Основы теории проверки статистических гипотез.

Статистические гипотезы

Параметрические Непараметрические

Процедура сопоставления высказанного предположения (гипотезы) с выборочными данными называется проверкой гипотез.

Задачи статистической проверки гипотез:

- •Относительно некоторой генеральной совокупности высказывается та или иная гипотеза H_o .
- Из этой генеральной совокупности извлекается выборка.
- •Требуется указать правило, при помощи которого можно было бы по выборке решить вопрос о том, следует ли отклонить гипотезу H_o или принять ее.

Статистическая гипотеза- это предположение о виде распределения или о величинах неизвестных параметров генеральной совокупности, которая может быть проверена на основании выборочных показателей.

Примеры статистических гипотез:

Генеральная совокупность распределена по нормальному закону Гаусса.

Дисперсии двух нормальных совокупностей равны между собой.

Нулевой гипотезой H_0 называется основная гипотеза, которая проверяется Альтернативной гипотезой H_1 , называется гипотеза, конкурирующая с

называется гипотеза, конкурирующая с нулевой, то есть противоречащая ей.

Простой называют гипотезу, содержащую только одно предположение. a=a_o

Сложной называют гипотезу, которая состоит из конечного или бесконечного числа простых гипотез.

Статистическим критерием проверки гипотезы H_o называется правило, по которому принимается решение принять или отклонить гипотезу H_o .

Основной принцип проверки гипотез

Проверку гипотез осуществляют на основании результатов выборки $X_1, X_2, ..., X_n$, из которых формируют функцию выборки $T_n = T(X_1, X_2, ..., X_n)$, называемой статистикой критерия.

гипотезы

принятия

Возможные ошибки при проверке гипотез

Первого рода

Второго рода

Гипотеза Н ₀	Отвергается	Принимается	
Верна	Ошибка 1-го	Нет ошибки	
Неверна	рода	Ошибка 2-го	
	Нет ошибки	рода	

Уровнем значимости критерия (α) называется вероятность допустить ошибку 1-го рода.

Вероятность ошибки 2-го рода обозначается через **β**.

Мощностью критерия называется вероятность недопущения ошибки 2-го рода (1-β).

 $\alpha = P(\text{отвергнуть } H_o/H_o \text{ верна})$ или $\alpha = P(H_1/H_o)$ $\beta = P(\pi \text{ринять } H_o/H_o \text{ неверна})$ или $\beta = P(H_o/H_1)$ $1-\beta = P(\pi \text{ринять } H_1/H_1 \text{ верна})$

Чем больше мощность критерия, тем вероятность ошибки 2-го рода меньше.

Разумное соотношение между α и β находят, исходя из тяжести последствий каждой из ошибок.

Методика проверки гипотез:

- 1. Формирование нулевой H_0 и альтернативной H_1 гипотез исходя из выборки $X_1, X_2, ..., X_n$.
- 2. Подбор статистики критерия $T_n = T(X_1, X_2, ..., X_n)$
- 3. По статистике критерия T_n и уровню значимости α определяют критическую точку $t_{\rm kp}$, то есть границу, отделяющую область S от S.
- 4. Для полученной реализации выборки $X=(X_1,X_2,...,X_n)$ подсчитывают значение критерия, то есть $T_{\text{набл}}=T(X_1,X_2,...,X_n)=t$
- 5. Если $t \in S$ (например, $t > t_{\kappa p}$ для правосторонней области S), то нулевую гипотезу H_o отвергают; если же $t \in \overline{S}$ ($t < t_{\kappa p}$), то нет оснований, чтобы отвергнуть гипотезу H_o .

t-критерий Стьюдента:

Общий вид:

$$t = \frac{\left| \frac{x_1 - x_2}{x_1} - \frac{x_2}{x_2} \right|}{\sqrt{\frac{S_{x_1}^2 + S_{x_2}^2}{x_1}}}$$

Случай независимых выборок.

$$t = \frac{\left| \frac{x_1 - x_2}{x_2} \right|}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n}}}$$

$$n_1 = n_2 = n$$

$$t = \frac{\left| \overline{x_1} - \overline{x_2} \right|}{\sqrt{\frac{\sigma_1^2(n_1 - 1) + \sigma_2^2(n_2 - 1)}{n_1 + n_2 - 2} * \frac{(n_1 + n_2)}{n_1 n_2}}}$$

$$n_1 \neq n_2$$

$$df = n_1 + n_2 - 2$$

Случай зависимых выборок.

$$t = \frac{\overline{d}}{\overline{S}_d}$$

$$\frac{1}{d} = \frac{\sum d_i}{n} = \frac{\sum (x_{1i} - x_{2i})}{n}$$

$$d_i = x_{1i} - x_{2i}$$

$$\overline{S}_d = \frac{\sigma_d}{\sqrt{n}}$$

Вывод:

- Критерий Стьюдента может быть использован для проверки гипотезы о различии средних только для двух групп.
- •Критерий Стьюдента применяется в случае малых выборок, что характерно для медикобиологических экспериментов.
- •Если схема эксперимента предполагает большее число групп, воспользуйтесь дисперсионным анализом.
- •Если критерий Стьюдента был использован для проверки различий между несколькими группами, то истинный уровень значимости можно получить, умножив уровень значимости, на число возможных сравнений.

F- критерий Фишера:

$$F_{\scriptscriptstyle \mathfrak{IM}} = \frac{\sigma_1^2}{\sigma_2^2}$$

$$\sigma_1 > \sigma_2$$

$$df_1 = n_1 - 1, \quad df_2 = n_2 - 1$$

Критерии различия называют непараметрическими, если он не базируется на предположении о типе распределения генеральной совокупности и не использует параметры этой совокупности.

Применение непараметрических методов целесообразно:

- •на этапе разведочного анализа;
- при малом числе наблюдений (до 30);
- •когда нет уверенности в соответствии данных закону нормального распределения.

Непараметрические критерии представлены основными группами:

- •критерии различия между группами независимых выборок;
- •критерии различия между группами зависимых выборок.

Критерии согласия:

Критерием согласия называют статистический критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

- **√**Пирсона (Хи-квадрат),
- **√**Колмогорова,
- √Фишера,
- **✓** Смирнова.

Критерий согласия х² (хи-квадрат) Пирсона.

H_o: «между эмперическим распределением и теоретической моделью нет никакого различия».

Δ_1	Δ_2	· · · • •	$\Delta_{_{K}}$
np_1	np_2	•••	$np_{_m}$

Если эмпирические частоты (ni) сильно отличаются от теоретических (npi) ,то проверяемую гипотезу Ho следует отвергнуть; в противном случае-принять.

Критерий согласия х² (хи-квадрат) Пирсона.

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

n-объем выборки

k-число интервалов разбиения выборки ni-число значений выборки, попавших в i-й интервал

прі - теоретическая частота попадания значений случайной величины X в і-й интервал.

Критерий согласия х² (хи-квадрат) Пирсона.

ИЛИ

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- О-фактически наблюдаемое число
- Е- теоретически ожидаемое число

Поправка Йейтса

$$\chi^{2} = \sum \frac{(|O - E| - \frac{1}{2})^{2}}{E}$$

Для распределения признаков, которые принимают всего 2 значения.

Правило применения критерия х².

*По формуле вычисляют - $\chi^2_{\text{набл}}$ выборочное значение статистики критерия.

*выбрав уровень значимости α критерия,

по таблиг χ^2 -распределения находим критиг $\chi^2_{lpha,df}$ ую точку

*Если $\chi^2_{\text{набл}} \leq \chi^2_{\alpha, df}$, то гипотеза H_o не противоречит опытным данным;

если $\chi^2_{_{\mathit{Ha}6n}} > \chi^2_{_{\alpha,df}}$, то гипотеза $H_{_{0}}$ отвергается.

Неоходимым условием применения критерия Пирсона является наличие в каждом из интервалов не менее 5 наблюдений

ЛИТЕРАТУРА:

• И.В. Павлушков и др. Основы высшей математики и математической статистики. (учебник для медицинских и фармацевтических вузов) М., «ГЭОТАР - МЕД»; 2003