Optimization and Data Science Lecture 6: Second Order Optimality Conditions

Prof. Dr. Thomas Slawig

Kiel University - CAU Kiel Dep. of Computer Science

Summer 2020

- Second Order Optimality Conditions
 - Second Order Conditions in One Dimension
 - Second Order Derivatives in \mathbb{R}^n : The Hessian Matrix
 - Properties of the Hessian
 - Second Order Conditions for Unconstrained Problems
 - Tool for Second Order Conditions: Taylor Expansion

- Second Order Optimality Conditions
 - Second Order Conditions in One Dimension
 - Second Order Derivatives in \mathbb{R}^n : The Hessian Matrix
 - Properties of the Hessian
 - Second Order Conditions for Unconstrained Problems
 - Tool for Second Order Conditions: Taylor Expansion

Optimality conditions for differentiable functions in 1-D, $X_{ad} = X = \mathbb{R}$

- First order necessary condition $f'(x^*) = 0$
- Example: $f(x) = x^2$ local minimum at $x^* = 0$, there: $f'(x^*) = 2x^* = 0$.
- Second order sufficient condition $f'(x^*) = 0, f''(x^*) > 0$.
- $f(x) = x^2$: local minimum at $x^* = 0$, $f''(x^*) = 2 > 0$.
- $f(x) = x^4$: local minimum at $x^* = 0$, $f'(x^*) = 4x^{*3} = 0$. $f''(x^*) = 12x^{*2} = 0$, but $f''(x^*) = 12x^{*2} \neq 0$.
- If $f'(x^*) = 0$ and $f''(x^*) < 0$, then maximum.
- Second order necessary condition for minimum: $f'(x^*) = 0$ and $f''(x^*) \ge 0$.
- $X_{ad} \neq X$ (e.g., interval) \rightsquigarrow check boundary points.

 $f(x)=x^2$

- Second Order Optimality Conditions
 - Second Order Conditions in One Dimension
 - Second Order Derivatives in \mathbb{R}^n : The Hessian Matrix
 - Properties of the Hessian
 - Second Order Conditions for Unconstrained Problems
 - Tool for Second Order Conditions: Taylor Expansion

First and second order derivatives in \mathbb{R}^n

• **Gradient** of $f: \mathbb{R}^n \to \mathbb{R}$:

$$\nabla f(x) := \left(\frac{\partial f}{\partial x_k}(x)\right)_{k=1}^n \in \mathbb{R}^n$$

with partial derivatives:

$$\frac{\partial f}{\partial x_k}(x) := \lim_{h \to 0} \frac{f(x + he_k) - f(x)}{h}, \quad k = 1, \dots, n.$$

Matrix of second derivatives: Hessian matrix:

$$\nabla^2 f(x) := \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)_{i,j=1,\dots,n} \in \mathbb{R}^{n \times n}$$

• If all second derivatives are continuous, the Hessian matrix is symmetric.

Example: Hessian matrix

• Function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(x) = f(x_1, x_2) = 4x_1^2 + 5x_1x_2 + 6x_2^2 + 7x_1 + 8x_2 + 9.$$

Partial derivatives:

$$\frac{\partial f}{\partial x_1}(x_1, x_2) = 8x_1 + 5x_2 + 7, \quad \frac{\partial f}{\partial x_2}(x_1, x_2) = 5x_1 + 12x_2 + 8.$$

• Compute the second partial derivatives.

Example: Hessian matrix

• Function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(x) = f(x_1, x_2) = 4x_1^2 + 5x_1x_2 + 6x_2^2 + 7x_1 + 8x_2 + 9.$$

Partial derivatives:

$$\frac{\partial f}{\partial x_1}(x_1,x_2) = 8x_1 + 5x_2 + 7, \quad \frac{\partial f}{\partial x_2}(x_1,x_2) = 5x_1 + 12x_2 + 8.$$

Second partial derivatives:

$$\frac{\partial^2 f}{\partial x_1^2}(x_1, x_2) = 8, \quad \frac{\partial^2 f}{\partial x_2 \partial x_1}(x_1, x_2) = 5$$
$$\frac{\partial^2 f}{\partial x_1 \partial x_2}(x_1, x_2) = 5, \quad \frac{\partial^2 f}{\partial x_2^2}(x_1, x_2) = 12.$$

Hessian matrix:

$$\nabla^2 f(x) = \left(\begin{array}{cc} 8 & 5 \\ 5 & 12 \end{array}\right)$$

- Second Order Optimality Conditions
 - Second Order Conditions in One Dimension
 - Second Order Derivatives in \mathbb{R}^n : The Hessian Matrix
 - Properties of the Hessian
 - Second Order Conditions for Unconstrained Problems
 - Tool for Second Order Conditions: Taylor Expansion

Example: Hessian matrix

• Function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(x_1, x_2) = 4x_1^2 + 5x_1x_2 + 6x_2^2 + 7x_1 + 8x_2 + 9.$$

- Already computed: $x^* \in \mathbb{R}^2$ with $\nabla f(x^*) = 0$ (1st order necessary condition).
- Obviously the function has a minimum in this point.
- Hessian matrix (is constant):

$$abla^2 f(x) = \left(egin{array}{cc} 8 & 5 \ 5 & 12 \end{array}
ight) \quad \text{for all } x \in \mathbb{R}^2.$$

- What is the multi-dimensional equivalent to the condition $f''(x^*) > 0$ (in \mathbb{R}) ...
- ... since $\nabla^2 f(x)$ is a matrix?

Prof. Dr. Thomas Slawig

Positive definite matrices

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ with

$$A = A^{\top}$$
, i.e., $A_{ij} = A_{ji}$ for all $i, j = 1, \dots, n$,

is called **symmetric**.

Definition

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called

• positive semi-definite if

$$x^{\top}Ax = \sum_{i,j=1}^{n} x_i A_{ij} x_j \ge 0$$
 for all $x \in \mathbb{R}^n$,

• positive definite if additionally

$$x^{\top}Ax = 0 \Rightarrow x = 0$$

Example: Hessian matrix

• Function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(x_1, x_2) = 4x_1^2 + 5x_1x_2 + 6x_2^2 + 7x_1 + 8x_2 + 9.$$

• Hessian matrix:

$$abla^2 f(x) = \left(egin{array}{cc} 8 & 5 \\ 5 & 12 \end{array} \right) \quad \text{for all } x \in \mathbb{R}^2$$

• ... is positive definite, since:

$$(x_1, x_2) \begin{pmatrix} 8 & 5 \\ 5 & 12 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (x_1, x_2) \begin{pmatrix} 8x_1 + 5x_2 \\ 5x_1 + 12x_2 \end{pmatrix} = 8x_1^2 + \frac{10x_1x_2}{10x_1x_2} + 12x_2^2$$

$$= 8x_1^2 + \frac{2\sqrt{5}\sqrt{5}x_1x_2}{10x_2} + 12x_2^2$$

$$= 5x_1^2 + 2\sqrt{5}\sqrt{5}x_1x_2 + 5x_2^2 + 3x_1^2 + 7x_2^2$$

$$= (\sqrt{5}x_1 + \sqrt{5}x_2)^2 + 3x_1^2 + 7x_2^2 \ge 0 \quad \text{for all } x \in \mathbb{R}^2$$

• ... and: $(\sqrt{5}x_1 + \sqrt{5}x_2)^2 + 3x_1^2 + 7x_2^2 = 0 \Rightarrow x_1 = 0, x_2 = 0.$

More characterization of positive definite matrices

A characterization of positive (semi-) definiteness can be given by the eigenvalues:

Definition

- $\lambda \in \mathbb{C}$ is called **eigenvalue** of $A \in \mathbb{C}^{n \times n}$, if there exists $x \in \mathbb{C}^n \setminus \{0\}$ with $Ax = \lambda x$.
- x is called the corresponding **eigenvector**.
- Eigenvalues can be computed from

$$Ax = \lambda x, x \neq 0 \Leftrightarrow (A - \lambda I)x = 0, x \neq 0 \Leftrightarrow (A - \lambda I)$$
 is singular $\Leftrightarrow \det(A - \lambda I) = 0$.

- A matrix in $\mathbb{C}^{n \times n}$ has n eigenvalues (that do not have to be different).
- A real matrix in $\mathbb{R}^{n \times n}$ may have complex eigenvalues $\lambda \in \mathbb{C}$.
- Symmetric matrices have only real eigenvalues $\lambda \in \mathbb{R}$.
- The eigenvalues of a positive definite matrix are > 0.
- The eigenvalues of a positive semi-definite matrix are ≥ 0 .

Example: Hessian matrix

• Function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(x_1, x_2) = 4x_1^2 + 5x_1x_2 + 6x_2^2 + 7x_1 + 8x_2 + 9.$$

Hessian matrix:

$$abla^2 f(x) = \left(egin{array}{cc} 8 & 5 \\ 5 & 12 \end{array} \right) \quad \text{for all } x \in \mathbb{R}^2$$

• Eigenvalues:

$$\det \begin{pmatrix} 8-\lambda & 5 \\ 5 & 12-\lambda \end{pmatrix} = (8-\lambda)(12-\lambda) - 25 = \lambda^2 - 20\lambda + 71 = 0$$

$$\iff \lambda_{1,2} = 10 \pm \underbrace{\sqrt{100-71}}_{\leq 10} > 0.$$

→ Hessian is positive definite.

- Second Order Optimality Conditions
 - Second Order Conditions in One Dimension
 - Second Order Derivatives in \mathbb{R}^n : The Hessian Matrix
 - Properties of the Hessian
 - Second Order Conditions for Unconstrained Problems
 - Tool for Second Order Conditions: Taylor Expansion

Second order sufficient optimality condition

- Here, we study unconstrained problems only.
- For constrained problems we need special conditions that we study later!

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable. If for $x^* \in \mathbb{R}^n$

- $\nabla f(x^*) = 0$ and
- the Hessian matrix $\nabla^2 f(x)$ is **positive semi-definite** for all $x \in B_{\epsilon}(x^*)$ and some $\epsilon > 0$, then x^* is a local minimizer.

Our example

• Function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(x_1, x_2) = 4x_1^2 + 5x_1x_2 + 6x_2^2 + 7x_1 + 8x_2 + 9.$$

Hessian matrix was constant:

$$abla^2 f(x) = \left(egin{array}{cc} 8 & 5 \ 5 & 12 \end{array}
ight) \quad \text{for all } x \in \mathbb{R}^2.$$

• ... and positive definite (thus also positive semi-definite) for all $x \in \mathbb{R}^2$.

$$\rightarrow x^*$$
 with

$$\nabla f(x^*) = 0$$

satisfies 2nd order sufficient condition and is local minimizer.

Second order sufficient optimality condition (for a strict minimizer)

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable. If for $x^* \in \mathbb{R}^n$

- $\nabla f(x^*) = 0$ and
- the Hessian matrix $\nabla^2 f(x^*)$ is positive definite (in x^*),

then x^* is a strict local minimizer. Moreover, it holds

$$f(x) \ge f(x^*) + \alpha ||x - x^*||_2^2$$
 for all $x \in B_{\varepsilon}(x^*)$

for some $\alpha, \epsilon > 0$.

Proof.

Luenberger: Linear and Nonlinear Programming §7.3, proposition 3.

Our example

• Function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(x_1, x_2) = 4x_1^2 + 5x_1x_2 + 6x_2^2 + 7x_1 + 8x_2 + 9.$$

Hessian matrix was constant

$$\nabla^2 f(x) = \left(\begin{array}{cc} 8 & 5 \\ 5 & 12 \end{array}\right)$$

- ... and positive definite for all $x \in \mathbb{R}^2$.
- Thus, it is also positive definite for x^* with

$$\nabla f(x^*) = 0$$

This point satisfies 2nd order sufficient condition and is even a **strict** local minimizer

Second order necessary optimality condition

- ullet Recall: we found out in \mathbb{R} :
- Second order necessary condition for minimum: $f'(x^*) = 0$ and $f''(x^*) \ge 0$.
- What is the generalization for \mathbb{R}^n ?

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable. If $x^* \in \mathbb{R}^n$ is a local minimizer, then

- $\nabla f(x^*) = 0$ and
- the Hessian matrix $\nabla^2 f(x^*)$ is positive semi-definite (in x^* only).

Proof.

Luenberger: Linear and Nonlinear Programming §7.3, proposition 2.

• In our example, this condition was satisfied, since the Hessian was positive semi-definite for all $x \in \mathbb{R}^2$.

- Second Order Optimality Conditions
 - Second Order Conditions in One Dimension
 - Second Order Derivatives in \mathbb{R}^n : The Hessian Matrix
 - Properties of the Hessian
 - Second Order Conditions for Unconstrained Problems
 - Tool for Second Order Conditions: Taylor Expansion

Useful tool: Taylor expansion

- Approximation of differentiable function by polynomial.
- Using function and derivative values at one fixed point $x \dots$
- ... to approximate function value in the vicinity of x.
- Consider n=1, i.e., $f: \mathbb{R} \to \mathbb{R}$. Taylor expansion around x:

$$f(x+h) = \underbrace{f(x)}_{\text{constant w.r.t. } h} + \underbrace{f'(x)h}_{\text{linear in } h} + \underbrace{\frac{1}{2}f''(x)h^2}_{\text{quadratic in } h} + \underbrace{\frac{1}{6}f'''(x)h^3}_{\text{3rd order in } h} + \dots$$

$$= \underbrace{\sum_{k=0}^{N} \frac{f^{(k)}(x)}{k!} h^k}_{\text{expansion of order } N} + \underbrace{\frac{1}{2}f''(x)h^2}_{\text{quadratic in } h} + \underbrace{\frac{1}{6}f'''(x)h^3}_{\text{3rd order in } h} + \dots$$

$$= \underbrace{\sum_{k=0}^{N} \frac{f^{(k)}(x)}{k!} h^k}_{\text{expansion of order } N} + \underbrace{\frac{1}{2}f''(x)h^2}_{\text{quadratic in } h} + \underbrace{\frac{1}{6}f'''(x)h^3}_{\text{3rd order in } h} + \dots$$

$$= \underbrace{\sum_{k=0}^{N} \frac{f^{(k)}(x)}{k!} h^k}_{\text{expansion of order } N} + \underbrace{\frac{1}{2}f''(x)h^2}_{\text{quadratic in } h} + \underbrace{\frac{1}{6}f'''(x)h^3}_{\text{3rd order in } h} + \dots$$

Assumption: all derivatives exist.

Example: Taylor expansion

Taylor expansion of $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x)$ around x = 0:

$$\sin(h) = f(0) + f'(0)h + \frac{1}{2}f''(0)h^{2} + \frac{1}{6}f'''(0)h^{3} + \frac{1}{24}f^{(4)}(0)h^{4} + \frac{1}{120}f^{(5)}(0)h^{5} + \dots$$

$$= \underbrace{\sin(0)}_{=0} + \underbrace{\cos(0)}_{=1}h - \frac{1}{2}\underbrace{\sin(0)}_{=0}h^{2} - \frac{1}{6}\underbrace{\cos(0)}_{=1}h^{3} + \frac{1}{24}\underbrace{\sin(0)}_{=0}h^{4} + \frac{1}{120}\underbrace{\cos(0)}_{=1}h^{5} + \dots$$

$$= h - \frac{1}{6}h^{3} + \frac{1}{120}h^{5} + \dots$$

Example: Taylor expansion

Taylor expansion around
$$x = 0$$
: $\sin(h) = h - \frac{1}{6}h^3 + \frac{1}{120}h^5 + \dots$

Prof. Dr. Thomas Slawig

Taylor expansion for arbitrary dimension

• We only need N = 0 (Mean value theorem)

$$f(x+h) = f(x) + \underbrace{\nabla f(x+th)^{\top} h}_{\text{linear in } h} \text{ with some } t \in [0,1]$$

• ... and N = 1:

$$f(x+h) = f(x) + \underbrace{\nabla f(x)^{\top} h}_{\text{linear in } h} + \underbrace{\frac{1}{2} h^{\top} \nabla^{2} f(x+th) h}_{\text{quadratic in } h} \text{ with some } t \in [0,1].$$

• Now: $x, h, \nabla f(x) \in \mathbb{R}^n$ are vectors, $\nabla^2 f(x) \in \mathbb{R}^{n \times n}$ is the Hessian matrix.

Second order sufficient optimality condition

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable. If for $x^* \in \mathbb{R}^n$

- $\nabla f(x^*) = 0$ and
- the Hessian matrix $\nabla^2 f(x)$ is **positive semi-definite** for all $x \in B_{\epsilon}(x^*)$ and some $\epsilon > 0$, then x^* is a local minimizer.

Proof.

- Let $h \in \mathbb{R}^n$ with $||h|| < \epsilon$. Then we have $x^* + h \in B_{\epsilon}(x^*)$.
- ullet Taylor expansion: There exists $t \in [0,1]$ such that

$$f(x^* + h) = f(x^*) + \nabla f(x^*)^{\top} h + \frac{1}{2} h^{\top} \nabla^2 f(x^* + th) h \ge f(x^*).$$

- $t \in [0,1] \Rightarrow x^* + th \in B_{\epsilon}(x^*)$
- $\nabla f(x^*) = 0$ and $h^{\top} \nabla^2 f(x^* + th) h \ge 0$, since Hessian positive semi-definite in $B_{\epsilon}(x^*)$.

What is important?

- Second order derivative in *n* dimensions is the Hessian matrix.
- Second order optimality conditions are based on the concept of positive (semi-) definiteness of the Hessian.
- This can be characterized by the eigenvalues.
- Second order sufficient condition: gradient zero and Hessian positive semi-definite in a neighborhood of a point.
- Second order sufficient condition for a strict minimum: gradient zero and Hessian positive definite in a point.
- Second order necessary condition: gradient zero and Hessian positive semi-definite in the minimizer.
- The proofs are conducted using Taylor expansion ...
- ... which approximates a function in the vicinity of a point using its derivatives at this point.