Convergence continued...

Let X1,..., Xn be a sequence of r. v's and X be another r.v. Let Fn be cdf of Xn, and F be cdf of X.

Recall: $X_n \xrightarrow{P} X$ if for every E > 0, $P(|X_n - X| > E) \xrightarrow{D} D$

 $X_n \xrightarrow{d} X$ if $\lim_{n \to \infty} F_n(x) = F(x)$ at all x for which F is continuous.

Def. X_n converges almost surely to X, $X_n \stackrel{a.s.}{\longrightarrow} X$ if, for every E > 0, $P(\lim |X_n - X| < E) = 1$ or $P(\lim X_n = X) = 1$

Def. X_n converges to X in quadratic mean, $X_n \xrightarrow{gm} X$, if $E[(X_n-X)^2] \longrightarrow 0$ as $h \longrightarrow \infty$.

Ex. S=[0,1], Xn(w)=w+wh, X(w)=w.

For every $\omega \in [0,1]$, $\omega^n \rightarrow 0$ as $h \rightarrow \infty$ $X_n(\omega) \rightarrow \omega = \chi(\omega)$

 $X_n(1) = 2$ for every n, So $X_n(1) \rightarrow 1 = X(1)$ But $P([0,1]) = 1 = X_n \xrightarrow{\sigma.S} X$ (furt metse) Relationships between convergences: (i) $\chi_h \xrightarrow{p} \chi \Rightarrow \chi_n \xrightarrow{p} \chi$ (ii) $\chi_n \xrightarrow{\rho} \chi \Longrightarrow \chi_n \xrightarrow{\sigma} \chi$ $a.s. \rightarrow \rho \rightarrow d$ (iii) Xn 4 c => Xn 1 c (iv) $\chi_n \xrightarrow{4.3} \chi \Longrightarrow \chi_n \xrightarrow{P} \chi$ $\frac{Pf}{P}(i) X_{n} \xrightarrow{\sum_{i=1}^{n}} X_{i} \quad Fix \quad \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{E[(x_{n}-x)^{2}]}{E^{2}}$ $P(|X_{n}-x|>E) = P((x_{n}-x)^{2}>E^{2}) \stackrel{\leftarrow}{=} \frac{E[(x_{n}-x)^{2}]}{E^{2}}$ $= P(|X_{n}-x|>E[(x_{n}-x)^{2}]$ $= P(|X_{n}-x|>E[(x_{n}-x)^{2}]$ $X_{k} \xrightarrow{r} X$ (ii), (iii) were proven letore (iv) won't be proved here. $V \sim U \inf \{(0,1), X_n = \sqrt{n} I(0,\frac{1}{n})^{(U)} = \{0,\frac{1}{n}\}^{(0,\frac{1}{n})}$ Ex. Xn =>X => Xn =>X P(|Xn-0|>E) = P(|Xn|>E) = P(0<0 < h) $=\frac{1}{h}\xrightarrow{n\rightarrow\infty} = X_{h}\xrightarrow{p} 0$ $E[(X_n-0)^2]=E(X_n^2)=\int_{0}^{\infty}(f_n)^2du$ = $n \int_{-\infty}^{1/h} du = h \cdot \frac{1}{h} = 1$ for all n $\sim > \chi_n \frac{gm}{s} o$

 $\sum_{X_{1}} X_{1} \xrightarrow{P} X \neq X \times X_{1} \xrightarrow{A.S.} X$ $\int_{C} = [0, 1] \qquad \int_{W+1, W} \in [0, 1]$ $\int_{W+1, W} \in [0, 1]$

Let $X(\omega) = \omega$ As $h \to \infty$, $P(|X_n - X| > \varepsilon) = P(\text{an interval})$ of ω value where length is going to ω) $\longrightarrow 0 \Longrightarrow X_n \xrightarrow{P} X$.

For every w, $X_n(w)$ alternates between w and w+1 infinitely often. If $w=\frac{3}{8}$, $X_1(w)=\frac{3}{8}+1$, $X_2(w)=\frac{3}{8}+1$, $X_3(w)=\frac{3}{8}$, $X_4(w)=\frac{3}{8}$, $X_5(w)=\frac{3}{8}+1$, $X_6(w)=\frac{3}{8}$, etc.

 $\Rightarrow X_n \rightarrow X$ a.s

Ex.
$$X_n \stackrel{P}{\longrightarrow} E \stackrel{P}{\longrightarrow} E(X_n) \rightarrow C$$

$$P(X_n = n^2) = \frac{1}{n}, \quad P(X_n = 0) = 1 - \frac{1}{n}$$

$$P(|X_n - 0| \ge \xi) = P(|X_n = 0) = 1 - \frac{1}{n} \xrightarrow{h \to \infty} 1$$

$$P(|X_n - 0| \ge \xi) \rightarrow 0 = X_n \stackrel{P}{\longrightarrow} 0$$

But $F(X_n) = n^2 \frac{1}{n} + 0 (1 - \frac{1}{n}) = h$

$$E(X_n) \rightarrow \infty$$

$$Ex. Let X_{1, \dots, N_n} \stackrel{\text{i.id}}{\longrightarrow} U_{\text{hif}} (0, 1), \quad X_{cn} = \text{heax} \{X_1, \dots, X_n\}.$$

Show that $X_{cn} \rightarrow 1$.

$$P(|X_{(n)} - 1| \ge \xi) = P(|X_{(n)}| = 1 + \xi \text{ or } |X_n \ne 1|)$$

$$= P(|X_1 \le 1 - \xi) \dots, \quad X_n \le 1 - \xi$$

$$= P(|X_1 \le 1 - \xi) \dots, \quad X_n \le 1 - \xi$$

$$= P(|X_{(n)} = 1 - \frac{1}{n}) = P(|X_{(n)} \ge 1 - \frac{1}{n})$$

$$= P(|X_{(n)} = 1 - \frac{1}{n}) = P(|X_{(n)} \ge 1 - \frac{1}{n})$$

$$= P(|X_{(n)} = 1 - \frac{1}{n}) = P(|X_{(n)} \ge 1 - \frac{1}{n})$$

$$= P(|X_{(n)} = 1 - \frac{1}{n}) = P(|X_{(n)} \ge 1 - \frac{1}{n})$$

Ex. Xn dc => Xn Psc. Let $X_n \sim \mathcal{N}(0, \frac{1}{n})$ Let Fle a dist. In for C=0 (distin function for a point mass at o) $\sqrt{n} \chi_n \sim \mathcal{N}(\sigma, \Gamma)$ $F_n(t) = P(\chi_n \leq t) = P(\sqrt{n} \chi_n \leq \sqrt{n} t)$ = P (Z = (mt), Z ~ N(0,1) Fn(t) -> 0, if t<0 (5nt->-0) $F_h(t) \longrightarrow 1$ if t > 0 (In $t \rightarrow \infty$) F(+)= 10, 4<0 $F_h(t) \longrightarrow F(t) = \sum_{h \to 0} X_h \xrightarrow{A}_0$ $P(1 \times n - 0 > E) = P(1 \times n)^2 > E^2$ $=\frac{1/h}{2}=\frac{1}{h}$ \Rightarrow \times $\stackrel{P}{\longrightarrow}$ \circ