Image Captioning

Introduction to Cyber-Physical Systems

Period: Monsoon 2020

Group-03

V.Rishitha

G.Soumya

T.Bhavani

Motivation

- Scene understanding, one biggest challenge faced by CV
- An assistant to low visioned people.
- > Self Driving cars, CCTV cameras,
- Easy access to web content etc.

Workflow

- Data discovery
 - Identifying and loading the data
- Data preprocessing
 - Images reshaped, encoded
 - Captions adding tags(Start & end), padding sequences
- Building model
 - Resnet predicting labels in image, Feature Extraction
 - LSTM sequence prediction
- Model testing
- Model Deployment -Using ngrok

A little girl covered in paint sits in front of a painted rainbow with her hands in a bowl . A little girl is sitting in front of a large painted rainbow .

A small girl in the grass plays with fingerpaints in front of a white canvas with a rainbow on it .

There is a girl with pigtails sitting in front of a rainbow painting .

Young girl with pigtails painting outside in the grass .

Image Captioning

Ref: https://www.analyticsvidhya.com/blog/2018/04/solving-an-image-captioning-task-using-deep-learning/

```
#function to process images
from keras.preprocessing import image
 import numpy as np
def preprocess_input(x):
    x /= 255.
    X -= 0.5
    x *= 2.
    return x
def preprocessing(img path):
     im = image.load_img(img_path, target_size=(224,224,3))
     im = image.img to array(im)
     im = np.expand_dims(im, axis=0)
     im = preprocess input(im)
    return im
```


#returns first 5 rows
pd_dataset.head()

₽		image_id	captions		
	0	2513260012_03d33305cf.jpg	<start> A black dog is running after a white d</start>		
	1	2513260012_03d33305cf.jpg	<start> Black dog chasing brown dog through sn</start>		
	2	2513260012_03d33305cf.jpg	<start> Two dogs chase each other across the s</start>		
	3	2513260012_03d33305cf.jpg	<start> Two dogs play together in the snow . <</start>		
	4	2513260012_03d33305cf.jpg	<start> Two dogs running through a low lying b</start>		

```
# Creating a list of all unique words
unique = []
for i in words:
    unique.extend(i)
unique = list(set(unique))

print("Unique words in whole training captions data set: {}".format(len(unique)))

vocab_size = len(unique)
```

Unique words in whole training captions data set: 8253

Vectorization

Senior 874

passing

```
word_2_indices = {val:index for index, val in enumerate(unique)}
indices_2_word = {index:val for index, val in enumerate(unique)}

print(word_2_indices['traffic'])
print(indices_2_word[4011])
print(word_2_indices['<end>'])
print(indices_2_word[8252])

T> 3760
```

Model Description

For Images:

Model: "sequential"

Layer (type)	Output 9	Shape	Param #
dense (Dense)	(None,	 128)	262272
repeat_vector (RepeatVector)	(None,	40, 128)	0

Total params: 262,272 Trainable params: 262,272 Non-trainable params: 0

For Captions(Text): Model: "sequential_1"

Layer (type)	Output	Shap	pe	Param #
embedding (Embedding)	(None,	40,	128)	1056384
lstm (LSTM)	(None,	40,	256)	394240
time distributed (TimeDistri	(None,	40,	128)	32896

Total params: 1,483,520 Trainable params: 1,483,520 Non-trainable params: 0

Model Description(Contd..)

Final Model: model.fit([images, captions], next_words, batch_size=512, epochs=200)

Concatenation of the above 2 Sequential Models:

Output Shape [(None, 40)]		Param #	Connected to	
		0		
[(None,	2048)]	0		
(None, 40, 128)		1056384	embedding_input[0][0]	
(None,	128)	262272	dense_input[0][0]	
(None,	40, 256)	394240	embedding[0][0]	
(None,	40, 128)	0	dense[0][0]	
(None,	40, 128)	32896	lstm[0][0]	
(None,	40, 256)	0	repeat_vector[0][0] time_distributed[0][0]	
(None,	40, 128)	197120	concatenate[0][0]	
(None,	512)	1312768	lstm_1[0][0]	
(None, 8	8253)	4233789	lstm_2[0][0]	
(None, 8	8253)	0	dense_2[0][0]	
	[(None, (None, 4))] [(None, 4)]	[(None, 40)] [(None, 2048)]	[(None, 40)] 0 [(None, 2048)] 0 (None, 40, 128) 1056384 (None, 128) 262272 (None, 40, 256) 394240 (None, 40, 128) 0 (None, 40, 128) 32896 (None, 40, 256) 0 (None, 40, 256) 0 (None, 40, 256) 197120 (None, 512) 1312768 (None, 8253) 4233789	

Total params: 7,489,469 Trainable params: 7,489,469 Non-trainable params: 0

Results

For a training dataset of 6k Images, at

```
Epoch -1: Epoch 1/200
150/150 [============] - 125 78ms/step - loss: 5.4202 - accuracy: 0.1001
Epoch 2/200
150/150 [==========] - 125 78ms/step - loss: 5.0513 - accuracy: 0.1221

Epoch 199/200
150/150 [==========] - 125 77ms/step - loss: 0.2910 - accuracy: 0.9003
Epoch 200/200
150/150 [==========] - 125 77ms/step - loss: 0.2864 - accuracy: 0.9003
```

- Total Number of Unique words -8253.
- Maximum length of the caption found -40 for the following,

<start> An African-American man wearing a green sweatshirt and blue vest is holding up 2 dollar bills in front of his face , while standing on a busy sidewalk in front of a group of men playing instruments . <end>

```
def predict captions(image):
    start word = ["<start>"]
    while True:
        par_caps = [word_2_indices[i] for i in start_word]
        par_caps = sequence.pad_sequences([par_caps], maxlen=max_len, padding='post')
        preds = model.predict([np.array([image]), np.array(par caps)])
        word pred = indices 2 word[np.argmax(preds[0])]
        start word.append(word pred)
        if word pred == "<end>" or len(start word) > max len:
            break
    return ' '.join(start word[1:-1])
Argmax Search = predict captions(test img)
```

Predicted Captions

a young child wearing a blue jacket and dark suit .

A boy is hiking across a mountain .

Improvement:

A person taking a white shirt climbs a rail .

a group of people are standing in a line

Predicted Captions (Contd..)

People shopping at see see see around a farmers market .

A young girl in a red jacket is eating a large White with her face in the camera .

A racing car spins up along a track .

A black dog jumps over a lawn .

Challenges Anticipated

- RESNET 50 is used Reshaping of image may lead to loss of data.
- Limited size of data set & Vocabulary.
- Can't guarantee that it would caption properly for all kinds of images.
- Due to stochastic nature of model, caption generated may vary.

Challenges Faced

Loss of data due to reshaping the image

Resolution

Model Deployment

Related Code:

→ Model was deployed using flask with ngrok which will allow to host the model publicly when the server is running.

Thank you Any Questions?

Please feel free to contact us at

seshasaisoumya.g18@iiits.in rishitha.v18@iiits.in

bhavani.t18@iiits.in