NONLINEAR OSCILLATIONS OF MODERATELY THICK STRUCTURAL ELEMENTS

A Thesis Submitted
In Partial Fulfilment of the Requirements
for the Degree of
DOCTOR OF PHILOSOPHY

BY
PASHUPATI NATH SINGH

to the

POST GRANUATE COPICS.
This thesis has been approved for the avard of the Degree of Dector of Philosophy (Ph.D.) in new mance with the regulations of the L. Han Institute of Technology mappur Dated: 21/2/20

DEPARTMENT OF MECHANICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY KANPUR

JULY 1970

TO MY

PARENTS, WIFE, AND CHILDREN EVILL

V JUNE 76

777 JUN 1977

621 51611A

ME - 1970 - D - SIN - NOW

CERTIFICATE

This is to certify that the thesis entitled "Nonlinear Oscillations of Moderately Thick Structural Elements" by Pashupati Nath Singh, for the award of the Degree of Doctor of Philosophy, of the Indian Institute of Technology, Kanpur is record of bonafide research work carried out by him under our supervision and guidance. The thesis work, in our opinion reached the standard fulfilling the requirements for the Doctor of Philosophy Degree. The results embodied in this thesis have not been submitted to any other University or Institute for the award of any degree or diploma.

V. Sundararajan Department of Mechanical Engg. Kanpur

Department of Civil Engg. Indian Institute of Technology, Indian Institute of Technology, Kanpur

JULY 1970

ACKNOWLEDGEMENT

I am deeply indebted to Dr. Y.C. Das and Dr. V. Sundararajan for their guidance, encouragement, and inspiration.

I am also grateful to several members of the faculty and some colleagues of mine, notably Dr. L.S. Srinath, Dr. V.K. Stokes, Dr. B.L. Dhoopar, Dr. A.V. Setlur, Dr. V.P. Sinha, Dr. S.N. Upadhaya, Mr. Manohar Prasad, Mr. R.P. Gupta, and Mr. M.P. Sharma for their helpful advice and discussions at various stages of the work reported here.

My thanks are due to Dr. G. Srikantiah for extending excellent departmental facilities and giving encouragement from time to time.

Thanks are also due to Mr. Uma Raman Pandey for typing the thesis.

CONTENTS

	Page
SYNOPSIS	i
LIST OF TABLES	iii
LIST OF FIGURES	iv
NOMENCLATURE	vi
CHAPTER I : INTRODUCTION	
1.1 GENERAL	1
1.2 LITERATURE SURVEY	4
1.3 OBJECT AND SCOPE	12
CHAPTER II : FORMULATION	
2.1 THE CASE OF A RECTANGULAR PLATE	14
2.2 THE CASE OF A STRAIGHT BEAM	32
2.3 THE CASE OF A DOUBLY CURVED SHEL ON RECTANGULAR PLAN	36
2.4 THE CASE OF A SHALLOW ARCH	44
2.5 THE CASE OF A SPHERICAL CAP	47
2.6 THE CASE OF A CIRCULAR PLATE	55
CHAPTER III : RESULTS AND DISCUSSIONS	57
CHAPTER IV : CONCLUSIONS	64
CHAPTER V : RECOMMENDATIONS FOR FURTHER WORK	67
REFERENCES	107

SYNOPSIS

of the

Ph.D. Dissertation

on

NONLINEAR OSCILLATIONS OF MODERATELY THICK STRUCTURAL ELEMENTS

рy

Pashupati Nath Singh
Department of Mechanical Engineering
Indian Institute of Technology, Kanpur (India)

July 1970

Large amplitude oscillations of straight beam and shallow arch, rectangular and circular plates, a doubly curved shallow shell, and a spherical cap have been studied in this work. Thin and moderately thick structural elements have been analysed. Material of these elements have been assumed to be isotropic, homogeneous and linearly elastic. The elongations and shears are assumed to be small but rotations are moderately large. Nonlinear strain-displacement relations based on Karman's assumptions have been used. The effects of transverse shear and rotatory inertia have been taken into account by the so-called method of internal constraints. Either the equations of motion have been derived by the use of Hamilton's principle in the way indicated by Reissner or

the equations of motion of the elasticity theory have been employed. Fixed inertial reference frame has been taken and Lagrangian description of motion has been employed.

By assuming space modes and applying Galerkin technique the equations of motion have been reduced to ordinary differential equations in which time is the independent variable. The resulting equations have been combined into one higher order equation. Fourth and higher order derivatives of time have been neglected to get one second order equation in time. These have negligible effect on the fundamental period of vibration, which has been obtained in the present work."

The resulting equation has been integrated numerically to obtain the period of flexural vibration. Relationship between amplitude and period has been studied. Results obtained have been compared, for limiting cases, with available results and in general the agreement is very satisfactory. Effects like dynamic buckling, transition from a plate to a shallow shell etc. have been studied.

While the method is general, the study has been limited to structures with hinged ends and only the fundamental period of vibration has been obtained.

LIST OF TABLES

			Page
TABLE	1	Periods for a Squate Plate (B=1)	70
T AE LE	2	Periods for a Rectangular Plate(B=1/2)	71
TABLE	3	Periods for a Square Plate (By erroneous use of Galerkin Technique)	72
TABLE	4	Periods for a Beam	73
TABLE	5	Periods for a D.C. (Doubly Curved) Shell (B=1; k=0.2)	74
TABLE	6	Periods for a D.C. Shell (B=1; k=1)	75
TABLE	7	Periods for a D.C. Shell (B=1; k=2)	76
TABLE	8	Periods for a D.C. Shell (B=1; k=3)	77
TABLE	9	Periods for a D.C. Shell (B=1; k=4)	78
Ť ABLE	10	Periods for a D.C. Shell (B=0.5;k=1)	79
TABLE	11	Periods for a D.C. Shell (B=0.5;k=4)	80
TABLE	12	Periods for a Shallow Arch (k=1)	81
TABLE	13	Periods for a Shallow Arch (k=2)	82
TABLE	14	Periods for a Shallow Arch (k=3)	83
TABLE	15	Periods for a Shallow Arch (k=4)	84
TABLE	16	Some Integrals in Spherical Cap Problem	85
TABLE	17	Periods for a Spherical Cap (R*=0.1)	. 86
TABLE	18	Periods for a Spherical Cap (R*=0.2)	87
TABLE	19	Periods for a Spherical Cap (R*=0.3)	88
TABLE	20	Periods for a Circular Plate	89

LIST OF FIGURES

			Page
Fig.	1	Geometry of a Rectangular Plate	90
Fig.	2	Positive sense of Stress Resultants	90
Fig.	3	Geometry of a Beam	91
Fig.	4	Geometry of a Doubly Curved Shell	91
Fig.	5	Geometry of an Arch	92
Fig.	6	Spherical Cap	92
Fig.	7	$ extsf{T}_{ extsf{N}}/ extsf{T}_{ extsf{C}}$ versus $ extsf{A}_{ extsf{R}}$ for a Square Plate	93
Fig.	8	$ extsf{T}_{ extsf{N}}/ extsf{T}_{ extsf{C}}$ versus $ extsf{A}_{ extsf{R}}$ for a Beam	94
Fig.	9	Period versus Amplitude Ratio for a D.C. Shell (B=1; k=1)	95
Fig.	10	Period versus Amplitude Ratio for a D.C. Shell (B=1; k=2)	96
Fig.	11	Period versus Amplitude Ratio for a D.C. Shell (B=1; k=3)	97
Fig.	12	Period versus Amplitude Ratio for a D.C. Shell (B=1; k=4)	98
Fig.	13	Period versus Amplitude Ratio for an Arch (k=1)	99
Fig.	14	Period versus Amplitude Ratio for an Arch (k=2)	100
Fig.	15	Period versus Amplitude Ratio for an Arch (k=3)	101
Fig.	16	Period versus Amplitude Ratio for an Arch (k=4)	102
Fig.	17	Period versus Amplitude Ratio for a Spherical Cap (R*=0.1)	103

			Page
Fig.	18	Period versus Amplitude Ratio for a Spherical Cap (R*=0.2)	104
Fig.	19	$ extsf{T}_{ extsf{LP}}$ versus R* for a Spherical Cap	105
Fig.	20	$ extsf{T}_{ extsf{N}}/ extsf{T}_{ extsf{C}}$ versus $ extsf{A}_{ extsf{R}}$ for a Circular Plate	106

NOMENCLATURE

A_R - amplitude ratio (amplitude of vibration/h)

length of beam, length of the plan of shallow arch, one side of a rectangular plate, one side of the plan of a Doubly Curved shallow shell, radius of circular disk, or the radius of the base of spherical cap

B - b/a

one side of rectangular plate or that of the plan of Doubly Curved shallow shell (b \(\) a)

c - initial maximum rise of middle surface of Doubly Curved shell or arch

D $-\frac{Eh^3}{12(1-v^2)}$

E - Young's modulus of elasticity

G - shear modulus; $G = \frac{E}{2(1+v)}$

H - <u>h</u>

H* - initial maximum rise of spherical cap

h - thickness of the structural elements

I₀, I₁ - Modified Bessel function of the first kind of order zero and one

Jo, J1 - Bessel function of the first kind of order zero and one

k - c/h

```
\mathbf{v}^{\mathrm{M}_{\mathbf{v}}}
                  bending moments per unit length
M_{xy}, M_{yx}
                  twisting moments per unit length
N_{x}, N_{x}
                  in-plane normal forces per unit length
N_{xy}, N_{yx}
                  shearing forces per unit length
                  radius of curvature of shallow spherical cap
R
                  a
R
R*
S
                  surface
                  non-dimensional time (= t. \sqrt{\frac{E}{F_{a2}}})
\mathbf{T}
^{\mathrm{T}}\mathrm{c}
                  linear time period by classical theory (non-dimensional)
T_{T_i}
                  linear time period with effects of
                  transverse shear and rotatory inertia (non-dimensional)
T_N
                  nonlinear time period with effects of
                  transverse shear and rotatory inertia
                  (non-dimensional)
t
                  time
u,v,w
                  components of displacement along rectan-
                  gular cartesian coordinates; x,y,z
                  radial displacement on the middle surface
ur
                  in case of shallow spherical cap or
                  circular disk
\mathbf{u}^{\mathbf{z}}
                 radial displacement at a distance z from
                 middle surface in case of shallow spherical
                 cap or circular disk
V
                 volume
\epsilon_{xx}, \epsilon_{yy}, \epsilon_{zz},
\gamma_{xy}, \gamma_{xz}, \gamma_{yz}
                      normal and shear strains
            - strain in radial direction
e<sub>rr</sub>
```

€ so - strain in transverse direction

 ϵ_{rr}^{o} - ϵ_{rr} on the middle surface

 ℓ_{00}° - ℓ_{8} on the middle surface

ν - Poisson's radio

p - mass per unit volume

6xx, 6yy, 6zz;

 $\tau_{xy}, \tau_{xz}, \tau_{yz}$ - normal and shear stresses

- denotes "approximately equal to"

denotes partial or total differentiation with respect to t

denotes partial or total differentiation with respect to T

denotes partial or total differentiation
with respect to x (similarly for other
independent variables)

CHAPTER I

INTRODUCTION

1.1 GENERAL

Beams, plates, and shells are common structural elements and the importance of accurate analysis of their dvnamic behaviour need not be emphasised. It may very well be said that the most important structural elements of the modern airplane, missile, booster, and re-entry vehicle comprise of shells, plates, and beams. When these elements are subjected to severe operational conditions, the amplitudes need not be small. Since the linear theories are valid only for small deflections, it is necessary to employ nonlinear theories which allow for finite deflections.

In elementary analysis the effects of transverse shear and rotatory inertia are neglected. These have appreciable effects when the members are not very thin and also when there are large deformations. Also, the effects become more pronounced in higher modes of vibration.

The expressions "transverse shear" and "rotatory inertia", which occur frequently in the present work are more or less self-explanatory. The normal to the middle surface of the structural element before deformation may not remain normal to the middle surface of the element

after deformation. This is ignored in elementary analysis. Apart from this, the elements of a structural member perform not only a translatory but also a rotatory motion during flexural vibrations. The latter is ignored in the classical theories. S. Timoshenko is credited with having developed the governing equations which include the effects of transverse shear and rotatory inertia in the case of a beam, although both the effects were discussed as early as 1859 by M. Bresse*. There are many ways to include these effects in the formulation and one such method, the so-called method of "internal constraints" will be employed here.

Approximate solutions of nonlinear equations become necessary since most of them cannot be integrated explicitly in terms of known functions. To be meaningful these solutions must be accurate within certain acceptable limit and must accommodate the characteristic features of the physical problem.

In the problems that have been considered, elongations and shears are assumed to be small but rotations are moderately large. This leads to nonlinear strain-displacement relations. On the other hand the

^{*} Cours de Mécanique Appliqués, Mallet-Fachelier, Paris, 1859, p. 126.

strains are assumed to maintain linear relationships with stresses. Thus the problem becomes geometrically nonlinear but remains physically (or materially) linear. The study of the effect of material nonlinearity is a separate class of problems in itself and has not been considered here. The structural material has also been assumed to be isotropic and homogeneous. It may be pointed out that in the present age, there is no dearth of materials with the above properties. All the structural elements considered have been assumed to be of uniform thickness.

thick structural elements have been studied. Fundamental period (corresponding to the fundamental frequency), which is of primary concern to structural engineers, has been obtained. Effects of damping and of coupling of modes have been neglected.* The structural elements that have been analysed are: straight beam and shallow arch, rectangular and circular plates, a doubly-curved shallow shell on rectangular plan, and a spherical cap. These are the commonly used elements in engineering design that are subjected to bending. Results obtained have been compared, in limiting cases, with known solutions and in

^{*} J.D. Ray and C.W. Bert (Ref. 1) have shown by experimental investigation on a beam that these effects are negligible.

general the agreement is very satisfactory. By computing the values of fundamental period in a few cases it has been amply demonstrated that by an incorrect but frequently employed application of Galerkin technique, the values computed come out to be erroneous. This fact for the case of a sandwich plate has been pointed out by Yi-Yuan Yu and Jai-Lue Lai*.

1.2 LITERATURE SURVEY

A survey of literature on free vibration problems in beams, plates, and shells reveals that either large deflection problems neglecting the effects of trans-verse shear and rotatory inertia or small deflection problems taking these effects into account have been studied.

The linear analysis of free vibrations of beams where transverse shear and rotatory inertia effects are considered are dealt with extensively in literature (Refs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 etc.). Large amplitude vibrations of beams have been discussed by a number of authors (Refs. 12, 13, 14, 15, 16, 17 etc.).

^{* &}quot;Application of Galerkin's Method to the Dynamic Analysis of Structures", AIAA Journal, April 1967, pp. 792-795.

Eringen 12* derived the governing equations for flexural vibrations of thin elastic beams when the displacements are finite but the strains are small. He assumed the motion to be extensional which implied the presence of a resultant normal force acting on the cross-section of the beam and obtained very complicated governing equations. Wagner 13 formulated a system of governing equations for a similar problem using energy techniques and disregarding the resultant normal force in the cross-sections of the beam. Libai 14 derived a system of governing equations of motion for the above problem using a convected coordinate system. He made an additional assumption that the component of the instantaneous velocity of a point on the middle surface of the beam could, under certain circumstances, be neglected as compared to the component normal to the surface. By using a potential function and assuming the extensional strains to be very small compared to rotations, he obtained much simpler equations than those given by Eringen. Woodall 15 also solved the problem of finite amplitude, free, planar oscillations of a thin elastic beam assuming the motion to be inextensional and allowing

^{*} The raised numbers indicate references listed at the end of the thesis.

the existence of a resultant normal force acting on each cross-section of the beam. For a simply supported beam a finite difference, Galerkin, and (regular) perturbation solutions have been compared. Ray and Bertl have investigated both theoretically and experimentally the large amplitude vibrations of a flexible beam with pinned ends. They have discussed the extent of validity of various assumptions that are usually made while analysing beam vibration problems. Chu and Herrmann and Wu and Vinson have investigated the beam problem as a special case of the plate problem.

Large amplitude vibration of rectangular plates have been studied by a number of authors (Refs. 17, 16, 18 etc.). Chu and Herrmann ¹⁷ made Karman's type of assumptions for strains and derived the governing equations in terms of components of displacement for thin plates. They used perturbation technique to solve the equations. Wu and Vinson extended a part of the work by Nash and Modeer 18, who had investigated thin plate vibrations in the so-called Ferger's field (they neglected the second invariant of strain). Using Hamilton's principle in the way indicated by Reissner, Wu and Vinson obtained the equations of motion for large amplitude oscillations of transversely isotropic

plates. In the solution they have included the effect of transverse shear but neglected the effect of rotatory inertia. Chauhan and Ashwell¹⁹ studied the vibration of a thin plate as a special case of a shallow shell. They investigated small and large amplitude oscillations of a doubly curved shell on square plan. They used Rayleigh-Ritz method for the linear problem and attempted an approximate analysis for the nonlinear problem by making energy consideration and finally solving the nonlinear equation by numerical technique. They have neglected the effects of transverse shear and rotatory inertia.

Vibration of shallow arches have been studied extensively since they are the simplest structural elements about which detailed studies may be feasible and which have many common features with shells.

Snap-through buckling of curved elements such as arches and shallow shells has received considerable interest in elastic stability. If the applied loading causes the curvature to decrease, the element may snap-through to a new equilibrium configuration. The new equilibrium of buckled configuration is characterised by having a curvature opposite to the undeformed shape. The dynamic analog of this problem has been of

considerable interest. Studies in this field include loading which is suddenly applied and maintained (Refs. 20, 21, periodic vibrations superimposed on a static loading (Ref. 23), and impulsive loading (Refs. 24, 25, 26, 27). In these analyses, the spatial form of the displacement function is assumed. Approximate solutions are then obtained by using variational principles. The essential difference in these studies is in the choice of the spatial form.

Static stability of shallow arches has been studied in a very complete manner by Fung and Kaplan²⁸. The corresponding dynamic problem was studied by Hoff and Bruce²⁰ who have analysed various stability problems by using, in most cases, a two mode representation for the response. Hsu²⁹ considered the dynamic stability of shallow arches against snap-through when subjected to impulsive loads. He took all modes in the response into account and investigated the effects of various parameters. Later Hsu³⁰ and Hsu et. al.³¹ investigated the stability of shallow arches against snap-through under timewise step loads. Lock²¹ and Humphreys²⁶ used a digital and an analog computer respectively to calculate the responses of a shallow arch in order to establish stability criteria. Lock used two modes while

⁺ Earlier this work had appeared as a report (Ref.22).

Humphreys used six modes in his analysis.

Vibrations of plates and cylindrical shells have been investigated quite extensively whereas results on vibrations of spherical shells are less comprehensive. Federhofer³² and Reissner³³ have obtained approximate values of fundamental frequencies for the linear axisymmetric vibrations of a clamped spherical cap by the use of Ritz method. Later Reissner 34, in dealing with fundamental frequency of transverse vibrations of shallow spherical shells, justified the omission of longitudinal inertia terms from the governing equations of such vibrations. His results for the fundamental frequency are in good agreement with those obtained more recently by Kalnins³⁵ from the exact solution of the shallow shell equations. The effect of thickness-shear deformation in the linear problem was taken into account by Kalnins³⁶ for a shallow spherical shell and by Deresiewicz and Mindlin³⁷ and Deresiewicz³⁸ for circular discs. Also, Reissner 39 solved the problem of axisymmetric vibrations of circular plates of uniform thickness and included the effects of transverse shear and rotatory inertia. However, no numerical results were given. Koplik and Yu40 investigated vibrations of homogeneous and sandwich spherical caps with clamped edges and

^{*} The method is based on a generalised Hamilton's principle and in particular, the associated variational equation of motion for nonlinear case that were used for plates and shells by Yu (Refs. 41, 42).

included the effects of transverse shear and rotatory inertia. They have emphasised the transition from a circular disk to a shallow shell - the two problems that had been treated so far in a more or less isolated manner. Humphreys and Bodner'24, Budiansky and Roth'27, Archer and Lange'43, Simitses'44, Lock et. al. 45, and Huang'46 also investigated dynamic buckling of shallow spherical shells under certain kinds of loading.

More recently Grossman, Koplik, and Yu47 solved the geometrically nonlinear vibration problem of a shallow spherical cap for various boundary conditions. The formulation is general - the effects of transverse shear and rotatory inertia are included. Thereafter these effects have been neglected and the equations turn out to be the same as those obtained by Connor 48. These simplified equations have been solved and the effects of curvature, amplitude, and edge supports on the vibration have been studied. Here also the emphasis is on transition from a slightly curved plate to a shallow shell. This phenomenon is investigated by obtaining the ratio of initial rise to thickness for which the type of nonlinearity changes from hardening to softening. It may be mentioned that nonlinearity in the case of flexural vibration of a circular ring

(as in the case of a shallow shell) is of softening type. This was observed, both theoretically and experimentally for a circular ring by Evensen 49. Subsequently he confirmed experimentally (Ref.50) that nonlinearity in the case of thin cylindrical shell is also of softening instead of hardening type. Earlier Yu⁵¹ had reduced the problem of nonlinear vibration of cylindrical shells to a nonlinear equation in time, which contained both quadratic and cubic nonlinear terms (the former being explicitly associated with curvature). However, by improper choice of displacement, the effect of quadratic nonlinearity was missed and erroneously the nonlinearity was found to be of hardening type. better form of displacement has been used in Ref.47 to retain the effect of quadratic nonlinearity also. However, no difference between positive (outwards) and negative(inwards) amplitudes of vibration of the spherical cap is made in the above work. Consequently, the phenomenon of dynamic buckling is not brought out.

1.3 OBJECT AND SCOPE

In the present work, a method has been suggested to obtain the natural frequencies for large amplitude oscillations of some moderately thick common structural elements like beams, plates and shells. The effects of transverse shear and rotatory inertia have been included. The material is assumed to be linearly elastic but the strain-displacement relations are taken to be nonlinear. A fixed inertial reference frame and a Lagrangian description of motion have been employed. The problems of a rectangular plate, a doubly curved shallow shell on rectangular plan, and a spherical cap have been analysed. The results are specialised for straight beam, a shallow arch, and a circular disk. Thickness of the elements has been taken to be uniform. cases except that of a spherical cap, the equations of motion have been derived using Hamilton's principle in the manner indicated by Reissner. For a spherical cap, the equations of motion of the elasticity theory are used. However, the final results obtained for this case are compared with the results obtained from equations derived by a variational approach. The agreement for the limiting case is good.

In Chapter II, the problems of the above structural elements have been formulated. The equations of motion have been obtained in terms of components of displacement and those of rotation. Assuming approximate mode shapes that satisfy the boundary conditions and using well-known Galerkin technique, ordinary nonlinear differential equations with time as independent variable have been derived. These equations have been combined into one higher order equation. Neglecting fourth and higher order derivatives, which have negligible effect on the fundamental period, one second order nonlinear equation in time has been obtained. This has been integrated numerically. Although the method is general, the computations are restricted to obtaining fundamental period of elements with hinged ends.

Chapter III contains the results computed for various thicknesses of elements. The results are discussed in detail and are compared in limiting cases with available results. In general the agreement is very satisfactory.

Chapter IV lists the conclusions derived from the results computed in this work.

Recommendations for further work are given in Chapter ${\tt V}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$

In Chapter II, the problems of the above structural elements have been formulated. The equations of motion have been obtained in terms of components of displacement and those of rotation. Assuming approximate mode shapes that satisfy the boundary conditions and using well-known Galerkin technique, ordinary nonlinear differential equations with time as independent variable have been derived. These equations have been combined into one higher order equation. Neglecting fourth and higher order derivatives, which have negligible effect on the fundamental period, one second order nonlinear equation in time has been obtained. This has been integrated numerically. Although the method is general, the computations are restricted to obtaining fundamental period of elements with hinged ends.

Chapter III contains the results computed for various thicknesses of elements. The results are discussed in detail and are compared in limiting cases with available results. In general the agreement is very satisfactory.

Chapter IV lists the conclusions derived from the results computed in this work.

Recommendations for further work are given in Chapter V.

CHAPTER II

FORMULATION

2.1 THE CASE OF A RECTANGULAR PLATE

In this section, the governing equations are derived for a rectangular plate (see Fig.1). These are then specialised for the case of a straight beam.

Reissner's variational theorem (Ref.52) extended for the dynamic case may be written as:

$$\begin{cases} \int_{-t_1}^{t_2} \left[\iint_{V} \mathbf{F} \cdot d\mathbf{V} - \iint_{\mathbf{X}} (\mathbf{\bar{p}_x} \cdot \mathbf{u} + \mathbf{\bar{p}_y} \cdot \mathbf{v} + \mathbf{\bar{p}_z} \cdot \mathbf{w}) d\mathbf{S} \right] \\ - \iint_{V} \mathbf{P}/2(\mathbf{\dot{u}^2} + \mathbf{\dot{v}^2} + \mathbf{\dot{w}^2}) d\mathbf{V} d\mathbf{V} d\mathbf{V} = 0 \end{cases}$$
(2.1)

where t_1 to t_2 is an arbitrary interval of time

$$F = \epsilon_{xx} \cdot \epsilon_{xx} + \epsilon_{yy} \cdot \epsilon_{yy} + \epsilon_{zz} \cdot \epsilon_{zz}$$

$$+ \tau_{xy} \cdot \gamma_{xy} + \tau_{xz} \cdot \gamma_{xz} + \tau_{yz} \cdot \gamma_{yz} - \overline{w}$$

$$\epsilon_{xx} = \overline{w} (\epsilon_{xx}, ----), \epsilon_{xx} \text{ etc.}$$

S₁= that part of the surface where stress boundary conditions are prescribed

 $p_x, p_y, p_z = Components of surface tractions prescribed over <math>S_1$

Equation (2.1) may be reduced to the form (see, for example Ref.53):

$$\int_{t_{1}}^{t_{2}} \left[\begin{cases} \begin{cases} \begin{cases} \text{if } F.dV - \text{if } (\overline{p}_{x}u + \overline{p}_{y}v + \overline{p}_{z}w)ds \end{cases} \\ V & S_{1} \end{cases} \right]$$

$$+ \int_{V}^{s} \left[(\overline{u}.Su + \overline{v}.Sv + \overline{w}.Sw)dv \right] dt = 0$$

$$V \qquad (2.2)$$

Since the interval t_1 to t_2 is arbitrary:

$$\begin{cases}
\iiint_{\mathbf{v}} \mathbf{F} \cdot d\mathbf{V} - \iint_{\mathbf{v}} (\mathbf{\bar{p}}_{\mathbf{x}} \mathbf{u} + \mathbf{\bar{p}}_{\mathbf{y}} \mathbf{v} + \mathbf{\bar{p}}_{\mathbf{z}} \mathbf{w}) d\mathbf{s} \\
+ \iiint_{\mathbf{v}} (\mathbf{\bar{u}} \cdot \mathbf{s} \mathbf{u} + \mathbf{\dot{v}} \cdot \mathbf{s} \mathbf{v} + \mathbf{\dot{w}} \cdot \mathbf{s} \mathbf{w}) d\mathbf{v} = 0
\end{cases} \tag{2.3}$$

In the course of this work finite deformations have been assumed. Elongations and shears are small but rotations are moderately large. Karman's type assumptions (see, for example Ref. 54) may therefore be made:

$$\begin{aligned}
& \xi_{XX} = u_{,X} + 1/2.(w_{,X})^{2} \\
& \xi_{YY} = v_{,Y} + 1/2.(w_{,Y})^{2} \\
& \xi_{ZZ} = w_{,Z} + 1/2.(w_{,Z})^{2} \\
& \xi_{ZZ} = u_{,Z} + v_{,X} + v_{,X} \cdot w_{,Y} \\
& \xi_{XY} = u_{,Z} + v_{,X} + v_{,X} \cdot w_{,Z} \\
& \xi_{YZ} = v_{,Z} + v_{,Y} + v_{,Y} \cdot w_{,Z}
\end{aligned} \tag{2.4}$$

To include the effects of transverse shear and rotatory inertia in the governing equations, the so-called method of "internal constraints" will be used here; that is, the components of elastic displacement must comply with special equations of constraint (Ref. 55). The components of displacement are then taken in the form:

$$u(x,y,z,t) = u_{O}(x,y,t) + z. \, x(x,y,t)$$

$$v(x,y,z,t) = v_{O}(x,y,t) + z. \, \beta(x,y,t)$$

$$w(x,y,z,t) = w(x,y,t)$$
(2.5)

Therefore.

$$\zeta_{xx} = u_{0,x} + z. \, \alpha_{,x} + 1/2.(w_{,x})^{2}$$
 $\zeta_{yy} = v_{0,y} + z. \, \hat{\epsilon}_{,y} + 1/2.(w_{,y})^{2}$
 $\zeta_{zz} = 0$
 $\gamma_{xy} = u_{0,y} + v_{0,x} + z.(\alpha_{,y} + \beta_{,x}) + w_{,x}.w_{,y}$
 $\gamma_{xz} = \alpha + w_{,x}$
 $\gamma_{yz} = \hat{\epsilon} + w_{,y}$
 $\gamma_{yz} = \hat{\epsilon} + w_{,y}$

The stresses are taken in the form (see Fig.2):

$$G_{xx} = \frac{N_x}{h} + \frac{12.z.M_x}{h^3}$$
 (2.7.1)

$$\epsilon_{yy} = \frac{Ny}{h} + \frac{12 \cdot z \cdot My}{h^3}$$
 (2.7.2)

$$\zeta_{zz}^* \stackrel{!}{=} 0 \tag{2.7.3}$$

^{*} $\epsilon_{\rm ZZ}$ has been taken to be zero for the case of free vibration.

$$T_{xy} = \frac{N_{xy}}{h} + \frac{12.2.N_{xy}}{h^3}$$
 (2.7.4)

$$T_{xz} = \frac{3Q_x}{2h} \left\{ 1 - \left(\frac{2z}{h}\right)^2 \right\}$$
 (2.7.5)

$$\tau_{yz} = \frac{3Q_y}{2h} \left\{ 1 - \left(\frac{2z}{h}\right)^2 \right\}$$
 (2.7.6)

The analysis is restricted to the case when $S_1=0$. Substituting eqs.(2.6) and (2.7) in eq.(2.3), integrating through the thickness, and carrying out the variation, the following equation is obtained:

$$\int_{0}^{a} \int_{0}^{b} \left[(u_{0,x} + 1/2.(w_{x})^{2} - \frac{N_{x}}{Eh} + \frac{y N_{y}}{Eh}) \delta N_{x} + (v_{0,y} + 1/2.(w_{y})^{2} - \frac{N_{y}}{Eh} + \frac{y N_{x}}{Eh}) \delta N_{y} + (u_{0,y} + v_{0,x} - \frac{N_{xy}}{Gh} + w_{x}.w_{y}) \delta N_{xy} + (w_{x} - \frac{12.M_{x}}{Eh^{3}} + \frac{12.y_{x}.M_{y}}{Eh^{3}}) \delta M_{x} + (\beta_{y} - \frac{12.M_{y}}{Eh^{3}} + \frac{12.y_{x}.M_{x}}{Eh^{3}}) \delta M_{y} + (\alpha_{y} + \beta_{y} - \frac{12.M_{xy}}{Gh^{3}}) \delta M_{xy}$$

$$+ (\alpha_{y} + \beta_{y} - \frac{12.M_{xy}}{Gh^{3}}) \delta Q_{x}$$

$$+ (\beta_{y} + w_{y} - \frac{6.Q_{y}}{5Gh}) \delta Q_{y}$$

The forces and couples are derived as :

$$N_{x} = \frac{Eh}{(1-\nu^{2})} \left[u_{0,x} + \nu \cdot v_{0,y} + 1/2 \cdot (w_{,x})^{2} + \nu/2(w_{,y})^{2} \right]$$

$$N_{y} = \frac{Eh}{(1-\nu^{2})} \left[v_{0,y} + \nu u_{0,x} + 1/2 \cdot (w_{,y})^{2} + \nu/2(w_{,x})^{2} \right]$$
(2.9.1)
$$(2.9.2)$$

$$N_{xy} = Gh (u_0, y + v_0, x + w_0, x, w, y)$$
 (2.9.3)

$$M_{x} = D \left(\omega_{,x} + \nu \beta_{,y} \right)$$
 (2.9.4)

$$M_{y} = D \left(\beta_{,v} + \nu, \mathcal{A}_{,x}\right) \tag{2.9.5}$$

$$M_{xy} = \frac{Gh^3}{12} (, y + \beta, x)$$
 (2.9.6)

$$Q_{X} = \frac{5Gh}{6} (x + w_{,X})$$
 (2.9.7)

$$Q_y = \frac{5Gh}{6} (p + w_y)$$
 (2.9.8)

Also, from eq.(2.8) the following equations of motion in terms of components of rotation and displacement are derived:

$$\int_{0}^{a} \int_{0}^{b} \left\{ \left[-D \, d_{,xx} - \frac{D(1-\nu)}{2} \, d_{,yy} - \frac{D(1+\nu)}{2} \, \beta_{,xy} + \frac{5Gh}{6} \, (d_{,xy} + \frac{5Gh}{6}) \, d_{,xy} + \frac{5h^{3} \dot{\omega}}{6} \, d_{,xy} \right] \right\} d_{,xy} d_{,xy}$$

$$\int_{0}^{2} \int_{0}^{2} \left\{ \left\{ -\frac{Eh}{(1-\nu^{2})} V_{0}, yy - \frac{Eh}{2(1-\nu)} u_{0}, xy - \frac{Eh}{(1-\nu^{2})} \cdot W, y \right\} \right\} dx dy = 0$$

$$\int_{0}^{2} \int_{0}^{2} \left\{ \left\{ -\frac{Eh}{(1-\nu^{2})} W_{0}, x \cdot W_{0}, xy - \frac{Eh}{2(1+\nu)} \cdot V_{0}, xx - \frac{Eh}{2(1+\nu)} W_{0}, xx + f h v_{0} \right\} \right\} dx dy = 0$$

$$\int_{0}^{2} \int_{0}^{2} \left\{ \left\{ -\frac{Eh}{(1-\nu^{2})} (u_{0}, x \cdot W_{0}, xx + V_{0}, y \cdot W_{0}, yy) - \frac{vEh}{(1-\nu^{2})} \right\} \right\} dx dy = 0$$

$$(2.10.4)$$

$$\int_{0}^{2} \int_{0}^{2} \left\{ \left\{ -\frac{Eh}{(1-\nu^{2})} (u_{0}, x \cdot W_{0}, xy \cdot W_{0}, xy) - \frac{vEh}{(1+\nu^{2})} (u_{0}, y + V_{0}, x) \cdot W_{0}, xy - \frac{vEh}{(1-\nu^{2})} (u_{0}, xx \cdot W_{0}, xy - W_{0}, xy) - \frac{vEh}{(1-\nu^{2})} (u_{0}, xy \cdot W_{0}, xy) - \frac{Eh}{(1-\nu^{2})} (u_{0}, xy \cdot W_{0}, xy - \frac{vEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}, yy \cdot W_{0}, y) - \frac{SEh}{(1-\nu^{2})} (v_{0}, xx \cdot W_{0}$$

Further, the boundary conditions as given by eq.(2.8) are:

(i) along x = 0 and x = a

(ii) Similarly along
$$y = 0$$
 and $y = b$ (2.12).

Equations (2.10) are in the proper form for the application of Galerkin technique. For a plate hinged along all the four edges and vibrating in the first mode, the approximate following expressions for rotation and displacement components can be taken:

$$x = A_{1}(t) \cdot \cos \frac{\pi_{X}}{a} \cdot \sin \frac{\pi_{Y}}{b}$$

$$\beta = E_{1}(t) \cdot \sin \frac{\pi_{X}}{a} \cdot \cos \frac{\pi_{Y}}{b}$$

$$u_{0} = M(t) \cdot h \cdot \sin \frac{2\pi_{X}}{a} \cdot \cos \frac{2\pi_{Y}}{b}$$

$$v_{0} = N(t) \cdot h \cdot \cos \frac{2\pi_{X}}{a} \cdot \sin \frac{2\pi_{Y}}{b}$$

$$w = P(t) \cdot h \cdot \sin \frac{\pi_{X}}{a} \cdot \sin \frac{\pi_{Y}}{b}$$
(2.13)

These satisfy all the boundary conditions for a hinged plate, namely:

(i) along
$$x = 0$$
 and $x = a$

$$M_{x} = 0$$

$$\beta = 0$$

$$u_{0} = 0$$

$$N_{xy} = 0$$

$$w = 0$$

(ii) similarly along y = 0 and y = b.

Then, from eqs. (2.10), the following equations are derived after integration*:

$$A_1^{ii} + a_1 A_1 + a_2 B_1 + a_3 P = 0$$
 (2.14.1)

$$B_1^n + b_1 B_1 + b_2 A_1 + b_3 P = 0$$
 (2.14.2)

$$M'' + c_1 M + c_2 N + c_3 P^2 = 0$$
 (2.14.3)

$$N'' + d_1 N + d_2 M + d_3 P^2 = 0$$
 (2.14.4)

$$P^{n} + e_1 P^3 + e_2 P + e_3 PM$$

$$+ e_4 PN + e_5 A_1 + e_6 B_1 = 0$$
 (2.14.5)

^{*} From here onwards $E/2(1+\nu)$ is substituted for G in this section.

(2.15)

$$a_1 = \frac{\pi^2}{(1-\nu^2)} + \frac{\pi^2}{2(1+\nu)B^2} + \frac{5}{(1+\nu)H^2}$$

$$a_2 = \frac{\pi^2}{2(1-\nu)B}$$

$$a_3 = \frac{5 \pi}{(1+\nu)H}$$

$$b_1 = \frac{\pi^2}{(1-\nu^2)B^2} + \frac{\pi^2}{2(1+\nu)} + \frac{5}{(1+\nu)B^2}$$

$$b_2 = \frac{\pi^2}{2(1-\nu)B}$$

$$b_3 = \frac{5 JT}{(1+\nu)B.H}$$

$$c_1 = \frac{4\pi^2}{(1-\nu^2)} + \frac{2\pi^2}{(1+\nu)B^2}$$

$$c_2 = \frac{2\pi^2}{(1-\nu)B}$$

$$c_3 = -\frac{\pi^3 \cdot H}{4(1-\nu^2)} (1+\frac{1}{B^2})$$

$$d_1 = \frac{4\pi^2}{(1-v^2)B^2} + \frac{2\pi^2}{(1+v^2)}$$

$$d_2 = \frac{2 \pi^2}{(1-\nu)B}$$

$$d_{3} = -\frac{\pi^{3}H}{4(1-\nu^{2})} \left(\frac{1}{B} + \frac{1}{B^{3}}\right)$$

$$e_{1} = \frac{\pi^{4} \cdot H^{2}}{32(1-\nu^{2})} \left(9 + \frac{2}{B^{2}} + \frac{9}{B^{4}}\right)$$

$$e_{2} = \frac{5\pi^{2}}{12(1+\nu)} \left(1 + \frac{1}{B^{2}}\right)$$

$$e_{3} = -\frac{\pi^{3}H}{2(1-\nu^{2})} \left(1 + \frac{1}{B^{2}}\right)$$

$$e_{4} = -\frac{\pi^{3}H}{2(1-\nu^{2})B} \left(1 + \frac{1}{B^{2}}\right)$$

$$e_{5} = \frac{5\pi}{12(1+\nu)H}$$

$$e_{6} = \frac{5\pi}{12(1+\nu)B}$$

In predominantly flexural vibration, in-plane inertia can be neglected (see Ref. 56) and therefore, M" and N" are omitted from eqs.(2.14.3) and (2.14.4). Then all the five eqs.(2.14) are combined into one higher order equation with P as the only dependent variable. Neglecting fourth and higher derivatives of P, which have negligible effect on the fundamental period (see Refs. 2 and 3):

$$g_1 P'' P^2 + g_2 P'' + g_3 (P_.^1)^2 P + g_4 P^3 + g_5 P = 0$$
 (2.16)

where,

$$g_{1} = (a_{1} + b_{1}) (3e_{1} + 3e_{3}j_{1} + 3e_{4}j_{2})$$

$$g_{2} = (a_{1}b_{1} - a_{2}b_{2}) + (a_{1} + b_{1}) e_{2} - (a_{3}e_{5} + b_{3}e_{6})$$

$$g_{3} = 6(a_{1} + b_{1}) (e_{1} + e_{3}j_{1} + e_{4}j_{2})$$

$$g_{4} = (a_{1}b_{1} - a_{2}b_{2}) (e_{1} + e_{3}j_{1} + e_{4}j_{2})$$

$$g_{5} = (a_{1}b_{1} - a_{2}b_{2}) e_{2} + (a_{2}b_{3} - a_{3}b_{1}) e_{5}$$

$$+ (a_{3}b_{2} - a_{1}b_{3}) e_{6}$$

$$j_{1} = \frac{c_{2}d_{3} - c_{3}d_{1}}{c_{1}d_{1} - c_{2}d_{2}}$$

$$j_{2} = \frac{c_{3}d_{2} - c_{1}d_{3}}{c_{1}d_{1} - c_{2}d_{2}}$$

For small amplitude oscillations, terms containing products of P and its derivatives can be neglected giving,

$$g_2 P'' + g_5 P = 0$$
 (2.18)

Corresponding non-dimensional period of flexural vibration is obtained as

$$T_{L} = \frac{2 \pi}{\sqrt{g_{5}/g_{2}}}$$
 (2.19)

This is the period of vibration when effects of transverse shear and rotatory inertia are included.

An erroneous but frequently employed application of Galerkin technique is demonstrated below. It is not an uncommon practice to combine the equations derived after variation in some convenient form and then apply Galerkin technique. As for example, let there be n equations derived by the use of variational principle:

Approximate forms of F_1, \dots, F_n can be assumed and the integration can be carried out. This is the correct Galerkin procedure. But if

$$f_1 (F_1, \dots, F_n) = 0$$

$$f_n (F_1, \dots, F_n) = 0$$
(2.21)

are combined in such a way that the resulting equations are not coefficient equations of §(), it is not proper to apply Galerkin technique in this form. This can be shown by carrying out numerical computations.

From eq.(2.8), the governing equations can also be written in the following form:

$$u_{0,x} + 1/2(w_{x})^{2} - \frac{N_{x}}{Eh} + \frac{v_{y}}{Eh} = 0$$
 (2.22.1)

$$v_{0,y} + 1/2(w_{y})^2 - \frac{N_y}{Eh} + \frac{y N_x}{Eh} = 0$$
 (2.22.2)

$$u_{o,y} + v_{o,x} - \frac{N_{xy}}{Gh} + w_{,x} \cdot w_{,y} = 0$$
 (2.22.3)

$$A_{,x} - \frac{12M_{x}}{Eh^{3}} + \frac{12VM_{y}}{Eh^{3}} = 0$$
 (2.22.4)

$$\beta_{y} - \frac{12M_{y}}{Eh^{3}} + \frac{12 \nu M_{x}}{Eh^{3}} = 0$$
 (2.22.5)

$$\ll, y + \xi, x - \frac{12M_{XY}}{Gh^3} = 0$$
 (2.22.6)

$$\beta + w_{,y} - \frac{6Q_{y}}{5Gh} = 0 (2.22.8)$$

$$M_{X,X} + M_{XY,Y} - Q_X - \frac{ph^3}{12} \stackrel{.}{\checkmark} = 0$$
 (2.22.9)

$$M_{y,y} + M_{xy,x} - Q_y - \frac{p_h^3}{12} \beta = 0$$
 (2.22.10)

$$N_{x,x} + N_{xy,y} - f h \dot{u}_0 = 0$$
 (2.22.11)

$$N_{y,y} + N_{xy,x} - fh \dot{v}_0 = 0$$
 (2.22.12)

$$N_{x,y,y,w,x} + N_{y,w,y,y} + 2N_{xy,w,xy} + N_{x,x,w,x} + N_{xy,x,w,y}$$

+ $N_{xy,y,w,x} + N_{y,y,w,y} + Q_{x,x} + Q_{y,y} - Ph = 0$ (2.22.13)

As done in the previous case, in-plane inertia terms from eqs.(2.22.11) and (2.22.12) can be neglected. Selecting a function \emptyset such that :

$$N_{x} = \emptyset, yy$$

$$N_{y} = \emptyset, xx$$
(2.23)

$$N_{xy} = - \emptyset, xy$$

these two equations are identically satisfied. Then from eqs. (2.22.1) through (2.22.3), the compatibility equation for middle plane strains can be written as (see Ref. 57):

$$\nabla^4 \% + \text{Eh} (w_{,xx} \cdot w_{,yy} - (w_{,xy})^2) = 0$$
 (2.24)

From Eqs. (2.22.4) through (2.22.8) $\rm M_{x}$, $\rm M_{y}$, $\rm M_{xy}$, $\rm Q_{x}$, and $\rm Q_{y}$ are derived as given by eqs. (2.9.4) through (2.9.8). Substituting these in eqs. (2.22.9) and (2.22.10)

$$D \beta_{,yy} + \frac{D(1-y)}{2} \cdot \beta_{,xx} + \frac{D(1+y)}{2} \cdot \alpha_{,xy}$$

$$-\frac{5Gh}{6} (\beta + w_{,y}) - \frac{\gamma h^3 \ddot{k}}{12} = 0 \qquad (2.26)$$

Equation (2.22.13) takes the form :

$$\emptyset_{,xx}.w_{,yy} + \emptyset_{,yy}.w_{,xx} - 2 \emptyset_{,xy}.w_{,xy} + \frac{5Ch}{6}$$

$$(4,x + \beta,y + 7^{2}w) - \beta h w = 0$$
(2.27)

Eliminating \langle and β from eqs. (2.25), (2.26), and (2.27):

$$\left[\frac{D^{2}(1-\nu)\nabla^{4}}{2} - \frac{D \cdot h^{3}(3-\nu)\nabla^{2}}{24} \cdot \frac{\partial^{2}}{\partial t^{2}} - \frac{5DEh(3-\nu)\nabla^{2}}{24(1+\nu)} + \frac{25E^{2}h^{2}}{144(1+\nu)^{2}} + \frac{5\beta \cdot Eh^{4}}{72(1+\nu)} \cdot \frac{\partial^{2}}{\partial t^{2}}\right] \left[\emptyset, xx \cdot w, yy + \emptyset, yy \cdot w, xx - 2\emptyset, xy \cdot w, xy + \frac{5Eh}{12(1+\nu)} \nabla^{2} w - \beta \cdot h \cdot w\right] + \frac{5Eh}{12(1+\nu)} \cdot \left[\frac{5DEh}{24} \cdot \frac{(1-\nu)}{(1+\nu)} \cdot \nabla^{4} - \frac{25E^{2}h^{2}}{144(1+\nu)^{2}} \right] \nabla^{2} - \frac{5\beta \cdot Eh^{4}}{144(1+\nu)^{2}} \cdot \frac{\partial^{2}}{\partial t^{2}} = 0$$
(2.28)

Approximate forms of w and \emptyset are selected such that eq.(2.24) is identically satisfied. Equation (2.28) is satisfied on the average by the application of Galerkin technique. It may however, be mentioned that all the five

boundary conditions cannot be satisfied since only two functions are required to be selected in this reduced form of equations. Let the following forms be assumed for w and \emptyset for a plate hinged along the edges:

$$w = f(t).h \sin \frac{\pi x}{a} \cdot \sin \frac{\pi y}{a}$$
 (2.29)

$$\emptyset = f^{2}(t) \frac{Eh^{3}}{32} \left[\frac{2 \pi^{2}}{a^{2}(1-y)} (x^{2} + y^{2}) \right]$$

$$+ \cos \frac{2\pi x}{a} + \cos \frac{2\pi y}{a}$$
 (2.30)

This part of the calculation is limited to a square plate of sides a. The boundary conditions satisfied by these functions are:

(i) along x = 0 and x = a,

$$u_{0} = 0$$

$$N_{xy} = 0$$

$$w = 0$$

$$M_{x} \stackrel{\cdot}{=} 0$$
(2.31)

(ii) similarly along y = 0 and y = a (2.32) The boundary condition on β along x = 0 and x = a however, cannot be satisfied.

Substituting these expressions for w and \emptyset in eq.(2.28) and multiplying by $\sin \frac{\pi x}{a}$ $\sin \frac{\pi y}{a}$, integrating over the area of the plate, the following equation is obtained after suitable non-dimensionalisation:

 $a_1 f'' f^2 + a_2 f'' + a_3 (f')^2 f + a_4 f + a_5 f^3 = 0$ (2.33) where,

$$a_1 = \frac{\pi^6 (3-\nu)^2 H^6}{1536 (1-\nu^2) (1-\nu)} + \frac{5 \pi^4 (3-\nu) . H^4}{768 (1-\nu^2)}$$

$$a_2 = \frac{\pi^4 (27-5 \nu) H^4}{3456 (1-\nu^2)(1+\nu)} + \frac{5 \pi^2 (23-11\nu) . H^2}{3456 (1-\nu^2)(1+\nu)} + \frac{25}{576 (1+\nu)^2}$$

$$a_{3} = \frac{\pi^{6}(3-\nu)^{2}H^{6}}{768(1-\nu^{2})(1-\nu)} + \frac{5\pi^{4}(3-\nu)H^{4}}{384(1-\nu^{2})}$$
(2.34)

$$a_4 = \frac{5 \pi^6 H^4}{1728(1-\nu^2)(1+\nu)^2} + \frac{25 \pi^4 H^2}{1728(1-\nu^2)(1+\nu)^2}$$

$$a_5 = \frac{\pi^8(3-\nu) H^6}{2304(1-\nu^2)^2} + \frac{5\pi^6(3-\nu)^2 H^4}{4608(1-\nu^2)^2} + \frac{25\pi^4(3-\nu) H^2}{4608(1+\nu)^2(1-\nu)}$$

The fourth and higher derivatives of time have been neglected in deriving eq.(2.33) as has already been explained earlier.

2.2 THE CASE OF A STRAIGHT BEAM

From the equations of a rectangular plate, the equations for a beam (see Fig.3) can be specialised by taking variables connected with y direction and the Poisson's ratio ν to be zero*.

The stress resultants derived from eqs.(2.9)

are:

$$N_{x} = Eh (u_{0,x} + 1/2 (w_{,x})^{2})$$

$$M_{x} = \frac{Eh^{3}}{12} \langle v_{,x} \rangle$$

$$Q_{x} = \frac{5Gh}{6} (\langle v_{,x} \rangle)$$
(2.35)

The variational equations as derived from eqs.(2.10) are:

$$\int_{0}^{a} \left[\left(-\frac{Eh^{3}}{12} \chi_{,xx} + \frac{5Gh}{6} (\chi + w_{,x}) + \frac{fh^{3} \chi}{12} \right) \delta \chi \right] dx = 0$$
(2.36.1)

$$\int_{0}^{a} \left[(-Eh u_{0,xx} - Eh w_{,x} \cdot w_{,xx}) \xi u_{0} \right] dx = 0 \quad (2.36.2)^{**}$$

^{*} This is to be done before $\frac{E}{2(1+\nu)}$ is substituted for G.

^{**}In-plame inertia term has been neglected.

$$\int_{0}^{a} \left[(-Eh u_{0,x} \cdot w_{,xx} - Eh u_{0,xx} \cdot w_{,x} - \frac{5Gh}{6} \chi_{,x} \right] dx = 0$$

$$-\frac{3}{2} Eh \cdot w_{,xx} \cdot (w_{,x})^{2} - \frac{5Gh}{6} w_{,xx} + Ph \dot{w} \delta w dx = 0$$
(2.36.3)

The boundary conditions along x = 0 and x = a specialised from eqs. (2.11) are:

either or
$$\mathcal{L} = 0 \qquad M_{\mathbf{X}} = 0$$

$$\mathbf{u}_{0} = 0 \qquad N_{\mathbf{X}} = 0$$

$$\mathbf{v}_{0} = 0 \qquad \mathbf{v}_{\mathbf{X}} = 0$$

$$\mathbf{v}_{0} = 0 \qquad \mathbf{v}_{0} = 0$$

For a beam hinged at both the ends and vibrating in the fundamental mode, the following forms for \prec , u_0 , and w can be taken :

$$w = A_{1} (t) \cos \frac{\pi x}{a}$$

$$u_{0} = M (t) h \sin \frac{2\pi x}{a}$$

$$w = P (t) h \sin \frac{\pi x}{a}$$
(2.38)

Then from eqs. (2.36) the following eqs. are derived:

$$A_{1}^{"} + a_{1} A_{1}^{+} a_{2} P = 0$$

$$M^{"} + b_{1} M + b_{2} P^{2} = 0$$

$$P^{"} + c_{1} P^{3} + c_{2} P + c_{3}A + c_{4}PM = 0$$
(2.39)

where,

$$a_1 = \pi^2 + \frac{5}{(1+\nu)H^2}$$

 $a_2 = \frac{5\pi}{(1+\nu)H}$
 $b_1 = 4\pi^2$
 $b_2 = -\frac{\pi^3H}{4}$
 $c_1 = \frac{9\pi^4H^2}{32}$
 $c_2 = \frac{5\pi^2}{12(1+\nu)}$
 $c_3 = \frac{5\pi}{12H(1+\nu)}$
 $c_4 = -\frac{\pi^3H}{2}$

As in the previous case, in-plane inertia is neglected and the three eqs. (2.39) are combined into one equation with P as the only dependent variable. Retaining terms containing derivatives of P only upto the second order:

$$g_1 P'' P^2 + g_2 P'' + g_3 P(P')^2 + g_4 P^3 + g_5 P = 0$$
 (2.41)

$$g_1 = \frac{3}{4} \pi^4 H^2$$

$$g_2 = \pi^2 + \frac{5}{(1+\nu)H^2} + \frac{5\pi^2}{12(1+\nu)}$$

$$g_3 = \frac{3}{2} \pi^4 H^2 \tag{2.42}$$

$$g_4 = \frac{\pi^6 H^2}{4} + \frac{5\pi^4}{4(1+\nu)}$$

$$g_5 = \frac{5 \pi^4}{12(1+v)}$$

For small amplitude oscillations, terms containing products of P and its derivatives can be neglected giving,

$$g_2 P^{n} + g_5 P = 0$$
 (2.43)

Corresponding non-dimensional period of flexural vibration,

$$T_{L} = \frac{2JT}{\sqrt{g_{5/g_{2}}}}$$
 (2.44)

2.3 THE CASE OF A DOUBLY CURVED SHELL ON RECTANGULAR PLAN

A shallow shell (see Fig.4), whose middle surface is given by $W(x,y) = c \sin \frac{\pi x}{a}$. Sin $\frac{\pi y}{b}$, is considered here. c is the maximum initial rise in unstressed condition. For a shell to be shallow c/b should not be greater than $\frac{1}{5}$. For such a shell, the first fundamental form of the surface can be taken as $ds^2 = dx^2 + dy^2$ and any integration required to be carried over the surface of the shell can be carried over the projected plan area without much error (Refs. 58, 59). This means that projected forces and moments can be taken as the actual forces and moments. These are the usual simplifications done in the case of shallow shells.

The components of displacement and distribution of stresses through the thickness are assumed as those given by eqs. (2.5) and (2.7).

The components of nonlinear strains are taken on the basis of the derivation given by Marguerre 60 for shallow shells, namely,

$$Y_{xy} = u_{,y} + v_{,x} + w_{,x} \cdot w_{,y} + w_{,x} \cdot w_{,y} + w_{,y} \cdot w_{,x}$$

$$Y_{xz} = \alpha + w_{,x}$$

$$Y_{yz} = \beta + w_{,y}$$

Substituting for u, v, and w:

$$\mathcal{L}_{XX} = u_{0,X} + z \cdot \lambda_{,X} + 1/2 (w_{,X})^{2} + \frac{c\pi}{a} \cdot w_{,X}.$$

$$Cos \frac{\pi}{a} \cdot Sin \frac{\pi}{b} \cdot y$$

$$\mathcal{L}_{YY} = v_{0,Y} + z \cdot \beta_{,Y} + 1/2 (w_{,Y})^{2} + \frac{c\pi}{b} \cdot w_{,Y}.$$

$$Cos \frac{\pi}{b} \cdot Sin \frac{\pi}{a}$$

$$\mathcal{L}_{ZZ} \stackrel{!}{=} 0$$

$$Y_{XY} = u_{0,Y} + v_{0,X} + z \cdot (\lambda_{,Y} + \beta_{,X}) + w_{,X} \cdot w_{,Y}$$

$$+ \frac{c\pi}{a} \cdot w_{,Y} \cdot Cos \frac{\pi}{a} \cdot Sin \frac{\pi}{b} \cdot y + \frac{c\pi}{b} \cdot w_{,X}$$

$$Sin \frac{\pi}{a} \cdot Cos \frac{\pi}{b}$$

$$Y_{XZ} = \lambda + w_{,X}$$

$$Y_{YZ} = \beta + w_{,Y}$$

By the variational approach, as in the case of the rectangular plate, the force-displacement relations are obtained as:

$$N_{x} = \frac{Eh}{(1-v^{2})} \left[u_{0,x} + v_{0,y} + 1/2 \left(w_{,x} \right)^{2} + \frac{v}{2} \left(w_{,y} \right)^{2} \right]$$

$$+ \frac{c \pi}{a} \cdot w_{,x} \cdot \cos \frac{\pi x}{a} \cdot \sin \frac{\pi y}{b} + \frac{v_{0}\pi}{b} w_{,y} \cdot \left(w_{,x} \right)^{2} + \frac{v_{0}\pi}{b} w_{,x} \cdot \left(w_{,x} \right)^{2} + \frac{v_{0}\pi}{a} w_{,x} \cdot \left(w_{0} \right)^{2} + \frac{v_{0}\pi}{a} w_{,x} \cdot \left(w_{0} \right)^{2} + \frac{v_{0}\pi}{a} w_{,x} \cdot \left(w_{0} \right)^{2} + \frac{v_{0}\pi}$$

The boundary conditions as derived are:

(i) along x = 0 and x = a

(ii) similarly along
$$y = 0$$
 and $y = b$ (2.49)

The components of rotation and displacement, for a shell hinged along the four edges, are taken to be the same as in eqs. (2.13) for the fundamental mode of vibration.

Ultimately the governing equations in nondimensional form (corresponding to eqs.(2.14) for the rectangular plate) reduce to:

$$A_{1}^{n} + a_{1}A_{1} + a_{2}B_{1} + a_{3}P = 0$$

$$B_{1}^{n} + b_{1}B_{1} + b_{2}A_{1} + b_{3}P = 0$$

$$M^{n} + c_{1}M + c_{2}N + c_{3}P^{2} + c_{4}P = 0$$

$$N^{n} + d_{1}N + d_{2}M + d_{3}P^{2} + d_{4}P = 0$$

$$P^{n} + e_{1}P^{3} + e_{2}P^{2} + e_{3}P + e_{4}PM + e_{5}PN + e_{6}M$$

$$+ e_{7}N + e_{8}A_{1} + e_{9}B_{1} = 0$$
(2.50)

where,

$$a_1 = \frac{\pi^2}{(1-\nu^2)} + \frac{\pi^2}{2(1+\nu)B^2} + \frac{5}{(1+\nu)H^2}$$

$$a_2 = \frac{\pi^2}{2(1-\nu)B}$$

$$a_3 = \frac{5 \, \pi}{(1+\nu) \, H}$$

$$b_1 = \frac{\pi^2}{(1-\gamma^2)B^2} + \frac{\pi^2}{2(1+\gamma)} + \frac{5}{(1+\gamma)H^2}$$

$$b_2 = \frac{\pi^2}{2(1-v) B}$$

$$b_3 = \frac{5 \pi}{(1+\nu)B.H}$$

$$c_1 = \frac{4 \pi^2}{(1-y^2)} + \frac{2 \pi^2}{(1+y)B^2}$$

$$c_2 = \frac{2 \pi^2}{(1-\gamma)B}$$

$$c_3 = -\frac{\pi^3 H}{4(1-\nu^2)} (1+\frac{1}{B^2})$$

$$e_4 = -\frac{k \pi^3 H}{2(1-\nu^2)} (1 + \frac{1}{B^2})$$

$$d_1 = \frac{4 \pi^2}{(1-\gamma^2)B^2} + \frac{2 \pi^2}{(1+\gamma)}$$

$$d_2 = \frac{2 \pi^2}{(1 - v)B}$$

$$d_3 = -\frac{\pi^3 H}{4(1-y^2)} (\frac{1}{B} + \frac{1}{B^3})$$

$$d_4 = -\frac{k \pi^3 H}{2(1-v^2)} (\frac{1}{B} + \frac{1}{B^3})$$

$$e_1 = \frac{\pi^4 H^2}{32(1-\nu^2)} (9 + \frac{9}{B^4} + \frac{2}{B^2})$$

$$e_2 = \frac{3 \pi^4 h^2 k}{32(1-\nu^2)} (9 + \frac{2}{B^2} + \frac{9}{B^4})$$

(2.51)

ı

$$e_3 = \frac{k^2 \pi^{4} H^2}{(1-\nu^2)} \left(\frac{9}{16} + \frac{9}{16B^4} + \frac{1}{8B^2} \right) + \frac{5 \pi^2}{12(1+\nu)} (1 + \frac{1}{B^2})$$

$$e_4 = -\frac{\pi^3 H}{2(1-\nu^2)} (1 + \frac{1}{B^2})$$

$$e_5 = -\frac{\pi^3 H}{2(1-v^2)B} (1+\frac{1}{B^2})$$

$$e_6 = -\frac{k \pi^3 H}{2(1-\nu^2)} (1 + \frac{1}{R^2})$$

$$e_7 = -\frac{k \pi^3 H}{2(1-\nu^2)B}(1+\frac{1}{B^2})$$

$$e_{8} = \frac{5}{12(1+\nu)H}$$

$$e_9 = \frac{5 \pi}{12(1+\nu)B.H}$$

Heglecting in-plane inertia terms in eqs.(2.50), combining these in a way similar to that in the case of the rectangular plate, and neglecting terms containing fourth and higher order derivatives with respect to time, the following equation is obtained:

$$g_1^{p''p^2}+g_2^{p''p+g_3^{p''+g_4^{p(p')^2}+g_5^{p'}+g_6^{p^3}+g_7^{p^2}+g_8^{p}}=0$$

$$(2.52)^*$$

^{*}Comparing eq.(2.16) with eq.(2.52), it is seen that quadratic nonlinearity is not present in the former. Its implication will be discussed in Chapter III.

here,

$$g_{1} = 3(a_{1} + b_{1}) \cdot (e_{1} + e_{4}j_{1} + e_{5}j_{3})$$

$$g_{2} = 2(a_{1} + b_{1}) \cdot (e_{2} + e_{4}j_{2} + e_{5}j_{4} + e_{6}j_{1} + e_{7}j_{3})$$

$$g_{3} = a_{1}b_{1} - a_{2}b_{2} + (a_{1} + b_{1}) \cdot (e_{3} + e_{6}j_{2} + e_{7}j_{4})$$

$$- a_{3}e_{8} - b_{3}e_{9}$$

$$g_{4} = 6(a_{1} + b_{1}) \cdot (e_{1} + e_{4}j_{1} + e_{5}j_{3})$$

$$g_{5} = 2(a_{1} + b_{1}) \cdot (e_{2} + e_{4}j_{2} + e_{5}j_{4} + e_{6}j_{1} + e_{7}j_{3})$$

$$g_{6} = (a_{1}b_{1} - a_{2}b_{2}) \cdot (e_{1} + e_{4}j_{1} + e_{5}j_{3}) \quad (2.53)$$

$$g_{7} = (a_{1}b_{1} - a_{2}b_{2}) \cdot (e_{2} + e_{4}j_{2} + e_{5}j_{4} + e_{6}j_{1} + e_{7}j_{3})$$

$$g_{8} = (a_{1}b_{1} - a_{2}b_{2}) \cdot (e_{3} + e_{6}j_{2} + e_{7}j_{4}) + e_{8}(a_{2}b_{3} - a_{3}b_{1})$$

 $+ e_9(a_3b_2 - a_1b_3)$

$$j_1 = \frac{c_2 d_3 - c_3 d_1}{c_1 d_1 - c_2 d_2}$$

$$j_2 = \frac{c_2 d_4 - c_4 d_1}{c_1 d_1 - c_2 d_2}$$

$$j_3 = \frac{c_3 d_2 - c_1 d_3}{c_1 d_1 - c_2 d_2}$$

$$j_4 = \frac{c_4 d_2 - c_1 d_4}{c_1 d_1 - c_2 d_2}$$

For small amplitude oscillations, terms containing products of P and its derivatives are neglected in eq.(2.52), giving,

$$g_3 P'' + g_8 P = 0$$
 (2.54)

Corresponding non-dimensional period of flexural vibration is

$$T_{L} = \frac{2 JT}{\sqrt{g_8/g_3}}$$
 (2.55)

It can be seen that equations for the case of a rectangular plate derived in section 2.1 are obtained by putting c equal to zero in the corresponding equations of the present section.

2.4 THE CASE OF A SHALLOW ARCH

A shallow arch (see Fig.5) whose middle surface is given by $W = c \sin \frac{\pi x}{a}$ is considered here. c gives the initial maximum rise in unstressed condition. For the arch to be shallow c/a should not be greater than 1/5. All the equations for this case can be derived as a special case by omitting variables connected with y direction and putting V equal to zero in the corresponding equations for the doubly curved shell given in the previous section*.

^{*} This has to be done before $\frac{E}{2(1+y)}$ is substituted for G.

The stress resultants are :

$$N_{x} = Eh (u_{0,x} + 1/2 (w_{,x})^{2} + \frac{c \pi}{a} w_{,x} \cos \frac{\pi x}{a})$$

$$M_{x} = \frac{Eh^{3}}{12} d_{,x}$$

$$Q_{x} = \frac{5Gh}{6} (d + w_{,x})$$
(2.56)

The boundary conditions along x = 0 and x = a are:

For an arch hinged at both the ends and vibrating in the fundamental mode, rotation and displacements are assumed as,

Ultimately the second order equation, corresponding to eq.(2.52) of the previous section, comes out to be:

$$g_1^{P''P^2} + g_2^{P''P} + g_3^{P''} + g_4^{P(P')^2} + g_5^{(P')^2} + g_6^{P^3} + g_7^{P^2} + g_8^{P} = 0$$
 (2.59)*

where,

$$g_{1} = \frac{3}{4} \pi^{4} H^{2}$$

$$g_{2} = \frac{3}{2} \cdot k \cdot \pi^{4} H^{2}$$

$$g_{3} = \pi^{2} + \frac{5}{(1+\nu)H^{2}} + \frac{5\pi^{2}}{12(1+\nu)} + \frac{1}{2} k^{2} \pi^{4} H^{2}$$

$$g_{4} = 2 g_{1}$$

$$g_{5} = g_{2}$$

$$g_{6} = \frac{\pi^{6}H^{2}}{4} + \frac{5\pi^{4}}{4(1+\nu)}$$

$$g_{7} = \frac{3}{4} \pi^{6}H^{2}k + \frac{15}{4} \frac{\pi^{4}k}{(1+\nu)}$$

$$g_{8} = \frac{5\pi^{4}}{12(1+\nu)} + \frac{k^{2}\pi^{4}H^{2}}{2} (\pi^{2} + \frac{5}{(1+\nu)H^{2}})$$

For small amplitude oscillations, terms containing products of P and its derivatives are neglected, giving,

$$g_3P^n + g_8P = 0$$
 (2.61)

Corresponding non-dimensional period of linear vibration is

$$T_{L} = \frac{2\pi}{\sqrt{\epsilon_8/\epsilon_3}} \tag{2.62}$$

^{*} Comparing eq.(2.41) with eq.(2.59) it is seen that quadratic nonlinearity is not present in the former.

2.5 THE CASE OF A SPHERICAL CAP

Axisymmetric (torsionless) motion of a spherical cap has been analysed in this section. The equations of motion given by Ogibalor⁵⁹ for the case of a shallow spherical shell (Fig.6) are taken in this work after modifying them to suit the sign conventions used here. These force and moment equations were obtained by suitably integrating through the thickness, the equations of motion derived from the theory of elasticity. A spherical shell is considered to be shallow if $\frac{a}{H^*} > 4$ (Ref.47). For such a shell, the actual values of forces and moments can be taken to be the projections of these in plan.

The equations of motion are:

$$T_{rr,r} + \frac{T_{rr} - T_{oo}}{r} + (\emptyset.Q)_{,r} + \frac{\emptyset Q}{r} + \frac{Q}{R} = Ph \ddot{u}_{r} \quad (2.63.1)$$

$$Q_{,r} + \frac{Q}{r} + (T_{rr} \cdot w_{,r})_{,r} + \frac{T_{rr} \cdot w_{,r}}{r} - \frac{1}{R} (T_{rr} + \emptyset Q + T_{00}) = fh \dot{w}$$
 (2.63.2)

$$M_{rr,r} + \frac{M_{rr} - M_{gg}}{r} - Q = \frac{gh3}{12} \tilde{g}$$
 (2.63.3)

where
$$u^{z}(r,z,t) = u_{r}(r,t) + z.\emptyset(r,t)$$
 (2.64)

$$Q = k_S Gh \left(w_{r} + \emptyset\right) \tag{2.65}$$

In eq.(2.65) k_s is a correction factor introduced to take care of distribution of shear stress through the thickness. For the case of a plate, its value has been derived by Mindlin⁶¹ to be $\frac{\pi^2}{12}$ by adjusting the lowest simple thickness-shear frequency of a homogeneous plate to its exact value. This value will be taken in all the computations here.

The force-displacement and moment-curvature relations for the case of a spherical shell are taken as (Ref.62):

$$T_{rr} = \frac{Eh}{(1-v^2)} (\epsilon_{rr}^{\circ} + v \epsilon_{so}^{\circ})$$

$$T_{so} = \frac{Eh}{(1-v^2)} (\epsilon_{so}^{\circ} + v \epsilon_{rr}^{\circ})$$

$$M_{rr} = D(k_{rr} + v k_{so})$$

$$M_{\Theta\Theta} = D(k_{\Theta} + v k_{rr})$$
(2.66)

The strains and curvatures are taken as (Ref.59):

$$\mathcal{E}_{rr}^{\circ} = u_{r,r} + \frac{w}{R} + \frac{1}{2} (w_{,r})^{2}$$

$$\mathcal{E}_{co}^{\circ} = \frac{u_{r}}{r} + \frac{w}{R}$$

$$k_{rr} = \emptyset_{,r}$$

$$k_{oo} = \emptyset/r$$

$$(2.67)$$

These are valid for moderately thick shells considered in this work; the transverse deflection is large (upto 2 or 3 times the thickness of the shell), elongations and shears are small but rotations are moderately large. Assuming the shell to be hinged along the periphery, w, \emptyset , and u_r are taken in the following form:

$$w = A_{1}(t) h S_{0}(\lambda r)$$

$$\emptyset = B_{1}(t) S_{1}(\lambda r)$$

$$u_{r} = C(t) (\frac{r^{2}}{2} - r)$$
(2.68)

where,

$$S_{0}(\lambda r) = J_{0}(\lambda r) - f I_{0}(\lambda r)$$

$$S_{1}(\lambda r) = J_{1}(\lambda r) + f I_{1}(\lambda r)$$
(2.69)

These functions are assumed on the basis of linear classical solution of a circular plate.

The boundary conditions, at r = a, for a hinged shell are:

$$W = 0$$
 (2.70.1)

$$M_r = 0$$
 (2.70.2)

$$u_r = 0$$
 (2.70.3)

Boundary condition (2.70.3) is satisfied by the function selected for u_r . The two constants λ .a and f

are obtained by substituting the expressions of w and \emptyset in eqs. (2.70.1) and (2.70.2).

Writing the equations of motion in terms of rotation and displacements, neglecting in-plane inertia, and applying Gaterkin technique, the following equations are obtained:

$$a_{1}^{A}_{1} + a_{2}^{B}_{1} + a_{3}^{A}_{1}^{2} + a_{4}^{A}_{1}^{B}_{1} + a_{5}^{B}_{1}^{2} - C = 0$$

$$b_{1}^{A}_{1} + b_{2}^{B}_{1} + b_{3}^{A}_{1}^{C} + b_{4}^{A}_{1}^{2} + b_{5}^{A}_{1}^{3} + b_{6}^{B}_{1}^{2} + b_{7}^{C}$$

$$+ b_{8}^{A}_{1}^{B}_{1} + b_{9}^{A}_{1}^{"} = 0$$

$$(2.71.1)$$

$$B_{1}^{"} + c_{1}B_{1} - c_{2}A_{1} = 0 (2.71.3)$$

where,

$$a_{1} = \begin{cases} 2(1+\nu) \cdot H + (1-\nu) & H \cdot k_{s} \end{cases} \cdot X_{1} \cdot R^{*}$$

$$a_{2} = -\frac{(1-\nu)k_{s}}{\lambda a} \cdot X_{1} \cdot R^{*}$$

$$a_{3} = 2H^{2} (X_{2} + \frac{(1-\nu)}{2} \cdot X_{3})$$

$$a_{4} = -\frac{(1-\nu)k_{s} \cdot H}{\lambda a} (X_{3} + 2 \cdot X_{2})$$

$$a_{5} = \frac{(1-\nu)k_{s}}{(\lambda a)^{2}} (X_{3} + 2 \cdot X_{2})$$

$$b_1 = \frac{(1-y)k_s}{2} (x_4 + x_5) - 2(1+y).x_{16}.(R*)^2$$

$$b_2 = \frac{(1-y)k_s}{2.H. \lambda_a} (x_4 + x_5)$$

$$b_3 = x_6 + (1+\nu) x_{12} + \nu x_9 + 2.x_{10}$$

$$b_4 = (1+y).H.R* (X_7 + \frac{X_{11}}{2} + X_{13})$$

$$b_5 = \frac{H^2}{2} (3.x_8 + x_{14})$$

$$b_6 = -\frac{(1-\nu)k_s \cdot X_{11} \cdot R^*}{2H \cdot (\lambda_a)^2}$$

$$b_7 = -\frac{(1+\nu)}{H} \cdot R^* \cdot (X_{15} + X_{17})$$

$$b_8 = \frac{(1-\nu) k_s \cdot X_{11}}{2 \cdot \lambda_a} \cdot R^*$$

$$b_9 = -(1-v^2) \cdot x_{16}$$

$$c_1 = \frac{1}{(1-v^2).x_{18}} (x_{19} + x_{20} - x_{21}) + \frac{6k_s}{(1+v)H^2}$$

$$c_2 = \frac{6. \lambda a. k_s}{(1+\nu)H}$$

LIT KANPUR CENTRAL LIBRARY 19879

$$X_{1} = \int_{0}^{a} S_{0,r} \left\{ \left(\frac{r}{a} \right)^{2} - \left(\frac{r}{a} \right) \right\} dr$$

$$X_{2} = \int_{0}^{a} S_{0,r} \cdot S_{0,rr} (r^{2} - ar) dr$$

$$X_{3} = \int_{0}^{a} (S_{0,r})^{2} (r - a) dr$$

$$X_{4} = \int_{0}^{a} S_{0} \cdot S_{0,rr} dr$$

$$X_{5} = \int_{0}^{a} \int_{0}^{a} S_{0} \cdot S_{0,rr} dr$$

$$X_{6} = \int_{0}^{a} S_{0} \cdot S_{0,rr} (r^{2} - a) dr$$

$$X_{7} = \int_{0}^{a} S_{0} \cdot S_{0,rr} dr$$

$$X_{8} = \int_{0}^{a} S_{0} \cdot S_{0,rr} (r - a) dr$$

$$X_{9} = \int_{0}^{a} S_{0} \cdot S_{0,rr} dr$$

$$X_{10} = \int_{0}^{a} S_{0} \cdot S_{0,rr} dr$$

$$X_{11} = a \int_{0}^{a} S_{0} \cdot (S_{0}, r)^{2} dr$$

$$X_{12} = \int_{0}^{a} S_{0} \cdot S_{0}, r \quad (2 - \frac{a}{r}) dr$$

$$X_{13} = a \int_{0}^{a} \frac{S_{0} \cdot S_{0}, r}{r} dr$$

$$X_{14} = a^{3} \int_{0}^{a} \frac{S_{0} \cdot (S_{0}, r)^{3} dr}{r}$$

$$X_{15} = \frac{1}{a^{2}} \int_{0}^{a} S_{0} \cdot (2r - a) dr$$

$$X_{17} = \frac{1}{a^{2}} \int_{0}^{a} S_{0} \cdot (r - a) dr$$

$$X_{18} = a \int_{0}^{a} (S_{0}, r)^{2} dr$$

$$X_{19} = a^{3} \int_{0}^{a} S_{0}, rrr \cdot S_{0}, r dr$$

$$X_{20} = a^{3} \int_{0}^{a} \frac{S_{0}, rr \cdot S_{0}, r}{r} dr$$

$$X_{21} = a^3 \int_{0}^{a} \frac{(3_{0,r})^2}{r^2} dr$$

It does not seem to be possible to get one equation in A_1 , though, however it is possible to obtain one equation in B_1 . Combining the three equations (2.71), neglecting derivatives of B_1 of the order higher than the second, the following equation is obtained:

$$d_{1}^{B_{1}} + d_{2}^{B_{1}^{2}} + d_{3}^{B_{1}^{3}} + d_{4}^{B_{1}^{"}} + d_{5}^{B_{1}^{B_{1}^{"}}} + d_{6}^{B_{1}^{2}B_{1}^{"}} = 0$$
(2.73)

Making use of eqs.(2.71) and (2.73):

$$A_{1} = \frac{c_{1}B_{1}}{c_{2}} - \frac{d_{1}B_{1} + d_{2}B_{1}^{2} + d_{3}B_{1}^{3}}{c_{2}(d_{4} + d_{5}B_{1} + d_{6}B_{1}^{2})}$$
(2.74)

where,

$$d_{1} = \frac{b_{1}c_{1}}{c_{2}} + b_{2} + \frac{a_{1}b_{7}c_{1}}{c_{2}} + a_{2}b_{7}$$

$$d_{2} = \frac{a_{3}b_{7}c_{1}^{2}}{c_{2}^{2}} + \frac{a_{4}b_{7}c_{1}}{c_{2}} + a_{5}b_{7} + \frac{b_{4}c_{1}^{2}}{c_{2}^{2}} + b_{6}$$

$$+ \frac{b_{8}c_{1}}{c_{2}} + \frac{a_{1}b_{3}c_{1}^{2}}{c_{2}^{2}} + \frac{a_{2}b_{3}c_{1}}{c_{2}}$$

$$d_{3} = \frac{a_{3}b_{3}c_{1}^{3}}{c_{2}^{3}} + \frac{a_{4}b_{3}c_{1}}{c_{2}^{2}} + \frac{a_{5}b_{3}c_{1}}{c_{2}} + \frac{b_{5}c_{1}^{3}}{c_{2}^{3}}$$

$$(2.75)$$

$$d_{4} = \frac{b_{1}}{c_{2}} + \frac{b_{9}c_{1}}{c_{2}} + \frac{a_{1}b_{7}}{c_{2}}$$

$$d_{5} = \frac{2a_{3}b_{7}c_{1}}{c_{2}^{2}} + \frac{a_{4}b_{7}}{c_{2}} + \frac{2b_{4}c_{1}}{c_{2}^{2}} + \frac{b_{8}}{c_{2}} + \frac{2a_{1}b_{3}c_{1}}{c_{2}^{2}} + \frac{a_{2}b_{3}}{c_{2}}$$

$$d_{6} = \frac{2a_{4}b_{3}c_{1}}{c_{2}^{2}} + \frac{3a_{3}b_{3}c_{1}^{2}}{c_{2}^{2}} + \frac{a_{5}b_{3}}{c_{2}} + \frac{3b_{5}c_{1}^{2}}{c_{2}^{3}}$$

Once B_1 is solved from eq.(2.73), A_1 can be obtained from the cubic equation (2.74).

For small amplitude oscillations, terms containing products of $B_{\underline{l}}$ and its derivatives in eq.(2.73) are neglected, giving,

$$d_1 B_1 + d_4 B_1'' = 0 (2.76)$$

Corresponding period of linear oscillations is :

$$T_{L} = \frac{2 \pi}{\sqrt{d_{1}/d_{4}}} \tag{2.77}$$

2.6 THE CASE OF A CIRCULAR PLATE

The problem of a circular plate can be reduced from that of a spherical cap discussed in the last section. On putting R* to be zero, the final governing equation (2.73) reduces to:

$$d_1B_1 + d_2B_1^3 + d_3B_1'' + d_4B_1^2B_1'' = 0 (2.78)^{4}$$

^{*}Comparing eq.(2.78) with eq.(2.73), it is seen that quadratic nonlinearity is not present in eq.(2.78).

Where,

$$d_{1} = \frac{b_{1}c_{1}}{c_{2}} + b_{2}$$

$$d_{2} = \frac{a_{3}b_{3}c_{1}^{3}}{c_{2}^{3}} + \frac{a_{4}b_{3}c_{1}^{2}}{c_{2}^{2}} + \frac{a_{5}b_{3}c_{1}}{c_{2}} + \frac{b_{5}c_{1}^{3}}{c_{2}^{3}}$$

$$d_{3} = \frac{b_{1}}{c_{2}} + \frac{b_{9}c_{1}}{c_{9}}$$

$$(2.79)$$

$$d_4 = \frac{2a_4b_3c_1}{c_2^2} + \frac{3a_3b_3c_1^2}{c_2^3} + \frac{a_5b_3}{c_2} + \frac{3b_5c_1^2}{c_2^3}$$

 $a_3,$ ----, $b_1,$ ----, $c_1,$ ---- are defined as in the the previous section.

The period of linear oscillation is :

$$T_{L} = \frac{2 \pi}{\sqrt{d_{1}/d_{3}}}$$
 (2.80)

CHAFTER III

RESULTS AND DISCUSSIONS

In the previous chapter, a set of vibration problems has been reduced to that of solving second order nonlinear ordinary differential equations. In these equations non-dimensional time occurs as the independent variable. These equations have been solved by numerical integrations using the Runge-Kutta-Gill method. Computations have been carried out on IBM 7044. The Poisson's ratio has been taken to be 0.3 in all the calculations.

Table 1 contains the following results for square plates vibrating in the fundamental mode:

- i) periods given by the classical theory (T_C)
- ii) Mindlin's values*(Ref.63) for linear periods
 with the effects of transverse shear and
 rotatory inertia
- iii) linear periods (T_L) with both the above effects included
 - iv) nonlinear periods (T_N) .

^{*} Time periods have been computed from the equations given by Mindlin and shear coefficient has been taken to be $\pi^2/12$ as derived in Ref. 61.

this approach are a little higher.

Table 4 gives the values of periods of a beam of rectangular section for different thicknesses. The following results are given:

- i) periods given by the classical theory
- ii) periods for the linear case obtained from Timoshenko's equation taking shear coefficient equal to $\pi^2/12$ for the fundamental mode as derived in Ref. 9.
- iii) periods for the linear case (\mathbf{T}_{L}) as obtained in the present work
- iv) periods for the nonlinear case (T_N) . There is a close agreement between the linear periods obtained here and those obtained from Timoshenko's equations. Fig. 8 shows a plot of T_N/T_C as obtained in the present work. As in the case of plates the nonlinearity in this case also is of hardening type. For comparison the curve given by Chu and Herrmann¹⁷ for thin beams, is also plotted*. The agreement between their results and the present results is good for thin beams ($H_r = 30$ or more).

Tables 5 to 9 list the values of periods for the Doubly curved shell discussed in section 2.3 of Chapter II. The values are for different initial rise of the shell on square plan and for various thicknesses.

^{*} Perturbation solution given by Chu and Herrmann has been taken.

Values for various amplitude ratios are listed. Corresponding linear periods are also given in all the tables. Comparing Table 5 with Tables 6 through 9 it is seen that nonlinearity is of hardening type (similar to that of a flat plate) for a shell of slight initial rise (k = 0.2)whereas the nonlinearity is of softening type for shells of sufficient initial rise (k = 1, 2, 3 etc.). elements for which nonlinearity is of hardening type are termed slightly curved elements and those for which nonlinearity is of softening type are termed shells. the present case the transition from a slightly curved element to a shell takes place for k somewhere between 0.2 and 1.0. The phenomenon of change of nonlinearity from hardening to softening can be explained from the governing equation for plate vibration, eq. (2.16) and that for the shell vibration, eq. (2.52). The P^2 term which is primarily responsible for changing nonlinearity from hardening to softening is present in the latter equation. This term is essentially associated with curvature terms and vanishes for flat elements. This has not been pointed out by Chauhan and Ashwell 19, who studied vibration of thin Doubly Curved shells and flat plates.

Figures 9 through 12 show the plot of the amplitude ratio versus period for shells of different initial It is noticed that unlike in the case of a flat element the positive (outward) and negative (inward) amplitudes of vibration for curved elements are not the same. The negative amplitude is always larger. snap-through is clearly seen from the figures. Before snap-through occurs the shells have nonlinearity of the softening type whereas after the snap-through the nonlinearity changes to hardening type. Results for thin shallow shells of similar geometry are given in Rof. 19 in the form of graphs. The trend of results is similar to that obtained in the present work. An accurate comparison with the present results is not possible because no tables of values are given. However, some limiting values have been compared and the comparison is good. For example, for a thin shell (say $H_r = 30$) on square plan and with k = 1, the linear time period, $T_{\mathbf{I}}$ in the present work is 15.805. The corresponding p (the frequency parameter plotted on x-axis in Ref.19) is 39.411*, which is nearly the value read on Fig. 6 of the said reference. thicker shells, say $H_r = 20$ and 10 the corresponding period

^{*} Period T in the present work is related to \bar{p} as $T = \frac{4 \pi \sqrt{3(1-v^2)}}{\bar{p} \cdot H}$

 $^{\mathrm{T}}\mathbf{L}$ as converted from this p will be 10.536, 5.268 which deviate from the present values of 10.560, 5.352 respectively. The deviation is more for the thicker element. Similar comparison can be made for a shell on square plan with k=2 and k=3 for linear periods and also for periods at some other amplitudes.

Tables 10 and 11 list the values of periods for different initial rise and various thicknesses of the Doubly Curved shell on a rectangular plan (B=0.5). The trend is similar to that for a shell on square plan.

Tables 12 through 15 list the values of periods for different initial rise and various thicknesses of shallow arch. Figures 13 through 16 show their plots. As expected the behaviour of an arch is similar to that of the Doubly Curved shell discussed earlier. It is seen that the transition from a slightly curved beam to an arch takes place below initial rise equal to the thickness of the arch (k = 1). Dynamic snap-through is clearly seen from the figures.

Values of the integrals X_1 through X_{21} , defined in section 2.5 dealing with spherical cap problem, are given in Table 16. Results for spherical caps are given in Tables 17 through 19 and those for a circular plate in Table 20. Figures 17 and 18 show plots of period

versus amplitude ratio for spherical caps of R* = 0.1 and 0.2 respectively. Shallow spherical caps behave in a way similar to other shallow elements discussed earlier. The fact that the positive negative amplitudes of vibration are different in spherical caps as in other shallow elements has not been pointed out by Grossman et. al. 47 who have given results for thin spherical caps. Also, they have not discussed the phenomenon of dynamic snapthrough. Figure 19 shows a plot of T_I/T_{I,P} versus R* for spherical caps ($T_{T,P}$ stands for linear period of a circular plate). In this figure a curve due to Grossman et.al. is also given. For $H_r = 30$, the curve based on present results almost completely coincides with their curve. Figure 20 shows a plot of T_N/T_C versus A_R for a circular plate. Nonlinearity is of hardening type and behaviour of a circular plate is similar to that of a rectangular plate. The transition from a slightly curved plate to a shallow shell occurs at some value of R* below 0.1.

The graph has been plotted here after suitably transforming the x and y variables of the curve given by Grossman et.al.

CHAPTER IV

CONCLUSIONS

i) It is known that in the case of small amplitude flexural vibrations, transverse shear and rotatory inertia decrease the frequency. This trend continues to be so even for large amplitude vibrations. This is seen for all the structural elements analysed in this work namely, straight and curved beams, rectangular and circular plates, a Doubly Curved shallow shell and a spherical cap. ii) For any flat element like beams and plates, the nonlinearity is of hardening type (that is, the period decreases as amplitude increases) whereas for shallow elements like shells and arches, the nonlinearity is of softening type (the period increases with amplitude). A distinction can be made between a slightly curved element and a shallow element by determining the value of the initial rise beyond which the type of nonlinearity changes from hardening to softening. This happens because of the presence of quadratic nonlinearity term in the final equation for curved elements.

iii) In a shallow element, when some initial amplitude is given, it vibrates about the initial equilibrium position and the positive amplitude (in the direction of the initial rise) is always smaller than the negative amplitude. The nonlinearity is of softening type.

When a critical value of initial amplitude is given to the shallow element, it snaps through to the other equilibrium position and stays snapped inside out. At this stage, the frequency of transverse vibration becomes zero (that is, the time period becomes infinite).

When an amplitude of magnitude greater than the critical value is given, it passes through both the equilibrium positions during its oscillations and the negative amplitude is very large. The nonlinearity changes from softening to hardening type. It is assumed that the material remains elastic throughout.

- iv) The period of vibration decreases as initial rise of a curved element increases.
- v) Of particular interest is the feature that the nonlinear effect counteracts the curvature effect. It has already been observed that the period of vibration of a curved element is less as compared to that of a flat. element.

The percentage decrease is less if the nonlinear theory rather than the linear theory is employed.*

For example, a straight beam and a shallow arch of initial rise equal to four times the thickness (that is, k=4) are considered. Ratio of length of span to thickness in both the cases is taken to be 20 (that is, $H_r=20$) and the nonlinear periods of vibration for an amplitude ratio of 1.0 are considered. The period based on nonlinear theory decreases from 24.77 to 4.80 whereas that based on the linear theory decreases from 44.29 to 4.49. The percentage decrease in the period given by the nonlinear theory is much less than that in the period given by the linear theory.

^{*} The comparison of periods is made before the dynamic snap-through occurs.

CHAPTER V

RECOMMENDATIONS FOR FURTHER WORK

i) In the present work the transverse deformation has been taken as:

$$w(x,y,z,t) = w(x,y,t).$$

Thus the effect of normal strain is neglected which is justified because the fundamental frequency of flexural vibration is much less than the frequency of thickness-stretch mode of vibration. However, the effect of normal strain can be included by taking w in the form:

$$w(x,y,z,t) = w_0(x,y,t) + z.\psi(x,y,t)$$

- ii) Sine functions have been assumed in this work for the initial unstressed shape of the Doubly Curved shallow shell and also for the shallow arch. Different geometries can however, be analysed. The effects of imperfections in the initial geometry on phenomena like dynamic buckling etc. can also be studied.
- iii) In this work, elements with hinged ends have been analysed. Extension can be made to other boundary conditions.

iv) The coupling of modes between the fundamental and higher ones has been neglected in the present work. The mode shape can be refined by taking additional terms. For example, for a hinged beam vibrating in the fundamental mode, the transverse deflection can be considered as:

$$w = P(t) \left[\sin \frac{\pi x}{a} + p_1 \sin \frac{3\pi x}{a} + --- \right]$$

and similarly for other components of displacement and rotation. The additional unknowns $p_1, ----$ etc. can be solved from the additional equations obtained from variation; that is, by equating the coefficients of $p_1, ----$ etc. to zero.

- v) Free vibration problems have been analysed here, however, forced vibration problems can also be studied in a similar way.
- vi) Extension of the present work to deep shells is feasible. In that case, the displacement and rotation functions should be selected judiciously and any integration to be carried over the surface of the shell should not be carried over the projected plan.

vii) If the amplitude of vibration is not small, some materials may exhibit nonlinear elastic properties. In such a case, the present work should be extended to include both geometric and material nonlinearities.

viii) In this work, the structural material has been assumed to be isotropic. However, anisotropic materials are used widely in the modern age. Extension of this work for such materials is possible by taking suitable constitutive equations.

TABLE 1

PERIODS FOR A SQUARE PLATE (B=1)

	2.5 3.0	5.11 12.85	9.64	6.44	3,26
	2.5	.11	က္		
		15	11,3	7.56	8 8 8
	2.0	18.22	13.67	9.13	4.62
	1.5	22.66 18.22 15.11	, 17.01 13.67 11.33	11.37	5.76
7TO(A	1.0	28.07	.21,82	14.59	3.25 7.42 5.76
T _W AMPLITUDE RATIO(A)	0,8	32,25	31.51 30.99 29.17 26.75 24.21 21.82	20.76 19.53 17.91 16.20 14.59	3,25
AMPLIT	9.0	35,62	26.75	17.91	9.14
	0.4	41,63 41,25 38,83 35,62	29.17	19,53	
MARTINE T AND AND AND A STATE OF THE STATE O	0.2	41,25	30.99	20.76	10.84 10.65 10.00
	0.1	41.63	31.51	21.11	10.84
T	7	42.170	31.684	21,228	
* \(\sum_		42.152	31.684 31.684	21,235	10.897 10.900
H G		42.075	31,555	20 21.037	10.519
H	The Arthur	40	30	20	70

*TM - linear periods, including the effects of transverse shear and rotatory inertia, computed from expressions given by Mindlin (see Chapter III).

.

TABLE 2
PERIODS FOR A RECTATIGULAR PLATE (B=0.5)

						$^{\mathrm{T}}_{\mathrm{N}}$	NATIONAL CONTRACTOR OF THE LAND ASSESSMENT OF	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		H-SPANISH T TORK TOPK T-SPANISH	
T T	∃				AMPLIT	AMPLITUDE RATIO $(\mathrm{A_R})$	IO (A _R)		Total establishment in many or a facility substitute		
	entre de la constitución de la c	0.1	0.2	0.4	9.0	0.8	1.0	1.5	2.0	2.5	0 8
	,										0
40	16.926	16.80	16,43	15.17	13,60		10.70	8.10	6.42	5.28	4.47
30	12,750	12,65	12,37	11.42	10.24	80.6	8.04	6.10	4.82	3.97	3,36
20	8.606	8.54	8.34	7.69	68.9	6.10	5.40	4.08	3.23	2.66	2,25
10	4.585	4.54	44.	4.06	3.62	3,18	2.80	2.12	T 68	1,39	1.19
-											

TABLE 3

FERIODS FOR A SQUARE PLATE (BY ERROHEOUS USE OF GALERKIN TECHNIQUE)

I ET
0,1
42.170 41.96 41.36
31.684 31.53
21.22 9 21.12
10.800 10.84

PERIODS FOR A BEAM

TABLE 4

									E N				
H	EH C	* E	H				AMP.	AMPLITUDE RATIO (AR)	RATIO	$(A_{\rm R})$			
				0.1	0.2	0.4	9.0	0.8	1.0	1.5	2.0	2.5	3.0
40	88.212	88.032	908.88	87.33		75.82	84,58 75,82 65,89		49.46	36.39	28,40	56,93 49,46 36,39 28,40 23,17 19	19,53
30	66.16?	66.16? 66.259	66.284	65.54	63,49	56,90	56,90 49,45 42,72 37,11 27,30 21,31 17,38	42.72	37,11	27.30	21.31	17.38	14,64
20	20 44.106 44.289	44,289	44,293	43.80		38.01	42,42 38,01 33,02	28.50	24.77	18,22	14.22	28.50 24.77 18.22 14.22 11.60	9.77
. 10	10 22,053 22,425 22,424	22 425			22.17 21.46 19.19 16.65	19.19	16.65	14,36 12,46 9,15	12.46	. 9.15	7.14	5.82	4.90

*T - Linear periods including the effects of transverse shear and potatory inertia, computed from expressions given by Timoshenko (taking shear coefficient to be 7712-4see Chapter III).

TABLE 5

PERIODS FOR A D.C. (DOUBLY CURVED) SHELL(B=1; k=,0.2)

I H	I H				AMP	T _N AMPLITUDE RATIO (A _R)	ATIO (A _R)	Tagement (Antigot all., Anticot agr. 4 p)	AND THE PROPERTY OF THE PROPER		
			0.2	£ 0	9.0	0.8	1.0	1.5	THE THE PROPERTY OF THE PROPER	2.5	3.0
40	35,840	35,840 39,74 39,39 (0,223)	39,39 *(0,223)	37.59 (0.486)	34.37 (0.752)	30.75 (1.018)	27,45 (1,261)	21.20 (1.821)	17.08 (2.352)	14.25 (2.868)	12.19
30	826°32	29.85	29.59 (0.223)	28.23 (0.486)	25.81 (0.759)	23.09	20.61 (1.261)	15.51 (1.822)	12.82 (2.351)	10.69 (2.866)	9.15 (3.375)
20	20.044	18.99	20 20.044 19.99 19.81 (0.106) (0.223)	18.90 (0.486)	17.27 (0.760)	15.44 (1.019)	13.77	10,63 (1,822)	8,57	7.14	6.11
10	10,269	10.24	10 10.259 10.24 10.15 (0.106) (0.224)	0.67 (0.490)	8.81	7.85 (1.024)	6.99 (1.267)	5,38 (1,826)	4.33 (2.354)	3.61 (2.869)	3.10

*In this and subsequent tables, figures in brackets given below the values of TN indicate corresponding negative (inward) amplitude ratio.

TABLE 6
PERIODS FOR A D.C. SHELL (B=1;k=1)

AMPLITU 0.1 0.2 0.4 0.6 21.15 21.45 23.24 29.67 (0.108) (0.236) (0.583) (1.232) 15.87 16.10 17.43 22.30 (0.108) (0.236) (0.583) (1.234) 10.61 10.76 11.65 14.97 (0.108) (0.236) (0.584) (1.240) 5.38 5.46 5.94 7.81 (0.108) (0.237) (0.591) (1.286)

TABLE 7
PERIODS FOR A D.C. SHELL (B=1; k=2)

	TT				
	3.0	9.20 (6.874)	6.90 (6.874)	4.61 (6.876)	2.32 (6.893)
	2.5	10.62 (6.336)	7.97	5.31 (6.339)	2.67 (6.359)
	2.0	12.72 (5.775)	9.54 (5.775)	6.37 (5.778)	3,19
	1.5	16.42 (5.158)	12,32 (5,160)	8,22 (5,164)	4.0ç (5.197)
RATIO (A _R)	0.0	30,28 (4,304)	22.68 (4.307)	15.05 (4.317)	7.12 (4.392)
T _N AMPLITUDE RA	0,8	14.70 (1.380)	11.03	7.38 (1.384)	3.82 (1.437)
AMPL	9.0	12.77 (0.848)	9.59 (0.848)	6.41 (0.849)	3.27 (0.865)
	0.4	12.03 (0.493)	9.05 (0.493)	6.05 (0.493)	3,08 (0,498)
	0.2	11.76 12.03 (0.220) (0.493)	8.77 8.83 (0.105) (0.220)	5.89	3,00
	0.1	11.678 11.69 (0.105)		5.87 (0.105)	2.98
H.		11.678	8,763	5,854	2.978
H		40	30	20	10

TABLE 8
PERIODS FOR A D.C. SHELL (B=1; k=3)

T _N AMPLITUDE RATIO. (A _R) 0.1 0.2 0.4 0.6 0.8 1.0 7.96 7.98 8.07 8.25 8.57 9.18 0.103) (0.214) (0.460) (0.748) (1.095) (1.54 4.00 4.01 4.05 6.19 6.43 6.89 0.103) (0.214) (0.460) (0.749) (1.098) (1.54 2.05 2.06 2.08 2.13 2.22 2.40 0.104) (0.215) (0.466) (0.765) (1.135) (1.62	ATIO. (AR)	1.0 1.5 2.0 2.5 3.0	7 9.18 17.81 12.23 9.93 8.52 95) (1.540) (7.111) (7.741) (8.309) (8.851)	.3 6.89 13.35 8.17 7.45 6.39 .96) (1.541) (7.112) (7.742) (8.310) (8.852)	00 4.61 8.87 6.11 4.97 4.26 198) (1.546) (7.118) (7.746) (8.313) (8.855)	2 2.40 4.22 3.01 2.47 2.13 35) (1.627) (7.170) (7.783) (8.343) (8.880)
	TAMPLITUDE	0.4 0.6	7.96 7.98 8.07 8.25 8 (0.103) (0.214) (0.460) (0.748) (1	5.971 5.97 5.99 6.06 6.19 6 (0.103) (0.214) (0.460) (0.748) (1	3.991 4.00 4.01 4.05 4.14 4 (0.103) (0.214) (0.460) (0.748) (1	2.08 2.13 (0.466) (0.765)

TABLE S

PERIODS FOR A D.C. SHELL (B=1; 1=4)

		·			
,	0.6	8,18 (10,837)	6.13 (10.838)	4.08 (10.841)	2.02
A	20	12.59 (9,721) (10,292) (10,837)	9,73 7,31 (9,722) (10,293)	3.86 6.46 4.87 4.08 (2.524) (9.727) (10.297) (10.841)	2.37 (10.337)
podadni programa i dan da kanana k	2.0	12.99 (9,721)		6.46 (9.727)	3.02
	R) 1.5	7.66	5.75		2,18 (3,020)
T	AMPLITUDE RATIO (A _R	6,42 (1,343)	4.82 (1.344)	3,23 (1,348)	1.69
	PLITUDE 1	6.25	4.69 (1.002)	3.14 (1.004)	1.61 1.64 (0.725) (1.043)
	AM1 0.6	6.13	4.60 (0.705)	3.08 (0.706)	1.61
The second secon	0.4	6.06 (0.444)	4.55 (0.444)	3.04 (0.444)	1.59
	0.2	6.03 (0.210)	4.52 (0.210)	3.03 (0.210) (0.444)	1.58 1.58 1.59 (0.103) (0.212) (0.452)
	0.1	6.02	4.5154.52	3.020 3.02 (0.103)	1.58 (0.103)
	H	6.015	4.515	3,020	1.578
	ᅜ	40	30	000	10

TABLE 10
FERIODS FOR A D.C. SHELL (B=0.5; k=1)

		THE REAL PROPERTY.	· Na policies. The period sub-randor "apr." Det	AND THE CONTRACTOR OF THE CONTRACTOR	THE THE PERSONNEL PRICES	THE A STREET OF THE PARTY OF THE PARTY.	$_{ m IN}$	A SECTION OF THE PROPERTY OF T	- Paralle Martin Company of the Paralle Street of Company of the C	TIC - CENTRAL PRESENTANT - TWO STREETINGS	AND THE SHALL CHIEF OF THE COLUMN CO.
H	H	And the second s	CHARL CONTROL OF THE CANADISC CONTROL CONTROL CONTROL		T	MPLITUDE	AMPLITUDE RATIO (AR)	AR)			C. The second se
		0.1	0.2	0.4	9•0	8.0	1.0	1.5	2.0	2,5	3.0
40	7,484	7.52	7,65	8,48 (0,609)	13,31	10.46 (2.303)	8.54 (2.661)	6,19 (3,317)	4.96 (3.881)	4.16 (4.415)	3.60 (4.936)
30	5,623	5.65	5.75 (0.239)	6,38	10.06	7,85	6,42 (2,664)	4,64	3.72 (3.882)	3.12 (4.416)	2,72 (4,936)
20	3.771	3.79	3.86 (0.239)	4.28 (0.613)	6.86 (1.574)	5.24 (2.322)	4.29 (2.674)	3,11	2.49 (3.886)	2.10 (4.420)	1.81 (4.940)
10	1.968	1.98	2.02 (0.245)	2,28	3.60 (1.863)	2.61	2.15 (2.754)	1.58	1.30	1.10 (4.471)	0.98 (4.993)

TABLE 11
FERIODS FOR A D.C.SHELL (B=0.5;k=4)

		(2)	(2	3)	
And the second s	3.0	2.80 (10.882)	2,10 (10,885)	1,39 (10,896)	0.75
neste (, mac, cu e , employing establishment	2.5	3.34 (10.350)	2.50 (10.354)	1.64 (10.369)	0.83
AND ALL PRIVATE STATE OF THE ST	2.0	4.41	3,29 (9,804)	2.12 (9.822)	0.95
$ m A_R)$		2,67	2.02 (2.660)	1,42 (2,836)	1,22
T _N AMPLITUDE RATIO (A _R)		2,21 (1,348)	1.67	1,14 (1,389)	0,75.
MPLITUDE	0,8	2,15 (1,004)	1.62 (1.007)	1.025)	0.71 (1.275)
A	9.0	2,11	1.59	1.08	0.69
	0.4	2.09 (0.444)	1.57	1.063 1.06 1.07 1.07 1.07 (0.448)	0.69
	0 2	2.08 2.09 (0.210) (0.444)	1.56 1.56 (0.103) (0.211)	1.07	0.220)
	0.1	2.07		1.06	0.681 0.68 0.68 (0.220)
]	2.073	1,561	1,063	0.681
Π		40	30	20	10

TABLE 12
PERIODS FOR A SHALLOW ARCH (k=1)

	R CAN CO. THE CO.		ON A CHRISTIAN RECORDER OF CHRISTIAN CONTRACTOR	ALITY OF THE THE THE PROPERTY OF THE PROPERTY	ONE OFFICER AND ADDRESS OF THE OWNER.				AND THE COMPANY THE CONTROL OF THE C	RATE - VIETNA - SA BANCONO CONTRACTOR - VIETNA - SANCONO CONTRACTOR - SANCONO CONTRACTOR - SANCONO CONTRACTOR -	of the American for restricted from the control of
Ή	T E	PORCY TO A STEEL PROCESSION OF THE STEEL S	WARTEN THE STATE OF THE STATE O	CORPC: OR OLDSEN. "91. LANCARDS AND SAFETY	SHEAL ON A CHESCHES WITH CHESCHES . MATE SERVICE	AMPLIT UDE	JDE RATIO	$(A_{ m R})$	ACTIVITY CANADACTION OF SCHOOLS STATE OF BITTO AN		
+	***************************************	0.1	0,2	0.4	9.0	0.8	1.0	1.5	2.0	2.5	3.0
40	33,354	33.354 33.55 (0.109)	34.25 (0.242)	39.21 (0.639)	65,83 (2,004)	45.65 (2.473)	37.34 (2.770)	23.58 (3.374)	21.56 (3.918)	18.07 (4.441)	15.61 (4.956)
30	25.023	25.17	30 25.023 25.17 25.69 29.42 (0.109) (0.242) (0.639)	29.42 (0.639)	49.37 (2.005)	34.25 (2.474)	28.01 (2.771)	20,24 (3,374)	16.17 (3.918)	13.56 (4.442)	11.71
20	16,696	16.79	16.696 16.79 17.15 19.64 (0.109) (0.242) (0.639	15,64 (0,639)	32,52 (2,008)	22.84 (2.475)	18.65	13.50 (3.374)	10.79	9.05 (4.442)	7.81
10	686.8	8,44 (0,109)	8.62 (0.242)	9.89 (0.642)	16.46 (2.028)	11,45	\$.37 (2.777)	(3.378)	5.41 (3.920)	4.54 (4.444)	3.52 (4.958)

PERIODS FOR A SHALLOW ARCH (k=2)

1 Ablir 13

	RATIO (AR)	5 2.0 2.5 3.0	24.28 18.93 15.82 13.70 (5.334) (5.888) (6.418) (6.937)	18.21 14.20 11.87 10.27 (5.334) (5.883) (6.418) (6.937)	12.14 9.47 7.91 6.85 (5.335) (5.889) (6.418) (6.537)	6.08 4.75 3.97 3.44 (5.340) (5.893) (6.422) (6.940)
T.	AMPLITUDE RATIO	0.8 1.0	23.62 39.96 (1.460) (4.703)	17.73 29.27 (1.460) (4.704)	11.83 19.98 12 (1.461) (4.705) (5	5.99 9.93 (1.477) (4.715)
	elenti e' Ciptulaturia entrepresentato es locados procesos de ser ser ser ser ser ser ser ser ser se	0.4 0.6	18.29 19.54 (0.498) (0.865)	13.72 14.65 (0.498) (0.865)	9.15 9.78 (0.498) (0.866)	4.60 4.92 (0.499) (0.870)
	e in a part of the control of the co	0,2			8.90	
		0.1	17.648 17.68 17.78 (0.105) (0.221)	13.239 13.27 13.34 (0.105) (0.221)	8,85 (0,105)	4.45 4.48 (0.105) (0.222)
	T.		17,648	13.239	8,833	
	<u>4</u> تتا		40	30	20	10

TABLE 14
PERIODS FOR A SHALLOW ARCH (K=3)

ļ -	!	COR. THE STATE OF	Canada and College and Canada and			$^{ m L}$					
딤			to an appear would be seen at the	AND THE PROPERTY OF THE PROPER		AMPLITUDE		(AR			
O week		0.1	0.5	0.4	9•0	8.0	1.0.	To the same of the	2.0	2.5	3.0
40 11.898	-	11.91 (0.103)	11.91 11.54 (0.103) (0.214)	12.08) (0.461)	12,36	12.87 (1.104)	13.88	25.58 (7.314)	18.05 (7.873)	14.72 (8.405)	12.64 (8.926)
8,926		8,93	8,96 (0,214)	9.06 (0.461)	9.27 (0.751)	9.66	10.41 (1.562)	19.19	13.54 (7.873)	11.04 (8.405)	9.48 (8.926)
5.956		5.96	5.98 (0.214)	6.04 (0.461)	6.18	6.44 (i.104)	6.95	12.79 (7.316)	9.03 (7.874)	7.36 (8.406)	6,32 (8,926)
3,003	~	3.01 (0.103)	3.01 (0.214)	3.05	3,11 (0,755)	3,25	3,51 (1,583)	6,33 (7,324)	4.50 (7.879)	3.68 (8.411)	3.17 (8.930)

TABLE 15
PERIODS FOR A SHALLOW ARCH (k=4)

	3.0	12.11	9.08	6.06(10.919)	3.02 (10.925)
THE REAL PROPERTY AND A PROPERTY AND	2.5	14.41 (10.397)	10.81 (10.397)	7,20	3.58 (10.405)
	2.0	18.96 (9.854)	14.22 (9.864)	9.48 (9.865)	4.66 (9.873)
	1.5	11.58 (2.636)	8,68	5.80 (2.642)	2,98 (2,728)
N RATIO (AR)	1.0	9.59 (1.349)	7.20 (1.349)	4.80 (1.350)	2.43 (1.367)
T. AMPLITUDE RA	0.8	9.32 (1.004)	6.99 (1.004)	4.66 (1.004)	2.36 (1.014)
AMPI	9.0	9.14 (0.706)	6.86 (0.706)	4.58	2,32 (0,711)
	0,4	8.98 9.04 (0.210) (0.444)	6.78 (0.444)	4.52 (0.444)	2.29
	0.2		6.74 6.78 (0.210) (0.444)	4.50 (0.210)	2.27 (0.103) (0.211)
	0,1	8.95	6.72 (0.103)	4,486 4,49 4,50 4,52 (0,103) (0,210) (0,444)	2.27
디	The state of the s	8,959	6.721	4.486	2.270
H	4. Page - 4. Pag	40	30	20	10

. :1 -

TABLE 16

SOME INTEGRALS IN SPHERICAL CAP PROBLEM

Integral	Value	Integral	Value
x_1	0.16959	\mathbf{x}_{12}	0.46258
x_2	-0.20747	X ₁₃	-1.07608
x_3	-0.35158	X ₁₄	-0.97503
X_4	-1.11781	x ₁₅	-0.16959
x_5	-1.38822	x ₁₆	0.45219
X ₆	0.51098	X ₁₇	-0.38593
x_7	-0.93106	\mathbf{x}_{18}	1.11810
X ₈	-0.59501	x ₁₉	-3.36817
X9	0.81439	x ₂₀	3.29342
x ₁₀	-0.46282	x ₂₁	4.65301
x _{ll}	0.46553		

(A a and f have been calculated to be 2.2174 and 0.0379 respectively. These values have been used in evaluating the above integrals).

TABLE 17

PERIODS FOR A SPHERICAL CAP (R*=0.1)

Hr T _L 0.1 30 42.203 42.26 (0.10) 20 38.858 39.04 (0.10) 10 30.725 30.92 (0.11)	T	AMPLITUDE RATIO (A _R)	0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0	42.52 43.70 46.61 55.98 96.54 59.24 46.22 38.61 33.42 5) (0.221) (0.496) (0.860) (1.4430 (5.038) (5.586) (6.107) (6.620) (7.128)	41.77 43.91 51.18 93.55 67.41 46.05 36.48 30.60 26.50 6) (0.228) (0.534) (1.016) (3.551) (3.862) (4.474) (5.021) (5.547) (6.063)	9) (0.239) (0.609) (1.686) (2.431) (2.771) (3.410) (3.968) (4.500) (5.019)	•	31.59 34.36 32.80 28.02 24.20 18.11 14.52 12.14 10.43 1) (0.250) (0.654) (1.144) (1.512) (1.802) (2.410) (2.656) (2.42)
L 0.1 0.1 .203 42.26 (0.105) (0.106) (0.106) (0.106) (0.106) (0.109) (0.109) (0.109) (0.109) (0.109) (0.109) (0.101) (0.111) (0.111) (0.111) (0.111) (0.111)		o deventes chiladelly protein and control of the co	0	42.52 (0.221)	11.77 (0.228)	39.74 (0.239)		31.59 (0.250)

TABLE 18
PERIODS FOR A SPHERICAL CAP (R*=0.2)

	3.0	29.46 (11.557)	23.16 (9.310)	16.73 (7.126)	9.51 (5.018)
	2.5	34.82 (11.115)	26.94 (8.830)	19.30 (6.618)	11.00 (4.499)
	2.0	44.88 (10.699)	32.86 (8.361)	23,12 (6,106)	13.10 (3.967)
$(A_{ m R})$	1.5	28.38 (2.669)	45.60 (7.911)	29.64 (5.584)	16.39 (3.410)
UDE RATIC	1.0	23.15 (1.351)	25.12 (1.564)	48.32 (5.035)	22.73 (2.770)
AMPLIT	0.8		23.24		27.98 (2.431)
	9•0	_	22.30 (0.751)		39.99 (1.691)
	0.4	21.78 (0.444)	21.80 (0.461)		22.15 (0.610)
	0.2	21.64 (0.210)	21.54 (0.214)	21.27	19.63 (0.239)
	0,1	21.60	21.49 (0.103)	21.16 (0.105)	10 19.488 19.59
H	Analysis of the state of the st	21,597	21,468	21.114	19,488
$\mathrm{H}_{ar{r}}$		0	0	0 0	0
	T_L AMPLITUDS RATIO	${ m T_L}$ 0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5	T _L 0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 21.597 21.60 21.64 21.78 22.04 22.47 23.15 28.38 44.88 34.82 (0.103) (0.210) (0.444) (0.707) (1.005) (1.351) (2.669) (10.699) (11.115)	T _L 0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 21.597 21.60 21.64 21.78 22.04 22.47 23.15 28.38 44.88 34.82 (0.103) (0.210) (0.444) (0.707) (1.005) (1.351) (2.669) (10.699) (11.115) 21.468 21.49 21.54 21.80 22.30 23.24 25.12 45.60 32.86 26.94 (0.103) (0.214) (0.461) (0.751) (1.104) (1.564) (7.911) (8.361) (8.830)	T _L 0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.6 21.597 21.60 21.64 21.78 22.04 22.47 23.15 28.38 44.88 34.82 (0.103) (0.210) (0.444) (0.707) (1.005) (1.351) (2.669) (10.699) (11.115) 21.468 21.46 21.80 22.30 23.24 25.12 45.60 32.86 26.94 (0.103) (0.214) (0.461) (0.751) (1.104) (1.564) (7.911) (8.361) (8.830) 21.114 21.16 21.27 21.87 23.13 28.00 48.32 29.64 23.12 (6.106) (6.618)

TABLE 18.
PERIODS FOR A SPHERICAL CAP (R* =0.3)

,						
	- Woods Washington (Marchall Security) or Marchall Balland	3.0	28.60 (16.202)	21.82	15,45 (9,308)	8.86
		2.5	45.30 (15.842)	26.20 (12.278)	17.96 (8.828)	10.23 (5.544)
		2.0	17.18	36.68 (£1.888)	21.92 (8.358)	12,19 (5,018)
APACHERIA DALCH PROPERTY PROPERTY OF VINESTAL PROPERTY.	$(A_{ m R})$	1.5	15.53 (2.034)	17.06 (2.378)	30,42 (7,908)	15,39 (4,470)
NL	AMPLITUDE RATIO $(a_{ m R})$	1.0	14.85 (1.205)	15,19 (1,297)	16.76 (1.564)	22,52 (3,856)
	AMPLITUD	0,8	14.69 (0.925)	14.86 (0.976)	15.50	31.27 (3.543)
		9•0	14.59	14.66 (0.693)	14.88 (0.751)	17.12 (1.017)
		0,4	14.51	14.52 (0.439)	14.55 (0.461)	14.68
	AND THE CONTRACT OF THE CONTRA	0.2	40 14.46 14.46 14.47 (0.102) (0.207)	14.44	14.37 (0.214)	13.97 (0.228)
	Transcription of the state of t	0.1	14.46	30 14,424 14,43	20 14.319 14.33 (0.103)	10 13.794 13.83 (0.106)
	띰	deletifology per place of the billion	14,462	14,424	14.319	13,764
	H		40	30	50	9

TABLE 20
PERIODS FOR A CIRCULAR PLATE

				_			
		3.0	47.20	35.40	23.61	11.84	
	Market de describer son oraș de la describe de	2.5	55.68	41.76	27.86	13.97	
- Bischeller, Sehkentilleren Amerikative Gebeur	The state of the s	2.0	67.57	50.68	33,81	16,95	
		1.5	84.97	63.74	42,52	21,33	
	$(A_{ m R})$	1.0	111,27	.31 116.38 105.06 93.74 83.47	55,69	27.95	
T N	E RATIC	0.8	124,94	93,74	62.54	31.41	
,	AMPLITUDE RATIO (A _R)	0.6	140,05	105,06	70.11	35,23	
	Ţ.	0.4	155.11	116.38	77.66	39,05	
				0.2	167.01	125,31	83,63
,		F.O	170,45	127.87	85.37	42.95	
	H H		171.656 170.45 167.01 155.11 140.05 124.94 111.27 84.97	128,795 127,87 125	85,964	43,252	
	D H	A CONTRACTOR CONTRACTO	168.913	126.685	84,457	42.228	
	Hr		, 4c	30	20	10	
		-					

FIG. I_GEOMETRY OF A RECTANGULAR PLATE

FIG.2_POSITIVE SENSE OF STRESS RESULTANTS $(N_X^+ = N_X + N_X, x, dx)$ etc.)

FIG.3_GEOMETRY OF A BEAM

FIG. 4_MIDDLE SURFACE OF A DOUBLY CURVED SHELL (UNDEFORMED)

FIG. 5_GEOMETRY OF AN ARCH (UNDEFORMED)

FIG.6_(0) GEOMETRY OF SPHERICAL CAP (UNDEFORMED)

(b) STRESS RESULTANTS IN SHELL ELEMENT

FIG. 7_ T_N / T_C VERSUS A_R FOR A SQUARE PLATE

FIG.8_ T_N/T_C VERSUS A_R FOR A BEAM

(B = 1; k = 2)FIGIO_PERIOD VERSUS AMPLITUDE RATIO FOR A D.C. SHELL

D. C SHELL (B=1, k=4) FIG.12_PERIOD VERSUS AMPLITUDE RATIO FOR A

FIG.13_PERIOD VERSUS AMPLITUDE RATIO

N V FOR RATIO FIG.15_PERIOD VERSUS AMPLITUDE

ARCH (k=4) FOR AN FIG.16_PERIOD VERSUS AMPLITUDE RATIO

R*

FIG. 19 _ T_ 1/T_P VERSUS R* FOR A SPHERICAL

CAP (T_P DENOTES CORRESPONDING T_P

FOR CIRCULAR PLATE)

FIG. 20_ TN/TC VERSUS AR FOR A CIRCULAR PLATE

REFERENCES

- 1. Ray, J.D., and Bert, C.W., "Nonlinear Vibrations of a Beam with Pinned Ends", Journal of Engineering for Industry, Nov. 1969, pp.997-1004.
- 2. Timoshenko, S., and Young, D.H., "Vibration Problems in Engineering", D. Van Nostrand Co., Inc., New York, 1955, 3rd. ed., p. 334.
- 3. Rogers, G.L., "An Introduction to the Dynamics of Framed Structures", John Wiley & Sons, New York, 1959, p. 203.
- 4. Anderson, R.A., "Flexural Vibrations in Uniform
 Beams according to the Timoshenko Theory",
 Journal of Applied Mechanics, No. 20, 1953,
 p. 504.
- 5. Boley, B.A. and Chao, C.C., "Some Solutions of the Timoshenko Beam Equation", Journal of Applied Mechanics, No. 22, 1955, pp. 579-586.
- 6. Dolph, C.L., "On the Timoshenko Theory of Transverse Beam Vibrations", Quarterly of Applied Mathematics, Vol. 10, 1954, pp. 175-187.
- 7. Fettis, H.E., "Effect of Rotatory Inertia on Higher Modes of Vibration", Journal of Aeronautical Sciences, 1949, p. 445.
- 8. Kruszewski, E.T., "Effect of Transverse Shear and Rotatory Inertia on the Natural Frequency of a Uniform Beam", N.A.C.A., Technical Note No. 1909, July 1949.
- 9. Mindlin, R.D. and Deresiewicz, H., "Timoshenko's Shear Coefficient for Flexural Vibrations of Beams", Proceedings of the Second U.S.
 National Congress of Applied Mechanics, Ann Arbor, 1954, pp. 175-178.
- 10. Trail-Nash, R.W. and Collar, A.R., "The Effects of Shear Flexibility and Rotatory Inertia on the Bending Vibrations of Beams", Quart. Journal Mech. Appl. Math., Vol. 6, 1953, pp.186-222.

- 11. Volterra, E. and Zachmanoglou, E.C., "Free and Forced Vibrations of Straight Elastic Bars according to the Method of Internal Constraints", Ingenieur-Archiv, 25 Band, 6 Heft, 1957, pp.424-436.
- 12. Eringen, A.C., "On the Nonlinear Vibration of Elastic Bars", Quarterly of Applied Mathematics, Vol. 9, 1951, pp. 361-369.
- 13. Wagner, H., "Large Amplitude Free Vibration of a Beam", Journal of Applied Mechanics, No. 32, 1965, pp. 887-892.
- 14. Libai, A., "On the Nonlinear Elastokinetics of Shells and Beams", Journal of the Aerospace Sciences, No. 29, 1962, pp. 1190-1195 and 1209.
- 15. Woodall, S.R., "On the Large Amplitude Oscillations of a Thin Elastic Beam", International Journal of Non-Linear Mechanics, Vol. 1, 1966, pp. 217-238.
- 16. Wu, Cheng-Ih, and Vinson, J.R., "Influences of Large Amplitudes, Transverse Shear Deformation, and Rotatory Inertia on Lateral Vibrations of Transversely Isotropic Plates", Journal of Applied Mechanics, Vol. 36, 1969, pp.254-260.
- 17. Chu, H.N., and Herrmann, G., "Influence of Large Amplitudes on Free Flexural Vibrations of Rectangular Elastic Plates", Journal of Applied Mechanics, Vol. 23, 1956, pp. 532-540.
- 18. Nash, W.A., and Modeer, J.R., "Certain Approximate Analysis of the Nonlinear Behavior of Plates and Shallow Shells", Proceedings of the Symposium on Theory of Thin Elastic Shells, Interscience, New York, 1959.
- 19. Chauhan, A.P., and Ashwell, D.G., "Small and Large Amplitude Free Vibrations of Square Shallow Shells", International Journal of Mechanical Sciences, Vol. 11, No. 4, April 1969, pp. 337-349.

- 20. Hoff, N.J., and Bruce, V.G., "Dynamic Analysis of the Buckling of Laterally Loaded Flat Arches", Journal of Mathematics and Physics, Vol. 32, No. 4, 1953, pp. 276-288.
- 21. Lock, M.H., "Snapping of a Shallow Sinusoidal Arch under a Step Pressure Load", AIAA Journal, Vol. 4, 1966, pp. 1249-1256.
- 22. Lock, M.H., "The Snapping of a Shallow Sinusoidal Arch under a Step Pressure Load", Aerospace Corporation, Space System Division, TR-65-107, July 1965.
- 23. Bolotin, V.V., "Dynamic Stability of Elastic Systems", Holden-Day, Inc., San Francisco, 1964.
- 24. Humphreys, J.S., and Bodner, S.R., "Dynamic Buckling of Shallow Shells under Impulsive loading", Journal of the Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers, Vol. 88, EM2, April 1962, pp.17-36.
- 25. Fulton, R.E., "Dynamic Axisymmetric Buckling of Shallow Conical Shells Subjected to Impulsive Loads", Journal of Applied Mechanics, Vol. 32, No. 1, 1965, pp. 129-134.
- 26. Humphreys, J.S., "On Dynamic Snap Buckling of Shallow Arches", AIAA Journal, Vol. 4, 1966, pp.878-886.
- 27. Budiansky, B. and Roth, R.S., "Axisymmetric Dynamic Buckling of Clamped Shallow Spherical Shells", TN D-1510, 1962, NASA, pp. 597-606.
- 28. Fung, Y.C. and Kaplan, A., "Buckling of Low Arches or Curved Beams of Small Curvature", NACA Technical Note 2840, 1952.
- 29. Hsu, C.S., "The Effects of Various Parameters on the Dynamic Stability of a Shallow Arch", Journal of Applied Mechanics, Vol. 34, June 1967, pp. 349-358.

- 30. Hsu, C.S., "Stability of Shallow Arches against Snap-Through under Timewise Step Loads", Journal of Applied Mechanics, Vol. 35, March 1968, pp. 31-39.
- 31. Hsu, C.S., Kuo C.T., and Plaut, R.H., "Dvnamic Stability Criteria for Clamped Shallow Arches under Timewise Step Loads", AIAA Journal, Vol. 7, No. 10, 1969, pp. 1925-1931.
- 32. Federhofer, K., Sitzungsberichte der Akademic der Wissenschaften, Wien, Vol. 146, 1937, pp. 57-69.
- 33. Reissner, E., "On Vibrations of Shallow Spherical Shells", Journal of Applied Physics, Vol. 17, 1946, pp. 1038-1042.
- 34. Reissner, E., "On Axisymmetrical Vibrations of Shallow Spherical Shells", Quarterly of Applied Mathematics, Vol. 13, 1955, pp. 279-290.
- 35. Kalnins, A., "Free Nonsymmetric Vibrations of Shallow Spherical Shells", Proceedings of the Fourth U.S. National Congress of Applied Mechanics, ASME, 1963, pp. 225-233.
- 36. Kalnins, A., "On Vibrations of Shallow Spherical Shells", Journal of the Acoustical Society of America, Vol. 33, 1961, pp. 1102-1107.
- 37. Deresiewicz, H., and Mindlin, R.D., "Axially Symmetric Flexural Vibrations of a Circular Disk", Journal of Applied Mechanics, Vol. 22, 1955, pp. 86-88.
- 38. Deresiewicz, H., "Symmetric Flexural Vibrations of a Clamped Circular Disk", Journal of Applied Mechanics, Vol. 23, 1956, p. 319.
- 39. Reissner, E., "On Axi-Symmetrical Vibrations of Circular Plates of Uniform Thickness; Including the Effects of Transverse Shear Deformation and Rotatory Inertia", The Journal of the Acoustical Society of America, Vol. 26, No. 2, 1954, pp. 252-253.

- 40. Keplik, B. and Yu, Yi-Yuan, "Axisymmetric Vibrations of Homogeneous and Sandwich Spherical Caps", Journal of Applied Mechanics, Vol. 34, 1967, pp. 667-673.
- 41. Yu, Yi-Yuan, "Generalized Hamilton's Principle and Variational Equation of Motion in Nonlinear Elasticity Theory With Application to Plate Theory", Journal of the Acoustical Society of America, Vol. 36, 1964, pp. 111-120.
- 42. Yu, Yi Yuan, discussion of E. Reissner's paper,
 "On the Form of Variationally Derived Shell
 Equations", Journal of Applied Mechanics,
 Vol. 32, No. 2, Trans. ASME, Vol. 87, Series
 E, June 1965, pp. 469-471.
- 43. Archer, R.R. and Lange, C.G., "Nonlinear Dynamic Behavior of Shallow Spherical Shells", AIAA Journal, Vol. 3, No. 12, Dec. 1965, pp. 2313-2317.
- 44. Simitses, G.J., "Axisymmetric Dynamic Snap-Through Buckling of Shallow Spherical Caps", AIAA Journal, Vol. 5, No. 5, May 1967, pp. 1019-1021.
- 45. Lock, M.H., Okubo, S., and Whittier, J.S., "Experiments on the Snapping of a Shallow Dome under a Step Pressure Load", AIAA Journal, Vol. 6, No. 7, July 1968, pp. 1320-1326.
- 46. Huang, N.C., "Axisymmetric Dynamic Snap-Through of Elastic Clamped Shallow Spherical Shells", AIAA Journal, Vol. 7, No. 2, February 1969, pp. 215-220.
- 47. Grossman, P.L., Koplik, B., and Yu, Yi-Yuan, "Non-Linear Vibrations of Shallow Spherical Shells", Journal of Applied Mechanics, Vol. 36, 1969, pp. 451-458.
- 48. Connor, J., Jr., "Monlinear Transverse Axisymmetric Vibrations of Shallow Spherical Shells", NASA TN D1510, 1962, pp. 623-642.

- 49. Evensen, D.A., "A Theoretical and Experimental Study of the Nonlinear Flexural Vibrations of Thin Circular Rings", NASA TR R-227, 1965.
- 50. Evensen, D.A., "Some Observations on the Nonlinear Vibration of Thin Cylindrical Shells", AIAA Journal, Vol. 1, 1963, pp. 2857-2858.
- 51. Yu Y.-Y., "Application of Variational Equation of Motion to the Nonlinear Vibration Analysis of Homogeneous and Layered Plates and Shells", Journal of Applied Mechanics, Vol. 30, 1963, pp. 79-86.
- 52. Reissner, E., "On a Variational theorem in elasticity", Journal of Mathematics and Physics, Vol. 29, 1950, pp. 90-95.
- 53. Hurty, W.C., and Rubinstein, M.F., "Dynamics of Structures", Prentice Hall, Inc., 1964, pp. 85-87.
- 54. Langhaar, H.L., "Energy methods in Applied Mechanisms", John Wiley and Sons, New York, 1962, p. 160.
- 55. Volterra, E., and Zachmanoglou, E.C., "Dynamics of Vibrations", C.E. Merrill Books, Inc., Columbus, Ohio, 1965, p. 349.
- 56. Reissner, E., "On Transverse Vibrations of Thin, Shallow Elastic Shells", Quarterly of Applied Mathematics, Vol. 13, 1955, pp. 169-176.
- 57. Timoshenko, S. and Woinowsky-Krieger, S., "Theory of Plates and Shells", Second Edition, McGraw-Hill, New York, 1959, p. 417.
- 58. Vlasov, V.Z., "General Theory of Shells and its applications in Engineering", NASA TT F-99, 1964, p. 343.
- 59. Ogibalov, P.M., "Dynamics and Strength of Shells",

 Translated from Russian, Published for the

 NASA and the NSF, U.S.A. by the Israel

 Program for Scientific Translations, Jerusalem,

 1966, pp. 160-195, 38, 15.

- 60. Marguerre, K., Zur Theorie der Gekrümmten Platte Grosser Formanderung, Proc. 5th International Congress of Applied Mechanics, pp. 93-101, 1938.
- 61. Mindlin, R.D., "High frequency Vibrations of Crystal Plates", Quarterly of Applied Mathematics, Vol. 19, 1961, pp. 51-61.
- 62. Novozhilov, V.V., "Thin Shell Theory", Translated from the Second Russian Edition by P.G.Lowe, Ed. J.R.M. Radok, P. Noordhoff Ltd., Groningen, The Netherlands, 1964, pp. 48-54.
- 63. Mindlin, R.D., Schacknow, A., and Deresiewicz, H.,
 "Flexural Vibrations of Rectangular Plates",
 Journal of Applied Mechanics, Vol. 23, 1956,
 pp. 430-436.
- 64. Chu, Hu-Nan, "Influence of Large Amplitudes on Flexural Vibrations of a Thin Circular Cylin-drical Shell", Journal of the Aerospace Sciences, Aug. 1961, pp. 602-609.