Dynamic Programming

Longest Common Subsequences

Subsequences

Suppose you have a sequence

$$X = \langle x_1, x_2, ..., x_m \rangle$$

of elements over a finite set S.

A sequence $Z = \langle z_1, z_2, ..., z_k \rangle$ over S is called a subsequence of X if and only if it can be obtained from X by deleting elements.

Common Subsequences

Suppose that X and Y are two sequences over a set S.

We say that Z is a common subsequence of X and Y if and only if

- Z is a subsequence of X
- Z is a subsequence of Y

The Longest Common Subsequence Problem

Given two sequences X and Y over a set S, the longest common subsequence problem asks to find a common subsequence of X and Y that is of maximal length.

ACTGAACTCTGTGCACT

TGACTCAGCACAAAAAC

ACTGAACTCTGTGCACT

TGACTCAGCACAAAAC

Naïve Solution

Let X be a sequence of length m, and Y a sequence of length n.

Check for every subsequence of X whether it is a subsequence of Y, and return the longest common subsequence found.

There are 2^m subsequences of X. Testing a sequences whether or not it is a subsequence of Y takes O(n) time. Thus, the naïve algorithm would take $O(n2^m)$ time.

LCS Notation

Let X and Y be sequences.

We denote by LCS(X,Y) the set of longest common subsequences of X and Y.

Optimal Substructure

```
Let X = \langle x_1, x_2, ..., x_m \rangle
and Y = \langle y_1, y_2, ..., y_n \rangle be two sequences.
Let Z = \langle z_1, z_2, ..., z_k \rangle is any LCS of X and Y.
```

- a) If $x_m = y_n$ then certainly $x_m = y_n = z_k$ and Z_{k-1} is in LCS(X_{m-1} , Y_{n-1})
- b) If $x_m \le y_n$ then $x_m \le z_k$ implies that Z is in LCS(X_{m-1} , Y)
- c) If $x_m <> y_n$ then $y_n <> z_k$ implies that Z is in LCS(X,Y_{n-1})

Overlapping Subproblems

If $x_m = y_n$ then we solve the subproblem to find an element in LCS(X_{m-1} , Y_{n-1}) and append x_m

If $x_m <> y_n$ then we solve the two subproblems of finding elements in LCS(X_{m-1} , Y) and LCS(X, Y_{n-1}) and choose the longer one.

Recursive Solution

Let X and Y be sequences.

Let c[i,j] be the length of an element in $LCS(X_i,Y_j)$.

Example

	y_{j}	В	D	C	A
x_{j}	0	0	0	0	0
A	0	10	10	† 0	Y
В	0	\1	1	1 🚣	1
С	0	h 1	1	2	2
В	0	$\sqrt{1}$	1	2	2

Start at b[m,n]. Follow the arrows. Each diagonal array gives one element of the LCS.

LCS(X,Y)

```
m \leftarrow length[X]
n \leftarrow length[Y]
for i \leftarrow 1 to m do
c[i,0] \leftarrow 0
for j \leftarrow 1 to n do
c[0,j] \leftarrow 0
```

LCS(X,Y)

```
for i \leftarrow 1 to m do
   for j ← 1 to n do

if x<sub>i</sub> = y

c[i, j]<sup>j</sup> ← c[i-1, j-1]+1

b[i, j] ← "\"
          else
                 if c[i-1, j] \ge c[i, j-1]

c[i, j] \leftarrow c[i-1, j]

b[i, j] \leftarrow ^{*} ^{"}
                 else
                          return c and b
```

Constructing an LCS

```
PRINT-LCS(b, X, i, j)
  if i = 0 or j = 0
      then return
  if b[i, j] = "\\\"
      then PRINT-LCS(b, X, i-1, j-1)
           print x_i
  elseif b[i, j] = "\uparrow"
      then PRINT-LCS(b, X, i - 1, j)
   else PRINT-LCS(b, X, i, j - 1)
```


6,6	Print x6 or y6
5,5	
5,4	
5,3	Print x5 or y3
4,2	Print x4 or y2
3,1	Print x3 or y1
- <u></u>	

then PRINT-LCS(b, X, i - 1, j)

else PRINT-LCS (b, X, i, j - 1)

	Yj	S	е	C	r	е	t
X _i		0	0	0	0	0	0
b	0	个0	↑0	↑ 0	† 0	↑0	个0
i	0	个0	↑ 0	↑ 0	† 0	† 0	个0
S	0	K 1	←1	←1	←1	←1	←1
е	0	↑ 1	K 2	←2	← 2	←2	←2
С	0	1	↑ 2	K 3	← 3	← 3	←3
t	0	1	↑ 2	↑ 3	↑ 3	↑ 3	K 4
		S	е	С			t

Problem

X: s t o n e

Y: I o n g e s t

Find the Longest Common Subsequence

Thank you!