Classification Accuracy

Vishal Patel

Spring 2025

- 1. Introduction
- 2. The Data Science Process
- 3. Supervised Learning: Classification Accuracy Measures
- 4. Unsupervised Learning
- 5. The Grunt Work
- 6. Wrap Up

Regression Models

$$y = \begin{pmatrix} 40 \\ 10 \\ 0 \\ \cdot \\ \cdot \\ 50 \end{pmatrix}$$

$$\hat{y} = \begin{bmatrix} 50 \\ 10 \\ 10 \\ \vdots \\ 70 \end{bmatrix}$$

$$\varepsilon = \begin{bmatrix} 10 \\ 0 \\ -10 \end{bmatrix}$$

$$\varepsilon = \begin{bmatrix} \cdot \\ \cdot \\ 20 \end{bmatrix}$$

Classification Models

$$y = \begin{bmatrix} 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\hat{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Classification Models

$$y = \begin{bmatrix} 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\hat{p} = \begin{bmatrix}
0.29 \\
0.90 \\
0.31
\end{bmatrix}$$

$$\hat{y} = \begin{bmatrix}
\cdot \\
\cdot \\
\cdot \\
0.47
\end{bmatrix}$$

True Class (y)	Predicted Probability (\widehat{p})
+	0.29
+	0.90
-	0.31
-	0.89
+	0.95
+	0.71
-	0.24
+	0.12
-	0.59
-	0.47

True Class (y)	Predicted Probability (\widehat{p})
+	0.95
+	0.90
-	0.89
+	0.71
-	0.59
-	0.47
-	0.31
+	0.29
-	0.24
+	0.12

True Class (y)	Predicted Probability $(\widehat{p})^{\downarrow}$	Predicted Class	True / False?	True Positive	False Positive	True Negative	False Negative
+	0.95	+	True Positive	1	0	0	0
+	0.90	+	True Positive	2	0	0	0
-	0.89	+	False Positive	2	1	0	0
+	0.71	+	True Positive	3	1	0	0
-	0.59	+	False Positive	3	2	0	0
-	0.47	_	True Negative	3	2	1	0
_	0.31	_	True Negative	3	2	2	0
+	0.29	-	False Negative	3	2	2	1
-	0.24	-	True Negative	3	2	3	0
+	0.12	_	False Negative	3	2	3	2

True Class (y)	Predicted Probability $(\widehat{p})^{\downarrow}$	Predicted Class	True / False?	T rue P ositive		lse itive	T rue N egati		F alse N egative
+	0.95	+	True Positive	3	2	2	3		2
+	0.90	+	True Positive				Predi	cted	1
-	0.89	+	False Positive		ı		Cla		
+	0.71	+	True Positive	_			+		_
-	0.59	+	False Positive				rue sitive	N	F alse legative
-	0.47	-	True Negative	_	+		3		2
_	0.31	-	True Negative	True Class			alse		T rue
+	0.29	_	False Negative		_		sitive	N	legative
-	0.24	_	True Negative				2		3
+	0.12	_	False Negative		Cor	ıfus	sion i	ma	atrix

True Class (y)	Predicted Probability $(\widehat{p})^{\downarrow}$
+	0.95
+	0.90
-	0.89
+	0.71
-	0.59
-	0.47
-	0.31
+	0.29
-	0.24
+	0.12

	T rue P ositive	F alse P ositive	T rue N egative	F alse N egative
	3	2	3	2
ACCURACY		+ <mark>TN</mark> pulation	$=\frac{3+3}{10}=$	60.0%
SENSITIVITY =	Total P	ositives itive Rate	$=\frac{3}{3+2}=0$	60.0%
	=	N egatives	$=\frac{3}{3+2}=$	60.0 %

True Negative Rate

Predicted Probability $(\widehat{p})^{\downarrow}$
0.95
0.90
0.89
0.71
0.59
0.47
0.31
0.29
0.24
0.12

PRECISION =
$$\frac{\text{TP}}{\text{Predicted Positives}} = \frac{3}{3+2} = 60.0\%$$

F1 SCORE =
$$\frac{1}{\frac{1}{\frac{Recall}{2} + \frac{1}{Precision}}} = \frac{1}{\frac{1}{\frac{0.6}{2} + \frac{1}{0.6}}} = 0.60$$

Predicted Class

Predicted Probability (p̂)	d Po					THRESHOLD = 0.5					
Probability (p̂) ↓ 0.95 0.90 0.89 0.71 0.59 0.47 0.31 0.29 0.24	Predicted Class	+	+	+	+	+	-	-	-	-	
		0.95	0.90	0.89	0.71	0.59	0.47	0.31	0.29	0.24	0.40

T rue	F alse	T rue	F alse
P ositive	P ositive	N egative	N egative
3	2	3	2

Measure	Value
Accuracy	0.60
Sensitivity (Recall)	0.60
Specificity	0.60
Precision	0.60
F1 Score	0.60

True Class (y)	Predicted Probability $(\widehat{p})^{\downarrow}$	Predicted Class	Po
+	0.95	+	
+	0.90	+	
-	0.89	+	
+	0.71	+	THRESHOLD = 0.6
-	0.59	-	
-	0.47	-	
-	0.31	-	
+	0.29	-	
-	0.24	-	
+	0.12	-	

T rue	F alse	T rue	F alse
P ositive	P ositive	N egative	N egative
3	1	4	2

Measure	Value
Accuracy	0.70
Sensitivity (Recall)	0.60
Specificity	0.80
Precision	0.75
F1 Score	0.67

PROBABILITY THRESHOLD VALUES

Measure	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Accuracy	0.50	0.40	0.40	0.50	0.60	0.70	0.70	0.60	0.70
Sensitivity (Recall)	1.00	0.80	0.60	0.60	0.60	0.60	0.60	0.40	0.40
Specificity			0.20	0.40	0.60	0.80	0.80	0.80	1.00
Precision	0.50	0.44	0.43	0.50	0.60	0.75	0.75	0.67	1.00
F1 Score	0.67	0.57	0.50	0.55	0.60	0.67	0.67	0.50	0.57

1 The values depend on the decision boundary.

Breathalyzers

ASSUMPTIONS:

- **1. One in a thousand** drivers is driving drunk.
- 2. A breathalyzer **never** fails to detect a truly drunk person.
- 3. However, it displays false drunkenness in 5% of the cases when the driver is actually sober.
- 4. A police officer stops a **random** driver and asks her to take the breathalyzer test.
- 5. The test indicates that the driver **is** drunk.

What is the probability that the driver is DUI?

(a) 95% (b) 90% (c) 5%

(d) 2%

The test never fails to detect a truly drunk person.

Hence, the test result for this person would display drunkenness (aka "positive").

T rue	F alse
P ositive	P ositive
1	0

The tests would show false drunkenness in 5% of these cases.

Hence, ~50 of these tests would display drunkenness (aka "positives").

T rue	F alse
P ositive	P ositive
0	50

$$=\frac{1+0}{1+0+50+0}\approx 2.0\%$$

This is the probability that one of the drivers among all drivers who tested positive is actually drunk.

ALTERNATIVE SCENARIO:

The test never fails to detect a truly drunk person.

Hence, the test result for these drivers would display drunkenness (aka "positives").

T rue	F alse
P ositive	P ositive
500	0

The tests would show false drunkenness in 5% of these cases.

Hence, 25 test results would display drunkenness (aka "positives").

T rue	F alse
P ositive	P ositive
0	25

PRECISION =
$$\frac{\text{TP}}{\text{Predicted Positives}} = \frac{500}{500 + 25} \approx 95.0\%$$

This is the probability that one of the drivers among all drivers who tested positive is actually drunk.

1 The values depend on the decision boundary.

The values depend on the class probabilities.

We need a measure that is independent of those two factors.

RADAR OPERATOR'S MANUAL

- O Following the attack on Pearl Harbor in 1941, the United States army began new research to improve the **predictive accuracy** to correctly detect an enemy aircraft from their radar signals.
- O They needed **a new measure** to assess various **radar receiver operators** on their ability to discriminate signal (e.g., enemy aircraft) from noise (e.g., flocks of birds).
- This is a binary classification problem!

Receiver Operating Characteristic

ROC Curve

ROC Curve

True Class (y)	Predicted Probability $(\widehat{p})^{\downarrow}$	TP TP + FN	FP TN + FP
+	0.95	0.2	0.0
+	0.90	0.4	0.0
-	0.89	0.4	0.2
+	0.71	0.6	0.2
-	0.59	0.6	0.4
-	0.47	0.6	0.6
-	0.31	0.6	0.8
+	0.29	0.8	0.8
-	0.24	0.8	1.0
+	0.12	1.0	1.0

\hat{p} = Probability of being a Republican

Actual Republican

Actual Democrat

(Both randomly selected)

What is the **probability** that \hat{p}_4 is greater than \hat{p}_{14} ?

AUC: Probabilistic Interpretation

The area under the curve (AUC) is equal to the probability

that a classifier will rank

a randomly chosen positive instance

higher than a randomly chosen negative one

(1.0, 1.0)

THRESHOLD = 0.5

In order to achieve high AUC, a classifier need not produce **accurate**, **calibrated** probability estimates; it need only produce **relative** accurate scores that serve to discriminate positive and negative instances.

ACCURACY = 80%!

у	\widehat{p}	$\widehat{\mathbf{y}}$		
1	0.99999	1		
1	0.99999	1		
1	0.99993	1		
1	0.99986	1		
1	0.99964	1		
1	0.99955	1		
0	0.68139	1		
0	0.50961	1		
0	0.48880	0		
0	0.44951	0		

(0.0, 0.0)

False Positive Rate (1 - Specificity)

	MODEL A	MODEL B
True Class (y)	Predicted Probability (\widehat{p})	Predicted Probability (\widehat{p})
+	0.29 (-) 🗶	0.11 (-) 💥
+	0.90 (+)	0.90 (+)
_	0.31 (-)	0.31 (-)
-	0.89 (+)	0.98 (+) 💥
+	0.95 (+)	0.95 (+)
+	0.71 (+)	0.71 (+)
-	0.24 (-)	0.24 (-)
+	0.12 (-) 🗶	0.02 (-) 💥
-	0.59 (+)	0.90 (+) 💥
-	0.47 (-)	0.47 (-)

Log Loss / Cross-entropy Loss

$$logLoss = -\frac{1}{N} \sum_{i=1}^{N} (y_i (\log(\hat{p}_i)) + (1 - y_i) \log(1 - \hat{p}_i))$$

If $y_i = 1$ and \hat{p}_i is high \rightarrow Good! If $y_i = 0$ and \hat{p}_i is low \rightarrow Good!

$$H(p,q) = -\sum_{i} p_{i} \log q_{i}$$

Model Lift and Gain

N = 50

Targets / Events = 10

Non-events = 40

Event Rate = 20%

When a measure becomes a target,

it ceases to be a good measure.

Goodhart's law

Tri-fold Partitioning

- 1. Split the modeling dataset into three random partitions: train, test, and validation.
 - a) There are no hard and fast rules about the proportions of those three partitions. Suggested proportions are: 60/20/20, 60/30/10, 70/15/15, 70/20/10, or equal split.
 - b) If the sample size is small, two-fold partitioning or k-fold cross-validation can be used.
- 2. Fit (train) your models on the training set.
- 3. Assess the model accuracy, using one or more metrics, on the test set.
 - a) Choose metrics that align with the business objectives.
- 4. Repeat steps 2 and 3 to **refine** your models, e.g., tune hyper-parameters, select a smaller set of predictors.
- **5. Select** the best model based on its performance on the **test** set.
- 6. Once the model is finalized, **measure** the accuracy of the final model using the **validation** (aka the 'hold-out') set.

k-fold Cross Validation

k-fold Partitioning

Thomas Bayes (1701 – 1761) English statistician, philosopher, and Presbyterian minister

Bayes' theorem is the law of probability governing the strength of evidence – the rule saying how much to revise our probabilities (change our minds) when we learn a new fact or observe new evidence.

You may want to learn about Bayes' rule if you are:

- A professional who uses statistics,
- A computer programmer working in machine learning;
- A human being.[†]

[†] From Steven Pinker's lecture series on 'Bayesian Reasoning'.

A Bayesian Problem

If a test to detect a disease whose prevalence is 1/1000 has a false positive rate of 5%, what is the chance that a person found to have a positive result has the disease, assuming you know nothing about the person's symptoms or signs?

Most popular answer: 95%

Average answer: 56%

Correct answer: 2% (selected by 18% of doctors!)

Is the evidence (data) unlikely in general?

Are those symptoms unusual across the board?

If a test to detect a disease whose prevalence is 1/1000 has a false positive rate of 5%, what is the chance that a person found to have a positive result has the disease, assuming you know nothing about the person's symptoms or signs?

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

FREQUENTIST STATISTICIAN:

THE PROBABILITY OF THIS RESULT HAPPENING BY CHANCE IS $\frac{1}{36}$ = 0.027.

SINCE P < 0.05, I CONCLUDE THAT THE SUN HAS EXPLODED.

BAYESIAN STATISTICIAN:

