This is a title

This is some text with maths:

$$\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

And this is a test canvas with an animation:

Figure 1: A rotating cube

Look in the console to see rust in action (ignore all the errors)!

There is also draggable handles:

Figure 3: Inverse distance interpolation

Proofs

Existence et unicité dans

Existence et unicité dans

Definition. (Barycentric coordinates) Like before, let $A_k|_{k\in[0, n]}\in E^{n+1}$, so that A_k-A_0 $_{k\in[1, n]}$ is a basis, and let $M\in E$. For all $i\in[1, n]$, $\lambda_i|_M$ is the n^{th} barycentric coordinate for M, so:

$$M = \sum_{k=1}^{n} \lambda_k \ M \ A_k$$

Definition. (Alternativ definition of Barycentric coordinates) Like before, let A_k $k \in [0, n] \in E^{n+1}$, so that $A_0 \overrightarrow{A_k}$ $k \in [1, n]$ is a basis of \overrightarrow{E} , and let $M \in E$. For all $i \in [0, n]$, $\lambda_i M$ is the nth barycentric coordinate for M, so:

$$\sum_{k=0}^{n} \lambda_k M \overrightarrow{MA_k} = 0$$

Let set for all $k \in [1, n]$, $b_k = A_0 \overrightarrow{A_k}$. $b_1 ... b_n \setminus b_k$ defines a hyperplane \mathcal{B}_k of \overrightarrow{E} .

We will name P_k the associated plane in E

Proposition. (Barycentric coordinates expression) Let H be the orthogonal projection of M on \mathcal{B}_k and K the orthogonal projection of A_k on \mathcal{B}_k .

$$\lambda_k | M | = \frac{\|M - H\|}{\|A_k - K\|}$$

Proposition. (Barycentric coordinates expression) Let H be the orthogonal projection of M on \mathcal{B}_k and K the orthogonal projection of A_k on \mathcal{B}_k .

$$\lambda_k \ M \ = \frac{\|\overrightarrow{HM}\|}{\|\overrightarrow{KA_k}\|}$$

Proof — Click to expand

Proof with vectors —