Topic 2: Functions

Ch2.3 Functions

1 input \rightarrow > 1 outputs: not a function domain: possible inputs

codomain: possible outputs

codomain: possible outpu

image: input preimage: output range: all outputs How to do injective/surjective proofs:

injective

$$f(x) = f(y)$$

$$mx + b = my + b$$

$$mx = my$$

$$x = y \checkmark$$

 $\frac{\text{surjective}}{y = mx + b}$

$$y - b = mx$$

$$\boxed{\frac{y - b}{m}} = x \checkmark$$

inverse

How to prove not injective/surjective:

not injective: find a counterexample of 2 different inputs map to the same output.

not surjective: find a preimage/output (within the codomain) that doesn't have an image/input (within the domain).

Examples of Different Types of Correspondences

The function f Maps A to B.

one-to-one/injective: iff f(a) = f(b) implies that a = b for all a and b in the domain of f. onto/surjective: iff for every element $b \in B$ there is an element $a \in A$ with f(a) = b. bijection/one-to-one correspondence: both injective and surjective.

Inversefunctions

Inverse function: (be bijective) $f^{-1}(b) = a$ when f(a) = b.

Composition: $f\circ g,$ $(f\circ g)(a)=f(g(a)).$

- **invertible**: Can define an inverse of this function (bijective); **not invertible**: The inverse of such a function does not exist.
- $f \circ g$ and $g \circ f$ are not equal.

The function f^{-1} is the inverse of function f.

The composition of the functions f and g.

Some Important Functions

floor: |x|, largest integer $\leq x$; *ceiling*: $\lceil x \rceil$, smallest integer $\geq x$.

Appendix B-1 & 2: floor & ceiling function graphs; B-3: useful properties of floor and ceiling function.

Topic 2: Functions