Analyse

Félix Yvonnet

8 novembre 2023

1 Analyse

1.1 Rappel de topologie

Définition 1. Un espace topologique est une paire (X, \mathbb{U}) , où X est un ensemble et

 $\mathbb{U}\subset\mathcal{P}(X)$ est l'ensemble des ouverts satisfait :

- 1. \emptyset , $X \in \mathbb{U}$
- $2. \ \forall \mathcal{U} \subset \mathbb{U} \ \bigcup_{U \in \mathcal{U}} U \in \mathbb{U}$
- 3. $\forall U, V \in \mathbb{U} \ U \cap V \in \mathbb{U}$

Remarque. si $\mathcal{U}=\emptyset$ alors $\bigcup_{u\in\mathcal{U}}u=\emptyset$. En revanche l'intersection vide n'est pas définie

Remarque. Un fermé est le complémentaire d'un ouvert. Les ensembles \emptyset et X sont fermés. Les fermés sont stable par union finie et intersection quelconque. On notera $\overline{\mathbb{U}}$ l'ensemble des fermés construits par les complémentaires des ouverts de \mathbb{U} .

Définition 2. Soit $A\subset X$ où (X,\mathbb{U}) est un espace topologique. On définit l'intérieur $\overset{\circ}{A}:=\bigcup_{\substack{O\in\mathbb{U}\\O\subset A}}O$ et l'adhérence $\overline{A}:=\bigcap_{\substack{F\in\overline{\mathbb{U}}\\A\subset F}}F$

On note que
$$X \backslash \mathring{A} = \overline{X \backslash A}$$
 et $X \backslash \overline{A} = X \backslash \overline{A}$

1.2 Comparaison de topologies :

Définition 3. Soit X un ensemble muni des topologies $\mathbb U$ et $\mathbb V$. On dit que $\mathbb U$ est **plus fine** que $\mathbb V$ si $\mathbb U\supset \mathbb V$

Exemple. la topologie **discrète** définie par $\mathbb{U} = \mathcal{P}(X)$ est la topologie la plus fine sur X. la topologique la moins fine sur X est donnée par la topologie grossière : $\mathbb{U} = \{\emptyset, X\}$

Définition 4. Soit X ensemble et $\mathcal{F}_0 \subset \mathcal{P}(X)$. La topologie \mathbb{U} la moins fine (ou la plus grossière) contenant \mathcal{F}_0 est définie par :

$$\mathbb{U}_{\mathcal{F}_0} = \bigcap_{\substack{\mathcal{F}_0 \subset \mathbb{U}' \\ \mathbb{U}' \text{ topologie sur } X}} \mathbb{U}' = \{X\} \cup \{\bigcup_{\text{qcq finie}} U \mid U \in \mathcal{F}_0\}.$$

 $\mathbb{U}_{\mathcal{F}_0}$ est bien une topologie en tant qu'intersections de topologies.

Cette dernière égalité montre que la définition de topologie engendrée par une partie quelconque \mathcal{F}_0 n'est pas forcément très pratique à utiliser. C'est pourquoi on introduit la notion de base d'ouverts

Définition 5. Une base d'ouverts sur X est une partie $\mathcal{B} \subset \mathcal{P}(X)$ tq

- (couverture) $\bigcup_{U \in \mathcal{B}} U = X$
- (stabilité par intersections) $\forall U, V \in \mathcal{B}, \ \forall x \in U \cap V, \ \exists W \in \mathcal{B}$ $x \in W \subset U \cap V$

Proposition 1. Soit (X, \mathbb{U}) un espace topologique, et $\mathcal{B} \subset \mathcal{P}(X)$ une base d'ouverts de \mathbb{U} . Alors :

$$\mathbb{U}_{\mathcal{B}} = \{ \bigcup_{\text{quelconque}} U \mid U \in \mathcal{B} \}$$

Preuve. On note $A = \{ \bigcup_{\text{quelconque}} U \mid U \in \mathcal{B} \}$. On va montrer que $A = \mathbb{U}_{\mathcal{B}}$.

Dans un premier temps, par l'hypothèse de couverture de \mathcal{B} , on a bien que $X = \bigcup_{U \in \mathcal{B}} U$ qui est une union quelconque d'éléments de \mathcal{B} .

Ensuite, si $U, V \in \mathcal{B}$, on note $W_x \in \mathcal{B}$ tq $x \in W_x \subset U \cap V$ (on peut se donner un tel W_x d'après la stabilité par intersection) pour tout $x \in U \cap V$. Alors $U \cap V = \bigcup_{x \in U \cap V} W_x$. Donc les intersections d'éléments de \mathcal{B}

s'écrivent également comme union que lconque. On a montré que $\mathbb{U}_{\mathcal{B}} \subset A$, et naturellement il vient que $A \subset \mathbb{U}_{\mathcal{B}}$.

D'où le résultat. □

Exemple (topologie de l'ordre). : Soit (X, \leq) un ensemble totalement ordonné avec au moins 2 éléments. On définit une base d'ouverts par les intervalles : $]-\infty, b[,]a, b[,]a, \infty[$ pour $a, b \in X$

Preuve. Si
$$a < b \in X$$
 alors $X =]-\infty, b[\cup]a, \infty[$. De plus $]\alpha, \beta[\cap]\delta, \gamma[=]\min(\alpha, \delta), \max(\beta, \gamma)[$

Exemple (topologie produit). : $(X_i, \mathbb{U}_i)_{i \in I}$ une famille d'espace topologiques, on définit la topologie produit par la base d'ouverts : $\{\prod_{i \in I} u_i | \forall i \in I, u_i \in \mathbb{U}_i \text{ et } u_i = X_i \text{ sauf pour un nombre fini de } i \in I\}$

Exemple. Si $X_i = X, \forall i \in I$, alors $\prod_{i \in I} X = X^I$ est l'ensemble des fonctions de I dans X. La topo produit sur X^I correspond à la convergence simple. $f_n \xrightarrow[n \to \infty]{} f \Leftrightarrow \forall i \in I, \ f_n(i) \to f(i)$

1.3 Voisinages:

Définition 6 (Voisinage). Soit (X, \mathbb{U}) un espace topologique et $x \in X$. Un voisinage V de x est une partie $V \subset X$ tq $\exists U \in \mathbb{U}, \ x \in U \subset V$. De manière équivalente V est une voisinage de x si et seulement si : $x \in \mathring{V}$. On note \mathcal{V}_x l'ensemble des voisinages de $x \in X$.

Définition 7 (Caractérisation de l'adhérence). $\forall A \subset X$, On définit l'adhérence $\overline{A} = \{x \in X | \forall V \in \mathcal{V}_x, \ A \cap V \neq \emptyset\}$, l'intérieur $\mathring{A} = \{x \in X | \exists V \in \mathcal{V}_x, \ V \subset A\}$

Définition 8. une partie $W_x \subset \mathcal{V}_x$ est une **base de voisinage** ssi $\forall V \in \mathcal{V}_x, \ \exists W \in W_x, \ (x \in) \ W \subset V$. I.e. les éléments de W_x sont plus fins que \mathcal{V}_x .

Définition 9. une topologie \mathbb{U} de X est :

- 1. A base dénombrable de voisinages ssi tout point $x \in X$ admet une base dénombrable W_x de voisinage.
- 2. A <u>base dénombrable</u> si elle est engendrée par une base d'ouverts dénombrable.

Remarque. si (X,d) est un espace métrique et $x\in X$, alors $W_x=\{B(x,\frac{1}{n})\mid n\in\mathbb{N}^*\}$ est une base de voisinage dénombrable de x.

Remarque. Si (X,d) est un espace métrique admettant une suite $(x_n)_{n\in\mathbb{N}}$ dense, alors une base dénombrable d'ouverts est : $\mathbb{U}_0 = \{B(x_n,r) \mid n\in\mathbb{N} \ r\in\mathbb{Q}\}$

Preuve. \mathbb{U}_0 recouvre bien X.

Soit $x \in B(x_n, r) \cap B(x_n, s) = BB$ et $\varepsilon \in \mathbb{Q} > 0$ tq $B(x, \varepsilon) \subset BB$. Soit $k \in \mathbb{N} \text{ tq } x_k \in B(x, \varepsilon/2). \text{ Alors } x \in B(x_k, \varepsilon/2) \subset B(x, \varepsilon/2 + \varepsilon/2) = B(x, \varepsilon).$

Par le même raisonnement, U contient les voisinages arbitrairement petits de tout point. C'est donc une base d'ouverts pour les topologies de X. \square

Proposition 2 (Caractérisation séquentielle de l'adhérence). Soit (X, \mathbb{U}) à base de voisinage dénombrable. Alors $\forall A \subset X, \ \overline{A} = \{x \in X \mid \exists (x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}, \ x_n \to x\}.$

Preuve. Soit $(V_n)_{n\in\mathbb{N}}$ une base de voisinages de x, soit $x_n\in\underbrace{V_0\cap\cdots\cap V_n\cap A}_{\text{une }\cap\text{ finie de vois de }x}$

Alors $x_n \to x. (\Leftrightarrow \forall v \in V_x, \exists N, \forall n \ge N, x_n \in V)$

Remarque. Dans la dernière proposition, l'inclusion réciproque est toujours vérifiée pour un espace topologique quelconque (pas forcément à base de voisinage dénombrable).

Proposition 3. Soit (X, \mathbb{U}) un espace topologique à base dénombrable de voisinage et $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$. Alors toutes valeurs d'adhérence de (x_n) est la limite d'une sous suite.

On rappelle que
$$Adh((x_n)) = \bigcap_{N \in \mathbb{N}} \overline{\{x_n | n \ge N\}}$$
.

Preuve. on note que $Adh(x_n) = \{x \in X | \forall v \in \mathcal{V}_x, \{n \in \mathbb{N} \mid x_n \in \mathbb{N} \mid$ V} est infini}. La preuve suit comme précédemment en choisissant (V_n) base de voisinages \searrow pour l'inclusion et $x_{\sigma(n)} \in \mathcal{V}_x$ avec σ strictement croissante.

1.4 Séparation:

Définition 10. Un espace topologique est **séparé** ssi $\forall x, y \in X$, $x \neq y \Rightarrow \exists u, v \in \mathbb{U}, \ x \in u, y \in v, u \cap v = \emptyset.$ Si (X, \mathbb{U}) est séparé, alors toute suite a au plus une limite (Haussdorff, T_2).

Définition 11. Un espace (X, \mathbb{U}) satisfait l'axiome T_1 de Kolmogorov, ssi $\forall x \neq y \in X \ \exists u \in \mathbb{U}, \ x \in u \ \mathrm{et} \ y \not\in u.$

Exemple (topologie T_1 mais pas T_2). Vérifier l'axiome T_1 est moins fort que vérifier l'axiome T_2 $(T_2 \Rightarrow T_1)$.

1. N muni de la topologie cofinie : les fermés sont les ensembles finis.

2. \mathbb{C}^d muni de la topo de Zariski : les fermés ont les ensembles algébriques $F = \{x \in \mathbb{C}^* | P_1(x) = \cdots = P_n(x) = 0\} \ n \geq 0; \ P_1, \cdots, P_n \in \mathbb{C}[X]$

Exemple. La suite $(n)_{n\in\mathbb{N}}$ converge vers tous les points de \mathbb{N} pour la topo cofinie. En effet, soit $k\in\mathbb{N}$ et V un voisinage de k. Alors V contient tous les points sauf un nombre fini. Donc tous les termes de la suite à partir d'un certain rang.

De même, une suite de point qui n'est continue dans aucun ensemble algébrique propre converge vers t
t point de \mathbb{C}^d pour Zariski.

1.5 Continuité:

Définition 12. Soit (X, \mathbb{U}) un espace topologique. Une application $f: X \to Y$ est continue en $x \in X$ si et seulement si $\forall W \in \mathcal{V}_{f(x)}, \ f^{-1}(W) \in \mathcal{V}_x$. (ie $\forall W \in \mathcal{V}_{f(x)}, \ \exists V \in \mathcal{V}_x, \ f(V) \subset W$). On dit que f est continue si pour tout $x \in X, \ f$ est continue en x.

Proposition 4 (Caractérisation de la continuité d'une fonction dans un espace topologique). Soit $(X, \mathbb{U}), (Y, \mathbb{V})$ des espaces topologiques et $f: X \to Y$. Sont équivalents :

- 1. f continue
- 2. $\forall V \in \mathbb{V} \ f^{-1}(V) \in \mathbb{U}$ (l'image réciproque d'un ouvert est un ouvert)
- 3. $\forall F\in\overline{\mathbb{V}},\ f^{-1}(F)\in\overline{\mathbb{U}}.$ (l'image réciproque d'un fermé est fermé)
- 4. $\forall A \subset X, \ f(\overline{A}) \subset \overline{f(A)}$ (et donc égaux)

La composition de fonctions continues est continue, l'image par une fonction continue d'une suite convergente est convergente.

Exemple. Soit X un ensemble et $(f_i: X \to Y_i)$ une famille d'applications vers des espaces topologiques. On peut considérer la topologie la moins fine qui les rend continue. Elle est engendrée par les $\{f^{-1}(U_i) \mid i \in I, U_i \in \mathbb{U}_i\}$.

1.6 Espace métrique

Définition 13. On dit qu'une paire (X, d) est un espace métrique, avec $d: X \times X \to \mathbb{R}$ une application distance, si elle satisfait :

- 1. (Positivité) $\forall x, y \in X, \ d(x, y) \ge 0$
- 2. (Séparation) $\forall x, y \in X, \ d(x, y) = 0 \Leftrightarrow x = y.$
- 3. (Symétrie) $\forall Ax, y \in X, \ d(x, y) = d(y, x)$
- 4. (Inégalité triangulaire) $\forall x,y,z\in X,\ d(x,z)\leq d(x,y)+d(y,z)$

Définition 14. $\forall x \in X, \ \forall r > 0 \text{ on définit}:$

- $B(x,r) := \{ y \in X | d(x,y) < r \}$
- $--B'(x,r) := \{ y \in X | d(x,y) \le r \}$

Les topologies associées à un espace métrique est celle induite par la base d'ouverts $\{B(x,r)|x\in X, r>0\}$.

Remarque. Attention à ne pas confondre les deux définitions suivantes :

- (X, \mathbb{U}) est séparable $\Leftrightarrow \exists A \subset X$ dénombrable $\overline{A} = X$.
- (X, \mathbb{U}) est séparé \Leftrightarrow il satisfait l'axiome T_2 .

On peut utiliser dans un espace métrique les caractérisations séquentielles de l'adhérence et sur les fonctions continues.

Définition 15. Un module de continuité est une application $w: \mathbb{R}^+ \to [0, \infty]$, telle que $w(x) \xrightarrow[x \to 0]{} 0$

Définition 16. Soit (X, d_X) et (Y, d_Y) des espaces métriques, une fonction $f: X \to Y$ est :

- **continue** en $x \in X$ ssi il existe w_x un module de continuité tq $\forall y \in X, \ d_Y(f(x), f(y)) \leq w_x(d_X(x, y)).$
- uniformément continue ssi il existe w un module de continuité tq $\forall x, y \in X, \ d_Y(f(x), f(y)) \leq w(d_X(x, y)).$
- **Lipschitzienne** ssi $\exists C \geq 0$, $\forall x, y \in X$, $d(f(x), f(y)) \leq Cd_x(x, y)$ (w = CId).
- α -Holderienne pour $0 < \alpha < 1$ ssi $\exists C \ge 0, \ \forall x, y \in X, d_Y(f(x), f(y)) \le C d_X(x, y)^{\alpha} \ (w = C I d^{\alpha}).$

Remarque. Si w est un module de continuité,

- $\tilde{w}(r) := \sup_{0 \leq s \leq r} w(s)$ est un module de continuité croissant et $\tilde{w} \geq w$
- $\hat{w}(r) := \frac{1}{2} \int_0^{2r} \tilde{w}(s) ds$ est un module de continuité croissant et continue et $\hat{w}(r) \ge \tilde{w}(r) \ge w(r)$.

On peut toujours se ramener à un module de continuité croissant et continue

1.7 Espaces vectoriels normés (evn)

Contexte : $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}

Définition 17. une evn est une paire (E, ||.||) où E est un \mathbb{K} espace vectoriel et ||.|| est une norme sur E. La norme ||.|| satisfait :

- (Positivité) $\forall x \in E, ||x|| \ge 0$
- (Homogénéité) $\forall c \in E, \ \forall \lambda \in \mathbb{K}, \ \|\lambda x\| = |\lambda| \|x\|$
- (Inégalité triangulaire) $\forall x, y \in E, ||x + y|| \le ||x|| + ||y||$
- (Séparation) $\forall x \in E, ||x|| = 0 \Leftrightarrow x = 0$

On lui associe d(x,y) = ||x-y|| pour former la topologie associée.

Propriété 1. Soit E, F des evn, une application linéaire $u: E \to F$ est continue ssi $\exists C, \ \forall x \in E, \ \|u(x)\|_F \leq C \|x\|_E$ ie u linaire est continue ssi elle est lipschitzienne.

On note $L_c(E,F)$ l'espace vectoriel des applications linéaire et continues de $E ext{ dans } F.$

C'est un evn pour la norme $|||u|||_{L_c(E,F)} := \sup\{||u(x)||_F \mid x \in E, ||x||_E \le 1\}.$ En particulier $E^* = L_c(E, \mathbb{K})$ l'espace vectoriel des formes linéaires continues est aussi un evn.

Exemple. Soit (X, d) un espace métrique, alors $C_b(X, \mathbb{K})$, l'espace des fonctions **continues bornées** de X dans K, est un evn pour la norme $||f||_{\infty} :=$ $\sup \|f(x)\|.$

De même, pour $0 < \alpha < 1$, l'espace des fonctions α -Hölderienne (continues) bornées $C^{\alpha}_b(X)$ est un ev
n muni de la norme :

$$\|f\|_{C^\alpha_b}:=\|f\|_\infty+\|f\|_{C^\alpha} \text{ où } \|f\|_{C^\alpha}:=\sup\frac{\|f(x)-f(y)\|}{d(x,y)^\alpha}$$

Ces normes peuvent aussi s'appliquer aux fonctions Lipschitziennes.

Exemple. Soit $\Omega \subset \mathbb{R}^d$ ouvert et $n \in \mathbb{N}$. $C_b^{\alpha}(\Omega)$ [underscore b pour bornée] est un evn pour la norme ...

 $C_b^n(\overline{\Omega})$ muni de la même norme est constitué des $f \in C_b^n(\Omega)$ tq $\partial_{\alpha} f$ s'étend continuellement à $\bar{\Omega}$. [Rem : on peut montrer qu'elles admettent une extension continue a un voisinage de x].

Définition 18 (Espaces L^p). Soit (X, μ) un espace mesuré, on définit :

- $-\mathcal{L}^*(X,\mu) := \{ f : X \to \mathbb{R} \mid f \text{ mesurable} \}$
- $$\begin{split} & \mathcal{L}^p(X,\mu) := \{f: X \to \mathbb{R} \mid \int |f|^p < +\infty\} \text{ pour } p \in [1,+\infty[\\ & \mathcal{L}^\infty(X,\mu) := \{f: X \to \mathbb{R} \mid \inf_{M \ge 0} \{f \le M \ \mu\text{-p.p.}\} < +\infty\} \end{split}$$

Et la relation d'équivalence sur chacun de ces espaces : $f \sim g \Leftrightarrow f =$

De telle manière, on définit les espaces $L^p(X,\mu)$ avec :

$$L^p(X,\mu) = \mathcal{L}^p(X,\mu)/\sim$$
, et $L^\infty(X,\mu) = \mathcal{L}^\infty(X,\mu)/\sim$.

Quand le contexte ne crée pas d'ambiguïté on pourra omettre (X, μ) et noter uniquement L^p

Proposition 5. Pour $p \in [1, \infty]$, les espaces L^p sont des evn pour la norme :

$$||f||_p := \left(\int ||f||^p \right)^{\frac{1}{p}} \text{ si } p < +\infty \text{ et } ||f||_{\infty} := \inf_{M \ge 0} \{ f \le M \text{ μ-p.p.} \}$$

Preuve. Preuve pour $p < \infty$ L'homogénéité, la séparation et la positivité sont clairs.

L'inégalité triangulaire est appelée inégalité de Minkowski :

Soit $p \in [1, \infty[$, $f, g \in L^p$ On peut supposer $||f||_p > 0$, $||g||_p > 0$ (le cas $||f||_p = 0$ ou $||g||_p = 0$ se vérifiant naturellement), $||f||_p + ||g||_p = 1$. Posons $F = \frac{f}{||f||_p}$ et $G = \frac{f}{||g||_p}$. Alors $||f(x) + g(x)||_p = ||(1 - \lambda)F(x) + \lambda G(x)||$ pour $\lambda = ||g||_p$. Le module

Alors $||f(x) + g(x)||_p = ||(1 - \lambda)F(x) + \lambda G(x)||$ pour $\lambda = ||g||_p$. Le module est convexe et la fonction puissance est aussi convexe donc la composition l'est. Ainsi $||f(x) + g(x)|| \le (1 - \lambda)||F(x)||_p + \lambda ||G(x)||_p$. Donc tout va bien la suite en exercice :)

1.8 Espaces vectoriels topologiques localement convexes (evtlc)

Pour I une famille quelconque, on note $\mathcal{P}_f(I)$ l'ensemble des parties finies de I.

Définition 19. Un evtle est un \mathbb{K} -ev E muni d'une famille de semi normes $(|.|_i)_{i\in I}$. La topologie associée est définie par la base d'ouverts de la forme $U_{x,I_0}^{\varepsilon}:=\{y\in E\mid \forall i\in I_0, |x-y|_i<\varepsilon\}$ avec $x\in E,\ \varepsilon>0$ et $I_0\in\mathcal{P}_f(I)$.

Remarque. Une semi norme est une application $|.|: E \to \mathbb{R}^+$ positive et homogène, satisfaisant l'inégalité triangulaire (pas de séparation).

Remarque. .

- La topologie n'est pas automatiquement séparée.
- Tout evn est un evtl
c avec une famille $(|.|_i)_{i\in I}$ réduite à un élément ||.||.

Proposition 6. une application linéaire $u: E \to F$, avec $(E, (|.|_i^E))$ et $(F, (|.|_i^F))$ est continue ssi $\forall j \in J, \exists I_0 \in \mathcal{P}_f(I), \exists C \geq 0, \ \forall x \in E:$

$$|u(x)|_j^F \le C \sum_{i \in I_0} |x|_i^E$$

En particulier une forme linéaire $u: E \to \mathbb{K}$ est continue ssi $\exists I_0 \in \mathcal{P}_f(I), \ \exists C > 0, \ \forall x \in E \ |u(x)| \leq C \sum_{i \in I_0} |x|_i^E.$

Preuve. Supposons u continue. Soit $j \in J$, on a un voisinage de 0_F

 $W:=\{y\in E\mid |y|_j^F<1\}$. On a u(0)=0 par linéarité. Par continuité, il existe un voisinage V de 0 dans E tel que $u(V) \subset W$. V contient un élément de la base de voisinage donc $\exists \varepsilon > 0, \ \exists I_0 \in \mathcal{P}_f(I)$ tel que un élément de la base de voisinage donc $\exists \varepsilon > 0$, $U_{0_E,I_0}^\varepsilon = \{x \in E | \forall i \in I_0, \ |x|_i^E < \varepsilon\} \subset V$. On a montré que : $\forall i \in I_0, \ |x|_i^E < \varepsilon \Rightarrow |u(x)|_j^F < 1$. En particulier : $\sum_{i \in I_0} |x|_i^E < \varepsilon \Rightarrow |u(x)|_j^F < 1$. Par homogénéité : $|u(x)|_j \leq \varepsilon^{-1} \sum_{i \in I_0} |x|_i^E$.

Réciproque: Par linéarité, on peut se restreindre à montrer la conti-

On a u(0) = 0. Soit W un voisinage de 0_F . Quitte à réduire W d'après la définition de voisinage, on peut supposer que : $\exists J_0 \subset J$ fini $\varepsilon > 0, W =$ $\{y \in F | \forall j \in J_0, \ |y|_j^F < \varepsilon\} = U_{0_F,J_0}^{\varepsilon}$. Pour chaque $j \in J_0$ on dispose de $C_j \geq 0$ et $I_j \in \mathcal{P}_f(I)$ tels que :

$$\forall x \in E, \ |u(x)|_j^F \le C_j \sum_{i \in I_j} |x|_i^E$$

On pose $I_0 = \bigcup_{j \in J_0} I_j$ et $\eta = \frac{\varepsilon}{\max_{j \in J_0} (C_j)|I_0|} > 0$ et $V = \{x \in E | \forall i \in I_0, |x|_i^E < \eta\} = U_{0_E,I_0}^{\eta}$ est un voisinage de 0. Ainsi : $\forall x \in V, \ \forall j \in J_0, \ |u(x)|_j^F \le C_j \sum_{i \in I_0} |x|_i^E < C_j \eta |I_j| \le \frac{C_j \varepsilon}{\max_{l \in J_0} (C_l)|I_0|} \le \varepsilon$

$$\forall x \in V, \ \forall j \in J_0, \ |u(x)|_j^F \le C_j \sum_{i \in I_0} |x|_i^E < C_j \eta |I_j| \le \frac{C_j \varepsilon}{\max_{l \in J_0} (C_l) |I_0|} \le \varepsilon$$

Donc $u^{-1}(W) \subset V$ ce qui montre la continuité de u en 0 et donc la continuité de u

Propriété 2. Soit E un evtlc séparé muni d'une famille dénombrable de semi normes $(|.|_{n\in\mathbb{N}})$. Alors la topologie de E est métrisable pour la distance

$$d(x,y) := \sum_{n \in \mathbb{N}} \min(2^{-n}, |x - y|_n)$$

Preuve. Tout d'abord, d définit bien une distance car E est supposé séparé (voir Lemme 1 ci-dessous).

Montrons que les bases de voisinage de l'origine $(B_d(0,\varepsilon)_{\varepsilon>0})$ (pour les boules données par la distance d) et $\left(U_{0_E,I_0}^{\eta}\right)$ (où $U_{0_E,I_0}^{\eta}:=\{x\in E|\forall i\in I_0,\ |x|_i<\eta\}$), pour $I_0\in\mathcal{P}_f(I),\eta>0$ sont équivalentes.

Soit $\varepsilon > 0$ et N tq $2^{-N} < \varepsilon/3$.

On considère $V = \{x \in E | \forall n < N, |x|_n < \frac{\varepsilon}{3N} \} (= U_{0_E,[\![0,N-1]\!]}^{\varepsilon/3N})$. Alors :

$$\forall x \in V, \ d(x,0) < \sum_{n=0}^{N-1} \frac{\varepsilon}{3N} + \sum_{n=N}^{\infty} 2^{-n} = \varepsilon/3 + 2^{-N} \cdot 2 \le \varepsilon$$

Réciproquement : pour un certain voisinage de 0_E de la forme $V = \{x \in E | \forall n \in I_0, |x|_n < \varepsilon\} (= U_{0_E,I_0}^{\varepsilon})$, en notant $N = \max I_0$ et $\varepsilon' = \min(2^{-N-1}, \varepsilon)$, on a $B(0,\varepsilon') \subset V$. D'où l'équivalence des topologies.

La topologie est engendrée par la base d'ouverts : $\{y \in E | \forall i \in I_0, |x-y|_i < \varepsilon\}$ où $x \in E, I_0 \subset I$ est fini et $\varepsilon > 0$. Si on fixe x, on obtient une base de voisinage de x.

Lemme 1. Un evtlc $(E, |.|_i)$ est séparé si et seulement si :

 $\forall x \in E, \ (\forall i \in I, \ |x|_i = 0) \Rightarrow x = 0$

si et seulement si :

 $\forall x \in E \setminus \{0\}, \ \exists i \in I, \ |x|_i > 0.$

On abrège evtlc séparé en evtlcs.

Preuve. (\Leftarrow) Si il existe $x \neq 0$ tel que : $\forall i \in I, |x|_i = 0$, alors x appartient à une base de voisinage de 0. $\{y \in E | \forall i \in I_0, |y|_i < \varepsilon\}$ pour $\varepsilon > 0$ et $I_0 \in \mathcal{P}_f(I)$.

Donc l'espace n'est pas séparé.

 $z-y|_i<\varepsilon/2\}$ sont des voisinages distincts de x et y donc l'espace est séparé.

Soit $(E, |.|_i)$ un evtles muni d'une famille dénombrable de semi normes.

- On dit qu'elle est **étagée** si $\forall x \in E$, $(|x|_i)$ est croissante. On peut supposer, quitte à considérer $(|.|'_i)$ où $|x|'_i := \max_{n \le i} |x|_n$ qui définit la même topo.
- On a la base d'ouverts $B_N(x,\varepsilon) := \{ y \in E | \forall n \leq N, |y-x|_n < \varepsilon \} = \{ y \in E | |y-x|'_N < \varepsilon \}$ où $x \in E, N \in \mathbb{N}, \varepsilon > 0$.
- La topologie est métrisable pour la distance $d(x,y) = \max_{n \in \mathbb{N}} \min(2^{-n}, |x y|_n)$.

On note que $B_d(n,\eta) = \{y \in E | \forall n \in \mathbb{N}, \min(2^{-n}, |x-y|_n) < \eta\} = \{y \in E | \forall n \le |\log_2 \eta|, |x-y|_n < \varepsilon\}.$ En effet $2^{-n} \ge \eta \Leftrightarrow -n\log_2 \ge \log_2 \eta$.

On note que $B_d(x, \min(2^{-N}, \varepsilon)) \subset B_N(x, \varepsilon)$. $B_{\lfloor \log_2 \eta \rfloor}(x, \eta) \subset B_d(x, \eta)$

10

Exemple (Fonctions non bornées). Soit $\Omega \subset \mathbb{R}^d$ ouvert et (Ω_i) une suite d'ouverts tq $\bigcup_{n \in \mathbb{N}} \Omega_n = \Omega$ et $\forall n \in \mathbb{N}, \ \overline{\Omega_n} \underset{\text{partie compacte de}}{\subset} \Omega$.

Remarque. On peut poser $\Omega_n := \{x \in B(0,n) | \forall y \in \mathbb{R}^d \setminus \Omega, |x-y| > \frac{1}{n} \}.$

Pour tout $n \in \mathbb{N}, \alpha \in \mathbb{N}^d$ et $f: \Omega \to R$ assez régulière, on pose $|f|_{n,\alpha} := \sup_{x \in \overline{\Omega_n}} |\partial_{\alpha} f(x)|$ où $\partial_{\alpha_1, \dots, \alpha_d} f := \frac{\partial^{|\alpha|} f}{\partial_{\alpha_1}^{\alpha_1} \cdots \partial_{\alpha_d}^{\alpha_d}}$. Alors $\forall k \in \mathbb{N}, \left(C^k(\Omega), (|.|_{n,\alpha})_{n \in \mathbb{N}}^{|\alpha| \le k}\right)$.

Est séparé et métrisable car $\mathbb{N} \times \mathbb{N}^d$ est dénombrable.

Exemple. Classe $D(\Omega)$ des fonctions test : Soit $\Omega \subset \mathbb{R}^d$ ouvert, $D(\Omega) = \{ f \in \mathcal{C}^{\infty}(\Omega) | supp f \subset_C \Omega \}$

Pour tout $w, \eta \in C^0(\Omega, \mathbb{R}_+)$ on pose sur $f \in D(\Omega)$: $|f|_{w,\eta} := \sup_{x \in \Omega, \|\alpha\| \le \eta(x)} |w(x)| |\partial^{\alpha} f(x)|$.

Alors $D(\Omega)$ est un ouvert et evtlc :).

L'espace $D^*(\Omega)$ des formes linéaires continues sur $D(\Omega)$ est appelé espace des distributions.

des distributions.
$$\forall \varphi \in D^*(\Omega), \ \exists w, \eta \in C^0(\Omega, \mathbb{R}^+), \ \forall f \in D(\Omega), \ | \underbrace{\varphi(f)}_{\substack{\text{parfois noté} \\ <\varphi, f>_{D^* \times D}}} \leq \underbrace{C \ | f|_{w,\eta}}_{\substack{\text{En principe,} \\ C \ \text{max}_{1 \leq i \leq I} \ | f|_{w_i,\eta_i} \\ \text{mais on peut se ramener}}_{\text{à une seule}}$$

Une distribution φ est d'ordre fini $k \in \mathbb{N}$ si $\exists w \in C^0(\Omega, \mathbb{R}_+), \ \forall f \in D(\Omega), \ |\varphi(f)| \le |f|_{w,k}$.

Exemple. Distribution d'ordre fini :

- Masse de Dirac $\varphi(f) = f(0)$ est d'ordre 0
- Si $g \in L_{loc}(\Omega)$, alors $\varphi(f) := \int_{\Omega} fg$ est une distribution. Si d = 1, φ est d'ordre 1. En effet soit G une primitive de g s'annulant en 0 (si $0 \in \Omega$).

Alors
$$\int_{t_0}^{t_1} f(t)g(t)dt = [fG]_{t_0}^{t_1} - \int_{t_0}^{t_1} f'(t)G(t)dt$$
. On choisit t_0, t_1 to $supp(f) \subset [t_0, t_1]$.

Alors
$$|\varphi(f)| \le \int_{t_0}^{t_1} |f'(t)| |G(t)| dt$$
 On pose $\eta = 1, w(t) = z(t) \sup |G(s)|$ (à vérifier)

- $\varphi(f) = f'(0)$ est une distribution d'ordre 1
- $\varphi(f) = \sum_{n \in \mathbb{N}} f^{(n)}(n)$ est une distribution d'ordre ∞ avec $\eta = Id, w = Id$.
- Classe de Schwartz (compatible avec la transformée de Fourier et métrisable) : on pose pour tout $n \in \mathbb{N}$, $\alpha \in \mathbb{N}^d$, $f \in C^{\infty}(\mathbb{R}^d)$, $|f|_{n,\alpha} :=$

 $\sup_{x \in \mathbb{R}^d} (1+|x|^2)^{\frac{n}{2}} |\partial_{\alpha} f(x)|$. Toutes les dérivées décroissent plus vite que n'importe quelle paissance négative. evtlc métrisable séparable...

- La **topologie faible**: soit E un evtlc la topo faible sur E est définie par les semi normes $x \in E \mapsto |l(x)|$ où $l \in E^*$. C'est la topo la plus faible qui rend les formes linéaire continue. La séparation nécessite de construire des formes linéaires et découle du théorème de Hahn-Banach. Pas métrisable (exo) sauf en dim finie.
- La **topologie** *-faible sur E^* est définie par la famille de semi normes $l \in E^* \mapsto |l(x)|$. Elle est séparé (en effet pour $l \in E^*$ sur lequel toutes ces semi normes s'annulent alors l est la fonction nulle ie l = 0.) et pas métrisable sauf en dimension finie.

Proposition 7. Métrisabilité de la boule unité pour la topologie *-faible : Soit E un evn séparable, soit (x_n) une suite dense dans $B'_E(0,1)$ et soit $B := B'_{E^*}(0,1)$. Alors la topologie *-faible sur B est métrisable pour la distance $d(u,v) := \max_n \min(2^{-n}, |u(x_n) - v(x_n)|)$

Remarque. On pourrait remplacer B par n'importe quelle partie bornée de E^* .

Preuve. Soit $u \in B$ et un voisinage de u pour la distance $d_{|B \times B}$ de la forme $B_d(u,\eta) = \{v \in B | \forall n \leq |\log_2 \eta|, \ |u(x_n) - v(x_n)| < \varepsilon\}.$

Réciproquement : soit $u \in B$ et soit un voisinage de u pour la topologie *-faible de la forme $\{v \in B | \forall 0 \le k \le K, |u(y_k) - v(y_k| < \varepsilon\}$. On peut supposer que $\|y_k\| \le 1$ quitte à considérer y_k/α et $\varepsilon \alpha$. Soit n_0, \dots, n_K tels que $\|x_{n_k} - y_k\| \le \varepsilon/2$ avec $\alpha = \max(1, \max_{0 \le k \le K} \|y_k\|)$. Soit

 $N := \max(n_0, \dots, n_K \text{ et } \eta = \min(2^{-N}, \varepsilon/2). \text{ Alors } B_d(u, \eta) \cap B \subset \{v \in B | \forall n \leq N, |v(x_n) - u(x_n)| < \varepsilon/3\} = V. \text{ Soit } v \in V \text{ et } k \leq K \text{ alors } |v(y_k) - u(y_k)| \leq |v(y_k) - v(x_{n_k})| + |v(x_{n_k}) - u(x_{n_k})| + |u(x_{n_k}) - u(x_k)| \leq \|v\|_{E^*} \|y_k - x_{n_k}\| + |v(x_{n_k}) - u(x_{n_k})| + \|u\|_{E^*} \|y_k - x_{n_k}\| \leq 1 * \varepsilon/3 + \varepsilon/3 + 1 * \varepsilon/3 < \varepsilon \text{ donc } V \subset V_0 \text{ on a bien une base de voisinage fournie par la métrique.}$

2 Complétude

2.1 Critère de Cauchy

Définition 20. Une suite (x_n) dans un espace métrique (X,d) est de Cauchy si et seulement si :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall p, q \geq N, \ d(x_p, x_q) \leq \varepsilon$$

De manière équivalente : $d(x_p, x_q) \le \varepsilon_{\min p, q}$ avec $\varepsilon_n \xrightarrow[n \to +\infty]{} 0$.

Une suite de Cauchy:

- est toujours bornée : $d(x_0, x_n) \le \varepsilon_0$
- admet au plus une valeur d'adhérence
- si elle admet une valeur d'adhérence alors elle converge vers celle ci Toutes suites convergente est de Cauchy.

Définition 21. (X, d) est complet si et seulement si toutes suites de Cauchy converge

Lemme 2. Soit (X,d) complet, $A\subset X$ alors $(A,d_{|A\times A})$ est complet si et seulement si A est fermé

Remarque. .

- un evn complet est appelé un (espace de) Banach.
- un evtle complet pour la distance associée est appelé un (espace de) Fréchet.

Lemme 3 (Série dans un Banach). Soit (E, ||.||) un evn. Sont équivalents :

- --E est complet
- toute série absolument convergente (ie $\sum_{n=1}^{\infty} ||y_n|| < \infty$) est convergente.

Preuve. Supposons E complet. Soit (y_n) le terme général d'une série absolument convergente. On définit $x_N:=\sum_{n\leq N}y_n,\ \varepsilon_n:=\sum_{n>N}\|y_n\|$. Alors $\varepsilon_n\xrightarrow[n\to+\infty]{}0$ comme reste d'une série sommable, et $\forall p\leq q,$

 $||x_p - x_q|| = ||\sum_{r=p+1}^q y_r|| \le \sum_{r=p+1}^q ||y_r|| \le \varepsilon_p = \varepsilon_{\min p,q}$ donc les sommes partielles satisfont le critère de Cauchy donc convergent.

Réciproquement : si (x_n) de Cauchy, $||x_p - x_q|| \le \varepsilon_{\min p,q}$ où $\varepsilon_N \to 0$. Soit $(N_k)_k$ strictement croissante telle que $\varepsilon_{N_k} \le 2^{-k}$. Posons $y_k := x_{N_{k+1}} - x_{N_k}$. La série des y_k est sommable donc converge par hypothèse donc $\sum_{k < K} y_k = x_{N_k} - x_{N_0}$ converge. Donc x_n est une suite de Cauchy admettant une valeur d'adhérence donc elle est également convergente. \square

2.2 Exemple d'espaces fonctionnels complets

Exemple (Fonctions bornées). : soit (X, d) espace métrique E de Banach. Alors $C_h^0(X, E)$ est complet pour norme ∞ .

Preuve. Soit (f_n) de Cauchy. $|f_p(x) - f_q(x)| \le ||f_p - f_q||_{\infty} \le \varepsilon_{\min p,q}$. Donc $(f_n(x))$ de Cauchy et admet une limite $f_{\infty}(x)$. De plus $||f_p - f_{\infty}|| \le \varepsilon_p$. Enfin f_{∞} est continue (resp bornée) comme limite uniforme d'une suite de fonction continues.

Exemple (Espaces L^p). : soit $p \in [1, \infty]$, (X, d) espace mesuré, alors L^p est complet.

Preuve. \exists classes d'équivalences modulo égalité pp. Soit (f_n) une série sommable. Posons $S_N(x) := \sum_{n \leq N} |f_n(x)|$ et S_∞ la limite (possiblement

$$\infty$$
). Alors $\left(\int_X S_N(x)^p dx\right)^{\frac{1}{p}} = \|S_N\|_p \le \sum_{nn \le N} \|f_n\|_p \le C < \infty$. D'où

 $\int_X S_{\infty}(x)^p d\mu(x) = \lim_{X} \int_X S_N(x)^p d\mu(x) \le C^p < \infty. \text{ Par le th de convergence monotone (Boffo Levi) car } S_N(x) \searrow S_{\infty}(x). \text{ Donc } S_{\infty} < \infty \text{ pour } \mu - pp \ x. \text{ On pose alors } g_{\infty}(x) := \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On } S_{\infty}(x) = \sum_{n \in \mathbb{N}} f_n(x) \text{ qui est convergente } \mu pp \ x. \text{ On$

pose aussi $g_N(x)$ la somme partielle. Alors $|g_\infty(x)-g_N(x)| \leq \sum_{n>N} |f_n(x)|$

Exemple (Fonctions bornées). : soit $k \in \mathbb{N}$, $\Omega \subset \mathbb{R}^d$ ouvert, alors $C_b^k(\Omega)$ est un Banach pour la norme $||f|| := \sum_{|\alpha| \le k} ||\partial_{\alpha} f||_{\infty}$.

Preuve. Soit (f_n) de Cauchy et $(f_n^{\alpha}) = \partial_{\alpha} f_n$. Alors c'est aussi de Cauchy dans $C_b^0(X)$ donc ev vers f^{α} . Soit $\alpha \in \mathbb{N}^d$ avec $|\alpha| < k \ x \in \Omega, \ 1 \le i \le d$. Justifions que $\partial/\partial_{x_i} f^{\alpha}(x) = f^{\alpha + e_i}(x)$ avec e_i la base canonique. Soit p > 0tq $[x, x + pe_i] \subset \Omega$, alors $f_n^{\alpha}(x + pe_i) - f_n^{\alpha}(x) = \int_0^p f_n^{\alpha + e_i}(x + te_i)dt$ car $\frac{\partial}{\partial x_i} f_n^{\alpha} = f_n^{\alpha + e_i}.$ Par cv uniforme, on a pareil mais sans $f^{\alpha}(x + pe_i) - f^{\alpha}(x) = \int_0^p f^{\alpha}(x + te_i) dt \text{ continument dérivable } / \text{ p.}$ Finalement $||f_n - f^0|| = \sum_{|\alpha| \le k} ||\partial_{\alpha} f_n - \partial_{\alpha} f^0|| = \sum_{n \to +\infty} ||f_n^{\alpha} - f^{\alpha}|| \xrightarrow[n \to +\infty]{} 0$

$$f^{lpha}(x+pe_i)-f^{lpha}(x)=\int_0^p f^{lpha}(x+te_i)dt$$
 continument dérivable / p.

Finalement
$$||f_n - f^0|| = \sum_{|\alpha| \le k} ||\partial_{\alpha} f_n - \partial_{\alpha} f^0|| = \sum ||f_n^{\alpha} - f^{\alpha}|| \xrightarrow[n \to +\infty]{} 0$$

Exemple. Soit Ω ouvert et $(\Omega_n \neq \emptyset)$ tq $\bigcup_{n \in \mathbb{N}} \Omega_n = \Omega$ et $\overline{\Omega} \subset_C \Omega_{n+1}$. Soit $k \in \mathbb{N} \cup \{\infty\}$, alors $\left(C^k(\Omega), (|.|_{n,\alpha})_{n \in \mathbb{N}}^{|\alpha| \leq k}\right)$ est un Fréchet.

Preuve. (cas $k = \infty$). Soit (f_n) de Cauchy. Soit $k' \in \mathbb{N}$ arbitraire (on prendrait $k' \leq k$ dans le cas $k < \infty$). Alors $(f_{n|\Omega_n}$ est une suite de Cauchy de C_b . Or elle admet une limite $g_n'^k$ sur Ω_n .

Exemple. $C_b^{\infty}(\Omega)$ muni de $(\|.\|_n)_n$ où $\|f\|_n := \max_{|\alpha| \le n} \|\partial_{\alpha} f\|_{\infty}$ est Fréchet.

Proposition 8. $\mathcal{D}_k(\Omega)$ où $k \subset_C \Omega$, compact et Ω ouvert. $\mathcal{D}_K(\Omega) := \{ f \in \mathcal{D}(\Omega) | supp(f) \subset K \}$ est un espace fermé de l'ensemble initial. De plus la topologie induite sur $\mathcal{D}_K(\Omega)$ par $(\mathcal{D}(\Omega), (|.|_{w,\eta})$ et $(C_b^{\infty}(\Omega), \cdots)$ est la même.

Preuve. Fermeture : Si $f_n \xrightarrow[n \to +\infty]{} f$ avec $f_n \in \mathcal{D}_{\alpha}(\Omega)$ pour la topo C_c^{∞} alors en particulier $f_n \xrightarrow[n \to +\infty]{} f$ uniformément donc $supp(f) \subset K$.

Posons $supp(f) := \overline{\{x \in \Omega | f(x) \neq 0\}}.$

Mêmes topologies suivantes : $||f||_n \leq |f_{w,\eta}|$ en prenant $w = 1, \eta = n$. $|f|_{w,\eta}| \leq C||f||_n, \forall f \in \mathcal{D}_K(\Omega)$, en prenant $C = \max_{x \in K} w(x)$, on peut borner les semi normes d'une famille par une cte x un max d'un nombre fini de semi normes de l'autre donc les mêmes topos.

Proposition 9. Soit φ une forme linéaire sur $\mathcal{D}(\Omega)$. Sont équivalent :

- φ est continue sur $\mathcal{D}(\Omega)$, ie $\exists w, \eta \in C^{\infty}(\Omega, \mathbb{R}^+), \ \forall f \in \mathcal{D}(\Omega), \ |\varphi(f)| \leq |f|_{w,n}$
- φ est continue sur $D_K(\Omega)$ ie $\forall K \subset_C \Omega$, $\exists w_k, \eta_K \in \mathbb{R}^+ \times \mathbb{N}$, $\forall f \in \mathcal{D}_K(\Omega)$, $|\varphi(f)| \leq w_K ||f||_{\eta_K}$

De plus, φ est d'ordre fini $k \in \mathbb{N}$ ssi on peut choisir $\eta = k$, de manière équivalente, $\eta_K = k, \forall K \subset_C \Omega$.

Remarque. On dit que $\mathcal{D}(\Omega)$ est la limite inductive des $\mathcal{D}_K(\omega)$

Lemme 4 (Quelques fonctions C^{∞}). Les fonctions suivantes sont C^{∞} :

- 1. La fonction $\psi_0: \mathbb{R} \to \mathbb{R}$ $x \mapsto 0 \text{ si } x < 0, e^{-\frac{1}{x}} \text{ sinon}$
- 2. La fonction $\psi_1: x \mapsto \int_0^x \psi_0(t) \psi_0(1-t) dt$ est C^{∞} , vaut 0 sur $]-\infty,0]$ vaut une constante sur $[1,\infty[$. $H:=\frac{\psi_1}{\psi_1(1)}$ est une application de la fonction de Heaviside

- 3. La fonction $\psi_2: x \in \mathbb{R}^d \mapsto \psi_0(1-\|x\|^2)$ est C^{∞} positive, radiale, à support égal à $B'_{\mathbb{R}^d}(0,1)$. Souvent utilisée comme noyau de convolution pour régulariser les filtres.
- 4. Soit $K \subset_C U$, K compact, $U \subset \mathbb{R}^d$ ouvert. Alors $\exists \psi \in C^{\infty}(\mathbb{R}^d)$, $\psi = 1 \text{ sur } Ket \ supp(f) \subset U$

Preuve. .

- 1. Classique
- 2. facile
- 3. facile
- 4. $\forall x \in K$, soit $r_x > 0$ tq $B(x, r_x) \subset U$. On extrait un sous recouvrement fini de $K \subset \bigcup_{x \in K} B(x, \frac{r_x}{3})$, noté $K \subset \bigcup_{1 \le i \le I} B(x_i, \frac{r_i}{3})$. Posons $\varphi(x) := \sum_{1 \le i \le I} \psi_2(\frac{x x_i}{r_i/2}). \text{ Alors } \psi_2(\frac{x x_i}{r_i/2}) > 0 \text{ sur } B(x_i, \frac{r_i}{3}) \text{ et son}$

$$\varphi(x) := \sum_{1 \le i \le I} \psi_2(\frac{x - x_i}{r_i/2}). \text{ Alors } \psi_2(\frac{x - x_i}{r_i/2}) > 0 \text{ sur } B(x_i, \frac{r_i}{3}) \text{ et son}$$

support (supp) sur $B'(\cdots)$. Donc $\varphi > 0$ sur $\bigcup_{1 < i < I} B(x_i, \frac{r_i}{3}) \supset K$.

$$supp(\varphi) = \bigcup_{1 \le i \le I} B'(x_i, \frac{r_i}{3}) \subset_C U.$$

Par compacité, $\varepsilon:=\min_{x\in K}\varphi(x)$ est strictement positif. On considère finalement $\psi := H \circ \varphi$. Où $H \in C^{\infty}(\mathbb{R}, \mathbb{R}), H = 0$ sur $]-\infty, 0], H = 1$ sur $[\varepsilon, \infty[$ satisfait $supp(\psi) \subset supp(\varphi) \subset_C U$ et $\psi^{-1}([\varepsilon, \infty[) \supset \varphi^{-1}([\varepsilon, \infty[.$

Lemme 5. Soit $f, g \in C^{\infty}(\mathbb{R}^d)$, $\alpha \in \mathbb{N}^d$ alors $\partial_{\alpha}(fg) = \sum_{\beta < \alpha} {\alpha \choose \beta} \partial_{\beta} f \partial_{\alpha - \beta} g$ où $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} := \prod_{1 \le i \le d} \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix}$

Preuve. Cas où $\alpha = (n, 0, \dots, 0)$ alors $\frac{\partial^n}{\partial x_1}(fg) = \sum_{0 \le k \le n} \binom{n}{k} \frac{\partial^k}{\partial x_i^k} f \frac{\partial^{n-k}}{\partial x_i^{n-k}} g$

par récurrence immédiate.

Passage de $(\alpha_1, \dots, \alpha_{k-1}, 0 \dots, 0) = \alpha_*$ à $(\alpha_1, \dots, \alpha_k, 0 \dots, 0)$. Récurrence

sur
$$k$$
.
$$\partial_{\alpha}(fg) = \frac{\partial^{\alpha_k}}{\partial x_k^{\alpha_k}} = \sum_{\beta_* \leq \alpha_*} \binom{\alpha_*}{\beta_*} \cdots \text{ Par HR et linéarité de la dérivation.}$$

Puis on utilise $\begin{pmatrix} \alpha_0 \\ \beta_0 \end{pmatrix} \begin{pmatrix} \alpha_k \\ \beta_k \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ et le résultat tombe.

Preuve. (Critère de continuité des distributions) : Soit (Ω_n) tq $\overline{\Omega_n} \subset_C$ Ω_{n+1} , tous ouvert et formant une partition de Ω . Soit (γ_n) tq $\gamma_n \in C^{\infty}$, $\gamma_n =$ 1 sur [?,?] et $supp(\gamma_n) \subset \Omega_n$. Supp (ii : $\mathcal{D}_K(\Omega) \cdots$). Soit w_n, η_n tq

16

 $\forall f \in \mathcal{D}(\Omega), \ supp(f) \subset \overline{\Omega} \Rightarrow |\varphi(f)| \leq w_n \|f\|_{\eta_n}. \ \text{Soit} \ f \in \mathcal{D}(\Omega). \ \text{Alors}$ $f = \sum_{n \in \mathbb{N}}^{=} f(\gamma_n - \gamma_{n+1} := \beta_n) \ \text{avec} \ \gamma_{-1} = 0. \ \text{De plus cette somme a un nombre}$ fini de termes non nuls. En effet, $\exists N, \ \forall n \geq N, \ supp(f) \subset \Omega_n, \ \text{par compacité de supp}(f). \ \text{Donc} \ \forall n \geq N+1, f(\underbrace{\gamma_n - \gamma_{n-1}}_{n-1}) = 0 \ \text{Par linéarité}, \ |\varphi(f)| \leq \sum_{n \in \mathbb{N}} |\varphi(f_{\beta_n})| \leq \sum_{n \in \mathbb{N}} w_n \|f\beta_n\|_{\eta_n} \ (\text{car } supp(\beta_n) \subset \Omega_{n+1} \backslash \Omega_{n-1}) \leq \sum_{n \in \mathbb{N}} w_{n+1}$ $\sup_{\alpha \leq \eta_{n+1}, x \in \Omega_{n+1} \backslash \Omega_{n-1}} |\partial_{\alpha}(f\beta_n)(x)| \leq \sum_{n \in \mathbb{N}} \underbrace{w_{n+1}^{-1} \sup_{\text{dépend des } \|\partial_{\alpha,\beta_n}\|}_{\text{dépend des } \|\partial_{\alpha,\beta_n}\|} \sup_{n \in \mathbb{N}, \alpha \leq \eta_{n+1}, x \in \Omega_{n+1} \backslash \Omega_{n-1}} |\partial_{\alpha}f(x)| \ \text{avec } w_{n+1}^{-1} := C_{\alpha}(1+n)^{\alpha}w_{n+1}^{-1}$ $\leq |f|_{w,\eta} \ \text{où } w, \eta \ \text{vérifient } w(x) \geq w_n \ \text{si } x \notin \Omega_{n-2}, \eta(x) \geq \eta_n \ \text{si de même}.$ $\text{Par ex } w(x) = \sum_{n \in \mathbb{N}} w_n (\underbrace{1 - \gamma_{n-3}}_{\text{vaut } 1 \ \text{hors de } \Omega_{n-2}}) \qquad \square$

Exemple. Soit (X, d) un espace métrique, w un module de continuité strictement positif hors de 0. Posons $\forall f \in C_b^{\infty}(X)$,

$$|f|_{w} = \sup_{x,y \in X} \frac{|f(x) - f(y)|}{w(d(x,y))}, ||f||_{w} := |f|_{w} + ||f||_{\infty}.$$

Alors $\{f \in C_b^0(X) | ||f||_w < \infty\}$ est un Banach.

Cas particulier : fct Lipschitziennes bornées / Hölderienne bornées.

2.3 Prolongements:

Propriété 3 (Prolongement des fonctions uniformément continues). Soit X, Y des espaces métriques complets, $A \subset X$ une partie dense, $f: A \to Y$ uniformément continue. Alors f admet une unique extension continue $F: X \to Y$ (qui se trouve être uniformément continue).

Preuve. Construction: on def $f(x) := \lim f(x_n)$ où $x_n \in A$ et $x_n \to x$. $(x_n)cv \Rightarrow (x_n)$ est de Cauchy $\Rightarrow f(x_n)$ est de Cauchy $\Rightarrow f(x_n)cv$ **Bonne définition**: Si $x_n, y_n \to x, x$ alors $d(x_n, y_n) \to 0$ donc $d(f(x_n), f(y_n)) \to 0$ par uniforme continuité de f. Finalement $\lim f(x_n) = \lim f(y_n)$.

Continuité uniforme : supposons $x_n \to x, y_n \to y$ alors $d(\lim f(x_n), \lim f(y_n)) = \lim d(f(x_n), f(y_n)) \le \lim w(d(x_n, y_n)) = w(d(x, y))$. On peut supposer w continue donc le résultat tombe.

Unicité : parmi les fct continues, découle de la construction.

Remarque (Extension de Tietze). Si f uniformément continue sur $A \subset X$ qcq, on a toujours une extension à priori pas unique. OPS(on peut supposer) w croissant et sous additif. $F(x) := \inf_{y \in A} f(y) w(d(x,y))$

Remarque. En pratique X et Y sont souvent des Banach, f est une application linéaire continue de $A \subset X$ dense dans Y.

Propriété 4 (Complété d'un espace). Soit (A,d) un espace métrique. Alors il existe (X,d) métrique, complet et une injection isométrique $i_A:A\to X$ tq $Im(i_A)$ est dense dans X. De plus X est unique à isométrie près.

Preuve. Existence : $X = \{\text{suites de Cauchy de }A\}/\sim \text{où }(x_n)\sim (y_n)\Leftrightarrow d(x_n,y_n)\to 0.$

Unicité : découle du résultat d'extension précédent :

Alors $\varphi: Im(i_A) \longrightarrow Im(\tilde{i_A})$ est une isométrie sur une partie dense de $x \longmapsto \tilde{i_A}(i_A^{-1}(x))$

X donc s'étend uniquement en une isométrie de $X \to \tilde{X}$

2.4 Point fixes de Picard

Propriété 5. Soit (X,d) métrique complet, $f: X \to X$, K-lipschitzienne avec K < 1 (ie contractante). Alors f a un unique point fixe x_* . De plus $\forall x_0 \in X, \ d(x_0, x_*) \leq \frac{d(x_0, f(x_0))}{1 - K}$.

Preuve. Unicité: Si x_* et $\tilde{x_*}$ sont des points fixes, $d(x_*, \tilde{x_*}) = d(f(x_*), f(\tilde{x_*})) \le K \cdots < d(x_*, \tilde{x_*})$ donc $d(x_*, \tilde{x_*}) = 0$. Extension et estimation: soit $x_0 \in K$ puis $x_{n+1} = f(x_n)$ alors $d(x_n, x_{n+1}) \le Kd(x_{n-1}, x_n) \le K^n d(x_0, x_1)$. Ainsi pour $p \le q \cdots$ Donc (x_n) satisfait le critère de Cauchy donc cv vers une limite x_* . $d(x_N, x_*) \le K^N \frac{d(x_0, x_1)}{1 - K}$. Ainsi $d(x_*, f(x_*)) = \lim d(x_n, x_{n+1}) = 0$.

Remarque. (Stabilité) : Si f est K-lipschitzienne avec K < 1, si $||f - g||_{\infty} \le \varepsilon$ et si x_{ε} est un point fixe de g, alors $d(x_{\varepsilon},\underbrace{x_{*}}_{\text{pt fixe}}) \le \frac{d(x_{\varepsilon},f(x_{\varepsilon}))}{1-K} \le \frac{\varepsilon}{1-K}$

Théorème 1 (Cauchy Lipschitz). Soit $\Omega \subset \mathbb{R}^d$ ouvert. Soit $f: \mathbb{R}^+ \times \Omega \to \mathbb{R}^d$ continue et localement lipschitzienne en sa seconde variable ie $\forall T \geq 0, \ \forall K \subset_C \Omega, \ \exists C = C(T,K), \ \forall t \in [0,T], \ \forall x,y \in K, \ \|f(t,x) - f(t,y)\| \leq C\|x-y\|.$ Alors $\forall x \in \mathbb{R}$, il existe $t_* > 0$ et $u: [0,t_*] \to \Omega$ tq $u(0) = x_0$ et u'(t) = f(t,u(t)).

Remarque. Une propriété $P: \mathcal{P}(\Omega) \to \{\text{Vrai, Faux}\}\$ est satisfaite localement ssi tout point $x \in \Omega$ admet un voisinage $V \in \mathcal{V}_x$ tq P(V) est vrai. Si Ω est localement compact (vrai si $\Omega \subset \mathbb{R}^d$), (tt pt admet une base de voisinage compact) et $(P(A) \wedge P(B)) \Rightarrow P(A \cup B), (P(A) \wedge B \subset A)) \Rightarrow P(B)$ alors P est satisfaite localement ssi elle est satisfaite sur tout compact.

Preuve. Preuve de l'existence dans CL : Soit $r_0 > 0$ tq $B'(x_0, r_0) \subset \Omega$. Soit $t_0 > 0$ alors f est bornée par C^{∞} sur $[0, t_*] \times B'(x_0, r_0)$ et f est C_{lip} lipschitzienne sur le même intervalle.

Définissions $t_1 > 0$ tq $C_{\infty}t_1 < r_0$ et $C_{lip}t_1 < 1$. Posons $X = C^0([0, t_1], B'(x_0, r_0))$ complet. $F: X \to X$ tq $F(u) = F_u: [0, t_1] \to B'(x_0, r_0)$ avec $F_u(t) = x_0 + \int_0^{t_1} C_{\infty} ds \le t_1 C_{\infty} \le r_0$.

Caractère contractant : $\forall u, v \in X, \|F_u(t) - F_v(t)\| \le \int_0^{t_1} \|f(s, u(s)) - F_v(t)\| \le \int_0^{t_2} \|f(s,$

 $f(s,v(s))\|ds \leq \int_0^{t_1} C_{lip}\|u(s)-v(s)\|ds \leq C_{lip}t_1\|u-v\|_{\infty}$. Donc les conditions du point fixe de Picard sont réunies. F admet un point fixe qui est par contraction C^1 et par dérivation est solution du pb de Cauchy :)

Remarque. Le pt fixe de Picard implique aussi la stabilité par rapport aux conditions initiales. Cependant on le montre en général en utilisant le lemme de Gronwall, un peu plus précis

Lemme 6 (Gronwall). Soit $f \in C^0([0,T],\mathbb{R}^+)$ et $A,B \ge 0$ tq $\forall t \in [0,T], \ f(t) \le A\underbrace{\int_0^t f(s)ds}_{=:F(t)} + B$. Alors $f(t) \le Be^{-At}$.

Preuve. On a $F'(t) = Af(t) \le AF(t)$ donc $\left(F(t)e^{-At}\right)' = \left(F' - AF\right)e^{-At} \le 0$. Donc $F(t)e^{-At}$ est décroissante en t. Donc $F(t)e^{-At} \le F(0) = B$. Donc $f(t) \le F(t) \le Be^{-At}$

Propriété 6 (Stabilité dans CL). Sous les hypothèses $f: R \times \Omega \to \mathbb{R}^d$ continue, localement lipschitzienne selon la seconde variable. Soit $u,v \in C^1([0,T],K)$ solution de u'(t)=f(t,u(t)) où $K\subset_C \Omega$. Alors $\|u(t)-v(t)\| \le e^{Ct}\|u(0)-v(0)\|$ avec C=C(T,K) constante de Lipschitz.

Preuve.
$$\|u(t) - v(t)\| = \|\int_0^t (u'(s) - v'(s))ds + (u(0) - v(0))\| \operatorname{car} u(t) = u(0) + \int_0^t u'(s)ds$$
. Donc $\leq \|\int_0^t (f(s, u(s)) - f(s, v(s)))ds\| + \underbrace{\|u(0) - v(0)\|}_{=:B}$

$$\leq \overbrace{C}^{A}\int_{0}^{t}\|u(s)-v(s)\|ds+B$$
le résultat s'obtient par Gronwall appliqué à $u-v.$

Exemple (EDO avec retard). Il existe une unique solution $\nu \in C^1([0,1],\mathbb{R})$

Preuve. On cherche un point fixe de $F: X \to X$ définit comme avant. |F_u(t)| \le 1 + \int_0^\frac{1}{2} 4 = 3 \text{ donc } F \text{ bien def et } F_u \text{ positive.} |F_u(t) - F_v(t)| \le \int_0^\frac{1}{2} |u(t - t^2) - v(t - t^2)| dt \le \frac{1}{2} ||u - v||_\infty

$$|F_u(t) - F_v(t)| \le \int_0^{\frac{1}{2}} |u(t - t^2) - v(t - t^2)| dt \le \frac{1}{2} ||u - v||_{\infty}$$

Exemple. Soit $k \in C^0([0,1]^2,]-1,1[)$ et $\varphi \in C^0([0,1],\mathbb{R})$ alors il existe une unique sol de $u(t) = \int_0^1 \underbrace{k(s,t)}_{1+u^2(s)} \underbrace{\frac{u(s)}{1+u^2(s)}}_{r\mapsto \frac{r}{1+r^2}} ds$. D'où $|F_u(t)-F_u(t)|$

 $|F_v(t)| \leq K||u-v||_{\infty}$ et F est contractante sur cette topologique.

2.5 Théorème de Baire

Lemme 7 (Fermés emboités). Soit (X, d) un espace métrique complet et (F_n) une suite de fermés de X tq $F_{n+1} \subset F_n$ et $diam(F_n) \to 0$. $diam(F_n) :=$ $\sup_{x,y\in F_n}d(x,y). \text{ Alors } \bigcap_{n\in\mathbb{N}}F_n=\{x_*\} \text{ pour un certain } x_*\in X.$

Preuve. Soit $x_n \in F_n$ arbitraire. Alors $\forall N, \ \forall p, q \geq N, \ d(x_p, x_q) \leq diam(F_N)$. donc (x_n) est de Cauchy. Sa limite x_* appartient à chaque disque F_n par fermeture donc $x_* \in \cap F_n$. De plus si $y_* \in \cap F_n$ alors $\forall n, d(x_n, y_*) \leq$ $diam(F_n) \to 0 \text{ donc } x_* = y_*.$

Théorème 2 (Baire). Soit (X, d) mesuré et (U_n) une suite d'ouverts denses. Alors $\bigcup U_n$ est dense.

Preuve. Soit $x_0 \in X$, $\varepsilon_0 > 0$ arbitraire. $B(x_0, \varepsilon_0)$, rencontre U_0 par densité en un point x_1 . Soit ε_1 tq $\varepsilon_1 \leq \varepsilon_0/2$ et $B'(x_1, \varepsilon_1) \subset U_0 \cap B(x_0, \varepsilon_0)$ qui est

On construit alors par récurrence $x_{n+1} \in B(x_n, \varepsilon_n) \cap U_n$ vérifiant $\varepsilon_{n+1} \le$ $\varepsilon_n/2$ et $B'(x_{n+1},\varepsilon_{n+1})\subset U_n\cap B(x_n,\varepsilon_n)$. Or $B'(x_{n+1},\varepsilon_{n+1})$ suite de fermés emboités de diamètre $\leq 2\varepsilon_n \to 0$.

Soit $x_* \in \bigcap_{n \in \mathbb{N}} B'(x_n, \varepsilon_n)$ par th
 des fermés emboités, alors $\forall n \in \mathbb{N}, \ x_* \in B'(x_{n+1}, \varepsilon_{n+1}) \subset U_n$. Donc on a bien la densité de $\cap U_n$.

Exemple. Soit (q_k) une énumération de \mathcal{O} posons $U_x := \bigcup]q_k - \frac{1}{nk^2}, q_k + \frac{1}{nk^2}[$ Alors $Leb(U_n) \leq \sum_{k \geq 1} \frac{2}{nk^2} = \frac{\pi^2}{3n}.$ Ainsi $\bigcap U_n$ est une intersection d'ouverts denses mais de mesure nulle.

Corollaire. Soit (γ, d) un espace métrique complet et (F_n) une suite de fermé d'intérieur vide. Alors $\bigcup_{n\in\mathbb{N}} F_n$ est d'intérieur vide.

Terminologie de Baire

- Une intersection dénombrable d'ouverts est un G_{δ}
- Une union dénombrable de fermés est un F_σ
- Un ensemble qui contient un G_{δ} dense est dit gras
- Un ensemble contenu dans un F_{σ} d'intérieur vide est dit maigre

Remarque. Soit (X, d) un espace métrique complet et sans points isolés. Alors tout ensemble A gras est indénombrable.

Preuve. Soit $x \in X$. Alors $\{x\}$ est fermé (car x n'est pas un point isolé) et d'intérieur vide. Donc $X \setminus \{x\}$ est un ouvert dense. Si par l'absurde A est dénombrable, alors $A \cap \left(\bigcap_{x \in A} X \setminus \{x\}\right)$ contient une intersection dénombrable d'ouvert denses donc est dense par Baire. Contradiction!

2.6 Applications de Baire aux opérateurs linéaires continus.

Théorème 3 (Banach-Steinhaus). Soit E un Banach, F un evn et $A \subset L_c(E,F)$ un ensemble d'applications linaires continues. Si A est simplement borné (ie $\forall x \in E$, $\sup_{u \in A} \|u(x)\|_F < \infty$) alors A est uniformément borné (ie $\sup_{u \in A} \|u\| \| < \infty$, ie on peut choisir $C(x) := \sup_{u \in A} \|u\| \|x\|_E$).

Preuve. (via Baire) Pour tout $k \in \mathbb{N}$, posons $E_k := \{x \in E \mid \forall u \in A, \|u(x)\|_F \leq k\}$. C'est un fermé, comme intersection de fermés. Par hypothèse, $\bigcup_{k \in \mathbb{N}} E_k = E$, car $x \in E_k$ dès que $k \geq C(x)$. Donc par Baire,

l'un au moins des E_k est d'intérieur non vide. Disons $B(x,r) \subset E_k$, pour un certain $x \in E, k \in \mathbb{N}$. Par symétrie, $B(-x,r) \subset E_k$. Par continuité,

 $B(0,r)\subset E$ (car $\|u(k)\|\leq \frac{\|u(x+k)\|+\|u(-x+k)\|}{2}$). On en déduit $\forall y\in B(0,x),\ \forall u\in A,\ \|u(y)\|\leq k.$ Donc $\forall u\in A,\ \|u\|\leq \frac{k}{r}.$ Comme annoncé.

Corollaire. Soit E, F des Banach et $u_n \in L_c(E, F)$. On suppose $u_n(x) \xrightarrow[n \to +\infty]{} u(x)$ pour tout $x \in E$. Alors u est linéaire continue. (ie Une limite simple de fonctions linéaire continues est linéaire continue.)

Preuve. La linéarité de u découle de la limite simple : $u(\lambda x + y) = \lim u_n(\lambda x + y) = \lim \lambda u_n(x) + u_n(y) = \lambda u(x) + u(y)$. La suite (u_n) est simplement bornée, en effet $\forall x \in E$, $(u_n(x))$ est convergente donc bornée. Par Banach-Steinhaus $||u_n|| \le C_* ||x||$. Donc $||u(x)|| = \lim_{n \to \infty} \underbrace{||u_n(x)||}_{\le ||u_n|| |||x||} \le C_* ||x||$ donc u est continue.

Corollaire. Soit E un Banach et $A \subset E^*$ simplement borné (ie $\forall x \in E, |l(x)|_{l \in A}$ est borné) "faiblement borné". Alors A est uniformément borné (ie ($||l||_{E^*}$) est borné)

Preuve. Prendre $F=\mathbb{K}$ le corps de base ($\mathbb{K}=\mathbb{R}$ ou \mathbb{C}) et appliquer Banach-Steinhaus

Remarque. Il y a une version duale de ce résultat mais les preuves nécessitent le théorème de Hahn-Banach

Exemple. Il existe $f \in C^{(\Pi,\mathbb{C})}$ donc la série de Fourier diverge en 0. $\Pi := \mathbb{R}/_{2\pi\mathbb{Z}} = [0, 2\pi[$. On a $L_N(f) := \frac{1}{2\pi} \sum_{|n| \leq N} \int_0^{2\pi} f(t) e^{-int} dt$, alors $\exists f \in C^0$, $\exists \varphi$ extractrice telle que $|L_{\varphi(n)}(f)| \to \infty$.

Preuve. On a

$$L_N(f) = \int_0^{2\pi} f(t) \underbrace{\sum_{|n| \le N} e^{-int}}_{D_n(t)} dt$$

$$D_n(t) = e^{-iNt} \frac{1 - e^{i(2N+1)t}}{1 - e^{it}}$$

$$= \frac{\sin(\frac{1}{2}(2N+1)t)}{\sin(\frac{1}{2}t)}.$$

On munit C^0 de $\| \|_{\infty}$ qui en fait un complet.

Donc $||D_n|| = \sup_{\|f\|_{\infty} \le 1} \int_0^{2\pi} f(t) D_n(t) dt = \int_0^{2\pi} |D_n(t)| dt$ en appliquant le signe de D_n .

$$|||L_N||| = \int_{-\pi}^{\pi} \frac{/|\sin\left(\frac{1}{2}(2N+1)t\right)}{|\sin\frac{t}{2}|} dt$$

$$\geq \int_{-\pi}^{\pi} |\sin\left((2N+1)\frac{t}{2}\right)| \frac{dt}{t} \qquad \text{car } |\sin t| \leq |t|$$

$$= 2\int_{0}^{2N+1)\frac{\pi}{2}} |\sin s| \frac{ds}{s} \qquad \text{par symétrie}$$

. Diverge car $\int_0^\infty \frac{|\sin s|}{s} ds = \infty$. (découper l'intégrale selon $\bigcup_{k \in \mathbb{N}} [k\pi, (k+1)\pi]$

Ainsi ($||L_n||$ est bien bornée. Donc par contraposée de Banach-Steinhaus $\exists f \in E = (C^0(\Pi, \mathbb{C}), ||.||_{\infty}), \sup_{n \in \mathbb{N}} |L_n(f)| = \infty.$

Théorème 4 (Banach-Steinhaus dans les Fréchets). Soit $(E,(|.|_n))$ et $(F,(|.|'_n))$ des Fréchets et $A \subset L(E,F)$ une famille d'applications linéaires continues. Si A est simplement borné, i.e. $\forall x \in E, \ \forall m \in \mathbb{N}, \ \sup_{u \in A} |u(x)|_m < \infty$. Alors A est équicontinue ie $\exists w$, module de continuité $\forall x,y \in E, \ d_F(u(x),u(y)) \leq w(d_E(x,y))$.

Preuve. Soit $m \in \mathbb{N}$ fixé. Posons $E_k := \{x \in E \mid \forall u \in A, \ |u(x)|_m' \leq k\}$. Alors E_k est fermé et comme avant on a l'union fait l'ensemble non vide. Par Baire il y a un E_k non d'intérieur vide. Par symétrie et continuité il continent un voisinage de 0. Donc $\exists N(m), r > 0, \ \{x \in E \mid \forall n \leq N(m), \ |x|_n < r\} \subset E_k$. On en déduit $|u(x)|_m' \leq \frac{k}{r} \max_{n \leq N(m)} |x|_m$. Noter que $\frac{k}{r}$ et N(m) sont indépendant de $u \in A$. On en déduit l'équicontinuité en 0 puis en tout point par linéarité. Rappelons $d_F(x,y) = \max_{m \in \mathbb{N}} \min(2^{-m}, |x-y|_m')$ et $d_E(x,y) = \max_{m \in \mathbb{N}} \min(2^{-m}, |x-y|_m)$.

Théorème 5 (Application ouverte, Banach). Soit E, F Banach et $u \in L_c(E, F)$ surjective. Alors u est ouverte, ie $\underline{u(O)}$ est un ouvert dans F pour tout ou-

vert O de E.

Ou, de manière équivalente :

- 2. $\exists C, \ \forall y \in F, \ \exists x \in E, \ y = u(x) \text{ et } ||x|| \le C||y||$
- 3. $\exists r > 0, \ B_F(0,r) \subset u(B_E(0,1)).$

Preuve. .

 $1 \Rightarrow 3 \ u(B_E(0,1))$ est un ouvert car image d'un ouvert et continent 0 donc continent un voisinage de 0 dans F.

 $3 \Rightarrow 1$ Soit U ouvert de E et $x \in U$. Soit $\varepsilon > 0$ tq $B_E(x, \varepsilon) \subset U$. Alors

$$u(U) \supset u(B_E(x,\varepsilon))$$

$$= u(x) + \varepsilon u(B_E(0,1))$$

$$\supset u(x) + \varepsilon B_F(0,r)$$

$$= B_F(u(x), \varepsilon r)$$

. $3 \Rightarrow 2$ Soit $y \in E \setminus \{0\}$, alors $\frac{y}{\|y\|} \frac{r}{2} \in B(0, r)$. Donc $\frac{y}{\|y\|} \frac{r}{2} = u(x_*)$ pour un $x_* \in B(0, 1)$. Donc $y = u(\underbrace{\frac{2}{r}\|y\|x_*)}_{x}$ et $\|x\| \le \frac{2}{r}\|y\|$.

 $2 \Rightarrow 3$ Soit $r = \frac{1}{C}$, si $y \in B(0, r)$, alors $\exists x \in B(0, 1), \ y = u(x)$.

Preuve du point 2 à partir des hypothèses. Par surjectivité, $\bigcup \overline{u(B_E(0,n))} = F$.

Par Baire, $\exists n, \ \overline{u(B_E(0,n))}$ est d'intérieur non vide. Par symétrie et continuité, $\exists r > 0$, $B_F(0,r) \subset \overline{u(B_E(0,n))}$. Donc $\forall y \in B_F(0,r), \ \forall \varepsilon > 0$, $\exists x \in$ B_E(0, n), $||y - u(x)|| < \varepsilon$. Par homogénéité $\forall y \in F, \forall \varepsilon > 0, \exists x \in E, ||y - u(x)|| < \varepsilon$ et $||x||_E \le C||y||_F$ pour $C = \frac{2n}{r}$. Soit $y_0 \in F \setminus \{0\}$ dont on veut construire un antécédent. On choisit $x_0 \in E$

tq $||x_0|| \le C||y_0||$ et $||y_0 - u(x_0)|| \le \frac{||y_0||}{2}$. On pose $y_1 = y_0 - u(x_0)$. OPS $y_1 \ne 0$ sinon on a bien un antécédent. Par récurrence on construit $(y_n), (x_n)$ tq $||x_n|| \le C||y_n||$ et $||y_n - u(x_n)|| \le ||y_n||/2$. On a $y_{n+1} = y_n - u(x_n)$. Alors

 $||y_n|| \le 2^{-n}||y_0||$ par récurrence et $||x_n|| \le C_2^{-n}||y_0||$. Or $\sum_{n=0}^{\infty} x_n \to x_*$ par complétude de E. Par ailleur

$$y_n = y_{n-1} - u(x_{n-1})$$

= $y_{n-2} - u(x_{n-1} + x_{n-2})$
...

$$= y_0 - u(\sum_{k < n} x_k).$$

Donc
$$||y_0 - u(\sum_{k < n} x_k)|| = ||y_n|| \to 0$$
 et $\to ||y_0 - u(x_*)||$. On en conclut $y_0 = u(x_*)$ et $x_* \le \sum_{n=0}^{\infty} ||x_n|| \le \sum_{n=0}^{\infty} C_2^{-n} ||y_0|| \le 2C ||y_0||$.

Corollaire (Isomorphisme de Banach). Si E, F est de Banach et $u \in L_c(E, F)$ bijective, alors $u^{-1} \in L_c(F, E)$

Preuve. u^{-1} est linéaire comme inverse d'une application linéaire. Montrons qu'elle est continue. Si $U \subset E$ est ouvert alors $(u^{-1})^{-1}(U) = u(U)$ est ouvert par th de l'application ouverte, ce qui conclut (u est bijective donc surjective).

Corollaire. Soit E un espace vectoriel muni de $\|.\|$ et $\|.\|'$ tq $(E, \|.\|)$ et $(E, \|.\|')$ sont complets. Supposons $\exists C, \ \forall x \in E, \ \|x\|' \le C\|x\|$. Alors $\exists c > 0, \ \forall x \in E, \ \|x\|' \ge c\|x\|$ (équivalence des normes).

Preuve. L'application $Id: (E, \|.\|) \to (E, \|.\|')$ est continue car $\|Id(x)\|' = \|x\|' \le C\|x\|$ pour tout $x \in E$ et bijective. Par le corollaire isomorphisme de Banach, $Id^{-1}: (E, \|.\|') \to (E, \|.\|)$ est continue ie $\|Id^{-1}(x)\| = \|x\| \le \tilde{C}\|x\|'$. On pose $c = \frac{1}{\tilde{C}}$.

Théorème 6 (Graphe fermé). Soit E, F de Banach et $u: E \to F$ linéaire. Sont équivalent :

- u est continue
- $--\mathcal{G}(u) := \{(x, u(x)) \in E \times F \mid x \in E\} \text{ est ferm\'e}$

Preuve. On rappel que $E \times F$ est un Banach pour la norme $\|(x, f)\|_{E \times F} := \|x\|_E + \|y\|_F$.

- $1 \Rightarrow 2 \ \mathcal{G}(u) = \{(x,y) \in E \times F \mid y u(x) = 0\}. \text{ Or } \varphi : \frac{E \times F \longrightarrow F}{(x,y) \longmapsto y u(x)}$ est continue donc $\mathcal{G}(u) = \varphi^{-1}(\{0_F)\}$ est fermé.
- $2\Rightarrow 1$ $\mathcal{G}(u)$ est un sous espace vectoriel fermé de $E\times F$ donc c'est un Banach pour la norme $\|.\|_{E\times F}.$ De plus l'application $\varphi: \begin{matrix} \mathcal{G}(u)\times F\longrightarrow E\\ (x,u(x))\longmapsto x\end{matrix}$ est linéaire, continue et bijective. (on aurait aussi pu faire avec équivalence des normes) Par l'isomorphisme de Banach, φ^{-1} est continue. Donc $\|x\|+\|u(x)\|=\|\varphi^{-1}(x)\|\leq C\|x\|.$ Finalement $\|u(x)\|\leq (C+1)\|x\|.$

3 Compacité

3.1 Caractérisation topologique

Définition 22 (Axiome de Borel-Lebesgue). Un espace topologique (X, \mathbb{U}) est dit compact si :

- ---X est séparé
- Pour tout $\mathcal{U}\subset \mathbb{U}$ tel que $\bigcup_{U\in\mathcal{U}}U=X,$ il existe $\mathcal{U}_0\in\mathcal{P}_f(\mathcal{U})$ tel que

 $\bigcup U = X$. (De toute couverture de X par des ouverts, on peut extraire une sous couverture finie).

Remarque.

$$\bigcup \mathcal{U} = \{ x \in X \mid \exists A \in \mathcal{U}, \ x \in A \}$$
$$= \bigcup_{A \in \mathcal{U}} A$$

Remarque. On pouvait considérer les familles d'ouverts. Si $X = \bigcup U_i$ avec

 U_i ouvert alors $\exists I_0 \subset I, \ I_0$ fini et tq $\bigcup_{i \in I_0} U_i = X$.

Remarque (Intersection de fermés). Soit (X, \mathbb{U}) compact. Si $(F_i)_{i \in I}$ est une famille de fermés de X tq $\bigcap_{i \in I} F_i = \emptyset$, alors $\exists I_0 \subset I$, I_0 fini et $\bigcap_{i \in I_0} F_i = \emptyset$. En particulier, si (F_n) est une suite de fermés emboités non vides alors

 $\bigcap F_n \neq \emptyset.$

Lemme 8. Soit (X, \mathbb{U}) espace topologique séparé et $F \subset X$ compact. Alors F est fermé.

Preuve. Par contraposée, on suppose F non fermé et on va montrer qu'il n'est pas compact.

Comme F non fermé, il existe $x \in \overline{F} \backslash F$. Soit $y \in F$, V_y et W_y des ouverts disjoints tq $x \in V_y$ et $y \in W_y$. On a $F = \bigcup_{y \in F} W_y$. Si par l'absurde il existe $F_0 \subset F$ fini tel que $F = \bigcup_{y \in F_0} W_y$, alors l'ensemble $V_* = \bigcap_{y \in F_0} V_y$ est un

ouvert (comme intersection finie d'ouverts) qui continent x et n'intersecte aucun W_y pour $y \in F_0$.

On a donc trouvé V ouvert tq $x \in V$ et $V \cap F = \emptyset$. Cela contredit l'hypothèse que $x \in \overline{F} \backslash F$ (tout ouvert contenant x doit rencontrer F).

Corollaire. Soit (X, \mathbb{U}) compact et $F \subset X$. F fermé $\Leftrightarrow F$ compact.

Preuve. \Leftarrow Voir la preuve précédente (note que compact \Rightarrow séparé).

 \Rightarrow Soit $(U_i)_{i\in I}$ une couverture de F par des ouverts. Alors

$$X = \left(\bigcup_{i \in I} U_i\right) \cup \underbrace{(X \backslash F)}_{\text{ouvert}}. \text{ Donc } \exists I_0 \subset I, \ I_0 \text{ fini et } X = \left(\bigcup_{i \in I_0} U_i\right) \cup$$

$$(X \backslash F)$$
. Donc $F \subset \bigcup_{i \in I_0} U_i$.

Lemme 9. Soit $(X, \mathbb{U}), (Y, \mathbb{V})$ des espaces topologiques séparés. Alors pour $f: X \to Y$ continue, et $K \subset_C X$, f(K) est un compact.

Preuve. Soit
$$(U_i)_{i\in I}$$
 tq $f(K) \subset \bigcup_{i\in I} U_i$. Alors $K \subset \bigcup_{i\in I} \underbrace{f^{-1}(U_i)}_{\text{puvert car}}$. Dono

Preuve. Soit
$$(U_i)_{i\in I}$$
 tq $f(K)\subset\bigcup_{i\in I}U_i$. Alors $K\subset\bigcup_{i\in I}\underbrace{f^{-1}(U_i)}_{\text{ouvert car}}$. Donc $K\subset\bigcup_{i\in I_0}f^{-1}(U_i)$ avec $I_0\in\mathcal{P}_f(I)$. Donc $f(K)\subset\bigcup_{i\in I_0}f(U_i)$, donc K vérifie la propriété de Borel-Lebesgue, et est séparé car Y est séparé. \square

Corollaire. Soit $(X, \mathbb{U}), (Y, \mathbb{V})$ des espaces compacts et $f: X \to Y$ continue bijective. Alors f^{-1} est continue.

Preuve. Soit $F \subset X$ fermé. Alors F est compact, donc f(F) et compact puis f(F) est fermé. Ainsi $(f^{-1})^{-1}(F)$ est fermé. Ainsi l'image réciproque d'un fermé par f^{-1} est un fermé donc f^{-1} est continue.

Définition 23 (Espace localement compact). (X, \mathbb{U}) un espace topologique séparé est dit localement compact ssi

- 1. tout point admet un voisinage compact
- 2. tout point admet une base de voisinages compact

(Ces conditions sont équivalentes)

Preuve. .

- $-2 \Rightarrow 1$ est clair
- Supposons 1, soit $x \in X, K \subset X$ un voisinage compact de x et $V \subset X$ un voisinage ouvert de x.

Posons $\forall y \in K \setminus \{x\}, \ V_y$ et W_y ouverts disjoint tq $x \in V_y$ et $y \in W_y$.

Alors
$$K \subset \left(\bigcup_{y \in K \setminus \{x\}} W_y\right) \cup V$$
. Par compacité $\exists K_0 \subset \mathcal{P}_f(K \setminus \{x\}), \ K \subset \mathcal{P}_f(K \setminus \{x\})$

Alors
$$K \subset \left(\bigcup_{y \in K \setminus \{x\}} W_y\right) \cup V$$
. Par compacité $\exists K_0 \subset \mathcal{P}_f(K \setminus \{x\}), K \subset \left(\bigcup_{y \in K_0} W_y\right) \cup V$. Alors $K_* := K \setminus \left(\bigcup_{y \in K_0} W_y\right)$ est un fermé de K ,

donc un compact. De plus $K_* \subset V$ et $\bigcap V_y \subset K_*$

Définition 24 (Compactifié d'Alexandroff). Soit (X, \mathbb{U}) un espace localement

compact séparé. On pose $\hat{X} := X \sqcup \{\infty\}$, où ∞ est un symbole supplémentaire arbitraire. $\hat{\mathbb{U}} := \mathbb{U} \cup \{\hat{X} \setminus K \mid K \subset_C X\}$. Alors $(\hat{X}, \hat{\mathbb{U}})$ est un espace topologique compact qui induit la topologie sur \mathbb{U} . (Idée : X un segment ouvert qu'on relie sur lui même pour former un cercle).

3.2Compacts métriques

Définition 25. (X,d) est précompact $\Leftrightarrow \forall \varepsilon > 0, \exists X_0 \subset \mathcal{P}_f(X),$

$$X = \bigcup_{x \in X_0} B(x, \varepsilon).$$

Théorème 7. Soit (X, d) un espace métrique. Sont équivalent :

- 1. X est un compact (au sens de l'axiome de Borel-Lebesgue)
- 2. Toute suite à valeur dans X admet une sous suite convergente (Axiome de Bolzano-Weiestrass)
- 3. X est précompact et complet.

Preuve. On note que X est métrique donc séparé.

- $1 \Rightarrow 2$ Soit $(x_n)_n$ une suite à valeur dans X. On note $F_N := \overline{\{x_n \mid n \geq N\}}$. Alors $Adh((x_n)) = \bigcap F_n$, qui est une intersection \searrow de fermés non vides donc est non vide (Borel-Lebesgue pour les fermés). Donc $(x_n)_n$ admet une valeur d'adhérence. Comme (X, d) est métrique, c'est la limite d'une suite extraite.
- $2\Rightarrow 3\;$ Preuve de la complétude. Soit $(x_n)_n$ une suite de Cauchy. Par Bolzano-Weierstrass, elle admet une sous suite convergente. Comme elle est de Cauchy, elle converge.

Preuve de la précompacité. Soit $x_0 \in X$, on construit par récurrence

tant que c'est possible, $x_n \in X \setminus \bigcup_{k < n} B(x_n, \varepsilon)$. Si la construction s'arrête à l'indice N alors $X = \bigcup_{n < N} B(x_n, \varepsilon)$ comme souhaité. Sinon, on remarque que $\forall m < n, x_n \notin B(x_m, \varepsilon)$, donc $d(x_n, x_m) \geq \varepsilon$.

Alors la suite (x_n) ne peut pas avoir de sous suite convergente (sinon $d(x_{\varphi(n)}, x_{\varphi(m)}) \to 0$.) Contradiction avec la précompacité.

 $3\Rightarrow 1$ Soit (x_n) une suite de points de X et $A=\{x_n\}$. On construit pour $k\in\mathbb{N},\,X=\bigcup B(y_r^k,2^{-k})$ une couverture de X par R(k) boules

de diamètre 2^{-k} et $\sigma(k) \in [1, ; R(k)]$ tq $A_k = A \cap B(y^0_{\sigma(0)}, 2^{-k}) \cap \cdots \cap B(y^k_{\sigma(k)}, 2^{-k})$ est infini. (Note : $\underbrace{A_{k+1}}_{\text{infini}} = A_{k-1} \cap \bigcup_{r \leq R(k)} B(y^k_r, 2^{-k}) = A_{k-1} \cap \bigcup_{r \leq R(k)} B(y^k_r, 2^{-k})$

$$\underbrace{\sum_{r \leq R(k)}}_{\text{réunion finie}} \underbrace{A_{k-1} \cap B(y_r^k, 2^{-k})}_{\substack{\text{l'un doit être infini d'indice } r = \sigma(k)}}.$$

Soit φ une extractrice to $x_{\varphi(n)} \in A_n$ pour tout $n \in \mathbb{N}$. Alors $\forall q \geq p \geq N$

$$d(x_{\varphi(p)}, x_{\varphi(q)}) \le diam(A_N)$$

$$\le 2 \times 2^N.$$

Donc $x_{\varphi(n)}$ est une suite de Cauchy et donc converge par complétude.

 $2\Rightarrow 1$ Soit $X=\bigcup_{i\in I}U_i$ une couverture par des ouverts. On affirme qu'il

existe r>0 tq $\forall x\in X,\ \exists i\in I,\ B(x,r)\subset U_i$ (nombre de Lebesgue). Par l'absurde, soit (x_n) tq $B(x_n,2^n)\not\subset U_i$ pour tout $i\in I$. Par Bolzano-Weiestrass, $\exists \varphi+\nearrow,\ x_{\varphi(n)}\to x_*\in X$.

Soit $i \in I$ tq $x \in U_i$, et r > 0 tq $B(x, r) \subset U_i$. Alors en se rapprochant assez de x avec φ on entre dans la boule et donc dans U_i absurde! Soit (U_i) une couverture d'ouverts et r > 0 le nombre de Lebesgue associé. Soit $X = \bigcup_{x \in X_0} B(x, r)$ avec X_0 fini, par précompacité. Pour

tout $x \in X_0$, soit $i(x) \in I$ tq $B(x,r) \subset U_{i(x)}$. Alors $X = \bigcup_{x \in X_0} B(x,r) \subset I$

 $\bigcup_{x \in X_0} U_{i(x)}$ réunion finie comme annoncé!

Théorème 8. Heine Soit (X, d) compact et (Y, d) métrique.

Si $f: X \to Y$ est continue alors elle est uniformément continue. $[\forall x \in X, \exists w_x \text{ mod. de } \mathcal{C}^0, \forall y \in X, d(f(x), f(y))) < w_x(d(x, y))] \Rightarrow [\exists w, \text{ mod. de } \mathcal{C}^0, \forall x, y \in X, d(f(x), f(y)) \leq w(d(x, y))].$

2. Si $(f_i)_{i\in I}, f_i: X \to Y$ est equi continue, alors elle est uniformément equi continue.

 $[\forall x \in X, \exists w_x \text{ mod. de } \mathcal{C}^0, \forall i \in I, \ d(f_i(x), f_i(y)) \leq w_x(d(x, y))] \Rightarrow \exists w \text{ mod. de } \mathcal{C}^0, \forall i \in I, \ d(f_i(x), f_i(y)) \leq w(d(x, y))].$

Preuve. 1. Par l'absurde, si f n'est pas uniformément continue, alors : $\exists \varepsilon > 0, \ \exists (x_n)_n, (y_n)_n, \ d(x_n, y_n) \underset{n \to +\infty}{\longrightarrow} 0 \text{ et } d(f(x_n), f(y_n)) \geq \varepsilon.$

Par compacité de X, $\exists \varphi$ extractrice, $x_{\varphi(n)} \xrightarrow[n \to +\infty]{} x_*$ et telle que $y_{\varphi(n)} \xrightarrow[n \to +\infty]{} x^*$ (car $d(x^*, y_{\varphi(n)}) \leq \underbrace{d(y_{\varphi(n)}, x_{\varphi(n)})}_{\to 0} + \underbrace{d(x_{\varphi(n)}, x^*)}_{\to 0}$). On

a de plus $\max(d(f(y_{\varphi n}), f(x_*)), d(f(x_{\varphi(n)}), f(x_*))) \ge \frac{1}{2}d(f(x_{\varphi(n)}), f(y_{\varphi(n)})) \ge \frac{\varepsilon}{2}$. Contredit la continuité en x_* . D'où le résultat.

 $\frac{\varepsilon}{2}$. Contredit la continuité en x_* . D'où le résultat.

2. Posons $F: X \longrightarrow Y^I$ On munit Y^I de la distance de la

convergence uniforme : $d_{Y^I}((u_i)_{i \in I}, (v_i)_{i \in I}) = \max_{i \in I} \min_{i \in I} (1, d_Y(u_i, v_i))$ Pour prendre des vals finies

(la topologie de la convergence uniforme est différente de la topologie

Alors $(f_i)_{i\in I}$ equicontinue $\Leftrightarrow F$ continue, et $(f_i)_{i\in I}$ uniformément continue $\Leftrightarrow F$ uniformément continue et F uniformément continue $\Leftrightarrow F$ continue. Cette dernière équivalence est vérifiée par le théorème de Heine! (par le cas précédent déjà démontré)

3.3 Compacité en dimension finie.

Propriété 7. Une partie $A \subset \mathbb{R}^d$ est compact ssi elle est fermée et bornée.

Preuve. \Rightarrow Un compact est fermé dans \mathbb{R}^d qui est séparé. Un compact est borné dans un espace métrique car on peut extraire un sousrecouvrement fini du recouvrement $(B(0,n))_n$.

- \Leftarrow On a montré que (X,d) est compact $\Leftrightarrow (X,d)$ est précompact com-
 - $A \subset \mathbb{R}^d$ est complet car fermé dans un complet.
 - On peut inclure A dans $[-R, R]^d$ pour un R > 0 car A est borné. On peut recouvrir $[-R, R]^d$ d'un nombre fini de boules de rayon

 $\varepsilon > 0 \text{ donn\'e, dispos\'es en grille} : [-R,R]^d \subset \bigcup_{1 \leq i \leq I} B(x_i,\varepsilon) \text{ pour } x_i \in [-R,R]^d. \text{ Posons } J = \{1 \leq i \leq I \mid B(x_i,\varepsilon) \cap A \neq \emptyset\}, \text{ et soit } y_j \in B(x,\varepsilon) \cap A, \ \forall j \in J. \\ \text{Alors } A \subset \bigcup_{j \in J} B(y_j,2\varepsilon), \text{ car } B(x_j,\varepsilon) \subset B(y_j,2\varepsilon).$

Alors
$$A \subset \bigcup_{j \in J} B(y_j, 2\varepsilon)$$
, car $B(x_j, \varepsilon) \subset B(y_j, 2\varepsilon)$.

Corollaire. Soit $f \in C^0(X,\mathbb{R})$, avec X compact. Alors f est bornée et atteint ses bornes.

Preuve. $f(X) \subset \mathbb{R}$ est l'image d'un compact donc compact, donc fermé borné, donc admet un min et un max.

Corollaire (Équivalence des normes en dimension finie). : Soit E un espace vectoriel de dim finie, $\|.\|$ et $\|.\|'$ des normes sur E. Alors $\exists C, c > 0, \ \forall x \in$ $E, c||x|| \le ||x||' \le C||x||.$

Preuve. On peut supposer $E = \mathbb{R}^d$ (quitte à choisir une base) et ||x|| = $\sum_{i=1} |x_i|$ (car l'équivalence des normes est une relation d'équivalence).

On a $||x||' = ||\sum_{i=1}^d x_i e_i||' \le \sum_{i=1}^d |x_i|||e_i|| \le C||x||$ où $C = \max_{1 \le i \le d} ||e_i||'$ en

notant $(e_i)_i$ la base canonique. On en déduit la borne supérieure $||x||' \le$ C||x||, et $|||x||' - ||y||'| \le ||x - y||' \le C||x - y||$ donc ||.||' est C-Lipschitz

(pour la norme $\|.\|$). On pose $c = \inf\{\underbrace{\|x\|'}_{\substack{>0 \text{ car} \\ x \neq 0}} \mid \underbrace{x \in E, \|x\| = 1}_{\substack{\text{compact car} \\ \text{formé borné}}}\}$. Comme c

est atteint on a c > 0 et $||x||' \ge c$ si ||x|| = 1. Par homogénéité, pour tout x dans E non nul $||x||' \ge c||x||$. (et pour x = 0, cette inégalité est également vraie).

On a bien montré que

$$c||x|| \le ||x||' \le C||x||$$

Théorème 9 (Compacité de Riesz). Soit E un evn. Sont equivalent :

- 1. E de dim finie
- 2. $B'_E(0,1)$ est compact
- 3. $\exists I \in \mathbb{N}^*, \ x_1, \dots, x_I \in E, \ B'_E(0,1) \subset \bigcup_{1 \le i \le I} B_E(x_i,1).$

Preuve. Clairement $1) \Rightarrow 2$ et $2) \Rightarrow 3$). Rester à montrer $3) \Rightarrow 1$).

Lemme 10 (de Riesz). Soit E un evn, $F \subset E$ un sous espace propre $(F \neq E)$ et fermé, et soit p < 1. Alors :

$$\exists x \in B_E'(0,1), \ p \le d(x,F) := \inf\{\|x - v\| \mid v \in F\}$$

De plus, si E est de dimension finie, alors on peut prendre p=1.

Preuve. Soit $u \in E \setminus F$ (u existe car F propre). On a d(u, F) > 0 car F est fermé. Il existe $v \in F$ tq $\|u - v\| \le \frac{1}{p} d(u, F) := \inf\{\|u - v'\|v' \in F \mid \}$

- Par définition de l'inf en dimension quelconque.
- En dimension finie, on note que $d(u,F) = \inf\{\underbrace{\|u-v'\|}_{v'\in F \mapsto \|u-v'\|} \underbrace{v'\in F, \ \|u-v'\| \leq d(u,F)+1}_{\text{fermé borné de }F \text{ qui est de dim finie}}\}$

On suppose alors 3). On pose $F = Vect\{x_i \mid i \in [1; I]\}$. F est de dimension finie et $F \subset E$. Donc F est fermé. Si F = E alors 1) est prouvé. Sinon $\exists x \in B_E'(0,1), \ d(x,F) = 1$. En particulier, $x \notin B(y,1)$ pour tout $y \in F$. Donc $x \notin \bigcup_{1 \le i \le I} B(x_i,1)$ contradiction!

3.4 Produit de compact.

Théorème 10 (Tychonov). Soit (X_i, U_i) une famille d'espace topologique

compact. Alors $\prod_{i \in I} X_i$ est compact pour la topologie produit.

Preuve. Dans le cas métrique dénombrable, (X_n, d_n) une famille de compacts métriques. $X_* = \prod_{n \in \mathbb{N}} X_n$ est muni de la distance $d_*((x_n), (y_n)) := \max_{n \in \mathbb{N}} \min \left(2^{-n}, d_n(x_n, y_n) \right)$ topologie de la convergence simple. \square

Preuve. Compacité par le critère de Bolzano Weierstrass. On considère $(x^k)_{k\in\mathbb{N}}\in X_*$. On utilise le "procédé d'extraction diagonal". Soit φ_0 extractrice tq $x_0^{\varphi_0(k)}\underset{k\to+\infty}{\longrightarrow} \hat{x_0}\in X_0$.

 $\begin{array}{l} \vdots \\ \text{Soit } \varphi_n \text{ extractrice tq } x_n^{\varphi_0 \circ \cdots \circ \varphi_n(k)} \underset{k \to +\infty}{\longrightarrow} \hat{x_n} \in X_n. \text{ On pose } \varphi_*(k) := \\ \varphi_0 \circ \cdots \circ \varphi_k(k). \text{ Alors } x_n^{\varphi_*(k)} \underset{k \to +\infty}{\longrightarrow} \hat{x_n}. \text{ Posons } \hat{x} := (\hat{x_n}) \in X_*. \text{ On a} \\ d(x^{\varphi_*(k)}, \hat{x}) = \max_{n \in \mathbb{N}} \min(2^{-n}, \underbrace{d_n(x_n^{\varphi_*(k)}, \hat{x_n})}_{\underset{k \to +\infty}{\longrightarrow} 0}). \end{array}$

Exemple. (Satisfiability des familles de formules logiques) : Une formule logique est une application $f:\{0,1\}^{\mathbb{N}} \to \{0,1\}$, qui ne dépend que d'un nombre fini de variables : $f(x_0,x_1,\cdots)=f(x_0,\cdots,x_{N(f)},0,\cdots)$. Soit \mathcal{F} un ensemble de formules logiques. Sont équivalent :

- 1. \mathcal{F} est satisfiable $(\exists x \in \{0,1\}^{\mathbb{N}}, \ \forall f \in \mathcal{F}, \ f(x) = 1)$
- 2. Toute partie finie de \mathcal{F} est satisfiable.

Preuve. Clairement 1) \Rightarrow 2). Supposons non 1). Alors $\bigcap_{f \in \mathcal{F}} f^{-1}\{1\} \neq \emptyset$. Or $X = \{0,1\}^{\mathbb{N}}$ est compact et une formule lo-

gique $f: X \to \{0,1\}$ est une application continue. $d_*((u_n), (v_n)) = \max(2^{-n}, |u_n, v_n|)$. Si $d_*((u_n), (v_n)) < 2^{-N(f)}$ Alors $f((u_n)) = f((v_n))$. Donc par la propriété de Borel Lebesgue appliqué aux fermés, $\exists \mathcal{F}_t \subset \mathcal{F}$, \mathcal{F}_t fini et $\bigcap_{f \in \mathcal{F}_t} f^{-1}(\{1\}) = \emptyset$. Donc \mathcal{F} n'est pas finiment satisfiable ie non 2).

Théorème 11 (Banach Alaoglu). Soit E un Banach, $B := B'_{E^*}(0,1)$ la boule unité fermée de son dual. Alors B est compacte pour la topologie * faible.

Preuve. Dans le cas où E est séparable. Soit $D \subset E$ une partie dénombrable dense. Soit $(f_n) \in B$. On note que $|f_n(x)| \leq ||x||_E$, car $||f_n|| \leq 1$. Alors $\exists \varphi$ extractrice tq $f_{\varphi(n)}(x) \underset{n \to +\infty}{\longrightarrow} f_*(x)$. On obtient φ par compa-

cité de $\prod_{x \in D} [-\|x\|, \|x\|],$ ou directement par procédé d'extraction diagonal

(équivalent).

On définit $f_*:D\to\mathbb{R}$. On note que

$$|f_{*}(x) - f_{*}(y)| = \lim_{n \to \infty} |f_{n}(x) - f_{n}(y)|$$

$$= \lim_{n \to \infty} \underbrace{|f_{n}(x - y)|}_{\leq ||x - y|| \text{ car } ||f_{n}||_{E^{*}} \leq 1}$$

$$\leq \lim_{n \to \infty} ||x - y||$$

$$= ||x - y||.$$

Donc $f_*:D\to\mathbb{R}$ est 1-Lipschitzienne donc uniformément continue. Donc elle se prolonge en $f_*:E\to\mathbb{R}$ également 1-Lipschitz.

Enfin, soit
$$x \in E, \varepsilon > 0, y \in D$$
 tq $||x - y|| \le \varepsilon$. Alors $|f_{\varphi(n)}(x) - f_n(x)| \le |f_{\varphi n}(x) - f_{\varphi n}(y)| + |f_{\varphi n}(y) - f_*(y)| + |f_*(y) - f_-(x)| \le 3\varepsilon$ pour n assez $|f_{\varphi n}(x) - f_{\varphi n}(y)| + |f_{\varphi n}(y) - f_*(y)| + |f_*(y) - f_-(x)| \le 3\varepsilon$ pour n assez $|f_{\varphi n}(x) - f_{\varphi n}(y)| = 0$ car $y \in D$ $|f_{\varphi n}(x) - f_{\varphi n}(y)| = 0$ car $f_*(x) - f_{\varphi n}(y) = 0$ car $f_*(x) - f_{\varphi n$

grand.

Ainsi $|f_{\varphi n}(x) - f_*(x)| \to 0$ pour tout $x \in E$ (convergence simple $f_{\varphi n} \to f_*$). On en déduit que f_* est linéaire $f_*(\lambda x + y) = \lim_{n \to \infty} f_{\varphi n}(\lambda x + y) = \lambda \lim_{n \to \infty} f_{\varphi n}(x) + \lim_{n \to \infty} f_{\varphi n}(y) = \lambda f_*(x) + f_*(y)$. Alors $f_* \in B'_{E^*}(0, 1)$ car elle est linéaire et 1-Lip. Donc $f_{\varphi n} \to f_*$ convergence * faible. E evn, $x_n \in E \to \text{(faible)} x \Leftrightarrow \forall x \in E^*, \varphi(x_n) \to \varphi(n)$.

 $\varphi_n \in E^* \to (* \text{ faible}) \ \varphi \Leftrightarrow \forall x \in E, \ \varphi_n(x) \to \varphi(x).$ Topologie qio rend continue $E^* \to \mathbb{K}, \ \varphi \mapsto \varphi(x)$ semi norme $|\varphi|_* = |\varphi(x)|$ pour tout $x \in E$. \square

Théorème 12 (Ascoli). Soit (X,d),(Y,d) des espaces métriques compacts. Alors $Lip_1(X,Y):=\{f:X\to Y\mid f\text{ est 1-Lipschitz}\}$ muni de $d(f,g):=\max_{x\in X}d(f(x),f(y))$ est métrique compact.

Preuve. Soit $D \subset X$ une partie dénombrable dense. Soit $(f_n) \in Lip_1(X,Y)^{\mathbb{N}}$. Par le procédé d'extraction diagonal ou par compacité de $Y^D = \prod_{x \in D} Y$, il existe $f_* : D \to Y$ et φ une extractrice tq $f_{\varphi n}(x) \underset{n \to +\infty}{\longrightarrow} f_*(x)$. On remarque que $\forall x, y \in D$, $d(f_*(x), f_*(y)) = \lim_{n \to \infty} d(f_{\varphi n}(x), f_{\varphi n}(y)) \leq \limsup_{n \to \infty} d(x,y) = d(x,y)$. Donc $f_* : D \to Y$ est 1-Lip. Donc elle s'étend en $f_* : X \to Y$ aussi 1-Lip. Montrons $d(f_{\varphi n}, f_*) \underset{n \to +\infty}{\longrightarrow} 0$ (ie on passe de la cv simple à la cv uniforms)

Soit $\varepsilon > 0, D_{\varepsilon} \subset D$ fini tq $X = \bigcup_{x \in D_{\varepsilon}} B(x, \varepsilon)$, obtenu par compacité et densité de D. Soit $N \in \mathbb{N}$ tq $\forall n \geq N$, $\forall x \in D_{\varepsilon}$, $d(f_{\varphi n}(x), f_{\varphi n}(y)) \leq \varepsilon$.

Alors, $\forall n \geq N, \ \forall x \in X$, choisissons $y \in D_{\varepsilon} \text{ tq } x \in B(y, \varepsilon)$. On a

$$d(f_{\varphi n}(x), f_{\varphi n}(y)) \leq \underbrace{d(f_{\varphi n}(x), f_{\varphi n}(y))}_{\leq d(x, y) \leq \varepsilon} + \underbrace{d(f_{\varphi n}(y), f_{*}(y))}_{\leq \varepsilon \operatorname{car} n \geq N} + \underbrace{d(f_{*}(x), f_{*}(y))}_{\leq d(x, y) \leq \varepsilon}$$

$$\leq 3\varepsilon.$$
At the definition of the second substitute of

Ainsi
$$(f_{\varphi n}, f_*) \underset{n \to +\infty}{\longrightarrow} 0$$
, donc $Lip_1(X, Y)$ est compact.

Remarque. On peut remplacer $Lip_1(X,Y)$ par $Lip_k(X,Y)$ avec k>0 quelconque.

Théorème 13 (Ascoli équicontinue). Soit (X,d) compact, (Y,d) métrique et $(f_i)_{\in I}$ avec $f_i: X \to Y$. On suppose :

- (f_i) équicontinue $(\forall x, \exists w_x \text{ module de continuité}, \forall y \in X, \forall i \in I, d(f_i(x), f_i(y)) \leq w_x(d(x, y))$
- $\forall x \in X$, $\overline{\{f_i(x) \mid i \in I\}}$ est compact.

Alors $\overline{\{f_i \mid i \in I\}}$ est une partie compact de $C^0(X,Y)$ pour $d(f,g) = \max_{x \in X} d(f(x),g(x))$

Preuve. Par le théorème de Heine, (f_i) équicontinue sur (X,d) compact $\Rightarrow (f_i)$ uniformément équicontinue. OPS $w \leq 1$, quitte) remplacer d_Y par $min(1, d_Y)$. On a vu que l'on peut construire \tilde{w} module de continuité tq $\tilde{w} \geq w$ et \tilde{w} est sous additif et croissant. OPS $\tilde{w} \neq 0$ sinon le résultat est prouvé.

Alors $\tilde{d}_Y(u,v) := \tilde{w}(\min(1,d_Y(u,v)))$ est une distance sur Y, définissant la même topologie que d_Y .

Par construction, $\forall i \in I, \ f_i(X, d_Y) \to (Y, \tilde{d_Y})$ est 1-Lip. La preuve d'Ascoli dans le cas 1-Lip s'applique. ($\prod_{x \in D} Y_x$ compact comme produit de compact

avec $D \subset X$ dense). On obtient que $\overline{\{f_i \mid i \in I\}}$ est compact pour $\tilde{d}(f,g) = \max_{x \in X} \tilde{d}_Y(f(x), g(x))$. donc aussi pour $d(f,g) = \max_{x \in X} d_Y(f(x), g(x))$.

Propriété 8. Soit E un Banach, $K \subset E$. Si \overline{K} est compact alors $\overline{Hull(K)}$ est compact. On a noté $Hull(K) := \{ \sum_{1 \leq i \leq I} \lambda_i x_i \mid I \in \mathbb{N}^*, \ \lambda_1, \dots \lambda_I \geq I \}$

0, $\sum_{i=1}^{I} \lambda_i = 1$ } l'enveloppe convexe.

Preuve. Pour tout $\varepsilon \geq 0$, soit $D_{\varepsilon} \subset K$ fini tq $\overline{K} \subset \bigcup_{x \in D_{\varepsilon}} B(x, \varepsilon)$ (existe par compacité de \overline{K} et car $\overline{K} \subset \bigcup_{x \in K} B(x, \varepsilon)$). Posons $H_{\varepsilon} = Hull(D_{\varepsilon}) = 0$

$$\{\underbrace{\sum_{x \in D_{\varepsilon}} \lambda(x)x}_{\text{fct continue}} \mid \underbrace{\lambda: D_{\varepsilon} \to \mathbb{R}_{+}, \sum_{x \in D_{\varepsilon}} \lambda(x) = 1}_{\text{définie une partie} \text{ compacte de } \mathbb{R}^{D_{\varepsilon}}}_{\text{compacte de } \mathbb{R}^{D_{\varepsilon}}}$$
 De plus soit $x \in Hull(K), x = \sum_{1 \leq i \leq I} \lambda_{i} x_{i}$ avec $x_{i} \in K, \lambda_{i} \geq 0$ et de somme

1. Choisissons $y_i \in D_{\varepsilon}$ tq $||x_i - y_i|| \le \varepsilon$. Posons $y = \sum_{i=1}^{I} \lambda_i y_i \in Hull(D_{\varepsilon})$.

On a
$$||x - y|| \le \sum_{i=1}^{I} \lambda_i ||x_i - y_i|| \le \varepsilon$$
.

On a $||x-y|| \leq \sum_{i=1}^{I} \lambda_i ||x_i-y_i|| \leq \varepsilon$. Soit (x^k) une suite à valeur dans Hull(K). Pour tout $n \in \mathbb{N}^*$, soit $x_n^k \in H_{\frac{1}{n}} = Hull(D_{\frac{1}{n}})$ tel que $||x^k - x_n^k|| \leq \frac{1}{n}$. Par compacité de $\prod_{n \in \mathbb{N}} H_{\frac{1}{n}}$, ou par

procédé d'extraction diagonal, il existe φ extractrice telle que $x_n^{\varphi(k)} \underset{k \to +\infty}{\longrightarrow}$ $\hat{x_n} \in H_{\frac{1}{n}}$.

$$||x_n^k - x_m^k|| \le ||x_n^k - x^k|| + ||x^k - x_m^k||$$

 $\le \frac{1}{n} + \frac{1}{m}.$

Donc $\|\hat{x_n} - \hat{x_m}\| \le \lim_{k \to \infty} \|x_n^k - x_m^k\| \le \frac{1}{n} + \frac{1}{m} \to 0$. Donc $(\hat{x_n})$ est de Cauchy et admet une limite $\hat{x} \in E$ qui est un Banach et $\|\hat{x_n} - \hat{x}\| = \lim_{m \to \infty} \|\hat{x_n} - \hat{x_m}\| \le \limsup_{m \to \infty} \frac{1}{n} + \frac{1}{m} = \frac{1}{n}$. Reste à montrer que $x^{\varphi(k)} \xrightarrow[k \to +\infty]{} \hat{x}$. Soit $\varepsilon > 0, n \in \mathbb{N}^*$ tq $\frac{1}{n} \le \varepsilon$. Alors $\|x^{\varphi(k)} - \hat{x}\| \le \underbrace{\|x^{\varphi(k)} - x_n^{\varphi(k)}\|}_{\le \frac{1}{n} < /\varepsilon} + \underbrace{\|x_n^{\varphi(k)} - \hat{x_n}\|}_{k \to +\infty} + \underbrace{\|\hat{x_n} - \hat{x}\|}_{\le \frac{1}{n} \le \varepsilon} \le 3\varepsilon$ pour n assez grand.

Remarque (Théorème de Carathéodory). : Soit $A \subset \mathbb{R}^d$, alors Hull(A) =

$$\{\sum_{i=0}^{d} \lambda_i x_i \mid x_0, \dots x_d \in A, \ \lambda_0, \dots, \lambda_d \geq 0, \text{ de somme 1}\}.$$

En particulier, si $K \subset \mathbb{R}^d$ est compact alors $Hull(K)$ est compact.

Preuve. Soit $x \in Hull(A)$. On écrit $x = \sum_{i=1}^{n} \lambda_i x_i$ selon les conditions habituelles. On suppose n minimal. Si par l'absurde $n \geq d+1$, alors $(x_1 - x_0, \dots, x_n - x_0)$ est une famille de $n \ge d + 1$ vecteurs qui admet

donc une une relation de liaison. On a donc $0 = \sum_{i=1}^{n} \mu_i(x_i - x_0)$, avec les μ_i non tous nuls. Alors avec $\mu_0 = -\sum_{i=1}^n \mu_i$ on a $\sum_{i=0}^n \mu_i = 0$. Par minimalité de n, on a $\lambda_i>0$ posons donc $\rho=\max\{\frac{\lambda_i}{\mu_i}\mid \mu_i>0\}$ alors $(\lambda_0 - \rho \mu_0)x_0 + \dots + (\lambda_n - \rho \mu_n)x_n = x$. De plus, après un peu de trucs moches que je n'ai pas envie de copier, il existe i_0 tq $\rho = \frac{\lambda_{i_0}}{\mu_{i_0}}$ donc $\lambda_{i_0} - \rho \mu_{i_0} = 0$ Contradiction avec la minimalité de n!Finalement c'est compact comme image d'un compact par une application continue (celle qui associe la somme au couple de d+1-uplet de x_i et

3.5 Point fixe de Brouwer.

Théorème 14 (Théorème du point fixe de Brouwer). Soit $B := B'_{\mathbb{R}^d}(0,1)$ la boule unité fermée de \mathbb{R}^d et soit $f \in C^0(B,B)$. Alors f admet un point

Preuve. (De Peter Lax, cf livre de T.Alazard basée sur une formule de changement de variable non difféomorphique).

Rappel (changement de variable dans une intégrale générale) : Soit u, vdes ouverts de \mathbb{R}^d , $\varphi: u \to v$ un difféomorphisme et $f: v \to \mathbb{R}$ intégrable.

Alors
$$\int_{\mathcal{V}} f(x)dx = \int_{\mathcal{U}} f(\varphi(x))|det(D\varphi(x))|dx$$
.

Alors $\int_v f(x)dx = \int_u f(\varphi(x))|det(D\varphi(x)|dx$. Note : $D\varphi(x) = \left(\frac{\partial \varphi_i}{\partial x_j}(x)\right)_{i,j\in [\![1:d]\!]} \in \mathbb{R}^{d\times d}$ est la matrice jacobienne de φ .

Par hypothèse φ est bijective et $D\varphi$ est continue et inversible en tout

Lemme 11 (Peter Lax). : Soit $\varphi \in C^2(\mathbb{R}^d, \mathbb{R}^d)$ tel que $\varphi(x) = x \forall x \notin B$. soit $f \in C^0(\mathbb{R}^d)$ à support compact. Alors $\int_{\mathbb{R}^d} f(x)dx = \int_{\mathbb{R}^d} f(\varphi(x))det(D\varphi(x))dx$.

Remarque. .

- Pas d'hypothèse " φ différentiable" et pas de valeur absolue sur le $det(D\varphi)$.
- Le lemme implique la formule de changement de variable.

Preuve. (Preuve en dimension 2): La preuve en dimension quelconque se trouve dans le livre de Thomas Alazard. On veut montrer que $\int_{\mathbb{R}^2} f(x) dx =$

$$\int_{R^2} f(\varphi(x)) \frac{\partial \varphi_1}{\partial x_1} \frac{\partial \varphi_2}{\partial x_2}(x) - \frac{\partial \varphi_1}{\partial x_2} \frac{\partial \varphi_2}{\partial x_1} dx.$$
Soit $c > 0$ tel que supp $(f) \subset [-c, c]^d := Q$. On suppose $c \ge 1$

Posons
$$g(x_1,...,x_d) = \int_{-c}^{x_1} f(s, x_2,...,x_d) dx$$

On a

$$f \circ \varphi \left(\partial_{1} \varphi_{1} \partial_{2} \varphi_{2} - \partial_{2} \varphi_{1} \partial_{1} \varphi_{2}\right) = \partial_{1} \left(g \circ \varphi\right) \partial_{2} \varphi_{2} - \underbrace{\partial_{1} \left(g\right) \circ \varphi \partial_{2} \varphi_{1} + \partial_{2} g \circ \varphi \partial_{2} \varphi_{1}}_{\partial_{2} \left(g \circ \varphi\right) \partial_{1} \varphi_{2}}$$

De plus,
$$\partial_1 (g \circ \varphi) = \underbrace{\partial_1 g \circ \varphi}_{f \circ \varphi} \partial_1 \varphi_1 + \partial_2 g \circ \varphi \partial_1 \varphi_2.$$

$$\int_{Q} f\left(\varphi\left(x\right)\right) \frac{\partial \varphi_{1}}{\partial x_{1}} \frac{\partial \varphi_{2}}{\partial x_{2}}\left(x\right) - \frac{\partial \varphi_{1}}{\partial x_{2}} \frac{\partial \varphi_{2}}{\partial x_{1}} dx = \underbrace{\int_{Q} \partial_{1}\left(g \circ \varphi \partial_{2} \varphi_{2}\right) - \partial_{2}\left(g \circ \varphi \partial_{1} \varphi_{2}\right)}_{Q} - \int_{Q} g \circ \varphi \partial_{1} \partial_{2} \varphi_{2} - g \circ \partial_{2} \partial_{1} \varphi_{2}.$$

ne dépend que des valeurs de g et φ (et de leur dérivées sur) ∂G

$$\int_{x_{2}=-c}^{c} \int_{x_{1}=-c}^{c} \partial_{1} \left(g \circ \varphi \partial_{2} \varphi_{2}\right) dx_{1} dx_{2} = \int_{x_{2}=-c}^{c} g\left(\underbrace{\varphi\left(c, x_{2}\right)}_{(c, x_{2})}\right) \partial_{2} \left(c, x_{2}\right) - g\underbrace{\left(\varphi\left(-c, x_{2}\right)\right)}_{(-c, x_{2}) \text{ car } \atop \varphi\left(x\right) = x \text{ dès que } \atop \|x\| \geq 1}$$

On pose
$$\varphi^0 = id$$
. Alors sur $\partial Q \begin{cases} \varphi^0 = \varphi = id \\ J_{\varphi^0} = J_{\varphi} = id_{\partial Q}. \end{cases}$

On a donc

$$(*) = \int_{Q} f(\varphi^{0}(x)) (\partial_{1}\varphi_{1}^{0}(x) \partial_{2}\varphi_{2}(x) - \partial_{1}\varphi_{2}^{0}(x) \partial_{1}\varphi_{2}(x)) dx$$
$$= \int_{Q} f(x) dx = \int_{\mathbb{R}^{d}} f(x) dx.$$

Corollaire. Soit $\varphi \in C^2(\mathbb{R}^d, \mathbb{R}^d)$ tel que pour tout $x \notin B := B'(0,1)$, on a $\varphi(x) = x$. Alors $B \subset \varphi(B)$.

Preuve. Par l'absurde, supposons $x_0 \in B \setminus \varphi(B)$.

Comme
$$\varphi(x) = x \text{ sur } \partial B$$
 par continuité on a $x_0 \in \mathring{\mathcal{B}} \setminus \varphi(B)$

Soit $\varepsilon > 0$ tel que $B(x_0, \varepsilon) \subset \mathring{B} \setminus \varphi(B)$.

Soit
$$f \in C^1(\mathbb{R}^d)$$
 telle que $\operatorname{supp} f \subset B(x_0, \varepsilon)$ et $\int_{\mathbb{R}^d} f = 1$.

Alors
$$0 = \int_{\mathbb{R}^d} \underbrace{f(\varphi(x))}_{=0} \det J_{\varphi}(x) dx = \int_{\mathbb{R}^d} f(x) dx = 1.$$

Si $x \notin B$, $f(\varphi(x)) = f(x) = 0$ car supp $f \subset B(x_0, \varepsilon) \subset B$.

Si $x \in B$, $f(\varphi(x)) = 0$ car supp $f \subset B(x_0\varepsilon) \subset B \setminus \varphi(B)$. Contradiction. On conclut $B \subset \varphi(B)$.

Corollaire (Non rétraction de la boule sur la sphère). Soit $\varphi \in C^0(B, B)$ avec B := B'(0, 1) tel que pour tout $x \in \partial B, \varphi(x) = x$. Alors $\varphi(B) = B$.

Preuve. On pose $\varphi(x) = x, \forall x \in \mathbb{R}^d \setminus B$, ce qui étend $\varphi \in C^0\left(\mathbb{R}^d, \mathbb{R}^d\right)$. Soit $\rho \in C^2\left(\mathbb{R}^d, \mathbb{R}\right)$ telle que $\operatorname{supp}(\rho) \subset B$, $\int_B \rho = 1$ et $\int_B x \rho(x) \, \mathrm{d}x = 0$ (la dernière condition est vraie par exemple si ρ est symétrique). On définit $\rho_\varepsilon: x \mapsto \rho(\frac{x}{\varepsilon})$ et φ_ε par :

$$\varphi_{\varepsilon}(x) = (\rho_{\varepsilon} * \varphi)(x) = \int_{B(0,\varepsilon)} \underbrace{\rho_{\varepsilon}(h) \varphi(x-h)}_{(I)} dh = \int_{\mathbb{R}^d} \underbrace{\varphi(h) \rho_{\varepsilon}(x-h)}_{(II)} dh.$$

Alors φ_{ε} est C^2 , par dérivation de (II) sous le signe intégral. Soit $x \in \mathbb{R}^d$ tel que $||x|| \ge 1 + \varepsilon$, alors

$$\varphi_{\varepsilon}(x) = \int_{B(0,\varepsilon)} \underbrace{\rho_{\varepsilon}(h) \, \varphi(x-h)}_{\not\in B(0,1)} \mathrm{d}h$$

$$= \int_{B(0,\varepsilon)} \rho_{\varepsilon}(h) \, (x-h) \, \mathrm{d}h$$

$$= x \underbrace{\int_{B(0,\varepsilon)} \rho_{\varepsilon}(h) \, \mathrm{d}h}_{=1 \text{ par hypothèse}} - \underbrace{\int_{B(0,\varepsilon)} h \rho_{\varepsilon}(h) \, \mathrm{d}h}_{=0 \text{ par hypothèse}} = x$$

On a $\varphi_{\varepsilon} \in C^{2}(\mathbb{R}^{d}, \mathbb{R}^{d})$ et $\forall x \notin B(0, 1 + \varepsilon), \ \varphi_{\varepsilon}(x) = x$.

Par le résultat précédent $B'(0,1+\varepsilon)\subset \varphi_{\varepsilon}(B'(0,1+\varepsilon))$. De plus, φ_{ε} converge uniformément vers φ lorsque $\varepsilon\to\infty$. Soit $y_*\in B$. Pour tout $\varepsilon>0$, soit $x_{\varepsilon}\in B'(0,\varepsilon)$ tel que $\varphi_{\varepsilon}(x_{\varepsilon})=y_*$.

Par compacité de B'(0,2) il existe $(\varepsilon_n)_{n\in\mathbb{N}}$ tendant vers 0, positive et telle que $x_{\varepsilon_n}\to x_*\in B'(0,2)$.

Alors
$$y_* = \varphi_{\varepsilon_n}(x_{\varepsilon_n}) \to \varphi(x_*)$$
.
On conclut $\varphi(x_*) = y_*$.

Preuve. Soit $f \in C^0(B, B)$, (B = B'(0, 1)). On suppose $f(x) \neq x \forall x \in B$, absurde.

On pose $\varphi: B \to \partial B$ définie par $\{\varphi(x)\} = \partial B \cap \{x + t(x - f(x)) \mid t \ge 0\}$. alors φ est une rétractation continue de B sur ∂B .

FIGURE 1 – Définition de φ

3.6 Variantes et applications de Brouwer

Théorème 15 (Point fixe de Schauder). Soit K un convexe fermé sur un Banach. Soit $f \in C^0(K,K)$ tel que $\overline{f(K)}$ est compact. Alors f admet un point fixe.

Preuve. Prenons $K' := \overline{Hull(f(K))}$. Alors K' est compact (voir 8).

De plus, $Hull(f(x)) \subset Hull(H) = K \text{ donc } K' = \overline{Hull(f(K))} \subset K$ car K fermé. Ainsi $f_{|K'|}:K'\to K'$ est continue sur un convexe compact

Soit $\varepsilon > 0$. Soient $x_1, \ldots, x_I \in K'$ tels que $K' \subset \bigcup_{1 \le i \le I} B(x_i, \varepsilon)$. On

pose $K_{\varepsilon} = Hull(\{x_1, \dots, x_I\})$ et

$$\begin{split} g_{\varepsilon}: K' &\longrightarrow K_{\varepsilon} \\ x &\longmapsto g_{\varepsilon}(x) = \frac{\sum_{i=1}^{I} \varphi_{i}\left(x\right) x_{i}}{\sum_{i=1}^{I} \varphi_{i}\left(x\right)}. \end{split}$$

avec $\varphi_1(x) := \max(0, \varepsilon - \|x - x_i\|)$ (>0 si $x \in B_{(x_i, \varepsilon)}$. Comme $K' \subset \bigcup_{i=1}^{I} B(x_i, \varepsilon)$, or $\sum_{i=1}^{I} \varphi_i(x) > 0$ pour tout $x \in K'$ donc g_{ε} est continue. Ainsi $f_{\varepsilon}K_{\varepsilon} \to K_{\varepsilon}; x \mapsto g_{\varepsilon}(f(x))$ est continue. De plus, $K_{\varepsilon} \subset \operatorname{vect}(x, |x|) \leq i \leq I$) est up conveye compact en dimension finic (cuffit

 $K_{\varepsilon} \subset \text{vect}(x_i|1 \leq i \leq I)$ est un convexe compact en dimension finie (suffit pour Brouwer). Par le théorème de Brouwer (14), f_{ε} admet un point fixe $x_{\varepsilon} \in K_{\varepsilon} \subset K'$. Par compacité de K', il existe une suite $(\varepsilon_n)_{n \in \mathbb{N}}$ positive, tendant vers 0 et telle que $x_{\varepsilon_n} \to x_* \in K'$.

Par ailleurs, pour tout $x \in K'$

$$||g_{\varepsilon}(x) - x|| \leq \frac{\sum_{i=1}^{I} \varphi_{i}(x)}{\sum_{i=1}^{I} \varphi_{i}(x)} \frac{||x - x_{i}||}{||x - x_{i}||}$$
$$\leq \frac{\sum_{i=1}^{I} \varphi_{i}(x) \varepsilon}{\sum_{i=1}^{I} \varphi_{i}(x)} = \varepsilon$$

Donc $||x_{\varepsilon} - f(x_{\varepsilon})|| = ||g_{\varepsilon}(f(x_{\varepsilon})) - f(x_{\varepsilon})|| \le \varepsilon$. Ainsi $||x_* - f(x_*)|| \le \limsup ||f(x_{\varepsilon_n}) - x_{\varepsilon_n}|| \le \limsup \varepsilon_n = 0.$

Remarque. (Brouwer sur un ensemble autre que B'(0,1))

- Si $A \subset \mathbb{R}^d$ est homéomorphe à B'(0,1) et $f \in C^0(A,A)$ alors f a un point fixe.
- Si $K \subset \mathbb{R}^d$.
 - Soit $x_0 \in K, F = \text{Vect}\{x x_0 : x \in K\}$ Alors K est homéomorphe à $F \cap B'(0,1)$. (Admis) Donc f admet un point fixe.
 - Approache alternative. Soit P_K la projection orthogonale sur K.

Soit R > 0 tel que $K \subset B'(0,R)$. Alors $B'(0,R) \to B'(0,R)$; $x \mapsto f_{\varepsilon}(x)$ admet un point fixe $x_0 \in B'(0,R)$. On a $x_0 = f(P_K(x_0))$, donc $x_0 \in K$, donc $x_0 = P_K(x_0)$ donc $x_0 = f(x_0)$.

Remarque. Le théorème de Schauder s'étend sur en supposant seulement que E est un espace vectoriel topologique. En particulier, il s'applique aux evtlcs, donc aux topologies faibles. $\underline{\wedge}$ Il faut que la fonction soit continue par rapport à cette topologie.

Théorème 16 (Cauchy-Arzela-Peano). Soit $\Omega \subset \mathbb{R}^d$ ouvert, $x_0 \in \Omega$. Soit $f \in C^0(\mathbb{R}_+^* \times \Omega, \mathbb{R}^d)$.

Alors: $\exists t_0 > 0, u \in C^1([0, t_0], \Omega),$

$$\begin{cases} u'(t) = f(t, u(t)) \forall t \in [0, t_0] \\ u(0) = x_0 \end{cases}$$

Preuve. Soit $r_0 > 0$ tel que $B'(x_0, r_0) \subset \Omega$. Soit $t_1 > 0$, $C_0 := \sup\{\|f(t, x\| : 0 \le t \le t_1, x \in B'(x_0, r_0)\}(< \infty \text{ car } [0, t_1] \times B'(x_0, r_0) \text{ est compact})$. Soit $t_0 > 0$ tel que $C_0 t_0 \le r_0$.

Posons $K = \mathcal{C}^0([0, t_0], B'(x_0, r_0))$. K est un convexe fermé (pour $\|.\|_{\infty}$).

Posons
$$F: \begin{cases} K \to K \\ u \mapsto Fu(t) := x_0 + \int_0^t f(s, u(s)) \, \mathrm{d}s \end{cases}$$

- $F(K) \subset K$. En effet, $\|Fu(t) - x_0\| \le \int_0^t \underbrace{\|f(s, u(s))\|}_{\le C_0} ds \le C_0 t \le C_0$

 $C_0t \leq r_0$, pour tout $t \in [0, t_0]$. De plus, $Fu \in C^1([0, t_0], B'(x_0, r_0))$ en tant que primitive, donc est continue.

— F est continue. En effet, soit ω un module d'uniforme continuité de f sur $[0,t_0] \times B'(0,1)$ (on peut se donner un tel module d'uniforme continuité d'après le théorème de Heine). Alors pour tous $u,v \in K, \forall t \in [0,t_0]$

$$\begin{split} \|Fu\left(t\right) - Fv\left(t\right)\| &\leq \int_{0}^{t} \|f(s,u\left(s\right)) - f\left(s,v\left(s\right)\right)\| \mathrm{d}s \\ &\leq \int_{0}^{t} \omega\left(\|u\left(s\right) - v\left(s\right)\|\right) \mathrm{d}s \\ &\leq t_{0} \omega\left(\|u - v\|_{\infty}\right) \text{ (on peut toujours supposer } \omega \text{ croissante)}. \end{split}$$

Donc $||Fu - Fv||_{\infty} \le \omega (||u - v||_{\infty})$, donc F est uniformément continue et a fortiori, elle est continue.

 $\overline{F(K)}$ est compact.

En effet,
$$\forall u \in K, \forall s \in [0, t_0], \|Fu(t) - Fu(s)\| \le \left| \int_s^t \underbrace{\|f(x, u(x))\|}_{\le C_0} \|dx \right| \le C_0$$

Donc $F(K) \subset Lip_{C_0}([0,t_0],B'(x_0,r_0))$ qui est compact par le théo-

Ainsi, F(K) est un fermé dans un compact, donc est compact.

Par le théorème de Schauder, F admet un point fixe, $u \in C^0([0, t_0], B'(x_0, r_0))$

telle que
$$u(t) = x_0 + \int_0^t f(s, u(t)) ds$$

Donc $u \in C^1$ et u' = f(s, u(t)).

3.7 Stone-Weierstrass

Théorème 17 (Stone-Weierstrass). Soit X compact $A \subset C^0(X,\mathbb{R})$ algèbre (non forcément unitaire) telle que

- (A sépare les points) $\forall x \neq y \in X, \exists f \in A, f(x) \neq f(y)$
- (A ne s'annule pas simultanément en un point) $\forall x \in X, \exists f \in A, f(x) \neq \emptyset$

Alors $\overline{A} = C^0(X, \mathbb{R})$ (norme $\|\cdot\|_{\infty}$ sur $C^0(X, \mathbb{R})$)

Lemme 12. \overline{A} est une algèbre complète unitaire.

Preuve. $\overline{A} \subset C^0(X,\mathbb{R})$ est bien une algèbre, et est complète comme fermé d'un complet. Par hypothèse, $\forall x \in X, \exists f_x \in A, f_x(x) \neq 0$. Posons $V_x :=$ $\{y \in X : f_x(y) \neq 0\}$ qui est ouvert.

Soit $X = \bigcup_{i=1}^{N} V_{x_i}$ une couverture finie de X par compacité, avec $x_1, \dots, x_I \in X$

Alors
$$f := \sum_{i=1}^{I} f_i^2 \in A$$
 et $f > 0$ sur X .

Posons $g:=\frac{f}{\|f\|_{\infty}} \in A \ 0 < g \le 1 \ \text{sur} \ X.$ Alors $\mathbf{1}=g \times \frac{1}{g}=g \times \frac{1}{1-(1-g)}=\sum_{n \in \mathbb{N}}g(1-g)^n$. En effet, $\|g(1-g)^n\|_{\infty} \le (1-p)^n$ sommable et $g(1-g)=\sum_{k=0}^{\infty}\binom{n}{k}(-1)^kg^{k+1} \in A.$ Airsi, $\mathbf{1}$ est limits uniforms de sommes partialles qui appartiament à

Ainsi, 1 est limite uniforme de sommes partielles qui appartiennent à $A. \text{ Dina } \mathbf{1} in A.$

Lemme 13. Soit $f \in A$ telle que $f \ge 0$ sur X alors $\sqrt{f} \in A$.

$$\begin{array}{l} \textbf{Preuve.} \text{ On pose } g := \frac{f}{\|f\|_{\infty}}. \text{ On a } g \in A \text{ et } g \in C^0\left(X,[0,1]\right). \text{ Soit } 0 < \\ \varepsilon \leq \frac{1}{2}. \text{ Alors } \sqrt{\varepsilon + g} = \underbrace{\sqrt{1 + (\varepsilon + g - 1)}}_{\in [-1 + \varepsilon, \varepsilon \subset_C] - 1, 1[} = \sum_{n \in \mathbb{N}} \binom{1/2}{n} \underbrace{(\varepsilon + g - 1)^n}_{\|(\varepsilon + g - 1)^n\| \leq (1 - \varepsilon)^n} \\ \text{Et } \forall n \geq 0, (\varepsilon + g - 1)^n \in A, \text{ car } \mathbf{1} \in \overline{A}. \\ \text{Avec } \left(\frac{1}{2}\right) = \frac{\frac{1}{2}(\frac{1}{2} - 1) \dots (\frac{1}{2} - n + 1)}{n!}. \end{array}$$

Avec
$$\binom{\frac{1}{2}}{n} = \frac{\frac{1}{2}(\frac{1}{2} - 1)\dots(\frac{1}{2} - n + 1)}{n!}$$
.

Par convergence normale de la série, $\sqrt{\varepsilon + g} \in \overline{A}$.

Par ailleurs $\sqrt{g} \le \sqrt{\varepsilon + g} \le \sqrt{\varepsilon} + \sqrt{g}$.

Donc $\|\sqrt{g} - \sqrt{\varepsilon + g}\|_{\infty} \le \sqrt{\varepsilon}$ donc $\sqrt{g} \in \overline{A}$ par complétude de \overline{A} .

Corollaire. Soit $f \in A$ alors $|f| = \sqrt{f^2} \in \overline{A}$.

Soient $f, g \in A$, alors $\max(f, g)$, $\min(f, g) \in \overline{A}$

Si $1 \ge f \ge 0$ sur X, alors

$$\frac{1}{f} = \frac{1}{1 - (1 - f)} = \sum_{n \in \mathbb{N}} (1 - f)^n \in \overline{A}$$

Lemme 14. Soient $V \subset X$ ouvert et $x \in V$. Alors $\exists f \in \overline{A}, 0 \leq f \leq 1$, $f(x) = 1, f(y) = 0, \forall y \notin V.$

Preuve. Soit $y \neq x$. alors $\exists f_y \in A, f_y\left(x\right) \neq f_y\left(u\right)$ On choisit $\alpha, \beta \in \mathbb{R}$ tels que $g_y := \alpha f + \beta$ satisfaisant $g_y\left(x\right) = 1, g_y\left(y\right) = -1$. On pose $V_g = \{z \in X : f_{y(z) < 0}\}$, ouvert contenant y.

Par compacité on dispose de $y_1,\ldots,y_I\in X$ tels que $X=V\cup\bigcup_{i=1}V_{y_i}$.

Puis
$$g\left(z\right):=\max\left(0,\min\left(1,\min_{1\leq i\leq I}g_{y_{i}}\left(z\right)\right)\right)\in\overline{A}$$
 convient.

"On a assez de lemme pour avancer"

Jean-Marie Mirebeau

Preuve. (Stone-Weierstrass)

Soit $f \in C^0(X, \mathbb{R})$ que l'on souhaite approcher. Quitte à considérer $\alpha f + \beta$, avec $\alpha \neq 0, \beta \in \mathbb{R}$ on peut supposer $0 \leq f \leq 1$ sur X. Soit $\varepsilon > 0$. $\forall x \in X, \text{ soit } V_x = \{y \in X : |f(x) - f(y)| \leq \varepsilon\}.$

Par compacité, $\exists x_1, \dots, x_I \in X, X = \bigcup_{i=1} V_{x_i}$.

Soit $y \in X$ arbitraire. Soit $1 \le i \le I$ tel que $y \in V_{x_i}$. Soit $\varphi_y \in \overline{A}, 0 \le I$

- On a $g(x) \le f(x) + 2\varepsilon$ En effet, si $\varphi_{y_j}(x) \neq 0$, alors $x, y_j \in V_{x_i}$, pour un certain $1 \leq i \leq I$. Donc $\varphi_{y_i} f(y_j) \le f(y_j) \le f(x) + |f(x) - f(x_i)| + |f(x_i) - f(y_j)|.$
- On a $f(x) \leq g(x) + 3\varepsilon$. En effet, soit y_j telle que $x \in W_{y_j}$. Soit $1 \le i \le I$ tel que $W_{y_j} \subset V_{x_i}$.

$$g(x) \ge \varphi_{y_j}(x)$$

$$\ge f(y_j)$$

$$\ge (1 - \varepsilon) \left(f(x) - \underbrace{|f(x) - f(x_i)|}_{\le \varepsilon} - \underbrace{|f(x_i) - f(y_j)|}_{\le \varepsilon} \right)$$

$$\ge (1 - \varepsilon) (f(x) - 2\varepsilon) \ge f(x) - 3\varepsilon..$$

D'où le résultat.

Corollaire. Soit $X \subset \mathbb{R}^d$ compact alors $\mathbb{R}[X_1, \dots, X_d]$ est dense dans $C^0(X, \mathbb{R})$ pour la norme $\|\cdot\|_{\infty}$.

Corollaire. (Stone-Weierstrass complexe) Soit X compact $A \subset C^0(X,\mathbb{C})$ une algèbre qui

- (sépare les points) $\forall x \neq y \in X \exists f \in A, f(x) \neq f(y)$
- (ne s'annule pas pas simultanément en un point) $\forall x \in X \exists f \in Af(x) \neq X$
- (stabilité par conjugaison) $\forall f \in A, \overline{f} \in A$

Alors $\overline{A} = C^0(X, \mathbb{C})$.

Preuve. Si $f \in A$ alors $\Re(f) := \frac{f + \overline{f}}{2}$ et $\Im(f) = \frac{f - \overline{f}}{2}$ sont dans A. Donc $A \cap C^0(X, \mathbb{R})$ satisfait les hypothèses de Stone Weierstrass réel. Donc $\overline{A \cap C^0(X,\mathbb{R})} = C^0(X,\mathbb{R}).$ Si $f \in C^0(X,\mathbb{C})$, $\varepsilon > 0$ alors $\exists g, h \in A \cap C^0(X,\mathbb{R}) \|\Re(f) - g\|_{\infty} \le \varepsilon$ et

 $\|\Im(f) - h\|_{\infty} \le \varepsilon$. Donc $\|f - (g + ih)\|_{\infty} \le 2\varepsilon$. D'où la densité.

Corollaire. Soit $X \subset \mathbb{C}^d$ compact. Alors $\mathbb{C}[X_1, \overline{X_1}, \dots, X_d, \overline{X_d}]$ est dense dans $C^0(X,\mathbb{C})$.

Remarque. Soit $B = B'_{\mathbb{C}}\left(0,1\right), f \in C^{0}\left(B,\mathbb{C}\right)$. Sont équivalents :

- 2. f est développable en série entière de rayon de converge 1.
- 3. $\forall z \in B(0,1), f(z) = \frac{1}{2\pi} \int_0^{\pi} i \frac{f(e^{it}) i e^{it}}{e^{it} z} dt$

Preuve. $2 \Rightarrow 1$? $1 \Rightarrow 3$

$$\int_0^{\pi} \frac{P(e^{it}) i e^{it}}{e^{it} - z} dt = i \int_0^{2\pi} \frac{P(e^{it})}{1 - z e^{it}} dt$$

$$= i \int_0^{2\pi} P(e^{it}) \sum_{n \ge 0} e^{int} z^n dt$$

$$= i \sum_{n=0}^{\infty} z^n \int_0^{2\pi} P(e^{it}) e^{-int} dt$$

$$= 2\pi \sum_{n=0}^k a_n z^n = 2\pi P(z)$$

 \Rightarrow 1 Soit |z| < 1 soit $f(z) = \frac{1}{2\pi} \int_0^{\pi} \frac{f(e^{it})}{\dots}$ Le reste de cette démo appar-

3.8 Opérateurs linéaires compacts

Définition 26. Soit E, F evn, $T \in L(E, F)$. On dit que T est compact ssi $\overline{T(B_E(0,1))}$ est compact. On note $L_C(E,F)$ l'ensemble des opérateurs compacts.

Remarque. Si $T \in L_C(E, F)$, alors $dim[\ker(Id - T)] < \infty$. En effet $\forall x \in B'_{E_1}(0, 1)$, (Id - T)x = 0, donc Tx = x donc $T(B'_{E_1}(0, 1)) = B'_{E_1}(0, 1)$.

Ainsi $B'_{E_1}(0,1)$ est un fermé donc compact donc $\dim(E)<\infty$ par le théorème de Riesz.

Théorème 18 (Alternative de Fredholm). Soit E un Banach, $T \in L_C(E, F)$ $\operatorname{tq} \ker(Id-T) = \{0\}$. Alors $\operatorname{Im}(Id-T) = E$, et $\operatorname{Id}-T$ a un inverse continu. **Preuve.** Montrons d'abord que $\underbrace{Im(Id-T)}$ est fermé.

Soit (u_n) une suite convergente à valeurs dans (Id-T). $u_n = v_n - Tv_n$, $u_n \to u_*$. Supposons par l'absurde que $||v_n|| \to \infty$. Posons $w_n = \frac{v_n}{||v_n||}$.

Alors $v_n = u_n + Tv_n$. Donc $w_n = \frac{u_n}{\|v_n\|} + \underbrace{Tw_n}_{\text{$\stackrel{\circ}{=}$ valeur dans}} = \frac{u_n}{\|v_n\|} + \underbrace{Tw_n}_{\text{$\stackrel{\circ}{=}$ valeur dans}} = \frac{u_n}{T(B_E'(0,1)) \text{ compact}} = \frac{u_{\varphi(n)}}{\|v_{\varphi(n)}\|} + Tw_{\varphi(n)} \to w_*$. Donc on a $\begin{cases} Tw_{\varphi(n)} \to w_* \text{ par compacit\'e} \\ w_{\varphi(n)} \to w_* \text{ par l'argument pr\'ec\'edent.} \\ Tw_{\varphi(n)} \to Tw_* \text{ par continuit\'e} \end{cases}$ Donc $Tw_* = w_*$ par unicit\'e de la limite, et de plus $\|w_*\| = \lim_{n \to \infty} \|w_n\| = 1$.

Ainsi $w_* \in \ker(Id - T) = \{0\}$, contradiction! On a donc v_n bornée et $\exists \psi$ extractrice tq $Tv_{\psi(n)}$ converge. Alors par le même raisonnement $v_{\psi(n)}$ $\underbrace{u_{\psi(n)}}_{\text{cv}} + \underbrace{Tv_{\psi(n)}}_{\text{cv}}, \text{ donc } \underbrace{u_{\psi(n)}}_{\to u_*} = \underbrace{v_{\psi(n)}}_{\to v_*} - \underbrace{Tv_{\psi(n)}}_{Tv_*}. \text{ Donc } u_* = v_* - \widehat{Tv_*} \in$ (Id-T)E d'où la fermeture de (Id-T)E.

Montrons maintenant que (Id-T)E = E. Posons $F_n = (Id-T)^n E, \forall n \geq 1$ 0. Par la première partie, $F_1 \subset F_0$ et fermé. Donc c'est un Banach stable par T donc $T \in L_C(F_1)$ par la première partie. F_2 est fermé et par récurrence F_n est fermé pour tout $n \ge 0$. Si par l'absurde,

choisissons $x_0 \in F_0 \backslash F_1$. Alors $x_n := T^n x_0 \in F_n \backslash F_{n+1}$ par injectivité de Id-T. [En effet si on avait $x_n \in F_{n+1}$, $(Id-T)^n x_0 = x_n = (Id-T)^{n+1} x_0$ donc $x_0 = (Id - T)y \in F_1$, impossible]. Ainsi $F_{n+1} \not\subset F_n$. Par le lemme de Riesz, on peut choisir $y_n \in F_n$ tq $\|y_n\| = 1$ et $d(y_n, F_{n+1}) \ge \frac{1}{2}$. Pour m < n on a : $Ty_m - Ty_n = y_m + \underbrace{(T - Id)y_m}_{\in F_{m+1}} - \underbrace{Ty_n}_{\in F_n}$. Donc $\|Ty_m - Ty_n\| \ge \frac{1}{2}$

 $d(y_m, F_{m+1}) \geq \frac{1}{2}$. Donc (Ty_n) n'a pas de sous suites convergente, ce qui contredit la compacité de $\overline{T(B(0,1))}$, puisque $||y_n|| = 1$. On a montré que (Id-T)E=E. Ainsi Id-T est injective et surjective donc bijective. Par le théorème de Banach, les bijection linéaires continues

-emme 15. Soit $K \in C^0([0,1],\mathbb{R})$, posons $\forall f \in C^0([0,1],\mathbb{R})$, $\mathcal{K}(f)(x) :=$ $\int_0^1 K(x,y)f(y)dy.$ C'est un opérateur compact de $(C^0([0,1],\mathbb{R}),\|.\|_{\infty}).$

dans un Banach sont d'inverse continue.

Preuve. Soit w un module de continuité de K, alors $\forall f \in C^0([0,1],\mathbb{R}), \forall x,y \in \mathbb{R}$

[0, 1],

$$\begin{split} |\mathcal{K}(f)(x)| &\leq \int_0^1 K|K(x,y)||f(y)|dy \\ &\leq \|K\|_{\infty} \|f\|_{\infty} \\ |\mathcal{K}(f)(x) - \mathcal{K}(f)(y)| &= |\int_0^1 K(x,z)f(z)dz - \int_0^1 K(x,z)f(z)dz| \\ &\leq \int_0^1 |\underbrace{K(x,z) - K(y,z)}_{\leq w(|x-y|)} ||f(z)|dz \\ &\leq w(|x-y|) \|f\|_{\infty}. \end{split}$$

Ainsi $\{\mathcal{K}(f) \mid f \in C^0([0,1]), \|f\|_{\infty} \leq 1\}$ est uniformément borné et équipotente, donc est relativement compact par le théorème d'alcali. Ainsi \mathcal{K} est un opérateur compact.

Corollaire. Soit
$$K \in C^0([0,1]^2, \mathbb{R}_+)$$
, $g \in C^0([0,1])$ et $K(x,y) = K(y,x) \forall x, y$.
Alors $\exists ! f \in C^0([0,1])$, $\forall x$, $\int_0^1 K(x,y) (f(y) - f(x)) dy - f(x) = g(x)$.

Preuve. Posons $k(x) = \int_0^1 K(x,y) dy$. L'équation complétée correspond à $\mathcal{K}(f)(x) - (1+k(x))f(x) = g(x)$. C'est à dire $\hat{\mathcal{K}}(f) - f = \hat{g}$, avec $\hat{\mathcal{K}} = \underbrace{((1+k)^{-1})^{-1}}_{\text{op compact op compact op compact}}_{\text{op compact op compact}}$. Donc $\hat{\mathcal{K}}$ est compact comme composée d'un opérateur

compact et d'un opérateur continue. Par l'alternative de Fredholm, il suffit de montrer que $\ker(\hat{\mathcal{K}} - Id) = \{0\}$. Par l'absurde, soit $f \in C^0([0,1])$ tq $\hat{\mathcal{K}}(f) = f$, ie $\mathcal{K}(f) = (1+k)f$.

Donc
$$\underbrace{\int_{x=0}^{1} \int_{y=0}^{1} K(x,y) (f(y) - f(x)) dy \cdot f(x) dx}_{= -\frac{1}{2} \int_{0}^{1} \int_{0}^{1} K(x,y) (f(x-f(y))^{2} dy dx \text{ par sym de } K} = \int_{0}^{1} f(x)^{2} dx.$$

Finalement, $\int f^2 \leq 0$ donc f = 0 d'ou l'injectivité.

Définition 27. Soit E un evn, $T \in L(E, F)$, le spectre de T est $\sigma(T) := \{\lambda \in \mathbb{K} \mid \lambda Id - T \text{ n'a pas d'inverse continue}\}.$

Propriété 9. Soit E un Banach, $T \in L(E, F)$.

- (i) Si $dim(E) = \infty$ alors $0 \in \sigma(T)$
- (ii) $\forall \lambda \in \sigma(T) \setminus \{0\}, \exists x \in E, Tx = \lambda x.$
- (iii) $\forall \lambda \in \sigma(T) \setminus \{0\}, \ \exists m = m(\lambda), \ \ker((\lambda T)^m) = \ker((\lambda T)^{m+1}).$ De plus, $\ker((I T)^m)$ est de dimension finie
- (iv) L'ensemble $\sigma(T)$ est dénombrable, et 0 est le seul point d'accumula-

tion possible.

Preuve. (i) Si $0 \notin \sigma(T)$, alors T^{-1} existe et est continue. Donc $\underbrace{T^{-1}(T(B(0,1)))}_{\text{compact comme image d'un compact par }T^{-1}}_{\text{compact par }T^{-1}} \underbrace{B'(0,1)}_{\text{ferm\'e}}. \text{ Donc }B'(0,1) \text{ est compact, donc }dim(E) < \infty \text{ par le th\'eor\`eme de Riesz.}$

- (ii) Application de l'alternative de Fredholm à T.
- (iii) Posons $F_n \subsetneq F_{n+1}$, en choisissant $x_n \in F_n \operatorname{tq} ||x_n|| = 1 \operatorname{et} d(x_n, F_{n+1}) \ge \frac{1}{2}$. Soit $m < n \ Tx_m - Tx_n = \underbrace{\lambda x_m}_{\in F_m} + \underbrace{(T - \lambda)x_m}_{\in F_{m+1}} - \underbrace{\lambda x_n}_{\in F_n} - \underbrace{(T - \lambda)x_n}_{\in F_{n+1}}$.

Donc $||Tx_m - Tx_n|| \ge d(\lambda x_m, F_{m+1}) \ge \frac{|\lambda|}{2}$. Donc (Tx_n) n'a pas de sous suite convergente, contredit la compacité de T. Donc $\exists m$, $\ker((\lambda - T)^m) = \ker((\lambda - T)^{m+1})$ comme annoncé.

De plus, $D_{\lambda} = \ker ((\lambda - T)^m)$ est stable par T, et $\forall x \in E_{\lambda}$, $(\lambda - T)^m x = 0$, donc $\lambda^m x = \sum_{k=0}^{m-1} (-1)^k \lambda^k T^{m-k} x$. Donc $B_{E_{\lambda}}(0, |\lambda|^m) = \prod_{k=0}^{m-1} (-1)^k \lambda^k T^{m-k} x$.

 $\underbrace{TQ(T)}_{\text{op compact}} B_{E_{\lambda}}(0,|\lambda|^{m}. \text{ Donc } B'_{E_{\lambda}}(0,|\lambda|^{m}) \text{ est compact et } dim(E_{\lambda}) <$

d'adhérence compact ∞ .

dénombrable.

(iv) Supposons que $\sigma(T)$ a un point d'accumulation $\lambda x \neq 0$. Alors on a $\lambda m \to \lambda x$ avec $\lambda m \neq \lambda x$. On choisit $x_n \neq 0$, $Tx_n = \lambda_x x_n$. On pose $F_n = \{x_1, \cdots, x_n\}$, on choisit $y_n \in F_n$ tq $\|y_n\| = 1$ et $d(y_n, F_{n+1}) \geq \frac{1}{2}$. par lemme de Riesz. Comme avant on se ramène à (Ty_n) qui n'a pas de sous suite convergente ce qui est contradictoire. Par ailleurs, $\sigma(T) \subset B'(0, ||T||)$ pour tout opérateur continue puisque $(\lambda I - T)^{-1} = \frac{1}{\lambda} (I - Tx)^{-1} = \frac{1}{\lambda} \sum_{n \geq 0} \left(\frac{T}{\lambda}\right)^n$ si $|\lambda| \geq ||T||$. Ainsi pour tout $\varepsilon > 0$, $\sigma(T) \backslash B_{\mathbb{K}}(0, \varepsilon)$ est un ensemble borné sans point d'accumulation, donc fini. Donc $\sigma(T) \backslash \{0\} = \bigcup_{n \geq 1} \sigma(T) \backslash B(0, \frac{1}{n})$ est

Définition 28 (Propriété d'approximation). Un evn E a la PA si $\forall \varepsilon > 0, \ \forall K \subset_C E, \ \exists T \in L_f(E,) := \{T \in L(E) \mid dim(Im(T)) < \infty\}, \ \text{tel que} \ \forall x \in K, \ \|Tx - x\| \leq \varepsilon$

Exemple. Tout espace de Hilbert à la PA. En effet, soit $x_1, \dots, x_I \in K$ tels que $K \subset \bigcup_{1 \le i \le I} B(x_i, \varepsilon)$. Soit T la projection orthogonale sur $Vect(x_1, \dots, x_I)$.

Alors T est linéaire, continue et $\forall x \in K$, $||Tx - x|| = \min_{1 \le i \le I} ||x_i - x|| \le \varepsilon$ On sait que $L^p(X, \mu)$ pour tout $1 \le p \le \infty$ a la PA. Également, $C_b^0(X)$ a la PA pour tout espace métrique (X, d).

Propriété 10. Soit E un evn et F un espace de Banach. Alors $L_c(E,F)$ est fermé et $L_c(E,F) \supset \overline{L_f(E,F)}$ avec égalité si F a la PA. De plus, si $T \in L_f(E,F)$, alors $T : (B'_E(0,1), \text{faible}) \to (F, \|.\|_F)$ est continue.

Preuve. — Fermeture de $L_c(E,F)$. Soit $T \in \overline{L_c(E,F)}$, $\varepsilon > 0$. Soit $T_0 \in L_c(E,F)$ tq $||T-T_0|| \le \varepsilon$. Comme $K_0 = \overline{T_0(B)}$ est compact (avec $B = B_E(0,1)$), il existe $x_1, \dots, x_n \in K_0$ tq $K_0 \subset \bigcup_{i \le I} B(x_i,\varepsilon)$. Alors $K = \bigcup_{i \le I} B(x_i,\varepsilon)$

 $\overline{T(B)} \subset \bigcup_{1 \leq i \leq I} B(x_i, 2\varepsilon)$. Ainsi K est un précomact, et un complet car fermé dans F Banach, donc compact.

— Les opérateurs de rand fini sont compacts. En effet, si $T \in L_f(E, F)$, alors $\overline{T(B)} \subset \underbrace{Im(T) \cap B'_F(0, ||T||)}_{\text{fermé borné en dim finie}}$. Donc T(B) est une partie fermée donc compact

d'un compact donc compact. Ainsi $L_f(E,F)\subset L_c(E,F)$ fermé et $\overline{L_f(E,F)}\subset L_c(E,F)$.

- Montrons que $L_c(E, F) = \overline{L_f(E, F)}$ si F a la PA. Soit $T \in L_c(E, F), \varepsilon > 0$. Soit $K = \overline{T(B)}$, soit $P \in L_f(F)$ tq $\|Py y\| \le \varepsilon, \forall y \in K$.. Alors $P \circ T$ est de rang fini et $\sup_{x \in B} \|P(Tx) Tx\| = \|P \circ T T\| \le \varepsilon$, donc $T \in L_f(E, F)$.
- Continuité faible \to forte. Soit $T \in L_f(E, F)$, soit f_1, \dots, f_n une base de Im(T). On écrit $T(x) = \sum_{1 \le i \le n} f_i l_i(T(x)) \le \sum_{i=1}^n \|f_i\| |\underbrace{l_i(T(x))}_{\substack{l_i \circ T \in E^* \text{la ieme coordonnée}}}$

Donc $T: \left(E, (|\varphi(x)|)_{\varphi \in E^*}\right) \to (F, \|.\|_F)$ est continue. Soit $T \in \overline{L_f(E,F)}$ et $T_n \in L_f(E,F)$ tq $\|T-T_n\| \to 0$. Alors T_n est continue pour la topologie faible et converge uniformément vers T donc T est continue.

4 Dualité et topologie faible.

4.1 Espaces Hilbertiens, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Définition 29. Soit \mathcal{H} (ou \mathfrak{H} pour les rageux) un \mathbb{K} -ev, $\varphi:\mathcal{H}\times\mathcal{H}\to\mathbb{K}$ est sesquilinéaire si

— linéarité à droite : $\varphi(x, y + \lambda z) = \varphi(x, y) + \lambda \varphi(x, z)$

49

— antilinéarité à gauche : $\varphi(x+\lambda y,z)=\varphi(x,z)+\overline{\lambda}\varphi(y,z)$

On dit qu'elle est :

- symétrique si $\varphi(x,y) = \overline{\varphi(y,x)}$
- positive si $\varphi(x,x) \geq 0$
- définie positive si $\varphi(x,x)=0 \Rightarrow x=0$.

Un espace muni d'une forme sesquilinéaire symétrique définie positive est dit préhilbertien. On note $\langle x,y\rangle:=\varphi(x,y), \, \|x\|=\sqrt{\varphi(x,x)}.$

Remarque. Si \mathcal{H} est préhilbertien, alors pour tout $x, y \in \mathcal{H}$,

$$||x + y||^2 = ||x||^2 + 2Re(\langle x, y \rangle) + ||y||^2$$

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

(identité du parallélogramme)

Propriété 11 (inégalité de Cauchy Schwartz). Soit \mathcal{H} préhilbertien, alors $\forall x,y\in\mathcal{H}$,

$$|\langle x, y \rangle| \le ||x|| ||y||$$

. Avec égalité si et seulement si x et y sont colinéaires.

Preuve. L'égalité est claire si x et y sont colinéaires. On suppose donc $\lambda x + \mu y \neq 0$ pour tout $\lambda, \mu \neq 0$. Soit $\alpha \in \mathbb{C}$ tel que $|\alpha| = 1$ et P strictement positif sur \mathbb{R} donc de discriminant strictement négatif. ie $|\langle x,y \rangle| \leq ||x|| ||y||$ donc ça marche. :)

Un espace de Hilbert est un espace préhilbertien complet.

Soit \mathcal{H} un Hilbert, $K \subset \mathcal{H}$ convexe fermé. Alors $P_K(x) := argmin_{y \in K} ||x-y||$ existe et est unique pour tout $x \in \mathcal{H}$. De plus on a la caractérisation :

$$P = P_k(x) \Leftrightarrow \forall y \in K, \ Re(x) \langle x - p, y - p \rangle \le 0$$

. Et la propriété $\forall x,y\in\mathcal{H},\ \|P_K(x)-P_k(y)\|^2\leq Re\left(\langle x-y,P_K(x)-P_K(y)\rangle\right)$ ce qui implique que P_K est 1-Lipschitzienne.

Propriété 12 (Projection sur un sev fermé). Soit \mathcal{H} un Hilbert, $F \subset \mathcal{H}$, sev fermé. Alors on a la caractérisation

$$p = P_F(x) \Leftrightarrow p \in F \text{ et } \forall y \in F, \langle x - p, y \rangle = 0$$

. De plus, $P_F + P_{F^{\perp}} = Id$ où $F^{\perp} = \{ y \in \mathcal{H} \mid \forall x \in F, \ \langle x, y \rangle = 0 \}.$

Corollaire (Théorème de représentation de Riesz). Soit $\mathcal H$ un Hilbert, alors $f: \mathcal H \longrightarrow \mathcal H^*$ est une bijection isométrique antilinéaire.

Preuve. On a $\varphi_x \in \mathcal{H}^*$ car $|\varphi_x(y)| = |\langle x,y \rangle| \leq ||x|| ||y||$. L'estimation précédente donne $||\varphi_x||_{\mathcal{H}^*} \leq ||x||$, et en choisissant y = x on obtient $||\varphi_x(x)|| = ||x||^2$. L'antilinéarité de $x \mapsto \varphi_x$ découle de la sesquili- $||\varphi_x||_{\mathcal{H}^*||x||_{\mathcal{H}}}$ néarité de f. Montrons la surjectivité. Soit $\varphi \in \mathcal{H}^* \setminus \{0\}$, alors $F := \ker(\varphi)$ est un sev fermé. Soit $x \in \mathcal{H}$ tq $\varphi(x) = 1$, soit $p = P_f(x)$, v = x - p. Alors $\varphi(v) = \varphi(x - p) = 1$ et $\langle v, y \rangle = 0 \forall y \in F$. De plus $\varphi(z - \varphi(z)v) = 0$ par linéarité donc $z - \varphi(z)v \in F = \ker(\varphi)$. Ainsi $\langle v, z - \varphi(z)v \rangle = 0$ et $\varphi(z)||v||^2 = \langle v, z \rangle$ donc $\varphi(z) = \frac{\langle v, z \rangle}{||v||^2}$.

Remarque. La topologie faible et la topologie *-faible correspondent sur \mathcal{H} .

4.2 Théorème de Hahn Banach

Définition 30. Un ensemble ordonné (E, \leq) est dit inductif si toute partie $F \subset E$ totalement ordonné admet un max dans E.

Lemme 16 (Zorn). Tout ensemble non vide et inductif admet un élément maximal.

Preuve. Soit \mathcal{A} un ensemble d'ensembles non vide. $\mathcal{B} = \bigcup_{A \in \mathcal{A}} A$. Soit $E = \{f : A \to \mathcal{B} \mid A \subset \mathcal{A}, \forall a \in A, f(a) \in a\}$ l'ensemble des fonctions de choix partiel. $E \neq \emptyset$ car il contient $f : \emptyset \to \mathcal{B}$ l'application triviale. Soit $f : A \to \mathcal{B}$, on dit que $f \leq f'$ si $A \subset A'$ et $f'_{|A} = f$. Si $F = (f_i)$ est totalement ordonnée, $f : A_i \to \mathcal{B}$, on pose $A_* = \bigcup_{i \in I} A_i, f_* : A_* \to \mathcal{B}$ où $i \in I$ to $x \in A_i$. Soit $f : A \to \mathcal{B}$ un élément maximal de E. Si par $A \cup \{\alpha\} \to \mathcal{B}$ l'absurde $A \neq \mathcal{A}$, soit $\alpha \in \mathcal{A} \setminus A$ et $\beta \in \alpha$. On pose $f' : x \in A \mapsto f(x)$ qui prolonge strictement f et contredit la maximalité.

On suppose $\mathbb{K} = \mathbb{R}$ dans cette partie.

Définition 31. Soit E un \mathbb{R} -ev, $\rho: E \to \mathbb{R}$. ρ est dite sous linéaire si

$$\rho(x+y) \le \rho(x) + \rho(y)$$

$$\rho(\lambda x) \le \lambda \rho(x)$$

Exemple. Soit E un ev, $E \subset E$ sev, $\rho: F \to \mathbb{R}$ sous linéaire $\varphi_F: F \to \mathbb{R}$

linéaire et t
q $\varphi_F \leq \rho$ sur F. Alors $\exists \varphi: E \to \mathbb{R}$ linéaire t
q $\varphi_{|F} = \varphi_F$ et $\varphi \leq \rho$ sur E.

Preuve. Soit $E = \{\varphi: G \to \mathbb{R} \mid F \subset G, G \text{sev de} E, \varphi \text{linéaire et} \varphi \leq \rho \text{sur } G\}$. E non vide sur $\varphi_F \in E$, E est ordonné par la relation (\leq) . E est inductif $\varphi_i: G_i \to \mathbb{R}$. On pose $G_* = \bigcup_{i \in G_i} \text{et } \varphi_*: G_* \to \mathbb{R}$ $x \mapsto \varphi_i(x)$. $\varphi_* \leq \rho \text{ sur } G_*, \varphi(\lambda x) = \lambda \varphi(x) \text{ et pour tout } x, y \in G_*, \text{ tout } i, j \in I \text{ tq } x \in G_i, y \in G_j, \text{ comme } (\varphi_i) \text{ totalement ordonné, on a } G_i \subset G_j \text{ ou l'inverse.}$ Disons $G_i \supset C_j$. Alors $x, y \in G_i, \varphi_*(x+y) = \varphi_i(x+y) = \varphi_*(x) + \varphi_*(y)$. Soit $\varphi: G \to \mathbb{R}$ élément maximal de E, par le lemme de Zorn. Par l'absurde, $G \neq E$, soit $x \in E \setminus G$, on pose $\psi: G \mapsto G \mapsto G$ où α est bien choisi. On veut $\psi(y+\lambda x) \leq \rho(y+\lambda x)$ ie $\varphi(y)+\lambda \alpha \leq \rho(y+\lambda x)$. Donc $\sup \varphi(z)-\rho(z-x) \leq \alpha \leq \inf \rho(y+x)-\varphi(y)$. Or $\forall y, z \in G_*, \varphi(z)-\rho(z-x) \leq \rho(y+x)-\varphi(y) \Leftrightarrow \varphi(y)+\varphi(z) \leq \rho(y+z)+\rho(z-x)$ ce qui est vrai donc $g \mapsto G$ on peut bien choisir α de sorte à respecter l'inégalité précédente. $G \mapsto G$

Théorème 19 (Hahn Banach). Soit E un \mathbb{R} —ev, soit $p: E \to \mathbb{R}$, sous additive $(p(x+y) \le p(x) + p(y))$ et $p(\lambda x) = \lambda p(x), \lambda > 0$). Soit $F \subset E$ sev et $\varphi_F: F \to \mathbb{R}$ linéaire telle que $hi_F \le p$ sur F. Alors $\exists \varphi: E \to \mathbb{R}$ linéaire, $\varphi_{|F|} = \varphi_F$ et $\varphi \le p$ sur E.

Remarque. Soit (X, \leq) un ensemble (partiellement) ordonné, $x \in X$ est $\underline{\text{maximal}}$ si $\forall y \in X, \ \neg (y > x)$. x est le plus grand élément si pour tout $y \in X, \ y \leq x$.

Corollaire (Prolongement de même norme d'une forme linéaire). Soit E un evn, $F \subset E$ sev, $\varphi_F \in F^*$. Alors il existe $\varphi \in E^*$ telle que $\varphi_{|F} = \varphi_F$ et $\|\varphi\|_{E^*} = \|\varphi_F\|_{F^*}$.

Preuve. Posons
$$p: E \longrightarrow \mathbb{R}$$
 $x \longmapsto C\|x\|_E$ avec $C = \|\varphi_F\|_{F^*} = \sup_{\substack{x \in F \\ \|x\|_E = 1}} |\varphi_F|$.

La fonction p est sous additive, et $\varphi_F \leq p$ sur F. Par théorème de Hahn Banach, il existe $\varphi: E \to \mathbb{R}$ telle que $\varphi_{|F} = \varphi_F$ et $\varphi \leq p$ sur E. Alors $|\varphi(x)| = \max{(\varphi(x), \varphi(-x))} \leq \max{(p(x), p(-x))} = C||x||$. Ainsi $||\varphi||_{E^*} \leq C = ||\varphi_F||_{F^*}$ ce qui conclut car l'inégalité réciproque est évidente par $\varphi_{|F} = \varphi_F$.

Corollaire (Critère de densité). Soit E un evn et $F \subset E$ un sev. Alors F est dense ssi la seule forme linéaire $\varphi \in E^*$ s'annulant sur F est $\varphi = 0$.

Preuve.

- \Rightarrow Si F est dense et $\varphi \in E^*$ s'annule sur F alors φ s'annule sur E par continuité
- \Leftarrow On suppose F non dense et on obtient $x_0 \in E \backslash F$. On pose $\tilde{F} := F \oplus \mathbb{R}$ $F \oplus \mathbb{R} x_0$ et $\varphi : \underset{\in F}{u} + \underset{\in \mathbb{R}}{\lambda} x_0 \longmapsto \lambda$ est continue car $\forall u, v \in F, \ \lambda \in \mathbb{R}$,

$$||u + \lambda x_0|| \ge d(u + \lambda x_0, F)$$

$$= d(\lambda x_0)$$

$$= |\lambda|d(x_0, F).$$

$$donc |\varphi(u + \lambda x_0)| = |\lambda|$$

$$\le \frac{||u + \lambda x_0||}{d(x_0, F)}.$$

$$> 0 \operatorname{car} x_0 \notin \tilde{F}.$$

Par Hahn Banach, il existe $\psi \in E^*$ telle que $\|\psi\|_{E^*} = \|\varphi\|_{\tilde{F}^*}$ et $\psi_{|\tilde{F}} = \varphi$. On a bien $\psi = 0$ sur F et $\psi(x_0) \neq 0$.

Exemple. Soit E un evn. Si E^* est séparable alors E aussi.

Preuve. Soit (φ_n) une famille dense dans E^* , soit (x_n) une famille de E telle que $||x_n||_E = 1$ et $\varphi_n(x_n) \ge \frac{||\varphi_n||_{E^*}}{2}$.

$$F = Vect\{x_n \mid n \in \mathbb{N}\}$$

$$= \{\sum_{n=0}^{\infty} \lambda_n x_n \mid (\lambda_n) \text{ a support presque nul}\}$$

$$= \{\sum_{n=0}^{N} \lambda_n x_n \mid N \in \mathbb{N}, \lambda_1, \cdots, \lambda_n \in \mathbb{R}\}.$$

F est séparable car $\bigcup_{N\in\mathbb{N}}\mathbb{Q}^N$ est dénombrable. Montrons que F est dense. Soit $\varphi\in E^*$ s'annulant sur F. On suppose que $\varphi\neq 0$ par l'absurde, et donc

on peut supposer $\|\varphi\|_{E^*}=1$. Soit $n\in\mathbb{N}$ tq $\|\varphi_n-\varphi\|_{E^*}\leq \frac{1}{4}$, alors :

$$\varphi(x_n) \ge \varphi_n(x_n) - \overbrace{\|\varphi - \varphi_n\|_{E^*}}^{\operatorname{car} \|x_n\|_E = 1}$$

$$\ge \frac{\|\varphi_n\|}{2} - \|\varphi - \varphi_n\|_{E^*}.$$

$$\ge \frac{\|\varphi\| - \|\varphi - \varphi_n\|}{2} - \|\varphi - \varphi_n\|$$

$$= \frac{\|\varphi\|}{2} - \frac{3}{2} \|\varphi - \varphi_n\|$$

$$\ge \frac{1}{2} - \frac{3}{4} \frac{1}{4}$$

$$> 0$$

On a trouvé $x_n \in F$ sur lequel φ ne s'annule pas, contradiction! Ainsi F est dense.

Corollaire (Projection sur un sev de dim finie). Soit E un evn, F un sev de dim finie. Alors $\exists p \in L(E,F)$ projection sur F. On a Im(p) = F et $p^2 = p$. linéaire continue

Remarque. Le théorème de Knolet Snobar????? montre que l'on peut trouver p projection sur F tel que $||p||_{L(E)} \leq \sqrt{dim(F)}$.

Preuve. Soit e_1, \dots, e_n base de F. Soit $\varphi_1, \dots, \varphi_n$ base duale de F^* . $\varphi_i(e_j) = \delta_{i,j}$. Soit $\psi_1, \dots, \psi_n \in E^*$ telles que $\psi_{i|F} = \varphi_i$ pour tout i.

On pose $p(x) = \sum_{i=1}^{n} \psi_i(x)e_i$. On a $p \in L(E)$ et si $x = \sum_{k=1}^{n} \lambda_k e_k \in F$ alors

$$p(x) = \sum_{i=1}^{n} \psi_i(x)e_i$$
$$= \sum_{i=1}^{n} \varphi_i(x)e_i$$
$$= \sum_{i=1}^{n} \lambda_i e_i$$
$$= x.$$

4.3 Réflexivité

Propriété 13 (éléments conjugué dual). Soit E evn et $x \in E$. Alors il existe $\varphi \in E^*$ telle que $\varphi(x) = \|\varphi\|_{E^*} \|x\|_E$ et $\|\varphi\|_{E^*} = \|x\|_E$.

Preuve. Posons $F=\mathbb{R}x$ et $\varphi_F: F \longrightarrow \mathbb{R}$ $\lambda x \longmapsto \lambda \|x\|_E^2$. Par Hahn Banach, il existe $\varphi \in E^*$ telle que $\varphi_{|F}=\varphi_F$ et $\|\varphi\|_{E^*}=\|\varphi_F\|_{F^*}=\frac{|\varphi(x)|}{\|x\|_E}=\|x\|_E$ pour $x \neq 0$. On note que φ convient...

Remarque. Si E est un Hilbert, alors l'élément conjugué dual est $\varphi(.) = \langle x, . \rangle$.

Remarque. En général, pas d'unicité. Par exemple, $x=(1,0)\in (\mathbb{R}^2,\|.\|_1)$ admet les conjugués duaux : $\varphi=(1,\lambda)\in (\mathbb{R}^2,\|.\|_\infty)$, $|\lambda|\leq 1$.

Corollaire (Isométries dans le bidual). Soit E, evn. Posons $\Psi: E \to E^{**}$ définie par $\Psi(\underset{\in E}{x})(\underset{\in E^*}{\varphi}) := \varphi(x)$. C'est une injonction isométrique.

Preuve. Soit $x \in E$, $\varphi \in E^*$. Alors

$$|\Psi(x)(\varphi)| = |\varphi(x)|$$

$$\leq ||\varphi||_{E^*} ||x||_E.$$

Donc $\Psi(x) \in E^{**}$ et $\|\Psi(x)\|_{E^{**}} \le \|x\|_E$.

De plus en choisissant pour φ un élément conjugué dual de x in a l'égalité et donc $\|\Psi(x)\|_{E^{**}} = \|x\|_E$. D'où l'isométrie, et donc l'injection. (Si $\Psi(x) = 0$ alors $\|x\| = \|\Psi(x)\| = 0$).

On dit que E est réflexif si $\Psi: E \to E^{**}$ est bijective. Dans ce cas, on peut identifier E et E^{**} . (Les topologies sont les mêmes. La topologie faible sur E et la topologie *-faible sur E^{**} sont les mêmes). En particulier, la boule unité fermée de E est faiblement compacte.

Corollaire. La topologie faible sur un evn E est séparée.

Si $A \subset E$ est faiblement bornée $(\forall \varphi \in E^*, (\varphi(a))_{a \in A} \text{ est bornée})$, alors A est fortement bornée $(A \subset B(0, R) \text{ pour un certain } R \in \mathbb{R}^{+*})$.

Preuve. (Séparation) : soit $x_0 \in E$ sur lequel toutes les semi normes s'annulent. $E \longrightarrow \mathbb{R}$ nulent. $(x \longmapsto |\varphi(x)|, \varphi \in E^*)$ On choisit $\varphi \in E^*$ un conjugué dual de x_0 , alors $|\varphi(x_0)| = ||x_0||_E$ donc x = 0. Le critère de séparation est satisfait. Soit $A \subset E$ faiblement borné. Alors $\Psi(A) \subset E^{**}$ est * faiblement bornée. $(\forall \varphi \in E^*, \ (\Psi(x)(\varphi))_{x \in A}$ est bornée). Par le théorème de Banach Steinhaus, $\Psi(A)$ est borné. Par isométrie, A est borné. (Remarque : E^* est toujours complet donc est un Banach)

Théorème 20 (James, critère de réflexivité). Soit E un Banach, sont équivalents :

- (i) E est réflexif
- (ii) E^* est réflexif
- (iii) $B'_{E}(0,1)$ est faiblement compacte
- (iv) $\forall \varphi \in E^*$, $\exists x \in B'_E(0,1)$, $\varphi(x) = \|\varphi\|_{E^*}$.

Preuve. On admet $(iv) \Rightarrow (i)$ qui est pénible et constitue le cœur du théorème.

- $((i) \Rightarrow (iii))$ car $B'_{E}(0,1)$ est * faiblement compact (Banach Alaoglu) et car la topologie * faible sur $B'_{E}(0,1)$ coincide avec la topologie * faible sur $B'_{E^{**}}(0,1)$.
- $((iii) \Rightarrow (iv))$ Car $B'_E(0,1)$ est faiblement compact, et φ est faiblement continues donc atteint ses bornes. Donc $\|\varphi\|_{E^*} = \max\{\varphi(x) \mid x \in B'_E(0,1)\}$ est atteint.
- $((ii) \Rightarrow (i))$ Supposons $\Psi: E \to E^{**}$ non surjective. Comme $\Psi(E)$ est isométrique à E, il est fermé. Par le critère de densité, il existe $\varphi \in E^{***}\setminus\{0\}$, s'annulant sur $\Psi(E)$. Si par l'absurde $\varphi = \Psi_{E^*}(\varphi_0)$ avec $\varphi_0 \in E^*$, alors φ_0 s'annule sur E donc $\varphi_0 = 0$, donc $\varphi = 0$, contradiction. Ainsi φ n'est pas dans l'image de $\Psi_{E^*}: E^* \to E^{***}$ et E non réflexif.

Définition 32. Un evn E est uniformément convexe si $\forall \varepsilon > 0, \ \exists \delta > 0 \ \forall x,y \in E, \ (\|x\| = \|y\| \ \text{et} \ \|x-y\| > 0) \Rightarrow \frac{\|x+y\|}{2} \leq \delta$

Exemple. Un Hilbert est uniformément convexe car $\|x+y\|^2 + \|x-y\|^2 = 2\left(\|x\|^2 + \|y\|^2\right)$ donc $\frac{\|x+y\|^2}{4} = \frac{1}{2}\left(\|x\|^2 + \|y\|^2\right) - \frac{1}{4}\|x-y\|^2$ d'où $\|\frac{x+y}{2}\| \le \sqrt{1-\frac{\varepsilon}{4}}$ si $\|x\| = \|y\| = 1$ et $\|x-y\| = \varepsilon$.

Propriété 14. Soit E un Banach uniformément convexe, $\varphi \in E^* \setminus \{0\}$. Alors $\exists ! x \in B'_E(0,1), \ \varphi(x) = \|\varphi\|_{E^*}$. En particulier, E est réflexif (par le théorème de James).

Preuve. On peut supposer $\|\varphi\|=1$. Soit $(x_n)\in B_E'(0,1)^{\mathbb{N}}$ telle que $\varphi(x_n)\underset{n\to+\infty}{\longrightarrow} 1=\|\varphi\|=\sup_{\|x\|\leq 1}|\varphi(x)|$. On peut supposer $\|x_n\|=1$ quitte à construire la suite normalisée qui satisfait la même égalité. Montrons

qu'elle est de Cauchy.

Soit $\varepsilon > 0$, soit $\delta > 0$ correspondant dans l'uniforme continuité. Soit $N \in \mathbb{N}$

tel que $\forall n \geq N, \ \varphi(x_n) > 1 - \delta$. Si $m, n \geq N$ alors

$$1 - \delta < \frac{\varphi(x_m) - \varphi(x_n)}{2}$$

$$= \varphi(\frac{x_m - x_n}{2})$$

$$\leq \underbrace{\|\varphi\|}_{=1} \|\frac{x_m - x_n}{2}\|$$

 $\leq 1 - \delta$ par uniforme convexité si $||x_m - x_n|| \geq \varepsilon$.

Impossible donc $||x_m - x_n|| \le \varepsilon$, d'où le critère de Cauchy. Donc (x_n) est convergente vers x_* et $\varphi(x_*) = 1 = ||\varphi||$ par continuité. D'où l'existence d'un maximiseur. L'unicité découle de l'uniforme convergente.

Propriété 15 (Inégalité de Holder). Soit (X, μ) un espace mesuré, $f \in$ $L^p(X), g \in L^q(X)$ avec $p, q \in [1, \infty], \frac{1}{p} + \frac{1}{q} = 1$ (dit exposants conjugués). Alors $fg \in L^1(X)$ et $\int fg \leq \|f\|_p \|g\|_q$ avec égalité ssi f=0 ou

- $(\cos 1 <math>f = \lambda sign(g)|g|^{\frac{q}{p}}$ avec $\lambda > 0$.
- (cas p = 1) $g = \lambda sign(f)$ avec $\lambda > 0$ presque partout où |f| > 0 et $|g| \le \lambda$ là où f = 0.

Preuve. On suppose $1 , le cas <math>p \in \{1, \infty\}$ étant trivial (on majore p par sa norme et intègre f). On a l'inégalité de Young : $\forall a, b \in]0, \infty[$,

$$ab = \exp\left(\frac{1}{p}\ln(a^p) + \frac{1}{q}\ln(b^q)\right)$$

$$\leq \frac{1}{p}\exp\left(\ln(a^p)\right) + \frac{1}{q}\exp\left(\ln(b^q)\right)$$

$$= \frac{1}{p}a^p + \frac{1}{q}b^q.$$

On a toujours cette inégalité si $a,b\in[0,\infty[$. Par homogénéité, quitte à considérer $\frac{f}{\|f\|_p}$ et $\frac{g}{\|g\|_q}$, on peut supposer $\frac{f}{\|g\|_p}$ et $\frac{g}{\|g\|_q}$, on peut supposer $\frac{f}{\|g\|_p}$ et $\frac{g}{\|g\|_q}$. $||f||_p = ||g||_q = 1$. Le résultat est évidemment trivial pour f = 0 ou g = 0. On a alors:

$$\int_{X} |fg| \le \int_{X} \frac{1}{p} |f|^{p} + \frac{1}{q} |g|^{q}$$

$$= \frac{1}{p} ||f||_{p}^{p} + \frac{1}{q} ||g||_{q}^{q}$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1.$$

D'où l'inégalité de Holder.

Pour le cas d'égalité, par la stricte convexité de l'exponentielle dans l'inégalité de Young, on a égalité ssi $\ln(a^p) = \ln(b^q)$, ie $a^p = b^q$, ie $a=b^{\frac{q}{p}}.$ On remarque la nécessité d'avoir a,b>0. On a donc égalité dans Holder ssi $\frac{f}{\|f\|_p} = \left(\frac{g}{\|g\|_q}\right)^{\frac{q}{p}}$ et f et g sont de même signe presque

Propriété 16 (Inégalité de Clarkson). Soit (X, μ) un espace mesuré et $f, g \in$ L^p avec 1 . Alors:

$$\|\frac{f+g}{2}\|_p^p + \|\frac{f-g}{2}\|_p^p \leq \frac{1}{2}\|f\|_p^p + \frac{1}{2}\|g\|_p^p.$$

Si $p \in \{1, 2\}$ alors :

$$\|\frac{f+g}{2}\|_p^p + \|\frac{f-g}{2}\|_p^p \le \left(\frac{1}{2}\|f\|_p^p + \|g\|_p^p\right)^{\frac{p}{q}}$$

Preuve. On prouvera seulement la première inégalité.

Soit $a, b \in [0, \infty[$, $s \ge 1$. Alors $a^s + b^s \le (a + b)^s$. En effet, on peut supposer a+b=1, quitte à normaliser par (a+b). Notons que $a^s \leq a$ et $b^s \leq b$ car $a, b \le 1$. Donc $a^s + b^s \le a + b = 1 = (a + b)^s$. On en déduit alors ponctuellement :

$$\begin{split} |\frac{f+g}{2}|^p + |\frac{f-g}{2}|^p &\overset{s=\frac{p}{2}\geq 1}{\leq} \left(|\frac{f+g}{2}|^2 + |\frac{f-g}{2}|^2\right)^s \\ &= \left(\frac{1}{2}f^2 + \frac{1}{2}g^2\right)^s \\ &\leq \frac{1}{2}|f|^p + \frac{1}{2}|g|^p & \text{convexit\'e de } x \mapsto |x|^s \ . \end{split}$$

Ainsi
$$L^p$$
 est uniformément convexe, si $1 . Par exemple, si $p \ge 2$, $\|f\|_p = \|g\|_p = 1$, $\|f - g\| = \varepsilon$, on a $\|\frac{f+g}{2}\| \le \left(1 - \frac{1}{2^p}\varepsilon^p\right)^{\frac{1}{p}}$.$

Théorème 21 (Dualité dans les espaces de Lebesgue). Spot (X, μ) un espace mesuré, $1 \le p \le \infty$ avec $\frac{1}{q} + \frac{1}{p} = 1$. Pour tout $g \in L^q$, posons $\varphi_g : L^p \longrightarrow \mathbb{R}$

 $f \longmapsto \int_X fg$. Alors $g \in L^q \mapsto \varphi_g \in (L^p)^*$ est une injection isométrique,

Preuve. On a $\varphi_g:L^p\to\mathbb{R}$ est linéaire, par linéarité de l'intégrale, et $\|\varphi_g\|_{(L^p)^*}=\|g\|_{L^q}$ par l'inégalité de Holder et son cas d'égalité. D'où l'in-

jection isométrique.

Surjectivité si $1 . Notons <math>E = (L^p)^*$, $F \subset E$ l'image de L^q $(F = \{\varphi_q \mid g \in L^q\})$. F est complet car L^q est complet donc F est fermé. Soit $\varphi \in E^*$ telle que $\varphi = 0$ sur F. Montrons que $\varphi = 0$ sur E (on aura alors F dense par le critère de densité ainsi F = E car F est fermé et qui

Comme L^p est uniformément convexe par les inégalités de Clarkson, il est réflexif. Donc $\exists f \in L^p, \ \forall \psi \in (L^p)^* = E, \ \varphi(\psi) = \psi(f)$. Posons g = 0 $sign(f)|f|^{\frac{p}{q}}$, correspondant au cas d'égalité dans Holder. Alors $g\in L^q=F$, $\|g\|_q^p=\|f\|_p^p$ et $\int fg=\|f\|_p\|g\|_q=\|f\|_p^{1+\frac{1}{q}}$, d'où f=0 puis $\varphi=0$. CQFD.

Exemple. Exemple de non réflexivité : on peut montrer que $(l_0^{\infty})^* = l'$, $(l')^* = l^{\infty}$, $(l^{\infty})^* \neq l'$. Où $l_0^{\infty} = \{(x_n) \in \mathbb{R}^{\mathbb{N}} \mid x_n \to 0\}$, $l' = \{(x_n) \in \mathbb{R}^{\mathbb{N}} \mid \sum_{n \in \mathbb{N}} |x_n| < \infty\}$ et $l^{\infty} = \{(x_n) \in \mathbb{R}^{\mathbb{N}} \mid \sup_{n \in \mathbb{N}} |x_n| < \infty\}$.

Formes géométriques de Hahn Banach

Propriété 17 (Jauge d'un convexe). Soit E un ev, $K \subset E$ un convexe contenant l'origine. On définit $P_K(x) = \inf\{t > 0 \mid \frac{x}{t} \in K\}$ pour tout $x \neq 0$ et $P_K(0) = 0$. Alors $P_K : E \to [0, \infty]$ satisfait

$$P_K(x+y) \le P_K(x) + P_K(y)$$
 $\forall x, y \in E$
 $P_K(\lambda x) = \lambda P_K(x)$ $\forall x \in E, \ \forall \lambda > 0$

SSo P_K est à valeurs finies, c'est une fonction sous additive. On a $\{P_K <$

Preuve. Soit $x,y\in E$ tels que $P_K(x,y)<\infty$. Soit s,t>0 telsq ie $\frac{x}{s}\in K$ et $\frac{y}{t}\in K$. Alors $\frac{x+y}{s+t}=\frac{x}{s}\frac{s}{s+t}+\frac{y}{t}\frac{t}{s+t}\in K$ par convexité. D'où $P_K(x+y)\leq P_K(x)+P_K(y)$. Les autres propriétés sont claires. Si $P_K(x)<1$, alors $\exists t<1,\,\frac{x}{t}\in K$ donc $x=\frac{x}{t}t+0*(1-t)\in K$ d'où l'inclusion $\{P_K<1\}\subset K$.

Lemme 17. Soit E un evn. Si K est ouvert, convexe et contient 0, alors P_K est continue

Preuve. Soit r > 0 tq $B(0,r) \subset K$, on a $x \frac{r}{\|x\|} \in B(0,r)$ pour tout $x \neq 0$. Donc $P_K(x) \le \|x\|/2$. D'où $P_K(x) - \|k\|/2 \le P_K(x) - P_K(-k) \le P_K(x+k) \le P_K(x) + P_K(k) \le P_K(x)$

$$P_K(x) + ||k||/2$$
. Donc P_K est $\frac{1}{2}$ -Lipschitzienne (car $-\frac{||k||}{2} \le P_K(x+k) - P_K(x) \le \frac{||k||}{2}$.

Théorème 22 (Séparation d'un ouvert convexe en un point). Soit E un evn, $K \subset E$ ouvert, convexe contenant 0. Soit $x \in E \setminus K$. Alors, $\exists \varphi \in E^*$ telle que $\varphi < 1$ sur K et $\varphi(x) = 1$.

Preuve. Posons $p=P_K$ est sous additive, $F=\mathbb{R}x$ et $\varphi_F: \begin{cases} F\longrightarrow \mathbb{R} \\ \lambda x\longmapsto \lambda \end{cases}$. On a $p(x)\geq 1$ puisque $x\in K$. Pour $\lambda\geq 0$, $\varphi_F(\lambda x)=\lambda\leq \lambda p(x)=p(\lambda x)$. Puis pour $\lambda<0$ on a $\varphi_F(\lambda x)=\lambda<0\leq p(\lambda x)$. Ainsi par théorème de Hahn Banach, il existe $\varphi:E\to \mathbb{R}$ telle que $\varphi_{|F}=\varphi_F$ et $\varphi\leq p$ sur E. On a bien $\varphi(x)=1$ et pour tout $y\in K$ on a $\varphi(y)\leq p(y)<1$ car K est un ouvert.

Théorème 23 (Séparation d'un convexe compact et convexe fermé). Soit E un evn, $A \subset E$ un convexe fermé et $B \subset E$ un convexe compact tel que $A, B \neq \emptyset$ et $A \cap B = \emptyset$. Alors $\exists \varphi \in E^*$, $\sup_A \varphi < 1 < \inf_B \varphi$. Ie φ sépare A et B.

Preuve. Soit $r = \inf\{\|a - b\| \mid a \in A, b \in B\}$. On a r > 0, en effet par l'absurde si $\|a_n - b_n\| \to 0$, par compacité $b_{\psi(n)} \to b_*$ comme $\|a_n - b_n\| \to 0$, on a $b_* \in \overline{A} = A$ contradiction avec $A \cap B = \emptyset$. On pose $K = \{a - b - k \mid a \in A, b \in B, \|k\| < r\}$, c'est un convexe ouvert. On a $0 \notin K$ sinon on aurait aussi a - b - k = 0 d'où $\|a - b\| \le \|k\| < r$. Soit $x_0 \in K$, alors $x_0 \in (K + x_0) = \{x_0 + k \mid k \in K\}$. Par le résultat précédent, $\exists \varphi \in E^*$, $\varphi(x_0) = 1$ et $\varphi < 1$ sur $K + x_0$. Donc $\forall a, b, k, 1 > \varphi(a - b - k + x_0)$. Soit $\varphi(a) < \varphi(b) + \varphi(k)$. On prend $k = -\frac{x_0}{\|x_0\|}x$ alors $\varphi(k) < 0$ d'où $\varphi(a) < \varphi(b) - \delta$ avec $\delta > 0$.