Masinõpe

Sotsiaalse analüüsi meetodid: kvantitatiivne lähenemine

Indrek Soidla

Masinõpe Machine learning

- Traditsiooniline lähenemine andmeanalüüsis vs masinõpe
- Analüüsimeetodid võivad olla paljuski samad, erinev on eesmärk
- Järeldav statistika: seletada maailma, leida seoseid, järeldada populatsiooni tasandil
- Masinõpe: ennustada/prognoosida

Masinõpe vs järeldav statistika

- Mõlema lähenemise puhul koostatakse mudeleid
- JS: teooriast lähtudes
- MÕ: andmetest lähtudes, andmetest õppides
 - Ei alusta teooriast, vaid laseme algoritmidel andmete põhjal leida, milline parameetrite ja hüperparameetrite kombinatsioon võimaldab leida täpseima prognoosi
 - Masinõpe = teooria asemel õpitakse andmeid mudeldama andmete endi põhjal
- JS: kuidas x on y-ga seotud, kuidas x prognoosib y-t
 - nt regressioonikordaja väärtus
- MÕ: konkreetsed seosed (nende tugevus ja iseloom) pole olulised
 - Oluline on leida mudel, mis võimaldaks y väärtusi prognoosida (võimalikult täpselt)
 - Kui indiviidi kirjeldavad väärtused mingis tunnuste kogumis $x_1, x_2, ..., x_k$, siis kuidas prognoosida võimalikult täpselt indiviidi väärtust tunnuses y?

Masinõpe vs järeldav statistika

- JS: teoreetilised eeldused => vähem tunnuseid => tõlgendamine lihtsam
- MÕ: andmetest lähtumine => palju andmeid, palju tunnuseid => must kast => tõlgendus pole keskne
 - Pole tähtis, mis värvi on kass, peaasi, et ta hiiri püüab
 - Kas siis teooria polegi oluline?
 - On küll, nt Google Flu
 - Samas, isesõitvad autod töötavad
 - Ei tähenda, et me ei peaks teadma, kuidas konkreetne masinõppe meetod töötab
 - Kui andmete esinduslikkus pole oluline, siis kuidas saab mudeli töötamises kindel olla?
 - Suurandmete rohkuse olulisus

Juhendatud ja juhendamata õpe

- Liigitamine (classification)
 - rühmakuuluvuse kriteeriumid on teada, indiviidid liigitatakse nende alusel
 - Juhendatud õpe (supervised learning)
 - Nt spämmifiltrid (eeldusel, et teada, millised meilid on spämm)
- Klasterdamine, klasteranalüüs (clustering)
 - teatud tunnuste alusel sarnastest indiviididest moodustatakse rühmad, kriteeriumid (tunnuste väärtuste kombinatsioonid) pole eelnevalt teada
 - Juhendamata õpe (unsupervised learning)
 - Nt liikluskindlustuses kõrge riskikoefitsiendiga klientide hulgas eristuvate gruppide leidmiseks

Mudel

- Klassifitseerimise aluseks tavaliselt mingi mudel
- Regressioonis ka mudel => erinevus masinõppest?
- Ei pruugigi olla, logistiline regressioon üks enimkasutatavaid lihtsamaid meetodeid masinõppes
 - Vt eespool erinevus järeldavast statistikast
- Keskne ülesanne luua mudel, mis prognoosiks võimalikult täpselt
- Millest mudeli täpsus sõltub?
- Kui palju olulisi tegureid mudel arvestab
- Mida rohkem tegureid (tunnuseid), seda täpsem mudel?

Mudeli täpsus

- Näide klassifitseerimisest
- Alasobitus (underfitting) vs ülesobitus (overfitting)
- Bias-variance tradeoff:
- Mida lihtsam mudel (võtab arvesse vähem tunnuseid),
 - seda suurem nihe prognooside ja y tegelike väärtuste vahel
 - seda väiksem variatiivsus prognoosides erinevate andmestike lõikes
- Mida keerulisem mudel,
 - seda väiksem nihe prognooside ja y tegelike väärtuste vahel
 - seda suurem variatiivsus prognoosides erinevate andmestike lõikes
- Alasobituse korral jätame olulise osa andmete variatiivsusest kirjeldamata
- Ülesobituse korral mudeldame andmetes müra
 - Püüame mõtestada: kust tuleb müra andmetesse küsitlusandmete puhul? Mida tähendab müra mudeldamine sel juhul?

Mudeli täpsus

- Nii ala- kui ülesobituse korral tekib viga
- Masinõppes mudeli optimeerimisel keskne optimaalse tasakaalu leidmine

Mudeli optimeerimine

Parameeter

- Näitaja, mille väärtust püüame mudeliga hinnata
- Nt regressioonikordaja

Hüperparameeter

- Näitaja, mille väärtuse varieerimisega püüame mudelit optimeerida
- Nt ruutliikme olemasolu (astme väärtus) mudelis
- Ei ole parameeter, vaid midagi, millega püüame parameetri väärtust täpsemaks muuta

Suur osa masinõppe protsessist

- sobivate hüperparameetrite väärtuste leidmine nii, et parameetrid oleksid võimalikult täpsed
- mudeli optimaalse sobitusastme juures

Mudeli optimeerimine

- Optimaalne sobitusaste eeldab hindamist, kuidas mudel prognoosib uute andmetega
- Testime mudelit erinevatel andmetel?
 - Ajakulukas
 - Täpsuse hindamiseks eeldab y tegelike väärtuste olemasolu
- Testime mudelit samadel andmetel, millega mudel treeniti?
- Täpselt samade andmete kasutamine ülehindab mudeli täpsust
- Jaotame andmestiku treeningandmeteks ja valideerimisandmeteks
- Erinevad hinnangud, kui suur kumbki grupp, reeglina 80%/20%

Klassifitseerimise näide: kNN

- k lähima naabri algoritm (k Nearest Neighbour)
- Põhimõte sarnane k-keskmiste klasterdusele
- Leitakse indiviidile lähimad *k* indiviidi (naabrit) ja prognoositakse klassikuuluvust nende naabrite klassikuuluvuse põhjal
- k = arvessevõetavate naabrite arv
- Prognoositakse = omistatakse sama klass, mis enamikul naabritel
- Indiviidide lähedus/kaugus arvutatakse klassifitseerimise aluseks olevate tunnuste väärtuste põhjal
 - Suuremad erinevused => kaugemad/erinevamad indiviidid
 - Kauguse arvutamiseks erinevad valemid
 - Enimkasutatav eukleidiline kaugus
 - Eeldab arvulisi tunnuseid (klassikuuluvuse tunnus kategoriaalne)

Klassifitseerimise näide: kNN

- Millise *k* väärtuse valime, sellest sõltub klassifitseerimise tulemus
- Väike k => suur täpsus treeningandmetes, suur varieeruvus hiljem
- Suur k => ebatäpsem treeningandmetes, robustsem tulemus hiljem
- *k* on antud juhul hüperparameeter

KNN R-s

• Skriptifail Moodle-s

Ühekordne valideerimine (holdout cross-validation)

- Annab mõnevõrra varieeruvad tulemused, sõltuvalt sellest, kes täpselt valideerimiskogumisse satuvad
- Mõttekas kasutada ainult juhul, kui valideerimine väga ressursimahukas

K-fold CV

- Jaotame andmestiku k osaks (võrdsete suurustega)
- Viime valideerimise läbi k korda, iga kord on valideerimiskogumiks üks (erinev) osa andmetest
- Treeningandmeteks ülejäänud andmestik (samuti iga kord mõnevõrra erinev osa andmetest)
- Igal valideerimisel saadakse mudeli täpsuse näitajad, *k* näitajat keskmistatakse
- Oluline: *k* kogumid omavahel ei kattu, iga indiviid valideerimiskogumis üks kord

Leave One Out Cross-Validation ehk LOOCV

- Testkogumis üks indiviid, mudel treenitakse ülejäänud andmete peal
- Valideeritakse iga indiviidi peal eraldi
- Andestikus *n* indiviidi => *n* valideerimist => ressursimahukas
- Sisuliselt k-fold CV, kus k = n
- Igal valideerimisel saadakse mudeli täpsuse näitajad, mis keskmistatakse
- Igal valideerimisel testitakse ühe indiviidi peal
 - Testitulemused varieeruvad palju
 - Variatiivsus siiski väiksem kui k-fold CV puhul, kui andmestik väike
 - Ka ressursimahukuse tõttu mõttekas eelkõige väiksema andmestiku puhul

Otsustuspuu

Decision tree, CART (classification and regression tree)

(https://www.datacamp.com/community/tutorials/decision-trees-R)

- Jaotame andmed väiksematesse osadesse
- Kui..., siis...
- Igas sõlmes jaotus kaheks
 - arvuline tunnus => lävend
 - kategoriaalne tunnus => üks kategooria vs ülejäänud
- Üks jaotus (lahutus, poolitus) korraga
 - st ühe tunnuse alusel korraga

Jaotamine

Splitting

- Jaotamine tehakse igas etapis selle tunnuse ja lävendi põhjal, mis maksimeerib vea vähenemise
- Mille põhjal vea vähenemist hinnatakse?
 - Puhtus/ebapuhtus (purity/impurity) kui homogeenne on leht/sõlm (kas indiviidid langevad samasse klassi)
- Mõnevõrra erinevad algoritmid
 - Entroopia
 - Gini indeks hinnatakse klasside osakaalu varieeruvust paarikaupa
 - Erinevad kaugusmõõdud ja statistikud (nt χ^2)
 - Algoritmi valik mängib tunduvalt väiksemat rolli kui erinevate hüperparameetrite valik

$$\operatorname{Gini\ index}_{\operatorname{split}} = p(\operatorname{left}) \times \operatorname{Gini\ index}_{\operatorname{left}} + p(\operatorname{right}) \times \operatorname{Gini\ index}_{\operatorname{right}}$$

Gini index_{split} =
$$\frac{14}{20} \times 0.34 + \frac{6}{20} \times 0.28 = 0.32$$

Vea vähenemine: 0,48 - 0,32 = 0,16

(Rhys 2020)

Jaotamine Splitting

- Kui leht ei ole homogeenne, klassifitseeritakse ta enamuse kuuluvuse alusel
- Jaotamine toimub nii kaua kuni alles on vaid lehed
 - St midagi enam jaotada pole või jaotamine ei muuda puud täpsemaks
- Mida rohkem lehti, seda komplekssem puu
 - · Klassifitseerimise tulemus täpsem, aga tõenäoliselt ülesobitatud
 - Andmestike lõikes suurem variatiivsus
 - Mida teha?
 - Saab seada erinevaid kriteeriume, et puu suurust kontrollida
 - = hüperparameetrid

Otsustuspuu hüperparameetrid

- *minsplit* väikseim lubatud indiviidide arv sõlmes enne jaotamist
 - Kui indiviide on sellest kriteeriumist vähem, sõlme enam ei jaotata, sõlm = leht
- *maxdepth* puu suurim lubatud sügavus (kõrgus)
 - Järjestikuste sõlmede arv
- *minbucket* väikseim lubatud indiviidide arv lehes
- cp (complexity parameter) väikseim lubatud mudeli paranemise määr

Otsustuspuu + ja -

- Sobib igat tüüpi andmetele
- Pole eeldusi tunnuste jaotuse osas
- Tunnuste skaala ei m\u00e4ngi rolli => pole vaja tunnuseid standardiseerida
- Saab hakkama andmelünkadega
- Lihtsasti tõlgendatav
 - Ei pruugi olla täpseim meetod, aga tihti optimaalne tasakaal täpsuse ja mudeli tõlgendatavuse vahel
- Sobib hästi, kui prognoosivad tunnused on seotud klassikuuluvusega mittelineaarselt
 - Ei sobi hästi, kui seotud lineaarselt

Otsustuspuu + ja -

- Ahne algoritm tehakse parim valik igas etapis üksikult, mitte terve puu kohta üldiselt
 - Ei pruugi jõuda tervikuna parima mudelini
 - Puu kasvab kuni kõik lehed on puhtad => ülesobitus
 - Suurte andmestike puhul ressursimahukas
- Ei pruugi olla tõhus
 - paljude tunnuste korral
 - ühe mõjuka tunnuse korral
- Ülesobituse oht üksiku puu puhul => edasiarendused

Otsustuspuu edasiarendused

- Kuidas saada samast andmestikust rohkem kui üks puu?
- Jaotame andmestiku osadeks?
 - Igas osas vähem indiviide kui algandmestikus => mudelid ei ole niivõrd täpsed
- Appi tuleb bootstrapping
 - andmestikust võetakse tagasipanekuga valimid
 - iga valim sama suur kui algne andmestik
 - igas valimis mingid indiviidid mitme eest
 - valimis esindatud keskmiselt 63% algsetest indiviididest
- Bagging (Bootstrap AGGregating)
 - mudel treenitakse iga valimi põhjal (üks valim = üks puu), tulemused agregeeritakse
 - lõpliku mudeli variatiivsus (variance) väheneb
 - kui puud omavahel tugevalt seotud, kasu vähem
- Juhumets (random forest) iga jaotamise puhul tehakse P tunnusest juhuslik valik F
 - kui *P* = *F*, on tegu *bagging*'uga
 - muudab puud üksteisest erinevamaks => väheneb nii bias kui variance
 - ühe mõjuka tunnuse probleem väheneb