

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (IMAD)

Corso di Laurea Magistrale in INGEGNERIA INFORMATICA

Laboratorio sperimentale

SPEAKER

Prof. Mirko Mazzoleni

PLACE

Università degli Studi di Bergamo

Setup sperimentale

Il setup sperimentale consiste nei seguenti elementi:

- 1. Motore elettromeccanico a corrente continua (DC motor)
- 2. Stadio di potenza tramite circuito elettrico per pilotaggio del motore
- 3. Centralina Dspace per acquisizione e comando misure

Motore elettromeccanico

Motore DC con encoder rotativo a effetto Hall

Motore elettromeccanico

Motore DC con encoder rotativo a effetto Hall

- Gear ratio: 90:1
- No-load speed: 122 10% RPM
- No-load current: 350 mA
- Start Voltage: 1.0 V
- Stall Torque: 38 Kg cm ≈ 3.7 Nm
- Stall Current: 7 A
- Insulation resistance: 20 M Ω
- EncoderOperating Voltage: 5 V
- Encoder type: Hall
- Encoder Resolution: 16CPR(motor shaft)/1440CPR(gearbox shaft)
- Weight: 205g

Misura della posizione e della velocità

Encoder in quadratura incrementale a effetto Hall che rilevano variazioni nel campo magnetico

Circuito di pilotaggio

Circuito elettrico con transitor BJT NPN utilizzato come interruttore comandato con segnale PWM a 1000 Hz per modulare la tensione ai capi del motore

Le 2 uscite digitali dell'encoder sono misurate da un input digitale del Dspace

L'encoder è alimentato a 5 V dal Dspace

Il segnale PWM è generato dal Dspace e dato in pasto alla base del BJT

Setup complessivo

Setup sperimentale

Tramite l'interfaccia sviluppata con il software Dspace, è possibile comandare duty cycle:

- Costanti (ingresso a scalino)
- Rumore bianco con certa varianza e valore medio
- Sinusoidale con una certa ampiezza, frequenza e valore medio

Il software permette di salvare i dati di duty cycle e velocità motore

Obiettivo del lavoro è effettuare prove sperimentali per raccogliere misure di input e output e identificare un modello dell motore tramite approccio PEM

Esempio di acquisizione dati

Ingresso a scalino: 50 %

Uscita max ≈ 625.7 rpm

Esempio di acquisizione dati

Ingresso rumore bianco

