MMO. Рубежный контроль №1

Методы обработки данных.

Вариант 1

Борисочкин М. И. ИУ5-21М

Текстовое описание набора данных

Для обучения по методу К ближайших соседей (KNN) был выбран датасет с классификацией типа звёзд с ресурса kaggle (Star Type Classification / NASA)

В данном наборе данных присутствуют следующие столбцы:

- Temperature температура звезды в Кельвинах;
- L (Luminosity) светимость звезды в солнечных светимостях;
- R (Radius) радиус звезды в радиусах солнца;
- A_M (Absolute Magnitude) абсолютная звёздная величина;
- Color цвет света звезды;
- Spectral Class спектральный класс звезды;
- Туре тип звезды. Является целевым признаком и уже закодирован:
 - Красный карлик 0;
 - Коричневый карлик 1;
 - Белый карлик 2;
 - Звезда из главной последовательности 3;
 - Супергигант 4;
 - Гипергигант 5.

Импорт библиотек

```
In [1]: from sklearn.preprocessing import RobustScaler
    from category_encoders.count import CountEncoder

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
sns.set(style="whitegrid")
```

Загрузка данных

In [2]: data = pd.read_csv('data/Stars.csv')
 data.sample(10, random_state=1)

Out[2]:		Temperature	L	R	A_M	Color	Spectral_Class	Туре
	228	23095	347820.000000	86.00000	-5.905	Blue	0	4
	194	3523	0.005400	0.31900	12.430	Red	М	1
	88	13720	0.000180	0.00892	12.970	white	F	2
	95	11250	672.000000	6.98000	-2.300	Blue-white	А	3
	214	34190	198200.000000	6.39000	-4.570	Blue	0	3
	4	1939	0.000138	0.10300	20.060	Red	М	0
	93	4980	0.357000	1.13000	4.780	Yellowish	K	3
	27	7700	0.000110	0.01280	14.470	Yellowish White	F	2
	170	3570	320000.000000	1480.00000	-7.580	Red	М	5
	237	8829	537493.000000	1423.00000	-10.730	White	А	5

In [3]: # Статистические характеристки датасета
data.describe()

Out[3]:		Temperature	L	R	A_M	Туре
	count	240.000000	240.000000	240.000000	240.000000	240.000000
	mean	10497.462500	107188.361635	237.157781	4.382396	2.500000
	std	9552.425037	179432.244940	517.155763	10.532512	1.711394
	min	1939.000000	0.000080	0.008400	-11.920000	0.000000
	25%	3344.250000	0.000865	0.102750	-6.232500	1.000000
	50%	5776.000000	0.070500	0.762500	8.313000	2.500000
	75%	15055.500000	198050.000000	42.750000	13.697500	4.000000
	max	40000.000000	849420.000000	1948.500000	20.060000	5.000000

```
In [4]: # Диаграмма рассеивания
sns.scatterplot(data=data, x="Temperature", y="A_M", hue="Type", palette="deep")
plt.show()
```


Задача №1

Для набора данных проведите кодирование одного (произвольного) категориального признака с использованием метода "count (frequency) encoding".

Закодируем признак Color с помощью CountEncoder-а из библиотеки Category Encoders

In [5]: data["Color"].value_counts()

```
Out[5]: Color
        Red
                            112
        Blue
                             56
        Blue-white
                            26
        Blue White
                            10
                            8
        yellow-white
        White
                             7
        Blue white
                              4
                              3
        white
        Yellowish White
                              3
        yellowish
                              2
        Whitish
                              2
                              2
        Orange
        White-Yellow
                              1
        Pale yellow orange
                              1
        Yellowish
                              1
        Orange-Red
                              1
        Blue-White
                              1
        Name: count, dtype: int64
```

Прежде чем кодировать значения поля Color, преобразуем схожие цвета в один конкретный.

```
In [6]: # Cnucoκ uβemoß nod замену
colors = ['Blue-white', 'Blue White', 'Blue white', 'yellow-white', 'Yellowish White', 'White', 'Whitish', 'Pale yellow orange', 'Orange-Red']

# Замена uβemoß
for i in range(len(data['Color'])):
    if data['Color'][i] in colors [:3]:
        data.loc[i, 'Color'] = 'Blue-White'
    elif data['Color'][i] in colors [3:8]:
        data.loc[i, 'Color'] = 'Yellow-White'
    elif data['Color'][i] in colors [8:10]:
        data.loc[i, 'Color'] = 'White'
    elif data['Color'][i] in colors [10:]:
        data.loc[i, 'Color'] = 'Orange'
```

```
In [7]: # До кодирования признака Color
sns.countplot(data=data, x='Color', order=data['Color'].value_counts().index)
plt.show()
```


Количество возможных цветов уменьшилось, но что более важно: все они встречаются с разной частотой, иначе говоря не будет коллизий при кодировании признака CountEncoder-ом.

```
In [8]: # Применение Count Encoder для остальных категориальных признаков
    data_coded = data.copy()
    ce_Freq = CountEncoder(cols=["Color"])
    data_coded = ce_Freq.fit_transform(data_coded)

In [9]: # После кодирования признака Color
    sns.countplot(data=data_coded, x='Color', order=data_coded['Color'].value_counts().
    plt.show()
```


Из графика, что удалось сохранить все изначальные значения (нет коллизий).

Задача №2

Для набора данных проведите масштабирование данных для одного (произвольного) числового признака с использованием масштабирования по медиане.

Отмасштабируем признак Temperature с помощью RobustScaler из библиотеки scikitlearn

```
In [10]: # До масштабирования признака Temperature
sns.histplot(data=data_coded, x='Temperature', kde=True, bins=20)
plt.show()
```



```
In [11]: # Применение RobustScaler
    robust_scaler = RobustScaler()
    data_coded_scaled = data_coded.copy()

    data_coded_scaled['Temperature'] = robust_scaler.fit_transform(data_coded_scaled[['
In [12]: # После масштабирования признака Тетретаture
    sns.histplot(data=data_coded_scaled, x='Temperature', kde=True, bins=20)
    plt.show()
```


По результатам масштабирования видим, что масштаб изменился, а распределение осталось прежним.