Corrigé Devoir Maison 1

Rendu mercredi 7 septembre 2016

* * *

Exercice 1. Soit f la fonction définie par

$$f(x) = \frac{x}{e^x - x}.$$

- 1. Ensemble de définition de f
 - (a) Variations de u:

La fonction u est dérivable sur \mathbb{R} en tant que somme de fonctions dérivables sur \mathbb{R} , et on a :

$$\forall x \in \mathbb{R}, \quad u'(x) = e^x - 1.$$

Soit $x \in \mathbb{R}$.

$$u'(x) \geqslant 0 \quad \Leftrightarrow \quad e^x \geqslant 1 \quad \Leftrightarrow \quad x \geqslant 0.$$

 $\underline{\text{Limite en } -\infty} \ : \text{on a } \lim_{x \to -\infty} \mathrm{e}^x = 0 \text{ et } \lim_{x \to -\infty} x = -\infty. \text{ Donc } \lim_{x \to -\infty} u(x) = +\infty.$

Limite en $+\infty$: on a

$$\forall x \in \mathbb{R}, \quad u(x) = e^x - x = e^x \left(1 - \frac{x}{e^x}\right).$$

 $\quad \text{Or} \quad$

$$\lim_{x \to +\infty} \frac{x}{\mathrm{e}^x} = 0 \quad \text{par croissances comparées},$$

donc : $\lim_{x \to +\infty} u(x) = +\infty$.

D'où le tableau de variations de $u\,\,$:

x	$-\infty$		0		$+\infty$
u'(x)		_	0	+	
u	$+\infty$		1		+∞

(b) Ensemble de définition \mathcal{D} de f:

Soit $x \in \mathbb{R}$. On a :

$$f(x)$$
 existe \Leftrightarrow $u(x) \neq 0$.

D'après le tableau de variations de u, on a :

$$\forall x \in \mathbb{R}, \quad u(x) \geqslant 1 > 0.$$

Conclusion : f est définie sur \mathbb{R} , c'est-à-dire $\mathcal{D} = \mathbb{R}$.

2. Courbe représentative de f

(a) Variations de f:

La fonction f est dérivable sur son ensemble de définition, c'est-à-dire sur \mathbb{R} , car c'est le quotient de fonctions dérivables (sur leurs ensembles de définition), et on a :

$$\forall x \in \mathbb{R}, \quad f'(x) = \frac{e^x - x - x(e^x - 1)}{(e^x - x)^2} = \frac{e^x (1 - x)}{(e^x - x)^2}.$$

On en déduit que f'(x) est du signe de 1-x, c'est-à-dire positif si $x \leq 1$ et négatif si $x \geq 1$.

Conclusion : f est croissante sur $]-\infty,1]$ et décroissante sur $[1,+\infty[$.

(b) Limites de f aux bornes de \mathcal{D} :

* En
$$-\infty$$
 : on a

$$u(x) = \frac{x}{x\left(\frac{e^x}{x} - 1\right)} = \frac{1}{\frac{e^x}{x} - 1}.$$

Or :

 $\lim_{x \to -\infty} \frac{e^x}{x} = 0$ (attention, il ne s'agit pas de croissances comparées),

Conclusion :
$$\lim_{x \to -\infty} f(x) = -1.$$

* En
$$+\infty$$
 : on a

$$u(x) = \frac{x}{e^x \left(1 - \frac{x}{e^x}\right)} = \frac{x}{e^x} \times \frac{1}{1 - \frac{x}{e^x}}.$$

Or:

 $\lim_{x\to +\infty}\frac{x}{\mathrm{e}^x}=0\quad \text{par croissances comparées}.$

Conclusion:
$$\lim_{x \to +\infty} f(x) = 0.$$

Remarque : La courbe de f présente une asymptote horizontale d'équation y=-1 en $-\infty$ et une asymptote horizontale d'équation y=0 en $+\infty$.

(c) Courbe représentative C_f de f:

En réunissant les réponses aux questions précédentes, on obtient le tableau de variations suivant :

x	$-\infty$		1	$+\infty$
f'(x)		+	0	_
f	-1		$\frac{1}{e-1}$	0

D'où la courbe représentative de f:

3. Ensemble de définition de la fonction ln(f):

Soit $x \in \mathbb{R}$.

$$\ln(f(x))$$
 existe \Leftrightarrow $\begin{cases} f(x) \text{ existe} \\ f(x) > 0 \end{cases}$

f étant définie sur \mathbb{R} , la condition f(x) existe est vérifiée. De plus, l'étude précédente montre que :

$$f(x) > 0 \Leftrightarrow x > 0.$$

Conclusion : $\ln(f)$ est définie sur \mathbb{R}_+^* .

4. Courbes représentatives de g:

Par définition, on a :

$$g(x) = \begin{cases} f(x) & \text{si } f(x) \ge 0\\ -f(x) & \text{si } f(x) \le 0 \end{cases}$$

Graphiquement, on obtient la courbe représentative de g à partir de celle de f en effectuant une symétrie par rapport à l'axe des abscisses des portions de \mathcal{C}_f situées sous l'axe des abscisses.

Courbe représentative de h:

Par définition, on a :

$$h(x) = \begin{cases} f(x) & \text{si } x \ge 0\\ f(-x) & \text{si } x \le 0 \end{cases}$$

Graphiquement, cela signifie que les courbes de h et f sont confondues sur \mathbb{R}_+ . Sur \mathbb{R}_- , la courbe de h s'obtient en effectuant la symétrie par rapport à l'axe des ordonnées de la courbe de f.

On peut aussi remarquer la fonction h ainsi définie est paire et donc sa courbe est symétrique par rapport à l'axe des ordonnées.

* * *