CLRS 7

Partição

Problema: Rearranjar um dado vetor A[p ... d] e devolver um índice q tal que $p \le q \le d$ e

$$A[\mathbf{p} \dots \mathbf{q} - 1] \le A[\mathbf{q}] < A[\mathbf{q} + 1 \dots d]$$

Entra:

Partição

Problema: Rearranjar um dado vetor A[p ... d] e devolver um índice q tal que $p \le q \le d$ e

$$A[\mathbf{p} \dots \mathbf{q} - 1] \le A[\mathbf{q}] < A[\mathbf{q} + 1 \dots d]$$

Entra:

Sai:

	p				_					d	
A	99	33	55	77	11	22	88	66	33	44	

\imath	\mathcal{J}									\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44

i j x A 99 33 55 77 11 22 88 66 33 44

i		j								\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44
	i		j							\boldsymbol{x}
Λ	22	00	זי	77	11	22	00	66	22	44

i		j								\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44
	i		j							\boldsymbol{x}
A	33	99	55	77	11	22	88	66	33	44
	i			j						\boldsymbol{x}
A	33	99	55	77	11	22	88	66	33	44

i		j			_					\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44
	i		j							\boldsymbol{x}
A	33	99	55	77	11	22	88	66	33	44
	i				j					\boldsymbol{x}
A	33	99	55	77	11	22	88	66	33	44

i		j								\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44
	i		j							\boldsymbol{x}
A	33	99	55	77	11	22	88	66	33	44
	,	i				j				\boldsymbol{x}
A	33	11	55	77	99	22	88	66	33	44

i		j					_			\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44
	i		j							x
A	33	99	55	77	11	22	88	66	33	44
		i				j				\overline{x}
A	33	<i>i</i> 11	55	77	99	<i>j</i> 22	88	66	33	$\begin{bmatrix} x \\ 44 \end{bmatrix}$
A	33		55 i	77	99	<i>j</i> 22	88 <i>j</i>	66	33	4.4

i		j								\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44
	i		j							\boldsymbol{x}
A	33	99	55	77	11	22	88	66	33	44
		i				j				\boldsymbol{x}
A	33	11	55	77	99	22	88	66	33	44
			i				j			\boldsymbol{x}
A	33	11	22	77	99	55	88	66	33	44
			i					\overline{j}		x
A	33	11	22	77	99	55	88	66	33	44

i		j								\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44
	i		j							x
A	33	99	55	77	11	22	88	66	33	44
		i				j				x
A	33	11	55	77	99	22	88	66	33	44
			i				j			x
A	33	11	22	77	99	55	88	66	33	44
			i						j	\boldsymbol{x}
A	33	11	22	77	99	55	88	66	33	44

i		j								\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44
	i		j							x
A	33	99	55	77	11	22	88	66	33	44
		i				j				x
A	33	11	55	77	99	22	88	66	33	44
			i				j			x
A	33	11	22	77	99	55	88	66	33	44
				i						j
A	33	11	22	33	99	55	88	66	77	44

i		j								\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44
	i		j							\boldsymbol{x}
A	33	99	55	77	11	22	88	66	33	44
		i				j				\boldsymbol{x}
A	33	11	55	77	99	22	88	66	33	44
			i				j			x
A	33	11	<i>i</i> 22	77	99	55	<i>j</i> 88	66	33	<i>x</i> 44
A	33	11		77 i	99	55		66	33	
A A	33	11 11			99	55 55		66 66	33 77	44
			22	i			88			44 <i>j</i>

Rearranja $A[p \dots d]$ de modo que $p \le q \le d$ e $A[p \dots q-1] \le A[q] < A[q+1 \dots d]$

```
PARTICIONE (A, p, d)

1 x \leftarrow A[d] > x \text{ \'e o "piv\^o"}

2 i \leftarrow p-1

3 para j \leftarrow p \text{ at\'e } d-1 \text{ faça}

4 se A[j] \leq x

5 ent\~ao i \leftarrow i+1

6 A[i] \leftrightarrow A[j]

7 A[i+1] \leftrightarrow A[d]

8 devolva i + 1
```

Invariantes: no começo de cada iteração de 3-6,

(i0)
$$A[p..i] \le x$$
 (i1) $A[i+1..j-1] > x$ (i2) $A[d] = x$

Consumo de tempo

Quanto tempo consome em função de n := d - p + 1?

linha consumo de todas as execuções da linha

1-2
$$= 2\Theta(1)$$

3 $= \Theta(n)$
4 $= \Theta(n)$
5-6 $= 2O(n)$
7-8 $= 2\Theta(1)$

total
$$= \Theta(2n+4) + O(2n)$$
 $= \Theta(n)$

Conclusão:

O algoritmo PARTICIONE consome tempo $\Theta(n)$.

Rearranja $A[p \dots d]$ em ordem crescente.

```
QUICKSORT (A, p, d)

1 se p < d

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, d)

3 QUICKSORT (A, p, q - 1)

QUICKSORT (A, q + 1, d)
```


Rearranja $A[p \dots d]$ em ordem crescente.

```
QUICKSORT (A, p, d)

1 se p < d

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, d)

QUICKSORT (A, p, q - 1)

QUICKSORT (A, p, q - 1)
```

No começo da linha 3,

$$A[p \dots q-1] \le A[q] \le A[q+1 \dots d]$$

Rearranja A[p ... d] em ordem crescente.

```
QUICKSORT (A, p, d)

1 se p < d

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, d)

QUICKSORT (A, p, q - 1)

QUICKSORT (A, q + 1, d)
```

Rearranja $A[p \dots d]$ em ordem crescente.

```
QUICKSORT (A, p, d)

1 se p < d

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, d)

3 QUICKSORT (A, p, q - 1)

QUICKSORT (A, q + 1, d)
```

Rearranja $A[p \dots d]$ em ordem crescente.

```
QUICKSORT (A, p, d)

1 se p < d

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, d)

3 QUICKSORT (A, p, q - 1)

QUICKSORT (A, q + 1, d)
```

No começo da linha 3,

$$A[\mathbf{p} \dots \mathbf{q} - 1] \le A[\mathbf{q}] \le A[\mathbf{q} + 1 \dots d]$$

Consumo de tempo?

Rearranja $A[p \dots d]$ em ordem crescente.

```
QUICKSORT (A, p, d)

1 se p < d

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, d)

3 QUICKSORT (A, p, q - 1)

QUICKSORT (A, q + 1, d)
```

No começo da linha 3,

$$A[\mathbf{p} \dots \mathbf{q} - 1] \le A[\mathbf{q}] \le A[\mathbf{q} + 1 \dots d]$$

Consumo de tempo?

$$T(n) := \operatorname{consumo} \operatorname{de} \operatorname{tempo} \operatorname{no} \operatorname{pior} \operatorname{caso} \operatorname{sendo}$$
 $n := d - p + 1$

Consumo de tempo

Quanto tempo consome em função de n := d - p + 1?

linha		consumo de todas as execuções da linha
1	=	?
2	=	?
3	=	?
4	=	?

total = ????

Consumo de tempo

Quanto tempo consome em função de n := d - p + 1?

linha		consumo de todas as execuções da linha
1	=	$\Theta(1)$
2	=	$\Theta(n)$
3	=	T(k)
4	=	T(n-k-1)

total =
$$T(k) + T(n-k-1) + \Theta(n+1)$$

$$0 \le k := q - p \le n - 1$$

Recorrência

T(n) := consumo de tempo máximo quando n = d - p + 1

$$T(n) = T(\mathbf{k}) + T(n - \mathbf{k} - 1) + \Theta(n)$$

Recorrência

T(n) := consumo de tempo máximo quando n = d - p + 1

$$T(n) = T(\mathbf{k}) + T(n - \mathbf{k} - 1) + \Theta(n)$$

Recorrência grosseira:

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

 $T(n) \in \Theta(???)$.

Recorrência

T(n) := consumo de tempo máximo quando n = d - p + 1

$$T(n) = T(\mathbf{k}) + T(n - \mathbf{k} - 1) + \Theta(n)$$

Recorrência grosseira:

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

 $T(n) \in \Theta(n^2)$.

Demonstração: ... Exercício!

Recorrência cuidadosa

T(n) := consumo de tempo máximo quando n = d - p + 1

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n - k - 1) \} + \Theta(n)$$

Recorrência cuidadosa

T(n) := consumo de tempo máximo quando n = d - p + 1

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n - k - 1) \} + \Theta(n)$$

Versão simplificada:

$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = \max_{0 \le k \le n-1} \{T(k) + T(n-k-1)\} + n \text{ para } n = 2, 3, 4, \dots$$

Recorrência cuidadosa

T(n) := consumo de tempo máximo quando n = d - p + 1

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n - k - 1) \} + \Theta(n)$$

Versão simplificada:

$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = \max_{0 \le k \le n-1} \{T(k) + T(n-k-1)\} + n \text{ para } n = 2, 3, 4, \dots$$

Vamos mostrar que $T(n) \leq n^2 + 1$ para $n \geq 0$.

Demonstração

Prova: Trivial para $n \le 1$. Se $n \ge 2$ então

$$T(n) = \max_{0 \le k \le n-1} \left\{ \frac{T(k) + T(n-k-1)}{r} \right\} + n$$

$$\stackrel{\text{hi}}{\le} \max_{0 \le k \le n-1} \left\{ \frac{k^2 + 1 + (n-k-1)^2 + 1}{r} \right\} + n$$

$$= \cdots$$

$$= n^2 - n + 3$$

$$\le n^2 + 1.$$

Prove que $T(n) \ge \frac{1}{2} n^2$ para $n \ge 1$.

Algumas conclusões

$$T(n) \in \Theta(n^2)$$
.

O consumo de tempo do QUICKSORT no pior caso é $O(n^2)$.

O consumo de tempo do QUICKSORT é $O(n^2)$.

Quicksort no melhor caso

M(n) := consumo de tempo mínimo quando n = d - p + 1

$$M(n) = \min_{0 \le k \le n-1} \{ M(k) + M(n - k - 1) \} + \Theta(n)$$

Quicksort no melhor caso

$$M(n) :=$$
 consumo de tempo mínimo quando $n = d - p + 1$

$$M(n) = \min_{0 < \frac{k}{k} < n-1} \{ M(\frac{k}{k}) + M(n - \frac{k}{k} - 1) \} + \Theta(n)$$

Versão simplificada:

$$M(0) = 1$$

$$M(1) = 1$$

$$M(n) = \min_{0 \le k \le n-1} \{M(k) + M(n-k-1)\} + n \text{ para } n = 2, 3, 4, \dots$$

Quicksort no melhor caso

M(n) := consumo de tempo mínimo quando n = d - p + 1

$$M(n) = \min_{0 < \frac{k}{k} < n-1} \{ M(\frac{k}{k}) + M(n - \frac{k}{k} - 1) \} + \Theta(n)$$

Versão simplificada:

$$M(0) = 1$$

$$M(1) = 1$$

$$M(n) = \min_{0 < k < n-1} \{ M(k) + M(n-k-1) \} + n \ \ \text{para} \ n = 2, 3, 4, \dots$$

Mostre que $M(n) \ge (n+1) \lg(n+1)$ para $n \ge 1$.

Quicksort no melhor caso

M(n) := consumo de tempo mínimo quando n = d - p + 1

$$M(n) = \min_{0 < \frac{k}{k} < n-1} \{ M(\frac{k}{k}) + M(n - \frac{k}{k} - 1) \} + \Theta(n)$$

Versão simplificada:

$$M(0) = 1$$

$$M(1) = 1$$

$$M(n) = \min_{0 \le k \le n-1} \{ M(k) + M(n-k-1) \} + n \ \, \text{para} \, \, n = 2, 3, 4, \dots$$

Mostre que $M(n) \ge (n+1) \lg(n+1)$ para $n \ge 1$.

Isto implica que no melhor caso o QUICKSORT é $\Omega(n \lg n)$,

Quicksort no melhor caso

M(n) := consumo de tempo mínimo quando n = d - p + 1

$$M(n) = \min_{0 < \frac{k}{k} < n-1} \{ M(\frac{k}{k}) + M(n - \frac{k}{k} - 1) \} + \Theta(n)$$

Versão simplificada:

$$M(0) = 1$$

$$M(1) = 1$$

$$M(n) = \min_{0 \le k \le n-1} \{ M(k) + M(n-k-1) \} + n \ \, \text{para} \, \, n = 2, 3, 4, \dots$$

Mostre que $M(n) \ge (n+1) \lg(n+1)$ para $n \ge 1$.

Isto implica que no melhor caso o QUICKSORT é $\Omega(n \lg n)$, que é o mesmo que dizer que o QUICKSORT é $\Omega(n \lg n)$.

Mais algumas conclusões

$$M(n) \notin \Theta(n \lg n)$$
.

O consumo de tempo do QUICKSORT no melhor caso é $\Omega(n \log n)$.

Na verdade ...

O consumo de tempo do QUICKSORT no melhor caso é $\Theta(n \log n)$.

Análise de caso médio do Quicksort

Apesar do consumo de tempo de pior caso do QUICKSORT ser $\Theta(n^2)$, sua performance na prática é comparável (e em geral melhor) a de outros algoritmos cujo consumo de tempo no pior caso é $O(n \lg n)$.

Por que isso acontece?

Exercício

Considere a recorrência

$$T(1) = 1$$

$$T(n) = T(\lceil n/3 \rceil) + T(\lfloor 2n/3 \rfloor) + n$$

para n = 2, 3, 4, ...

Solução assintótica: T(n) é O(???), T(n) é $\Theta(???)$

Exercício

Considere a recorrência

$$T(1) = 1$$

$$T(n) = T(\lceil n/3 \rceil) + T(\lfloor 2n/3 \rfloor) + n$$

para n = 2, 3, 4, ...

Solução assintótica: T(n) é O(???), T(n) é $\Theta(???)$

Vamos olhar a árvore da recorrência.

Árvore da recorrência

total de níveis $\leq \log_{3/2} n$

Árvore da recorrência

soma em cada horizontal $\leq n$

número de "níveis" $\leq \log_{3/2} n$

T(n) = a soma de tudo

$$T(n) \le n \log_{3/2} n + \underbrace{1 + \dots + 1}_{\log_{3/2} n}$$

 $T(n) \in O(n \lg n)$.

De volta a recorrência

$$T(1)=1$$

$$T(n)=T(\lceil n/3 \rceil)+T(\lfloor 2n/3 \rfloor)+n \ \ {\rm para} \ n=2,3,4,\ldots$$

n	T(n)
1	1
2	1 + 1 + 2 = 4
3	1 + 4 + 3 = 8
4	4 + 4 + 4 = 12

De volta a recorrência

$$T(1)=1$$

$$T(n)=T(\lceil n/3 \rceil)+T(\lfloor 2n/3 \rfloor)+n \ \ \text{para} \ n=2,3,4,\dots$$

n	T(n)
1	1
2	1 + 1 + 2 = 4
3	1 + 4 + 3 = 8
4	4 + 4 + 4 = 12

Vamos mostrar que $T(n) \leq 20 n \lg n$ para $n = 2, 3, 4, 5, 6, \dots$

De volta a recorrência

$$T(1)=1$$

$$T(n)=T(\lceil n/3 \rceil)+T(\lfloor 2n/3 \rfloor)+n \ \ \mathsf{para} \ n=2,3,4,\dots$$

n	T(n)
1	1
2	1 + 1 + 2 = 4
3	1 + 4 + 3 = 8
4	4 + 4 + 4 = 12

Vamos mostrar que $T(n) \leq 20 n \lg n$ para $n = 2, 3, 4, 5, 6, \dots$

Para $n = 2 \text{ temos } T(2) = 4 < 20 \cdot 2 \cdot \lg 2$.

Para $n = 3 \text{ temos } T(3) = 8 < 20 \cdot 3 \cdot \lg 3$.

Suponha agora que n > 3. Então...

Continuação da prova

$$T(n) = T(\lceil \frac{n}{3} \rceil) + T(\lfloor \frac{2n}{3} \rfloor) + n$$

$$\stackrel{\text{hi}}{\leq} 20 \lceil \frac{n}{3} \rceil \lg \lceil \frac{n}{3} \rceil + 20 \lfloor \frac{2n}{3} \rfloor \lg \lfloor \frac{2n}{3} \rfloor + n$$

$$\leq 20 \frac{n+2}{3} \lceil \lg \frac{n}{3} \rceil + 20 \frac{2n}{3} \lg \frac{2n}{3} + n$$

$$< 20 \frac{n+2}{3} (\lg \frac{n}{3} + 1) + 20 \frac{2n}{3} \lg \frac{2n}{3} + n$$

$$= 20 \frac{n+2}{3} \lg \frac{2n}{3} + 20 \frac{2n}{3} \lg \frac{2n}{3} + n$$

$$= 20 \frac{n}{3} \lg \frac{2n}{3} + 20 \frac{2}{3} \lg \frac{2n}{3} + 20 \frac{2n}{3} \lg \frac{2n}{3} + n$$

Continuação da continuação da prova

$$< 20n \lg \frac{2n}{3} + 14 \lg \frac{2n}{3} + n$$

$$= 20n \lg n + 20n \lg \frac{2}{3} + 14 \lg n + 14 \lg \frac{2}{3} + n$$

$$< 20n \lg n + 20n(-0.58) + 14 \lg n + 14(-0.58) + n$$

$$< 20n \lg n - 11n + 14 \lg n - 8 + n$$

$$= 20n \lg n - 10n + 14 \lg n - 8$$

$$< 20n \lg n - 10n + 7n - 8$$

$$< 20n \lg n$$

liiéééééssss!

De volta à intuição

Certifique-se que a conclusão seria a mesma qualquer que fosse a proporção fixa que tomássemos. Por exemplo, resolva o seguinte...

De volta à intuição

Certifique-se que a conclusão seria a mesma qualquer que fosse a proporção fixa que tomássemos. Por exemplo, resolva o seguinte...

Exercício: Considere a recorrência

$$T(1) = 1$$

$$T(n) = T(\lceil n/10 \rceil) + T(\lceil 9n/10 \rceil) + n$$

para $n=2,3,4,\ldots$ e mostre que T(n) é $O(n \lg n)$.

De volta à intuição

Certifique-se que a conclusão seria a mesma qualquer que fosse a proporção fixa que tomássemos. Por exemplo, resolva o seguinte...

Exercício: Considere a recorrência

$$T(1) = 1$$

$$T(n) = T(\lceil n/10 \rceil) + T(\lfloor 9n/10 \rfloor) + n$$

para $n=2,3,4,\ldots$ e mostre que T(n) é $O(n \lg n)$.

Note que, se o QUICKSORT fizer uma "boa" partição a cada, digamos, 5 níveis da recursão, o efeito geral é o mesmo, assintoticamente, que ter feito uma boa partição em todos os níveis.

Considere que A[1..n] é uma permutação escolhida uniformemente dentre todas as permutações de 1 a n.

Considere que A[1..n] é uma permutação escolhida uniformemente dentre todas as permutações de 1 a n.

Seja X(A) o número de vezes que a linha 4 do PARTICIONE é executada para uma chamada de QUICKSORT(A, 1, n).

Observe que X é uma variável aleatória.

Considere que A[1..n] é uma permutação escolhida uniformemente dentre todas as permutações de 1 a n.

Seja X(A) o número de vezes que a linha 4 do PARTICIONE é executada para uma chamada de QUICKSORT(A, 1, n).

Observe que X é uma variável aleatória.

Uma maneira de estimarmos o consumo de tempo médio do QUICKSORT é calcularmos $\mathrm{E}[X]$.

Considere que A[1..n] é uma permutação escolhida uniformemente dentre todas as permutações de 1 a n.

Seja X(A) o número de vezes que a linha 4 do PARTICIONE é executada para uma chamada de QUICKSORT(A,1,n).

Observe que X é uma variável aleatória.

Uma maneira de estimarmos o consumo de tempo médio do QUICKSORT é calcularmos $\mathrm{E}[X]$.

Ideia: Escrever X como uma soma de variáveis aleatórias binárias, cuja esperança é mais fácil de calcular.

Quem serão essas variáveis aleatórias binárias?

Exemplo

		i.		ı	1		1		
1	3		6	2	2	5		7	4
				,					
1	3		2		4		H	7	6
	ı			· 1					_
1	2	3		4		5		6	7
		-1	\circ	0	4	_	0	—	
	_	1	2	3	4	5	6	7	
	1		1	0	1	0	0	0	
	2	1		1	1	0	0	0	
	3	0	1		1	0	0	0	
	$4 \mid$	1	1	1		1	1	1	
	5	0	0	0	1		1	0	
	6	0	0	0	1	1		1	
	7	0	0	0	1	0	1		

Continuamos na aula que vem...