

Quantum Kernels and Feature Maps

Concepts and Examples

Outline

- Objective
- Kernel Methods for Machine Learning
- Classification & Clustering
- Kernel Principal Component Analysis
- Conclusion

Machine Learning

- ML finds and studies patterns in data
- Better with higher dimensional feature space
- ML algorithms based on it are kernel methods
- Useful for classification and clustering

Kernel Methods

- Algorithms using kernel functions
- Best applied in Support Vector Machine (SVM)
- Supervised learning for classification tasks
- For non-linearly separable data spaces using kernels to find boundaries
- Kernel functions imply maps into high dimensional space
- 'Kernel trick' & 'Spectral Clustering'

Kernel Functions

$$k(\vec{x}_i, \vec{x}_j) = \langle f(\vec{x}_i), f(\vec{x}_j) \rangle$$

- \boldsymbol{k} is the kernel function
- \vec{x}_i, \vec{x}_j are n dimensional inputs

- where: f is a map from n-dimension to m-dimension space and
 - (a, b) denotes the inner product

Dimensional inputs Space definition for mapping n x m dimensions Inner product

Kernel Functions

For finite data, a kernel function can be represented as a matrix

$$K_{ij} = k(\vec{x}_i, \vec{x}_j)$$

Dataset

A small classic dataset from Fisher, 1936. One of the earliest known datasets used for evaluating classification methods.

Instances

Dataset Characteristics

Tabular Biology

Feature Type

Real 150

Subject Area Associated Tasks

Classification

Features

4

iris setosa

iris versicolor

iris virginica

Iris dataset

Classification

Classification

Classification

SVM Training

- Use kernel matrix with SVC
- Optimize 'C' with GridSearchCV

Classical SVM Accuracy: 0.80

Classical SVM Accuracy: 0.80

Concept	Purpose	Notes
SVM	Classify data by separating with a hyperplane	Effective in high dimensions
RBF Kernel	Allows nonlinear separation	Common default kernel
Accuracy	Overall correctness	Simple and widely used
Confusion Matrix	Detailed error breakdown	Shows per-class performance
Decision Boundary	Visual intuition	Only possible in 2D or 3D

Qiskit Implementation

- Install Qiskit packages, prepare data
- Defining Qiskit feature map

Feature Map	What it Does	Best For
ZFeatureMap	Applies only Z-rotations	Simple data
ZZFeatureMap	Adds ZZ entanglement between qubits	Captures correlations
PauliFeatureMap	Uses X, Y, Z rotations	High flexibility

Quantum Kernels

- Quantum kernel machine learning
- Quantum states overlapping measure similarity
- Quantum feature mapping selection
- Enable SVMs with complex data boundaries

Quantum Kernels

$$K_{ij} = \left| \langle \phi(ec{x}_i) | \phi(ec{x}_j)
angle
ight|^2$$

where:

- K_{ij} is the kernel matrix
- \vec{x}_i, \vec{x}_j are n dimensional inputs
- $\phi(\vec{x})$ is the quantum feature map
- ullet $|\langle a|b
 angle|^2$ denotes the overlap of two quantum states a and b

Quantum Kernel

- Install Qiskit packages, prepare data
- Defining Qiskit feature map

Feature Map	What it Does	Best For
ZFeatureMap	Applies only Z-rotations	Simple data
ZZFeatureMap	Adds ZZ entanglement between qubits	Captures correlations
PauliFeatureMap	Uses X, Y, Z rotations	High flexibility

Feature Maps

- ZFeatureMap: Z-Rotations
- ZZFeatureMap: Entaglement
- PauliFeatureMap: X-Y-Z Rotations

ZFeatureMap

ZFeatureMap

Quantum SVM Accuracy with ZFeatureMap: 0.60

ZZFeatureMap

Quantum SVM Accuracy with ZZFeatureMap: 0.67

ZZFeatureMap

Quantum SVM Accuracy with ZZFeatureMap: 0.67

PauliFeatureMap

Quantum SVM Accuracy with PauliFeatureMap: 0.53

PauliFeatureMap

Results Comparison

Classical SVM Accuracy: 0.80
Quantum SVM Accuracy with ZFeatureMap: 0.60
Quantum SVM Accuracy with ZZFeatureMap: 0.67
Quantum SVM Accuracy with PauliFeatureMap: 0.53

Underperformance Diagnosis

- Feature Dimensionality
- Number of Qubits and Feature Map Depth
- Quantum Kernel Evaluation Limitations
- Model Complexity and Class Structure

Analysis Comparison

Linear Discriminant Analysis vs Quadratic Discriminant Analysis

Classical SVM Accuracy: 0.80

Classical SVM Accuracy: 0.80

ZFeatureMap

ZFeatureMap QSVM Accuracy: 0.93

ZFeatureMap

ZFeatureMap QSVM Accuracy: 0.93

ZZFeatureMap

ZZFeatureMap QSVM Accuracy: 0.80

ZZFeatureMap

ZZFeatureMap QSVM Accuracy: 0.80

PauliFeatureMap

PauliFeatureMap QSVM Accuracy: 0.91

PauliFeatureMap

PauliFeatureMap QSVM Accuracy: 0.91

Results Comparison

ClassicalFeatureMap: 0.93

ZFeatureMap: 0.93

ZZFeatureMap: 0.80

PauliFeatureMap: 0.91

Summary

- Use All Four Features
- Increase Feature Map Depth
- Normalize Inputs
- Avoid Overly Complex Grid Search
- Adding Regularization to the Kernel