TRABALHO PRATICO II

GRUPO 39

Ana Luísa L. Tomé Carneiro A89533

Pedro Almeida Fernandes A89574

Ana Rita Abreu Peixoto A89612 Luís Miguel Lopes Pinto A89506

DESCRIÇÃO DO PROBLEMA

Uma empresa alimentar produz e vende vários tipos de alimentos como tomates e pimentos. A empresa vende os tomates a 2 euros/kg e os pimentos 3 euros/kg. O custo de produção de x kg de tomate e y kg de pimentos é dado pela expressão $x^2 + 3xy + y^2$. A receita obtida com a venda destes dois produtos é dada por 2x + 3y. A empresa gostaria de saber quantos tomates e pimentos deve produzir de forma a obter lucro máximo?

fonte: http://newb.kettering.edu/wp/experientialcalculus/wp-content/uploads/sites/15/2017/05/Module_II.pdf

Como forma a aumentar a complexidade do nosso problema, assumimos que a empresa para alem de tomates e pimentos também irá produzir pepinos (z), que serão vendidos a 4euros/kg. Com a adição deste produto o custo de produção vai ser alterada para $x^2 + 3x^2$ yz + $y^2 + z^2$ e a receita obtida com a venda será de 2x + 3y + 4z.

Formulação

Sabendo que o custo de produção é dado por $C(x,y,z)=x^2+3x^2yz+y^2+z^2$ e que a receita é dada pela expressão R(x,y,z)=2x+3y+4z, então o lucro obtido com estes produtos é $P(x,y,z)=R(x,y,z)-C(x,y,z)=2x+3y+4z-x^2-3x^2yz-y^2-z^2$. Assim de forma a resolver o problema basta maximizar a expressão P(x,y,z), ou seja:

$$\max_{(x,y,z) \in \mathbb{R}^3} P(x,y,z) = -\min_{(x,y,z) \in \mathbb{R}^3} -P(x,y,z)$$

OBJETIVO E CONDIÇÕES DE APLICABILIDADE

O objetivo deste projeto é determinar o lucro máximo para a empresa com a venda dos produtos através de rotinas de otimização do **software MatLab** – **fminunc** e **fminsearch**. Para adequar o problema às rotinas utilizadas foi necessário considerar a expressão simétrica da função de maximização original, uma vez que estas rotinas apenas minimizam expressões.

Relativamente às condições de aplicabilidade, a rotina fminunc apenas pode ser usada para funções diferenciáveis, enquanto que a fminsearch pode ser usada em qualquer contexto. Dado que a nossa função é diferenciável foi possivel utilizar ambas as rotinas como forma de resolver o problema.

IMPLEMENTAÇÃO DO PROBLEMA

Em contexto MatLab a nossa formulação traduziu-se na seguinte função:

```
function [f] = profit(x,a)

R = a(1)*x(1) + a(2)*x(2) + a(3)*x(3); % revenue

C = x(1)^2 + 3*(x(1)^2)*x(2)*x(3) + x(2)^2 + x(3)^2; % cost

P = R - C; % profit

f = -P; % Para prob de maximizacao
```

Na implementação da expressão, usou-se dois vetores: **x** (variáveis de decisão) e **a** (parâmetros do problema que podem ser alterados). As expressões **R**, **C** e **P**, representam a receita, custo de produção e lucro, respetivamente. Quanto ao retorno da função, **f**, esta representa o simétrico da expressão **P**.

MatLab	x(1)	x(2)	x(3)
Formulação	x – Kg de tomates	y – Kg de pimentos	z – Kg de pepinos
MatLab	a(1)	a(2)	a(3)
Formulação	€/kg tomates	€/kg pimentos	€/kg pepinos

TESTES COMPUTACIONAIS

Os testes computacionais realizados tiveram como intuito atingir a solução ótima do problema. Para isso, foram alterados o ponto inicial, os parâmetros da função e optimset.

As dificuldades sentidas residiram principalmente em encontrar pontos iniciais de modo a que a função convirja para um minimizante.

FMINUNC

Como forma de encontrar o mínimo utilizou-se a seguinte instrução no matlab, na qual o vetor $\mathbf{a} = [2\ 3\ 4]$ representa os preços iniciais de cada produto:

```
xmin =
    0.1030    1.4685    1.9766

fmin =
    -6.3515

exitflag =
    1
```

Assim, obteve-se o output à esquerda. O resultado obtido para o ponto [0 2 1] convergiu para o minimizante local [0.1030 1.4685 1.9766], pois o valor da exitflag obtido foi igual a 1. O mínimo obtido foi -6.3515.

Durante a fase de testes foram realizadas diversas tentativas com diferentes pontos iniciais, tais como: [1 2 1], [1 2 3] e [1 0 1]. Nos dois primeiros casos obtevese convergência para o minimizante já apresentado, contudo o número de iterações e chamadas à função foram diferentes. No último caso, não houve convergência para nenhum minimizante (exitflag = -3).

Além disso, testou-se a opção *HessUpdate* com o método DSP, verificando-se um aumento do número de iterações e acessos à função.

```
>> options = optimset('HessUpdate','dfp');

fx >> [xmin,fmin,exitflag,output] = fminunc('profit',[0 2 1],options,a)
```

No que toca á variação do vetor a, foram alterados os preços dos produtos dando origem ao vetor a = [1.7 2.5 3.2], obtendo-se os seguintes resultados para o ponto inicial [0 2 1]:

Variáveis - min	x(1)	x(2)	x(3)	F
Resultado	0.1266	1.2122	1.5708	-4.2279

FMINSEARCH

De modo a encontrar o mínimo da função, utilizou-se também a rotina fminsearch no matlab, na qual o vetor **a** = [2 3 4] representa os preços iniciais de cada produto:


```
xmin =
    0.1030    1.4686    1.9767

fmin =
    -6.3515

exitflag =
    1
```

Deste modo, obteve-se o output à esquerda. Tal como era previsto, os valores obtidos foram muito semelhantes aos valores obtidos com a rotina fminunc. Assim sendo, o minimizante local é o ponto [0.1030 1.4686 1.9767] e o valor do mínimo local da função é -6.3515. Dado que a exitFlag = 1, conclui-se que a função convergiu.

Foram realizados outros testes, considerando os mesmos pontos utilizados para a rotina fminunc. Os resultados obtidos para as 2 rotinas foram semelhantes: os dois primeiros pontos convergiram

para o minimizante presenta na figura ao lado; para o terceiro ponto, verificou-se que exitflag = 0. Contudo, mesmo modificando o optimset através do aumento do *MaxFunEvals* e do *MaxIter*, não foi possível atingir a convergência dado que o valor fmin tende para -inf.

Em relação à variação do vetor a, foi considerado o vetor a = [1.7 2.5 3.2] e o ponto inicial [0 2 1], obtendo-se o seguinte resultado:

Variáveis - min	x(1)	x(2)	x(3)	F
Resultado	0.1266	1.2122	1.5709	-4.2279

DISCUSSÃO DE RESULTADOS

Uma vez que foi necessário transformar o problema de maximização num problema de minimização é necessário ter especial atenção aos resultados obtidos. Assim, o valor fmin observado foi negativo e igual a -6.3515, o que corresponde ao valor 6.3515 no problema de maximização. O minimizante [0.1030 1.4686 1.9767] obtido pelo matlab corresponde então ao maximizante do problema de maximização pretendido.

Deste modo, o lucro máximo P(0.1030, 1.4686, 1.9767) = **6.3515€** pode ser obtido produzindo 0.1030kg de tomates, 1.4686kg de pimentos e 1.9767kg de pepinos, considerando os preços por kg de 2, 3 e 4€ respetivamente. Assim, recorrendo às expressões analíticas das funções de custo e da receita, obtém-se um custo de produção C(0.1030, 1.4686, 1.9767) = **6.16713** e a receita R(0.1030, 1.4686, 1.9767) = 12.5186.

Comparando as rotinas fminunc e fminsearch, a diferença mais significativa residiu no número de iterações (iterations) e número de acessos à função (funcCount), sendo que na rotina fminsearch esse valor é superior.

Nos testes realizados foram considerados diferentes valores para os parâmetros correspondentes ao preço/kg (vetor a). Os resultados obtidos, tal como era previsto, mostraram que com a diminuição do preço de venda diminui também o lucro total, uma vez que apenas a função da receita é influenciada pela diminuição do preço de venda.