CONEXIDAD.

Def. Un espacio métrico se dice conexo si no existe ningún subconjunto propio de X que es abierto y cerrado.

S: un espario métrico no es conexo, se le llama disconexo.

Des Una fumilia de conjuntos l'Ailiei Se dice que es una partición de X si C-umple:

 λ $A_{\lambda} \neq \emptyset$, $\forall \lambda \in \overline{1}$

 $\chi_{i} = \sum_{i=1}^{N} A_{i}$

iii) $A: \cap A: = \emptyset, \forall : : \in I, i \neq i$

leoremu

Sea I un espacio métrico. Son equivalentes las atirmaciones:

i) I no es conexo

ii) Existe una partición de X en dos abiertos.

iii) Existe una partición de X en dos cerrados.

Dem:

$$(i\lambda) \Rightarrow (i\lambda)$$

Suponga que \overline{X} no es conexo. Entonces existe $A \subseteq \overline{X}$ abjerto y cerrado en \overline{X} . Como A es cerrado y abjerto, entonces CA es cerrado y abjerto. Tome U = A y V = CA. Ast

X = AUCA, AMCA = \$ y A, CA + \$, pues A es subconjunto propio de X. Lueyo {A, CA} es una partición de X en 2 abiertos.

$(ii) \Rightarrow (ii)$

Suponyu que existe una partición \overline{X} en dos conjuntos objertos, digumos $\{A, B\}$. Como $\overline{X} = AUB$, entonces CA = B y CB = A. Además $ANB = \phi \Rightarrow CANCB = \phi$.

 $(\lambda) \Rightarrow (\lambda)$

Suponya que existe una partición de \overline{X} en dos cerrados, digamos $\{A,B\}$ (omo \overline{X} = AUB y ANB = ϕ , entonces CB = A. Como B es cerrado, entonces A es abierto. As:, A es cerrado y abierto. A \neq ϕ , pues es elemento de la partición. Como $B \neq \phi$, entonces $A \neq \overline{X}$. As: A es un subconjunto propio abierto y cerrado. Por tanto, A es conexo.

G.e.U.

Def. Se dice que un conjunto A de un subespacio métrico X es conexo, si A como subespacio métrico de X es conexo.

Proposición.

Seu X un espucio métrico y A = X. Entonces A es un conjunto conexo en X

no existen dos abiertos o cerrados U y Ven X tul que

 $V \cap A$, $U \cap A \neq \phi$ $U \cap V \cap A = \phi$ $(U \cap A) \cup (V \cap A) = A$

Dem:

 $M, N \neq \emptyset$ MUN = A $MN = \emptyset$

Como A es subespacio métrico de X, y M, N son abiertos en A, existen U, V = X abiertos tales que M=UNA y N=VNA. Asi

VNA, UNA # \$ VNUNA = p $A = (A \cap V) \cup (A \cap V)$

⇒) Suponya que 3 U, V ⊆ X tules que se cumple la hipótes:s, entonces M=UNA, N= VNA + Ø. Como U y Vson abiertos, entonces M y N son abiertos en A. Asi

 $M, N \neq \emptyset$

 $MNN = \emptyset$

MUN = A

Asi, {M, N} es una partición de A en dos abjertos. Luego, A no es conexo.

EJEMPLOS.

Proposición.

Sea \overline{X} esp. métrico y $D \subseteq \overline{X}$ un conjunto denso en \overline{X} . S: D es conexo, entonces \overline{X} es conexo.

Dem:

Suponya que X no es conexo, entonces $\exists U, V \subseteq X$ abjertos $m U, V \neq \emptyset$, $U \cap V = \emptyset$ $V \cup V = X$

Como D es denso en X, entonces DNU, DNV + proprier U y Vabiertos. Luego (UND) U (VND) = D, además UNVND = p. Por lo tanto, D no es conexo.

leoremu.

S; A es un conjunto comexo en un esp. métrico \bar{X} y B es cualquier conjunto en \bar{X} m $A \leq B \leq \bar{A}$ entonces Bes conexo.

Dem:

Seu $B \subseteq X$ tal que $A \subseteq B \subseteq \overline{A}$. Como A es denso en B, pues $(\overline{A})_B = \overline{A} \cap B = B$, entonces, por el teorema anterior, por ser A conexo, B es conexo. G. e.c.

Teoremu.

Sea {A;}; ET una familia de conjuntos conexos en X tales que A; NA; #p, Vi + j; i, j \in I Entonces A = UA; es conexo.

Dem:

Seun $M, N \subseteq \overline{X}$ abjertos tules que A = MUN y $M \cap N = \emptyset$. Probaremos que $M = \emptyset$ ó $N = \emptyset$

Como Ai es comexo VieI, entonces AinM=\$, & ANN=\$ (pues de otra forma a {AinM, AinN} seria una partición de Ai). Sea i. EI sin pérdidu de generalidad, podemos suponer que AionN=\$ entonces Aio = M. Como AionA; *\$ \$\$, \$\$ \$\$ jeI, entonces A; \$\$ A; \$\$ \$\$ \$\$ \$\$ Luego:

 $A \cap N = (\bigcup_{i \in \Gamma} A_i) \cap N = \bigcup_{i \in \Gamma} A_i \cap N = \emptyset$ por lo tanto, $N = \emptyset$. Ast, A es conexo.

9. e.l.

Corolario

Sea $\{A_n\}_{n=1}^{\infty}$ una suces; ón de conjuntos conexos en un espacio métrico \overline{X} tal que $A_n \cap A_{n+1} \neq \emptyset$, $\forall n \in \mathbb{N}$, entonces

 $A = \bigcup_{n \in \mathbb{N}} A_n$

es un conjunto Conexo.

Dem:

Sean M, N \leq X tales que MUN = A y MNN = ϕ . Como An es conexo \forall no $\exists N$ y An \subseteq A, entonces An $\exists M$ = ϕ of An $\exists N$ = ϕ (de otra forma, $\exists A_n \cap M, A_n \cap N$) soria una partición de An). Para $\exists \in \exists N$, podemos suponer $\exists n$ pérdida de generalidad, que $\exists A_n \cap N = \phi$ entonces $\exists A_n \cap N = \phi$ entonces $\exists A_n \cap N = \phi$. Luego como $\exists A_n \cap A_$

Supongu que A, A2, ..., Ax son teles que A; $\Omega M \neq \emptyset$, \forall i \in \exists_K . Como $A_K \Omega N = \emptyset$, entonces $A_K \subseteq M$, as: $A_{K+1} \Omega M \neq \emptyset$, lueyo $A_{K+1} \Omega N = \emptyset$. Por inducción, se tiene que $A_n \Omega N = \emptyset$. \forall $n \in \mathbb{N}$. Veumos que

 $A \cap N = \left(\bigcup_{n \in N} A_n \right) \cap N = \bigcup_{n \in N} A_n \cap N = \emptyset$

portanto, N= Ø. Asi, A es conexo.

9.e.l.

Teorema (de paso de Aduana).

Sea \overline{X} un espucio métrico y $A \subseteq \overline{X}$. Si $B \subseteq \overline{X}$ es un conjunto conexo en \overline{X} , y $B \cap CA \neq \emptyset$ y $B \cap CA \neq \emptyset$

entonces

BAFTA+ \$

Dem:

Suponya que B es conexo, con BNA, BNEA + \$\phi_y \que BNFrA = \$\phi_Como B = BNX = BN(A°UFrAUExtA) = (BNA°)U(BNFrA)U(BNExtA) = (BNA°)U(BNExtA)

además BNA°NExtA = Ø. Como A°, ExtA # Ø (en general), entonces B no es conexo, pues A° y ExtA son abiertos. *c. Por tanto, BNFr A # Ø.

4.0.d.

Corolario.

En un espacio métrico conexo, Cualquier subconjunto propio no vacío tiene frontera no vacía.

Dem:

Seu \overline{X} un espacio métrico Conexo y $A \subseteq \overline{X}$ $\overline{\Pi}$ $A \neq \emptyset$, \overline{X} . Como $A \neq \emptyset$ y $CA \neq \emptyset$ (pues $A \neq \overline{X}$), enfonces $\overline{X} \cap F_r A \neq \emptyset$. Asi, $F_r A \neq \emptyset$.

9.1.d.

CONTINUIDAD.

Teorema

Si f es una función continua de un espacio métrico (\bar{X} , d) en (\bar{Y} , p), entonces $f(\bar{X})$ es un conjunto conexo en \bar{Y} , es decir, toda función continua transforma conexos en conexos.

Dem:

Sean $U, V \subseteq Y$ whiertos Π $U \cap V = \emptyset$ Y $U \cap V = S[X]$. Como ambos son abiertos $Y \in S$ es continua, entonces f'(u) y f'(v) son objertos, tales que $X = f'(u) \cup f'(v)$. Como $U \cap V = \emptyset$, entonces $f'(u) \cap f'(v) = \emptyset$.

Como \overline{X} es conexo, entonces $f'(U) = \emptyset$ ó $f'(V) = \emptyset$. Sin pérdidu de generalidado de podemos suponer que $f'(V) = \emptyset$, luego $f'(U) = \overline{X}$, entonces $V \subseteq f(f'(V)) = \emptyset$, as: $V = \emptyset$. Por lo tanto, $f(\overline{X})$ es conexo.

9.0.U.

Corolario (Teorema del valor intermedio).

S; fes una Junción continua de un espacio métrico Conexo (\overline{X} ,d) en (\overline{R} , \overline{R}) entonces $f(\overline{X})$ es un intervalo en \overline{R} , es decir, \overline{S} ; f(x), $f(y) \in \overline{F}(\overline{X})$ con f(x) < f(y) y ce \overline{R} es tal que $f(x) < \overline{C} < f(y)$, entonces $\exists z \in \overline{X}$ $\overline{\Pi} f(z) = \overline{C}$.

Dem:

Como fes continua y X es conexo, por el teorema anterior $f(X) \subseteq \mathbb{R}$ es conexo. Por un ejercicio anterior, los únicos conjuntos conexos en \mathbb{R} son el ϕ , los intervalos, y los conjuntos formados por un punto.

S: $f(X) = \{a\}$, donde $a \in \mathbb{R}$, enfonces S: f(x), $f(y) \in f(\overline{X}) \Rightarrow f(x) = a = f(y)$. S: $f(X) = \overline{I}$, donde \overline{I} es un intervalo en \mathbb{R} , para $C \in \mathbb{R}$ $m : f(x) \leq c \leq f(y)$, enfonces $c \in \overline{I} = f(\overline{X})$. Como $f : \overline{X} \Rightarrow f(\overline{X})$ es suprayectiva, para $c \in \overline{I} = f(\overline{X})$, $\overline{J} : \overline{J} \in \overline{X}$ m : f(x) = c

9.0.U.

Proposición.

Un espacio métrico X es conexo ⇒ toda aplicación continua de X en cualquier espacio métrico es constante.

Dem:

⇒) Suponya que \overline{X} es conexo y sea $f: \overline{X} \to \overline{Y}$ una función continua donde \overline{Y} es un esp. métrico discreto. Como $f(\overline{X}) \le \overline{Y}$ es conexo en \overline{Y} , y los únicos conexos en \overline{Y} son el vació y los puntos, entonces $f(\overline{X}) = \{c\}$, donde $C \in \overline{Y}$ (pues $\overline{X} \neq \emptyset$). As:

 $f(x) = C, \forall x \in \overline{X}$

 $\not\in$ Suponyumos que X no es conexo, entonces $\exists U, V \subseteq X$ abiertos $mU, V \neq \emptyset$, $U \cap V = \emptyset$ y $U \cup V = X$. Seu $Y = \{a,b\}$ un esp. métrico discreto provisto de la métrica discreta. Defina $f: X \longrightarrow \{a,b\}$ como Sigue:

$$\forall x \in X, f(x) := \begin{cases} a & \text{s.} & x \in U. \\ b & \text{s.} & \chi \in V. \end{cases}$$

Claramente $f'(\{a\}) = U$, $f'(\{b\}) = V$, $f'(\emptyset) = \emptyset$, $f'(\{a,b\}) = \overline{X}$, es decir to das las imágenes inversas de conjuntos abiertos en $\{a,b\}$, son abiertos en \overline{X} . Luego, f es continua. Claramente f no es constante así f una función continua de f en f en f que no es constante.

g.ed.

CONEXIDAD POR ARCOS.

Def Seu \overline{X} un espacio métrico. Un Camino en \overline{X} es cualquier aplicación continua ℓ de algún intervalo $[\alpha, \beta]$ de $[\alpha, \beta]$ and $[\alpha, \beta]$ une $[\alpha, \beta]$ and $[\alpha, \beta]$ une $[\alpha, \beta]$ une $[\alpha, \beta]$ une $[\alpha, \beta]$ and $[\alpha, \beta]$ une $[\alpha, \beta]$ une $[\alpha, \beta]$ and $[\alpha, \beta]$ and $[\alpha, \beta]$ are $[\alpha, \beta]$ and $[\alpha, \beta]$ and $[\alpha, \beta]$ are $[\alpha, \beta]$ and $[\alpha, \beta]$ and $[\alpha, \beta]$ are $[\alpha, \beta]$ are $[\alpha, \beta]$ and $[\alpha, \beta]$ are $[\alpha, \beta]$ are $[\alpha, \beta]$ are $[\alpha, \beta]$ and $[\alpha, \beta]$ are $[\alpha, \beta]$ are $[\alpha, \beta]$ and $[\alpha, \beta]$ are $[\alpha, \beta]$ and $[\alpha, \beta]$ are $[\alpha, \beta]$ are $[\alpha, \beta]$ are $[\alpha, \beta]$ are $[\alpha, \beta]$ and $[\alpha, \beta]$ are $[\alpha, \beta$

Nota: basta con que la sunción & vaya de [0,1] a X, pues existe una función r: [0,1] -> [a, p] biyectiva, Ya, per, a «B.

Det. Se dice que un espacio métrico X es conexo por arcos, s; cualquierpar de elementos de x puede ser unido por un cumino.

Teorema

Si I es conexo por arcos, entonces es conexo

Dem:

 $\overline{\underline{\chi}} = \bigcup_{\chi \in \underline{\chi}} (Q_{\chi}([0,1])$

Además, s. $x, y \in X$, entonces $e_{x}([0,1]) \cap e_{y}([0,1]) \supseteq \{x_{o}\}$. Por tanto $\{e_{x}([0,1])\}_{x \in X}$ es una familia de conexos con intersección no vacia, así X es conexo.

EJEMPLOS.