USING NON-INVASIVE BRAIN STIMULATION TO MODULATE SUPRASPINAL CIRCUITS AFTER SCI

Jennifer Iddings, PhD & Anastasia Zarkou, PT, PhD

Postdoctoral Research Fellows
Crawford Research Institute
SCI Research Laboratory

Non-Invasive Brain Stimulation (NIBS)

Two primary classifications of NIBS modalities:

1. Transcranial magnetic stimulation (TMS)

2. Transcranial current stimulation (tCS)

Non-Invasive Brain Stimulation (NIBS)

Two primary classifications of NIBS modalities:

- 1. Transcranial magnetic stimulation (TMS)
 - Neurophysiology measure: single & paired pulse TMS
 - Neuromodulation tool: repetitive TMS (rTMS), paired associative stimulation (PAS)
- 2. Transcranial current stimulation (tCS)

Basic Principles of TMS

- Electrical current in coil generates magnetic field
- Magnetic field passes through the skull unimpeded
- Alternating magnetic fields induce electrical current in brain

George, Sci Am, 2003

TMS as Neurophysiology Measure

- Used to assess cortical & spinal circuitry
- Suprathreshold stimulation of the motor cortex elicits muscle response - motor evoked potential (MEP)
- Parameters of interest:
 - MEP amplitude
 - MEP latency
 - Silent period
 - Motor threshold (resting and active)

Non-Invasive Brain Stimulation (NIBS)

Two primary classifications of NIBS modalities:

1. Transcranial magnetic stimulation (TMS)

- Neurophysiology measure: single & paired pulse TMS
- Neuromodulation tool: repetitive TMS (rTMS), paired associative stimulation (PAS)

2. Transcranial current stimulation (tCS)

- direct (tDCS)
- pulsed (tPCS)
- alternating (tACS)
- random noise (tRNS)

Basic Principles of tCS

- <u>Subthreshold</u> stimulation modulating excitability of large brain regions
 - Does not elicit neuronal depolarization
- Mechanism: modulation of neuronal resting excitability
- Two categories:
 - Polarity dependent
 - Excitatory: anodal
 - Inhibitory: cathodal
 - Polarity independent
 - Excitation/inhibition are frequency and intensity dependent

Adapted from Villamar et al., J Vis Exp, 2013

Basic Principles of tCS

After-Effect Modulation

Polarity Dependent

Polarity Independent

Waveforms adapted from: Jaberzadeh & Zoghi, Basic Clin Neurosci, 2013; Jaberzadeh et al., PLOS One, 2015

tDCS Devices

tCS Device tDCS, tPCS, tACS, tRNS

Stimulation Parameters:

- ✓ Current type: DC or AC
- ✓ Intensity: < 4mA
- ✓ Frequency: 0- 640Hz
- ✓ Duration: < 60 min/ day
- ✓ Ramp up/ down

Antal et al., Clin Neurophysiol, 2017; DaSilva et al., J Vis Exp, 2011; Woods et al., Clin Neurophysiol, 2016

Stimulation Parameters

Adverse Effects:

- ✓ Itching
- ✓ Tingling
- ✓ Headache
- ✓ Discomfort
- ✓ Burning Sensations
- ✓ Skin redness
- ✓ Mild fatigue
- ✓ Skin burns

Antal et al., Clin Neurophysiol, 2017; DaSilva et al., J Vis Exp, 2011; Woods et al., Clin Neurophysiol, 2016

- Stimulation Parameters
- Adverse Effects
- Contraindications:
 - ✓ Implanted metallic device in the head
 - ✓ Uncontrolled seizures
 - ✓ Severe headache history
 - ✓ Scalp Lesions
 - ✓ Pregnancy
 - ✓ Pacemaker

Antal et al., Clin Neurophysiol, 2017; DaSilva et al., J Vis Exp, 2011; Woods et al., Clin Neurophysiol, 2016

Using Montages to Direct Effects

http://what-when-how.com/neuroscience/the-upper-motor-neurons-motor-systems-part-1/

Montages for **Upper** Extremity Neuromodulation

Adapted from www.clinicalgate.com/epilepsy-8

Montages for **Upper** Extremity Neuromodulation

Both UEs

Adapted from www.clinicalgate.com/epilepsy-8

Montage for **Lower** Extremity Neuromodualtion

Adapted from www.clinicalgate.com/epilepsy-8

Advantages of tCS

Non-Invasive Brain Stimulation in Persons with SCI

Maladaptive Cortical Plasticity Post-SCI:

Reduced Motor Evoked Potential (MEP) Amplitude

- Disruption of communication within the spinal cord
- 2. Decrease in cortical excitability

Maladaptive Cortical Plasticity Post-SCI:

Reduced Motor Evoked Potential (MEP) Amplitude

Reversing Maladaptive Cortical Plasticity of Thenar Muscles in Persons with SCI

Hoffman & Field-Fote, Top Spinal Cord Rehabil, 2013

NIBS Studies in SCI Research: Recruitment Completed

Conditioning Neural Circuits to Improve Upper Extremity Function

Purpose:

To examine how well people with tetraplegia are able to use their arms and hands after receiving fine motor training (FMT) combined with stimulation to increase brain excitability either directly or indirectly

Direct brain stimulation:
Transcranial direct
current stimulation

Indirect brain stimulation:
Peripheral nerve
somatosensory stimulation

Conditioning Neural Circuits to Improve Upper Extremity Function

Design

➤ Randomized controlled trial: each participant is randomly assigned to one of three groups: tDCS + FMT, PNSS + FMT, or sham tDCS + FMT

Conditioning Neural Circuits to Improve Upper Extremity Function

Outcome Measures:

- UE motor impairment and function
- UE strength and sensation
- Participant perception of function/participation
- Participant perception of quality of life
- Corticospinal excitability
- Spinal reflex excitability

Enhancing Corticospinal Excitability to Improve Functional Recovery

Purpose:

To compare four different stimulation conditions for increasing brain excitability to determine which is best for helping people with tetraplegia improve their ability to use their arms and hands

Enhancing Corticospinal Excitability to Improve Functional Recovery

Design:

- Randomized crossover trial
- Each subject participates in a single session of each stimulation type

Outcome Measures:

- ➤ Motor Control timed tapping task
- Dexterity nine hole peg test (9HPT)
- Strength key pinch force
- Corticospinal excitability motor evoked potentials

NIBS Studies in SCI Research: Current & Upcoming

Random Noise to Enhance Corticomotor Drive for Improved Hand Function

Purpose:

> To compare the effects on cortical excitability, motor and sensory function of 3day combined tRNS + fine motor training protocol to tDCS + fine motor training and to sham-stimulation + fine motor training protocols in individuals with tetraplegia.

Random Noise to Enhance Corticomotor Drive for Improved Hand Function

Design: Week 1 Week 2 (Wash-in Phase) (Intervention Phase) tRNS + FMT or Sham-tDCS + FMT tDCS + FMT (3 sessions) (3 sessions) Post Testing Post Testina Baseline Week 1 Week 2 Testing

Outcome Measures:

Cortical Excitability- Motor Evoked Potentials

Unimanual Function- Grasp and Release Test

Bimanual Function- CAHAI_9

Sensory Function- Sensation subtest of GRASSP &

revised Nottingham Sensory Assessment

Strength- Pinch and Grasp strength

Enhancing Corticospinal Activation for Improved Walking Function

Purpose:

- Determine if moderate-intensity, circuit training can improve walking-related outcomes
- Determine if the addition of noninvasive brain stimulation will result in greater improvements in function compared to circuit training alone

Enhancing Corticospinal Activation for Improved Walking Function

Design:

- Randomized controlled trial
- Each participant is randomly assigned to one of two groups: tDCS + training OR sham tDCS + training

Outcome Measures:

- Walking Function
- > LE strength
- ➤ Balance
- Spasticity
- Functional Strength

CIRCUIT TRAINING

Note: Task modification and balance support provided as needed

Acknowledgements

Edelle Field-Fote, PT, PhD

Allison McIntyre, MOT, OT/L, CCRP

Barry McKay, BS

Beth Sasso, PT, DPT, NCS

Brandon Poe, MPA, CCRP

Cathy Furbish, PT

Cazmon Suri, MS

Evan Sandler, PT, DPT

Jasmine Hope, BS

Kyle Condon, PT, DPT

Marissa Mirecki, MOT, OTR/L

Nick Evans, MHS, ACSM, CEP

Ryan Koter, PT, DPT

Sarah Callahan, MOT, OTR/L

Stephen Estes, PhD

Hulse Spinal Cord Injury Lab

Questions?