Balloon Popping Robair Group 4

Juan Vazquez, Charles Marshall, Sannara Ek, Shakeel Ahmad Sheikh

Contact: charles.marshall@grenoble-inp.org

Our Project

Robair:

- Intelligently identifies balloon targets while avoiding other targets, including human legs.
- Moves smoothly to the balloons
- Pops all balloons in the arena

*We use an upside down laser for improved detection of balloons.

Developments

- Decision → Decision_Node.cpp
- Vision → Balloon_detector_node.cpp
- Rotation / Translation → Translate_Rotate_Node.cpp

Additionally:

Balloon Tracking → Balloon_Tracker_Node.cpp

Architecture

Decision

Detecting the size of a balloon

- A Particular Width
- Collected Data
- A Linear Regression Problem
 - o BS = 0.05 * Distance 0.28
- Outliers to adjust

Detecting the curve of a balloon

- Calculate the middle(M) and the front point (F)
- Determine a threshold distance
- Calculate the distance between M and F
- Check if F is within the threshold

Avoiding Legs

- Identify Human targets
- Filters out noises (Legs)
- Threshold for uncertainty

Balloon Selections

Closest Balloon

Constraints with robair and balloons

- Using a upside down laser
- (some of the field of view is lost)
- Balloon Color Problem
- Possibility of using two lasers

Rotation / Translation

- Decision node:
 - Send rotation_to_do
 - Send translation_to_do
- Rotation/Translation:
 - Starts when both values have been received

Translate_rotate node

- Waits for both rotation_to_do and translation_to_do
- Using PID, calculates rotation_speed and translation_speed

 - Final translation speed
 - Translation_speed * w

Translate and rotate: getting to objective

- We may miss the objective
 - Rely on the decision node logic
 - If objective is visible, go for it.
 - If not, rotate 90° until an objective is found

Extra feature: Balloon tracking*

*Not fully integrated in the system

Final Remarks

- Our work
- Our limitations
- Our ideas moving forward

DEMO

(3 Parts)