Zusammenfassung - Algorithmen für planare Graphen

Julian Shen

13. August 2023

1 Einführung

Definition: Graph ist ein Tupel G=(V,E) mit endliche Knotenmenge V und endliche Kantenmenge E

- Kante $e \in E$ hat Form e = uv mit $u, v \in V$.
- $uv = vu \rightarrow Graphen ungerichtet$
- e = uu ist erlaubt \rightarrow Schlinge
- Auch e = uv und e' = uv erlaubt mit $e \neq e' \rightarrow \mathbf{Mehrfachkante}$
- Einfacher Graph \iff ohne Schlingen und Mehrfachkanten
- Zusammenhängend \iff ein Weg zwischen je zwei Knoten

Definition: Eine **Zeichnung** von G = (V, E) bildet diesen so auf \mathbb{R}^2 ab, dass

- 1. Knoten Punkte in der Ebene sind, d.h. $V \subset \mathbb{R}^2$
- 2. Kante e=uv ist injektive, stetige Kurve von u nach v, d.h. $\gamma_e\colon [0,1]\to \mathbb{R}^2$ mit
 - $\gamma_e(0) = u$ und $\gamma_e(1) = v$
 - $\gamma_e(t) \notin V$ für alle 0 < t < 1
- Zeichnung heißt **kreuzungsfrei** bzw. **planar** wenn für je zwei Kanten e, e' und 0 < t, t' < 1 gilt: $\gamma_e(t) \neq \gamma_{e'}(t')$
- Graph heißt **planar**, wenn er mindestens eine kreuzungsfreie Zeichnung besitzt

Definition: Für $n \in \mathbb{N}$ ist der vollständige Graph K_n

- $V(K_n) = \{v_1, \dots, v_n\}$
- $E(K_n) = \{v_i v_j \mid i, j \in \{1, \dots, n\}, i \neq j\}$

Lemma: Graph K_5 ist nicht planar

 $Beweis\colon \text{Betrachte}$ beliebige Zeichnung von K_5

- \bullet Betrachte v_1 und seine 4 ausgehenden Kanten
- \bullet O.B.d.A. Kanten kreuzungsfrei zu v_2,v_3,v_4,v_5 in zyklischer Reihenfolge um v_1
- Kanten v_1v_3, v_3v_5, v_5v_1 bilden geschlossene Kurve in \mathbb{R}^2 die v_2 und v_4 trennt $\Longrightarrow v_2v_4$ kann nicht kreuzungsfrei gezeichnet sein

Definition: Für $m, n \in \mathbb{N}$ ist der $\mathbf{e} K_{m,n}$

- $V(K_{m,n}) = \{a_1, \dots, a_m\} \cup \{b_1, \dots, b_n\}$
- $E(K_{m,n}) = \{a_i b_j \mid i \in \{1, \dots, m\}, j \in \{1, \dots, n\}\}$

Lemma: Graph $K_{3,3}$ ist nicht planar

Beweis: Betrachte beliebige Zeichnung von $K_{3,3}$

• Kreis $a_1b_1a_2b_2a_3b_3$ im Graphen bildet eine geschlossene Kurve in \mathbb{R}^2

- Jede Kante von a_1b_2, a_2b_3, a_3b_1 liegt komplett innerhalb oder komplett außerhalb dieser Kurve
 - ⇒ mindestens zwei liegen auf der gleichen Seite
 - ⇒ diese zwei kreuzen sich

Definitionen: Für eine feste planare Zeichnung eines planaren Graphen definiere:

- Facetten: Zusammenhangskomponenten von \mathbb{R}^2 nach Entfernen aller Knoten und Kanten \implies Es gibt genau eine **äußere Facette** und mehrere **innere Facetten**
- Äußere Knoten sind die, die inzident zur äußeren Facette sind
- Innere Knoten sind die übrigen Knoten
- \bullet $\ddot{\mathbf{A}}\mathbf{u}\mathbf{\beta}\mathbf{ere}$ \mathbf{Kanten} sind die, die komplett im Rand der äußeren Facette liegen
- Innere Kanten sind die übrigen Kanten

n = 9 Knoten (5 äußere, 4 innere) m = 14 Kanten (8 äußere, 6 innere) f = 7 Facetten (1 äußere, 6 innere)

 ${\bf Satz}$ von ${\bf Euler}:$ Sei Gein zusammenhängender Graph mit einer planaren Zeichnung mit n Knoten, m Kanten und f Facetten. Dann gilt

$$n - m + f = 2$$

Beweis: Beweise m - (f - 1) = n - 1, woraus die Behauptung folgt. Führe dafür eine Induktion nach f - 1, der Anzahl der inneren Facetten, durch.

- \bullet I.A.: f-1=0,d.h. keine innere Facette $\to G$ ist ein Baum, also kreisfrei und zusammenhängend $\to m=n-1$
- I.S.: $f-1 \ge 1$, d.h. min. eine innere Facette
 - Sei e eine Kante zwischen äußerer und innerer Facette $\to G' = G e$ ist zusammenhängend \to In G' gilt n' = n, m' = m 1, f' = f 1
 - Mit I.V. folgt: $m' (f' 1) = n' 1 \Leftrightarrow m 1 (f 1 1) = n 1 \Leftrightarrow m (f 1) = n 1$

Korollar aus Euler-Formel: Sei G ein planarer, einfacher Graph mit $n \geq 3$ Knoten, m Kanten, und kleinstem vorkommenden Knotengrad $\delta(G)$. Dann gilt

$$m \le 3n - 6$$
 und $\delta(G) \le 5$

Beide Ungleichungen sind bestmöglich.

Beweis: $m \leq 3n - 6$

- O.B.d.A. G ist zusammenhängend, da man Kanten einfügen kann bis er das ist
- Jede Facette ist berandet von min. 3 Kantenseiten, da $n \geq 3$
- Jede Kantenseite in genau 1 Facette
- Jede Kante hat genau 2 Seiten
- $\implies 3f \le \text{Anzahl der Seiten-Facetten-Inzidenzen} = 2m$
- $\implies 3(2+m-n) \le 2m \implies m \le 3n-6 \text{ (mit Euler-Formel)}$

Beweis: $\delta(G) \leq 5$

- Jede Kante hat genau 2 inzidente Knoten
- \bullet Jeder Knoten v hat genau $\deg(v)$ inzidente Kanten
- Für jeden Knoten v gilt $\deg(v) \ge \delta(G)$
- $\implies 2m =$ Anzahl der Knoten-Kanten-Inzidenzen = $\sum_{v \in V(G)} \deg(v) \geq \delta(G) \cdot n$

$$\implies 2(3n-6) \ge 2m \ge \delta(G) \cdot n \implies \delta(G) \le 6 - 12/n$$

2 Einbetten und Dualisieren

Einbettung = Äquivalenzklasse von planaren Zeichnungen

Definition: Sei G = (V, E) ein zusammenhängender Graph mit einer planaren Zeichnung. Die (kombinatorische) Einbettung ist

- \bullet für jeden Knoten v die zyklische (cw = "clockwise") Reihenfolge der inzidenten Halbkanten an v
- für jede Facette f die zykl. (cw) Reihenfolge der inzidenten Kantenseiten an f

Betrachte dafür beliebige Orientierung der Kanten und man erhält Halbkanten $e^{\rm in}$ und $e^{\rm out}$ sowie Kantenseiten $e^{\rm left}$ und $e^{\rm right}$ von e

Alle Zeichnungen mit der gleichen Einbettung sind äquivalent.

Definition: Sei G = (V, E) ein zusammenhängender Graph mit einer festen Einbettung und Facettenmenge F. Der **Dualgraph** $G^* = (V^*, E^*)$ ist

- $V^* = F$, das heißt, $f \in F \mapsto v_f \in V^*$
- \bullet für jede Kante $e \in E$ läuft die duale Kante e^* zwischen der Facette an e^{left} und der an e^{right}

Die Einbettung des **Primalgraphen** G = (V, E) induziert eine Einbettung des **Dualgraphen** $G^* = (V^*, E^*)$:

primal	dual
$f \in F$	$V_f = f \in V^* = F$
$e^{\text{left}}, e^{\text{right}}$	$(e^*)^{\text{out}}, (e^*)^{\text{in}}$
$v \in V$	$f_v = v \in F^*$
e Brücke	e* Schlinge
e Schlinge	<i>e</i> * Brücke

Bemerkungen:

- \bullet Der Dualgraph G^* ist immer zusammenhängend
- Falls G zusammenhängend ist, gilt $G = (G^*)^*$
- \bullet Für jede Einbettung von G und jede Facette f gibt es eine planare Zeichnung mit dieser Einbettung und f als äußere Facette

3 Graphfärbung

Definition: Sei G = (V, E) ein Graph, $k \in \mathbb{N}$. Eine **k-Färbung** von G ist eine Abbildung $c: V \to \{1, 2, \dots, k\}$, sodass $c(u) \neq c(v)$ für jede Kante $uv \in E$

- Kleinstes k, für das so eine k-Färbung existiert, heißt chromatische Zahl $\chi(G)$
- Bei Färbungen nehmen wir Graphen implizit als schlingenfrei an

Frage: Was ist die größte chromatische Zahl die ein planarer Graph annehmen kann, d.h. was ist $\chi_{\text{planar}} := \max\{\chi(G) \mid G \text{ planar}\}$?

Lemma: $\chi_{\text{planar}} \leq 6$

Beweis: Führe Induktion über |V|

- \bullet I.A.: $|V| \leq 6$: Man erhält eine Färbung, indem jeder Knoten eine eigene Farbe bekommt
- I.S.: |V| > 6
 - Nach Euler-Formel gibt es $v \in V$ mit $\deg(v) \leq 5$
 - Nach I.V. gibt es 6-Färbung von $G \setminus v$
 - Nachbarn von v in $G \setminus v$ decken höchstens fünf Farben ab \to Färbe v in verbleibender Farbe

Lemma: $\chi_{\text{planar}} \leq 5$

Beweis: Induktion analog zum oberen Beweis

I.S.:

- Nach Euler-Formel gibt es $v \in V$ mit $\deg(v) \leq 5$
- \bullet Nach I.V. gibt es 5-Färbung von $G \setminus v$
- Betrachte Teilgraph, der nur blau-gelbe Knoten enthält:

Färbung von G

Färbung von G

- Fall 1: 1 und 3 liegen in unterschiedlichen Zusammenhangskomponenten
 - \rightarrow Tausche in einer Zusammenhangskomponente alle blauen durch gelbe und alle gelben Knoten durch blaue aus \rightarrow Farbe wird für v frei
- <u>Fall 2</u> (siehe Bild): 1 und 3 liegen in der selben Zusammenhangskomponente.
 Für rot-braun-Teilgraph können 2 und 5 nicht in der selben Zusammenhangskomponente liegen, da Graph sonst nicht mehr planar wäre
 - \rightarrow Farbe wird für v frei

Definition: Sei G=(V,E) ein einfacher Graph. Sei $L\colon V\to 2^{\mathbb{N}}$ eine Listenzuweisung, d.h. L(v) ist Menge von Zahlen / Farben. Eine **L-Listenfärbung** von G ist eine Knotenfärbung c mit

- $c(v) \in L(v)$ für jeden Knoten $v \in V$
- $c(u) \neq c(v)$ für jede Kante $uv \in E$

G heißt **k-listenfärbbar** wenn für jede Listenzuweisung L mit $|L(v)| \ge k$ für jeden Knoten $v \in V$ eine L-Listenfärbung von G existiert.

• Kleinstes k, für das G k-listenfärbbar ist, heißt listenchromatische Zahl $\chi_{\text{list}}(G)$

Beweisskizze zu Listenfärbungen:

- $\chi_{\text{list}}(G) > k$: \exists Listen L $\not\equiv$ L-Listenfärbung
- $\chi_{\text{list}}(G) \leq k$: \forall Listen $L = \exists$ L-Listenfärbung

Lemma: Für jeden planaren Graphen gilt $\chi_{\text{list}}(G) \leq 6$

Beweis: Die gleiche Argumentation wie für $\chi_{\text{planar}} \leq 6$ funktioniert

Beobachtung: Für jeden Graphen G gilt $\chi_{\text{list}}(G) \geq \chi(G)$

Beweis:

- Setze $L(v) = \{1, \dots, k\}$ für jeden Knoten v
- Dann sind L-Listenfärbungen genau k-Knotenfärbungen $\implies \chi(G) \le \chi_{\text{list}}(G)$

Satz von Voigt: Es gibt einen planaren Graphen mit $\chi_{\text{list}}(G) \geq 5$

Beweis: Konstruiere einen planaren Graphen G mit Listenzuweisung L, sodass

- |L(v)| = 4 für jeden Knoten v
- \bullet keine L-Listenfärbung von G existiert

Betrachte dazu folgendes Gadget $H(\alpha, \beta)$:

Dieses Gadget ist nicht färbbar. Konstruiere nun aus 16 Gadgets den folgenden Graphen:

Dieser ist nicht L-listenfärbbar, denn für jede Färbung c ist Gadget H(c(p),c(q)) nicht färbbar.

Weitere Sätze und Beobachtungen:

- Für jeden planaren Graphen gilt $\chi_{\text{list}}(G) \leq 5$ (Satz von Thomassen)
 - \implies Mit obigem Satz folgt $\max\{\chi_{\text{list}}(G) \mid G \text{ planar}\} = 5$
- Es gibt einen planaren Graphen mit $\chi(G) \geq 4$
- Für jeden planaren Graphen G
 gilt $\chi(G) \leq 4$ (4-Farben-Satz)

$$\implies \chi_{\text{planar}} = 4$$

Ziel: Beweise $\chi_{\rm planar} \leq 5$ mit einer stärkeren Aussage

Satz: Sei G = (V, E) ein planarer Graph mit:

- jede innere Facette ist ein Dreieck
- \bullet äußere Facette ist ein einfacher Kreis C

Seien v_1, v_2 zwei aufeinanderfolgende Knoten auf C und L eine Listenzuweisung mit:

- |L(v)| = 5 für $v \in V \setminus C$
- |L(v)| = 3 für $v \in C \setminus \{v_1, v_2\}$
- $L(v_1) = {\alpha}, L(v_2) = {\beta} \text{ mit } \alpha \neq \beta$

Dann gibt es eine L-Listenfärbung von G.

Beweis: Führe Induktion über |V|

- I.A.: |V| = 3. Wähle $c(v_3) \in L(v_3) \setminus \{\alpha, \beta\}$
- I.S.: $|V| \ge 4$. Betrachte nun 2 Fälle:

- <u>Fall 1</u>: C hat eine Sehne $e = v_i v_j$. Zerteile G entlang e in zwei Graphen G_1, G_2 . O.B.d.A liegt $v_1 v_2$ in G_1 . Nach IV gibt es eine Färbung c_1 von G_1 . Sei $c_1(v_i) = \alpha'$ und $c_1(v_j) = \beta'$. Wende IV auf G_2 an mit Listen $\{\alpha'\}$ für v_i und $\{\beta'\}$ für v_j . \to Färbung c_2 von $G_2 \to$ Da c_1 und c_2 an der Sehne $v_i v_j$ übereinstimmen, erhalten wir eine Färbung von G.

- Fall 2: C hat keine Sehne. Betrachte Nachbarn $v_p \neq v_2$ von v_1 auf C. Lösche v_p auf G und erhalte G'. G' hat einfachen Kreis als äußere Facette, da v_p keine inzidente Sehne hat. Seien γ_1, γ_2 zwei Farben aus $L(v_p) \setminus \{\alpha\}$. Für jeden inneren Nachbarn w von v_p definiere $L'(w) = L(w) \setminus \{\gamma_1, \gamma_2\}$ und L'(v) = L(v) für jeden anderen Knoten v. Nach IV gibt es L'-Listenfärbung von G', sodass kein innerer Nachbar von v_p die Farbe γ_1 oder γ_2 hat. Wähle $c(v_p) \in \{\gamma_1, \gamma_2\} \setminus c'(v_{p-1})$ und erhalte somit eine L-Listenfärbung c von G.

Bemerkung: Für jeden beliebigen planaren Graphen G lassen sich Kanten und Knoten hinzufügen sowie Farben aus Listen entfernen, sodass der neue Graph G' den Anforderungen des obigen Satzes entspricht. Damit wurde die Aussage $\chi(G) \leq \chi_{\mathrm{list}(G)} \leq 5$ für jeden planaren Graphen G bewiesen.

4 Unterteilungen und Minoren

Definition: Sei G = (V, E) ein Graph, e = uv eine Kante. Dann ist die **Unterteilung** von e in G der Graph $G \circ e = (V', E')$ mit

• $V' = V + \{w\}$

 $\bullet \ E' = (E - uv) + \{uw, vw\}$

Beobachtung: G planar \iff $G \circ e$ planar

Definition: Graph G ist eine **Unterteilung von** H wenn $G = ((H \circ e_1) \circ e_2) \cdots) \circ e_k$. Wir sagen auch G ist H-Unterteilung. Graph G enthält eine H-Unterteilung, wenn ein Teilgraph $G' \subseteq G$ eine H-Unterteilung ist.

Beobachtung:

- K_5 und $K_{3,3}$ -Unterteilungen sind nicht-planar
- Jeder Graph der eine K_5 oder $K_{3,3}$ -Unterteilung enthält, ist nicht planar

Satz von Kuratowski: G ist planar $\iff G$ enthält keine K_5 - oder $K_{3,3}$ -Unterteilung

Beweis: " \Rightarrow " folgt aus obiger Beobachtung. Die Rückrichtung ist komplizierter und beweisen wir später.

Definition: Sei G = (V, E) ein Graph, e = uv eine Kante. Der Graph G/e = (V', E') ist der Graph, der durch **Kontrahieren der Kante** e entsteht, genauer:

- $V' = V \{u, v\} + \{w\}$
- $E' = E(G u v) \cup \{wa \mid au \in E \text{ oder } av \in E\}$

Diesen Prozess nennt man auch **Kantenkontraktion**. Dabei können Multikanten und Schlaufen entstehen.

Definition: Graph H ist **Minor von** G, wenn H aus G durch eine Folge von Kantenkontraktionen entsteht, also $H = ((G/e_1)/e_2 \cdots)/e_k$. Wir sagen dann auch: G ist ein H-**Minor** (H ist der kleinere Graph, G der Größere).

Beobachtung:

- G planar $\implies G/e$ planar
- G enthält K_{5} oder $K_{3,3}$ -Minor $\implies G$ nicht planar

Satz von Wagner: G planar \iff G enthält keinen K_5 - oder $K_{3,3}$ -Minor

Lemma: G enthält H-Unterteilung $\implies G$ enthält H-Minor

Beweis: Kontrahiere durch Unterteilung entstandene Knoten zu ursprünglich adjazenten Knoten.

Es sind also äquivalent:

- 1. G ist nicht planar
- 2. G enthält K_5 oder $K_{3,3}$ -Minor
- 3. G enthält K_5 oder $K_{3,3}$ -Unterteilung

 $(3) \implies (2) \implies (1)$ wurde schon bewiesen, $(1) \implies (2) \implies (3)$ müssen wir noch beweisen. Wir beginnen mit $(1) \implies (2)$.

Beweis von Wagner: Es muss nur noch die Rückrichtung beweisen werden. Sei hierfür G ein nicht-planarer Graph. Wir müssen einen K_5 - oder $K_{3,3}$ -Minor in G finden. O.B.d.A. sei G sogar **minimal nicht-planar**, d.h.

- G v ist planar für jeden Knoten $v \in V$
- G e ist planar für jede Kante $e \in E$
- G/e ist planar für jede Kante $e \in E$

Beweise zunächst folgendes Lemma:

Lemma: Sei G minimal nicht-planar, $xy \in E(G)$. Dann ist G - x - y ein Kreis.

Beweis: Da G minimal nicht-planar ist,

- ullet ist G zusammenhängend, da ansonsten Knoten aus einer Zusammenhangskomponente gelöscht werden könnte
- ist $\deg(v) \geq 3$ für jeden Knoten $v \in V(G)$, denn Knoten von Grad 0 und 1 tragen nichts zur Nicht-Planarität bei, können also gelöscht werden ohne die Nicht-Planarität zu verlieren. Für einen Knoten v von Grad 2 mit Kanten e, e' bleibt G/e nichtplanar. Wäre G/e planar, so muss wegen $G = (G/e) \circ e'$ bereits G planar sein. Widerspruch.

 $\deg(v) = 0$ $\deg(v) = 1$ G - v nicht-planar $\deg(v) = 2$ e - e' G/e nicht-planar

Das Lemma wird nun anhand von 3 Behauptungen bewiesen.

1. Behauptung: G - x - y enthält kein Θ .

Theta-Graphen sind Unterteilungen des Graphen mit zwei Knoten und drei parallelen Kanten.

Notation: Für einen Kreis C in einer planaren Zeichnung erhält man eine **geschlossene** Jordankurve, die die Ebene in zwei Komponenten unterteilt:

- int(C), das Innere von C
- $\operatorname{ext}(C)$, das Äußere von C

Beweis von Behauptung 1:

- Angenommen G x y enthält ein Θ .
- G' := G/xy ist planar mit Kante xy zu Knoten z kontrahiert.
- G' z = G x y ist ebenfalls planar.
- Zeichnung von G' enthält ein Θ und das Θ hat 3 Kreise:

- Betrachte Kreis C im Θ , sodass Knoten z auf einer Seite von C und eine Kante $e' \in E(\Theta)$ auf der anderen Seite von C liegt.
- Wähle Θ und C so, dass die Seite von C mit z inklusionsminimal ist, d.h. es gibt kein anderes Θ mit Kreis C, was z enthält und ein kleineres Inneres hat.
- O.B.d.A. gilt $z \in \text{int}(C)$ und $e' \in \text{ext}(C)$.

- Betrachte G'' = G ext(C).
- Da $e' \notin G''$ ist, wird mindestens eine Kante gelöscht, also ist G'' planar.
- Betrachte eine planare Zeichnung von G'' mit Kreis C.

<u>Ziel</u>: Zeige, dass C eine Facette berandet, denn dann kann ext(C) in C eingesetzt werden, was aber eine planare Zeichnung von G wäre. \mathcal{I}

ext(C)

int(C)

- \bullet Betrachte Pfad P in G'', der auf verschiedenen Knoten von C startet und endet und ansonsten zu C disjunkt ist.
- P entspricht auch einem Pfad P' in G'.

Wenn $z \notin P'$:

- Dann ist $C \cup P'$ ein Θ in G x y.
- Dieses Θ hat einen Kreis der z enthält, aber ein kleineres Inneres als C hat.
- Widerspruch zur Wahl von Θ und C.

Also liegt z auf P' und P muss x oder y enthalten. Also liegt jeder solche Pfad in der Zeichnung von G'' auf der Seite von C, die xy enthält.

 $\implies C$ liegt im Rand einer Facette von G''

Damit ist Behauptung 1 bewiesen.

2. Behauptung: G - x - y enthält keine zwei Knoten vom Grad 1.

- Angenommen u, v sind zwei Knoten in G x y mit Grad 1.
- Da $\deg(u), \deg(v) \geq 3$ in G, sind $ux, uy, vx, vy \in E(G)$ und u, v, x, y bilden ein Θ
- Nach Behauptung 1 hat jede Kante in G mindestens einen Endpunkt in u, v, x, y, um das Θ bei Kontraktion einer beliebigen Kante zu zerstören.
- Jedes $w \neq u, v, x, y$ ist zu u, v oder beiden benachbart, da $\deg(w) \geq 3$.
- Höchstens 2 Knoten außerhalb von u, v, x, y.

 \implies In allen Fällen ergibt sich ein Widerspruch zur Nicht-Planarität von G.

Damit ist Behauptung 2 bewiesen.

Definition: Ein Graph enthält genau dann kein Θ , wenn jede Kante auf höchstens einem Kreis liegt. Solche Graphen nennt man **Kakteen**. Kakteen sind kantendisjunkte Vereinigungen von Kreisen und Brücken.

Definition: Der **Block-Cutvertex-Tree** eines zusammenhängenden Graphen G (hier ist G Kaktus) ist ein Baum T mit:

- $V(T) = \{ \text{Artikulationspunkt in } G \} \cup \{ \text{Kreise in } G \} \cup \{ \text{Brücken in } G \}$
- $E(T) = \{vb \mid v \text{ Artikulationspunkt}, b \text{ Brücke oder Kreis}, v \text{ Knoten auf } b \text{ in } G\}$

Behauptung 3: G - x - y ist tatsächlich ein Kreis.

Beweis von Behauptung 3:

- Sei T Block-Cutvertex-Tree von G x y.
- Wenn G-x-y keinen Artikulationspunkt enthält, ist G-x-y ein Kreis (Beweis fertig) oder eine Kante. Dann gilt $|V(G)| \leq 4$, da G höchstens nur die Knoten x, y und die Endpunkte der Kante enthält $\implies G$ ist planar \mathbf{f}
- Also gibt es Artikulationspunkte und |T| > 2.
- Also hat T mindestens 2 Blätter.
- Blätter im Block-Cutvertex-Tree sind entweder Brücken oder Kreise im ursprünglichen Graphen. Brücken führen immer zu Grad 1 Knoten. Nach Behauptung 2 gibt es ein Blatt in T, das in G ein Kreis C ist.
- Sei v der Artikulationspunkt in C, der C an den Graphen "klebt".

- Jedes $u \in V(C) v$ hat Grad 2 in G x y (da Blatt im Cutvertex-Tree), aber mindestens Grad 3 in G.
- Also ist jedes u zu x oder y benachbart. u kann nicht zu beiden benachbart sein, da sonst G v w ein Θ enthält.

• Ebenso darf C nur Länge 3 haben, da sonst G - v - w ebenso wieder ein Θ bildet.

• Dann hat $C \cup \{x, y\}$ ein Θ in G.

- Nach Behauptung 1 hat jede Kante mindestens einen Endpunkt im Θ .
- Jedes $w \in G (C \cup \{x,y\})$ hat alle Nachbarn in $C \cup \{x,y\}$, sonst gäbe es eine Kante außerhalb des Θ . w muss genau die Nachbarschaft $\{x,y,v\}$ haben, denn w kann nicht zu s oder t benachbart sein, da diese Grad 2 haben.
- Würden zwei solche w, w' existieren, so wäre w, w', x, y ein Θ in G C.

- \implies Also ist w der einzige Knoten in $G-(C\cup\{x,y\}).$
- O.B.d.A sei $sx \in E$. Es gilt entweder $ty \in E$ oder $tx \in E$.

- \bullet Wir wissen, dass Gnur die Knoten v,s,t,x,y,w besitzt.
- Wenn $vx \in E$ der $vy \in E$, dann gibt es ein Θ in G s t.

• Wenn $tx \in E$, dann gibt es ein Θ in G - w - y.

• Insgesamt wissen wir $vx \notin E, vy \notin E, tx \notin E, ty \in E, ws \notin E, wt \notin E$. Wir kennen also ganz G und G ist planar. Widerspruch.

Damit sind Behauptung 3 und das Lemma bewiesen.

 $Beweis\ von\ Wagner\ -\ Abschluss:$

- Sei $xy \in E$ eine Kante und C der Kreis G x y.
- Sei $uv \in E$ eine Kante auf C mit $ux \in E$.
- 1. Fall: $uy \notin E$.
 - G u x ist ein Kreis, d.h. v muss Grad 2 haben, also ist $vy \in E$.

- Wenn $vx \in E$ dann hat G x v einen Knoten u mit Grad 1. \mathbf{z} $\implies vx \notin E$
- Analoge Argumente liefern: N(x), N(y) sind auf C disjunkt und alternierend.
- $|C| \ge 4$ und wir finden einen $K_{3,3}$ -Minor.

- 2. Fall: Jeder Knoten auf C ist zu x und y benachbart.
 - $|C| \ge 3$. Wir finden einen K_5 -Minor.

Damit ist der Satz von Wagner bewiesen.

Wir beweisen nun $(2) \implies (3)$.

Lemma: Seien G, H Graphen. Maximaler Grad von H höchstens 3, d.h. $\Delta(H) \leq 3$. Dann sind äquivalent:

- ullet G enthält H-Minor
- G enthält H-Unterteilung

Beweis: Die Richtung Unterteilung \implies Minor wurde bereits gezeigt. Beweise nun also die Rückrichtung. In einem H-Minor finden wir H-Unterteilung.

- O.B.d.A ist ist jede Kontraktionsmenge ein Baum, sodass
 - jedes Blatt hat Nachbarn in anderer Menge,
 - zwischen je zwei Mengen ist maximal eine Kante

Überflüssige Kanten können gelöscht werden.

- Wähle Knoten von maximalem Grad in jeder Menge.
- Dann bilden diese Bäume schon eine H-Unterteilung, da $\Delta(H) \leq 3$.

Beweis von Kuratowski: Es muss nur noch die Richtung G nicht planar $\implies G$ enthält eine K_5 oder $K_{3,3}$ -Unterteilung bewiesen werden.

- Sei also G nicht planar. Wir müssen Unterteilung von $K_{3,3}$ oder K_5 finden.
- Nach Wagner gibt es einen $K_{3,3}$ oder K_5 -Minor in G.
- Bei $K_{3,3}$ -Minor, sind wir nach vorigem Lemma fertig.

Sonst: Induktion über Knotenzahl von G:

- I.A.: G muss mindestens 5 Knoten besitzen, um nicht-planar zu sein, und dort kommt auch nur K_5 in Frage.
- I.S.: Wenn es sich beim K_5 -Minor um einen K_5 -Teilgraph handelt, dann sind wir fertig. Andernfalls gibt es e = uv, sodass G/e immer noch einen K_5 -Minor enthält. G/e ist also immer noch nicht-planar. Nach IV existiert eine $K_{3,3}$ oder K_5 -Unterteilung in G/e. Sei w der Knoten, zu dem e kontrahiert wird.
 - Wenn w in der Unterteilung ein Unterteilungspunkt ist (also deg(w) = 2), gibt es auch solch eine Unterteilung in G.
 - Wenn deg(w) = 3 in Unterteilung, gibt es auch in G eine Unterteilung.

- Also o.B.d.A. deg(w) = 4 in K_5 -Unterteilung in G/e.

- Betrachte die vier anderen Knoten von Grad 4.
- Sind mindestens drei davon zu u verbunden, finden wir wieder eine K_5 Unterteilung in G.

– Andernfalls sind zwei zu u und zwei zu v verbunden und wir finden eine $K_{3,3}$ -Unterteilung in G.

Damit wurde der Satz von Kuratowski bewiesen.

5 Separatoren in planaren Graphen

Definition: Eine Menge $S \subset V$ heißt Separator von G = (V, E), falls der durch $V \setminus S$ induzierte Subgraph von G unzusammenhängend ist.

Minimum-Balanced-Separator-Problem: Gegeben sei ein Graph G=(V,E). Finde eine Partition von V in drei Mengen V_1, V_2 und S, wobei der Separator S minimale Kardinalität hat und V_1 von V_2 trennt mit $|V_1|, |V_2| \leq \alpha \cdot |V|$ und $\frac{1}{2} \leq \alpha < 1$ konstant.

- Separator soll also klein sein
- Separator soll etwa gleich große Teilgraphen erzeugen
- Problem ist \mathcal{NP} -schwer

Planar-Separator-Theorem: Die Knotenmenge eines zusammenhängenden, planaren Graphen G = (V, E), $n = |V| \ge 5$, kann so in drei Mengen $V_1, V_2, S \subseteq V$ partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n$
- $\bullet \ S$ ist ein Separator, der V_1 von V_2 trennt
- $|S| \leq 4 \cdot \sqrt{n}$

Eine solche Partition kann in $\mathcal{O}(n)$ Zeit konstruiert werden.

Für den Beweis dieses Satzes benötigen wir folgendes Lemma.

Lemma: Sei G = (V, E) ein planarer, zusammenhängender Graph mit $n = |V| \ge 5$ und T = (V, E(T)) ein Spannbaum von G mit Wurzel w und Höhe h. Die Knotenmenge von G kann so in drei Mengen V_1, V_2 und S partitioniert werden, dass

- $|V_1|, |V_2| \leq \frac{2}{3} \cdot n$
- S ist ein Separator, der V_1 von V_2 trennt
- $|S| < 2 \cdot h + 1$

Eine solche Partition kann in $\mathcal{O}(n)$ Zeit konstruiert werden.

Beweis:

- Konstruiere eine Triangulierung von G. Nach Satz von Euler hat der neue Graph 3n-6 Kanten und 2n-4 Facetten.
- \bullet Spannbaum T von G ist Spannbaum des triangulierten Graphen
- In T induziert jede Nichtbaumkante $\{x, y\}$ einen Kreis $K_{x,y}$ mit $\leq 2 \cdot h + 1$ Knoten (maximal h Knoten in beide Richtungen + Wurzel)

- Sei Inneres $(K_{x,y})$ die Knoten, die innerhalb des Kreises, aber nicht auf dem Rand des Kreises liegen. Definiere Äußeres $(K_{x,y})$ dementsprechend.
- Wähle Nichtbaumkante $\{x,y\}$ aus, wobei $|\mathrm{Inneres}(K_{x,y})| \geq |\mathrm{\ddot{A}uBeres}(K_{x,y})|$
- Wennn $|\text{Inneres}(K_{x,y})| \leq \frac{2}{3}n$, dann gilt das Lemma und wir sind fertig

- Sei also $|\operatorname{Inneres}(K_{x,y})| > \frac{2}{3}n$, dann ist $|\operatorname{\ddot{A}ußeres}(K_{x,y})| < \frac{1}{3}n$
- Ziel: Ersetze $\{x,y\}$ durch eine andere Nichtbaumkante, sodass das Innere kleiner wird und das Äußere nicht über $\frac{2}{3}n$ wächst
- Da Graph trianguliert, begrenzt Kante $\{x,y\}$ zwei Dreiecke, von denen eins im Inneren $(K_{x,y})$ liegt \implies Dreieck $x\ y\ t$

<u>Fall 1</u>: $\{x,t\}$ oder $\{t,y\}$ ist eine Baumkante, o.B.d.A sei $\{t,y\}$ eine Baumkante. Ersetze $\{x,y\}$ durch $\{x,t\}$.

- Falls $t \notin K_{x,y}$:
 - $|\ddot{A}uBeres(K_{x,t})| = |\ddot{A}uBeres(K_{x,y})|$
 - $|\operatorname{Inneres}(K_{x,t})| = |\operatorname{Inneres}(K_{x,y})| 1$
- Falls $t \in K_{x,y}$:
 - $|\ddot{\mathbf{A}}\mathbf{u}\mathbf{\beta}\mathbf{eres}(K_{x,t})| = |\ddot{\mathbf{A}}\mathbf{u}\mathbf{\beta}\mathbf{eres}(K_{x,y})| + 1$
 - $|\operatorname{Inneres}(K_{x,t})| = |\operatorname{Inneres}(K_{x,y})|$

Fall 2: $\{x, t\}$ und $\{t, y\}$ sind beides Nichtbaumkanten.

• Sei $|\operatorname{Inneres}(K_{x,t})| \ge |\operatorname{Inneres}(K_{t,y})|$. Ersetze $\{x,y\}$ durch $\{x,t\}$.

- $|\ddot{\mathbf{A}}\mathbf{u}\mathbf{B}\mathbf{e}\mathbf{res}(K_{x,t})| \leq n (|\mathbf{I}\mathbf{n}\mathbf{n}\mathbf{e}\mathbf{res}(K_{x,t})| + P) \leq n \frac{1}{2}|\mathbf{I}\mathbf{n}\mathbf{n}\mathbf{e}\mathbf{res}(K_{x,y})| < n \frac{1}{2} \cdot \frac{2}{3}n = \frac{2}{3}n$
- $|\operatorname{Inneres}(K_{x,t})| \le |\operatorname{Inneres}(K_{x,y})| 1$

In beiden Fällen verkleinern wir $|\text{Inneres}(K_{x,y})|$ und lassen $|\text{Äußeres}(K_{x,y})|$ klein genug. Dies kann nun so lange wiederholt werden, bis auch $|\text{Inneres}(K_{x,y})| \leq \frac{2}{3}n$ gilt.

- ⇒ Partition mit den gewünschten Eigenschaften lässt sich konstruieren. Wir müssen nun noch deren Implementation in linearer Laufzeit sicherstellen.
 - Triangulierung des Graphen in $\mathcal{O}(n)$ möglich \to Übung

- Ersetzung einer Nichtbaumkante durch eine andere, welche die Anzahl der Dreiecke im Inneren reduziert \implies Höchstens 2n-4 Schritte
- In Fall 1 können wir |Inneres $(K_{x,y})$ | und |Äußeres $(K_{x,y})$ | in $\mathcal{O}(1)$ berechnen
- Für Fall 2 muss entschieden werden, ob |Inneres $(K_{x,t})$ | oder |Inneres $(K_{t,y})$ | größer ist. Zeige, dass auch dieser Fall nur konstante Zeit benötigt mithilfe einer amortisierten Analyse.
- Führe dazu folgende Vorberechnung durch:
 - Durchlaufe T von den Blättern zur Wurzel
 - Speichere für jeden Knoten und inzidente Baumkanten die Anzahl Knoten im Unterbaum links bzw. rechts der Kante und markiere den Knoten
 - Dies kann einmalig in Linearzeit durchgeführt werden
- ullet Laufe von t nach oben bis zum ersten markierten Knoten v und berechne die Anzahl der Knoten rechts und links des Weges
- Laufe von x und y abwechselnd in Richtung Wurzel bis erstmals v, d.h. Weg von t zur Wurzel, erreicht wird.

- $|\operatorname{Inneres}(K_{x,t})| = D + B$
- $|\operatorname{Inneres}(K_{t,y})| = A D B W$

Die Anzahl der Operationen in einem Schritt ist proportional zu der Anzahl der Knoten in dem Teil von $K_{x,y}$, der nicht weiter betrachtet wird. Also ist auch Fall 2 in amortisiert konstanter Zeit implementierbar.

Damit ist auch die Laufzeit und somit das gesamte Lemma bewiesen.

BFS-Lemma: Sei T = (V, E(T)) ein BFS-Baum von G = (V, E). Für eine Nichtbaumkante $\{u, v\}$ gilt $|\text{level}(u) - \text{level}(v)| \leq 1$.

Beweis des Planar-Separator-Theorem:

- Konstruiere eine Triangulierung von G und ein BFS-Baum T mit beliebiger Wurzel
- Sei μ das Level mit der Eigenschaft:

- Wenn |level μ | $\leq 4\sqrt{n}$, dann ist μ ein geeigneter Separator und wir sind fertig.
- Sei also |level μ | > $4\sqrt{n}$.
- Sei m das unterste Level oberhalb von μ und M das oberste Level unterhalb von μ mit |level m| $< \sqrt{n}$ und |level M| $< \sqrt{n}$.

 \bullet Offensichtlich gilt $|A_1| \leq \frac{n}{2}$ und auch $|A_3| \leq \frac{n}{2},$ da schon $> \frac{n}{2}$ Knoten über μ

Fall 1: $|A_2| \leq \frac{2}{3}n$

- $S = \text{level } m \cup \text{level } M \text{ ist Separator}$
- $V_1 = \max\{A_1, A_2, A_3\}, |V_1| \le \frac{2}{3}n$
- $V_2 = V \setminus (S \cup V_1), |V_2| \le n |V_1| \le n \frac{|V_2|}{2}$, da $|V_1| \ge \frac{|V_2|}{2}$, sonst wäre $|V_1|$ nicht maximal, da V_2 ein größeres A_i beinhaltet $\Rightarrow |V_2| \le \frac{2}{3}n$
- Damit wurde ein geeigneter Separator gefunden und wir sind fertig

<u>Fall 2</u>: $|A_2| > \frac{2}{3}n$

• Verschmelze die Knoten in $A_1 \cup$ level m zu einem Knoten s und entferne alle Knoten aus level $M \cup A_3$. Dadurch entsteht ein neuer Graph G' = (V', E').

• BFS-Baum T induziert BFS-Baum T' in G'

- T' hat maximal Höhe \sqrt{n} , da $|V'| \leq n$ und durch die Wahl von m und M für jede Schicht S_i zwischen m und M $|S_i| \geq \sqrt{n}$ gilt
- Wende obiges Lemma auf G' und T' an und erhalte S', U_1, U_2

- Sei $S = S' \cup \text{level } m \cup \text{level } M$
- Nach dem Lemma folgt $|S'| \le 2\sqrt{n} + 1$, also $|S| \le 4\sqrt{n}$
- Sei $V_1 = \max\{U_1, U_2\}$. Nach dem Lemma gilt $|V_1| \leq \frac{2}{3}n$
- Weiterhin gilt $|V_1| + |S| > |V_1| + |S'| > \frac{1}{2} \cdot |A_2|$. Setzt man also $V_2 = V \setminus (S \cup V_1)$, dann gilt $|V_2| = n |V_1| |S| < n \frac{1}{2} \cdot |A_2| < \frac{2}{3}n$

Auch hier findet man also einen geeigneten Separator, womit das **Planar-Separator-Theorem** bewiesen ist.

6 Matchings und Maximum Independent Set

MAXIMUM INDEPENDENT SET: Für G = (V, E), finde eine **größte unabhängige Menge**. Also Knotenmenge $I \subseteq V$ mit |I| maximal, sodass jede Kante in E höchstens einen Endpunkt in I hat.

Approximationsalgorithmus für MAXIMUM INDEPENDENT SET:

1. Zerkleinere den Graphen mit Planar Separator, bis Komponenten nur noch $\mathcal{O}(\log \log n)$ Knoten haben

- 2. Löse Komponenten mit Brute-Force in $\mathcal{O}(2^{\log \log n}) = \mathcal{O}(\log n)$ Zeit pro Komponente $\to \mathcal{O}(n \log n)$ Gesamtlaufzeit
- 3. Zusammenfügen ist disjunkte Vereinigung der Teillösungen (Kein Problem an Schnittpunkten, da Separator dazwischen)

Güte der Approximation:

- Satz: Wiederholtes Anwenden des planar Separators gibt Komponenten der Größe $\mathcal{O}(r)$ bei Separator-Gesamtgröße $\mathcal{O}(n/\sqrt{r})$
 - ohne Beweis.
- Mit obigem Satz folgt Separator-Gesamtgröße $|S| \leq \mathcal{O}(n/\sqrt{\log \log n})$
- Für optimale Lösung OPT(G) gilt $OPT(G) \ge n/4$ nach Vier-Farben-Satz
- Damit folgt:

$$\begin{split} OPT(G) - A(G) &\leq |S| \leq \mathcal{O}\left(\frac{n}{\sqrt{\log\log n}}\right) \\ \Rightarrow A(G) &\geq OPT(G) - \mathcal{O}\left(\frac{n}{\sqrt{\log\log n}}\right) \\ &\geq OPT(G) - \mathcal{O}\left(\frac{OPT(G)}{\sqrt{\log\log n}}\right) \\ &= OPT(G) \cdot \left(1 - \mathcal{O}\left(\frac{1}{\sqrt{\log\log n}}\right)\right) \end{split}$$

wobei $OPT(G) - A(G) \leq |S|$ gilt, da A für die Separatoren keine Lösungen berechnet und somit die Abweichung von der optimalen Lösung max. so groß ist wie die Kardinalität von S. Diese Approximation ist bestmöglich wenn $\mathcal{P} \neq \mathcal{NP}$.

Definition:

- ullet Kantenmenge M ist ein **Matching** wenn jeder Knoten zu höchstens einer Kante in M inzident ist.
- Wenn ein Knoten v zu einer Kante in M inzident ist, heißt v **gematcht**, ansonsten **ungematcht**.

GEWICHTSMAXIMALES MATCHING:

• Gegeben: Graph G = (V, E) und Gewichtsfunktion $w: E \to \mathbb{R}$

• Gesucht: Matching $M \subseteq E$ mit $w(M) = \sum_{e \in M} w(e)$ maximal

Definition: Sei $M \subseteq E$ Matching in (G = (V, E), w). Ein **M-alternierender Weg** ist ein einfacher Pfad oder Kreis P in G, sodass

• sich Kanten von M und E-M auf P abwechseln

• wenn P ein Pfad mit Endpunkt v und Kante e an v in P ist, dann ist $e \in M$ oder v ungematcht (verhindert, dass der Pfad verlängert werden kann)

Für Matching M und alternierenden Weg P ist auch $M\Delta P := (M-P) \cup (P-M)$ (symmetrische Differenz) ein Matching.

Dabei gilt $w(M\Delta P)-w(M)=w(P-M)-w(P\cap M)$, denn sowohl neues als auch altes Matching enthalten die Kanten, die nicht auf dem Pfad liegen. Dann ist die Differenz zwischen neuem und alten Matching nur die Kanten von $M\Delta P$ auf dem Pfad, was P-M ist, und die Kanten von M auf dem Pfad, was $P\cap M$ ist.

Defintion: Ein alternierender Weg heißt **erhöhend** wenn $w(M\Delta P) > w(M)$, also $w(P-M) > w(P\cap M)$.

Lemma: Sei M ein Matching in (G, w). Es sind äquivalent:

- M ist gewichtsmaximal
- \bullet Es gibt keinen erhöhenden alternierenden Weg bezüglich M

Beweis:

- \bullet " \Rightarrow ": Falls es zu M einen erhöhenden Weg gibt, so kann M natürlich nicht maximales Gewicht haben
- "=":
 - Sei M nicht gewichtsmaximal, also gibt es Matching M^* mit $w(M^*) > w(M)$
 - Betrachte $M\Delta M^* = (M \cup M^*) \setminus (M \cap M^*)$

- $-M\Delta M^*$ hat nur Knoten vom Grad 1 oder 2, besteht also aus einfachen Kreisen und Wegen P_1, \ldots, P_t
- Jedes P_i ist M-alternierender Weg
- Es gilt $w(M^*) w(M) = \sum_{i=1}^{t} (w(M^* P_i) w(M \cap P_i))$
- Ein Summand ist positiv, da $w(M^*) w(M) > 0$
- Einer der P_i ist also erhöhend, mit $w(M^* \cap P_i) > w(P_i \cap M) \implies$ Es gibt also einen erhöhenden Weg. Widerspruch.

Algorithmus für gewichtsmaximales Matching in planaren Graphen:

- 1. Falls $|V(G)| \leq 5$, finde gewichtsmaximales Matching durch Brute-Force
- 2. Falls |V(G)| > 5:
 - Finde $\frac{2}{3}$ -balancierten Separator S mit $|S| = \mathcal{O}(\sqrt{n})$
 - Berechne optimale Matchings auf allen Komponenten von G' := G S
 - \bullet Sei M' die Vereinigung dieser optimalen Matchings. M' ist optimal für G'

- 3. Solange $S \neq \emptyset$:
 - Wähle $v \in S$. Finde alternierenden Weg P in G' + v mit Endpunkt v mit $w(P M') w(P \cap M')$ maximal
 - Falls P erhöhend, ersetze M' durch $M\Delta P$
 - \bullet Lösche v aus S
 - Ersetze G' durch G' + v

Im Folgenden wollen wir die Korrektheit des Algorithmus beweisen und dessen Laufzeit bestimmen. Mit folgendem Lemma folgt die Korrektheit.

Lemma: Sei G=(V,E) ein Graph, $v\in V$ ein Knoten, M ein gewichtsmaximales Matching in G-v.

- M ist gewichtsmaximal in $G \iff$ Es ex. kein erhöhender Weg mit Endpunkt v Wenn ein erhöhender Pfad P mit Endpunkt v und $M' = M\Delta P$ existiert, dann gilt:
 - M' ist gewichtsmaximal in $G \iff \text{Differenz } w(P-M) w(P\cap M)$ ist maximal unter all solchen Pfaden mit Endpunkt v

Beweis - Teil 1:

- " \Rightarrow ": Wenn es einen solchen erhöhenden Weg gäbe, dann kann M nicht gewichtsmaximal in G sein.
- "=":
 - Sei M nicht gewichtsmaximal in G, dann gibt es ein Matching M^* mit $w(M^*) > w(M)$
 - Betrachte Pfade und Kreise P_1, \ldots, P_t in $M\Delta M^*$
 - Analog zum letzten Beweis gibt es P_i mit $w(M^* \cap P_i) > w(M \cap P_i)$
 - Wenn $v \notin P_i$, dann ist P_i erhöhend für M in $G v \implies$ Widerspruch, da angenommen wurde, dass M optimales Matching für G v ist
 - Also ist $v \in P$. Da $v \notin M$, weil M Matching für G v ist, ist v ein Endpunkt von P_i

Beweis - Teil 2:

- \bullet " \Rightarrow ": Klar. Wenn M' maximal ist, dann kann es keinen besseren Pfad geben.
- "ሩ":
 - Sei nicht M', sondern M^* gewichtsmaximal in G
 - Analog zu oben gibt es erhöhenden Pfad P in $M\Delta M^*$ mit v als Endpunkt (da nur Komponente mit v zu Verbesserung führen kann, weil andere Komponenten auch von M betrachtet wurden) und $w(M^*)-w(M)=w(P-M)-w(P\cap M)$
 - Da $w(M^*) w(M) > w(M') w(M)$ war Pfad für M' nicht maximal

Satz: Ein gewichtsmaximales Matching eines planaren Graphen mit n Knoten kann in $\mathcal{O}(n^{\frac{3}{2}}\log n)$ berechnet werden.

Beweis: Siehe Algorithmus für gewichtsmaximales Matching in planaren Graphen.

- 1. geht in $\mathcal{O}(1)$
- Finden eines $\frac{2}{3}$ -balancierten Separator in $\beta \cdot n$ Schritten
- Finden von |S| erhöhenden Wegen mit Endpunkt v in $|S| \cdot \mathcal{O}(n \log n) \leq \gamma \cdot n^{\frac{3}{2}} \log n$ Schritten
- \bullet Sei T(n) die worst-case Gesamtlaufzeit, dann ist

$$T(n) \le T(n_1) + T(n_2) + \beta \cdot n + \gamma \cdot n^{\frac{3}{2}} \log n$$

wobei n_1, n_2 die Anzahl der Knoten der Teilgraphen nach dem Separieren ist

• Der Rest vom Beweis ist viel Mathe und nicht relevant für die Klausur

7 Mixed Max Cut

Definition: Ein Schnitt in G=(V,E) ist eine Kantenmenge $C\subseteq E$, die von einer Knotenmenge $A\subseteq V$ folgendermaßen induziert wird:

$$C=\{uv\in E\mid |A\cap\{u,v\}|=1\}$$

C enthält also genau die Kanten, die genau einen Endpunkt in A haben.

MIXED-MAX-CUT:

• **Gegeben**: Graph G = (V, E) und Gewichtsfunktion $w: E \to \mathbb{R}$

• Gesucht: Schnitt $C \subseteq E$ mit $w(C) = \sum_{e \in C} w(e)$ maximal und $C \neq \emptyset$

Satz: MIXED-MAX-CUT ist auf planaren Graphen polynomiell lösbar.

Beweis: Gegeben einen Graphen $G_0 = (V, E_0)$ und $w: E_0 \to \mathbb{R}$.

1. Trianguliere G_0 zu G=(V,E) und setze w(e)=0 für jede Kante $e\in E\setminus E_0$

Beobachtung: Für Schnitt C in G und $C_0 = C \cap E_0$ in G_0 sind äquivalent:

• $A \subseteq V$ induziert $C_0 \subseteq E_0$ in G_0

• $A \subseteq V$ induziert $C \subseteq E$ in G

Außerdem gilt $w(C_0) = w(C)$, also reicht es im Folgenden den triangulierten Graphen anzuschauen.

Achtung: $C_0 = \emptyset$ könnte gelten! Das wird später behoben.

2. Betrachte Dualgraph $G^* = (F, E^*)$ von G = (V, E).

- Setze $w(e^*) = w(e)$ für alle $e \in E$
- G^* ist 3-regulär, d.h. jeder Knoten hat Grad 3
- $\bullet\,$ Für jede Kantenmenge $C^*\subseteq E^*$ hat jeder Dualknoten 0, 1, 2 oder 3 inzidente Kanten in C^*

Definition: Kantenmenge $X \subseteq E^*$ heißt **gerade**, wenn jeder Knoten zu gerade vielen Kanten in X inzident ist.

Lemma: Sei G = (V, E) trianguliert, G^* zu G dual. Dann gilt:

$$C \subseteq E$$
 ist Schnitt $\iff C^* \subseteq E^*$ ist eine gerade Kantenmenge

Außerdem ist $w(C) = w(C^*)$.

Beweis:

• " \Rightarrow ": Sei $C \subseteq E$ Schnitt in G induziert von $A \subseteq V$. Sei $f \in V(G^*)$ und e_1^*, e_2^*, e_3^* seine drei inzidenten Kanten. Betrachte das zu f zugehöriges Dreieck v_1, v_2, v_3 in G.

– Ist
$$|A \cap \{v_1, v_2, v_3\}| = 0, 3$$
, dann $|C^* \cap \{e_1^*, e_2^*, e_3^*\}| = 0$

- Ist
$$|A \cap \{v_1, v_2, v_3\}| = 1, 2$$
, dann $|C^* \cap \{e_1^*, e_2^*, e_3^*\}| = 2$

Also ist C^* gerade.

• " \Leftarrow ": Sei $C^* \subseteq E^*$ eine gerade Kantenmenge in G^* . Dann hat jeder Dualknoten 0 oder 2 inzidente Kanten in C^* , also ist C^* eine disjunkte Vereinigung von Kreisen und isolierten Punkten C_1, \ldots, C_k . Sei nun

$$A = \{v \in V \mid v \text{ ist im Inneren von ungerade vielen Kreisen}\}$$

Dann gilt:

$$e \in E$$
 ist in C

$$\Leftrightarrow e^* \in C^*$$

$$\Leftrightarrow e^* \in C_i \text{ für ein } i \in \{1, \dots, k\}$$

- \Leftrightarrow Endpunkte von e liegen auf verschiedenen Seiten von C_i
- \Leftrightarrow Genau einer der Endpunkte von e ist in A

Also ist C ein Schnitt und wird von A induziert.

Wir suchen jetzt also eine gewichtsmaximale gerade Kantenmenge C^* in G^* . Das heißt, jeder Knoten hat Grad 0 oder 2 in C^* .

3. Modifiziere $G^* = (F, E^*)$ zu G' = (V', E') wie folgt:

Ursprüngliche Kanten behalten ihr Gewicht und neue Kanten erhalten Gewicht 0. G' ist wieder planar und 3-regulär.

Definition: Sei $k \in \mathbb{N}$ eine Zahl. Eine Kantenmenge $X \subseteq E$ heißt **k-Faktor**, wenn jeder Knoten zu genau k Kanten in X inzident ist.

• 1-Faktoren heißen auch perfekte Matchings

Lemma:

- Für jede gerade Menge $C^* \subseteq E^*$ ex. ein 2-Faktor $C' \subseteq E'$ mit $C' \cap E^* = C^*$
- Für jeden 2-Faktor $C' \subseteq E'$ ist $C^* = C' \cap E^*$ eine gerade Menge
- Es gilt $w(C') = w(C^*)$

Beweis:

1. Fall $f \in F$ hat zwei inzidente Kanten in C^* : 2. Fall $f \in F$ hat keine inzidente Kante in C^* :

Wir suchen jetzt also einen gewichtsmaximalen 2-Faktor C' in G'.

- 4. Betrachte 1-Faktoren (perfekte Matchings) statt 2-Faktoren.
 - Da G' 3-regulär ist, ist das Komplement eines 2-Faktors C' in G' ein perfektes Matching M.

$$M = E' - C'$$

 \bullet 2-Faktor C' ist gewichtsmaximal genau dann, wenn das komplementäre perfekte Matching M gewichtsminimal ist

$$w(M) = w(E') - w(C')$$

$$\xrightarrow{C'} \xrightarrow{M}$$

Damit haben wir einen Algorithmus angegeben, der das Problem löst. Im Folgenden betrachten wir die Laufzeit.

Satz: In planaren Graphen können gewichtsminimale perfekte Matchings in $\mathcal{O}(n^{\frac{3}{2}} \log n)$ berechnet werden.

Beweis: Reduziere auf gewichtsmaximales Matching.

- w'(e) := -w(e), d.h. maximal bezüglich $w' \iff$ minimal bezüglich w
- w''(e) := W + w'(e) für großes $W > |V| \cdot \max_{e \in E'} (|w'(e)|)$, also hat max. Matching bzgl. w'' die größtmögliche Anzahl Kanten. Damit sind gewichtsmaximale Matchings bzgl. w'' perfekt.
- \bullet Max. Matchings bzgl. w''entsprechen also genau den min. perfekten Matchings bezüglich w.
- Da MAX MATCHING in $\mathcal{O}(n^{\frac{3}{2}}\log n)$ ist, ist der Satz bewiesen.

Nun muss nur noch $C_0 \neq \emptyset$ sichergestellt werden.

- Für eine Kante $e \in E_0$ wollen wir erzwingen, dass $e \in C_0$
- Also soll e^* nicht in M sein:
 - Unterteile dafür e^* mit Knoten b und setze für die neu entstandenen Kanten e_1, e_2 die Gewichte $w(e_1) = w(e^*)$ und $w(e_2) = 0$
 - Füge Kante e' = bc mit neuem Knoten c hinzu und setze w(e') = 0
 - Jedes perfekte Matching muss dann e' enthalten

- Um besten Schnitt zu erhalten, wiederholt man den Vorgang für jede Kante $e \in E_0$
- Wir erhalten Laufzeit $\mathcal{O}(n^{\frac{3}{2}}\log n)\cdot\mathcal{O}(n) = \mathcal{O}(n^{\frac{5}{2}}\log n)$. $\mathcal{O}(n^{\frac{3}{2}}\log n)$ ist aber möglich! Damit ist der Beweis abgeschlossen. Es folgt eine Übersicht über den Algorithmus.

Berechne ein gewichtsminimales perfektes Matching M in G'.

Da alle Schritte bis auf Berechnung von M nur O(n) Zeit brauchen, ist MIXED-MAX-CUT in $O(n^{\frac{3}{2}} \log n)$.

8 Flussnetzwerke und Maximum-Flow

Wir betrachten im Folgenden gerichtete Graphen D=(V,A)

- Kante von u nach v heißt uv und es gilt $uv \neq vu$
- Wir nehmen an, dass $uv \in A \iff vu \in A$

Definition: Ein Flussnetzwerk ist ein 4-Tupel

$$(D=(V,A),c\colon A\to\mathbb{R}_{>0},s\in V,t\in V)$$

wobei D wie oben, c jeder Kante ihre Kapazität zuordnet, s die Quelle und t die Senke darstellen. Die Kapazität einer Kante ist in beide Richtungen gleich, also

$$c(uv) = c(vu) \quad \forall uv \in A$$

Definition: Ein *s*-*t*-Fluss bezüglich eines Flussnetzwerkes ist eine Funktion $\Phi \colon A \to \mathbb{R}$, die jeder Kante uv ihren Fluss von u nach v zuordnet und Folgendes einhält:

• Flusserhaltung: $\sum_{uv \in A} \Phi(uv) = 0$ für jeden Knoten $u \neq s, t$

(Netto-Ausfluss aus u muss 0 sein, da Einfluss negativ gezählt wird)

- Zulässigkeit: $\Phi(uv) \le c(uv)$ für alle $uv \in A$
- Antisymmetrie: $\Phi(uv) = -\Phi(vu)$ für alle $uv \in A$

Der Wert von Φ ist der Netto-Ausfluss bei s: $\Phi(s) = \sum_{sv \in A} \Phi(sv) = -\Phi(t)$

MAXIMUM-FLOW: Gegeben ein Flussnetzwerk, finde einen maximalen s-t-Fluss. Im Allgemeinen in $\mathcal{O}(n^2)$, aber für planare Graphen geht es besser.

Notation: Für $X\subseteq V$ sei $\Phi(X)\coloneqq\sum_{\substack{uv\in A\\u\in X,v\notin X}}\Phi(uv)$ der Netto-Ausfluss aus X.

Also ist $\Phi(\lbrace s \rbrace) = \Phi(s)$ und $\Phi(\lbrace v \rbrace) = 0$ für alle $v \neq s, t$.

Beobachtung: Sind $X, Y \subseteq V$ disjunkt, so gilt $\Phi(X \cup Y) = \Phi(X) + \Phi(Y)$ Zerlegt man X in einelementige Mengen, so folgt $\Phi(X) = \sum_{u \in X} \Phi(u)$.

Definition: Ein s-t-Schnitt ist ein Schnitt $C \subseteq A$, induziert von einer Knotenmenge $S \subseteq V$ mit $s \in S, t \notin S$:

$$C \coloneqq \{uv \in A \mid u \in S, v \not \in S\}$$

Die Kapazität eines solchen Schnitts ist $c(C) := \sum_{e \in C} c(e)$.

 $\mathbf{Max} ext{-}\mathbf{Flow} ext{-}\mathbf{Min} ext{-}\mathbf{C}$ und $s ext{-}t ext{-}\mathbf{Fluss}$ Φ gilt

$$\Phi(s) \le c(C)$$

Beweis:
$$\Phi(s) = \sum_{v \in S} \Phi(\{v\}) = \Phi(S) = \sum_{e \in C} \Phi(e) \le \sum_{e \in C} c(e) = c(C)$$

wobei die erste Gleichheit gilt, da $\Phi(\lbrace v \rbrace) = 0$ für alle $v \neq s$ ist.

Max-Flow-Min-Cut-Theorem: $\max \Phi(s) = \min c(C)$ ohne Beweis.

Im Folgenden reicht es also nach einen s-t-Schnitt mit minimaler Kapazität zu suchen. Da c(e)>0 für jede Kante $e\in A$, reicht es inklusionsminimale s-t-Schnitte $C\subseteq A$ zu betrachten, also solche, die keinen s-t-Schnitt enthalten. Schnitte in D entsprechen Kreise im Dualgraphen.

Definition: Der **gerichtete Dualgraph** $D^* = (V^*, A^*)$ zu D: Für e = uv in D sei links(e) und rechts(e) die links bzw. rechts von e liegende Facette, wenn man über e von u nach v geht. In D^* sei die Dualkante e^* von links(e) nach rechts(e) orientiert.

Definition: Ein s-t-Kreis ist ein einfacher gerichteter Kreis in D^* mit s auf der rechten und t auf der linken Seite.

Lemma: Sei $C\subseteq A$ eine Kantenmenge und $C^*\subseteq A^*$ die dazu duale Kantenmenge. Dann gilt:

C ist ein s-t-Schnitt $\iff C^*$ ist ein s-t-Kreis

Wir setzen $l(e^*) \coloneqq c(e)$ für alle $e \in A$ und interpretieren das als Länge der Dualkante e^* .

Es reicht also einen s-t-Kreis mit minimaler Länge zu finden.

 \mathbf{Satz} : Für planare Graphen mit s und t an einer gemeinsamen Facette, kann ein Max-Flow in Linearzeit gefunden werden.

Beweis:

- ullet O.B.d.A. liegen s und t an der äußeren Facette
- ullet Jeder s-t-Kreis muss die äußere Facette f_0 als Dualknoten enthalten
- $\bullet\,$ Füge neue Kante $e_0=st$ mit Kapazität $c(e_0)=0$ in äußere Facette ein
- Dies spaltet die äußere Facette f_0 in $f_1 = \text{rechts}(e_0)$ und $f_2 = \text{links}(e_0)$
- Das Resultat ist $D_+ = D + e_0$. Berechne Dual D_+^* mit $l(e^*) := c(e)$
- Berechne kürzesten Weg von f_1 nach f_2 : $\operatorname{dist}(f_1, f_2) = \min c(C) = \max \Phi(s)$

• Berechne daraus einen maximalen Fluss Φ :

$$\Phi(e) := \operatorname{dist}(f_1, \operatorname{rechts}(e)) - \operatorname{dist}(f_1, \operatorname{links}(e))$$

(

- Überprüfe Eigenschaften eines Flusses:
 - Flusserhaltung: Für einen Knoten rechnet man im Kreis rechts links, sodass sich rechts und links jeweils rauskürzen
 - Zulässigkeit: Eine Möglichkeit von f_1 nach rechts(uv) zu gehen, ist, zuerst von f_1 nach links(uv) und dann über die Kante $e^* = (uv)^*$ nach rechts(uv) zu gehen. Also ist

$$\operatorname{dist}(f_1, \operatorname{rechts}(uv)) \leq \operatorname{dist}(f_1, \operatorname{links}(uv)) + c(uv)$$

 $\iff \operatorname{dist}(f_1, \operatorname{rechts}(uv)) - \operatorname{dist}(f_1, \operatorname{links}(uv)) \leq c(uv).$

- Asymmetrie: Dies folgt aus links(uv) = rechts(vu) bzw. links(vu) = rechts(uv)

• Damit ist der Satz bewiesen.

Betrachte nun den allgemeinen Falls, dass s und t an beliebigen Facetten liegen:

- \bullet Wähle einen gerichteten Pfad P von snach t
- Sei $C^* \subseteq A^*$ ein gerichteter Kreis im Dualen und $C \subseteq A$ der entsprechende Schnitt im Primalen
- Ist C^* ein s-t-Kreis, dann gilt $|C^* \cap P^*| = |C^* \cap P^{*-1}| + 1$, d.h. der Kreis geht einmal mehr von links nach rechts als von rechts nach links
- Ist C^* ein t-s-Kreis, dann gilt $|C^* \cap P^*| = |C^* \cap P^{*-1}| 1$
- Ansonsten gilt: $|C^* \cap P^*| = |C^* \cap P^{*-1}|$

- Verringert man alle Kapazitäten der Kanten auf P um α und erhöht alle Kapazitäten der Kanten auf P^{-1} um α , so wird
 - jeder s-t-Kreis um genau α kürzer,
 - jeder t-s-Kreis um genau α länger,
 - jeder andere Kreis weder länger noch kürzer
- Anfangs waren alle Kreislängen positiv. Wählt man $\alpha > 0$ groß genug, werden Kreise negative Länge bekommen, aber nur s-t-Kreise!
- ullet Ein Kreis, der bei kleinstem α negative Länge bekommt, ist ein kürzester s-t-Kreis Finde jetzt also maximales α so, dass noch keine negative Kreise entstehen.

Satz: Dieses maximale α kann in $\mathcal{O}(n \log n)$ bestimmt werden. ohne Beweis.

Korollar: MAX-FLOW in planaren Graphen kann in $\mathcal{O}(n \log n)$ berechnet werden.

9 Menger-Problem