

Rozwiązania Kontestu 3 – Finaliści

Zadanie 1. Dwusieczna kąta wewnętrznego BAC w trójkącie ABC przecina bok BC w punkcie D. Prosta k przechodzi przez punkt D i jest prostopadła do BC. Symetralna odcinka AD przecina AD i k odpowiednio w P i Q. Udowodnij, że punkty B, C, P, Q leżą na jednym okręgu.

Rozwiązanie 1. Przecinamy tę symetralną z $BC \le M$. Wówczas kąty $\not \supseteq DQM$, $\not \supseteq PDM$ i $\not \supseteq PAM$ są równe, więc mamy podobieństwo trójkątów MPA do MDQ, czyli

 $MA^2 = MA \cdot MD = MP \cdot MQ$ (inaczej: trójkąt QDM jest prostokątny z opuszczoną wysokością DP, w

Również mamy $\not DCA + \not DAC = \not ADM = \not DAM = \not DAB + \not BAM$ oraz $\not DAC = \not BAD$, więc $\not AB = \not BAC$, czyli MA jest styczną do okręgu opisanego na trójkącie ABC. Wówczas

$$MB \cdot MC = MA^2$$
.

Ostatecznie więc $MB \cdot MC = MP \cdot MQ$, co daje tezę z kryterium potęgowego.

Zadanie 2. Niech n będzie dowolną liczbą całkowitą dodatnią, a S(n) oznacza liczbę permutacji τ zbioru $\{1,\ldots,n\}$, takich że $k^4+(\tau(k))^4$ jest liczbą pierwszą dla każdego $k=1,\ldots,n$. Pokaż, że S(n) jest kwadratem.

Źródło: India TST 2023 Practice Test 2 P3 AoPS

Rozwiązanie 2. Dla wszystkich $1 \le i \le n$, niech $i^4 + \tau(i)^4 = p_i$, dla liczb pierwszych p_i . Wówczas zauważmy, że

$$p_1 + p_2 + \dots + p_n = 1^4 + 2^4 + \dots + n^4 + (\tau(1)^4 + \tau(2)^4 + \dots + \tau(n^4)) = 2(1^4 + 2^4 + \dots + n^4).$$

Teraz, załóżmy, że n jest liczbą parzystą. Wówczas, suma $p_1 + p_2 + \cdots + p_n$ musi być liczbą parzystą. Zauważmy, że dla $i \geq 2$, $p_i > i^4 > 2$, więc p_i jest liczbą nieparzystą dla wszystkich $i \geq 2$. Zatem, $p_1 + (n-1)$ musi być liczbą parzystą, więc $p_1 - 1$ musi być liczbą parzystą, a więc p_1 jest liczbą nieparzystą. Zatem, $\tau(1) \neq 1$.

Teraz, rozważmy graf i połączmy $1\leqslant i\neq j\leqslant n$ wtedy i tylko wtedy, gdy i^4+j^4 jest liczbą pierwszą. Zauważmy, że jeśli i=j, to $2i^4$ jest liczbą pierwszą tylko wtedy, gdy i=1, ale wiemy, że $\tau(1)\neq 1$, więc nie musimy martwić się o ten przypadek. Następnie, jeśli i i j są liczbami o tej samej parzystości, to i^4+j^4 jest liczbą parzystą i większą niż 2, ponieważ $i\neq j$. Zatem, ten graf jest grafem bipartitnym, ponieważ możemy wybrać bipartycje $A=\{1,3,\cdots,n-1\}$ oraz $B=\{2,4,\cdots,n\}$ i żadne dwa elementy z A nie są połączone, a żadne dwa elementy z B nie są połączone. Teraz, aby znaleźć τ dla wszystkich liczb nieparzystych, musimy znaleźć doskonałe dopasowanie z A do B, ponieważ chcemy znaleźć a_1,a_3,\cdots,a_{n-1} – permutację zbioru B, taką że $i^4+a_i^4$ jest liczbą pierwszą dla wszystkich nieparzystych $1\leqslant i\leqslant n-1$. Aby znaleźć τ

dla wszystkich liczb parzystych, musimy znaleźć doskonałe dopasowanie z B do A, ponieważ chcemy znaleźć a_2, a_4, \cdots, a_n – permutację zbioru A, taką że $i^4 + a_i^4$ jest liczbą pierwszą dla wszystkich parzystych $2 \le i \le n$. Zatem, liczba sposobów znalezienia τ dla wszystkich liczb parzystych to P, liczba doskonałych dopasowań z A do B, a liczba sposobów znalezienia τ dla wszystkich liczb parzystych to liczba doskonałych dopasowań z B do A, która również wynosi P. Zatem, liczba takich permutacji τ to P^2 , co jest liczbą doskonałą, i wszystkie takie permutacje działają, ponieważ działają dla wszystkich liczb nieparzystych i parzystych (a są one rzeczywiście permutacjami zbioru $\{1,2,\cdots,n\}$), więc kończymy dowód w przypadku, gdy n jest liczbą parzystą.

Jeśli n jest liczbą nieparzystą, to $p_1+p_2+\cdots+p_n$ również jest liczbą parzystą, a dla $i\geqslant 2$, $p_i>i^4>2$, więc p_i jest liczbą nieparzystą dla wszystkich $i\geqslant 2$. Zatem, $p_1+(n-1)$ musi być liczbą parzystą, więc p_1 musi być liczbą parzystą, a więc $p_1=2$, co implikuje, że $\tau(1)=1$. Zatem, należy znaleźć wszystkie permutacje τ zbioru $\{2,3,\cdots,n\}$, dla których $i^4+\tau(i)^4$ jest liczbą pierwszą dla wszystkich $2\leqslant i\leqslant n$, ponieważ już rozwiązaliśmy przypadek i=1, a nic poza 1 nie może być przypisane do 1, a 1 może być przypisane tylko do 1.

Aby to zrobić, wykonujemy praktycznie to samo – łączymy $2 \le i \ne j \le n$ wtedy i tylko wtedy, gdy $i^4 + j^4$ jest liczbą pierwszą – jeśli i = j, to oczywiście $2i^4$ nie jest liczbą pierwszą, ponieważ $i \ge 2$. Jeśli i i j są liczbami o tej samej parzystości, to $i^4 + j^4$ jest liczbą parzystą i większą niż 2, więc ten graf jest grafem bipartitnym, ponieważ możemy wybrać bipartycje $A = \{3, 5, \cdots, n\}$ oraz $B = \{2, 4, \cdots, n-1\}$, i stosując tę samą logikę, co w przypadku n parzystego, liczba sposobów znalezienia takiego τ to po prostu kwadrat liczby doskonałych dopasowań z A do B, co jest liczbą doskonałą.

Zatem, we wszystkich przypadkach, S(n) jest liczbą doskonałą, jak tego chcieliśmy.

Źródło: India TST 2023 Practice Test 2 P3 AoPS

Zadanie 3. Funkcję $g: \mathbb{Z} \to \mathbb{Q}$ nazywamy gęstą, jeżeli dla dowolnej liczby wymiernej c takiej, że f(x) < c < f(y), dla pewnych całkowitych x, y, istnieje taka liczba całkowita z, że f(z) = c.

Znaleźć wszystkie funkcje geste f spełniające równanie:

$$f(x) + f(y) + f(z) = f(x)f(y)f(z),$$

dla wszystkich liczb całkowitych takich, że x + y + z = 0.

Rozwiązanie 3. Podstawmy najpierw (x, y, z) = (0, 0, 0), dostajemy $3f(0) = f(0)^3$, co na mocy wymierności f(0) daje f(0) = 0. Wstawiając (x, y, z) = (0, x, -x), dostajemy

$$f(-x) = -f(x)$$
.

Podstawiając (x, y, z) = (2x, -x, -x) i korzystając z powyższej równości otrzymujemy $f(2x) - 2f(x) = f(x)^2 \cdot f(2x)$, co daje:

$$f(2x)(1 - f(x)^2) = 2f(x).$$

Gdyby dla pewnego $a \in \mathbb{Z}$ zachodziło $f(a) = \pm 1$, to podstawiając x = a powyżej dostalibyśmy f(a) = 0, co jest sprzecznością. Przypuśćmy teraz, że istnieje taka liczba całkowita b, że f(b) > 1. Mamy f(b) > 1 > f(0), czyli na mocy gęstości funkcji f istnieje taka liczba całkowita c, że f(c) = 1. To jednak nie jest możliwe, gdyż ten przypadek przed chwilą wykluczyliśmy. Analogicznie wykazujemy, że funkcja f nie przyjmuje wartości mniejszych niż -1. Podsumowując, dla każdego całkowitego x zachodzi $|f(x)| \leq 1$.

Otrzymujemy więc dla każdej liczby całkowitej x nierówność

$$|f(2x)| > |f(2x)(1 - f(x)^2)| = |2f(x)| = 2|f(x)|,$$

co przez indukcję daje nierówności

$$|f(2^k x)| > 2^k |f(x)|$$

dla każdej liczby całkowitej dodatniej k. To natomiast wobec ograniczenia |f(x)| < 1 może być prawdziwe tylko jeśli f(x) = 0. Otrzymaliśmy więc, że dla każdej liczby całkowitej x zachodzi równość f(x) = 0. Bezpośrednio sprawdzamy, że ta funkcja spełnia warunki zadania.

Zadanie 4. Niech $m, n \ge 2$ będą liczbami całkowitymi dodatnimi, oraz niech a_1, a_2, \ldots, a_n będą liczbami całkowitymi, z których żadna nie jest wielokrotnością m^{n-1} . Pokaż, że istnieją liczby całkowite e_1, e_2, \ldots, e_n , nie wszystkie równe zero, takie że $|e_i| < m$ dla każdego i, oraz wyrażenie $e_1a_1 + e_2a_2 + \ldots + e_na_n$ jest wielokrotnością m^n .

Źródło: IMO ShortList 2002, NT5 link

Rozwiązanie 4. Rozważmy S - zbiór m^n krotek (e_1, e_2, \ldots, e_n) , gdzie $0 \le e_i < m$. Jeśli dwie z tych krotek są identyczne modulo m^n , to zadanie jest rozwiązane. Załóżmy więc, że sumy $\sum e_i a_i$ tworzą pełny system reszt modulo m^n . Niech ζ będzie pierwiastkiem pierwotnym stopnia m^n -tego z jedności. Wówczas zachodzi:

$$0 = \sum_{0 \le i < m^n} \zeta^i = \sum_{(e_1, \dots, e_n) \in S} \zeta^{\sum e_i a_i} = \prod_{i=1}^n \frac{\zeta^{ma_i} - 1}{\zeta - 1}.$$

Stąd wynika, że $\zeta^{ma_i}-1=0$ dla pewnego i, co oznacza, że $m^{n-1}\mid a_i$. To jednak stoi w sprzeczności z warunkami zadania.

Źródło: Użytkownik AoPS starchan: link

