Questions 1 - 4 are multiple choice. Circle the BEST answer. (4 pts each)

- If the dimensions of A is 4 x 3, the dimensions of B is 4 x 5, and the dimensions of C is 7 x 3, then the
 dimensions of (A^TB)^TC^T is
 - a) 5 x 3
- b) 4 x 5
- (C)5×7
- d) 4 x 3
- 2. If $A^2-2A-I=0$, and the inverse of A exists, then the inverse of A is
 - a) /
- b) A + 2I
- c) A 21
- d) A
- 3. Which statement is NOT always true for matrix multiplication?
 - a) A(BC) = (AB)(C)

b) A(B+C) = AB + AC

c) AB = 0 if either A or B is 0

- (d)AB = BA
- 4. For the matrix $P = \begin{bmatrix} 3 & -2 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ one of the eigenvalues is -2. Which of the following is the corresponding eigenvector?
 - a) $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$
- b) $\begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$
- c) [3 2 -1
- (a) [2] [5] [5]

Av=2v [3-2 2] [x] = [2x]

Questions 5-12 are FREE RESPONSE. Show all your work.

Consider the following matrices

$$A = \begin{bmatrix} 1 & -3 & 4 \\ 1 & -3 & 3 \\ 2 & -2 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 8 & -6 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 8 & -6 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 6 & -21 \\ 2 & 4 & -9 \\ 5 & -7 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 5 \\ -2 \\ 3 \end{bmatrix}$$

$$D = \begin{bmatrix} 5 \\ -2 \\ 3 \end{bmatrix}$$

Find each of the following, or explain why the operation cannot be performed: [3 pts a-c, 4 pts d, e]

b.
$$2C - 6A =$$

$$= \begin{bmatrix} -630 - 66 \\ -226 - 36 \\ -2-2 - 10 \end{bmatrix}$$

c.
$$B^T + D =$$

$$\begin{bmatrix} 2 \\ 8 \\ -6 \end{bmatrix} + \begin{bmatrix} 5 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ -3 \end{bmatrix}$$

6. Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $B = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & x \\ 1 & -2 & 3 \end{bmatrix}$. If B is the inverse of A, then x is: [4 pts]
$$\begin{bmatrix} 4 & 5 & 1 \\ -2 & 0 & 2 \\ 2 & -3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & 7 & 7 & 7 & 7 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 3 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 0 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 & 0 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & -5 & 1 \\ -5 & 0 & 5 \\ -2 &$$

7. If
$$A = \begin{bmatrix} sinb & 0 \\ 0 & sinb \end{bmatrix}$$
 and $det\left(A^2 - \frac{1}{2}I\right) = 0$, then find one possible value of b. [4 pts]

8. Write the system as a 3x4 matrix, then use Gauss-Jordan elimination to solve the linear system:[4 pts]

$$x + y + z = 3$$

$$2x + 3y + 4z = 11$$

$$4x + 9y + 16z = 41$$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 7 & 9 & 16 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 7 & 9 & 16 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 9 & 1 & 9 & 16 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 9 & 1 & 9 & 16 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 9 \end{bmatrix}$$

$$A - \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 2 & 9 \end{bmatrix}$$

$$A - \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 2 & 9 \end{bmatrix}$$

$$A - \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0$$

- A credit card company classifies its customers in a given month in three groups: nonusers, light users, and heavy users. Over the course of a month 70% of nonusers remain nonusers and 20% become light users, 25% of light users become nonusers and 50% remain light users, and 10% of heavy users become nonusers and 20% become light users.
- a) Construct a transition diagram [2]

 No Non The Way Construct a transition diagram [2]
- b) Construct a transition <u>matrix</u>. Label your rows and columns using N, L, H [2]

c) Is the Markov Chain described above Regular, Absorbing, or Neither? Give evidence to support your answer.[2] Not Asborbing (no about states)

Yes regular (my exported at T will live all posses nonnes)

d) Write a system of 3 equations and 3 unknowns that could be used to solve for the equilibrium distribution, where x, y, and z are the number of users in each category, out of a population of 5000 people. YOU DO NOT NEED TO SOLVE THE SYSTEM. [2]

10. You are playing a game with a spinner which lands green 75% of the time an	d yellow 25% of the time.
You win as soon as you spin the ordered sequence of green, yellow, yellow.	The transition matrix is
given on the right.	in and the state of the state o

 Partition the matrix into canonical form, and label the submatrices Q, R, I and O.[1]

	ra 1	RT	
1	6	(II)	/

b) Compute the Fundamental Matrix N. [4]

c) Explain what entry n_{1,3} means in your fundamental matrix. [2]

Starting willing, you get to the gy state awage of 4

d) Suppose the game is structured so that it costs \$3 for every time you hit the spinner. And for a win in the game (one green and two yellows), the prize is \$10. Suppose you decide to start playing the game (at state 0), and you have \$150 in your pocket. You spin until you win the \$10, and then stop. How much money do you expect you have now?[4]

11. Matrix T has eigenvectors
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 with $\lambda = 2$ and $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ with $\lambda = -3$. Find $T \begin{bmatrix} 15 \\ 6 \end{bmatrix}$. [4]
$$\begin{bmatrix} 16 \\ 2 \end{bmatrix} = 9 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$A = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 13 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 1$$

12. Find both eigenvalues for $\begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$. You don't need to find the eigenvectors [5]

$$\frac{1}{2} \left[\frac{125}{22} \right] = 0 \quad (1-1)(2-1) - 12 = 0$$

$$\frac{2-32+2^2-12=0}{2^2-32-10=0}$$

$$\frac{(2+2)(2-5)=0}{[2-2]} \sqrt{2}$$

Question 13 is a Multiple Choice Problem. Choose the best answer. [4 pts]

13. People moving between booths at a convention can be modeled by an Absorbing Markov Chain where booths A, B, and C are transition states, and booths D and E are absorbing states. The NR matrix is shown below.
D E

$$\begin{array}{ccc}
A & [.2 & .8] \\
B & [.7 & .3] \\
C & [.4 & .6]
\end{array} = NR$$

Which of the following is true?

- a) Over the long term, 20% of the people will end up at booth D
- b) Over the long term, everyone will end up at booth E
- c) If you start at booth A, you will never visit booth B
- d) Booth E will end up with more people than booth D
- (e) If you start at booth C, you are more likely to end up at booth E than booth D.