- 1. Y-chromosomalna
- 2. Mitochondrialna
- 3. Autosomalna

TASK 2

Nie

TASK 3

N jest to nukleotyd o pełnej nazwie Adenina / Guanina / Cytosinea/ Tymina. Gdyby zawierał taki nukleotyd oznaczałoby, że istnieje zmienność przeciwciał V(D)J.

TASK 4

Genom nie zawiera ozaczeń innych niż A, C, T lub G, oznacza to, że genom składa się tylko z Adeniny, Cytozyny, Guaniny i Tyniny. Świadczy to o tym, że jest to czyste DNA bez RNA.

TASK 5

Oznaczenie Y świadczyłoby o obecności Pirymidyny $\mathbb{C}_4H_4N_2$.

TASK 6

Pełne regiony podanego mDNA to HVR_2 oraz HVR_1 .

TASK 7

Znalazł markery HVR2, CR, HVR1

Marker genetyczny jest to cecha organizmu wykorzystywana do określenia jego genotypu. Może to być obecność lub brak jakiegoś genu lub białka, albo występowanie jakiejś szczególnej jego postaci. Markery genetyczne znajdują też zastosowanie do identyfikowania osób lub osobników zwierząt czy roślin.

TASK 9

Algorytm wykazał haplogrupę J1c7.

TASK 10

rCRS to skrót od Revised Camridge Reference Sequence.

TASK 11

H2a2a1

TASK 12

- Nr. EU151466.1
- Narodowość: Francja, uniwersytet Hiszpański.

TASK 13

Występuje mutacja S: Tranzycja – zamiana guaniny na adeninę.

TASK 14

DYS456 - to marker genetyczny w DNA, a dokładniej na chromosomie Y.

TASK 16

Sekwencja, która się powtarza, to 12 nukleotydów.

TASK 17

27

TASK 18

Za pomocą tego narzędzia można *przewidzieć* haplogrupę i znaleźć najbardziej prawdopodobną.

TASK 19

Jest to baza zawierająca informacje na teamt haplogrupy chromosomu Y.

- Minimalny zestaw markerów dla inkluzji YHRD
- Y12 zestaw markerów pochodnych od PowerPlex Y
- Y17 zestaw markerów pochodnych od Yfiler
- Y23 zesttaw markerów pochodnych od PowerPlex 23
- Y27 zestaw makerów pochodnych od Yfiler Plus
- Ymax maerkerów reprezentujący wszystkie dostępne markery YHRD

TASK 21

Zaobserwowane allele dla markera DYS19 to:

- 6,
- 9,
- 10
- 11,
- 12,
- 13,
- 13.2,
- 13.3,
- 14,
- 14.1,
- 14.2,
- 14.3,
- 15,
- 15.2,
- 16,
- 16.2,
- 17,
- 18,
- 19,
- 19.1,
- 20

Baza YHRD zawiera 106 025 haplotypów

TASK 23

Count	DYS391	DYS389I	DYS439	DYS389II	DYS438	DYS437	DYS19	DYS392	DYS393	DYS390	DYS385
295	10	13	10	30	11	14	17	11	13	25	10,14
261	10	13	11	29	11	14	16	11	13	25	11,14
138	10	13	10	30	11	14	16	11	13	25	11,14
116	11	13	10	30	11	14	16	11	13	25	11,14
88	11	13	10	30	11	14	15	11	13	25	11,14
82	11	13	13	31	10	15	16	11	13	24	14,15
78	10	13	11	30	11	14	16	11	13	25	11,14
75	10	13	10	30	11	14	16	11	13	25	10,14
73	10	13	11	29	11	14	15	11	13	25	11,14
70	10	13	10	30	11	14	15	11	13	25	11,14

Poprawiona tabela z walidatora, za pomocą opcji Search

TASK 24

Użyto zestawu PowerPlex Y, który jest opisany w podanym linku.

TASK 25

Probability of Relationship (%)

Generations to MRCA	30 of 30Matches	29 of 30 Matches	28 of 30 Matches	27 of 30 Matches	26 of 30 Matches	25 of 30 Matches
1	22.7	2.7	0.2			
2	40.3	9.2	1.4	0.2		
3	53.9	17.7	4	0.7	0.1	

4	64.4	27	8	1.8	0.3	
5	72.5	36.2	13.1	3.6	0.8	0.1
6	78.7	44.9	19	6.2	1.6	0.3
7	83.6	53	25.5	9.5	2.9	0.7
8	87.3	60.2	32.2	13.6	4.6	1.3
9	90.2	66.5	38.9	18.1	6.9	2.1
10	92.4	72	45.4	23.1	9.6	3.3
11	94.1	76.7	51.7	28.4	12.9	4.9
12	95.5	80.7	57.5	33.9	16.6	6.8
13	96.5	84.1	62.8	39.4	20.6	9.1
14	97.3	86.9	67.7	44.8	24.9	11.7
15	97.9	89.3	72.1	50	29.4	14.7
16	98.4	91.3	76	55	34.1	18
17	98.8	92.9	79.5	59.7	38.8	21.6
18	99	94.2	82.5	64.1	43.4	<u> 25.4</u>
19	99.3	95.3	85.1	68.2	48	29.4
20	99.4	96.2	87.4	72	52.5	33.4
21	99.6	96.9	89.4	75.4	56.7	37.5
22	99.7	97.5	91	78.5	60.8	41.7
23	99.7	98	92.5	81.2	64.6	45.7
24	99.8	98.4	93.7	83.7	68.2	49.8
25	99.8	98.7	94.7	85.9	71.6	53.7

26	99.9	99	95.6	87.8	74.6	57.4
27	99.9	99.2	96.4	89.5	77.5	61.1
28	99.9	99.3	97	91	80	64.5
29	99.9	99.5	97.5	92.3	82.4	67.7
30	99.9+	99.6	97.9	93.4	84.5	70.8

Prawdopodobieństwo posiadania wspólnego przodka przez dwóch osobników różniących się 5 markerami SRT w obrębie chromosomu Y spośród 30 markerów badanych w 18 pokoleniu licząc od aktualnego to: 25.4.

TASK 26

```
def compare_dna_sequences(seq1, seq2):
    if len(seq1) != len(seq2):
        print("Sekwencje sa różnej długości")
        return

result = []
    for i in range(len(seq1)):
        if seq1[i] != seq2[i]:
            result.append((i+1, seq1[i], seq2[i]))
    return result

seq1 = input("Podaj 1 sekwencje DNA: ")
    seq2 = input("Podaj 2 sekwencje DNA: ")
    print(compare_dna_sequences(seq1, seq2))
```

TASK 27

```
def hairpin(sequence):
    max_pairs = 0
    for i in range(1, len(sequence) // 2 + 1):
        pairs = 0
        for j in range(i):
            if sequence[j] == complement(sequence[-i+j]):
```

```
pairs += 1
    max_pairs = max(max_pairs, pairs)
    return max_pairs

def complement(nucleotide):
    if nucleotide == 'A':
        return 'T'
    elif nucleotide == 'T':
        return 'A'
    elif nucleotide == 'C':
        return 'G'
    elif nucleotide == 'G':
        return 'C'

seq = input("Podaj sekwencje DNA: ")
print(hairpin(seq))
```