## MATH 612 (HOMEWORK 2)

## HIDENORI SHINOHARA

## 1. Section 3.1

**Exercise.** (Exercise 1) Fix G and let  $\alpha: H \to H'$  be given. Let  $0 \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} H \to 0, 0 \to G_1 \xrightarrow{g_1} G_0 \xrightarrow{g_0} H \to 0$  be free resolutions. By Lemma 3.1(a), we obtain two homomorphisms  $\alpha_1: F_1 \to G_1, \alpha_0: F_0 \to G_0$  which commutes with  $f_i, g_i, \alpha$ . Then we obtain two chain complexes

$$0 \leftarrow \operatorname{Hom}(F_1, G) \xleftarrow{f_1^*} \operatorname{Hom}(F_0, G) \xleftarrow{f_0^*} \operatorname{Hom}(H, G) \leftarrow 0$$
$$0 \leftarrow \operatorname{Hom}(F_1, G') \xleftarrow{f_1^*} \operatorname{Hom}(F_0, G') \xleftarrow{f_0^*} \operatorname{Hom}(H, G') \leftarrow 0.$$

with induced maps  $\alpha_1^*, \alpha_0^*, \alpha^*$  forming a chain map from the chain complex on the bottom to the one on the top. Then  $\alpha_1^*$  induces a map from  $\operatorname{Ext}(H', G) \to \operatorname{Ext}(H, G)$ .

Fix H and let  $f: G \to G'$  be given. Let  $0 \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} H \to 0$  be a free resolution of H. We obtain two cochain complexes where  $f_*$  is a chain map from the top one to the bottom one.

$$0 \leftarrow \operatorname{Hom}(F_1, G) \xleftarrow{f_1^*} \operatorname{Hom}(F_0, G) \xleftarrow{f_0^*} \operatorname{Hom}(H, G) \leftarrow 0$$
$$0 \leftarrow \operatorname{Hom}(F_1, G') \xleftarrow{f_1^*} \operatorname{Hom}(F_0, G') \xleftarrow{f_0^*} \operatorname{Hom}(H, G') \leftarrow 0.$$

 $f_*$  indeed makes the diagram commute because for any  $\sigma \in \text{Hom}(H,G)$ ,

$$f_*(f_0^*(\sigma)) = f_*(\sigma \circ f_0)$$

$$= f \circ (\sigma \circ f_0)$$

$$= (f \circ \sigma) \circ f_0$$

$$= f_0^*(f \circ \sigma)$$

$$= f_0^*(f_*(\sigma)).$$

Similarly,  $f_*(f_1^*(\sigma)) = f_1^*(f_*(\sigma))$  for every  $\sigma \in \text{Hom}(F_0, G)$ . Since a chain map induces a homomorphism on cohomology groups, f induces a map from  $\text{Ext}(H, G) \to \text{Ext}(H, G')$ .

Exercise (Exercise 1.2)

$$0 \longrightarrow F_1 \stackrel{f_1}{\longrightarrow} F_0 \stackrel{f_0}{\longrightarrow} H \longrightarrow 0$$

$$\downarrow^{\cdot n} \qquad \downarrow^{\cdot n} \qquad \downarrow^{\cdot n}$$

$$0 \longrightarrow F_1 \stackrel{f_1}{\longrightarrow} F_0 \stackrel{f_0}{\longrightarrow} H \longrightarrow 0$$

turn into two chain complexes with a chain map

$$0 \longleftarrow \operatorname{Hom}(F_1,G) \xleftarrow{f_1^*} \operatorname{Hom}(F_0,G) \xleftarrow{f_0^*} \operatorname{Hom}(H,G) \longleftarrow 0$$

$$(\cdot n)^* \uparrow \qquad (\cdot n)^* \uparrow \qquad (\cdot n)^* \uparrow$$

$$0 \longleftarrow \operatorname{Hom}(F_1,G) \xleftarrow{f_1^*} \operatorname{Hom}(F_0,G) \xleftarrow{f_0^*} \operatorname{Hom}(H,G) \longleftarrow 0.$$

This diagram commutes because a group homomorphism for abelian groups commute with multiplication by n. Therefore,  $(\cdot n)^*$  induces a homomorphism on  $\operatorname{Ext}(H,G) = \operatorname{Hom}(F_1,G)/\operatorname{im}(f_1^*)$ . Moreover,  $\forall \phi + \operatorname{im}(f_1^*) \in \operatorname{Ext}(H,G)$ ,

$$(\cdot n)^*(\phi + \operatorname{im}(f_1^*)) = \phi \circ (\cdot n) + \operatorname{im}(f_1^*)$$

where  $(\phi \circ (\cdot n))(x) = \phi(n(x)) = n(\phi(x)) = (n\phi)(x)$  for all  $x \in F_1$ . Therefore, the map induced by  $(\cdot n)^*$  is simply multiplication by n.

For every  $\phi \in \text{Hom}(H,G)$  and  $x \in F_0$ ,

$$((\cdot n)_*(f_0^*(\phi)))(x) = ((\cdot n)_*(\phi \circ f_0))(x)$$

$$= n((\phi \circ f_0)(x))$$

$$= n(\phi(f_0(x)))$$

$$= ((\cdot n)_*\phi)(f_0(x))$$

$$= f_0^*((\cdot n)_*\phi)(x).$$

Similarly,  $(\cdot n)_*$  commutes with  $f_1^*$ , so  $(\cdot n)_*$  is a chain map. For any  $\phi + \operatorname{im}(f_1^*) \in \operatorname{Ext}(H, G)$ ,  $(\cdot n)_*(\phi + \operatorname{im}(f_1^*)) = n\phi + \operatorname{im}(f_1^*)$ , so it is multiplication by n.

**Exercise.** (Exercise 3.1.3)  $\cdots \xrightarrow{d_2} \mathbb{Z}_4 \xrightarrow{d_1} \mathbb{Z}_4 \xrightarrow{d_0} \mathbb{Z}_2 \to 0$  is a free resolution where  $d_0: a \mapsto a$  and  $d_i: a \mapsto 2a$  because  $\ker(d_0) = \operatorname{im}(d_i) = \ker(d_i) = \{0, 2\}$  for each  $i \geq 1$ . Apply  $\operatorname{Hom}(-, \mathbb{Z}_2)$  and replace  $\mathbb{Z}_2^*$  with 0. For any  $\phi \in \operatorname{Hom}(\mathbb{Z}_4, \mathbb{Z}_2)$  and  $x \in \mathbb{Z}_4$ ,  $((\cdot 2)^*(\phi))(x) = (\phi \circ (\cdot 2))(x) = \phi(2x) = \phi(0) = 0$ . Thus  $(\cdot 2)^*(\phi) = 0$ . In other words,  $d_i^* = 0$  for all  $i \geq 1$ , so  $\operatorname{Ext}_{\mathbb{Z}_4}^n(\mathbb{Z}_2, \mathbb{Z}_2) = \operatorname{Hom}(\mathbb{Z}_4, \mathbb{Z}_2)$  which is nontrivial because  $1 \mapsto 1$  is a nontrivial group homomorphism.

**Exercise.** (Exercise 3.1.6(a)) The chain complex we obtain is isomorphic to  $0 \to \mathbb{Z}^2 \xrightarrow{\alpha} \mathbb{Z}^3 \xrightarrow{0} \mathbb{Z} \to 0$  where  $\alpha(a,b) = (a+b)(1,1,-1)$ . If we apply  $\operatorname{Hom}(-,\mathbb{Z})$ , we obtain

- $H^0(T; \mathbb{Z}) = \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) = \mathbb{Z}$ .
- $\alpha^*(\phi) = 0$  if and only if  $\phi(1, 1, -1) = 0$ .  $(a, b, c) \mapsto a b$  and  $(a, b, c) \mapsto a + c$  form a basis for the subspace consisting of such homomorphisms.  $H^1(T; \mathbb{Z}) = \ker(\alpha^*) = \mathbb{Z} \oplus \mathbb{Z}$ .
- $H^2(T; \mathbb{Z}) = \text{Hom}(\mathbb{Z}^2, \mathbb{Z})/\text{im}(\alpha^*) = \mathbb{Z}$  because  $(a, b) \mapsto a$  and  $(a, b) \mapsto a + b$  form a basis for  $\text{Hom}(\mathbb{Z}^2, \mathbb{Z})$  and  $\text{im}(\alpha^*)$  is spanned by  $(a, b) \mapsto a + b$ .

If we apply  $\text{Hom}(-,\mathbb{Z}_2)$ , we obtain

- $H^0(T; \mathbb{Z}_2) = \text{Hom}(\mathbb{Z}_2, \mathbb{Z}_2) = \mathbb{Z}_2.$
- $\alpha^*(\phi) = 0$  if and only if  $\phi(1,1,1) = 0$ .  $(a,b,c) \mapsto a+b$  and  $(a,b,c) \mapsto a+c$  form a basis for the subspace consisting of such homomorphisms.  $H^1(T; \mathbb{Z}_2) = \ker(\alpha^*) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ .
- $H^2(T; \mathbb{Z}_2) = \operatorname{Hom}(\mathbb{Z}_2^2, \mathbb{Z}_2) / \operatorname{im}(\alpha^*) = \mathbb{Z}_2$  because  $(a, b) \mapsto a$  and  $(a, b) \mapsto a + b$  form a basis for  $\operatorname{Hom}(\mathbb{Z}_2^2, \mathbb{Z}_2)$  and  $\operatorname{im}(\alpha^*)$  is spanned by  $(a, b) \mapsto a + b$ .

**Exercise.** (Exercise 3.1.6(b), projective plane) We obtain a chain complex  $0 \to \mathbb{Z}^2 \xrightarrow{\alpha}$  $\mathbb{Z}^3 \xrightarrow{\beta} \mathbb{Z}^2 \to 0$  where  $\alpha(a,b) = (b-a,a-b,a+b)$  and  $\beta(a,b,c) = (a+b,-a-b)$ . By applying  $\text{Hom}(-,\mathbb{Z})$ , we obtain a cochain complex. Each  $\text{Hom}(\mathbb{Z}^k,\mathbb{Z})$  has a basis  $\{\pi_1, \pi_2, \cdots, \pi_k\}$  where  $\pi_i$  is a projection on the *i*th coordinate. Then  $(\beta^*(\pi_1))(a, b, c) =$  $(a + b, (\beta^*(\pi_2))(a, b, c) = -a - b$ . Thus  $\ker(\beta^*) = \langle \pi_1 + \pi_2 \rangle$  and  $\operatorname{im}(\beta^*) = \langle \pi_1 + \pi_2 \rangle$ . The kernel and image of  $\alpha$  can be calculated similarly.

- $H^0 = \ker(\beta^*) = \mathbb{Z}$ .
- $H^1 = \ker(\alpha^*) / \operatorname{im}(\beta^*) = \langle \pi_1 + \pi_2 \rangle / \langle \pi_1 + \pi_2 \rangle = 0.$   $H_2 = \ker(0) / \operatorname{im}(\alpha^*) = \langle \pi_1, \pi_2 \rangle / \langle \pi_1 \pi_2, \pi_1 \pi_2 \rangle = \langle \pi_1 + \pi_2, \pi_1 \mid \pi_1 + \pi_2, 2\pi_1 \rangle = \langle \pi_1, \pi_2, \pi_1 \mid \pi_1 + \pi_2, 2\pi_1 \rangle = \langle \pi_1, \pi_2, \pi_1 \mid \pi_1 + \pi_2, 2\pi_1 \rangle = \langle \pi_1, \pi_2, \pi_1 \mid \pi_1 + \pi_2, 2\pi_1 \rangle = \langle \pi_1, \pi_2, \pi_1 \mid \pi_1 + \pi_2, 2\pi_1 \rangle = \langle \pi_1, \pi_2, \pi_1 \mid \pi_1 + \pi_2, 2\pi_1 \rangle = \langle \pi_1, \pi_2, \pi_1 \mid \pi_1 + \pi_2, \pi_1 \mid \pi_1 + \pi_2, 2\pi_1 \rangle = \langle \pi_1, \pi_2, \pi_1 \mid \pi_1 + \pi_2, \pi_1 \mid \pi_1 + \pi_2, 2\pi_1 \rangle = \langle \pi_1, \pi_2, \pi_1 \mid \pi_1 + \pi_2, \pi_1 \mid \pi_1 + \pi_2, 2\pi_1 \rangle = \langle \pi_1, \pi_2, \pi_1 \mid \pi_1 + \pi_2, \pi_1 \mid \pi_1 + \pi_2, 2\pi_1 \rangle = \langle \pi_1, \pi_2, \pi_1 \mid \pi_1 + \pi_2,$

Similarly, we apply  $\operatorname{Hom}(-\mathbb{Z}_2)$ . Each  $\operatorname{Hom}(\mathbb{Z}^k,\mathbb{Z}_2)$  has a basis  $\{\pi_1,\pi_2,\cdots,\pi_k\}$  where  $\pi_i$ is a projection on the ith coordinate. The calculation of the kernels and images are almost identical as above with the only exception  $\ker(\alpha^*)$ . This is because  $\alpha^*(\pi_i):(a,b)\mapsto a+b$ for each i = 1, 2, 3, so the kernel is  $\langle \pi_1 + \pi_2, \pi_1 + \pi_3 \rangle$ .

- $H^0 = \ker(\beta^*) = \langle \pi_1 + \pi_2 \rangle = \mathbb{Z}_2.$
- $H^1 = \ker(\alpha^*)/\operatorname{im}(\beta^*) = \langle \pi_1 + \pi_2, \pi_1 + \pi_3 \rangle / \langle \pi_1 + \pi_2 \rangle = \mathbb{Z}_2.$
- $H_2 = \ker(0)/\operatorname{im}(\alpha^*) = \langle \pi_1, \pi_2 \rangle / \langle \pi_1 + \pi_2, \pi_1 + \pi_2 \rangle = \langle \pi_1 \rangle = \mathbb{Z}_2.$

**Exercise.** (Exercise 3.1.6(b), klein bottle) The chain complex we obtain is  $0 \to \mathbb{Z}^2 \xrightarrow{\alpha} \mathbb{Z}^3 \xrightarrow{0}$  $\mathbb{Z} \to 0$  with  $\alpha(a,b) = (a+b,a-b,b-a)$ . Again, we will use the projection map  $\pi_i$  of the ith coordinate to form bases of the dual spaces.  $\ker 0^* = \mathbb{Z}, \operatorname{im} 0^* = 0. \ker(\alpha^*) = \langle \pi_2 + \pi_3 \rangle$ and  $\operatorname{im}(\alpha^*) = \langle \pi_1 + \pi_2, \pi_1 - \pi_2 \rangle$  because

$$(\alpha^*(\pi_i))(a,b) = \begin{cases} a+b & (i=1) \\ a-b & (i=2) \\ b-a & (i=3). \end{cases}$$

Thus  $H_0 = \mathbb{Z}$ ,  $H_1 = \langle \pi_2 + \pi_3 \rangle / 0 = \mathbb{Z}$  and  $H_2 = \langle \pi_1, \pi_2 \mid \pi_1 + \pi_2, \pi_1 - \pi_2 \rangle = \mathbb{Z}/2$ .  $\ker 0^* = \mathbb{Z}_2$ ,  $\operatorname{im} 0^* = 0$ .  $\ker(\alpha^*) = \langle \pi_1 + \pi_2, \pi_1 + \pi_3 \rangle$  and  $\operatorname{im}(\alpha^*) = \langle \pi_1 + \pi_2 \rangle$ . Thus  $H_0 = \mathbb{Z}_2$ ,  $H_1 = \langle \pi_1 + \pi_2, \pi_1 + \pi_3 \rangle / 0 = \mathbb{Z}_2 \oplus \mathbb{Z}_2$  and  $H_2 = \langle \pi_1, \pi_2 \mid \pi_1 + \pi_2 \rangle = \mathbb{Z}_2$ .

**Exercise.** (Exercise 3.1.8(a))  $S^0$  consists of two points, so  $\tilde{H}^i(S^0;G) = G^2/G = G$  if i=0and 0 otherwise because  $\tilde{H}^0(S^0;G)$  is all functions module constant functions. Suppose we have shown  $H^i(S^k;G) = G$  if i = k and 0 otherwise. By the long exact sequence of a pair, we obtain  $\tilde{H}^i(D^{k+1};G) \to \tilde{H}^i(S^k;G) \to \tilde{H}^{i+1}(D^{k+1},S^k;G) \to \tilde{H}^{i+1}(D^{k+1};G)$ . Since  $D^{k+1}$  is contractible,  $\tilde{H}^i(D^{k+1};G)=0$  for all i. This induces an isomorphism  $\tilde{H}^i(S^k;G)\cong$  $\tilde{H}^{i+1}(D^{k+1}, S^k; G) = \tilde{H}^{i+1}(S^{k+1}; G) = G$ . Therefore,  $H^k(S^0; G) = G^2$  and 0 if k > 0, and  $H^k(S^n; G) = G$  if  $k \in \{0, n\}$  and 0 otherwise.

The Mayer-Vietoris sequence gives  $\tilde{H}^k(A;G) \oplus \tilde{H}^k(B;G) \to \tilde{H}^k(A \cap B;G) \to \tilde{H}^{k+1}(S^n;G) \to \tilde{H}^{k+1}(A;G) \oplus \tilde{H}^{k+1}(B;G)$  where A,B are the northern and southern hemispheres with some extra part so the union of the interiors equals  $S^n$ . Since A and B are contractible regardless of the value of k,  $\tilde{H}^k(A;G) = \tilde{H}^k(B;G) = \tilde{H}^{k+1}(A;G) = \tilde{H}^k(B;G) = 0$ . This gives us an isomorphism  $\tilde{H}^k(A \cap B;G) \cong \tilde{H}^{k+1}(S^n;G)$ .  $A \cap B$  is homotopic to  $S^n$ . By induction,  $\tilde{H}^k(A \cap B;G) = G$  if k = n and 0 otherwise.

**Exercise.** (Exercise 3.1.8(b)) Let q be the quotient map  $(X, A) \to (X/A, A/A)$ . Let V be a neighborhood of A in X that deformation retracts onto A. We have a commutative diagram

$$H^{n}(X,A) \longleftarrow H^{n}(X,V) \longrightarrow H^{n}(X-A,V-A)$$

$$q^{*} \uparrow \qquad \qquad q^{*} \uparrow$$

$$H^{n}(X/A,A/A) \longleftarrow H^{n}(X/A,V/A) \longrightarrow H^{n}(X/A-A/A,V/A-A/A).$$

The upper horizontal map is an isomorphism since in the long exact sequence of the triple (X, V < A) the groups  $H^n(V, A)$  are zero for all n, because a deformation retraction of V onto A gives a homotopy equivalence of pairs  $(V, A) \simeq (A, A)$ , and  $H_n(A, A) = 0$ . The deformation retraction of V onto A induces a deformation retraction of V/A onto A/A, so the same argument shows that the lower left horizontal map is an isomorphism as well. The other two horizontal maps are isomorphisms directly from excision. The right-hand vertical map  $q_*$  is an isomorphism since q restricts to a homeomorphism on the complement of A. From the commutativity of the diagram, it follows that the left-hand  $q_*$  is an isomorphism. Since A/A is a point,  $H^n(X/A, A/A) \cong \tilde{H}^n(X/A)$ . Therefore,  $H^n(X, A) \cong \tilde{H}^n(X/A)$ .

**Exercise.** (Exercise 3.1.8(c)) Let  $r: X \to A$ ,  $i: A \to X$  be the retract and inclusion. Then  $i^*: H^n(X;G) \to H^n(A;G)$  is injective because  $\mathrm{Id} = (ri)^* = i^*r^*$ . Thus the boundary map of the long exact sequence must be 0 by the exactness, so we obtain a short exact sequence  $0 \to H^n(X,A;G) \to H^n(X;G) \to H^n(A;G) \to 0$ . The relation  $\mathrm{Id} = i^*r^*$  implies that the short exact sequence splits by the split lemma. Therefore,  $H^n(X;G) = H^n(X,A;G) \oplus H^n(A;G)$ .

## 2. Section 3.A

**Exercise.** (Exercise 1) If the characteristic of F is infinity, the Tor functor becomes 0, so the UCT gives us an isomorphism  $H_n(X; \mathbb{Z}) \otimes F \cong H_n(X; F)$ . Therefore, the rank of  $H_n(X; \mathbb{Z})$  equals the dimension of  $H_n(X; F)$ .

Suppose the characteristic of F is p. By the UCT,  $H_n(X; F) \cong (H_n(X; \mathbb{Z}) \otimes F) \oplus \text{Tor}(H_{n-1}(X; \mathbb{Z}); F)$ . Suppose  $H_n(X; \mathbb{Z}) = \mathbb{Z}^d \oplus (\bigoplus_{i=1}^n \mathbb{Z}_{p_i^{k_i}})$  where  $p_1 = \cdots = p_m = p$ .

$$\operatorname{Tor}(\mathbb{Z}^d \oplus \mathbb{Z}_{p_1^{k_1}} \oplus \cdots \oplus \mathbb{Z}_{p_n^{k_n}}; F) = \bigoplus_{i=1}^n \operatorname{Tor}(\mathbb{Z}_{p_i^{k_i}}; F)$$
$$= \bigoplus_{i=1}^n \ker(F \xrightarrow{p_i^{k_i}} F)$$
$$= F^m.$$

Also,

$$(\mathbb{Z}^d \oplus \mathbb{Z}_{p_1^{k_1}} \oplus \cdots \oplus \mathbb{Z}_{p_n^{k_n}}) \otimes F = (\mathbb{Z} \otimes F)^d \oplus (\mathbb{Z}_{p_1^{k_1}} \otimes F) \oplus \cdots \oplus (\mathbb{Z}_{p_n^{k_n}} \otimes F)$$

$$= F^d \oplus (\oplus_{i=1}^n (\mathbb{Z}_{p_i^{k_i}} \otimes F))$$

$$= F^d \oplus (\oplus_{i=1}^n (F/p_i^{k_i}F))$$

$$= F^{d+m}.$$

Therefore,

- Each  $\mathbb{Z}$  summand in  $H_n(X;\mathbb{Z})$  "adds" one to the dimension of  $H_n(X;F)$ .
- Each  $\mathbb{Z}/p^{k_i}$  summand in  $H_n(X;\mathbb{Z})$  "adds" one to the dimension of  $H_n(X;F)$  and adds one to the dimension of  $H_{n+1}(X;F)$ . This gets cancelled out when taking the sum to calculate the Euler characteristic.

**Exercise.** (Exercise 3.A.2) By Proposition 3A.5,  $\operatorname{Tor}(A, \mathbb{Q}/\mathbb{Z}) = \operatorname{Tor}(T(A), \mathbb{Q}/\mathbb{Z})$ . Using the short exact sequence  $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$ , we obtain an exact sequence

$$0 \to \operatorname{Tor}(T(A), \mathbb{Z}) \to \operatorname{Tor}(T(A), \mathbb{Q}) \to \operatorname{Tor}(T(A), \mathbb{Q})/\mathbb{Z}$$
$$\to T(A) \otimes \mathbb{Z} \to T(A) \otimes \mathbb{Q} \to T(A) \otimes \mathbb{Q}/\mathbb{Z} \to 0.$$

 $\operatorname{Tor}(T(A),\mathbb{Q})=T(A)\otimes\mathbb{Q}=0.$  Thus  $\operatorname{Tor}(T(A),\mathbb{Q}/\mathbb{Z})=T(A)\otimes\mathbb{Z}=T(A).$