$11n_{41} \ (K11n_{41})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 5.06381 \times 10^{26} u^{34} + 3.18576 \times 10^{27} u^{33} + \dots + 7.97336 \times 10^{26} b - 1.25386 \times 10^{26}, \\ &- 4.65925 \times 10^{25} u^{34} + 3.98163 \times 10^{24} u^{33} + \dots + 7.97336 \times 10^{26} a + 6.92161 \times 10^{26}, \ u^{35} + 8u^{34} + \dots + 9u - 10^{26} u^{35} + 46u^{34} + 48u^{34} + 10^{36} u^{35} + 48u^{34} + \dots + 9u - 10^{36} u^{36} u^{36} + 46u^{36} u^{36} u^$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 44 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

T

 $\begin{matrix} I_1^u = \langle 5.06 \times 10^{26} u^{34} + 3.19 \times 10^{27} u^{33} + \dots + 7.97 \times 10^{26} b - 1.25 \times 10^{26}, \ -4.66 \times 10^{25} u^{34} + 3.98 \times 10^{24} u^{33} + \dots + 7.97 \times 10^{26} a + 6.92 \times 10^{26}, \ u^{35} + 8u^{34} + \dots + 9u + 1 \rangle \end{matrix}$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0584352u^{34} - 0.00499367u^{33} + \dots + 87.4344u - 0.868092 \\ -0.635091u^{34} - 3.99551u^{33} + \dots + 1.26311u + 0.157257 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.72094u^{34} - 17.6948u^{33} + \dots + 67.6060u + 13.1818 \\ -0.291426u^{34} - 1.97724u^{33} + \dots - 9.21351u - 0.566549 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.693526u^{34} + 3.99051u^{33} + \dots + 86.1713u - 1.02535 \\ -0.635091u^{34} - 3.99551u^{33} + \dots + 1.26311u + 0.157257 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.135945u^{34} + 1.32830u^{33} + \dots + 28.8699u - 0.0316372 \\ 0.201606u^{34} + 1.17050u^{33} + \dots + 273205u + 0.337551 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.242664u^{34} - 0.573718u^{33} + \dots + 28.8699u - 0.0316372 \\ 0.239495u^{34} + 1.52839u^{33} + \dots - 0.429444u - 0.0968115 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.135945u^{34} + 1.32830u^{33} + \dots + 28.8699u - 0.0316372 \\ -0.239495u^{34} - 1.52839u^{33} + \dots + 0.429444u + 0.0968115 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.135945u^{34} + 1.32830u^{33} + \dots + 28.8699u - 0.0316372 \\ -0.239495u^{34} - 1.52839u^{33} + \dots + 0.429444u + 0.0968115 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

 $\begin{array}{l} = & 3378359165600571190629683677 \\ = & 3986681917292529601111215152 \\ \hline 398668191729252960111215152 \\ \hline 398668191729252960111215152 \\ u + & \frac{2429897091838954454446349621}{199334095864626480055607576} u^{33} + \cdots + \\ \hline \end{array}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{35} - 8u^{34} + \dots + 9u - 1$
c_2	$u^{35} + 42u^{34} + \dots - 129u + 1$
c_3, c_7	$u^{35} + 2u^{34} + \dots - 320u - 64$
	$u^{35} - 4u^{34} + \dots + 1417u + 1219$
	$u^{35} - 8u^{34} + \dots + 73u + 31$
c_8, c_{10}	$u^{35} - 5u^{34} + \dots + 67u - 1$
<i>c</i> ₉	$u^{35} + 6u^{34} + \dots + 124u - 8$
c_{11}	$u^{35} + 3u^{34} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{35} - 42y^{34} + \dots - 129y - 1$
c_2	$y^{35} - 90y^{34} + \dots + 6323y - 1$
c_3, c_7	$y^{35} - 36y^{34} + \dots - 20480y - 4096$
	$y^{35} - 4y^{34} + \dots + 25178641y - 1485961$
	$y^{35} - 52y^{34} + \dots + 29509y - 961$
c_8,c_{10}	$y^{35} - 33y^{34} + \dots + 5091y - 1$
c_9	$y^{35} + 18y^{34} + \dots + 7312y - 64$
c_{11}	$y^{35} + y^{34} + \dots + 14y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.964380 + 0.326022I		
a = -1.34533 - 1.00277I	-4.47629 - 0.99972I	-15.2464 + 0.4133I
b = 1.165200 + 0.364382I		
u = 0.964380 - 0.326022I		
a = -1.34533 + 1.00277I	-4.47629 + 0.99972I	-15.2464 - 0.4133I
b = 1.165200 - 0.364382I		
u = 0.679243 + 0.583622I		
a = 0.692444 - 0.020033I	-1.63296 - 3.48211I	-7.94104 + 7.54592I
b = -0.491434 + 1.250360I		
u = 0.679243 - 0.583622I		
a = 0.692444 + 0.020033I	-1.63296 + 3.48211I	-7.94104 - 7.54592I
b = -0.491434 - 1.250360I		
u = -0.990139 + 0.655507I		
a = -0.328445 - 0.034132I	1.54213 + 2.47872I	0. + 5.93000I
b = -0.537541 + 0.273251I		
u = -0.990139 - 0.655507I		
a = -0.328445 + 0.034132I	1.54213 - 2.47872I	0 5.93000I
b = -0.537541 - 0.273251I		
u = 1.204600 + 0.063415I		
a = -1.45117 - 1.83159I	-3.08874 + 1.42303I	-6.41632 - 5.79805I
b = -0.035022 - 0.979858I		
u = 1.204600 - 0.063415I		
a = -1.45117 + 1.83159I	-3.08874 - 1.42303I	-6.41632 + 5.79805I
b = -0.035022 + 0.979858I		
u = 0.779230		
a = -0.816856	-1.12597	-9.35810
b = -0.118472		
u = 0.605532 + 0.380104I		
a = -1.43703 + 0.00546I	-1.46738 - 0.11420I	-8.20214 + 0.34884I
b = -0.043259 - 0.568475I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.605532 - 0.380104I		
a = -1.43703 - 0.00546I	-1.46738 + 0.11420I	-8.20214 - 0.34884I
b = -0.043259 + 0.568475I		
u = 0.704998		
a = 12.6158	-2.72892	194.390
b = -0.141812		
u = -0.686181 + 0.154265I		
a = 0.838455 - 0.370991I	-1.08296 - 5.42643I	-0.21975 + 3.30530I
b = 0.977826 - 0.650468I		
u = -0.686181 - 0.154265I		
a = 0.838455 + 0.370991I	-1.08296 + 5.42643I	-0.21975 - 3.30530I
b = 0.977826 + 0.650468I		
u = 0.730316 + 1.119100I		
a = -0.586120 - 0.340107I	-7.84770 - 8.00129I	0
b = 0.70143 - 1.39478I		
u = 0.730316 - 1.119100I		
a = -0.586120 + 0.340107I	-7.84770 + 8.00129I	0
b = 0.70143 + 1.39478I		
u = 0.656190 + 1.188230I		
a = 0.395829 - 0.005674I	-7.58070 + 0.56154I	0
b = 0.109496 + 1.311600I		
u = 0.656190 - 1.188230I		
a = 0.395829 + 0.005674I	-7.58070 - 0.56154I	0
b = 0.109496 - 1.311600I		
u = -1.63022 + 0.11868I		
a = -0.279124 + 1.207660I	-9.25057 + 1.88240I	0
b = 0.397690 + 0.969208I		
u = -1.63022 - 0.11868I		
a = -0.279124 - 1.207660I	-9.25057 - 1.88240I	0
b = 0.397690 - 0.969208I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.294421 + 0.137620I		
a = -1.30767 - 1.56416I	1.40601 + 1.20005I	2.74470 - 1.99044I
b = -0.805847 - 0.442462I		
u = -0.294421 - 0.137620I		
a = -1.30767 + 1.56416I	1.40601 - 1.20005I	2.74470 + 1.99044I
b = -0.805847 + 0.442462I		
u = -1.68600		
a = 0.808929	-11.4779	0
b = -0.920335		
u = -1.68299 + 0.18586I		
a = -0.18783 - 1.58377I	-9.90660 + 6.51942I	0
b = -1.25568 - 1.90551I		
u = -1.68299 - 0.18586I		
a = -0.18783 + 1.58377I	-9.90660 - 6.51942I	0
b = -1.25568 + 1.90551I		
u = -1.70107 + 0.39786I		
a = -0.17360 + 1.42986I	-15.7071 + 13.7623I	0
b = 1.20989 + 1.48650I		
u = -1.70107 - 0.39786I		
a = -0.17360 - 1.42986I	-15.7071 - 13.7623I	0
b = 1.20989 - 1.48650I		
u = 1.74717 + 0.03675I		
a = 0.316839 + 1.172530I	-10.19430 + 4.27290I	0
b = 0.41033 + 1.45360I		
u = 1.74717 - 0.03675I		
a = 0.316839 - 1.172530I	-10.19430 - 4.27290I	0
b = 0.41033 - 1.45360I		
u = -1.75068 + 0.06096I		
a = 0.777922 - 1.044170I	-14.4753 + 2.5419I	0
b = 1.93922 - 1.67518I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.75068 - 0.06096I		
a = 0.777922 + 1.044170I	-14.4753 - 2.5419I	0
b = 1.93922 + 1.67518I		
u = -1.72022 + 0.43828I		
a = 0.296229 - 1.018870I	-15.2163 + 5.6356I	0
b = -0.61061 - 1.35195I		
u = -1.72022 - 0.43828I		
a = 0.296229 + 1.018870I	-15.2163 - 5.6356I	0
b = -0.61061 + 1.35195I		
u = -0.0306219 + 0.0974691I		
a = -7.02532 + 6.31954I	-1.92040 - 0.80331I	-4.44102 - 0.15082I
b = 0.458623 + 0.535266I		
u = -0.0306219 - 0.0974691I		
a = -7.02532 - 6.31954I	-1.92040 + 0.80331I	-4.44102 + 0.15082I
b = 0.458623 - 0.535266I		

$$I_2^u = \langle 10a^5 + 13b + \cdots - 31a - 12, \ a^6 - 5a^5 + 9a^4 - 2a^3 - 2a^2 - a + 1, \ u - 1
angle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.769231a^{5} + 3.53846a^{4} + \dots + 2.38462a + 0.923077 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.307692a^{5} + 1.61538a^{4} + \dots + 0.153846a - 0.230769 \\ -1.15385a^{5} + 5.30769a^{4} + \dots + 0.0769231a + 2.38462 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.769231a^{5} - 3.53846a^{4} + \dots + 1.38462a - 0.923077 \\ -0.769231a^{5} + 3.53846a^{4} + \dots + 2.38462a + 0.923077 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ -2.30769a^{5} + 10.6154a^{4} + \dots + 1.15385a + 2.76923 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2.30769a^{5} + 10.6154a^{4} + \dots + 1.15385a + 2.76923 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2.30769a^{5} + 10.6154a^{4} + \dots + 1.15385a + 2.76923 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ -2.30769a^{5} + 10.6154a^{4} + \dots + 1.15385a + 2.76923 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ -2.30769a^{5} + 10.6154a^{4} + \dots + 1.15385a + 2.76923 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{7}{13}a^5 - \frac{40}{13}a^4 + \frac{112}{13}a^3 - \frac{146}{13}a^2 + \frac{120}{13}a - \frac{115}{13}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^6$
c_2, c_4	$(u+1)^6$
c_3, c_7	u^6
c_5, c_9, c_{10}	$u^6 - u^5 - u^4 + 2u^3 - u + 1$
c_6, c_{11}	$u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1$
c ₈	$u^6 + u^5 - u^4 - 2u^3 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_7	y^6
c_5, c_8, c_9 c_{10}	$y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1$
c_6, c_{11}	$y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0.655968 + 0.098281I	0.245672 - 0.924305I	-5.68949 + 0.25702I
b = 1.002190 - 0.295542I		
u = 1.00000		
a = 0.655968 - 0.098281I	0.245672 + 0.924305I	-5.68949 - 0.25702I
b = 1.002190 + 0.295542I		
u = 1.00000		
a = -0.415113 + 0.381252I	-1.64493 - 5.69302I	-11.7058 + 8.3306I
b = -1.073950 + 0.558752I		
u = 1.00000		
a = -0.415113 - 0.381252I	-1.64493 + 5.69302I	-11.7058 - 8.3306I
b = -1.073950 - 0.558752I		
u = 1.00000		
a = 2.25915 + 1.43225I	-3.53554 + 0.92430I	-12.60470 + 5.55069I
b = -0.428243 + 0.664531I		
u = 1.00000		
a = 2.25915 - 1.43225I	-3.53554 - 0.92430I	-12.60470 - 5.55069I
b = -0.428243 - 0.664531I		

III.
$$I_3^u = \langle b, -3u^2 + a - 5u - 4, u^3 + u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 3u^{2} + 5u + 4 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 9u^{2} + 15u + 12 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 3u^{2} + 5u + 4 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 3u^{2} + 6u + 4 \\ -2u^{2} - u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ 2u^{2} + u - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ 2u^{2} + u - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-21u^2 53u 51$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^3 + u^2 - 1$
c_2, c_7	$u^3 + u^2 + 2u + 1$
c_3	$u^3 - u^2 + 2u - 1$
C_4	$u^3 - u^2 + 1$
c_5, c_6	$u^3 + 2u^2 - 3u + 1$
c_8	$(u-1)^3$
c_9	u^3
c_{10}	$(u+1)^3$
c_{11}	$u^3 + 3u^2 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^3 - y^2 + 2y - 1$
c_2, c_3, c_7	$y^3 + 3y^2 + 2y - 1$
c_5, c_6	$y^3 - 10y^2 + 5y - 1$
c_8,c_{10}	$(y-1)^3$
<i>c</i> 9	y^3
c_{11}	$y^3 - 5y^2 + 10y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = 0.258045 - 0.197115I	1.37919 + 2.82812I	-9.0124 - 12.0277I
b = 0		
u = -0.877439 - 0.744862I		
a = 0.258045 + 0.197115I	1.37919 - 2.82812I	-9.0124 + 12.0277I
b = 0		
u = 0.754878		
a = 9.48391	-2.75839	-102.980
b = 0		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^3+u^2-1)(u^{35}-8u^{34}+\cdots+9u-1)$
c_2	$((u+1)^6)(u^3+u^2+2u+1)(u^{35}+42u^{34}+\cdots-129u+1)$
<i>c</i> 3	$u^{6}(u^{3} - u^{2} + 2u - 1)(u^{35} + 2u^{34} + \dots - 320u - 64)$
C4	$((u+1)^6)(u^3-u^2+1)(u^{35}-8u^{34}+\cdots+9u-1)$
<i>c</i> ₅	$(u^{3} + 2u^{2} - 3u + 1)(u^{6} - u^{5} - u^{4} + 2u^{3} - u + 1)$ $\cdot (u^{35} - 4u^{34} + \dots + 1417u + 1219)$
c_6	$(u^{3} + 2u^{2} - 3u + 1)(u^{6} - 3u^{5} + 5u^{4} - 4u^{3} + 2u^{2} - u + 1)$ $\cdot (u^{35} - 8u^{34} + \dots + 73u + 31)$
c_7	$u^{6}(u^{3} + u^{2} + 2u + 1)(u^{35} + 2u^{34} + \dots - 320u - 64)$
c_8	$((u-1)^3)(u^6+u^5+\cdots+u+1)(u^{35}-5u^{34}+\cdots+67u-1)$
<i>c</i> ₉	$u^{3}(u^{6} - u^{5} + \dots - u + 1)(u^{35} + 6u^{34} + \dots + 124u - 8)$
c_{10}	$((u+1)^3)(u^6-u^5+\cdots-u+1)(u^{35}-5u^{34}+\cdots+67u-1)$
c_{11}	$(u^{3} + 3u^{2} + 2u - 1)(u^{6} - 3u^{5} + 5u^{4} - 4u^{3} + 2u^{2} - u + 1)$ $\cdot (u^{35} + 3u^{34} + \dots + 2u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_4	$((y-1)^6)(y^3-y^2+2y-1)(y^{35}-42y^{34}+\cdots-129y-1)$
c_2	$((y-1)^6)(y^3+3y^2+2y-1)(y^{35}-90y^{34}+\cdots+6323y-1)$
c_3, c_7	$y^{6}(y^{3} + 3y^{2} + 2y - 1)(y^{35} - 36y^{34} + \dots - 20480y - 4096)$
c_5	$(y^3 - 10y^2 + 5y - 1)(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)$ $\cdot (y^{35} - 4y^{34} + \dots + 25178641y - 1485961)$
c_6	$(y^3 - 10y^2 + 5y - 1)(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)$ $\cdot (y^{35} - 52y^{34} + \dots + 29509y - 961)$
c_8,c_{10}	$(y-1)^{3}(y^{6} - 3y^{5} + 5y^{4} - 4y^{3} + 2y^{2} - y + 1)$ $\cdot (y^{35} - 33y^{34} + \dots + 5091y - 1)$
c_9	$y^{3}(y^{6} - 3y^{5} + \dots - y + 1)(y^{35} + 18y^{34} + \dots + 7312y - 64)$
c_{11}	$(y^3 - 5y^2 + 10y - 1)(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)$ $\cdot (y^{35} + y^{34} + \dots + 14y - 1)$