Finite Elements for Engineers

Lecture 4: Plane Elasticity Problems

S. D. Rajan

Displacement Field

$$\mathbf{u}_{2\times 1} = \left[u, v\right]^{\mathrm{T}}$$

Stress State

$$\mathbf{\sigma} = \left[\sigma_{x}, \sigma_{y}, \tau_{xy} \right]^{\mathrm{T}}$$

Strain State

$$\mathbf{\varepsilon} = \left[\varepsilon_{x}, \varepsilon_{y}, \gamma_{xy}\right]^{\mathrm{T}}$$

Loading Terms

$$\mathbf{f}_{2\times 1} = \left[f_x, f_y \right]^T \qquad \mathbf{T}_{2\times 1} = \left[T_x, T_y \right]^T$$

Types of Plane Elasticity Problems

Plane Stress

- Body lies in the X-Y plane
- Thin (t << L)
- Loading is in the X-Y plane

$$\tau_{xz} = \tau_{yz} = \sigma_z = 0$$

Types of Plane Elasticity Problems

• Plane Strain

- Body is infinitely long in the z-direction
- Geometry, loading and boundary conditions are
 NOT functions of z

$$\gamma_{xz} = \gamma_{yz} = \varepsilon_z = 0$$

$$\Rightarrow \begin{array}{c} \tau_{xz} = \tau_{yz} = 0 \\ \sigma_z \neq 0 \end{array}$$

Strain-Displacement Relations

$$\begin{cases}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{xy}
\end{cases}_{3\times 1} = \begin{cases}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}
\end{cases}_{3\times 1} = \begin{bmatrix}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{bmatrix}_{3\times 2} \begin{cases}
u \\
v
\end{cases}_{2\times 1} = \mathbf{\Lambda}_{3\times 2} \quad \mathbf{u}_{2\times 1}$$

$$\boldsymbol{\varepsilon}_{3\times 1} = \boldsymbol{\Lambda}_{3\times 2} \quad \mathbf{u}_{2\times 1}$$

Stress-Strain Relations

$$\boldsymbol{\sigma}_{3\times 1} = \mathbf{D}_{3\times 3} \big[\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_0 \big]_{3\times 1}$$

Plane Stress
$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \begin{vmatrix} E \\ 1 - v^{2} \end{vmatrix} v \qquad 1 \qquad 0 \\ 0 \qquad 0 \qquad \frac{1 - v}{2} \begin{vmatrix} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \gamma_{xy} \end{pmatrix} - \alpha \Delta T \begin{cases} 1 \\ 1 \\ 0 \end{cases}$$

Plane Strain

$$\begin{cases}
\sigma_{x} \\
\sigma_{y}
\end{cases} = \begin{bmatrix}
E \\
(1+\nu)(1-2\nu)
\end{bmatrix} \begin{bmatrix}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & \frac{1}{2}-\nu
\end{bmatrix} \begin{bmatrix}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{xy}
\end{bmatrix} - (1+\nu)(\alpha\Delta T) \begin{bmatrix}
1 \\
1
\end{bmatrix}$$
©S.D.Rajan, 2012-13

Step 1: Assumed displacement field
$$\begin{cases}
u \\ v
\end{cases} =
\begin{bmatrix}
\phi_1 & 0 & \phi_2 & 0 & \dots & \phi_n & 0 \\
0 & \phi_1 & 0 & \phi_2 & \dots & 0 & \phi_n
\end{bmatrix}
\begin{cases}
d_1 \\ d_2 \\ \dots \\ d_{2n-1} \\ d_{2n}
\end{cases}$$

$$\mathbf{u}_{2\times 1} = [u, v]^{\mathbf{T}} = \mathbf{\Phi}_{2\times 2n} \mathbf{d}_{2n\times 1}$$

Step 2: Strain-displacement relationship

$$\mathbf{\varepsilon}_{3\times 1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{3\times 4} \begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial y} \end{bmatrix}_{4\times 1} = \mathbf{L}_{3\times 4} \mathbf{a}_{4\times 1}$$

$$\mathbf{a}_{4\times 1} = \begin{bmatrix} \Gamma_{11} & \Gamma_{12} & 0 & 0 \\ \Gamma_{21} & \Gamma_{22} & 0 & 0 \\ 0 & 0 & \Gamma_{11} & \Gamma_{12} \\ 0 & 0 & \Gamma_{21} & \Gamma_{22} \end{bmatrix}_{4\times 4} \begin{bmatrix} \frac{\partial u}{\partial \xi} \\ \frac{\partial u}{\partial \eta} \\ \frac{\partial v}{\partial \xi} \\ \frac{\partial v}{\partial \eta} \end{bmatrix}_{4\times 1} = \mathbf{M}_{4\times 4} \mathbf{b}_{4\times 1}$$

$$\begin{cases}
\frac{\partial u}{\partial \xi} \\
\frac{\partial u}{\partial \eta} \\
\frac{\partial v}{\partial \xi} \\
\frac{\partial v}{\partial \eta}
\end{cases}_{4\times 1} =
\begin{bmatrix}
\phi_{1,\xi} & 0 & \phi_{2,\xi} & 0 & \dots & \phi_{n,\xi} & 0 \\
\phi_{1,\eta} & 0 & \phi_{2,\eta} & 0 & \dots & \phi_{n,\eta} & 0 \\
0 & \phi_{1,\xi} & 0 & \phi_{2,\xi} & \dots & 0 & \phi_{n,\xi} \\
0 & \phi_{1,\eta} & 0 & \phi_{2,\eta} & \dots & 0 & \phi_{n,\eta}
\end{bmatrix}_{4\times 2n}$$

$$= \mathbf{N}_{4\times 2n} \mathbf{d}_{2n\times 1}$$

$$\vdots$$

$$u_{n}$$

$$v_{1}$$

$$v_{2}$$

$$\vdots$$

$$\vdots$$

$$u_{n}$$

$$v_{n}$$

$$v_{n}$$

$$v_{n}$$

$$v_{n}$$

Strain-displacement relationship

$$\boldsymbol{\varepsilon}_{3\times 1} = \mathbf{L}_{3\times 4} \mathbf{M}_{4\times 4} \mathbf{N}_{4\times 2n} \mathbf{d}_{2n\times 1} = \mathbf{O}_{3\times 4} \mathbf{N}_{4\times 2n} \mathbf{d}_{2n\times 1} = \mathbf{B}_{3\times 2n} \mathbf{d}_{2n\times 1}$$

$$\mathbf{\varepsilon}_{3\times 1} = \mathbf{B}_{3\times 2n} \mathbf{d}_{2n\times 1}$$

Step 3: Total strain energy (per element)

$$U(\mathbf{d}) = \frac{1}{2} \int_{A} \mathbf{\sigma}^{T} \mathbf{\epsilon} t \, dA = \frac{1}{2} \int_{A} \mathbf{\epsilon}^{T} \mathbf{D} \mathbf{\epsilon} t \, dA = \frac{1}{2} \mathbf{d}_{1 \times 2n}^{T} \mathbf{k}_{2n \times 2n} \mathbf{d}_{2n \times 1}$$

$$\mathbf{k}_{2n\times 2n} = \int_{A} \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} \, t \, dA$$

Total Potential Energy

$$\Pi(\mathbf{D}) = \sum_{i=1}^{e} \left[\frac{1}{2} \mathbf{d}_{1 \times 2n}^{\mathsf{T}} \mathbf{k}_{2n \times 2n} \mathbf{d}_{2n \times 1} - \mathbf{d}_{1 \times 2n}^{\mathsf{T}} \mathbf{f}_{2n \times 1} - \mathbf{d}_{1 \times 2n}^{\mathsf{T}} \mathbf{T}_{2n \times 1} + \mathbf{d}^{\mathsf{T}} \left[\int_{A} \mathbf{B}^{\mathsf{T}} \mathbf{D} \boldsymbol{\varepsilon}_{0} \, t dA \right] \right]_{i}$$
$$-\mathbf{D}_{1 \times N}^{T} \mathbf{P}_{N \times 1}$$

Now we can customize the expressions for the components of the element equations – stiffness and load terms, for various elements.

Constant Strain Triangular Element

Master or Parent

Assumed displacement field

$$u = a_1 + a_2 \xi + a_3 \eta$$

$$v = b_1 + b_2 \xi + b_3 \eta$$

Shape functions

$$\phi_1 = 1 - \xi - \eta$$

$$\phi_2 = \xi$$

$$\phi_3 = \eta$$

CST Element

Computing Jacobian and its inverse

$$x = \phi_1 x_1 + \phi_2 x_2 + \phi_3 x_3$$
 $y = \phi_1 y_1 + \phi_2 y_2 + \phi_3 y_3$

$$y = \phi_1 y_1 + \phi_2 y_2 + \phi_3 y_3$$

$$\mathbf{J}_{2\times 2} = \begin{bmatrix} (x_2 - x_1) & (y_2 - y_1) \\ (x_3 - x_1) & (y_3 - y_1) \end{bmatrix} = \begin{bmatrix} x_{21} & y_{21} \\ x_{31} & y_{31} \end{bmatrix} \implies \det(J) = x_{21}y_{31} - x_{31}y_{21}$$

$$\Gamma_{2\times2} = \frac{1}{\det(J)} \begin{bmatrix} y_{31} & -y_{21} \\ -x_{31} & x_{21} \end{bmatrix} = \frac{1}{2A} \begin{bmatrix} y_{31} & -y_{21} \\ -x_{31} & x_{21} \end{bmatrix}$$

CST Element

Strain-displacement relations

$$\mathbf{B}_{3\times 6} = \begin{bmatrix} \Gamma_{11} & \Gamma_{12} & 0 & 0 \\ 0 & 0 & \Gamma_{21} & \Gamma_{22} \\ \Gamma_{21} & \Gamma_{22} & \Gamma_{11} & \Gamma_{12} \end{bmatrix}_{3\times 4} \begin{bmatrix} \phi_{1,\xi} & 0 & \phi_{2,\xi} & 0 & \phi_{3,\xi} & 0 \\ \phi_{1,\eta} & 0 & \phi_{2,\eta} & 0 & \phi_{3,\eta} & 0 \\ 0 & \phi_{1,\xi} & 0 & \phi_{2,\xi} & 0 & \phi_{3,\xi} \\ 0 & \phi_{1,\eta} & 0 & \phi_{2,\eta} & 0 & \phi_{3,\eta} \end{bmatrix}_{4\times 6}$$

$$\mathbf{B}_{3\times6} = \frac{1}{2A} \begin{bmatrix} y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\ 0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\ x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12} \end{bmatrix}_{3\times6}$$

CST Element

Element Stiffness Matrix

$$\mathbf{k}_{6\times6} = \int_{A} \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} \, t dA = t A \, \mathbf{B}_{6\times3}^{T} \mathbf{D}_{3\times3} \mathbf{B}_{3\times6}$$

$$\mathbf{f}_{6\times 1}^{B} = \frac{tA}{3} \left[f_x, f_y, f_x, f_y, f_x, f_y \right]^{T}$$

Surface Tractions
$$T_{6\times 1} = \frac{tL_{1-2}}{6} [2T_{x1} + T_{x2}, 2T_{y1} + T_{y2}, T_{x1} + 2T_{x2}, T_{y1} + 2T_{y2}, 0, 0]^T$$

Thermal Load Vector $\mathbf{f}_{6\times 1}^{Th} = tA\mathbf{B}^{\mathsf{T}}\mathbf{D}\boldsymbol{\varepsilon}_{0}$

$$\mathbf{f}_{6\times 1}^{Th} = tA\mathbf{B}^{\mathsf{T}}\mathbf{D}\boldsymbol{\varepsilon}_{0}$$

$$\mathbf{k}_{6\times6}\mathbf{d}_{6\times1} = \mathbf{f}_{6\times1}^{Th} + \mathbf{T}_{6\times1} + \mathbf{f}_{6\times1}^{B}$$

Real

Master

Assumed displacement field

$$u = a_1 + a_2 \xi + a_3 \eta + a_4 \xi \eta$$
$$v = b_1 + b_2 \xi + b_3 \eta + b_4 \xi \eta$$

Shape Functions

$$\phi_i = \frac{1}{4}(1 + \xi \xi_i)(1 + \eta \eta_i)$$
 $i = 1,2,3,4$

Jacobian

$$x = \sum_{i=1}^{4} \phi_i x_i$$
 $y = \sum_{i=1}^{4} \phi_i y_i$

$$\mathbf{J}_{2\times2} = \frac{1}{4} \begin{bmatrix} \eta(x_1 - x_2 + x_3 - x_4) & \eta(y_1 - y_2 + y_3 - y_4) \\ +(-x_1 + x_2 + x_3 - x_4) & +(-y_1 + y_2 + y_3 - y_4) \\ \xi(x_1 - x_2 + x_3 - x_4) & \xi(y_1 - y_2 + y_3 - y_4) \\ +(-x_1 - x_2 + x_3 + x_4) & +(-y_1 - y_2 + y_3 + y_4) \end{bmatrix}$$

$$\Gamma_{2\times 2} = \frac{1}{\det(J)} \begin{bmatrix} J_{22} & -J_{12} \\ & & \\ -J_{21} & J_{11} \end{bmatrix} \qquad dxdy = \det(J) d\xi d\eta$$

Strain-Displacement Method

$$\mathbf{B}_{3\times8} = \mathbf{O}_{3\times4} \mathbf{N}_{4\times8}$$

$$\mathbf{B}_{3\times8} = \begin{bmatrix} \Gamma_{11} & \Gamma_{12} & 0 & 0 \\ 0 & 0 & \Gamma_{21} & \Gamma_{22} \\ \Gamma_{21} & \Gamma_{22} & \Gamma_{11} & \Gamma_{12} \end{bmatrix}_{3\times4} \begin{bmatrix} \phi_{1,\xi} & 0 & \phi_{2,\xi} & 0 & \phi_{3,\xi} & 0 & \phi_{4,\xi} & 0 \\ \phi_{1,\eta} & 0 & \phi_{2,\eta} & 0 & \phi_{3,\eta} & 0 & \phi_{3,\eta} & 0 \\ 0 & \phi_{1,\xi} & 0 & \phi_{2,\xi} & 0 & \phi_{3,\xi} & 0 & \phi_{4,\xi} \\ 0 & \phi_{1,\eta} & 0 & \phi_{2,\eta} & 0 & \phi_{3,\eta} & 0 & \phi_{4,\xi} \end{bmatrix}_{4\times8}$$

Element Stiffness Matrix

$$\mathbf{k}_{8\times8} = \int_{A} \mathbf{B}^{\mathsf{T}} \mathbf{D} \mathbf{B} t \, dA = \int_{-1}^{1} \int_{-1}^{1} \mathbf{B}^{\mathsf{T}} \mathbf{D} \mathbf{B} t \det(J) \, d\xi d\eta$$

$$\mathbf{k}_{8\times8} = \int_{-1-1}^{1} \mathbf{B}^{\mathsf{T}} \mathbf{D} \mathbf{B} t \det(J) d\xi d\eta = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} f(\xi_{i}, \eta_{j})$$

where
$$f(\xi_i, \eta_j) = \mathbf{B}^{\mathsf{T}} \mathbf{D} \mathbf{B} t \det(J) \Big|_{\xi_i, \eta_j}$$

Algorithm for Programming

- (1) Clear $\mathbf{k}_{8\times8}$ to zero.
- (2) Enter the *i* loop to integrate in the ξ -direction. Set values for w_i and ξ_i .
- (3) Enter the *j* loop to integrate in the η -direction. Set values for w_j and η_j .
- (4) At the current Gauss point (ξ_i, η_i) , compute the following.
 - (a) The shape functions ϕ_k and the derivatives of the shape functions $\frac{\partial \phi_k}{\partial \xi}, \frac{\partial \phi_k}{\partial \eta}$. If necessary, use the shape functions to compute the thickness, t_{ij} at the current point.
 - (b) Construct the jacobian matrix, $\mathbf{J}_{2\times 2}$, $\det(J)$ and the inverse $\Gamma_{2\times 2}$.
 - (c) Form the strain-displacement matrix $\mathbf{B}_{3\times8}$ using Eqn. (T3L2-9d).

Algorithm for Programming

- (5) At the current point, compute the product $\mathbf{T}_{3\times3} = w_i w_j t_{ij} \det(J) \mathbf{D}_{3\times3}$.
- (6) Now compute the triple product $\mathbf{B}_{8\times3}^T\mathbf{T}_{3\times3}\mathbf{B}_{3\times8}$ and update $\mathbf{k}_{8\times8}$.
- (7) Increment *j*.
- (8) Increment *i*.

Handling Higher-Order Elements

- Same old procedure
 - Generate shape functions for the assumed displacement field
 - Using the appropriate Gauss-Quadrature Rule, generate B, J, det(J) and

$$\mathbf{k}_{2n\times 2n} = \int_{-1}^{1} \int_{-1}^{1} \mathbf{B}_{2n\times 3}^{T} \mathbf{D}_{3\times 3} \mathbf{B}_{3\times 2n} t \det(J) d\xi d\eta = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} f(\xi_{i}, \eta_{j})$$

Computing Strains & Stresses

Step 6

Strains
$$\mathbf{\varepsilon}_{3\times 1} = \mathbf{B}_{3\times 2n} \mathbf{d}_{2n\times 1}$$

Stresses
$$\sigma_{3\times 1} = \mathbf{D}_{3\times 3} (\mathbf{\varepsilon} - \mathbf{\varepsilon}_0)_{3\times 1}$$

Computing Element Loads

Basic Idea
$$\Pi = \int_{V} U_0 dV - \int_{V} \mathbf{f}^T \mathbf{F} dV - \int_{S} \mathbf{f}^T \Phi dS - \mathbf{D}^T \mathbf{P}$$

Traction Load Vector

$$\mathbf{f}_{i}^{sur} = t \oint_{\Gamma} \phi_{i} \begin{Bmatrix} T_{x} \\ T_{y} \end{Bmatrix} ds$$

Body Forces

$$\mathbf{f}_{i}^{body} = t \iint \phi_{i} \begin{Bmatrix} B_{x} \\ B_{y} \end{Bmatrix} dA$$

Thermal Loads

$$\mathbf{f}^{ther} = t \iint \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{\varepsilon}_{0} dA$$

Surface Tractions

Assume constant surface traction normal to surface

$$\mathbf{f}_{i}^{sur} = t \oint_{\Gamma} \boldsymbol{\phi}_{i} T \mathbf{n} ds$$

$$\mathbf{n}ds = \mathbf{ds} \times \mathbf{z} = \begin{cases} dx \\ dy \\ 0 \end{cases} \times \begin{cases} 0 \\ 0 \\ 1 \end{cases} = \begin{cases} dy \\ -dx \\ 0 \end{cases} \quad \text{as} \quad$$

$$\begin{Bmatrix} T_x \\ T_y \end{Bmatrix} = T\mathbf{n}$$

Element Loads

Note

$$dx = \frac{\partial x}{\partial \xi} d\xi + \frac{\partial x}{\partial \eta} d\eta = J_{11} d\xi + J_{21} d\eta$$

$$dy = \frac{\partial y}{\partial \xi} d\xi + \frac{\partial y}{\partial \eta} d\eta = J_{12} d\xi + J_{22} d\eta$$

Substituting

$$\mathbf{f}_{i}^{sur} = tT \oint_{\Gamma} \phi_{i} \left(dy \,\hat{i} - dx \,\hat{j} \right) = tT \oint_{\Gamma} \phi_{i} \left(\left[J_{12} d\xi + J_{22} d\eta \right] \hat{i} - \left[J_{11} d\xi + J_{21} d\eta \right] \hat{j} \right)$$

Side 1-2
$$\eta = 0$$
 $d\eta = 0$ $\phi_1 = 1 - \xi$
$$\phi_2 = \xi \qquad \phi_3 = 0$$

$$\mathbf{f}_{i}^{sur} = t \oint_{\Gamma} \phi_{i} T \mathbf{n} ds = t \int_{\overline{12}} \phi_{i} T \mathbf{n} ds \quad i = 1, 2$$

Hence

$$f_{i,x}^{sur} = tT \int_{0}^{1} \phi_{i} J_{12} d\xi$$

$$f_{i,y}^{sur} = -tT \int_0^1 \phi_i J_{11} \, d\xi$$

$$J_{11}(\xi,0) = \frac{\partial x}{\partial \xi}(\xi,0) = \sum_{k=1,2} x_k \frac{\partial \phi_k(\xi,0)}{\partial \xi} = x_2 - x_1 = x_{21}$$

$$J_{12}(\xi,0) = \frac{\partial y}{\partial \xi}(\xi,0) = \sum_{k=1,2} y_k \frac{\partial \phi_k(\xi,0)}{\partial \xi} = y_2 - y_1 = y_{21}$$

Change in coordinates

$$\phi_{1}(\xi',0) = \frac{1}{2}(1-\xi')$$

$$\xi = \frac{1}{2}(\xi'+1) \implies \phi_{2}(\xi',0) = \frac{1}{2}(1+\xi')$$

$$\phi_{3}(\xi',0) = 0$$

$$\begin{split} f_{i,x}^{sur} &= tT \int_{0}^{1} \phi_{i} J_{12} \, d\xi = tT y_{21} \int_{0}^{1} \phi_{i} \, d\xi \\ f_{i,y}^{sur} &= -tT \int_{0}^{1} \phi_{i} J_{11} \, d\xi = -tT x_{21} \int_{0}^{1} \phi_{i} \, d\xi \\ f_{1,x}^{sur} &= \frac{1}{2} tT y_{21} \int_{-1}^{1} \phi_{1} \, d\xi' = \frac{1}{4} tT y_{21} \int_{-1}^{1} (1 - \xi') \, d\xi' = \frac{tT y_{21}}{2} \\ f_{1,y}^{sur} &= -\frac{1}{2} tT x_{21} \int_{-1}^{1} \phi_{1} \, d\xi' = -\frac{1}{2} tT x_{21} \int_{-1}^{1} (1 - \xi') \, d\xi' = -\frac{tT x_{21}}{2} \\ f_{2,x}^{sur} &= \frac{1}{2} tT y_{21} \int_{-1}^{1} \phi_{2} \, d\xi' = \frac{1}{4} tT y_{21} \int_{-1}^{1} (1 + \xi') \, d\xi' = \frac{tT y_{21}}{2} \\ f_{2,y}^{sur} &= -\frac{1}{2} tT x_{21} \int_{-1}^{1} \phi_{2} \, d\xi' = -\frac{1}{2} tT x_{21} \int_{-1}^{1} (1 + \xi') \, d\xi' = -\frac{tT x_{21}}{2} \end{split}$$

$$\mathbf{f}_{6\times 1} = \frac{tT}{2} \begin{cases} y_{21} \\ -x_{21} \\ y_{21} \\ -x_{21} \\ 0 \\ 0 \end{cases}$$

Sign convention for T?

Integration with Area Coordinates

Order, n	Weight	Location
1	1.0	(1/3, 1/3)
2	1/3	(2/3, 1/6)
	1/3	(1/6, 2/3)
	1/3	(1/6, 1/6)

Element Formulation: G-Q Rule

Element	Stiffness	Stress/Strain
T3	1	1
T6	3	3
Q4	2 x 2	1
Q8/Q9	3 x 3	2 x 2

Analysis & Retrospection

- Equilibrium is usually not satisfied within elements.
- Equilibrium is usually not satisfied between elements.
- Equilibrium of nodal forces and moments is satisfied.
- Compatibility may or may not be satisfied along element boundaries.

Analysis & Retrospection

- Compatibility is satisfied within elements.
- Compatibility is enforced at the nodes.

Summary

- We can now see the power of isoparametric formulation
- The same procedure will work for other classes of problems such as axisymmetric problems and three-dimensional elasticity problems
- Model building is going to take time