1. Data Ingestion Pipelines

Batch Data Pipeline

- **Purpose**: To process historical data for model training and periodic retraining.
- Data Sources:
 - Historical ride data: Pickup/drop-off locations, ride types, timestamps.
 - Historical driver data: Ratings, acceptance rates, ride types.
- Tools:
 - o Apache Spark: For data transformation and cleaning.
 - o AWS S3: For storage of processed historical data.
- Flow:
 - 1. Extract data from relational databases (e.g., PostgreSQL).
 - 2. Transform and clean data using Spark jobs.
 - 3. Load processed data into S3 for downstream use.

Real-Time Data Pipeline

- **Purpose**: To handle live ride requests and driver availability updates.
- Data Sources:
 - o Ride requests: Pickup/drop-off locations, ride types.
 - o Driver updates: Location, availability, ride type preferences.
- Tools:
 - o **Apache Kafka**: For streaming real-time data.
 - o **AWS Lambda**: For triggering downstream pipelines.
- Flow:
 - 1. Ingest ride request and driver update events via Kafka.
 - 2. Stream data to a processing layer for immediate inference and optimization.

2. Data Transformation and Feature Engineering

Feature Engineering

- **Purpose**: To generate meaningful features for the ML model.
- Steps:
 - o **ETA Calculation**: Compute estimated time to the pickup location for each driver.
 - **Feature Encoding**: Convert categorical variables (e.g., ride type) into numerical representations.
 - Geofencing: Assign drivers and ride requests to specific geographic zones to reduce search space.
- Output:

 Transformed data is stored in an AWS Feature Store for reuse across training and inference pipelines.

3. ML Model Training Pipeline

Model Details

- **Algorithm**: Deep Reinforcement Learning (e.g., DQN or PPO).
- Input Features:
 - o Driver: Location, availability, ride type preference, rating, acceptance rate.
 - o Ride Request: Pickup/drop-off locations, ride type.
 - o Environmental: Real-time traffic data, geofencing zones.

Pipeline

1. **Data Preparation**:

- Pull data from AWS Feature Store and S3.
- o Split into training, validation, and test sets.

2. Model Training:

- o Train the RL model to predict compatibility scores for driver-ride pairs.
- Use historical data to simulate driver and passenger behaviors.

3. Validation & Testing:

- o Evaluate the model using a separate validation set.
- o Ensure low latency predictions for real-time inference.

4. Model Registry:

o Register the trained model in an AWS Model Registry for deployment.

4. Real-Time Inference

Steps

- 1. Fetch real-time data from Kafka streams.
- 2. Retrieve precomputed features from the AWS Feature Store.
- 3. Use the trained RL model to compute scores for all possible driver-ride pairs.
- 4. Send the scores to the graph-based optimization layer.

5. Graph Construction and Optimization

Graph Construction

- **Purpose**: Represent the driver-ride assignment problem as a bipartite graph.
- Details:
 - o Nodes:
 - Drivers.
 - Ride requests.
 - o Edges:
 - Compatibility scores from the ML model.

Graph-Based Optimization

- Algorithm: Hungarian Algorithm or Minimum Cost Flow.
- Goal:
 - o Minimize total ETA.
 - Maximize assignment efficiency.
- Output:
 - o Optimal driver-ride pairings.

6. Ride Assignment

- Details:
 - Assign drivers to rides based on optimized pairings.
 - Update driver availability in real-time.
- Tools:
 - o AWS Lambda: For triggering the ride assignment process.
 - o Kafka: For notifying drivers and passengers.

7. Retraining Pipeline

Trigger Conditions

- Periodic retraining (e.g., weekly).
- Data drift detection (e.g., significant changes in driver behavior or ride patterns).

Pipeline

- 1. Monitor data drift using real-time metrics.
- 2. Store new data in S3 and AWS Feature Store.
- 3. Trigger the model training pipeline for retraining.
- 4. Validate and deploy the updated model.

8. Geo-Fencing Implementation

• Purpose:

- o Improve scalability by dividing the operational area into smaller zones.
- Restrict driver-ride pairing computations within zones.

• Process:

- 1. Assign geofencing zones to both drivers and ride requests based on lat/long.
- 2. Run graph optimization independently for each zone.
- 3. Merge results for global ride assignment.