A note on equality in DPI for the BS relative entropy

Anna Jenčová

August 26, 2024

Let $\rho, \sigma \in B(\mathcal{H})^+$. The Belavkin-Staszewski relative entropy is defined as

$$\hat{D}(\rho \| \sigma) := \text{Tr } \rho \log(\rho^{1/2} \sigma^{-1} \rho^{1/2}) = \text{Tr } \sigma f(\sigma^{-1/2} \rho \sigma^{-1/2}),$$

with $f(t) = t \log t$. By [?, Cor. 3.31], \hat{D} is nonincreasing under positive trace preserving maps $\Phi: B(\mathcal{H}) \to B(\mathcal{K})$, and by [?, Thm. 3.34 (h)], the equality

$$\hat{D}(\Phi(\rho)||\Phi(\sigma)) = \hat{D}(\rho||\sigma) \tag{1}$$

holds if and only if $R := \sigma^{-1/2} \rho \sigma^{-1/2}$ satisfies $\Phi_{\sigma}(R^2) = \Phi_{\sigma}(R)^2$, where

$$\Phi_{\sigma}(X) = \Phi(\sigma)^{-1/2} \Phi(\sigma^{1/2} X \sigma^{1/2}) \Phi(\sigma)^{-1/2}, \qquad X \in B(\mathcal{H})$$

is the Petz dual of Φ with respect to σ . Note that Φ_{σ} is positive and unital and the equality condition means that R is in the multiplicative domain of Φ_{σ} . If Φ is completely positive, we may use the following fact.

Lemma 1. Let $\Psi: B(\mathcal{H}) \to B(\mathcal{K})$ be a completely positive unital map with Kraus representation $\Psi(\cdot) = \sum_i K_i^*(\cdot) K_i$. Then the multiplicative domain of Ψ has the form

$$\mathcal{M}_{\Psi} = \{K_i K_j^*, \ i, j\}',$$

(here C' denotes the commutant of a subset $C \subseteq B(\mathcal{H})$).

Assume that $\Phi: B(\mathcal{H}) \to B(\mathcal{K})$ has the form $\Phi(\cdot) = \sum_{i=1}^n L_i^*(\cdot)L_i$, for some $L_i: \mathcal{K} \to \mathcal{H}$ such that $\sum_i L_i L_i^* = I_{\mathcal{H}}$. Then the equality (1) holds if and only if R commutes with all elements of the form

$$\sigma^{1/2}L_i\Phi(\sigma)^{-1}L_j^*\sigma^{1/2}, \qquad i,j=1,\ldots,n.$$

We will apply this in the special case when $\rho = \rho_{ABC} \in B(\mathcal{H}_{ABC})^+$, $\sigma = \rho_{AB} \otimes \tau_C$ and $\Phi = \text{Tr }_A$, here $\tau_C = \dim(\mathcal{H}_C)^{-1}I_C$ is the maximally mixed state.

Proposition 1. Let ρ_{ABC} be a state (such that ρ_{AB} is invertible). The equality

$$\hat{D}(\rho_{ABC} \| \rho_{AB} \otimes \tau_C) = \hat{D}(\rho_{BC} \| \rho_B \otimes \tau_C) \tag{2}$$

holds if and only if there are:

- (i) Hilbert spaces $\mathcal{H}_{B_n^L}$, $\mathcal{H}_{B_n^R}$ such that $\mathcal{H}_B \simeq \bigoplus_n (\mathcal{H}_{B_n^L} \otimes \mathcal{H}_{B_n^R})$,
- (ii) positive (invertible) elements $M_n \in B(\mathcal{H}_A \otimes \mathcal{H}_{B_n^L})$ such that $\operatorname{Tr}_A M_n = I_{B_n^L}$,

- (iii) positive elements $N_n \in B(\mathcal{H}_{B_n^R} \otimes \mathcal{H}_C)$ such that $\operatorname{Tr}_C N_n = I_{B_n^R}$,
- (iv) an (invertible) operator $S_B: \bigoplus_n (\mathcal{H}_{B_n^L} \otimes \mathcal{H}_{B_n^R}) \to \mathcal{H}_B$ such that $\operatorname{Tr}[S_B S_B^*] = 1$

such that

$$\rho_{ABC} = (I_A \otimes S_B \otimes I_C) \left(\bigoplus_n M_n \otimes N_n \right) \left(I_A \otimes S_B^* \otimes I_C \right)$$

Proof. Assume that ρ_{ABC} has this form. Let us denote $M := \bigoplus_n M_n \otimes I_{B_n^R}$, $N := \bigoplus_n I_{B_n^L} \otimes N_n$, then $M \in B(\mathcal{H}_{AB})^+$ (is invertible), $N \in B(\mathcal{H}_{BC})^+$ are such that $\operatorname{Tr}_A[M] = I_B = \operatorname{Tr}_C[N]$ and $M \otimes I_C$ commutes with $I_A \otimes N$. We have

$$\rho_{ABC} = (I_A \otimes S_B \otimes I_C)(M \otimes I_C)(I_A \otimes N)(I_A \otimes S_B^* \otimes I_C)$$

and

$$\rho_{AB} = \operatorname{Tr}_{C} \rho_{ABC} = (I_A \otimes S_B) M(I_A \otimes S_B^*), \qquad \rho_B = S_B S_B^*.$$

Using polar decompositions, there is some unitary $W \in B(\mathcal{H}_{AB})$ such that

$$(I_A \otimes S_B)M^{1/2}W^* = \rho_{AB}^{1/2} = WM^{1/2}(I_A \otimes S_B^*).$$

It follows that

$$(\rho_{AB}^{-1/2} \otimes I_C)\rho_{ABC}(\rho_{AB}^{-1/2} \otimes I_C) = (W \otimes I_C)(I_A \otimes N)(W^* \otimes I_C)$$

and

$$\rho_{AB} = W M^{1/2} (I_A \otimes S_B^* S_B) M^{1/2} W^*.$$

We may clearly replace τ_C by I_C in the equality (2), since this only adds a constant to both sides. We get

$$\hat{D}(\rho_{ABC} \| \rho_{AB} \otimes I_C) = \operatorname{Tr} (\rho_{AB} \otimes I_C) f((W \otimes I_C) (I_A \otimes N) (W^* \otimes I_C))$$

$$= \operatorname{Tr} [(M^{1/2} (I_A \otimes S_B^* S_B) M^{1/2} \otimes I_C) f(I_A \otimes N)]$$

$$= \operatorname{Tr} [(M(I_A \otimes S_B^* S_B) \otimes I_C) f(I_A \otimes N)] = \operatorname{Tr} [(S_B^* S_B \otimes I_C) f(N)],$$

here $f(t) = t \log t$ and we have used the fact that $M \otimes I_C$ commutes with $I_A \otimes N$. We also have

$$\rho_{BC} = (S_B \otimes I_C) N(S_B^* \otimes I_C)$$

and with the polar decomposition $S_B = \rho_B^{1/2} U_B$, we get

$$(\rho_B^{-1/2} \otimes I_C)\rho_{BC}(\rho_B^{-1/2} \otimes I_C) = (U_B \otimes I_C)N(U_B^* \otimes I_C).$$

It follows that

$$\hat{D}(\rho_{BC} \| \rho_B \otimes I_C) = \operatorname{Tr} \left[(\rho_B \otimes I_C) f((U_B \otimes I_C) N(U_B^* \otimes I_C)) \right] = \operatorname{Tr} \left[(S_B^* S_B \otimes I_C) f(N) \right] = \hat{D}(\rho_{ABC} \| \rho_{AB} \otimes I_C).$$

For the converse, assume that (2) holds. Put $R := (\rho_{AB}^{-1/2} \otimes I_C) \rho_{ABC} (\rho_{AB}^{-1/2} \otimes I_C)$, so that $R \ge 0$ and $\text{Tr }_C[R] = I_{AB}$. Moreover, R must be in the multiplicative domain of the map

$$\Phi_{\sigma}(X_{ABC}) = (\rho_B^{-1/2} \otimes I_C) \operatorname{Tr}_A[(\rho_{AB}^{1/2} \otimes I_C) X(\rho_{AB}^{1/2} \otimes I_C)](\rho_B^{-1/2} \otimes I_C) = \sum_i L_i^* X L_i,$$

where the Kraus operators have the form

$$L_i = (\rho_{AB}^{1/2}(|i\rangle_A \otimes I_B)\rho_B^{-1/2}) \otimes I_C.$$

By Lemma 1, the operator R must commute with all elements of the form

$$\rho_{AB}^{1/2}(|i\rangle\langle j|_A\otimes\rho_B^{-1})\rho_{AB}^{1/2}\otimes I_C, \qquad i,j=1,\ldots\dim(\mathcal{H}_A).$$

This means that

$$R \in \mathcal{R} \otimes B(\mathcal{H}_C)$$
,

where $\mathcal{R} = \Gamma(B(\mathcal{H}_A))'$, with $\Gamma: B(\mathcal{H}_A) \to B(\mathcal{H}_{AB})$ is a completely positive map given as

$$\Gamma(X_A) = V^*(X_A \otimes I_B)V, \qquad X_A \in B(\mathcal{H}_A),$$

with $V := (I_A \otimes \rho_B^{-1/2}) \rho_{AB}^{1/2}$. Since ρ_{AB} is invertible by the assumption, Arveson's commutant lifting theorem [?, Thm. 1.3.1] says that for every $T \in \mathcal{R}$ there is a unique $T_1 \in B(\mathcal{H}_B)$ such that $(I_A \otimes T_1)V = VT$ and the map $T \mapsto T_1$ is a *-isomorphism of \mathcal{R} onto the subalgebra $\mathcal{R}_1 \subseteq B(\mathcal{H}_B)$ given by

$$(I_A \otimes B(\mathcal{H}_B)) \cap \{VV^*\}' = I_A \otimes \mathcal{R}_1.$$

Note that $M:=VV^*=(I_A\otimes\rho_B^{-1/2})\rho_{AB}(I_A\otimes\rho_B^{-1/2})$ satisfies $\operatorname{Tr}_A[M]=I_B$, so that this *-isomorphism is defined by

$$\operatorname{Tr}_{A}[VTV^{*}] = \operatorname{Tr}_{A}[(I_{A} \otimes T_{1})VV^{*}] = T_{1}\operatorname{Tr}_{A}[M] = T_{1}.$$

The inverse map $\mathcal{R}_1 \to \mathcal{R}$ is obtained from the polar decomposition $V = M^{1/2}W$, where W is a unitary. For any $T_1 \in \mathcal{R}_1$, $I_A \otimes T_1$ commutes with $M^{1/2}$ and we have

$$VW^*(I_A \otimes T_1)W = M^{1/2}(I_A \otimes T_1)W = (I_A \otimes T_1)M^{1/2}W = (I_A \otimes T_1)V,$$

so that $T = W^*(I_A \otimes T_1)W$. It follows that $\mathcal{R} = W^*(I_A \otimes \mathcal{R}_1)W$ and hence

$$R \in \mathcal{R} \otimes B(\mathcal{H}_C) = (W^* \otimes I_C)(I_A \otimes \mathcal{R}_1 \otimes B(\mathcal{H}_C))(W \otimes I_C).$$

Therefore there is some positive element $N \in \mathcal{R}_1 \otimes B(\mathcal{H}_C)$ such that

$$R = (W^* \otimes I_C)(I_A \otimes N)(W \otimes I_C). \tag{3}$$

Moreover, since $\operatorname{Tr}_{C}[R] = I_{AB}$, we must have $\operatorname{Tr}_{C}[N] = I_{B}$. Note also that

$$M \otimes I_C \in (I_A \otimes \mathcal{R}_1)' \otimes I_C = (I_A \otimes \mathcal{R}_1 \otimes B(\mathcal{H}_C))',$$

so that $M \otimes I_C$ commutes with $I_A \otimes N$. To finish the proof, we write

$$\rho_{ABC} = (\rho_{AB} \otimes I_C) R(\rho_{AB} \otimes I_C)$$

and

$$\rho_{AB} = (I_A \otimes \rho_B^{1/2})V = (I_A \otimes \rho_B^{1/2})M^{1/2}W.$$

Combining this with (3), we obtain

$$\rho_{ABC} = (I_A \otimes \rho_B^{1/2})(M \otimes I_C)(I_A \otimes N)(I_A \otimes \rho_B^{1/2}).$$

Since $\mathcal{R}_1 \subseteq B(\mathcal{H}_B)$ is a subalgebra, there are Hilbert spaces as in (i) and a unitary $U_B : \mathcal{H}_B \to \bigoplus_n \mathcal{H}_{B_n^L} \otimes \mathcal{H}_{B_n^R}$ such that

$$\mathcal{R}_1 = U_B^* \left(\bigoplus_n I_{B_n^L} \otimes B(\mathcal{H}_{B_n^R}) \right) U_B,$$

Using this decomposition, we see that there are elements M_n as in (ii) such that $M = (I_A \otimes U_B^*)(\bigoplus_n M_n \otimes I_{B_n^R})(I_A \otimes U_B)$ and similarly, there are elements N_n as in (iii) such that $N = (U_B^* \otimes I_C)(\bigoplus_n I_{B_n^L} \otimes N_n)(U_B \otimes I_C)$. Now we see that ρ_{ABC} has the required form, with $S_B = \rho_B^{1/2}U_B^*$.

4