Departamento de Matemáticas 4º Académicas

1. **Teoría:** Reducción al primer cuadrante

- (a) Ángulos complementarios (suman 90°)
- (suman 180°)
- (c) Ángulos suplementarios (e) Ángulos cuya suma es 360°

$$sen (90^{\circ} - \alpha) = \cos \alpha$$

 $cos (90^{\circ} - \alpha) = sen \alpha$
 $tg (90^{\circ} - \alpha) = cotg \alpha$

$$sen (180^{\circ} - \alpha) = sen \alpha$$

$$cos (180^{\circ} - \alpha) = -cos \alpha$$

$$tg (180^{\circ} - \alpha) = -tg \alpha$$

$$sen (360^{\circ} - \alpha) = -sen \alpha$$

$$cos (360^{\circ} - \alpha) = cos \alpha$$

$$tg (360^{\circ} - \alpha) = -tg \alpha$$

(b) Ángulos que difieren 90°

$$sen (90^{\circ} + \alpha) = \cos \alpha$$

 $cos (90^{\circ} + \alpha) = -sen \alpha$
 $tg (90^{\circ} + \alpha) = -cotg \alpha$

$$sen (180^{\circ} + \alpha) = -sen \alpha$$

$$cos (180^{\circ} + \alpha) = -cos \alpha$$

$$tq (180^{\circ} + \alpha) = tg \alpha$$

2. Demostrar que para cualquier ángulo α , se verifica: $\sec^2 \alpha + \csc^2 \alpha = \sec^2 \alpha \cdot \csc^2 \alpha$

Sol:
$$\frac{1}{\cos^{2}\alpha} + \frac{1}{\sin^{2}\alpha} = \frac{1}{\cos^{2}\alpha} \cdot \frac{1}{\sin^{2}\alpha} \to \frac{\sin^{2}\alpha + \cos^{2}\alpha}{\sin^{2}\alpha \cdot \cos^{2}\alpha} = \frac{1}{\sin^{2}\alpha \cdot \cos^{2}\alpha} \to \frac{1}{\sin^{2}\alpha \frac{1}{\sin^{2}\alpha \cdot \cos^{2}\alpha}$$

3. Demostrar si son verdaderas o falsas las siguientes ecuaciones:

(a)
$$\frac{\operatorname{tg} \, \alpha \ + \ \operatorname{tg} \, \beta}{\operatorname{cotg} \, \alpha \ + \ \operatorname{cotg} \, \beta} \ = \ \operatorname{tg} \, \alpha \ . \ \operatorname{tg} \, \beta$$

Sol: V: $\tan(x)\tan(y)$

(b)
$$\frac{\operatorname{sen} \alpha \cdot \operatorname{cos} \alpha}{\operatorname{cos}^2 \alpha - \operatorname{sen}^2 \alpha} = \frac{\operatorname{tg} \alpha}{1 - \operatorname{tg}^2 \alpha}$$

Sol:

(c)
$$\cot \alpha - \frac{\cot^2 \alpha - 1}{\cot \alpha} = \tan \alpha$$

Sol:

(d)
$$\frac{\operatorname{sen} \alpha + \operatorname{cotg} \alpha}{\operatorname{tg} \alpha + \operatorname{cosec} \alpha} = \cos \alpha$$

Sol:

(e)
$$\cot^2 \alpha - \cos^2 \alpha = \cot^2 \alpha \cdot \cos^2 \alpha$$

Sol:

 $\operatorname{sen} \alpha \cdot \operatorname{cos} \alpha \cdot \operatorname{tg} \alpha \cdot \operatorname{cotg} \alpha \cdot \operatorname{sec} \alpha \cdot \operatorname{cosec} \alpha =$ (f)

Sol:

(g)
$$\frac{1 + \lg \alpha}{1 - \lg \alpha} = \frac{\cos \alpha + \sin \alpha}{\cos \alpha - \sin \alpha}$$

Sol:

(h)
$$\frac{1 + \operatorname{tg}^2 \alpha}{\cot g \ \alpha} = \frac{\operatorname{tg} \ \alpha}{\cos^2 \alpha}$$

Sol:

4. Simplificar las siguientes expresiones:

(a)	sen	α	$\frac{1}{\text{tg }\alpha}$
			18 C

Sol: $\cos \alpha$

(b) $sen^3\alpha + sen \alpha . cos^2\alpha$

Sol: $\sin(\alpha)$

(c) $\sqrt{1 - \sin \alpha} \cdot \sqrt{1 + \sin \alpha}$

Sol: $\cos \alpha$

(d) $sen^4\alpha - cos^4\alpha$

Sol: $\sin^2 \alpha - \cos^2 \alpha$

(e) $\cos^3\alpha + \cos^2\alpha \cdot \sin\alpha + \cos\alpha \cdot \sin^2\alpha +$ $sen^3 \alpha$

Sol:

 $sen \alpha \cdot \cos \alpha \left(\operatorname{tg} \alpha + \frac{1}{\operatorname{tg} \alpha} \right)$ (f)

Sol:

 $\cos^2 \alpha$ - $\sin^2 \alpha$ (g) $\frac{1}{\cos^4 \alpha - \sin^4 \alpha}$

Sol:

 ${\rm sec}^2\alpha \ + \ {\rm cos}^2\alpha$ (h) $\sec^2\alpha - \cos^2\alpha$

Sol:

 $\cos^2 \alpha$ (i) 1 - sen α

Sol:

 $\cos ec \alpha$ (j) $1 + \cot g^2 \alpha$

Sol:

5. Calcular las restantes razones trigonométricas de α , conocida:

(a) $\cos \alpha = \frac{4}{5} y \alpha \in I$

Sol:

(d) $\sec \alpha = 2 y \alpha \in IV$

Sol:

(b) $sen \alpha = \frac{3}{5} y \alpha \in II$

Sol:

(e) $\cos ec \alpha = -2 y \alpha \in III$

Sol:

(c) $tg \alpha = -\frac{3}{4} y \alpha \in II$

Sol:

(f) $\cot g \ \alpha = -2 \ y \ \alpha \in IV$

Sol:

6. Si tg $\alpha = \frac{3}{4}$, halla el valor de las siguientes razones trigonométricas:

(a) tg $\left(\frac{\pi}{2} - \alpha\right) =$

Sol:

Sol:

Sol:

(c) $\cos(\pi + \alpha) =$

(d) $tg(\pi - \alpha) =$

(b) $sen(\pi - \alpha) =$

Sol:

Sol:

(e) $\cot \left(\frac{\pi}{2} + \alpha\right) =$

(h) $\cos\left(\frac{3\pi}{2} + \alpha\right) =$

(k) $\cot g(\pi + \alpha) =$

Sol:

Sol:

(f) $\sec(\pi - \alpha) =$

(i) $\operatorname{sen}(\pi + \alpha) =$

Sol:

Sol:

501

Sol:

Sol:

(l) $\sec(\pi - \alpha) =$

(g) cosec $\left(\frac{3\pi}{2} - \alpha\right)$

(j) $\operatorname{tg}\left(\frac{\pi}{2} + \alpha\right)$

Sol:

7. Resolver las siguientes ecuaciones:

(a) sen $2x = \frac{1}{2}$

Sol: $x = \frac{\pi}{12} + \pi \cdot n$ $x = \frac{5\pi}{12} + \pi \cdot n$

(b) $\operatorname{tg} \frac{x}{2} = \frac{\sqrt{3}}{3}$

Sol: $x = \frac{\pi}{3} + 2\pi \cdot n$

(c) sen $\left(3x - \frac{\pi}{2}\right) = -\frac{1}{2}$

Sol:

8. Resolver las siguientes ecuaciones:

(a) $2 \operatorname{sen} x + \operatorname{cosec} x = 2\sqrt{2}$

Sol: $x = \frac{\pi}{4} + 2\pi \cdot n$ $x = \frac{3\pi}{4} + 2\pi \cdot n$

(d) $\operatorname{sen} x \cdot \cos x = 2 \cdot \operatorname{sen} x$

Sol:

(b) $\sin x = \cos^2 x + 1$

Sol:

Sol:

(e) $2 \cos x - 3tg x = 0$

Sol:

(c) $\operatorname{tg} x - \operatorname{sen} x = 0$

(f) $\operatorname{tg} x + 3.\operatorname{cotg} x = 4$

Sol: