Structural analysis of small streamer's chatters network

Структурный анализ сети чаттерсов небольшого стримера

Выбор сети для анализа

- Отсутствие опыта в работе с VK-API, но наличие такового для Twitch API
- Небольшое количество друзей в вк
- Собственноручно собранный датасет из 96245 сообщений в чате твича
- Личный интерес в структуре общения в чате

Принцип построения сети

- Users → nodes
- Дуга (i,j) образуется, когда юзер і "тэгает" юзера ј

Juliam7: @xseix я никому ничего плохого не делаю, только доброту и отдаю безвозмездно

- Вес дуги (i,j) равен количеству раз, когда юзер і "тэгнул" юзера ј
- Стример удаляется из сети (так как это по сути эго-сеть стримера)

соответственно...

Тип графа

- Ориентированный
- Гомогенный
- Взвешенный

У каждой вершины имеется атрибут 'label' - имя пользователя и атрибут 'size', равный количеству отправленных сообщений в чат

Атрибут рёбер 'weight' описан на предыдущем слайде

Network summary

- Размер графа: 290 вершин, 1361 дуга
 - Размер слабосвязанной компоненты: 156 вершин, 1361 дуга
 - Размер сильносвязанной компоненты: 104 вершины, 1292 дуги
- Диаметр сильносвязанной компоненты: 5
- Радиус сильносвязанной компоненты: 3
- Средняя длина кратчайшего пути: 2.3
 - С учётом весов: 3.2
- Коэффициент кластеризации графа: 0.2
 - о Коэффициент кластеризации слабосвязанной компоненты: 0.4
 - О Коэффициент кластеризации сильносвязанной компоненты: 0.5

Промежуточные выводы

- Граф состоит из одной слабосвязанной компоненты и изолированных вершин - юзеров, которые не тэгают других. Все остальные так или иначе друг друга тэгают
- Средняя длина кратчайшего пути достаточно маленькая, следовательно связей много, то есть юзеры много друг друга тэгают
- Поэтому и коэффициент кластеризации компонент связности достаточно высок

Гистограмма кластеризации

Гистограмма кластеризации компоненты слабой связности

Гистограмма кластеризации компоненты сильной связности

Зависимость коэффициента кластеризации от степени

вершины

Промежуточные выводы

- В графе много вершин, почти не связанных с основными вершинами, соответственно в них низкий коэффициент кластеризации - юзеры, не слишком часто пишущие в чат
- С ростом степени вершины слегка уменьшается средний коэффициент кластеризации

Гистограмма длин кратчайшего пути

Гистограмма взвешенных длин кратчайшего пути

Промежуточные выводы

• В графе много связей, соответственно длина кратчайшего пути небольшая, причём у каждой вершины есть связь с другой небольшого веса, поэтому даже с учётом весов длина кратчайшего пути остаётся небольшой - значит чаттерсы тэгают только тех, кого тэгают часто

Визуализация

- Размер вершины зависит от количества сообщений пользователя.
- Размер имени зависит от степени вершины
- Толщина связи зависит от веса
- Цвет вершины: чем краснее, тем больше исходящих тэгов, чем зеленее, тем больше входящих тэгов

Визуализация центральной части сети (NetworkX)

Визуализация

- Размер вершины зависит от количества сообщений пользователя.
- Толщина связи зависит от веса
- Цвет вершины: чем краснее, тем больше суммарная степень

Визуализация компоненты слабой связности

И центральная часть сети

Промежуточные выводы

- В графе выделяется "основная часть" юзеры, которые много пишут в чат и часто друг друга тэгают
- Сложно заметить какую-то структуру, как не изображай граф,
 следовательно это не самая наглядная для анализа сеть, и автор презентации получит очень мало баллов за проект

Эмпирическая функция распределения степени

вершин

Оценка максимального правдоподобия на параметры

Power Law

$$lpha=1.42 \ x_{min}=2$$

He особо соответствует Power Law...

Эмпирическая и теоретическая функции распределения степеней вершин

Модели случайного графа

Модели случайного графа

Радиус: 3 (3)

Диаметр: 5 (6)

Средний кратчайший путь: 2.8 (2.5)

Средний коэффициент кластеризации: 0.08 (0.44)

Промежуточные выводы

- Распределение степеней вершин не особо соответствует Power Law
- Лучше всего на граф похожа модель Барабаши-Альберт, следовательно можно смоделировать эволюцию графа по этой модели, то есть новый зритель, заходя в чат, скорее всего будет тэгнут кем-то, кто больше всего пишет в чат и чаще тегает, и скорее всего тегнет его же

Топ 10 пользователей по центральностям

Degree centrality		
	username	centrality
0	dandrael	0.415225
1	justreyb	0.359862
2	ceddisss	0.321799
3	linalucker	0.314879
4 d	yadya_danilo	0.280277
5	n14t0	0.280277
6	axel_reisen	0.276817
7	evgeniyleet	0.269896
8	teemok	0.224913
9	vellrus	0.204152

Closeness centrality				
	username	centrality		
0	ceddisss	0.263387		
1	dandrael	0.260805		
2	linalucker	0.252152		
3	blvckbvrnez	0.242941		
4	dyadya_danilo	0.242941		
5	justreyb	0.242941		
6	ludmila_mikhailovna1983	0.238584		
7	juliam7	0.235417		
8	axel_reisen	0.234380		
9	evgeniyleet	0.234380		

Betweenness centrality				
	username	centrality		
0	dandrael	0.031758		
1	justreyb	0.028898		
2	ceddisss	0.023261		
3	vellrus	0.020094		
4	n14t0	0.020040		
5	linalucker	0.016898		
6	evgeniyleet	0.011141		
7	axel_reisen	0.010768		
8	roman_dmt	0.008331		
9	teemok	0.008269		

Корреляции

Промежуточные выводы

- Все топы содержат примерно одних и тех же людей которые больше всего пишут в чат (а значит и чаще тэгают других), именно такой вывод можно сделать из корреляций между центральностями и количеством сообщений
- Меньше всего между собой коррелируют степени близости и посредничества, что может свидетельствовать о наличии юзеров, которые либо в основном тэгают других, либо их самих тэгают, следовательно у них повышается степень близости, но падает степень посредничества, наличие таковых проверим далее...

HITS

Node size by authority score

Node size by hub score

Промежуточные выводы

- Самые авторитетные авторитеты зачастую являются также и одними из самых хабных хабов и наоборот
- Есть юзеры, чей авторитетный скор сильно превосходит хабный, но юзеры с высоким хаб скором обычно обладают и неплохим авторитет скором

К сожалению спектральный анализ бесполезен...

Схема с весами для выявления сообществ

- Устанавливаем порог и удаляем рёбра, веса которого ниже порогового значения
- Повышаем порог, пока не возникнет наибольшее число компонент сильной связности с числом вершин больше одной, получаем некоторые "ядра" сообществ
- Вершины, не вошедшие в компоненты связности, последовательно добавляем в сообщество, с которым больше связь (суммарный нормированный вес рёбер)

Зависимость числа компонент связности от порога

Ядра сообществ (компоненты сильной связности)

Ядра сообществ (компоненты слабой связности)

Сообщества

Сообщества

- 42 красные вершины
- 72 зелёные вершины
- 42 синие вершины

Промежуточные выводы

- Выделилось три основные группы пользователей. По опыту пребывания в чате можно сказать, что:
 - о Синяя группа состоит из тех, кто общается в основном со стримером на конкретную тему
 - Красная группа из тех, кто в основном общается между собой на отвлечённые темы
 - Зелёная группа что-то посередине

Максимальные клики

- Слабая клика: размер 14, на визуализации зелёный цвет
- Сильная клика: размер 10, на визуализации красный цвет
- Вершины, вошедшие в обе клики имеют жёлтый цвет

*Слабая клика - подграф, между любыми двумя вершинами которого есть дуга

*Сильная клика - подграф, между двумя вершинами которого есть дуги в обе стороны

Выводы

- Чаще друг друга тэгают те, кто больше всего пишет в чат, они же самые важные "авторитеты" и "хабы", и именно эти люди являются самыми центральными
- Сеть тэгов в чате твича формируется похожим на модель Барабаши-Альберта образом
- В чате не очень популярного стримера все друг друга знают и часто друг друга тэгают
- Выделилось три основных сообщества чаттерсов, но эти сообщества не ярко-выраженные, они предположительно формируются темами, на которые люди общаются в чате

Простите за

44 слайда....