Relatório: Experimento 2

Nome 1:	Assinatura 1:
Nome 2:	Assinatura 2:
Nome 3:	Assinatura 3:
Turma: Horário:	
o amperímetro ao circuito de modo a medi	Figura 2.11 do roteiro de experiências. Conecte ${\bf r}$ a corrente que passa por R_1 (pontos A ou B). Ima diferença na medida inserir o amperímetro esposta.

Q2 (1,5 pontos) Conecte o voltímetro entre os terminais do resistor e ajuste a voltagem de saída da fonte para 1 V. Varie o valor da tensão entre 1 a 2 V para tomar seis **pares de pontos (**i, V_{AB} e suas incertezas. Complete a Tabela 1. Meça também o valor de R_1 usando um multímetro digital.

Tabela 1

N	$i \pm \sigma_i ({ m mA})$	$V_{\mathrm{AB}}\pm\sigma_{\mathrm{V}}\left(\mathrm{V}\right)$
1		
2		
3		
4		
5		
6		

$$R_{1(\text{multímetro})} = (\pm)$$

Q3 (2,0 pontos) Faça um gráfico de $V_{\rm AB}$ versus i no retículo milimetrado disponível na página seguinte. Não se esqueça de incluir as incertezas das grandezas representadas em ambos os eixos. Determine graficamente (isto é, sem o uso de computadores) os coeficientes angular e linear da reta que melhor se ajusta aos seus pontos experimentais, e a partir deles o valor da resistência R. Estime também a sua incerteza σ_R e compare os 2 valores obtidos para R_1 . Comente os resultados obtidos.

Tenha atenção com as unidades de medida dos valores usados no ajuste da reta. Será feito o ajuste da função V=Ri, onde V deve estar em volts e i em ampères, para que tenhamos R em ohms.

$$a=($$
 \pm $)$ $b=($ \pm $R_{1(gráfico)}=($ \pm $)$

	,,,,,	

Procedimento II: Lei das tensões de Kirchhoff e associação em série de resistores

Ligue a fonte de alimentação e ajuste a voltagem para $V_{\rm B}$ = 0 V antes de iniciar a montagem do circuito. Monte o circuito mostrado na Figura 2.13 do roteiro. Veja como fazer isso na Figura 2.14. Ajuste o valor da voltagem na fonte para $V_{\rm B}$ = 5 V, medindo seu valor com o voltímetro.

Q4 (1,5 pontos) Meça as correntes nos pontos A e B e as voltagens $V_{\rm AB}$, $V_{\rm BC}$ e $V_{\rm AC}$. Complete as Tabelas 2 e 3 com estes valores e suas respectivas incertezas.

Tabela 2

Ponto no circuito	i (mA)	$\sigma_{\rm i}$ (mA)
A		
В		

Tabela 3

Pontos no circuito	V (V)	$\sigma_{\mathrm{V}}\left(\mathrm{V}\right)$
AB		
ВС		
AC		

Q5 (0,5 ponto) A partir de suas medidas, o que podemos dizer sobre as correntes e voltagens nos elementos de uma associação em série de resistores? A corrente é maior ou menor que na situação com apenas 1 resistor do Procedimento I?

6 (1,0 ponto) A partir nsão aplicada, utilize	dos valores mo a lei de Ohm p	edidos da corr ara obter a res	ente total que a istência equival	travessa o circuito ente do circuito.	е

Procedimento III: Lei das correntes de Kirchhoff e associação em paralelo de resistores

Monte o circuito mostrado na Figura 2.15 do roteiro. Veja como fazer isso na Figura 2.16. Ajuste o valor da voltagem na fonte para $V_{\rm B}$ = 2 V, medindo seu valor com o voltímetro.

Q7 (1,5 pontos) Meça as correntes nos pontos A, B e D e as voltagens $V_{\rm AC}$, $V_{\rm BC}$ e $V_{\rm DE}$. Complete as tabelas 4 e 5 com estes valores e suas respectivas incertezas.

Tabela 4

Ponto no circuito	i (mA)	$\sigma_{\rm i}$ (mA)
A		
В		
D		

Tabela 5

Pontos no circuito	V (V)	$\sigma_{\mathrm{V}}\left(\mathrm{V}\right)$
AC		
ВС		
DE		

Q8 (0,5 ponto) A partir de suas medidas, o que podemos dizer sobre as correntes e vogens nos elementos de uma associação em paralelo de resistores?				

Q9 (1,0 ponto) A partir dos valores medidos da corrente total que atravessa o circuito e a voltagem aplicada, utilize a lei de Ohm para obter a resistência equivalente do circuito.

7
—