ECE 485/585 Microprocessor System Design

Prof. Mark G. Faust

Maseeh College of Engineering and Computer Science

Chipsets and High Speed Interconnect

ECE 485/585

Mark G. Faust

Chipsets and High Speed Interconnect

- System Architecture Evolution
- Chipsets
- PCI Express
- QuickPath

Interconnect Trends

From: RapidIO Trade Association

Chipsets and PC Bus Architecture Evolution

CPU Local Bus Architecture

PCI Bus Architecture

PC Architecture ~1998 (440 BX Chipset)

PC Architecture ~2000 (815E Chipset)

PC Architecture ~2002 (845G Chipset)

ICH Incorporates

- IO APIC

 (Advanced Programmable Interrupt Controller) for multiprocessor environments
- Dual 8259a Interrupt Controllers

MCH

- Essentially DMA/memory controller
- Interface
 - CPU (via FSB)
 - Graphics (AGP 8x)
 - DDR RAM
 - I/O Hub (ICH)
 - Gigabit Ethernet (bandwidth)
- Some Intel MCH hubs incorporate graphics controller

Pentium 4 Chipset Comparison

	875P chip set	845GL chip set	
Target segment	Performance PC	Value PC	
System bus (64 bit)	800/533 MHz	400 MHz	
Memory controller hub ("north bridge")			
Package size, pins	42.5 × 42.5 mm, 1005	37.5 × 37.5 mm, 760	
Memory speed	DDR 400/333/266 SDRAM	DDR 266/200, PC133 SDRAM	
Memory buses, widths	2×72	1×64	
Number of DIMMs, DRAM Mbit support	4, 128/256/512 Mbits	2, 128/256/512 MBIts	
Maximum memory capacity	4 GB	2 GB	
Memory error correction available?	yes	no	
AGP graphics bus, speed	yes, 8X or 4X	no	
Graphics controller	external	Internal (Extreme Graphics)	
CSA Gigabit Ethernet Interface	yes	no	
South bridge Interface speed (8 bit)	266 MHz	266 MHz	
I/O controller hub ("south bridge")			
Package size, pins	31 × 31 mm, 460	31 × 31 mm, 421	
PCI bus: width, speed, masters	32-bit, 33 MHz, 6 masters	32-bit, 33 MHz, 6 masters	
Ethernet MAC controller, interface	100/10 Mbit	100/10 Mbit	
USB 2.0 ports, controllers	8, 4	6, 3	
ATA 100 ports	2	2	
Serial ATA 150 controller, ports	yes, 2	no	
RAID 0 controller	yes	no	
AC-97 audio controller, interface	yes	yes	
I/O management	SMbus 2.0, GPIO	SMbus 2.0, GPI0	

FIGURE 8.12 Two Pentium 4 I/O chip sets from Intel. The 845GL north bridge uses many fewer pins than the 875 by having just one memory bus and by omitting the AGP bus and the Gigabit Ethernet interface. Note that the serial nature of USB and Serial ATA means that two more USB ports and two more Serial ATA ports need just 39 more pins in the south bridge of the 875 versus the 845GL chip sets.

Server Architecture

PCI

$$33.3 \, MHz \times 4 \, bytes = 133 \, MB/s$$

$$\frac{133 MB/s}{74 ptns} = 1.8 \frac{MB}{s} / ptn$$

PCI Express (PCI-e)

$$2500~MHz~\times 1~bit \times \frac{1~byte}{10~bits} = 250~MB/s~(TX)$$

$$2500~MHz~\times 1~btt \times \frac{1~byte}{10~btts} = 250~MB/s~(RX)$$

$$\frac{500 \, MB/s}{8 \, ptns} = 62.5 \frac{MB}{s}/ptn$$

PCI-X 2.0

$$533 MHz \times 8 bytes = 4264 MB/s$$

$$\frac{4264 \, MB/s}{150 \, pins} = 28.4 \, \frac{MB}{s} / pin$$

A "lane" – a point-to-point connection between two PCI-e devices

PCI Express

Benefits

- Smaller physical interface
- Scalability (not shared bus architecture)
 - Additional point-to-point links
 - Flexible point-to-point links
 x1, x2, x4, x8, x12, x16, x32
- Support for quality of service
 - Isochronous transfers
 - Traffic "classes" and virtual channels
- S/W compatibility with PCI

PCI Express

Device types

Root complex, PCIe to PCI bridge, endpoint, switch

PCI Express Layers

- The <u>transaction layer</u> assembles and disassembles transaction layer packets
- The <u>data link</u> layer primarily handles link management and error detection/correction
- The <u>physical (PHY) layer</u> provides logic and circuitry needed to serialize/deserialize data, drive transmitted bits or buffer received bits on each lane.

PCI Express – Layered Architecture

Interface Operation – Electrical, mechanical: Data Scramble, 8b/10b, Driver/Receiver (SerDes)

QuickPath Interconnect

Transfer Speeds

Technology	Bit Rate (GT/s)
Intel front-side bus	1.61
Intel® QuickPath Interconnect	6.4/4.8
Fully-Buffered DIMM	4.02
PCI Express* Gen13	2.5
PCI Express* Gen2 ³	5.0
PCI Express* Gen3 ³	8.0