Predicting and

Explaining Caravan

Policy Ownership

Manohari Wijesooriya Student #501212269

Introduction

- Insurance company is looking for predictive modelling solution to reduce the cost of marketing of their new product, caravan insurance to internal customers.
- Given sociodemographic and product variables, they are requesting to flag best possible customers to reach out to sell their product.
- Various machine learning algorithms were used in the effort in predicting
- Recommendations Use Naïve Bayes algorithm for prediction

Data Preparation - Exploration

Distinct profiles of Caravan Insurance customers based on sociodemographic data

Most customers are in age range of 40 - 50 years

Most customers are middle class families or lower class large families

High average income for higher purchasing power class

Data Preparation - Exploration

Distinct profiles of Caravan Insurance customers based on Product data

Lower third party insurance premiums High car insurance premiums High fire insurance premiums

Popular products are third-party private, car and fire policy.

Data Preparation - Exploration

Correlation Matrix

Product data

Sociodemographic data

Predictive Modelling

Baseline model

Final model

Initial model criteria

Validation/test split: 70/30, random state 7

Sampling technique: SMOTE Encoding categorical attributes

Predictions by segments of Data

Predicting a customer's likelihood to purchase Caravan Insurance based on their sociodemographic characteristics

Best model - Naïve Bayes Accuracy 57%, True positive = 123

Best features	
Attribute	Score
sd_religion_other_2	71619.19
sd_empst_unskill_labour_2	62334.3
sd_income_l_30k_2	61913.47
sd_education_medium_3	61581.3
sd_religion_protestant_5	61457.34

Predicting a customer's likelihood to purchase Caravan Insurance based on their product characteristics

Best model - Decision Tree, Random Forest Accuracy 64% True positive = 153

Best features	
Attribute	Score
po_ins_pol_car_6	387.4142
dr_car_tptypvt	367.1447
po_ins_pol_car_0	356.6783
po_no_ins_pol_car	257.3392
po_ins_pol_thirdparty_pvt_2	183.6167

Predictions by segments of Data

Predicting a customer's likelihood to purchase Caravan Insurance based on their sociodemographic and product characteristics

Best Attributes	
Attribute	Score
po_ins_pol_car_0	723.2143
dr_car_tptypvt_1	584.9565
dr_car_tptypvt_0	444.7121
po_ins_pol_thirdparty_pvt_0	414.5592
sd_empst_skill_labour_3	404.4648
po_ins_pol_car_5	363.6918
sd_empst_unskill_labour_3	340.1657
sd_income_avg_3	310.5957
sd_socialclassC_5	301.8962
sd_income_l_30k_5	289.1691

Best model - Naïve Bayes Accuracy 73%, True positive = 139

	precision	recall	f1-score	support		
0	0.97	0.73	0.83	3762		
1	0.12	0.58	0.20	238		
accuracy			0.73	4000		
macro avg	0.54	0.66	0.52	4000		
weighted avg	0.92	0.73	0.80	4000		
confusion matrix						
[[2765 997]						
[99 139]]						
TP: 139 , FP:	997 , TN:	2765 , FN:	99			
accuracy 0.726						
recall 0.584						

Conclusion and Recommendation

- Naïve Bayes is the best algorithm to predict caravan customers.
- Model could correctly identify 139 caravan customers out of 238 with 73% accuracy
- Model predictions are to contact 28% of the customer base to promote caravan policy
- Best predictive attributes are : car policy, private third party policy, average income 3, skill labour 3, unskill labour 3

Thank you. Chang School, Professors, Technical Assistants, Colleges

