Marija Kostić

Matematikčki fakultet, V smer

- Centar opisanog kruga
- Centar upisanog kruga
- Težište
- Ortocentar

- Centar opisanog kruga
- Centar upisanog kruga
- 3 Težište
- 4 Ortocentar

Definicija

Simetrala stranice trougla je prava koja je normalna na stranicu trougla i sadrži središte te stranice.

Definicija

Simetrala stranice trougla je prava koja je normalna na stranicu trougla i sadrži središte te stranice.

Teorema (O centru opisanog kruga)

Simetrale stranica trougla ABC seku se u jednoj tački O.

Definicija

Simetrala stranice trougla je prava koja je normalna na stranicu trougla i sadrži središte te stranice.

Teorema (O centru opisanog kruga)

Simetrale stranica trougla ABC seku se u jednoj tački O.

Definicija

Tačka *O* iz prethodne teoreme naziva se **centar opisanog kruga** trougla *ABC*.

Definicija

Simetrala stranice trougla je prava koja je normalna na stranicu trougla i sadrži središte te stranice.

Teorema (O centru opisanog kruga)

Simetrale stranica trougla ABC seku se u jednoj tački O.

Definicija

Tačka O iz prethodne teoreme naziva se **centar opisanog kruga** trougla ABC.Krug k = k(O, r), gde je r = OA = OB = OC, naziva se **opisani krug** trougla ABC.

- Centar opisanog kruga
- Centar upisanog kruga
- 3 Težište
- Ortocentar

Definicija

Simetrala (bisektrisa) unutrašnjeg ugla trougla je prava koja polovi taj ugao.

Definicija

Simetrala (bisektrisa) unutrašnjeg ugla trougla je prava koja polovi taj ugao.

Teorema (O centru upisanog kruga)

Simetrale uglova trougla ABC seku se u jednoj tački S.

Definicija

Simetrala (bisektrisa) unutrašnjeg ugla trougla je prava koja polovi taj ugao.

Teorema (O centru upisanog kruga)

Simetrale uglova trougla ABC seku se u jednoj tački S.

Definicija

Tačka S iz prethodne teoreme jednako je udaljena od stranica trougla ABC, pa je **centar upisanog kruga** u trougao ABC.

- Centar opisanog kruga
- Centar upisanog kruga
- Težište

Definicija

Težišna duž (medijana) je duž koja spaja jedno teme trougla sa središtem naspramne stranice.

Definicija

Težišna duž (medijana) je duž koja spaja jedno teme trougla sa središtem naspramne stranice. Svaki trougao ima tri težišne duži.

Definicija

Težišna duž (medijana) je duž koja spaja jedno teme trougla sa središtem naspramne stranice. Svaki trougao ima tri težišne duži.

Težišne duži trougla seku se u jednoj tački T koja ih delu u odnosu 2 : 1.

Težišne duži trougla seku se u jednoj tački T koja ih delu u odnosu 2 : 1.

Dokaz.

• Neka se BB_1 , CC_1 seku u T;

Težišne duži trougla seku se u jednoj tački T koja ih delu u odnosu 2 : 1.

- Neka se BB_1 , CC_1 seku u T;
- Neka su C₂ i B₂ središta CT i BT;

Težišne duži trougla seku se u jednoj tački T koja ih delu u odnosu 2 : 1.

- Neka se BB_1 , CC_1 seku u T;
- Neka su C₂ i B₂ središta CT i BT;
- Tada je $C_1B_2C_2B_1$ paralelogram. Zato je T središte B_1B_2 i C_1C_2 ;

Težišne duži trougla seku se u jednoj tački T koja ih delu u odnosu 2 : 1.

- Neka se BB_1 , CC_1 seku u T;
- Neka su C₂ i B₂ središta CT i BT;
- Tada je $C_1B_2C_2B_1$ paralelogram. Zato je T središte B_1B_2 i C_1C_2 ;
- Dakle T deli BB₁ i CC₁ u odnosu 2 : 1;

Težišne duži trougla seku se u jednoj tački T koja ih delu u odnosu 2 : 1.

- Neka se BB₁, CC₁ seku u T;
- Neka su C₂ i B₂ središta CT i BT;
- Tada je $C_1B_2C_2B_1$ paralelogram. Zato je T središte B_1B_2 i C_1C_2 ;
- Dakle T deli BB₁ i CC₁ u odnosu 2 : 1;
- Slično T deli i AA₁ u odnosu 2 : 1, pa tvrdjenje važi.

Definicija

Tačka T iz prethodne teoreme naziva se težište trougla.

- Centar opisanog kruga
- Centar upisanog kruga
- 3 Težište
- Ortocentar

Definicija

Duž koja spaja teme trougla sa tačkom preseka dveju normalnih pravih od kojih jedna prolazi kroz teme, a druga sadrži naspramnu stranicu trougla naziva se **visina trougla**.

Definicija

Duž koja spaja teme trougla sa tačkom preseka dveju normalnih pravih od kojih jedna prolazi kroz teme, a druga sadrži naspramnu stranicu trougla naziva se visina trougla. Posmatrana tačka preseka normalnih pravih naziva se podnožje visine.

Definicija

Duž koja spaja teme trougla sa tačkom preseka dveju normalnih pravih od kojih jedna prolazi kroz teme, a druga sadrži naspramnu stranicu trougla naziva se visina trougla. Posmatrana tačka preseka normalnih pravih naziva se podnožje visine. Svaki trougao ima tri visine.

Definicija

Duž koja spaja teme trougla sa tačkom preseka dveju normalnih pravih od kojih jedna prolazi kroz teme, a druga sadrži naspramnu stranicu trougla naziva se visina trougla. Posmatrana tačka preseka normalnih pravih naziva se podnožje visine. Svaki trougao ima tri visine.

Prave određene visinama trougla ABC seku se u jednoj tački H.

Matematikčki fakultet, V smer

Prave određene visinama trougla ABC seku se u jednoj tački H.

Prave određene visinama trougla ABC seku se u jednoj tački H.

Dokaz.

Neka su PQ, QR i RP paralelne redom stranicama AB, BC i AC;

Prave određene visinama trougla ABC seku se u jednoj tački H.

- Neka su PQ, QR i RP paralelne redom stranicama AB, BC i AC;
- Prema stavu USU, $\triangle ABC \cong \triangle PCB \cong \triangle CQA \cong \triangle BAR$ pa je PC = CQ, QA = AR, RB = BF;

Prave određene visinama trougla ABC seku se u jednoj tački H.

- Neka su PQ, QR i RP paralelne redom stranicama AB, BC i AC;
- Prema stavu USU, $\triangle ABC \cong \triangle PCB \cong \triangle CQA \cong \triangle BAR$ pa je PC = CQ, QA = AR, RB = BF;
- Još je $h_a \perp QR, h_b \perp PR, h_c \perp PQ$ pa su prave određene visinama $\triangle ABC$ istovremeno simetrale stranica $\triangle PQR$;

Prave određene visinama trougla ABC seku se u jednoj tački H.

Dokaz.

• Dakle po teoremi o centru opisanog kruga oko trougla h_a , h_b i h_c se seku u jednoj tački H;

Prave određene visinama trougla ABC seku se u jednoj tački H.

- Dakle po teoremi o centru opisanog kruga oko trougla h_a , h_b i h_c se seku u jednoj tački H;
- Tačka H je istovremeno ortocentar $\triangle ABC$ i centar opisanog kruga oko $\triangle PQR$.

Definicija

Tačka H iz prethodne teoreme naziva se **ortocentar trougla**.

