Лабораторная работа № 4

Линейный *RC*-усилитель

Подготовка к работе

2. Расчет параметров усилителя.

Исходные данные.

Вариант № .

Вариант соответствует номеру под которым фамилия студента была записана в учебном журнале в начале семестра.

$$R_{\Gamma}$$
= , C_{p1} = , C_{BX} = , C_{p2} = , R_{H} = , C_{H} =

 $t_{\text{H BX}} =$, $K_{\text{U XX}} = 10$, $R_{\text{BX}} = 20$ kOm, $R_{\text{BbIX}} = 20$ kOm, $\tau_{\text{y}} = 1.6$ MKC.

Расчетные формулы и определение параметров

Внести результаты расчета в итоговую таблицу рабочего задания.

Параметр	K_{u0}	$f_{\scriptscriptstyle m H}$	$f_{\scriptscriptstyle m B},$	$t_{ m y}$	δи
Единицы					
измерения					

3. Алгоритмы для экспериментального определения сопротивлений каскада.

Входного сопротивления $R_{\scriptscriptstyle \mathrm{BX}}$	Выходного сопротивления $R_{\text{вых}}$
1.	1.