System Verification

Tasks

 Note: all tasks execution time is calculated from the actual implemented tasks using GPIOs and the logic analyzer.

Name	Periodicity (ms)	deadline (ms)	excution Time (ms)
1. Button_1_Monitor	50	50	0.008
1. Button_2_Monitor	50	50	0.008
3. Periodic Transmitter	100	100	0.0096
4. Uart Receiver	20	20	0.017
5. Load 1 Simulation	10	10	5
8. Load 2 Simulation	100	100	12

1. Using Analytical Method

a. System Hyperperiod

- It's the Least Common Multiple of all tasks periods
- H = LCM(50, 50, 100, 20, 10, 100) = 100

b. CPU Load

- U = (E1 + E2 + E3 + E4 + E5 + E6) / H
 where E is the Execution time and H is the Hyperperiod.
 U = (0.008*2 + 0.008*2 + 0.0096 + 0.017*5 + 5*10 + 12) / 100 = 0.621 (62.1 %)
- c. System schedulability check using URM and Time Demand Analysis Techniques

1. Rate-Monotonic utilization bound

$$\sum_{i=1}^n rac{C_i}{P_i} <= n(2^{rac{1}{n}}-1)$$

$$L.\,H.\,S = \sum_{i=1}^n rac{C_i}{P_i} = rac{0.008}{50} + rac{0.008}{50} + rac{0.0096}{100} + rac{0.017}{20} + rac{5}{10} + rac{12}{100} = 0.621$$
 $R.\,H.\,S = n(2^{rac{1}{n}} - 1) = 6(2^{rac{1}{6}} - 1) = 0.735$

Since L.H.S <= R.H.S then the system is scheduable.

- 2. Time Demand Analysis
- First We Sort the tasks making the highest priority at the first. And since we are using Rate-Monotonic Scheduler the smaller the periodicity the higher the priority.

Name	Periodicity (ms)	deadline (ms)	excution Time (ms)
5. Load 1 Simulation	10	10	5
4. Uart Receiver	20	20	0.017
1. Button_1_Monitor	50	50	0.008
2. Button_2_Monitor	50	50	0.008
3. Periodic Transmitter	100	100	0.0096
8. Load 2 Simulation	100	100	12

- Choose the critical instant 0 then:

$$egin{aligned} W_1(10) &= 5 + 0 = 5 < deadline \ W_4(20) &= 0.017 + rac{20}{10} * 5 = 10.017 < deadline \ W_1(50) &= 0.008 + rac{50}{10} * 5 + rac{50}{20} * 0.017 = 25.059 < deadline \end{aligned}$$

$$W_2(50) = 0.008 + rac{50}{10}*5 + rac{50}{20}*0.017 + rac{50}{50}*0.008 = 25.067 < deadline$$

$$W_3(100) = 0.0096 + rac{100}{10}*5 + rac{100}{20}*0.017 + rac{100}{50}*0.008 + rac{100}{50}*0.008 = 50.1266 < deadline \ W_4(100) = 12 + rac{100}{10}*5 + rac{100}{20}*0.017 + rac{100}{50}*0.008 + rac{100}{50}*0.008 + rac{100}{100}*0.0096 = 62.1266 < deadline$$

$$W_4(100) = 12 + \frac{100}{10}*5 + \frac{100}{20}*0.017 + \frac{100}{50}*0.008 + \frac{100}{50}*0.008 + \frac{100}{100}*0.0096 = 62.1266 < deadlight density with the content of the content$$

Since all tasks are less than the deadline. The system is scheduable.

2. Using SIMSO offline simulator:

- Scheduler used: Fixed priority rate monotonic as required.

General	Scheduler	Processor	s Tasks	
Scheduler			simso.sche	dulers.RM

– Tasks

ene	ral Sch	neduler	Proce	essors	Tasks					
d	Name	Task typ	oe .	Abort o	n miss	Act. Date (ms)	Period (ms)	List of Act. dates (ms)	Deadline (ms)	WCET (ms)
1	TASK T1	Periodic	_	□ No		0	50	-	50	0.008
2	TASK T2	Periodic	•	□ No		0	50	-	50	0.008
3	TASK T3	Periodic	•	□ No		0	100	-	100	0.0096
4	TASK T4	Periodic	•	□ No		0	20	-	20	0.017
5	TASK T5	Periodic	•	□ No		0	10	-	10	5
6	TASK T6	Periodic	•	□ No		0	100	-	100	12

– The CPU load is the same as calculated in the analytical method.

	Total load	Payload	System load
CPU 1	0.6213	0.6213	0.0000
Average	0.6213	0.6213	0.0000

– Gnatt chart over the Hyperperiod

- zoomed in

3. Using Keil Simulator At Runtime

1. Calculate the CPU usage time using timer 1 and trace macros

 Note: The cpu_load is the same as the on obtained using the analytical method and using the SIMSO offline simulator

- Note: None of the tasks miss the deadline!
- 2. Using trace macros and GPIOs, plot the execution of all tasks, tick, and the idle task on the logic analyzer

- Note: The above chart was using the implemented EDF scheduler. As you can see tasks with closer deadline preempts other tasks.
- Note: The IDLE task never interfered with my other main tasks so my modification in the IDLE task function to make sure it never preempts my main tasks is successful. As I made sure It always offsets the maximum main tasks deadline by a user defined amount So It never executes unless there are no more tasks in the ready queue.