

Hadoop应用 开发实战案例 第13周

【声明】本视频和幻灯片为炼数成金网络课程的教学资料,所有资料只能在课程内使用,不得在课程以外范围散播,违者将可能被追究法律和经济责任。

课程详情访问炼数成金培训网站

http://edu.dataguru.cn

数据挖掘:关联规则挖掘

■ 例子:购物篮分析

3

购物篮分析的应用

- 超市里的货架摆设设计
- 电子商务网站的套餐推荐

4

购物篮分析的应用

■ 推荐系统:网站或节目的阅读/收听推荐

新浪视频 > 视频新闻 > 体育视频 > 正文

视频集锦-开场失球孔卡梅开二度 恒大2-1逆转申鑫

http://www.sina.com.cn/ 2012年03月11日21:53 新浪体育

Delicious.com的研究

Delicious.com的研究

	TTD	WWD
URLs	802,939	802,739
Tags	1,021,107	1,021,107
Transactions	15,898,949	7,009,457
Total items	84,925,908	38,333,653

Table 1: Properties of the TTD (tag-tag) and WWD (webpage-webpage) transaction databases.

名词

- 挖掘数据集:购物篮数据
- 频繁模式:频繁地出现在数据集中的模式,例如项集,子结构,子序列等。
- 挖掘目标:频繁模式,频繁项集,关联规则等
- 关联规则:牛奶=>鸡蛋【支持度=2%,置信度=60%】
- 支持度:分析中的全部事务的2%同时购买了牛奶和鸡蛋
- 置信度:购买了牛奶的筒子有60%也购买了鸡蛋
- 最小支持度阈值和最小置信度阈值:由挖掘者或领域专家设定

名词

■ 项集:项(商品)的集合

■ k-项集:k个项组成的项集

■ 频繁项集:满足最小支持度的项集,频繁k-项集一般记为L_k

■ 强关联规则:满足最小支持度阈值和最小置信度阈值的规则

参考书

- 《Mahout in Action》一书的作者贡献了Mahout中频繁模式挖掘的代码
- 韩家炜是FPGrowth算法的创造者

关联规则挖掘: Apriori算法

■ 两步过程:找出所有频繁项集;由频繁项集产生强关联规则

■ 算法:Apriori

■ 例子

表 6.1 AllElectronics 某分店的事务数据

TID	商品 ID 的列表	TID	商品 ID 的列表
T100	11, 12, 15	T600	12, 13
T200	I2 , I4	T700	I1, I3
T300	12, 13	T800	I1, I2, I3, I5
T400	II, I2, I4	T900	II, I2, I3
T500	I1, I3		

Apriori算法的工作过程

{I3, I5} {I4, I5}

	C;		C_3		候选的支持度	L_3	
	项集	1-144-5	项集	支持度计数		项集	支持度计数
由 <i>L</i> ₂ 产生 候选 <i>C</i> ₃	{11, 12, 13}	扫描D,对 每个候选计数	{11, 12, 13}	2	计数与最小支 持度计数比较	{11, 12, 13}	2
→	{11, 12, 15}		{11, 12, 15}	2		{11, 12, 15}	2

0

 $\{13, 15\}$

{I4, I5}

图 6.2 候选项集和频繁项集的产生,最小支持计数为 2

步骤说明

13

- 扫描D,对每个候选项计数,生成候选1-项集C1
- 定义最小支持度阈值为2,从C1生成频繁1-项集L1
- 通过L1xL1生成候选2-项集C2
- 扫描D,对C2里每个项计数,生成频繁2-项集L2
- 计算L3xL3,利用apriori性质:频繁项集的子集必然是频繁的,我们可以删去一部分项 ,从而得到C3,由C3再经过支持度计数生成L3
- 可见Apriori算法可以分成连接,剪枝两个步骤不断循环重复

步骤说明

- (a) 连接: $C_3=L_2\bowtie L_2=\{\{I1,\ I2\},\ \{I1,\ I3\},\ \{I1,\ I5\},\ \{I2,\ I3\},\ \{I2,\ I4\},\ \{I2,\ I5\}\}\}$ $\bowtie\{\{I1,\ I2\},\ \{I1,\ I3\},\ \{I1,\ I5\},\ \{I2,\ I3\},\ \{I2,\ I4\},\ \{I2,\ I5\}\}\}$ $=\{\{I1,\ I2,\ I3\},\ \{I1,\ I2,\ I5\},\ \{I1,\ I3,\ I5\},\ \{I2,\ I3,\ I4\},\ \{I2,\ I3,\ I5\},\ \{I2,\ I4,\ I5\}\}\}$
- (b) 使用先验性质剪枝: 频繁项集的所有非空子集必须是频繁的。存在候选项集, 其子集不是频繁的吗?
 - {I1, I2, I3}的2项子集是{I1, I2}、{I1, I3}和{I2, I3}。{I1, I2, I3}的所有2项子集都是L₂的元素。因此, {I1, I2, I3}保留在C₃中。
 - {I1, I2, I5}的2项子集是{I1, I2}、{I1, I5}和{I2, I5}。{I1, I2, I5}的所有2项子集都是L₂的元素。因此, {I1, I2, I5}保留在C₃中。
 - {11, 13, 15}的2项子集是{11, 13}、{11, 15}和{13, 15}。{13, 15}不是L₂的元素,因而不是频繁的。因此,从C₃中删除{11, 13, 15}。
 - {I2, I3, I4}的2项子集是{I2, I3}、{I2, I4}和{I3, I4}。{I3, I4}不是L₂的元素,因而不是频繁的。因此,从C₃中删除{I2, I3, I4}。
 - {I2, I3, I5}的2项子集是{I2, I3}、{I2, I5}和{I3, I5}。{I3, I5}不是L₂的元素,因而不是频繁的。因此,从C₃中删除{I2, I3, I5}。
 - {12, 14, 15}的2项子集是{12, 14}、{12, 15}和{14, 15}。{14, 15}不是L₂的元素,因而不是频繁的。因此,从C₃中删除{12, 13, 15}。
- (c) 因此,剪枝后C₃={{I1, I2, I3}, {I1, I2, I5}}。

由频繁项集提取关联规则

■ 例子:我们计算出频繁项集{I1,I2,I5},能提取哪些规则? I1^I2=>I5,由于{I1,I2,I5}出现了2次,{I1,I2}出现了4次,故置信度为2/4=50% 类似可以算出

```
\{I1, I2\} \Rightarrow I5, confidence = 2/4 = 50\%

\{I1, I5\} \Rightarrow I2, confidence = 2/2 = 100\%

\{I2, I5\} \Rightarrow I1, confidence = 2/2 = 100\%

I1 \Rightarrow \{I2, I5\}, confidence = 2/6 = 33\%

I2 \Rightarrow \{I1, I5\}, confidence = 2/7 = 29\%

I5 \Rightarrow \{I1, I2\}, confidence = 2/2 = 100\%
```

提高Apriori的效率

- 基于散列的算法
- 基于FP tree的算法

图 6.7 存放压缩的频繁模式信息的 FP 树

挖掘过程图示

表 6.2 通过创建条件 (子) 模式基挖掘 FP 树

项	条件模式基	条件 FP 树	产生的频繁模式
15	{{12, 11, 1}, {12, 11, 13, 1}}	(12: 2, II: 2)	{12, 15: 2}, {II, 15: 2}, {I2, I1, I5: 2}
I 4	{{I2, I1: 1}, {I2: 1}}	⟨12: 2⟩	$\{12, 14, 2\}$
В	{ [12, I1: 2], [12: 2], [11: 2] }	<12: 4, I1: 2), <i1: 2=""></i1:>	{I2, I3: 4} \ {I1, I3: 4} \ {I2, I1, I3: 2}
I 1	{ I2: 4	〈I2: 4〉	{I2, II: 4}

图 6.8 与条件结点 [3 相关联的条件 FP 树

FP-Growth算法

算法: FP-Growth。使用 FP 树,通过模式增长挖掘频繁模式。

输入:

■ D: 事务数据库。

■ min_ sup: 最小支持度阈值。

输出:频繁模式的完全集。

方法:

- 1. 按以下步骤构造 FP 树:
 - (a)扫描事务数据库 D 一次。收集频繁项的集合 F 和它们的支持度计数。对 F 按支持度计数降序排序,结果为频繁 项列表 L。
 - (b) 创建 FP 树的根结点,以"null"标记它。对于 D 中每个事务 Trans,执行: 选择 Trans 中的频繁项,并按 L 中的次序排序。设 Trans 排序后的频繁项列表为 [p | P],其中 p 是第一个元素,而 P 是剩余元素的列表。调用 insert_tree([p | P],T)。该过程执行情况如下。如果 T 有子女 N 使得 N. item-name = p. item-name,则 N 的计数增加 1;否则,创建一个新结点 N,将其计数设置为 1,链接到它的父结点 T,并且通过结点链结构将其链接到具有相同 item-name 的结点。如果 P 非空,则递归地调用 insert_tree (P,N)。
- 2. FP 树的挖掘通过调用 FP_growth(FP_tree, null)实现。该过程实现如下。

procedure FP_growth(Tree, α)

- (1) if Tree 包含单个路径 P then
- (2) for 路径 P 中结点的每个组合(记作 β)
- (3)产生模式 $\beta \cup \alpha$, 其支持度计数 support_count 等于 β 中结点的最小支持度计数;
- (4) else for Tree 的头表中的每个 a, {
- (5)产生一个模式β=a_i∪α,其支持度计数 support_count = a_i. support_count;
- (6)构造 β 的条件模式基,然后构造 β 的条件 FP 树 Tree α;
- (7) if $Tree_{R} \neq \emptyset$ then
- (8)调用 FP growth($Tree_g, \beta$);

PFP算法

- mahout提供了内存中的FPG和分布式的PFP两种算频繁项集的方法
- Parallel Frequent Pattern Mining?
- Parallel FPGrowth ?
- https://cwiki.apache.org/confluence/display/MAHOUT/Parallel+Frequent+Patt ern+Mining
- http://infolab.stanford.edu/~echang/recsys08-69.pdf

分布式FP-Growth

Map inputs (transactions) key="": value	Sorted transactions (with infrequent items eliminated)	Map outputs (conditional transactions) key: value	Reduce inputs (conditional databases) key: value	Conditional FP-trees
facdgimp	f c a m p	p: fcam m: fca a: fc c: f	p: { f c a m / f c a m / c b }	{(c:3)} p
a b c f l m o	f c a b m	m: fcab b: fca	$m: \ \{ fca/fca/fcab \}$	$\{ (f:3, c:3, a:3) \} \mid m$
		a: fc c: f	b: {fca/f/c}	{} b
bfhjo	fb	b: f		
b c k s p	сbр	p: c b b: c	a: {fc/fc/fc}	$\{ (f:3, c:3) \} a$
afcelpmn	f c a m p	p: fcam m: fca a: fc c: f	c: {f/f/f}	{ (f:3) } c

Figure 1: A simple example of distributed FP-Growth.

主要步骤

- 将数据集分片
- 计数,产生排序的F-List
- 将物品分组,产生G-List
- (PFP算法关键步骤)并行FP-Growth过程
- 聚合结果

PFP算法的五个阶段示意图

DATAGURU专业数据分析社区

PFP计算能力评估

#. machines	#. groups	Time (sec)	Speedup
100	50000	27624	100.0
500	50000	5608	492.6
1000	50000	2785	991.9
1500	50000	1991	1387.4
2000	50000	1667	1657.1
2500	50000	1439	1919.7

Figure 4: The speedup of the PFP algorithm.

数据平台架构的重要性

- 算法只是案例的一个小部分
 - 数据挖掘算法的使用并不是实战案例最花时间的部分
 - 没有健康的数据生命流程,挖掘算法将会变得没有意义
- 除了挖掘算法,还有
 - 前期的数据准备
 - 后期的数据展现
- 一个好的数据平台能够持续让数据产生知识, 以至于利润
 - 好的数据平台能保障数据生命流程的健康

海量购物篮数据分析平台

远程交互数据展现层

分布式数据挖掘平台

统一视图后台数据库

分布式数据提取传输

分店

分店

分店

分店

DATAGURU专业数据分析社区

数据数据提取层

分布式数据提取层

分店

分店

分店

分店

- 分店定期导出数据
- 每次产生一个实例负责数据传输
- 因为各分店建立时间跨度较大,使用设备不一致,因此数据需要经过初步清洗

统一视图的后台数据库

统一视图的后台数据库

- 必须考虑数据库的可扩展性
- Workload 并没有实时数据处理的部分, 只需考虑离线分析
- 现成的有 Hbase 作为分布式数据库

分布式数据挖掘平台

分布式数据挖掘平台

- 用 Mahout 作为现成的数据挖掘平台
- 定期启动挖掘算法实例,捕获消费趋势变化
- 采用 Oozie 作为任务调度器

平台展现

远程交互数据展现层

- 在网页前台展现数据分析结果, 让一线销售人员掌握分析结果
- 交互式数据分析平台, 多层次的展现分析结果
- 直接采用现成的可视化插件构建网页平台

商品关联分析 - 一个实例

- 实现海量购物篮数据分析平台的一个定期运行的关联挖掘算法
- 已知:
 - 购物篮数据库
- 要求:
 - 频繁项集的提取
 - 对关联关系的可视化展现

数据来源

■ 阿里天梯比赛数据

字段	字段说明	提取说明
user_id	用户标记	抽样&字段加密
Time	行为时间	精度到天级别&隐藏年份
action_type	用户对品牌的行为类型	包括点击、购买、加入购物车、收藏4种行为(点击:0购买:1收藏:2购物车:3)
brand_id	品牌数字ID	抽样&字段加密

总体思路

用分布式 FP – Growth 算法挖掘频繁项集

利用频繁项集构建商品关系网络

对数据进行展现

DATAGURU专业数据分析社区

Parallel FP - Growth

- Parallel FP Growth
 - 能够在分布式计算平台 Hadoop 上实现
- Google 的几位科学家提出的算法
 - http://infolab.stanford.edu/~echang/recsys08-69.pdf
- Mahout 项目有这个算法的实现
 - https://mahout.apache.org/users/stuff/parallel-frequent-pattern-mining.html

用分布式 FP – Growth 算法挖掘频繁项集

■ 在mahout上执行 FP – Growth

```
bin/mahout fpg \
    -i core/src/test/resources/retail.dat \
    -o patterns \
    -k 50 \
    -method mapreduce \
    -regex '[\]
```

■ 参数解释:

参数	说明	可选值
input / -i	输入路径	
output / -o	输出路径	
method / -method	计算方法(单机/分布式)	sequential mapreduce
splitterPattern / -regex	分隔符(正则表达式)	默认逗号分隔
minSupport / -s	最小支持度阈值	默认为3

DATAGURU专业数据分析社区

数据结果是序列化的

```
bin/mahout seqdumper \
     -i patterns/frequentpatterns/part-?-00000 \
     -n 4
```

```
🔚 frequentPatterns=2. cst🛛
    10999=[([10999],6), ([10999, 11679, 16110, 16540],2)]
    15018=[([15018],2)]
    7208=[([7208],3)]
    27060=[([27060],2)]
    24274=[([24274],2)]
    15019=[([15019],5)]
    10893=[([10893],5)]
    28065=[([28065],3)]
    20578=[([20578],2)]
    23656=[([23656],4)]
10
11 949=[([949],4)]
    155=[([155],11), ([155, 21336, 7061],2), ([155, 22556],2), ([155,
12
```

数据转换

- 对数据进行转换, 生成一个边表, 用于Gephi展现
- 每一个节点代表一种商品
- 两个商品有边代表被多个买家同时购买
- 边的权值代表被同购的人数

DATAGURU专业数据分析社区

数据展现

DATAGURU专业数据分析社区

一切皆可关联

- 谷歌源论文展示的结果
- 网页标签关联

另一个实战案例 – 医疗大数据

- 海量病历数据
- 每一个点代表一种疾病诊断

■ 边代表两个诊断出现在多个病历上

总结

■ 本课讲解了

- 关联规则的基础知识
 - 支持度
 - 置信度
- 海量购物篮数据分析平台
 - 远程交互数据展现层
 - 分布式数据挖掘平台
 - 统一视图后台数据库
 - 分布式数据提取传输
- 分布式 FP Growth 算法挖掘频繁项集
 - · Mahout 算法使用
 - 数据展现
 - 其他案例介绍

炼数成金逆向收费式网络课程

- Dataguru (炼数成金)是专业数据分析网站,提供教育,媒体,内容,社区,出版,数据分析业务等服务。我们的课程采用新兴的互联网教育形式,独创地发展了逆向收费式网络培训课程模式。既继承传统教育重学习氛围,重竞争压力的特点,同时又发挥互联网的威力打破时空限制,把天南地北志同道合的朋友组织在一起交流学习,使到原先孤立的学习个体组合成有组织的探索力量。并且把原先动辄成于上万的学习成本,直线下降至百元范围,造福大众。我们的目标是:低成本传播高价值知识,构架中国第一的网上知识流转阵地。
- 关于逆向收费式网络的详情,请看我们的培训网站 http://edu.dataguru.cn

Thanks

FAQ时间

DATAGURU专业数据分析网站 43