FCT/Unesp – Presidente Prudente Departamento de Matemática e Computação

Fundamentos sobre Dados Parte 2

Prof. Danilo Medeiros Eler danilo.eler@unesp.br

Sumário

- Tipos de Dados
- Estrutura dentro e entre instâncias
- Processamento dos dados

- Conjuntos de dados possuem estruturas em termos do meio de representação e do tipo de relacionamento dentro e entre instâncias
- Essas estruturas podem ser divididas em
 - Escalares, Vetores e Tensores
 - Geometria e Grades
 - Outros tipos

- Um Escalar é um único número em uma instância dos dados
- Esses valores escalares (e.g., preço, idade)
 são foco da análise e visualização dos dados

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	74,6	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

- Um Escalar é um único número em uma instância dos dados
- Esses valores escalares (e.g., preço, idade)
 são foco da análise e visualização dos dados

```
1 ID, Sep_len, Sep_wid, Pet_len, Pet_wid, Class
2 0,5.1,3.5,1.4,0.2,1
3 1,4.4,3,1.3,0.2,1
4 2,6.5,2.8,4.6,1.5,2
5 3,6.4,2.9,4.3,1.3,2
6 4,6.8,2.8,4.8,1.4,2
7 5,5.5,2.4,3.8,1.1,2
8 6,6.4,3.2,5.3,2.3,3
9 7,6.3,2.7,4.9,1.8,3
```


Escalar

https://i2.wp.com/dl.dropbox.com/u/10506/blog/r/ggplot2/sepal-vs-petal-specied.png

- A composição de múltiplos valores escalares pode representar um Vetor
 - Cor
 - Tripla R, G e B
 - Posição
 - Valores para x e y
 - Número de telefone
 - Códigos de área para o país, região e número
- Cada posição de um dado vetorial pode ser explorada individualmente, mas é comum trata-lo como um todo

- A composição de múltiplos valores escalares pode representar um Vetor
 - Cada posição de um dado vetorial pode ser explorada individualmente, mas é comum trata-lo como um todo

ID	Long	Lat	Vx	Vy	Vz
P1	50	50	10	10	10
P2	51	62	15	10	10
P3	100	200	9	9	1
P4	2	5	80	20	-10

Vetor

- Escalares e vetores são simples variantes de uma estrutura mais geral conhecida como
 Tensor
- Um tensor é especificado por seu rank e a dimensionalidade do espaço que é definido
 - Um escalar é um tensor de rank 0
 - Um vetor é um tensor de rank 1
 - Um tensor de rank 2 pode ser expresso por uma matriz

- De uma forma genérica, um tensor de rank M em um espaço D-dimensional requer D^M valores de dados
- Exemplos de tensores
 - Uma matriz de transformação
 - Uma imagem
 - Dados volumétricos
 - Dados do exame Difusion Tensor Imaging

Tensores

ID	T 1	T2	T3	T4	T5	T6	T7	T8	T9
0	10	20	10	30	30	30	10	5	-1
1	20	50	90	40	75	12	12	-50	-90
2	10	10	10	20	20	20	30	30	30
3	5	5	8	-5	8	-9	10	40	50

Tensores

ID	T1	T2	T3	T4	T5	T6	T7	T8	T9
0	10	20	10	30	30	30	10	5	-1
1	20	50	90					-50	-90
2	10	10	10	20	20	20	30		30
3	5	5	8	-5	8	-9	10	40	50

10 20 10 30 30 30 10 5 -1

- Tensor
 - Elipsoides modificadas pelos valores do tensor
 - Os valores podem modificar a forma, orientação e o tamanho

 Estruturas geométricas podem ser encontradas em conjuntos de dados, principalmente daqueles de domínios científicos e de engenharia

 A maneira mais simples de incorporar uma geometria a um conjunto é definir coordenadas para as instâncias dos dados

- Quando a geometria está implícita nos dados é assumido a existência de uma grade (grid do inglês)
 - As instâncias estão localizadas e posicionadas de forma sucessiva

 Por exemplo, a aquisição de uma imagem por meio de um tomógrafo

 Por exemplo, a leitura de dados de temperatura em uma mapa

 Nos dois exemplos pode-se utilizar uma grade para organizar os dados

 As grades podem ser irregulares e não uniformes, o que aumenta a complexidade da visualização

 As grades podem ser irregulares e não uniformes, o que aumenta a complexidade da

visualização

Exemplo de dados em uma grade

- Exemplos de dados estruturados
 - MRI (ressonância magnética)
 - Densidade (escalar), com três atributos espaciais, conectividade representada em uma grade 3D

Exemplo de dados em uma grade

volumétrica

Exemplo de dados em uma grade

volumétrica

 Exemplo de dados em uma grade volumétrica

Exemplo de dados em uma grade

volumétrica

Referências

- Ward, M., Grinstein, G. G., Keim, D. Interactive data visualization foundations, techniques, and applications. Natick, Mass., A K Peters, 2010.
 - Capítulo 2

Referências

- Aulas de visualização da wiki.icmc.usp.br
 - Prof. Dr. Fernando Paulovich (ICMC/USP)
 - Profa. Dra. Maria Cristina Ferreira de Oliveira (ICMC/USP)
 - Profa. Dra. Rosane Minghim (ICMC/USP)

