Random Numbers

Chapter 3. Random Numbers

Truly random generators can be seen in substance undergoing atomic decay. It occurs at random points in *time* independently.

Problem: Difficult to measure the time intervals and inputting those measurements into the computers. Thus a simulator is needed.

Truly random generators can be seen in substance undergoing atomic decay. It occurs at random points in *time* independently.

<u>Problem</u>: Difficult to measure the time intervals and inputting those measurements into the computers. Thus a simulator is needed.

Notation: X, random variable associated with certain distribution.

X = x, a realization of X.

Note: Random numbers (U(0,1)) or random variates (transformation of U(0,1)) simulate *realizations* of random variables.

- The building block of a simulation study is the ability to generate random numbers, where a random number represents the value of a random variable uniformly distributed on (0,1).
- In this chapter we explain how such numbers are computer generated and also begin to illustrate their uses.

- Mechanical approach:
 - Manual methods: Spinning wheels/ rolling dice/ shuffling cards, ...
 - Handy but slow and not reproducible!
 - Random number table: Reproducible.
 - Slow and easy to run out of table.
 - Mid-square method: Middle part of the square of the preceeding numbers.
 - Random? Terminated at zero!
- Modern approach: Computer.
 - VonNeumann and Ulam during World War II.

- Mechanical approach:
 - Manual methods: Spinning wheels/ rolling dice/ shuffling cards, ...
 - Handy but slow and not reproducible!
 - Random number table: Reproducible.
 - Slow and easy to run out of table.
 - Mid-square method: Middle part of the square of the preceeding numbers.
 - Random? Terminated at zero!
- Modern approach: Computer.
 - VonNeumann and Ulam during World War II.

- Mechanical approach:
 - Manual methods: Spinning wheels/ rolling dice/ shuffling cards, ...
 - Handy but slow and not reproducible!
 - Random number table: Reproducible.
 - Slow and easy to run out of table.
 - Mid-square method: Middle part of the square of the preceeding numbers.
 - Random? Terminated at zero!
- Modern approach: Computer.
 - VonNeumann and Ulam during World War II.

- Mechanical approach:
 - Manual methods: Spinning wheels/ rolling dice/ shuffling cards, ...
 - Handy but slow and not reproducible!
 - Random number table: Reproducible.
 - Slow and easy to run out of table.
 - Mid-square method: Middle part of the square of the preceeding numbers.
 - Random? Terminated at zero!
- Modern approach: Computer.
 - VonNeumann and Ulam during World War II.

- Mechanical approach:
 - Manual methods: Spinning wheels/ rolling dice/ shuffling cards, . . .
 - Handy but slow and not reproducible!
 - Random number table: Reproducible.
 - Slow and easy to run out of table.
 - Mid-square method: Middle part of the square of the preceeding numbers.

- Mechanical approach:
 - Manual methods: Spinning wheels/ rolling dice/ shuffling cards, . . .
 - Handy but slow and not reproducible!
 - Random number table: Reproducible.
 - Slow and easy to run out of table.
 - Mid-square method: Middle part of the square of the preceeding numbers.
 - Random? Terminated at zero!
- Modern approach: Computer.
 - VonNeumann and Ulam during World War II.

- Mechanical approach:
 - Manual methods: Spinning wheels/ rolling dice/ shuffling cards, . . .
 - Handy but slow and not reproducible!
 - Random number table: Reproducible.
 - Slow and easy to run out of table.
 - Mid-square method: Middle part of the square of the preceeding numbers.
 - Random? Terminated at zero!
- Modern approach: Computer.
 - VonNeumann and Ulam during World War II.

- Mechanical approach:
 - Manual methods: Spinning wheels/ rolling dice/ shuffling cards, . . .
 - Handy but slow and not reproducible!
 - Random number table: Reproducible.
 - Slow and easy to run out of table.
 - Mid-square method: Middle part of the square of the preceeding numbers.
 - Random? Terminated at zero!
- Modern approach: Computer.
 - VonNeumann and Ulam during World War II.

- **(0,1)** marginals;
- independent (long period)
- reproducible, but changeable
- fast
- portable;
- easy to implement.

- **(0,1)** marginals;
- independent (long period);
- reproducible, but changeable;
- fast
- portable;
- easy to implement.

- **(0,1)** marginals;
- independent (long period);
- reproducible, but changeable;
- fast
- portable;
- easy to implement.

- **(0,1)** marginals;
- independent (long period);
- reproducible, but changeable;
- fast;
- portable;
- easy to implement.

- **(0,1)** marginals;
- independent (long period);
- reproducible, but changeable;
- fast;
- portable;
- easy to implement.

- **(0,1)** marginals;
- independent (long period);
- reproducible, but changeable;
- fast;
- portable;
- easy to implement.

$$x_i = f(x_{i-1}, \dots, x_{i-k})$$
, multiple recursion.

- **Note**: 1. The number of previous numbers used, k, is called the order of the generator.
 - 2. The value at the **start** of the resursion is called the *seed*.
 - 3. Each time the recursion is begun with the same seed, the same sequence is generated. It's reproducible!

$$x_i = f(x_{i-1}, \dots, x_{i-k}),$$
 multiple recursion.

- **Note**: 1. The number of previous numbers used, k, is called the *order* of the generator.
 - 2. The value at the **start** of the resursion is called the **seed**.
 - 3. Each time the recursion is begun with the same seed the same sequence is generated. It's reproducible!

$$x_i = f(x_{i-1}, \dots, x_{i-k})$$
, multiple recursion.

- **Note**: 1. The number of previous numbers used, k, is called the *order* of the generator.
 - 2. The value at the **start** of the resursion is called the **seed**.
 - 3. Each time the recursion is begun with the same seed, the same sequence is generated. It's reproducible!

Congruential Generator

(Lehmer (1951).)

<u>Notation</u>: a, b, c, k are integers, and $c \neq 0$.

 $a \equiv b \mod c$ if and only if b = ck + a, for some k and $0 \le a < c$.

$$X_i \equiv (aX_{i-1} + c) \mod m, i = 1, 2, 3, \ldots,$$

where a, c, m and X_0 are integers.

Take
$$U_i = X_i/m \in [0, 1), i = 1, 2, 3, \dots$$

- <u>Note</u>: 1. The *initial value* X_0 is the **seed**. Here, order=1.
 - 2. c = 0 multiplicative congruential method.
 - 3. $c \neq 0$ mixed congruential method.
 - 4. $\{U_1, U_2, \ldots\}$ contains at most m distinct numbers

$$X_i \equiv (aX_{i-1} + c) \mod m, i = 1, 2, 3, \ldots,$$

where a, c, m and X_0 are integers.

Take
$$U_i = X_i/m \in [0, 1), i = 1, 2, 3, \dots$$

- **Note**: 1. The *initial value* X_0 is the **seed**. Here, order=1.
 - 2. c = 0 multiplicative congruential method.
 - 3. $c \neq 0$ mixed congruential method.
 - 4. $\{U_1, U_2, \ldots\}$ contains at most m distinct numbers

$$X_i \equiv (aX_{i-1} + c) \mod m, i = 1, 2, 3, \ldots,$$

where a, c, m and X_0 are integers.

Take
$$U_i = X_i/m \in [0, 1), i = 1, 2, 3, \dots$$

<u>Note</u>: 1. The *initial value* X_0 is the **seed**. Here, order=1.

- 2. c = 0 multiplicative congruential method.
- 3. $c \neq 0$ mixed congruential method.
- 4. $\{U_1, U_2, \ldots\}$ contains **at most** m distinct numbers

$$X_i \equiv (aX_{i-1}+c) \mod m, \ i=1,2,3,\ldots,$$

where a, c, m and X_0 are integers.

Take
$$U_i = X_i/m \in [0, 1), i = 1, 2, 3, \dots$$

- **<u>Note</u>**: 1. The *initial value* X_0 is the **seed**. Here, order=1.
 - 2. c = 0 multiplicative congruential method.
 - 3. $c \neq 0$ mixed congruential method.
 - 4. $\{U_1, U_2, \ldots\}$ contains at most m distinct numbers

$$X_i \equiv (aX_{i-1} + c) \mod m, i = 1, 2, 3, \ldots,$$

where a, c, m and X_0 are integers.

Take
$$U_i = X_i/m \in [0, 1), i = 1, 2, 3, \dots$$

- **<u>Note</u>**: 1. The *initial value* X_0 is the **seed**. Here, order=1.
 - 2. c = 0 multiplicative congruential method.
 - 3. $c \neq 0$ mixed congruential method.
 - 4. $\{U_1, U_2, \ldots\}$ contains at most m distinct numbers

Ex. 1.
$$a = 2, c = 1, m = 8$$
, i.e. $X_i \equiv 2X_{i-1} + 1 \mod 8$.

i	0	1	2	3	4	•••
X_i	2					

Ex. 1.
$$a = 2, c = 1, m = 8$$
, i.e. $X_i \equiv 2X_{i-1} + 1 \mod 8$.

		1		• • •
X_i	2	5		

Ex. 1.
$$a = 2, c = 1, m = 8$$
, i.e. $X_i \equiv 2X_{i-1} + 1 \mod 8$.

i	0	1	2	3	4	•••
X_i	2	5	3	7	7	

Ex. 1.
$$a = 2, c = 1, m = 8$$
, i.e. $X_i \equiv 2X_{i-1} + 1 \mod 8$.

i	0	1	2	3	4	
X_i	2	5	3	7	7	

Ex. 1.
$$a = 2, c = 1, m = 8$$
, i.e. $X_i \equiv 2X_{i-1} + 1 \mod 8$.

i	0	1	2	3	4	
X_i	2	5	3	7	7	
U_i	.25	.625	.375	.875	.875	

Ex. 1.
$$a = 5, c = 1, m = 8$$
, i.e. $X_i \equiv 5X_{i-1} + 1 \mod 8$.

"Full" period!

Ex. 1.
$$a = 5, c = 1, m = 8$$
, i.e. $X_i \equiv 5X_{i-1} + 1 \mod 8$.

"Full" period

Ex. 1.
$$a = 5, c = 1, m = 8$$
, i.e. $X_i \equiv 5X_{i-1} + 1 \mod 8$.

"Full" period!

Ex. 1.
$$a = 5, c = 1, m = 8$$
, i.e. $X_i \equiv 5X_{i-1} + 1 \mod 8$.

Ex. 1.
$$a = 5, c = 1, m = 8$$
, i.e. $X_i \equiv 5X_{i-1} + 1 \mod 8$.

Ex. 1.
$$a = 5, c = 1, m = 8$$
, i.e. $X_i \equiv 5X_{i-1} + 1 \mod 8$.

Ex. 1.
$$a = 5, c = 1, m = 8$$
, i.e. $X_i \equiv 5X_{i-1} + 1 \mod 8$.

Ex. 1.
$$a = 5, c = 1, m = 8$$
, i.e. $X_i \equiv 5X_{i-1} + 1 \mod 8$.

Ex. 1.
$$a = 5, c = 1, m = 8$$
, i.e. $X_i \equiv 5X_{i-1} + 1 \mod 8$.

Note: a and m should be chosen such that

of being a sequence of $\mathbf{independent}$ $\mathbf{uniform}$ (0,1) random variables.

1. For any initial seed, the resultant sequence has the "appearance"

- 2. For any initial seed, the number of variables that can be generated before repetition begins is large.
- 3. The values can be computed efficiently on a digital computer.

See Gentle (2003) or Rubinstein (1981) for details.

Note: a and m should be chosen such that

of being a sequence of $\operatorname{independent\ uniform\ }(0,1)$ random variables.

1. For any initial seed, the resultant sequence has the "appearance"

- 2. For any initial seed, the number of variables that can be generated before repetition begins is large.
- 3. The values can be computed efficiently on a digital computer.

See Gentle (2003) or Rubinstein (1981) for details.

Note: a and m should be chosen such that

of being a sequence of $\mbox{independent uniform}\ (0,1)$ random variables.

1. For any initial seed, the resultant sequence has the "appearance"

- 2. For any initial seed, the number of variables that can be generated before repetition begins is large.
- 3. The values can be computed efficiently on a digital computer.

See Gentle (2003) or Rubinstein (1981) for details.

Suggestions: 1. For a 32-bit word machine,

$$m = 2^{31} - 1, a = 7^5 = 16807, c = 0.$$

2. For a 36-bit word machine,

$$m = 2^{35} - 31, a = 5^5, c = 0.$$

3. In IMSL, $m = 2^{31} - 1$, a = 16807, 397204094, 950706376 with

CALL RNOPT(OPT), OPT=1, 3, 5, respectively.

We assume that we have a "black box" that gives a random number on request.

Splus:

- Continuous uniform(a, b): runif(n, min=a, max=b),
 runif(10, 2, 4), runif(10, max=4), runif(10)
- Discrete uniform(m,n): m + floor((n-m+1)*r) where $r \sim U(0,1)$.

Applications |

One of the earliest applications of random numbers was in the computation of integral.

Case 1. Integration.

$$\underline{\mathbf{Ex}}$$
. 1. $\int_0^1 g(x)dx = ?$

Recall: (SLLN) If X_1, X_2, \dots, X_n are i.i.d. random variables with pdf $f(\cdot)$, then

$$rac{1}{n}\sum_{i=1}^{n}\mathbf{g}(\mathbf{X_{i}})\longrightarrow\mathbf{E}[\mathbf{g}(\mathbf{X})], ext{ a.s.}, ext{ as } n
ightarrow\infty,$$

provided that $E[g(X)] = \int g(x)f(x)dx$ exists

Case 1. Integration.

$$\underline{\mathbf{Ex}}$$
. 1. $\int_0^1 g(x) dx = ?$

Recall: (SLLN) If X_1, X_2, \dots, X_n are i.i.d. random variables with pdf $f(\cdot)$, then

$$\frac{1}{n}\sum_{i=1}^n \mathbf{g}(\mathbf{X_i}) \longrightarrow \mathbf{E}[\mathbf{g}(\mathbf{X})], \text{ a.s., } \text{ as } n \to \infty$$

provided that $E[g(X)] = \int g(x)f(x)dx$ exists.

Case 1. Integration.

$$\underline{\mathbf{Ex}}$$
. 1. $\int_0^1 g(x) dx = ?$

Recall: (SLLN) If X_1, X_2, \dots, X_n are i.i.d. random variables with pdf $f(\cdot)$, then

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{g}(\mathbf{X}_{i})\longrightarrow\mathbf{E}[\mathbf{g}(\mathbf{X})],\text{ a.s., as }n\rightarrow\infty,$$

provided that $E[g(X)] = \int g(x)f(x)dx$ exists.

$$\theta = \int_0^1 g(x)dx = \int_0^1 g(x) \cdot \mathbf{1} dx = \int g(x)\mathbf{f}(\mathbf{x}) dx = \mathbb{E}[\mathbf{g}(\mathbf{X})],$$

with $X \sim U(0,1)$

$$\theta = \int_0^1 g(x)dx = \int_0^1 g(x) \cdot \mathbf{1} dx = \int g(x)f(x)dx = \mathbb{E}[g(X)],$$

with $X \sim U(0,1)$

$$\theta = \int_0^1 g(x)dx = \int_0^1 g(x) \cdot \mathbf{1} dx = \int g(x)\mathbf{f}(\mathbf{x})dx = \mathbb{E}[g(\mathbf{X})],$$

with $X \sim U(0,1)$.

$$\theta = \int_0^1 g(x)dx = \int_0^1 g(x) \cdot \mathbf{1} dx = \int g(x)\mathbf{f}(\mathbf{x})dx = \mathbf{E}[\mathbf{g}(\mathbf{X})],$$

with $X \sim U(0,1)$.

$$\theta = \int_0^1 g(x)dx = \int_0^1 g(x) \cdot \mathbf{1} dx = \int g(x)\mathbf{f}(\mathbf{x}) dx = \mathbf{E}[\mathbf{g}(\mathbf{X})],$$

with $X \sim U(0, 1)$.

- Algorithm: 1. Generate $U_1, U_2, \ldots, U_n \sim U(0, 1)$.
 - 2. Compute $q(U_i), i = 1, 2, ..., n$.

3.
$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} g(U_i)$$
.

Note: This approach to approximating integrals is called the

Monte-Carlo approach.

Splus code

```
to approximate \theta = \int_0^1 e^x dx:
a_runif(100000);
v_exp(a);
print("Approximate value: ");
mean(v);
print("True value: ");
print(exp(1)-1)
```

$$\underline{\mathsf{Ex}}$$
. 2. $\int_a^b g(x) dx = ?$

Method I: Here

$$\theta = \int_{a}^{b} g(x)dx = (b - a) \int_{a}^{b} g(x) \frac{1}{b - a} dx = (b - a)E[g(X)]$$

where $X \sim U(a, b)$

So
$$\hat{\theta} = \frac{b-a}{n} \sum_{i=1}^{n} g(X_i), \quad X_i \sim U(a,b)$$
 ???

$$\underline{\mathsf{Ex}}$$
. 2. $\int_a^b g(x) dx = ?$

Method I: Here

$$\theta = \int_{a}^{b} g(x)dx = (b - a) \int_{a}^{b} g(x) \frac{1}{b - a} dx = (b - a)E[g(X)],$$

where $X \sim U(a, b)$.

So
$$\hat{ heta} = rac{b-a}{n} \sum_{i=1}^n g(X_i), \;\; X_i \sim U(a,b)$$
 ???

$$\underline{\mathsf{Ex}}$$
. 2. $\int_a^b g(x) dx = ?$

Method I: Here

$$\theta = \int_{a}^{b} g(x)dx = (b - a) \int_{a}^{b} g(x) \frac{1}{b - a} dx = (b - a)E[g(X)],$$

where $X \sim U(a, b)$.

So
$$\hat{\theta} = \frac{b-a}{n} \sum_{i=1}^{n} g(X_i), X_i \sim U(a,b)$$
 ???

Recall: $U \sim U(0,1)$ then $\mathbf{X} = a + (b-a)U \sim \mathbf{U}(\mathbf{a}, \mathbf{b})$.

Algorithm: 1. Generate $U_1, U_2, \dots, U_n \sim U(0, 1)$.

2. Set
$$X_i = a + (b - a)U_i$$
, $i = 1, 2, ..., n$.

- 3. Compute $g(X_i), i = 1, 2, ..., n$.
- 4. Set $\hat{\theta} = \frac{1}{n}(b-a)\sum_{i=1}^{n} g(X_i)$.

Recall: $U \sim U(0,1)$ then $\mathbf{X} = a + (b-a)U \sim \mathbf{U}(\mathbf{a}, \mathbf{b})$.

Algorithm: 1. Generate $U_1, U_2, \ldots, U_n \sim U(0, 1)$.

- 2. Set $X_i = a + (b a)U_i$, i = 1, 2, ..., n.
- 3. Compute $g(X_i), i = 1, 2, ..., n$.
- 4. Set $\hat{\theta} = \frac{1}{n}(b-a)\sum_{i=1}^{n} g(X_i)$.

Method II: Make a change of variables such that

$$\int_a^b g(x)dx = \int_0^1 h(y)dy = E[h(Y)],$$

with $Y \sim U(0,1)$ for some h.

Consider y = (x - a)/(b - a) so dx = (b - a)dy and

$$h(y) = g(a + (b - a)y)(b - a)$$
. Thus

$$\theta = \int_0^1 g(a + (b - a)y)(b - a)dy = E[(b - a)g(a + (b - a)Y)],$$

where $Y \sim U(0,1)$.

Method II: Make a change of variables such that

$$\int_{a}^{b} g(x)dx = \int_{0}^{1} h(y)dy = E[h(Y)],$$

with $Y \sim U(0,1)$ for some h.

Consider
$$y = (x - a)/(b - a)$$
 so $dx = (b - a)dy$ and

$$h(y) = g(a + (b - a)y)(b - a)$$
. Thus

$$\theta = \int_0^1 g(a + (b - a)y)(b - a)dy = E[(b - a)g(a + (b - a)Y)],$$

where $Y \sim U(0,1)$.

Method II: Make a change of variables such that

$$\int_{a}^{b} g(x)dx = \int_{0}^{1} h(y)dy = E[h(Y)],$$

with $Y \sim U(0,1)$ for some h.

Consider y = (x - a)/(b - a) so dx = (b - a)dy and

$$h(y) = g(a + (b - a)y)(b - a)$$
. Thus

$$\theta = \int_0^1 g(a + (b - a)y)(b - a)dy = E[(b - a)g(a + (b - a)Y)],$$

where $Y \sim U(0,1)$.

- **Algorithm**: 1. Generate $U_1, U_2, \ldots, U_n \sim U(0, 1)$.
 - 2. Set $h(U_i) = (b-a)g(a+(b-a)U_i), i = 1, ..., n$.

3. Set
$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} h(U_i)$$
.

$$\underline{\mathsf{Ex}}$$
. 3. $\int_0^\infty g(x)dx = ?$

$$h(y) = \frac{g(\frac{1}{y} - 1)}{y^2}.$$

Ex. 4.
$$\int_{-\infty}^{0} g(x) dx = 0$$

Consider
$$y = 1/(1-x)$$
 s.t. $\theta = \int_0^1 h(y)dy$, for some h

$$\underline{\mathsf{Ex}}$$
. 5. $\int_{-\infty}^{\infty} g(x) dx = ?$

Note that
$$\int_{-\infty}^{\infty} g(x)dx = \int_{-\infty}^{0} g(x)dx + \int_{0}^{\infty} g(x)dx$$
.

$$\underline{\mathsf{Ex}}$$
. 3. $\int_0^\infty g(x)dx = ?$

$$h(y) = \frac{g(\frac{1}{y} - 1)}{y^2}.$$

Ex. 4.
$$\int_{-\infty}^{0} g(x) dx = 0$$

Consider
$$y = 1/(1-x)$$
 s.t. $\theta = \int_0^1 h(y) dy$, for some h

$$\underline{\mathsf{Ex}}$$
. 5. $\int_{-\infty}^{\infty} g(x) dx = ?$

Note that
$$\int_{-\infty}^{\infty} g(x)dx = \int_{-\infty}^{0} g(x)dx + \int_{0}^{\infty} g(x)dx$$

$$\underline{\mathsf{Ex}}$$
. 3. $\int_0^\infty g(x)dx = ?$

$$h(y) = \frac{g(\frac{1}{y} - 1)}{y^2}.$$

$$\underline{\mathsf{Ex}}$$
. 4. $\int_{-\infty}^{0} g(x) dx = ?$

Consider y = 1/(1-x) s.t. $\theta = \int_0^1 h(y)dy$, for some h

$$\underline{\mathsf{Ex}}$$
. 5. $\int_{-\infty}^{\infty} g(x) dx = ?$

Note that $\int_{-\infty}^{\infty} g(x)dx = \int_{-\infty}^{0} g(x)dx + \int_{0}^{\infty} g(x)dx$

$$\underline{\mathsf{Ex}}$$
. 3. $\int_0^\infty g(x)dx = ?$

$$h(y) = \frac{g(\frac{1}{y} - 1)}{y^2}.$$

$$\underline{\mathsf{Ex}}$$
. 4. $\int_{-\infty}^{0} g(x) dx = ?$

Consider
$$y = 1/(1-x)$$
 s.t. $\theta = \int_0^1 h(y)dy$, for some h .

$$\underline{\mathsf{Ex}}$$
. 5. $\int_{-\infty}^{\infty} g(x) dx = ?$

Note that
$$\int_{-\infty}^{\infty} g(x)dx = \int_{-\infty}^{0} g(x)dx + \int_{0}^{\infty} g(x)dx$$

$$\underline{\mathsf{Ex}}$$
. 3. $\int_0^\infty g(x)dx = ?$

$$h(y) = \frac{g(\frac{1}{y} - 1)}{y^2}.$$

$$\underline{\mathsf{Ex}}$$
. 4. $\int_{-\infty}^{0} g(x) dx = ?$

Consider
$$y = 1/(1-x)$$
 s.t. $\theta = \int_0^1 h(y)dy$, for some h .

$$\underline{\mathsf{Ex}}$$
. 5. $\int_{-\infty}^{\infty} g(x) dx = ?$

Note that
$$\int_{-\infty}^{\infty} g(x)dx = \int_{-\infty}^{0} g(x)dx + \int_{0}^{\infty} g(x)dx$$

$$\underline{\mathsf{Ex}}$$
. 3. $\int_0^{\infty} g(x) dx = ?$

Consider y = 1/(1+x) s.t. $\theta = \int_0^1 h(y)dy$, where

$$h(y) = \frac{g(\frac{1}{y} - 1)}{y^2}.$$

$$\underline{\mathsf{Ex}}$$
. 4. $\int_{-\infty}^{0} g(x) dx = ?$

Consider
$$y = 1/(1-x)$$
 s.t. $\theta = \int_0^1 h(y)dy$, for some h .

$$\underline{\mathsf{Ex}}$$
. 5. $\int_{-\infty}^{\infty} g(x) dx = ?$

Note that
$$\int_{-\infty}^{\infty} g(x)dx = \int_{-\infty}^{0} g(x)dx + \int_{0}^{\infty} g(x)dx$$
.

4 m x 4 m x 4 m x 4 m x 1 m x

П

we can use

Similarly, for $\theta = \int_0^1 \dots \int_0^1 g(x_1, \dots, x_k) dx_1 \dots dx_k = \mathbf{E}[\mathbf{g}(\boldsymbol{X})]$, where $\boldsymbol{X} = (X_1, \dots, X_k) \sim U[0, 1]^k$, or $X_1, \dots, X_k \stackrel{\text{i.i.d.}}{\sim} U(0, 1)$,

$$\hat{ heta} = rac{1}{n} \sum_{\mathbf{j}=1}^{n} \mathbf{g}(X_{\mathbf{j}}) = rac{1}{n} \sum_{\mathbf{j}=1}^{n} \mathbf{g}(\mathbf{X}_{\mathbf{1}}^{\mathbf{j}}, \dots, \mathbf{X}_{\mathbf{k}}^{\mathbf{j}}),$$

where
$$X_i^j \sim U(0,1)$$
, for $i = 1, ..., k, j = 1, ..., n$.

Case 2. Estimating Probabilities.

Ex. The estimation of π .

 $\pi =$ Area of a circle of radius 1.

i.e. Area of
$$A = \{(x, y) : x^2 + y^2 \le 1\}$$
.

Case 2. Estimating Probabilities.

Ex. The estimation of π .

 $\pi =$ Area of a circle of radius 1.

i.e. Area of
$$A = \{(x, y) : x^2 + y^2 \le 1\}.$$

Let $\Omega = [-1,1] \times [-1,1]$ and (X,Y) be a point randomly selected within Ω , then

$$f_{X,Y}(x,y) = \begin{cases} 1/4 & \text{if } -1 \le x,y \le 1 \\ 0 & \text{otherwise} \end{cases} = f_X(x) \cdot f_Y(y)$$
$$= \frac{1}{2} \mathbf{1}_{(-1,1)}(x) \frac{1}{2} \mathbf{1}_{(-1,1)}(y).$$

That is, $X,Y\overset{\mathrm{i.i.d.}}{\sim}U(-1,1)$, or (X,Y) is uniformly distributed over Ω .

Let $\Omega = [-1,1] \times [-1,1]$ and (X,Y) be a point randomly selected within Ω , then

$$\begin{array}{lcl} f_{X,Y}(x,y) & = & \left\{ \begin{array}{ll} 1/4 & \text{if } -1 \leq x,y \leq 1 \\ 0 & \text{otherwise} \end{array} \right. \\ & = & \left. \frac{1}{2} \mathbf{1}_{(-1,1)}(x) \, \frac{1}{2} \mathbf{1}_{(-1,1)}(y). \end{array} \right.$$

That is, $X,Y\overset{ ext{i.i.d.}}{\sim} U(-1,1)$, or (X,Y) is uniformly distributed over $\Omega.$

Let $\Omega = [-1,1] \times [-1,1]$ and (X,Y) be a point randomly selected within Ω , then

$$\begin{array}{lcl} f_{X,Y}(x,y) & = & \left\{ \begin{array}{ll} 1/4 & \text{if } -1 \leq x,y \leq 1 \\ 0 & \text{otherwise} \end{array} \right. \\ & = & \left. \frac{1}{2} \mathbf{1}_{(-1,1)}(x) \, \frac{1}{2} \mathbf{1}_{(-1,1)}(y). \end{array} \right. \end{array}$$

That is, $X, Y \overset{\text{i.i.d.}}{\sim} U(-1, 1)$, or (X, Y) is uniformly distributed over Ω .

Consider $A=\{(x,y): x^2+y^2\leq 1,\}\subset \Omega.$ Then $|A|=\pi$ and $|\Omega|=4.$ Thus,

$$P((X,Y) \in A) = |A|/|\Omega| = \pi/4.$$

Consider $A=\{(x,y): x^2+y^2\leq 1,\}\subset \Omega.$ Then $|A|=\pi$ and $|\Omega|=4.$ Thus,

$$P((X,Y) \in A) = |A|/|\Omega| = \pi/4.$$

$\underline{\mathbf{Q}}$: How to estimate $\theta = P((X,Y) \in A)$?

Answer: Let $Z = \mathbf{1}_A(X, Y)$, an indicator random variable. Then

$$\mathbf{E}(\mathbf{Z}) = \mathbf{P}((\mathbf{X}, \mathbf{Y}) \in \mathbf{A}) = \theta.$$

Hence, if $Z_1,\ldots,Z_n \overset{\mathrm{i.i.d.}}{\sim} Z$, we have

$$\hat{ heta} = rac{1}{n} \sum_{i=1}^{n} \mathbf{Z}_i \longrightarrow heta, \; \mathsf{a.s., \; as} \; n
ightarrow \infty$$

 $\underline{\mathbf{Q}}$: How to estimate $\theta = P((X,Y) \in A)$?

Answer: Let $Z = \mathbf{1}_A(X, Y)$, an indicator random variable. Then

$$\mathbf{E}(\mathbf{Z}) = \mathbf{P}((\mathbf{X}, \mathbf{Y}) \in \mathbf{A}) = \theta.$$

Hence, if $Z_1, \ldots, Z_n \overset{\text{i.i.d.}}{\sim} Z$, we have

$$\hat{ heta} = rac{1}{n} \sum_{i=1}^{n} \mathbf{Z}_{i} \longrightarrow heta, \text{ a.s., as } n
ightarrow \infty$$

 $\underline{\mathbf{Q}}$: How to estimate $\theta = P((X,Y) \in A)$?

Answer: Let $Z = \mathbf{1}_A(X, Y)$, an indicator random variable. Then

$$\mathbf{E}(\mathbf{Z}) = \mathbf{P}((\mathbf{X}, \mathbf{Y}) \in \mathbf{A}) = \theta.$$

Hence, if $Z_1, \ldots, Z_n \overset{\text{i.i.d.}}{\sim} Z$, we have

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{Z}_{i} \longrightarrow \theta$$
, a.s., as $n \to \infty$.

Algorithm: 1. Generate $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} U(-1, 1)^2$.

$$(X_i = -1 + 2U_i, Y_i = -1 + 2U'_i, i = 1, \dots, n.)$$

- 2. If $X_i^2 + Y_i^2 \le 1$, set $Z_i = 1$; otherwise, set $Z_i = 0$, for $i = 1, \ldots, n$.
- 3. Set $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Z_i$.
- 4. Set $\hat{\pi} = 4 \cdot \hat{\theta}$

Splus code

```
estimatePI_function(n){
u1_runif(n,-1,1);
u2_runif(n,-1,1);
s2_u1 \land 2+u2 \land 2;
cat("Esimate of PI: ", length(s2[s2<1])/n,"\n");
n_100000;
estimatePI(n);
```