Alkyl Halides: Substitution and Elimination

• There are two particularly important reactions of alkyl halides:

Substitution involves replacing the halide with some other group:

Elimination involves removing the halide **and** an adjacent hydrogen atom to yield an alkene:

Nucleophilic Substitution: The $S_N 2$ Reaction

• Can you predict the **product** and the **mechanism** of the following reaction:

• What would be the **rate law** of this reaction? (Do you remember rate laws?)

• Why is this referred to as the $S_N 2$ reaction?

Stereochemistry of the S_N2 Reaction

• Can you **predict** the product of the following reaction (including stereochemistry)?

100% (R)-2-bromooctane

- Can you explain why that stereochemical result is observed for all S_N 2 reactions?
- Let's take a look at the **transition state** for the S_N 2 reaction:

Steric Effects on S_N2 Reactions

• Because of the "backside attack" required for the S_N2 mechanism, these reactions are quite sensitive to **steric effects** ("crowding"). For example:

Nucleophiles in the S_N 2 Reaction

• Can you explain the relative **nucleophilicity** of the following nucleophiles in an $S_N 2$ reaction?

Species	Name	Rel. Nucleophilicity	
EXCELLENT NUCLEOPHILES			
N≡C ⁻	cyanide	126,000	
H-s-	thiolate	126,000	
l –	iodide	80,000	

GOOD NUCLEOPHILES

н—о-	hydroxide	16,000
Br [–]	bromide	10,000
-N=N ⁺ =N -	azide	8,000
H ₃ N:	ammonia	8,000

MODERATE/POOR NUCLEOPHILES

CI ⁻	chloride	1,000
CH₃COO ⁻	acetate	630
F -	fluoride	80
H ₂ O:	water	1

Leaving Groups in the S_N2 Reaction

• What is the **leaving group** in an S_N 2 reaction?

• Can you explain the relative **leaving group ability** of the following leaving groups?

Conjugate acid	pK _a	Leaving Group	Name
GOOD LEAVING GROUPS			
Н—І	-10	1-	iodide
H—Br	_9	Br _	bromide
H—CI	– 7	CI ⁻	chloride
H-OSO ₂ R	-6.5	¯OSO ₂ R	sulfonate*
H ₃ O ⁺	-1.7	H ₂ O	water

*NOTE: Alkylsulfonic esters (R-OSO₃R') react like alkyl halides towards nucleophiles (and bases).

$$Nuc = X C OSO_3R' \longrightarrow Nuc - C X + OSO_3R'$$

POOR LEAVING GROUPS

H—F H_2S $H—C \equiv N$ H_2O	+3.2	F -	fluoride
	+7	HS -	thiolate
	+9.2	-C≡N	cyanide
	+15.7	HO -	hydroxide
H—OR	+15 to 18	RO ⁻	alkoxide

Summary of Reactivity in $S_N 2$ Reactions

• Mechanism:	•	Mechanism:
--------------	---	------------

	Staragaham	iate.
•	Stereochem	usu y.

• What makes for a rapid S_N 2 reaction?

Steric Effects:

Nucleophilicity:

Leaving-Group Ability:

Elimination: The E2 Reaction

• Here is an example of an E2 reaction. Can you draw a curved-arrow mechanism?

$$C_2H_5O^-$$
 Na⁺ + H_3C Br H_3C H $+$ C_2H_5OH + Na⁺ Br $-$ sodium ethoxide

• Examine the **stereochemistry** of the above reaction. Why is this an example of *anti*elimination?

• What transition state and product would lead to *syn*-elimination?

• What would be the *rate law* for this reaction?

Frontier Orbitals in the E2 Reaction

• Let's take a close look at the frontier orbitals involved in the E2 reaction. There are in fact **two** important interactions:

• Note the contrast between *anti-* and *syn-*elimination:

Alkene Isomers Formed by the E2 Reaction

• Many E2 reactions can give more than one possible isomer. Can you explain the distribution of products in the following reaction?

• You may notice that the above percentages do not add to 100%. What do you suppose is the *other* product that emerges from the above reaction?

• The choice of base can affect the distribution of products. For example:

E2 vs. S_N2: The "GFP" Reaction Hierarchy

• To help decide which reaction will predominate, apply the "GFP" (good-fair-poor) reaction hierarchy. If *all else is equal*, choose the reaction that is at the top of the list:

1. S_N2 reactions: Require good steric interactions

Good if the halide is methyl or 1° Fair if the halide is 2° Poor if the halide is 3° or if the nucleophile is very bulky (e.g. ^tBuO⁻)

2. E2 reactions: Require a strong base

Good if the base is at least as strong as OH⁻ **Fair** if the base is between H₂O and OH⁻ in strength **Poor** if the base is weaker than H₂O

• Let's see some examples: Determine the *primary* product (and identify possible *secondary* products) for each of the following reactions:

Reactions Involving Carbocations: S_N1 and E1

• Consider the following reaction. Why is it unlikely that this reaction proceeded by either an S_N2 or E2 mechanism?

• Can you propose a mechanism for this reaction? Hint: the *rate law* for this reaction is simply: rate = k[tBuBr]

• What do you suppose is a *requirement* for this reaction?

The Stereochemistry of the $S_N 1$ Reaction

• Given that the S_N1 mechanism proceeds through a carbocation intermediate, what would you expect to find when you subject the following alkyl halide to S_N1 conditions:

$$H_{2O}$$
 H_{2O}
 H

• In fact, the products are: 33% S and 67% R. How can we explain this observation?

• Can we make any generalizations about the stereochemical outcome of S_N1 reactions?

S_N1 vs. E1 Reactions

• In general, whenever S_N1 and E1 reactions take place, a mixture of both mechanisms is observed. Why might this be the case?

• It is often the case that higher temperatures favor elimination. For instance:

• One can ensure elimination by starting with an *alcohol*, instead of an alkyl halide, and treating it with concentrated sulfuric acid. Can you propose a mechanism for this reaction? Does this mechanism resemble any mechanism you have seen before? conc.

$S_N1 / E1 / S_N2 / E2$: The "GFP" Hierarchy Revisited

• We can now extend the hierarchy to include S_N1 and E1 reactions:

1. S_N2 reactions: Require good steric interactions

Good if the halide is methyl or 1°

Fair if the halide is 2°

Poor if the halide is 3° or if the nucleophile is very bulky (e.g. ^tBuO⁻)

2. E2 reactions: Require a strong base

Good if the base is at least as strong as OH⁻

Fair if the base is between H₂O and OH⁻ in strength

Poor if the base is weaker than H₂O

3. S_N1 / E1 reactions: Require a stable carbocation

Good if the halide is 3°

Fair if the halide is 2°

Poor if the halide is methyl or 1°

(Note that S_N1 and E1 reactions almost always occur together, although you can ensure elimination by treating an alcohol with concentrated H_2SO_4 .)

• Use the hierarchy to determine the *primary* product (and identify possible *secondary* products) for each of the following reactions: