Classification

Using Machine Learning Tools

Geron Chapter 3, 6

Last time ...

- Steps you can take to improve the performance of your ML system:
 - replacing data
 - scaling data
- Pipelines for repeatable workflows
- Linear regression model
- Polynomial models
- Parameters and hyperparameters

Classification terminology

Classifier

- Uses a discrete set of possible outputs = classes
- Can be supervised, semi-supervised or unsupervised (see week 7)

Target

- What we are predicting
- Passed in as "y" to regression/classification method
- Also called: label, ground truth, dependent variable, outcome variable, or response variable

Regression vs Classification

• Regression:

- predicts real numbers (values)
- on a numerical, ordered scale
- the larger the difference, the worse
 - e.g. house price, wine quality

Classification:

- predicts classes (labels)
- typically categorical, normally no meaningful order
- all differences are usually treated equally
 - e.g. cancer vs healthy; kangaroo vs pademelon vs quokka

Linear Model as a Binary Classifier

• Linear model used in regression:

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Apply a threshold:

```
If \hat{y} < threshold

Class 1

Else

Class 2
```

Stochastic Gradient Descent Classifier

- Binary classifier using a linear model
- Stochastic Gradient Descent (SGD) is a fitting algorithm
 - Iteratively follows the gradient (derivative) of the loss function
 - Fast, scalable
- SGD classifier in scikit-learn is a linear model using SGD

```
from sklearn.linear_model import SGDClassifier
clf = SGDClassifier(random_state=42)
clf.fit(X_train, y_train)
```

Decision Tree

- petal length (cm) <= 2.45
- Iterative splitting

Depth=0

3.0

2.5

Petal width 1.5 1.0

0.5

0.0 -

- Maximise class separation
- One feature at a time
- Up to maximum depth
- Prune to avoid overfitting

Depth=1

Petal length

3

(Depth=2):

Images: Geron, Hands On ML

Decision Tree

Images: Geron, Hands On ML

Iterative splitting

Depth=0

Decision Boundary

3.0

2.5

Petal width 1.5 1.0

0.5

0.0 -

- Maximise class separation
- One feature at a time
- Up to maximum depth
- Prune to avoid overfitting

Depth=1

Petal length

3

(Depth=2):

Inner workings \rightarrow white-box

$$G_i = 1 - \sum_{k=1}^{n} p_{i,k}^2$$

- Gini impurity metric measures the class distribution in a node
 - best = only one class (pure) \rightarrow G = 0 for impurity
 - worst = completely evenly spread \rightarrow $G_{max} = 1 1/N$ for impurity
- CART = Classification and Regression Tree

$$J(k, t_k) = \frac{m_{left}}{m}G_{left} + \frac{m_{right}}{m}G_{right}$$

- A loss function is minimised to set threshold → min impurity
 - it is based on a weighted sum of the impurities from each branch
- Search for best threshold and branch out
- Iteratively grow tree until maximum depth reached

Decision Tree

Images: Geron, Hands On ML

Iterative splitting

Depth=0

3.0

2.5

Petal width 1.5 1.0

0.5

0.0 -

- Maximise class separation
- One feature at a time
- Up to maximum depth
- Prune to avoid overfitting

Depth=1

Petal length

(Depth=2):

Comparison of Classification Approaches

Note the different decision boundary shapes

Image: © 2007 - 2019, scikit-learn developers (BSD 3-clause License)

Evaluation / Performance Metrics

Evaluation / Performance Metrics

• Regression:

- (Root) Mean Squared Error = L^2 norm = $\frac{1}{N}\sum_i |x_i yi|^2 = ||\mathbf{x} \mathbf{y}||_2$
- Mean Absolute Error = L^1 norm = $\frac{1}{N}\sum_i |x_i y_i| = ||\mathbf{x} \mathbf{y}||_1$
- Median/Max Absolute Error
- R² / correlation coefficient $\rho = r = \frac{(\mathbf{x} \bar{x}) \cdot (\mathbf{y} \bar{y})}{|\mathbf{x} \bar{x}| |\mathbf{y} \bar{y}|} = \cos \theta$

Evaluation / Performance Metrics

• Regression:

- (Root) Mean Squared Error = L^2 norm = $\frac{1}{N}\sum_i |x_i y_i|^2 = ||\mathbf{x} \mathbf{y}||_2$
- Mean Absolute Error = L^1 norm = $\frac{1}{N}\sum_i |x_i y_i| = ||\mathbf{x} \mathbf{y}||_1$
- Median/Max Absolute Error
- R² / correlation coefficient $\rho = r = \frac{(\mathbf{x} \bar{x}) \cdot (\mathbf{y} \bar{y})}{|\mathbf{x} \bar{x}| |\mathbf{y} \bar{y}|} = \cos \theta$

Classification:

- Accuracy / Confusion Matrix
- Precision / Recall
- ROC Curve / Area Under Curve (AUC)
- F₁ Score

Positive & Negative / True & False

- Positives/Negatives (P/N) are from model predictions (above/below threshold)
- True is when the prediction agrees with the ground truth (labels)
- A true positive is a positive that agrees with ground truth
- A false negative is something of interest in the ground truth that is missed by the model
- Both FP and FN are bad, but usually not equally bad
- Sometimes P/N is obvious (e.g. detecting an object) but sometimes it is arbitrary (e.g. male/female) or even counter-intuitive (e.g. disease = positive)

Precision and Recall

$$Precision = \frac{TP}{TP + FP} = \frac{\bigcirc}{\bigcirc}$$

$$Recall = \frac{TP}{TP + FN} = \frac{\bullet}{\bullet}$$

What fraction of positive predictions are correct?

What fraction of the real positive class are detected?

= Positive predictive value

- = True positive rate
- = Sensitivity

Precision and Recall

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

What fraction of positive predictions are correct?

What fraction of the real positive class are detected?

= Positive predictive value

- = True positive rate
- = Sensitivity
- Both ignore True Negatives (TN)
- Compare with Accuracy = (TP+TN)/(TP+TN+FP+FN)
- Sometimes accuracy is better, sometimes not

```
from sklearn.metrics import precision_score, recall_score
precision_score(y_train, y_train_pred)
recall_score(y_train, y_train_pred)
```

F₁ Score

$$F_{1} = \frac{2}{\frac{1}{precision} + \frac{1}{recall}} = \frac{precision \times recall}{\frac{1}{2} * (precision + recall)} = \frac{TP}{\frac{1}{2} * (FN + FP + 2 * TP)}$$

- Harmonic mean of precision and recall
- Ignores True Negatives (TN)
- Evenly weights precision and recall
- F_{β} weights differently, using β value

Intersection = TP

All Real Positives = TP + FN

All Positive Detections = TP + FP

from sklearn.metrics import f1_score
f1_score(y_train, y_train_pred)

Precision – Recall Trade-Off

Take real output value and threshold it -> TP, FP, FN, TN

Low threshold \rightarrow everything is positive, FN=0, $\bigcirc = \emptyset$, Recall \rightarrow 1 High threshold \rightarrow everything is negative, FP=0, $\bigcirc = \emptyset$, Prec. \rightarrow 1

Image: Geron, Hands On ML

Receiver-Operating-Characteristic (ROC)

- Display trade-off between true positive rate and false positive rate
- Top left corner is best: TP=1, FP=0
- Each threshold → one point
- Use all thresholds of the output to get curve (min→ max)
- Output of method (before thresholding) can be called a "probability"
- Can also be used to look at hyperparameter changes (instead of threshold)

False Positive Rate = FP/(FP+TN)

Image: Geron, Hands On ML, added annotations

Area-Under-Curve (AUC)

- Single scalar value to compare classifiers or hyperparameters
- Depends on performance across all thresholds or hyperparameter settings
- Usually use whole curve

Image: Geron, Hands On ML, added annotations

Area-Under-Curve (AUC)

- Single scalar value to compare classifiers or hyperparameters
- Depends on performance across all thresholds or hyperparameter settings
- Usually use whole curve
 - but a smaller range of FPR can also be used (based on acceptable performance range)

Image: Geron, Hands On ML, added annotations

Multiclass Classification

- More than two classes
- Targets can be:
 - arbitrary integers / names
 - one-hot encoding
 - N vectors; each with one element = 1, others = 0

- Can use binary classifiers for multiclass problems
 - One-vs-Rest strategy (default)
 - One-vs-One strategy
 - Scikit-learn classifiers do this automatically

Confusion Matrix

- Displays predicted vs actual class
 - run on the test set
- Diagonal elements are good
- Off-diagonals show errors
- Can have any number of classes
- Shows where most common errors occur

Predicted: Actual:	Class 1 (Negative)	Class 2 (Positive)
Class 1	True Negative count	False Positive count
Class 2	False Negative count	True Positive count

```
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
y_train_pred = cross_val_predict(clf, X_train, y_train)
confusion_matrix(y_train, y_train_pred)
```

Confusion Matrix

Sum within a row = number of true samples of that class

Sum within col = number of predictions of that class

Can show raw counts or normalised (e.g. as % of true class samples so each row sums to 100%)

Large off-diagonal shows —— common error: here the true class 4 is predicted as class 5

import seaborn as sn
sn.heatmap(array, annot=True)

- 40

- 30

- 20

- 10

Summary

- Classification vs. regression
- Range of classifier approaches
 - SGD classifier
 - Decision Tree
- White box vs. Black box
 - Decision boundaries
- Several performance metrics
 - Precision, recall
 - ROC, AUC
 - Confusion matrix
- Multi-class classification
 - Different algorithms for combining 2-class classification
 - Different options for representing labels (esp. one-hot encoding)