Теоретические ("малые") домашние задания

Математическая логика, ИТМО, МЗ234-МЗ239, весна 2019 года

Домашнее задание №1: «знакомство с исчислением высказываний»

- 1. Расставьте скобки:
 - (a) $\alpha \to \alpha \to \neg \beta \lor \beta \& \neg \alpha \lor \neg \beta \to \alpha \& \alpha \to \alpha \lor \beta \lor \beta$
- 2. Покажите следующие утверждения, построив полный вывод (в частности, если пользуетесь теоремой о дедукции раскройте все преобразования):
 - (a) $\alpha \vee \beta \vdash \neg (\neg \alpha \& \neg \beta)$
 - (b) $\alpha \& \beta \vdash \neg(\neg \alpha \lor \neg \beta)$
 - (c) $\alpha \to \beta \to \gamma \vdash \alpha \& \beta \to \gamma$
 - (d) $\alpha \& \beta \to \gamma \vdash \alpha \to \beta \to \gamma$
 - (e) $\alpha, \neg \alpha \vdash \beta$
- 3. Покажите следующие утверждения, построив полный вывод (за полный ответ будет считаться доказательство пяти утверждений из списка):
 - (a) $\gamma \vdash \alpha \rightarrow \gamma$
 - (b) $\alpha, \beta \vdash \alpha \& \beta$
 - (c) $\neg \alpha, \beta \vdash \neg (\alpha \& \beta)$
 - (d) $\alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
 - (e) $\neg \alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
 - (f) $\alpha, \beta \vdash \alpha \lor \beta$
 - (g) $\neg \alpha, \beta \vdash \alpha \vee \beta$
 - (h) $\alpha, \neg \beta \vdash \alpha \lor \beta$
 - (i) $\neg \alpha, \neg \beta \vdash \neg (\alpha \lor \beta)$
 - (j) $\alpha, \beta \vdash \alpha \rightarrow \beta$
 - (k) $\alpha, \neg \beta \vdash \neg (\alpha \to \beta)$
 - (1) $\neg \alpha, \beta \vdash \alpha \rightarrow \beta$
 - (m) $\neg \alpha, \neg \beta \vdash \alpha \rightarrow \beta$
 - (n) $\neg \alpha \vdash \neg \alpha$
 - (o) $\alpha \vdash \neg \neg \alpha$

Домашнее задание №2: «исчисление высказываний»

- 1. (Теоремы о корректности и полноте) Пусть Γ какой-то список высказываний и пусть α высказывание.
 - (a) Покажите, что $\Gamma \vdash \alpha$ влечёт $\Gamma \models \alpha$.
 - (b) Покажите, что $\Gamma \models \alpha$ влечёт $\Gamma \vdash \alpha$.
- 2. (Теорема Гливенко) Рассмотрим исчисление высказываний, в котором 10 схема аксиом (аксиома снятия двойного отрицания)

$$\neg \neg \alpha \rightarrow \alpha$$

заменена на следующую:

$$\alpha \to \neg \alpha \to \beta$$

Такой вариант исчисления высказываний назовём интуиционистским. Будем писать $\Gamma \vdash_{\mathbf{z}} \alpha$, если существует вывод формулы α из гипотез Γ в интуиционистском исчислении высказываний. Если же вывод производится в классическом исчислении (изученном на 1 и 2 занятиях), будем указывать это как $\Gamma \vdash_{\mathbf{z}} \alpha$.

- (а) Покажите, что если $\Gamma \vdash_{\mathbf{z}} \alpha$, то $\Gamma \vdash_{\mathbf{z}} \alpha$.
- (b) Покажите, что если α аксиома (1...9 схемы), то $\vdash_{\mathbf{z}} \neg \neg \alpha$.
- (c) Покажите, что $\vdash_{\mathbf{z}} \neg \neg (\neg \neg \alpha \to \alpha)$.
- (d) Покажите, что если $\vdash_{\mathbf{n}} \neg \neg \alpha$ и $\vdash_{\mathbf{n}} \neg \neg (\alpha \to \beta)$, то $\vdash_{\mathbf{n}} \neg \neg \beta$.
- (e) Покажите, что если $\vdash_{\mathbf{k}} \alpha$, то $\vdash_{\mathbf{n}} \neg \neg \alpha$ (теорема Гливенко).
- (f) Покажите, что если $\Gamma \vdash_{\mathbf{k}} \alpha$, то $\Gamma \vdash_{\mathbf{u}} \neg \neg \alpha$.
- (g) Назовём (классическое или интуиционистское) исчисление *противоречивым*, если для любой формулы α выполнено $\vdash \alpha$. Покажите, что формула α исчисления, такая, что $\vdash \alpha$ и $\vdash \neg \alpha$, существует тогда и только тогда, когда исчисление противоречиво.
- (h) Покажите, что если классическое исчисление высказываний противоречиво, то противоречиво и интуиционистское исчисление высказываний.

Домашнее задание №3: «общая топология»

Назовём топологическим пространством упорядоченную пару $\langle X,\Omega\rangle$, где X — некоторое множество, а $\Omega\subseteq\mathcal{P}(X)$ — множество каких-то подмножеств X. Множество X мы назовём носителем топологии (также можем назвать его топологическим пространством), а Ω — топологией. Элементы множества Ω мы будем называть открытыми множествами. При этом пара должна удовлетворять следующим свойствам (аксиомам топологического пространства):

- 1. $\varnothing \in \Omega, X \in \Omega$ (пустое множество и всё пространство открыты);
- 2. Если $\{A_i\}$, $A_i \in \Omega$ некоторое семейство элементов Ω , то $\bigcup_i A_i \in \Omega$ (объединение произвольного семейства открытых множеств открыто);
- 3. Если $A_1, A_2, \ldots, A_n, A_i \in \Omega$ конечное множество открытых множеств, то его пересечение также открыто: $A_1 \cap A_2 \cap \cdots \cap A_n \in \Omega$

Решите следующие задачи:

- 1. Задачи на определение пространства:
 - (a) Покажите, что при $X=\{0,1\},\ \Omega=\{\varnothing,\{0\},\{0,1\}\}$ пара $\langle X,\Omega\rangle$ является топологическим пространством.
 - (b) Покажите, что если X непустое множество, то пара $\langle X, \{\varnothing, X\} \rangle$ является топологическим пространством.
 - (c) Предложите примеры как минимум двух множеств $\Omega \subseteq \mathcal{P}\{0,1\}$, для которых $\langle \{0,1\},\Omega \rangle$ не топологическое пространство.
 - (d) Для каждой аксиомы топологического пространства приведите примеры таких пар $\langle X, \Omega \rangle$, в которых бы аксиома не была выполнена.
 - (e) Для $X = \mathbb{R}^n$ и Ω , содержащего все открытые множества (в смысле метрического определения, данного на мат. анализе), покажите, что $\langle X, \Omega \rangle$ является топологическим пространством.
- 2. Про каждое определение ниже покажите, что оно действительно задаёт топологическое пространство.
 - (a) $X = \mathbb{R}$, $\Omega = \{(x, +\infty) | x \in \mathbb{R}\} \cup \{\emptyset\}$ (топология стрелки)
 - (b) $X \neq \emptyset$, $\Omega = \mathcal{P}(X)$ (дискретная топология)
 - (c) $X=\mathbb{R},\ \Omega=\{A|A\subseteq\mathbb{R},\mathbb{R}\setminus A-$ конечно $\}$ множество всех множеств, дополнение которых конечно (топология Зарисского)
 - (d) X некоторое дерево, а открытыми множествами на нём назовём все множества, которые содержат узел вместе со всеми своими потомками: $A \in \Omega$ тогда и только тогда, когда если $a \in A$ и $a \ge b$, то $b \in A$.
- 3. Замкнутым множеством назовём множество, дополнение которого открыто.
 - (а) Покажите, что пересечение произвольного семейство замкнутых множеств замкнуто.
 - (b) Пусть A замкнутое, а B открытое множество в некотором пространстве. Что вы можете сказать про замкнутость или открытость $B \setminus A$ и $A \setminus B$?

- 4. Определим операции «взятие внутренности» и «взятие замыкания», покажите корректность этих определений (т.е. что определяемый объект существует):
 - (a) Для множества A внутренностью A° назовём максимальное открытое множество, что $A^{\circ} \subseteq A$.
 - (b) Для множества A замыканием \overline{A} назовём минимальное замкнутое множество, содержащее A.
- 5. Найдите $[0,1]^{\circ}$ и $\overline{[0,1]}$ в первых трёх топологиях из п. 2 (если взять в качестве носителя \mathbb{R})?
- 6. Найдите $\{0\}^{\circ}$ и $\overline{\{0\}}$ в первых трёх топологиях из п. 2 (если взять в качестве носителя \mathbb{R})?

Домашнее задание №4: «решётки, псевдобулевы и булевы алгебры»

- 1. Пусть задана некоторая решётка, в которой задано псевдодополнение. Докажите, что эта решётка является дистрибутивной.
- 2. Пусть задана дистрибутивная решётка. Покажите, что в ней для любых элементов a,b,c выполнено $(a+b)\cdot c = a\cdot c + b\cdot c$. А будет ли выполнено $(a+b)\cdot c = a\cdot c \to b\cdot c$?
- 3. Покажите, что если в решётке есть ∂ иамант или nентагон (то есть, найдутся 5 элементов указанным образом упорядоченных, среди которых есть две или три пары несравнимых), то решётка не является дистрибутивной:

- 4. Предложите пример дистрибутивной, но не импликативной решётки.
- 5. Докажите, что в импликативной решётке при любых значениях $a,\ b$ и c выполнены следующие утверждения:
 - (a) Из $a \sqsubseteq b$ следует $b \to c \sqsubseteq a \to c$ и $c \to a \sqsubseteq c \to b$;
 - (b) Из $a \sqsubseteq b \to c$ следует $a \cdot b \sqsubseteq c$;
 - (c) $a \sqsubseteq b$ выполнено тогда и только тогда, когда $a \to b = 1$;
 - (d) $b \sqsubseteq a \rightarrow b$;
 - (e) $a \to b \sqsubseteq ((a \to (b \to c)) \to (a \to c));$
 - (f) $a \sqsubseteq b \rightarrow a \cdot b$;
 - (g) $a \to c \sqsubseteq (b \to c) \to (a + b \to c)$
- 6. Пусть заданы некоторая алгебра Гейтинга $\langle H, \sqsubseteq \rangle$ и переменные A, B, C со значениями a, b, c $(a, b, c \in H)$. Покажите, что:
 - (a-i) Если ϕ схема аксиом 1–9, то при подстановке переменных A, B, C вместо вместо метапеременных при любых a, b, c будет выполнено $\llbracket \phi \rrbracket = \mathtt{H}$;
 - (j) Аналогично, будет выполнено $[\alpha \to \neg \alpha \to \beta] = \mathbb{N}$;
 - (k) Если заданная алгебра Гейтинга булева, то тогда выполнено и $[\![\alpha \to \neg \neg \alpha]\!] = \mathsf{И}$ и $[\![\alpha \lor \neg \alpha]\!] = \mathsf{И}$.
 - (l) Пусть ϕ и $\phi \to \tau$ некоторые истинные высказывания в указанной алгебре при указанных значениях переменных. Тогда τ тоже истинное высказывание
- 7. На основании предыдущего пункта покажите, что алгебра Гейтинга корректна как модель ИИВ, и что булева алгебра корректна как модель ИВ.
- 8. Про следующие высказывания определите, являются ли они доказуемыми в ИИВ:
 - (a) $((P \to Q) \to P) \to P$ (закон Пирса);
 - (b) $(\neg P \to Q) \lor (P \to \neg Q)$;
 - (c) $(P \rightarrow \neg Q) \rightarrow (Q \rightarrow \neg P)$;
 - (d) $P \rightarrow \neg \neg P$;
 - (e) $\neg \neg P \lor \neg \neg \neg P$;

Домашнее задание №5: «Гёделевы алгебры, модели Крипке»

1. Ещё немного про решётки. Будем говорить, что решётка содержит диамант или пентагон, если найдутся 5 элементов указанным на диаграмме образом упорядоченных. При этом, если p+q=r или $p\cdot q=r$ на данной диаграмме, то это же свойство выполнено и в исходной решётке.

- (а) Назовём решётку *модулярной*, если при всяких x и z, таких, что $z \sqsubseteq x$, выполнено $(x \cdot y) + z = x \cdot (y+z)$. Покажите, что решётка является модулярной тогда и только тогда, когда не содержит пентагонов.
- (b) Рассмотрим модулярную решётку: покажите, что она дистрибутивна тогда и только тогда, когда не содержит диамантов.
- 2. Покажите, что (\approx) является отношением эквивалентности. На основании этого покажите, что определение $[\alpha]_{\approx} \sqsubseteq [\beta]_{\approx}$ корректно (не зависит от выбора конкретных представителей класса эквивалентности).
- 3. Пусть A алгебра Гейтинга. Покажите, что $\Gamma(A)$ тоже алгебра Гейтинга.
- 4. Пусть задана алгебра Гейтинга А:

Постройте $\Gamma(A)$.

- 5. Можно ли для алгебры $\Gamma(\mathbb{R})$ построить топологию, порождающую данную алгебру? Вам нужно определить какой-то новый носитель и открытые множества для нём или указать, что это невозможно.
- 6. Могло сложиться впечатление, что $\mathscr L$ и $\Gamma(\mathscr L)$ почти ничем не отличаются. В связи с этим давайте немного изучим данный вопрос:
 - (a) Мы выяснили, что алгебра Линденбаума полная модель ИИВ. А справедливо ли это для $\Gamma(\mathcal{L})$ существует ли формула α , общезначимая в $\Gamma(\mathcal{L})$, но недоказуемая?
 - (b) Приведите пример неатомарной формулы α и такой оценки переменных, что $\llbracket \alpha \rrbracket_{\Gamma(\mathscr{L})} = \omega$.
 - (c) Мы можем построить аналог алгебры Линденбаума для классического ИВ, а потом применить к ней операцию «гёделевизации». Но если так получится доказать свойство дизъюнктивности для классической логики, то мы найдём противоречие в логике. Какое противоречие мы получим и какой переход в наших рассуждениях не получится сделать по аналогии?
- 7. Рассмотрим два множества, $a = (-\infty, 1)$ и $b = (0, \infty)$. Пусть $[\![A]\!] = a$ и $[\![B]\!] = b$. Понятно, что $[\![A \lor B]\!]_{\mathbb{R}} = 1$. Однако, ни A, ни B не истинны не закралась ли где ошибка в теорему о дизъюнктивности ИИВ?
- 8. Модели Крипке. Рассмотрим некоторый ориентированный граф без циклов (без потери общности можем взять дерево вместо такого графа). Узлы назовём *мирами* и пронумеруем натуральными числами: $W = \{W_1, W_2, \dots, W_n\}$. Будем писать $W_i \preceq W_j$, если существует путь из W_i в W_j . Понятно, что $W_i \preceq W_i$.

4

Каждому узлу сопоставим множество вынужденных переменных ИИВ и будем писать $W_i \Vdash A_k$, если переменная A_k вынуждена в мире W_i . При этом, если $W_i \preceq W_j$, то всегда должно быть выполнено и $W_i \Vdash A_k$ (знание, полученное нами, не исчезает в последующих мирах).

Обобщим отношение вынужденности на случай произвольной формулы:

- Если $W_i \Vdash \alpha$ и $W_i \Vdash \beta$, то $W_i \Vdash \alpha \& \beta$;
- Если $W_i \Vdash \alpha$ или $W_i \Vdash \beta$, то $W_i \Vdash \alpha \vee \beta$;
- Если в любом мире $W_k:W_i \preceq W_k$ выполнено, что из $W_k \Vdash \alpha$ следует $W_k \Vdash \beta$, то $W_i \Vdash \alpha \to \beta$;
- Если ни в каком мире $W_k: W_i \leq W_k$ не выполнено α , то $W_i \Vdash \neg \alpha$.

Так определённую упорядоченную тройку $\langle W, (\preceq), (\Vdash) \rangle$ — множество миров, отношение порядка на мирах и отношение вынужденности — назовём моделью Крипке. Будем говорить, что формула α вынуждается моделью (или является истинной в данной модели), если $W_i \Vdash \alpha$ в любом мире W_i . Будем записывать это как $\Vdash \alpha$.

(a) Построим пример модели, опровергающей формулу $P \lor \neg P$ (деревья в моделях Крипке у нас будут расти вправо):

В данной модели переменная P вынуждена только в мире W_2 .

Укажите все узлы, в которых вынуждено P, $\neg P$, $P \lor \neg P$ и сделайте вывод о вынужденности закона исключённого третьего в данной модели.

- (b) Постройте модель, опровергающую формулу $((P \to Q) \to P) \to P$.
- (c) Покажите, что любая модель Крипке обладает свойством: для любых W_i, W_j, α , если $W_i \preceq W_j$ и $W_i \Vdash \alpha$, то $W_j \Vdash \alpha$.
- (d) Покажите, что по любой модели Крипке K можно построить такую алгебру Гейтинга H, что $\Vdash_K \alpha$ тогда и только тогда, когда $[\![\alpha]\!]_H = 1_H$. Покажите из этого, что любая модель Крипке действительно модель ИИВ.
- (e) Предложите формулу, глубина опровергающей модели для которой (если её рассматривать как дерево) не может быть меньше 2. Можете ли предложить соответствующую конструкцию для произвольной глубины n?
- 9. Теорема о нетабличности интуиционистской логики.
 - (a) Рассмотрим следующее утверждение $(A \to B) \lor (B \to C) \lor (C \to A)$: покажите, что это утверждение верно в классической логике, но недоказуемо в интуиционистской. Интуитивно недоказуемость в интуиционистской логике очевидна: пусть A сегодня дождь, B сегодня мороз -30° по Цельсию, C сегодня понедельник. У нас нет никаких конструктивных способов показать из одного утверждения другое.
 - (b) Обозначим за ρ_n следующее утверждение:

$$\bigvee_{i \neq j; 0 < i, j \le n} (A_i \to A_j)$$

Покажите, что для любой табличной модели ИИВ T найдётся такое n, что $[\![\rho_n]\!]_T=$ И.

(c) Покажите, что $\nvdash \rho_n$ в ИИВ ни при каком n>1. Как из этого показать, что никакая табличная модель ИИВ не является полной?

Домашнее задание №6: «Исчисление предикатов»

1. Новые аксиомы и правила вывода для исчисления предикатов имеют ограничения (требования свободы для подстановки и отсутствия свободных вхождений). Если эти требования будут нарушены, исчисление станет некорректным. Данный факт можно показать, построив соответствующие опровергающие оценки для каких-то доказуемых формул. Постройте соответствующие формулы, доказательства и оценки.

- 2. Докажите следующие формулы в исчислении предикатов:
 - (a) $\forall x. \phi \rightarrow \phi$
 - (b) $(\forall x.\phi) \rightarrow (\exists x.\phi)$
 - (c) $(\forall x. \forall x. \phi) \rightarrow (\forall x. \phi)$
 - (d) $(\forall x.\phi) \to (\neg \exists x. \neg \phi)$
 - (e) $(\exists x.\phi) \to (\neg \forall x.\neg \phi)$
 - (f) $(\forall x. \neg \phi) \rightarrow (\neg \exists x. \phi)$
 - (g) $(\exists x. \neg \phi) \rightarrow (\neg \forall x. \phi)$
- 3. Опровергните формулы $\phi \to \forall x.\phi$ и $(\exists x.\phi) \to (\forall x.\phi)$
- 4. Докажите теорему о дедукции для исчисления предикатов:
 - (a) Если $\Gamma, \alpha \vdash \beta \rightarrow \forall x.\gamma$, то $\Gamma \vdash \alpha \rightarrow \beta \rightarrow \forall x.\gamma$ (если x не входит свободно в α).
 - (b) Если $\Gamma, \alpha \vdash (\exists x.\gamma) \to \beta$, то $\Gamma \vdash \alpha \to (\exists x.\gamma) \to \beta$ (если x не входит свободно в α).
 - (с) Сведите всё вместе и постройте общее доказательство теоремы.
- 5. Рассмотрим формулу α с двумя свободными переменными x и y (мы предполагаем, что эти метапеременные соответствуют разным переменным). Определите, какие из сочетаний кванторов выводятся из каких:
 - (a) $\forall x. \forall y. \alpha, \forall y. \forall x. \alpha$
 - (b) $\exists x. \exists y. \alpha, \exists y. \exists x. \alpha$
 - (c) $\forall x. \forall y. \alpha, \forall x. \exists y. \alpha, \exists x. \forall y. \alpha, \exists x. \exists y. \alpha$
 - (d) $\forall x. \exists y. \alpha, \exists y. \forall x. \alpha$

Домашнее задание №7: «Исчисление предикатов»

- 1. Пусть дано непротиворечивое множество замкнутых формул Γ , и пусть дана формула α . Покажите, что как минимум либо $\Gamma \cup \{\alpha\}$, либо $\Gamma \cup \{\neg \alpha\}$ непротиворечиво.
- 2. Пусть D предметное множество, и оно состоит из строк. Пусть Γ некоторое полное непротиворечивое множество замкнутых бескванторных формул. Пусть

$$[f_i(\theta_1, \theta_2, \dots \theta_k)] = \langle f_i() + + [\theta_1] + + [\theta_2] + \dots + + [\theta_k] + + \langle \rangle \rangle$$

Пусть

$$P_i(heta_1, heta_2,\dots, heta_k)=\left\{egin{array}{ll} \mathtt{M} extbf{,} & ext{если } P_i(heta_1, heta_2,\dots, heta_k)\in\Gamma \ \mathtt{J} extbf{,} & ext{иначе} \end{array}
ight.$$

Покажите тогда, что $\psi \in \Gamma$ тогда и только тогда, когда $[\![\psi]\!] =$ И. Для этого:

- (a) покажите, что α & $\beta \in \Gamma$ тогда и только тогда, когда $\alpha \in \Gamma$ и $\beta \in \Gamma$;
- (b) покажите, что $\alpha \lor \beta \in \Gamma$ тогда и только тогда, когда $\alpha \in \Gamma$, либо $\beta \in \Gamma$, либо выполнено оба утверждения;
- (c) покажите, что $\alpha \in \Gamma$ тогда и только тогда, когда $\neg \alpha \notin \Gamma$.
- (d) покажите, что $\alpha \to \beta \in \Gamma$ тогда и только тогда, когда либо $\neg \alpha \in \Gamma$, либо одновременно $\alpha \in \Gamma$ и $\beta \in \Gamma$.
- (е) при помощи сформулированных выше вспомогательных утверждений докажите требуемое утверждение.
- 3. Формализация понятий свободных переменных, свободы для подстановки, замены переменных.

Рассмотрим множество FV (свободных переменных) для формул:

$$FV(\psi) = \left\{ \begin{array}{ll} \bigcup_i FV(\theta_i), & \text{если } \psi \equiv P(\theta_1, \theta_2, \dots, \theta_n) \\ FV(\alpha) \cup FV(\beta), & \text{если } \psi \equiv \alpha \star \beta \\ FV(\alpha), & \text{если } \psi \equiv \neg \alpha \\ FV(\varphi) \setminus \{x\}, & \text{если } \alpha \text{ имеет вид } \forall x.\varphi \text{ или } \exists x.\varphi \end{array} \right.$$

и для термов:

$$FV(\theta) = \left\{ egin{array}{ll} \{x\}, & \mbox{ecлim } \theta \equiv x \\ igcup_i FV(\theta_i), & \mbox{eczim } \theta \equiv f(\theta_1, \theta_2, \dots, \theta_n) \end{array}
ight.$$

Рассмотрим операцию замены переменных, определим её для формул:

$$\alpha[x := \theta] = \begin{cases} \alpha, & \text{если } x \notin FV(\alpha) \\ P(\theta_1[x := \theta], \theta_2[x := \theta], \dots, \theta_k[x := \theta]), & \text{если } \alpha \equiv P(\theta_1, \theta_2, \dots, \theta_k) \\ (\psi[x := \theta]) \star (\varphi[x := \theta]), & \text{если } \alpha \equiv \psi \star \varphi \\ \neg (\psi[x := \theta]), & \text{если } \alpha \equiv \neg \psi \\ \forall y.(\psi[x := \theta]), & \text{если } \alpha \equiv \forall y.\psi \\ \exists y.(\psi[x := \theta]), & \text{если } \alpha \equiv \exists y.\psi \end{cases}$$

и для термов:

$$\rho[x := \theta] = \left\{ \begin{array}{ll} \rho, & \text{если } x \notin FV(\rho) \\ \theta, & \text{если } \rho \equiv x \\ f(\rho_1[x := \theta], \rho_2[x := \theta], \ldots, \rho_k[x := \theta]), & \text{если } \rho \equiv f(\rho_1, \rho_2, \ldots, \rho_k) \end{array} \right.$$

Контекстом подстановки $\alpha[x:=\theta]$ назовем следующую функцию от формулы и заменяемой переменной:

$$CX(\alpha,x) = \begin{cases} \varnothing, & \text{если } x \notin FV(\alpha) \\ CX(\psi,x) \cup CX(\varphi,x), & \text{если } x \in FV(\alpha) \text{ и } \alpha \equiv \psi \star \varphi \\ CX(\psi,x), & \text{если } x \in FV(\alpha) \text{ и } \alpha \equiv \neg \psi \\ CX(\psi,x) \cup \{y\}, & \text{если } x \in FV(\alpha) \text{ и либо } \alpha \equiv \forall y.\psi, \text{либо } \alpha \equiv \exists y.\psi \end{cases}$$

- (a) Покажите, что $x \in FV(\alpha)$ тогда и только тогда, когда x входит свободно в α (nodckaska: доказательство ведётся индукцией по длине формулы α);
- (b) Покажите, что $CX(\alpha, x) \cap FV(\theta) = \emptyset$ тогда и только тогда, когда θ свободна для подстановки вместо x в α ;
- (c) Покажите на основании данных определений, что если $x \notin FV(\alpha)$, то при любом множестве D и любых оценках символов и переменных из $[\![\beta \to \alpha]\!] = \mathbb{N}$ следует $[\![\exists x.\beta) \to \alpha]\!] = \mathbb{N}$;
- (d) Покажите на основании данных определений, что если $CX(\alpha, x) \cap FV(\theta) = \emptyset$, то при любом множестве D и любых оценках символов и переменных $[\![\alpha[x := \theta] \to \exists x.\alpha]\!] = \mathtt{M}$.

Домашнее задание №8: «Предварённая форма»

В силу значительного объёма данного задания, часть пунктов задания не будет раскрыта (будет сформулирована по аналогии) — эти пункты при ответе могут раскрываться на большое количество отдельных подпунктов, каждый из которых оценивается независимо.

- 1. Научимся выносить квантор всеобщности «наружу»:
 - (a) Покажите, что если x не входит свободно в α , то

$$\vdash (\alpha \lor \forall x.\beta) \to (\forall x.\alpha \lor \beta)$$
 и $\vdash ((\forall x.\beta) \lor \alpha) \to (\forall x.\beta \lor \alpha)$

(b) Покажите, что

$$\vdash ((\forall x.\alpha) \lor (\forall y.\beta)) \rightarrow \forall p. \forall q.\alpha [x := p] \lor \beta [y := q]$$

где p и q — свежие переменные, не входящие в формулу. Заметим, что в частном случае x может совпадать с y.

- (с) Докажите аналогичные утверждения для &.
- (d) Как будут сформулированы аналогичные утверждения для \to и \neg ? Сформулируйте и докажите их.
- 2. Научимся вносить квантор всеобщности «внутрь»:
 - (a) Покажите, что если x не входит свободно в α , то

$$\vdash (\forall x.\alpha \lor \beta) \to (\alpha \lor \forall x.\beta) \quad \mathbf{u} \quad \vdash (\forall x.\beta \lor \alpha) \to ((\forall x.\beta) \lor \alpha)$$

(b) Покажите, что если p не входит свободно в β и q не входит свободно в α , то

$$\vdash (\forall p. \forall q. \alpha \lor \beta) \to (\forall x. \alpha[p := x]) \lor (\forall y. \beta[q := y])$$

при условии, что x свободно для подстановки вместо p в α и y свободно для подстановки вместо q в β .

- (с) Докажите аналогичные утверждения для &.
- (d) Как будут сформулированы аналогичные утверждения для \to и \neg ? Сформулируйте и докажите их.
- 3. Сформулируйте и докажите аналогичные предыдущим пунктам утверждения для квантора существования.
- 4. Научимся работать со спрятанными глубоко кванторами. Пусть $\vdash \alpha \to \beta$, тогда:
 - (а) Докажите:

$$\vdash \psi \lor \alpha \to \psi \lor \beta \quad \vdash \psi \& \alpha \to \psi \& \beta \quad \vdash (\psi \to \alpha) \to (\psi \to \beta) \quad \vdash (\beta \to \psi) \to (\alpha \to \psi)$$

- (b) Сформулируйте и докажите аналогичное свойство для отрицания.
- (c) Докажите $\vdash (\forall x.\alpha) \to (\forall x.\beta)$. Надо ли наложить на формулы α и β какие-либо ограничения?
- (d) Докажите $\vdash (\exists x.\alpha) \to (\exists x.\beta)$. Надо ли наложить на формулы α и β какие-либо ограничения?
- 5. Опираясь на доказанные выше леммы, докажите, что если α формула, то для неё найдётся такая формула β с поверхностными кванторами, что:
 - (a) $\vdash \alpha \rightarrow \beta$
 - (b) $\vdash \beta \rightarrow \alpha$

Домашнее задание №9: «Машина Тьюринга, неразрешимость исчисления предикатов»

- 1. Давайте договоримся, что указывая внешний алфавит, мы не будем упоминать «пустой» символ ε , будем считать, что он всегда есть в алфавите. Постройте машины Тьюринга, вычисляющие следующие фунцкии:
 - (a) заменяющую ведущие нули числа в двоичной системе счисления на ε (в алфавите $A = \{0, 1\}$);
 - (b) в числе из алфавита $\{0,1,2\}$ вырезающую все нули, заполняя образующиеся пустоты сдвигая число влево: например, из числа 20001010232 должно получиться 211232;
 - (c) разворачивающую строку в алфавите $\{a,b\}$ в обратном порядке: из строки аааbababa должна получиться строка abababaaa.
- 2. Рассмотрим алфавит A, множество всех слов в этом алфавите A^* и некоторый язык $L \subseteq A^*$. Напомним, что мы будем называть машину Тьюринга разрешающей язык L, если на каждом слове $w \in A^*$ машина заканчивает работу в допускающем (s_A) или отвергающем (S_D) состоянии, причём машина переходит в допускающее состояние s_A тогда и только тогда, когда $w \in L$. Постройте машины Тьюринга, разрешающие следующие языки:
 - (a) язык всех ненулевых двоичных чисел $(A = \{0, 1\})$;
 - (b) язык всех чётных четверичных чисел $(A = \{0, 1, 2, 3\});$
 - (c) язык всех десятичных чисел, делящихся на $3 (A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\});$
 - (d) язык всех правильных скобочных последовательностей $(A = \{(,)\})$;
 - (е) язык всех корректно заданных машин Тьюринга (придумайте сами представление для машины Тьюринга);
 - (f) язык всех машин Тьюринга, имеющих не меньше трёх состояний;
 - (g) язык всех машин Тьюринга, завершающих работу не более чем за пять переходов.
- 3. Постройте логические формулы, кодирующие машины Тьюринга из первых двух подпунктов предыдущей задачи в исчислении предикатов.
- 4. Формализуйте доказательство того, что если машина Тьюринга достигает состояния P_x при наличии на ленте последовательности $\langle s,w \rangle$ (напомним, что данная запись означает, что головка находится на первом символе строки w, а слева от неё строка s, записанная в обратном порядке), то тогда $\vdash P_x(s,w)$.

Домашнее задание №10: «Аксиоматика Пеано, рекурсивные функции»

1. Возьмём следующие определения сложения и умножения, применяемые в аксиоматике Пеано. Важно: в отличие от определений с лекции, мы будем проводить разбор второго аргумента.

$$a + b = \begin{cases} a, & b = 0 \\ (a + x)', & b = x' \end{cases}$$

$$a \cdot b = \begin{cases} 0, & b = 0 \\ a + (a \cdot x), & b = x' \end{cases}$$

$$a^{b} = \begin{cases} 1, & b = 0 \\ a \cdot (a^{x}), & b = x' \end{cases}$$

Также определим следующую запись для натуральных чисел: $1=0',\, 2=0'',\,$ и т.д.

Также определим отношение порядка: пусть $a \leq b$ означает, что найдётся такой c, что a+c=b. Естественным образом можно далее определить a < b (когда $a \leq b$ и $a \neq b$), b > a (когда a < b) и $b \geq a$ (когда $a \leq b$).

Докажите следующие утверждения:

- (a) a + b = b + a
- (b) a + (b+c) = (a+b) + c
- (c) $a \cdot 1 = a$
- (d) $a \cdot b = b \cdot a$
- (e) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- (f) $a \cdot (b+c) = a \cdot b + a \cdot c$
- (g) $2 \cdot a = a + a$
- (h) Покажите, что если $a \le b$, то $a + c \le b + c$
- (i) Покажите, что если $a \leq b$ и $c \leq d$, то $a+c \leq b+d$
- (j) Покажите, что $a^b \neq b^a$
- (k) Покажите, что $a^{b^c} \neq (a^b)^c$
- (1) При каких a и b выполнено $a \cdot b > a + b$? Докажите полученное утверждение.
- 2. Докажите следующие утверждения в формальной арифметике:
 - (a) $\vdash p = p$
 - (b) $\vdash 0 + a = a$
 - (c) $\vdash 2 + 2 = 4$
 - (d) $\vdash 2 \cdot 2 = 4$
 - (e) $\vdash a = b \rightarrow b = a$
 - (f) $\vdash a = b \to a + 1 = b + 1$
 - (g) $\vdash a = b \rightarrow a + c = b + c$
- 3. Определим новое обозначение: будем писать $x \le y$ вместо $\exists a.x + a = y$ (и воспринимать это новое обозначение как своего рода макроподстановку). Также, введём обозначение для записи натуральных чисел в формальной арифметике:

$$\overline{n} = \left\{ \begin{array}{ll} 0, & n = 0\\ (\overline{n-1})', & n > 0 \end{array} \right.$$

Естественно, данные обозначения целиком принадлежат мета-языку. Покажите следующие утверждения:

- (a) $\vdash 1 < 2$
- (b) $\vdash a = b \rightarrow a \leq b$
- (c) $\vdash a \leq b \rightarrow a' \leq b'$

- (d) $\vdash a < b \rightarrow \forall c.a + c < b + c$
- (e) $\vdash a \leq b \lor b \leq a$
- (f) Обозначим за $\phi_n(x)$ формулу $x=0 \lor x=0' \lor x=0'' \lor \cdots \lor x=\overline{n}$. Покажите тогда, что при любом натуральном n выполнено $\vdash a \leq \overline{n} \to \phi_n(a)$
- (g) При любом натуральном n выполнено $\vdash \phi_n(a) \to a \leq \overline{n}$
- 4. Покажите, что следующие функции являются примитивно-рекурсивными:
 - (a) x + y
 - (b) 2x
 - (c) x^2
 - (d) $x \cdot y$
 - (e) x^y
- 5. Введём операцию «ограниченное вычитание»:

$$a \doteq b = \left\{ \begin{array}{ll} 0, & b > a \\ a - b, & \text{иначе} \end{array} \right.$$

Также определим деление с остатком: пусть даны натуральные числа a и b (b > 0). Известно, что найдутся два числа k и x ($0 \le x < b$), такие, что $a = k \cdot b + x$. Будем называть k частным от деления (и обозначать как a/b), а x — остатком (a%b).

Тогда покажите, что следующие функции являются примитивно-рекурсивными:

- (a) $x \doteq y$
- (b) x/y
- (c) x%y
- (d) $\max(x, y)$
- (e) «частичный логарифм»: $plog_x(a) = max\{t : a\%(x^t) = 0\}$
- (f) Функция, вычисляющая n-е простое число

Домашнее задание №11: «Представимость рекурсивных функций»

- 1. Пусть $R \subseteq \mathbb{N}^n$ некоторое отношение. Покажите, что R выразим в формальной арифметике тогда и только тогда, когда его характеристическая функция C_R представима в формальной арифметике.
- 2. Представимость примитива Z. Напомним, что мы представляем его формулой $\zeta := x_1 = x_1 \& 0 = x_2$.
 - (a) Покажите, что при любом натуральном k доказуемо $\vdash \overline{k} = \overline{k} \& 0 = 0$;
 - (b) Покажите, что при любом натуральном k доказуемо $\vdash \exists! p. \overline{k} = \overline{k} \& 0 = p.$
- 3. Представимость примитива N. Напомним, что мы представляем его формулой $\nu:=x_1'=x_2.$
 - (a) Покажите, что при любом натуральном k доказуемо $\vdash \nu(\overline{k}, \overline{k+1})$;
 - (b) Покажите, что при любом натуральном k доказуемо $\vdash \exists! p. \nu(\overline{k}, p)$.
- 4. Представимость примитива $S\langle g, f_1, \dots, f_m \rangle$ при условии представимости функций f и g (пусть их представляют формулы ϕ и γ). Напомним, что мы представляем примитив формулой

$$\sigma_{\gamma,\phi_1,...,\phi_m} := \exists f_1.\exists f_2....\exists f_m.\phi(x_1,...,x_n,f_1) \& \cdots \& \phi(x_1,...,x_n,f_m) \& \gamma(f_1,...,f_m,x_{n+1})$$

- (a) Покажите, что при любом $x \in \mathbb{N}$ и при $f_1, g : \mathbb{N} \to \mathbb{N}$ доказуемо $\vdash \exists r.\sigma_{\gamma,\phi_1}(\overline{x},r);$
- (b) Покажите, что в тех же условиях доказуемо $\vdash \exists! r.\sigma_{\gamma,\phi_1}(\overline{x},r);$
- 5. Покажите, что отношение «меньше» (<) выразимо в формальной арифметике.
 - (a) Предложите формулу λ , выражающую отношение, и покажите $\vdash \lambda(0,0'')$;
 - (b) Покажите, что $\vdash \lambda(a, a')$;
 - (c) Покажите, что $\vdash \lambda(a,b) \rightarrow \lambda(a',b')$;

- (d) Покажите, что $\vdash \lambda(0, a')$;
- (e) Покажите, что если a < b, то $\vdash \lambda(a, b)$;
- (f) Покажите, что $\vdash \neg \lambda(a, a)$;
- (g) Покажите, что $\vdash \neg \lambda(a,0)$;
- (h) Покажите, что $\vdash \neg \lambda(a,b) \rightarrow \neg \lambda(a',b')$;
- (i) Покажите, что если $a \ge b$, то $\vdash \neg \lambda(a, b)$.
- 6. Покажите, что функция «остаток от деления» (%) выразима в формальной арифметике (укажите схему доказательства, часть технических лемм может быть только сформулирована).
- 7. Представимость минимизации. Напомним, что примитив минимизации

$$M\langle f\rangle := \min\{y : f(x_1, \dots, x_n, y) = 0\}$$

представляется в формальной арифметике с помощью формулы

$$\mu_{\phi} := \phi(x_1, \dots, x_{n+1}, 0) \& \forall y.y < x_{n+1} \to \neg \phi(x_1, \dots, x_n, y, 0)$$

- (a) покажите, что $M\langle Z\rangle=0$, то есть $\vdash \mu_{\zeta}(0)$;
- (b) покажите, что $\vdash \neg \mu_{\zeta}(0')$;
- (c) А теперь более общий случай, $f: \mathbb{N} \to \mathbb{N}$. Покажите, что если $\vdash \exists x_1.\phi$, то $\vdash \exists y.\mu_{\phi}(y)$ (ϕ представляет f в формальной арифметике).
- (d) Покажите, что $\vdash \forall p. \forall q. p < q \lor p > q \lor p = q$
- (e) В условиях предыдущего пункта, покажите, что $\vdash \forall p. \forall q. \mu_{\phi}(p) \& \mu_{\phi}(q) \to p = q$

Контрольная работа 29 мая 2019 года

- 1. Покажите, что при любых предикатах P, Q и R выполнено $\vdash \forall x. (P(x) \to Q(x)) \lor (Q(x) \to R(x)) \lor (R(x) \to P(x))$
- 2. Покажите, что при любых предикатах P и Q выполнено $\vdash \forall x.((P(x) \to Q(x)) \to P(x)) \to P(x)$
- 3. Покажите в аксиоматике Пеано, что $(a+b)^2 = a^2 + 2ab + b^2$. Считайте леммы про ассоциативность и коммутативность сложения и умножения доказанными.
- 4. Покажите в аксиоматике Пеано, что $(a+b)\cdot (a-b)=a^2-b^2$. Считайте леммы про ассоциативность и коммутативность сложения и умножения доказанными.
- 5. Покажите, что $\vdash \exists x.0 + x = x + 0$ (приведите полное доказательство).
- 6. Покажите, что $\vdash \exists x.0 \cdot x = x \cdot 0$ (приведите полное доказательство).
- 7. Покажите, что $\vdash \forall x. \exists y. \neg 3 \cdot x = 4 \cdot y$
- 8. Покажите, что $\vdash \forall x. \exists y. \neg x + y = 3 \cdot x$
- 9. Постройте примитивно-рекурсивную функцию len(s), вычисляющую длину строки s в Гёделевой нумерации. Функции для сложения, умножения, ограниченного вычитания и деления с остатком считайте заданными.
- 10. Постройте функцию, возвращающую символ, стоящий в позиции n в строке s, заданной в Гёделевой нумерации. Функции для сложения, умножения, ограниченного вычитания и деления с остатком считайте заданными.
- 11. (Лемма об автоссылках) Покажите, что для любой формулы $\beta(x)$ найдётся такая формула α , что $\vdash \alpha \to \beta(\alpha)$ и $\vdash \beta(\alpha) \to \alpha$. Указание: используйте формулу $\forall a.\sigma(b,b,a) \to \beta(a)$, где $\sigma(p,q,r)$ доказуема тогда и только тогда, когда r результат замены всех свободных вхождений переменной x в формуле p на формулу q: $\rho = \pi[x := \psi]$, где $\lceil \rho \rceil = r$, $\lceil \pi \rceil = p$, $\lceil \psi \rceil = q$.
- 12. Приведите пример ω -противоречивой, но непротиворечивой теории.

Домашнее задание №12: «Теоремы Гёделя о неполноте арифметики»

- 1. Найдите гёделев номер для формулы $\forall x. \forall y. \forall z. x \cdot (y+z) = x \cdot y + x \cdot z$
- 2. Покажите, что операция @ конкатенации двух строк в гёделевой нумерации рекурсивна:

$$2^{a_0} \cdot 3^{a_1} \cdot \dots \cdot (p(n))^{a_{n-1}} \otimes 2^{b_0} \cdot 3^{b_1} \cdot \dots \cdot (p(m))^{b_{m-1}} = 2^{a_0} \cdot 3^{a_1} \cdot \dots \cdot (p(n))^{a_{n-1}} \cdot (p(n+1))^{b_0} \cdot (p(n+2))^{b_1} \cdot \dots \cdot (p(n+m))^{b_{m-1}}$$

3. Пусть дана рекурсивная функция Proof(p, x), возвращающая 0, если x — гёделев номер функции ξ , а p — гёделев номер доказательства ξ . Тогда, используя её, выпишите (без пропусков) рекурсивную функцию, вычисляющую значение любой представимой в формальной арифметике функции f по формуле ϕ , её представляющей.

В данном выражении можно использовать функции, про которые доказана их рекурсивность в предыдущих домашних заданиях.

- 4. Вторая теорема Гёделя о неполноте арифметики. Рассмотрим формулы:
 - $\pi(p,x)$, выражающую рекурсивное отношение «p гёделев номер доказательства формулы x»;
 - формулу $\pi_r(x) := \exists p.\pi(p,x);$
 - формулу Consis := $\neg \pi_r(\overline{\ \ 0 = 1})$

С использованием этих определений, леммы об автоссылках и условий выводимости Гильберта-Бернайса-Лёфа, покажите, что:

- (а) Существует формула ξ , такая, что $\vdash \xi \to \neg \pi_r(\overline{\vdash \xi \dashv})$ и $\vdash \neg \pi_r(\overline{\vdash \xi \dashv}) \to \xi$. Есть ли связь между данными формулами (или их составными частями) и формулой $\sigma(\overline{\vdash \sigma \dashv})$ из доказательства первой теоремы Гёделя о неполноте арифметики?
- (b) Если $\vdash \pi_r(\overline{\lceil \xi \rceil}) \to \pi_r(\overline{\lceil 0 = 1 \rceil})$, то $\vdash \text{Consis} \to \xi$.
- (c) $\pi_r(\overline{\lceil \xi \rceil}) \vdash \pi_r(\overline{\lceil \pi_r(\overline{\lceil \xi \rceil}) \rceil}).$
- (d) $\vdash \pi_r(\overline{\ulcorner \pi_r(\overline{\ulcorner \xi \urcorner}) \to \neg \xi \urcorner}).$
- (e) $\vdash \pi_r(\overline{\lceil \pi_r(\overline{\lceil \xi \rceil}) \rceil}) \to \pi_r(\overline{\lceil \pi_r(\overline{\lceil \xi \rceil}) \to \neg \xi \rceil}) \to \pi_r(\overline{\lceil \neg \xi \rceil}).$
- (f) Показав $\vdash \pi_r(\overline{\lceil \xi \rceil}) \to \pi_r(\overline{\lceil 0 = 1 \rceil})$, завершите доказательство второй теоремы Гёделя о неполноте арифметики.