

Einführung in die Rechnerarchitektur

Flags und bedingte Sprünge

Lukas Hertel

Lehrstuhl für Rechnerarchitektur und Parallele Systeme Fakultät für Informatik Technische Universität München

22. November 2021

Hausaufgabe

Statusregister

Kurz	Name	Beschreibung	Bei CMP EAX, EBX 1 falls
CF	Carry Flag	Übertrag	EAX < EBX (ohne Vorzeichen)
ZF	Zero Flag	Ergebnis ist null	EAX = EBX (Vorzeichen egal)
SF	Sign Flag	Vorzeichen	Register negativ
OF	Overflow Flag	Überlauf	EAX - EBX nicht repräsentierbar (mit Vorzeichen)

Aufgabe 1a

	Befehlsfolge	Carry	Overflow	Sign	Zero
1:	-	0	1	0	1
2:	MOV EAX, 300	_	_		
3:	SUB AL, 100	_	_		_
4:	MOV AX, 300	_	_		
5:	CMP AH, 200	_	_		
6:	ADD AL, 100				

Aufgabe 1b

	Befehlsfolge	Carry	Overflow	Sign	Zero
1:	-	0	0	0	1
2:	MOV EAX, -120				
3:	PUSH AX				_
4:	CMP AL, 0	_	_		_
5:	ADD AL, 140	_	_		

Bedingte Sprünge Möglichkeiten um zur marke1 zu springen

Von Java zu Assembler

Wo setzen wir die Marken?

```
int ebx;
ebx = 50;
while (ebx <= 60) {
    fkt(ebx);
    ebx = ebx + 1;
}</pre>
```

Multiplikation mit Shifts

ТИП

- SHL/SAL/SHR n
 - ☐ Shift um n Stellen
 - Wird mit 0en aufgefüllt
- SAR n
 - Shift um n Stellen
 - ☐ Wird mit 1en aufgefüllt (Wieso?)
- Was passiert bei einem Shift um n Stellen?

Verscheibung von Bits

Einfügen von Bits in ein anderes Register

Bits prüfen auf Bedingung

Schnelle Division ohne div

Modulo

Nullsetzen von bit n

