MCU 上位机接口控制协议

王智杰 <sanfusu@foxmail.com>

2018年7月24日

†1 报文格式

先发送低字节,如 0x55AA6996 发送顺序为 0x96, 0x69, 0xAA, 0x55。整体格式如下:

HEAD	0x55AA6996	4 Bytes
CTRL	DEV	1 Byte
	PROTOCOL	1 Byte
	ACT	1 Byte
	LEN	1 Byte
Content		n Bytes
END	0x788779669	4 Bytes

表 1: 报文格式

CTRL 字段包含协议、动作和长度。目前各字段支持的值如下:

- 1: DEV MCU $\leftarrow 0x1$
- 2: DLT645 \leftarrow 0x1
- 3: CMD \leftarrow 0x2
- 4: LEN $\leftarrow n$
- 5: ACT_FORWARD \leftarrow 0x1
- 6: if $DEV = DEV_MCU$ then
- 7: **if** PROTOCOL = DLT645 **then**
- 8: $ACT \in \{ACT_FORWARD\}$
- 9: **if** PROTOCOL = CMD **then**
- 10: $ACT = \emptyset$

即目前协议字段只支持 CMD¹ 和 DLT645, 其中当 PROTOCOL 为 CMD 时, ACT 为保留字段, 默认为 0; 若 PROTOCOL 为 DLT645 时, 只支持转发功能。长度字段值为 n。

¹MCU 管脚控制协议

†2 CMD 协议

†2 CMD 协议

当 PROTOCOL 为 CMD 时, Content 字段每 4 个字节为一个控制命令,也就是说一组报文可以控制多个 IO 管脚。

字段	长度
$class_id$	7 bit
$prot_id$	8 bit
data	2 bit
func	3 bit
dir	2 bit
wr	2 bit
ds	2 bit
od	2 bit
puen	2 bit
pden	2 bit

表 2: 管脚控制命令格式

各字段含义以及可取值如下:

class_id GPIOA, GPIOB, GPIOC 分别对应 0、1、2; port_id 管脚号,值范围 [0,32]; data 高低电平。低电平: 0,高电平: 1; func 功能复用 func0 ~ func3 对应 0、1、2、3; dir 方向。输出: 0,输入: 1; wr 读写。读: 0,写: 1;

其余字段目前保留,取值为3。

返回报文 CMD 协议中,不论做写入操作还是读操作,都会以管脚控制命令格式返回操作之后的管脚状态。

†3 DLT645 协议

当 PROTOCOL 为 DLT645 时,即值为 1, Content 字段为 DLT645 报文。返回应答时按照相同的格式返回。