Practical No: 4

Problem statement: Write a program for error detection and correction for 7/8 bits ASCII codes using Hamming Codes or CRC. Demonstrate the packets captured traces using Wireshark Packet Analyzer Tool for peer to peer mode.(50% students will perform Hamming Code and others will perform CRC)

Objectives:

- 1. To understand how CRC/FCS is calculated
- 2. To Learn Error Detection and Correction.
- 3. To Learn Hamming Code method.

Procedure for Error Correcting Codes

Cyclic Redundancy Check (CRC) M = K

bit messages

F = n bits frame check sequence (FCS)

T = (k + n) bits frame where n<k

P = n+1 is the predermined divisor

We want mod (T,P) = 0

Rewrite $T = M 2^n + F F =$

 $M 2^n / P$

Ex: M = 1010001101 (10 bits) P =

110101 (6 bits)

P= 6 hence n=5 bits F = 5 bits to becalculated M 2ⁿ

 $= M 2^5$ = 101000110100000

2⁵ M / P = 101000110100000 / 110101

Method –I : Modulo-2 Arithmetic

110101	1	0	1	0	0	0	1	1	0	1	0	0	0	0	0	Q
	1	1	0	1	0	1	gen	-								1
	Х	1	1	1	0	1	I	1			0					
4		1	1	1	0	1	1	GI			/		1			
	7	1	1	0	1	0	1			6			7	V		1
		Х	0	1	1	1	0	10	-1	3	1/2		1	٦		
		1	0	1	1	1	0	1	nd	9	N.	= 1				
AMRU	-			0	0	0	0	0	100	7	9	n		٦	4	0
		-	2	1	1	1	0	1	0		19.	0	P	ė		
	y	7	8	1	1	0	1	0	1		13	-1		j	7	1
12	1		-	х	0	1	1	1	1	1		5	>	Æ		
1	À	-		1	0	0	0	0	0	0	1		1	J.	7	0
1	7			1	1	1	1	1	1	1	0					
	۲	V				1	1	0	1	0	1	3	S			1
				77	70-	Х	0	1	0	1	1	0				
							0	0	0	0	0	0				0
			IÍ	9:	1		х	1	0	1	1	0	0			
			١	U	q			1	1	0	1	0	1			1
								х	1	1	0	0	1	0		
									1	1	0	1	0	1		1
	F= R	Rem	aind	er =	<u> </u>			1	x	x	0	1	1	1	0	0

Therefore F =

01110 T= M 2ⁿ + F

101000110100000

+ 01110

101000110101110

At the receiver , it receives T =101000110101110

At receiving end, it divides T by same P = 110101

110101	1	0	1	0	0	0	1	1	0	1	0	1	1	1	0	Q
	1	1	0	1	0	1	F	Ų		5		1	Þ	V		1
	x	1	1	1	0	1	17	N	7 (3	5	1		I		l
>		1	1	1	0	1	1	0	10	7	Ī	P	7		41	N
		1	1	0	1	0	1	À			Ę	100			D/I	1
		Х	0	1	1	1	0	ĺ		7	2	L		Æ		
	1		0	1	1	1	0	1	nd	7	2	1	> /	E	7	
			1	0	0	0	0	0	Q.	0		8	A	2	7	0
			1	1	1	1	0	1	0	1		A		7		
	TO SERVICE	y2		1	1	0	1	0	1	1	d		ý			1
		Ŕ	9/	х	0	1	1	1	1	1		ř				
					0	0	0	0	0	0						0
			1		-	1	1	1	1	1	0					
			U	1	티	1	1	0	1	0	1					1
						x	0	1	0	1	1	1				
							0	0	0	0	0	0				0
							х	1	0	1	1	1	1			

					1	1	0	1	0	1			1
					X	1	1	0	1	0	1		
						1	1	0	1	0	1		1
						0	0	0	0	0	0		
F= R	Rem	ainde	er =			x	x	0	0	0	0	0	0

If remainder is 0 then frame T is received correctly

Method –II: Polynomial Method Message = M(x) = (k+n) -bits Divisor = G(x) = P

= n+1 bits

$$F=g(x)=x^c=n-bits$$

$$G(x)$$
)M(x) * x^{c} ($Q(x)$ T(x) = (k+n) bits

Ex.
$$M(x) = x + x + x + 1 g(x) = x^3$$

Therefore $M(x) * x^c$

$$= x + x + x + x$$

$$x^3 + 1$$
) $x^9 + x^7 + x^6 + x^3$ ($x^6 + x^4 + x + 1x^9 + x^4 +$

$X^7 + + X^3$ $x^7 + + x^4$
x ⁴ + x ³ x ⁴ + x
x ³ + x
x ³ +1

Remainder R=F x + 1 **T(x)** = $x^9 + x^7 + x^6 + x^3 + x + 1$ **At receiver**

$$x^3 + 1$$
) $x^9 + x^7 + x^6 + x^3 + x + 1(x^6 + x^4 + x + 1x^9 +$

$$x^{7} + x^{3}$$

$$_{x}7 + x^{4}$$

$$x^4 + x^3 + x$$

$$_{x}4 + x$$

 $x^3 + 1$ and finally 0

1] MODULO 2 METHOD CODE: Sample Input and Output

Enter Message M: 11100110

M: 11100110

Enter Predetermined Divisor P: 1 1 0 0 1

P: 11001

-----T: 111001100000

R after the fist

time: 00101 1R=

001011

1S= 00000

2R= 010111

2S= 11001

3R= 011100

3S= 11001

4R= 001010

4S= 00000

5R= 010100

5S= 11001

6R= 011010

6S= 11001

7R= 000110

7S= 00000

CRC = 0110

2] POLYNOMIAL METHOD CODE: Sample Input and Output

Enter no of terms for M 5:12567

Enter no of terms for G 3:034

M:
$$x7 + x6 + x5 + x2 + x1 + G$$
:

x4 + x3 + x0 +

T: x11 + x10 + x9 + x6 + x5 + S:

x11 + x10 + x7 +

11 cut off

10 cut off

T after putting -1s: x-1 + x-1 + x9 + x6 + x5 + Now T

after sorting 1: x-1 + x-1 + x5 + x6 + x9 +

T after appending elements of S: x7 + x5 + x6 + x9 +

Final T: x9 + x7 + x6 + x5 +

S: x9 + x8 + x5 + x-1 + x-1 + x-1 +

9 cut off

5 cut off

T after putting -1s: x-1 + x7 + x6 + x-

1 + Now T after sorting 1 : x-1 + x-1 +

x6 + x7 +

T after appending elements of S: x8 + x6 + x7

+ Final T: x8 + x7 + x6 +

S: x8 + x7 + x4 + x-1 + x-1

8 cut off

7 cut off

T after putting -1s: x-1 + x-1 +

x6 + Now T after sorting 1:x-1

+ x-1 + x6 +

T after appending elements of S: x4

+ x6 + Final T: x6 + x4 +

S: x6 + x5 + x2 + x-1 + x-1

6 cut off

```
T after putting -1s: x-1 +
                                            x4 + Now T after sorting
                                            1:x-1+x4+
                                            T after appending elements of S: x^2 + x^5
                                            + x4 + Final T: x5 + x4 + x2 +
                                            S: x5 + x4 + x1 + x-1 
                                             ______
                                            5 cut off
                                            4 cut off
                                            T after putting -1s: x-1 + x-1 + x2 +
                                            Now T after sorting 1: x-1 + x-1 + x2 +
                                            T after appending elements of S: x1 +
                                            x2 + Final T: x2 + x1 +
                                            S: x^2 + x^1 + x^{-1} + x^{-
                                            x-1 + x-1 + x-2 +
                                             ______
-----FINAL ANSWER: CRC = x2 + x1 +
```

Conclusion: students understand of error detection and correction for 7/8 bits ASCII codes using Hamming Codes or CRC. Demonstrate the packets captured traces using Wireshark Packet Analyzer Tool for peer to peer mode