

Linux Interface Specification Device Driver V4L2

User's Manual: Software

R-Car H3/M3/M3N/E3 Series

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
 - Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Trademark

- ${}^{\centerdot}$ Linux ${}^{\circledR}$ is the registered trademark of Linus Torvalds in the U.S. and other countries.
- · Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
- · Other company names and product names mentioned herein are registered trademarks or trademarks of their respective owners.
- · Registered trademark and trademark symbols (® and TM) are omitted in this document

How to Use This Manual

• [Readers]

This manual is intended for engineers who develop products which use the R-Car H3 / M3 / M3N / E3 processor.

• [Purpose]

This manual is intended to give users an understanding of the functions of the R-Car H3 / M3 / M3N / E3 processor device driver and to serve as a reference for developing hardware and software for systems that use this driver.

• [How to Read This Manual]

It is assumed that the readers of this manual have general knowledge in the fields of electrical

- engineering, logic circuits, microcontrollers, and Linux.
 - \rightarrow Read this manual in the order of the CONTENTS.
- To understand the functions of a multimedia processor for R-Car H3 / M3 / M3N / E3
 - \rightarrow See the R-Car H3 / M3 / M3N / E3 User's Manual.
- To know the electrical specifications of the multimedia processor for R-Car H3 / M3 / M3N / E3
 - \rightarrow See the R-Car H3 / M3 / M3N / E3 Data Sheet.

• [Conventions]

The following symbols are used in this manual.

Data significance: Higher digits on the left and lower digits on the right

Note: Footnote for item marked with Note in the text **Caution**: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Binary ... ××××, 0b××××, or ××××B

Decimal ... ××××

Hexadecimal ... $0x \times \times \times \times \text{ or } \times \times \times \times H$ Data type: Double word ... 64 bits

Word ... 32 bits Half word ... 16 bits

Byte ... 8 bits

Table of Contents

1. (Jverview	1
1.1	Overview	1
1.2	Reference	1
1	1.2.1 Standard	1
1	1.2.2 Related Document	1
1.3	Terminology	2
2. 0	Operating Environment	3
2.1	Hardware Environment	3
2.2	Software Configuration	3
3. F	Function	4
4. \	V4L2 API	5
4.1	List of V4L2 API	5
4.2	List of V4L2 Structure	6
4.3	Buffer Allocation	6
4	4.3.1 Memory Mapping	6
4	4.3.2 User Pointer	6
4	4.3.3 DMA Buffers	6
4.4	List of Format of Image Buffer	7
5. N	Media controller API	9
5.1	List of Media Controller Kernel Interface	9
5.2	List of Media Controller API	9
5	5.2.1 Media Controller API	9
5	5.2.2 Media Controller Structure	10
5.3	Media Controller Application	10
6. n	media/video/v4l-subdev	11
	ntegration	
7.1	Directory Configuration	16
8. S	Sample Source Code	18

1. Overview

1.1 Overview

R-Car H3 has video signal processing IP. The IP are VSP for Image (VSPI), VSP for Blend with Color Management (VSPBC), and VSP for Blend with DRC(VSPBD). R-Car M3/M3N/E3 has video signal processing IP. The IP are VSP for Image (VSPI), VSP for Blend (VSPB). These IP are controlled with V4L2 API and Media Controller API on VSP2 Driver. This manual explains how to use VSPI, VSPBC, VSPBD and VSPB with V4L2 API and Media Controller API on VSP2 Driver.

1.2 Reference

1.2.1 Standard

The following table shows the standard that VSP2 Driver corresponds.

Table 1-1 Standard

Title	location
Linux Media Infrastructure userspace API	https://linuxtv.org/downloads/v4l-dvb-apis

1.2.2 Related Document

The following table shows the document related to VSP2 Driver.

Table 1-2 Related Document (R-Car H3/M3/M3N/E3)

Number	Issue	Title
-	Renesas Electronics	R-Car Series, 3rd Generation User's Manual: Hardware
-	Renesas Electronics	R-CarH3-SiP System Evaluation Board Salvator-X Hardware Manual RTP0RC7795SIPB0011S
-	Renesas Electronics	R-CarM3-SiP System Evaluation Board Salvator-X Hardware Manual RTP0RC7796SIPB0011S
-	Renesas Electronics	R-CarH3-SiP/M3-SiP/M3N-SiP System Evaluation Board Salvator-XS Hardware Manual
	Renesas Electronics	R-CarE3 System Evaluation Board Ebisu Hardware Manual RTP0RC77990SEB0010S
	Renesas Electronics	R-CarE3 System Evaluation Board Ebisu-4D (E3 board 4xDRAM) Hardware Manual
-	Renesas Electronics	VSP Manager for Linux User's Manual: Software

1.3 Terminology

The following table shows the terminology related to VSP2 Driver.

Table 1-3 Terminology

Terms	Explanation
DRM	Direct Rendering Manager
KMS	Kernel Mode Setting
DRI	Direct Rendering Infrastructure
VSPI	VSP for Image
VSPBC	VSP for Blend with Color Management
VSPBD	VSP for Blend with DRC
VSPB	VSP for Blend
VSPM	VSP Manager
MMNGR	Memory Manager
RPF	Read pixel formatter
WPF	Write pixel formatter
UDS	Up down scaler
BRU	Blend engine unit
LUT	Look up table
CLU	Cubic look up table
HGO	Histogram one dimension

2. Operating Environment

2.1 Hardware Environment

The following table shows the hardware needed to use VSP2 Driver.

Table 2-1 Hardware Specification

Name	Version	Manufacture
R-CarH3-SiP System Evaluation Board (Salvator-X)	-	Renesas Electronics
R-CarM3-SiP System Evaluation Board (Salvator-X)	-	Renesas Electronics
R-CarH3-SiP/M3-SiP/M3N-SiP System Evaluation Board (Salvator-XS)	-	Renesas Electronics
R-CarE3-SiP System Evaluation Board (Ebisu)	-	Renesas Electronics
R-CarE3 System Evaluation Board Ebisu-4D	-	Renesas Electronics

2.2 Software Configuration

Figure 2-1 shows the software configuration in which VSP2 Driver is used. VSP2 Driver uses VSP Manager developed by Renesas.

Figure 2-1 Software Configuration

Note:

*1 Some parameters of VSP Manager are fixed in this module.

3. Function

VSPI, VSPBC, VSPB and VSPBD have some image processing modules. The function of this module is to provide V4L2 and Media Controller API to control image processing modules. V4L2 API controls buffer, start and stop. Media Controller API controls image processing link and each image processing. The targets of the image processing on this module are as follows.

Table 3-1 Target of Image Processing Module

O:Implemented

-: Not implemented

	R-Car H3 VSPI	R-Car H3 VSPBC	R-Car H3 VSPBD	R-Car M3/M3N/E3 VSPI	R-Car M3/M3N/E3 VSPB
Read pixel formatter (RPF)	O (1 RPF)	O (5 RPF)	O (5 RPF)	O (1RPF)	O (5RPF)
Write pixel formatter (WPF)	0	0	0	0	0
Up down scaler (UDS)	0	_	-	0	_
Blend engine unit (BRU)	_	0	0	_	0
Look up table (LUT)	0	0	ı	0	0
Cubic look up table (CLU)	0	0	_	0	0
Histogram one dimension (HGO)	0	0	ı	0	0

- It's not available to use VSPI function and VSPB function at the same request. (e.g. UDS (VSPI) and BRU (VSPB) can't be operated at the same request.)
- Refer to figure and explanation of Figure 6-3 in VSP Manager User's Manual about color space specification of image processing modules.
- Refer to 6.2 in VSP Manager User's Manual about Input/Output image limited size of image processing modules except for input minimum size of YUV formats. Input minimum size of YUV formats is width 2, height 2.
- · This module does not support cropping in WPF.
- When using HGO refer to section 32.3.7.8 of the H/W manual.

4. V4L2 API

This module should be accessed through the "/dev/video(number)". To see detail the number of "/dev/video(number)", refer to 6. media/video/v4l-subdev. To see detail API specification, refer to https://linuxtv.org/downloads/v4l-dvb-apis/index.html.

4.1 List of V4L2 API

The following list shows the V4L2 API available in this module.

To see detail API specification, refer to https://linuxtv.org/downloads/v4l-dvb-apis/userspace-api/index.html

Function Name Overview of Processing Opens the V4L2 device open Closes the V4L2 device close select Checks if DQBUF can be executed mmap Maps a buffer in user space munmap Unmaps a buffer in user space ioctl(VIDIOC_QBUF) Registers a buffer ioctl(VIDIOC_DQBUF) Releases a buffer ioctl(VIDIOC_G_FMT) Acquires the data format ioctl(VIDIOC_S_FMT) Specifies the data format ioctl(VIDIOC_REQBUFS) Requests a buffer area ioctl(VIDIOC_QUERYBUF) Queries the status of a buffer ioctl(VIDIOC_STREAMON) Starts streaming ioctl(VIDIOC_STREAMOFF) Stops streaming ioctl(VIDIOC_QUERYCAP) Inquire about the device capabilities ioctl(VIDIOC_EXPBUF) Export a buffer as a DMABUF file descriptor ioctl(VIDIOC_S_CTRL) Set the value of a control ioctl(VIDIOC_S_EXT_CTRLS) Set the value of several controls

Table 4-1 List of V4L2 API

- ioctl(VIDIOC_S_CTRL) is used to set global alpha value. If you set global alpha, call this function before ioctl(VIDIOC_STREAMON). If this function is not used, global alpha is not used.
- ioctl(VIDIOC_S_EXT_CTRLS) is used to set near-lossless enable/disable. If you set near-lossless enable/disable, call this function before ioctl(VIDIOC_STREAMON). The default setting is disable.
- When using the color space conversion, you can be specified the method with ioctl(VIDIOC_S_FMT).
 Specify V4L2_QUANTIZATION_FULL_RANGE or V4L2_QUANTIZATION_LIM_RANGE for quantization variable and V4L2_YCBCR_ENC_601 or V4L2_YCBCR_ENC_709 for ycbcr_enc variable.
- The setting of ycbcr_enc is effective on the YUV format side.
- The data_offset parameter of struct vb2_plane is not supported, such as when calling ioctl(VIDIOC_QBUF).

4.2 List of V4L2 Structure

The following list shows the list of V4L2 structures available in this module.

To see detail Structure specification, refer to https://linuxtv.org/downloads/v4l-dvb-apis/driver-api/v4l2-core.html.

Table 4-2 List of V4L2 Structure Definition

Structure Name
v4l2_buffer
v4l2_plane
v4l2_format
v4l2_requestbuffers
v4l2_capability
v4l2_exportbuffer
v4l2_ext_control
v4l2_ext_controls
v4l2_control

4.3 Buffer Allocation

There are three types to allocate a buffer for input or output.

- Memory mapping
- User pointer
- DMA Buffers

Application can select the type with VIDIOC_REQBUFS.

To see a buffer allocation in details, refer to https://linuxtv.org/downloads/v4l-dvb-apis/userspace-api/v4l/buffer.html

4.3.1 Memory Mapping

The V4L2 driver allocates a physical contiguous buffer in kernel space. Memory mapping is primarily intended to map buffers in device memory into the application's address space.

4.3.2 User Pointer

Application allocates a physical contiguous buffer with KMS or MMNGR.

Note: Use the address in user space, when application sets the buffers with VIDIOC QBUF.

4.3.3 DMA Buffers

Application allocates a physical contiguous buffer with KMS or MMNGR and creates an identifier from the buffer with DRM or MMNGR. The identifier is called DMA buffer.

4.4 List of Format of Image Buffer

The following list shows the list of formats available in this module. To see detail format specification, refer to https://linuxtv.org/downloads/v4l-dvb-apis/userspace-api/v4l/pixfmt.html

Table 4-3 List of Format of Image Buffer

Image Format
V4L2_PIX_FMT_RGB332
V4L2_PIX_FMT_RGB444
V4L2_PIX_FMT_XRGB444
V4L2_PIX_FMT_RGB555
V4L2_PIX_FMT_XRGB555
V4L2_PIX_FMT_RGB565
V4L2_PIX_FMT_BGR24
V4L2_PIX_FMT_RGB24
V4L2_PIX_FMT_BGR32
V4L2_PIX_FMT_RGB32
V4L2_PIX_FMT_XBGR32
V4L2_PIX_FMT_XRGB32
V4L2_PIX_FMT_ABGR32
V4L2_PIX_FMT_ARGB32
V4L2_PIX_FMT_UYVY
V4L2_PIX_FMT_VYUY
V4L2_PIX_FMT_YUYV
V4L2_PIX_FMT_YVYU
V4L2_PIX_FMT_NV12M
V4L2_PIX_FMT_NV21M
V4L2_PIX_FMT_NV16M
V4L2_PIX_FMT_NV61M
V4L2_PIX_FMT_YUV420M
V4L2_PIX_FMT_YVU420M
V4L2_PIX_FMT_YUV422M
V4L2_PIX_FMT_YVU422M
V4L2_PIX_FMT_YUV444M
V4L2_PIX_FMT_YVU444M

Note:

- V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_BGR32 and V4L2_PIX_FMT_RGB32 are deprecated and must not be used by new drivers. Therefore these formats will be not supported in this module.
- The top address of UV must be 4k aligned in two-plane versions of the YUV format.
- Size

Variation of YUV420: 2-pixel units both horizontally and vertically.

Variation of YUV422: 2-pixel units horizontally and 1-pixel units vertically.

· Crop size and position

Variation of YUV: 2-pixel units both horizontally and vertically. Concretely, it is from V4L2_PIX_FMT_UYVY to V4L2_PIX_FMT_YVU444M in Table 4-3.

• V4L2_PIX_FMT_ARGB32, YUV444M, YUV422M, YUV420M, YUYV are only support, when near-lossless is enabled.

Linux Interface Specification Device Driver V4L2

4. V4L2 API

 \bullet The top address and the stride of each plane must be a multiple of 256, when near-lossless is enabled.

5.Media controller API

5.1 List of Media Controller Kernel Interface

The following list shows the list of Media Controller Kernel Interface available in this module.

The purpose of the following interfaces is to set up links b/w image processing in VSPI, VSPBC, VSPBD and VSPB.

Table 5-1 List of Media Controller Kernel Interface

Function Name	Overview of Processing
open	Open a media device
close	Close a media device
ioctl(MEDIA_IOC_DEVICE_INFO)	Query device information
ioctl(MEDIA_IOC_ENUM_ENTITIES)	Enumerate entities and their properties
ioctl(MEDIA_IOC_ENUM_LINKS)	Enumerate all pads and links for a given entity
ioctl(MEDIA_IOC_SETUP_LINK)	Modify the properties of a link

To see detail interface specification, refer to https://linuxtv.org/downloads/v4l-dvb-apis/userspace-api/mediactl/media-funcs.html. Application can also use these interfaces via Media Controller API in libmediactl.

Note:

5.2 List of Media Controller API

5.2.1 Media Controller API

The following list shows Media Controller API available in this module.

The purpose of the following API is to set up links b/w image processing in VSPI, VSPBC, VSPBD and VSPB.

Table 5-2 List of Media Controller API

Function Name	Overview of Processing
media_device_new()	Create a new media device
media_device_enumerate()	Enumerate the device topology
media_device_unref()	Release a reference to the device
media_reset_links()	Reset all links to the disabled state.
media_parse_link()	Parse string to a link on the media device.
media_setup_link()	Configure a link.
media_parse_pad()	Parse string to a pad on the media device.
media_get_entity_by_name()	Find an entity by its name
media_entity_get_devname()	Get the device node name for an entity

[•] The values set with Media Controller API are reflected at ioctl(VIDIOC STREAMON).

[•] The values set with Media Controller API are reflected at ioctl(VIDIOC_STREAMON).

The following list shows Media Controller API for v412 subdev available in this module.

The purpose of the following API is to control image processing in VSPI, VSPBC, VSPBD and VSPB.

Table 5-3 List of Media Controller API for v4l2 subdev

Function Name	Overview of Processing
v4l2_subdev_set_format()	Set the format on a pad.
v4l2_subdev_set_selection()	Set a selection rectangle on a pad.
v4l2_subdev_get_selection()	Get a selection rectangle on a pad
v4l2_subdev_get_format()	Retrieve the format on a pad.

Note:

5.2.2 Media Controller Structure

The following list shows the list of Media Controller structures available in this module

Table 5-4 List of Media Controller Structure Definition

Structure Name
media_device
media_link
media_entity
v4l2_mbus_framefmt
v4l2_rect

5.3 Media Controller Application

Media Controller application, media-ctl is a user application tool used in terminal. Source code is in the following URL.

Table 5-5 URL of Media Controller Application

Git	
git://linuxtv.org/v4l-utils.git	

When you create a filesystem using R-Car H3/M3/M3N/E3 Yocto recipe package files, media-ctl will be installed in it automatically.

[•] The values set with Media Controller API are reflected at ioctl(VIDIOC_STREAMON).

6. media/video/v4l-subdev

The control targets of V4L2 API and Media Controller API are implemented in device files (/dev/media, /dev/video or /dev/v4l-subdev). Media Controller uses /dev/media to select VSPI, VSPBC, VSPBD and VSPB. V4L2 API uses /dev/video to select the control targets of inputs and output in VSPI, VSPBC, VSPBD and VSPB. Media Controller API uses /dev/v4l-subdev to select the control target of image processing in VSPI, VSPBC, VSPBD and VSPB. The device files have Entity, Pad and Link.

Table 6-1 List of Component

Component	Explanation
Entity	A basic media hardware or software building block
Pad	A connection endpoint through which an entity can interact with other entities. Data produced by an entity flows from the entity's output to one or more entity inputs.
Link	A point-to-point oriented connection between two pads, either on the same entity or on different entities. Data flows from a source pad to a sink pad.

Note:

Control device files (/dev/media, /dev/video or /dev/v4l-subdev) related to one IP (ex. VSPI1) by one thread from open to close of the files.

[R-Car H3]

There are information For VSPBC(/dev/media1).

Table 6-2 Device/Subdevice file of VSPBC

	Device/Subdevice file	Entity	Pad	Functionality
/dev/media1	/dev/video(8~12)	fe920000.vsp rpf.(0-4) input	source	Input image
	/dev/v4l-subdev6	fe920000.vsp bru	source, sink	Blend image
	/dev/v4l-subdev7	fe920000.vsp lut	source, sink	LUT
	/dev/v4l-subdev8	fe920000.vsp clu	source, sink	3D-LUT
	/dev/v4l-subdev9	fe920000.vsp hgo	source, sink	Histogram one dimension
	/dev/v4I-	fe920000.vsp rpf.(0-4)	source, sink	Color format conversion
	subdev(10~14)			Pre cropping
	/dev/v4l-subdev15	fe920000.vsp wpf.0	source, sink	Color format conversion
				Post cropping
	/dev/video13	fe920000.vsp wpf.0 output	sink	Output image (For memory access)

There are information For VSPBD(/dev/media2).

Table 6-3 Device/Subdevice file of VSPBD

	Device/Subdevice file	Entity	Pad	Functionality
/dev/media2	/dev/video(14~18)	fe960000.vsp rpf.(0-4) input	source	Input image
	/dev/v4l-subdev16	fe960000.vsp bru	source, sink	Blend image
	/dev/v4l-	fe960000.vsp rpf.(0-4)	source, sink	Color format conversion
	subdev(17~21)			Pre cropping
	/dev/v4l-subdev22	fe960000.vsp wpf.0	source, sink	Color format conversion
				Post cropping
	/dev/video19	fe960000.vsp wpf.0 output	sink	Output image (For memory access)

There are information For VSPI0(/dev/media3).

Table 6-4 Device/Subdevice file of VSPI0

	Device/Subdevice file	Entity	Pad	Functionality
/dev/media3	/dev/video20	fe9a0000.vsp rpf.0 input	source	Input image
	/dev/v4l-subdev23	fe9a0000.vsp lut	source, sink	LUT
	/dev/v4l-subdev24	fe9a0000.vsp clu	source, sink	3D-LUT
	/dev/v4l-subdev25	fe9a0000.vsp hgo	source, sink	Histogram one dimension
	/dev/v4l-subdev26	fe9a0000.vsp hgt	source, sink	Histogram one dimension (Not Support)
	/dev/v4l-subdev27	fe9a0000.vsp rpf.0	source, sink	Color format conversion Pre cropping
	/dev/v4l-subdev28	fe9a0000.vsp uds.0	source, sink	Scaling
	/dev/v4l-subdev29	fe9a0000.vsp wpf.0	source, sink	Color format conversion Post cropping
	/dev/video21	fe9a0000.vsp wpf.0 output	sink	Output image (For memory access)

There are information For VSPI1 (/dev/media4).

Table 6-5 Device/Subdevice file of VSPI1

	Device/Subdevice file	Entity	Pad	Functionality
/dev/media4	/dev/video22	fe9b0000.vsp rpf.0 input	source	Input image
	/dev/v4l-subdev30	fe9b0000.vsp lut	source, sink	LUT
	/dev/v4l-subdev31	fe9b0000.vsp clu	source, sink	3D-LUT
	/dev/v4l-subdev32	fe9b0000.vsp hgo	source, sink	Histogram one dimension
	/dev/v4l-subdev33	fe9b0000.vsp hgt	source, sink	Histogram two dimension
				(Not support)
	/dev/v4l-subdev34	fe9b0000.vsp rpf.0	source, sink	Color format conversion
				Pre cropping
	/dev/v4l-subdev35	fe9b0000.vsp uds.0	source, sink	Scaling
	/dev/v4l-subdev36	fe9b0000.vsp wpf.0	source, sink	Color format conversion
				Post cropping
	/dev/video23	fe9b0000.vsp wpf.0 output	sink	Output image (For
				memory access)

- The number from /dev/video8 to /dev/video25 depends on the other v4l2 driver (ex. VIN).
- The number from /dev/media1 to /dev/media5 depends on the other driver.
- The number from /dev/v4l-subdev6 to /dev/v4l-subdev36 depends on the other driver.
- The range of the ratio of uds is 1/16 < ratio <= 16.
- In VSPBC and VSPBD, when bru is not used, use rpf.0 only. When bru is used, use rpf(0-4) in ascending order.

[R-Car M3/M3N]

There are information For VSPB(/dev/media1).

Table 6-7 Device/Subdevice file of VSPB

	Device/Subdevice file	Entity	Pad	Functionality
/dev/media1	/dev/video(8~12)	fe960000.vsp rpf.(0-4) input	source	Input image
	/dev/v4l-subdev6	fe960000.vsp bru	source, sink	Blend image
	/dev/v4l-subdev7	fe960000.vsp lut	source, sink	LUT
	/dev/v4l-subdev8	fe960000.vsp clu	source, sink	3D-LUT
	/dev/v4l-subdev9	fe960000.vsp hgo	source, sink	Histogram one dimension
	/dev/v4l- subdev(10~14)	fe960000.vsp rpf.(0-4)	source, sink	Color format conversion Pre cropping
	/dev/v4l-subdev15	fe960000.vsp wpf.0	source, sink	Color format conversion Post cropping
	/dev/video13	fe960000.vsp wpf.0 output	sink	Output image (For memory access)

There are information For VSPI(/dev/media2).

Table 6-8 Device/Subdevice file of VSPI

	Device/Subdevice file	Entity	Pad	Functionality
/dev/media2	/dev/video14	fe9a0000.vsp rpf.0 input	source	Input image
	/dev/v4l-subdev16	fe9a0000.vsp lut	source, sink	LUT
	/dev/v4l-subdev17	fe9a0000.vsp clu	source, sink	3D-LUT
	/dev/v4l-subdev18	fe9a0000.vsp hgo	source, sink	Histogram one dimension
	/dev/v4l-subdev19	fe9a0000.vsp hgt	source, sink	Histogram two dimension (Not Support)
	/dev/v4l-subdev20	fe9a0000.vsp rpf.0	source, sink	Color format conversion Pre cropping
	/dev/v4l-subdev21	fe9a0000.vsp uds.0	source, sink	Scaling
	/dev/v4l-subdev22	fe9a0000.vsp wpf.0	source, sink	Color format conversion Post cropping
	/dev/video15	fe9a0000.vsp wpf.0 output	sink	Output image (For memory access)

- \bullet The number from /dev/video8 to /dev/video15 depends on the other v4l2 driver (ex. VIN).
- The number from /dev/media1 to /dev/media2 depends on the other driver.
- The number from /dev/v4l-subdev6 to /dev/v4l-subdev22 depends on the other driver.
- The range of the ratio of uds is 1/16 < ratio <= 16.
- In VSPB, when bru is not used, use rpf.0 only. When bru is used, use rpf(0-4) in ascending order.

[R-Car E3]

There are information For VSPB(/dev/media1).

Table 6-9 Device/Subdevice file of VSPB

	Device/Subdevice file	Entity	Pad	Functionality
/dev/media1	/dev/video(2~6)	fe960000.vsp rpf.(0-4) input	source	Input image
	/dev/v4l-subdev4	fe960000.vsp bru	source, sink	Blend image
	/dev/v4l-subdev5	fe960000.vsp lut	source, sink	LUT
	/dev/v4l-subdev6	fe960000.vsp clu	source, sink	3D-LUT
	/dev/v4l-subdev7	fe960000.vsp hgo	source, sink	Histogram one dimension
	/dev/v4l-subdev(8~12)	fe960000.vsp rpf.(0-4)	source, sink	Color format conversion Pre cropping
	/dev/v4l-subdev13	fe960000.vsp wpf.0	source, sink	Color format conversion Post cropping
	/dev/video7	fe960000.vsp wpf.0 output	sink	Output image (For memory access)

There are information For VSPI(/dev/media2).

Table 6-10 Device/Subdevice file of VSPI

	Device/Subdevice file	Entity	Pad	Functionality
/dev/media2	/dev/video8	fe9a0000.vsp rpf.0 input	source	Input image
	/dev/v4l-subdev14	fe9a0000.vsp lut	source, sink	LUT
	/dev/v4l-subdev15	fe9a0000.vsp clu	source, sink	3D-LUT
	/dev/v4l-subdev16	fe9a0000.vsp hgo	source, sink	Histogram one dimension
	/dev/v4l-subdev17	fe9a0000.vsp hgt	source, sink	Histogram two dimension (Not Support)
	/dev/v4l-subdev18	fe9a0000.vsp rpf.0	source, sink	Color format conversion Pre cropping
	/dev/v4l-subdev19	fe9a0000.vsp uds.0	source, sink	Scaling
	/dev/v4l-subdev20	fe9a0000.vsp wpf.0	source, sink	Color format conversion Post cropping
	/dev/video9	fe9a0000.vsp wpf.0 output	sink	Output image (For memory access)

- The number from /dev/video2 to /dev/video9 depends on the other v4l2 driver (ex. VIN).
- The number from /dev/media1 to /dev/media2 depends on the other driver.
- The number from /dev/v4l-subdev3 to /dev/v4l-subdev19 depends on the other driver.
- The range of the ratio of uds is 1/16 < ratio <= 16.
- In VSPB, when bru is not used, use rpf.0 only. When bru is used, use rpf(0-4) in ascending order.

Linux Interface Specification Device Driver V4L2

7. Integration

7.Integration

7.1 Directory Configuration

About V412 Core Directory Configuration, please refer to linux kernel (linux/drivers/media/v412-core).

The directory configuration of this module is shown below.

- This module is put on https://github.com/renesas-rcar/vsp2driver
- This module uses VSP Manager. Therefore this module doesn't work without VSP Manager.

Figure 7-1 Directory Configuration (R-Car H3/M3/M3N/E3)

Linux Interface Specification Device Driver V4L2

8. Sample Source Code

8. Sample Source Code

https://github.com/renesas-rcar/vsp2driver_tp

REVISION HISTORY		ORY	Linux Interface Specification Device Driver V4L2 User's Manual: Software
Rev.	Date		Description
	Pa		Summary
1.5	Jan. 29, 2018		New version
1.51	Mar. 28, 2018	•	Add R-Car E3 device support
1.52	Oct. 29, 2018	3	Delete fixed parameter example
		4	Fix input minimum size to YUV format only
		5	Add explanation of CSC to note
		7	Add supplementary explanation to Crop size and position
2.00	Dec. 25, 2018	•	Update AddressList
		1	Table 1-2 Update reference document
		3	Table 2-1 Update Hardware Specification
2.01	Apr. 17, 2019	-	Update AddressList
2.02	May. 20, 2019	5	Add note about VIDIOC_QBUF ioctl
2.50	Apr. 24, 2024	•	Add Kernel 5.10 support
2.50 Apr. 21, 2021		•	Update URL link
3.00	Dec. 10, 2021	-	Add Kernel v5.10.41 support
3.1.0	Dec. 25, 2023	-	Add Kernel v5.19.194 support for H3, M3, M3N, E3

Linux Interface Specification Device Driver V4L2

User's Manual: Software

Publication Date: Rev.1.50 Jan. 29, 2018

Rev.3.1.0 Dec. 25, 2023

Published by: Renesas Electronics Corporation

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Renesas Electronics America Inc. Milpitas Campus 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics America Inc. San Jose Campus 6024 Silver Creek Valley Road, San Jose, CA 95138, USA Tel: +1-408-284-8200, Fax: +1-408-284-2775

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, #06-02 Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia Tel: +60-3-5022-1288, Fax: +60-3-5022-1290

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700

Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

ルネサスエレクトロニクス株式会社

■営業お問合せ窓口

http://www.renesas.com

※営業お問合せ窓口の住所は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。

ルネサス エレクトロニクス株式会社 〒135-0061 東京都江東区豊洲3-2-24 (豊洲フォレシア)

支術的なお問合せおよび資料のご請求は下記╱ 総合お問合せ窓口:https://www.renesas.com/		

Linux Interface Specification Device Driver V4L2

