Introduction to Algorithm Engineering

Homework-1

Moida Praneeth Jain, 2022101093

Question 1

Let us choose node 1 to be the vertex u. We get the following BFS Tree

 $\mathrm{ecc}(u) = 2, F_0 = \{1\}, F_1 = \{2, 3, 4\}, F_2 = \{5, 6, 7, 8, 9, 10, 11, 12, 13\}, i = 2, \mathrm{lb} = 2, \mathrm{ub} = 4$

Let us start the BFS traversals from the bottom right

First, we perform BFS on node 13, and get the following BFS tree

Thus, we terminate the BFS and find that the diameter is 4.

We required a total of 2 BFS calls in this example.

Question 2

Commands/Files used:

- lscpu
- dmidecode
- /proc/cpuinfo
- /proc/meminfo

General

Manufacturer	LENOVO	
Product Name	82JU	
Version	Legion 5 15ACH6H	

CPU

Architecture	x86_64	
Op Modes	32-bit, 64-bit	
Address sizes	48-bits physical, 48-bits virtual	
Byte order	Little Endian	
CPUs	16	
VendorID, Model Name	AuthenticAMD, AMD Ryzen 7 5800H	
CPU Family	25	
Model	80	
Threads per core	2	
Cores per socket	8	
Sockets	1	
Max MHz	4463	
Min MHz	400	
Cache size KB	512	

Cache

	L1_Data	L1_Instruction	L2	L3
Size	8x 32 KB	8x 32 KB	8x 512 KB	16 MB
Associativity	8-Way Set Associative	8-Way Set Associative	8-Way Set Associative	16-Way Set Associative
Access Times	1.67ns	1.67ns	10.1ns	75.7ns

RAM

Туре	DDR4	
Size	16 GB	
DRAM Frequency	1600 MHz	

Question 3

The pseudocode for transposing an $n \times n$ matrix A and storing it in B is as follows

```
MatrixTranspose(A, B, N)
Begin
  for i = 1 to N do
    for j = 1 to N do
      B[j][i] = A[i][j]
    end-for
  end-for
End
```

Since we are reading matrix A in row-order, we get $\frac{N^2}{B}$ cache-misses while reading

Since we are writing to matrix B, the I/O operations is N^2 writes

Thus, the total number of I/O operations is $N^2 + \frac{N^2}{B}$