Solutions of Assignment 6

Theory of Computation, Fall 2022

Keys

Proof Using CFG:

Since *L* is context-free, there is some CFG $G = (V, \Sigma, S, R)$ that generates *L*.

Construct a CFG $G' = (V, \Sigma, S, R')$ with R' as follows:

$$R' = \{ (A, u^R) \mid (A, u) \in R \} \tag{1}$$

 G^{\prime} generates $L^{R}.$ Thus L^{R} is context-free.

Proof Using PDA:

Since L is context-free, there is some PDA $P = (K, \Sigma, \Gamma, \Delta, s, F)$ that accepts L.

Construct a PDA $P'=(K',\Sigma,\Gamma,\Delta',s',F')$ as follows. Here s' is a newly constructed state.

$$K' = K \cup \{s'\} \text{ where } s' \notin K$$

$$F' = \{s\}$$

$$\Delta' = \{((p, c, \alpha), (q, \beta)) \mid ((q, c, \beta), (p, \alpha)) \in \Delta\} \cup \{((s', e, e), (f, e)) \mid f \in F\}$$

$$(2)$$

 P^\prime accepts L^R . Thus L^R is context-free.

Assume that $A = \{wcw \mid w \in \{a, b\}^*\}$ is context-free.

p being the pumping length, we pick $s = wcw = a^p b^p ca^p b^p \in A$ and $|s| \ge p$.

By pumping theorem, s can be **arbitrary** divided into s = uvxyz s. t.

1.

$$\forall i \ge 0, uv^i x y^i z \in L \tag{3}$$

2.

$$|v| + |y| > 0 \tag{4}$$

3.

$$|vxy| \le p \tag{5}$$

Given $s = uvxyz = w_1cw_2$ where $w_1 = w_2$, we divide all possible cases as follows.

• If v or y contains c, then for $i \neq 1$, the string after pumping uv^ixy^iz would contain not exactly one c.

Thus $uv^ixy^iz \notin A$, contradicting to condition 1 of pumping theorem.

- If x contains c, then v is in w_1 and y is in w_2 , and there must be $v=b^{|v|}$ and $y=a^{|y|}$. For i=0, $uv^ixy^iz=a^pb^{p-1}ca^{p-1}b^p\not\in A$, contradicting to condition 1 of pumping theorem.
- If x does not contain c, then either v and y both in w_1 or v and y both in w_2 stands.

For i = 0, given $uv^i xy^i z = w'_1 cw'_2$, there is $|w'_1| < |w'_2|$ if v and y are both in w_1 , and $|w'_1| > |w'_2|$ if v and y are both in w_2 .

Thus $uv^ixy^iz \notin A$ no matter which case above stands, contradicting to condition 1 of pumping theorem.

To sum up, $\forall p, \exists s \text{ with } |s| \geq p$ that violates the pumping theorem, hence A is not context-free.

Q3

Since *A* is context-free and *B* is regular,

- There is some PDA $P_A = (K_A, \Sigma, \Gamma, \Delta_A, s_A, F_A)$ accepting A;
- There is some NFA $M_B = (K_B, \Sigma, \Delta_B, s_B, F_B)$ accepting B.

Construct a new PDA $P_{\cap} = (K_{\cap}, \Sigma, \Delta_{\cap}, s_{\cap}, F_{\cap})$ as follows.

$$K_{\cap} = K_{A} \times K_{B}$$

$$s_{\cap} = (s_{A}, s_{B})$$

$$F_{\cap} = F_{A} \times F_{B}$$

$$\Delta_{\cap} = \{(((q_{A}, q_{B}), c, \alpha), ((p_{A}, p_{B}), \beta)) \mid ((q_{A}, c, \alpha), (p_{A}, \beta)) \in \Delta_{A} \wedge ((q_{B}, c), p_{B}) \in \Delta_{B}\}$$
(6)

 P_{\cap} accepts $A \cap B$, hence $A \cap B$ is context-free.

*Q*4

(a)

Suppose that A is context-free. By the conclusion of Q3, we have that $A \cap a^*b^*c^* = \{a^nb^nc^n \mid n \geq 0\}$ is also context-free. However, we have proved that $\{a^nb^nc^n \mid n \geq 0\}$ is not context-free, which makes a contradiction. Therefore, A is not context-free.

(b)

 \overline{A} can be written as a union of the following 4 languages. Here #a is the number of a's in w, and #b and #c is defined similarly.

$$A_{1} = \{w \in \{a, b, c\}^{*} \mid \#a > \#b\}$$

$$A_{2} = \{w \in \{a, b, c\}^{*} \mid \#a < \#b\}$$

$$A_{3} = \{w \in \{a, b, c\}^{*} \mid \#a > \#c\}$$

$$A_{4} = \{w \in \{a, b, c\}^{*} \mid \#a < \#c\}$$

$$\overline{A} = \bigcup_{i=1}^{4} A_{i}$$

$$(7)$$

We can a construct CFGs that accept or PDAs that generate A_i (i = 1, 2, 3, 4) to show that they are context-free.

Since the class of context-free languages is closed under union, \overline{A} is context-free.

(c)

The class of context-free languages is not closed under complementation.

• L-R is necessarily context-free.

We have that $L-R=L\cap \overline{R}$. The class of regular languages is closed under complementation, so \overline{R} is also regular.

Therefore, L - R is the intersection of a context-free language and a regular language. Thus it is context-free based on the conclusion of **Q3**.

• R-L is not necessarily context-free.

We have that Σ^* is regular, and $\Sigma^* - L = \overline{L}$, which is not necessarily context-free based on the conclusion of **Q4**.

Grading

100 pts. in total

- Q1. 15 pts.
- Q2. 25 pts.
- Q3. 15 pts.
- Q4. 25 pts. = (a) 10 pts. + (b) 10 pts. + (c) 5 pts.
- Q5. 20 pts.

Notes

Q1

Idea: Reverse the result of every derivation when parsing, or reverse all the arrows in the PDA.

Note that in the original PDA there may be not exactly 1 final state. We have to construct a new initial state in the "reversed" PDA.

Note that to prove a language is **not** context-free, we have to prove that all possible division of s = uvxyz violate the pumping theorem. That is to say, the division is **arbitrary**. You are not supposed to specify the division by yourself.

Besides, be careful not to leave out some cases.

Q3

Similar to Assignment1 Q5. Useful conclusion for Q4 and Q5.

Q4

• (a) We can construct another 2 languages as follows:

$$A_5 = \{ w \in \{a, b, c\}^* \mid \#b > \#c \}$$

$$A_6 = \{ w \in \{a, b, c\}^* \mid \#b < \#c \}$$
(8)

Here $\overline{A} = \bigcup_{i=1}^6 A_i$. It is also correct, but unnecessary, since $A_5 \cup A_6 \subseteq \bigcup_{i=1}^4 A_i$.

Besides, proof using pumping theorem is also acceptable. Let p be the pumping length, we can take string $a^pb^pc^p \in A$ to violate the pumping theorem.

- (b) Direct proof by constructing a PDA accepting or a CFG generating \overline{A} is also acceptable.
- (c) Useful conclusion for **Q5**.

Note: The statement "the complement of a context-free language is not context-free and vice versa" is incorrect. The complement of a context-free language is not **necessarily** context-free, but it **may** be context-free.

Q5

Make use of the conclusions of the previous questions.

Besides, to disprove a conclusion, just use some ordinary case to construct a counterexample.