Отчёт по лабораторной работе N210 TEMA

Плюскова Н., Богатова Е., Атласов В., Соколов А.

17 сентября 2023 г.

1. Теоретические данные

В работе изучается влияние сильного электрического поля на электропроводность полупроводников, а также эффекты, связанные с возникновением отрицательной дифференциальной проводимости при разогреве электронов.

Эффект разогрева электронов заключается в том, что при воздействии на свободные электроны внешних сил, например электрического поля, средняя энергия электронного газа может существенно превысить своё равновесное значение, в то время как энергия решётки будет оставаться почти без изменения. Это явление характерно для сравнительно слабо легированных полупроводников ($n \approx 10^{17} \; {\rm cm}^{-3}$), в этом случае теплоёмкость решётки намного превышает теплоёмкость электронного газа, и её можно рассматривать как термостат с температурой, не зависящей от электрического поля.

При наличии достаточно частых межэлектронных столкновений функция распределения близка к распределению Максвелла-Больцмана с температурой T_e . Изменение вида функции распределения в сильном электрическом поле приводит к тому, что подвижность электроном становится функцией электрического поля. В частности, можно показать, что подвижность является степенной функцией поля: в случае рассеивания на акустических фононах $\mu \sim E^{-1/2}$, в случае рассеивания на оптических фононах возможна зависимость $\mu \sim E^{-1}$.

Полупроводниковые кристаллы обладают анизотропией, в пределах зоны Бриллюэна есть несколько минимумов зоны проводимости, которые характеризуются различной эффективной массой. В некоторых полупроводниках группы A^3B^5 , в частности GaAs, более высоко расположенные минимумы характеризуются большей эффективной массой, чем низко расположенные. Поэтому когда электроны, разогретые полем, становятся способными перейти из нижней долины в верхнюю, они «тяжелеют», подвижность их уменьшается, это приводит к уменьшению проводимости в сильном поле. С увеличением приложенного поля вероятность перехода электронов из нижней долины в верхнюю увеличивается настолько, что, начиная с некоторого порогового значения поля дифференциальная проводимость становится отрицательной.

Следствием отрицательной проводимости является неустойчивость тока в полупроводнике. На участке отрицательной дифференциальной проводимости любая случайная флуктуация поля объёмного заряда в кристалле имеет тенденцию к нарастанию, возникают участки сильного поля в кристалле, называемые доменами. Домены могут быть статическими (при их возникновении ток в образце приходит к насыщению или даже уменьшается при увеличении напряжения) и динамические (при их возникновении начинается генерация периодических колебаний тока в образце).

2. Экспериментальная установка

Рис. 1: Схема экспериментальной установки

Рис. 2: Фотографии экспериментальной установки

3. Результаты эксперимента и обработка данных

Собрав и настроив установку, получим зависимость координаты пучности от ее порядкового номера:

Номер пучности	1	2	3	4	5	6	7	8
Значения координаты, мм	9,25	13,85	18,10	22,05	26,45	30,25	34,75	39,10

Таблица 1: Координаты пучности и их порядковые номера

По данным таблицы 1 построим соответствующий график:

Рис. 3: Зависимость координаты пучности от её порядкового номера

Из графика 3 получим половину длины волны как коэффициент наклона и частоту генерации соответственно:

$$\frac{\lambda}{2}=4.22\pm0.05~{
m mm}\Rightarrow\lambda=8.4\pm0.1~{
m mm};$$
 $u=\frac{c}{\lambda}\approx35.5\pm0.4~\Gamma\Gamma$ ц

Погрешность для $\frac{\lambda}{2}$ берём равной цене деления штангенциркуля, так как погрешность, связанная с фитом по МНК, получается много меньше.

Погрешность для λ и ν рассчитываем как погрешность косвенного измерения. Для λ она получается просто в два раза больше погрешности для $\frac{\lambda}{2}$, а для ν : $\sigma_{\nu}=\frac{c}{\lambda^{2}}\sigma_{\lambda}$. Исследуем ВАХ диода Ганна и построим соответствующий график:

U, мВ	1778,9	1772,3	1761	1757,5	1748,3	1720,1	1661,4	1639	1592,5	1536,5	1484
І, мА	964,9	978,8	980,7	983,8	982,7	987,6	1002	1003,9	1008,9	1014,7	1019,9
logU	3,25	3,249	3,246	3,245	3,243	3,236	3,22	3,215	3,202	3,187	3,171
logI	2,984	2,991	2,992	2,993	2,992	2,995	3,001	3,002	3,004	3,006	3,009
U, мВ	1388	1272,2	1193,5	1055,5	963	849	725	642,4	519	420	
І, мА	1027,5	1034,8	1033,8	1008,7	944,6	865	779,8	705	584	283,1	
logU	3,142	3,105	3,077	3,023	2,984	2,929	2,86	2,808	2,715	2,623	
logI	3.012	3.015	3.014	3.004	2.975	2.937	2.892	2.848	2.766	2.452	

Таблица 2: Данные напряжения и силы тока на диоде

Рис. 4: ВАХ диода Ганна

4. Вывод

В работе были изучены влияние сильного электрического поля на электропроводность полупроводников, а также эффекты, связанные с возникновением отрицательной дифференциальной проводимости при разогреве электронов. В ходе эксперимента была найдена частота генерации ($\nu=35.5\pm0.2~\Gamma\Gamma$ ц) и построена ВАХ диода Ганна. Качественный вид ВАХ диода Ганна согласуется с теорией.