# Programação Paralela - OPRP001

Arquiteturas Paralelas, Grid's e Nuvens

Desenvolvido por Prof. Guilherme Koslovski e Prof. Maurício A. Pillon

# Agenda

- Motivação
- Definições
- Classificação de arquiteturas paralelas
- Exemplos de arquiteturas paralelas
- Estudo de caso

#### Processadores Vetoriais Paralelos (PVP)

- Exemplos: Cray C-90, Cray T-90, Fujitsu VP, NEC Sx
- Processadores otimizados para processamento vetorial
- PV -> processador vetorial
- MC -> memória compartilhada
- Classificação: UMA



# Multiprocessadores simétricos (SMP)

- Exemplos: SGI Power Challange, Sun Ultra Enterprise, DEC Alpha Server
- Processadores comerciais
- Todos os processadores tem igual acesso ao barramento
- P/C -> processador + cache
- MC -> memória compartilhada



### Máquinas Maciçamente Paralelas (MPP)

- 🖒 Exemplos: Intel Paragon, IBM SP2
- Milhares de processadores comerciais (P/C)
- 🖒 Rede proprietária de alta velocidade
- Obtenção de alto desempenho através da utilização de diversos processadores
- ML -> memória local
- AR -> adaptador de rede



#### **NVIDIA CUDA**

Projeto CUDA: Computer Unified Device Architecture



### Cell Processor

- Cell Broadband Engine Architecture (CBEA);
- Arquitetura semelhante a GPU NVIDIA G80; e
- Arquitetura utilizada em consoles PS3.



The CELL Architecture

# Redes de estações de trabalho (NOW)

- Várias estações de trabalho interligadas por tecnologia tradicional de rede (ex: Ethernet e ATM)
- Máquina NORMA



# Máquinas agregadas (clusters)

Principal diferença para NOW -> rede de baixa latência



União de clusters?

Domínios diferentes

Controle não centralizado

Padrões: interfaces e protocolos

- Exemplos:

  - www.futuregrid.org
- Mais de 9 sites interconectados por uma rede dedicada
- +/- 8000 processors
- Rede?
- Ponto no Brasil: UFRGS / POA



#### Processor families

| Processors \ Sites | Bordeaux | Grenoble | Lille | Luxembourg   | Lyon | Nancy   | Reims | Rennes  | Sophia | Toulouse | Processors total |
|--------------------|----------|----------|-------|--------------|------|---------|-------|---------|--------|----------|------------------|
|                    | Dordeadx | Grenobie | Line  | Luxellibourg | Lyon | Ivalicy | пошто | Herrico | Оорина | Toulouse | riocessors total |
| AMD Opteron        | 226      |          | 52    |              | 158  |         | 88    | 80      | 212    | 280      | 1096             |
| Intel Xeon         | 102      | 232      | 148   | 44           |      | 328     |       | 178     | 90     |          | 1122             |
| Sites total        | 328      | 232      | 200   | 44           | 158  | 328     | 88    | 258     | 302    | 280      | 2218             |

#### Processor details

| Processors \ Sites  | Bordeaux | Grenoble | Lille | Luxembourg | Lyon | Nancy | Reims | Rennes | Sophia | Toulouse | Processors total |
|---------------------|----------|----------|-------|------------|------|-------|-------|--------|--------|----------|------------------|
| AMD Opteron 2218    | 186      |          |       |            |      |       |       |        | 100    | 280      | 566              |
| AMD Opteron 250     |          |          |       |            | 158  |       |       |        |        |          | 158              |
| AMD Opteron 275     |          |          |       |            |      |       |       |        | 112    |          | 112              |
| AMD Opteron 285     |          |          | 52    |            |      |       |       |        |        |          | 52               |
| AMD Opteron 6164 HE |          |          |       |            |      |       | 88    | 80     |        |          | 168              |
| AMD Opteron 8218    | 40       |          |       |            |      |       |       |        |        |          | 40               |
| Intel Xeon E5420 QC |          | 68       |       |            |      |       |       |        |        |          | 68               |
| Intel Xeon E5440 QC |          |          | 92    |            |      |       |       |        |        |          | 92               |
| Intel Xeon E5520    |          | 164      |       |            |      |       |       |        | 90     |          | 254              |
| Intel Xeon E5620    |          |          | 56    |            |      |       |       |        |        |          | 56               |
| Intel Xeon EM64T    | 102      |          |       |            |      |       |       |        |        |          | 102              |
| Intel Xeon L5335    |          |          |       | 44         |      |       |       |        |        |          | 44               |
| Intel Xeon L5420    |          |          |       |            |      | 184   |       | 128    |        |          | 312              |
| Intel Xeon X3440    |          |          |       |            |      | 144   |       |        |        |          | 144              |
| Intel Xeon X5570    |          |          |       |            |      |       |       | 50     |        |          | 50               |
| Sites total         | 328      | 232      | 200   | 44         | 158  | 328   | 88    | 258    | 302    | 280      | 2218             |

- Reserva de recursos?
  - PBS
  - OAR
  - OGS (Open Grid Scheduler)

Como usar?

Nuvens Computacionais introduziram uma nova forma de entrega de serviços de TI, baseada em diminuição de custos, escalabilidade e aprovisionamento sob demanda, guiado pelos requisitos dos usuários.

- Início em 2006
  - AWS EC2 & S3
  - GoogleApps
  - Windows Azure
- Motivações
  - Flexibilidade
  - Elasticidade
  - Economia

  - Simplificação das infraestruturas de TI: recursos físicos e administração











- Principal motivador tecnológico
  - Virtualização de recursos computacionais

- Princípios, definições e constatações
  - Recursos de data-centers são particionados em máquinas virtuais
  - Recursos podem ser reservados por um determinado período de tempo
  - Recursos podem ser acessados via Internet
  - Usuários não possuem os recursos, apenas reservam e utilização um serviço
  - Usuários não possuem conhecimento sobre a composição da infraestrutura física

- Previsões para os próximos anos [RM10]
  - 60% das infraestruturas de TI serão movidas para a Nuvem até o ano de 2020
  - Nuvens serão mais acessíveis economicamente
  - O custo total de provedores de Nuvens Computacionais será de até 25% do custo total para o gerenciamento de um centro de dados tradicional
  - Maior suporte aos quesitos de confiabilidade e segurança

### Tecnologias de virtualização

- A virtualização de um recurso consiste na desmaterialização de sua capacidade física e funcional, e em sua representação através de entidades e serviços virtuais [MG09]
- Exemplos:
  - Criação de máquinas virtuais que atuam como recursos físicos
  - Criação de canais de comunicação virtuais que abstraem o verdadeiro caminho físico
- Motivação
  - Melhor utilização dos recursos físicos
  - Possibilidade de reconfiguração rápida
  - Mobilidade
  - 🖒 Segurança, abstração, acesso controlado
  - Diminuição de custos administrativos
  - Redução de custos com consumo de energia e gerenciamento







### Tecnologias de virtualização

Princípio: inserção de uma camada para desmembrar as camadas lógicas e físicas



#### Tipos de Nuvens Computacionais [ZCB10]

#### Nuvens Privadas:

- Nuvens internas ou Private Clouds
- Recursos internos de uma organização
- Usualmente os administradores possuem total controle sobre os recursos;
- Exemplos de Soluções VMware vCloud Director, OpenNebula, Xen Cloud Platform,
  Eucalyptus, Lyatiss CloudWeaver
- Maior confiabilidade e confidencialidade
- Uso controlado

#### 🖒 Nuvens Públicas:

- Nuvens externas ou Public Clouds
- Recursos são expostos sob a forma de serviços que podem ser comercializados
- Recursos virtuais geograficamente distribuídos
- Acesso via Internet
- Exemplo de soluções: Amazon EC2, Microsoft Azure, Salesforce.com, 3Tera, Google App Engine



- Tipos de Nuvens Computacionais [ZCB10]
  - Nuvens Híbridas:
    - Hybrid Clouds
    - Combinação de Nuvens Privadas e Públicas
    - Motivação: picos de execução, aumento da carga momentânea, aumento do número de usuários



#### Modelos de Serviço [MG09]

- Software como serviço:
  - Software as a Service SaaS
  - Mais alto nível de abstração
  - Permite a execução de aplicações que estão alocadas em servidores remotos, usualmente virtualizados
  - Exemplos de provedores: Microsoft Online, Salesforce.com, Rackspace, SAP Business ByDesign, Google Apps, NetSuite

#### SaaS App. 1 App. 2 App. 3 Middleware Framework Data access PaaS VMVMVMVM laaS Physical Server Server Server Server substrate

#### Plataforma como serviço:

- Platform as a Service PaaS
- Oferece frameworks que permitem o desenvolvimento de aplicações
- Exemplos de ferramentas: desenho, modelagem, desenvolvimento, testes e integração
- Não requer a instalação local das ferramentas
- Gerenciamento automático da escalabilidade
- Exemplos de provedores: Google App Engine, Microsoft Windows Azure e Force.com

- Modelos de Serviço [MG09]
  - Infraestrutura como serviço
    - Infrastructure as a Service laaS
    - Oferece máquinas virtuais como serviços sob demanda
    - Atualmente, MVs são interconectadas usando uma abordagem best-effort
    - Exemplos de provedores: Amazon EC2, GoGrid, Rackspace e Flexiscale



#### Nuvens de Comunicação: motivação

#### A rede é um fator determinante para o sucesso das Nuvens Computacionais

- A alocação e o aprovisionamento de recursos espalhados resulta em um aumento de latência entre: recursos internos e recursos-usuários
- Recursos espalhados aumenta a latência e compromete a execução da aplicação. Por exemplo, aumento de 175% no tempo para transferir um volume de dados
- A reserva de largura de banda é necessária para uma transferência de dados eficiente
- A localização geográfica do usuário e dos dados deve ser considerada durante a alocação e aprovisionamento dos recursos
- Usuários devem possuir mecanismos para especificar a configuração necessária para executar suas aplicações eficientemente

# Nuvens de Comunicação



# Nuvens Computacionais & Nuvens de Comunicação



[VXDLforum, 2011]