

데이터분석입문

Lecture 07. 인구 데이터와 그래프 그리기

동양미래대학교 인공지능소프트웨어학과 강 환수

목차

- ❖ 01. 인구 데이터 준비하기
- ❖ 02. bar 함수로 막대그래프 그리기
- ❖ 03. pie 함수로 원그래프 그리기
- ❖ 04. scatter 함수로 산점도 그리기

- 02. bar 함수로 막대그래프 그리기
- 03. pie 함수로 원그래프 그리기
- 04. scatter 함수로 산점도 그리기

- ❖ ① 인구 공공데이터 내려받기 (1/8)
 - 인구 데이터 수집 → 행정안전부(https://www.mois.go.kr/)

- ❖ ① 인구 공공데이터 내려받기 (2/8)
 - [정책자료] [통계] [주민등록 인구통계] 버튼 클릭

- ❖ ① 인구 공공데이터 내려받기 (3/8)
 - [연령별 인구현황] 버튼 클릭

❖ ① 인구 공공데이터 내려받기 (4/8)

- [조회기간]: 2022년 08월 ~ 2022년 08월
- [남·여 구분] 체크 해제
- [연령 구분 단위]: 1세
- 만 연령구분: 0, 100이상
- [검색] 버튼 클릭

- ❖ ① 인구 공공데이터 내려받기 (5/8)
 - [전체읍면동현황] 체크 후, [CSV 파일 다운로드] 버튼 클릭

- ❖ ① 인구 공공데이터 내려받기 (6/8)
 - 아래와 같이 경고 창이 뜨면 [확인] 버튼을 클릭하세요.

- ❖ ① 인구 공공데이터 내려받기 (7/8)
 - 파일 이름을 "age.csv"로 변경합니다.
 - 파일은 다운로드(Downloads) 폴더에 저장되어 있다고 가정하고 실습을 진행하겠습니다.

- ❖ ① 인구 공공데이터 내려받기 (8/8)
 - age.csv 파일을 열면 전국의 읍면동, 연령별 인구를 확인할 수 있습니다.

❖ ② 인구 데이터 살펴보고 질문하기

- 어느 동네에 영유아가 가장 많을까?
- 어느 동네가 가장 고령화되었을까?
- 우리 동네에 가장 많이 살고 있는 연령은 몇 살일까?
- 내 또래 사람들이 가장 많이 사는 지역은 어디일까?

❖ ③ 우리 동네 인구 구조 시각화하기

● 우리 동네의 인구 구조를 시각화 하려면 어떤 단계(또는 절차)를 거치면 될까요?

알고리즘(Algorithm) 설계하기

- ✓ Step 1) 인구 데이터 파일을 읽어온다.
- ✓ Step 2) 전체 데이터에서 한 줄씩 반복해서 읽어온다.
- ✓ Step 3) 우리 동네에 대한 데이터인지 확인한다.
- ✓ Step 4) 우리 동네일 경우 0세부터 100세 이상까지의 인구수를 순서대로 저장한다.
- ✓ Step 5) 저장된 연령별 인구수 데이터를 시각화한다.

- ❖ ④ 남·여 인구 공공데이터 내려받기 (1/8)
 - 행정안전부(https://www.mois.go.kr/) [정책자료] [통계] [주민등록 인구통계] 버튼 클릭

- ❖ ④ 남·여 인구 공공데이터 내려받기 (2/8)
 - [연령별 인구현황] 버튼 클릭

- ❖ ④ 남·여 인구 공공데이터 내려받기 (3/8)
 - [조회기간]: 2022년 08월 ~ 2022년 08월
 - [계] 체크 해제
 - [연령 구분 단위]: 1세
 - 만 연령구분: 0, 100이상
 - [검색] 버튼 클릭

- ❖ ④ 남·여 인구 공공데이터 내려받기 (4/8)
 - [전체읍면동현황] 체크 후, [CSV 파일 다운로드] 버튼 클릭

- ❖ ④ 남·여 인구 공공데이터 내려받기 (5/8)
 - 아래와 같이 경고 창이 뜨면 [확인] 버튼을 클릭하세요.

- ❖ ④ 남·여 인구 공공데이터 내려받기 (6/8)
 - 파일 이름을 "gender.csv"로 변경합니다.
 - 파일은 다운로드(Downloads) 폴더에 저장되어 있다고 가정하고 실습을 진행하겠습니다.

❖ ④ 남·여 인구 공공데이터 내려받기 (7/8)

- gender.csv 파일을 열어 봅니다
 - ◆ B~CZ열: 남성 인구수 데이터
 - ◆ DA~GY열: 여성 인구수 데이터

	CW	сх	CY	cz	DA	DB	DC	DD	DE
1	2022년08월_남_97세	2022년08월_남_98세	2022년08월_남_99세	2022년08월_남_100세 이상	2022년08월_여_총인구수	2022년08월_여_연령구간인구수	2022년08월_여_0세	2022년08월_여_1세	2022년08월_여_2세 2
2	301	240	246	414	4,887,159	4,887,159			
3	12	9	8	15	74,091	74,091	212	236	260
4	3	1	0	1	6,374	6,374	24	22	20
5	2	2	1	1	5,154	5,154	17	16	21
6	0	1	0	2	1,254				3
7	0	1	0	0	4,935				11
8	2	1	2	2	9,570				51
9	0	0	0	1	4,349		20	19	27
10	0	0	0	0	5,365			32	42
11	0	0	0	0	2,148			4	3
12	0	1	1	4	2,937			11	7
13	0	0	1	1	2,380			5	3
14	0	0	0	0	3,767			_	9
15	1	1	3	1	8,501			19	19
16	2	0	0	0	2,257			5	3
17	1	0	0	0	3,799			3	11
18	1	0	0	2	3,297				16
19	0	0	0	0	3,027			2	10
20	0	1	0	0	4,977	4,977			4
21	7	7	3	14	62,651			255	289
22	0	0	0	0	1,156			5	3
23	0	1	0	1	2,281			6	8
24	^	^	^	1	1 630	1 630	า	า	А

20

- ❖ ④ 남·여 인구 공공데이터 내려받기 (8/8)
 - 인구수 데이터와 인덱스(Index)의 관계

		남성 연령별 인구수								여성 연령별 인구수						
열 이름	지역명	총인구1	총인구2	0세	1세	(생략)	99세	100세 이상	총인구1	총인구2	0세	1세	(생략)	99세	100세 이상	
인덱스	0	1	2	3	4	•••	102	103	104	105	106	107	•••	205	206	

		남성 연령별 인구수								여성 연령별 인구수						
열 이름	지역명	총인구1	총인구2	0세	1세	(생략)	99세	100세 이상	총인구1	총인구2	0세	1세	(생략)	99세	100세 이상	
인덱스	0	1	2	3	4	•••	102	103	-103	-102	-101	-100	•••	-2	-1	

01. 인구 데이터 준비하기

03. pie 함수로 원그래프 그리기

04. scatter 함수로 산점도 그리기

- ❖ 막대그래프(Bar Graph) (1/3)
 - 각 데이터의 크기(값)를 막대의 길이로 표현한 그래프
 - bar([막대를 표시할 위치], [막대의 길이]) 함수

```
import matplotlib.pyplot as plt
plt.bar([0, 1, 2, 4, 6, 10], [1, 2, 3, 5, 6, 7])
plt.show()
```


❖ 막대그래프(Bar Graph) (2/3)

● range() 함수를 활용하면 막대를 표시할 위치를 쉽게 지정할 수 있습니다.

```
import matplotlib.pyplot as plt
plt.bar(range(6), [1, 2, 3, 5, 6, 7])
plt.show()
```


막대그래프를 수직이 아닌 수평 방향으로 그릴 수는 없을까요?

❖ 막대그래프(Bar Graph) (3/3)

● barh() 함수를 이용하여 수평 막대그래프를 그릴 수 있습니다.

```
import matplotlib.pyplot as plt
plt.barh(range(6), [1, 2, 3, 5, 6, 7])
plt.show()
```


horizon(명사) 수평선(명사) 지평선

- 01. 인구 데이터 준비하기
- 02. bar 함수로 막대그래프 그리기
- 04. scatter 함수로 산점도 그리기

❖ 원그래프(Pie Chart) (1/7)

- 원그래프는 전체 데이터 중 특정 데이터의 비율을 보기 쉽게 표현합니다.
- pie() 함수

```
import matplotlib.pyplot as plt
plt.pie([10, 20])
plt.show()
```


pie() 함수를 이용하면 쉽게 원그래프를 그릴 수 있습니다.

❖ 원그래프(Pie Chart) (2/7)

● 레이블(Label) 추가하기

```
import matplotlib.pyplot as plt

data = [10, 20, 30, 40]
name = ['A형', 'B형', 'AB형', 'O형']

plt.rc('font', family='Malgun Gothic')
plt.pie(data, labels=name)
plt.show()
```


원그래프에서는 labels에 각 항목의 이름을 입력하면 항목들의 의미를 쉽게 알아 볼 수 있습니다.

❖ 원그래프(Pie Chart) (3/7)

● 비율 및 범례 표시하기

```
import matplotlib.pyplot as plt

data = [15, 25, 35, 45]
name = ['A형', 'B형', 'AB형', 'O형']

plt.rc('font', family='Malgun Gothic')
plt.pie(data, labels=name, autopct='%.1f%%')
plt.legend()
plt.show()
```

각 항목의 비율을 표시하고 싶다면 autopct 속성의 값을 지정해주면 됩니다. autopct는 **auto p**er**c**en**t**를 의미합니다.

'%.1f%%'의 의미를 살펴보겠습니다.

- ① %는 백분율로 표현하겠다는 의미입니다.
- ② .1f는 소수점 아래 첫 번째 소수점까지 표현하겠다는 의미입니다.
- ③ %%는 표현되는 실수 뒤에 "%" 기호를 적기 위해 작성한 것 입니다.

❖ 원그래프(Pie Chart) (4/7)

● 범례 위치 조정하기

```
import matplotlib.pyplot as plt

data = [15, 25, 35, 45]
name = ['A형', 'B형', 'AB형', 'O형']

plt.rc('font', family='Malgun Gothic')
plt.pie(data, labels=name, autopct='%.1f%%')
plt.legend(loc=10)
plt.show()
```


아래의 표를 참조하여 loc에 값을 입력하면 범례의 위치를 조절할 수 있습니다.

2	9	1
6	10	5, 7
3	8	4

❖ 원그래프(Pie Chart) (5/7)

● 색 및 돌출 효과 정하기

```
import matplotlib.pyplot as plt

data = [15, 25, 35, 45]
name = ['A형', 'B형', 'AB형', 'O형']
color = ['violet', 'skyblue', 'limegreen', 'wheat']

plt.rc('font', family='Malgun Gothic')
plt.pie(data, labels=name, autopct='%.1f%%', colors=color, explode=(0, 0, 0.1, 0))
plt.legend(loc=1)
plt.show()
```


색은 colors 속성으로 설정할 수 있습니다. 돌출 효과는 explode 속성으로 설정할 수 있습니다. explode (동사) 폭발하다 (동사) 폭발시키다

- ❖ 원그래프(Pie Chart) (6/7)
 - matplotlib 라이브러리에서 사용할 수 있는 다양한 색의 이름
 - [URL] https://matplotlib.org/stable/gallery/color/named_colors.html

❖ 원그래프(Pie Chart) (7/7)

● 원그래프(Pie Chart)의 시작 각도 조정하기

```
import matplotlib.pyplot as plt

data = [15, 25, 35, 45]

name = ['A형', 'B형', 'AB형', 'O형']

color = ['violet', 'skyblue', 'limegreen', 'wheat']

plt.rc('font', family='Malgun Gothic')

plt.pie(data, labels=name, autopct='%.1f%%', colors=color, explode=(0, 0, 0.1, 0), startangle=90)

plt.legend(loc=1)

plt.show()
```


- 01. 인구 데이터 준비하기
- 02. bar 함수로 막대그래프 그리기
- 03. pie 함수로 원그래프 그리기

❖ 산점도(Scatter Plot) (1/10)

- 산점도는 가로축과 세로축을 기준으로 두 요소가 서로 어떤 관계를 맺고 있는지를 파악하기 쉽게 나타낸 그래프입니다.
- 예를 들어,
 - ◆ 가로축을 제주도 지역의 남성 인구수
 - ◆ 세로축을 제주도 지역의 여성 인구수

scatter() 함수와 colorbar() 함수를 활용하여 실습을 진행해 보겠습니다.

❖ 산점도(Scatter Plot) (2/10)

● scatter() 함수로 표현하기

```
import matplotlib.pyplot as plt
plt.scatter([1, 2, 3, 4], [10, 30, 20, 40])
plt.grid(True)
plt.show()
```


(1, 10), (2, 30), (3, 20), (4, 40) 좌표에 점이 찍히게 됩니다.

❖ 산점도(Scatter Plot) (3/10)

● 점(Point)의 크기를 지정하여 버블 차트(Bubble Chart)로 표현하기

```
import matplotlib.pyplot as plt
plt.scatter([1, 2, 3, 4], [10, 30, 20, 40], s=[100, 200, 250, 300])
plt.grid(True)
plt.show()
```


s 속성은 Size를 의미합니다. 버블의 원하는 크기를 s 속성에 지정해줍니다.

❖ 산점도(Scatter Plot) (4/10)

● 버블의 색상 지정하기

```
import matplotlib.pyplot as plt
plt.scatter([1, 2, 3, 4], [10, 30, 20, 40], s=[100, 200, 250, 300], c=['red', 'blue', 'green', 'gold'])
plt.grid(True)
plt.show()
```


c 속성은 표현하고 싶은 색상의 수를 의미합니다. 각 버블의 원하는 색상을 c 속성에 지정해 줄 수 있습니다.

❖ 산점도(Scatter Plot) (5/10)

● 컬러바(Color Bar) 추가하기

```
import matplotlib.pyplot as plt

plt.scatter([1, 2, 3, 4], [10, 30, 20, 40], s=[100, 200, 250, 300], c=range(4))

plt.grid(True)

plt.colorbar()

plt.show()
```


colorbar() 함수를 사용하면 그래프 오른쪽에 컬러바가 추가됩니다.

4가지 색상을 사용한다는 의미로 c=range(4)라고 수정하였습니다.

각 데이터는 정해진 색상 개수에 따라 해당하는 컬러바의 색을 부여 받습니다.

❖ 산점도(Scatter Plot) (6/10)

● 컬러바에 사용될 색상 지정하기

```
import matplotlib.pyplot as plt

plt.scatter([1, 2, 3, 4], [10, 30, 20, 40], s=[100, 200, 250, 300], c=range(4), cmap='jet')

plt.grid(True)

plt.colorbar()

plt.show()
```


cmap 속성은 Color Map을 의미합니다. 컬러바에 사용될 색상의 종류를 지정할 수 있습니다.

- ❖ 산점도(Scatter Plot) (7/10)
 - matplotlib 라이브러리에서 사용할 수 있는 다양한 컬러맵의 종류
 - [URL] https://matplotlib.org/stable/tutorials/colors/colormaps.html

이외에도 다양한 컬러맵이 있습니다.

❖ 산점도(Scatter Plot) (8/10)

● 위치, 크기가 서로 다른 100개의 점을 산점도로 시각화하기

```
import matplotlib.pyplot as plt
import random
\times = []
y = []
size = []
                                                                     100
for i in range(100):
    x.append(random.randint(50, 100))
                                                                      90
    y.append(random.randint(50, 100))
    size.append(random.randint(10, 100))
                                                                       80
plt.scatter(x, y, s=size)
plt.grid(True)
                                                                      70
plt.show()
                                                                      60
                                                                                              70
                                                                                                                 90
                                                                                                                          100
                                                                                                        80
```


❖ 산점도(Scatter Plot) (9/10)

● 컬러맵, 컬러바 추가하기

```
import matplotlib.pyplot as plt
import random
                                                                작은 점들이 큰 점에 가려서 잘 안 보이네요.
\times = []
                                                                             어떻게 해야 할까요?
y = []
size = []
for i in range(100):
    x.append(random.randint(50, 100))
                                                                                                                - 90
   y.append(random.randint(50, 100))
                                                                  90
                                                                                                                - 80
   size.append(random.randint(10, 100))
                                                                                                                - 70
plt.scatter(x, y, s=size, c=size, cmap='jet')
                                                                  80
                                                                                                                60
plt.grid(True)
plt.colorbar()
                                                                                                                - 50
plt.show()
                                                                  60
                                                                                                                30
                                                                  50
```

100

70

❖ 산점도(Scatter Plot) (10/10)

● 버블의 투명도 설정하기

```
import matplotlib.pyplot as plt
import random
                                                           alpha 속성값의 범위는 0부터 1까지 입니다.
0에 가까울 수록 투명해지고, 1에 가까울 수록 불투명합니다.
\times = []
y = []
size = []
for i in range(100):
                                                                                                                        - 90
    x.append(random.randint(50, 100))
   y.append(random.randint(50, 100))
                                                                                                                         - 80
    size.append(random.randint(10, 100))
                                                                                                                         70
                                                                       80
plt.scatter(x, y, s=size, c=size, cmap='jet', alpha=0.7)
                                                                                                                         60
plt.grid(True)
plt.colorbar()
                                                                                                                         50
plt.show()
                                                                                                                         40
                                                                       60
                                                                                                                        - 30
                                                                                                                         20
                                                                                                  80
```

끝맺음

- ❖ 01. 인구 데이터 준비하기
- ❖ 02. bar 함수로 막대그래프 그리기
- ❖ 03. pie 함수로 원그래프 그리기
- ❖ 04. scatter 함수로 산점도 그리기

THANK YOU! Q & A

■ Name: 강환수

■ Office: 동양미래대학교 2호관 706호 (02-2610-1941)

■ E-mail: <u>hsknag@dongyang.ac.kr</u>

Homepage: https://github.com/ai7dnn/2023-DA