

산술 연산자

- 수식(expression)은 피연산자들과 연산자의 조합
- 피연산자가 모두 정수형이 아닐 경우, 결과는 항상 실수형

operator	meaning	example
+	덧셈 또는 + 부호	+10 ^(*) 15 + 20
_	뺄셈 또는 – 부호	-10 2.5 - 1.5
*	곱셈	10 * 20 = 200
/	나눗셈(실수)	1/2 = 0.5 (결과는 항상 실수)
%	나눈 후 나머지 (modulo)	9 % 4 = 1 (9를 4로 나눈 나머지)
//	나눈 후 몫 (floor division)	15//4 = 3 (15를 4로 나눈 몫)
**	지수승	2**4 = 16 (2 ⁴ = 16)

```
a = 10; b = 4; x = 10.0; y = 4.0

print(a + b) # a + b = 10 + 4 = 14

print(a + x) # a + x = 10 + 10.0 = 20.0

print(a * y) # a * y = 10 * 4.0 = 40.0
```


■ += 처럼 대입 연산자와 다른 연산자를 합쳐 놓은 연산자

assingment	예	설명
+=	x += y	x = x + y 와 동일
-=	x -= y	x = x - y 와 동일
*=	x *= y	x = x * y 와 동일
/=	x /= y	x = x/y 와 동일
//=	x //= y	x = x // y 와 동일
%=	x %= y	x = x % y 와 동일
**=	x **= y	x = x ** y 와 동일

내장 함수

• 수치연산 관련 내장함수

함수	설명	예	
abs()	절대값 반환	abs(-10) # 10	
round()	반올림 계산		
divmod(x,y)	x를 y로 나눈 몫과 나머지 반환, (x//y, x%y) 쌍을 반환	divmod(17,4) #(4,1)	

round(실수) 또는 round(실수, 자릿수)

: 자릿수는 반올림 후의 소수점 이하 자릿수를 의미하며, 지정하지 않으면 정수 반환

math Module

- python의 math 관련 함수들을 모아둔 모듈
- math 모듈의 함수를 사용하기 위한 import문(3가지 방법)

```
from math import * # 이 경우 모듈 이름이 불필요
a = sqrt(2.0) # sqrt() 함수를 함수명으로만 호출
```

```
        import math
        # 이 경우 math.을 붙여야 함

        a = math.sqrt(2.0)
        # sqrt() 함수 앞에 해당 모듈명을 명시해야 함
```

```
import math as m # 이 경우 m.을 붙여야 함
a = m.sqrt(2.0) # m은 math의 별칭에 해당
```

- math 모듈에는 많은 함수들이 존재
 - trunc() 함수 : 인수로 받은 값의 버림 계산(math.trunc(1.5) == 1)
 - pow(x,y) 함수: x^y을 반환 (math.pow(81, 0.5) == 9.0)

관계 연산자

■ 두 값을 비교하는 연산자 : 결과는 True(참) 또는 False(거짓)

operator	description	example
==	equal	5 == 7 # False
!=	not equal	5 != 7 # True
>	greater than	5 > 7 # False
<	less than	5 < 7 # True
>=	greater than or equal	5 >= 7 # False
<=	less than or equal	5 <= 7 # True

논리 연산자

- 논리 연산자의 종류
 - 복잡한 조건을 표현하려면 논리연산자를 사용
 - 몇 개의 조건식을 조합하여 명령문의 수행여부를 결정할 때 사용

operator	description	example
and	logical and. ~이고 그리고	모두 True이어야 True
or	logical or. ~이거나 또는	하나라도 True이면 True
not	negates the truth value. 부정	참이면 거짓. 거짓이면 참

논리 연산자

■ 논리 연산자의 연산은 다음 진리표(truth table)에 의한다.

입력값		x 그리고 y
X	y	x and y
False	False	False
False	True	False
True	False	False
True	True	True

입력값		x 또는 y
Х	У	x or y
False	False	False
False	True	True
True	False	True
True	True	True

입력값	X가 아니다
X	not x
False	True
True	False

!x 과 동일

논리 연산자

- 해당 년도가 윤년인지 확인하기
 - 윤년의 정의
 - 2월이 29일까지 있는 년도
 - 4로 나눠 떨어져야 하고, 100으로 나눠 떨어지면 안 됨. 또는 400으로 나눠 떨어지면 윤년

```
year = 2020
if ((year % 4 == 0) and (year % 100 != 0)) or (year % 400 == 0) :
print("윤년")
else :
print("윤년 아님")
```

연산자 우선순위

우선순위

()	anything in brackets is done first	Highest
**	exponentiation	
-x, +x	arithmetic operators	
*, /, %, //	arithmetic operators	
+, -	arithmetic operators	
<, >, <=, >=, !=, ==	relational operators	
=, +=, -=, *=, etc	assignment operators	
not	logical operator	
and	logical operator	Ψ
or	logical operator	Lowest

- 같은 우선순위를 갖는 operator는 왼쪽부터 계산
- 단, ** operator는 오른쪽부터 (예: 2**2**3 = 2**8 = 256)
- 애매하면 괄호 ()를 사용 (예: (2**2)**3 = 4**3 = 64)

실습

- 어느 학생의 과제 점수가 21.9, 37, 13.6 일 때, 학생의 평균 과제 점수를 구하는 script 작성 할 것
 - ① 각 점수는 변수에 저장할 것
 - ② 평균 값의 소수점 이하는 버리고 출력할 것
 - ③ math 모듈의 함수를 사용할 것

출력

average: 24

3928원의 금액을 500원 동전으로 교환하고 나머지 금액을 100원 동전으로 교환하고자 한다. 500원 동전, 100원 동전의 개수를 계산하여 출력하고 남은 금액을 출력하는 script 작성하라.

출력

500원짜리 동전: 7개

100원짜리 동전: 4개

남은 금액 : 28 원