Второе задание

Автор: Маллаев Руслае

От: 11 апреля 2022 г.

Содержание

1	RDF	1
2	Автокореллятор	1
3	Расчет диффузии	2
4	Из первого задания	3
5	Зависимость от термостата	3
6	Проверка экспериментальной зависимости	4
7	Исправления	4

1 RDF

Рис. 1: RDF жидкости при $\rho=0.8$ и T=1

Рис. 2: RDF газа при $\rho=0.05$ и T=1

Пики у нас получились у жидкости на 3,4 A, у газа на 3.8 A. У Yarnell на 3.76 A. Расхождение может быть обусловлено разными плотностями (сам он вроде не указал при каких).

2 Автокореллятор

Считаем $N=4000\ dt=0.01$ число шагов $ns=20000\ T=1.0\ rho=0.8 (0.05\ для\ газа)$

Ну тут у нас в разреженном газе он не залезает в отрицательные значения, что ожидаемо. Для жидкости он очень резко падает, но последующие неровности скорее объясняются недостатком усреднения

Рис. 3: Автокореллятор жидкости при $\rho=0.8$ и T=1.0

Рис. 4: Автокореллятор газа при ho=0.005 и T=1

3 Расчет диффузии

CKC

Рис. 5: СКС при $\rho=0.7$

Рис. 6: Автокореллятор при $\rho = 0.7$

reference Rowley

- $\rho = 0.7 T = 1.0 D = 0.105$
- $\rho = 0.7 \ T = 1.5 \ D = 0.156$
- $\rho = 0.7 \ T = 2.1 \ D = 0.217$

На первом графике значения диффузии посчитаны по наклону, на втором представлены автокорреляторы. Как видим полученные значения по первому графику сходятся с погрешностью $\pm 10\%$. Теперь проинтегрируем их чтобы получить значения методом Эйнштейна-Смолуховского. Считал в LAMMPS, $dt=0.001~N_{timesteps}=50000$ усреднял по 1000 фреймам.

Мои значения

- $\rho = 0.7 \ T = 1.0 \ D_E = 0.113, \ D_G = 0.121$
- $\rho = 0.7 \ T = 1.5 \ D_E = 0.164, \ D_G = 0.171$

•
$$\rho = 0.7 \ T = 2.1 \ D_E = 0.213, \ D_G = 0.218$$

Ну тут тоже попали в значения с максимальной погрешностью 7%, так что все +- норм

4 Из первого задания

Посчитаем диффузию по невязкам из первого задания. У одной модели было dt=0.002 у другой dt=0.01, диввузию считаем как $D=\frac{1}{12}\alpha$, где α наклон графика

По графику D получилось равно 0.209, A по методу Эйнштейна-Смолуховского - 0.216 Как видим данные неплохо согласуются

5 Зависимость от термостата

Построим СКС для разных τ и поймем что происходит что-то рандомное, при некотором оптимальном значении выдает стабильное и близкое к правде значение. При маленьких τ средняя ниже, потом завышается и снова уходит вниз

Рис. 7: СКС при dt = 0.001

Полученные коэффициенты диффузии:

au	$\mid D$
1	0.076
10	0.110
20	0.113
50	0.100

6 Проверка экспериментальной зависимости

На этот раз проводилась симуляция Lammps с dt=0.005

• при
$$T=1.0$$
 и $\rho=0.7$ $P=0.645$ $D=0.105$

• при
$$T=1.0$$
 и $\rho=0.5$ $P=0.131$ $D=0.216$

• при
$$T=0.9$$
 и $\rho=0.8$ $P=1.188$ $D=0.063$

• при
$$T=0.7$$
 и $\rho=1.0$ $P=2.457$ $D=0.233$

• при
$$T=0.5$$
 и $\rho=2.0$ $P=556.3$ $D=---$

• при
$$T=0.5$$
 и $\rho=0.7$ $P=-0.530$ $D=0.027$

• при
$$T=0.3$$
 и $\rho=1.5$ $P=92.68$ $D=2.38e-5$

Нужно проверить уравнение

$$Log_{10}D = 0.05 + 0.07P - \frac{1.04 + 0.1P}{T}$$

$$-1.06 = -1.09$$

$$-0.95 = -0.99$$

$$-1.15 = -1.21$$

$$-1.63 = -1.61$$
(1)

Получается, оно сошлось.

7 Исправления

Пороверил сходимость иинтеграла автокореллятора:

Значения примерно одинаковые и наблюдается что то похожее с ранее сделанным.