Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

Методы измерений и электромеханические системы Отчёт по лабораторной работе \mathbb{N}^1

«Многократные прямые измерения физических величин и обработка результатов наблюдений»

Выполнила студентка:

Агеева Екатерина Дмитриевна группа: 23.C02-мм

Проверил:

к.ф.-м.н., доцент Кац Виктор Михайлович

Содержание

1	Введение				
	1.1 Решаемые задачи	4			
2	Основная часть	6			
	2.1 Теоретическая часть	6			
	2.2 Эксперимент				
	2.3 Обработка данных и обсуждение результатов				
	Таблицы				
	Описание программ				
	Графики				
3	Вывод	11			

1 Введение

Измерения физических величин всегда содержат некоторое отклонение от истинного значения, так как не существует абсолютно точных приборов и методов, поэтому важно оценивать степень точности.

Существуют разные виды погрешностей: одни возникают из-за случайных изменений условий эксперимента, другие обусловлены особенностями используемого оборудования и методик, а третьи связаны с ошибками оператора. Чтобы уменьшить влияние таких отклонений, измерения проводят многократно, получая серию значений, которые затем анализируются.

Оценка погрешности является неотъемлемой частью любого эксперимента, так как позволяет повысить точность получаемых данных и сделать выводы более обоснованными. Корректный учёт возможных ошибок в измерениях обеспечивает надёжность полученных результатов и их применимость в научных и технических исследованиях.

1.1 Решаемые задачи

- 1. Освоить методику использования измерительного прибора для многократного прямого измерения физической величины.
- 2. Выполнить простейшую статистическую обработку серии результатов наблюдений при прямых измерениях.

2 Основная часть

2.1 Теоретическая часть

При проведении физических измерений невозможно получить экспериментальные данные без отклонения от истинного значения. Погрешности измерений бывают:

- Систематические, которые возникают из-за несовершенства метода измерений или калибровки прибора. Они проявляются одинаково при каждом измерении.
- Случайные, возникающие из-за случайных факторов и не имеющие определённого направления, их можно уменьшить за счет многократных измерений.
- Грубые (промахи), которые возникают из-за ошибок экспериментатора и должны исключаться при обработке данных.

Обычно общее значение записывается в виде:

$$X = X \pm \Delta X \tag{1}$$

где X — полученное экспериментальное значение, а ΔX — приближенная погрешность измерения. Но на самом деле утверждать можно только то, что X попадает в этот диапазон только с какой-то вероятностью, и она тем выше, чем точнее проведены измерения.

При многократных измерениях получают серию значений, которая называется выборкой:

$$x_1, x_2, x_3, ..., x_n$$
 (2)

Для уменьшения влияния случайных погрешностей проводят серию измерений и вычисляют среднее арифметическое:

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 (3)

где n – количество измерений, x_i – отдельные результаты измерений. Чем больше измерений проведено, тем точнее будет полученное среднее значение.

Дисперсия (средняя квадратичная погрешность отдельного наблюдения) оценивается по формуле:

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1} (x_i - \overline{x})^2} \tag{4}$$

Средняя квадратичная погрешность среднего определяется как:

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}},\tag{5}$$

Это означает, что увеличение числа измерений помогает уточнить значение величины и уменьшить интервал, в котором с определённой вероятностью лежит значение X. Он задаётся как:

$$x = \overline{x} \pm \sigma_{\overline{x}},\tag{6}$$

2.2 Эксперимент

Блок-схема установки приведена на рис. 1. На рис. 2 и рис. 3 представлены частотомер и генератор импульсов.

Генератор сигналов передаёт на частотомер последовательность прямоугольных импульсов с заданными параметрами. Частота измеряется на двух шкалах: грубой и точной. Для измерений используется генератор импульсов Г5-15 и частотомер Ч3-32.

Рис. 1. Блок-схема установки для измерения частоты импульсов

Рис. 2. Фотография частотомера ЧЗ-32

Рис. 3. Фотография генератора импульсов

2.3 Обработка данных и обсуждение результатов

Вычисление погрешности прибора:

$$\gamma_f = \frac{\Delta_f}{\overline{f}} \cdot 100\% \tag{7}$$

$$\gamma_f = \pm (\gamma_0 + \frac{1}{(\overline{f} \cdot T)}) \cdot 100\% \tag{8}$$

Где γ_0 — основная относительная погрешность частоты, $\gamma_0=\pm 5\cdot 10^{-7};\ \overline{f}$ — среднее значение всех измеряемых частот в кГц; T — время измерения в c, T=0,1 с. на грубой шкале, T=1 с. на точной шкале.

Таблицы

В таблице 1 представлены результаты десяти измерений частоты на грубой шкале.

Было получено среднее значение измерений на грубой шкале: $\overline{f}=4.56~\mathrm{rKu}$. В ходе работы было проведено пятьдесят измерений частоты на точной шкале, однако несколько начальных значений допускали грубую погрешность и были убраны из рассмотрения и выборки. Таким образом, в таблице 2 представлены результаты сорока трёх измерений частоты на точной шкале.

Для точной шкалы была высчитана погрешность прибора: $\Delta f = 0.001002$ к Γ ц.

Таблица 1. Измерения на грубой шкале

Mo	Диапазон показаний	Результаты отдельных	Погрешность прибора
Nº	использованной	наблюдений	на данной шкале
П.П.	шкалы прибора	(f_i)	(Δf)
	(кГц)	(кГц)	(кГц)
1	$0 - 10^5$	4.56	0.0100
2	$0 - 10^5$	4.54	0.0100
3	$0 - 10^5$	4.54	0.0100
4	$0 - 10^5$	4.56	0.0100
5	$0 - 10^5$	4.56	0.0100
6	$0 - 10^5$	4.56	0.0100
7	$0 - 10^5$	4.58	0.0100
8	$0 - 10^5$	4.56	0.0100
9	$0 - 10^5$	4.58	0.0100
10	$0 - 10^5$	4.56	0.0100

Таблица 2. Результаты точных измерений

№ п.п.	Результаты отдельных наблюдений (f_i)	Случайные отклонения от среднего $(d_i = f_i - \overline{f})$	$(d_i^2 = (f_i - \overline{f})^2)$
	(кГц)	(кГц)	$(\kappa\Gamma \mathfrak{U}^2)$
1	4.542	0.001000	0.00001000
2	4.540	-0.001000	0.00001000
3	4.538	-0.003000	0.00009000
4	4.542	0.001000	0.00001000
5	4.542	0.001000	0.00001000
6	4.542	0.001000	0.00001000
7	4.540	-0.001000	0.00001000
8	4.542	0.001000	0.00001000
9	4.542	0.001000	0.00001000
10	4.542	0.001000	0.00001000
11	4.542	0.001000	0.00001000
12	4.542	0.001000	0.00001000
13	4.542	0.001000	0.00001000
14	4.544	0.003000	0.00009000
15	4.544	0.003000	0.00009000
16	4.544	0.003000	0.00009000
17	4.544	0.003000	0.000009000
18	4.544	0.003000	0.000009000
19	4.542	0.001000	0.00001000

№ п.п.	Результаты отдельных наблюдений (f_i)	Случайные отклонения от среднего $(d_i = f_i - \overline{f})$	$(d_i^2 = (f_i - \overline{f})^2)$
	(кГц)	(кГц)	$(к\Gamma ц^2)$
20	4.542	0.001000	0.00001000
21	4.540	-0.001000	0.00001000
22	4.540	-0.001000	0.00001000
23	4.542	0.001000	0.00001000
24	4.540	-0.001000	0.00001000
25	4.542	0.001000	0.000001000
26	4.540	-0.001000	0.000001000
27	4.540	-0.001000	0.000001000
28	4.540	-0.001000	0.00001000
29	4.538	-0.003000	0.00009000
30	4.540	-0.001000	0.00001000
31	4.540	-0.001000	0.00001000
32	4.540	-0.001000	0.000001000
33	4.540	-0.001000	0.00001000
34	4.540	-0.001000	0.00001000
35	4.538	-0.003000	0.00009000
36	4.540	-0.001000	0.00001000
37	4.538	-0.003000	0.00009000
38	4.540	-0.001000	0.000001000
39	4.538	-0.003000	0.00009000
40	4.538	-0.003000	0.000009000
41	4.538	-0.003000	0.000009000
42	4.542	0.001000	0.000001000
43	4.541	0	0
	\overline{f} =4.541	$\sum_{i=1}^{50} d_i = -0.006000$	$\sum_{i=1}^{50} d_i^2 = 0.0001380$

Таблица 3. Таблица распределения

№ п.п.	Границы интервалов	Количество попаданий результата в интервал (Δn)	Доля полного числа результатов, попадающих в этот интервал $(\delta n = \frac{\Delta n}{n})$
1	[4.538, 4.540)	7	0.16
2	[4.540, 4.542)	16	0.37
3	[4.542, 4.544)	15	0.35
4	[4.544, 4.546)	5	0.12

В ходе работы были высчитаны следующие величины:

Дисперсия: $\sigma = 0.001813 \text{ к}$ Гц.

Средняя квадратичная погрешность среднего: $\sigma_f = 0.0002764$ к Γ ц.

Случайная и системная погрешности имеют одинаковый порядок, поэтому можно применить следующую формулу суммарной погрешности:

$$\sigma = \sqrt{\left(\frac{\Delta f}{3}\right)^2 + \sigma_f^2} \tag{9}$$

Таким образом, суммарная погрешность: $\sigma=0,0004336$ к Γ ц. Окончательный ответ имеет вид: $f=4.541\pm0.0004336$ к Γ ц.

Описание программ

Для проведения расчётов на языке C++ были написаны программы "Rough measure" и "Precise measure", предназначенные для обработки данных с грубой и точной шкал соответственно.

Программа "Rough measure" состоит из пяти функций: in (), fx(), rel(), abs() и out(). Первая функция отвечает за ввод данных из файла "Rough measuring.csv" в массив а. Функция fx() высчитывает среднее арифметическое значение из полученных данных массива а. Функции rel() и abs() рассчитывают относительную и абсолютную погрешности с использованием формул (7) и (8) соответственно. Функция out() выводит среднее арифметическое значение и абсолютную погрешность с округлением до четырёх значащих цифр в файл "Rough result.csv".

Программа "Precise measure" построена похожим образом и берет значения для обработки из файла "Precise measuring.csv" с помощью функции in (). Функции fx(), rel() и abs() работают аналогично функциям из программы для обработки грубых значений. Функции sygma() и sygma_x() по формулам (4) и (5) соответственно высчитывают значения средней квадратичной погрешности отдельного наблюдения и средней квадратичной погрешности среднего. sum_err() по формуле (9) высчитывает значение суммарной погрешности. Функция columns() принимает массивы b и с и записывает в них значения d_i и d_i^2 для второй и третьей колонок в таблице для точных измерений. Последняя функция out() выводит значения среднего арифметического, абсолютной погрешности, дисперсии, средней квадратичной погрешности среднего, суммарной погрешности, результаты вычислений столбцов значений d_i и d_i^2 для разных измерений и их сумм в файл "Precise result.csv".

Графики

На рис. 4, рис. 5, рис. 6, рис. 7 приведены результаты работы программы gnuplot.

Рис. 4. График зависимости результатов наблюдений от времени

Рис. 5. График распределения результатов наблюдений на числовой оси

Рис. 6. Гистограмма распределения

Рис. 7. График зависимости

3 Вывод

Измерения всегда сопровождаются погрешностями, и их анализ играет ключевую роль в обработке экспериментальных данных. Я познакомилась с методикой использования измерительного прибора - частотомера ЧЗ-32 - для многократных прямых измерений. Научилась основным методам оценки точности, среди которых: вычисление среднего значения, средней квадратичной погрешности, дисперсии, построение гистограммы, графика зависимости. Количество измерений влияет на точность результата: чем больше данных, тем выше надёжность оценки измеряемой величины. Вероятностный анализ позволяет оценить вероятность попадания истинного значения в заданный интервал, что важно для корректного представления результатов измерений.

Список литературы

[1] https://github.com/st117208/Workshop1 (дата обращения: 07.03.2025)