Kurseinheit 2: Operatoren sowie formatierte Einund Ausgabe

- 1. Operatoren
- 2. Formatierte Ausgabe
- 3. Formatierte Eingabe

Ingenieur-Informatik / Programmierung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe

Übersicht KE 2

Lehrveranstaltung Ingenieur-Informatik – 2 SWS/2 Credits: EI1, EI+1, MKA1, MK+1, EI3nat3 Lehrveranstaltung Programmierung 2 (Teil C) – 2 SWS/2 Credits: AI2

Unterrichtsdauer für diese Kurseinheit: 90 Minuten

Korrespondierende Kapitel aus C-Programmierung – Eine Einführung: Kapitel 3 und 5

Zusatzthemen: Keine

Ingenieur-Informatik / Programmierung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe

1. Operatoren

3

Klassifikation Operatoren

Klassifikation nach der Anzahl der Operanden:

- Operator hat nur einen Operanden: unärer Operator: -iVal1
- Operator hat zwei Operanden: binärer Operator: iVal1 + iVal2
- Operator hat drei Operanden: **ternärer** Operator: (iVal1 < 10) ? (iVal2 = 1) : (iVal2 = 73)

Operatorsymbole + und - können für unäre und binäre Operatoren verwendet werden. Leerzeichen siehe CL5 C-Coding Styleguide.

Klassifikation nach den Funktionsbereichen der Operatoren:

- Arithmetische Operatoren
- Relationale Operatoren
- Logische Operatoren
- Bitoperatoren
- Zuweisungsoperatoren
- Umwandlungsoperatoren (Casts)

Operatoren haben unterschiedliche **Prioritäten** und **Assoziativitäten**. Siehe hierzu PA1 und zusätzlich noch PA2, PA3 und PA4 des C-Coding Styleguides. Dies ist besonders wichtig, wenn verschiedene Operatoren in einer C-Anweisung verwendet werden.

Elektrotechnik, Medizinted

Ingenieur-Informatik / Programmierung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe

Prof. Dr.-Ing. Daniel Fischer - Version 3.0.

1. Operatoren

4

Arithmetische Operatoren

Operator	Bedeutung	Beispiel(e)
-	Subtraktion und unäres Minus	iY = iX - iZ; $iY = iX - 73$; $iY = -iX$;
+	Addition (und unäres Plus)	iY = iX + iZ; iY = iX + 73; iY = +iX;
*	Multiplikation	iY = iX * iZ; iY = iX * 73; iY = 73 * iX;
/	Division	iY = iX / iZ; iY = iX / 73; iY = 73 / iX; iY = 73 / 74;
%	Modulo Division	iY = iX % 2;
	Dekrement – PreDekrement Dekrement – PostDekrement	iY =iX;iY; (iY = iY - 1;) iY = iX; iY; (iY = iY - 1;)
++	Inkrement – Preinkrement Inkrement – Postinkrement	iY = ++iX; ++iY; (iY = iY + 1;) iY = iX++; iY++; (iY = iY + 1;)

Division durch Null ergibt einen Laufzeitfehler (Programmabbruch). Bei einer Ganzzahldivision wird der Rest abgeschnitten. 73 / 74 ergibt 0!

Modulo Division % ist in der Informatik ein ganz wichtiger Operator (ganzzahliger Rest)!

EM Elektrotechnik, Medizin

Ingenieur-Informatik / Programmierung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe

Operator	Bedeutung	Beispiel(e)	
	Größer	iY > 10	iY > iX
-=	Größer als oder gleich	iY >= 10	iY >= iX
(Kleiner	iY < 10	iY < iX
:=	Kleiner als oder gleich	iY <= 10	iY <= iX
=	Gleich	iY == 10	iY == iX
=	Ungleich	iY != 10	iY != iX
C89 wird	Operatoren liefern die Wahrheitswert ein Wert ungleich 0 als wahr angeseh Operatoren liefern aber immer den Wo	en. Die relationalen (und	später auch die

```
1. Operatoren
                 Relationale Operatoren - Codebeispiel
int iY = 11;
int iX = 10;
int iRes;
iRes = iY < iX;
                                              // long version
                                              // long version
printf("Result (iY < iX) is: %d\n", iRes);</pre>
Auswählen Microsoft Visual Stu...
                                                 X
            Result (iY < iX) is: 0
            Result (iY < iX) is: 0
            Result (iY >= iX) is: 1
                 Ingenieur-Informatik / Programmierung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe
```


1. Operatoren Bitoperatoren - Basics					
0	0	0000	wird auch in der Klausur im Anhang ausgeteilt. Um		
1	1	0001	die unterschiedlichen Zahlensysteme zu erkennen,		
2	2	0010	wird häufig die Basis rechts tiefergestellt angegeben		
3	3	0011	oder bei Hexadezimalzahlen ein 0x vorangestellt.		
4	4	0100			
5	5	0101	Beispiele:		
6	6	0110	Zahlen im Bereich 0-15:		
7	7	0111	$11_{10} = B_{16} = 0xB = 1011_2$		
8	8	1000	Zahlen im Bereich 16-255:		
9	9	1001	$16_{10} = 10_{16} = 0 \times 10 = 00010000_2 = 10000_2$		
10	Α	1010	237 ₁₀ = ED ₁₆ = 0xED = 11101101 ₂		
11	В	1011	255 ₁₀ = FF ₁₆ = 0xFF = 11111111 ₂		
12	С	1100	Historia Cala (Tarahannahan manusahan M.		
13	D	1101	Hinweis: Calc (Taschenrechner unter Windows):		
14	Е	1110	->Ansicht -> Programmierer		
15	F	1111	Hex, Dez, Okt und Bin als Zahlenformate		
Elektrotechnik, Medizintechnik und Informatik		Ingenieur-Informatik / Programn	nlerung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe Prof. DrIng. Daniel Fischer - Version 3.0.		

1. Operatoren

13

Zuweisungsoperator - Kurzformen

Der Zuweisungsoperator = wurde bereits behandelt. Zu jeder Normalform gibt es eine Kurzform:

Kurzform	Normalform	Bemerkung
Bitoperatio	nen	
x &= 4	x = x & 4	x wird mit der Zahl 4 über bitorientiert-UND verknüpft und x zugewiesen.
x = 6	x = x 6	x wird mit der Zahl 6 über ODER verknüpft und x zugewiesen.
x ^= 5	x = x ^ 5	x wird mit der Zahl 5 über EXCLUSIV-ODER verknüpft und x zugewiesen.
X <<= 1	$X = X \ll 1$	Linksschieben von x um eine Stelle und x zuweisen
x >>= 1	x = x >> 1	Rechtsschieben von x um eine Stelle und x zuweisen
Arithmetisc	he Operationen	
x += y	x = x + y	x wird um den Wert von y erhöht.
х -= у	x = x - y	x wird um den Wert von y verringert.
x *= y	x = x * y	x wird das Produkt aus x und y zugeordnet.
x /= y	x = x / y	x wird der Quotient aus x und y zugeordnet.
x %= y	x = x % y	x wird der Rest der Ganzzahldivision von x und y zugewiesen.
X ++	X = X + 1	x wird um 1 erhöht (Inkrement-Operator).
x	X = X - 1	x wird um 1 verringert (Dekrement-Operator).

Elektrotechnik, Medizintechni und Informatik Ingenieur-Informatik / Programmierung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe

Prof. Dr.-Ing. Daniel Fischer - Version 3.0

[LUH17]

1. Operatoren

14

Umwandlungsoperator ()

Werden bei einer Operation (Zuweisungsoperation, Arithmetische Operationen, ...) unterschiedliche Datentypen (Variablen und Konstanten) verwendet, so kann dies zu falschen Ergebnissen führen, da einzelne Datentypen intern umgewandelt werden. Jede Operation kann dabei nur auf einem gleichen Datentyp erfolgen, daher ist eine **Typumwandlung** (engl. **Cast**) notwendig. Grundsätzlich gibt es zwei Möglichkeiten:

Implizite Casts

Hier überlässt man die Typumwandlung dem Compiler. Dieser hat dafür Regeln hinterlegt, welche meist dem Programmierer nicht immer bekannt sind. ->Hohe Fehleranfälligkeit

Explizite Casts

Hier erfolgt die Typumwandlung durch den Programmierer. Siehe C-Coding Styleguide!

```
iVal = (int)dVal + 1;  // <int> = <int> + <int>
dVal = (double)5/(double)2;  // Alternative: dVal = 5./2.;
```

(EM) Elektrotechnik, Medizintech

Ingenieur-Informatik / Programmierung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe

1. Operatoren

16

Typumwandlung – Explizite Casts – Operator (<Datentyp>)

Falls die Umwandlung eines Datentyps notwendig ist, sollte dies durch einen expliziten Cast geschehen. Dadurch wird angezeigt, dass dies so vom Programmierer gewünscht wurde. Ob dies dann auch immer korrekt ist, ist nicht gegeben.

C-Coding Styleguide: Regel DV13: "Implizite Casts [..] sind zu vermeiden. Nur explizite Casts verwenden [..]."

Bei literalen Konstanten kann schon im Vorfeld der richtige Typ ausgewählt werden:

float fVal = 4.73F;

Andere Möglichkeit ist zu umständlich:

float fVal = (float)4.73;

Elektrotechnik, Medizintechni und Informatik Ingenieur-Informatik / Programmierung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe

17 2. Formatierte Ausgabe Unterscheidung Ausgabe (nicht formatiert) Formatierte Ausgaben Nicht formatierte Ausgabe: Mittels der Funktion putchar kann ein Zeichen auf der Konsole ausgegeben werden. Die Funktion puts (s für String, dt. Zeichenkette) wird verwendet, um eine Zeichenkette auf der Konsole auszugeben. Beide Funktionen berücksichtigen keine Formatierung. Die Funktion puts fügt automatisch am Ende ein CRLF (Carriage Return (and) Line Feed) ein. unsigned char ucChar = 'E'; X Microsoft Visu... puts("OUTPUT NOT FORMATTED"); puts("Hello World"); DUTPUT NOT FORMATTED putchar(ucChar); Hello World putchar('\n'); putchar('X'); putchar('\n'); putchar(73); putchar('\n'); Ingenieur-Informatik / Programmierung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe

2. Formatierte Ausgabe 20 Steuersequenzen In die Zeichenkette (literale Konstante) von printf können noch Steuersequenzen ("nicht druckbare Zeichen") eingebettet werden. Code Bedeutung BEL (bell) - akustisches Warnsignal \a \b BS (backspace) – setzt Cursor um eine Position nach links \f FF (formfeed) – ein Seitenvorschub wird ausgelöst. NL (newline) – Cursor geht zum Anfang der nächsten Zeile \n CR (carriage return) - Cursor springt zum Anfang der aktuellen Zeile \r HT (horizontal tab) – Zeilenvorschub zur nächsten horizontalen Tabpos. \t VT (vertical tab) – Cursor springt zur nächsten vertikalen Tabulatorposition \v " wird ausgegeben ' wird ausgegeben /? ? wird ausgegeben \ wird ausgegeben // \0 Endmarkierung einer Zeichenkette \000 Zeichen, das der Oktalzahl ooo entspricht (\123 → P) \xhh Zeichen, das der Hexadezimalzahl hh entspricht ($x50 \rightarrow P$) Ingenieur-Informatik / Programmierung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe

23 3. Formatierte Ausgabe **Allround-Funktion scanf** Mit scanf kann eine formatierte Eingabe realisiert werden. Es kann eine Zeichenkette als literale Konstante vorgegeben werden, in die durch Formatbeschreiber Werte von Variablen eingebettet werden. Die wichtigsten Formatbezeichner wurden schon genannt: %i oder %d int (vorzeichenbehaftet) %с char Hinweis: Unterscheidung für double und float! %f float Bei printf war Formatbezeichner für double und Î double float gleich (%f für float und double). Bei scanf ist %If dies unterschiedlich. Zeichenkette %s Wie auch schon bei gets und getchar ist die Eingabe mit der Returntaste abzuschließen. Ingenieur-Informatik / Programmierung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe

3. Formatierte Ausgabe

24

Herausforderungen scanf

Die Funktion scanf ist sehr fehleranfällig und gilt auch als "unsicher" (siehe später).

Vor Variablennamen muss ein & vorangestellt werden (siehe später)

Hier ein paar Tipps zur Fehlervermeidung und Handhabung:

- Immer nur eine Variable pro scanf einlesen
- Keine weiteren Zeichen in die literale Zeichenkonstante einfügen (nur ein Formatbezeichner)
- Ein vorheriges printf oder puts kann dem Anwender anzeigen, was einzugeben ist.
- Der Formatbezeichner %c hinterlässt im Eingabebuffer noch ein CRLF. Der Eingabebuffer kann durch ein zusätzliches getchar geleert werden.
- Nie das &-Zeichen vergessen.
- SDL Checks sind auszuschalten (Project -> Properties -> C/C++ -> General -> SDL checks ->no(/sdl-), ansonsten wird das Projekt wegen scanf nicht übersetzt.

Elektrotechnik, Medizintechni

Ingenieur-Informatik / Programmierung 2 (C): KE 2: Operatoren sowie Formatierte Ein- und Ausgabe

