Amendments to the Claims:

- (Currently amended) A process for the preparation of the α-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[4-pyridin-3-yl)pyrimidin-2-ylamino]phenyl]benzamide comprising:
 - a) carrying out an acid addition reaction using not more than 0.99 equivalents of methanesulfonic acid per I equivalent of 4-(4-methylpiperazin-I-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]benzamide, in a solvent selected from the group consisting of C₂-C₆ aliphatic alcohols and the mixtures thereof, optionally with the addition of a C₁-C₄ aliphatic alcohol;
 - b) optionally adding a solvent selected from the group consisting of C₂-C₈
 aliphatic esters esters formed from a C₁-C₄ aliphatic alcohol and formic
 acid, acetic acid, or propionic acid;
 - c) optionally inoculating the reaction mixture with the α-crystal form;
 - d) stirring the reaction mixture for the time necessary for crystallization of the α -crystal form; and
 - e) isolating the α-crystal form from the reaction mixture.
- (Original) The process according to claim 1 in which the acid addition reaction is carried out using from 0.95 to 0.99 equivalents of methanesulfonic acid per 1 equivalent of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyll benzamide.
- (Previously presented) The process according to claim 1, in which the acid
 addition reaction is carried out in an alcohol selected from the group
 consisting of n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, tert-butyl
 alcohol, and the mixtures thereof with ethyl alcohol.

Application Serial No. 10/599,461 Attv Docket No. INFA-00101-NUS

- (Previously presented) The process according to claim 1, in which the acid addition reaction is carried out in a mixture of solvents containing from 0 to 50% of ethyl alcohol and from 50 to 100% of n-propyl alcohol (v/v).
- (Previously presented) The process according to claim 1 in which the acid addition reaction is carried out in the mixture of solvents containing from 0 to 50% of ethyl alcohol and from 50 to 100% of isopropyl alcohol (v/v).
- (Previously presented) The process according to claims 1 in which the acid addition reaction is carried out in a mixture of solvents containing from 0 to 50% of ethyl alcohol and from 50 to 100% of n-butyl alcohol (v/v).
- (Previously presented) The process according to claims 1 in which the acid addition reaction is carried out in a mixture of solvents containing from 0 to 50% of ethyl alcohol and from 50 to 100% of tert-butyl alcohol (v/v).
- (Currently amended) A process for the preparation of the α-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[4-pyridin-3-yl)pyrimidin-2-ylamino]phenyl]benzamide comprising:
 - a) carrying out an acid addition reaction using 1 equivalent of methanesulfonic acid per 1 equivalent of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]benzamide in the ethyl alcohol, optionally with the addition of a C_1 - C_4 aliphatic alcohol;
 - adding a solvent selected from the group consisting of C₂-C₈-aliphatic esters esters formed from a C₁-C₄ aliphatic alcohol and formic acid, acetic acid, or propionic acid;

- inoculating the reaction mixture with the α-crystal form;
- d) stirring the reaction mixture for the time necessary for crystallization of the α -crystal form; and
- e) isolating the α-crystal form from the reaction mixture,
- (Previously presented) The process according to claim 8 wherein said C₁-C₄
 aliphatic alcohol is methyl alcohol or isopropyl alcohol, and the proportion of
 said C₁-C₄ aliphatic alcohol to other solvents present in the reaction mixture
 do not exceed 55% (v/v).
- 10. (Previously presented) The process according to claim 1 in which the acid addition reaction is carried out with stirring while maintaining the internal temperature of the reaction mixture within the range from room temperature to boiling temperature.
- 11. (Previously presented) The process according to claim 1 in which said α-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]benzamide isolated from the reaction mixture is essentially free of the β-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]benzamide and any other crystalline solids as determined by X-ray powder diffraction, IR, or DSC.
- 12. (Previously presented) The process according to claim 1 in which said α-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]benzamide isolated from the reaction mixture shows an X-ray powder diffraction pattern that is characterized by having peaks at 2θ angles of approximately: 4.9; 18.6; 19.1; 23.2 and 28.6°.

13. (Currently amended) The process according to claim 1 in which said α-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]benzamide isolated from the reaction mixture shows an X-ray powder diffraction pattern that is characterized by having peaks of relative intensity over 20% at 2θ angles of approximately: 10.5; 14.9; 16.5; 17.7; 18.1; 18.6; 19.1; 21.3; 21.6; 22.7; 23.2; 23.8; 24.9; 27.4; 28.0 and 28.6°, the relative intensity being determined with respect to the most intense peak by peak height, the peak height expressing a number of counts per second.

14-23. (Canceled).

- 24. (Previously presented) The process according to claim 2, in which the acid addition reaction is carried out in an alcohol selected from the group comprising n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, tert-butyl alcohol and the mixtures thereof with ethyl alcohol.
- (Previously presented) The process according to claim 2 in which the addition reaction is carried out in the mixture containing from 0 to 50% of ethyl alcohol and from 50 to 100% of n-propyl alcohol (v/v).
- 26. (Previously presented) The process according to claim 2 in which said α-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]benzamide isolated from the reaction mixture is essentially free of the β-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-](4-pyridin-3-yl)pyrimidin-2-

ylamino)phenyl]benzamide and any other crystalline solids as determined by X-ray powder diffraction, IR, or DSC.

- 27. (Previously presented) The process according to claim 2 in which said α-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]benzamide isolated from the reaction mixture shows an X-ray powder diffraction pattern that is characterized by having peaks at 2θ angles of approximately: 4.9: 18.6: 19.1: 23.2 and 28.6°.
- 28. (Previously presented) The process according to claims 2 in which said α-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]benzamide isolated from the reaction mixture shows an X-ray powder diffraction pattern that is characterized by having peaks at 2θ angles of approximately: 10.5; 14.9; 16.5; 17.7; 18.1; 18.6; 19.1; 21.3; 21.6; 22.7; 23.2; 23.8; 24.9; 27.4; 28.0 and 28.6°.
- 29. (Previously presented) The process according to claim 8 in which the acid addition reaction is carried out with stirring while maintaining the internal temperature of the reaction mixture within the range from room temperature to boiling temperature.
- 30. (Previously presented) The process according to claim 8 in which said α-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]benzamide isolated from the reaction mixture is essentially free of the β-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-

ylamino)phenyl]benzamide and any other crystalline solids as determined by X-ray powder diffraction, IR, or DSC.

- 31. (Previously presented) The process according to claim 8 in which said α-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]benzamide isolated from the reaction mixture shows an X-ray powder diffraction pattern that is characterized by having peaks at 2θ angles of approximately: 4.9; 18.6; 19.1; 23.2 and 28.6°.
- 32. (Currently amended) The process according to claim 8 in which said α-crystal form of the methanesulfonic acid addition salt of 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-[(4-pyridin-3-yl))pyrimidin-2-ylamino)phenyl]benzamide isolated from the reaction mixture shows an X-ray powder diffraction pattern that is characterized by having peaks of relative intensity over 20% at 2θ angles of approximately: 10.5; 14.9; 16.5; 17.7; 18.1; 18.6; 19.1; 21.3; 21.6; 22.7; 23.2; 23.8; 24.9; 27.4; 28.0 and 28.6°, the relative intensity being determined with respect to the most intense peak by peak height, the peak height expressing a number of counts per second.