Class: MATH 2410

Mathematical Statement

Statement is any declarative sentence which is either true

Atomic if it cannot be divided into smaller statements.

Molecularif it can be divided into smaller statements.

conjunction $p \wedge q$ equivalent to "p and q". $p \vee q$ equivalent to "p or q". disjunction

where p is the hypothesis and q the conclusion.

 $p \to q$ equivalent to "if p then q". Implication

 $p \leftrightarrow q$ equivalent to "if and only if p then q". Biconditional

Negation $\neg p$ equivalent to "not p".

Converse Contrapositive

There is a x $\exists x$ For all x $\forall x$

Naive Set Theory

Set Notation

Universal set

Partition of A

Empty set

Power set

Functions

then |A| = |B|.

Functions A rule that assigns each input exactly one

then there is a one-to-one correspondence between A and B. In other words If A and B are set with $|A| \neq |B|$ and $|B| \neq |A|$,

Domain The set of all input of a function. $(X \text{ in } f: X \to Y)$ The set of all output a function.(Y in $f: X \to Y$) Codomain

Range Is the subset of Y of elements that have an

antecedent in X by f

 $f: x \to y$ a function f with a domain x and a codomain y.

Recursive f.

Injective every element of the codomain is the image of

 $f(a) = f(b) \Rightarrow a = b$

at most one element from the domain.

Surjective every element of the codomain is the image of

at least one element from the domain.

Bijection A function that is **Injective** and **Surjective**. Image $f(A) = \{f(a) \in Y : a \in A\}, \text{ where } A \subset \text{domain.}$

 $f^{-1}(B) = \{f(b) \in X : b \in B\}, \text{ where }$ Inverse Image

 $\mathcal{P}(A)$ is the set of all the subsets of A. P(A) is the set of all the subsets of A.

A collection of nonempty, pairwise-disjoint subsets whose union is A.

Element of \in . Example: $2 \in \{1, 2, 3\}$

ΠJ

Subset of \subseteq . Example: $\{A, B, C\} \subseteq \{B, C, D\}$

 $A \subseteq B \Leftrightarrow \forall x$

Proper subset of \subset . Example: $\{A, B, C\} \subset \{A, B, C, D\}$

Intersection $\bigcap_{i \in I} A_i = \{ x \in \mathbb{U} | \forall i \in I, x \in A_i \}$

 $A \cap B = \{x \in \mathbb{U} | x \in A \land x \in B\}$ $\bigcup_{i \in I} A_i = \{ x \in \mathbb{U} | \exists i \in I, x \in A_i \}$

 $\emptyset = \{\}, \text{ Remember: } \forall A(\emptyset \subset A)$

Union $A \cup B = \{x \in \mathbb{U} | x \in A \lor x \in B\}$

 $A \backslash B = \{ x \in A | x \notin B \}$ Difference Symmetric difference $A\Delta B = (A\backslash B) \cup (B\backslash A)$

Cartesian Product $A \times B = \{(x, y) | x \in A \land y \in B\}$

Complement of $\bar{A} = \{x \in \mathbb{U} | x \notin A\}$

Cardinality |A|

Counting

Additive Principle

General Definition: if event A can occur in m ways, and even B can occur in n disjoint (A and B can't apen at the same time.) ways, then A and B can occur in m+n ways.

Set Definition: Given 2 sets A and B, if $A \cap B = \emptyset$, then

 $|A \cap B| = |A| + |B|.$

Multiplicative Principle

General Definition: if event A can occur m ways, and each possibility for A allows for exactly n ways for event B, then the event "A and B" can occur $m \cdot n$ ways.

Set Definition: Given 2 sets A and B, we have $|A \times B| = |A| \cdot |B|$.

Cardinality

Let X be a finite set then $|X| \in \mathbb{N}$ finite set

countable set A set S is countable if and only if that is finit

or $|S| = |\mathbb{N}|$.

aleph null. $\aleph_0 = |\mathbb{N}|$

Theorem 1 Let A and B be sets, then |A| = |B| if and only if there is a one-to-one correspondence from A to B.

Theorem 2 If A and B are countable, then $A \cup B$ is countable.

Theorem 3 (Cantor's Theorem) For every set A, |A| < $|\mathcal{P}(A)|$.

Theorem 4 (Schröder-Bernstein) If there are injective function(one-to-one) functions $f: A \rightarrow B$ and $g: B \rightarrow A$,

Sequences

Symbolic Logic

deMorganLaws

- $\neg \forall x P(x)$ $\exists x p(x) \quad \bullet \quad \neg \exists x P(x)$
- $\bullet \neg (a_1 \land a_2 \land \cdots \land a_n) \equiv \neg a_1 \lor \neg a_2 \lor \cdots \lor \neg a_n$
- $\neg (a_1 \lor a_2 \lor \cdots \lor a_n) \equiv \neg a_1 \land \neg a_2 \land \cdots \land \neg a_n$

Proofs

Graph Theory