2022-2023 MP2I

À chercher pour lundi 12/09/2022, corrigé

Exercice 6.

- 1) On dessine deux droites horizontales d'équation y = -M et y = M sur le dessin et sur le graphe une fonction f qui est comprise entre ces deux valeurs.
- 2) Procédons par double implication.
- (⇒) Supposons f bornée. Il existe alors $M \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}$, $|f(x)| \leq M$. Ceci est équivalent au fait que $\forall x \in \mathbb{R}$, $-M \leq f(x) \leq M$ (Remarquons que M est positif, une valeur absolue étant toujours positive). Posons alors a = -M et b = M. On a donc construit $a, b \in \mathbb{R}$ tels que $\forall x \in \mathbb{R}$, $a \leq f(x) \leq b$. La propriété de l'énoncé est donc démontrée.
- (\Leftarrow) Supposons à présent la propriété de l'énoncé. On a alors qu'il existe $a,b\in\mathbb{R}$ tels que $\forall x\in\mathbb{R},\ a\leq f(x)\leq b$. On en déduit alors que :

$$\forall x \in \mathbb{R}, \begin{cases} f(x) \le b \\ -f(x) \le -a \end{cases}$$
.

Ceci entraine que $\forall x \in \mathbb{R}$, $\max(f(x), -f(x)) \leq \max(b, -a)$. En posant alors $M = \max(-a, b)$, on a alors construit M tel que $\forall x \in \mathbb{R}$, $|f(x)| \leq M$. On a donc montré que f était bornée.

- 3) On va encore procéder par double implication.
- (⇒) Supposons f bornée sur \mathbb{R} . Soit M tel que $\forall x \in \mathbb{R}$, $|f(x)| \leq M$. Pour tout $x, y \in R$, on a alors $-M \leq f(x) \leq M$ et $-M \leq f(y) \leq M$. En multipliant par -1, on obtient $-M \leq -f(y) \leq M$. Par addition, on a alors :

$$\forall x, y \in \mathbb{R}, -2M \le f(x) - f(y) \le 2M.$$

La propriété de l'énoncé est donc bien vérifiée, il suffit par exemple de prendre a = -2M et b = 2M.

(\Leftarrow) Supposons à présent la propriété de l'énoncé. Soient $a,b\in\mathbb{R}$ tels que $\forall x,y\in\mathbb{R},\ a\leq f(x)-f(y)\leq b$. Cette propriété étant vraie pour tout x,y réels, on peut en particulier l'appliquer en y=0. On en déduit que :

$$\forall x \in \mathbb{R}, \ a + f(0) \le f(x) \le b + f(0).$$

En posant alors $a_0 = a + f(0)$ et $b_0 = b + f(0)$, on a construit deux réels tels que $\forall x \in \mathbb{R}, \ a_0 \le f(x) \le b_0$. D'après la question précédente, ceci entraine que f est bornée.

Exercice 14.

- 1) Soit $f: \mathbb{R} \to \mathbb{R}$ vérifiant la propriété énoncée.
 - a) On prend x = y = 0. On obtient alors :

$$0 + 0^2 + f(0) = (f(0))^2 - f(0)^2 = 0.$$

On a donc f(0) = 0.

b) On utilise à présent la propriété en x=0. On obtient donc que pour tout $y\in\mathbb{R}$:

$$0 + y^2 + f(0) = f(y)^2 - f(0)f(y).$$

Puisque f(0)=0, on en déduit que $\forall y\in\mathbb{R},\ (f(y))^2=y^2$. On en déduit donc en passant à la racine carrée que :

$$\forall y \in \mathbb{R}, \ f(y) = \pm y.$$

Attention, ceci n'est pas la même chose que $(\forall y \in \mathbb{R}, f(y) = -y \text{ ou } \forall y \in \mathbb{R}, f(y) = y)$. En effet, on pourrait parfois avoir f(y) = y (par exemple sur \mathbb{R}_+) et parfois f(y) = -y (par exemple sur \mathbb{R}_-).

c) On va appliquer cette fois l'équation en y=0. On obtient alors, en utilisant f(0)=0, que pour tout $x\in\mathbb{R}$:

$$xf(x) = f(x)^2.$$

On va ensuite séparer deux cas :

- Si x = 0, on a f(x) = f(0) = 0.
- Si $x \neq 0$, alors, puisque $f(x)^2 = x^2 \neq 0$ d'après la question précédente, on en déduit que $f(x) \neq 0$. On peut donc simplifier la relation précédente par f(x) ce qui donne x = f(x).

On en déduit que $\forall x \in \mathbb{R}, \ f(x) = x$.

2) Si f vérifie l'équation, alors $\forall x \in \mathbb{R}$, f(x) = x. Vérifions si cette fonction est bien solution. On a dans ce cas, pour $x, y \in \mathbb{R}$:

$$xf(x) + y^2 + f(xy) = x^2 + y^2 + xy$$

et:

$$(f(x+y))^2 - f(x)f(y) = (x+y)^2 - xy = x^2 + y^2 + xy.$$

On en déduit que cette fonction est bien solution.

Finalement, l'équation fonctionnelle proposée n'admet qu'une unique solution : la fonction définie par $\forall x \in \mathbb{R}, \ f(x) = x$.

Exercice 21. On va dans tout l'exercice faire une étude de fonction pour montrer le résultat voulu.

- 1) Posons $f: x \mapsto e^x 1 x$. f est dérivable sur \mathbb{R} . On a pour tout $x \in \mathbb{R}$, $f'(x) = e^x 1$. f' est donc positive sur \mathbb{R}_+ et négative sur \mathbb{R}_- . On en déduit que f est décroissante sur \mathbb{R}_+ , qu'elle admet un minimum en 0. Puisque f(0) = 0, on en déduit que f est positive sur \mathbb{R} , ce qui est l'inégalité demandée.
- 2) Pour x > 0, on pose $f(x) = 2\sqrt{x} 2 \ln(x)$. f est dérivable sur \mathbb{R}_+^* (comme somme de fonctions dérivables) et $\forall x > 0$, $f'(x) = \frac{2}{2\sqrt{x}} \frac{1}{x} = \frac{\sqrt{x} 1}{x}$.

Puisque la fonction racine est croissante sur \mathbb{R}_+ et que $\sqrt{1} = 1$, on a alors $f'(x) \leq 0$ pour $x \in]0,1]$ et $f'(x) \geq 0$ pour $x \geq 1$. On en déduit que f est décroissante puis croissante et admet un minimum en 1. Puisque $f(1) = 2 - 2 - \ln(1) = 0$, on en déduit que f est positive sur \mathbb{R}_+^* , ce qui entraine l'inégalité voulue.

3) On va réaliser une étude de fonction. Cependant, on verra que pour déterminer le signe de h', il nous faudra étudier f''. Posons $h: x \mapsto \cos(x) - 1 + \frac{x^2}{2}$. h est deux fois dérivable sur \mathbb{R} . On a pour tout $x \in \mathbb{R}$:

$$h'(x) = -\sin(x) + x$$
 et $h''(x) = -\cos(x) + 1$.

On remarque que h'' est positive, ce qui entraine que h' est croissante sur \mathbb{R} . Puisque h'(0) = 0, on en déduit que h' est négative sur \mathbb{R}_- et positive sur \mathbb{R}_+ . On en déduit que h est décroissante sur \mathbb{R}_-

et croissante sur \mathbb{R}_+ . h admet donc un minimum en 0. Or, h(0) = 0. On en déduit que h est positive sur \mathbb{R} , ce qui entraine le résultat voulu.

Exercice 27.

- 1) L'équation étudiée est équivalente à l'équation $x^2 + x 6 \le 0$. Le discriminant de ce polynôme est $\Delta = 1 + 24 = 25 > 0$. On en déduit que les racines de ce polynôme sont $x_- = -3$ et $x_+ = 2$. On peut alors dresser le tableau de signe de cette fonction polynomiale, ce qui nous permet d'affirmer que l'ensemble des solutions est [-3, 2].
- 2) On place tout du même côté et on factorise pour obtenir un tableau de signes. On a :

$$\frac{12}{x+2} \le x+3 \quad \Leftrightarrow \quad 0 \le \frac{(x+3)(x+2)-12}{x+2}$$

$$\Leftrightarrow \quad 0 \le \frac{x^2+5x-6}{x+2}$$

$$\Leftrightarrow \quad 0 \le \frac{(x-1)(x+6)}{x+2}.$$

On effectue alors un tableau de signes pour obtenir que l'ensemble des solutions est $[-6, -2[\]]$ $[1, +\infty[$.

3) On a:

$$|x^2 - 2| \le 5 \quad \Leftrightarrow \quad -5 \le x^2 - 2 \le 5$$
$$\Leftrightarrow \quad -3 \le x^2 \le 7.$$

Or, x^2 est toujours positif donc l'inégalité de gauche est toujours vraie. L'inégalité de droite revient à avoir $x \in [-\sqrt{7}, \sqrt{7}]$. On en déduit que l'ensemble des solutions est $[-\sqrt{7}, \sqrt{7}]$.

- 4) On a $\left|\frac{x-1}{x+3}\right| \le 2 \Leftrightarrow -2 \le \frac{x-1}{x+3} \le 2$. On étudie alors les deux inéquations de manière indépendante :
 - On a $-2 \le \frac{x-1}{x+3} \Leftrightarrow 0 \le \frac{x-1+2(x+3)}{x+3} \Leftrightarrow 0 \le \frac{3x+5}{x+3}$. On en déduit (éventuellement avec un tableau de signes) que cette inéquation est vérifiée pour $x \in]-\infty, -3[\bigcup \left[-\frac{5}{3}, +\infty\right[]$.
 - On a $\frac{x-1}{x+3} \le 2 \Leftrightarrow \frac{x-1-2(x+3)}{x+3} \le 0 \Leftrightarrow \frac{-x-7}{x+3} \le 0$. On en déduit (éventuellement avec un tableau de signes) que cette inéquation est vérifiée pour $x \in]-\infty, -7] \bigcup]-3, +\infty[$.

On veut que ces deux inéquations soient vérifiées en même temps. On fait donc l'intersection des ensembles de solutions, ce qui donne finalement que l'ensemble des solutions est $]-\infty, -7] \bigcup \left[-\frac{5}{3}, +\infty\right[$.