

Global United Technology Services Co., Ltd.

Report No: GTSE11120102203

FCC REPORT

Applicant: Corporativo Lanix S.A. de C.V.

Address of Applicant: Carretera internacional Hermosillo-Nogale Km.8.5 Hermosillo,

Sonora, Mexico

Equipment Under Test (EUT)

Product Name: GSM Dual Band GPRS Digital Mobile Phone

Model No.: LX12

Trade mark: **LANIX**

FCC ID: ZC4LX12

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Dec. 22, 2011

Date of Test: Dec. 23-27, 2011

Date of report issued: Dec. 28, 2011

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Stephen Guo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

2 Version

Version No.	Date	Description
00	Dec. 28, 2011	Original

Prepared By:	Collan. He	Date:	Dec. 28, 2011	
	Project Engineer			
Check By:	Hams. Hu	Date:	Dec. 28, 2011	
	Reviewer			

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3		
4		
5		
	5.1 CLIENT INFORMATION	
	5.2 GENERAL DESCRIPTION OF E.U.T.	
	5.3 TEST MODE	
	5.4 TEST FACILITY	
	5.5 TEST LOCATION	
	5.7 TEST INSTRUMENTS LIST	
_		
6		
	6.1 Antenna requirement:	9
	6.2 CONDUCTED EMISSIONS	
	6.3 CONDUCTED PEAK OUTPUT POWER	
	6.4 20DB OCCUPY BANDWIDTH	
	6.5 CARRIER FREQUENCIES SEPARATION	
	6.6 HOPPING CHANNEL NUMBER	
	6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9 BAND EDGE	
	6.9.1 Conducted Emission Method	
	6.9.2 Radiated Emission Method	
	6.10 Spurious Emission	34
	6.10.1 Conducted Emission Method	
	6.11 RADIATED EMISSION METHOD	36
7	7 TEST SETUP PHOTO	41
8	B EUT CONSTRUCTIONAL DETAILS	42

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 Client Information

Applicant:	Corporativo Lanix S.A. de C.V.
Address of Applicant:	Carretera internacional Hermosillo-Nogale Km.8.5 Hermosillo, Sonora, Mexico
Manufacturer:	ShenZhen Konka Telecommunication Technology Co., Ltd
Address of Manufacturer:	No.9008 Shennan Road, Overseas Chinese Town, ShenZhen, Guangdong, China
Factory:	SHENZHEN KONKA TELECOMMUNICATION TECHNOLOGY CO., LTD
Address of Factory:	No.9008 Shennan Road, Overseas Chinese Town, ShenZhen, Guangdong, China

5.2 General Description of E.U.T.

Product Name:	GSM Dual Band GPRS Digital Mobile Phone
Model No.:	LX12
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, Pi/4QPSK, 8DPSK
Antenna Type:	PIFA
Antenna gain:	0.67 dBi
AC adapter:	Model: LX12-C Input: AC 100-240V 50/60Hz Output: DC 5V 500mA
Power supply:	Model: LX12-BAT Type: lithium-ion 3.7V 900mAh Voltage: DC 3.7V

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.3 Test mode

Hopping mode	Keep the EUT in hopping mode
Non-hopping mode	Keep the EUT in non-hopping mode
Remark:	The spurious emission test item was pre-scanned at X, Y, Z 3 axes, and we selected the worst case (X-Axis) to perform the related test items.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, July 20, 2010.

Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-2779 8480; Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 7 of 42

5.7 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 30 2011	Mar. 29 2012
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 04 2011	Jul. 03 2012
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 26 2011	Feb. 25 2012
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 30 2011	June 29 2012
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2011	Mar. 29 2012
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	Apr. 01 2011	Mar. 31 2012
9	Coaxial Cable	GTS	N/A	GTS211	Apr. 01 2011	Mar. 31 2012
9	Coaxial cable	GTS	N/A	GTS210	Apr. 01 2011	Mar. 31 2012
11	Coaxial Cable	GTS	N/A	GTS212	Apr. 01 2011	Mar. 31 2012
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 04 2011	Jul. 03 2012
13	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 04 2011	Jul. 03 2012
14	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2011	Mar. 31 2012
15	Band filter	Amindeon	82346	GTS219	Apr. 01 2011	Mar. 31 2012
16	Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	May 11 2011	May 11 2012
17	Signal Generator	Rohde & Schwarz	SML03	GTS236	May 11 2011	May 11 2012
18	Temp. Humidity/ Barometer	Oregon Scientific	BA-888	GTS248	May 11 2011	May 11 2012
19	D.C. Power Supply	Instek	PS-3030	GTS232	NA	NA
20	Splitter	Agilent	11636B	GTS237	May 11 2011	May 11 2012

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS252	Jul. 04 2011	Jul. 03 2012
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jul. 04 2011	Jul. 03 2012
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jul. 04 2011	Jul. 03 2012
4	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jul. 04 2011	Jul. 03 2012
5	Coaxial Cable	GTS	N/A	GTS227	Apr. 01 2011	Mar. 31 2012
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is a PIFA antenna fixed on shell and no consideration of replacement. The best case gain of the antenna is 0.67 dBi.

Bluetooth Antenna

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 9 of 42

6.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4:2003				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:		Limit (c	dBuV)		
Z.IIIIC.	Frequency range (MHz)	Frequency range (MHz) Quasi-peak Average			
	0.15-0.5 66 to 56* 56 to 46*				
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logarithn1. The E.U.T and simulators				
	 a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 				
Test setup:	Refere	ence Plane			
	AUX Equipment Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power		
Test Instruments:	Refer to section 5.7 for details	3			
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				
<u> </u>					

Measurement Data

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 10 of 42

: FCC PART15 CLASSB QP LISN(2011) LINE Condition

: 1022RF

Job No. Test Mode : Bluetooth mode

Test Engineer: Gavin

	Freq	Kead Level	Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	-dBuV	dB	
1	0.159	46.42	0.68	0.10	47.20	65.52	-18.32	QP
2	0.159	33.08	0.68	0.10	33.86	55.52	-21.66	Average
3	0.266	36.62	0.62	0.10	37.34	61.25	-23.91	QP
1 2 3 4 5 6 7	0.266	23.25	0.62	0.10	23.97	51.25	-27.28	Average
5	0.516	38.20	0.55	0.10	38.85	56.00	-17.15	QP
6	0.516	20.63	0.55	0.10	21.28	46.00	-24.72	Average
7	1.289	39.60	0.45	0.10	40.15	56.00	-15.85	QP
8 9	1.289	22.91	0.45	0.10	23.46			Average
9	2.110	37.21	0.39	0.10	37.70	56.00	-18.30	QP
10	2.110	19.53	0.39	0.10	20.02	46.00	-25.98	Average
11	2.721	36.31	0.37	0.10	36.78		-19.22	
12	2.721	18.81	0.37	0.10	19.28	46.00	-26.72	Average

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral:

Condition : FCC PART15 CLASSB QP LISN(2011) NEUTRAL

Job No. : 1022RF

Test Mode : Bluetooth mode

Test Engineer: Gavin

	Freq	Kead Level	Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBu₹	dBuV	dB	
1	0.162	45.98	0.68	0.10	46.76	65.38	-18.62	QP
2	0.162	32.58	0.68	0.10	33.36	55.38	-22.02	Average
3	0.273	36.81	0.62	0.10	37.53	61.03	-23.50	QP
2 3 4 5 6 7	0.273	22.42	0.62	0.10	23.14	51.03	-27.89	Average
5	0.491	40.66	0.56	0.10	41.32	56.14	-14.82	QP
6	0.491	22.29	0.56	0.10	22.95	46.14	-23.19	Average
7	0.654	40.75	0.52	0.10	41.37	56.00	-14.63	QP
8	0.654	21.91	0.52	0.10	22.53	46.00	-23.47	Average
9	1.262	42.37	0.45	0.10	42.92	56.00	-13.08	QP
10	1.262	22.06	0.45	0.10	22.61	46.00	-23.39	Average
11	2.794	36.58	0.36	0.10	37.04	56.00	-18.96	QP
12	2.794	16.28	0.36	0.10	16.74	46.00	-29.26	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 12 of 42

6.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=3MHz, VBW=3MHz, Detector=Peak	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data

GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	8.61	30.00	Pass	
Middle	8.91	30.00	Pass	
Highest	10.30	30.00	Pass	
	Pi/4QPSK m	ode		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	6.52	30.00	Pass	
Middle	8.13	30.00	Pass	
Highest	9.54	30.00	Pass	
	8DPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	6.39	30.00	Pass	
Middle	8.21	30.00	Pass	
Highest	9.66	30.00	Pass	

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111201022RF

Page 13 of 42

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Modulation mode: Pi/4QPSK

Lowest channel

Middle channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

Project No.: GTSE111201022RF

6.420dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=30KHz, VBW=100KHz,detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data

Model of Horizontal				
 	20dB Occupy Bandwidth (KHz)			
Test channel	GFSK	Pi/4QPSK	8DPSK	
Lowest	716	1112	1164	
Middle	708	1116	1160	
Highest	704	1116	1160	

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 17 of 42

Date: 22.DEC.2011 15:35:33

Lowest channel

Date: 22.DEC.2011 15:43:44

Middle channel

Date: 22.DEC.2011 15:48:04

Highest channel

Date: 22.DEC.2011 16:02:44

Lowest channel

Date: 22.DEC.2011 16:14:28

Middle channel

Date: 22.DEC.2011 16:23:59

Highest channel

Date: 22.DEC.2011 16:31:41

Lowest channel

Date: 22.DEC.2011 16:34:59

Middle channel

Date: 22.DEC.2011 16:36:05

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 21 of 42

Measurement Data

	GFSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1004	477.3	Pass	
Middle	1008	477.3	Pass	
Highest	1004	477.3	Pass	
	Pi/4QPSK m	ode		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1000	744.0	Pass	
Middle	1000	744.0	Pass	
Highest	1000	744.0	Pass	
	8DPSK mod	de		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1008	776.0	Pass	
Middle	1000	776.0	Pass	
Highest	1008	776.0	Pass	

Note: According to section 6.4,

Mode	20dB bandwidth (kHz)	Limit (kHz)	
IVIOGO	(worse case)	(Carrier Frequencies Separation)	
GFSK	716	477.3	
PI/4QPSK	1116	744.0	
8DPSK	1164	776.0	

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 22 of 42

Date: 22.DEC.2011 15:27:31

Lowest channel

Date: 22.DEC.2011 15:29:43

Middle channel

Date: 22.DEC.2011 15:31:48

Highest channel

Date: 27.DEC.2011 17:02:59

Lowest channel

Date: 27.DEC.2011 17:15:44

Middle channel

Date: 27.DEC.2011 17:17:45

Highest channel

Modulation mode: 8DPSK

Date: 27.DEC.2011 17:24:08

Lowest channel

Date: 27.DEC.2011 17:21:39

Middle channel

Date: 27.DEC.2011 17:18:53

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111201022RF

Page 25 of 42

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705 RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Receiver setup:		
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data:

Measurement Data				
Mode	Hopping channel numbers	Limit		
GFSK, Pi/4QPSK, 8DPSK	79	15		

Date: 22.DEC.2011 15:25:20

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak	
Limit:	0.4 Second	
Test mode:	Hopping transmitting with all kind of modulation.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)	Result		
	DH1	0.1200				
GFSK	DH3	0.2608	0.4	Pass		
	DH5	0.3089				
	2-DH1	0.1200	0.4			
Pi/4QPSK	2-DH3	0.2608		Pass		
	2-DH5	0.3089				
	3-DH1	0.1200		Pass		
8DPSK	3-DH3	0.2608	0.4			
	3-DH5	0.3089				

Test Result:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as blow

DH1 time slot=0.375(ms)*(1600/ (2*79))*31.6=120.00 ms

DH3 time slot=1.630(ms)*(1600/ (4*79))*31.6= 260.80ms

DH5 time slot=2.896(ms)*(1600/ (6*79))*31.6=308.91 ms

Test plot as follows:

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 27 of 42

Date: 22.DEC.2011 15:17:35

DH1, 2-DH1, 3-DH1

Date: 22.DEC.2011 15:19:05

DH3, 2-DH3, 3-DH3

Date: 22.DEC.2011 15:19:58

DH5, 2-DH5, 3-DH5

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 29 of 42

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and DA00-705					
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Hopping transmitting with all kind of modulation.					
Test results:	Pass					

Remark:

During test the item, Pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

No-hopping mode

Date: 22.DEC.2011 15:37:26

Hopping mode

Test channel: Highest channel

Date: 22.DEC.2011 15:38:57

No-hopping mode

Date: 22.DEC.2011 15:58:37

Hopping mode

Project No.: GTSE111201022RF

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 31 of 42

Project No.: GTSE111201022RF

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	9 and 15.205		
Test Method:	ANSI C63.4: 20	03			
Test Frequency Range:	2.3GHz to 2.5G	Hz			
Test site:	Measurement D				
Receiver setup:					
1.000.101.001.001	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
Limit:		Peak	1MHz	10Hz	Average Value
Littiit.	Freque	ency	Limit (dBuV	/m @3m)	Remark
	Above 1		54.0		Average Value
			74.0		Peak Value e 0.8 meters above
Test setup:	to determing the EUT wantenna, wanten Both horizon make the resure and to find the specified Eurof the EUT have 10dB	ne the position was set 3 meter which was mount and height is various to determine ontal and vertineasurement. Uspected emisten the antend the rota table maximum reactiver system and width with sion level of the cified, then to would be reported margin would be reported	of the highesers away from unted on the touried from one the maximum cal polarizations of the color o	at radiation. I the interfer op of a variation of a variation of the and a variation of the end of the end one by one and then respect to the end one by one and then respect to the end one by one and then respect to the end one by one and then respect to the end one by one and then respect to the end one by one and then respect to the end of the	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 trees to 360 degrees
Test Instruments:	Refer to section	5.7 for details	S		
Test mode:	Refer to section	5.3 for details	S.		
Test results:	Pass				

Remark:

During test the item, Pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Test channe	el:	Lowe	st	Le	vel:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I Imit	Polarization
2310.00	42.96	27.58	3.81	34.83	39.52	74.00	-34.48	Horizontal
2390.00	48.70	27.58	3.83	34.83	45.28	74.00	-28.72	Horizontal
2310.00	45.92	27.58	3.81	34.83	42.48	74.00	-31.52	Vertical
2390.00	52.78	27.58	3.83	34.83	49.36	74.00	-24.64	Vertical

Test channel:		Lowe	Lowest		/el:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I Imit	Polarization	
2310.00	34.58	27.58	3.81	34.83	31.14	54.00	-22.86	Horizontal	
2390.00	40.22	27.58	3.83	34.83	36.80	54.00	-17.20	Horizontal	
2310.00	37.46	27.58	3.81	34.83	34.02	54.00	-19.98	Vertical	
2390.00	44.51	27.58	3.83	34.83	41.09	54.00	-12.91	Vertical	

Test channel:		Highe	Highest		vel:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2483.50	51.45	27.52	3.89	34.86	48.00	74.00	-26.00	Horizontal	
2500.00	44.20	27.55	3.90	34.87	40.78	74.00	-33.22	Horizontal	
2483.50	50.74	27.52	3.89	34.86	47.29	74.00	-26.71	Vertical	
2500.00	43.08	27.55	3.90	34.87	39.66	74.00	-34.34	Vertical	

Test channel: Highest		est	Level:			Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	ı ımır	Polarization
2483.50	43.59	27.52	3.89	34.86	40.14	54.00	-13.86	Horizontal
2500.00	36.57	27.55	3.90	34.87	33.15	54.00	-20.85	Horizontal
2483.50	42.59	27.52	3.89	34.86	39.14	54.00	-14.86	Vertical
2500.00	35.19	27.55	3.90	34.87	31.77	54.00	-22.23	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Remark

During test the item, Pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 34 of 42

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

30MHz~10GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111201022RF

10GHz~25GHz

6.11 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.4: 2003							
Test Frequency Range:	30MHz to 25GH	łz						
Test site:	Measurement D	istance: 3m						
Receiver setup:								
'	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above 10112	Peak	1MHz	10Hz	Average Value			
Limit:								
	Freque		Limit (dBuV		Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-21		5	Quasi-peak Value				
	216MHz-9	46.0		Quasi-peak Value				
	960MHz-	54.0		Quasi-peak Value				
	Above 1GHz		54.0		Average Value			
Test Procedure:	1 The FUT							
	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-							

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Remark:

During test the item, Pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 37 of 42

Peak

-17.63

Horizontal

Horizontal

Horizontal

30MHz~1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
30.00	54.97	12.36	0.20	32.27	35.26	40.00	-4.74	Vertical
37.95	50.21	14.63	0.25	32.16	32.93	40.00	-7.07	Vertical
39.44	50.36	15.41	0.26	32.16	33.87	40.00	-6.13	Vertical
44.43	47.30	15.68	0.29	32.08	31.19	40.00	-8.81	Vertical
46.83	45.70	16.11	0.30	32.05	30.06	40.00	-9.94	Vertical
52.58	39.94	16.15	0.33	32.01	24.41	40.00	-15.59	Vertical
30.21	40.61	12.35	0.20	32.27	20.89	40.00	-19.11	Horizontal
39.99	38.04	15.54	0.26	32.16	21.68	40.00	-18.32	Horizontal
48.84	40.70	16.32	0.31	32.05	25.28	40.00	-14.72	Horizontal
58.20	36.22	15.75	0.35	31.97	20.35	40.00	-19.65	Horizontal
66.50	36.39	13.02	0.38	31.91	17.88	40.00	-22.12	Horizontal
91.50	34.41	13.96	0.46	31.75	17.08	43.50	-26.42	Horizontal

Above 1GHz Test channel:

9608.00

12010.00

14412.00

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	44.36	31.53	5.87	35.46	46.30	74.00	-27.70	Vertical
7206.00	44.24	36.47	7.08	35.32	52.47	74.00	-21.53	Vertical
9608.00	44.99	38.10	9.01	35.72	56.38	74.00	-17.62	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	43.86	31.53	5.87	35.46	45.80	74.00	-28.20	Horizontal
7206.00	44.72	36.47	7.08	35.32	52.95	74.00	-21.05	Horizontal

35.72

Level:

56.37

74.00

74.00

74.00

Test channe	Test channel:		Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.84	31.53	5.87	35.46	37.78	54.00	-16.22	Vertical
7206.00	34.18	36.47	7.08	35.32	42.41	54.00	-11.59	Vertical
9608.00	33.80	38.10	9.01	35.72	45.19	54.00	-8.81	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	34.98	31.53	5.87	35.46	36.92	54.00	-17.08	Horizontal
7206.00	34.17	36.47	7.08	35.32	42.40	54.00	-11.60	Horizontal
9608.00	33.57	38.10	9.01	35.72	44.96	54.00	-9.04	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Lowest

9.01

38.10

44.98

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 38 of 42

Project No.: GTSE111201022RF

Test channel:			Middle		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	44.21	31.58	5.91	35.48	46.22	74.00	-27.78	Vertical	
7323.00	44.36	36.47	7.14	35.27	52.70	74.00	-21.30	Vertical	
9764.00	46.25	38.45	9.06	35.75	58.01	74.00	-15.99	Vertical	
12205.00	*					74.00		Vertical	
14480.00	*					74.00		Vertical	
4882.00	44.86	31.58	5.91	35.48	46.87	74.00	-27.13	Horizontal	
7323.00	44.07	36.47	7.14	35.27	52.41	74.00	-21.59	Horizontal	
9764.00	46.46	38.45	9.06	35.75	58.22	74.00	-15.78	Horizontal	
12205.00	*					74.00		Horizontal	
14480.00	*					74.00		Horizontal	

Test channel:			Middle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	35.47	31.58	5.91	35.48	37.48	54.00	-16.52	Vertical	
7323.00	34.29	36.47	7.14	35.27	42.63	54.00	-11.37	Vertical	
9764.00	33.19	38.45	9.06	35.75	44.95	54.00	-9.05	Vertical	
12205.00	*					54.00		Vertical	
14480.00	*					54.00		Vertical	
4882.00	35.42	31.58	5.91	35.48	37.43	54.00	-16.57	Horizontal	
7323.00	34.12	36.47	7.14	35.27	42.46	54.00	-11.54	Horizontal	
9764.00	33.17	38.45	9.06	35.75	44.93	54.00	-9.07	Horizontal	
12205.00	*					54.00		Horizontal	
14480.00	*					54.00		Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 39 of 42

Project No.: GTSE111201022RF

Test channel:			Highest		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	44.24	36.47	7.08	35.32	52.47	74.00	-21.53	Vertical	
7440.00	46.11	36.60	7.18	35.23	54.66	74.00	-19.34	Vertical	
9920.00	45.45	38.66	9.11	35.78	57.44	74.00	-16.56	Vertical	
12400.00	*					74.00		Vertical	
14646.00	*					74.00		Vertical	
4960.00	44.90	31.69	5.97	35.49	47.07	74.00	-26.93	Horizontal	
7440.00	45.13	36.60	7.18	35.23	53.68	74.00	-20.32	Horizontal	
9920.00	45.92	38.66	9.11	35.78	57.91	74.00	-16.09	Horizontal	
12400.00	*					74.00		Horizontal	
14646.00	*					74.00		Horizontal	

Test channel:			Highest		Level:		Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	36.27	31.69	5.97	35.49	38.44	54.00	-15.56	Vertical		
7440.00	35.50	36.60	7.18	35.23	44.05	54.00	-9.95	Vertical		
9920.00	32.41	38.66	9.11	35.78	44.40	54.00	-9.60	Vertical		
12400.00	*					54.00		Vertical		
14646.00	*					54.00		Vertical		
4960.00	35.48	31.69	5.97	35.49	37.65	54.00	-16.35	Horizontal		
7440.00	35.12	36.60	7.18	35.23	43.67	54.00	-10.33	Horizontal		
9920.00	32.83	38.66	9.11	35.78	44.82	54.00	-9.18	Horizontal		
12400.00	*					54.00		Horizontal		
14646.00	*					54.00		Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 40 of 42

7 Test Setup Photo

Conducted Emission

Radiated Spurious Emission

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

8 EUT Constructional Details

Reference to the test report No. GTSE11120102201

----end-----

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960