Actividad 3. Algunas distribuciones

José Carlos Sánchez Gómez

2024-08-09

Pregunta 1

Graficar una distribución Normal con media = 10, y desviación estándar = 2

```
miu = 10
sigma = 2
x = seq(miu - 4*sigma, miu + 4*sigma, 0.01)
y = dnorm(x,miu, sigma)
plot(x,y, type = "l", col = "blue", main = "Normal(10, 2)")
```

Normal(10, 2)

Pregunta 2

Graficar una distribución T Student con grados de libertad = 12

```
gl = 12 # Grados de Libertad
sigma = sqrt(gl/(gl-2))
x = seq( -4*sigma, 4*sigma, 0.01)
```

```
y = dt(x,gl)
plot(x,y, type = "l", col = "blue", main = "T Student con gl = 12")
```

T Student con gl = 12

Pregunta 3

Gráfique la distribución Chi-cuadrada con 8 grados de libertad.

```
gl = 8
sigma = sqrt(2*gl)
x = seq( 0, miu + 8*sigma, 0.01)
y = dchisq(x,gl)
plot(x,y, type = "l", col = "green", main = "Chi2 con gl = 8")
```

Chi2 con gl = 8

Pregunta 4

Graficar una distribución F con v1 = 9, v2 = 13

```
v1 = 9
v2 = 13
sigma = sqrt(2)*v2*sqrt(v2+v1-2)/(sqrt(v2-4)*(v2-2)*sqrt(v1))
x = seq( 0, miu + 8*sigma, 0.01)
y = df(x,v1, v2)
plot(x,y, type = "l", col = "red", main = "F con v1 = 9, v2 = 13")
```


Pregunta 5

Si Z es una variable aleatoria que se distribuye normalmente con media 0 y desviación estándar 1, hallar los procedimientos de:

a)
$$P(Z > 0.7) = 0.2419637$$

•

b)
$$P(Z < 0.7) = 0.7580363$$

•

c)
$$P(Z = 0.7) = 0$$

• Hallar el valor de Z que tiene al 45% de los demás valores inferiores a ese valor.

```
miu = 0
sigma = 1
#pnorm busca la probabilidad de que a sea mayor a la media
1 - pnorm(0.7, miu, sigma) # mayor a 0.7
## [1] 0.2419637
pnorm(0.7, miu, sigma) # menora 0.7
## [1] 0.7580363
pnorm(0.7, miu, sigma) - pnorm(0.7, miu, sigma) # igual a 0.7
```

```
## [1] 0
qnorm(0.45)
## [1] -0.1256613
```

Pregunta 6

Hallar el procedimiento para verificar los siguientes resultados si se sabe que X se distribuye normalmente con una media de 100 y desviación estándar de 7.

```
estándar de 7.

a) P(X < 87) = 0.031645

b) P(X > 87) = 0.968354

c) P(87 < X < 110) = 0.89179

#En R: Utilice La función pnorm(x, miu, sigma) de R
miu = 100
sigma = 7
pnorm(87, miu, sigma)

## [1] 0.03164542

1 - pnorm(87, miu, sigma)

## [1] 0.9683546

pnorm(110, miu, sigma) - pnorm(87, miu, sigma)

## [1] 0.8917909
```

Pregunta 7

Hallar el procedimiento para verificar los siguientes resultados si se sabe que X se distribuye T Student con gl= 10, hallar:

```
a) P(X < 0.5) = 0.6860532</li>
b) P(X > 1.5) = 0.082253
c) Lat que sólo el 5% son inferiores a ella. (t = -1.812461)
#En R: Utilice pt(x, gl) y qt(área izq, gl)
gl = 10
pt(0.5, gl)
```

```
## [1] 0.6860532

1 - pt(1.5, gl)

## [1] 0.08225366

qt(0.05, gl)

## [1] -1.812461
```

Pregunta 8

Hallar el procedimiento para verificar los siguientes resultados si se sabe que X se distribuye Chi-cuadrada con gl = 6, hallar

•

```
a) P(X2 < 3) = 0.1911532
```

•

b)
$$P(X2 > 2) = 0.9196986$$

•

c) El valor x de chi que sólo el 5% de los demás valores de x es mayor a ese valor (Resp. 12.59159)

```
#En R: Utilice pchisq(x, gl) y qchisq(área izq., gl)
gl = 6
pchisq(3, gl)
## [1] 0.1911532
1 - pchisq(2, gl)
## [1] 0.9196986
qchisq(0.95, gl)
## [1] 12.59159
```

Pregunta 10

Hallar el procedimiento para verificar los siguientes resultados si se sabe que X se distribuye F con v1 = 8, v2 = 10, hallar

•

a)
$$P(X < 2) = 0.8492264$$

•

b)
$$P(X > 3) = 0.05351256$$

_

c) El valor de x que sólo el 25% de los demás valores es inferior a él. (Resp. 0.6131229)

```
v1 = 8
v2 = 10
pf(2, v1, v2)
## [1] 0.8492264
1 - pf(3, v1, v2)
## [1] 0.05351256
qf(0.25, v1, v2)
## [1] 0.6131229
```

Pregunta 11

Una compañía de reparación de fotocopiadoras encuentra, revisando sus expedientes, que el tiempo invertido en realizar un servicio, se comporta como una variable normal con media de 65 minutos y desviación estándar de 20 minutos. Calcula la proporción de servicios que se hacen en menos de 60 minutos. Resultado en porcentaje con dos decimales, ejemplo 91.32%.

```
miu = 65
sigma = 20
proporcion = pnorm(60, miu, sigma)
round(proporcion * 100, digits = 3)
## [1] 40.129
```