Appendix

A. Distribution of the eigenvalues of H in trained models

Figure 8. Distributions of eigenvalues of H Vision models have distributions skewing to the negatives while language models have symmetrically distributed eigenvalues.

B. Proofs

Proposition 1 ((Meyer & Stewart, 2023)). Given Assumption 3.1, all eigenvalues of \mathbf{A} lie within (-1,1]. There is one largest eigenvalue that is equal to 1, with corresponding unique eigenvector $\mathbf{1}$. No eigenvectors of \mathbf{A} are equal to 0.

Proof. First, because **A** is positive, by the Perron-Frobenius Theorem (Meyer & Stewart, 2023) all eigenvalues of **A** are in \mathbb{R} (and so there exist associated eigenvectors that are also in \mathbb{R}). Next, recall the definition of an eigenvalue λ and eigenvector \mathbf{v} : $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$. Let us write the equation for any row $i \in \{1, \dots, n\}$ explicitly:

$$a_{i1}v_1 + \dots + a_{in}v_n = \lambda v_i.$$

Further let,

$$v_{\max} := \max\{|v_1|, \dots, |v_n|\} \tag{8}$$

Note that $v_{\rm max}>0$, otherwise it is not a valid eigenvector. Further let $k_{\rm max}$ be the index of ${\bf v}$ corresponding to $v_{\rm max}$. Then