

Projet Environnement UNIX II

 $ft_nm,\,ft_otool$

42 staff staff@42.fr

Résumé: Ce projet consiste à recoder la commande nm.

	1 1	I	1				• •		
Ta	h	$\mathbf{\Omega}$		AC-	m	a t	10	1	AC.
Lа	IJ		u	C5		au	JIC	フルリ	てつ

Ι	Préambule	2

II Sujet 3

Chapitre I

Préambule

Théorème 1 (Lagrange). Soit G un groupe fini et H un sous-groupe de G. Le cardinal de H divise le cardinal de G.

Démonstration. Soit \sim , la relation définie par : Pour tout $x,y \in G, x \sim y$ si et seulement si il existe a dans H tel que ax = y. Montrons que \sim est une relation d'équivalence.

Réflexivité 1x = x.

Symétrie Si ax = y alors $x = a^{-1}y$.

Transitivité Si ax = y et by = z alors (ba)x = z

Les classes d'équivalence suivant \sim forment une partition de G. Pour $x \in G$, cl(x) = Hx. Si on montre que toutes les classes ont le même cardinal, alors on montre que le cardinal de cl(1) = H divise le cardinal de G.

Soit $a,b \in G$. Explicitons une bijection de Ha dans Hb. Soit $f: Ha \longrightarrow Hb$ telle que pour tout x dans G, $f(x) = xa^{-1}b$. Soit $g: Hb \longrightarrow Ha$ telle que pour tout x dans G, $g(x) = xb^{-1}a$. Pour tout $x \in G$, $f(g(x)) = xb^{-1}aa^{-1}b = x$ et $g(f(x)) = xa^{-1}bb^{-1}a = x$. Ainsi $g = f^{-1}$.

2

Chapitre II

Sujet

Vous devez recoder la commande nm (sans option) et la commande otool (même résultat que otool -t)

```
$ man nm
$ man otool
```

- Ce projet ne sera corrigé que par des humains. Vous êtes donc libres d'organiser et nommer vos fichiers comme vous le désirez, en respectant néanmoins les contraintes listées ici.
- Vous pourrez en bonus, faire les options de nm et d'otool.
- Les executables devront se nommer ft_nm et ft_otool
- Vous devez rendre un Makefile.
- Si vous êtes malin et que vous utilisez votre biliothèque libft, vous devez en copier les sources et le Makefile associé dans un dossier nommé libft qui devra être à la racine de votre dépôt de rendu. Votre Makefile devra compiler la librairie, en appelant son Makefile, puis compiler votre projet.
- Votre projet doit être à la Norme.
- Vous devez gérer les erreurs de façon raisonnée. En aucun cas votre programme ne doit quitter de façon inattendue (Segmentation fault, etc...).
- Vous devez rendre, à la racine de votre dépôt de rendu, un fichier **auteur** contenant votre login suivi d'un '\n' :

```
$>cat -e auteur
xlogin$
$>
```

- Vous avez le droit d'utiliser les fonctions suivantes :
 - \circ open(2)
 - \circ close(2)
 - $\circ \operatorname{mmap}(2)$
 - \circ munmap(2)
 - o write(2)
 - \circ fstat(2)
 - \circ malloc(3)
 - \circ free(3)
- Vous pouvez poser vos questions sur le forum, sur jabber, IRC, ...