Resolución

1.1.

Distribución beta(2,8):

$$E(\pi \mid y) = \frac{\alpha + y}{\alpha + \beta + n} = \frac{2 + 18}{2 + 8 + 50} = 0,33$$

$$Var(\pi \mid y) = \frac{(\alpha + y)(\beta + n - y)}{(\alpha + \beta + n)^2(\alpha + \beta + n + 1)} = \frac{(2 + 18)(8 + 50 - 18)}{(2 + 8 + 50)^2(2 + 8 + 50 + 1)} = 3,64 \cdot 10^{-3}$$

$$\alpha_{post} = 20$$

$$\beta_{post} = 40$$

> cat(sprintf("Li = %6.3f Ls = %6.3f", qbeta(0.025, 20,40), qbeta(0.975, 20,40)))

Li = 0.221 Ls = 0.456

Distribución beta(16,64):

$$E(\pi \mid y) = \frac{16 + 18}{16 + 64 + 50} = 0,26$$

$$Var(\pi \mid y) = \frac{(\alpha + y)(\beta + n - y)}{(\alpha + \beta + n)^2(\alpha + \beta + n + 1)} = \frac{(16 + 18)(64 + 50 - 18)}{(16 + 64 + 50)^2(16 + 64 + 50 + 1)} = 1,47 \cdot 10^{-3}$$

$$\alpha_{post} = 34$$

$$\beta_{post} = 96$$

> cat(sprintf("Li = %6.3f Ls = %6.3f", qbeta(0.025, 34,96), qbeta(0.975, 34,96)))

Li = 0.190 Ls = 0.340

1.2.

```
> ## Priori
> pr <- seq(0, 1, by=0.01)
> f1 <- dbeta(pr, 2, 8)
> f2 <- dbeta(pr, 16, 64)
> plot(pr, f1, type="1", lwd=1.5,
+ xlab=expression(pi),
+ ylab=expression(paste("f(",pi,")")),
+ ylim=c(0, 10), col="navyblue")
> lines(pr, f2, type="1", lwd=1.5, col="firebrick")
> legend(0.6, 4, c("a=2, b=8", "a=16, b=64"), col=c("navyblue", "firebrick"), lwd=1.5)
```



```
> ## Posteriori
> pr <- seq(0, 1, by=0.01)
> f1 <- dbeta(pr, 20, 40)
> f2 <- dbeta(pr, 34, 96)
> plot(pr, f1, type="1", lwd=1.5,
+ xlab=expression(pi),
+ ylab=expression(paste("f(",pi,")")),
+ ylim=c(0, 11), col="navyblue")
> lines(pr, f2, type="1", lwd=1.5, col="firebrick")
> legend(0.6, 4, c("a=20, b=40", "a=34, b=96"), col=c("navyblue", "firebrick"), lwd=1.5)
```


1.3. Los investigadores deberían rechazar la hipótesis nula, dado que, ambas distribuciones a posteriori presentan un valor esperado superior a 0,2. Beta(16,64) es más informativa, por lo que las dispersiones son inferiores en la distribución a posteriori.

1.4.

2.1.

```
> ## Calculamos la intersección
> P_3prim = Pr_v[1] * Pr_v[2] * Pr_v[3] * (1-Pr_v[4]) * (1-Pr_v[5])
> print (P_3prim)
[1] 0.1048486
```

2.2.

2.3.

Cadenas de Markov: Podemos observar una convergencia aceptable dada la estabilidad de los valores simulados. Los valores muestreados son representativos de la distribución a posteriori.

La distribución $f(\theta \mid y)$, con media aproximada de 0,31.

Con un 95% de confianza, el verdadero valor de θ se encuentra entre -1,07 y 1,71.

La autocorrelación disminuye al auumentar la distancia entre valores, es decir, las observaciones de la serie están correlacionadas positivamente con las observaciones anteriores.

3

Con un 96% de confianza, el parámetro poblacional μ , tras observar los datos muestreados, se encontrará entre los valores 2.592 y 4.028.