

Цель лабораторной работы:

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Описание использованного метода:

Представим, что вид аппроксимирующей функции уже известен:

 $y = \varphi(x, a0, a1, a2, ..., am),$

где φ – известная функция, a0, a1,a2,...., am – неизвестные параметры.

Требуется определить такие параметры, при которых значения аппроксимирующей функции приблизительно совпадали со значениями исследуемой функции в точках xi, т.е. $yi \approx \varphi(xi)$. Разность между этими значениями (отклонения) обозначим через εi .

Тогда $\varepsilon i = \varphi(x, a0, a1, a2, ..., am) - yi, i = 1, 2, ...n$

Мерой отклонения многочлена $\varphi(x)$ от заданной функции f(x) на множестве точек ((xi, yi) является величина S (критерий минимизации), равная сумме квадратов разности между значениями многочлена и функции для всех точек x0, x1,...., xn:

$$S = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [\varphi(x_i) - y_i]^2 \to min$$

Задача нахождения наилучших значений параметров a0, a1,..., am сводятся к некоторой минимизации отклонений εi .

Параметры a0, a1,...., am эмпирической формулы находятся из условия минимума функции S=S(a0, a1, a2,...., am),.

Так как здесь параметры выступают в роли независимых переменных функции S, то её минимум найдем, приравнивая к нулю частные производные по этим переменным (m – степень многочлена, n - число точек):

$$\begin{split} \frac{\partial S}{\partial a_0} &= 2\sum_{i=1}^n a_0 + \big|a_1x_i + \dots + a_{m-1}x_i^{m-1} + a_mx_i^m - y_i = 0 \\ \frac{\partial S}{\partial a_1} &= 2\sum_{i=1}^n (a_0 + a_1x_i + \dots + a_{m-1}x_i^{m-1} + a_mx_i^m - y_i)x_i = 0 \\ & \dots \dots \dots \\ \frac{\partial S}{\partial a_m} &= 2\sum_{i=1}^n (a_0 + a_1x_i + \dots + a_{m-1}x_i^{m-1} + a_mx_i^m - y_i)x_i^m = 0 \end{split}$$

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения.

в матричном виде:

$$\begin{vmatrix} n & \sum_{i=1}^{n} x_{i} & \dots & \sum_{i=1}^{n} x_{i}^{m} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \dots & \sum_{i=1}^{n} x_{i}^{m+1} \\ \sum_{i=1}^{n} x_{i}^{m} & \sum_{i=1}^{n} x_{i}^{m+1} & \dots & \sum_{i=1}^{n} x_{i}^{2m} \\ \sum_{i=1}^{n} x_{i}^{m} & \sum_{i=1}^{n} x_{i}^{m+1} & \dots & \sum_{i=1}^{n} x_{i}^{2m} \end{vmatrix} = \begin{vmatrix} \sum_{i=1}^{n} y_{i} \\ x_{i} \\ \vdots \\ x_{i}^{m} \\ x_{i}^{m} \\ y_{i} \end{vmatrix}$$

Листинг численного метода:

1) Линейная аппроксимация:

```
class LinearApproximation (Approximation):
    function_type = "Линейная зависимость"

def find_an_approximation(self, list_of_x: list, list_of_y: list) -

> Function:
    SX = sum(list_of_x)
    SXX = sum(x * x for x in list_of_x)
    SY = sum(list_of_y)
    SYY = sum(list_of_y)
    SXY = sum(list_of_x[i] * list_of_y[i] for i in

range(len(list_of_x)))
    n = len(list_of_x)

    answer = self.solve_matrix([[SXX, SX], [SX, n]], [SXY, SY]))
    a = answer[0]
    b = answer[1]
    if a is None or b is None or self.isNaN(a) or self.isNaN(b):
        return None
    fun = lambdd x: a * x + b
        s = sum((fun(list_of_x[i]) - list_of_y[i]) ** 2 for i in

range(len(list_of_x)))
    root_mean_square_deviation = sqrt(s / n)
        f = Function(fun, f'\phi = {round(a, 3)}*x {round(b, 3):+}', s,

root_mean_square_deviation)
        self.print_approximation_table(list_of_x, list_of_y, f,

self.function_type)

average_x = SX / n
    average_x = SY / n
    r = (sum((list_of_x[i] - average_x) * (list_of_y[i] -

average_y) for i in range(len(list_of_x)))
        / sqrt(sum((x - average_x) ** 2 for x in list_of_x) *
        sum((y - average_y) ** 2 for y in list_of_y)))
    logging.info(f'Коэффициент корреляции Пирсона равен (round(r,
3)}')

return f
```

2) Квадратичная аппроксимация:

```
class SquareApproximation(Approximation):
    function_type = "Квадратичная зависимость"

def find_an_approximation(self, list_of_x: list, list_of_y: list) -
> Function:
    SX = sum(list_of_x)
    SXX = sum(x * x for x in list_of_x)
    SXXX = sum(x * x * x for x in list_of_x)
    SXXXX = sum(x * x * x * x for x in list_of_x)
    SXXXX = sum(x * x * x * x for x in list_of_x)
    SY = sum(list_of_y)
    SXY = sum(list_of_x[i] * list_of_y[i] for i in

range(len(list_of_x)))
    SXXY = sum(list_of_x[i] * list_of_x[i] * list_of_y[i] for i in

range(len(list_of_x)))
    n = len(list_of_x)

answer = self.solve_matrix([[SXXXX, SXXX, SXX], [SXXX, SXX, SX], [SXX, SX], [SXXX, SXX, SX], [SXXX, SXX], [SXXX, SXXX, SXX], [SXXX, SXX], [SXXX, SXX], [SXXX, SXX], [SXXX, SXX, SXX], [SXXX, SXX], [SXXX, SXX], [SXXX, SXX], [SXXX, SXXX, SXXX,
```

3) Кубическая аппроксимация:

```
def find an approximation(self, list of x: list, list of y: list) -
        SXY = sum(list of x[i] * list of y[i] for i in
SXX], [SXXXX, SXXX, SXX, SX], [SXXX, SXX, SX, n]],
                c) or self.isNaN(d):
```

4) Степенная аппроксимация:

```
class PowerApproximation(Approximation):
    function_type = "CTenehhas sabucumoctb"

def find_an_approximation(self, list_of_x: list, list_of_y: list) -

> Function:
    try:
        SLNX = sum(log(x) for x in list_of_x)
        SLNXX = sum(log(x) * log(x) for x in list_of_x)
        SLNXY = sum(log(y) for y in list of_y)
        SLNXY = sum(log(list_of_x[i]) * log(list_of_y[i]) for i in

range(len(list_of_x)))
        n = len(list_of_x)
        except ValueError:
        return None

    try:
        answer = self.solve_matrix([[SLNXX, SLNX], [SLNX, n]],

[SLNXY, SLNY])
        b = answer[0]
        a = answer[1]
        if a is None or b is None or self.isNaN(a) or

self.isNaN(b):
        return None
        a = exp(a)
        fun = lambda x: a * (x ** b)
        s = sum((fun(list_of_x[i]) - list_of_y[i]) ** 2 for i in

range(len(list_of_x)))

        root_mean_square_deviation = sqrt(s / n)
        f = Function(fun, f'\duple = {round(a, 3)}*x^*({round(b, 3)})',

s, root_mean_square_deviation)
        self.print_approximation_table(list_of_x, list_of_y, f,

self.function_type)
        return f
        except TypeError:
        return None
```

```
class PowerApproximation (Approximation):
    function_type = "CTERLEHHAS SABNICUMOCTE"

def find_an_approximation(self, list_of_x: list, list_of_y: list) -

> Function:
    try:
        SLNX = sum(log(x) for x in list_of_x)
        SLNX = sum(log(x) * log(x) for x in list_of_x)
        SLNXY = sum(log(y) for y in list_of_y)
        SLNXY = sum(log(list_of_x[i]) * log(list_of_y[i]) for i in

range(len(list_of_x))
        n = len(list_of_x)
        except ValueError:
        return None

try:
        answer = self.solve_matrix([[SLNXX, SLNX], [SLNX, n]],

[SLNXY, SLNY])
        b = answer[0]
        a = answer[1]
        if a is None or b is None or self.isNaN(a) or

self.isNaN(b):
        return None
        a = exp(a)
        fun = lambda x: a * (x ** b)
        s = sum((fun(list_of_x[i]) - list_of_y[i]) ** 2 for i in

range(len(list_of_x)))

        root_mean_square_deviation = sqrt(s / n)
        f = Function(fun, f'\dplay = (round(a, 3))*x^((round(b, 3)))',

self.print_approximation_table(list_of_x, list_of_y, f,

self.function_type)
        return f
        except TypeError:
        return None
```

6) Логарифмическая аппроксимация:

```
class LogarithmicallyApproximation(Approximation):
    function_type = "Ποταρμφμαναθεκαя зависимость"

def find_an_approximation(self, list_of_x: list, list_of_y: list) ->
Function:
    try:
        SLNX = sum(log(x) for x in list_of_x)
        SLNXX = sum(log(x) * log(x) for x in list_of_x)
        SY = sum(list_of_y)
        SYLNX = sum(log(list_of_x[i]) * list_of_y[i] for i in
    range(len(list_of_x)))
        n = len(list_of_x)
        except ValueError:
        return None

try:
        answer = self.solve_matrix([[SLNXX, SLNX], [SLNX, n]], [SYLNX, SY])

a = answer[0]
    b = answer[1]
    if a is None or b is None or self.isNaN(a) or self.isNaN(b):
        return None
    fun = lambda x: a * log(x) + b
```

Вычислительная реализация:

Вариант 7:

Использованные в лабораторной работе формулы:

$$S = \sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} [\varphi(x_{i}) - y_{i}]^{2} \rightarrow min$$

$$\frac{\partial S}{\partial a_{0}} = 2 \sum_{i=1}^{n} a_{0} + a_{1}x_{i} + \dots + a_{m-1}x_{i}^{m-1} + a_{m}x_{i}^{m} - y_{i} = 0$$

$$\frac{\partial S}{\partial a_{1}} = 2 \sum_{i=1}^{n} (a_{0} + a_{1}x_{i} + \dots + a_{m-1}x_{i}^{m-1} + a_{m}x_{i}^{m} - y_{i})x_{i} = 0$$

$$\dots \dots \dots$$

$$\frac{\partial S}{\partial a_{m}} = 2 \sum_{i=1}^{n} (a_{0} + a_{1}x_{i} + \dots + a_{m-1}x_{i}^{m-1} + a_{m}x_{i}^{m} - y_{i})x_{i}^{m} = 0$$

$$r = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}}$$

$$S = S(a_0, a_1, a_2) = \sum_{i=1}^{n} (a_0 + a_1 x_i + a_2 x_i^2 - y_i)^2 \rightarrow min$$

$$\begin{cases} \frac{\partial S}{\partial a_0} = 2 \sum_{i=1}^{n} a_2 x_i^2 + a_1 x_i + a_0 - y_i = 0 \\ \frac{\partial S}{\partial a_1} = 2 \sum_{i=1}^{n} (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i = 0 \\ \frac{\partial S}{\partial a_2} = 2 \sum_{i=1}^{n} (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i^2 = 0 \end{cases}$$

$$\begin{cases} a_0 + a_1 \sum_{i=1}^{n} x_i + a_2 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i \\ a_0 \sum_{i=1}^{n} x_i + a_1 \sum_{i=1}^{n} x_i^2 + a_2 \sum_{i=1}^{n} x_i^3 = \sum_{i=1}^{n} x_i y_i \\ a_0 \sum_{i=1}^{n} x_i^2 + a_1 \sum_{i=1}^{n} x_i^3 + a_2 \sum_{i=1}^{n} x_i^4 = \sum_{i=1}^{n} x_i^2 y_i \end{cases}$$

Таблица значений:

adominado en a reminin					
X	Y				
0	0				
-0.2	-0.1999				
-0.4	-0.3966				
-0.6	-0.5751				
-0.8	-0.7039				
-1.0	-0.75				
-1.2	-0.7095				

-1.4	-0.6139
-1.6	-0.5024
-1.8	-0.4
-2	-0.3158

Линейная аппроксимация:

Промежуточные результаты:

a = 0.126

b = -0.343

Полученная аппроксимация: Р1(х)= 0.126х - 0.343

$\varepsilon(0) = |p1(0)-y(0)| = |-0.343-0| = |-0.343|$

X	Y	P1(x)=ax-b	3	ε^2

0	0	-0.343	0.343	0.117649
-0.2	-0.1999	-0.3682	0.1683	0.02832489
-0.4	-0.3966	-0.3934	0.0032	0.00001024
-0.6	-0.5751	-0.4186	0.1565	0.02449225
-0.8	-0.7039	-0.4438	0.2601	0.06765201
-1.0	-0.75	-0.469	0.281	0.078961
-1.2	-0.7095	-0.4942	0.2153	0.04635409
-1.4	-0.6139	-0.5194	0.0945	0.00893025
-1.6	-0.5024	-0.5446	0.0422	0.00178084
-1.8	-0.4	-0.5698	0.1698	0.02883204
-2	-0.3158	-0.595	0.2792	0.07795264

Мера отклонения: $S = \sum \varepsilon_i^2 = 0.48093925$

Коэффициент корреляции: 0.857

Итоговые результаты:

a = 0.126

b = -0.343

Полученная аппроксимация: P1(x)= 0.126x - 0.343

Мера отклонения: 0.48093925

Коэффициент корреляции: 0.857

Квадратичная аппроксимация:

Kbagpari	- CHALL	annpoke	mazin				
SXX=	X1 = -	11					
SYVV	Z X1 =	= - 24,6					
		= - 29,0 × = 40,					
		×1 = 40, -5, 1671					
		= 5,723				7 9 1 X	
		2 5: = -		1 1 1	0/0/0	- 113 +	1/20
THE RESERVE TO STATE OF THE PARTY OF THE PAR		$c \cdot sx$		Y U	=>	1 1 X	1111
0 SX	+ 6.8	X X +	C.SXXX = S	YY . ()	128 18	- 116	
La · SX	X	e · SXX)	(+ C · S X X		12 X 0 =	X 4 I X	19 - 44
			C . 15,4 = -5		acro	- 9 L 3	142 = 10
3 0.	(-11) +	6.15,4	+ C . (- 24,	2)=5,16	71		100
la.	(15,4) + 6 . (-	24,2) + C.(10,5328) = -7,5493		2 3 4 7 2
							4
=>	n	SX	SXX	11	-(1 1 1 1 1 1 1 1 1 1	- 3-XP	30 40 35
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SX	SXX	SXXX		15,4 -6		= 66, 4435
	SXX	ZXXX	SXXXX	15,4	-24,2 4	0,5328	INIC ACE/OUT
	139	3X	SXX	-5,	671 -11	15,4	
Δ ₁ =	sxy	SXX	3xxx	= 5,7	231 15,4	-24,2	
	SXXS	SXXX		-7,	5492 -24	2 40,53	328
= 0, 32	24369		9313				
	n	39	SXX	1	-5,1671	15,4	
Δa =	SX	SXS	SXXX =	-11	5,7231	-24,2	2
	SXX	SXXS	SXXXX	15,4	-7,5492	40,5328	

$$\Delta_{3} = SX \qquad SXX \qquad SXY \qquad = -11 \qquad 15,4 \qquad 5,7231 = 15,4 \qquad 5,72$$

Промежуточные результаты:

a = 0.00485

b = 1.287

c = 0.58

Полученная аппроксимация: $P2(x)=0.58x^2+1.287x+0.00485$

$$\varepsilon(0) = |p(0)-y(0)| = |0.00485-0| = |0.00485|$$

X	Y	P2(x)=a0+a1x+a2x	ε	ε^2
0	0	0.00485	0.00485	0.00002352
-0.2	-0.1999	-0.22935	0.02945	0.0008673
-0.4	-0.3966	-0.41715	0.02055	0.0004223
-0.6	-0.5751	-0.55855	0.01655	0.0002739
-0.8	-0.7039	-0.65355	0.05035	0.00253512
-1.0	-0.75	-0.70215	0.04785	0.00228962

-1.2	-0.7095	-0.70435	0.00515	0.00002652
-1.4	-0.6139	-0.66016	0.04625	0.00213906
-1.6	-0.5024	-0.56955	0.06715	0.00450912
-1.8	-0.4	-0.43255	0.03255	0.0010595
-2	-0.3158	-0.24915	0.06665	0.00216946

Мера отклонения: $S = \sum \varepsilon_i^2 = 0.0163154$

Окончательные результаты:

a = 0.00485

b = 1.287

c = 0.58

Полученная аппроксимация: $P2(x)=0.58x^2+1.287x+0.00485$

Мера отклонения: 0.0163154

График:

Общий график с функциями:

Вывод:

Выполнив данную лабораторную работу, я сделала следующие выводы:

Во-первых, необходимо обратить внимание на разницу в постановке задач аппроксимации и интерполяции: интерполянт должен принадлежать к определенному классу и в точках xi(i=0,1,...,n) принимать те же значения, что и исходная функция, для аппроксиманта это требование обязательным не является, но должен выполняться критерий наилучшего приближения.

В большинстве практических случаев вычислений нам требуется установить определенный вид функциональной зависимости между характеристиками изучаемого явления. Этой цели и служит задача о приближении функции.

Т.е. задача о приближении (аппроксимации) функции состоит в том, чтобы данную функцию f(x) приближенно заменить (аппроксимировать) некоторой функцией $\phi(x)$, значения которой в заданной области мало отличались от опытных данных ($f(x) \approx \phi(x)$).

Построение эмпирической формулы состоит из 2 этапов:

1. Подбор общего вида формулы.

Иногда он известен из физических соображений.

Если характер зависимости неизвестен, то первоначально его выбирают геометрически: экспериментальные точки наносятся на график, и примерно угадывается общий вид зависимости путем сравнения полученной кривой с графиками известных функций (многочлена, логарифмической, показательной функций и т.п.).

Выбор вида эмпирической зависимости — наиболее сложная часть решения задачи, так как класс известных аналитических зависимостей необъятен. Практика, однако, показывает, что при выборе аналитической зависимости достаточно ограничиться довольно узким кругом функций: линейные, степенные и показательные.

2. Определение значений параметров аппроксимирующей функции.

(это и было реализовано в самой лабораторной работе, а алгоритм описан в теоретическом блоке выше)