Convexity

Definition (Convexity)

A function f(x) is said to be *convex* over an interval (a, b) if $\forall x_1, x_2 \in (a, b)$ and $0 \le \lambda \le 1$,

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$$

A function f is called *strictly convex* if equality holds only if $\lambda=0$ or $\lambda=1$.

Definition (Concavity)

A function f is *concave* if -f is convex.

A function is convex if it always lies below any chord. A function is concave if it always lies above any chord.

Example

Example

$$f(x) = x^2, |x|, e^x, x \log x (x > 0)$$

$$g(x) = \log x, \sqrt{x}, (x \ge 0)$$

Jensen's Inequality

Theorem 2.6.2 (Jensen's Inequality)

If f is a convex function and X is a random variable,

$$E[f(X)] \geq f(E[X]).$$

Moreover, if f is strictly convex, E[f(X)] = f(E[X]) implies that X = E[X] with probability 1 (i.e., X is a constant).

Proof.

By mathematical induction.

- k = 2:
 - $p(x_1)f(x_1) + p(x_2)f(x_2) \ge f(p(x_1)x_1 + p(x_2)x_2).$
- Hypothesis: $\sum_{i=1}^{k-1} p(x_i) f(x_i) \ge f(\sum_{i=1}^{k-1} p(x_i) x_i)$.
- Induction: $\sum_{i=1}^{k} p(x_i) f(x_i)$.

fxx是13函数 gxx是12函数

二阶等 20 即的母函数

$$X: \chi_1, \dots, \chi_n$$
 $E[f(x)] = \sum_{i=1}^n p(x_i) f(x_i)$ $f(E(x_i)) = f(\sum_{i=1}^n p(x_i) \chi_i)$ 巷 f G \mathcal{M} $E[f(x_i)] \geq f(E(x_i))$

$$\sum_{i=1}^{k} p(x_i)f(x_i) = \sum_{i=1}^{k-1} p(x_i)f(x_i) + p(x_k)f(x_k)$$

$$\geq \alpha f(\sum_{i=1}^{k} \frac{P(x_i)}{\alpha} \times i) + (1-\alpha) f(x_k)$$

南于方路数, 州=
$$f(a, \frac{1}{2} \frac{\rho(x_i)}{a} \chi_i + (1-\alpha)f(x_i)$$

= f(\$ p(xi) xi)

综上, Jensen's Inequality 成立

Theorem 2.6.3 (Information Inequality)

Let p(x), q(x), $x \in X$, be two probability mass functions. Then

$$D(p||q) \geq 0$$

with equality iff p(x) = q(x) for all x.

Proof

Let $A = \{x : p(x) > 0\}$ be the support set of p(x). Then

Corollaries

Corollary (Nonnegativity of mutual information)

For any two random variables, X, Y,

$$I(X;Y) \geq 0$$

with equality iff X and Y are independent.

Corollary

$$D(p(y|x)||q(y|x)) \geq 0,$$

with equality iff p(y|x) = q(y|x) for all y and x such that p(x) > 0.

Corollary

$$I(X; Y|Z) \geq 0$$

with equality iff X and Y are conditionally independent given Z.

The maximum entropy distribution

Theorem 2.6.4

 $H(X) \leq log|\mathcal{X}|$, where $|\mathcal{X}|$ denotes the number of elements in the range of X, with equality iff X has a uniform distribution over $|\mathcal{X}|$.

Proof.

Let $u(x) = \frac{1}{|\mathcal{X}|}$ be the uniform probability mass function over \mathcal{X} , and let p(x) be the probability mass function for X. Then

$$0 \le D(p||u) = \sum p(x) \log \frac{p(x)}{u(x)} = \log |\mathcal{X}| - H(X).$$

log是concave的

 $I(X,Y) = D(p(x,y)||p(x)p(y)) \geq 0$

在支撑集上是同分布的

均分布的熵最大,为10g121

 $D(p||u) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{u(x)}$

 $= \sum_{x \in \mathcal{X}} p(x) \log \frac{1}{u(x)} + \sum_{x \in \mathcal{X}} p(x) \log p(x)$

 $= \log |x| \sum_{x \in X} p(x) - H(x)$

= log 1x1-H(x) >0 => H(x) < log 1x1

对离散随机变量,均匀分布随机性最大对连续随机变量,正态分布随机性最大

Corollaries In particular, if Z = g(Y), we have $I(X; Y) \ge I(X; g(Y))$. Corollary If $X \to Y \to Z$, then $I(X; Y|Z) \le I(X; Y)$. Feno's inequality 发射,接收,猜测:X->Y->X=f(Y) Problem 2.5 (Zero conditional entropy) Show that if H(X|Y) = 0, then X is a function of Y, i.e., for all y 对任意的少,没有唯一一个水和与这个以同时出现 with p(y) > 0, there is only one possible value of x with p(x, y) > 0.Proof. Assume that there exists an y, say y_0 and two different values of x, say x_1 and x_2 such that $p(y_0, x_1) > 0$ and $p(y_0, x_2) > 0$. Then $p(y_0) \ge p(y_0, x_1) + p(y_0, x_2) > 0$, and $p(x_1|y_0)$ and $p(x_2|y_0)$ are not equal to 0 or 1. Thus, $H(X|Y) = -\sum_{y} p(y) \sum_{x} p(x|y) \log p(x|y) = \sum_{y} \sum_{x} p(x,y) \log \frac{1}{p(x|y)}$ $\geq p(y_0)(-p(x_1|y_0)\log p(x_1|y_0)-p(x_2|y_0)\log p(x_2|y_0))$ since $-t \log t \ge 0$ for $0 \le t \le 1$, and is strictly positive for $t \ne 0, 1$, which is a contradiction to H(X|Y) = 0. • The conditional entropy of a random variable X given another 当出(以下)=0时,可以从几个中传计X、 random variable Y is zero (H(X|Y) = 0) iff X is a function of Y. Hence we can estimate X from Y with zero probability of error iff H(X|Y) = 0. 当H(XIY)较小时,可以以错误率Pe MY中估计X. • We can estimate X with a low probability of error P_e only if the conditional entropy H(X|Y) is small. Fano's inequality quantifies this idea. Why do we need to related P_e to entropy H(X|Y)? When we have a communication system, we send X, but receive a corrupted version Y. We want to infer X from Y. Our estimate is \hat{X} and we will make a mistake as $P_e = \Pr[\hat{X} \neq X]$ Markov chain $X \to Y \to \hat{X}$. Problem A random variable Y is related to another random variable X with a distribution p(x). From Y, we calculate a function $g(Y) = \hat{X}$, where \hat{X} is an estimate of X and takes on values in \hat{X} . We observe that $X \to Y \to \hat{X}$ forms a Markov chain. How to bound the estimate error probability $P_e = \Pr[\hat{X} \neq X]$?

Theorem 2.11.1										
For Markov chain $X o Y o \hat{X}$, with $P_{e}=Pr\{X eq \hat{X}\}$, we have										
$H\left(P_{e} ight) + P_{e}\log(\mathcal{X} -1) \geq H(X \hat{X}) \geq H(X Y).$										
This inequality can be weakened to										
$1 + P_e \log(\mathcal{X} - 1) \ge H(X Y)$										
or $H(X Y) = 1$										
$P_e \geq rac{H(X Y)-1}{\log \mathcal{X} -1}.$										
Remark: \hat{X} can be treated as an estimation of X based on Y .										
Proof.										
Define an error random variable as $E = \left\{ \begin{array}{ll} 1 & \text{if } \hat{X} \neq X, \\ 0 & \text{if } \hat{X} = X. \end{array} \right.$										
Using the chain rule for entropies to expand $H(E, X \hat{X})$ in two different ways, we have $H(E, X \hat{X}) = H(X \hat{X}) + H(E X, \hat{X}) = H(E \hat{X}) + H(X E, \hat{X}) .$										
$H(E, X \hat{X}) = H(X \hat{X}) + \underbrace{H(E X, \hat{X})}_{\leq H(P_e)} = \underbrace{H(E \hat{X})}_{\leq P_e \log(X - 1)}.$										
Since conditioning reduces entropy, $H(E \hat{X}) \leq H(E) = H(P_e)$. Since E is a function of X and \hat{X} , the conditional entropy $H(E X,\hat{X})$ is equal to 0. We now look at $H(X E,\hat{X})$. By the equation $H(X Y) = \sum_{\nu} p(\nu)H(X Y = \nu)$, we have										
$H(X E,\hat{X}) = \sum_{\hat{x} \in \mathcal{X}} \{ \Pr[\hat{X} = \hat{x}, E = 0] H(X \hat{X} = \hat{x}, E = 0) \}$										
$\stackrel{ imes \in \mathcal{X}}{+} \Pr[\hat{X} = \hat{x}, E = 1] H(X \hat{X} = \hat{x}, E = 1) \}$.										
Proof.										
$H(E,X \hat{X}) = H(X \hat{X}) + \underbrace{H(E X,\hat{X})}_{=0} = \underbrace{H(E \hat{X}) + \underbrace{H(X E,\hat{X})}_{\leq P_e \log(X -1)}}_{\leq P_e \log(X -1)}.$										
$H(X E,\hat{X}) = \sum_{\hat{x} \in \mathcal{X}} \{ \Pr[\hat{X} = \hat{x}, E = 0] H(X \hat{X} = \hat{x}, E = 0) $										
$+\Pr[\hat{X}=\hat{x},E=1]H(X \hat{X}=\hat{x},E=1)\}.$ By definition of E,X is conditionally deterministic given $\hat{X}=\hat{x}$ and $E=0$, then $H(X \hat{X}=\hat{x};E=0)=0$. If										
$\hat{X} = \hat{x}$ and $E = 1$, then X must take a value in the set $\{x \in \mathcal{X} : x \neq\hat{x}\}$ which contains $ \mathcal{X} - 1$ elements. Then $H(X \hat{X} = \hat{x}, E = 1) \leq \log(\mathcal{X} - 1)$.										
$H(X E,\hat{X}) \leq \sum_{\hat{X} \in \mathcal{X}} \Pr[\hat{X} = \hat{X}, E = 1] \log(\mathcal{X} - 1)$										
$= \Pr[E = 1] \log(\mathcal{X} - 1)$ $= P_e \log(\mathcal{X} - 1)$										
Proof.										
$H(E,X \hat{X}) = H(X \hat{X}) + \underbrace{H(E X,\hat{X})}_{=0} = \underbrace{H(E \hat{X})}_{\leq H(P_e)} + \underbrace{H(X E,\hat{X})}_{\leq P_e \log(X -1)}.$										
$H(X E, \hat{X}) = \sum_{\hat{x} \in \mathcal{X}} \{ \Pr[\hat{X} = \hat{x}, E = 0] H(X \hat{X} = \hat{x}, E = 0) \}$										
$+ \Pr[\hat{X} = \hat{x}, E = 1]H(X \hat{X} = \hat{x}, E = 1)\}.$										
$H(X E,\hat{X}) \leq \sum_{\hat{x} \in \mathcal{X}} \Pr[\hat{X} = \hat{x}, E = 1] \log(\mathcal{X} - 1)$										
$= \Pr[E = 1] \log(\mathcal{X} - 1)$ $= P_e \log(\mathcal{X} - 1)$										
By the data-processing inequality, we have $I(X;\hat{X}) \leq I(X;Y)$ and therefore $H(X \hat{X}) \geq H(X Y)$.										
Corollary										
Corollary										
For any two random variables X and Y , let $p = Pr(X \neq Y)$.										
$H(p) + p\log(\mathcal{X} - 1) \ge H(X Y).$										
Proof.										
Let $\hat{X} = Y$ in Fano's inequality.										
	-									

Application of Fano's inequality • Prove converse in many theorems (including channel capacity) Compressed sensing signal model y = Ax + wwhere $A \in \mathcal{R}^{M \times d}$: projection matrix for dimension reduction. Signal x is sparse. Want to estimate x from y. Fano's inequality Lemma 2.10.1 If X and X' are i.i.d. with entropy H(X), $\Pr[X = X'] \ge 2^{-H(X)},$ with equality iff X has a uniform distribution. Corollary Let X, X' be independent with $X \sim p(x)$, $X' \sim r(x)$, $x, x' \in X$. Then $\Pr\left[X = X'\right] \ge 2^{-H(p) - D(p||r)}$ $\Pr\left[X = X'\right] \ge 2^{-H(r) - D(r \parallel p)}$