1 March 1972 AD

Materiel Test Procedure 3-1-005 U. S. Army Field Artillery Board

D (41811

U. S. ARMY TEST AND EVALUATION COMMAND

BACKGROUND DOCUMENT

FIELD ARTILLERY STATISTICS

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

340

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Reproduced From Best Available Copy

TABLE OF CONTENTS

Paragraph		Page
	GLOSSARY	vii
1.	PURPOSE.	1
2.	SCOPE.	1
3	BACKGROUND	1
4.	CONCEPTS.	2
4.1	Population and Sample.	2
4.2	Failure.	2
4.3	Distribution	2
4.4	Measures of Central Location.	4
4.4.1	Mean.	4
4.4.2	Median.	4
4.4.3	Mode.	6
4.4.4	Midrange.	6
4.5	Measures of Dispersion.	6
4.5.1	Standard Deviation	6
4.5.2	Range.	7
4.5.3	Mean Deviation.	7
4.5.4	Probable Error (Range, Deflection, and Height of Burst).	7
4.5.5	Circular Probable Error	8
4.6	Reliability	8
4.7	Test of a Statistical Hypothesis.	9
4.8	Types of Error.	10
4.8.1	Type I Error.	10
4.8.2	Type II Error.	10
4.9	Level of Significance.	10
4.10	Confidence Interval, Limits, and Level.	10
4.11	Significant Difference	12
4.12	Degrees of Freedom.	13
4.13	Operating-Characteristic Curve.	13
4.14	Amount of Error when Determining Sample Size.	14

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- · Pages smaller or larger than normal.
- · Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

If this block is checked, the copy furnished to DTIC
contained pages with color printing, that when reproduced in
Black and White, may change detail of the original copy.

Paragraph		Page
4.15	Particular Distributions.	15
4.15.1	Normal Distribution.	15
4.15.2	Bivariate Normal Distribution.	15
4.15.3	Binomial Distribution.	17
4.15.4	Poisson Distribution.	18
4.15.5	Exponential Distribution.	19
4.15.6	Student t Distribution.	19
4.15.7	F Distribution.	20
4.15.8	Chi-square Distribution.	20
4.16	Round Off Procedures.	22
5.	MEDIAN	24
6.	MEAN.	26
6.1	Estimate of the Population Mean (μ) .	26
6.1.1	Best Single Estimate of µ.	26
6.1.2	Confidence Interval Estimates.	27
6.1.2.1	Two-Sided Interval with o Unknown.	27
6.1.2.2	One-Sided Interval with σ Unknown.	29
6.1.2.3	Two-Sided Interval with o Known.	30
6.1.2.4	One-Sided Interval with o Known.	32
6.1.3	Sample Size Required to Estimate the Population Mean.	33
6.1.3.1	Sample Size Required to Estimate µ with o Unknown.	33
6.1.3.2	Sample Size Required to Estimate μ with σ Known.	35
6.2	Comparing an Observed Mean (\overline{X}) to a Requirement (μ_0) .	36
6.2.1	\overline{X} Greater Than μ_0 .	37
6.2.1.1	\overline{X} Greater Than μ_0 with σ Unknown.	37
6.2.1.2	X Greater Than 40 with o Known.	38
6.2.2	\overline{X} Less Than μ_0 .	40
6.2.2.1	X Less Than µ with o Unknown.	40
6.2.2.2	X Less Than µo with o Known.	41
	0	7.4

Paragraph		Page
6.2.3	Determination of Sample Size.	43
6.3	Comparing Two Observed Means.	45
6.3.1	\overline{X}_{A} Greater Than \overline{X}_{B} .	46
6.3.1.1	σ_{A} and σ_{B} Unknown but Assumed Equal.	46
6.3.1.2	σ_{A} and σ_{B} Unknown but Assumed Unequal.	49
6.3.1.3	σ_{A} and σ_{B} Known from Previous Experience.	51
6.3.1.4	Paired Observations.	53
6.3.1.5	Determination of Sample Size.	54
6.3.2	Comparing the Means of Several Products.	59
7.	STANDARD DEVIATION.	64
7.1	Estimate of the Population Standard Deviation(s).	64
7.1.1	Best Single Estimate of s.	64
7.1.2	Confidence Interval Estimates.	65
7.1.2.1	Two-Sided Interval.	65
7.1.2.2	One-Sided Interval.	67
7.1.3	Sample Size Required to Estimate the Population Standard Deviation.	68
7.2	Comparing an Observed Standard Deviation (s) to a Requirement (σ_0) .	69
7.2.1	s Greater Than σ_0 .	70
7.2.2	s Less Than oo.	71
7.2.3	Determination of Sample Size.	72
7.3	Comparing Two Observed Standard Deviations.	74
7.3.1	$\mathbf{s_A}$ Greater Than $\mathbf{s_B}$.	74
7.3.2	Determination of Sample Size.	76
8.	PROPORTION.	78
8.1	Estimate of the Population Proportion (p),	78
8.1.1	Best Single Estimate of P.	78
8.1.2	Confidence Interval Estimates.	79
8.1.2.1	Two-Sided Interval for N ≤ 30.	79

Paragraph		Page
8.1.2.2	Two-Sided Interval for N > 30.	80
8.1.2.3	One-Sided Interval for N ≤ 30.	82
8.1.2.4	One-Sided Interval for N > 30.	83
8.1.3	Sample Size Required to Estimate the Population Proportion.	
8.1.3.1	Sample Size with a Specified Limit of Error in Both Directions.	84
8.1.3.2	Sample Size with a Specified Limit of Error in Only One Direction.	86
8.2	Comparing an Observed Proportion (P) to a Requirement (λ_0) .	
8.2.1	P Greater Than $\lambda_{\mathcal{O}}$.	88
8.2.1.1	Small Sample Size.	88
8.2.1.2	Large Sample Size.	89
8.2.2	P Less Than λ_0 .	90
8.2.2.1	Small Sample Size.	
8.2.2.2	Large Sample Size.	91
8.2.3	Determination of Sample Size.	92
8.3	Comparing Two Observed Proportions.	94
8.3.1	$P_{\overline{A}}$ Greater Than $P_{\overline{B}}$.	
8.3.1.1	Small Sample Size.	94
8.3.1.2	Large Sample Size.	97
8.3.2	Determination of Sample Size.	100
9.	ACCURACY AND PRECISION.	102
9.1	Accuracy.	102
9.2	Precision.	105
9.2.1	Probable Error Computation.	
9.2.1.1	Standard Deviation Method.	
9.2.1.2	Successive Differences Method.	. 107
9.2.1.3	Trend Analysis.	108
9.2.1.4	Outliers.	109
9.2.2	Comparing Probable Errors (PE's).	113
9.2.2.1	Comparing an Observed PE to A Requirement.	113

Paragraph		Page
9.2.2.2	Comparing Two Observed PE's.	114
9.2.2.3	Determination of Sample Size.	114
9.2.3	Circular Probable Error.	115
9.2.3.1	Computation.	115
9.2.3.2	Outliers.	116
9.2.4	Bivariate Normal Distribution.	118
10.	RELIABILITY.	118
10.1	Success-Failure.	119
10.1.1	Determination of Reliability.	119
10.1.2	Determination of Sample Size.	126
10.1.3	Sequential Analysis for Success-Failure.	128
10.2	Reliability Relative to Continuous Testing.	133
10.2.1	Means and Limits.	134
10.2.1.1	Means.	134
10.2.1.2	Limits Using the Student t Distribution	135
10.2.1.3	Limits Using χ^2 Distribution.	139
10.2.2	Application of the Exponential Distribution.	145
10.2.3	Sequential Analysis.	147
10.3	Combined Reliability.	152
11.	MAINTENANCE EVALUATION.	154
11.1	Maintenance Ratio.	154
11.2	Maintainability.	155
11.3	Availability.	158
11.3.1	Inherent Availability.	158
11.3.2	Achieved Availability.	159
11.3.3	Operational Availability.	160
12.	REFERENCES.	162
INCLOSURE 1	Data Tables for Examples.	1-1
INCLOSURE 2	Statistical Tables.	2-1

GLOSSARY

The definitions and notations in this MTP are listed alphabetically. The Greek symbols used are listed below along with their names. The definition of each Greek symbol is then found alphabetically by name.

- α alpha
- β beta
- χ chi
- Δ delta (capital)
- δ delta
- ϵ epsilon
- y gamma
- λ lambda
- μ mu
- ω omega
- πpi
- o rho
- Σ sigma (capital)
- σ sigma
- τ tau
- Absolute value symbols; the enclosed term becomes positive regardless of the original sign.
- AR Maintenance action rate; number of actions per hour.
- σ Small Greek letter alpha used to denote the level of significance or the risk of Type I error. (Confidence level = 1-α.)
- A Lower boundary for the one-sided unbiased Type A test.
- ${\rm A}_{1_{-\alpha}}$ Upper boundary for the one-sided unbiased Type A test.
- A_a Achieved availability.
- A, Inherent availability.
- A Operational availability.
- AMT Active maintenance time.
- AP Aiming point; target.
- 5 Small Greek letter beta used to denote the risk of a Type II error.
- B. Lower boundary for the two-sided unbiased Type A test.
- ${\bf B}_{\rm II}$ Upper boundary for the two-sided unbiased Type A test.
- χ^2 The square of the small Greek letter chi used to denote the chi-square distribution.
- CPE Circular probable error; the radius of a circle, centered at the mean, in which 50% of the population lies.
- CV Critical value to which a test result is compared in order to make a decision.
- CN Critical number to which the ratio of successive difference method to standard deviation method for computation of parable error is compared to decide whether a trend existed or not.

- d.f. Degree of freedom to which subscripts may be added as necessary;
 e.g., d.f.₁ or d.f.₂; a numerical value dependent upon sample
 size and the number of estimated parameters.
- Capital Greek letter delta used to denote the deviation of each reading from the mean.
- Capital Greek letter delta used to denote the deviation of each reading from the mean for a Type A item.
- Capital Greek letter delta used to denote the deviation of each reading from the mean for a Type B item.
- Small Greek letter delta used as a subscript to denote the successive differences method for computing PE and standard deviation.
- D Amount of doubt; a defined area which requires continued testing to insure that borderline equipment is adequately tested.
- d The distance between a data point and the mean of all data points.
- e.d.f. Effective number of degrees of freedom.
- Small Greek letter epsilon used to denote an amount of error either to help determine a realistic sample size or to determine how close a population value is to a sample value at a desire' confidence level.
- e^{-x} Exponential reliability; e = 2.71828.
- F The F distribution; the ratio of two variances, each generated from two samples which have normal distributions.
- f Total number of failures.
- f Failure rate; number of failures per hour.
- frt Failure rate; number of failures per hour where continued
 testing is necessary.
- f Total number of system failures.
- Small Greek letter gamma used to denote the ratio of the sample standard deviation divided by the required standard deviation.
- K The number of products tested.
- λ Small Greek letter lambda used to denote the population proportion.
- $^{\lambda}$ Small Greek letter lambda with subscript zero used to denote the required proportion found in the Requirements Document or from a comparable item.
- ln Natural logarithm.
- LCL Lower confidence limit.

M - Maintainability; the probability that an item will be retained in or restored to a specified condition within a period of time, when the maintenance is performed in accordance with prescribed procedures and resources.

MA - Total number of maintenance actions.

MR - Maintenance ratio; amount of active maintenance time per hour.

 M_1 - Mean time between failures (lower confidence limit). NOTE: The parameter may be rounds or miles instead of time.

M₂ - Mean time between failures (upper confidence limit).

MDT - Mean downtime.

 Mean active maintenance time; total maintenance time divided by the number of maintenance actions.

MPI - The mean point of impact; the mean horizontal coordinates for ground bursts.

MTBF - Mean time between failures.

MTBF, - Mean time between failures where continued testing is necessary.

MTBM - Mean time between maintenance.

MTTR - Mean time to repair.

m - Miss distance; the distance between the aiming point and MPI.

MP - Mission (operational) profile, generally found in the Requirements Document.

Small Greek letter mu used to denote the population mean.

 $^{\mu}A$ - Small Greek letter mu used to denote the population mean for a Type A item.

 μ_B - Small Greek letter mu used to denote the population mean for a Type B item.

 $_{\text{O}}$ - Small Greek letter mu with subscript zero used to denote the required mean found in the Requirements Document or from a comparable item.

N - Number of samples; sample size.

N. - Number of samples for a Type A item.

N_p - Number of samples for a Type B item.

N_t - Sample size required to test the criteria; computed before testing starts.

N min - Used when computing combined system reliability; the sample size for that individual component of a system which is tested fewer times than the other components.

OC - Operating-characteristic curve used to determine required sample size for testing given criteria.

- ω Small Greek letter omega used to denote allowable maintenance action time as prescribed in the Requirements Document.
- Capital Greek letter pi used to represent the product of items; e.g.,

$$\begin{array}{ccccc}
\mathbf{N} & & \\
\mathbb{E}_{X_1} = (\chi_1)(\chi_2) & (\chi_{\mathbf{N}}) & & \\
& & & & \end{array}$$

- p The probability of an event occurring. (It cannot be less than zero or greater than one.)
- PE Probable error to which necessary subscripts are added to denote types of PE; e.g., PER (range probable error), PED (deflection probable error), or PEH (height of burst probable error); a deviation from μ such that 50% of the observations may be expected to lie between μ -PE and μ +PE.
- PEA Probable error for a Type A item to which necessary subscripts are used to denote types of PEA; e.g., PEA (range probable error for a Type A item), PEAD (deflection probable error for a Type A item), or PEAH (height of burst probable error for a Type A item).
- PEB Probable error for a Type B item to which necessary subscripts are added to denote types of PE_B ; e.g., PE_B , PE_B , or PE_B ,
- P Sample Proportion; the ratio of the items possessing a given characteristic divided by the sample size.
- P_A Sample Proportion for a Type A item.
- P_n Sample Proportion for a Type B item.
- P The required maximum proportion of defectives; P equals λ , if λ is in terms of defectives or P equals the quantity (1- λ), if λ is in terms of successes.
- P_U Upper limit for the proportion of defectives; the difference between P_O and the amount of doubt ($P_U = P_O D$).
- POB The mean point of burst; the mean coordinates for air bursts.
- The ratio of the range of the observations to the standard deviation; the studentized range (q) distribution.
- R Reliability; the extent to which a test yields the same results on repeated trials.
- Small Greek letter rho used to denote the population reliability.
- Small Greek letter rho with subscript zero used to denote the required reliability prescribed in the Requirements Document.
- R_U Upper limit for the reliability; the sum of ρ_0 and the amount of doubt $(R_U = \rho_0 + D)$.

- Pe Point estimate reliability; the number of successes divided by the sample size; achieved reliability.
- RR Repair rate.
- RT Repair time which is the result of a failure.
- Capital Greek letter sigma used to denote the sum of items; e.g.,

- $\boldsymbol{\sigma}$ Small Greek letter sigma used to denote the population standard deviation.
- σ_A Small Greek letter sigma used to denote the population standard deviation for a Type A item.
- σ_B Small Greek letter sigma used to denote the population standard deviation for a Type B item.
- $\sigma_{\underline{E}}$ Small Greek letter sigma used to denote the population standard deviation for eastings.
- $\sigma_{\widetilde{N}}$ Small Greek letter sigma used to denote the population standard deviation for northings.
- Small Greek letter sigma used to denote the population standard deviation of the differences between paired readings for a Type A item and a Type B item.
- σ Small Greek letter sigma with subscript zero used to denote the required standard deviation prescribed in the Requirements Document.
- Sample Standard deviation of the sample; a measure of deviation from the mean.
- $\mathbf{s}_{\mathbf{A}}$ Sample standard deviation for a Type A item.
- $\mathbf{s}_{\mathbf{R}}$ Sample standard deviation for a Type B item.
- s $_{\delta}$ Sample standard deviation computed by the successive differences method.
- \mathbf{s}_{E} Sample standard deviation for eastings.
- $\boldsymbol{s}_{_{\boldsymbol{N}}}$ Sample standard deviation for northings.
- Sample standard deviation of the differences between paired readings for a Type A item and a Type B item.
- Sample standard Jeviation of combined items when individual population standard deviations are unknown but assumed equal.
- s² Sample variance; standard deviation squared.
- s_1^2 Sample variance with the suspected outlier deleted.

- $s_{1\delta}^2$ Sample variance with the suspected outlier deleted, computed by the successive differences method.
- $\mathbf{s}_{\mathbf{K}}^{2}$ Average variance of K number of products.
- sc Total number of successes.
- t The veriable of the Student t distribution.
- τ Small Greek letter tau used to denote the population probable error.
- σ Small Greek letter tau with subscript zero used to denote the required probable error prescribed in the Requirements Document.
- TM Total active maintenance manhours.
- T_m Total number of miles.
- T₊ Total number of hours; total time.
- UCL Upper confidence limit.
- x A variable which may be assigned values.
- $\mathbf{x}_{\mathbf{A}}$ A variable which may be assigned values relative to a Type A item.
- $\mathbf{x}_{\mathbf{B}}$ A variable which may be assigned values relative to a Type B item.
- \mathbf{x}_{d} The difference between two readings.
- \overline{X} _ Sample mean or sample average.
- \overline{X}_A Sample mean for a Type A item.
- XB Sample mear for a Type B item.
- \overline{X}_d Sample mean for a particular set of differences.
- Z Standard units of measure on a normal curve with a mean of zero and a standard deviation of one.
- Less than; a < b is read, a is less than b.</p>
- Less than or equal to; a ≤ b is read, a is less than or equal to b.
- > Greater than; a > b is read, a is greater than b.
- Greater than or equal to; a ≥ b is read, a is greater than or equal to b.

U. S. ARMY TEST AND EVALUATION COMMAND BACKGROUND DOCUMENT

FIELD ARTILLERY STATISTICS

PURPOSE

This Materiel Test Procedure (MTP) is a guide for the project officer for planning the test and analyzing the test data.

2. SCOPE

- a. This MTP encompasses all necessary aspects of statistical procedures for service tests (ST). This MTP does not give the theoretical background for the statistical tests. The scope includes:
 - (1) Concepts.
 - (2) Median.
 - (3) Mean.
 - (4) Standard deviation.
 - (5) Proportion.
 - (6) Accuracy and precision.
 - (7) Reliability.
 - (8) Maintenance evaluation.
- b. The statistical procedures presented herein are applicable to testing of Field Artillery materiel.

3. BACKGROUND

- a. Statistics is an essential tool for evaluating results of tests conducted on newly developed items and for measuring and evaluating the degree of uncertainty associated with the test data. Statistical analysis usually consists of generating a result pertinent to the test item and then comparing that result to a stated requirement prescribed in the Requirements Document. In the absence of stated requirements, the development of statistical results will be of value in comparing the characteristics of a new item to those of a standard item or in determining the characteristics of a new item.
- b. Population is the whole class about which conclusions are to be drawn. However, population characteristics can rarely be determined exactly because of the unavailability of all the items in the population, the expense of examining every item of the population or even a large number of items, or the destructive nature of the examination. Consequently, population characteristics must be inferred from an examination of a part of the population a randomly selected sample. The statistical approach to examining and predicting the population characteristic will depend upon the size of the randomly selected sample. As the sample size is increased, there is greater confidence in the result being a true representation of

the true population characteristic. The project officer will make every effort to utilize the proper sample size.

4. CONCEPTS

4.1 POPULATION AND SAMPLE

A population is any finite or infinite collection of individual things, objects, or events, which is determined by some property that distinguishes between things that do and things that do not belong. In contrast, a sample is defined as a portion of a population. The sample even though a portion of the population plays an important role in predicting the characteristics of the population. Due to the size of the population, the prohibitive costs in testing the population, and, in most cases, the destructive nature of the tests; testing the entire population is impossible and impractical. However, a sample may be tested and the findings from that sample used to predict characteristics of the population. A random sample; i.e., the sample is chosen such that every individual in the population has an equal chance of being chosen, is the best type of sample to test. If separate random samples are drawn, the two samples are independent; i.e., one does not rely on the other. However, in many cases, a true random selection is not feasible; e.g., the prototype. Testing agencies may be furnished only one prototype of an item to test. The results of the test will reflect only on the prototype and not on the production items (population). In order to obtain a random sample and to accurately forecast such characteristics as reliability and availability for the population, random samples of production line items must be subjected to the same tests as the prototype.

4.2 FAILURE

A failure is defined as the inability of an item to perform within previously specified limits. Failures are classified as chargeable or non-chargeable. Non-chargeable failures do not count against the test item. Since a decision to accept or to reject an item can be altered if certain failures are not counted, it is necessary to carefully decide whether a failure is chargeable or non-chargeable. Of course, if failures are ignored, the probability of accepting an unacceptable item is increased. Reference 12a defines chargeable and non-chargeable failures.

4.3 <u>DISTRIBUTION</u>

a. The description of measurements and observations by grouping and classifying is an essential part of statistics. The grouping of data into classes is known as a frequency distribution (or simply a distribution) and consists of essentially choosing the classes into which the data are to be grouped, sorting or tallying the data into the appropriate classes, and counting the number of items in each class. Choosing the classes into which the data are to be grouped involves determining the class width, called a class interval; the number of class intervals needed to contain all the data, normally between six and 15; and the class intervals such that each measurement is contained in one and only one interval. Equal class intervals should be used whenever possible to aid in the ease of grouping and for quick and

accurate reading of the data. As an example, Figure 1 has the data grouped and classified. The distribution has seven equal class intervals, each class interval contains 2500 meters, and each range measurement which is recorded to the nearest meter is contained in one and only one class interval.

- b. The graphical representation of a distribution is called a histogram and is illustrated at Figure 1. A population distribution, which consist of many small classes, can be pictured as a curve which is approximated by the histogram. The curve is known as the probability density function or the distribution function and always has an area of one. The probability that a random observation will fall in any interval, a to b, is the area under the curve from a to b.
- c. A distribution generally is one of two types, continuous or discrete. In the case of a continuous distribution, a random observation may assume any value between and including the minimum and maximum values; however, a discrete distribution allows an observation to assume only certain values. For example, when firing ammunition, a range is obtained; this range reading may be any reading between and including the minimum and maximum ranges for the ammunition. An example of a discrete distribution is obtained by making repeated tests on 8 different charges under similar conditions. In each test, the charge fired may take on only one of the 8 values 1, 2, ..., 8. The binomial distribution is the most important discrete distribution Field Artillery statistics uses (paragraph 4.15.3, page 17).
- d. Although frequency distributions present data in a relatively compact form, give a good overall picture, and contain information which is adequate for many purposes, there are some limitations. For instance, the maximum and minimum values are not disclosed; nor is the average value (overall or by class) available.

4.4 MEASURES OF CENTRAL LOCATION

4.4.1 MEAN.

The sample mean, or average (\overline{X}) , of a number of sample readings (N) is a description of the central location. The mean is determined by summing the values of all of the sample readings and dividing by N. A population mean (μ) can be defined for the whole population. \overline{X} is generally a good estimate of μ . Figure 2 illustrates the mean.

4.4.2 MEDIAN

 \cdot a. The median is the midpoint of the readings when they are arranged in ascending or descending order. The median is the middle reading of an odd number of readings or is the average of the middle two readings of an even number of readings. Thus, 1/2 of the readings are larger than the median, and 1/2 of the readings are smaller than the median.

DISTRIBUTION

RANGE	FREQUENCY	RANGE	FREQUENCY
5000-7499	1	15000-17499	5
7500-9999	2	17500-19999	2
10000-12499	5	20000-22499	1
12500-14999	8		_

HISTOGRAM

DISTRIBUTION CURVE

Figure 1

CENTRAL MEASURES OF LOCATION

R.A	INGE	
495	1225	Mean = 1188
745	1235	Median = 1000
750	1238	Mode = 1125 (1000 to 1250)
865	1249	Mode of Raw Data = 1000
950	1450	Midrange = 1755
975	1485	
995	1720	
1000	1950	
1000	2250	
1000		

Figure 2

b. The population median and mean are equal for a normal distribution (paragraph 4.15.1, page 15) and the sample median may be used to estimate the population mean; however, the median is not as good an estimate as the sample mean. If the distribution is not normal, the population median and mean may not be equal. Figure 2 illustrates the median.

4.4.3 <u>MODE</u>

- a. The mode of a set of raw data is the value which occurs most often; e.g., if the raw data is 10, 8, 12, 8, 9, 10, 8; then 8 occurs three times; 10, two times; and 12 and 9, one time. Therefore, the mode is 8. A mode of high concentration gives a rough but quick measure of central location but is not unique; i.e., several readings may occur the same number of times. Therefore, if more than one high point exists, the mode is not very useful.
- b. The mode of a set of data that has been converted into a frequency distribution is the midpoint of the interval which contains the most readings; e.g., the interval from 1 to 5 has one sample; 6 to 10, two samples; 11 to 15, six samples; 16 to 20, two samples; and 21 to 25, zero samples. The mode is 13 (the interval from 11 to 15 which has six samples). Figure 2 illustrates the node.

4.4.4 MIDRANGE

The midrange is the sum of the smallest and the largest readings divided by two. This is a good measure of the central location for samples of five or fewer, though it is not as good as the mean. Figure 2 illustrates the midrange.

4.5 MEASURES OF DISPERSION

4.5.1 STANDARD DEVIATION

- a. The standard deviation (s) is a measure of dispersion from \overline{X} . The amount of variation of that dispersion depends on the distances of the readings from the mean. The difference between the mean and each reading (x- \overline{X}) represents the deviation from the mean (Δ) and suggests that the average of the deviations might be used as a measure of the variation of the N readings. Since these deviation values are positive and negative and a normal distribution exists, the sum is zero as is the mean of the variation.
- b. Since the size of the deviations and not the direction (sign) of the deviation are of interest, the direction (sign) can be ignored. The sum is then positive, and the result is the mean deviation (paragraph 4.5.3, page 7). However, there exists another and better way of eliminating the direction (sign) of the deviations and that is squaring the deviations. A square cannot be negative. The average of the squared deviations is the variance (s^2). The square root of the variance is the standard deviation (s). Originally s was computed in the following manner:

(1) Square the difference between the mean and reading i.e., $(x-\overline{X})^2$.

(2) Sum the squares; i.e., $\Sigma(x-X)^2$.

(3) Average the sum by dividing by N; i.e., $\Sigma(x-X)^2$.

(4) Find the square root of the average; i.e., $s = \sqrt{\frac{\sum (x-X)^2}{N}}$. (The square root is used to compensate for the fact that the deviations were squared.)

c. In recent years there has been a tendency to divide by N-1 rather than by N. The reason for this is that if s^2 is used to estimate a population variance (σ^2) , the mean obtained is usually too small and biased if N is the divisor. Therefore, N-1 as a divisor yields a truer estimate of the population variance. Since the population is the item of interest rather than only a few samples, N-1 will be used throughout this MTP in computing s^2 or s; i.e.,

$$s = \sqrt{\frac{\sum (x - \overline{X})^2}{N-1}}$$

(see paragraph 7.1, page 64, for computations). The population standard deviation (σ) is a measure of the extent to which a population characteristic varies from one item to another.

NOTE: The standard deviation may also be computed by the following formula:

$$s = \sqrt{\frac{N\Sigma x^2 - (\Sigma x)^2}{N(N-1)}}$$

4.5.2 <u>RANGE</u>

The range is the difference between the smallest and the largest readings in the sample. The range multiplied by the appropriate factor from Table B-1, page 2-1, approximates σ for a small sample (N \leq 10) and a normal distribution (paragraph 4.15.1, page 15).

4.5.3 MEAN DEVIATION

The mean deviation of a normal distribution is the mean of the deviations from the mean or median of the N sample members. The deviations from the mean (median) is the absolute value of the mean (median) subtracted from the reading. The mean deviation multiplied by a factor from Table B-2, page 2-2, approximates σ for a small sample (N \leq 10) and a normal distribution (see paragraph 4.15.1, page 15).

4.5.4 PROBABLE ERROR (RANGE, DEFLECTION, AND HEIGHT OF BURST)

The probable error (PE) is a measure of deviation from μ such that 50% of the observations may be expected to lie between μ -PE and μ +PE. However, certain conditions must exist for the PE to have any meaning. These are independent (random) samples, normal distribution, and large sample size.

PE may be expressed for various parameters, range (PER), deflection (PED), and height of burst (PEH). For the population probable error (τ), τ = 0.6745° and τ = 1.4826 τ . Since a sample is being examined as a representative of the population, PE = 0.6745s and s = 1.4826PE. Firing tables and other data concerning Field Artillery precision contain the appropriate PE's. When testing for precision, end results are often expressed in terms other than PE. This occurs in modern day testing because prototype samples are not random representations of production line items, the normal distribution is not appropriate in many cases, and small sample sizes bias the PE. The more modern standard deviation is in wider use as a measure of dispersion than is the probable error because s is commonly computed for statistical analysis. Due to the freedom to use small or large sample sizes, the wider applications of the standard deviation, and the ease of calculation, statistical tests involving standard deviation comparisons are more widely used than those involving PE comparisons.

4.5.5 CIRCULAR PROBABLE ERROR

The circular probable error (CPE or CEP) is a measure of deviation from μ and defines the radius of the circle which is centered at the mean and in which 50% of the observations are contained. CPE = 1.1774 times the population standard deviation for the easting (σ_{E}) when σ_{E} equals the population standard deviation for the northing (σ_N) . When $\sigma_E \neq \sigma_N$, the CPE is called the equivalent CPE and equals .5887 ($\sigma_E + \sigma_N$). In terms of a sample, the equivalent CPE = .5887 (s_E+s_N) . However, as for the PE, certain conditions must exist for the CPE to have any meaning; these are independent (random samples, a bivariate normal distribution, and a large sample size. Firing tables and other data concerning Field Artillery precision may contain the CPE. When testing for precision end results are often expressed in terms other than CPE. This occurs in modern day testing because prototype samples are not random representations of production line items, the bivariate normal distribution is not appropriate, and small sample sizes bias the CPE. The bivariate normal distribution is a representation of the measure of dispersion for two variables (see paragraph 4.15.2, page 15 and paragraph 9.2.4, page 118).

4.6 RELIABILITY

- a. Reliability is the probability of an item functioning adequately for the period of time intended under the operating conditions encountered. Along with the numerical value of the reliability, a fraction or a percent value, the following are necessary:
 - (1) Define precisely a success or satisfactory performance.
 - (2) Specify the time base or operating cycles over which such performance is to be sustained; e.g., hours, miles, or rounds. This factor is particularly important since the probability value is based on completing a mission or task. For example, if the probability of a test item operating for 50 hours is 0.65 or 65%, then on the average 65 times out of 100 trials the test item would be functioning after a 50-hour operating period.

- (3) Specify the environment or use conditions which will prevail. Typical of these conditions are temperature, humidity, shock, and vibration. Without these various conditions the reliability definition would be relatively useaningless.
- b. Due to the various types of test items and the various distributions which apply, reliability may be evaluated by several methods (see paragraph 10, page 118).

4.7 TEST OF A STATISTICAL KYPOTHESIS

The investigator's objective can often be translated into an hypothesis (assumption or claim) concerning the test item. This hypothesis, called the null hypothesis, usually states that the test item does not meet the stated requirements. This explains why it is called the null (not) hypothesis. A decision is made to accept or reject the null hypothesis using the test data from the sample. Failure to reject the null hypothesis does not necessarily mean that the hypothesis is true but merely indicates that the sample is compatible with the kind of population described in the null hypothesis. The same is true if the null hypothesis is rejected; the fact is merely recognized that the sample is not compatible with the kind of population described in the null hypothesis. Associated with the null hypothesis are two types of errors (paragraph 4.8, page 10), and a significance level (paragraph 4.9, page 10). In general, to test a null hypothesis and construct statistical decision criteria, the following outline is used:

- a. Formulate the null hypothesis so that it states that the test item does not meet the stated requirements. The null hypothesis is a numeric expression; e.g., $\overline{X} > 25$.
- b. Formulate an alternative hypothesis so that the rejection of the null hypothesis is equivalent to the acceptance of the alternative hypothesis. The alternative hypothesis is also a numeric expression e.g., $\overline{X} \ge 25$.
- c. Specify the probability to be risked as a Type I error. If possible, desired, or necessary, also make some specifications about the probability of a Type II error for a given alternate value of the parameter concerned.
- d. Use the appropriate statistical theory (e.g., paragraphs 6.2, page 36 and 6.3, page 45) to test the null hypothesis.

NOTE: In some cases when the null hypothesis has been rejected, a reserve judgment decision will be made instead of accepting the alternative hypothesis; e.g., insufficient sampling to produce conclusive results.

4.8 TYPES OF ERROR

4.8.1 TYPE I ERROR

The Type I error is rejection of the null hypothesis when it is true. The risk of Type I error is the level of significance (α). It is the more important of the two error types, since rejecting an item when in fact it is good is better economically than accepting an item when in fact it is bad. The value of α is arbitrary but will sometimes be found in the Requirements Document. In the event the significance level or confidence level (confidence level = 1 - significance level) is not specified in the Requirements Document, α = .10 or confidence level = .90 will be used.

4.8.2 TYPE II ERROR

The Type II error is the acceptance of the null hypothesis when it is false. The risk of a Type II error is denoted by β . The value of β is not as restricted as that of α . In the event α and β are highly restricted, the sample size must be very large to reach an accept or reject decision. When β is not specified in the Requirements Document, .20 will be used.

4.9 LEVEL OF SIGNIFICANCE.

- a. The risk of making a Type I error (α) equals the level of significance of the test. The null hypothesis serves as an origin or base. From the null hypothesis the test criterion may be a two-sided test (two-tail test) or a one-sided test (one-tail test). The two-sided test involves an area at each extreme of the distribution curve (note Figure 3A); e.g., if α = .05 or 5%, then the shaded areas in Figure 3A are each equal to 2.5% of the total area under the curve. The one-sided test is only concerned with the area under the curve at one extreme (note Figure 3B); e.g., if α = .05 or 5%, then the shaded area in Figure 3B is equal to 5% of the total area under the curve. When the stated requirement is in the shaded area, the null hypothesis is accepted which means that the item is not acceptable.
- b. In general, a test is said to be one-sided or two-sided (one-tailed or two-tailed) depending on whether α is concentrated at one end of the curve (left or right) or is divided into two areas with the areas situated at opposite ends of the curve (see Figure 3).

4.10 CONFIDENCE INTERVAL, LIMITS, AND LEVEL

- a. When estimating a population measure, such as μ , by a sample measure, such as \overline{X} , μ has a value somewhere near \overline{X} . How near μ is to \overline{X} is determined by an interval constructed about \overline{X} ; and, at a specified confidence level, μ lies in this interval. This interval is called the confidence interval. The interval between the shaded areas of Figure 3A is an example of a confidence interval (see paragraph 6.1.2.1, page 27).
- b. The end points of the confidence interval are called confidence limits. Thus, there exist an upper confidence limit (UCL) and a lower confidence limit (LCL). The LCL and UCL are shown in Figure 3A. In

Lower Confidence Limit (LCL) Upper Confidence Limit (UCL)

the case of the one-sided test, only one confidence limit is used for testing purposes. Figure 3B is an example where only the UCL is used.

c. The confidence level is $1-\alpha$. In both Figures 3A and 3B the confidence levels are the unshaded areas, and the area that α represents is either concentrated at one end of the curve as in the one-sided test or is divided into two sections as in the two-sided test. In the event the same area at one extreme of the distribution curve is considered for the one-sided test and the two-sided test, the confidence levels will be different. For

example, to test whether a test item differs from a standard (two-sided test) or whether a test item is less than a standard (one-sided test), a value for α must be chosen. When the one-sided test is used, α is the area at one extreme; and the confidence level is $1-\alpha$ (.95 for α = .05). If the same area at the right extreme appears at the left extreme, the result is a two-sided test with the confidence level being one minus the area at both extremes (.90 for .05 area at each extreme). Figure 4 illustrates this difference.

4.11 SIGNIFICANT DIFFERENCE

- a. One of the most frequent uses of statistics is in testing for differences. Comparisons are conducted with the appropriate statistical test applied to the results of the test to determine whether there is sufficient justification in concluding that there is a difference either between the test item and the stated requirements or between the test item and a standard item. The test item may be evaluated in such terms as the mean (X), proportion (P), standard deviation (S), or probable error (PE) while the respective requirements are in terms of the required mean (μ_0) , required proportion (λ_0) , required standard deviation (σ_0) , or required probable error (τ_0) . The test item and standard item are evaluated with respect to the same term, e.g., their means. Ordinarily, the statistical test applied to the results observed on a sample will point the way to a decision between a pair of alternatives. For some tests, the two alternative decisions will be formally stated as follows:
 - (1) The population mean, or any other parameter, of test item A is greater than that of standard item B.
 - (2) There is no reason to believe that the population mean, or any other parameter, of test item A is greater than that of standard item B.
- b. In other cases, the formal statement of the two alternative decisions will be:
 - (1) The population mean, or any other parameter, of test item A is less than that of standard item B.
 - (2) There is no reason to believe that the population mean, or any other parameter, of test item A is less than that of standard item B.
- c. The problem is just how large the difference must be in order to conclude that the two items differ or that the observed difference is "statistically significant'? A difference may be statistically significant and yet be unimportant for all practical purposes. However, the size of the difference is dependent upon several factors:
 - (1) The amount of variability in the items of each type (test item and standard item).
 - (2) The number of items of each type.
 - (3) The amount of risk allowed in stating that a difference exists when there is none (Type I error).

ONE-SIDED AND TWO-SIDED COMPARISON

Parameter

B Figure 4

4.12 DEGREES OF FREEDOM

The degrees of freedom (d.f.) is a numerical value usually generated by the sample size minus the number of estimated parameters. This procedure may vary depending upon the parameters involved and the distribution and test being applied. If the d.f. is needed, the process for obtaining it will be supplied as a part of the statistical test procedure.

4.13 OPERATING-CHARACTERISTIC CURVE

a. An operating-characteristic (OC) curve is used to determine one of four values given three of them; e.g., the Type II error can be

determined if N, α , and λ are known (see Figure 5). An example of an OC curve is illustrated at Figure 5.

OPERATING - CHARACTERISTIC CURVE

Operating characteristics of the one-sided χ^2 test to determine whether the standard deviation σ_1 of a new product is less than the standard deviation σ_0 of a standard (α = .05).

Adapted with permission from Annals of Mathematical Statistics, Vol. 17, No. 2, June 1946, from article entitled "Operating Characteristics for the Common Statistical Tests of Significance" by C. D. Ferris, F. E. Grubbs, and C. L. Weaver.

Figure 5

b. Since tables are easier to read than OC curves, the OC curves, retaining all of their inherent qualities, have been transferred to tables for use in this MTP.

4.14 AMOUNT OF ERROR WHEN DETERMINING SAMPLE SIZE

a. The error size (ε) is a critical factor in determining sample sizes. The next paragraph contains suggestions which will assist the project officer in compromising between excessive sampling and loss of confidence in results obtained.

b. In many cases the Requirements Document will specify a permissible error. If an error is not specified, the project officer must use his judgment. An error of one percent of the required mean or the

standard item mean has been used in some of the illustrated cases (see paragraph 6.1.3, page 33, and paragraph 6.2.3, page 43). This is considered appropriate since the timing and recording of the data for the tests may be easily controlled. However when the test item has a large standard deviation, an error as great as five percent may be acceptable in order to keep sample sizes reasonable.

4.15 PARTICULAR DISTRIBUTIONS

4.15.1 NORMAL DISTRIBUTION

- a. The normal distribution is by far the most important continuous distribution (see pages 2 to 4). Due to the laws of chance repeated measurements of the same physical quantity occur with such a dispersion that a pattern (distribution) is evident and can be closely approximated by a certain kind of continuous distribution, referred to as the "normal curve of errors." The graph of a normal distribution is a bell-shaped curve that extends indefinitely in both directions (see Figure 6A).
- b. The mean is at the peak of the distribution, and the standard deviation determines the spread of the distribution. The physical area from a to b under two normal distributions may not be equal (see Figure 6B). Since construction of separate tables of normal curve areas for each conceivable pair of values for μ and σ is impractical, areas are tabulated only for the so-called standard normal distribution which has a mean of zero and a standard deviation of one. The conversion of a normal distribution to a standard normal distribution is accomplished by using the equation $Z = \frac{x-\mu}{2}$ (see Figure 7A). With the conversion to standard units, Table B-3, page 2-3, may be used. The entries in this table are the areas under the standard normal distribution between the mean (Z = 0) and Z = .01, ..., 3.09. The negative values of Z (areas to the left of the mean) are not needed by virtue of the symmetry of a normal curve about its mean; e.g., the area between Z = -1.33and Z = 0 is the same as the area between Z = 0 and Z = 1.33, which is 0.4082. In the event the percentage of area under the curve to the left of a given value of Z is desired, Table B-3, page 2-3 and this value of Z are used to determine the percent from the mean. If Z is positive, the percentage of the area to the left of Z equals .50 plus the value obtained from Table B-3; e.g., if Z = .92 the percent of area is .50 + .3212 which is .8212 or 82.12%of the area. If Z is negative, the percentage of the area to the left of Z equals .50 minus the value obtained from Table B-3; e.g., if Z = -.92, the percent of area is .50 - .3212 which is .1788 or 17.88% of the area.
- c. The percentage of area between two Z values can be determined by obtaining the areas for the Z values from Table B-3, page 2-3, and either subtracting the smaller area from the larger area if both Z values are on the same side of the mean or adding the areas if the Z values are on opposite sides of the mean (see Figure 7B).

4.15.2 BIVARIATE NORMAL DISTRIBUTION

a. A bivariate normal distribution is a population in which each member is dependent on two variables (values); e.g., easiing and northing.

NORMAL DISTRIBUTION CURVE

Figure 6

Parameter

Parameter

The data may be grouped into a table of double entry showing the frequencies of pairs of values lying within given class intervals. Each row in such a table gives the frequency distribution of the first variable for the members of the population in which the second variable lies within the limits stated on the left of the row. A similar statement can be made about the columns. A grouped frequency distribution of the type in Tables A-la and A-lb, page l-l may be termed a bivariate frequency distribution.

b. The shape of the bivariate normal population is a normal distribution in three dimensions, rising to its greatest height at the center and fading away to tangency (see Figure 8). Some properties of the bivariate normal distribution are:

Figure 7

- (1) Each section perpendicular to each axis can be transformed into a normal distribution. This means that the data from each column and each row are samples from a normal distribution.
- (2) All of the transformed distributions perpendicular to each axis have the same population standard deviation, and all of the population means lie on a straight line.
- (3) The distribution is dependent on the standard deviations, the means, and the covariance (amount of dependency) of the two variables.

4.15.3 BINOMIAL DISTRIBUTION

a. Problems arise as to the number of successes or failures in N trials. To handle problems of this type, a special probability function,

BIVARIATE NORMAL DISTRIBUTION CURVE

The ideal symmetrical bivariate Figure 8

the binomial distribution, is needed. This distribution applies only when the probability of a success or failure remains constant from trial to trial and the trials are independent. Table B-18, page 2-74, contains tables for 0 to 100 failures. Table B-18 is used to establish reliability, confidence level, and sample size for a given number of failures. Paragraph 10.1, page 119, explains the use of Table B-18 and gives various applications of the binomial distribution.

b. If the probability of an event occurring is p, the mean of the binomial distribution is Np and the standard deviation is N(p) (1-p). As N increases, the binomial distribution tends to the normal.

4.15.4 POISSON DISTRIBUTION

a. The Poisson distribution was developed for studying rare events where N is large and the mean (Np) is much less than 15. Under such conditions the binomial distribution remains noticeably skew, and the normal

approximation is unsatisfactory. The Poisson distribution is a limiting form of the binomial distribution such that as N tends to infinity while p tends to zero, μ = Np is constant.

- b. If a series of independent distributions are each Poisson distributions with means $\mu_1, \, \mu_2, \, \ldots$, the sum follows a Poisson distribution with mean equal to $\mu_1 + \mu_2 + \ldots$
- c. The Poisson distribution plays an important role in the inspection and quality control of manufactured goods. It is used to ascertain that the proportion of defective items in a large lot is small.
- d. The distribution is dependent on the mean (μ), which equals the variance (σ^2).

4.15.5 EXPONENTIAL DISTRIBUTION

- a. For systems that are renewed by repair or maintenance, a failure rate is employed. This rate is thus given as age-dependent. The exponential distribution e^{-x} may characterize the lifetime to failure for one or more of the following reasons:
 - The principal cause of failure is a chance effect from the environment.
 - (2) A large serial system; i.e., one which fails when any part fails, will have an exponential lifetime to failure if the failures are independent and if repair times are negligibly short.
 - (3) There may be many independent external possible causes of failure that tend simultaneously and continuously to threaten the system.
- b. The combined effect of (1), (2), and (3) can be summarized as follows: if an operating system has a very large number of components and if the components are sufficiently independent; then the failure of one component is an independent binary process. In this case there are only two possible outcomes for all observations of the component; i.e., success or failure. Each observation selects one outcome at random, and the observations are independent. Consequently, the average operating time until failure of each component causes the probability of the system operating to decrease rapidly and exponentially as operating time increases (see Figure 9).

4.15.6 STUDENT t DISTRIBUTION

The Student t distribution approximates the normal distribution and is symmetrical about the mean. For large samples the standardized mean is zero, and the standard deviation is one. The distinction is obvious only for samples of less than 30. With samples of less than 30, there is a slightly higher probability of values falling into the two tails. Figure 10 illustrates the t distribution and its relationship to the normal distribution.

EXPONENTIAL RELIABILITY CURVE

4.15.7 F DISTRIBUTION

a. If two sample variances are generated from two samples which have normal distributions, the ratio of the two variances (called a variance ratio) forms a sampling distribution called the F Distribution. The distribution is dependent on the respective degrees of freedom, N_1 -1 and N_2 -1. Figure 11 illustrates the F distribution curve.

b. The F distribution is very helpful in determining the equalit, of two population standard deviations (see paragraph 7.3, page 74, for method and example).

4.15.8 CHI-SQUARE DISTRIBUTION

a. For many tests σ is needed but is unknown. Although s is by far the most popular estimate of the standard deviation of a population, it is not the only estimate; and confidence intervals for σ based on s are

STUDENT t DISTRIBUTION CURVE

Parameter

Student t-distribution curve

—— Normal distribution curve Figure 10

often stated with a given confidence level. The theory on which these confidence intervals are based assumes that the population from which the sample is obtained has roughly the shape of a normal distribution and is called the chi-square (χ^2) distribution. An example of a chi-square distribution is shown in Figure 12A; in contrast to the normal and t distribution, its domain is restricted to the nonnegative real numbers.

b. The χ^2 distribution is also different from those previously discussed in that the area under the curve is summed from the χ^2 point to the right. The value for $\chi^2_{1-\alpha}$ represents an area of α under the curve (right-hand tail, see Figure 12A), while χ^2_{α} represents an area of 1- α to the right under the curve (see Figure 12B). Due to the shape of the χ^2 curve the point values of $\chi^2_{-1/2}$ and $\chi^2_{1-1/2}$ will be different even though the significance levels are equal (see Figure 12C). This distinction is important due to the fact the distribution is not symmetrical; thus, a table containing values corresponding to areas in either tail of the distribution is necessary. Thus, with a confidence level of 1- α ,

$$\frac{(N-1)s^2}{x_{1/2}^2} < \sigma < \frac{(N-1)s^2}{x_{1-\alpha/2}^2}$$

As the sample size decreases, the interval for σ becomes wider. Therefore, in most tests applying the chi-square distribution, a normal sample size is needed (N \neq 30).

4.16 ROUND OFF PROCEDURES

- a. Since all measuring equipment has limited accuracy, the measurements are also of limited accuracy and thus consist of numbers which have been rounded off; e.g., if an instrument is accurate to tenths of minutes and a time measurement is 12.2 minutes, the time may actually have been any value between 12.15 and 12.25 minutes.
- b. When test data are used to compute test item characteristics, such as the mean and standard deviation, the results must be consistent with the original data; i.e., the mean weight of a group of projectiles cannot be more accurate than the individual weights used to compute the mean. The following are some basic rules concerning significant figures and the rounding of data:
 - (1) Significant figures (significant digits) are the digits of a number that begin with the first digit on the extreme left that is not a zero and that end with the last digit on the right that is not a zero or that is a zero which is considered accurate. For example:
 - (a) 12304 has five significant digits.
 - (5) 1.0200 has five significant digits.

(When a number ends with a zero which is on the right of the decimal point, the zero is significant.)

Figure 12

- (c) .0003 has one significant digit.
- (d) 5200 has two, three, or four significant digits depending on whether the instrument used to obtain this measurement is accurate to hundreds, tens, or units, respectively.
- (e) 100.0 has four significant figures.
- (2) The result of a series of arithmetic operations must be rounded off to an accuracy consistent with the least accurate measurement in the original data. The generally recommended procedure is to carry at least two extra significant digits throughout the computations before rounding off the final result. (If a calculator is used for the computations will depend on the capacity of the calculator.)
- (3) Some numbers are considered totally accurate due to the fact that they are not the result of a measurement, and thus they do not limit the number of significant digits in the final result; e.g., degrees of freedom (d.f.), required or desired significance levels, and requirements such as μ_0 and σ_0 . Values taken from tables are accurate only to the number of digits given in the table.
- (4) Generally, rounding off of numbers will be performed in accordance with the standard Field Artillery round off rules; however, special procedures must be used in the following cases:
 - (a) When the sample size which must be tested in order to prove an hypothesis is calculated, the answer must be a whole number since a fraction of a sample cannot be tested. Furthermore, if 36.2 samples are needed, then 36 samples are not enough. Therefore, calculated sample sizes must be rounded off to the next larger whole number.
 - (b) When one-sided or two-sided confidence limits are calculated, the answer must usually be rounded off. However, since the unrounded limits (UCL and LCL) define an interval for a specified confidence level, care must be used to insure that the desired confidence level is not decreased when the limits are rounded off. Since the confidence level increases as the interval increases, the UCL must always be rounded up; and the LCL must always be rounded down.

5. MEDIAN

5.1 OBJECTIVE

To determine the midpoint of the readings such that haif of the readings are above and half are below the median.

5.2 DATA REQUIRED

A list of sample readings.

5.3 PROCEDURE

- a. N is odd.
 - (1) List the readings in descending or ascending order.
 - (2) Use the middle reading for the median.
- b. N is even
 - (1) List the readings in descending or ascending order.
 - (2) Use the average of the two middle readings for the median.

5.4 EXAMPLE

a. Case I.

Given: N = 5

Procedure:

Example:

- (1) List the readings in order.
- (1) 15 13.5 12.7 12 11.9
- (2) Use the $\frac{N+1}{2}$ reading for the median.
- $\frac{N+1}{2} = \frac{5+1}{2}$

= 3

The median is the 3rd reading. The median = 12.7

b. Case II

Given:
N = 6

Procedure:

Example:

- (1) List the readings in order
- (1) 250 245 230 228 225 224.6

(2) Use the $\frac{N}{2}$ and $\frac{N}{2}$ + readings to compute the median which is the average of the two. The median =

$$\frac{{\binom{N}{reading}} + {\binom{N}{2}} + 1 \text{ reading}}{2}$$

(2) $\frac{N}{2} = 3$ $\frac{N}{2} + 1 = 4$

Use the 3rd and 4th readings to compute:

The median =
$$\frac{230+228}{2}$$

= $\frac{458}{2}$

5.5 ANALYSIS

The median equals the mean if the population is normally distributed; otherwise, it is only another measure of central location, which denotes the midpoint of the total dispersions.

- 6. MEAN
- 6.1 ESTIMATE OF THE POPULATION MEAN (u).
- 6.1.1 BEST SINGLE ESTIMATE OF u.
- 6.1.1.1 OBJECTIVE

To determine the best point estimate of the population mean for a normal distribution.

6.1.1.2 DATA REQUIRED

A list of sample readings; e.g., the time required for prepare for action under daylight conditions.

6.1.1.3 PROCEDURE

- a. Sum the list of data for the parameter.
- $\,$ b. Divide the sum by the number of readings recorded to obtain the mean of the parameter.

6.1.1.4 EXAMPLE

Given:

Sample data at Table A-2a, page 1-2.

Procedure:

Example:

a. Sum the parameter.

a. Sum = 1037.0 min

b. Compute:

b. $\overline{X} = 1037.0/12$

X = Sum/no. of readings

= 86.417 min.

NOTE: Mean may be expressed as

= 86.4 min.

MTBF, MMBF, MTTR.

6.1.1.5 ANALYSIS

The sample mean, or average, is a value which is typical or representative of a set of data. The mean is the most commonly used measure of central location.

6.1.2 CONFIDENCE INTERVAL ESTIMATES

6.1.2.1 TWO-SIDED INTERVAL WITH σ UNKNOWN

6.1.2.1.1 OBJECTIVE

To determine a two-sided confidence interval which is expected to bracket μ at the desired confidence level when σ is unknown.

6.1.2.1.2 DATA REQUIRED

A list of sample readings.

6.1.2.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute \overline{X} (see paragraph 6.1.1.3, page 26).
- c. Compute s (see paragraph 7.1.1.3, page 64).
- d. Use Table B-5, to obtain $t_{1-\alpha/2}$ for N-1 d.f.
- e. Compute ϵ as follows:
 - (1) Multiply s by step d.
 - (2) Divide step (1) by the square root of N.
- f. Add ϵ to \overline{X} to obtain the UCL, and subtract ϵ from \overline{X} to obtain the LCL.
- g. Conclude that μ is equal to or between the UCL and LCL at the desired confidence level.

6.1.2.1.4 <u>EXAMPLE</u>

Given:

Sample data at Table A-2a, page 1-2.

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Compute \overline{X} .
- c. Compute s.

- d. Use Table B-5, page 2-5, to obtain t for N-1 d.f. $1-\alpha/2$
- e. Compute:

$$\varepsilon = \frac{t_{1-\alpha/2}(s)}{\sqrt{N}}$$

f. Compute:

$$UCL = \overline{X} + \cdot \cdot$$

$$LCL = \overline{X} - \cdot$$

8. Conclude that $r \ge UCL$ and $u \ne LCL$ (the upper and lower confidence limit values) at a $100(1-\alpha)\%$ confidence level.

Example:

a.
$$\alpha = .05$$

 $1-\alpha = .95$
 $1-\alpha/2 = .975$

b.
$$\overline{X} = 1037.0/12$$

= 86.417 min.
= 86.4 min.

See paragraph 6.1.1.4, page 26, for computations.

c.
$$s = \sqrt{\frac{51.9563}{12-1}}$$

$$= \sqrt{4.7233}$$

- = 2.173 min.
- = 2.2 min.

See paragraph 7.1.1.4, page 65 for computations.

e.
$$\varepsilon = \frac{(2.201) (2.173)}{\sqrt{12}}$$

$$= \frac{4.783}{3.464}$$

$$= 1.381$$

g. Conclude that $\mu \le 87.8$ and $\mu \ge 85.0$ at a 95% confidence level.

6.1.2.1.5 ANALYSIS

The two-sided interval surrounds μ such that $\mu \leq UCL$ and $\mu \geq LCL$ at a $100(1-\alpha)\%$ confidence level. Due to σ being unknown, the confidence interval will be as large as possible. Application of the Student t test, which is designed for small sample size, also contributes to a larger confidence interval than a normal test for a particular ϵ .

6.1.2.2 ONE-SIDED INTERVAL WITH σ UNKNOWN

6.1.2.2.1 OBJECTIVE

To determine a one-sided confidence interval such that μ is equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level when σ is unknown.

6.1.2.2.2 DATA REQUIRED

A list of sample readings.

6.1.2.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute \overline{X} (see paragraph 6.1.1.3, page 26).
- c. Compute s (see paragraph 7.1.1.3, page 64).
- d. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for N-1 d.f.
- e. Compute ε as follows:
 - (1) Multiply s by step d.
 - (2) Divide step (1) by square root of N.
- f. Add ϵ to \overline{X} to obtain the UCL (or subtract ϵ from \overline{X} to obtain the LCL).
- g. Conclude that μ is equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level.

6.1.2.2.4 **EXAMPLE**

Given:

Sample data at Table A-2a, page 1-2.

Procedure:

Example:

a. Choose the confidence level $(1-\alpha)$.

a. $\alpha = .01$ $1-\alpha = .99$

b. Compute X.

c. Compute s.

d. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for N-1 d.f.

e. Compute:

$$\varepsilon = \frac{t_{1-\alpha}(s)}{\sqrt{N}}$$

f. Compute:

$$UCL = \overline{X} + \varepsilon$$
(or LCL = \overline{X} - ε

g. Conclude that $\mu \leq UCL$ (or $\mu \geq LCL$) at a $100(1-\alpha)\%$ confidence level.

6.1.2.2.5 ANALYSIS

The one-sided interval surrounds μ such that $\mu \leq UCL$ (or $\mu \geq LCL$) at a $100(1-\alpha)\%$ confidence level. Since α is concentrated at one end of the curve, the value $t_{1-\alpha}$ is used instead of the value of $t_{1-\alpha/2}$.

6.1.2.3 TWO-SIDED INTERVAL WITH σ KNOWN

6.1.2.3.1 **OBJECTIVE**

To determine a two-sided confidence interval which is expected to bracket μ at the desired confidence level when σ is known.

6.1.2.3.2 DATA REQUIRED

A list of sample readings and σ , which is known from a standard item, history, or a Requirements Document.

6.1.2.3.3 PROCEDURE

a. Choose the desired confidence level.

b.
$$\overline{X} = 86.417 \text{ min.}$$

= 86.4 min.

d. $t_{.99}$ for 11 d.f. = 2.718

$$\epsilon = \frac{(2.718)(2.173)}{(2.173)}$$

$$\begin{array}{r}
\sqrt{12} \\
= \frac{5.906}{3.464} \\
= 1.705
\end{array}$$

f. UCL = 86.417 + 1.705 = 88.122

= 88.2 min. (or LCL = 86.417 - 1.705 = 84.712 = 84.7 min.)

g. Conclude that $\mu \le 88.2$ min. (or $\mu \ge 84.7$ min.) at a 99% confidence level.

- b. Compute \overline{X} (see paragraph 6.1.1.3, page 26).
- c. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha/2}$.
- d. Compute ε as follows:
 - (1) Multiply σ by step c.
 - (2) Divide step (1) by the square root of N.
- e. Add ε to \overline{X} to obtain the UCL, and subtract ε from \overline{X} to obtain the LCL.
- f. Conclude that μ is equal to or between the UCL and LCL at the desired confidence level.

6.1.2.3.4 **EXAMPLE**

Given:

Sample data at Table A-2a, Page 1-2. $\sigma = 2.0$ min.

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Compute \overline{X} .
- c. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha/2}$.
- d. Compute:

$$\varepsilon = \frac{z_{1-\alpha/2}(\circ)}{\sqrt{N}}$$

e. Compute:

$$UCL = \overline{X} + \varepsilon$$

$$LCL = \overline{X} - \varepsilon$$

Example:

a.
$$\alpha = .05$$

 $1-\alpha = .95$
 $1-\alpha/2 = .975$

c.
$$Z_{.975} = 1.960$$

d.
$$\epsilon = \frac{(1.96)(2.0)}{\sqrt{12}}$$

$$= \frac{3.920}{3.464}$$

$$= 1.132$$

If. Conclude that $\mu \leq UCL$ and $\mu \geq LCL$ at a $100(1-\alpha)$ % confidence level.

f. Conclude that $\mu \le 87.6$ min and $\mu \ge 85.2$ min at a 95% confidence level.

6.1.2.3.5 ANALYSIS

The two-sided interval surrounds μ such that $\mu \leq UCL$ and $\mu \geq UCL$ at a 100(1-a)% confidence level. When the value of σ is known, this procedure will be used in preference to that in paragraph 6.1.2.1, page 27, because it will, in most cases, lead to a narrower confidence interval relative to the known σ .

6.1.2.4 ONE-SIDED INTERVAL WITH & KNOWN

6.1.2.4.1 OBJECTIVE

To determine a one-sided confidence interval such that ν is equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level when σ is known.

6.1.2.4.2 DATA REQUIRED

A list of sample readings and σ , which is known from a standard item, history, or Requirements Document.

6.1.2.4.3 PROCEDURE

- a. Chodse the desired confidence level.
- b. Compte X (see paragraph 6.1.1.3, page 26).
- c. Use Table B-4, page 2-4, to obtain z
- d. Compute ε as follows:
 - (1) Multiply σ by step c.
 - (2) Divide step (1) by the square root of N.
- e. Add ϵ to \overline{X} to obtain the UCL (or subtract ϵ from \overline{X} to obtain the LCL).
- f. Conclude the μ is equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level.

6...2.4.4 EXAMPLE

Given:

Sample data at Table A-2a, page 1-2. $\sigma = 2.0 \text{ min}$.

Procedure:

a. Choose the confidence level $(1-\alpha)$.

b. Compute X

c. Use Table B-4, page 2-4 to obtain $Z_{1-\alpha}$.

d. Compute:

$$\varepsilon = \frac{Z_{1-2}(\sigma)}{\sqrt{N}}$$

e. Compute:

$$UCL = \overline{X} + \varepsilon$$
(or LCL = $\overline{X} - \varepsilon$)

f. Conclude that $\mu \le UCL$ (or $\mu \ge LCL$) at a $100(1-\alpha)$ % confidence level.

Example:

a.
$$\alpha = .01$$

 $1-\alpha = .99$

b.
$$\overline{X} = 86.417$$

= 86.4 min.

See paragraph 6.1.1.4, page 20, for computations.

c.
$$Z_{.99} = 2.326$$

d.
$$\epsilon = \frac{(2.326)(2.0)}{\sqrt{12}}$$

$$= \frac{4.652}{3.464}$$
$$= 1.343$$

= 85.074 - 85.0 min.)

f. Conclude that $\mu \le 87.8$ min (or $\mu \ge 85.0$ min.) at a 99% confidence level.

6.1.2.4.5 ANALYSIS

The one-sided interval surrounds μ such that $\mu \leq \text{UCL}$ (or $\mu \geq \text{LCL}$) at a 100(1- α)% confidence level. Since α is concentrated at one end of the curve, the value of $Z_{1-\alpha}$ is used instead of the value of $Z_{1-\alpha/2}$. When σ is known, this procedure will be used in preference to that in paragraph 6.1.2.2, page 29.

6.1.3 SAMPLE SIZE REQUIRED TO ESTIMATE THE POPULATION MEAN

6.1.3.1 SAMPLE SIZE REQUIRED TO ESTIMATE μ WITH σ UNKNOWN

6.1.3.1.1 <u>OBJECTIVE</u>

To determine the sample size (N_t) required in order to state that ; is equal to or between \overline{X} + ϵ and \overline{X} - ϵ at the desired confidence level when σ is unknown.

6.1.3.1.2 DATA REQUIRED

The s and the d.f. from a previously tested sample.

6.1.3.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Choose the allowable amount of error.
- c. Use Table B-5, page 2-5, to obtain t $1-\alpha/2$ for N-1 d.f.
- d. Compute Nt as follows:
 - (1) Square step c.
 - (2) Square s.
 - (3) Square ε .
 - (4) Multiply step (1) by step (2).
 - (5) Divide step (4) by step (3).
 - (6) Round step (5) to the next larger whole number.

e. Conclude that N_t samples are required in order to state that y is equal to or between $X + \epsilon$ and $X - \epsilon$ at the desired confidence level.

6.1.3.1.4 EXAMPLE

Given:

s = 2.2 min.

N = 12

Procedure:

- **a.** Choose the confidence level $(1-\alpha)$.
- b. Choose ε .
- c. Use Table B-5, page 2-5 to obtain $t_{1-\alpha/2}$ for N-1 d.f.
- d. Compute:

$$N_{t} = \frac{(t_{1-\alpha/2})^{2}(s)^{2}}{\varepsilon^{2}}$$

e. Conclude that N_t samples are required in order to state that $\mu \leq \overline{X} + \epsilon$ and $\mu \geq \overline{X} - \epsilon$ at a $100(1-\alpha)\%$ confidence level.

Example:

a.
$$\alpha = .05$$

 $1-\alpha/2 = .975$

- b. $\varepsilon = .8 \text{ min.}$
- c. $t_{.975}$ for 11 d.f. = 2.201

d
$$N_t = \frac{(2.201)^2(2.2)^2}{(.8)^2}$$

$$= \frac{(4.844)(4.84)}{(.64)}$$

$$= \frac{23.445}{64}$$

$$= 36.632$$

$$= 37$$

e. If 37 samples are tested and \overline{X} computed, conclude that $\mu \le \overline{X} + .8$ min. and $\mu \ge \overline{X} - .8$ min. at a 95% confidence level.

6.1.3.1.5 ANALYSIS

If N_t samples are tested and \overline{X} is computed, conclude that $\mu \leq \overline{X}$ + ϵ and $\mu \geq \overline{X}$ - ϵ at a $100(1-\alpha)\%$ confidence level.

6.1.3.2 SAMPLE SIZE REQUIRED TO ESTIMATE μ WITH σ KNOWN

6.1.3.2.1 **OBJECTIVE**

To determine the N_t required in order to state that μ is equal to or between \overline{X} + ϵ and \overline{X} - ϵ at the desired confidence level when σ is known.

6.1.3.2.2 DATA REQUIRED

 $\boldsymbol{\sigma},$ which is known from a standard item, history, or Requirements Document.

6.1.3.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Choose the allowable amount of error.
- c. Use Table B-4, page 2-4, to obtain $Z_{1^{-\alpha}/2}$.
- d. Compute Nt as follows:
 - (1) Square step c.
 - (2) Square o
 - (3) Square c.
 - (4) Multiply step (1) by step (2).
 - (5) Divide step (4) by step (3).
 - (6) Round step (5) to the next larger whole number.
- e. Conclude that N_t samples are required in order to state that μ is equal to or between \overline{X} + ϵ and \overline{X} ϵ at the desired confidence level.

6.1.3.2.4 EXAMPLE

Given:

 $\sigma = 2.0 \text{ min.}$

Procedure:

Example:

a. Choose the confidence level (1-x).

a. $\alpha = .05$ $1-\alpha = .95$

1-a/2 = .975

b. Choose ϵ .

b. $\epsilon = .8 \text{ min.}$

- c. Use Table B-4, page 2-4 to obtain $Z_{-\alpha/2}$.
- d. Compute:

$$N_t = \frac{(Z_{-\alpha/2})^2 (\sigma)^2}{\frac{2}{\epsilon}}$$

c. $Z_{.975} = 1.960$

d.
$$N_t = \frac{(1.96)^2(2.0)^2}{(.8)^2}$$

$$= \frac{(3.842)(4.00)}{.64}$$

- = <u>15.37</u> .64
- = 24.02
- = 25

- e. Conclude that N samples are required in order to state that $\mu < \overline{X} + \epsilon$ and $\mu > \overline{X} \epsilon$ at a $100(1-\alpha)\%$ confidence level.
- e. If 25 samples are tested and \overline{X} computed, conclude that $\mu < \overline{X} + .8$ min. and $\mu > \overline{X} .8$ min. at a 95% confidence level.

6.1.3.2.5 ANALYSIS

If N_t samples are tested and \overline{X} is computed conclude that $\nu < \overline{X} + \epsilon$ and $\nu = \overline{X} - \epsilon$ at a $100(1-\alpha)\%$ confidence level.

6.2 COMPARING AN OBSERVED MEAN (\overline{X}) TO A REQUIREMENT $({}^{\mu}o)$

- a. An observed mean is generated from a sample and is representative of μ . This value of \overline{X} is then compared to a stated requirement (μ_0) . However, looking at the values of \overline{X} and μ_0 to decide whether μ is greater than μ_0 or μ is less than μ_0 at a confidence level is insufficient. Since the decision pertains to the population, statistical tests must be applied to \overline{X} to determine whether μ is greater than μ_0 or μ is less than μ_0 .
- b. There exist two possibilities for the relationship of \overline{X} to However, for each possibility there are two approaches; i.e., σ may be known or unknown; and the appropriate test must be chosen on that basis. Following are the assumptions and the circumstances for each possible relationship:

(1) X greater than w...

- (a) The null hypothesis is greater than Lo.
- (b) The alternative hypothesis is there is no reason to believe u is greater than un.
- (c) The use of this test is appropriate when us is a maximum value for u to satisfy. In the event that u must not be greater than up, this test would be appropriate.

(2) \overline{X} less than μ_0 .

- (a) The null hypothesis is μ is less than μ_0 .
- (b) The alternative hypothesis is there is no reason to believe μ is less than μ_0 .
- (c) The use of this test is appropriate when μ_0 is a minimum value for μ to satisfy. In the event that μ must meet or exceed μ_0 , this test would be appropriate.

6.2.1 \overline{X} GREATER THAN μ_0

6.2.1.1 X GREATER THAN μο WITH σ UNKNOWN

6.2.1.1.1 **OBJECTIVE**

To determine whether μ is greater than μ_0 at the desired confidence level when the value of σ is unknown.

6.2.1.1.2 DATA REQUIRED

A list of sample readings.

6.2.1.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute \overline{X} (see paragraph 6.1.1.3, page 26).
- c. Compute s (see paragraph 7.1.1.3, page 64).
- d. Use Table B-5, page 2-5, to obtain t $_{\Gamma\alpha}$ for N-1 d.f.
- e. Compute ε as follows:
 - (1) Multiply s by step d.
 - (2) Divide step (1) by the square root of N.
- f. Subtract ϵ from \overline{X} to obtain the LCL which is the lower bound for μ at the desired confidence level. The confidence interval for μ is from the LCL to + °°.
- g. If μ_0 is less than the LCL, decide that μ is greater than $\mu_0;$ otherwise, there is no reason to believe μ is greater than μ_0 at the desired confidence level.

6.2.1.1.4 EXAMPLE

Given:

 $\mu_0 = 85.0 \text{ min.}$

Sample data at Table A-2a, page 1-2.

Procedure:

- a. Choose the confidence level (1-a).
- b. Compute \overline{X} .
- c. Compute s.
- d. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for N-1 d.f.
- e. Compute:

$$\varepsilon = \frac{t_{1-\alpha}(s)}{\sqrt{N}}$$

f. Compute:

LCL =
$$\overline{X} - \varepsilon$$

g. If μ_0 < LCL, decide that $\mu > \mu_C$; otherwise, there is no reason to believe $\mu > \mu_0$ at a $100(1-\alpha)$ % confidence level.

Example:

a.
$$\alpha = .05$$

 $1-\alpha = .95$

b.
$$\overline{X} = 86.417$$

- 86.4 min.

See paragraph 6.1.2.1.4 b, page 28, for computations.

c.
$$s = 2.173$$

= 2.2 min.

See paragraph 6.1.2.1.4 c, page 28, for computations.

d. $t_{.95}$ for 11 d.f. = 1.796

e.
$$\varepsilon = \frac{(1.796)(2.173)}{\sqrt{12}}$$

$$= \frac{3.903}{3.464}$$

g. Since 85.0 < 85.2, decide that $\mu > 85.0$ min. at a 95% confidence level.

6.2.1.1.5 ANALYSIS

If μ_0 < LCL, the null hypothesis that μ > μ_0 is accepted; otherwise, there is no reason to believe u > μ_0 at a 100(1-a)% confidence level when T is unknown. The 100 $(1-\alpha)$ % confidence interval form is from the LCL to + ∞ . 6.2.1.2 \overline{X} GREATER THAN μ_0 WITH σ KNOWN

6.2.1.2

6.2.1.2.1 OBJECTIVE

To determine whether μ is greater than μ_{o} at the desired confidence level when σ is known.

6.2.1.2.2 DATA REQUIRED

A list of sample readings and σ , which is known from a standard item, history, or Requirements Document.

6.2.1.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute \overline{X} (see paragraph 6.1.1.3, page 26).
- c. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$.
- d. Compute ϵ as follows:
 - (1) Multiply σ by step c.
 - (2) Divide step (1) by the square root of N.
- e. Subtract ϵ from \overline{X} to obtain the LCL which is the lower bound for μ at the desired confidence level. The confidence interval for μ is from the LCL to $+\infty$.
- f. If μ_0 is less than the LCL, decide that μ is greater than $\mu_0;$ otherwise ther is no reason to believe μ is greater than μ_0 at the desired confidence level.

6.2.1.2.4 **EXAMPLE**

Given:

 $\sigma = 1.4 \text{ min.}$

 $\mu_0 = 83.0 \text{ min.}$

Sample data at Table A-2a, page 1-2.

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Compute \overline{X} .
- c. Use Table B-4, page 2-4, to obtain $\mathbf{Z}_{1+\alpha}$.
- d. Compute:

$$\varepsilon = \frac{z_{1-\alpha}(\sigma)}{\sqrt{N}}$$

Example:

a.
$$\alpha = .10$$

b.
$$\overline{X} = 86.417$$

 $1-\alpha = .90$

See paragraph 6.1.1.4, page 26, for computations.

c. $Z_{.90} = 1.282$

= 86.4 min.

d.
$$\varepsilon = \frac{(1.202)(1.4)}{\sqrt{12}}$$

$$= \frac{1.7948}{3.464}$$

= .518

e. Compute:

LCL = \overline{X} - ε

f. If μ_0 < LCL decide that $\mu > \mu_0$; otherwise, there is no reason to believe $\mu > \mu_0$ at a $100(1-\alpha)\%$ confidence level.

e. LCL = 86.417 - .518 = 85.899 = 85.8 min.

f. Since 83.0 < 85.8 decide that μ > 83.0 min. at a 90% confidence level.

6.2.1.2.5 ANALYSIS

If μ_0 < LCL, the null hypothesis that $\mu > \mu_0$ is accepted; otherwise, there is no reason to believe $\mu > \mu_0$ at a $100(1-\alpha)\%$ confidence level when T is unknown. The $100 (1-\alpha)\%$ confidence interval for μ is LCL to + ∞

- 6.2.2 \overline{X} LESS THAN μ_0 .
- 6.2.2.1 \overline{X} LESS THAN μ_0 WITH σ UNKNOWN
- 6.2.2.1.1 <u>OBJECTIVE</u>

To determine whether μ is less than μ_0 at the desired confidence level when σ is unknown.

6.2.2.1.2 DATA REQUIRED

A list of sample readings.

6.2.2.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute \overline{X} (see paragraph 6.1.1.3, page 26).
- c. Compute s (see paragraph 7.1.1.3, page 64).
- d. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for N-1 d.f.
- e. Compute ϵ as follows:
 - (1) Multiply s by step d.
 - (2) Divide step (1) by the square root of N.

f. Add ϵ to \vec{X} to obtain the UCL which is the upper bound for μ at the desired confidence level. The confidence interval for $-\infty$ to the UCL.

g. If μ_0 is greater than the UCL, decide that μ is less than μ_0 ; otherwise, there is no reason to believe μ is less than μ_0 at the desired confidence level.

6.2.2.1.4 **EXAMPLE**

Given:

 $\mu_0 = 87.0 \text{ min.}$

Sample data at Table A-2a, page 1-2.

Procedure:

a. Choose the confidence level $(1-\alpha)$.

b. Compute \overline{X} .

c. Compute s.

d. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for N-1 d.f.

e. Compute:

$$\varepsilon = \frac{t_{1-\alpha}(s)}{\sqrt{N}}$$

f. Compute: UCL $= \overline{X} + \epsilon$

g. If μ_0 > UCL, decide that $\mu < \mu_0$; otherwise, there is no reason to believe $\mu < \mu_0$ at a $100(1-\alpha)\%$ confidence level.

Example:

a. $\alpha = .10$ $1-\alpha = .90$

b. $\overline{X} = 86.417$ = 86.4 min.

See paragraph 6.1.2.1.4 b, page 27, for computations.

c. s = 2.173= 2.2 min.

See paragraph 6.1.2.1.4 c, page 27, for computations.

d. $t_{.90}$ for 11 d.f. = 1.363

e.
$$\varepsilon = \frac{(1.363)(2.173)}{\sqrt{12}}$$

$$= \frac{2.962}{3.464}$$

$$= .855$$

f. UCL = 86.417 + .855 = 87.272 = 87.3 min.

g. Since $87.0 \neq 87.3$, decide that there is no reason to believe that $\mu < 87.0$ min, at a 90% confidence level.

6.2.2.1.5 <u>ANAYLSIS</u>

If μ_0 > UCL, the null hypothesis that $\mu < \mu_0$ is accepted, otherwise, there is no reason to believe $\mu < \mu_0$ at a $100(1-\alpha)\%$ confidence level. The $100(1-\alpha)\%$ confidence interval for μ is from - ∞ to UCL.

6.2.2.2 \overline{X} LESS THAN μ_0 WITH σ KNOWN

6.2.2.2.1 OBJECTIVE

To determine whether μ is less than μ_0 at the desired confidence level when σ is known.

6.2.2.2.2 DATA REQUIRED

A list of sample readings and σ_{t} which is known from a standard item, history, or Requirements Document.

6.2.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compu.e \overline{X} (see paragraph 6.1.1.3, page 26).
- c. Use Table B-4, page 2-4, to obtain Z_{1-2} .
- d. Compute ε as follows:
 - (1) Multiply σ by step c.
 - (2) Divide step (1) by the square root of N.
- e. Add ϵ to X to obtain the UCL which is the upper bound for μ at the desired confidence level. The confidence interval for μ is from ∞ to UCL.
- f. If μ_0 is greater than the UCL, decide that μ is less than $\mu_0;$ otherwise, there is no reason to believe μ is less than μ_0 at the desired confidence level.

6.2.2.2.4 EXAMPLE

Given:

 $\sigma = 2.2 \text{ min.}$

 $\mu_0 = 88.0 \text{ min.}$

Sample data at Table A-2a, page 1-2.

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Compute \overline{X} .
- c. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$.
- d. Compute:

$$\varepsilon = \frac{z_{1-\alpha}(\sigma)}{\sqrt{N}}$$

Example:

a.
$$\alpha = .10$$

 $1-\alpha = .90$

b.
$$\overline{X} = 86.417$$

= 86.4 min.

See paragraph 6.1.1.4, page 26, for computations.

c.
$$Z_{.90} = 1.282$$

d.
$$\varepsilon = \frac{(1.282)(2.2)}{\sqrt{12}}$$

$$= \frac{2.820}{3.464}$$

$$= .814$$

e. Compute:

UCL = \overline{X} + ε

f. If μ_0 > UCL, decide that $\mu < \mu_0$; otherwise, there is no reason to believe $\mu < \mu_0$ at a 100(1-a)% confidence level.

e, UCL = 86.417 + .814 **=** 87.231 = 87.3 min.

f. Since 88.0 > 87.3, decide that μ < 88.0 min. at a 90% confidence level.

6.2.2.2.5 **ANALYSIS**

If μ_0 > UCL, the null hypothesis that μ < μ_0 is accepted; otherwise there is no reason to believe u<po at a desired confidence level. The 100 (1- α)% confidence interval for μ is from $_{\infty}$ to UCL.

6.2.3 DETERMINATION OF SAMPLE SIZE

6.2.3.1 **OBJECTIVE**

To determine the N_t required to determine whether μ is equal to or greater than $\mu_0+\epsilon$ (or equal to or less than $\mu_0-\epsilon$) at the desired confidence level when:

- a. σ is known.
- b. o is unknown.

6.2.3.2 DATA REQUIRED

- a. o, which is known from a standard item, history, or Requirements Document.
 - b. An approximation of the value that σ will assume.

6.2.3.3 PROCEDURE

- a. Choose α and β , the probabilities of making Type I and Type II errors respectively.
 - b. Choose the allowable amount of error.
 - c. Compute d², an intermediate value, as follows:
 - (1) Divide ε by σ .
 - (2) Square step (1).
 - d. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
 - e. If σ is known, compute N_{t} as follows:
 - (1) Add $Z_{1\alpha}$ to $Z_{1-\beta}$. (2) Square step (1).

- (3) Divide step (2) by step c and round to the next larger whole number.
- f. If σ is unknown, add 3 to step e for α = .01, 2 for α = .05, or 1 for α = .10.
- g. Conclude that N_{t} samples are required to determine whether μ is equal to or greater than μ_{0} + ϵ (or equal to or less than μ_{0} $\epsilon)$ at the desired confidence level.

6.2.3.4 EXAMPLE

Given:

 $\sigma = .12$

Procedure:

- a. Choose α and β .
- b. Choose ϵ .
- c. Compute:

$$d^2 = (\varepsilon/\sigma)^2$$

- d. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{3-\beta}$.
- e. When o is known, compute:

$$N_t = \frac{(Z_{1-\alpha} + Z_{1-\beta})^2}{d^2}$$

f. When σ is unknown and a value is assumed, compute:

(1)
$$\alpha = .01$$

 $N_t = \frac{(z_{1-\alpha} + z_{1-\beta})^2}{d^2} + 3$

(2)
$$\alpha = .05$$

$$N_{t} = \frac{(Z_{1-\alpha} + Z_{1-\beta})^{2}}{d^{2}} + 2$$

Example:

a.
$$\alpha = .01$$

 $1-\alpha = .99$
 $\beta = .20$
 $1-\beta = .80$

c.
$$d^2 = (.05/.12)^2$$

= $(.4167)^2$
= .1736

d.
$$Z_{.99} = 2.326$$

 $Z_{.80} = .84$

e.
$$N_t = \frac{(2.326+.84)^2}{.1736}$$

$$= \frac{(3.166)^2}{.1736}$$

$$= \frac{10.024}{.1736}$$

$$= 57.74$$

$$= 58$$

f. Since
$$\alpha = .01$$

$$N_{t} = \frac{(2.326 + .84)^{2}}{.1736} + 3$$
$$= 61$$

(3)
$$\alpha = .10$$

$$N_{t} = \frac{(Z_{1-\alpha} + Z_{1-\beta})^{2}}{d^{2}} + 1$$

g. Conclude that N_t samples are required to determine whether $\mu \geq \mu_0 + \epsilon$ (or $\mu \leq \mu_0 - \epsilon$) at a $100(1-\alpha)\%$ confidence level.

g. Conclude that 58 samples, for σ known and equal to .12 (or 61 samples for σ assumed equal to .12), must be tested in order to determine whether $\mu \geq \mu_0 + .05$ (or $\mu \leq \mu_0 - .05$) at a 99% confidence level. NOTE: If σ is really less than .12, N_t is more than adequate.

6.2.3.5 ANALYSIS

If σ is overestimated, the consequences are twofold: first, N_t is overestimated; second, by employing a N_t that is larger than necessary, the actual value of β will be somewhat less than intended at the same confidence level, a consequence which is never undesirable. On the other hand if σ is underestimated, N_t is underestimated. Therefore, N_t must be recomputed and additional items must be tested if possible. β will be larger than intended at the same confidence level. Thus, overestimating σ is safer than underestimating σ .

6.3 COMPARING TWO OBSERVED MEANS

- a. An observed mean is generated from a sample and is representative of μ . This value of \overline{X} is then required to meet a standard item \overline{X} which is representative of the standard items population. Looking at the values of the means $(\overline{X}_A$ and $\overline{X}_B)$ to decide whether μ_A is greater than μ_B or μ_A is less than μ_B at a confidence level is insufficient. Since the decision pertains to the populations, statistical tests must be applied \overline{X}_A and \overline{X}_B to determine whether μ_A is greater than μ_B or μ_A is less than B. The statistical tests use the sample means as estimates of the population means.
- b. Type A generally represents the test item and Type B the standard item when testing the hypothesis that μ_A 19 greater than μ_B . However, to prove that the average performance of the test item is less than that of the standard item, Type A must represent the standard item so that the hypothesis, μ_A is greater than μ_B , can be tested.
- c. When the null hypothesis is μ_A is greater than $\mu_B,$ the alternative hypothesis is there is no reason to believe that μ_A is greater than $\mu_B.$
- d. There are four different procedures available to test the null hypothesis. Following are the conditions which dictate the appropriate test:

- (1) The variabilities of A and B are unknown but assumed equal (σ_A = σ_B). This test also applies when N_A = NB even though σA ≠ σB (see paragraph 6.3.11 page 46.
- (2) The variabilities of A and B are unknown but assumed unequal $(\sigma_A \neq \sigma_B)$ for unequal sample sizes (see paragraph 6.3.1.2, page 49).
- (3) The variabilities of A and B are known from previous experience; thus, σ_A may or may not equal σ_B (see paragraph 6.3.1.3, page 51).
- (4) The observations are paired; i.e., individual Type A and Type B items are tested alternately such that the items in each pair are tested under the same condition. Chiously, $N_{A} = N_{B}$ (see paragraph 6.3.1.4, page 53).

NOTE: The procedure in subparagraph (1) is also valid for paired observations since $N_A = N_B$; however, the procedure in subparagraph (4) is only valid for paired observations.

6.3.1 \overline{X}_A GREATER THAN \overline{X}_B

6.3.1.1 σ_A AND σ_B UNKNOWN BUT ASSUMED EQUAL

6.3.1.1.1 OBJECTIVE

To determine whether μ_A is greater than μ_B at the desired confidence level when the population standard deviations of A and B are unknown but σ_A is assumed equal to σ_B .

6.3.1.1.2 DATA REQUIRED

A list of sample readings.

6.3.1.1.3 PROCEDURE

- a. Cloose the desired confidence level.
- b. Compute \overline{X}_A and \overline{X}_B (see paragraph 6.1.1.3, page 26).
- c. Compute $\Sigma \Delta_{\mathbf{A}}^2$ and $\Sigma \Delta_{\mathbf{B}}^2$ as follows:
 - (1) Compute the deviation from the mean for each reading $(\Delta_A = X_A \overline{X}_A)$ and $\Delta \hat{\epsilon} = X_B \overline{X}_B$
 - (2) Square each deviation (\triangle_A^2 and \triangle_B^2).
 - (3) Sum the squared deviations for each of the two items $(\Sigma\Delta_{\bf A}^2 \text{ and } \Sigma\Delta_{\bf B}^2)$.
- d. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for (N_A+N_B-2) d.f.

e. Compute the combined standard deviation (\mathbf{s}_p) of the items as follows:

- (1) Add $\Sigma \Delta_{\mathbf{A}}^2$ to $\Sigma \Delta_{\mathbf{B}}^2$.
- (2) Add N_A TO N_B .
- (3) Subtract 2 from step (2).
- (4) Divide step (1) by step (3).
- (5) Find the square root of step (4).

f. Compute ε as follows:

- (1) Add N_A to N_B .
- (2) Multiply N_A by N_B .
- (3) Divide step (1) by step (2).
- (4) Multiply step e by the square root of step (3).
- (5) Multiply step d by step (4).
- g. Subtract ε from \overline{X}_A to obtain the LCL.

h. If \overline{X}_B is less than the LCL, decide that μ_A is greater than μ_B ; otherwise, there is no reason to believe μ_A is greater than μ_B at the desired confidence level.

6.3.1.1.4 **EXAMPLE**

Given:

Sample data at Table A-2b, page 1-3, and Table A-2c, page 1-4.

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Compute:

$$\frac{\overline{X}_{A}}{\overline{X}_{R}}$$

c. Compute:

$$\Sigma\Delta_{\mathbf{A}}^2$$
 $\Sigma\Delta_{\mathbf{B}}^2$

Example:

a.
$$\alpha = .05$$

 $1-\alpha = .95$

b.
$$\overline{X}_A = 5401.40$$

$$\overline{X}_{R} = 5372.25$$

= 5372 meters

See paragraph 6.1.1.4, page 26.

c.
$$\Sigma \Delta_{\mathbf{A}}^2 = 3,552.80$$

$$Eh_{B}^{2} = 2,899.70$$

See paragraph 7.1.1.4, page 65.

- d. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for (N_A+N_B-2) d.f.
- d. $N_A+N_1-2 = 20+20-2$ = 38 t.95 for 38 d.f. = 1.687

NOTE: If the necessary d.f. is not in Table B-5, page 2-5, interpolate to find the value of $t_{1-\alpha}$.

$$\frac{8}{10} = \frac{x}{.013}$$

Since the t value decreases for increasing d.f., subtract .010 from 1.697. Thus, t.95 for 38 d.f. = 1.687

e. Compute:
$$\mathbf{s}_{\mathbf{p}} = \int \Sigma \Delta_{\mathbf{A}}^{2} +$$

$$\mathbf{s}_{\mathbf{p}} = \sqrt{\frac{\sum \Delta_{\mathbf{A}}^2 + \sum \Delta_{\mathbf{B}}^2}{N_{\mathbf{A}} + N_{\mathbf{B}}} - 2}$$

f. Compute:

$$\varepsilon = t_{1-\alpha}(s_p) \int \frac{N_A + N_B}{N_A N_B}$$

g. Compute:

LCL =
$$\overline{X}_A - \epsilon$$

h. If $\overline{X}_B < LCL$, decide that $\mu_A > \mu_B$; otherwise, there is no reason to believe $\mu_A > \mu_B$ at a $100(1-\alpha)\%$ confidence level.

s_p =
$$\sqrt{\frac{3,552.80+2399.70}{38}}$$

= 13.03 meters

f.
$$\varepsilon = (1.586 \ (13.03) \sqrt{\frac{40}{400}})$$

= $(1.687)(13.03) \sqrt{\frac{1}{1000}}$
= $(21.97 \ (.3162))$

= 6.947

= 5394 meters

h. Since 5372 < 5394, decide that $\mu_A > 5372$ meters at a 95% confidence level.

6.3.1.1.5 <u>ANALYSIS</u>

If \overline{X}_B < LCL, the null hypothesis that $\mu_A > \mu_B$ is accepted; otherwise, there is no reason to believe $\mu_A > \mu_B$ at the 100(1- α)% confidence level when $\frac{\pi}{A}$ and $\frac{\pi}{B}$ are unknown and $\frac{\pi}{A}$ is assumed equal to $\frac{\pi}{B}$.

6.3.1.2 σ_A AND σ_B UNKNOWN BUT ASSUMED UNEQUAL

6.3.1.2.1 **OBJECTIVE**

To determine whether μ_A is greater than μ_B when the population standard deviations of A and B are unknown but are assumed unequal.

6.3.1.2.2 DATA REQUIRED

A list of sample readings.

6.3.1.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute \overline{X}_A , s_A^2 , \overline{X}_B , and s_B^2 (see paragraphs 6.1.1.3, page 26, and 7.1.1.3, page 64).
- c. Compute V_A AND V_B , intermediate values, by dividing s_A^2 by N_A and s_R^2 by N_B respectively.
 - d. Compute the effective number of d.f. (e.d.f.) as follows:
 - (1) Add V_A to V_B .
 - (2) Square step (1).
 - (3) Square V_A .
 - (4) Square V_B.
 - (5) Divide step (3) by the sum of N_A+1 .
 - (6) Divide step (4) by the sum of N_B+1 .
 - (7) Add step (5) to step (6).
 - (8) Divide step (2) by step (7).
 - (9) Subtract 2 from step (8).
 - (10) Round step (9).
 - e. Use Table B-5, page 2-5, to obtain to for the e.d.f.
 - f. Compute ε as follows:
 - (1) Add V_A to V_R .
 - (2) Multiply step e by the square root of step (1).
 - g. Subtract ϵ from $\overline{X}_{\!A}$ to obtain the LCL.

h. If \overline{X}_B is less than the LCL, decide that μ_A is greater than μ_B ; otherwise, there is no reason to believe μ_A is greater than μ_B at the desired confidence level.

6.3.1.2.4 EXAMPLE

Given:

Sample data at Table A-2b, page 1-3 and Table A-2d, page 1-5.

Procedure:

a. Choose the confidence level $(1-\alpha)$.

b. Compute:

 $\overline{\mathbf{X}}_{\mathbf{A}}$

 $s_{\rm A}^2$

 \overline{x}_{B}

s_B²

c. Compute:

$$V_A = s_A^2/N_A$$

$$v_B = s_B^2 / N_B$$

d. Compute:

e.d.f. =
$$\frac{(v_A + v_B)^2}{[v_A^2/(N_A+1)] + [v_B^2/(N_B+1)]}$$

Example:

a. $\alpha = .05$

 $1-\alpha = .95$

b. $\overline{X}_A = 5401.40$

= 5401 meters

 $s_A^2 = 186.99$

= 187

 $\overline{X}_{B} = 5378.30$

= 5378 meters

 $s_R^2 = 165.48$

= 165

See paragraphs 6.1.1.4, page 26, and 7.1.1.4, page 65.

c. $V_A = 186.99/20$

= 9.3495

 $v_R = 165.48/10$

= 16.548

d.

e.d.f. =
$$\frac{(9.35+16.55)^2}{[(9.35)^2/21]+[16.55)^2/11)]} = \frac{(25.90)^2}{(87.42/21)+(273.9/11)} = \frac{670.8}{4.16 + 24.90} = \frac{670.8}{29.06} = 23.08 - 2$$
= 21.08

= 22

- e. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for e.d.f.
- f. Compute:

$$r = t_{1-\alpha} \sqrt{v_{\Lambda} + v_{B}}$$

g. Compute: $LCL = \overline{X}_{\Delta} - \epsilon$

h. If \overline{X}_B < LCL, decide that μ_A > μ_B ; otherwise, there is no reason to believe μ_A > μ_B at a $100(1-\alpha)\%$ confidence level.

e. t_{.95} for 22 d.f. = 1.717

f. $\varepsilon = (1.717) \sqrt{9.35 + 16.55}$ = (1.717) $\sqrt{25.90}$ = (1.717) (5.089)

= 8.738

g. LCL = 5401.40 - 8.74 = 5392.66

h. Since 5378 < 5392, decide that μ_A > 5378 meters at a 95% confidence level.

= 5392 meters

6.3.1.2.5 ANALYSIS

If \overline{X}_B < LCL, the null hypothesis that μ_A > μ_B is accepted; otherwise, there is no reason to believe μ_A > μ_B at a 100(1- α)% confidence level when $\frac{\sigma}{A}$ and $\frac{\sigma}{B}$ are unknown and $\frac{\sigma}{A}$ assumed equal to $\frac{\sigma}{B}$.

6.3.1.3 σ_A AND σ_B KNOWN FROM PREVIOUS EXPERIENCE

6.3.1.3.1 OBJECTIVE

To determine whether $\mu_{\mbox{\scriptsize A}}$ is greater than $\mu_{\mbox{\scriptsize B}}$ when $\sigma_{\mbox{\scriptsize A}}$ and $\sigma_{\mbox{\scriptsize B}}$ are known from previous experience.

6.3.1.3.2 DATA REQUIRED

A list of sample readings and $\sigma_{\mbox{\scriptsize A}}$ and $\sigma_{\mbox{\scriptsize B}},$ which are known from previous testing.

6.3.1.3.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$.
- c. Compute \overline{X}_A and \overline{X}_B (see paragraph 6.1.1.3, page 26).
- d. Compute ε as follows:
 - (1) Square σ_A .
 - (2) Square σ_{R} .
 - (3) Divide step (1) by N_{Λ} .

- (4) Divide step (2) by N_B .
- (5) Add step (3) to step (4).
- (6) Multiply step b by the square root of step (5).
- e. Subtract ε from \overline{X}_A to obtain the LCL.
- f. If \overline{X}_B is less than the LCL, decide that μ_A is greater than μ_B ; otherwise, there is no reason to believe μ_A is greater than μ_B at the desired confidence level.

6.3.1.3.4 EXAMPLE

Sample data at Table A-2b, page 1-3, and Table A-2c, page 1-4.

 $\sigma_A = 14.0$ meters

 $\sigma_B = 12.0$ meters

Procedure:

- a. Choose the confidence level (1-a).
- b. Use Table B-4, page 2-4. to obtain $Z_{1-\alpha}$.
- c. Compute:

$$\overline{X}_{A}$$

 \overline{X}_{R}

d. Compute:

$$\varepsilon = z_{1-\alpha} \sqrt{\frac{\sigma_A^2}{N_A} + \frac{\sigma_B^2}{N_B}}$$

e. Compute: LCL = $\overline{X} - \varepsilon$

Example:

$$1-\alpha = .95$$

b.
$$Z_{.95} = 1.645$$

c.
$$\overline{X}_A = 5401.40$$

$$\overline{X}_{B} = 5372.25$$

See paragraph 6.3.1.1.4, page 47.

$$\varepsilon = (1.645) \int [(14.0)^2/20] + [(12.0)^2/20]$$

=
$$(1.645)$$
 $\sqrt{(196.0/20)+(144.0/20)}$

$$= (1.645) \sqrt{9.80 + 7.20}$$

$$= (1.645) \sqrt{17.00}$$

$$= (1.645) (4.12)$$

$$= 6.78$$

e. LCL =
$$5401.40 - 6.78$$

$$= 5394.62$$

= 5394 meters

f. If \overline{X}_B < LCL, decide that $^{\mu}A$ > $^{\mu}B$; otherwise, there is no reason to believe $^{\mu}A$ > $^{\mu}B$ at a 100(1- $^{\alpha}$)% confidence level.

f. Since 5372 < 5394, decide that μ_A > 5372 meters at a 95% confidence level.

6.3.1.3.5 <u>ANALYSIS</u>

If \overline{X}_B < LCL, the null hypothesis that μ_A > μ_B is accepted; otherwise, there is no reason to believe μ_A > μ_B at a $100(1-\alpha)\%$ confidence level when $\frac{\sigma}{A}$ and $\frac{\sigma}{B}$ are known from previous testing.

6.3.1.4 PAIRED OBSERVATIONS

6.3.1.4.1 OBJECTIVE

To determine whether μ_A is greater than μ_B when the observations are paired (see subparagraph 6.3 d (4), page 45.

6.3.1.4.2 DATA REQUIRED

A list of paired sample readings.

6.3.1.4.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute the difference between the reading for Type A and the reading for Type B ($x_d = x_A x_B$) for each pair of observations.
- c. Compute the mean of the differences $(\overline{\boldsymbol{x}}_d)$, (see paragraph 6.1.1.3, page 26).
- d. Compute the standard deviation of the differences (s_d), (see paragraph 7.1.1.3, page 64).
 - e. Use Table B-5, to obtain $t_{1-\alpha}$ for N-1 d.f.
 - f. Compute ε as follows:
 - (1) Divide step d by the square root of N.
 - (2) Multiply step e by step (1).
- g. If \overline{X}_d is greater than ϵ , decide that μ_A is greater than μ_B ; otherwise, there is no reason to believe μ_A is greater than μ_B at the desired confidence level.

6.3.1.4.4 EXAMPLE

Given:

Sample data at Table A-2e, page 1-6.

Procedure:

a. Choose the confidence level $(1-\alpha)$.

b. Compute $\mathbf{x}_{\mathbf{d}}$ for each pair of readings.

$$x_d = x_A - x_B$$

c. Compute \overline{X}_d .

d. Compute sd.

e. Use Table B-5, page 2-5 to obtain $t_{1-\alpha}$ for N-1 d.f.

f. Compute:

$$\varepsilon = t_{1-\alpha} \frac{s_d}{\sqrt{N}}$$

g. If $X_d > \epsilon$, decide that $\nu_A > \mu_B$; otherwise, there is no reason to believe $\nu_A > \mu_B$ at a 100(1-2)% confidence level.

Example:

a.
$$\alpha = .05$$

1- $\alpha = .95$

b. (1) $x_d = 146 - 141$

(2)
$$x_d = 141 - 143$$

See Table A-2e, page 1-6 for complete list.

c. $X_d = -0.10$ = -0.1 amp. hr. See paragraph 6.1.1.4, page 26.

e. $t_{.95}$ for 9 d.f. = 1.833

f. $\varepsilon = (1.833)(2.81)/\sqrt{10}$ = 5.15/3.16 = 1.63 = 1.6

g. Since -0.1 \neq 1.6, decide that there is no reason to believe $\mu_A > \mu_B$ at a 95% confidence level.

6.3.1.4.5 ANALYSIS

If $\overline{X}_d > \mu$, the null hypothesis that $\mu_A > \mu_B$ is accepted; otherwise, there is no reason to believe $\mu_A > \mu_B$ at a $100(1-\mu)\%$ confidence level then the observations are paired.

6.3.1.5 DETERMINATION OF SAMPLE SIZE

6.3.1.5.1 OBJECTIVE

To determine the N_t required to determine whether u_A is equal to or greater than $\mu_B+\epsilon$ (or equal to or less than $\mu_B-\epsilon)$ at the desired confidence level when:

a. Case I. The variabilities of A and B are unknown but assumed equal.

 $\,$ b. Case II. The variabilities of A and B are unknown but assumed equal.

- c. Case III. The variabilities of A and B are known from previous experience.
- d. Case IV. The observations are paired (see subparagraph 6.3 d (4), page 45).

DATA REQUIRED 6.3.1.5.2

- a. Case I. An approximation of the value that σ ($\sigma_A = \sigma_B$) will assume.
- b. Case II. An approximation of the values that σ_A and σ_B will assume.
- c. Case III. The values of σ_A and σ_B which are known from previous experience.
- d. Case IV. An approximation of the population standard deviation of the differences ($\sigma_d \simeq \sqrt{x} - g$) where g and g are approximations) for the pairs concerned.

6.3.1.5.3 PROCEDURE

- a. Case I.
 - (1) Choose α and β , the probabilities of making Type I and Type II errors respectively.
 - Choose the allowable amount of error.
 - (3) Compute d^2 , an intermediate value, as follows:
 - (a) Square o.
 - (b) Multiply step (a) by 2.
 - (c) Square ε .
 - (d) Divide step (c) by step (b).
 - (4 Use Table B-4, page 2-4, to obtain 2 (5. Compute N_t ($N_t = N_A = N_B$) as follows: Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{-\beta}$.
 - - (a) Add Z_{1} α to Z_{1-3} .
 - (b) Square step (a).
 - (c) Divide step (b) by step (3).
 - (d) If α = .01, add 2 to step (c) and round up; and if $\alpha = .05$, add 1 to step (c) and round up.
 - (6) Conclude that N_t samples of each item are required to determine whether $\mu_{\mbox{\scriptsize A}}$ is equal to or greater than $\mu_B + \epsilon$ (or equal to or less than $\mu_B - \epsilon$) at the desired confidence level.
- b. Case II.
 - (1) Choose a and s, the probabilities of making Type I and Type II errors respectively.

- (2) Choose the allowable amount of error.
- (3) Compute d², an intermediate value, as follows:
 - (a) Square σ_A.
 - (b) Square oB.
 - (c) If $N_A = N_B$, add step (a) to step (b).
 - (d) If N_A is a multiple of N_B ; i.e., $N_A = C(N_B)$, multiply step (b) by C and add the product to step (a).
 - (e) Square ε .
 - (f) Divide step (e) by the value from step (c) if $N_A = N_B$ or by the value from step (d) if $N_A = C(N_B)$.
- (4) Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
- (5) Compute N_t $(N_t = N_A = N_B)$ as follows:
 - (a) Add $Z_{1-\alpha}$ to $Z_{1-\beta}$.
 - (b) Square step (a).
 - (c) Divide step (b) by step (3) and round up.
- (6) Corclude that N_t samples of each item are required to determine whether u_A is equal to or greater than $u_B + \varepsilon$ (or equal to or less than $u_B \varepsilon$) at the desired confidence level.
- c. Case III.

Same as Case II.

d. Case IV.

Same as paragraph 6.2.3.3, page 43

NOTE: σ in paragraph 6.2.3.3 represents σ_d .

6.3.1.5.4 EXAMPLE

a. Case I.

Given:

 $\sigma = 2.6$

Procedure:

Example:

(1) Choose x and β .

- (1) $\alpha = .05$
 - $1-\alpha = .95$
 - 3 = .20 1-8 = .80

(2) Choose ϵ .

(2) $\varepsilon = 1.05$

$$d^2 = \epsilon^2/2\sigma^2$$

(4) Use Table B-4, page 2-4 to obtain
$$Z_{1-\alpha}$$
 and $Z_{1-\beta}$.

(5) Compute:

$$N_{t} = \frac{(a) \text{ For } \alpha = .01,}{(Z_{1-\alpha} + Z_{1-\beta})^{2}} + 2$$

(b) Fo
$$\alpha = .05$$
,

$$N_t = \frac{z_{1-\alpha} + z_{1-\beta}^2}{d^2}$$
 1

(6) Conclude that N_t samples of each item are required to determine whether $\mu_A \ge \mu_B + \epsilon$ (or $\mu_A \le \mu_B - \epsilon$) at a $100(1-\alpha)\%$ confidence level.

Given

 $\sigma_A = 2.2$

 $\sigma_B = 3.0$

 $N_A = N_B$

Procedure:

(1) Choose α and β .

(3)
$$d^2 = 1.05^2/2(2.6)^2$$

= 1.1025/2(6.76)
= 1.1025/13.52
= .08155

$$\begin{array}{c} (4) \quad 2.95 = 1.645 \\ 2.80 = .84 \end{array}$$

Since
$$\alpha = .05$$
,

$$K_{t} = \frac{(1.645 + .84)^{2}}{.08155} + 1$$

$$= \frac{(2.485)^{2}}{.08155} + 1$$

$$= \frac{6.175}{.08155} + 1$$

$$= 75.72 + 1$$

$$= 76.72$$

$$= 77$$

(6) Conclude that 77 samples of each item for σ assumed and equal to 2.6, must be tested in order to determine whether $\mu_A \ge \mu_B + 1.05$ (or $\mu_A \le \mu_B - 1.05$) at a 95% confidence level.

Example:

(1)
$$\alpha = .05$$

$$1-\alpha = .95$$

$$\beta = .20$$

$$1-\beta = .80$$

- (2) Choose ϵ .
- (3) (a) If $N_A = N_B$, compute:

$$\mathbf{d}^2 = \frac{\varepsilon^2}{\sigma_{\mathbf{A}}^2 + \sigma_{\mathbf{B}}^2}$$

- (b) If $N_A = C(N_B)$, compute: $d^2 = \frac{\varepsilon^2}{\sigma_A^2 + C(\sigma_B^2)}$
- (4) Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
- (5) Compute:

$$N_t = \frac{(z_{1-\alpha} + z_{1-\beta})^2}{d^2}$$

- (6) Conclude that N_t samples of each item are required to determine whether $\mu_A \ge \mu_B + \epsilon$ (or $\mu_A \le \mu_B \epsilon$) at a $100(1-\alpha)\%$ confidence level.
 - c. Case III.
 Same as Case II.
 - d. Case IV.

Same as paragraph 6.2.3.4, page 44.

NOTE: o in paragraph 6.2.3.4 represents od.

(2)
$$\epsilon = .75$$

(3) Since $N_A = N_B$ is assumed,

$$d^{2} = \frac{.75^{2}}{(2.2)^{2} + (3.0)^{2}}$$
$$= \frac{.5625}{4.84 + 9.0}$$
$$= \frac{.5625}{13.84}$$

$$(4) \quad \mathbf{Z}_{.95} = \mathbf{1.645}$$

.0406

$$\begin{array}{r}
2.80 = .84 \\
(5) N_t = \frac{(1.645 + .84)^2}{.0406} \\
= \frac{(2.485)^2}{.0406} \\
= \frac{6.175}{.0406}
\end{array}$$

(6) Conclude that 153 samples of each item, for σ_A assumed and equal to 2.2 and σ_B assumed and equal to 3.0, must be tested in order to determine whether $\mu_A \ge \mu_B + .75$ (or $\mu_A \le \mu_B - .75$) at a 95% confidence level.

6.3.1.5.5 <u>ANALYSIS</u>

If σ is overestimated, the consequences are twofold; first, N_t is overestimated; second, by employing a N_t that is larger than necessary, the actual value of β will be somewhat less than intended at the same confidence level, a consequence which is never undesirable. On the other hand if σ is underestimated, N_t is underestimated. Therefore, N_t must be recomputed and additional items must be tested if possible. β will be larger than intended at the same confidence level. Thus, overestimating σ is safer than underestimating σ .

6.3.2 COMPARING THE MEANS OF SEVERAL PRODUCTS

6.3.2.1 OBJECTIVE

To determine whether the means of several products differ.

6.3.2.2 DATA REQUIRED

A list of sample readings.

6.3.2.3 PROCEDURE

- a. Case I. $N_1 = N_2 = N_3 = ... = N_K = N$
 - (1) Choose the desired confidence level.
 - (2) Compute s² for each product (see paragraph 7.1.1.3, page 64).
 - (3) Compute d.f.₁ and d.f.₂ as follows:
 - (a) Set d.f. | equal to K.
 - (b) Sum the N's and subtract step (a) to obtain d.f.2.
 - (4) Compute the average variance (s_K^2) as follows:
 - (a) Sum s^2 's.
 - (b) Divide step (a) by the number of products (K).
 - (5) Use Table B-6, page 2-6, to obtain $q_{1-\alpha}$ for (d.f.₁, d.f.₂) d.f.
 - (6) Compute ε as follows:
 - (a) Multiply step (5) by the square root of step (4).
 - (b) Divide step (a) by the square root of N.
 - (7) If the absolute difference between any two sample means is greater than ε , decide that those means differ; otherwise, there is no reason to believe the means differ at the desired confidence level.
- b. Case II. The N's are unequal.

- (1) Choose the desired confidence level.
- (2) Compute s² for each product (see paragraph 7.1.1.3, page 64).
- (3) Compute d.f. and d.f. as follows:
 - (a) Set d.f. lequal to K.
 - (b) Sum the N's and subtract step (a) to obtain d.f.2.
- (4) Compute sk as follows:
 - (a) Subtract one from each N.
 - (b) Multiply step (a) by the s² of the particular sample.
 - (c) Sum the products generated by step (b).
 - (d) Divide step (c) by step (3) (b).
- (5) Use Table B-6, page 2-6, to obtain $q_{1-\alpha}$ for (d.f.₁, d.f.₂) d.f.
- (6) Compute H, an intermediate value, as follows:
 - (a) Take the reciprocal of each N (1/N).
 - (b) Sum the reciprocals generated by step (a).
 - (c) Divide K by step (b).
- (7) Compute ε as follows:
 - (a) Multiply step (5) by the square root of step (4).
 - (b) Divide step (a) by the square root of step (6).
- (8) If the absolute difference between any two sample means is greater than ε, decide that those means differ; otherwise, there is no reason to believe the means differ at the desired confidence level.

6.3.2.4 EXAMPLE

a. Case I.

Given:

$$N_1 = N_2 = N_3 = N_4 = N$$

Sample data at Table A-2f, page 1-7.

Procedure:

- (1) Choose the confidence level $(1-\alpha)$.
- (2) Compute:

$$s_1^2$$
, s_2^2 , s_3^2 , s_a^2

Example:

- (1) $\alpha = .10$ $1-\alpha = .90$
- (2) $s_1^2 = 406.00$

$$s_2^2 = 574.80$$

$$s_3^2 = 636.80$$

$$s_{ii}^2 = 159.30$$

See paragraph 7.1.1.4, page 65 for example computations.

$$d.f._1 = K$$

 $d.f._2 = (\Sigma N) - K$

(4) Compute:

$$\mathbf{s}_{\mathbf{K}}^{2} = \frac{\Sigma \mathbf{s}^{2}}{\mathbf{K}}$$

- (5) Use Table B-6, page 2-6, to obtain $q_{1-\alpha}$ for $(d.f._1,d.f._2)$ d.f.
- (6) Compute:

$$\varepsilon = \frac{q_1 - \alpha \sqrt{s_K^2}}{\sqrt{N}}$$

(7) If the absolute difference between any two sample means is greater than ε , decide that those means differ; otherwise, there is no reason to believe the means differ at a $100(1-\alpha)\%$ confidence level.

(3)
$$d.f._1 = 4$$

 $d.f._2 = (5+5+5+5)-4$
 $= 20 - 4$
 $= 16$

(4)
$$s_{K}^{2} = \frac{406.00+574.80+636.80+159.30}{4}$$

$$= \frac{1776.90}{4}$$

$$= 444.22$$

- (5) $q_{.90}$ for (4,16) d.f. = 3.52
- (6) $\varepsilon = (3.52) \sqrt{444.22/} \sqrt{5}$ = (3.52)(21.07)/2.236 = 74.17/2.236 = 33.17
- (7) 1 and 3

Since 29 \(\delta \) 34, decide that the means of Types 1 and 3 do not differ at a 90% confidence level.

NOTE: Check the difference between the smallest and largest means first. If that difference is not greater than ε , conclude that none of the remaining differences will be larger than ε . However, if the difference is greater than ε , then continue checking the remaining 5 differences.

b. Case II.

Given:

 $N_1 \neq N_2 \neq N_3 \neq N_4$

Sample data at Table A-23, page 1-8.

Procedure:

(1) Choose the confidence level $(1-\alpha)$.

(2) Compute:

$$s_1^2$$
, s_2^2 , s_3^2 , s_4^2

Example:

(1)
$$\alpha = .10$$

$$1-\alpha = .90$$

(2) $s^2 = 4912.90$

$$s_2^2 = 310.70$$

$$s_3^2 = 212.50$$

$$s_h^2 = 1190.50$$

See paragraph 7.1.1.4, page 65 for example.

(3) Compute:

$$d.f._1 = K$$

$$d.f._2 = (\Sigma N) - K$$

(3) $d.f._1 = 4$

$$d.f._2 = (7+5+9+7)-4$$

(4) Compute:

$$s_{K}^{2} = \frac{(N_{1}-1)s_{1}^{2}+(N_{2}-1)s_{2}^{2}+(N_{3}-1)s_{3}^{2}+(N_{4}-1)S_{4}^{2}}{d.f._{2}}$$

(4)

$$\mathbf{s}_{K}^{2} = \frac{(6)(4912.90)+(4)(310.70)+(8)(212.50)+(6)(1196.50)}{24}$$
$$= \frac{29477.4+1242.8+1700.0+7143.0}{24}$$

$$=\frac{39,563.2}{24}$$

= 1648.47

to obtain $q_{1-\alpha}$ for $(d.f._1,d.f._2)$ d.f.

(5) q.99 for (4,24) = 3.42

(6) Compute:

$$H = \frac{K}{\frac{1}{N_1} + \frac{1}{N_2} + \frac{1}{N_3}}$$

(6)

$$H = \frac{4}{\frac{1}{7} + \frac{1}{5} + \frac{1}{9} + \frac{1}{7}}$$

$$= \frac{4}{.143 + .200 + .111 + .143}$$

$$= \frac{4}{.597}$$

$$= 6.70$$

$$\varepsilon = \frac{q_{1-\alpha} \sqrt{s_K^2}}{\sqrt{H}}$$

(8) If the absolute difference between any two sample means is greater than ϵ , decide that those means differ; otherwise, there is no reason to believe the means differ at a $100(1-\alpha)$ % confidence level.

(7)
$$\epsilon = (3.42) \sqrt{1648.47} \sqrt{6.70}$$

= (3.42) (40.60)/2.59
= 138.85/2.59
= 53.64

(8) (a) 2 and 3

Since 573 > 54, decide that the means of Types 2 and 3 differ at a 90% confidence level.

> NOTE: Since the difference between the smallest and largest mean produces a difference decision, repeat step (8) for the next largest difference.

(b) 3 and 4

Since 437 > 54, decide that the means of Types 3 and 4 differ at a 90% confidence level.

Since 362 > 54, decide that the means of Types 1 and 3 differ at a 90% confidence level.

(d) 1 and 2

Since 211 > 54, decide that the means of Types 1 and 2 differ at a 90% confidence level.

137 > 54

Since 137 > 54, decide that the means of Types 2 and 4 differ at a 90% confidence level.

(f) 1 and 4

74 > 54

Since 74 > 54, decide that the means of Type 1 and 4 differ at a 90% confidence level.

6.3.2.5 ANALYSIS

The population means of several products may be compared by computing the absolute difference between any two sample means and comparing this value to a computed ϵ . The decision is relative only to the two products compared. Therefore, this test only reveals the relationship between the means of two items at a desired confidence level and does not necessarily reveal a difference between one mean and all of the remaining means.

- 7. STANDARD DEVIATION
- 7.1 ESTIMATE OF THE PUPULATION STANDARD DEVIATION (s).
- 7.1.1 BEST SINGLE ESTIMATE of s.
- 7.1.1.1 OBJECTIVE

To determine the best point estimate of the population standard deviation for a normal distribution.

- 7.1.1.2 DATA REQUIRED
 - A list of sample readings.
- 7.1.1.3 PROCEDURE
 - a. Compute \overline{X} (see paragraph 6.1.1.3, page 26).
- b. Find the deviation of each reading from the mean by subtracting the mean from each reading; i.e., $\Delta = x \overline{X}$.
 - c. Square each deviation; i.e., Δ^2 .
 - d. Sum the squared deviations; i.e., $\Sigma \Delta^2$.
 - e. Compute s as follows:
 - (1) Divide step d by N-1.
 - (2) Find the square root of step (1).

7.1.1.4 EXAMPLE

Given:

Sample data at Table A-3a, page 1-9.

Procedure:

a. Compute X.

b. Compute:

$$\nabla = \chi - \bar{X}$$

c. Square each Δ .

Sum the Δ^2 .

Compute:

$$s = \frac{\sum \Delta^2}{N-1}$$

Example:

a. $\bar{X} = 1094/10$

= 109.40

= 109 min.

See paragraph 6.1.1.4, page 26.

b. (1) $\Delta = 100.00 - 109.40$ = -9.40

(2) $\Delta = 125.00 = 109.40$

= 15.60

See Table A-3a, page 1-9, for complete list.

c. (1) $\Delta^2 = (-9.40)^2$

= 88.36 (2) $\Delta^2 = (15.60)^2$

= 243.36

See Table A-3a, page 1-9 for complete list.

$$\Sigma\Delta^2 = 810.4$$

e.
$$s = \sqrt{\frac{81^{\circ}.40}{10-1}}$$

$$= \sqrt{\frac{810.40}{9}}$$

= 9 min.

7.1.1.5 ANALYSIS

The standard deviation is a unit measure of dispersion around the mean. In the case of the normal distribution, 68% of the area under the curve is between $\overline{X} + s$ and $\overline{X} - s$ with μ centered at \overline{X} or, in terms of the population, between $\mu + \sigma$ and $\mu - \sigma$ (see Figure 13).

7.1.2 CONFIDENCE INTERVAL ESTIMATES

7.1.2.1 TWO-SIDED INTERVAL

7.1.2.1.1 OBJECTIVE

To determine a two-sided confidence interval which is expected to bracket o at the desired confidence level.

7.1.2.1.2 DATA REQUIRED

A list of sample readings.

AREA UNDER THE NORMAL CURVE

Parameter

Figure 13

7.1.2.1.3 PROCEDURE

- a. Choose the desired confidence level.
- o. Compute s (see paragraph 7.1.1.3, page 64).
- c. Use Table B-9, page 2-35, to obtain $\rm B_U$ (upper bound) and $\rm B_L$ (lower bound) for N-1 d.f.
- d. Multiply s by ${\tt B}_{\underline{U}}$ to obtain the UCL and multiply s by ${\tt B}_{\underline{L}}$ to obtain the LCL.
- e. Conclude that $\boldsymbol{\sigma}$ is equal to or between the UCL and LCL at the desired confidence level.

7.1.2.1.4 **EXAMPLE**

Given:

Sample data at Table A-3a, page 1-9.

Procedure:

Example:

a. Choose the confidence level $(1-\alpha)$.

a. $\alpha = .05$ $1-\alpha = .95$

b. Compute s.

b. s = 9.49= 9 min.

See paragraph 7.1.1.4, page 65.

- c. Use Table B-9, page 2-35, to obtain ${\bf B}_U$ and ${\bf B}_L$ for α and
- d. Compute:

 $UCL = (B_{II}) s$

 $LCL = (B_L) s$

e. Conclude that $\sigma \leq UCL$ and $\sigma \ge LCL$ at a $100(1-\alpha)\%$ confidence level.

c. For $\alpha = .05$ and 9 d.f., $B_{U} = 1.746$

 $B_{L} = .6657$

d. UCL = (1.746)(9.49)

= 16.57

= 17 min.

LCL = (.6657)(9.49)

= 6.32

= 6 min.

- e. Conclude that $\sigma \leq 17$ min. and $\sigma \ge 6$ min. at a 95% confidence level.
- 7.1.2.1.5 ANALYSIS

The two-sided interval surrounds σ such that $\sigma \leq UCL$ and $\sigma \geq LCL$ at a 100(1-a)% confidence level.

- 7.1.2.2 ONE-SIDED INTERVAL
- 7.1.2.2.1 OBJECTIVE

To determine a one-sided confidence interval such that σ s equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level.

7.1.2.2.2 DATA REQUIRED

A list of sample readings.

- 7.1.2.2.3 PROCEDURE
 - a. Choose the desired confidence level.
 - b. Compute s (see paragraph 7.1.1.3, page 64).
 - c. Use Table B-10, page 2-37, to obtain $A_{1-\alpha}$ (or A_{α}) for

N-1 d.f.

- d. Multiply $A_{1-\alpha}$ by s to obtain the UCL (or multiply A_{α} by s to obtain the LCL).
- e. Conclude that σ is equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level.
- 7.1.2.2.4 EXAMPLE

Given:

Sample data at Table A-3a, page 1-9.

Procedure:

b. Compute s.

Example:

a. Choose the confidence level $(1-\alpha)$.

a. x = .05 $1-\alpha = .95$

b. s = 9.49

= 9 min.

See paragraph 7.1.1.4, page 65.

c. Use Table B-10, page 2-37, to obtain $A_{1-\alpha}$ (or A_{α}) for N-1 d.f.

c. For 9 d.f., $A_{.95} = 1.645$ (or $A_{.05} = .7293$)

d. Compute: UCL = $A_{1-\alpha}$ s

d. UCL = (1.645)(9.49) = 15.61

or LCL = A, S

= 16 min. (or LCL = (.7293)(9.49) = 6.92 = 6 min.)

e. Conclude that $\sigma \leq UCL$ (or $\sigma \geq LCL$) at a $100(1-\alpha)$ % confidence level.

e. Conclude that $\sigma \le 16$ min. (or $\sigma \ge 6$ min.) at a 95% confidence level.

7.1.2.2.5 **ANALYSIS**

The one-sided interval surrounds σ such that $\sigma \leq UCL$ (or $\mu \geq LCL$) at a $100(1-\alpha)\%$ confidence level.

7.1.3 SAMPLE SIZE REQUIRED TO ESTIMATE THE POPULATION STANDARD DEVIATION

7.1.3.1 OBJECTIVE

To determine the $N_{\mbox{t}}$ required in order to state that σ lies within a specified percentage of its true value at the desired confidence level.

7.1.3.2 DATA REQUIRED

None.

7.1.3.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Choose the allowable percentage of error.
- c. Use Table B-4, page ?-4, to obtain $Z_{1-\alpha/2}$.
- d. Compute N_t as follows:
 - (1) Square step c.
 - (2) Square step b.
 - (3) Multiply step (2) by 2.
 - (4) Divide step (1) by step (3) and round to the next larger whole number.

e. Conclude that N_{t} samples are required in order to state that σ lies within an allowable percentage of error of its true value at the desired confidence level.

7.1.3.4 EXAMPLE

Procedure:

Example:

a. Choose the confidence level (1-u).
a.
$$\iota$$
 = .05
1- ι = .

$$1+x = .95$$

 $1-x/x = .975$

- b. Choose the percentage of error.
- c. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha/2}$.
- d. Compute:

$$N_{t} = \frac{z_{1-2/2}^{2}}{2(\text{percentage of error})^{2}}$$

e. Conclude that N_t samples are required in order to state that σ lies within an allowable percontage of its true value at a $100(1-\alpha)$ % confidence level.

- b. Percentage of error = .10
- c. $Z_{.975} = 1.96$

d.
$$N_t = \frac{(1.96)^2}{2(.10)^2}$$

= $\frac{3.84}{2(.01)}$
= $\frac{3.84}{.02}$

e. Conclude that 192 samples are required in order to state that σ lies within 10% of its true value at a 95% confidence level.

7.1.3.5 ANALYSIS

 N_t samples are required in order to state that σ lies within a certain percentage of its true value at a $100(1-\alpha)\%$ confidence level.

7.2 COMPARING AN OBSERVED STANDARD DEVIATION (s) TO A REQUIREMENT (Go)

- a. An observed standard deviation is generated from a sample and is representative of σ . This value of s is then compared to a stated requirement (σ_0) . However, looking at the values of s and σ_0 to decide whether σ is greater than σ_0 or σ is less than σ_0 at a confidence level is insufficient. Since the decision pertains to the population, statistical tests must be applied to s to determine whether σ is greater than σ_0 or σ is less than σ_0 .
- b. There exist two possibilities for the relationship of s to $\sigma_{\text{O}}.$ Following are the assumptions and the circumstances for each possible relationship:
 - (1) s greater than σ_0 .
 - (a) The null hypothesis is σ is greater than $\sigma_0.$
 - (b) The alternative hypothesis is there is no reason to believe σ is greater than σ_0 .
 - (c) The use of this test is appropriate when σ_0 is a maximum value for σ to satisfy. In the event that σ must not be greater than σ_0 , this test would be appropriate.
 - (2) s less than σ_0 .
 - (a) The null hypothesis is c is less than σ_0 .
 - (b) The alternative hypothesis is there is no reason to believe that σ is less than c_0 .

- (c) The use of this test is appropriate when σ_0 is a minimum value for σ to satisfy. In the event that σ must meet or exceed σ_0 , this test would be appropriate.
- 7.2.1 s GREATER THAN σ_0 .
- 7.2.1.1 OBJECTIVE

To determine whether σ is greater than σ_0 at the desired confidence level.

7.2.1.2 DATA REQUIRED

A list of sample readings.

- 7.2.1.3 PROCEDURE
 - a. Choose the desired confidence level.
 - b. Use Table B-10, page 2-37, to tain A, for N-1 d.f.
 - c. Compute s (see paragraph 7.1.1.3, page 64).
- d. Multiply step c by step b to obtain the LCL. The confidence interval for σ is from the LCL to + \circ .
- e. If σ_0 is less than the LCL, decide that σ is greater than σ_0 ; otherwise, there is no reason to believe σ is greater than σ_0 at the desired confidence level.
- 7.2.1.4 EXAMPLE

Given:

 $\sigma_0 = 7.0 \text{ min.}$

Sample data at Table A-3a, page 1-9.

Procedure:

- a. Choose the confidence level (1-x).
- b. Use Table B-10, page 2-37, to obtain \ for N-1 d.f.
- c. Compute s.
- d. Compute:

 $LCL = A_{+}(s)$

o. 10 to 4 LCL, decide that the proposition of the state of the state

Example:

a. i = .05

1 - . = .95

b. For 9 d.f.

 $\Lambda_{11} = .7293$

c. = 9.49

= 9 min.

See paragraph 7.1.1.4, page 65.

d. LCL = (.7293)(9.49)

- 6.921

= 6 min.

e. Since 7.0 % f. decide that there is no reason to believe in 7.0 min. at a 951 confiltance level.

7.2.1.5 ANALYSIS

If σ_0 < LCL, the null hypothesis that $\sigma > \sigma_0$ is accepted; otherwise, there is no reason to believe $\sigma > \sigma_0$ at a $100(1-\alpha)\%$ confidence level. The $100(1-\alpha)\%$ confidence interval for σ is from the LCL to $+\infty$.

7.2.2 s LESS THAN σ_0

7.2.2.1 OBJECTIVE

To determine whether σ is less than σ_0 at the desired confidence level.

7.2.2.2 DATA REQUIRED

A list of sample readings.

7.2.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-10, page 2-37, to obtain $A_{1_{-\alpha}}$ for N-1 d.f.
- c. Compute s (see paragraph 7.1.1.3, page 64).
- d. Multiply step c by step b to obtain the UCL. The confidence interval for σ is from ∞ to the UCL.
- e. If σ_0 is greater than the UCL, decide that σ is less than σ_0 ; otherwise, there is no reason to believe σ is less than σ_0 at the desired confidence level.

7.2.2.4 **EXAMPLE**

Given:

 σ_{\odot} = 12.0 min. Sample data at Table A-3a, page 1-9.

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Use Table B-10, page 2-37, to obtain A_{1-1} for N-1 d.f.
- c. Compute s.

d. Compute:

$$UCL = A_{1-\alpha}(s)$$

e. If $\tau_0 > \text{UCL}$, decide that $\tau < \tau_0$; otherwise, there is no reason to believe $\tau < \sigma_0$ at a $100(1-\tau)\%$ confidence level.

Example:

- a. $\alpha = .05$ $1-\alpha = .95$
- b. For 9 d.f., $A_{.95} = 1.645$
- c. s = 9.49= 9 min.

See paragraph 7.1.1.4, page 65.

- d. UCL = (1.645)(9.49)
 - = 15.611
 - = 16 min.
- e. Since 12.0 \nearrow 16, decide that there is no reason to believe that x < 12.0 min. at a 95% confidence level.

7.2.2.5 ANALYSIS

If σ_0 > UCL, the null hypothesis that $\sigma < \sigma_0$ is accepted; otherwise, there is no reason to believe $\sigma < \sigma_0$ at a 100(1- α)% confidence level.

7.2.3 DETERMINATION OF SAMPLE SIZE

7.2.3.1 **OBJECTIVE**

To determine the Nt required to determine whether o is greater than $\gamma \sigma_0$ (or less than $\gamma \sigma_0$) at the desired confidence level.

DATA REQUIRED 7.2.3.2

None.

7.2.3.3 PROCEDURE

- a. Choose α and β , the probabilities of making Type I and Type II errors respectively.
 - b. Estimate s based on experience or a comparable item.
 - c. Divide s by σ_{O} to obtain γ , an intermediate value.
- d. Use Table B-11, page 2-38, to obtain Nt which corresponds to γ and the chosen values of α and β . If one of these values is not contained in the table, continue with step e.
 - e. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
 - f. Compute Nt as follows:
 - (1) Multiply $Z_{1-\beta}$ by step c. (2) Add step (1) to $Z_{1-\alpha}$.

 - (3) Divide step (2) by:
 - (a) γ -1, if s is greater than σ_0 .
 - (b) l- γ , if s is less than σ_0 .
 - (4) Square step (3).
 - (5) Multiply step (4) by 1/2.
 - (6) Add 1 to step (5) and round to the next larger whole number.
- g. Conclude that $N_{\mbox{\scriptsize t}}$ samples are required to determine whether z is greater than γ σ_0 (or is less than γ σ_0) at the desired confidence level.

NOTE: When $\gamma > 1$, then s is greater than z_0 ; and the null hypothesis is that $z > \gamma$ so. When $\gamma < 1$, then s is less than π ; and the null hypothesis is that $\sigma < \gamma \circ \sigma$

7.2.3.4 EXAMPLE

Given:

35 = 7.3

Procedure:

a. Choose α and β .

b. Estimate s.

c. Compute:

$$\gamma = \frac{s}{g_0}$$

d. Use Table B-11, page 2-38, to obtain Nt which corresponds to γ and chosen values of α and β . If one of these values is not contained in Table B-11, page 2-38, continue with step e.

e. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.

f. (1) If $s > \sigma_0$ ($\gamma > 1$), compute:

$$N_t = 1 + (1/2) \left(\frac{Z_{1-\alpha} + \gamma (Z_{1-\beta})}{\gamma - 1} \right)^{-2}$$

(2) If s < σ_0 (γ < 1), compute:

$$N_t = 1 + (1/2) \left(\frac{Z_{1-\alpha} + \gamma (Z_{1-\beta})}{1-\gamma} \right)^{-2}$$

g. Conclude that N_t samples are required to determine whether $\sigma > \gamma \sigma_0$ (or $\sigma < \gamma \sigma_0$) at a $100(1-\alpha)\%$ confidence level.

7.2.3.5 ANALYSIS

a. Initial N_t.

Example:

a. $\alpha = .05$

 $1-\alpha = .95$

 $\beta = .20$

 $1-\beta = .80$

b. s = 9.5

c.

 $\gamma = \frac{9.5}{7.3}$

= 1.3

d. Since β = .20 is not contained in Table B-11, page 2-38, continue with step e.

e. $Z_{.95} = 1.645$

 $Z_{.80} = .840$

f. Since 9.5 > 7.3 (1.3 > 1)

 $N_{t} = 1 + (1/2) \left(\frac{1.645 + (1.3)(.804)}{1.3 - 1} \right)^{2}$ $= 1 + (1/2) \left(\frac{1.645 + 1.092}{2.73/3} \right)^{2}$ $= 1 + (1/2) \left(\frac{2.73/3}{3} \right)^{2}$

 $= 1+(1/2)(9.123)^2$

= 1+(1/2)(83.229)

= 1+41.614

= 42.614

= 43

g. Conclude that 43 samples must be tested in order to determine whether $\sigma > 1.3~\sigma_{\odot}$ at a 95% confidence level.

At specified significance levels of α and β , N_t samples are required to determine whether $\sigma \geq \gamma \ \sigma_0$ (or $\sigma < \gamma \ \sigma_0$). As γ approaches 1, a very large sample size is required.

b. Adequacy of N_t.

(1) s greater than σ_0 .

After the initial N_{t} samples have been tested, s must be computed and compared to the initial estimated s. If the computed s is greater than the initial s, the initial N_{t} is adequate; however, if the computed s is less than the initial s, the initial N_{t} is inadequate. If N_{t} is inadequate, N_{t} must be recomputed using the computed s in place of the initial s; and additional samples must be tested if possible.

(2) s less than σ_0 .

After the initial N_t samples have been tested, s must be computed and compared to the initial estimated s. If the computed s is less than the initial s, the initial N_t is adequate; however, if the computed s is greater than the initial s, the initial N_t is inadequate. If N_t is inadequate, N_t must be recomputed using the computed s in place of the initial s; and additional samples must be tested if possible.

7.3 COMPARING TWO OBSERVED STANDARD DEVIATIONS

- a. An observed standard deviation is generated from a sample and is representative of σ . This value of s is then required to meet a standard item s which is representative of the standard items population. Looking at the values of the standard deviations (s_A and s_B) to decide whether s_A is greater than s_B or σ_A is less than σ_B at a confidence level is insufficient. Since the decision pertains to the populations, statistical tests must be applied to s_A and s_B to determine whether σ_A is greater than s_B or s_A is less than s_B. The statistical tests use the sample standard deviations as estimated of the population standard deviations.
- b. Type A generally represents the test item and Type B the standard item when testing the hypothesis that σ_A is greater than σ_B . However, to prove that the average performance of the test item is less than that of the standard item, Type A must represent the standard item so that the hypothesis, τ_A is greater than σ_B , can be tested.
- c. When the null hypothesis is σ_A is greater than σ_B , the alternative hypothesis is there is no reason to believe that σ_A is greater than σ_B .
- d. The use of this test is appropriate when σ_B is a maximum value for γ_A to satisfy. In the event γ_A must not be greater than σ_B , this test would be appropriate.

7.3.1 s_A GREATER THAN s_B

7.3.1.1 OBJECTIVE

To determine whether $\sigma_{\mbox{\sc A}}$ is greater than $\sigma_{\mbox{\sc B}}$ at the desired confidence level.

7.3.1.2 DATA REQUIRED

A list of sample readings.

7.3.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute d.f.₁ and d.f.₂ as follows:
 - (1) Subtract 1 from NA to obtain d.f.1.
 - (2) Subtract 1 from NB to obtain d.f.2.

c. Use Table B-8, page 2-18, to obtain $F_{1-\alpha},$ which is the UCL, for (d.f., d.f.2) d.f.

- d. Compute s_A^2 and s_B^2 (see paragraph 7.1.1.3, page 64).
- e. Divide s_A^2 by s_B^2 to obtain the computed value of F.

f. If F is greater than the UCL, decide that σ_A is greater than $\sigma_B;$ otherwise, there is no reason to believe σ_A is greater than σ_B at the desired confidence level.

7.3.1.4 **EXAMPLE**

Given:

Sample data at Tables A-3a, page 1-9 and A-3b page 1-10

Procedure:

a. Choose the confidence level $(1-\alpha)$.

b. Compute:

$$d.f._1 = N_A - 1$$

$$d.f._2 = N_B - 1$$

c. Use Table B-8, page 2-18, to obtain $F_{1-\alpha}$ for (d.f.₁, d.f.₂) d.f.

$$UCL = F_{1-\alpha}$$

d. Compute s_A^2 and s_B^2

Example:

a.
$$\alpha = .05$$

$$1-\alpha = .95$$

b.
$$d.f._1 = 10 - 1$$

$$d.f._2 = 12 - 1$$

c.
$$F_{.95}$$
 for (9,11) d.f. = 2.90

$$UCL = 2.90$$

d.
$$s_A^2 = 810.4/9$$

$$= 90 min$$

$$s^2 = 151/11$$

$$= 13./3$$

= 14 min.

e. Compute:

$$F = \frac{s_A^2}{s_B^2}$$

e.

$$F = \frac{90.04}{13.73} = 6.558$$

= 6.56

f. If F > UCL, decide that σ_{A} > σ_{B} ; otherwise, there is no reason to believe σ_{A} > σ_{B} at a $100(1-\alpha)\%$

f. Since 6.56 > 2.90, decide that σ_A is greater than σ_B at a 95% confidence level.

7.3.1.5 **ANALYSIS**

confidence level.

If F > UC', the null hypothesis that σ_A > σ_B is accepted; otherwise, there is no reason to believe σ_A > σ_B at a 100(1- α)% confidence level.

7.3.2 DETERMINATION OF SAMPLE SIZE

7.3.2.1 OBJECTIVE

To determine the N_t required to determine whether σ_A is greater than γ σ_B (or less than γ σ_B) at the desired confidence level.

7.3.2.2 DATA REQUIRED

None.

7.3.2.3 PROCEDURE

a. Choose α and $\beta,$ the probabilities of making Type I and Type II errors respectively.

- b. Estimate s_A and s_B based on experience or comparable items.
- c. Divide s_A by s_B to obtain γ , an intermediate value.
- d. Use Table B-12, page 2-41, to obtain N_{t} which corresponds to γ and the chosen value of α and β . If one of these values is not contained in the table, continue with step e.
 - e. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\alpha}$.
 - f. Compute N_t as follows:
 - (1) Add Z_{1-i} and Z_{1-i} .
 - (2) Divide step (1) by the natural logarithm of step c (ln y).
 - (3) Square step (2).
 - (4) Add 2 to step (3) and round up.
- g. Conclude that N_{t} samples are required to determine whether σ_{A} is greater than γ σ_{B} (or is less than γ σ_{B})at the desired confidence level.

NOTE: When $\gamma > 1$, then s_A is greater than s_B ; and the null hypothesis is that $\sigma_A > \sigma_B$. When $\gamma < 1$, then s_A is less than s_B ; and the null hypothesis is that $\sigma_A < \gamma \sigma_B$.

7.3.2.4 **EXAMPLE**

Procedure:

a. Choose α and β .

b. Estimate s_A and s_B .

c. Compute:

- d. Use Table B-12, page 2-41, to obtain N_t which corresponds to γ and the chosen values of α and β . If one of these values is not contained in the table, continue with step e.
- e. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
- f. Compute:

$$N_{t} = 2 + \left(\frac{Z_{1-\alpha} + Z_{1-\beta}}{\ln(\gamma)}\right)^{2}$$

7.3.2.5 ANALYSIS

a. Initial N_t.

Example:

a.
$$\alpha = .05$$

 $1-\alpha = .95$
 $\beta = .20$
 $1-\beta = .80$

b.
$$s_A = 6.0$$

 $s_B = 4.8$

d. Since $\gamma = 1.250$ is not contained in Table B-12, page 2-41, continue with step e.

e.
$$Z_{.95} = 1.645$$

 $Z_{.80} = .840$

f.

$$N_{t} = 2 + \left(\frac{1.645 + .840}{\ln 1.25}\right)^{2}$$

$$= 2 + \left(\frac{2.485}{.2231}\right)^{2}$$

$$= 2 + (11.14)^{2}$$

$$= 2 + 124.1$$

$$= 126.1$$

$$= 127$$

g. Conclude that 127 samples of each item must be tested in order to determine whether σ_A > 1.25 σ_B at a 95% confidence level.

At specified significant levels of α and β , N_t samples are required to determine whether $\sigma_A > \gamma \ \sigma_B$ (or $\sigma_A < \gamma \ \sigma_B$). As γ approaches 1, a very large sample size is required.

b. Adequacy of Nt.

(1) s_A greater than s_B .

After the initial N_t samples have been tested, s_A and s_B must be computed. Their ratio (s_A/s_B) must then be computed and compared to the initial ratio determined for the initial N_t . If the computed ratio is greater than the initial ratio, the initial N_t is adequate; however, if the computed ratio is less than the initial ratio, the initial N_t is inadequate. If N_t is inadequate, N_t must be recomputed using the computed ratio in place of the initial ratio; and additional samples must be tested if possible.

(2) s_A less than s_B .

After the initial N_t samples have been tested, s_A and s_B must be computed. Their ratio (s_A/s_B) must then be computed and compared to the initial ratio determined for the initial N_t . If the computed ratio is less than the initial ratio, the initial N_t is adequate; however, if the computed ratio is greater than the initial ratio, the initial N_t is inadequate. If N_t is inadequate, N_t must be recomputed using the computed ratio in place of the initial ratio; and additional samples must be tested if possible.

8. PROPORTION

For some kinds of tests there may be no war to obtain actual measurements. An item may be subjected to a test when the result of that particular test can be expressed only in terms of a pre-established classification of possible results. The simplest kind of classification, and the one most widely used, consists of just two mutually exclusive categories; e.g., success and failure or perfect and defective. The ratio generated, the number of items having the characteristic divided by N, is known as a proportion (P) or a success-attempt ratio. In all examples P is computed relative to failures (f); however, other variables, such as successes, may be substituted.

8.1 ESTIMATE OF THE POPULATION PROPORTION (P)

8.1.1 BEST SINGLE ESTIMATE of P

8.1.1.1 OBJECTIVE

To determine the best point estimate of the population proportion ($^{\downarrow}$).

8.1.1.2 DATA REQUIRED

N and the number of elements possessing the given characteristic.

8.1.1.3 PROCEDURE

a. Divide the number of sample items which have the characteristic by the total number of items in the sample.

b. Conclude that P is the best estimate of the proportion of population of items which will have the given characteristics.

8.1.1.4 EXAMPLE

Given:

N = 10

f = 4

Procedure:

a. Compute:

P = characteristic/N

Example:

a. P = f/N

= 4/10

= .4

b. Conclude that P is the best estimate of the proportion of population items which will have the given characteristic.

b. Conclude that .4 is the best estimate of λ , the fraction of population items that will fail.

8.1.1.5 ANALYSIS

The best single estimate of λ is the observed proportion of items having this characteristic in a random sample from the population; i.e., the number of sample items which have the characteristic divided by the total number of items in the sample.

8.1.2 CONFIDENCE INTERVAL ESTIMATES

8.1.2.1 TWO-SIDED INTERVAL FOR $N \le 30$

8.1.2.1.1 OBJECTIVE

To determine a two-sided confidence interval which is expected to bracket λ at the desired confidence level when N is equal to or less than 30.

8.1.2.1.2 DATA REQUIRED

N and the number of elements possessing the given characteristic.

8.1.2.1.3 PROCEDURE

a. Choose the desired confidence level.

- b. Use Table B-13, page 2-43, to obtain the UCL and LCL which correspond to N and the number of elements possessing the given characteristic at the desired confidence level.
- c. Conclude that λ is equal to or between the UCL and LCL at the desired confidence level.

8.1.2.1.4 EXAMPLE

Given:

 $N - 10 \ (N \le 30)$

f = 4

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Use Table B-13, page 2-43, to obtain the UCL and LCL which correspond to N and the number of elements possessing the given characteristic at a $100(1-\alpha)$ % confidence level.
- c. Conclude that $\lambda \leq UCL$ and $\lambda \ge LCL$ at a $100(1-\alpha)\%$ confidence level.

Example:

- a. a = .05 $1-\alpha = .95$
- b. For N = 10, f = 4, and $1-\alpha = .95$,

UCL = .733**8.** = LCL = .150 = .1

c. Conclude that $\lambda \leq .8$ and $\lambda \ge .1$ at a 95% confidence level.

8.1.2.1.5 ANALYSIS

The two-sided interval surrounds λ such that $\lambda \leq \text{UCL}$ and $\lambda \geq$ LCL at a $100(1-\alpha)\%$ confidence level.

8.1.2.2 TWO-SIDED INTERVAL FOR N > 30

8.1.2.2.1 OBJECTIVE

To determine a two-sided confidence interval which is expected to bracket λ at the desired confidence level when N is greater than 30.

8.1.2.2.2 DATA REQUIRED

 ${\tt N}$ and the number of elements possessing the given characteristic.

8.1.2.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha/2}$.
- c. Compute P (see paragraph 8.1.1.3, page 79).
- d. Compute the UCL and LCL as follows:
 - Multiply P by the quantity (1-P).
 Divide step (1) by N.

(3) Find the square root of step (2).

(4) Multiply step b by step (3).

- (5) Add step (4) to P to determine the UCL and subtract step (4) from P to determine the LCL.
- e. Conclude that λ is equal to or between the UCL and LCL at the desired confidence level.

8.1.2.2.4 <u>EXAMPLE</u>

Given:

$$N = 150 (N > 30)$$

f = 60

Procedure:

- a. Choose the confidence level (1- $\!\alpha$
- b. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha_{1/2}}$.
- c. Compute:

P = characteristic/N

d. Compute:

$$UCL = P+Z_{1-\alpha/2}\sqrt{\frac{P(1-P)}{N}}$$

$$LCI = P-Z_{1-\alpha/2} \sqrt{\frac{P(1-P)}{N}}$$

Example:

a.
$$\alpha = .10$$

 $1-\alpha = .90$
 $1-\alpha/_2 = .95$

b.
$$Z_{.95} = 1.645$$

c.
$$P = 60/150$$

= .40

d.

UCL = .40+1.645
$$\sqrt{\frac{.4(1-.4)}{150}}$$

= .40+1.645 $\sqrt{\frac{.4(.6)}{150}}$
= .40+1.645 $\sqrt{\frac{.24}{150}}$
= .40+1.645 $\sqrt{.0016}$
= .40+1.645 (.04)
= .40+.07
= .47
LCL = .40-1.645 $\sqrt{\frac{.4(1-.4)}{150}}$
= .40-1.645 (.04)
= .40-.07
= .33

- e. Conclude that $\lambda \leq \text{UCL}$ and $\lambda \geq \text{LCL}$ at a 100(1- α)% confidence level.
- e. Conclude that $\lambda \leq .47$ and $\lambda \geq .33$ at a 90% confidence level.

8.1.2.2.5 ANALYSIS

The two-sided interval surrounds λ such that $\lambda \leq \text{UCL}$ and $\lambda \geq \text{LCL}$ at a 100(1-a)% confidence level.

8.1.2.3 ONE-SIDE INTERVAL FOR $N \le 30$

8.1.2.3.1 OBJECTIVE

To determine a one-sided confidence interval such that λ is equal to or less than the UCL (or equal to or greater than the LCL) at the desired contidence level when N is equal to or less than 30.

8.1.2.3.2 DATA REQUIRED

 $\ensuremath{\mathtt{N}}$ and the number of elements possessing the given characteristic.

8.1.2.3.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-14, page 2-50, to obtain the UCL (or the LCL) which corresponds to N and the number of elements possessing the given characteristic at the desired confidence level.
- c. Conclude that λ is equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level.

8.1.2.3.4 EXAMPLE

Given:

 $N = 10 \ (N \le 30)$

f = 4

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Use Table B-14, page 2-50. to obtain the UCL (or the LCL) which corresponds to N and the number of elements possessing the given characteristic at a 100(1-r)% confidence level.
- c. Conclude that $1 \le UCL$ (or $1 \le LCL$) at a $100(1-\epsilon)\%$ confidence level.

Example:

a. $\alpha = .05$

1-x = .95

b. For N = 10, f = 4, and 1 - x = .95.

UCL = .696

(or LCL = 1 - .850)

= .150

c. Conclude that $1 \le .696$ (or $1 \ge .150$) at a 95% confidence level.

8.1.2.3.5 ANALYSIS

The one-sided interval surrounds λ such that $\lambda \leq \text{UCL}$ (or $\lambda \geq \text{LCL}$) at a 100(1- α)% confidence level.

8.1.2.4 ONE-SIDED INTERVAL FOR N > 30

8.1.2.4.1 OBJECTIVE

To determine a one-sided confidence interval such that λ is equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level when N is greater than 30.

8.1.2.4.2 DATA REQUIRED

N and the number of elements possessing the given characteristic.

8.1.2.4.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-4, page 2-4. to obtain $Z_{1-\alpha}$.
- c. Compute P (see paragraph 8.1.1.3, page 79).
- d. Compute the UCL (or LCL) as follows:
 - (1) Multiply P by the quantity (1-P).
 - (2) Divide step (1) by N.
 - (3) Find the square root of step (2).
 - (4) Multiply step b by step (3).
 - (5) Add step (4) to P to obtain the UCL (or subtract step (4) from P to obtain the LCL).
- e. Conclude that λ is equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level.

8.1.2.4.4 **EXAMPLE**

Given:

$$N = 150 (N > 30)$$

f = 60

Procedure:

a. Choose the confidence

level (1-x).

b. Use Table B-4, page 2-4, to obtain Z:_,.

c. Compute:

P = characteristic/N

Example:

a. a = .10

1-x = .90b. $Z_{...23} = 1.282$

c. P = f/N

= 60/150

= .40

d. Compute:

$$UCL = P+Z_{1-x}\sqrt{\frac{P(1-P)}{N}}$$

(or LCL =
$$P-Z_{1-x}$$
 $\sqrt{\frac{P(1-P)}{N}}$)

e. Conclude that $\lambda \leq \text{UCL}$ (or $\lambda \geq \text{LCL}$) at a $100(1-\alpha)\%$ confidence level.

i. UCL = .40+1.282 $\sqrt{\frac{.4(1 - .4)}{150}}$ = .40+1.282 $\sqrt{\frac{.4(.6)}{150}}$ = .40+1.282 $\sqrt{\frac{.24}{150}}$ = .40+1.282 $\sqrt{.0016}$ = .40+1.282 (.04) = .40+.0; = .45 (or LCL = .40 - .95

e. Conclude that λ .45 (or $\lambda \ge .35$) at a 90% confidence level.

= .35)

8.1.2.4.5 <u>ANALYSIS</u>

The one-sided interval surrounds + such that $+ \le \text{UCL}$ (or $+ \le \text{LCL}$) at a 100(1-x)% confidence level.

8.1.3 SAMPLE SIZE REQUIRED TO ESTIMATE THE PO-ULATION PROPORTION

8.1.3.1 SAMPLE SIZE WITH A SPECIFIED LIMIT OF ERROR IN BOTH DIRECTIONS

8.1.3.1.1 OBJECTIVE

To determine the Nt required in order to state that $^{+}$ is equal to or between P + $^{+}$ and P - $^{+}$ at the desired confidence level.

8.1.3.1.2 DATA REQUIRED

None.

8.1.3.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Choose the allowable amount of error.
- c. Choose a value for P in the following manner:
 - (1) If no prior information is available and if t is believed to be in the neighborhood of 0.5, use P = 0.5. The largest sample size will be required when P = 0.5, and the parasse of the rules is to be as conservative as possible.

- (2) If λ can safely be assumed to be less than 0.5, let P be the largest reasonable guess for λ .
- (3) If λ can safely be assumed to be breater than 0.5, let P be the smallest reasonable guess for λ .
- d. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha/2}$.
- e. Compute Nt as follows:
 - (1) Square step d.
 - (2) Multiply P by the quantity (1-P).
 - (3) Multiply step (1) by step (2).

 - (4) Square ε.
 (5) Divide step (3) by step (4).
 (6) Round the result of step (5) up to the next whole number.
- f. Conclude that Nt samples are required in order to state that λ is equal to or between P + ϵ and P - ϵ at the desired confidence level.

8.1.3.1.4 **EXAMPLE**

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Choose ϵ .
- c. Choose P.
- d. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha/2}$.
- e. Compute:

$$N_t = \frac{(Z_{1-\alpha/2})^2 (P) (1-P)}{\epsilon^2}$$

f. Conclude that Nt samples are required in order to state that $\lambda \leq P + \varepsilon$ and $\lambda \geq P - \varepsilon$ at a $100(1-\alpha)\%$ confidence level.

Example:

a.
$$\alpha = .10$$

 $1-\alpha/2 = .95$

b.
$$\varepsilon = .10$$

c.
$$P = 0.5$$

d.
$$Z_{.95} = 1.645$$

$$N_{t} = \frac{(1.645)^{2}(.5)(1-.5)}{(.10)^{2}}$$

$$= \frac{(2.706)(.5)(.5)}{.01}$$

$$= \frac{(2.706)(.25)}{.01}$$

$$= \frac{.6765}{.01}$$

$$= 67.65$$

$$= 68$$

f. If 68 samples are tested and P computed, conclude that $\lambda \leq p +$.10 and $\lambda \ge P$ - .10 at a 90% confidence level.

8.1.3.1.5 ANALYSIS

If N_t samples are tested and P is computed, conclude that $\lambda \leq P + \varepsilon$ and $\lambda \geq P - \varepsilon$ at a $100(1-\alpha)\%$ confidence level.

8.1.3.2 SAMPLE SIZE WITH A SPECIFIED LIMIT OF ERROR IN ONLY ONE DIRECTION

8.1.3.2.1 **OBJECTIVE**

To determine the N_t required in order to state that λ is equal to or less than P + ϵ (or equal to or greater than P - $\epsilon)$ at the desired confidence level.

8.1.3.2.2 DATA REQUIRED

None.

8.1.3.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Choose the allowable amount of error.
- c. Choose the value of P in the following manner:
 - (1) If no prior information is available and if λ is believed to be in the neighborhood of 0.5, use P = 0.5. The largest sample size will be required when P = 0.5, and the purpose of the rules is to be as conservative as possible.
 - (2) If λ can safely be assumed to be less than 0.5, let P be the largest reasonable guess for λ .
 - (3) If λ can safely be assumed to be greater than 0.5, let P be the smallest reasonable guess for λ .
- d. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$.
- e. Compute Nt as follows:
 - (1) Square step d.
 - (2) Multiply P by the quantity (1-P).
 - (3) Multiply step (1) by step (2).
 - (4) Square ε .
 - (5) Divide step (3) by step (4).
 - (6) Round the result of step (5) up to the next whole number.
- f. Conclude that N_t samples are required in order to state that λ is equal to or less than P + ϵ (or equal to or greater than P ϵ) at the desired confidence level.

8.1.3.2.4 EXAMPLE

Procedure:

Example:

a. Choose the confidence level $1-\alpha$).

a. $\alpha = .10$ $1-\alpha = .90$

b. Choose
$$\epsilon$$
.

d. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$.

e. Compute:

$$N_{t} = \frac{(z_{1-\alpha})^{2}(P)(1-P)}{\varepsilon^{2}}$$

b. $\varepsilon = .10$

c. P = 0.5

= 42

 $z_{.90} = 1.282$

e.
$$N_{t} = \frac{(1.282)^{2}(0.5)(1-0.5)}{(.10)^{2}}$$

$$= \frac{(1.644)(0.5)(0.5)}{.01}$$

$$= \frac{(1.644)(.25)}{.01}$$

$$= \frac{.4110}{.01}$$

$$= 41.10$$

f. Conclude that N_t samples are required in order to state that $\lambda \leq P + \varepsilon$ or $(\lambda \geq P - \varepsilon)$ at a $100(1-\alpha)\%$ confidence level.

f. If 42 samples are tested and P computed, conclude that $\lambda \le P + .10$ at a 90% confidence level.

8.1.3.2.5 ANALYSIS

If N_t samples are tested and P is computed, $\lambda \le P + \varepsilon$ (or $\lambda \ge P - \varepsilon$) at a 100)1- α)% confidence level.

8.2 COMPARING AN OBSERVED PROPORTION (P) TO A REQUIREMENT (λ_0)

a. An observed proportion is generated from a sample and is representative of λ . This value of P is then compared to a stated requirement (λ_0) . However, looking at the values of P and λ_0 to decide whether λ is greater than λ_0 or λ is less than λ_0 at a confidence level is insufficient. Since the decision pertains to the population, statistical tests must be applied to P to determine whether λ is greater than λ_0 or λ is less than λ_0 .

b. There exist two possibilities for the relationship of P to λ_{O} . Following are the assumptions and the circumstances for each possible relationship:

(1) P greater than λ_0 .

- (a) The null hypothesis is λ is greater than λ_0 .
- (b) The alternative hypothesis is there is no reason to believe λ is greater than λ_0 .
- (c) The use of this test is appropriate when λ_0 is a maximum value for λ to satisfy. In the event that λ must not be greater than λ_0 , this test would be appropriate.

(2) P is less than λ_0 .

- (a) The null hypothesis is λ is less than λ_0 .
- (b) The alternative hypothesis is there is no reason to believe λ is less than λ_0 .
- (c) The use of this test is appropriate when λ_0 is a minimum value for λ to satisfy. In the event that λ must meet or exceed λ_0 , this test would be appropriate.

8.2.1 P GREATER THAN λ_0

8.2.1.1 SMALL SAMPLE SIZE

8.2.1.1.1 OBJECTIVE

To determine whether λ is greater than λ_0 at the desired confidence level when N is equal to or less than 30.

8.2.1.1.2 DATA REQUIRED

Success-failure data.

8.2.1.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-14, page 2-50, to obtain the LCL which corresponds to N and the number of elements possessing the given characteristic at the desired confidence level.
- c. If λ_0 is less than the LCL, decide that λ is greater than λ_0 ; otherwise, there is no reason to believe λ is greater than λ_0 at the desired confidence level.

8.2.1.1.4 **EXAMPLE**

Given:

 $N = 20 (N \le 30)$ f = 3

 $\lambda_0 = .100$

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Use Table B-14, page 2-50, to obtain the LCL which corresponds to N and the number of elements possessing the given characteristic at a $100(1-\alpha)$ % confidence level.

Example:

a. $\alpha = .05$ $1-\alpha = .95$

b. For $1-\alpha = .95$, N = 20, and N-f = 17, the tabled value is .958. This must be subtracted from 1; hence,

LCL = 1 - .95% = .042

c. If λ_0 < LCL, decide that $\lambda > \lambda_0$; otherwise, there is no reason to believe $\lambda > \lambda_0$ at a $100(1-\alpha)\%$ confidence level.

c. Since .100 \neq .042, decide that there is no reason to believe λ > .100 at a 95% confidence level.

8.2.1.1.5 <u>ANALYSIS</u>

If λ_0 < LCL, the null hypothesis that $\lambda > \lambda_0$ is accepted; otherwise, there is no reason to believe $\lambda > \lambda_0$ at a $100(1-\alpha)\%$ confidence level.

8.2.1.2 <u>LARGE SAMPLE SIZE</u>

8.2.1.2.1 OBJECTIVE

To determine whether λ is greater than λ_0 at the desired confidence level when N is greater than 30.

8.2.1.2.2 DATA REQUIRED

Success-failure data.

8.2.1.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute Z as follows:
 - (1) Multiply λ_0 by N.
 - (2) Subtract step (1) from the number of items having the given characteristic.
 - (3) Add .5 to step (2).
 - (4) Multiply the quantity $(1-\lambda_0)$ by step (1).
 - (5) Divide step (3) by the square root of step (4).
- c. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$, which is the UCL.
- d. If Z is greater than the UCL, decide that λ is greater than $\lambda_{\rm O};$ otherwise, there is no reason to believe λ is greater than $\lambda_{\rm O}$ at the desired confidence level.

8.2.1.2.4 **EXAMPLE**

Given:

N = 100 (N > 30) f = 7 $\lambda_0 = .06$

Procedure:

Example:

a. Choose the confidence level $(1-\alpha)$.

a. $\alpha = .10$ $1-\alpha = .90$

b. Compute:

$$z = \frac{f - N\lambda_0 + .5}{\sqrt{N\lambda_0 (1 - \lambda_0)}}$$

ъ.

$$2 = \frac{7-100(.06)+.5}{100(.06)(-.06)}$$

$$= \frac{7-6+.50}{6(.94)}$$

$$= \frac{1.50}{5.64}$$

$$= \frac{1.50}{2.375}$$

$$= .633$$

c. Use Table B-4, page 2-4, to obtain
$$Z_{1-\alpha}$$
.

UCL. = $Z_{1-\alpha}$

d. If Z > UCL, decide that $\lambda > \lambda_0$; otherwise, there is no reason to believe $\lambda > \lambda_0$ at a $100(1-\alpha)\%$ confidence level.

c. $z_{.90} = 1.282$ UCL = 1.282

d. Since .633 \neq 1.282, decide that there is no reason to believe λ > .06 at a 90% confidence level.

8.2.1.2.5 ANALYSIS

If Z > UCL, the null hypothesis that $\lambda > \lambda_0$ is accepted; otherwise, there is no reason to believe $\lambda > \lambda_0$ at a 100(1- α)% confidence level.

8.2.2 P LESS THAN λ_{\odot}

8.2.2.1 SMALL SAMPLE SIZE

8.2.2.1.1 OBJECTIVE

To determine whether λ is less than λ_0 at the desired confidence level when N is equal to or less than 30.

8.2.2.1.2 DATA REQUIRED

Success-failure data.

8.2.2.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-14, page 2-50, to obtain the UCL which corresponds to N and the number of elements possessing the given characteristic at the desired confidence level.
- c. If λ_0 is greater than the UCL, decide that λ is less than λ_0 ; otherwise, there is no reason to believe λ is less than λ_0 at the desired confidence level.

8.2.2.1.4 EXAMPLE

Given:

$$N = 20 \text{ (N } \approx 30)$$

 $f = 3$
 $\lambda_0 = .200$

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Use Table B-14, page 2-50, to obtain the UCL which corresponds to N and the number of elements possessing the given characteristics at a $100(1-\alpha)$ % confidence level.
- c. If λ_0 > UCL, decide that $\lambda < \lambda_0$; otherwise, there is no reason to believe $\lambda < \lambda_0$ at a $100(1-\alpha)\%$ confidence level.

Example:

- a. $\alpha = .05$ $1-\alpha = .95$
- b. For $1-\alpha = .95$, N = 20, and f = 3, UCL = .344
- c. Since .200 \neq .344, decide that there is no reason to believe λ < .200 at the 95% confidence level.

8.2.2.1.5 <u>ANALYSIS</u>

If λ_0 > UCL, the null hypothesis that λ < λ_0 is accepted; otherwise, there is no reason to believe λ < λ_0 at a 100(1- α)% confidence level.

8.2.2.2 LARGE SAMPLE SIZE

8.2.2.2.1 **OBJECTIVE**

To determine whether λ is less than λ_0 at the desired confidence level when N is greater than 30.

8.2.2.2.2 DATA REQUIRED

Success-failure data.

8.2.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute Z as follows:
 - (1) Multiply λ_0 by N.
 - (2) Subtract step (1) from the number of items having the given characteristic.
 - (3) Subtract .5 from step (2).
 - (4) Multiply the quantity $(1-\lambda_0)$ by step (1).
 - (5) Divide step (3) by the square root of step (4).
- c. Use Table B-4, page 2-4, to obtain Z_{α} , which is the LCL.
- d. If Z is less than the LCL, decide that λ is less than λ_{O} ; otherwise, there is no reason to believe λ is less than λ_{O} at the desired confidence level.

8.2.2.2.4 EXAMPLE

Given:

$$N = 100 (N > 30)$$

 $f = 7$
 $\lambda_0 = .08$

Procedure:

a. Choose the confidence level (1-a).

b. Compute:

$$z = \frac{f - N\lambda_0 - .5}{\sqrt{N\lambda_0 (1 - \lambda_0)}}$$

c. Use Table B-4, page 2-4, to obtain Zq.

$$LCL = Z_{\alpha}$$

d. If Z < LCL, decide that $\lambda < \lambda_0$; otherwise, there is no reason to believe $\lambda < \lambda_0$ at a $100(1-\alpha)$ % confidence level.

Example:

a.
$$\alpha = .10$$

 $1-\alpha = .90$

$$Z = \frac{7-100(.08)-.5}{100(.08)(1-.08)}$$

$$= \frac{7-8-.5}{8(.92)}$$

$$= \frac{-1.5}{7.36}$$

$$= \frac{-1.5}{2.71}$$

$$= -.554$$
c. $Z_{.10} = -1.282$

LCL = -1.282

d. Since -.554 ≠ -1.282, decide that there is no reason to believe λ < .08 at a 90% confidence level.

8.2.2.2.5 **ANALYSIS**

If Z < LCL, the null hypothesis that λ < λ_0 is accepted; otherwise, there is no reason to believe $\lambda < \lambda_0$ at a 100(1- α)% confidence level.

8.2.3 DETERMINATION OF SAMPLE SIZE

8.2.3.1 **OBJECTIVE**

To determine the N_t required to determine whether λ is equal to or greater than $\lambda_0 + \varepsilon$ (or equal to or less than $\lambda - \varepsilon$) at the desired confidence level.

8.2.3.2 DATA REQUIRED

which is known from a standard item, history, or Requirements Document.

8.2.3.3 PROCEDURE

a. Choose α and β , the probabilities of making Type I and Type II errors respectively.

- b. Choose the allowable amount of error.
- c. Estimate the test item proportion by adding ϵ to ϵ .

d. Use Table B-15, page 2-54, to obtain $\theta_1,$ which corresponds to P, and $\theta_0,$ which corresponds to $\lambda.$

- e. Compute d^2 , an intermediate value, as follows:
 - (1) Subtract θ_0 from θ_1 .
 - (2) Square Step (1).
- f. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
- g. Compute Nt as follows:
 - (1) Add $Z_{1-\alpha}$ to $Z_{1-\beta}$.
 - (2) Square step (1).
 - (3) Divide step (2) by step e.
 - (4) Round step (3) to the next larger whole number.

h. Conclude that N_t samples are required to determine whether λ is equal to or greater than λ_0 + ϵ (or equal to or less than λ_0 - ϵ) at the desired confidence level.

8.2.3.4 <u>EXAMPLE</u>

Given:

 $\lambda = .41$

Procedure:

- a. Choose α and β .
- b. Choose ϵ .
- c. Estimate P as follows:

$$P = \lambda + \epsilon$$

- d. Use Table B-15, page 2-54, to obtain θ_1 , which corresponds to P, and θ_0 , which corresponds to λ .
- e. Compute: $d^2 = (\theta_1 - \theta_0)^2$
- f. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.

Example:

- a. $\alpha = .05$
 - $1-\alpha = .95$
 - β = .20
 - $1-\beta = .80$
 - $\varepsilon = .23$
- c. P = .41 + .23
 - = .64
- d. For P = .64,
 - $\theta_1 = 1.85$
 - For $\lambda = .41$,
 - $\theta_0 = 1.39$
- e. $d^2 = (1.85-1.39)^2$
 - $= (.46)^2$
 - = .2116
- $f. Z_{.95} = 1.645$
 - $Z_{.80} = .840$

g. Compute:

$$N_t = \frac{(z_{1-\alpha} + z_{1-\beta})^2}{d^2}$$

h. Conclude that N_t samples are required to determine whether $\lambda \geq \lambda_0 + \varepsilon$ (or $\lambda \leq \lambda_0 - \varepsilon$) at a $100(1-\alpha)$ 2 confidence level.

g.

$$N_{t} = \frac{(1.645 + .840)^{2}}{.2116}$$

$$= \frac{(2.485)^{2}}{.2116}$$

$$= \frac{6.1752}{.2116}$$

$$= 29.18$$

$$= 30$$

h. Conclude that 30 samples for λ known and equal to .41 must be tested in order to determine whether $\lambda \geq \lambda_0 + .23$ at a 95% confidence level.

8.2.3.5 ANALYSIS

N_t samples are required to determine whether $\lambda \geq \lambda_0 + \epsilon$ (or $\lambda \leq \lambda_0 - \epsilon$) at a 100(1- α)% confidence level.

8.3 COMPARING TWO OBSERVED PROPORTIONS

- a. An observed proportion is generated from a sample and is representative of λ . This value of P is then required to meet a standard item P which is representative of the standard item's population. Looking at the values of the proportions (PA and PB) to decide whether λ_A is greater than λ_B or λ_A is less than λ_B at a confidence level is insufficient. Since the decision pertains to the populations, statistical tests must be applied to determine whether λ_A is greater than λ_B or λ_A is less than λ_B . The statistical tests use the sample proportions as estimates of the population proportions.
- b. Type A generally represents the test item and Type B the standard item when testing the hypothesis that λ_A is greater than λ_B . However, to prove that the average performance of the test item is less than that of the standard item, Type A must represent the standard item so that the hypothesis, λ_A is greater than λ_B , can be tested.
- c. When the null hypothesis is λ_A is greater than λ_B , the alternative hypothesis is there is no reason to believe that λ_A is greater than λ_B .
- d. The use of this test is appropriate when λ_{B} is a maximum value for λ_{A} to satisfy.

8.3.1 PA GREATER THAN PB

8.3.1.1 SMALL SAMPLE SIZE

8.3.1.1.1

To determine whether λ_A is greater than λ_B at the desired confidence level when neither NA nor NB is greater than 20.

8.3.1.1.2 DATA REQUIRED

Success-failure data.

8.3.1.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Arrange the data as in Table A-4a, Part I, page 1-11.
- c. Focus on the class of interest and compute the following intermediate values:
 - (1) $h_{\rm A}$, the ratio of the class of interest to the sample size for Type A; i.e., $h_A = I_A/N_A$ or $h_A = II_A/N_A$.

 (2) h_B , the ratio of the class of interest to the sample
 - size for Type B; i.e., $h_B = I_B/N_B$ or $h_{\bar{b}} = II_B/N_B$.
- d. If h_A is greater than h_B , continue with step e; however, if h_{A} is not greater than h_{B} , decide that the data give no reason to believe that λ_A is greater than λ_B at the desired confidence level.
- e. Arrange the data so that the results of the larger sample are in the first row (see Table A-4a, Part II, page 1-11.
 - f. Compute the following intermediate values:
 - (1) h₁, the ratio of class I to the sample size for the item having the larger sample size; i.e., $h_1 = I_1/N_1$.
 - (2) h_2 , the ratio of Class I to the sample size for the item having the smaller sample size; i.e., $h_2 = I_2/N_2$.
 - (3) g_1 , the ratio of class II to the sample size for the item having the larger sample size, i.e., $g_1 = II_1/N_1$.
 - (4) g2, the ratio of class II to the sample size for the item having the smaller sample size; i.e., $g_2 = II_2/N_2$.
- g. Focus attention on that class (I or II) which produces a proportion for the larger sample which is larger than or equal to the respective proportion for the smaller sample. Depending on the class chosen, let I_1 (or II_1) equal a_1 , an intermdeiate value, and I_2 (or II_2) equal a_2 , an intermediate value.
- h. Use Table B-16, page 2-55, to obtain a tabled a2 which corresponds to the two sample sizes and al at the desired confidence level.
- i. If a_2 from step g is less than or equal to the table a_2 , decide that λ_A is greater than λ_B with regard to the class of interest; otherwise, there is no reason to believe λ_A is greater than λ_B at the desired confidence level.

8.3.1.1.4 EXAMPLE

Given:

Sample data at Table A-4a, Part I, page 1-11.

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Arrange the data.
- c. Focus on the class of interest and compute one of the following:
 - (1) Class I.

$$h_A = I_A/N_A$$

 $h_B = I_B/N_B$

(2) Class II

$$h_A = II_A/N_A$$

 $h_B = II_B/N_B$

- d. If $h_A > h_B$, continue with step e. If $h_A < h_B$, decide that the data give no reason to believe that λ_A is greater than λ_B with respect to the class of interest at a $100(1-\alpha)\%$ confidence level.
- e. Arrange the data so that the results of the larger sample are in the first row.
- f. Compute:

$$h_1 = I_1/N_1$$

 $h_2 = I_2/N_2$

 $g_1 = II_1/N_1$

 $g_2 = II_2/N_2$

Example:

a.
$$\alpha = .05$$

 $1-\alpha = .95$

- b. See Table A-4a, Part I, page 1-11.
- c. Focus on class II.

$$h_A = \frac{2}{6}$$

- .333

= .3

 $h_B = \frac{2}{10}$

= .200

- .2

- d. Since .3 > .2, continue
 with step e.
- e. See Table A-4a, Part II, page 1-11.

f.
$$h_1 = \frac{8}{10}$$

~ .800

= .8

 $h_2 = 4/6$

- .667

= .7

 $g_1 = \frac{2}{10}$

= .200

= .2

 $32 = \frac{2}{6}$

= .333

= .3

g. (1) If $h_1 \ge h_2$, focus attention on class I with

 $a_1 = I_1$

 $a_2 = I_2$

(2) If $g_1 \ge g_2$, focus attention on class II with

 $a_1 = II_1$

 $a_2 = II_2$

h. Use Table B-16, page 2-55, to obtain a tabled a_2 which corresponds to N_1 , N_2 , and a_1 at a $100(1-\alpha)\%$ confidence level.

NOTE: Since this is a one-sided test, use the α which is not in parentheses.

i. If $a_2 \le$ the table value of a_2 from step h, decide that $\lambda_A > \lambda_B$ with respect to the original class of interest; otherwise, there is no reason to believe $\lambda_A > \lambda_B$ with respect to the original class of interest at a $100(1-\alpha)\%$ confidence level.

g. Since .8 > .7, focus attention on class I.

 $a_1 = 8$

 $a_2 = 4$

h. For $N_1 = 10$, $N_2 = 6$,

 $a_1 = 8$, and $\alpha = .05$, the tabled $a_2 = 1$.

i. Since 4 < 1, decide that there is no reason to believe $\lambda_A > \lambda_B$ with respect to the number of failures at a 95% confidence level.

8.3.1.1.5 <u>ANALYSIS</u>

If a_2 a_2, the null hypothesis that $\lambda_A > \lambda_B$ is accepted; otherwise, there is no reason to believe $\lambda_A > \lambda_B$ at a $100(1-\alpha)\%$ confidence level. In the event that the confidence level desired is not within the scope of Table B-16, page 2-55, the test for the large sample size must be applied. The results will not be as accurate but will still be useful. In the event that a_1 or a_2 or both are missing for the given sample sizes and confidence level in Table B-16, page 2-55, conclude that the sample sizes are considered insufficient for accepting or rejecting the null hypothesis.

8.3.1.2 PARGE SAMPLE SIZE

8.3.1.2.1 OBJECTIVE

To determine whether λ_A is greater than λ_B at the desired confidence level when either N_A or N_B is greater than 20.

8.3.1.2.2 DATA REQUIRED

Success-failure data.

MTP 3-1-005 1 March 1972

8.3.1.2.3 **PROCEDURE**

- Choose the desired confidence level.
- Use Table B-7, page 2-12. to obtain $\chi^2\alpha$ for 1 d.f.
- c. Add N_A to N_B to obtain T_N , an intermediate value.
- d. Compute AB, an intermediate value, as follows:
 - (1) Multiply IA by IIB.
 - (2) Multiply IB by IIA.
 - (3) Subtract step (2) from step (1) and take the absolute value of the difference (disregard the sign).
- e. Compute J, an intermediate value, as follows:
 - (1) Add IA to IB to obtain TI, an intermediate value.
 - (2) Add Π_A to Π_B to obtain $T_{\Pi I}$, an intermediate value. (3) Multiply N_A , N_B , T_I , and $T_{\Pi I}$ together.
- f. Compute χ^2 as follows:
 - (1) Divide step c by 2.
 - (2) Subtract step (1) from step d.
 - (3) Square step (2).
 - (4) Multiply step (3) by step c.
 - (5) Divide step (4) by step e.
- g. Focus on the class of interest and compute the following intermediate values:
 - (1) ha, the ratio of the class of interest to the sample size for Type A; i.e., $h_A = I_A/N_A$ or $h_A = N^2$
 - (2) hg, the ratio of the class of interest to the sample size for Type B; i.e., $h_B = I_B/N_B$ or $h_B = II_B/N_B$.
- h. If χ^2 is greater than or equal to χ^2_α for 1 d.f. and h_A is larger than h_B , decide that λ_A is greater than λ_B with regard to the class of interest; otherwise, there is no reason to believe λ_A is greater than λ_B at the desired confidence level.

8.3.1.2.4 EXAMPLE

Given:

Sample data at Table A-4b, page 1-11.

Procedure:

a. Choose the confidence level $(1-\alpha)$.

b. Use Table B-7, page 2-12, to obtain $\chi_{2\alpha}^2$ for 1 d.f.

c. Compute:

 $T_N = N_A + N_B$

Example:

a. $\alpha = .10$ $1-\alpha = .90$

b. $\chi^2_{.20}$ for 1 d.f. = 1.64

c. $T_N = 216 + 216$

= 432

$$AB = I_A II_B - I_B II_A$$

e. Compute:

$$J = (N_A) (T_I) (T_{II}) (N_B)$$

$$\chi^2 = \frac{TN(AB - T_N)}{J}_2$$

NOTE: The formula for χ^2 has been broken down

for simplicity and the complete formula is

$$x^{2} = \frac{(N_{A}+N_{B}) \left(|I_{A}II_{B}-I_{B}II_{A}|-N_{A}+N_{B}}{(N_{A}) (I_{A}+I_{B}) (II_{A}+II_{B})N_{B}} \right)^{2}$$

g. Focus on the class of interest and compute one of the following:

$$h_A = I_A/N_A$$

 $h_B = I_B/N_B$

(2) Class II

$$h_A = II_A/N_A$$

$$h_B = II_B/N_B$$

h. If $\chi^2 \ge \frac{2}{2}$ for 1 d.f. and hA > hB, decide that λ A > λ B with regard to the class of interest; otherwise, there is no reason to believe λ A > λ B at a $100(1-\alpha)\%$ confidence level.

d.

$$J = (216)(341)(91)(216)$$

= (73,656)(91)(216)

= 1,447,782,336

f.
$$\chi^2 = \frac{432(4536-216)^2}{1,447,782,336}$$

$$= \frac{8,062,156,800}{1,447,782,336}$$

g. Focus on class I.

$$h_A = 181/216$$

= .83796

= .838

 $h_B = 160/216$

= .74074

- .741

h. Since 5.57 \geq 1.64 and .838 > .741, decide that the proportion of hit. for $\lambda_A > \lambda_B$ at a 90% confidence level.

8.3.1.2.5 ANALYSIS

If $\chi^2 \geq \chi^2_{2\alpha}$ for 1 d.f. and h_A > h_B, the null hypothesis that $\lambda_A > \lambda_B$ is accepted; otherwise, there is no reason to believe $\lambda_A > \lambda_B$ at a $100(1-\alpha)$ % confidence level. The sample size for P_A or P_B must exceed 20. If the confidence level desired is unavailable for P_A and P_B less than 20, the chi-square test will be used to test $\lambda_A > \lambda_B$.

8.3.2 DETERMINATION OF SAMPLE SIZE

8.3.2.1 OBJECTIVE

To determine the N_t (N_t=N_A=N_B) required to determine whether λA . is equal to or greater than $\lambda g + \varepsilon$ (or equal to or less than $\lambda g - \varepsilon$) at the desired confidence level.

8.3.2.2 DATA REQUIRED

None.

8.3.2.3 PROCEDURE

- a. Choose α and $\beta,$ the probabilities of making Type I and Type II errors respectively.
 - b. Choose the allowable amount of error.
- c. Estimate one of the proportions, either P_{A} or P_{B} . Make this estimate as close to 0.5 as is reasonable.
 - d. Compute the other proportion as follows:
 - (1) If P_A is estimated, subtract step b from P_A to obtain P_B .
 - (2) If PB is estimated, add step b to PB to obtain PA.
- e. Use Table B-15, page $_{2-54}$, to obtain θ_A , which corresponds to P_A , and θ_B , which corresponds to P_B .
 - f. Compute d2, an intermediate value, as follows:
 - (1) Subtract θ_B from θ_A .
 - (2) Square step (1).
 - g. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
 - h. Compute n, an intermediate value, as follows:
 - (1) Add $Z_{1-\alpha}$ to $Z_{1-\beta}$.
 - (2) Square step (1).
 - (3) Divide step (2) by step f.
 - (4) Round step (3) up to the next whole number.
 - 1. Multiply step h by 2 to obtain Nt.
- j. Conclude that N_t samples are required to determine whether λ_A is equal to or greater than $\lambda_B+\epsilon$ (or equal to or less than $\lambda_B-\epsilon$) at the desired confidence Jevel.

8.3.2.4 **EXAMPLE**

Procedure:

a. Choose α and β .

b. Choose c.

c. Estimate PA or PB.

d. (1) If P_A is estimated, compute:

$$P_B = P_A - \epsilon$$

(2) If P_B is estimated, compute:

$$\mathbf{r_A} = \mathbf{r_B} + \epsilon$$

e. Use Table B-15, page 2-54, to obtain θ_A , which corresponds to P_A , and θ_B , which corresponds to P_B .

f. Compute:

$$\mathbf{d}^2 = (a_A - a_B)^2$$

g. Use Table 8-4, page 2-4, to obtain $Z_{1+\alpha}$ and $Z_{1+\beta}$.

h. Compute:

$$n = \frac{(z_{1-\alpha} + z_{1-\beta})^2}{d^2}$$

i. $N_t = 2n$

Example:

a.
$$\alpha = .05$$

 $1-\alpha = .95$
 $\beta = .20$
 $1-\beta = .80$

b.
$$r = .20$$

c.
$$P_A = .70$$

d. Since P_A is estimated, $P_B = .70 - .20$

e. For
$$v_A = .70$$
,

$$\theta_{\rm A} = 1.98$$

For
$$P_B = .50$$
.

$$0B = 1.57$$

f.
$$d^2 = (1.98-1.57)^2$$

$$-(.41)^{2}$$

$$z_{*80} = .840$$

$$n = \frac{(1.645 + .840)^{2}}{.1681}$$
$$= \frac{(2.485)^{2}}{.1681}$$

$$=\frac{6.175}{.1681}$$

$$= 36.73$$

1.
$$N_t = 2(3^\circ)$$

- j. Conclude that N_t samples are required to determine whether $\lambda_A \ge \lambda_B + \varepsilon$ (or $\lambda_A \le \lambda_B \varepsilon$) at a $100(1-\alpha)$ % confidence level.
- j. Conclude that 74 samples of each item must be tested to determine whether $\lambda_A \ge \lambda_B + .20$ at a 95% confidence level.

8.3.2.5 ANALYSIS

a. Initial Nr.

N_t samples are required to determine whether $\lambda_A \ge \lambda_B + \varepsilon$ (or $\lambda_A \le \lambda_B - \varepsilon$) at a $100(1-\alpha)\%$ confidence level. Unfortunately, the sample size required depends on the unknown population values of the two proportions involved. Very often the experimenter has some idea of the magnitude of (or an upper bound for) one of these values and then must specify the size of the difference which the experiment is designed to detect. The largest sample size is required when the true proportions are in the neighborhood of 0.5. Thus, a careful examination must be made in order to estimate the proportion accurately rather than arbitrarily using a value close to .5 so that the sample size can be kept at a minimum.

b. Adequacy of Nr.

After the initial N_{t} has been tested, P_A and P_B must be computed. N_t is then recomputed using the computed proportions in place of the estimated proportions to determine whether the initial N_{t} was adequate.

- 9. ACCURACY AND PRECISION
- 9.1 ACCURACY
- 9.1.1 OBJECTIVE

To determine the accuracy of a test item.

9.1.2 DATA REQUIRED

The aiming point (AP) or target, the coordinates of the points of impact or points of burst, the set time, and the achieved time.

- 9.1.3 PROCEDURE
 - a. Case I: Cannon.
 - (1) Compute the mean point of impact (MPI) for ground bursts as follows:
 - (a) Compute the mean of the eastings (EAST).
 - (b) Compute the mean of the northings (NORTH).
 - (2) Compute the mean point of burst (POB) and the mean time as follows:
 - (a) Compute EAST.
 - (b) Compute NORTH.

- (c) Compute the mean of the heights (HEIGHT).
- (d) Compute the mean time.
- (3) List the MPI as the mean easting and mean northing (EAST, NORTH) and the POB as the mean easting, mean northing, and mean height (EAST, NORTH, HEIGHT).
- (4) Compute the miss distance (m) for the MPI as follows:
 - (a) Subtract the \overline{EAST} from the AP easting $(EAST_{AD})$.
 - (b) Square step (a).
 - (c) Subtract the NORTH from the AP northing (NORTH AP).
 - (d) Square step (c).
 - (e) Add step (b) to step (d) and find the square root.
- (5) Compute m and the miss time for the \overline{POB} as follows:
 - (a) Subtract the EAST from the EASTAD.
 - (b) Square step (a).
 - (c) Subtract the NORTH from the NORTH Ap.
 - (d) Square step (c).
 - (e) Subtract the HEIGHT from the AP height (HEIGHT AP).
 - (f) Square step (e).
 - (g) Add step (b) to step (d).
 - (h) Add step (g) to step (f) and find the square root to obtain the m.
 - Subtract the set time from the mean time to obtain the miss time.
- b. Case II: Missile systems (limited sample).
 - (1) Plot each point of impact or point of burst relative to its AP and determine the distance over or short and the distance right or left.
 - (2) Compute the mean AP using all of the AF coordinates in a given range band.
 - (3) Plot the points of impact or points of burst relative to the mean AP, using the distances from step (1).
 - (4) Compute the MPI or \overline{POB} and mean time for the points relative to the mean AP.
 - (5) Compute m for MPI the same as for a cannon.
 - (6) Compute m and the miss time for the \overline{POB} the same as for a cannon.

9.1.4 EXAMPLE

a. Case I: Cannon.

Given:

AP: (2784,3501)

Sample data at Table A-la, page 1-1.

Procedure:

Example:

- (1) Compute the following for the MPI:
- (1) (a) $\overline{EAST} = 2565.67$ = 2566

(a) EAST

(b) NORTH (b) NORTH = 3256.47 - 3256 (2) (2) Compute the following for the POB: (a) EAST (b) NORTH (c) HEIGHT (d) Mean time (3) MPI: (2566,3256) (3) List the following: (a) MPI: (EAST, NORTH) (b) POB: (EAST, NORTH, HEIGHT) (4) For the MPI, compute: (4) $(2784-2565.67)^2+(3501-3256.47)^2$ $(218.33)^2 + (244.53)^2$ 47668+59795 327.82 328 (5) For the POB, compute: (5) $(EAST_{AP} - \overline{EAST})^2 + (NORTH_{AP} - \overline{NORTH})^2 + (HEIGHT_{AP} - \overline{HEIGHT})^2$ (b) miss time = mean time - set time. b. Case II. Missile systems (limited sample). Given: Sample data at Table A-5a, page 1-12. Procedure: Example: (1) Plot each point relative (1) (a) (2350,3100) to its AP. (b) (1649,2031) See Table A-5a, page 1-12 for complete list. (2) $\overline{EAST}_{AP} = 21548/10$ (2) Compute the mean AP. AP = 2155 NORTH = 22091/10 AP = 2209 (3) (a) (2005,2304) (b) (2267, 2415) See Table A-5a, page 1-12, (3) Plot each point relative to the mean AP

for complete list.

- (4) Compute:
 - (a) MPI.
 - (b) POB and mean time.

(4) MPI: (2148,2274)

 $\overline{EAST} = 21482/10$

= 2148.20

= 2148

NORTH = 22743/10

= 2274.30

= 2274

- (5) Compute for the MPI:
- $\mathbf{m} = \sqrt{(\overline{EAST}_{AP} \overline{EAST})^2 + (\overline{NORTH}_{AP} \overline{NORTH})^2}$

(5)

$$= \sqrt{(2154.80-2148.20)^2 + (2209.10-2274.30)^2}$$

$$= \sqrt{(6.60)^2 + (65.20)^2}$$

$$= \sqrt{43.56+4251.04}$$

= 65.53

= 66

- (6) For the POB, compute:
- (6)
- (a) $m = \sqrt{(EAST_{AP} EAST)^2 + (NORTH)_{AP} NORTH)^2 + (HEIGHT_{AP} HEIGHT)^2}$
- (b) miss time = mean time set time

9.1.5 ANALYSIS

a. The miss distance is the distance that the MPI or the POB missed the AP and describes the accuracy of the test item. The smaller the miss distance, the better the accuracy of the test item. The miss distance must be compared to the stated requirement to determine whether the requirement was met.

b. Due to sampling techniques used for missiles, an average AP must be determined within a range band. The miss distance is the distance that the MPI or \overline{POB} (relative to the average AP) missed the average AP. The miss distance must be compared to the stated requirement to determine whether the requirement was met. Unless the sample size is at least six, conclusions for accuracy cannot be drawn with any reasonable level of confidence.

- 9.2 PRECISION
- 9.2.1 PROBABLE ERROR COMPUTATION
- 9.2.1.1 STANDARD DEVIATION METHOD

MTP 3-1-005 1 March 1972

9.2.1.1.1 **OBJECTIVE**

To obtain the system PE and each subsystem PE using the standard deviation method.

9.2.1.1.2 DATA REQUIRED

A list of sample readings.

9.2.1.1.3 **PROCEDURE**

- a. Compute s, (see paragraph 7.1.1.3, page 64).
- b. Multiply step a by .6745 to obtain PE.

9.2.1.1.4 EXAMPLE

Given:

Sample data at Table A-5b, page 1-13.

Procedure:

Example:

a.

$$s = \sqrt{\frac{\Sigma \Delta^2}{N-1}}$$

$$\begin{array}{r}
s = \sqrt{\frac{38,650.00}{16-1}} \\
= \sqrt{\frac{38,650.00}{15}} \\
= \sqrt{2,576.67} \\
= 50.76
\end{array}$$

= 51

See paragraph 7.1.1.4, page 65, for computations.

b.
$$PE = 0.6745(s)$$
.

9.2.1.1.5 ANALYSIS

The PE is a measure of deviation from μ such that 50% of the observations may be expected to lie between μ - PE and μ + PE. This method is the best estimate of the population PE(τ) unless a trend exists which can be attributed to a non-system condition, such as weather, in which case use of the successive differences method is the best approach. A test comparing the two methods of computing PE can be made to determine whether a trend did exist but was not evident (see paragraph 9.2.1.3, page 108, for details).

9.2.1.2 SUCCESSIVE DIFFERENCES METHOD

9.2.1.2.1 **OBJECTIVE**

To determine the system PE and each subsystem PE using the successive differences method when there is a suspected trend.

9.2.1.2.2 DATA REQUIRED

A list of sample readings.

9.2.1.2.3 **PROCEDURE**

a. Compute the differences $(x_d = x_i - x_i + 1)$ between consecutive readings.

- b. Square each difference.
- c. Sum the squares.
- d. Compute s_{κ} as follows:
 - Divide step C by the quantity (r-1).
 Divide step (1) by the quantity 2.

 - (3) Find the square root of step (2).
- e. Multiply step d by .6745 to obtain the PE.

9.2.1.2.4 EXAMPLE

Given:

Sample data at Table A-5c, page 1-14 (same as data at Table A-5b, page 1-13.

Procedure:

a. Compute the differences between consecutive readings:

$$x_d = x_i - x_{i+1}$$

Example:

a. (1) Difference between 1 and 2:

$$x_d = 1248-1100$$

= 148

(2) Difference between 2 and 3:

$$x_d = 1100-1260$$

= -160

See Table A-5c, page 1-14. for complete list.

MTP 3-1-005 1 March 1972

b. (1)
$$x_d^2 = (148)^2$$

= 21,904
(2) $x_d^2 = (-160)^2$
= 25,600

See Table A-5c, page 1-14, for complete list.

c. Sum the
$$x_d^2$$
.

d. Compute:

$$s_{\delta} = \sqrt{\frac{\sum x_{d}^{2}}{2(N-1)}}$$

c.
$$\Sigma x_d^2 = 85,020$$

d. $s_{\delta} = \sqrt{\frac{(85,020)}{2(16-1)}}$
= $\sqrt{\frac{(85,020)}{30}}$

$$PE = .6745(s_{\hat{s}})$$

35.90

9.2.1.2.5 ANALYSIS:

The PE is a measure of deviation from such that 50% of the observations may be expected to lie between μ -PE and μ +PE. If a trend which can be attributed to a nor-system condition, such as weather, is suspected then this method will yield the best estimate of τ . A test comparing the two methods of computing PE can be made to determine whether a trend existed but was not evident (see paragraph 9.2.1.3, for details).

9.2.1.3 TREND ANALYSIS

9.2.1.3.1 **OBJECTIVE**

To determine whether a trend exists and whether the standard deviation method or the successive differences method yields the best estimate of τ .

9.2.1.3.2 DATA REQUIRED

 s^2 and s_1^2 .

9.2.1.3.3 <u>PROCEDURE</u>

- a. Choose the desired confidence level.
- b. Divide s_{δ}^2 by s^2 .
- c. The Table B-23, page 2-133, to obtain the critical number (CN) for N samples at the desired confidence level.

d. If s_s^2/s^2 is less than CM, decide that a trend exists and that the successive differences method yields the best estimate of τ ; otherwise, a trend does not exist at the desired confidence level and the standard deviation method yields the best estimate of τ .

9.2.1.3.4 EXAMPLE

Given:

 $s^2 = 2,576.67$ (see paragraph 9.2.1.1.4, page 106). $s_x^2 = 2,834.00$ (see paragraph 9.2.1.2.4, page 107).

Procedure:

a. Choose the confidence level $(1-\alpha)$.

b. Compute:

 $\frac{\mathbf{s}_{\delta}^2}{\mathbf{s}^2}$

- c. Use Table B-23, page 2-133, to obtain CN for N samples at a $100(1-\alpha)\%$ confidence level.
- d. If s_0^2/s^2 < CN, decide that a trend exists at the desired confidence level and that the successive differences method yields the best estimate of τ ; otherwise, conclude that a trend does not exist and the standard deviation method yields the best estimate of τ .

Cxample:

a. $\alpha = .05$ $1-\alpha = .95$

b. $\frac{s_{\delta}^2}{s^2} = \frac{2,834.00}{2,576.67}$ = 1.0999

- c. For N = 16 and 1- α = .95, CN = .6136
- d. Since 1.0999 f .6136, decide that a trend did not exist at a 95% confidence level and that the standard deviation method is the best estimate of τ . Thus, PE = 34.

9.2.1.3.5 ANALYSIS

- a. The PE is a measure of deviation from μ such that 50% of the observation may be expected to lie between μ -PE and μ +PE. Elements, such as two warming and wear, weapon seating, or non-random met changes, within a data point will have a progressive effect on the magnitude of the data collected. Thus, a trend test is important for detecting gradual increases or decreases in some selected parameters within each point. Range, height, deflection, time of flight, muzzle velocity and projectile weight are parameters which may be examined for a trend.
- b. If a trend exists at a $100(1-\alpha)\%$ confidence level, the probable error computed by the successive differences method will be the best estimate of τ ; otherwise, the probable error computed by the standard deviation method will be the best estimate of τ .

9.2.1.4 <u>OUTLIERS</u>

9.2.1.4.1 OBJECTIVE

To identify any outliers which may be present.

9.2.1.4.2 DATA REQUIRED

A list of sample readings.

9.2.1.4.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute s2 for all readings.
- c. Isolate the reading which deviates most from the mean as a suspected outlier.
 - d. Compute s_1^2 with the suspected outlier deleted.
 - Compute the mean of the readings with the suspected outlier deleted.
 - (2) Compute the differences between each reading and the mean.
 - (3) Square each difference.
 - (4) Sum the squares.
 - (5) Divide step (4) by the quantity (N-2).
 - e. Divide s_1^2 by s^2 .
- f. Use the "First Outlier CV" column of Table B-17, page 2-71, to obtain the critical value (CV) for N samples at the desired confidence level.
- g. If s_1^2/s^2 is less than the CV, decide that the reading is an outlier; otherwise, there is no reason to believe that the reading is an outlier at the desired confidence level.
- h. If the reading is an outlier, exclude it from the data and proceed to step i. If the reading is not an outlier, return the reading to the set of data, and no further examination of the data is required.
- i. With the outlier deleted, isolate the reading which deviates most from the mean. If this suspected outlier is on the same side of the mean as the outlier, proceed to step j. If both readings are not on the same side of the mean, conclude that it is invalid to eliminate both as outliers. Therefore the suspected outlier is retained with no further examination of the data required.
- j. Compute the standard deviation with both the outlier and suspected outlier removed (s_2^2) .
 - k. Divide s_2^2 by s^2 .
- 1. Use the "Second Outlier CV" column of Table B-17, page 2-71, to obtain the CV for N samples at the desired confidence level.

m. If s_2^2/s^2 is less than the CV, decide that the reading (suspected outlier) is an outlier at the desired confidence level; otherwise, there is no reason to believe that the reading is an outlier.

n. If the reading is an outlier, exclude it from the data. If it is not an outlier, return the reading to the set of data. In either event, no further examination of the data is required.

9.2.1.4.4 EXAMPLE

Given:

Sample data at Table A-5b, page 1-13 (or Table A-5c,

page 1-14).

Procedure:

a. Choose the confidence level $(1-\alpha)$.

b. Compute:

$$s^2 = \frac{\Sigma \Delta^2}{N-1}$$

c. Isolate suspected outlier.

d. Compute:

$$s_1^2 = \frac{\Sigma \Delta^2}{N-2}$$

(Standard deviation with suspected outlier deleted)

e. Compute:

$$\frac{\mathbf{s}_1^2}{\mathbf{s}_2^2}$$

f. Use the "First Outlier CV," column of Table B-17, page 2-71, to obtain CV for N samples at a $100(1-\alpha)\%$ confidence level.

g. If $s_1^2/s^2 < CV$, decide that the reading is an outlier; otherwise, there is no reason to believe that the reading is an outlier at a $100(1-\alpha)\%$ confidence level.

Example:

a. $\alpha = .05$ $1-\alpha = .95$

b. $s^2 = 2.576.67$

See paragraph 9.2.1.1.4, page 106, for computation.

c. Isolate reading number 2, 1100 meters.

d. $s_1^2 = 858.93$

e. $\frac{s_1^2}{s^2} = \frac{858.93}{2576.67}$ = .3333

f. For N = 16 and 1- α = .95, CV = .6166

g. Since .3333 < .6166, decide
that 1100 is an outlier at a
95% confidence level.</pre>

MTP 3-1-005 1 March 1972

- h. If the reading is an outlier, exclude it from the data and proceed to step i. If the reading is not an outlier, return the reading to the set of data, and no further examination of the data is required.
- i. With the outlier deleted, isolate the reading which deviates most from the mean. If this suspected outlier is on the same side of the mean as the outlier, proceed to step j. If both readings are not on the same side of the mean, conclude that it is invalid to eliminate both as outliers. Therefore, the suspected outlier is retained with no further examination of the data required.
- j. Compute s_2^2 .
- k. Compute:

 $\frac{s_2^2}{s^2}$

- 1. Use the "Second Outlier CV" column of Table B-17, page 2-71, to obtain the CV for N samples at a $100(1-\alpha)$ % confidence level.
- m. If $s_2^2/s^2 < CV$, decide that the reading is an outlier at a $100(1-\alpha)\%$ confidence level; otherwise, there is no reason to believe that the reading is an outlier.
- n. If the reading is an outlier, exclude it from the data. If it is not an outlier, return the reading to the set of data. In either event, no further examination of the data is required.

9.2.1.4.5 ANALYSIS

The dispersion of the data with the suspected outlier included is compared to the dispersion with the outlier removed. If this ratio falls below a certain value (Table B-17, page 2-71), the reading is deleted as an outlier at the desired confidence level. This particular method for isolating outliers is used due to small samples and the fact that only one or two observations will possibly be outliers with any confidence.

- h. Since reading number 2 is an outlier, reading number 12, 1325 meters, is the next suspected outlier to isolate.
- i. Since reading number 12 is on a different side of the mean than reading number 2, conclude that reading number 12 is not an outlier. Return the reading to the set of data. Conclude that reading number 2 is the only outlier in the set of data. No further analysis of the data is required.

9.2.2 COMPARING PROBABLE ERRORS (PE's)

As stated in paragraph 4.5.4, page 7, the PE is a measure of deviation from μ such that 50% of the observations may be expected to lie between μ - PE and μ + PE. Since the PE is a function of the standard deviation (PE = .6745s $_{\delta}$ or PE .6745 s), the same tests used for the comparison of standard deviations will be used to compare PE's for a significant difference.

9.2.2.1 COMPARING AN OBSERVED PE TO A REQUIREMENT

- a. An observed PE is generated from a sample and is representative of τ . This value of PE is then compared to a stated requirement (τ_0). However, looking at the values of PE and the requirement to decide whether τ is greater than τ_0 or τ is less than τ_0 at a confidence level is insufficient. Since the decision pertains to the population, statistical tests must be applied to PE to determine whether τ is greater than τ_0 or τ is less than τ_0 .
- b. There exist two possibilities for the relationship of PE to τ_0 . Following are the assumptions and the circumstances for each possible relationship:
 - (1) PE greater than τ_0 .
 - (a) The null hypothesis is τ is greater than τ_0 .
 - (b) The alternative hypothesis is there is no reason to believe τ is greater than τ_0 .
 - (c) The use of this test is appropriate when τ_0 is a maximum value for τ to satisfy. In the event that τ must not be greater than τ_0 , this test would be appropriate.
 - (2) PE less than τ_{c} .
 - (a) The null hypothesis is τ is less than τ_0 .
 - (b) The alternative hypothesis is there is no reason to believe that τ is less than τ_0 .
 - (c) The use of this test is appropriate when τ_0 is a minimum value for τ to satisfy. In the event that τ must meet or exceed τ_0 , this test would be appropriate.
- c. In order to test the above hypotheses when given the values of PE and $\tau_{\rm O}$, s and $\sigma_{\rm O}$ must be computed; and the appropriate test as described in paragraphs 7.2.1 through 7.2.2, page 70 through 71 must be performed. The values of s and $\sigma_{\rm O}$ are determined by multiplying PE and $\tau_{\rm O}$ each by 1.4826. Since the PE is a multiple of s, the conclusions drawn concerning standard deviations will also hold true for probable errors; e.g., if the

null hypothesis that σ is less than σ_0 is accepted at a 100(1- α)% confidence level, then the null hypothesis that τ is less than τ_0 can also be accepted at the same confidence level.

9.2.2.2 COMPARING TWO OBSERVED PE's

- a. An observed probable error is generated from a sample and is representative of τ . This value of PE is then required to meet a standard item PE which is representative of the standard items population. Looking at the values of the probable errors (PEA and PEB) to decide whether τ_A is greater than τ_B or τ_A is less than τ_B at a confidence level is insufficient. Since the decision pertains to the populations, statistical tests must be applied to P_A and P_B to determine whether τ_A is greater than τ_B or τ_A is less than τ_B . The statistical tests use the sample PE's as estimates of the population PE's.
- b. Type A generally represents the test item and Type B, the standard item when testing the hypothesis that τ_A is greater than τ_B . However, to prove that the PE of the test item is less than that of the standard item, Type A must represent the standard item so that the hypothesis, τ_A is greater than τ_B , can be tested.
- c. When the null hypothesis is τ_A is greater than τ_B , the alternative hypothesis is there is no reason to believe that τ_A is greater than τ_B .
- d. This test is appropriate when $\tau_{\mbox{\footnotesize{B}}}$ is a maximum value for $\tau_{\mbox{\footnotesize{A}}}$ to satisfy.
- e. In order to test the above hypothesis when given the values of PE_A and PE_B, s_A and s_B must be computed; and the appropriate test as described in paragraphs 7.3.1 and 7.3.2, pages 74 and 76, must be performed. The values of s_A and s_B are determined by multiplying PE_A and PE_B each by 1.4826. Since the PE is a multiple of s, conclusions drawn concerning standard deviations will also hold true for probable errors; e.g., if the null hypothesis that σ_A is greater than σ_B is accepted at a $100(1-\alpha)\%$ confidence level then the null hypothesis that τ_A is greater than τ_B can also be accepted at the same confidence level.

9.2.2.3 DETERMINATION OF SAMPLE SIZE

- a. The determination of N_{t} is necessary to assure that there is a sufficient sample upon which to base a decision to accept or reject a null hypothesis at a specified confidence level.
- b. The values of s and σ_0 are determined by multiplying the PE and τ_0 each by 1.4826. N_t is determined by following the appropriate procedure as described in paragraph 7.2.3, page 72.
- c. The values of s_A and s_B are determined by multiplying PEA and PEB each by 1.4826. N_t is determined by following the appropriate procedure as described in paragraph 7.3.2, page 76.

9.2.3 CIRCULAR PROBABLE ERROR

9.2.3.1 COMPUTATION

9.2.3.1.1 OBJECTIVE

To determine the radius of a circle such that 50% of the population lie within the circle.

9.2.3.1.2 DATE REQUIRED

List of sample eastings and corresponding northings.

9.2.3.1.3 PROCEDURE

a. Compute s for the eastings ($s_{
m E}$), (see paragraph 7.1.1.3,

page 64).

b. Compute s for the northings (s_N) , (see paragraph 7.1.1.3,

page 64).

c. Compute the CPE as follows:

- (1) If s_E equals s_N , multiply s_E by 1.1774 to obtain the CPE.
- (2) If \mathbf{s}_E is not equal to $\mathbf{s}_N,$ compute the equivalent CPE as follows:
 - (a) Add s_E to s_N .
 - (b) Multiply step (1) by .5887.

9.2.3.1.4 EXAMPLE

Given:

Sample data at Table A-5e, page 1-17.

Procedure:

a. Compute s_E:

$$s_E = \sqrt{\frac{\sum (East - \overline{EAST})^2}{N-1}}$$

b. Compute s_N:

$$\mathbf{s_{N}} = \sqrt{\frac{\sum (North-NORTH)^2}{N-1}}$$

Example:

a.
$$s_E = \sqrt{\frac{1,650,542}{15-1}}$$

$$= \sqrt{1,650,542/14}$$

$$= \sqrt{117,895.9}$$

$$= 343.36$$

$$= 343$$

b.
$$s_N = \sqrt{\frac{3,389,046}{15-1}}$$

$$= \frac{3,389,046}{14}$$

$$= 242,074.7$$

_ _____

= 492.01

= 492

- c. Compute one of the following:
 - (1) If $s_E = s_N$ compute: $CPE = 1.1774 s_E$
- (2) If $s_E \neq s_N$ compute Equivalent CPE = .5887 (s_E+s_N)
- c. Since 343.36 ≠ 492.01,
 Equivalent CPE
 - **-** .5887 (343.36+492.01)
 - **=** .5887 (835.37)
 - = 491.78
 - = 492

9.2.3.1.5 ANALYSIS

The CPE is the radius of a circle within which 1/2 or 50% of the population lies. The following is a list of multiples of the CPE and the percentages of the population which lie within the respective circles for a circular normal distribution:

- a. 2(CPE) contains 93.75% of the population.
- b. 3(CEP) contains 99.81% of the population.
- c. 3.5(CPE) contains 99.99% of the population.

9.2.3.2 OUTLIERS

9.2.3.2.1 OBJECTIVE

To identify an outliers which may be present.

9.2.3.2.2 DATA REQUIRED

A list of sample eastings and corresponding northings.

9.2.3.2.3 PROCEDURE

- a. Compute the CPE for all of the readings.
- b. Compute the distance from the mean (d_{m}) for each set of coordinates using data from step a.
- $\,$ c. Isolate each suspected outlier beginning with the largest distance from the mean.
- d. Recompute the CPE, with the suspected outlier deleted, as follows:
 - (1) Compute s_E (and s_N) as follows:
 - (a) Compute the mean of the remaining eastings (northings).
 - (b) Compute the deviation of each remaining reading from the mean.
 - (c) Square each deviation.
 - (d) Sum the squared deviations.
 - (e) Since N_1 is the sample size with the suspected outlier deleted, divide step (d) by the quantity (N_1-1) .
 - (f) Find the square root of step (e).
 - (2) Add s_E to s_N .

(3) Multiply step (2) by .5887.

- e. Compute the d_{m} between the suspected outlier and the mean of the remaining readings (suspected outlier deleted).
- f. If d_m is greater than 3.5(CPE), decide that the reading is an outlier; otherwise, there is no reason to believe the reading is an outlier.
- g. If the reading is an outlier, exclude it from the data and repeat step c (with $N=N_1$) through step f. If the reading is not an outlier, return the reading to the set of data; and no further examination of the data is required.

9.2.3.2.4 EXAMPLE

Given:

Sample data at Table A-5e, page 1-17 and Table A-5f, page 1-18.

Procedure:

- a. Compute the CPE for all of the readings.
- b. For each set of coordinates, compute:

$$d_{\mathbf{m}} = \sqrt{\Delta E^2 + \Delta N^2}$$

- c. Isolate the suspected outlier.
- d. (1) Compute s_{E} for the remaining eastings.
- (2) Compute \mathbf{s}_N for the remaining northings.
 - (3) Compute: $CPE = .5887(s_E + s_N)$

Example:

a. CPE = 491.78 = 492

See Table A-5e, page 1-17.

b. (1)
$$d_m = \sqrt{\frac{10,914+30,276}{41,190}}$$

= 202.95

(2)
$$d_m = \sqrt{341+35,344}$$

= $\sqrt{35,685}$

= 188.90

See Table A-5e, page 1-17 for complete list.

c. Isolate reading number 3.

d. (1)
$$s_E = \sqrt{\frac{1,469,036/(14-1)}{113,002.8}}$$

= 333.16

(2)
$$s_N = \sqrt{\frac{1,505,179}{(14-1)}}$$

= $\sqrt{\frac{115,783.0}{340.27}}$

= 340

(3) CPE = .5887(333.16+340.27)

= .5887(673.43)

= 396.45

= 396

e. For the suspected outlier, compute:

$$d_m = \sqrt{\Delta E^2 + \Delta N^2}$$

- f. If $d_m > 3.5$ (CPE), decide that the reading is an outlier; otherwise, there is no reason to believe that the reading is an outlier.
- g. (1) If the reading is an outlier, exclude it from the data and repeat step c (with N=N₁) through step f.
- (2) If the reading is not an outlier, return the reading to the set of data; and no further examination of the data is required.

e. For reading 3,

$$d_{m} = \sqrt{\frac{195,302+2,018,417}{2,213,719}}$$
= 1487.86
= 1488

- f. Since 1488 > 1190, decide that the reading is an outlier.
- g. (1) Since the reading number 3 is an outlier, exclude if from the data and repeat step c (with N=14) through step f.
- (2) If reading number 6 (next suspected outlier) is not an outlier, return it to the set of data; and no further examination of the data is required.

9.2.3.2.5 ANALYSIS

- a. The distance between the suspected outlier and the mean of the remaining readings must be greater than 3.5(CPE) for the reading to be an outlier.
- b. The easiest approach to identifying outliers is to use a computer. The formulae and comparisons are the same as the manual method just outlined; however, each coordinate is checked for the possibility of being an outlier.

9.2.4 BIVARIATE NORMAL DISTRIBUTION

At this time the applications of the bivariate distribution are not fully developed. Therefore, no use is made of it in this MTP. The bivariate distribution is mentioned because a discussion and demonstration problem will be added wher correct procedures for its use are developed.

10. RELIABILITY

a. Statements; such as, "the minimum system reliability is 90% with a confidence level of at least 95%, infer that on the average the test item will function successfully in 90 cases out of 100 and that 95 times out of 100 the 90% figure will be achieved or exceeded. If 46 samples tested with 1 failure occurring. Table B-18, page 2-74, shows that the R is at least 90%. The confidence level is 95%, since for one failure the 90% "Reliability" row and the 95% "Confidence Level" column intersect at N = 46.

- Therefore, a confidence level of 95% indicates that if 100 groups, each containing 46 samples, were tested then on the average five of these groups would have more than one failure and 95 of these groups would have one or zero failures.
 - b. That high requirements place limitations on acceptability is intuitively evident. Stringent limitations require sufficient sampling to provide an objective view of the lest item. However, in the interest of economy, testing must be accomplished with a minimum number of samples. This may be accomplished by decreasing the desired reliability (confidence level) while holding the confidence level (desired reliability fixed. Therefore, serious consideration must be given to sample size, the related R, and the desired confidence level.

10.1 SUCCESS FAILURE

10.1.1 DETERMINATION OF RELIABILITY

10.1.1.1 OBJECTIVE

To determine the population reliability (ρ) of the test item at the desired confidence level. The required reliability (ρ_0) and the confidence level are usually directed by a higher authority or a Requirements Document.

10.1.1.2 DATA REQUIRED

The number of failures (f) and N for a success-failure type test.

10.1.1.3 PROCEDURE

- a. Case I:
 - (1) Use Table B-18, page 2-74, to obtain the intersection of the "Reliability" row and the "Confidence Level" column for the number of failures which occurred (see page 2-125 for 75% confidence level).
 - (2) If N is equal to or larger than the intersection value, decide that ρ is equal to or greater than $\rho_{\mathcal{C}}$ (testing may cease); otherwise, there is no reason to believe ρ is equal to or greater than $\rho_{\mathcal{C}}$ at the desired confidence level (testing may cease with a reject decision or testing must continue with ϵ decision being made at a later date).
- b. Case II: Reliability confidence limits.
 - (1) Compute the two-sided UCL and LCL as follows:
 - (a) Choose the desired confidence level.
 - (b) Perform the following calculations to obtain the UCL:
 - 1. Compute d.f., as follows:
 - a. Multiply the number of success (sc) by 2.
 - \underline{b} . Add 2 to step \underline{a} .

- 2. Compute d.f.2 as follows:
 - a. Multiply sc by 2.
 - b. Multiply N by 2.
 - c. Subtract step a from step b.
- 3. Use Table B-8, page 2-18, to obtain $F_{1-\alpha/2}$ for (d.f.₁, d.f.₂) d.f.
- 4. Compute the following:
 - a. Add 1 to sc.

 - <u>b</u>. Subtract sc from N.
 <u>c</u>. Divide step <u>a</u> by step <u>b</u>.
 - d. Multiply step c by step 3.
 e. Add 1 to step d.
 f. Divide 1 by step e.

 - g. Subtract step f from 1.
- (c) Perform the following calculations to obtain the
 - 1. Compute d.f.₁ as follows:
 - a. Multiply f by 2.
 - b. Add 2 to step a.
 - 2. Compute d.f.₂ as follows:
 - a. Multiply f by 2.
 - b. Multiply N by 2.
 - c. Subtract step a from step b.
 - 3. Use Table B-8, page 2-18, to obtain $F_{1-\alpha/2}$ for (d.f.₁, d.f.₂) d.f.
 - 4. Compute the following:
 - a. Add 1 to f.
 - b. Subtract f from N.
 - c. Divide step a by step b.
 - d. Multiply step c by step 3.
 - e. Add 1 to step d.
 - f. Divide 1 by step e.
- (d) Conclude that ρ is equal to or between the UCL and LCL at the desired confidence level.
- (2) Compute the one-sided UCL as follows:
 - (a) Choose the desired confidence level.
 - (b) Compute d.f. as follows:
 - Multiply sc by 2.
 - $\overline{2}$. Add 2 to step $\underline{1}$.
 - (c) Compute d.f.₂ as follows:
 - 1. Multiply sc by 2.

- Multiply N by 2.
 Subtract step <u>1</u> from step 2.
- (d) Use Table B-8, page 2-18, to obtain $F_{1-\alpha}$ for $(d.f._1, d.f._2) d.f.$
- (e) Perform the following calculations:
 - 1. Add 1 to sc.
 - 2. Subtract sc from N.
 - $\overline{3}$. Divide step $\underline{1}$ by step $\underline{2}$.
 - $\frac{4}{5}$. Multiply step $\frac{3}{5}$ by step (d). $\frac{5}{5}$. Add 1 to step $\frac{4}{5}$.

 - $\underline{6}$. Divide 1 by step $\underline{5}$.
 - $\overline{\underline{7}}$. Subtract step $\underline{6}$ from 1 to obtain the UCL.
- (f) Conclude that ρ is equal to or less than the UCL at the desired confidence level.
- (3) Compute the one-sided LCL as follows:
 - (a) Choose the desired confidence level.
 - (b) Compute d.f. as follows:
 - 1. Multiply f by 2.
 - 2. Add 2 to step 1.
 - (c) Compute d.f.2 as follows:
 - 1. Multiply f by 2.
 - Multiply N by 2.
 - $\overline{3}$. Subtract step $\underline{1}$ from step $\underline{2}$.
 - (d) Use Table B-8, page 2-18, to obtain $F_{1-\alpha}$ for $(d.f._1, d.f._2) d.f.$
 - (e) Perform the following calculations:
 - 1. Add 1 to f.
 - $\overline{2}$. Subtract f from N.
 - $\overline{3}$. Divide step $\underline{1}$ by step $\underline{2}$.
 - $\underline{4}$. Multiply step $\underline{3}$ by step (d).
 - $\underline{5}$. Add 1 to step $\underline{4}$.
 - 6. Divide 1 by step 5 to obtain the LCL.
 - (f) Conclude that ρ is equal to or greater than the LCL at the desired confidence level.

NOTE: The LCL is usually referred to as the R of the test item at the desired confidence level and it is the reliability which is compared to the requirements.

MTP 3-1-005 1 March 1972

10.1.1.4 **EXAMPLE**

a. Case I:

Given:

 $\rho_0 = .90$

 $1-\alpha = .90$

N = 52

f = 5

Procedure:

- (1) Use Table B-18, page 2-74, to obtain the intersection of the "Reliability" row and the "Confidence Level" column for the number of failures which occurred.
- (2) If N is equal to or larger than the intersection value, decide that $\rho \geqslant \rho_0$; otherwise, there is no reason to believe $\rho \geqslant \rho_0$ at a $100(1-\alpha)\%$ confidence level.

NOTE: To determine the achieved reliability at the desired confidence level, continue with Case II.

Example:

- (1) For f = 5, $\rho_0 = .90$, and $1-\alpha = .90$, the intersection is N = 91.
- (2) Since 91 $\stackrel{>}{_{\sim}}$ 52, decide that there is no reason to believe that $\rho \stackrel{>}{_{\sim}}$.90 at a 90% confidence level.

b. Case II: Reliability confidence limits.

Given:

N = 52

f = 5

Procedure:

- (1) Compute the two-sided LCL and UCL as follows:
- (a) Choose the confidence level $(1-\alpha)$.
 - (b) Compute:

 $\underline{1}$. d.f.₁ = 2(sc)+2 $\underline{2}$. d.f.₂ = 2N-2(sc) Example:

(1)

(a) $\alpha = .05$ $1-\alpha = .95$ $1-\alpha/_2 = .975$

(b) $\underline{1}$. d.f.₁ = 2(47) + 2 = 96 $\underline{2}$. d.f.₂ = 2(52) - 2(47) $\frac{3}{2}$ Use Table B-8, page 2-18, to obtain $F_{1-\alpha/2}$ for (d.f.₁, d.f.₂) d.f.

$$\underline{4}$$
. UCL = 1- $\frac{1}{1+(\frac{\text{sc+1}}{\text{N-sc}})F_{1-\alpha/2}}$

(c) Compute:

$$1 \cdot d \cdot f \cdot 1 = 2f + 2$$

$$2$$
. d.f.₂ = 2N - 2f

 $\frac{3}{2}$. Use Table B-8, page 2-18, to obtain $F_{1-\alpha}/_{2}$ for (d.f.₁, d.f.₂) d.f.

$$\frac{4}{1+(\frac{f+1}{N-f})}F_{1-\alpha/2}$$

3. F.₉₇₅ for (96,10)d.f. approximates closely

F.975 for (100,10)d.f.

 $F_{.975}$ for (100,10)d.f.=3.18

$$\frac{4}{1+(\frac{47+1}{52-47})}F_{.975}$$

$$= 1 - \frac{1}{1 + (9.600) (3.18)}$$

$$= 1 - \frac{1}{1 + 30.53}$$

$$=1-\frac{1}{31.53}$$

(c)
$$\underline{1}$$
. d.f.₁ = 2(5) + 2

$$2 \cdot d \cdot f \cdot 2 = 2(52) - 2(5)$$

3. F.₉₇₅ for (12,94)d.f. approximates closely

 $F_{.975}$ for (12,90)d.f.= 2.09

$$\frac{4. \quad LCL = \frac{1}{5+1}}{1+(\frac{52-5}{52-5})F \cdot 975}$$

$$=\frac{1}{1+(.1277) (2.09)}$$

MTP 3-1-005 I March 1972

- (d) Conclude that $\rho \leq UCL$ and $\rho \geq LCL$ at a $100(1-\alpha)\%$ confidence level.
- (2) Compute the one-sided UCL for ρ as follows:
- (a) Choose the confidence level $(1-\alpha)$.
 - (b) Compute:

$$d.f._1 = 2(sc) + 2$$

(c) Compute:

$$d.f._2 = 2(N)-2(sc)$$

- (d) Use Table B-8, page 2-18, to obtain F_{1} for (d.f.1, d.f.2) d.f.
 - (e) Compute:

UCL = 1 -
$$\frac{1}{1 + (\frac{\text{sc+1}}{\text{N-sc}}) F_{1-\alpha}}$$

(f) Conclude that $0 \le UCL$ at a $100(1-\alpha)\%$ confidence level.

(d) Conclude that $\rho \le .97$ and $\rho \ge .78$ at a 95% conficence level.

(2)

(a)
$$\alpha = .05$$

 $1-\alpha = .95$

(b)
$$d.f._1 = 2(47) + 2$$

= 94 + 2
= 96

(c)
$$d.f._2 = 2(52)-2(47)$$

= $104-94$
= 10

(d) $F._{95}$ for (96,10)d.f. approximates closely

(e)

UCL =
$$1 - \frac{1}{1 + (\frac{47+1}{52-47})^{\frac{1}{5}} \cdot 95}$$

= $1 - \frac{1}{1 + (\frac{48}{5}) \cdot (2.6)}$

= $1 - \frac{1}{1 + (9.600) \cdot (2.6)}$

= $1 - \frac{1}{1 + 24.96}$

= $1 - \frac{1}{25.96}$

= $1 - .0385$

= .9615

(f) Conclude that
$$\beta \le .97$$
 at a 95% confidence level.

= .97

- (3) Compute the one-sided LCL for ρ as follows:
- (a) Choose the confidence level $(1-\alpha)$.
 - (b) Compute:

$$d.f._1 = 2(f)+2$$

(c) Compute:

$$d.f._2 = 2(N) - 2(f)$$

- (d) Use Table B-8, page 2-18, to obtain $F_{1-\alpha}$ for (d.f.₁, d.f.₂) d.f.
 - (e) Compute:

$$LCL = \frac{1}{1 + (\frac{f+1}{N-f}) F_{1-\alpha}}$$

(f) Conclude that $\rho \ge LCL$ at a $100(1-\alpha)\%$ confidence level.

(a)
$$\alpha = .05$$

$$1-\alpha = .95$$

(b)
$$d.f._1 = 2(5)+2$$

(c)
$$d.f._2 = 2(52)-2(5)$$

= 104-10

(d) F.95 for (12,94)d.f. approximates closely

$$F_{.95}$$
 for $(12,90)d.f. = 1.86$

LCL =
$$\frac{1}{1 + (\frac{5+1}{52-5}) \cdot F \cdot 95}$$
=
$$\frac{1}{1 + (\frac{6}{47}) \cdot (1.86)}$$
=
$$\frac{1}{1 + (.1277) \cdot (1.86)}$$
=
$$\frac{1}{1 + .2374}$$
=
$$\frac{1}{1.2374}$$
= .8081

(f) Conclude that

= .80

 ρ ≥ .80 at a 95% confidence level.

NOTE: .80 is referred to as the reliability of the test item at a 95% confidence level.

MTP 3-1-005 1 March 1972

10.1.1.5 ANALYSIS

a. Case I:

If N \geq the intersection value (Table B-18, page 2-74) the null hypothesis that $\rho \geq \rho_0$ is accepted; otherwise, there is no reason to believe $\rho \geq \rho_0$ at a 100 1- α % confidence level.

b. Case II:

- (1) The two-sided interval surrounds ρ such that $\rho \leq$ UCL and $\rho \geq$ LCL at a 100(1- α)% confidence level.
- (2) The one-sided interval surrounds ρ such that $\rho \leq$ UCL at a $100(1-\alpha)\%$ confidence level.
- (3) The one-sided interval surrounds ρ such that $\rho \ge$ LCL at a 100 (1- α)% confidence level.

10.1.2 <u>DETERMINATION OF SAMPLE SIZE</u>

10.1.2.1 OBJECTIVE

- a. To determine the absolute minimum $N_{\mbox{\scriptsize t}}$ required to establish ρ_0 at the desired confidence level.
- b. To determine the minimum N_{t} required to establish ρ_{0} at the desired confidence level when the average number of failures is known from previous testing or a comparable item.

10.1.2.2 DATA REQUIRED

- a. None.
- b. The average number of failures known from a standard item, history, or Requirements Document.

10.1.2.3 PROCEDURE

- a. Case I: Determination of an absolute minimum Nt.
 - (1) Use Table B-18, page 2-74, to obtain the intersection of the "Reliability" row and the "Confidence Level" column for zero failures.
 - (2) Conclude that the intersection value is the absolute minimum N_t since zero failures constitutes the ideal situation.
- b. Case II: Determination of Nt.
 - (1) Use Table 3-18, page 2-74, to obtain the intersection of the "Reliability" row and the "Confidence Level" column for the average number of failures known from a standard item, history, or Requirements Document.

(2) Conclude that the intersection value is the minimum $N_{\tt t}$. Generally the test item must be as good as previous test results from a standard item. Note that in most cases this $N_{\tt t}$ will be larger than the absolute minimum $N_{\tt t}$ generated in Case I.

10.1.2.4 EXAMPLE

a. Case I: Determination of an absolute minimum $N_{\mbox{\scriptsize t}}$.

Given:

 $\rho_0 = .95$

 $1-\alpha = .90$

f = 0

Procedure:

- (1) Use Table B-18, page 2-74, to obtain the intersection of the "Reliability" row and the "Confidence Level" column for zero failures.
- (2) Conclude that the intersection value is the absolute minimum N_{t} since zero failures constitutes the ideal situation.

Example:

(1) For f = 0, $\rho_0 = .95$, and $1-\alpha = .90$,

 $N_t = 45$

- (2) For zero failures, conclude that 45 samples are required to achieve ρ = .95 at a confidence level of 90%.
- b. Case II: Determination of N_{t}

Given:

 $\rho_0 = .95$

 $1-\alpha = .90$

Average number of failures for the standard item = 6

Procedure:

- (1) Use Table B-18, page 2-74, to obtain the intersection of the "Reliability" row and the "Confidence Level" column for the average number of failures.
- (2) Conclude that the intersection value is the minimum N_t . Generally the test item must be as good as previous test results from a standard item.

NOTE: In most cases this N_{t} will be larger than the absolute minimum N_{t} generated in Case I.

Example:

(1) For f - 6, ρ_0 = .95, and 1- α = .90,

 $N_t = 209.$

(2) For no more than six failures, conclude that 209 samples are required to achieve ρ = .95 at a 90% confidence level.

NOTE: 209 > 45

10.1.2.5 <u>ANALYSIS</u>

a. Initial N.

At a specified confidence level, reliability, and number of failures, N_t samples are required to determine whether $\rho \geq \rho_0$. Zero failures will generate the absolute minimum N_t .

b. Adequacy of Nt.

After the initial N_t samples have been tested, R must be computed at the desired confidence level for the number of failures that occurred. If the computed R is equal to or greater than ρ_0 , the initial N_t is adequate; however, if the computed R is less than ρ_0 , the initial N_t is inadequate. If N_t is inadequate, N_t must be recomputed using the number of failures which have occurred, ρ_0 , and the desired confidence level; and additional must be tested if possible or a reject decision made.

10.1.3 SEQUENTIAL ANALYSIS FOR SUCCESS-FAILURE

- a. When testing an hypothesis using the sequential method, the project officer is able to make one of the following three decisions at any stage of testing:
 - (1) Accept the hypothesis.
 - (2) Reject the hypothesis.
 - (3) Continue the experiment by collecting additional data.
- b. Usually a ρ_0 of .95 with a high degree of assurance is required. In order to achieve assurance of such a high ρ_0 , the project officer would have to conduct excessive testing; e.g., many thousands of rounds. This may be impractical; however, using the following statistical approach, the project officer will achieve the predetermined confidence level for reaching the accept decision.
- c. If certain criteria are set up graphically, a decision can be made to accept, reject, or continue testing the test item after each sample is tested. This graph uses three areas to represent the decisions to accept, reject, or continue testing the test item. The accept region is below a boundary line determined by the subtraction of the maximum proportion of defectives (P_0) and the confidence levels for rejection and acceptance. The continue testing area is above the accept boundary line and below the reject boundary line. The size of this area, which is an area of doubt for the test item, is determined by the project officer (see paragraph 4.14, page 14). The area of doubt is designed for a test item which may be good but has gotten off to a slow start. In this case, a longer period of time will be required to satisfy the doubts concerning acceptability of the test item. The reject boundary line is determined by $\mathbf{P}_{\mathbf{0}}$ and the confidence levels for rejection and acceptance. The area above this boundary line is the area of rejection. A graph of this type is illustrated by Figure 14. The number of samples are plotted on the horizontal axis with each increment representing one sample. The number of failures are plotted on the vertical axis with each increment representing one failure.

Figure 14

d. The construction of the two boundary lines is described in the procedure paragraph below.

10.1.3.1 OBJECTIVE

To determine whether the proportion of defective test items is equal to or less than $P_{\rm O}$ at the desired confidence level.

10.1.3.2 DATA REQUIRED

N and f.

10.1.3.3 PROCEDURE

- a. Construct the boundary lines as follows:
 - (1) Choose α and β , the probabilities of making Type I and Type II errors respectively.
 - (2) Choose the amount of doubt, the proportion of defectives allowable for continued testing.
 - (3) Use Table B-19, page 2-127, to obtain a and b for α and β .
 - (4) Subtract D from P_0 to obtain the upper limit for the proportion of defectives (P_U) .

NOTE: P_0 equals λ_0 , if λ_0 is in terms of defectives. P_0 equals the quantity $(1-\lambda_0)$, if λ_0 is in terms of successes.

- (5) Compute U, an intermediate value, as follows:
 - (a) Divide P_0 by step (4).
 - (b) Subtract step (4) from 1.
 - (c) Subtract Po from 1.
 - (d) Divide step (b) by step (c).
 - (e) Multiply step (a) by step (d).
 - (f) Find the natural logarithm of step (e).
- (6) Compute V, an intermediate value, as follows:
 - (a) Subtract step (4) from 1.
 - (b) Subtract Po from 1.
 - (c) Divide step (a) by step (b).
 - (d) Find the natural logarithm of step (c).
 - (e) Divide step (d) by step (5).
- (7) Determine the accept boundary line as follows:
 - (a) Divide the value b in step (3) by step (5).
 - (b) Multiply step (6) by N.
 - (c) Add step (a) to step (b) to determine the maximum allowable f for accepting the test item ($f_{ACCEPT} = \frac{b}{H} + V(N)$).
 - (d) Choose two values for N and substitute them into the above equation to determine two points on the accept boundary line.

NOTE: Use N=0 and N= some large value; such as 50, 100, or 150.

- (e) Draw the accept boundary line using the two points determined from step (d).
- (8) Determine the reject boundary line as follows:
 - (a) Divide the value a in step (3) by step (5).

 - (b) Multiply step (6) by N.(c) Add step (a) to step (b) to determine the minimum allowable f for rejecting the test item (f_REJECT* $\frac{a}{11} + V(N)).$
 - (d) Choose two values for N and substitute them into the above equation to determine two points on the reject boundary line.
 - (e) Draw the reject boundary line using the two points determined from step (d).
- (9) If the two lines are not parallel, check the computations and plotted points.
- Plot the sample data on the sequential graph as follows:
 - Plot the cumulative sample size and f after each sample.
 - After plotting each point, decide whether to accept, reject, or continue testing the test item.
 - NOTE: An accept decision may be made before another failure occurs in the event that the sample size increases sufficiently after the last failure to cross the accept boundary line.

10.1.3.4 **EXAMPLE**

a. Construct the boundary lines as follows: Given:

 $P_0 = .07$ (7 failures out of 100; reliability of 93%)

Procedure:

(1) Choose α and β .

(3) Use Table B-19, page 2-127, to obtain a and b for α and β .

(4) Compute:

$$P_U = P_O - D$$

(5) Compute:

U =
$$\ln \left(\frac{P_o}{P_U} \right) \left(\frac{1-P_U}{1-P_o} \right)$$

Example:

(1)
$$\alpha = .05$$

$$1-\alpha = .95$$

$$\beta = .20$$

$$1-\beta = .80$$

$$(2) D = .02$$

(3)
$$a = 2.773$$

 $b = -1.558$

(4)
$$P_U = .07 - .02$$

(5)

$$U = \ln \left(\frac{.07}{.05}\right) \left(\frac{1-.05}{1-.07}\right)$$

$$= \ln \left(1.4000\right) \left(\frac{.95}{.93}\right)$$

$$= \ln \left(1.4000\right) (1.0215)$$

$$= \ln 1.4301$$

$$= .35775$$

MTP 3-1-005 1 March 1972

(6) Compute:
$$\begin{pmatrix} 1-P_U \\ 1-P_O \end{pmatrix}$$

$$V = \frac{1}{U}$$

f ACCEPT =
$$\frac{b}{U}$$
 + V(N)

(7)
$$f_{ACCEPT} = \frac{-1.558}{.35775} + .059488(N)$$

$$= -4,355+.059488 (N)$$

When N = 0, $f_{ACCEPT} = -4.355$

When
$$N = 100$$
, $f_{ACCEPT} = 1.594$

Plot the points

(0,-4.355) and (100,1.594) to determine the accept boundary line.

f REJECT =
$$\frac{a}{U}$$
 + V(N)

(8)
$$f_{REJECT} = \frac{2.773}{.35775} + .059488(N)$$

= 7.751+.059488(N)

When
$$N = 0$$
, $f_{REJECT} = 7.751$

When
$$N = 100$$
, $f_{REJECT} = 13.700$

Plot the points
(0,7.75) and (100,13.700)
to determine the reject
boundary line.

- (9) If the two lines are not parallel, check the computations and plotted points.
 - b. Plot the sample data on the sequential graph as follows: Given:

Requirements and boundary lines from step a. Sample data at Table A-6a, page 1-19.

Procedure:

Example:

- (1) Plot the cumulative sample size and failure after each sample,
 - $(N_i, f_i).$

- (1) (a) (30,1)
 - (b) (75,2)

See Table A-6a, page 1-19, for complete list.

(2) After plotting each point, decide to accept, reject, or continue testing the test item.

(2) For failures 1 through 3, decide to continue testing. At failure number 4 decide to accept the test item. A decision to accept the test item could have been made when N was 134 and f was 3 since the accept boundary was crossed (see Table A-6b, page 1-20).

NOTE: From Table B-18, page 2-74, when f=3,p₀=.95, and 1-α=.95, the intersection value is 153; thus, fewer samples (N=134) are needed using the sequential method.

10.1.3.5 ANALYSIS

- a. The sequential method generally minimizes testing time and N due to the fact that a decision to accept or reject is made as soon as possible after the first failure. Since all failures are not necessarily chargeable failures, decisions will be altered if certain failures are not counted. If the project officer ignores a failure, the probability of accepting an unacceptable item is increased. Therefore, the project officer must carefully decide what constitutes a failure (see paragraph 4.2, page 2).
- b. Due to the advantages just discussed, the sequential method should be used whenever possible (see subparagraph 10.2c, page 134).

10.2 RELIABILITY RELATIVE TO CONTINUOUS TESTING

- a. When measuring R for the continuous testing situation, the failure rate is assumed to approach the exponential distribution (see paragraph 4.15.2, page 15). In this case there are three measures of R that are of interest to the project officer. These are:
 - (1) The determination of mean time, miles, or rounds between failures and the limits for the mean at a desired confidence level (see paragraph 10.2.1, page 134).
 - (2) The determination of a computed R (see paragraph 10.2.2, page 145).
 - (3) The determination of the R based on ρ_0 and the desired confidence level (see paragraph 10.2.3, page 147).
- b. The first two determinations are simple and straightforward but are biased by limitations on N. The third, which is the only sequential analysis method, is a truer representation of the population.

MTP 3-1-005 1 March 1972

- c. Sequential analysis is superior to nonsequential analysis whenever the data become available serially and the cost of the data (in terms of time, labor, or material) is approximately proportional to the amount of data. Nonsequential analysis is superior whenever the amount of data is fixed or the cost of the data is largely overhead, hence more or less independent of the amount of data. Superiority consists of minimizing the set of quantities N, α , and β . Sequential and nonsequential tests differ in the constraints under which this set is minimized. Nonsequential tests treat N as fixed and are designed so that either risk α or risk β is minimized when the other is fixed. Sequential tests treat N as a variable and are designed so that for fixed risks, α and β , the expected (average) number of trials required to reach a decision is minimized. If for a nonsequential test N is made large enough so that, with α fixed, β will not exceed a predetermined amount, this value of N will exceed (frequently by as much as 100 percent) the N required for a sequential test for the same α and β . Thus, when N is readily subject to variation, sequential tests are superior; when N is not readily varied, nonsequential tests are superior.
- d. Examples of the solution for each determination are in the following paragraphs. In all examples mean time between failures (MTBF) is used. Other means, such as mean miles between failures (MMBF) or mean rounds between failures (MRBF), may be used when applicable.

10.2.1 MEANS AND LIMITS

10.2.1.1 MEANS

10.2.1.1.1 OBJECTIVE

To determine the mean time between failures.

10.2.1.1.2 DATA REQUIRED

A list of sample readings; e.g., operating time (primary parameter) and failures (secondary parameter).

10.2.1.1.3 PROCEDURE

- a. Sum the primary parameter.
- b. Sum the secondary parameter.
- c. Divide step a by step b.

10.2.1.1.4 EXAMPLE

Given:

Sample data at Table A-6c, page 1-21.

Procedure:

Example:

a. Sum the primary parameter; e.g., total time (T_t) or total miles (T_m) .

a. $T_t = 3752$ hours

b. Sum the secondary parameter; e.g., total failures (f).

b. f = 12

c. Compute:

c. MTBF = 3752/12= 312.56

 $MTBF = \frac{Tt}{F}$

= 313 hours

MOTT: In the event a test is time terminated and zero failures occurred, a point estimate of the MTBF cannot be determined but a LCL may be computed (see paragraph 10.2.1.3).

10.2.1.1.5 ANALYSIS

The sample mean, or average, is a value which is typical or representative of a set of data. The mean is the most commonly used measure of central location.

10.2.1.2 LIMITS USING THE STUDENT t DISTRIBUTION

10.2.1.2.1 OBJECTIVE

To determine the two-sided and one-sided limits for the MTBF using the t distribution.

10.2.1.2.2 DATA REQUIRED

A list of sample readings; e.g., operating time (primary parameter) and failures (secondary parameter).

10.2.1.2.3 PROCEDURE

a. Case I: UCL and LCL (two-sided limits), also referred to as M_2 and M_1 .

- (1) Choose the desired confidence level.
- (2) Use Table B-5, page 2-5, to obtain $t_{1-\alpha/2}$ for f-1 d.f. (3) Compute the MTBF (see paragraph 10.2.1.1.3, page 134).
- (4) Compute the time between failures for each consecutive pair of failures if the data have been recorded as cumulative time.
- (5) Compute s (see paragraph 7.1.1.4, page 65).

NOTE: The sample size is the number of failures.

- (6) Compute ε as follows:
 - (a) Multiply step (2) by step (5).
 - (b) Divide step (a) by the square root of f.
- (7) Add step (6) to step (3) to obtain the UCL and subtract step (6) from step (3) to obtain the LCL.
- (8) Conclude that the population MTBF is equal to or less than the UCL and equal to or greater than the LCL at the desired confidence level.

P 3-1-005 March 1972

- b. Case II: UCL (one-sided limit), also referred to as M2.
 - Choose the desired confidence level.
 - (2) Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for f-1 d.f.
 - (3) Compute the MTBF (see paragraph 10.2.1.1.3, page 134).
 - (4) Compute the time between failures for each consecutive pair of failures if the data have been recorded as cumulative time.
 - (5) Compute s (see paragraph 7.1.1.3, page 64).
 - (6) Compute ε as follows:
 - (a) Multiply step (2) by step (5).
 - (b) Divide step (a) by the square root of f.
 - (7) Add step (6) to step (3) to obtain the UCL.
 - (8) Conclude that the population MTBF is equal to or less than the UCL at the desired confidence level.
- c. Case III: LCL (one-sided limit), also referred to as M1.
 - (1) Choose the desired confidence level.

 - (2) Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for f-1 d.f. (3) Compute the MTBF (see paragraph 10.2.1.1.3, page 134).
 - (4) Compute the time between failures for each consecutive pair of failures if the data have been recorded as cumulative time.
 - (5) Compute s (see paragraph 7.1.1.3, page 64).
 - NOTE: The sample size is the number of failures.
 - (6) Compute ε as follows:
 - (a) Multiply step (2) by step (5).
 - (b) Divide step (a) by the square root of f.
 - (7) Subtract step (6) from step (3) to obtain the LCL.
 - (8) Conclude that the population MTBF is equal to or greater than the LCL at the desired confidence level.

10.2.1.2.4 EXAMPLE

a. Case I: UCL and LCL (two-sided limits), also referred to as M_2 and M_1 .

Given:

Sample data at Table A-6d, page 1-22.

Procedure:

Example:

- (1) Choose the confidence level $(1-\alpha)$.
- $(1) \quad \alpha = .10$ $1-\alpha = .90$

 $1-\alpha/2 = .95$

- (2) Use Table B-5, page 2-5. to obtain $t_{1-\alpha/2}$ for (f-1) d.f.
- (2) f-1 = 5

t.95 for 5 d.f. = 2.015

- (3) Compute the MTBF.
- (4) Compute the time between failures for each consecutive pair of failures if the data have been recorded as cumulative time.
- (5) Compute:
- (6) Compute:
- UCL = MTBF + ε LCL = MTBF - ϵ

(7) Compute:

- (8) Conclude that the population MTBF ≤ UCL and the population MTBF \geq LCL at a $100(1-\alpha)$ %
- confidence level.
 - b. Case II: UCL (one-sided limit), also referred to as M2. Given:

Sample data at Table A-6d, page 1-22.

Procedure:

- (1) Choose the Lonfidence level $(1-\alpha)$.
- (2) Use Table B-5, page 2-5. to obtain $t_{1-\alpha}$ for (f-1) d.f.
- (3) Compute the MTBF.

(3) MTBF = 207 hours See paragraph 10.2.1.1.4, page 134.

- (4) (a) Time to failure 1 = 200 hours
 - (b) Time between failures 2 and 1 = 410-200 = 210 hours
- (5)
 - = 16.80= 17 hours

See paragraph 7.1.1.4, page 65.

- $\epsilon = \frac{2.015(16.80)}{10.000}$ = 33.85/2.449= 13.82
- (7) UCL = 206.83 + 13.82= 220.65= 221 hours LCL = 206.83 - 13.82= 193.01= 193 hours
- population MTBF > 193 hours at a 90% confidence level.

(8) Conclude that the popula-

tion MTBF ≤ 221 hours and the

Example:

(1) $\alpha = .10$ 1-1 = .90

- (2) f-1 = 5t.90 for 5 d.f. = 1.476
- (3) MTBF = 1241/6= 207 hours See paragraph 10.2.1.1.4, page 134.

MTP 3-1-005 1 March 19/2

- (4) Compute the time between failures for each consecutive pair of failures if the data have been recorded as cumulative time.
- (5) Compute:
- (6) Compute:
- (7) Compute: UCL = MTBF + ε
- (8) Conclude that the population MTBF \leq UCL at a 100(1- α)% confidence level.
 - - c. Case III: LCL (one-sided limit), also referred to as M1.

Sample data at Table A-6d, page 1-22.

Procedure:

- (1) Choose the confidence level $(1-\alpha)$.
- (2) Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for (f-1) d.f.
- (3) Compute the MTBF.
- (4) Compute the time between failures for each consecutive pair of failures if the data have been recorded as cumulative time.

- (4) (a) Time to failure 1 = 200 hours.
 - (b) Time between failures 2 and 1 = 410-200= 210 hours

See Table A-6d, page 1-22 for complete list.

(5)
$$s = \sqrt{\frac{1410.6}{6-1}}$$
$$= \sqrt{282.1}$$
$$= 16.80$$

= 17 hours See paragraph 7.1.1.4, page 65.

(6)
$$\varepsilon = \frac{(1.476)(16.80)}{\sqrt{6}}$$

$$= \frac{24.80}{2.449}$$

$$= 10.13$$

- (7) UCL = 207 + 10.13= 217.13= 218 hours
- (8) Conclude that the population MTBF ≤ 218 hours at a 90% confidence level.
- Example:

(1) $\alpha = .10$ $1-\alpha = .90$

(2) f-1 = 5t.90 for 5 d.f. = 1.476

(3) MTBF = 207 hours. See paragraph 10.2.1.1.4, page 134.

(a) Time to failure 1 = 200 hours. (b) Time between failures 2 and 1

= 410-200= 210 hours (5) Compute:

(6) Compute:

$$\varepsilon = \frac{t_{i--\alpha(s)}}{\sqrt{f}}$$

(7) Compute:

LCL = MTBF - ε

(8) Conclude that the population MTBF ≥ LCL at a $100(1-\alpha)$ % confidence level.

(5) s = 16.80= 17 hours See paragraph 7.1.1.4, page 65.

(7) LCL = 207 - 10.13**= 196.87** = 196 hours

(8) Conclude that population MTBF ≥ 196 hours at a 90% confidence level.

10.2.1.2.5 ANALYSIS

 The two-sided interval surrounds the population MTBF such that the population MTBF \leq UCL and the population MTBF \geq LCL at a 100(1- α)% confidence level.

b. The one-sided interval surrounds the population MTBF such that the population MTBF \leq UCL at a $100(1-\alpha)$ % confidence level.

c. The one-sided interval surrounds the population MTBF such that the population MTBF > LCL at a $100(1-\alpha)$ % confidence level. M₁ (the LCL) is generally considered the MTBF of the population since the population MTBF will be at least M_1 at a $100(1-\alpha)$ % confidence level. If comparing \mathtt{M}_1 to the required MTBF produces an accept decision for the test item, then on the average the test item will function as required at a $100(1-\alpha)$ % confidence level.

d. The method used to compute M_1 and M_2 uses s to estimate σ . If the time between two failures is close to the MTBF, s will be small; and M_1 will be close to the MTBF. However, if the times between failures are erratic (close to the MTBF in some cases and far from the MTBF in other cases), s will be large; and the interval between the M_1 and the MTBF will increase. Since this method uses the student t distribution, f should be less than or equal to 30.

> NOTE: The application of the student t assumes that the MTBF's are approximately normally distributed.

LIMITS USING THE x2 DISTRIBUTION 10.2.1.3

10.2.1.3.1 OBJECTIVE

To determine the two-sided and one-sided limits for the MTBF using the x distribution.

10.2.1.3.2 DATA REQUIRED

A list of sample readings; e.g., operating time (primary parameter) and failures (secondary parameter).

10.2.1.3.3 PROCEDURE

- a. Case I: UCL and LCL (two-sided limits), also referred to as M_2 and M_1 .
 - (1) Choose the desired confidence level.
 - (2) Use Table B-20, page 2-128, to obtain $LF_{1-\alpha/2}$ for:
 - (a) f + 1 d.f., if a time terminated test.
 - (b) f d.f., if a failure terminated test.
 - (3) Use Table B-21, page 2-129, to obtain the UF $_{1-\alpha/2}$ for f d.f., for both the time and failure terminated test.
 - (4) If the test is a time terminated test, compute the following:
 - (a) Multiply step (2)(a) by T_t .
 - (b) Divide step (a) by the quantity (f+1) to obtain the LCL.
 - (c) Multiply step (3) by Tt.
 - (d) Divide step (c) by the value of f to obtain the UCL.
 - (5) If the test is a failure terminated test, compute the following:
 - (a) Multiply step (2) (b) by T_t.
 - (b) Divide step (a) by f to obtain the LCL.
 - (c) Multiply step (3) by Tt.
 - (d) Divide step (c) by f to obtain the LCL.
 - NOTE: To maintain accuracy, the six decimal number found in Table B-20, page 2-128, or B-21, page 2-129, must be used.
 - (6) Conclude that the population MTBF is equal to or between the UCL and LCL at the desired confidence level.
 - b. Case II. UCL (one-sided limit), also referred to as M_2 .
 - (1) Choose the desired confidence level.
 - (2) Use Table B-21, page 2-129, to obtain the UF_{1- α} for f d.f., for both the time and failure terminated test.
 - (a) Multiply step (2) by Tt.
 - (b) Divide step (a) by f.
 (3) Compute the UCL as follows:
 NOTE: To maintain accuracy, the six decimal number found in Table B-21, page 2-129, must be used.
 - (3) Conclude that the population MTBF is equal to or less than the UCL at the desired confidence level.

- c. Case III. LCL (one-sided), also referred to as M1.
 - (1) Choose the desired confidence level.
 - (2) Use Table B-20, page 2-128, to obtain $LF_{1-\alpha}$ for:
 - (a) f+1 d.f., if a time terminated test.
 - (b) f d.f., if a failure terminated test.
 - (3) If a time terminated test, compute the LCL as follows:

r in the environment of a second seco

- (a) Multiply step (2)(a) by T_t .
- (b) Divide step (a) by the quantity (f+1).
- (4) If a failure terminated test compute the LCL as follows:
 - (a) Multiply step (2)(b) by T_t.
 - (b) Divide step (a) by f.

NOTE: To maintain accuracy, the six decimal number found in Table B-20, page 2-128, must be used.

(5) Conclude that the population MTBF is equal to or greater than the LCL at the desired confidence level.

10.2.1.3.4 EXAMPLE

a. Case I: UCL and LCL (two-sided limits), also referred to as M_2 and M_1 .

Given:

Sample data at Table A-6c, page 1-21.

Frocedure:

- (1) Choose the confidence level $(1-\alpha)$.
- (2) Use Table B-20, page 2-128, to obtain LF_{1- $\alpha/2$} for:
- (a) f+1 d.f., if a time terminated test.
- (b) f d.f., if a failure terminated test.
- (3) Use Table B-21, page 2-129, to obtain $UF_{1-\alpha/2}$ for f d.f.
- (4) Compute for a time terminated test:

$$LCL = \frac{(LF_{1-\alpha/2})(T_t)}{\frac{f+1}{f+1}}$$

$$UCL = \frac{(UF_{1-\alpha/2})(T_t)}{\frac{f}{f+1}}$$

Example:

- (1) $\alpha = .05$ $1-\alpha = .95$
- (2) $LF_{.975}$ for 13 d.f. = .620525
- (3) $UF_{.975}$ for 12 d.f. = 1.935484
- (4) Since the test is time terminated,

MTP 3-1-005 I March 1972

(5) Compute for a failure terminated test:

$$LCL = \frac{(LF_{1-\alpha/2})(T_t)}{f}$$

$$UCL = \frac{(UF_{1-\alpha/2})(T_t)}{f}$$

- (6) Conclude that the population MTBF \leq UCL and the population MTBF \geq LCL at a $100(1-\alpha)\%$ confidence level.
- (6) Conclude that the population MTBF ≤ hours and the population MTBF ≥ 179 hours at a 95% confidence level.
- b. Case II. UCL (one-sided limit), also referred to as M_2 . Given:

Sample data at Table A-6c, page 1-21.

Procedure:

Example:

(3)

(1) Chiose the confidence level (1-a).

- (2) Use Table B-21, page 2-129, to obtain the $UF_{1-\alpha}$ for f d.f., for both a time and failure terminated test.
- (3) Compute

(1)
$$\alpha = .05$$

- $1-\alpha = .95$
- (2) $UF_{.95}$ for 12 d.f. = 1.739130

$$UCL = \frac{(UF_{1-\alpha}) (T_t)}{f}$$

$$UF_{.95} = \frac{(1.739130)(3752)}{12}$$
$$= 543.767980$$

= 543

- (4) Conclude that the population MTBF \leq UCL at a 100(1- α)% confidence level.
- (4) Conclude that the population MTBF ≤ 543 hours at a 95% confidence level.
- c. Case III: LCL (one-sided limit), also referred to as M_1 . Given:

Sample data at Table A-6c, page 1-21.

Procedure:

- (1) Choose the confidence level $(1-\alpha)$.
- (2) Use Table B-20, page 2-128, to obtain $LF_{1-\alpha}$ for:
- (a) f+l d.f., if time terminated.
- (b) f d.f., if failure terminated.
- (3) Compute for a time terminated test:

$$LCL = \frac{(LF_{1-\alpha})(T_t)}{(t+1)}$$

(4) Compute for a failure terminated test:

$$LCL = \frac{(LF_{1-\alpha})(T_t)}{f}$$

(a) Conclude that the population MTBF \geq LCL at a $100(1-\alpha)\%$ confidence level.

Example:

- (1) $\alpha = .05$ $1-\alpha = .95$
- (2) LF .95 for 13 d.f. = .668380

(3) Since the test is time terminated,

$$LCL = \frac{(.668380)(3752)}{12+1}$$

- = 192.907836
- = 192 hours
- (5) Conclude that the population MTBF ≥ 192 hours at a 95% confidence level.

NOTE: Although the confidence level is numerically the same for all three cases, M₁ and M₂ different values (see Figure 15).

10.2.1.3.5 ANALYSIS

- a. The two-sided interval surrounds the population MTBF such that the population MTBF \leq UCL and the population MTBF \geq LCL at a 100(1- α)% confidence level.
- b. The one-sided interval surrounds the population MTBF such that the population MTBF \leq UCL at a $100(1-\alpha)\%$ confidence level.
- c. The one-sided interval surrounds the population MTBF such that the population MTBF > LCL at a $100(1-\alpha)\%$ confidence level. M_1 (the LCL) is generally considered the MTBF of the population since the population MTBF will be at least M_1 at a $100(1-\alpha)\%$ confidence level. If comparing M_1 to the required MTBF produces an accept decision for the test item, then on the average the test item will function as required at a $100(1-\alpha)\%$ confidence level.
- d. The method used to compute M_1 and M_2 is dependent upon the type of test conducted; i.e., time terminated or failure terminated. The time terminated test produces a more conservative estimate for the LCL of the population MTBF since a safety factor of one is added to the number of failures which occurred.

Parameter

Parameter

C

Figure 15

-144-

10.2.2 APPLICATION OF THE EXPONENTIAL DISTRIBUTION

10.2.2.1 OBJECTIVE

To determine the reliability for those items which demonstrate an exponential lifetime to failure.

10.2.2.2 DATA REQUIRED

The mission (operational) profile (MP), Tt, and f.

10.2.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute the MTBF (see paragraph 10.2.1.3, page 134).
- c. Use Table B-20, page 2-128, to obtain the LF_{1} for:
 - (1) f+1 d.f., if a time terminated test.
 - (2) F d.f., if a failure terminated test
- d. Compute the LCL as follows:
 - (1) For a time terminated test, multiply step c by T and divide by the quantity (f+1).
 - (2) For a failure terminated test, multiply step b by step c.

NOTE: To maintain accuracy, the six decimal number found in Table B-20, page 2-128.

- e. Compute R as follows:
 - (1) Divide MP by step d.
 - (2) Use Table B-22, page 2-130, to obtain e raised to the negative power of step (1).
- f. Conclude that ρ is equal to or greater than R at the desired confidence level.
- g. If R is equal to or greater than ρ_0 , decide that ρ is equal to or greater than ρ_0 ; otherwise, there is no reason to believe ρ is equal to or greater than ρ_0 at the desired confidence level.

10.2.2.4 EXAMPLE.

Given:

 $\rho_0 = .75$

Sample data at Table A-6c, page 1-21.

Procedure:

a. Choose the confidence level $(1-\alpha)$.

b. Compute:

$$MTBF - \frac{T}{f}$$

c. Use Table B-20, Page 2-128, to obtain $LF_{1-\alpha}$ for:

- (1) f=1 d.f., if a time terminated test.
- (2) f d.f., if a failure terminated test.
- d. Compute:
 - (1) For a time terminated test: LCL = (LF $_{l-\alpha}$) (T_t)
 - (2) For a failure terminated
 test:
 LCL = LF _ (MTBF)
- e. Compute:

$$R = e \frac{MP}{LCL}$$

- f. Conclude that $\rho \ge R$ at a 100 (1- α)% confidence level.
- g. If $R \ge \rho \sigma$, decide that $\rho \ge \rho \sigma$; otherwise, there is no reason to believe $\rho \ge \rho \sigma$ at a 100 (1- α)% conridence level.

Example:

a.
$$\alpha = .05$$

1- $\alpha = .95$

b. MTBF =
$$\frac{3752}{12}$$

= 312.67
= 313

c. LF for 13 d.f. = .668380

d. Since the example is a time terminated test,

LCL =
$$(.668380)$$
 (3752)
12 + 1
= 2507.761760

= 192 hours

e.
$$\frac{-48}{192.90}$$

= e -.249
= .7796

- f. Conclude that $\rho \ge .77$ at a 95% confidence level.
- g. Since .77 \geq 75, decide that $\rho \geq$.75 at a 95% confidence level.

10.2.2.5 ANALYSIS

The reliability at a $100(1-\alpha)\%$ confidence level is computed using the LCL of the MTBF. If $R \ge \rho_0$, the null hypothesis that $\rho \ge \rho_0$ is accepted; otherwise, there is no reason to believe $\rho \ge \rho_0$ at a 100(1-a)% confidence level.

10.2.3 SEQUENTIAL ANALYSIS

- a. When testing an hypothesis using the sequential method, the project officer is able to make one of the following three decisions at any stage of testing:
 - (1) Accept the hypothesis.
 - (2) Reject the hypothesis.
 - (3) Continue the experiment by collecting additional data.
- b. Usually a ρ_0 of .95 with a high degree of assurance is required. In order to achieve assurance of such a high ρ_0 , the project officer would have to conduct excessive testing; e.g., many thousands of miles, hours, or rounds. This may be impractical; however, using the following statistical approach, the project officer will achieve the predeterwined confidence level for reaching the accept decision.
- c. If certain criteria are set up graphically, a decision can be made to accept, reject, or continue testing the test item at any time. This graph uses three areas to represent the decisions to accept, reject, or continue testing the test item. The accept region is above a boundary line determined by the addition of an amount of doubt (D) to ρ_0 and the confidence levels for rejection and acceptance. The continue testing area is below the accept boundary line and above the reject boundary line. The size of this area, which is an area of doubt for the test item, determined by the project officer (see paragraph 4.14, page 14). The area of doubt is designed for a test item which may be good but has gotten off to a slow start. In this case, a longer period of time will be required to satisfy the doubts concerning acceptability of the test item. The reject boundary line is determined by $\boldsymbol{\rho}_{0}$ and the confidence levels for rejection and acceptance. The area below this boundary line is the area of rejection. A graph of this type is illustrated at Figure 16. Failures are plotted on the horizontal axis with each increment representing one failure and hours are plotted on the vertical axis.
- d. The construction of the two boundary lines is described in the procedure paragraph below.

10.2.3.1 OBJECTIVE

To determine whether ρ is equal to or greater than ρ_0 at the desired confidence level.

10.2.3.2 DATA REQUIRED

The MP and T_t .

10.2.3.3 PROCEDURE

a. Construct the boundary lines as follows:

Figure 16

- (1) Choose α and β , the probabilities of making Type I and Type II errors respectively.
- (2) Determine the upper limit (R_U) , which is the sum of ρ_0 and the amount of doubt $(R_U = \rho_0 + D)$.
- (3) Use Table B-19, page 2-127, to obtain a and b for α and β .
- (4) Compute the required MTBF as follows:
 - (a) Find the natural logarithm of step (2).
 - (b) Divide the negative of the MP by step (a).
- (5) Compute the mean time between failures for continued testing (MTBF_t) as follows:
 - (a) Find the natural logarithm of ρ_0 .
 - (b) Divide the negative of the MP by step (a).
- (6) Divide 1 by step (4) to obtain the failure rate (f_r) .
- (7) Divide 1 by step (5) to obtain the failure rate to continue testing (f_{rt}) .
- (8) Subtract step (6) from step (7) to cotain U, an intermediate value.
- (9) Compute V, an intermediate value, as follows:
 - (a) Divide step (4) by step (5).
 - (b) Find the natural logarithm of step (a).
 - (c) Divide step (b) by step (8).
- (10) Determine the accept boundary line as follows:
 - (a) Divide the value a in step (3) by step (8).
 - (b) Multiply step (9) by f.
 - (c) Add step (a) to step (b) to determine the minimum hours to test in order to make an accept decision $(T_{ACCEPT} = \frac{a}{T} + V(f))$.
 - (d) Choose two values for f and substitute them into the above equation to determine two points on the accept boundary line.
 - NOTE: Use f = 0 and f = some large value; such as, 4, 6, or 10.
 - (e) Draw the accept boundary line using the two points determined from step (d).
- (11) Determine the reject boundary line as follows:
 - (a) Divide the value b in step (3) by step (8).
 - (b) Multiply step (9) by f.
 - (c) Add step (a) to step (b) to determine the maximum hours to test in order to make a reject decision $(T_{REJECT} = \frac{b}{u} + V(f))$.
 - (d) Choose two values for f and substitute them into the above equation to determine two points on the reject boundary line.

- (e) Draw the reject boundary line using the two points determined from step (d).
- (12) If the two lines are not parallel, check the computations and plotted points.
- b. Plot the sample data on the sequential graph as follows:
 - Plot the cumulative operating hours at appropriate interval.
 - (2) After plotting each point, decide whether to accept, reject, or continue testing the test item.

NOTE: An accept decision may be made before another failure occurs in the event that the number of operating hours increases sufficiently after the last failure to cross the accept boundary line.

10.2.3.4 **EXAMPLE**

a. Construct the boundary lines as follows:

Given:

 $\rho_0 = .75$ MP = 50 hours

Procedure:

- (1) Choose α and β .
- (2) $R_{II} = \rho_0 + D$
- (3) Use Table B-19, page 2-127, to obtain a and b for α and β .
- (4) Compute:

$$MTBF = \frac{-MP}{\ell n \quad Ru}$$

(5) Compute:

$$MTBF_{t} = \frac{-MP}{\ln \rho_{0}}$$

Example:

(1)
$$\alpha = .05$$

 $1-\alpha = .95$
 $\beta = .20$
 $1-\beta = .80$

(2)
$$R_U = .75 + .05$$

= .80

(3)
$$a = 2.773$$

 $b = -1.558$

(4) MTBF =
$$\frac{-50.000}{\ln .800}$$

= $\frac{-50.000}{-0.22314}$
= 224.07

(5) MTBF_t =
$$\frac{-50.000}{\ln .750}$$

= $\frac{-50.000}{-0.28768}$
= 173.80

$$f_r = \frac{1}{MTBF}$$

$$f_{rt} = \frac{1}{MTBF_t}$$

$$u = f_{rt} - f_r$$

(10) Compute:

$$T_{ACCEPT} = \frac{a}{U} + V(f)$$

(11) Compute:

$$T_{REJECT} = \frac{b}{U} + V(f)$$

(6)
$$f_{r} = \frac{1}{224.07}$$

$$f_{rt} = \frac{1}{173.80}$$
= .0057536

(8)
$$U = .0057536 - .0044629$$

(9)
$$V = \frac{\ln \left(\frac{224.07}{173.80}\right)}{.0012908}$$

(10)
$$T_{ACCEPT} = \frac{2.773}{.0012908} + 196.81(f)$$

= 2148.2+196.81(f)

When
$$f = 0$$
, $T_{ACCEPT} = 2150$

When
$$f = 7$$
, $T_{ACCEPT} = 3530$

Plot the points (0,2150) and (7,3530) to determine the accept boundary line.

(11)
$$T_{REJECT} = \frac{-1.558}{.0012908} + 196.81(f)$$

= -1207+196.81(f)

When
$$f = 0$$
, $T_{REJECT} = -1207$

When
$$f = 7$$
, $T_{REJECT} = 170$

Plot the points (0,-1207) and (7,170) to determine the reject boundary line.

(12)

MTP 3-1-005 1 March 1972

b. Plot the sample data on the sequential graph as follows:
Given:

Requirements and boundary lines from step a. Sample data at Table A-6e, page 1-22.

Procedure:

- (1) Plot the cumulative operating hours at appropriate intervals (f_1, T_1) .
- (2) After plotting each point, decide to accept, reject, or continue testing the test item.

Example:

- (1) (a) (1,175)
 - (b) (2,490)

See Table A-6e, page 1-22 for complete list.

(2) For failures 1 through 4, decide to continue testing. Decide to accept the test item when T = 3137 hours and f = 5 since the accept boundary line is crossed. See Table A-6f, page 1-23.

10.2.3.5 **ANALYSIS**

a. The sequential method generally minimizes testing time and N due to the fact that a decision to accept or reject is made as soon as possible after the first failure. Since all failures are not necessarily chargeable failures, decisions will be altered if certain failures are not counted. If the project officer ignores a failure, the probability of accepting an unacceptable item is increased. Therefore, the project officer must carefully decide what constitutes a failure (see paragraph 4.2, page 2).

b. Due to the advantages just discussed, the sequential method should be used whenever possible (see paragraph 10.2c, page 134).

10.3 COMBINED RELIABILITY

If a number of components of a system are connected in such a way that the failure of any one component causes a failure of the system, then these components are considered to be functionally in series. The reliability of such a system can be determined by the following method.

10.3.1 OBJECTIVE

a. Case I: To determine the reliability of a system based on the individual reliabilities of its components.

b. Case II: To determine the reliability of an individual component of a system.

10.3.2 DATA REQUIRED

- a. Case I: N and f for each component.
- b. Case II: N and f for the component tested.

10.3.3 PROCEDURE

- a. Case I: Reliability of independent serial systems.
 - (1) Choose the desired confidence level.
 - (2) Compute the point estimate reliability (Rpg) as follows:
 - (a) Subtract f from N for each component.
 - (b) Divide step (a) by N for each respective component.
 - (c) Multiply the results of step (b) by each other.
 - (3) Compute the system failures (f_s) as follows:
 - (a) Subtract step (2) from 1.
 - (b) Multiply step (a) by the minimum N of the components.
 - (4) Co. ite the LCL using Case II of paragraph 10.1.1.4, page 122.

NOTE: When using f_s to determine d.f.₁ and d.f.₂, round off the results.

- (5) Conclude that the ρ for the system is the LCL at the desired confidence level.
- Case II: Reliability of a component.
 See Case III of paragraph 10.2.2.3, page 144.

10.3.4 EXAMPLE

a. Case I: Reliability of independent serial systems.

Given:

Sample data at Table A-6g, page 1-24.

Procedure:

- (1) Choose the confidence level $(1-\alpha)$.
- (2) Compute:

$$R_{PE} = \prod \frac{N_1 - f_1}{N_1}$$

(3) Compute:

$$f_s = N_{min}(1-R_{PE})$$

Example:

(1)
$$\alpha = .10$$

 $1-\alpha = .90$

- (2) $R_{PE} = \left(\frac{90-2}{90}\right) \left(\frac{90-4}{90}\right) \left(\frac{45-1}{45}\right) \left(\frac{45-3}{45}\right)$
 - **=** (.9778)(.9556)(.9778) (.9333)
 - **=** (.9344)(.9126)
 - **= .8527**
- (3) $f_s = 45(1-.8527)$ = 45(.1473) = 6.628

$$d.f._1 = 2(f_s)+2$$

$$d.f._2 = 2(N_{min})-2(f_s)$$

$$LCL = \frac{1}{1 + \left(\frac{f_s+1}{N_{min}-f_s}\right) F_{1-\alpha}}$$

See paragraph 10.1.1.4, Case II, page 122, for details. NOTE: N is the minimum N of the components and f is fg.

$$= 90-13.256$$

$$= 76.744$$

$$= 76$$
NOTE: Use 15 and 70 in F tables.
$$LCL = \frac{1}{1 + \left(\frac{6.628+1}{45-6.628}\right)} \text{ F. } 90$$

$$\frac{1 + \left(\frac{7.628}{38.37}\right) (1.58)}{1}$$

$$\frac{1}{1 + (.1988) (1.58)}$$

(4) $d.f._1 = 2(6.628)+2$

13.256+2

= 15.256 = 15

 $d.f._2 = 2(45)-2(6.628)$

$$\frac{1}{1.3141}$$

= .76

- (5) Conclude that the ρ for the system is the LCL at a $100(J-\alpha)\%$ confidence level.
- (5) Conclude that the ρ for the system is .76 at a 90% confidence level.
- b. Case II: Reliability of a component.See Case II (3) of paragraph 10.1.1.4, page 122.

10.3.5 ANALYSIS

- a. Case I. The point estimate (achieved) reliability of an independent serial system is determined by multiplying together the point estimate reliability of the components. The number of system failures is determined by multiplying the minimum sample size of the components by the quantity (1-R_{pE}). The R of the system is then determined as a LCL (see paragraph 10.1.1.4, Case II, page 122). The project officer will compare this R to ρ_0 to determine whether $\rho \geq \rho_0$ at a $100(1-\alpha)\%$ confidence level.
- b. Case II. R at a $100(1-\alpha)\%$ confidence level is computed as a LCL. The project officer will compare this R to ρ_0 to determine whether $r \ge \rho_0$ at a $100(1-\alpha)\%$ confidence level.
- 11. MAINTENANCE EVALUATION
- 11.1 MAINTENANCE RATIO

11.1.1 OBJECTIVE

To determine the maintenance ratio (MR) for the test item.

11.1.2 DATA REQUIRED

Records of active maintenance manhours and T_t .

11.1.3 PROCEDURE

- a. Sum the active maintenance manhours to obtain the total maintenance manhours (TM).
 - b. Sum the hours of operation to obtain Tt.
 - c. Divide TM by Tt.

11.1.4 EXAMPLE

Given:

Sample data at Table A-7b, page 1-26.

Procedure:

Example:

a. Compute:

a. TM = 9.25 manhours

TM = Σ active maintenance manhours.

b. Compute:

b. $T_r = 109.75$ hours

 $T_t = \Sigma$ operating time.

c. Compute:

$$MR = \frac{TM}{T_t}$$

- c. MR = $\frac{9.25}{109.75}$
 - = .084282
 - .0842 manhours per hour

11.1.5 ANALYSIS

The MR indicates the amount of active maintenance manhours required per operating hour for the test item.

11.2 MAINTAINABILITY

11.2.1 OBJECTIVE

To determine the maintainability (\underline{M}) .

11.2.2 DATA REQUIRED

- a. Active maintenance time (AMT), the number of maintenance actions (MA), the required maintenance action time (ω).
 - b. Time to repair (RT), ω , and f.

11.2.3 PROCEDURE

- a. Case I: Maintainability, based on all MA's.
 - (1) Sum the AMT's (SAMT).
 - (2) Divide step (1) by MA to obtain the mean active maintenance time (M).

MTP 3-1-005 1 March 1972

- (3) Determine the maintenance action rate (AR) by dividing 1 by step (2).
- (4) Compute M as follows:
 - (a) Multiply step (3) by ω .
 - (b) Raise the exponential (e) to the negative power of step (a) (see Table 3-22, page 2-130).
 - (c) Subtract step (b) from 1.
- (5) Conclude that the \underline{M} is the probability of completing an MA of the population within prescribed limits based on the sample.
- b. Case II: Maintainability, based only on failures.
 - (1) Compute Y, an intermediate value, as follows:
 - (a) If f is equal to or less than 3, compute:
 - 1. Use Table B-22, page 2-130 to obtain e raised to the negative power of f.
 - Subtract step 1 from 1.
 - (b) If f is greater than 3, set Y equal to 1.
 - (2) Sum the repair time (ΣRT).
 - (3) Divide step (a) by f to obtain the mean time to repair (MTTR).
 - (4) Divide 1 by step (3) to obtain the repair rate (RR).
 - (5) Compute U, an intermediate value, as follows:
 - (a) Multiply step (4) by ω .
 - (b) Use Table B-22, page 2-130, to obtain e raised to the negative power of step (a).
 - (c) Subtract step (b) from 1.
 - (6) Multiply step (1) by step (5) to obtain \underline{M} .
 - (7) Conclude that the \underline{M} is the probability of completing a failure within prescribed limits based on the sample.

11.2.4 **EXAMPLE**

a. Case I: Maintainability, based on all MA's. Given:

 $\omega = .5 \text{ hour}$

MA = 22

Sample data at Table A-7a, page 1-25.

Procedure:

(1) Compute:

(1) $\Sigma AMT = 16.9$ hours

ΣΑΜΤ

(2) Compute:

 $(2) \quad \overline{M} = \frac{16.9}{22}$

 $\overline{M} = \frac{\Sigma AMT}{T}$

.7682

= .77 hour per action.

(3) Compute:
$$AR = \frac{1}{V}$$

$$\underline{\underline{M}} = 1 - e^{-(AR)(\omega)}$$
Use Table B-22, page 2-130.

b. Case II: Maintainability, based only on failures Given:
$$\omega$$
 = .5 hours

$$\omega = .5$$
 hours $f = 5$

Sample data at Table A-7a, page 1-25.

Procedure:

(a) If
$$f \le 3$$
, compute:
 $Y = 1-e^{-f}$

(3) Compute:

MTTR =
$$\frac{\Sigma RT}{f}$$

$$U = 1 - e^{-(RR)(\omega)}$$

Use Table B-22, page 2-130.

(4)

$$\underline{M} = 1 - e^{-(1.3017)(.5)}$$

$$= 1 - e^{-.651}$$

$$= 1 - .5215$$

$$= .4785$$

$$= .48$$

(5) Conclude that .48 is the probability of completing an MA in .5 hour or less based on the sample.

Example:

(2)
$$\Sigma RT = 4.8 \text{ hours}$$

(3) MTTR =
$$\frac{4.8}{5}$$

= .960 hr. per

(4) RR =
$$\frac{1}{.960}$$
 failure

= 1.04 failures per hr. of repair

(5)

$$v = 1 - e^{-(1.04)(.5)}$$

$$= 1 - e^{-.520}$$

$$= 1 - .5945$$

$$= .4055$$

$$= .41$$

MTP 3-1-005 1 March 1972

(6) Compute:

M = Y(U)

(7) Conclude that the M is the probability of completing a failure within prescribed limits based on the sample.

(6) $\underline{M} = (1) (.41)$

= .41

(7) Conclude that .41 is the probability of completing a failure in .5 hour or less based on the sample.

11.2.5 ANALYSIS

Maintainability is a characteristic of design and installation which is expressed as the probability than an item will be retained in or restored to a specified condition within a given period of time, when the maintenance is performed in accordance with prescribed procedures and resources. The maintainability increases exponentially with time for a given maintenance action rate. The greater the time available to perform a MA, the greater will be the probability of successfully performing the maintenance action.

11.3 AVAILABILITY

Availability is a measure of the degree to which an item is in the operable and committable state when the mission is called for at an unknown (random) point in time. Availability actually consists of two components: maintainability and reliability. Poor reliability can be offset by correspondingly improved maintainability. For test purposes availability is broken down into three types which are discussed in the following paragraphs.

11.3.1 <u>INHERENT AVAILABILITY</u>

11.3.1.1 OBJECTIVE

To determine the inherent availability ($A_{\hat{1}}$) of the test item as an estimate of the population availability.

11.3.1.2 DATA REQUIRED

Tt, f, and RT's.

11.3.1.3 PROCEDURE

- a. Compute MTBF (see paragraph 10.2.1.1.3, page 134).
- b. Compute the mean time to repair (MTTR) as follows:
 - (1) Sum the RT's (Σ RT).
 - (2) Divide step (1) by f.
- c. Compute A_1 as follows:
 - (1) Add step a to step b.
 - (2) Divide step a by step (1).
- d. Conclude that the inherent availability of the sample is $100\,(A_1)\%$.

11.3.1.4 **EXAMPLE**

Given:

Sample data at Table A-7b, page 1-25.

Procedure:

a. Compute:

$$MTBF = \frac{T_t}{f}$$

b. Compute:

$$MTTR = \frac{\Sigma RT}{f}$$

Compute:

$$A_i = \frac{MTBF}{MTBF+MTTR}$$

MTBF+MTTR

a. MTBF = 169.8/3

= 36.600 hours

b. MTTR = 4.8/3

= 1.600 hours per failure

c.
$$A_1 = \frac{36.600}{36.600+1.600}$$

$$= \frac{36.600}{38.200}$$

$$= .95811$$

= .958

d. Conclude that the inherent availability of the sample is $100(A_1)$ %.

d. Conclude that the inherent availability of the sample is 95.8%.

11.3.1.5 ANALYSIS

Af is the probability that a system or equipment, when used under stated conditions without consideration for any scheduled or preventive maintenance in an ideal support environment; i.e., when all tools, parts, manpower, and manuals are available, will operate satisfactorily at any given time. A1 excludes ready time, preventive maintenance downtime, supply downtime, and waiting or administrative downtime. Ai is a prediction of the population inherent availability. 11.3.2 ACHIEVED AVAILABILITY

11.3.2.1 **OBJECTIVE**

To determine the achieved availability (Aa) of the test item.

11.3.2.2 DATA REQUIRED

 T_t , MA, and AMT.

11.3.2.3 PROCEDURE

a. Divide $T_{\mbox{\scriptsize t}}$ by MA to obtain the mean time between maintenance

(MI BM)

b. Compute \overline{M} as follows:

- (1) Sum the AMT's.
- (2) Divide step (1) by MA.

MTP 3-1-005 I March 1972

- c. Compute Aa as follows:
 - (1) Add step a and step b.
 - (2) Divide step a by step (1).
- d. Conclude that the achieved availability of the sample is 100(A $_{a})\ensuremath{\mathfrak{T}}.$

11.3.2.4 EXAMPLE

Given:

Sample data at Table A-7b, page 1-26.

Procedure:

a. Compute:

$$MTBM = \frac{T_t}{MA}$$

b. Compute:

$$\overline{M} = \frac{\Sigma AMT}{MA}$$

c. Compute:

$$A_a = \frac{MTBM}{MTBM + \overline{M}}$$

Example:

a. MTBM = 109.8/7

= 15.686

= 15.7 hr. per MA

b. M = 6.8/7

= .971

 .97 Active maintenance time per MA

c.
$$A_a = \frac{15.686}{15.686 + .971}$$
$$= \frac{15.686}{16.657}$$

- .941706

= .94

- d. Conclude that the achieved availability of the sample is $100(A_a)\%$.
- d. Conclude that the achieved availability of the sample is 94%.

11.3.2.5 ANALYSIS

 A_a is the probability that a system or equipment, when used under stated conditions in an ideal support environment, will operate satisfactorily at any given time. A_a is the sample's achieved availability and excludes supply downtime and waiting or administrative downtime.

11.3.3 OPERATIONAL AVAILABILITY

11.3.3.1 **OBJECTIVE**

To determine the operational availability (A_0) of the test item.

11.3.3.2 DATA REQUIRED

Tt, MA, AMT, and delay time (supply and administrative downtime).

11.3.3.3 PROCEDURE

- a. Compute MTBM (see paragraph 11.3.2.3, page 158).
- b. Sum the AMT's and the delay time.
- c. Divide step b by MA to obtain the mean downtime (MDT).
- d. Compute Ao as follows:
 - (1) Add step a and step c.
 - (2) Divide step a by step (1).
- e. Conclude that the operational availability of the sample in a test support environment is $100\,(A_{_{\rm O}})\%$.

11.3.3.4 EXAMPLE

Given:

Sample data at Table A-7b, page 1-26.

Procedure:

a. Compute:

$$MTBM = \frac{T_t}{MA}$$

b. Compute:

ΣAMT

Σ delay time

c. Compute:

$$MDT = \frac{\Sigma AMT + \Sigma \text{ delay time}}{MA}$$

d. Compute:

$$A_O = \frac{MTBM}{MTBM+MDT}$$

e. Conclude that the operational availability of the sample in a test support environment is $100\,(A_{\odot})$ %.

Example:

a. MTBM = 109.8/7

= 15.686

= 15.7 hrs. per MA

b. $\Sigma AMT = 6.8$

 Σ delay time = 8.8

c. MDT =
$$\frac{6.8 + 8.8}{7}$$

= $\frac{15.6}{7}$

= 2.228

= 2.23 hrs. per down

d.
$$A_0 = \frac{15.686}{15.686 + 2.228}$$

$$=\frac{15.686}{17.914}$$

= .875628

= .876

e. Conclude that the operational availability of the sample in a test support environment is 87%.

11.3.3.5 ANALYSIS

 $A_{\rm O}$ is the probability that a system or equipment, when used under stated conditions in a real support environment, will operate satisfactorily at any given time. $A_{\rm O}$ includes ready time, maintenance downtime, preventive maintenance downtime, supply downtime, and waiting or administrative downtime.

12. REFERENCES

- A. USATECOM Regulation 750-15, Maintenance of Supplies and Equipment.
- B. NAVORD Report 3369, Statistics Manual, E. L. Crow, F. A. David, and M. W. Maxfield, Research Department U. S. Naval Ordnance Test Station, 1960.
- C. DA Pamphlet 70-5, Mathematics of Military Action, Operations, and Systems, U. S. Army Management School, Fort Belvoir, Virginia.
- D. NAVWEPS Report 8090, NOTS TP 3140, Binomial Reliability Table (Lower Confidence Limits for the Binomial Distribution), China Lake, California.
- E. SAAS Report Number 48. Tables of Binomial Expansion for Statistical Reference, Vol. 2, Picatinny Arsenal.
- F. MIL-STD-721 B, Military Standard Definition of Effectiveness Terms for Reliability, Maintainability, Human Factors, and Safety, 25 August 1966.
- G. AMXBR-CE letter dtd. 27 June 1966, Subject: Outlier Determination with Three Inclosures, ERL.
- H. AMXRD-BEL-FT letter dtd. 27 April 1970, Subject: Outlier Statistics, BRL.
- Excerpts from User's Guide for Modified Three Model Computer Program, pp. 39-42, BRL.
- J. Orientation Course on Materiel Testing, USATECOM College, LP 4-8, Part I, Handout #1.
- K. MTP 3-1-002, Confidence Intervals and Sample Size.
- L. MTP 3-3-506, Accuracy and Precision.
- M. An Engineers' Manual of Statistical Methods, Leslie E. Simon, 1941.
- N. An Introduction to Statistical Analysis, W. J. Dixon and F. J. Massey, Jr., 1951.
- O. An Introduction to the Theory of Statistics, G. U. Yule and M. G. Kendall, 1965.
- P. Elementary Statistics, U. S. Department of Commerce, National Bureau of Standards Handbook 91, 1963.
- Q. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U. S. Department of Commerce, National Bureau of Standards Applied Mathematics Series 55, 1968.
- R. Handbook of Probability and Statistics with Tables, Richard S. Burington, Ph.D. and Donald C. May, Jr., Ph., 1970.
- S. Introduction to Mathematical Statistics, Paul G. Hoel, 1962.

- T. Life Testing, Benjamin Epstein and Milton Sobel, Journal of the American Statistical Association, September, 1953, Vol. 48, pp. 486-502.
- U. Maintainability: A Major Element of System Effectiveness, A.S. Goldman and T. B. Slattery, 1964.
- V. Modern Elementary Statistics, J. E. Freund, 1967.
- W. Quality Assurance, Reliability Handbook, Headquarters,U. S. Army Materiel Command, October, 1968.
- X. Reliability Handbook, W. Grant Ireson, 1966.
- Reliability, Management, Methods, and Mathematics, David K. Lloyd and Myron Lipow, 1964.
- 2. Reliability Principles and Practices, S. R. Calabro, 1962.
- AA. Sampling Techniques, William G. Cochran, 1963.
- BB. Schaum's Outline of Theory and Problems of Statistics, Murray R. Spiegel, 1961.
- CC. Statistical Methods, W. G. Cochran and G. W. Snedecor, 1967.
- DD. Techniques of Statistical Analysis, Statistical Research Group, Columbia University, 1947.
- EE. The Mean Square Successive Difference, J. von Neuman, R. H. Kent, H. R. Bellinson and B. I. Hart, The Annals of Mathematical Statistics, June, 1941, Vol. XII, No. 2, pp. 153-162.

INCLOSURE I

TABLE A-la

BiVARIATE NORMAL DISTRIBUTION RAW DATA

READING NUMBER	EASTING	NORTHING
1	2500	3218
2	2601	3305
3	2575	3279
4	2581	3221
5	2560	3250
6	2590	3261
7	2565	3249
8	2575	3250
9	2560	3239
10	2580	3251
11	2576	3270
12	2553	3251
13	2550	3280
14	2570	3245
15	2549	3278

TABLE A-1b

BIVARIATE NORMAL DISTRIBUTION GROUPED DATA

	EAST 2500-2519	2520-2539	2540-2559	2560-2579	2580-2599	2600-2619	
<u>NORTH</u>							TOTAL
3300-3319						1	1
3280-2399							0
3260-3279			2	2	1		5
3240-3259			1	4	1		6
3220-3239				1	1		2
3200-3219	1						1
TOTAL	1	0	3	7	3	1	

MTP 3-1-005 1 March 1972

TABLE A-2a

MEAN

TEST:

Prepare for action under daylight condition.

TIME		
(minutes)		
	Δ	<u>∆</u> 2
89.3	2.883	8.312
90.4	3.983	15.864
86.0	417	.174
83.6	-2.817	7.936
84.4	-2.017	4.068
86.1	317	.100
86.0	417	.174
88.0	1.583	2.506
86.7	.283	.080
87.4	.983	.966
86.1	317	.100
83.0	-3.417	11.676

N = 12

 $\overline{X} = 86.417$

= 86.4 min.

 $\Sigma\Delta^2 = 51.9567$

 $s^2 = 4.723$

s = 2.173

= 2.2 min.

TABLE A-2b COMPARING TWO MEANS (TYPE A: Test Item)

ROUND NUMBER	RANGE (meters)	$\Delta_{\mathbf{A}}$. <u>\(\Delta \frac{2}{k} \)</u>
1	5440	38.60	1489.96
2	5379	-22.40	501.76
3	5402	.60	.36
4	5400	-1.40	1.96
5	5400	-1.40	1.96
6	5397	-4.40	19.36
7	5383	-18.40	338.56
8	5400	-1.40	1.96
9	5405	3.60	12.96
10	5395	-6.40	40.96
11	5397	-4.40	19.36
12	5390	-11.40	129.96
13	5402	.60	.36
14	5389	-12.40	153.76
15	5406	4.60	21.16
16	5420	18.60	345.96
17	5423	21.60	466.56
18	5401	-0.40	.16
19	5400	-1.40	1.96
20	5399	-2.40	5.76

 $[\]bar{x}_A = 5401.40$

^{= 5401} meters

 $[\]Sigma$ Range_A = 108,028 Σ Δ_A^2 = 3552.80

 $s_A^2 = 186.99$

s_A = 13.67

^{= 14} meters

TABLE A-2c

COMPARING TWO MEANS (TYPE B: Standard Item)

ROUND NUMBER (meters)	$\frac{\Delta_{\mathbf{B}}}{\Delta_{\mathbf{B}}}$
1 5380	.75 60.06
2 5374	75 3.06
3 5374	75 3.06
4 5390 1	.75 315.06
5 5351 -2	25 451.56
6 5348 -2	.25 588.06
7 5350 -2	495.06
8 5370 -	5.06
9 5374	75 3.06
10 5390 1	.75 315.06
11 5381	76.56
12 5374	.75 3.06
13 5380	.75 60.06
14 5375	.75 7.56
15 5390 1	.75 315.06
16 5370 -	.25 5.06
17 5359 -1	.25 175.56
18 5370 -	.25 5.06
19 5370 -	.25 5.06
20 5375	.75 7.56

 $\overline{X}_B = 5372 \text{ meters}$

 Σ Range_B = 107,445

 $\Sigma \Delta_{\rm B}^2 = 2899.70$

 $s_B^2 = 152.62$

 $s_B = 12.35$

= 12 meters

TABLE A-2d

COMPARING TWO MEANS WITH VARIABILITY ASSUMED UNEQUAL

(Type B: Standard Item)

ROUND NUMBER	RANGE (meters)	$\Delta_{\underline{B}}$	$\frac{\Delta_B^2}{B}$
1	5345	33.30	1108.89
2	5387	9.30	86.49
3	5385	7.30	53.29
4	5374	-3.70	13.69
5	5385	7.30	53.29
6	5388	10.30	106.09
7	5375	-2.70	7.29
8	5385	7.30	53.29
9	5379	1.30	1.69
10	5380	2.30	5.29

 $\bar{X}_B = 5378.30$

= 5378 meters

 $\Sigma \text{ Range}_{B} = 53,783$

 $\Sigma \Delta_{B}^{2} = 1489.30$

 $s_{\mathbf{B}}^{2} = 165.48$

 $s_{R} = 12.86$

= 13 meters

TABLE A-2e

COMPARING MEANS OF PAIRED OBSERVATIONS

CAPACITY OF BATTERIES (ampere hours)

BATTERY A	BATTERY B	$x_{d}=x_{A}-x_{B}$	Δ	<u>\Delta^2</u>
146.0	141.0	5.0	5.10	26.01
141.5	143.5	-2.0	-1.90	3.61
135.2	139.2	-4.0	-3.90	15.21
142.1	139.1	3.0	3.10	9.61
140.3	140.3	0.0	.10	.01
143.3	141.3	2.0	2.10	4.41
138.0	138.0	0.0	.10	.01
137.0	140.0	-3.0	-2.90	8.41
142.0	142.0	0.0	.10	.01
136.9	138.9	-2.0	-1.90	3.61

N = 10

 $\Sigma x_d = -1$

 $\overline{X}_d = .10$

 $\Sigma \Delta^2 = 70.90$

 $s_d^2 = 7.88$

 $s_d = 2.81$

= 3

TABLE A-2f

COMPARING MEANS OF SEVERAL PRODUCTS

The following data is related to the life span of a resistor (in hours).

RESISTOR

	TYPE 1	TYPE 2	TYPE 3	TYPE 4
	518	502	554	555
	560	574	598	567
	538	528	579	550
	510	534	538	535
	544	538	544	540
Σx ₁ =	2670 hours	2682 hours	2813 hours	2747 hours
N _i -	5	5	5	5
x, -	534.00	536.40	562.60	549.40
-	534	536	563	549
s ² =	406.00	574.80	636.8	159.30
=	406 hours	575 hours	636 hours	159 hours

TABLE A-2g

COMPARING MEANS OF SEVERAL PRODUCTS

The following data is related to the range of a particular ammunition fired from various guns (meters).

		TYPE 1	TYPE 2	TYPE 3	TYPE 4
		5,120	5,000	5,581	5,130
		5,300	5,010	5,590	5,150
		5,285	5,032	5,580	5,205
		5,291	4,989	5,595	5,100
		5,202	5,025	5,398	5,125
		5,170		5,589	5,175
		5,188		5,580	5,150
				5,598	
				5,551	
Σ×i	*	36,556 meters	25.056 meters	50,262 meters	36.035 meters
Ni	=	7	5	9	7
\overline{x}_i	=	5,222.29	5,011.20	5584.67	5,147.86
	=	5,222	5,011	5585	5,148
$\mathbf{s_i^2}$	=	4,912.90	310.7	212.50	1190.48
	*	4,913 meters	311 meters	212 metors	1190 meters

TABLE A-3a
STANDARD DEVIATION (TYPE A: Test Item)

READING (minutes)	Δ(Δ _A)	$\frac{\Delta^2 (\Delta^2)}{A}$
100	-9.40	88.36
125	15.60	243.36
98	-11.40	129.96
100	-9.40	88.36
112	2.60	6.76
115	5.60	31.36
120	10.60	112.36
110	.60	.36
100	-9.40	98.36
114	4.60	21.16

For Type A item

N = 10	N = 10
$\bar{X} = 109.40$	$\overline{X}_A = 109.40$
= 109 min.	= 109 min.
$\Sigma\Delta^2 = 810.40$	$\Sigma \Delta_{\mathbf{A}}^2 = 810.40$
$s^2 = 90.04$	$s_A^2 = 90.04$
s = 9.49	$s_A = 9.49$
= 9 min.	= 9 min.

TABLE A-3b

STANDARD DEVIATION (TYPE B: Standard Item)

READING (minutes)	<u>Δ</u> <u>B</u>	$\frac{\Delta_{\mathbf{B}}^2}{2}$
86	-2.50	6.25
84	-4.50	20.25
93	4.50	20.25
85	-3.50	12.25
91	2.50	6.25
84	-4.50	20.25
90	1.50	2.25
92	3.50	12.25
85	-3.50	12.25
94	5.50	30.25
91	2.50	6.25
87	-1.50	2.25

N = 12

 $\overline{x}_B = 88.5$

= 88 min.

 $\Sigma \Delta_{\mathbf{B}}^2 = 151.00$

 $s_B^2 = 13.73$

 $s_B = 3.71$

= 4 min.

TABLE A-4a

PART I

FUSE TYPE	SUCCESS (Class I)	FAILURE (Class II)	TOTAL
TYPE A	I _A = 4	II _A = 2	$N_A = 6$
TYPE B	I _B = 8	II _B = 2	N _B = 10
TOTAL	12	4	16
		PART II	
FUSE TYPE	SUCCESS (Class I)	FAILURE (Class II)	TOTAL
Larger Sample (Type B)	I ₁ = 8	II ₁ = 2	$N_1 = 10$
Smaller Sampl	e I ₂ = 4	II ₂ = 2	N ₂ = 6
(Type A) TOTAL	12	4	16

TABLE A-4b

Given Characteristic: Proportion of Hits

FUZE TYPE	SUCCESS (Class I)	FAILURE (Class II)	TOTAL
Type A	I _A = 181	II _A = 35	$N_A = 216$
Type B	I _B = 160	II _B = 56	$N_{B} = 216$
TOTAL	$T_{\tau} = 341$	T _{II} = 91	$T_N = 432$

MTP 3-1-005 1 March 1972

TABLE A-5a

<u>AP</u>	POINTS OF IMPACT	DIFFERENCE R(+) O(+) L(-) S(-)	POINTS OF IMPACT AROUND T :E MEAN AP
(2500,3005)	(2350,3100)	(-150,95	(2005,2304)
(1537,1825)	(1649,2031)	(112,206)	(2267,2415)
(2041,2800)	(2175,2520)	(134,-280)	(2289,1929)
(3000,1945)	(2793,2275)	(-207,330)	(1948,2539)
(1874,1700)	(1954,1439)	(80,-261)	(2235,1948)
(1500,2734)	(1748,3088)	(248,354)	(2403,2563)
(2273,1679)	(2345,2310)	(72,631)	(2227,2840)
(1725,2600)	(1539,2415)	(-186,-185)	(1969,2024)
(2758,1503)	(2833,1100)	(75,-403)	(2230,1806)
(2340,2300)	(2094,2466)	(-246,166)	(1909,2375)

Mean AP: (2155,2209)

TABLE A-5b

PE: STANDARD DEVIATION

READING NUMBER	READING (meters)	Δ	<u>Δ</u> ²
1	1248	-10.00	100.0
2	1100	-158.00	24,964.0
3	1260	2.00	4.0
4	1300	42.00	1,764.0
5	1260	2.00	4.0
6	1234	-24.00	576.0
7	1287	29.00	841.0
8	1275	17.00	289.0
9	1290	32.00	1,024.0
10	1280	22.00	484.0
11	1225	-33.00	1,089.0
12	1325	67.00	4,489.0
13	1223	-35.00	1,225.0
14	1299	41.00	1,681.0
15	1268	10.00	100.0
16	1254	-4.00	16.0

N = 16

 $\bar{X} = 1258.00$

= 1258 meters

 $\Sigma\Delta^2 = 38,650.0$

 $s^2 = 2,576.67$

s = 50.76

= 51 meters

TABLE A-5c

PE SUCCESSIVE DIFFERENCES

READING NUMBER	READING (meters)	<u>d</u>	<u>d²</u>
1	1248		
2	1100	148	21,904
3	1260	-160	25,600
4	1300	-40	1,600
5	1260	40	1,600
6	1234	26	676
7	1287	-53	2,809
8	1275	12	144
9	1290	-15	225
10	1280	10	100
11	1225	55	3,025
12	1325	-100	10,000
13	1223	102	10,404
14	1299	- 76	5,776
15	1268	31	961
16	1254	14	196

N = 16

 $\Sigma d^2 = 85,020$

 $s_d^2 = 5,668.00$

 $s_{d} = 75.29$

= 75

TABLE A-5d
OUTLIER FOR PE

READING NUMBER	READING (meters)	Δ	Δ^2
1	1248	20.53	421
2	1100	Isolate as an outlier	
3	1260	-8.53	73
4	1300	31.47	990
5	1260	-8.53	73
6	1234	-34.53	1192
7	1287	18.47	341
8	1275	6.47	42
9	1290	21.47	461
10	1280	11.47	132
11	1225	-43.53	1895
12	1325	56.47	3189
13	1223	-45.53	2073
14	1299	30.47	928
15	1268	53	0
16	1254	-14.53	211

 $N_1 = 15$

 $\bar{X}_1 = 1268.53$

= 1269 meters

 $\Sigma \Delta_1^2 = 12021$

 $s_1^2 = 858.64$

= 859 meters

TABLE A-5e
CIRCULAR PROBABLE ERROR (CPE)

READING NUMBER	EASTING COORDINATE	<u>ΔE</u>	<u>ΔE²</u>
1	48270	-104.47	10,914
2	48356	-18.47	341
3	47962	-412.47	170,132
4	48001	-373.47	139,480
5	48512	137.53	18,915
6	47570	-804.47	647,172
7	48830	455.53	207,508
8	48781	406.53	165,267
9	48329	-45.47	2,068
10	48659	284.53	80,957
11	48238	-136.47	18,642
12	48762	387.53	149,404
13	48325	-49.47	2,447
14	48515	140.53	19,749
15	48507	132.53	17,564

N = 15

 $\overline{EAST} = 48374.47$

= 48374

 $\Sigma \Delta E^2 = 1,650,542$

 $s_E^2 = 117,895.9$

s_E = 343.36

= 343

TABLE A-5e
CPE continued

READING	NORTHING			
NUMBER	COORDINATE	<u>ΔN</u>	ΔN^2	d _m
1	46530	-174.00	30,276	203
2	46516	-188.00	35.344	189
3	45378	-1326.00	1,758,276	1389
4	45971	733.00	537,289	822
5	46831	127.00	16,129	188
6	46972	268.00	71,824	847
7	47015	311.00	96,721	552
8	46505	-199.00	39,601	453
9	47230	526.00	276,676	528
10	46993	289.00	83,521	406
11	47020	316.00	99,856	344
12	47044	340.00	115,600	516
13	46845	141.00	19,881	149
14	46570	-134.00	17,956	194
15	47140	436.00	190,096	456

N = 15 NORTH = 46704.00 = 46704

 $\Sigma \Delta N^2 = 3,389,046$

 $s_N^2 = 242,074.7$

s_N = 492.01

- 492

TABLE A-5f
OUTLIERS FOR CPE

SUSPECTED OUTLIER	<u>E</u>	Δ	<u>N</u>	_ Δ	d m
3	47962	441.93	45378	1420.71	1488.2
READING NUMBER	-	<u>E</u>	ΔΕ		ΔE ²
1	48	270	-133.93		17,937
2	48:	356	-47.93		2,297
4	480	001	-402.93	1	62,353
5	485	512	108.07		11,679
6	475	570	-833.93		95,439
7	488	30	426.07		31,536
8	487	81	377.07		2,182
9	483	29	-74.93		5,615
10	486	59	255.07		5,061
11	482	38	-165.93		7,533
12	487	62	358.07	12	8,214
13	4832		-78.97	1	6,230
14	4851		111.07	1:	2,337
15	4850)7	103.07	10	0,623
$N_1 = 14$					
EAST = 48403	.93				
= 48404					
$\Sigma \Delta E^2 = 1,469$,036				

s_E = 336.16

 $s_E^2 = 113,002.8$

TABLE A-5f continued

READING NUMBER	<u>N</u>	<u>ΔN</u>	ΔN^2
1	46530	-268.71	72,205
2	46516	-282.71	79,925
4	45971	-827.71	685,104
5	46831	32.29	1,043
6	46972	173.29	30,029
7	47015	216.29	46,781
8	46505	-293.71	86,266
9	47230	431.29	186,011
10	46993	194.29	37,749
11	47020	221.29	48,969
12	47044	245.29	60,167
13	46845	46.29	2,143
14	46570	-228.71	52,308
15	47140	341.29	116,479

 $N_1 = 14$

NORTH = 46798.71

= 46799

 $\Sigma \Delta N^2 = 1,505,179$

 $s_N^2 = 115,783.0$

s_N = 340.27

- 340

TABLE A-6a

SEQUENTIAL TESTING: SUCCESS - FAILURE

FAILURE	SAMPLES TESTED	COORDINATES
1	30	(30,1)
2	75	(75,2)
3	110	(110,3)
4	160	(160,4)

Foilures

TABLE A-6c

FAILURES	OPERATING HOURS
1	360
2	275
3	320
4	311
5	285
6	290
7	318
8	314
9	340
10	298
11	300
12	310
	31* 3752

^{*} Since no failure corresponds to the 31 under Operating Hours, this is a time terminated test.

TABLE A-6d

<u>FAILURES</u>	Tt (hours)	HOURS BETWEEN FAILURES	Δ	<u>Δ</u> ²
1	200	200	-6.83	46.6
2	410	210	3.17	10.0
3	595	185	-21.83	476.5
4	816	221	14.17	200.8
5	1046	230	23.17	536.8
6	1241	195	-11.83	139.9

F = 6

MTBF = 206.83

= 207 hours

 $\Sigma\Delta^2 = 1410.6$

 $s^2 = 282.1$

s = 16.80

= 17 hours

TABLE A-6e

SEQUENTIAL TESTING: CONTINUOUS TEST

FAILURE NUMBER	OPERATING TIME (hours)	COORDINATE	
1	175	(1,175)	
2	490	(2,490)	
3	985	(3,985)	
4	1500	(4,1500)	
5	2495	(5,2495)	
6	3290	(6,3290)	
7	4075	(7,4075)	

TABLE A-6g
COMBINED RELIABILITY

COMPONENT NUMBER	SAMPLE SIZE	FAILURES
1	90	2
2	90	4
3	45	1
4	45	3

TABLE A-7a

MAINTAINABILITY

MAINTENANCE ACTION	MAINTEN' NCE ACTION TIME
1	.6
2 Failure	1.2
3	.4
4	.9
5	2.3
6 Failure	2.0
7	1.4
8	.7
9	.8
10 Failure	.6
11	.1
12 Failure	.5
13	.4
14	.4
15	1.0
16	1.1
17 Failure	.5
18	.3
19	.3
20	.4
21	.6
22	.4
	• •

MTP 3-1-005 1 March 1972

TABLE A-7b

	DATE	3 MAR	4 MAR	5 MAR	6 MAR	7 MAR
1.	Operating time	22.0	23.0	21.3	23.0	20.5
2.	Active Mainte- nance*					
	a. Time b. Manhours	1.50 2.0	.5 1.0	2.0 3.0	.5 1.0	2.3 2.3
3.	Number of MA	2	1	2	1	1
4.	Failures	1	0	1	0	1
5.	Time to Repair Failures	1.5	0.0	2.0	0.0	1.3
6.	Delay time	0.0	0.0	7.0	0.0	1.8

Remarks: Date

5 Mar: Delay time - driver sick.
7 Mar: Delay time - supply delay.

^{*}Includes preventive and corrective maintenance action.

INCLOSURE II

INCLOSURE II STATISTICAL TABLES

NUMBER	TITLE	PAGE
B-1	Range (estimate of σ)	2-1
B-2	Mean Deviation	2-2
B-3	Normal Distribution (area)	2-3
B-4	Cumulative Normal Distribution	2-4
B-5	Percentiles of the t Distribution	2-5
B-6	Percentiles of the Studentized Range, q	2-6
B-7	Percentiles of the χ^2 Distribution	2-12
B-8	Percentiles of the F Distribution	2-18
B-9	Two-Sided Confidence Limits for σ	2-35
B-10	One-Sided Confidence Limits for σ	2-37
B-11	Determination of Sample Size (s and co)	2-38
B-12	Determination of Sample Size (s_A and s_B)	2-41
B-13	Confidence Limits for P (two-sided)	2-43
B-14	Confidence Limits for P (one-sided)	2-56
B-15	Table of Arc Sine Transformation for P	2-54
B-16	2 X 2 Tables	2-55
B-17	CV Tables	2-71
B-18	Reliability: Success-Failure	2-74
B-19	Sequential Test	2-127
B-20	Factors for Determining Lower Confidence Limit for the Exponential Mean Life	2-128
B-21	Factors for Determining Upper Confidence Limit for the Exponential Mean Life	2-129
B-22	Exponential Distribution	2=130
B-23	frend Test	2-133

TABLE B-1

RANGE

Range to estimate j : k · Range

SAMPLE	k
2	.886
3	.591
4	.486
5	.430
6	. 395
7	.370
8	.351
9	.337
10	.325

TABLE B-2 MEAN DEVIATION

Mean Deviation estimate of σ : c · mean deviation

SAMPLE SIZE		c
2		.886
3		.591
4		.377
5		.302
6		.237
7		.203
8		.172
9	,	.153
10		.135

TABLE B-3
NORMAL DISTRIBUTION

			_							
Z	.00	.01	.02	.03	. 04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	. 2019	. 2054	. 2088	.2123	.2157	.2190	.2224
0.6	.2257	. 2291	. 2324	.2357	. 2389	. 2422	. 2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	. 2881	.2910	. 2939	.2967	. 2995	. 3023	. 3051	.3078	.3106	.3133
0.9	. 3159	.3186	.3212	. 3238	. 3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	. 3485	.3508	. 3531	. 3554	. 3577	. 3599	.3621
1.1	.3643	. 3665	. 3686	. 3708	.3729	. 3749	. 3770	.3790	. 3810	.3830
1.2	.3849	. 3869	.3888	. 3907	.3925	. 3944	. 3962	.3980	. 3997	.4015
1.3	. 4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	. 4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4732	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	. 4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990

Source: From THEORY AND PROBLEMS OF STATISTICS by Murray R. Spiegel. Copyright 1961 by McGraw-Hill, Inc. Used with permission of McGraw-Hill Book Company.

TABLE B-4

	1			
ve.		ć	٥n.	17 1
rmal cur		0.7	,	-1 48
r the noi		90,		-1.88 -1.75 -1.64 -1.55 -1.48
zρ to P fo		.05		-1.64
Sponding standard		70.		-1.75
$\frac{z_{\rho}}{Values \ of \ z_{p} \ corresponding \ to \ P \ for \ the \ normal \ curve.}$ z is the standard normal variable	1			-1.88
alues of	6	70.		-2.33 -2.05
>	5	•		-2.33
				~

CUMULATIVE NORMAL DISTRIBUTION - VALUES OF z_p

			_				_									
	ę	•		-1.34	-0.88		-0.33	-0.28	0	50.0	0.23	0.50	180	70.0	1.23	2 23
	80			-1.41	-0.92	95 0-	2	-0.31	-0.05		0.70	0.47	0.77		1.18	2.05
	.07			27.1-	-0.95	-0.61		25.0-	-0.08	01	01.0	0.44	0.74	-	1.13	1.88
	90.		2 2 2	0.17	-0.99	-0.64	70 0-	00.0	-0.10	2.0	7	0.41	0.71	a0 -	00.1	1.75
	.05		-1.64	ì	-1.04	-0.67	-0.30		-0.13	0.13		60.0	0.67	70.	13	1.04
	•00		-1.75	20 1-	2 .	7/.0-	-0.41	31.0	CT:0-	0.10	78 0		20.0	0.99	1 55	7
	.03		-1.88	-1.13	72.0-		-0.44	-0 18		80.0	0.33	19 0	10.0		1.48	
	.02		50.7-	-1.18	-0.77		· ·	-0.20	200		0.31	0.58	0 0	7	1.41	1
	10.	-7 33	2.33	-1.23	-0.81	02 0-		-0.23	0.03		0.78	0.55	0.88		1.34	
5	8.			97:1-	-0.64	-0.52	300	C7.0-	00.0	30	7:0	0.52	0.84	٥٢ -	1.20	
۵.	,	٥.			07.	.30	707	2 6	. 20	. 60	2.0	2.5	08.	06		

	_				_				
		.100		-1.282			006.	1 202	707.1
		.050	-1 6.6	C+0.T-		0.0	006.	1.645	
/alues	300	670.	-1.960			975		1.960	
Special Values	010		-2.326			066.		2.326	
	.005		-2.576			.995		2.576	
	.001		-3.090			666.	000 6	3.090	
	م		д, _		(d	-	۵.	

TABLE B-5
PERCENTILES OF THE t DISTRIBUTION

đf	t.60	t.70	t.75	t.g0	t.85	1. H75	t.90	t.95	1.975	t.39	t. 995
1	. 325	.727	1.000	1.376	1.963	2.414	2.078	6.314	12.706	31.821	63.657
2	. 289	.617	.816	1.061	1.386	1.604	1.886	2.920	4.303	6.965	9.925
3	.277	. 584	.765	.978	1.250	1.423	1,638	2.353	3.182	4.541	5.841
4	.271	.569	.741	.941	1.190	1.344	1.533	32' י	2.776	3.747	4.604
5	.267	.559	.727	.920	1.156	1.301	1.476	٠.5	2.571	3.365	4.032
6	. 265	.553	.718	.906	1.134	1.273	1,440	1.943	2.447	3.143	3.707
7	. 263	. 549	.711	.896	1.119	1.254	1.415	1.895	2.365	2.998	3.499
8	. 262	. 546	.706	.889	1.108	1.240	1.397	1.860	2.306	2.896	3.355
9	. 261	. 543	.703	.883	1.100	1,230	1.383	1.833	2.262	2.821	3.250
10	. 260	.542	.700	.879	1.093	1.221	1.372	1.812	2.228	2.764	3.165
11	. 260	.540	.697	.876	1,088	1.214	1.363	1.796	2.201	2.718	3.106
12	. 259	.539	.695	.873	1.083	1.209	1.356	1.782	2.179	2.681	3.055
13	. 259	.538	.694	.870	1.079	1.204	1.350	1.771	2.160	2.650	3.012
14	.258	.537	.692	.868	1.076	1.200	1.345	1.761	2.145	2.624	2.977
15	.258	.536	.691	.866	1.074	1.197	1.341	1.753	2.131	2.602	2.947
16	. 258	.535	.690	.865	1.071	1.194	1.337	1.746	2.120	2.583	2.921
17	.257	. 534	.689	.863	1.069	1.191	1.333	1.740	2.110	2.567	2.898
18	.257	. 534	.688	. R62	1.067	1.189	1.330	1.734	2.101	2.552	2.878
19	. 257	. 533	. 688	861	1.066	1.187	1.328	1.729	2.093	2.539	2.861
20	. 257	.533	. 687	,860	1.064	1.185	1.325	1.725	2.086	2.528	2.845
21	. 257	. 532	.686	.859	1.063	1.183	1.323	1.721	2.080	2.518	2.831
22	. 256	. 532	. 686	.858	1.061	1.182	1.321	1.717	2.074	2.508	2.819
23	. 256	.532	. 685	. 858	1.060	1.180	1.319	1.714	2.069	2.500	2.807
24	. 256	. 531	.685	.857	1.059	1.179	1.318	1.711	2.064	2.492	2.797
25	. 256	.531	.684	.856	1.058	1,178	1.316	1.708	2,060	2.485	2.787
26	. 256	.531	.684	.856	1.058	1.177	1.315	1.706	2.056	2.479	2.779
27	.256	.531	.684	.855	1.057	1.176	1.314	1.703	2.052	2.473	2.771
28	. 256	. 530	.683	.855	1.036	1.175	1.313	1.701	2.048	2.467	2.763
29	. 256	.530	. 683	.854	1.055	1.174	1.311	1.699	2.045	2.462	2.756
30	. 256	. 530	.683	.854	1.055	1.173	1.310	1.697	2.042	2,457	2.750
40	. 255	. 529	.681	.851	1.050	1.167	1.303	1.684	2.021	2.423	2.704
60	.254	. 527	.679	. 848	1.046	1.162	1.296	1.671	2.000	2.390	2.660
120	. 254	. 526	.677	.845	1.041	1,156	1.289	1.658	1.980	2.358	2.617
••	. 253	.524	.674	.842	1.036	1,150	1.282	1.645	1.960	2.326	2.576

Linear interpolation may be used to obtain the t value for the d.f. value which is not in the table; however, the following formula is a more accurate method of obtaining the t value

$$t_{1-n,d,t}$$
, $t_{1-n,d,f,u}$ + $\left(\frac{1/d,f,-\frac{1}{d,f}}{\frac{1}{d,f,L^{-\frac{1}{d},f}}}\right)$ $\left(t_{1-n,d,f,L^{-\frac{1}{d},f},u}\right)$

where d.f. - degrees of freedom not in table.

 $d.f._{ii}$ = upper value, degree of freedom just larger than d.f.

 $d.f._{L} = lower value, degree of freedom just smaller than d.f.$

 $\label{eq:table b-6} \mbox{ \begin{tabular}{ll} TABLE B-6 \\ \hline \end{tabular} \mbox{ \begin{tabular}{ll} PERCENTILES OF THE STUDENTIZED RANGE, q \\ \hline \end{tabular}$

d.f.	1 2	3	4	5	6	7	8	9	10
	\	 				<u> </u>	 -		
1	8.93	13.44	16.36	18.49	20.15	21.51	22.64	23.62	24.48
. 2	4.13	5.73	6.77	7.54	8.14	8.63	9.05	9.41	9.72
3	3.33	4.47	5.20	5.74	6.16	6.51	6.81	7.06	7.29
4	3.01	3.98	4.59	5.03	5.39	5.68	5.93	6.14	6.33
5	2.85	3.72	4.26	4.66	4.98	5.24	5.46	5.65	5.82
6	2.75	3.56	4.07	4.44	4.73	4.97	5.17	5.34	5.50
7	2.68	3.45	3.93	4.28	4.55	4.78	4.97	5.14	5.28
8	2.63	3.37	3.83	4.17	4.43	3.65	4.83	4.99	5.13
9	2.59	3.32	3.76	4.08	4.34	4.54	4.72	4.87	5.01
10	2.56	3.27	3.70	4.02	4.26	4.47	4.64	4.78	4.91
11	2.54	3.23	3.66	3.96	4.20	4.40	4.57	4.71	4.84
12	2.52	3.20	3.62	3.92	4.6	4.35	4.51	4.65	4.78
13	2.50	3.18	3.59	3.88	4.12	4.30	4.46	4.60	4.72
14	2.49	3.16	3.56	3.85	4.08	4.27	4.42	4.56	4.68
15	2.48	3.14	3.54	3.83	4.05	4.23	4.39	4.52	4.64
16	2.47	3.12	3.52	3.80	4.03	4.21	4.36	4.49	4.61
17	2.46	3.11	3.50	3.78	4.00	4.18	4.33	4.46	4.58
18	2.45	3.10	3.49	3.77	3.98	4.16	4.31	4.44	4.55
19	2.45	3.09	3.47	3.75	3.97	4.14	4.29	4.42	4.53
20	2.44	3.08	3.46	3.74	3.95	4.12	4.27	4.40	4.51
24	2.42	3.05	3.42	3.69	3.90	4.07	4.21	4.34	4.44
30	2.40	3.02	3.39	3.65	3.85	4.02	4.16	4.28	4.38
40	2.38	2.99	3.35	3.60	3.80	3.96	4.10	4.21	4.32
60	2.36	2.96	3.31	3.56	3.75	3.91	4.04	4.16	4.25
120	2.34	2.93	3.28	3.52	3.71	3.86	3.99	4.10	4.19
• •	2.33	2.90	3.24	3.48	3.66	3.81	3.93	4.04	4.13

TABLE 8-6 continued

PERCENTILES OF THE STUDENTIZED RANGE, q

1 25 2 10 3 7 4 6 5 5 7 5	5.24 0.01 7.49 6.49 5.97 5.64 5.41 5.25 5.13	12 25.92 10.26 7.67 6.65 6.10 5.76 5.53 5.36	13 26.54 10.49 7.83 6.78 6.22 5.87 5.64	27.1C 10.70 7.98 6.91 6.34	27.62 10.89 8.12 7.02 6.44 6.07	16 28.10 11.07 8.25 7.13 6.54	17 28.54 11.24 8.37 7.23 6.63	18 28.96 11.39 8.48 7.33 6.71	19 29.35 11.54 8.58 7.41 6.79	20 29.71 11.68 8.68 7.50 6.86
2 10 3 7 4 6 5 5 7 5	0.01 7.49 6.49 5.97 5.64 5.41	10.26 7.67 6.65 6.10 5.76 5.53	10.49 7.83 6.78 6.22 5.87	10.70 7.98 6.91 6.34 5.98	10.89 8.12 7.02 6.44	11.07 8.25 7.13	11.24 8.37 7.23	11.39 8.48 7.33	11.54 8.58 7.41	11.68 8.68 7.50
3 7 4 6 5 5 7 5	7.49 6.49 5.97 5.64 5.41 5.25	7.67 6.65 6.10 5.76 5.53	7.83 6.78 6.22 5.87	7.98 6.91 6.34 5.98	8.12 7.02 6.44	8.25 7.13	8.37 7.23	8.48 7.33	8.58 7.41	8.68 7.50
4 6 5 5 7 5 5	5.49 5.97 5.64 5.41 5.25	6.65 6.10 5.76 5.53	6.78 6.22 5.87	6.91 6.34 5.98	7.02 6.44	7.13	7.23	7.33	7.41	7.50
5 5 6 5 7 5	5.97 5.64 5.41 5.25	6.10 5.76 5.53	6.22 5.87	6.34 5.98	6.44		1	}		
6 5	5.64 5.41 5.25	5.76 5.53	5.97	5.98		6.54	6.63	6.71	6.79	6.86
7 5	5.41	5.53	1		6.07					
1	5.25	i i	5.64		· ···	6.16	6.25	6.32	6.40	6.47
1 . 1.	Į.	5.36		5.74	5.83	5.91	5.99	6.06	6.13	6.19
) • 12	5.13		5.46	5.56	5.64	5.72	5.80	5.87	5.93	6.00
9 9		5.23	5.33	5.42	5.51	5.58	5.66	5.72	5.79	5.85
10 5	5.03	5.13	5.23	5.32	5.40	5.47	5.54	5.61	5.67	5.73
11 4	4.95	5.05	5.15	5.27	5.31	5.38	5.45	5.51	5.57	5.63
1 1	4.89	4.99	5.08	5,16	5.24	5.31	5.37	5.44	5.49	5.55
1 1	4.83	4.93	5.02	5.10	5.18	5.25	5.31	5.37	5.43	5.48
1 1	4.79	4.88	4.97	5.05	5.12	5.19	5.26	5.32	5.37	5.43
15 4	4.75	4.84	4.93	5.01	5.08	5.15	5.21	5.27	5.32	5.38
,	4.71	, ,	4.89	, 07	* 04				2 70	
		4.81		4.97	5.04	5.11	5.17	5.23	5.28	5.33
	4.68	4.77	4.86	4.93	5.01	5.07	5.13	5.19	5.24	5.30
1	4.65	4.75	4.83 4.80	4.90	4.98	5.04	5.10	5.16	5.21	5.26
1 1			4.78	4.88	4.95	5.01	5.07	5.13	5.18	5.23
20 1	4.61	4.70	4.78	4.85	4.92	4.99	5.05	5.10	5.16	5.20
24	4.54	4.63	4.71	4.78	4.85	4.91	4.97	5.02	5.07	5.12
30	4.47	4.56	4.64	4.71	4.77	4.83	4.89	4.94	4.99	5.03
40	4.41	4.49	4.56	4.63	4.69	4.75	4.81	4.86	4.90	4.95
60 4	4.34	4.42	4.49	4.56	4.62	4.67	4.73	4.78	4.82	4.86
1 1	4.25	4.35	4.42	4.48	4.54	4.60	4.65	4.69	4.74	4.78
	4.21	4.28	4.35	4.41	4.47	4.52	4.57	4.61	4.65	4.69

TABLE B-6 continued

PERCENTILES OF THE STUDENTIZED RANGE, q
q,95

	9.95									
d.f. ₁	2	3	4	5	6	7	8	9	10	
1	17.97	26.98	32.82	37.08	40.41	43.12	45.40	47.36	49.07	
2	6.08	8.33	9.80	10.88	11.74	12.44	13.03	13.54	13.99	
3	4.50	5.91	6.82	7.50	8.04	8.48	8.85	9.18	9.46	
4	3.93	5.04	5.76	6.29	6.71	7.05	1	1	(·	
5	•	j	1	i	1	1	7.35	7.60	7.83	
,	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99	
	2 /4	4.34	4.90	5 20	5.63	5.00	6 12	6 33	6 /0	
6 7	3.46	1	1	5.30	1	5.90	6.12	6.32	6.49	
8	3.34	4.16	4.68	5.06 4.89	5.36	5.61	5.82	6.00	6.16	
	3.26	4.04	4.53		5.17	5.40	5.60	5.77	5.92	
9	3.20	3.95	4.41	4.76 4.65	5.02 4.91	5.24	5.43	5.59	5.74	
10	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.60	
1,	2 11	2 02	4.26	4 67	4 92	5.02	F 20	5 25	5 (0	
11	3.11	3.82 3.77	4.20	4.57	4.82 4.75	5.03 4.95	5.20	5.35	5.49	
12	3.08	1		4.51 4.45		Ī	5.12	5.27	5.39	
13	3.06	3.73	4.15	4.43	4.69	4.88	5.05	5.19	5.32	
14	3.03	3.70	4.11	i	4.64	4.83	4.99	5.13	5.25	
15	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.20	
,	2 00	2.65	, os	/ 22	, 54	, 7,	4 00	E 02	6 15	
16	3.00	3.65	4.05	4.33	4.56	4.74	4.90	5.03	5.15	
17	2.98	3.63	4.02	4.30	4.52	4.70	4.86	4.99	5.11	
18	2.97	3.61	4.00	4.28	4.49	4.67	4.82	4.96	5.07	
19	2.96	3.59	3.98	4.25	4.47	4.65	4.79	4.92	5.04	
20	2.95	3.58	3.96	4.23	4.45	4.62	4.77	4.90	5.01	
24	2.92	3.53	3.90	4.17	4.37	4.54	4.68	4.81	4.92	
30	2.89	3.49	3.85	4.10	4.30	4.46	4.60	4.72	4.82	
40	2.86	3.44	3.79	4.04	4.23	4.39	4.52	4.63	4.73	
60	2.83	3.40	3.74	3.98	4.16	4.31	4.44	4.55	4.65	
120	2.80	3.36	3.68	3.92	4.10	4.24	4.36	4.47	4.56	
••	2.77	3.31	3.63	3.86	4.03	4.17	4.29	4.39	4.47	
		i			i				لــــــــــــــــــــــــــــــــــــــ	

					q .95					
d.f.1	• •									
d.f.2	11	12	13	14	15	16	17	18	19	20
1	50.59	51.96	53.20	54.33	55.36	56.32	57.22	58.04	58.83	59.56
2	14.39	14.75	15.08	15.38	15.65	15.91	16.14	16.37	16.57	16.77
3	9.72	9.95	10.15	10.35	10.52	10.69	10.84	10.98	11.11	11.24
4	8.03	8.21	8.37	8.52	8.66	8.79	8.91	9.03	9.13	9.23
5	7.17	7.32	7.47	7.60	7.72	7.83	7.93	8.03	8.12	8.21
6	6.65	6.79	6.92	7.03	7.14	7.24	7.34	7.43	7.51	7.59
7	6.30	6.43	6.55	6.66	6.76	6.85	6.94	7.02	7.10	7.17
8	6.05	6.18	6.29	6.39	6.48	6.57	6.65	6.73	6.80	6.87
9	5.87	5.98	6.09	6.19	6.28	6.36	6.44	6.51	6.58	6.64
30	5.72	5.83	5.93	6.03	6.11	6.19	6.27	6.34	6.40	6.47
		İ							1	
11	5.61	5.71	5.81	5.90	5.98	6.06	6.13	6.20	6.27	6.33
12	5.51	5.61	5.71	5.80	5.88	5.95	6.02	6.09	6.15	6.21
13	5.43	5.53	5.63	5.71	5.79	5.86	5.93	5.99	6.05	6.11
14	5.36	5.46	5.55	5.64	5.71	5.79	5.85	5.91	5.97	6.03
15	5.31	5.40	5.49	5.57	5.65	5.72	5.78	5.85	5.90	5.96
			1	}		}	1	{	İ	
16	5.26	5.35	5.44	5.52	5.59	5.66	5.73	5.79	5.84	5.90
17	5.21	5.31	5.39	5.47	5.54	5.61	5.67	5.73	5.79	5.84
18	5.17	5.27	5.35	5.43	5.50	5.57	5.63	5.69	5.74	5.79
19	5.14	5.23	5.31	5.39	5.46	5.53	5.59	5.65	5.70	5.75
20	5.11	5.20	5.28	5.36	5.43	5.49	5.55	5.61	5.66	5.71
]		l		ļ	ļ	Ì]			
24	5.01	5.10	5.18	5.25	5.32	5.38	5.44	5.49	5.55	5.59
30	4.92	5.00	5.08	5.15	5.21	5.27	5.33	5.38	5.43	5.47
40	4.82	4.90	4.98	5.04	5.11	5.16	5.22	5.27	5.31	5.36
60	4.73	4.81	4.88	4.94	5.00	5.06	5.11	5.15	5.20	5.24
120	4.64	4.71	4.78	4.84	4.90	4.95	5.00	5.04	5.09	5.13
<u> </u>	4.55	4.62	4.58	4.74	4.80	4.85	4.89	4.93	4.97	5.01

	1,,,,								
d.f. ₁	2	3	4	5	6	7	8	9	10
1	90.03	135.0	164.3	185.6	202.2	215.8	227.2	237.0	245.6
2	14.04	19.02	22.29	24.72	26.63	28.20	29.53	30.68	31.69
3	8.26	10.62	12.17	13.33	14.24	15.00	15.64	16.20	16.69
4	6.51	8.12	9.17	9.96	10.58	11.10	11.55	11.93	12.27
5	5.70	6.98	7.60	8.42	8.91	9.32	9.67	9.97	10.24
	3.70	0.70	,	0.42	0.71	,,,,,).0,]	10.24
6	5.24	6.33	7.03	7.56	7.97	8.32	8.61	8.87	9.10
7	4.95	5.92	6.54	7.01	7.37	7.68	7.94	8.17	8.37
8	4.75	5.64	6.20	6.62	6.96	7.24	7.47	7.68	7.86
9	4.60	5.43	5.96	6.35	6.66	6.91	7.13	7.33	7.49
10	4.48	5.27	5.77	6.14	6.43	6.67	6.87	7.05	7.21
11	4.39	5.15	5.62	5.97	6.25	6.48	6.67	6.84	6.99
12	4.32	5.05	5.50	5.84	6.10	6.32	6.51	6.67	6.81
13	4.26	4.96	5.40	5.73	5.98	6.19	6.37	6.53	6.67
14	4.21	4.89	5.32	5.63	5.88	6.08	6.26	6.41	6.54
15	4.17	4.84	5.25	5.56	5.80	5.99	6.16	6.31	6.44
16	4.13	4.79	5.19	5.49	5.72	5.92	6.08	6.22	6.35
17	4.10	4.74	5.14	5.43	5.66	5.85	6.01	6.15	6.27
18	4.07	4.70	5.09	5.38	5.60	5.79	5.94	6.08	6.20
19	4.05	4.67	5.05	5.33	5.55	5.73	5.89	6.02	6.14
20	4.02	4.64	5.02	5.29	5.51	5.69	5.84	5.97	6.09
					ļ				
24	3.96	4.55	4.91	5.17	5.37	5.54	5.69	5.81	5.92
.30	3.89	4.45	4.80	5.05	5.24	5.40	5.54	5.65	5.76
40	3.82	4.37	4.70	4.93	5.11	5.26	5.39	5.50	5.60
60	3.76	4.28	4.59	4.82	4.99	5.13	5.25	5.36	5.45
120	3.70	4.20	4.50	4.71	4.87	5.01	5.12	5.21	5.30
°°	3.64	4.12	4.40	4.60	4.76	4.88	4.99	5.08	5.16

TABLE 8-6 continued

PERCENTILES OF THE STUDENTIZED RANGE, q

9.99 17 11 12 13 14 15 16 18 19 20 277.0 281.8 294.3 253.2 260.0 266.2 271.8 286.3 290.4 298.0 2 32.59 33.40 34.13 34.81 35.43 36.00 36.53 37.03 37.50 37.95 18.81 19.07 3 17.13 17.53 17.89 18.22 18.52 19.32 19.55 19.77 4 12.84 13.09 13.73 13.91 14.08 14.24 12.57 13.32 13.53 14.40 5 10.48 10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81 11.93 9.48 9.81 10.08 10.43 10.54 6 9.30 9.65 9.95 10.21 10.32 7 8.55 8.71 8.86 9.00 9.12 9.24 9.35 9.46 9.55 9.65 8.03 8 8.18 8.31 8.44 8.55 8.66 8.76 8.85 8.94 9.03 9 7.65 7.78 7.91 8.03 8.13 8.23 8.33 8.41 8.49 8.57 7.49 7.60 7.71 7.81 7.91 10 7.36 7.99 8.08 8.15 8.23 7.88 7.13 7.25 7.36 7.46 7.56 7.65 7.73 7.81 7.95 11 6.94 7.06 7.17 7.26 7.36 7.44 7.59 7.66 7.73 12 7.52 13 6.79 6.90 7.01 7.10 7.19 7.27 7.35 7.42 7.48 7.55 7.33 6.77 6.87 6.96 7.05 7.13 7.27 7.39 14 6.66 7.20 6.84 7.00 7.14 15 6.55 6.66 6.75 6.93 7.07 7.20 7.26 6.56 6.46 6.66 6.74 6.82 6.90 6.97 7.03 7.09 7.15 16 6.48 6.57 17 6.38 6.66 6.73 6.81 6.87 6.94 7.00 7.05 18 6.31 6.41 6.50 6.58 6.65 6.73 6.79 6.85 6.91 6.97 19 6.25 6.34 6.43 6.51 6.58 6.65 6.72 6.78 6.84 6.89 20 6.19 6.28 6.37 6.45 6.52 6.59 6.65 6.71 6.77 6.82 24 6.02 6.11 6.19 6.26 6.33 6.39 6.45 6.51 6.56 6.61 5.85 5.93 6.01 6.08 6.14 30 6.20 6.26 6.31 6.36 6.41 5.76 5.83 6.21 40 5.69 5.90 5.96 6.02 6.07 6.12 6.16 60 5.53 5.60 5.67 5.73 5.78 5.84 5.89 5.93 5.97 6.01 5.44 120 5.37 5.50 5.56 5.61 5.66 5.71 5.75 5.79 5.83 . . 5,23 5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 5.65

MTP 3-1-005 1 March 1972

TABLE 8-7

				PER	CENTILES O	F THE X ² D	ISTRIBUTI	ON				
d.f.	. 9995	.999	.995	.99	.975	.95	.90	.80	.75	.70	.60	. 50
1	.06393	.0 ⁵ 157										
2		.0220	.04393	.03157		.0 ² 393	.0158	.0642	.102	.148	.275	
3		.0243	.0100	.0201	.0506	.103	.211	.446	.575	.713	1.02	.455
4	.0639	.0908	.0717	.115	.216	.352	. 584	1.00	1.21	1.42	1.87	1.39
Š	.158	.210	. 207	.297	.484	.712	1.06	1.65	1.92	2.19	2.75	2.37
•	. 130	.210	.412	.554	.831	1.15	1.61	2.34	2.67	3.00	3.66	3.36 4.35
6	. 299	.381	.676	.872	1.24	1.64	2 20				3.00	4.33
7	. 485	. 598	. 989	1.24	1.69	2.17	2.20	3.07	3.45	3.83	4.57	5.35
8	.710	.857	1.34	1.65	2.18	2.73	2.83	3.82	4.25	4.67	5.49	6.35
9	.972	1.15	1.73	2.09	2.70	3.33	3.49	4.59	5.07	5.53	6.42	7.34
10	1.26	1.48	2.16	2.56	3.25	3.94	4.17	5.38	5.90	6.39	7.36	8,34
				2.50	3.23	3.94	4.87	6.18	6.74	7.27	8.30	9.34
11	1.59	1.83	2.60	3.05	3.82	4.57	5.58	6.99				
12	1.93	2.21	3.07	3.57	4.40	5.23	6.30		7.58	8.15	9.24	10.3
13	2.31	2.62	3.57	4.11	5.01	5.89	7.04	7.81	8.44	9.03	10.2	11.3
14	2.70	3.04	4.07	4.66	5.63	6.57	7.79	8.63	9.30	9.93	11.1	12.3
15	3.11	3.48	4.60	5.23	6.26	7.26	8.55	9.47	10.2	10.8	12.1	13.3
16	2 51				*****	7,20	0.73	19.2	11.0	11.7	13.0	14.3
17	3.54	3.94	5.14	5.81	6.91	7.96	9.31	11.2	11.0			
	3.98	4.42	5.70	6.41	7.56	8.67	10.1	12.0	11.9	12.6	14.0	15.3
18	4.44	4.90	6.26	7.01	8.23	9.39	10.9	12.9	12.8	13.5	14.9	16.3
19	4.91	5.41	6.84	7.63	8.91	10.1	11.7	13,7	13.7	14.4	15.9	17.3
20	5.40	5.92	7.43	8.26	9.59	10.9	12.4	14.6	14.6	15.4	16.9	18.3
21	5.90							14.0	15.5	16.3	17.8	19.3
22	6.40	6.45	8.03	8.90	10.3	11.6	13.2	15.4	16.3	17.2		
23		6.98	8.64	9.54	11.0	12.3	14.0	16.3	17.2		18.8	20.3
24	6.92	7.53	9.26	10.2	11.7	13.1	14.8	17,2	18.1	18.1	19.7	21.3
25	7.45 7.99	8.08	9.89	10.9	12.4	13.8	15.7	18.1	19.0	19.6	20.7	22.3
23	7.39	8.65	10.5	11.5	13.1	14.6	16.5	18.9	19.9	19.9	21.7	23.3
								10.7	19.9	20. 9	22.6	24.3
26	8.54	9.22	11.2	12.2	13.8	15.4	17.3	19.8	20.8	21.8	23.6	
27	9.09	9.80	11.8	12.9	14.6	16.2	18.1	20.7	21.7	22.7		25.3
28	9.66	10.4	12.5	13.6	15.3	16.9	18.9	21.6	22.7	23.6	24.5	26.3
29	10.2	11.0	13.1	14.3	16.0	17.7	19.8	22.5	23.6	24.6	25.5	27.3
30	10.8	11.6	13.8	15.0	16.8	18.5	20.6	23.4	24.5	25.5	26.5 27.4	28.3
31	11 /						-,			23.3	27.4	29.3
32	11.4	12.2	14.5	15.7	17.5	19.3	21.4	24.3	25.4	26.4	25.4	30.3
33	12.0	12.8	15.1	16.4	18.3	20.1	22.3	25.1	26.4	27.4	29.4	31.3
	12.6	13.4	15.8	17.1	19.0	20.9	23.1	26.0	27.3	28.3	30.3	32.3
34 35	13.2	14.1	16.5	17.8	19.8	21.7	24.0	26.9	28.2	29.2	31.3	33.3
33	13.8	14.7	17.2	18.5	20.6	22.5	24.8	27.8	29.1	30. Z	32.3	34.3
36	14.4	15.3	17.9	19.2	21 2	22.2						,
37	15.0	16.0	18.6	20.0	21.3 22.1	23.3	25.6	28.7	30.0	31.1	33.3	35.3
38	15.6	16.6	19.3	20.7		24.1	26.5	29.6	30.9	32.1	34.2	36.3
39	16.3	17.3	20.0	21.4	22.9 23.7	24.9	27.3	30.5	31.9	33.0	35.2	37.3
40	16.9	17.9	20.7	22.2		25.7	28.2	31.4	32.8	33.9	36.2	38.3
			-0.,	22.2	24.4	26.5	29.1	32.3	33.7	34.9	37 I	30 3

NOTE: .04393 means .0000393.

	1										
d	.40	. 30	0.25	.20	.10	.05	.025	.01	.005	.001	.mos
1	. 708	1.07	1.32	1.64	2.71	3.84	5.02	6.63	7.88	10.8	12.1
2	1.83	2.41	2.77	3.22	4.61	5.99	7.38	9.21	10.6	13.8	15.2
3	2.95	7.67	4.11	4.64	6.25	7.81	9.35	11.3	12.8	16.3	17.7
4	4.04	4.88	5.39	5.99	7,73	9.49	11.1	13.3	14.9	18.5	20.0
5	5.13	6.06	6.63	7. **	9.24	11.1	12.8	15.1	16.7	20.5	22.1
6	6.21	7.23	7.84	8.56	10.6	12.6	14.4	16.8	18.5	22.5	24.1
7	7.28	8.38	9.04	9.80	12.0	14.1	16.0	18.5	20.3	24.3	26.0
Ą	8.35	9.52	10.2	11.0	13.4	15.5	17.5	20.1	22.0	26.1	
9	9.41	10.7	11.4	12.2	14.7	16.9	19.0	21.7	23.6		27.9
10	10.5	11.8	12.5	13.4	ە 0	18.3	20.5	23.2		27.9	29.7
							23.3	23.2	25.2	29.6	31.4
11 12	11.5	12.9	13.7	14.6	17.3	19.7	21.9	24.7	26.8	31.3	33.1
	12.6	14.0	14.8	15.8	18.5	21.0	23.3	26.2	28.3	32.9	34.8
13	13.6	15.1	16.0	17.0	19.8	22.4	24.7	27.7	29.8	34.5	36.5
14	14,7	15.2	17.1	18.2	21.1	23.7	26.1	29.1	31.3	36.1	38.1
15	15.7	17.3	18.2	19.3	22.3	25.0	27.5	30.6	32.8	37.7	39.7
16	16.8	18.4	19.4	20.5	23.5	26.3	28.8	32.0	34.3	39.3	41.3
17	17.8	19.5	20.5	21.6	24.8	27.6	30.2	33.4	35.7	40.8	42.9
18	18.9	30.1	21.6	22.8	26.0	28.9	31.5	34.8	37.2	42.3	44.4
19	19.9	21.7	22.7	23.9	27,2	30.1	32.9	36.2	38.6	43.8	46.0
20	21.0	22.8	23.8	25.0	28.4	31.4	34.2	37.6	40.0	45.3	47.5
21	22.0	23.9	24.9	26.2	29.6	32.7	35.5	38.0	41.4	46.8	49 0
22	23.0	24.9	26.0	27.3	30.9	33.9	36.8	40.3	42.8	48.3	50.7
23	24.1	26.0	27.1	28.4	32.0	35.2	38.1	41.6	44.2	49.7	52.0
24	25.1	27.1	28.2	29.6	33.2	36,4	39.4	43.0	45.6	51.2	53.5
25	26.1	28.2	29.3	30.7	34.4	37.7	40 6	44.3	46.9	52.6	54.9
26	27.2	29.2	30.4	31.8	35.6	38.9	41.9	45.6	48.3	56-1	56.4
27	28.2	30.3	31.5	32.9	36.7	40.1	43.2	47.0	49.6	55.5	57.9
28	29.2	31.4	32.6	34.0	37.9	41.3	44.5	48.3	51.0	56.9	59.3
29	30.3	32.5	33,7	35.1	39.1	42.6	45.7	49.6	52.3	58.3	60.7
30	31.3	33.5	14.8	36.3	40.3	4).8	47.0	50 9	53.7	59.7	62.2
31	J2.3	34.6	35.9	37,4	41.4	45.0	48.2	52.2	55.0	61.1	63.6
32	33.4	35.7	37.0	38.5	-2.6	46.2	49.5	53.5	56.3	62.5	65.0
33	34.4	36.7	38.1	39.6	43.7	47.4	50.7	54.H	57.6	63.9	56.4
34	35.4	37.H	39.2	40.7	44.9	48.6	52.0	56.1	59.0	65.2	67.8
35	36.5	18.9	40.2	41,8	46.1	49.8	53.2	57 3	40.3	66.6	69.2
36	37.5	14.9	41.3	42.9	47.2	51.0	54.4	58.6	61.6	18.0	70.6
37	18.5	41.0	42,4	44.0	48.4	52.2	55,7	59.9	62.9	69.3	72.0
3R	39.6	42.0	43.5	45.1	49.5	53.4	56.9	61.2	5×.2	70.7	73.4
39	40.6	43.1	44.6	46.2	30.7	54.6	58.1	2.4	65.5	72.1	74.7
40	41.6	44,2	45.6	47.3	51.8	55.8	59,1	61,7	64.8	73.4	76.1

TABLE B-7 continued $\label{eq:percentiles} \mbox{ PERCENTILES OF THE } \chi^2 \mbox{ DISTRIBUTION }$

				PE	RCENTILES	OF THE	' DISTRIE	UTION				
d.f.	.9995	. 999	.995	.99	.975	.95	.90	.80	.75	.70	.60	. 50
41		18.6	21.4	22.9	25.2	27.3	29.9	33.3	34.6	35.8	38.1	40.3
42		19.2	22.1	23.7	26.0	28.1	30.8	34.2	35.6	36.9	39.1	
43		19.9	22.9	24.4	26.8	29.0	31.6	35.1	36.5	37.7	46.0	
44	19.5	20.6	23.6	25.1	27.6	29.8	32.5	36.0	37.4	38.6	41.0	
45	20.1	21.3	24.3	25.9	28.4	30.6	33.4	36.9	38.4	39.6	42.0	
46	20.8	21.9	25.0	26.7	29.2	31.4	34.2	37.8	39.3	40.3	43.0	45.3
47	21.5	22.6	25.8	27.4	30.0	32.3	35.1	38.7	40.2	41.5	43.9	
48	22.1	23.3	26.5	28.2	30.8	33.1	35.9	39.6	41.1	42.4	44.9	
49	22.8	24,0	27.2	28.9	31.6	33.9	36.8	40.5	42.1	43.4	45.9	
50	23.5	24.7	28.0	29,7	32.4	34.8	37.7	41.4	45.0	44.3	46.9	48.3 49.3
51	24.1	25.4	28.7	30.5	33.2	35.6	38.6	42.4	43.9	45.3	47.8	50.3
52	24.8	26.1	29.5	31.2	34.0	36.4	39.4	43,3	44.9	46.2	48.8	51.3
53	25.5	26.8	30.2	32.0	34.8	37.3	40.3	44.2	45.8	47.2	49.8	52.3
54	26.2	27.5	31.0	32.8	35.6	38.1	41.2	45.1	46.7	48.1	50.8	53.3
55	26.9	28.2	31.7	33.6	36.4	٥, زد	42.1	46.0	47.7	49.1	51.7	54.3
56	27.6	28.9	32.5	34.3	37.2	39.8	42.9	47.0	48,6			
57	28.2	29.6	33.2	35.1	38.0	40.6	43.8	47.9	49.6	50.0	52.7	55.3
58	28,9	30.3	34.0	35.9	38.8	41.5	44.7	48,8	50.5	51.0 51.9	53.7	56.3
5 9	29.6	31.0	34.8	36.7	39.7	42.3	45.6	49.7	51.4	52.9	54.7	57.3
60	30.3	31.7	35.5	37.5	40.5	43.2	46.5	50.6	57.4	53.8	55.6 56.6	\$8.3 59.3
61	31.0	32.5	36.3	38.3	41.3	44.0	47.3	51.6	53.3	54.8	57.6	60.3
62	31.7	33.2	37.1	39.1	42.1	44.9	48.2	52.5	54.2	55.7	58.6	61.3
63	32.5	33.9	37.8	39.9	43.0	45.7	49.1	53.4	55,2	56.7	59.6	62.3
64	33.2	34.6	38.6	40.6	43.8	46.6	50.0	54.3	56.1	57.6	60.5	63.3
65	33.9	35.4	39.4	41.4	44.6	47.4	50.9	55.3	57.1	58.6	61.5	64.3
66	34.6	36.1	40.2	42.2	45.4	48.3	51.8	56.2	58.0	59.5	62.5	65.3
67	35.3	36.8	40.9	43.0	46.3	49.2	52.7	57.1	58.9	60.5	63.5	66.3
3 <i>8</i>	36.0	37.6	41.7	43.8	47.1	50.0	53.5	58.0	59.9	61.4	64.4	67.3
69	36.7	38,3	42.5	44.6	47.9	50.9	54.4	59.0	60.8	62.4	65.4	68.3
70	37.5	39.0	43.3	45.4	48.8	51.9	55.3	59.9	61.8	63.3	66.4	69.3
71	38.2	39.8	44.1	46.2	49.6	52.6	56.2	60.8	62.7	64.3	67,4	70. 3
72	38.9	40.5	44.8	47.1	50.4	53.5	57.1	61.8	63.7	65.3	68.	71.5
73	39.6	41.3	45.6	47.9	51.3	54.3	58.0	62.7	64.6	66,2	69.2	72.3
74	40.4	42.0	46.4	48.7	52.1	55.2	58.9	63.6	65.6	67.2	70.3	73.3
75	41.1	42.8	47.2	49.5	52.9	56.1	59.8	64.5	66.5	68.1	71.3	74.3
76 77	41.8	43.5	48.0	50.3	53.3	56.9	60.7	65.5	67.4	69.1	72.3	75.3
78	42.6	44.3	48.8	51.1	54.6	57.8	61.6	66.4	68.4	70.0	73.2	76.3
78 79	43.3	45.0	49.6	51.9	55.5	58.7	62.5	67.3	69.3	71.0	74.2	77.3
30	44.1	45.8	50.4	52.7	56.3	59.5	63.4	68.3	70.3	72.0	75.2	78.3
/	44.8	46.5	51.2	53 .5	57.2	60.4	64.3	69.2	71.2	72.9	76.2	79.3

TABLE 8-7 continued

				PERCE	NTILES OF	R THE x2 D	ISTRIBUTIO	ON			
4.7.1-0	.40	. 30	.025	. 20	.10	.05	.025	.01	.005	.001	.0005
41	42.7	45.2	46.7	48.4	52.9	56.9	60.6	65.0	68.1	74.7	77.5
42	43.7	46.3	47.8	49.5	54.1	58 1	61.8	66.2	69.3	76.1	78.8
43	44.7	47.3	48.9	50.5	55.2	59.3	63.0	67.5	70.6	77.4	80.2
44	45.7	48.4	49.9	51.6	56.4	60.5	64.2	68.7	71.9	78.7	81.5
45	46.8	49.5	51.0	52.7	57.5	61.7	65.4	70.0	73.2	80.1	82.9
46	47.8	50.5	52.1	53.8	58.6	62.8	66.6	71.2	74.4	81.4	84.2
47	48.8	51.6	53.1	54.9	59.8	64.0	67.8	72.4	75.7	82.7	85.6
48	49.9	52.6	54.2	56.0	60.9	65.2	69.0	73.7	77.0	84.0	86.9
49	50.9	53.7	55.3	57.1	62.0	66.3	70.2	74.9	78.2	85.4	88.2
50	51.9	54.7	56.3	58.2	63.2	67.5	71.4	76.2	79.5	86.7	89.6
51	52.9	55.8	57.4	59.2	64.3	68.7	72.6	77.4	80.7	88.0	90.9
52	53.9	56.8	58.5	60.3	65.4	69.8	73.8	78.6	82.0	89.3	92.2
53	55.0	57.9	59.5	61.4	66.5	71.0	75.0	79.8	83.3	90.6	93.5
54	56.0	58.9	60.6	62.5	67.7	72.2	76.2	81.1	84.5	91.9	94.8
55	57.0	60. 0	61.7	63.6	68.8	73.3	77.4	82.3	85.7	93.2	96.2
56	58.0	61.0	62.7	64.7	69.9	74.5	78.6	83.5	87.0	94.5	97.5
57	59.1	62.1	63.8	65.7	71.0	75.6	79.8	84.7	88.2	95.8	98.8
58	60.1	63.1	64.9	66.8	72.2	76.8	80.9	86.0	89.5	97.0	100.1
59	61.1	64.2	65.9	67.9	73.3	77.9	82.1	87.2	90.7	98.3	101.4
60	62.1	65.2	67.0	69.0	74.4	79.1	83.3	88.4	92.0	99.6	102.7
61	63.2	66.3	6a.U	7 0. 0	75.5	au. 2	04.5	07.0	93.2	100.9	104.0
62	64.2	67.3	69.1	71.1	76.6	A1.4	95.7	90.8	94.4	102.2	105.3
63	65.2	68.4	70.2	72.2	77.7	82.5	86.8	92.0	95.6	103 4	106.6
64	66.2	69.4	71.2	73.3	78.9	83.7	88.0	93.2	96.9	104.7	107.9
65	67.2	70.5	72.3	74.4	80.0	84.8	89.2	94.4	98.1	106.0	109.2
66	68.3	71.5	73.3	75.4	81.1	86.0	90.3	95.6	99.3	107.3	110.5
67	69.3	72.6	74.4	76.5	82.2	87.1	91.5	96.8	100.6	108.5	111.7
68	70.3	73.6	75.5	77.6	83.3	88.3	92.7	98.0	101.8	109.8	113.0
69	71.3	74.6	76.5	78.6	84.4	89.4	93.9	99.2	103.0	111.1	114.3
70	72.4	75.7	77.6	79.7	85.5	90.5	95.0	100.4	104.2	112.3	115.6
71	73.4	76.7	78.6	80.8	86.6	91.7	96.2	101.6	105.4	113.6	116.9
72	74.4	77.8	79.7	81.9	87.7	92.8	97.4	102.8	106.6	114.8	118.1
73	75.4	78.8	80.7	82.9	88.8	91.9	98.5	104.0	107.9	116.1	119.4
74	76.4	79.9	81.8	84.0	90.0	95.1	99.7	105.2	109.1	117.3	120.7
75	77.5	80.9	82.9	85.1	91.1	96.2	100.8	106.4	110.3	118.6	121.9
	78.5	82.0	83.9	96.1	92.2	97,4	102.0	107.6	111.5	119.9	123.2
	79.5	83.0	85.0	87.2	93.3	98.5	103.2	108.8	112.7	121.1	124.5
	80.5	84.0	86.0	88.3	94.4	99.6	104.3	110.0	113.9	122.3	125.7
	81.5	85.1	87.1	89.3	95.5	100.7	105.5	111.1	115.1	123.6	127.0
80	82.6	86.1	88.1	90.4	96.6	101.9	106.6	112.3	116.3	124.8	128.3

TABLE 8-7 continued

				PER	CENTILES	OF THE X	2 DISTRI	BUTION				
d.f. 1-0		.999	. 995	.99	.975		. 90	. 80	.75	.70	.60	.50
81	45.5	47.3	52.0	54.4	58.0	61.3	65.2	70.1	72.2	73.9		
82	46.3	48.0	52.8	55.2	58.8	62.1	66.1	71.1	73.1		77.2	80.3
83	47.0	48.8	53.6	56.0	59.7	63.0	67.0	72.0		74.8	78.1	81.3
84	47.8	49.6	54.4	56.8	60.5	63.9	67.9	72.9	74.1	75.8	79.1	82.3
85	48.5	50.3	55.2	57.6	61.4	64.7	68.8	73.9	75.0 76.0	76.8 77.7	80.1 81.1	83.3 84.3
86 87	49.3 50.0	51.1	56.0	58.5	62.2	65.6	69.7	74.8	76.9	78.7	82.1	85.3
88		51.9	56.8	59.3	63.1	66.5	70.6	75.7	77.9	79.6	83.0	86.3
	50.8	52.6	57.6	60.1	63.9	67.4	71.5	76.7	78.8	80.6	84.0	87.3
89	51.5	53.4	58.4	60.9	64.8	68.2	72.4	77.6	79.8	81.6	85.0	
90	52.3	54.2	59.2	61.8	65.6	69.1	73.3	78.6	80.7	82.5	86.0	86.3
91	53.0	54.9	60.0	62.6	66.5	70.0	74.2	79.5				د.89
92	53.8	55.7	60.8	63.4	67.4	70.9	75.1	80.4	81.7	83.5	87.0	90.3
93	54.5	56.5	61.6	64.2	68.2	71.8			82.6	84.4	88.0	91.3
94	55.3	57.2	62.4	65.1	69.1	72.6	76.0	81.4	83.6	85.4	88.9	92.3
95	56.1	58.0	63.2	65.9	69.9	73.5	76.9 77.8	82.3 83.2	84.5 85.5	86.4 87.3	89.9 90.9	93.3
96	56.8	58.8	64.1	66.7	70.8	74.4	30.5				30.9	94.3
97	57.6	59.6	64.9	67.6	71.6	75.3	78.7	84.2	86.4	88.3	91.9	95.3
98	58.4	60.4	65.7	68.4	72.5		79.6	85.1	87.4	89.2	92.9	96.3
99	59.1	61.1	66.5	69.2	73.4	76.2	80.5	86.1	88.3	90.2	93.8	97.3
100	59.9	61.6	67.3	70.1	74.2	77.0 77.9	81.4	87.0	89.3	91.2	94.8	98.3

TABLE B-7 continued PERCENTILES OF THE χ^2 DISTRIBUTION

1-0											
٠.٢. ه	40	. 30	. 25	. 20	.10	.05	.025	.01	.005	.001	.0005
81	83.6	87.2	89.2	91.5	97.7	103.0	107.8	113.5	117.5	126.1	129.5
82	84.6	38.2	90.2	92.5	98.9	104.1	108.9	114.7	118.7	127.3	130.8
83	85.6	89.2	91.3	93.6	99.9	105.3	110.1	115.9	119.9	128.6	132.0
84	86.6	90.3	92.3	94.7	101.0	106.4	111.2	117.1	121.1	129.8	133.3
85	87.7	91.3	93.4	95.7	102.1	107.5	112.4	118.2	122.3	131.0	134.5
86	88.7	92.4	94.4	96.8	103.2	108.6	113.5	119.4	123.5	132.3	135.8
87	89.7	93.4	95.5	97.9	104.3	109.8	114.7	120.6	124.7	133.5	137.0
58	90.7	94.4	96.5	98.9	105.4	110.9	115.8	121.8	125.9	134.7	138.3
89	91.7	95.5	97.6	100.0	106.5	112.0	117.0	122.9	127.1	136.0	139.5
90	92.8	96.5	98.6	101.1	107.6	113.1	118.1	124.1	128.3	137.2	140.8
91	93.8	97.6	99.7	102.1	108.7	114.3	119.3	125.3	129.5	138.4	142.0
92	94.8	98.6	100.7	103.2	109.8	115.4	120.4	126.5	130.7	139.7	143.3
93	95.5	99.6	101.8	104.2	110.9	116.5	121.6	127.6	131.9	140.9	144.5
94	96.5	100.7	102.8	105.3	111.9	117.6	122.7	128.5	133.1	142.1	145.8
95	97.9	101.7	103.9	106.4	113.0	118.8	123.9	130.0	134.2	143.3	147.0
96	98.9	102.8	104.9	107.4	114.1-	119.9	125.0	131.1	135.4	144.6	148.2
97	99.9	103.8	106.0	108.5	115.2	121.0	126.1	132.3	136.6	145.8	149.5
98	100.9	104.8	107.0	107.5	116.3	122.1	127.3	133.5	137.8	147.0	150.7
99	101.9	105.9	108.1	110.6	117.4	123.2	128.4	134.6	139.0	148.2	151.9
100	102.9	106.9	109.1	111.7	118.5	124.3	129.6	135.8	140.2	129.4	153.2

For larger degrees of freedom:

$$\frac{2}{x_1-a} = \frac{1}{2} \left(\frac{a}{a} + \sqrt{2(d \cdot f \cdot -1)^2} \right)$$
 approximately, where d.f. = degrees of freedom and Z_a is

given in Table B-4.

MTP 3-1-005 1 March 1972

TABLE 8-8*
PERCENTILES OF THE F DISTRIBUTION

							e P DISIR.	TOUTION				
-444-		_				₹.	50					
•	1	2	3	4	5	6	7	8	9	10	12	15
1	1.00	1.50	1.71	1.82	1.89	1.94	1.96	2.00	2.03	2.04	2.07	2.09
2	. 667	1.00	1.13	1.21	1.25	1.28	1.30	1.32	1.33	1.34	1.36	1.38
3	. 585	. 881	1.00	1.06	1.10	1.13	1.15	1.16	1.17	1.18	1.20	1.21
4	. 549	.828	1941	1.00	1.04	1.06	1.08	1.09	1.10	1.11	1.13	1.14
5	. 528	.799	. 907	. 965	1.00	1.02	1.04	1.05	1.06	1.67	1.09	1.10
6 7	.515	.780	. 886	.942	.977	1.00	1.02	1.03	1.04	1.05	1.06	1.07
8	. 506	.767	.871	. 926	. 960	.983	1.00	1.01	1.02	1.03	1.04	1.05
,	.499 .494	.757	.860	.915	. 948	.971	. 988	1.00	1.01	1.02	1.03	1.04
10	.490	.749 .743	.852	.906	.939	. 962	.978	. 990	1.00	1.01	1.02	1.03
	. 470	./43	. 845	.899	.932	. 954	.971	. 983	. 992	1.000	1.610	1.021
11	. 486	. 739	. 840	.893	. 926	0/0						
12	. 484	.735	.835	. 888	.921	. 94.8 . 94.3	.964	.977	. 986	. 994	1.004	1.015
13	.482	.733	.832	. 884	.917	.939	.959	.972	. 981	. 989	1.000	1.010
14	.480	.730	.829	.981	.914	.936	. 958	. 969	.978	.985	. 995	1.006
15	.478	.726	.826	.878	.911	.933	.955	. 966	. 974	.981	.99?	1.003
					.,	. 733	. 948	. 960	.970	.977	. 989	1.000
16	.477	.724	.824	.876	. 908	.930	. 945	. 959	. 969	. 975		
17	.476	.723	.822	. 874	. 906	.928	. 942	.958	. 966	.973	. 986	.997
18	.474	.722	.820	.872	.904	. 926	.940	. 956	. 964	.973	. 984	. 994
19	.473	.720	.818	.870	.902	.924	. 939	. 953	.962	.969	.981	. 992
20	.472	.718	.816	.868	. 900	.922	. 938	.950	. 959	. 966	.980	. 990
									,	. 900	. 977	. 989
21	.471	.717	.815	. 866	. 899	. 921	.935	. 949	. 958	. 966	.976	
22	.470	.716	.814	.865	.897	.919	.934	. 948	.957	.965	.975	. 967
23 24	.469	.715	.813	.864	.895	.918	.933	.946	. 956	.963	.974	. 986
25	.469	.714	.812	. 863	. 895	.917	. 932	. 944	. 953	.961	.972	. 984 . 98 3
25	.469	.713	.811	.862	. 894	.916	.931	. 94 3	. 952	. 961	.971	.982
26	.468										.,,,	. 702
27	.468	.712	.810	.861	. 5 93	. 915	. 930	. 94 2	.951	. 960	.970	. 981
28	.467	.711 .710	. 809	. 860	. 892	. 914	. 929	. 941	.950	. 959	.970	.980
29	.466	.709	.809	.859	. 891	. 914	.928	. 940	. 950	. 958	.969	.979
30	.466	.709	. 808	.859	. 891	.913	.927	. 940	. 949	. 958	. 968	978
		.,,,,	. 807	.858	. 890	.912	.927	. 939	. 948	. 955	. 966	.978
40	.463	. 705	. 802	. 854								
50	.462	.703	.800	.851	. 885	. 907	.92?	. 934	. 943	.950	. 961	.972
40	. 461	.701	. 798	.849	. 683	. 904	. 918	. 931	. 940	. 946	. 959	.969
70	•	-	-	.848	.880	. 901	.917	.928	7ذو.	94.5	. 956	. 967
80	-	-	-		.679	,900	.915	. 927	. 936	. 945	.955	.965
			-	. 847	. 878	. 899	. 914	.926	. 935	. 944	. 954	964
90	-	-	-	. 946	.877	904						
100	-	-	_	. 845	.876	.898	.913	.925	. 934	. 943	. 953	. 963
120	.458	. 697	. 793	.844	.875	.897 .896	.912	. 924	.933	. 942	.952	.962
500	.455	.693	. 789	.839	.870	.891	.912	. 923	.932	.939	.950	.961
						.071	. 907	.919	.928	. 937	. 947	.958

*See Note on page 2-34.

TABLE 8-8 continued
PERCENTILES OF THE F DISTRIBUTION

	PERCENTILES OF THE P DISTRIBUTION												
							F.50						
4.1.1	1	2	3	4	5	6	7	8	•	10	12	15	
1	5.83	7.50	8.20	8.58	8.82	8.98	9.10	9.19	9.26	9.32	9.41	9.49	
. 2	2.57	3.00	3.15	3.23	3.28	3.31	3.34	3.35	3.37	3.38	3.39	3.41	
3	2.02	2.28	2.36	2.39	2.41	2.42	2.43	2.44	2.44	2.44	2.45	2.46	
4	1.81	2.00	2.05	2.06	2.07	2.08	2.08	2.08	2.08	2.08	2.03	2.08	
5	1.69	1.85	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	
6	1.62	1.76	1.79	1.79	1.79	1.78	1.78	1.78	1.77	1.77	1.77	1.76	
7	1.57	1.70	1.72	1.71	1.71	1.71	1.70	1.70	1.69	1.69	1.68	1.68	
8	1.54	1.66	1.66	1.66	1.66	1.65	1.64	1.64	1.64	1.63	1.62	1.62	
•	1.51	1.62	1.63	1.62	1.62	1.61	1.60	1.60	1.59	1.59	1.58	1.57	
10	1.49	1.60	1.59	1.59	1.59	1.58	1.57	1.56	1.56	1.551	1.542	1.532	
11	1.47	1.58	1.57	1.56	1.56	1.55	1.54	1.53	1.53	1.523	1.513	1.503	
12	1.46	1.56	1.55	1.54	1.54	1.53	1.52	1.51	1.51	1.500	1.490	1.479	
13	1.45	1.55	1.54	1.53	1.52	1.51	1.50	1.50	1.49	1.481	1.470	1.458	
14	1.44	1.53	1.53	1.52	1.50	1.49	1.48	1.47	1.47	1.464	1.453	1.441	
15	1.43	1.52	1.52	1.51	1.49	1.48	1.47	1.46	i.46	1.430	1.438	1.426	
16	1.43	1.52	1.51	1.51	1.48	1.47	1.47	1.45	1.45	1.438	1.426	1.413	
17	1.42	1.51	1.50	1.50	1.47	1.46	1.46	1.45	1.44	127	1.415	1.401	
18	1.41	1.51	1.50	1.49	1.46	1.46	1.45	1.44	1.43	1.417	1.405	1.391	
19	1.41	1.50	1.49	1.48	1.46	1.45	1.44	1.43	1.42	1.409	1,396	1.382	
20	1.49	1.49	1.48	1.47	1.45	1.44	1.43	1.42	1.41	1.401	1.388	1.373	
21	1.44	1.49	1.48	1.46	1.45	1.43	1.43	1.42	1.40	1.394	1.381	1.366	
22	1.40	1.48	1.47	1.46	1.44	1.43	1.42	1.41	1.39	1.388	1.374	1.359	
23	1.39	1.48	1.47	1.45	1.44	1.42	1.41	1,40	1.39				
24	1.39	1.47	1.46	1.44	1.43	1.41	1.40	1.39	1.38	1.383	1.368	1.353	
25	1.39	1.47	1.46	1.44	1.43	1.41	1.40	1.39	1.38		1.363	1.348	
							1.40	1.39	1. 30	1.373	1.35#	1.342	
26	1.39	1.47	1.45	1.43	1.43	1.41	1.40	1.39	1.38	1.368	1.354	1.338	
27	1.38	1.46	1.45	1.43	1.42	1.40	1.39	1.38	1.37	1.364	1.349	1.333	
28	1.36	1.46	1.44	1.42	1.42	1.40	1.39	1.38	1.37	1.360	1.345	1.329	
29	1.38	1.45	1.44	1.42	1.41	1.39	1.39	1.37	1.36	1.357	1.342	1.325	
30	1.38	1.45	1.44	1.42	1.41	1.39	1.38	1.37	1.36	1.354	1.338	1.322	
40	1.36	1.44	1.42	1.40	1.39	1.37	1.36	1.35	1.34	1.330	1.314	1.296	
50	1.35	1.43	1.42	1.39	1.38	1.36	1.35	1.34	1.33	1.316	1.299	1.281	
60	1.35	1.42	1.41	1.38	1.37	1.35	1.33	1.32	1.31	1.306	1.289	1.270	
70	1.35	1.41	1.41	1.38	1.37	1.35	1.33	1.32	1.31	1.300	1.282	1.263	
90	1.35	1.41	1.40	1.38	1.37	1.34	1.32	1.31	1.30	1.295	1.277	1.257	
90)	1.34	1.40	1.40	1.37	1.36	1.34	1.32	1.31	1.30	1.291	1.273	1.253	
100	1.34	1.40	1.39	1.37	1.36	1.33	1.31	1.30	1.29	1.288	1.270	1,250	
120	1.34	1.40	1.39	1.37	1.35	1.33	1.31	1.30	1.29	1.283	1.265	1.244	
500	1.32	1.39	1.37	1.35	1.33	1.31	1.29	1.28	1.27	1.266	1.246	1.225	

TABLE 1-8 continued

7. 75

F• 75													
	d.f.1	1	2	3	4	5	6	7	8	9	10	12	15
	d.f.2 1	5.83	7.50	8.20	8.58	8.82	8.98	9.10	9.19	9.26	9.32	9.41	9.49
	2	2.57	3.00	3.15	3.23	3.28	3.31	3.34	3.35	3.37	3.38	3.39	3.41
	3	2.02	2.28	2.36	2.39	2.41	2.42	2.43	2.44	2.44	2.44	2.45	2.46
	4	1.81	2.00	2.05	2.06	2.07	2.08	2.08	2.08	2.08	2.08	2.08	2.08
	5	1.69	1.85	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89
	6	1.62	1.76	1.79	1.79	1.79	1.78	1.78	1.78	1.77	1.77	1.77	1.76
	7	1.57	1.70	1.72	1.71	1.71	1.71	1.70	1.70	1.69	1.69	1.68	1.68
	8	1.54	1.66	1.66	1.66	1.66	1.65	1.64	1.64	1.64	1.63	1.62	1.62
	9	1.51	1.62	1.63	1.62	1.62	1.61	1.60	1.60	1.59	1.59	1.58	1.57
	10	1.49	1.60	1.59	1.59	1.59	1.58	1.57	1.56	1.56	1.551	1.542	1.532
	11	1.47	1.53	1.57	1.56	1.56	1.55	1.54	1.53	1.53	1.523	1.513	1.503
	12	1.46	1.56	1.55	1.54	1.54	1.53	1.52	1.51	1.51	1.500	1.490	1.479
	13	1.45	1.55	1.54	1.53	1,52	1.51	1.50	1.50	1.49	1.481	1.470	1.458
	14	1.44	1.53	1.53	1.52	1.50	1.49	1.48	1.47	1.47	1.464	1.453	1.441
	15	1.43	1.52	1.52	1.51	1.49	1.48	1.47	1.46	1.46	1.450	1.438	1.426
	.,	1.43	1.54	1.76	1.31	1147	1.40	1.4.	2.40	2.40	,.		
	16	1.43	1.52	1.51	1.51	1.48	1.47	1.47	1.45	1.45	1.438	1.426	1.413
	17	1.42	1.51	1.50	1.50	1.47	1.46	1.46	1.45	1.44	1.427	1.415	1.401
	18	1.41	1.51	1.50	1.49	1.46	1.46	1.45	1.44	1.43	1.417	1.405	1.391
	19	1.41	1.50	1.49	1.48	1.46	1.45	1.44	1.43	1.42	1.409	1.396	1.382
	20	1.40	1.49	1.48	1.47	1.45	1.44	1.43	1.42	1.41	1.401	1.388	1.373
	21	1.40	1.49	1.48	1.46	1.45	1.43	1.43	1.42	1.40	1.394	1.381	1.366
	22	1.40	1.48	1.47	1.46	1.44	1.43	1.42	1.41	1.39	1.388	1.374	1.359
	23	1.39	1.48	1.47	1.45	1.44	1.42	1.41	1.40	1.39	1.383	1.368	1.353
	24	1.39	1.47	1.46	1.44	1.43	1.41	1.40	1.39	1.38	1.377	1.363	1.348
	25	1.39	4.47	1.46	1.44	1.43	1.41	1.40	1.39	1.38	1.373	1.358	1.342
	26	1.39	1.47	1.45	1.43	1.43	1.41	1.40	1.39	1.38	1.368	1.354	1.338
	27	1.38	1.46	1.45	1.43	1.42	1.40	1.39	1.38	1.37	1.364	1.349	1.333
	28	1.38	1.46	1.44	1.42	1.42	1.40	1.39	1.38	1.37	1.360	1.345	1.329
	29	1.38	1.45	1.44	1.42	1.41	1.39	1.38	1.37	1.36	1.357	1.342	1.325
	30	1.38	1.45	1.44	1.42	1.41	1.39	1.38	1.37	1.36	1.354	1,338	1.322
	30	1.30	1.43	1.44	1.42	1.41	1.39	1. 30	1.3/	1.30	1.374	1.370	1.344
	40	1.36	1.44	1.42	1.40	1.39	1.37	1.36	1.35	1.34	1.330	1.314	1.296
	50	1.35	1.43	1.42	1.39	1.38	1.36	1.35	1.34	1.33	1.316	1.299	1.281
	60	1.35	1.42	1.41	1.38	1.37	1.35	1.33	1.32	1.31	1.306	1.289	1.270
	70	1.35	1.41	1.41	1.38	1.37	1.35	1.33	1.32	1.31	1.300	1.282	1.263
	80	1.35	1.41	1.40	1.38	1.37	1.34	1.32	1.31	1.30	1.295	1.277	1.257
	90	1.34	1.40	1.40	1.37	1.36	1.34	1.32	1.31	1.30	1.291	1.273	1.253
	100	1.34	1.40	1.39	1.37	1.36	1.33	1.31	1.30	1.29	1.288	1.270	1.250
	120	1.34	1.40	1.39	1.37	1.35	1.33	1.31	1.30	1.29	1.283	1.265	1.244
	500	1.32	1.39	1.37	1.35	1.33	1.31	1.29	1.28	1.27	1.266	1.246	1.225

TABLE 8-8 continued
PERCENTILES OF THE F DISTRIBUTION

4.1.1	20	25	30	40	50	60	70	80	••			
4.1.7	9.58	9.63	9.67	9.71	9.74	9.76	9.76		90	100	120	500 9,85
2	3.43	3.43	3.44	3.45	3.45	3.46		9.77	9.78	9.78	9.80	
3	2.46	2.46	2.47	2.47	2.47	2.47	3.46 2.47	3.46 2.47	3.47 2.47	3.47	3.47	3.48
4	2.09	2.08	2.08	2.08	2.08	2.08	2.08			2.47	2.47	2.47
5	1.88	1.88	1.88	1.88	1.88	1.87	1.87	2.08	2.08	2.08	2.08	2.08
	••••	•••••	•••••	1.00	1.00	1.07	1.67	1.87	1.47	1.87	1.87	1.87
6	1.76	1.75	1.75	1.75	1.75	1.74	1.74	1.74	1. *•	1.74	1.74	1.74
7	1.67	1.67	1.66	1.66	1.66	1.65	1.65	1.65	1.65	1.65	1.65	1.65
8	1.61	1.60	1.60	1.59	1.59	1.59	1.59	1.58	1.58	1.58	1.58	1.58
•	1.56	1.56	1.55	1.55	1.54	1.54	1.54	1.53	1.53	1.53	1.53	1.53
10	1.522	1.516	1.512	L. 506	1.502	1.500	1.498	1.497	1.496	1.495	1.493	1.488
11	1.492	1.485	1.480	1.474	1 470	1.467	1.465	1.463	1.462			
12	1.467	1.459	1.454	1.447	1.443	1.440	1.438	1.436	1.435	1.461	1.460	1.454
13	1.446	1.438	1.432	1.425	1.420	1.417	1.414	1.413	1.411	1.434	1.432	1.454
14	1.428	1.419	1.413	1.405	1.400	1.397	1.394	1.393	1.391	1.390	1.406	1.402
15	1.412	1.403	1.397	1.389	1.383	1.)50	1.377	1.375	1.374	1.372	1.388 1.370	1.381
						2170	•••	1.,,,	1.,,,	1. 7/2	1.370	1.363
16	1.398	1.389	1.382	1.374	1.368	1.365	1.362	1.360	1.35A	1.357	1.355	1.347
17	1.386	1.377	1.370	1.361	1.355	1.351	1.348	1.346	1.344	1.343	1.341	1.333
18	1.376	1.166	1,359	1.349	1.343	1.339	1.336	1.334	1.332	1.131	1.129	1 - 320
19	1,366	1. !56	1,349	1.139	1.333	1.329	1.326	1.323	1.321	1.320	1.318	1.308
20	1.357	1.347	1.340	1.330	1.323	1.319	1.316	1.313	1.311	1.310	1.367	1.298
21	1.350	1.339	1.331	1.321	1.315	1.310	1.307	1.304	1.102	1.301	1.298	1.289
22	1.1.3	1.332	1.324	1.313	1.307	1.302	1.299	1.296	1.294	1.293	1.290	1.280
23	4.336	1.325	1.317	1.306	1.300	1.295	1.291	1.289	1.287	1.285	1.282	1.272
24	1.330	1.319	1.311	1.300	1.293	1.288	1.285	1.282	1.280	1.278	1.275	1.265
25	1.325	1.313	1.305	1.294	1.287	1.282	1.278	1.275	1.273	1.271	1.269	1.258
26	1.320	1. 108	1,300	1.288	1.281	1.276	1.272	1.270	1.267	1.265	1.261	1.251
27	1.315	1.301	1.295	1.283	1.276	1.271	1.267	1.264	1.262	1.260	1.257	1,245
28	1.311	1.299	1.290	1.274	1.271	1.266	1.262	1.259	1.25	1.255	1.252	1,240
29	1.307	1.295	1.286	1.274	1.266	1.261	1.257	1.254	1.252	1.250	1.247	1.235
20	1.303	1.291	1.282	1.270	1.362	1.257	1.253	1.250	1.247	1.245	1.242	1.236
40	1 224											
55.	1.276	1.262	1.252	1.219	1.230	1.224	1.220	1.216	1.213	1.211	1.20#	1.193
5°	1.259	1.245	1.235	1.220	1.211	1.204	1.199	1.196	1.192	1,190	1.186	1.170
	1.24#	1.233	1.223	1.208	1.19#	1.191	1.185	1.181	1.179	1.175	1.171	1.153
70	1.240	1.225	1.214	1.148	1.148	1.1#1	1.175	1.171	1.167	1.164	1.160	1.141
AU	1.235	1.219	1.207	1.191	1.1*1	1.171	1.167	1.163	1.159	1.156	1-152	1.141
90	1.230	1.214	1.202	1.186	1.175	1.167	1.161	1.15	1.153	1.150	1.145	1.124
100	1.226	1.210	1.148	1.1#2	1.170	1.162	1.156	1.152	1.148	1.144	1.139	1.11
120	1.221	1.204	1.192	1.175	1.163	1.155	1.149	1.144	1.140	1.136	1.131	1.107
500	1.199	1.181	1.168	1.149	1.136	1.126	1.118	1.312	1.107	1.103	1.096	1.062

TABLE 8-8 continued PERCENTILES OF THE F DISTRIBUTIO.

4.1.1	2	3	4	5	6	7	8	9	10	12	15
4.1.2	3.75	3.26	3.31	3.36	3.41	3.45	3.46	3.50	3.52	3.55	3.58
3	3.60	2.92	2.87	2.87	2.88	2.89	2.90	2.90	2.91	2.92	2.92
4	3.24	2.55	2.48	2.46	2.45	2.45	2.45	2.45	2.44	2.44	2.44
5	3.03	2.35	2.26	2.23	2.21	2.20	2.19	2.19	2.19	2.18	2.17
6	2.90	2.22	2.12	2.08	2.76	2.05	2.04	2.03	2.03	2.02	2.01
7	2.80	2.13	2.03	1.98	1.96	1.94	1.93	1.92	1.92	1.90	1.89
8	2.73	2.06	1.96	1.91	1.89	1.87	1.86	1.85	1.84	1.82	1.81
9	2.68	2.02	1.91	1.86	1.83	1.81	1.80	1.79	1.78	1.76	1.75
10	2.64	1.98	1.87	1.82	1.79	1.77	1.75	1.74	1.73	1.72	1.72
11	2.60	1.95	1.83	1.79	1.76	1.73	1.72	1.70	1.69	1.69	1.69
12	2.58	1.92	1.81	1.76	1.73	1.71	1.69	1.68	1.66	1.65	1.65
13	2.55	1.90	1.78	1.73	1.70	1.68	1.66	1.64	1.63	1.62	1.60
14	2.53	1.88	1.76	1.71	1.69	1.66	1.64	1.62	1.61	1.59	1.57
15	2.52	1.87	1.75	1.70	1.68	1.64	1.62	1.61	1.60	1.58	1.56
16	2.50	1.85	1.74	1.68	1.65	1 41					
17	2.49	1.84	1.72	1.67	1.63	1.62 1.61	1.60	1.59	1.58	1.56	1.54
18	2.48	1.83	1.71	1.66	1.62	1.60	1.59 1.58	1.58 1.56	1.56	1.54	1.52
19	2.47	1.82	1.70	1.65	1.61	1.59	1.57	1.55	1.55	1.53	1.51
20	2.46	1.82	1.70	1.64	1.61	1.58	1.56		1.54	1.52	1.50
	2.40	1.01	1.,,,	1.04	1.01	1.50	1.36	1.55	1.53	1.51	1.49
21	2.45	1.81	1.69	1.63	1.60	1.57	1.55	1.53	1.52	1.50	1.48
22	2.44	1.80	1.68	1.62	1.59	1.56	1.54	1.53	1.51	1.49	1.47
23	2.44	1.79	1.67	1.62	1.58	1.56	1.53	1.52	1.50	1.48	1.46
24	2.43	1.79	1.67	1.61	1.58	1.55	1.53	1.52	1.50	1.48	1.46
25	2.43	1.78	1.66	1.61	1.57	1.54	1.52	1.51	1.49	1.47	1.44
26	2.42	1.78	1.66	1.60	1.56	1.54	1.52	1.50	1.49	1.46	1.44
27	2.42	1.77	1.65	1.60	1.56	1.53	1.51	1.49	1.48	1.46	1.43
28	2.41	1.77	1.65	1.59	1.56	1.53	1.51	1.49	1.48	1.45	1.43
29	2.41	1.77	1.65	1.59	1.55	1.53	1.50	1.49	1.47	1.45	1.42
30	2.41	1.77	1.64	1.59	1.55	1.52	1.50	1.48	1.47	1.45	1.42
40	2.38	1.74	1.62	1.56	1.53	1.50	1.47	1.46			
รก	2.36	1.73	1.60	1.54	1.50	1.47	1.45	1.43	1.44	1.42	1.39
60	2.36	1.72	1.60	1.54	1.50	1.47	1.44	1.43	1.42	1.39	1.36
70	2.34	1.71	1.59	1.53	1.49	1.46	1.43	i.41	1.41	1.38	1.36
90	2.34	1.70	1.58	1.52	1.48	1.45	1.43	1.41	1.40	1.37	1.34
				/-		,	,	1.41	1.39	1.36	1.33
90	2.33	1.70	1.58	1.52	1.48	1.45	1.42	1.40	1.39	1.36	1.33
100	2.33	1.70	1.57	1.51	1.47	1.44	1.42	1.40	1.38	1.35	1.33
120	2.33	1.79	1.57	1.51	1.47	1.44	1 42	1.40	1.38	1.35	1.32
san	2.31	1.68	1.56	1.49	1.45	1.42	1.40	1.37	1.36	1.33	1.30

TABLE 3-8 continued

d.f. ₂	20	25	30	40	50	60	70	80	90	100	120	500
•	3.60	3.61	3.63	3,65	3.66	3.66	3.66	3.66	3.67	3.68	3.68	3.69
3	2.93	2.93	2.94	2.94	2.95	2.95	2.95	2.95	2.95	2.95	2.96	2.96
4	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.43	2.43	2.43	2.43	2.43
5	2.17	2.16	2.16	2.16	2.16	2.16	2.15	2.15	2.15	2.15	2.15	2.15
6	2.00	1.99	1.99	1.98	1.98	1.98	1.97	1.97	1.97	1.97	1.97	1.97
7	1.88	1.87	1.87	1.86	1.86	1.86	1.85	1.85	1.85	1.85	1.85	1.84
8	1.80	1.78	1.78	1.77	1.77	1.77	1.76	1.76	1.76	1.76	1.76	1.75
9	1.73	1.72	1.72	1.71	1.70	1.70	1.69	1.69	1.69	1.69	1.69	1.68
10	1.682	1.671	1.664	1.654	1.648	1.644	1.641	1.639	1.637	1.636	1.634	1.6?6
11	1.642	1.630	1.622	1.612	1.605	1.601	1.598	1.595	1.593	1.592	1.590	1.581
12	1.606	1.596	1.588	1.577	1.570	1.565	1.562	1.559	1.557	1.555	1.553	1.543
13	1.580	i.568	1.559	1.547	1.540	1.535	1,531	1.528	1.526	1.525	1.522	1.512
14	1.557	1.543	1.534	1.522	1.514	1.509	1,505	1.502	1.500	1.498	1.495	1.485
15	1.536	1.522	1.513	1.500	1.492	1.487	1.483	1.480	1.477	1.475	1.472	1.461
16	1.518	1.504	1.494	7.481	1.473	1.467	1.463	1.460	1.457	1.455	1.452	1.440
17	1.503	1.488	1.477	1.464	1.455	1.450	1.445	1.442	1.439	1.437	1.434	1.422
18	1.489	1.474	1.463	1.449	1.440	1.434	1.430	1.426	1.424	1.422	1.418	1.406
19	1.476	1.461	1.450	1.436	1.427	1.420	1.416	1.412	1.410	1.407	1.404	1.391
20	1.465	1.449	1.438	1.423	1.414	1.408	1.403	1.400	1.397	1.395	1.391	1.377
21	1.455	1.439	. 427	1.413	1.403	1.397	1.392	1.388	1.385	1.383	1.379	1.365
22	1.446	1.429	1.418	1.403	1.393	1.386	1.381	1.378	1.375	1.372	1.369	1.354
23	1.437	1.421	1.409	1.393	1.384	1.377	1.372	1.368	1.365	1.362	1.359	1.344
24	1.430	1.413	1.401	1.385	1.375	1.368	1.363	1.359	1.356	1.353	1.350	1.334
25	1.423	1.406	1.393	1.377	1.367	1.360	1.355	1.351	1.348	1.345	1.341	1.326
26	1.416	1.399	1.387	1.370	1.360	1.353	1.347	1.343	1.340	1.337	1.333	1.318
27	1.410	1.393	1.380	1.364	1.353	1.346	1.340	1.336	1.333	1.330	1.326	1.310
28	1.405	1.387	1.374	1.357	1.343	1.339	1.334	1.330	1.326	1.324	1.319	1.303
29	1.400	1.382	1.369	1.352	1.341	1.333	1.328	1.323	1.320	1.317	1.313	1.296
30	1.395	1.377	1.364	1.346	1.335	1.328	1,322	1.318	1.314	1.311	1.307	1.290
40	1:60	1.340	1.326	1.307	1.295	1,286	1,280	1.275	1.271	1.268	1.263	1.24.
50	1.339	1.318	1.303	1.293	1.270	1.261	1.254	1.249	1.245	1.241	1.236	1.214
60	1.324	1.303	1.288	1.267	1.253	1.244	1.236	1.231	1.226	1.222	1.217	1.193
70	1.314	1.293	1.277	1.255	1.241	1.231	1.223	1.218	1.213	1.209	1.203	1.177
80	1.307	1.285	1.269	1.246	1.232	1.221	1.214	1.207	1.203	1.198	1.192	1.155
90	1.301	1.278	1.262	1.240	1.225	1.214	1.206	1.199	1.194	1.190	1.184	1.156
100	1.296	1.273	1.257	1.234	1.219	1.208	1.200	1.193	1,188	1.183	1.177	1.148
120	1.289	1.266	1.249	1.225	1.210	1.199	1.190	1.183	1.178	1.173	1.166	1.135
500	1.262	1.237	1.219	1.193	1.175	1.162	1.152	1.143	1.137	1.131	1.122	1.078

TABLES 8-8 continued

d.f.,	2	3	4	5	6	7	8	9	10	12	15
d.f.2 2	5.52	4.84	4.91	5.00	5.06	5.12	5.16	5.20	5.22	5.26	5.31
3	4.72	3.83	3.76	3.75	3.75	3.76	3.77	3.77	3.77	3.78	3.79
4	4.10	3.21	3.10	3.06	3.04	3.03	3.03	3.02	3.02	3.01	3.00
5	3.75	2.88	2.75	2.70	2.67	2.65	2.64	2.63	2.62	2.61	2.60
											2.00
6	3.54	2.67	2.54	2.49	2.45	2.43	2.41	2.40	2.39	2.37	2.35
7	3.39	2.55	2.41	2.34	2.30	2.28	2.26	2.24	2.23	2.21	2.19
8	3.29	2.46	2.31	2.24	2.20	2.17	2.15	2.13	2.12	2.10	2.08
9	3.21	2.39	2.24	2.17	2.12	2.09	2.07	2.05	2.03	2.01	1.99
10	3.15	2.33	2.18	2.11	2.06	2.03	2.01	1.99	1.971	1.946	1.921
11	3.10	2.29	2.14	2.06	2.02	1.98	1.96	1.94	1.919	1.894	1.866
12	3.06	2.26	2.10	2.02	1.98	1.94	1.92	1.89	1.877	1.851	1.824
13	3.03	2.23	2.07	1.99	1.94	1.91	1.88	1.86	1.842	1.814	1.788
14	3.00	2.20	2.04	1.97	1.92	1.88	1.85	1.83	1.813	1.786	1.755
15	2.98	2.18	2.02	1.94	1.89	1.86	1.83	1.81	1.787	1.759	1.729
.,											
16 17	2.96	2.16	2.00	1.92	1.87	1.84	1.81	1.78	1.776	1.759	1.705
18	2.94	2.15	1.99	1.91	1.86	1.82	1.79	1.77	1.747	1.717	1.685
19	2.93	2.13	1.97	1.89	1.84	1.80	1.77	1.75	1.729	1.700	1.668
20	2.91 2.90	2.12 2.11	1.96	1.88	1.83	1.79	1.76	1.73	1.716	1.685	1.652
	2.,0	4.11	1.95	1.87	1.81	1.78	1.75	1.72	1.702	1.670	1.637
21	2.89	2.10	1.94	1.86	1.80	1.76	1.73				
22	2.88	2.09	1.93	1.85	1.79	1.75	1.72	1.71	1.690	1.658	1.625
23	2.87	2.08	1.92	1.84	1.78	1.74	1.72	1.70	1.678	1.647	1.612
24	2.86	2.08	1.91	1.83	1.78	1.74	1.71	1.69	1.668	1.637	1.603
25	2.85	2.07	1.90	1.82	1.77	1.73	1.70	1.68 1.67	1.660	1.627	1.593
					••••	1.,,	1.70	1.0/	1.652	1.619	1.584
26	2.85	2.06	1.90	1.81	1.76	1.72	1.69	1.67	1.643	1 011	1.576
27	2.84	2.06	1.89	1.81	1.75	1.71	1.68	1.66	1.637	1.603	1.568
28	2.83	2.05	1.89	1.80	1.75	1.71	1.68	1.65	1.630	1.596	1.562
29	2.83	2.05	1.88	1.80	1.74	1.70	1.67	1.65	1.624	1.590	1.555
30	2.82	2.04	1.88	1.79	1.74	1.70	1.67	1.64	1.619	1.585	1.549
										1.303	21,549
40	2.79	2.01	1.84	1.76	1.70	1.66	1.63	1.60	1.577	1.543	1.505
50	2.76	1.99	1.82	1.74	1.68	1.64	1.60	1.58	1.554	1.518	1.479
60	2.75	1.98	1.81	1.72	1.67	1.62	1.59	1.56	1.538	1.502	1.462
70	2.74	1.97	1.80	1.71	1.65	1.61	1.58	1.55	1.526	1.490	1.450
80	2.73	1.96	1.79	1.71	1.65	1.60	1.57	1.54	1.518	1.481	1.440
											-
90	2.72	1.95	1.79	1.70	1.64	1.60	1.56	1.54	1.511	1.474	1.433
100	2.72	1.95	1.78	1.70	1.64	1.59	1.56	1.53	1.506	1.469	1.427
120	2.72	1.94	1.78	1.69	1.63	1.59	1.55	1.52	1.499	1.460	1.419
500	2.67	1.92	1.75	1.66	1.60	1.56	1.52	1.49	1.469	1.430	1.386

TABLE 8-8 continued

7.85 20 25 30 40 50 60 70 80 90 100 120 500													
d.f.1	2C	25	30	40	50	60	70	80	90	100	120	500	
d.f.2 2	5.35	5.38	5.39	5.41	5.42	5.44	5.44	5.45	5.45	5.45	5.46	5.47	
3	3.80	3.80	3.80	٦.81	3.81	3.81	3.81	3.81	3.81	3.81	3.82	3.82	
4	3.00	2.99	2.99	2.99	2.99	2.98	2.98	2.98	2.98	2.98	2.98	2.98	
5	2.58	2.58	2.57	2.56	2.56	2.55	2.55	2.55	2.55	2.55	2.54	2.54	
6	2.33	2.32	2.32	2.31	2.30	2.30	2.30	2.29	2.29	2.29	2.29	2.28	
7	2.17	2.16	2.15	2.14	2.13	7.13	2.12	2.12	2.12	2.11	2.11	2.10	
8	2.05	2.04	2.03	2.01	2.01	2.00	2.00	2.00	1.99	1.99	1.99	1.98	
9	1.96	1.95	1.94	1.92	1.91	1.91	1.90	1.90	1.90	1.90	1.89	1.88	
10	1.894	1.877	1.866	1.851	1.842	1.836	1.331	1.827	1.825	1.823	1.820	1.807	
11	1.838	1.822	1.809	1.793	1.784	1.777	1.771	1.758	1.766	1.764	1.761	1.747	
12	1.793	1.775	1.762	1.745	1.736	1.729	1.724	1.721	1.717	1.714	1.710	1.697	
13	1.755	1.736	1.724	1.707	1.695	1.644	1.483	1.680	1.676	1.673	1.570	1.655	
14	1.724	1.704	1.690	1.675	1.661	1.653	1.648	1.645	1.642	1.638	1.635	1.619	
15	1.697	1.676	1.661	1.643	1.632	1.624	1.619	1.614	1.611	1.608	1.604	1.588	
16	1.673	1.652	1.637	1.619	1.606	1.598	1.592	1.588	1.584	1.582	1.577	1.560	
17	1.652	1.630	1.616	1.596	1.584	1.576	1.569	1.565	1.562	1.558	1.554	1.537	
18	1.633	1.611	1.596	1.576	1.563	1.555	1.549	1.544	1.540	1.537	1.532	1.515	
19	1.617	1.595	1.579	1.558	1.546	1.537	1.531	1.526	1.521	1.518	1.514	1.496	
20	1.603	1.579	1.563	1.543	1.529	1.520	1.514	1.509	1.505	1.502	1.497	1.478	
21	1.588	1.566	1.549	1.528	1.515	1.506	1.499	1.494	1.490	1.487	1.482	1.462	
22	1.577	1.554	1.537	1.515	1.502	1.493	1.485	1.481	1.476	1.474	1.468	1.447	
23	1.566	1.541	1.525	1.503	1.490	1.479	1.474	1.468	1.463	1.460	1.454	1.434	
24	1.555	1.532	1.514	1.493	1.478	1.469	1.462	1.456	1.452	1.449	1.443	1.423	
25	1.546	1.521	1.505	1.482	1.468	1.459	1.452	1.446	1.441	1.437	1.433	1.411	
26	1.538	1.512	1.496	1.474	1.459	1.449	1.441	1.436	1.431	1.427	1.423	1.400	
27	1.529	1.505	1.487	1.465	1.450	1.440	1.433	1.427	1.421	1.419	1.413	1.390	
28	1.523	1.497	1.479	1.456	1.441	1.431	1.424	1.419	1.413	1.410	1.404	1.382	
29	1.515	1.490	1.472	1.449	1.434	1.424	1.416	1.410	1.406	1.402	1.396	1.373	
30	1.509	1.484	1.466	1.441	1.427	1.416	1.409	1.403	1.397	1.395	1.388	1.366	
40	1.463	1.437	1.417	1.392	1,375	1.363	1.355	1.348	1.343	1.339	1.332	1.306	
50	1.436	1.407	1.388	1.360	1.343	1.331	1.321	1.315	1.308	1.304	1.296	1.268	
60	1.419	1.389	1.368	1.340	1.321	1.308	1.299	1.291	1.285	1.280	1.273	1.242	
70	1.404	1.375	1.353	1.325	1.306	1.293	1.282	1.275	1.268	1.263	1.256	1.222	
80	1.395	1.364	1.343	1.313	1.294	1.280	1.269	1.262	1.256	1.249	1.242	1.206	
90	1.388	1.357	1.335	1.304	1.285	1.271	1.259	1.252	1.244	1.239	1.231	1.194	
100	1.381	1.351	1.328	1.298	1.277	1.263	1.252	1.243	1.237	1.231	1.222	1.184	
120	1.373	1.341	1.319	1.286	1.266	1.251	1.239	1.231	1.223	1.217	1.209	1.168	
500	1.337	1.304	1.280	1.244	1.221	1.204	1.191	1.180	1.172	1.165	1.153	1.097	

MTP 3-1-005 1 March 1372

TABLE B-8 continued PERCENTILES OF THE F DISTRIBUTION

					•							
d.f. ₁	1	2	3	. 4	5	6	7	8	9	10	12	15
d.f.2 I	39.86	49.50	53.59	55.83	57.24	58.20	58.91	59.44	50.86	60.19	60.71	61.22
2	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38	9.39	9.41	9.42
3	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24	5.23	5.22	5.20
4	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3 95	3.94	3.92	3.90	3.87
5	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32	3.30	3.27	3.24
6	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96	2.94	2.90	2.87
7	3.59	3.26	3.07	2.96	2.88	2.83	2.78	2.75	2.72	2.70	2.67	2.63
8	3.46	3.11	2.92	2.81	2.73	2.67	2.62	2.59	2.56	2.50	2.50	2.46
9	3.36	3.01	2.81	2.69	2.61	2.55	2.51	2.47	2.44	2.42	2.38	2.34
10	3.29	2.92	2.73	2.61	2.51	2.46	2.41	2.38	2.35	2.32	2.28	2.24
11	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27	2.25	2.21	2.17
12	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21	2.19	2.15	2.10
13	3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16	2.14	2.10	2.05
14	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12	2.10	2.05	2.01
15	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09	2.06	2.02	1.97
16	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06	2.03	1.99	1.94
17	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03	2.00	1.96	1.91
18	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00	1.98	1.93	1.89
19	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98	1.96	1.91	1.86
. 1	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94	1.89	1.84
••			2 26	2 22	2.1/	2.00	2 02					
21	2.96	2,57	2.36	2.23	2.14	2.08	2.02	1.98	1.95	1.92	1.87	1.83
22	2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93	1.90	1.86	1.81
23	2.94	2.55	2.34	2.21	2.11	2.05	1.99	1.95	1.92	1.89	1.84	1.80
24	2.93	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91	1.88	1.83	1.78
25	2.92	2.53	2.32	2.18	2.09	2.02	1.97	1.93	1.89	1.87	1.82	1.77
26	2.91	2,52	2.31	2.17	2.08	2.01	1.96	1.92	1.88	1.86	1.81	1.76
27	2.90	2.51	2.30	2.17	2.07	2.00	1.95	1.91	1.87	1.85	1.80	1.75
28	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87	1.84	1.79	1.74
29	2.89	2.50	2.28	2.15	2.06	1.99	1.93	1.39	1.86	1.83	1.78	1.73
30	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85	1.82	1.77	1.72
40	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79	1.76	1.71	1.66
50	2.82	2.42	2.21	2.07	1.99	1.91	1.85	1.80	1.76	1.73	1.68	1.62
60	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74	1.71	1.66	1.60
70	-	-	-	2.08	1.96	1.87	1.87	1.76	1.72	1.69	1.64	1.58
80	-	-	-	2.07	1.95	1.86	1.80	1.75	1.71	1.68	1.63	1.56
90	-	-	-	2.06	1.94	1.85	1.79	1.74	1.70	1.67	1.62	1.56
100	-	-	-	2.06	1.93	1.85	1.79	1.74	1.70	1.66	1.61	1.55
120	2.75	2.35	2.13	2.05	1.92	1.84	1.78	1.73	1.59	1.65	1.60	1.54
500	2.71	2.30	2.08	2.01	1.89	1.74	1.84	1.69	1.65	1.61	1.56	1.50

TABLE 8-8 continued

						F. 90	ı					
$\underbrace{\frac{\mathbf{d} \cdot \mathbf{f} \cdot \mathbf{f}}{\mathbf{f} \cdot \mathbf{g} - \mathbf{h}}}_{\mathbf{f} \cdot \mathbf{g} - \mathbf{h}}$		25	30	40	50	60	70	80	90	100	120	500
	61.74	62.00	62.26	62.53	62.66	62.79	-	-	-	-	63.06	63.3
2	9.44	9.45	9.46	9.47	9.47	9.47	-	-	-	-	9.48	9.49
3	5.18	5.18	5.17	5.16	5.15	5.15	-	-	-	-	5.14	5.13
4	3.84	3.83	3.82	3.80	3.79	3.79	-	-	-	-	3.78	3.76
5	3.21	3.19	3.17	3.16	3.15	3.14	-	-	-	-	3.12	3.10
6	2.84	2.82	2.80	2.78	2.77	2.76	-	-	_	-	2.74	2.72
7	2.59	2.58	2.56	2.54	2.53	2.51	-	-	_	-	2.49	2.47
8	2.42	2.40	2.38	2.36	2.35	2.34	-	-	_	-	2.32	2.29
9	2.30	2.28	2.25	2.23	2.22	2.71	-	-	_	-		2.16
10	2.20	2.18	2.16	2.13	2.12	2.11	2.11	2.10	2.10	2.09	2.08	2.07
11	2.12	2.10	2.08	2.05	2.04	2.03	2.02	2.02	2.01	2.01		
12	2.06	2.04	2.01	1.99	1.97	1.96	1.95	1.95	1.94	1.94	2.00	1.98
13	2.01	1.98	1.96	1.93	1.91	1.90	1.90	1.89	1.89	1.88	1.93	1.91
14	1.96	1.94	1.91	1.89	1.87	1.86	1.85	1.64	1.84		1.88	1.86
15	1.92	1.90	1.87	1.85	1.83	1.82	1.81	1.80	1.80	1.83	1.83	1.81
16	1.89	1.87	1.84	1.81	1.79	1.78				1.79	1.79	1.76
17	1.86	1.84	1.81	1.78	1.76	1.75	1.27	1.76	1 -6	1.76	11.75	4.73
18	1.84	1.81	1.78	1.75	1.73		1.7	1.73	1. '3	1.72	1.72	1.69
19	1.91	1.79	1.76	1.73	1.71	1.72	1.71	1.70	1.70	1.70	1.69	1.66
20	1.79	1.77	1.74	1.71	1.69	1.70	J.69	1.63	1.67	1.67	1.67	1.64
				***	1.09	1.68	1.66	1.46	1.65	1.65	1.64	1.61
21	1.78	1.75	1.72	1.69	1.67	1.56	1.64	1.64	1.63	1.63	1.62	1
22	1.76	1.73	1.70	1.67	1.65	1.64	1.63	1.62	1.61	1.61	1.60	1.59
23	1.74	1.72	1.69	1 66	1.63	1.62	1.61	1.60	1.60	1 59	1.59	1.57
24	1.73	1.70	1.67	1.64	1.62	1.51	1.59	1.59	1.58	1.58	1.57	1.56
25	1.72	1.69	1.66	1.63	1.60	1.59	1.58	1.57	1.57	1.56	1.56	1.54
26	1.71	1.68	1.65	1.61	1.59	1.58	1.57	1				1.52
27	1.70	1.67	1.64	1.60	1.58	1.57	1.55	1.56	1.55	1.55	1.54	1.51
28	1.59	1.56	1.63	1.59	1.57	1.56	1.54	1.55	1.54	1.54	1.53	1.50
29	1.68	1.65	1.52	1.58	1.56	1.55	1.53	1.53	1.53	1.52	1.52	1.49
30	1.67	1.64	1.61	1 57	1.55	1.54	1.52	1.52	1.52	1.51	1.51	1.47
40	1.61	1.57	1.54	1.51	1.48				1.51	1.50	1.50	1.46
50	1.56	1.53	1. 0	1.52	1.46	1.47	1.45	1.44	1.43	1.43	1.42	1.38
60	1.54	1.51	1.44	1,44	1.44	1.42	1.41	1.40	1.39	1.38	1.37	1.34
70	1.52	1.45	1,41	1.48		1.40	1.38	1.37	1.36	1.35	1.35	1.30
90	. 51	1.47	1,44	1,41	1,39	1.37	1.36	1.35	1.34	1.33	1.32	1 32
90	1.50	1,46			1.37	1.35	1.34	1.33	1.32	1.31	1.30	1.26
100	1.33	1.46	1.43	2.46	1.36	1.34	1 33	1.32	1.31	1.30	1.29	1.24
120	1.48		1.42	1. **	1.35	1.33	1.32	1.31	1.30	1.29	1.29	1.23
500	1.48	1.44	1.40	1.37	1.34	1.32	1.30	1.29	1.28	1.27	1.26	1.21
240	4.43	1.39	1.36	1.31	1.28	1.26	1.24	1.23	1.21	1.20	1.19	1.12

TABLE B-8 continued

							F.95					
$\frac{d.f1}{d.f2}$	1 161.4	2 199.5	3 215.7	4 224.6	5 230.2	6 234.0	7 236.8	8 238 9	9 240.5	10 241.9	12 243.9	15 245.9
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94
7	5.59	6.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31
18	4.41	3.55	3.16	2.93	z 2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92
50	4.04	5.19	2.80	2.61	2.42	2.30	2.20	2.13	2.07	2.02	1.95	1.87
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84
70	-	-	-	2.55	2.37	2.24	2.15	2.08	2.02	1.97	1.89	1.81
80	-	-	-	2.54	2.35	2.23	2.13	2.06	2.00	1.95	1.87	1.79
90	-	-	-	2.53	2.34	2.21	2.12	2.05	1.99	1.94	1.86	1.78
100	-	-	-	2.52	2.33	2.20	2.11	2.04	1.98	1.93	1.85	1.76
120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91	1.83	1.75
500	3.84	3.00	2.60	2.44	2.26	2.13	2.04	1.96	1.90	1.85	1.77	1.68

TABLE 8-8 continued

						7.95						
d.f. ₁	20 248.0	25 249.1	30 250.1	40 251.1	50 251.6	€0 252.2	70 -	90 -	90	100	120 253.3	500 254.3
2	19.45	19.45	19.46	19.47	19.48	19.48	-	-	-	-	19.49	19.50
3	8.66	3.64	8.62	8.59	8.58	8.57	-	-	-	-	8.55	8.53
4	5.80	5.77	5.75	5.72	5.71	5.69	-	-	-	-	5.66	5.63
5	4.56	4.53	4.50	4.46	4.45	4.43	-	-	-	-	4.40	4.36
6	3.87	3.84	3.81	3.77	3.76	3.74	-	-	-	-	3.70	3.67
7	3.44	3.41	3.38	3.34	3.32	3.30	-	-	-	-	3.2/	3.23
8	3.15	3.12	3.08	3.04	3.03	3.01	-	-	-	-	2.97	2.93
9	2.94	2.90	2.86	2.83	2.82	2.79	-	-	-	-	2.75	2.71
10	2.77	2.74	2.70	2.66	2.65	2.62	2.62	2.61	2.61	2.6	2.58	2.56
11	2.65	2.61	2.57	2.53	2.51	2.49	2.49	2.48	2.47	2.4	7 2.45	2.43
12	2.54	2.51	2.47	2.43	2.41	2.38	2.38	2.37	2.36	2.3	6 2.34	2.32
13	2.46	2.42	2.38	2.34	2.32	2.30	2.29	2.28	2.27	2.2	7 2.25	2.22
14	2.39	2.35	2.31	2.27	2.24	2.22	2.21	2.20	2.20	2.1		2.15
15	2.33	2.29	2.25	2.20	2.18	2.16	2.15	2.14	2.13	2.1	3 2.11	2.08
16	2.28	2.24	2.19	2.15	2.12	2.11	2.09	2.08	2.08	2.0	7 2.06	2.02
17	2.23	2.19	2.15	2.10	2.08	2.06	2.04	2.03	2.03	2.0	2 2.01	1.97
18	2.19	2.15	2.11	2.06	2.03	2.02	2.00	1.99	1.98	1.9	8 1.97	1.93
19	2.16	2.11	2.07	2.03	2.00	1.98	1.96	1.95	1.95	1.9	4 1.93	1.89
20	2.12	2.08	2.04	1.99	1.96	1.95	1.93	1.92	1.91	1.9	0 1.90	1.86
21	2.10	2.05	2.01	1.96	1.93	1.92	1.90	1.89	1.88	1.8		1.82
22	2.07	2.03	1.98	1.94	1.91	1.89	1.87	1.86	1.85	1.8		1.79
23 24	2.05	2.01	1.96	1.91	1.88	1.86	1.85	1.84	1.83	1.8		1.77
25	2.03 2.01	1.98 1.96	1.94	1.89 1.87	1.86 1.84	1.84 1.82	1.82	1.81	1.80 1.78	1.8		1.74
26		1.95										1.70
27	1.99	1.93	1.90	1.85	1.82	1.80 1.79	1.78 1.77	1.77	1.76	1.7		1.68
28	1.96	1.91	1.87	1.82	1.79	1.77	1.75	1.74	1.73	1.7		1.67
29	1.94	1.90	1.85	1.81	1.77	1.75	1.73	1.72	1.71	1.7		1.65
30	1.93	1.89	1.84	1.79	1.76	1.74	1.72	1.71	1.70	1.6		1.63
40	1.84	1.79	1.74	1.69	1.66	1.64	1.62	1.60	1.59	1.5	9 1.58	1.52
50	1.78	1.72	1.68	1.63	1.59	1.57	1.55	1.54	1.53	1.5	2 1 51	1.45
60	1.75	1.70	1.65	1.59	1.55	1.	1.51	1.50	1.49	1.4	8 1.47	1.40
79	1.72	1.66	1.62	1.56	1.52	1.50	1.48	1.47	1.46	1.4	5 1.43	1.37
80	1.70	1.64	1.60	1.54	1.50	1.48	1.46	44	1.43	1.4	2 1.41	1.34
90	1.68	1.62	1.58	1.52	1.49	1.46	1.44	1.43	1.41	1.4	0 1.39	1.32
100	1.67	1.61	1.57	1.51	1.47	1.45	1.43	1.41	1.40	1.3	9 1.37	1.30
120	1.66	1.61	1.55	1.50	1.45	1 43	1.40	1.39	1.37	1.7	1.35	1.28
500	1.59	1.52	1.48	1.41	1.37	1.34	1.32	1.30	1.28	1.2	27 1.25	1.16

TABLE 8-8 continued

d.f. ₂ 1	1 647.8	2 799.5	3 864.2	4 899.6	5 921.8	6 937.1	7 948.2	8 956.7	9 963.3	10 968.6	12 976.7	15 984.9
2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.41	39.43
3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.34	14.25
4	12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84	8.75	8.66
5	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62	6.52	6.43
6	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	3.52	5.46	5.37	5.27
7	8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82	4.76	4.67	4.57
8	7.57	6.06	5.42	5.05	4.82	4.65	4.53	4.43	4.35	4.30	4.20	4.10
9	7.21	5.71	5.08	4.72	4.48	4.32	4.20	4.10	4.03	3.96	3.87	3.77
10	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78	3.72	3.62	3.52
11	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59	3.53	3.43	3.33
12	6.55	5.10	4.47	4.12	3.69	3.73	3.61	3.51	3.44	3.37	3.28	3.18
13	6.41	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31	3.25	3.15	3.05
14	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21	3.15	3.05	2.95
15	6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12	3.06	2.96	2.86
16	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05	2.99	2.89	2.79
17	6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98	2.92	2.82	2.72
18	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.77	2.67
19	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88	2.82	2.72	2.62
20	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84	2.77	2.68	2.57
21	5.83	4.42	3.82	3.48	3.25	3.09	2.97	2.87	2.80	2.73	2.64	2.53
22	5.79	4.38	3.78	3.44	3.22	3.05	2.93	2.84	2.76	2.70	2.60	2.50
23	5.75	4.35	3.75	3.41	3.18	3.02	2.90	2.81	2.73	2.67	2.57	2.47
24	5.72	4.32	3.72	3.38	3.15	2.99	2.87	2.78	2.70	2.64	2.54	2.44
25	5.69	4.29	3.69	3.35	3.13	2.97	2.85	2.75	2.68	2.61	2.51	2.41
26	5.66	4.27	3.67	3.33	3.10	2.94	2.82	2.73	2.65	2.59	2.49	2.39
27	5.63	4.24	3.65	3.31	3.08	2.92	2.80	2.71	2.63	2.57	2.47	2.36
28	5.61	4.22	3.63	3, 22	3.06	2.90	2.78	2.69	2.61	2.55	2.45	2.34
29	5.59	4.20	3.61	3.27	3.04	2.88	2.76	2.67	2.59	2.53	2.43	2.32
30	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57	2.51	2.41	2.31
40	5.42	4.05	3.46	3.13	2.90	2.74	2.62	2.53	2.45	2.39	2.29	2.18
50	5.35	3.99	3.40	3.10	2.85	2.68	2.56	2.46	2.38	2.31	2.21	2.10
60	5.29	3.93	3.34	3.01	2.79	2.63	2.51	2.41	2.33	2.27	2.17	2.06
70	-	-	-	3.02	2.77	2.60	2.48	2.38	2.30	2.24	2.13	2.02
80	-	-	-	3.00	2.75	2.53	2.45	2.36	2.28	2.21	2.11	2.00
90	-	-	-	2.98	2.73	2.56	2.44	2.34	2.26	2.19	2.09	1.98
100	-	-	-	2.97	2.72	2.55	2.42	2.32	2.24	4.18	2.07	1.96
120	-	-	-	2.94	2.69	2.53	2.40	2.30	2.22	2.16	2.05	1.94
500	5.02	3.69	3.12	2.86	2.61	2.44	2.32	2.22	2.14	2.07	1.97	1.80

TABLE 8-8 continued

						7.975						
4.1.2	20 993.1	25 997.2	30 1001.	40 1006.	53 1008.	1010.	70	80	90	100	120 1014.	500 1018.
2	39.45	39.46	39.46	39.47	39.48	39.40	-	•	_	-	39.49	35.50
3	14.17	14.12	14.08	14.04	13.00	13.95	-	-	_	-	13.95	13.90
4	8.56	8.51	8.46	8.41	8.36	8.31	-	-	-	-	8.31	8.26
5	6.33	6.28	6.23	6.18	6.13	6.07	-	-		_	6.01	6.02
6	5.17	5.12	5.07	5.01	4.96	4.90	-	-	-	_	4.90	4.85
7	4.47	4.42	4.36	4.31	4.26	4.20	-	-	_	-	4.20	4.14
8	4.00	3.95	3.89	3.84	3.79	3.73	-	-	-	-	3.73	3.67
9	3.67	3.61	3.56	3.51	3.45	3.39	-	-	_	-	3.39	
10	3.42	3. 37	3.31	3.26	3.24	3.20	3.21	3.19	3.18	3.18	3.14	3.33 3.12
11	3.23	3.17	3.12	3.06	3.05	3.00	3.00	2.99	2.98	2.97	2.94	2.92
12	3.07	3.02	2.96	2.91	2.88	2.85	2.84	2.83	2.82	2.81	2.79	2.75
13	2.95	2.89	2.84	2.78	2.75	2.72	2.71	2.70	2.69	2.68	2.66	2.62
14	2.84	2.79	2.73	2.67	2.64	2.61	2.60	2.59	2.58	2.57	2.55	2.51
15	2.76	2.70	2.64	2.59	2.55	2.52	2.51	2.50	2.49	2.48	2.46	2.42
16	2.68	2.63	2.57	2.51	2.47	2.45	2.43	2.42	2.41	2.40	2.38	2.34
17	2.62	2.56	2.50	2.44	2.41	2.38	2.36	2.35	2.34	2.33	2.32	2.27
18	2.56	2.50	2.44	2.38	2.35	2.32	2.30	2.29	2.28	2.27	2.26	2.21
19	2 51	2.45	2.39	2.33	2.29	2.27	2.25	2.24	2.23	2.22	2.20	2.15
20	2.46	2.41	2.35	2.29	2.25	2.22	2.20	2.19	2.18	2.17	2.16	2.10
21	2.42	2.37	2.31	2.25	2.21	2.18	2 16	2.15	2.14	2.13	2.11	2.06
22	2.39	2.33	2.27	2.21	2.17	2.14	2.12	2.12				
23	2.36	2.30	2.24	2.18	2.13	2.11	2.09	2.07	2.10	2.09	2.0A	2 02
24	2.33	2.27	2.21	2.15	2.10	2.08	2.06		2.06	2.05	2.04	1.98
25	2.30	2.24	2.18	2.12	2.08	2.05	2.03	2.04	2.03	2.02	2.01	1.95
26	2.28	2.22	2.16	2.09	2.05			2.01	2.00	1.99	1.98	1.92
27	2.25	2.19	2.13	2.07	2.03	2.03	2.00	1.99	1.98	1.97	1.95	1.89
28	2.23	2.17	2.11	2.05	2.00	2.00	1.98	1.96	1.95	1.94	1.93	1.87
29	2.21	2.15	2.09	2.03	1.98	1.98	1.96	1.94	1.93	1.92	1.91	1.85
30	2.20	2.14	2.07	2.01	1 96	1.96	1.94	1.92	1.91	1.90	1.89	1.82
40	2.07	2.01				1.94	1.92	1.90	1.89	1.88	1.87	1.80
50	1.99	1.92	1.94	1.88	1.83	1.80	1.78	1.76	1.75	1.74	1.72	1.66
60	1.94	1.58	1.86	1.79	1.75	1.72	1.70	1.68	1.67	1.66	1.63	1.57
70	1.91	1.83	1.81	1.74	1.69	1.66	1.64	1.62	1.61	1.59	1.58	1.50
80	1.88	1.80	1.77	1.70	1.66	1.62	1.60	1.58	1.57	1.55	1.53	1.46
			1.75	1.67	1.63	1.59	1.57	1.55	1.54	1.52	1.50	1.40
90	1.86	1.78	1.73	1.65	1.60	1.57	1.55	1.53				
100	1.84	1.77	1.71	1.64	1.59	1.55	1.53	1.51	1.51	1.50	1.48	1.40
120	1.82	1.75	1.69	1.61	1.56	1.52	1.50	1.48	1.49	1.48	1.46	1.38
500	1.73	1.65	1.59	1.51	1.46	1.42	1.39	1.37	1.46	1.45	1.43	1.34
							,	4.3/	1.35	1.33	1.31	1.19

TABLE 8-8 continued

						F. 39						
d.f. ₂ 1	1 4052	2 4999.5	3 5403	4 5625	5 5764	6 5859	7 5928	8 5982	9 6022	10 605 6	12 6106 6	15 157
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40	99.42	99.43
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23	27.05	26.87
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55	14.37	14.20
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05	9.89	9.72
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.56
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.47	6.31
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.52
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.11	4.96
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56
11	9.65	7.21	6.22	5.67	5.32	5.67	4.89	4.74	4.63	4.54	4.40	4.25
12	9.33	6.93	5.95	5.41	٠.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01
13	9.07	6.70	5.74	5.21	4.86	4.62	4 44	4.30	4.19	4.10	3.96	3.92
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94	3.80	3.66
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.55	3.41
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.46	3.31
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.37	3.23
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.30	3.15
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	3.09
21	·#,02	5.7R	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3, 31	3.17	3,03
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.12	2.98
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.07	2.93
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.03	2.89
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13	2.99	2.85
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	2.96	2.81
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06	2.93	2.78
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.90	2.75
29	7.69	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00	2.87	2.73
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.84	2.70
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.66	2.52
50	7.20	5.08	4.37	3.76	3.42	3.19	3.02	2.89	2.78	2.69	2.56	2.41
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.50	2.35
70	-	-	-	3.64	3.30	3.07	2.90	2.77	2.67	2.58	2.44	2.30
80	-	-	-	3.61	3.27	3.04	2.87	2.74	2.63	2.55	2.41	2.27
90	-	-	-	3.58	3.24	3.01	2.84	2.71	2.61	2.52	2.38	2.24
16.5	-	-	-	3.55	3.22	2.99	2.82	2:69	2.59	2.50	2.36	2.22
120	6.85	4.79	3.95	3.52	3.19	2.96	2.79	2.66	2.56	2.47	2.33	2.19
500	6.63	4.61	3.78	3.40	3.07	2.84	2.67	2.54	2.44	2.35	2.22	2.07

TABLE B-8 continued
PERCENTILES OF THE F DISTRIBUTION

						7	. 99					
4.1.	_1 20	25	30	40	••							
d.f.2 1	6209	6235	6261	6287	50	60	70	80	90	100	120	500
2			99.47	99.47	6300	6313	-	-	-	-	6339	6366
3		26.60	26.50		99.48	99.48	-	-	-	-	99.49	
, i		13.93		26.41	26.37	26.32	-	-	-	-	26.22	99.50
Ś		9.47	13.84	13.75	13.70	13.65	-	-	-	-	13.56	26.13
-	,,,,	7.47	9.38	9.29	9.25	9.20	-	-	-	-	9.11	13.46
6	7.40	7.31	7 00		_						7.11	9.02
į		6.07	7.23	7.14	7.10	7.06	-		-	•	6.57	
8		5.28	5.99	5.91	5.87	5.82	-	-	-	-	5.74	6.88
ğ		4.73	5.20	5.12	5.08	5.03	-	-	-	-	4.95	5.65
1Ó			4.65	4.57	4.53	4.48	-	-	-	-		4.86
	4.41	4.33	4.25	4.17	4.16	4.08	4.10	4.08	4.07	4.06	4.40	4 21
11	4.10						-		4.07	4.00	4.00	3.97
12		4.02	3.94	3.86	3.84	3.78	3.78	3.77	3.75	3.74		
13		3.78	3.70	3.62	3.59	3.54	3.54	3.52	3.50		3.69	3.66
14		3.59	3.51	3.43	3.39	3.34	3.33	3.32	3.30	3.49	3.45	3.41
	3.51	3.43	3.35	3.27	3.23	3.18	3.17	3.15	3.14	3.29	3.25	3.21
15	3.37	3.29	3.21	3.13	3.09	3.05	3.03	3.02		3.13	3.09	ۇن. 3
							3.03	3.02	3.00	2.99	2.96	2.90
16	3.26	3.18	3.10	3.02	2.98	2.93	2.92	2.90				
17	3.16	3.08	3.00	2.92	2.88	2.83	2.82		2.88	2.87	2.84	2.79
18	3.08	3.00	2.92	2.84	2.79	2.75	2.73	2.80	2.78	2.77	2.15	2.69
19	3.00	2.92	2.84	2.76	2.71	2.67		2.71	2.70	2.69	2.66	2.60
20	2.94	2.86	2.78	2.69	2.65	2.61	2.65	2.64	7.62	2.61	2.58	2.52
				,	2.05	2.51	2.59	2.57	2.55	2.54	2.52	2.45
21	2.88	2.80	2.72	2.64	2.59	2.55						,
22	2.83	2.75	2.67	2.58	2.53		2.53	2.51	2.49	2.48	2.46	2.39
23	2.78	2.70	2.62	2.54	7 49	2.50	2.47	2.45	2.44	2.45	2.40	2.13
24	2.74	2.66	2.58	2.49	2.44	2.45	2.42	2.40	2.39	2.38	2.35	2.28
25	2.70	2.62	2.54	2.45	2.40	2.40	2.38	2.36	2.34	2.33	2.31	2.24
				2.43	2.40	2.36	2.34	2.32	2.30	2.29	2.27	2.20
26	2.66	2.59	2.50	2 (2								• • • •
27	2.63	2.55	2.47	2.42	2.37	2.33	2.30	2.28	2.27	2.25	2.23	
28	2.60	2.52	2.44	2.38	2.33	2.29	2.27	2.25	2.23	2.22	2.20	2.16
29	2.57	2.49	2.41	2.35	2.30	2.26	2.24	2.23	2.20	2.19	2.17	2.12
30	2.55	2.47	2.39	2.33	2.27	2.23	2.21	2.19	2.17	2.16	2.14	2.09
	,,	2.4/	2.39	2.30	2.25	2.21	2.18	2.16	2.15	2.13	2.11	2.06
40	2.37	2.27	2.20								2.11	2.03
50	2.26	4.16	2.10	2.11	2.06	2.02	1.99	1.97	1.95	1.94	1.92	
60	2.20	2.10	2.10	2.91	1.95	1.91	1.88	1.86	1.84	1.83	1.80	1.83
70	2.15	2.05		1.94	88	1.84	1.81	1.78	1.76	1.75	1.73	1.71
80	2.11	2.01	1.98	1.89	1.83	1.78	1.75	1.73	1.71	1.70	1.67	1.63
•		2.01	1.94	1.85	1.79	1.75	1.71	1.69	1.67	1.65		1.57
50	2.08	1.99	1 00						•	4.05	1.63	1.53
100	2.06	1.97	1.92	1.82	1.76	1.72	1.68	1.66	1.64	1.62	1 40	
120	2.03		1.85	1.80	1.74	1.69	1.66	1.63	1.61	1.60	1.60	1.49
500	1.91	1.93	1.86	1.76	1.70	1.66	1.62	1.60	1.58	1.56	1.5*	1.47
200	4.71	1.81	1.74	1.63	1.57	1.52	1.40	1.45	1.43	1.41	1.5	1.42
								2	,	2.41	1.38	1.23

MTP 3-1-005 1 March 1972

NOTE: The tables for F_{80} and F_{85} were generated using the formula $F \approx e^{2W}$ where:

$$\lambda = \frac{z_{\alpha}^{2} - 3}{6}$$

$$h = 2 \left(\frac{1}{d \cdot f \cdot 2^{-1}} + \frac{1}{d \cdot f \cdot 1^{-1}} \right)$$

$$w = \frac{-2\alpha (h+\lambda)}{h} - \left(\frac{1}{d \cdot f \cdot 1^{-1}} - \frac{1}{d \cdot f \cdot 2^{-1}} \right) \left(\lambda + \frac{5}{6} - \frac{2}{3h} \right)$$

The approximation is accurate enough for practical uses when $d.f._1$ and $d.f._2 \ge 10$. However, the formula has been used for $d.f._1 < 10$ and $d.f._2 < 10$ for $F._{80}$ and $F._{85}$ because no tables were available.

Values other than the ones found in the standard F tables were also supplied using the above formula where possible and if not possible, dashes were left, e.g., $F._{90}$, $(_{80},_{2}) = -$. In the event of a dash occurring, use the smaller d.f. which appears in the table for computation purposes; e.g., use $F._{90}$, $(_{60},_{2}) = 9.47$ for $F._{90}$, $(_{80},_{2})$.

TABLE 9-9
FACTORS FOR COMPUTING TWO-SIDED CONFIDENCE LIBERTS FOR a

Degrees	• • •	05	• •	01	• • .00	01
Freedom	a t:	• _L	· U	a _{l.}	٩,	•1
1	17.70	. 3576	84.31	.2969	844.4	.2480
2	4.959	.4581	10.70	, 18 .	13.29	. 3291
3	3.103	.5278	5,449	.4453	11.05	. 3824
4	2.567	. 5590	3.892	. 6865	6.938	.4218
5	2.248	.5899	3.175	.5182	5.085	.4529
•	2.052	.6143	2.764	.5437	4.128	. 478-
,	1.918	.6344	2.495	. 5650	3.551	.5000
•	1.820	.6513	2.311	, 54 30	1.167	-5186
,	1,744	.6657	2.173	.5987	2.894	.5348
10	1.444	.6784	2.065	. 0125	2.689	.5492
	1.414	. 6496	1,900	. 6248	2.530	.3621
11	1.638	1	1	ı	1	1
12	1.598	.6995	1,404	. 6 358	2.402	.5730
13	1.564	. 1084	1.851	. 6438	2.298	.5845
14	1.534	. 106	1.401	.6'47	2.210	.5942
15	1.509	.:240	1.758	. 66 32	2.136	.4032
16	1.486	.7308	1.721	.6710	2.073	.6116
47	1.444	,7372	1.688	.6781	2.917	.4141
10	1.448	.12.10	1.656	. 6848	1.968	.6266
17	1.432	7484	1.632	.044	1 925	.6333
50	1.417	.7515	1.609	.6968	1.896	.0197
21	1.404	.7582	1.50,	,2023	1,851	.6457
22	1, 101	.7627	1.568	7024	1.620	.6514
23	1,300	.7659	1.550	7122	1.791	.0504
24	1.370	7 709	1.513	7169	1.765	.6619
25	1.360	.7747	1.518	.7212	1.741	. 66440
25	1.351	.7781	1.504	7212	1.719	.0713
	1	7817	1.491	729)	1.696	.6713
27	1. 14.1	1	1	7111	}	
28	1.335	. 7849	1.479	}	1.679	. 4800
29 30	1.327	. 1880	1,467	.7367	1.661	. 4841 5880
)1	1.314	. 7937	1.447	.7414	1.629	.6917
12	1, 104	. 7964	1.437	17467	1.615	.6953
11	1.102	, 7990	1.428	.7497	108	.6987
14	1.296	.8015	1. 520	. 1526	1,588	. 7020
35	1.291	. 80 19	1.412	. 7554	1.576	.7952
16	1.286	. 8062	1.404	.7582	1.564	.1061
37	1.261	, 8085	1. 197	. 7608	1.551	.2413
16	1.277	.4106	į. jen	. 1633	1.541	1141
39	1.272	.#126	1.381	, 265#	1.533	.7169
40	1.26R	. 4146	1.377	7691	1.521	.710*
41	1.264	. 51 74	1, 171	.7-05	1,515	.722
42	1.260	.9184	1.165	.772	1.506	7244
41	1.257	8202	1. 360	.77 .8	198	.7273
44	1.253	.8222	1. 155	7769	1.490	.7279
45	1.249	.6237	1.169	789	1.422	.7320
	1.246	6253	1.345	7809	.475	.7342
46	1	1	1	1	1	1
4.7	1.243	, A269	1.3.0	.1828	1.468	. 7 364
4.6	1.240	. 82 15	1.335	7847	462	. 1384
40	1.237	.8300	1.331	.7864	1.455	.740*
50	1.234	AAI-	1.32	7882	1.449	.7427

Adapte with permission from Biomerrika, (1) (1), (1986), from article entitied "Lable for Masing Interescences Amout the Variance, f. a Normal Distribution" by D. V. Lindley, D.A. East, and P.A. Hamilton

TABLE 8-9 continued
FACTORS FOR COMPUTING TWO-SIDED COMPIDENCE LIMITS FOR a

Degrees	• •	.05	• •	.01	a = .001			
of Freedom d.f.	₽ _t .	a _L	₽ U	a _L	9 _U	3,		
51	1.232	. 8329	1.323	.7899	1.443	.7446		
52	1.229	.8343	1.319	.7916	1.437	,7466		
53	1.276	. 8356	1.315	. 7932	1.432	.7485		
54	1.224	.8370	1.311	.7949	1.426	. 7503		
55	1.221	.8381	1.308	.7964	1.421	.7521		
56	1.219	.8395	1.304	.7979	1.416	. 7539		
57	1.217	.8408	1.301	.7994	1.411	.7556		
58	1.216	.8420	1.298	.8006	1.406	. 7573		
59	1.212	. 8411	1.295	.8022	1.402	. 7589		
60	1.210	.8443	1,292	.8036	1.397	. 7605		
61	1.208	.8454	1.289	.8050	1. 393	. 7621		
62	1.206	.8465	1.286	.8061	1.389	. 7636		
63	1.204	.8475	1.283	.8076	1.385	. 7651		
64	1.202	. 84.86	1.280	. 8088	1.381	. 7666		
65	1.200	.8496	1.277	.8101	1.377	.7680		
66	1.199	. 8506	1.275	.8113	1.374	. 7694		
67	1.197	. 8516	1.272	.8125	1.370	.7708		
68	1.195	. 8525	1.270	.81)7	1.366	.7722		
69	1.194	. 85 35	1.268	.8148	1.363	.7735		
70	1.192	. 8544	1.265	.8159	1.360	.7749		
71	1.190	.8553	1.263	.8170	1.356	.7761		
72	1.189	.8562	1.261	.6181	1.353	.7774		
73	1.187	.8571	1.259	.8191	1.350	.7787		
74	1,186	. 8580	1.257	.8202	1.347	. 1199		
75	1.184	.8588	1.255	.A212	1.344	.7811		
76	1.186	.8596	1.253	.8222	1.341	.7822		
77	1.182	.8604	1.251	.8232	1.338	. 7834		
78	1.191	. 8612	1.249	.8242	1.336	. 7845		
79	1.179	.8620	1.247	.8252	1.333	.7856		
80	1.178	.8627	1.245	. 8261	1.330	.7868		
81	1.176	. 86 35	1.243	.8270	1.328	.7878		
82	1.176	.8642	1.241	.8279	1.325	. 7889		
83	1.174	.8650	1.239	.8288	1.323	. 7899		
84	1.173	.8657	1.238	.8297	1.320	. 7909		
85	1.172	.8664	1.236	, #305	1.318	. 7920		
86	1.171	.8671	1.235	.8314	1.316	. 7930		
87	1.170	.8678	1.211	.8322	1.313	. 79 39		
RR	1.168	. 8684	1.231	.8531	1.311	. 7949		
89	1.167	. 8691	1.230	.8338	1. 109	. 7959		
90	1.166	.8697	1.228	.8346	1.30?	, 7968		
01	1.165	, H704	1.227	.8354	1.305	. 7977		
92	1.164	.A710	1.225	. 8362	1.303	7987		
93	1.163	.8716	1.224	.8370	1.301	. 7996		
94	1.162	.8722	1.222	. A 377	1.298	. 8004		
45	1.161	.8729	1.221	. 8385	1.297	.8013		
96	1.160	. 97 14	1.219	.8392	1.295	.4022		
97	1.159	.8741	1.218	. 5 199	1.293	. 80 31		
98	1.158	.8746	1.217	.8406	1.291	. 80 19		
99	1.158	4752	1.216	.8413	1,290	.8047		
100	1.157	,#757	1.214	.8420	1.288	,8055		

TABLE B-10 FACTORS FOR COMPUTING ONE-SIDED CONFIDENCE LIMITS FOR σ

Degrees of Freedom	A.05	A.95	A 025	A. 975	A,01	A .99	A.005	A.995
d.f.								
1	.5103	15.947	.4461	31.910	.3882	79.786	.3562	159.576
2	.5778	4.415	.5207	6.285	.4660	9.975	.4344	14.124
3	.6196	2.920	.5665	3.729	.5142	5.111	.4834	6.467
4	.6493	2.372	.5992	2.84	.5489	3.669	.5188	4.396
5	.6721	2.089	.6242	2.453	.5757	3.003	.5464	3.485
6	.6903	1.915	.6444	2.202	.5974	2.623	.5688	2.980
7	.7054	1.797	.6612	2.035	.6155	2.377	.5875	2.660
8	.7183	1.711	.6754	1.916	.6310	2.204	.6037	2.439
9	.7293	1.645	.6878	1.826	.6445	2.076	.6177	2.278
10	.7391	1.593	.6987	1.755	.6564	1.977	.6301	2.154
11	.7477	1.551	.7084	1.698	.6670	1.898	.6412	2.056
12	.7554	1.515	.7171	1.651	.6765	1.833	.6512	1.976
13	.7624	1.485	.7250	1.611	.6852	1.779	.6603	1.909
14	.7688	1.460	.7321	1.577	.6931	1.733	.6686	1.854
15	.7747	1.437	.7387	1.548	.7004	· 694	.6762	1.806
20	.7979	1.358	.7650	1.44	.7297	1.556	.7071	1.640
25	.8149	1.308	.7843	1.380	.7511	1.473	.7299	1.542
30	.8279	1.274	.7991	1.337	.7678	1.416	.7477	1.475
40	.8470	1.228	.8210	1.279	.7925	1.343	.7740	1.390
50	.8606	1.199	.8367	1.243	.8103	1.297	.7931	1.337
60	.8710	1.179	.8487	1.217	.8239	1.265	.8078	1.299
70	.8793	1.163	.8583	1.198	.8349	1.241	.8196	1.272
80	.8861	1.151	.8662	1.183	.8439	1.222	.8293	1.250
90	.8919	1.141	.8728	1.171	.8515	1.207	.8376	1.233
100	.8968	1.138	.8785	1.161	.8581	1.195	.8446	1.219

For large degrees of freedom, we may use the approximate formula: $A_{1-\alpha} = \sqrt{2d \cdot f \cdot} / \left(Z_{\alpha} + \sqrt{2(d \cdot f \cdot)} - 1 \right)$ where Z_{α} is found in Table B-4, page 2-4.

TABLE B-11 $s < \sigma_o$ (PE < τ_o)

Y	$\alpha = .001$ $\beta = .05$	$\alpha = .001$ $\beta = .10$	$\alpha = .01$ $\beta = .05$	$\alpha = .01$ $\beta = .10$	$\alpha = .05$ $\beta = .05$	$\alpha = .05$ $\beta = .10$	$\alpha = .10$ $\beta = .10$
1	8	8	5	5	•	3	3
2	11	10	7	7	5	4	3
.3	15	14	10	9	6	6	4
.4	21	20	14	13	9	8	6
.5	32	29	21	19	14	12	9
.6	53	48	36	31	23	20	15
.7	101	90	69	59	45	37	28
.8	244	213	167	142	111	. 91	68
. 9	1046	902	726	607	490	393	298

TABLE B-11 continued

 $s > \sigma_0$ (PE > τ_0)

γ	$\alpha = .001$ $\beta = .05$	$\alpha = .001$ $\beta = .10$	$\alpha = .01$ $\beta = .05$	$\alpha = .01$ $\beta = .10$	α = .05 β = .05	$\alpha = .05$ $\beta = .10$	$\alpha = .10$ $\beta = .10$
1.1	1202	1014	857	699	598	468	364
1.2	322	269	233	188	165	128	101
1.3	153	127	112	90	81	62	50
1.4	92	76	68	55	50	38	31
1.5	63	52	47	38	35	27	22
1.6	47	38	36	28	27	20	17
1.7	37	30	28	22	22	16	14
1.8	30	24	23	18	18	14	12
1.9	25	20	20	15	16	12	10
2.0	22	17	17	13	14	10	9
2.1	19	15	15	12	12	9	8
2.2	17	14	14	11	11	8	7
2.3	15	12	13	10	10	8	7
2.4	14	11	12	9	9	7	6
2.5	13	10	11	8	9	7	6
2.6	12	10	10	8	8	6	6
2.7	11	9	9	7	8	6	5

TABLE B-11 continued

 $s > \sigma_0$ (PE > τ_0)

Y	$\alpha = .001$ $\beta = .05$	$\alpha = .001$ $\beta = .10$	$\alpha = .01$ $\beta = .05$	$\alpha = .01$ $\beta = .10$	$\alpha = .05$ $\beta = .05$	$\alpha = .05$ $\beta = .10$	$\alpha = .10$ $\beta = .10$
2.8	11	8	9	7	8	6	5
2.9	10	8	8	7	7	5	5
3.0	10	8	8	6	7	5	5
3.1	9	7	8	6	7	5	5
3.2	9	7	7	6	6	5	4
3.3	. 8	7	7	6	6 .	5	4
3.4	8	6	7	5	6	5	4
3.5	8	6	7	5	6	5	4

TABLE B-12 DETERMINATION OF SAMPLE SIZE $(s_A \text{ and } s_B)$

			s _A	< s _B	
s _{A/s_B}	a = .01 6 = .05	$\alpha = .01$ $\beta = .10$	$\alpha = .05$ $\beta = .05$	$\alpha = .0$ $\beta = .1$	
.1	5	5	5	4	4
. 2	9	8	7	6	5
.3	13	11	10	8	7
.4	21	18	15	13	10
.5	35	30	25	20	16
.6	63	52	44	35	28
.7	126	105	88	70	54
.8	319	264	220	175	135
.9	1423	1175	978	774	595
			s_{A}	> s _B	
1.1	1738	1435	1194	946	726
1.2	477	394	328	260	200
1.3	232	192	160	127	98
1.4	142	117	98	78	61
1.5	98	82	68	55	42
1.6	74	61	51	41	32
1.7	59	49	41	33	26
1.8	48	40	34	27	22
1.9	41	34	29	23	18

TABLE B-12 continued DETERMINATION OF SAMPLE SIZE $(\mathbf{s_A} \text{ and } \mathbf{s_B})$

s_A > s_B

s _{A/} s _B	$\begin{array}{c} \alpha = .01 \\ \hat{\beta} = .05 \end{array}$	$\alpha = .01$ $\beta = .10$	$\alpha = .01$ $\beta = .05$	$\alpha = .05$ $\beta = .10$	α = .10 β = .10
2.0	35	30	25	20	16
2.1	31	26	22	18	14
2.2	. 28	23	20	16	13
2.3	25	21	18	15	12
2.4	23	19	17	14	11
2.5	21	18	15	13	10

TABLE 8-13
CONFIDENCE LIMITS FOR A PROPORTION (TWO-SIDED)

Upper limits are underlined. The observed proportion in a random sample is f/N.

	90%		95	;	99	z	ſ	901	, 1	95	z	99	;
			n •							n = 2			
0 1		00 I	0 .050	.950	.010	.990 1	0 1 2	0 .051 .316	.681 .949 1	0 .025+ .224	.776 .975- <u>1</u>	0 .005+ .100	.900 .995-
			n =	3						n = 4			
0 1 2 3	.035- <u>.8</u> .196 <u>.9</u>	36 04 65+ 1	0 .017 .135+ .368	.632 .865 .983	0 .003 .059 .215+	.785- .941 .997	0 1 2 3	0 .026 .143 .320 500	.500 .680 .857 .974	0 .013 .098 .249 .473	.527 .751 .902 .987	0 .003 .042 .141 .31 0	.684 .859 .958 .997
			n -	5						n = 6			
0 1 2 3 4 5	.247 <u>.8</u> .379 <u>.9</u>		0 .010 .076 .189 .343	.500 .657 .811 .924 .990	0 .GJ2 .033 .106 .222 .398	.602 .778 .894 .967 .998	0123456	0 .017 .093 .201 .333 .458 .655+	.345~ .542 .667 .799 .907 .983	0 .009 .063 .153 .271 .402	.402 .598 .729 .847 .937 .991	0 .002 .327 .085- .173 .294 .464	.536 .706 .827 .915+ .973 .998
			n	7				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
0 1 2 3 4 5	.0155 .079 .6 .170 .7 .279 .8 .316 .9	116 00 84 21 130 121	0 .007 .053 .129 .225+	.554 .659 .275= .871 .947	0 .001 .023 .071 .142 .236	.500 .643 .764 .858 .929 .977	i. *, 3	.013 .069 47 .240 .255-	.418 .582 .745+ .760 .853-	.006 .046 .111 .193 .289	.500 .685- .711 .807 .889	.001 .020 .061 .121 .198	.590 .707 .802 .879 .939
7		85+	.623	<u>.993</u> _1	.357	<u>.999</u> _1	6 7 8	.418 .582 .745+	.931 .9^7 <u>1</u>	.315+ .500 .685-	.954 .994 .1	.293 .410 .549	.980 .999 <u>1</u>
<u> </u>			n •				L.,	n = 10					
0 1 2 3 4 5 6 7 8 9	.012 .3 .061 .5 .129 .6 .210 .7 .232 .7 .390 .8 .4859	232 191 15+ 10 768 792 371 939 988	0 .006 .041 .098 .169 .251 .289 .442 .557	.289 .743 .558 .711 .749 .831 .902 .959 .994	0 .001 .017 .053 .105+ .171 .250 .344 .402 .598	.402 .598 .656 .750 .829 .395- .947 .983 .999	012145 678 9	0 .010 .055- .116 .188 .222 .341 .352 .500	.222 .352 .500 .648 .659 .778 .812 .884 .94	0 .005+ .037 .087 .150 .222 .267 .381 .397 .603	.267 .397 .603 .619 .733 .778 .850 .913 .963	.001 .016 .048 .093 .150 .218 .297 .376	.376 .512 .624 .703 .782 .850 .907 .952 .984
	l				L		10	.778	<u>i</u> _	.733	<u> </u>	.624	<u> </u>
-	T		n '	- 11			-			n = 12	2	· · · ·	
0 1 5 10	.010 .049 .4 .1055 .169 .6 .197 .6 .302 .1 .315+ .8 .423 .8	197 115+ 123 577 565 598 803 831 895+ 951	0 .005- .033 .079 .135+ .200 .250 .333 .369 .500	.250 .369 .500 .631 .667 .750 .300 .865- .921 .967 .995+	0 .001 .014 .0+3 .084 .134 .194 .262 .340 .407	.359 .500 .593 .660 .736 .866 .916 .957 .986 .999		0 .009 .045+ .096 .154 .184 .271 .294 .398 .500	.184 .294 .398 .500 .602 .706 .729 .816 .846 .904	0 .004 .030 .072 .123 .181 .236 .294 .346 .450 .550	.236 .346 .450 .550 .654 .705 .764 .819 .877 .929 .970	6 .001 .013 .039 .076 .121 .175- .235- .302 .321 .445+	.321 .445+ .555- .679 .698 .765+ .825+ .879 .924 .961
11	.803	<u>l</u>	.750	1	.641	<u>l</u>	11 12	.706 .814	.991	.654 .764	<u>.996</u>	.555- .679	.999 T

Febr duc. The permission from Statistics Manual, NAVORD REPORT 3369, NOTS 948, by I. I. Grow, F. A. Davis, and M. W. Maxialli, 1955, U.S. Naval Ordnance Test Station, China Take, Criffornia.

TABLE B-13 continued

CONFIDENCE LIMITS FOR A PROPORTION (TWO-SIDED)

	CONFIDENCE LIMITS FOR A PROPORTION (IWO-SIDED)								
£	90%	957 997		f	90%	95%	99%		
		n = 13				n = 14			
0 1 2 3 4 5	0 .173 .008 .276 .042 .379 .088 .470 .142 .545- .173 .621	0 .225+ .004 .327 .028 .434 .066 .520 .113 .587 .166 .673	0 .302 .001 .429 .012 .523 .036 .594 .069 .698 .111 .727	0 1 2 3 4 5	0 .162 .007 .261 .039 .365+ .081 .422 .131 .578 .163 .594	0 .207 .004 .312 .026 .389 .061 .500 .104 .611 .153 .629	0 <u>.286</u> .001 <u>.392</u> .011 <u>.500</u> .033 <u>.608</u> .064 <u>.636</u> .102 <u>.714</u>		
6 7 8 9 10	.246 .724 .276 .754 .379 .827 .455+ .858 .530 .912	.224 .740 .260 .776 .327 .834 .413 .887 .480 .934	.159 .787 .213 .841 .273 .889 .302 .931 .406 .964	6 7 8 9 10	.224 <u>.645+</u> .261 <u>.739</u> .355- <u>.776</u> .406 <u>.837</u> .422 <u>.869</u>	.206	.146 .751 .195805+ .249 .854 .286 .898 .364 .936		
11 12 13	.621 <u>.958</u> .724 <u>.992</u> .827 <u>1</u>	.566 <u>.972</u> .673 <u>.996</u> .775- <u>1</u>	.477 <u>.988</u> .571 <u>.999</u> .698 <u>1</u>	11 12 13 14	.578 <u>.919</u> .635- <u>.961</u> .739 <u>.993</u> .837 <u>1</u>	.500 <u>.939</u> .611 <u>.974</u> .688 <u>.996</u> .793 <u>1</u>	.392 <u>.967</u> .500 <u>.989</u> .608 <u>.999</u> .714 <u>1</u>		
		n = 15		n = 16					
0 1 2 3 4 5	0 .154 .007 .247 .036 .326 .076 .400 .122 .500 .154 .600	0 .191 .003 .302 .024 .369 .057 .448 .097 .552 .142 .631	0 .273 .001 .373 .010 .461 .031 .539 .059 .627 .094 .672	0 1 2 3 4 5	0 .147 .007 .235+ .034 .305+ .071 .381 .114 .450 .147 .550	0 .179 .003 .273 .723 .352 .053 .429 .090 .500 .132 .571	0 .264 .001 .357 .010 .451 .029 .525- .055+ .579 .083 .643		
6 7 8 9	.205+ .674 .247 .675- .325+ .753 .326 .795- .400 .846	.191 <u>.668</u> .192 <u>.706</u> .294 <u>.808</u> .332 <u>.809</u> .369 <u>.858</u>	.135727 .179 .771 .229 .821 .273 .865+ .328 .906	6 7 8 9 10	.189 .619 .235+ .695- .299 .701 .305+ .765- .381 .811	.178 .648 .179 .727 .272 .728 .273 .821 .352 .822	.125+ .705- .166 .739 .212 .788 .261 .834 .295+ .875-		
11 12 13 14 15	.500 <u>.878</u> .600 <u>.924</u> .674 <u>.964</u> .753 <u>.993</u> .846 <u>1</u>	.448 .903 .552 .943 .631 .976 .698 .997 .809 <u>1</u>	.461 <u>.969</u> .539 <u>.990</u> .627 <u>.999</u> .727 <u>1</u>	11 12 13 14 15 16	.450 .853 .550 .886 .619 .929 .695966 .765993 .853 <u>1</u>	.429	.357 .912 .421 .945- .475+ .971 .549 .990 .643 .999 .736 <u>1</u>		

TABLE B-13 continued

		ONFIDENCE LIM	ITS FOR A PRO	PORTI	ON (TWO-SIDED)		
٤	90%	95%	997	f	90%	95 Z	99%
L		a = 17				n = 18	
0 1 2 3 4 5	0 .140 .006 .225+ .032 .290 .067 .364 .107 .432 .140 .500	0 .167 .003 .254 .021 .337 .050 .417 .085 .489 .124 .544	0 .243 .001 .346 .00° .413 .027 .500 .052 .587 .082 .620	0 1 2 3 4 5	0 .135- .006 .216 .030 .277 .063 .349 .101 .419 .135482	0 .157 .003 .242 .020 .325- .047 .381 .080 .444 .116 .556	0 .228 .001 .318 .008 .397 .025+ .466 .049 .534 .077 .603
6 7 8 9 10	.175+ <u>.568</u> .225+ <u>.636</u> .277 <u>.710</u> .290 <u>.723</u> .364 <u>.775-</u>	.166 .594 .167 .663 .253 .746 .254 .747 .337 .333	.117 <u>.662</u> .155+ <u>.757</u> .197 <u>.758</u> .242 <u>.803</u> .243 <u>.845</u>	6 7 8 9	.163 .536 .216 .584 .257 .651 .277 .723 .349 .743	.156 <u>.619</u> .157 <u>.625+</u> .236 <u>.675+</u> .242 <u>.758</u> .325- <u>.764</u>	.110 <u>.682</u> .145+ <u>.636</u> .184 <u>.772</u> .226 <u>.774</u> .228 <u>.815</u>
11 12 13 14 15	.432 <u>.825-</u> .500 <u>.860</u> .568 <u>.893</u> .636 <u>.933</u> .710 <u>.968</u>	.406 <u>.834</u> .456 <u>.876</u> .511 <u>.915+</u> .583 <u>.950</u> .663 <u>.979</u>	.338 <u>.883</u> .380 <u>.918</u> .413 <u>.948</u> .500 <u>.973</u> .587 <u>.991</u>	11 12 13 14 15	.416 .784 .464 .837 .518 .865+ .581 .899 .651 .937	.375- <u>.843</u> .381 <u>.844</u> .444 <u>.884</u> .556 <u>.920</u> .619 <u>.953</u>	.314 .355- .318 .890 .397 .923 .466 .951 .534 .975-
16 17	.775- <u>.994</u> .860 <u>1</u>	.746 <u>.997</u> .833 <u>1</u>	.654 <u>.999</u> .757 <u>1</u>	16 17 18	.723 <u>.970</u> .78. <u>.994</u> .665+ <u>1</u>	.675+ <u>.980</u> .758 <u>.997</u> .843 <u>1</u>	.603 <u>.992</u> .682 <u>.999</u> .772 <u>1</u>
	,	n = 19		n = 20			
0 1 2 3 4 5	0 .130 .006 .209 .028 .265+ .059 .337 .095+ .387 .130 .440	0 .150 .003 .232 .019 .316 .044 .365- .075+ .426 .110 .500	0 .218 .001 .305+ .008 .383 .024 .455+ .046 .515+ .073 .564	0 1 2 3 4 5	0 .126 .005+ .203 .027 .255- .056 .328 .090 .367 .126 .422	0 .143 .003 .222 .018 .294 .042 .351 .071 .411 .104 .467	0 .209 .001 .293 .008 .375- .023 .424 .044 .500 .069 .576
6 7 8 9 10	.151 <u>.560</u> .209 <u>.613</u> .238 <u>.514</u> .265+ <u>.663</u> .337 <u>.735-</u>	.147 .574 .150 .635+ .222 .655+ .232 .688 .312 .768	.103 <u>.617</u> .137 <u>.695-</u> .173 <u>.707</u> .212 <u>.782</u> .218 <u>.788</u>	6 7 8 9 10	.141 .500 .201 .578 .221 .633 .255642 .325 .675+	.140 .533 .143 .589 .209 .649 .222 .706 .293 .707	.098 <u>.601</u> .129 <u>.637</u> .163 <u>.707</u> .200 <u>.726</u> .209 <u>.791</u>
11 12 13 14 15	.386 .762 .387 .791 .440 .849 .560 .870 .613 .905-	.345778 .365850 .426 .853 .500 .890 .574 .925-	.293 .827 .305+ .863 .383 .897 .436 .927 .485954	11 12 13 14 15	.358 .745+ .367 .779 .422 .799 .500 .859 .578 .874	.294 .778 .351 .791 .411 .857 .467 .860 .533 .896	.274 <u>.800</u> .293 <u>.837</u> .363 <u>.871</u> .399 <u>.902</u> .424 <u>.931</u>
16 17 18 19	.663 <u>.941</u> .735- <u>.972</u> .791 <u>.994</u> .870 <u>1</u>	.635+ .956 .684 .981 .768 .997 .850 1	.545- <u>.976</u> .617 <u>.992</u> .695- <u>.999</u> .782 <u>1</u>	16 17 18 19 20	.633 <u>.910</u> .672 <u>.944</u> .745+ <u>.973</u> .797 <u>.995-</u> .874 <u>1</u>	.589 <u>.929</u> .649 <u>.958</u> .706 <u>.982</u> .778 <u>.997</u> .857 <u>1</u>	. 100 <u>. 956</u> . 176 <u>. 977</u> . 625+ <u>. 992</u> . 707 <u>. 999</u> . 791 <u>1</u>

TABLE B-13 continued

CONFIDENCE LIMITS FOR A PROPORTION (TWO-SIDED)

f	90%	95%	99%	f	90%	95%	992
		n = 21				n = 22	
0 1 2 3 4 5	0 .123	0 .137	0 .271	0	0 .116	0 .132	0 .194
	.005+ .192	.002 .213	.000 .283	1	.005182	.002 .205+	.000 .273
	.026 .245-	.017 .277	.007 .347	2	.024 .236	.016 .264	.007 .334
	.054 .307	.040 .338	.022 .409	3	.051 .289	.038 .326	.621 .396
	.086 .353	.068 .398	.041 .466	4	.082 .340	.065389	.039 .454
	.121 .407	.099 .455+	.065+ .534	5	.115393	.094 .424	.062 .505-
6	.130 .458	.132 <u>.506</u>	.092 .591	6	.116 .444	.126 .500	.088 .550
7	.191 .542	.137 <u>.551</u>	.122 .653	7	.181 .500	.132 .576	.116 .604
8	.192 .593	.197 <u>.602</u>	.155661	8	.182 .556	.187 .582	.147 .666
9	.245647	.213 <u>.662</u>	.189 .717	9	.236 .607	.205+ .617	.179 .682
10	.306 .693	.276 <u>.723</u>	.201 .743	10	.289 .660	.260 .674	.194 .727
11	.307 .694	.277 .724	.257 .799	11	.290 .710	. 264736	.242 .758
12	.353 .755+	.338 .787	.283 .811	12	.340 .711	. 326740	.273 .806
13	.407 .808	.398 .803	.339 .845+	13	.393 .764	. 383795-	.318 .821
14	.458 .809	.449 .863	.347 .878	14	.444 .818	. 418813	.334 .853
15	.542 .870	.494 .868	.409 .908	15	.500 .819	. 424868	.396 .884
16	.593 .879	.545901	.466 <u>.935-</u>	16	.556 <u>.884</u>	.500 <u>.874</u>	.450 <u>.912</u>
17	.647 .914	.602 .932	.534 <u>.959</u>	17	.607 <u>.885+</u>	.576 <u>.906</u>	.495+ <u>.938</u>
18	.693 .946	.662 .960	.591 <u>.978</u>	18	.660 <u>.918</u>	.611 <u>.935+</u>	.546 <u>.961</u>
19	.755+ .974	.723 .983	.653 <u>.993</u>	19	.711 <u>.949</u>	.674 <u>.962</u>	.604 <u>.979</u>
20	.808 .995	.787 .998	.717 <u>1.000</u>	20	.764 <u>.976</u>	.736 <u>.984</u>	.666 <u>.993</u>
21	.877 <u>1</u>	.863 <u>1</u>	.799 <u>1</u>	21	.818 <u>.935+</u> .884 <u>1</u>	.795 <u>.998</u> .868 <u>1</u>	.727 <u>1.000</u> .806 1
i		n = 23	Į	1	· · · · · ·	n = 24	.806 <u>1</u>
0	0 .111	0 .127	0 .187	0	0 .105+	0 .122	0 .181
1	.005174	.002 .198	.000 .265+	1	.004 .165+	.002 .191	.000 .259
2	.023 .228	.016 .255-	.007 .323	2	.022 .221	.015+ .246	.006 .313
3	.049 .274	.037 .317	.020 .386	3	.047 .264	.035308	.019 .364
4	.078 .328	.062 .361	.038 .429	4	.075317	.059 .347	.036 .416
5	.110 .381	.090 .409	.059 .500	5	.105370	.086 .396	.057 .464
6	.111 .431	.120 .457	.084 <u>.571</u>	6	.105+ .423	.115443	.080 .536
7	.173 .479	.127 .543	.111 <u>.580</u>	7	.165448	.122 .500	.106 .584
8	.174 .522	.178 .591	.140 <u>.616</u>	8	.165+ .532	.169 .357	.133 .636
9	.228 .569	.198 .639	.171 <u>.677</u>	9	.221 .553	.191 .604	.163 .638
10	.273 .619	.247 .640	.187 <u>.702</u>	10	.259 .587	.234 .653	.181 .687
11	.274 .672	.255- <u>.683</u>	.229 .735-	11	.264 .630	.246	.216 .720
12	.328 .726	.317 <u>.745+</u>	.265+ .771	12	.317 .683		.257 .743
13	.381 .727	.360 <u>.753</u>	.298 .813	13	.370 .736		.280 .784
14	.431 .772	.361 <u>.802</u>	.323 .829	14	.413 .741		.313 .819
15	.478 .826	.409 <u>.822</u>	.384 .860	15	.447 .779		.362 .837
16	.512 <u>.827</u>	.457 <u>.873</u>	.420 <u>.889</u>	16	.448 .835-	.443 <u>.831</u>	.364 <u>.867</u>
17	.569 <u>.889</u>	.543 <u>.880</u>	.429 <u>.916</u>	17	.552 .835+	.500 <u>.978</u>	.416 <u>.894</u>
18	.619 <u>.890</u>	.591 <u>.910</u>	.500 <u>.941</u>	18	.577 .895-	.557 <u>.885+</u>	.464 <u>.920</u>
19	.672 <u>.922</u>	.639 <u>.938</u>	.571 <u>.962</u>	19	.630 .895+	.604 <u>.914</u>	.536 <u>.943</u>
20	.726 <u>.951</u>	.683 <u>.963</u>	.614 <u>.980</u>	20	.683 .925+	.653 <u>.941</u>	.584 <u>.964</u>
21 22 23	.772 <u>.977</u> .826 <u>.995+</u> .889 <u>1</u>	.745+ <u>.984</u> .802 <u>.998</u> .873 <u>1</u>	.677 <u>.993</u> .735–1.000 .813 <u>1</u>	21 22 23 24	.736 <u>.953</u> .779 <u>.978</u> .835- <u>.996</u> .895- <u>1</u>	.692 .965+ .754 .985- .809 .998 .878 <u>1</u>	.636 <u>.981</u> .687 <u>.994</u> .741 1.000 .819 <u>1</u>

TABLE B-13 continued

CONFIDENCE LIMITS FOR A PROPORTION (TWO-SIDED) n = 25907 95% 992 907 95% 992 .102 .118 ٥ .175+ 0 0 .098 0 1 .159 .004 <u>.170</u> .002 .185+ .000 .246 1 .004 .152 .214 .021 .002 .180 .000 . 235-.014 .238 .006 .305-.021 2 .209 .014 .230 .298 3 .045-. 255-.034 .006 .303 .018 .352 . 247 3 .043 .283 .307 .032 .072 . 336 .017 .057 .342 .034 .403 4 .069 5 .299 .054 .325+ .101 .362 .393 .033 .082 . 384 .054 .451 .097 . 343 .079 .374 .052 .442 .102 6 .390 .110 .431 .077 .500 .377 .098 6 .106 7 .158 .432 .421 .073 .525+ .487 .118 .101 .549 7 .151 .419 .114 .465-8 .159 .500 .097 .526 .161 .597 .127 .152 .460 . 506 9 .214 .568 .154 . 569 .122 .562 .185+ .155+ .648 . 209 10 9 .540 . 180 .542 .607 .246 .149 .610 .222 .616 .175+ .658 10 .233 .581 .212 .579 .170 11 .658 .255-.611 .238 .664 .205+ <u>.695</u>+ 11 .247 .623 .230 .626 .678 12 .307 .640 .195-.296 .683 .245+ .754 12 . 299 .675 .717 .657 .282 13 .360 .693 .317 .704 . 234 .702 . 246 .755-113 .658 . 342 14 .283 .765+ .389 .745+ .235-.336 .762 . 305-.795-.701 ||14 .343 15 .325+ .718 .390 .754 .298 .778 .765 . 384 . 342 .825-15 .377 .753 .374 .770 . 322 .805+ 16 .432 .786 .431 .815-.352 .845-.419 .767 <u>.78</u>8 17 . 421 . 500 .342 .841 .475-.830 .873 .839 17 18 .403 .460 .791 458 18 .568 .842 .820 .393 .851 .525+ .882 .451 899 .848 .540 19 94 .846 .438 .610 .898 .890 .569 .878 .500 .923 .581 19 20 .849 .886 .638 .899 .474 .903 .616 .918 .549 .946 20 .623 .902 .5, 894 .513 .927 21 .693 .928 .664 .943 .597 .966 21 . 657 . 903 .626 ?1 22 .745+ .948 .955+ .966 . >58 .697 .648 .982 22 .701 .931 23 . 786 .675-,6 .979 .607 .967 .762 .986 .994 .695+ 23 .753 .957 .717 .968 124 <u>.996</u> <u>:</u> .983 .841 .658 .815-.998 .754 1.000 24 .791 .979 . 898 .986 25 .770 .702 .862 .994 1 .825-25 .848 1 .996 .820 .998 .765+1.000 .902 1 .886 1 .830 1

TABLE B-13 continued

		CONFIDEN	E LIMITS FOR	A P	ROPORTION (TWO	-SIDED)	
<u></u>		n = 27				n = 28	
f	902	95%	992	f	902	95%	992
0 1 2 3 4 5	0 .093 .004 .146 .020 .204 .042 .239 .066 .291 .093 .327	0 .110 .002 .175 .013 .223 .031 .270 .052 .316 .076 .364	0 .166 .000 .225- .006 .297 .017 .332 .032 .384 .050 .419	0 1 2 3 4 5	0 .090 .004 .140 .019 .201 .040 .232 .064 .284 .089 .312	0 .106 .002 .170 .013 .217 .030 .259 .050 .307 .073 .357	0 .162 .000 .218 .005+ .273 .016 .323 .031 .365- .048 .408
6 7 8 9	.094 .365+ .145+ .407 .146 .447 .204 .500 .221 .553	.101 <u>.415</u> .110 <u>.437</u> .148 <u>.500</u> .175- <u>.563</u> .202 <u>.570</u>	.070 .461 .093 .539 .117 .581 .143 .587 .166 .617	6 7 8 9 10	.090 .355- .139 .396 .1-0 .435+ .197 .473 .208 .527	.098 .384 .106 .424 .142 .463 .170 .537 .192 .576	.068 .449 .089 .500 .112 .551 .137 .592 .162 .635
11 12 13 14 15	.239 .593 .291 .635- .326 .673 .327 .674 .365+ .709	.223 .598 .269 .636 .270 .684 .316 .730 .364 .731	.185- <u>.668</u> .224 <u>.702</u> .225- <u>.716</u> .284 <u>.775+</u> .298 <u>.776</u>	11 12 13 14 15	.232 .565- .284 .604 .310 .645+ .312 .688 .355690	.217 <u>.616</u> .258 <u>.619</u> .259 <u>.645+</u> .307 <u>.693</u> .355- <u>.741</u>	.175+ .636 .214 .677 .218 .727 .272 .728 .273 .782
16 17 18 19 20	.407 .761 .447 .779 .500 .796 .553 .854 .593 .855-	.402 .777 .430 .798 .437 .825+ .500 .852 .563 .890	.419 <u>.883</u> .461 <u>.907</u>	16 17 18 19 20	.396 .716 .435+ .768 .473 .792 .527 .803 .565860	.381 .742 .384 .783 .424 .808 .463 .830 .537 .858	.323 .786 .364 .825- .365838 .408 .863 .449 .888
21 22 23 24 25	.635- <u>.906</u> .673 <u>.977</u> .709 <u>.934</u> .761 <u>.958</u> .796 <u>.980</u>	.585+ .899 .636 .924 .684 .948 .730 .969 .777 .987	.539	?1 22 23 24 25	.604 <u>.861</u> .645+ <u>.910</u> .688 <u>.911</u> .716 <u>.936</u> .768 <u>.960</u>	.576 .894 .616 .902 .643 .927 .693 .950 .741 .970	.500 <u>.911</u> .551 <u>.932</u> .592 <u>.952</u> .635+ <u>.969</u> .677 <u>.984</u>
26 27	.854 <u>.996</u> .907 <u>1</u>	.825+ <u>.998</u> .890 <u>1</u>	.775+1.000 .834 <u>1</u>	26 27 28	.799 <u>.981</u> .860 <u>.996</u> .910 <u>1</u>	.783 <u>.987</u> .630 <u>.998</u> .894 <u>1</u>	.727 <u>.995-</u> .782 1.000 .838 <u>1</u>
0 1	T	n = 29				n = 30	
1 2 3 4 5 5 7 8	0 .087 .004 .135- .018 .190 .039 .225- .062 .279 .086 .303 .087 .345- .134 .385+	0 .103 .002 .166 .012 .211 .029 .251 .049 .299 .070 .340 .094 .3/4 .103 .413	0 .160 .900 .211 .005+ .263 .015+ .316 .030 .354 .046 .397 .0¢5+ .438 .086 .477	0 1 2 3 4 5 6 7	0 .084 .004 .130 .018 .183 .037 .219 .059 .266 .083 .295- .084 .336 .129 .376	0 .100 .002 .163 .012 .205+ .028 .244 .047 .292 .068 .325- .021 .30 .100 .403	0 .152 .000 .206 .005+ .256 .015310 .028 .345- .045388 .045388
9	.135- <u>.425</u> .189 <u>.463</u> .1°0 <u>.500</u>	.136 <u>.451</u> .166 <u>.500</u> .184 <u>.549</u>	.108 <u>.523</u> .132 <u>.562</u> .157 <u>.603</u>	8 9 10	.130 <u>.416</u> .182 <u>.455+</u> .183 <u>.492</u>	.131 .440 .163 .476 .175+ .524	.104 .505+ .127 .538 .151 .570

TABLE B-13 continued
CONFIDENCE LIMITS FOR A PROPORTION (TWO SIDED)

	n = 2	9				N = 30	
f	90%	952	992	f	90%	95%	992
11	.225537	.211 .587	.165+ .646	11	.219 .524	.205+ .560	.152 .612
12	.276 .575+	.247 .626	.206 .654	12	.265554	.236 .597	.198 .655+
13	.294 .615-	.251 .669	.211 .684	!?	.266 .584	.244 .636	.206 .671
14	.303 .655+	.299 .661	.260 .737	14	.295624	.292 .675+	.249 .692
15	.345697	.339 .701	.263 .740	15	.336 .664	.324 .676	.256 .744
16	.385+ .706	.340 <u>.749</u>	.316 .789	16	.376 .705+	.325708	.308 <u>.751</u>
17	.4:5724	.374 <u>.753</u>	.346 .794	17	.416 .734	.364 .756	.329 <u>.794</u>
18	.463 .775+	.413 <u>.789</u>	.354 .835-	18	.446 .735+	.403 .764	.345- <u>.802</u>
19	.500 .810	.451 <u>.816</u>	.397 .843	19	.476 .781	.440 .795-	.388 <u>.848</u>
20	.537 .811	.500 <u>.834</u>	.438 .868	20	.508 .817	.476 .825-	.430 <u>.849</u>
21	.575+ <u>.865+</u>	.549 <u>.864</u>	.477 .892	21	.545- <u>.818</u>	.524 <u>.837</u>	.462 <u>.873</u>
22	.615- <u>.866</u>	.587 <u>.897</u>	.523 .914	22	.584 <u>.870</u>	.560 <u>.869</u>	.495- <u>.896</u>
23	.655+ <u>.913</u>	.626 <u>.906</u>	.562 .935-	23	.624 <u>.871</u>	.597 <u>.900</u>	.531 <u>.917</u>
24	.697 <u>.914</u>	.660 <u>.930</u>	.603 .954	24	.664 <u>.916</u>	.636 <u>.909</u>	.570 <u>.937</u>
25	.721 <u>.938</u>	.701 <u>.951</u>	.646 .970	25	.705+ <u>.917</u>	.675+ <u>.932</u>	.612 <u>.955</u> +
26 27 28 29	.775+ <u>.961</u> .810 <u>.982</u> .865+ <u>.996</u> .913 <u>1</u>	.749 .971 .789 .988 .834 .998 .897 1	.684 <u>.985</u> - .737 <u>.995</u> - .789 <u>1.000</u> .840 <u>1</u>	26 27 28 29 30	.734 <u>.941</u> .781 <u>.963</u> 817 <u>.982</u> .870 <u>.996</u> .916 <u>1</u>	.708 <u>.952</u> .756 <u>.972</u> .795- <u>.988</u> .837 <u>.998</u>	.655+ .972 .690 .985+ .744 .995- .794 1.000 .848 1

TABLE B-14

CONFIDENCE LIMITS FOR A PROPORTION (ONE-SIDED)

If the observed proportion is f/n, enter the table with N and f for an upper one-sided limit. For a lower one-sided limit, enter the table with N and N — f and subtract the table entry from 1.

		,									
1	902	952	992		90%	95%	992	£	90%	952	992
		n = 2	4			n = 3				n = 4	
0	.684 .949	.776 .975-	. 900	0 1 2	.536 .804 .965+	.632 .865- .983	.785- .941 .997	0 1 2 3	.438 .680 .857 .974	.527 .751 .902 .987	.648 .859 .958 .997
		n * 5				n = 6				n = 7	
0 1 2 3 4	.369 .584 .753 .888 .979	.451 .657 .811 .924 .990	.602 .778 .894 .967 .998	0 1 2 3 4 5	.319 .510 .667 .799 .907 .983	.393 .582 .729 .847 .937 .991	.536 .706 .827 .915+ .973	0 1 2 3 4 5 6	.280 .453 .596 .721 .830 .921 .985+	.348 .521 .659 .775- .871 .947	.482 .643 .764 .858 .929 .977 .999
		n = 8				n = 9				n ~ 10	
n 1 2 3 4 5 6 7	. 250 . 406 . 538 . 655+ . 760 . 853 . 931 . 987	.312 .471 .600 .711 .807 .889	.438 .590 .707 .802 .879 .939	0 1 2 3 4 5 6 7 8	.226 .368 .490 .599 .699 .790 .871 .939	.283 .429 .550 .655+ .749 .831 .902 .959	.401 .544 .656 .750 .829 .895- .947 .983	0 1 2 3 4 5 6 7 8	.206 .337 .450 .352 .646 .733 .812 .884 .945+	.259 .394 .507 .607 .696 .778 .850 .913 .963	.369 .504 .612 .703 .782 .850 .907 .952 .984 .999
	<u> </u>	n = 11				n = 12	!			n = 13	
0 1 2 3 4 5 6 7 8	.189 .310 .415+ .511 .599 .682 .759 .831 .895+	.238 .364 .470 .564 .650 .729 .800 .865- .921	.342 .470 .572 .660 .738 .806	0 1 2 3 4 5 6 7 8	.175- .287 .386 .475+ .559 .638 .712 .781	.221 .339 .438 .527 .609 .685~	.319 .440 .537 .622 .698 .765+ .825+ .879	0 1 2 3 4 5 6 7 8	.162 .268 .360 .444 .523 .598 .669 .736	.206 .316 .410 .495- .573 .645+ .713 .776	.298 .413 .506 .588 .661 .727 .787 .841
10	.990	.967 .995+	.986	10	.904 .955-	.928 .970	.961 .987	9 10	.858 .912	.887 .934	.931 .964
				11	. 9 9 1	. 996	.999	11 12	. 958 . 992	. 972 . 996	.988 .999
		n = 14				n = 15				: = 16	
0 1 2 3 4 5	.152 .251 .237 .417 .492 .563	.193 .297 .385+ .466 .540	.280 .389 .478 .557 .627 .692	0 1 2 3 4 5	.142 .236 .317 .393 .464	.181 .279 .363 .440 .511	.264 .368 .453 .529 .597 .660	0 1 2 3 4 5	.134 .222 .300 .371 .439	.171 .264 .344 .417 .484	.250 .349 .430 .503 .569 .630

Reproduced by permission f.om Statistics Manual, NAVORD REPORT 3369, NOTS 948, by E.L. Crow, F.A. Davis, and M.W. Marfield, 1955, U.S. Naval Ordnance Test Station, China Lake, California.

TABLE B-14 continued

CONFIDENCE LIMITS FOR A PROPORTION (ONE-SIDED)

							100 (002		·		
f	90%	95%	992	f	902	952	992	f	902	952	992
	n	- 14 (con	tinued)	,	n	= 15 (con	tinued)		В	= 16 (con	tinued)
6 7 8 9	.631 .695+ .757 .815- .869	.675- .736 .794 .847 .896	.751 .905+ .854 .898 .936	6 7 8 9	.596 .658 .718 .774 .828	.640 .700 .756 .809	.718 .771 .821 .865+ .906	6 7 8 9 10	.565+ .625- .682 .737	.609 .667 .721 .773 .822	.687 .739 .788 .834 .875-
11 12 13	.919 .961 .993	.939 .974 .996	.967 .989 .999	11 12 13 14	.878 .924 .964 .993	.903 .943 .976 .997	.941 .969 .990 .999	11 12 13 14 15	.839 .886 .929 .966	.868 .910 .947 .977	.912 .945- .971 .990 .999
	n	- 17	١	ر ا	n	- 18	L	<u> </u>	n	- 19	
0 1 2 3 4 5 5 6 7 7 8 9 9 10 11 12 13 14 15 16	.127 .210 .284 .352 .416 .478 .537 .594 .650 .703 .754 .803 .849 .893 .933 .968	. 162 . 250 . 326 . 396 . 461 . 522 . 580 . 636 . 740 . 788 . 834 . 876 . 915+ . 950 . 979	. 237 . 332 . 410 . 480 . 543 . 603 . 658 . 709 . 758 . 803 . 845 . 883 . 918 . 948 . 973 . 991	0 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15	.120 .199 .269 .334 .396 .455+ .513 .567 .620 .671 .721 .769 .815- .85P .899 .937	.153 .238 .310 .377 .439 .498 .554 .608 .659 .709 .756 .801 .844 .920 .953	.226 .316 .391 .458 .520 .577 .631 .681 .729 .774 .816 .855- .890 .923 .951 .975-	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	.114 .190 .257 .319 .378 .434 .489 .541 .592 .642 .690 .737 .782 .825- .866 .905-	.14h .226 .296 .359 .419 .476 .530 .582 .632 .680 .726 .770 .812 .853 .890 .925-	.215+ .302 .374 .439 .498 .554 .606 .655+ .702 .746 .788 .827 .863 .897 .927 .954
-	<u> </u>	20	L			<u> </u>	<u> </u>	18	. 394	· 997	.999
-	T	T	1		Γ	<u> </u>	Т	}	1	<u>* 22</u>	
0 1 2 3 4 5 6 7 8 9 10 11 12 13	.109 .181 .245- .304 .361 .415- .567 .518 .567 .615+ .662 .707 .751 .793 .834	.139 .216 .283 .344 .401 .456 .558 .606 .653 .698 .741 .783 .823	. 206 . 289 . 358 . 421 . 478 . 532 . 583 . 631 . 677 . /20 . 761 . 800 . 837 . 871	0 1 2 3 4 5 6 7 8 9 1 1 12 13 14	.104 .173 .234 .291 .345+ .397 .448 .497 .544 .590 .636 .679 .764 .804	.133 .207 .271 .329 .384 .437 .487 .536 .583 .628 .672 .714 .755+ .794	. 197 . 277 . 344 . 404 . 460 . 512 . 561 . 608 . 653 . 695+ . 736 	0 1 2 3 4 5 6 7 8 9 10 11 12 13	.099 .166 .224 .279 .331 .381 .430 .477 .521 .569 .611	.127 .198 .259 .316 .369 .420 .468 .515+ .561 .605- .647 .649 .729 .767 .767	.189 .266 .330 .389 .443 .541 .587 .630 .672 .712
15 16 17 14 19	.873 .910 .944 .973 .995-	, 49° , 42° , 48° , 48° , 49°	.931 .956 .977 .992 .999	15 16 17 18 19 20	.84. .870 .914 .946 .974 .995-	,868 .901 .932 .960 .983 .988	.908 .935= .959 .978 .993 1.000	15 16 17 10 19 20 21	.813 .836 .885+ .918 .949 .976 .995+	.840 .874 .906 .935+ .962 .984 .998	.912 .913 .961 .979 .993

TABLE B-14 continued

CONFIDENCE LIMITS FOR A PROPORTION (ONE-SIDED)

			CONFIDENC			·	TION (ON	11	·		
f	902	95%	992	f	902	95%	992	l t	90%	95%	992
<u>_</u>	,	n = 23	,	<u> </u>		n = 24	·	<u> </u>	·	n = 25	
0 1 2 3 4 5	.095+ .159 .215+ .268 .318 .366	.122 .190 .249 .304 .355- .404	.181 .256 .318 .374 .427 .476	0 1 2 3 4 5	.091 .153 .207 .258 .306 .352	.117 .183 .240 .292 .342 .389	.175- .246 .307 .361 .412 .460	0 1 2 3 4 5	.088 .147 .199 .248 .295-	.113 .176 .231 .282 .330 .375+	.168 .237 .296 .349 .398
6 7 8 9 10	.413 .459 .503 .546 .589	.451 .496 .540 .583 .625-	.522 .567 .609 .650 .689	6 7 8 9 10	.398 .442 .484 .526 .567	.435- .479 .521 .563 .603	.505- .548 .590 .630 .668	6 7 8 9	.383 .426 .467 .508 .548	.420 .462 .504 .544 .583	.488 .531 .571 .610 .648
11 12 13 14 15	.630 .670 .710 .748 .786	.665- .704 .742 .778 .814	.727 .763 .797 .829 .860	11 12 13 14 15	.608 .647 .685+ .723 .759	.642 .681 .718 .754 .788	.705- .740 .774 .806 .837	11 12 13 14 15	.587 .625- .662 .699 .735-	.621 .659 .695- .730 .764	.684 .719 .752 .784 .815+
16 17 18 19 20	.822 .857 .890 .922 .951	.848 .880 .910 .938 .963	.889 .916 .941 .962 .980	16 17 18 19 20	.795+ .830 .863 .895+ .925+	.822 .854 .885+ .914 .941	.867 .894 .920 .943 .964	16 17 18 19 20	.770 .804 .837 .869 .899	.798 .830 .861 .890 .918	.845+ .873 .899 .923 .946
21 22	.977 .995+	.984	.993 1.000	21 22 23	.953 .978 .996	.965+ .985- .998	.98 <u>1</u> .994 1.000	21 22 23 24	.928 .955+ .979 .996	.943 .966 .986 .998	.966 .982 .994 1.000
		n = 26				n = 27		L		n = 28	
0 1 2 3 4 5	.085- .142 .192 .239 .284	.109 .170 .223 .272 .318 .363	.162 .229 .286 .337 .385- .430	0 1 2 3 4 5	.082 .137 .185+ .231 .275-	.105+ .164 .215+ .263 .308 .351	.157 .222 .277 .326 .373 .417	0 1 2 3 4 5	.079 .132 .179 .223 .265+ .306	.101 .159 .208 .254 .298 .339	.152 .215- .268 .316 .361 .404
6 7 8 9 10	.370 .411 .451 .491	.405+ .447 .487 .526 .564	.473 .514 .554 .592 .628	6 7 8 9 10	.358 .397 .436 .475- .512	.392 .432 .471 .509	.458 .498 .537 .574 .610	6 7 8 9 10	.346 .385- .422 .459 .496	.380 .419 .457 .494 .530	.445- .484 .521 .558 .593
11 12 13 14 15	.567 .604 .641 .676 .711	.602 .638 .673 .708 .742	.664 .698 .731 .763 .794	11 12 13 14 15	.549 .585- .620 .655+ .689	.583 .618 .653 .687 .720	.645+ .679 .711 .743 .773	11 12 13 14 15	.532 .567 .601 .635+ .669	.565+ .600 .634 .667 .699	.627 .660 .692 .723 .753
16 17 18 19 20	.746 .779 .812 .843	.774 .806 .837 .866 .894	.823 .851 .878 .903 .927	16 17 18 19 20	.723 .756 .788 .813 .849	.752 .783 .814 .843	.802 .831 .857 .883	16 17 18 19 20	.701 .733 .765- .796 .826	.731 .762 .792 .821 .849	.782 .810 .837 .863 .888
21 22 23 24 25	.903 .931 .957 .979 .996	.921 .946 .968 .986 .998	.748 .967 .983 .994 1.000	21 22 23 24 25	.879 .907 .934 .958 .980	.899 .924 .948 .969 .987	.930 .950 .968 .983 .994	21 22 23 24 25	.855+ .883 .911 .936 .960	.876 .902 .927 .950 .970	.911 .932 .952 .969 .984
				26	. 996	. 998	1.000	26 27	. 981 . 996	.987 .998	.995- 1.000

TABLE B-14 continued

CONFIDENCE LIMITS FOR A PROPORTION (ONE-SIDED)

£	90%	95%	99%	f	90%	95%	99%
		n = 23				n = 30	
0	.076	.098	.147	0	.074	.095+	.142
1	.128	.153	.208	1	.124	.149	.202
2	.173	.202	.260	2	.168	.195+	.252
3	.216	.246	.307	3	.209	.239	.298
4	.257	.288	.350	4	.249	.280	.340
5	.297	.329	. 392	5	.287	.319	.381
6	.335-	. 368	.432	6	. 325-	.357	.420
7	.372	.406	.470	7	.361	. 394	.457
8	.409	.443	.507	8	.397	.430	.493
9	.445+	.479	.542	9	.432	.465+	.527
10	.481	.514	.577	10	. 466	.499	.561
11	.515+	.549	.610	11	.500	.533	.594
12	.550	.583	.643	12	.533	66ڌ،	.626
13	.583	.616	.674	13	.566	.598	.657
14	.616	.648	.705-	14	.599	.630	.687
15	.649	.680	.734	15	.630	.661	.716
16	.681	.711	.763	16	.662	.692	.744
17	.712	.741	.791	17	.692	.721	.772
18	.743	.771	.818	18	.723	.750	.799
19	.774	.800	.843	19	.752	.779	.824
20	.803	.828	.868	20	.782	.807	.849
21	.832	.855-	.892	21	.810	.834	.873
22	.860	.881	.914	22	.838	.860	.896
23	.888	.906	.935-	23	.865+	.885+	.917
24	.914	.930	.954	24	.891	.909	.937
25	.938	.951	.970	25	.917	.932	.955+
26	.961	.971	.985-	26	.941	.953	.972
27	.982	.988	.995-	27	.963	.972	.985+
28	.996	.998	1.000	28	.982	.988	.995-
<u></u>				29	.996	.998	1.000

TABLE B-15

TABLE OF ARC SINE TRANSFORMATION FOR PROPORTIONS

	IADI	LE OF ARC	SINE TRAN	c $\sin \sqrt{P}$	- FOR PROPU	KIIONS		
P	θ	P	θ	P	θ	P	θ	
.00	.00	.25	1.05	.50	1.57	.75	2.09	_
.01	.20	.26	1.07	.51	1.59	.76	2.12	
.02	.28	.27	1.09	.52	1.61	.77	2.14	
.03	.35	.28	1.12	.53	1.63	.78	2.17	į
. 04	.40	. 29	1.14	.54	1.65	.79	2.19	
.05	.45	.30	1.16	.55	1.67	.80	2.21	
.06	.49	.31	1.18	.56	1.69	.81	2.24	
.07	.54	.32	1.20	.57	1.71	.82	2.27	
.08	.57	.33	1.22	.58	1.73	.83	2.29	
.09	.61	.34	1.25	.59	1.75	.84	2.32	
.10	.64	.35	1.27	.60	1.77	.85	2.35	
.11	.68	.36	1.29	.61	1.79	.86	2.37	
.12	.71	.37	1.31	.62	1.81	.87	2.40	
.13	.74	.38	1.33	.63	1.83	.88	2.43	ı
.14	.77	.39	1.35	.64	1.85	.89	2.47	
.15	.80	.40	1.37	.65	1.88	.90	2.50	
.16	.82	.41	1.39	.66	1.90	.91	2.53	
.37	.85	.42	1.41	.67	1.92	.92	2.57	
.18	.88	.43	1.43	.68	1.94	.93	2.61	١
.19	.90	.44	1.45	.69	1.96	.94	2.65	
20		, -	1 / 7	7.0	1 00	0.5	2 (2	
.20	.93	.45	1.47	.70	1.98	.95	2.69	
.21	.95	.46	1.49	.71	2.00	.96	2.74	
.22	.98	.47	1.51	.72	2.03	.97	2.79	
.23	1.00	.48	1.53	.73	2.05	.98	2.86	١
. 24	1.02	.49	1. 5 5	.74	2.07	.99 1.00	2.94 3.14	İ

TABLE B-16

TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES WITH UNEQUAL SAMPLES

Table B-16 shows (1) for given a_1 , n_1 , and n_2 , the value of a_2 , as the whole digit (e.g., for a_1 = 5, n_1 = 5, n_2 = 4, a_2 = 1) which is just significant at the probability level quoted in parentheses for a two-sided test and without parentheses for a one-sided test, (2) in small type, for a given n_1 , n_2 and a_1 + a_2 , the exact probability (if there is independence) that a_2 is equal to or less than the integer shown in bold type.

			Sign	ificance Le	vel					Signific	cance Leve	?å
	al	$0.05 \\ (0.10)$	0.(°25 (0.05	0.01 (.0.02)	0.005	_		αţ	0.05 (0.10)	0.025 (0.05)	0.01 (0.02)	0.005 (0.01)
$n_1 = 3, n_2 = 3$	3	0.50	-	-	-	n1=8 n2	=8	8	4.038 2.020	3.012 2.020	1.0054	2.003 0.001
n =4 n =4	4	0.014	0.014	-	-			6	1.020	1.020	0.003	0.553
3	4	0.029		-	-			5	0.013 0.038	0.013	<i>-</i>	-
n _{1 =5 n2 =5}	5 4	1.024 0.024		0.004	0.004		7	8 7	3.026 2.035-	2.007 1.009	2.007 1.009	1.001 0.001
4	5 4	1.048 0.040	0.008	0.008	-			6 5	1.032 0.019	0.006 0.019	0.005	-
3	5	0.018	0.018	-	-		6	8 7	2.015-	2.015-	1.003 0.002	1.003 0. 002
2	5	0.048		-	_			6 5	0.009 0.028	- 0.009	0.009	-
n1 =6 n2 =6	6	2.030 1.040 0.030		· 1.008 0.008 -	0.001		5	8 7 6 5	2.035- 1.032 0.016 0.044	1.007 0.005- 0.016	1.007 0.005-	0.001 0.005- - -
5	6 5 4	1.015+ 0.013 .045+	1.015+	0.002 - -	0.002		1	8 7 6	1.018 0.016+ 0.030	1.619 0.016+	0.002	0.000 - -
4	6 .	1.033	0.005- 0.024	0.005-	0.005-		3	8 7	0.006 0.624	0.005 0.024	0.006	- -
3	6	0.012 0.045	0.012	-	-		2	8	0.022	9.022	-	-
2	6	0.036		-		n ₁ =9 n ₂	=9	9	5.041 3.025-	4.015- 3.025-	3.005- 2.009	3.005- 1.002
n ₁ =7 n ₂ = 7	7 6 5 4	1.015-	2.010+ 1.015- 0.010+	1.002 0.002 - -	1.002 0.002 - -			7 6 5	2.028 1.025- 0.015- 0.041	1.008 1.025- -0.015-	1.008 0.005- -	0.001 0.005-
6	7 6 5 4	2.021 1.025+ 0.016 0.049	2.021 0.004 0.016	1.005- 0.004 - -	1.005- 0.004 - -		8	9,81-65	4.029 3.043 2.044 1.036 0.020	3.009 2.013 1.012 0.007 0.000	3.009 1.003 0.002 0.007 0 +	2.000 1.000 0.000 - -
5	7 6 5	2.045+ 1.045+ 0.027		0.001 0.008 -	0.001		7	0 %1	3.019 2.024 1.020	3.019 2.024 1.020	2.005- 1.006 0.003	2.005- 0.001 0.003
4	7	1.024	1.024	0.002	0.002			6	0.010+	0.310+ -	- -	•
3	5	0.45+ 0.008	0.008	0.008 	-		6	9	2.044 2.047	2.011 1.011 0.006	1.007 0.011 0.006	1.007 0.00
2	6 7	.026	-	-	-			6 5	0.017 0.042	0.127	-	

Adapted from a table of the same form with probabilities to 4 decimals prepared in the Statistical Engineering Laboratory, National Bureau of Standards, by Anna M. Glinski and John Van Dyke from tables of the Hypergrometric Probability Distribution by Gerald J. Lieberman and Donald B. Owen, Technical Report No. 50 (contract Nonr-225(53) (NR 042-002), applied Mathematics and Statistics Laboratories, Stanford University, Stanford, California.

TABLE 8-16 continued
TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

	Π		Signifi	cance Leve.	i	Γ		Γ		Signific	ance Leve	-1
	al	0.05	0.025 (0.05)	0.01 (0.02)	0.005 (0.01\			a ₁	0.05 (0.10)	0.025 (0.05)	0.01 (0.02)	0.005 (0.01)
n ₁ =9 n ₂ =5	9 8 7 6		1,005- 1,023 0,010+	1.005- 0.003 - -	1.005- 0.003 - -	n ₁ =10	52 ⁼⁴	9	1.011 1.041 0 .015- 0 .035-	1.011 0.005~ 0.015-	0.001 0.005- - -	0.001 0.005-
. 4	9 8 7 6		1,014 0.007 0.021	0.001 0.007 - -	0 .001 - - -		3	9	1.038 0.014 0.035	0.003 0.014	0. 003	0. 003
3	9 8 7	1.045+ 3.018 6.045+	0.005~ 0.018 -	0.005-	.005-		2		0.015+ 0.045+	0.015+	-	
2	9	0.018	0.018	-	-	n ₁ =11	n ₂ =11	10	7.045+ 5.032 4.040 3.043	6.018 4.012 3.015- 2.015-	5.006 3.004 2.004 1.004	4.002 3.004 2.004
n ₁ =10 n ₂ =10	10 9 8 7 6 5	3.035- 2.035-	5.016 3.010- 2.012 1.010- 0.005+ 0.016	4.005+ 3.010- 1.003 1.010- 0.005+	3.002 2.003 1.003 0.002 -		10	7 6 5 4	2.040 1.032 0.018 0.045+	1.012 0.006 0.018	0.002 0.006 - - -	0.002
9	10 9	5.033 1.050-	4.011 3.017 2.019	3.003 2.005- 1.004	3.003 2.005- 1.004		20	10 9 8	4.021 3.024 2.023	4.021 3.024 2.023	3.007 2.007 1.016 0,003	2.002 1.602 0.001 0.003
	7 6 5	1.015-	1.002	0.002 0.008	0.002		3	6 5	1.043 0.023 5.026	0.009 0.023	3.009 - 4.003	3.002
8	10 9 8 7 6 5	4.023 3.032 2.031 1.023 0.011 0.029	4.023 2.009 1.008 1.023 0.011	3.007 2.009 1.009 0.084	2.000 1.00. 0.001 0.004		3	10 9 7 6 5	4.038 3.040 2.035- 1.025- 0.012 0.030	3.012 2.012 1.009 1.025- 0.012	2.003 1.003 0.009 0.004	2.003 1.003 0.001 0.004
7	10 9 8 7 6 5		3.015- 2.018 1.013 0.006 0.017	2.303 1.804 0.88. 0.306	2,003 1,004 0,000 		8	11 10 9 8 7 6	4.013 3.024 2.023 1.015- 1.037 0.017 0.040	4.018 3.024 2.022 1.015- 0.007 0.017	3.005- 2.006 1.005- 0.002 0.007	3.005- 1.001 1.005- 0.002
6	10 3 8 7 6	3.036 2.036 1.024 0.010+ 0.026	2.008 1.009 1.024 0.010+	2.109 1.001 0.003	1.001 0.001 0.003	And the control of th	7	11 10 9 8	4.083 3.047 2.039 1.025+ 0.010+	3.011 2.013 1.009 1.025- 0.010+	2.002 1.002 1.004 0.004	2.002 1.002 0.001 0.004
5	13 9 7 6	2.022 1.01* 1.047 0.019 0.042	2.922 1.017 0.007 0.019	1.304 0.300 0.007	1,364 0 ,360 - - -	entral virtual service and a s	ę	6 11 10 9	0.025- 3.024 2.026 1.018	0.025- 2.004 1.005+ 1.018	2.006 1.005+ 0.002	1.001 0.001 0.002

TABLE 8-16 continued

TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

		s	lgnlficar	nce Level							Sign	ificance	Level	
	a ₁	0.05 (0.10)	0.025 (0.05)	n.01 (0.02)	0.005					a ₁	0.05 (0.10)	0.025 (0.05)	0.01 (0.02)	0.005 (0.01)
n1 = 11 n ₂ = 6	8 7 6	1.043 0.017 0.037	0.007 0.017	0 .007 - -	-	n] =	12	n3 ∗	9	6	1,037 0.017 0.039	0.007 0.017	0. 007	• •
5	11 10 9 8 7	1.036	2,018 1,013 0,005- 0,013	1.003 0.001 0.005-	1.003 0.001 0.005-					11 10 9 8	5.049 3.018 2.015+ 2.040 1.025- 0.010+	4,014 3,018 2,015+ 1,010- 1,025- 0,010+	1.003 1.010-	3.004 2.004 1.003 0.001 0.004
4	11 10 9 8	1.009 1.033 0.011 0.026		1.009 0.004	0.001 0.004				7	6 12 11	0.024 4.036 3.038	0 .024 3 .009	3.009 2.010-	2. 002 1.002
	11 10 9	1.033 0.011 0.027	0.003 0.011	0 .003	0 .003					9 9 7	2.929 1.017 1.040 0.016 0.034	1.006 1.017 0.007 0.016		0.001 0.002
2	11 10	0.013 0.038	0 .013		-						3.025- 2.022	3.025- 2.012	2.005- 1.004	2 .005~ 1.004
ni = 12 n ₂ = 12	12 11 10 9	8.047 6.034 5.045- 4.050- 3.050-	5.014 018 3.020	6.007 4.005- 3.006 2.006 1.005-	5.002 4.005- 2.002 1.001 1.005-					10 9 8	1.013 1.032 0.011 0.025-	113	0.002 0.005-	0.001 3.005-
	7 6 5 4	1.034	1.014 0.007 0.019	0.002 0.007 -	0 .002 - - - -		-			11 10	2.015- 1.010- 1.028 0.009		1.002 1.010- 0.003 0.003	1.002 0.001 0.003
11	12 11 10	5.024 4.029	6.014 5.024 3.010+		3.002 2.003					7		0.020	-	-
	9 8 7 6 5	2.026 1.019 1.045-	2.009 1.007 1.019 0.009 0.024	2.009 1.007 0.003 0.009	1.002 0.601 0.003				ļ	11 10	2.050 1.027 0.008 0.019 0.038	1.007 0.003 0.008 0.019	1.007 0.003 0.008	0.001 0.003
10	12 11 10 9	5.043 4.048 3.046	5.010- 4.015+ 3.017 2.015- 1.010+	5.010- 3.005- 2.005- 1.004 0.002	3.005- 2.005- 1.004					11	1.029 0.009 0.022 0.044	0.002 0.009 0.022	0.002 0.009	0.002
	7 6 5	1.026	0.012	0.002 0.005-	0.005-						0.011 0.033	0.011	-	-
9	12 11 10 9	5.021 4.029 3.029 2.024	5.021 3.009 2.008 2.024 1.016	4.006 3.009 2.008 1.006 0.002	3.002 2.002 1.002 0.001 0.002	n ₁ =	13	n ₂ ≈		12	7.037 6.048 4.024 3.024	8.020 6.015+ 5.021 4.024 3.024 2.021	5. 006 4. 008	6.003 4.002 3.002 2.002 1.002 0.001

MTP 3-1-005 1 March 1972

TABLE 8-16 continued

TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

			Signifi	cance Leve	1					Signific	ance Lev	el
	al	0.05 (0.10)	0.025 (0.05)	0.01 (0.02)	0.005 (0.01)			a ₁	0.05 (0.10)	0.025 (0.05)	0.01 (0.02)	0.005 (0.01)
n ₁ =18 n ₂ =13	7 6 5 4	2.048 1.037 0.020 0.048	1.015+ 0.007 0.020	0.903 0.007 -	3.003 - - -	n ₁ =13	n ₂ =7	11 10 9 8 7	2.022 1.012 1.029 0.010+ 0.022	1.022 0.012 0.004 0.010+ 0.022	1.004 0.002 0.004	1.004 0.002 0.004 -
12	13 12 11 10 9 8 7 6 5	3.034	7.015- 5.010- 4.013 3.013 2.011 1.008 1.020 0.010- 0.024	6.005+ 5.010- 3.004 2.004 1.003 1.008 0.004 0.010-	5.002 4.003 3.004 2.004 1.003 0.001 0.004		6	13 12 11 10 9 8 7	3.021 2.017 2.046 1.024 1.050- 0.017 0.034	3.021 2.017 1.010- 1.024 0.308 0.017	2.004 1.003 1.010- 0.003 0.008	2.004 1.003 0.001 0.003
11	13 12 11 10 9 8 7	7.031 6.048 4.021 3.021 3.050- 2.040 1.027	6.011 5.018 4.021 3.621 2.017 1.011 0.005-	5.003 4.006 3.007 2.006 1.004 0.002	5.003 3.002 2.002 1.001 1.004 0.002 0.005-		5	13 12 11 10 9 8	2.012 2.044 1.022 1.047 0.015- 0.029	2.012 1.008 1.022 0.007 0.015-	1.002 1.008 0.002 0.007	1.002 0.001 0.022
10	6 5 13 12	0.012 0.030 6.024 5.035- 4.037	6.024 4.012 3.012	5.007 3.003 2.003	4.002 3.003 2.003		ц	13 12 11 10 9	2.044 1.022 0.006 0.015- 0.029	1.006 1.022 0.006 0.015-	1.006 0.002 0.006	0.000 0.002 - - -
	10 9 8 7 5	t ·	2.010+ 1.006 1.017 0.007 0.017	1.002 1.006 0.003 0.007	1.002 0.001 0.003		3	13 12 11 10	1.025 0.007 0.018 0.036	1.025 0.007 0.018 - 0.010-	0.502 0.007 - - 0,010-	0.002 - - - -
9	13 12 11 10 9 8 7 6 5	5.017 4.023 3.022 2.017 2.040 1.025- 0.010+ 0.022 0.3.9		4.005- 3.007 2.006 1.004 0.001 0.004	4.005 2.001 1.001 1.004 0.001 0.004	n ₁ =14	n ₂ =14	12 14 13 12 11 10 9 8 7 6	0.029 3.038 6.023 5.027 4.026 3.027 2.023 1.016 1.038	9.020 7.016 6.023 4.011 3.011 2.009 2.023 1.016 1.008	8.008 6.006 5.009 3.004 2.003 2.009 1.006 0.003 0.008	7.003 5.002 4.003 3.004 2.003 1.002 0.001 0.003 0 -
3	13 12 11 10 9 8 7 6		4.012 3.014 2.011 1.007 1.017 0.006 0.015	3.003 2.003 1.002 1.007 0.002 0.006	3.003 2.003 1.002 0.001 0.002		13	14 13 12 11 10	0.020 0.049 9.041 7.029 6.037 5.041 4.041	8.016 6.011 5.015+ 4.017 3.016	7.006 5.004 4.005+ 3.006 2.005- 1.002	6.002 5.004 3.002 2.001 2.005- 1.002
7	13	4.031 3.031	3.007 2.007	3.007 2.007	2.001 1.001			8	3. 033 2. 031	2.013 1.009	1.002	0.001

TABLE 8-16 continued
TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

		Si	ignifican	ce Level					s	ignifican	ce Level	
	al	0.05	0.025 (0.05)	0.01	0.005 (0.01)			al	0.05 (0.10)	0.025 (0.05)	0.01 (0.02)	0.005 (0.01)
ni=14 n _i =13	7 6		1.021 0.010+	0.004	0.004	n ₁ =14	n ₂ =7	14 13	4.026 3.025	3.006 2.005	3.006 2.006	2.001 1.001
	5	0.025-		-	-			12		2.005 2.017 2.009	1.009	1.003
12	14		7.012 6.021	6.004 5.007	6.004 4.001				1.021	1.021 0.007	0.003 0.007	0.003
	12	5.025+ 4.026	3.009	4.009 3.009	3.003 2.002			9	0.015- 0.030	Q.015-	-	-
	10		3.024 2.019	2.007 1.005-	1.002		6	14		3.018	2.003	2.003
	8 7	1.028	0.005+	0.005+	0.002			13	2.014	2.014 1.007 1.018	1.002	0.002 0.001
	5	0.030	0.013	-				10	1.018 1.038 0.012	0.005+ 0.012	0.005+	0.002
11	14 13	7.025 6.010	6.009 5.014	6.009 4.004	5.003 4.004			8		0.024	-	-
	12	5.043 4.042	4.015 3.015-	3.005- 2.554	3.005- 2.004		5	14		2.010+	1.001	1,001
	10	3.036 2.027 1.017	2.011	1.003 1.007 0 .003	0.001 0.003			13		1.006 1.017 0.005-	1.006 0.002 0.005-	0.001
	7 6	1.638	1.617 0.007 0.017	0.007	-			11 10	1	0.003- 0.017 0.022	-	0.005-
	5	0.038	-	-	-			6	0.040	-	-	-
10	13	6.020 5.028	6 .520 4 .133	5.006 4.009	4,502 3,002		, , , , , , , , , , , , , , , , , , ,	14	1.019	1.005- 1.019	1.005- 0.001	1.005- 0.302
	12 11 10	4.028 3.024 2.018	3.009 3.024 2.018	3.009 2.007 1.004	2.002 2.001 1.004			12	0.011 0.023	0.005- 0.011	0.005-	0.055
	3	2.040	1.011	0.002	0.002	 		9	1	0.023	-] :
	7 5 5		0.010- 0.022 -	0.010-	-		3	14 13 12	0.006 0.015-	1.022 0.006 0.015-	0.001 0.006	0.091 - -
9	14	6.547	5.014 4.019	4.004	4.00% 3.00%		2	11		0.008		
	12	3.017 3.042	3.017	2.004	2.004		•	13	0.025	0.025	0.008	-
	10	2.020 1.017	1.007	0.007	0.001	n, =15	n ₂ :15	١.	11.050-	19.021	9.004	8.013
	7 6	0.014 0.630	0.006	0.006	-			14 13 12	7.025	8.019 6.010+ 5.013	7.007 5.004 4.005	6.003 5.004 4.005
8	14	5,036	4.010-	4.010-	3.002			11	5.033 4.033	4.013 3.013	3.30%- 2.504	3.00% 2.004
	12	3.032 2.022	2.000	2.003 1.005-	1.001			8 7	1,018	0.018	7.007 0.003	0.000
	10	2.048 1.026 0.009	1.012 0.064 0.009	0.002 0.004 0.009	0.907			5	0.021	0.00e 0.021	0.009	-
	7 5	0.020	0.020	-	-				,		_	_

TABLE 8-16 continued
TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

			Significa	ance Level					Si	gnificano	e Level	, man
	al	0.05 (0.10)	0.025	0.01	0.005 (0.01)			al	0.05 (0.10)	0.025 (0.05)	0.01 (0.02)	0.005 (მ.01)
n ₁ =15 n ₂ =14	15 14 13 12 11 10 9 8 7	4.046		8.006 6.005- 5.007 4.007 3.007 2.006 1.004 1.009 0.004	7.002 6.005- 4.002 3.002 2.002 1.001 1.004 0.001 0.004	n ₁ =15	n ₂ =9	13 12 11 10 9 8 7 6	4.042 3.032 2.021 2.045- 1.024 1.048 0.019 0.037	3.613 2.009 2.021 1.011 1.024 0.009 0.019	2.003 2.009 1.005- 0.002 0.004 0.009	2.003 1.002 1.005- 0.002 0.004
13	5 15 14 13 12 11 10 9 8	9.035- 7.023 6.029 5.031 4.030 3.026 2.020 2.043	-	7.005- 6.009 4.004 3.004 2.003 2.008 1.005+ 0.002	7.005~ 5.003 4.004 3.004 2.003 1.002 0.001		•	14 13 12 11 10 9	4.03.1 3.026 2.017 2.037 1.019 1.038 0.013 0.026	3.009 2.006 2.017 1.008 1.019 0.006 0.013	3.009 2.006 1.003 1.008 0.003 0.006	2.002 1.001 1.003 0.001 0.003
Ľ2	7 6 5	1.029 0.013 0.031 8.028	0.005+ 0.013 - 7.010-	7.010-	- - - 6 .003		7	15 14 13 12 11	4.023 3.022 2.014 2.032 1.015+	4.023 3.021 2.014 1.037 1.015+	3.005- 2.004 1.002 1.007 0.002	3.005- 2.004 1.002 0.001 0.002
	14 13 12 11 10 9 8 7 6 5	6.045 5.049 4.045+ 3.038 2.028 1.018 1.038	6.016 5.019 4.019 3.017 2.012 1.007 1.018 0.007 0.017	5.006 4.007 3.006 2.005- 1.003 1.007 0.003 0.007	4.002 3.002 2.002 2.005- 1.003 0.001 0.003		6		1.032 0.010+ 0.020 0.033 3.015+ 2.011 2.031 1.014 1.029	0.005- 0.010+ 0.020 - 3.015+ 2.011 1.006 1.014 0.004	2.003 1.002 1.006 0.002	2.907 1.302 0.001 0.002
11	15 14 13 12 11 10 9 8 7 6	6.032 5.034 4.032 3.026 2.019 2.040 1.024 1.049	7.022 5.011 4.012 3.010+ 2.008 2.019 1.011 1.024 0.010- 0.022	6.00; 4.003 3.003 2.003 2.008 1.004 0.002 0.004 0.010-	5.002 4.003 3.003 2.003 1.002 1.004 0.002 0.004		4	9 8 15	0.009 0.017 0.032 2.009 2.032 1.014 1.031 0.008 0.016 0.030	0.009 0.017 0 ~ 2.304 1.005- 1.014 0.004 0.008 0.018	2.004 1.005- 0.001 0.004 0.008	1.001 1.005- 0.001 0.004
10	15 14 13 12 11 10 4 7	6.017 5.023 4.022 3.018 3.042 2.029 1.016 1.034	6.017 5.023 4.022 3.018 2.013 1.007 1.007 0.006 0.012	5.005- 4.007 3.007 2.005- 1.003 0.007 0.007 0.007	5.005- 3.002 2.001 2.005- 1.003 0.001 0.002		j	15 14 13 110 15 111	2.035+ 1.016 1.037 0.004 0.018 0.033 1.000 0.007- 0.01: 0.025- 0.044	1.004 1.016 0.004 0.004 0.014 1.020 0.005- 0.011	1.004 0.001 0.004 0.003 0.003 0.005	1.704 O.201 O.004 O.001 O.001
9	15 14	6.042 5.)47	5. 012 4 .015-	4.003 3.004	4.003 3.004			15. g 17	0.367 0.527 0.544	0.007 0.07	0.007	- - -

TABLE 8-16 continued
TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

		17000			TCANCE IN							
1	1		Signi	ficance Lev	/el					Signifi	cance Lev	-1
	a 1	0.05 (0.10)	0.025 (0.05)	0.01 (0.02)	0.005 (0.01)			al	0.05 (0.10)	0.025 (0.05)	0.01 (0.02)	0.005
n ₁ =16 n ₂ =16	16 15 14 13 12 11 10 9 8 7 6 5	11.022 10.04: 8.027 7.033 6.037 5.038 4.037 3.033 2.027 1.019 1.041 0.022	9.019 7.012 6.015- 5.016 4.016 3.015- 2.012 1.008 1.019 0.009	10.009 8.008 6.005- 5.006 4.006 3.006 2.005- 1.003 1.008 0.003 0.009	9.003 7.703 6.005- 4.002 3.002 2.002 2.005- 1.003 0.001 0.003	r 1216	n ₂ =12	16 15 14 13 12 11 10 9 8 7 6 5	8.024 7.036 6.040 5.039 4.034 3.027 2.019 2.040 1.024 1.046 0.021 0.044	8.024 6.013 5.015- 4.014 3.012 2.008 2.019 1.011 1.024 0.010- 0.021	7.008 5.004 4.005- 3.004 2.003 2.008 1.005- 0.002 0.004 0.010- -	6.002 5.004 4.005- 3.004 2.003 1.002 1.005- 0.002 0.004
	15 14 13 12 11 10 9 0 7 6 5	9.033 8.044 6.023 5.024 4.023 4.049 3.043 2.035- 1.023 0.011 0.026	8.014 7.019 6.023 5.024 4.023 3.020 2.016 1.010+ 1.023 0.011	7.005+ 6.008 5.009 4.009 3.008 2.006 1.004 0.002 0.004	6.002 5.003 4.003 3.003 2.002 1.001 1.004 0.002 0.004		10	15 14 13 12 11 10 9 8 7 6	6.027 5.027 4.024 3.019 3.041 2.028 1.016 1.033 0.013 0.027	5.009 4.029 4.024 3.019 2.013 1.007 1.016 0.006 0.013	5.009 4.009 3.008 2.005+ 1.003 1.007 0.002 0.006	4.000 3.002 2.000 1.001 1.003 0.001 0.007
14	16 15 14 13 12 11 10 9 8 7 6 5	10.037 8.025+ 7.032 6.035+ 5.035+ 4.033 3.028 2.021 2.045- 1.030 0.013 0.031	4.014 3.012 2.009 2.021	8.005+ 7.010- 5.005- 4.005+ 3.005- 2.004 2.009 1.006 0.002 0.006	7.302 6.003 5.005- 3.001 3.005- 2.004 1.002 0.001 0.002		9	15 14 13 12 11 10 9 8 7 6	7.046 5.018 4.017 4.042 3.032 2.021 2.042 1.023 1.045- 0.017 0.035- 6.037 5.040	5.014 5.018 4.017 3.014 2.009 2.021 1.011 1.023 0.008 0.017	4.005+ 3.005- 2.003 2.009 1.005- 0.002 0.004 0.008	3.005- 2.003 1.002 1.002 1.005- 0.002 0.004 - - - 4.002 3.002
13	16 15 14 13 12 11 10 9 8 7 6 5	9.030 8.047 6.022 5.023 4.022 4.048 3.039 2.029 1.018 1.038 0.017 0.037	8.011 7.019 6.023 5.023 4.012 3.018 2.013 1.008 1.018 0.007 0.017	7.0%4 6.007 5.008 4.008 3.007 2.005+ 1.003 1.008 0.003 0.007	7.004 5.002 4.003 3.003 2.002 1.001 1.003 0.003			14 13 12 11 10 9 8 7 6	4.014 3.025* 2.016 2.033 1.017 1.034 0.013 0.024 0.045+	3.010- 2.007 2.016 1.006 1.017 0.006 0.012 0.024	3.010- 2.007 1.009 1.008 0.002 0.005	2.002 1.001 1.003 0.001 0.002

TABLE 8-16 continued

TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

				ce Level						Significa		
l		0.05	0.025	0.01	0.005			1	0.05	0.025	0.01	0,005
	a 1	(0.16)	(0.05)	(0.02)	(0.01)	L		a ₁	(0.10)	(0.05)	(0.02)	(0.01)
n ₁ =16 n ₂ =8	16	5.028	4.007	4.007	3.001	n ₁ =16	no=3	16	1.018	1.019	0.901	0.001
1.	15	4.028	3.007	3.007	2.001	1	•	15	0.004	0.004	0.004	0.004
	14	3.021	3.021	2.005-	2.005-	1		14	0.010+	0.010+	-	-
	13	3.047	2.013	1.002	1.002	1		13	0.021	0.521	_	-
ì	12	2.028	1.006	1.006	0.001	1		12	0.036	-	_	١ -
1	11	1.014	1.014	0.002	0.002	1		1	İ	1	}	}
l	10	1.027	0.004	0.004	0.004	!	2	16	0.007	0.007	0.957	١ -
ĺ	9	0.009	0.009	0.009	i - I	1		15	0.020	0.020	-	
1	8	0.017	0.017	-	-	ļ		14	0.039	-	١.	١ -
	7	0.633]]	}		 				
7	16			3.004		0127	n ₂ =17		2.022	12.022	11.009	10.004
· '	15	4.020	4.020		3.004	[11.043	10.000	9.008	8.003
,		3.017	3.017	2.003	2.003	1		15	9.029	8.013	7.005+	6.002
	14	3.045+		1.002	1.002	[14	8.035+	7.016	6.007	5.002
1	13	2.026 1.012	1.005-	1.005- 0.001	1.005-			13	7.040	6.019	5.007	4.003
1	11	1.024	1.012	0.001	0.001	1		12	6.042	5.019	4.007	3.002
	10	1.045-		0.003	0.003	1		11	5.042	4.018	3.007	2.002
1	1 3	0.014	0.014	0.307		1		10	4.040 3.035+	3.016 2 013	2.005+ 1.003	1.001
}	8	0.025	-			}		a	2.027	1.008	1.00H	0.001
İ	7	0.047				1		7	1.620	1.820	0.004	0.004
		1	_	·		1		6	1.043	0.009	0.009	
6	15	3.013	3.013	2.602	2.502	l		5	0.022	0.000	0.509	-
	15	3.046	2.009	2.009	1.001)			0.5.1	• • • • • • • • • • • • • • • • • • • •	_	
l	14	2.025+		1.00-	1.304	1	16	17	2.944	11.018	10.007	9.003
	13	1.011	1.011	0.001	0.001		• •		0.035-	9.015-		7.302
1	12	1.023	1.023	0.000	0.003	1		15	9.046	8.021	7.000	6.003
Į.	11	1.043	0.006	0.006	- (Į.		14	7.025+	6.01:	5.004	5,054
!	10	0.012	0.012	-	-			1.3	6.027	5.01:	4,004	4.334
Ì	9	0.023	0 ?	-	- 1	}		12	5.027	4.011	3.104	3.004
] 4	0.040	-	-	-	1		111	4.025+	3.009	3.004	2.50
}			1	1	}			10	3.022	3.022	2.007	1.00.
6	16	3.048	3.008	2.00A	F.001))	3.0∞€	2.017	1.204	1.104
ł	15	2,029	1.004	1.00%	1.004			8	2.036	1.011	0	0.
l	14	1.011	1.011	0.531	0.001	1		7	1.024	1.024	0.001-	0(1-
[1.0	1.005+	0.003	0.133	0.103	[6	0.711	01:	-	
	12	1,347	0.00%	0.116	-	!			0.706	l - Ì	-	-
	11	0.013	0.012	-	-	1						i
l	11.	0.123	0.522	-	- 1	1			11.039	10.025	9.	8.
Į		0.239	-	-	- [16	9.027	6.:1:	7.134	7
Į					ļ l			15	8.035+	7.325-	6.1.	5
4	1:	2.33.	1	1.004	1,004	1			7.047	6	5	4.50
(:	1.012	1.213	0.531	0.001			13	6.341	517	4	3
	3~	1.000	0.003	0. 53	0,073	1		1.4	5.049	4.016	3. '+	2.7(1)
	12.	0.00"	0.33	0.107	-	1		11	4.035+	3. 13	2	2.
1	12	0.014	0.014	-	- 1	!		20	3.023	2.115-	2.31	1.77
1	1::	0.026	-	-	-	1		-	2	2	1.	0.101
	1 - 2	0.043	-	-	-	1		4	2,144	11.	0.	0.
	1	ļ	(i 1		i		"	145	0.20	0.3	-
			1			1		' '	0.2	0.014	•	-
l					!			'	(i)			
L	L	L	L		L	<u>i</u> .		L 1				

TABLE 8-16 continued
TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

i	i i		Signific	ance Level	1		'			Signific	ance Leve	el .
ı	1	0.05	0.025	0.01	0.005	1			0.0	0.025	0.61	0.005
	al	(0.10)	(0.05)	(0.02)	(0.01)			a 1	(9.10)	(0.05)	(0.02)	(C.O1)
n,=17 n ₂ =14	17	10.032	9.012	8.004	8.004	n ₁ =17	ng=11	13	4,042	3.014	2.004	2.004
•	16	8.021	8.021	7.008	6.003	-	•	12	3.031	2.009	2.009	1.002
	15	7.026	6.010-	6.013-	5.003	1		11	2.020	2.020	1.005-	1.005-
	14	6.028	5.011	4.604	4.004			10	2.040	1.011	0.001	0.001
	13	5.02/	4.010-	4.010-	3.003	1		9	1.022	1.022	0.004	0.004
	12	4.024	4.024	3.008	2.002	İ		R	1.042	0.008	0.008	-
	12	4.049	3.010	2.006	1.001	ľ		7	0.016	0.016	-	-
	10	3.040	2.014	1.563	1.063	İ		€ .	0.033		-	_
	١٩	2.029	1.008	1.008	0.001	ì		1		!		
	8	1.018	1.018	0.003	0.003	1	15	:7	7.341	6.412	5.003	5.003
	7	1.038	0.007	0.007	1	1	• •	. 6	6.047	5.015+	4.004	4.004
	6	0.017	0.017	-	١. ١	1		15	5.043	4.014	3.004	3.004
	5	0.036			.	1		1	4.034	3.010+	2.002	2.0C2
	1	}	S	1	1 1	1		13	3.024	3.624	2.007	1.001
13	17	9.026	8.009	8.500	7.003			12	3,049	2.015+	1.003	1.003
• •	i e	8.040	7.015+	6.005+	502	1			2.031	1.007	1.007	0.701
	15	7.345+	6.018	5.006	4.002	· 1		1::	1.016	1.016	0.002	0.0C2
	1	6.045+	5.018	406	3.002	1		4	1.031	0.005+	0.005+	0.002
	1 13	5.042	4.316	3.005+	2.001	i l		A .	0.311	0.011	-]
	12	4.035+	3.013	2.174	2.504	1] [0.022	0.022	_	_
	11	3.029	2.009	2.109	1.502	1			0.342	0.322	-	
	15	2.0.9	2.009	1.155-	1.002	}		1	0.542	{	-	-
	1	2.040	1.011	0	0.222	1	9	1 17	6.132	5.008	5.008	4.002
	e	1.024	1.0.4	0.534	0.004		,	16	5.034	4.010-	4.010-	3.002
	-	1.347	0.115-	0.010-	6				4.020	3.008	3.008	2.002
		0.021	3.311	0.515-] []	i		1	3.020	3.020	2.005-	2.005
		0.043	0			1		13	3.042	2.012	1.002	1.002
		0.54	1 -	} -	· -	1			2.525+	1.006	1.306	0.001
12	1-	8.021	8.021	7.657	6.302				2.048	1.012	0.002	0.002
	1 6	7.030	6.011	5.00.	5.001	1		13	1,324	1.024	0.004	0.002
	,		1					ī	•	•		!
	-5	6.033	5.012	4.0.4	4,504	1			1.345-	0.009	0.008	-
	1	5.030	4.011	3.101	3.003			3	0.016	0.016	-	
	133	4.016	3.008	3.115	2.13.				0.230	-	-	-
	1	3.000	3 3	2.521	1.001	1		i		1	! .	
	.1	3.041	2.013	1.013	1.003		4	:-	5.024	5.024	4.006	3.501
	1:	2.078	1.007	1.007	0.5.1			16	4.023	4.023	3.106	2.301
	9	1.016	1.016	0.11.	0.1			15	3.317	3.017	2.004	2.004
	5	1.032	0.016	0.13%	-			14	3.273	2.010-	2.010-	1 702
		0.012	0.012	-	i - 1			1.3	2.002	2.525	1.204	1.004
	•	0.026		1		H		1::	2.14?	1.010-	1.117-	0.001
	1					11		11	1.020	1.000	0.009	0.703
::	1:-	7.016	7.016	6.00*-	6.135-	11		1.	1.5.0	0.1.6	0.00	-
		6	6.00.	5.::-	4.00.			Ģ	0.317	0.012	-	-
	1:-	5	5.0.2	4.5."	1 3	i I		-	0.122	0.022	-	-
	:	4	4.01 #	3	[2.:5:			i -	0.14	-	-	: -

TABLE B-16 continued
TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

	T			cance Lev		11		T	1	Signifi	cance Leve	-1
	1:	0.05 (0.10)	0.025	0.01 (0.02)	0.005			*1	0.05	0.025	0.01 (0.02)	0.005
n ₁ =17 _{n₂=7}	17 16 15 14 11 10 9 8 17 16 11 11 11 11 11 11 11 11 11 11 11 11	4.017 3.014 3.038 2.021 2.042 1.71a 1.034 0.010- 0.033 3.040 2.021 2.045+ 1.016	4.017 3.014 2.009 2.0.1 1.019 0.005- 0.010- 0.019 - - 3.011 2.008 2.021 1.009 1.018	3.003 2.009 1.009 1.009 1.009 0.022 0.005- 0.010- - - - 2.002 2.008 1.009 0.002 0.005- 0.009	3.003 2.003 1.001 1.004 0.002 0.005 - - - 2.002 1.001 1.003 0.001 0.002	n1=19	ny=18	18 17 16 15 14 13 12 11 19 8 7 6 5	13.023 12.044 10.030 9.039 8.043 7.046 6.047 5.046 4.043 3.038 2.030 1.020 1.044 0.043	9.023	12.010- 10.009 8.005 7.008 6.009 5.003 4.009 3.008 2.006 1.009 0.004 0.010- - 11.008 9.007 8.010-	11.004 3.004 7.002 6.003 5.003 4.003 3.003 2.002 1.001 1.004 0.001 0.004 - 10.003 8.002 7.004
τ	3 3 16 15 14 13 12 11	0.017 0.030 0.050- 3.043 2.024 1.003 1.021 1.039 0.010- 0.018 0.044	2.006 2.074 1.009 1.021 0.005- 0.010- 0.019	2.005 1.009 1.009 0.002 0.005- 0.010-	1.001 1.003 0.001 0.002 0.005-		16	15 11 13 12 11 10 9 8 7 6 5	8.028 7.030 6.031 5.030 4.028 3.047 2.037 1.025- 0.011 0.026	7.012 6.013 5.013 4.012 3.010+ 3.023 2.018 1.011 1.025- 0.011	6.005- 5.005+ 4.005- 3.004 2.003 2.008 1.005- 0.002 0.005- -	6.005- 4.002 4.005- 3.004 2.003 1.002 1.005- 0.002 0.005-
٦	17 16 15 14 13 12 17 16 15 14	2.029 1.012 1.028 0.006 0.012 0.021 0.035+ 1.016 1.046 0.009 0.018 0.031	1.003 1.012 0.003 0.006 0.012 0.021 	1,00% 0,001 0,003 0,006 	1.003 0.001 0.003 - - - 0.001 0.004			17 16 15 14 13 12 11 10 9 8 7 6	10.029 9.028 8.043 7.040 6.045+ 5.042 4.037 3.031 2.023 2.046 1.030 0.014 0.031	9.012 8.017 7.019 6.020	8.005- 7.007 6.008 5.008 4.007 3.006 2.004 1.003 1.006 0.002 0.306	8.005- 6.002 5.003 4.003 3.002 2.004 1.003 0.001 0.002
í	17 16 17	0.043 0.043 0.006 0.018 0.035+	0.006 0.018	- 0.00€ - -	-		15	18 17 16 15 14	11.033 9.023 8.023 7.031 6.031 5.023	10.013 9.023 7.012 6.013 5.013 4.011	9.005- 8.009 6.004 5.005- 4.004 3.004	9.005- 7.003 6.004 5.005- 4.004 3.004

TABLE 8-16 continued
TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

			Signific	ance Leve	1				Sig	nificance	e Level	
	aı	0.05	0.025 (0.05)	0.01 (0.02)	0.005 (0.01)			al	0.05 (0.10)	0.025 (0.05)	0.01	0.005 (0.01)
4=18 n ₂ =15	12	4.025+	3.009	3.009	2.003	n₁=18	n.=12	10	2.038	1.010+	0.001	0,001
_	11	3.020	3.020	2.006	1.501	1 -	•	9	1.021	1.021	0.003	0.003
	10	3.041	2.014	1.004	1.004	i		9	1.040	0.007	0.007	-
	9		1.008	1.008	0.001)		7	0.016	0.016	- 1	-
	8	1.018	1.019	0.003	0.003	į .		6	0.031		 -	_
	7		0.907	0.007	- 1	l				!	i	i .
) 6	0.017	0.017	-	- 1	l	11	18	8.045+	7.014	6.004	5,004
) 5	0.036	-	- '	1 - 1	1		17	6.018	6.018	5.006	4.001
	i	1	j		1	ļ		16	5.018	5.018	4.005+	3.001
14	18	10.028	9.010-	9.010-	8.003	}		15	5.043	4.015-	3.004	3.004
	17	9.043	8 017	7.066	6.002	ì		14	4.033	3.011	2.003	2.003
	16	8.050-	7.021	6.008	5.003	1		13	3.023	3.023	2.007	1.001
	15	6.022	6.022	5.858	4.609	ļ		12	3.046	2.014	1,003	1.003
	14	6.045	5.020	4.007	3.092	}	ĺ	11	2.020	1.007	1.007	0.001
	13	5.044	4.017	3.006	2.001	}		10	1.015-	1.015-	0.002	0.002
	12	4.037	3.013	2.004	2.004	1		9	1.029	0.005-	0.005-	0.005-
	11	3.028	2.009	2.009	1.502	l		9	0.010+	0.010+	-	-
	110	2.020	2.020	1.005-	1.005-	1		7	0.020	0.020		
) 9	2.039	1.511	0.002	0.002	ł		6	0.039		}	1
	l a	1.024	1.024	0.004	0.304	l				ŧ	Į ,	
	1 7	1.047	0.009	0.003		Ī	10	18	7,037	6.010+	5.003	5.003
	1 6	0.020	0.020		-	1		1~	6.041	5.013	4.003	4.003
	5	0.043	-	- '	l - 1	}		16	5.035	4.011	3.003	3.003
	,	I	1	ł		ł .		15	4.028	3.009	3.009	2.002
13	18	9.023	9.023	8.00A	7.000	Ì		14	3.019	3.019	2.005-	2.005-
	117	8.534	7.012	6,104	6.004	ì		13	3.034	2.011	1.002	1.002
	16	7.037	6.314	5.005-	5.005-	į.		12	2.023	2.023	1.005+	0.001
	15	6.036	5.01	4 4	4.004	1		11	2.043	1.011	0.001	0.001
	14	5.032	4.012	3.004	3.004	-		10	1,002	1.022	0.003	0.003
	113	4.027	3.009	3.303	2 002	1		3	1.040	0.307	0.007	
	12	3.020	3.020	2.006	1.331	1		g	0.014	0.014	0.50	
	111	3.040	2.013	1,523	1.503	1		7	0.527	0.514		
	113		1.007	1.007	0.001	f		5	0.049	_	_	_
	1 3		1.015+	0.332	0.552	1		,	0.543		•	_
	9	1.031	0.006	0.006	0.3.1		, ,	19	6.329	5.007	5.207	4.007
	1 7		0.012		_	ĺ		17	5.030	4.008	4.008	3.000
	6	0.025+	0.311		- 1	ĺ		16	4.023	4.023	3.706	7.001
	"	0.52.5	-		{	1		15	3.016	3.016	2.36-	2.004
	12 19	8.018	8.018	7.026	6.000	1		14	3.034	2.003	2.009	1.000
	17		6.009	6.000	5.003			13	2.019	2. 14	1.334	1.004
	15		5,009	5.007	4.503			12	2.027	1.103	1,730	0.00
	15	5 024	5, 324	4.508	3.500	}		11	1.014	1.018	0.30.	0.000
	14	4.025	4,020	3.006	2.00	ļ		10	1.033	0.005+	0.534	
	13		3.014	2.134	2.034			9	0.110+	0.010+	J	
	12	3.030	2 .009	2.009	1.002	1		9	0. 1	0.720	\ <u> </u>	
	lii		2.015	1.005-	1.302	1		7		0	-	
	144	2.510	2.010	1.575-	1.2.24	I		'	0.036	, -		-

TABLE Bel6 continued

TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

		TAE	LES FOR	TESTING S	IGNIFICAN	CE IN 2	X Z TASLI	: >				
			Signific	ance Leve	1	11				Significa	nce Level	l .
	a ₁	0.05 (0.10)	0.025 (0.05)	0.01 (0.02)	0.005			a ₁	0.05 (0.10)	0.025	0.01 (0.02)	0.005 (0.01)
n ₁ =18 n ₂ =8	18 17	5.022 4.020	5.022 4.020	4.005- 3.004	4.005- 3.004	n ₁ =18	n ₂ =4	13 12	0.017 0.029	0.017	-	:
	16 15 14	3.014 3.032 2.017	3.014 2.008 2.017	2.003 2.008	1.001		3	11	0.045+	-		-
	13	2.017 2.034 1.015+	1.007	1.003 1.007 0.002	1.003 0.001 0.002		3	18 17 16	1.014 1.041 0.008	1.014 0.003 0.008	01 0.003 0.008	0. 001 0. 003
	11 10	1.028	0.004 0.008	0.004 0.008	0.004			15	0.015+ 0.026	0.015+	-	=
	9	0.016 0.028	0.016	-	-			13	0.042	-	-	ļ -
	7	0.048	-	-	-		2	18 17.	0.005+ 0.016	0.005+ 0.016	0.005+	-
7	18 17	4.015+ 3.012	4.015+ 3.012	3.003 2.002	3.003 2.002		- 	16	0.032	-	-	-
	16 15 14	3.032 2.017 2.034	2.007 2.017 1.007	2.007 1.003 1.007	1.001 1.003 0.001	n ₁ =19	n ₂ =19	19 18 17	14.023 13.045- 11.031	14.023 12.021 10.015-	13.010- 11.009 9.00	12.004 10.004 8.003
	13 12	1.014	1.014	0.002 0.004	0.001 0.002 0.004			16 15	10.039 9.046	9.019 8.022	8.009 6.004	7.003
	11 10	1.046 0.013	0.007 0.013	0. 007	-			14 13	8.050- 6.025+	7.024 5.011	5.004 4.004	3,004 4, ∪04
	9	0.024 0.040	0. 024	-	-			12 11 10	5.024 5.050~ 4.046	5.024 4.022	3.003 3.009	3.003 2.003 1.002
6	18 17	3.010- 3.025+	3.010- 2.006	3.010~ 2.006	2.001 1.001			9	3.039 2.03I	3.019 2.015- 1.009	2.008 1.004 1.009	1.004 0.002
!	16 15	2.018 2.038	2.018 1.007	1.003 1.007	1.003 0.001			7 6	1.021	1.021 0.010-	0.004 0.010-	0.304
	14	1.015-	1.015- 0.003	0.002 0.003	0 .002 0 .003		18	5 19	0.023 14.045	0.023	.2.008	11.003
	12 11 10	1.048 0.013 0.022	0.007 0.013 0.022	0. 007	-		16	19 18 17	12.037 10.024	13.020 11.017 10.024	10.007	9.003 8.004
	9	0.037	-	-	-			16 15	9. 030 8. 033	8.014 7.015+	7.006 6.006	6. 002 5. 002
5	18 17	3.040 2.021	2.006 2 321	2.006 1.003	1,001			14	7.035+ 6.035-	6.016 5.015+	5.006 4.006	4.002 3.002
	16 15 14	2.048 1.017 1.033	1.008 1.017 0.004	1,003 0,002 0,004	0.001 0.002 0.004			12 11 10	5.033 4.030 3.025-	4.014 3.011 3.025-	3.005- 2.004 2.008	3.005- 2.004 1.002
	13 12	0.007 0.014	0.007 0.014	0.007	-			9	3.049 2.038	2.019 1.042	1.005+ 0.002	0. 001 0. 002
	11 10	0.024 0.038	0.024	-	- -			7	1.025+ 0.012	0.005- 0.012	0. 005 -	0.005-
i,	18	2.026	1.003	1.003	1.003		17	5	0.027	12.016	- 11.006	- 10.002
	17 16 15	1.010- 1.024 1.046	1.024 0.005-	0.000 0.005-	0.001 0.002 0.005-			18 17	11.030	1013 9.018	9.005+ 8.008	8. 002 7. 003
		0.010-	0.010-	0.010-	-			16	9.047	8,022	7.009	6.003

TABLE 8-16 continued
TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

			Signifi	cance Lev	el	1				Signific	cance Lev	
		0.05	0.025	0.01	0.005				0.05	0.025	0.01	
	a _l	(0.10)		(0.02)	(0.01)			a ₁	(0.10)	(0.05)	(0.02)	0.005 (0.01)
n ₁ =19 n ₂ =17	15 14	8.050- 6.023	7.023 6.023	6.010- 5.010-	5 .004 4 .003	n ₁ =19	n ₂ =13	19 18	9.020 8.029	9.020 7.010+	8.00€ 6.003	7.002 6.003
	13	6.049	5.022	4.009	3.003	1		17	7.031	6.011	5.004	5.004
	12 11	5. 045- 4.039	4.019 3.015+	3.007 2.005	2.002 2.005-	l		16 15	6.029 5.025+	5.011	4.003	4.003
	10	3.032	2.011	1.003	1.003			14	4.020	4.320	4.009 3.006	3.003 2.002
	8	2.024	2.024	1.007	0.001		,	13	4.041	3.015-	2.004	2.004
	7	1.031	1.015- 0.006	0.002 0.006	0.002	1		12	3.029 2.019	2.009	Z.009 1.005-	1.002
	6	0.014	0.014		-	}		10	2.036	1.010-	1.010-	0.001
	•5	0.031	-		-			9	1.020	1.020	0.003	0.003
16	19	12.035-	11.023	10.005-	10.005-	}		8 7	1.038 0.015-	1.007	0.007	-
	18	10.024	10.024	9.010-	8.304			6	0.015-	0.015-		-
İ	17		8,013	7.005+	6.002]		l	l	١.		
	16 15	8 .035- 7 .036	7.015+ 6.015+	6.006 5.006	5.552 4.302		12	19 18	9.049	8.016	7.005-	7.005-
	14	6.034	5.024	4.005+	3.302	}	j	17	7.022 6.022	7.022 6.022	6.007 5.007	5.002 4.002
	13	5.031	4.012	3.004	3.004	l		16	5.019	5.019	4.006	3.002
	12 11	4.027 3.021	3.010- 3.021	3.510~ 2.567	2.003 1.002			15 14	5.042 4.032	4.015+	3.004	3.004
	10	3.042	2.015-	1.004	1.004			13	3.023	3.011	2.003	2.003 1.001
	3	2.030	1.003	1.009	0.001	İ		12	3.243	2.014	1.003	1.003
	5 7	1.019	1.018 0. 007	0.007	0. 003			11	2.027 2.050-	1.007	1.007 0.002	0.001
	ε	A. C17	0.017	-	-	1	i	13	1.027	0.005-	0.005-	0.002
	5	0.036	-	-		į	i	8	1.050-	0.010-	0.010-	-
15	19	11.029	10.011	9.23-	9,004	1		5	0.019 0.037	0.019	-	-
	1 1	10.346	9.019	8.	7.562	l		ا	V.637	-	_	-
	17	8.023	8.223	7.559	6,004	1	11	13.	8.041	7.012	6.003	6.003
İ	16 15	7.015- 6.024	7.025- 6.024	6.010- 5.004	5.001 4.003			.8 17	7.047 6.043	6.016 5.015-	5.004 6.004	5. 064 4. 064
	20 14	5.012	5.002	4.208	3.002			10	5.035+		3.023	3.003
	13	5.045+	4,319	3.076	2.302	l		15	4.077	3.008	3.008	2.002
	1.	4.037 3.027	3.01÷ 2.009	2.004 2.009	2.004 1.852			14	3.01A 3.035+	3.018	2.005- 1.002	2.005- 1.002
	11	2.020	2.520	1,005+	1.001			12	2.021	2.010	1.005-	1.005-
		2.039	1.511	0.362	0.000	l	j	1.	2.340	1.310+	0.001	0.001
	9	1.023	1.523 0.559	0.004	0.034	1		10 9	1.020	0.006	0.003 0.006	0.003
		0.020	0.525	3.3.	-			و ا	2.013	0.008		-
	٤	0.042	-	-	-]		~	0.025-	0.025-	-	-
	1.3	10.02-	10.024	9.008	8.009	İ	į	5	0.046	ļ		
`*	1 -	9.037	8.014	7.005-	7.005-		::	19	7.033	6.009	6.009	5.002
]	-	8.041	7.317	606	5.001	!	,	16	6.036	5.011	4.003	4.003
		7.842 6.849	6.117 5.115+	5.006 4.005+	4.302 3.001	1		1" 16	5. 030 4. 022	4.009	4.009 3.005	3.000 2.001
		5	4.01	3.154	3.004	1		15	4.347	3.015-	Z-004	2.5.4
		4.027	3.209	3.009	2.003			14	3.030	2.008	2.009	1.002
	::	3.020 3.040	3.313 . 2.213	2.006 1.009	1.011 1.014	1	İ	. 3	2.017 2.033	2.017 1.000	1.004 1.008	1.004 0.001
[2.027	1.007	1.327	0.51				1.016	1.016	0.002	0.002
l		1.000-	1.325-	0	0.002	ļ		1.2	1.529	0.005-	0.305-	0.005-
	-	1,232	0.005+	0					0.109	0.009 0.018	0.009	-
	-	0.3.4	0.52	-	[]	1		-	0.3%	-	-	-
	-	0.344				l					[
L	\Box			L	لحجيجا	<u> </u>			L	<u> </u>	L	لـــــا

TABLES 8-16 continued
TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

,			·····		ANCE IN Z X Z IAI	31GMIF 1C.	1 1F211MC	M9CE3 FUR	·········		
	0.01 (0.02)	0.025 (0.05)	(0.10)	ه ₁		0.005 (0.01)	0.01 (0.02)	0.025 (0. 0 5)	0.05 (0.10)	a ₁	
-	: :	0.019	0.019 0.030 0.047	12 11 10	n ₁ =19 n ₂ =5	4.001 3.001 3.005- 2.003	5.006 4.007 3.005- 2.003	5.006 4.007 4.020 3.017	6.026 5.026 4.020 4.044	19 19 17 16	n ₁ =19 n ₂ =9
9 0.001	1.001 1.009 0.001 0.004	2.024 1.069 1.021 0.004	2.024 1.009 1.021 1.040	19 18 17 16	4	1.001 1.303 0.001 0.302	2.007 1.003 1.006 0.002	2.007 2.015- 1.006 1.013	3.028 2.015- 2.029 1.013	15 14 15 12	
	0.008	0.068 6.014 0.024	0.008 0.014 0.024 0.037	15 14 13 12		0.064	0.004 0.007 -	1,024 0,007 0,013 0,024	1.024 1.042 0.013 0.024	11 10 3 8	
3 0.003	0.001 0.003 0.006	1.013 0.003 0.006	1.013 1.038 0. 006	19 18 17	3	4.064 3.064	- 4,004 3,004	5.019 4.017	5. 613 4. 017	7 19 18	a
	-	0.013 0.023	0.013 0.623 0.036	16 15 14		2.002 1.001 1.002 C.001	2.000 2.000 1.007 1.006	3.011 2.005 2.014 1.006	4.044 3.027 2.014 2.027	17 16 15 14	
5- 0. 005-	0.605- - - -	0.005- 0.014	0.005- 0.014 0.029 0.048	19 18 17 16	2	6.601 6.003 - -	0.001 0.003 0.006	1.411 1.021 0.006 0.011 0.020	2.049 1.021 1.038 0.011 0.020	13 12 11 10	
3- 11.004	13.004 12.013- 10.007	15.024 13.022 11.015+	15.024 14.045 12.032	20 13 18	n ₁ =20 n ₂ =20	3,002	- 3.002	4.013	0.034 4.013	8	7
9 8. 004 5- 7. 005- 5- 5. 000	9.009 7.009- 6.005+	10.020 9.024 7.012	11.041 10.048 8.027	17 16 15		3.000 1.001 1.002	3.902 2.096 1.002	3.010+ 2.006 2.014	4.047 3.028 2.014	16 17 16	·
4.065- 4 3.004 9 2.007	5.005+ 4.605- 3.004 3.009 2.007	6.013 5.012 4.011 4.024	7.028 6.028 5.0.7 4.024 4.048	14 13 12 11		1.001 0.001 0.003	1.305+ 0.001 0.003 0.305+ 0.010-	1.005+ 1.011 1.021 0.005+ 0.010-	2.028 1.011 1.021 1.037 0.010-	15 14 13 12 11	
4 1.004 0- 0.002	1.004 1.004	3.020 2.015+ 1.010- 1.022 0.010+	3.041 2.032 1.072 1.046	10 3 8 7 6		,	-	0.017	0.017 0.030 0.048	10	
- -8 12 ,003	13.008 11.008	0.024	1.024	5 20 13	19	2.001 1.001 1.002 0.000	3.093 2.005+ 1.002 1.006	3.009 2.005+ 2.015+ 1.006	4.050 3.031 2.015+ 2.032	19 18 17 16	÷
9,005- 96 7.007 7 6.003 8 5.103	9.00%= 8.006 7.007 6.008 5.007	10.012 9.013- 8.017 7.018	1125 10.032 9.036 8.038	18 17 16 15		0.001 0.003 -	0.001 0.003 0.035+ 0.010-	1.012 1.023 0.005+ 0.010-	1.012 1.023 1.039 0.010-	15 14 13 12	
3. % 4 2. % 4 2. %	4.107 3.105+ 2.000	5.01° 4.015+ 3.012	6.038 5.3354 4.331	13 12 11		-	-	-	0.028 0.045+	10	-
0.21	2.004 1.005+ 0.005 0.005+	2.013 2.013 1.012 0.005+ 0.017	3,016 2,019 2,049 1,006 0,012 0,027	9 7 1 6 5		7.335- 1.232 0.330 0.331 0.333	1.010 1.016 0.001 0.003 0.008	2.018 1.006 1.014 0.003 0.006	2.018 2.047 1.014 1.028 1.047	15 15 14	
230000000000000000	9.00 9.00 7.00 5.00 5.00 4.00 2.00 1.00	0.024 14.000 12.018 10.012 9.013- 8.017 7.018 6.019 5.017 4.015- 3.011 2.004 2.004 2.004 0.005+	1.024 15.0-7 13.033 1125 10.032 9.038 8.038 7.039 6.038 4.031 3.006 2.010 2.044 1.007	5 20 19 18 16 16 17 16 17 18 18 19 17 18 18 18 18 18 18 18 18 18 18 18 18 18	19	1.001 1.000 0.001 0.003 - - - - 2.005 1.000 0.001	2.005+ 1.002 1.006 0.001 0.003 0.015+ 0.010- 1 2.015- 1.010 1.016 0.003	2.005+ 2.015+ 1.006 1.012 1.023 0.005+ 0.013- 0.017 - 2.005- 2.018 1.006 1.214 0.003	3.031 2.015+ 2.032 1.023 1.023 1.023 0.010- 0.017 0.028 0.045+ 3.036 2.048 1.014 1.028	19 18 18 18 18 18 18 18 18 18 18 18 18 18	

Reproduced From Best Available Copy

TABLE 8-16 continued

TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

			Signifi	cance Lev	el		1		Signific	cance Lev	el
	a ₁	0.05 (0.10)	0.025 (0.05)	0.01 (0.02)	0.005 (0.01)		a ₁	0,05 (0.10)	0.025 (0.05)	0.01	0.005 (0.0!)
n ₁ =20 n ₂ =18	20	14.041	13.017	12.007	11.003	n ₁ =2) n ₂ =15	13	4.028	3.010-	3.010-	2.003
		12.032	11.014	10.006	9.002	1 -	,12	3.020	3.020	2.006	1,001
l l		11.043	10.020	9.008	9.003	į.	.11	3.039	2.013	1.003	1.003
	17	10.050-	9.024	7.064	7.004	į.	110	2.026	1.007	1.007	0.001
	16 15	8.026 7.027	7.011 6.012	6.005- 5.004	6.005- 5.004		9	2.049 1.029	1.015- 0.005+	0.002	0.002
	14	6.026	5.011	4.004	4.004		7	0.012	0.005+	0.005+	[
	13	5.024	5.024	4.009	3.003		1 6	0.012	0.024		
	12	5.047	4.020	3.007	2.002	1	ξ.	0.048	0.014		
	11	4.041	3.016	2.005+	1.001	l	1	4. 3. 0	_		
	10	3.033	2.012	1.003	1.003	14	20	10.022	10.022	9.007	8.002
	9	2.024	2.024	1.007	0.001		19	9.032	8.012	7.004	7.634
	8	2.048	1.015-	0.003	0.003		19	8.035+		6.005-	6.005-
	7	1.031	0.006	0.006	-		1:7	7.035-	6.013	5.005-	5.005-
	6	0.014	0.014	-	-		16	6.031	5.012	4.004	4. 5.
	5	0.031	-	-	-		15	5.026	4.009	4.009	3.003
			[{	14	4.020	4.020	3.007	2,002
17		13.036	12.014	11.005+	10.002		13	4.540	3.015-	2.064	2,504
		11.026	10.011	9.004	9.004	1	12	3.029	2.009	2.004	1.000
		10.034	9.015-	8.006	7.002	ľ	11	2.018	2,018	1.005-	1.00%-
	17	9.038	8.017	7.007	5.003	1	10	2.235+	1.015-	1.010-	0.004
	16 15	8.040 7.039	7.019 6.017	6.007 5.007	5.003 4.002		6.	1.019	1.019 0 .007	0.003 C.007	0.003
		6.037	5.016	4.005	3.002	i i	7	0.014	0.014	C.007	
	14	5.033	4.013	3.005-	3.005-	}	ε	0.029	0.01-	. .	
	12	4.028	3.010+	2.003	2.003		*	J			1
	11	3.022	3.022	2.007	1.002	i3	20	9.017	9.317	8.505+	7.002
5. 1	10	3.042	2.015+	1.004	1.004		1.3	8.525-	8.025-	7,009	6.123
	9	2.031	1.009	1.009	0.001		1.8	7.02€	6,009	6,009	5.003
	a	1.019	1.019	0.003	0.003		1.7	6	6.0	5,008	4.3.2
	7	1,027	0.008	0.008	-	ł	5.6	5	5.520	4.007	3
	6	0.017	0.017	-	-	i i	15	5.:41	4.025+	3.005-	3.00:-
	5	0.036	- :	-			14	4.531	3.112	2.007	2.1
			•		1		13	3.000	3.222	2,004	1.74
16	20	12.031	11.012	10.004	10.004	i	1.	3.041	2.013	1,003	1.000
		11.049	10.021	9.008	8,003		11	2. 26	1.707	1.007	0.21.
	18	9,026	8.011	7.004	7,004		10	2.347	113	9.702	0
	17	8.028	7.012	6.004	6.004		3	1.126	0.104	0.404	0
	15	7.028	6.012	5.004	5,104		6	1.347	0.004	0.000	-
	15	6.026	5.011	4.004	4.134			0.018	0.018	-	-
	14	5.023	5.023	4.039 3.007	3.003 2.100		1.6	0.035-	· ·	1 -	1 -
	13	5.046 4.038	4.019 3.014	2.004	2.034	12	1::	9. 4	8.714	7.5	7
	11	3.029	2.010-	2.010-	1,.5:			7. 14	7.118	6.005	5. 7.
	10	2.020	2.020	1.005+	2,301		lis	6.018	6.318	5.006	4
	9	2.039	1.311	0.002	0.000		li-	6.343	5. 15	4.03	4.
	8	1.023	1.023	0.004	0.004	1	lie.	5.034	4	3.003	3.
	7	1.045+		0.000	-		2.5	4. 264	3.238	3.0 4	2.
	-6	0.020	0.020	-	-			4	3.017	2.000-	2
	5		-	-	-		1.3	3.133	2	2.337-	1
	[í			[l	11.	2.125	2	1.701-	1. 25-
15		111.026	10.009	10.009	9.003		11	2.00	1. 02	1.3 3	0
		10 040	9.015	8.006	7. 12			1.719	1.019	0.23	0.11
	18	9.046	8.013	7.207	6.		1 1	1.034	0.316	0.75	j -
	17	8.047	7.020	6.008	5. 33		1:	0. 1.7	0. :::	-	-
i	16	7.045-	6.013	5.007	4.000	l	17	023	0.023	-	
	15	6.040	5.01	4.006	3.002	 	1	0. • 3	-	-	
	24	5.034	4.013	3.004	3.00	li .	ł	ı	t.	l .	1

TABLE R-16 continued

TABLES FOR TESTING SIGNIFICANCE IN 2 X 2 TABLES

		s	ignifica	nce Level				S	ignificar	ce Level	
	,,	0.05 (0.10)	0.025 (0.05)	0.01 (0.01)	0.005 (0.01)		a ₁	0.05 (0.10)	0.025	0.01 (0.02)	0.005 (0.01)
n ₁ =20 n ₂ =11	20 19 18 17	8.037 7.042 6.037 5.029 4.021	7.015+ 6.013 5.012 4.009 4.021	6.003 5.004 4.003 4.009 3.006	6.003 5.004 4.003 3.102 2.701	n ₁ =20 n ₂ =7	20 19 18 17 16	4.012 4.042 3.024 3.050- 2.023	4.012 3.009 3.024 2.011 2.029	3.009 3.009 2.005- 1.700 1.004	3.002 2.001 2.004 1.002 1.004
	15 14 13	4.042 3.028 2.016 2.029	3.014 2.008 2.616 1.007	2. 04 2. 04 2. 08 1. 03 1.007	2,003 1,001 1,003 0,001		15 14 13	2.943 1.016 1.719 1.048	1.004 1.016 0.104 0.567	1.004 0.102 0.104 0.104	0
	11 10 9 6	1.014 1.026 1.046 0.016	1.014	0.357 3.354 0.354	0.1	·	11 10 9	0.013 0.772 0.734	0.013	-	-
10	20 14		6.005 5 709 4.007	6, 5, 223 4, 1 m	5.0 4.002	٠	10 19 16 17	3.7 8 2.1.3 2.1.8	3	3. 1. # 2 # ~ 1. 1 4	2. 2. 1
	17 16 15 14 13	5.026 4.013 4.039 3.024 3.045+ 2.025+ 2.045-	4.318 3.312 3.324 2.313	35- 2.004 2.006 1.004 1.006 0.001	3.005 3.005 2.004 1.001 1.003 0.001 0.001		16 15 14 13 42 42	0.722	1.5.5- 1.518 0.514 0.407 0.623 6.621	1. 10- 0.5 0.5.4 0.507	0.21
	11	1.021 1.037 0.012 0.012 0.038	1.021 0.006 0.71. 0.317	0.007 0.006 -	0.00	Ķ	10 20 19 19	3.033 2.216 2.038 1.012	2.004 2.016 1.005+ 1.01.	2.1% 1.3 1.30% 0.331	2,304 1,22, 0,000 0,000
9	13 18 17 16	6.327 5.022 4.016 4.337 3.922	6.023 5.020 4.016 3.010+ 3.020	5.105+ 4.105+ 3.134 2.11 2.015+	4.001 3.001 3.004 2.002 1.001		16 14 13 14 17	1.02+ 1.046 0.015+ 0.015+ 0.024	0.000+ 0.000+ 0.009 0.015+ 0.074	0.305-	02
	13 12 11 13	3.043 2.043 2.041 1.018 1.037 0.009 0.617 0.113 0.050-	2,012 2,023 1,009 1,019 0,005 0,005 0,017	1.0% 1.0% 1.0% 0.00% 0.00% 0.00%	1.522 1.1654 0.561 0.562 0.7554	-		2. 02 1. 08 1.018 1.035+ 0.007 0.001 0.000	222 1.009 1.019 0.003 0.017 0.412 0.170	1.792 1.559 0.301 0.003 0.367	1.012 0.123 0.021 0.034
ę	1 1 5 1 3	5.017 4.0.5- 4.038 3.017 3.044 2.000 2.040 1.016	3.202 3.202 2.211 2.222	3	472 3.023 2 2.105 1.002 1.002 1.004 071 072			1.212 1.234 0.13 0.21 0.22 0.72 0.74	1.01. 0.02. 0.02. 0.02. 0.02.	0.101 0.307 0x	0.:
	1:.	1.117 1.145 0.115 0.55 0.56	0.1.	G	O	-	20 - 1 - 1 - 1	0 0 0	0. 4	c. 4	0. •
						;	.	0		į	

Reproduced From Best Available Copy

2-70

TABLE B-17

OUTLIER

Table of percentage points for $\frac{\mathbf{s}_1^2}{\mathbf{s}^2}$ and $\frac{\mathbf{s}_2^2}{\mathbf{s}^2}$

			S	g-			
N		(FIRST O	UTLIER CV)		(SECONI	OUTLIER (CV)
	.99	.975	.95	.90	.99	.95	.90
3	.0002	.0014	.0054	.0218	NA	NA	NA
4	. 3150	.0372	.0741	.1463	.0000	.0024	.0093
5	.0589	.1077	.1693	.2645	.0070	.0366	.0752
6	.1160	.1816	.2540	.3533	.0310	.0947	.1535
7	.1736	.2479	.3235	.4204	.0660	.1530	.2219
8	.2273	.3052	.3804	.4725	.1050	.2069	.2792
9	.2755	.3544	.4277	.5145	.1442	.2545	.3272
10	.3185	.3967	.4673	.5491	.1833	.2964	.366♂
11	.3568	.4334	.5012	.5782	.2170	.3333	.4033
12	.3909	.4655	.5304	.6031	.2498	.3662	.4342
13	.4215	.4940	.5560	.6248	. 2800	.3954	.4612
14	.4490	.5191	.5785	.6437	.3079	.4217	.4852
15	.4740	.5417	. 5987	.6606	.3335	.4454	.5069
16	.4965	.5621	.6166	.6756	.3574	.4671	.5264
17	.5171	.5805	.6329	.6892	.3796	.4871	.5441
18	.5359	.5972	.6476	.7014	.4001	.5049	.5603
19	.5532	.6125	.6610	.7126	.4191	.5216	.5752
	1	•	1	1		1	

TABLE B-17 continued

N	.99	.975	.95	.90	.99	.95	.90
20	.5693	.6267	.6733	.7228	.4369	.5369	.5889
21	.5840	.6396	.6846	.7324	.4536	.5512	.6017
22	.5977	.6516	.6952	.7411	.4692	.5645	.6134
23	.6104	.6628	.7048	.7492	.4838	.5768	.6245
24	.6224	.6732	.7139	.7567	.4976	.5885	.6347
25	.6335	.6829	.7224	.7636	.5105	.5995	.6443
30		.7232	.7569	.7924			
35		.7540	.7827	.8142			
40		.7776	.8035	.8316		:	
45	•	.7969	.8203	.8458			
50		.8129	.8342	.8575			
55		.8264	.8462	.8674			
60		.8377	.8560	.8755			
70		.8565	.8724	.8895			
80		.8709	.8850	.9003			
90		.8827	.8955	.9089			
100		.8922	.9038	.9161			
200	·	. 9390	.9451	.9513			
500		.9719	.9746	.9771			
1000		.8946	.9859	.9872			

TABLE B-17 continued

NOTE: For values between large samples, use linear interpolation; i.e., N = 52 and α = .05:

$$5 \begin{bmatrix} 3 \\ 53 = \\ 55 = .8462 \end{bmatrix} \times .0120$$

$$\frac{3}{5} = \frac{x}{.0120}$$

$$5(x) = 3(.0120)$$

$$x = \frac{.036}{5}$$

Therefore, add .0072 to .8342 giving CV = .8414

TABLE B-18 *

RELIABILITY: SUCCESS - FAILURE

1	Number of	failures = 0					
Reliat					Cons	fidence Lev	-1
					3011	raence bev	ет
	.99	.95	.90	.85	.80	.70	.60
.99	459	299	230	189	161	120	92
.98	228	149	114	94	80	60	46
.97	.52	99	76	63	53	40	
.96	113	74	57	47	40	30	31 23
.95	90	59	45	37	32	24	18
. 94	75	49	38	31	27	20	
.93	64	42	32	27	23	17	15
. 92	56	36	28	23	20	15	13
.91	49	32	25	21	18	13	11
•90	44	29	22	19	16	13	10
.89	40	26	20	17	14		9
.88	37	24	19	15	13	11	8
.87	34	22	17	14	13	10 9	8
.86	31	20	16	13	11	8	7
.85	29	19	15	12	10	8	7
.84	27	18	14	11	10	o 7	6
.83	25	17	13	11	9	7	6
.82	24	16	12	10	9	7	5
.81	22	15	11	10			5
.80	21	14	11	9	8 8	6	5
		• •	**	,	0	6	5
Nu	umber of f	failures = 1					
Reliabi	lity				Comf		•
	,				Conf	ldence Leve	1
	.99	.95	.90	.85	.80	.70	
.99	662	473	388	337	299	244	.60
.98	330	236	194	168	149	122	202
.97	219	157	129	112	99	81	101
. 96	164	117	96	84	74	61	67 51
.95	130	93	77	67	59	49	
.94	108	78	64	56	49	49	40
.93	92	66	55	47	42	35	34
.92	81	58	48	41	37	30	29
.91	71	51	42	37	33	27	25
.90	64	46	38	33	29	24	22
.89	58	42	34	30	27	22	20
.88	53	38	31	27	24	20	18
.87	49	35	29	25	23	19	17
.86	45	32	27	23	21		16
.85	42	30	25	22	19	17 16	14
.84	39	28	23	20	18		13
.83	37	26	22	19	17	15	13
.82	34	25	21	18	16	14	12
.81	33	24	19	17	15	13	11
. 80	31	22	18	16	15	13	11
		- -		10	14	12	10

^{*}See page 2-125 for .75 confidence level.

TABLE B-18 continued

N Reliab	lumber of fa	ilures = 2			Cons	fidence Lev	el
	.99	.95	.90	.85	.80	7.0	
.99	838	628	531	471	427	.70	.60
•98	418	313	265	235	213	361	310
•97	277	208	176	157	142	180	155
•96	207	156	132	117	106	120 90	103
•95	165	124	105	94	85	72	78
.94	137	103	88	78	71	60	62
•93	117	88	75	. 67	60	51	52
. 92	102	77	65	58	53	31 45	44
.91	91	68	58	52	47	40	30
• 90	81	61	52	46	42	36	34
.89	74	56	47	42	38	33	31
.88	67	51	43	38	35	33 30	28
.87	62	47	40	35	32	27	26
.86	57	43	37	33	30	25	24
.85	53	40	34	31	28	24	22
.84	50	38	32	29	26	22	21
.83	47	35	30	27	24	21	19 18
.82	44	33	28	25	23	20	17
.81	41	31	27	24	22	19	16
.80	39	30	25	23	21	18	15
Nu	mber of fai	lures = 3					•
Reliabi	lity	10103			C 6		_
					Conr	idence Leve	1
	.99	.95	.90	.85	.80	.70	
.99	1001	773	667	600	551	476	.60
•98	499	386	333	300	275	238	417
.97	332	257	221	199	183	158	209
.96	248	192	166	149	137	119	139 104
.95	198	153	132	119	110	95	
.94	164	127	110	99	91	79	83 69
.93	140	109	94	85	78	68	60
. 92	122	9 5	82	74	68	59	52
.91	109	84	73	66	60	53	46
.90 .89	97	76	6 5	59	54	47	42
	88	69	59	54	49	43	38
.88 .87	81	63	54	49	45	39	35
.86	74	58	50	45	42	36	32
.85	69	53	46	42	39	34	30
.84	64	50	43	39	36	31	28
.83	60 56	47	40	37	34	29	26
.82	56 53	44	38	34	32	28	24
.81	53 50	41	36	32	30	26	23
.80	30 47	39	34	31	28	25	22
,,,	47	37	32	29	27	23	21

TABLE B-18 continued

Relia	Number of fibility	failures = 4					
	-				Cor	nfidence Le	ve1
.99	.99 1157	.95	• 90	.85	.80	.70	
.98	577	913	798	726	671	589	.60
. 97	383	456	398	362	335	294	524
.96	287	303	265	241	223	196	262 174
.95	229	227 181	198	181	167	147	131
. 94	190	150	158	144	134	117	105
.93	162	129	132	120	111	98	87
.92	142	112	113	103	95	84	75
.91	126	100	98	90	83	73	65
. 90	113	89	87 78	80	74	65	58
.89	102	81	78 71	72	66	58	52
.88	93	74	65	65	60	53	47
.87	86	68	60	59	55	49	44
.86	79	63	56	55	51	45	40
. 85	74	59	52	51	47	42	37
.84	69	55	48	47	44	39	35
.83	65	52	45	44 42	41	36	33
.82	61	49	43	42 39	39	3.′	31
.81	58	46	40	39 37	36	3 ^	29
.80	55	44	38	37 35	34	31	27
37.				33	33	29	26
Reliabi	mber of fai	.lures = 5					
KETTAUL	ilty				Conf	idence Leve	1
	.99	. 95	.90	0.5			•
.99	1307	1049	926	.85	.80	.70	.60
- 98	652	523	462	848	790	700	629
.97	433	348	308	423 282	394	350	314
.96	324	261	230	211	263	233	210
.95	259	208	184	169	197	175	157
.94	215	173	153	140	157	140	126
.93	184	148	131	120	131	116	105
. 92	160	129	114	105	112 98	100	90
.91	142	115	101	93	96 8 7	87	78
.90	127	103	91	84	78	77	70
. 89 . 88	116	93	83	76	70 71	70	63
. 87	106	85	76	69	65	63	57
.86	97 00	79	70	64	60	58 5 3	52
85	90 84	73	65	59	55	53 50	48
84	78	68	60	55	52	46	45
83	73	63	56	52	48	43	42
82	73 69	59	53	49	46	41	39
81	65	56	50	46	43	38	37
80	62	53 50	47	43	41	36	35
	0 <u>2</u>	30	45	41	39	34	33 31
	,					- ·	3:

TABLE B-18 continued

Reli:	Number of faibility	ailures = 6					
WEITE	ioiiity				Con	fidence Lev	el
	.99	.95	•90	.85	.80	.70	60
.99	1453	1182	1051	969	906	811	.60 734
•98	725	590	525	484	453	405	7.34 367
. 97	482	392	349	322	301	270	
• 96	360	294	262	241	226	202	245
. 95	288	234	209	193	180	162	183 147
.94	239	195	174	160	150	135	
.93	204	167	149	137	129	115	122 105
.92	178	146	130	120	112	101	92
.91	158	129	115	106	100	90	81
.90	142	116	104	96	90	81	73
.89	129	105	94	87	81	73	67
.88 .87	118	96	86	79	75	67	61
.86	108	89	79	73	69	62	56
.85	100	82	73	68	64	57	52
.84	93 87	76	68	63	59	53	49
.83	82	71	64	59	56	50	46
.82	77	67 63	60	56	52	47	43
.81	73	60	57 57	5.2	49	44	41
.80	69	57	54 51	50	47	42	38
	• •	37	31	47	44	40	37
i	Number of fa:	ilures = 7					
	oility				Conf	idence Leve	1
	00					recuce peve	
.99	.99 1596	.95	.90	.85	.80	.70	.60
.98	796	1312	1175	1088	1022	920	839
.97	529	655	587	543	511	460	419
.96	396	436 326	390	362	340	306	279
.95	316	260	292	271	255	230	210
.94	263	217	234 194	216	204	184	168
.93	225	185	166	180	169	153	140
.92	196	162	.45	154	145	131	120
.91	174	143	129	135 120	127	114	105
.90	156	129	116	120	113	102	93
.89	141	117	105	98	101 92	91	84
.88	129	107	96	89	92 84	83	76
.87	119	98	89	82	78	76 70	70
.86	110	91	82	76	73 72	70 65	64
.85	103	85	77	71	67	61	60
.84	96	79	72	67	63	57	56
.83	90	75	67	63	59	5 <i>4</i>	52 49
.82	85	70	63	59	56	51	49 46
.81	80	66	60	56	53	48	46 44
.80	76	63	57	53	50	45	42

TABLE B-18 continued

	Number of fa	ilures = 8					
Relia	ability				Con	fidence Lev	el
	.99	.95	190	.85	.80	.70	.60
.99	1736	1441	1297	1206	1137	1029	943
.98	866	719	648	602	568	514	471
.97	576	478	431	401	378	343	314
.96	431	358	323	300	283	257	236
.95	344	286	258	240	226	205	
.94	286	238	215	200	188	171	188
.93	244	203	184	171	161	146	157
.92	213	178	160	149	141	128	135
.91	189	158	142	133	125	114	118
.90	170	142	128	119	113	102	195
.89	154	128	116	108	102	93	94
.88	141	117	106	99	94	95 85	Ն6 70
.87	130	108	98	91	86	79	78 73
.86	120	100	91	85	80	79 73	72
.85	112	93	85	79	75	73 68	67
.84	104	87	79	74	70	00 14	63
.83	98	82	74	69	66		59
.82	92	77	70	65	62	60	55 50
.81	87	73	66	62	59	57	52
.80	83	69	63	59	56	54	49
•00	03	0,3	0.5	29	90	51	47
	Number of far	llures = 9					
	bility				Conf	idence Leve	. 1
						TACINCE DEAG	: T
	•					Tuche beve	:1
	.99	.95	•90	.85	.80	.70	.60
.99	.99 1874	1568	.90 1418	.85 1323			
.98					.80	.70	.60
.98 .97	1874	1568	1418	1323	.80 1251	.70 1138	.60 1047
.98	1874 935	1568 782	1418 708	1323 661	.80 1251 625	.70 1138 569	.60 1047 524
.98 .97	1874 935 662 465 371	1568 782 521	1418 708 471	1323 661 440	.80 1251 625 416	.70 1138 569 379	.60 1047 524 349
.98 .97 .96	1874 935 662 465	1568 782 521 390	1418 708 471 353	1323 661 440 330	.80 1251 625 416 312	.70 1138 569 379 284 227	.60 1047 524 349 262
.98 .97 .96	1874 935 662 465 371	1568 782 521 390 311	1418 708 471 353 282	1323 661 440 330 263	.80 1251 625 416 312 249	.70 1138 569 379 284 227 189	.60 1047 524 349 262 209 174
.98 .97 .96 .95	1874 935 662 465 371 309	1568 782 521 390 311 259	1418 708 471 353 282 235	1323 661 440 330 263 219	.80 1251 625 416 312 249 207	.70 1138 569 379 284 227	.60 1047 524 349 262 209 174 149
.98 .97 .96 .95 .94	1874 935 662 465 371 309 264	1568 782 521 390 311 259 221	1418 708 471 353 282 235 201	1323 661 440 330 263 219 188	.80 1251 625 416 312 249 207 178	.70 1138 569 379 284 227 189 162	.60 1047 524 349 262 209 174
.98 .97 .96 .95 .94 .93	1874 935 662 465 371 309 264 230	1568 782 521 390 311 259 221	1418 708 471 353 282 235 201	1323 661 440 330 263 219 188 164	.80 1251 625 416 312 249 207 178 155	.70 1138 569 379 284 227 189 162 142	.60 1047 524 349 262 209 174 149
.98 .97 .96 .95 .94 .93 .92 .91	1874 935 662 465 371 309 264 230 204	1568 782 521 390 311 259 221 193	1418 708 471 353 282 235 201 175 156	1323 661 440 330 263 219 188 164 146	.80 1251 625 416 312 249 207 178 155	.70 1138 569 379 284 227 189 162 142	.60 1047 524 349 262 209 174 149 131
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89	1874 935 662 465 371 309 264 230 204 183 166 152	1568 782 521 390 311 259 221 193 172 154	1418 708 471 353 282 235 201 175 156 140	1323 661 440 330 263 219 188 164 146	.80 1251 625 416 312 249 207 178 155 138	.70 1138 569 379 284 227 189 162 142 126 113	.60 1047 524 349 262 209 174 149 131 116
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	1874 935 662 465 371 309 264 230 204 183 166 152 140	1568 782 521 390 311 259 221 193 172 154	1418 708 471 353 282 235 201 175 156 140 127	1323 661 440 330 263 219 188 164 146 131	.80 1251 625 416 312 249 207 178 155 138 124	.70 1138 569 379 284 227 189 162 142 126 113 103	.60 1047 524 349 262 209 174 149 131 116 105 95
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89	1874 935 662 465 371 309 264 230 204 183 166 152	1568 782 521 390 311 259 221 193 172 154 140 128	1418 708 471 353 282 235 201 175 156 140 127 116 107 99	1323 661 440 330 263 219 188 164 146 131 119	.80 1251 625 416 312 249 207 178 155 138 124 113	.70 1138 569 379 284 227 189 162 142 126 113 103 94	.60 1047 524 349 262 209 174 149 131 116 105 95 87 80
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	1874 935 662 465 371 309 264 230 204 183 166 152 140	1568 782 521 390 311 259 221 193 172 154 140 128 118	1418 708 471 353 282 235 201 175 156 140 127 116 107	1323 661 440 330 263 219 188 164 146 131 119 109	.80 1251 625 416 312 249 207 178 155 138 124 113	.70 1138 569 379 284 227 189 162 142 126 113 103 94 87	.60 1047 524 349 262 209 174 149 131 116 105 95 87 80 75
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	1874 935 662 465 371 309 264 230 204 183 166 152 140 130	1568 782 521 390 311 259 221 193 172 154 140 128 118	1418 708 471 353 282 235 201 175 156 140 127 116 107 99	1323 661 440 330 263 219 188 164 146 131 119 109 100 93	.80 1251 625 416 312 249 207 178 155 138 124 113 103 95 88	.70 1138 569 379 284 227 189 162 142 126 113 103 94 87 81	.60 1047 524 349 262 209 174 149 131 116 105 95 87 80 75 70
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	1874 935 662 465 371 309 264 230 204 183 166 152 140 130 121	1568 782 521 390 311 259 221 193 172 154 140 128 118 109	1418 708 471 353 282 235 201 175 156 140 127 116 107 99 93	1323 661 440 330 263 219 188 164 146 131 119 109 100 93 87	.80 1251 625 416 312 249 207 178 155 138 124 113 103 95 88 82	.70 1138 569 379 284 227 189 162 142 126 113 103 94 87 81 75	.60 1047 524 349 262 209 174 149 131 116 105 95 87 80 75 70 65
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	1874 935 662 465 371 309 264 230 204 183 166 152 140 130 121 113	1568 782 521 390 311 259 221 193 172 154 140 128 118 109 102 95	1418 708 471 353 282 235 201 175 156 140 127 116 107 99 93 87	1323 661 440 330 263 219 188 164 146 131 119 109 100 93 87 81	.80 1251 625 416 312 249 207 178 155 138 124 113 103 95 88 82 77	.70 1138 569 379 284 227 189 162 142 126 113 103 94 87 81 75 70 66	.60 1047 524 349 262 209 174 149 131 116 105 95 87 80 75 70 65 61
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	1874 935 662 465 371 309 264 230 204 183 166 152 140 130 121 113 106	1568 782 521 390 311 259 221 193 172 154 140 128 118 109 102 95 89	1418 708 471 353 282 235 201 175 156 140 127 116 107 99 93 87 81	1323 661 440 330 263 219 188 164 146 131 119 109 100 93 87 81 76	.80 1251 625 416 312 249 207 178 155 138 124 113 103 95 88 82 77 72	.70 1138 569 379 284 227 189 162 142 126 113 103 94 87 81 75 70	.60 1047 524 349 262 209 174 149 131 116 105 95 87 80 75 70 65

TABLE 3-18 continued

Reliai	Number of fability	ailures = 10				.	
					Con	fidence Le	vel
	.99	. 95	.90	.85	.80	7.0	
.99	2010	1693	1538	1439	1364	.70	.60
.98	1003	845	768	719		1246	1151
.97	667	562	511	479	681	623	576
.96	499	421	383	359	454	415	384
.95	398	336	306	286	340	311	288
.94	331	280	255	238	272	249	230
.93	283	239	218	204	226	207	192
.92	247	209	190		194	177	164
.91	219	185	169	178	169	155	144
.90	197	167	152	158	150	138	128
.89	178	151	138	142	135	124	115
.88	163	138	126	129	123	113	104
.87	150	127	116	118	112	103	96
.86	139	118	108	109	104	95	88
.85	130	110	100	101	96	88	82
.84	121	103	94	94	90	82	76
.83	114	97	88	88	84	77	72
.82	107	91	83	83	79	73	67
.81	101	86	79	78	74	68	64
.80	96	82	75	74 70	70	65	60
			, ,	70	67	62	57
Nu	mber of fai	lures = 11					
Reliabi	lity						
					Conf	idence Leve	:1
	.99	.95	.90	.85	0.0		
.99	2144	1818	1658	1555	.80	.70	.60
.98	1070	907	828	777	1476	1354	1255
.97	712	604	551	517	737	677	627
.96	532	452	413	387	491	451	418
.95	425	361	330	310	368	338	314
.94	353	300	274	258	294	270	251
.93	302	257	235	221	245	225	209
.92	264	224	205	193	210	193	179
.91	234	199	182	171	183	169	157
.90	210	174	164	154	163	150	139
. 39	190	162	149	140	146	135	125
.88	174	149	36	128	133	122	114
.87	160	137	125	118	122	112	104
.86	149	127	116	109	112	103	96
.85	138	118	108		104	96	89
. 84	129	111	101	102 95	97	90	83
.83	121	104	95		91	84	78
.82	114	98	90	90	85	79	74
.81	108	93	85	85 80	81	74	69
.80	102	88	81	80 76	76	70	66
			0.	70	72	67	62

TABLE B-18 continued

Relia	Number of fa	ailures = 12			Con	afidence Lev	1 a 1
	00						,e1
.99	.99	.95	.90	.85	.80	.70	.60
.98	2277	1941	1776	1670	1588	1461	1359
.97	1136	969	887	834	793	730	679
.96	756 566	645	590	555	528	487	453
.95		483	442	416	396	365	339
.94	451 275	386	353	332	316	292	271
.93	375	321	294	277	263	243	226
.92	321	274	252	237	226	208	194
.92	280	240	220	207	197	182	170
.90	249	213	195	184	175	162	151
.89	223	191	175	165	157	145	136
.88	202	173	159	150	143	132	123
.87	185	159	146	137	131	121	113
.86	170	146	134	127	121	112	104
.85	158	136	125	117	112	104	97
	147	126	116	109	104	97	90
.84 .83	138	118	109	103	98	91	85
.82	129	111	102	96	92	85	80
.81	122	105	96	91	87	80	75
.80	115	99	91	86	82	76	71
• 80	109	94	86	82	78	72	68
N.	umber of fai	:1 12					
Reliab		itures = 13					
	ciicy				Conf	idence Leve	:1
	.99	.95	.90	.85	.80	70	
.93	2409	2064	1893	1784	1700	.70 1569	.60
.98	1202	1030	945	891	849	1369 784	1492
.97	800	686	629	593	566	522	731
.96	598	513	471	444	424	392	487
.95	478	410	377	355	339	313	365
.94	397	341	313	296	282	261	292
.93	340	292	268	253	242	223	243
.92	297	255	234	221	211	195	209
.91	263	226	208	196	187	174	182
.90	236	203	187	177	169	156	162
.89	214	184	170	160	153	142	146
.88	195	169	155	147	140	130	133
.87	180	156	143	135	129	120	122
.86	167	144	133	126	129	111	112
.85	156	134	124	117	112	104	104
.84	146	126	116	110	105	97	97
.83	137	118	109	103	98	97 91	91
.82	129	111	103	97	93	91 86	86
.81	122	105					81
	1 2 2	103	97	92	Q Q	9.3	77
.80	115	100	97 92	92 87	88 83	82 78	77 73

TABLE B-18 continued

Relia	Number of bility	failures = 1	4				
	·				Con	idence Lev	el
	.99	.95	.90	.85	.80	.70	
.99	2539	2185	2010	1898	1811	1676	.60
.98	1267	1091	1004	948	905	837	1565
•97	843	726	668	631	603	558	783
•96	631	544	501	473	452	418	522
.95	504	434	400	378	361	334	391
.94	419	361	333	315	300	279	313
.93	358	309	285	269	257	239	261
.92	313	270	249	235	225	209	223
.91	277	240	221	209	200		195
•90	249	215	199	188	180	185 1 67	174
.89	226	195	180	171	163	151	156
.88	207	179	165	156	149	139	130
.87	190	165	152	144	138	128	130
.86	176	153	141	134	128	119	120
.85	164	142	132	125	119	111	111
.84	154	133	123	117	112	104	104
.83	144	125	116	110	105	98	98
.82	136	118	109	103	99	92	92
.81	128	112	103	98	94	87	87
.80	122	106	98	93	89	83	82 78
N	umber of	failures = 15				O S	70
Reliab	ility	- 15			Confidence	re level	
						De Level	
.99	,	.99	. 95	• 9 0	. 8	35	.80
.98		2704	2343	2140	201	13	1917
.97		1348	1169	1069	100)6	958
.96		896	778	711	67	0	638
.95		670	582	533	50)2	478
.94		535 445	465	426	40		382
.93		380	387	354	33		318
.92		332	331	303	28		273
.91		294	289	265	25	0	238
.90		264	256	235	22	2	212
.89		239	230	211	19	9	190
.88		219	209	192	18	1	173
.87		201	191	176	16	6	158
.86		186	176	162	15		146
.85		173	163	150	14		135
.84		162	152	140	13		126
.83		152 152	142	131	12		118
.82		143	134	123	11		111
.81		135	126	116	110		105
.80		128	119	110	10.		99
		• • • •	113	104	99	9	94

TABLE B-18 continued

	mber of failures	= 16			
Reliabi:	lity			Confidence Leve	l
	.99	.95	.90	.85	.80
.99	2832	2463	2256	2126	2028
. 98	1412	1229	1126	1062	1013
.97	939	818	750	707	675
٠96	702	612	562	530	506
•95	560	489	449	423	404
. 94	466	407	373	352	337
.93	398	348	320	302	288
. 92	347	304	279	264	252
.91	308	270	248	234	224
• 90	276	242	223	211	201
.89	251	220	202	191	183
.88	229	201	185	175	167
.87	211	185	171	161	154
•86	195	172	158	150	143
. 85	182	160	147	140	134
.84	1 70	150	138	131	125
.83	159	141	130	123	118
.82	150	133	122	116	111
.81	142	125	116	110	105
.80	134	119	110	104	100
	ber of failures =	= 17			
Reliabil	ity		(Confidence Level	
	.99	.95	•90	.85	.80
.99	2960	2582	2371	2238	2138
.98	1476	1289	1184	1118	1068
•97	981	858	788	745	711
• 96	734	642	590	558	533
.95	586	513	472	446	426
.94	487	427	393	371	355
.93	416	365	336	318	304
.92	363	319	294	278	266
.91	322	283	261	247	236
.90	289	254	234	222	212
.89	262	231	213	201	193
.88	240	211	195	184	177
.87	221	194	179	170	163
.86	204	180	166	158	151
.85	190	168	155	147	141
.84	178	157	145	138	132
.83	167	148	136	129	124
.82	157	139	129	122	117
.81	148	131	122	116	111
.80	141	125	115	110	105

TABLE B-13 continued

Nu	mber of failures	= 18			
Reliabi				Confidence Level	
	.99	.95	.90	.85	90
.99	3086	2701	2486	2351	.80
. 98	1539	1348	1241	1174	2247
•97	1024	897	827	782	1125
.96	766	672	619	586	748
.95	611	536	495	463	561
.94	508	446	412		448
.93	434	332	352	390 334	373
.92	379	334	308	- •	320
.91	336	296	273	292	279
. 90	302	266	246	259	248
.89	273	241	223	233	223
.88	250	221	204	212	203
.87	239	203	188	194	186
.86	213	189	175	179	171
.85	198	176	163	166	159
.84	135	164	152	154	148
.83	174	154	143	145	139
.82	164	146	135	136	131
.81	155	138		128	123
.80	147	131	128 121	121 115	117
Reliabil	•		C	Confidence Level	
00	.99	. 95	. 90	.85	.80
.99	3212	2819	2600	2762	235
.98	1602	1407	1299	1.230	1178
.97	1066	937	865	819	784
.96	797	701	648	614	588
.95 .94	636	560	517	491	470
	529	466	431	4115	393
.90	452	399	3+54	3 31 .	135
.92	395	348	322	3:36-	193
.91	350	309	286	27.	260
.90	314	278	257		
	3.0.4		-)/	2 4 4	23.4
.89	285	252	233	2 4 4 22 2	234 213
.88	260	252 231		2+4 222 203	213
.88 .87	260 240	252 231 212	233	For a	213 195
.88 .87 .86	260 240 223	252 231 212 197	233 214	203 203 187	213 103 183
.88 .87 .86	260 240 222 207	252 231 212 197 183	233 214 197	203 203 187 177	213 105 18 · 167
.88 .87 .86 .85	260 240 222 207 193	252 231 212 197	233 214 197 183	203 187 124 467	21 3 105 18 - 16 7 15 5
.88 .87 .86 .85 .84	260 240 222 207 193 181	252 231 212 197 183	233 214 197 183 170	20.7 20.3 18.7 17.4 16.7 15.2	213 103 183 167 155 146
.88 .87 .86 .85 .84 .93	260 240 222 207 193 181 171	252 231 212 197 183 172	233 214 197 183 170 159	20.7 20.3 187 177 167 152 173	213 193 183 167 155 146 137
.88 .87 .86 .85 .84 .83 .82	260 240 222 207 193 181 171 161	252 231 212 197 183 172 16)	233 214 197 183 170 159 150	20.7 20.3 18.7 12.4 16.7 15.2 1 - 3	213 195 187 167 155 146 137 129
.88 .87 .86 .85 .84 .93	260 240 222 207 193 181 171	252 231 212 197 183 172 164 157	233 214 197 183 170 159 150	20.7 20.3 187 177 167 152 173	213 193 183 167 155 146 137

TABLE B-18 continued

	Number of failures =	20			
	bility		•	Confidence Level	
	.99	.95	.90	.85	.80
00		2937	.90 2714	2574	2466
.99	3338				
.98	1665	1466	1356	1286	1232
.97	1107	976	903	586	821
. 96	828	731	676	642	615
.95	661	584	540	513	492
. 94	550	486	450	427	410
.93	470	415	385	366	351
.92	410	363	336	320	307
.91	364	322	299	284	272
.90	327	289	268	255	245
.89	296	263	244	232	223
.88	271	240	223	212	204
.87	249	221	206	196	188
.86	231	205	191	181	174
.85	215	191	178	169	163
.84	201	179	166	158	152
.83	189	168	156	149	143
.82	178	159	148	141	135
.81	168	150	140	133	128
.80	159	142	132	126	122
1	Number of failures =	21			
Relia	bility		(Confidence Level	
Relia	bility .99	.95	.90	Confidence Level	.80
.99	•				
	.99	.95	.90	.85	.80
.99	.99 3462	.95 3055	.90 2828	.85 2685	.80 2575
.99 .98	.99 3462 1727	.95 3055 1525	.90 2828 1412	.85 2685 1341	.80 2575 1287
.99 .98 .97	.99 3462 1727 1149	.95 3055 1525 1015	.90 2828 1412 940	.85 2685 1341 893	.80 2575 1287 857
.99 .98 .97	.99 3462 1727 1149 860 686	.95 3055 1525 1015 760 607	.90 2828 1412 940 705 563	.85 2685 1341 893 669	.80 2575 1.287 857 642
.99 .98 .97 .96 .95	.99 3462 1727 1149 860 686 570	.95 3055 1525 1015 760 607 505	.90 2828 1412 940 705 563 469	.85 2685 1341 893 669 535 445	.80 2575 1287 857 642 514 428
.99 .98 .97 .96 .95	.99 3462 1727 1149 860 686 570 488	.95 3055 1525 1015 760 607 505 432	.90 2828 1412 940 705 563 469 401	.85 2685 1341 893 669 535 445	.80 2575 1287 857 642 514 428 366
.99 .98 .97 .96 .95 .94	.99 3462 1727 1149 860 686 570 488 426	.95 3055 1525 1015 760 607 505 432 378	.90 2828 1412 940 705 563 469 401	.85 2685 1341 893 669 535 445 381	.80 2575 1287 857 642 514 428 366 320
.99 .98 .97 .96 .95 .94 .93 .92	.99 3462 1727 1149 860 686 570 488 426 377	.95 3055 1525 1015 760 607 505 432 378 335	.90 2828 1412 940 705 563 469 401 351	.85 2685 1341 893 669 535 445 381 333	.80 2575 1287 857 642 514 428 366 320 284
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 3462 1727 1149 860 686 570 488 426 377 339	.95 3055 1525 1015 760 607 505 432 378 335	.90 2828 1412 940 705 563 469 401 351 311 280	.85 2685 1341 893 669 535 445 381 333 296 266	.80 2575 1287 857 642 514 428 366 320 284 256
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 3462 1727 1149 860 686 570 488 426 377 339	.95 3055 1525 1015 760 607 505 432 378 335 301 273	.90 2828 1412 940 705 563 469 401 351 311 280 254	.85 2685 1341 893 669 535 445 381 333 296 266 242	.80 2575 1287 857 642 514 428 366 320 284 256 232
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 3462 1727 1149 860 686 570 488 426 377 339 307 281	.95 3055 1525 1015 760 607 505 432 378 335 301 273 250	.90 2828 1412 940 705 563 469 401 351 311 280 254 233	.85 2685 1341 893 669 535 445 381 333 296 266 242	.80 2575 1287 857 642 514 428 366 320 284 256 232 213
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 3462 1727 1149 860 686 570 488 426 377 339 307 281 259	.95 3055 1525 1015 760 607 505 432 378 335 301 273 250 230	.90 2828 1412 940 705 563 469 401 351 311 280 254 233 214	.85 2685 1341 893 669 535 445 381 333 296 266 242 221	.80 2575 1287 857 642 514 428 366 320 284 256 232 213 196
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 3462 1727 1149 860 686 570 488 426 377 339 307 281 259 240	.95 3055 1525 1015 760 607 505 432 378 335 301 273 250 230 214	.90 2828 1412 940 705 563 469 401 351 311 280 254 233 214 199	.85 2685 1341 893 669 535 445 381 333 296 266 242 221 204 189	.80 2575 1287 857 642 514 428 366 320 284 256 232 213 196 182
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 3462 1727 1149 860 686 570 488 426 377 339 307 281 259 240 223	.95 3055 1525 1015 760 607 505 432 378 335 301 273 250 230 214 199	.90 2828 1412 940 705 563 469 401 351 311 280 254 233 214 199 185	.85 2685 1341 893 669 535 445 381 333 296 266 242 221 204 189 177	.80 2575 1287 857 642 514 428 366 320 284 256 232 213 196 182 170
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 3462 1727 1149 860 686 570 488 426 377 339 307 281 259 240 223 209	.95 3055 1525 1015 760 607 505 432 378 335 301 273 250 230 214 199 186	.90 2828 1412 940 705 563 469 401 351 311 280 254 233 214 199 185 173	.85 2685 1341 893 669 535 445 381 333 296 266 242 221 204 189 177 165	.80 2575 1287 857 642 514 428 366 320 284 256 232 213 196 182 170 159
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	.99 3462 1727 1149 860 686 570 488 426 377 339 307 281 259 240 223 209 196	.95 3055 1525 1015 760 607 505 432 378 335 301 273 250 230 214 199 186 175	.90 2828 1412 940 705 563 469 401 351 311 280 254 233 214 199 185 173 163	.85 2685 1341 893 669 535 445 381 333 296 266 242 221 204 189 177 165	.80 2575 1287 857 642 514 428 366 320 284 256 232 213 196 182 170 159
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	.99 3462 1727 1149 860 686 570 488 426 377 339 307 281 259 240 223 209 196 185	.95 3055 1525 1015 760 607 505 432 378 335 301 273 250 230 214 199 186 175 165	.90 2828 1412 940 705 563 469 401 351 311 280 254 233 214 199 185 173 163 154	.85 2685 1341 893 669 535 445 381 333 296 266 242 221 204 189 177 165 155	.80 2575 1287 857 642 514 428 366 320 284 256 232 213 196 182 170 159 150
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	.99 3462 1727 1149 860 686 570 488 426 377 339 307 281 259 240 223 209 196	.95 3055 1525 1015 760 607 505 432 378 335 301 273 250 230 214 199 186 175	.90 2828 1412 940 705 563 469 401 351 311 280 254 233 214 199 185 173 163	.85 2685 1341 893 669 535 445 381 333 296 266 242 221 204 189 177 165	.80 2575 1287 857 642 514 428 366 320 284 256 232 213 196 182 170 159

TABLE B-18 continued

	Number of failures = 3	22			
Relia	ability			Confidence Level	
	.99	.95	.90	.85	.80
.99	3587	3172	2942	2796	2684
. 98	1789	1584	1469	1397	1341
.97	1190	1054	978	930	894
.96	890	789	733	697	670
.95	711	630	586	557	535
.94	591	525	487	464	446
.93	505	449	417	397	382
.92	441	392	365	347	334
.91	391	348	324	308	297
.90	351	313	291	277	267
.89	318	284	264	252	242
.88	291	260	242	231	222
.87	268	239	223	213	
.86	248	222	207	197	205
.85	231	207		184	190
.84	216	193	193 181	172	177
.83	203	182		162	166
.82			170		156
.81	191	171	160	153	147
	181	162	151	145	139
.80	171	154	144	137	132
D - 14	Number of failures = .	23			
Relia	Number of failures = . ability	23		Confidence Level	
		.95	.90	Confidence Level	.80
.99	.99 3710	.95 3289		_	.80 2793
.99 .98	.99 3710 1851	.95	.90	.85	
.99 .98 .97	.99 3710 1851 1231	.95 3289	•90 3055	.85 2907	2793
.99 .98 .97	.99 3710 1851	.95 3289 1642	.90 3055 1526	.85 2907 1452	2793 1396
.99 .98 .97 .96	.99 3710 1851 1231 921 735	.95 3289 1642 1093	.90 3055 1526 1016	.85 2907 1452 967 725 579	2793 1396 930
.99 .98 .97 .96 .95	.99 3710 1851 1231 921	.95 3289 1642 1093 818	.90 3055 1526 1016 761	.85 2907 1452 967 725	2793 1396 930 697
.99 .98 .97 .96 .95	.99 3710 1851 1231 921 735	.95 3289 1642 1093 818 654	.90 3055 1526 1016 761 608	.85 2907 1452 967 725 579	2793 1396 930 697 557
.99 .98 .97 .96 .95 .94 .93	.99 3710 1851 1231 921 735 611	.95 3289 1642 1093 818 654 544	.90 3055 1526 1016 761 608 506	.85 2907 1452 967 725 579 482	2793 1396 930 697 557 464
.99 .98 .97 .96 .95 .94 .93 .92	.99 3710 1851 1231 921 735 611 523	.95 3289 1642 1093 818 654 544	.90 3055 1526 1016 761 608 506 433	.85 2907 1452 967 725 579 482 413	2793 1396 930 697 557 464 397
.99 .98 .97 .96 .95 .94 .93	.99 3710 1851 1231 921 735 611 523 456	.95 3289 1642 1093 818 654 544 465 407	.90 3055 1526 1016 761 608 506 433 379	.85 2907 1452 967 725 579 482 413 361	2793 1396 930 697 557 464 397 347
.99 .98 .97 .96 .95 .94 .93 .92	.99 3710 1851 1231 921 735 611 523 456 405	.95 3289 1642 1093 818 654 544 465 407 361	.90 3055 1526 1016 761 608 506 433 379 336	.85 2907 1452 967 725 579 482 413 361 321	2793 1396 930 697 557 464 397 347 309
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 3710 1851 1231 921 735 611 523 456 405 363	.95 3289 1642 1093 818 654 544 465 407 361 324	.90 3055 1526 1016 761 608 506 433 379 336 302	.85 2907 1452 967 725 579 482 413 361 321 288	2793 1396 930 697 557 464 397 347 309 278
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 3710 1851 1231 921 735 611 523 456 405 363 330	.95 3289 1642 1093 818 654 544 465 407 361 324 294	.90 3055 1526 1016 761 608 506 433 379 336 302 274	.85 2907 1452 967 725 579 482 413 361 321 288 262	2793 1396 930 697 557 464 397 347 309 278 252 231
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 3710 1851 1231 921 735 611 523 456 405 363 330 301	.95 3289 1642 1093 818 654 544 465 407 361 324 294 269	.90 3055 1526 1016 761 608 506 433 379 336 302 274 251	.85 2907 1452 967 725 579 482 413 361 321 288 262 240	2793 1396 930 697 557 464 397 347 309 278 252
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 3710 1851 1231 921 735 611 523 456 405 363 330 301 278	.95 3289 1642 1093 818 654 544 465 407 361 324 294 269 248	.90 3055 1526 1016 761 608 506 433 379 336 302 274 251 232	.85 2907 1452 967 725 579 482 413 361 321 288 262 240 221	2793 1396 930 697 557 464 397 347 309 278 252 231 213
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 3710 1851 1231 921 735 611 523 456 405 363 330 301 278 257	.95 3289 1642 1093 818 654 544 465 407 361 324 294 269 248 230	.90 3055 1526 1016 761 608 506 433 379 336 302 274 251 232 215	.85 2907 1452 967 725 579 482 413 361 321 288 262 240 221 205	2793 1396 930 697 557 464 397 347 309 278 252 231 213 198
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 3710 1851 1231 921 735 611 523 456 405 363 330 301 278 257	.95 3289 1642 1093 818 654 544 465 407 361 324 294 269 248 230 214	.90 3055 1526 1016 761 608 506 433 379 336 302 274 251 232 215 200	.85 2907 1452 967 725 579 482 413 361 321 288 262 240 221 205 191	2793 1396 930 697 557 464 397 347 309 278 252 231 213 198 184
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 3710 1851 1231 921 735 611 523 456 405 363 330 301 278 257 239 224	.95 3289 1642 1093 818 654 544 465 407 361 324 294 269 248 230 214 201	.90 3055 1526 1016 761 608 506 433 379 336 302 274 251 232 215 200 188	.85 2907 1452 967 725 579 482 413 361 321 288 262 240 221 205 191 179	2793 1396 930 697 557 464 397 347 309 278 252 231 213 198 184
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	.99 3710 1851 1231 921 735 611 523 456 405 363 330 301 278 257 239 224 210	.95 3289 1642 1093 818 654 544 465 407 361 324 294 269 248 230 214 201 189	.90 3055 1526 1016 761 608 506 433 379 336 302 274 251 232 215 200 188 176	.85 2907 1452 967 725 579 482 413 361 321 288 262 240 221 205 191 179 168	2793 1396 930 697 557 464 397 347 309 278 252 231 213 198 184 173 162

TABLE B-18 continued

Nur Reliabi	mber of failures lity	= 24		Confidence Level	L
		0.5	•	^=	
00	.99	.95	.90	.85	.80
.99	3834	3406	3168	3017	29 02
. 98	1913	1700	1582	1507	1450
.97	1272	1132	1054	1004	966
. 96	952	848	789	752	724
.95	760	677	631	601	579
.94	632	563	525	501	482
.93	540	482	449	429	413
.92	472	421	. 393	375	361
.91	418	374	349	333	321
.90	376	336	313	299	288
.89	341	305	285	272	262
.88	312	279	261	249	240
.87	287	257	240	23 0	221
.86	266	238	223	213	205
.85	248	222	208	199	192
.84	232	208	195	186	179
.83	217	195	r. 183	175	169
.82	205	184	172	165	159
.81	194	174	163	156	151
.80	183	165	155	148	143
Num	ber of failures =	2 5			
Reliabil				Confidence Level	1
	.99	.95	.90	.85	.80
.99	3956	3522	3280	3127	3010
.98	1974	1758	1638	1562	
. 97	1313	1170	1091	1041	1504 1002
.96	983	876	817	780	751
. 95	784	700	753	623	600
. 94	652	583	544	519	
.93	558	499	465	444	500
.92	487	436	407	389	428
.91	432	387	361	345	374
.90	388	347	325	310	333
.89	352	315	295		299
.88	322	289	270	282	272
.87	296	266		258	249
.86	275	247	249	238	230
.85	256	230	231	221	213
.84	239	215	215	206	199
.83	224	202	201	193	186
.82	212		189	181	175
.81	200	191	179	171	165
.80	189	180	169	162	156
• 00	109	171	160	154	148

TABLE B-18 continued

Numb R e liabili	er of failures ty	= 26		Confidence Level	
	.99	0.5	•		
.99	4079	.95	.90	.85	.80
.98		3637	3393	3237	3119
.97	2035	1816	1695	1617	1558
.96	1354	1209	1128	1077	1038
.95	1013	905	845	807	778
.93	809	723	676	645	622
.93	673	602	562	537	518
.93	575	515	481	460	444
	502	450	421	402	388
.91	445	399	374	357	345
• 90	400	359	336	321	310
.89	363	326	305	292	282
.88	332	298	279	267	258
.87	306	275	257	246	238
.86	283	255	239	229	221
.85	264	237	223	213	206
. 84	247	222	208	200	193
.83	232	209	196	188	181
.82	218	197	185	177	171
.81	206	186	175	168	162
.80	195	17.7	166	159	154
Mumb c		- 27			
	er of failures	2 7			
Numbe Reliabilit		2 7	•	Confidence Level	
				Confidence Level	
	ty	.95 3753	• 9 0		3224
Reliabilit	.99	.95	. 9 0 3505	3347	3226
Reliabilit	.99 4201	.95 3753	.90 3505 1751	3347 1672	1612
Reliabilit	.99 4201 2096	.95 3753 1874	.90 3505 1751 1166	3347 1672 1114	1612 1074
.99 .98 .97	.99 4201 2096 1394	.95 3753 1874 1247	.90 3505 1751 1166 873	3347 1672 1114 835	1612 1074 805
.99 .98 .97 .96 .95	.99 4201 2096 1394 1044	.95 3753 1874 1247 934	.90 3505 1751 1166 873 698	3347 1672 1114 835 667	1612 1074 805 644
.99 .98 .97 .96	.99 4201 2096 1394 1044 833	.95 3753 1874 1247 934 746 621	.90 3505 1751 1166 873 698 581	3347 1672 1114 835 667 556	1612 1074 805 644 536
.99 .98 .97 .96 .95	.99 4201 2096 1394 1044 833 693	.95 3753 1874 1247 934 746	.90 3505 1751 1166 873 698 581 497	3347 1672 1114 835 667 556 476	1612 1074 805 644 536 459
.99 .98 .97 .96 .95 .94	.99 4201 2096 1394 1044 833 693 593	.95 3753 1874 1247 934 746 621 532	.90 3505 1751 1166 873 698 581 497	3347 1672 1114 835 667 556 476 416	1612 1074 805 644 536 459 401
Reliabilit .99 .98 .97 .96 .95 .94 .93	.99 4201 2096 1394 1044 833 693 593 517	.95 3753 1874 1247 934 746 621 532 464	.90 3505 1751 1166 873 698 581 497 435 386	3347 1672 1114 835 667 556 476 416 369	1612 1074 805 644 536 459 401 357
Reliabilit .99 .98 .97 .96 .95 .94 .93 .92	.99 4201 2096 1394 1044 833 693 593 517 459	.95 3753 1874 1247 934 746 621 532 464 412	.90 3505 1751 1166 873 698 581 497 435 386 347	3347 1672 1114 835 667 556 476 416 369 332	1612 1074 805 644 536 459 401 357 321
Reliabilit .99 .98 .97 .96 .95 .94 .93 .92 .91	.99 4201 2096 1394 1044 833 693 593 517 459	.95 3753 1874 1247 934 746 621 532 464 412 370 336	.90 3505 1751 1166 873 698 581 497 435 386 347	3347 1672 1114 835 667 556 476 416 369 332 302	1612 1074 805 644 536 459 401 357 321 291
Reliabilit .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 4201 2096 1394 1044 833 693 593 517 459 412 374	.95 3753 1874 1247 934 746 621 532 464 412 370 336 308	.90 3505 1751 1166 873 698 581 497 435 386 347 315 289	3347 1672 1114 835 667 556 476 416 369 332 302 276	1612 1074 805 644 536 459 401 357 321 291 267
Reliabilit .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 4201 2096 1394 1044 833 693 593 517 459 412 374 342 315	.95 3753 1874 1247 934 746 621 532 464 412 370 336 308 284	.90 3505 1751 1166 873 698 581 497 435 386 347 315 289 266	3347 1672 1114 835 667 556 476 416 369 332 302 276 255	1612 1074 805 644 536 459 401 357 321 291 267 246
Reliabilit .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 4201 2096 1394 1044 833 693 593 517 459 412 374 342	.95 3753 1874 1247 934 746 621 532 464 412 370 336 308 284 263	.90 3505 1751 1166 873 698 581 497 435 386 347 315 289 266 247	3347 1672 1114 835 667 556 476 416 369 332 302 276 255	1612 1074 805 644 536 459 401 357 321 291 267 246 228
Reliabilit .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 4201 2096 1394 1044 833 693 593 517 459 412 374 342 315 292 272	.95 3753 1874 1247 934 746 621 532 464 412 370 336 308 284 263 245	.90 3505 1751 1166 873 698 581 497 435 386 347 315 289 266 247 230	3347 1672 1114 835 667 556 476 416 369 332 302 276 255 236	1612 1074 805 644 536 459 401 357 321 291 267 246 228 213
Reliabilit .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 4201 2096 1394 1044 833 693 593 517 459 412 374 342 315 292 272 254	.95 3753 1874 1247 934 746 621 532 464 412 370 336 308 284 263 245 229	.90 3505 1751 1166 873 698 581 497 435 386 347 315 289 266 247 230 215	3347 1672 1114 835 667 556 476 416 369 332 302 276 255 236 220	1612 1074 805 644 536 459 401 357 321 291 267 246 228 213 200
Reliabilit .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	.99 4201 2096 1394 1044 833 693 593 517 459 412 374 342 315 292 272 254 239	.95 3753 1874 1247 934 746 621 532 464 412 370 336 308 284 263 245 229 216	.90 3505 1751 1166 873 698 581 497 435 386 347 315 289 266 247 230 215 202	3347 1672 1114 835 667 556 476 416 369 332 302 276 255 236 220 206 194	1612 1074 805 644 536 459 401 357 321 291 267 246 228 213 200 188
Reliabilit .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83	.99 4201 2096 1394 1044 833 693 593 517 459 412 374 342 315 292 272 254 239 225	.95 3753 1874 1247 934 746 621 532 464 412 370 336 308 284 263 245 229 216 203	.90 3505 1751 1166 873 698 581 497 435 386 347 315 289 266 247 230 215 202 191	3347 1672 1114 835 667 556 476 416 369 332 302 276 255 236 220 206 194 183	1612 1074 805 644 536 459 401 357 321 291 267 246 228 213 200 188 177
Reliabilit .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83 .82	.99 4201 2096 1394 1044 833 693 593 517 459 412 374 342 315 292 272 254 239	.95 3753 1874 1247 934 746 621 532 464 412 370 336 308 284 263 245 229 216	.90 3505 1751 1166 873 698 581 497 435 386 347 315 289 266 247 230 215 202	3347 1672 1114 835 667 556 476 416 369 332 302 276 255 236 220 206 194	1612 1074 805 644 536 459 401 357 321 291 267 246 228 213 200 188

TABLE B-18 continued

Nur Reliabi:	mber of failures	= 28		Confidence Level	1
				Considence Deve.	•
	.99	.95	•90	.85	.80
.99	4322	3868	3617	3457	3334
.98	2157	1931	1807	1727	1666
.97	1435	1286	1203	1150	1110
.96	1074	963	901	862	832
.95	857	769	720	689	665
.94	713	640	600	574	554
.93	610	548	513	491	474
.92	532	479	449	430	415
.91	472	425	398	382	369
• 90	424	382	358	343	331
.89	385	347	325	312	301
.88	352	317	298	285	276
.87	324	292	275	263	254
.86	300	271	255	244	236
•85	280	253	237	228	220
.84	262	237	222	213	206
.83	246	222	209	2C1	194
.82	232	210	197	189	183
.81	219	198	187	179	173
.80	207	188	177	170	165
	ber of failures	29			
Num Reliabil		29	•	Confidence Level	
					80
	.99	.95	.90	.85	.80
Reliabil	ity	•95 3983	.90 3729	.85 3566	3442
Reliabil	.99 4443	.95 3983 1989	.90 3729 1862	.85 3566 1782	3442 1720
.99	.99 4443 2217	.95 3983 1989 1324	.90 3729 1862 1240	.85 3566 1782 1187	3442 1720 1146
Reliabil .99 .98 .97	.99 4443 2217 1475	.95 3983 1989	.90 3729 1862 1240 929	.85 3566 1782 1187 889	3442 1720 1146 859
.99 .98 .97	.99 4443 2217 1475 1104	.95 3983 1989 1324 992	.90 3729 1862 1240 929 743	.85 3566 1782 1187 889 711	3442 1720 1146 859 687
.99 .98 .97 .96	.99 4443 2217 1475 1104 881	.95 3983 1989 1324 992 792	.90 3729 1862 1240 929 743 618	.85 3566 1782 1187 889 711	3442 1720 1146 859 687 572
.99 .98 .97 .96 .95	.99 4443 2217 1475 1104 881 733	.95 3983 1989 1324 992 792 659	.90 3729 1862 1240 929 743 618 529	.85 3566 1782 1187 889 711 592	3442 1720 1146 859 687 572 490
.99 .98 .97 .96 .95 .94	.99 4443 2217 1475 1104 881 733 627	.95 3983 1989 1324 992 792 659 564	.90 3729 1862 1240 929 743 618 529	.85 3566 1782 1187 889 711 592 507	3442 1720 1146 859 687 572 490 428
.99 .98 .97 .96 .95 .94	.99 4443 2217 1475 1104 881 733 627 548	.95 3983 1989 1324 992 792 659 564 493	.90 3729 1862 1240 929 743 618 529 463	.85 3566 1782 1187 889 711 592 507 443	3442 1720 1146 859 687 572 490 428 380
.99 .98 .97 .96 .95 .94 .93 .92	.99 4443 2217 1475 1104 881 733 627 548 486	.95 3983 1989 1324 992 792 659 564 493 438 393	.90 3729 1862 1240 929 743 618 529 463 411 369	.85 3566 1782 1187 889 711 592 507 443 394	3442 1720 1146 859 687 572 490 428 380 342
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 4443 2217 1475 1104 881 733 627 548 486 436	.95 3983 1989 1324 992 792 659 564 493 438 393 357	.90 3729 1862 1240 929 743 618 529 463 411 369 335	.85 3566 1782 1187 889 711 592 507 443 394 354	3442 1720 1146 859 687 572 490 428 380 342 311
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 4443 2217 1475 1104 881 733 627 548 486 436 396	.95 3983 1989 1324 992 792 659 564 493 438 393	.90 3729 1862 1240 929 743 618 529 463 411 369 335 307	.85 3566 1782 1187 889 711 592 507 443 394 354 322	3442 1720 1146 859 687 572 490 428 380 342 311 285
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 4443 2217 1475 1104 881 733 627 548 486 436 396 362	.95 3983 1989 1324 992 792 659 564 493 438 393 357 327	.90 3729 1862 1240 929 743 618 529 463 411 369 335 307 283	.85 3566 1782 1187 889 711 592 507 443 394 354 322 294	3442 1720 1146 859 687 572 490 428 380 342 311 285 263
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 4443 2217 1475 1104 881 733 627 548 486 436 396 362 333	.95 3983 1989 1324 992 792 659 564 493 438 393 357 327	.90 3729 1862 1240 929 743 618 529 463 411 369 335 307 283 263	.85 3566 1782 1187 889 711 592 507 443 394 354 322 294 272	3442 1720 1146 859 687 572 490 428 380 342 311 285 263 244
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 4443 2217 1475 1104 881 733 627 548 486 436 396 362 333 309	.95 3983 1989 1324 992 792 659 564 493 438 393 357 327 301 279	.90 3729 1862 1240 929 743 618 529 463 411 369 335 307 283 263 245	.85 3566 1782 1187 889 711 592 507 443 394 354 322 294 272 252	3442 1720 1146 859 687 572 490 428 380 342 311 285 263 244 227
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 4443 2217 1475 1104 881 733 627 548 486 436 396 362 333 309 288	.95 3983 1989 1324 992 792 659 564 493 438 393 357 327 301 279 260	.90 3729 1862 1240 929 743 618 529 463 411 369 335 307 283 263 245 229	.85 3566 1782 1187 889 711 592 507 443 394 354 322 294 272 252 235 220	3442 1720 1146 859 687 572 490 428 380 342 311 285 263 244 227 213
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 4443 2217 1475 1104 881 733 627 548 486 436 396 362 333 309 288 269	.95 3983 1989 1324 992 792 659 564 493 438 393 357 327 301 279 260 244	.90 3729 1862 1240 929 743 618 529 463 411 369 335 307 283 263 245 229 216	.85 3566 1782 1187 889 711 592 507 443 394 354 322 294 272 252 235 220	3442 1720 1146 859 687 572 490 428 380 342 311 285 263 244 227 213 200
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	.99 4443 2217 1475 1104 881 733 627 548 486 436 396 362 333 309 288 269 253 238	.95 3983 1989 1324 992 792 659 564 493 438 393 357 327 301 279 260 244 229 216	.90 3729 1862 1240 929 743 618 529 463 411 369 335 307 283 263 245 229 216 203	.85 3566 1782 1187 889 711 592 507 443 394 354 322 294 272 252 235 220 207 195	3442 1720 1146 859 687 572 490 428 380 342 311 285 263 244 227 213 200 189
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83 .82	.99 4443 2217 1475 1104 881 733 627 548 486 436 396 362 333 309 288 269 253	.95 3983 1989 1324 992 792 659 564 493 438 393 357 327 301 279 260 244 229	.90 3729 1862 1240 929 743 618 529 463 411 369 335 307 283 263 245 229 216	.85 3566 1782 1187 889 711 592 507 443 394 354 322 294 272 252 235 220	3442 1720 1146 859 687 572 490 428 380 342 311 285 263 244 227 213 200

TABLE N-18 continued

Num Reliat	nber of failures = 3	30		Confidence Level	
	.99	.95	00	05	
.99	. 99 4564		.90	.85	.80
.98	2278	4098 2046	3840	3676	3549
.97	1515	1362	1918	1836	1774
.96	1134	1020	1277	1223	1182
.95	906	-	957 765	917	886
.94		815	765 627	733	708
.93	753 644	678	637	610	590
.92	563	581	545	523	505
.92	499	507	477	457	442
.90	449	450 405	423	406	392
.89	407		380	365	353
.88	372	367 336	345	331	321
.87	343	310	316	304	294
.86	343	287	292	280	271
.85	296	268	271	260	251
.84	277	251	252 236	242 227	234
.83	260	236	222	213	220
.82	245	222	209		207
.81	231	210	198	201 191	195
.80	219	199	188		185
.00	217	177	100	181	175
	Number of failures	31			
Reliab		31		Confidence Level	
	oility				90
	oility	.95	. 90	.85	.80 3657
Reliat	.99 4685	.95 4213	.90 3952	.85 3785	3657
Reliab	.99 4685 2338	.95 4213 2104	.90 3952 1974	.8 5 3785 1891	3657 1827
.99	.99 4685	.95 4213 2104 1400	.90 3952 1974 1315	.85 3785 1891 1260	3657 1827 1217
.99 .98 .97	.99 4685 2338 1555	.95 4213 2104	.90 3952 1974 1315 985	.85 3785 1891 1260 944	3657 1827 1217 913
.99 .98 .97	.99 4685 2338 1555 1164	.95 4213 2104 1400 1049 838	.90 3952 1974 1315 985 787	.85 3785 1891 1260 944 755	3657 1827 1217 913 730
.99 .98 .97 .96	.99 4685 2338 1555 1164 930	.95 4213 2104 1400 1049	.90 3952 1974 1315 985 787 655	.85 3785 1891 1260 944 755 628	3657 1827 1217 913 730 608
.99 .98 .97 .96 .95	.99 4685 2338 1555 1164 930 773	.95 4213 2104 1400 1049 838 697 597	.90 3952 1974 1315 985 787 655 561	.85 3785 1891 1260 944 755 628 538	3657 1827 1217 913 730 608 520
.99 .98 .97 .96 .95 .94	.99 4685 2338 1555 1164 930 773 661	.95 4213 2104 1400 1049 838 697 597 522	.90 3952 1974 1315 985 787 655 561 490	.85 3785 1891 1260 944 755 628 538 470	3657 1827 1217 913 730 608 520 455
.99 .98 .97 .96 .95 .94 .93	.99 4685 2338 1555 1164 930 773 661	.95 4213 2104 1400 1049 838 697 597	.90 3952 1974 1315 985 787 655 561 490 435	.85 3785 1891 1260 944 755 628 538 470 418	3657 1827 1217 913 730 608 520 455 404
.99 .98 .97 .96 .95 .94 .93	.99 4685 2338 1555 1164 930 773 661 577	.95 4213 2104 1400 1049 838 697 597 522 463	.90 3952 1974 1315 985 787 655 561 490 435	.85 3785 1891 1260 944 755 628 538 470 418 376	3657 1827 1217 913 730 608 520 455 404 364
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 4685 2338 1555 1164 930 773 661 577 512 460	.95 4213 2104 1400 1049 838 697 597 522 463 416	.90 3952 1974 1315 985 787 655 561 490 435 391	.85 3785 1891 1260 944 755 628 538 470 418 376 341	3657 1827 1217 913 730 608 520 455 404 364 330
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90	.99 4685 2338 1555 1164 930 773 661 577 512 460 417	.95 4213 2104 1400 1049 838 697 597 522 463 416 378	.90 3952 1974 1315 985 787 655 561 490 435	.85 3785 1891 1260 944 755 628 538 470 418 376 341	3657 1827 1217 913 730 608 520 455 404 364 330 303
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 4685 2338 1555 1164 930 773 661 577 512 460 417 382	.95 4213 2104 1400 1049 838 697 597 522 463 416 378 346	.90 3952 1974 1315 985 787 655 561 490 435 391 356 326	.85 3785 1891 1260 944 755 628 538 470 418 376 341	3657 1827 1217 913 730 608 520 455 404 364 330 303 279
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 4685 2338 1555 1164 930 773 661 577 512 460 417 382 352	.95 4213 2104 1400 1049 838 697 597 522 463 416 378 346 319	.90 3952 1974 1315 985 787 655 561 490 435 391 356 326 300	.85 3785 1891 1260 944 755 628 538 470 418 376 341 313 288	3657 1827 1217 913 730 608 520 455 404 364 330 303 279 259
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 4685 2338 1555 1164 930 773 661 577 512 460 417 382 352 326	.95 4213 2104 1400 1049 838 697 597 522 463 416 378 346 319 296	.90 3952 1974 1315 985 787 655 561 490 435 391 356 326 300 278	.85 3785 1891 1260 944 755 628 538 470 418 376 341 313 288 267	3657 1827 1217 913 730 608 520 455 404 364 330 303 279
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 4685 2338 1555 1164 930 773 661 577 512 460 417 382 352 326 304	.95 4213 2104 1400 1049 838 697 597 522 463 416 378 346 319 296 275	.90 3952 1974 1315 985 787 655 561 490 435 391 356 326 300 278 260	.85 3785 1891 1260 944 755 628 538 470 418 376 341 313 288 267 249	3657 1827 1217 913 730 608 520 455 404 364 330 303 279 259 242
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 4685 2338 1555 1164 930 773 661 577 512 460 417 382 352 326 304 284	.95 4213 2104 1400 1049 838 697 597 522 463 416 378 346 319 296 275 258	.90 3952 1974 1315 985 787 655 561 490 435 391 356 326 300 278 260 243	.85 3785 1891 1260 944 755 628 538 470 418 376 341 313 288 267 249	3657 1827 1217 913 730 608 520 455 404 364 330 303 279 259 242 226
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83 .82	.99 4685 2338 1555 1164 930 773 661 577 512 460 417 382 352 326 304 284 267	.95 4213 2104 1400 1049 838 697 597 522 463 416 378 346 319 296 275 258 242	.90 3952 1974 1315 985 787 655 561 490 435 391 356 326 300 278 260 243 229	.85 3785 1891 1260 944 755 628 538 470 418 376 341 313 288 267 249 234 220	3657 1827 1217 913 730 608 520 455 404 364 330 303 279 259 242 226 213
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83	.99 4685 2338 1555 1164 930 773 661 577 512 460 417 382 352 326 304 284 267 251	.95 4213 2104 1400 1049 838 697 597 522 463 416 378 346 319 296 275 258 242 229	.90 3952 1974 1315 985 787 655 561 490 435 391 356 326 300 278 260 243 229 216	.85 3785 1891 1260 944 755 628 538 470 418 376 341 313 288 267 249 234 220 207	3657 1827 1217 913 730 608 520 455 404 364 330 303 279 259 242 226 213 201

TABLE B-18 continued

Reliabi	lity			Confidence Leve	<u>.</u> 1
	.99	.95	00		_
.99	4805	4327	.90	.85	.80
• 98	2398	2161	4063	3894	3764
.97	1595	1439	2029	1946	1881
• 96	1194	1077	1352	1296	1253
. 95	954	861	1013	971	939
. 94	793	716	809	776	751
.93	678	613	674	646	625
.92	592	536	577	554	536
.91	526	476	504	484	468
.90	472	427	448	430	416
.89	428	388	403	387	374
.88	392	355	366	351	340
.87	361	327	335	322	312
.86	334	304	309	297	287
.85	311	\ 283	286	275	267
.84	291	265	267	257	249
.83	274	249	250	240	233
.82	258	235	235	226	219
.81	244		222	213	207
.80		222 211	210	202	196
.80	231	211	210 199	202 192	196 186
.80 Numi	231 per of failures :	211			
.80	231 per of failures :	211	199	192	
.80 Numi	231 Per of failures =	211	199		
.80 Numi	231 per of failures :	211 • 33 • 95	199 .90	192 Confidence Level	
.80 Numi Reliabili .99 .98	231 Per of failures = ty .99 4925	211 • 33 .95 4441	199 .90 4174	192 Confidence Level .85 4003	.80
.80 Numi Reliabili	231 Per of failures = 1.ty .99 4925 2458	211 • 33 • 95 4441 2218	199 .90 4174 2085	192 Confidence Level	.80 3872
.80 Numi Reliabili .99 .98 .97	231 Per of failures = ty .99 4925	211 • 33 .95 4441 2218 1476	199 .90 4174 2085 1389	192 Confidence Level .85 4003 2000 1332	.80 3872 1935
.80 Numi Reliabili .99 .98	231 Per of failures = 1.59 4925 2458 1635	211 • 33 .95 4441 2218 1476 1106	199 .90 4174 2085 1389 1040	192 Confidence Level .85 4003 2000	.80 3872 1935 1289
.80 Numi Reliabili .99 .98 .97 .96 .95	231 Per of failures = .99 .99 4925 2458 1635 1224 977	211 • 33 .95 4441 2218 1476 1106 884	199 .90 4174 2085 1389 1040 831	192 Confidence Level .85 4003 2000 1332	.80 3872 1935 1289 966
.80 Numi Reliabili .99 .98 .97 .96 .95 .94	231 per of failures = .99 .99 .4925 .2458 .1635 .1224 .977 .813	211 • 33 .95 4441 2218 1476 1106 884 735	199 .90 4174 2085 1389 1040 831 692	192 Confidence Level .85 4003 2000 1332 998 798 665	.80 3872 1935 1289
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93	231 Per of failures = .99 .99 4925 2458 1635 1224 977	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629	199 .90 4174 2085 1389 1040 831 692 593	192 Confidence Level .85 4003 2000 1332 998 798 665 569	.80 3872 1935 1289 966 772 643
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93 .92	231 Per of failures = .99 4925 2458 1635 1224 977 813 695 607	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629 - 550	199 .90 4174 2085 1389 1040 831 692 593 518	192 Confidence Level .85 4003 2000 1332 998 798 665 569 498	.80 3872 1935 1289 966 772
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90	231 Per of failures = .99 .99 .4925 .2458 .1635 .1224 .977 .813 .695	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629 - 550 - 488	199 .90 4174 2085 1389 1040 831 692 593 518 460	192 Confidence Level .85 4003 2000 1332 998 798 665 569 498 442	.80 3872 1935 1289 966 772 643 551 482
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	231 Per of failures = .99 4925 2458 1635 1224 977 813 695 607 539 484	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629 - 550 - 488 - 439	199 .90 4174 2085 1389 1040 831 692 593 518 460 414	192 Sonfidence Level .85 4003 2000 1332 998 798 665 569 498 442 397	.80 3872 1935 1289 966 772 643 551 482 428
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90	231 Per of failures = .99 .99 .4925 .2458 .1635 .1224 .977 .813 .695 .607 .539	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629 - 550 - 488 - 439 - 398	199 .90 4174 2085 1389 1040 831 692 593 518 460 414 376	192 Confidence Level .85 4003 2000 1332 998 798 665 569 498 442	.80 3872 1935 1289 966 772 643 551 482 428 385
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	231 per of failures = .99 4925 2458 1635 1224 977 813 695 607 539 484 439	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629 - 550 - 488 - 439 - 398 - 365	199 .90 4174 2085 1389 1040 831 692 593 518 460 414 376 344	192 Sonfidence Level .85 4003 2000 1332 998 798 665 569 498 442 397 361 331	.80 3872 1935 1289 966 772 643 551 482 428 385 350
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	231 per of failures = .99 4925 2458 1635 1224 977 813 695 607 539 484 439 402	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629 - 550 - 488 - 439 - 398 - 365 - 336	199 .90 4174 2085 1389 1040 831 692 593 518 460 414 376 344 317	192 Sonfidence Level .85 4003 2000 1332 998 798 665 569 498 442 397 361 331 305	.80 3872 1935 1289 966 772 643 551 482 428 385 350 320
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	231 per of failures = .99 4925 2458 1635 1224 977 813 695 607 539 484 439 402 370 343	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629 - 550 - 488 - 439 - 398 - 365 - 336 - 312	199 .90 4174 2085 1389 1040 831 692 593 518 460 414 376 344 317 294	192 Sonfidence Level .85 4003 2000 1332 998 798 665 569 498 442 397 361 331	.80 3872 1935 1289 966 772 643 551 482 428 385 350 320 296
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	231 per of failures = .99 4925 2458 1635 1224 977 813 695 607 539 484 439 402 370	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629 - 550 - 488 - 439 - 398 - 365 - 336 - 312 - 291	199 .90 4174 2085 1389 1040 831 692 593 518 460 414 376 344 317 294 274	192 Sonfidence Level .85 4003 2000 1332 998 798 665 569 498 442 397 361 331 305	.80 3872 1935 1289 966 772 643 551 482 428 385 350 320 296 274
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	231 per of failures = .99 4925 2458 1635 1224 977 813 695 607 539 484 439 402 370 343 319	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629 - 550 - 488 - 439 - 398 - 365 - 336 - 312 - 291 - 272	199 .90 4174 2085 1389 1040 831 692 593 518 460 414 376 344 317 294 274	192 Sonfidence Level .85 4003 2000 1332 998 798 665 569 498 442 397 361 331 305 283 264 247	.80 3872 1935 1289 966 772 643 551 482 428 385 350 320 296
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83 .82	231 per of failures = .99 4925 2458 1635 1224 977 813 695 607 539 484 439 402 370 343 319 299	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629 - 550 - 488 - 439 - 398 - 365 - 336 - 312 - 291 - 272 - 256	199 .90 4174 2085 1389 1040 831 692 593 518 460 414 376 344 317 294 274 257 241	192 Sonfidence Level .85 4003 2000 1332 998 798 665 569 498 442 397 361 331 305 283 264 247 232	.80 3872 1935 1289 966 772 643 551 482 428 385 350 320 296 274 256 240
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83 .82 .81	231 per of failures = .99 4925 2458 1635 1224 977 813 695 607 539 484 439 402 370 343 319 299 281	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629 - 550 - 488 - 439 - 398 - 365 - 336 - 312 - 291 - 272 - 256 - 241	199 .90 4174 2085 1389 1040 831 692 593 518 460 414 376 344 317 294 274 257 241 228	192 Sonfidence Level .85 4003 2000 1332 998 798 665 569 498 442 397 361 331 305 283 264 247 232 219	.80 3872 1935 1289 966 772 643 551 482 428 385 350 320 296 274 256
.80 Numi Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83 .82	231 per of failures = .99 4925 2458 1635 1224 977 813 695 607 539 484 439 402 370 343 319 299 281 265	211 - 33 - 95 - 4441 - 2218 - 1476 - 11.06 - 884 - 735 - 629 - 550 - 488 - 439 - 398 - 365 - 336 - 312 - 291 - 272 - 256	199 .90 4174 2085 1389 1040 831 692 593 518 460 414 376 344 317 294 274 257 241	192 Sonfidence Level .85 4003 2000 1332 998 798 665 569 498 442 397 361 331 305 283 264 247 232	.80 3872 1935 1289 966 772 643 551 482 428 385 350 320 296 274 256 240 225

TABLE B-18 continued

Numb	er of failures =	34			
Reliabili	ty			Confidence Leve	1
	.99	.95	.90	.85	.80
.99	5044	4555	4285	4112	39 79
.9ĕ	2517	2275	2140	2054	1988
.97	1675	1514	1425	1369	1325
.96	1254	1134	1068	1026	993
.95	1001	906	854	820	794
.94	833	754	711	683	661
.93	712	646	608	585	566
.92	622	564	532	511	495
.91	552	501	472	454	440
.90	496	450	425	408	396
. 89	450	409	386	371	359
.88	412	374	353	340	329
.87	379	345	326	313	304
.86	351	320	302	291	282
.85	327	298	282	271	263
.84	306	279	264	254	246
.83	288	262	248	239	232
.82	271	247	234	225	219
.81	256	234	221	213	207
.80	243	222	210	202	197
	er of failures =	35			
Reliabili	ty			Confidence Leve	1
	.99	.95	.90	.85	.80
.99	5164	4669	4395	4221	4086
.98	2577	2331	2196	2109	2042
.97 .96	1715	1552	1462	1405	1360
.95	2184	1163	1096	1053	1020
.93	1025	929	876	842	815
.93	853 729	773	729	701	679
.92	637	662	624	600	582
.91	565	578 513	546	525	509
.90	50 8	461	485	466	452
.89	461	419	436	419	406
.88	421	384	396 362	381	369
.87	388	354		349	338
.86	360	328	334 3 10	322	312
.85	335	306	289	298 279	290
.84	314	286	289 271	278	270
.83	295	269	254	261 245	253
.82	278	254	240	231	238
.81	262	240	227	219	225
.80	249	228	216	208	213 202

TABLE B-18 continued

Nur Reliabi	mber of failures	= 36			
RETIAUT.	IILy			Confidence Leve	1
	.99	.95	.90	.85	.80
.99	5283	4782	4506	4329	4193
.98	2637	2388	2251	2163	2095
.97	1754	1590	1499	1441	1396
.96	1313	1191	1123	1080	1046
.95	1049	952	898	863	837
.94	872	792	747	719	697
.93	746	678	640	616	597
.92	652	592	559	538	522
.91	578	526	497	478	464
.90	519	473	447	430	417
.89	471	429	406	391	379
.88	431	393	371	358	347
.87	397	362	343	330	320
.86	368	336	318	306	297
.85	343	313	296	285	277
.84	321	293	277	267	260
.83	301	275	261	251	244
.82	284	260	246	237	231
.81	269	246	233	225	218
.80	255	233	221	213	207
Numb	ber of failures	= 37			
Reliabili	ity		(Confidence Level	
	.99	.95	.90	.85	22
.99	5402	4896	4616	4438	.80
.98	2696	2445	2306	2217	4300
.97	1794	1628	1536	1477	2149
.96	1343	1219	1151	1107	1432
.95	1073	974	920	885	1073
. 94	892	811	766	737	858 715
.93	763	694	656	631	612
.92	667	607	573	552	535
.91	5∌1	538	509	490	475
.90	531	484	458	441	473
.89	482	439	416	400	
.88	441	404	331	367	389
.87	406	371	351	338	356
.86	377	344	326	314	328
.85	351	321	304	293	305
.84	328	300	284	274	284
.83	303	282	267	258	266
0.3	201	266			250
.82	291	400	/1/	764	
.81	291 275		252 239	243 230	236
		252 239	232 239 227	243 230 219	236 224 213

TABLE B-18 continued

Nun	ber of failures	= 38			
Reliabil	lity			Confidence Level	
	.99	. 95	.90	.85	90
.99	5520	5009	4727	4546	.80 4406
.98	2755	2501	2361	2271	2202
.97	1833	1665	1573	1513	1467
.96	1373	1248	1178	1134	1100
.95	1096	997	942	907	879
.94	912	830	784	755	732
.93	. 80	710	671	647	627
.92	681	621	587	565	549
.91	605	551	521	502	· -
.90	54 3	495	469	452	487 438
.89	493	450	426	410	398
.88	451	412	390	376	365
.87	415	379	359	347	337
.86	385	352	333	322	312
.85	359	328	311	300	291
.84	336	307	291	281	273
.83	315	289	274	264	257
.82	297	272	258	249	242
.81	281	258	244	236	229
.80	266	244	232	224	218
Num	ber of failures				
		- 30			
Reliabil		- 39		Confidence Level	
		- 39		Confidence Level	
Reliabil		• 39 .95	.90		
Reliabil	ity		•90 4837	.85	.80
.99 .98	.99	.95	.90 4837 2416	.85 4654	.80 4513
.99 .98 .97	.99 5638	.95 5122	4837	.85 4654 2325	.80 4513 2255
.99 .98 .97	.99 5638 2814 1873 1402	.95 5122 2558	4837 2416	.85 4654 2325 1549	.80 4513 2255 1503
.99 .98 .97 .96	.99 5638 2814 1873 1402 1120	.95 5122 2558 1703	4837 2416 1609	.85 4654 2325	.80 4513 2255 1503 1126
Reliabil .99 .98 .97 .96 .95	.99 5638 2814 1873 1402 1120 931	.95 5122 2558 1703 1276	4837 2416 1609 1206	.85 4654 2325 1549 1161	.80 4513 2255 1503 1126 901
Reliabil .99 .98 .97 .96 .95 .94	.99 5638 2814 1873 1402 1120 931 797	.95 5122 2558 1703 1276 1019	4837 2416 1609 1206 964	.85 4654 2325 1549 1161 928	.80 4513 2255 1503 1126 901 750
Reliabil .99 .98 .97 .96 .95 .94 .93 .92	.99 5638 2814 1873 1402 1120 931 797 696	.95 5122 2558 1703 1276 1019 848	4837 2416 1609 1206 964 802	.85 4654 2325 1549 1161 928 773 662	.80 4513 2255 1503 1126 901 750 643
Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91	.99 5638 2814 1873 1402 1120 931 797 696 618	.95 5122 2558 1703 1276 1019 848 726	4837 2416 1609 1206 964 802 687	.85 4654 2325 1549 1161 928 773	.80 4513 2255 1503 1126 901 750 643 562
Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91	.99 5638 2814 1873 1402 1120 931 797 696 618 555	.95 5122 2558 1703 1276 1019 848 726 635	4837 2416 1609 1206 964 802 687 601	.85 4654 2325 1549 1161 928 773 662 579	.80 4513 2255 1503 1126 901 750 643 562 499
Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 5638 2814 1873 1402 1120 931 797 696 618 555 503	.95 5122 2558 1703 1276 1019 848 726 635 563	4837 2416 1609 1206 964 802 687 601 533	.85 4654 2325 1549 1161 928 773 662 579	.80 4513 2255 1503 1126 901 750 643 562 499 449
Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 5638 2814 1873 1402 1120 931 797 696 618 555 503 461	.95 5122 2558 1703 1276 1019 848 726 635 563 507 460 421	4837 2416 1609 1206 964 802 687 601 533 480	.85 4654 2325 1549 1161 928 773 662 579 514	.80 4513 2255 1503 1126 901 750 643 562 499
Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 5638 2814 1873 1402 1120 931 797 696 618 555 503 461 424	.95 5122 2558 1703 1276 1019 848 726 635 563 507 460 421 388	4837 2416 1609 1206 964 802 687 601 533 480 436	.85 4654 2325 1549 1161 928 773 662 579 514 462 420	.80 4513 2255 1503 1126 901 750 643 562 499 449 408 374
Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 5638 2814 1873 1402 1120 931 797 696 618 555 503 461 424 393	.95 5122 2558 1703 1276 1019 848 726 635 563 507 460 421 388 360	4837 2416 1609 1206 964 802 687 601 533 480 436 399	.85 4654 2325 1549 1161 928 773 662 579 514 462 420 385	.80 4513 2255 1503 1126 901 750 643 562 499 449 408 374 345
Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 5638 2814 1873 1402 1120 931 797 696 618 555 503 461 424 393 366	.95 5122 2558 1703 1276 1019 848 726 635 563 507 460 421 388 360 335	4837 2416 1609 1206 964 802 687 601 533 480 436 399 368	.85 4654 2325 1549 1161 928 773 662 579 514 462 420 385 355	.80 4513 2255 1503 1126 901 750 643 562 499 449 408 374 345 320
Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	.99 5638 2814 1873 1402 1120 931 797 696 618 555 503 461 424 393 366 343	.95 5122 2558 1703 1276 1019 848 726 635 563 507 460 421 388 360 335 314	4837 2416 1609 1206 964 802 687 601 533 480 436 399 368 341	.85 4654 2325 1549 1161 928 773 662 579 514 462 420 385 355 329	.80 4513 2255 1503 1126 901 750 643 562 499 449 408 374 345 320 298
Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83	.99 5638 2814 1873 1402 1120 931 797 696 618 555 503 461 424 393 366 343 322	.95 5122 2558 1703 1276 1019 848 726 635 563 507 460 421 388 360 335 314 295	4837 2416 1609 1206 964 802 687 601 533 480 436 399 368 341 318	.85 4654 2325 1549 1161 928 773 662 579 514 462 420 385 355 329 307	.80 4513 2255 1503 1126 901 750 643 562 499 449 408 374 345 320 298 280
Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83 .82	.99 5638 2814 1873 1402 1120 931 797 696 618 555 503 461 424 393 366 343 322 304	.95 5122 2558 1703 1276 1019 848 726 635 563 507 460 421 388 360 335 314 295 278	4837 2416 1609 1206 964 802 687 601 533 480 436 399 368 341 318 298	.85 4654 2325 1549 1161 928 773 662 579 514 462 420 385 355 329 307 288	.80 4513 2255 1503 1126 901 750 643 562 499 449 408 374 345 320 298 280 263
Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83 .82 .81	.99 5638 2814 1873 1402 1120 931 797 696 618 555 503 461 424 393 366 343 322 304 287	.95 5122 2558 1703 1276 1019 848 726 635 563 507 460 421 388 360 335 314 295 278 263	4837 2416 1609 1206 964 802 687 601 533 480 436 399 368 341 318 298 280	.85 4654 2325 1549 1161 928 773 662 579 514 462 420 385 355 329 307 288 270	.80 4513 2255 1503 1126 901 750 643 562 499 449 408 374 345 320 298 280
Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83 .82	.99 5638 2814 1873 1402 1120 931 797 696 618 555 503 461 424 393 366 343 322 304	.95 5122 2558 1703 1276 1019 848 726 635 563 507 460 421 388 360 335 314 295 278	4837 2416 1609 1206 964 802 687 601 533 480 436 399 368 341 318 298 280 264	.85 4654 2325 1549 1161 928 773 662 579 514 462 420 385 355 329 307 288 270 242	.80 4513 2255 1503 1126 901 750 643 562 499 449 408 374 345 320 298 280 263 235

TABLE B-18 continued

Nu Reliabi	mber of failures lity	= 40		Confidence Leve	1
	.99	.95	00		
.99	5757		.90	.85	.80
.98	2873	5235 2614	4947	4762	4620
.97	1912	1741	2471	2379	2309
.96	1432	1304	1646	1585	1538
.95	1143	1042	1233	1188	1153
.94	951	867	986	950	922
.93	814	742	821	791	768
.92	711	649	703	677	658
.91	631	576	614	592	575
.90	567	518	546 491	526	511
.89	514	470		473	460
.88	470	430	446 408	430	418
.87	433	397	408 376	394	383
.86	402	368		363	353
.85	374	343	349	337	328
.84	350	321	325 305	314	305
.83	329	302	287	294	286
.82	310	285	270	277	269
.81	293	269	276 256	261 247	254
.80	278	256	243	247	241 228
Num Reliabil	ber of failures : ity	= 41	C	Confidence Level	
	.99	.95	.90	.85	.80
.99	5874	5347	5057	4870	4726
.98	2932	2670	2526	2433	2362
.97	1951	1778	1683	1621	1574
.96	1461	1332	1261	1251	1180
.95	1167	1064	1008	971	943
. 94	971	886	. 839	809	785
.93	830	758	718	693	673
.92	725	6 63	628	606	588
.91	644	538	558	538	523
.90	578	529	502	484	470
.89	525	480	455	440	427
.88	480	440	417	403	391
.87	442	405	385	371	361
.86	410	376	357	345	33.
.85	382	350	333	321	313
.84	357	328	312	301	293
.83	336	308	293	283	275
.82	317	291	276	267	260
.81	299	275	262	253	246
.80	284	261	248	240	234
					-5

TABLE B-18 continued

Num Reliabil	ber of failures	= 42		Confidence Level	
	.99	.95	.90	.85	.80
. 99	5992	5460	5167	4978	4833
.98	2991	2727	2581	2487	2415
.97	1991	1816	1719	1657	1609
.96	1490	1360	1288	1242	1206
. 95	1190	1087	1030	999	964
.94	990	905	857	827	803
.93	847	774	734	708	688
.92	740	677	642	619	602
.91	657	601	570	550	535
•90	590	540	512	495	481
.89	535	490	465	449	437
.88	490	449	426	412	437
. 87	451	414	393	380	369
.86	418	384	365	352	343
. 85	390	358	340	329	320
.84	365	335	318	308	299
.83	343	315	299	289	282
.82	323	297	283	273	266
.81	305	281	267	259	252
.80	290	267	254	245	239
Numl	her (failures :	. //3			
Numi Reliabil:	ber (failures = ity	• 43		Confidence Level	
Reliabil:		.95		-	80
Reliabil:	.99 6110	·	.90 5276	.85	.80
.99 .98	.99 6110 3050	.95	.90	.85 5086	4939
.99 .98	.99 6110 3050 2030	.95 5572	.90 5276	.85 5086 2541	4939 2468
.99 .98 .97	.99 6110 3050 2030 1520	.95 5572 2783 1853 1388	.90 5276 2636	.85 5086	4939 2468 1645
.99 .98 .97 .96	.99 6110 3050 2030 1520 1214	.95 5572 2783 1853 1388 1109	.90 5276 2636 1756	.85 5086 2541 1693	4939 2468 1645 1233
.99 .98 .97 .96 .95	.99 6110 3050 2030 1520 1214 1010	.95 5572 2783 1853 1388 1109 923	.90 5276 2636 1756 1316	.85 5086 2541 1693 1269	4939 2468 1645
.99 .98 .97 .96 .95 .94	.99 6110 3050 2030 1520 1214 1010 864	.95 5572 2783 1853 1388 1109 923 790	.90 5276 2636 1756 1316 1052 875 750	.85 5086 2541 1693 1269 1014	4939 2468 1645 1233 986
.99 .98 .97 .96 .95 .94 .93	.99 6110 3050 2030 1520 1214 1010 864 755	.95 5572 2783 1853 1388 1109 923 790 691	.90 5276 2636 1756 1316 1052 875 750 655	.85 5086 2541 1693 1269 1014 845	4939 2468 1645 1233 986 821
.99 .98 .97 .96 .95 .94 .93 .92	.99 6110 3050 2030 1520 1214 1010 864 755 670	.95 5572 2783 1853 1388 1109 923 790 691 613	.90 5276 2636 1756 1316 1052 875 750 655 582	.85 5086 2541 1693 1269 1014 845 724	4939 2468 1645 1233 986 821 703
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 6110 3050 2030 1520 1214 1010 864 755 670 602	.95 5572 2783 1853 1388 1109 923 790 691 613 551	.90 5276 2636 1756 1316 1052 875 750 655 582 523	.85 5086 2541 1693 1269 1014 845 724 633	4939 2468 1645 1233 986 821 703 615
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 6110 3050 2030 1520 1214 1010 864 755 670 602 546	.95 5572 2783 1853 1388 1109 923 790 691 613 551 501	.90 5276 2636 1756 1316 1052 875 750 655 582 523 475	.85 5086 2541 1693 1269 1014 845 724 633 562 505	4939 2468 1645 1233 986 821 703 615 546
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 6110 3050 2030 1520 1214 1010 864 755 670 602 546 500	.95 5572 2783 1853 1388 1109 923 790 691 613 551 501 458	.90 5276 2636 1756 1316 1052 875 750 655 582 523 475 435	.85 5086 2541 1693 1269 1014 845 724 633 562 505 439	4939 2468 1645 1233 986 821 703 615 546 491
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 6110 3050 2030 1520 1214 1010 864 755 670 602 546 500 460	.95 5572 2783 1853 1388 1109 923 790 691 613 551 501 458 423	.90 5276 2636 1756 1316 1052 875 750 655 582 523 475 435	.85 5086 2541 1693 1269 1014 845 724 633 562 505 439 421 388	4939 2468 1645 1233 986 821 703 615 546 491
Reliabil: .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 6110 3050 2030 1520 1214 1010 864 755 670 602 546 500 460 427	.95 5572 2783 1853 1388 1109 923 790 691 613 551 501 458 423 392	.90 5276 2636 1756 1316 1052 875 750 655 582 523 475 435 401	.85 5086 2541 1693 1269 1014 845 724 633 562 505 439 421 388 360	4939 2468 1645 1233 986 821 703 615 546 491 447 409
Reliabil: .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 6110 3050 2030 1520 1214 1010 864 755 670 602 546 500 460 427 398	.95 5572 2783 1853 1388 1109 923 790 691 613 551 501 458 423 392 365	.90 5276 2636 1756 1316 1052 875 750 655 582 523 475 435 401 372 347	.85 5086 2541 1693 1269 1014 845 724 633 562 505 439 421 388 360 336	4939 2468 1645 1233 986 821 703 615 546 491 447 409 377
Reliabil: .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 6110 3050 2030 1520 1214 1010 864 755 670 602 546 500 460 427 398 372	.95 5572 2783 1853 1388 1109 923 790 691 613 551 501 458 423 392 365 342	.90 5276 2636 1756 1316 1052 875 750 655 582 523 475 435 401 372 347	.85 5086 2541 1693 1269 1014 845 724 633 562 505 439 421 388 360 336 314	4939 2468 1645 1233 986 821 703 615 546 491 447 409 377 350
Reliabil: .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83	.99 6110 3050 2030 1520 1214 1010 864 755 670 602 546 500 460 427 398 372 349	.95 5572 2783 1853 1388 1109 923 790 691 613 551 501 458 423 392 365 342 321	.90 5276 2636 1756 1316 1052 875 750 655 582 523 475 435 401 372 347 325 306	.85 5086 2541 1693 1269 1014 845 724 633 562 505 439 421 388 360 336 314 296	4939 2468 1645 1233 986 821 703 615 546 491 447 409 377 350 327 306 288
Reliabil: .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83 .82	.99 6110 3050 2030 1520 1214 1010 864 755 670 602 546 500 460 427 398 372 349 329	.95 5572 2783 1853 1388 1109 923 790 691 613 551 501 458 423 392 365 342 321 303	.90 5276 2636 1756 1316 1052 875 750 655 582 523 475 435 401 372 347 325 306 289	.85 5086 2541 1693 1269 1014 845 724 633 562 505 439 421 388 360 336 314 296 279	4939 2468 1645 1233 986 821 703 615 546 491 447 409 377 350 327 306 288 272
Reliabil: .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83	.99 6110 3050 2030 1520 1214 1010 864 755 670 602 546 500 460 427 398 372 349	.95 5572 2783 1853 1388 1109 923 790 691 613 551 501 458 423 392 365 342 321	.90 5276 2636 1756 1316 1052 875 750 655 582 523 475 435 401 372 347 325 306	.85 5086 2541 1693 1269 1014 845 724 633 562 505 439 421 388 360 336 314 296	4939 2468 1645 1233 986 821 703 615 546 491 447 409 377 350 327 306 288

TABLE B-18 continued

	Number of failures =	44			
Reli	ability			Confidence Level	
	.99	.95	.90	.85	.80
.99	6227	5684	5386	5194	5045
.98	3108	2839	2691	2595	2521
.97	2069	1890	1792	1729	1680
.96	1549	1416	1343	1296	1259
.95	1237	1132	1073	1036	1007
.94	1029	942	894	863	839
.93	881	806	765	739	718
.92	769	705	669	646	628
.91	683	626	594	574	558
.90	613	562	534	516	502
.89	557	511	485	469	456
.88	509	468	444	429	418
.87	469	431	410	396	386
.86	435	400	380	368	358
.85	405	373	355	343	334
.84	379	349	332	321	313
.83	356	328	312	302	294
.82	336	· 309	295	285	278
.81	318	293	279	270	263
.80	301	278	265	256	250
	Number of Failures =	<i>.</i> =			
Do 14	ability	43	,		
We I I	ability		•	Confidence Level	
	.99	•95	.90	.85	.80
.99	6344	5796	5495	5302	5152
.98	3167	2895	2745	2649	2574
.97	2108	1928			
.96		~/	1829	1765	1715
	1578	1444	1829 1370	1765 1323	1715 1286
.95	1578 1260				1286
.95 .94		1444	1370	1323	1286 1028
	1260	1444 1154	1370 1095	1323 1057	1286 1028 856
. 94	1260 1049	1444 1154 961	1370 1095 912	1323 1057 881	1286 1028
.94 .93	1260 1049 897	1444 1154 961 822	1370 1095 912 781	1323 1057 881 754	1286 1028 856 734
.94 .93 .92	1260 1049 897 784	1444 1154 961 822 719	1370 1095 912 781 683	1323 1057 881 754 660 586	1286 1028 856 734 642 570
.94 .93 .92	1260 1049 897 784 696	1444 1154 961 822 719 638	1370 1095 912 781 683 606	1323 1057 881 754 660	1286 1028 856 734 642 570 513
.94 .93 .92 .91	1260 1049 897 784 696 625	1444 1154 961 822 719 638 574	1370 1095 912 781 683 606 545	1323 1057 881 754 660 586 527	1286 1028 856 734 642 570 513 466
.94 .93 .92 .91	1260 1049 897 784 696 625 567	1444 1154 961 822 719 638 574 521	1370 1095 912 781 683 606 545 495	1323 1057 881 754 660 586 527 479	1286 1028 856 734 642 570 513 466 427
.94 .93 .92 .91 .90	1260 1049 897 784 696 625 567 519	1444 1154 961 822 719 638 574 521	1370 1095 912 781 683 606 545 495	1323 1057 881 754 660 586 527 479 438	1286 1028 856 734 642 570 513 466 427 394
.94 .93 .92 .91 .90 .88 .88	1260 1049 897 784 696 625 567 519	1444 1154 961 822 719 638 574 521 477 440 408 380	1370 1095 912 781 683 606 545 495 453 418	1323 1057 881 754 660 586 527 479 438	1286 1028 856 734 642 570 513 466 427 394
.94 .93 .92 .91 .80 .88 .87	1260 1049 897 784 696 625 567 519 478	1444 1154 961 822 719 638 574 521 477 440	1370 1095 912 781 683 606 545 495 453	1323 1057 881 754 660 586 527 479 438 404	1286 1028 856 734 642 570 513 466 427 394 365 341
.94 .93 .92 .91 .90 .88 .87 .86	1260 1049 897 784 696 625 567 519 478 443	1444 1154 961 822 719 638 574 521 477 440 408 380	1370 1095 912 781 683 606 545 495 453 418 388 362	1323 1057 881 754 660 586 527 479 438 404 375 350 328	1286 1028 856 734 642 570 513 466 427 394 365 341
.94 .93 .92 .91 .91 .88 .87 .86 .85	1260 1049 897 784 696 625 567 519 478 443 413	1444 1154 961 822 719 638 574 521 477 440 408 380 356	1370 1095 912 781 683 606 545 495 453 418 388 362 339 319	1323 1057 881 754 660 586 527 479 438 404 375 350 328 308	1286 1028 856 734 642 570 513 466 427 394 365 341 319
.94 .93 .92 .91 .en .8.8 .87 .86 .85 .84	1260 1049 897 784 696 625 567 519 478 443 410 386 363	1444 1154 961 822 719 638 574 521 477 440 408 380 356 335	1370 1095 912 781 683 606 545 495 453 418 388 362 339	1323 1057 881 754 660 586 527 479 438 404 375 350 328	1286 1028 856 734 642 570 513 466 427 394 365 341

TABLE B-18 continued

Num Reliabil	ber of failures ity	= 46		Confidence Leve	1
	. 99	.95	•90	.85	.80
.99	6461	5908	5605	5409	5258
.98	3225	2951	2800	2703	2627
. 97	2147	1965	1865	1801	1751
.96	1607	1472	1398	1350	1312
.95	1254	1176	1117	1079	1049
.94	1068	979	930	898	874
.93	914	838	797	770	749
.92	798	733	696	673	655
. 91	708	651	618	598	582
. 90	637	585	556	528	523
.89	578	531	505	488	475
.88	529	486	463	447	436
.87	487	448	427	413	402
.86	452	416	396	383	373
. 85	421	388	269	357	348
.84	394	363	346	335	326
.83	370	341	3 25	315	307
.82	349	322	307	297	289
.81	330	304	290	281	274
.80	313	289	275	267	260
					200
Numb	er of failures :	- 47			
Numb Reliabili	er of failures :	- 47	(Confidence Level	
	Lty				
Reliabili	.99	. 95	.90	.85	.80
Reliabili	.99 6578	. 95 6020	.90 5714	.85 5517	.80 5364
.99 .98	. 99 6578 3284	. 9 5 6020 3007	.90 5714 2855	.85 5517 2756	
.99 .98 .97	.99 6578 3284 2185	. 95 6020 3007 2002	.90 5714 2855 1901	.85 5517 2756 1836	5364
.99 .98 .97	.99 6578 3284 2185 1636	.95 6020 3007 2002 1500	.90 5714 2855 1901 1425	.85 5517 2756 1836 1376	5364 2680
.99 .98 .97 .96	.99 6578 3284 2185 1636 1307	.95 6020 3007 2002 1500 1199	.90 5714 2855 1901 1+25 1139	.85 5517 2756 1836 1376 1100	5364 2680 1786 1339 1070
.99 .98 .97 .96 .95	.99 6578 3284 2185 1636 1307 1087	.95 6020 3007 2002 1500 1199 998	.90 5714 2855 1901 1-25 1139 948	.85 5517 2756 1836 1376 1100 916	5364 2680 1786 1339 1070 892
.99 .98 .97 .96 .95 .94	.99 6578 3284 2185 1636 1307 1087 931	.95 6020 3007 2002 1500 1199 998 854	.90 5714 2855 1901 1-25 1139 948 812	.85 5517 2756 1836 1376 1100 916 785	5364 2680 1786 1339 1070 892 764
.99 .98 .97 .96 .95 .94 .93	.99 6578 3284 2185 1636 1307 1087 931 813	.95 6020 3007 2002 1500 1199 998 854 747	.90 5714 2855 1901 1-25 1139 948 812 710	.85 5517 2756 1836 1376 1100 916 785 686	5364 2680 1786 1339 1070 892 764 668
.99 .98 .97 .96 .95 .94 .93 .92	.99 6578 3284 2185 1636 1307 1087 931 813 721	.95 6020 3007 2002 1500 1199 998 854 747 663	.90 5714 2855 1901 1425 1139 948 812 710 631	.85 5517 2756 1836 1376 1100 916 785 686 610	5364 2680 1786 1339 1070 892 764 668 593
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 6578 3284 2185 1636 1307 1087 931 813 721 648	.95 6020 3007 2002 1500 1199 998 854 747 663 596	.90 5714 2855 1901 1-25 1139 948 812 710 631	.85 5517 2756 1836 1376 1100 916 785 686 610 548	5364 2680 1786 1339 1070 892 764 668 593 534
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90	.99 6578 3284 2185 1636 1307 1087 931 813 721 648 588	.95 6020 3007 2002 1500 1199 998 854 747 663 596 541	.90 5714 2855 1901 1-25 1139 948 812 710 631 567 515	.85 5517 2756 1836 1376 1100 916 785 686 610 548	5364 2680 1786 1339 1070 892 764 668 593
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 6578 3284 2185 1636 1307 1087 931 813 721 648 588 538	.95 6020 3007 2002 1500 1199 998 854 747 663 596 541 495	.90 5714 2855 1901 1-25 1139 948 812 710 631 567 515	.85 5517 2756 1836 1376 1100 916 785 686 610 548 498	5364 2680 1786 1339 1070 892 764 668 593 534 485 444
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 6578 3284 2185 1636 1307 1087 931 813 721 648 588 538 496	.95 6020 3007 2002 1500 1199 998 854 747 663 596 541 495	.90 5714 2855 1901 1-25 1139 948 812 710 631 567 515 472 435	.85 5517 2756 1836 1376 1100 916 785 686 610 548 498 456 421	5364 2680 1786 1339 1070 892 764 668 593 534 485 444
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 6578 3284 2185 1636 1307 1087 931 813 721 648 588 538 496 460	.95 6020 3007 2002 1500 1199 998 854 747 663 596 541 495 457	.90 5714 2855 1901 1-25 1139 948 812 710 631 567 515 472 435	.85 5517 2756 1836 1376 1100 916 785 686 610 548 498 456 421	5364 2680 1786 1339 1070 892 764 668 593 534 485 444 410 380
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 6578 3284 2185 1636 1307 1087 931 813 721 648 588 538 496 460 428	.95 6020 3007 2002 1500 1199 998 854 747 663 596 541 495 457 424 395	.90 5714 2855 1901 1-25 1139 948 812 710 631 567 515 472 435 404 376	.85 5517 2756 1836 1376 1100 916 785 686 610 548 498 456 421 391 364	5364 2680 1786 1339 1070 892 764 668 593 534 485 444 410 380 355
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 6578 3284 2185 1636 1307 1087 931 813 721 648 588 538 496 460 428 401	.95 6020 3007 2002 1500 1199 998 854 747 663 596 541 495 457 424 395 370	.90 5714 2855 1901 1-25 1139 948 812 710 631 567 515 472 435 404 376 352	.85 5517 2756 1836 1376 1100 916 785 686 610 548 498 456 421 391 364 341	5364 2680 1786 1339 1070 892 764 668 593 534 485 444 410 380 355 333
Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83	.99 6578 3284 2185 1636 1307 1087 931 813 721 648 588 538 496 460 428 401 377	.95 6020 3007 2002 1500 1199 998 854 747 663 596 541 495 457 424 395 370 348	.90 5714 2855 1901 1-25 1139 948 812 710 631 567 515 472 435 404 376 352 331	.85 5517 2756 1836 1376 1100 916 785 686 610 548 498 456 421 391 364 341	5364 2680 1786 1339 1070 892 764 668 593 534 485 444 410 380 355 333 313
Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83 .82	.99 6578 3284 2185 1636 1307 1087 931 813 721 648 588 538 496 460 428 401 377 355	.95 6020 3007 2002 1500 1199 998 854 747 663 596 541 495 457 424 395 370 348 328	.90 5714 2855 1901 1-25 1139 948 812 710 631 567 515 472 435 404 376 352 331 313	.85 5517 2756 1836 1376 1100 916 785 686 610 548 498 456 421 391 364 341 321 303	5364 2680 1786 1339 1070 892 764 668 593 534 485 444 410 380 355 333 313 295
Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83	.99 6578 3284 2185 1636 1307 1087 931 813 721 648 588 538 496 460 428 401 377	.95 6020 3007 2002 1500 1199 998 854 747 663 596 541 495 457 424 395 370 348	.90 5714 2855 1901 1-25 1139 948 812 710 631 567 515 472 435 404 376 352 331	.85 5517 2756 1836 1376 1100 916 785 686 610 548 498 456 421 391 364 341	5364 2680 1786 1339 1070 892 764 668 593 534 485 444 410 380 355 333 313

TABLE B-18 continued

Number of failures = 48 Reliability		Confidence Level			
	.99	.95	.90	.85	.80
.99	6694	6132	5823	5624	5470
.98	3342	3063	2909	2810	2733
.97	2224	2040	1938	1872	1821
.96	1666	1528	1452	1403	1365
.95	1330	1221	1161	1122	1092
.94	1107	1016	966	934	909
.93	947	870	828	800	779
.92	827	761	724	700	681
.91	734	675	643	622	605
.90	660	607	578	559	544
.89	599	551	525	508	495
.88	548	505	481	465	453
.87	505	465	443	429	418
.86	468	432	411	398	388
.85	436	402	384	371	362
.84	408	377	359	348	339
.83	383	354	338	327	319
.82	362	334	319	309	301
.81	342	316	302	292	285
.80	324	300	286	278	271
	per of failures	- 49			
Reliabili	lty		Con	fidence Level	
	.99	.95	.90	.85	.80
.99	6811	6244	5932	5731	5576
.98	3400	3118	2964	2864	2786
.97	2263	2077	1974	1908	1857
.96	1695	1556	1479	1430	1392
.95	1353	1243	1182	1143	1113
.94	1126	1035	985	952	927
.93	964	886	843	816	794
.92	842	774	737	713	694
.91	747	688	655	633	617
.90	671	618	589	570	555
.89	609	561	535	518	504
.88	558	514	490	474	462
.87	514	474	452	437	426
.86	476	439	419	406	396
.85	444	410	391	37 8	369
.84	415	384	366	355	346
.83	390	361	344	333	325
.82	368	340	325	315	307
	2/.0	ייי	207	200	
.81 .80	34 8 330	322 305	307 292	298 283	291 276

TABLE B-18 continued

Num Reliabil	ber of failures	= 50	Con	fidence Level	
	.99	.95	.90	.85	20
. 99	6927	6355	6041	5839	.80
.98	3458	3174	3018	2917	5682
.97	2302	2114	2010	1944	2839
.96	1724	1584	1507	1457	1892
.95	1377 .	1266	1204	1165	1418
. 94	1145	1053	1003	970	1134
.93	980	902	859	831	945
.92	856	788	751	726	809
. 91	760	700	667	645	708
.90	683	629	600	580	629
.89	620	571	545	527	566
.88	567	523	499	483	514
.87	523	482	460	446	471 434
.86	484	447	427	413	434
.85	451	417	398	386	403 376
.84	422	391	373	361	352
.83	397	367	351	340	331
.82	374	346	331	321	313
.81	354	328	313	304	296
.80	336	311	297	288	281
Numb	per of failures	- 63			
Reliabili		- 31	Com	idence Level	
	,		Coni	idence Fevel	
	.99	.95	. 90	.85	.80
. 99	7043	6467	6150	5946	5788
. 98	3516	3230	3072	2971	2892
.97	2340	2151	2047	1979	1927
.96	1753	1611	1534	1484	1445
.95	1400	1288	1226	1186	1155
.94 .93	1165	1072	1021	988	962
.92	997	918	874	846	824
.92	871	802	764	740	721
.90	773	712	679	657	640
.89	694	640	610	591	576
.88	630	581	554	537	523
.87	577	532	508	492	480
.86	531	491	468	454	442
.85	493	455	434	421	411
.84	459	424	405	393	383
.83	430	397	380	368	359
.82	404	374	357	346	338
.81	381	352	337	327	319
.80	360 341	334	319	309	302
÷	341	316	303	293	286

TABLE B-18 continued

Numb Reliabili	er of failures ty	= 52	Co	nfidence Level	,
	.99	.95	.90	.85	.80
.99	7159	6578	6259	6053	5893
.98	3574	3285	3127	3025	2945
.97	2379	2188	2083	2015	1962
.96	1781	1639	1561	1510	1471
.95	1423	1310	1248	1207	1176
.94	1184	1090	1039	1006	980
.93	1013	934	890	861	839
.92	885	816	778	753	734
.91	786	725	691	669	652
.90	706	651	621	602	587
.89	641	592	564	547	533
.88	586	542	517	501	488
.87	540	499	477	462	451
.86	501	463	442	429	418
.85	467	432	412	400	390
.84	437	404	386	375	365
.83	410	380	363	352	344
.82	387	359	343	332	325
.81	366	339	324	315	307
.80	347	322	308	299	292
Number of failures = 53 Reliability					
Numbe Reliabilit	er of failures	- 53	Cor	nfidence Level	
Numbe Reliabilit					80
Numbe Reliabilit	er of failures : .99 7275	.95	. 90	.85	.80 5999
	.99	.95 6689	. 90 6358	.85 6160	5999
.99	.99 7275 3632	.95 6689 3341	.90 6358 3181	.85 6160 3078	5999 2998
.99 .98	.99 7275	.95 6689 3341 2225	.90 6368 3181 2119	.85 6160 3078 2031	5999 2998 1998
.99 .98 .97	.99 7275 3632 2417	.95 6689 3341 2225 1667	.90 6368 3181 2119 1588	.85 6160 3078 2031 1537	5999 2998 1998 1498
.99 .98 .97 .96	.99 7275 3632 2417 1810	.95 6689 3341 2225 1667 1332	.90 6368 3181 2119 1538 1269	.85 6160 3078 2031 1537 1229	5999 2998 1998 1498 1197
.99 .98 .97 .96	.99 7275 3632 2417 1810 1446	.95 6689 3341 2225 1667 1332 1109	.90 6368 3181 2119 1538 1269 1057	.85 6160 3078 2031 1537 1229 1023	5999 2998 1998 1498 1197 997
.99 .98 .97 .96 .95	.99 7275 3632 2417 1810 1446 1203	.95 6689 3341 2225 1667 1332	.90 6368 3181 2119 1538 1269 1057 905	.85 6160 3078 2031 1537 1229 1023 877	5999 2998 1998 1498 1197 997 854
.99 .98 .97 .96 .95 .94	.99 7275 3632 2417 1810 1446 1203 1030	.95 6689 3341 2225 1667 1332 1109 949	.90 6368 3181 2119 1538 1269 1057 905 791	.85 6160 3078 2031 1537 1229 1023 877 767	5999 2998 1998 1498 1197 997 854 747
.99 .98 .97 .96 .95 .94 .93	.99 7275 3632 2417 1810 1446 1203 1030 900	.95 6689 3341 2225 1667 1332 1109 949 830 737	.90 6358 3181 2119 1598 1269 1057 905 791	.85 6160 3078 2031 1537 1229 1023 877 767 681	5999 2998 1998 1498 1197 997 854 747 664
.99 .98 .97 .96 .95 .94 .93 .92	.99 7275 3632 2417 1810 1446 1203 1030 900 798	.95 6689 3341 2225 1667 1332 1109 949 830	.90 6358 3181 2119 1598 1269 1057 905 791 703 632	.85 6160 3078 2031 1537 1229 1023 877 767 681 612	5999 2998 1998 1498 1197 997 854 747 664 597
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 7275 3632 2417 1810 1446 1203 1030 900 798 717	.95 6689 3341 2225 1667 1332 1109 949 830 737 662 602	.90 6358 3181 2119 1598 1269 1057 905 791 703 632 574	.85 6160 3078 2031 1537 1229 1023 877 767 681 612 556	5999 2998 1998 1498 1197 997 854 747 664 597 543
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 7275 3632 2417 1810 1446 1203 1030 900 798 717 651	.95 6689 3341 2225 1667 1332 1109 949 830 737 662 602 551	.90 6358 3181 2119 1598 1269 1057 905 791 703 632 574 526	.85 6160 3078 2031 1537 1229 1023 877 767 681 612 556 510	5999 2998 1998 1498 1197 997 854 747 664 597 543 497
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 7275 3632 2417 1810 1446 1203 1030 900 798 717 651 596	.95 6689 3341 2225 1667 1332 1109 949 830 737 662 602	.90 6358 3181 2119 1598 1269 1057 905 791 703 632 574 526 485	.85 6160 3078 2031 1537 1229 1023 877 767 681 612 556 510 470	5999 2998 1998 1498 1197 997 854 747 664 597 543 497 459
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 7275 3632 2417 1810 1446 1203 1030 900 798 717 651 596 549	.95 6689 3341 2225 1667 1332 1109 949 830 737 662 602 551 508	.90 6358 3181 2119 1598 1269 1057 905 791 703 632 574 526 485 450	.85 6160 3078 2031 1537 1229 1023 877 767 681 612 556 510 470 436	5999 2998 1998 1498 1197 997 854 747 664 597 543 497 459
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 7275 3632 2417 1810 1446 1203 1030 900 798 717 651 596 549	.95 6689 3341 2225 1667 1332 1109 949 830 737 662 602 551 508 471	.90 6358 3181 2119 1598 1269 1057 905 791 703 632 574 526 485 450 420	.85 6160 3078 2031 1537 1229 1023 877 767 681 612 556 510 470 436 407	5999 2998 1998 1498 1197 997 854 747 664 597 543 497 459 426 397
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 7275 3632 2417 1810 1446 1203 1030 900 798 717 651 596 549 509	.95 6689 3341 2225 1667 1332 1109 949 830 737 662 602 551 508 471 439	.90 6358 3181 2119 1598 1269 1057 905 791 703 632 574 526 485 450 420 393	.85 6160 3078 2031 1537 1229 1023 877 767 681 612 556 510 470 436 407 381	5999 2998 1998 1498 1197 997 854 747 664 597 543 497 459 426 397 372
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 7275 3632 2417 1810 1446 1203 1030 900 798 717 651 596 549 509 474 444	.95 6689 3341 2225 1667 1332 1109 949 830 737 662 602 551 508 471 439 411	.90 6358 3181 2119 1538 1269 1057 905 791 703 632 574 526 485 450 420 393 370	.85 6160 3078 2031 1537 1229 1023 877 767 681 612 556 510 470 436 407 381 359	5999 2998 1998 1498 1197 997 854 747 664 597 543 497 459 426 397 372 350
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 7275 3632 2417 1810 1446 1203 1030 900 798 717 651 596 549 509 474 444 417	.95 6689 3341 2225 1667 1332 1109 949 830 737 662 602 551 508 471 439 411 387	.90 6358 3181 2119 1598 1269 1057 905 791 703 632 574 526 485 450 420 393	.85 6160 3078 2031 1537 1229 1023 877 767 681 612 556 510 470 436 407 381	5999 2998 1998 1498 1197 997 854 747 664 597 543 497 459 426 397 372

TABLE B-18 continued

Numi	er of failures	= 54			
Reliabil:	ity		Co	nfidence Level	
	.99	.95	.90	.85	
.99	7390	6800	6476	6267	.80
.98	3690	3396	3236		6105
.97	2456	2262	2155	3132 2086	3051
.96	1:139	1695	1615		2033
.95	1469	1354	1291	1564	1524
.94	1222	1127	1075	1250	1219
.93	1046	965	921	1041	1015
.92	914	844	805	892	870
.91	811	749	715	780	760
.90	729	674	643	693	676
.89	662	612	584	623	608
.88	605	560	535	566	552
.87	558	516	493	519	506
.86	517	479	493 458	478	467
.85	482	447	427	444	433
.84	451	418	400	414	404
.83	424	393	376	388	379
.82	400	371	355	365	356
.81	378	351	336	344	336
.80	359	333	319	326 309	318 302
W b	8 . 8 . 1 . 1		727	309	302
Reliabili	er of failures	• 55			
Keriaulii	Ly		Con	nfidence Level	
	.99	.95	.90	.85	.80
.99	7506	6911	6585	6374	6210
.98	3747	3452	3290	3185	3104
.97	2494	2299	2191	2122	2068
.96	1868	1722	1642	1591	1550
.95	1492	1376	1313	1272	1240
.94	1242	1146	1093	1059	1033
.93	1063	981	936	907	885
.92	928	858	818	793	774
.91	824	761	727	705	687
.90	740	685	654	634	618
.89	672	622	594	576	562
.88	615	569	544	527	515
.87	567	525	502	487	475
.86	525	487	465	451	441
.85	490	454	434	421	411
.84	458	425	407	395	385
.83	431	400	382	371	362
.82	406	377	361	. 350	342
.81 .80	384	357	341	332	324
. OU					
	364	338	324	315	307

TABLE B-18 continued

Numt Reliabili	er of failures :	- 56		Confidence Level	
	•				
	.99	.95	.90	.85	.80
.99	7621	7022	6693	6481	6316
.98	3805	3507	3344	3238	3156
.97	2533	2336	2228	2158	2103
.96	1897	1750	1669	1617	1527
.95	1515	1399	1334	1293	1261
.94	1261	1164	1111	1077	1050
.9 3	1079	997	952	922	900
.92	943	871	832	807	787
.91	837	774	739	716	699
.90	752	696	665	644	629
.89	682	632	604	585	571
.88	625	578	553	536	523
.87	576	533	510	495	483
.86	534	495	473	459	448
.85	497	461	441	428	418
.84	465	432	413	401	392
.33	437	406	389	377	369
.82	412	383	367	356	348
.81	390	362	347	337	329
.80	370	344	329	320	313
Numb	er of failures :	• 57			
Reliabili	ity			Confidence Level	
	.99	.95	.90	.85	.80
.99	7736	7133	6802	6588	6422
.98	3862	3563	3398	3292	3209
.97	2571	2373	2264	2193	2138
.96	1926	1778	1696	1644	1603
.95	1538	1421	1356	1314	1282
.94	1280	1183	1129	1095	1068
.93	1095	1013	967	938	915
	957	885	016	820	800
			846	020	0,00
.92	849		751	728	
.92 .91	849 763	786	751	728	711
.92 .91 .90	763	786 707	751 675		711 639
.92 .91 .90 .89	763 693	786 707 - 642	751 675 613	728 655 595	711 639 581
.92 .91 .90 .89	763 693 634	786 707 - 642 588	751 675 613 562	728 655	711 639 581 532
.92 .91 .90 .89 .88	763 693 634 584	786 707 - 642 588 542	751 675 613 562 518	728 655 595 545 503	711 639 581 532 491
.92 .91 .90 .89 .88 .87	763 693 634 584 542	786 707 - 642 588 542 503	751 675 613 562 518 481	728 655 595 545 503 467	711 639 581 532 491 456
.92 .91 .90 .89 .88 .87 .86	763 693 634 584 542 505	786 707 - 642 588 542 503 469	751 675 613 562 518 481 448	728 655 595 545 503 467 435	711 639 581 532 491 456 425
.92 .91 .90 .89 .88 .87 .86 .85	763 693 634 584 542 505 473	786 707 - 642 588 542 503 469 439	751 675 613 562 518 481 448 420	728 655 595 545 503 467 435 408	711 639 581 532 491 456 425 398
.92 .91 .90 .89 .88 .87 .86 .85 .84	763 693 634 584 542 505 473	786 707 - 642 588 542 503 469 439 413	751 675 613 562 518 481 448 420 395	728 655 595 545 503 467 435 408 384	711 639 581 532 491 456 425 398 375
.92 .91 .90 .89 .88 .87 .86 .85	763 693 634 584 542 505 473	786 707 - 642 588 542 503 469 439	751 675 613 562 518 481 448 420	728 655 595 545 503 467 435 408	711 639 581 532 491 456 425 398

TABLE B-18 continued

Num	ber of failures =	- 50			
Reliabil	ity	• 30	Co	onfidence Level	
	.99	.95	.90	.85	90
.99	7851	7243	6910	6694	.80
.98	3920	3618	3452	3345	6527
.97	2609	2410	2300	2229	3262 2174
.96	1954	1805	1723	1671	1629
.95	1561	1443	1378	1336	1303
.94	1299	1201	1147	1112	1085
.93	1112	1028	983	953	930
.92	971	899	859	833	813
.91	862	798	763	740	722
.90	775	718	686	666	650
.89	703	652	623	605	590
.88	644	597	571	554	541
.87	593	550	527	511	499
.86	5 50	510	488	474	463
.85	512	476	456	442	432
. 84	480	446	427	414	405
.83	451	419	401	390	381
.82	425	395	379	368	360
.81	402	374	358	348	340
.80	381	555	340	331	323
	ber of failures	- 59			
Reliabil	.1ty		Con	nfidence Level	
	.99	.95	.90	.85	.80
.99	7966	7354	7018	6801	6632
.98	3977	3673	3506	3399	3315
.97	2648	2446	2336	2264	2209
.96	1983	1833	1751	1697	1656
.95	1584	1465	1399	1357	1324
.94	1318	1219	1165	1130	1103
.93	1128	1044	998	968	945
.92	986	913	873	847	826
.91	875	810	775	752	734
.90 .89	786	729	697	676	660
.88	714	662	633	614	600
.87	653	606	580	563	550
.86	602	559	535	519	507
.85	558 530	518	496	482	471
.84	520	483	463	449	439
.83	487 457	453	433	421	411
.82	457	425	408	396	387
.81	431	401	385	374	365
·OI					
.80	408 387	380 360	364 346	354 336	346 328

TABLE B-18 continued

Nu Reliabi	mber of failures lity	= 60	C	onfidence Level	
	•		G.	wiridence reael	
	. 99	.95	.90	.85	.80
.99	8081	7464	7126	6908	6738
.98	4035	3729	3561	3452	3367
.97	2686	2483	2372	2300	2244
.96	2012	1861	1778	1724	1682
.95	1607	1487	1421	1378	1345
.94	1337	1238	1183	1148	1120
.93	1144	1060	1013	983	960
.92	1000	926	886	860	839
.91	887	823	787	764	746
. 90	798	740	708	687	671
.89	724	672	643	624	610
.88	663	615	589	572	559
.87	611	567	543	527	515
.86	566	526	504	489	478
.85	528	491	470	457	446
.84	494	459	440	428	
.83	464	432	414	402	418 393
.82	438	407	391	380	393 371
.81	414	386	370	359	351
.80	393	366	351	341	334
W	ham af f.11				334
Reliabil:	ber of failures :	e 91	_		
	,		Con	fidence Level	
	.99	.95	.90	.85	90
.99	8196	7575	7235	7014	.80
.98	4092	3784	3615	3505	6843 3420
.97	2724	252 0	2408	2335	2279
.96	2040	1883	1805	1750	1708
.95	1630	1509	1443	1400	1366
.94	1356	1256	1201	1166	1138
.93	1161	1076	1029	998	
.92	1014	940	899	873	975
.91	900	835	799	776	853 757
.90	809	751	718	698	757
.89	734	682	653	634	681
.88	672	624	598	5£1	619
.87	619	576	551	536	567 533
.86	574	534	512	497	523
.85	535	498	477	464	486 453
. 84	501	466	447	434	453
.83	471	438	420	434 409	425
.82	444	414	397	386	399
.81	420	391	375	365	377
.80	398	371	356	347	357
			. 330	J4/	339

TABLE B-18 continued

Reliabili	er of failures = ty		Co	onfidence Level	
				wridence revel	
	.99	.95	.90	.85	.80
.99	8311	7683	7343	7121	6949
.98	4149	3839	3669	3558	3473
.97	2762	2557	2444	2371	
.96	2069	1916	1832	1777	2314
.95	1653	1531	1454	1421	1735
.94	1375	1275	1219	1183	1387
.93	1177	1091	1044	1014	1155
.92	1028	954	913	886	990
.91	913	847	811		866
.90	820	762	729	787 700	769
.89	745	692	662	708	692
.88	682	633	607	643	629
.87	628	584	560	589	576
.86	582	542	519	544	531
.85	543	505		505	493
.84	508	473	484	471	460
.83	477	445	454 437	441	431
.82	450	420	427	415	406
.81	426	397	403	391	383
.80	404	377	381	371	363
		3//	362	352	344
N1					
MOME	er of failures	• 63			
Reliabili	er of failures : lty	• 63	Co	onfidence Level	
Reliabili	per of failures • lty .99				•
Reliabili	lty	.95	.90	.85	.80
Reliabili	. 99	.95 7795	.90 7451	.85 7227	7054
Reliabili	. 99 8425	.95 7795 3894	.90 7451 3723	.85 7227 3612	7054 3525
.99 .98 .97	. 99 8425 4207 2800	.95 7795 3894 2593	.90 7451 3723 2480	.85 7227 3612 2406	7054 3525 2349
.99 .98 .97 .96	. 99 8425 4207	.95 7795 3894 2593 1943	.90 7451 3723 2480 1859	.85 7227 3612 2406 1804	7054 3525 2349 1761
.99 .98 .97	. 99 8425 4207 2800 2097	.95 7795 3894 2593 1943 1553	.90 7451 3723 2480 1859 1486	.85 7227 3612 2406 1804 1442	7054 3525 2349 1761 1408
.99 .98 .97 .96	.99 8425 4207 2800 2097 1676	.95 7795 3894 2593 1943 1553	.90 7451 3723 2480 1859 1486 1237	.85 7227 3612 2406 1804 1442 1201	7054 3525 2549 1761 1408 1173
.99 .98 .97 .96 .95	.99 8425 4207 2800 2097 1676 1394	.95 7795 3894 2593 1943 1553 1293	.90 7451 3723 2480 1859 1486 1237 1060	.85 7227 3612 2406 1804 1442 1201	7054 3525 2349 1761 1408 1173 1005
.99 .98 .97 .96 .95 .94	.99 8425 4207 2800 2097 1676 1394 1193 1043	.95 7795 3894 2593 1943 1553 1293 1107 968	.90 7451 3723 2480 1859 1486 1237 1060 926	.85 7227 3612 2406 1804 1442 1201 1029 900	7054 3525 2349 1761 1408 1173 1005 879
.99 .98 .97 .96 .95 .94 .93	.99 8425 4207 2800 2097 1676 1394 1193 1043 925	.95 7795 3894 2593 1943 1553 1293 1107 968 859	.90 7451 3723 2480 1859 1486 1237 1060 926 823	.85 7227 3612 2406 1804 1442 1201 1029 900 799	7054 3525 2549 1761 1408 1173 1005 879 781
.99 .98 .97 .96 .95 .94 .93 .92	.99 8425 4207 2800 2097 1676 1394 1193 1043 925 832	.95 7795 3894 2593 1943 1553 1293 1107 968 859 773	.90 7451 3723 2480 1859 1486 1237 1060 926 823 740	.85 7227 3612 2406 1804 1442 1201 1029 900 799 719	7054 3525 2549 1761 1408 1173 1005 879 781 702
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 8425 4207 2800 2097 1676 1394 1193 1043 925 832 755	.95 7795 3894 2593 1943 1553 1293 1107 968 859 773 702	.90 7451 3723 2480 1859 1486 1237 1060 926 823 740 672	.85 7227 3612 2406 1804 1442 1201 1029 900 799 719 653	7054 3525 2549 1761 1408 1173 1005 879 781 702 638
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 8425 4207 2800 2097 1676 1394 1193 1043 925 832 755 691	.95 7795 3894 2593 1943 1553 1293 1107 968 859 773 702 643	.90 7451 3723 2480 1859 1486 1237 1060 926 823 740 672 616	.85 7227 3612 2406 1804 1442 1201 1029 900 799 719 653 598	7054 3525 2349 1761 1408 1173 1005 879 781 702 638 585
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 8425 4207 2800 2097 1676 1394 1193 1043 925 832 755 691 637	.95 7795 3894 2593 1943 1553 1293 1107 968 859 773 702 643 592	.90 7451 3723 2480 1859 1486 1237 1060 926 823 740 672 616 568	.85 7227 3612 2406 1804 1442 1201 1029 900 799 719 653 598 552	7054 3525 2549 1761 1408 1173 1005 879 781 702 638 585 540
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 8425 4207 2800 2097 1676 1394 1193 1043 925 832 755 691	.95 7795 3894 2593 1943 1553 1293 1107 968 859 773 702 643 592 550	.90 7451 3723 2480 1859 1486 1237 1060 926 823 740 672 616 568 527	.85 7227 3612 2406 1804 1442 1201 1029 900 799 719 653 598 552 512	7054 3525 2349 1761 1408 1173 1005 879 781 702 638 585 540 501
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 8425 4207 2800 2097 1676 1394 1193 1043 925 832 755 691 637 591	.95 7795 3894 2593 1943 1553 1293 1107 968 859 773 702 643 592 550 512	.90 7451 3723 2480 1859 1486 1237 1060 926 823 740 672 616 568 527 491	.85 7227 3612 2406 1804 1442 1201 1029 900 799 719 653 598 552 512 478	7054 3525 2349 1761 1408 1173 1005 879 781 702 638 585 540 501 467
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 8425 4207 2800 2097 1676 1394 1193 1043 925 832 755 691 637 591 550 515	.95 7795 3894 2593 1943 1553 1293 1107 968 859 773 702 643 592 550 512 480	.90 7451 3723 2480 1859 1486 1237 1060 926 823 740 672 616 568 527 491 460	.85 7227 3612 2406 1804 1442 1201 1029 900 799 719 653 598 552 512 478 448	7054 3525 2349 1761 1408 1173 1005 879 781 702 638 585 540 501 467 438
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 8425 4207 2800 2097 1676 1394 1193 1043 925 832 755 691 637 591 550 515 484	.95 7795 3894 2593 1943 1553 1293 1107 968 859 773 702 643 592 550 512 480 451	.90 7451 3723 2480 1859 1486 1237 1060 926 823 740 672 616 568 527 491 460 433	.85 7227 3612 2406 1804 1442 1201 1029 900 799 719 653 598 552 512 478 448 421	7054 3525 2349 1761 1408 1173 1005 879 781 702 638 585 540 501 467 438 412
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83	.99 8425 4207 2800 2097 1676 1394 1193 1043 925 832 755 691 637 591 550 515 484 457	.95 7795 3894 2593 1943 1553 1293 1107 968 859 773 702 643 592 550 512 480 451 426	.90 7451 3723 2480 1859 1486 1237 1060 926 823 740 672 616 568 527 491 460 433 409	.85 7227 3612 2406 1804 1442 1201 1029 900 799 719 653 598 552 512 478 448 421 397	7054 3525 2349 1761 1408 1173 1005 879 781 702 638 585 540 501 467 438 412 389
Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 8425 4207 2800 2097 1676 1394 1193 1043 925 832 755 691 637 591 550 515 484	.95 7795 3894 2593 1943 1553 1293 1107 968 859 773 702 643 592 550 512 480 451	.90 7451 3723 2480 1859 1486 1237 1060 926 823 740 672 616 568 527 491 460 433	.85 7227 3612 2406 1804 1442 1201 1029 900 799 719 653 598 552 512 478 448 421	7054 3525 2349 1761 1408 1173 1005 879 781 702 638 585 540 501 467 438 412

TABLE B-18 continued

Nu Reliabi	mber of failures	= 64			
WC114D1	1114		Co	nfidence Level	
	.99	.95	.90	.85	.80
.99	8539	7906	7559	7334	7159
.98	4264	3949	3777	3665	3578
.97	2839	2630	2516	2442	2384
.96	2126	1971	1885	1830	1787
.95	1698	1575	1507	1463	1429
.94	1413	1311	1255	1219	1196
.93	1210	1123	1075	1044	1020
.92	1057	981	940	913	892
.91	938	872	835	811	792
.90	843	784	751	729	713
.89	765	712	682	663	648
.88	701	652	625	607	593
.87	646	601	576	560	548
.86	599	557	535	520	508
.85	558	520	499	485	474
.84	522	487	467	454	474
.83	491	458	439	427	
.82	463	432	414	403	418
.81	438	409	392	382	394
.80	415	388	372	362	374 355
	ber of failures :	• 65			
Reliabil	ity		Cor	afidence Level	
	.99	.95	• 90	.85	90
.99	8654	8016	7666	7440	.80 7264
.98	4321	4004	3830	3718	3630
. 97	2877	2667	2552	2477	2419
.96	2154	1998	1912	1857	1814
•95	1721	1597	1485	1485	1450
.94	1432	1330	1273	1236	1208
.93	1226	1138	1090	1059	1035
. 92	1071	995	953	926	905
.91	951	884	847	823	804
.90	854	795	762	740	723
.89	776	722	692	672	657
.88	710	661	634	615	602
-87	654	609	584	568	556
.86	607	565	542	527	516
.85	565	527	506	492	481
.84	529	494	474	461	461 451
.83	497	464	446	433	424
.82	469	438	420	409	424
.81	444	414	398	387	400 379
.80	421	393	378	368	379 360
					•

TABLE B-18 continued

Reliabi	mber of failures	= 66	_		
			(Confidence Level	
	.99	.95	.90	.85	•
.99	8768	8126	7774	7547	.80
. 98	4378	4059	3884	3771	7369
. 97	2915	2703	2588	–	3683
• 96	2183	2026	1939	2513	2454
.95	1744	1619	1550	1883	1840
. 94	1451	1348	1201	1506	1471
.93	1242	1154		1254	1225
. 92	1085	1009	1106	1074	1050
.91	963	896	967	939	918
.90	866	806	859	835	816
.89	786		772	751	734
.88	719	732	702	682	667
.87	663	670	643	62 5	611
.86	615	618	593	576	564
.85	573	573	550	535	523
.84	575 536	534	513	499	488
.83		500	480	467	457
.82	504 475	470	452	440	430
.81	· -	444	426	415	406
.80	450	420	404	393	385
.00	427	399	383	373	365
Num!	ber of failures	6 7			
Reliabili	Ity	•	Co	onfidence Level	
	.99	05		_	
.99	8882	.95	.90	.85	.80
.98	4435	8236	7882	7653	7474
.97	2953	4114	3938	3824	3736
. 96	2211	2740	2624	2548	2489
.95	1767	2053	1966	1910	1866
. 94	1470	1641	1572	1527	1492
.93	1258	1366	1309	1272	1243
.92	1100	1170	1121	1089	1065
.91	976	1023	980	953	931
.90	973 877	908	871	846	827
.89	796	816	783	761	744
.88	729	741	711	692	676
.87	672	679	652	634	620
.86		626	601	585	572
.85	623	581	558	542	531
.84	581 5/2	542	520	506	495
.83	543	507	487	474	464
	511	477	458	446	436
	/ ^ ^				
.82	482	450	432	421	
	482 456 432	450 426 404	432 409	421 398	412 390

TABLE B-18 continued

Nu	mber of failures	= 68			
Reliabi	llity			Confidence Leve	1
	.99	.95	•90	.85	90
.99	8996	8346	7990	775 9	.80
.98	4492	4169	3992	3877	7580
•97	2990	2777	2659	2583	3788
.96	2240	2081	1993	1936	2524
.95	1789	1663	1593	1548	1892
. 94	1489	1384	1327	1289	1513
.93	1275	1185	1136	1105	1260
. 92	1114	1036	994	966	1080
.91	989	920	883	858	944
• 90	888	827	794	772	839
.89	807	751	721	7/2 701	755
.88	738	688	660	642	686
.87	681	635	609		628
.86	631	589	565	593	580
.85	588	549	527	550	538
.84	551	514	494	513	502
.83	517	483	464	481	470
.82	488	456	438	452 427	443
.81	462	432	415		418
.80	438	410	394	404 384	396
Norm	nber of failures =	- 60	3,4	304	376
Reliabil		• 69	C	Confidence Level	
00	.99	.95	.90	.85	.80
.99	9110	8455	8097	7865	7685
.98 .97	4549	4224	4046	3930	3841
.96	3028	2813	2695	2619	2559
	2268	2108	2020	1973	1919
.95	1812	1685	1615	1569	1534
.94	1508	1403	1345	1307	1278
.93	1291	1201	1152	1120	1095
.92	1128	1050	1007	979	958
.91	1001	932	895	870	851
.90	900	838	804	782	765
.89	817	761	731	711	695
.88	748	697	669	651	637
.87	689	643	617	601	588
.86	639	596	573	558	546
.85	596	55€	534	520	509
.84	558	521	501	487	477
	524	490	471	458	
.83			7/1	4.20	/1/1 U
. 92	494	462	444	433	449 424
.32 .81	494 467	462 437		· -	424
. 92	494	462	444	433	

TABLE B-18 continued

Num	mber of failures *	. 70			
Reliabil		- 70		Confidence Level	
	.99	.95	.90	.85	.80
.99	9223	8565	8205	7971	7790
.98	4606	4279	4100	3984	3893
.97	3066	2850	2731	2654	2594
.96	2297	2135	2047	1990	1945
.95	1335	1707	1636	1591	1555
.94	1527	1421	1363	1325	1295
.93	1307	1217	1167	1135	1110
.92	1142	1064	1020	992	971
.91	1014	945	906	832	862
.90	911	849	815	793	776
.89	827	771	741	721	705
.88	757	706	678	660	646
.87	698	651	626	609	596
.86	647	604	581	565	553
.85	603	563	541	527	516
.84	565	528	507	494	484
.83	531	496	477	465	455
.82	500	468	450	438	429
.81	473	443	426	415	407
.80	449	420	404	394	386
	mber of failures =	• 71			
Nur Reliabi:		• 71		Confidence Level	
Reliabi		• 71 • 95	.90	Confidence Level	.80
Reliabi:	lity		.90 8313		.80 7895
.99	lity	.95		.85	
.99 .98	.99 9337 4662 3104	.95 8675 4333 2386	8313 4153 2767	.85 8078	7895
.99 .98 .97	.99 9337 4662 3104 2325	.95 8675 4333 2386 2163	8313 4153 2767 2074	.85 8078 4037 2690 2016	7895 3946
.99 .98 .97 .96	.99 9337 4662 3104 2325 1857	.95 8675 4333 2386 2163 1729	8313 4153 2767 2074 1658	.85 8078 4037 2690 2016 1612	7895 3946 2629 1971 1576
.99 .98 .97 .96 .35	.99 9337 4662 3104 2325 1857 1546	.95 8675 4333 2386 2163 1729 1439	8313 4153 2767 2074 1658 13 8 1	.85 8078 4037 2690 2016 1612 1342	7895 3946 2629 1971 1576 1313
.99 .98 .97 .96 .75 .94	.99 9337 4662 3104 2325 1857 1546 1323	.95 8675 4333 2386 2163 1729 1439 1232	8313 4153 2767 2074 1658 1381 1182	.85 8078 4037 2690 2016 1612 1342 1150	7895 3946 2629 1971 1576 1313 1125
.99 .98 .97 .96 .35 .94 .93	.99 9337 4662 3104 2325 1857 1546 1323 1156	.95 8675 4333 2386 2163 1729 1439 1232	8313 4153 2767 2074 1658 1381 1182 1034	.85 8078 4037 2690 2016 1612 1342 1150 1006	7895 3946 2629 1971 1576 1313 1125 984
.99 .98 .97 .96 .35 .94 .93 .92	.99 9337 4662 3104 2325 1857 1546 1323 1156 1026	.95 8675 4333 2386 2163 1729 1439 1232 1077 957	8313 4153 2767 2074 1658 1381 1182 1034 918	.85 8078 4037 2690 2016 1612 1342 1150 1006 893	7895 3946 2629 1971 1576 1313 1125 984 874
.99 .98 .97 .96 .35 .94 .93 .92 .91	.99 9337 4662 3104 2325 1857 1546 1323 1156 1026 922	.95 8675 4333 2386 2163 1729 1439 1232 1077 957 860	8313 4153 2767 2074 1658 1381 1182 1034 918 826	.85 8078 4037 2690 2016 1612 1342 1150 1006 893 804	7895 3946 2629 1971 1576 1313 1125 984 874 786
.99 .98 .97 .96 .35 .94 .93 .92 .91 .90 .89	.99 9337 4662 3104 2325 1857 1546 1323 1156 1026 922 837	.95 8675 4333 2386 2163 1729 1439 1232 1077 957 860 781	8313 4153 2767 2074 1658 1381 1182 1034 918 826 750	.85 8078 4037 2690 2016 1612 1342 1150 1006 893 804 730	7895 3946 2629 1971 1576 1313 1125 984 874 786 714
.99 .98 .97 .96 .35 .94 .93 .92 .91 .90 .89	.99 9337 4662 3104 2325 1857 1546 1323 1156 1026 922 837 767	.95 8675 4333 2386 2163 1729 1439 1232 1077 957 860 781 715	8313 4153 2767 2074 1658 1381 1182 1034 918 826 750 687	.85 8078 4037 2690 2016 1612 1342 1150 1006 893 804 730 669	7895 3946 2629 1971 1576 1313 1125 984 874 786 714 655
.99 .98 .97 .96 .35 .94 .93 .92 .91 .90 .89 .88	.99 9337 4662 3104 2325 1857 1546 1323 1156 1026 922 837 767	.95 8675 4333 2386 2163 1729 1439 1232 1077 957 860 781 715 660	8313 4153 2767 2074 1658 1381 1182 1034 918 826 750 687 634	.85 8078 4037 2690 2016 1612 1342 1150 1006 893 804 730 669 617	7895 3946 2629 1971 1576 1313 1125 984 874 786 714 655 604
.99 .98 .97 .96 .35 .94 .93 .92 .91 .90 .89 .88 .87	.99 9337 4662 3104 2325 1857 1546 1323 1156 1026 922 837 767 707 655	.95 8675 4333 2386 2163 1729 1439 1232 1077 957 860 781 715 660 612	8313 4153 2767 2074 1658 1381 1182 1034 918 826 750 687 634 588	.85 8078 4037 2690 2016 1612 1342 1150 1006 893 804 730 669 617 573	7895 3946 2629 1971 1576 1313 1125 984 874 786 714 655 604 561
.99 .98 .97 .96 .35 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 9337 4662 3104 2325 1857 1546 1323 1156 1026 922 837 767 707 655 611	.95 8675 4333 2386 2163 1729 1439 1232 1077 957 860 781 715 660 612 571	8313 4153 2767 2074 1658 1381 1182 1034 918 826 750 687 634 588 549	.85 8078 4037 2690 2016 1612 1342 1150 1006 893 804 730 669 617 573 534	7895 3946 2629 1971 1576 1313 1125 984 874 786 714 655 604 561 523
.99 .98 .97 .96 .35 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 9337 4662 3104 2325 1857 1546 1323 1156 1026 922 837 767 707 655 611 572	.95 8675 4333 2386 2163 1729 1439 1232 1077 957 860 781 715 660 612 571 534	8313 4153 2767 2074 1658 1381 1182 1034 918 826 750 687 634 588 549 514	.85 8078 4037 2690 2016 1612 1342 1150 1006 893 804 730 669 617 573 534 500	7895 3946 2629 1971 1576 1313 1125 984 874 786 714 655 604 561 523 490
.99 .98 .97 .96 .35 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	.99 9337 4662 3104 2325 1857 1546 1323 1156 1026 922 837 767 707 655 611 572 537	.95 8675 4333 2386 2163 1729 1439 1232 1077 957 860 781 715 660 612 571 534 503	8313 4153 2767 2074 1658 1381 1182 1034 918 826 750 687 634 588 549 514	.85 8078 4037 2690 2016 1612 1342 1150 1006 893 804 730 669 617 573 534 500 471	7895 3946 2629 1971 1576 1313 1125 984 874 786 714 655 604 561 523 490 461
.99 .98 .97 .96 .35 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83	.99 9337 4662 3104 2325 1857 1546 1323 1156 1026 922 837 767 707 655 611 572 537 507	.95 8675 4333 2386 2163 1729 1439 1232 1077 957 860 781 715 660 612 571 534 503 474	8313 4153 2767 2074 1658 1381 1182 1034 918 826 750 687 634 588 549 514 483 456	.85 8078 4037 2690 2016 1612 1342 1150 1006 893 804 730 669 617 573 534 500 471	7895 3946 2629 1971 1576 1313 1125 984 874 786 714 655 604 561 523 490 461 435
.99 .98 .97 .96 .35 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	.99 9337 4662 3104 2325 1857 1546 1323 1156 1026 922 837 767 707 655 611 572 537	.95 8675 4333 2386 2163 1729 1439 1232 1077 957 860 781 715 660 612 571 534 503	8313 4153 2767 2074 1658 1381 1182 1034 918 826 750 687 634 588 549 514	.85 8078 4037 2690 2016 1612 1342 1150 1006 893 804 730 669 617 573 534 500 471	7895 3946 2629 1971 1576 1313 1125 984 874 786 714 655 604 561 523 490 461

TABLE B-18 continued

	per of failures	= 72			
Reliabili	lty			Confidence Level	Ĺ
	.99	.95	.90	.8 5	.8
. 99	9451	8784	8420	8184	799
. 98	4719	4388	4207	4090	399
.97	3142	2923	2803	2725	266
•96	2353	2190	2101	2043	199
.95	1880	1750	1679	1633	159
.94	1565	1457	1398	1360	133
. 93	1339	1248	1198	1165	114
. 92	1170	1091	1047	1019	99
.91	1039	969	930	905	88
•90	934	871	837	814	79
.89	848	791	760	740	72
.88	776	725	696	678	66
.87	715	668	642	625	61
. 86	663	620	596	580	56
. 85	618	578	556	541	530
. 84	579	541	521	507	49
.83	544	509	490	477	46
. 82	513	480	462	450	44
. 81	485	454	437	426	418
		424	437	720	710
.80	460	431	415	405	396
.80		431			
.80	460 er of failures :	431	415		396
. 80 Numb	460 er of failures : ty	431 = 73	415	405 Confidence Level	396
. 80 Numb	460 er of failures = ty .99	431 ■ 73 •95	415 .90	405 Confidence Level	.80
.80 Numb Reliabili	460 er of failures : ty .99 9564	431 ■ 73 .95 8894	.90 8527	405 Confidence Level .85 8290	.80 8104
.80 Numb Reliabili ,99	460 er of failures = ty .99	431 = 73 .95 8894 4443	.90 8527 4261	.85 8290 4143	.8 8104 405(
.80 Numb Reliabili ,99 .98	460 er of failures = ty .99 9564 4776	431 - 73 .95 8894 4443 2959	.90 8527 4261 2839	.85 8290 4143 2760	.8 810- 405- 269-
.80 Numb Reliabili .99 .98	460 er of failures = ty .99 9564 4776 3180 2382	431 - 73 .95 8894 4443 2959 2217	.90 8527 4261 2839 2127	.85 8290 4143 2760 2069	.80 8104 4050 2699 2022
Numb Reliabili .99 .98 .97	460 er of failures = ty .99 9564 4776 3180 2382 1903	431 - 73 .95 8894 4443 2959 2217 1772	.90 8527 4261 2839 2127 1701	.85 8290 4143 2760 2069 1654	.80 8104 4050 2699 2022 1618
Numb Reliabili .99 .98 .97 .96	.99 9564 4776 3180 2382 1903 1584	431 - 73 .95 8894 4443 2959 2217 1772 1476	.90 8527 4261 2839 2127 1701 1416	.85 8290 4143 2760 2069 1654 1378	.80 8104 4056 2699 2022 1618 1348
Numb Reliabili .99 .98 .97 .96 .95	.99 9564 4776 3180 2382 1903 1584 1355	431 - 73 .95 8894 4443 2959 2217 1772 1476 1264	.90 8527 4261 2839 2127 1701 1416 1213	.85 8290 4143 2760 2069 1654 1378 1180	.80 8104 4050 2699 2023 1618 1348
Numb Reliabili .99 .98 .97 .96 .95 .94	.99 9564 4776 3180 2382 1903 1584 1355 1184	431 - 73 .95 8894 4443 2959 2217 1772 1476 1264 1105	.90 8527 4261 2839 2127 1701 1416 1213 1061	.85 8290 4143 2760 2069 1654 1378 1180 1032	.8 810- 405- 269- 202: 1618- 1348- 1155- 1016
Numb Reliabili .99 .98 .97 .96 .95 .94 93 92	460 er of failures = ty .99 9564 4776 3180 2382 1903 1584 1355 1184 1051	431 - 73 .95 8894 4443 2959 2217 1772 1476 1264 1105 981	.90 8527 4261 2839 2127 1701 1416 1213 1061 942	405 Confidence Level .85 8290 4143 2760 2069 1654 1378 1180 1032 917	.80 8104 4050 2699 2023 1618 1348 1155 1010 897
Numb Reliabili .99 .98 .97 .96 .95 .94 93 92 91	460 er of failures = ty .99 9564 4776 3180 2382 1903 1584 1355 1184 1051 945	431 - 73 .95 8894 4443 2959 2217 1772 1476 1264 1105 981 882	.90 8527 4261 2839 2127 1701 1416 1213 1061 942 847	405 Confidence Level .85 8290 4143 2760 2069 1654 1378 1180 1032 917 825	.80 8104 4050 2699 2023 1618 1348 1155 1010 897 807
Numb Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	460 er of failures a ty .99 9564 4776 3180 2382 1903 1584 1355 1184 1051 945 858	431 - 73 .95 8894 4443 2959 2217 1772 1476 1264 1105 981 882 801	.90 8527 4261 2839 2127 1701 1416 1213 1061 942 847 770	405 Confidence Level .85 8290 4143 2760 2069 1654 1378 1180 1032 917 825 749	.8 810- 405- 269- 202: 1618- 1348- 1155- 1016- 897- 807- 733
Numb Reliabili .99 .98 .97 .96 .95 .94 93 92 91	460 er of failures = ty .99 9564 4776 3180 2382 1903 1584 1355 1184 1051 945 858 785	431 - 73 .95 8894 4443 2959 2217 1772 1476 1264 1105 981 882 801 734	.90 8527 4261 2839 2127 1701 1416 1213 1061 942 847 770 705	405 Confidence Level .85 8290 4143 2760 2069 1654 1378 1180 1032 917 825 749 687	.80 8104 4050 2699 2023 1618 1348 1155 1010 897 807 733 672
Numb Reliabili .99 .98 .97 .96 .95 .94 93 92 91 90 89 88	460 er of failures = ty .99 9564 4776 3180 2382 1903 1584 1355 1184 1051 945 858 785 724	431 - 73 - 95 - 8894 - 4443 - 2959 - 2217 - 1772 - 1476 - 1264 - 1105 - 981 - 882 - 801 - 734 - 677	.90 8527 4261 2839 2127 1701 1416 1213 1061 942 847 770 705 650	405 Confidence Level .85 8290 4143 2760 2069 1654 1378 1180 1032 917 825 749 687 633	.80 8104 4050 2699 2023 1618 1348 1155 1010 897 807 733 672 620
Numb Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	460 er of failures = ty .99 9564 4776 3180 2382 1903 1584 1355 1184 1051 945 858 785 724 671	431 - 73 - 95 - 8894 - 4443 - 2959 - 2217 - 1772 - 1476 - 1264 - 1105 - 981 - 882 - 801 - 734 - 677 - 628	.90 8527 4261 2839 2127 1701 1416 1213 1061 942 847 770 705 650 603	405 Confidence Level .85 8290 4143 2760 2069 1654 1378 1180 1032 917 825 749 687 633 588	.88 8104 4056 2699 2023 1618 1348 1155 1016 897 807 733 672 620 576
Numb Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	460 er of failures = ty .99 9564 4776 3180 2382 1903 1584 1355 1184 1051 945 858 785 724 671 626	431 - 73 - 95 - 8894 - 4443 - 2959 - 2217 - 1772 - 1476 - 1264 - 1105 - 981 - 882 - 801 - 734 - 677 - 628 - 585	.90 8527 4261 2839 2127 1701 1416 1213 1061 942 847 770 705 650 603 563	405 Confidence Level .85 8290 4143 2760 2069 1654 1378 1180 1032 917 825 749 687 633 588 548	.80 8104 4050 2699 2023 1618 1348 1155 1010 897 807 733 672 620 576
Numb Reliabili .99 .98 .97 .96 .95 .94 93 92 91 90 89 88 87 86 85	460 er of failures = ty .99 9564 4776 3180 2382 1903 1584 1355 1184 1051 945 858 785 724 671 626 586	431 - 73 - 95 - 8894 - 4443 - 2959 - 2217 - 1772 - 1476 - 1264 - 1105 - 981 - 882 - 801 - 734 - 677 - 628 - 585 - 548	.90 8527 4261 2839 2127 1701 1416 1213 1061 942 847 770 705 650 603 563 527	405 Confidence Level .85 8290 4143 2760 2069 1654 1378 1180 1032 917 825 749 687 633 588 548 514	.80 8104 4050 2699 2023 1618 1348 1155 1010 897 807 733 672 620 576 537
Numb Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	460 er of failures = ty .99 9564 4776 3180 2382 1903 1584 1355 1184 1051 945 858 785 724 671 626	431 - 73 - 95 - 8894 - 4443 - 2959 - 2217 - 1772 - 1476 - 1264 - 1105 - 981 - 882 - 801 - 734 - 677 - 628 - 585 - 548 - 515	.90 8527 4261 2839 2127 1701 1416 1213 1061 942 847 770 705 650 603 563 527 496	405 Confidence Level .85 8290 4143 2760 2069 1654 1378 1180 1032 917 825 749 687 633 588 548 514 483	.80 8104 4050 2699 2023 1618 1348 1155 1010 897 733 672 620 576 537 503 473
Numb Reliabili .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	460 er of failures = ty .99 9564 4776 3180 2382 1903 1584 1355 1184 1051 945 858 785 724 671 626 586 550	431 - 73 - 95 - 8894 - 4443 - 2959 - 2217 - 1772 - 1476 - 1264 - 1105 - 981 - 882 - 801 - 734 - 677 - 628 - 585 - 548	.90 8527 4261 2839 2127 1701 1416 1213 1061 942 847 770 705 650 603 563 527	405 Confidence Level .85 8290 4143 2760 2069 1654 1378 1180 1032 917 825 749 687 633 588 548 514	396

TABLE B-18 continued

Numbe Reliabilit	r of failures	- 74		Ca-644 1 1	
	,			Confidence Level	
	.99	.95	.90	.85	.80
.99	9677	9003	8635	8396	8209
.98	4832	4498	4314	4196	4103
.97	3217	2996	2874	2795	2734
. 96	2410	2245	2154	2095	2050
.95	1925	1794	1722	1675	
.94	1602	1494	1434	1395	1639
.93	1372	1279	1228	1195	1365
. 92	1199	1118	1074		1170
.91	1064	993	954	1045	1023
.90	956	893	858	929	909
.89	868	811	77 <u>°</u>	835	818
.88	795	743	714	759 605	743
.87	733	685		695	681
.86	679	635	659 611	641	628
.85	633	592	570	595	583
.84	593	555	534	555	544
.83	557	522	502	520	510
.82	525	492	474	489	479
.81	497	466	474 449	462	453
.80	471	442	426	437	429
	7/4	442	420	415	407
	of failures	■ 75			
Number Reliability		= 75		Confidence Level	
					90
	.99	.95	.90	.85	.80
Reliability	, 99 9791	.95 9113	.90 8742	.85 8502	8314
Reliability	.99	.95 9113 4552	.90 8742 4368	.85 8502 4248	8314 4155
Reliability .99 .98	.99 9791 4889 3255	.95 9113 4552 3032	.90 8742 4368 2910	.85 8502 4248 2831	8314 4155 2769
.99 .98 .97	.99 9791 4889	.95 9113 4552 3032 2272	.90 8742 4368 2910 2181	.85 8502 4248 2831 2122	8314 4155 2769 2076
.99 .98 .97	.99 9791 4889 3255 2438	.95 9113 4552 3032 2272 1816	.90 8742 4368 2910 2181 1744	.85 8502 4248 2831 2122 1697	8314 4155 2769 2076 1660
.99 .98 .97 .96	.99 9791 4889 3255 2438 1948	.95 9113 4552 3032 2272 1816 1512	.90 8742 4368 2910 2181 1744 1452	.85 8502 4248 2831 2122 1697 1413	8314 4155 2769 2076 1660 1383
.99 .98 .97 .96 .95	.99 9791 4889 3255 2438 1948 .621 1388	.95 9113 4552 3032 2272 1816 1512 1295	.90 8742 4368 2910 2181 1744 1452	.85 8502 4248 2831 2122 1697 1413	8314 4155 2769 2076 1660 1383 1185
.99 .98 .97 .96 .95 .94	.99 9791 4889 3255 2438 1948 .621 1388 1213	.95 9113 4552 3032 2272 1816 1512 1295 1132	.90 8742 4368 2910 2181 1744 1452 1244	.85 8502 4248 2831 2122 1697 1413 1211 1059	8314 4155 2769 2076 1660 1383 1185 1036
.99 .98 .97 .96 .95 .94 .93	.99 9791 4889 3255 2438 1948 .621 1388 1213	.95 9113 4552 3032 2272 1816 1512 1295 1132 1005	.90 8742 4368 2910 2181 1744 1452 1244 1087 966	.85 8502 4248 2831 2122 1697 1413 1211 1059 940	8314 4155 2769 2076 1660 1383 1185 1036 921
.99 .98 .97 .96 .95 .94 .93 .92	.99 9791 4889 3255 2438 1948 .621 1388 1213 1076 968	.95 9113 4552 3032 2272 1816 1512 1295 1132 1005 904	.90 8742 4368 2910 2181 1744 1452 1244 1087 966 869	.85 8502 4248 2831 2122 1697 1413 1211 1059 940 846	8314 4155 2769 2076 1660 1383 1185 1036 921 828
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 9791 4889 3255 2438 1948 1621 1388 1213 1076 968 878	.95 9113 4552 3032 2272 1816 1512 1295 1132 1005 904 821	.90 8742 4368 2910 2181 1744 1452 1244 1087 966 869 789	.85 8502 4248 2831 2122 1697 1413 1211 1059 940 846 769	8314 4155 2769 2076 1660 1383 1185 1036 921 828 753
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 9791 4889 3255 2438 1948 .621 1388 1213 1076 968	.95 9113 4552 3032 2272 1816 1512 1295 1132 1005 904 821 752	.90 8742 4368 2910 2181 1744 1452 1244 1087 966 869 789 723	.85 8502 4248 2831 2122 1697 1413 1211 1059 940 846 769 704	8314 4155 2769 2076 1660 1383 1185 1036 921 828 753 689
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 9791 4889 3255 2438 1948 1621 1388 1213 1076 968 878 804 741	.95 9113 4552 3032 2272 1816 1512 1295 1132 1005 904 821 752 693	.90 8742 4368 2910 2181 1744 1452 1244 1087 966 869 789 723 667	.85 8502 4248 2831 2122 1697 1413 1211 1059 940 846 769 704 650	8314 4155 2769 2076 1660 1383 1185 1036 921 828 753 689 636
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 9791 4889 3255 2438 1948 1621 1388 1213 1076 968 878 804 741 687	.95 9113 4552 3032 2272 1816 1512 1295 1132 1005 904 821 752 693 643	.90 8742 4368 2910 2181 1744 1452 1244 1087 966 869 789 723 667 619	.85 8502 4248 2831 2122 1697 1413 1211 1059 940 846 769 704 650 603	8314 4155 2769 2076 1660 1383 1185 1036 921 828 753 689 636 590
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 9791 4889 3255 2438 1948 1621 1388 1213 1076 968 878 804 741 687 641	.95 9113 4552 3032 2272 1816 1512 1295 1132 1005 904 821 752 693 643 600	.90 8742 4368 2910 2181 1744 1452 1244 1087 966 869 789 723 667 619 577	.85 8502 4248 2831 2122 1697 1413 1211 1059 940 846 769 704 650 603 562	8314 4155 2769 2076 1660 1383 1185 1036 921 828 753 689 636 590 551
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 9791 4889 3255 2438 1948 :621 1388 1213 1076 968 878 804 741 687 641	.95 9113 4552 3032 2272 1816 1512 1295 1132 1005 904 821 752 693 643 600 562	.90 8742 4368 2910 2181 1744 1452 1244 1087 966 869 789 723 667 619 577 541	.85 8502 4248 2831 2122 1697 1413 1211 1059 940 846 769 704 650 603 562 527	8314 4155 2769 2076 1660 1383 1185 1036 921 828 753 689 636 590 551
Reliability .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 9791 4889 3255 2438 1948 :621 1388 1213 1076 968 878 804 741 687 641 600 564	.95 9113 4552 3032 2272 1816 1512 1295 1132 1005 904 821 752 693 643 600 562 528	.90 8742 4368 2910 2181 1744 1452 1244 1087 966 869 789 723 667 619 577 541 508	.85 8502 4248 2831 2122 1697 1413 1211 1059 940 846 769 704 650 603 562 527 496	8314 4155 2769 2076 1660 1383 1185 1036 921 828 753 689 636 590 551 516 486
Reliability .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	.99 9791 4889 3255 2438 1948 :621 1388 1213 1076 968 878 804 741 687 641 600 564 532	.95 9113 4552 3032 2272 1816 1512 1295 1132 1005 904 821 752 693 643 600 562 528 498	.90 8742 4368 2910 2181 1744 1452 1244 1087 966 869 789 723 667 619 577 541 508 480	.85 8502 4248 2831 2122 1697 1413 1211 1059 940 846 769 704 650 603 562 527 496 468	8314 4155 2769 2076 1660 1383 1185 1036 921 828 753 689 636 590 551 516 486 458
Reliability .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 .83	.99 9791 4889 3255 2438 1948 :621 1388 1213 1076 968 878 804 741 687 641 600 564	.95 9113 4552 3032 2272 1816 1512 1295 1132 1005 904 821 752 693 643 600 562 528	.90 8742 4368 2910 2181 1744 1452 1244 1087 966 869 789 723 667 619 577 541 508	.85 8502 4248 2831 2122 1697 1413 1211 1059 940 846 769 704 650 603 562 527 496	8314 4155 2769 2076 1660 1383 1185 1036 921 828 753 689 636 590 551 516 486

TABLE B-18 continued

	mber of failures	= 76			
Reliabi	lity			Confidence Leve	1
	.99	.95	.90	85	.80
.99	9904	9222	8849	8607	
.98	4946	4607	4422	4301	8419
•97	3293	3069	2946	2866	4208
. 96	2466	2299	2208	2148	2804
.95	1971	1838	1765	1718	2102
. 94	1640	1530	1470		1681
.93	1404	1310	1259	1431	1400
. 92	1227	1145	1101	1226	1200
.91	1089	1017	978	1072	1049
• 90	979	915	879	952 957	932
.89	889	831	799	856	839
.88	813	761	732	778	762
.87	750	702	675	713	698
.86	695	651	626	658	644
.85	648	607	584	610	598
.84	607	568		569	558
.83	570	534	547	533	523
.82	538	504	515	502	492
.81	509	477	486	474	464
.80	483	453	460 436	448 426	440 417
Num Reliabil	ber of failures : ity	- 77		Confidence Level	
	.99	.95	.90	0.5	
.99	10017	9331	8957	.85	.80
.98	5002	4662	4475	8713	8524
.97	3330	3105	2982	4354	4260
.96	2495	2327	2235	2901	2839
.95	1993	1860	1786	2175	2128
. 94	1659	1548	1488	1739	1702
.93	1420	1326	1274	1448	1418
.92	1241	1159	1114	1241	1215
.91	1102	1029	990	1085	1062
.90	990	926	890	964	944
.89	899	841	809	867	849
.88	823	770	741	788	772
.87	758	710	683	722	707
.86	703	659	634	666	652
.85	656	614		618	605
.84	614	575	591	576	5 6 5
.83	577	541	554 531	540	529
.82	544	510	521	508	498
.81	515	483	492	479	470
. 80	488	458	465	454	445
		470	442	431	423

TABLE B-18 continued

Nu Reliabi	mber of failures	- 78			
Kellabi	lity			Confidence Leve	1
	.99	.95	.90	.85	80
.99	10130	9441	9064	8819	.80
. 98	5059	4716	4529	4407	8628
.97	3368	3141	3017	2937	4312
. 96	2523	2354	2261	2201	2874
.95	2016	1881	1808	1760	2154
. 94	1678	1566	1506	1466	1723
.93	1436	1341	1290	1256	1435
. 92	1255	1173	1128	1098	1229
. 91	1114	1041	1002		1075
• 90	1001	936	901	976	955
.89	909	851	818	878	859
.88	832	779	750	797	781
.87	767	718	691	731	716
.86	711	666	642	674	660
.85	663	621	598	625	613
.84	621	582	561	583	572
.83	583	547	527	547 514	536
.82	550	516	498	485	504
.81	521	489	471	460	476
.80	494	464	447	436	451 428
Nuπ	ber of failures	- 70			
Reliabil		- / 7		Confidence Level	1
					-
00	.99	.95	.90	.85	.80
.99 .98	10243	9550	9171	8925	8733
.98	5115	4771	4582	4460	4365
.96	3406	3178	3053	2 9 72	2909
.95	2551	2381	2288	2228	2181
.94	2038	1903	1829	1781	1744
.93	1696	1585	1523	1484	1452
.92	1452	1357	1305	1271	1244
.92	1269	1186	1141	1111	1088
.90	1126 1013	1054	1013	987	967
.89	_	947	911	888	870
.88	919 842	860	828	807	791
.87		788	759	739	724
.86	776	727	700	682	668
.85	719 6/1	674	649	633	620
.84		629	606	590	579
.83	628 590	589	567	553	542
.82	556	554 533	533	520	51.0
.81	526	522	503	491	482
.80	499	494 469	477 452	465 442	456 433

TABLE B-18 continued

No Reliabi	umber of failures	= 80			
VEITED	ility			Confidence Leve	el
	.99	.95	.90	.85	20
.99	10356	9659	9278	9031	.80
. 98	5171	4825	4636	4513	8838
. 97	3443	3214	3089	3007	4417
. 96	2579	2408	2315	2254	2943
• 95	2061	1925	1851	1802	2207
. 94	1715	1603	1541	1501	1765
.93	1468	1373	1320	1286	1470
. 92	1283	1200	1154	1125	1259
. 91	1139	1066	1025	999	1101
. 90	1024	958	922	899	979
.89	929	870	838	817	880
.88	851	797	767	748	800
. 87	784	735	708	690	733
. 86	727	682	657	641	676
. 85	678	636	613	597	628
.84	635	596	574	560	586 570
.83	597	560	540	527	549
.82	563	528	509	497	516
.81	532	500	482	471	487
.80	505	475	458	447	461 438
	ber of failures =	8 1			
Reliabil	ity			Confidence Level	1
	.99	. 95	.90	.85	.80
.99	10469	9768	9385	9136	8942
.98	5228	4880	4690	4566	4469
.97	3481	3250	3124	3042	2978
.96	2607	2436	2342	2281	2233
.95	2083	1947	1872	1823	1785
.94	1734	1621	1559	1519	1487
.93	1484	1388	1335	1301	1274
. 92	1297	1214	1168	1138	1115
.91	1151	1078	1037	1011	990
.90	1035	969	933	909	891
.89	940	880	847	826	809
.88	860	806	776	757	742
.87	793	743	716	698	684
.86	735	690	664	648	635
.85	685	643	620	604	593
.84	642	602	581	566	555
.83	603	566	546	533	522
.82 .81	569	534	515	503	493
.80	538	506	488	476	467
• 00	511	480	463	452	443

TABLE B-18 continued

	lity			Confidence Leve	el
	.99	.95	.90	0.5	
.9 9	10581	9877	9492	.85	.80
.98	· 5284	4934	4743	9242	9047
.97	3518	3287	3160	4619	4522
. 96	2636	2463	2368	3078	3010
. 9 5	2106	1969	1893	2307	2259
. 94	1753	1639	1577	1845	1806
. 93	1500	1404	1351	1536	1505
. 9 2	1311	1227	1181	1316	1289
.91	1164	1090	1049	1151	1128
.90	1046	980	_	1023	1002
.89	950	890	944	920	901
.88	870	815	857	836	819
.87	802	752	785	766	750
.86	743	697	724	706	692
. 85	693	650	672	656	643
.84	649	609	627	612	600
.83	610	573	587 552	573	5 62
.82	575	540	552	539	529
.81	544	511	521 493	509	499
.80	516	485	493 468	482 457	472
	har as s-11	^ ^			
Reliabil	ber of failures : ity	• 83		Confidence Leve	1
Reliabil	.99	• 83 • 9 5	.90		
Reliabil	.99 10694		.90 9599	.85	.80
.99 .98	.99 10694 5340	.95	9599	.85 9348	.80 9152
.99 .98 .97	.99 10694 5340 3556	. 95 9986	9599 4796	.85 9348 4671	.80 9152 4574
.99 .98 .97	.99 10694 5340 3556 2664	. 95 9986 4989	9599 4796 3196	.85 9348 4671 3113	.80 9152 4574 3048
.99 .98 .97 .96	.99 10694 5340 3556 2664 2128	. 9 5 9986 4989 3323	9599 4796 3196 2395	.85 9348 4671 3113 2333	.80 9152 4574 3048 2285
.99 .98 .97 .96 .95	.99 10694 5340 3556 2664 2128 1771	.95 9986 4989 3323 2490	9599 4796 3196 2395 1915	.85 9348 4671 3113 2333 1866	.80 9152 4574 3048 2285 1827
.99 .98 .97 .96 .95 .94	.99 10694 5340 3556 2664 2128 1771 1516	.95 9986 4989 3323 2490 1990	9599 4796 3196 2395 1915 1595	.85 9348 4671 3113 2333 1866 1554	.80 9152 4574 3048 2285 1827 1522
.99 .98 .97 .96 .95 .94 .93	.99 10694 5340 3556 2664 2128 1771 1516 1325	.95 9986 4989 3323 2490 1990	9599 4796 3196 2395 1915 1595	.85 9348 4671 3113 2333 1866 1554	.80 9152 4574 3048 2285 1827 1522 1304
.99 .98 .97 .96 .95 .94 .93 .92	.99 10694 5340 3556 2664 2128 1771 1516 1325 1176	.95 9986 4989 3323 2490 1990 1657	9599 4796 3196 2395 1915 1595 1366 1194	.85 9348 4671 3113 2333 1866 1554 1331 1164	.80 9152 4574 3048 2285 1827 1522 1304 1141
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 10694 5340 3556 2664 2128 1771 1516 1325 1176 1057	.95 9986 4989 3323 2490 1990 1657 1419	9599 4796 3196 2395 1915 1595 1366 1194 1061	.85 9348 4671 3113 2333 1866 1554 1331 1164	.80 9152 4574 3048 2285 1827 1522 1304 1141
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 10694 5340 3556 2664 2128 1771 1516 1325 1176 1057 960	.95 9986 4989 3323 2490 1990 1657 1419 1241	9599 4796 3196 2395 1915 1595 1366 1194 1061 954	.85 9348 4671 3113 2333 1866 1554 1331 1164 1034 930	.80 9152 4574 3048 2285 1827 1522 1304 1141 1013 912
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 10694 5340 3556 2664 2128 1771 1516 1325 1176 1057 960 879	.95 9986 4989 3323 2490 1990 1657 1419 1241 1102 991	9599 4796 3196 2395 1915 1595 1366 1194 1061	.85 9348 4671 3113 2333 1866 1554 1331 1164 1034 930 845	.80 9152 4574 3048 2285 1827 1522 1304 1141 1013 912 828
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 10694 5340 3556 2664 2128 1771 1516 1325 1176 1057 960 879 810	.95 9986 4989 3323 2490 1990 1657 1419 2241 1102 991 900	9599 4796 3196 2395 1915 1595 1366 1194 1061 954 867 794	.85 9348 4671 3113 2333 1866 1554 1331 1164 1034 930 845 774	.80 9152 4574 3048 2285 1827 1522 1304 1141 1013 912 828 759
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 10694 5340 3556 2664 2128 1771 1516 1325 1176 1057 960 879 810 751	.95 9986 4989 3323 2490 1990 1657 1419 2241 1102 991 900 824	9599 4796 3196 2395 1915 1595 1366 1194 1061 954 867	.85 9348 4671 3113 2333 1866 1554 1331 1164 1034 930 845 774 714	.80 9152 4574 3048 2285 1827 1522 1304 1141 1013 912 828 759 700
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 10694 5340 3556 2664 2128 1771 1516 1325 1176 1057 960 879 810 751 700	.95 9986 4989 3323 2490 1990 1657 1419 2241 1102 991 900 824 760	9599 4796 3196 2395 1915 1595 1366 1194 1061 954 867 794	.85 9348 4671 3113 2333 1866 1554 1331 1164 1034 930 845 774 714 663	.80 9152 4574 3048 2285 1827 1522 1304 1141 1013 912 828 759 700 650
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 10694 5340 3556 2664 2128 1771 1516 1325 1176 1057 960 879 810 751 700 656	.95 9986 4989 3323 2490 1990 1657 1419 2241 1102 991 900 824 760 705	9599 4796 3196 2395 1915 1595 1366 1194 1061 954 867 794 732 680	.85 9348 4671 3113 2333 1866 1554 1331 1164 1034 930 845 774 714 663 619	.80 9152 4574 3048 2285 1827 1522 1304 1141 1013 912 828 759 700 650 666
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 10694 5340 3556 2664 2128 1771 1516 1325 1176 1057 960 879 810 751 700 656 616	.95 9986 4989 3323 2490 1990 1657 1419 2241 1102 991 900 824 760 705 658	9599 4796 3196 2395 1915 1595 1366 1194 1061 954 867 794 732 680 634	.85 9348 4671 3113 2333 1866 1554 1331 1164 1034 930 845 774 714 663 619 580	.80 9152 4574 3048 2285 1827 1522 1304 1141 1013 912 828 759 700 650 666 568
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 10694 5340 3556 2664 2128 1771 1516 1325 1176 1057 960 879 810 751 700 656 616 581	.95 9986 4989 3323 2490 1990 1657 1419 2241 1102 991 900 824 760 705 658 616	9599 4796 3196 2395 1915 1595 1366 1194 1061 954 867 794 732 680 634 594	.85 9348 4671 3113 2333 1866 1554 1331 1164 1034 930 845 774 714 663 619 580 545	.80 9152 4574 3048 2285 1827 1522 1304 1141 1013 912 828 759 700 650 666 568 535
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 10694 5340 3556 2664 2128 1771 1516 1325 1176 1057 960 879 810 751 700 656 616	.95 9986 4989 3323 2490 1990 1657 1419 1241 1102 991 900 824 760 705 658 616 579	9599 4796 3196 2395 1915 1595 1366 1194 1061 954 867 794 732 680 634 594	.85 9348 4671 3113 2333 1866 1554 1331 1164 1034 930 845 774 714 663 619 580	.80 9152 4574 3048 2285 1827 1522 1304 1141 1013 912 828 759 700 650 666 568

TABLE B-18 continued

	Number of failures	= 84			
Reli	ability			Confidence Leve	el
	.99	. 95	.90	.85	00
.99	10807	10095	9706	9453	.80 9256
•98	5397	5043	4850	4724	4626
. 97	3593	3359	3231	3148	3083
. 96	2692	2517	2422	2360	2311
.95	2151	2012	1936	1887	1848
.94	1790	1675	1612	1571	1540
.93	1532	1435	1381	1346	1319
.92	1339	1254	1208	1177	1154
.91	1189	1114	1073	1046	1025
• 90	1069	1002	965	941	922
. 89	970	910	877	855	838
.88	888	833	803	783	768
.87	819	768	741	723	708
.86	759	713	687	671	658
.85	708	665	641	626	613
.84	663	623	601	586	575
.83	623	585	565	551	541
.82	587	552	533	520	511
.81	556	523	505	493	483
.80	527	496	479	468	459
,	Number of failures =	. 95			
	bility	- 05		Confidence Leve	1
	.99	05	•		
.99	10919	.95 10204	.90	.85	.80
.98	5453	5098	9813	9559	9361
.97	3631	3395	4903	4777	4678
. 96	2720	2544	3267 2448	3183	3118
. 95	2173	2034	2446 1958	2386	2337
. 94	1809	1693	1630	1908	1869
.93	1548	1450	1396	1589 1361	1557
.92	1353	1268	1221	1191	1334
.91	1201	1126	1085	1058	1167
.90	1080	1012	975	951	1037
.89	980	920	886	864	933
.88	898	842	812	792	847
.87	827	777	749	731	776
. 86	767	721	695	678	716
.85	715	672	648	633	665
. 84	670	629	607	593	620
.83	629	592	571	558	581
.82	594	558	539	526	547
.81	562	529	510		516
		347	210	44X	7.00
.80	533	502	484	498 473	489 464

TABLE B-18 continued

Nur Reliabi	mber of failures lity	= 86		Confidence Leve	<u>•</u> 1
	.99	.95	.90	.85	.80
.99	11032	10312	9920	9665	9465
.98	5509	5152	4957	4830	4731
.97	3668	3432	3302	3218	3153
.96	2748	2572	2475	2412	2362
.95	2196	2056	1979	1929	1890
.94	1827	1711	1648	1607	1574
.93	1564	1466	1412	1376	1349
.92	1367	1281	1234	1204	1180
.91	1214	1138	1096	1069	
.90	1091	1023	986	962	1048 943
.89	991	929	896	874	943 857
.88	907	851	821	801	
.87	836	785	757	739	785
.86	775	728	702	686	724 672
.85	723	679	655	640	627
.84	677	636	614	599	588
.83	636	598	577	564	553
.82	600	564	545	532	522
.81	568	534	516	504	494
.80	538	507	490	478	469
	mber of failures	- 87			
Num Reliabil		- 87		Confidence Leve	e1
Reliabil		= 87	.90		
Reliabil	lity		.90 10027	.85	.80
.99 .98	.99	.95			.80 9570
.99 .98 .97	.99 11144	.95 10421	10027	.85 9770	.80 9570 4783
.99 .98 .97	.99 11144 5565	.95 10421 5206	10027 5010	.85 9770 4883	.80 9570 4783 3187
.99 .98 .97 .96	.99 11144 5565 3706 2776 2218	.95 10421 5206 3468	10027 5010 3338	.85 9770 4883 3253	.80 9570 4783
.99 .98 .97 .96 .95	.99 11144 5565 3706 2776 2218 1846	.95 10421 5206 3468 2599	10027 5010 3338 2502	.85 9770 4883 3253 2439	.80 9570 4783 3187 2390
.99 .98 .97 .96 .95 .94	.99 11144 5565 3706 2776 2218	.95 10421 5206 3468 2599 2077	10027 5010 3338 2502 2000	.85 9770 4883 3253 2439 1950	.80 9570 4783 3187 2390 1911 1592
.99 .98 .97 .96 .95 .94	.99 11144 5565 3706 2776 2218 1846 1580 1381	.95 10421 5206 3468 2599 2077 1730	10027 5010 3338 2502 2000 1666	.85 9770 4883 3253 2439 1950 1624	.80 9570 4783 3187 2390 1911 1592 1364
.99 .98 .97 .96 .95 .94 .93	.99 11144 5565 3706 2776 2218 1846 1580 1381 1226	.95 10421 5206 3468 2599 2077 1730 1481	10027 5010 3338 2502 2000 1666 1427	.85 9770 4883 3253 2439 1950 1624 1391	.80 9570 4783 3187 2390 1911 1592
.99 .98 .97 .96 .95 .94 .93 .92	.99 11144 5565 3706 2776 2218 1846 1580 1381 1226 1102	.95 10421 5206 3468 2599 2077 1730 1481 1295	10027 5010 3338 2502 2000 1666 1427 1248	.85 9770 4883 3253 2439 1950 1624 1391	.80 9570 4783 3187 2390 1911 1592 1364 1193
.99 .98 .97 .96 .95 .94 .93 .92 .91	.99 11144 5565 3706 2776 2218 1846 1580 1381 1226 1102 1001	.95 10421 5206 3468 2599 2077 1730 1481 1295	10027 5010 3338 2502 2000 1666 1427 1248 1108	.85 9770 4883 3253 2439 1950 1624 1391 1217	.80 9570 4783 3187 2390 1911 1592 1364 1193 1060
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89	.99 11144 5565 3706 2776 2218 1846 1580 1381 1226 1102 1001 916	.95 10421 5206 3468 2599 2077 1730 1481 1295 1150 1034 939 860	10027 5010 3338 2502 2000 1666 1427 1248 1108 997	.85 9770 4883 3253 2439 1950 1624 1391 1217 1081 972	.80 9570 4783 3187 2390 1911 1592 1364 1193 1060 953
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 11144 5565 3706 2776 2218 1846 1580 1381 1226 1102 1001 916 845	.95 10421 5206 3468 2599 2077 1730 1481 1295 1150 1034 939 860 793	10027 5010 3338 2502 2000 1666 1427 1248 1108 997 906	.85 9770 4883 3253 2439 1950 1624 1391 1217 1081 972 884	.80 9570 4783 3187 2390 1911 1592 1364 1193 1060 953 866
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 11144 5565 3706 2776 2218 1846 1580 1381 1226 1102 1001 916 845 783	.95 10421 5206 3468 2599 2077 1730 1481 1295 1150 1034 939 860 793 736	10027 5010 3338 2502 2000 1666 1427 1248 1108 997 906 830	.85 9770 4883 3253 2439 1950 1624 1391 1217 1081 972 884 810	.80 9570 4783 3187 2390 1911 1592 1364 1193 1060 953 866 794
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 11144 5565 3706 2776 2218 1846 1580 1381 1226 1102 1001 916 845 783 730	.95 10421 5206 3468 2599 2077 1730 1481 1295 1150 1034 939 860 793 736 686	10027 5010 3338 2502 2000 1666 1427 1248 1108 997 906 830 765	.85 9770 4883 3253 2439 1950 1624 1391 1217 1081 972 884 810 747	.80 9570 4783 3187 2390 1911 1592 1364 1193 1060 953 866 794 732
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	.99 11144 5565 3706 2776 2218 1846 1580 1381 1226 1102 1001 916 845 783 730 684	.95 10421 5206 3468 2599 2077 1730 1481 1295 1150 1034 939 860 793 736 686 643	10027 5010 3338 2502 2000 1666 1427 1248 1108 997 906 830 765 710	.85 9770 4883 3253 2439 1950 1624 1391 1217 1081 972 884 810 747 693	.80 9570 4783 3187 2390 1911 1592 1364 1193 1060 953 866 794 732 680
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .94	.99 11144 5565 3706 2776 2218 1846 1580 1381 1226 1102 1001 916 845 783 730 684 643	.95 10421 5206 3468 2599 2077 1730 1481 1295 1150 1034 939 860 793 736 686 643 605	10027 5010 3338 2502 2000 1666 1427 1248 1108 997 906 830 765 710 662	.85 9770 4883 3253 2439 1950 1624 1391 1217 1081 972 884 810 747 693 647	.80 9570 4783 3187 2390 1911 1592 1364 1193 1060 953 866 794 732 680 634
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .94 .83 .82	.99 11144 5565 3706 2776 2218 1846 1580 1381 1226 1102 1001 916 845 783 730 684 643 606	.95 10421 5206 3468 2599 2077 1730 1481 1295 1150 1034 939 860 793 736 686 643 605 570	10027 5010 3338 2502 2000 1666 1427 1248 1108 997 906 830 765 710 662 620	.85 9770 4883 3253 2439 1950 1624 1391 1217 1081 972 884 810 747 693 647 606	.80 9570 4783 3187 2390 1911 1592 1364 1193 1060 953 866 794 732 680 634 594
.99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .94	.99 11144 5565 3706 2776 2218 1846 1580 1381 1226 1102 1001 916 845 783 730 684 643	.95 10421 5206 3468 2599 2077 1730 1481 1295 1150 1034 939 860 793 736 686 643 605	10027 5010 3338 2502 2000 1666 1427 1248 1108 997 906 830 765 710 662 620 584	.85 9770 4883 3253 2439 1950 1624 1391 1217 1081 972 884 810 747 693 647 606 570	.80 9570 4783 3187 2390 1911 1592 1364 1193 1060 953 866 794 732 680 634 594

TABLE B-18 continued

RELIABILITY: SUCCESS - FAILURE

Reliabi:	lity	= 88		Confidence Lev	el
	.99	.95	.90	.85	.80
.99	11256	10530	10134	9876	9674
.98	5621	5261	5064	4935	4835
.97	3743	3504	. 3374	3289	3222
.96	2804	2626	2529	2465	2416
.95	2240	2099	2022	1971	1932
.94	1865	1748	1684	1642	1609
.93	1596	1497	1442	1406	1379
.92	1395	1308	1261	1230	1206
.91	1239	1162	1120	1093	1071
.90	1113	1045	1007	983	969
.89	1011	949	915	893	876
.88	925	869	838	818	803
.87	853	802	773	755	740
.86	791	744	718	701	687
.85	738	694	669	654	641
.84	691	650	627	612	601
.83	649	611	590	576	565
.82	612	576	557	544	534
.81	579	. 546	527	515	505
.80	550	518	500	489	480
.80	550	518			
. 80 Num	550 ber of failures	518			480
. 80 Num	550 ber of failures	518		489 Confidence Leve	480
.80 Num Reliabil	550 ber of failures ity	518 ≈ 89	500	489 Confidence Leve	480 •1 .80
.80 Num Reliabil	550 aber of failures ity .99	518 ≈ 89 .95 10639	.90	489 Confidence Leve	480 ≥1 .80 9779
.80 Num Reliabil .99 .98	550 aber of failures ity .99 11368	518 ≈ 89 .95	.90 10240	489 Confidence Leve .85 9981 4988	480 ≥1 .80 9779 4887
.80 Num Reliabil .99 .98	550 aber of failures ity .99 11368 5677	518 ≈ 89 .95 10639 5315	.90 10240 5117	489 Confidence Leve	480 ≥1 .80 9779
.80 Num Reliabil .99 .98 .97	550 aber of failures ity .99 11368 5677 3780	518 ≈ 89 .95 10639 5315 3540	.90 10240 5117 3409	489 Confidence Leve .85 .9981 .4988 .3324	.80 9779 4887 3257
.80 Num Reliabil .99 .98 .97 .96 .95	.99 11368 5677 3780 2832	518 ≈ 89 .95 10639 5315 3540 2653	.90 10240 5117 3409 2555	489 Confidence Leve .85 9981 4988 3324 2491	.80 9779 4887 3257 2442
.80 Num Reliabil .99 .98 .97 .96 .95 .94	.99 11368 5677 3780 2832 2263	518 ≥ 89 .95 10639 5315 3540 2653 2121	.90 10240 5117 3409 2555 2043	489 Confidence Level .85 .9981 .4988 .3324 .2491 .1992	.80 9779 4887 3257 2442 1953
.80 Num Reliabil .99 .98 .97 .96 .95 .94	.99 11368 5677 3780 2832 2263 1883	518 2 89 .95 10639 5315 3540 2653 2121 1766	.90 10240 5117 3409 2555 2043 1701	489 Confidence Level .85 .85 .9981 .4988 .3324 .2491 .1992 .1659	.80 9779 4887 3257 2442 1953 1626
.80 Num Reliabil .99 .98 .97 .96 .95 .94 .93	.99 11368 5677 3780 2832 2263 1883 1612	518 2 89 .95 10639 5315 3540 2653 2121 1766 1512	.90 10240 5117 3409 2555 2043 1701 1457	489 Confidence Level .85 .85 .9981 .4988 .3324 .2491 .1992 .1659 .1422	.80 9779 4887 3257 2442 1953 1626 1394
.80 Num Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91	.99 11368 5677 3780 2832 2263 1883 1612 1409	518 2 89 .95 10639 5315 3540 2653 2121 1766 1512 1322	.90 10240 5117 3409 2555 2043 1701 1457 1274	489 Confidence Level .85 .85 .9981 .4988 .3324 .2491 .1992 .1659 .1422 .1243	.80 9779 4887 3257 2442 1953 1626 1394 1219
.80 Num Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90	.99 11368 5677 3780 2832 2263 1883 1612 1409 1251	518 - 89 .95 10639 5315 3540 2653 2121 1766 1512 1322 1174	.90 10240 5117 3409 2555 2043 1701 1457 1274 1132	489 Confidence Level .85 .85 .9981 .4988 .3324 .2491 .1992 .1659 .1422 .1243 .1104	.80 9779 4887 3257 2442 1953 1626 1394 1219 1083
.80 Num Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90	.99 11368 5677 3780 2832 2263 1883 1612 1409 1251 1124	518 .95 .0639 .5315 .3540 .2653 .2121 .1766 .1512 .1322 .1174 .1056	.90 10240 5117 3409 2555 2043 1701 1457 1274 1132 1018	489 Confidence Level .85 .85 .9981 .4988 .3324 .2491 .1992 .1659 .1422 .1243 .1104 .994	.80 9779 4887 3257 2442 1953 1626 1394 1219 1083 974
.80 Num Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	.99 11368 5677 3780 2832 2263 1883 1612 1409 1251 1124 1021 935 862	518 - 89 .95 10639 5315 3540 2653 2121 1766 1512 1322 1174 1056 959 878 810	.90 10240 5117 3409 2555 2043 1701 1457 1274 1132 1018 925	489 Confidence Level .85 .85 .9981 .4988 .3324 .2491 .1992 .1659 .1422 .1243 .1104 .994 .903	.80 9779 4887 3257 2442 1953 1626 1394 1219 1083 974 885
.80 Num Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	.99 11368 5677 3780 2832 2263 1883 1612 1409 1251 1124 1021 935 862 799	518	.90 10240 5117 3409 2555 2043 1701 1457 1274 1132 1018 925 847 782 725	489 Confidence Level .85 .85 .9981 .4988 .3324 .2491 .1992 .1659 .1422 .1243 .1104 .994 .903 .827	.80 9779 4887 3257 2442 1953 1626 1394 1219 1083 974 885 811
.80 Num Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 11368 5677 3780 2832 2263 1883 1612 1409 1251 1124 1021 935 862	518 - 89 .95 10639 5315 3540 2653 2121 1766 1512 1322 1174 1056 959 878 810	.90 10240 5117 3409 2555 2043 1701 1457 1274 1132 1018 925 847 782	489 Confidence Level .85 9981 4988 3324 2491 1992 1659 1422 1243 1104 994 903 827 763	.80 9779 4887 3257 2442 1953 1626 1394 1219 1083 974 885 811 749
.80 Num Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	.99 11368 5677 3780 2832 2263 1883 1612 1409 1251 1124 1021 935 862 799	518 2 89 .95 10639 5315 3540 2653 2121 1766 1512 1322 1174 1056 959 878 810 752	.90 10240 5117 3409 2555 2043 1701 1457 1274 1132 1018 925 847 782 725	489 Confidence Level .85 9981 4988 3324 2491 1992 1659 1422 1243 1104 994 903 827 763 708	.80 9779 4887 3257 2442 1953 1626 1394 1219 1083 974 885 811 749 695
.80 Num Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	.99 11368 5677 3780 2832 2263 1883 1612 1409 1251 1124 1021 935 862 799 745	518 2 89 .95 10639 5315 3540 2653 2121 1766 1512 1322 1174 1056 959 878 810 752 701	.90 10240 5117 3409 2555 2043 1701 1457 1274 1132 1018 925 847 782 725 676	489 Confidence Level .85 9981 4988 3324 2491 1992 1659 1422 1243 1104 994 903 827 763 708 661	.80 9779 4887 3257 2442 1953 1626 1394 1219 1083 974 885 811 749 695 648
.80 Num Reliabil .99 .98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	.99 11368 5677 3780 2832 2263 1883 1612 1409 1251 1124 1021 935 862 799 745 697	518 2 89 .95 10639 5315 3540 2653 2121 1766 1512 1322 1174 1056 959 878 810 752 701 656	.90 10240 5117 3409 2555 2043 1701 1457 1274 1132 1018 925 847 782 725 676 634	489 Confidence Level .85 .85 .9981 .4988 .3324 .2491 .1992 .1659 .1422 .1243 .1104 .994 .903 .827 .763 .708 .661 .619	.80 9779 4887 3257 2442 1953 1626 1394 1219 1083 974 885 811 749 695 648
.80 Num Reliabil .99 .98	.99 11368 5677 3780 2832 2263 1883 1612 1409 1251 1124 1021 935 862 799 745 697 656	518 2 89 .95 10639 5315 3540 2653 2121 1766 1512 1322 1174 1056 959 878 810 752 701 656 617	.90 10240 5117 3409 2555 2043 1701 1457 1274 1132 1018 925 847 782 725 676 634 596	489 Confidence Level .85 .85 .9981 .4988 .3324 .2491 .1992 .1659 .1422 .1243 .1104 .994 .903 .827 .763 .708 .661 .619 .582	.80 9779 4887 3257 2442 1953 1626 1394 1219 1083 974 885 811 749 695 648 607 571

TABLE B-18 continued

Nur Reliabil	mber of failures	- 90			
WEITED!	iiiy			Confidence Leve	el
	.99	.95	.90	.85	00
.99	11481	10747	10347	10086	.80
.98	5733	5369	5170	5041	9883
.97	3818	3576	3445	3359	4940
.96	2860	2680	2582	2518	3292 2468
.95	2285	2142	2064	2013	
. 94	1902	1784	1719	1677	1973
.93	1628	1528	1472	1437	1644
.92	1423	1336	1288	1256	1408
.91	1263	1186	1144	1116	1232
.90	1136	1067	1029	1004	1095
.89	1031	969	935	912	985
.88	944	887	856	836	895
.87	870	818	790	771	820
.86	807	759	733	716	757
.85	752	708	684	668	702
. 84	704	663	640	626	655
.83	662	624	602	588	614
.82	625	588	568	555	578
.81	. 591	557	538	526	545
.80	561	529	511	499	516 490
	ber of failures	- 91			
Reliabil	ity			Confidence Leve	1
	.99				
		.95	.90	.85	80
.99	11593	.95 10856	.90 10454	.85 10192	.80 9987
.98	11593 5789			10192	9987
.98 .97	11593 5789 3855	10856	10454	10192 5093	9987 4992
.98 .97 .96	11593 5789 3855 2888	10856 5423 3613 2707	10454 5224	10192 5093 3394	9987 4992 3326
.98 .97 .96 .95	11593 5789 3855 2888 2308	10856 5423 3613 2707 2164	10454 5224 3480	10192 5093	9987 4992 3326 2494
.98 .97 .96 .95	11593 5789 3855 2888 2308 1921	10856 5423 3613 2707 2164 1802	10454 5224 3480 2608	10192 5093 3394 2544	9987 4992 3326 2494 1994
.98 .97 .96 .95 .94	11593 5789 3855 2888 2308 1921 1644	10856 5423 3613 2707 2164 1802 1543	10454 5224 3480 2608 2085	10192 5093 3394 2544 2034	9987 4992 3326 2494 1994 1661
.98 .97 .96 .95 .94 .93	11593 5789 3855 2888 2308 1921 1644 1437	10856 5423 3613 2707 2164 1802 1543 1349	10454 5224 3480 2608 2085 1737	10192 5093 3394 2544 2034 1694	9987 4992 3326 2494 1994
.98 .97 .96 .95 .94 .93 .92	11593 5789 3855 2888 2308 1921 1644 1437 1276	10856 5423 3613 2707 2164 1802 1543 1349 1198	10454 5224 3480 2608 2085 1737 1488	10192 5093 3394 2544 2034 1694 1452	9987 4992 3326 2494 1994 1661 1423
.98 .97 .96 .95 .94 .93 .92 .91	11593 5789 3855 2888 2308 1921 1644 1437 1276 1147	10856 5423 3613 2707 2164 1802 1543 1349 1198	10454 5224 3480 2608 2085 1737 1488 1301	10192 5093 3394 2544 2034 1694 1452 1269	9987 4992 3326 2494 1994 1661 1423 1245
.98 .97 .96 .95 .94 .93 .92 .91 .90	11593 5789 3855 2888 2308 1921 1644 1437 1276 1147	10856 5423 3613 2707 2164 1802 1543 1349 1198 1077 979	10454 5224 3480 2608 2085 1737 1488 1301 1156 1039 944	10192 5093 3394 2544 2034 1694 1452 1269 1128	9987 4992 3326 2494 1994 1661 1423 1245
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89	11593 5789 3855 2888 2308 1921 1644 1437 1276 1147 1041 953	10856 5423 3613 2707 2164 1802 1543 1349 1198 1077 979 896	10454 5224 3480 2608 2085 1737 1488 1301 1156 1039 944 865	10192 5093 3394 2544 2034 1694 1452 1269 1128 1015	9987 4992 3326 2494 1994 1661 1423 1245 1106 995
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	11593 5789 3855 2888 2308 1921 1644 1437 1276 1147 1041 953 879	10856 5423 3613 2707 2164 1802 1543 1349 1198 1077 979 896 827	10454 5224 3480 2608 2085 1737 1488 1301 1156 1039 944 865 798	10192 5093 3394 2544 2034 1694 1452 1269 1128 1015 922	9987 4992 3326 2494 1994 1661 1423 1245 1106 995 904
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87	11593 5789 3855 2888 2308 1921 1644 1437 1276 1147 1041 953 879 815	10856 5423 3613 2707 2164 1802 1543 1349 1198 1077 979 896 827 767	10454 5224 3480 2608 2085 1737 1488 1301 1156 1039 944 865 798 740	10192 5093 3394 2544 2034 1694 1452 1269 1128 1015 922 845	9987 4992 3326 2494 1994 1661 1423 1245 1106 995 904 829
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86	11593 5789 3855 2888 2308 1921 1644 1437 1276 1147 1041 953 879 815 760	10856 5423 3613 2707 2164 1802 1543 1349 1198 1077 979 896 827 767 715	10454 5224 3480 2608 2085 1737 1488 1301 1156 1039 944 865 798 740 691	10192 5093 3394 2544 2034 1694 1452 1269 1128 1015 922 845 779	9987 4992 3326 2494 1994 1661 1423 1245 1106 995 904 829 765
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	11593 5789 3855 2888 2308 1921 1644 1437 1276 1147 1041 953 879 815 760 711	10856 5423 3613 2707 2164 1802 1543 1349 1198 1077 979 896 827 767 715 670	10454 5224 3480 2608 2085 1737 1488 1301 1156 1039 944 865 798 740 691 647	10192 5093 3394 2544 2034 1694 1452 1269 1128 1015 922 845 779 723	9987 4992 3326 2494 1994 1661 1423 1245 1106 995 904 829 765 710
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	11593 5789 3855 2888 2308 1921 1644 1437 1276 1147 1041 953 879 815 760 711 669	10856 5423 3613 2707 2164 1802 1543 1349 1198 1077 979 896 827 767 715 670 630	10454 5224 3480 2608 2085 1737 1488 1301 1156 1039 944 865 798 740 691 647 609	10192 5093 3394 2544 2034 1694 1452 1269 1128 1015 922 845 779 723 675	9987 4992 3326 2494 1994 1661 1423 1245 1106 995 904 829 765 710 662
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	11593 5789 3855 2888 2308 1921 1644 1437 1276 1147 1041 953 879 815 760 711 669 631	10856 5423 3613 2707 2164 1802 1543 1349 1198 1077 979 896 827 767 715 670 630 594	10454 5224 3480 2608 2085 1737 1488 1301 1156 1039 944 865 798 740 691 647 609 574	10192 5093 3394 2544 2034 1694 1452 1269 1128 1015 922 845 779 723 675 632	9987 4992 3326 2494 1994 1661 1423 1245 1106 995 904 829 765 710 662 620
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	11593 5789 3855 2888 2308 1921 1644 1437 1276 1147 1041 953 879 815 760 711 669	10856 5423 3613 2707 2164 1802 1543 1349 1198 1077 979 896 827 767 715 670 630	10454 5224 3480 2608 2085 1737 1488 1301 1156 1039 944 865 798 740 691 647 609	10192 5093 3394 2544 2034 1694 1452 1269 1128 1015 922 845 779 723 675 632 595	9987 4992 3326 2494 1994 1661 1423 1245 1106 995 904 829 765 710 662 620 584

TABLE B-18 continued

Nu Reliabi	mber of failures	3 = 92			
VETIANI	illy			Confidence Le	vel
	.99	.95	.90	o.e	
.99	11705	10964	10560	.85	.80
.98	5845	5478	5277	10297	10092
.97	3892	3649	3516	5146	5044
.96	2916	2734	2635	3429	3361
.95	2330	2186	2107	2570	2520
.94	1939	1820	1755	2055	2015
.93	1660	1559	1503	1712	1679
.92	1451	1363	1314	1467	1438
.91	1288	1210	1167	1283	1258
.90	1158	1088	1050	1140	1118
.89	1051	988	954	1025	1006
.88	963	905	874	931	914
.87	887	835	806	853	837
.86	823	775	748	787	773
.85	767	722	698	731	717
. 84	718	677	654	682	669
.83	675	636	615	639	627
.82	637	600	580	601	590
.81	603	568	549	567	557
.80	572	539	521	537	527
		-	321	510	501
Reliabil	ber of failures	= 93			
	,			Confidence Leve	2 1
	.99	.95	•90	0 F	
.99	11817	11073	10667	.85	.80
.98	5901	5532	5330	10403	10196
.97	3930	3685	3551	5199 3464	5096
.96	2944	2761	2662	3464 2507	3396
.95	2352	2207	2128	2597 2076	2546
.94	1958	1838	1772	1729	2036
.93	1676	1574	1518	1482	1696
.92	1465	1376	1327	1296	1453
.91	1301	1222	1179	1151	1271
.90	1169	1099	1061	1036	1129
.89	1061	998	964	941	1016
.88	972	914	883		923
.87	896	843	814	862	846
.86	831	782	756	795 730	781
. 8.5	775	730	705	738	724
.84	725	683	660	689	676
.83	682	643	621	645	633
.82	643	606	586	607	596
. 81	608	574	555	573 573	563
. 80	577	545	527	542	533
			361	515	506

TABLE B-18 continued

)	Number of failures	- 94			
Reliat				Confidence Lev	el
	.99	.95	.90	.85	. 80
.99	11928	11181	10773	10508	10300
.98	5957	5586	5383	5251	5148
.97	3967	3721	3587	3499	3431
.96	2972	2788	2688	2623	2572
.95	2375	2229	2149	2097	2057
.94	1976	1856	1790	1747	1713
.93	1692	1589	1533	1497	1468
.92	1479	1390	1341	1309	1284
.91	1313	1234	1191	1163	1141
.90	1180	1110	1071	1046	1026
.89	1072	1008	973	950	933
.88	981	923	892	871	855
.87	905	852	822	803	789
.86	839	790	763	746	732
.85	782	737	712	696	683
.84	732	690	667	652	640
.83	688	649	627	613	602
.82	649	612	592	579	568
.81	614	580	560	548	538
.80	583	550	532	520	511
	Number of failures	95			
Reliat	oility			Confidence Lev	el
	.99	.95	.90	.85	.80
. 99	12040	11289	10880	10613	10405
.98	6013	5640	5437	5304	5200
.97	4004	3757	3622	3534	3466
.96	3000	2816	2715	2649	2598
.95	2397	2251	2171	2118	2078
.94	1995	1874	1808	1765	1731
.93	1708	1605	1548	1512	1483
.92	1493	1403	1354	1322	1297
.91	1325	1246	1203	1175	1152
.90	1191	1121	1082	1057	1037
.89	1082	1018	983	960	942
.88	990	932	900	880	863
.87	913	860	831	811	797
.86	847	798	771	753	739
.85	789	744	719	703	690
.84	739	697	674	648	646
.83	695	655	633	619	608
.82		£ 1 O	6.50	ror .	E7/
	655	618	598	585	574
.81 .80	620 588	585 556	598 566 537	553 526	5/4 544 516

TABLE B-18 continued

	ility		C	onfidence Level	
	.99	٥٤			
.99	12152	.95	• 90	.85	.80
. 98	6069	11398	10986	10718	10509
.97	4041	5694	5490	5357	5252
.96	3028	3793	3658	3569	3500
.95	2419	2843	2742	2676	2624
.94	2014	2272	2192	2139	
.93	1724	1892	1825	1782	2099 1748
.92	1507	1620	1564	1527	
.91	1338	1417	1367	1335	1498
.90	1202	1258	1215	1186	1310
.89	1092	1131	1092	1067	1164
.88	1000	1028	993	970	1047
.87	922	941	909	888	952
.86	855	868	839	820	872
.85	797	805	778	761	805
.84	746	751	726	710	747
.83	746 701	704	680	665	697
.82	661	662	640	625	653
.81	626	624	604	590	614
.80	594	591	572	559	580
	334	561	543	531	549 521
Numi	ber of failures	= 07			321
Reliabil:	ity	- 71			
			Con	fidence Level	
	.99				
	-	.95	90		
.99	12264	.95 11506	.90	.85	.80
.98	-	11506	11093	10824	.80 10613
.98 .97	12264 6125 4079	11506 5748	11093 5543	10824 5409	
.98 .97 .96	12264 6125	11506	11093 5543 3693	10824 5409 3604	10613
.98 .97 .96 .95	12264 6125 4079 3055 2441	11506 5748 3829	11093 5543 3693 2768	10824 5409 3604 2702	10613 5305
.98 .97 .96 .95	12264 6125 4079 3055 2441 2032	11506 5748 3829 2870 2294	11093 5543 3693 2768 2213	10824 5409 3604 2702 2161	10613 5305 3535
.98 .97 .96 .95 .94	12264 6125 4079 3055 2441 2032 1740	11506 5748 3829 2870	11093 5543 3693 2768 2213 1843	10824 5409 3604 2702 2161 1800	10613 5305 3535 2650
.98 .97 .96 .95 .94 .93	12264 6125 4079 3055 2441 2032 1740 1521	11506 5748 3829 2870 2294 1910	11093 5543 3693 2768 2213 1843 1579	10824 5409 3604 2702 2161 1800 1542	10613 5305 3535 2650 2119
.98 .97 .96 .95 .94 .93 .92	12264 6125 4079 3055 2441 2032 1740 1521 1350	11506 5748 3829 2870 2294 1910 1636	11093 5543 3693 2768 2213 1843 1579 1381	10824 5409 3604 2702 2161 1800 1542 1348	10613 5305 3535 2650 2119 1765
.98 .97 .96 .95 .94 .93 .92 .91	12264 6125 4079 3055 2441 2032 1740 1521 1350 1214	11506 5748 3829 2870 2294 1910 1636 1430	11093 5543 3693 2768 2213 1843 1579 1381 1226	10824 5409 3604 2702 2161 1800 1542 1348 1198	10613 5305 3535 2650 2119 1765 1513
.98 .97 .96 .95 .94 .93 .92 .91	12264 6125 4079 3055 2441 2032 1740 1521 1350 1214	11506 5748 3829 2870 2294 1910 1636 1430 1270	11093 5543 3693 2768 2213 1843 1579 1381 1226	10824 5409 3604 2702 2161 1800 1542 1348 1198	10613 5305 3535 2650 2119 1765 1513 1323
.98 .97 .96 .95 .94 .93 .92 .91 .90	12264 6125 4079 3055 2441 2032 1740 1521 1350 1214 1102 1009	11506 5748 3829 2870 2294 1910 1636 1430 1270 1142 1038	11093 5543 3693 2768 2213 1843 1579 1381 1226 1103 1002	10824 5409 3604 2702 2161 1800 1542 1348 1198 1078 979	10613 5305 3535 2650 2119 1765 1513 1323 1176
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89	12264 6125 4079 3055 2441 2032 1740 1521 1350 1214	11506 5748 3829 2870 2294 1910 1636 1430 1270 1142	11093 5543 3693 2768 2213 1843 1579 1381 1226 1103 1002 918	10824 5409 3604 2702 2161 1800 1542 1348 1198 1078 979 897	10613 5305 3535 2650 2119 1765 1513 1323 1176 1058
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88	12264 6125 4079 3055 2441 2032 1740 1521 1350 1214 1102 1009 930 863	11506 5748 3829 2870 2294 1910 1636 1430 1270 1142 1038 950	11093 5543 3693 2768 2213 1843 1579 1381 1226 1103 1002 918 847	10824 5409 3604 2702 2161 1800 1542 1348 1198 1078 979 897 828	10613 5305 3535 2650 2119 1765 1513 1323 1176 1058 961
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85	12264 6125 4079 3055 2441 2032 1740 1521 1350 1214 1102 1009 930 863 804	11506 5748 3829 2870 2294 1910 1636 1430 1270 1142 1038 950 876	11093 5543 3693 2768 2213 1843 1579 1381 1226 1103 1002 918 847 786	10824 5409 3604 2702 2161 1800 1542 1348 1198 1078 979 897 828 768	10613 5305 3535 2650 2119 1765 1513 1323 1176 1058 961 881
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	12264 6125 4079 3055 2441 2032 1740 1521 1350 1214 1102 1009 930 863 804 753	11506 5748 3829 2870 2294 1910 1636 1430 1270 1142 1038 950 876 813	11093 5543 3693 2768 2213 1843 1579 1381 1226 1103 1002 918 847 786 733	10824 5409 3604 2702 2161 1800 1542 1348 1198 1078 979 897 828 768 717	10613 5305 3535 2650 2119 1765 1513 1323 1176 1058 961 881 813
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84	12264 6125 4079 3055 2441 2032 1740 1521 1350 1214 1102 1009 930 863 804 753 708	11506 5748 3829 2870 2294 1910 1636 1430 1270 1142 1038 950 876 813 758	11093 5543 3693 2768 2213 1843 1579 1381 1226 1103 1002 918 847 786 733 687	10824 5409 3604 2702 2161 1800 1542 1348 1198 1078 979 897 828 768 717 671	10613 5305 3535 2650 2119 1765 1513 1323 1176 1058 961 881 813 754
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 83	12264 6125 4079 3055 2441 2032 1740 1521 1350 1214 1102 1009 930 863 804 753 708 668	11506 5748 3829 2870 2294 1910 1636 1430 1270 1142 1038 950 876 813 758 710	11093 5543 3693 2768 2213 1843 1579 1381 1226 1103 1002 918 847 786 733 687 646	10824 5409 3604 2702 2161 1800 1542 1348 1198 1078 979 897 828 768 717 671 632	10613 5305 3535 2650 2119 1765 1513 1323 1176 1058 961 881 813 754 704
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 83 82 81	12264 6125 4079 3055 2441 2032 1740 1521 1350 1214 1102 1009 930 863 804 753 708 668 632	11506 5748 3829 2870 2294 1910 1636 1430 1270 1142 1038 950 876 813 758 710 668	11093 5543 3693 2768 2213 1843 1579 1381 1226 1103 1002 918 847 786 733 687 646 610	10824 5409 3604 2702 2161 1800 1542 1348 1198 1078 979 897 828 768 717 671 632 596	10613 5305 3535 2650 2119 1765 1513 1323 1176 1058 961 881 813 754 704 659
.98 .97 .96 .95 .94 .93 .92 .91 .90 .89 .88 .87 .86 .85 .84 83	12264 6125 4079 3055 2441 2032 1740 1521 1350 1214 1102 1009 930 863 804 753 708 668	11506 5748 3829 2870 2294 1910 1636 1430 1270 1142 1038 950 876 813 758 710 668 630	11093 5543 3693 2768 2213 1843 1579 1381 1226 1103 1002 918 847 786 733 687 646	10824 5409 3604 2702 2161 1800 1542 1348 1198 1078 979 897 828 768 717 671 632	10613 5305 3535 2650 2119 1765 1513 1323 1176 1058 961 881 813 754 704 659 620

TABLE B-18 continued

	Number of failures :	- OR			
Relia	ability	- 70	Co	nfidence Level	
	.99	.95	.90	.85	.80
.99	12375	11614	11199	10929	10717
.98	6181	5803	5596	5462	5357
.97	4116	3865	3729	3639	3570
.96	3083	2897	2795	2728	2676
.95	2464	2315	2234	2182	2140
.94	2051	1928	1861	1817	1783
.93	1756	1651	1594	1557	1528
.92	1534	1444	1394	1361	1336
.91	1362	1282	1238	1210	1187
.90	1225	1153	1114	1088	1068
.89	1112	1047	1312	989	971
.88	1018	959	927	906	889
.87	939	885	855	836	821
.86	871	821	793	776	762
.85	812	765	740	724	711
.84	760	717	693	678	666
.83	714	674	652	638	62 6
.82	674	636	616	602	591
.81	638	602	583	570	560
.80	605	572	553	541	532
	Number of failures	- 99	Co	nfidence Level	
	.99	.95	.90	.85	.80
.99	12487	11722	11306	11034	10822
.98	6236	5857	5649	5514	5409
.97	4153	3901	3764	3674	3604
.96	3111	2924	2821	2755	2702
.95	2486	2337	2256	2203	2161
.94	2069	1946	1879	1835	1800
.93	1772	1667	1609	1572	1542
.92	1548	1457	1407	1375	1349
.91	1375	1294	1250	1221	1199
. 90	1236	1164	1124	1099	1078
.89	1122	1057	1021	998	980
.88	1027	968	936	915	898
.87	947	893	863	844	829
.86	878	829	801	783	769
.85	819	773	747	731	717
.84	767	724	700	685	672
.83	721	681	658	644	633
.82	680	642	621	608	597
.81	643	608	588	576	565
.80	610	577	559	546	537

TABLE B-18 centinued

TABLE B-18 continued

Confidence Level = .75											
Failures											
Reliability	0	1	2	3	4	5	6	7	8	9	10
99	138	269	392	510	627	742	855	968	1079	1190	1301
98	69	134	196	255	313	370	427	483	539	595	650
97 06	46	89	130	170	209	247	284	322	359	396	433
96	34	67	98	127	156	185	213	241	269	297	324
95	28	53	78	102	125	148	170	193	215	237	259
94	23	45	65	85	104	123	142	161	179	198	216
93 92	20	38	56	72	89	105	121	137	153	169	185
	17	33	49	63	78	92	106	120	134	148	162
91 90	15	.30	43	56	69	82	94	107	119	131	144
89	14	27	39	51	62	73	85	96	107	118	129
88	12	24	35	46	56	67	77	87	97	107	117
87	11	22	32	42	52	61	71	80	89	98	107
86	10 10	20	30	39	48	56	65	74	82	91	99
85	9	19	28	36	44	52	60	68	76	84	92
84	8	18 16	26	33	41	49	56	64	71	78	86
83	8	15	24 23	31	39	46	53	60	67	73	80
82	7	15	23	29	36	43	50	56	63	69	76
81	7	14	20	28 26	34	40	47	53	59	65	71
80	7	13	19	25	32	38	44	50	56	62	67
	•	13	19	23	31	36	42	48	53	59	64
		11	12	13	14	15	16	17	18	19	20
99		1411	1521	1630	1739	1847	1956	2064	2172	2270	2207
98		750	760	814	869	923	977	1031	1085	2279 1139	2387 1193
97		470	506	543	579	615	651	687	723	759	795
96 05		352	379	407	434	461	488	515	542	569	596
95 94		281	303	325	347	368	390	412	433	455	476
94 93		234	252	271	289	307	325	343	361	379	397
93 92		201	216	232	247	263	278	294	309	324	340
91		175	189	203	216	230	243	257	270	284	297
90		156	168	180	192	204	216	228	240	252	264
89		140 127	151 137	162	173	184	194	205	216	22?	237
88		117	126	147	157	167	177	186	196	206	216
87		108	116	135 124	144	153	162	171	180	189	198
86		100	108	115	133	141	149	157	166	174	182
85		93	100	108	123	131	138	146	154	161	169
84		87	94	100	116 107	122	129	136	143	151	158
83		82	88	95	107	114	121	128	134	141	148
82		77	83	89	95	107 101	114	120	126	133	139
81		73	79	85	90	96	107	113	119	125	131
80		69	75	80	85	91	102 96	107	113	119	124
				. •		7.	30	102	107	113	118

MTP 3-1-005 1 March 1972

TABLE B-18 continued

Confide	ence Lev	rel = .7	'5							
				Failure	s					
	21	22	23	24	25	26	27	28	29	30
Reliability					-5			20	29	30
99	2494	2601	2708	2815	2922	3028	3135	3241	3347	3453
98	1246	1300	1353	1407	1460	1513	1567	1620	1673	1726
97	830	866	902	937	973	1008	1044	1079	1115	1150
96	622	649	676	703	729	756	782	809	836	862
95	498	519	540	562	583	604	626	647	668	689
94	414	432	450	468	486	503	521	539	556	574
93	355	370	386	401	416	431	446	462	477	492
92	310	324	337	350	364	377	390	404	417	430
91	276	288	300	311	323	335	347	359	370	382
90	248	259	269	280	291	301	312	323	333	344
89	225	235	245	254	264	274	283	293	303	312
88	206	215	224	233	242	251	260	268	277	286
87	190	199	207	215	223	231	240	248	25á	264
86	177	184	192	200	207	215	222	230	237	245
85	165	172	179	186	193	200	207	214	221	228
84	154	161	362	174	181	188	194	201	207	214
83	145	152	158	164	170	177	183	189	195	201
82	137	143	149	155	161	167	172	178	184	190
31	130	135	141	147	152	158	163	169	174	180
80	123	129	134	139	144	150	155	160	166	171
	31	32	33	34	35	36	37	38	39	40
99	3559	3665	3771	3877	3983	4088	4194	4299	4404	4510
98	1779	1832	1885	1938	1990	2043	2096	2149	2201	2254
97	1185	1221	1256	1291	1326	1361	1397	1432	1467	1502
96	888	915	941	968	994	1021	1047	1073	1100	1126
95	710	732	753	774	795	816	837	838	879	900
94	592	609	627	645	662	680	697	715	732	750
93	507	522	537	552	567	582	597	612	627	642
92	443	457	470	483	496	509	522	536	549	562
91	394	406	417	429	441	452	464	476	488	499
90	354	365	375	386	396	407	418	428	439	449
89	322	331	341	351	360	370	379	389	398	408
88	295	304	312	321	330	339	348	356	365	374
87	272	280	288	296	305	313	321	329	337	345
86	252	260	268	275	283	290	298	305	313	320
85	236	243	250	257	264	271	278	285	292	299
84	221	227	234	240	247	254	260	267	273	280
83	208	214	220	226	232	239	245	251	257	263
82	196	202	208	213	219	225	231	237	243	248
81	186	191	197	202	208	213	219	224	230	235
80	176	181	187	192	197	202	208	213	218	223
	-	-		-			200	213	210	443

TABLE B-19
SEQUENTIAL TEST

 $a = \ln \left(\frac{1-\beta}{\alpha}\right)$ and $b = \ln \left(\frac{\beta}{1-\alpha}\right)$

The upper number in each cell represents a, the lower number, b.

β	.001	.01	.025	.05	.10	.15	.20	.25
.001	6.907	4.604	3.688	2.995	2.302	1.896	1.608	1.385
	-6.907	-6.898	-6.882	-6.882	-6.802	-6.745	-6.685	-6.620
.01	6.898	4.595	3.679	2.986	2.293	1.887	1.599	1.376
	-4.604	-4.595	-4.580	-4.554	-4.500	-4.443	-4.382	-4.317
.05	6.856	4.554	3.638	2.944	2.251	1.846	1.558	1.335
	-2.995	-2.986	-2.970	-2.944	-2.890	-2.833	-2.773	-2.708
.10	6.802	4.500	3.583	2.890	2.197	1.792	1.504	1.281
	-2.302	-2.292	-2.277	-2.251	-2.197	-2.14	-2.079	-2.015
.20	6.685	4.382	3.466	2.773	2.079	1.674	1.386	1.163
	-1.608	-1.599	-1.584	-1.558	-1.504	-1.447	-1.386	-1.322
.25	6.620	4.317	3.401	2.708	2.015	1.609	1.322	1.099
	-1.385	-1.376	-1.361	-1.335	-1.281	-1.224	-1.163	-1.099
.30	6.551	4.248	3.332	2.639	1.946	1.540	1.253	1.030
	-1.203	-1.194	-1.179	-1.153	-1.099	-1.041	981	916
.40	6.397	4.094	3.178	2.485	1.792	1.386	1.099	.875
	915	906	891	865	811	754	693	629

TABLE B-20

FACTORS FOR DETERMINING LOWER CONFIDENCE LIMIT
FOR THE EXPONENTIAL MEAN LIFE

LF	1	
----	---	--

d.f.	.75	.80	.90	.95	.975	.99
1	.722022	.621118	. 433839	.333890	.271003	.217155
2	.742115	.667780	.514139	.421496	.360360	.300752
3	.765306	.700935	.566038	.476190	.416667	.357143
4	.784314	.727273	.597015	.516129	.457143	.398010
5	.800000	.746269	.625000	.546448	.487805	.431034
6	.810811	.759494	.648649	.571429	.515021	.458015
7	.818713	.769231	.663507	.590717	.536398	.481010
8	.824742	.780488	.680851	.608365	.555556	.500000
9	.833333	.789474	.692308	.622837	.571429	.517241
10	.840336	.800000	.704225	.636943	. 584795	.531915
11	.846154	.805861	.714286	.648968	.597826	.545906
12	.851064	.810811	.722892	.659341	.609137	.558140
13	.855263	.817610	.730337	.668380	.620525	.570175
14	.858896	.823529	.738786	.677966	.629213	.579710
15	.862069	.826446	.744417	.684932	.638298	.589391
16	.864865	.831169	.751174	.692641	.646465	.598131
17	.867347	.835381	.757238	.699588	.653846	.606061
18	.871671	.839161	.762712	.705882	.661765	.614334
19	.873563	.842572	.767677	.711610	.667838	.620915
20	.877193	.845666	.772201	.716846	.674536	.627943
21	.878661	.848485	.776340	.722892	.679612	.634441
22	.881764	.852713	.780142	.727273	.685358	.640466
23	.882917	.885019	.784983	.732484	.690691	.646067
24	.885609	.857143	.788177	.736196	.695652	.651289
25	.888099	.859107	.791139	.740741	.700280	.656168
26	.888889	.862355	.795107	.744986	.704607	.661578
27	.891089	.860000	.797637	.747922	.708661	.665845
28	.893142	.865533	.801144	.751678	.712468	.670659
29	.893683	.868263	.803324	.755208	.716934	.674419
30	.895522	.869565	.806452	.758534	.720288	.678733

Multiply factors of this table by estimated mean time between failures for lower confidence limits.

For f > 30: lower factor =
$$\frac{2f}{\chi_{\alpha}^2$$
, 2f

TABLE B-21

FACTORS FOR DETERMINING UPPER CONFIDENCE LIMIT FOR THE EXPONENTIAL MEAN LIFE

UF _{1-\alpha}						
d.f.	.75	.80	.90	.95	.975	.99
1	3.478261	4.484305	9.478673	19.417476	39.525692	99.502488
2	2.083333	2.424242	3.773585	5.625879	8.264463	13.468013
3	1.739130	1.954397	2.727273	3.658537	4.838710	6.880734
4	1.577909	1.742919	2.292264	2.930403	3.669725	4.848485
5	1.483680	1.618123	2.053388	2.538071	3.076923	3.906250
6	1.421801	1.536492	1.904762	2.294455	2.727273	3.361344
7	1.372549	1.478353	1.797176	2.130898	2.486679	3.004292
8	1.344538	1.428571	1.718582	2.010050	2.315485	2.753873
9	1.313869	1.395349	1.651376	1.916933	2.187120	2.567760
10	1.290323	1.369863	1.612903	1.834862	2.085506	2.421308
11	1.279070	1.349693	1.571429	1.788618	2.000000	2.306080
12	1.263158	1.325967	1.528662	1.379130	1.935484	2.201835
13	1.250000	1.313131	1.502890	1.688312	1.884058	2.131148
14	1.233480	1.296296	1.481481	1.656805	1.830065	2.058824
15	1.224490	1.282051	1.456311	1.621622	1.785714	2.000000
16	1.212121	1.274900	1.434978	1.592040	1.748634	1.951220
17	1.205674	1.263940	1.416667	1.566820	1.717172	1.910112
18	1.200000	1.254355	1.406250	1.545064	1.690141	1.875000
19	1.191225	1.245902	1.391941	1.526104	1.679389	1.835749
20	1.186944	1.238390	1.374570	1.509434	1.639344	1.801802
21	1.179775	1.228070	1.363636	1.494662	1.615385	1.772152
22	1.176471	1.222222	1.353846	1.476510	1.594203	1.752988
23	1.170483	1.216931	1.345029	1.464968	1.575342	1.722846
24	1.167883	1.212121	1.337047	1.450151	1.558442	1.702128
25	1.162791	1.207729	1.326260	1.436782	1.543210	1.683502
26	1.158129	1.200924	1.319797	1.428571	1.529412	1.666667
27	1.156317	1.197339	1.310680	1.417323	1.516854	1.646341
28	1.152263	1.191489	1.305361	1.407035	1.505376	1.632653
29	1.148515	1.188524	1.297539	1.397590	1.494845	1.615599

Multiply factors of this table by estimated ${\tt mean}$ time between failures for the upper confidence limit.

1.388889

1.481481

1.600000

1.145038 1.185771 1.290323

For f > 30: upper factor =
$$\frac{2f}{\chi_{1-\alpha,2f}^2}$$

TABLE B-22

			EX	PONENTIA	L FUNCTI	ON: e ^{-x}	_			
×	0	1	2	3	4	5	6	7	8	9
.00	1.0000	.9990	.9980	.9970	.9960	.9950	.9940	.9930	.9920	.9910
.01	.9900	.9890	.9980	.9870	.9860	.9851	.9841	.9831	.9821	.9811
.02	.9802	.9792	.9782	.9773	.9763	.9753	.9743	.9734	.9724	.9714
.03	.9704	.9695	.9685	.9675	.9665	.9656	.9646	.9637	.9627	.9618
.04	.9608	.9598	.9589	.9579	.9570	.9560	.9550	.9541	.9531	.9522
.05	.9512	.9503	.9493	.9484	.9474	.9465	.9455	.9446	.9436	.9427
.06	.9418	.9408	.9399	.9389	.9380	.9371	.9361	.9352	.9343	.9333
.07	.9324	.9315	.9305	.9296	.9287	.9277	.9268	.9259	.9250	.9240
.08	.9231	.9222	.9213	.9204	.9194	.9185	.9176	.9167	.9158	.9148
.09	.9139	.9130	.9121	.9112	.9103	.9094	.9085	.9076	.9066	.9057
.10	.9048	.9039	.9030	.9021	.9012	.9003	.8994	.8985	.8976	.8967
.11	.8958	.8949	.8940	.8932	.8923	.8914	.8905	.8896	.8887	.8878
.12	.8869	.8860	.8851	.8843	.8834	.8825	.8816	.8807	.8799	.8790
.13	.8781	.8772	.8763	.8755	.8746	.8737	.8728	.8720	.8711	.8702
.14	.8694	.8685	.8676	.8668	.8659	.8650	.8642	.8633	.8624	.8616
.15	.8607	.8598	. 8590	.8581	.8573	.8564	.8556	.8547	.8538	.8530
.16	.8521	.8513	.8504	.8496	.8487	.8479	.8470	.8462	.8454	.8445
. 17	.8437	.8428	.8420	.8411	.8403	.8395	.8386	.8378	.8369	.8361
.18	.8353	. 8344	.8336	.8328	.8319	.8311	.8303	.8294	.8286	.8278
. 19	.8270	.8261	.8253	.8245	.8237	.8228	.8220	.8212	.8204	.8195
.20	.8187	.8179	.8171	.8163	.8155	.8146	.8138	.8130	.8122	.8114
.21	.8106	.8098	.8090	.8082	.8073	.8065	.8057	.8049	.8041	.8033
.22	.8025	.8017	.8009	.8001	.7993	.7985	.7977	.7969	.7961	.7953
.23	.7945	.7937	.7929	.7922	.7914	.7906	.7898	.7890	.7882	.7874
.24	.7866	.7858	.7851	.7843	.7835	.7827	.7819	.7811	.7804	.7796
.25	.7788	.7780	.7772	.7765	.7757	.7749	.7741	.7734	.7726	.7718
. 26	.7711	.7703	.7695	.7687	.7680	.7672	.7664	.7657	.7649	.7641
.27	.7634	.7626	.7619	.7611	.7603	.7596	.7588	.7581	.7573	.7565
.28	.7558	.7550	.7543	.7535	.7528	.7520	.7513	.7505	.7498	.7490
. 29	.7483	.7475	.7468	.7460	.7453	.7445	.7438	.7430	.7423	.7416
.30	.7408	.7401	.7393	.7386	.7379	.7371	.7364	.7357	.7349	.7342
.31	.7334	.7327	.7320	.7312	.7305	.7298	.7291	.7283	.7276	.7269
.32	.7261	.7254	.7247	.7240	.7233	.7225	.7218	.7211	.7204	.7196
.33	.7189	.7182	.7175	.7168	.7161	.7153	.7146	.7139	.7132	.7125
. 34	.7118	.7111	.7103	.7096	.7096	.7089	.7082	.7075	.7068	.7054
.35	.7047	.7040	.7033	.7026	.7019	.7012	.7005	6998	.6991	.6983
.36	.6977	.6970	.6963	.6956	.6949	.6942	.6935	.6928	.6921	.6914
. 37	.6907	.6900	.6994	.6887	.6880	.6873	.6866	.6859	.6852	.6845
8°.	.6839	.6832	.6825	.6818	.6811	.6805	.6798	.6791	.6784	.6777
. 39	.6771	.6764	.6757	.6750	.6744	.6737	.6730	.6723	.6717	.6710

TABLE B-22 continued

EXPONENTIAL FUNCTION: e-x

×	0	1	2	3	4	5	6	7	8	9
.40	.6703	.6697	. 6690	.6683	.6676	.6670	.6663	.6656	.6650	.6643
.41	.6637	.6630	.6623	.6617	.6610	.6603	.6597	.6590	.6584	.6577
.42	.6570	.6564	.6557	.6551	.6544	.6538	.6531	.6525	.6518	.6512
.43	.6505	.6499	.6492	.6486	.6479	.6473	.6466	.6460	.6453	.6447
.44	.6440	.6434	.6427	.6421	.6415	.6408	.6402	. 6395	.6389	.6383
.45	.6376	.6370	.6364	.6357	.6351	.6344	.6338	.6332	.6325	.6319
.46	.6313	.6307	.630C	.6294	.6288	.6281	.6275	.6269	.6263	.6256
.47	.6250	.6244	.6238	.6231	.6225	.6219	.6213	.6206	.6200	.6194
.48	.6188	.6182	.6175	.6169	.6163	.6157	.6151	.6145	.6139	.6132
.49	.6126	.6120	.6114	.6108	.6102	.6096	.6090	.6084	.6077	.6071
.50	.6065	.6059	.6053	.6047	.6041	.6035	.6029	.6023	.6017	.6011
.51	.6005	. 5999	. 5993	.5987	.5981	. 5975	.5969	.5963	. 5957	. 5951
. 52	.5945	. 5939	.5933	.5927	.5921	. 5916	.5910	.5904	.5898	.5892
.53	. 5886	.5880	.5874	.5868	.5863	.5857	.5851	.5845	.5839	.5833
. 54	.5827	.5822	.5816	.5810	. 5804	.5798	.5793	.5787	.5781	.5775
.55	.5769	.5764	.5758	.5752	.5746	.5741	.5735	.5729	.5724	.5718
. 56	.5712	.5706	.5701	. 5695	.5689	.5684	.5678	.5672	.5667	.5661
.57	.5655	.5650	.5644	.5638	.5633	.5627	.5621	.5616	.5610	
.58	. 5599	.5593	.5588	.5582	.5577	.5571	.5565	.5560	.5554	.5606
. 59	.5543	.5538	.5532	.5527	.5521	.5516	.5510	.5505	.5499	.5549 .5494
.60	. 5488	.5483	.5477	.5472	. 5466	.5461	. 5455	.5450	.5444	.5439
.61	.5434	.5428	.5423	.5417	.5412	.5406	.5401	.5396	5390	.5385
.62	.5379	.5374	. 3369	.5363	.5358	.5352	.5347	.5342	.5337	.5331
.63	.5326	.5321	.5315	.5310	.5305	.5299	. 5294	.5289	.5283	.5278
.64	.5273	.5268	- 5262	.5257	.5252	.5247	.5241	.5236	.5231	.5226
.65	.5220	.5215	.5210	.5205	.5200	.5194	.5189	.5184	.5179	.5174
.66	.5169	.5163	.5158	.5153	.5148	.5143	.5138	.5132	.5127	.5122
.67	.5117	.5112	.5107	.5102	.5097	.5092	. 5086	.5081	.5076	.5071
.68	.5066	.5061	.5056	.5051	.5046	.5041	.5036	.5031	.5026	.5021
.69	.5016	.5011	.5006	.5001	.4996	.4991	.4986	.4981	.4976	.4971
.70	.4966	.4961	.4956	.4951	.4946	.4941	. 4936	.4931	. 4926	.4921
.71	.4916	.4912	.4907	.4902	. 4897	.4892	.4887	.4882	.4877	.4872
.72	.4868	.4863	.4858	.4853	.4848	.4843	.4838	.4834	.4829	.4824
.73	.4819	.4814	.4809	.4805	.4800	.4795	.4790	.4785	.4781	.4776
.74	.4771	.4766	.4762	.4757	.4752	. 4747	.4743	.4738	.4733	.4728
.75	.4724	.4719	.4714	.4710	.4705	. 4700	. 4695	. 4691	.4686	.4681
.76	.4677	.4672	.4667	.4663	.4658	.4653	.4649	.4644	.4639	.4635
.77	.4630	.4626	.4621	.4616	.4612	.4607	.4602	.4599	.4593	.4589
.78	.4584	.4579	.4575	.4570	.4566	. 4561	.4557	.4552	.4548	.4543
.79	.4538	.4534	.4529	.4525	.4520	.4516	. 4511	.4507	.4502	.4498

TABLE B-22 continued

EXPONENTIAL FUNCTION: e-x

x	0	1	2	3	4	5	6	7	8	9
- 80	.4493	.4489	.4484	.4480	.4475	.4471	.4466	.4462	.4457	.4453
.81	.4449	. 4444	.4440	.4435	.4431	.4426	.4422	.4418	.4413	. 4409
. 82	.4404	. 4300	.4396	.4391	.4387	.4382	.4378	.4374	.4369	.4365
.83	.4360	.4356	.4352	.4347	.4343	.4339	. 4334	.4330	. 4326	. 4321
.84	.4317	.4313	.4308	.4304	.4300	.4296	.4291	.4287	.4283	.4278
.85	.4274	.4270	.4266	.4261	.4257	.4253	.4249	.4244	.4240	.4236
.86	.4232	.4227	.4223	.4219	.4215	.4211	.4206	.4202	.4198	.4194
.87	.4190	.4185	.4181	.4177	.4173	.4167	.4164	.4160	.4156	.4152
.88	.4148	.4144	.4140	.4135	.4131	.4127	.4123	.4119	.4115	.4111
.89	.4107	.4102	.4098	. 4094	.4090	.4086	.4082	.4078	.4074	.4070
.90	. 4066	.4062	.4058	.4054	.4049	. 4045	.4041	.4037	.4033	.4029
.91	.4025	.4021	.4017	.4013	. 4009	, 4005	.4001	.3997	.3993	.3989
.92	.3985	.3981	.3977	.3973	.3969	. 3965	.3961	.3957	.3953	. 3949
.93	.3946	.3942	. 3938	.3934	.3930	.3926	. 3922	.3918	.3914	.3910
.94	.3906	.3902	.3898	. 3894	.3891	.3887	.3883	.3879	.3875	.3871
.95	.3867	.3864	.3860	.3856	.3852	. 3848	.3844	.3840	.3837	.3833
.96	. 3829	.3825	.3821	.3817	.3814	.3810	.3806	.3802	.3798	.3795
.97	.3791	.3787	.3783	.3779	.3776	.3772	.3768	.3764	.3761	.3757
.98	,3753	.3749	.3746	.3742	.3738	.3734	.3731	.3727	.3723	.3719
.99	.3716	.3712	.3708	.3705	. 3701	.3697	. 3694	.3690	.3686	.3682
						x				
		1	2	3	4	5	6	7	8	9
		.3679	. 1353	.0498	.0183	.0067	.0025	.0009	.0003	.0001

NOTE: To obtain values for e^{-x} in which x is greater than one and not a whole number, multiply the whole number value of e by the fractional value of e. Example:

TABLE B-23

TREND TEST

table of percentage points for $\frac{s_{\delta}^2}{s^2}$

<u>N</u>	.99	<u>.95</u>
4	.3128	.3902
5	. 2690	.4102
6	.2808	.4452
7	.3070	.4680
8	.3314	.4912
9	.3544	.5122
10	.3759	.5311
11	.3957	.5483
12	.4140	.5638
13	.4309	.5779
14	.4466	.5908
15	.4611	.6027
16	.4746	.6136
17	.4872	.6237
18	.4989	.6330
19	.5100	.6417
20	.5203	.6498
21	.5300	.6574
22	.5392	.6645

TABLE B-23 continued

	TABLE B-23 continued	
<u>N</u>	.99	<u>.95</u>
23	.5479	.6712
24	.5561	.6776
25	.5639	.6836
26	.5713	.6893
27	.5784	.6947
28	.5851	.6997
29	.5915	.7045
30	.5976	.7091
31	.6034	.7135
32	.6089	.7177
33	.6142	.7217
34	.6193	.7256
.35	.6242	.7294
36	.6290	.7330
37	.6337	.7365
38	.6382	.7399
39	.6425	.7432
40	. 6467	.7463
41	.6508	.7493
42	.6548	.7522
43	.6586	.7550
44	.6623	.7577
45	.6659	•7603 · .

TABLE B-23 continued

<u>N</u>	<u>.99</u>	<u>.95</u>
46	.6693	.7628
47	.6726	.7652
48	.6757	.7675
49	.6787	.7697
50	.6816	.7718

SUPPLEMENTARY

INFORMATION

U. S. ARMY TEST AND EVALUATION COMMAND Aberdeen Proving Ground, Maryland 21005

MTP 3-1-005 AD 741811 CHANGE 1 10 June 1974

FIELD ARTILLERY STATISTICS

MTP 3-1-005, 1 March 1972, is changed as follows:

1. Remove pages and insert pages as indicated below.

Remove pages-	Insert pages
ix and x	ix and x
7 and 8	7 and 8
9 and 10	9 and 10
15 and 16	15 and 16
21 and 22	21 and 22
25 and 26	25 and 26
35 and 36	35 and 36
37 and 38	37 and 38
39 and 40	. 39 and 40
43 and 44 .	43 and 44
45 and 46	45 and 46
51 and 52	51 and 52
53 and 54	53 and 54
55 and 56	55 and 56
57 and 58	57 and 58
63 and 64	63 and 64
65 and 66	65 and 66
67 and 68	67 and 68
69 and 70	69 and 70
71 and 72	71 and 72
77 and 78	77 and 78
79 and 80	79 and 80
83 and 84	83 and 84
85 and 86	85 and 86
97 and 88	87 and 88
89 and 90	89 and 90
91 and 92	91 and 92
93 and 94	93 and 94
95 and 96	95 and 96
97 and 98	97 and 98
99 and 100	99 and 100
103 and 104	103 and 104
105 and 106	105 and 106
107 and 108	107 and 108
113 and 114	113 and 114
115 and 116	115 and 116
119 and 120	119 and 120
125 and 126	125 and 126
	· ·- ·

MTP 3-1-005 AD 741811 CHANGE 1

Remove pages-	Insert pa	ges
127 and 128	127 and	
129 and 130	129 and	
131a and 132	131a and	
133 and 134	133 and	
135 and 136	135 and	
137 and 138	137 and	
139 and 140	139 and	
141 and 142	141 and	
143 and 144	143 and	
145 and 146	145 and	
151 and 152	151 and	
153 and 154	153 and	
155 and 156	155 and	
157 and 158	157 and	
159 and 160	159 and	
161 and 162	161 and	
1-1 and 1-2	1-1 and	
1-13 and 1-14	1-13 and	
1-19 and 1-20	1-19 and	
1-23 and 1-24	1-23 and	
2-17 and 2-18	2-17 and	
2-33 and 2-34	2-33 and	
2-35 and 2-36	2-35 and	
2-49 and 2-50	2-49 and	
2-53 and 2-54	2-53 and	
2-129 and 2-130	2-129 and	5-130

- 2. A vertical line in the left margin indicates the changed portion of the revised page.
- 3. Attach this sheet to the front of the reference copy for information.

M - Maintainability; the probability that an item will be retained in or restored to a specified condition within a period of time, when the maintenance is performed in accordance with prescribed procedures and resources.

MA - Total number of maintenance actions.

MR - Maintenance ratio; amount of active maintenance time per hour.

M₁ - Mean time between failures (lower confidence limit).
 NOTE: The parameter may be rounds or miles instead of time.

M₂ - Mean time between failures (upper confidence limit).

MDT - Mean downtime.

 Mean active maintenance time; total maintenance time divided by the number of maintenance actions.

MPI - The mean point of impact; the mean horizontal coordinates for ground bursts.

MTBF - Mean time between failures.

MTBF, - Mean time between failures where continued testing is necessary.

MTBM - Mean time between maintenance.

MTTR - Mean time to repair.

m - Miss distance; the distance between the aiming point and MPI.

MP - Mission (operational) profile, generally found in the Requirements Document.

Small Greek letter mu used to denote the population mean.

 μ_{A} - Small Greek letter mu used to denote the population mean for a Type A item.

 $\mu_{\mbox{\footnotesize B}}$ - Small Greek letter mu used to denote the population mean for a Type B item.

- Small Greek letter mu with subscript zero used to denote the required mean found in the Requirements Document or from a comparable item.

N - Number of samples; sample size.

N_A - Number of samples for a Type A item.

N_B - Number of samples for a Type B item.

N_t - Sample size required to test the criteria; computed before testing starts.

N min - Used when computing combined system reliability; the sample size for that individual component of a system which is tested fewer times than the other components.

OC - Operating-characteristic curve used to determine required sample size for testing given criteria.

- Small Greek letter omega used to denote allowable maintenance action time as prescribed in the Requirements Document.
- The probability of an event occurring. (It cannot be less than zero or greater than one.)
- PE Probable error to which necessary subscripts are added to denote types of PE; e.g., PE_R (range probable error), PE_D (deflection probable error), or PE_H (height of burst probable error); a deviation from μ such that 50% of the observations may be expected to lie between μ-PE and μ+PE.
- Probable error for a Type A item to which necessary subscripts are used to denote types of PEA; e.g., PEA (range probable error for a Type A item), PEA (deflection probable error for a Type A item), or PEA (height of burst probable error for a Type A item).
- PEB Probable error for a Type B item to which necessary subscripts are added to denote types of PEB; e.g., PEB, PEB, or PEBH,
- P Sample Proportion; the ratio of the items possessing a given characteristic divided by the sample size.
- PA Sample Proportion for a Type A item.
- $\mathbf{P}_{\mathbf{B}}$ Sample Proportion for a Type B item.
- P The required maximum proportion of defectives; P equals λ , if λ is in terms of defectives or P equals the quantity (1- λ), if λ is in terms of successes.
- P_U Upper limit for the proportion of defectives; the difference between P_D and the amount of doubt (P_U = P_D D).
- POB The mean point of burst; the mean coordinates for air bursts.
- The ratio of the range of the observations to the standard deviation; the studentized range (q) distribution.
- R Reliability; the extent to which a test yields the same results on repeated trials.
- Small Greek letter rho used to denote the population reliability.
- Small Greek letter rho with subscript zero used to denote the required reliability prescribed in the Requirements Document.
- R_U Upper limit for the reliability; the sum of ρ_0 and the amount of doubt ($R_{II} = \rho_0 + D$).

(1) Square the difference between the mean and reading i.e., $(x-\overline{x})^2$.

(2) Sum the squares; i.e., $\Sigma(x-X)^2$.

- (3) Average the sum by dividing by N; i.e., $\Sigma(x-X)^2$.
- (4) Find the square root of the average; i.e., $s = \sqrt{\frac{\sum (x-\overline{X})^2}{N}}$. (The square root is used to compensate for the fact N that the deviations were squared.)
- c. In recent years there has been a tendency to divide by N-1 rather than by N. The reason for this is that if s^2 is used to estimate a population variance (σ^2) , the mean obtained is usually too small and biased if N is the divisor. Therefore, N-1 as a divisor yields a truer estimate of the population variance. Since the population is the item of interest rather than only a few samples, N-1 will be used throughout this MTP in computing s^2 or s; i.e.,

$$= \sqrt{\frac{\Sigma(x-\overline{X})^2}{N-1}}$$

(see paragraph 7.1, page 64, for computations). The population standard deviation (σ) is a measure of the extent to which a population characteristic varies from one item to another.

NOTE: The standard deviation may also be computed by the following formula:

$$s = \sqrt{\frac{N\Sigma x^2 - (\Sigma x)^2}{N(N-1)}}$$

4.5.2 RANGE

The range is the difference between the smallest and the largest readings in the sample. The range multiplied by the appropriate factor from Table B-1, page 2-1, approximates σ for a small sample (N \leq 10) and a normal distribution (paragraph 4.15.1, page 15).

4.5.3 MEAN DEVIATION

The mean deviation of a normal distribution is the mean of the deviations from the mean or median of the N sample members. The deviations from the mean (median) is the absolute value of the mean (median) subtracted from the reading. The mean deviation multiplied by a factor from Table B-2, page 2-2, approximates σ for a small sample (N \leq 10) and a normal distribution (see paragraph 4.15.1, page 15).

4.5.4 PROBABLE ERROR (RANGE, DEFLECTION, AND HEIGHT OF BURST)

The probable error (PE) is a measure of deviation from μ such that 50% of the observations may be expected to lie between μ -PE and μ +PE. However, certain conditions must exist for the PE to have any meaning. These are independent (random) samples, normal distribution, and large sample size.

MTP 3-1-005 1 March 1972

PE may be expressed for various parameters, range (PER), deflection (PED), and height of burst (PEH). For the population probable error (τ), τ = 0.6745° and σ = 1.4826 τ . Since a sample is being examined as a representative of the population, PE = 0.6745s and s = 1.4826PE. Firing tables and other data concerning Field Artillery precision contain the appropriate PE's. When testing for precision, end results are often expressed in terms other than PE. This occurs in modern day testing because prototype samples are not random representations of production line items, the normal distribution is not appropriate in many cases, and small sample sizes bias the PE. The more modern standard deviation is in wider use as a measure of dispersion than is the probable error because s is commonly computed for statistical analysis. Due to the freedom to use small or large sample sizes, the wider applications of the standard deviation, and the ease of calculation, statistical tests involving standard deviation comparisons are more widely used than those involving PE comparisons.

4.5.5 CIRCULAR PROBABLE ERROR

The circular probable error (CPE or CEP) is a measure of deviation from μ and defines the radius of the circle which is centered at the mean and in which 50% of the observations are contained. CPE = 1.1774 times the population standard deviation for the easting (σ_E) when σ_E equals the population standard deviation for the northing (σ_N) . When $\sigma_E \neq \sigma_N$, the CPE is called the equivalent CPE and equals .5887 $(\sigma_E + \sigma_N)$. In terms of a sample, the equivalent CPE = .5887 ($s_E + s_N$). However, as for the PE, certain conditions must exist for the CPE to have any meaning; these are independent (random samples, a bivariate normal distribution, and a large sample size. Firing tables and other data concerning Field Artillery precision may contain the CPE. When testing for precision end results are often expressed in terms other than CPE. This occurs in modern day testing because prototype samples are not random representations of production line items, the bivariate normal distribution is not appropriate, and small sample sizes bias the CPE. The bivariate normal distribution is a representation of the measure of dispersion for two variables (see paragraph 4.15.2, page 15 and paragraph 9.2.4, page 118).

4.6 RELIABILITY

- a. Reliability is the probability of an item functioning adequately for the period of time intended under the operating conditions encountered. Along with the numerical value of the reliability, a fraction or a percent value, the following are necessary:
 - (1) Define precisely a success or satisfactory performance.
 - (2) Specify the time base or operating cycles over which such performance is to be sustained; e.g., hours, miles, or rounds. This factor is particularly important since the probability value is based on completing a mission or task. For example, if the probability of a test item operating for 50 hours is 0.65 or 65%, then on the average 65 times out of 100 trials the test item would be functioning after a 50-hour operating period.

- (3) Specify the environment or use conditions which will prevail. Typical of these conditions are temperature, humidity, shock, and vibration. Without these various conditions the reliability definition would be relatively meaningless.
- b. Due to the various types of test items and the various distributions which apply, reliability may be evaluated by several methods (see paragraph 10, page 118).

4.7 TEST OF A STATISTICAL HYPOTHESIS

The investigator's objective can often be translated into an hypothesis (assumption or claim) concerning the test item. This hypothesis, called the null hypothesis, usually states that the test item does not meet the stated requirements. This explains why it is called the null (not) hypothesis. A decision is made to accept or reject the null hypothesis using the test data from the sample. Failure to reject the null hypothesis does not necessarily mean that the hypothesis is true but merely indicates that the sample is compatible with the kind of population described in the null hypothesis. The same is true if the null hypothesis is rejected; the fact is memely recognized that the sample is not compatible with the kind of population described in the null hypothesis. Associated with the null hypothesis are two types of errors (paragraph 4.8, page 10), and a significance level (paragraph 4.9, page 10). In general, to test a null hypothesis and construct statistical decision criteria, the following outline is used:

- a. Formulate the null hypothesis so that it states that the test item does not meet the stated requirements. The null hypothesis is a numeric expression; e.g., $\bar{\chi} > 25$.
- b. Formulate an alternative hypothesis so that the rejection of the null hypothesis is equivalent to the acceptance of the alternative hypothesis. The alternative hypothesis is also a numeric expression e.g., $\overline{X} \leq 25$.
- c. Specify the probability to be risked as a Type I error. If possible, desired, or necessary, also make some specifications about the probability of a Type II error for a given alternate value of the parameter concerned.
- d. Use the appropriate statistical theory (e.g., paragraphs 6.2, page 361 and 6.3, page 45) to test the null hypothesis.

NOTE: In some cases when the null hypothesis has been rejected, a reserve judgment decision will be made instead of accepting the alternative hypothesis; e.g., insufficient sampling to produce conclusive results.

MTP 3-1-005 1 March 1972

4.8 TYPES OF ERROR

4.8.1 TYPE I ERROR

The Type I error is rejection of the null hypothesis when it is true. The risk of Type I error is the level of significance (α) . It is the more important of the two error types, since rejecting an item when in fact it is good is better economically than accepting an item when in fact it is bad. The value of α is arbitrary but will sometimes be found in the Requirements Document. In the event the significance level or confidence level (confidence level = 1 - significance level) is not specified in the Requirements Document, α = .10 or confidence level = .90 will be used.

4.8.2 TYPE II ERROR

The Type II error is the acceptance of the null hypothesis when it is false. The risk of a Type II error is denoted by β . The value of β is not as restricted as that of α . In the event α and β are highly restricted, the sample size must be very large to reach an accept or reject decision. When β is not specified in the Requirements Document, .20 will be used.

4.9 LEVEL OF SIGNIFICANCE.

- a. The risk of making a Type I error (α) equals the level of significance of the test. The null hypothesis serves as an origin or base. From the null hypothesis the test criterion may be a two-sided test (two-tail test) or a one-sided test (one-tail test). The two-sided test involves an area at each extreme of the distribution curve (note Figure 3A); e.g., if α = .05 or 5%, then the shaded areas in Figure 3A are each equal to 2.5% of the total area under the curve. The one-sided test is only concerned with the area under the curve at one extreme (note Figure 3B); e.g., if α = .05 or 5%, then the shaded area in Figure 3B is equal to 5% of the total area under the curve. When the stated requirement is in the shaded area, the null hypothesis is accepted which means that the item is not acceptable.
- b. In general, a test is said to be one-sided or two-sided (one-tailed or two-tailed) depending on whether α is concentrated at one end of the curve (left or right) or is divided into two areas with the areas situated at opposite ends of the curve (see Figure 3).

4.10 CONFIDENCE INTERVAL, LIMITS, AND LEVEL

- a. When estimating a population measure, such as μ , by a sample measure, such as \overline{X} , μ has a value somewhere near \overline{X} . How near μ is to \overline{X} is determined by an interval constructed about \overline{X} ; and, at a specified confidence level, μ lies in this interval. This interval is called the confidence interval. The interval between the shaded areas of Figure 3A is an example of a confidence interval (see paragraph 6.1.2.1, page 27).
- b. The end points of the confidence interval are called confidence limits. Thus, there exist an upper confidence limit (UCL) and a lower confidence limit (LCL). The LCL and UCL are shown in Figure 3A. In

standard item mean has been used in some of the illustrated cases (see paragraph 6.1.3, page 33, and paragraph 6.2.3, page 43). This is considered appropriate since the timing and recording of the data for the tests may be easily controlled. However when the test item has a large standard deviation, an error as great as five percent may be acceptable in order to keep sample sizes reasonable.

4.15 PARTICULAR DISTRIBUTIONS

4.15.1 NORMAL DISTRIBUTION

- a. The normal distribution is by far the most important continuous distribution (see pages 2 to 4). Due to the laws of chance repeated measurements of the same physical quantity occur with such a dispersion that a pattern (distribution) is evident and can be closely approximated by a certain kind of continuous distribution, referred to as the "normal curve of errors." The graph of a normal distribution is a bell-shaped curve that extends indefinitely in both directions (see Figure 6A).
- b. The mean is at the peak of the distribution, and the standard deviation determines the spread of the distribution. The physical area from a to b under two normal distributions may not be equal (see Figure 6B). Since construction of separate tables of normal curve areas for each conceivable pair of values for μ and σ is impractical, areas are tabulated only for the so-called standard normal distribution which has a mean of zero and a standard deviation of one. The conversion of a normal distribution to a standard normal distribution is accomplished by using the equation $Z = \frac{x-\mu}{x}$ (see Figure 7A). With the conversion to standard units, Table B-3, page 2-3, may be used. The entries in this table are the areas under the standard normal distribution between the mean (Z = 0) and Z = .01, ..., 3.09. The negative values of Z (areas to the left of the mean) are not needed by virtue of the symmetry of a normal curve about its mean; e.g., the area between Z = -1.33and Z = 0 is the same as the area between Z = 0 and Z = 1.33, which is 0.4082. In the event the percentage of area under the curve to the left of a given value of Z is desired, Table B-3, page 2-3 and this value of Z are used to determine the percent from the mean. If Z is positive, the percentage of the area to the left of Z equals .50 plus the value obtained from Table B-3; e.g., if Z = .92 the percent of area is .50 + .3212 which is .8212 or .82.12% of the area. If Z is negative, the percentage of the area to the left of Z equals .50 minus the value obtained from Table B-3; e.g., if Z = -.92, the percent of area is .50 - .3212 which is .1788 or 17.88% of the area.
- c. The percentage of area between two Z values can be determined by obtaining the areas for the Z values from Table B-3, page 2-3, and either subtracting the smaller area from the larger area if both Z values are on the same side of the mean or adding the areas if the Z values are on opposite sides of the mean (see Figure 7B).

4.15.2 BIVARIATE NORMAL DISTRIBUTION

a. A bivariate normal distribution is a population in which each member is dependent on two variables (values); e.g., easting and northing.

MTP 3-1-005 10 June 1974 CHANGE 1

NORMAL DISTRIBUTION CURVE

Figure 6

The data may be grouped into a table of double entry showing the frequencies of pairs of values lying within given class intervals. Each row in such a table gives the frequency distribution of the first variable for the members of the population in which the second variable lies within the limits stated on the left of the row. A similar statement can be made about the columns. A grouped frequency distribution of the type in Tables A-la and A-lb, page l-l may be termed a bivariate frequency distribution.

b. The shape of the bivariate normal population is a normal distribution in three dimensions, rising to its greatest height at the center and fading away to tangency (see Figure 8). Some properties of the bivariate normal distribution are:

STUDENT t DISTRIBUTION CURVE

Parameter

- Student t-distribution curve
- Normal distribution curve
 Figure 10

MTP 3-1-005 10 June 1974 CHANGE 1

often stated with a given confidence level. The theory on which these confidence intervals are based assumes that the population from which the sample is obtained has roughly the shape of a normal distribution and is called the chi-square (χ^2) distribution. An example of a chi-square distribution is shown in Figure 12A; in contrast to the normal and t distribution, its domain is restricted to the nonnegative real numbers.

b. The χ^2 distribution is also different from those previously discussesd in that the area under the curve is summed from the χ^2 point to the right. The value for $\chi^2_{1-\alpha}$ represents an area of α under the curve (right-hand tail, see Figure 12A), while χ^2_{α} represents an area of 1- α to the right under the curve (see Figure 12B). Due to the shape of the χ^2 curve the point values of $\chi^2_{\alpha/2}$ and $\chi^2_{1-\alpha/2}$ will be different even though the significance levels are equal (see Figure 12C). This distinction is important due to the fact the distribution is not symmetrical; thus, a table containing values corresponding to areas in either tail of the distribution is necessary. Thus, with a confidence level of 1- α ,

$$\frac{(N-1)s^{2}}{\chi_{3/2}^{2}} < \sigma < \frac{(N-1)s^{2}}{\chi_{1-\alpha/2}^{2}}$$

As the sample size decreases, the interval for σ becomes wider. Therefore, in most tests applying the chi-square distribution, a normal sample size is needed (N \geq 30).

4.16 ROUND OFF PROCEDURES

- a. Since all measuring equipment has limited accuracy, the measurements are also of limited accuracy and thus consist of numbers which have been rounded off; e.g., if an instrument is accurate to tenths of minutes and a time measurement is 12.2 minutes, the time may actually have been any value between 12.15 and 12.25 minutes.
- b. When test data are used to compute test item characteristics, such as the mean and standard deviation, the results must be consistent with the original data; i.e., the mean weight of a group of projectiles cannot be more accurate than the individual weights used to compute the mean. The following are some basic rules concerning significant figures and the rounding of data:
 - (1) Significant figures (significant digits) are the digits of a number that begin with the first digit on the extreme left that is not a zero (if there are any nonzero digits to the left of the decimal point), or with the first digit (zero or nonzero) to the right of the decimal point, and that end with the last digit on the right that is not a zero or that is a zero which is considered accurate. For example:
 - (a) 12304 has five significant digits.
 - (b) 1.0200 has five significant digits.

(when a number ends with a zero which is on the right of the decimal point, the zero is significant.)

5.2 DATA REQUIRED

A list of sample readings.

5.3 PROCEDURE

- a. N is odd.
 - (1) List the readings in descending or ascending order.
 - (2) Use the middle reading for the median.
- b. N is even
 - (1) List the readings in descending or ascending order.
 - (2) Use the average of the two middle readings for the median.

5.4 EXAMPLE

a. Case I.

Given: N = 5

Procedure:

Example:

- (1) List the readings in order.
- (1) 15 13.5 12.7 12 11.9
- (2) Use the $\frac{N+1}{2}$ reading for the median.
- $\begin{array}{ccc} (2) & \underline{N+1} &=& \underline{5+1} \\ & 2 & & 2 \\ & & & 3 \end{array}$

The median is the 3rd reading. The median = 12.7

b. Case II

Given:

N = 6

Procedure:

Example:

- (1) List the readings in order
- (1) 250 245
 - 230
 - 228 225
 - 223
 - 224.6

MTP 3-1-005 10 June 1974 CHANGE 1

(2) Use the $\frac{N}{2}$ and $\frac{N}{2}$ +1 readings to compute the median which is the average of the two. The median =

$$\frac{(\frac{N}{2} \text{ reading}) + (\frac{N}{2} + 1 \text{ reading})}{2}$$

(2)
$$\frac{N}{2} = 3$$
 $\frac{N}{2} + 1 = 4$

•

Use the 3rd and 4th readings to compute:

The median =
$$\frac{230+228}{2}$$

= $\frac{458}{2}$
= 229

5.5 ANALYSIS

The median equals the mean if the population is normally distributed; otherwise, it is only another measure of central location, which denotes the midpoint of the total dispersions.

6. MEAN

6.1 ESTIMATE OF THE POPULATION MEAN (u).

6.1.1 BEST SINGLE ESTIMATE OF u.

6.1.1.1 OBJECTIVE

To determine the best point estimate of the population mean for a normal distribution.

6.1.1.2 DATA REQUIRED

. A list of sample readings; e.g., the time required for prepare for action under daylight conditions.

6.1.1.3 PROCEDURE

a. Sum the list of data for the parameter.

 $\,$ b. Divide the sum by the number of readings recorded to obtain the mean of the parameter.

6.1.1.4 <u>EXAMPLE</u>

Given:

Sample data at Table A-2a, page 1-2.

Procedure:

Example:

a. Sum the parameter.

a. Sum = 1037.0 min

6.1.3.1.5 ANALYSIS

If N_t samples are tested and \overline{X} is computed, conclude that $\mu \leq \overline{X}$ + ϵ and $\mu \geq \overline{X}$ - ϵ at a 100(1- α)% confidence level.

SAMPLE SIZE REQUIRED TO ESTIMATE μ WITH σ KNOWN

6.1.3.2.1 **OBJECTIVE**

To determine the N_{t} required in order to state that μ is equal to or between $\overline{X} + \varepsilon$ and $\overline{X} - \varepsilon$ at the desired confidence level when σ is known.

6.1.3.2.2 DATA REQUIRED

σ, which is known from a standard item, history, or Requirements Document.

6.1.3.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Choose the allowable amount of error.
- c. Use Table B-4, page 2-4, to obtain Z:
- d. Compute Nt as follows:
 - (1) Square step c.
 - (2) Square σ.
 - (3) Square c.

 - (4) Multiply step (1) by step (2).
 (5) Divide step (4) by step (3).
 (6) Round step (5) to the next larger whole number.
- e. Conclude that N, samples are required in order to state that μ is equal to or between \overline{X} + ϵ and \overline{X} - ϵ at the desired confidence level.

6.1.3.2.4 EXAMPLE

Given:

 $\sigma = 2.0 \text{ min.}$

Procedure:

a. Choose the confidence level $(1-\alpha)$.

b. Choose ε .

Example:

 $\alpha = .05$

 $1-\alpha = .95$

 $1-\alpha/2 = .975$

b. $\varepsilon = .8 \min$.

MTP 3-1-005 10 June 1974 CHANGE 1

- c. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha/2}$.
- d. Compute:

$$N_{t} = \frac{(Z_{1-\alpha/2})^{2}(\sigma)^{2}}{\varepsilon^{2}}$$

c. $z_{.975} = 1.960$

d.
$$N_c = \frac{(1.96)^2 (2.0)^2}{(.8)^2}$$

- = <u>(3.842)(4.00)</u>
- = <u>15.37</u>
- = 24.02
- = 29

- e. Conclude that N samples are required in order to state that $\mu < \overline{X} + \epsilon$ and $\mu > \overline{X} \epsilon$ at a $100(1-\alpha)\%$ confidence level.
- e. If 25 samples are tested and \overline{X} computed, conclude that $\mu < \overline{X} + .8$ min. and $\mu > \overline{X} .8$ min. at a 95% confidence level.

6.1.3.2.5 ANALYSIS

If N samples are tested and \overline{X} is computed, conclude that $\mu < \overline{X} + \epsilon$ and $\mu^t \ge \overline{X} - \epsilon$ at a 100 (1-a)% confidence level.

6.2 COMPARING AN OBSERVED MEAN (\overline{X}) TO A REQUIREMENT $(^{\mu}\circ)$

- a. An observed mean is generated from a sample and is representative of μ . This value of \overline{X} is then compared to a stated requirement (μ_0) . However, looking at the values of \overline{X} and μ_0 to decide whether μ is greater than μ_0 or μ is less than μ_0 at a confidence level is insufficient. Since the decision pertains to the population, statistical tests must be applied to \overline{X} to determine whether μ is greater than μ_0 or μ is less than μ_0 .
- b. There exist two possibilities for the relationship of X to $^{\mu}c$ However, for each possibility there are two approaches; i.e., σ may be known or unknown; and the appropriate test must be chosen on that basis. Following are the assumptions and the circumstances for each possible relationship:

(1) \overline{X} greater than μ_0

- (a) The null hypothesis is μ is greater than μ_0 .
- (b) The alternative hypothesis is there is no reason to believe μ is greater than μ_0 .
- (c) The use of this test is appropriate when μ_0 is a maximum value for μ to satisfy. In the event that μ must not be greater than μ_0 , this test would be appropriate.

(2) \overline{X} less than μ_0 .

- (a) The null hypothesis is μ is less than μ_0 .
- (b) The alternative hypothesis is there is no reason to believe μ is less than μ_0 .
- (c) The use of this test is appropriate when μ_0 is a minimum value for μ to satisfy. In the event that μ must meet or exceed μ_0 , this test would be appropriate.

6.2.1 \overline{X} GREATER THAN μ_0

6.2.1.1 X GREATER THAN US WITH O UNKNOWN

6.2.1.1.1 **OBJECTIVE**

To determine whether μ is greater than μ_0 at the desired confidence level when the value of σ is unknown.

6.2.1.1.2 DATA REQUIRED

A list of sample readings.

6.2.1.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute \overline{X} (see paragraph 6.1.1.3, page 26).
- c. Compute s (see paragraph 7.1.1.3, page 64).
- d. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for N-1 d.f.
- e. Compute ε as follows:
 - (1) Multiply s by step d.
 - (2) Divide step (1) by the square root of N.
- f. Subtract ϵ from \overline{X} to obtain the LCL which is the lower bound for μ at the desired confidence level. The confidence interval for μ is from the LCL to + \bullet .
- g. If μ_0 is less than the LCL, decide that μ is greater than μ_0 ; otherwise, there is no reason to believe μ is greater than μ_0 at the desired confidence level.

6.2.1.1.4 EXAMPLE

Given:

 $\mu_0 = 85.0 \text{ min.}$

Sample data at Table A-2a, page 1-2.

MTP 3-1-005 10 June 1974 CHANGE 1

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Compute \overline{X} .
- c. Compute s.
- d. Use Table B-5, page 2-5, to obtain $t_{I_{-\alpha}}$ for N-1 d.f.
- e. Compute:

$$\varepsilon = \frac{t_{1-\alpha}(s)}{\sqrt{N}}$$

f. Compute:

 $LCL = \overline{X} - \varepsilon$

g. If μ_0 < LCL, decide that $\mu > \mu_0$; otherwise, there is no reason to believe $\mu > \mu_0$ at a 100(1- α)% confidence level.

Example:

- a. $\alpha = .05$ $1-\alpha = .95$
- b. $\overline{X} = 86.417$
 - = 86.4 min.

See paragraph 6.1.2.1.4 b, page 28, for computations.

- c. s = 2.173
- = 2.2 min. See paragraph 6.1.2.1.4 c, page 28, for computations.
- d. t_{.95} for 11 d.f. = 1.796

e.
$$\varepsilon = \frac{(1.796)(2.173)}{\sqrt{12}}$$

= $\frac{3.903}{3.464}$

- = 1.127
- f. LCL = 86.417 1.127
 - = 85.290
 - = 85.2 min.
- g. Since 85.0 < 85.2, decide that $\mu > 85.0$ min. at a 95% confidence level.

6.2.1.1.5 <u>ANALYSIS</u>

If μ_0 < LCL, the null hypothesis that $\mu > \mu_0$ is accepted; otherwise, there is no reason to believe $u > \mu_0$ at a 100(1- α)% confidence level when σ is unknown. The 100 (1- α)% confidence interval for μ is from the LCL to $+\infty$.

6.2.1.2 \overline{X} GREATER THAN μ_0 WITH σ KNOWN

6.2.1.2.1 <u>OBJECTIVE</u>

To determine whether μ is greater than μ_0 at the desired confidence level when σ is known.

6.2.1.2.2 DATA REQUIRED

A list of sample readings and σ , which is known from a standard item, history, or Requirements Document.

6.2.1.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute \overline{X} (see paragraph 6.1.1.3, page 26).
- c. Use Table B-4, page 2-4, to obtain Z
- d. Compute ε as follows:
 - (1) Multiply σ by step c.
 - (2) Divide step (1) by the square root of N.
- e. Subtract ϵ from \overline{X} to obtain the LCL which is the lower bound for μ at the desired confidence level. The confidence interval for μ is from the LCL to $+\infty$.
- f. If μ_0 is less than the LCL, decide that μ is greater than $\mu_0;$ otherwise there is no reason to believe μ is greater than μ_0 at the desired confidence level.

6.2.1.2.4 EXAMPLE

Given:

 $\sigma = 1.4 \text{ min.}$

 $\mu_0 = 83.0 \text{ min.}$

Sample data at Table A-2a, page 1-2.

Procedure:

- a. Choose the confidence level (1-a).
- b. Compute X.
- c. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$.
- d. Compute:

$$\epsilon = \frac{z_{1-\alpha}(\sigma)}{\sqrt{N}}$$

Example:

a.
$$\alpha = .10$$

 $1-\alpha = .90$

b.
$$\overline{X} = 86.417$$

= 86.4 min.
See paragraph 6.1.1.4, page 26, for computations.

c.
$$Z_{90} = 1.282$$

d.
$$\epsilon = \frac{(1.282)(1.4)}{\sqrt{12}}$$

$$= \frac{1.7948}{3.464}$$

$$= .518$$

e. Compute:

LCL = \overline{X} - ε

f. If μ_0 < LCL decide that $\mu > \mu_0$; otherwise, there is no reason to believe $\mu > \mu_0$ at a 100(1- α)% confidence level.

e. LCL = 86.417 - .518

= 85.899

= 85.8 min.

f. Since 83.0 < 85.8 decide that μ > 83.0 min. at a 90% confidence level.

6.2.1.2.5 <u>ANALYSIS</u>

If μ_0 < LCL, the null hypothesis that $\mu > \mu_0$ is accepted; otherwise, there is no reason to believe $\mu > \mu_0$ at a 100(1-a)% confidence level when σ is unknown. The 100 (1-a)% confidence interval for μ is LCL to $+\infty$

- 6.2.2 \overline{X} LESS THAN μ_0 .
- 6.2.2.1 X LESS THAN μο WITH σ UNKNOWN
- 6.2.2.1.1 OBJECTIVE

To determine whether μ is less than μ_0 at the desired confidence level when σ is unknown.

6.2.2.1.2 DATA REQUIRED

A list of sample readings.

6.2.2.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute \overline{X} (see paragraph 6.1.1.3, page 26).
- c. Compute s (see paragraph 7.1.1.3, page 64).
- d. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for N-1 d.f.
- e. Compute ε as follows:
 - (1) Multiply s by step d.
 - (2) Divide step (1) by the square root of N.
- f. Add ϵ to \overline{X} to obtain the UCL which is the upper bound for μ at the desired confidence level. The confidence interval for μ is from ∞ to the UCL.
- g. If μ_0 is greater than the UCL, decide that μ is less than μ_0 ; otherwise, there is no reason to believe μ is less than μ_0 at the desired confidence level.

e. Compute:

 $UCL = \overline{X} + \varepsilon$

- f. If μ_0 > UCL, decide that $\mu < \mu_0$; otherwise, there is no reason to believe $\mu < \mu_0$ at a 100(1-a)% confidence level.
- e. UCL = 86.417 + .814 = 87.231 = 87.3 min.
- f. Since 88.0 > 87.3, decide that μ < 88.0 min. at a 90% confidence level.

6.2.2.2.5 <u>ANALYSIS</u>

If μ_0 > UCL, the null hypothesis that $\mu < \mu_0$ is accepted; otherwise there is no reason to believe $\mu < \mu_0$ at a desired confidence level. The 100 (1- α)% confidence interval for μ is from $-\infty$ to UCL.

6.2.3 <u>DETERMINATION OF SAMPLE SIZE</u>

6.2.3.1 OBJECTIVE

To determine the N required to determine whether μ is equal to or greater than μ_0 + ϵ (or equal to or less than μ_0 — ϵ) at the desired confidence level when:

- a. o is known.
- b. σ is unknown.

6.2.3.2 DATA REQUIRED

- a. σ , which is known from a standard item, history, or Requirements Document.
 - b. An approximation of the value that σ will assume.

6.2.3.3 PROCEDURE

- a. Choose α and $\beta,$ the probabilities of making Type I and Type II errors respectively.
 - b. Choose the allowable amount of error.
 - c. Compute d², an intermediate value, as follows:
 - (1) Divide ε by σ .
 - (2) Square step (1).
 - d. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
 - e. If σ is known, compute Nt as follows:
 - (1) Add Z to $Z_{1-\beta}$.
 - (2) Square step (1).

- (3) Divide step (2) by step c and round to the next larger whole number.
- f. If σ is unknown, add 3 to step e for $\alpha = .01$, 2 for $\alpha = .05$, or 1 for $\alpha = .10$.
- g. Conclude that N_{t} samples are required to determine whether μ is equal to or greater than μ_{0} + ϵ (or equal to or less than μ_{0} $\epsilon)$ at the desired confidence level.

6.2.3.4 EXAMPLE

Given: $\sigma = .12$

Procedure:

- a. Choose α and β .
- b. Choose ϵ .
- c. Compute:

$$d^2 = (\varepsilon/\sigma)^2$$

- d. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
- e. When o is known, compute:

$$N_t = \frac{(Z_{1-\alpha} + Z_{1-\beta})^2}{d^2}$$

i. When σ is unknown and a value is assumed, compute:

(1)
$$\alpha = .01$$

$$N_{t} = \frac{(z_{1-\alpha} + z_{1-\beta})^{2}}{d^{2}} + 3$$

(2)
$$\alpha = .05$$

 $N_t = \frac{(Z_{1-\alpha} + Z_{1-\beta})^2}{d^2} + 2$

Example:

a.
$$\alpha = .01$$

 $1-\alpha = .99$
 $\beta = .20$
 $1-\beta = .80$

b.
$$\varepsilon = .05$$

c.
$$d^2 = (.05/.12)^2$$

= $(.4167)^2$
= .1736

d.
$$Z_{.99} = 2.326$$

 $Z_{.80} = .84$

e.
$$N_t = \frac{(2.326+.84)^2}{.1736}$$

$$= \frac{(3.166)^2}{.1736}$$

$$= \frac{10.024}{.1736}$$

$$= 57.74$$

$$= 58$$

f. Since
$$\alpha = .01$$

$$N_{t} = \frac{(2.326 + .84)^{2}}{.1736} + 3$$

$$= 61$$

(3)
$$\alpha = .10$$

$$N_{t} = \frac{(z_{1-\alpha} + z_{1-\beta})^{2}}{d^{2}} + 1$$

g. Conclude that N_t samples are required to determine whether $\mu \ge \mu_0 + \varepsilon$ (or $\mu \le \mu_0 - \varepsilon$) at a $100(1-\alpha)\%$ confidence level.

g. Conclude that 58 samples, for σ known and equal to .12 (or 61 samples for σ assumed equal to .12), must be tested in order to determine whether $\mu \geq \mu_0 + .05$ (or $\mu \leq \mu_0 - .05$) at a 99% confidence level. NOTE: If σ is really less than .12, N_t is more than adequate.

6.2.3.5 ANALYSIS

If σ is overestimated, the consequences are twofold: first, N_t is overestimated; second, by employing a N_t that is larger than necessary, the actual value of β will be somewhat less than intended at the same confidence level, a consequence which is never undesirable. On the other hand if σ is underestimated, N_t is underestimated. Therefore, N_t must be recomputed and additional items must be tested if possible. β will be larger than intended at the same confidence level. Thus, overestimating σ is safer than underestimating σ .

6.3 COMPARING TWO OBSERVED MEANS

- a. An observed mean is generated from a sample and is representative of μ . This value of X is then required to meet a standard item X which is representative of the standard item's population. Looking at the values of the means $(X_A$ and $X_B)$ to decide whether μ_A is greater than μ_B or μ_A is less than μ_B at a confidence level is insufficient. Since the decision pertains to the populations, statistical tests must be applied X_A and X_B to determine whether μ_A is greater than μ_B or μ_A is less than μ_B . The statistical tests use the sample means as estimates of the population means.
- b. Type A generally represents the test item and Type B the standard item when testing the hypothesis that μ_A is greater than μ_B . However, to prove that the average performance of the test item is less than that of the standard item, Type A must represent the standard item so that the hypothesis, μ_A is greater than μ_B , can be tested.
- c. When the null hypothesis is μ_A is greater than μ_B , the alternative hypothesis is there is no reason to believe that μ_A is greater than μ_B .
- d. There are four different procedures available to test the null hypothesis. Following are the conditions which dictate the appropriate test:

- (1) The variabilities of A and B are unknown but assumed equal $(\sigma_A = \sigma_B)$. This test also applies when $N_A = N_B$ even though $\sigma_A \neq \sigma_B$ (see paragraph 6.3.1.1, page 46).
- (2) The variabilities of A and B are unknown but assumed unequal (σ_A ≠ σ_B) for unequal sample sizes (see paragraph 6.3.1.2, page 49).
- (3) The variabilities of A and B are known from previous experience; thus, σ_A may or may not equal σ_B (see paragraph 6.3.1.3, page 51).
- (4) The observations are paired; i.e., individual Type A and Type B items are tested alternately such that the items in each pair are tested under the same condition. Obviously, $N_A = N_B$ (see paragraph 6.3.1.4, page 53).

NOTE: The procedure in subparagraph (1) is also valid for paired observations since $N_A = N_B$; however, the procedure in subparagraph (4) is only valid for paired observations.

6.3.1 \overline{X}_A GREATER THAN \overline{X}_B

6.3.1.1 σ_A AND σ_B UNKNOWN BUT ASSUMED EQUAL

6.3.1.1.1 **OBJECTIVE**

To determine whether μ_A is greater than μ_B at the desired confidence level when the population standard deviations of A and B are unknown but σ_A is assumed equal to $\sigma_B.$

6.3.1.1.2 DATA REQUIRED

A list of sample readings.

6.3.1.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute \overline{X}_A and \overline{X}_B (see paragraph 6.1.1.3, page 26).
- c. Compute $\Sigma\Delta_{\bf A}^2$ and $\Sigma\Delta_{\bf B}^2$ as follows:
 - (1) Compute the deviation from the mean for each reading $(\Delta_A = X_A \overline{X}_A \text{ and } \Delta_B = X_B \overline{X}_B)$.
 - (2) Square each deviation (Δ_A^2 and Δ_B^2).
 - (3) Sum the squared deviations for each of the two items $(\Sigma \Delta_A^2 \text{ and } \Sigma \Delta_B^2)$.
- d. Use Table B-5, page 2-5, to obtain t_{1-x} for (N_A+N_B-2) d.f.

- e. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for e.d.f.
- f. Compute:

$$\varepsilon = t_{1-\alpha} \sqrt{v_A + v_B}$$

g. Compute:

LCL =
$$\overline{X}_A - \varepsilon$$

h. If $\overline{X}_B < LCL$, decide that $\mu_A > \mu_B$; otherwise, there is no reason to believe $\mu_A > \mu_B$ at a $100(1-\alpha)$ % confidence level.

e. t_{.95} for 22 d.f. = 1.717

f.
$$\varepsilon = (1.717) \sqrt{9.35 + 16.55}$$

$$-(1.717)$$
 $\sqrt{25.90}$

g.
$$LCL = 5401.40 - 8.74$$

$$= 5392.66$$

h. Since 5378 < 5392, decide that $\mu_A > \mu_B$ at a 95% confidence level.

6.3.1.2.5 ANALYSIS

If \overline{X}_B < LCL, the null hypothesis that μ_A > μ_B is accepted; otherwise, there is no reason to believe μ_A > μ_B at a 100(1-a)% confidence level when σ_A and σ_B are unknown and σ_A assumed equal to σ_B .

6.3.1.3 σ_A AND σ_B KNOWN FROM PREVIOUS EXPERIENCE

6.3.1.3.1 **OBJECTIVE**

To determine whether μ_{A} is greater than μ_{B} when σ_{A} and σ_{B} are known from previous experience.

6.3.1.3.2 DATA REQUIRED

A list of sample readings and $\sigma_{\mbox{\scriptsize A}}$ and $\sigma_{\mbox{\scriptsize B}},$ which are known from previous testing.

6.3.1.3.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$.
- c. Compute \overline{X}_A and \overline{X}_B (see paragraph 6.1.1.3, page 26).
- d. Compute ε as follows:
 - (1) Square σ_{Λ} .
 - (2) Square σ_B .
 - (3) Divide step (1) by N_A .

- (4) Divide step (2) by N_B .
- (5) Add step (3) to step (4).
- (6) Multiply step b by the square root of step (5).
- e. Subtract ε from \overline{X}_A to obtain the LCL.
- f. If \overline{X}_B is less than the LCL, decide that μ_A is greater than μ_B ; otherwise, there is no reason to believe μ_A is greater than μ_B at the desired confidence level.

6.3.1.3.4 EXAMPLE

Given:

Sample data at Table A-2b, page 1-3, and Table A-2c, page 1-4.

 $\sigma_A = 14.0$ meters

 $\sigma_B = 12.0$ meters

Procedure:

- a. Choose the confidence level (1-a).
- b. Use Table B-4, page 2-4, so obtain $Z_{1-\alpha}$.
- c. Compute:

$$\overline{x}_{A}$$

 \overline{X}_{B}

$$\varepsilon = Z_{1-\alpha} \sqrt{\frac{\sigma_A^2}{N_A} + \frac{\sigma_B^2}{N_B}}$$

e. Compute:

LCL =
$$\overline{X}_{A}$$
 - ε

Example:

a.
$$\alpha = .05$$

$$1-\alpha = .95$$

b.
$$Z_{.95} = 1.645$$

c.
$$\overline{X}_A = 5401.40$$

$$\bar{X}_B = 5372.25$$

See paragraph 6.3.1.1.4, page 47.

$$\epsilon = (1.645) \sqrt{[(14.0)^2/20]+[(12.0)^2/20]}$$

$$= (1.645) \sqrt{(196.0/20) + (144.0/20)}$$

$$= (1.645) \sqrt{9.80 + 7.20}$$

$$= (1.645) \sqrt{17.00}$$

$$=(1.645)(4.12)$$

e.
$$LCL = 5401.40 - 6.78$$

$$= 5394.62$$

= 5394 meters

f. If \overline{X}_B < LCL, decide that $^{\mu}A$ > $^{\mu}B$; otherwise, there is no reason to believe $^{\mu}A$ > $^{\mu}B$ at a 100(1-a)% confidence level.

f. Since 5372 < 5394, decide that $\mu_A > \mu_B$ at a 95% confidence level.

6.3.1.3.5 ANALYSIS

If \overline{X}_B < LCL, the null hypothesis that μ_A > μ_B is accepted; otherwise, there is no reason to believe μ_A > μ_B at a 100 (1-a)% confidence level when σ_A and σ_B are known from previous testing.

6.3.1.4 PAIRED OBSERVATIONS

6.3.1.4.1 **OBJECTIVE**

To determine whether μ_A is greater than μ_B when the observations are paired (see subparagraph 6.3 d (4), page 46.

6.3.1.4.2 DATA REQUIRED

· A list of paired sample readings.

6.3.1.4.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute the difference between the reading for Type A and the reading for Type B ($x_d = x_A x_B$) for each pair of observations.
- c. Compute the mean of the differences (\overline{X}_d) , (see paragraph 6.1.1.3, page 26).
- d. Compute the standard deviation of the differences (s_d) , (see paragraph 7.1.1.3, page 64).
 - e. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for N-1 d.f.
 - f. Compute ε as follows:
 - (1) Divide step d by the square root of N.
 - (2) Multiply step e by step (1).
- g. If X_d is greater than ϵ , decide that μ_A is greater than μ_B ; otherwise, there is no reason to believe μ_A is greater than μ_B at the desired confidence level.

6.3.1.4.4 **EXAMPLE**

Given:

Sample data at Table A-2e, page 1-6.

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Compute x_d for each pair of readings.

$$x_d = x_A - x_B$$

- c. Compute \overline{X}_d .
- d. Compute sd.
- e. Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for N-1 d.f.
- f. Compute:

$$\varepsilon = t_{1-\alpha} \sqrt{\frac{s_d}{N}}$$

g. If $\overline{X}_d > \epsilon$, decide that $\mu_A > \mu_B$; otherwise, there is no reason to believe $\mu_A > \mu_B$ at a $100(1-\alpha)\%$ confidence level.

6.3.1.4.5 <u>ANALYSIS</u>

If $\overline{X}_d > \varepsilon$, the null hypothesis that $\mu_A > \mu_B$ is accepted; otherwise, there is no reason to believe $\mu_A > \mu_B$ at a $100(1-\alpha)\%$ confidence level when the observations are paired.

6.3.1.5 DETERMINATION OF SAMPLE SIZE

6.3.1.5.1 **OBJECTIVE**

To determine the N_t required to determine whether μ_A is equal to or greater than $\mu_B+\epsilon$ (or equal to or less than $\mu_B-\epsilon)$ at the desired confidence level when:

- a. Case I. The variabilities of A and B are unknown but assumed equal.
- b. Case II. The variabilities of A and B are unknown but assumed unequal.

Example:

- a. $\alpha = .05$ $1-\alpha = .95$
- b. (1) $x_d = 146.0 141.0$ = 5.0
 - (2) $x_d = 141.5 143.5$ = -2.0

See Table A-2e, page 1-6, for complete list.

- c. $\overline{X}_{d} = -0.10$ = -0.1 amp. hr. See paragraph 6.1.1.4, page 26.
- e. $t_{.95}$ for 9 d.f. = 1.833
- f. $\varepsilon = (1.833)(2.81)/\sqrt{10}$ = 5.15/3.16 = 1.63 = 1.6
- g. Since -0.1 \neq 1.6, decide that there is no reason to believe $\mu_A > \mu_B$ at a 95% confidence level.

- c. Case III. The variabilities of A and B are known from previous experience.
- d. Case IV. The observations are paired (see subparagraph 6.3 d (4), page 46).

6.3.1.5.2 DATA REQUIRED

- a. Case I. An approximation of the value that σ ($\sigma_A = \sigma_B$) will assume.
- b. Case II. An approximation of the values that σ_A and σ_B will assume.
- c. Case III. The values of σ_A and σ_B which are known from previous experience.
- d. Case IV. An approximation of the population standard deviation of the differences ($\sigma_d = |\sigma_A - \sigma_B|$ where σ_A and σ_B are approximations) for the pairs concerned.

6.3.1.5.3 PROCEDURE

a. Case I.

- (1) Choose α and β , the probabilities of making Type I and Type II errors respectively.
- (2) Choose the allowable amount of error.
- (3) Compute d², an intermediate value, as follows:
 - (a) Square σ.
 - (b) Multiply step (a) by 2.
 - (c) Square ε.
 - (d) Divide step (c) by step (b).
- (4) Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$. (5) Compute N_t ($N_t = N_A = N_B$) as follows:
- - (a) Add $Z_{1-\alpha}$ to $Z_{1-\beta}$.
 - (b) Square step (a).
 - (c) Divide step (b) by step (3).
 - (d) If $\alpha = .01$, add 2 to step (c) and round up; and if $\alpha = .05$, add 1 to step (c) and round up.
- (6) Conclude that N_t samples of each item are required to determine whether $\boldsymbol{\mu}_{A}$ is equal to or greater than $\mu_B + \varepsilon$ (or equal to or less than $\mu_B - \varepsilon)$ at the desired confidence level.

b. Case II.

(1) Choose α and β , the probabilities of making Type I and Type II errors respectively.

MTP 3-1-005 1 March 1972

- (2) Choose the allowable amount of error.
- (3) Compute d^2 , an intermediate value, as follows:
 - (a) Square oA.
 - (b) Square og.
 - (c) If NA = NB, add step (a) to step (b).
 - (d) If NA is a multiple of NB; i.e., NA = C(NB), multiply step (b) by C and add the product to step (a).
 - (e) Square ε.
 - (f) Divide step (e) by the value from step (c) if $N_A = N_B$ or by the value from step (d) if $N_A = C(N_B)$.
- (4) Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
- (5) Compute N_t ($N_t = N_A = N_B$) as follows:
 - (a) Add $Z_{1-\alpha}$ to $Z_{1-\beta}$.
 - (b) Square step (a).
 - (c) Divide step (b) by step (3) and round up.
- (6) Conclude that N_t samples of each item are required to determine whether μ_A is equal to or greater than μ_B + ϵ (or equal to or less than μ_B ϵ) at the desired confidence level.
- c. Case III.

Same as Case II.

d. Case IV.

Same as paragraph 6.2.3.3, page 43

NOTE: σ in paragraph 6.2.3.3 represents σ_d .

6.3.1.5.4 EXAMPLE

a. Case I.

Given: $\sigma = 2.6$

Procedure:

Example:

(1) Choose α and β .

(3) $\alpha = .05$ $1-\alpha = .95$ $\beta = .20$ $1-\beta = .80$

(2) Choose ε .

(2) $\epsilon = 1.05$

$$d^2 = \varepsilon^2/2\sigma^2$$

(4) Use Table B-4, page 2-4 to obtain
$$Z_{1-\alpha}$$
 and $Z_{1-\beta}$.

$$N_t = \frac{(a) \text{ for } a = .01,}{(Z_{1-\alpha} + Z_{1-\beta})^2} + 2$$

(b) For
$$a = .05$$
,

$$N_t = \frac{(z_{1-\alpha} + z_{1-\beta})^2}{d^2} + 1$$

(6) Conclude that N_t samples of each item are required to determine whether $\mu_A \ge \mu_B + \epsilon$ (or $\mu_A \le \mu_B - \epsilon$) at a 100(1-a)% confidence level.

b. Case II.

Given

 $\sigma_A = 2.2$

 $\sigma_{\rm B} = 3.0$

 $N_A = N_B$

Procedure:

(1) Choose α and β .

Example:

(1)
$$\alpha = .05$$

$$1-\alpha = .95$$

 $\beta = .20$

1-8 = .80

(3)
$$d^2 = 1.05^2/2(2.6)^2$$

= 1.1025/2(6.76)
= 1.1025/13.52
= .08155

$$\begin{array}{ccc} (4) & Z_{.95} = 1.645 \\ & Z_{.80} = .84 \end{array}$$

$$N_{t} = \frac{(1.645 + .84)^{2}}{.08155} + 1$$

$$= \frac{(2.485)^{2}}{.08155} + 1$$

$$= \frac{6.175}{.08155} + 1$$

$$= 75.72 + 1$$

$$= 76.72$$

$$= 77$$

(6) Conclude that 77 samples of each item, for a assumed and equal to 2.6, must be tested in order to determine whether $\mu_A \ge \mu_B + 1.05$ (or $\mu_A \le \mu_B - 1.05$) at a 95% confidence level.

MTP 3-1-005 1 March 1972

- (2) Choose ε .
- (3) (a) If $N_A = N_B$, compute:

$$d^2 = \frac{\varepsilon^2}{\sigma_A^2 + \sigma_R^2}$$

(b) If
$$N_A = C(N_B)$$
, compute:

$$d^2 = \frac{\varepsilon^2}{\sigma_A^2 + C(\sigma_B^2)}$$

- (4) Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
- (5) Compute:

$$N_{t} = \frac{(z_{1-\alpha} + z_{1-\beta})^{2}}{d^{2}}$$

(6) Conclude that Nt samples of each item are required to determine whether $\mu_A \ge \mu_B + \varepsilon$ (or $\mu_A \le \mu_B - \varepsilon$) at a 100(1-a)% confidence level.

d. Case IV.

Same as paragraph 6.2.3.4, page 44.

NOTE: σ in paragraph 6.2.3.4 represents σd .

(2)
$$\epsilon = .75$$

(3) Since $N_A = N_B$ is assumed,

$$d^{2} = \frac{.75^{2}}{(2.2)^{2} + (3.0)^{2}}$$
$$= \frac{.5625}{4.84 + 9.0}$$
$$= \frac{.5625}{13.84}$$

- .0406

(5)
$$N_t = \frac{(1.645 + .84)^2}{.0406}$$

$$\frac{(2.485)^2}{.0406}$$

$$=\frac{6.175}{.0406}$$

(6) Conclude that 153 samples of each item, for σ_A assumed and equal to 2.2 and σ_B assumed and equal to 3.0, must be tested in order to determine whether µA > $\mu_{\rm B}$ + .75 (or $\mu_{\rm A} < \mu_{\rm B}$ - .75) at a 95% confidence level.

(7) Compute:

$$\varepsilon = \frac{q_{1-\alpha} \sqrt{a_{K}^{2}}}{\sqrt{N}}$$

- (8) If the absolute difference between any two sample means is greater than ε , decide that those means differ; otherwise, there is no reason to believe the means differ at a $100(1-\alpha)\%$ confidence level.
- (7) $\varepsilon = (3.42) \sqrt{1648.47} / \sqrt{6.70}$ = (3.42)(40.60)/2.59 = 138.85/2.59 = 53.64
- (8) (a) 2 and 3

573 > 54 Since 573 > 54, decide that the means of Types 2 and 3 differ at a 90% confidence level.

> NOTE: Since the difference between the smallest and largest mean produces a difference decision, repeat step (8) for the next largest difference.

(b) 3 and 4

436.81 > 54?

437 > 54

Since 437 > 54, decide that the means of Types 3 and 4 differ at a 90% confidence level.

(c) 1 and 3

362.38 > 54?

362 > 54

Since 362 > 54, decide that the means of Types 1 and 3 differ at a 90% confidence level.

(d) 1 and 2

Is | 5222.29-5011.20 | > 54?

211.09 > 54?

211 > 54

Since 211 > 54, decide that the means of Types 1 and 2 differ at a 90% confidence level.

(e) 2 and 4

Is | 5011.20-5147.86 | > 54?

136.66 > 54?

137 > 54

Since 137 > 54, decide that the means of Types 2 and 4 differ at a 90% confidence level.

(f) 1 and 4

Since 74 > 54, decide that the means of Types 1 and 4 differ at a 90% confidence level.

6.3.2.5 ANALYSIS

The population means of several products may be compared by computing the absolute difference between any two sample means and comparing this value to a computed ε . The decision is relative only to the two products compared. Therefore, this test only reveals the relationship between the means of two items at a desired confidence level and does not necessarily reveal a difference between one mean and all of the remaining means.

- 7. STANDARD DEVIATION
- 7.1 ESTIMATE OF THE POPULATION STANDARD DEVIATION (s).
- 7.1.1 BEST SINGLE ESTIMATE of s.
- 7.1.1.1 OBJECTIVE

To determine the best point estimate of the population standard deviation for a normal distribution.

7.1.1.2 DATA REQUIRED

A list of sample readings.

- 7.1.1.3 PROCEDURE
 - a. Compute X (see paragraph 6.1.1.3, page 26).
- b. Find the deviation of each reading from the mean by subtracting the mean from each reading; i.e., $\Delta = x \overline{X}$.
 - c. Square each deviation; i.e., Δ^2 .
 - d. Sum the squared deviations; i.e., $\Sigma \Delta^2$.
 - e. Compute s as follows:
 - (1) Divide step d by N-1.
 - (2) Find the square root of step (1).

7.1.1.4 **EXAMPLE**

Given:

Sample data at Table A-3a, page 1-9.

Procedure:

a. Compute X.

b. Compute:

$$\Delta = X - \overline{X}$$

c. Square each Δ.

d. Sum the Δ^2 .

e. Compute:

$$s = \frac{\sum \Delta^2}{1!-1}$$

Example:

a. $\overline{X} = 1094/10$ = 109.40 = 109 min.

See paragraph 6.1.1.4, page 26.

See Table A-3a, page 1-9, for complete list.

c. (1)
$$\Delta^2 = (-9.40)^2$$

= 88.36
(2) $\Delta^2 = (15.60)^2$
= 243.36

See Table A-3a, page 1-9, for complete list.

d.
$$\Sigma \Delta^2 = 810.4$$

e.
$$s = \sqrt{\frac{810.40}{10-1}}$$

$$= \sqrt{\frac{810.40}{9}}$$

$$= \sqrt{90.04}$$

$$= 9.49$$

$$= 9 \text{ min.}$$

7.1.1.5 <u>ANALYSIS</u>

The standard deviation is a unit measure of dispersion around the mean. In the case of the normal distribution, 68% of the area under the curve is between \overline{X} + s and \overline{X} - s with μ centered at \overline{X} or, in terms of the population, between μ + σ and μ - σ (see Figure 13).

7.1.2 CONFIDENCE INTERVAL ESTIMATES

7.1.2.1 TWO-SIDED INTERVAL

7.1.2.1.1 OBJECTIVE

To determine a two-sided confidence interval which is expected to bracket σ at the desired confidence level.

7.1.2.1.2 DATA REQUIRED

A list of sample readings.

AREA UNDER THE NORMAL CURVE

Parameter

Figure 13

7.1.2.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute s (see paragraph 7.1.1.3, page 64).
- c. Use Table B-9, page 2-35, to obtain $\rm B_{\tilde U}$ (upper bound) and $\rm B_{\tilde L}$ (lower bound) for N-1 d.f.
- d. Multiply s by $\mathbf{B}_{\overline{\mathbf{U}}}$ to obtain the UCL and multiply s by $\mathbf{B}_{\overline{\mathbf{L}}}$ to obtain the LCL.
- e. Conclude that σ is equal to or between the UCL and LCL at the desired confidence level.

7.1.2.1.4 EXAMPLE

Given:

Sample data at Table A-3a, page 1-9.

Procedure:

Example:

- a. Choose the confidence level $(1-\alpha)$.
- a = .05
- $1-\alpha = .95$

b. Compute s.

- b. s = 9.49
 - = 9 min.

See paragraph 7.1.1.4, page 65.

c Use Table B-9, page 2-35, \circ obtain B_U and B_L for α and N-1 d.f.

d. Compute:

 $UCL = (B_U) s$

 $LCL = (B_L) s$

e. Conclude that $\sigma \leq UCL$ and $\sigma \geq LCL$ at a $100(1-\alpha)\%$ confidence level.

c. For a = .05 and 9 d.f., B_U = 1.746

 $B_{L} = .6657$

d. UCL = (1.746)(9.49)

= 16.57

= 17 min.

LCL = (.6657)(9.49)

= 6.32

= 6 min.

e. Conclude that $\sigma \le 17$ min. and $\sigma \ge 6$ min. at a 95% confidence level.

7.1.2.1.5 ANALYSIS

The two-sided interval surrounds σ such that $\sigma \leq UCL$ and $\sigma \geq LCL$ at a $100(1-\alpha)\%$ confidence level.

7.1.2.2 ONE-SIDED INTERVAL

7.1.2.2.1 OBJECTIVE

To determine a one-sided confidence interval such that σ is equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level.

7.1.2.2.2 DATA REQUIRED

A list of sample readings.

7.1.2.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute s (see paragraph 7.1.1.3, page 64).
- c. Use Table B-10, page 2-37, to obtain $A_{1-\alpha}$ (or A_{α}) for

N-1 d.f.

- d. Multiply $A_{1-\alpha}$ by s to obtain the UCL (or multiply A_{α} by s to obtain the LCL).
- e. Conclude that σ is equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level.

7.1.2.2.4 **EXAMPLE**

Given:

Sample data at Table A-3a, page 1-9.

Procedure:

Example:

. 🦫

a. Choose the confidence level $(1-\alpha)$.

 $a. \quad \alpha = .05$

b. Compute s.

b. s = 9.49

= 9 min.

 $1-\alpha = .95$

See paragraph 7.1.1.4, page 65.

- c. Use Table B-10, page 2-37, to obtain $A_{1-\alpha}$ (or A_{α}) for N-1 d.f.
- c. For 9 d.f., $A_{.95} = 1.645$ (or $A_{.05} = .7293$)

d. Compute:
UCL = A_{1-\alpha} s

d. UCL = (1.645)(9.49) = 15.61 = 16 mir.

or LCL = An s

- (or LCL = (.7293)(9.49)
 - = 6.92 = 6 min.)

e. Conclude that $\sigma \leq UCL$ (or $\sigma \geq LCL$) at a $100(1-\alpha)$ % confidence level.

e. Conclude that $\sigma \le 16$ min. (or $\sigma \ge 6$ min.) at a 95% confidence level.

7.1.2.2.5 ANALYSIS

The one-sided interval surrounds σ such that $\sigma \leq UCL$ (or $\sigma \geq LCL$) at a 100(1- α)% confidence level.

7.1.3 SAMPLE SIZE REQUIRED TO ESTIMATE THE POPULATION STANDARD DEVIATION

7.1.3.1 OBJECTIVE

To determine the N_{t} required in order to state that σ lies within a specified percentage of its true value at the desired confidence level.

7.1.3.2 DATA REQUIRED

None.

7.1.3.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Choose the allowable percentage of error.
- c. Use Table B-4, page 2-4, to obtain $z_{1-\alpha/2}$.
- d. Compute Nt as follows:
 - (1) Square step c.
 - (2) Square step b.
 - (3) Multiply step (2) by 2.
 - (4) Divide step (1) by step (3) and round to the next larger whole number.
- e. Conclude that N_{t} samples are required in order to state that σ lies within an allowable percentage of error ot its true value at the desired confidence level.

7.1.3.4 **EXAMPLE**

Procedure:

Example:

a. Choose the confidence level $(1-\alpha)$.

a. $\alpha = .05$ $1-\alpha = .95$ $1-\alpha/_2 = .975$

- b. Choose the percentage of error.
- c. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha/2}$.
- d. Compute:

$$N_{t} = \frac{(Z_{1-\alpha/2})^{2}}{2(\text{percentage of error})^{2}}$$

e. Conclude that N_t samples are required in order to state that σ lies within an allowable percentage of its true value at a $100(1-\alpha)\%$ confidence level.

- b. Percentage of error = .10
- c. $Z_{.975} = 1.96$

d.
$$N_t = \frac{(1.96)^2}{2(.10)^2}$$

$$= \frac{3.84}{2(.01)}$$

$$= \frac{3.84}{.02}$$

= 192

e. Conclude that 192 samples are required in order to state that σ lies within 10% of its true value at a 95% confidence level.

7.1.3.5 ANALYSIS

 N_t samples are required in order to state that σ lies within a certain percentage of its true value at a $100(1-\alpha)$ % confidence level.

7.2 COMPARING AN OBSERVED STANDARD DEVIATION (s) TO A REQUIREMENT (o₀)

- a. An observed standard deviation is generated from a sample and is representative of σ . This value of s is then compared to a stated requirement (σ_0) . However, looking at the values of s and σ_0 to decide whether σ is greater than σ_0 or σ is less than σ_0 at a confidence level is insufficient. Since the decision pertains to the population, statistical tests must be applied to s to determine whether σ is greater than σ_0 or σ is less than σ_0 .
- b. There exist two possibilities for the relationship of s to σ_0 . Following are the assumptions and the circumstances for each possible relationship:
 - (1) s greater than σ_0 .
 - (a) The null hypothesis is σ is greater than σ_0 .
 - (b) The alternative hypothesis is there is no reason to believe σ is greater than σ_0 .
 - (c) The use of this test is appropriate when σ_0 is a maximum value for σ to satisfy. In the event that σ must not be greater than σ_0 , this test would be appropriate.
 - (2) s less than σ_0 .
 - (a) The null hypothesis is c is less than s_0 .
 - (b) The alternative hypothesis is there is no reason to believe that σ is less than σ_0 .

10 June 1974 CHANGE 1

- (c) The use of this test is appropriate when σ_0 is a minimum value for σ to satisfy. In the event that σ must meet or exceed σ_0 , this test would be appropriate.
- 7.2.1 s GREATER THAN σ_0 .

7.2.1.1 OBJECTIVE

To determine whether σ is greater than σ_0 at the desired confidence level.

7.2.1.2 DATA REQUIRED

A list of sample readings.

7.2.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-10, page 2-37, to obtain Aq for N-1 d.f.
- c. Compute s (see paragraph 7.1.1.3, page 64).
- d. Multiply step c by step b to obtain the LCL. The confidence interval for σ is from the LCL to $+\infty$.
- e. If σ_0 is less than the LCL, decide that σ is greater than σ_0 ; otherwise, there is no reason to believe σ is greater than σ_0 at the desired confidence level.

7.2.1.4 <u>EXAMPLE</u>

Given:

 $\sigma_0 = 7.0$ min. Sample data at Table A-3a, page 1-9.

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Use Table B-10, page 2-37, to obtain A for N-1 d.f.
- c. Compute s.
- d. Compute:

LCL =
$$A_{\alpha}$$
 (s)

e. If σ_0 < LCL, decide that $\sigma > \sigma_0$, otherwise, there is no reason to believe $\sigma > \sigma_0$ at a 100(1- α)% confidence level.

Example:

- a. $\alpha = .05$ $1-\alpha = .95$
- b. For 9 d.f. $A_{.05} = .7293$
- c. s = 9.49
 - = 9 min.

See paragraph 7.1.1.4, page 65.

- d. LCL = (.7293)(9.49)
 - = 6.921
 - = 6 min.
- e. Since $7.0 \le 6$, decide that there is no reason to believe $\sigma > 7.0$ min. at a 95% confidence level.

7.2.1.5 ANALYSIS

If σ_0 < LCL, the null hypothesis that $\sigma > \sigma_0$ is accepted; otherwise, there is no reason to believe $\sigma > \sigma_0$ at a 100(1- σ)% confidence level. The 100(1- σ)% confidence interval for σ is from the LCL to + σ .

7.2.2 s LESS THAN σ_0

7.2.2.1 OBJECTIVE

To determine whether σ is less than σ_0 at the desired confidence level.

7.2.2.2 DATA REQUIRED

A list of sample readings.

7.2.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-10, page 2-37, to obtain A_{1} for N-1 d.f.
- c. Compute s (see paragraph 7.1.1.3, page 64).
- d. Multiply step c by step b to obtain the UCL. The confidence interval for σ is from ∞ to the UCL.
- e. If σ_0 is greater than the UCL, decide that σ is less than σ_0 ; otherwise, there is no reason to believe σ is less than σ_0 at the desired confidence level.

7.2.2.4 EXAMPLE

Given:

 $\sigma_0 = 12.0$ min. Sample data at Table A-3a, page 1-9.

Procedure:

- a. Choose the confidence level (1-a).
- b. Use Table B-10, page 2-37, to obtain A₁₋₀ for N-1 d.f.
- c. Compute s.
- d. Compute:

 $UCL = A_{1-\alpha}(s)$

e. If σ_0 > UCL, decide that $\sigma < \sigma_0$; otherwise, there is no reason to believe $\sigma < \sigma_0$ at a $100(1-\alpha)\%$ confidence level.

Example:

- a. $\alpha = .05$ $1-\alpha = .95$
- b. For 9 d.f., $A_{.95} = 1.645$
- c. s = 9.49= 9 min.

See paragraph 7.1.1.4, page 65.

- d. UCL = (1.645)(9.49)
 - **-** 15.611
 - = 16 min.
- e. Since 12.0 3 16, decide that there is no reason to believe that $\sigma < 12.0$ min. at a 95% confidence level.

7.2.2.5 ANALYSIS

If $\sigma_0 > \text{UCL}$, the null hypothesis that $\sigma < \sigma_0$ is accepted; otherwise, there is no reason to believe $\sigma < \sigma_0$ at a 100(1- α)% confidence level.

7.2.3 DETERMINATION OF SAMPLE SIZE

7.2.3.1 OBJECTIVE

To determine the N_t required to determine whether σ is greater than $\gamma \sigma_0$ (or less than $\gamma \sigma_0$) at the desired confidence level.

7.2.3.2 DATA REQUIRED

None.

7.2.3.3 **PROCEDURE**

- a. Choose α and β , the probabilities of making Type I and Type II errors respectively.
 - b. Estimate s based on experience or a comparable item.
 - c. Divide s by σ_0 to obtain γ , an intermediate value.
- d. Use Table B-11, page 2-38, to obtain Nt which corresponds to γ and the chosen values of α and β . If one of these values is not contained in the table, continue with step e.
 - e. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
 - f. Compute Nt as follows:
 - (1) Multiply $Z_{1-\beta}$ by step c. (2) Add step (1) to $Z_{1-\alpha}$.

 - (3) Divide step (2) by:
 - (a) γ -1, if s is greater than σ_0 .
 - (b) 1- γ , if s is less than σ_0 .
 - (4) Square step (3).
 - (5) Multiply step (4) by 1/2.
 - (6) Add 1 to step (5) and round to the next larger whole
- g. Conclude that Nt samples are required to determine whether σ is greater than γ σ_0 (or is less than γ σ_0) at the desired confidence level.

NOTE: When $\gamma > 1$, then s is greater than σ_0 ; and the null hypothesis is that $\sigma > \dot{\gamma} \sigma_0$. When $\gamma < 1$, then s is less than σ_0 ; and the null hypothesis is that $\sigma < \gamma \sigma_0$.

7.2.3.4 EXAMPLE

Given:

 $\sigma_0 = 7.3$

NOTE: When $\gamma > 1$, then s_A is greater than s_B ; and the null hypothesis is that $\sigma_A > \gamma \sigma_B$. When $\gamma < 1$, then s_A is less than s_B ; and the null hypothesis is that $\sigma_A < \gamma \sigma_B$.

7.3.2.4 **EXAMPLE**

Procedure:

- a. Choose α and β .
- b. Estimate sA and sB.
- c. Compute:

$$\gamma = {}^{8}A/s_{B}$$

- d. Use Table B-12, page 2-41, to obtain N_t which corresponds to γ and the chosen values of α and β . If one of these values is not contained in the table, continue with step e.
- e. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
- f. Compute:

$$N_{t} = 2 + \left(\frac{Z_{1-\alpha} + Z_{1-\beta}}{\ln(\gamma)}\right)^{2}$$

g. Conclude that N_t samples are required to determine whether $\sigma_A > \gamma \sigma_B$ (or $\sigma_A < \gamma \sigma_B$) at a $100 (1-\alpha) Z$ confidence level.

7.3.2.5 ANALYSIS

a. Initial Nt.

Example:

a.
$$\alpha = .05$$

 $1-\alpha = .95$
 $\beta = .20$
 $1-\beta = .80$

b.
$$s_A = 6.0$$

 $s_B = 4.8$

- d. Since γ = 1.250 is not contained in Table B-12, page 2-41, continue with step e.
- $z_{.95} = 1.645$ $z_{.80} = .840$
- £.

$$N_{t} = 2 + \left(\frac{1.645 + .840}{\ln 1.25}\right)^{2}$$

$$= 2 + \left(\frac{2.485}{.2231}\right)^{2}$$

$$= 2 + (11.14)^{2}$$

$$= 2 + 124.1$$

$$= 126.1$$

$$= 127$$

g. Conclude that 127 samples of each item must be tested in order to determine whether $\sigma_A > 1.25 \ \sigma_B$ at a 95% confidence level.

At specified significant levels of α and β , N_{t} samples are required to determine whether $\sigma_{A}>\gamma$ σ_{B} (or $\sigma_{A}<\gamma$ $\sigma_{B}). As <math display="inline">\gamma$ approaches 1, a very large sample size is required.

b. Adequacy of Nt.

(1) sA greater than sB.

After the initial N_t samples have been tested, s_A and s_B must be computed. Their ratio (s_A/s_B) must then be computed and compared to the initial ratio determined for the initial N_t . If the computed ratio is greater than the initial ratio, the initial N_t is adequate; however, if the computed ratio is less than the initial ratio, the initial N_t is inadequate. If N_t is inadequate, N_t must be recomputed using the computed ratio in place of the initial ratio; and additional samples must be tested if possible.

(2) sA less than sB.

After the initial N_t samples have been tested, s_A and s_B must be computed. Their ratio (s_A/s_B) must then be computed and compared to the initial ratio determined for the initial N_t . If the computed ratio is less than the initial ratio, the initial N_t is adequate; however, if the computed ratio is greater than the initial ratio, the initial N_t is inadequate. If N_t is inadequate, N_t must be recomputed using the computed ratio in place of the initial ratio; and additional samples must be tested if possible.

8. PROPORTION

For some kinds of tests there may be no way to obtain actual measurements. An item may be subjected to a test when the result of that particular test can be expressed only in terms of a pre-established classification of possible results. The simplest kind of classification, and the one most widely used, consists of just two mutually exclusive categories; e.g., success and failure or perfect and defective. The ratio generated, the number of items having the characteristic divided by N, is known as a proportion (P) or a failure-attempt ratio. In all examples P is computed relative to failures (f); however, other variables, such as successes, may be substituted.

8.1 ESTIMATE OF THE POPULATION PROPORTION (P)

8.1.1 BEST SINGLE ESTIMATE of P

8.1.1.1 OBJECTIVE

To determine the best point estimate of the population proportion (λ) .

3.1.1.2 DATA REQUIRED

N and the number of elements possessing the given characteristic.

8.1.1.3 PROCEDURE

a. Divide the number of sample items which have the characteristic by the total number of items in the sample.

b. Conclude that P is the best estimate of the proportion of population of items which will have the given characteristics.

8.1.1.4 **EXAMPLE**

Given:

N = 10

f = 4

Procedure:

a. Compute:

P = characteristic/N

Example:

a. P = f/N

= 4/10

- .4

b. Conclude that P is the best estimate of the proportion of population items which will have the given characteristic.

b. Conclude that .4 is the best estimate of λ , the fraction of population items that will fail.

8.1.1.5 ANALYSIS

The best single estimate of λ is the observed proportion of items having this characteristic in a random sample from the population; i.e., the number of sample items which have the characteristic divided by the total number of items in the sample.

8.1.2 CONFIDENCE INTERVAL ESTIMATES

8.1.2.1 TWO-SIDED INTERVAL FOR $N \le 30$

8.1.2.1.1 OBJECTIVE

To determine a two-sided confidence interval which is expected to bracket λ at the desired confidence level when N is equal to or less than 30.

8.1.2.1.2 DATA REQUIRED

N and the number of elements possessing the given characteristic.

8.1.2.1.3 PROCEDURE

a. Choose the desired confidence level.

- b. Use Table B-13, page 2-43, to obtain the UCL and LCL which correspond to N and the number of elements possessing the given characteristic at the desired confidence level.
- c. Conclude that λ is equal to or between the UCL and LCL at the desired confidence level.

8.1.2.1.4 EXAMPLE

Given:

 $N = 10 \ (N \le 30)$

f = 4

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Use Table B-13, page 2-43, to obtain the UCL and LCL which correspond to N and the number of elements possessing the given characteristic at a 100(1-a)% confidence level.
- c. Conclude that $\lambda \leq \text{UCL}$ and $\lambda \geq \text{LCL}$ at a 100(1- α)% confidence level.

Example:

- a. $\alpha = .05$ 1- $\alpha = .95$
- b. For N = 10, f = 4, and $1-\alpha = .95$,

UCL = .733

LCL = .150

c. Conclude that $\lambda \leq .733$ and $\lambda \geq .150$ at a 95% confidence level.

8.1.2.1.5 ANALYSIS

The two-sided interval surrounds λ such that $\lambda \leq$ UCL and $\lambda \geq$ LCL at a 100(1-a)% confidence level.

8.1.2.2 TWO-SIDED INTERVAL FOR N > 30

8.1.2.2.1 **OBJECTIVE**

To determine a two-sided confidence interval which is expected to bracket λ at the desired confidence level when N is greater than 30.

8.1.2.2.2 DATA REQUIRED

N and the number of elements possessing the given characteristic.

8.1.2.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha/2}$.
- · c. Compute P (see paragraph 8.1.1.3, page 79).
 - d. Compute the UCL and LCL as follows:
 - (1) Multiply P by the quantity (1-P).
 - (2) Divide step (1) by N.

8.1.2.3.5 **ANALYSIS**

The one-sided interval surrounds λ such that $\lambda \leq \text{UCL}$ (or $\lambda \geq \text{LCL}$) at a 100(1- α)% confidence level.

8.1.2.4 ONE-SIDED INTERVAL FOR N > 30

8.1.2.4.1 **OBJECTIVE**

To determine a one-sided confidence interval such that λ is equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level when N is greater than 30.

8.1.2.4.2 DATA REQUIRED

N and the number of elements possessing the given characteristic.

8.1.2.4.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$.
- c. Compute P (see paragraph 8.1.1.3, page 79).
 - d. Compute the UCL (or LCL) as follows:
 - (1) Multiply P by the quantity (1-P).
 - (2) Divide step (1) by N.
 - (3) Find the square root of step (2).
 - (4) Multiply step b by step (3).
 - (5) Add step (4) to P to obtain the UCL (or subtract step (4) from P to obtain the LCL).
- e. Conclude that λ is equal to or less than the UCL (or equal to or greater than the LCL) at the desired confidence level.

8.1.2.4.4 **EXAMPLE**

Given:

N = 150 (N > 30)

f = 60

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$.
- c. Compute:

P = characteristic/N

Example:

a. $\alpha = .10$

 $\cdot 1-\alpha = .90$

b. $Z_{.90} = 1.282$

c. P = f/N

= 60/150

= .40

$$UCL = P+Z_{1-\alpha} \sqrt{\frac{P(1-P)}{N}}$$

(or LCL = P-Z<sub>1-
$$\alpha$$</sub> $\sqrt{\frac{P(1-P)}{N}}$)

e. Conclude that $\lambda \leq \text{UCL}$ (or $\lambda \geq \text{LCL}$) at a $100(1-\alpha)\%$ confidence level.

d. UCL = .40+1.282
$$\sqrt{\frac{.4(1 - .4)}{150}}$$

= .40+1.282 $\sqrt{\frac{.4(.6)}{150}}$
= .40+1.282 $\sqrt{\frac{.24}{150}}$
= .40+1.282 $\sqrt{\frac{.0016}{150}}$

$$= .35$$
)

e. Conclude that $\lambda \le .45$ (or $\lambda \ge .35$) at a 90% confidence level.

8.1.2.4.5 **ANALYSIS**

The one-sided interval surrounds λ such that $\lambda \leq y_{CL}$ (or $\lambda \geq LCL$) at a $100(1-\alpha)$ % confidence level.

8.1.3 SAMPLE SIZE REQUIRED TO ESTIMATE THE POPULATION PROPORTION

8.1.3.1 SAMPLE SIZE WITH A SPECIFIED LIMIT OF ERROR IN BOTH DIRECTIONS

8.1.3.1.1 OBJECTIVE

To determine the Mt required in order to state that λ is equal to or between P + ϵ and P - ϵ at the desired confidence level.

8.1.3.1.2 DATA REQUIRED

None.

8.1.3.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Choose the allowable amount of error.
- c. Choose a value for P in the following manner:
 - (1) If no prior information is available and if λ is believed to be in the neighborhood of 0.5, use P = 0.5. The largest sample size will be required when P = 0.5, and the purpose of the rules is to be as conservative as possible.

- (2) If λ can safely be assumed to be less than 0.5, let P be the largest reasonable guess for λ .
- (3) If λ can safely be assumed to be greater than 0.5, let P be the smallest reasonable guess for λ .
- d. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha/2}$.
- e. Compute Nt as follows:
 - (1) Square step d.
 - (1) Square step d.
 (2) Multiply P by the quantity (1-P).
 (3) Multiply step (1) by step (2).
 (4) Square ε.
 (5) Divide step (3) by step (4).

 - (6) Round the result of step (5) up to the next whole number.
- f. Conclude that Nt samples are required in order to state that λ is equal to or between P + ϵ and P - ϵ at the desired confidence level.

8.1.3.1.4 EXAMPLE

Procedure:

- a. Choose the confidence level (1-a).
- b. Choose ϵ .
- c. Choose P.
- d. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha/2}$.
- e. Compute:

$$N_t = \frac{(z_{1-\alpha/2})^2 (P) (1-P)}{\varepsilon^2}$$

f. Conclude that Nt samples are required in order to state that

 $\lambda \leq P + \varepsilon$ and $\lambda \geq P - \varepsilon$ at a $100(1-\alpha)$ % confidence level.

Example:

a.
$$\alpha = .10$$

 $1-\alpha/2 = .95$

b.
$$\varepsilon = .10$$

c.
$$P = 0.5$$

d.
$$Z_{.95} = 1.645$$

$$N_{t} = \frac{(1.645)^{2}(.5)(1-.5)}{(.10)^{2}}$$

$$= \frac{(2.706)(.5)(.5)}{(.5)}$$

- = 67.65
- **=** 68

f. If 68 samples are tested and P computed, conclude that $\lambda \leq P + .10$ and $\lambda \geq P - .10$ at a 90% confidence level.

MTP 3-1-005 1 March 1972

8.1.3.1.5 <u>ANALYSIS</u>

If N_t samples are tested and P is computed, conclude that $\lambda \le P + \varepsilon$ and $\lambda \ge P - \varepsilon$ at a $100(1-\alpha)\%$ confidence level.

8.1.3.2 SAMPLE SIZE WITH A SPECIFIED LIMIT OF ERROR IN ONLY ONE DIRECTION

8.1.3.2.1 OBJECTIVE

To determine the N_t required in order to state that λ is equal to or less than P + ϵ (or equal to or greater than P - ϵ) at the desired confidence level.

8.1.3.2.2 DATA REQUIRED

None.

8.1.3.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Choose the allowable amount of error.
- c. Choose the value of P in the following manner:
 - (1) If no prior information is available and if λ is believed to be in the neighborhood of 0.5, use P = 0.5. The largest sample size will be required when P = 0.5, and the purpose of the rules is to be as conservative as possible.
 - (2) If λ can safely be assumed to be less than 0.5, let P be the largest reasonable guess for λ .
 - (3) If λ can safely be assumed to be greater than 0.5, let P be the smallest reasonable guess for λ .
- d. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$.
- e. Compute Nt as follows:
 - (1) Square step d.
 - (2) Multiply P by the quantity (1-P).
 - (3) Multiply step (1) by step (2).
 - (4) Square ε .
 - (5) Divide step (3) by step (4).
 - (6) Round the result of step (5) up to the next whole number.
- f. Conclude that N_t samples are required in order to state that λ is equal to or less than P + ϵ (or equal to or greater than P ϵ) at the desired confidence level.

8.1.3.2.4 **EXAMPLE**

Procedure:

Example:

a. Choose the confidence level $1-\alpha$).

a. $\alpha = .10$ $1-\alpha = .90$ b. Choose ε.

c. Choose P.

d. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$.

e. Compute:

$$N_{t} = \frac{(Z_{1-\alpha})^{2}(P)(1-P)}{\epsilon^{2}}$$

b. $\epsilon = .10$

c. P = 0.5

d. $Z_{.90} = 1.282$

e.

$$N_{E} = \frac{(1.282)^{2}(0.5)(1-0.5)}{(.10)^{2}}$$

$$= \frac{(1.644)(0.5)(0.5)}{.01}$$

$$= \frac{(1.644)(.25)}{.01}$$

.4110

= 41.10

= 42

f. Conclude that N_t samples are required in order to state that $\lambda \le P + \varepsilon$ or $(\lambda \ge P - \varepsilon)$ at a $100(1-\alpha)$ % confidence level.

f. If 42 samples are tested and P computed, conclude that $\lambda \leq P + .10$ at a 90% confidence level.

8.1.3.2.5 <u>ANALYSIS</u>

If N₊ samples are tested and P is computed, $\lambda \le P + \epsilon$ (or $\lambda \ge P - \epsilon$) at a 100(1- α)% confidence level.

8.2 COMPARING AN OBSERVED PROPORTION (P) TO A REQUIREMENT (λ_0)

a. An observed proportion is generated from a sample and is representative of λ . This value of P is then compared to a stated requirement (λ_0) . However, looking at the values of P and λ_0 to decide whether λ is greater than λ_0 or λ is less than λ_0 at a confidence level is insufficient. Since the decision pertains to the population, statistical tests must be applied to P to determine whether λ is greater than λ_0 or λ is less than λ_0 .

b. There exist two possibilities for the relationship of P to λ_0 . Following are the assumptions and the circumstances for each possible relationship:

- (1) P greater than λ_0 .
 - (a) The null hypothesis is λ is greater than λ_0 .
 - (b) The alternative hypothesis is there is no reason to believe λ is greater than λ_0 .
 - (c) The use of this test is appropriate when λ_0 is a maximum value for λ to satisfy. In the event that λ must not be greater than λ_0 , this test would be appropriate.

MTP 3-1-005 1 March 1972

(2) P is less than λ_0 .

- (a) The null hypothesis is λ is less than λ_0 .
- (b) The alternative hypothesis is there is no reason to believe λ is less than λ_0 .
- (c) The use of this test is appropriate when λ_0 is a minimum value for λ to satisfy. In the event that λ must meet or exceed λ_0 , this test would be appropriate.

8.2.1 P GREATER THAN λ_0

8.2.1.1 SMALL SAMPLE SIZE

8.2.1.1.1 OBJECTIVE

To determine whether λ is greater than λ_0 at the desired confidence level when N is equal to or less than 30.

8.2.1.1.2 DATA REQUIRED

Success-failure data.

8.2.1.1.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-14, page 2-50, to obtain the LCL which corresponds to N and the number of elements possessing the given characteristic at the desired confidence level.
- c. If λ_0 is less than the LCL, decide that λ is greater than λ_0 ; otherwise, there is no reason to believe λ is greater than λ_0 at the desired confidence level.

8.2.1.1.4 **EXAMPLE**

Given:

 $N = 20 \ (N \le 30)$

f = 3

 $\lambda_0 = .100$

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Use Table B-14, page 2-50, to obtain the LCL which corresponds to N and the number of elements possessing the given characteristic at a $100(1-\alpha)\%$ confidence level.

Example:

- a. $\alpha = .05$ $1-\alpha = .95$
- b. For $1-\alpha = .95$, N = 20, and N-f = 17, the tabled value is .958. This must be subtracted from 1; hence,

LCL = 1 - .958

= .042

c. If λ_0 < LCL, decide that $\lambda > \lambda_0$; / c. Since .100 \$.042, decide otherwise, there is no reason to believe believe $\lambda > \lambda_0$ at a 100(1- α)% $\lambda > .100$ at a 95% confidence level. confidence level.

8.2.1.1.5 ANALYSIS

If λ_0 < LCL, the null hypothesis that $\lambda > \lambda_0$ is accepted; otherwise, there is no reason to believe $\lambda > \lambda_0$ at a 100(1-a)% confidence level.

8.2.1.2 LARGE SAMPLE SIZE

8.2.1.2.1 **OBJECTIVE**

To determine whether $\lambda \hat{r}$ is greater than λ_0 at the desired confidence level when N is greater than 30.

8.2.1.2.2 DATA REQUIRED

Success-failure data.

8.2.1.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute Z as follows:
 - (1) Multiply λ_0 by N.
 - (2) Subtract step (1) from the number of items having the given characteristic.
 - (3) Add .5 to step (2).
 - (4) Multiply the quantity $(1-\lambda_0)$ by step (1).
 - (5) Divide step (3) by the square root of step (4).
- c. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$, which is the UCL.
- d. If Z is greater than the UCL, decide that λ is greater than λ_0 ; otherwise, there is no reason to believe λ is greater than λ_0 at the desired confidence level.

8.2.1.2.4 EXAMPLE

Given:

N = 100 (N > 30)f = 7

 $\lambda_0 = .06$

Procedure:

Example:

a. Choose the confidence level $(1-\alpha)$.

a. a = .10 $1-\alpha = .90$

b. Compute:

$$z = \sqrt{\frac{f - N\lambda_0 + .5}{N\lambda_0 (1 - \lambda_0)}}$$

ъ.

$$z = \frac{7-100(.06)+.5}{\sqrt{100(.06)(1-.06)}}$$

$$= \frac{7-6+.50}{\sqrt{6(.94)}}$$

$$= \frac{1.50}{5.64}$$

$$= \frac{1.50}{2.375}$$

$$= .633$$

c. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$.

 $IICL = Z_1 - \alpha$

d. If Z > UCL, decide that $\lambda > \lambda_0$; otherwise, there is no reason to believe $\lambda > \lambda_0$ at a $100(1-\alpha)$ % confidence level.

c. $Z_{.90} = 1.282$ UCL = 1.282

d. Since .633 \neq 1.282, decide that there is no reason to believe λ > .06 at a 90% confidence level.

8.2.1.2.5 <u>ANALYSIS</u>

If Z > UCL, the null hypothesis that $\lambda > \lambda_0$ is accepted; otherwise, there is no reason to believe $\lambda > \lambda_0$ at a 100(1- α)% confidence level.

8.2.2 P LESS THAN λ_0

8.2.2.1 SMALL SAMPLE SIZE

8.2.2.1.1 **OBJECTIVE**

To determine whether λ is less than λ_0 at the desired confidence level when N is equal to or less than 30.

8.2.2.1.2 DATA REQUIRED

Success-failure data.

8.2.2.1.3 PROCEDURE

a. Choose the desired confidence level.

b. Use Table B-14, page 2-50, to obtain the UCL which corresponds to N and the number of elements possessing the given characteristic at the desired confidence level.

c. If λ_0 is greater than the UCL, decide that λ is less than λ_0 ; otherwise, there is no reason to believe λ is less than λ_0 at the desired confidence level.

8.2.2.1.4 <u>EXAMPLE</u>

Given:

$$N = 20 (N \le 30)$$

 $f = 3$
 $\lambda_0 = .200$

Procedure:

- a. Choose the confidence level (1-a).
- b. Use Table B-14, page 2-50, to obtain the UCL which corresponds to N and the number of elements possessing the given characteristics at a $100(1-\alpha)$ % confidence level.
- c. If $\lambda_0 > \text{UCL}$, decide that $\lambda < \lambda_0$; otherwise, there is no reason to believe $\lambda < \lambda_0$ at a $100(1-\alpha)\%$ confidence level.

Example:

- a. $\alpha = .05$ $1-\alpha = .95$
- b. For 1-a = .95, N = 20, and
 f = 3,
 UCL = .344
- c. Since .200 \neq .344, decide that there is no reason to believe λ < .200 at the 95% confidence level.

8.2.2.1.5 <u>ANALYSIS</u>

If λ_0 > UCL, the null hypothesis that $\lambda < \lambda_0$ is accepted; otherwise, there is no reason to believe $\lambda < \lambda_0$ at a 100(1- α)% confidence level.

8.2.2.2 LARGE SAMPLE SIZE

8.2.2.2.1 OBJECTIVE

To determine whether λ is less than λ_0 at the desired confidence level when N is greater than 30.

8.2.2.2.2 DATA REQUIRED

Success-failure data.

8.2.2.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute Z as follows:
 - (1) Multiply λ_0 by N.
 - (2) Subtract step (1) from the number of items having the given characteristic.
 - (3) Subtract .5 from step (2).
 - (4) Multiply the quantity $(1-\lambda_0)$ by step (1).
 - (5) Divide step (3) by the square root of step (4).
- c. Use Table B-4, page 2-4, to obtain $Z_{\alpha}, \mbox{ which is the LCL.}$
- d. If Z is less than the LCL, decide that λ is less than λ_0 ; otherwise, there is no reason to believe λ is less than λ_0 at the desired confidence level.

8.2.2.2.4 **EXAMPLE**

Given:

N = 100 (N > 30) f = 7 $\lambda_0 = .08$

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Compute:

$$z = \frac{f - N\lambda_0 - .5}{N\lambda_0 (1 - \lambda_0)}$$

c. Use Table B-4, page 2-4, to obtain Z_{α} .

$$LCL = Z_{\alpha}$$

d. If Z < LCL, decide that $\lambda < \lambda_0$; otherwise, there is no reason to believe $\lambda < \lambda_0$ at a 100(1- α)% confidence level.

Example:

a.
$$\alpha = .10$$

 $1-\alpha = .90$

b.

$$z = \frac{7-100(.08)-.5}{100(.08)(1-.08)}$$

$$= \frac{7-8-.5}{8(.92)}$$

$$= \frac{-1.5}{7.36}$$

$$= \frac{-1.5}{2.71}$$

$$= -.554$$

c.
$$Z_{.10} = -1.282$$

LCL = -1.282

d. Since -.554 \neq -1.282, decide that there is no reason to believe $\lambda < .08$ at a 90% confidence level.

8.2.2.2.5 ANALYSIS

If Z < LCL, the null hypothesis that $\lambda < \lambda_0$ is accepted; otherwise, there is no reason to believe $\lambda < \lambda_0$ at a 100(1- α)% confidence level.

8.2.3 DETERMINATION OF SAMPLE SIZE

8.2.3.1 OBJECTIVE

To determine the Nt required to determine whether λ is equal to or greater than $\lambda_0 + \epsilon$ (or equal to or less than $\lambda_0 - \epsilon$) at the desired confidence level.

8.2.3.2 DATA REQUIRED

 λ_0 which is known from a standard item, history, or Requirements Document.

8.2.3.3 PROCEDURE

- a. Choose α and $\beta,$ the probabilities of making Type I and Type II errors respectively.
 - b. Choose the allowable amount of error.
- c. Estimate the test item proportion by adding ϵ to λ_0 (or subtracting ϵ from λ_0).

- d. Use Table B-15, page 2-54, to obtain θ_1 , which corresponds to λ_0 , and θ_0 , which corresponds to λ .
 - e. Compute d², an intermediate value, as follows:
 - (1) Subtract θ_0 from θ_1 .
 - (2) Square Step (1).
 - f. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
 - g. Compute Nt as follows:
 - (1) Add $Z_{1-\alpha}$ to $Z_{1-\beta}$.
 - (2) Square step (1).
 - (3) Divide step (2) by step e.
 - (4) Round step (3) to the next larger whole number.
- h. Conclude that Nt samples are required to determine whether λ is equal to or greater than λ_0 + ϵ (or equal to or less than λ_0 - ϵ) at the desired confidence level.

8.2.3.4 EXAMPLE

Given:

 $\lambda_0 = .41$

Procedure:

- a. Choose α and β .
- b. Choose ϵ .
- c. Estimate λ as follows:

$$\lambda = \lambda_0 + \epsilon$$

- d. Use Table B-15, page 2-54, to obtain θ_1 , which corresponds to λ_0 , and θ_0 , which corresponds to λ .
- e. Compute:

$$d^2 = (\theta_0 - \theta_1)^2$$

f. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.

Example:

- $a. \quad \alpha = .05$
 - $1-\alpha = .95$
 - 8 = .20
 - $1-\beta = .80$
 - $\varepsilon = .23$
- c. $\lambda = .41 + .23$
 - .64
- d. For $\lambda_0 = .41$, $\theta_1 = 1.39$

 - For $\lambda = .64$,
 - $\theta_0 = 1.85$
- e. $d^2 = (1.85-1.39)^2$
 - $= (.46)^2$
 - .2116
- $f. Z_{.95} = 1.645$
 - $Z_{.80} = .840$

g. Compute:

$$N_t = \frac{(z_{1-\alpha} + z_{1-\beta})^2}{d^2}$$

h. Conclude that N_t samples are required to determine whether $\lambda \geq \lambda_0 + \epsilon$ (or $\lambda \leq \lambda_0 - \epsilon$) at a

 $100(1-\alpha)$ % confidence level.

 $N_{t} = \frac{(1.645 + .840)^{2}}{.2116}$ $= \frac{(2.485)^{2}}{.2116}$ $= \frac{6.1752}{.2116}$

= 29.18 = 30

h. Conclude that 30 samples for λ_0 known and equal to .41 must be tested in order to determine whether $\lambda \geq \lambda_0 + .23$ at a 95% confidence level.

8.2.3.5 ANALYSIS

Nt samples are required to determine whether $\lambda \geq \lambda_0 + \epsilon$ (or $\lambda \leq \lambda_0 - \epsilon$) at a 100(1- α)% confidence level.

8.3 <u>COMPARING TWO OBSERVED PROPORTIONS</u>

- a. An observed proportion is generated from a sample and is representative of λ . This value of P is then required to meet a standard item P which is representative of the standard item's population. Looking at the values of the proportions (PA and PB) to decide whether λ_A is greater than λ_B or λ_A is less than λ_B at a confidence level is insufficient. Since the decision pertains to the populations, statistical tests must be applied to determine whether λ_A is greater than λ_B or λ_A is less than λ_B . The statistical tests use the sample proportions as estimates of the population proportions.
- b. Type A generally represents the test item and Type B the standard item when testing the hypothesis that λ_A is greater than λ_B . However, to prove that the average performance of the test item is less than that of the standard item, Type A must represent the standard item so that the hypothesis, λ_A is greater than λ_B , can be tested.
- c. When the null hypothesis is λ_A is greater than λ_B , the alternative hypothesis is there is no reason to believe that λ_A is greater than λ_B .
- d. The use of this test is appropriate when λ_B is a maximum value for λ_A to satisfy.
- 8.3.1 \sim PA GREATER THAN PB
- 8.3.1.1 SMALL SAMPLE SIZE

OBJECTIVE 8.3.1.1.1

To determine whether λ_A is greater than λ_B at the desired confidence level when meither NA nor NR is greater than 20.

8.3.1.1.2 DATA REQUIRED

Success-failure data.

8.3.1.1.3 PROCEDURE

- a. Choose the desired confidence level.
- Arrange the data as in Table A-4a, Part I, page 1-11.
- c. Focus on the class of interest and compute the following intermediate values:
 - (1) hA, the ratio of the class of interest to the sample
 - size for Type A; i.e., $h_A = I_A/N_A$ or $h_A = II_A/N_A$.

 (2) h_B , the ratio of the class of interest to the sample size for Type B; i.e., hg = Ig/Ng or hg = IIg/Ng.
- d. If hA is greater than hB, continue with step e; however, if hA is not greater than hB, decide that the data give no reason to believe that λ_A is greater than λ_B at the desired confidence level.
- e. Arrange the data so that the results of the larger sample are in the first row (see Table A-4a, Part II, page 1-11.
 - f. Compute the following intermediate values:
 - (1) h₁, the ratio of class I to the sample size for the item having the larger sample size; i.e., $h_1 = I_1/N_1$.
 - (2) h2, the ratio of Class I to the sample size for the item having the smaller sample size; i.e., $h_2 = I_2/N_2$.
 - (3) g1, the ratio of class II to the sample size for the item having the larger sample size, i.e., $g_1 = II_1/N_1$.
 - (4) g2, the ratio of class II to the sample size for the item having the smaller sample size; i.e., $g_2 = II_2/N_2$.
- g. Focus attention on that class (I or II) which produces a proportion for the larger sample which is larger than or equal to the respective proportion for the smaller sample. Depending on the class chosen, let I1 (or II1) equal a1, an intermdefate value, and I2 (or II2) equal a2, an intermediate value.
- h. Use Table B-16, page 2-55, to obtain a tabled a2 which corresponds to the two sample sizes and a1 at the desired confidence level.
- i. If a2 from step g is less than or equal to the table a2, decide that λ_A is greater than λ_B with regard to the class of interest; otherwise, there is no reason to believe λ_A is greater than λ_B at the desired confidence level.

8.3.1.1.4 EXAMPLE

Given:

Sample data at Table A-4a, Part I, page 1-11.

Procedure:

- a. Choose the confidence level $(1-\alpha)$.
- b. Arrange the data.
- c. Focus on the class of interest and compute one of the following:
 - (1) Class I.

$$h_A = I_A/N_A$$

$$h_B = I_B/N_B$$

(2) Class II

$$h_A = II_A/N_A$$

$$h_B = II_B/N_B$$

- d. If $h_A > h_B$, continue with step e. If $h_A \le h_B$, decide that the data give no reason to believe that λ_A is greater than λ_B with respect to the class of interest at a $100(1-\alpha)\%$ confidence level.
- e. Arrange the data so that the results of the larger sample are in the first row.
- f. Compute:

$$h_1 = I_1/N_1$$

$$h_2 = I_2/N_2$$

$$g_1 = II_1/N_1$$

$$g_2 = II_2/N_2$$

Example:

a.
$$\alpha = .05$$

 $1-\alpha = .95$

- b. See Table A-4a, Part I, page 1-11.
- c. Focus on class II.

$$h_A = \frac{2}{6}$$

$$h_B = \frac{2}{10}$$

- d. Since .3 > .2, continue
 with step e.
- e. See Table A-4a, Part II, page 1-11.

f.
$$h_1 = \frac{8}{10}$$

$$h_2 = \frac{4}{6}$$

$$g_1 = \frac{2}{10}$$

$$g_2 = \frac{2}{6}$$

g. (1) If $h_1 \ge h_2$, focus attention on class I with

 $a_1 = I_1$

 $a_2 = I_2$

(2) If $g_1 \ge g_2$, focus attention on class II with

 $\mathbf{a}_1 = \mathbf{II}_1$

 $a_2 = II_2$

h. Use Table B-16, page 2-55, to obtain a tabled a_2 which corresponds to N_1 , N_2 , and a_1 at a $100(1-\alpha)$ % confidence level.

NOTE: Since this is a one-sided test, use the a which is not in parentheses.

i. If $a_2 \le$ the table value of a_2 from step h, decide that $\lambda_A > \lambda_B$ with respect to the original class of interest; otherwise, there is no reason to believe $\lambda_A > \lambda_B$ with respect to the original class of interest at a $100(1-\alpha)\%$ confidence level.

g. Since .8 > .7, focus attention on class I.

a1 = 8

42 - 4

h. For $N_1 = 10$, $N_2 = 6$, $a_1 = 8$, and $\alpha = .05$, the tabled $a_2 = 1$.

i. Since 4 > 1, decide that there is no reason to believe $\lambda_A > \lambda_B$ with respect to the number of failures at a 95% confidence level.

8.3.1.1.5 ANALYSIS

If a_2 <a table value of a_2 , the null hypothesis that $\lambda_A > \lambda_B$ is accepted; otherwise, there is no reason to believe $\lambda_A > \lambda_B$ at a $100(1-\alpha)\%$ confidence level. In the event that the confidence level desired is not within the scope of Table B-16, page 2-55, the test for the large sample size must be applied. The results will not be as accurate but will still be useful. In the event that a_1 or a_2 or both are missing for the given sample sizes and confidence level in Table B-16, page 2-55, conclude that the sample sizes are considered insufficient for accepting or rejecting the null hypothesis.

8.3.1.2 LARGE SAMPLE SIZE

8.3.1.2.1 OBJECTIVE

To determine whether λ_A is greater than λ_B at the desired confidence level when either N_A or N_B is greater than 20.

8.3.1.2.2 DATA REQUIRED

Success-failure data.

8.3.1.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Use Table B-7, page 2-12, to obtain $\chi^2_{2\alpha}$ for 1 d.f.
- c. Add N_A to N_B to obtain T_N , an intermediate value.
- d. Compute AB, an intermediate value, as follows:
 - (1) Multiply IA by IIB.
 - (2) Multiply IB by IIA.
 - (3) Subtract step (2) from step (1) and take the absolute value of the difference (disregard the sign).
- e. Compute J, an intermediate value, as follows:
 - (1) Add IA to IB to obtain TI, an intermediate value.
 - (2) Add II_A to II_B to obtain T_{II} , an intermediate value. (3) Multiply N_A , N_B , T_I , and T_{II} together.
- f. Compute χ^2 as follows:

 - (1) Divide step c by 2.
 (2) Subtract step (1) from step d.
 (3) Square step (2).
 (4) Multiply step (3) by step c.

 - (5) Divide step (4) by step e.
- g. Focus on the class of interest and compute the following intermediate values:
 - (1) hA, the ratio of the class of interest to the sample size for Type A; i.e., $h_A = I_A/N_A$ or $h_A = IIA/N_A$.
 - (2) hB, the ratio of the class of interest to the sample size for Type B; i.e., hg = IB/NB or hB = IIB/NB.
- h. If χ^2 is greater than or equal to $\chi^2_{2\alpha}$ for 1 d.f. and h_A is larger than h_B , decide that λ_A is greater than λ_B with regard to the class of interest; otherwise, there is no reason to believe λ_A is greater than λ_B at the desired confidence level.

8.3.1.2.4 EXAMPLE

Given:

Sample data at Table A-4b, page 1-11.

Procedure:

 Choose the confidence level $(1-\alpha)$.

b. Use Table B-7, page 2-12, to obtain χ^2 for 1 d.f.

c. Compute:

 $T_N = N_A + N_B$

Example:

a. $\alpha = .10$ $1-\alpha = .90$

b. $\chi^2_{.20}$ for 1 d.f. = 1.64

c. $T_N = 216 + 216$

= 432

e. Compute:

$$J = (N_A) (T_I) (T_{II}) (N_B)$$

f. Compute:

$$X^{2} = \frac{T_{N}(AB - T_{N}/2)^{2}}{J}$$

NOTE: The formula for χ^2 has been broken down for simplicity and the complete formula is

$$\chi^{2} = \frac{(N_{A}+N_{B}) \left(|I_{A}II_{B}-I_{B}II_{A}| - \frac{N_{A}+N_{B}}{2} \right)^{2}}{(N_{A}) (I_{A}+I_{B}) (II_{A}+II_{B})(N_{B})}$$

g. Focus on the class of interest and compute one of the following:

$$h_A = I_A/N_A$$

$$h_B = I_B/N_B$$

(2) Class II

$$h_A = II_A/N_A$$

$$h_B = II_B/N_B$$

h. If $\chi^2 \ge \chi^2$ for 1 d.f. and $h_A > h_B$, decide that $\lambda_A > \lambda_B$ with regard to the class of interest; otherwise, there is no reason to believe $\lambda_A > \lambda_B$ at a $100(1-\alpha)\%$ confidence level.

d.

J = (216)(341)(91)(216)

= (73,656)(91)(216)

= 1,447,782,336

f.
$$\chi^2 = \frac{432(4536-216)^2}{1,447,782,336}$$

$$=\frac{432(4,320)^2}{1,447,732,336}$$

$$= \frac{432(18,662,400)}{1,447,782,336}$$

g. Focus on class I.

$$h_A = 181/216$$

$$h_B = 160/216$$

h. Since 5.57 \geq 1.64 and .838 > .741, decide that the proportion of hits fo- λ_A > λ_B at a 90% confidence level.

MTP 3-1-005 1 March 1972

8.3.1.2.5 ANALYSIS

If $\chi^2 \ge \chi^2_{2G}$ for 1 d.f. and $h_A > h_B$, the null hypothesis that $\lambda_A > \lambda_B$ is accepted; otherwise, there is no reason to believe $\lambda_A > \lambda_B$ at a 100(1-a)% confidence level. The sample size for P_A or P_B must exceed 20. If the confidence level desired is unavailable for P_A and P_B less than 20, the chi-square test will be used to test $\lambda_A > \lambda_B$.

8.3.2 DETERMINATION OF SAMPLE SIZE

8.3.2.1 OBJECTIVE

To determine the N_t $(N_t=N_A=N_B)$ required to determine whether λA . is equal to or greater than $\lambda B+\varepsilon$ (or equal to or less than $\lambda B-\varepsilon$) at the desired confidence level.

8.3.2.2 DATA REQUIRED

None.

8.3.2.3 PROCEDURE

- a. Choose α and β , the probabilities of making Type I and Type II errors respectively.
 - b. Choose the allowable amount of error.
- c. Estimate one of the proportions, either $P_{\mbox{\scriptsize A}}$ or $P_{\mbox{\scriptsize B}}.$ Make this estimate as close to 0.5 as is reasonable.
 - d. Compute the other proportion as follows:
 - (1) If PA is estimated, subtract step b from PA to obtain PB.
 - (2) If PB is estimated, add step b to PB to obtain PA.
- e. Use Table B-15, page $_{2-54}$, to obtain θ_A , which corresponds to P_A , and θ_B , which corresponds to P_B .
 - f. Compute d^2 , an intermediate value, as follows:
 - (1) Subtract θ_B from θ_A .
 - (2) Square step (1).
 - g. Use Table B-4, page 2-4, to obtain $Z_{1-\alpha}$ and $Z_{1-\beta}$.
 - h. Compute n, an intermediate value, as follows:
 - (1) Add $Z_{1-\alpha}$ to $Z_{1-\beta}$.
 - (2) Square step (1).
 - (3) Divide step (2) by step f.
 - (4) Round step (3) up to the next whole number.
 - i. Multiply step h by 2 to obtain Nt.
- j. Conclude that N_{t} samples are required to determine whether λ_{A} is equal to or greater than $\lambda_{B}+\epsilon$ (or equal to or less than $\lambda_{B}-\epsilon)$ at the desired confidence level.

- (c) Compute the mean of the heights (HEIGHT).
- (d) Compute the mean time.
- (3) List the MPI as the mean easting and mean northing (EAST, NORTH) and the POB as the mean easting, mean northing, and mean height (EAST, NORTH, HEIGHT).
 Compute the miss distance (m) for the MPI as follows:
- - Subtract the \overline{EAST} from the AP easting (EAST_{AP}).
 - (b) Square step (a).
 - (c) Subtract the NORTH from the AP northing (NORTH AD).
 - (d) Square step (c).
 - (e) Add step (b) to step (d) and find the square root.
- (5) Compute m and the miss time for the POB as follows:
 - Subtract the EAST from the EAST p. (a)
 - (b) Square step (a).
 - Subtract the NORTH from the NORTH ,p. (c)
 - Square step (c).
 - Subtract the HEIGHT from the AP height (HEIGHT AP).
 - (f) Square step (e).
 - (g) Add step (b) to step (d).
 - (h) Add step (g) to step (f) and find the square root to obtain the m.
 - Subtract the set time from the mean time to obtain the miss time.
- b. Case II: Missile systems (limited sample).
 - (1) Plot each point of impact or point of burst relative to its AP and determine the distance over or short and the distance right or left.
 - (2) Compute the mean AP using all of the AP coordinates in a given range band.
 - (3) Plot the points of impact or points of burst relative to the mean AP, using the distances from step (1).
 - (4) Compute the MPI or POB and mean time for the points relative to the mean AP.
 - (5) Compute m for MPI the same as for a cannon.
 - (6) Compute m and the miss time for the \overline{POB} the same as for a cannon.

9.1.4 EXAMPLE

Case I: Cannon.

Given:

AP: (2784,3501)

Sample data at Table A-la, page 1-1.

Procedure:

Example:

- (1) Compute the following for the MPI:
- (1) (a) $\overline{EAST} = 2565.67$ = 2566

(b) NORTH

(b) NORTH = 3256.47 = 3256

(2) Compute the following for the \overline{POB} :

(2)

- (a) EAST
- (b) NORTH
- (c) HEIGHT
- (d) Mean time
- (3) List the following:

- (3) MPI: (2566,3256)
- (a) MPI: (EAST, NORTH)
- (b) POB: (EAST, NORTH, HEIGHT)
- (4) For the MPI, compute:

(4)

m = (EAST_{AP}-EAST)²+(NORTH_{AP}-NORTH)²

 $= (2784-2565.67)^{2}+(3501-3256.47)^{2}$ $= (218.33)^{2}+(244.53)^{2}$ $= \sqrt{47668+59795}$ $= \sqrt{107,463}$ = 327.82 = 328

(5) For the POB, compute:

(5)

(a) $m = \sqrt{(EAST_{AP} - EAST)^2 + (NORTH_{AP} - NORTH)^2 + (HEIGHT_{AP} - HEIGHT)^2}$

- (b) miss time = mean time set time.
 - b. Case II. Missile systems (limited sample).

·_ven:

Sample data at Table A-5a, page 1-12.

Procedure:

Example:

- (1) Plot each point relative to its AP.
- (1) (a) (2350,3100)
 - (b) (1649,2031)

See Table A-5a, page 1-12 for complete list.

(2) Compute the mean AP.

- (2) EAST_{AP} = 21548/10 = 2155 NORTH = 22091/10 AP = 2209
- (3) Plot each point relative

to the mean AP

(3) (a) (2005,2304) (b) (2267, 2415)

See Table A-5a, page 1-12, for complete list.

- (4) Compute:
 - (a) MPI.
 - (b) POB and mean time.

(4) MPI: (2148,2274)

EAST = 21482/10

= 2148.20

= 2148

10/دNORTH = 2274

= 2274.30

= 2274

(5) Compute for the MPI:

m =
$$\sqrt{(EAST_{AP}-EAST)^2+(NORTH_{AP}-NORTH)^2}$$

$$= \sqrt{(2154.80-2148.20)^2 + (2209.10-2274.30)^2}$$

$$= \sqrt{(6.60)^2 + (65.20)^2}$$

$$= \sqrt{43.56+4251.04}$$

$$= 65.53$$

$$= 66$$

(6) For the POB, compute:

(6)

(5)

(a)
$$m = \sqrt{(EAST_{AP} - EAST)^2 + (NORTH_{AP} - NORTH)^2 + (HEIGHT_{AP} - HEIGHT)^2}$$

(b) miss time = mean time - set time

9.1.5 ANALYSIS

a. The miss distance is the distance that the MPI or the POB missed the AP and describes the accuracy of the test item. The smaller the miss distance, the better the accuracy of the test item. The miss distance must be compared to the stated requirement to determine whether the requirement was met.

b. Due to sampling techniques used for missiles, an average AP must be determined within a range band. The miss distance is the distance that the MPI or \overline{POB} (relative to the average AP) missed the average AP. The miss distance must be compared to the stated requirement to determine whether the requirement was met. Unless the sample size is at least six, conclusions for accuracy cannot be drawn with any reasonable level of confidence.

9.2 PRECISION

9.2.1 PROBABLE ERROR COMPUTATION

9.2.1.1 STANDARD DEVIATION METHOD

MTP 3-1-005 1 March 1972

9.2.1.1.1 **OBJECTIVE**

To obtain the system PE and each subsystem PE using the standard deviation method.

9.2.1.1.2 DATA REQUIRED

A list of sample readings.

9.2.1.1.3 PROCEDURE

- a. Compute s, (see paragraph 7.1.1.3, page 64).
- b. Multiply step a by .6745 to obtain PE.

9.2.1.1.4 EXAMPLE

Given:

Sample data at Table A-5b, page 1-13.

Procedure:

Example:

a. Compute:

 $s = \sqrt{\frac{\Sigma \Delta^2}{N-1}}$

See paragraph 7.1.1.4, page 65, for computations.

b. PE = 0.6745(s).

9.2.1.1.5 <u>ANALYSIS</u>

The PE is a measure of deviation from μ such that 50% of the observations may be expected to lie between μ - PE and μ + PE. This method is the best estimate of the population PE(τ) unless a trend exists which can be attributed to a non-system condition, such as weather, in which case use of the successive differences method is the best approach. A test comparing the two methods of computing PE can be made to determine whether a trend did exist but was not evident (see paragraph 9.2.1.3, page 108, for details).

9.2.1.2 SUCCESSIVE DIFFERENCES METHOD

9.2.1.2.1 OBJECTIVE

To determine the system PE and each subsystem PE using the successive differences method when there is a suspected trend.

9.2.1.2.2 DATA REQUIRED

A list of sample readings.

9.2.1.2.3 PROCEDURE

a. Compute the differences $(x_d = x_1 - x_{i+1})$ between consecutive readings.

- b. Square each difference.
- c. Sum the squares.
- d. Compute s as follows:
 - (1) Divide step c by the quantity (N-1).
 - (2) Divide step (1) by the quantity 2.
 - (3) Find the square root of step (2).
 - e. Multiply step d by .6745 to obtain the PE.

9.2.1.2.4 **EXAMPLE**

Given:

Sample data at Table A-5c, page 1-14 (same as data at Table A-5b, page 1-13).

Procedure:

a. Compute the differences between consecutive readings:

$$x_d = x_i - x_{i+1}$$

Example:

a. (1) Difference betweenl and 2:

$$x_d = 1248-1100$$

= 148

(2) Difference between
2 and 3:

$$x_d = 1100-1260$$

= -160

See Table A-5c, page 1-14, for complete list.

MTP 3-1-005 1 March 1972

b. Square each x_d.

b. (1) $x_d^2 = (148)^2$ = 21,904 (2) $x_d^2 = (-160)^2$ = 25,600

- c. Sum the x_d^2 .
- d. Compute: $s_{\delta} = \sqrt{\frac{\sum x_{d}^{2}}{2(N-1)}}$

- See Table A-5c, page 1-14, for complete list.
- c. $\Sigma x_d^2 = 85,020$ d. $s_{\delta} = \sqrt{\frac{(85,020)}{2(16-1)}}$ $= \sqrt{\frac{(85,020)}{30}}$ $= \sqrt{2,834}$ = 53.23 = 53e. PE = .6745(53.23)

e. Compute:

9.2.1.2.5

 $PE = .6745(s_{\delta})$

ANALYSIS:

= 35.90 = 36

The PE is a measure of deviation from such that 50% of the observations may be expected to lie between μ -PE and μ +PE. If a trend which can be attributed to a nor-system condition, such as weather, is suspected then this method will yield the best estimate of τ . A test comparing the two methods of computing PE can be made to determine whether a trend existed but was not evident (see paragraph 9.2.1.3, for details).

9.2.1.3 TREND ANALYSIS

9.2.1.3.1 <u>OBJECTIVE</u>

To determine whether a trend exists and whether the standard deviation method or the successive differences method yields the best estimate of τ .

9.2.1.3.2 DATA REQUIRED

 s^2 and s^2_{δ} .

9.2.1.3.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Divide s_5^2 by s^2 .
- c. Use Table B-23, page 2-133, to obtain the critical number (CN) for N samples at the desired confidence level.

9.2.2 COMPARING PROBABLE ERRORS (PE's)

As stated in paragraph 4.5.4, page 7, the PE is a measure of deviation from μ such that 50% of the observations may be expected to lie between μ - PE and μ + PE. Since the PE is a function of the standard deviation (PE = .6745s, or PE .6745 s), the same tests used for the comparison of standard deviations will be used to compare PE's for a significant difference.

9.2.2.1 COMPARING AN OBSERVED PE TO A REQUIREMENT

- a. An observed PE is generated from a sample and is representative of τ . This value of PE is then compared to a stated requirement (τ_0). However, looking at the values of PE and the requirement to decide whether τ is greater than τ_0 or τ is less than τ_0 at a confidence level is insufficient. Since the decision pertains to the population, statistical tests must be applied to PE to determine whether τ is greater than τ_0 or τ is less than τ_0 .
- b. There exist two possibilities for the relationship of PE to τ_0 . Following are the assumptions and the circumstances for each possible relationship:
 - (1) PE greater than τ_0 .
 - (a) The null hypothesis is τ is greater than τ_0 .
 - (b) The alternative hypothesis is there is no reason to believe τ is greater than τ_0 .
 - (c) The use of this test is appropriate when τ_0 is a maximum value for τ to satisfy. In the event that τ must not be greater than τ_0 , this test would be appropriate.
 - (2) PE less than τ_0 .
 - (a) The null hypothesis is τ is less than τ_0 .
 - (b) The alternative hypothesis is there is no reason to believe that τ is less than τ_0 .
 - (c) The use of this test is appropriate when τ_0 is a minimum value for τ to satisfy. In the event that τ must meet or exceed τ_0 , this test would be appropriate.
- c. In order to test the above hypotheses when given the values of PE and τ_0 , s and σ_0 must be computed; and the appropriate test as described in paragraphs 7.2.1 through 7.2.2, page 70 through 71 must be performed. The values of s and σ_0 are determined by multiplying PE and τ_0 each by 1.4826. Since the PE is a multiple of s, the conclusions drawn concerning standard deviations will also hold true for probable errors; e.g., if the

null hypothesis that σ is less than σ_0 is accepted at a 100(1- α)% confidence level, then the null hypothesis that τ is less than τ_0 can also be accepted at the same confidence level.

一年 大学教育

/ 9.2.2.2 COMPARING TWO OBSERVED PE's

- a. An observed probable error is generated from a sample and is representative of τ . This value of PE is then required to meet a standard item PE which is representative of the standard items population. Looking at the values of the probable errors (PEA and PEB) to decide whether τ_A is greater than τ_B or τ_A is less than τ_B at a confidence level is insufficient. Since the decision pertains to the populations, statistical tests must be applied to PA and PB to determine whether TA is greater than τ_B or τ_A is less than τ_B . The statistical tests use the sample PE's as estimates of the population PE's.
- b. Type A generally represents the test item and Type B, the standard item when testing the hypothesis that τ_A is greater than τ_B . However, to prove that the PE of the test item is less than that of the standard item, Type A must represent the standard item so that the hypothesis, τ_A is greater than τ_B , can be tested.
- c. When the null hypothesis is τ_A is greater than τ_B , the alternative hypothesis is there is no reason to believe that τ_A is greater than τ_B .
- d. This test is appropriate when $\tau_{\mbox{\footnotesize{B}}}$ is a maximum value for $\tau_{\mbox{\footnotesize{A}}}$ to satisfy.
- e. In order to test the above hypothesis when given the values of PE_A and PE_B, s_A and s_B must be computed; and the appropriate test as described in paragraph 7.3.1, page $7^{\rm h}$, must be performed. The values of s_A and s_B are determined by multiplying PE_A and PE_B each by 1.4826. Since the PE is a multiple of s_A , conclusions drawn concerning standard deviations will also hold true for probable errors; e.g., if the null hypothesis that σ_A is greater than σ_B is accepted at a $100(1-\alpha)\%$ confidence level then the null hypothesis that τ_A is greater than τ_B can also be accepted at the same confidence level.

9.2.2.3 DETERMINATION OF SAMPLE SIZE

- a. The determination of N_{t} is necessary to assure that there is a sufficient sample upon which to base a decision to accept or reject a null hypothesis at a specified confidence level.
- b. The values of s and σ_0 are determined by multiplying the PE and τ_0 each by 1.4826. Nt is determined by following the appropriate procedure as described in paragraph 7.2.3, page 72.
- c. The values of s_A and s_B are determined by multiplying PEA and PEB each by 1.4826. Nt is determined by following the appropriate procedure as described in paragraph 7.3.2, page 76.

9.2.3 CIRCULAR PROBABLE ERRCR

9.2.3.1 COMPUTATION

9.2.3.1.1 OBJECTIVE

To determine the radius of a circle such that 50% of the population lie within the circle.

9.2.3.1.2 DATE REQUIRED

List of sample eastings and corresponding northings.

9.2.3.1.3 PROCEDURE

a. Compute s for the electings (s_E), (see paragraph 7.1.1.3,

page 64).

page 64).

b. Compute s for the northings (s_N) , (see paragraph 7.1.1.3,

c. Compute the CPE as follows:

- (1) If s_E equals s_N , multiply s_E by 1.1774 to obtain the CPE.
- (2) If s_E is not equal to s_N , compute the equivalent CPE as follows:
 - (a) Add sg to sN.
 - (b) Multiply step (1) by .5887.

9.2.3.1.4 EXAMPLE

Given:

Sample data at Table A-5e, page 1-17.

Procedure:

a. Compute sg:

$$s_E \sim \sqrt{\frac{\sum (East - \overline{EAST})^2}{N-1}}$$

b. Compute
$$s_N$$
:
$$s_N = \frac{\sum (North-NORTH)^2}{N-1}$$

.Example:

a.
$$s_E = \sqrt{\frac{1,650,542}{15-1}}$$

$$= \sqrt{1,650,542/14}$$

$$= \sqrt{117,895.9}$$

$$= 343.36$$

$$= 343$$
b. $s_N = \sqrt{\frac{3,389,046}{15-1}}$

$$= \sqrt{\frac{3,389,046}{14}}$$

$$= \sqrt{\frac{242,074.7}{492.01}}$$

$$= 492.01$$

$$= 492$$

- c. Compute one of the following:
 - (1) If $s_E = s_N$ compute: $CPE = 1.1774 s_E$
- (2) If $s_E \neq s_N$ compute Equivalent CPE = .5887 (s_E+s_N)
- c. Since 343.36 ≠ 492.01,
 Equivalent CPE
 - = .5887 (343.36+492.01)

というない 大きない はいかい はいかん ないかん はいかい

- = .5887 (835.37)
- = 491.78
- = 492

9.2.3.1.5 ANALYSIS

The CPE is the radius of a circle within which 1/2 or 50% of the population lies. The following is a list of multiples of the CPE and the percentages of the population which lie within the respective circles for a circular normal distribution:

- a. 2(CPE) contains 93.75% of the population.
- b. 3(CPE) contains 99.81% of the population.
- c. 3.5(CPE) contains 99.99% of the population.

9.2.3.2 OUTLIERS

9.2.3.2.1 **OBJECTIVE**

To identify an outliers which may be present.

9.2.3.2.2 DATA REQUIRED

A list of sample eastings and corresponding northings.

9.2.3.2.3 PROCEDURE

- a. Compute the CPE for all of the readings.
- b. Compute the distance from the mean $(d_{\mathfrak{m}})$ for each set of coordinates using data from step a as follows:

$$d_{m} = \sqrt{(EAST - EAST)^2 + (NORTH - NORTH)^2} = \sqrt{\Delta E^2 + \Delta N^2}$$

- c. Isolate each suspected outlier beginning with the largest distance from the mean.
- d. Recompute the CPE, with the suspected outlier deleted, as follows:
 - (1) Compute s_E (and s_N) as follows:
 - (a) Compute the mean of the remaining eastings (northings).
 - (b) Compute the deviation of each remaining reading from the mean.
 - (c) Square each deviation.
 - (d) Sum the squared deviations.
 - (e) Since N₁ is the sample size with the suspected outlier deleted, divide step (d) by the quantity (N₁-1).
 - (f) Find the square root of step (e).
 - (2) Add s_E to s_N.

Therefore, a confidence level of 95% indicates that if 100 groups, each containing 46 samples, were tested then on the average five of these groups would have more than one failure and 95 of these groups would have one or zero failures.

b. That high requirements place limitations on acceptability is intuitively evident. Stringent limitations require sufficient sampling to provide an objective view of the test item. However, in the interest of economy, testing must be accomplished with a minimum number of samples. This may be accomplished by decreasing the desired reliability (confidence level) while holding the confidence level (desired reliability) fixed. Therefore, serious consideration must be given to sample size, the related R, and the desired confidence level.

10.1 SUCCESS-FAILURE

10.1.1 DETERMINATION OF RELIABILITY

10.1.1.1 OBJECTIVE

To determine the population reliability (ρ) of the test item at the desired confidence level. The required reliability (ρ_0) and the confidence level are usually directed by a higher authority or a Requirements Document.

10.1.1.2 DATA REQUIRED

The number of failures (f) and N for a success-failure type test.

10.1.1.3 PROCEDURE

- a. Case I:
 - (1) Use Table B-18, page 2-74, to obtain the intersection of the "Reliability" row and the "Confidence Level" column for the number of failures which occurred (see page 2-125 for 75% confidence level).
 - (2) If N is equal to or larger than the intersection value, decide that ρ is equal to or greater than ρ_0 (testing may cease); otherwise, there is no reason to believe ρ is equal to or greater than ρ_0 at the desired confidence level (testing may cease with a reject decision or testing must continue with a decision being made at a later date).
- b. Case II: Reliability confidence limits.
 - (1) Compute the two-sided UCL and LCL as follows:
 - (a) Choose the desired confidence level.
 - (b) Perform the following calculations to obtain the
 - 1. Compute d.f., as follows:
 - a. Multiply the number of succes. (sc) by 2.
 - b. Add 2 to step a.

- 2. Compute d.f.2 as follows:
 - a. Multiply sc by 2.
 - b. Multiply N by 2.
 - c. Subtract step a from step b.
- 3. Use Table B-8, page 2-18, to obtain $F_{1-\alpha/2}$ for (d.f.₁, d.f.₂) d.f.
- 4. Compute the following:
 - a. Add 1 to sc.
 - b. Subtract sc from N.
 - c. Divide step a by step b.
 - d. Multiply step c by step 3.
 - e. Add 1 to step d.
 - <u>f</u>. Divide 1 by step <u>e</u>.
 - g. Subtract step f from 1.
- (c) Perform the following calculations to obtain the LCL:
 - 1. Compute d.f.1 as follows:
 - a. Multiply f by 2.
 - b. Add 2 to step a.
 - 2. Compute d.f.2 as follows:
 - a. Multiply f by 2.
 - b. Multiply N by 2.
 - . Subtract step a from step b.
 - 3. Use Table B-8, page 2-18, to obtain $F_{1-\alpha/2}$ for $(d.f._1, d.f._2)$ d.f.
 - 4. Compute the following:
 - a. Add 1 to f.
 - b. Subtract f from N.
 - c. Divide step a by step b.
 - d. Multiply step c by step 3.
 - e. Add 1 to step d.
 - <u>f</u>. Divide 1 by step <u>e</u>.
- (d) Conclude that ρ is equal to or between the UCL and LCL at the desired confidence level.
- (2) Compute the one-sided UCL as follows:
 - (a) Choose the desired confidence level.
 - (b) Compute d.f. as follows:
 - 1. Multiply sc by 2.
 - 2. Add 2 to step 1.
 - (c) Compute d.f.2 as follows:
 - 1. Multiply sc by 2.

- (3) Compute the one-sided LCL for ρ as follows:
- (a) Choose the confidence level (1-a).
 - (b) Compute: d.f.₁ = 2(f)+2
 - (c) Compute: d.f.₂ = 2(N) - 2(f)
- (d) Use Table B-8, page 2-18, to obtain $F_{1-\alpha}$ for (d.f.₁, d.f.₂) d.f.
 - (e) Compute:

$$LCL = \frac{1}{1 + (\frac{f+1}{N-f}) F_{1-\alpha}}$$

(f) Conclude that $\rho \ge LCL$ at a $100(1-\alpha)\%$ confidence level.

(3)

(a)
$$\alpha = .05$$

 $1-\alpha = .95$

- (b) $d.f._1 = 2(5)+2$ = 12
- (c) $d.f._2 = 2(52)-2(5)$ = 104-10 = 94
- (d) F.95 for (12,94)d.f. approximates closely

F.95 for (12,90)d.f. F.95 for (12,90)d.f. = 1.86

- (e) $LCL = \frac{1}{1 + (\frac{5+1}{52-5}) \cdot F \cdot 95}$ $= \frac{1}{1 + (\frac{6}{47}) \cdot (1.86)}$ $= \frac{1}{1 + (.1277) \cdot (1.86)}$ $= \frac{1}{1 + .2374}$ $= \frac{1}{1.2374}$ = .8081
- (f) Conclude that $\rho \ge .80$ at a 95% confidence level.

= .80

NOTE: .80 is referred to as the reliability of the test item at a 95% confidence level.

10.1.1.5 <u>ANALYSIS</u>

a. Case I:

If N \geq the intersection value (Table B-18, page 2-74) the null hypothesis that $\rho \geq \rho_0$ is accepted; otherwise, there is no reason to believe $\rho \geq \rho_0$ at a $100(1-\alpha)\%$ confidence level.

b. Case II:

- (1) The two-sided interval surrounds ρ such that $\rho \leq$ UCL and $\rho \geq$ LCL at a 100(1- α)% confidence level.
- (2) The UCL is determined so that p ≤ UCL at a 100(1-a)% confidence level.
- (3) The LCL is determined so that ρ ≥ LCL at a 100(1-α)% confidence level.

10.1.2 <u>DETERMINATION OF SAMPLE SIZE</u>

10.1.2.1 OBJECTIVE

- a. To determine the absolute minimum $N_{\hat{t}}$ required to establish ρ_0 at the desired confidence level.
- b. To determine the minimum N_{t} required to establish ρ_{O} at the desired confidence level when the average number of failures is known from previous testing or a comparable item.

10.1.2.2 DATA REQUIRED

- a. None.
- b. The average number of failures known from a standard item, history, or Requirements Document.

10.1.2.3 PROCEDURE

- a. Case I: Determination of an absolute minimum Nr.
 - (1) Use Table B-18, page 2-74, to obtain the intersection of the "Reliability" row and the "Confidence Level" column for zero failures.
 - (2) Conclude that the intersection value is the absolute minimum N_{t} since zero failures constitutes the ideal situation.
- b. Case II: Determination of N_{t} .
 - (1) Use Table B-18, page 2-74, to obtain the intersection of the "Reliability" row and the "Confidence Level" column for the average number of failures known from a standard item, history, or Requirements Document.

(2) Conclude that the intersection value is the minimum N_{t} . Generally the test item must be as good as previous test results from a standard item. Note that in most cases this N_{t} will be larger than the absolute minimum N_{t} generated in Case I.

10.1.2.4 EXAMPLE

a. Case I: Determination of an absolute minimum Nt.

Given:

 $\rho_0 = .95$

 $1-\alpha = .90$

f = 0

Procedure:

- (1) Use Table B-18, page 2-74, to obtain the intersection of the "Reliability" row and the "Confidence Level" column for zero failures.
- (2) Conclude that the intersection value is the absolute minimum N_{t} since zero failures constitutes the ideal situation.

Example:

(1) For f = 0, $\rho_0 = .95$, and $1-\alpha = .90$,

 $N_{r} = 45$

(2) For zero failures, conclude that 45 samples are required to achieve $\rho = .95$ at a confidence level of 90%.

b. Case II: Determination of Nt

Given:

 $\rho_0 = .95$

 $1-\alpha = .90$

Average number of failures for the standard item = 6

Procedure:

- (1) Use Table B-18, page 2-74, to obtain the intersection of the "Reliability" row and the "Confidence Level" column for the average number of failures.
- (2) Conclude that the intersection value is the minimum N_{t} . Generally the test item must be as good as previous test results from a standard item.

NOTE: In most cases this N_t will be larger than the absolute minimum N_t generated in Case I.

Example:

(1) For f = 6, $\rho_0 = .95$, and $1-\alpha = .90$,

 $N_t = 209.$

(2) For no more than six failures, conclude that 209 samples are required to achieve $\rho = .95$ at a 90% confidence level.

NOTE: 209 > 45

10.1.2.5 <u>ANALYSIS</u>

a. Initial N.

At a specified confidence level, reliability, and number of failures, N_t samples are required to determine whether $\rho \geq \rho_0$. Zero failures will generate the absolute minimum N_t .

b. Adequacy of N_t.

After the initial N_t samples have been tested, R must be computed at the desired confidence level for the number of failures that occurred. If the computed R is equal to or greater than ρ_0 , the initial N_t is adequate; however, if the computed R is less than ρ_0 , the initial N_t is inadequate. If N_t is inadequate, N_t must be recomputed using the number of failures which have occurred, f, and the desired confidence level; and additional samples must be tested if possible or a reject dicision made.

10.1.3 SEQUENTIAL ANALYSIS FOR SUCCESS-FAILURE

- a. When testing an hypothesis using the sequential method, the project officer is able to make one of the following three decisions at any stage of testing:
 - (1) Accept the hypothesis.
 - (2) Reject the hypothesis.
 - (3) Continue the experiment by collecting additional data.
- b. Usually a ρ_0 of .95 with a high degree of assurance is required. In order to achieve assurance of such a high ρ_0 , the project officer would have to conduct excessive testing; e.g., many thousands of rounds. This may be impractical; however, using the following statistical approach, the project officer will achieve the predetermined confidence level for reaching the accept decision.
- c. If certain criteria are set up graphically, a decision can be made to accept, reject, or continue testing the test item after each sample is tested. This graph uses three areas to represent the decisions to accept, reject, or continue testing the test item. The accept region is below a boundary line determined by the subtraction of the maximum proportion of defectives (Po) and the confidence levels for rejection and acceptance. The continue testing area is above the accept boundary line and below the reject boundary line. The size of this area, which is an area of doubt for the test item, is determined by the project officer (see paragraph 4.14, page 14). The area of doubt is designed for a test item which may be good but has gotten off to a slow start. In this case, a longer period of time will be required to satisfy the doubts concerning acceptability of the test item. The reject boundary line is determined by $P_{\rm O}$ and the confidence levels for rejection and acceptance. The area above this boundary line is the area of rejection. A graph of this type is illustrated by Figure 14. The number of samples are plotted on the horizontal axis with each increment representing one sample. The number of failures are plotted on the vertical axis with each increment representing one failure.

Failures

Figure 14

MTP 3-1-005 1 March 1972

d. The construction of the two boundary lines is described in the procedure paragraph below.

10.1.3.1 OBJECTIVE

To determine whether the proportion of defective test items is equal to or less than $P_{\rm O}$ at the desired confidence level.

10.1.3.2 DATA REQUIRED

N and f.

10.1.3.3 PROCEDURE

- a. Construct the boundary lines as follows:
 - (1) Choose α and β , the probabilities of making Type I and Type II errors respectively.
 - (2) Choose the amount of doubt, the proportion of defectives allowable for continued testing.
 - (3) Use Table B-19, page 2-127, to obtain a and b for α and β.
 - (4) Subtract D from P_0 to obtain the upper limit for the proportion of defectives $(P_{\rm H})$.

NOTE: P_0 equals λ_0 , if λ_0 is in terms of defectives. P_0 equals the quantity $(1-\lambda_0)$, if λ_0 is in terms of successes.

- (5) Compute U, an intermediate value, as follows:
 - (a) Divide P_0 by step (4).
 - (b) Subtract step (4) from 1.
 - (c) Subtract Po from 1.
 - (d) Divide step (b) by step (c).
 - (e) Multiply step (a) by step (d).
 - (f) Find the natural logarithm of step (e).
- (6) Compute V, an intermediate value, as follows:
 - (a) Subtract step (4) from 1.
 - (b) Subtract Po from 1.
 - (c) Divide step (a) by step (b).
 - (d) Find the natural logarithm of step (c).
 - (e) Divide step (d) by step (5).
- (7) Determine the accept boundary line as follows:
 - (a) Divide the value b in step (3) by step (5).
 - (b) Multiply step (6) by N.
 - (c) Add step (a) to step (b) to determine the maximum allowable f for accepting the test item (f_{ACCEPT} = b/ii + V(N)).
 - (d) Choose two values for N and substitute them into the above equation to determine two points on the accept boundary line.

10.1.3.4 **EXAMPLE**

a. Construct the boundary lines as follows: Given:

 P_o = .07 (7 failures out of 100; reliability of 93%)

Procedure:

(1) Choose α and β .

- (2) Choose D.
- (3) Use Table B-19, page 2-127, to obtain a and b for α and β .
- (4) Compute: $P_{U} = P_{O} D$

(5) Compute:

$$U = \ln \left(\frac{P_{O}}{P_{U}} \right) \left(\frac{1-P_{U}}{1-P_{O}} \right)$$

Example:

(1)
$$\alpha = .05$$

 $1-\alpha = .95$
 $\beta = .20$
 $1-\beta = .80$

- (2) D = .02
- (3) a = 2.773b = -1.558
- (4) $P_{U} = .07 .02$ = .05

(6) Compute:
$$\left(\frac{1-P_U}{I-P_O}\right)$$

(6)
$$V = \frac{\ln(\frac{1-.05}{1-.07})}{.35775}$$
$$= \frac{\ln(1.0215)}{.35775}$$
$$= \frac{.021282}{.35775}$$
$$= .059488$$

f ACCEPT =
$$\frac{b}{ii}$$
 + $V(N)$

(7)
$$f_{ACCEPT} = \frac{-1.558}{.35775} + .059488(N)$$

$$= -4.355 + .059488 (N)$$

When N = 0, $f_{ACCEPT} = -4.355$

When
$$N = 100$$
, $f_{ACCEPT} = 1.594$

Plot the points

boundary line.

(0,-4.355) and (100,1.594) to determine the accept boundary line.

f REJECT =
$$\frac{a}{U}$$
 + V(N)

(8)
$$f_{REJECT} = \frac{2.773}{.35775} + .059488(N)$$

= 7.751+.059488(N)

When
$$N = 0$$
, $f_{REJECT} = 7.751$

When
$$N = 100$$
, fREJECT = 13.700

Plot the points
(0,7.75) and (100,13.700)
to determine the reject

(9) If the two lines are not parallel, check the computations

b. Plot the sample data on the sequential graph as follows: Given:

Requirements and boundary lines from step a. Sample data at Table A-6a, page 1-19.

Procedure:

Example:

- (1) Plot the cumulative sample size and failure after each sample,
 - $(N_i, f_i).$

and plotted points.

- (1) (a) (30,1)
 - (b) (75,2)

See Table A-6a, page 1-19, for complete list.

(2) After plotting each point, decide to accept, reject, or continue testing the test item.

(2) For failures 1 through 3, decide to continue testing. At failure number 4 decide to accept the test item. A decision to accept the test item could have been made when N was 134 and f was 3 since the accept boundary was crossed (see Figure 14, page 129).

NOTE: From Table B-18, page 2-74, when $f=3,\rho_0=.95$, and $1-\alpha=.95$, the intersection value is 153; thus, fewer samples (N=134) are needed using the sequential method.

10.1.3.5 ANALYSIS

- a. The sequential method generally minimizes testing time and N due to the fact that a decision to accept or reject is made as soon as possible after the first failure. Since all failures are not necessarily chargeable failures, decisions will be altered if certain failures are not counted. If the project officer ignores a failure, the probability of accepting an unacceptable item is increased. Therefore, the project officer must carefully decide what constitutes a failure (see paragraph 4.2, page 2).
- b. Due to the advantages just discussed, the sequential method should be used whenever possible (see subparagraph 10.2c, page 134).

10.2 RELIABILITY RELATIVE TO CONTINUOUS TESTING

- a. When measuring R for the continuous testing situation, the failure rate is assumed to approach the exponential distribution (see paragraph 4.15.5, page 19). In this case there are three measures of R that are of interest to the project officer. These are:
 - (1) The determination of mean time, miles, or rounds between failures and the limits for the mean at a desired confidence level (see paragraph 10.2.1, page 134).
 - (2) The determination of a computed R (see paragraph 10.2.2, page 145).
 - (3) The determination of the R based on ρ_0 and the desired confidence level (see paragraph 10.2.3, page 147).
- b. The first two determinations are simple and straightforward but are biased by limitations on N. The third, which is the only sequential analysis method, is a truer representation of the population.

MTP 3-1-005 1 March 1972

- c. Sequential analysis is superior to nonsequential analysis whenever the data become available serially and the cost of the data (in terms of time, labor, or material) is approximately proportional to the amount of data. Nonsequential analysis is superior whenever the amount of data is fixed or the cost of the data is largely overhead, hence more or less independent of the amount of data. Superiority consists of minimizing the set of quantities N, α , and β . Sequential and nonsequential tests differ in the constraints under which this set is minimized. Nonsequential tests treat N as fixed and are designed so that either risk a or risk 8 is minimized when the other is fixed. Sequential tests treat N as a variable and are designed so that for fixed risks, α and β , the expected (average) number of trials required to reach a decision is minimized. If for a nonsequential test N is made large enough so that, with a fixed, 8 will not exceed a predetermined amount, this value of N will exceed (frequently by as much as 100 percent) the N required for a sequential test for the same α and β. Thus, when N is readily subject to variation, sequential tests are superior; when N is not readily varied, nonsequential tests are superior.
- d. Examples of the solution for each determination are in the following paragraphs. In all examples mean time between failures (MTBF) is used. Other means, such as mean miles between failures (MTBF) or mean rounds between failures (MTBF), may be used when applicable.

10.2.1 MEANS AND LIMITS

10.2.1.1 MEANS

10.2.1.1.1 OBJECTIVE

To determine the mean time between failures.

10.2.1.1.2 DATA REQUIRED

A list of sample readings; e.g., operating time (primary parameter) and failures (secondary parameter).

10.2.1.1.3 PROCEDURE

- a. Sum the primary parameter.
- b. Sum the secondary parameter.
- c. Divide step a by step b.

10.2.1.1.4 EXAMPLE

Given:

Sample data at Table A-6c, page 1-21.

Procedure:

Example:

a. Sum the primary parameter; e.g., total time (T_t) or total miles (T_m) .

a. $T_t = 3752$ hours

b. Sum the secondary parameter; e.g., total failures (f).

b. f = 12

c. Compute:

c. MTBF = 3752/12

 $MTBF = \frac{Tt}{F}$

= 312.56= 313 hours

NOTE: In the event a test is time terminated and zero failures occurred, a point estimate of the MTBF cannot be determined but a LCL may be computed (see paragraph 10.2.1.3).

10.2.1.1.5 ANALYSIS

The sample mean, or average, is a value which is typical or representative of a set of data. The mean is the most commonly used measure of central location.

10.2.1.2 LIMITS USING THE STUDENT t DISTRIBUTION

10.2.1.2.1 **OBJECTIVE**

To determine the two-sided and one-sided limits for the MTBF using the t distribution.

10.2.1.2.2 DATA REQUIRED

A list of sample readings; e.g., operating time (primary parameter) and failures (secondary parameter).

10.2.1.2.3 PROCEDURE

a. Case I: UCL and LCL (two-sided limits), also referred to as M_2 and M_1 .

- (1) Choose the desired confidence level.
- (2) Use Table D-5, page 2-5, to obtain $t_{1-\alpha/2}$ for f-1 d.f. (3) Compute the MTBF (see paragraph 10.2.1.1.3, page 134).
- (4) Compute the time between failures for each consecutive pair of failures if the data have been recorded as cumulative time.
- (5) Compute 3 (see paragraph 7.1.1.4, page 65).

NOTE: The sample size is the number of failures.

- (6) Compute ε as follows:
 - (a) Multiply step (2) by step (5).
 - (b) Divide step (a) by the square root of f.
- (7) Add step (6) to step (3) to obtain the UCL and subtract step (6) from step (3) to obtain the LCL.
- (8) Conclude that the population MTBF is equal to or less than the UCL and equal to or greater than the LCL at the desired confidence level.

- b. Case II: UCL (one-sided limit), also referred to as M2.
 - (1) Choose the desired confidence level.
 - (2) Use Table B-5, page 2-5, to obtain t_{1-q} for f-1 d.f.
 - (3) Compute the MTBF (see paragraph 10.2.1.1.3, page 134).
 - (4) Compute the time between failures for each consecutive pair of failures if the data have been recorded as cumulative time.
 - (5) Compute s (see paragraph 7.1.1.3, page 64).
 NOTE: The sample size is the number of failures.
 - (6) Compute c as follows:
 - (a) Multiply step (2) by step (5).
 - (b) Divide step (a) by the square root of f.
 - (7) Add step (6) to step (3) to obtain the UCL.
 - (8) Conclude that the population MTBF is equal to or less than the UCL at the desired confidence level.
- c. Case III: LCL (one-sided limit), also referred to as M1.
 - (1) Choose the desired confidence level.
 - (2) Use Table B-5, page 2-5, to obtain t1-q for f-1 d.f.
 - (3) Compute the MTBF (see paragraph 10.2.1.1.3, page 134).
 - (4) Compute the time between failures for each consecutive pair of failures if the data have been recorded as cumulative time.
 - (5) Compute s (see paragraph 7.1.1.3, page 64).

NOTE: The sample size is the number of failures.

- (6) Compute ε as follows:
 - (a) Multiply step (2) by step (5).
 - (b) Divide step (a) by the square root of f.
- (7) Subtract step (6) from step (3) to obtain the LCL.
- (8) Conclude that the population MTBF is equal to or greater than the LCL at the desired confidence level.

10.2.1.2.4 EXAMPLE

a. Case I: UCL and LCL (two-sided limits), also referred to as M2 and M1, respectively.

Given:

Sample data at Table A-6d, page 1-22.

Procedure:

Example:

- (1) Choose the confidence level (1-\alpha).
- (1) $\alpha = .10$ $1-\alpha = .90$
- 1-a/2 = .95Here Table B-5 page 2-5 (2) f-1 = 5
- (2) Use Table B-5, page 2-5, to obtain $t_{1-\alpha/2}$ for (f-1) d.f.

t.95 for 5 d.f. = 2.015

- (3) Compute the MTBF.
- (4) Compute the time between failures for each consecutive pair of failures if the data have been recorded as cumulative time.
- (5) Compute:
- (6) Compute:
- (7) Compute: UCL = MTBF + ϵ

LCL = MTBF - ϵ

- (8) Conclude that the population MTBF ≤ UCL and the population MTBF \geq LCL at a $100(1-\alpha)$ %
- confidence level.

Sample data at Table A-6d, page 1-22.

b. Case II: UCL (one-sided limit), also referred to as M2.

Procedure:

- (1) Choose the confidence level $(1-\alpha)$.
- (2) Use Table B-5, page 2-5. to obtain $t_{1-\alpha}$ for (f-1) d.f.
- (3) Compute the MTBF.

- (3) MTBF = 207 hours See paragraph 10.2.1.1.4, page 134.
- (4) (a) Time to failure 1 = 200 hours
 - (b) Time between failures 2 and 1 **=** 410-200

= 210 hours

(5)

= 16.80 = 17 hours

See paragraph 7.1.1.4, page 65.

2.015(16.80) = 33.85/2.449

= 13.82

(7) UCL = 206.83 + 13.82**=** 220.65

= 221 hours LCL = 206.83 - 13.82

= 193.01 = 193 hours

- (8) Conclude that the population MTBF & 221 hours and the population MTBF > 193 hours at a 90% confidence level.

Example:

- (1) $\alpha = .10$ $1-\alpha = .90$
- (2) f-1 = 5t.90 for 5 d.f. = 1.476
- (3) MTBF = 1241/6= 207 hours See paragraph 10.2.1.1.4, page 134.

- (4) Compute the time between failures for each consecutive pair of failures if the data have been recorded as cumulative time.
- (5) Compute:
- (6) Compute: $t_{1-\alpha}(s)$
- (7) Compute: UCL = MTBF + ε
- (8) Conclude that the population MTBF \leq UCL at a 100(1- α)% confidence level.
 - - c. Case III: LCL (one-sided limit), also referred to as M_1 .

Sample data at Table A-6d, page 1-22.

Procedure:

- (1) Choose the confidence level $(1-\alpha)$.
- (2) Use Table B-5, page 2-5, to obtain $t_{1-\alpha}$ for (f-1) d.f.
- (3) Compute the MTBF.
- (4) Compute the time between failures for each consecutive pair of failures if the data have been recorded as cumulative time.

- (4) (a) Time to failure 1 = 200 hours.
 - Time between failures 2 and 1 = 410-200= 210 hours

See Table A-6d, page 1-22 for complete list.

(5)
$$s = \sqrt{\frac{1410.6}{6-1}}$$
$$= \sqrt{282.1}$$
$$= 16.80$$

= 17 hours See paragraph 7.1.1.4, page 65.

(6)
$$\varepsilon = \frac{(1.476)(16.80)}{\sqrt{6}}$$

$$= \frac{24.80}{2.449}$$

$$= 10.13$$

- (7) UCL = 206.83 + 10.13**=** 216.96 = 217 hours
- (8) Conclude that the population MTBF ≤ 217 hours at a 90% confidence level.
- Example:

(1) $\alpha = .10$ $1-\alpha = .90$

(2) f-1 = 5t.90 for 5 d.f. = 1.476

(3) MTBF = 207 hours. See paragraph 10.2.1.1.4, page 134.

- (4) (a) Time to failure 1
 - = 200 hours. (b) Time between failures 2 and 1 = 410 - 200
 - = 210 hours

(5) Compute: $s \sim \frac{\sum \Delta^2}{f-1}$ (5) s = 16.80 = 17 hours See paragraph 7.1.1.4, page 65.

(6) Compute: $\varepsilon = \frac{c_{1-\alpha}(s)}{\sqrt{f}}$ (6) $\varepsilon = \frac{(1.476)(16.80)}{\sqrt{6}}$ = 10.13

(7) Compute: LCL = MTBF - ε (7) LCL = 206.83 - 10.13 = 196.70 = 196 hours

(8) Conclude that the population MTBF ≥ LCL at a 100(1-a)Z confidence level. (8) Conclude that population MTBF ≥ 196 hours at a 90% confidence level.

10.2.1.2.5 ANALYSIS

a. The two-sided interval surrounds the population MTBF such that the population MTBF \leq UCL and the population MTBF \geq LCL at a 100(1- α)% confidence level.

b. The UCL of the MTBF is determined such that the population MTBF \leq UCL at a 100(1-a)% confidence level.

c. The LCL of the MTBF is determined such that the population MTBF \geq LCL at a 100(1-a)% confidence level. M₁ (the LCL) is generally considered the MTBF of the population since the population MTBF will be at least M₁ at a 100(1-a)% confidence level. If comparing M₁ to the required MTBF produces an accept decision for the test item, then on the average, the test item will function as required at a 100(1-a)% confidence level.

d. The method used to compute M_1 and M_2 uses s to estimate σ . If the time between two failures is close to the MTBF, s will be small; and M_1 will be close to the MTBF. However, if the times between failures are erratic (close to the MTBF in some cases and far from the MTBF in other cases), s will be large; and the interval between the M_1 and the MTBF will increase. Since this method uses the student t distribution, f should be less than or equal to 30.

NOTE: The application of the student t assumes that the MTBF's are approximately normally distributed.

10.2.1.3 LIMITS USING THE X2 DISTRIBUTION

10.2.1.3.1 OBJECTIVE

To determine the two-sided and one-sided limits for the MTBF using the χ^{-2} distribution.

10.2.1.3.2 DATA REQUIRED

A list of sample readings; e.g., operating time (primary parameter) and failures (secondary parameter).

10.2.1.3.3 PROCEDURE

- a. Case I: UCL and LCL (two-sided limits), also referred to as M_2 and M_1 .
 - (1) Choose the desired confidence level.
 - (2) Use Table B-20, page 2-128, to obtain $LF_{1-\alpha/2}$ for:
 - (a) f + 1 d.f., if a time terminated test.
 - (b) f d.f., if a failure terminated test.
 - (3) Use Table B-21, page 2-129, to obtain the $UF_{1-\alpha/2}$ for f d.f., for both the time and failure terminated test.
 - (4) If the test is a time terminated test, compute the following:
 - (a) Multiply step (2)(a) by T_t.
 - (b) Divide step (a) by the quantity (f+1) to obtain the LCL.
 - (c) Multiply step (3) by T_c .
 - (d) Divide step (c) by the value of f to obtain the UCL.
 - (5) If the test is a failure terminated test, compute the following:
 - (a) Multiply step (2) (b) by Tt.
 - (b) Divide step (a) by f to obtain the LCL.
 - (c) Multiply step (3) by Tt.
 - (d) Divide step (c) by f to obtain the UCL.

NOTE: To maintain accuracy, the six decimal number found in Table B-20, page 2-128, or B-21, page 2-129, must be used.

- (6) Conclude that the population MTBF is equal to or between the UCL and LCL at the desired confidence level.
- b. Case II. UCL (one-sided limit), also referred to as M2.
 - (1) Choose the desired confidence level.
 - (2) Use Table B-21, page 2-129, to obtain the UF $_{1-\alpha}$ for f d.f., for both the time and failure terminated test.
 - (3) Compute the UCL as follows:
 - (a) Multiply step (2) by T_t.
 - (b) Divide step (a) by f.

NOTE: To maintain accuracy, the six decimal number found in Table B-21, page 2-129, must be used.

(4) Conclude that the population MTBF is equal to or less than the UCL at the desired confidence level.

- c. Case III. LCL (one-sided), also referred to as M1.
 - (1) Choose the desired confidence level.
 - (2) Use Table B-20, page 2-128, to obtain LF1-7 for:
 - (a) f+1 d.f., if a time terminated test.
 - (b) f d.f., if a failure terminated test.
 - (3) If a time terminated test, compute the LCL as follows:
 - (a) Multiply step (2)(a) by T_t .
 - (b) Divide step (a) by the quantity (f+1).
 - (4) If a failure terminated test compute the LCL as follows:
 - (a) Multiply step (2)(b) by Tt.
 - (b) Divide step (a) by f.

NOTE: To maintain accuracy, the six decimal number found in Table B-20, page 2-128, must be used.

(5) Conclude that the population MTBF is equal to or greater than the LCL at the desired confidence level.

10.2.1.3.4 EXAMPLE

a. Case I: UCL and LCL (two-sided limits), also referred to as M_2 and M_1 .

Given:

Sample data at Table A-6c, page 1-21.

Procedure:

- (1) Choose the confidence level $(1-\alpha)$.
- (2) Use Table B-20, page 2-128, to obtain $LF_{1-\alpha/2}$ for:
- (a) f+1 d.f., if a time terminated test.
- (b) f d.f., if a failure terminated test.
- (3) Use Table B-21, page 2-129, to obtain $UF_{1-\alpha/2}$ for f d.f.
- (4) Compute for a time terminated test:

$$LCL = \frac{(LF_{1-\alpha/2})(T_t)}{\frac{f+1}{f}}$$

$$UCL = \frac{(UF_{1-\alpha/2})(T_t)}{f}$$

- Example:
- (1) $\alpha = .05$ $1-\alpha = .95$
- (2) $LF_{.975}$ for 13 d.f. = .620525
- (3) UF.975 for 12 d.f. = 1.935484
- (4) Since the test is time terminated,

- **= 179.093062**
- = 179 hours

- 12
- **=** 605.161330
- = 606

(5) Compute for a failure

terminated test:

$$LCL = \frac{(LF_{1-\alpha/2})(T_t)}{f}$$

$$UCL = \frac{(UF_{1-\alpha/2})(T_t)}{f}$$

- (6) Conclude that the population MTBF \leq UCL and the population MTBF \geq LCL at a $100(1-\alpha)\%$ confidence level.
- (6) Conclude that the population MTBF ≤ 606 hours and the population MTBF ≥ 179 hours at a 95% confidence level.
- b. Case II. UCL (one-sided limit), also referred to as M_2 . Given:

Sample data at Table A-6c, page 1-21.

Procedure:

Example:

(3)

(1) Choose the confidence level (1-a).

(2) Use Table B-21, page 2-129, to obtain the UF_{1- α} for f d.f., for both a time and failure terminated test.

(1) $\alpha = .05$ $1-\alpha = .95$

(2) UF.95 for 12 d.f. = 1.739130

(3) Compute

$$UCL = \frac{(UF_{1-\alpha}) (T_t)}{f}$$

$$UCL = \frac{(1.739130)(3752)}{12}$$

$$= 543.767980$$

$$= 544$$

- (4) Conclude that i.e population MTBF \leq UCL at a $100(1-\alpha)\%$ confidence level.
- (4) Conclude that the population MTBF ≤ 544 hours at a 95% confidence level.
- c. Case III: LCL (one-sided limit), also referred to as M_1 . Given:

Sample data at Table A-6c, page 1-21.

Procedure:

- (1) Choose the confidence level (1-a).
- (2) Use Table B-20, page 2-128, to obtain $LF_{1-\alpha}$ for:
- (a) f+l d.f., if time terminated.
- (b) f d.f., if failure terminated.
- (3) Compute for a time terminated test:

$$LCL = \frac{(LF_{1-\alpha})(T_t)}{(f+1)}$$

(4) Compute for a failure terminated test:

$$LCL = \frac{(LF_{1-\alpha})(T_t)}{f}$$

(5) Conclude that the population MTBF \geq LCL at a $100(1-\alpha)$ % confidence level.

Example:

- (1) $\alpha = .05$ $1-\alpha = .95$
- (2) LF .95 for 13 d.f. = .668380
- (3) Since the rest is time terminated,

$$LCL = \frac{(.668380)(3752)}{12+1}$$

- = 192.907836
- = 192 hours
- (5) Conclude that the population MTBF ≥ 192 hours at a 95% confidence level.

NOTE: Although the confidence level is numerically the same for all three cases, M₁ and M₂ take on different values (see Figure 15).

10.7 1.3.5 ANALYSIS

- a. The two-sided interval surrounds the population MTBF such that the population MTBF \leq UCL and the population MTBF \geq LCL at a 100(1-a)% confidence level.
- b. The UCL of the MTBF is determined such that the population MTBF \leq UCL at a 100(1-a)% confidence level.
- c. The LCL of the MTBF is determined such that the population MTBF \geq LCL at a 100(1-a)% confidence level. M_1 (the LCL) is generally considered the MTBF of the population since the population MTBF will be at least M_1 at a 100(1-a)% confidence level. If comparing M_1 to the required MTBF produces an accept decision for the test item, then on the average, the test item will function as required at a 100(1-a)% confidence level.
- d. The method used to compute M_1 and M_2 is dependent upon the type of test conducted; i.e., time terminated or failure terminated. The time terminated test produces a more conservative estimate for the LCL of the population MTBF since a safety factor of one is added to the number of failures which occurred.

SUPPLEMENTARY

INFORMATION

•

Parameter

8

С

Figure 15

-144-

10.2.2 APPLICATION OF THE EXPONENTIAL DISTRIBUTION

10.2.2.1 OBJECTIVE

To determine the reliability for those items which demonstrate an exponential lifetime to failure.

10.2.2.2 DATA REQUIRED

The mission (operational) profile (MP), Tt, and f.

10.2.2.3 PROCEDURE

- a. Choose the desired confidence level.
- b. Compute the MTBF (see paragraph 10.2.1.1.3, page 134).
- c. Use Table B-20, page 2-128, to obtain the LF $_{1-\alpha}$ for:
 - (1) f+1 d.f., if a time terminated test.
 - (2) f d.f., if a failure terminated test
- , d. Compute the LCL as follows:
 - (1) For a time terminated test, multiply step c by T_t and divide by the quantity (f+1).
 - (2) For a failure terminated test, multiply step b by step c.

NOTE: To maintain accuracy, the six decimal number found in Table B-20, page 2-128.

- e. Compute R as follows:
 - (1) Divide MP by step d.
 - (2) Use Table B-22, page 2-130, to obtain e raised to the negative power of step (1).
- f. Conclude that ρ is equal to or greater than R at the desired confidence level.
- g. If R is equal to or greater than ρ_0 , decide that ρ is equal to or greater than ρ_0 ; otherwise, there is no reason to believe ρ is equal to or greater than ρ_0 at the desired confidence level.

10.2.2.4 EXAMPLE.

Given:

 $\rho_0 = .75$

Sample data at Table A-6c, page 1-21.

Procedure:

- a. Choose the confidence level (1-a),
- b. Compute:

$$MTBF = \frac{T_t}{f}$$

- c. Use Table B-20, Page 2-128, to obtain LP_{1-\alpha} for:
 - (1) f+1 d.f., if a time terminated test.
 - (2) f d.f., if a failure terminated test.
- d. Compute:
 - (1) For a time terminated test: $LCL = (LF_{1-\alpha}) (T_t)$ f+1
 - (2) For a failure terminated test:

 LCL =(LF_{1-Q}) (MTBF)
- e. Compute:

$$R = e \frac{MP}{LCL}$$

- f. Conclude that $\rho \ge R$ at a 100 (1- α)% confidence level.
- g. If $R \ge \rho \sigma$, decide that $\rho \ge \rho \sigma$; otherwise, there is no reason to believe $\rho \ge \rho \sigma$ at a 100 (1- α)% confidence level.

Example:

$$a. a = .05$$
 $1-a=.95$

b. MTBF =
$$\frac{3752}{12}$$

= 312.67

= 313

- c. $LF_{1-\alpha}$ for 13 d.f. = .668380
- d. Since the example is a time terminated test.

$$LCL = \underbrace{(.668380) (3752)}_{12 + 1}$$
$$= \underbrace{2507.761760}_{13}$$

= 192 hours

e.

$$R = e \frac{-48}{192.90}$$
 $= e -.249$
 $= .7796$

- f. Conclude that $\rho \ge .77$ at a 95% confidence level.
- 8. Since $.77 \ge .75$, decide that $0 \ge .75$, at a 95% confidence level.

$$f_r = \frac{1}{MTBF}$$

$$f_{rt} = \frac{1}{MTBF_t}$$

$$v = f_{rt} - f_r$$

$$T_{ACCEPT} = \frac{a}{U} + V(f)$$

(11) Compute:

$$T_{REJECT} = \frac{b}{U} + V(f)$$

(12) If the two lines are not parallel, check the computations and plotted points

(6)
$$f_{\tau} = \frac{1}{224.07} = .0044629$$

(7)
$$f_{rt} = \frac{1}{173.80}$$

= .0057536

(8)
$$v = .0057536 - .0044629$$

= .0012908

(9)
$$V = \frac{\ln \left(\frac{224.07}{173.80}\right)}{.0012908}$$
$$= \frac{\ln 1.29}{.0012908}$$
$$= \frac{.25404}{.0012908}$$
$$= 196.81$$

(10)
$$T_{ACCEPT} = \frac{2.773}{.0012908} + 196.81(f)$$

= 2148.2+196.81(f)

When f = 0,
$$T_{ACCEPT} = 2148$$

When f = 7, $T_{ACCEPT} = 3530$

Plot the points (0,2150) and (7,3530) to determine the accept boundary line.

(11)
$$T_{REJECT} = \frac{-1.558}{.0012908} + 196.31(f)$$

= -1207+196.81(f)

When
$$f = 0$$
, $T_{REJECT} = -1207$

(12)

b. Plot the sample data on the sequential graph as follows:

Requirements and boundary lines from step a. Sample data at Table A-6e, page 1-22.

Procedure:

- (1) Plot the cumulative operating hours at appropriate intervals (f_1, T_1) .
- (2) After plotting each point, decide to accept, reject, or continue testing the test item.

Example:

- (1) (a) (1,175) (b) (2,490)
- See Table A-6e, page 1-22 for complete list.
- (2) For failures 1 through 4, decide to continue testing. Decide to accept the test item when T = 3133 hours and f = 5 since the accept boundary line is crossed. See Figure 16, page 148.

10.2.3.5 ANALYSIS

- a. The sequential method generally minimizes testing time and N due to the fact that a decision to accept or reject is made as soon as possible after the first failure. Since all failures are not necessarily chargeable failures, decisions will be altered if certain failures are not counted. If the project officer ignores a failure, the probability of accepting an unacceptable item is increased. Therefore, the project officer must carefully decide what constitutes a failure (see paragraph 4.2, page 2).
- b. Due to the advantages just discussed, the sequential method should be used whenever possible (see paragraph 10.2c, page 134).

10.3 COMBINED RELIABILITY

If a number of components of a system are connected in such a way that the failure of any one component causes a failure of the system, then these components are considered to be functionally in series. The reliability of such a system can be determined by the following method.

10.3.1 OBJECTIVE

- a. Case I: To determine the reliability of a system based on the individual reliabilities of its components.
- b. Case II: To determine the reliability of an individual component of a system.

10.3.2 DATA REQUIRED

- a. Case I: N and f for each component.
- b. Case II: N and f for the component tested.

10.3.3 PROCEDURE

- a. Case I: Reliability of independent serial systems.
 - (1) Choose the desired confidence level.
 - (2) Compute the point estimate reliability ($R_{\mbox{\scriptsize PE}}$) as follows:
 - (a) Subtract f from N for each component.
 - (b) Divide step (a) by N for each respective component.
 - (c) Multiply the results of step (b) by each other.
 - (3) Compute the system failures (f_s) as follows:
 - (a) Subtract step (2) from 1.
 - (b) Multiply step (a) by the minimum N of the components.
 - (4) Compute the LCL using Case II of paragraph 10.1.1.4, page 122.

NOTE: When using f_s to determine d.f.₁ and d.f.₂, round off the results.

- (5) Conclude that the p for the system is the LCL at the desired confidence level.
- b. Case II: Reliability of a component.

 See Case II(3) of paragraph 10.1.1.4, page 122.

10.3.4 EXAMPLE

a. Case I: Reliability of independent serial systems.

Given:

Sample data at Table A-6g, page 1-24.

Procedure:

- (1) Choose the confidence level (1-a).
- (2) Compute:

$$R_{PE} = \prod \frac{N_1 - f_1}{N_1}$$

(3) Compute:

$$f_s = N_{min}(1-R_{PE})$$

Example:

(1)
$$\alpha = .10$$

 $1-\alpha = .90$

(2)
$$R_{PE} = \left(\frac{90-2}{90}\right) \left(\frac{90-4}{90}\right) \left(\frac{45-1}{45}\right) \left(\frac{45-3}{45}\right)$$

- = (.9778)(.9556)(.9778)
 (.9333)
- = (.9344)(.9126)
- .8527

(3)
$$f_s = 45(1-.8527)$$

= 45(.1473)

= 6.628

$$d.f._1 = 2(f_s)+2$$

$$d.f._2 = 2(N_{min})-2(f_s)$$

$$LCL = \frac{1}{1 + \left(\frac{f_s+1}{N_{\min}-f_s}\right) \ F_{1-\alpha}}$$

See paragraph 10.1.1.4, Case II, page 122, for details.

NOTE: N is the minimum N of the components and f is f_a.

(5) Conclude that the
$$\rho$$
 for the system is the LCL at a $100(1-\alpha)$ % confidence level.

$$d.f._2 = 2(45)-2(6.628)$$

NOTE: Use 15 and 70 in F tables.

LCL =
$$\frac{1}{1 + \left(\frac{6.628 + 1}{45 - 6.628}\right) \text{ F.90}}$$

$$\frac{1}{1+\left(\frac{7.628}{38.37}\right) (1.58)}$$

$$=\frac{1}{1.3141}$$

- (5) Conclude that the ρ for the system is .76 at a 90% confidence level.
- b. Case II: Reliability of a component.See Case II (3) of paragraph 10.1.1.4, page 122.

10.3.5 ANALYSIS

- a. Case I. The point estimate (achieved) reliability of an independent serial system is determined by multiplying together the point estimate reliability of the components. The number of system failures is determined by multiplying the minimum sample size of the components by the quantity (1-RpE). The R of the system is then determined as a LCL (see paragraph 10.1.1.4, Case II, page 122). The project officer will compare this R to ρ_0 to determine whether $\rho \geq \rho_0$ at a 100(1-a)% confidence level.
- b. Case II. R at a $100(1-\alpha)$ % confidence level is computed as a LCL. The project officer will compare this R to ρ_0 to determine whether $\rho \ge \rho_0$ at a $100(1-\alpha)$ % confidence level.

11. MAINTENANCE EVALUATION

11.1 MAINTENANCE RATIO

11.1.1 OBJECTIVE

To determine the maintenance ratio (MR) for the test item.

11.1.2 DATA REQUIRED

Records of active maintenance manhours and Tt.

- 11.1.3 PROCEDURE
- a. Sum the active maintenance manhours to obtain the total maintenance manhours (TM).
 - b. Sum the hours of operation to obtain Tt.
 - c. Divide TM by Tt.
- 11.1.4 EXAMPLE

Given:

Sample data at Table A-7b, page 1-26.

Procedure:

Example:

a. Compute:

a. TM = 9.25 manhours

 $TM = \Sigma$ active maintenance

manhours.

b. Compute:

b. $T_t = 109.75 \text{ hours}$

 $T_r = \Sigma$ operating time.

... Compute:

$$MR = \frac{TM}{Tr}$$

c. MR = $\frac{9.25}{109.75}$

= .084282

= .0842 manhours per hour

11.1.5 ANALYSIS

The MR indicates the amount of active maintenance manhours required per operating hour for the test item.

- 11.2 MAINTAINABILITY
- 11.2.1 OBJECTIVE

To determine the maintainability (M).

- 11.2.2 DATA REQUIRED
- a. Active maintenance time (AMT), the number of maintenance actions (MA), the allowable maintenance action time (ω).
 - b. Time to repair (RT), w, and f.
- 11.2.3 PROCEDURE
 - a. Case I: Maintainability, based on all MA's.
 - (1) Sum the AMT's (EAMT).
 - (2) Divide step (1) by MA to obtain the mean active maintenance time (\overline{M}) .

- (3) Determine the maintenance action rate (AR) by dividing 1 by step (2).
- (4) Compute M as follows:
 - (a) Multiply step (3) by ω.
 - (b) Raise the exponential (e) to the negative power of step (a) (see Table B-22, page 2-130).
 - (c) Subtract step (b) from 1.
- (5) Conclude that the \underline{M} is the probability of completing an MA of the population within prescribed limits based on the sample.
- b. Case II: Maintainability, based only on failures.
 - (1) Compute Y, an intermediate value, as follows:
 - (a) If f is equal to or less than 3, compute:
 - 1. Use Table B-22, page 2-130 to obtain e raised to the negative power of f.
 - Subtract step 1 from 1.
 - (b) If f is greater than 3, set Y equal to 1.
 - (2) Sum the repair time (ERT).
 - (3) Divide step (2) by f to obtain the mean time to repair (MTTR).
 - (4) Divide 1 by step (3) to obtain the repair rate (RR).
 - (5) Compute U, an intermediate value, as follows:
 - (a) Multiply step (4) by ω .
 - (b) Use Table B-22, page 2-130, to obtain e raised to the negative power of step (a).
 - (c) Subtract step (b) from 1.
 - (6) Multiply step (1) by step (5) to obtain M.
 - (7) Conclude that the M is the probability of completing a failure within prescribed limits based on the sample.

11.2.4 EXAMPLE

- a. Case I: Maintainability, based on all MA's. Given:
 - $\omega = .5$ hour
 - MA = 22

Sample data at Table A-7a, page 1-25.

Procedure:

Example:

(1) Compute:

(1) EAMT = 16.9 hours

EAMT

(2) $\overline{M} = \frac{16.9}{22}$

(2) Compute:

- .7682

 $\overline{M} = \frac{\Sigma AMT}{MA}$

= .77 hour per action.

- (3) Compute: $AR = \frac{1}{\overline{M}}$
- (4) Compute:

 $\underline{\underline{M}} = 1 - e^{-(AR)(\omega)}$ Use Table B-22, page 2-130.

(5) Conclude that the \underline{M} is the probability of completing an MA within prescribed limits based on the sample.

b. Case II: Maintainability, based only on failures
 Given:
 ω = .5 hours
 f = 5

Sample data at Table A-7a, page 1-25.

Procedure:

- (1) Compute:
 - (a) If $f \le 3$, compute: $Y = 1 - e^{-f}$
 - (b) If f > 3, assume: Y = 1
- (2) Compute:
- (3) Compute: $MTTR = \frac{ERT}{6}$
- (4) Compute:

 RR = 1

 MTTR
- (5) Compute: $U = 1-e^{-(RR)(\omega)}$

Use Table B-22, page 2-130.

(3) AR = $\frac{1}{.7682}$ = 1.3148 = 1.31 actions per hr.

(4) $\underline{M} = 1 - e^{-(1.3148)(.5)}$ $= 1 - e^{-.657}$ = 1 - .5184 = .4816 = .48

(5) Conclude that .48 is the probability of completing an MA in .5 hour or less based on the sample.

Example:

- (1) Since 5 > 3, Y = 1
- (2) ERT = 4.8 hours
- (3) MTTR = $\frac{4.8}{5}$ = .960 hr. per failure
- (4) RR = 1/.960 = 1.04 failures per hr. of repair
- (5) $U = 1 - e^{-(1.04)(.5)}$ $= 1 - e^{-.520}$ = 1 - .5945 = .4055 = .41

(6) Compute:

 $\underline{\mathbf{M}} = \mathbf{Y}(\mathbf{U})$

(7) Conclude that the M is the probability of completing a failure within prescribed limits based on the sample.

(6) $\underline{M} = (1) (.41)$

= .41

(7) Conclude that .41 is the probability of completing a failure in .5 hour or less based on the sample.

11.2.5 ANALYSIS

Maintainability is a characteristic of design and installation which is expressed as the probability than an item will be retained in or restored to a specified condition within a given period of time, when the maintenance is performed in accordance with prescribed procedures and resources. The maintainability increases exponentially with time for a given maintenance action rate. The greater the time available to perform a MA, the greater will be the probability of successfully performing the maintenance action.

11.3 AVAILABILITY

Availability is a measure of the degree to which an item is in the operable and committable state when the mission is called for at an unknown (random) point in time. Availability actually consists of two components: maintainability and reliability. Poor reliability can be offset by correspondingly improved maintainability. For test purposes availability is broken down into three types which are discussed in the following paragraphs.

11.3.1 <u>INHERENT AVAILABILITY</u>

11.3.1.1 OBJECTIVE

To determine the inherent availability $(A_{\hat{1}})$ of the test item as an estimate of the population availability.

11.3.1.2 DATA REQUIRED

Tt, f, and RT's.

11.3.1.3 PROCEDURE

- a. Compute MTBF (see paragraph 10.2.1.1.3, page 134).
- b. Compute the mean time to repair (MTTR) as follows:
 - (1) Sum the RT's (ERT).
 - (2) Divide step (1) by f.
- c. Compute A4 as follows:
 - (1) Add step a to step b.
 - (2) Divide step a by step (1).
- d. Conclude that the inherent availability of the sample is $100\,(A_1)$ %.

11.3.1.4 **EXAMPLE**

Given:

Sample data at Table A-7b, page 1-26.

Procedure:

Example:

a. Compute:

 $MTBF = \frac{T_t}{f}$

b. Compute:

 $MTTR = \frac{\Sigma RT}{f}$

c. Compute:

 $A_i = \frac{MTBF}{MTBF+MTTR}$

- a. MTBF = 109.8/3 = 36.600 hours
- b. MTTR = 4.8/3

= 1.600 hours per failure

 $A_{1} = \frac{36.600}{36.600+1.600}$ $= \frac{36.600}{36.600}$

= .95811

= .958

- d. Conclude that the inherent availability of the sample is $100(A_1)$ %.
- d. Conclude that the inherent availability of the sample is 95.87.

11.3.1.5 ANALYSIS

Ai is the probability that a system or equipment, when used under stated conditions without consideration for any scheduled or preventive maintenance in an ideal support environment; i.e., when all tools, parts, manpower, and manuals are available, will operate satisfactorily at any given time. Ai excludes ready time, preventive maintenance downtime, supply downtime, and waiting or administrative downtime. Ai is a prediction of the population inherent availability.

11.3.2 ACHIEVED AVAILABILITY

11.3.2.1 OBJECTIVE

To determine the achieved availability (Aa) of the test item.

11.3.2.2 DATA REQUIRED

Tt, MA, and AMT.

11.3.2.3 PROCEDURE

a. Divide Tt by MA to obtain the mean time between maintenance

(MTBM)

- b. Compute \overline{M} as follows:
 - (1) Sum the AMT's.
 - (2) Divide step (1) by MA.

MTP 3-1-005 I March 1972

- c. Compute Ag as follows:
 - (1) Add step a and step b.
 - (2) Divide step a by step (1).
- d. Conclude that the achieved availability of the sample is $100\,(A_n)Z$.

11.3.2.4 EXAMPLE

Given:

Sample data at Table A-7b, page 1-26.

Procedure:

a. Compute:

$$MTBM = \frac{T_t}{MA}$$

b. Compute:

$$H = \frac{\Sigma AMT}{MA}$$

c. Compute:

Example:

a. MTBM = 109.8/7

- 15.686

= 15.7 hr. per MA

b. M = 6.8/7

= .971

= .97 Active maintenance time per MA

c.
$$A_2 = \frac{15.686}{15.686 + .971}$$

 $=\frac{15.686}{16.657}$

- .941706

- .94

d. Conclude that the achieved availability of the sample is $100 \, (A_a) \, \text{\%}$.

d. Conclude that the achieved availability of the sample is 94%.

11.3.2.5 ANALYSIS

A₂ is the probability that a system or equipment, when used under stated conditions in an ideal support environment, will operate satisfactorily at any given time. A₃ is the sample's achieved availability and excludes supply downtime and waiting or administrative downtime.

11.3.3 OPERATIONAL AVAILABILITY

11.3.3.1 OBJECTIVE

To determine the operational availability (A_0) of the test item.

11.3.3.2 DATA REQUIRED

 T_t , MA, AMT, and delay time (supply and administrative downtime).

- 🧸

11.3.3.3 PROCEDURE

- a. Compute MTBM (see paragraph 11.3.2.3, page 159).
- b. Sum the AMT's and the delay time.
- c. Divide step b by MA to obtain the mean downtime (MDT).
- d. Compute Ao as follows:
 - (1) Add step a and step c.
 - (2) Divide step a by step (1).
- e. Conclude that the operational availability of the sample in a test support environment is $100\,(A_{\odot})\%$.

11.3.3.4 EXAMPLE

Given:

Sample data at Table A-7b, page 1-26.

Procedure:

a. Compute:

$$MTBM = \frac{T_t}{MA}$$

b. Compute:

EAMT

Σ delay time

c. Compute:

$$MDT = \frac{\Sigma AMT + \Sigma \text{ delay time}}{MA}$$

i. Compute:

e. Conclude that the operational availability of the sample in a test support environment is $100\,(A_{\odot})$ %.

Example:

a. MTBM = 109.8/7

= 15.686

= 15.7 hrs. per MA

b. $\Sigma AMT = 6.8$

 Σ delay time = 8.8

 $\Sigma AMT + \Sigma delay time = 6.8 + 8.8 = 18.5$

c. MDT =
$$\frac{15.6}{7}$$

= 2.228

= 2.23 hrs. per down

d.
$$A_0 = \frac{15.686}{15.686 + 2.228}$$

$$=\frac{15.686}{17.914}$$

= .875628

- .876

e. Conclude that the operational availability of the sample in a test support environment is 87.6%.

11.3.3.5 ANALYSIS

 $A_{\rm O}$ is the probability that a system or equipment, when used under stated conditions in a real support environment, will operate satisfactorily at any given time. $A_{\rm O}$ includes ready time, maintenance downtime, preventive maintenance downtime, supply downtime, and waiting or administrative downtime.

12. REFERENCES

- A. USATECOM Regulation 750-15, Maintenance of Supplies and Equipment.
- B. NAVORD Report 3369, Statistics Manual, E. L. Crow, F. A. David, and M. W. Maxfield, Research Department U. S. Naval Ordnance Test Station, 1960.
- C. DA Pamphlet 70-5, Mathematics of Military Action, Operations, and Systems, U. S. Army Management School, Fort Belvoir, Virginia.
- D. NAVWEPS Report 8090, NOTS TP 3140, Binomial Reliability
 Table (Lower Confidence Limits for the Binomial Distribution),
 China Lake, California.
- E. SAAS Report Number 48, Tables of Binomial Expansion for Statistical Reference, Vol. 2, Picatinny Arsenal.
- F. MIL-STD-721 B, Military Standard Definition of Effectiveness Terms for Reliability, Maintainability, Human Factors, and Safety, 25 August 1966.
- G. AMXBR-CE letter dtd. 27 June 1966, Subject: Outlier Determination with Three Inclosures, ERL.
- H. AMXRD-BEL-FT letter dtd. 27 April 1970, Subject: Outlier Statistics, BRL.
- Excerpts from User's Guide for Modified Three Model Computer Program, pp. 39-42, BRL.
- J. Orientation Course on Materiel Testing, USATECOM College LP 4-8, Part I, Handout #1.
- K. MTP 3-1-002, Confidence Intervals and Sample Size.
- L. MTP 3-3-506, Accuracy and Precision.
- M. An Engineers' Manual of Statistical Methods, Leslie E. Simon, 1941.
- N. An Introduction to Statistical Analysis, W. J. Dixon and F. J. Massey, Jr., 1951.
- O. An Introduction to the Theory of Statistics, G. U. Yule and M. G. Kendall. 1965.
- P. Elementary Statistics, U. S. Department of Commerce, National Bureau of Standards Handbook 91, 1963.
- Q. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U. S. Department of Commerce, National Bureau of Standards Applied Mathematics Series 55. 1968.
- R. Handbook of Probability and Statistics with Tables, Richard S. Burington, Ph.D. and Donald C. May, Jr., Ph., 1970.
- S. Introduction to Mathematical Statistics, Paul G. Hoel, 1962.

TABLE A-1a

BIVARIATE NORMAL DISTRIBUTION RAW DATA

READING NUMBER	EASTING	NORTHING
1	2500	3218
2	2601	3305
3	2575	3279
4	2581	3221
5	2560	3250
6	2590	3261
7	2565	3249
8	2575	3250
9	2560	3239
10	2580	3251
11	2576	3270
12	2553	3251
13	. 2550	3280
14	2570	3245
15	2549	3278

* TABLE A-1b
BIVARIATE NORMAL DISTRIBUTION GROUPED DATA

	EAST 2500-2519	2520-2539	2540-2559	2560-2579	2580-2599	2600-2619	
MORTH							TOTAL
3300-3319						1	. 1
			1				1
3280-2399			*	_	_		4
3260-3279			7	2	1		4
3240-3259			1	4	1		6
1				1	1		2
3220-3239				•	-		1
3200-3219	1						•
TOTAL	1	0	3	7	3	1	

MTP 3-1-005 1 March 1972

TABLE A-2a

MEAN

TEST:

Prepare for action under daylight condition.

TIME		
(minutes)	٨	<u>Δ</u> ²
	<u> </u>	
89.3	2.883	8.312
90.4	3.983	15.864
86.0	417	.174
83.6	-2.817	7.936
84.4	-2.017	4.068
86.1	317	.100
86.0	417	.174
88.0	1.583	2.506
86.7	. 283	.080
87.4	.983	.966
86.1	317	.100
83.0	-3.417	11.676

N = 12

 $\bar{X} = 86.417$

= 86.4 min.

 $\Sigma\Delta^2 = 51.9567$

 $s^2 = 4.723$

s = 2.173

= 2.2 min.

TABLE A-5b

PE: STANDARD DEVIATION

READING NUMBER	READING (meters)	Δ	<u>Δ</u> ²
1	1248	-10.00	100.0
2	1100	-158.00	24,964.0
3	1260	2.00	4.0
4	1300	42.00	1,764.0
5	1260	2.00	4.0
6	1234	-24.00	576.0
7	1287	29.00	841.0
8	1275	17.00	289.0
9	1290	32.00	1,024.0
10	1280	22.00	484.0
11	1225	-33.00	1,089.0
12	1325	67.00	4,489.0
13	1223	-35.00	1,225.0
14	1299	41.00	1,681.0
15	1268	10.00	100.0
16	1254	-4.00	16.0

N = 16

 $\bar{x} = 1258.00$

= 1258 meters

 $\Sigma\Delta^2 = 38,650.0$

 $s^2 = 2,576.67$

s = 50.76

= 51 meters

TABLE A-5c

PE	SUCCESSIVE	DIFFERENCES
----	------------	-------------

READING NUMBER	READING (meters)	<u>x</u> d	x <u>đ</u>
1	1248	•	
2	1100	148	21,904
3	1260	-160	25,600
4	1300	-40	1,600
5	1260	40	1,600
6	1234	26	676
	1287	-53	2,809
7	1275	12	144
8	1290	-15	225
9		10	100
10	1280	55	3,025
11	1225	-100	10,000
12	1325		10,404
13	1223	102	
14	1299	-76	5,776
15	1268	31	961
16	1254	14	196

w _ 16

 $IX_{d}^{2} = 85,020$

 $s_d^2 = 5,668.00$

*d = 75.29

- 75

TABLE A-5f continued

READING NUMBER	<u>N</u>	<u>ΔN</u>	<u>an²</u>
1	46530	-268.71	72,205
2	46516	-282.71	79,925
4	45971	-827.71	685,104
5 ·	46831	32.29	1,043
6	46972	173.29	30,029
7	47015	216.29	46,781
8	46505	-293.71	86,266
9	47230	431.29	186,011
10	46993	194.29	37,749
11	47020	221.29	48,969
12	47044	245.29	60,167
13	46845	46.29	2,143
14	46570	-228.71	52,308
15	. 47140	341.29	116,479

 $N_1 = 14$

NORTH = 46798.71

= 46799

 $\Sigma \Delta N^2 = 1,505,179$

 $s_{\rm N}^2 = 115,783.0$

s_N = 340.27

= 340

TABLE A-6a

SEQUENTIAL TESTING: SUCCESS - FAILURE

<u> PAILURE</u>	SAMPLES TESTED	COORDINATES
1	30	(30,1)
2	75	(75,2)
3	110	(110,3)
4	160	(160,4)

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE A-6g
COMBINED RELIABILITY

COMPONENT NUMBER	SAMPLE SIZE	FAILURES
1	90	2
2	90	4
3	45	. 1
4	45	3

TABLE B-7 continued PERCENTILES OF THE χ^2 DISTRIBUTION

·_ 1-a											
d.1.5	.40	.30	. 25	.20	.10	.05	.025	.01	.005	.001	.0005
31	83.6	87.2 .	89.2	91.5	97.7	103.0	107.8	113.5	117.5	126.1	129.5
82	84.6	88.2	90.2	92.5	98.8	104.1	108.9	114.7	118.7	127.3	130.8
83	85.6	89.2	91.3	93.6	99.9	105.3	110.1	115.9	119.9	128.6	132.0
84	86.6	90.3	92.3	94.7	101.0	106.4	111.2	117.1	121.1	129.8	133.3
85	87.7	91.3	93.4	95.7	102.1	107.5	112.4	118.2	122.3	131.0	134.5
86	88.7	92.4	94.4	96.8	103.2	108.6	113.5	119.4	123.5	132.3	135.8
87	89.7	93.4	95.5	97.9	104.3	109.8	114.7	120.6	124.7	133.5	137.0
88	90.7	94.4	96.5	98.9	105.4	110.9	115.8	121.8	125.9	134.7	138.3
89	91.7	95.5	97.6	100.0	106.5	112.0	117.0	122.9	117.1	136.0	139.5
90	92.8	96.5	98.6	101.1	107.6	113.1	118.1	124.1	128.3	137.2	140.8
91	93.8	97.6	99.7	102.1	108.7	114.3	119.3	125.3	129.5	138.4	142.0
92	94.8	98.6	100.7	103.2	109.8	115.4	120.4	126.5	130.7	139.7	143.3
93	95.8	99.6	101.8	104.2	110.9	116.5	121.6	127.6	131.9	140.9	144.5
94	96.8	100.7	102.8	105.3	111.9	117.6	122.7	128.8	133.1	142.1	145.8
95	97.9	101.7	103.9	106.4	113.0	. 118.8	123.9	130.0	134.2	143.3	147.0
96	98.9	102.8	104.9	107.4	114.1-	119.9	125.0	131.1	135.4	144.6	148.2
97	99.9	103.8	106.0	108.5	115.2	121.0	126.1	132.3	136.6	145.8	149.5
98	100.9	104.8	107.0	109.5	116.3	122.1	127.3	133.5	137.8	147.0	150.7
99	101.9	105.9	108.1	110.6	117.4	123.2	128.4	.134.6	139.0	148.2	151.9
100	102.9	106.9	109.1	111.7	118.5	124.3	129.6	135.8	140.2	129.4	133.2

For larger degrees of freedom:

$$\chi_{1-\alpha}^2 = \frac{1}{2} \left(z_{\alpha} + \sqrt{2(d.f. -1)} \right)^2$$
 approximately, where d.f. = degrees

of freedom and \mathbf{Z}_{α} is given in Table B-4.

TABLE 8-8*
PERCENTILES OF THE P DISTRIBUTION

1	, 1 P _r , 50												
4.2.2	1	2	3	4	5	6	7	•	9	10	12	15	
1	1.00	1.50	1.71	1.82	1.89	1.94	1.98	2.00	2.03	2.04	2.07	2.09	
2	.667	1.00	1.13	1.21	1.25	1.28	1.30	1.32	1.33	1.34	1.36	1.38	
3	. 505	.881	1.00	1.06	1.10	1.13	1.15	1.16	1.17	1.18	1.20	1.21	
4	. 549	.828	1941	1.00	1.04	1.06	1.08	1.09	1.10	1.11	1.13	1.14	
5	.528	.799	. 907	.965	1.00	1.02	1.04	1.05	1.06	1.07	1.09	1.10	
6	.515	.780	.886	.942	.977	1.00	1.02	1.03	1.04	1.05	1.06	1.07	
7	. 504	.767	.871	.926	. 960	.983	1.00	1.01	1.02	1.03	1.04	1.05	
8	.499	.757	.860	.915	.948	.971	. 986	1.00	1.01	1.02	1.03	1.04	
9	.494	.749	.852	. 906	.939	.962	. 978	.990	1.00	1.01	1.02	1.03	
10	.490	.743	.845	. 199	. 932	. 954	.971	. 983	. 992	1.000	1.010	1.021	
11	. 486	. 739	. 840	.893	. 926	.948	. 964	.977	. 986	. 994	1.004	1.015	
12	. 484	. 735	.835	. 228	. 921	. 943	.959	.972	. 981	. 989	1.000	1.010	
13	, 482	. 733	. 832	. 884	.917	.939	.958	. 969	.978	.985	.995	1.006	
14	, 480	.730	.829	.861	.914	. 936	. 955	. 966	.974	.981	.992	1.003	
15	.478	.726	.826	.878	.911	. 933	, 948	. 960	.970	.977	.989	1.000	
16	.477	.724	.824	.876	. 908	. 930	.945	. 959	.969	.975	. 986	. 997	
17	.476	.723	.822	. 874	. 906	. 928	.942	. 958	. 966	.973	. 984	. 994	
18	.474	.722	. 820	.872	. 904	. 926	.940	. 956	. 964	.971	.901	. 992	
19	.473	.720	.818	.870	. 902	. 924	. 939	. 953	.962	.969	. 980	. 990	
20	.472	.718	.816	.464	. 900	. 922	. 938	.950	.959	. 966	.977	.969	
21	.471	.717	.815	.866	.899	.921	. ,935	.949	.958	. 966	.976	.987	
22	.470	.716	.814	. 865	.897	. 919	.934	. 948	. 957	. 965	.975	. 986	
23	.469		.813	.164	.895	. 918	. 933	. 946	. 956	.963	.974	. 984	
24	.469	.714	.812	.843	. 895	.917	. 932	.944	. 953	.961	. 972	.983	
25	.469	.713	. 011	.862	. 394	.916	.931	,943	. 952	.961	.971	. 982	
26	,468	.712	. 910	. 261	. 893	. 915	. 930	.942	.951	. 940	.970	. 981	
27	.468	.711	. 809	. 860	. 892	.914	. 929	.941	. 950	. 959	.970	.980	
28	.467	.710	. 809	. 859	. 891	.914	. 928	. 940	. 950	. 958	. 969	.979	
29	,466	.709	. 808	.859	. 891	.913	. 927	.940	.949	. 958	. 968	.978	
30	.466	.709	. 807	.858	890	.912	. 927	.939	.948	. 955	. 966	. 978	
40	,443	. 705	. 802	. 854	. 885	. 907	.922	. 934	.943	.950	.961	.972	
50	.462	.703	. 800	.851	. 88 3	. 904	. 918	.931	. 940	. 948	. 959	. 969	
60	.461	.701	.798	. 849	. 880	. 901	.917	. 928	.937	. 94 5	. 956	. 967	
70	•	-	•	. 848	.879	. 900	. 915	.927	. 936	. 94 5	. 955	. 965	
80	-	•	-	. 847	. 878	. 199	.914	.926	.935	.944	. 954	. 964	
90	-	-	•	.846	.877	.898	.913	.925	. 934	.943	.953	.963	
100		-	-	.845	.876	.897	.912	.924	.933	. 94 2	.952	.962	
120	458	. 697	.793	.844	.875	. 896	.912	.923	.932	. 939	.950	.961	
500	. 455	. 693	. 789	.839	.870	. 891	. 907	.91 9	.928	. 937	. 947	.958	

[&]quot;See Note on page 2-34.

TABLE 8-8 continued PERCENTILES OF THE P DISTRIBUTION P .99

<u> </u>		20	25	3ü	40	50	60	70	80	90	100	120	500
1.f.	2 1	6209	6235	6261	6287	6300	6313	-	-	-	-	6339	6366
	2	99.45	99.46	99.47	99.47	99.48	99.48	•	-	-	-	99.49	99.50
	3	26.69	26.60	26.50	26.41	26.37	26.32	-	•	-	•	26.22	26.13
	4	14.02	13.93	13.84	13.75	13.70	13.65	-	-	-	-	13.56	13.46
	5	9.55	9.47	9.38	9.29	9.25	9.20	-	-	-	•	9.11	9.02
	2	9.33	7.7/	7.30	,		• • • • •						
	_	7.40	7.31	7.23	7.14	7.10	7.06	-	-	-	-	6.97	6.88
	7	6.16	6.07	5.99	5.91	5.87	5.82	-	-	•	-	5.74	5.65
		5.36	5.28	5.20	5.12	5.08	5.03	•	-	-	-	4.95	4.86
	8		4.73	4.65	4.57	4.53	4,48	-	-	-	-	4.40	4.31
	3	4.81		4.25	4.17	4.16	4.08	4.10	4.08	4.07	4.06	4.00	3.97
	10	4.41	4.33	4.23	4.17	7.20	4.00	4.20					
		4.10	4.02	3.94	3.86	3.84	3.78	3.78	3.77	3.75	3.74	3.69	3.66
	11		3.78	3.70	3.62	3.59	3.54	3.54	3.52	3.50	3.49	3.45	3.41
	12	3.86		3.51	3.43	3.39	3.34	3.33	3.32	3.30	3.29	3.25	3.21
	13	3.66	3.59			3.23	3.18	3.17	3.15	3.14	3.13	3.09	3.04
	14	3.51	3.43	3.35	3.27	3.09	3.05	3.03	3.02	3.00	2.99	2.96	2.90
	15	3.37	3.29	3.21	3.13	3.09	3.03	3.03	3.02	3.00		2.,,	
					2 02	2.98	2.93	2.92	2.90	2.88	2.87	2.84	2.79
	16	3.26		3.10	3.02	2.88	2.83	2.82	2.80	2.78	2.77	2.75	2.69
	17	3.16		3.00	2.92		2.03	2.73	2.71	2.70	2.69	2.66	2.60
	18	3.08		2.92	2.84	2.79	2.75		2.64	2.62	2.61	2.58	2.52
	19	3.00		2.84	2.76	2.71	2.67	2.65				2.52	2.45
	20	2.94	2.86	2.78	2.69	2.65	2.61	2.59	2.57	2.55	2.54	4.34	2.72
					2.64	2.59	2.55	2.53	2.51	2.49	2.48	2.46	2.39
	21	2.88		2.72				2.47	2.45	2.44	2.43	2.40	2.33
	22	2.83		2.67	2.58	2.53	2.50	2.42	2.40	2.39	2.38	2.35	2.28
	23	2.78		2.62	2.54	2.49	2.45		2.36	2.34	2.33	2.31	2.24
	24	2.74		2.58	2.49	2.44	2.40	2.38	2.32	2.30	2.29	2.27	2.20
	25	2.70	2.62	2.54	2.45	2.40	2.36	2.34	2.32	2.30	4.27	2.27	2.20
							2.33	2.30	2.28	2,27	2.25	2.23	2.16
	26	2.66						2.27	2.25	2.23	2.22	2.20	2.12
	27	2.63						2.24	2.23	2.20	2.19	2.17	2.09
	28	2.60						2.24	2.23	2.17	2.16	2.14	2.06
	29	2.57									2.13	2.11	2.03
	30	2.5	2,47	2.39	2.30	2.25	2.21	2.18	2.16	2.15	2.13	2.11	2.03
						2.06	2.02	1.99	1.97	1.95	1.94	1.92	1.83
	40							1.88	1.86	1.84	1.83	1.80	1.71
	50							1.81	1.78	1.76	1.75	1.73	1.63
	60							1.75	1.73	1.71	1.70	1.67	1.57
	70									1.67	1.65	1.63	1.53
	80	2.1	2.01	1.94	1.85	1.79	1.75	1.71	1.69	1.0/	1.03	1.03	2.75
	••		. ,		1.82	1.76	1.72	1.68	1.66	1.64	1.62	1.60	1.49
	90							1.66	1.63	1.61	1.60	1.57	1.47
	100							1.62	1.60	1.58	1.56	1.53	1.42
	120							1.48	1.45	1.43	1.41	1.38	1.23
	500	1.9	1.81	1.74	1.63	1.57	1.34	1.40	1.73	13	****	2.30	

NOTE: The tables for $F._{80}$ and $F._{85}$ were generated using the formula $F \neq e^{2W}$ where:

$$\lambda = \frac{z_{\alpha}^{2} - 3}{6}$$

$$h = 2 \left(\frac{1}{d \cdot f \cdot 2^{-1}} + \frac{1}{d \cdot f \cdot 1^{-1}} \right)$$

$$w = \frac{-2a \sqrt{(h+\lambda)}}{h} - \left(\frac{1}{d \cdot f \cdot 1^{-1}} - \frac{1}{d \cdot f \cdot 2^{-1}} \right) \left(\lambda + \frac{5}{6} - \frac{2}{3h} \right)$$

The approximation is accurate enough for practical uses when $d.f._1$ and $d.f._2 \ge 10$. However, the formula has been used for $d.f._1 < 10$ and $d.f._2 < 10$ for $F._{80}$ and $F._{85}$ because no tables were available.

Values other than the ones found in the standard F tables were also supplied using the above formula where possible and if not possible, dashes were left, e.g., $F._{90}$, $(_{80},_{2}) = -$. In the event of a dash occurring, use the smaller d.f. which appears in the table for computation purposes; e.g., use $F._{90}$, $(_{60},_{2}) = 9.47$ for $F._{90}$, $(_{80},_{2})$.

TABLE 3-9
PACTORS FOR COMPUTING TWO-SIDED CONFIDENCE LIMITS FOR G

1 17.79 .3376 86.33 .2969 844.4	PACTORS FOR COMPUTING THO-SIDED CONVENIENCE LIMITS FOR a											
Tender B_U B_L B_U B_L B_U B_L B_U		• •	.05		.01	4001						
1 17.79 3576 86.31 22965 844.4 2 2 4.859 .4581 10.70 .3879 33.29 3 .3183 .317.5 3.449 .4453 11.65	Frendes	B ₀	a _t	P ₀	12	* 0	٩.					
3 3.183 .5178 5.449 .4453 11.65 4.2547 .5590 3.892 .4845 6.938 5.2248 .5899 3.175 .5182 5.085 6.938 6.2082 .6143 2.764 .5437 4.128 7.1918 6.5144 2.496 .5450 3.551 6.1820 .6513 2.311 .5830 3.167 7.1918 6.4657 2.173 .5907 2.894 10 1.666 .6784 2.065 .6125 2.669 11 1.626 .6784 2.065 .6125 2.669 11 1.638 .6896 1.990 .6358 2.402 13 1.564 .7064 1.891 .6458 2.298 11 1.590 .6995 1.909 .6358 2.402 13 1.564 .7064 1.891 .6548 2.298 14 1.594 .7166 1.891 .6458 2.210 15 1.509 .7240 1.738 .6632 2.136 .6781 1.509 .7240 1.738 .6632 2.136 .6781 1.509 .7240 1.721 .6710 2.073 17 1.466 .7372 1.688 .6781 2.017 .688 1.948			. 3576	84.31	-2969	844.4	.2480					
4 2.567 .5590 3.892 .A845 6.938	2	4.859	.4581	10.70	. 3879	33.29	. 3291					
5 2.246 .5899 3.175 .5182 5.085 4.128 6 2.052 .6143 2.744 .5437 4.128 4.7 7 1.918 .6344 2.496 .5650 3.551 3.551 8 1.280 .6513 2.311 .5630 3.147 9 1.746 .6657 2.173 .5967 2.894 10 1.486 .6784 2.065 .6125 2.4499 11 1.486 .6989 1.909 .6138 2.402 12 1.598 .6995 1.909 .6138 2.402 13 1.564 .7084 1.831 .6438 2.202 14 1.534 .7146 1.831 .6438 2.210 15 1.509 .7240 1.738 .6632 2.136 16 1.486 .7302 1.688 .6781 2.017 17 1.464 .7327 1.688 .6781	,	3.183	.5178	5.449	.4453	11.45	. 3824					
6 2.052 .6143 2.764 .5437 4.128 7 7 1.918 .6344 2.486 .5650 3.551 . 8 1.820 .6513 2.311 .5630 3.167 . 9 1.746 .6437 2.173 .5867 2.484 . 10 1.686 .6784 2.065 .6125 2.489 . 11 1.638 .6896 1.900 .6248 2.230 . 12 1.596 .6995 1.909 .6138 2.402 . 13 1.564 .7084 1.831 .4438 2.298 . 14 1.534 .7166 1.801 .6532 2.136 . 15 1.507 .7240 1.758 .6632 2.134 . 16 1.486 .7302 1.688 .6781 2.017 . 17 1.446 .7332 1.686 .6781 1.968		2.567	.5590	3.892	.4865	6.930	.4218					
7	5	2.248	.5899	3.175	. 5182	5.005	.4529					
8	•	2.052	.6143	2.764	.5437	4.128	.4784					
1.746	,	1.918	.6344	2.496	. 5650	3.551	.5000					
10	•	1.820	. 6513	2.311	.5830	3.167	.5186					
11	•	1.746	.6457	2.173	. 5967	2.894	.5348					
12	10	1.686	.6784	2.065	.6125	2.689	.5492					
13 1.564 .7084 1.851 .6438 2.296 . 14 1.334 .7166 1.801 .6549 2.210 . 15 1.509 .7240 1.738 .6632 2.136 . 16 1.466 .7306 1.721 .6710 2.073 . 17 1.446 .7372 1.688 .6781 2.017 . 18 1.448 .7430 2.658 .6648 1.968 . 19 1.432 .7484 1.632 .6909 1.925 . 20 1.417 .7535 1.609 .6968 1.886 . 21 1.404 .7382 1.587 .7022 1.851 . 21 1.404 .7382 1.587 .7022 1.851 . 21 1.437 .7582 1.580 .704 1.820 . 21 1.530 .7582 1.580 .704 1.820	11	1.638	.6496	1.960	.6248	2.530	.5621					
16 1.534 .7166 1.801 .8549 2.210	12	1.596	. 6995	1.909	.6358	2.402	.5738					
15	13	1.564	.7084	1.451	.6438	2.298	. 5845					
16 1.486 .7306 1.721 .6710 2.073	14	1.534	.7166	1.001	. 4549	2.210	.5942					
17 1.446 .7372 1.688 .6781 2.017 .6 18 1.448 .7430 2.658 .6848 1.968 .6 19 1.432 .7484 1.632 .4909 1.925 .6 20 1.417 .7535 1.609 .6968 1.886 .6 21 1.404 .7582 1.587 .7022 1.851 .2 22 1.391 .7627 1.568 .7074 1.820 .7 23 1.380 .7669 1.550 .7122 1.791 .7 24 1.370 .7709 1.533 .7169 1.765 .7 25 1.360 .7747 1.518 .7212 1.741 .7 26 1.351 .7783 1.504 .7253 1.719 .7 27 1.343 .7817 1.491 .7293 1.698 .7 28 1.312 .7880 1.467 .7367 <	15	1.509	.7240	1.758	. 6632	2.136	.6032					
18 1.448 .7430 2.638 .6448 1.948 .1.632 .6909 1.925 .1.25 .1.225	16	1.486	.7306	1.721	.6710	2.073	.6116					
19 1,432 .7484 1.632 .6909 1.925	17	1.466	.7372	1.684	.6781	2.017	.6193					
20 1.417 .7535 1.609 .6968 1.886 .6 21 1.404 .7582 1.587 .7022 1.851 22 1.391 .7627 1.568 .7074 1.820 23 1.380 .7669 1.550 .7122 1.791 24 1.370 .7709 1.533 .7169 1.765 25 1.360 .7747 1.518 .7212 1.741 26 1.231 .7783 1.504 .7223 1.698 27 1.343 .7817 1.491 .7223 1.698 28 1.335 .7849 1.479 .7331 1.679 29 1.227 .7860 1.447 .7347 1.661 30 1.321 .7937 1.447 .7434 1.629 31 1.314 .7937 1.447 .7467	18	1.448	.7430	2.658	.6848	1.968	.6266					
21 1,404 .7582 1,397 .7022 1,851	19	1.432	.7484	1.632	.6909	1.925	.6333					
22 1.391 .7627 1.544 .7074 1.820 . 23 1.380 .7649 1.550 .7122 1.791 . 24 1.370 .7709 1.533 .7169 1.765 . 25 1.340 .7747 1.518 .7212 1.741 . 26 1.351 .7783 1.504 .7253 1.719 . 27 1.343 .7817 1.491 .7293 1.698 . 28 1.335 .7849 1.479 .7331 1.679 . 29 1.327 .7840 1.447 .7347 1.661 . 30 1.321 .7909 1.437 .7401 1.645 . 31 1.314 .7937 1.447 .7434 1.629 . 32 1.308 .7944 1.437 .7467 1.4615 . 33 1.302 .7990 1.428 .7497 1.401 </td <td>20</td> <td>1.417</td> <td>.7535</td> <td>1.609</td> <td>. 6968</td> <td>1.886</td> <td>.6397</td>	20	1.417	.7535	1.609	. 6968	1.886	.6397					
22 1.391. .7627 1.544 .7074 1.820 . 23 1.380 .7649 1.550 .7122 1.791 . 24 1.370 .7709 1.533 .7169 1.765 . 25 1.340 .7747 1.518 .7212 1.741 . 26 1.351 .7783 1.504 .7253 1.719 . 27 1.343 .7817 1.491 .7293 1.698 . 28 1.335 .7849 1.479 .7331 1.679 . 29 1.327 .7880 1.447 .7347 1.661 . 30 1.321 .7909 1.437 .7401 1.645 . 31 1.314 .7937 1.447 .7434 1.629 . 32 1.308 .7944 1.437 .7467 1.4615 . 33 1.302 .7990 1.428 .7497 1.401<	21	1.404	.7582	1.587	.7022	1.851	.6457					
23 1.380 .7669 1.590 .7122 1.791 24 1.370 .7709 1.533 .7169 1.765 25 1.360 .7747 1.518 .7212 1.741 26 1.351 .7783 1.504 .7253 1.719 27 1.343 .7817 1.491 .7293 1.698 28 1.335 .7849 1.479 .7331 1.679 29 1.327 .7880 1.467 .7367 1.661 30 1.321 .7909 1.457 .7401 1.645 31 1.314 .7937 1.447 .7434 1.629 32 1.308 .7944 1.437 .7467 1.615 33 1.302 .7990 1.428 .7497 1.601 34 1.296 .8015 1.420 .7526 1.588 35 1.291 .8039 1.412 .7534 1.554 36 1						i	.6514					
24 1.370 .7709 1.533 .7169 1.765	1 1		1	1	1	•	.6568					
25 1.360 .7747 1.518 .7212 1.741			,				.6419					
26 1.351 .7783 1.504 .7253 1.719	i :						.6448					
27 1.343 .7817 1.491 .7293 1.698	1		3				.6713					
28 1.335 .7849 1.479 .7331 1.679 29 1.327 .7880 1.467 .7367 1.661 30 1.321 .7909 1.457 .7401 1.645 31 1.314 .7937 1.447 .7434 1.629 32 1.308 .7944 1.437 .7467 1.615 33 1.302 .7990 1.428 .7497 1.601 34 1.296 .8015 1.420 .7526 1.588 35 1.291 .8039 1.412 .7954 1.576 36 1.286 .8062 1.404 .7582 1.564 37 1.281 .8083 1.397 .7608 1.553 38 1.277 .8106 1.380 .7639 1.543 39 1.272 .8126 1.383 .7658 1.533 </td <td>27</td> <td></td> <td>.7817</td> <td></td> <td>.7293</td> <td></td> <td>.6758</td>	27		.7817		.7293		.6758					
30 1.321 .7909 1.457 .7401 1.645	28	1.335	.7849	1,479	.7331	1,679	.6800					
31 1.314 .7937 1.447 .7434 1.629 32 1.308 .7944 1.437 .7467 1.615 33 1.302 .7990 1.428 .7497 1.601 34 1.296 .8015 1.420 .7526 1.588 35 1.291 .8039 1.412 .7554 1.576 36 1.286 .8062 1.404 37 1.281 .8063 1.397 38 1.277 .8106 1.390 39 1.272 8106 1.383 40 1.268 8146 1.371 40 1.268 8146 1.377 40 1.268 8146 1.377 40 1.268 41 1.264 41 1.264 42 1.260 43 1.277 40 41 1.264 41 1.264 42 1.260 43 1.277 40 41 1.264 41 1.264 42 1.260 43 1.277 44 1.365 45 1.371 4705 1.515 4706 4816 1.371 481 1.488 483 1.287 484 1.253 485 486 1.349 487 487 487 488 488 489 489 489 480 48	29	1.327	.7880	1.467	.7367	1.661	.6841					
32 1.308 .7964 1.437 .7467 1.415	30	1.321	.7909	1.457	.7401	1.645	.6880					
33 1.302 .7990 1.428 .7497 1.601 34 1.296 .8015 1.420 .7526 1.588 35 1.291 .8039 1.412 .7554 1.576 36 1.286 .8062 1.404 .7382 1.564 37 1.281 .8085 1.397 .7608 1.553 38 1.277 .8106 1.389 .7633 1.543 39 1.272 .8126 1.383 .7658 1.533 40 1.268 .8146 1.377 .7681 1.523 41 1.264 .8146 1.371 .7705 1.515 42 1.260 .8184 1.385 .7727 1.506 43 1.257 .8202 1.360 .7748 1.498 44 1.253 .8220 1.355 .7769 <td>31</td> <td>1.314</td> <td>. 7937</td> <td>1.447</td> <td>.7434</td> <td>1.629</td> <td>. 6917</td>	31	1.314	. 7937	1.447	.7434	1.629	. 6917					
33 1.302 .7990 1.428 .7497 1.401 34 1.296 .8015 1.420 .7526 1.588 35 1.291 .8039 1.412 .7554 1.576 36 1.286 .8062 1.404 .7582 1.564 37 1.281 .8085 1.397 .7608 1.553 38 1.277 .8106 1.390 .7633 1.543 39 1.272 .8126 1.383 .7658 1.533 40 1.268 .8146 1.377 .7681 1.523 41 1.264 .8146 1.371 .7705 1.515 42 1.260 .8184 1.365 .7727 1.506 43 1.257 .8202 1.360 .7748 1.498 44 1.253 .8220 1.355 .7769 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.6953</td>							.6953					
33 1.291 .8039 1.412 .7534 1.576 . 36 1.286 .8062 1.404 .7582 1.564 . 37 1.281 .8083 1.397 .7608 1.553 . 38 1.277 .8106 1.390 .7633 1.543 . 39 1.272 .8126 1.383 .7658 1.513 . 40 1.268 .8146 1.377 .7681 1.523 . 41 1.264 .8146 1.371 .7705 1.515 . 42 1.260 .8184 1.385 .7727 1.506 . 43 1.257 .8202 1.360 .7748 1.498 . 44 1.253 .8220 1.355 .7769 1.490 . 45 1.249 .8237 1.349 .7789 1.422 . 46 1.246 .8253 1.345 .7809 1.475 <td>33</td> <td>1.302</td> <td>.7990</td> <td></td> <td>.7497</td> <td></td> <td>. 6987</td>	33	1.302	.7990		.7497		. 6987					
36 1.286 .8062 1.404 .7582 1.564 . 37 1.281 .8083 1.397 .7608 1.553 . 38 1.277 .8106 1.390 .7633 1.543 . 39 1.272 .8126 1.383 .7658 1.533 . 40 1.268 .8146 1.377 .7681 1.523 . 41 1.264 .8164 1.371 .7705 1.515 . 42 1.280 .8184 1.385 .7727 1.504 . 43 1.257 .8202 1.360 .7748 1.498 . 44 1.253 .8220 1.355 .7769 1.490 . 45 1.249 .8237 1.349 .7789 1.422 . 46 1.244 .8253 1.345 .7809 1.475 .	34	1.296	.6015	1.420	.7526	1.588	.7020					
37 1.281 .8085 1.397 .7608 1.553 38 1.277 .8106 1.390 .7633 1.543 39 1.272 .8126 1.383 .7658 1.533 40 1.268 .8146 1.377 .7681 1.523 41 1.264 .8166 1.371 .7705 1.515 42 1.260 .8184 1.365 .7727 1.506 43 1.257 .8202 1.360 .7748 1.498 44 1.253 .8220 1.355 .7769 1.490 45 1.249 .8237 1.349 .7789 1.422 46 1.246 .8253 1.345 .7809 1.475	35	1.291	.8039	1.412	.7554	1.576	.7052					
38 1.277 .8106 1.390 .7633 1.343 .7 39 1.272 .8126 1.383 .7658 1.533 .7 40 1.268 .8146 1.377 .7681 1.523 .3 41 1.264 .8166 1.371 .7705 1.515 .3 42 1.260 .8184 1.365 .7727 1.506 .3 43 1.237 .8202 1.360 .7748 1.496 .3 44 1.253 .8220 1.355 .7769 1.490 .3 45 1.249 .8237 1.349 .7789 1.422 .3 46 1.244 .8253 1.345 .7809 1.475 .3	36	1.286	.8062	1.404	.7582	1.564	.7083					
39 1.272 .8126 1.383 .7658 1.533 40 1.268 .8146 1.377 .7681 1.523 41 1.264 .8166 1.371 .7705 1.515 42 1.260 .8184 1.365 .7727 1.506 43 1.257 .8202 1.360 .7748 1.498 44 1.253 .8220 1.355 .7769 1.490 45 1.249 .8237 1.349 .7789 1.422 46 1.246 .8253 1.345 .7809 1.475	37	1.281	. 8063	1.397	.7608	1.553	.7113					
40 1.268 .8146 1.377 .7681 1.523 .3 41 1.264 .8166 1.371 .7705 1.515 .3 42 1.260 .8184 1.365 .7727 1.506 .3 43 1.257 .8202 1.360 .7748 1.498 .3 44 1.253 .8220 1.355 .7769 1.490 .3 45 1.249 .8237 1.349 .7789 1.422 .3 46 1.246 .8253 1.345 .7809 1.475 .3	38	1.277	.8106	1.390	.7633	1.543	.7141					
41 1.264 .8166 1.371 .7705 1.515 42 1.260 .8184 1.365 .7727 1.506 43 1.257 .8202 1.360 .7748 1.498 44 1.253 .8220 1.355 .7769 1.490 45 1.249 .8237 1.349 .7789 1.422 46 1.246 .8253 1.345 .7809 1.475					1	1.533	.7169					
42 1.260 .8184 1.365 .7727 1.506 .7727 43 1.257 .8202 1.360 .7748 1.498 .7749 44 1.253 .8220 1.355 .7769 1.490 .7789 45 1.249 .8237 1.349 .7789 1.422 .7789 46 1.246 .8253 1.345 .7809 1.475 .7789	40	1.268	.8146	1.377	.7681	1.523	.7197					
43 1.257 .8202 1.360 .7748 1.498 44 1.253 .8220 1.355 .7769 1.490 45 1.249 .8237 1.349 .7789 1.422 46 1.246 .8253 1.345 .7809 1.475	41		.8166	1.371	. 7705	1.515	.7223					
44 1.253 .8220 1.355 .7769 1.490 .7 45 1.249 .8237 1.349 .7789 1.422 .7 46 1.246 .8253 1.345 .7809 1.475 .7	42	1.260	,8184	1.365	.7727	1.506	. 7248					
45 1.249 .8237 1.349 .7789 1.422 .3 46 1.244 .8253 1.345 .7809 1.475 .3			.8202	1.360	. 1	1.498	.7273					
46 1.244 .8253 1.345 .7809 1.475	1	1	1				.7279					
							.7320					
47 1.243 .8269 1.340 .7828 1.44			1			1.475	.7342					
		1.243	. 8269	1.340	.7628	1.448	.7364					
				1		i	. 7386					
		,		,	1	1	.7407					
50 1-234 .8814 1.327 .7882 1.449;	50	1.234	.8814	1.327	.7882	1.449	7427					

Mapted with permission from Biometrika, Vol. 47, (1960), from article entitled "Table for Making Inferences About the Variance of a Normal Distribution" by D. V. Lindley, D.A. East, and P.A. Hemilton

TABLE 9-9 cretimed
FACTORS FOR COMPUTING THE-SIDED COMPUTING LIMITS FOR a

Degrees	••	.03	• •	.01	e = .001		
of Proodes d.f.	a b	B _L	a _{ly}	a _L	٩,	B _L	
51	1.232	. 6329	1.323	.7899	1.443	.7444	
52	1.229	.8343	1.319	.7916	1.437	.7466	
53	1.226	. 8354	1.315	.7932	1.432	.7485	
54	1.224	.8370	1.311	.7949	1.426	. 7503	
55	1.221	. 6363	1.308	.7964	1.421	.7521	
54	1.219	.8395	1.304	.7979	1.416	.7539	
57	1.217	.8408	1.301	.7994	1.411	.7556	
58	1.214	.8420	1.298	.8006	1.406	.7973	
59	1.212	.8431	1.295	.8022	1.402	.7589	
40	1,210	.8443	1.292	.8036	1.397	.7603	
61	1.208	.8454	1.299	.8050	1.393	.7621	
62	1.206	.8465	1.286	.8063	1.309	.7636	
63	1.204	.8475	1.283	. 8076	1.385	.7651	
44	1.202	.8486	1.280	.8088	1.361	.7666	
45	1.200	.8496	1.277	.8101	1.377	.7680	
44	1.199	.8506	1.275	.4113	1.374	.7694	
67	1.197	.8516	1.272	.8125	1.370	.7708	
40	1.195	. 8525	1.270	.8137	1.366	.7722	
49	1.194	.8535	1.268	.8148	1.363	.7735	
70	1.192	. 2544	1.265	.81.59	1.360	.7749	
,,	, ,	***		.8170	1.356	.7741	
1	1.190	.8553	1.263	.8181	1.355	.7774	
12	1.189	.8542 .8571	1.261 1.259	.8191	1.350	.7787	
73	1.187	.8571	1.257	.6202	1.347	.7799	
75	1.186	.8500	1.255	.8212	1.344	.7811	
75	1.100	.8596	1.253	.8222	1.341	.7822	
,,,	1.102	.8604	1.251	.6232	1.338	.7834	
78	1.181	.8612	1.249	.8242	1.336	.7845	
79	1.179	.8620	1.247	.8252	1.333	.7854	
80	1.178	.8627	1.245	.8261	1.330	.7868	
	1.176	. 8635	1.243	.8270	1.328	.7876	
82	1.176	.8642	1.241	.4479	1. 325	.7569	
83	1.174	.8450	1.239	.8286	1.323	.7899	
	1.173	.8657	1.238	.8297	1.320	.7909	
65	1.172	.8664	1.236	. 8305	1.318	.7920	
	1.171	.8671	1.235	.8314	1.316	.7930	
67	1.170	.8478	1.233	.8322	1.313	.7939	
44	1.166	.8684	1.231	.8331	1.311	.7949	
89	1.167	.8691	1.230	.8338	1.309	.7959	
**	1.166	.8497	1.228	.8344	1.307	.7968	
91	1.165	. 8704	1.227	.8354	1.305	. 7977	
92	1.164	.8710	1.225	.8362	1.303	.7987	
93	1.163	.8716	1.224	.8370	1.301	.7996	
94	1.162	.8722	1.222	.8377	1.298	.8004	
95	1.161	.8729	1.221	.6365	1.297	.8013	
96	1.160	.8734	1.219	.6392	1.295	.8022	
97	1.159	.8741	1.218	.8399	1.293	. \$031	
**	1.158	.8746	1.217	,8406	1.291	.8039	
99	1.158	.8752	1.216	.8413	1.290	.8047	
100	1.157	.8757	1.214	.\$420	1.260	.8055	

TABLE B-13 continued
CONFIDENCE LIMITS FOR A PROPORTION (TWO SIDED)

	n = 2	9		N = 30					
f	90%	95%	99%	f	90%	95 x	992		
11 12 13 14 15	.225537 .276 .575+ .294 .615- .303 .655+ .345697	.211 .587 .247 .626 .251 .669 .299 .661 .339 .701	.165+ .646 .206 .654 .211 .684 .260 .737 .263 .740	11 12 13 14 15	.219 .524 .265554 .266 .584 .295624 .336 .664	.205+ .560 .236 .597 .244 .636 .292 .675+ .324 .676	.152 .612 .198 .655+ .206 .671 .249 .692 .256 .744		
16 17 18 19 20	.385+ .706 .425724 .463775+ .500 .810 .537 .811	.340 <u>.749</u> .374 <u>.753</u> .413 <u>.789</u> .451 <u>.816</u> .500 <u>.834</u>	.316 <u>.789</u> .346 <u>.794</u> .354 <u>.835</u> - .397 <u>.843</u> .438 <u>.868</u>	16 17 18 19 20	.376 .705+ .416 .734 .446 .735+ .476 .781 .508 .817	.325- <u>.708</u> .364 <u>.756</u> .403 <u>.764</u> .440 <u>.795</u> -	.308 <u>.751</u> .329 <u>.794</u> .345- <u>.802</u> .388 <u>.848</u> .430 <u>.849</u>		
21 22 23 24 25	.575+ .865+ .615866 .655+ .913 .697 .914 .721 .938	.549 <u>.864</u> .587 <u>.897</u> .626 <u>.906</u> .660 <u>.930</u> .701 <u>.951</u>	.477 .892 .523 .914 .562 935- .603 .954 .646 .970	21 22 23 24 25	.545- <u>.818</u> .584 <u>.870</u> .624 <u>.871</u> .664 <u>.916</u> .705+ <u>.917</u>	.524 <u>.837</u> .560 <u>.869</u> .597 <u>.900</u> .636 <u>.909</u> .675+ <u>.932</u>	.462 .873 .495896 .531 .917 .570 .937 .612 .955		
26 27 28 29	.775+ <u>.961</u> .810 <u>.982</u> .865+ <u>.996</u> .913 <u>1</u>	.749 <u>.971</u> .789 <u>.988</u> .834 <u>.998</u> .897 <u>1</u>	.684 <u>.985</u> - .737 <u>.995</u> - .789 <u>1.000</u> .840 <u>1</u>	26 27 28 29 30	.734 <u>.941</u> .781 <u>.963</u> .817 <u>.982</u> .870 <u>.996</u> .916 <u>1</u>	.708 <u>.952</u> .756 <u>.972</u> .795- <u>.988</u> .837 <u>.998</u> .900 <u>1</u>	.655+ <u>.972</u> .690 <u>.985+</u> .744 <u>.995-</u> .794 <u>1.000</u> .848 <u>1</u>		

TABLE B-14

CONFIDENCE LIMITS FOR A PROPORTION (COME-SIDED)

If the observed proportion is f/n, enter the table with N and f for an upper one-sided limit. For a lower one-sided limit, enter the table with N and N — f and subtract the table entry from 1.

•	90Z	95X	992	2	902	95%	992	2	90Z	95X	99I
	n = 2					n = 3		n = 4			
0	.684 .949	.776 .975-	. 900 . 995-	0 1 2	.536 .804 .965+	.632 .865- .983	.785- .941 .997	0 1 2 3	.438 .680 .857 .974	.527 .751 .902 .967	.648 .859 .958 .997
L	n = 5			L		n - 6				n = 7	, .
0 1 2 3 4	.369 .584 .753 .888 .979	.451 .657 .811 .924 .990	.602 .778 .894 .967 .998	0 1 2 3 4 5	.319 .510 .667 .799 .907 .983	.393 .582 .729 .847 .937 .991	.536 .706 .827 .915+ .973 .998	0 1 2 3 4 5 6	.280 .453 .596 .721 .830 .921 .985+	.348 .521 .659 .775- .871 .947	.482 .643 .764 .858 .929 .977 .999
		n = 8				n = 9				n = 10	
0 1 2 3 4 5	.250 .406 .538 .655+ .760 .853	.312 .471 .600 .711 .807 .889	.438 .590 .707 .802 .879 .939	0 1 2 3 4 5	.226 .368 .490 .599 .699	.283 .429 .350 .655+ .749 .831	.401 .544 .656 .750 .829 .895-	1 2 3 4 5	.206 .337 .450 .552 .646 .733	.259 .394 .507 .607 .696	.369 .504 .612 .703 .782 .850
6 7	.931 .987	. 954 . 994	. 980 . 999	6 7 8	.871 .939 .988	.902 .959 .994	.947 .983 .999	6 7 8 9	.812 .884 .945+ .990	.850 .913 .963 .995-	.907 .952 .984 .999
		n = 11		n = 12					n = 13		
0 1 2 3 4 5	.189 .310 .415+ .511 .599 .682	.238 .364 .470 .364 .650 .729	.342 .470 .572 .660 .738 .806	0 1 2 3 4 5	.175- .287 .386 .475+ .559 .638	.221 .339 .438 .527 .609 .685-	.319 .440 .537 .622 .698 .765+	0 1 2 3 4 5	.162 .268 .360 .444 .523 .598	.206 .316 .410 .495- .573 .645+	.298 .413 .506 .588 .661 .727
7 8 9 10	.831 .895+ 951 .990	.865- .921 .967 .995+	.916 .957 .986 .999	7 8 9 10	.781 .846 .904 .955~	.819 .877 .928 .970	.879 .924 .961 .987	7 8 9 10	.736 .799 .858 .912	.776 .834 .887 .934	.841 .889 .931 .964
-								12 .992 .996 .999			
-		n = 14	Γ	n = 15 n = 16					n = 16		
0 1 2 3 4 5	.152 .251 .837 .417 .492 .563	.193 .297 .385+ .466 .540 .610	.280 .389 .478 .557 .627 .692	0 1 2 3 4 5	.142 .236 .317 .393 .464 .532	.181 .279 .363 .440 .511	.264 .368 .453 .529 .597 .660	0 1 2 3 4 5	.134 .222 .300 .371 .439 .504	.171 .264 .344 .417 .484	.250 .349 .430 .503 .569 .630

Reproduced by permission from Statistics Manual, NAVORD REPORT 3369, NOTS 948, by E.L. Crow, F.A. Davis, and M.W. Marfield, 1955, U.S. Naval Ordnance Test Station, China Lake, California.

Contract the Contract of

Samuel Balance Barrier

TABLE B-14 continued

CONFIDENCE LIMITS FOR A PROPORTION (ONE-SIDED)

f	90%	95%	99%	f	90%	95%	99%	·
		n = 29				n = 30	•	
0	.076	.098	.147	0	.074	.095+	.142	
1	.128	.153	.208	1	.124	.149	.202	
2	.173	.202	.260	2	.168	.195+	.252	
3	.216	.246	.307	3	.209	.239	.298	Į
4	.257	.288	.350	4	.249	.280	.340	
5	.297	.329	. 392	5	.287	.319	.381	
5	.335-	.368	.432	6	. 325-	.357	.420	
7	. 372	.406	.470	7	.361	.394	.457	į
8	.409	.443	.507	8	.397.	.430	.493	
9	.445+	.479	.542	9	.432	.465+	.527	
10	.481	.514	.577	10	. 466	.499	.561	
11	.515+	.549	.610	11	.500	.533	.594	
12	.550	.583	.643	12	.533	.566	.626	
13	.583	.616	.674	13	.566	.598	.657	
14	.616	.648	.705-	14	.599	.630	.687	ł
15	.649	. 680	.734	15	.630	.661	.716	
16	.681	.711	.763	16	.662	.692	.744	
17	.712	.741	.791	17	.692	.721	.772	
18	.743	.771	.818	18	.723	.750	.799	
19	.774	.800	.843	19	.752	.779	.824	
20	.803	.828	.868	20	.782	.807	.849	
21	.832	.855-	.892	21	.810	.834	.873	
22	.860	.881	.914	22	.838	.860	.896	
23	.888	.906	.935-	23	.865+	.885+	.917	
24	.914	.930	.954	24	.891	.909	.937	
25	.938	.951	.970	25	.917	.932	.955+	
26	.961	.971	.985-	26	.941	.953	.972	
27	.982	.988	.995-	27	.963	.972	.985+	
28	.996	.998	1.000	28	.982	.988	.995-	
l				29	.996	.998	1.000	

TABLE B-15
TABLE OF ARC SINE TRANSFORMATION FOR PROPORTIONS

	$\theta = 2 \operatorname{sin} \sqrt{P}$										
P	θ	P	e	P	θ	P	0				
.00	.00	. 25	1.05	.50	1.57	.75	2.09				
.01	.20	. 26	1.07	.51	1.59	.76	2.12				
.02	.28	.27	1.09	.52	1.61	.77	2.14				
.03	.35	. 28	1.12	.53	1.63	.78	2.17				
.04	.40	.29	1.14	.54	1.65	.79	2.19				
.05	.45	.30	1.16	.55	1.67	.80	2.21				
.06	.49	.31	1.18	.56	1.69	.81	2.24				
.07	.54	.32	1.20	. 57	1.71	.82	2.27				
.08	.57	.33	1.22	.58	1.73	.83	2.29				
.09	.61	.34	1.25	.59	1.75	.84	2.32				
.10	.64	.35	1.27	.60	1.77	.85	2.35				
.11	. 68	.36	1.29	.61	1.79	.86	2.37				
.12	.71	.37	1.31	.62	1.81	.87	2.40				
.13	.74	.38	1.33	.63	1.83	.88	2.43				
.14	.77	.39	1.35	.64	1.85	.89	2.47				
.15	.80	.40	1.37	.65	1.88	.90	2.50				
.16	.82	.41	1.39	.66	1.90	.91	2.53				
.17	.85	.42	1.41	.67	1.92	.92	2.57				
.18	.88	.43	1.43	.68	1.94	.93	2.61				
.19	.90	.44	1.45	.69	1.96	.94	2.65				
						}					
.20	.93	.45	1.47	.70	1.98	.95	2.69				
.21	.95	.46	1.49	.71	2.00	.96	2.74				
.22 -	98	.47	1.51	.72	2.03	.97	2.79				
.23	1.00	.48	1.53	.73	2.05	.98	2.86				
.24	1.02	,.49	1.55	.74	2.07	.99	2.94				
						1.00	3.14				

TABLE B-21

FACTORS FOR DETERMINING UPPER CONFIDENCE LIMIT FOR THE EXPONENTIAL MEAN LIFE

UF _{1-a}									
d.f.	75	.80	.90	.95	.975	.99			
1	3.478261	4.484305	9.478673	19.417476	39.525692	99.502488			
2	2.083333	2.424242	3.773585	5.625879	8.264463	13.468013			
3	1.739130	1.954397	2.727273	3.658537	4.838710	6.880734			
4	1.577909	1.742919	2.292264	2.930403	3.669725	4.848485			
5	1.483680	1.618123	2.053388	2.538071	3.076923	3.906250			
6	1.421801	1.536492	1.904762	2.294455	2.727273	3.361344			
7	1.372549	1.478353	1.797176	2.130898	2.486679	3.004292			
8	1.344538	1.428571	1.718582	2.010050	2.315485	2.753873			
9	1.313869	1.395349	1.651376	1.916933	2.187120	2.567760			
10	1.290323	1.369863	1.612903	1.834862	2.085506	2.421308			
11	1.279070	1.349693	1.571429	1.788618	2.000000	2.306080			
12	1.263158	1.325967	1.528662	1,739130	1.935484	2.201835			
13	1.250000	1.313131	1.502890	1.688312	1.884058	2.131148			
14	1.233480	1.296296	1.481481	1.656805	1.830065	2.058824			
15	1.224490	1.282051	1.456311	1.621622	1.785714	2.000000			
16	1.212121	1.274900	1.434978	1.592040	1.748634	1.951220			
17	1.205674	1.263940	1.416667	1.566820	1.717172	1.910112			
18	1.200000	1.254355	1.406250	1.545064	1.690141	1.875000			
19	1.191225	1.245902	1.391941	1.526104	1.679389	1.835749			
20	1.186944	1.238390	1.374570	1.509434	1.639344	1.801802			
21	1.179775	1.228070	1.363636	1.494662	1.615385	1.772152			
22	1.176471	1.222222	1.353846	1.476510	1.594203	1.752988			
23	1.170483	1.216931	1.345029	1.464968	1.575342	1.722846			
24	1.167883	1.212121	1.337047	1.450151	1.558442	1.702128			
25	1.162791	1.207729	1.326260	1.436782	1.543210	1.683502			
26	1.158129	1.200924	1.319797	1.428571	1.529412	1.666667			
27	1.156317	1.197339	1.310680	1.417323	1.516854	1.646341			
28	1.152263	1.191489	1.305361	1.407035	1.505376	1.632653			
29	1.148515	1.188524	1.297539	1.397590	1.494845	1.615599			
30	1.145038	1.185771	1.290323	1.388889	1.481.481	1.600000			

Multiply factors of this table by estimated mean time between failures for the upper confidence limit.

For f > 30: upper factor =
$$\frac{2f}{\chi^2_{1-\alpha,2f}}$$

TABLE B-22

			EXP	ONENTIAL	FUNCTION	N: e ^{-x}				
×	0	1	2	3	4	5	6	7	8	9
.00	1.0000	.9990	.9980	.9970	.9960	.9950	.9940	.9930	.9920	.9910
.01	.9900	.9890	.9980	.9870	.9860	.9851	.9841	.9831	.9821	.9811
.02	.9802	.9792	.9782	.9773	.9763	.9753	.9743	.9734	.9724	.9714
.03	.9704	.9695	.9685	.9675	.9665	.9656	.9646	.9637	.9627	.9618
.04	.9608	.9598	.9589	.9579	.9570	.9560	.9550	.9541	.9531	.9522
.05	.9512	.9503	.9493	.9484	.9474	.9465	.9455	.9446	.9436	.9427
.06	.9418	. 9408	.9399	. 9389	.9380	.9371	.9361	.9352	.9343	.9333
.07	.9324	.9315	.9305	.9296	.9287	. 9277	.9268	.9259	.9250	.9240
.08	.9231	.9222	.9213	.9204	.9194	.9185	.9176	.9167	.9158	.9148
.09	.9139	.9130	.9121	.9112	.9103	.9094	.9085	.9076	.9066	•9057·
.10	.9048	. 9039	. 9030	.9021	.9012	.9003	.8994	.8985	.8976	.8967
. 11	. 8958	. 8949	. 8940	. 8932	. 8923	.8914	.8905	.8896	.8887	.8878
. 12	. 8869	. 8860	.8851	.8843	.8834	.8825	.8816	.8807	.8799	.8790
.13	.8781	.8772	. 8763	.8755	.8746	.8737	. 8728	.8720	.8711	.8702
.14	.8694	.8685	. 8676	. 8668	.8659	. 8650	.8642	.8633	.8624	.8616
. 15	.8607	. 8598	. 8590	.8581	.8573	.8564	.8556	.8547	.8538	.8530
. 16	.8521	. 8513	. 8504	.8496	.8487	.8479	.8470	.8462	.8454	.8445
. 17	. 8437	. 8428	. 8420	.8411	.8403	.8395	.8386	.8378	.8369	.8361
.18	.8353	. 8344	. 8336	.8328	.8319	.8311	.8303	. 8294	.8286	.8278
. 19	. 8270	.8261	.8253	.8245	.8237	.8228	.8220	.8212	.8204	.8195
.20	.8187	.8179	.8171	.8163	.8155	.8146	. 8138	.8130	.8122	.8114
.21	.8106	.8098	.8090	.8082	.8073	. 8065	.8057	. 8049	.8041	.8033
.22	.8025	.8017	.8009	.8001	.7993	.7985	.7977	. 7969	.7961	.7953
.23	.7945	.7937	.7929	.7922	.7914	.7906	.7898	.7890	.7882	.7874
.24	.7866	.7858	.7851	.7843	.7835	.7827	.7819	.7811	.7804	.7796
. 25	.7788	.7780	.7772	.7765	.7757	.7749	.7741	.7734	.7726	.7718
. 26	.7711	.7703	. 7695	.7687	.7680	.7672	.7664	.7657	.7649	.7641
. 27	.7634	.7626	.7619	.7611	.7603	.7596	.7588	.7581	.7573	.7565
. 28	.7558	.7550	.7543	.7535	.7528	.7520	.7513	.7505	.7498	.7490
.29	.7483	.7475	.7468	.7460	.7453	.7445	.7438	.7430	.7423	.7416
.30	.7408	.7401	.7393	.7386	.7379	.7371	.7364	.7357	.7349	.7342
. 31	.7334	.7327	.7320	.7312	.7305	.7298	.7291	.7283	.7276	.7269
. 32	.7261	.7254	.7247	.7240	.7233	.7225	.7218	.7211	.7204	.7196
.33	.7189	.7182	.7175	.7168	.7161	.7153	.7146	.7139	.7132	.7125
. 34	.7118	.7111	.7103	.7096	.7096	.7089	.7082	.7075	.7068	.7054
.35	.7047	.7040	.7033	.7026	.7019	.7012	.7005	.6998	.6991	.6983
. 36	.6977	.6970	. 6963	. 6956	.6949	.6942	.6935	.6928	.6921	.6914
. 37	6907	. 6900	.6994	. 6887	.6880	.6873	.6866	.6859	.6852	.6845
. 38	.6839	.6832	. 6825	.6818	.6811	.6805	.6798	.6791	.6784	.6777
. 39	.6771	.6764	.6757	.6750	.6744	.6737	.6730	.6723	.6717	.6710