Packet Scheduling for Deep Packet Inspection on Multi-Core Architectures

Nslab Seminar, Apr. 10th, 2013

Presenter: Zhi Liu

Outline:

- Introduction
- Background
- □ DPI packet scheduling algorithms
- □ Performance evaluation
- Conclusion

Introduction:

- DPI application
- PAM, software library using DPI to detect malicious network traffic
- □ PAM performance scale up
 - More CPU cycles
 - Thread level parallelism(multi-core, hardware threads)
- Packet scheduling problem among multi-thread DPI
 - TCP transition must be processed serially
 - Performance
- Contributions
 - Designed and implemented 2 new DPI scheduling algorithms
 - Algorithms evaluation
 - Scheduler design principles

Background:

Packet Scheduling Overview

- Packet based scheduling
 - E.g. round-robin
 - Packets evenly distributed but cache inefficient
- Flow based scheduling
 - Maintains a table of active flows, new flows assigned based on load
 - Per-flow packet order maintained
 - □ Fixed flow-thread affinity, flow table maybe large

Background:

Packet Scheduling Overview

- Fixed hash scheduling
 - Direct hash and indirect hash based on 5-tuples
- Adaptive hash scheduling
 - E.g. Receive-side scaling(RSS)
 - Utilizes indirect hash and re-calculate new indirect table when imbalance is detected
- Flow burst scheduling
 - Maintaining a flow table that only contains the flows(currently in the system) and their processing threads
 - □ Flows are not fixed to a thread, e.g. between packet bursts
 - When a packet arrives:
 - If the flow exists in the table, assign the packet to the corresponding thread
 - □ If not, assign the packet to the least loaded thread

DPI Packet Scheduler:

- Packet Scheduling for DPI
 - □ The goals of DPI scheduler:
 - Maximize throughput, minimize average latency, bound maximum latency, minimize reordered packet number within a flow

DPI Packet Scheduler:

- Ideal packet scheduler properties
 - Load balancing: work evenly distributed across all threads
 - Low scheduling overhead
 - Per-flow ordering
 - Cache affinity
 - Minimal packet delay variation
- Evaluating three scheduling algorithms
 - Direct hash
 - Packet handoff
 - Last flow bundle

Algorithm: Direct Hash(DH)

Parsing

Extract FID and hash

Algorithm: Packet Handoff(PH)

Connection queues(CQ) Connection entries

One flow per connection entry

Algorithm: Last Flow Bundle(LFB)

(two magnitude larger than threads #)

Performance Evaluation:

- Throughput evaluation
 - Maximum raw throughput
 - How it is calculated?
 - Maximum scaled throughput
- Latency evaluation
 - Average packet latency
 - Maximum packet latency
- **E**valuation Platform
 - Two 2.53GHz Intel Quad-Core Xeon E5440 processors, 4G RAM
 - Each core has its own L1(32KB I, 32KB D),L2(256KB)
 - 8cores share 8MB L3 cache

Performance Evaluation:

Network Captures

- Real traffic captured from the location where DPI appliance is deployed
- □ Three traffic captures:
- Dominant
 - Dominated by one TCP connection(over 50% of pkts and 27% of clocks)

Many

- Large amounts of small flows and spread throughout the capture
- Balanced

Caps	Packets	Conns.	Avg. Mb/s	Max. Mb/s	Avg. CPP	CD
Dominant	454,988	2,224	13	38	4,814	7
Many	1,567,397	105,691	27	74	5,658	50
Balanced	1,236,710	43,357	57	75	5,203	29

Table 1: Network Capture Attributes

Evaluation: Throughput

Figure 2: Dominant Capture Raw Throughput

Figure 3: Many Capture Raw Throughput

Evaluation: Latency

- DH has the highest average latency for all three captures due to imbalance.
- □ LFB has the highest maximum latency for the Dominant and Balanced captures
 - □ During a burst of traffic, packets in the RQ packets on an index in the FBQ are processed.
 - □ This does not happen with the Many capture because of the high connection density.

Figure 6: Average Latency

Figure 7: Maximum Latency

Evaluation: Cache Measurements

- For the Dominant capture, considerable cache misses for PH resulting from the large number of packet handoffs.
- For the Dominant capture ,DH and LFB have nearly identical cache miss.
- The Many capture
 produced the highest
 number of cache misses
 per packet for DH and
 LFB

Figure 8: Average Cache Misses Per Packet

Evaluation: Cache Measurements

- Evaluate the throughputs with half of the L3 cache available.
- For the Dominant capture, LFB performance only declined by around 7%.
 - Because the state for the dominant connection easily fits in the smaller L3 cache and it is accessed enough to keep it in cache.
 - As for DH, it experienced a higher percentage decrease.
- □ The results for the Many capture show throughput decrease for all three packet scheduling algorithms.

Figure 10: Dominant Capture with ½ L3 Cache

Figure 11: Many Capture with 1/2 L3 Cache

Conclusion:

- Design and implement two packet scheduling algorithms, each maximizes a different attribute of our ideal scheduler
- LFB maximizes cache affinity, outperforms the other two in terms of throughput for all network captures
- Results show the importance of cache affinity in packet scheduling

Thanks & Questions