RNN 이론 및 실습

주재걸 교수님 연구실 DAVIAN Lab.

강경필

Feed Forward Neural Networks

FFN은 각 피쳐들의 조합을 통해 추론함.

하지만 FFN은 **시간적/순서적** 정보를 고려할 수 없음!

"나는 학교에 <u>간다</u>"

"나" -> "는" -> "학교" -> "에" -> <u>"간다"</u>

"나는 학교에 <u>간다</u>"

"나" -> "는" -> "학교" -> "에" -> <u>"간다"</u>

State 1 - "나": 대상

"나는 학교에 <u>간다</u>"

State 1 - "나": 대상

State 2 - "나는": 대상의 상태

"나는 학교에 <u>간다</u>"

"나" -> "는" -> "학교" -> "에" -> <u>"간다"</u>

State 1 - "나": 대상

State 2 - "나는": 대상의 상태

State 3 - "나는 학교": 대상의 상태와 객체

"나는 학교에 <u>간다</u>"

State 1 - "나": 대상

State 2 - "나는": 대상의 상태

State 3 - "나는 학교": 대상의 상태와 객체

State 4 – "나는 학교에": 대상이 객체를 향해

"나는 학교에 간다"

State 1 - "나": 대상

State 2 - "나는": 대상의 상태

State 3 - "나는 학교": 대상의 상태와 객체

State 4 - "나는 학교에": 대상이 객체를 향해

1. 각 인풋이 들어올 때마다 그 때의 상태(벡터)를 계산

- 1. 각 인풋이 들어올 때마다 그 때의 상태(벡터)를 계산
- 2. 예측할 순간의 상태를 이용하여 예측


```
*** _RNN) . w w , 0
- w 0 가 .( ).
- ) 가 ( cnn)
- )_ ) 가 ( + w=1
```

: LSTM._

Recurrent Neural Networks (RNN)

가

state가

V 1000

•14

one to one one to many many to one many to many many to many

RNN가:가

CNN

one-to-one: FFN과 같음! one-to-many: Image Captioning, Generation 등

> 가 가

many-to-many: Machine translation, QA 등 many-to-many: Video recognition 등

RNNs - Backpropagation through Time (BPTT)

loss

x0~x4 가

가

- XZ > X | > XU.

Weakness of RNNs - Information loss


```
s_1 = \tanh(Ux_1 + Ws_0)
s_2 = \tanh(Ux_2 + Ws_1)
= \tanh(Ux_2 + W\tanh(Ux_1 + Ws_0))
s_2 = \tanh(Ux_2 + Wtanh(Ux_1 + Ws_0))
```

가

$$s_3 = \tanh(Ux_3 + Ws_2)$$

= $\tanh(Ux_3 + W \tanh(Ux_2 + Ws_1))$
= $\tanh(Ux_3 + W \tanh(Ux_2 + W\tanh(Ux_1 + Ws_0)))$

-- ~Q

Data and Visual Analytics Lab

RNN

: gpu

초기 상태 벡터는 거듭된 메트릭스 곱으로 0에 수렴함!

가

< > cnn

- RNN

Weakness of RNNs - Gradient Vanishing/Exploding

= >

Gated Recurrent Unit (GRU)

Update Gate

새로 계산된 정보와 이전 정보를 어느 정도로 조합할지

$$z_t = \sigma\left(W_z \cdot [h_{t-1}, x_t]\right)$$

$$r_t = \sigma\left(W_r \cdot [h_{t-1}, x_t]\right) \quad \blacksquare$$

$$\tilde{h}_t = \tanh\left(W \cdot [r_t * h_{t-1}, x_t]\right)$$

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

Forget Gate

이전 상태를 얼마나 잊을지

In PyTorch ...

CLASS torch.nn.GRU(*args, **kwargs)

Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.

For each element in the input sequence, each layer computes the following function:

$$egin{aligned} r_t &= \sigma(W_{ir}x_t + b_{ir} + W_{hr}h_{(t-1)} + b_{hr}) \ z_t &= \sigma(W_{iz}x_t + b_{iz} + W_{hz}h_{(t-1)} + b_{hz}) \ n_t &= anh(W_{in}x_t + b_{in} + r_t * (W_{hn}h_{(t-1)} + b_{hn})) \ h_t &= (1-z_t) * n_t + z_t * h_{(t-1)} \end{aligned}$$

- input_size The number of expected features in the input x
- **hidden_size** The number of features in the hidden state h
- num_layers Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two GRUs together to form a stacked GRU, with the second GRU taking in outputs of the first GRU and computing the final results. Default: 1
- bias If False, then the layer does not use bias weights b_ih and b_hh. Default: True
- batch_first If True, then the input and output tensors are provided as (batch, seq, feature). Default: False
- dropout If non-zero, introduces a *Dropout* layer on the outputs of each GRU layer except the last layer, with dropout probability equal to dropout. Default: 0
- **bidirectional** If True, becomes a bidirectional GRU. Default: False Inputs: input, h_0
- input of shape (seq_len, batch, input_size): tensor containing the features of the input sequence. The input can also be a packed variable length sequence. See
 torch.nn.utils.rnn.pack_padded_sequence() for details.
- h_0 of shape (num_layers*num_directions, batch, hidden_size): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. If the RNN is bidirectional, num_directions should be 2, else it should be 1.

In PyTorch ...

CLASS torch.nn.LSTM(*args, **kwargs)

Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.

For each element in the input sequence, each layer computes the following function:

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$

Inputs: input, (h_0, c_0)

• **input** of shape (*seq_len*, *batch*, *input_size*): tensor containing the features of the input sequence. The input can also be a packed variable length sequence. See

torch.nn.utils.rnn.pack_padded_sequence() or
torch.nn.utils.rnn.pack_sequence() for details.

- **h_0** of shape (num_layers *num_directions, batch, hidden_size): tensor containing the initial hidden state for each element in the batch. If the LSTM is bidirectional, num_directions should be 2, else it should be 1.
- **c_0** of shape (num_layers * num_directions, batch, hidden_size): tensor containing the initial cell state for each element in the batch.

If (h_0, c_0) is not provided, both h_0 and c_0 default to zero.

In PyTorch ...

CLASS torch.nn.GRU(*args, **kwargs)

Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.

For each element in the input sequence, each layer computes the following function:

$$egin{aligned} r_t &= \sigma(W_{ir}x_t + b_{ir} + W_{hr}h_{(t-1)} + b_{hr}) \ z_t &= \sigma(W_{iz}x_t + b_{iz} + W_{hz}h_{(t-1)} + b_{hz}) \ n_t &= anh(W_{in}x_t + b_{in} + r_t * (W_{hn}h_{(t-1)} + b_{hn})) \ h_t &= (1 - z_t) * n_t + z_t * h_{(t-1)} \end{aligned}$$

Inputs: input, h_0

- **input** of shape (*seq_len*, *batch*, *input_size*): tensor containing the features of the input sequence. The input can also be a packed variable length sequence. See torch.nn.utils.rnn.pack_padded_sequence() for details.
- h_0 of shape (num_layers *num_directions, batch, hidden_size): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. If the RNN is bidirectional, num_directions should be 2, else it should be 1.

감사합니다

Any Questions?

rudvlf0413@korea.ac.kr