SDS 385 Exercise Set

Kevin Song

September 28, 2016

1 Penalized likelihood and soft thresholding

Assume our data is a gaussian distribution with $\mu = \theta$ and fixed parameter $\sigma = 1$. Then the negative log likelihood (ignoring constants) is

$$-\log\left(e^{-\frac{(y-\theta)^2}{2}}\right) = (y-\theta)^2/2 = \frac{1}{2}(y-\theta)^2$$

The next proof is a little devious—without subdifferential calculus or constrained optimization, a lot of reasoning must be applied without being able to use equations to back them up.

First, we expand the quadratic term in the expression for $S_{\lambda}(y)$. Since the terms which depend purely on y do not affect the minimization, we throw them out. This yields

$$S_{\lambda}(y) = \arg\min_{\theta} \frac{1}{2}y^2 - y\theta + \frac{1}{2}\theta^2 + \lambda|\theta| = \arg\min_{\theta} \frac{1}{2}\theta^2 - y\theta + \lambda|\theta|$$

We now take the derivative of S with respect to θ in two overlapping situations:

• If $\theta \geq 0$:

$$S_{\lambda}(y) = \underset{\theta}{\operatorname{arg\,min}} \frac{1}{2}\theta^2 - y\theta + \lambda\theta = \underset{\theta}{\operatorname{arg\,min}} \theta^2 - 2(y - \lambda)\theta$$

Again, we can arbitrarily add and multiply by constant terms, since the minimization is independent of constant terms. To this end, we now add $(y - \lambda)^2$ and factor to obtain the expression

$$S_{\lambda}(y) = \underset{\theta}{\operatorname{arg \, min}} (\theta - (y - \lambda))^{2}$$

Since we assumed $\theta > 0$, this equation has two possible solutions: if $y - \lambda$ is greater than zero, the solution is $y - \lambda$. Otherwise, the solution is zero. This is evident from the fact that the minimum of a parabola of the form $(x - a)^2$ is at a.

In the language of cases, we find that

$$S_{\lambda}(y) = \begin{cases} y - \lambda & \text{if } y - \lambda > 0\\ 0 & \text{otherwise} \end{cases}$$

• On the other hand, if $\theta < 0$, we have that

$$S_{\lambda}(y) = \underset{\rho}{\operatorname{arg\,min}} \frac{1}{2}\theta^{2} - y\theta - \lambda\theta$$

Applying the same procedure to this equation, we find that

$$S_{\lambda}(y) = \underset{\theta}{\operatorname{arg \, min}} (\theta - (y + \lambda))^{2}$$

Which gives us

$$S_{\lambda}(y) = \begin{cases} y + \lambda & \text{if } y + \lambda < 0 \\ 0 & \text{otherwise} \end{cases}$$

Some further thought reveals that if $y + \lambda < 0$, y must be negative and if $y - \lambda > 0$, y must be positive. Then we have that $y + \lambda = \operatorname{sgn}(y)(|y| - \lambda)$ and $y - \lambda = \operatorname{sgn}(y)(|y| + \lambda)$. Some further thought will show that these unify in the function $S_{\lambda}(y) = \operatorname{sgn}(y)(|y| - \lambda)_{+}$