ECE 302: Probabilistic Methods in Electrical and Computer Engineering

Fall 2020

Instructor: Prof. Stanley H. Chan

Mid Term 1

Fall 2020

Name	Elias Talcott	Session	i: MWF	3:30-4:10
Please copy and write the following statement:				
I certify that I have neither given nor received unauthorized aid on this exam.				
(Pleas	e copy and write the above statement.)	autoriaco	aid on	this exam.
		Eli	Healor	
T-1	• • (10			(Signature)
(a)	ise 1. (40 POINTS)			
	$A \triangle B = (A - B) \circ (B - A)$		2	
	(A & B = (A \ Be) \(\lambda (K \ \ B)\) A \(Be)	You B		

(b)

$$P[A \triangle B] = P[A \cap B^{c}] + P[A^{c} \cap B]$$
$$= P[A)P[B^{c}] + P[A^{c}]P[B]$$

$$P[A \land B] = P[A](I-P[B]) + (I-P[A]) P[B]$$

(c)

no overlap :.

(d)

Find P[A AB] Wen A contained in B

$$P[A \land B] = P[A^c \land B]$$

$$P[A \land B] = P[B] - P[A]$$

Exercise 2. (60 POINTS)

(a)

 $\Lambda = \{X = 0, X = 1\}$ Somple space is all results

O sent, I sent, O received, I received,

error occurs, no error occurs

(b)

 $P(x_{0}d \circ) = 1-p \quad P(r=1|s=0) = \xi_{0}$ $P(x_{0}d \circ) = p \quad P(r=0|s=1) = \xi_{0}$

(c)

$$P[X=1|r=1] = \frac{P[r=1|X=1]P[r=1]}{P[r=0|X=1]P[r=0] + P[r=1|X=1]P[r=1]}$$

(d)

Show that {error occurs} and {I received} are independent Ly implies $P[X=1 \ n=1] = P[X=1]P[r=1]$

$$P[X=1] = P_{E} = \xi(1-p) + \xi_{1}p = \xi_{0} - \xi_{0}p + \xi_{1}p$$

$$P[x=1] = P[x=1] \le P[x=0] + P[x=1] \le P[x=1]$$

$$= \xi_{0}(1-p) + (1-\xi_{1})(p) = \xi_{0} - \xi_{0}p + p - \xi_{1}p$$

(e)

(f)

(g)

$$\begin{aligned}
\mathbb{E}[X] &= O(1-P_{\varepsilon}) + I(P_{\varepsilon}) \\
\mathbb{E}[X] &= P_{\varepsilon}
\end{aligned}$$

$$\begin{aligned}
\mathbb{E}[X] &= P_{\varepsilon}
\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

The END