NNC2Pv0

December 19, 2022

Contents

	Introduction	1
2	2 Generating training data	2
3	3 Getting data into PyTorch's DataLoader	4
4	4 Building the neural networks	5
5	Training the neural network 5.1 Results of training	6 51
6	Analyzing neural networks 6.1 Estimate the performance of the network 6.2 Estimate the performance on unseen/untrained cases: 6.2.1 When only one parameter gets outside of its range 6.2.2 When all parameters can go outside of their ranges	54 54
7	7 Get parameters of network out:	63
	<pre>import numpy as np import matplotlib.pyplot as plt plt.rcParams['figure.dpi'] = 300 import random import csv import pandas as pd import torch from torch import nn from torch.utils.data import Dataset, DataLoader from torchvision.transforms import ToTensor import matplotlib.cm as cm</pre>	

1 Introduction

The conserved variables are (D, S_i, τ) and they are related to primitive variables, $w = (\rho, v^i, \epsilon, p)$, defined in the local rest frame of the fluid through (in units of light speed c = 1). The P2C is explicitly given:

$$D=\rho W\,,\quad S_i=\rho hW^2v_i\,,\quad \tau=\rho hW^2-p-D\,, \eqno(1)$$

where we used

$$W = (1 - v^2)^{-1/2} \,, \quad h = 1 + \epsilon + \frac{p}{\rho} \,. \tag{2}$$

Our first goal is to reproduce the results from this paper. A different notebook implemented the NNEOSB network. Here, we will implement the NNC2P network. We consider an **analytical** Γ -law **EOS** as a benchmark:

$$p(\rho, \varepsilon) = (\Gamma - 1)\rho\epsilon, \tag{3}$$

and we fix $\Gamma = 5/3$ in order to fully mimic the situation of the paper.

2 Generating training data

```
[2]: # Define the three functions determining the output
     def eos(rho, eps, Gamma = 5/3):
         """Computes the analytical gamma law EOS from rho and epsilon"""
         return (Gamma - 1) * rho * eps
     def h(rho, eps, v):
         """Enthalpy"""
         p = eos(rho, eps)
         return 1 + eps + p/rho
     def W(rho, eps, v):
         """Lorentz factor. Here, in 1D so v = v_x"""
         return (1-v**2)**(-1/2)
     def D(rho, eps, v):
         """See eq 2 paper"""
         return rho*W(rho, eps, v)
     def S(rho, eps, v):
         """See eq2 paper. Note: 1D only for now."""
         return rho*h(rho, eps, v)*((W(rho, eps, v))**2)*v
     def tau(rho, eps, v):
         """See eq2 paper."""
         return rho*(h(rho, eps, v))*((W(rho, eps, v))**2) - eos(rho, eps) - D(rho, u
      ⇔eps, v)
```

We generate data as follows. We create a training set by randomly sampling as follows: - $\rho \in (0, 10.1)$, - $\epsilon \in (0, 2.02)$, - $v_x \in (0, 0.721)$.

```
[3]: # Define ranges of parameters to be sampled (see paper Section 2.1)

rho_min = 0

rho_max = 10.1

eps_min = 0

eps_max = 2.02

v_min = 0
```

```
v_{max} = 0.721
```

Note: the code in comment below was used to generate the data. It has now been saved separately in a folder called "data".

```
[4]: \# number\_of\_datapoints = 10000
     # data = []
     # for i in range(number_of_datapoints):
           rho = random.uniform(rho min, rho max)
           eps = random.uniform(eps_min, eps_max)
                 = random.uniform(v_min, v_max)
     #
     #
                            = eos(rho, eps)
     #
                     = D(rho, eps, v)
           Dvalue
     #
           Svalue
                      = S(rho, eps, v)
           tauvalue = tau(rho, eps, v)
           new_row = [rho, eps, v, p, Dvalue, Svalue, tauvalue]
     #
           data.append(new_row)
```

Save the data in a csv file:

```
[10]: # header = ['rho', 'eps', 'v', 'p', 'D', 'S', 'tau']

# with open('data/NNC2P_data_test.csv', 'w', newline = '') as file:

# writer = csv.writer(file)

# write header

# writer.writerow(header)

# write data

# writer.writerows(data)
```

```
[11]: # Import data
data_train = pd.read_csv("data/NNC2P_data_train.csv")
data_test = pd.read_csv("data/NNC2P_data_test.csv")
print("The training data has " + str(len(data_train)) + " instances")
print("The test data has " + str(len(data_test)) + " instances")
data_train
```

The training data has 80000 instances The test data has 10000 instances

```
[11]:
                                                                        S
                  rho
                                                             D
                                                                                 tau
                            eps
             0.662984 0.084146
      0
                                0.218802 0.037192
                                                      0.679448
                                                                 0.173724
                                                                            0.077335
      1
             8.565808 0.205945
                                0.657351 1.176059
                                                     11.366755
                                                                13.318537
                                                                            7.718100
      2
                                                                 0.347321
             4.387112 1.598809 0.021593 4.676103
                                                      4.388135
                                                                            7.020631
      3
             5.337054 0.530803
                                0.351307 1.888615
                                                      5.700396
                                                                 4.031171
                                                                            3.885760
             1.133895 0.786717 0.079475 0.594703
                                                      1.137493
                                                                 0.209600
                                                                            0.905115
```

```
79995 8.101834 0.428605 0.616897 2.314990 10.294002 13.832316
                                                                9.813427
79996 7.841014 1.125480 0.209087 5.883268
                                          8.018242
                                                     4.930289
                                                                9.678536
79997 4.628822 0.194190 0.237759 0.599248
                                          4.765476
                                                     1.544018
                                                                1.129323
79998 9.913117 1.152242 0.477216 7.614874 11.280468 17.889657 18.592193
79999 9.717025 0.001552 0.163383 0.010052
                                           9.849373
                                                     1.635352
                                                                0.149919
[80000 rows x 7 columns]
```

3 Getting data into PyTorch's DataLoader

Below: all_data is of the type $(\rho, \epsilon, v, p, D, S_x, \tau)$ as generated above.

```
[12]: class CustomDataset(Dataset):
          """See PyTorch tutorial: the following three methods HAVE to be_{\!\!\!\!\perp}
       \rightarrow implemented"""
          def __init__(self, all_data, transform=None, target_transform=None):
              self.transform = transform
              self.target_transform = target_transform
               # Separate features (rho and eps) from the labels (p, chi, kappa)
               # (see above to get how data is organized)
              features = []
              labels = []
              for i in range(len(all_data)):
                   # Separate the features
                  new_feature = [all_data['D'][i], all_data['S'][i],__
       ⇔all_data['tau'][i]]
                  features.append(torch.tensor(new_feature, dtype = torch.float32))
                   # Separate the labels
                  new_label = [all_data['p'][i]]
                  labels.append(torch.tensor(new_label, dtype = torch.float32))
               # Save as instance variables to the dataloader
              self.features = features
              self.labels = labels
          def __len__(self):
              return len(self.labels)
          def __getitem__(self, idx):
              feature = self.features[idx]
              if self.transform:
                  feature = transform(feature)
              label = self.labels[idx]
```

```
if self.target_transform:
    feature = target_transform(label)

return feature, label
```

Note that the following cell may be confusing. "data_train" refers to the data that was generated above, see the pandas table. "training_data" is defined similarly as in the PyTorch tutorial, see this page and this is an instance of the class CustomDataset defined above.

```
[13]: # Make training and test data, as in the tutorial
    training_data = CustomDataset(data_train)
    test_data = CustomDataset(data_test)

[14]: # Check if this is done correctly
    print(training_data.features[:3])
    print(training_data.labels[:3])

    [tensor([0.6794, 0.1737, 0.0773]), tensor([11.3668, 13.3185, 7.7181]),
    tensor([4.3881, 0.3473, 7.0206])]
    [tensor([0.0372]), tensor([1.1761]), tensor([4.6761])]

[15]: # Now call DataLoader on the above CustomDataset instances:
    train_dataloader = DataLoader(training_data, batch_size=32)
    test_dataloader = DataLoader(test_data, batch_size=32)
```

4 Building the neural networks

We will follow this part of the PyTorch tutorial. For more information, see the documentation page of torch.nn. We take the parameters of NNEOS

```
[16]: # Define hyperparameters of the model here. Will first of all put two hidden
       \hookrightarrow layers
      # total of 800 neurons for the one in the paper
      device = "cpu"
      size HL 1 = 600
      size_HL_2 = 200
      # Implement neural network
      class NeuralNetwork(nn.Module):
          def __init__(self):
              super(NeuralNetwork, self).__init__()
               #self.flatten = nn.Flatten()
              self.stack = nn.Sequential(
                   nn.Linear(3, size_HL_1),
                   nn.Sigmoid(),
                  nn.Linear(size_HL_1, size_HL_2),
                  nn.Sigmoid(),
                   nn.Linear(size_HL_2, 1)
```

```
def forward(self, x):
    # No flatten needed, as our input and output are 1D?
    #x = self.flatten(x)
    logits = self.stack(x)
    return logits
```

5 Training the neural network

We added a regularization term, with a coefficient specified by λ (source).

```
[37]: def compute_loss(pred, y, regularization=False, l1_lambda = 0.001, userbose=False):
    """Adds a regularization term on top of the used loss function.
    Note: Replace abs() with pow(2.0) for L2 regularization"""

# use the specified loss function
loss = loss_fn(pred, y)

# If we use regularization:
    if regularization:
        l1_norm = sum(p.abs().sum() for p in model.parameters())
        loss += l1_lambda * l1_norm

    return loss
```

```
[38]: def train_loop(dataloader, model, loss_fn, optimizer, report_progress=False,_

¬regularization=False):
          """The training loop of the algorithm"""
          size = len(dataloader.dataset)
          for batch, (X, y) in enumerate(dataloader):
              # Compute prediction and loss
              pred = model(X)
              loss = compute_loss(pred, y,regularization)
              # Backpropagation
              optimizer.zero_grad()
              loss.backward()
              optimizer.step()
              # If we want to report progress during training (not recommended -
       ⇔obstructs view)
              if report_progress:
                  if batch % 100 == 0:
                      loss, current = loss.item(), batch * len(X)
                      print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
```

```
def test_loop(dataloader, model, loss_fn, regularization=False):
    """The testing loop of the algorithm"""
    num_batches = len(dataloader)
    test_loss = 0

# Predict and compute losses
with torch.no_grad():
    for X, y in dataloader:
        pred = model(X)
        test_loss += compute_loss(pred, y, regularization).item()

average_test_loss = test_loss/num_batches
    return average_test_loss
```

Now we generate an instance of the above neural network in model (note: running this cell will create a 'fresh' model!).

Save hyperparameters and loss function - note that we follow the paper. I think that their loss function agrees with MSELoss. The paper uses the Adam optimizer. More details on optimizers can be found here. Required argument params can be filled in by calling model which contains the neural network. For simplicity we will train for 10 epochs here.

```
To start a new model:
```

```
[39]: model = NeuralNetwork().to(device)
      print(model)
      # Save hyperparameters, loss function and optimizer here (see paper for details)
      learning_rate = 6e-4
      batch size = 32
      adaptation_threshold = 0.9995
      adaptation_multiplier = 0.5
      loss fn = nn.MSELoss()
      optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
     NeuralNetwork(
       (stack): Sequential(
         (0): Linear(in_features=3, out_features=600, bias=True)
         (1): Sigmoid()
         (2): Linear(in_features=600, out_features=200, bias=True)
         (3): Sigmoid()
         (4): Linear(in_features=200, out_features=1, bias=True)
       )
```

To go further:

)

```
[42]: NNC2P = torch.load('Models/NNC2Pv0.pth')
model = NNC2P

# Save hyperparameters, loss function and optimizer here (see paper for details)
learning_rate = (6e-4)*(0.5**7)
batch_size = 32
adaptation_threshold = 0.9995
adaptation_multiplier = 0.5

loss_fn = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
```

Training:

```
[43]: # Restart training by changing this parameter:
      restart = True
      abort = False
      max_number_epochs = 500
      # Initialize lists in case we start a new training loop
      if restart:
          confirmation = input("Are you sure you want to restart? Press y >> ")
          if confirmation == "y":
              test_losses = []
             train losses = []
              train_losses_subset = []
              adaptation indices = []
              counter = -5 # we skip the very first few iterations before changing
       ⇔learning rate
          else:
              print("Aborting training.")
              abort = True
      # Acutal training loop is done:
      if abort is False:
          epoch_counter = len(train_losses) + 1
          print("Training the model . . .")
          if restart is False:
              print("(Continued)")
          # Training:
          while epoch_counter < max_number_epochs:</pre>
              print(f"\n Epoch {epoch_counter} \n -----")
              train_loop(train_dataloader, model, loss_fn, optimizer)
              # Test on the training data
```

```
average_train_loss = test_loop(train_dataloader, model, loss_fn)
        train_losses.append(average_train_loss)
         # Test on testing data
        average_test_loss = test_loop(test_dataloader, model, loss_fn)
        test_losses.append(average_test_loss)
         # Update the learning rate - see Appendix B of the paper
         # only check if update needed after 10 new epochs
         if counter >= 10:
             current = np.min(train_losses[-5:])
             previous = np.min(train_losses[-10:-5])
             # If we did not improve the test loss sufficiently, going to adaptu
  \hookrightarrow LR
             if current/previous >= adaptation_threshold:
                 # Reset counter (note: will increment later, so set to -1 st it_{\sqcup}
  ⇒becomes 0)
                 counter = -1
                 learning_rate = adaptation_multiplier*learning_rate
                 print(f"Adapting learning rate to {learning_rate}")
                 # Change optimizer
                 optimizer = torch.optim.Adam(model.parameters(),
  →lr=learning_rate)
                 # Add the epoch time for plotting later on
                 adaptation_indices.append(epoch_counter)
         # Report progress:
#
           print(f"Average loss of: {average_test_loss} for test data")
        print(f"Average loss of: {average_train_loss} for train data")
         # Another epoch passed - increment counter
         counter += 1
         epoch_counter += 1
    print("Done!")
Are you sure you want to restart? Press y >> y
Training the model . . .
Epoch 1
Average loss of: 3.089510748736757e-07 for train data
Epoch 2
Average loss of: 3.1202006184400943e-07 for train data
```

Epoch 3 _____ Average loss of: 3.124270939736107e-07 for train data Epoch 4 Average loss of: 3.1222717097136864e-07 for train data Epoch 5 -----Average loss of: 3.1206473230440677e-07 for train data Epoch 6 Average loss of: 3.1187501445799625e-07 for train data Epoch 7 Average loss of: 3.116413577288313e-07 for train data Epoch 8 Average loss of: 3.1127900743115334e-07 for train data Epoch 9 Average loss of: 3.1123996255644214e-07 for train data Epoch 10 _____ Average loss of: 3.1089917663109644e-07 for train data Epoch 11 Average loss of: 3.106453569586165e-07 for train data Epoch 12 Average loss of: 3.1027744347511543e-07 for train data Epoch 13 Average loss of: 3.1005582778789175e-07 for train data Epoch 14

Average loss of: 3.100312672046357e-07 for train data

Epoch 15 _____ Average loss of: 3.092904508861238e-07 for train data Epoch 16 Average loss of: 3.0930215737612343e-07 for train data Epoch 17 Average loss of: 3.0909551692843707e-07 for train data Epoch 18 Average loss of: 3.0876546821900773e-07 for train data Epoch 19 Average loss of: 3.0865015684753416e-07 for train data Epoch 20 Average loss of: 3.0808215877584643e-07 for train data Epoch 21 Average loss of: 3.080456812028842e-07 for train data Epoch 22 _____ Average loss of: 3.078013616089947e-07 for train data Epoch 23 Average loss of: 3.074883923687821e-07 for train data Epoch 24 Average loss of: 3.073185495054531e-07 for train data Epoch 25 Average loss of: 3.0711160333112275e-07 for train data

Average loss of: 3.069539754960715e-07 for train data

Epoch 26

11

Epoch 27 _____ Average loss of: 3.06717194371231e-07 for train data Epoch 28 Average loss of: 3.0631676108328066e-07 for train data Epoch 29 Average loss of: 3.059780585857652e-07 for train data Epoch 30 Average loss of: 3.05968843372284e-07 for train data Epoch 31 Average loss of: 3.0551240639624665e-07 for train data Epoch 32 Average loss of: 3.055200896341148e-07 for train data Epoch 33 Average loss of: 3.0511288645698184e-07 for train data Epoch 34 _____ Average loss of: 3.0496214828303893e-07 for train data Epoch 35 Average loss of: 3.0475588362435246e-07 for train data Epoch 36 Average loss of: 3.043197495600225e-07 for train data Epoch 37

Average loss of: 3.0414570879031544e-07 for train data

Epoch 38

Average loss of: 3.0429285271225127e-07 for train data

Epoch 39 _____ Average loss of: 3.039507208086434e-07 for train data Epoch 40 Average loss of: 3.037260317142909e-07 for train data Epoch 41 Average loss of: 3.032695416123943e-07 for train data Epoch 42 Average loss of: 3.0328871979747874e-07 for train data Epoch 43 Average loss of: 3.0310893326088717e-07 for train data Epoch 44 Average loss of: 3.0274246802548534e-07 for train data Epoch 45 Average loss of: 3.0255086776378447e-07 for train data Epoch 46 _____ Average loss of: 3.025670916258605e-07 for train data Epoch 47 Average loss of: 3.0239984179161186e-07 for train data Epoch 48 Average loss of: 3.023502928670041e-07 for train data Epoch 49

Average loss of: 3.0181237030433295e-07 for train data

Epoch 50

Average loss of: 3.0172909919485845e-07 for train data

Epoch 51 _____ Average loss of: 3.0144084217056386e-07 for train data Epoch 52 Average loss of: 3.012976718309801e-07 for train data Epoch 53 Average loss of: 3.011077830734621e-07 for train data Epoch 54 Average loss of: 3.009087137456845e-07 for train data Epoch 55 Average loss of: 3.0058616303278994e-07 for train data Epoch 56 Average loss of: 3.006650376590869e-07 for train data Epoch 57 Average loss of: 3.003129121253778e-07 for train data Epoch 58 _____ Average loss of: 3.002318047009567e-07 for train data Epoch 59 Average loss of: 3.0003701866405664e-07 for train data Epoch 60 _____ Average loss of: 2.9980760064916013e-07 for train data Epoch 61 Average loss of: 2.996082195153349e-07 for train data Epoch 62

Average loss of: 2.9941183228459066e-07 for train data

Epoch 63 _____ Average loss of: 2.995110676209833e-07 for train data Epoch 64 Average loss of: 2.9927454230573857e-07 for train data Epoch 65 Average loss of: 2.989860609858397e-07 for train data Epoch 66 Average loss of: 2.988501400949417e-07 for train data Epoch 67 Average loss of: 2.987033542439121e-07 for train data Epoch 68 Average loss of: 2.9859304115120724e-07 for train data Epoch 69 Average loss of: 2.985858740998992e-07 for train data Epoch 70 _____ Average loss of: 2.9848438710473604e-07 for train data Epoch 71 Average loss of: 2.9813589056288946e-07 for train data Epoch 72 Average loss of: 2.9788044039378294e-07 for train data Epoch 73 Average loss of: 2.978480962752883e-07 for train data

Average loss of: 2.9770770806862855e-07 for train data

Epoch 74

Epoch 75 _____ Average loss of: 2.9748886280458463e-07 for train data Epoch 76 Average loss of: 2.973473641588953e-07 for train data Epoch 77 Average loss of: 2.972778049866065e-07 for train data Epoch 78 Average loss of: 2.972197552026046e-07 for train data Epoch 79 Average loss of: 2.9691174359527395e-07 for train data Epoch 80 Average loss of: 2.968900542612118e-07 for train data Epoch 81 Average loss of: 2.966508211102337e-07 for train data Epoch 82 _____ Average loss of: 2.967472165522622e-07 for train data Epoch 83 Average loss of: 2.965236065818999e-07 for train data Epoch 84 Average loss of: 2.964066470212856e-07 for train data Epoch 85 Average loss of: 2.96232502842031e-07 for train data

Average loss of: 2.9615180313555814e-07 for train data

Epoch 86

16

Epoch 87 _____ Average loss of: 2.9603602396548465e-07 for train data Epoch 88 Average loss of: 2.957342378465455e-07 for train data Epoch 89 Average loss of: 2.9576743452821574e-07 for train data Epoch 90 Average loss of: 2.9561355803195964e-07 for train data Epoch 91 Average loss of: 2.95533346147181e-07 for train data Epoch 92 Average loss of: 2.9532921732879914e-07 for train data Epoch 93 Average loss of: 2.9540719015415104e-07 for train data Epoch 94 _____ Average loss of: 2.9515831190565225e-07 for train data Epoch 95 Average loss of: 2.951540709318579e-07 for train data Epoch 96 Average loss of: 2.9485653401195577e-07 for train data Epoch 97

Average loss of: 2.9455051029572133e-07 for train data

Epoch 98

Average loss of: 2.9491125094978087e-07 for train data

Average loss of: 2.9441382644677103e-07 for train data

Epoch 100

Average loss of: 2.943814187830185e-07 for train data

Epoch 101

Average loss of: 2.9429838032797304e-07 for train data

Epoch 102

Average loss of: 2.9431710462404224e-07 for train data

Epoch 103

Average loss of: 2.939490535055711e-07 for train data

Epoch 104

Average loss of: 2.9390861339209093e-07 for train data

Epoch 105

Average loss of: 2.9370387892981853e-07 for train data

Epoch 106

Average loss of: 2.938424497699543e-07 for train data

Epoch 107

Average loss of: 2.935744289686681e-07 for train data

Epoch 108

Average loss of: 2.9390165418305967e-07 for train data

Epoch 109

Average loss of: 2.934056926591211e-07 for train data

Epoch 110

Average loss of: 2.936016251055662e-07 for train data

Average loss of: 2.932211686413666e-07 for train data

Epoch 112

Average loss of: 2.9315929790527663e-07 for train data

Epoch 113

Average loss of: 2.929979389506343e-07 for train data

Epoch 114

Average loss of: 2.9270272848975764e-07 for train data

Epoch 115

Average loss of: 2.9297482218737515e-07 for train data

Epoch 116

Average loss of: 2.9253698933473517e-07 for train data

Epoch 117

Average loss of: 2.925692846929451e-07 for train data

Epoch 118

Average loss of: 2.924602919108565e-07 for train data

Epoch 119

Average loss of: 2.924029101961878e-07 for train data

Epoch 120

Average loss of: 2.92345816683337e-07 for train data

Epoch 121

Average loss of: 2.9248841012474714e-07 for train data

Epoch 122

Average loss of: 2.92160100391925e-07 for train data

Average loss of: 2.922372710372656e-07 for train data

Epoch 124

Average loss of: 2.917145984270064e-07 for train data

Epoch 125

Average loss of: 2.920172750350503e-07 for train data

Epoch 126

Average loss of: 2.9184349213551284e-07 for train data

Epoch 127

Average loss of: 2.9189542416929725e-07 for train data

Epoch 128

Average loss of: 2.9155378056771043e-07 for train data

Epoch 129

Average loss of: 2.913802650795105e-07 for train data

Epoch 130

Average loss of: 2.915491659109648e-07 for train data

Epoch 131

Average loss of: 2.9148717152622793e-07 for train data

Epoch 132

Average loss of: 2.9126471889355797e-07 for train data

Epoch 133

Average loss of: 2.9124186616229506e-07 for train data

Epoch 134

Adapting learning rate to 2.34375e-06

Average loss of: 2.9125168631480847e-07 for train data

-

Average loss of: 2.38742218877519e-07 for train data

Epoch 136

Average loss of: 2.3887346732607285e-07 for train data

Epoch 137

Average loss of: 2.388565765926387e-07 for train data

Epoch 138

Average loss of: 2.387845970602598e-07 for train data

Epoch 139

Average loss of: 2.3867032657989286e-07 for train data

Epoch 140

Average loss of: 2.3853475534707513e-07 for train data

Epoch 141

Average loss of: 2.38414193874803e-07 for train data

Epoch 142

Average loss of: 2.382797243953405e-07 for train data

Epoch 143

Average loss of: 2.3815468513106453e-07 for train data

Epoch 144

Average loss of: 2.3801000165235563e-07 for train data

Epoch 145

Average loss of: 2.37979243428299e-07 for train data

Epoch 146

Average loss of: 2.3782740435080996e-07 for train data

Average loss of: 2.376649126091479e-07 for train data

Epoch 148

Average loss of: 2.3754422502548777e-07 for train data

Epoch 149

Average loss of: 2.374358052108505e-07 for train data

Epoch 150

Average loss of: 2.373098860275036e-07 for train data

Epoch 151

Average loss of: 2.3717355382189e-07 for train data

Epoch 152

Average loss of: 2.3709975922798776e-07 for train data

Epoch 153

Average loss of: 2.3699885951344867e-07 for train data

Epoch 154

Average loss of: 2.3690093636616895e-07 for train data

Epoch 155

Average loss of: 2.3670436008984553e-07 for train data

Epoch 156

Average loss of: 2.3662201800647154e-07 for train data

Epoch 157

Average loss of: 2.3651704815250695e-07 for train data

Epoch 158

Average loss of: 2.3639213382864455e-07 for train data

Average loss of: 2.3628710163734467e-07 for train data

Epoch 160

Average loss of: 2.361842571090733e-07 for train data

Epoch 161

Average loss of: 2.3608768976401962e-07 for train data

Epoch 162

Average loss of: 2.3592974273327628e-07 for train data

Epoch 163

Average loss of: 2.358232337584809e-07 for train data

Epoch 164

Average loss of: 2.3575098587826914e-07 for train data

Epoch 165

Average loss of: 2.3562002504888823e-07 for train data

Epoch 166

Average loss of: 2.3549848105233195e-07 for train data

Epoch 167

Average loss of: 2.3540112904498756e-07 for train data

Epoch 168

Average loss of: 2.3529942552755756e-07 for train data

Epoch 169

Average loss of: 2.3516443954463285e-07 for train data

Epoch 170

Average loss of: 2.3504439826353973e-07 for train data

Average loss of: 2.3493049298792813e-07 for train data

Epoch 172

Average loss of: 2.3489076279190613e-07 for train data

Epoch 173

Average loss of: 2.3477670076204048e-07 for train data

Epoch 174

Average loss of: 2.3461643429243394e-07 for train data

Epoch 175

Average loss of: 2.3457232570365248e-07 for train data

Epoch 176

Average loss of: 2.3443996903012022e-07 for train data

Epoch 177

Average loss of: 2.343680744971266e-07 for train data

Epoch 178

Average loss of: 2.3425248730717384e-07 for train data

Epoch 179

Average loss of: 2.3412470475676629e-07 for train data

Epoch 180

Average loss of: 2.340311993322075e-07 for train data

Epoch 181

Average loss of: 2.339389796446767e-07 for train data

Epoch 182

Average loss of: 2.338484938718466e-07 for train data

Average loss of: 2.3371137423993106e-07 for train data

Epoch 184

Average loss of: 2.336215542499076e-07 for train data

Epoch 185

Average loss of: 2.3352803656422339e-07 for train data

Epoch 186

Average loss of: 2.3340939934257677e-07 for train data

Epoch 187

Average loss of: 2.33314512827576e-07 for train data

Epoch 188

Average loss of: 2.331708909991903e-07 for train data

Epoch 189

Average loss of: 2.3309434731118018e-07 for train data

Epoch 190

Average loss of: 2.3302512353495785e-07 for train data

Epoch 191

Average loss of: 2.3287564531244699e-07 for train data

Epoch 192

Average loss of: 2.3279745045101662e-07 for train data

Epoch 193

Average loss of: 2.326864922864047e-07 for train data

Epoch 194

Average loss of: 2.3261387764250686e-07 for train data

Average loss of: 2.3251026560444643e-07 for train data

Epoch 196

Average loss of: 2.3234726857879196e-07 for train data

Epoch 197

Average loss of: 2.3231799128637932e-07 for train data

Epoch 198

Average loss of: 2.3221691207027106e-07 for train data

Epoch 199

Average loss of: 2.3210960129347313e-07 for train data

Epoch 200

Average loss of: 2.3194871184983868e-07 for train data

Epoch 201

Average loss of: 2.3191110854696717e-07 for train data

Epoch 202

Average loss of: 2.3179621514799463e-07 for train data

Epoch 203

Average loss of: 2.3169611126405698e-07 for train data

Epoch 204

Average loss of: 2.3155553919735895e-07 for train data

Epoch 205

Average loss of: 2.3151894441468812e-07 for train data

Epoch 206

Average loss of: 2.313583858722268e-07 for train data

Average loss of: 2.3124507312672905e-07 for train data

Epoch 208

Average loss of: 2.3115072618651312e-07 for train data

Epoch 209

Average loss of: 2.3109060112886936e-07 for train data

Epoch 210

Average loss of: 2.3098816033382262e-07 for train data

Epoch 211

Average loss of: 2.309090430358651e-07 for train data

Epoch 212

Average loss of: 2.3077542134330996e-07 for train data

Epoch 213

Average loss of: 2.30703787323705e-07 for train data

Epoch 214

Average loss of: 2.3061366903931458e-07 for train data

Epoch 215

Average loss of: 2.3047859119316172e-07 for train data

Epoch 216

Average loss of: 2.3033818439301967e-07 for train data

Epoch 217

Average loss of: 2.3031580472405722e-07 for train data

Epoch 218

Average loss of: 2.3017967956917574e-07 for train data

Average loss of: 2.3002632838995395e-07 for train data

Epoch 220

Average loss of: 2.2993957389303432e-07 for train data

Epoch 221

Average loss of: 2.2989906947117332e-07 for train data

Epoch 222

Average loss of: 2.2982705510088408e-07 for train data

Epoch 223

Average loss of: 2.296651613178824e-07 for train data

Epoch 224

Average loss of: 2.2955713392889265e-07 for train data

Epoch 225

Average loss of: 2.2948418408219594e-07 for train data

Epoch 226

Average loss of: 2.293412373916226e-07 for train data

Epoch 227

Average loss of: 2.2931210651648826e-07 for train data

Epoch 228

Average loss of: 2.2920008601943208e-07 for train data

Epoch 229

Average loss of: 2.2907681973975968e-07 for train data

Epoch 230

Average loss of: 2.28991010637003e-07 for train data

Average loss of: 2.2888035674526463e-07 for train data

Epoch 232

Average loss of: 2.2876874244133206e-07 for train data

Epoch 233

Average loss of: 2.2870865577431232e-07 for train data

Epoch 234

Average loss of: 2.2858685991593574e-07 for train data

Epoch 235

Average loss of: 2.2850380171917095e-07 for train data

Epoch 236

Average loss of: 2.284265775443828e-07 for train data

Epoch 237

Average loss of: 2.2829888560380596e-07 for train data

Epoch 238

Average loss of: 2.2823615735205749e-07 for train data

Epoch 239

Average loss of: 2.2811929651993523e-07 for train data

Epoch 240

Average loss of: 2.280674948664796e-07 for train data

Epoch 241

Average loss of: 2.2788600560801343e-07 for train data

Epoch 242

Average loss of: 2.278545205669502e-07 for train data

Average loss of: 2.2776356956057953e-07 for train data

Epoch 244

Average loss of: 2.2770747429916583e-07 for train data

Epoch 245

Average loss of: 2.2757726107300868e-07 for train data

Epoch 246

Average loss of: 2.2747318215152746e-07 for train data

Epoch 247

Average loss of: 2.2741424657510834e-07 for train data

Epoch 248

Average loss of: 2.2731228799841573e-07 for train data

Epoch 249

Average loss of: 2.2719662990056122e-07 for train data

Epoch 250

Average loss of: 2.270827496190009e-07 for train data

Epoch 251

Average loss of: 2.2695696050050174e-07 for train data

Epoch 252

Average loss of: 2.268793051882767e-07 for train data

Epoch 253

Average loss of: 2.2682169807097806e-07 for train data

Epoch 254

Average loss of: 2.266815383904941e-07 for train data

Average loss of: 2.2659666682187663e-07 for train data

Epoch 256

Average loss of: 2.2646819011953312e-07 for train data

Epoch 257

Average loss of: 2.264154842919197e-07 for train data

Epoch 258

Average loss of: 2.2633790883190841e-07 for train data

Epoch 259

Average loss of: 2.2616534681105805e-07 for train data

Epoch 260

Average loss of: 2.2615080596750658e-07 for train data

Epoch 261

Average loss of: 2.2604516587847457e-07 for train data

Epoch 262

Average loss of: 2.2595354848959914e-07 for train data

Epoch 263

Average loss of: 2.25865215737997e-07 for train data

Epoch 264

Average loss of: 2.2580465664816528e-07 for train data

Epoch 265

Average loss of: 2.25698998930568e-07 for train data

Epoch 266

Average loss of: 2.2555468584783967e-07 for train data

Average loss of: 2.2547265226222634e-07 for train data

Epoch 268

Average loss of: 2.253900367747974e-07 for train data

Epoch 269

Average loss of: 2.2528278775979516e-07 for train data

Epoch 270

Average loss of: 2.251200711540946e-07 for train data

Epoch 271

Average loss of: 2.2511921729488905e-07 for train data

Epoch 272

Average loss of: 2.249869351516054e-07 for train data

Epoch 273

Average loss of: 2.2487693863553205e-07 for train data

Epoch 274

Average loss of: 2.2477643621954257e-07 for train data

Epoch 275

Average loss of: 2.246550921739754e-07 for train data

Epoch 276

Average loss of: 2.246297977265499e-07 for train data

Epoch 277

Average loss of: 2.2451948211852368e-07 for train data

Epoch 278

Average loss of: 2.2441780204047744e-07 for train data

Average loss of: 2.2433062883919773e-07 for train data

Epoch 280

Average loss of: 2.2421409533706083e-07 for train data

Epoch 281

Average loss of: 2.241108315743645e-07 for train data

Epoch 282

Average loss of: 2.2407965892341508e-07 for train data

Epoch 283

Average loss of: 2.239762896834918e-07 for train data

Epoch 284

Average loss of: 2.2386254535291529e-07 for train data

Epoch 285

Average loss of: 2.2379571658888153e-07 for train data

Epoch 286

Average loss of: 2.2370403958689167e-07 for train data

Epoch 287

Average loss of: 2.2362176079298025e-07 for train data

Epoch 288

Average loss of: 2.2346021220727152e-07 for train data

Epoch 289

Average loss of: 2.2338274156226134e-07 for train data

Epoch 290

Average loss of: 2.2330486178674392e-07 for train data

Average loss of: 2.2327402656543426e-07 for train data

Epoch 292

Average loss of: 2.231474234122288e-07 for train data

Epoch 293

Average loss of: 2.2299771128189149e-07 for train data

Epoch 294

Average loss of: 2.229833686016036e-07 for train data

Epoch 295

Average loss of: 2.2284925677951152e-07 for train data

Epoch 296

Average loss of: 2.2277651131190623e-07 for train data

Epoch 297

Average loss of: 2.2273698617425452e-07 for train data

Epoch 298

Average loss of: 2.226414929921816e-07 for train data

Epoch 299

Average loss of: 2.2249468471500222e-07 for train data

Epoch 300

Average loss of: 2.2243551401857075e-07 for train data

Epoch 301

Average loss of: 2.2229588705755531e-07 for train data

Epoch 302

Average loss of: 2.2225389792112082e-07 for train data

Average loss of: 2.2214919874699035e-07 for train data

Epoch 304

Average loss of: 2.2207352725160945e-07 for train data

Epoch 305

Average loss of: 2.219762223759858e-07 for train data

Epoch 306

Average loss of: 2.2190374073574048e-07 for train data

Epoch 307

Average loss of: 2.2180709780172947e-07 for train data

Epoch 308

Average loss of: 2.2168305122107768e-07 for train data

Epoch 309

Average loss of: 2.2161147775250356e-07 for train data

Epoch 310

Average loss of: 2.2151687917499886e-07 for train data

Epoch 311

Average loss of: 2.2144493232048034e-07 for train data

Epoch 312

Average loss of: 2.2135332843902235e-07 for train data

Epoch 313

Average loss of: 2.2115912805844574e-07 for train data

Epoch 314

Average loss of: 2.2114353681246256e-07 for train data

Average loss of: 2.210473199411922e-07 for train data

Epoch 316

Average loss of: 2.20944161758041e-07 for train data

Epoch 317

Average loss of: 2.2087901867706704e-07 for train data

Epoch 318

Average loss of: 2.2077399234774476e-07 for train data

Epoch 319

Average loss of: 2.2070612217248707e-07 for train data

Epoch 320

Average loss of: 2.2062563941886994e-07 for train data

Epoch 321

Average loss of: 2.2051202868311747e-07 for train data

Epoch 322

Average loss of: 2.2038419037215816e-07 for train data

Epoch 323

Average loss of: 2.202800222704582e-07 for train data

Epoch 324

Average loss of: 2.2026008978031086e-07 for train data

Epoch 325

Average loss of: 2.2016723228546197e-07 for train data

Epoch 326

Average loss of: 2.2005281233674623e-07 for train data

Epoch 327 Average loss of: 2.200176611310667e-07 for train data Epoch 328 Average loss of: 2.1983669384866289e-07 for train data Epoch 329 _____ Average loss of: 2.1982927499948346e-07 for train data Epoch 330 Average loss of: 2.1975724796021722e-07 for train data Epoch 331 Average loss of: 2.196363812686286e-07 for train data Epoch 332 Average loss of: 2.1955084280591563e-07 for train data Epoch 333 Average loss of: 2.1949450488492062e-07 for train data Epoch 334 Average loss of: 2.1942320213810262e-07 for train data Epoch 335 Average loss of: 2.1923814409348098e-07 for train data Epoch 336

Epoch 337
-----Average loss of: 2.190745263966676e-07 for train data

Epoch 338
-----Average loss of: 2.1905436494193965e-07 for train data

Average loss of: 2.191550418871202e-07 for train data

Epoch 339 Average loss of: 2.188674257745049e-07 for train data Epoch 340 Average loss of: 2.1880524609301232e-07 for train data Epoch 341 _____ Average loss of: 2.1879862658167327e-07 for train data Epoch 342 Average loss of: 2.1865944574912533e-07 for train data Epoch 343 Average loss of: 2.1853309759549688e-07 for train data Epoch 344 Average loss of: 2.1850276075596752e-07 for train data Epoch 345 Average loss of: 2.1847445409122201e-07 for train data Epoch 346 Average loss of: 2.1835158098184592e-07 for train data Epoch 347 Average loss of: 2.182337292168768e-07 for train data

Epoch 348

Average loss of: 2.1811487569962652e-07 for train data

Epoch 349

Average loss of: 2.1807612316777636e-07 for train data

Epoch 350

Average loss of: 2.1797476633054202e-07 for train data

Epoch 351 Average loss of: 2.1795115817297983e-07 for train data Epoch 352 Average loss of: 2.177980457233275e-07 for train data Epoch 353 _____ Average loss of: 2.1770948602721773e-07 for train data Epoch 354 Average loss of: 2.1764901551506456e-07 for train data Epoch 355 Average loss of: 2.1760092338496406e-07 for train data Epoch 356 Average loss of: 2.1749074516890231e-07 for train data Epoch 357 _____ Average loss of: 2.1735826639144306e-07 for train data Epoch 358 Average loss of: 2.1727834522309308e-07 for train data Epoch 359 Average loss of: 2.172670551018996e-07 for train data Epoch 360 Average loss of: 2.1710480269661046e-07 for train data Epoch 361

Average loss of: 2.1699610925054458e-07 for train data

Epoch 363 Average loss of: 2.169164426810255e-07 for train data Epoch 364 Average loss of: 2.167451799529374e-07 for train data Epoch 365 Average loss of: 2.167548310247014e-07 for train data Epoch 366 Average loss of: 2.1663268118103928e-07 for train data Epoch 367 Average loss of: 2.1652843578081615e-07 for train data Epoch 368 Average loss of: 2.1644494841552842e-07 for train data Epoch 369 Average loss of: 2.1639374721686977e-07 for train data Epoch 370 Average loss of: 2.1625683267743056e-07 for train data Epoch 371 Average loss of: 2.1621775919982157e-07 for train data Epoch 372 Average loss of: 2.1609960186381727e-07 for train data Epoch 373

Epoch 375 Average loss of: 2.1584756795292038e-07 for train data Epoch 376 Average loss of: 2.157782986209611e-07 for train data Epoch 377 Average loss of: 2.157136201610399e-07 for train data Epoch 378 Average loss of: 2.1560257456272326e-07 for train data Epoch 379 Average loss of: 2.1552788491447927e-07 for train data Epoch 380 Average loss of: 2.1550652892656787e-07 for train data Epoch 381 _____ Average loss of: 2.153927757291285e-07 for train data Epoch 382 Average loss of: 2.1527458188046467e-07 for train data Epoch 383 Average loss of: 2.1521605463590276e-07 for train data Epoch 384 Average loss of: 2.1517190244111361e-07 for train data Epoch 385

Average loss of: 2.1509274647542041e-07 for train data

Epoch 386
----Average loss of: 2.1492265005988997e-07 for train data

Epoch 387 Average loss of: 2.1487125342360968e-07 for train data Epoch 388 Average loss of: 2.1483467998706372e-07 for train data Epoch 389 Average loss of: 2.1469529335149674e-07 for train data Epoch 390 Average loss of: 2.1458626466923646e-07 for train data Epoch 391 Average loss of: 2.145759373895828e-07 for train data Epoch 392 Average loss of: 2.1447893990682586e-07 for train data Epoch 393 Average loss of: 2.1437732653382113e-07 for train data Epoch 394 Average loss of: 2.1430189068709638e-07 for train data Epoch 395 Average loss of: 2.1424143981292332e-07 for train data Epoch 396 Average loss of: 2.1419060314968875e-07 for train data Epoch 397

Epoch 399 Average loss of: 2.1389322334144368e-07 for train data Epoch 400 Average loss of: 2.1383363194473758e-07 for train data Epoch 401 Average loss of: 2.1373576593788358e-07 for train data Epoch 402 Average loss of: 2.1365818407517168e-07 for train data Epoch 403 Average loss of: 2.1358135660776155e-07 for train data Epoch 404 Average loss of: 2.1355117742416497e-07 for train data Epoch 405 Average loss of: 2.1343633864745471e-07 for train data Epoch 406 Average loss of: 2.1333340790476996e-07 for train data Epoch 407 Average loss of: 2.133219593247304e-07 for train data Epoch 408 Average loss of: 2.1323187900108566e-07 for train data Epoch 409

Average loss of: 2.1315786709337204e-07 for train data

Epoch 410

Average loss of: 2.129859663924094e-07 for train data

Epoch 411

Average loss of: 2.1302479951188501e-07 for train data

Epoch 412

Average loss of: 2.1288191058488337e-07 for train data

Epoch 413

Average loss of: 2.1280212866514603e-07 for train data

Epoch 414

Average loss of: 2.1274674497107072e-07 for train data

Epoch 415

Average loss of: 2.1267106050260054e-07 for train data

Epoch 416

Average loss of: 2.1254378399930828e-07 for train data

Epoch 417

Average loss of: 2.12477837515479e-07 for train data

Epoch 418

Average loss of: 2.12354767209888e-07 for train data

Epoch 419

Average loss of: 2.122814721673194e-07 for train data

Epoch 420

Average loss of: 2.1220004392503712e-07 for train data

Epoch 421

Average loss of: 2.1218942224763283e-07 for train data

Epoch 422

Average loss of: 2.12071161752192e-07 for train data

Epoch 423 Average loss of: 2.1199081583631597e-07 for train data Epoch 424 Average loss of: 2.11905622912667e-07 for train data Epoch 425 _____ Average loss of: 2.117728482836867e-07 for train data Epoch 426 Average loss of: 2.1178772686951675e-07 for train data Epoch 427 Average loss of: 2.1177412693802468e-07 for train data Epoch 428 Average loss of: 2.1165124212672026e-07 for train data Epoch 429 _____ Average loss of: 2.1156416883485463e-07 for train data Epoch 430 Average loss of: 2.1144791558995735e-07 for train data Epoch 431 Average loss of: 2.1137651057401286e-07 for train data Epoch 432 Average loss of: 2.1136441405644745e-07 for train data

Epoch 433

Average loss of: 2.1128498037086274e-07 for train data

Epoch 434

Average loss of: 2.111564506229513e-07 for train data

Epoch 435 Average loss of: 2.1110077169197438e-07 for train data Epoch 436 Average loss of: 2.1103941457170095e-07 for train data Epoch 437 _____ Average loss of: 2.1100680333603349e-07 for train data Epoch 438 Average loss of: 2.1088427726567715e-07 for train data Epoch 439 Average loss of: 2.107906661585446e-07 for train data Epoch 440 Average loss of: 2.1070839727030944e-07 for train data Epoch 441 _____ Average loss of: 2.1062774956561725e-07 for train data Epoch 442 Average loss of: 2.1055140656116577e-07 for train data Epoch 443 Average loss of: 2.1052288689489274e-07 for train data Epoch 444 Average loss of: 2.1037970159909492e-07 for train data Epoch 445 Average loss of: 2.1032006263936864e-07 for train data

Average loss of: 2.1030088311064788e-07 for train data

Epoch 446

Epoch 447 Average loss of: 2.102583416480286e-07 for train data Epoch 448 Average loss of: 2.101805304903337e-07 for train data Epoch 449 _____ Average loss of: 2.1009560643392434e-07 for train data Epoch 450 Average loss of: 2.100602021108955e-07 for train data Epoch 451 Average loss of: 2.0994766967632472e-07 for train data Epoch 452 Average loss of: 2.098189387709226e-07 for train data Epoch 453 Average loss of: 2.0976367868215107e-07 for train data Epoch 454 Average loss of: 2.0964129287790456e-07 for train data Epoch 455 Average loss of: 2.0962511058044698e-07 for train data Epoch 456 Average loss of: 2.094710844218639e-07 for train data Epoch 457 Average loss of: 2.0949930679137196e-07 for train data

Average loss of: 2.093931256560211e-07 for train data

Epoch 458

Epoch 459 Average loss of: 2.0933640816238608e-07 for train data Epoch 460 Average loss of: 2.0921382492886663e-07 for train data Epoch 461 Average loss of: 2.0917387944194844e-07 for train data Epoch 462 Average loss of: 2.0907091359063656e-07 for train data Epoch 463 Average loss of: 2.0901468385545742e-07 for train data Epoch 464 Average loss of: 2.0892085863337684e-07 for train data Epoch 465 _____ Average loss of: 2.088811475701391e-07 for train data Epoch 466 Average loss of: 2.0883260536734837e-07 for train data Epoch 467 Average loss of: 2.0878141226461366e-07 for train data Epoch 468 Average loss of: 2.087045647883201e-07 for train data Epoch 469

Average loss of: 2.0860349510627429e-07 for train data

Epoch 470

Average loss of: 2.0852830000706034e-07 for train data

Epoch 471 Average loss of: 2.0846708813309078e-07 for train data Epoch 472 Average loss of: 2.0835956077789318e-07 for train data Epoch 473 _____ Average loss of: 2.0830566614691293e-07 for train data Epoch 474 Average loss of: 2.0829328792686396e-07 for train data Epoch 475 Average loss of: 2.0816899593540937e-07 for train data Epoch 476 Average loss of: 2.0812710717663664e-07 for train data Epoch 477 Average loss of: 2.0802422451211554e-07 for train data Epoch 478 Average loss of: 2.0803116085659213e-07 for train data Epoch 479 Average loss of: 2.079357079601607e-07 for train data Epoch 480 Average loss of: 2.078347667321623e-07 for train data Epoch 481

Epoch 483 Average loss of: 2.076251551095254e-07 for train data Epoch 484 Average loss of: 2.0755813541413203e-07 for train data Epoch 485 _____ Average loss of: 2.0748923486166858e-07 for train data Epoch 486 Average loss of: 2.0744061544064606e-07 for train data Epoch 487 Average loss of: 2.0731857576024026e-07 for train data Epoch 488 Average loss of: 2.072779570752914e-07 for train data Epoch 489 Average loss of: 2.0724683706134784e-07 for train data Epoch 490 Average loss of: 2.0713128239933098e-07 for train data Epoch 491 Average loss of: 2.0701811210415145e-07 for train data Epoch 492 Average loss of: 2.0698610527603023e-07 for train data Epoch 493 Average loss of: 2.0696701947002795e-07 for train data

Average loss of: 2.068599752860223e-07 for train data

Epoch 494

50

5.1 Results of training

```
[44]: # Plot it
      plt.figure()
      lw = 1
      ms = 2
      plt.plot(train_losses, 'o--', color = 'red', label = 'Train set', lw = lw, ms = u
      plt.plot(test_losses, 'o--', color = 'blue', label = "Test set", lw = lw, ms = u
       ⊶ms)
      plt.legend()
      plt.grid()
      plt.xlabel("Epoch")
      xt\_step = 50
      xt = [i*xt_step for i in range(len(train_losses)//xt_step+2)]
      plt.xticks(xt)
      plt.ylabel(r'$L$')
      plt.axhline(0, color = 'black', alpha = 0.7)
      plt.title("Loss")
      # Plot when we adapted learning rate
      for t in adaptation_indices:
          plt.axvline(t+200, linestyle = "--", color = 'black', alpha = 0.5, lw = 1)
      plt.yscale('log')
      # plt.ylim(10**(-9))
      plt.savefig("Plots/NNC2Pv0t2.pdf", bbox_inches = 'tight')
```

plt.show()

6 Analyzing neural networks

We import NNC2Pv0, which beats the performance of the models in the paper.

```
[88]: NNC2Pv0t2 = torch.load('Models/NNC2Pv0t2.pth')
      model = NNC2PvOt2
[89]: model
[89]: NeuralNetwork(
        (stack): Sequential(
          (0): Linear(in_features=3, out_features=600, bias=True)
          (1): Sigmoid()
          (2): Linear(in_features=600, out_features=200, bias=True)
          (3): Sigmoid()
          (4): Linear(in_features=200, out_features=1, bias=True)
       )
      )
         Estimate the performance of the network
[90]: def L1_norm(predictions, y):
          """Here, predictions and y are arrays for one specific quantity, eq.
       ⇔pressure. See table 1"""
          return sum(abs(predictions - y))/len(predictions)
[91]: def Linfty_norm(predictions, y):
          """Here, predictions and y are arrays for one specific quantity, eq.
       ⇔pressure. See table 1"""
          return max(abs(predictions - y))
[92]: # Get features and labels
      test_features = test_data.features
      test_labels = test_data.labels
      test_features[:4]
[92]: [tensor([10.2041, 12.0266, 22.1313]),
       tensor([ 7.0046, 22.3374, 21.0772]),
       tensor([ 9.5747, 10.5188, 10.0152]),
       tensor([0.7725, 1.8519, 1.8100])]
[93]: test_features[0]
[93]: tensor([10.2041, 12.0266, 22.1313])
[95]: # Get predictions
      with torch.no_grad():
          p_hat= np.array([])
          for input_values in test_features:
              prediction = model(input_values)
              p_hat = np.append(p_hat, prediction[0].item())
```

6.2 Estimate the performance on unseen/untrained cases:

Here, we check the performance whenever we use the model on values on which it wasn't trained. Is there a large error compared to the case of seen data?

6.2.1 When only one parameter gets outside of its range

```
[104]: | # We are going to save the performance according to the ranges specified:
       # this dict is filled with the errors we found above
       errors dict = {
           "rho max": [rho max],
           "eps max":[eps_max],
           "v max": [v max],
           "L1": [delta_p_L1],
           "Linfty": [delta_p_Linfty]}
       # Get the parameters we are going to test
       # This is how we are going to increment the upper bound each run
       delta_rho = 0.01
       delta_eps = 0.01
       delta_v = 0.001
       number of runs = 100
       # Construct the parameters
       rho_list = [[rho_max + i*delta_rho, eps_max, v_max] for i in range(1,_
       onumber of runs)]
       eps_list = [[rho_max, eps_max + i*delta_eps, v_max] for i in range(1,__
        →number_of_runs)]
       v_list = [[rho_max, eps_max, v_max + i*delta_v] for i in range(1,_
        onumber of runs)]
```

```
[105]: number_of_datapoints = 10000
       p = []
       phat = []
       with torch.no_grad():
           # Iterate over all parameter bounds
           for [rho_bound, eps_bound, v_bound] in parameters_list:
               # Save current value:
               errors_dict["rho max"].append(rho_bound)
               errors_dict["eps max"].append(eps_bound)
               errors_dict["v max"].append(v_bound)
               # Now get 10 000 new cases and predictions
               for i in range(number_of_datapoints):
                   # Sample randomly from the new range
                   rho = random.uniform(rho_min, rho_bound)
                   eps = random.uniform(eps_min, eps_bound)
                         = random.uniform(v_min,
                                                           v bound)
                   # Get true value
                   p.append(eos(rho, eps))
                   # Get the prediction
                   # Compute features (D, S, tau)
                   Dvalue
                            = D(rho, eps, v)
                             = S(rho, eps, v)
                   Svalue
                   tauvalue = tau(rho, eps, v)
                   # Get prediction
                   prediction = model(torch.tensor([Dvalue, Svalue, tauvalue]))
                   phat.append(prediction[0].item())
               # All values computed, store the errors we found
               L1 = L1_norm(np.array(p), np.array(phat))
               errors_dict["L1"].append(L1)
               Linfty= Linfty_norm(np.array(p), np.array(phat))
               errors_dict["Linfty"].append(Linfty)
[110]: df = pd.DataFrame(errors_dict)
```

parameters_list = rho_list + eps_list + v_list

df

```
[110]:
           rho max eps max v max
                                         L1
                                               Linfty
             10.10
                       2.02 0.721 0.000361 0.008647
      0
      1
             10.11
                       2.02 0.721
                                   0.000368 0.008856
      2
             10.12
                      2.02 0.721
                                   0.000367 0.010107
      3
             10.13
                      2.02 0.721
                                   0.000370 0.010107
      4
             10.14
                       2.02 0.721 0.000367 0.010107
               •••
                       2.02 0.816 0.004811 3.184771
      293
             10.10
      294
             10.10
                       2.02 0.817 0.004801 3.184771
      295
                       2.02 0.818 0.004790 3.184771
             10.10
      296
             10.10
                       2.02 0.819 0.004780 3.184771
      297
             10.10
                       2.02 0.820 0.004771 3.184771
```

[298 rows x 5 columns]

```
[114]: sub_df_rho = df.loc[(df["eps max"] == eps_max) & (df["v max"] == v_max)] sub_df_eps = df.loc[(df["rho max"] == rho_max) & (df["v max"] == v_max)] sub_df_v = df.loc[(df["rho max"] == rho_max) & (df["eps max"] == eps_max)]
```

```
[119]: plt.plot(sub_df_rho["rho max"], sub_df_rho["L1"], color='red', label='rho')
# plt.legend()
plt.xlabel(r"$\rho$")
plt.ylabel(r"$L_1$ error")
plt.yscale('log')
plt.grid()
plt.savefig("error_analysis_v1_rho.pdf", bbox_inches='tight')
plt.show()
```



```
[130]: plt.plot(sub_df_eps["eps max"], sub_df_eps["L1"], color='red', label='rho')
# plt.legend()
plt.xlabel(r"$\epsilon$")
plt.ylabel(r"$L_1$ error")
plt.yscale('log')
plt.ylim(3*10**(-4), 10**(-2))
plt.grid()
plt.savefig("error_analysis_v1_eps.pdf", bbox_inches='tight')
plt.show()
```



```
[129]: plt.plot(sub_df_v["v max"], sub_df_v["L1"], '--o', color='red', label='rho')
# plt.legend()
plt.xlabel(r"$v$")
plt.ylabel(r"$L_1$ error")
plt.yscale('log')
plt.ylim(2*10**(-4), 10**(-2))
plt.grid()
plt.savefig("error_analysis_v1_v.pdf", bbox_inches='tight')
plt.show()
```


Save this data to process later on:

```
[107]: # df.to_csv("Data/errors_analysis_v2.csv")
[]:
```

6.2.2 When all parameters can go outside of their ranges

```
[136]: # We are going to save the performance according to the ranges specified:
    # this dict is filled with the errors we found above
    errors_dict = {
        "rho max": [rho_max],
        "eps max": [eps_max],
        "v max": [v_max],
        "L1": [delta_p_L1],
        "Linfty": [delta_p_Linfty]}

# Get the parameters we are going to test

# This is how we are going to increment the upper bound each run delta_rho = 0.02
    delta_eps = 0.02
    delta_v = 0.002

number_of_runs = 10
```

```
# Construct the parameters
       rho_list = [rho_max + i*delta_rho for i in range(1, number_of_runs)]
       eps_list = [eps_max + i*delta_eps for i in range(1, number_of_runs)]
                   = [v_{max}]
                                + i*delta_v for i in range(1, number_of_runs)]
       v_list
[138]: number_of_datapoints = 10000
       p = []
       phat = []
       with torch.no_grad():
           # Iterate over all parameter bounds
           for rho_bound in rho_list:
               for eps_bound in eps_list:
                   for v_bound in v_list:
                           # Save current values:
                           errors_dict["rho max"].append(rho_bound)
                           errors_dict["eps max"].append(eps_bound)
                           errors_dict["v max"].append(v_bound)
                           # Now get 10 000 new cases and predictions
                           for i in range(number_of_datapoints):
                               # Sample randomly from the new range
                               rho = random.uniform(rho min, rho bound)
                               eps = random.uniform(eps_min, eps_bound)
                                     = random.uniform(v_min,
                                                                        v bound)
                               # Get true value
                               p.append(eos(rho, eps))
                               # Get the prediction
                               # Compute features (D, S, tau)
                               Dvalue
                                       = D(rho, eps, v)
                                         = S(rho, eps, v)
                               Svalue
                               tauvalue = tau(rho, eps, v)
                               # Get prediction
                               prediction = model(torch.tensor([Dvalue, Svalue,_
        →tauvaluel))
                               phat.append(prediction[0].item())
                           # All values computed, store the errors we found
                           L1 = L1_norm(np.array(p), np.array(phat))
                           errors dict["L1"].append(L1)
```

```
Linfty= Linfty_norm(np.array(p), np.array(phat))
                                                                     errors_dict["Linfty"].append(Linfty)
[139]: df = pd.DataFrame(errors_dict)
                 df
[139]:
                              rho max eps max v max
                                                                                                             L1
                                                                                                                             Linfty
                                   10.10
                                                             2.02 0.721 0.000361 0.008647
                 0
                 1
                                   10.12
                                                             2.04 0.723 0.000368 0.009280
                                   10.12
                                                             2.04 0.725 0.000369 0.009725
                 3
                                   10.12
                                                            2.04 0.727 0.000371 0.009725
                                                             2.04 0.729 0.000373 0.009725
                 4
                                   10.12
                 725
                                   10.28
                                                            2.20 0.731 0.000463 0.135447
                                                            2.20 0.733 0.000463 0.135447
                 726
                                   10.28
                                   10.28
                                                            2.20 0.735 0.000463 0.135447
                 727
                 728
                                   10.28
                                                             2.20 0.737 0.000464 0.135447
                 729
                                   10.28
                                                            2.20 0.739 0.000464 0.135447
                 [730 rows x 5 columns]
[150]: sub_df_rho_eps = df.loc[(df["v max"] == v_max) | (df["v max"] == v_max+delta_v)]
                 sub_df_rho_v = df.loc[(df["eps max"] == eps_max) | (df["eps max"] == ___
                     →eps_max+delta_eps)]
                 sub df eps v = df.loc[(df["rho max"] == rho max) | (df["rho max"] == location | locati
                     →rho_max+delta_rho)]
[178]: plt.scatter(sub_df_rho_eps["rho max"], sub_df_rho_eps["eps max"],
                    ⇔c=sub_df_rho_eps["L1"], zorder=5)
                 plt.colorbar(format='%0.1e')
                 plt.xlabel(r"$\rho$")
                 plt.ylabel(r"$\varepsilon$")
                 plt.xticks(list(set(sub df rho eps["rho max"])), rotation=55)
                 plt.yticks(list(set(sub_df_rho_eps["eps max"])))
                 plt.grid()
                 plt.title(r"$L_1$ loss")
                 plt.savefig("error_analysis_rho_eps.pdf", bbox_inches='tight')
                 plt.show()
```



```
[]: # plt.pcolormesh(X, Y, Z, cmap=plt.cm.get_cmap('Blues'))
```

Save this data to process later on:

```
[140]: # df.to_csv("Data/errors_analysis_v2.csv")
```

7 Get parameters of network out:

```
[47]: with torch.no_grad():
    for param in NNC2P.parameters():
        print(param)

Parameter containing:
tensor([[-0.3637,  0.4540, -0.4355],
        [ 0.0066,  0.6949,  0.4879],
        [ 0.1112, -0.0925,  0.1091],
        ...,
        [ 0.5306, -0.4535, -0.3026],
        [-0.4308, -0.1415,  0.2810],
        [ 0.6349, -0.2947,  0.0561]], requires_grad=True)
Parameter containing:
tensor([ 0.5675,  0.2904, -0.7667, -0.3078, -0.1945,  0.0523,  0.0514, -0.4138,
```

```
0.2495, -0.3197, -0.4844, -0.5024, -0.3668, -0.2699,
0.2312, -0.5222,
0.7860, 0.7489, 0.1024, 0.8798, 0.1536, -0.4353, -0.3389, -0.5969,
-0.4334, -0.7355, -0.4756, -0.4140, -0.1220, -0.1788, -0.7250, -0.0075,
0.2842, 0.1193,
                  0.5405, -0.1805, -0.0228, -0.3408, -0.1134, -0.2822,
0.5498, -0.1406, 0.3311, -0.5858, 0.0567, -0.2661, 0.3879, 0.8417,
-0.2426, 0.5311, 0.0035, 0.1361, -0.3355, 0.2191, -0.3657, 0.0739,
-0.7668, -0.7611, -0.4528, 0.7155, 0.4711, 0.1546, -0.7966, -0.6006,
0.5338, -0.4438, -0.5507, 0.2647, -0.5531, -0.1843, 0.6857, -0.1058,
-0.2366, 0.5566, -0.2539, -0.0841, -0.2701, 0.1520, -0.3656, -0.0887,
-0.3681, -0.4994, 0.1562, 0.0979, -0.1539, -0.2539, -0.3159, 0.2476,
0.1437, 0.1037, -0.6092, -0.4861, 0.6079, -0.1717, 0.3969, -0.8278,
-0.7750, 0.4500, 0.1029, 0.0236, 0.3942, -0.0011, -0.5502, -0.6392,
-0.1455, -0.5056, -0.4315, -0.6536, -0.8086, 0.8507, -0.4151, -0.7212,
-0.0891, 0.1468, -0.0913, 0.1593, -0.3147, -0.7297, 0.2530, -0.1589,
-0.1999, 0.4665, -0.5153, -0.6170, -0.3868, 0.0854, 0.5496, 0.1570,
-0.5972, 0.1290, -0.2804, -0.1617, -0.4747, -0.1994, 0.1695, -0.2299,
0.5255, -0.7798, 0.7290, -0.1372, -0.0409, 0.4159, 0.2687, -0.6314,
0.1840, -0.6343, -0.7727, 0.0432, 0.1978, 0.0018, -0.2912, 0.5889,
0.1239, -0.5980, -0.3289, -0.4699, 0.1432, 0.6450, -0.4566, 0.6617,
-0.5549, -0.7374, 0.2306, 0.9800, 0.1920, 0.5020, 0.2284, 0.2587,
0.6900, 0.2306, 0.7923, -0.1113, 0.2198, 0.6304, 0.3187, 0.0511,
-0.5725, -0.6510, -0.7051, -0.3080, -0.2263, -0.5543, -0.2684, -0.2800,
-0.5838, 0.6659, -0.0447, -0.3244, -0.2777, 0.1524, 0.8192, -0.0718,
-0.1331, 0.0362, -0.3517, 0.2572, 0.0893, -0.3430, -0.6010, -0.2209,
0.4120, -0.5042, 0.1973, 0.0020, 0.2477, 0.2700, -0.6794, -0.2675,
-0.3750, 0.3425, -0.0609, -0.0658, 0.3587, -0.2422, 0.3080, -0.7774,
-0.0425, -0.1093, -0.6006, -0.4135, 0.0222, 0.0549, 0.4497, 0.2517,
-0.0629, 0.4377, 0.3117, 0.3804, -0.8146, -0.1727, -0.0757, -0.4479,
-0.3724, 0.2646, 0.2722, 0.2111, -0.4963, -0.7829, -0.1263, 0.1045,
-0.4437, -0.4764, 0.0316, -0.6644, 0.0834, 0.5011, 0.3411, 0.3595,
-0.5658, -0.4027, -0.5273, 0.2064, -0.2696, 0.1704, -0.7847, -0.4299,
-0.5457, -0.2170, 0.5040, 0.1638, -0.2259, -0.1841, 0.3940, -0.1587,
-0.0681, -0.5532, 0.0486, -0.0708, -0.0685, -0.1967, -0.6578, -0.0085,
-0.5584, 0.3869, -0.3360, 0.0781, -0.4732, -0.4988, 0.5257, -0.0463,
-0.5861, 0.0443, 0.3502, -0.3827, -0.0767, -0.4918, -0.0975, 0.0335,
0.0242, -0.1530, 0.2708, 0.3870, -0.0407, -0.7733, -0.3965, 0.7103,
-0.5266, -0.8473, -0.2814, 0.0634, -0.0469, 0.2093, -0.5929, 0.3147,
0.7441, -0.2883, -0.4244, -0.4688, 0.7391, -0.2475, -0.2986, -0.7846,
-0.5749, 0.6449, 0.5729, 0.0330, -0.7806, -0.3968, -0.1973, 0.8683,
0.2063, 0.0795, -0.2172, -0.3743, -0.1792, 0.0273, -0.2719, -0.1724,
0.5487, -0.2173, -0.5166, -0.8283, -0.5187, -0.2308, 0.0458, -0.0205,
-0.0467, -0.6538, -0.0829, 0.0589, 0.0573, 0.3710, 0.1821, -0.6651,
0.0139, 0.1801, -0.3490, -0.5684, 0.5960, 0.6916, -0.5211, -0.0705,
-0.0245, 0.5548, -0.4998, 0.1310, 0.0123, 0.1382, 0.5340, -0.1300,
0.0042, 0.0777, -0.8929, -0.2648, 0.1318, 0.1760, 0.0599, -0.4066,
0.3279, 0.2792, -0.3842, 0.1425, -0.0647, -0.6798, -0.9598, 0.3412,
-0.4429, -0.3725, 0.2720, 0.5411, 0.0429, -0.7045, 0.4488, 0.2515,
0.4915, -0.2986, -0.0725, 0.8208, 0.0345, -0.4975, 0.2115, -0.3730,
```

```
-0.1543, 0.4633, -0.7425, 0.3975, -0.1460, -0.0902, 0.5782, -0.5746,
       -0.0736, -0.8905, -0.1959, 0.3797, 0.6835, 0.4984, -0.0769, 0.2039,
        0.5143, -0.4893, -0.5451, -0.5868, 0.8137, 0.5941, 0.1640, 0.2265,
       -0.6311, 0.3958, -0.2065, -0.4971, -0.0210, -0.3891, -0.2294, -0.3468,
        0.7438, -0.1030, 0.7179, -0.7436, -0.5150, 0.0701, -0.2541, 0.5022,
        -0.7572, 0.0990, 0.1417, 0.1436, 0.0180, 0.0168, -0.4819, 0.8244,
       -0.0125, -0.1109, -0.6625, 0.7918, -0.4478, -0.2006, 0.1864, -0.3666,
        0.2405, 0.2242, -0.0725, -0.1479, -0.2050, 0.4549, 0.2757, -0.2656,
        0.5447, 0.2885, 0.0163, -0.5062, -0.3655, -0.4252, -0.2810, -0.6262,
        0.4720, -0.5443, -0.2816, 0.7436, 0.7959, -0.2127, 0.6045, 0.2159,
        0.0723, 0.8628, 0.0749, 0.1937, -0.5478, -0.1131, 0.3797, 0.4071,
       -0.5809, -0.6407, -0.6400, -0.3935, -0.7474, -0.2790, 0.1554, 0.1401,
        0.4752, -0.2307, -0.5861, 0.6426, -0.3433, -0.5701, 0.1752, 0.4724,
       -0.3654, 0.4743, 0.5474, 0.2260, -0.3306, -0.1384, 0.3962, -0.3417,
       -1.0276, -0.4299, 0.2657, 0.1818, 0.3824, 0.1642, -0.1071, -0.1129,
        0.1338, 0.3750, -0.0246, 0.2682, 0.6734, -0.4917, -0.8268, 0.1484,
       -0.6909, -0.3862, 0.1191, 0.2251, 0.4636, -0.0899, 0.5847, -0.5227,
        0.0309, -0.1919, -0.4084, 0.0564, 0.2178, 0.1525, -0.4559, -0.0342,
       -0.1900, -0.2373, -0.0560, 0.3202, -0.2350, -0.1091, -0.2436, -0.0595,
       -0.0075, 0.0434, 0.4786, 0.4589, -0.7814, -0.4575, -0.1438, 0.7816,
        0.6213, -0.3059, -0.0335, 0.5486, -0.8782, -0.7016, 0.6680, -0.4792,
        0.2301, 0.0706, -0.1901, -0.2882, -0.1218, 0.3371, -0.1424, -0.5664,
       -0.3493, 0.2683, -0.4209, -0.1263, 0.1663, 0.3661, 0.0221, -0.0802,
        0.8377, -0.8028, 0.1312, 0.5930, 0.0925, 0.5772, -0.3172, -0.2318,
        0.3839, -0.3587, -0.1506, -0.2225, -0.3813, 0.3004, 0.5387, -0.0993,
        0.1397, -0.2269, -0.4488, 0.6487, -0.3429, 0.7323, -0.6757, -0.1690
      requires_grad=True)
Parameter containing:
tensor([[-0.2088, 0.0383, 0.0544, ..., -0.1030, 0.0783, -0.0014],
        [0.0470, -0.0564, -0.0553, ..., 0.0203, -0.1165, -0.0557],
        [-0.0048, -0.0284, -0.0800, ..., -0.0789, -0.0413, -0.0859],
        [0.0504, -0.0565, -0.0705, ..., 0.0052, -0.0812, -0.0857],
        [0.0676, -0.0898, -0.0730, ..., 0.0324, -0.0613, -0.0054],
        [-0.1756, 0.0118, 0.0710, ..., -0.0210, 0.0434, 0.0014]],
      requires grad=True)
Parameter containing:
tensor([-0.0270, -0.0241, -0.0302, -0.0111, -0.0253, 0.0092, -0.0516, -0.0816,
        0.0336, -0.0337, -0.0481, 0.0434, -0.0189, 0.0027, -0.0539, -0.0060,
       -0.0646, -0.0440, -0.0354, -0.0596, -0.0734, -0.0540, -0.0820, -0.0217,
       -0.0141, -0.0055, -0.0674, 0.0044, -0.0344, -0.0741, 0.0176, -0.0616,
       -0.0446, -0.0020, -0.0306, -0.0233, -0.0305, -0.0373, -0.0475, -0.0744,
        0.0541, -0.0632, -0.0144, -0.0232, -0.0255, 0.0226, -0.0348, -0.0434,
       -0.0581, 0.0095, -0.0401, -0.0386, -0.0368, 0.0169, 0.0336, -0.0220,
        0.0518, -0.0205, 0.0081, -0.0749, -0.0333, -0.0069, -0.0173, 0.0392,
        0.0175, -0.0278, 0.0328, 0.0343, -0.0011, -0.0501, -0.0517, -0.0325,
       -0.0284, -0.0531, 0.0279, -0.0292, 0.0079, -0.0678, -0.0238, -0.0258,
       -0.0790, 0.0158, -0.0643, 0.0079, -0.0183, 0.0297, 0.0061, 0.0364,
```

```
-0.0228, -0.0035, 0.0068, -0.0856, -0.0804, 0.0039, -0.0382, -0.0563,
       -0.0724, 0.0061, -0.0240, -0.0852, -0.0255, -0.0267, 0.0112, -0.0661,
       -0.0289, -0.0278, -0.0946, 0.0428, -0.0398, -0.0250, -0.0035, 0.0147,
       -0.0032, -0.0094, -0.0720, -0.0195, -0.0702, -0.0429, 0.0336, -0.0590,
        0.0109, 0.0078, -0.0717, -0.0769, -0.0308, -0.0152, 0.0234, 0.0287,
       -0.0626, -0.0299, 0.0259, 0.0166, -0.0485, -0.0169, -0.0319, 0.0128,
        0.0126, 0.0150, -0.0164, 0.0116, -0.0582, 0.0241, -0.0376, 0.0374.
       -0.0056, -0.0238, -0.0540, 0.0336, -0.0016, -0.0473, -0.0338, -0.0415,
       -0.0025, -0.0549, 0.0414, -0.0718, -0.0048, -0.0709, 0.0092, -0.0428,
       -0.0446, -0.0539, 0.0246, -0.0199, -0.0679, -0.0330, -0.0509, -0.0346,
       -0.0404, 0.0587,
                         0.0257, 0.0199, 0.0176, 0.0247, -0.0360, 0.0113,
       -0.0526, 0.0746, -0.0126, 0.0148, -0.0180, 0.0308, -0.0730, 0.0025,
       -0.0178, -0.0758, 0.0204, -0.0438, 0.0013, 0.0851, -0.0482, -0.0559,
       -0.0076, -0.0415, 0.0245, 0.0066, 0.0124, -0.0645, -0.0227, -0.0411],
      requires_grad=True)
Parameter containing:
tensor([[ 0.1627, -0.0709, 0.0123, 0.3133, -0.0664, 0.1463, 0.1598, -0.0656,
         0.1418, 0.1590, -0.0636, 0.1596, -0.0613, 0.1870, 0.2146, 0.1589,
        -0.0531, 0.1655, 0.2035, -0.0812, 0.2130, -0.0660, -0.0634, 0.1614,
        -0.0514, 0.1856, -0.0662, -0.0870, -0.0564, -0.0592, -0.0726,
        -0.0452, -0.0451, -0.0661, 0.1536, -0.0549, -0.0531, -0.0767, -0.0604,
         0.0218, 0.1820, -0.0688, -0.0404, 0.1659, 0.1630, 0.1711,
        -0.0629, 0.1867, 0.1757, -0.0653, -0.0009, -0.0835, 0.1746,
                  0.1652, 0.1826, 0.2197, -0.0461, -0.0854, 0.1609,
         0.1263,
                                                                      0.1759,
         0.1829,
                  0.1776, 0.1510, 0.1660, 0.1700, 0.2523, -0.0616,
                                                                      0.1798,
                  0.1671, 0.1840, -0.0574, 0.1818, 0.1700, -0.0544, -0.0604,
         0.2320,
        -0.0597, 0.1765, 0.1576, 0.1636, 0.1670, 0.1743, 0.1496, 0.1805,
        -0.0265, -0.0614, 0.1608, -0.0620, -0.0661, -0.0646, -0.0664, -0.0510,
        -0.0638, 0.1882, 0.1827, -0.0636, 0.1784, 0.1607, 0.1750, -0.0586,
         0.2005, 0.1738, -0.0557, 0.1631, -0.0659, -0.0593, 0.1661, 0.2004,
         0.1617, -0.0612, -0.0625, -0.0604, -0.0643, 0.1516, 0.1590, -0.0466,
         0.1747, -0.0753, 0.2033, -0.0531, -0.0683, -0.0731, 0.1523, 0.1447,
         0.1618, -0.0730, 0.1459, 0.1990, -0.0332, -0.0622, -0.0709,
                                                                     0.1701,
         0.1877, -0.0721, -0.0712, 0.1784, 0.1617, -0.0757, 0.1658,
                                                                      0.1736,
         0.1609, -0.0745, 0.0118, 0.1497, 0.2044, 0.1691, 0.1669,
                                                                      0.1960,
        -0.0650, 0.1632, 0.1851, -0.0569, 0.1556, 0.1992, 0.1768, -0.0513,
        -0.0658, 0.1782, 0.2142, 0.1588, -0.0646, 0.1558, 0.1586, -0.0601,
        -0.0669, 0.0652, 0.1553, -0.0779, 0.1668, 0.1606, -0.0585, 0.1972,
        -0.0570, 0.2067, 0.1678, 0.1546, -0.0296, 0.1642, -0.0804, -0.0662,
        -0.0473, -0.0452, 0.1472, -0.0654, 0.1412, 0.1047, -0.0688, -0.0658,
        -0.0858, 0.2038, 0.1444, 0.1963, 0.1914, -0.0606, -0.0622,
0.1813]],
      requires_grad=True)
Parameter containing:
tensor([0.1309], requires_grad=True)
```

[]: