Lab 5: Datasets for Regression and Classification

1. Objective

Know how to write a machine learning/artificial intelligence report using larger datasets.

2. Datasets

给定一篇新闻的 58 个属性(特征),比如新闻标题中词的个数(n_tokens_title)等等,预测这篇新闻在社交网络中被分享的次数(shares)。被分享的次数越多,表示这篇新闻越"热门/受欢迎"。如下数据文件供回归实验采用:

Datar_all.csv(全部数据,每行代表一篇新闻,每篇新闻都给出了 shares 的真实值); Datar_train.csv(训练数据,27751 篇新闻,每篇新闻都给出了 shares 的真实值); Datar_test.csv(测试数据,11893 篇新闻,每篇新闻的 shares 的真实值需要预测)。

输入的属性(特征):数据文件中的第1-58列。说明如下:

n_tokens_title	新闻标题中词的个数
n_tokens_content	新闻正文中词的个数
n_unique_tokens	新闻正文中不重复的词占总词数的比例
n_non_stop_words	新闻正文中非停用词占总词数的比例
n_non_stop_unique_tokens	新闻正文中不重复的非停用词占总词数的比例
num_hrefs	新闻正文中超链接的个数
num_self_hrefs	新闻正文中指向 Mashable 其它新闻的超链接数
num_imgs	新闻正文中图片的张数
num_videos	新闻正文中视频的个数
average_token_length	新闻正文中词的平均长度
num_keywords	元数据中关键词的个数
data_channel_is_lifestyle	新闻是否放置在"Lifestyle"频道下?
data_channel_is_entertainment	新闻是否放置在"Entertainment"频道下?
data_channel_is_bus	新闻是否放置在"Business"频道下?
data_channel_is_socmed	新闻是否放置在"Social Media"频道下?
data_channel_is_tech	新闻是否放置在"Tech"频道下?
data_channel_is_world	新闻是否放置在"World"频道下?
kw_min_min	差的关键词最少分享数
kw_max_min	差的关键词最多分享数
kw_avg_min	差的关键词平均分享数
kw_min_max	好的关键词最少分享数
kw_max_max	好的关键词最多分享数
kw_avg_max	好的关键词平均分享数
kw_min_avg	一般关键词最少分享数
kw_max_avg	一般关键词最多分享数
kw_avg_avg	一般关键词平均分享数
self_reference_min_shares	参考新闻中的最少分享数

self_reference_max_shares	参考新闻中的最多分享数
self_reference_avg_sharess	参考新闻中的平均分享数
weekday_is_monday	新闻是否在周一发布的?
weekday_is_tuesday	新闻是否在周二发布的?
weekday_is_wednesday	新闻是否在周三发布的?
weekday_is_thursday	新闻是否在周四发布的?
weekday_is_friday	新闻是否在周五发布的?
weekday_is_saturday	新闻是否在周六发布的?
weekday_is_sunday	新闻是否在周日发布的?
is_weekend	新闻是否在周末发布的?
LDA_00	与 LDA (一种主题模型) 主题 0 的相似度
LDA_01	与 LDA 主题 1 的相似度
LDA_02	与 LDA 主题 2 的相似度
LDA_03	与 LDA 主题 3 的相似度
LDA_04	与 LDA 主题 4 的相似度
global_subjectivity	新闻正文的主观性
global_sentiment_polarity	新闻正文的情感强度
global_rate_positive_words	新闻正文中正面词占全部词的比例
global_rate_negative_words	新闻正文中负面词占全部词的比例
rate_positive_words	新闻正文中正面词占非中性词的比例
rate_negative_words	新闻正文中负面词占非中性词的比例
avg_positive_polarity	新闻正文中正面词的平均情感强度
min_positive_polarity	新闻正文中正面词的最小情感强度
max_positive_polarity	新闻正文中正面词的最大情感强度
avg_negative_polarity	新闻正文中负面词的平均情感强度
min_negative_polarity	新闻正文中负面词的最小情感强度
max_negative_polarity	新闻正文中负面词的最大情感强度
title_subjectivity	新闻标题的主观性
title_sentiment_polarity	新闻标题的情感强度
abs_title_subjectivity	绝对主观性水平
abs_title_sentiment_polarity	绝对情感强度水平

预测的变量: shares (测试数据文件中的最后一列)。

如下数据供分类实验采用:

Datac_all.csv(全部数据,每行代表一篇新闻,每篇新闻都给出了 shares 的真实值); Datac_train.csv(训练数据,27751 篇新闻,每篇新闻都给出了 shares 的真实值); Datac_test.csv(测试数据,11893 篇新闻,每篇新闻的 shares 的真实值需要预测)。

预测的变量: shares (测试数据文件中的最后一列)。

其中,"1"代表 popular (即该篇新闻为"热门/受欢迎"的),"0"代表 unpopular。

3. Experiment

无论是选择第一种实验模式(代码实现类),还是第二种实验模式(工具或代码应用类)的同学,请基于上述数据集开展实验。每位同学可以选择回归或分类两种任务中的任意一种(或者两种)获得实验结果并撰写实验报告。

假如选择了回归任务,请采用 Datar_all.csv、Datar_train.csv、Datar_test.csv 开展实验,通过 Datar_train.csv 训练模型,然后预测 Datar_test.csv 中每篇新闻的 shares 值,接着将预测值粘贴到 Evaluater.xlsx 文件的第二列,将得到模型预测值与真实值的相关系数值(D3 单元格)。可以采用的回归模型如下:

- (1) kNN 回归: k 值请固定取为 1。 **注意不能**根据不同 k 值的 kNN 回归模型,看它们在测试数据集上的相关系数大小,然后取最大值。但是,如果同学提出了从训练数据分布中自动确定 k 值大小的方法,可以提交自动确定的 k 值得到的相关系数值。
 - (2) NB 回归:请参照实验二及 TA 的讲稿。
 - (3) 其它自行实现的或者工具中包含的回归模型。

请将你目前能够得到的最好的一个相关系数值,比如 0.80,写入"学号.txt"文件,并上传到 FTP 的 Regression results 目录中。实验报告文件,即"学号.doc"或"学号.pdf",请上传到 FTP 的 Regression reports 目录中。

假如选择了分类任务,请采用 Datac_all.csv、Datac_train.csv、Datac_test.csv 开展实验,通过 Datac_train.csv 训练模型,然后预测 Datac_test.csv 中每篇新闻的 shares 值,接着将预测值粘贴到 Evaluatec.xlsx 文件的第二列,将得到模型预测的准确率(D3 单元格)。可以采用的分类模型如下:

- (1) kNN 分类: k 值请固定取为 1。 **注意不能**根据不同 k 值的 kNN 分类模型,看它们在测试数据集上的准确率大小,然后取最大值。但是如果同学提出了从训练数据分布中自动确定 k 值大小的方法,可以提交自动确定的 k 值得到的准确率值。
 - (2) NB 分类: 请参照课件 Lec 4 kNN and NB.pdf。
 - (3) 决策树分类: 请参照实验四及 TA 的讲稿。
 - (4) 其它自行实现的或者工具中包含的回归模型。

请将你目前能够得到的最好的一个准确率,比如 0.80,写入"学号.txt"文件,并上传到 FTP 的 Classification results 目录中。实验报告文件,即"学号.doc"或"学号.pdf",请上传到 FTP 的 Classification reports 目录中。

【注】实验模式选择的 deadline 为 11 月 15 日 (本周日)晚上 10:00,请尚未选择的或需要修改的联系朱和胜。自 11 月 12 日起,同学们可以提交上述实验结果和实验报告文件至 FTP,我们会在 11 月 18 日 (下周三)晚上 11:00 从 FTP 中剪切已提交的文件作为参考。后续将会每周三晚上 11:00 从 FTP 中剪切已提交的文件作为参考,一直延续到学期结束。