Biostatistics 208 Data Exploration

Dave Glidden
Professor of Biostatistics
Univ. of California. San Francisco

January 8, 2008 http://www.biostat.ucsf.edu/biostat208

Organization

- Office hours by appointment (CBL 5724)
- E-mail me to make an appointment or get questions answered quickly: dave@biostat.ucsf.edu
- Download lecture slides, labs, data from http://www.biostat.ucsf.edu/biostat208

Textbook

Lectures

- Descriptive Statistics (Glidden)3 lectures
- Linear Regression (Vittinghoff)4 lectures
- Logistic Regression (Shiboski)4 lectures

Computer labs

- Thursdays in CBL 6704
- Two sections: 10:30-11:30, 11:30-12:30 by assignment
- Need a laptop or terminal server account
- Labs show how to use STATA to implement methods discussed in class
- We supply the data and commands, plus an interpretive handout at the end of the lab

Homework

- Counts for 70% of the grade
- Five total homework assignments missing one can making passing difficult
- Your responsibility to meet deadlines if out of town, make arrangements
- Handed back quickly. Late not accepted.

Class Philosophy

- Emphasis: Practical not theoretical
- Outlook: pragmatic not dogmatic
- Applied statistics is an art
- Often no single correct method
- Computing is a valuable tool not going to 'teach' Stata per se

Multiple Predictor Regression

- Assess the relationship between an outcome and multiple predictors
- Powerful tool for:
 - understanding complex relationships
 - controlling confounding
 - prediction / risk stratification
- Regression models differ by outcome type, but all have much in common

Name the data type

- Blood pressure
- Likert scale
- Presence or absence of disease
- Number of hospitalizations
- Age (in years)
- Genotype (wild type, heterozygote, homozygous mutant)

More on Data Type

- Data type implies plausible probability distn
- Different data summaries the sample mean not always interpretable
- Distinctions between different types can be flexible

Model depends on outcome type

- Continuous -- linear or gamma model
- Discrete (counts)- Poisson/negative binomial
- Binary -- logistic, relative risk models, survival models when follow-up varies
- All easily implemented in Stata

Data Exploration

- Find data errors
- Assess missingness
- Detect anomalous observations and outlying data values
- Select appropriate analysis methods
- Support a formal data analysis

Data example

- Western Collaborative Group Study
- Large early observational study (n=3154)
- Association between "type A" behavior and coronary heart disease (CHD)
- Example variable: systolic blood pressure

Descriptive Output

summarize sbp, detail

systolic BP

	Percentiles	Smallest		
1%	104	98		
5%	110	100		
10%	112	100	0bs	3154
25%	120	100	Sum of Wgt.	3154
50%	126		Mean	128.6328
		Largest	Std. Dev.	15.11773
75%	136	210		
90%	148	210	Variance	228.5458
95%	156	212	Skewness	1.204397
99%	176	230	Kurtosis	5.792465

Descriptive Output

summarize sbp, detail

Summary statistics

- Mean and standard deviation capture 'location' and 'spread', but are sensitive to skewness, outliers
- More robust five-number summary:
 - I. minimum
 - 2. 25th percentile (lower quartile)
 - 3. 50th percentile (median)
 - 4. 75th percentile (upper quartile)
 - 5. maximum

Cholesterol data w/ outlier

	mean	SD	min	25%	50%	75%	max
with outlier	241	88	170	198	229	237	645
omit outlier	224	27	170	198	228	235	294

Graphical data summaries

- Can effectively communicate the distribution
- Methods have different strengths:
 - Histogram: captures location, spread, shape of the distribution; "density" plot as a smoothed histogram
 - Boxplot: gives 5-number summary, shows outliers, skewness
 - Normal Q-Q plot: assesses Normality

Histogram

- Shows location, spread, and shape of the distribution
- Horizontal axis: intervals or "bins" in which data values are grouped
- Vertical axis: number, fraction, or percent of the observations in each bin

Interpreting Histograms

- Pattern of bar heights conveys shape of distribution:
 - number of modes
 - skewness
 - long or short tails
- Usefulness depends on number of bins
 - too many defeats goal of summarization
 - too few obscures shape of distribution

Stata Commands

- histogram varname to graph a histogram
- histogram varname, bin(x) histogram with x bars
- histogram varname, freq histogram with frequency not fractions

Boxplot

- Box with upper & lower hinges
- Box: 25% tile, median, 75% tile
- Length of box: interquartile range (IQR)
- Lower hinge: 25% tile minus 1.5*IQR
- Upper hinge: 75% tile plus 1.5*IQR
- Values outside hinges: outliers

Using a Boxplot

- Location: given by lines in box, median
- Spread: given by size of box, IQR
- Skewness: distance between the lines
- Outliers are clearly marked can usually tell how many and their values

Stata Command

- graph box varname to graph a boxplot
- graph box varname, over(grpvar) side-by-side boxplots based on grpvar
- group varname I varname 2, over(grpvar) side-by-side boxplots for two variables

qq Normal Plot

- Graphical approach to assessing Normality
- Horizontal axis (x axis) sorted data values
- Vertical axis (y axis)
 expected data values if data Normal
- If plot straight, data is nearly Normal
- Shape indicates nature violation, if any

Using qq Normal Plot

- Right skew: plot curved up
- Left skew: plot curved down
- Outlier: values far off line
- STATA: qnorm varname

Transforming variables

Rationale:

- Make outcome more normally distributed
- Linearize predictor effects, remove interactions, equalize outcome variance
- Much more about this later

Drawbacks:

- Untransformed variable more credible, interpretable
- Natural scale may be more meaningful: cost vs log cost

Log transformation 'pulls in the tail'

Value	Difference	log10 value	log₁₀ Difference
0.01	-	-2	-
0.1	0.09	-1	I
	0.9	0	I
10	0	I	I
100	90	2	I
1000	900	3	I

Can be used to linearize a relationship (more on this later)

Frequency Tables

- Used for categorical data loses no information
- Display raw numbers of percentages
- Can be used for continuous data discards lots of information may create relevant groups

SBP and behavioral pattern

. tab sbpcat

systolic BP I	Freq.	Percent	Cum.
<pre>< 120 mmHg 120-139 mmHg 140-159 mmHg >= 160 mmHg </pre>	767 1,694 567 126	24.32 53.71 17.98 3.99	24.32 78.03 96.01 100.00
	3,154	100.00	

. tab behpat

behavioral pattern (4 level)	1	Freq.	Percent	Cum.
A1 A2 B3 B4	Ī	264 1,325 1,216 349	8.37 42.01 38.55 11.07	8.37 50.38 88.93 100.00
Total	-+ 	3.154	100.00	

Summary

- Types of Data: Numerical v. Categorical Categorical: ordered or not Numerical: discrete v. continuous
- Numerical: mean, SD, 5 numbers
- Numerical: histogram, boxplot, qq normal
- Categorical: Tables
- Transformations: potentially useful

Available on Website

- Syllabus, due dates, note about 209 project
- Lecture slides
- WCGS dataset (wcgs.dta)
- Stata commands to make graphs (lecture 1.do)
- Instructions and data for Thursday's lab
- http://www.biostat.ucsf.edu/biostat208