Problems

Second day — July 30, 1994

Problem 1. (14 points) Let $f \in C^1[a,b]$, f(a) = 0 and suppose that $\lambda \in \mathbb{R}, \lambda > 0$, is such that

$$|f'(x)| \le \lambda |f(x)|$$

for all $x \in [a, b]$. Is it true that f(x) = 0 for all $x \in [a, b]$?

Problem 2. (14 points) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x,y) = (x^2 - y^2)e^{-x^2 - y^2}$.

- a) Prove that f attains its minimum and its maximum.
- b) Determine all points (x,y) such that $\frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial y}(x,y) = 0$ and determine for which of them f has global or local minimum or maximum.

Problem 3. (14 points) Let f be a real-valued function with n+1 derivatives at each point of \mathbb{R} . Show that for each pair of real numbers a, b, a < b, such that

$$\ln\left(\frac{f(b) + f'(b) + \dots + f^{(n)}(b)}{f(a) + f'(a) + \dots + f^{(n)}(a)}\right) = b - a$$

there is a number c in the open interval (a, b) for which

$$f^{(n+1)}(c) = f(c).$$

Note that ln denotes the natural logarithm.

Problem 4. (18 points) Let A be a $n \times n$ diagonal matrix with characteristic polynomial

$$(x-c_1)^{d_1}(x-c_2)^{d_2}\cdots(x-c_k)^{d_k}$$

where c_1, c_2, \ldots, c_k are distinct (which means that c_1 appears d_1 times on the diagonal, c_2 appears d_2 times on the diagonal, etc. and $d_1 + d_2 + \cdots + d_k = n$). Let V be the space of all $n \times n$ matrices B such that AB = BA. Prove that the dimension of V is

$$d_1^2 + d_2^2 + \dots + d_k^2.$$

Problem 5. (18 points) Let x_1, x_2, \ldots, x_k be vectors of m-dimensional Euclidean space, such that $x_1 + x_2 + \ldots + x_k = 0$. Show that there exists a permutation π of the integers $\{1, 2, \ldots, k\}$ such that

$$\left\| \sum_{i=1}^{n} x_{\pi(i)} \right\| \le \left(\sum_{i=1}^{k} \|x_i\|^2 \right)^{1/2}$$

for each n = 1, 2, ..., k.

Note that $\|\cdot\|$ denotes the Euclidean norm.

Problem 6. (22 points) Find

$$\lim_{N \to \infty} \frac{\ln^2 N}{N} \sum_{k=2}^{N-2} \frac{1}{\ln k \cdot \ln(N-k)}.$$

Note that ln denotes the natural logarithm.