

AUTHOR INDEX

A

Aannestad, P. A., 298, 302, 315, 318
 Abdel-Gawad, M., 7, 18
 Abell, G., 140
 Abhyankar, K. D., 160
 Ables, H., 39, 43, 46, 51, 52, 57
 Abramov, Yu. Yu., 254
 Abt, H., 77, 183
 Ackermann, G., 68
 Adams, J. B., 27
 Adams, T. F., 259
 Africk, S., 357, 363
 Ahrens, L. H., 7
 Alzenman, M., 137
 Alexander, E. C. Jr., 27
 Alexander, J. K., 307
 Alfén, H., 6, 17
 Allen, C. W., 294, 306
 Allen, D. A., 84, 85, 86
 Aller, L. H., 128, 130, 294
 Altenhoff, W. J., 86
 Ambartsumian, V., 62
 ANDERS, E., 1-34; 2, 3, 4, 5, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 176
 Anderson, A. D., 170
 Anderson, D. L., 8, 16, 28
 Angel, J. R. P., 363
 Arking, A., 156
 Arnett, W. D., 136
 Arnold, J. R., 4, 5
 Arrhenius, G., 6, 17
 Ash, M. E., 149
 Athay, R. G., 216, 220, 221, 222, 223, 224, 226, 227, 232, 249, 265
 Audouze, J., 24
 Auer, L. H., 237, 239, 259, 260
 Aumann, H. H., 84, 86, 92, 93, 94, 96, 97, 305, 306
 Avduevsky, V. S., 149, 151, 153, 158, 162
 Avery, L. W., 259
 Avrett, E. H., 220, 237, 249, 250, 251, 253, 257, 260, 261, 265
 Axel, L., 359, 363

B

Baade, W., 36, 37, 38, 40, 41, 42, 43, 51, 53, 54, 55, 56, 303

Baars, J. W. M., 286
 Baedecker, P., 8
 Baglin, A., 359
 Bahcall, J. N., 315
 Balasubramanian, V., 276
 Baldwin, J. E., 307, 309
 Baldwin, R. J., 68
 Bale, F. V., 281
 Ball, G., 296
 Ball, J. A., 287
 Bandermann, L. W., 17
 Banerjee, S. K., 10
 Baranowska, M., 63
 Barburro, G., 191, 193
 Barker, E. S., 152
 Barnard, E. E., 119, 293
 Barrett, A. H., 71, 75, 89, 315
 Barth, C. A., 153, 155, 156, 164, 166, 169
 Bartlett, H. E., 288
 Bartlett, J. F., 71
 Bartlett, T. J., 68
 Bartoe, J. F., 226
 Basart, J. P., 286
 Baschek, B., 5
 Basistov, G. G., 287
 Bates, B., 216
 Bath, G. T., 202
 Bathker, D. A., 273, 289
 Batten, A. H., 185, 188, 206
 Baum, W. A., 39, 173
 Bean, B. R., 286
 Beaudet, G., 133, 135, 362
 Beckers, J. M., 223
 BECKLIN, E., 67-102; 70, 71, 72, 73, 75, 76, 78, 79, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
 Bell, K. L., 308
 Belton, M. J. S., 148, 152, 153, 161, 163, 172
 Bely, O., 237
 Benedict, W. S., 153, 154
 Bennet, R. M., 212, 214, 215, 217, 219
 Benson, R. S., 188, 192, 198, 205
 Berge, G. L., 316
 Berger, R. A., 216, 226
 Bergstrahl, J. T., 148
 Berkner, L. V., 177
 Bidelman, W. P., 72, 183
 Biebermann, L., 247
 Biemann, K., 20
 Biermann, P., 205
 Binnendijk, L., 106

Biondi, M. A., 167
 Bisshopp, F. E., 329
 Blaauw, A., 183, 203
 Black, D. C., 24, 25, 26
 Black, G., 169
 Blamont, J. E., 212, 214, 215, 217, 219, 229
 Blanco, V. M., 116
 Blander, M., 7, 13, 18, 20
 Bless, R. C., 305
 Bodenheimer, P., 357
 Boese, R. W., 150
 Böhm, K. H., 131, 355, 361
 Bok, B. J., 46, 293, 294, 295
 Boland, B. C., 214, 217, 220
 Boozer, A., 133, 134
 Borodin, N. F., 158
 Bottema, M., 152, 155, 156, 166
 Bowyer, C. S., 306
 Boyer, C., 171
 Bradsell, R. H., 284
 Brancazio, P. J., 148
 Brandt, J. C., 148, 166
 Braude, B. V., 281
 Bridie, A. H., 307
 Briggs, M. H., 21
 Brindley, J., 324
 Brinkmann, R. T., 177
 Brown, H., 5, 149
 Brown, L. W., 307
 Brown, W. E. III, 285, 286
 Brueckner, G. E., 212, 215, 220, 225
 Bruner, E. C. Jr., 216, 226
 Brunt, D., 326
 Brush, S. G., 360
 Buhl, D., 296, 299, 301, 302, 303, 304, 312, 313
 Bühler, F., 26
 Bullen, K. E., 10
 Bunner, A. N., 306
 Burbidge, G. R., 70, 98, 183, 204, 205, 316
 Burr, D. W., 281
 Burrows, M. L., 289
 Burton, W. M., 214, 225
 Busse, F. H., 329, 332, 333, 334, 336

C

Cahn, J. H., 129
 Cain, D. L., 149, 150, 164

AUTHOR INDEX

- Cameron, A. G. W., 5, 6,
8, 13, 16, 148, 183, 356,
358
Canfield, R. C., 216
Cannon, R. D., 75, 183
Canuto, V., 361
Capen, C. F., 157
Capriotti, E. R., 251
Cardwell, C. S., 293, 295
Carleton, N. P., 150
Carpentier, G., 212, 229
Carroll, T. D., 317
Carruthers, G. R., 298
Carter, C. J., 285
Carver, J. H., 216, 220
Castellani, V., 138
Castro, C. E., 294
Caswell, J. L., 90
Cavaliere, A., 98
Cayrel, R., 262
Chamberlain, J. W., 161
Chan, S. K., 336, 347,
348
Chandrasekhar, S., 324, 327,
328, 335, 353, 355, 356,
358, 359, 360
Chang, F. K., 281
Chang, Y. P., 338
Chapman, S., 173
Charlton, T., 284
Chasse, Y., 289
Chaudhury, P. R., 133
Chavira, E., 68
Chen, M. M., 329
Chester, C., 59
Cheung, A. C., 296, 299,
302, 310
Cheyney, H., 155
Chin, C. W., 74, 361
Chiu, H.-Y., 356, 361
Chorin, A. J., 337
Chou, C. L., 13
Christiansen, W. N., 271
Christophe Michel-Lévy, M.,
8
Christy, J. W., 106
Christy, R. F., 137
Chu, T. Y., 331
Churchwell, E. B., 296
Clark, B. G., 286, 302, 303,
304
Clark, I. D., 169
Clark, S. P., 6
Clark, S. P. Jr., 10, 17
Clark, T. A., 307
Clarke, W. B., 28
Clarricoats, P. J. B., 289
Clauser, F. H., 343
Clayton, R. N., 21
Clemence, G. M., 117
Cloutier, P. A., 167
Clyne, M., 168
Coffeen, D. L., 156
Cogdell, J. R., 271, 286
Cohen, A. J., 13
Cohen, J. M., 356, 358
Connes, J., 153, 154, 155
- Connes, P., 153, 154, 155
Councilman, C. C., 150,
172
Cox, J. P., 134, 137, 358
Coyne, G. V., 70
Craig, H., 9
Crawford, J. A., 184
Cromwell, R. H., 293, 295
Crow, S. C., 349
Cudaback, D. D., 300, 310
Cuny, Y., 218, 219, 220,
252
- Dakowski, M., 29
Daigarno, A., 153, 176,
219
Damkoehler, J. E., 122
Damle, S. H., 276
Danziger, I. J., 295
Davidson, K., 70
Davies, D. E. N., 281
Davies, R. D., 56
Davis, J. H., 286
Davis, L., 316
Davis, S. H., 329
Dayhoff, M. O., 19, 20,
23
Deardorff, J. W., 329, 332,
333, 337
de Bergh, C., 177
Deinzer, W., 131, 134, 145,
362
de Jager, C., 217, 220
de Laeter, J. R., 28
Delahaye, J., 110
Demarque, P., 137, 138,
139
Demers, S., 43
De More, W. B., 169
Deutsch, A. J., 122, 183
de Vaucouleurs, A., 52
de Vaucouleurs, G., 39, 40,
43, 46, 47, 48, 52, 59,
157, 165
de Wolf, D. A., 159
Dicke, R. H., 29
Dickey, J. R., 151
Dickey, J. S. Jr., 8
Dickinson, R., 173
Dieter, N. H., 99
Divine, N., 134
Dodd, R. T., 4, 18
Dolan, J. F., 19
Dollfus, A., 152, 156, 157,
171
Dommanget, J., 185
Donahue, T. M., 168, 169,
170, 177, 178
Dunn, B., 75, 294
Dostolow, S. B., 164, 166
Downs, D., 91
Doyle, R. O., 219
Dressler, K., 298
DuFresne, E. R., 7
Dukes, J. N., 284
- Dupree, A. K., 213, 214,
223, 224, 232, 295
Durisen, R. H., 357, 363
Durney, B. R., 359
Dutton, J. A., 325
Dyck, H. M., 70, 72
Dykne, A. M., 254
Dziembowski, W., 188, 200
- Eberhardt, P., 26
Ebert, R., 316
Eck, R. V., 19, 20, 23
Eddy, J. A., 220
Edmonds, F. N., 241
Edwards, A. C., 137
Edwards, P. J., 216, 220
Eggen, O., 110, 120, 364
Eggleton, P., 137
Ehmann, W. D., 17
Elder, J. W., 338
Eliasson, B., 71, 90
Ellér, J., 90
Ellis, G. R. A., 308
Emery, R. J., 91, 93, 96
Engstrom, S. F. T., 214,
217, 220
Enome, S., 242
Epstein, E. E., 52, 56,
285
Erland, A. J., 7
Eshleman, V. R., 148, 149,
157, 158, 159, 164, 176
Essene, E., 8
- F
- Fannin, B. M., 285
Fanning, W. R., 281, 284
Farmer, C. B., 152
Fastie, G., 164, 166
Faulkner, D. J., 141, 143
Faulkner, J., 138, 358,
359
Feast, M. W., 78, 79
Feierman, B. H., 113,
123
Feissel, M., 171
Felder, W., 169
Feldman, P. D., 68
Fichtl, G. H., 325
Field, G. B., 148, 241, 298,
299, 302, 303, 306, 309,
311, 315, 318
Field, J. V., 198
FINDLAY, J. W., 271-92;
271
Finlayson, B. A., 343
Finn, G. D., 259
Finsen, W. S., 118
Finzi, A., 141, 142, 143,
363
Fish, R. A., 28
Fitch, W. S., 95
Fjeldebo, G., 150, 157, 158,
159, 164, 167, 176

- Florensky, C. P., 149, 151
 Focas, J. H., 156
 Folino, F. A., 281, 284
 Forbes, F. F., 71, 92
 Forbes, J. E., 185, 196
 Ford, W. K. Jr., 71
 Forman, M., 161
 Forrest, W. J., 70, 72
 Foster, P. R., 285
 Fowler, W. A., 29, 309
 Frederick, C. L., 68, 91,
 93, 96
 Fredga, K., 212
 Fredrick, L. W., 121
 Freeman, K. C., 59
 Fricker, P. E., 176
 Friedel, R. A., 21, 24
 Friedlander, M. W., 68,
 307
 Frogel, J. A., 72, 73, 75,
 76, 86, 89
 Fromm, J. E., 337
 Froome, K. D., 284
 Fugmann, G., 68
 Furashov, N. I., 285
 Fuse, K., 21
- G
- Gabriel, A. H., 213
 Gale, W., 153, 158
 Galindo, V., 289
 Ganapathy, R., 4, 14, 15,
 16, 17, 18, 27
 Gaposchkin, S., 54
 Garmire, G., 87, 88, 99
 Garz, T., 5, 219
 Garzoli, S. L., 297
 Gast, P. W., 8
 Gasteyer, C., 118
 Gaustad, J. E., 68, 73, 75,
 76, 294
 Gautier, D., 285
 Gayer, G. F., 273
 Gazda, I. W., 331, 332
 Geballe, T. R., 87
 Gebbie, K. B., 131
 Gehrels, T., 70
 Gehrz, R. D., 68, 69, 70, 72,
 74, 77, 78
 Geisel, S. L., 70, 71, 72,
 73, 74, 79, 81, 82, 83,
 805
 Geiss, J., 26
 Gelinas, R. J., 242
 Gerling, E. K., 24
 Giannone, P., 138, 191, 193,
 202, 204
 Giannuzzi, M. A., 191, 193
 Giclas, H. L., 108
 Giersch, P. J., 159, 162,
 163, 171, 173
 Gillett, F. C., 69, 70, 71,
 72, 73, 74, 75, 76, 77, 78,
 79, 84, 85, 87, 88, 89, 96,
 99, 161, 294
 Gilman, R. C., 6, 69,
- 75, 294
 Gilra, D. P., 294
 Gingerich, O., 217, 218,
 220
 Giuli, R. T., 137
 Giver, L. P., 150
 Gliese, W., 103, 108, 109,
 110, 115, 118
 Gökkaya, N. G., 122
 Gold, T., 172, 177
 Goldberg, L., 87, 210, 213,
 214, 220, 223, 224, 295
 Golden, S. A., 256
 Goldreich, P., 140
 Goldsmith, D. W., 299, 309,
 311, 318
 Goldstein, R. J., 331, 332
 Goldstein, R. M., 150
 Goldstein, S., 338
 Goles, G. G., 5, 13, 28
 Gol'tsyan, G. H., 170
 Gómez, A. E., 183
 Goody, R. M., 148, 150, 152,
 157, 159, 160, 161, 162,
 163, 170, 171, 172, 173
 Gordon, C. P., 309, 311
 Gordon, G. B., 284
 Gordon, K. J., 309, 311
 Gordon, M. A., 309, 313
 Gordon, W. E., 289
 Gore, G. D., 68
 Goss, W. M., 90, 303, 304
 Gott, J. R., 203
 Gottesman, S. T., 309
 Gottlieb, C. A., 296
 Gough, D. O., 325, 344,
 345
 Gough, P. L., 216, 220
 Gould, R. J., 308, 317
 Gourlay, J. A., 281
 Grasdalen, G. L., 68, 294,
 301, 307
 Gray, L. D., 148, 152
 Greenberg, J. M., 293
 Greenstein, J. L., 130,
 356
 Gregory, A. G., 216, 220
 Grenfell, T. C., 361
 Gribbin, J. R., 358, 359
 Gross, S. H., 165, 178
 Grossman, L., 6
 Guérin, P., 171
 Guindot, B., 171
 Gunn, J. E., 99, 203, 204
 Guseynov, O. H., 204
 Gwynn, W. D., 299
 Gyldenkerne, K., 185
- H
- Habing, H. J., 299, 306, 309,
 311, 318
 Hachenberg, O., 274, 282
 Hack, M., 185
 Hackwell, J. A., 69
 Hadjideimetrov, J., 185
 Hall, D. S., 198, 200
- Hall, J. T., 285
 Hall, L. A., 217
 Hamada, T., 133, 356
 Hamilton, P. A., 308
 Hamlin, D. W., 68
 Hanek, R., 161
 Hanks, T. C., 8, 28
 Hansen, C. J., 145, 358,
 359, 362, 363
 Hansen, J. E., 155, 156,
 152
 Hardie, R. H., 121, 125
 Harlan, E. A., 307
 Harrm, R., 136, 137, 138,
 144
 Harman, R. J., 130
 Harmanec, P., 185, 192,
 193
 Haroules, G. G., 285, 286
 Harper, R., 359
 Harrington, R. G., 36
 Harris, D. E., 289
 Harris, P. G., 10
 Hartmann, W. K., 28, 86
 Hartwick, F. D. A., 137,
 357
 Harwit, M., 70
 Haselgrove, C. B., 136
 Hashimoto, J., 71
 Hayashi, C., 134
 Hayatsu, R., 21, 23
 Hayes, J. M., 20
 Hazlehurst, J., 201
 Hearn, A. G., 232, 258
 HEILES, C., 293-322; 294,
 296, 297, 298, 299, 300,
 301, 307, 310, 311, 312,
 313, 315, 316, 317
 Heintz, W. D., 106, 108,
 118, 121, 122
 Heintze, J. R. W., 120
 Heitler, W., 242, 245
 Helzer, A. M., 125
 Henry, R. W., 168
 Henyey, L. G., 241
 Herbig, G. H., 8, 16, 24,
 71, 72, 74, 76, 80, 294,
 305
 Hermann, W., 68
 Herr, K. C., 150, 156, 163
 Herring, J. R., 345, 349
 Hertzprung, R., 113
 Hess, S. L., 171
 Hetzler, C., 68
 Heymann, D., 25, 26, 27,
 29
 Higa, W., 289
 Hilgemann, T. W., 85, 88,
 90
 Hinch, E. J., 172
 Hindler, R. A., 286
 Hindman, J. V., 56
 Hinteregger, H. E., 217
 Hirt, P., 26
 Hjelming, R. M., 309,
 311
 Hoag, A. A., 106

AUTHOR INDEX

- HODGE, P. W., 35-66; 36,
39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 59, 62,
63, 148
- Hoffmann, W. F., 68, 91, 93,
96
- Hogan, J. S., 150, 153, 159,
165, 166, 167, 168
- Högboom, J. A., 56, 271
- Hognex, W., 47, 48
- Hohenberg, C. M., 27, 28,
29
- Holland, H. D., 177
- Hollenbach, D. J., 298, 309,
317
- Holmberg, E., 37, 39, 52,
59
- Holstein, T., 241, 247
- Holton, J. R., 173
- Holtz, J. Z., 87
- Holweger, H., 5, 219
- Hord, C. W., 156
- Horn, J., 192, 193
- Höshi, R., 134
- House, L. L., 241, 259
- Houtgast, J., 247
- Howard, L. N., 336, 338,
345
- Hoyle, F., 29, 75, 136, 177,
183, 293
- Huang, S.-S., 185, 187, 188,
199, 200, 204
- Hubbard, W. B., 356, 360,
361
- Hubble, E. P., 36, 42, 47,
48, 51, 52, 53, 55
- Huber, D. L., 241
- Hudson, H. S., 306
- Hudson, J. P., 75
- Hughes, E. E., 75
- Hull, A. B., 287
- Humason, M. L., 38
- HUMMER, D. G., 237-70;
131, 237, 241, 244, 249,
250, 251, 253, 254, 255,
256, 257, 258, 259, 263
- Humphreys, R. M., 72
- Hunten, D. M., 148, 152,
153, 161, 162, 165, 169,
170, 172, 176, 177, 178
- Hunter, C., 294
- Huss, G. I., 8
- HYLAND, A. R., 67-102;
70, 71, 72, 73, 75, 76, 78,
79, 81, 82, 86, 89
- I
- Iben, I., 137, 138, 139
- INGERSOLL, A. P., 147-82;
148, 152, 156, 171, 172,
177, 178
- Inn, E. C. Y., 150
- Irariarte, B., 71, 77, 79,
81
- Irvine, W. M., 155, 156
- Ivanov, V. V., 237, 251, 253,
254
- J
- Jackson, S., 188
- Jakob, M., 332
- James, R. A., 356
- Jaschek, C., 183
- Jastrow, R., 148, 178
- Jedrzejec, E., 187, 204
- Jeffries, J. T., 237, 257,
260, 261, 265, 266, 267
- Jefferts, K. B., 296, 301
- Jeffery, M. H., 284
- Jeffery, P. M., 24, 25,
26
- Jenkins, L. F., 108, 118
- Johnson, F. M., 294
- Johnson, H. L., 68, 71, 72,
73, 74, 75, 77, 79, 80, 81,
93, 96, 305, 307
- Johnson, H. M., 293
- Johnson, S. G., 216, 220
- Johnson, T. V., 27
- Jokipii, J. R., 26
- Jones, B. B., 214, 217,
220
- Jones, R. A., 216
- Jones, R. V., 294, 312
- Jordan, C., 223, 225, 232
- Jordan, T., 16
- Joseph, D. D., 332
- Joseph, R. D., 68, 307
- Joss, P., 133, 134, 136
- Jovanovic, S., 17
- Joy, A. H., 122
- Justice, R., 284
- K
- Kahn, F. D., 316
- Kaler, J. B., 129
- Kalkofen, W., 218, 220, 221,
222, 263, 264, 266, 267
- Kaniel, S., 327
- Kapahi, V. K., 276
- Kaplan, I. R., 21
- Kaplan, L. D., 150, 152,
153, 154, 155
- Karachentseva, V., 51, 63
- Katow, M. S., 273, 287
- Katz, J., 136
- Katz, J. L., 7, 13, 18
- Kay, A. F., 288
- Kayser, S., 51, 53, 54,
56
- Keays, R. R., 4, 14, 15, 16,
17, 18
- Keil, K., 8
- Keller, J. B., 338
- Kelley, K. K., 164, 166
- Kellogg, W. W., 148
- Kemp, J. C., 363
- Kerr, F. J., 295, 297
- Kerridge, J. F., 11
- Kerzhannovich, V. V., 158
- Khare, B. N., 153
- Khaykin, S. E., 281
- Kieffer, H., 152
- King, I., 44, 48, 49
- King, I. R., 99
- Kingston, A. E., 308
- Kington, C. N., 284
- Kinman, T., 48
- Kippenhahn, R., 188, 190,
191, 192, 193, 195, 196,
200
- Kirchner, R. P., 230
- Kirsten, T., 25
- Kleinmann, D. E., 71, 72,
73, 74, 79, 81, 82, 83, 84,
85, 86, 87, 88, 89, 92, 94,
96, 98, 305
- Kliore, A., 149, 150, 157,
158, 159, 164, 167, 176
- Knacke, R. F., 73, 75, 78,
87, 89, 99, 294
- Knowles, S. H., 302, 310
- Knudsen, W. C., 170
- Ko, H. C., 271
- Koch, G. F., 288
- Koch, R. H., 185
- Kock, M., 5, 219
- Koffman, D. M., 18
- Kohl, K., 193, 196
- Kohman, T. P., 29
- Kopal, Z., 184, 186, 197,
200
- Kopp, R. A., 229, 230,
231
- Koschmieder, E. L., 329,
346
- Kovasznay, L. S. G., 349
- Kovitz, A., 327
- Kraft, R. P., 183, 185,
202
- Kraichnan, R. H., 338, 340,
341, 342, 349
- Krieger, A. S., 229, 233
- Krishnamurti, R., 329,
330
- Krishna Swamy, K. S., 69,
87, 294
- Kristian, J., 73, 76, 88,
89
- Kříž, S., 185, 187, 192, 193,
204
- Kron, G. E., 43, 121
- Krouse, H. R., 21
- Krummenacher, D., 26
- Kruszewski, A., 70, 185,
187, 188, 199, 204
- Krzeminski, W., 77, 202
- Kuhl, L. V., 70, 71, 75,
307
- Kuhn, W. R., 249
- Kühne, C., 284
- Kuiper, G. P., 151, 152,
155, 156, 161, 184, 201
- Kumar, S. S., 134
- Kuo, H. L., 332
- Kuperus, M., 224, 229,
230

- Kuroda, P. K., 26
 Kurt, V. G., 164, 166
 Kutter, G. S., 134, 141
 Kwast, T., 63
 Kyle, T. G., 256
- L
- Lal, D., 24
 LaLonde, L. M., 289
 Lambert, D. L., 83
 Lampe, M., 360
 Lancet, M. S., 22, 23
 Landau, R., 99
 Landau, R. L., 294
 Landstreet, J. D., 363
 Lapidus, A., 356, 358
 Larimer, J. W., 3, 4, 6, 7,
 9, 10, 11, 12, 15, 16, 17,
 18, 19, 20
 Larson, R. B., 70, 79, 80,
 82, 83, 86
 Latham, A. S., 71, 72, 73,
 74, 79, 81, 305
 Laul, J. C., 16, 17
 Lauterborn, D., 190, 193,
 197, 204
 Lebovitz, N. R., 327, 358,
 359
 L'Ecuyer, J., 134, 361
 Ledoux, P., 330, 358, 359
 Lee, O. J., 68
 Lee, T. A., 72, 78, 79,
 86
 Lee, T. D., 360
 Leighton, R. B., 68, 71, 74,
 75, 88, 89, 150, 153, 156,
 157, 162, 229
 Lemaire, P., 215
 Lemmon, R. M., 22
 Lena, P. S., 220
 LEOVY, C. B., 147-82; 156,
 159, 172, 173, 174
 Leutwyler, H., 26
 Levich, V. G., 241
 Levin, B. J., 10, 20
 Levskil, L. K., 24
 Levy, G. S., 164, 289
 Lewis, J. S., 150, 151, 175,
 176
 Liebe, H. J., 285
 Liebert, J., 91
 Liller, M., 48
 Liller, W., 128, 130, 150
 Lilley, A. E., 297
 Lim, S. H., 289
 Lindenblad, I. W., 121
 Lindzen, R. S., 173, 175
 Linsky, J. L., 220, 237
 Lippincott, E. R., 19, 20,
 23
 Lippincott, S. L., 123, 124
 Lippes, F. B., 329, 337
 Little, S. J., 152
 Litvak, M. M., 299, 314
 Liwshitz, M., 158
 Loeser, R., 261
- Lord, H. C. III, 6
 Lorin, J. C., 24
 Lortz, D., 332, 333
 Lovering, J. R., 17
 Low, F. J., 16, 68, 69, 71,
 72, 73, 74, 79, 80, 81, 82,
 83, 84, 86, 87, 88, 92, 93,
 94, 96, 97, 98, 161, 305,
 306
 Lucy, L. B., 201, 264
 Lumley, J. L., 349
 Luyten, W. J., 108, 112,
 115, 121
 Lynden-Bell, D., 49, 357
 Lynds, B. T., 293
- M
- Maas, R. W., 69
 MacQueen, R. M., 220
 Maibaara, T., 71
 Malique, C., 212
 Malkus, W. V. R., 171, 325,
 326, 330, 331, 332, 335,
 341, 347
 Manchester, R. N., 313
 Manuel, O. K., 26, 27
 Marov, M. Ya., 149, 151,
 153, 158, 162
 Marshak, R. E., 360
 Marshall, L. C., 177
 Marti, K., 25
 Martin, P. G., 308
 Martin, W. L., 173
 Martz, D. E., 71, 74
 Marvin, U. B., 8
 Massevitch, A. G., 184,
 197
 Matkowsky, B. J., 333
 Matsuno, T., 175
 Matsushima, S., 162, 361
 Mattila, K., 294
 Maxwell, A., 91
 Mayall, N. U., 38, 43
 Mazor, E., 25, 26, 27
 McCammon, D., 75
 McConnell, J. C., 167, 168
 McCord, T. B., 27, 157
 McCray, R., 83
 McCrea, W. H., 183
 McCuskey, S. W., 116
 McElroy, M. B., 148, 153,
 165, 166, 167, 168, 169,
 170, 175, 176, 178
 McGovern, W. E., 165, 178
 McNutt, D. P., 68
 Meadows, R. W., 281
 Meeks, M. L., 287
 Meilleur, T., 161
 Meister, J., 26
 Melbourne, W. G., 149
 Mendoza, E. E., 75, 79, 80,
 305
 Mengel, J. G., 137, 138,
 139
 Menzel, D. H., 165
 Merrilue, C. M., 26
- Merrill, K. M., 71, 74, 75,
 76, 77
 Merrill, P. W., 81
 Mestel, L., 354, 355, 356,
 360, 362
 Mézárás, P., 297
 Meyer-Hofmeister, E., 200
 Mezger, P. G., 296
 Mezger, P. J., 86
 Michel, F. C., 167
 Michie, R. W., 36, 49,
 50
 Mihalas, D., 131, 237, 239,
 249, 250, 260, 261
 Mihaljan, J. M., 349
 Miley, G. K., 286
 Miller, J. H., 150
 Miller, J. S., 76
 Miller, S. L., 22
 Minkowski, R., 303
 Minnett, H. C., 284, 288
 Mintz, Y., 159, 173, 174
 Mitchell, R. I., 71, 77, 79,
 81
 Mitchell, R. L., 285
 Mock, M., 183
 Modzeleski, V. E., 21
 Moore, R. C., 152, 160
 Moos, H. W., 166
 Moran, J. M., 75, 89
 Morgan, J. W., 16, 17
 Moroz, V. I., 155, 161
 Morozhenko, A. V., 156
 Morris, S., 19
 Morrison, D., 148, 151
 Morrison, P., 98
 Morrow, W., 169
 Morton, D. C., 184, 192
 Moseley, R. E., 288
 Moss, D. L., 200
 Mueller, O., 8
 Mueller, R. F., 150, 175,
 176
 Muhleman, D. O., 149,
 158
 Muldoon, R. A., 281, 284
 Mumford, G. S., 185
 Munch, G., 150, 152
 Munk, M. N., 27
 Munro, R. H., 232
 Mural, T., 134
 Murdock, T. L., 148
 Murray, B. C., 150, 153,
 160, 162
- N
- Nagirner, D. I., 251, 253
 Napartovich, A. P., 254
 Narial, K., 78
 Nather, R. E., 202
 Nee, V. W., 349
 NEUGEBAUER, G., 67-102;
 68, 70, 71, 72, 73, 74, 75,
 76, 78, 79, 81, 82, 83, 84,
 85, 87, 88, 89, 90, 91, 92,
 93, 94, 95, 96, 97, 98, 99,

AUTHOR INDEX

- 150, 160, 163
 Neupert, W. M., 209
 Newell, E. G., 137, 138
 Ney, E. P., 69, 71, 72, 74,
 76, 84, 85, 86, 88, 89, 148,
 294
 Nicolas, K. R., 225
 Noci, G., 214, 217, 220
 Noddack, I., 9
 Noddack, W., 9
 North, J. C., 284
 Noxon, J. F., 169
 NOYES, R. W., 209-36; 210,
 213, 218, 220, 221, 222,
 230, 232, 341
 Nyckina, A. I., 151
- O**
- Oda, A., 21
 Oda, M., 89
 O'Dell, C. R., 87, 129, 130,
 303
 O'Dell, S. L., 99
 Ogura, Y., 325
 O'Handley, D. A., 149
 Ohlsson, J., 109
 Ohring, G., 151, 162
 Oke, J. B., 83, 89, 94, 96,
 97, 98, 99
 Okuda, H., 71
 O'Leary, B. T., 148, 155,
 157
 Oort, J. H., 116, 118
 Orszag, S. A., 298, 302, 315,
 318, 338, 349
 Osaki, Y., 202, 204
 Osterbrock, D. E., 127, 128,
 130, 259
 OSTRIKER, J. P., 353-66;
 203, 204, 357, 359, 363
 O'Toole, J. L., 331
 Ott, R. L., 242
 Overbeck, J. W., 308
 Owen, T., 148
 Oxenius, J., 241, 244
- P**
- Pacholczyk, A. G., 91, 95,
 98
 Pacini, F., 98
 PACZYNSKI, B., 183-208;
 135, 139, 140, 141, 145,
 185, 187, 188, 189, 191,
 192, 193, 194, 196, 198,
 202, 204
 Pagel, B. E. J., 83
 Palmer, P., 296, 299, 301,
 302, 303, 304, 312, 313
 Papanastassiou, D. A., 27
 Parenago, P. P., 184, 197
 Parker, E. N., 229, 306,
 318, 349
 Parkinson, W. H., 210, 211,
 213, 216, 220
 Pauliny-Toth, I. I. K., 307
- Payne-Gaposchkin, C. H., 54
 Pearce, J. B., 164, 166,
 169
 Pearson, H. E., 284
 Peery, B. F., 191
 Peimbert, M., 55, 56, 305
 Pellas, P., 24
 Penston, M. J., 95
 Penston, M. V., 95
 Penzias, A. A., 296, 301,
 307
 Pepin, R. O., 24, 25, 26
 Perek, L., 128, 129, 185
 Perkins, F. W., 359
 Pesch, P., 71
 Peterson, L. E., 306
 Petrosian, V., 133
 Petrun'kin, V. Yu., 281
 Pettengill, G. H., 150, 172
 Phillips, N. A., 325
 Pimentel, G. C., 150, 156,
 163
 Plotkowski, S., 185, 189,
 204
 Pitman, D., 153
 Plass, G. N., 162
 Platzman, G., 325, 332
 Plavcic, M., 185, 187, 191,
 192, 193, 194, 198
 Plows, W., 337
 Plummer, W., 152, 155,
 156
 Plummer, W. T., 155
 Podosek, F. A., 27, 28
 Polezhaev, V. I., 151
 Pollack, J. B., 149, 151,
 153, 155, 157, 162
 Popper, D., 124, 185, 198
 Pottasch, S. R., 223, 224
 Potter, J., 156
 Potter, P. D., 271, 289
 Poupeau, G., 24
 Poveda, A., 80
 Prandtl, L., 324, 338, 342
 Pratt, Y. T., 20, 23
 Prendergast, K. H., 183,
 204, 205
 Preston, G. W., 77
 Priestley, C. H. B., 324,
 334, 335
 Priser, J. B., 106
 Purcell, E. M., 311
 Purcell, J. D., 211, 216,
 220, 226, 229, 230
 Purton, C. R., 307
 Puttock, M. J., 284
 Pyper, D., 59, 62, 63
- Q**
- Quiroge, R. J., 297
- R**
- Racine, R., 78, 79
 Raimond, E., 90
 Rainville, L. P., 150, 172
- Rajan, R. S., 24
 Rakavy, G., 134
 Rank, D. M., 87, 296, 302,
 310
 Rao, M. N., 29
 Rasool, S. I., 148, 150, 153,
 159, 164, 165, 176, 177,
 178
 Rather, J. D. G., 298, 302,
 315, 318
 Rea, D. G., 155
 Reaves, G., 59, 63
 Reber, E. E., 285
 Redman, R. O., 47
 Reed, G. W. Jr., 17
 Rees, D., 241
 Rees, M. J., 98, 203, 306,
 308, 309, 311
 Reeves, E. M., 210, 211,
 213, 216, 220
 Reeves, H., 24, 309
 Refsdal, S., 139, 193, 197,
 198, 204
 Reichel, A., 241
 Reilly, E. F., 295
 Reimers, D., 231
 Reiss, E. L., 343
 Renan, J. P., 285
 Rense, W. A., 216, 226
 Renzini, A., 138
 Reuyl, D., 123, 124
 Reynolds, J. H., 26, 27
 Reynolds, R. T., 176
 Ricardi, L. J., 289
 Richter, J., 5, 219
 Richter, N., 47, 48
 Riddle, R. K., 106, 108,
 124
 Ridgeley, A., 214, 225
 Rinehart, R., 91
 Ringwood, A. E., 8, 10, 18,
 20
 Roach, D. V., 27
 Roberts, G. O., 337
 Roberts, M., 52, 56, 59
 Roberts, P. H., 343, 345
 Robinson, A. R., 162, 171
 Robinson, A. V., 284
 Robinson, B. J., 90, 302
 Rocci, S. A., 273
 Rodgers, A. W., 82, 83
 Roesler, F. L., 150
 Rogers, A. E., 315
 Ronnang, B., 90
 Ronov, A. B., 149
 Rood, R. T., 137
 Rope, B., 216, 220
 Rose, W. K., 136, 138, 140,
 144, 145, 202, 359, 361,
 362
 Rossby, H. T., 330, 331,
 332, 341
 Rosseland, S., 261
 Rothman, H., 281
 Rouillard, M., 289
 Rowe, M. W., 29
 Roxburgh, I. W., 141, 143,

- 198, 202, 359
 Rozhestvensky, M. K., 149,
 151, 153, 158, 162
 Rubey, W. W., 148, 149, 155,
 175
 Rubin, V. C., 71
 Ruciński, S. M., 200
 Rudge, A. W., 281
 Rudnicki, K., 63
 Rule, B., 273
 Rumsey, V. H., 289
 Rusch, W. V. T., 271,
 289
 Russell, L. H., 150, 153,
 159
 Ryadov, V. Ya., 285
 RYBICKI, G., 237-70; 237,
 244, 253, 257, 264
- S
- Saffman, P. G., 349
 Sagan, C., 148, 153, 155,
 157, 162, 173, 177, 178
 Sahlin, H. L., 360
 SALPETER, E. E., 127-46;
 132, 133, 134, 135, 136,
 298, 309, 312, 317, 355,
 356, 362
 Sammis, C., 16
 Samuelson, R. E., 160,
 162
 Sancisi, P. R., 297, 298
 Sandage, A. R., 37, 38, 41,
 42, 43, 45, 49, 51, 54, 59,
 91, 93, 94, 136, 137, 138
 Sandage, H., 115
 Sandlin, G. D., 216, 220
 Sando, K., 219
 Sanl, R., 329
 Sanz, H. G., 27
 Sargent, W. L. W., 83, 94,
 98, 99
 Sartori, L., 99
 Saslaw, W. C., 202, 359
 Sato, S., 71
 Sauvener-Goffin, E., 358,
 359
 Savage, B. D., 305
 Savedoff, M. P., 134, 135,
 141, 362
 Scharlemann, E., 296
 Schatzman, E., 202, 358,
 359, 361
 Schilling, G. F., 160
 Schlesinger, F., 103
 Schlüter, A., 332
 Schmitt, R. A., 13
 Schneck, P., 337
 Schorn, R. A., 152, 161
 Schraml, J., 86
 Schramm, D. N., 28, 29
 Schubert, G., 171
 Schuerman, D., 141
 Schwarz, H. P., 28
 Schwartz, D. A., 306
 Schwartz, R., 357, 363
- Schwarzchild, M., 136, 137,
 138, 144, 330, 354
 Scott, E. H., 309, 311,
 318
 Scriven, L. E., 343
 Seaborg, G. T., 29
 Searle, L., 82, 83
 Seaton, M. J., 128, 129,
 130, 131, 362
 Secco, L., 202
 Segel, L. A., 332
 Seidel, B., 159, 164, 167
 Semenliuk, I., 194
 Sen, A. K., 289
 Sengbush, K. v., 145
 Serkowski, R., 77
 Sexton, J., 55
 Shakeshaft, J. R., 307
 Shakovsky, N. M., 200
 Shane, K. C., 28
 Shapiro, I. I., 149, 150,
 172
 Shapley, H., 36, 42, 43, 46,
 47, 53
 Sharkey, A. G. Jr., 21, 24
 Sharma, A., 150
 Shaviv, G., 134
 Shawl, S. J., 70, 72, 152
 Sheffer, E. K., 164, 166
 Shelus, P. J., 121
 Shimabukuro, F. I., 285
 Shimazu, Y., 177
 Shimizu, M., 166, 168
 Shirley, E. G., 47
 Shivanandan, K., 68
 Shklovskii, I. S., 130, 140,
 183
 Signer, P., 24, 26
 Silk, J., 98, 306, 308, 309,
 311
 Silveston, P. L., 331
 Simmons, A. J., 288
 Simon, G., 341
 Simon, N. R., 191, 200
 Sinclair, A. C. E., 153,
 158
 Singer, S. F., 17
 Sinton, W. M., 161
 Skilling, J., 358
 Skumanich, A., 249
 Slade, M. A., 149
 Slinger, T. G., 169
 Slipher, E. C., 156, 157
 Sloan, W. A., 212
 Smak, J., 77, 184, 198, 200,
 202
 Smith, B. A., 156, 171
 Smith, B. J., 16, 80, 305
 Smith, E. van P., 216
 Smith, H., 148, 161
 Smith, H. E., 91
 Smith, H. J., 148
 Smith, J. W., 21
 Smith, R. H., 13
 Smith, R. L., 136, 140, 144,
 145, 362
 Snellen, G., 88, 89
- Snezhko, L. I., 192
 Snyder, L. E., 296, 299,
 301, 302, 303, 304, 312,
 313
 Sobieski, S., 185
 Sobolev, V. V., 247, 264
 Sogin, H. H., 329
 Solomon, P., 299
 Solomon, P. M., 73, 296,
 298, 300, 301, 309
 Somerville, R. C. J., 329,
 337
 Somerville, W. B., 298
 Sommerscales, E. F. C.,
 331, 332
 Sorokin, V. S., 335
 Soter, S., 172, 177
 Spangenberg, W., 359
 Speer, R. J., 212, 213,
 225
 SPIEGEL, E. A., 323-52;
 325, 326, 328, 330, 334,
 336, 338, 340, 342, 344,
 345, 347, 349
 Spinrad, H., 38, 40, 55, 56,
 68, 71, 74, 75, 91, 99, 148,
 150, 152
 Spitzer, L., 176, 241, 247,
 294, 300, 309, 311, 312,
 316, 318
 Stallard, D. V., 287
 Stambach, G., 161
 Stankevich, K. S., 285
 Starrfield, S. G., 202, 205
 Stecher, T. P., 75, 317
 Stein, W. A., 69, 70, 71, 72,
 73, 74, 75, 76, 77, 78, 79,
 80, 81, 84, 85, 87, 88, 89,
 96, 98, 99, 161, 294
 Steinmetz, D., 71
 Stelzried, C. T., 289
 Stevens, R. J., 216, 226
 Stewart, J. C., 253, 254
 Stewart, R. W., 150, 153,
 159, 165, 166, 167, 168
 Stewartson, K., 345
 Stoekly, R., 202
 Stone, P. H., 171
 Stone, R. G., 307
 Stothers, R., 74, 133, 191,
 200, 361, 362
 Stratton, A. W., 285
 Strand, K. Aa., 106, 113,
 122, 124
 Strecker, D. W., 72, 74
 Strittmatter, P. A., 79, 80,
 81, 361
 Strobel, D. F., 170, 175
 Strom, K. M., 183
 Strom, S. E., 183
 Strong, J., 152, 155, 156
 Struve, O., 184, 197
 Stuart, J. T., 333, 334,
 343
 Studier, M. H., 21, 23
 Stull, V. R., 162
 Sturch, C., 297

AUTHOR INDEX

- Suess, H. E., 2, 4, 5, 13, 18, 19, 24
 Sagimoto, D., 134
 Sullivan, W. T., 302, 310
 Summa, C., 191, 193
 Sunyaev, R. A., 309
 Surkov, U. A., 149, 151
 Sutton, O. G., 324, 338
 Swarup, G., 276, 281
 Swedlund, J. B., 363
 Swope, H., 38, 40, 41, 42, 43
- Tammann, G. A., 54
 Tandon, S. N., 17
 Tassoul, J. L., 359
 Taylor, B., 40
 Taylor, G. I., 338
 Taylor, J. H., 91
 Teller, E., 360
 Temesváry, St., 316
 Tera, F., 28
 Terashita, Y., 361
 Thackeray, A. D., 42
 Thaddeus, P., 299, 304, 313
 Thomas, B. MacA., 288
 Thomas, D. B., 332
 Thomas, G. E., 216
 Thomas, H. C., 137, 188, 196, 200
 Thomas, R. N., 223, 226, 247, 257, 262, 263, 264
 Thompson, J. D., 329
 Thompson, R., 171
 Thorne, K. S., 204
 Thornton, D. D., 296
 Thrush, B. A., 168
 Tipplekirch, H., 329
 Titus, J. W., 287
 Tomasevich, G. R., 304, 313
 Toomre, J., 344, 345, 348
 Tooper, R. T., 356, 358
 Tousey, R., 211, 216, 220, 225, 226, 229, 230, 233, 234
 Towne, D. H., 241
 Townes, C. H., 87, 296, 299, 302, 310
 Townsend, A. A., 332, 335
 Tozer, D. C., 10
 Treanor, P. T., 112, 125
 Trimble, V. L., 130, 203, 204, 356
 Tritton, K. P., 95
 Truran, J. W., 136
 Tsuji, T., 19
 Tucker, K. D., 304, 313
 Turekian, K. K., 6, 10, 17, 176, 177
 Turner, B. E., 296, 298, 299, 300, 301, 307, 310, 311, 312, 313, 316
- Ulaby, F. T., 265
 Ulrich, B. T., 75
 Umetski, V. N., 281
 Underhill, A. B., 183
 Unger, J. H. W., 286
 Unsöld, A., 5
 Unsöld, A. O. J., 29
 Urabe, T., 177
 Urey, H. C., 2, 5, 6, 7, 9, 10, 11, 14, 17, 20, 21, 25, 28
 Uus, U., 187
- V
- van Agt, S., 38, 40, 41, 42, 43
 van Albada, T. S., 183
 Van Blerkom, D., 256, 263
 van de Hulst, H. C., 229
 VAN DE KAMP, P., 103-28; 103, 106, 107, 112, 113, 116, 117, 119, 120, 121, 122, 123, 124
 van den Bergh, S., 43, 48, 51, 60, 63
 van den Bos, W. H., 121, 124
 van den Heuvel, E. P. J., 200
 Van Horn, H. M., 135, 356, 360, 361, 362
 Van Regemorter, H., 237
 Van Schmus, W. R., 3, 4, 18, 19
 Van Speybroeck, L. P., 229, 233
 Varsavsky, C. M., 297
 Vdovynik, G. P., 20, 25
 Veronis, G., 325, 326, 332, 337
 Verschuur, G. L., 302, 316
 Viana, G. S., 229, 233
 Vila, S. C., 134, 135, 136, 359, 361, 362
 Vinogradov, A. P., 149, 151
 Visvanathan, N., 87, 88, 95
 Vitense, E., 338, 339
 Voelcker, K., 68
 Volders, L., 56
 Volet, Ch., 120
 von Hoerner, S., 280, 281, 282, 316
 von Michaelis, H., 7
 Vyssotsky, A. N., 106
- W
- Waddell, J. H., 285
 Wagner, R. L., 356
 Waggoner, R. V., 353
 Walker, J. C. G., 176, 177
 Walker, M., 51
- Wallace, L., 164, 166, 169, 170, 178
 Wallerstein, G., 41, 42, 43, 70, 71, 72, 73, 183
 Wanke, H., 24
 Wanner, J. F., 123
 Warming, R. F., 251, 254
 Warner, B., 202
 Wasserburg, G. J., 27, 28, 29
 Wasson, J., 8
 Wasson, J. T., 17
 Wattson, R. B., 149
 Webb, C. J., 59, 62, 63
 Weber, R. R., 307
 Webster, B. L., 129, 131
 Webster, W. J., 86
 Weidemann, V., 116, 129, 130, 361, 362, 363
 Weidlinger, P., 281
 Weigert, A., 139, 185, 190, 192, 193, 195, 196, 197, 198, 202, 204
 Weiss, H. G., 281
 Weiss, N. O., 341
 Weisskopf, V., 241, 242
 Welander, G., 338
 Welch, W. J., 296
 Welier, C. S., 167
 Werner, M. W., 98, 298, 300, 306, 308, 309, 311, 312
 Wesseling, P., 338
 Wesselink, A. J., 119
 Wesselius, P. R., 297, 298
 West, R. M., 185
 Westerlund, B., 78
 Westphal, J. A., 82, 83, 88, 89, 157, 160
 Weymann, R. J., 94, 95, 98, 137, 241
 Whaley, T. W. Jr., 285
 Wheeler, J. A., 353
 Wheeler, J. C., 204, 358, 363
 Whelan, J. A. J., 200
 Whipple, F., 298
 Whipple, F. L., 13
 White, O. R., 261
 White, R. E., 299
 Whitehead, J., 171
 Whitehead, J. A., 329, 334
 Whitten, R. C., 170
 Wickramasinghe, D. T., 361
 Wickramasinghe, N. C., 75, 78, 293, 298
 Widing, K. G., 216, 220
 Wiebelski, R., 274
 Wilk, H. B., 8
 Wildey, R. L., 160
 Williams, D. A., 317
 Williams, E. T. R., 106
 Williams, J. R., 77
 Williams, W. F., 289
 Willis, G. E., 329, 330, 332

- Willis, J. P., 7
Willner, S., 87, 88
Wilson, A. G., 36, 38
Wilson, R., 214, 217, 220,
 225
Wilson, R. W., 296, 301,
 307
Wilson, W. J., 71, 75, 89,
 90, 97
Wing, R. F., 68, 71, 74,
 75
Winnberg, A., 90
Wisniewski, W. Z., 71, 77,
 79, 81, 94
Withbroe, G. L., 210, 213,
 224, 225, 226, 227, 228,
 230, 232
Wlotzka, F., 24
Wolf, R. A., 141, 142, 143,
 315, 383
Wood, A. T. Jr., 149
Wood, D. B., 185, 196
Wood, F. B., 185
Wood, J. A., 2, 3, 4, 8, 10,
 11, 12, 13, 16, 19, 27, 28
- Woolf, N. J., 68, 69, 70, 71,
 72, 74, 76, 77, 78, 79, 80,
 81, 87, 200, 294
Woolley, R. v. d. R., 241,
 242
Worley, C. E., 106, 108,
 118
Wright, F., 54
Wulfsberg, K. N., 285
Wyller, A. A., 19
- Y
- Yabsley, D. E., 284
Yamamoto, Y., 134
Yang, K. S., 281
Yaroshevsky, A. A.,
 149
Yavnel, A. A., 8
Yesepkina, N. A., 281
Young, A. T., 156
Young, L. D. G., 150, 153,
 161
Young, R. A., 169
Young, R. E., 171
- Z
- Zagar, F., 120
Zahn, J.-P., 200
Zähringer, J., 24, 25, 26
Zander, R., 155, 156
Zanstra, H., 130, 241, 247,
 249, 263
Zapolsky, H. S., 355
Zappala, R. R., 71, 72,
 76
Zavelevich, F. S., 151
Zel'dovich, Ya. B., 204,
 335
Zinamon, Z., 134
Ziólkowski, J., 141, 185,
 188, 189, 192, 193, 196,
 197, 198, 202, 204
Ziólkowski, K., 204
Zuckerman, B., 296, 299,
 301, 302, 303, 304, 312,
 313
Zwickly, F., 35, 51,
 52
Zytkow, A., 143, 144

SUBJECT INDEX

A

Absorption
continuous, in models, 254
cross section for X-rays in ISM, 308
line coefficient
in multilevel atom, 260
in two-level atom, 243-44
of radio waves
Cytherean clouds, 156
terrestrial atmosphere, 284-85
Absolute magnitude
determination from parallax, 107
Abundance
see Composition
Acceleration
perspective change in proper motion, 119
Active regions--solar
changes with height, 233
chromospheric He I and II, 232-33
contrast in transition and corona, 214, 230
corona
density in, 231
energy input into, 231
transition zone, 231
conductive flux, 231
Adiabatic lapse rate
see Venus, Mars
Algol paradox, 184, 197
Aluminum
opacity jump at λ 2080, 215, 217
Amino acids in meteorites, 21
Anelastic approximation
in convective theory, 325
Angular momentum
in binary systems, 186
spin-orbit exchange, 199-200
variability, 187, 199-200
in interstellar clouds, 315
Antennas--filled aperture, 271-92
atmospheric effects
absorption of radio waves, 284-85
radiation, sky fluctuations, 285-86
refraction, index, path length variations, 286
definition, 271

distortions, 278-84
active control, 280-81
closed-loop control, 281
homologous deformations, 280-83
limit requirements, 278
multielement array, 281
open-loop control, 281
passive control, 281-83
size limit, 280
temperature effects, 280, 287
wind effects, 280, 287-88
feeds, 287-89
diffraction pattern, 288
long slotted waveguide, 289
requirements, 287-88
scalar, 288
shaped dielectric, 288
subreflector, 289
housing, 273, 287
measurement of surface, 283-84
modulated waves, 284
pentaprisms, 283
theodolite, 283
mounting, 278
recently completed large Goldstone, 273
Max-Planck, 274
millimeter-wave, 271-73
others, 278-79
Owens Valley, 273
Tata Institute, 275
Antennas--unfilled aperture, 271

Astrometry
limiting factors, 106
long-focus photographic, 103, 117
reflectors vs refractors, 106
Atmospheres
degenerate dwarfs, 361
planetary
dynamics, 170
evolution, 175-78
exosphere, 163
lower, 157
mesopause, 163
scaling from one planet to another, 170
thermosphere, 163
see also individual planets
solar
see Sun
Atmospheric effects

on radio waves
absorption, 284-85
radiation, 285-86
refraction, 286
Atomic recoil broadening, 241
Attenuation
of radio waves by Venutian clouds, 159
see also Extinction
Austasch coefficient
in mixing-length convection, 338

B

Barnard's star
path, 119
possible companions, 120
secular perspective acceleration, 119
velocity, 119
Binary stars
blue stragglers, 183
cataclysmic variables as binaries, 201-2
mass loss evidence, 202
periods, 201
spectra, 201-2
which component?, 202
as checks on stellar structure, 183
close binaries, 183-205
abundance anomalies, 200
Algol paradox, 184, 197
angular momentum, 186
angular momentum variability, 187, 199-200
basic concepts, 185-88
classification, 184, 205
correlation between excess luminosity and mass ratios, 187
critical surface, 186, 188
envelope expansion effect, 198
gravitational potential, 185-86
Kepler's law, 185, 189
Lagrangian points, 186, 188
light curve expected, 195-96
luminosity of primary after mass exchange, 194, 196
mass exchange
see Mars exchange

- mass loss from system, 188
 mass-luminosity-radius relation, 184, 197
 period range where mass exchange possible, 190-91
R Canis Majoris stars, 197
 reviews and catalogues, 185
 Roche surface, 186, 188
 separation of components, 188, 199
 synchronous and nonsynchronous rotation, 187, 198
 tidal distortion effects, 188, 195, 200
 undersize subgiants, 198, 200
 close binaries, evolution angular momentum loss effect, 188, 199
 angular momentum transfer, 199-200
 degenerate dwarfs as end products, 196-97, 203
 disks of gas, 199, 200, 204
 helium ignition effect, 195
 mass loss effect, 188, 199
 mass ratio reversal, 194
 phases when expansion to critical surface possible, 190-92
 of primary, 189-92, 194, 198
 pulsars as end products, 204
 reference of models, 192-93
 results from models, 193-200
 of secondary, 198-99, 204
 shock fronts, 198, 205
 supernova disruption, 203-4
 thermodynamic equilibrium departure, 194
 contact systems, 201
 common envelopes, 201
 energy transfer, 201
 equilibrium configuration, 201
 equation of motion
 combined mass, 113
 Kepler's law, 185
 mass ratio, 113
 semimajor axis, 113
 nearby systems, 104-5, 108, 112-16
 numbers, occurrence, 183
 runaway stars, 183, 203
 X-ray sources, 183
Bispyridylmagnesiumtetra-benzoporphine
 in the interstellar medium, 294
 Blue stragglers
 in dwarf galaxies, 42
 as products of mass exchange, 183
 Boundary relaxation length of photons in stellar atmospheres, 252
 Boussinesq approximation in convection theory, 325
 Broadening
 atomic recoil, 241
 collisional, 241, 256, 259
 Doppler, 241, 258
 natural, 241, 258
- C
- 3C273, 96-99
 Calculus of variations applied to convective heat transport, 335, 336
η Car, 83
 Carbon
 cooling in dark interstellar clouds, 301, 310-11
 Carbon stars, 75-77
 Cepheid variables
 in dwarf galaxies, 52-54
 period-luminosity relation, 54
 infrared radiation from, 78
 Chemical processes in early solar system, 5-26, 30-31
 molecule formation in interstellar medium, 317-19
 Chondrites
 age sequence, 8, 26-30
 carbonaceous, 4, 8, 9, 11-13, 20, 30
 chondrules, 3, 13, 28, 30
 classification, 3-4
 composition, 3, 4, 20-26, 30
 eustatite, 4, 8, 19-20, 30
 matrix, 3, 10, 11, 13, 28, 30
 metamorphism in, 4, 23, 27, 28
 ordinary, 4, 8, 9, 12, 14, 18-19, 30
 origin of properties, 4, 8, 13, 30
 oxidation, 18-20
 as unaltered condensate, 2, 5
 see also Fractionation
 Chondrules, 3, 13, 20, 28
 Chromosphere, 217-23
 active regions in He I and II, 232-33
 continuum edges, 221
 dissipation of conductive flux, 223-24
 emission wavelength vs height, 218
 extension of network into transition zone, 211, 235
 inhomogeneity, 222
 Lyman continuum, 221-23
 center-limb variation of color temperature, 221-22
 temperature, 221
 NLTE model, 221
 opacity sources, 217-20
 temperature distribution, 222, 226
 UV brightness temperature, 218
 UV limb brightening, 211, 218
 UV vs visual, 223
 velocities, 216, 223
 see also Sun
 Chronology of early solar system, 26-31
 Clouds
 Cytherean
 attenuation of radio waves by, 159
 composition, 151-52, 155, 159, 176
 refractive index, 156
 thermal profile, 158
 interstellar dark
 see Interstellar medium
 Martian
 condensation, 156
 diurnal, 156
 dust, 156-57
 haze, 156-57
 polarization, 156
 Collisional broadening, 241, 256, 259
 Collisional redistribution in multiplets, 265
 Collisions--role in spectral line formation, 241-42
 Color
 of dwarf galaxies, 39, 52-53
 of globular clusters in dwarf galaxies, 43
 temperature of chromospheric Lyman continuum, 221-22
 Comets
 silicates in, 69
 as solar companions, 118
 Companion stars--unseen nearby stars, 108, 112, 120-22, 125
 equations for, 116
 Composition--chemical anomalies caused by close binary mass exchange, 200
 chondrites, 4
 Cytherean atmosphere

SUBJECT INDEX

- see Venus
dwarf galaxies, 38, 40-43,
55-56
giant ellipticals, 40
interstellar medium
dark clouds, 295-301
normal, 301-5
Martian atmosphere
see Mars
planetary nebulae, 128
central star
primordial solar system,
4-30
uniformity, 5
see also Amino acids; Heavy
elements; Helium; Metals;
Organic compounds; Silicates
Condensates in early solar
system
see Chondrites; Condensation
sequence, Fractionation
Condensation
of Martian clouds, 156
Condensation sequence of
cosmic gas, 6-26
early condensation in solar
nebula, 8
summary for solar nebula,
30-31
see also Fractionation
Conduction-thermal
in degenerate dwarfs, 354,
360
in solar atmosphere
dissipation of, 223-24
funneling by magnetic field,
230
models and amounts, 223-
24, 231, 233, 235
Contact binaries
see Stars-binary
Continuous absorption
in stellar atmosphere models, 254
Convection, 323-52
anelastic approximation,
325
applicability of modern
theory, 324, 329
boundary effects, 335, 341-
42
Nusselt number, 342
overshoot, 341
shear layers, 341
bounds on heat transport,
335-36
calculus of variation, 335
dependence on Prandtl
number, 336
Boussinesq approximation,
325
strong form, 325
cooling in degenerate dwarfs,
355, 361
in Cytherean atmosphere,
- 162
dimensional arguments, dependence of Nusselt
free boundary, 334
no boundary (astrophysical approximation), 334-
35
on Rayleigh and Prandtl
numbers, 334-35
equations, general, 326-27
boundary conditions, 327
experimental results, 329-
32
dependence on Prandtl
number, 330
dependence on Rayleigh
number, 329
goals relevant to astrophysics, 323
mean quantities, definitions,
325-26
convective flux, 326
turbulent pressure, 326
measuring mean tempera-
ture, 332
mildly supercritical, 332-
34
degenerate perturbation
theory, 333
interacting modes, 334
linear stability, 333
wave number and planform,
333
mixing-length theory, 338-
43
acceptability, 350
approximations, 338
equations, 338-39
Nusselt number, dependence on Rayleigh and
Prandtl, 341
Peclét and Reynolds numbers, 339
results for laboratory,
340-41
natural units, 326
Nusselt number, 327
Nusselt number as measure
of heat flux, 330
at boundaries, 332
dependence on mode, 330-
31
dependence on Rayleigh
and Prandtl number, 330,
332
Prandtl number, 327
Rayleigh number, 327
stability theory, 327-29,
333
see also Stability--con-
vective
truncated expansions of
basic modes, 343-49
advantage over mixing
length, 348
applications, 346
choosing modes and cou-
pling, 345-48
coupling, 344
mean-field interaction,
344, 347
one mode, 345
two or more modes, 346,
347
turbulence theories, 349
turbulent diffusivity
contribution to transfer,
341-42
damping effect, 341-42
two-dimensional numerical
solutions, 337-38
Cooling
of degenerate dwarfs, 354,
360-62
by convection, 355, 361
of interstellar clouds, 294,
301, 310-11
Corona, 227-29
active regions
density in, 231
energy input from, 231
enhancement of lines,
214
electron density variations,
227-29
emission from
formulae, 227
separation of density and
temperature effects, 227,
232
isothermality, 227, 235
magnetic field from emis-
sion, 229, 233
resonance scattering of
chromospheric Ly α by
H I, 213
Cosmic rays
density determined from
interstellar ionization
state, 308
exclusion from interstellar
dark clouds, 309, 316
Crab nebula, 87
Crystallization of ions in
degenerate dwarfs, 355,
360
Debye temperature, 360
heat capacity, 360
specific heat, 360
Current-current interaction
neutrino loss in collapsing
stars, 133, 144, 361-
62

D

- Debye temperature, 360
Degenerate dwarfs, 353-66
contribution to local mass
density, 363-64
contribution to UV back-
ground, 363
crystallization of ions, 355,
360

- electron energy, 355
 electron momentum, 353
 electron pressure, 353
 as end products
 close binaries, 196-97
 planetary nebula stars, 130, 362
 equations of state, 355-56
 evolution, 132, 361
 to Type I supernovae, 363
 heat reservoir, 354, 360
 internal pressure, 353
 inverse β -decay, 355-56
 island of stability on mass-radius plane, 353
 low density limit, 355
 luminosity function, 362
 magnetic fields, 357
 dipole radiation, 363
 mass-radius relation, 353
 effect of ions, 355-56
 maximum mass
 Chandrasekhar, 354
 dependence on mean molecular weight, 356
 dependence on oscillation, 360
 dependence on rotation, 357
 observations, 356
 maximum radius, 355
 model atmosphere, 361
 convective cooling, 355, 361
 number vs mass, 130
 oscillations, 358-60
 nonradial, 359
 radial, 358
 population class, 364
 rate of creation, 129
 reviews, 354
 rotation, 356-57
 differential, 357
 effect on oscillation, 358-59
 kinetic energy, 356
 surface velocity, 357
 viscous dissipation, 357, 363
 structure, 354
 thermal bottleneck, 354
 thermodynamics, 360-61
 Depletion of heavy elements
 in dust clouds, 299-300
 see also Fractionation
 Dieguide dielectric antenna feed, 288
 Diffusivity in convection theory
 thermal, 326, 330, 335
 turbulent, 338-39, 341, 343
 Disks of gas about stars, 199, 200
 effect of turbulence, 204
 observational evidence, 200, 202
 Distortion
- of radioantennas
 see Antennas
 tidal, of close binaries, 188, 195, 200
 Diurnal clouds on Mars, 156
 Diurnal cycles in Martian atmosphere, 163
 Doppler width in spectral line formation, 241, 258
 effect of gradient in, 257
 Draco galaxy, 38
 Dust
 circumstellar
 infrared radiation from, 69, 71, 73, 74-75, 87, 99
 models, 80, 83
 origin, 74, 78, 80
 in QSOs, 98
 size of particles, 74, 80, 81, 83
 Cytherean, 159
 interstellar
 in dark clouds, 293-95
 in dwarf galaxies, 45, 56
 grain albedo, 293
 grain composition, 294
 grain density, 294
 grain shape, 294
 grain size, 293
 manifestation, 293
 temperature, 311-12
 Martian, 156-57
 Dwarf galaxies
 association with other galaxies, 59-63
 definition, 35
 ellipticals, 35-51
 blue stragglers in, 42
 color, integrated, 39
 discovery, 35
 dynamics, 49-51
 ellipticities, 47
 energy exchange in, 40
 globular cluster resemblance, 35, 39, 42, 45
 Hertzsprung-Russell diagram, 40
 horizontal branch, 40
 individual descriptions, 36-38
 interstellar gas, 45
 luminosity, 44
 luminosity distribution, 46
 luminosity functions of, 42
 mass, 44
 metal abundances, 38, 40-43
 nuclei, 38, 40, 51
 orbits, 50
 relaxation times, 49
 stellar content, 38-45
 structure, 46-51
 surface brightness, 35
 transparency, 45
 variable stars in, 42
 energy balance with other cluster members, 62, 63
 irregulars, 51-59
 chemical composition, 55
 distribution, 51
 dust, 56
 dynamics, 59
 H I content, 56
 H II regions, 55
 Hertzsprung-Russell diagram, 52
 interstellar gas in, 52
 luminosity distribution, 57
 luminosity functions, 53
 OB associations, 57
 similarity to Magellanic Clouds, 52, 53-57
 star clusters, 55
 star formation, 57
 stellar content, 52-55
 structure, 57-59
 variable stars in, 52-55
 location, 35, 51, 60
 luminosity limit of, 35
 origin, 35, 50
 tidal effects, 45, 48-51
 Dwarf stars
 see Degenerate dwarfs; Stars
- E
- Earth--atmosphere
 absorption of radio waves, 284-85
 diurnal thermal energy propagation, 175
 emission of radio waves, 285-86
 photodissociation of water, 177
 photosynthesis, 177
 refraction of radio waves, 286
 volatiles, 148-49
 evidence for outgassing, 149
 Electrons--degenerate in dwarfs
 energy as a function of density, 355
 heat conductivity, 354, 360
 inverse β decay, 355-56
 momentum, 353
 pressure, 353
 Elliptical dwarf galaxies
 see Dwarf galaxies
 Ellipticity
 of dwarf elliptical galaxies, 47

SUBJECT INDEX

- effect of mass exchange on, in close binary orbits, 189
- Emission free-free as infrared source, 70, 81
- of radio waves by terrestrial atmosphere, 285-86
- stimulated and spontaneous as source of line radiation, 239
- in two-level atom model, 243
- see also Infrared; Ultraviolet
- Emission measure of solar corona, 227
- of solar transition zone, 223
- Enrichment of early solar nebula, 8-9, 30
- see also Fractionation
- Estatite, 3
- Equation of state for degenerate dwarfs, 355-56
- Escape of probability of photons in stellar atmospheres, 250-51
- Evolution of degenerate dwarfs see Degenerate dwarfs of dwarf galaxies, 50, 57 of early solar system see Chondrite; Chronology; Condensation sequence; Fractionation; Meteorites; Planets; Solar system of stars see Stars of terrestrial type atmospheres, 175-78
- Excitation collisional both particles have internal structure, 240 rates, 240 as source of line radiation, 239 in two-level atom model, 243 radiative, as a sink of line radiation, 239
- Exosphere, 163
- Extinction conversion of ultraviolet to infrared, 239 in a dark cloud, 294, 305, 307 of starlight by dust, 293
- see also Attenuation
- F**
- Faculae--micro, 212, 229
- Fayalite, 3
- Feeds
- see Antennas
- Feldspar, 3
- Ferrosilite, 3
- Fischer-Tropesch reaction, 21-24
- Formaldehyde in dark clouds, 201
- Fornax galaxy, 36
- Forsterite, 3
- Fractionation condensation sequence, 6-26
- depletion of heavy elements in dust clouds, 299, 300 in early solar system, 5-31 chondrites, 9, 13 effect of gravitation, 16, 17, 26 evidence for, 8, 9, 11-13 locale, 4, 30-31 mechanism, 10-11 metal-silicates, 6, 7, 69 planets, 9-10, 16-17 process, 5-24 refractory elements, 6, 7-9 volatiles, 6, 11-18
- Free-free emission as infrared source, 70, 81
- G**
- Galerkin method applied to convection theory, 343-44
- see also Convection
- Glass in meteorites, 3
- Globular clusters in dwarf galaxies, 43 evolution of, 136-39 helium content, 137 intergalactic tramp, 35 planetary nebulae in, 128, 144 resemblance to dwarf galaxies, 35, 39, 42, 45
- Goldstone tracking station, 273
- GR 8 galaxy, 52, 58
- Grains see Dust
- Granulation--solar, 212
- Graphite in circumstellar clouds, 75, 78, 87
- Gravitational contraction of dark clouds in interstellar medium, 315 of stars to degenerate dwarfs, 132-35
- Gravitational radiation and close binaries, 189
- Gravitational redshift derivation from secular acceleration, 120, 123 for mass ratios of degener-
- ate dwarfs, 130, 356
- Greenhouse effect on Venus, 162
- H**
- H II regions in dwarf irregular galaxies, 55 infrared emission from, 84-87
- Harman-Seaton sequence, 127, 130-35, 140, 144
- Haze--Martian, 156-57
- see also Clouds
- HD 45677, 81
- Heat capacity of degenerate dwarfs, 354, 360
- Heating of Cytherean atmosphere, 162
- of interstellar clouds, 311-12
- Heavy elements abundance in dwarf galaxies, 38, 40-43 abundance in giant elliptical galaxies, 40 abundance in planetary nebulae, 128 depletion in dark clouds in ISM, 299, 300 superheavy elements ($Z=112-119$) in solar system, 29
- Helium burning in evolved stars, 135-36, 138 content in dwarf galaxies, 55 content in globular clusters, 137 content in planetary nebulae, 128 effect on close binaries, 195 shells, 136, 138
- Hertzsprung-Russell diagram of central stars of planetary nebulae, 130-32, 134 of dwarf galaxies, 40, 52 of nearby stars, 112
- Homologous deformation of radio antennas, 274, 280, 281-82
- Horizontal branch stars, 131, 137 in dwarf galaxies, 40 evolution, 137, 138, 144 mass, 137 as progenitors of planetary nebulae, 139
- Housing of radio antennas, 273, 287
- Hydration of minerals on Venus and Mars, 153
- Hydrocarbons

see Organic compounds
 Hydrogen--21 cm observations
 of dark clouds in ISM, 297
 of intercloud region, 299
 Hydroxyl radical
 emission in infrared sources, 75, 89-90
 infrared pumping, 90, 298-99, 311
 collisional quenching, 299
 in interstellar clouds, 300

I

IC 10 galaxy, 52
 IC 1613 galaxy, 51-53
 Ice caps on Mars
 composition, 150, 152
 equilibrium with atmosphere, 162-63
 Infrared excesses in stars
 characteristics, 69-70
 evidence of silicates, 69
 free-free emission, 70, 81
 origin, 69-70, 99-100
 polarization, 70
 typical temperatures, 70
 see also Infrared sources
 Infrared pumping of OH
 see Hydroxyl radical
 Infrared sources
 Be stars, 80-81
 electron density, 81
 free-free emission, 81
 variability, 81
 BL Lac, 99
 carbon stars, 75-77
 CO, CN absorption, 75-76
 correlation with optical, 75
 graphite, 75
 variability, 76
 Crab nebula, 87-88
 in dark clouds in ISM
 shockwaves, 299
 T Tauri stars, 305-6
 F and G supergiants, 78-79
 galactic center, 80-94
 association with Sag A, 93
 origin of radiation, 91-93
 H II regions, 84-87
 correlation with radio continuum, 87
 heating mechanisms, 86
 observations, 84-85
 origin of radiation, 86-87
 M31, 91, 93
 M82, 96
 Maffei I, 99
 M giants, 77
 M supergiants, 71-74
 CO absorption, 71

flux distribution, 72
 photospheric, 71
 polarization, 71
 silicates, 71
 Mira variables, 74-75
 CO absorption, 75
 variability, 75
 novae, 81-84
 synchrotron source, 83
 OH microwave emission sources, 89-90
 infrared pumping, 90, 298-99
 planetary nebulae, 87
 QSOs, 96-99
 dust, 98
 inverse compton scattering, 99
 origin of radiation, 98
 synchrotron radiation, 98
 variability, 98
 R CrB variables, 77-79
 graphite, 78
 optical correlations, 78
 RV Tauri stars, 77
 polarization, 77
 Sco XR-1, 88-89
 Seyfert galaxies, 94-96
 variability, 95
 surveys, 68-70
 optical identification, 68
 T Tauri stars, 80, 305-6
 Z CMa, 78-79
 see also Dust; Graphite;
 Infrared excesses; Synchrotron radiation; Venus
 Infrared wavelength region
 definition, 67
 observation in, 67-68
 Instabilities--thermal, in stellar structure, 138-40, 144
 Intergalactic tramp clusters, 35
 Interstellar gas
 in dwarf galaxies, 45, 55
 relative to early solar nebula, 8, 24
 Interstellar medium--dark clouds
 binding force, 318
 catalogues and reviews, 293
 chemical inhomogeneity, 312-13, 319
 cosmic rays in, 308-16
 exclusion from cloud, 309, 316
 dust
 albedo, size, 293
 other physical properties, 294
 see also Dust
 gas, chemical composition, 295-304
 carbon monoxide, 296, 301
 comparison with other regions, 301-4
 electron density, 300
 formaldehyde, 296, 301
 heavy element depletion, 299-300
 hydrogen atoms, 295-98
 hydrogen molecules, 296, 298-99
 hydrogen prediction and evidence, 298-99
 hydroxyl and oxygen, 296, 300
 other atoms, 296, 299, 300
 gas, temperature, 310-11
 cooling, 294, 301, 310-11
 heating, 311
 limits on excitation temperature, 297, 310
 observations, 310-11
 theory, 311
 grain temperature, 311-12
 heating, 312
 hydrogen 21 cm observations, 297
 internal motion, 312-17
 angular velocities, 315
 energy source, 315
 shockwaves, 314-15
 variation, 314-15
 ionization, 309
 magnetic field, 309, 316
 molecule formation, 317-19
 effect of past history, 318-19
 rates, 317
 physical properties, 295
 radiation field, 305-8
 relation to surroundings, 316
 temperature relaxation time, 315
 Interstellar medium--other than dark clouds
 21 cm variations with column density of dust, 297
 cold, dense regions
 chemical inhomogeneities, 303
 composition, 303-5
 excitation temperatures, 303
 ionization state
 cosmic ray density determination from, 308
 enhancement, 309
 measurement, 308-9
 rates, 309
 Sag B₂, 301-2
 composition, 301
 NH₃ pumping, 301
 velocity fields, 302
 Verschuur's clouds
 composition, 302

SUBJECT INDEX

- velocity fields, 302
 Inverse β decay in degenerate dwarfs, 355-56
 Inverse Compton scattering in QSOs, 99
 Ionization
 collisional as source of radiation, 239
 cross section for cosmic ray ionization, 308
 effects on radiation pressure mass loss, 143
 radiative
 of carbon by starlight in dark clouds in ISM, 300
 as sink of radiation, 239
 state of ISM
 cosmic ray density determination from, 308
 enhancement, 309
 measurement, 308
 rates, 309
 IRC 10011, 75-76
 IRC 10216, 76
 Iron abundance in photosphere and meteorites, 5
 Irregular dwarf galaxies
 see Dwarf galaxies
 Irregular variables in dwarf galaxies, 42, 54
- J
- Jupiter
 perturbation effect on Sun, 117-18
 as seen from α Centauri, 117
- K
- Kelvin time scale
 for mass exchange in close binaries, 184, 193, 195
 for thermal relaxation oscillation, 138
 Kepler's law for close binaries, 185
- L
- Lagrangian points in close binary systems, 186
 Leo A galaxy, 52
 Leo I galaxy, 36
 Leo II galaxy, 37
 Limb brightening in solar ultraviolet, 211, 218
 Limb darkening in solar ultraviolet, 212, 218
 Line absorption
 in multilevel atom model, 260
 in two-level atom model, 243-44
 Lines--profile
 effect of NLTE, 250
- function, 243, 248, 255
 solar UV profile studies, 215-16
 C II λ 1335, 216
 H Ly α , 216
 Mg $^+$ H and K, 215
 O I triplet λ 1305, 216
 see also Broadening
 Lines--spectral, formation of, 237-68
 continuous absorption inclusion, 254-55
 definitions: TE, LTE, NLTE, 238
 gradient effects
 density, 256
 Doppler width, 257
 Planck function, 257
 thermal, 256-57
 in moving atmospheres, 264
 multilevel atom model, 260-54
 equivalent two-level problem, 262
 line saturation case, 263-54
 optically thin case, 262-53
 redistribution, 261
 source function, 260, 262
 statistical equilibrium, 260-61
 transfer, 260
 multiple scattering, 253
 multiplets, 264-68
 analogy with single line redistribution, 266-67
 photon pool, 266-67
 photon switching, 265-66
 solution for linear, 266-68
 source function equality, 267-68
 overlapping lines, 256
 photon escape probability, 250-51, 253
 profile function, 243, 248
 radiative equilibrium, 253-54
 radiative processes, 240-43
 atomic recoil, 241
 collisional broadening, 241
 Doppler broadening, 241, 258
 natural broadening, 241, 258
 redistribution function, 240, 242
 scattering, 240
 transfer equation, validity, 242
 resonance lines, 243, 258
 reviews, 237
 scattering, nonisotropic, 255
- scatterings, mean number of, 251, 259
 source function in scattering atmosphere, 254
 sources and sinks of radiation, 239-40
 thermalization lengths, 252
 two-level atom model, 243-50
 absorption coefficient, 243-44
 application, 243
 broadband processes, 244-45
 emission coefficient, 243-45
 limiting forms, 249
 solution, 248-50
 source function, 245-46
 statistical equilibrium, 243
 wings, effect of, 240, 253, 255, 257, 259
- Local group
 see Dwarf galaxies, M31; Maffei I
- Local mass density--contribution from degenerate dwarfs, 363-64
- Long period variables in dwarf galaxies, 42, 54
- LTE
 definition, 238
 as limit towards interior, 249, 252
 in lower Cytherean atmosphere, 157
 in lower Martian atmosphere, 157
 in saturated lines, 264
 source function, 245
 two-level atom model, 250
- Luminosity
 of dwarf galaxies, 44
 of nearby stars, 104-5, 108, 111
- Luminosity function
 of degenerate dwarfs, 362
 of dwarf galaxies, 15, 42, 53
- Lyman α
 Cytherean atmosphere, 164, 166
 Sun, 212, 216
- Lyman continuum in Sun, 221-22
 variation from center to limb, 221-22
- M
- M8, 84
 M17, 84
 M31
 companions, 38
 infrared radiation from,

- 91, 93
Maffei I infrared radiation,
 99
Magellanic Clouds
 planetary nebulae in, 129,
 131
 similarity to dwarf galaxies,
 35, 52-54, 56
Magnetic field
 in and near dark clouds in
 ISM, 309, 316
 in degenerate dwarfs, 357
 in QSOs to explain synchrono-
 tron infrared, 98
 solar structure
 from coronal emission,
 229, 233
 from spicule channeling,
 223
Magnetic susceptibility effect
 on fractionation, 10, 26
Mariner flybys
 photographic studies, clouds,
 156
 radio refraction studies
 Mars, 150, 157-58, 163-64
 Venus, 149, 157-58, 163-
 64
Ultraviolet spectrometer
 studies
 Mars upper atmosphere
 composition, 153, 155-56,
 164-65
Mars-atmosphere
 chemistry
 photochemistry of CO₂,
 168
 photodissociation of H₂O,
 178
 clouds
 condensation, 156
 diurnal, 156
 dust, 156-57
 hazes, 156-57
 polarization, 156
 composition, 149-55
 CO₂, 149-50
 other gases, 153-54, 166-
 67
 seasonal variation, 152
 upper atmosphere, 166-70
 water, 150, 152-53
 dynamics, 170-74
 computer simulation, 173-
 74
 controls, 170
 diurnal, 173
 equator-pole energy ex-
 change, 172-73
 latent heat effects, 172
 lower atmosphere, 172-73
 scaling from one planet to
 another, 170
 topography effects, 173
 upper atmosphere, 173-75
 evolution, 175-77
 spectra, 155
 structure, lower atmosphere,
 157-63
 adiabatic lapse, 159
 convection, 163
 diurnal cycles, 163
 equilibrium with ice caps,
 162-63
 heat capacity, 162
 inversions, 159, 163
 LTE in, 157
 mixing, 157
 recombination, 157
 saturation of CO₂, 159
 thermal, observations,
 159-60
 thermal, theories, 162-63
 structure, upper atmosphere
 composition, 166-68
 electron density, 163-64
 mean free path, 163
 mixing, 168, 175
 NLTE, 163
 solar wind interaction,
 167
 thermal structure, 166-68
 variations, 166
Mars-surface
 hydration of minerals, 153
 permafrost, 153
 polar caps, 150, 152
Mars
 of degenerate dwarfs
 see Degenerate dwarfs
 determination from binary
 system, 113, 115
 of dwarf galaxies, 144
 of H II regions in dwarf
 galaxies, 55
 of planetary nebulae
 nebula, 128-29
 original star, 128
Mass exchange in close bina-
 ries
 angular momentum of system,
 187, 199-200
 effect on ellipticity, 189
 effect on surface abundances,
 200
 evidence for, 191, 193-94
 flow velocities, 187
 mass loss from system, 188
 models and errors, 186-87
 references, 192-93
 results, 193-94
 particle orbits, 204
 period range possible, 190-
 92
 phases of evolution when
 possible, 190-97
 off main sequence, 194-95
 toward carbon burning,
 191, 197
 toward helium burning,
 195-97
 reversal of mass ratio, 194
 time scales, rates
 convection effect, 189, 195
 dynamic, 195, 204
 extended atmosphere ef-
 fect, 187
 nonsynchronous rotation
 effect, 187, 198
 nuclear, 194
 thermal, 184, 193, 195
Mass loss
 binary systems, 188
 evolved stars, 137, 139
 infrared sources, 78, 80
 by radiation pressure, 141-
 43
 criteria, 141-43
 flow rates, 142-43
 ionization-recombination
 effects, 143
 kinetic energy transfer,
 142-43
 lifting energy, 142
 supersonic, 143
 velocities, 142
Mass-luminosity-radius rela-
 tion for close binaries,
 184, 197
Mass-luminosity relation
 for close binaries, 184,
 197
 for dwarf galaxies, 44
 for nearby stars, 115
Mass-radius relation for
 degenerate dwarfs, 353
 ion charge effect, 355
 ion temperature effect,
 356
Max-Planck Institut für Radio-
 astronomie, 274
Mean-field approximation in
 convection theory, 347
Mercury (planet)
 atmosphere observation,
 148
 escape of CO₂ and other
 gases, 178
Mesopause, 163
Metals
 in dwarf galaxies, 55
 in early solar system, 3,
 4, 6-9
 least volatile, 8
 see also Fractionation
Metamorphism in meteorites,
 4, 23, 27-31
Meteorites
 amino acids in, 21
 classes of, 3
 evolution of, 17, 30-31
 iron abundance in, 5
 metamorphism in, 4, 23,
 27-31
 noble gases in, 24-26
 origin of, 2, 20, 30-31
 see also Chondrites; Frac-
 tionation
Microfasculae--solar, 212,
 229
Milky Way--infrared from

SUBJECT INDEX

- velocity fields, 302
 Inverse β decay in degenerate dwarfs, 355-56
 Inverse Compton scattering in QSOs, 99
 Ionization
 collisional as source of radiation, 239
 cross section for cosmic ray ionization, 308
 effects on radiation pressure mass loss, 143
 radiative
 of carbon by starlight in dark clouds in ISM, 300
 as sink of radiation, 239
 state of ISM
 cosmic ray density determination from, 308
 enhancement, 309
 measurement, 308
 rates, 309
 IRC 10011, 75-76
 IRC 10216, 76
 Iron abundance in photosphere and meteorites, 5
 Irregular dwarf galaxies
 see Dwarf galaxies
 Irregular variables in dwarf galaxies, 42, 54
- J
- Jupiter
 perturbation effect on Sun, 117-18
 as seen from α Centauri, 117
- K
- Kelvin time scale
 for mass exchange in close binaries, 184, 193, 195
 for thermal relaxation oscillation, 138
 Kepler's law for close binaries, 185
- L
- Lagrangian points in close binary systems, 186
 Leo A galaxy, 52
 Leo I galaxy, 36
 Leo II galaxy, 37
 Limb brightening in solar ultraviolet, 211, 218
 Limb darkening in solar ultraviolet, 212, 218
 Line absorption
 in multilevel atom model, 260
 in two-level atom model, 243-44
 Lines--profile
 effect of NLTE, 250
- function, 243, 248, 255
 solar UV profile studies, 215-16
 C II λ 1335, 216
 H Ly α , 216
 Mg $^{\pm}$ H and K, 215
 O I triplet λ 1305, 216
 see also Broadening
 Lines--spectral, formation of, 237-68
 continuous absorption inclusion, 254-55
 definitions: TE, LTE, NLTE, 238
 gradient effects
 density, 256
 Doppler width, 257
 Planck function, 257
 thermal, 256-57
 in moving atmospheres, 264
 multilevel atom model, 260-64
 equivalent two-level problem, 262
 line saturation case, 263-64
 optically thin case, 262-63
 redistribution, 261
 source function, 260, 262
 statistical equilibrium, 260-61
 transfer, 260
 multiple scattering, 253
 multiplets, 264-68
 analogy with single line redistribution, 266-67
 photon pool, 266-67
 photon switching, 265-66
 solution for linear, 266-58
 source function equality, 267-68
 overlapping lines, 256
 photon escape probability, 250-51, 253
 profile function, 243, 248
 radiative equilibrium, 253-54
 radiative processes, 240-43
 atomic recoil, 241
 collisional broadening, 241
 Doppler broadening, 241, 258
 natural broadening, 241, 258
 redistribution function, 240, 242
 scattering, 240
 transfer equation, validity, 242
 resonance lines, 243, 258
 reviews, 237
 scattering, nonisotropic, 255
- scatterings, mean number of, 251, 259
 source function in scattering atmosphere, 254
 sources and sinks of radiation, 239-40
 thermalization lengths, 252
 two-level atom model, 243-50
 absorption coefficient, 243-44
 application, 243
 broadband processes, 244-45
 emission coefficient, 243-45
 limiting forms, 249
 solution, 248-50
 source function, 245-46
 statistical equilibrium, 243
 wings, effect of, 240, 253, 255, 257, 259
- Local group
 see Dwarf galaxies, M31; Maffei I
- Local mass density--contribution from degenerate dwarfs, 363-64
- Long period variables in dwarf galaxies, 42, 54
- LTE
 definition, 238
 as limit towards interior, 249, 252
 in lower Cytherean atmosphere, 157
 in lower Martian atmosphere, 157
 in saturated lines, 264
 source function, 245
 two-level atom model, 250
- Luminosity
 of dwarf galaxies, 44
 of nearby stars, 104-5, 108, 111
- Luminosity function
 of degenerate dwarfs, 362
 of dwarf galaxies, 15, 42, 53
- Lyman α
 Cytherean atmosphere, 164, 166
- Sun, 212, 216
- Lyman continuum in Sun, 221-22
 variation from center to limb, 221-22
- M
- M8, 84
 M17, 84
 M31
 companions, 38
 infrared radiation from,

- 91, 93
Maffei I infrared radiation, 98
Magellanic Clouds
 planetary nebulae in, 129, 131
 similarity to dwarf galaxies, 35, 52-54, 56
Magnetic field
 in and near dark clouds in ISM, 309, 316
 in degenerate dwarfs, 357
 in QSOs to explain synchrotron infrared, 98
 solar structure
 from coronal emission, 229, 233
 from spicule channeling, 223
Magnetic susceptibility effect
 on fractionation, 10, 26
Mariner flybys
 photographic studies, clouds, 156
 radio refraction studies
 Mars, 150, 157-58, 163-64
 Venus, 149, 157-58, 163-64
Ultraviolet spectrometer studies
 Mars upper atmosphere
 composition, 153, 155-56, 164-65
Mars-atmosphere chemistry
 photochemistry of CO₂, 168
 photodissociation of H₂O, 178
clouds
 condensation, 156
 diurnal, 156
 dust, 156-57
 hazes, 156-57
 polarization, 156
 composition, 149-55
 CO₂, 149-50
 other gases, 153-54, 166-67
 seasonal variation, 152
 upper atmosphere, 166-70
 water, 150, 152-53
dynamics, 170-74
 computer simulation, 173-74
 controls, 170
 diurnal, 173
 equator-pole energy exchange, 172-73
 latent heat effects, 172
 lower atmosphere, 172-73
 scaling from one planet to another, 170
 topography effects, 173
 upper atmosphere, 173-75
 evolution, 175-77
 spectra, 155
 structure, lower atmosphere, 157-63
 adiabatic lapse, 159
 convection, 163
 diurnal cycles, 163
 equilibrium with ice caps, 162-63
 heat capacity, 162
 inversions, 159, 163
 LTE in, 157
 mixing, 157
 recombination, 157
 saturation of CO₂, 159
 thermal, observations, 159-60
 thermal, theories, 162-63
 structure, upper atmosphere
 composition, 166-68
 electron density, 163-64
 mean free path, 163
 mixing, 168, 175
 NLTE, 163
 solar wind interaction, 167
 thermal structure, 166-68
 variations, 166
Mars-surface
 hydration of minerals, 153
 permafrost, 153
 polar caps, 150, 152
Mass
 of degenerate dwarfs
 see Degenerate dwarfs
 determination from binary system, 113, 115
 of dwarf galaxies, 144
 of H II regions in dwarf galaxies, 55
 of planetary nebulae
 nebula, 128-29
 original star, 128
Mass exchange in close binaries
 angular momentum of system, 187, 199-200
 effect on ellipticity, 189
 effect on surface abundances, 200
 evidence for, 191, 193-94
 flow velocities, 187
 mass loss from system, 188
 models and errors, 186-87
 references, 192-93
 results, 193-94
 particle orbits, 204
 period range possible, 190-92
 phases of evolution when possible, 190-97
 off main sequence, 194-95
 toward carbon burning, 191, 197
 toward helium burning, 195-97
 reversal of mass ratio, 194
 time scales, rates
 convection effect, 189, 195
 dynamic, 195, 204
 extended atmosphere effect, 187
 nonsynchronous rotation effect, 187, 198
 nuclear, 194
 thermal, 184, 193, 195
Mass loss
 binary systems, 188
 evolved stars, 137, 139
 infrared sources, 78, 80
 by radiation pressure, 141-43
 criteria, 141-43
 flow rates, 142-43
 ionization-recombination effects, 143
 kinetic energy transfer, 142-43
 lifting energy, 142
 supersonic, 143
 velocities, 142
Mass-luminosity-radius relation for close binaries, 184, 197
Mass-luminosity relation for close binaries, 184, 197
 for dwarf galaxies, 44
 for nearby stars, 115
Mass-radius relation for degenerate dwarfs, 353
 ion charge effect, 355
 ion temperature effect, 356
Max-Planck Institut für Radioastronomie, 274
Mean-field approximation in convection theory, 347
Mercury (planet)
 atmosphere observation, 148
 escape of CO₂ and other gases, 176
Mesopause, 163
Metals
 in dwarf galaxies, 55
 in early solar system, 3, 4, 6-9
 least volatile, 8
 see also Fractionation
Metamorphism in meteorites, 4, 23, 27-31
Meteorites
 amino acids in, 21
 classes of, 3
 evolution of, 17, 30-31
 iron abundance in, 5
 metamorphism in, 4, 23, 27-31
 noble gases in, 24-26
 origin of, 2, 20, 30-31
 see also Chondrites; Fractionation
Microfasculae--solar, 212, 229
Milky Way--infrared from

SUBJECT INDEX

- nucleus, 90-93, 100
 Miller-Urey reaction, 22-24
 Mira variables--infrared from, 74-75
 Mixing length convection theory
 see Convection
 Molecule formation in ISM, 317-19
 Mounting of radio antennae, 278
 Multiplets--models of line formation
 see Lines--spectral, formation
- N**
- Natural broadening, 241, 258
 Neutrinos
 current-current interaction energy loss for contracting stars, 133, 144, 361-62
 observational test, 362
 energy loss in globular cluster stars, 137
 photo-neutrino coupling, 133
 NGC 1068, 94, 96
 NGC 6822, 51-53
 NML Cyg, 71-72, 76
 NML Tau, 74, 76
 Noble gases in early solar system, 24-26
 isotopic amounts, 25
 origin, 24
 solubility, 25
 see also Helium
 Non-LTE
 application, 239
 in Cytherean upper atmosphere, 163
 definition, 238
 historical, 238-39
 line profiles in, 250
 processes in, 238
 source of absorption, 250
 spectral line formation, 237-68
 Novae
 as binary stars, 201-2
 infrared from, 80-84
 Nova Ser, 81
 NP 0532, 88
 Nuclei of galaxies
 dwarf ellipticals, 38, 40-41
 infrared emission from Milky Way, 90-93, 100
 M31, 91, 93
 Nucleosynthesis in early solar system, 29
 Nusselt number in convection theory
 definition, 327
 dependence on Rayleigh and Prandtl numbers, 330-32
 as energy transfer measure, 330
 see also Convection
- O**
- OH
 see Hydroxyl radical
 Olivine, 3
 Oort limit--contribution from degenerate dwarfs, 363-54
 Opacity
 circumstellar dust shells, 80
 coefficient in model atmospheres, 243, 254
 in Cytherean atmosphere, 162
 source near solar temperature minimum, 217-20
 Optical depth definition, 248
 Organic compounds
 CO in dark clouds in ISM, 296, 301
 CO in infrared sources, 71
 coolants in dark clouds in ISM, 301, 310-11
 in early solar system, 20-23
 content, 20-21
 reactions, 21-22
 survival, 23
 see also Graphite
 Orion nebula, 84
 Owens Valley Radio Observatory, 273
 Oxidation in early solar system, 3, 9, 18-20
- P**
- Parallax
 determinations, 106-8
 equations, 107
 measuring, 106
 probable errors, 107-8
 reference stars, 106
 of nearby stars, 104-5
 Peclet number in mixing-length convection theory, 339
 in astrophysical situations, 339
 Pegasus galaxy, 52
 Period-luminosity relation for Cepheids in dwarf galaxies, 54
 Permafrost on Mars, 153
 Perturbation
 on nearby stars, 116, 120-22, 124-25
 see also Companion stars
- of sun by planets, 117-18
 theory applied to convection theory, 333
 Photochemistry of CO₂ in terrestrial-type atmospheres, 168-70
 Photodissociation
 of CO₂, 168-70
 of H₂O
 on Mars, 178
 as source of O₂, 177
 Photo-neutrino coupling, 133
 Photosphere--solar brightness temperature as function of λ , 218
 granulation temperature excess, 212
 height-emission dependence, 218
 microfaculae, 212, 229
 opacity sources, 217-20
 radiative equilibrium vs mechanical energy, 220
 stark broadening at Al jump λ 2080, 215, 217
 temperature minimum, 220-21
 temperature, pressure determination, 215-21
 Photosynthesis, 177
 Planetary nebulae
 age, 127, 130
 central stars, 127-45
 composition of, 135, 144
 evolution, 130, 132-39, 144-45
 Harman-Seaton sequence, 130-31, 140, 144
 Harman-Seaton sequence in Small Magellanic Cloud, 131
 mass, 140
 neutrino losses, 133, 134
 original stars, 128, 139-40
 structure, 135-36, 144-45
 see also Degenerate dwarfs; Neutrinos; Stars
 chemical recombination effects, 143-44
 definition, 127
 ejection of, 140-42
 escape velocity, 141
 expansion velocity, 140
 flow rate expected, 142
 mechanisms, 141
 radiation pressure, 141-43
 see also Mass loss
 infrared radiation from, 87
 in globular cluster, 128, 144
 in Magellanic Clouds, 129, 131
 observational data, 128-30
 composition, 128

- distribution, 128-29
 gas, ionized, 128
 gas, neutral, 129
 rates of formation, 129
 relations between physical observables, 126-29
 review sources, 127
- Planets**
 atmospheres
 characteristics of layers, 157, 163
 dynamics, 170
 evolution, 175-78
 photochemistry of CO_2 , 168-70
 photodissociation of H_2O , 177-78
 photosynthesis, 177
 review articles, 148, 157
 chronology by radioactive decay, 26-29
 evolution, 5, 9-10, 15-17, 30-31
 noble gases in, 24, 26
 organic reactions in, 24
 perturbation effects
 Barnard's star, 120
 on Sun, 117-18
 terrestrial, 147
 see also individual planets
- Polar caps on Mars
 composition, 150, 152
 equilibrium with atmosphere, 162-63
- Polarization
 grain, gas temperature determination in ISM, 312
 in infrared excess stars, 70
 of Martian clouds, 156
 of starlight by dust, 294
- Populations
 of degenerate dwarfs, 364
 distinguishing characteristics, 128
- Prandtl number in convection theory
 definition, 327
 solar value, 330
 typical laboratory values, 330
- Pressure broadening, Martian atmosphere, 150, 153
- Profile
 see Lines--profile
- Proper motion
 faint nearby star survey, 103, 107
 perspective acceleration, 119
- Protogalaxy, 50
- Protostars
 evolution, 70
 infrared radiation, 70, 86, 100
 relation to early solar nebula, 2, 16
- Pulsars
 close binary evolution end product, 204
 determination of ISM electron density, 308
 infrared radiation from NP 0532, 88
- Pumping, radioactive
 of H_2CO , 299
 of NH_3 , 301
 of OH
 see Hydroxyl radical
- Pyroxene, 3
- Q**
- QSOs
 dust, 98
 infrared emission, 96-98
 variability, 98
- R**
- Radiation
 field in interstellar dark clouds, 305-8
 magnetic dipole from degenerate dwarfs, 363
 pressure mass loss
 see Mass loss
 spectral line formation, NLTE programs processes, 240-42
 roles, 237-38
 sources and sinks, 239-40
 see also Radiative transfer; Lines--spectral, formation of
- Radiative equilibrium
 in models of spectral line formation, 253-54
 in solar atmosphere, 220
- Radiative transfer
 equation for hydrogen 21 cm in clouds, 295-96
 multilevel atom model, 260
 two-level atom model, 243, 248
 validity of equation, 242
- Radioactive decay--chronology of early solar system, 26-29
- Radio noise from terrestrial atmosphere, 285-86
- Radius
 of dark cloud in ISM, 295
 of degenerate dwarfs
 ion charge effect, 355
 maximum, 355
 temperature effect, 356
- Rayleigh number in convection theory
 critical value for stability, 328-29
 definition, 327
 interpretation, 328
- solar value, 330
- R CrB variables--infrared from, 77
- Reactions**
 chemical
 between atmosphere and crust of terrestrial planets, 175
 in early solar system, 6, 8, 21-22
- thermonuclear in stellar evolution models, 133-36
- minimum masses and temperatures for ignition, 135
- Recombination**
 dielectronic as source of radiation, 239
 effect on radiation pressure mass loss, 143
- radiative**
 determination of ionization state of ISM, 309
 as source of radiation, 239
- three-body as source of line radiation, 239
- Reddening**
 η Car, 83
 circumstellar dust shells, 89
 dwarf galaxies, 53, 56
 Maffei I, 99
- Red giant stars, 131, 136
 infrared from, 71-74, 77
 mass loss from, 137
- Redistribution function
 definition, 240
- dipole transition, 255-56
 emission coefficient determination, 244
 general, 258-59
 multilevel atom models, 261
- natural Doppler broadening, 259
 as physical uncertainty, 242
- scattering, 255-56, 259
- Redshift--gravitational derivation from proper motion accelerations, 120, 123
- mass-radius ratio for degenerate dwarfs, 130, 136
- Reduction in early solar system, 9, 18-20
- Refraction of radio waves**
 as atmosphere probes from Mariner flybys, 149-50, 157-58, 163-64
 in Cytherean clouds, 156
 by terrestrial atmosphere, 286
- Refractor telescopes used in

SUBJECT INDEX

- astrometry, 106
 Relaxation times
 for dwarf elliptical galaxies, 43
 thermal, in interstellar clouds, 315
 Resonance lines
 general redistribution in, 258
 two-level atom model, 253
 Resonance scattering of chromospheric Ly α by coronal H I, 213
 Reynolds number in mixing-length convection theory, 339
 in astrophysical situations, 339
 Rings of gas about stars, 199-200, 202, 204
 observational evidence, 200, 202
 turbulence effect, 204
 Roche surface for binary systems, 186-88
 Rotation
 of Cytherean atmosphere, 171-72
 in degenerate dwarfs, 356-59
 differential, 357
 kinetic energy, 356
 pulsation effect, 358-59
 velocity, 357
 viscous dissipation, 357, 363
 in interstellar clouds, 315
 RR Lyr variables
 in dwarf galaxies, 42
 in globular clusters as mass indicators, 137
 Runaway stars as binary remnants, 183, 203
- S
- Scattering
 frequency noncoherent
 definition, 240
 noncoherence mechanisms, 240-41
 redistribution function, 240
 mean number of scatterings, 257, 259
 multiple scattering, 253
 nonisotropic, 255
 redistribution function, 259
 resonance fluorescence, 242, 246
 resonance scattering of chromospheric Ly α by coronal H I, 213
 Sculptor galaxy, 36
 Separation of stars in solar neighborhood, 109
- Sextans A, 52
 Seyfert galaxies as infrared emitters, 94-95
 Shockwaves
 in close binary mass exchange, 198, 205
 in interstellar dark clouds, 314-15
 Silicates
 circumstellar dust shells, 69, 71, 74
 comets, 69
 early solar system, 3-4, 6-7, 9
 interstellar medium, 69
 see also Fractionation
 Sinks of radiant energy, 239-40
 Solar system
 chemical processes in early, 5-26
 chronology by radioactive decay, 26-29
 composition, primordial, 4-5
 early evolution, 30-31
 noble gases in, 24-26
 nucleosynthesis in, 29
 organic matter, 20-24
 superheavy elements, 29
 Solar wind bombardment effects
 Mars, 187
 Mercury, 148
 Source function in radiative transfer
 agreement between isotropic and frequency-independent, 258-59
 for continuous absorption, 254
 definition, 245
 escape probability derivation, 251
 frequency-independent approximation, 246-47, 258
 isotropic approximation, 246, 258
 in LTE, 245
 as measure of excitation, 247
 in multilevel model, 260
 line saturation case, 263
 in multiplets, 264, 266-67
 in scattering atmosphere, 254
 statistical equilibrium derivation, 247
 two-level atom model, 249
 Sources
 of infrared
 see Infrared sources
 of radiant energy, 239-40
 Spicules-solar, 223
 energy source, 244
 transition zone at, 226, 235
- transition zone height from, 225
 Stability
 on the mass-radius plane, 353
 pulsational in degenerate dwarfs, 358-60
 Stability-conductive experiment, 329-30
 critical Rayleigh number, 329
 dependence on Prandtl number, 330
 dependence on Rayleigh number, 329
 theory, 327-29
 critical Rayleigh number, 328
 exchange of stability, 328
 metastability, 328
 Schwarzschild criterion, 327
 solution form including dissipation, 328
 vibrational or over-stability, 328
 Star formation in dwarf irregular galaxies, 57
 Stark broadening determination of temperature and pressure, 215, 217
 Stars
 Be infrared radiation from, 80-81
 binary
 see Binary stars
 carbon, infrared from, 75-76
 central stars of planetary nebulae
 see Planetary nebulae
 degenerate dwarfs
 see Degenerate dwarfs
 F giants, infrared from, 78-79
 G giants, infrared from, 78-79
 horizontal branch, 131, 137
 in dwarf galaxies, 40
 evolution, 137, 138, 144
 mass, 137
 as progenitors of planetary nebulae, 139
 mass loss
 see Mass loss
 M giants, infrared from, 71-74, 77
 nearby stars, 103-25
 astrometric data, 104-5, 108
 companions, unseen, 108, 112, 116-17
 density and spacing, 108-9, 115-16
 double stars, 112-14

- flare stars, 112
incompleteness of sample, 109
individual objects, 116-25
luminosity function, 111-13
mass-luminosity relation, 115
reduction data, 108
spectrum, luminosity, 112
velocity distribution, 109, 111
red giant
infrared from, 71-74, 77
mass loss from, 131, 136
structure and evolution
convection, adiabatic limit, 323, 335
globular cluster stars, 136-38
helium flash, 136-37, 139
highly evolved low-mass stars, 132-36, 144
luminosity and radius maxima, 191-92
main sequence turnoff point, 137, 139
mass-loss evidence, 137
mixing, 136-39
models with nuclear energy, 133-36
models without nuclear energy, with neutrino loss, 132-33, 144
Nusselt number, 334-35
radius vs time for 5 M_{\odot} star, 190
shell sources, 138
thermal instabilities, 138-40, 144
turbulence, 339
see also Binary stars; Convection; Degenerate dwarfs; Variable stars
Statistical equilibrium
multilevel atom model equations, 260
scattering treatment implications, 246
source function deviation, 247
two-level atom model equations, 243
Stellar content of dwarf galaxies, 38-45, 52-55
Sun
absolute heights of UV emission, 212
convection in, 323-24
Prandtl number, 330
Reynolds number, 330
see also Convection density, 116
inhomogeneous structure, 209, 212, 229-33, 235
chromosphere UV, 222
corona, 233
emission network, 211, 229
granulation temperature excess, 212
microfaculae, 212, 229
spicules, 223-25
in transition zone, 225, 230
mass, 116
perturbing effect of planets, 117-18
radius, 116
variation in brightness, 116
velocity relative to galactic center, 116
see also Chromosphere; Corona; Photosphere; Solar wind; Transition zone
Sun--ultraviolet observations, 209-35
absolute intensity measurement, 216
Aluminum jump at 2080 Å, 212
balloon observations, 212, 215
chromospheric emission network, 211
coronal emission lines, 211-14
echelle spectra, 214, 216
eclipse observations, 212, 213
definition of extreme ultraviolet (EUV), 208
limb observations, 212, 214-15
line profile studies, 215-17
C II at λ 1335, 216
H Ly α , 216
Mg⁺ H and K, 212, 215
O I triplet at λ 1305, 216
NRL slitless spectrograph, 211
OSO 4
spectroheliometer, spatial resolution, 210
spectrometer, spectral resolution, 213
OSO 6
spectrometer, resolution, 211, 213
rocket observations, 212, 214, 215
spacing of lines in EUV, 215
spectroheliograms in EUV, 211, 213
Supernovas as disruptors of binary systems, 183, 203-4
Synchrotron radiation in infrared sources, 83, 88, 98-99
Tata Institute, 275
Temperature minimum--solar
observations, 216, 220
radiative equilibrium vs mechanical heating, 220
Temperature profile of Cytherean atmosphere, 157-59, 165-67
of Martian atmosphere, 159
of solar atmosphere, 210, 233
chromosphere, 222, 226
corona, 210
photosphere, 220-22
transition zone, 223
Thermal bottleneck in degenerate dwarfs, 354
Thermalization length multiplets, 267
photons in stellar atmosphere models, 252-53
saturated lines, 264
Thermal time scale for cloud relaxation, 315
for mass exchange in close binaries, 184, 193, 195
for relaxation oscillations, 138
Thermodynamic equilibrium, 238
Thermodynamics of degenerate dwarfs, 360-63
Thermosphere characteristics, 163
Cytherean, 166
Martian, 166
Tidal distortion of close binaries, 188, 195, 200
Tidal effects on dwarf galaxies, 45, 48-51
Time scale dynamic for mass exchange in close binaries, 195, 204
Kelvin thermal cloud relaxation, 315
mass exchange in close binaries, 184, 193, 195
relaxation oscillations, 138
nuclear for mass exchange in close binaries, 194
Transition zone--solar, 223-27, 233-34
in active regions, 231, 233, 235
conductive flux, 223-24, 231, 233, 235
emission measure, 223
energy dissipation, 223-24
extension of chromospheric emission network, 211, 235

SUBJECT INDEX

- location of, 224-26
 irregular nature, 225
 around spicules, 226, 235
 magnetic field funneling of
 flux, 230
 pressure, 224, 229, 231
 temperature structure, 223-
 24
 thickness, 223
 effect on center/limb ratio
 of lines, 224
 three-parameter model, 224
- Transport coefficients
 convection theory
 thermal diffusivity, 326,
 330, 335
 turbulent diffusivity, 338-
 39, 341, 343
 viscosity, 339, 341
- degenerate dwarfs
 electrical conductivity, 361
 thermal conductivity, 354,
 360
 viscosity, 360-61
- Sun
 conduction funneling by
 magnetic field, 230
 thermal conduction, 223-
 24, 231, 233, 235
- Troilite, 3
- Turbulence
 in boundary layers of con-
 vective zones, 335, 341-
 42
 diffusivity, 340-42
 theories of, 349
 turbulent pressure, 326
 see also Convection
- U
- Ultraviolet radiation
 from degenerate dwarfs, 363
 from the Sun
 see Sun--ultraviolet obser-
 vations
- Undersize subgiants, 198,
 200
 see also Binary stars
- Ursa Minor galaxy, 37-38
- V
- Variable stars
 cataclysmic as close bina-
 ries, 201-3
 in dwarf galaxies, 42, 52-55
 see also individual variable
 type
- Velocity distribution
 of nearby stars, 109-10
 conversion of radial and
 proper motion to space,
 109
 galactic component of
 group motion, 110
 stream motion, dispersion,
- 110
- of planetary nebulae, 128
 Velocity of Sun relative to
 galactic circular, 110
- Venera probes
 atmospheric conditions on
 Venus
 CO_2 , 149
 Lyman α emission, 154
 other gases, 153
 thermal structure, 157-59
 water, 150, 152
- Venus--atmosphere
 brightness temperature, 151
 infrared, 160
- chemistry
 carbonates, 175
 photochemistry of CO_2 ,
 168-70
 photodissociation of H_2O ,
 177-78
- clouds
 attenuation of radio by,
 159
 refractive index, 156
 thermal profile evidence,
 158
- composition, 149-57
 clouds, 151-52, 155, 159,
 176
 CO_2 , 149-50
 H and He in upper atmos-
 phere, 166, 169-70
 H_2 , 169
 hydrogen/deuterium ratio,
 169-70, 178
 other gases, 153-54, 166,
 178
- upper atmosphere, 165-66
- variations, 152
 water, 150-51, 161, 170,
 176-78
- dynamics
 circulation, subsolar to
 antisolar, 171
 controls, 170
 lower atmosphere, 170-72
 rotation with four-day
 period, 171-72
 scaling from one planet to
 another, 170
 torque on planet, 172
 upper atmosphere, 173-75
 evolution, 175-78
 escape of gases, 176-77
 Lyman α , 164, 166
 spectra, 151-52, 154, 156
 reflection, 156
 structure--lower atmosphere,
 157-63
 adiabatic lapse rate, 158
 clouds, 160-61, 176
 clouds, evidence, 159
 convection, 162
 dust, evidence, 159
 greenhouse effect, 162
 heat deposition, 162
- heat sources, 162
 LTE, 157
 mixing, 157
 opacities, 162
 recombination, 157
 surface temperature, 158
 thermal, observation,
 157-58
- thermal, theory, 161-62
- turbulence, evidence, 159
- structure--upper atmos-
 phere, 163-70
- composition, 165-66
 density, absolute, 165
 electron densities, 163-
 65, 170
- mean free path, 163
 mixing, 168, 170, 175
 NLTE, 163
 observations, 163-70
 photochemistry of CO_2 ,
 168-70
- thermal, 165-68
 upper thermosphere tem-
 perature, 166, 168
- surface pressure, 149
- Venus--surface
 carbonate deposits, 150,
 176
 hydration of minerals, 153,
 176
- Viscosity
 in convection theory, 339,
 341
 in degenerate dwarfs, 360,
 361
- Volatiles
 fractionation of, 6, 11-17
 in terrestrial atmosphere,
 148-49
- VY CMa, 71-72, 76
- W
- White dwarfs
 see Degenerate dwarfs
- Wolf-Lundmark-Melotte, 52
- Wolf-Rayet stars as product
 of close binary evolution,
 196
- W Virginis variables in dwarf
 galaxies, 42
- X
- X-ray absorption cross sec-
 tion in ISM, 308
- X-ray sources in binary stars,
 183
- Z
- Zanstra mechanism in plane-
 tary nebulae, 130
- Z CMa, 78-79
- Zeeman splitting in interstel-
 lar clouds, 316

ANNUAL REVIEW OF ASTRONOMY
AND ASTROPHYSICS

EDITORIAL COMMITTEE (1971)

B. F. BURKE
L. GOLDBERG
R. P. KRAFT
G. P. KUIPER
D. LAYZER
D. E. OSTERBROCK
J. G. PHILLIPS
L. WOLTJER

**Responsible for organization of Volume 9
(Editorial Committee, 1969)**

B. F. BURKE
L. GOLDBERG
R. P. KRAFT
D. LAYZER
D. E. OSTERBROCK
J. G. PHILLIPS
F. L. WHIPPLE
L. WOLTJER

ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS

LEO GOLDBERG, *Editor*
Harvard College Observatory

DAVID LAYZER, *Associate Editor*
Harvard College Observatory

JOHN G. PHILLIPS, *Associate Editor*
University of California, Berkeley

VOLUME 9

1971

ANNUAL REVIEWS INC.
4139 EL CAMINO WAY
PALO ALTO, CALIFORNIA 94306

ANNUAL REVIEWS INC.
PALO ALTO, CALIFORNIA, USA

©1971 BY ANNUAL REVIEWS INC.
ALL RIGHTS RESERVED

*Standard Book Number 8243-0909-X
Library of Congress Catalog Number: 63-8846*

FOREIGN AGENCY
Maruzen Company, Limited
6, Toti-Nichome, Nihonbashi
Tokyo

PRINTED AND BOUND IN THE UNITED STATES OF AMERICA BY
GEORGE BANTA COMPANY, INC.

PREFACE

Volume 9 of the *Annual Review of Astronomy and Astrophysics* was planned by the Editorial Committee at a meeting at the University of California, Santa Cruz on 17 May, 1969. Dr. Joseph Wampler of the Lick Observatory was an invited participant and made many valuable suggestions. The Committee believes that the current volume should attract wide interest because it deals with so many timely and important subjects, and we are grateful to the authors for their excellent contributions. If other interesting topics are conspicuous by their absence, it is usually not that we have overlooked them but, as we have reminded our readers previously, because new work in progress makes a delay of a year or two seem highly desirable.

After this volume had gone to the printer, we learned with sorrow and dismay of the sudden death of Mrs. Joann Huddleston, who had served as Assistant Editor of the series from Volume 1 on. The high quality of her editorial work, the skillful and tactful management that brought out every volume on schedule, and the kind and friendly assistance she gave to editors and authors were deeply appreciated. Much of the heavy editorial work on manuscripts and proofs for this volume had been performed by Mrs. Huddleston.

We thank Mrs. Jacqueline Handley of the staff of Annual Reviews, Inc. for carrying on the work to completion so capably, and we are also indebted to the George Banta Company for an outstanding printing job.

THE EDITORIAL COMMITTEE

CONTENTS

METEORITES AND THE EARLY SOLAR SYSTEM, <i>Edward Anders</i>	1
DWARF GALAXIES, <i>Paul W. Hodge</i>	35
INFRARED SOURCES OF RADIATION, <i>Gerry Neugebauer, Eric Becklin, and A. R. Hyland</i>	67
THE NEARBY STARS, <i>Peter van de Kamp</i>	103
CENTRAL STARS OF PLANETARY NEBULAE, <i>E. E. Salpeter</i>	127
THE ATMOSPHERES OF MARS AND VENUS, <i>Andrew P. Ingersoll and Conway B. Leovy</i>	147
EVOLUTIONARY PROCESSES IN CLOSE BINARY SYSTEMS, <i>B. Paczyński</i> .	183
ULTRAVIOLET STUDIES OF THE SOLAR ATMOSPHERE, <i>Robert W. Noyes</i> .	209
THE FORMATION OF SPECTRAL LINES, <i>D. G. Hummer and G. Rybicki</i> .	237
FILLED-APERTURE ANTENNAS FOR RADIO ASTRONOMY, <i>J. W. Findlay</i> .	271
PHYSICAL CONDITIONS AND CHEMICAL CONSTITUTION OF DARK CLOUDS, <i>Carl Heiles</i>	293
CONVECTION IN STARS: I. BASIC BOUSSINESQ CONVECTION, <i>E. A. Spiegel</i>	323
RECENT DEVELOPMENTS IN THE THEORY OF DEGENERATE DWARFS, <i>Jeremiah P. Ostriker</i>	353
SOME RELATED ARTICLES APPEARING IN OTHER <i>Annual Reviews</i>	367
INDEXES	
AUTHOR INDEX	369
SUBJECT INDEX	378
CUMULATIVE INDEX OF CONTRIBUTING AUTHORS, VOLUMES 5 TO 9	391
CUMULATIVE INDEX OF CHAPTER TITLES, VOLUMES 5 TO 9	392

Annual Reviews Inc. and the Editors of this publication assume no responsibility for the statements expressed by the contributors to this *Review*.

REPRINTS

The conspicuous number (2014 to 2026) aligned in the margin with the title of each review in this volume is a key for use in the ordering of reprints.

The sale of reprints from all Annual Reviews volumes was initiated in July 1970. Reprints of most articles published in the *Annual Reviews of Biochemistry* and *Psychology* from 1961 and the *Annual Reviews of Microbiology* and *Physiology* from 1968 are now maintained in inventory.

Available reprints are priced at the uniform rate of \$1 each postpaid. Payment must accompany orders less than \$10. The following discounts will be given for large orders: \$5-9, 10%; \$10-24, 20%; \$25 and over, 30%. All remittances are to be made payable to Annual Reviews Inc. in US dollars. California orders are subject to sales tax. One-day service is given on items in stock.

For orders of 100 or more, any Annual Reviews article will be specially printed and shipped within 6 weeks. Reprints that are out of stock may also be purchased from the Institute for Scientific Information, 325 Chestnut Street, Philadelphia, Pa. 19106. Direct inquiries to the Annual Reviews Inc. reprint department.

The sale of reprints of articles published in the Reviews has been expanded in the belief that reprints as individual copies, as sets covering stated topics, and in quantity for classroom use will have a special appeal to students and teachers.

