Chapitre 25. Séries numériques.

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Sauf mention contraire, $(u_k)_{k\in\mathbb{N}}$ désigne une suite à valeurs dans \mathbb{K} .

1 Définitions et premiers exemples

Pendant l'année, nous avons parfois rencontré des suites (S_n) d'une forme particulière. Par exemple celles-ci, issues du TD 8 sur les suites :

$$S_n = \sum_{k=0}^n \frac{(-1)^k}{k!}$$
 ; $S_n = \sum_{k=1}^n \frac{1}{k^2}$; $S_n = \sum_{k=1}^n \frac{1}{k}$

Le nième terme se met sous la forme $S_n = \sum_{k=0}^n u_k$ (ou bien $S_n = \sum_{k=1}^n u_k$), où (u_k) est une suite fixée.

C'est ce type de suites (S_n) qu'on va appeler "séries".

L'objectif du chapitre est de trouver de nouveaux résultats sur les suites de ce type; en particulier, il serait intéressant de trouver des informations sur la suite (S_n) à partir de caractéristiques de la suite (u_k) uniquement!

1.a Définitions

Définition:

Notons, pour tout $n \in \mathbb{N}$, $S_n = \sum_{k=0}^n u_k$.

La suite ainsi obtenue, $(S_n)_{n\in\mathbb{N}}$, est appelée la série de terme général u_k .

Le *n*-ième terme de cette suite particulière est donc le nombre $S_n = u_0 + u_1 + \cdots + u_n$, qu'on appelle la somme partielle d'indice n.

Pour désigner la série, c'est-à-dire la suite $(S_n)_{n\in\mathbb{N}}$, sans avoir à donner un nom S_n pour la somme partielle d'indice n, on a la notation $\sum u_k$ ou $\sum_{k>0} u_k$.

Remarque : Si la suite (u_n) n'est définie qu'à partir du rang 1, voire d'un rang n_0 , toutes les définitions s'adaptent facilement.

Exemple:

 $\sum_{k\geq 1}\frac{1}{k} \text{ désigne la série de terme général } \frac{1}{k}, \text{ c'est-à-dire } \boxed{\text{la suite dont le } n \text{ième terme est } \sum_{k=1}^{n}\frac{1}{k}}$

Définition:

On dit que la série $\sum u_k$ est <u>convergente</u> (ou <u>converge</u>) si la <u>suite</u> des sommes partielles $(S_n)_{n\in\mathbb{N}}$ converge.

Dans ce cas, la limite est notée $\left|\sum_{k=0}^{+\infty}u_k\right|$, et ce nombre est appelé somme de la série.

Reformulons:

Dire que $\sum u_k$ est convergente, c'est dire que $\lim_{n\to+\infty}\sum_{k=0}^n u_k$ existe et est finie. Seulement dans ce cas là, on peut écrire : $\sum_{k=0}^{\infty} u_k = \lim_{n \to +\infty} \sum_{k=0}^{n} u_k$

Si la série n'est pas convergente, on dit qu'elle est divergente (ou qu'elle diverge).

 (S_n) existe mais qu'elle est infinie, on ne peut pas écrire $\sum_{k=1}^{\infty} u_k = +\infty$.

égalités, les inégalités... : on n'aura pas toujours les mêmes droits qu'avec une somme finie \sum , car derrière la notation $\sum_{i=1}^{\infty}$ se cache une limite.

Exemple: Dans l'exercice 15 du TD 8, on a en fait montré que $\sum \frac{1}{k}$ était divergente, tandis que $\sum \frac{1}{k^2}$ était convergente. On peut montrer (admis) que $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$.

Vocabulaire : Déterminer la nature de la série , c'est déterminer si elle est convergente ou divergente.

Remarque: Lorsqu'une série $\sum u_k$ est <u>convergente</u>, alors $\sum_{k=0}^{+\infty} u_k$ existe et et un nombre fini, et on peut s'intéresser, pour chaque $n \in \mathbb{N}$, au « complément » qu'il faut ajouter à la somme partielle pour obtenir sa limite $\sum_{k=0}^{n} u_k$; c'est ce qu'on va appeler le <u>reste d'ordre n de la série</u> :

$$R_n = \sum_{k=0}^{+\infty} u_k - \sum_{k=0}^n u_k$$
, de sorte que $S_n + R_n = \sum_{k=0}^{+\infty} u_k$.

On a en fait $R_n = \sum_{k=n+1}^{+\infty} u_k$ (i.e. c'est la somme d'une série), et on peut montrer que $R_n \xrightarrow[n \to +\infty]{} 0$.

 \triangle Ce reste n'existe pas si la série $\sum u_k$ diverge.

1.b Premiers exemples

• Étudions la nature des séries $\sum_{n\geq 0} n$ et $\sum_{n\geq 0} (-1)^n$:

Démonstration 1

Les séries géométriques

Proposition:

La série $\sum q^n$ converge si et seulement si |q|<1

Dans ce cas, on a:

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$$

Démonstration 2

Les séries téléscopiques

Soit (v_n) une suite de $\mathbb{K}^{\mathbb{N}}$.

Pour tout $n \in \mathbb{N}$, on sait calculer la nième somme partielle de la série $\sum (v_{n+1} - v_n)$; elle s'exprime à l'aide de la suite (v_n) (et d'une constante), ce qui permet d'étudier facilement sa convergence.

Exemples: Étudier la nature des séries $\sum \frac{1}{n(n+1)}$ et $\sum \ln \left(1 + \frac{1}{n}\right)$; calculer la somme de la série en cas de convergence.

Démonstration 3

En pratique, si on constate que la série est téléscopique, on fixe n et on calcule la somme téléscopique finie S_n et on étudie sa convergence. Cela revient à redémontrer la proposition ci-dessus, mais cela permet de calculer la somme de la série en cas de convergence.

La série exponentielle

Proposition:

Pour tout
$$z \in \mathbb{C}$$
, la série $\sum \frac{z^n}{n!}$ converge, et $\sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z$

Lien suite-série

À toute suite $(u_k) \in \mathbb{K}^{\mathbb{N}}$, on peut associer une série, qui est une suite (S_n) , dont on est capable de calculer les termes connaissant $(u_k) \in \mathbb{K}^{\mathbb{N}}$:

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n u_k$$

Réciproquement, si on connait toutes les sommes partielles S_n d'une série, on peut récupérer le terme général u_n de la série :

$$u_0 = S_0 \text{ et } \forall n \in \mathbb{N}^*, \ u_n = S_n - S_{n-1}.$$

$\mathbf{2}$ Premières propriétés

2.a Divergence grossière

Proposition:

Si $\sum u_n$ converge alors $u_n \underset{n \to +\infty}{\longrightarrow} 0$.

Démonstration 5

Corollaire:

(Critère de divergence)

Si $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers 0, alors $\sum u_n$ diverge.

On dit alors que la série diverge grossièrement ou qu'elle est grossièrement divergente.

⚠ La réciproque est fausse : il existe des séries divergentes dont le terme général tend vers 0.

En d'autres termes, pour que la série $\sum u_n$ converge, la condition « $u_n \xrightarrow[n \to +\infty]{} 0$ » est une condition nécessaire mais pas suffisante.

Exemples et contre-exemple:

- $\sum \frac{n}{n+1}$
- $\sum (-2)^n$
- La série harmonique $\sum \frac{1}{n}$: elle diverge, pourtant, $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$.

2.bOpérations : somme et multiplication par un scalaire

Proposition:

- Si λ est un scalaire non nul, alors $\sum \lambda u_n$ est de même nature que $\sum u_n$. En cas de convergence, on peut écrire : $\sum_{n=0}^{+\infty} \lambda u_n = \lambda \sum_{n=0}^{+\infty} u_n$.
- Si $\sum u_n$ et $\sum v_n$ convergent, alors $\sum (u_n + v_n)$ converge, et on peut écrire :

$$\sum_{n=0}^{+\infty} (u_n + v_n) = \sum_{n=0}^{+\infty} u_n + \sum_{n=0}^{+\infty} v_n$$

Démonstration 7

Remarques importantes:

- Si $\sum u_n$ converge et $\sum v_n$ diverge, alors $\sum (u_n + v_n)$ diverge. En effet, si $\sum (u_n + v_n)$ convergeait : en écrivant $v_n = (u_n + v_n) + (-u_n)$, on conclurait que $\sum v_n$ converge puisque $\sum (u_n + v_n)$ et $\sum (-u_n)$ convergent; contradiction.
- Si $\sum u_n$ et $\sum v_n$ divergent, alors on ne peut rien dire de $\sum (u_n + v_n)!!$ Elle peut diverger (par exemple avec $\sum n$ diverge, $\sum n$ diverge, et $\sum 2n$ diverge) Elle peut converger (par exemple $\sum n$ diverge, $\sum (-n)$ diverge, mais $\sum (n-n) = \sum 0$ converge)

Récapitulons à l'aide d'un tableau :

bleau:
$$\frac{\sum u_n \operatorname{cvg}}{\sum v_n \operatorname{cvg}} \frac{\sum u_n \operatorname{dvg}}{\sum v_n \operatorname{dvg}}$$

Comme la convergence d'une suite à valeurs complexes équivaut à la convergence de sa partie réelle et de sa partie imaginaire:

Proposition:

Soit
$$(u_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$$
.

$$\sum u_n \text{ converge } \iff \sum \operatorname{Re}(u_n) \text{ converge et } \sum \operatorname{Im}(u_n) \text{ converge}$$
Dans ce cas, $\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} \operatorname{Re}(u_n) + i \sum_{n=0}^{+\infty} \operatorname{Im}(u_n)$,
autrement dit, $\operatorname{Re}\left(\sum_{n=0}^{+\infty} u_n\right) = \sum_{n=0}^{+\infty} \operatorname{Re}(u_n)$ et $\operatorname{Im}\left(\sum_{n=0}^{+\infty} u_n\right) = \sum_{n=0}^{+\infty} \operatorname{Im}(u_n)$.

Exemple: montrer que les séries $\sum_{n\geq 0} \frac{\cos\left(n\frac{\pi}{3}\right)}{2^n}$ et $\sum_{n\geq 0} \frac{\sin\left(n\frac{\pi}{3}\right)}{2^n}$ convergent et calculer leurs sommes.

Influence des premiers termes de la suite

Proposition:

On ne modifie pas la <u>nature</u> (convergente/divergente) d'une série $\sum u_n$ lorsqu'on modifie un nombre fini de termes de la suite (u_n) .

Intérêt de cette proposition : pour étudier la <u>nature</u> de $\sum u_n$, il suffira d'avoir les hypothèses des théorèmes vraies à partir d'un certain rang.

$\mathbf{3}$ Séries à termes positifs

Dans cette partie, on s'intéresse aux séries $\sum u_n$ telles que pour tout $n \in \mathbb{N}$, $u_n \geq 0$. Pour étudier une série $\sum u_n$ à termes négatifs, il suffira d'étudier $\sum (-u_n)$.

Caractérisation des séries à termes positifs convergentes

Supposons que pour tout $n \in \mathbb{N}$, $u_n \geq 0$. En notant $S_n = \sum_{k=0}^n u_k$ pour tout $n \in \mathbb{N}$:

Proposition:

Une série à termes positifs est convergente si et seulement si

Comparaison **3.**b

Théorème:

(Théorème de majoration / de minoration)

Si, pour tout $n \in \mathbb{N}$, ou bien à partir d'un certain rang :

$$0 \le u_n \le v_n$$

- $\sum v_n$ converge $\Longrightarrow \sum u_n$ converge
- $\sum u_n$ diverge $\Longrightarrow \sum v_n$ diverge

Remarque : Supposons les deux séries convergent.

Si l'inégalité $0 \le u_n \le v_n$ est valable pour tout $n \in \mathbb{N}$, alors on peut écrire $0 \le \sum_{n=0}^{+\infty} u_n \le \sum_{n=0}^{+\infty} v_n$.

Mais si l'inégalité $0 \le u_n \le v_n$ n'est valable qu'à partir de n_0 on n'a que : $0 \le \sum_{n=n_0}^{+\infty} u_n \le \sum_{n=n_0}^{+\infty} v_n$.

Théorème:

Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont des suites positives, et si $u_n = o(v_n)$ ou $u_n = O(v_n)$, alors :

- $\sum v_n$ converge $\Longrightarrow \sum u_n$ converge
- $\sum u_n$ diverge $\Longrightarrow \sum v_n$ diverge

Théorème:

(Théorème d'équivalence)

Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont des suites positives, et si $u_n \underset{n\to+\infty}{\sim} v_n$.

Alors $\sum u_n$ et $\sum v_n$ sont de même nature, autrement dit :

$$\sum u_n \text{ converge } \iff \sum v_n \text{ converge}$$

$$\sum u_n \text{ diverge } \iff \sum v_n \text{ diverge}$$

Remarque: pour appliquer ce théorème, il est inutile de vérifier que les deux suites (u_n) et (v_n) sont positives puisque, si $u_n \underset{n \to +\infty}{\sim} v_n$ et qu'on sait que (v_n) est positive, alors (u_n) est positive à partir d'un certain rang.

Exemples d'application de ces théorèmes

Déterminer la nature de $\sum u_n$ dans les cas suivants :

a)
$$u_n = \frac{\ln n}{n2^n}$$
 b) $u_n = \frac{1}{n!}$ c) $u_n = \ln(1 + \frac{1}{n})$ d) $u_n = \frac{1}{\sqrt{n}}$

Démonstration 10

3.c Comparaison série-intégrale

Il arrive parfois que notre série à étudir $\sum u_n$ se mettre sous la forme $\sum f(n)$, où $f:[0,+\infty[\to\mathbb{R}^+]]$ est une fonction positive, continue, décroissante.

Dans ce cas, la convergence de $\sum f(n)$ revient à l'étude de la suite des intégrales $\int_0^n f(t) dt$. Si on sait calculer ces intégrales, on sait étudier la série!

7

C'est lié à un encadrement de $S_n = \sum_{k=0}^n f(k)$ qui se conjecture facilement sur un dessin. Pour S_5 :

On conjecture l'inégalité :

On conjecture l'inégalité :

Théorème:

On s'intéresse à la série $\sum f(n)$ où :

$$f:[0,+\infty[\to\mathbb{R}^+]$$
 positive, continue, décroissante

Alors:

$$\sum f(n)$$
 converge \iff la suite $\left(\int_0^n f(t)\,\mathrm{d}t\right)_{n\in\mathbb{N}}$ converge

Ce théorème s'adapte pour une fonction qui ne serait définie que sur $[1, +\infty[$ (ou $[2, +\infty[$, ...) : on considère alors $\sum_{n\geq 1} f(n)$ (ou $\sum_{n\geq 2} f(n)$, ...).

Exemple:

Montrer que la série $\sum_{n\geq 2} \frac{1}{n\ln(n)}$ diverge, et déterminer un équivalent de sa somme partielle d'ordre n.

3.dSéries de Riemann

Proposition:

Soit $\alpha \in \mathbb{R}$.

$$\sum \frac{1}{n^{\alpha}}$$
 converge $\iff \alpha > 1$

Démonstration 12

En pratique, pour étudier la nature d'une série à termes positifs $\sum u_n$, on cherche souvent à la comparer à une série de Riemann. En particulier :

- Si on trouve qu'à partir d'un certain rang, $0 \le u_n \le \frac{1}{n^{\alpha}}$ avec $\alpha > 1$: alors $\sum u_n$ converge
- Si on trouve $\left|u_n = o\left(\frac{1}{n^{\alpha}}\right)\right|$ avec $\alpha > 1$: alors $\sum u_n$ converge Cela revient à $n^{\alpha}u_n \xrightarrow[n \to +\infty]{} 0$.
- Pour obtenir que $\sum u_n$ diverge : On cherche un $\alpha \leq 1$ tel que $0 \leq \frac{1}{n^{\alpha}} \leq u_n$, ou $n^{\alpha}u_n \xrightarrow[n \to +\infty]{} +\infty$ (de sorte que $\frac{1}{n^{\alpha}} = o(u_n)$).

Exemples:

- a) Étudier la nature de $\sum_{n\geq 1} \frac{\ln n}{n^2}$.
- b) Étudier la nature de $\sum_{n>2} \frac{1}{\sqrt{n} \ln n}$.

Démonstration 13

$\mathbf{4}$ Absolue convergence

Définition:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle ou complexe. On dit que $\sum u_n$ est <u>absolument convergente</u> si $\sum |u_n|$ est convergente.

Théorème:

Si la série $\sum u_n$ est absoluement convergente alors elle est convergente, et on a :

$$\left| \sum_{n=0}^{+\infty} u_n \right| \le \sum_{n=0}^{+\infty} |u_n|$$

9

Exemples :
a)
$$\sum_{n\geq 1} \frac{e^{in}}{n^2}$$
 b) $\sum_{n\geq 1} \frac{(-1)^n}{n\sqrt{n}}$

Démonstration 14

Remarque : Le théorème se réécrit

$$\sum u_n$$
 absolument convergente $\Longrightarrow \sum u_n$ convergente

⚠ La réciproque est fausse!

Il y a des séries convergentes qui ne sont pas absolument convergentes.

Exemple:
$$\sum_{n\geq 1} \frac{(-1)^n}{n}$$

Démonstration 15

Plan du cours

1	Définitions et premiers exemples		1
	1.a	Définitions	1
	1.b	Premiers exemples	3
	1.c	Lien suite-série	4
2	Premières propriétés		
	2.a	Divergence grossière	4
	2.b	Opérations : somme et multiplication par un scalaire	5
	2.c	Influence des premiers termes de la suite	6
3	Séries à termes positifs		6
	3.a	Caractérisation des séries à termes positifs convergentes	6
	3.b	Comparaison	6
	3.c	Comparaison série-intégrale	7
	3.d	Séries de Riemann	9
4	Al	osolue convergence	9