BMK

Задание 1. Метрические алгоритмы классификации

Практикум 317 группы, 2025

Начало выполнения задания: 25 сентября 2025 года, 23:00.

Мягкий дедлайн: **09 октября 2025 года, 23:00.** Жёсткий дедлайн: **16 октября 2025 года, 23:00.**

Формулировка задания

Данное задание направлено на ознакомление с метрическими алгоритмами классификации, а также методами работы с изображениями. В задании необходимо:

- 1. Написать на языке Python собственные реализации метода ближайших соседей и кросс-валидации. Реализации должны соответствовать требованиям, описанным ниже. Стиль кода должен соответствовать требованиям, указанным на сайте курса. Невыполнение будет штрафоваться.
- 2. Провести описанные ниже эксперименты с датасетом изображений цифр MNIST.
- 3. Написать отчёт о проделанной работе (формат PDF). Отчёт должен быть подготовлен в системе I^ATEX. Отчет должен удовлетворять требованиям, указанным на сайте курса. Невыполнение будет штрафоваться.
- 4. В систему проверки anytask сдаётся .zip архив с модулями с написанным кодом, jupyter-notebook с кодом экспериментов (может быть не структурирован, проверяется при наличии вопросов к результатам экспериментов) и отчёт. Архив необходимо назвать task1_фамилия_имя.zip.

Список экспериментов

Эксперименты этого задания необходимо проводить на датасете MNIST. Загрузить датасет можно при помощи функции sklearn.datasets.fetch_openml("mnist_784") или скачать вручную либо с официального сайта http://yann.lecun.com/exdb/mnist/, либо с сайта kaggle https://www.kaggle.com/datasets/hojjatk/mnist-dataset. В первом случае для удобства стоит перевести датасет в питру-массивы, с помощью метода to_numpy(). Датасет необходимо разбить на обучающую выборку (первые 60 тыс. объектов) и тестовую выборку (10 тыс. последних объектов).

1. Исследуйте, какой алгоритм поиска ближайших соседей будет быстрее работать в различных ситуациях и почему.

Измерьте для каждого алгоритма поиска ('kd_tree', 'ball_tree', 'brute' и 'my_own') время нахождения 5 ближайших соседей для каждого объекта тестовой выборки по евклидовой метрике. Выберите подмножество признаков, по которому будет считаться расстояние, размера 10, 20, 100 (подмножество признаков выбирается один раз для всех объектов, случайно). Проверьте все алгоритмы поиска ближайших соседей, указанные в спецификации к заданию.

Замечание. Для оценки времени долго работающих функций можно пользоваться либо функциями из модуля time, либо magic-командой %time, которая запускает код лишь один раз.

- 2. Оцените по кросс-валидации с 3 фолдами точность (долю правильно предсказанных ответов) и время работы к ближайших соседей в зависимости от следующих факторов:
 - (а) к от 1 до 10 (только влияние на точность).
 - (b) Используется евклидова или косинусная метрика.

Дайте ответ на следующие вопросы:

- (а) Какая метрика лучше себя показала в экспериментах? Можете ли вы объяснить, почему?
- (b) Есть ли на графике зависимости точности от количество соседей выбросы, резкие падения/повышения качества для одного значения k по сравнению с соседними? Если да, предположите причину появления этих выбросов.

- 3. Сравните взвешенный метод k ближайших соседей, где голос объекта равен $1/(distance + \varepsilon)$, где $\varepsilon 10^{-5}$, с методом без весов при тех же фолдах и параметрах.
- 4. Примените лучший алгоритм к исходной обучающей и тестовой выборке. Подсчитайте точность. Сравните с точностью по кросс-валидации. Сравните с указанной в интернете точностью лучших алгоритмов на данной выборке. Выполните анализ ошибок. Для этого необходимо построить и проанализировать матрицу ошибок (confusion matrix). Также визуализируйте несколько объектов из тестовой выборки, на которых были допущены ошибки. Проанализируйте и указажите их общие черты.
 - Замечание. Для построения матрицы можно воспользоваться функцией sklearn.metrics.confusion_matrix. Для визуализации можно воспользоваться pyplot.subplot, и pyplot.imshow с параметром стар="Greys". Также можно убрать оси координат при помощи команды pyplot.axis("off").
- 5. Выполните аугментацию обучающей выборки. Для этого нужно размножить ее с помощью поворотов, смещений, морфологических операций и применений гауссовского фильтра. Разрешается использовать библиотеки для работы с изображениями. Подберите по кросс-валидации с 3 фолдами параметры преобразований. Рассмотрите следующие параметры для преобразований и их комбинации:
 - (а) Величина поворота: 5, 10, 15 (в каждую из двух сторон)
 - (b) Величина смещения: 1, 2, 3 пикселя (по каждой из двух размерностей)
 - (с) Дисперсия фильтра Гаусса: 0.5, 1, 1.5
 - (d) Морфологические операции: эрозия, дилатация, открытие, закрытие с ядром 2 (https://docs.opencv.org/3.4/d9/d61/tutorial_py_morphological_ops.html)

Проанализируйте, как изменилась матрица ошибок, какие ошибки алгоритма помогает исправить каждое преобразование.

Замечание 1. Не обязательно хранить все обучающие выборки в процессе эксперимента. Достаточно вычислить ближайших соседей для каждой из выборок, а затем выбрать из них ближайших соседей.

Замечание 2. Размер ядра фильтра Гаусса подобрать визуально: преобразование не должно сильно портить объекты

Замечание по дизайну эксперимента. В этой части вам предлагается самим выбрать дизайн эксперимента. Перебор всевоможных комбинаций преобразований может быть затруднительным, в то время как жадный выбор преобразований уже даст улучшение в качестве.

6. Реализуйте описанный выше алгоритм, основанный на преобразовании объектов тестовой выборки. Проверьте то же самое множество параметров, что и в предыдущем пункте. Проанализируйте как изменилась матрица ошибок, какие ошибки алгоритма помогает исправить каждое преобразование. Качественно сравните два подхода (5 и 6 пункты) между собой.

Замечание. В рамках данного эксперимента подразумевается обучение модели на оригинальном датасете, преобразования объектов тестовой выборки, применение модели к преобразованным копиям изображения из тестовой выборки и получение результата путем голосования среди преобразованных объектов.

Требования к реализации

Прототипы функций должны строго соответствовать прототипам, описанным в спецификации и проходить все выданные тесты. Задание, не проходящее все выданные тесты, приравнивается к невыполненному. При написании необходимо пользоваться стандартными средствами языка Python, библиотеками numpy и matplotlib. Библиотеками scipy и scikit-learn пользоваться запрещается, если это не обговорено отдельно в пункте задания. Для экспериментов в двух последних пунктах разрешается пользоваться любыми открытыми библиотеками, реализующими алгоритмы обработки изображений.

Замечание 1. Далее под выборкой объектов будем понимать np.ndarray размера $N \times D$ или разреженную матрицу scipy.sparse.csr_matrix того же размера, под ответами для объектов выборки будем понимать np.ndarray размера N, где N — количество объектов в выборке, D — размер признакового пространства.

Замечание 2. Для всех функций можно задать аргументы по умолчанию, которые будут удобны в ваших эксперименте.

Среди предоставленных файлов должны быть следующие модули и функции в них:

1. Модуль nearest_neighbors, содержащий собственную реализацию метода ближайших соседей.

Kласс KNNClassifier

Описание методов:

- (a) __init__(self, k, strategy, metric, weights, test_block_size) конструктор класса.
 - k число ближайших соседей в алгоритме ближайших соседей
 - strategy алгоритм поиска ближайших соседей. Может принимать следующие значения:
 - 'my_own' собственная реализация (например, на основе кода подсчёта евклидова расстояния между двумя множествами точек из задания №1)
 - 'brute' использование sklearn.neighbors.NearestNeighbors(algorithm='brute')
 - 'kd_tree' использование sklearn.neighbors.NearestNeighbors(algorithm='kd_tree')
 - 'ball_tree' использование sklearn.neighbors.NearestNeighbors(algorithm='ball_tree')
 - metric название метрики, по которой считается расстояние между объектами. Может принимать следующие значения:
 - 'euclidean' евклидова метрика
 - 'cosine' косинусная метрика
 - weights переменная типа bool . Значение True означает, что нужно использовать взвешенный метод k ближайших соседей. Во взвешенном методе ближайших соседей голос одного объекта равен $1/(distance + \varepsilon)$, где $\varepsilon = 10^{-5}$.
 - test_block_size размер блока данных для тестовой выборки

Замечание 1. Для некоторых алгоритмов поиска ближайших соседей вам потребуется хранить обучающую выборку и ответы на ней. Некоторые алгоритмы не требуют хранения выборки, но требуют хранения дополнительной информации о её структуре.

Замечание 2. При поиске к ближайших соседей некоторые методы строят в памяти матрицу попарных расстояний обучающей выборки и тестовой выборки. Рекомендуется написать функцию, которая ищет ближайших соседей блоками, то есть делает запросы ближайших соседей для первых test_block_size тестовых объектов, затем для следующих test_block_size, и так далее, и в конце объединяет полученные результаты.

Замечание 3. Стратегии 'kd_tree' и 'ball_tree' не могут принимать в качестве параметра метрики 'cosine' или любой Callable объект. Для тестирования этих стратегий в качестве параметра можно подавать строку: 'euclidean'.

(b) fit(self, X, y)

Описание параметров:

- Х обучающая выборка объектов
- у ответы объектов на обучающей выборке

Метод производит обучение алгоритма с учётом стратегии указанной в параметре strategy.

(c) find_kneighbors(self, X, return_distance)

Описание параметров:

- Х выборка объектов
- return_distance переменная типа bool

Метод возвращает tuple из двух np.ndarray размера (X.shape[0], k). [i, j] элемент первого массива должен быть равен расстоянию от i-го объекта, до его j-го ближайшего соседа. [i, j] элемент второго массива должен быть равен индексу j-ого ближайшего соседа из обучающей выборки для объекта с индексом i.

Ecnu return_distance=False, возвращается только второй из указанных массивов. Метод должен использовать стратегию поиска указанную в параметре класса strategy.

(d) predict(self, X)

Описание параметров:

• х — тестовая выборка объектов

Метод должен вернуть одномерный np.ndarray размера X.shape[0], состоящий из предсказаний алгоритма (меток классов) для объектов тестовой выборки.

- 2. Модуль cross_validation с реализациями функций для применения кросс-валидации:
 - (a) kfold(n, n_folds)

Описание параметров:

- n количество объектов в выборке
- n_folds количество фолдов на которые делится выборка

Функция реализует генерацию индексов обучающей и валидационной выборки для кросс-валидации с <code>n_folds</code> фолдами. Функция возвращает список длины <code>n_folds</code>, каждый элемент списка — кортеж из двух одномерных <code>np.ndarray</code>. Первый массив содержит индексы обучающей подвыборки, а второй валидационной.

Замечение. В случае когда число элементов выборки не кратно кол-ву фолдов, функция должна делить выборку аналогично sklearn.model_selection.KFold.

(b) knn_cross_val_score(X, y, k_list, score, cv, **kwargs)

Описание параметров:

- 🛽 обучающая выборка
- у ответы объектов на обучающей выборке
- k_list список из проверяемых значений для числа ближайших соседей, числа в списке упорядочены по возрастанию
- score название метрики, по которой оценивается качество алгоритма. Обязательно должна быть реализована метрика 'ассигасу' (доля правильно предсказанных ответов)
- cv список из кортежей, содержащих индексы обучающей и валидационной выборки выход функций kfold или stratified_kfold. Если параметр не задан, необходимо внутри функции реализовать генерацию индексов с помощью функции kfold
- **kwargs параметры конструктора класса KNNClassifier

Функция для измерения метрики качества score алгоритма ближайших соседей, реализованного через класс KNNclassifier на кросс-валидации, заданной списком индексов cv для обучающей выборки X, ответов на ней y. Оценку качества метода ближайших соседей нужно рассчитать для нескольких значений k: $[k_1, \ldots, k_n], k_1 < k_2 < \cdots < k_n$, заданных в k_list. Сложность алгоритма для одного объекта из валидационной выборки должна иметь порядок $O(k_n)$.

Функция должна возвращать словарь, где ключами являются значения k, а элементами — np.ndarray размера len(cv) с качеством на каждом фолде.

Замечание. Для тестирования алгоритма удобно использовать функцию cross_val_score из библиотеки scikit-learn.

- 3. Модуль distances с реализацией функции для вычисления расстояния:
 - (a) euclidean_distance(X, Y)

Описание параметров:

- X np.ndarray размера $N \times D$
- Y np.ndarray размера $M \times D$

Функция возвращает $\operatorname{np.ndarray}$ размера $N \times M$, каждый элемент которого — евклидово расстояние между соответствующей парой векторов из массивов X и Y.

Замечание. Для тестирования алгоритма удобно использовать функцию pdist из библиотеки scipy.

(b) cosine_distance(X, Y)

Описание параметров:

- X np.ndarray размера $N \times D$
- Y np.ndarray размера $M \times D$

Функция возвращает $\operatorname{np.ndarray}$ размера $N \times M$, каждый элемент которого — косинусное расстояние между соответствующей парой векторов из массивов X и Y.

Замечание. Для тестирования алгоритма удобно использовать функцию pdist из библиотеки scipy.

Бонусная часть

- 1. (до 3 баллов) Написать параллельную реализацию поиска ближайших соседей (например, с помощью библиотек joblib или numba)
- 2. (до 10 баллов) Улучшить качество работы метрических алгоритмов на датасете MNIST с помощью средств, не использующихся в задании. Например, можно реализовать ансамбль метрических алгоритмов, реализовать новые метрики, новые признаковые описания объектов. Размер бонуса зависит от величины улучшения и от изобретательности подхода.
- 3. (до 10 баллов) Качественное проведение дополнительного (не пересекающегося с основным заданием) исследования по теме метрических алгоритмов: формулируется изучаемый вопрос, ставятся эксперименты, позволяющие на него ответить, делаются выводы. Перед исследованием необходимо обсудить тему с преподавателем.