Using Smartphone Sensors to Encourage Physical Activity

Paul Schimek

My Background

Booz | Allen | Hamilton

One of the most dangerous activities

Annals of Internal Medicine[®]

LATEST

ISSUES

CHANNELS

CME/MOC

IN THE CLINIC

JOURNAL CLUB

WEB EXCLUSIVES

AUTHOR INFO

PREV ARTICLE | THIS ISSUE | NEXT ARTICLE

ORIGINAL RESEARCH | 3 OCTOBER 2017

Patterns of Sedentary Behavior and Mortality in U.S. Middle-Aged and Older Adults: A National Cohort Study

Keith M. Diaz, PhD; Virginia J. Howard, PhD; Brent Hutto, MSPH; Natalie Colabianchi, PhD; John E. Vena, PhD; Monika M. Safford, MD; Steven N. Blair, PED; Steven P. Hooker, PhD

Article, Author, and Disclosure Information

Abstract

Background: Excessive sedentary time is ubiquitous in Western societies. Previous studies have relied on self-reporting to evaluate the total volume of sedentary time as a prognostic risk factor for mortality and have not examined whether the manner in which sedentary time is accrued (in short or long bouts) carries prognostic

relevance

This site uses cookies. By continuing to use our website, you are agreeing to <u>our privacy policy.</u> Accept

SCIENCE

Americans Are Sitting More and We Have Computers to Blame

Research sets out to quantify how much time people spend sitting down; teens are more sedentary than grown-ups

By Brianna Abbott

Updated April 23, 2019 11:22 a.m. ET

Americans are sitting more than ever, and the habit starts young, according to a large study that found computer use in particular has contributed to a more sedentary lifestyle over the past two decades.

Across a range of age groups, average sitting time increased roughly an hour a day from 2007 to 2016, according to the study, which was published Tuesday in JAMA, the Journal of the American Medical Association.

Goal: Physical Activity (PA) Tracker

Use smartphone sensors

Sedentary vs. moving

Intensity of PA

Prompt after long period without PA

Measure and track the amount of PA

Constraints

- Recognize PA for new users
- Any phone, any position
- Preserve battery life
- Provide user feedback in real time

RealWorld Data

15 subjects

8 activities

Going down stairs, going up stairs, jumping, lying, standing, sitting, running, and walking

7 devices

6 sensors

acceleration, gyroscope, GPS, light, magnetic field, and sound level

Subject 1: walkingAccelerometer acceleration -10-15-20 +1.435993e12 time

Subject 1: sittingAccelerometer acceleration -5 +1.43599e12 time

Subject 1: runningAccelerometer 20 15 10 acceleration -5 -10-15 -20 5800000 6100000 5500000 5600000 5700000 5900000 6000000 +1.43599e12 time

Subject 1: climbingupAccelerometer 20 15 10 5 acceleration -10-15-20 500000 600000 700000 800000 1100000 900000 1000000 +1.43599e12 time

running, subject: 5 Accelerometer acceleration

time

Data Preparation

- Samples of 100 observations (2 sec)
 - Mean, Standard Deviation, Range
- Filter mislabeled data

Recode into 3 PA Classes

Sedentary (standing, sitting, lying)

Light-Moderate PA (walking, going up stairs,
going down stairs)

Vigorous PA (running, jumping)

Train / Validate / Holdout

```
Modeling Data - 10 subjects
  Training - 7 subjects
  Validation - 3 subjects
Holdout Data - 5 subjects
```

Not seen by model

Modeling Approach

18 features: 2 sensors (acc, gyr) x 3 dimensions (x,y,z) x 3 metrics (mean, sd, range)

Logistic regression accuracy:

- Training: 100%
- Validation: 97%

Also tried: K-Nearest Neighbors, Naive Bayes, various types of Decision Trees, Support Vector Machine, XGBoost

None had better results than LR

Neural Network Model

- Raw sensor data as array of 100 obs x 6 features (2 sensors x 3D)
- 2 Recurrent layers to handle the time dimension using Gated Recurrent Unit (GRU)
- 2 Convolutional layers to learn important features, prevent overfitting, and reduce number of parameters
- Batch normalization layer to further reduce overfitting

Takeaways and Next Steps

- Simplify the problem to match use case
- Validate on previously unseen subjects
- Simple hand-crafted features with LR regression produces good results
- Neural network has even better results
- **Test** with lower sampling rate
- Expand model to other data