

E-BUSINESS

PROF. MAMATA JENAMANI

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING
IIT KHARAGPUR

NPTEL

Week 9: Lecture1

DECISION SUPPORT CONCEPTS

We are going to learn

- Concepts related to decision support
- Applications

E-Business

Decision support systems

- Provide interactive ad hoc support for the decision-making processes of managers and other business professionals.
- Support nonroutine decision making
 - Example: What is impact on production schedule if December sales doubled?
- Model driven DSS,
- Data driven DSS
- Serve middle management
- Examples: product pricing, profitability forecasting, and risk analysis systems.

of a typical DSS

Analytical Models

- Optimization
- Simulation
- Decision analysis
- Static vs. dynamic models
- Deterministic Vs. Stochastic models

Statistical Models

- Descriptive statistics
- Outlier analysis
- Univariate predictive models
- Multi variate predictive models

Data mining Models

- Predictive:
 - Regression
 - Classification
 - Collaborative Filtering
- Descriptive:
 - Clustering / similarity matching
 - Association rules and variants

Text mining

- Natural Language processing
- Discover patterns

E-Business

Decision support	1970–1985	Use of data analysis to support decision making	
Executive support	1980–1990	Focus on data analysis for decisions by senior executives	
Online analytical processing (OLAP)	1990–2000	Software for analyzing multidimensional data tables	
Business intelligence	1989–2005	Tools to support data driven decisions, with emphasis on reporting	
Analytics	2005–2010	Focus on statistical and mathematical analysis for decisions	
Big data	2010-present	Focus on very large, unstructured, fast-moving data	

NPTEL ONLINE CERTIFICATION COURSES

Specific meaning

Time frame

Term

IIT KHARAGPUR

10

NPTEL

E-Business

NPTEL

Week 9: Lecture2

UNDERSTANDING THE WEB LOG

We are going to learn

- How web logs are generated
- Structure of the access log
- Pre-processing
- Session identification

http://www.highteck.net/EN/Application/Application_Layer_Functionality_and_Protocols.html

http://www.highteck.net/EN/Application/Application_Layer_Functionality_and_Protocols.html

http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol2/pcg1/

http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol2/pcg1/

http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-47/131-aggregation.html

http://seo-advisors.com/searchegnies-web-crawlers/

Collecting site navigation data

- Server Log Files
 - Access log
 - Common log format
 - Extended (Combined) log format
 - Error log

http://httpd.apache.org/docs/1.3/logs.html

What's in a typical Web server log ...

<ip_addr> - - <date><method><file><protocol><code><bytes><referrer><user_agent>

```
203.30.5.145 - - [01/Jun/1999:03:09:21 -0600] "GET /Calls/OWOM.html HTTP/1.0" 200 3942 "http://www.lycos.com/cqi-
bin/pursuit?query=advertising+psychology-&maxhits=20&cat=dir" "Mozilla/4.5 [en] (Win98; I)"
203.30.5.145 - - [01/Jun/1999:03:09:23 -0600] "GET /Calls/Images/earthani.qif HTTP/1.0" 200 10689 "http://www.acr-
news.org/Calls/OWOM.html" "Mozilla/4.5 [en] (Win98; I)"
203.30.5.145 - - [01/Jun/1999:03:09:24 -0600] "GET /Calls/Images/line.gif HTTP/1.0" 200 190 "http://www.acr-
news.org/Calls/OWOM.html" "Mozilla/4.5 [en] (Win98; I)"
203.252.234.33 - - [01/Jun/1999:03:12:31 -0600] "GET / HTTP/1.0" 200 4980 "" "Mozilla/4.06 [en] (Win95; I)"
203.252.234.33 - - [01/Jun/1999:03:12:35 -0600] "GET /Images/line.gif HTTP/1.0" 200 190 "http://www.acr-news.org/"
"Mozilla/4.06 [en] (Win95; I)"
203.252.234.33 - - [01/Jun/1999:03:12:35 -0600] "GET /Images/red.gif HTTP/1.0" 200 104 "http://www.acr-news.org/"
"Mozilla/4.06 [en] (Win95; I)"
203.252.234.33 - - [01/Jun/1999:03:12:35 -0600] "GET /Images/earthani.gif HTTP/1.0" 200 10689 "http://www.acr-
news.org/" "Mozilla/4.06 [en] (Win95; I)"
203.252.234.33 - - [01/Jun/1999:03:13:11 -0600] "GET /CP.html HTTP/1.0" 200 3218 "http://www.acr-news.org/"
"Mozilla/4.06 [en] (Win95; I)"
203.30.5.145 - - [01/Jun/1999:03:13:25 -0600] "GET /Calls/AWAC.html HTTP/1.0" 200 104 "http://www.acr-
news.org/Calls/OWOM.html" "Mozilla/4.5 [en] (Win98; I)"
```


Field	Data	Description		
Date	date	The date that the activity occurred		
Time	time	The time that the activity occurred		
Client IP address	c-ip	The IP address of the client that accessed your server		
		The name of the autheticated user who access your server, anonymous		
User Name	cs-username	users are represented by -		
Service Name	s-sitename	The Internet service and instance number that was accessed by a client		
Server Name	s-computername	The name of the server on which the log entry was generated		
Server IP Address	s-ip	The IP address of the server that accessed your server		
Server Port	s-port	The port number the client is connected to		
Method	cs-method	The action the client was trying to perform		
URI Stem	cs-uri-stem	The resource accessed		
URI Query	cs-uri-query	The query, if any, the client was trying to perform		
Protocol Status	sc-status	The status of the action, in HTTP or FTP terms		
Win32 Status	sc-win32-status	The status of the action, in terms used by Microsoft Windows		
Bytes Sent	sc-bytes	The number of bytes sent by the server		
Bytes Received	cs-bytes	The number of bytes received by the server		
Time Taken	time-taken	The duration of time, in milliseconds, that the action consumed		
Protocol Version	cs-version	The protocol (HTTP, FTP) version used by the client		
Host	cs-host	Display the content of the host header		
User Agent	cs(User Agent)	The browser used on the client		
Cookie	cs(Cookie)	The content of the cookie sent or received, if any		
		The previous site visited by the user. This site provided a link to the current		
Referrer	cs(Referrer)	site		

W3C Extended Log File Format

s = server actions c = client actions cs = client-to-server actions

sc = server-to-client actions

Extended Log: Few Important Fields with a closer look

- IP Address (ISP Provided)
 - 144.16.192.247
- User name
 - determined by HTTP authentication
- Time
- Method/URL/Protocol:
 - Method of transaction such as GET or POST
 - URL
 - Version of the HTTP Protocol used by the server

- Status
 - HTTP status code
- Size
 - Total number of bytes transferred by the server to the client
- Referrer
 - The name of the URL from which the request originated
- Agent
 - Name and version of the browser making the request

Web usage mining process

NPTEL

Week 9: Lecture3

UNDERSTANDING THE WEB LOG-II

We are going to learn

- How web logs are generated
- Structure of the access log
- Preprocessing
- Session identification

Problems using the access log

- Caching
- Dynamic Address Allocation by the ISP
- Stateless nature of the HTTP protocol
- Crawler Activity
- Tedious preprocessing and cleaning steps
 - Other Approaches for session tracking
 - Cookies
 - URL rewriting
 - Hidden form fields

Filtering Merged Access Log Files

- Filtering the entries for embedded requests
 - Image, video and audio files
 - HTML files within a frame
- Filtering robot entries
 - Not human like trials
 - Searching all the links in an HTML document
 - Requests only for the text documents
 - Analyzing user agent fields
 - Tracing popular well-behaved robots
 - Robot.txt
- Using a table of web pages
- Filtering consumes 80% of the effort in log analysis

Detecting Robots: http://ieeexplore.ieee.org/iel5/7101/19134/00884534.pdf, http://ieeexplore.ieee.org/iel5/7101/19134/00884534.pdf, http://ieeexplore.ieee.org/iel5/7101/19134/, <a href="http:

Data preparation

Pre-processing of web usage data

Data Preprocessing (1)

Data cleaning

- remove irrelevant references and fields in server logs
- remove references due to spider navigation
- remove erroneous references
- add missing references due to caching (done after sessionization)

Data integration

- synchronize data from multiple server logs
- Integrate semantics, e.g.,
 - meta-data (e.g., content labels)
 - e-commerce and application server data
- integrate demographic / registration data

Data Preprocessing (2)

Data Transformation

- user identification
- sessionization / episode identification
- pageview identification
 - a pageview is a set of page files and associated objects that contribute to a single display in a Web Browser

Data Reduction

- sampling and dimensionality reduction (ignoring certain pageviews / items)
- Identifying User Transactions (i.e., sets or sequences of pageviews possibly with associated weights)

Why sessionize?

- Quality of the patterns discovered depends on the quality of the data on which mining is applied.
- In Web usage analysis, these data are the sessions of the site visitors: the activities performed by a user from the moment she enters the site until the moment she leaves it.
- Difficult to obtain reliable usage data due to proxy servers and anonymizers, dynamic IP addresses, missing references due to caching, and the inability of servers to distinguish among different visits.
- Cookies and embedded session IDs produce the most faithful approximation of users and their visits, but are not used in every site, and not accepted by every user.
- Therefore, *heuristics* are needed that can sessionize the available access data.

Method	Description	Privacy Concerns	Advantages	Disadvantages
IP Address + Agent	Assume each unique IP address/Agent pair is a unique user	Low	Always available. No additional technology required.	Not guaranteed to be unique. Defeated by rotating IPs.
Embedded Session Ids	Use dynamically generated pages to associate ID with every hyperlink	Low to medium	Always available. Independent of IP addresses.	Cannot capture repeat visitors. Additional overhead for dynamic pages.
Registration	User explicitly logs in to the site.	Medium	Can track individuals not just browsers	Many users won't register. Not available before registration.
Cookie	Save ID on the client machine.	Medium to high	Can track repeat visits from same browser.	Can be turned off by users.
Software Agents	Program loaded into browser and sends back usage data.	High	Accurate usage data for a single site.	Likely to be rejected by users.

Examples: page tags (use javascript), some browser plugins

Examples of "software agents"

Page tagging with Javascript: see also

http://www.bruceclay.com/analytics/disadvantages.htm

Sessionization strategies: Sessionization heuristics

These heuristics are quite accurate! (see Spiliopoulou et al., 2003)

Path Completion

- Refers to the problem of inferring missing user references due to caching.
- Effective path completion requires extensive knowledge of the link structure within the site
- Referrer information in server logs can also be used in disambiguating the inferred paths.
- Problem gets much more complicated in framebased sites.

Why integrate semantics?

Basic idea: associate each requested page with one or more domain concepts, to better understand the process of navigation / Web usage

```
### P3ee24304.dip.t-dialin.net - [19/Mar/2002:12:03:51 +0100]

"GET /search.html?l=ostsee%20strand&syn=023785&ord=asc HTTP/1.0" 200 1759

p3ee24304.dip.t-dialin.net - [19/Mar/2002:12:05:06 +0100]

"GET /search.html?l=ostsee%20strand&p=low&syn=023785&ord=desc HTTP/1.0" 200 8450

p3ee24304.dip.t-dialin.net - [19/Mar/2002:12:06:41 +0100]

"GET /mlesen.html?Item=3456&syn=023785 HTTP/1.0" 200 3478

TO ...

**Refine search**

Choose item**
```

Look at individual product

Search by

Category+title

Search by category

From URLs to topics / concepts: Basics of semantic session modelling

- − 1 request → 1 concept or n concepts
- Concepts can concern content or service
- Concepts can be part of an ontology (simple case: concept hierarchy)
- Session = set / sequence / tree / graph of requests
- → also possible: n requests → 1 concept

Resulting format: if the request is the instance

Usually flat file (format like Web server log) or database

Resulting format: If a session is the instance

- What features can a session have?
- Refer again to the example:

```
p3ee24304.dip.t-dialin.net - - [19/Mar/2002:12:03:51 +0100]
    "GET /search.html?l=ostsee%20strand&syn=023785&ord=asc HTTP/1.0" 200 1759
p3ee24304.dip.t-dialin.net - - [19/Mar/2002:12:05:06 +0100]
    "GET /search.html?l=ostsee%20strand&p=low&syn=023785&ord=desc HTTP/1.0" 200 8450
p3ee24304.dip.t-dialin.net - - [19/Mar/2002:12:06:41 +0100]
    "GET /mlesen.html?Item=3456&syn=023785 HTTP/1.0" 200 3478,
```


NPTEL

E-Business

NPTEL

Week 9: Lecture4

USING THE WEB LOG: WEB USAGE MINING

We are going to learn

- Framework for analysing the Web Log
- Types of Analysis

Web Usage and E-Business Analytics

Different Levels of Analysis

- Static Aggregation and Statistics
- Session Analysis
- OLAP
- Data Mining

Static Aggregation (Reports)

Most common form of analysis.

Data aggregated by predetermined units such as days or sessions.

Advantages:

- Gives quick overview of how a site is being used.
- Minimal disk space or processing power required.

Drawbacks:

No ability to "dig deeper" into the data.

Page	Number of	Average View Count
View	Sessions	per Session
Home Page	50,000	1.5
Catalog Ordering	500	1.1
Shopping Cart	9000	2.3

Session Analysis

Simplest form of analysis: examine individual or groups of server sessions and e-commerce data.

Advantages:

- Gain insight into typical customer behaviors.
- Trace specific problems with the site.

Drawbacks:

- LOTS of data.
- Difficult to generalize.

Online Analytical Processing (OLAP)

Allows changes to aggregation level for multiple dimensions. Generally associated with a Data Warehouse. Advantages & Drawbacks

- Very flexible
- Requires significantly more resources than static reporting.

Page	Number of	Average View Count
View	Sessions	per Session
Kid's Stuff Products	2,000	5.9
Page	Number of	Average View Count
View	Sessions	per Session
Kid's Stuff Products		
Electronics		
Educational	63	2.3
Radio-Controlled	93	2.5

Web Log Analytics

- The measurement, collection, analysis and reporting of internet data for purposes of understanding and optimizing web usage
- Tools
 - Webalizer
 - Sawmill
 - WebTrends
 - AWStats
 - WWWStat
 - Apache Logs Viewer
 - Google analytics

Level of Processing

Static Aggregation and Statistics Session Analysis

Few Definitions

- Hits
 - A request for a file from the web server. Available only in log analysis
- Page Views
 - A request for a file whose type is defined as a page
- Visits/Sessions
 - A series of requests from the same uniquely identified client with a set timeout, often 30 minutes. A visit contains one or more page views
- Click Paths
 - the sequence of hyperlinks one or more website visitors follows on a given site

Page Tagging

```
<SCRIPT LANGUAGE="JavaScript1.2"</p>
        SRC="/design/redesign/global/js/HM Loader.js"
        TYPE='text/javascript'></SCRIPT>
<script src="https://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
uacct = "UA-410306-2";
urchinTracker();
</script>
```


Analytics Settings | View Reports: cme.ucsf.edu ~ My Analytics Accounts: medschool.ucsf.edu > **⊞** Dashboard Export 🔻 🖂 Email Beta Advanced Segments: All Visits -Saved Reports Dashboard Visitors May 11, 2009 - Jun 10, 2009 -Traffic Sources Content ✓ Visits * Goals Ecommerce Custom Reporting Beta May 11, 2009 May 18, 2009 May 25, 2009 June 1, 2009 June 8, 2009 Settings Advanced Segments Beta Site Usage Email 348 Visits 78.74% Bounce Rate Help Resources 00:00:51 Avg. Time on Site 480 Pageviews (?) About this Report Conversion University 1.38 Pages/Visit 72.13% % New Visits (?) Common Questions **Visitors Overview** Map Overlay 271 Visitors

https://communicators.ucsf.edu/resources/files/web_analytics.ppt

view report

What Numbers Say

- About Navigation
- About Content
- About Users

Mining Navigation Patterns

- Each session induces a user trail through the site
- A trail is a sequence of web pages followed by a user during a session, ordered by time of access.
- A pattern in this context is a frequent trail.
- Co-occurrence of web pages is important, e.g. shopping-basket and checkout.
 - Association rule mining
 - Markov chain model.

Trails inferred from Log data (Each session results in a trail)

ID	Trail
1	A1 > A2 > A3
2	A1 > A2 > A3
3	A1 > A2 > A3 > A4
4	A5 > A2 > A4
5	A5 > A2 > A4 > A6
6	A5 > A2 > A3 > A6

Association based Approach

Association Rule Mining-The Idea

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```

Implication means co-occurrence, not causality!

Applications

- Pre-fetching and caching web pages
- Web site reorganisation
- Personalisation
- Recommendation of links and products

Applications

- Calibration of a Web server:
 - Prediction of the next page invocation over a group of concurrent Web users under certain constraints
 - Sequence mining, Markov chains
- Cross-selling of products:
 - Mapping of Web pages/objects to products
 - Discovery of associated products
 - Association rules, Sequence Mining
 - Placement of associated products on the same page

Applications

Sophisticated cross-selling and up-selling of products:

- Mapping of pages/objects to products of different price groups
- Identification of Customer Groups
 - Clustering, Classification
- Discovery of associated products of the same/different price categories
 - Association rules, Sequence Mining
- Formulation of recommendations to the end-user
 - Suggestions on associated products
 - Suggestions based on the preferences of similar users

Summary

- Web usage mining has emerged as the essential tool for realizing more personalized, user-friendly and businessoptimal Web services.
- The key is to use the user-clickstream data for many mining purposes.
- Traditionally, Web usage mining is used by e-commerce sites to organize their sites and to increase profits.
- It is now also used by search engines to improve search quality and to evaluate search results, etc, and by many other applications.

NPTEL

E-Business

NPTEL

Week 9: Lecture 5

USER BEHAVIOR MODELING FROM WEB LOG

We are going to learn

- A model of browsing behaviour
- Interpreting the model outcome

Probabilistic models of browsing behavior

- Useful to build models that describe the browsing behavior of users
- Can generate insight into how users use the website
- Provide mechanism for making predictions
- Can help in pre-fetching and personalization

Markov models for understanding user behavior

- General approach is to use a finite-state Markov chain
 - Each state can be a specific Web page or a category of Web pages
 - If only interested in the order of visits (and not in time), each new request can be modeled as a transition of states
- Issues
 - Self-transition
 - Time-independence

Discrete – Time Markov Chains

Many real-world systems contain uncertainty and evolve over time.

Stochastic processes (and Markov chains) are probability models for such systems.

A discrete-time stochastic process is a sequence of random variables X_0, X_1, X_2, \ldots typically denoted by $\{X_n\}$.

Modeling A Website

- State: A functional area in the website
 - A page or a group of pages representing the functional area
- Two dummy states
 - entry and exit
 - Customer is assumed to stay in the *entry* state before entering into the site
 - Customer is assumed to stay in the exit state.
- Customer behavior model graph
 - Static part
 - Dynamic part

Building a User Behavior Graph

- Static Part
 - Determine the set of functions provided by the ecommerce site.
 - States
 - Group of web pages
 - Determine all possible transitions between states
 - From site layout
- Dynamic Part
 - Transition probability matrix
 - Average transition time matrix

Determining transition probability matrix

Count frequency of transitions from one state to another

Calculate probability

Customer's think time

Customer's Think time

Finding average think time

 Total think time from all the visits from one state to the other/frequency of visit

Browsing Behaviour as a Markov Chain

Properties of the transition probability matrix of a CBMG

- $p_{i1} = 0$ $2 \le i \le n-1$
 - No transition can be made to the Entry state from any state other than the Exit state.
- $p_{1n} = 0$
 - No transition can be made from the Entry state to the Exit state.
- $p_{ni} = 0 \ 2 \le j \le n-1$
 - No transition can be made from the Exit state to any state other than the Entry state.
- $p_{nn} + p_{n1} = 1$
 - A transition from the Exit state to itself or to the Entry state.

End of Week 9

