(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-50811 (P2003-50811A)

(43)公開日 平成15年2月21日(2003.2.21)

(51) Int.Cl. ⁷		識別記号	FI			Ī	7]}*(参考)
G06F	17/30	2 2 0	G06F	17/30		220C	5B075
	12/00	5 2 0		12/00		520P	5 B 0 8 2
G11B	27/00		G11B	27/00		D	5 C O 2 2
H 0 4 N	5/225		H 0 4 N	5/225		F	5 C O 5 2
	5/76			5/76		В	5 C O 5 3
		審查請求	未請求 請求	項の数30	OL	(全 23 頁)	最終頁に続く
(21)出願番号	}	特願2001-239863(P2001-239863)	(71)出願人	0000021	185	-	
				ソニー	株式会	社	
(22)出顧日		平成13年8月7日(2001.8.7)	東京都品川区北品川6丁目7番35号			7番35号	
			(72)発明者	千 平林	光浩		
•				東京都	品川区	北岛川6丁目	7番35号 ソニ
				一株式	会社内		
			(72)発明者	有留 :	憲一郎		
				東京都	品川区	北岛川6丁目	7番35号 ソニ
				一株式	会社内		
			(74)代理人	100082	762		
				弁理士	杉浦	正知	
							最終頁に続く

(54) 【発明の名称】 記録装置、記録方法、プログラム、記録媒体および撮像装置

(57)【要約】

【課題】 記録媒体上のファイルを高速に検索またはソートすることを可能とし、また、消去の判断を高速に行うことを可能とする

【解決手段】エントリプロパティに含まれるエントリプロパティ2は、ノーマルとシステムの識別を行う。ノーマルとは、実データのエントリを意味し、システムとは、フラグの定義が記述されているエントリを意味する。フラグがファイルの属性情報を示す。フラグが機器またはユーザによって定義される。エントリプロパティ3は、エントリに関して、有効、無効の識別を行い、エントリプロパティ4は、エントリに登録されたファイルが他のファイルを参照しているかどうかを示す。リファイルが別のファイルから参照されている数を示す。リファリングファイルリストは、ファイルが別のファイルから参照されている場合、その参照元を示す。これらの情報によってファイル間の参照関係が記述できる。

開始パイト位置	データ長(バイト)	フィールド名	1	
0	4	Entry Number	\mathcal{I}	
4	1	Entry Property	ן ∖	エントリ管理情報
5	4	Folder Property	ער	
9	1	Version	⊒Λ.	
10	2	Flage]][
12	1	Data Type	٦١	
13	4	Creation Time	ו⊑	
17	4	Modification Time]∖	ファイルの耳性情報
21	4	Ourstion	$\exists I$	771700MIEIRW
25	6	Binary File Identifier	∃Ł	
31	4	Referred Counter	$\Box I$	
35	可变長(L_RF)	Referring File List	$\Box 1$	
35+L_RF	可变長(L_FI)	URL File Identifier	ער	

【特許請求の範囲】

【請求項1】 記録媒体に記録された1以上のファイルのそれぞれに係るインデックスデータを上記1以上のファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、上記インデックスファイルを記録媒体に記録するようにした記録装置であって、

1

上記インデックスデータに上記 1 以上のファイルのそれ ぞれの属性情報を収容し、

上記インデックスファイルが上記インデックスデータ以 10 外にシステム情報を有し、上記システム情報が上記属性 情報を規定するようにした記録装置。

【請求項2】 請求項1において、

上記システム情報の1単位が上記属性情報の1つの規定 を登録することを特徴とする記録装置。

【請求項3】 請求項1において、

上記システム情報の1単位が上記属性情報の複数の規定 を登録することを特徴とする記録装置。

【請求項4】 請求項1において、

上記属性情報の1または複数の規定が予め設定されてい 20 ることを特徴とする記録装置。

【請求項5】 請求項1において、

上記属性情報の1または複数の規定がユーザによって設定されることを特徴とする記録装置。

【請求項6】 請求項1において、

上記システム情報は、テキスト情報を含み、上記属性情 報に関連するテキストが記録されることを特徴とする記 録装置。

【請求項7】 請求項1において、

上記システム情報は、縮小画像情報を含み、上記属性情 30報に関連する画像が記録されることを特徴とする記録装置。

【請求項8】 記録媒体に記録された1以上のファイルのそれぞれに係るインデックスデータを上記1以上のファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、上記インデックスファイルを記録媒体に記録する記録方法であって、

上記インデックスデータに上記1以上のファイルのそれ ぞれの属性情報を収容し、

上記インデックスファイルが上記インデックスデータ以外にシステム情報を有し、上記システム情報が上記属性 情報を規定するようにした記録方法。

【請求項9】 請求項8において、

上記システム情報の1単位が上記属性情報の1つの規定 を登録することを特徴とする記録方法。

【請求項10】 請求項8において、

上記システム情報の1単位が上記属性情報の複数の規定 を登録することを特徴とする記録方法。

【請求項11】 請求項8において、

上記属性情報の1または複数の規定が予め設定されていることを特徴とする記録方法。

【請求項12】 請求項8において、

上記属性情報の1または複数の規定がユーザによって設定されることを特徴とする記録方法。

【請求項13】 請求項8において、

上記システム情報は、テキスト情報を含み、上記属性情報に関連するテキストが記録されることを特徴とする記録方法。

0 【請求項14】 請求項8において、

上記システム情報は、縮小画像情報を含み、上記属性情報に関連する画像が記録されることを特徴とする記録方法。

【請求項15】 記録媒体に記録された1以上のファイルのそれぞれに係るインデックスデータを上記1以上のファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、上記インデックスファイルを記録媒体に記録する記録方法であって、

) 上記インデックスデータに上記 1 以上のファイルのそれ ぞれの属性情報を収容し、

上記インデックスファイルが上記インデックスデータ以外にシステム情報を有し、上記システム情報が上記属性情報を規定するようにした記録方法をコンピュータに実行させるためのプログラム。

【請求項16】 記録媒体に記録された1以上のファイルのそれぞれに係るインデックスデータを上記1以上のファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、上記インデックスファイルを記録媒体に記録する記録方法であって、

上記インデックスデータに上記 1 以上のファイルのそれ ぞれの属性情報を収容し、

上記インデックスファイルが上記インデックスデータ以外にシステム情報を有し、上記システム情報が上記属性情報を規定するようにした記録方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。

【請求項17】 被写体の像を撮影し得られた画像信号 40 を記録媒体に記録する撮像装置において、

記録媒体に記録された1以上のファイルのそれぞれに係るインデックスデータを上記1以上のファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、上記インデックスファイルを記録媒体に記録するようにしたインデックス記録装置を備え、

上記インデックスデータに上記 1 以上のファイルのそれ ぞれの属性情報を収容し、

上記インデックスファイルが上記インデックスデータ以 50 外にシステム情報を有し、上記システム情報が上記属性

情報を規定するようにした撮像装置。

【請求項18】 記録媒体に記録された複数のファイルのそれぞれに係るインデックスデータを上記複数のファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、上記インデックスファイルを記録媒体に記録するようにした記録装置であって、

3

上記インデックスデータに上記複数のファイルの参照関係を示す参照関係データを収容するようにした記録装置。

【請求項19】 請求項18において、

上記参照関係データは、他のファイルから参照されてい る数を含むことを特徴とする記録装置。

【請求項20】 請求項18において、

上記参照関係データは、そのファイルを参照しているファイルを特定する情報を含むことを特徴とする記録装 置。

【請求項21】 請求項18において、

上記参照関係データは、そのファイルが他のファイルを 参照しているか否かの情報を含むことを特徴とする記録 20 装置。

【請求項22】 請求項18において、

上記参照関係データは、そのファイルが有効か無効かの 情報を含むことを特徴とする記録装置。

【請求項23】 記録媒体に記録された複数のファイルのそれぞれに係るインデックスデータを上記複数のファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、上記インデックスファイルを記録媒体に記録するようにした記録方法であって、

上記インデックスデータに上記複数のファイルの参照関係を示す参照関係データを収容するようにした記録方 法。

【請求項24】 請求項23において、

上記参照関係データは、他のファイルから参照されてい る数を含むことを特徴とする記録方法。

【請求項25】 請求項23において、

上記参照関係データは、そのファイルを参照しているファイルを特定する情報を含むことを特徴とする記録方 法。

【請求項26】 請求項23において、

上記参照関係データは、そのファイルが他のファイルを 参照しているか否かの情報を含むことを特徴とする記録 方法。

【請求項27】 請求項23において、

上記参照関係データは、そのファイルが有効か無効かの 情報を含むことを特徴とする記録方法。

【請求項28】 記録媒体に記録された複数のファイルファイルのそれぞれに係るインデックスデータを上記複数のファイルファイルの実データのそれぞれと関連付け 50

て所定の形式で収容することによってインデックスファイルを生成し、上記インデックスファイルを記録媒体に 記録する記録方法であって、

上記インデックスデータに上記複数のファイルの参照関 係を示す参照関係データを収容するようにした記録方法 をコンピュータに実行させるためのプログラム。

【請求項29】 記録媒体に記録された複数のファイルファイルのそれぞれに係るインデックスデータを上記複数のファイルファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、上記インデックスファイルを記録媒体に記録する記録方法であって、

上記インデックスデータに上記複数のファイルの参照関係を示す参照関係データを収容するようにした記録方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。

【請求項30】 被写体の像を撮影し得られた画像信号 を記録媒体に記録する撮像装置において、

記録媒体に記録された複数のファイルファイルのそれぞれに係るインデックスデータを上記複数のファイルファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、上記インデックスファイルを記録媒体に記録するようにしたインデックス記録装置を備え、

上記インデックスデータに上記複数のファイルの参照関係を示す参照関係データを収容するようにした撮像装置.

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、記録媒体に映像データやオーディオデータなどを記録する記録装置において、特に、記録媒体を区別する情報を所定の形式で記録媒体に記録する記録装置に関する。この発明は、このような記録媒体に関する。さらに、この発明は、このような記録媒体に関する。さらに、この発明は、このような記録装置を備えた電子カメラに関する。

[0002]

【従来の技術】例えば、光ディスク記録装置とビデオカメラを一体型の構成とした携帯型ビデオカメラの構成が 提案されている。かかる記録装置において、幾つかの場 面を記録した複数のデータが光ディスクにファイルとし て記録される。

【0003】また、このような記録装置に、例えば、液晶表示パネルや有機エレクトロルミネセンス表示パネルなどの表示部やスピーカなどの音発生部を備えることにより、記録したデータを再生・編集する機能も併せ持つ記録再生装置が知られている。

【0004】ユーザが記録媒体に記録されているデータ中の所望のデータ例えば画像データを検索する処理を容易とするために、記録されている複数の画像データの一

4

5

部の画像、音声等を管理情報(インデックスファイルと 称する)としてディスク状記録媒体の所定の位置例えば 最内周領域に記録することが提案されている。

【0005】インデックスファイルは、記録媒体に記録された1以上のファイルの内容を識別するための情報を纏めたファイルである。インデックスファイルには、属性情報と抜粋情報が含まれる。一例として、インデックスファイルは、例えば、プロパティ、テキスト、サムネイル、イントロの4種類のデータが収容される。プロパティは、タイトルおよび各AVファイルの属性を示すデータである。また、テキストは、各AVファイルに係るタイトルの文字列を示すデータである。サムネイルおよびイントロのデータは、ファイルの代表的な1画面および代表的な数秒程度のオーディオデータである。

[0006]

【発明が解決しようとする課題】インデックスファイルを使用している場合に、任意のファイルがどのように整理されているかを検索したり、ソートするには、インデックスファイルの全ての構造を解析する必要がある。記録媒体のアクセス速度や、演算装置の速度が高速でない場合には、検索結果またはソート結果を表示するまでの時間が長くなる問題がある。また、機器やアプリケーションに依存しない、例えば動画、静止画、オーディオなどのコンテンツの属性情報を規定することができるが、種々の用途を全て規定すると、データ量が増大すると共に、属性情報を新たに追加すると、過去の属性情報の規定を用いている機器では、新たな属性情報を判別できない問題が発生する。

【0007】また、インデックスファイルに登録されているファイルを消去する場合、他のファイルから参照されいるファイルを消去することができない。しかしながら、ファイルの参照関係を調べるためには、全ての実際のファイルを解析する必要がある。この解析のために時間がかかり、ファイルの消去動作に時間がかかる問題が生じる。

【0008】したがって、この発明の目的は、より高速の検索またはソートを可能とし、また、ファイルを消去する処理をより高速とすることが可能な記録方法および記録装置を提供することにある。また、この発明の目的は、このような記録方法をコンピュータに実行させるためのプログラムおよび該プログラムを記録したコンピュータ読み取り可能な記録媒体を提供することにある。さらに、この発明は、このような記録方法を採用する撮像装置を提供するとにある。

[0009]

【課題を解決するための手段】請求項1の発明は、記録 媒体に記録された1以上のファイルのそれぞれに係るイ ンデックスデータを1以上のファイルの実データのそれ ぞれと関連付けて所定の形式で収容することによってイ ンデックスファイルを生成し、インデックスファイルを 50

記録媒体に記録するようにした記録装置であって、インデックスデータに1以上のファイルのそれぞれの属性情報を収容し、インデックスファイルがインデックスデータ以外にシステム情報を有し、システム情報が属性情報を規定するようにした記録装置である。請求項8の発明は、インデックスデータに1以上のファイルのそれぞれの属性情報を収容し、インデックスファイルがインデックスデータ以外にシステム情報を有し、システム情報が属性情報を規定するようにした記録方法である。

6

【0010】請求項15の発明は、記録媒体に記録された1以上のファイルのそれぞれに係るインデックスデータを1以上のファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、インデックスファイルを主成し、インデックスファイルを記録媒体に記録する記録方法であって、インデックスデータに1以上のファイルのそれぞれの属性情報を収容し、インデックスファイルがインデックスデータ以外にシステム情報を有し、システム情報が属性情報を規定するようにした記録方法をコンピュータに実行させるためのプログラムである。請求項16の発明は、そのようなプログラムを記録したコンピュータ読み取り可能な記録媒体である。

【0011】請求項17の発明は、被写体の像を撮影し得られた画像信号を記録媒体に記録する撮像装置において、記録媒体に記録された1以上のファイルのそれぞれに係るインデックスデータを1以上のファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、インデックスファイルを記録媒体に記録するようにしたインデックス記録装置を備え、インデックスデータに1以上のファイルのそれぞれの属性情報を収容し、インデックスファイルがインデックスデータ以外にシステム情報を有し、システム情報が属性情報を規定するようにした撮像装置である。

【0012】請求項18の発明は、記録媒体に記録された複数のファイルのそれぞれに係るインデックスデータを複数のファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、インデックスファイルを記録媒体に記録するようにした記録装置であって、インデックスデータに複数のファイルの参照関係を示す参照関係データを収容するようにした記録装置である。請求項23の発明は、インデックスデータに複数のファイルの参照関係を示す参照関係データを収容するようにした記録方法である。

【0013】請求項28の発明は、記録媒体に記録された複数のファイルファイルのそれぞれに係るインデックスデータを複数のファイルファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、インデックスファイルを記録媒体に記録する記録方法であって、インデックスデータに複数のファイルの参照関係を示す参照関係データを

収容するようにした記録方法をコンピュータに実行させるためのプログラムである。請求項29の発明は、そのようなプログラムを記録したコンピュータ読み取り可能な記録媒体である。

【0014】請求項30の発明は、被写体の像を撮影し得られた画像信号を記録媒体に記録する撮像装置において、記録媒体に記録された複数のファイルファイルのそれぞれに係るインデックスデータを複数のファイルファイルの実データのそれぞれと関連付けて所定の形式で収容することによってインデックスファイルを生成し、インデックスファイルを記録媒体に記録するようにしたインデックス記録装置を備え、インデックスデータに複数のファイルの参照関係を示す参照関係データを収容するようにした撮像装置である。

【0015】この発明による記録装置、記録方法、プログラム、該プログラムを記録した記録媒体、および、該記録装置を備える撮像装置は、1以上のファイルのそれぞれの属性情報を規定するシステム情報をインデックスファイルが有するので、属性情報のデータ量を増大させることなく必要な属性情報を規定できる。例えば属性情報を定義する情報を持つことによって、新旧の機器が属性情報を扱うことができ、汎用性が向上できる。この発明では、ファイルの属性情報を使用することによって、高速の検索またはソートが可能となる。例えばフラグの同じビット位置に1が立っているエントリを抜き出すだけで、検索またはソートが可能となる。

【0016】この発明による記録装置、記録方法、プロ グラム、該プログラムを記録した記録媒体、および、該 記録装置を備える撮像装置では、ファイルの参照関係を 示す情報がエントリ管理情報に含まれているので、実際 30 のファイルにアクセスすることなく、ファイルの参照関 係が管理できるので、消去の可否を高速に判断すること ができ、ユーザに対する警告の提示も高速になしうる。 さらに、エントリの有効/無効の情報を持つことによっ て、ファイル消去時に対応するエントリを消去しないで 良く、記録媒体の書き換えが最小限の領域に限定でき、 高速な消去処理を行うことができる。また、この有効/ 無効の情報に基づいて、消去扱い(無効処理)のエント リを検出し、検出したエントリに追加するエントリを上 書きすることによって、エントリのデータおよびその管 40 理領域を変更する処理を不要とでき、高速のエントリ追 加処理が可能となる。

[0017]

【発明の実施の形態】以下、この発明の実施形態について図面に基づいて説明する。なお、各図において、同一の構成については、その説明を省略することがある。図1は、この発明を適用できるディジタル記録再生装置の一構成例を示すブロック図である。ディジタル記録再生装置は、ビデオ符号器11、オーディオ符号器12、ビデオ復号器13、オーディオ復号器14、ファイル生成50

器15、ファイル復号器16、メモリ17、メモリ20、メモリコントローラ18、システム制御マイコン19、エラー訂正符号/復号器21、ドライブ制御マイコン22、データ変復調器23、磁界変調ドライバ24、操作部26、サーボ回路30、スピンドルモータ31、磁界へッド32および光ピックアップ33によって構成される。記録媒体(ここでは、光磁気ディスク)40に対しては、ディジタルデータが磁界へッド32および光ピックアップ33によって磁界変調によって記録される。また、記録されたデータが光ピックアップ33によって記録媒体40から読み出される。

【0018】ビデオ信号は、ビデオ入力端子からビデオ符号器11に供給され、圧縮符号化される。オーディオ信号は、オーディオ入力端子からオーディオ符号器12に供給され、圧縮符号化される。ビデオ符号器11およびオーディオ符号器12の各出力がエレメンタリストームと呼ばれる。

【0019】本実施形態では、ディジタル記録再生装置は、カメラー体型ディジタル記録再生装置に備えられている。ビデオ信号は、ビデオカメラで撮影された画像が供給され、ビデオカメラは、光学系によって被写体の撮像光がCCD(Charge Coupled Device)などの撮像素子に供給されることによってビデオ信号を生成する。オーディオ信号は、マイクロフォンで集音された音声が供給される。

【0020】ビデオ符号器11は、例えば、圧縮符号化がMPEGの場合には、A/D変換器、フォーマット変換部、画像並替部、減算器、DCT部、量子化部、可変長符号化部、バッファメモリ、レート制御部、逆量子化部、逆DCT部、加算部、ビデオメモリ、動き補償予測部およびスイッチの各電子回路によって構成される。

【0021】ビデオ符号器11に供給されたビデオ信号は、A/D変換器でディジタル化された後に、フォーマット変換部で符号化で用いる空間解像度に変換され、画像並替部に出力される。画像並替部は、ピクチャの順序を符号化処理に適した順に並び替える。すなわち、IピクチャおよびPピクチャを先に符号化し、その後、Bピクチャを符号化するのに適した順に並び替える。

【0022】画面並替部の出力は、減算部を介してDCT部に入力され、DCT符号化が行われる。DCT部の出力は、量子化部に入力され、所定のビット数で量子化される。量子化部の出力は、可変長符号化部および逆量子化部に入力される。可変長符号化部は、出現頻度がより高いデータにより短いコードを割り当てる可変長符号、例えば、ハフマン符号で符号化され、符号化データは、メモリのバッファメモリに出力される。バッファメモリは、一定レートで符号化データをビデオ符号器の出力として出力する。また、レート制御部は、可変長符号化部で発生する符号量が可変であるため、バッファメモリを監視することによって所定のビットレートを保つよ

うに、量子化部の量子化動作を制御する。

【0023】一方、IピクチャおよびPピクチャの場合 は、動き補償予測部で参照画面として使用されるため、 量子化部から逆量子化部に入力された信号は、逆量子化 された後に逆DCT部に入力され、逆DCTが行われ る。逆DCT部の出力は、加算部で動き補償予測部の出 力と加算され、ビデオメモリに入力される。ビデオメモ リの出力は、動き補償予測部に入力される。動き補償予 測部は、前方向予測、後方向予測および両方向予測を行 い、加算部および減算部に出力する。これら逆量子化 部、逆DCT部、加算部、ビデオメモリおよび動き補償 予測部は、ローカル復号部を構成し、ビデオ復号器と同 ーのビデオ信号が復元される。

9

【0024】減算部は、画像並替部の出力と動き補償予 測部の出力との間で減算を行い、ビデオ信号とローカル 復号部で復号された復号ビデオ信号との間の予測誤差を 形成する。フレーム内符号化(Iピクチャ)の場合で は、スイッチにより、減算部は、減算処理を行わず、単 にデータが通過する。

【0025】図1に戻って説明すると、オーディオ符号 器12は、例えば、MPEG/Audioレイヤ1/レ イヤ2の場合では、サブバンド符号化部および適応量子 化ビット割り当て部などの各電子回路を備えて構成され る。オーディオ信号は、サブバンド符号化部で32帯域 のサブバンド信号に分割され、適応量子化ビット割り当 て部で心理聴覚重み付けに従って量子化され、ビットス トリームに形成された後に出力される。

【0026】なお、符号化品質を向上させるために、M PEG/Audioレイヤ3の場合では、さらに、適応 ブロック長変形離散コサイン変換部、折り返し歪み削減 バタフライ部、非線形量子化部および可変長符号化部な どが導入される。

【0027】ビデオ符号器11の出力およびオーディオ 符号器12の出力がファイル生成器15に供給される。 ファイル生成器15は、特定のハードウェア構成を使用 することなく動画、音声およびテキストなどを同期して 再生することができるコンピュータソフトウェアにより 扱うことができるファイル構造を持つように、ビデオエ レメンタリストリームおよびオーディオエレメンタリス トームのデータ構造を変換する。このようなソフトウェ アは、例えば、OuickTime (以下、適宜「QT」と略記 する。)が知られている。以下、QTを使用する場合に ついて説明する。ファイル生成器15は、符号化ビデオ データと符号化オーディオデータとを多重化する。ファ イル生成器15は、システム制御マイコン19によって 制御される。

【0028】ファイル生成器 1 5 の出力であるQuickTim eムービーファイルは、メモリコントローラ 1 8 を介し てメモリ17に順次に書き込まれる。メモリコントロー ラ18は、システム制御マイコン19から記録媒体40 50 御マイコン19の要求に応じて、サーボ回路30に信号

へのデータ書き込みが要求されると、メモリ17からOu ickTimeムービーファイルを読み出す。

【0029】ここで、QuickTimeムービー符号化の転送 レートは、記録媒体40への書き込みデータの転送レー トより低い転送レート、例えば、1/2に設定される。 よって、OuickTimeムービーファイルが連続的にメモリ 17に書き込まれるのに対し、メモリ17からのQuickT imeムービーファイルの読み出しは、メモリ17がオー バーフローまたはアンダーフローしないように、システ ム制御マイコン19によって監視されながら間欠的に行 われる。

【0030】メモリ17から読み出されたQuickTime厶 ービーファイルは、メモリコントローラ18からエラー 訂正符号/復号器21に供給される。エラー訂正符号/ 復号器21は、このQuickTimeムービーファイルを一旦 メモリ20に書き込み、インターリーブ (interleave d) およびエラー訂正符号の冗長データの生成を行う。 エラー訂正符号/復号器21は、冗長データが付加され たデータをメモリ20から読み出し、これをデータ変復 調器23に供給する。

【0031】データ変復調器23は、デジタルデータを 記録媒体40に記録する際に、再生時のクロック抽出を 容易とし、符号間干渉などの問題が生じないように、デ ータを変調する。例えば、(1,7)RLL(run leng th limited) 符号やトレリス符号などを利用することが できる。

【0032】データ変復調器23の出力は、磁界変調ド ライバ24および光ピックアップ33に供給される。磁 界変調ドライバ24は、入力信号に応じて、磁界ヘッド 32を駆動して記録媒体40に磁界を印加する。光ピッ クアップ33は、入力信号に応じて記録用のレーザビー ムを記録媒体40に照射する。磁界変調方式によって、 記録媒体40にデータが記録される。

【0033】記録媒体40は、ディスク状の記録媒体で あり、例えば、光磁気ディスク(MO、magneto-optica l disk) てある。光磁気ディスク以外に、相変化型ディ スク、磁気ディスクなどの書き換え可能なディスク状記 録媒体を使用できる。

【0034】ここで、後述するインデックスファイル は、読み出しの容易性の観点から、ディスク状の記録媒 体における実質的な最内周、例えば、リードインに続く 記録部分に記録されることが好ましい。

【0035】本実施形態では、MO、例えば、直径約4 cm、直径約5cm、直径約6.5cmまたは直径約8 c mなどの比較的小径なディスクが使用される。記録媒 体40は、モータ31によって、線速度一定(CL V)、角速度一定(САV)またはゾーンСLV(ZC LV)で回転される。

【0036】ドライブ制御マイコン22は、システム制

を出力する。サーボ回路30は、この出力に応じて、ス ピンドルモータ31および光ピックアップ33を制御す ることによって、ドライブ全体を制御する。例えば、サ ーボ回路30は、光ピックアップ33に対し、記録媒体 40の径方向の移動サーボ、トラッキングサーボおよび フォーカスサーボを行い、スピンドルモータ31の回転 を制御する。また、システム制御マイコン19には、ユ ーザが所定の指示を入力する操作部26が接続される。

【0037】再生の際には、光ピックアップ33は、再 生用の出力でレーザビームを記録媒体40に照射し、そ 10 の反射光を光ピックアップ33内の光検出器で受光する ことによって、再生信号を得る。この場合において、ド ライブ制御マイコン22は、光ピックアップ33内の光 検出器の出力信号からトラッキングエラーおよびフォー カスエラーを検出し、読み取りのレーザビームがトラッ ク上に位置し、トラック上に合焦するように、サーボ回 路30によって光ピックアップ33を制御する。さら に、ドライブ制御マイコン22は、記録媒体40上にお ける所望の位置のデータを再生するために、光ピックア ップの径方向における移動も制御する。所望の位置は、 記録時と同様にシステム制御マイコン19によって、ド ライブ制御マイコン22に信号が与えられ、決定され

【0038】光ピックアップ33の再生信号は、データ 変復調器23に供給され、復調される。復調されたデー タは、エラー訂正符号/復号器21に供給され、再生デ ータを一旦メモリ20に格納し、デインターリーブ(de interleaved) およびエラー訂正が行われる、エラー訂 正後のQuickTimeムービーファイルは、メモリコントロ ーラ18を介してメモリ17に格納される。

【0039】メモリ17に格納されたQuickTimeムービ ーファイルは、システム制御マイコン19の要求に応じ て、ファイル復号器16に出力される。システム制御マ イコン19は、ビデオ信号およびオーディオ信号を連続 再生するために、記録媒体40の再生信号がメモリ17 に格納されるデータ量と、メモリ17から読み出されて ファイル復号器 1 6 に供給されるデータ量とを監視する ことによって、メモリ17がオーバーフローまたはアン ダーフローしないようにメモリコントローラ 1 8 および ドライブ制御マイコン22を制御する。こうして、シス テム制御マイコン19は、記録媒体40から間欠的にデ ータを読み出す。

【0040】ファイル復号器16は、システム制御マイ コン19の制御下で、QuickTimeムービーファイルをビ デオエレメンタリストリームとオーディオエレメンタリ ファイルとに分離する。ビデオエレメンタリストリーム は、ビデオ復号器13に供給され、圧縮符号化の復号が 行われてビデオ出力となってビデオ出力端子から出力さ れる。オーディオエレメンタリストリームは、オーディ オ復号器14に供給され、圧縮符号化の復号が行われて 50 れる。さらに、インデックスファイルとして記録されて

オーディオ出力となってオーディオ出力端子から出力さ れる。ここで、ファイル復号器16は、ビデオエレメン タリストリームとオーディオエレメンタリストリームと が同期するように出力する。

12

【0041】ビデオ復号器13は、例えば、MPEGの 場合では、メモリのバッファメモリ、可変長符号復号 部、逆量子化部、逆DCT部、加算部、ビデオメモリ、 動き補償予測部、画面並替部およびディジタル/アナロ グ変換器(以下、「D/A」と略記する。)の各電子回 路を備えて構成される。ビデオエレメンタリストーム は、一旦バッファメモリに蓄積され、可変長復号部に入 力される。可変長復号部は、マクロブロック符号化情報 が復号され、予測モード、動きベクトル、量子化情報お よび量子化DCT係数が分離される。量子化DCT係数 は、逆量子化部でDCT係数に復元され、逆DCT部で 画素空間データに変換される。加算部は、逆量子化部の 出力と動き補償予測部の出力とを加算するが、Iピクチ ャを復号する場合には、加算しない。画面内のすべての マクロブロックが復号され、画面は、画面並替部で元の 入力順序に並べ替えられて、D/Aでアナログ信号に変 換されて出力される。また、加算器の出力は、Iピクチ ャおよびPピクチャの場合には、その後の復号処理で参 照画面として使用されるため、ビデオメモリに蓄積さ れ、動き補償予測部に出力される。

【0042】オーディオ復号器14は、例えば、MPE G/Audioレイヤ1/レイヤ2の場合では、ビット ストリーム分解部、逆量子化部およびサブバンド合成フ ィルタバンク部などの各電子回路を備えて構成される。 入力されたオーディオエレメンタリストリームは、ビッ トストリーム分解部でヘッダと補助情報と量子化サブバ ンド信号とに分離され、量子化サブバンド信号は、逆量 子化部で割り当てられたビット数で逆量子化され、サブ バンド合成フィルタバンクで合成された後に、出力され

【0043】図2は、カメラ一体型ディジタル記録再生 装置の外形を示す模式図である。カメラー体型ディジタ ル記録再生装置50は、本体51、レンズ部52、集音 マイク53および表示パネル54を備えて構成される。 図1に示すディジタル記録再生装置は、本体51内に収 められる。ビデオ信号は、レンズ部52の光学系を介し て被写体の撮像光が撮像素子に供給され、生成される。 オーディオ信号は、集音マイク53で生成される。表示 パネル 5 4 は、再生画像や操作内容に対応する表示など が行われる。表示パネル54は、液晶表示と圧電素子と を備えて構成される。ユーザは、表示部分をポインティ ングデバイス55で押圧することによって、所望の操作 を入力する。

【0044】表示パネル54は、撮影時のモニタ画像を 表示したり、記録媒体の再生画像を表示するのに使用さ いる画像情報例えばサムネイル画像(Thumbnail Pictur e)が表示パネル54に表示される。具体的には、複数のサムネイルが表示パネル54に整列して表示される。表示パネル54に一度に表示できるサムネイルの枚数は、制約されるので、表示パネル54上に表示されるスクロールキーまたは本体51に設けられているキー操作によって、サムネイルのスクロールが可能とされている。そして、サムネイルの内で所望のものポインティングデバイス55またはカーソルによって指定することによって、指定されたサムネイルに対応する画像データと10オーディオデータを扱うファイルが再生されるようになされている。

【0045】このようなカメラー体型ディジタル記録再生装置50は、記録媒体をフォーマットする際や撮影後などにファイルの抜粋情報を生成する。本実施形態では、インデックスファイルは、例えば、QuickTimeムービーファイルの形式で生成される。QuickTimeムービーファイルの形式で生成することによって、映像データやオーディオデータなどの複数の実データと、ファイルの抜粋情報とを同じ形式で記録することができ、記録再生 20装置は、すべてをQTで再生することができる。

【0046】以下、QuickTimeムービーファイルについて概説する。QTは、各種データを時間軸に沿って管理するソフトウェアであり、特殊なハードウェアを用いずに動画や音声やテキストなどを同期して再生するためのOS拡張機能である。QTは、例えば、「INSIDE MACINTOSH:QuickTime(日本語版)(アジソンウエスレス)」などに開示されている。

【0047】QTムービーリソースの基本的なデータユニットは、アトム(atom)と呼ばれ、各アトムは、その 30 データとともに、サイズおよびタイプ情報を含んでいる。また、QTでは、データの最小単位がサンプル(sample)として扱われ、サンプルの集合としてチャンク(chunk)が定義される。

【0048】図3は、QuickTimeムービーファイルの一構成例を示す図である。図4は、ビデオ・メディア情報アトムの一構成例を示す図である。図4は、図3におけるビデオ・メディア情報アトムをより詳細に示した図となっており、トラックがビデオ情報の場合について示している。

【0049】図3および図4において、QuickTimeムービーファイルは、大きく2つの部分、ムービーアトム (movie atom) 101およびムービー・データ・アトム (movie data atom) 102から構成される。ムービーアトム101は、そのファイルを再生するために必要な情報や実データを参照するために必要な情報を格納する部分である。ムービー・データ・アトム102は、ビデオデータやオーディオデータなどの実データを格納する部分である。

【0050】ムービーアトム101は、ムービー全体に 50

関する情報を収容するムービー・ヘッダ・アトム(movie header atom)111、クリッピング領域を指定するムービー・クリッピング・アトム(movie clipping atom)112、ユーザ定義データアトム113、および、1または複数のトラックアトム(track atom)114などを含む。

【0051】トラックアトム114は、ムービー内の1つのトラックごとに用意される。トラックアトム114は、トラック・ヘッダ・アトム(track header atom)131、トラック・クリッピング・アトム(track clipping atom)132、トラック・マット・アトム(track matte atom)133、エデットアトム(edit atom)134およびメディアアトム(media atom)135に、ムービー・データ・アトム102の個々のデータに関する情報を記述する。図3では、1つのビデオムービーのトラックアトム114-1が示され、他のトラックアトムは、省略されている。

【0052】メディアアトム135は、メディア・ヘッダ・アトム (media header atom) 144、メディア情報アトム (media information atom) (図3および図4では、ビデオ・メディア情報アトム145)、および、メディア・ハンドラ・リファレンス・アトム (media handler reference atom) 146に、ムービートラックのデータやメディアデータを解釈するコンポーネントを規定する情報などを記述する。

【0053】メディア・ハンドラは、メディア情報アトムの情報を使用して、メディア時間からメディアデータへのマッピングを行う。

【0054】メディア情報アトム145は、データ・ハンドラ・リファレンス・アトム (data handler referen ce atom) 161、メディア情報へッダ・アトム (media information header atom)、データ情報アトム (data information atom) 163およびサンプル・テーブル・アトム (sample table atom) 164を含む。

【0055】メディア情報ヘッダ・アトム(図4では、 ビデオ・メディア情報ヘッダ・アトム162)は、メデ ィアにかかる情報が記述される。データ・ハンドラ・リ ファレンス・アトム161は、メディアデータの取り扱 いにかかる情報が記述され、メディアデータへのアクセ ス手段を提供するデータ・ハンドラ・コンポーネントを 40 指定するための情報が含まれる。データ情報アトム16 3は、データ・リファレンス・アトム (data reference atom)を含み、データについての情報が記述される。 【0056】サンプル・テーブル・アトム164は、メ ディア時間を、サンプル位置を指すサンプル番号に変換 するために必要な情報を含む。サンプル・テーブル・ア トム164は、サンプル・サイズ・アトム(sample siz e atom) 172、時間サンプル・アトム (time-to-samp le atom) 173、同期サンプル・アトム (sync sample atom) 174、サンプル・ディスクリプション・アト

ム (sample description atom) 175、サンプル・チ ャンク・アトム (sample-to-chunk atom) 176、チャ ンク・オフセット・アトム (chunk offset atom) 17 7、および、シャドー同期アトム (shadow sync atom) 178で構成される場合である。

【0057】サンプル・サイズ・アトム172は、サン プルの大きさが記述される。時間サンプル・アトム17 3は、何秒分のデータが記録されているか?という、サ ンプルと時間軸との関係が記述される。同期サンプル・ アトム174は、同期にかかる情報が記述され、メディ ア内のキーフレームが指定される。キーフレームは、先 行するフレームに依存しない自己内包型のフレームであ る。サンプル・ディスクリプション・アトム175は、 メディア内のサンプルをデコード (decode) するために 必要な情報が保存される。メディアは、当該メディア内 で使用される圧縮タイプの種類に応じて、1つ又は複数 のサンプル・ディスクリプション・アトムを持つことが できる。

【0058】サンプル・チャンク・アトム176は、サ ンプル・ディスクリプション・アトム175内のテーブ ルを参照することで、メディア内の各サンプルに対応す るサンプル・ディスクリプションを識別する。サンプル ・チャンク・アトム176は、サンプルとチャンクとの 関係が記述され、先頭チャンク、チャンク当たりのサン プル数およびサンプル・ディスクリプションID(samp le description-ID) の情報を基に、メディア内におけ るサンプル位置が識別される。チャンク・オフセット・ アトム177は、ムービーデータ内でのチャンクの開始 ビット位置が記述され、データストリーム内の各チャン クの位置が規定される。

【0059】また、ムービー・データ・アトム102に は、図3では、例えば、所定の圧縮符号化方式によって 符号化されたオーディオデータ、および、所定の圧縮符 号化方式によって符号化された画像データがそれぞれ所 定数のサンプルから成るチャンクを単位として格納され る。なお、データは、必ずしも圧縮符号化する必要はな く、リニアデータを格納することもできる。そして、例 えば、テキストやMIDIなどを扱う場合には、ムービ ー・データ・アトム102にテキストやMIDIなどの 実データが含くまれ、これに対応して、ムービーアトム 40 101にテキストトラックやMIDIトラックなどが含 まれる。ムービーアトム101における各トラックと、 ムービー・データ・アトム102に格納されているデー タとは、対応付けられている。

【0060】このような階層構造において、QTは、ム ービー・データ・アトム102内のデータを再生する場 合に、ムービーアトム101から順次に階層を辿り、サ ンプル・テーブル・アトム164内の各アトム172~ 178を基に、サンプル・テーブルをメモリに展開し

データ間の関係を基にデータを再生する。

【0061】 OTがこのようなデータ構造であるので、 本実施形態のインデックスファイルは、ムービー・デー タ・アトムにファイルの抜粋情報の実データを収容し、 これら実データの管理情報をムービーアトムに収容す る。このインデックスファイルのムービー・データ・ア トムを以下、インデックス・データ・アトムと呼称し、 ムービーアトムをインデックス・アトムと呼称する。 【0062】ここで、インデックスファイルは、記録媒 体に記録されるファイルが扱うデータに依存するが、本 実施形態では、ファイルのデータが画像データとオーデ ィオデータである。また、このようなファイルを以下、 「AVファイル」と略記する。

【0063】このように記録媒体にAVファイルが記録 されている場合に、インデックスファイルは、例えば、 プロパティ、テキスト、サムネイル、イントロの4種類 のデータが収容される。プロパティは、各AVファイル の属性を示すデータであり、AVファイルの実データを 参照する情報も有する。インデックスファイルでは、属 性情報を収容するプロパティのみが必須ファイルであ る。テキストは、各AVファイルに係るタイトルの文字 列を示すデータである。サムネイルは、各AVファイル の代表的な1枚の画像データである。AVファイルのサ ムネイルは、ユーザが任意に付与することができるが、 例えば、当該AVファイル中の最初の1枚目の画像デー タとするように自動設定してもよい。

【0064】イントロは、各AVファイルの代表的な短 時間のオーディオデータである。AVファイルのイント 口は、ユーザが任意に付与することができるが、例え 30 ば、当該AVファイル中の最初の数秒間、例えば、5秒 間のオーディオデータとするように自動設定してもよ い。これらタイトル、サムネイルおよびイントロは、検 索の便宜などを考慮の上、必要に応じてインデックスフ ァイルに収容領域が用意される。また、プロパティのデ ータは、登録される必要があるが、タイトル、サムネイ ルおよびイントロの各収容領域が確保されていたとして も、タイトル、サムネイルおよびイントロのすべてのデ ータは、必ずしも登録される必要はない。

【0065】図5は、QuickTimeムービーファイルを用 いて作成されるインデックスファイルの一例を示す図で ある。図5において、インデックスファイルは、インデ ックス・アトム201とインデックス・データ・アトム 202とによって構成される。

【0066】インデックス・データ・アトム202に は、プロパティ、テキスト、サムネイルおよびイントロ の実データが収容される。そして、各AVファイルに係 るプロパティ、テキスト、サムネイルおよびイントロの 実データ231、232、233、234は、インデッ クス・データ・アトム202の第1番目以降の各領域で て、各データ間の関係を識別する。そして、QTは、各 50 あるエントリ#1~エントリ#n(nは2以上の整数)

にそれぞれ収容される。

【0067】インデックス・アトム201は、ムービー・ヘッダ・アトム211と、プロパティ、テキスト、サムネイルおよびイントロの実データにそれぞれ対応して、トラックアトム(プロパティ)212とトラックアトム(テキスト)213とトラックアトム(サムネイル)214とトラックアトム(イントロ)215とから構成される。なお、上述したように、トラックアトム(プロパティ)212およびプロパティの実データ231のみが必須である。

【0068】図6は、トラックアトム(プロパティ)の **一例を示す図である。図6において、トラックアトム** (プロパティ) 212は、各AVファイルに対応するプ ロパティデータに係るチャンクとして定義された、AV ファイルプロパティ#1、AVファイルプロパティ# 2、・・・、AVファイルプロパティ#nのそれぞれに ついて、データ長L_PR1、L_PR2、・・・、L_ PRn、および開始バイト位置0、L_PR1、L_PR $1+L_PR2$, · · · , $L_PR1+ \cdot \cdot \cdot + L_PR$ n-1 をそれぞれ示すテーブルの形式とされる。データ 長は、例えば、バイト単位で表示される可変長である。 【0069】なお、トラックアトム(テキスト)、トラ ックアトム (サムネイル)、トラックアトム (イント ロ)とテキストの実データ、サムネイルの実データ、イ ントロの実データのそれぞれとの関係も、上述したトラ ックアトム(プロパティ)とプロパティの実データの関 係と同様のものとされている。

【0070】図7は、プロパティの実データの一例を示す図である。プロパティの実データは、エントリ管理情報とファイル属性情報とからなる。エントリ管理情報は、エントリ自身を管理するための情報であり、エントリ番号 (entry number)、エントリプロパティ (entry property) およびフォルダプロパティ (folder property) からなる。

【0071】エントリ番号は、0から始まる番号であり、インデックスファイル内でのユニークな番号である。エントリ番号は、当該プロパティの実データが何れのエントリに収容されているかを示す。エントリ番号は、0バイト目を開始バイト位置とする4バイトのデータである。カメラー体型ディジタル記録再生装置50は、このエントリ番号を検索することによって、インデックスファイルにおいてディスクタイトルが収容されている領域を見い出すことができる。

【0072】エントリプロパティは、4バイト目を開始 バイト位置とする1バイトのデータであり、エントリの 属性、状態を示すもので、各1ビットのエントリプロパ ティ1、エントリプロパティ2、エントリプロパティ3 およびエントリプロパティ4が含まれている。

【0073】 すなわち、エントリプロパティ1は、

(0:フォルダ、1:ファイル) の識別を行い、エント 50

リプロパティ2は、(0:ノーマル、1:システム)の 識別を行う。ノーマルとは、上述したプロパティの実データのエントリを意味し、システムとは、後述するフラ グの定義が記述されているエントリを意味する。フォル ダプロパティは、5バイト目を開始バイト位置とする 4 バイトのデータであり、そのエントリが所属するフォル ダを示すものである。

【0074】エントリプロパティ3は、エントリに関して(0:有効、1:無効)の識別を行い、エントリプロパティ4は、エントリに登録されたファイルが他のファイルを参照しているかどうかを示し、(0:参照なし、1:参照あり)の識別を行う。

【0075】ファイル属性情報は、バージョン(version)、フラグ(flags)、データタイプ(data type)、製作日時(creation time)、編集日時(modification time)、デュレーション(duration)、ファイル識別子(binary file identifier)、リファードカウンタ(referred counter)、リファリングファイルリスト(referring file list)、およびURLファイルアイデンティファイア(URL file identifier)によって構成される。

【0076】バージョンは、9バイト目を開始バイト位置とする1バイトのデータであり、エントリに登録されたファイルのバージョン番号である。フラグは、10バイト目を開始バイト位置とする2バイトのデータであり、ファイルの属性を識別するためのものである。データタイプは、12バイト目を開始バイト位置とする1バイトのデータであり、当該プロパティに係るタイトルファイルまたはAVファイルにおけるデータの種類(動画、静止画、オーディオなど)を示す。

【0077】製作日時は、当該プロパティに係るタイトルファイルまたはAVファイルが製作された日時を示し、13バイト目を開始バイト位置とする4バイトのデータである。編集日時は、当該プロパティに係るタイトルファイルまたはAVファイルが修正された日時を示し、17バイト目を開始バイト位置とする4バイトのデータである。デュレーションは、当該プロパティに係るタイトルファイルまたはAVファイルが再生されるために必要とされる時間の長さを示し、21バイト目を開始バイト位置とする4バイトのデータである。ファイル識別子は、当該プロパティに係るファイルの所在を示すバイナリデータであり、25バイト目を開始バイト位置とする6バイトのデータである。

【0078】リファードカウンタは、ファイルが別のファイルから参照されている数を示し、31バイト目を開始バイト位置とする4バイトのデータである。リファリングファイルリストは、ファイルが別のファイルから参照されている場合、その参照元を示し、35バイト目を開始バイト位置とする可変長L_RFのデータである。リファリングファイルリストは、エントリ番号または実際のファイルの所在を示すIDが記述される。URLフ

rイルアイデンティファイアは、ファイルの所在を示す URL形式のデータであり、($35+L_RF$)バイト目を開始バイト位置とする可変長 L_FI のデータである。

【0079】上述したエントリ管理情報によって、図8に示すような仮想的な階層構造を持つことができる。図8Aは、#0から#8までの複数のエントリのそれぞれのプロパティ情報から抜き出されたエントリ管理情報の一例であり、図8Bは、図8Aに示すエントリ管理情報によって表される階層構造を示すものである。以下、エ10ントリ管理情報によるAVファイルの管理について説明する。

【0080】図8の例では、エントリプロパティ1およびエントリプロパティ2によって、エントリ番号の#0,#3,#4がフォルダであり、#1,#5,#6,#7がファイルであり、#2および#8がシステム情報であることが示されている。エントリ#2および#8は、階層には含まれない。また、フォルダプロパティによって、エントリ番号#1および#3の上位がエントリ番号#0のフォルダであることが示され、エントリ番号#4および#5の上位がエントリ番号#3のフォルダであることが示され、エントリ番号#6および#7の上位がエントリ番号#4のフォルダであることが示されている。したがって、これらのエントリ管理情報によって図8Bに示す階層構造が規定される。

【0081】図9Aは、インデックスファイルを示し、図9Aに示すように、システム情報であるエントリ#2および#8は、他のノーマルのエントリと同様に、プロパティ、テキスト、サムネイルのデータによって構成されている。イントロは、必須ではないので、図9Bでは、イントロのデータをシステム情報のエントリ#2および#8が持っていない。そして、他のノーマルのエントリと同様に、システムのエントリは、インデックス・アトム201のトラックアトム(プロパティ)212、トラックアトム(テキスト)213、トラックアトム(サムネイル)214によって管理される。図9Bは、エントリの#0から#8までのプロパティ情報の一部を抜き取って示すもので、図8Aと同一のものである。

【0082】図10は、システムの情報であるエントリ#2において、フラグの情報を保持する例を示す。フラグは、2バイト(16ビット)であり、1がセットされているビット位置に応じてフラグの意味が規定されている。したがって、最大で16種類の属性をフラグによって定義することができる。定義できる最大数は、適宜制限することができる。図10の例では、フラグの第1バイトの先頭(MSB)から4番目のビットが1とされている。フラグの値は、0×1000(0×は16進数を表す表記である)である。この場合では、テキストのデータが"BASEBALL"とされ、サムネイルのデータが野球と関連したサムネイル(アイコン)とされる。

【0083】図11は、システムの情報であるエントリ#8において、フラグの情報を保持する例を示す。図11の例では、第1バイトのMSBから8番目のビットが1とされている。フラグの値は、0×0100である。この場合では、テキストのデータが"SKI"とされ、サムネイルのデータがスキーと関連したサムネイル(アイコン)とされる。

【0084】図10および図11に示す例は、1つのエントリによって、フラグの1ビットの意味を定義するものである。図12に示すように、1つのエントリ例えば#2によって、複数例えば2ビットのフラグの意味を定義するようにしても良い。例えば第1バイトのMSBから4番目および8番目のビットがそれぞれ1にセットされている。フラグの値は、0×1100である。この場合では、テキストデータが"BASEBALL"および"SKI"とされ、野球に関連したサムネイル(アイコン)とスキーと関連したサムネイル(アイコン)との2枚のサムネイルのデータが記録される。

【0085】このように、1つのエントリにおいてフラグの複数ビットを定義する場合、フラグとテキストとサムネイルとの対応関係が予め決められている。例えばフラグのMSB側のビットから順番にテキストおよびサムネイルのそれぞれを並べるようになされる。テキストの場合は、任意の文字数で区切り、各区切りに順にテキスト情報が記録される。または、HTML(Hyper Text Markup Language)のような記述言語を使用してタグを埋め込むことによって、複数のテキストを区別しても良い。サムネイルも実際に格納するサムネイルのどの画素がひとつの絵を構成し、どの場所にある絵から対応させるのかというルールを設けたり、画素の位置情報を、テキストのタグを用いて格納したり、サムネイルのコメント情報に格納することでも対応できる。

【0086】図13は、エントリ#2によってフラグの2ビットの意味を定義する場合のファイルの整理の方法を示すものである。図13Aは、エントリ#0から#7までのエントリ管理情報およびフラグを示している。このエントリ管理情報(エントリ番号、エントリプロパティ1、エントリプロパティ2、フォルダプロパティ)は、図8または図9におけるエントリ#0から#7までの情報と同一である。また、エントリ#2は、システム情報であり、フラグが0x1100とされ、図12を参照して説明したように、二つのフラグの定義の情報を保持している。

【0087】ファイルであるエントリ#1のフラグは、0であり、このファイル#1の属性が規定されていない。エントリ#5のファイルの属性がフラグ 0×100 0によって、"BASEBALL"と規定されている。エントリ#6および#7のフラグが共に 0×0100 とされている。このフラグは、属性が"SKI"であるこ

【0088】上述した図13Aに示すエントリ管理情報 とフラグによって、図13Bに示す階層構造が規定され る。フラグによってファイルの属性情報を規定すること ができる。したがって、インデックスファイルが記録さ れた記録媒体例えば光ディスクを再生する場合に、フラ グで規定されるファイル属性を指定することによって、 インデックスファイルの中で指定された属性のもののみ を例えば表示することができる。さらに、表示されてい るインデックスファイルの中で所望のものを指定するこ とによって、指定されたインデックスファイルに対応す るAVファイルを指定することができる。したがって、 ユーザが希望するAVファイルを高速に検索することが できる。さらに、システム情報によってフラグの定義を 記述するので、必要な範囲の定義を行なえば良く、デー タ量が増えない利点がある。また、記録媒体毎にフラグ の定義が異なっていても良く、汎用性に優れている利点 がある。

【0089】なお、予め機器がフラグを定義するシステム情報を持つ方法、並びにユーザ自身がフラグの定義を設定する方法の何れも採用することができる。例えば一実施形態では、フラグとして2バイト用意されているので、1バイトを機器例えば光ディスク記録再生装置を備えた撮像装置によって定義されるフラグに割り当て、他の1バイトをユーザが定義できるフラグに割り当てるようにしても良い。

【0090】次に、エントリ管理情報とファイルの属性 情報の一部を用いて、エントリの参照関係を示す方法に ついて説明する。図14Aは、エントリ#0からエント リ#7までのエントリの参照関係を示すのに必要なプロ パティ情報の一例を示す。エントリプロパティ(1バイ ト)の中には、エントリプロパティ1からエントリプロ パティ4までが規定される。エントリプロパティ1がフ ァイルとフォルダの識別に使用され、エントリプロパテ ィ2がノーマル情報とシステム情報との識別に使用され る。フォルダプロパティは、上位のフォルダを示してい る。これらのエントリプロパティ1および2およびフォ ルダプロパティは、上述したものと同様のものである。 【0091】エントリプロパティ3は、エントリに関し て(0:有効、1:無効)の識別を行い、エントリプロ パティ4は、エントリに登録されたファイルが他のファ イルを参照しているかどうかを示し、(0:参照なし、 1:参照あり)の識別を行う。リファードカウンタは、 ファイルが別のファイルから参照されている数を示し、 リファリングファイルリストは、ファイルが別のファイ ルから参照されている場合、その参照元を示す。

【0092】図14Aの例では、全てのエントリが有効であり、エントリプロパティ3が全て0とされ、エントリ#5および#6に登録されたファイルが他のファイルを参照しているので、エントリ#5および#6のエントリプロパティ4が1とされている。また、エントリ#1 50

のリファードカウンタが2とされ、二つのファイルから 参照されている。参照元の二つのファイルは、リファリ ングファイルリストに示されているエントリ#5および #6にそれぞれ登録されているファイルである。

【0093】エントリ#1に登録されているAVファイルをAVファイルAとし、エントリ#5,#6,#7にそれぞれ登録されているAVファイルをAVファイルB,C,Dとする。図14Aに示すプロパティの情報と、図14Bに示すようなファイル同士の参照関係とが対応している。すなわち、エントリ#5,#6にそれぞれ登録されファイルC,Dがエントリ#1に登録されたファイルAを参照しているので、エントリ#5,#6のエントリプロパティ4がそれぞれ1となり、エントリ#1のリファードカウンタが2となり、エントリ#1のリファリングファイルリストが5,6になっている。

【0094】記録媒体上に記録されているAVファイルの中で、あるAVファイルを削除しようとした場合、他のAVファイルから参照されているAVファイルを削除することができない。このことは、ファイルの属性情報中のリファードカウンタの値が0か、それ以外かで判定できる。図14の例では、AVファイルAのリファードカウンタの値が2であり、このファイルAを削除することができないことが分かる。

【0095】AVファイルを削除した場合に、対応するエントリをどのように処理するかは、二通りの方法が可能である。1つの方法は、図15に示すように、例えばAVファイルCを削除した場合に、対応するエントリ#6を実際に削除する方法である。他の方法は、図16に示すように、エントリ#6を削除しないで、エントリ#6のエントリプロパティ3の値を無効を意味する値

(1) に変更する方法である。何れの方法を使用しても 良い。

【0096】AVファイルの削除に伴ってエントリを実際に削除する方法は、記録媒体の容量の面で、エントリを削除しない方法に比して有利である。処理時間の点から見ると、エントリを実際に削除する方法は、エントリの実データのみならず、トラックアトムを書き換える必要があるので、エントリを削除しない方法に比して不利である。

0 【0097】図17を参照してファイル削除処理について説明する。この処理は、例えば図2参照して説明したカメラー体型ディジタル記録再生装置において、そのシステムコントローラ(マイクロコンピュータ)の制御によってなされる。最初のステップS1において、ファイルー覧表示において、ファイル(AVファイル)xの削除が選択される。例えば表示パネル(図2参照)上に表示されているファイルの一覧、画面を分割して表示される複数のサムネイル等から削除したいファイルxを選択する。

50 【0098】ステップS2では、インデックスファイル

中でファイルxが登録されているエントリのリファード カウンタの値が0か否かが判定される。0でない場合 は、他のファイルがファイルxを参照していることを意 味するので、ファイルxが削除できないので、例外処理 がなされる(ステップS3)。例えばユーザに対して、 削除できない旨のメッセージを表示する。

23

【0099】ステップS2でリファードカウンタの値が 0と判定されると、ステップ S 4 では、エントリプロパ ティ4の値が1か否かが判定される。すなわち、ファイ ·ルxが他のファイルを参照しているか否かが決定され る。エントリプロパティ4=1の場合では、ステップS 5において、リファリングファイルリストがファイル x のエントリ番号(ファイルxのIDの場合もある)であ るエントリ、すなわち、ファイルxによって参照されて いるエントリを探す。

【0100】ステップS6では、そのようなエントリの 有無が決定される。エントリが無いと判定される場合で は、ステップS7において、例外処理がなされる。例え ばデータの不整合がある旨のメッセージがユーザに提示 される。ステップS4において、エントリプロパティ4 が1であったので、本来は、ファイルxが参照している エントリが存在するはずである。にもかかわらず、その ようなエントリが無いことは、データの不整合が存在し ていることを意味する。

【0101】ステップS6においてファイルxによって 参照されているエントリがあると判定されると、ステッ プS8では、そのエントリのリファードカウンタの値が デクリメントされる。そして、ステップS9において、 リファリングファイルリストからファイル x のエントリ 番号(ファイルxのIDの場合もある)が削除される。 【0102】次に、ステップS10において、ファイル xのエントリを削除するか否かが判定される。図17の 処理では、AVファイルxを削除する場合に、インデッ クスファイル中の対応するエントリを実際に削除するか 否かを選択することが可能とされている。例えば記録媒 体の残りの空き容量の多寡から処理を選択するようにな される。残りの空き容量が多い場合では、エントリを削 除しない方法が選択され、残りの空き容量が少ない場合 では、エントリを実際に削除する方法が選択される。

【0103】ステップS10において、ファイルxに対 40 応するエントリを削除する処理が選択されると、図15 に示すように、ステップS11において、インデックス ・データ・アトムから対応するエントリが削除され、ス テップS12において、削除したエントリ以降のデータ が移動され、空いた論理空間が埋められる。そして、ス テップS 1 3 において、インデックスアトムにおいて、 管理ファイルのデータが更新される。若し、ステップS 10において、ファイルxに対応するエントリを削除し ないと決定した場合では、ステップS15において、そ のエントリのエントリプロパティ3の値を1(無効エン 50 場合、そのインデックスファイル全体の範囲に関して属

トリを意味する)に更新する。

【0104】ステップS13またはS15までの処理 は、システム例えばカメラー体型ディジタル記録再生装 置のシステムコントローラに備えられた半導体メモリ上 でのデータの書き換え処理である。そして、記録媒体を イジェクトする直前、一定時間毎等の適切なタイミング でもって、記録媒体のデータが更新される(ステップS 14)。すなわち、記録媒体上のAVファイルxの削 除、並びに記録媒体上のインデックスファイルの更新が 10 行なわれる。

24

【0105】次に、ファイルの削除後に、新規にエント リを追加する処理について図18を参照して説明する。 ステップS21では、ファイルXの追加処理が開始され る。ステップS22において、エントリプロパティ3に よって無効と示されているエントリが探される。ここで は、エントリプロパティ3の値が1のエントリが無効と 規定されている。

【0106】無効のエントリがあるとステップS22に おいて決定されると、ステップS23において、無効エ ントリの領域に新たなエントリが上書きされる。図19 は、例えばエントリ#6が無効エントリの場合の処理を 示している。インデックスファイル中の管理データであ るインデックスアトムを書き換えることは不要である。 【0107】一方、ステップS22において、無効エン トリが無いと決定されると、ステップS25において、 インデックスファイルの任意の場所に新規のエントリ情 報が追加される。ステップS26では、インデックスア トムのトラック毎の管理情報が追加されたエントリを規 定するように更新される。図20は、エントリ#nとし て新規のエントリを追加する処理を示している。

【0108】ステップS23またはS26までの処理 は、システム例えばカメラ一体型ディジタル記録再生装 置のシステムコントローラに備えられた半導体メモリ上 でのデータの書き換え処理である。そして、記録媒体を イジェクトする直前、一定時間毎等の適切なタイミング でもって、記録媒体のデータが更新される(ステップS 24)。

【0109】このように、プロパティ情報がファイルの 参照関係の情報を持っているので、実際のファイルにア クセスしないで、参照関係を管理することができ、消去 の可否を高速に判断することができる。

【0110】この発明は、上述したこの発明の一実施形 態等に限定されるものでは無く、この発明の要旨を逸脱 しない範囲内で様々な変形や応用が可能である。例えば この発明は、ディジタルオーディオ信号を記録再生する 場合に対しても適用できる。例えばフラグによってAV ファイル (楽曲データ) のジャンル (クラシック、ジャ ズ、ロック、ポピュラー等)を識別するようにしても良 い。また、フラグに記述されている属性情報を定義する 性情報を定義したり、インデックスファイルの一部の所定の範囲で属性情報を定義するようにしても良い。さらに、上述した説明では、QuickTimeを使用する例について述べたが、他のアプリケーションソフトウェアを使用する場合にこの発明を適用しても良い。

[0111]

【発明の効果】この発明に係る記録装置、記録方法、プログラム、該プログラムを記録した記録媒体、および、該記録装置を備える電子カメラは、インデックスファイルの中のプロパティ情報の一部に属性情報(フラグ)を 10 定義する情報を保持することができる。それによって、属性情報のデータ量を増大させることなく必要な属性情報を規定できる。例えば機器の種類を考慮して、機器毎に属性情報を規定できる。また、属性情報を定義する情報を持つことによって、新旧の機器が属性情報を扱うことができ、汎用性が向上できる。

【0112】この発明では、ファイルの属性情報を使用することによって、高速の検索またはソートが可能となる。例えばフラグの同じビット位置に1が立っているエントリを抜き出すだけで、検索またはソートが可能とな 20る。

【0113】この発明では、ファイルの参照関係を示す情報がエントリ管理情報に含まれているので、実際のファイルにアクセスすることなく、ファイルの参照関係が管理できるので、消去の可否を高速に判断することができ、ユーザに対する警告の提示も高速になしうる。さらに、エントリの有効/無効の情報を持つことによって、ファイル消去時に対応するエントリを消去しないで良く、記録媒体の書き換えが最小限の領域に限定でき、高速な消去処理を行うことができる。また、この有効/無30効の情報に基づいて、消去扱い(無効処理)のエントリを検出し、検出したエントリに追加するエントリを上書きすることによって、エントリのデータおよびその管理領域を変更する処理を不要とでき、高速のエントリ追加処理が可能となる。

【図面の簡単な説明】

【図1】この発明を適用できるディジタル記録再生装置の一構成例を示すブロック図である。

【図2】この発明を適用できるカメラー体型ディジタル 記録再生装置の外形を示す略線図である。

【図3】QuickTimeムービーファイルの一構成例を示す 略線図である。

【図4】ビデオ・メディア情報アトムの一構成例を示す 略線図である。

【図5】QuickTimeムービーファイルを用いて作成されるインデックスファイルの一例を示す略線図である。

【図6】トラックアトム(プロパティ)の一例を示す略

線図である。

【図7】プロパティの実データの一例を示す略線図である。

【図8】プロパティ情報の一部とファイルおよびフォル ダの階層構造の具体例を示す略線図である。

【図9】インデックスファイルの構成とプロパティ情報の一部の具体例を示す略線図である。

【図10】エントリ#2によって1つのフラグの内容を登録する一例を示す略線図である。

【図11】エントリ#8によって1つのフラグの内容を登録する他の例を示す略線図である。

【図12】エントリ#2によって2つのフラグの内容を登録する一例を示す略線図である。

【図13】フラグを含むプロパティ情報の一部とファイルおよびフォルダの階層構造の具体例を示す略線図である。

【図14】ファイルの参照関係を示すプロパティ情報の 説明に用いる略線図である。

【図15】ファイルの削除時のプロパティ情報の処理の 一例の説明に用いる略線図である。

【図16】ファイルの削除時のプロパティ情報の処理の他の例の説明に用いる略線図である。

【図17】ファイルの削除時のプロパティ情報の処理の 説明に用いるフローチャートである。

【図18】ファイルのエントリ追加時の処理の説明に用いるフローチャートである。

【図19】ファイルのエントリ追加時の処理の一例の説明に用いる略線図である。

【図20】ファイルのエントリ追加時の処理の他の例の説明に用いる略線図である。

【符号の説明】

11・・・ビデオ符号器、12・・・オーディオ符号 器、13・・・ビデオ復号器、14・・・オーディオ復 号器、15・・・ファイル生成器、16・・・ファイル 復号器、17、20・・・メモリ、18・・・メモリコ ントローラ、19・・・システム制御マイコン、21・ ・・エラー訂正符号/復号器、23・・・データ変復調 器、24・・・磁界変調ドライバ、26・・・操作部、 30・・・サーボ回路、31・・・モータ、32・・・ 磁界ヘッド、33・・・光ピックアップ、40・・・記 録媒体 、50・・・カメラー体型ディジタル記録再生 装置、51・・・本体、52・・・レンズ部、53・・ 集音マイク、54・・・表示パネル、55・・・ポイ ンティングデバイス、201・・・インデックス・アト ム、202・・・インデックス・データ・アトム、23 1・・・プロパティ、232・・・テキスト、233・ ・・サムネイル、234・・・イントロ

[図1] F.于.才 出力 _{የጉ}ች ኢታ オーディオ 復号器 ビデオ 復号器 ビデオ 符号器 77/JJ 復号器 システム制御マイコン もいまし 操作部 15-訂正 符号/復号器 ドライン・型谷マイン・マイン 22 データ変復調器 ずる。 - 31 光ピックアップ 32 磁界ヘッド 磁界変調 ドライバ 40 記録媒体

【図2】

【図6】

開始パイト位置	データ長	フィールド名		
0	L_PR1	AVファイルプロパティ#1		
L_PR1	L_PR2	AVファイルブロバティ#2		
L_PR1+L_PR2	L_PR3	AVファイルプロパティ#3		
L_PR1+L_PRn=1	L_PRn	AVファイルブロパティ#n		

【図3】

【図10】

Property	Text	Thumbnail		
Entry	Entry	Entry		
Entry Number = 2 Entry Property2 = 1 (System) Flage = 0001 0000 0000 0000	"BASEBALL" —			

【図11】

Property	Text	Thumbnail
Entry	Entry	Entry
Entry Number = 8 Entry Proporty2 = 1 (System) Flags = 0000 0001 0000 0000	*SKI*	-

【図4】

【図5】

【図7】

フィールド名 開始パイト位置 データ長(パイト) Entry Number 4 エントリ管理情報 Entry Property 1 4 Folder Property 5 4 Version 1 10 2 Flags Data Type 1 12 Creation Time 4 13 Modification Time 4 17 ファイルの属性情報 Duration 4 Binary File Identifier 6 25 Referred Countar 31 可变長(L_RF) Referring File List 35 可变長(L_FI) URL File Identifier 35+L_RF

【図12】

Property	Text	Thumbnail
Entry	Entry	Entry
Entry Number = 2 Entry Property2 = 1 (Systam) Flags = 0001 0001 0000 0000	"BASEBALL"	

【図9】 インデックスアトム. "moov" Property Trak Α Thumbnail Picture Trak Intro Music Trak インデックス・データ・アトム、"mdat 201 T Thumbnei P 202 Entry Entry Entry Entry Entry Entry Entry #1 #2 #3 #4 #5 #6 #7 #8 Entry #0 3 4 5 6 0 1 2 Entry Number × 1 1 1 D 0 Entry Property 1 0: Folder 1: File 0 1 × 1 0 0 0 1 0 0 В Entry Property2 0:Normal 1:System 0 0 4 4 3 × 0 3 0 Folder Property

【図16】

【図17】

【図19】

【図20】

フロントページの続き

(51) Int. Cl. ⁷		識別記号	FI		テーマコード(参考)
H O 4 N	5/765	<i></i>	H O 4 N	5/781	510C 5D110
	5/781				5 1 0 L
	5/91			5/91	L
	3, 31				Z

(72)発明者 石坂 敏弥

東京都品川区北品川6丁目7番35号 ソニー株式会社内

Fターム(参考) 5B075 ND12 NK06 NK13 NK44 NR02

NR15 UU40

5B082 EA05

5C022 AC03 AC06 AC13 AC32 AC42

AC54 AC69 AC71 AC72

5C052 AA03 AB04 AB05 AC08 CC06

CC11 CC12 DD04 EE03

5C053 FA06 FA23 GA11 GB06 GB11

GB15 GB38 HA29 JA01 JA16

JA21 KA04 KA24 KA26 LA01

LA06

5D110 AA17 AA26 AA28 DA02 DA04

DBO2 DEO1