PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS

DEPARTAMENTO DE MATEMATICA

Temporada Académica de Verano 2024

Ayudantía 2 - MAT1620

1. Determine si las siguientes sucesiones son convergentes o divergentes, en caso de ser convergentes determine su límite.

(a)
$$\left\{ \frac{(-1)^{n-2}n^2}{4+n^3} \right\}_{n=1}^{\infty}$$
.

(b)
$$\left\{ \frac{\ln(n+2)}{\ln(1+4n)} \right\}_{n=1}^{\infty}.$$

2. Demuestre que, la sucesión definida por

$$a_1=2 \qquad a_{n+1}=\frac{a_n+6}{2} \qquad para \quad n>1,$$

es convergente. Calcule su límite.

3. Una sucesión $\{a_n\}$ está dada por

$$a_1 = \sqrt{2}$$
 $a_{n+1} = \sqrt{2 + a_n}$.

- (a) Mediante inducción u otro método, demuestre que $\{a_n\}$ es creciente y que su cota superior es 3. Aplique el teorema de sucesión monótona para demostrar que $\lim_{n\to\infty} a_n$ existe.
- (b) Determine $\lim_{n\to\infty} a_n$.
- 4. Sea $S_n = \frac{n-3}{n+1}$ la n-ésima suma parcial de la serie $\sum_{n=1}^{\infty} a_n$. Determine a_n para cada $n = 1, 2, 3, \cdots$ y calcule el valor numérico de la serie $\sum_{n=1}^{\infty} a_n$.
- 5. Determine si la serie es convergente o divergente. Si es convergente, encuentre su suma.
 - (a) $\sum_{k=0}^{\infty} \left(\frac{\pi}{3}\right)^k$.
 - (b) $\sum_{n=1}^{\infty} \frac{n-1}{3n-1}$.
 - (c) $\sum_{n=1}^{\infty} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right)$.