0.1 逼近方法

0.1.1 Bernstein 多项式

Bernstein 多项式都能定义在 [a,b] 上, 因为只差一个换元法, 因此我们不妨设 [a,b] = [0,1].

定义 0.1 (一维 Bernstein 多项式)

设 $f \in C[0,1], n \in \mathbb{N}_0$, 定义 f 的 Bernstein 多项式为

$$B_n(f,x) \triangleq \sum_{k=0}^n f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k}.$$

设 $f \in C[a,b], n \in \mathbb{N}_0$, 定义 f 的 **Bernstein 多项式**为

$$B_n(f,x) \triangleq \sum_{k=0}^n f\left((b-a)\frac{k}{n} + a\right) C_n^k \frac{(x-a)^k (b-x)^{n-k}}{(b-a)^n}.$$

注 [a, b] 区间上的 Bernstein 多项式可由 [0, 1] 区间上的 Bernstein 多项式换元得到.

设 $f \in C[a, b], n \in \mathbb{N}_0$, 令 $x = (b - a)y + a, \forall x \in [a, b]$, 则 $y \in [0, 1]$, 并且

$$y = \frac{x-a}{b-a}, 1-y = \frac{b-x}{b-a}.$$

再令 g(y) = f((b-a)y + a), 则由 $f \in C[a,b]$ 可知 $g \in C[0,1]$. 于是 g 在 [0,1] 区间上的 Bernstein 多项式为

$$B_n(g,y) \triangleq \sum_{k=0}^n g\left(\frac{k}{n}\right) C_n^k y^k (1-y)^{n-k}.$$

故 [a,b] 区间上 f 的 Bernstein 多项式可定义为

$$B_n(f,x) \triangleq \sum_{k=0}^n f\left((b-a)\frac{k}{n} + a\right) C_n^k \frac{(x-a)^k (b-x)^{n-k}}{(b-a)^n}.$$

引理 0.1

1.
$$B_n(C,x) = C \sum_{k=0}^{n} C_n^k x^k (1-x)^{n-k} = C.$$

2.
$$B_n(x,x) = \sum_{k=0}^n \frac{k}{n} C_n^k x^k (1-x)^{n-k} = x.$$

3.
$$\sum_{k=0}^{n} \left(\frac{k}{n} - x \right) C_n^k x^k (1 - x)^{n-k} = 0.$$

4.
$$\sum_{k=0}^{n} \left(\frac{k}{n} - x \right)^{2} C_{n}^{k} x^{k} (1 - x)^{n-k} = \frac{x(1 - x)}{n}.$$

证明

1. 由二项式定理可得 $B_n(C,x) = C \sum_{k=0}^n C_n^k x^k (1-x)^{n-k} = C(x+1-x)^n = C.$

2.
$$B_n(x,x) = \sum_{k=0}^n \frac{k}{n} C_n^k x^k (1-x)^{n-k} = \frac{(1-x)^n}{n} \sum_{k=0}^n k C_n^k \left(\frac{x}{1-x}\right)^k$$
. 由幂级数可逐项求导得

$$\sum_{k=0}^{n} k C_n^k y^{k-1} = \left(\sum_{k=0}^{n} C_n^k y^k\right)' = \left[(1+y)^n \right]' = n (1+y)^{n-1} \,.$$

因此

$$\sum_{k=0}^{n} k C_n^k y^k = ny (1+y)^{n-1}.$$

故

$$B_n(x,x) = \frac{(1-x)^n}{n} \sum_{k=0}^n k C_n^k \left(\frac{x}{1-x}\right)^k = \frac{(1-x)^n}{n} \frac{nx}{1-x} \left(1 + \frac{x}{1-x}\right)^{n-1}$$
$$= \frac{(1-x)^n}{n} \frac{nx}{1-x} \left(\frac{1}{1-x}\right)^{n-1} = x.$$

- 3. 由 2 的结论可直接得到.
- 4. 首先,展开得到

$$\sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^{2} C_{n}^{k} x^{k} (1 - x)^{n-k} = (1 - x)^{n} \sum_{k=0}^{n} \left(x^{2} - \frac{2xk}{n} + \frac{k^{2}}{n^{2}}\right) C_{n}^{k} \left(\frac{x}{1 - x}\right)$$

$$= x^{2} \sum_{k=0}^{n} C_{n}^{k} x^{k} (1 - x)^{n-k} - \frac{2x (1 - x)^{n}}{n} \sum_{k=0}^{n} k C_{n}^{k} \left(\frac{x}{1 - x}\right)^{k} + \frac{(1 - x)^{n}}{n^{2}} \sum_{k=0}^{n} k^{2} C_{n}^{k} \left(\frac{x}{1 - x}\right)^{k}$$

$$= x^{2} - \frac{2x (1 - x)^{n}}{n} \sum_{k=0}^{n} k C_{n}^{k} \left(\frac{x}{1 - x}\right)^{k} + \frac{(1 - x)^{n}}{n^{2}} \sum_{k=0}^{n} k^{2} C_{n}^{k} \left(\frac{x}{1 - x}\right)^{k}. \tag{1}$$

接着, 计算 $\sum_{k=0}^{n} k C_n^k y^k$ 和 $\sum_{k=0}^{n} k^2 C_n^k y^k$. 由幂级数可逐项求导得

$$\sum_{k=0}^{n} k C_n^k y^{k-1} = \left(\sum_{k=0}^{n} C_n^k y^k\right)' = \left[(1+y)^n \right]' = n (1+y)^{n-1}.$$

$$\begin{split} \sum_{k=0}^{n} k^{2} C_{n}^{k} y^{k} &= y \left[\left(\sum_{k=0}^{n} k C_{n}^{k} y^{k} \right)' \right] = y \left[\left(y \left(\sum_{k=0}^{n} C_{n}^{k} y^{k} \right)' \right)' \right] \\ &= y \left[\left(y \left((1+y)^{n})' \right)' \right] = y \left[\left(ny \left(1+y \right)^{n-1} \right)' \right] \\ &= y \left[n \left(1+y \right)^{n-1} + n \left(n-1 \right) y \left(1+y \right)^{n-2} \right] \\ &= ny \left(1+y \right)^{n-2} \left[\left(1+y \right) + \left(n-1 \right) y \right] \\ &= ny \left(1+y \right)^{n-2} \left(ny+1 \right). \end{split}$$

 $\phi y = \frac{x}{1-x}$,则由上式可得

$$\sum_{k=0}^{n} k C_n^k \left(\frac{x}{1-x}\right)^k = n \left(\frac{x}{1-x}\right) \left(1 + \frac{x}{1-x}\right)^{n-1} = \frac{nx}{1-x} \left(\frac{1}{1-x}\right)^{n-1} = \frac{nx}{(1-x)^n}.$$

$$\sum_{k=0}^{n} k^2 C_n^k \left(\frac{x}{1-x}\right)^k = n \left(\frac{x}{1-x}\right) \left(1 + \frac{x}{1-x}\right)^{n-2} \left(\frac{nx}{1-x} + 1\right) = \frac{nx}{1-x} \left(\frac{1}{1-x}\right)^{n-2} \frac{(n-1)x+1}{1-x} = \frac{nx \left[(n-1)x+1\right]}{(1-x)^n}.$$

将上式代入(1)可得

$$\sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^{2} C_{n}^{k} x^{k} (1 - x)^{n-k} = x^{2} - \frac{2x (1 - x)^{n}}{n} \sum_{k=0}^{n} k C_{n}^{k} \left(\frac{x}{1 - x}\right)^{k} + \frac{(1 - x)^{n}}{n^{2}} \sum_{k=0}^{n} k^{2} C_{n}^{k} \left(\frac{x}{1 - x}\right)^{k}$$

$$= x^{2} - \frac{2x (1 - x)^{n}}{n} \cdot \frac{nx}{(1 - x)^{n}} + \frac{(1 - x)^{n}}{n^{2}} \cdot \frac{nx \left[(n - 1)x + 1\right]}{(1 - x)^{n}}$$

$$= x^{2} - 2x^{2} + \frac{(n - 1)x^{2} + x}{n} = \frac{x (1 - x)}{n}.$$

定理 0.1 (Bernstein 多项式的性质)

(1) 读
$$\varphi(x) = n \left[f\left(\frac{n-1}{n}x + \frac{1}{n}\right) - f\left(\frac{n-1}{n}x\right) \right], n = 1, 2, 3, \dots, 则有$$

$$B'_n(f, x) = B_{n-1}(\varphi, x), n \in \mathbb{N}. \tag{2}$$

(2) 若 f 递增或者递减,则 $B_n(f,x),n \in \mathbb{N}_0$ 也递增或者递减.

2

- (3) 若 f 是 [0,1] 的凸或者凹函数,则对每个 $n \in \mathbb{N}_0$ 都有 $B_n(f,x)$ 是 [0,1] 的凸或者凹函数.
- (4) 设 $f \in C^k[0,1], k \in \mathbb{N}_0$, 则关于 $x \in [0,1]$, 一致的有

$$\lim_{n \to \infty} B_n(f, x) = f(x), \lim_{n \to \infty} B'_n(f, x) = f'(x), \dots, \lim_{n \to \infty} B_n^{(k)}(f, x) = f^{(k)}(x).$$
 (3)

注 性质 (4) 对任意光滑的情况并不成立!

即当 $f \in C^{\infty}[0,1]$ 时, 对 $\forall k \in \mathbb{N}$, 都有 $\lim_{n \to \infty} B_n^{(k)}(f,x) = f^{(k)}(x)$ 不成立!

也即当 $f \in C^{\infty}[0,1]$ 时, 对 $\forall k \in \mathbb{N}$, 存在一个 N(与 k 无关, 公共的 N), 使得 $\forall n > N$, 都有 $B_n^{(k)}(f,x) \Rightarrow f^{(k)}(x)$ 不成立!

证明

(1) 对 $n \ge 1$, 直接计算得

$$\begin{split} B_n'(f,x) &= \left[\sum_{k=0}^n f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k} \right]' \\ &= \sum_{k=1}^n k f\left(\frac{k}{n}\right) C_n^k x^{k-1} (1-x)^{n-k} - \sum_{k=0}^{n-1} (n-k) f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k-1} \\ &= \sum_{k=0}^{n-1} (k+1) f\left(\frac{k+1}{n}\right) C_n^{k+1} x^k (1-x)^{n-k-1} - \sum_{k=0}^{n-1} (n-k) f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k-1} \\ &= \sum_{k=0}^{n-1} \left[(k+1) f\left(\frac{k+1}{n}\right) C_n^{k+1} - (n-k) f\left(\frac{k}{n}\right) C_n^k \right] x^k (1-x)^{n-k-1} \\ &= \sum_{k=0}^{n-1} \left[(k+1) f\left(\frac{k+1}{n}\right) \frac{n!}{(k+1)! (n-k-1)!} - (n-k) f\left(\frac{k}{n}\right) \frac{n!}{k! (n-k)!} \right] x^k (1-x)^{n-k-1} \\ &= \sum_{k=0}^{n-1} \left[n f\left(\frac{k+1}{n}\right) \frac{(n-1)!}{k! (n-k-1)!} - n f\left(\frac{k}{n}\right) \frac{(n-1)!}{k! (n-k-1)!} \right] x^k (1-x)^{n-k-1} \\ &= \sum_{k=0}^{n-1} n \left[f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right) \right] C_{n-1}^k x^k (1-x)^{n-k-1} \\ &= \sum_{k=0}^{n-1} \varphi\left(\frac{k}{n-1}\right) C_{n-1}^k x^k (1-x)^{n-k-1} \\ &= \sum_{k=0}^{n-1} \varphi\left(\frac{k}{n-1}\right) C_{n-1}^k x^k (1-x)^{n-k-1} \\ &= B_{n-1}(\varphi, x), \end{split}$$

这就给出了式(2).

- (2) 如果 f 递增, 那么就有 $\varphi \ge 0$, 则由(2)知 $B'_n(f,x) = B_{n-1}(\varphi,x) \ge 0$, 故 $B_n(f,x)$ 递增. 类似可得递减.
- (3) 如果 f 下凸, 对 n=1 的情况是否符合条件都可以单独验证, 我们略去过程, 下设 $n \ge 2$. 注意继续由(2)知

$$B_n''(f,x) = B_{n-1}'(\varphi,x) = B_{n-2}(\psi,x), \psi(x) = (n-1) \left[\varphi\left(\frac{n-2}{n-1}x + \frac{1}{n-1}\right) - \varphi\left(\frac{n-2}{n-1}x\right) \right],$$

从而由 f 的下凸性可得

$$\begin{split} B_{n-2}(\psi,x) &= \sum_{j=0}^{n-2} \psi\left(\frac{j}{n-2}\right) C_{n-2}^{k} (1-x)^{n-2-j} x^{j} \\ &= \sum_{j=0}^{n-2} \left[\varphi\left(\frac{j+1}{n-1}\right) - \varphi\left(\frac{j}{n-1}\right) \right] \frac{(n-1)!}{j!(n-2-j)!} (1-x)^{n-2-j} x^{j} \\ &= n \sum_{j=0}^{n-2} \left[f\left(\frac{j+2}{n}\right) - f\left(\frac{j+1}{n}\right) - f\left(\frac{j+1}{n}\right) + f\left(\frac{j}{n}\right) \right] \frac{(n-1)!}{j!(n-2-j)!} (1-x)^{n-2-j} x^{j} \end{split}$$

$$= 2n \sum_{j=0}^{n-2} \left[\frac{f\left(\frac{j+2}{n}\right) + f\left(\frac{j}{n}\right)}{2} - f\left(\frac{j+1}{n}\right) \right] \frac{(n-1)!}{j!(n-2-j)!} (1-x)^{n-2-j} x^{j}$$

$$= 2n \sum_{j=0}^{n-2} \left[\frac{f\left(\frac{j+2}{n}\right) + f\left(\frac{j}{n}\right)}{2} - f\left(\frac{\frac{j+2}{n} + \frac{j}{n}}{2}\right) \right] \frac{(n-1)!}{j!(n-2-j)!} (1-x)^{n-2-j} x^{j}$$

$$\geq 0.$$

这就证明了 $B_n(f,x)$ 下凸. 类似的可讨论上凸情况.

(4) **Step1** 我们证明 k=0 时命题成立. 对任何 $\varepsilon > 0$, 存在 $\delta > 0$, 使得只要 $|x-y| \leq \delta$, 就有

$$|f(x) - f(y)| \le \varepsilon.$$

注意到

$$|B_n(f,x) - f(x)| = \left| \sum_{k=0}^n \left[f\left(\frac{k}{n}\right) - f(x) \right] C_n^k x^k (1-x)^{n-k} \right|$$

$$\leq \sum_{|\frac{k}{n}-x| \leq \delta} \left| \left[f\left(\frac{k}{n}\right) - f(x) \right] C_n^k x^k (1-x)^{n-k} \right| + \sum_{|\frac{k}{n}-x| > \delta} \left| \left[f\left(\frac{k}{n}\right) - f(x) \right] C_n^k x^k (1-x)^{n-k} \right|$$

$$\leq \varepsilon \sum_{|\frac{k}{n}-x| \leq \delta} \left| C_n^k x^k (1-x)^{n-k} \right| + 2 \sup |f| \sum_{|\frac{k}{n}-x| > \delta} \left| C_n^k x^k (1-x)^{n-k} \right|$$

$$\stackrel{\text{#$} \emptyset \text{ Chebeshev } \mathbb{R}}{\leq} \sum_{k=0}^n C_n^k x^k (1-x)^{n-k} + \frac{2 \sup |f|}{\delta^2} \sum_{|\frac{k}{n}-x| > \delta} \left(\frac{k}{n} - x\right)^2 C_n^k x^k (1-x)^{n-k}$$

$$\leq \varepsilon + \frac{2 \sup |f|}{\delta^2} \sum_{k=0}^n \left(\frac{k}{n} - x\right)^2 C_n^k x^k (1-x)^{n-k}$$

$$\stackrel{\text{#$} \mathbb{P}}{\leq} 0.1 \varepsilon + \frac{2 \sup |f|}{n\delta^2} x (1-x),$$

于是从上式立得

$$\sup_{x \in [0,1]} |B_n(f,x) - f(x)| \le \varepsilon + \frac{\sup |f|}{2n\delta^2}.$$

$$\overline{\lim}_{n\to\infty} \sup_{x\in[0,1]} |B_n(f,x) - f(x)| \leqslant \varepsilon.$$

再由ε的任意性可知

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |B_n(f,x) - f(x)| = 0.$$

故我们得到了k=0时,式(3)成立.

Step2 (*) 我们定义

$$T_n f(x) = n \left[f\left(\frac{n-1}{n}x + \frac{1}{n}\right) - f\left(\frac{n-1}{n}x\right) \right], n \in \mathbb{N}.$$

$$B'_n(f, x) = B_{n-1}(T_n f, x), \forall n \in \mathbb{N}.$$

归纳证明

$$T_{n-j+1}\cdots T_n f(x) = (n-j+1)\cdots (n-1)n\sum_{k=0}^{j} (-1)^{k+j} C_j^k f\left(\frac{n-j}{n}x + \frac{k}{n}\right), \forall j \in \mathbb{N}.$$

事实上, 当j=1, 由(2)可知命题显然成立, 假设命题对 $j\in\mathbb{N}$ 成立, 则

$$T_{n-j}\cdots T_n f(x)$$

$$=T_{n-j}\left((n-j+1)\cdots(n-1)n\sum_{k=0}^{j}(-1)^{k+j}C_j^k f\left(\frac{n-j}{n}x+\frac{k}{n}\right)\right)$$

$$\begin{split} &= \frac{n!}{(n-j)!} \sum_{k=0}^{j} (-1)^{k+j} C_j^k T_{n-j} \left(f \left(\frac{n-j}{n} x + \frac{k}{n} \right) \right) \\ &= \frac{n!(n-j)}{(n-j)!} \sum_{k=0}^{j} (-1)^{k+j} C_j^k \left[f \left(\frac{n-j-1}{n} x + \frac{k+1}{n} \right) - f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \right] \\ &= \frac{n!(-1)^j \left[f \left(\frac{n-j-1}{n} x + \frac{1}{n} \right) - f \left(\frac{n-j-1}{n} x \right) \right]}{(n-j-1)!} \\ &+ \frac{n!}{(n-j-1)!} \sum_{k=1}^{j} (-1)^{k+j} C_j^k f \left(\frac{n-j-1}{n} x + \frac{k+1}{n} \right) \\ &- \frac{n!}{(n-j-1)!} \sum_{k=1}^{j} (-1)^{k-1+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ &+ \frac{n!}{(n-j-1)!} \sum_{k=1}^{j} (-1)^{k-1+j} C_j^{k-1} f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ &- \frac{n!}{(n-j-1)!} \sum_{k=1}^{j} (-1)^{k+j} C_j^k f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ &= \frac{n!(-1)^j \left[f \left(\frac{n-j-1}{n} x + \frac{1}{n} \right) - f \left(\frac{n-j-1}{n} x \right) \right]}{(n-j-1)!} \\ &+ \frac{n!}{(n-j-1)!} \int_{k=1}^{j} (-1)^{k+1+j} (C_j^{k-1} + C_j^k) f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ &= \frac{n!}{(n-j-1)!} \sum_{k=0}^{j+1} (-1)^{k+1+j} (C_j^{k-1} + C_j^k) f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right) \\ &= \frac{n!}{(n-j-1)!} \sum_{k=0}^{j+1} (-1)^{k+1+j} C_{j+1}^k f \left(\frac{n-j-1}{n} x + \frac{k}{n} \right). \end{split}$$

因此我们证明了对j+1,结论也成立,因此由数学归纳法,对所有 $j \in \mathbb{N}$,命题都成立.

Step3 (*) 我们证明一个中值定理的结果. 由 Hermite 插值定理, 对 $x \in [0, 1]$, 存在 $\theta \in [0, 1]$, 我们有

$$f(x) = \sum_{k=1}^{j} \prod_{s \neq k} \frac{\left(x - \frac{s+i}{n}\right)}{\left(\frac{k+i}{n} - \frac{s+i}{n}\right)} f\left(\frac{k+i}{n}\right) + \frac{f^{(j)}(\theta)}{j!} \prod_{s=1}^{j} \left(x - \frac{s+i}{n}\right).$$

特别的存在 $\theta \in [\frac{i}{n}, \frac{i+j}{n}]$, 使得

$$\begin{split} f\left(\frac{i}{n}\right) &= \sum_{k=1}^{j} \prod_{s \neq k} \frac{(\frac{i}{n} - \frac{s+i}{n})}{(\frac{k+i}{n} - \frac{s+i}{n})} \cdot f\left(\frac{k+i}{n}\right) + \frac{f^{(j)}(\theta)}{j!} \prod_{s=1}^{j} \left(\frac{i}{n} - \frac{s+i}{n}\right) \\ &= \sum_{k=1}^{j} \prod_{s \neq k} \frac{(-\frac{s}{n})}{(\frac{k-s}{n})} \cdot f\left(\frac{k+i}{n}\right) + \frac{(-1)^{j} f^{(j)}(\theta)}{n^{j}} \\ &= \sum_{k=1}^{j} \prod_{s \neq k} \frac{s}{s-k} \cdot f\left(\frac{k+i}{n}\right) + \frac{(-1)^{j} f^{(j)}(\theta)}{n^{j}} \\ &= \sum_{k=1}^{j} \frac{j!}{k(j-k)!(k-1)!} (-1)^{k-1} f\left(\frac{k+i}{n}\right) + \frac{(-1)^{j} f^{(j)}(\theta)}{n^{j}} \\ &= \sum_{k=1}^{j} (-1)^{k-1} C_{j}^{k} f\left(\frac{k+i}{n}\right) + \frac{(-1)^{j} f^{(j)}(\theta)}{n^{j}}, \end{split}$$

从而

$$\sum_{k=0}^{j} (-1)^k C_j^k f\left(\frac{k+i}{n}\right) = \frac{(-1)^j f^{(j)}(\theta)}{n^j}.$$

Step4 (*) 注意到

$$B_n^{(j)}(f,x) = B_{n-j}(T_{n-j+1}\cdots T_{n-1}T_nf,x), 1 \le j \le k, n > k.$$

于是运用 Step3, 我们有

$$|B_{n}^{(j)}(f,x) - f^{(j)}(x)| \leq |B_{n-j}(f^{(j)},x) - f^{(j)}(x)| + |B_{n-j}(f^{(j)},x) - B_{n-j}(T_{n-j+1} \cdots T_{n-1}T_nf,x)|$$

$$\leq |B_{n-j}(f^{(j)},x) - f^{(j)}(x)| + \sum_{i=0}^{n-j} |f^{(j)}\left(\frac{i}{n-j}\right) - T_{n-j+1} \cdots T_{n-1}T_nf\left(\frac{i}{n-j}\right) |C_{n-j}^i x^i (1-x)^{n-j-i}$$

$$= |B_{n-j}(f^{(j)},x) - f^{(j)}(x)| + \sum_{i=0}^{n-j} |f^{(j)}\left(\frac{i}{n-j}\right) - \frac{n!}{(n-j)!} \sum_{k=0}^{j} (-1)^{k+j} C_j^k f\left(\frac{k+i}{n}\right) |C_{n-j}^i x^i (1-x)^{n-j-i}$$

$$= |B_{n-j}(f^{(j)},x) - f^{(j)}(x)| + \sum_{i=0}^{n-j} |f^{(j)}\left(\frac{i}{n-j}\right) - \frac{n!}{(n-j)!n^j} |C_{n-j}^i x^i (1-x)^{n-j-i}$$

$$\leq |B_{n-j}(f^{(j)},x) - f^{(j)}(x)| + \sum_{i=0}^{n-j} |f^{(j)}\left(\frac{i}{n-j}\right) - f^{(j)}(\theta) |C_{n-j}^i x^i (1-x)^{n-j-i}$$

$$+ \sum_{i=0}^{n-j} \left|1 - \frac{n!}{(n-j)!n^j}\right| \cdot |f^{(j)}(\theta)|C_{n-j}^i x^i (1-x)^{n-j-i}.$$

Step5 (*) Step1 告诉我们关于 $x \in [0,1]$, 一致的有

$$\lim_{n \to \infty} B_n \left(f^{(j)}, x \right) = f^{(j)}(x), j = 0, 1, 2, \dots, k.$$

同时注意到

$$\lim_{n \to \infty} \left(1 - \frac{n!}{(n-j)!n^j} \right) = 0,$$

以及

$$\left| \frac{i}{n} - \frac{i}{n-j} \right| = \frac{ji}{n(n-j)} \leqslant \frac{j}{n}, \left| \frac{i+j}{n} - \frac{i}{n-j} \right| \leqslant \frac{2j}{n}, \forall n > j.$$

我们同时假设

$$M_j \triangleq \sup_{x \in [0,1]} |f^{(j)}(x)|, j = 0, 1, 2, \dots, k.$$

并注意到 $f^{(j)}$ 是一致连续的. 现在对任何 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$ 和 $\delta > 0$, 使得

$$\left| B_{n-j} \left(f^{(j)}, x \right) - f^{(j)}(x) \right| < \frac{\varepsilon}{3}, \forall x \in [0, 1],$$

$$\left| 1 - \frac{n!}{(n-j)!n^j} \right| < \frac{\varepsilon}{3M_j}, \forall n > N,$$

$$\left| f^{(j)}(x) - f^{(j)}(y) \right| < \frac{\varepsilon}{3}, \forall |x-y| < \delta, x, y \in [0, 1].$$

因此当正整数 $n > \max\left\{\frac{2j}{\delta}, j, N\right\}$, 利用 **Step4**, 我们有

$$\left|B_n^{(j)}(f,x)-f^{(j)}(x)\right|<\varepsilon, \forall x\in[a,b],$$

这就完成了证明.

命题 0.1

设 $f \in C[0,1]$ 使得

$$\int_0^1 f(x)x^n dx = 0, \forall n = 0, 1, 2, \cdots.$$

证明

$$f(x)=0, \forall x\in [0,1].$$

 $\mathbf{E}_{n}(x)$ 的良定义性可由Bernstein 多项式的性质 (4)得到. 实际上, 我们这里取的 $p_{n}(x)$ 就是 g 的 Bernstein 多项式 $B_{n}(g,x)$.

证明 由条件可知,对任意实系数多项式 p(x),都有

$$\int_0^1 f(x)p(x)dx = 0, \forall p(x) \in \mathbb{R}[x].$$

对 $\forall g \in C[0,1]$, 取 $p_n(x) \in \mathbb{R}[x]$, 使得 $p_n(x) \rightrightarrows g(x)$, 则

$$\int_0^1 f(x)g(x)dx = \int_0^1 \lim_{n \to \infty} f(x)p_n(x)dx = \lim_{n \to \infty} \int_0^1 f(x)p_n(x)dx = 0.$$

于是

$$\int_0^1 f(x)g(x)\mathrm{d}x = 0, \forall g \in C[a, b].$$

再取g = f,则由上式可得

$$\int_0^1 f^2(x) \mathrm{d} x = 0 \Rightarrow f(x) \equiv 0.$$

例题 0.1 设 $f \in C[0,\pi]$ 满足: 对 $n=0,1,2,\cdots$, 有 $\int_0^\pi f(x)\cos nx \, dx = 0$. 求证: $f(x) \equiv 0$. 证明 由定理??可知, $\cos^n x$ 可表示为 $1,\cos x,\cos 2x,\cdots$, $\cos nx$ 的线性组合. 于是由条件, 对于 $n=0,1,2,\cdots$, 有 $\int_0^\pi f(x) \left(\cos^n x - \cos^{n+2} x\right) dx = 0.$

作变换 $x = \arccos t$ 得

$$\int_{-1}^{1} f(\arccos t) \sqrt{1 - t^2} t^n dt = 0, \quad n = 0, 1, \dots.$$

根据命题 0.1可知 $f(\arccos t)\sqrt{1-t^2} \equiv 0 \ (t \in [-1,1])$. 因而 $f(x) \equiv 0$.

 $\mathbf{\dot{z}}$ 这里在积分中考虑 $(\cos^n x - \cos^{n+2} x)$ 是为了防止变换后分母上出现 $\sqrt{1-t^2}$, 从而避免讨论无界函数的积分.

定理 0.2

设 $f(x) \in C^k[a,b]$, 这里 $a < b, a, b \in \mathbb{R}, k \in \mathbb{N}_0$, 那么对任意 $\varepsilon > 0$, 存在多项式 p(x), 使得

$$\left|f^{(s)}(x)-p^{(s)}(x)\right|\leqslant \varepsilon, \forall x\in [a,b], s=0,1,2,\cdots,k.$$

注 q(x) 的良定义性可由 $f^{(k)}$ 的连续性和 Bernstein 多项式的性质 (4) 直接得到. 实际上, $q(x) = B(f^{(k)}, x)$. 证明 由带积分型余项的 Taylor 公式可知

$$f(x) = \sum_{j=0}^{k-1} \frac{f^{(j)}(a)}{j!} (x-a)^j + \frac{1}{(k-1)!} \int_a^x (x-t)^{k-1} f^{(k)}(t) dt.$$

对 $\forall \varepsilon > 0$, 取 $q \in \mathbb{R}[x]$, 使得

$$|q(x) - f^{(k)}(x)| \le \varepsilon, \forall x \in [a, b]. \tag{4}$$

设

$$p(x) = \sum_{i=0}^{k-1} \frac{f^{(j)}(a)}{j!} (x-a)^j + \frac{1}{(k-1)!} \int_a^x (x-t)^{k-1} q(t) dt,$$

则对 p 求导可得, 对 $\forall s \in \mathbb{N}$, 我们有

$$p^{(s)}(x) = \sum_{i=0}^{k-s-1} \frac{f^{(j+s)}(a)}{j!} (x-a)^j + \frac{1}{(k-s-1)!} \int_a^x (x-t)^{k-s-1} q(t) dt.$$
 (5)

由带积分型余项的 Taylor 公式可知, 对 $\forall s \in \mathbb{N}$, 我们有

$$f^{(s)}(x) = \sum_{j=0}^{k-s-1} \frac{f^{(j+s)}(a)}{j!} (x-a)^j + \frac{1}{(k-s-1)!} \int_a^x (x-t)^{k-s-1} f^{(k)}(t) dt.$$
 (6)

于是利用(4)(5)(6)式可得, 对 $\forall s \in \mathbb{N}$, 我们有

$$|f^{(s)}(x) - p^{(s)}(x)| = \left| \frac{1}{(k-s-1)!} \int_{a}^{x} (x-t)^{k-s-1} [f^{(k)}(t) - q(t)] dt \right| \leqslant \frac{\varepsilon (b-a)^{k-s}}{(k-s)!}, \forall x \in [a,b].$$

故结论得证.

例题 0.2 设多项式列 p_n , $n=1,2,\cdots$ 在 \mathbb{R} 一致收敛到 f, 证明 f 为多项式.

证明 由条件可知,存在 $N \in \mathbb{N}$,使得

$$|p_m(x) - p_n(x)| \le 1, \forall m > n \ge N, x \in \mathbb{R}.$$

由于有界的多项式函数一定是常值函数, 因此 $p_m(x) - p_n(x) = C, \forall m > n \ge N, x \in \mathbb{R}$. 其中 C 是一个常数. 故

$$p_n(x) = p_N(x) + c_n, \forall n \geqslant N, x \in \mathbb{R}.$$
 (7)

其中 $\{c_n\}$ 是一个常数列. 从而任取 $x_0 \in \mathbb{R}$, 结合 $\lim_{n \to \infty} p_n(x) = f(x)$ 可得

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} [p_n(x_0) - p_N(x_0)] = f(x_0) - p_N(x_0).$$

故 $\lim_{n \to \infty} c_n = c$ 存在. 于是由 x_0 的任意性可得

$$c = \lim_{n \to \infty} c_n = f(x) - p_N(x), x \in \mathbb{R}.$$

即 $f(x) = p_N(x) + c, \forall x \in \mathbb{R}$. 因此结论得证. 或者对(7)式两边同时令 $n \to \infty$, 也能得到

$$f(x) = p_N(x) + c, \forall x \in \mathbb{R}.$$

0.1.2 可积函数的逼近

定理 0.3 (可积被连续函数逼近)

(1) 设 $f \in R[a,b]$,则对任何 $\varepsilon > 0$,存在 $g \in C[a,b]$,使得

$$\int_{a}^{b} |f(x) - g(x)| \mathrm{d}x < \varepsilon.$$

(2) 设 $f \in R[a,b]$, 则对任何 $\varepsilon > 0$, 存在多项式 P(x), 使得

$$\int_{a}^{b} |f(x) - P(x)| \mathrm{d}x < \varepsilon.$$

(3) 设 $f \in R[a, b]$, 则对任何 $\varepsilon > 0$, 存在 $g \in C_c(a, b)$, 使得

$$\int_{a}^{b} |f(x) - g(x)| \mathrm{d}x < \varepsilon.$$

这里 $g \in C_c(a,b)$ 表示 g 是有含于 (a,b) 的紧支撑的连续函数.

(4) 设 $p \ge 1$ 且反常积分 $\int_{-\infty}^{\infty} |f(x)|^p dx < \infty$, 则对任何 $\varepsilon > 0$, 存在 $g \in C_c(\mathbb{R})$, 使得

$$\int_{-\infty}^{\infty} |f(x) - g(x)|^p \mathrm{d}x < \varepsilon.$$

这里 $g \in C_c(\mathbb{R})$ 表示 g 是有含于 \mathbb{R} 的紧支撑的连续函数.

C

笔记 证明的想法即分段线性连接. 紧支撑逼近也叫紧化方法. 第三问对勒贝格积分也是对的. 证明

(1) 对任何 $\varepsilon > 0$, 因为 $f \in R[a,b]$, 所以存在一个划分 $a = x_0 < x_1 < \cdots < x_n = b$ 使得

$$\sum_{i=1}^{n} w_i(f)(x_i - x_{i-1}) \le \varepsilon, w_i(f) \ \text{ξ-$\pi f α}[x_{i-1}, x_i], i = 1, 2, \cdots, n$ bights in the constant of t$$

构造 [a,b] 上的连续函数 g 使得它的图像就是连接各点 $(x_{i-1},f(x_{i-1}))$ 的折线,即

$$g(x) = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} (x - x_{i-1}) + f(x_{i-1}) = \frac{x - x_{i-1}}{x_i - x_{i-1}} f(x_i) + \frac{x_i - x}{x_i - x_{i-1}} f(x_{i-1}), \quad x \in [x_{i-1}, x_i],$$

不难发现 $\sup_{x \in [a,b]} |g| \leqslant \sup_{x \in [a,b]} |f|$, 则

$$\int_{a}^{b} |f(x) - g(x)| dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} |f(x) - g(x)| dx$$

$$\leqslant \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} |f(x) - f(x_{i-1})| dx + \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} |g(x) - f(x_{i-1})| dx$$

$$\leqslant \sum_{i=1}^{n} w_{i}(f)(x_{i} - x_{i-1}) + \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \left| \frac{f(x_{i}) - f(x_{i-1})}{x_{i} - x_{i-1}} (x - x_{i-1}) \right| dx$$

$$\leqslant \sum_{i=1}^{n} w_{i}(f)(x_{i} - x_{i-1}) + \sum_{i=1}^{n} w_{i}(f) \int_{x_{i-1}}^{x_{i}} \frac{x - x_{i-1}}{x_{i} - x_{i-1}} dx$$

$$= \sum_{i=1}^{n} w_{i}(f)(x_{i} - x_{i-1}) + \frac{1}{2} \sum_{i=1}^{n} w_{i}(f)(x_{i} - x_{i-1}) \leqslant \frac{3}{2} \varepsilon,$$

这就完成了证明.

(2) 根据第1问可知,存在 $g \in C[a,b]$,使得

$$\int_{a}^{b} |f(x) - g(x)| \mathrm{d}x < \frac{\varepsilon}{2}.$$

由定理 0.2可知, 存在多项式 P(x) 使得

$$\max_{a \leqslant x \leqslant b} |g(x) - P(x)| < \frac{\varepsilon}{2(b-a)}.$$

由此可得

$$\int_{a}^{b} |f(x) - P(x)| \, \mathrm{d}x \le \int_{a}^{b} |f(x) - g(x)| \, \mathrm{d}x + \int_{a}^{b} |g(x) - P(x)| \, \mathrm{d}x$$
$$\le \frac{\varepsilon}{2} + \int_{a}^{b} \frac{\varepsilon}{2(b-a)} \, \mathrm{d}x = \varepsilon.$$

(3) 对任何 $\varepsilon \in (0,1)$, 由第1问可知, 存在 $g \in C[a,b]$ 使得

$$\int_{a}^{b} |f(x) - g(x)| \mathrm{d}x < \frac{\varepsilon}{4}.$$

取充分小的 $\delta > 0$, 使得

$$\int_{a}^{a+\delta}|f(x)|\mathrm{d}x<\frac{\varepsilon}{4},\int_{b-\delta}^{b}|f(x)|\mathrm{d}x<\frac{\varepsilon}{4},\int_{a+\delta}^{a+2\delta}|g(x)|\mathrm{d}x<\frac{\varepsilon}{16},\int_{b-2\delta}^{b-\delta}|g(x)|\mathrm{d}x<\frac{\varepsilon}{16}.$$

再取 $h \in C^{\infty}(\mathbb{R})$ 使得

- (a): $0 \le h(x) \le 1, \forall x \in \mathbb{R}$;
- (b): $h(x) = 0, \forall x \in (-\infty, a + \delta) \cup (b \delta, +\infty);$
- (c): $h(x) = 1, \forall x \in [a + 2\delta, b 2\delta].$

于是取 $g_1(x) = h(x)g(x) \in C_c(a,b)$, 由第 1 问可知 $\sup_{x \in [a,b]} |g| \leqslant \sup_{x \in [a,b]} |f|$, 从而 $\sup_{x \in [a,b]} |g_1| \leqslant \sup_{x \in [a,b]} |f|$. 从而

$$\int_{a}^{b} |f(x) - g_1(x)| dx = \int_{a}^{b} |f(x) - g(x)h(x)| dx$$

$$\leq \int_{a}^{a+\delta} |f(x)| \mathrm{d}x + \int_{b-\delta}^{b} |f(x)| \mathrm{d}x + \int_{a+\delta}^{b-\delta} |f(x) - h(x)g(x)| \mathrm{d}x$$

$$\leq \int_{a}^{a+\delta} |f(x)| \mathrm{d}x + \int_{b-\delta}^{b} |f(x)| \mathrm{d}x + \int_{a+\delta}^{a+2\delta} |f(x) - g(x)| \mathrm{d}x + \int_{a+\delta}^{b-\delta} |g(x) - h(x)g(x)| \mathrm{d}x$$

$$\leq \int_{a}^{a+\delta} |f(x)| \mathrm{d}x + \int_{b-\delta}^{b} |f(x)| \mathrm{d}x + \int_{a}^{b} |f(x) - g(x)| \mathrm{d}x + \int_{a+\delta}^{b-\delta} |g(x) - h(x)g(x)| \mathrm{d}x$$

$$\leq \frac{3\varepsilon}{4} + \int_{a+\delta}^{a+2\delta} |g(x) - h(x)g(x)| \mathrm{d}x + \int_{b-2\delta}^{b-\delta} |g(x) - h(x)g(x)| \mathrm{d}x$$

$$\leq \frac{3\varepsilon}{4} + 2 \int_{a+\delta}^{a+2\delta} |g(x)| \mathrm{d}x + 2 \int_{b-2\delta}^{b-\delta} |g(x)| \mathrm{d}x$$

$$\leq \varepsilon.$$

这就完成了证明.

(4) 证明的想法和第3问类似. 由条件可知, 对任何 $\varepsilon > 0$, 存在X > 0, 使得

$$\int_{|x|\geqslant X}|f(x)|^p\mathrm{d}x=\int_X^\infty|f(x)|^p\mathrm{d}x+\int_{-\infty}^{-X}|f(x)|^p\mathrm{d}x<\varepsilon.$$

因为 f 在 [-X,X] 黎曼可积, 所以由第 2 问, 存在 $g \in C_c(-X,X)$ 使得

$$\int_{-X}^{X} |f(x) - g(x)| dx < \frac{\varepsilon}{1 + \sup_{[-X,X]} |2f|^{p-1}}.$$

从前两问的构造可以看到

$$\sup_{[-X,X]}|g|\leqslant \sup_{[-X,X]}|f|,$$

于是

$$\int_{-\infty}^{\infty} |f(x) - g(x)|^p dx = \int_{|x| \geqslant X} |f(x)|^p dx + \int_{-X}^X |f(x) - g(x)|^p dx$$

$$\leqslant \varepsilon + \sup_{[-X,X]} |f - g|^{p-1} \int_{-X}^X |f(x) - g(x)| dx$$

$$\leqslant \varepsilon + \sup_{[-X,X]} (2|f|)^{p-1} \int_{-X}^X |f(x) - g(x)| dx$$

$$\leqslant \varepsilon + \varepsilon$$

这就完成了证明.

例题 **0.3** 设 f(x) 是 [0,1] 上的凹函数, 且 f(1) = 1. 求证:

(1)

$$\int_0^1 f^2(x) \, \mathrm{d}x \geqslant \frac{1}{4},\tag{8}$$

(2)

$$\int_0^1 f^2(x) \, \mathrm{d}x \geqslant \frac{2}{3} \int_0^1 f(x) \, \mathrm{d}x. \tag{9}$$

注 若取 f(x) = x, 则式 (9) 成为等式, 因而 (9) 式中的系数 $\frac{2}{2}$ 是最佳的.

注(10)式实际上就是凹函数的割线放缩,用凹函数的定义表示了而已.

笔记 构造 f_{δ} 的想法就是将端点与其邻域内一点连接, 其余点的值不变, 使得 $f_{\delta} \in C[0,1]$. 但后续分部积分需要 f_{δ} 二阶连续可微, 于是再用 Berstein 多项式 $B(f_{\delta},n)$ 逼近 f_{δ} , 从而 $B(f_{\delta},n) \rightrightarrows f_{\delta}$, 并且 Berstein 多项式 $B(f_{\delta},n)$ 任意阶连续可微, 端点值不变. 但是注意此时不一定有 $B^k(f_{\delta},n) \rightrightarrows f_{\delta}^k$, 因为 f_{δ} 不可导!

证明 (1) 由定理??知, 凹函数在定义域内部是连续的, 且在两个端点的单边极限存在, 修改 f 在 0 的值为 $\lim_{x\to 0^+} f(x)$,

这不改变积分的值, 此时 f 在 0 处连续, 故可不妨设 $f \in C[0,1)$. 对于给定的 $\delta \in (0,1)$ 以及 $x \in (\delta,1)$, 有

$$x = \frac{1-x}{1-\delta}\delta + \left(1 - \frac{1-x}{1-\delta}\right) \cdot 1.$$

因为f是凹函数,有

$$f(x) \geqslant \frac{1-x}{1-\delta}f(\delta) + \left(1 - \frac{1-x}{1-\delta}\right)f(1). \tag{10}$$

由上式和条件 f(1)=1, 得 $\lim_{x\to 1^-}f(x)\geqslant 1$. 若 f 在 1 处不连续, 则 $\lim_{x\to 1^-}f(x)>1$. 可取 δ 充分靠近 1, 使得在 $(\delta,1)$ 上 f(x)>1. 令

$$f_{\delta}(x) = \begin{cases} f(x), & 0 \le x \le \delta, \\ \frac{x - \delta}{1 - \delta} \cdot 1 + \frac{1 - x}{1 - \delta} f(\delta), & \delta < x \le 1, \end{cases}$$

则 f_{δ} 是 [0,1] 上连续的凹函数且 $f_{\delta}(1) = 1$, $f_{\delta}(x) \leq f(x)$. 由此可知, 只需对连续的凹函数证明式 (8). 又由于连续函数的 Bernstein 多项式在两个端点插值、保持凸性且一致收敛到该连续函数, 只需对有二阶连续导数的凹函数来证明式 (8). 因此, 不妨设 $f \in C^2[0,1]$.

解法一:设a,b是两个待定常数,有

$$0 \le \int_0^1 (f(x) - ax - b)^2 dx = \int_0^1 f^2(x) dx - 2 \int_0^1 (ax + b) f(x) dx + \int_0^1 (ax + b)^2 dx$$
$$= \int_0^1 f^2(x) dx - 2 \int_0^1 (ax + b) f(x) dx + \frac{a}{2} + ab + b^2,$$
 (11)

$$\int_0^1 (ax+b)f(x) \, \mathrm{d}x = \left[\left(\frac{1}{2}ax^2 + bx \right) f(x) \right]_0^1 - \int_0^1 \left(\frac{1}{2}ax^2 + bx \right) f'(x) \, \mathrm{d}x = \frac{1}{2}a + b - \int_0^1 \left(\frac{1}{2}ax^2 + bx \right) f'(x) \, \mathrm{d}x$$

$$= \frac{1}{2}a + b - \left[\left(\frac{ax^3}{6} + \frac{bx^2}{2} \right) f'(x) \right]_0^1 + \int_0^1 \left(\frac{ax^3}{6} + \frac{bx^2}{2} \right) f''(x) \, \mathrm{d}x.$$

取 $a = \frac{3}{2}, b = -\frac{1}{2}$, 则有

$$\int_0^1 \left(\frac{3}{2}x - \frac{1}{2}\right) f(x) \, \mathrm{d}x = \frac{1}{4} + \frac{1}{4} \int_0^1 (x - 1)x^2 f''(x) \, \mathrm{d}x.$$

由于 f 是凹函数, 有 $f''(x) \leq 0$. 因而

$$\int_0^1 \left(\frac{3}{2}x - \frac{1}{2}\right) f(x) \, \mathrm{d}x \geqslant \frac{1}{4}.$$

将此代入式 (11), 可得式 (8).

解法二:设 a,b 是两个待定常数,由 Cauchy 不等式可得

$$\int_0^1 (ax+b)^2 dx \int_0^1 f^2(x) dx \ge \left(\int_0^1 (ax+b) f(x) dx \right)^2$$

$$\iff \left(\frac{a}{2} + ab + b^2 \right) \int_0^1 f^2(x) dx \ge \left(\int_0^1 (ax+b) f(x) dx \right)^2. \tag{12}$$

利用分部积分可得

$$\int_0^1 (ax+b) f(x) dx = \frac{a}{2} + b - \int_0^1 \left(\frac{ax^2}{2} + bx\right) f'(x) dx$$
$$= \frac{a}{2} + b - \left(\frac{a}{6} + \frac{b}{2}\right) f'(1) + \frac{1}{6} \int_0^1 x^2 (ax+3b) f''(x) dx.$$

由
$$\begin{cases} \frac{a}{6} + \frac{b}{2} = 0 \\ \frac{a}{2} + b = \frac{1}{4} \end{cases}$$
 解得 $a = \frac{3}{2}, b = -\frac{1}{2}$. 于是取 $a = \frac{3}{2}, b = -\frac{1}{2}$, 代入上式得
$$\int_0^1 (ax + b) f(x) dx = \frac{1}{4} + \frac{1}{4} \int_0^1 x^2 (x - 1) f''(x) dx.$$

由 $f \in [0,1]$ 上的凹函数可知, $f''(x) \leq 0$. 从而

$$\int_0^1 (ax+b) f(x) dx = \frac{1}{4} + \frac{1}{4} \int_0^1 x^2 (x-1) f''(x) dx \geqslant \frac{1}{4}.$$

再代入(12)即得

$$\frac{1}{4} \int_0^1 f^2(x) \, \mathrm{d}x \geqslant \left(\frac{1}{4}\right)^2 \Longrightarrow \int_0^1 f^2(x) \, \mathrm{d}x \geqslant \frac{1}{4}.$$

(2) 设 $c \in (0,1)$ 是待定系数,则 $g(x) = \frac{f(x) - c}{1 - c}$ 仍是 [0,1] 上的凹函数且 g(1) = 1. 由式 (8) 有

$$\int_0^1 g^2(x) \, \mathrm{d}x \geqslant \frac{1}{4},$$

即

$$\int_0^1 f^2(x) \, \mathrm{d}x - 2c \int_0^1 f(x) \, \mathrm{d}x + c^2 \geqslant \frac{1}{4} (1 - c)^2.$$

取 $c = \frac{1}{3}$, 则 $c^2 = \frac{1}{4}(1-c)^2$. 于是

$$\int_0^1 f^2(x) \, \mathrm{d}x \geqslant \frac{2}{3} \int_0^1 f(x) \, \mathrm{d}x.$$

引理 0.2

$$K(x,t) = \begin{cases} t(1-x), & 0 \leqslant t \leqslant x \leqslant 1 \\ x(1-t), & 0 \leqslant x \leqslant t \leqslant 1 \end{cases}.$$

(1) 对 $\forall p \in \mathbb{Z}$, 都有

$$\int_0^1 K^p(x,t) \, \mathrm{d}x = \frac{t^p \, (1-t)^p}{p+1}, \quad \int_0^1 K^p(x,t) \, \mathrm{d}t = \frac{x^p \, (1-x)^p}{p+1}.$$

(2) $\[\mathcal{C}_{0}^{2} \in C^{2}[0,1], \] \] \] \[\mathcal{L}_{0}^{2} = f(1) = 0, \] \]$

$$f(x) = \int_0^1 K(x, t)(-f''(t)) dt, \forall x \in [0, 1].$$

证明

(1)

$$\int_0^1 K^p(x,t) dx = \int_0^t x^p (1-t)^p dx + \int_t^1 t^p (1-x)^p dx$$
$$= \frac{t^{p+1} (1-t)^p}{p+1} + \frac{t^p (1-t)^{p+1}}{p+1}$$
$$= \frac{t^p (1-t)^p}{p+1}.$$

$$\int_0^1 K^p(x,t) dt = \int_0^x t^p (1-x)^p dt + \int_x^1 x^p (1-t)^p dt$$

$$= \frac{x^{p+1} (1-x)^p}{p+1} + \frac{x^p (1-x)^{p+1}}{p+1}$$

$$= \frac{x^p (1-x)^p}{p+1}.$$

(2)
$$\int_{0}^{1} K(x,t) \left(-f''(t)\right) dt = \int_{0}^{x} K(x,t) \left(-f''(t)\right) dt + \int_{x}^{1} K(x,t) \left(-f''(t)\right) dt$$

$$\begin{split} &= \int_0^x t \, (1-x) \, \left(-f''(t)\right) \, \mathrm{d}t + \int_x^1 x \, (1-t) \, \left(-f''(t)\right) \, \mathrm{d}t \\ &= -x \, (1-x) \, f'(x) + \int_0^x \, (1-x) \, f'(t) \, \mathrm{d}t + x \, (1-x) \, f'(x) - \int_x^1 x \, f'(t) \, \mathrm{d}t \\ &= \int_0^x f'(t) \, \mathrm{d}t - \int_0^x x \, f'(t) \, \mathrm{d}t - \int_x^1 x \, f'(t) \, \mathrm{d}t \\ &= f(x) - x \int_0^1 f'(t) \, \mathrm{d}t \\ &= f(x) - x \left[f(1) - f(0) \right] \\ &= f(x) \, . \end{split}$$

定理 0.4 (Favard 不等式)

若f是区间[0,1]上的非负凹函数,则有对 $p \ge 1$,

$$\int_0^1 f^p(x) \, \mathrm{d}x \leqslant \frac{2^p}{p+1} \left(\int_0^1 f(x) \, \mathrm{d}x \right)^p.$$

注(1)可以用连续函数的积分来逼近可积函数的积分;

- (2) 对 [0,1] 上的凸或凹的连续函数 f, 可以用 Bernstein 多项式列 $B_n(f;x)$ 一致逼近 f, 且 $B_n(f;x)$ 与 f 有相同的凸性或凹性, 而且 $B_n(f;x)$ 在两个端点与 f 的值相同;
 - (3) 当 f 二阶连续可导且在两个端点 0 和 1 取零值时, f 可表示为

$$\int_0^1 K(x,t)(-f''(t)) \,\mathrm{d}t.$$

证明 由定理??知, 凹函数在内点是连续的, 且在两个端点的单边极限存在, 修改 f 在 0 的值为 $\lim_{\substack{x\to 0^+ \\ x\to 1^-}} f(x)$ 这不改变积分的值, 此时 f 在 0, 1 处连续, 故可不妨设 $f\in C[0,1]$. 选充分小的 $\delta>0$, 并修改 f 在 $[0,\delta]$ 和 $[1-\delta,1]$ 上的值, 使得修改后的函数是在 [0,1] 的连续凹函数, 且在 0, 1 取零值:

$$f_{\delta}(x) = \begin{cases} \frac{f(\delta)}{\delta}x, & x \in [0, \delta), \\ f(x), & x \in [\delta, 1 - \delta), \\ \frac{f(1 - \delta)}{\delta}(1 - x), & x \in [1 - \delta, 1]. \end{cases}$$

易知

$$\int_0^1 f_{\delta}(x) dx = \frac{\delta [f(\delta) + f(1 - \delta)]}{2} + \int_{\delta}^{1 - \delta} f(x) dx.$$

因而

$$\lim_{\delta \to 0^+} \int_0^1 f_\delta(x) \, \mathrm{d}x = \int_0^1 f(x) \, \mathrm{d}x.$$

因此只需对 [0,1] 上满足 f(0) = f(1) = 0 的连续凹函数证明. 又因为 f 的 Bernstein 多项式

$$B_n(f;x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}, \quad n = 1, 2, \dots$$

在 [0,1] 上一致收敛于 f, 且 $B_n(f;x)$ 仍是在两个端点取零值的凹函数. 因此只需对有二阶连续导数的函数证明. 此时有 $f''(x) \le 0$. 由 f(0) = 0, 得

$$f(x) = \int_0^x f'(t) dt = xf'(x) - \int_0^x tf''(t) dt.$$

再由 f(1) = 0, 可得

$$f'(1) = \int_0^1 t f''(t) dt,$$

由定理 0.2(2)可知

$$f(x) = x(f'(x) - f'(1)) + xf'(1) - \int_0^x tf''(t) dt$$

$$= -x \int_x^1 f''(t) dt + x \int_0^1 tf''(t) dt - \int_0^x tf''(t) dt$$

$$= -\int_0^1 K(x, t)f''(t) dt,$$

其中二元函数 K(x,t) 定义为

$$K(x,t) = \begin{cases} t(1-x), & 0 \leqslant t \leqslant x \leqslant 1\\ x(1-t), & 0 \leqslant x \leqslant t \leqslant 1. \end{cases}$$

由 f 是凹函数可知 $f'' \leq 0$. 于是由 Minkowski 不等式可得

$$\left(\int_{0}^{1} f^{p}(x) dx\right)^{\frac{1}{p}} = \left(\int_{0}^{1} \left(\int_{0}^{1} K(x,t)(-f''(t)) dt\right)^{p} dx\right)^{\frac{1}{p}}$$

$$\leq \int_{0}^{1} \left(\int_{0}^{1} K^{p}(x,t)(-f''(t))^{p} dx\right)^{\frac{1}{p}} dt$$

$$\frac{\cancel{\mathbb{E}} 2 \cdot 0.2(1)}{(p+1)^{\frac{1}{p}}} \int_{0}^{1} t(1-t)|f''(t)| dt$$

$$= -\frac{1}{(p+1)^{\frac{1}{p}}} \int_{0}^{1} t(1-t)f''(t) dt.$$

另一方面,有

$$\int_0^1 f(x) \, dx = -\int_0^1 \left(\int_0^1 K(x, t) f''(t) \, dt \right) \, dx$$

$$= -\int_0^1 \left(\int_0^1 K(x, t) f''(t) \, dx \right) \, dt$$

$$\frac{\text{gre 0.2(1)}}{\text{gre 0.2(1)}} - \frac{1}{2} \int_0^1 t (1 - t) f''(t) \, dt.$$

因此

$$\int_0^1 f^p(x) \, \mathrm{d}x \leqslant \frac{2^p}{p+1} \left(\int_0^1 f(x) \, \mathrm{d}x \right)^p.$$

引理 0.3

证明: 若 $A, B, C \in \mathbb{R}$, 则存在 $C_p > 0$, 使得

$$|A + B + C|^p \le C_p(|A|^p + |B|^p + |C|^p).$$

🔮 笔记 利用齐次化方法证明齐次不等式的应用.

证明 令

$$S \triangleq \{(A, B, C) \mid |A|^p + |B|^p + |C|^p = 1\},$$

则 S 是 \mathbb{R}^3 上的有界闭集, 从而 S 是紧集. 于是 $|A+B+C|^p$ 可以看作紧集 S 上关于 (A,B,C) 的连续函数, 故一定存在 $C_P>0$, 使得

$$|A+B+C|^p \leqslant C_p, \forall (A,B,C) \in S. \tag{13}$$

对 $\forall (A,B,C) \in \mathbb{R}^3$, 固定 A,B,C, 不妨设 A,B,C 不全为零, 否则不等式显然成立. 令

$$L = \frac{1}{\sqrt[p]{|A|^p + |B|^p + |C|^p}}$$

考虑 (LA, LB, LC), 则此时

$$|LA|^p + |LB|^p + |LC|^p = 1.$$

因此 $(LA, LB, LC) \in S$. 从而由(13)式可知

$$|LA + LB + LC|^p \leqslant C_p.$$

于是

$$|A + B + C|^p \leqslant \frac{C_p}{L^p} = C_p(|A|^p + |B|^p + |C|^p).$$

故结论得证.

定理 0.5 (积分的绝对连续性)

设 $p \ge 1$ 且反常积分 $\int_{-\infty}^{\infty} |f(x)|^p dx < \infty$, 证明

$$\lim_{h \to 0} \int_{-\infty}^{\infty} |f(x+h) - f(x)|^p dx = 0.$$
 (14)

室 室记 本结果对勒贝格积分也是正确的,但我们证明只对黎曼积分进行.

证明 Step1: 当 $f \in C_c(\mathbb{R})$ 时,则存在 X > 0,使得

$$f(x) = 0, \forall |x| \geqslant X.$$

从而当 $h \in (-1,1)$ 时,就有

$$f(x) = 0, \forall |x| \geqslant X + 1.$$

又因为 $f \in C[-X-1,X+1]$, 所以由 Cantor 定理可知 f 在 [-X-1,X+1] 上一致连续. 于是

$$\lim_{h \to 0} \int_{-\infty}^{+\infty} |f(x+h) - f(x)|^p dx = \lim_{h \to 0} \int_{|x| \leqslant X+1} |f(x+h) - f(x)|^p dx$$
$$= \int_{|x| \leqslant X+1} \lim_{h \to 0} |f(x+h) - f(x)|^p dx = 0.$$

Step2: 对一般的 f, 满足 $\int_{-\infty}^{\infty} |f(x)|^p dx < \infty$. 对 $\forall \varepsilon > 0$, 由定理 0.3(3)可知, 存在 $g \in C_c(\mathbb{R})$, 使得

$$\int_{-\infty}^{+\infty} |f(x) - g(x)|^p \mathrm{d}x < \varepsilon.$$

从而

$$\int_{-\infty}^{+\infty} |f(x+h) - f(x)|^p dx \le \int_{-\infty}^{+\infty} |f(x+h) - g(x+h) + g(x+h) - g(x) + g(x) - f(x)|^p dx$$

利用齐次化方法得到引理 0.3, 从而可知若 $A, B, C \in \mathbb{R}$, 则存在 $C_p > 0$, 使得

$$|A + B + C|^p \le C_p(|A|^p + |B|^p + |C|^p).$$

故

$$\int_{-\infty}^{+\infty} |f(x+h) - f(x)|^p dx \leqslant C_p \left(\int_{-\infty}^{+\infty} |f(x+h) - g(x+h)|^p dx + \int_{-\infty}^{+\infty} |g(x+h) - g(x)|^p dx + \int_{-\infty}^{+\infty} |f(x) - g(x)|^p dx \right)$$

$$\frac{\frac{4\pi}{y}}{y = x + h}} 2C_p \int_{-\infty}^{+\infty} |f(x) - g(x)|^p dx + C_p \int_{-\infty}^{+\infty} |g(x+h) - g(x)|^p dx$$

$$\leqslant 2\varepsilon C_p + C_p \int_{-\infty}^{+\infty} |g(x+h) - g(x)|^p dx. \tag{15}$$

由 $g \in C_c(\mathbb{R})$, 结合 **Step1** 可知

$$\lim_{h \to 0} \int_{-\infty}^{+\infty} |g(x+h) - g(x)|^p dx = 0.$$
 (16)

于是由(15)(16) 式可得

$$\overline{\lim_{h\to 0}}\int_{-\infty}^{+\infty}|f(x+h)-f(x)|^p\mathrm{d}x\leqslant 2\varepsilon C_p.$$

再由 ε 的任意性得证.