Balanced Weighing Matrices Generalizations and Related Configurations

Thomas Pender
***Joint work with Hadi Kharaghani, Sho Suda

Department of Mathematics Simon Fraser University

Oct 24, 2023

Summary

- Preliminaries
- 2 Novel Construction of Weighing Matrices
- 3 A New Class of Balanced Weighing Matrices

Preliminaries

Section Summary

- Preliminaries
 - Weighing Matrices
 - Balanced Incomplete Block Designs
 - Balanced Weighing Matrices and Classical Constructions

Definition. Weighing Matrix

A $v \times v$ (-1,0,1)-matrix W such that

$$WW^t = kI_v$$
.

Write W(v, k).

- W(v, v) is a Hadamard matrix
- W(v, v 1) is a conference matrix

• A W(19,9):

• Verify W is a weighing matrix:

• A Hadamard matrix W(16, 16):

• A $W(2^n, 2^n)$ as the character table for elementary abelian 2-group.

Theorem. Necessary conditions for existence

If a W(v, k) exists, then

- v odd implies k a perfect square and $(v k)^2 (v k) \ge v 1$,
- $v \equiv 2 \pmod{4}$ implies k a sum of two squares, and
- v = k implies v = 1, 2, or $v \equiv 0 \pmod{4}$.

Theorem. Necessary conditions not necessarily sufficient

There does not exist a W(2v+1, v) for any v > 2.

Conjecture. Existence of Hadamard matrices

A W(4v, 4v) exists for every v > 1.

Definition: Balanced Incomplete Block Design

- A binary $v \times b$ (0,1)-matrix A such that:
 - $AA^t = rI_V + \lambda (J_V I_V), \text{ and }$
 - $2 J_{v}A = kJ_{v}.$

Write 2- (v, k, λ) -design.

• The design is symmetric if v = b (equiv. k = r).

• A symmetric 2-(7, 4, 2)-design:

$$A = \left(\begin{array}{ccccccc} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{array}\right)$$

• Verify A is a symmetric design:

$$AA^{t} = \begin{pmatrix} 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 4 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 4 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 4 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 4 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 4 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 4 \end{pmatrix}$$

Theorem. Necessary conditions for existence

A symmetric 2- (v, k, λ) -design exists only if

- $k \lambda$ a perfect square whenever ν is even, and
- the equation

$$x^{2} = (k - \lambda)y^{2} + (-1)^{(v-1)/2}\lambda z^{2}$$

has nontrivial integer solutions whenever v is odd.

Example. Necessary conditions not sufficient

A projective plane of order 10 (particular parameter family of symmetric BIBDs) is not ruled out by the Theorem (take (x, y, z) = (3, 1, 1)). It is known not to exist, however.

• The matrix is circulant:

$$A = \left(\begin{array}{cccccccc} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{array}\right)$$

 Cyclic group of automorphisms acting regularly on points and blocks of corresponding incidence structure. • Index rows/columns by $H = \langle a : a^7 = 1 \rangle$:

$$A = \begin{bmatrix} 1 & a & a^2 & a^3 & a^4 & a^5 & a^6 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ a^5 & a^6 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

- Take $A_{a^i,a^j} = A_{a^{i-j},1}$.
- 1st column is a characteristic vector for $D = \{1, a, a^2, a^4\} \subset H$.
- ith column is a characteristic vector of $D \cdot a^i$.

Definition. Difference Sets

A difference set (v, k, λ) -DS is a k-subset $D \subseteq G$ of finite group G of order v such that every nonidentity element of G appears λ times in the multiset $\{dd^{-1}: d \in D\}$ of differences (quotients) of elements of D.

Theorem. Difference sets and symmetric BIBDs

A symmetric 2- (v, k, λ) -design admits a regular group G of automorphisms if and only if the blocks of the design can be identified with the development (translates) of a (v, k, λ) -DS difference set in G.

• Consider the quotients amongst $D = \{1, a, a^2, a^4\} \subset H$:

	ı			
	1	a	a^2	a^4
1	1	a^6	a^5	a^3
а	a	1	a ⁶	a^4
a^2	a^2	a	1	a^5
a^4	a ⁴	a^3	a^2	1

• Consider the quotients amongst $D = \{1, a, a^2, a^4\} \subset H$:

	1	а	a^2	a^4	
1	1	a^6	a^5	a^3	
а	a	1	a^6	a^4	
a^2	a^2	a	1	a^5	
a^4	a ⁴	a^3	a^2	1	

• Consider the quotients amongst $D = \{1, a, a^2, a^4\} \subset H$:

	ı				
	1	a	a^2	a^4	
1	1	a ⁶	a^5	a^3	
а	a	1	a^6	a ⁴	
a^2	a^2	a	1	a^5	
a^4	a ⁴	a^3	a^2	1	

Definition. Balanced Weighing Matrices

- If W is a W(v, k), then W is balanced if |W| is the incidence matrix of a symmetric 2- (v, k, λ) -design, $\lambda = k(k-1)/(v-1)$.
- Write BW(v, k).

• Our example W(19, 9) is a BW(19, 9):

• A BW(7,4):

$$B = \begin{pmatrix} - & 0 & 0 & + & 0 & + & + \\ + & - & 0 & 0 & + & 0 & + \\ + & + & - & 0 & 0 & + & 0 \\ 0 & + & + & - & 0 & 0 & + \\ + & 0 & + & + & - & 0 & 0 \\ 0 & + & 0 & + & + & - & 0 \\ 0 & 0 & + & 0 & + & + & - & \end{pmatrix}$$

• The absolute value matrix is A.

- The BW(7,4) B is constructed from a relative difference set.
- The BW(19,9) W is not constructable from an RDS. Computationally found by Gibbons and Mathon (1987).

Definition. Relative Difference Sets

A relative difference set (m, n, k, λ) -RDS of a group G of order mn relative to a subgroup N of order n is a k-subset $R \subseteq G$ such that every nonidentity element of $G \setminus N$ appears λ times in the multiset $\{rr^{-1} : r \in R\}$ of differences (quotients) of elements of R.

• An RDS in a group G corresponds to a point regular automorphism group of a square divisible design isomorphic to G.

- Let $G = \langle a, b : a^7 = b^2 = 1 \rangle \cong C_{14}$.
- $R = \{b, a, a^2, a^4\}$ is an (8, 2, 4, 1)-RDS is G relative to $N = \{1, b\}$.

	ı				
	Ь	a	a^2	a^4	
Ь	1	ba ⁶	ba ⁵	ba ³	
а	ab	1	a^6	a ⁴	
a^2	a ² b	a	1	a^5	
a ⁴	a ⁴ b	a^3	a^2	1	

b does not appear!

- Let $G = \langle a, b : a^7 = b^2 = 1 \rangle \cong C_{14}$.
- $R = \{b, a, a^2, a^4\}$ is an (8, 2, 4, 1)-RDS is G relative to $N = \{1, b\}$.

	1				
	Ь	а	a^2	a^4	
Ь	1	ba ⁶	ba ⁵	ba ³	
а	ab	1	a^6	a ⁴	
a^2	a ² b	а	1	a^5	
a^4	a ⁴ b	a^3	a^2	1	

b does not appear!

- Let $G = \langle a, b : a^7 = b^2 = 1 \rangle \cong C_{14}$.
- $R = \{b, a, a^2, a^4\}$ is an (8, 2, 4, 1)-RDS is G relative to $N = \{1, b\}$.

	I.				
	Ь	a	a^2	a^4	
Ь	1	ba ⁶	ba ⁵	ba ³	_
а	ab	1	a^6	a ⁴	
a^2	a ² b	а	1	a^5	
a ⁴	a ⁴ b	a^3	a^2	1	

b does not appear!

- Form $a^i N$ and $a^i R$ for each $a^i \in \langle a \rangle$.
- Each $a^i N \cap a^j R = \emptyset$, $\{a^n\}$, or $\{a^m b\}$.
- Construct the 7×7 matrix B by

$$B_{a^i,a^j} = \begin{cases} 0 & \text{if } a^i N \cap a^j R = \emptyset, \\ 1 & \text{if } a^i N \cap a^j R = \{a^n\}, \text{ and } b & \text{if } a^i N \cap a^j R = \{a^m b\}. \end{cases}$$

• General construction due to Jungnickel (1982).

• Using the methods above, the following is known.

Theorem. RDS construction of BWs

There is a BW with parameters

$$\left(\frac{q^{d+1}-1}{q-1},q^d\right)$$

whenever (1) q odd and d arbitrary and (2) q and d even.

- (1) Nonlinear hyperplanes of $GF(q^{d+1})$: GF(q) due to Bose (1942).
- (2) Lifting of a "Waterloo decomposition" of classical difference sets due to Arasu, et al. (1995).

Novel Construction of Weighing Matrices

Section Summary

- 2 Novel Construction of Weighing Matrices
 - Ingredients
 - Recipie

- Equivalencies of weighing matrices (and BWs):
 - permutations of rows
 - permutations of columns
 - negation of rows
 - negation of columns
- Every weighing matrix is equivalent to one of the following form

$$\begin{pmatrix} 0 & R \\ 1 & D \end{pmatrix}$$

- R is the residual-part.
- D is the derived-part.

Definition. Simplex Code

- q a prime power and d > 0.
- ullet Form matrix G with columns given by reps. of 1-D subspaces of $GF(q^{d+1})$.
- The simplex code is $S_{q,d} = row(G)$.

Proposition. Properties

For $S_{q,d}$:

- ullet $wt(x)=q^d$ for all $x\in \mathcal{S}_{q,d}/\{oldsymbol{0}\}$, and
- $dist(x, y) = q^d$ for all $x, y \in S_{q,d}$ and $x \neq y$

- Ingredients of unifying construction:
 - A normalized W(v, q) (seed matrix) with residual-part R and derived-part D.
 - A $W((q^{d+1}-1)/(q-1), q^d)$, say W.
 - ▶ A simplex code $S_{q,d}$.

- Recipie of unifying construction:
 - ▶ Form $A = W \otimes R$.
 - ▶ Form *B* by replacing elements of $S_{q,d}$ by rows of *D*.
 - ► Then

$$\begin{pmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{1} & \mathbf{B} \end{pmatrix}$$

is a
$$W((v-1)(q^{d+1}-1)/(q-1)+1, q^{d+1})$$
.

• A seed W(8,5)

$$\begin{pmatrix} \mathbf{0} & \mathbf{R} \\ \mathbf{1} & D \end{pmatrix} = \begin{pmatrix}
0 & + & 0 & 0 & + & + & + & + & + \\
0 & 0 & + & 0 & + & - & - & + & + \\
0 & 0 & 0 & + & + & - & - & + & - \\
+ & 0 & 0 & 0 & + & + & - & - & + \\
+ & + & + & + & - & 0 & 0 & 0 \\
+ & + & - & - & 0 & 0 & 0 & + & 0 \\
+ & - & - & + & 0 & 0 & 0 & +
\end{pmatrix}$$

• A classical parameter W(6,5)

$$W = \begin{pmatrix} - & + & - & 0 & + & + \\ - & - & + & - & 0 & + \\ - & - & - & + & - & 0 \\ 0 & - & - & - & + & - \\ + & 0 & - & - & - & + \\ - & + & 0 & - & - & - \end{pmatrix}.$$

• The simplex code $S_{5,1}$ (transposed)

- Take $A = W \otimes R$.
- Take B to be the matrix formed after replacing the entries of $S_{5,1}$ by the rows of D.
- Then

$$\begin{pmatrix} 0 & A \\ 1 & B \end{pmatrix}$$

is a W(43, 25).

Theorem. (Kharaghani, et al., 2022b)

If there is a W(v,q), then there is a weighing matrix with parameters

$$\left(\frac{(v-1)(q^{d+1}-1)}{q-1}+1,q^{d+1}\right)$$

whenever:

- $\mathbf{0}$ q is odd and every d > 0, and
- \bigcirc q and d are both even.

Seed (v, k)	Succident (v', k')	Seed (v, k)	Succident (v', k')
(6,5):	(31, 25), (156, 125), (781, 625)	(16, 3):	(69, 9), (196, 27), (601, 81)
(8, 5):	(43, 25), (218, 125)	(16, 5):	(91, 25), (466, 125)
(8, 7):	(57, 49), (400, 343)	(16, 7):	(121, 49), (856, 343)
(10, 5):	(55, 25), (280, 125)	(16, 9):	(151, 81)
(10, 9):	(91, 81), (820, 729)	(16, 11):	(181, 121)
(12, 5):	(67, 25), (342, 125)	(16, 13):	(211, 169)
(12, 7):	(89, 49), (628, 343)	(18, 13):	(239, 169)
(12, 9):	(111, 81)	(19, 9):	(181, 81)
(13, 9):	(121, 81)	(20, 7):	(153, 49)
(14, 9):	(131, 81)	(20, 13):	(267, 169)
(14.13)	(183, 169)		

A New Class of BWs

Section Summary

- 3 A New Class of Balanced Weighing Matrices
 - Seed Matrix
 - Construction

• Our example *BW*(19, 9):

- Let G be a finite group not containing the symbol 0.
- For $A \subseteq G$, identify $A = \sum_{g \in A} g$ in $\mathbb{Z}[G]$.
- For $A \in \mathbb{Z}[G]$, write $A^{(h)} = \sum_{g \in G} a_g g^h$.

- Let Θ be a $v \times v$ (0, G)-matrix.
- We interpret Θ as a matrix over $\mathbb{Z}[G]$.
- Define $\Theta^{(h)}$ by $\Theta^{(h)}_{ij}$.
- Write $\Theta^* = (\Theta^{(-1)})^t$.

Definition. Balanced generalized weighing matrices

- *G* a finite group of order *n*.
- A $v \times v$ (0, G)-matrix Θ is a $BGW(v, k, \lambda; G)$ if

$$\Theta\Theta^* = (k \cdot e)I + \frac{\lambda G}{n}(J - I).$$

Theorem. Classical BGWs

- Let q be a prime power and d > 0 an integer.
- For each q and d there is a BGW with parameters

$$\left(\frac{q^{d+1}-1}{q-1}, q^d, q^d - q^{d-1}\right)$$

over C_{a-1} .

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

• A BGW(10, 9, 8; C₄):

$$\begin{pmatrix} 1 & a & 1 & a^3 & a & 0 & 1 & a & a & a \\ a^2 & 1 & a & 1 & a^3 & a & 0 & 1 & a & a \\ a^2 & a^2 & 1 & a & 1 & a^3 & a & 0 & 1 & a \\ a^2 & a^2 & a^2 & 1 & a & 1 & a^3 & a & 0 & 1 \\ a & a^2 & a^2 & a^2 & 1 & a & 1 & a^3 & a & 0 \\ 0 & a & a^2 & a^2 & a^2 & 1 & a & 1 & a^3 & a \\ a^2 & 0 & a & a^2 & a^2 & a^2 & 1 & a & 1 & a^3 \\ 1 & a^2 & 0 & a & a^2 & a^2 & a^2 & 1 & a & 1 \\ a & 1 & a^2 & 0 & a & a^2 & a^2 & a^2 & 1 & a \\ a^2 & a & 1 & a^2 & 0 & a & a^2 & a^2 & a^2 & 1 \end{pmatrix}$$

Decomposition matrices:

$$\begin{pmatrix} 1 & a & 1 & a^3 & a & 0 & 1 & a & a & a \\ a^2 & 1 & a & 1 & a^3 & a & 0 & 1 & a & a \\ a^2 & a^2 & 1 & a & 1 & a^3 & a & 0 & 1 & a \\ a^2 & a^2 & a^2 & 1 & a & 1 & a^3 & a & 0 & 1 \\ a & a^2 & a^2 & a^2 & 1 & a & 1 & a^3 & a & 0 \\ 0 & a & a^2 & a^2 & a^2 & 1 & a & 1 & a^3 & a \\ a^2 & 0 & a & a^2 & a^2 & a^2 & 1 & a & 1 & a^3 \\ 1 & a^2 & 0 & a & a^2 & a^2 & a^2 & 1 & a & 1 \\ a & 1 & a^2 & 0 & a & a^2 & a^2 & a^2 & 1 & a \\ a^2 & a & 1 & a^2 & 0 & a & a^2 & a^2 & a^2 & 1 \end{pmatrix}$$

• Decomposition matrices:

 \bullet Let Θ be a BGW with parameters

$$\left(\frac{9^{d+1}-1}{8}, 9^d, 9^d - 9^{d-1}\right)$$

over the aroup $C_4 = \langle a : a^4 = 1 \rangle$.

• Decompose Θ as

$$\Theta = \Theta_1 + a\Theta_a + a^2\Theta_{a^2} + a^3\Theta_{a^3},$$

where the Θ_i s are disjoint (0,1)-matrices.

- Apply $R_1 \mapsto -R_2 \mapsto -R_1 \mapsto R_2 \mapsto R_1$.
- Form:

$$\Theta \otimes R_1 = \Theta_1 \otimes R_1 + \Theta_a \otimes R_1^a + \Theta_{a^2} \otimes R_1^{a^2} + \Theta_{a^3} \otimes R_1^{a^3}$$
$$= \Theta_1 \otimes R_1 - \Theta_a \otimes R_2 - \Theta_{a^2} \otimes R_1 + \Theta_{a^3} \otimes R_2$$

• Form D by substituting for the elements of $S_{9,d}$ the rows of the derived part of W_{19} .

The matrix

$$\begin{pmatrix} \mathbf{0} & \Theta \otimes \mathbf{R}_1 \\ \mathbf{1} & \mathbf{D} \end{pmatrix}$$

is a balanced weighing matrix.

Theorem. (Kharaghani, et al., 2022a)

For every d > 0, there is a balanced weighing matrix with parameters

$$\left(\frac{9^{d+2}-9}{4}+1,9^{d+1}\right)$$
.

• These are signings of some of the lonin-type symmetric designs (lonin, 2001).

Why not more infinite families?

• A BGW(15, 7, 3; C₃):

• This suggests the group $C_6 \cong \langle b : b^6 = 1 \rangle$ where

• The always exists a $BGW((7^{d+1}-1)/6,7^d,7^d-7^{d-1};C_6)$. Therefore ...

Theorem. New GBRD parameter family

For every d > 0, there is a simple, quasi-residual *GBRD* with parameters

$$\left(\frac{7^{d+2}-7}{3}, 4 \cdot 7^d, 3 \cdot 7^{d-1}\right)$$

over C_3 .

Question.

Are these embeddable????

Done!