

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика, искусственный интеллект и системы управления КАФЕДРА Теоретическая информатика и компьютерные технологии

Домашняя работа

по курсу «Моделирование»

«Построение марковской модели и модели СМО»

Студент группы ИУ9-82Б Виленский С. Д.

Преподаватель Домрачева А. Б.

ЦЕЛЬ

Изучение процесса построения и свойств имитационных моделей систем массового обслуживания. Получение навыков реализации описанных имитационных моделей в среде GPSS. Формирование представлений о построении марковских моделей и их анализе.

ПОСТАНОВКА ЗАДАЧИ

Оценить количество дней, требующихся на успешную сдачу домашнего задания с момента выдачи. Построить имитационную модель систем массового обслуживания и реализовать в среде GPSS. Сравнить полученный результат с оценкой количества дней, требующихся на успешную сдачу домашнего задания, полученной по марковской модели.

ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ

В программе университета имеется некоторый предмет X, с первого раза который сдают далеко не все студенты курса, на котором он читается, в следствии чего уходят в академический отпуск.

Предположим, что после статистического анализа информации по успеваемости студентов по предмету X за все года существования данного предмета в учебном плане кафедра предоставила некоторые вероятностные характеристики модели сдачи предмета X студентами. Студент, не закрывший долги с прошлого семестра из-за чего не приступивший к сдаче предмета X, уходит в академ с вероятностью p1 = 0.1. Студент, сдающий предмет X впервые, уходит в академ с вероятностью p2 = 0.3. Студент, вышедший из академического отпуска после неудачной попытки сдачи предмета X уходит в очередной академический отпуск с вероятностью p3 = 0.3.

Требуется оценить количество академических лет, необходимых для успешной сдачи предмета X.

ФОРМАЛИЗАЦИЯ МАРКОВСКОЙ МОДЕЛИ

Обозначим S_0 за состояние ситуации, когда студент не приступал к сдаче предмета X, S_1 — состояние, характеризующее ситуацию, в которой студент совершил хотя бы одну попытку сдачи предмета X, но не закрыл его, и S_2 — состояние, при котором предмет X успешно сдан студентом.

Таким образом можно построить таблицу переходов между состояниями с указанием вероятностей соответствующих событий (таблица 1) и представить марковскую цепь в виде графа (рисунок 1).

Таблица 1 – Сравнение выбранных моделей

$p_i\square$	S_0	S ₁	S_2
S ₀	0.1	0.3	0.6
S_1	0	0.3	0.7
S_2	0	0	1

Рисунок 1 – Представление марковской цепи в форме графа

Для оценки количества академических лет, необходимых для сдачи предмета X возьмем некоторое количество случайных сценариев:

- $S_0 -> S_2$;
- $S_0 \rightarrow S_0 \rightarrow S_1 \rightarrow S_1 \rightarrow S_2$;
- $S_0 \rightarrow S_1 \rightarrow S_2$;
- $S_0 \rightarrow S_0 \rightarrow S_2$;
- $S_0 \rightarrow S_0 \rightarrow S_1 \rightarrow S_2$;
- $S_0 \rightarrow S_0 \rightarrow S_1 \rightarrow S_1 \rightarrow S_1 \rightarrow S_2$.

По Вентцель вычисление искомой величины подразумевает построение графика накопления статистики наблюдаемых экспериментов, который изображен на рисунке 2.

Рисунок 2 — Визуализация статистики случайно смоделированных экспериментов

Исходя из построенного графика можно заметить, что с округлением ближайшего большего целого значения, значение целевой величины равно 2 и 1.7 без округления.

построение имитационной модели смо

Для построения описанной имитационной модели системы массового обслуживания и реализации ее в среде GPSS (листинг 1) было сделано допущение о том, что при генерации случайных величин из диапазона [0, 1] использовался генератор равномерно распределенных в этом диапазоне случайных величин. В результате запуска полученной реализации имитационной модели системы массового обслуживания были получены данные, описанные в листинге 2.

СРАВНЕНИЕ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ

Таблица 1 – Сравнение моделей

Модель	Средняя оценка количество академических лет для сдачи предмета Х	Верхняя оценка количества академических лет для сдачи предмета X
Марковская цепь	1.7	2
Стохастическая модель (GPSS)	1.586	2

ФРАГМЕНТЫ ИСХОДНОГО КОДА

Листинг 1 – Реализация имитационной модели системы массового обслуживания SIMULATE

- 20 SAVEVALUE CNT STEPS, 0
- 30 SAVEVALUE CNT RUNS, 0
- 40 GENERATE 0

10

- 50 TRANSFER , STATEO
- 60 STATEO TRANSFER .6, STATEO , GOTO2
- 70 STATEO_ TRANSFER .25,GOTO1,GOTO0
- 80 STATE1 TRANSFER .7, GOTO1, GOTO2

90	GOTO0	SAVEVALUE CNT_STEPS+,				
		TRANSFER ,STATE0				
100	GOTO1	SAVEVALUE CNT_STEPS+,1				
		TRANSFER ,STATE1				
110	GOTO2	SAVEVALUE CNT_STEPS+,1				
		SAVEVALUE CNT_RUNS+,1				
		TERMINATE 1				

120 START 1000000

Листинг 2 – Отчет по результату моделирования имитационной модели

LABEL		LOC	BLOCK	TYPE]	ENTRY	COUNT	CURRENT	COUNT
RETRY									
	1	SAV	JEVALUE			0		0	0
	2	SAV	VEVALUE			0		0	0
	3	GEI	NERATE		10000	00		0	0
	4	TRA	ANSFER		10000	00		0	0
STATE0	5	TRA	ANSFER		11106	48		0	0
STATEO_	6	TRA	ANSFER		4433	52		0	0
STATE1	7	TRA	ANSFER		4756	43		0	0
GOTO0	8	SAV	VEVALUE		1106	48		0	0
	9	TRA	ANSFER		1106	48		0	0
GOTO1	10	SAV	VEVALUE		4756	43		0	0
	11	TRA	ANSFER		4756	43		0	0
GOTO2	12	SAV	VEVALUE		10000	00		0	0
	13	SAV	VEVALUE		10000	00		0	0
	14	TEI	RMINATE		10000	00		0	0
SAVEVALUE		RETI	RY	VALU	JE				
CNT_STEPS 0 1586291.000									
CNT_RUNS 0 1000000.000									
CEC XN PRI]	M1	ASSEI	M CUI	RRENT	NEXT	PARA	METER	VALUE
1000001 0		0.000	100	0001	0		3		

выводы

В результате выполнения домашнего задания для поставленной задачи были построены марковская модель и имитационная модель системы массового обслуживания и получены оценки интересующей величины, совпавшие с допустимой погрешностью. В следствии чего можно говорить об адекватности построенных моделей.