Instructor: Girish Varma IIIT Hyderabad

# Linear Algebra Basics

### 1 Boolean Function Spaces

Let  $\mathbb{F}_2$  be the field of two elements  $\{0,1\}$  where addition is  $\mod 2$  and multiplication is AND.  $\mathbb{F}_2^n$  is the n dimensional vector space over  $\mathbb{F}_2$  consisting of n tuples of  $\mathbb{F}_2$ . Let  $\mathcal{F}$  be the set of all functions with domain  $\mathbb{F}_2^n$  and codomain  $\mathbb{F}_2$ . It is easy to verify that  $\mathcal{F}$  is a  $2^n$  dimensional vector space over  $\mathbb{F}_2$  with the natural scalar multiplication and vector addition (  $\mod 2$ ). Assume  $n \geq 2$ .

a.) For any subset *S* of  $\{1, \dots n\}$ , let PARITY<sub>S</sub> :  $\mathbb{F}_2^n \to \mathbb{F}_2 \in \mathcal{F}$  be defined as:

$$PARITY_S(x) = \bigoplus_{i \in S} x_i.$$

For  $S = \emptyset$ , define PARITY<sub>S</sub>(x) = 1 (constant 1 function). Show that the following set of  $2^n$  parity functions are linearly dependent:

$$\{PARITY_S : S \subseteq \{1, \cdots, n\}\}$$

b.) For any subset *S* of  $\{1, \dots n\}$ , let  $AND_S : \mathbb{F}_2^n \to \mathbb{F}_2 \in \mathcal{F}$  be defined as:

$$AND_S(x) = \bigwedge_{i \in S} x_i.$$

For  $S = \emptyset$ , define  $AND_S(x) = 1$  (constant 1 function). Show that the following set of  $2^n$  functions forms a basis for  $\mathcal{F}$ :

$$\{AND_S: S \subseteq \{1, \cdots, n\}\}$$

### **2** Infinite Dimensional Vector Spaces

- a.) Consider the set of all functions with domain  $\mathbb{R}$  and codomain  $\mathbb{R}$  as a vector space over  $\mathbb{R}$ . Define a set of basis functions. Are they countable or uncountable? If so why?
- b.) Consider  $\mathbb{R}$  as a vector space over the field  $\mathbb{Q}$  (rational numbers). Is there a basis set for the above vector space that is countable. (Remember countable and uncountable sets from your discrete math course). Explain why?



### 3 Rank over different Fields

Let  $\mathbb{K}$ ,  $\mathbb{F}$  be fields such that  $\mathbb{F} \subset \mathbb{K}$  and the addition, multiplication operations in  $\mathbb{F}$  is the same as that in  $\mathbb{K}$ . For example  $\mathbb{K}$  can be  $\mathbb{R}$  and  $\mathbb{F}$  can be  $\mathbb{Q}$  (or  $\mathbb{C}$ ,  $\mathbb{R}$  respectively).  $\mathbb{F}^{n \times m}$  is the set of  $n \times m$  matrices with entries in  $\mathbb{F}$ . For any matrix  $M \in \mathbb{F}^{n \times m}$ , we can define rank with respect to  $\mathbb{F}$  as well as  $\mathbb{K}$ . The rank with respect to  $\mathbb{K}$  denoted by  $\mathrm{rank}_{\mathbb{K}}(M) = \dim(\mathrm{span}_{\mathbb{K}}(\mathrm{columns}(M)))$  where  $\mathrm{span}_{\mathbb{K}}(S)$  denotes the vector space spanned by S by taking linear combinations with scalars from  $\mathbb{K}$ . Similarly we define  $\mathrm{rank}_{\mathbb{F}}(M)$ .

- a.) Show that for  $M \in \mathbb{F}^{n \times m}$ ,  $\operatorname{rank}_{\mathbb{F}}(M) = \operatorname{rank}_{\mathbb{K}}(M)$ .
- b.) Given a binary matrix  $M \in \{0,1\}^{m \times n}$ , show that  $\operatorname{rank}_{\mathbb{R}}(M) \geq \operatorname{rank}_{\mathbb{F}_2}(M)$ . Note that addition and multiplication over  $\mathbb{F}_2$  is different from  $\mathbb{R}$ .  $\operatorname{rank}_{\mathbb{R}}$ ,  $\operatorname{rank}_{\mathbb{F}_2}$  are defined as earlier with the respective definition of addition and multiplication in  $\mathbb{R}$ ,  $\mathbb{F}_2$  (ie normal arithmetic and  $\operatorname{mod} 2$  arithmetic).

### 4 Help Alice & Bob Communicate

Alice and Bob needs to compute a known function  $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ . They know the function beforehand and can agree upon a plan. Later Bob will go to Mars. Then both of them will be given some  $x,y \in \{0,1\}^n$  (not known beforehand) respectively and Alice will be allowed to sent a message to Bob. Alice will have access to only x, Bob will have access to only y and they do not know the other persons input. Every bit of message Alice communicates is expensive. After getting Alice's message Bob should be able to find out f(x,y).

Let  $M \in \{0,1\}^{2^n \times 2^n}$  (binary matrix) be defined as  $M_{i,j} = f(\text{bin}(i), \text{bin}(j))$ , where bin(i) is the n bit binary representation of i ( $0 \le i, j < 2^n$ ). Can you design a protocol for them such that Alice only needs to sent  $\text{rank}_{\mathbb{F}_2}(M)$  bits of communication?

### Assignment 4: Eigenvalues & Diagonalization

#### 5 Random Walks

submit

Consider an undirected graph G = (V, E), where V is a set of n nodes and

$$E \subseteq \{\{a,b\} : a \neq b \text{ and } a,b \in V\}$$



is a set of edges. The random walk matrix of G is a matrix M defined by

$$M_{a,b} = \begin{cases} 1/d_b \text{ if } \{a,b\} \in E \\ 0 \text{ otherwise} \end{cases} \text{ where } a,b \in V \text{ and } d_b = |\{\{a,b\} \in E : a \in V\}|$$

 $d_b$  is called the degree of the vertex b.

### 6 Polynomials

submit

Let  $\mathcal{P}_n$  be the set of polynomials (on one variable) of degree less than n. As you know  $p \in \mathcal{P}_n$ , can be written as a linear combination of the standard monomial basis as follows  $p = \sum_{d=0}^{n-1} p_d x^d$ , where  $p_d$ 's are coordinates with respect to this basis.

- a.) For any polynomial  $q \in \mathcal{P}_n$  (having coordinates  $q_0, \dots q_{n-1}$  in standard monomial basis), define the function  $T_q : \mathcal{P}_n \to \mathcal{P}_{2n-1}$ , which maps  $p \mapsto q \times p$  (ie. polynomial multiplication). Is  $T_q$  a linear transformation? If so what is the matrix of the transformation in the standard monomial basis ie  $\{1, x, x^2, x^3, \dots, x^{n-1}\}$ ? Give the formula for each entry of the matrix for general n, in the standard monomial basis.
- b.) Let n=4. Consider the change of basis, which maps the dth standard basis (d=0,1,2,3) to the column vector  $[1,\omega^d,\omega^{2\cdot d},\omega^{3\cdot d}]$ , where  $\omega=e^{i\cdot\frac{2\pi}{4}}$  (a complex number;  $i=\sqrt{-1}$ ). What is the matrix of  $T_q$  with respect to this basis? What is the change of basis matrix for changing coordinates from this new basis back to the standard monomial basis?
- a.) Show that if  $\lambda$  is a real eigenvalue ( $\in \mathbb{R}$ ) of M then  $-1 \le \lambda \le 1$ .
- b.) Show that the column vector v defined by  $v_a = d_a/(\sum_{b \in V} d_b)$ ,  $\forall a \in V$  is an eigenvector of M with eigenvalue 1. That is Mv = v, for any graph G.
- c.) Show that the maximal number of linearly independent eigenvectors with eigenvalue 1 is equal to the number of connected components in *G*.
- d.) Show that -1 is an eigenvalue of M if and only if G is a bipartite graph.

# 7 Invarience of Eigenvalues

submit

a.) Let  $M \in \mathbb{R}^{n \times n}$ . We can define eigenvalues from the left and the right as follows.  $\lambda$  is left eigenvalue of M iff there exists a nonzero row vector v, such that  $vM = \lambda v$ . Similarly  $\lambda$  is a right eigenvalue of M iff there exists a nonzero column vector v, such that  $Mv = \lambda v$ .



- Show that the set of left eigenvalues and right eigenvalues of any matrix are equal.
- Are the left and right eigenvectors (similarly defined) the same (by taking transpose)?
- b.) Let M, M' be matrices corresponding to the same linear operator  $T: V \to V$  (V is the vector space over some field) with respect to different basis. Also assume that T is a rank n operator and M has n eigenvalues  $\lambda_1, \dots, \lambda_n$ .
  - Show that set of eigenvalues of M is equal to the set of eigenvalues of M'.
  - Show that  $det(M) = det(M') = \prod_{i=1}^{n} \lambda_i$ .
  - Define trace of a matrix, as the sum of diagonal entries. ie trace(M) =  $\sum_{j=1}^{n} M_{jj}$ . Show that trace(M) = trace(M') =  $\sum_{i=1}^{n} \lambda_i$ .

#### Norm & Inner Product

## Spectral & Singular Value Decomposition's

# Advanced Topics & Applications