1) Consider the following Redox Reaction:

$$As_2O_3(s) + NO_3(aq) \rightarrow H_3AsO_4(aq) + NO(g)$$
 (in acidic solution)

Using the rules for oxidation number;

- a) define the oxidation states/number for each element and
- b) determine define what is being oxidized and what is being reduced
- c) How many electrons are being transferred.
- d) Separate the equation into it's two redox half cell reactions (oxidation and reduction parts)
- e) Write the **balanced equation** in an acidic environment. That is use H+ or H3O+ for supplying/balancing H's and the waters to finally balance O's

applying balancing H's and the waters to finally balance O's

$$3 (As_2O_3 \xrightarrow{4e} 2H_3AsO_4 + 4e)$$
 $4(3e^- + NO_3 \xrightarrow{3e} NO)$
 $3As_2O_3 + 4NO_3 \xrightarrow{12e} 6H_3AsO_4 + 4NO$
 $21O + \emptysetH$
 $28O + 18H$

Add $7H_2O$ to balance Oxysen; Add $4H^+$ (Left) to bal. H

 $4H^+ + 7H_2O + 3As_2O_3 + 4NO_3 \longrightarrow 6H_3AsO_4 + 4NO$

2) Using the below Table which defines the relative oxidation driving force of a collection of metals:

Metal	Oxidation Reaction			
Lithium	$Li(s) \longrightarrow Li^+(aq) + e^-$	-		
Potassium	$K(s) \longrightarrow K^{+}(aq) + e^{-}$	4		
Barium	$Ba(s) \longrightarrow Ba^{2+}(aq) + 2e^{-}$	1		
Calcium	$Ca(s) \longrightarrow Ca^{2+}(aq) + 2e^{-}$			
Sodium	$Na(s) \longrightarrow Na^+(aq) + e^-$			
Magnesium	$Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$			
Aluminum	$Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}$	23		
Manganese	$Mn(s) \longrightarrow Mn^{2+}(aq) + 2e^{-}$	808		
Zinc	$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$	5		
Chromium	$Cr(s) \longrightarrow Cr^{3+}(uq) + 3e^{-}$	ë		
Iron	$Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$	Ease of oxidation increases		
Cobalt	$Co(s) \longrightarrow Co^{2+}(aq) + 2e^{-}$	73		
Nickel	$Ni(s) \longrightarrow Ni^{2+}(aq) + 2e^{-}$	120		
Tin	$Sn(s) \longrightarrow Sn^{2+}(aq) + 2e^{-}$	10		
Lead	$Pb(s) \longrightarrow Pb^{2+}(aq) + 2e^{-}$	98		
Hydrogen	$H_2(g) \longrightarrow 2H^+(iig) + 2e^-$	2		
Copper	$Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$			
Silver	$Ag(s) \longrightarrow Ag'(aq) + e$			
Meicury	$Hg(l) \longrightarrow Hg^{2+}(aq) + 2e^{-}$	111134		
Platinum	$Pt(s) \longrightarrow Pt^{2+}(aq) + 2e^{-}$			
Gold	$Au(s) \longrightarrow Au^{3+}(aq) + 3e^{-}$	100		

List

a) List THREE METALS that will react with BOTH Acid and CrCl₃ (Cr[†]3)

Any motal ABOVE and INCLUDING

b) List THREE METALS CATIONS that will NOT react with Lead.Metal

Any Coton BELOW + INCLUDING
H+ WILL
Thus
ANY Coton ABOUE

WILL NOT INCLUDING

3) $CH_4(g) + 2O_2(g) \Rightarrow CO_2(g) + 2H_2O(g)$ $\Delta H = -802 \text{ kJ}$,

Using the Bond Enthalpies

0=0	485 kJ	C-C	346 kJ
C=O	799 kJ	OH	463 kJ
C-H	413 kJ	C-0	363 kJ

Determine the above ΔH_{rxn} for the combustion of Methane. Why is it different from above Enthalpy determined by experimental data.

Difference due to USE of AVERAGE BOND ENERGIOS.

Show the Lewis Dot Stuictures; VSEPR geometries(structure/angles); and Hybridization for central atoms for the following Molecules/Ions