Experimental page: ratios of curve fit deaths to curve fit confirmed cases (CFR)

2-Sep-20 22-Oct-20 11-Dec-20

25-May-20 14-Jul-20

15-Feb-20 5-Apr-20 25-May-20 14-Jul-20 2-Sep-20 22-Oct-20 11-Dec-20 30-Jan-21

India cum. fit CFR ——World cum. fit CFR

--- World cum. fit CFR --- US cum. fit CFR

Demonstration of SIR model where R_e is linearly reduced to 0.75 at the end of the sequence:

False Positives Demonstration

15-Feb-20

Use 0.18% from US est. incidence above as estimated daily incidence Prevalence estimated as avg. infected period of 2 weeks X incidence

False pos. is a bit	over 1/4 of total positives!	
TRUE +	2.633%/3.61%	73.0%
FALSE +	0.973%/3.61%	27.0%
Total		100.00%

Counter-act this tendency by increasing test sensitivity. However this may increase false negatives, the recipients of which may be positive, think they're negative, and go spread it around some more.

Reducing the R_e while keeping gamma constant is the same as reducing contact rate. Contact rate is reduced through isolation, lockdowns, and vaccinations. Doesn't make much difference in this case, though.

USA Excess Deaths (from CDC data):

Annualized on 47 weeks

	All Cause	All Cause, excl.	CV19
3 yr average before 2020	855:100,000	855:100,000	-
2020	976:100,000	891:100,000	-
Diff.	121:100,000	36:100,000	85:100,000
Diff.	+14.2%	+4.2%	+10.0%

r average weighted 859:100,000

30% of All-Cause excess deaths are non-CV19

Here are some demonstrations of SIR model, using $R_{\text{e}}\text{,}$ gamma, and beta

