Identidad de Parseval

Miguel Angel Gomez Barrera

Fundación Universitaria Konrad Lorenz

2020

Sea número complejo z=a+ib, su conjugado se le de denota por z^* o \bar{z} tal que $\bar{z}=a-ib$.

Sea número complejo z=a+ib, su conjugado se le de denota por z^* o \bar{z} tal que $\bar{z}=a-ib$.

Propiedad producto

$$z \cdot \bar{z} = a^2 + b^2$$

Serie compleja de Fourier.

En este momento tenemos que una serie de Fourier tiene la forma:

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx),$$

Serie compleja de Fourier.

En este momento tenemos que una serie de Fourier tiene la forma:

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx),$$

también tenemos que las funciones trigonométricas las podemos expresar como:

$$cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$
, y que $sin(x) = \frac{e^{ix} - e^{-ix}}{2i} = \frac{-ie^{ix} + ie^{-ix}}{2}$,

Serie compleja de Fourier.

En este momento tenemos que una serie de Fourier tiene la forma:

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx),$$

también tenemos que las funciones trigonométricas las podemos expresar como:

$$cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$
, y que $sin(x) = \frac{e^{ix} - e^{-ix}}{2i} = \frac{-ie^{ix} + ie^{-ix}}{2}$,

Reemplazando esto en la serie original, tenemos

$$a_0 + \sum_{n=1}^{\infty} a_n \left(\frac{e^{inx} + e^{-inx}}{2} \right) + \sum_{n=1}^{\infty} b_n \left(\frac{-ie^{inx} + ie^{-inx}}{2} \right),$$

Serie compleja de Fourier.

Agrupando términos de la serie obtenemos:

$$a_0 + \sum_{n=1}^{\infty} \frac{a_n - ib_n}{2} e^{inx} + \sum_{n=1}^{\infty} \frac{a_n + ib_n}{2} e^{-inx},$$

Podemos cambiar los índices de las las sumas de n a -n, al efectuar este cambio podemos rescribir la expresión anterior en:

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx},$$

donde $c_n = \frac{a_n - ib_n}{2}$, ahora debemos hallar una fórmula para hallar c_n , para ello diremos que:

$$f(x)e^{-imx} = \sum_{-\infty}^{\infty} c_n e^{inx} e^{-imx},$$

Serie compleja de Fourier.

Agrupando términos de la serie obtenemos:

$$a_0 + \sum_{n=1}^{\infty} \frac{a_n - ib_n}{2} e^{inx} + \sum_{n=1}^{\infty} \frac{a_n + ib_n}{2} e^{-inx},$$

Podemos cambiar los índices de las las sumas de n a -n, al efectuar este cambio podemos rescribir la expresión anterior en:

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx},$$

donde $c_n = \frac{a_n - ib_n}{2}$, ahora debemos hallar una fórmula para hallar c_n , para ello diremos que:

$$f(x)e^{-imx} = \sum_{-\infty}^{\infty} c_n e^{inx} e^{-imx},$$

E integrando entre $-\pi$ y π :

$$\int_{-\pi}^{\pi} f(x)e^{-imx}dx = \sum_{-\infty}^{\infty} c_n \int_{-\pi}^{\pi} e^{inx}e^{-imx}dx = 2\pi c_n,$$

luego,

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

Identidad de Parseval

Si X(t) es la serie compleja de Fourier, con período T_0 , la función cuadrado integrable P(x) satisface:

$$P(x) = \sum_{n=-\infty}^{\infty} |c_n|^2$$

Prueba.

$$X(t) = \sum_{-\infty}^{\infty} c_n e^{inw_0 t},$$

por lo tanto su conjugada será,

$$ar{X}(t) = \sum_{-\infty}^{\infty} c_n e^{-inw_0 t},$$

si multiplicamos ambos obtendremos por la propiedad de complejos que:

$$X(t)\cdot \bar{X}(t) = |X(t)|^2,$$

Identidad de Parseval

$$P(x) = \frac{1}{T_0} \int_0^{T_0} |X(t)|^2 dt$$

$$= \frac{1}{T_0} \int_0^{T_0} X(t) \cdot \bar{X}(t)$$

$$= \frac{1}{T_0} \int_0^{T_0} X(t) \cdot \sum_{n = -\infty}^{\infty} \bar{c}_n e^{-inw_0 t} dt$$

$$= \sum_{n = -\infty}^{\infty} \bar{c}_n \frac{1}{T_0} \int_0^{T_0} X(t) \cdot e^{-inw_0 t} dt$$

nótese que el término $\frac{1}{T_0} \int_0^{T_0} X(t) \cdot e^{-inw_0 t} dt$ es equivalente a c_n , por ende

$$=\sum_{n=-\infty}^{\infty}\bar{c}_n\cdot c_n=\sum_{n=-\infty}^{\infty}|c_n|^2$$

