Chapitre 3

Chemins dans un graphe

I. Les matrices

1) Cas d'un graphe orienté

a. Matrice d'incidence aux arcs

Soit G = (X, U) un graphe orienté <u>sans boucle</u> où |X| = n et |U| = m. la matrice d'incidence aux arcs \underline{E} est une matrice à n lignes et m colonnes dont l'élément e_{ij} de la $i^{\text{émé}}$ ligne et la $j^{\text{éme}}$ colonne est définit par :

$$e_{ij} = \begin{cases} 1: \text{si } I(u_j) = x_i \\ -1: \text{si } T(u_j) = x_i \\ 0 \text{ ailleurs} \end{cases}$$

Exemple:

Remarque:

Toute colonne de \underline{E} contient exactement deux éléments non nuls : +1 et -1.

b. Matrice d'adjacence d'un graphe (orienté)

Soit G = (X, U) un graphe orienté où |X| = n. La matrice d'adjacence \underline{A} est une matrice à n lignes et n colonnes dont l'élément a_{ij} de la i^{émé} ligne et la j^{éme} colonne est définit par :

$$a_{ij} = \begin{cases} 1: si \exists u \in U / I(u) = x_i \text{ et } T(u) = x_j \\ 0 \text{ si non} \end{cases}$$

Exemple:

Remarque : la matrice A exprime l'existence des chemins de longueur 1 entre tout couple de sommet.

c. Matrice de longueur

Soit G = (X, U) un graphe simple (ne possède ni boucle ni deux arêtes (arcs) identiques) dont <u>A</u> est la matrice d'adjacence.

Soit l'application $C: U \rightarrow R$

u → C (u) qui à tout arc u associe une longueur. La matrice des longueurs L est une matrice n x n définie par :

$$l_{ij} = \begin{cases} C(u) \text{ si I } (u) = x_i \text{ et T } (u) = x_j \text{ c.à.d. si } (a_{ij} = 1) \\ +\infty \text{ si non} \end{cases}$$

Exemple:

Terminal
$$X_1 \quad X_2 \quad X_3 \quad X_4$$
Initial $X_1 \quad \begin{pmatrix} +\infty & 3 & +\infty & +\infty \\ +\infty & +\infty & 5 & -6 \\ +\infty & +\infty & +\infty & 11 \\ X_4 \quad \begin{pmatrix} 4 & 8 & +\infty & +\infty \end{pmatrix}$

2) Cas d'un graphe non orienté

a. Matrice d'incidence aux arêtes

Soit G = (X, U) un graphe non orienté <u>sans boucle</u> où |X| = n et |U| = m. la matrice d'incidence aux arêtes \underline{E} de G est une matrice à n lignes et m colonnes dont l'élément e_{ij} est définit par :

$$e_{ij} = \begin{cases} 1: si \ x_i \text{ est une extrémité de l'arête } u_j \\ 0: sinon \end{cases}$$

Exemple:

b. Matrice d'adjacence d'un graphe non orienté

Pour obtenir la matrice d'adjacence d'un graphe non orienté, on remplace chaque arête de G (X, U) par deux arcs de sens opposés ayant mêmes extrémités et on considère la matrice d'adjacence du graphe orienté obtenu.

Exemple:

Remarque : la matrice A obtenu est une matrice symétrique.

II. Chemin dans un graphe

Soit G = (X, U) un graphe orienté et soit x et y deux sommets de X.

Question: \exists t'il un chemin allant de x à y?

Si oui, quelle est le nombre de chemins allant de x à y? Quelles sont leurs longueurs?

solution : (détermination des nombres de chemin)

Avec cette première solution on peut déterminer <u>l'existence</u> et <u>le nombre de chemin</u> allant de x à y.

Soit la matrice d'adjacence au graphe G = (X, U)

Les éléments a_{ij} de A représentent l'existence d'un chemin de longueur 1 allant de x_i à x_j .

Pour déterminer l'existence des chemins de longueur 2 calculons A².

Les éléments de
$$(a_{ij})^2$$
 de A^2 sont définis par : $a_{ij}^2 = \sum_{k=1}^{n} (a_{ik} \times a_{kj})$

Exemple:

$$a^{2}_{32} = (0\ 1\ 1\ 1) \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 2$$

 \rightarrow Il existe deux chemins entre x_3 et x_2 de longueur 2.

Calculons A³

$$A^{3} = A^{2} \times A = \begin{pmatrix} 0 & 2 & 1 & 1 \\ 3 & 2 & 4 & 2 \\ 4 & 7 & 7 & 5 \\ 5 & 7 & 8 & 5 \end{pmatrix}$$

Il y à 3 chemins de longueur 3 allant de x₂ à x₁

Ces chemins sont : $(x_2 x_3 x_4 x_1)$; $(x_2 x_3 x_2 x_1)$; $(x_2 x_1 x_2 x_1)$

Attention la longueur est égale à 3 car on à calculé A³

Il y à 5 circuits de longueur 3 passant par x₄.

Les éléments $a^{(p)}_{ij}$ de A^p sont définis par : $a^{(p)}_{ij} = \sum_{k=1}^{n} (a^{(p-1)}_{ik} + a_{kj}) = a^{(p)}_{ij} = \sum_{k=1}^{n} (a_{ik} + a^{(p-1)}_{kj})$ $a^{(p)}_{ij}$ représente le nombre de chemin de longueur p allant de x_i à x_j .

Remarque:

1) Soit le nombre total de chemin allant de x_i à x_j est v_{ij} de $V = \sum_{p \ge 1} A^{(p)}$ tel que : $v_{ij} = a_{ij} + a_{ij}^2 + a_{ij}^3 + \dots$

 \rightarrow Si on veut déterminer le nombre de chemin de longueur \leq k allant de x_i à x_j ont calcule :

$$v_{ij} de V = \sum_{ij}^{p-1} a_{ij}^p$$

2) G est sans circuit si et seulement si $A^{(p)} = 0$ à partir d'une certaine valeur de $p \le n = |X|$.