Compito #32: ripasso

```
A) Data la sequenza S = {$, *, $, !, @, !, !, @, *, $, $, *, @, !, *, @}
```

1. calcolare l'entropia H(S) svolgendo tutti i passaggi

```
$=4/16

*=4/16

!=4/16

@=4/16

H=-4(0.25*log2 0.25)= -4(0.25*(-2))= -4*(-0.5)= 2 bit/sym
```

2. creare una codifica FLC con il numero minimo possibile

```
$ → 00
* → 01
! → 10
@ → 11
```

3. calcolare la distanza di Hamming tra tutti i simboli

 assumendo la codifica 2) e calcolata la codeword o stringa di bit che rappresenta l'intera sequenza S calcolare il bit di parità pari e dispari
 5.

6. calcolare la checksum di S considerando la codifica 2) svolgendo tutti i passaggi

```
$ xor * = 01

01 xor $ = 01

01 xor ! = 11

11 xor @ = 00

00 xor ! = 10

10 xor ! = 00

00 xor @ = 11

11 xor * = 10

10 xor $ = 10

10 xor $ = 10

10 xor * = 11

11 xor @ = 00
```

7. creare una codifica VLC di Huffman della sequenza S svolgendo tutti i passaggi

\$
$$4/16$$
 * $4/16$! $4/16$ @ $4/16$ \rightarrow sequenza $0(\$ 4/16 * 4/16)$ 1(! $4/16$ @ $4/16$) \bigcirc 0(\$ $4/16$) 1(* $4/16$) \bigcirc 11(! $4/16$) 111(@ $4/16$) codifica: \$ \rightarrow 00 * \rightarrow 01 ! \rightarrow 1111 @ \rightarrow 1111

8. calcolare il rapporto di compressione tra il messaggio codificato con 2) e con6)

- **B)** Data la sequenza S = {!, @, @, %, \$, @, *, \$, @, \$, *, *, !, *, !, \$}
 - 1. calcolare l'entropia H(S) svolgendo tutti i passaggi

```
! = 3/16
@ = 4/16
% = 1/16
$ 4/16
* = 4/16
```

 $H = -(0.1875*log2\ 0.1875)-3(0.25*log2\ 0.25)-(0.0625*log2\ 0.0625)= -3(0.25*(-2))-(0.1875*(-2.4))-(0.0625*(-4))= -3(-0.5)-(-0.45)-(0.25)= 2.2\ bit/sym$

2. creare una codifica FLC con il numero minimo possibile di bit

! → 000

```
@ \rightarrow 001

\% \rightarrow 010

$ \rightarrow 011

* \rightarrow 100
```

3. calcolare la distanza di Hamming tra tutti i simboli

```
!@ = 1
!% = 1
!$ = 2
!* = 1
@% = 2
@$ = 1
@* = 2
%$ = 1
%* = 2
$* = 3
```

4. assumendo la codifica 2) e data la codeword o stringa di bit che rappresenta l'intera sequenza S calcolare il bit di parità pari e dispari

000 001 001 010 011 001 100 011 001 011 100 100 000 100 000 011 parità:1 disparità:0

5. calcolare la checksum di S considerando la codifica 2) svolgendo tutti i passaggi

6. creare una codifica VLC di Huffman della sequenza S svolgendo tutti i passaggi

```
@ 4/16
$ 4/16
* 4/16
! 3/16
% 1/16
0(@ 4/16 $ 4/16) 1(* 4/16 ! 3/16 % 1/16)
```

codifica:

7. calcolare il rapporto di compressione tra il messaggio codificato con 2) e con6)

000 001 001 010 011 001 100 011 001 011 100 100 000 100 000 011 \rightarrow 000000 000001 000001 000010 000011 000001 000110 000011 000001 000110 000011 000100 000100 000100 000101

C) Dato il seguente codice fiscale: NTLBBB66E12H355 calcolare il check digit e riportare tutti i passaggi

pari: T, B, B, 6, 1, H, 5, J \rightarrow 19, 1, 1, 6, 1, 7, 5, 9}

dispari: N, L, B, 6, E, 2, 3, $5 \rightarrow 20$, 4, 0, 15, 9, 5, 7, 13

check digit = 19+1+1+6+1+7+5+9+20+4+0+15+9+5+7+13 = 122

 $122/\text{mod } 26 = 18 \rightarrow S$