APS 09/004,485

=> display history full 146-150

L46 CLM	(FILE 'USPAT' ENTERED AT 08:18:11 ON 17 JUN 1998) 97 SEA (LEAPFROG?/TI,AB,CLM OR (LEAP/TI,AB,CLM(W)FROG?/TI,AB,						
TI,) OR ((CARRY?/TI,AB,CLM OR CARRIE?/TI,AB,CLM)(W)FUNCTION#/						
11,	AB, CLM))						
L47	FILE 'USOCR' ENTERED AT 09:06:26 ON 17 JUN 1998 3 SEA (LEAPFROG?/TI,AB,CLM OR (LEAP/TI,AB,CLM(W)FROG?/TI,AB,						
CLM) OR ((CARRY?/TI,AB,CLM OR CARRIE?/TI,AB,CLM)(W)FUNCTION#/						
·	AB, CLM))						
	FILE 'EPOABS' ENTERED AT 09:07:46 ON 17 JUN 1998						
	FILE 'JPOABS' ENTERED AT 09:12:28 ON 17 JUN 1998						
L48	FILE 'USPAT' ENTERED AT 09:45:12 ON 17 JUN 1998 0 SEA 6-2887/PRAN						
L48 L49	0 SEA 6-2887/PRAN 0 SEA 6-28887/PRAN E YAMAMOTO, KENJI/IN						
L50	96 SEA "YAMAMOTO, KENJI"/IN						

APS 09/004,485

=> d 72 73 79

- 72. 4,040,677, Aug. 9, 1977, Device for utilization in anti-skid control systems; Hans-Wilhelm Bleckmann, 701/71; 303/168; 361/238 [IMAGE AVAILABLE]
- 73. 3,997,765, Dec. 14, 1976, Circulating shift register incrementer/decrementer; Vijay V. Marathe, 377/72; 365/73; 377/54 [IMAGE AVAILABLE]
- 79. 3,916,380, Oct. 28, 1975, Multi-computer multiple data path hardware exchange system; James C. Administrator of the National Aeronautics and Space Administration with respect to an invention of Fletcher, et al., 340/825.04; 364/229, 229.1, 238, 238.1, DIG.1; 395/311 [IMAGE AVAILABLE]

=> d 72 73 79 kwic

US PAT NO:

4,040,677 [IMAGE AVAILABLE]

L46: 72 of 97

CLAIMS:

CLMS(8)

8. . . . 1, wherein said storage register comprises two shift registers having like digit capacity and wherein serial adders are provided including carry function connected before said two shift registers whereby a comparison pulse is generated by a second of said two registers and. . .

US PAT NO:

3,997,765 [IMAGE AVAILABLE]

L46: 73 of 97

ABSTRACT:

The . . . herein includes an incrementer/decrementer that increments and decrements the contents of both clock and stopwatch registers and performs reset and carry functions therefor.

US PAT NO:

3,916,380 [IMAGE AVAILABLE]

L46: 79 of 97

ABSTRACT:

A . . . system are continuously and rapidly scanned for a request-to-send signal. Those computers that are already engaged in data transmission are leap-frogged by the scanning mechanism. When a request-to-send signal is detected by a particular scanning mechanism, that scanning mechanism stops at . . .

CLAIMS:

CLMS(1)

What .

computer by maintaining a scanning means connected to said particular computer, said sequencing means causing all other scanning means to leap-frog the connected scanning means; and

N distribution means, each of said distribution means connecting the second end of the data path. . .

CLAIMS:

CLMS(3)

. . .
 when a particular scanning means is quiescent at a particular address;
 and

means for directing said inbound address generating means to leap-frog the inbound address at which said particular scanning means is quiescent.

CLAIMS:

CLMS(6)

6. The multiple data path hardware exchange system of claim 3 wherein said leap-frog directing means comprises: a **leap**-**frog** constant store means.

CLAIMS:

CLMS (9)

- 9. . . 8 wherein said directing means comprises N directing means, each directing means comprising:
- a storage means containing a plurality of leap-frog constants; and

means responsive to a particular said comparator for selecting a leap-frog constant from said storage means and supplying it to said full adder as a second input.

CLAIMS:

CLMS (10)

- 10. . . data path hardware exchange system of claim 7 wherein said directing means comprises:
- a storage means containing a plurality of leap-frog constants; and

means responsive to a particular said comparator for selecting a leap-frog constant from said storage means and supplying it to said full adder in one of said N sequencers.

CLAIMS:

CLMS (19)

19. . . . control mechanism of claim 18 wherein said N sequencing means each further comprises:

storage means containing a plurality of binary leap-frog
constants; and

selector means responsive to said comparator means for selecting one of said leap-frog constants and supplying it to said full adder as a second input.

APS 09/004,485

=> display history all full

/PTIP	ITICDATTI	ENTERED	ידי מ	07.1	1 . 55	ON	17	JITIN	19981	1

	,	
	FILE 'USOCE	R' ENTERED AT 07:12:34 ON 17 JUN 1998
L1	191	SEA (73/865.2 OR 364/562 OR 33/377)/CCLS OR (702/CLAS AND
(H		YDROSTATIC? OR HYDRAULIC? OR (HYDRO(W)STATIC?))/TI,AB,CLM)
L2	5274	SEA SPOOL? OR UNSPOOL? OR REEL? OR UNREEL?
L3 ELE	213	SEA (HYDROSTATIC? OR HYDRAULIC? OR (HYDRO(W)STATIC?))(5A)(
ELE		VAT? OR ALTI?)
L4	34	SEA L2(L)L3
L5	1	SEA L1 AND L2
L6 PRE	113	SEA ((HYDROSTATIC? OR HYDRAULIC? OR (HYDRO(W)STATIC?))(5A)
FRE		SSUR?) (10A) (SENS? OR TRANSDUCER#)
L7	2	SEA L4(L)L6
T8	3	SEA L5 OR L7
L9	0	SEA (ACCUMULAT? (5A) (NUMERICAL? OR VALUE#)) (10A) ((LEAP(W)FR
OG?) OR LEAPFROG? OR ((CARRY? OR CARRIE?)(W)FUNCTION#))
	FILE 'EPOAL	BS' ENTERED AT 07:49:55 ON 17 JUN 1998
L10	66	SEA G01C 5*04/IPC
L11 OG?	0	SEA (ACCUMULAT? (5A) (NUMERICAL? OR VALUE#)) (10A) ((LEAP(W) FR
OG:) OR LEAFFROG? OR ((CARRY? OR CARRIE?)(W)FUNCTION#))
L12	19596	SEA SPOOL? OR UNSPOOL? OR REEL? OR UNREEL?
L13 ELE	374	SEA (HYDROSTATIC? OR HYDRAULIC? OR (HYDRO(W)STATIC?))(5A)(
ELE		VAT? OR ALTI?)
L14 PRE	504	SEA ((HYDROSTATIC? OR HYDRAULIC? OR (HYDRO(W)STATIC?))(5A)
PRE		SSUR?) (10A) (SENS? OR TRANSDUCER#)
L15	6	SEA (L10 OR L13) AND L12

L16 0 SEA L15 AND L14

FILE 'JPOABS' ENTERED AT 07:54:54 ON 17 JUN 1998

L17	85	SEA G 5*04/IPC
L18	0	SEA (ACCUMULAT? (5A) (NUMERICAL? OR VALUE#)) (10A) ((LEAP(W) FR
OG?) OR LEAPFROG? OR ((CARRY? OR CARRIE?)(W)FUNCTION#))
L19	24936	SEA SPOOL? OR UNSPOOL? OR REEL? OR UNREEL?
L20	1003	SEA (HYDROSTATIC? OR HYDRAULIC? OR (HYDRO(W)STATIC?))(5A)(
ELE		VAT? OR ALTI?)
L21	638	SEA ((HYDROSTATIC? OR HYDRAULIC? OR (HYDRO(W)STATIC?))(5A)
PRE		SSUR?) (10A) (SENS? OR TRANSDUCER#)
L22	1	SEA L17 AND L19
L23	8	SEA L19 AND L20
L24	0	SEA L23 AND L21
	FILE 'USPA'	r' ENTERED AT 08:00:59 ON 17 JUN 1998
L25	518	SEA L1 OR 364/562/ICLS OR L10 .
L26 OG?	0	SEA (ACCUMULAT? (5A) (NUMERICAL? OR VALUE#)) (10A) ((LEAP(W)FR
OG:) OR LEAPFROG? OR ((CARRY? OR CARRIE?)(W)FUNCTION#))
L27	85326	SEA SPOOL? OR UNSPOOL? OR REEL? OR UNREEL?
L28 ELE	3847	SEA (HYDROSTATIC? OR HYDRAULIC? OR (HYDRO(W)STATIC?))(5A)(
		VAT? OR ALTI?)
L29 PRE	4219	SEA ((HYDROSTATIC? OR HYDRAULIC? OR (HYDRO(W)STATIC?))(5A)
		SSUR?) (10A) (SENS? OR TRANSDUCER#)
L30	50	SEA L25 AND L27
L31	632	SEA L27(L)L29
L32	5	SEA L25 AND L31
L33	16	SEA L31(L)L28
L34 FUN	1093	SEA LEAPFROG? OR (LEAP(W)FROG?) OR ((CARRY? OR CARRIE?)(W)
		CTION#)
L35	1	SEA L25 AND L34
L36	2	SEA L28(L)L34
	FILE 'USOCI	R' ENTERED AT 08:13:06 ON 17 JUN 1998
L37 FUN	47	SEA LEAPFROG? OR (LEAP(W)FROG?) OR ((CARRY? OR CARRIE?)(W)
		CTION#)

L38

0 SEA L1 AND L37

IRD CNOABS

=> d ; d 135 ; d 136 1-2

- 1. 5,517,869, May 21, 1996, Hydrostatic altimeter error compensation; Dennis L. Vories, 73/865.2 [IMAGE AVAILABLE]
- 1. 5,726,365, Mar. 10, 1998, Hydrostatic altimeter; Dennis L. Vories, 73/865.2 [IMAGE AVAILABLE]

- 1. 4,875,554, Oct. 25 1989, Dynamic selection of elevator call assignment scan direct h; Robert C. MacDonald, et al. 87/382, 387 [IMAGE AVAILABLE]
- 2. 4,790,412, Dec. 13, 1988, Anti-bunching method for dispatching elevator cars; Robert C. MacDonald, et al., 187/387 [IMAGE AVAILABLE]

=> d 136 1-2 kwic

US PAT NO:

4,875,554 [IMAGE AVAILABLE]

L36: 1 of 2

SUMMARY:

BSUM(2)

The invention relates in general to dispatching strategies for elevator systems of the hydraulic and traction type, and more specifically to a method of efficiently assigning up and down hall calls registered from the. . .

SUMMARY:

BSUM(8)

The . . . to car distribution problems. Cars can bunch or cluster and race one another to answer hall calls. This leads to leap frogging and "no-call stops" in which a car stops only to find another car has just arrived to serve the same. . .