MISC-V HANDOUT

Reference Sheet

inst	fmt	func	opcode	description
+	R	0000	000	R[rd] = R[rs1] + R[rs2]
-	R	0001	000	R[rd] = R[rs1] - R[rs2]
1	R	0010	000	$R[rd] = R[rs1] \mid R[rs2]$
&	R	0011	000	R[rd] = R[rs1] & R[rs2]
+_	I	00	001	R[rd] = R[rs1] + SE(imm)
<< <u>_</u>	I	01	001	$R[rd] = R[rs1] \ll imm$
>>_	I	10	001	$R[rd] = R[rs1] \gg imm$
x _	I	11	001	$R[rd] = R[rs1] ^ SE(imm)$
<-	М		010	R[rd] = M[R[rs1] + SE(imm)]
->	М		011	M[R[rs1] + SE(imm)] = R[rd]
Y=	Υ		100	<pre>If(rs1==rs2) PC += SE(imm) << 1</pre>
Y<	Υ		101	<pre>If(rs1<rs2) +="SE(imm)" 1<="" <<="" pc="" pre=""></rs2)></pre>
\/	J		110	R[rd] = PC+2 PC += SE(imm) << 1
/\	J		111	PC = R[rd]

Register Names

Register	Name	Description	Saver
x0	zero	This register is always zero	-
x1	ra	This is the return address	caller
x2	sp	This is the stack pointer	-
х3	at	This is the assembler temporary	-
х4	a0	This is a temporary register that is used for	caller
x5	a1	function inputs and function return values	
х6	s0	These are usable saved registers	callee
х7	s1		

Writing Instructions:

Туре	Layout				
R	rs1 (op) rs2, rd				
I	rs1 (op) imm, rd				
М	rd (op) rs1+imm				
Υ	rs1 (op) rs2, imm				
J	rd (op) imm				

Example Program, Diffsums:

Diffsums:
$$sp - 4$$
, sp
 $s0 -> sp + 0$
 $s1 -> sp + 2$
 $a1 <- a0 + 0$
 $s0 <- a0 + 2$
 $a1 + s0$, $a1$
 $s0 <- a0 + 4$
 $s1 <- a0 + 6$
 $s0 + s1$, $s0$
 $a1 + s1$, $a0$
 $s1 <- sp + 2$
 $s0 <- sp + 0$
 $sp + 4$, sp
 $ra / 0$

The above program takes in an array location in memory that holds 4 values, then returns the following:

$$(m0+m1)-(m2+m3)$$