Readings from Sipser

- Section 5.1
 - Theorem 5.1 (Halting Problem)

Halting Problem

- We have proven that A_{TM} is undecidable, though recognizable
- Halting Problem Given a TM M and input w, can we determine if M(w) will even terminate?

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

 Question: Is HALT_{TM} decidable, or even recognizable?

Relationship between A_{TM} and HALT_{TM}

Not Possible ??? ??? Possible! UTM... Decider On input Decider Recognizer <M, w>, (recognizer for A_{TM} for for HALT if... for A_{TM}) HALT must... must... must... M accepts w Accepts Accepts Accepts Accepts M rejects w Rejects Rejects Accepts Accepts Rejects M loops Loops Rejects Rejects or forever on w forever loops forever

HALT_{TM} is Recognizable

- Main idea: The UTM is almost a recognizer for HALT_{TM}, we just need to accept in those cases where the UTM rejects
- The following TM R_{HALT} is a recognizer for HALT_{TM}:
- On input <M, w>, run the UTM on the same input <M, w>:
 - a) If the UTM accepts or rejects, simply accept (since it halted in either case)
 - b) If the UTM happens to loop forever, then R_{HALT} will necessarily loop forever (which is okay, since it doesn't have to reject in these cases)

HALT_{TM} is Recognizable

- Main idea: The UTM is almost a recognizer for HALT_{TM}, we just need to accept in those cases where the UTM rejects
- The following TM R_{HALT} is a recognizer for HALT_{TM}:

Relationship between A_{TM} and HALT_{TM}

Not Possible Possible ??? Possible! UTM... On input Decider **Decider** RHALT··· <M, w>, (recognizer for A_{TM} (recognizer for for HALT_{TM}) if... for A_{TM}) HALT must... must... M accepts w Accepts Accepts Accepts Accepts M rejects w Rejects Rejects Accepts Accepts M loops Loops Rejects Loops forever Rejects forever forever on w

Theorem: HALT_{TM} is Undecidable

- Proof (by contradiction): Suppose R is a TM that acts as a decider for the language HALT_{TM}. With R, we can construct the following TM which decides A_{TM} :
- 1. On input $\langle M, w \rangle$, run R on the same input $\langle M, w \rangle$
 - a) If R rejects <M, w>, then <u>reject</u> (since M will loop forever on w, and never accept it)
 - b) If R accepts <M, w>, then simulate M on w (we know this will terminate)
 - i. if M accepts w, accept
 - ii. if M rejects w, reject

Theorem: HALT_{TM} is Undecidable

• Proof (by contradiction): Suppose R is a TM that acts as a decider for the language HALT_{TM}. With R, we can construct the following TM which decides A_{TM} :

Theorem: HALT_{TM} is Undecidable

• Proof (by contradiction): Suppose R is a TM that acts as a decider for the language HALT_{TM}. With R, we can construct the following TM which decides A_{TM} :

However, since we have already proven that so such decider for A_{TM} can exist, no such decider R for HALT_{TM} can exist either!

Relationship between A_{TM} and HALT_{TM}

Not

Not

Possible Possible Possible! Possible! UTM... **Decider** On input Decider RHALT··· <M, w>, (recognizer (recognizer for A_{TM} for for HALT_{TM}) if... for A_{TM}) HALT must... must... M accepts w Accepts Accepts Accepts Accepts M rejects w Rejects Rejects Accepts Accepts M loops Loops Rejects Loops forever Rejects forever forever on w

Kinds of Languages

- Decidable (includes Context-Free and Regular languages)
- Undecidable, but still recognizable (A_{TM} and HALT_{TM})
- Unrecognizable ($\overline{A_{TM}}$ and $\overline{HALT_{TM}}$)

Exercises – Which Language Class?

- Binary-Palindromes
- F (where F is some finite language)
- A_{aaa} = { <M> | M is s Turing Machine that accepts the string aaa }
- E_{TM} = { <M> | M is s Turing Machine that accepts nothing }
- **E**_{TM}
- EQ_{TM} = $\{<M_1, M_2> | M_1 \text{ and } M_2 \text{ are TMs that accept exactly the same strings }\}$
- \bullet $\overline{EQ_{TM}}$

