Àlgebra Commutativa

Claudi Lleyda Moltó

26 de febrer de 2020

1 Anells commutatius

1.1 Anells i ideals

Definició 1.1. Un *anell* és un conjunt *A* amb dues operacions binàries

$$+: A \times A \longrightarrow A$$
 $: A \times A \longrightarrow A$ $(a,b) \longmapsto a+b$ $(a,b) \longmapsto ab$

tals que (A, +) és un grup abelià (associativa, element neutre o zero, element simètric o oposat i commutativa), el producte és associatiu i distributiu respecte de la suma.

$$\forall a, b \in A \qquad a + (b + c) = (a + b) + c$$

$$\exists 0 \in A, \forall a \in A \qquad a + 0 = 0 + a = a$$

$$\forall a \in A, \exists -a \in A \qquad a + (-a) = (-a) + a = 0$$

$$\forall a, b \in A \qquad a + b = b + a$$

$$\forall a, b \in A \qquad a(bc) = (ab)c$$

$$\forall a, b, c \in A \qquad a(b + c) = ab + ac \quad i \quad (b + c)a = ba + ca$$

Si el producte té element neutre, el denotarem per $1 \in A$ i es diu que A és un *anell amb unitat*.

Si el producte és commutatiu es diu que A és un anell commutatiu.

Conveni 1.2. Anell vol dir anell commutatiu amb unitat, a menys que s'especifiqui el contrari.

Exemple 1. $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, $(\mathbb{Z}/(n), +, \cdot)$ són anells commutatius.

Exemple 2. Si R és un anell, R[x] amb la suma i el producte de polinomis és un anell.

 $R[x_1,...,x_n]$ l'anell de polinomis en variables $x_1,...,x_n$ sobre R.

Exemple 3. Si R i S són anells, aleshores

$$R \times S = \{(r, s) \mid r \in R, s \in S\}$$

amb la suma

$$(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$$
 $(\forall r_1, r_2 \in R, \forall s_1, s_2 \in S)$

i el producte

$$(r_1, s_1) \cdot (r_2, s_2) = (r_1 r_2, s_1 s_2) \quad (\forall r_1, r_2 \in R, \forall s_1, s_2 \in S)$$

component a component és un anell.

Exemple 4. ($\{0\}, +, \cdot$), 0 + 0 = 0, $0 \cdot 0 = 0$ és l'anell zero. És l'únic anell en que 0 = 1.

Definició 1.3. Siguin A, B anells. Un homeomorfisme d'anells de A a B és una aplicació $f: A \longrightarrow B$ tal que

- (i). $f(a_1 + a_2) = f(a_1) + f(a_2)$ per a tot $a_1, a_2 \in A$.
- (ii). $f(a_1a_2) = f(a_1)f(a_2)$ per a tot $a_1, a_2 \in A$.
- (iii). $f(1_A) = 1_B$.

Definició 1.4. Un *subanell* d'un anell A és un subconjunt S de A tal que (S, +) és un subgrup de (A, +) i $aa' \in S$ per a tot $a, a' \in S$ i $1_A \in S$.

Definició 1.5. Un *ideal* d'un anell A és un subconjunt I de A tal que (I, +) és un subgrup de (A, +), $aa' \in A$ per a tot $a \in I$ i $a' \in A$.

Definició 1.6. Sigui A un anell i I un ideal de A. Aleshores

$$A/I = \{[a] \mid a \in A\}$$
 on $[a] = \{a' \in A \mid a - a' \in I\}$

amb les operacions [a] + [b] = [a + b] i [a][b] = [ab] per a tot $a, b \in A$ és un anell que es diu *anell quocient* de A mòdul I.

Exemple 1. L'únic subanell de \mathbb{Z} és ell mateix. Els ideals de \mathbb{Z} són tots de la forma

$$n\mathbb{Z} = \{nz \mid z \in \mathbb{Z}\} = (n)$$

on n és un enter no negatiu. L'anell $\mathbb{Z}/(n)$ és l'anell quocient \mathbb{Z} mòdul (n).

Exemple 2. Si A és un anell i S és un subanell de A. Aleshores l'aplicació inclusió

$$i: S \longrightarrow S$$

$$s \longmapsto s$$
 (inclusio natural)

és un homeomorfisme injectiu d'anells.

Exemple 3. Si I és un ideal d'un anell A, aleshores l'aplicació

$$\pi \colon A \longrightarrow A/I$$
 $a \longmapsto [a]$ (projecció natural)

és un homeomorfisme d'anells.

Proposició 1.7. Sigui $f: A \longrightarrow B$ un homomorfisme d'anells. Definim el nucli de f com

$$\operatorname{Ker}(f) = \{a \in A \mid f(a) = 0\} \subseteq A$$

i la imatge de f com

$$Im(f) = \{ f(a) \in B \mid a \in A \} \subseteq A.$$

Aleshores Ker(f) és un ideal de A i Im(f) és un subanell de B.

Teorema 1.8 (Teorema de l'isomorfisme). *Sigui* $f: A \longrightarrow B$ un morfisme d'anells. *Aleshores existeix un únic* isomorfisme (morfisme bijectiu)

$$\tilde{f}: A/\mathrm{Ker}(f) \longrightarrow \mathrm{Im}(f)$$

que fa commutatiu el diagrama

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ \downarrow^{\pi} & & \uparrow \\ A/\mathrm{Ker}(f) & \xrightarrow{\tilde{f}} & \mathrm{Im}(f) \end{array} \qquad (f = \mathrm{i} \circ \tilde{f} \circ \pi)$$

on i i π són la inclusió i projecció naturals respectivament.

Definició 1.9. Sigui A un anell. Direm que un element $a \in A$ és un *divisor de* 0 si existeix $b \in A \setminus \{0\}$ tal que ab = 0.

Direm que un element $u \in A$ és una *unitat* o un *element invertible* si existeix un $u' \in A$ tal que uu' = 1. Si u' existeix, és únic i es diu que és *l'invers* de u i es denota per u^{-1} .

Direm que un element $a \in A$ és *nilpotent* si existeix un enter positiu n tal que $a^n = 0$.

Direm que un element $e \in A$ és idempotent si $e^2 = e$.

Definició 1.10. Un *domini d'integritat* és un anell D sense divisors de zero nuls tal que $0 \neq 1$.

Definició 1.11. Un \cos és un anell tal que $0 \ne 1$ i tot element no nul és unitat.

Observació 1.12. Tot cos és domini d'integritat.

Demostració. Sigui K un cos. Sigui $a \in K \setminus \{0\}$. Sigui $b \in K$ tal que ab = 0. Aleshores $b = a^{-1}ab = a^{-1}0 = 0$.

Exemple 1. \mathbb{Z} , $\mathbb{Z}[x]$, $\mathbb{R}[x]$ són dominis d'integritat i no són cossos.

Exemple 2. $\mathbb{Z} \times \mathbb{Z}[x]$ no és un domini d'integritat.

$$(1,0)(0,1) = (0,0)$$
 $(0,1) \ i \ (1,0)$
 $(0,1)(1,0) = (1,0)$
 $(0,1)(0,1) = (0,1)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $(0,0)$
 $($

Exemple 3. Sigui p un primer i sigui n un enter n > 1.

$$\mathbb{Z}/(p^n)$$
 $[p]^n = [p^n] = [0],$ $[p] \neq [0].$

[p] és nilpotent.

Definició 1.13. Siguin *I* i *J* ideals d'un anell *A*. Definim la seva *suma* com

$$I + J = \{a + b \mid a \in I, b \in J\}$$

I + J és l'ideal més petit que conté I i J.

En un producte finit

l'únic

zero.

de dominis d'integritat

nilpotent és el

i el seu producte com

$$IJ = \{a_1b_1 + \dots + a_nb_n \mid a_i \in I, b_i \in J\}.$$

Tant la suma com el producte d'ideals és ideal.

Definició 1.14. Sigui $\{I_{\lambda}\}_{{\lambda}\in\Lambda}$ una família no buida d'ideals d'un anell A. Definim la seva *intersecció*

$$\bigcap_{\lambda \in \Lambda} I_{\lambda} = \{ a \in A \mid a \in I_{\lambda} \text{ per a tot } \lambda \in \Lambda \}.$$

Tenim que $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ és un ideal de A.

Observació 1.15. Siguin I i J ideals d'un anell A. Aleshores

$$IJ \subseteq I \cap J$$
.

Aquesta inclusió pot ser estricte.

 $I = J = 2\mathbb{Z}$

Definició 1.16. Sigui *A* un anell i sigui *S* un subconjunt de *A. L'ideal de A general per S* és

$$(S) = \bigcap_{\substack{S \subseteq I \\ I \text{ ideal de } A}} I \qquad (\neq \emptyset \text{ ja que } S \subseteq A, A \text{ ideal de } A)$$

(S) és l'ideal de A més petit que conté S.

Direm que un ideal I de A és finitament generat si existeixen $a_1, \ldots, a_n \in I$ tal que

$$(a_1,\ldots,a_n) = (\{a_1,\ldots,a_n\}) = I.$$

Observem que $(a_1, ..., a_n) = a_1 A + \cdots + a_n A = \{a_1 b_1 + \cdots + a_n b_n \mid b_1, ..., b_n \in A\}.$

Definició 1.17. Un *ideal principal* de *A* és un ideal generat per un element.

Exemple 1. A \mathbb{Z} tots els ideals són principals.

Exemple 2. Si K és un cos, aleshores els ideals de K[x] són principals.

Definició 1.18. Un *domini d'ideals principals* (DIP) és un domini d'integritat en què tot ideal és principal.

Definició 1.19. Un ideal P d'un anell A és primer si $P \neq A$ i per a tot $a, b \in A \setminus P$, $ab \notin P$.

Definició 1.20. Un ideal M d'un anell A és maximal si $M \neq A$ i si I és un ideal de A tal que $M \subseteq I \subseteq A$, aleshores I = M ó I = A.

Exemple 1. A \mathbb{Z} els ideals primers són (0) i (p) on p és primer.

Els ideals maximals de \mathbb{Z} són (p) on p és primer.

Exemple 2. Si K és un cos. Els ideals primers de K[x] són (0) i (p(x)) on p(x) és irreductible de K[x].

anell.
En un DIP els ideals maximals són els primers expte el (0).

Els ideals maximals són

primers en

qualsevol

Proposició 1.21. Sigui A un anell i sigui I un ideal de A. Aleshores

- (i). I és primer si i només si A/I és un domini d'integritat.
- (ii). I és maximal si i només si A/I és un cos.

Demostració. Exercici.

Proposició 1.22. Sigui A un DIP. Aleshores tot ideal primer no nul de A és maximal.

Demostració. Sigui P un ideal de A primer no nul. Sigui I un ideal de A tal que $P \subseteq I \subseteq A$. Suposem que $P \ne I$.

Com que A és un DIP, existeixen $a, b \in A$ tals que P = (a) i I = (b).

Com que $P \subseteq I$, existeix $c \in A$ tal que $a = bc \in P$.

Com que P és primer i $b \in I$ tenim que $c \in P$.

Com que P = (a), existeix $d \in A$ tal que c = da. Per tant a = bda, és a dir, (bd - 1)a = 0.

Com que A és domini d'integritat i $a \neq 0$, tenim que $bd = 1 \in I$. Per tant I = A, Per tant P es maximal.

Teorema 1.23. *Tot anell no nul A té almenys un ideal maximal.*

Demostració. Sigui $C = \{I \mid I \text{ ideal de } A, I \neq A\}$. Tenim que $\{0\}$ ≠ A i per tant $\{0\}$ ∈ C i $C \neq \emptyset$.

Ordenem C per inclusió, és a dir, si $I, J \in C$, $I \leq J$ si i només si $I \subseteq J$.

Sigui $\{I_{\lambda}\}_{{\lambda}\in\Lambda}$ una cadena no buida d'elements de C, això vol dir que $\forall \alpha,\beta\in\Lambda$, o bé $I_{\alpha}\subseteq I_{\beta}$, o bé $U_{\beta}\subseteq I_{\alpha}$. Sigui $I=\bigcup_{{\lambda}\in\Lambda}I_{\lambda}\neq\emptyset$. Veiem que I és ideal. Siguin $a,b\in I$ i $c\in A$. Existeixen $\alpha,\beta\in\Lambda$ tals que $a\in I_{\alpha}$ i $b\in I_{\beta}$.

Podem suposar qe $I_{\alpha} \subseteq I_{\beta}$. Aleshores $a, b \in I_{\beta}$ i com que I_{β} és un ideal, $a - b \in I_{\beta} \subseteq I$. Per tant I és un subgrup additiu de A.

Tenim que $ca \in I_{\alpha} \subseteq I$. Per tant I és un ideal de A.

Sabem que $1 \notin I_{\lambda}$ per a cap $\lambda \in \Lambda$. Per tant $1 \notin I$. Això demostra que $I \in C$. Per tant (C, \leq) és inductiu.

Pel *lema de Zorn*, *C* té elements maximals. Anem a veure que els elements maximals són ideals maximals.

Sigui $M \in C$ un element maximal. Sigui J un ideal de A tal que $M \subseteq J \subseteq A$. Suposem que $J \ne A$. Aleshores $J \in C$ i com que $M \le J$ i M és maximal a C, tenim que M = J. Per tant M és un ideal maximal de A.

Corollari 1.24. Tot ideal propi d'un anell A està contingut a un ideal maximal de A.

Demostració. Sigui I un ideal propi de A. Considerem l'anell $\bar{A} = A/I$ ($\neq \{0\}$, degut a que $I \neq A$). Pel Teorema anterior, \bar{A} té ideals maximals. Sigui \bar{M} un ideal maximal de \bar{A} . Considerem

$$\pi \colon A \longrightarrow \bar{A} = A/I$$
$$a \longmapsto [a]$$

Sigui $\mathcal{A}=\{J\mid J \text{ ideal de } A \text{ tal que } I\subseteq J\}$ i sigui $\mathcal{B}=\{T\mid T \text{ ideal de } \bar{A}\}$. Definim $\varphi_\pi\colon \mathcal{A}\longleftarrow \mathcal{B}$ per

$$\varphi_{\pi}(J) = \pi(J).$$

(Exercici: comproveu que $\pi(J)$ és un ideal de \mathcal{A}).

En general, un morfisme exhaustiu entre anells dóna una bijecció entre \mathcal{A} i \mathcal{B} que conserva inclusions.

Hem de veure que aquesta aplicació és bijectiva. De fet

$$\varphi_{\pi}^{-1}(T) = \pi^{-1}(T) = \{ a \in A \mid \pi(a) \in T \}$$

i observem que $\pi^{-1}(0) = I \subseteq \varphi_{\pi}^{-1}(T)$.

Si agafem $a,b \in \varphi_\pi^{-1}(T)$ i $c \in A$ observem que $\pi(a),\pi(b) \in T$, i així $\pi(a) - \pi(b) = \pi(a-b) \in T$ i $\pi(ca) = \pi(c)\pi(a) \in T$. Per tant φ_π^{-1} està ben definida. Es comprova que $\varphi_\pi^{-1}\varphi_\pi\pi = \mathrm{id}_{\mathcal{B}}$ i $\varphi_\pi\varphi_\pi^{-1} = \mathrm{id}_{\mathcal{B}}$ (exercici).

Si $J_1 \leq J_2$ són ideals de A, clarament

$$\varphi_{\pi}(J_1) = \pi(J_1) \subseteq \pi(J_2) = \varphi_{\pi}(J_2).$$

En particular $\pi^{-1}(\bar{M})$ és un ideal maximal de A i $I \subseteq \pi^{-1}(\bar{M})$.

Definició 1.25. Un *anell local* és un anell amb un únic ideal maximal.

Observem que si A és un anell local i M és el seu ideal maximal, aleshores A/M és un cos. Aleshores cos es diu el cos residual de A.

Exemple 1. Tot cos és un anell local.

Exemple 2. Sigui p un primer. Aleshores $\mathbb{Z}/(p^n)$ és un anell local per a tot enter positiu n.

Els ideals de $\mathbb{Z}/(p^n)$ són els ideals de \mathbb{Z} que contenen p^n : (p^k) amb $0 \le k < n$. Aleshores estan ordenats:

$$(p^n) \subseteq (p^{n-1}) \subseteq \cdots \subseteq (p) \subseteq (1).$$

Per tant $p\mathbb{Z}/(p^n)$ és l'únic ideal maximal de $\mathbb{Z}/(p^n)$.

El seu cos residual és

$$(\mathbb{Z}/(p^n))/(p\mathbb{Z}/(p^n)) \cong \mathbb{Z}/p\mathbb{Z}.$$

Exemple 3. Sigui K un cos. L'anell de sèries formals $K[[x]] = \{\sum_{n=0}^{\infty} a_n x^n \mid amb \ a_n \in K\}$ amb la suma

$$\sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n + b_n) x^n$$

i el producte

La suma és finita i té sentit.

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} c_n x^n \qquad on \qquad c_n = \sum_{i=0}^{n} a_i b_{n-1}.$$

Exercici: Demostrar que K[[x]] amb aquesta suma i aquest producte és un anell. Demostrar que els elements invertibles en K[[x]] són els que $a_0 \neq 0$. $\mathcal{U}(K[[x]]) = \{\sum_{n=0}^{\infty} a_n x^n \mid a_0 \neq 0\}.$

Podem identificar

$$x = \sum_{n=0}^{\infty} a_n^{(x)} x^n, \qquad a_0^{(x)} = 0, a_1^{(x)} = 1, \quad i \quad a_n^{(x)} = 0 \quad \forall n > 1.$$

Aleshores

$$(x) = \left\{ \sum_{n=0}^{\infty} a_n x^n \in K[[x]] \mid a_0 = 0 \right\}$$

és el seu ideal maximal.

Proposició 1.26. Sigui A un anell i sigui I un ideal propi de A. Aleshores

- (i). Tot $x \in A \setminus I$ és invertible si i només si A és local i I és l'únic ideal maximal de A.
- (ii). Si I és maximal i tot element de la forma 1 + x amb x ∈ I és invertible, aleshores A és local i I és l'únic ideal maximal de A.

Demostració. (i). Sigui $x \in A \setminus I$. Si x no és invertible, existeix M ideal maximal de A tal que $x \in M$. Tenim que $M \neq I$.

Si *I* és l'únic ideal maximal de *A*, aleshores tot $x \in A \setminus I$ ha de ser invertible.

Suposem que tot $x \in A \setminus I$ és invertible. Aleshores I és ideal maximal de A, a més tot ideal propi de A està contingut a I. Per tant I és l'únic ideal maximal de A.

(ii). Suposem que I és ideal maximal de A i tot element de la forma 1 + x amb $x \in I$ és invertible.

Sigui $y \in A \setminus I$. Com que I és ideal maximal I + (y) = A. Per tant existeix $x \in I$ i $a \in A$ tals que 1 = x + ay. Així ay = 1 - x és invertible. Per tant y és invertible. Per (i), A és local i I és le seu únic ideal maximal.

Si agafem un ideal M de A amb $I \subseteq M$, tenim que M ha de contenir un element invertible i ha de ser M = A.

Definició 1.27. Un anell és *semilocal* si té un nombre finit d'ideals maximals.

Exemple 1. Un producte finit de cossos $K_1 \times K_2 \times \cdots \times K_n$ és semilocal.

Els ideals maximals de $K_1 \times K_2 \times ... K_n$ són

$$M_i = K_1 \times \cdots \times K_{i-1} \times \{0\} \times K_{i+1} \times \cdots \times K_n$$
.

Exercici: Comprovar que aquests són els únics ideals maximals.

Definició 1.28. Sigui A un anell. El nilradical de A és

$$\mathcal{N}(A) = \{ a \in A \mid a \text{ \'es nilpotent} \}.$$

És diferent del buit perquè $0 \in \mathcal{N}(A)$

Proposició 1.29. Sigui A un anell. Aleshores $\mathcal{N}(A)$ és un ideal de A i si $A \neq \{0\}$, aleshores $\mathcal{N}(A)$ és la intersecció de tots els ideals primers de A. A més $A/\mathcal{N}(A)$ no té elements nilpotents no nuls.

És a dir, $\mathcal{N}(A/\mathcal{N}(A))$ és nul

Demostració. Sabem que $0 \in \mathcal{N}(A)$. Siguin $a, b \in \mathcal{N}(A)$ i $c \in A$. Existeixen enters positius n i m tals que $a^n = b^m = 0$. Per tant

$$(a+b)^{n+m} = \sum_{i=0}^{n+m} \binom{n+m}{i} a^i b^{n+m-i}. = 0$$

Per tant $a + b \in \mathcal{N}(A)$. També tenim que $(ac)^n = a^n c^n = 0$. Per tant $ac \in \mathcal{N}(A)$ i això demostra que $\mathcal{N}(A)$ és un ideal de A.

Com *a* i *b* commuten podem utilitzar el binomi de Newton.

Sigui $[x] \in A/\mathcal{N}(A)$ nilpotent (amb $x \in A$). Existeix un enter positiu l tal que $[x]^l = [0]$. Per tant $x^l \in \mathcal{N}(A)$. Per tant existeix un enter positiu k tal que $(x^l)^k = 0$. Així $x \in \mathcal{N}(A)$ i [x] = [0].

Suposem que $A \neq \{0\}$. Sigui P un ideal primer de A. Sigui $a \in \mathcal{N}(A)$. Existeix un enter positiu n tal que

$$a^n = 0 \in P$$
.

Aleshores $a \in P$ ó $a^{n-1} \in P$, i per inducció sobre n veiem que $a \in P$. Per tant $\mathcal{N}(A) \subseteq P$. Sigui $x \in A \setminus \mathcal{N}(A)$. Sigui

 $C = \{I \mid I \text{ ideal de } A \text{ tal que } x^n \notin I \text{ per a tot enter positiu } n\}.$

Tenim que $\{0\} \in C$. Ordenem C per inclusió. Sigui $\{I_{\lambda}\}_{{\lambda} \in \Lambda}$ una cadena no buida d'elements de C. Considerem $I = \bigcup_{{\lambda} \in \Lambda} I_{\lambda}$. Clarament $I \in C$, i així C és inductiu no buit. Pel lema de Zorn C té maximals.

Sigui $M \in C$ maximal. Veiem que M és primer. Siguin $a,b \in A$ tals que $ab \in M$. Suposem que $a \notin M$. Aleshores tenim que $(a) + M \in C$. Suposem que $b \notin M$. Tenim que $(b) + M \notin C$. Existeixen n, m enters positius tals que $x^n \in (a) + M$ i $x^m \in (b) + M$.

Fixem-nos que $x^n x^m = x^{n+m} \in ((a) + M)((b) + M) \subseteq (a)(b) + M \subseteq M$ i arribem a contradicció amb que $M \in C$.

Exemple 1. Considerem $\mathcal{N}(M_2(\mathbb{R})) = \{ \begin{pmatrix} a & b \\ c & b \end{pmatrix} \in M_2(\mathbb{R}) \mid \begin{pmatrix} a & b \\ c & b \end{pmatrix} \text{ \'es nilpotent} \}$. Observem que $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \mathcal{N}(M_2(\mathbb{R}))$, però $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \notin \mathcal{N}(M_2(\mathbb{R}))$. Per tant $\mathcal{N}(A)$ no és in ideal.

Conjectura 1.30 (Conjectura de Köthe (1931)). *Sigui I un ideal nil (tot element de I és nilpotent). Aleshores* $M_2(I)$ *és nil.*

Definició 1.31. Sigui A un anell. El seu radical de Jacobson és

$$J(A) = \bigcap_{\substack{M \text{ ideal} \\ \text{maximal} \\ \text{de } A}} M$$

Observació 1.32. $\mathcal{N}(A) \subseteq J(A)$ per a tot anell $A \neq \{0\}$.

Exemple 1. Si A és un anell local i M és el seu ideal maximal, J(A) = M.

Exemple 2. J(K[[x]]) = xK[[x]] *amb K cos.* $\mathcal{N}(K[[x]]) = \{0\}$.

Exemple 3. $J(\mathbb{Z}) = \bigcap_{p \ primer}(p), \ \mathcal{N}(\mathbb{Z}) = \{0\}.$

Proposició 1.33. Sigui A un anell. Aleshores

$$J(A) = \{x \in A \mid 1 + xy \text{ \'es invertible per a tot } y \in A\}.$$

Demostració. Sigui $x \in J(A)$ i sigui $y \in A$. Suposem que 1+xy no és invertible. Existeix un ideal maximal M tal que $1+xy \in M$. Però $x \in M$. Per tant $1=1+xy-xy \in M$, una contradicció. Per tant 1+xy és invertible.

Sigui $x \in A$ tal que 1 + xy és invertible per a tot $y \in A$. Suposem que $x \notin M$ per algun ideal maximal M de A. Tenim que (x) + M = A. Per tant existeixen $y \in A$ i $z \in M$ tals que xy + z = 1 i així z = 1 - xy = 1 + x(-y) és invertible. Però un ideal maximal no pot contenir elements invertibles. Per tant $x \in J(A)$ i això demostra la igualtat.

1.1.1 Algunes propietats de la suma, producte i intersecció d'ideals

Aquestes tres operacions són associatives i commutatives. També tenim que el producte és distributiva respecta la suma:

$$I_1(I_2 + I_3) = I_1I_2 + I_1I_3$$
 per a ideals I_1, I_2, I_3 d'un anell A.

Proposició 1.34. Si I_1 , I_2 , I_3 són ideals d'un anell A i $I_2 \subseteq I_1$, aleshores

$$I_1 \cap (I_2 + I_3) = I_2 + (I_1 \cap I_3).$$
 (llei modular)

Exercici:

no sigui

suma.

distributiva respecte la

Buscar un exemple

d'ideals d'un anell tals que la intersecció

Demostració. Observem que $I_2 \subseteq I_1$ i $I_1 \cap I_3 \subseteq I_1$. Per tant $I_2 + (I_1 \cap I_3) \subseteq I_1$. Per tant és clar que $I_2 + (I_1 \cap I_3) \subseteq I_1 \cap (I_1 + I_3)$.

Sigui $x \in I_1 \cap (I_2 + I_3)$. Existeixen $y \in I_2$ i $z \in I_3$ tals que x = y + z. Tenim que

$$z = x - y$$

i
$$y \in I_2 \subseteq I_1$$
. Per tant $z \in I_1$. Per tant $I_1 \cap (I_2 + I_3) = I_2 + (I_1 \cap I_3)$.

Vam veure que si I_1 i I_2 són ideals d'un anell A, aleshores $I_1I_2 \subseteq I_1 \cap I_2$. Observem que

$$(I_1 + I_2)(I_1 \cap I_2) = I_1(I_1 \cap I_2) + I_2(I_1 \cap I_2) \subseteq I_1I_2.$$

Si $I_1 + I_2 = A$, aleshores $I_1 \cap I_2 = I_1 I_2$.

Definició 1.35. Direm que dos ideals I_1 , I_2 d'un anell A són *primers entre ells* o *comaximals* si $I_1 + I_2 = A$.

Proposició 1.36. Sigui A un anell i siguin $I_1, ..., I_n$ ideals de A tals que I_i i I_j són comaximals per a tot $i \neq j$. Aleshores

$$\bigcap_{i=1}^n I_i = I_1 \cdots I_n.$$

Demostració. Ho demostrarem per inducció sobre n. Per a n=2 ja ho sabem. Suposem que n>2 i que el resultat és cert per a n-1.

Per hipòtesi d'inducció tenim que

$$I=I_1\cdots I_{n-1}=\bigcap_{i=1}^{n-1}I_i.$$

Com que $I_i + I_n = A$ per a tot i = 1, ..., n-1, existeixen $x_i \in I_n$ i $y_i \in I_i$ tals que $x_i + y_i = 1$. Ara

$$y_1 \cdots y_{n-1} = (1 - x_1) \cdots (1 - x_{n-1}) = 1 + y$$

per a un cert $y \in I_n$, i $y_1 \cdots y_{n-1} \in I$.

Per tant $1 = y_1 \cdots y_{n-1} - y \in I + I_n$, i això ens demostra que I i I_n són comaximals. Per tant $I \cap I_n = II_n$ pel cas n = 2. Observem que $I \cap I_n = \bigcap_{i=1}^n I_i$ i $II_n = I_1 \cdots I_n$ i el resultat segueix per inducció.

De vegades convé estudiar un anell a través dels seus anells quocients.

Proposició 1.37. Sigui A un anell i siguin $I_1, ..., I_n$ ideals de A. Sigui $\Phi: A \longrightarrow \prod_{i=1}^n (A/I_i)$ l'aplicació definida per $\Phi(x) = ([x]_1, ..., [x]_n)$ on $[x]_i$ és la classe de x mòdul I_i . Aleshores

- (i). Φ és exhaustiva si i només is I_1 i I_j són comaximals per a tot $i \neq j$.
- (ii). Φ és injectiva si i només si $\bigcap_{i=1}^{n} I_i = \{0\}$.

Demostració. (ii) és una simple observació.

(i) Sigui $e_i = (0, \dots, 0, 1, 0, \dots, 0) \in \prod_{j=1}^n (A/I_j)$. Sigui $1 \le i \le n$, amb $j \ne i$. Existeix $x \in A$ tal que $\Phi(x) = e_i$. Tenim que $x \in I_i$ i $1 - x \in I_i$. Per tant,

$$1 = 1 - x + x \in I_i + I_i$$
.

Per tant, $I_i + I_j = A$.

Veiem que $e_i \in \text{Im}(\Phi)$ per a tot i = 1, ..., n. Per a cada $i \neq j$, tenim $x_i \in I_i$ i $y_j \in I_j$ tals que $x_i + y_j = 1$. Aleshores

$$(1-y_1)\cdots(1-y_{i-1})(1-y_{i+1})\cdots(1-y_n)=x_1\cdots x_{i-1}x_{i+1}\cdots x_n$$

i

$$(1-y_1)\cdots(1-y_{i-1})(1-y_{i+1})\cdots(1-y_n)=1+y$$

per a un cert $y \in I_i$. Per tant

$$\Phi(x_1 \cdots x_{i-1} x_{i+1} \cdots x_n) = (0, \dots, 0, 1, 0, \dots, 0) = e_i.$$

Proposició 1.38. (i). Siguin P_1, \ldots, P_n ideals primers i sigui I un ideal d'un anell A. Si $I \subseteq \bigcup_{i=1}^n P_i$, aleshores $I \subseteq P_j$ per algun j.

- (ii). Siguin I_1, \ldots, I_n ideals i P un ideal primer d'un anell A. Si $P \supseteq \bigcap_{i=1}^n I_i$, aleshores $P \supseteq I_j$ per algun j. Si $P = \bigcap_{i=1}^n I_i$, aleshores $P = I_j$ per algun j.
- *Demostració*. (i). Suposem que $I \nsubseteq P_i$ per a cert i. Demostrarem que $I \nsubseteq \bigcup_{i=1}^n P_i$ per inducció sobre n. Si n=1 és obvi. Suposem que n>1 i que el resultat és cert per n-1. Per a cada i, existeix $x_i \in I$ tal que $x_i \notin P_j$ per a tot $j \neq i$. Per hipòtesi d'inducció podem suposar que $x_i \neq P_i$ per a tot i. Sigui

$$y = \sum_{i=1}^{n} x_1 \cdots x_{i-1} x_{i+1} \cdots x_n \in I,$$

aleshores $x_1 \dots x_{i-1} x_{i+1} \dots x_n \notin P_i$, ja que $x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n \notin P_i$ i P_i és primer. Per tant $y \notin P_i$ per cap i. Així tenim que $y \in I \setminus \bigcup_{i=1}^n P_i$ i això vol dir que $I \nsubseteq \bigcup_{i=1}^n P_i$.

(ii). Suposem que $P \not\supseteq I_i$ per cap i. Aleshores existeixen $x_i \in I_i$ tals que $x_i \notin P$. Per tant $x_1, \ldots, x_n \notin P$, ja que P és primer, però

$$x_1 \cdots x_n \in I_1 \cdots I_n \subseteq \bigcap_{i=1}^n I_i \subseteq P$$

i arribem a contradicció. Per tant, existeix i tal que $I_i \subseteq P$.

Si
$$P = \bigcap_{i=1}^n I_i \subseteq I_j \subseteq P$$
 per algun j .

Definició 1.39. Siguin *I*, *J* ideals d'un anell *A*. El seu *ideal quocient* és

$$(I:J) = \{x \in A \mid xJ \subset I\}$$

i és un ideal de A.

En particular, (0:J) es diu que és l'*anullador* de J i es denota per Ann(J).

Si J = (x), escriurem (I : x), en comptes de (I : (x)).

Definició 1.40. Sigui *I* un ideal d'un anell *A*. El *radical* de *I* en *A* és

$$\sqrt{I} = \{x \in A \mid x^m \in I \text{ per algun enter } m \text{ positiu}\}$$

i és ideal de A.

Observació 1.41. Si π : $A \leftarrow A/I$ és la projecció natural, aleshores

- $(I:J) = \pi^{-1}(\text{Ann}((I+J)/I).$
- $\sqrt{I} = \pi^{-1}(\mathcal{N}(A/I)).$

Definició 1.42. Sigui $f: A \longleftarrow B$ un morfisme d'anells. Siguin I un ideal de A i J un ideal de B. Definim l'*extensió* de I per f com

$$f(I)B = I^{e}$$
 (ideal generat per $f(I)$)

Definim la contracció de J per f com

$$f^{-1}(J) = J^{\mathsf{c}}.$$

2 Mòduls

Índex alfabètic

lema

anell, 1	de Zorn, 5
amb unitat, 1	llei modular, 9
commutatiu, 1	
de polinomis, 1	nilpotent, 3 nilradical, 7
de sèries formals, 6	*
local, 6	nucli, 2
producte, 1	producte d'ideals, 4
quocient, 2 \mathbb{Z} mòdul (n) , 2	projecció natural, 2
semilocal, 7	radical, 11
zero, 2	radical de Jacobson, 8
anul·lador, 11	radical de Jacobson, o
conjectura de Köthe, 8 contracció, 11	subanell, 2 suma d'ideals, 3
cos, 3 residual, 6	Teorema de l'isomorfisme, 3
divisor de 0, 3	unitat, 3
domini	umtat, 5
d'ideals principals, 4 d'integritat, 3	
element	
invertible, 3	
extensió, 11	
homeomorfisme	
d'anells, 2	
- unems, -	
ideal, 2	
finitament generat, 4	
generat per un subconjunt, 4	
maximal, 4	
primer, 4	
principal, 4	
quocient, 11 ideals	
comaximals, 9	
primers entre si, <i>Vegeu</i> comaximals	
idempotent, 3	
imatge, 2	
inclusio natural, 2	
intersecció d'ideals, 4	
invers, 3	
isomorfisme, 3	