PROJET : FIGURES DE DIFFRACTION DE LA LUMIÈRE

SOMMAIRE

- Choix du projet
- Objectifs
- Répartitions des tâches
- Réalisation
- Bilan et perspectives

- Annexes:
 - Fentes
 - Figures de diffraction
 - Animations:
 - Carrée
 - Circulaire
 - Rectangulaires
 - Carrées
 - Temps de calcul :
 - Carrée
 - Circulaire
 - Rectangulaires
 - Carrées
 - Ressources

CHOIX DU PROJET

Choix n°1:

Choix nº2: Figures de diffraction de la lumière

Choix n°3:

OBJECTIFS

$$\iint A(x',y')e^{-i\frac{2\pi}{\lambda}\frac{x'x+y'y}{z}} dx dy$$

$$Plan z=0$$

RÉPARTITION DES TÂCHES

Tâche	Nom(s)
Création des fentes	
Fonction "diffraction"	
Création des modules – génération des images et enregistrement	
Création du module "temps_calcul.py"	
Recherches fonction "fft" Numpy	
Création des GIFs (voir annexe)	

RÉALISATION

Découverte du projet - Recherche et compréhension Recherches fonction "fft" de Numpy

Création du module "temps_calcul,py"

Création fentes de diffraction

Automatisation sauvegarde figures de diffraction et fentes

Création des animations

Programmation de la double intégrale (somme discrète)

Test de la fonction "diffraction"

Ajout de commentaires

BILAN ET PERSPECTIVES

Bilan

- Création de modules ;
- Importance complexité;
- Automatisation de tâches (sauvegarde, création de dossiers,...);
- Découverte fonctionnalités Numpy;
- Découverte modules ;
- Modélisation de la diffraction

Perspectives

- Création interface;
- Nouvelles fentes;
- Réduction complexité;

ANNEXES

FENTES

Base
$$(n = 50)$$

Numpy
$$(n = 2000)$$

FIGURES DE DIFFRACTION DE LA LUMIÈRE (PARAMÈTRES IDENTIQUES)

Somme discrète

Numpy

FIGURES DE DIFFRACTION DE LA LUMIÈRE (PARAMÈTRES « OPTIMISÉS » POUR NUMPY)

Somme discrète (n = 50)

Numpy (n = 2000)

ANIMATIONS

ÉVOLUTION DE LA FIGURE DE DIFFRACTION AVEC UNE FENTE CARRÉE (n = 50)

ÉVOLUTION DE LA FIGURE DE DIFFRACTION AVEC UNE FENTE CIRCULAIRE (n = 50)

ÉVOLUTION DE LA FIGURE DE DIFFRACTION AVEC DEUX FENTES RECTANGULAIRES (n = 20)

```
Longueur des rectangles : 0
Largeur des rectangles : 0
```

ÉVOLUTION DE LA FIGURE DE DIFFRACTION AVEC QUATRE FENTES CARRÉES (n=30)

TEMPS DE CALCUL

TEMPS DE CALCUL (FENTE CARRÉE)

TEMPS DE CALCUL (FENTE CIRCULAIRE)

TEMPS DE CALCUL (DEUX FENTES RECTANGULAIRES)

TEMPS DE CALCUL (QUATRE FENTES CARRÉES)

RESSOURCES

- Création des GIFs :
 - https://imgflip.com/gif-maker
 - http://www.photofiltre-studio.com/
- Ajout de texte sur une figure Matplotlib :
 - https://www.scienceemergence.com/Articles/Ajouter-dutexte-sur-une-figure-Matplotlib/
 - help(plt.text)

- Création de répertoires avec Python: https://www.journaldunet.fr/web-tech/developpement/1202891-python-verifier-qu-un-repertoire-existe-et-en-creer-un-le-cas-echeant/
- Fonction FFT de Numpy <u>https://numpy.org/doc/stable/reference/generated/numpy.fft.fft2.html#numpy.fft.fft2</u>
 et <u>https://numpy.org/doc/stable/reference/generated/numpy.fft.fftshift.html</u>