ}	800	_	1300	mVp-p	See Note 1.
Reduced swing transmitter voltage with no TX Eq	V _{TX-RS-NO-EQ}	400	_	1300	mV	See Note 1.
De-emphasized differential output voltage (ratio)	V _{TX-DE-RATIO-3.5dB}	3.0	3.5	4.0	dB	_
De-emphasized differential output voltage (ratio)	V _{TX-DE-RATIO-6.0dB}	5.5	6.0	6.5	dB	_
Minimum swing during EIEOS for full swing	V _{TX-EIEOS-FS}	250	_	_	mVp-p	See Note 2
Minimum swing during EIEOS for reduced swing	V _{TX-EIEOS-RS}	232	_	_	mVp-p	See Note 2
DC differential transmitter impedance	Z _{TX-DIFF-DC}	80	100	120	Ω	Transmitter DC differential mode low impedance
Transmitter DC Impedance	Z _{TX-DC}	40	50	60	Ω	Required transmitter D+ as well as D- DC impedance during all states

Notes:

3.23.4.2.2 PCI Express DC physical layer receiver specifications

This section discusses the PCI Express DC physical layer receiver specifications for 2.5 GT/s, 5 GT/s, and 8 GT/s.

This table defines the DC specifications for the PCI Express 2.0 (2.5 GT/s) differential input at all receivers. The parameters are specified at the component pins.

^{1.} Voltage measurements for $V_{TX-FS-NO-EQ}$ and $V_{TX-RS-NO-EQ}$ are made using the 64-zeroes/64-ones pattern in the compliance pattern.

^{2.} Voltage limits comprehend both full swing and reduced swing modes. The transmitter must reject any changes that would violate this specification. The maximum level is covered in the $V_{TX-FS-NO-EQ}$ measurement which represents the maximum peak voltage the transmitter can drive. The $V_{TX-EIEOS-FS}$ and $V_{TX-EIEOS-RS}$ voltage limits are imposed to guarantee the EIEOS threshold of 175 mV_{P-P} at the receiver pin. This parameter is measured using the actual EIEOS pattern that is part of the compliance pattern and then removing the ISI contribution of the breakout channel.

^{3.} For recommended operating conditions, see Table 4.

Table 119. PCI Express 2.0 (2.5 GT/s) differential receiver input DC specifications ⁴

Parameter	Symbol	Min	Тур	Max	Units	Notes
Differential input peak-to-peak voltage	V _{RX-DIFFp-p}	120	1000	1200	mV	$V_{RX-DIFFp-p} = 2 \times V_{RX-D+} - V_{RX-D-} $ See Note 1.
DC differential input impedance	Z _{RX-DIFF-DC}	80	100	120	Ω	Receiver DC differential mode impedance. See Note 2
DC input impedance	Z _{RX-DC}	40	50	60	Ω	Required receiver D+ as well as D- DC Impedance ($50 \pm 20\%$ tolerance). See Notes 1 and 2.
Powered down DC input impedance	Z _{RX-HIGH-IMP-DC}	50	-	-	kΩ	Required receiver D+ as well as D- DC Impedance when the receiver terminations do not have power. See Note 3.
Electrical idle detect threshold	V _{RX-IDLE-DET-}	65	-	175	mV	$V_{RX-IDLE-DET-DIFFp-p} = 2 \times V_{RX-D+} - V_{RX-D} $
						Measured at the package pins of the receiver

Notes:

- 1. Measured at the package pins with a test load of 50Ω to GND on each pin.
- 2. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
- 3. The receiver DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the receiver ground.
- 4. For recommended operating conditions, see Table 4.

This table defines the DC specifications for the PCI Express 2.0 (5 GT/s) differential input at all receivers. The parameters are specified at the component pins.

Table 120. PCI Express 2.0 (5 GT/s) differential receiver input DC specifications 4

Parameter	Symbol	Min	Тур	Max	Units	Notes
Differential input peak-to-peak voltage	V _{RX-DIFFp-p}	120	1000	1200	mV	$V_{RX-DIFFp-p} = 2 \times V_{RX-D+} - V_{RX-D-} $ See Note 1.
DC differential input impedance	Z _{RX-DIFF-DC}	80	100	120	Ω	Receiver DC differential mode impedance. See Note 2
DC input impedance	Z _{RX-DC}	40	50	60	Ω	Required receiver D+ as well as D- DC Impedance (50 ± 20% tolerance). See Notes 1 and 2.
Powered down DC input impedance	Z _{RX-HIGH-IMP-DC}	50	-	-	kΩ	Required receiver D+ as well as D-DC Impedance when the receiver terminations do not have power. See Note 3.
Electrical idle detect threshold	V _{RX-IDLE-DET-}	65	-	175	mV	$V_{RX-IDLE-DET-DIFFp-p} = 2 \times IV_{RX-D+} - V_{RX-D-}$
						Measured at the package pins of the receiver

Table continues on the next page...

QorIQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 120. PCI Express 2.0 (5 GT/s) differential receiver input DC specifications ⁴ (continued)

|--|

Notes:

- 1. Measured at the package pins with a test load of 50 Ω to GND on each pin.
- 2. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
- 3. The receiver DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the receiver ground.
- 4. For recommended operating conditions, see Table 4.

This table defines the DC characteristics for the PCI Express 3.0 (8 GT/s) differential input at all receivers. The parameters are specified at the component pins.

Table 121. PCI Express 3.0 (8 GT/s) differential receiver input DC characteristics 6

Characteristic	Symbol	Min	Тур	Max	Units	Notes
DC differential input impedance	Z _{RX-DIFF-DC}	80	100	120	Ω	Receiver DC differential mode impedance. See Note 2
DC input impedance	Z _{RX-DC}	40	50	60	Ω	Required receiver D+ as well as D-DC Impedance (50 \pm 20% tolerance). See Notes 1 and 2.
Powered down DC input impedance	Z _{RX-HIGH-IMP-DC}	50	_	_	kΩ	Required receiver D+ as well as D-DC Impedance when the receiver terminations do not have power. See Note 3.
Generator launch voltage	V _{RX-LAUNCH-8G}	_	800	_	mV	Measured at TP1 per PCI Express base spec. rev 3.0
Eye height (-20dB Channel)	V _{RX-SV-8G}	25	_	_	mV	Measured at TP2P per PCI Express base spec. rev 3.0. See Notes 4, 5
Eye height (-12dB Channel)	V _{RX-SV-8G}	50	_	_	mV	Measured at TP2P per PCI Express base spec. rev 3.0. See Notes 4, 5
Eye height (-3dB Channel)	V _{RX-SV-8G}	200	_	_	mV	Measured at TP2P per PCI Express base spec. rev 3.0. See Notes 4, 5
Electrical idle detect threshold	V _{RX-IDLE-DET-}	65	_	175	mV	$V_{RX-IDLE-DET-DIFFp-p} = 2 \times IV_{RX-D+} - V_{RX-D-}$
						Measured at the package pins of the receiver

Notes:

- 1. Measured at the package pins with a test load of 50 Ω to GND on each pin.
- 2. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
- 3. The receiver DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the receiver ground.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 121. PCI Express 3.0 (8 GT/s) differential receiver input DC characteristics 6

Characteristic	Symbol	IVIIN	7.	wax	Units	Notes
4. V _{RX-SV-8G} is tested at three different v	voltages to ensure	the rec	eiver dev	ice und	der test i	s capable of equalizing over a range

^{4.} V_{RX-SV-8G} is tested at three different voltages to ensure the receiver device under test is capable of equalizing over a range of channel loss profiles. The "SV" in the parameter names refers to stressed voltage.

3.23.4.3 PCI Express AC physical layer specifications

This section describes the AC specifications for the physical layer of PCI Express on this device.

3.23.4.3.1 PCI Express AC physical layer transmitter specifications

This section describes the PCI Express AC physical layer transmitter specifications for 2.5 GT/s, 5 GT/s, and 8 GT/s.

This table defines the PCI Express 2.0 (2.5 GT/s) AC specifications for the differential output at all transmitters. The parameters are specified at the component pins. The AC timing specifications do not include RefClk jitter.

Table 122. PCI Express 2.0 (2.5 GT/s) differential transmitter output AC specifications⁴

Parameter	Symbol	Min	Тур	Max	Units	Notes
Unit interval	UI	399.88	400	400.12	ps	Each UI is 400 ps ± 300 ppm. UI does not account for spread-spectrum clock dictated variations.
Minimum transmitter eye width	T _{TX-EYE}	0.75	-	-	UI	The maximum transmitter jitter can be derived as T _{TX-MAX-JITTER} = 1 - T _{TX-EYE} = 0.25 UI. Does not include spread-spectrum or RefCLK jitter. Includes device random jitter at 10 ⁻¹² . See Notes 1 and 2.
Maximum time between the jitter median and maximum deviation from the median	T _{TX-EYE-MEDIAN-} to- MAX-JITTER	-	-	0.125	UI	Jitter is defined as the measurement variation of the crossing points (V _{TX-DIFFp-p} = 0 V) in relation to a recovered transmitter UI. A recovered transmitter UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the transmitter UI. See Notes 1 and 2.
AC coupling capacitor	C _{TX}	75	-	200	nF	All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See Note 3.
Notes:						

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

^{5.} V_{RX-SV-8G} is referenced to TP2P and is obtained after post processing data captured at TP2.

^{6.} For recommended operating conditions, see Table 4.

Table 122. PCI Express 2.0 (2.5 GT/s) differential transmitter output AC specifications⁴

	Parameter	Symbol	Min	Тур	Max	Units	Notes
--	-----------	--------	-----	-----	-----	-------	-------

- 1. Specified at the measurement point into a timing and voltage test load as shown in Figure 86 and measured over any 250 consecutive transmitter UIs.
- 2. A $T_{TX-EYE} = 0.75$ UI provides for a total sum of deterministic and random jitter budget of $T_{TX-JITTER-MAX} = 0.25$ UI for the transmitter collected over any 250 consecutive transmitter UIs. The $T_{TX-EYE-MEDIAN-to-MAX-JITTER}$ median is less than half of the total transmitter jitter budget collected over any 250 consecutive transmitter UIs. It must be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.
- 3. The chip's SerDes transmitter does not have C_{TX} built-in. An external AC coupling capacitor is required.
- 4. For recommended operating conditions, see Table 4.

This table defines the PCI Express 2.0 (5 GT/s) AC specifications for the differential output at all transmitters. The parameters are specified at the component pins. The AC timing specifications do not include RefClk jitter.

Table 123. PCI Express 2.0 (5 GT/s) differential transmitter output AC specifications³

Parameter	Symbol	Min	Тур	Max	Units	Notes
Unit Interval	UI	199.94	200.00	200.06	ps	Each UI is 200 ps ± 300 ppm. UI does not account for spread-spectrum clock dictated variations.
Minimum transmitter eye width	T _{TX-EYE}	0.75	-	-	UI	The maximum transmitter jitter can be derived as: $T_{TX-MAX-JITTER} = 1 - T_{TX-EYE} = 0.25 UI$. See Note 1.
Transmitter deterministic jitter > 1.5 MHz	T _{TX-HF-DJ-DD}	-	-	0.15	UI	-
Transmitter RMS jitter < 1.5 MHz	T _{TX-LF-RMS}	-	3.0	-	ps	Reference input clock RMS jitter (< 1.5 MHz) at pin < 1 ps
AC coupling capacitor	C _{TX}	75	-	200	nF	All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See Note 2.

Notes:

- 1. Specified at the measurement point into a timing and voltage test load as shown in Figure 86 and measured over any 250 consecutive transmitter UIs.
- 2. The chip's SerDes transmitter does not have C_{TX} built-in. An external AC coupling capacitor is required.
- 3. For recommended operating conditions, see Table 4.

This table defines the PCI Express 3.0 (8 GT/s) AC specifications for the differential output at all transmitters. The parameters are specified at the component pins. The AC timing specifications do not include RefClk jitter.

Table 124. PCI Express 3.0 (8 GT/s) differential transmitter output AC specifications⁴

Parameter	Symbol	Min	Тур	Max	Units	Notes
Unit Interval	UI	124.9625	125.00	125.0375	ps	Each UI is 125 ps ± 300 ppm. UI does not account for spread-spectrum clock dictated variations.
Transmitter uncorrelated total jitter	T _{TX-UTJ}	_	_	31.25	ps p-p	_
Transmitter uncorrelated deterministic jitter	T _{TX-UDJ-DD}	_	_	12	ps p-p	_
Total uncorrelated pulse width jitter (PWJ)	T _{TX-UPW-TJ}	_	_	24	ps p-p	See Note 1, 2
Deterministic data dependent jitter (DjDD) uncorrelated pulse width jitter (PWJ)	T _{TX-UPW-DJDD}	_	_	10	ps p-p	See Note 1, 2
Data dependent jitter	T _{TX-DDJ}	_	_	18	ps p-p	See Note 2
AC coupling capacitor	C _{TX}	176		265	nF	All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See Note 3.

Notes:

- 1. PWJ parameters shall be measured after data dependent jitter (DDJ) separation.
- 2. Measured with optimized preset value after de-embedding to transmitter pin.
- 3. The chip's SerDes transmitter does not have C_{TX} built-in. An external AC coupling capacitor is required.
- 4. For recommended operating conditions, see Table 4.

3.23.4.3.2 PCI Express AC physical layer receiver specifications

This section discusses the PCI Express AC physical layer receiver specifications for 2.5 GT/s, 5 GT/s, and 8 GT/s.

This table defines the AC specifications for the PCI Express 2.0 (2.5 GT/s) differential input at all receivers. The parameters are specified at the component pins. The AC timing specifications do not include RefClk jitter.

Table 125. PCI Express 2.0 (2.5 GT/s) differential receiver input AC specifications⁴

Parameter	Symbol	Min	Тур	Max	Units	Notes
Unit Interval	UI	399.88	400.00	400.12	ps	Each UI is 400 ps ± 300 ppm. UI does not account for spread-spectrum clock dictated variations.
Minimum receiver eye width	T _{RX-EYE}	0.4	-	-		The maximum interconnect media and transmitter jitter that can be tolerated by the receiver can be derived as $T_{RX-MAX-JITTER} = 1 - T_{RX-EYE} = 0.6 UI$. See Notes 1 and 2.

Table continues on the next page...

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 125. PCI Express 2.0 (2.5 GT/s) differential receiver input AC specifications⁴ (continued)

Parameter	Symbol	Min	Тур	Max	Units	Notes
Maximum time between the jitter median and maximum deviation from the median.	T _{RX-EYE-MEDIAN-} to-MAX-JITTER	-	-	0.3	UI	Jitter is defined as the measurement variation of the crossing points (V _{RX-DIFFp-p} = 0 V) in relation to a recovered transmitter UI. A recovered transmitter UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the transmitter UI. See Notes 1, 2 and 3.

Notes:

- 1. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 86 must be used as the receiver device when taking measurements. If the clocks to the receiver and transmitter are not derived from the same reference clock, the transmitter UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.
- 2. A $T_{RX-EYE} = 0.40$ UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive transmitter UIs. It must be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the receiver and transmitter are not derived from the same reference clock, the transmitter UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram.
- 3. It is recommended that the recovered transmitter UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data.
- 4. For recommended operating conditions, see Table 4.

This table defines the AC specifications for the PCI Express 2.0 (5 GT/s) differential input at all receivers. The parameters are specified at the component pins. The AC timing specifications do not include RefClk jitter.

Table 126. PCI Express 2.0 (5 GT/s) differential receiver input AC specifications¹

Parameter	Symbol	Min	Тур	Max	Units	Notes
Unit Interval	UI	199.94	200.00	200.06	ps	Each UI is 200 ps ± 300 ppm. UI does not account for spread-spectrum clock dictated variations.
Max receiver inherent timing error	T _{RX-TJ-CC}	-	-	0.4	UI	The maximum inherent total timing error for common RefClk receiver architecture
Max receiver inherent deterministic timing error	T _{RX-DJ-DD-CC}	-	-	0.30	UI	The maximum inherent deterministic timing error for common RefClk receiver architecture

Note:

1. For recommended operating conditions, see Table 4.

173

This table defines the AC specifications for the PCI Express 3.0 (8 GT/s) differential input at all receivers. The parameters are specified at the component pins. The AC timing specifications do not include RefClk jitter.

Table 127. PCI Express 3.0 (8 GT/s) differential receiver input AC specifications⁵

Parameter	Symbol	Min	Тур	Max	Units	Notes
Unit Interval	UI	124.9625	125.00	125.0375	ps	Each UI is 125 ps ± 300 ppm. UI does not account for spread-spectrum clock dictated variations. See Note 1.
Eye Width at TP2P	T _{RX-SV-8G}	0.3	_	0.35	UI	See Note 1
Differential mode interference	V _{RX-SV-DIFF-8G}	14	_	_	mV	Frequency = 2.1GHz. See Note 2.
Sinusoidal Jitter at 100 MHz	T _{RX-SV-SJ-8G}	_	_	0.1	UI p-p	Fixed at 100 MHz. See Note 3.
Random Jitter	T _{RX-SV-RJ-8G}	_	_	2.0	ps RMS	Random jitter spectrally flat before filtering. See Note 4.

Note:

- 1. T_{RX-SV-8G} is referenced to TP2P and obtained after post processing data captured at TP2. T_{RX-SV-8G} includes the effects of applying the behavioral receiver model and receiver behavioral equalization.
- 2. V_{RX-SV-DIFF-8G} voltage may need to be adjusted over a wide range for the different loss calibration channels.
- 3. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency as shown in Figure 85.
- 4. Random jitter (Rj) is applied over the following range: The low frequency limit may be between 1.5 and 10 MHz, and the upper limit is 1.0 GHz. See Figure 85 for details. Rj may be adjusted to meet the 0.3 UI value for T_{RX-SV-8G}.
- 5. For recommended operating conditions, see Table 4.

Figure 85. Swept sinusoidal jitter mask

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

3.23.4.4 Test and measurement load

The AC timing and voltage parameters must be verified at the measurement point. The package pins of the device must be connected to the test/measurement load within 0.2 inches of that load, as shown in the following figure.

NOTE

The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/ board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary. If the vendor does not explicitly state where the measurement point is located, the measurement point is assumed to be the D+ and Dpackage pins.

Figure 86. Test and measurement load

3.23.5 Serial ATA (SATA) interface

This section describes the DC and AC electrical specifications for the SATA interface.

3.23.5.1 SATA DC electrical characteristics

This section describes the DC electrical characteristics for SATA.

3.23.5.1.1 **SATA DC transmitter output characteristics**

This table provides the differential transmitter output DC characteristics for the SATA interface at Gen1i/1m or 1.5 Gbit/s transmission.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018 174 **NXP Semiconductors**

Table 128. Gen1i/1m 1.5 G transmitter DC specifications (XV_{DD} = 1.35 V)³

Parameter	Symbol	Min	Тур	Max	Units	Notes
Tx differential output voltage	V _{SATA_TXDIFF}	400	500	600	mV p-p	1
Tx differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	2

Notes:

- 1. Terminated by 50 Ω load.
- 2. DC impedance.
- 3. For recommended operating conditions, see Table 4.

This table provides the differential transmitter output DC characteristics for the SATA interface at Gen2i/2m or 3.0 Gbit/s transmission.

Table 129. Gen 2i/2m 3 G transmitter DC specifications $(XV_{DD} = 1.35 \text{ V})^2$

Parameter	Symbol	Min	Тур	Max	Units	Notes
Transmitter differential output voltage	V _{SATA_TXDIFF}	400	_	700	mV p-p	1
Transmitter differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	_

Notes:

- 1. Terminated by 50 Ω load.
- 2. For recommended operating conditions, see Table 4.

This table provides the differential transmitter output DC characteristics for the SATA interface at Gen 3i transmission.

Table 130. Gen 3i transmitter DC specifications $(XV_{DD} = 1.35 V)^2$

Parameter	Symbol	Min	Тур	Max	Units	Notes
Transmitter differential output voltage	V _{SATA_TXDIFF}	240	_	900	mV p-p	1
Transmitter differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	_

Notes:

- 1. Terminated by 50 Ω load.
- 2. For recommended operating conditions, see Table 4.

3.23.5.1.2 SATA DC receiver input characteristics

This table provides the Gen1i/1m or 1.5 Gbit/s differential receiver input DC characteristics for the SATA interface.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Table 131. Gen1i/1m 1.5 G receiver input DC specifications ³

Parameter	Symbol	Min	Typical	Max	Units	Notes
Differential input voltage	V _{SATA_RXDIFF}	240	500	600	mV p-p	1
Differential receiver input impedance	Z _{SATA_RXSEIM}	85	100	115	Ω	2
OOB signal detection threshold	V _{SATA_OOB}	50	120	240	mV p-p	_

Notes:

- 1. Voltage relative to common of either signal comprising a differential pair.
- 2. DC impedance.
- 3. For recommended operating conditions, see Table 4.

This table provides the Gen2i/2m or 3 Gbit/s differential receiver input DC characteristics for the SATA interface.

Table 132. Gen2i/2m 3 G receiver input DC specifications ³

Parameter	Symbol	Min	Typical	Max	Units	Notes
Differential input voltage	V _{SATA_RXDIFF}	240	_	750	mV p-p	1
Differential receiver input impedance	Z _{SATA_RXSEIM}	85	100	115	Ω	2
OOB signal detection threshold	V _{SATA_OOB}	75	120	240	mV p-p	2

Notes:

- 1. Voltage relative to common of either signal comprising a differential pair.
- 2. DC impedance.
- 3. For recommended operating conditions, see Table 4.

This table provides the Gen 3i differential receiver input DC characteristics for the SATA interface.

Table 133. Gen 3i receiver input DC specifications ³

Parameter	Symbol	Min	Typical	Max	Units	Notes
Differential input voltage	V _{SATA_RXDIFF}	240	_	1000	mV p-p	1
Differential receiver input impedance	Z _{SATA_RXSEIM}	85	100	115	Ω	2
OOB signal detection threshold	_	75	120	200	mV p-p	_

Notes:

- 1. Voltage relative to common of either signal comprising a differential pair.
- 2. DC impedance.
- 3. For recommended operating conditions, see Table 4.

3.23.5.2 SATA AC timing specifications

This section describes the SATA AC timing specifications.

AC requirements for SATA REF_CLK 3.23.5.2.1

This table provides the AC requirements for the SATA reference clock. These requirements must be guaranteed by the customer's application design.

Table 134. SATA reference clock input requirements⁶

Parameter	Symbol	Min	Тур	Max	Unit	Notes
SDn_REF_CLK1_P/SDn_REF_CLK1_N frequency range	t _{CLK_REF}	_	100/125	_	MHz	1
SDn_REF_CLK1_P/SDn_REF_CLK1_N clock frequency tolerance	t _{CLK_TOL}	-350	_	+350	ppm	_
SDn_REF_CLK1_P/SDn_REF_CLK1_N reference clock duty cycle	t _{CLK_DUTY}	40	50	60	%	5
SDn_REF_CLK1_P/SDn_REF_CLK1_N cycle-to-cycle clock jitter (period jitter)	t _{CLK_CJ}	_	_	100	ps	2
SDn_REF_CLK1_P/SDn_REF_CLK1_N total reference clock jitter, phase jitter (peak-to-peak)	t _{CLK_PJ}	-50	_	+50	ps	2, 3, 4

Notes:

- 1. Caution: Only 100 and 125 MHz have been tested. In-between values do not work correctly with the rest of the system.
- 2. At RefClk input.
- 3. In a frequency band from 150 kHz to 15 MHz at BER of 10⁻¹².
- 4. Total peak-to-peak deterministic jitter must be less than or equal to 50 ps.
- 5. Measurement taken from differential waveform.
- 6. For recommended operating conditions, see Table 4.

3.23.5.2.2 **AC transmitter output characteristics**

This table provides the differential transmitter output AC characteristics for the SATA interface at Gen 1i/1m or 1.5 Gbit/s transmission. The AC timing specifications do not include RefClk jitter.

Table 135. Gen 1i/1m 1.5 G transmitter AC specifications²

Parameter	Symbol	Min	Тур	Max	Units	Notes
Channel speed	t _{CH_SPEED}	_	1.5	_	Gbit/s	_
Unit interval	T _{UI}	666.4333	666.6667	670.2333	ps	_
Total jitter data-data 5 UI	U _{SATA_TXTJ5UI}	_	_	0.355	UI p-p	1
Total jitter, data-data 250 UI	U _{SATA_TXTJ250UI}	_	_	0.47	UI p-p	1
Deterministic jitter, data-data 5 UI	U _{SATA_TXDJ5UI}	_	_	0.175	UI p-p	1
Deterministic jitter, data-data 250 UI	U _{SATA_TXDJ250UI}	_	_	0.22	UI p-p	1

Notes:

- 1. Measured at transmitter output pins peak-to-peak phase variation; random data pattern.
- 2. For recommended operating conditions, see Table 4.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018 **NXP Semiconductors** 177

This table provides the differential transmitter output AC characteristics for the SATA interface at Gen 2i/2m or 3.0 Gbit/s transmission. The AC timing specifications do not include RefClk jitter.

Table 136. Gen 2i/2m 3 G transmitter AC specifications²

Parameter	Symbol	Min	Тур	Max	Units	Notes
Channel speed	t _{CH_SPEED}	_	3.0	_	Gbit/s	_
Unit Interval	T _{UI}	333.2167	333.3333	335.1167	ps	_
Total jitter f _{C3dB} = f _{BAUD} ÷ 500	U _{SATA_TXTJfB/500}	_	_	0.37	UI p-p	1
Total jitter f _{C3dB} = f _{BAUD} ÷ 1667	U _{SATA_TXTJfB/1667}	_	_	0.55	UI p-p	1
Deterministic jitter, f _{C3dB} = f _{BAUD} ÷ 500	U _{SATA_TXDJfB/500}	_	_	0.19	UI p-p	1
Deterministic jitter, f _{C3dB} = f _{BAUD} ÷ 1667	U _{SATA_TXDJfB/1667}	_	_	0.35	UI p-p	1

Notes:

This table provides the differential transmitter output AC characteristics for the SATA interface at Gen 3i transmission. The AC timing specifications do not include RefClk jitter.

Table 137. Gen 3i transmitter AC specifications ¹

Parameter	Symbol	Min	Тур	Max	Units
Speed	_	_	6.0	_	Gbit/s
Total jitter before and after compliance interconnect channel	J _T	_	_	0.52	UI p-p
Random jitter before compliance interconnect channel	J_R	_	_	0.18	UI p-p
Unit interval	UI	166.6083	166.6667	167.5583	ps

Notes:

3.23.5.2.3 AC differential receiver input characteristics

This table provides the Gen1i/1m or 1.5 Gbit/s differential receiver input AC characteristics for the SATA interface. The AC timing specifications do not include RefClk jitter.

Table 138. Gen 1i/1m 1.5 G receiver AC specifications²

Parameter	Symbol	Min	Typical	Max	Units	Notes
Unit Interval	T _{UI}	666.4333	666.6667	670.2333	ps	_

Table continues on the next page...

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

^{1.} Measured at transmitter output pins peak-to-peak phase variation; random data pattern.

^{2.} For recommended operating conditions, see Table 4.

^{1.} For recommended operating conditions, see Table 4.

179

Table 138. Gen 1i/1m 1.5 G receiver AC specifications² (continued)

Parameter	Symbol	Min	Typical	Max	Units	Notes
Total jitter data-data 5 UI	U _{SATA_RXTJ5UI}	_	_	0.43	UI p-p	1
Total jitter, data-data 250 UI	U _{SATA_RXTJ250UI}	_	_	0.60	UI p-p	1
Deterministic jitter, data-data 5 UI	U _{SATA_RXDJ5UI}	_	_	0.25	UI p-p	1
Deterministic jitter, data-data 250 UI	U _{SATA_RXDJ250UI}	_	_	0.35	UI p-p	1

Notes:

- 1. Measured at the receiver.
- 2. For recommended operating conditions, see Table 4.

This table provides the differential receiver input AC characteristics for the SATA interface at Gen2i/2m or 3.0 Gbit/s transmission. The AC timing specifications do not include RefClk jitter.

Table 139. Gen 2i/2m 3 G receiver AC specifications²

Parameter	Symbol	Min	Typical	Max	Units	Notes
Unit Interval	T _{UI}	333.2167	333.3333	335.1167	ps	
Total jitter f _{C3dB} = f _{BAUD} ÷ 500	U _{SATA_RXTJfB/500}	_	_	0.60	UI p-p	1
Total jitter f _{C3dB} = f _{BAUD} ÷ 1667	U _{SATA_RXTJfB/1667}	_	_	0.65	UI p-p	1
Deterministic jitter, $f_{C3dB} = f_{BAUD} \div 500$	U _{SATA_RXDJfB/500}	_	_	0.42	UI p-p	1
Deterministic jitter, f _{C3dB} = f _{BAUD} ÷ 1667	U _{SATA_RXDJfB/1667}	_	_	0.35	UI p-p	1

Notes:

- 1. Measured at the receiver.
- 2. For recommended operating conditions, see Table 4.

This table provides the differential receiver input AC characteristics for the SATA interface at Gen 3i transmission. The AC timing specifications do not include RefClk jitter.

Table 140. Gen 3i receiver AC specifications²

Parameter	Symbol	Min	Typical	Max	Units	Notes
Total jitter after compliance interconnect channel	J _T	_	_	0.60	UI p-p	1
Random jitter before compliance interconnect channel	J_R	_	_	0.18	UI p-p	1
Unit interval: 6.0 Gb/s	UI	166.6083	166.6667	167.5583	ps	_

Notes:

- 1. Measured at the receiver.
- 2. The AC specifications do not include RefClk jitter.

4 Security fuse processor

This chip implements the QorIQ platform's trust architecture, supporting capabilities such as secure boot. Use of the trust architecture feature is dependent on programming fuses in the Security Fuse Processor (SFP). The details of the trust architecture and SFP can be found in the chip reference manual.

To program SFP fuses, the user is required to supply 1.8 V to the TA_PROG_SFP pin per Power sequencing. TA_PROG_SFP should only be powered for the duration of the fuse programming cycle, with a per device limit of six fuse programming cycles. All other times, TA_PROG_SFP should be connected to GND. The sequencing requirements for raising and lowering TA_PROG_SFP are shown in Figure 9. To ensure device reliability, fuse programming must be performed within the recommended fuse programming temperature range per Table 4.

NOTE

Users not implementing the QorIQ platform's trust architecture features should connect TA_PROG_SFP to GND.

5 Hardware design considerations

5.1 Clock ranges

This table provides the clocking specifications for the processor core, platform, memory, and integrated flash controller.

Characteristic Unit Maximum processor core frequency **Notes** 1200 MHz 1800 MHz 1400 MHz 1600 MHz Min Max Min Min Max Min Max Max Core cluster group PLL frequency 1000 1200 1000 1400 1000 1600 1000 1800 MHz 1.2 Platform clock frequency 400 400 400 600 400 700 400 700 MHz 1, 3 Memory Bus Clock Frequency (DDR4) 650 800 650 1050 650 1050 650 1050 MHz 1, 4, 5 IFC clock frequency 100 100 100 100 MHz **FMan** 400 600 400 600 800 400 800 MHz 400

Table 141. Processor, platform, and memory clocking specifications

Table continues on the next page...

181

Table 141. Processor, platform, and memory clocking specifications (continued)

Characteristic		Maximum processor core frequency						Unit	Notes	
	1200 MHz		IHz 1400 MHz		1600 MHz		1800 MHz			
	Min	Max	Min	Max	Min	Max	Min	Max		

- Caution: The platform clock to SYSCLK ratio and core to SYSCLK ratio settings must be chosen such that the resulting SYSCLK frequency, core frequency, and platform clock frequency do not exceed their respective maximum or minimum operating frequencies.
- 2. The memory bus clock speed is half the DDR4 data rate. The DDR4 memory bus clock frequency is limited to min = 650 MHz.
- 3. The memory bus clock speed is dictated by its own PLL.
- 4. The integrated flash controller (IFC) clock speed on IFC_CLK[0:1] is determined by the IFC module input clock (platform clock / 2) divided by the IFC ratio programmed in CCR[CLKDIV]. See the chip reference manual for more information.
- The minimum platform frequency should meet the requirements in Minimum platform frequency requirements for highspeed interfaces.
- For supported voltage/frequency options, see the orderable part list of QorlQ LS1046A and LS1026A Multicore Communications Processors at www.nxp.com.

5.1.1 DDR clock ranges

The DDR memory controller can run only in asynchronous mode, where the memory bus is clocked with the clock provided on the DDRCLK input pin, which has its own dedicated PLL.

This table provides the clocking specifications for the memory bus.

Table 142. Memory bus clocking specifications

Characteristic	Min Freq.(MHz)	Max Freq.(MHz)	Min Data Rate (MT/s)	Max Data Rate (MT/s)	Notes
Memory bus clock frequency and data rate for DDR4	650	1050	1300	2100	1, 2, 3

Notes:

- Caution: The platform clock to SYSCLK ratio, core to SYSCLK ratio and DDR to SYSCLK (or DDRCLK) ratio settings
 must be chosen such that the resulting platform frequency, core frequency and DDRCLK frequency do not exceed their
 respective maximum or minimum operating frequencies.
- 2. The memory bus clock refers to the chip's memory controllers' Dn_MCK[0:1] and Dn_MCK[0:1] output clocks, running at half of the DDR data rate.
- 3. The memory bus clock speed is dictated by its own PLL.
- 4. For supported voltage/frequency options, see the orderable part list of QorlQ LS1046A and LS1026A Multicore Communications Processors at www.nxp.com.

5.2 Minimum platform frequency requirements for high-speed interfaces

The platform clock frequency must be considered for proper operation of high-speed interfaces as described below. For proper PCI Express operation, the platform clock frequency must be greater than or equal to:

Figure 87. Gen 1 PEX minimum platform frequency

Figure 88. Gen 2 PEX minimum platform frequency

Figure 89. Gen 3 PEX minimum platform frequency

See section "Link Width," in the chip reference manual for PCI Express interface width details. Note that "PCI Express link width" in the above equation refers to the negotiated link width as the result of PCI Express link training, which may or may not be the same as the link width POR selection. It refers to the widest port in use, not the combined width of the number ports in use.

5.3 Minimum DPAA frequency requirements

The minimum DPAA frequency of 533 MHz is required for 10 G operations.

6 Thermal

This table shows the thermal characteristics for the chip. Note that these numbers are based on design estimates and are preliminary.

Table 143. Package thermal characteristics

Rating	Board	Symbol	Value	Unit	Notes
Junction-to-ambient, natural convection	Single-layer board (1s)	R _{⊝JA}	25.18	°C/W	1
Junction-to-ambient, natural convection	Four-layer board (2s2p)	R _{⊝JA}	14.35	°C/W	1

Table continues on the next page...

Table 143. Package thermal characteristics (continued)

Rating	Board	Symbol	Value	Unit	Notes
Junction-to-ambient, moving air (1 m/s)	Single-layer board (1s)	R _{OJMA}	15.47	°C/W	1
Junction-to-ambient, moving air (1 m/s)	Four-layer board (2s2p)	R _{OJMA}	9.35	°C/W	1
Junction-to-board	-	R _{⊙JB}	4.66	°C/W	2
Junction-to-case (top)	-	R _{OJC}	0.71	°C/W	3
Junction-to-lid top	-	R _{OJLT}	0.36	°C/W	4

- 1. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-2A and JESD51-6 (moving air). Thermal test board meets JEDEC specification for this package (JESD51-9).
- 2. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.
- 3. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
- 4. Junction-to-lid-top thermal resistance is determined using the MIL-STD 883 Method 1012.1. However, instead of the cold plate, the lid top temperature is used here for the reference case temperature. Reported value does not include the thermal resistance layer between the package and cold plate.
- 5. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a specific standardized environment. It is not meant to predict the performance of a package in an application-specific environment

Table 144. Thermal resistance with heat sink in open flow

Heat sink with thermal grease	Air flow	Thermal resistance (°C/W)
Wakefield 53 x 53 x 25 mm Pin Fin	Natural Convection	6.5
Wk698	0.5 m/s	4.0
	1 m/s	2.9
	2 m/s	2.4
	4 m/s	2.1
Aavid 35x31x23 mm Pin Fin	Natural Convection	8.8
av10563	0.5 m/s	5.3
	1 m/s	4.2
	2 m/s	3.9
	4 m/s	3.3
Aavid 30x30x9.4 mm Pin Fin	Natural Convection	12.5
Av 3358	0.5 m/s	8.9
	1 m/s	6.7
	2 m/s	5.1
	4 m/s	4.1
Aavid 43x41x16.5 mm Pin Fin	Natural Convection	9.0
Av 2332	0.5 m/s	5.8
	1 m/s	4.3
	2 m/s	3.2
	4 m/s	2.7

Table continues on the next page...

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Thermal

Table 144. Thermal resistance with heat sink in open flow (continued)

- 1. Simulations with heat sinks were done with the package mounted on the 2s2p thermal test board.
- 2. The thermal interface material was a typical thermal grease such as Dow Corning 340 or Wakefield 120 grease.
- 3. See Thermal management information, for additional details.

6.1 Recommended thermal model

Information about Flotherm models of the package or thermal data not available in this document can be obtained from your local NXP sales office.

6.2 Temperature diode

The chip has a temperature diode on the microprocessor that can be used in conjunction with other system temperature monitoring devices (such as Analog Devices, ADT7461A). These devices feature series resistance cancellation using three current measurements, where up to $1.5~\mathrm{k}\Omega$ of resistance can be automatically cancelled from the temperature result, allowing noise filtering and a more accurate reading.

The following are the specifications of the chip's on-board temperature diode:

- Operating range: Operating range: 10 230µA
- Ideality factor over 13.5 220 μA
- Temperature range: 80° C 105° C: $n = 1.004 \pm 0.008$

6.3 Thermal management information

This section provides thermal management information for the flip-chip, plastic-ball, grid array (FC-PBGA) package for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design-the heat sink, airflow, and thermal interface material.

The recommended attachment method to the heat sink is illustrated in Figure 90. The heat sink should be attached to the printed-circuit board with the spring force centered over the die. This spring force should not exceed 15 pounds force (65 N).

185

Figure 90. Package exploded, cross-sectional view-FC-PBGA

The system board designer can choose between several types of heat sinks to place on the device. There are several commercially available thermal interfaces to choose from in the industry. Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost.

6.3.1 Internal package conduction resistance

For the package, the intrinsic internal conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance
- The die junction-to-lid-top thermal resistance
- The die junction-to-board thermal resistance

This figure shows the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

Thermal

(Note the internal versus external package resistance)

Figure 91. Package with heat sink mounted to a printed-circuit board

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is conducted through the silicon and through the heat sink attach material (or thermal interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that the heat sink attach material and heat sink thermal resistance are the dominant terms.

6.3.2 Thermal interface materials

A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. The performance of thermal interface materials improves with increasing contact pressure; this performance characteristic chart is generally provided by the thermal interface vendor. The recommended method of mounting heat sinks on the package is by means of a spring clip attachment to the printed-circuit board (see Figure 90).

187

The system board designer can choose among several types of commercially available thermal interface materials.

7 Package information

7.1 Package parameters for the FC-PBGA

The package parameters are as provided in the following list. The package type is 23 mm x 23 mm, 780 flip-chip, plastic-ball, grid array.

- Package outline 23 mm x 23 mm
- Interconnects 780
- Ball Pitch 0.8 mm
- Ball Diameter (nominal) 0.45 mm
- Ball Height (nominal) 0.3 mm
- Solder Balls Composition 96.5% Sn, 3% Ag, and 0.5% Cu
- Module height (typical) 2.31 (minimum), 2.46 mm (typical), and 2.61 mm (maximum)

7.2 Mechanical dimensions of the FC-PBGA

This figure shows the mechanical dimensions and bottom surface nomenclature of the chip.

0	NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE:	FCPBGA, WITH I	_ID,	DOCUMEN	NT NO: 98ASA00854D	REV: A
	23 X 23 X 2.46	,	STANDAF	RD: NON-JEDEC	
	0.8 MM PITCH, 78	0 1/0	SOT1653	– 1	14 JAN 2016

Figure 92. Mechanical dimensions of the FC-PBGA QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

- 1. All dimensions are in millimeters.
- 2. Dimensions and tolerances per ASME Y14.5M-1994.
- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
- 5. Parallelism measurement shall exclude any effect of mark on top surface of package.
- 6. All dimensions are symmetric across the package center lines, unless dimensioned otherwise.
- 7. Pin 1 thru hole shall be centered within foot area.
- 8. 23.2 mm maximum package assembly (lid + laminate) X and Y.

8 Ordering information

This table provides the NXP QorIQ platform part numbering nomenclature.

8.1 Part numbering nomenclature

This table provides the NXP QorIQ platform part numbering nomenclature.

р	Is	n	nn	n	х	t	е	n	С	d	r
Qual status	Generation	Performance Level	Number of Virtual cores	Unique ID	Core Type	Temperature Range	Encryption	Package Type	CPU Speed ¹	DDR Data Rate	Die Revision
P="Pre-qual" Blank="Qualifie d"	LS = Layersc ape	1	04 = Four Cores 02 = Two Cores	6	A = Arm	S = Standard (0 - 105°C) X = Extended (-40 - 105°C)	E = Encryption N = Non- Encryption	8 = LCFC 780 balls	M = 1200 MHz P = 1400 MHz Q = 1600 MHz T = 1800 MHz	Q = 1600 MHz 1 = 2100 MHz	A = Rev 1.0

Table 145. Part numbering nomenclature

QorlQ LS1046A, LS1026A Data Sheet, Rev. 1, 03/2018

8.2 Part marking

Parts are marked as in the example shown in this figure.

Legend:

LS10X6XXXXXXX is the orderable part number ATWLYYWW is the test traceability code MMMMM is the mask number CCCCC is the country code YWWLAZ is the assembly traceability code

Figure 93. Part marking for FC-PBGA chip LS1046A

9 Revision history

This table summarizes revisions to this document.

Table 146. Revision history

Revision	Date	Description
1	03/2018	In Features, updated two to three for SGMII interfaces supporting 2500 Mbps

Table continues on the next page...

Table 146. Revision history (continued)

Revision	Date	Description
		 Updated Figure 91 In Power sequencing, updated 10 ms to 95 ms in second bullet point In Table 10, updated PW20 to PH20 and PCL10 to PH20 In Table 11, updated X1VDD to XVDD and PROG_SFP to TA_PROG_SFP Updated Figure 1 and Figure 2 to show 8 MACs In Table 13, updated PROG_SFP to TA_PROG_SFP Updated Real-time clock timing (RTC) Updated rise/fall time spec to 0.75ns and removed 0.54ns from Table 19 and Table 53 Removed Clock period jitter (peak to peak) row from Table 23 Updated first row of Table 24 Removed table "PLL lock times" Removed note reference 7 from Table 25 In SGMII interface, updated XGNDn to GNDn Updated note for USB_SDVDD for HS and USB_SVDD for SS in Table 2 Updated eSDHC to SDHC and corrected signal name eSDHC_CMD/DAT0_DIR to SDHC_CMD_DIR/DAT0_DIR in Table 4 Updated TA_BB_VDD power dissipation numbers in Table 12 Added note 9 in Table 53 Added rms clock jitter for PCIe- 8GT/s in Table 114 Added notes to Table 39 and Table 43
0	02/2017	initial public release

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, Layerscape, QUICC Engine, and QorlQ are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, Cortex, and TrustZone are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. NEON is a trademark of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2017-2018 NXP B.V.

Document Number LS1046A Revision 1, 03/2018

