Docket No.: BB1332 Page 2

Amendments to Specification

Please amend the specification as follows:

Paragraph at page 2 line 36 through page 3 line 7:

In an eighth embodiment, the invention concerns a method of obtaining a nucleic acid fragment encoding a substantial portion of an LPAAT isozyme polypeptide, preferably a plant LPAAT isozyme polypeptide, comprising the steps of: synthesizing an oligonucleotide primer comprising a nucleotide sequence of at least ene of 60 (preferably at least-ene of 40, most preferably at least-ene of 30) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51 and the complement of such nucleotide sequences; and amplifying a nucleic acid fragment (preferably a cDNA inserted in a cloning vector) using the oligonucleotide primer. The amplified nucleic acid fragment preferably will encode a portion of an LPAAT isozyme amino acid sequence.

Paragraph at page 3 lines 17 through 20:

In an eleventh embodiment, this invention concerns an isolated polynucleotide of the present invention comprising at least-one of 30 contiguous nucleotides derived from a nucleic acid sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51.

Paragraph at page 6 lines 6 through 23:

In the context of this disclosure, a number of terms shall be utilized. The terms "polynucleotide" and "nucleic acid fragment"/"isolated[[iisolated]] nucleic acid fragment" are used interchangeably herein. These terms encompass nucleotide sequences and the like. A polynucleotide may be a polymer of RNA or DNA that is single- or double-stranded, that optionally contains synthetic, non-natural or altered nucleotide bases. A polynucleotide in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA, synthetic DNA, or mixtures thereof. An isolated polynucleotide of the present invention may include at least-one of 60 contiguous nucleotides, preferably at leas-one of 40 contiguous nucleotides, most preferably-one of at least 30 contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of (a) SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51, or the complement of such sequences and /or (b) SEQ ID NOs:19, 21, 23, 53, 55, and 57 or the complement of such sequences. The term "isolated" polynucleotide is one that

Docket No.: BB1332 Page 3

has been substantially separated or purified away from other nucleic acid sequences in the cell of the organism in which the nucleic acid naturally occurs, i.e., other chromosomal and extrachromosomal DNA and RNA, by conventional nucleic acid purification methods. The term also embraces recombinant polynucleotides and chemically synthesized polynucleotides.

Paragraph at page 7 lines 7 through 17:

Substantially similar nucleic acid fragments may be selected by screening nucleic acid fragments representing subfragments or modifications of the nucleic acid fragments of the instant invention, wherein one or more nucleotides are substituted, deleted and/or inserted, for their ability to affect the level of the polypeptide encoded by the unmodified nucleic acid fragment in a plant or plant cell. For example, a substantially similar nucleic acid fragment representing at least-one of 30 contiguous nucleotides derived from the instant nucleic acid fragment can be constructed and introduced into a plant or plant cell. The level of the polypeptide encoded by the unmodified nucleic acid fragment present in a plant or plant cell exposed to the substantially similar nucleic fragment can then be compared to the level of the polypeptide in a plant or plant cell that is not exposed to the substantially similar nucleic acid fragment.

Paragraph at page 7 line 18 through page 8 line 10:

For example, it is well known in the art that antisense suppression and cosuppression of gene expression may be accomplished using nucleic acid fragments representing less than the entire coding region of a gene, and by nucleic acid fragments that do not share 100% sequence identity with the gene to be suppressed. Moreover, alterations in a nucleic acid fragment which result in the production of a chemically equivalent amino acid at a given site, but do not effect the functional properties of the encoded polypeptide, are well known in the art. Thus, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded

Docket No.: .BB1332 Page 4

products. Consequently, an isolated polynucleotide comprising a nucleotide sequence of at least-one of 60 (preferably at least-one of 40, most preferably at least one of 30) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of (a) SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, and 51 and the complement of such nucleotide sequences, and/or (b) SEQ ID NOs:19, 21, 23, 53, 55, and 57 and the complement of such nucleotide sequences may be used in methods of selecting an isolated polynucleotide that affects the expression of an LPAAT isozyme polypeptide in a host cell. A method of selecting an isolated polynucleotide that affects the level of expression of a polypeptide in a host cell (eukaryotic, such as plant or yeast, prokaryotic such as bacterial, or viral) may comprise the steps of: constructing an isolated polynucleotide of the present invention or an isolated chimeric gene of the present invention; introducing the isolated polynucleotide or the isolated chimeric gene into a host cell; measuring the level a polypeptide in the host cell containing the isolated polynucleotide; and comparing the level of a polypeptide in the host cell containing the isolated polynucleotide with the level of a polypeptide in a host cell that does not contain the isolated polynucleotide.

Paragraph at page 9 lines 9 through 31:

A "substantial portion" of an amino acid or nucleotide sequence comprises an amino acid or a nucleotide sequence that is sufficient to afford putative identification of the protein or gene that the amino acid or nucleotide sequence comprises. Amino acid and nucleotide sequences can be evaluated either manually by one skilled in the art, or by using computer-based sequence comparison and identification tools that employ algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul et al. (1993) J. Mol. Biol. 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/). In general, a sequence of ten or more contiguous amino acids or thirty or more contiguous nucleotides is necessary in order to putatively identify a polypeptide or nucleic acid sequence as homologous to a known protein or gene. Moreover, with respect to nucleotide sequences, gene-specific oligonucleotide probes comprising 30 or more contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation (e.g., in situ hybridization of bacterial colonies or bacteriophage plaques). In addition, short oligonucleotides of 12 or more nucleotides may be used as amplification primers in PCR in order to obtain a particular nucleic acid fragment comprising the primers. Accordingly, a "substantial portion" of a nucleotide sequence comprises a nucleotide sequence that will afford specific identification and/or isolation of a nucleic acid fragment comprising the sequence. The instant specification teaches amino acid and

Docket No.: BB1332 Page 5

nucleotide sequences encoding polypeptides that comprise one or more particular plant proteins. The skilled artisan, having the benefit of the sequences as reported herein, may now use all or a substantial portion of the disclosed sequences for purposes known to those skilled in this art. Accordingly, the instant invention comprises the complete sequences as reported in the accompanying Sequence Listing, as well as substantial portions of those sequences as defined above.

Paragraph at page 10 lines 10 through 27:

cDNA clones encoding LPAAT isozymes were identified by conducting BLAST (Basic Local Alignment Search Tool; Altschul et al. (1993) J. Mol. Biol. 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/) searches for similarity to sequences contained in the BLAST "nr" database (comprising all non-redundant GenBank CDS translations, sequences derived from the 3-dimensional structure Brookhaven Protein Data Bank, the last major release of the SWISS-PROT protein sequence database, EMBL, and DDBJ databases). The cDNA sequences obtained in Example 1 were analyzed for similarity to all publicly available DNA sequences contained in the "nr" database using the BLASTN algorithm provided by the National Center for Biotechnology Information (NCBI). The DNA sequences were translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the "nr" database using the BLASTX algorithm (Gish and States (1993) Nat. Genet. 3:266-272) provided by the NCBI. For convenience, the P-value (probability) of observing a match of a cDNA sequence to a sequence contained in the searched databases merely by chance as calculated by BLAST are reported herein as "pLog" values, which represent the negative of the logarithm of the reported P-value. Accordingly, the greater the pLog value, the greater the likelihood that the cDNA sequence and the BLAST "hit" represent homologous proteins.

Paragraph at page 15 lines 7 through 25:

In addition, two short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols to amplify longer nucleic acid fragments encoding homologous genes from DNA or RNA. The polymerase chain reaction may also be performed on a library of cloned nucleic acid fragments wherein the sequence of one primer is derived from the instant nucleic acid fragments, and the sequence of the other primer takes advantage of the presence of the polyadenylic acid tracts to the 3' end of the mRNA precursor encoding plant genes. Alternatively, the second primer sequence may be based upon sequences derived from the cloning vector. For example, the skilled artisan can follow the RACE protocol (Frohman et al. (1988) *Proc. Natl. Acad. Sci. USA 85*:8998-9002) to generate cDNAs by using PCR

Docket No.: BB1332 Page 6

to amplify copies of the region between a single point in the transcript and the 3' or 5' end. Primers oriented in the 3' and 5' directions can be designed from the instant sequences. Using commercially available 3' RACE or 5' RACE systems (BRL), specific 3' or 5' cDNA fragments can be isolated (Ohara et al. (1989) *Proc. Natl. Acad. Sci. USA 86*:5673-5677; Loh et al. (1989) *Science 243*:217-220). Products generated by the 3' and 5' RACE procedures can be combined to generate full-length cDNAs (Frohman and Martin (1989) *Techniques 1*:165). Consequently, a polynucleotide comprising a nucleotide sequence of at least-one-of 60 (preferably one-of at least 40, most preferably-one-of at least 30) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of:

Paragraph at page 15 lines 33 through 38:

The present invention relates to a method of obtaining a nucleic acid fragment encoding a substantial portion of an LPAAT isozyme polypeptide preferably a substantial portion of a plant LPAAT isozyme polypeptide, comprising the steps of : synthesizing an oligonucleotide primer comprising a nucleotide sequence of at least one of 60 (preferably at least one of 40, most preferably at least one of 30) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of: