Diskrete Mathematik

Patrick Bucher

25. Februar 2017

Inhaltsverzeichnis 1 Logik und Beweise Proposition: eine Aussage oder ein Satz ist: 1 Logik und Beweise 1 • wahr (w: wahr, t: true, 1) Logische Operationen 1 Negation 1.1.1 1 • falsch (f: falsch/false, 0) Konjunktion 1 1.1.2 Fragen und Gleichungen mit einer Unbekann-1.1.3 Disjunktion 2 ten sind keine Aussagen. Aussagen werden 1.1.4 Exklusives Oder (EXmeist mit p, q, r, s bezeichnet. Beispiele für 2 OR) Propositionen 2 1.1.5 Implikation Bikonditional 2 1.1.6 • p = «Es regnet draussen.»Priorität logischer Operationen 2 1.2 • q = «Der Platz draussen ist nass.» 2 Präpositionale Äquivalenzen . 1.3 Tautologie 2 1.3.1 1.1 Logische Operationen 1.3.2 Kontradiktion (Wider-2 spruch) 1.1.1 Negation Logische Äquivalenz 1.4 2 $\neg p$: «Es ist nicht der Fall, dass p gilt.» Wahr-Logische Äquivalenzgesetze . 2 heitstabelle: 1.5.1 Identität 3 3 1.5.2 Dominanz 3 1.5.3 Idempotenz 3 1.5.4 Doppelnegation 1.5.5 Negation 3 1.1.2 Konjunktion 1.5.6 Kommutativität 3 $p \wedge q$: «Es gelten p und q.» Wahrheitstabelle: 1.5.7 3 Absorption 1.5.8 Assoziativ 1 und 2 . . 3 $p \wedge q$ 1.5.9 Distributiv 1 und 2 . . 3 1.5.10 De Morgan 1 und 2 . . 3 w1.5.11 Weitere Equivalenzgew3 setze

1.1.3 Disjunktion

 $p \lor q$: «Es gilt p oder q oder es gelten beide.» Wahrheitstabelle:

p	q	$p \vee q$
w	w	\overline{w}
w	f	w
f	w	w
f	f	f

1.1.4 Exklusives Oder (EXOR)

 $p \oplus q$: «Es gilt p oder q aber nicht p und q.» Wahrheitstabelle:

p	$\mid q \mid$	$p\oplus q$
\overline{w}	w	f
w	f	w
f	w	w
f	f	f

1.1.5 Implikation

 $p \to q$: «Wenn p gilt, dann gilt q.» Wahrheitstabelle:

p	q	$p \rightarrow q$
w	w	w
w	f	f
f	w	w
f	$\int f$	w

Aus einem Falschen kann etwas Beliebiges gefolgert werden! Beispiel: Ein Politiker sagt: «Wenn ich gewählt werde, senke ich die Steuern.»

- p: Politiker wird gewählt
- q: Politiker senkt die Steuern.

$$p \to q$$

- 1. Der Politiker wird gewählt und senkt die Steuern: die Aussage trifft zu.
- 2. Der Politiker wird gewählt, senkt aber die Steuern nicht: die Aussage trifft nicht zu.

3. Der Politiker wird nicht gewählt; es ist egal, was er in diesem Fall tun will: die Aussage trifft zu.

1.1.6 Bikonditional

 $p \leftrightarrow q$: «Es gilt p genau dann, wann q gilt.» Wahrheitstabelle:

p	q	$p \leftrightarrow q$
w	w	w
w	f	f
f	w	f
f	f	w

Eine bikonditionale Präposition ist dann wahr, wenn p und q den gleichen Wahrheitswert haben, also das Gegenteil von EXOR:

$$p \leftrightarrow q \equiv \neg (p \oplus q)$$

1.2 Priorität logischer Operationen

- 1. \neg (Negation)
- 2. \land (Konjunktion), \lor (Disjunktion)
- 3. \rightarrow (Implikation), \leftrightarrow (Bikonditional)

1.3 Präpositionale Äquivalenzen

1.3.1 Tautologie

Die Aussage ist immer wahr. Beispiel: $p \vee \neg q$

1.3.2 Kontradiktion (Widerspruch)

Die Aussage ist immer falsch. Beispiel: $p \land \neg q$

1.4 Logische Äquivalenz

Zwei Aussagen (p und q) sind logisch äquivalent, wenn $p \leftrightarrow q$ eine Tautologie ist. Schreibweisen: $p \equiv q, p \sim q, p \Leftrightarrow q$

1.5 Logische Äquivalenzgesetze

T: True (wahr), F: False (falsch)

1.5.1 Identität

$$p \wedge T \equiv p$$
$$p \vee F \equiv p$$

1.5.2 Dominanz

$$p \vee T \equiv T$$
$$p \wedge F \equiv F$$

1.5.3 Idempotenz

$$\begin{array}{c} p\vee p\equiv p\\ p\wedge p\equiv p \end{array}$$

1.5.4 Doppelnegation

$$\neg(\neg p) \equiv p$$

1.5.5 Negation

$$\begin{array}{l} p \vee \neg p \equiv T \\ p \wedge \neg p \equiv F \end{array}$$

1.5.6 Kommutativität

$$p \vee q \equiv q \vee p$$
$$p \wedge q \equiv q \wedge p$$

1.5.7 Absorption

$$p \lor (p \land q) \equiv p$$
$$p \land (p \lor q) \equiv p$$

1.5.8 Assoziativ 1 und 2

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$
$$(p \land q) \land r \equiv p \land (q \land r)$$

1.5.9 Distributiv 1 und 2

$$\begin{array}{l} p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r) \\ p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \end{array}$$

1.5.10 De Morgan 1 und 2

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

1.5.11 Weitere Equivalenzgesetze

$$\begin{split} p &\to q \equiv \neg p \lor q \\ p &\to q \equiv \neg q \neg p \\ p &\lor q \equiv \neg p \to q \\ p &\land q \equiv \neg (p \to \neg q) \\ \neg (p \to q) \equiv p \land \neg q \end{split}$$

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

$$\begin{split} (p \to q) \wedge (p \to r) &\equiv p \to (q \wedge r) \\ (p \to r) \wedge (q \to r) &\equiv (p \vee q) \to r \\ (p \to q) \vee (p \to r) &\equiv p \to (q \vee r) \\ (p \to r) \wedge (q \to r) &\equiv (p \wedge q) \to r \end{split}$$

$$p \oplus q \equiv (p \lor q) \land (\neg p \lor \neg q)$$
$$\neg (p \oplus q) \equiv (p \land q) \lor (\neg p \land \neg q)$$
$$\neg (p \oplus q) \equiv p \leftrightarrow q$$