Open Command-oriented Geometric Graphics Generator OpenCG³ Specification Version 0.3.1

Dong Nai-Jia ¹ Lin Yong-Hsiang ²

¹National Chiao Tung University Department of Computer Science

²National Taiwan University Department of Agricultural Chemistry

August 19, 2017

Command Tokens

Regular Expressions

```
\mathbb{N} := \{ \alpha \mid \alpha \in [0-9] + \}
\mathbb{R} := \{ \alpha \mid \alpha \in [+\-]?([0-9]*[.])?[0-9]+ \}
                                                                                                                                                             \Rightarrow \mathbb{R} \supset \mathbb{N}
\mathbb{S} := \{ \alpha \mid \alpha \in '(.*?)' \mid [.0-9A-Za-z+\-]+ \}
                                                                                                                                                             \Rightarrow \mathbb{S} \supset \mathbb{R}
\mathbb{W} \coloneqq \{ \alpha \mid \alpha \in [ \ \mathsf{t}] \}
                                                                                                                                                            whitespace
```

Descriptions

The matching mechanism abides by the maximal munch rule.

August 19, 2017

Each command is whitespace-insensitive except being quoted by a pair of single quotation marks (').

Command Grammars

Context-Free Expansions

$$\begin{array}{c|cccc} \mathbf{C} \to \mathbf{AC} & ; & | & \mathtt{EOL} \\ \mathbf{A} \to \mathbf{T}(\mathbf{A}) & | & \mathbf{V}(\mathbf{A}) & | & \mathbf{S}(\mathbf{A}) & | & \mathbf{L}(\mathbf{A}) & | & \mathbf{L}(\mathbf{A}, \mathbf{A}, \cdots, \mathbf{A}) & | & \mathbb{N} & | & \mathbb{R} & | & \mathbb{S} \\ \mathbf{T}(\Pi) & \equiv \Pi : n) & \to & (& \Sigma(\Pi, n) &) & | & & \Sigma(\Pi, n) & \to & \Pi & \cdots & \Pi \\ \mathbf{V}(\Pi) & \equiv \Pi : n) & \to & < & \Sigma(\Pi, n) & > & | & \Sigma(\Pi, n) & \to & \Pi & \cdots & \Pi \\ \mathbf{S}(\Pi) & \equiv \Pi : n) & \to & \{ & \Sigma(\Pi, n) & \} & | & \mathbf{L}(\Pi) & \equiv \mathbb{L} \left[\Pi : n\right] & \to & [& \Sigma(\Pi, n) &] \\ \mathbf{L}(\Pi_1, \Pi_2, \cdots, \Pi_{n-1}, \Pi_n) & \equiv \mathbb{L} \left[\Pi_1 \Pi_2 \cdots \Pi_{n-1} \Pi_n\right] & \to & [& \Pi_1 \cdots \Pi_n &] \end{array}$$

Descriptions

- Each command starts from C and ends with a ; or an EOL.
- Non-terminal symbol expansions are prior than function expansions.

Command Parsing

Escape Sequence

- \x is an escape sequence.
- If x is \, then it is treated as a single backslash.
- If x is EOL which may vary from platforms, then the sequence is omitted.
- Otherwise, the sequence is ignored and triggers a warning by default.

Error Handling

- Physical lines are separated by an EOL.
- Logical lines are separated by either a semicolon or an unescaped EOL.
- If the command cannot be parsed by the grammar, then all the characters on the same logical line will be discarded.

Fields, Classes, Objects and References

Definitions

- The whole system are divided into four fields and several classes:
 - 1 field e-(nviron.): includes class window and class camera.
 - g field p-(rimitive): includes class point, class circle, etc.
 - § field c-(ompound): includes class line, class triangle, class polygon, etc.
 - 4 field a-(uxiliary): includes class attrib and class group.

Notations

- class^x denotes the name of a class in the field x.
- label denotes the globally unique name of the object from a class in the field x.

Prototypes

- Argument prototypes are written in a mixture of types and names with underlines.
- Each type with an asterisk indicates that the brackets are used for cross-referencing.
- Cross-reference is a feature for manipulating multitple objects in a single command.
- Each name with a plus/minus/ampersand implies that the given name is used for creating new objects/deleting existed objects/cross-referencing among objects, etc.

5 / 24

KVD, ADL August 19, 2017 OpenCG³ Specification Version 0.3.1

Figure: Projection in Euclidean \mathbb{R}^3 Space

Create a Window

Command

Parameters

• <u>label</u>e : the name of the object from the class window

Examples

create window main

Delete a Window

Command

Parameters

- <u>label</u>^e : the name of the object from the class window
- string : the text printed right after exiting the current session

```
delete window main
delete window main 'Have a nice day.'
```

Properties of a Window

Group	Property	Value Format	Example
Digital	dots-per-cm*	\mathbb{R}	28.346472
BG-Color	background-rgb*	$\mathbb{N} \in [0, 255]:3)$	(0 0 0)

Create a Camera

Command

Parameters

- <u>label</u>^e : the name of the object from the class camera
- center : the world coordinate (c_x, c_y, c_z) of the center of the viewport
- plane : the horizontal and the vertical vertors $(\vec{v_w}, \vec{v_h})$ of the viewport
- $\underline{\mathsf{sight}}$: the reverse line of sight $\vec{v_c}$ from $\underline{\mathsf{center}}$ to the camera

Examples

create camera z-top (0 0 1) (<1 0 0> <0 1 0>) <0 0 1>

Select a Camera

Command

 $select camera \underline{\mathbb{S} \underline{\& label_1^e}} \underline{\mathbb{S} \underline{\& label_2^e}}$ (4)

Parameters

- <u>label</u>^e : the name of the object from the class camera
- <u>label</u>^e₂ : the name of the object from the class window

Examples

select camera z-top main

Remove a Camera

Command

remove camera $\underline{\mathbb{S}}$ & label^e₁ $\underline{\mathbb{S}}$ & label^e₂ (5)

Parameters

- <u>label</u>^e : the name of the object from the class camera
- label^e₂ : the name of the object from the class window

Examples

remove camera z-top main

Delete a Camera

Command

 $\texttt{delete camera} \ \underline{\mathbb{S} \ -\mathsf{label}^\mathsf{e}}$

(6)

Parameters

ullet : the name of the object from the class camera

Examples

delete camera z-top

Properties of a Camera

Group	Property	Value Format	Example
Axis	axis-enable*	$\mathbb{S} \in \{\mathtt{true}, \mathtt{false}\}$	true
	axis-x-rgb*	$\mathbb{N} \in [0, 255] : 3)$	(255 0 0)
Axis-Color	axis-y-rgb*	$\mathbb{N} \in [0, 255] : 3)$	(0 255 0)
	axis-z-rgb*	$\mathbb{N} \in [0, 255] : 3)$	(0 0 255)
Axis-Width	axis-width*		[2 px]
Grid	grid-enable*	$\mathbb{S} \in \{\mathtt{true}, \mathtt{false}\}$	true
Grid-Color	grid-rgb*	$\mathbb{N} \in [0, 255] : 3)$	(191 191 191)
Grid-Width	grid-width*	$\mathbb{L}\left[\underline{\mathbb{R}\in[0,\infty)}\ \underline{\mathbb{S}\in\{\mathtt{px},\mathtt{cm}\}}\right]$	[1 px]
Grid-Intvl	grid-interval*	$\mathbb{R} \in [0,\infty)$	10

Create Points

Command

```
create point \frac{\mathbb{S} + |abe|^p}{\mathbb{S} + |abe|^p} : \}^* \xrightarrow{\mathbb{R} : 3) coord} (7)

create point \frac{\mathbb{S} + |abe|^p}{\mathbb{S} + |abe|^p} : \geqslant n)^* \xrightarrow{\mathbb{R} : 3) coord} : n)^* (8)
```

Parameters

- <u>label</u>^p : the name of the object from the class point
- coord : the world coordinate (p_x,p_y,p_z) of the object named <u>label</u>

```
create point 'origin' (0 0 0)
create point {X-1 X-2} (1 0 0)
create point (Y-1 Y-2) ((0 1 0))
create point (Z D1 D2) ((0 1 0) (1 1 1))
```

Delete Points

Command

Parameters

• <u>label</u>^p : the name of the object from the class point

```
delete point 'origin'
delete point {Z D1 D2}
```

Properties of a Point

Group	Property	Value Format	Example
In-Type	type*	$\mathbb{S} \in \{ exttt{dot}, exttt{square} \}$	dot
In-Size	radius*	$\mathbb{L}\left[\underline{\mathbb{R}\in[0,\infty)}\ \underline{\mathbb{S}\in\{\mathtt{px},\mathtt{cm}\}}\right]$	[3 px]
In-Color	fill-rgb*	$\mathbb{N} \in [0, 255] : 3)$	(0 0 0)
	fill-rgba	$\mathbb{L}\left[\underline{\mathbb{N}\in[0,255]}:3\right)\ \underline{\mathbb{R}\in[0,1]}\right]$	[(31 0 63) 0.5]
	fill-hsv	$\mathbb{L}\left[\underline{\mathbb{R} \in [0, 360]} \ \underline{\mathbb{R} \in [0, 1]} : 2\right)\right]$	[240 (0.8 1.0)]
	fill-hsl	$\mathbb{L}\left[\underline{\mathbb{R} \in [0, 360]} \ \underline{\mathbb{R} \in [0, 1]} : 2\right)\right]$	[240 (1.0 0.6)]
Ex-Type	border-type*	$\boxed{\mathbb{S} \in \{\mathtt{none}, \mathtt{mid}, \mathtt{in}, \mathtt{out}\}}$	none
Ex-Width	border-width*	$\mathbb{L}\left[\underline{\mathbb{R}\in[0,\infty)}\ \underline{\mathbb{S}\in\{\mathtt{px},\mathtt{cm}\}}\right]$	[1 px]
Ex-Color	border-rgb*	same as fill-rgb	(127 127 127)
	border-()	same as fill-rgba/hsv/hsl	(skipped)

August 19, 2017

Create Line Segments

Command

```
create line \frac{\mathbb{S} + |abe|^c}{\mathbb{S} + |abe|^c} : \}^* = \frac{\mathbb{S} \& |abe|^p}{\mathbb{S} \& |abe|^p} : 2\} : n)^* (10)
```

Parameters

- <u>label^c</u>: the name of the object from the class line
- <u>label</u>^p : the name of the object from the class point

```
create line seg-1 {X-1 Y-1}
create line {seg-2 seg-3} {X-2 Y-2}
```

Delete Line Segments

Command

delete line $\underline{\mathbb{S} - \mathsf{label^c}} : \}^{\star}$ (12)

Parameters

• <u>label</u>^c : the name of the object from the class line

```
delete line seg-1
delete line {seg-2 seg-3}
```

Create Attributes

Command

Parameters

- <u>label</u>^a : the name of the object from the class attrib
- <u>class^{pc}</u> : the name of a class in the field primitive or compound
- prop : the property of the object from <u>class^{pc}</u>
- <u>value</u> : the value of <u>prop</u> in the designated format

Examples

```
create attrib (magenta dashed-and-translucent-line) \
[[point fill-hsv '[300 (1.0 1.0)]'] \
   [line [style dashed] [fill-rbga '[(0 255 0) 0.5]']]]
```

August 19, 2017

Attach Attributes

Command

```
attach attrib \frac{\mathbb{S} \ \& label^a : )^*}{\mathbb{S} \ \& label^a : )^*} \frac{\mathbb{S} \ \& label^{pc} : )^*}{\mathbb{S} \ \& label^{pc} : )^*}  (15)
```

Parameters

- <u>label</u>^a : the name of the object from the class attrib
- <u>label^{pc}</u>: the name of the object from a class in the field primitive or compound

```
attach attrib red point-0
attach attrib (red large) point-1
attach attrib blue {point-2 rect-0}
attach attrib (5px black) {point-3 circ-0}
attach attrib (red thick) (point-4 line-0 triangle-0)
```

Detach Attributes

Command

```
\begin{array}{lll} \text{detach attrib} & \underline{\mathbb{S}} & \underline{\& \, label^a} : \, \}^* & \underline{\mathbb{S}} & \underline{\& \, label^{pc}} : \, \}^* \\ \text{detach attrib} & \underline{\mathbb{S}} & \underline{\& \, label^a} : \, )^* & \underline{\mathbb{S}} & \underline{\& \, label^{pc}} : \, )^* \end{array} \tag{17}
```

Parameters

- <u>label</u>^a : the name of the object from the class attrib
- <u>label^{pc}</u>: the name of the object from a class in the field primitive or compound

Delete Attributes

Command

delete attrib $\underline{\mathbb{S} - \mathsf{label}^{\mathsf{a}}} : \}^{\star}$ (19)

Parameters

<u>label</u>^a : the name of the object from the class attrib

```
delete attrib red
delete attrib {5px large}
```

Assign Operations

Command

assign operat $\underline{\mathbb{S}}$ action $\underline{\mathbb{S}}$ class $\underline{\mathbb{S}}$ repeat $\underline{\mathbb{S}}$ $\underline{\mathbb{S}}$ (20)

Parameters

<u>action</u>: the name of the corresponding action of <u>class</u>

• class : the name of a class

<u>repeat</u> : the amount of the commands emitting operation names

```
assign operat create point 2
x-axis (1 0 0)
y-axis (0 1 0)
// Back To Normal
```