554SM – COMPUTER VISION AND PATTERN RECOGNITION

Written Examination

January 28, 2019

Name:	
Student Number:	

Instructions:

- Answer the multiple-choice questions (for each question, only one choice is correct).
- Answer the essay question.
- Fill in the answers to the multiple-choice questions on the answer sheet (last page).

Version 1 Page 1 of 7

- 1. Which of the following statements about instance recognition from local features is **wrong**?
 - (a) it is best suitable for planar objects, or deformations explained by affine transformation
 - (b) it is usually accompanied by a geometric consistency check
 - (c) its performance drops dramatically in the presence of even small occlusions
 - (d) none of the above
- 2. The normalized Laplacian of Gaussian filter
 - (a) is useful in calculating the direction of an edge
 - (b) is invariant to contrast
 - (c) can be used for detecting blobs in scale-space
- 3. The PCA-SIFT descriptor
 - (a) builds a histogram of gradient directions for a window centered in the keypoint
 - (b) does not build any histogram
 - (c) builds a histogram of gradient directions for 16 sub-windows of a window centered in the key-point
- 4. In convolutional neural networks, the fully connected layers are typically
 - (a) the last layers
 - (b) the first layer
 - (c) interspersed across the whole network
- 5. The following filter

$$\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & -2 & -4 \\
1 & -1 & 2
\end{array}\right]$$

- (a) is not separable
- (b) is separable

6. A morphological operation using a 3×3 structuring element containing all 1s has been applied to the image on the left to get the image on the right. What morphological operation has been applied?

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	0	1	0	0	0	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

original transformed

- (a) closing
- (b) erosion
- (c) opening
- (d) dilation

7. The Viola-Jones detector is fast

- (a) because it rejects the majority of the non-face windows with few computations
- (b) because it exploits the GPU
- (c) because it employs boosting

8. When training an n-class SVM based on the Directed Acyclic Graph, how many binary classifiers we need to train?

- (a) n-1
- (b) n(n-1)/2
- (c) n
- (d) n(n+1)/2

9. The median filter

- (a) is linear
- (b) is preferred to the Gaussian filter when the noise is Gaussian
- (c) is robust to outliers

10. Consider the following figure, taken from the original Histogram of Oriented Gradients paper.

Which of the following captions refers to image (6)?

- (a) HoG descriptor
- (b) HoG descriptor weighted by positive SVM weights
- (c) HoG descriptor weighted by negative SVM weights
- (d) average gradient image over training examples
- (e) none of the above

11. Suppose you have a training set of N labeled face/non-face images $S = \{I_1, \ldots, I_N\}$ of the same size, say 256×256 . You train a convolutional neural network of a given structure to distinguish between face and non-face and you get some performance on the test set $\mathcal{T} = \{J_1, \ldots, J_M\}$. Let define a permutation operator $\phi(\cdot)$ that permutes the pixels of 256×256 images (an example is shown below).

 $\phi(I)$

Now you train a convolutional neural network (having the same structure) on the training set $\tilde{S}_1 = \{\phi(I_1), \dots, \phi(I_N)\}$. What can be said about the performance obtained on the test set $\tilde{T} = \{\phi(J_1), \dots, \phi(J_M)\}$?

- (a) in general, nothing can be said
- (b) it is likely to be the same
- (c) it is likely to be worst
- (d) it is likely to be better
- 12. Let #SV be the number of support vectors of an SVM. Which of the following statements is wrong?
 - (a) the computational effort required for evaluating an instance depends on #SV
 - (b) #SV depends on the regularization parameter C
 - (c) the generalization capability of the SVM is an increasing function of #SV
 - (d) none of the above
- 13. As a consequence of the depth-speed ambiguity
 - (a) the solution of the structure from motion problem is defined up to a scale factor
 - (b) the faster the objects, the more uncertain their location
 - (c) close object moving quickly cannot be distinguished by distant object moving slowly

Version 1 Page 4 of 7

- 14. Consider the hysteresis thresholding and let θ_H and θ_L be the high and low thresholds, respectively. Which of the following statements is **wrong**?
 - (a) pixels whose value is below θ_H are rejected if they are connected to pixels whose value is below θ_L
 - (b) pixels whose value is below θ_L are certainly rejected
 - (c) pixels whose value is above θ_H are certainly accepted
 - (d) pixels whose value is above θ_L are accepted if they are connected to pixels whose value is above θ_H
- 15. The decision function of a soft margin SVM
 - (a) depends on the unbounded support vectors but not on the bounded support vectors
 - (b) does not depend on the support vectors
 - (c) depends on the bounded support vectors but not on the unbounded support vectors
 - (d) depends on both the unbounded and bounded support vectors

Version 1 Page 5 of 7

Essay question: describe briefly the main characteristics of the Viola-Jones approach to object detection. Answer (do not exceed the frame below):			

Version 1 Page 6 of 7

Answer Sheet

Question#	Answer
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

The space below is reserved to the instructor

multiple choice (0 to 15)

essay question (0 to 5)

oral discussion (0 to 5)

project (0 to 5)

total

Version 1 Page 7 of 7