Activité 5.3 – Les fonctions organiques

Objectifs:

Connaître les 7 groupes caractéristiques et les 8 familles fonctionnelles associées.

Document 1 - Fonctions organiques

Certaines séquences d'éléments donnent des **propriétés** spécifiques aux molécules organiques que l'on classe en différentes familles ou fonctions organiques ou encore famille fonctionnelle.

En ST2S on étudie 8 familles : alcool, aldéhyde, cétone, acide carboxylique, ester, éther, amine et amide.

 R_1 , R_2 et R_3 sont des chaînes carbonées appelées « radicaux alkyles ».

Groupe caractéristique	Famille organique	Formule	Exemple
Hydroxyle	Alcool	R ₁ - OH	H ₃ C — OH méthanol
Carbonyle	Cétone	RP ₂ 1C	O butan-2-one
	Aldéhyde	R_1 C H	$egin{array}{c} \mathrm{O} \\ \parallel \\ \mathrm{H} -\!\!\!\!-\!\!\!\!-\!\!\!\!-\!$
Carboxyle	Acide carboxylique	R_1C O	O OH acide propanoïque
Ester	Ester	R_1C OR_2	propanoate d'éthyle
Éther-oxyde	Éther	R_1 R_2	Oéthoxyéthane
Amine	Amine	R_1 — NH_2	H_3C — CH_2 — NH_2 ethan-1-amine
Amide	Amide	R ₁ C O	$\bigvee_{\substack{\text{O}\\ \text{propanamide}}}^{\text{O}} NH_2$

Pour trouver les groupes caractéristiques d'une molécule, il faut repérer tous les éléments qui ne sont ni des carbones, ni des hydrogènes.

Document 2 - Radicaux alkyle

Les « radicaux alkyles », notés R, sont des morceaux de chaînes carbonées composées de liaisons simples avec des hydrogènes.

Méthyle	Éthyle	Propyle

1 - Identifier les fonctions organiques qui sont présentes dans les molécules suivantes

٠	 ٠		٠		•			•			•			•	٠.	•	 	•		٠	 	٠	٠.		٠	٠		•	٠	•		٠	٠		٠	•		٠	•		٠		٠	•		•	 	•		•		٠	٠		•		٠		٠	•	٠	•		٠
•	 •		•		•	• •		٠	• •	• •	•		• •	•		•	 	•	• •	•	 •	•			•	•		•	•	•	• •	•	•	•	•	•	•	•	•	• •	•		•	•	•	•	 	•	• •	•		•	•		•		•		٠	•	•	•	• •	•
•	 ٠		•		٠		٠.	٠		• •	•		٠.	•	٠.	•	 	٠		•	 	•	٠.		•	•		•	•	•		٠	•		•	•		•	•		٠	٠.	•	•	• •	•	 	•		•	٠.	•	•		•		•		٠	•	•	•	• •	٠
•	 •	٠.	•	٠.	•	٠.	٠.	•		٠.	•	٠.		•		•	 	•	٠.	•	 • •	•		• •	•	•	٠.	•	•	•	٠.	•	•	٠.	•	•	• •	•	•	٠.	•		•	•	• •	•	 	•	•	•		•	•	٠.	•	• •	•	٠.	•	•	•	•	٠.	•

Document 3 - Identification des familles organiques

Pour identifier une famille organique dans une molécule, il faut chercher si elle comporte des oxygènes O ou des azotes N.

Si elle comporte un oxygène O doublement lié à un carbone (O=), alors il faut regarder le voisinage du carbone

- s'il y a un groupe hydroxyle OH, on a un acide carboxylique.
- s'il y a un oxygène O, on a un **ester**.
- s'il y a un azote N, on a un amide.
- s'il y a un hydrogène H, on a un aldéhyde.
- sinon on a une cétone.

Sinon, si elle a un groupe OH, c'est un alcool; si elle a un azote N, c'est un amine; et si elle a

un oxygène O, c'est un éther.