Problem 1. Does there exist any cycle σ such that σ^2 is not a cycle?

Yes. $(1,2,3,4)^2 = (1,3)(2,4)$ which is not a cycle.

Problem 2. Write the following product of cycles as a cycle:

The product (4,9,1,3)(1,5,7) is equal to (1,5,7,3,4,9) and the product of (2,3,6,8)(1,5,7,3,4,9) is equal to (1,5,7,6,8,2,3,4,9). Therefore, (2,3,6,8)(4,9,1,3)(1,5,7) = (1,5,7,6,8,2,3,4,9)

Problem 3. Determine whether

is even or odd. How about $(2,3)\alpha$ and $(3,6,1,7)\alpha$?

 α can be broken into 6 transpositions. Those are (1,3)(2,7)(2,8)(2,5)(4,9)(4,6). Since α requires an even number of transpositions in its decomposition α is even. Since α is even, composing another transposition would make it odd. Therefore $(2,3)\alpha$ is odd. $(3,6,1,7)\alpha$ is also odd because (3,6,1,7) can be composed into 3 transpositions, (3,7)(3,1)(3,6) and an even number of transpositions plus an odd number of transpositions is always odd so $(3,6,1,7)\alpha$ is odd.

Problem 4. Determine whether the following statement is true or false, and explain:

$$\gamma = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 6 & 7 & 5 & 8 & 1 & 3 & 4 \end{array}\right) \in A_8.$$

 $\gamma \notin A_8$ because γ is represented by an odd number of transpositions. Those are (1,6)(1,2)(3,7)(4,8)(4,5). Since A_8 contains only even permutations, γ cannot be in A_8 . So, the statement is false.

Problem 5. Consider

$$\beta = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 8 & 5 & 6 & 4 & 7 & 3 & 1 \end{array}\right) \in S_8.$$

- (a) Evaluate β^{2014} .
- (b) Find $\alpha \in S_8$ such that $\alpha^4 = \beta$.
- (a) Since β can be written as $\beta = (1,2,8)(3,5,4,6,7)$, I know that the order of β is equal to the LCM of the lengths of these cycles. That is, $\operatorname{ord}(\beta) = \operatorname{LCM}(3,5) = 15$. Since the order is 15, that means that $\beta^{2010} = \iota$ because 2010 is divisible by 15. $\beta^{2014} = \beta^{2010}\beta^4$, so $\beta^{2014} = \iota\beta^4 = \beta^4 = (\frac{1}{2} \frac{2}{8} \frac{3}{7} \frac{4}{5} \frac{5}{3} \frac{6}{4} \frac{7}{6} \frac{8}{1})$.
- (b) Since β is written as (1,2,8)(3,5,4,6,7), it is written as two cycles with different lengths. This means that α must be the product of at least two cycles of different lengths. Assume $\alpha = \gamma \sigma$, so that $\alpha^4 = \gamma^4 \sigma^4 = (1,2,8)(3,5,4,6,7)$. γ is a 3-cycle because by theorem 6.4.1 if γ is an m-cycle, then γ^4 is a product of $\gcd(m,4)$ cycles and has length $\frac{m}{\gcd(m,k)}$. Since the length of γ^4 is 3, $\frac{m}{\gcd(m,4)} = 3$. Since γ^4 is a product of 1 cycle, $\gcd(m,4) = 1$. Both of these equations are solved when m = 3. Therefore γ is a 3-cycle. Using this fact, $\gamma^4 = \gamma^3 \gamma = \iota \gamma = \gamma$. σ is a 5-cycle because by theorem 6.4.1, if σ is an m-cycle, then σ^4 has length $\frac{m}{\gcd(m,4)}$ and is a product of $\gcd(m,4)$ cycles. Since the length of $\sigma^4 = 5$, $\frac{m}{\gcd(m,4)} = 5$. Since σ^4 is a product of 1 cycle, $\gcd(m,4) = 1$. Both equations are satasfied when m = 5. Therefore σ is a 5-cycle. Knowing that σ is a 5-cycle, it is easy to see that $\sigma = (3,7,6,4,5)$. So, $\alpha = \gamma \sigma = (1,2,8)(3,7,6,4,5)$.

Problem 6. For any $H \leq S_n$ and any fixed permutation $\sigma \in S_n$, define

$$K = \left\{ \sigma \tau \sigma^{-1} \mid \tau \in H \right\}.$$

In other words, K is the set consisting of all permutations of the form $\sigma\tau\sigma^{-1}$ for some element $\tau\in H$. Show that $K\leq S_n$.

Since H is a subgroup of S_n it contains ι . If I let $\sigma = \iota$ and $\tau = \iota$, this shows that $\iota \in K$ because $\iota\iota\iota\iota = \iota$. So, K is a non-empty subset of S_n . K is closed under S_n 's binary operation. To show this I will show the product of two elements $a, b \in K$ is also in K. Since $a, b \in K$ $a = \sigma\tau_1\sigma^{-1}, b = \sigma\tau_2\sigma^{-1}$. So the product is $ab = \sigma\tau_1\sigma^{-1}\sigma\tau_2\sigma^{-1} = \sigma\tau_1\iota\tau_2\sigma^{-1} = \sigma\tau_1\tau_2\sigma^{-1}$. Since $\tau \in H$ and $H \leq S_n$, H is closed so, let the product $\tau_1\tau_2 = \tau_3$. Then, $ab = \sigma\tau_3\sigma^{-1}$. This takes the form of K so $ab \in K$ therefore K is closed. For all $a \in K$, the inverse also exists. That is, there is an element $a^{-1} \in K$ such that $aa^{-1} = \iota$. Rewritten, this is $\sigma\tau_1\sigma^{-1}\sigma\tau_2\sigma = \sigma\tau_1\tau_2\sigma^{-1} = \iota$. Since I want to show that $aa^{-1} = \iota$, it must be that $\tau_2 = \tau_1^{-1}$ which exists because $\tau_1 \in H$ and $H \leq S_n$. So, $aa^{-1} = \sigma\tau_1\tau_1^{-1}\sigma^{-1} = \sigma\sigma^{-1} = \iota$. This shows that the inverse exists for all $a \in K$. Since I have shown K is non-empty, the binary operation of S_n is closed in K, and for all $a \in K$ a^{-1} exists, by corollary $4.2.2 \ K \leq S_n$.

Problem 7. Let α be a 10-cycle. Find the integers k, where $2 \le k \le 10$, such that α^k also a 10-cycle? Explain.

To find the values of k where α^k is a 10-cycle, I will use theorem 6.4.1. According to the theorem, α^k is a product of $\gcd(10,k)$ cycles and has length $\frac{10}{\gcd(10,k)}$. Since I want to find the values of k such that α^k is a 10-cycle, then $\frac{10}{\gcd(10,k)} = 10$. The values in which this happens is when k = 1, 3, 7, 9. But, I also want the number of cycle products to be 1 and the k value to not be greater than one and less than 11. The k values that satisfy this are k = 3, 7, 9.

Problem 8. Let $\beta \in S_n$ such that $\operatorname{ord}_{S_n}(\beta) = 36$.

- (a) How many elements are there in $\langle \beta \rangle$?
- (b) What are the generators of $\langle \beta \rangle$?
- (c) Which subgroup H of $\langle \beta \rangle$ has order 12?
- (d) Find the generators of the subgroup H of $\langle \beta \rangle$ of order 12.
- (e) How many elements in $\langle \beta \rangle$ have order 12? Does your answer agree with part (d)? Explain.
- (a) Since the order of β is 36, this means that there are 36 elements in $\langle \beta \rangle$.
- (b) Using theorem 5.1.6 $|\beta^k| = \frac{36}{\gcd(36,k)}$. Since I want to find the generators of β , I need the orders to be the same. That is, $|\beta^k| = \frac{36}{\gcd(36,k)} = 36$. This is when $\gcd(36,k) = 1$. Solving for k I find that they are all that are coprime to 36. k = 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35. But the generators of β must be $\{\beta, \beta^5, \beta^7, \beta^{11}, \beta^{13}, \beta^{17}, \beta^{19}, \beta^{23}, \beta^{25}, \beta^{29}, \beta^{31}, \beta^{35}\}$.
- (c) $H = \{\beta^{3n} \mid n \in \mathbb{Z}_{12}\}$
- (d) Again using theorem 5.1.6 I want to find the values of k where $|\beta^k| = \frac{36}{\gcd(36,k)} = 12$. This is when k = 3, 15, 21, 33. So, the generators of H are $\{\beta^3, \beta^{15}, \beta^{21}, \beta^{33}\}$.
- (e) There are 4 elements in $\langle \beta \rangle$ which I computed in (d). Those are β^k when k=3,15,21,33. By using the theorem 5.2.2 and the euler totient function, I should get $\phi(12)=4$ values. Since I got 4 values and was expecting 4 values my answer agrees with part (d).

Problem 9. It can be shown that (but you do not have to)

$$H = \left\{ \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array}\right), \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{array}\right) \right\}$$

is a group.

- (a) Compute the operation table for H.
- (b) For brevity, name the four permutations as $\iota, \alpha, \beta, \gamma$. Rewrite the operation table in terms of $\iota, \alpha, \beta, \gamma$.
- (c) This operation table is identical to the operation table of which familiar group?
- (d) Express β and γ in terms of α .
- (e) What is the order of α ? Does this conform with your answer to part (c)?
- (f) What are the generators of H?

- (c) The subgroup of rotations in D_4
- (d) $\beta = \alpha^2$ and $\gamma = \alpha \cdot \beta = \alpha^3$
- (e) $\operatorname{ord}(\alpha) = 4$. This does conform with my answer to part (c).
- (f) The generators of H are α and γ because if I multiply them by themselves I get all elements in H and reach ι when the power is 4.

Problem 10. Determine whether the function $\phi: \langle \mathbb{R}, + \rangle \to \langle \mathbb{R}^+, \cdot \rangle$ defined by $\phi(x) = 3^{x/2}$ is an isomorphism between the two groups $\langle \mathbb{R}, + \rangle$ and $\langle \mathbb{R}^+, \cdot \rangle$

To determine that ϕ is an isomorphism between $\langle \mathbb{R}, + \rangle$ and $\langle \mathbb{R}^+, \cdot \rangle$, I will need to show that there is a bijection between these two and that ϕ is operation preserving. ϕ forms a bijection between $\langle \mathbb{R}, + \rangle$ and $\langle \mathbb{R}^+, \cdot \rangle$. To show this I show that ϕ is onto. That is, $\phi(x_1) = \phi(x_2) \Longrightarrow x_1 = x_2$. Assume $\phi(x_1) = \phi(x_2)$. Then, I can rewrite this as $3^{x_1/2} = 3^{x_2/2}$. If I take the natural log of both sides I get $\frac{x_1}{2} \ln(3) = \frac{x_2}{2} \ln(3)$. Multiplying by two and then dividing by $\ln(3)$ on both sides gives me $x_1 = x_2$. Next it is easy to see that ϕ is onto because for every element $y \in \mathbb{R}^+$ there is an element $x \in \mathbb{R}$ such that $\phi(x) = y$. Since ϕ is one to one and onto, ϕ is a bijection. ϕ is also operation preserving. This is true because $\phi(x_1 + x_2) = \phi(x_1) \cdot \phi(x_2)$. Looking at the left hand side, $\phi(x_1 + x_2) = 3^{\frac{x_1 + x_2}{2}}$. Now looking at the right hand side, $\phi(x_1) \cdot \phi(x_2) = 3^{\frac{x_1}{2}} \cdot 3^{\frac{x_2}{2}} = 3^{\frac{x_1 + x_2}{2}} = 3^{\frac{x_1 + x_2}{2}}$. Since $\phi(x_1 + x_2) = \phi(x_1) \cdot \phi(x_2) = 3^{\frac{x_1 + x_2}{2}}$, ϕ is operation preserving. Finally, since ϕ forms a bijection between $\langle \mathbb{R}, + \rangle$ and $\langle \mathbb{R}^+, \cdot \rangle$ and is operating preserving, ϕ is an isomorphism between $\langle \mathbb{R}, + \rangle$ and $\langle \mathbb{R}^+, \cdot \rangle$.

Problem 11. Show that $\langle 5\mathbb{Z}, + \rangle \cong \langle 8\mathbb{Z}, + \rangle$

To show that $\langle 5\mathbb{Z}, + \rangle \cong \langle 8\mathbb{Z}, + \rangle$, I need to show that there is a function $\phi : \langle 5\mathbb{Z}, + \rangle \to \langle 8\mathbb{Z}, + \rangle$ that is a bijection and is operation preserving. Noticing a common pattern I guess the function $\phi(x) = x + \frac{3x}{5}$ forms

an isomorphism. To show that it does, I first show a bijection. Assume $\phi(x_1) = \phi(x_2)$, this implies $x_1 = x_2$. I show this by finding that $\phi(x_1) = x_1 + \frac{3x_1}{5} = x_1(1+\frac{3}{5})$ and $\phi(x_2) = x_2 + \frac{3x_2}{5} = (x_2)(1+\frac{3}{5})$. Since I assume $\phi(x_1) = \phi(x_2)$, then $x_1(1+\frac{3}{5}) = x_2(1+\frac{3}{5})$. Since $(1+\frac{3}{5})$ is constant it is clear that $x_1 = x_2$. This shows that ϕ is one to one. To show that $\phi(x)$ is onto, I must show that for every $y \in 8\mathbb{Z}$, there is an $x \in 5\mathbb{Z}$ such that $\phi(x) = y$. I do this by rewriting ϕ as $\phi(x) = x(1+\frac{3}{5}) = \frac{8x}{5} = 8(\frac{x}{5})$. Clearly, since $x \in 5\mathbb{Z}$, $\frac{x}{5}$ is an integer and $8(\frac{x}{5}) \in 8\mathbb{Z}$ when $\frac{x}{5}$ is an integer. This shows that ϕ is onto. ϕ is also operation preserving. To show this I must show that $\phi(x_1+x_2) = \phi(x_1) + \phi(x_2)$. Expanding the left hand side I get $\phi(x_1+x_2) = (x_1+x_2)(1+\frac{3}{5})$. Expanding the right hand side I get $\phi(x_1) + \phi(x_2) = (x_1)(1+\frac{3}{5}) + (x_2)(1+\frac{3}{5}) = (1+\frac{3}{5})(x_1+x_2)$. Since $\phi(x_1+x_2) = (x_1+x_2)(1+\frac{3}{5}) = \phi(x_1) + \phi(x_2)$, this shows that ϕ is operation preserving. Finally, since ϕ is a bijection that is also operation preserving, ϕ is an isomorphism between $\langle 5\mathbb{Z}, + \rangle$ and $\langle 8\mathbb{Z} \rangle$. Since an isomorphism exists between these two groups, $\langle 5\mathbb{Z}, + \rangle \cong \langle 8\mathbb{Z}, + \rangle$.

Problem 12. Let

$$G = \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \right\}$$

and

$$H = \left\{ \begin{bmatrix} x & 2y \\ y & x \end{bmatrix} \mid x, y \in \mathbb{Q} \right\}$$

It is known that $\langle G, + \rangle$ and $\langle H, + \rangle$ are groups. Show that $\langle G, + \rangle \cong \langle H, + \rangle$.

To show that $\langle G, + \rangle \cong \langle H, + \rangle$ I will find a function, ϕ , that is an isomorphism between these two groups. The function $\phi: \langle G, + \rangle \to \langle H, + \rangle$ I define as $\phi(c) = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$ is an isomorphism. To show this I will show that there is a bijection and that ϕ is operation preserving. Assume $\phi(c_1) = \phi(c_2)$. Expanding the left side of this equation I get, $\phi(c_1) = \begin{bmatrix} a_1 & 2b_1 \\ b_1 & a_1 \end{bmatrix}$. Expanding the right side I get $\phi(c_2) = \begin{bmatrix} a_2 & 2b_2 \\ b_2 & a_2 \end{bmatrix}$. This shows that $\begin{bmatrix} a_1 & 2b_1 \\ b_1 & a_1 \end{bmatrix} = \begin{bmatrix} a_2 & 2b_2 \\ b_2 & a_2 \end{bmatrix}$. Since the matricies are equal, the entries must be equal such that $a_1 = a_2, 2b_1 = 2b_2$, and $b_1 = b_2$. Therefore, $c_1 = a_1 + b_1 \sqrt{2} = a_2 + b_2 \sqrt{2} = c_2$. This shows that ϕ is one to one. ϕ is onto because for every $d \in H$, there is clearly an $e \in G$ such that $\phi(e) = d$. ϕ is operation preserving. This is because $\phi(c_1 + c_2) = \phi(c_1) + \phi(c_2)$. I will show this by expanding the left hand side to be $\phi(c_1 + c_2) = \phi(a_1 + b_1 \sqrt{2} + a_2 + b_2 \sqrt{2}) = \begin{bmatrix} a_1 + a_2 & 2(b_1 + b_2) \\ b_1 + b_2 & a_1 + a_2 \end{bmatrix}$. Now I will expand the right hand side of the equation to get $\phi(c_1) + \phi(c_2) = \begin{bmatrix} a_1 & 2b_1 \\ b_1 & a_1 \end{bmatrix} + \begin{bmatrix} a_2 & 2b_2 \\ b_2 & a_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & 2(b_1 + b_2) \\ b_1 + b_2 & a_1 + a_2 \end{bmatrix}$. This shows that $\phi(c_1 + c_2) = \begin{bmatrix} a_1 + a_2 & 2(b_1 + b_2) \\ b_1 + b_2 & a_1 + a_2 \end{bmatrix} = \phi(c_1) + \phi(c_2)$ and therefore ϕ is operation preserving. Since ϕ is a bijection and operation preserving function between $\langle G, + \rangle$ and $\langle H, + \rangle$, ϕ is an isomorphism between

 $\langle G, + \rangle$ and $\langle H, + \rangle$. Since an isomorphism exists between these two groups, $\langle G, + \rangle \cong \langle H, + \rangle$.