Labs

Optimization for Machine LearningSpring 2024

Saarland University

CISPA Helmholtz Center for Information Security **Sebastian Stich**

TAs: Yuan Gao & Xiaowen Jiang https://cms.cispa.saarland/optml24/

Problem Set 9 — Solutions (Variance Reduction)

In two steps of the solutions, we use the following inequality on the squared Euclidean norm.

Lemma 1 (Inequality on the squared norm). For any vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^d$

$$\|\mathbf{a} + \mathbf{b}\|_{2}^{2} \le 2\|\mathbf{a}\|_{2}^{2} + 2\|\mathbf{b}\|_{2}^{2}$$
.

Proof.

$$\begin{split} \|\mathbf{a} + \mathbf{b}\|_{2}^{2} &= \langle \mathbf{a} + \mathbf{b}, \mathbf{a} + \mathbf{b} \rangle \\ &= \|\mathbf{a}\|_{2}^{2} + \|\mathbf{b}\|_{2}^{2} + 2\langle \mathbf{a}, \mathbf{b} \rangle \\ &\leq \|\mathbf{a}\|_{2}^{2} + \|\mathbf{b}\|_{2}^{2} + 2\|\mathbf{a}\|_{2}\|\mathbf{b}\|_{2} \\ &\leq 2\|\mathbf{a}\|_{2}^{2} + 2\|\mathbf{b}\|_{2}^{2}. \end{split}$$

By Cauchy-Schwarz inequality

By AM-GM inequality

1 Bound of Variance Lemma

Prove Lemma 9.2 (Property of smoothness) and Lemma 9.3 (Bound of variance) from the slides.

Lemma 9.2 (Property of Smoothness). Let $F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$, where each $f_i : \mathbb{R}^d \to \mathbb{R}$ is a convex and L_i -smooth function and F has a global minimum \mathbf{x}^* . Let $L_{max} = \max\{L_1, \dots, L_n\}$. Then, for any $\mathbf{x} \in \mathbb{R}^d$

$$\frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{x}^*)\|_2^2 \le 2L_{max} \left(F(\mathbf{x}) - F(\mathbf{x}^*)\right).$$

Proof. For any $i \in \{1, ..., n\}$, convexity and L_i -smoothness of f_i imply

$$f_i(\mathbf{x}^*) + \nabla f_i(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \le f_i(\mathbf{x}) \le f_i(\mathbf{x}^*) + \nabla f_i(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) + \frac{L_i}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2.$$
(1)

We consider the function $g_i(\mathbf{x}) = f_i(\mathbf{x}) - f_i(\mathbf{x}^*) - \nabla f_i(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*)$. The convexity of f_i implies $g_i \geq 0$. Additionally, g_i is the sum of f_i and an affine function and thus also L_i -smooth¹. Applying sufficient decrease to g_i shows that

$$g_i\left(\mathbf{x} - \frac{1}{L_i}\nabla g_i(\mathbf{x})\right) \le g_i(x) - \frac{1}{2L_i}\|\nabla g_i(\mathbf{x})\|_2^2.$$

By the non-negativity of g_i and the definition of L_{max} we then have

$$g_i(\mathbf{x}) \ge g_i\left(\mathbf{x} - \frac{1}{L_i}\nabla g_i(\mathbf{x})\right) + \frac{1}{2L_i}\|\nabla g_i(\mathbf{x})\|_2^2 \ge \frac{1}{2L_i}\|\nabla g_i(\mathbf{x})\|_2^2 \ge \frac{1}{2L_{max}}\|\nabla g_i(\mathbf{x})\|_2^2$$

Reinserting the definition of $g_i(\mathbf{x})$ shows that

$$f_i(\mathbf{x}) - f_i(\mathbf{x}^*) - \nabla f_i(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \ge \frac{1}{2L_{max}} \|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{x}^*)\|_2^2$$

Summing these inequalities over $i=1,\ldots,n$ and dividing by n yields

$$F(\mathbf{x}) - F(\mathbf{x}^*) - \nabla F(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \ge \sum_{i=1}^n \frac{1}{2L_{max}n} \|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{x}^*)\|_2^2.$$

By assumption, \mathbf{x}^{\star} is a global minimum of F and thus $\nabla F(\mathbf{x}^{\star}) = 0$. The result then follows, by multiplying the above inequality with $2L_{max}$

 $^{^{1}}$ An affine function is 0-smooth by Lemma 3.4 and L_{i} -smoothness of the sum follows by Lemma 3.5.

Lemma 9.3 (Bound on Variance). Let $F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$, where each $f_i : \mathbb{R}^d \to \mathbb{R}$ is a convex and L_i -smooth function and F has a global minimum \mathbf{x}^\star . Let $L_{max} = \max\{L_1, \ldots, L_n\}$ and $\tilde{\mathbf{x}}, \mathbf{x}_t \in \mathbb{R}^d$. Denote $\mathbf{g}_t = \nabla f_{i_t}(\mathbf{x}_t) - \nabla f_{i_t}(\tilde{\mathbf{x}}) + \nabla F(\tilde{\mathbf{x}})$, where i_t is sampled uniformly from $\{1, \ldots, n\}$. Then

$$\mathbb{E}_{i_t} \left[\|\mathbf{g}_t\|_2^2 \right] \le 4L_{max} (F(\mathbf{x}_t) - F(\mathbf{x}^*)) + 4L_{max} (F(\tilde{\mathbf{x}}) - F(\mathbf{x}^*))$$

Proof. We have

$$\|\mathbf{g}_{t}\|_{2}^{2} = \|\nabla f_{i_{t}}(\mathbf{x}_{t}) - \nabla f_{i_{t}}(\tilde{\mathbf{x}}) + \nabla F(\tilde{\mathbf{x}})\|_{2}^{2}$$

$$= \|\nabla f_{i_{t}}(\mathbf{x}_{t}) - \nabla f_{i_{t}}(\mathbf{x}^{\star}) + \nabla f_{i_{t}}(\mathbf{x}^{\star}) - \nabla f_{i_{t}}(\tilde{\mathbf{x}}) + \nabla F(\tilde{\mathbf{x}})\|_{2}^{2}$$

$$\leq 2\|\nabla f_{i_{t}}(\mathbf{x}_{t}) - \nabla f_{i_{t}}(\mathbf{x}^{\star})\|_{2}^{2} + 2\|\nabla f_{i_{t}}(\mathbf{x}^{\star}) - \nabla f_{i_{t}}(\tilde{\mathbf{x}}) + \nabla F(\tilde{\mathbf{x}})\|_{2}^{2},$$

by Lemma 1. Lemma 9.2 allows us to directly bound the expectation of the first term by

$$\mathbb{E}_{i_t} \left[2 \| \nabla f_{i_t}(\mathbf{x}_t) - \nabla f_{i_t}(\mathbf{x}^*) \|_2^2 \right] = \frac{2}{n} \sum_{i=1}^n \| \nabla f_i(\mathbf{x}_t) - \nabla f_i(\mathbf{x}^*) \|_2^2 \le 4L_{max} (F(\mathbf{x}_t) - F(\mathbf{x}^*))$$

For the second term, we apply the following result from probability theory²

$$\mathbb{E}\left[\|\mathbf{X} - \mathbb{E}\left[\mathbf{X}\right]\|_{2}^{2}\right] \leq \mathbb{E}\left[\|\mathbf{X}\|_{2}^{2}\right]$$

with $\mathbf{X} = \nabla f_{i_t}(\mathbf{x}^*) - \nabla f_{i_t}(\tilde{\mathbf{x}})$. We compute

$$\mathbb{E}_{i_t}[\mathbf{X}] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}^*) - \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{\mathbf{x}}) = \nabla F(\mathbf{x}^*) - \nabla F(\tilde{\mathbf{x}}) = 0 - \nabla F(\tilde{\mathbf{x}}).$$

So the second term is exactly of the form $\|\mathbf{X} - \mathbb{E}[\mathbf{X}]\|_2^2$ and we can bound its expectation by

$$\mathbb{E}_{i_t} \left[2\|\nabla f_{i_t}(\mathbf{x}^*) - \nabla f_{i_t}(\tilde{\mathbf{x}}) + \nabla F(\tilde{\mathbf{x}})\|_2^2 \right] \leq 2\mathbb{E}_{i_t} \left[\|\nabla f_{i_t}(\mathbf{x}^*) - \nabla f_{i_t}(\tilde{\mathbf{x}})\|_2^2 \right]$$

$$= \frac{2}{n} \sum_{i=1}^n \|\nabla f_i(\tilde{\mathbf{x}}) - \nabla f_i(\mathbf{x}^*)\|_2^2$$

$$\leq 4L_{max}(F(\tilde{\mathbf{x}}) - F(\mathbf{x}^*)),$$

where the last inequality follows again by Lemma 10.2. Combining the two bounds proves the statement.

2 Loopless SVRG

2.1 Decrease Lemma

1. Plugging in the definition of the update, we get

$$\begin{split} \mathbb{E}[||\mathbf{x}_{t+1} - \mathbf{x}^{\star}||^2] &= \mathbb{E}[||\mathbf{x}_t - \mathbf{x}^{\star} - \eta g_t||^2] \\ &= ||\mathbf{x}_t - \mathbf{x}^{\star}||^2 + \mathbb{E}[2\eta\langle g_t, \mathbf{x}^{\star} - \mathbf{x}_t \rangle] + \eta^2 \mathbb{E}[||g_t||^2] \;. \end{split}$$

Note that g_t is unbiased, i.e. $\mathbb{E}[g_t] = \nabla f(\mathbf{x}_t)$. We get

$$\begin{split} \mathbb{E}[||\mathbf{x}_{t+1} - \mathbf{x}^{\star}||^{2}] &= ||\mathbf{x}_{t} - \mathbf{x}^{\star}||^{2} + 2\eta \langle \nabla f(\mathbf{x}_{t}), \mathbf{x}^{\star} - \mathbf{x}_{t} \rangle + \eta^{2} \mathbb{E}[||g_{t}||^{2}] \\ &\leq \qquad \qquad \leq \qquad \qquad ||\mathbf{x}_{t} - \mathbf{x}^{\star}||^{2} + 2\eta (f^{\star} - f(\mathbf{x}_{t}) - \frac{\mu}{2}||\mathbf{x}_{t} - \mathbf{x}^{\star}||^{2}) + \eta^{2} \mathbb{E}[||g_{t}||^{2}] \\ &= (1 - \mu \eta)||\mathbf{x}_{t} - \mathbf{x}^{\star}||^{2} - 2\eta (f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star})) + \eta^{2} \mathbb{E}[||g_{t}||^{2}] \;. \end{split}$$

$$\begin{split} \mathbb{E}\left[\|\mathbf{X} - \mathbb{E}\left[\mathbf{X}\right]\|_{2}^{2}\right] &= \mathbb{E}\left[\left(\mathbf{X} - \mathbb{E}[\mathbf{X}]\right)^{\top}(\mathbf{X} - \mathbb{E}[\mathbf{X}])\right] \\ &= \mathbb{E}\left[\mathbf{X}^{\top}\mathbf{X} - 2\mathbb{E}[\mathbf{X}]^{\top}\mathbb{E}[\mathbf{X}] + \mathbb{E}[\mathbf{X}]^{\top}\mathbb{E}[\mathbf{X}]\right] \\ &= \mathbb{E}\left[\|\mathbf{X}\|_{2}^{2}\right] - \|\mathbb{E}[\mathbf{X}]\|_{2}^{2} \\ &\leq \mathbb{E}\left[\|\mathbf{X}\|_{2}^{2}\right] \end{split}$$

²A possible proof of this inequality is

2. With the same proof procedure for Lemma 9.3, we get

$$\mathbb{E}[||g_t||^2] \le 4L(f(\mathbf{x}_t) - f(\mathbf{x}^*)) + 2\mathbb{E}[||\nabla f_i(\mathbf{w}_t) - \nabla f_i(\mathbf{x}^*)||^2].$$

Plugging the definition of D_t , we get the claim.

2.2 Decrease of the Lyapunov function

1. Note that $\mathbb{E}[\mathbf{w}_{t+1}] = p\mathbf{x}_t + (1-p)\mathbf{w}_t$. It follows that

$$\mathbb{E}[D_{t+1}] = (1-p)D_t + p\frac{4\eta^2}{pn} \sum_{i=1}^n ||\nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}^*)||^2$$

$$\leq (1-p)D_t + 8L\eta^2 (f(\mathbf{x}_t) - f(\mathbf{x}^*)).$$

The last inequality is due to the smoothness of f.

2. Combine the previous statements together, we get

$$\mathbb{E}[||\mathbf{x}_{t+1} - \mathbf{x}^{\star}||^{2} + D_{t+1}] \leq (1 - \mu \eta)||\mathbf{x}_{t} - \mathbf{x}^{\star}||^{2} + 2\eta (f^{\star} - f(\mathbf{x}_{t})) + \eta^{2} \mathbb{E}[||g_{t}||^{2}]$$

$$+ (1 - p)D_{t} + 8L\eta^{2} (f(\mathbf{x}_{t}) - f^{\star})$$

$$\leq (1 - \mu \eta)||\mathbf{x}_{t} - \mathbf{x}^{\star}||^{2} + (1 - p)D_{t} + (2\eta - 8L\eta^{2})(f^{\star} - f(\mathbf{x}_{t}))$$

$$+ \eta^{2} (4L(f(\mathbf{x}_{t}) - f^{\star}) + \frac{p}{2\eta^{2}}D_{t})$$

$$= (1 - \mu \eta)||\mathbf{x}_{t} - \mathbf{x}^{\star}||^{2} + (1 - \frac{p}{2})D_{t} + (2\eta - 12L\eta^{2})(f^{\star} - f(\mathbf{x}_{t}))$$

By picking $\eta \leq \frac{1}{6L}$, we get according to the definition of Φ_t ,

$$\mathbb{E}[\Phi_{t+1}] \le (1 - \eta \mu) ||\mathbf{x}_t - \mathbf{x}^*||^2 + (1 - \frac{p}{2}) D_t.$$

2.3 Complexity

1. From the previous display, we get

$$\mathbb{E}[\Phi_t] \le \max\{1 - \eta\mu, 1 - \frac{p}{2}\}^t \Phi_0.$$

Clearly, the optimal choice of η is $\frac{1}{6L}$. In terms of total number of stochastic gradient calls, Loopless SVRG calls the stochastic gradient oracle in expectation 2+pn times in each iteration. Combining it with the iteration complexity, we get the total complexity $\mathcal{O} \big([(1+pn)*(\frac{L}{\mu}+\frac{1}{p})]\log(1/\epsilon) \big)$. Note that a simple choice of $p=\frac{1}{n}$ gives the optimal complexity $\mathcal{O} \big((n+\frac{L}{\mu})\log(1/\epsilon) \big)$.